Microcomputers I – CE 320

Mohammad Ghamari, Ph.D.

Electrical and Computer Engineering

Kettering University

Announcements

- Exercise 1 is uploaded.
 - It is about number systems
 - If you don't feel comfortable with number systems, don't miss this exercise.
- Please do the exercise. Finish the exercise in right time is very important to come up with the course.
- Today, Lecture 2 will be provided.

Lecture 2:

Number System

Today's Topics

- Review binary and hexadecimal number representation
- Convert directly from one base to another base
- Review addition and subtraction in binary representation
- Determine overflow in unsigned and signed binary addition and subtraction.

Why do we need other bases

- <u>Human</u>: decimal number system
 - Radix-10 or base-10
 - Base-10 means that a digit can have one of ten possible values, 0 through 9.
- Computer: binary number system
 - Radix-2 or base-2
 - Each digit can have one of two values, 0 or 1

- Long strings of 1s and 0s are cumbersome to use
- Represent binary numbers using hexadecimal.
- Radix-16 or base-16
- This is only a convenience for humans not computers.
- All of these number systems are positional

Unsigned Decimal

- Numbers are represented using the digits 0, 1, 2, ..., 9.
- Multi-digit numbers are interpreted as in the following example:

Example: 793₁₀

- $\bullet = 7 \times 100 + 9 \times 10 + 3$
- \bullet = 7 x 10² + 9 x 10¹ + 3 x 10⁰
- We can get a general form of this
 - ABC_{radix}
 - A x $(radix)^2$ + B x $(radix)^1$ + C x $(radix)^0$

Unsigned Binary

- Numbers are represented using the digits 0 and 1.
- Multi-digit numbers are interpreted as in the following example:

Example: 10111₂ (5-bit binary)

```
• = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0
• = 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1
```

- Bit: Each digit is called a bit(Binary Digit) in binary
- Important! You must write all bits including leading 0s, when we say *n*-bit binary.
 - Ex: 00010111₂ (8-bit binary)

Unsigned Hexadecimal

• Numbers are represented using the digits 0, 1, 2, ..., 9, A, B, C, D, E, F where the letters represent values: A=10, B=11, C=12, D=13, E=14, and F=15.

Multi-digit numbers are interpreted as in the following example:

Example: 76CA₁₆

```
• = 7 \times 16^3 + 6 \times 16^2 + C(=12) \times 16^1 + A(=10) \times 16^0

• = 7 \times 4096 + 6 \times 256 + 12 \times 16 + 10

• = 30,410_{10}
```

Notes on Bases

- Subscript is mandatory at least for a while.
 - We use it for all three number bases.
 - When a number is written out of context, you should include the correct subscript.
- Pronunciation
 - Binary and hexadecimal numbers are spoken by naming the digits followed by "binary" or "hexadecimal."
 - e.g., 1000₁₆ is pronounced "one zero zero zero hexadecimal."
 - c.f., "one-thousand hexadecimal" refers the **hexadecimal number** corresponding **1000**₁₀. (so, 3E8₁₆)

Ranges of Unsigned Number Systems

System	Lowest	Highest	Number of values
4-bit binary (1-digit hex)	0000 ₂ 0 ₁₀ 0 ₁₆	1111 ₂ 15 ₁₀ F ₁₆	16 ₁₀
8-bit binary (1 byte) (2-digit hex)	$0000\ 0000_2 \ 0_{10} \ 0_{16}$	1111 1111 ₂ 255 ₁₀ FF ₁₆	256 ₁₀
16-bit binary (2 bytes) (1-digit hex)	0000 0000 0000 0000 ₂ 0 ₁₀ 0 ₁₆	1111 1111 1111 1111 ₂ 65535 ₁₀ FFFF ₁₆	65536 ₁₀
n-bit binary	0 ₁₀	2 ⁿ -1 ₁₀	2 ⁿ

Negative Number Representation

- Most microprocessors use 2's complement numbers to represent number systems with positive and negative values.
- Hardware performs addition and subtraction on binary values the same way whether they are unsigned or 2's complement systems.
- In signed systems, MSB(Most Significant Bit) has a weight of -2⁽ⁿ⁻¹⁾.

