

Machine Drawing

Class 3: Limits, Fits & Dimensional Tolerances

Textbooks and References

- N. Sidheswar, P. Kanniah and V.V.S. Sastry, Machine Drawing, Tata McGraw Hill, 2001
- SP 46: 1988 Engineering Drawing Practice for School & Colleges. Bureau of Indian Standards

09-04-2023

Design and Manufacturing

A designer must ensure

- Selection of proper material
- Ensuring proper strength
- Dimension to guard against failure
- Basic manufacturing aspects

Role of Metrology in Design for Manufacturing

Manufacturing Aspect

Key Functional Requirements

Fit between the mating parts

Tolerances, dimensions on mating parts

Manufacturing Processes & Sequences

Cost of Manufacturing

Fit:

It is the interrelation between dimensions of mating parts before their assembly

Holes and shafts and their base size

Vibration induced geometric variations

<u>Lathe GIFs - Get the best gif on GIFER</u>

Terminologies

Zero Line: It is a line along which represents the basic size and zero (or initial point) for measurement of upper or lower deviations.

Basic Size: It is the size with reference to which upper or lower limits of size are defined.

Terminologies

Zero Line: It is a line along which represents the basic size and zero (or initial point) for measurement of upper or lower deviations.

Basic Size: It is the size with reference to which upper or lower limits of size are defined.

<u>Upper Deviation</u>: The algebraic difference between the maximum limit of size (of either hole or shaft) and the corresponding basic size. U_d

Lower Deviation: The algebraic difference between the minimum limit of size (of either hole or shaft) and the corresponding basic size. U_I

<u>Tolerance:</u> The algebraic difference between upper and lower deviations. It is an absolute value. $T = U_d - U_l$

Basic size and zero lline

Fig. 7.3. Basic size and zero line

Dimensional Tolerances

Fig. 7.6. Definition of tolerance zone

Fig. 7.5. Definition of limits of size

Deviations

Fig. 7.7. Upper deviation, lower deviation and fundamental deviation

Degree of accuracy

Fig. 15.2 Degree of accuracy expected of manufacturing process

Dimensional Tolerances

Method of Placing Limit Dimensions

$$\phi \ 25H7 = \phi \ 25 \stackrel{+ \ 0.021}{^{+ \ 0.000}}$$
$$10H10 = 10 \stackrel{+ \ 0.058}{^{+ \ 0.000}}$$
$$40C11 = 40 \stackrel{+ \ 0.280}{^{+ \ 0.120}}$$

Fig. 15.4 Toleranced dimensions for internal and external features

Fig. 15.5 Bilateral tolerance of equal variation

Fig. 15.7 Unilateral tolerance with zero variation in one direction

Fig. 15.6 Bilateral tolerance of unequal variation

Fig. 15.8 Maximum and minimum size directly indicated

Fig. 15.9 Toleranced dimensioning of assembled parts

Fig. 7.8. Types of fits

Basis System

In hole basis system, the size of the hole is constant and different fits are obtained by varying the size of shaft.

Fig. 7.9. Basis of limit system

In shaft basic system, the size of the shaft is constant and different fits are obtained by varying the size of the hole

Maximum Metal Limit (MML) and Least or Minimum Metal Limit (LML) for a Shaft

Fig. 7.11. Maximum and minimum metal limits for a shaft

Maximum Metal Limit (MML) and Least or Minimum Metal Limit (LML) for a Hole

Fig. 7.12. Maximum and minimum metal limits for a hole

Selection of tolerances based on fits

Type of fit	Symbol of fit	Examples of application				
Interference fit						
Shrink fit	H8/u8	Wheel sets, tyres, bronze crowns on worm wheel				
Heavy drive fit	H7/s6	hubs, couplings under certain conditions, etc.				
Press fit	H7/r6	Coupling on shaft ends, bearing bushes in hubs, valve				
Medium press fit	H7/p6	seats, gear wheels.				
Transition fit						
Light press fit	H7/n6	Gears and worm wheels, bearing bushes, shaft and wheel assembly with feather key.				
Force fit	H7/m6	Parts on machine tools that must be changed without damage, e.g., gears, belt pulleys, couplings, fit bolts, inner ring of ball bearings.				
Push fit	H7/k6	Belt pulleys, brake pulleys, gears and couplings as well as inner rings of ball bearings on shafts for average loading conditions.				
Easy push fit	H7/j6	Parts which are to be frequently dismantled but a secured by keys, e.g., pulleys, hand-wheels, bush bearing shells, pistons on piston rods, change getrains.				

Selection of tolerances based on fits

Clearance fit		
Precision sliding fit	H7/h6	Sealing rings, bearing covers, milling cutters on milling mandrels, other easily removable parts.
Close running fit	H7/g6	Spline shafts, clutches, movable gears in change gear trains, etc.
Normal running fit	H7/f7	Sleeve bearings with high revolution, bearings on machine tool spindles.
Easy running fit	H8/e8	Sleeve bearings with medium revolution, grease lubricated bearings of wheel boxes, gears sliding on shafts, sliding blocks.
Loose running fit	H8/d9	Sleeve bearings with low revolution, plastic material bearings.
Slide running fit	H8/c11	Oil seals (Simmerrings) with metal housing (fit in housing and contact surface on shaft), multi-spline shafts.

