Contract project-2004
With Ministry of the Environment, Japan



## Air Pollution Control Technology In Fertilizer Manufacturing Industry

March 2005

Overseas Environmental Cooperation Center, Japan

# Air Pollution Control Technology in Fertilizer Manufacturing Industry

## **Committee Members**

#### **Chairman:**

Dr. K. Nishida, Researcher, Department of Urban and Environmental Engineering, Kyoto University (Retired)

#### Member:

Mr. S. Iwasaki, Director, Metocean Environment Inc.

Dr. S. Fujii (P.E.), Takuma Co., Ltd.

Mr. Y. Ogino (P.E.), Environment Technology L.R.C.

## **Prepared by**

Dr. A. Hogetsu (P.E.), Research Commissioner, OECC



#### 1. Air Pollution in Fertilizer Plant

Fertilizer Raw materials

Nitrogenous F.: ammonia, Chilean saltpeter, limestone + N<sub>2</sub> · · · ·

Phosphate F.: phosphate rock

Potassium F.: ore (ingredient; KCl + NaCl), KCl, · · · ·

Coated F. : N, P, K + thermo plasticity resin

| <b>Pollutants</b> | Origins of Pollutants                                  |
|-------------------|--------------------------------------------------------|
| Soot              |                                                        |
| SOx               | Boiler, Dryer, Calcining furnace, etc.                 |
| NOx               |                                                        |
| Dust              | Raw material stock yard, Raw material feed equipment,  |
|                   | Belt conveyer, Bucket conveyer, Crusher, Mill, Sieve   |
| HF                | Phosphate fertilizer plant Reactor, Calcining furnace, |
|                   | Melting furnace, Phosphoric acid concentration plant   |
| NH <sub>3</sub>   | Pelletizer, Dryer                                      |
| Solvent           | Coated fertilizer manufacturing process                |

#### 2-1 Gravitational, Inertial & Centrifugal Dust Collector



## Stokes' Law

 $V=(g/18 \mu)(_{1}^{-}) D^{2} (cm/s)$ 

V: settling velocity (cm/sec)

μ: gas viscosity (kg/ms)

g: gravitational acceleration (cm/s²)

1: particle density (g/cm³)

: gas density (g/cm³)

D: particle diameter (cm)



## Principle of dust collection;



Centrifugal force (F) =  $mv^2/R$ ,(N)

m: particle mass (kg)

V: particle velocity (m/s)

R: cyclone radius (m)



#### **2-2 Scrubbing Dust Collector**

## Mechanisms of Separation

- Adhesion of dust to water drops & water film by inertia force
- Adhesion by diffusion force among dusts
- Increase of coagulation force of particles by increasing moisture
- Moisture condensation triggered by dust as a nucleus
- Particle adhesion by bubbles

## Typical Types of Scrubbers

| Туре    | Velocity | L/G     | P                     | Th. |
|---------|----------|---------|-----------------------|-----|
|         | m/s      | I / m³  | kPa                   | μm  |
| Spray   | 1~2      | 2~3     | 0.1~ <mark>0.5</mark> | 3   |
| Packed  | 0.5~1    | 2~3     | 1~2.5                 | 1 / |
| Jet     | 10~20    | 10~50   | 0~ -1.5               | 0.2 |
| Venturi | 60~90    | 0.3~1.5 | 3~8                   | 0.1 |

demister
water
gas
packing

Th. : Particle size of threshold to allowing 50 % removal

Packed tower

2-3 Filter Type Dust Collector

#### **Filtration Action in Filter Cloth**



P 150 mg Hg dusting

## **Dusting frequency**

- intermittent
- continuous

### **Dusting drive**

- vibration
- reverse air



#### 2-4 Electrostatic Precipitator

## Principle of dust collection;



Structure of EP

2-5 Selection of Dust Collector

## Factors affecting Dust Collection:

dust concentration, particle size distribution, temperature of dust, apparent electric resistance rate, due point, gas temperature, composition of flue gas, gas volume, etc.

## Applicable Range of Dust Collector

| Type       | <b>Particle</b> | Working    | Cutback               | Pressure              | Equipment | Running |  |
|------------|-----------------|------------|-----------------------|-----------------------|-----------|---------|--|
|            | ( µ m)          |            | Level                 | Drop                  | Cost      | Cost    |  |
|            |                 | 0          | (%)                   | (mm H <sub>2</sub> O) |           |         |  |
| Gravity    | 1000~50         | d.p. ~ 400 | 40 ~ 60               | 10 ~ 15               | S         | S       |  |
| Inertia    | 100~10          | d.p. ~ 400 | 50 ~ 70               | 30 ~ 70               | S         | S       |  |
|            |                 |            |                       | النااز                |           |         |  |
| Centrifuge | 100~3           | d.p. ~ 400 | <b>85</b> ~ <b>95</b> | 50 ~ 150              | M         | M       |  |
| Scrubbing  | 100~0.1         | no- limit  | 80 ~ 95               | 300 ~ 800             | M         | L       |  |
| Filtration | 20~0.1          | no- limit  | 90 ~ 99               | 100 ~ 200             | M         | M       |  |
| EP         | 20~0.05         | d.p. ~ 400 | 90 ~ 99.9             | 10 ~ 20               | L         | S~M     |  |