Bin	Signed	Unsigned
0000 0000	0	0
0000 0001	1	1
0000 0010	2	2
0111 1110	126	126
0111 1111	127	127
1000 0000	-128	128
1000 0001	-127	129
1111 1110	-2	254
1111 1111	-1	255

• We will use '2C' subscript to indicate a 2's complement number.

- Examples:
 - Convert 10011010_{2c} in decimal
 - Convert 11011_{2c} in decimal
 - Convert 01011_{2c} in decimal

- We will use '2C' subscript to indicate a 2's complement number.
- Examples:
 - Convert 10011010_{2c} in decimal

• =
$$-2^{(8-1)} \times 1 + 2^4 + 2^3 + 2^1 = -102_{10}$$

Convert 11011_{2c} in decimal

• =
$$-2^{(5-1)} \times 1 + 2^3 + 2^1 + 2^0 = -5_{10}$$

• Convert 01011_{2c} in decimal

$$\bullet = -2^{(5-1)} \times 0 + 2^3 + 2^1 + 2^0 = 11_{10}$$

A Group of Bits are A Group of Bits.

- To microprocessors, a group of bits are simply a group of bits.
- Humans interpret the group as an unsigned, signed values or also as just a group of bits.

Ranges of Signed Number Systems

System	Lowest	Highest	Number of values
4-bit binary	1000 ₂ -8 ₁₀	0111 ₂ 7 ₁₀	16 ₁₀
8-bit binary (1 byte)	1000 0000 ₂ -128 ₁₀	0111 1111 ₂ 127 ₁₀	256 ₁₀
16-bit binary (2 bytes)	1000 0000 0000 0000 ₂ -32768 ₁₀	0111 1111 1111 1111 ₂ 32767 ₁₀	65536 ₁₀
n-bit binary	-2 ⁽ⁿ⁻¹⁾ 10	2 ⁽ⁿ⁻¹⁾ -1 ₁₀	2 ⁿ

Sign Bit

- The leftmost bit (MSB) is a sign bit.
- We can tell the number is negative or positive by simply inspecting the leftmost bit.
- If MSB is 1, the number is negative. Otherwise, positive.
- Why?
 - The leftmost column has a negative weight, and the magnitude of that weight is larger than the weights of all the positive columns added altogether, any number with a 1 in the leftmost column will be negative.

Negating a 2's Complement Number

- Negate a number:
 - Generate a number with the same magnitude but with the opposite sign.
 - Ex: 25 ← → -25
- Two steps in binary systems
 - 1- Perform the 1's complement (flip all the bits)
 - 2- Add 1.
 - Ex: Negate 00101001_{2c} (41₁₀)
 - 1. Flip all the bits: 11010110
 - 2. Add 1: $11010110 + 1 \rightarrow 11010111_{2c}$ (- 41_{10})

Converting Decimal to Binary

• Ex: Convert 53₁₀ to **8-bit** unsigned binary.

Converting Decimal to Binary

• Ex: Convert 172₁₀ to **2-digit** hexadecimal.

Converting a Negative Value

- Converting a negative value
 - 1- convert the magnitude to correct number of bits
 - 2- negate the result.
- Ex: -127₁₀ to **8-bit** signed binary

Binary to Hexadecimal

- This conversion is the reason that hexadecimal is used.
- We can group 4 bits since four bits can represent 16 (=24) different values.
 - Examples:
 - 1001 0101 $1110_2 = 9.5 E_{16}$
 - $0110\ 1010\ 1011_2 = 6\ A\ B_{16}$
- If a binary number is not multiple of 4bits, padding the number with zeros regardless of the sign of the number.
 - Examples:
 - 1 0101 1110_{2C} = **000**1 0101 1110₂ = 1 5 E $_{16}$
 - 1 $1011_{2C} = 0001 1011_2 = 1 B_{16}$

