

Report No.: EED32I00035801 Page 1 of 42

TEST REPORT

Product : Brunswick Sync Tablet

Trade mark : Brunswick

Model/Type reference : 57-863756

Serial Number : N/A

Report Number : EED32I00035801

FCC ID : 2AEGE-57-863756-400

Date of Issue : Mar. 22, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Brunswick Bowling & Billiards Corporation 525 W. Laketon Ave. Muskegon, MI 49441, USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Approved by:

Report Seal

Lon Yang

Reviewed by:

Eman-Li

Date:

Mar. 22, 2016

Sheek Luo Lab supervisor

supervisor

Check No.: 2392114859

2 Version

Version No.	Date	Description	(c/1)
00	Mar. 22, 2016	Original	

Report No. : EED32I00035801 Page 3 of 42

3 Test Summary

o rest Summary	> ':>	_ ^ ° >	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Report No.: EED32I00035801 Page 4 of 42

Content

1 COVER PAGE		1
2 VERSION	•••••	2
3 TEST SUMMARY	•••••	3
4 CONTENT		4
5 TEST REQUIREMENT		5
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup		5
5.1.3 For Conducted Emissions test setup		
5.2 Test Environment		6
6 GENERAL INFORMATION		
6.1 CLIENT INFORMATION		7
6.2 GENERAL DESCRIPTION OF EUT		
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD		
6.5 TEST LOCATION		
6.6 TEST FACILITY		
6.7 DEVIATION FROM STANDARDS		
6.8 ABNORMALITIES FROM STANDARD CONDITIONS		
6.10 MEASUREMENT UNCERTAINTY(95% CONFIDENCE LEVELS, K=2)		
7 EQUIPMENT LIST		
B RADIO TECHNICAL REQUIREMENTS SPECIFICATION		13
Appendix A): 6dB Occupied Bandwidth		14
Appendix B): Conducted Peak Output Power		16
Appendix C): Band-edge for RF Conducted Emissions		18
Appendix D): RF Conducted Spurious Emissions		
Appendix E): Power Spectral Density		22
Appendix F): Antenna Requirement		
Appendix G): AC Power Line Conducted Emission		
Appendix I): Restricted barids around fundamental frequency (Radiated) Appendix I): Radiated Spurious Emissions		
PHOTOGRAPHS OF TEST SETUP		
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		
	(7)	

Report No. : EED32I00035801 Page 5 of 42

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. 30MHz to 1GHz

Figure 2. Above 1GHz

Report No. : EED32I00035801 Page 6 of 42

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:	0	6	(0)
Temperature:	22°C		
Humidity:	50 % RH		
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tv	RF Channel			
rest Mode	Тх	Low(L)	Middle(M)	High(H)	
05014	0.400.0411	Channel 1	Channel 20	Channel40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT transmitted channel(s).	the continuous mo	odulation test signal	at the specific	

Report No. : EED32I00035801 Page 7 of 42

6 General Information

6.1 Client Information

Applicant:	Brunswick Bowling & Billiards Corporation
Address of Applicant:	525 W. Laketon Ave. Muskegon, MI 49441, USA
Manufacturer:	Shenzhen City Swift Info Technology Limited
Address of Manufacturer:	R303, Buliding C, Future Plaza, No.6060, Qiaoxiang Road, Nanshan Dist., Shenzhen China 518053

6.2 General Description of EUT

Product Name:	Brunswick Sync Tablet			
Model No.(EUT):	57-863756		(3)	
Trade mark:	Brunswick		(67.)	
EUT Supports Radios application:	Bluetooth V4.0 BLE			
AC adapter:	AC 100-240V, 50/60Hz Output: DC 12-13.5V, 4.7A			
Power Supply:	DC 12V	(0,		(0,
Sample Received Date:	Feb. 23, 2016			
Sample tested Date:	Feb. 23, 2016 to Mar. 22, 2016			

6.3 Product Specification subjective to this standard

Operation Frequ	iency:	2402M	Hz~2480MHz				/
Bluetooth Version	on:	4.0					
Modulation Tech	nnique:	DSSS					
Modulation Type	97	GFSK		\			
Number of Char	nnel:	40	6	/	6.		6.
Sample Type:		Fixed p	oroduction				
Test Software o	f EUT:	Ampak	RFTestTool	(manufacture	er declare)		
Hardware Versi	on:	V1.2(m	nanufacturer d	leclare))	(3)	1
Software Versio	n:	V4.5(m	nanufacturer d	leclare))	(6))
Antenna Type a	nd Gain::	Type: I Gain: 2	ntegral anten 2dBi	na			
Test Voltage:	~°>	AC 120	0V/60Hz		<*S		_°>
Operation Frequ	iency eac	n of channe)			(6/1)
Channel Fr	equency	Channel	Frequency	Channel	Frequency	Channel	Frequency