L: expensive M: average S: cheap

#### 3. SOx Reduction Technology

## Sources of SOx: Fuel SOx

- Boiler - Dryer - Calcining furnace - Melting furnace



### 4. NOx Reduction Technology

#### 4-1 NOx Generation in Fertilizer Plant

#### Air ratio ~ Retention time ~ Thermal NOx



Thermal NOx Fuel NOx

## NOx concentration increases at:

- higher temp. in combustion
- higher O<sub>2</sub> conc.
- longer retention in high temp. zone



## 5. Dust Scattering Prevention

<u>Dust generating equipment</u>
<u>& location designated by air</u>
<u>pollution control law</u>

- belt conveyer
- bucket conveyer
- crusher, mill
- sieve
- ore stock yard

# Equipment protected work shop environment from dust scattering

- silo, hopper for raw material& product
- transporting equipment except
   belt & bucket conveyer
- packing machine, etc.

### **Measures**

outdoor stockwith sheet cover(phosphate rock)

- indoor allocation
- closed cover, negative pressure
- Sealed dust collecting cover
- dust collecting hood
- cyclone
- bag filter

### 6. NH<sub>3</sub> Removal Technology

## 1. Permissible NH<sub>3</sub> emission:

1~ 5 ppm at boundary of premise (set forth by prefecture governors)

 $Q = 0.108 \text{ X He}^2 \text{ X Cm}$ 

Q: gas volume (Nm<sup>3</sup> / h)

He: effective height of exhausting outlet (m)

Cm: concentration at boundary line of premise (ppm)

## 2. In compound fertilizer plant:

Process Origin  $(NH_4)_2SO_4$  pelletizer & drying  $(NH_4)_3PO_4$   $CO(NH_2)_2$ 

#### **Abatement**

reservoir type wet scrubber pressurized water scrubber packed bed water scrubber (NH<sub>4</sub> removal 70~90%, 20~50ppm)





#### 8. Odors Abatement technology

#### **8-1 Abatement Processes**

## **Deodorizing Method**

Incineration method
direct incineration
regenerative thermal oxidizer
catalytic incineration

### Scrubbing method

Adsorption method
recovery type
fixed bed
fluidized bed
concentration type
honeycomb
replacement type

## Biological method soil bed packed tower

#### **Process**

decompose to CO<sub>2</sub>, H<sub>2</sub>O by heat at 800 regeneration, heat efficiency > 80% using catalysis at 200~ 350 , rem. > 99%

scrubbing by chemical solution water, acid, alkaline, oxidant, etc.

activated carbon, steam regeneration activated c., heat regeneration by N<sub>2</sub> gas

separating odor from low concentration gas replacing saturated adsorbent or oxidant

biodegradation by microorganisms using soil bacteria using bio-film on the media

#### Deodorizer, masking agent

deodorize or easing offending gas

## 8. Odors Abatement technology

8-2 Troubles in Abatement Processes (examples)

| Deodorizing Method                                                                    | Trigger                                                                                  | Trouble                                                  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Combustion method direct incineration regenerative thermal ox. catalytic incineration | NOx mixture of Cl <sub>2</sub> , paint, etc. mixture of Cl <sub>2</sub> , paint, S, etc. | permission level HCI , clogging catalyst deterioration   |
| Adsorption method recovery type                                                       |                                                                                          |                                                          |
| fixed bed                                                                             | mixture of ketone, high B.P. substance                                                   | fir <mark>ing</mark> , deterioration of activated carbon |
| fluidized bed<br>concentration type                                                   | high temp <mark>. of e</mark> xhaust gas                                                 | A.C. deterioration                                       |
| honeycomb                                                                             | mixture of cyclohexane                                                                   | f <mark>irin</mark> g                                    |
| replacement type                                                                      | conc. > several ppm                                                                      | short term A.C. replacement                              |
| Biological method                                                                     |                                                                                          |                                                          |
| soil bed                                                                              | drying of soil                                                                           | malfunction                                              |
| packed tower                                                                          | slow acclimatization                                                                     | slow starter                                             |
| Scrubbing                                                                             | less sprinkling water                                                                    | malfunction                                              |
|                                                                                       | dust in gas                                                                              | clogging internals                                       |

### 9. Solvent Recovery & Abatement technology

- 1. Sources of Generation coated fertilizer (thermoplasticity resin)
- 2. Abatement recovery of solvent brings profit production cost reduction residual solvent value recovery cost pollution control
- 3. Abatement Process
  - cooling condensation method cool down flue gas below vapor pressure
  - absorption & dispersion method absorbing of solvent to absorbent with lower vapor pressure
  - adsorption & dispersion method
    applicable to compositions with low vapor pressure and nonexistence of antagonist. Adsorbed at under pressure or lower temp..
    adsorber: fixed bed, moving bed, fluidized bed
    adsorbent: A.C., silica gel, molecular sieve, aluminum gel
    regeneration method: heated gas, steam, heat transfer,
    extraction under decompression

## 10. Environmental Management System

- 1. Environmental Management System
  - Organization for Environmental Control
  - ISO 14000 series---- PDCA cycle
  - Responsible for environmental protection



- 2. Environmental Control Manual
  - Operation Standard Manual
- 3. Education & Training
  - legally qualified expert of environment control
  - training program and preparation of manual
- 4. Environmental Control at Work Shop
- 5. Environment Monitoring
  - maintaining monitoring system
  - monitoring of air pollution state
  - legal emission permissible level