Hexadecimal to Binary

- Hexadecimal is not interpreted as signed or unsigned.
- Converting hexadecimal to binary
 - Examples
 - B E F A_{16} = 1011 1110 1111 1010₂
 - 7 3 F C_{16} = 0111 0011 1111 1100₂
- We can specify a binary system with any number of bits.
 - Examples
 - 0 7 B $_{16}$ to 9-bit signed = 0 0111 1011 $_{2C}$
 - 1 F $_{16}$ to 5-bit unsigned = 1 1111 $_2$

Binary Arithmetic & Overflow

0 + 0 = 0, carry = 0	0 - 0 = 0, borrow = 0
1 + 0 = 1, carry = 0	1 - 0 = 1, borrow = 0
0 + 1 = 1, carry = 0	0 - 1 = 1, borrow = 1
1 + 1 = 0, carry = 1	1 - 1 = 0, borrow = 0

- Overflow occurs when two numbers are added or subtracted and the correct result is a number that is outside of the range of allowable numbers.
 - Example:
 - 254 + 10 = 264 (>255); overflow in unsigned 8-bit.
 - -100 30 = -130(<-128); overflow in signed 8-bit.

Binary Arithmetic & Overflow Overflow detection

- For unsigned:
 - It is simple. A carry occurs, so does overflow!
 - A carry (or borrow) out of the most significant column indicates that overflow occurred.
- For signed:
 - A carry does not mean overflow.
 - Ex: in 4-bit binary system
 - -2 + 3 = 1 (1110 + 0011 = 0001 with carry = 1 (carry ignored)
 - -4 3 = -7 (1100 + 1101 = 1001 with carry = -7 (carry ignored)
 - 6 + 3 = 9 (overflow), 0110 + 0011 = 1001 (=-7), incorrect.
 - -7 3 = -10 (underflow), (1001 + 1101 = 0110) (=6), incorrect.

Binary Arithmetic & Overflow Overflow detection

- For signed:
 - It is hard to detect overflow(underflow).
 - Addition:

 - No overflow in case if the two numbers have different sign.

Binary Arithmetic & Overflow Examples

- For signed: examples
 - Addition:
 - 01101011 + 01011010 = 11000101.
 - Unsigned (no overflow), signed (overflow, because the sign of the result is different from numbers being added)

Extending Binary Numbers

- The binary numbers must have the same number of bits when performing arithmetic operations.
- It is necessary to extend the shorter number so that it has the same number of bits as the longer number.
- For unsigned:
 - Always extend by adding zeros.
- For signed:
 - Always extend by repeating sign bit.

Extending Binary Numbers Examples

Extend the binary numbers below to 16 bits.

```
• 0110 1111<sub>2</sub> \rightarrow 0000 0000 0110 1111<sub>2</sub>

• 1 0010 1101<sub>2</sub> \rightarrow 0000 0001 0010 1101<sub>2</sub>

• 0 1110<sub>2C</sub> \rightarrow 0000 0000 0000 1110<sub>2</sub>

• 1001 1001<sub>2C</sub> \rightarrow 1111 1111 1001 1001<sub>2</sub>
```

Truncating Binary Numbers

• It is <u>not possible</u> to truncate binary numbers if it yields a shorter number that <u>does not represent the same value</u> as the original number.

- Unsigned:
 - All bits discarded must be 0s.
- Signed:
 - All bits discarded must be same as the new sign bit of the shorter number.

Truncating Binary Numbers Examples

- Truncate 16-bit values to 8 bits
 - 0000 0000 1011 0111₂ \rightarrow 1011 0111₂
 - 1111 1111 1011 0111₂ → not possible
 - 0000 0000 1011 0111_{2C} → not possible
 - 0000 0000 0011 0111_{2C} \rightarrow 0011 0111_{2C}
 - 1111 1110 1011 0111_{2C} → not possible
 - 1111 1111 1011 $0111_{2C} \rightarrow 1011 \ 0111_{2C}$

Questions?

Wrap-up What we've learned

- Binary and hexadecimal number representation
- Convert directly from one base to another base
- Addition and subtraction in binary representation
- Determine overflow in unsigned and signed binary addition and subtraction (subtraction is your homework)

What to Come

Lab sessions start from Tuesday.

Introduction to HCS12