Operation	requeries cae	i oi oilailio	10.0		100.		10.0
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz

Report No.: EED32I00035801 Page 8 of 42

7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
POWER	Brunswick Bowling	57-501345	FCC VOC	Client

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

Report No.: EED32I00035801 Page 9 of 42

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE neuron conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
2	Dadicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32I00035801 Page 10 of 42

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	(0)	01-12-2016	01-11-2017
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-31-2016
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2016	03-31-2017

Report No. : EED32I00035801 Page 11 of 42

Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016		
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016		
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016		
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016		
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016		
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016		
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016		
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017		
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

		3M Semi/full-anech	noic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3	(: -	06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2018
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2018
Multi device Controller	maturo	NCD/070/10711112	(4)	01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002		01-12-2016	01-11-2017
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	(C.)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-12-2016	01-11-2017

Report No. : EED32I00035801 Page 13 of 42

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32I00035801 Page 14 of 42

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6861	1.0849	PASS	-0-
BLE	MCH	0.6723	1.0865	PASS	Peak detector
BLE	HCH	0.6738	1.0899	PASS	

Test Graphs

Report No. : EED32I00035801 Page 16 of 42

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.650	PASS
BLE	MCH	2.408	PASS
BLE	HCH	1.869	PASS

Test Graphs

Report No. : EED32I00035801 Page 18 of 42

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
4	BLE	LCH	2.058	-56.364	-17.94	PASS
2	BLE	HCH	1.044	-55.316	-18.96	PASS

Test Graphs

Report No.: EED32I00035801 Page 19 of 42

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	1.912	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	1.542	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	0.94	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Page 20 of 42

Page 21 of 42

Page 22 of 42 Report No.: EED32I00035801

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-11.510	PASS
BLE	мсн	-11.985	PASS
BLE	нсн	-12.643	PASS

Test Graphs

Report No.: EED32I00035801 Page 24 of 42

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is connect with the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Report No.: EED32I00035801 Page 25 of 42

Test Proc		Test frequency range :150KF					
		The mains terminal disturb The FUT was assessed to	•				
	_0	The EUT was connected Stabilization Network) wh	nich provides a 50Ω/50μ	H + 5Ω linear imp	edance. The		
	(4)	power cables of all other which was bonded to the					
	0	for the unit being measur multiple power cables to a exceeded.	red. A multiple socket o	utlet strip was use	d to connec		
		 The tabletop EUT was pl reference plane. And for the horizontal ground reference 	floor-standing arrangeme				
		4) The test was performed EUT shall be 0.4 m from	with a vertical ground rethe vertical ground reference	ence plane. The ve	ertical ground		
		reference plane was bond 1 was placed 0.8 m from					
		ground reference plane					
	6	plane. This distance was	between the closest poi	nts of the LISN 1 a	and the EUT		
		All other units of the EUT LISN 2.	and associated equipm	ent was at least 0.	8 m from the		
		5) In order to find the maxim	num emission, the relati	ve positions of ed	uipment an		
	(i)	all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.					
Lin	Limit:	conducted measurement.	Limit (dBµV)				
LIII	III.	Frequency range (MHz)	Quasi-peak	Average			
		0.15-0.5	66 to 56*	56 to 46*			
		0.5-5	56	46			
	0	5-30	60	50			
		* The limit decreases linearly MHz to 0.50 MHz.	y with the logarithm of t	he frequency in th	e range 0.1		
			olicable at the transition t	requency			
(c)		NOTE : The lower limit is app					
(olicable at the transition t	requency			
(6)		NOTE : The lower limit is app					
		NOTE : The lower limit is app			(cří)		
		NOTE : The lower limit is app			(chi)		

