SPOSTAMENTO VIRTUALE

Dato un sistema comunque vincolato, si dice spostamento virtuale (e si indica con dP) uno spostamento infinitesimo conforme ai vincoli fissati all'istante t.

VINCOLO OLONOMO

Vincolo che limita le posizioni

VINCOLO ANOLONOMO

Vincolo che limita gli spostamenti e le velocità

SISTEMA OLONOMO

Si descrivono utilizzando poche variabilie e ci permettono di descrivere il moto, come il moto di un punto in un sistema che ha tante dimensioni quante sono le variabili.

VINCOLI

1)BILATERALI: Tutti gli spostamento virtuali sono reversibili; 2)UNILATERALI: NON tutti gli spostamenti sono reversibili;

VINCOLI IDEALI

Si dicono vincoli ideali quei vincoli in gradi di esercitare tutti e soli quei sistemi di reazioni vincolari il cui lavoro virtuale è NON NEGATIVO per ogni spostamento virtuale.

PLV

Condizione necessaria e sufficiente affinche un sistema meccanico a vincoli ideali sia in equilibrio nella configurazione C* è che il lavoro virtuale delle forze attive sia NON POSITIVO per ogni spostamendo virtuale a partire da C*.

PROPRIETÁ DI UBICAZIONE DEL BARICENTRO

- 1)Se un sistema materiale è contenuto in un piano allora il suo baricentro sta sul piano;
- 2)Se un sistema materiale è contenuto in una superficie convessa (oppure è piano ed è contenuto in una curva convessa) allora il baricentro è NON ESTERNO alla superficie o alla curva;
- 3)Se un sistema materiale appartiene ad un segmento il baricentro è NON ESTERNO al segmento;
- 4)Baricentro dei Baricentri: Se un sistema materiale è divisibile in 2 sottosistemi di massa m1 e m2 e baricentri G1 e G2 allora il baricentro del sistema sarà il baricentro dei baricentri;
- 5)Se il sistema materiale ha un piano diametrale allora il barientro appartiene al piano diametrale.

PIANO DIAMETRALE CONIUGATO ALLA RETTA r

Un piano diametrale coniugto alla retta r è un piano che divide il sstema materiale in coppie di punti di uguale massa tali che i segmentoi che li uniscono sono tutti paralleli a r e hanno il punto medio sul piano.

PIANO DI SIMMETRIA DI MASSA

É un piano diametriale coniugato ad una retta perpendicolare.

CRITERI PER L'INDIVIDUAZIONE DEGLI ASSI PRINCIPALI D'INERZIA

- 2)Se un corpo presenta 2 piani di simmetria di massa tra loro ortogonalei si riesce ad individuare la terna degli assi principali d'Inerzia per tutti i punti Q appartenenti all'intersezione tra i due piani e in particolare il Baricentro;
- 3)Se un curpo presenta 2 piani di simmetrai di massa tra loro non ortogonali allora è un corpo a struttura giroscopica per un qualsiasi punto si intersezione tra i 2 piani, in particolare è un giroscopio.

CORPO RIGIDO

Un corpo rigido è un oggetto materiale le cui parti sono soggette al vincolo di rigidità, ossia è un corpo che sia quando è fermo sia quando cambia posizione non si deforma mai.

TIPI DI SISTEMI

- 1)Solidale
- 2)Baricentrale
- 3)Assoluto
- 4)Relativo

CLASSIFICAZIONE DEI MOTI RIGIDI

- 1)TRASLATORIO: Un moto rigido si dice traslatorio se ogni retta solidale si mantiene parallela durante il moto;
- 2)ROTOTRASLATORIO: Un moto rigido si dice rototraslatorio se esiste un fascio di rette parallelesolidali che durante il moto restano parallele a se stesse.

 La direzione del fascio di rette si dice DIRZIONE PRIVILEGIATA;
- 3)ROTATORIO: Un moto rigido si dice rotatorio se è un moto rototraslatorio in cui una retta solidale è parallela alla direzione privilegiata e durante il moto mantiene

velocità nulla;

- 4)ELICODIDALE: Un moto rigido sidice elicoidale se esiste una rettasolidale parallela alla direzione privilegiata i cui punti durante il moto hanno velocità parallela alla direzione privilegiata;
- 5)PIANO: Un moto rigido rototraslatorio si dice piano se esiste un piano solidale [pigreco] che durante il moto resta parallelo e ad uguale distanza da un piano fisso [pigreco]{2};
- 6)POLARE: Un moto rigido si dice polare se durante il moto esiste un punto Q che rimane fisso, cioè ha velocità nulla.

PRINCIPIO DI D'ALAMBERTI

In un sistema meccanico per passare dall'equazioni dell'equilibrio all'equazioni del moto è sufficiente sostituire alle foze attive le forze perdute:

[F] =====> [F-mg]

EQUAZIONI DI LAGRNAGE

Esclusione delle config di confine per il verificarsi degli urti (discontinuità delle grandezze cinematiche e relativa perdità della differenziabiltà).

ATTO DT MOTO

É la velocità delle particelle nello spazio di controllo. Nello spazio di controllo possiamo individuare la velocità di un punto in un dato istante. Lo spazio di controllo è fermo quello che cambia è la posizione dei punti nello spazio di controllo. //OPPURE//

Campo vettoriale delle velocità

CLASSIFICAZIONE DEGLI ATTO DI MOTO

- 1)TRASLATORIO: Se V(p)=V(q) per ogni p,q appartenenti allo spazio C;
- 2)ROTOTRASLATORIO: Se in C esiste una direzione privilegiata tale che ogni retta dello spazio di controllo è il luogo dei punti con egual velocità;
- 3)ELICOIDALE: Se esiste una retta r parallela alla direzione privilegiata tale che per ogni p,q appartenenti alla retta r sia V(p)=V(q) e che siano anche // alla retta r;
- 4)ROTATORIO: Se esiste una retta s parallela alla direzione privilegiata tale che V(p)=V(q)=0 per ogni p,q appartenenti alla retta s;
- 5)RIGIDO: Se soddisfa la legge di distribuzione delle velocità V(p)=V(q) + [Vel.Ang.] {vettor} QP. Se considero PQ parallelo a [Vel.Ang.] succede che V(p)=V(q) quindi l'atto di moto è sempre o traslatorio o rototraslatorio.

BASE

Traiettoria del centro di istantanea rotazione rispetto all'osservatore.

RULLETTA

Traiettoria del centro di istantanea rotazione rispetto al sistema di riferimento solidale.

MOTI ALLA POINSOT

Sono quei moto di un corpo rigido avente un punto fisso [omega] in presenza di forze attive esterne tali che:

M[omega](e,a)=0

TEROREMA DI LAGRANGE-DIRICHLET

Per un sistema meccanico a vincoli fissi e soggetto a forze conservative di potenziale U, una posizione di equilibrio $q(\theta)$ si dice stabile alla Lyapunov se è un massimo relativo isolato di U.