Tolerance

Various grades of tolerances are defined using the 'standard tolerance unit', (i) in μ m, which is a function of basic size.

$$i = 0.45 \ 3\sqrt{D} + 0.001D$$

where, D (mm) is the geometric mean of the lower and upper diameters of a particular diameter step within which the chosen the diameter D lies.

Diameter steps in I.S.I are: (a-b), where a is above and b is up to)

1-3, 3-6, 6-10, 10-18, 18-30, 30-50, 50-80, 80-120, 120-180, 180-250, 250-315, 315-400 and 400-500 mm

Table 15.1A Relative magnitude of IT tolerances for grades 5 to 16 in terms of tolerance unit *i* for sizes upto 500 mm

Grade	IT 5	IT 6	IT 7	IT 8	IT 9	IT 10	IT 11	IT 12	IT 13	IT 14	IT 15	IT 16
Tolerance values	7 i	10 <i>i</i>	16 <i>i</i>	25 <i>i</i>	40 <i>i</i>	64 <i>i</i>	100 <i>i</i>	160 <i>i</i>	250i	400i	640 <i>i</i>	1000i

Thus, the fundamental tolerance values for different grades (IT) may be obtained either from Table 15.1 or calculated from the relations given in Table 15.1A.

Example 1 Calculate the fundamental tolerance for a shaft of 100 mm and grade 7.

The shaft size, 100 lies in the basic step, 80 to 120 mm and the geometrical mean is

$$D = \sqrt{80 \times 120} = 98 \text{ mm}$$

The tolerance unit, $i = 0.45 \sqrt[3]{98} + 0.001 \times 98 = 2.172 \text{ microns}$

For grade 7, as per the Table 15.1A, the value of tolerance is,

$$16i = 16 \times 2.172 = 35 \text{ microns}$$

Fundamental deviations

Table 15.4 Formulae for fundamental deviation for shafts upto 500 mm

Upper deviation (es)		Lo	Lower deviation (ei)			
Shaft designation	In microns (for D in mm)	Shaft designation	In microns (For D in mm)			
а	= -(265 + 1.3D) for $D \le 120$	k4 to k7	= 0.6 ³ √ <i>D</i>			
	= $-3.5 D$ for $D > 120$	k for grades ≤ 3 and ≥ 8	= 0			
b	$\approx - (140 + 0.85 D)$ for $D \le 160$	m	= + (IT 7 – IT 6)			
	≈ - 1.8 <i>D</i>	n	= + 5 D ^{0.34}			
	for $D > 160$	p	= + IT 7 + 0 to 5			
c	= $-52 D^{0.2}$ for $D \le 40$	r	= geometric mean of values ei for p and s			
	= -(95 + 0.8 D) for $D > 40$	s	$= + \text{IT } 8 + 1 \text{ to } 4$ $\text{for } D \le 50$			
d	$=-16 D^{0.44}$		= + IT 7 + 0.4 <i>D</i> for <i>D</i> > 50			
e	= - 11 D ^{0.41}	t	= IT 7 + 0.63 D			
f	$= -5.5 D^{0.41}$	u	= + IT 7 + D			
g	$= -2.5 D^{0.34}$	v	= + IT 7 + 1.25 D			
h	= 0	x	= + IT 7 + 1.6 D			
		У	= + IT 7 + 2 D			
		z	= + IT 7 + 2.5 D			
		za	= + IT 8 + 3.15 D			
		zb	= + IT 9 + 4 D			
j5 to j8	no formula	zc	= + IT 10 + 5 D			

For Js: the two deviations are equal to $\pm \frac{IT}{2}$

Example

Example 1: Evaluate limits and fits for a pair of – Diameter 6 H7/g6

Solution: The size 6 mm lies in the diametral step of 3-6, therefore, D is given by

$$D = \sqrt{3 \times 6} = 4.24 \text{ mm}$$

The value of fundamental tolerance unit is given by

$$i = 0.45 \sqrt[3]{D} + 0.001D$$

 $i = 0.45 \sqrt[3]{4.24} + 0.001 \times 4.24$
 $i = 0.7327 \ \mu \text{m}$

Limits of tolerance for hole H7

The standard tolerance is

$$16 i = 16 \times 0.7327 = 11.72 = 12 \mu m$$

The fundamental deviation H hole is = 0

Limits of tolerance for g6 shaft

The standard tolerance is

$$-10 i = 10 \times 0.7327 = 7.327 = -8 \mu m$$

Fundamental deviation for g shaft

$$= -2.5D^{0.34} = -2.5(4.24)^{0.34} = -4.085 = -4 \mu m$$

Example

Disposition of tolerance zone around the zero line

Fit

Maximum clearance = Maximum size of hole – Minimum size of shaft

 $= 6.012 - 6.988 = 0.024 \text{ mm} = 24 \mu\text{m}$

Minimum clearance = Minimum size of hole – Maximum size of shaft

 $= 6.000 - 6.996 = 0.004 \text{ mm} = 4 \mu\text{m}$

Ans: The type of fit is Clearance.

Thank you!!!

09-04-2023