Report No.: EED32I00035801 Page 26 of 42

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1819	42.20	41.30	30.79	9.80	52.00	51.10	40.59	64.39	54.39	-13.29	-13.80	Р	
2	5.8430	24.19	24.34	20.81	10.00	34.19	34.34	30.81	60.00	50.00	-25.66	-19.19	Р	
3	9.2810	30.91	30.19	27.32	10.00	40.91	40.19	37.32	60.00	50.00	-19.81	-12.68	Р	
4	11.0900	31.94	31.28	28.25	10.02	41.96	41.30	38.27	60.00	50.00	-18.70	-11.73	Р	
5	18.6259	40.40	37.71	34.20	10.39	50.79	48.10	44.59	60.00	50.00	-11.90	-5.41	Р	
6	24.8980	40.52	38.18	35.30	10.40	50.92	48.58	45.70	60.00	50.00	-11.42	-4.30	Р	

Notes:

5

6

18.9400 25.67

25.2700 41.52 38.83

1. The following Quasi-Peak and Average measurements were performed on the EUT:

36.09

51.91

49.19

49.22

45.82

45.91

60.00

60.00

50.00

50.00

-10.81

-10.78

-4.18

-4.09

Ρ

Р

10.42

10.39

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

35.40

35.52

38.77

Report No. : EED32I00035801 Page 28 of 42

Appendix H): Restricted bands around fundamental frequency (Radiated)

Radialed)	(875)			(0		
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	ro os bolovu	6.		- /	(C)
	 a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the totoo. The antenna height is determine the maximum polarizations of the antenna was tuned table was turned from the extreseiver systems. e. The test-receiver systems at a 1 meter of the systems. 	n the top of a rot choic camber. The of the highest raters away from to p of a variable-howaried from one of movernmental value of the field enna are set to rot cheights from to degrees to 360 movernmental was set to Penary The characteristics and the set to set to Penary The characteristics and the set to set to Penary The characteristics and the set to Penary The set to Penary The characteristics and the set to Penary Th	te table ward diation. The interfer eight anter to food of the make the make arran arran degrees to degrees to	ence-receinna tower. bur meters n. Both hor neasurement ged to its via	wing antennal above the grantal and vent. worst case and the rotate maximum reasons.	to, which ound rertica and the
	f. Place a marker at the effrequency to show combands. Save the spectrofor lowest and highest	end of the restric apliance. Also me rum analyzer plo	easure any	emissions	s in the restri	
	f. Place a marker at the ending frequency to show combands. Save the spectra for lowest and highest of lowest and highest of the first street between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lowest incompanion of the radiation measures. Transmitting mode, and	end of the restrict apliance. Also me turn analyzer plotchannel turn as below: The interest site and table to the turn and table turn and table turn are performents are performents are performents are performent and the X ax	easure any t. Repeat f , change fi n table 0.8 e is 1.5 me he Highest med in X, is positioni	rom Semi- metre to 1 tre). t channel Y, Z axis ping which i	Anechoic Ch .5 metre(Abo	dulation nambe pve
Limit:	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest. Above 1GHz test procedum of the fully Anechoic Chamaland 18GHz the distance is how to fully Anechoic Chamaland 18GHz the EUT in the low in the radiation measure that Transmitting mode, and in the procedum of the fully and the full in the low in the radiation measure that the full in the low in the radiation measure that the full in the low in the full in the low in the full in the ful	end of the restrict opliance. Also me turn analyzer plothannel tre as below: The is the test site the change form 1 meter and table the test channel, the ments are performed found the X ax res until all frequents.	casure any t. Repeat f change from table 0.8 e is 1.5 me the Highest med in X, is positioni	rom Semi- metre to 1 tre). t channel Y, Z axis ping which i	Anechoic Ch .5 metre(Abo	dulation nambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectra for lowest and highest of lowest and highest of the first street between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lowest incompanion of the radiation measures. Transmitting mode, and	end of the restrict apliance. Also me turn analyzer plotchannel turn as below: The interest site and table to the turn and table turn and table turn are performents are performents are performents are performent and the X ax	t. Repeat for table 0.8 to is 1.5 method in X, is positioning the median	rom Semi- metre to 1 tre). t channel Y, Z axis p ing which i	Anechoic Ch .5 metre(Abo positioning for t is worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chammand 18 GHz the distance is how to fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz the distance is how the fully Anechoic Chammand 18 GHz	end of the restrict pliance. Also me um analyzer plochannel re as below: re is the test site ber change form 1 meter and table west channel, the ments are perford found the X ax res until all frequency Limit (dBµV/40.0	casure any t. Repeat f , change fi n table 0.8 e is 1.5 me he Highest med in X, is positioni dencies me m @3m)	rom Semi- metre to 1 tre). t channel Y, Z axis p ing which i easured wa	Anechoic Ch. 5 metre(Abording for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of fully Anechoic Chamaland 18GHz the distance is how to fully Anechoic Chamaland 18GHz the distance is how the fully Anechoic Chamaland 18GHz the distance is how the fully Anechoic Chamaland 18GHz the distance is how the fully Anechoic Chamaland 18GHz the Grand 18GHz the fully Anechoic Chamaland 18GHz the fully Anechoi	end of the restrict pliance. Also me um analyzer plochannel are as below: The interest site ber change form 1 meter and table west channel, it ments are perform 1 found the X ax res until all frequency Limit (dBµV/40.043.5	t. Repeat for table 0.8 is 1.5 med in X, is positioning median (2) is me	rom Semi- metre to 1 tre). t channel Y, Z axis ping which i easured wa Rer Quasi-pe	Anechoic Ch.5 metre(Aboositioning for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chammand 18GHz the distance is how to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the	end of the restrict pliance. Also me um analyzer plochannel re as below: re is the test site ber change form 1 meter and table west channel , the ments are perford found the X ax res until all frequency Limit (dBµV/40.043.546.0	casure any t. Repeat f , change fi n table 0.8 e is 1.5 me he Highest med in X, is positioni iencies me m @3m)	rom Semi- metre to 1 tre). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch. 5 metre(Above consitioning for t is worse cases complete. mark eak Value eak Value	dulation nambe pve
Limit:	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of fully Anechoic Chamaland 18GHz the distance is how to fully Anechoic Chamaland 18GHz the distance is how the fully Anechoic Chamaland 18GHz the distance is how the fully Anechoic Chamaland 18GHz the distance is how the fully Anechoic Chamaland 18GHz the Grand 18GHz the fully Anechoic Chamaland 18GHz the fully Anechoi	end of the restrict pliance. Also me um analyzer plochannel are as below: The interest site ber change form 1 meter and table west channel, it ments are perform 1 found the X ax res until all frequency Limit (dBµV/40.043.5	casure any t. Repeat f , change fr n table 0.8 e is 1.5 me he Highest rmed in X, is positioni iencies me m @3m)	rom Semi- metre to 1 tre). t channel Y, Z axis ping which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 metre(Aboositioning for tis worse cases complete.	dulation nambe pve

Report No. : EED32I00035801 Page 29 of 42

Test plot as follows:

Worse case	e mode:	GFSK			(2					
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	44.32	43.92	32.53	4.28	37.21	74	-30.08	I	PK	Lowest
2390.00	44.31	43.91	32.53	4.28	37.21	74	-30.09	V	PK	Lowest
2483.50	44.14	44.17	32.71	4.51	37.19	74	-29.83	Н	PK	Highest
2483.50	44.69	44.72	32.71	4.51	37.19	74	-29.28	V	PK	Highest

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32I00035801 Page 30 of 42

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 10Uz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

j. Repeat above procedures until all frequencies measured was complete.

1	:.	~	t.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-	(0,2)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32I00035801 Page 31 of 42

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	Freq		Cable Loss					Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	138.874	10.37	1.58	23.20	35.15	43.50	-8.35	Horizontal	
2 pp	181.920	10.97	2.00	24.70	37.67	43.50	-5.83	Horizontal	
3	263.819	12.72	2.36	22.29	37.37	46.00	-8.63	Horizontal	
4	480.528	17.91	3.08	15.20	36.19	46.00	-9.81	Horizontal	
5	721.726	20.83	3.94	15.07	39.84	46.00	-6.16	Horizontal	
6	866.088	22.06	4.23	13.59	39.88	46.00	-6.12	Horizontal	

		AIIC	Capie	Neau		LIMIT	over			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1 pp	50.057	15.09	1.40	20.91	37.40	40.00	-2.60	Vertical		
2	140.342	10.27	1.58	27.53	39.38	43.50	-4.12	Vertical		
3	189.074	11.23	2.09	26.62	39.94	43.50	-3.56	Vertical		
4	517.248	18.47	3.16	13.72	35.35	46.00	-10.65	Vertical		
5	721.726	20.83	3.94	12.44	37.21	46.00	-8.79	Vertical		
6	866 088	22 06	4 23	12 71	39 00	46 00	-7 00	Vertical		

Report No. : EED32I00035801 Page 33 of 42

Transmitter Emission above 1GHz

Test mode:	.")	(GFSK		Test Freque	ency:	(3	2402	2MHz
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1280.072	30.41	2.61	38.33	46.8	41.49	74	-32.51	Pass	°H.
1663.803	31.17	2.97	37.72	48.39	44.81	74	-29.19	Pass	H
3291.385	33.34	5.56	37.04	44.50	46.36	74	-27.64	Pass	Н
4804.000	34.69	5.11	36.82	42.04	45.02	74	-28.98	Pass	Н
7206.000	36.42	6.66	37.46	42.37	47.99	74	-26.01	Pass	Н
9608.000	37.88	7.73	37.82	42.25	50.04	74	-23.96	Pass	Н
1518.111	30.90	2.84	37.94	46.60	42.40	74	-31.60	Pass	V
3672.110	33.04	5.49	36.96	44.27	45.84	74	-28.16	Pass	V
4804.000	34.69	5.11	36.82	41.02	44.00	74	-30.00	Pass	V
6347.466	36.08	7.08	36.99	44.48	50.65	74	-23.35	Pass	V
7206.000	36.42	6.66	37.46	41.56	47.18	74	-26.82	Pass	V
9608.000	37.88	7.73	37.82	42.79	50.58	74	-23.42	Pass	V

Test mode:			GFSK		Test Freque	ency:	(4	2440MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1385.177	30.64	2.72	38.15	46.63	41.84	74	-32.16	Pass	·H.
1668.044	31.18	2.98	37.72	48.12	44.56	74	-29.44	Pass	Н
4880.000	34.85	5.08	36.81	41.11	44.23	74	-29.77	Pass	H
5703.861	35.68	6.77	36.73	44.32	50.04	74	-23.96	Pass	Н
7320.000	36.43	6.77	37.43	42.44	48.21	74	-25.79	Pass	Н
9760.000	38.05	7.60	37.85	42.37	50.17	74	-23.83	Pass	Н
1254.268	30.35	2.58	38.38	46.94	41.49	74	-32.51	Pass	V
1668.044	31.18	2.98	37.72	47.70	44.14	74	-29.86	Pass	V
4880.000	34.85	5.08	36.81	39.96	43.08	74	-30.92	Pass	V
7320.000	36.43	6.77	37.43	42.46	48.23	74	-25.77	Pass	V
9760.000	38.05	7.60	37.85	42.87	50.67	74	-23.33	Pass	V

_	~ 4		40
Page	34	ΟŤ	42

			/ " "				100		
Test mode:			GFSK		Test Frequency:			2480)MHz
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1668.044	31.18	2.98	37.72	48.43	44.87	74	-29.13	Pass	-°Н
3728.625	33.00	5.48	36.95	44.65	46.18	74	-27.82	Pass	Н
4960.000	35.02	5.05	36.80	40.50	43.77	74	-30.23	Pass	H
6001.768	35.90	7.43	36.70	43.73	50.36	74	-23.64	Pass	Н
7440.000	36.45	6.88	37.41	42.85	48.77	74	-25.23	Pass	Н
9920.000	38.22	7.47	37.88	42.94	50.75	74	-23.25	Pass	Н
1518.111	30.90	2.84	37.94	46.30	42.10	74	-31.90	Pass	V
1851.542	31.48	3.12	37.48	45.20	42.32	74	-31.68	Pass	V
3795.660	32.95	5.47	36.94	44.41	45.89	74	-28.11	Pass	V
4960.000	35.02	5.05	36.80	39.47	42.74	74	-31.26	Pass	V
7440.000	36.45	6.88	37.41	42.86	48.78	74	-25.22	Pass	V
9920.000	38.22	7.47	37.88	43.06	50.87	74	-23.13	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32I00035801 Page 35 of 42

PHOTOGRAPHS OF TEST SETUP

Test mode No.: 57-863756

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32I00035801 Page 37 of 42

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: 57-863756

View of product-1

View of product-2

View of product-3

View of product-4

View of product-5

View of product-6

Page 40 of 42

View of product-7

View of product-8

Report No.: EED32l00035801 Page 41 of 42

View of product-9

View of product-10

Report No. : EED32I00035801 Page 42 of 42

View of product-11

View of product-12

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.