Unpaired Image-to-Image Translation using Cycle-Consistency Adversarial Networks

CycleGAN - 논문 리딩 GAN 2팀 <u>박지호</u> 이민재 최명헌

- 1. Image-to-Image Translation Task
- 2. About GAN
- 3. Cycle GAN

1. Image to Image Translation Task

Image-to-Image Translation Task

 $G: X \to Y$

1. Image to Image Translation Task

Image-to-Image Translation Task

 $G: X \to Y$

Using Paired Dataset(pix2pix)

 $\{x_{data}, y_{data}\}$

mage-to Paired Datasets are Rare and Expensive

Training with Unpaired Dataset

2. About GAN

$$G: Z \to y$$

Objective(Loss) Function

$$\min_{G} \max_{D} V(G, D) = E_{y \sim p_{data}(y)}[logD(y)] + E_{z \sim p_{data}(z)}[log(1 - D(G(z))]$$

Optimal Solution

 $p_{generated} = p_{data}$

 $GAN \Rightarrow Making an arbitrary Mapping Function G between two domains$

3. CycleGAN

Cycle Consistency

with 2 Translation(GAN) functions

$$G: X \to Y, D_Y$$

$$L_{GAN}(G, D_Y, X, Y) = E_{y \sim p_{data}(y)}[log D_Y(y)] + E_{x \sim p_{data}(x)}[log(1 - D_Y(G(x)))]$$

$$F: Y \to X, D_X$$

$$L_{GAN}(F, D_X, Y, X) = E_{x \sim p_{data}(x)}[log D_X(x)] + E_{y \sim p_{data}(y)}[log(1 - D_X(F(y))]$$

Cycle Consistency

with 2 Translation(GAN) functions

Generator

- Convolutions
- Residual Blocks

Discriminator(from PatchGAN)

- Convolutions
- Discriminating every 70x70 Patches

3. CycleGAN

Cycle Consistency

with 2 Translation(GAN) functions

$$G: X \to Y, \quad F: Y \to X$$

Cycle Consistency $F(G(x)) \approx x$ $G(F(y)) \approx y$

Input *x*

Output G(x)

To make Reconstruction easy, G remains the content of the input

Cycle Consistency Loss

with 2 Translation(GAN) functions

$$L_{cyc}(G, F) = E_{x \sim p_{data}(x)} \left[\| F(G(x)) - x \|_{1} \right] + E_{y \sim p_{data}(y)} \left[\| G(F(y)) - y \|_{1} \right]$$

3. CycleGAN: Loss Equation

Objective Function

$$G: X \to Y$$
, $L_{GAN}(G, D_Y, X, Y) = E_{y \sim p_{data}(y)}[log D_Y(y)] + E_{x \sim p_{data}(x)}[log (1 - D_Y(G(x)))]$

$$F: Y \to X, \qquad L_{GAN}(F, D_X, Y, X) = E_{x \sim p_{data}(x)}[log D_X(x)] + E_{y \sim p_{data}(y)}[log (1 - D_X(F(y))]$$

Cycle Consistency
$$L_{cyc}(G,F) = E_{x \sim p_{data}(x)} \left[\left\| F(G(x)) - x \right\|_1 \right] + E_{y \sim p_{data}(y)} \left[\left\| G(F(y)) - y \right\|_1 \right]$$

$$L(G, F, D_X, D_Y) = L_{GAN}(G, D_Y, X, Y) + L_{GAN}(F, D_X, Y, X) + \lambda L_{cyc}(G, F)$$

Remains the Domain of the generated image

Remains the content of input

$$G^*, F^* = \arg\min_{G, F} \max_{D_X, D_Y} L(G, F, D_X, D_Y)$$

3. CycleGAN: Loss Analysis

Loss Analysis

- Gan+forward-cycle: Higher FCN-score but mode collapse, unstable
- Conclusion: GAN loss & Cycle loss are both critical

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.22	0.07	0.02
GAN alone	0.51	0.11	0.08
GAN + forward cycle	0.55	0.18	0.12
GAN + backward cycle	0.39	0.14	0.06
CycleGAN (ours)	0.52	0.17	0.11

Table 4: Ablation study: FCN-scores for different variants of our method, evaluated on Cityscapes labels→photo.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.10	0.05	0.02
GAN alone	0.53	0.11	0.07
GAN + forward cycle	0.49	0.11	0.07
GAN + backward cycle	0.01	0.06	0.01
CycleGAN (ours)	0.58	0.22	0.16

Table 5: Ablation study: classification performance of photo→labels for different losses, evaluated on Cityscapes.

Advantages

- Good Performance with Unpaired Training
- Appliable on Various Tasks (ex. style transfer, photo enhancement, ...)

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.40	0.10	0.06
BiGAN/ALI [9, 7]	0.19	0.06	0.02
SimGAN [46]	0.20	0.10	0.04
Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	0.52	0.17	0.11
pix2pix [22]	0.71	0.25	0.18

Advantages

- Good Performance with Unpaired Training
- Appliable on Various Tasks (ex. style transfer, photo enhancement, ...)

Limitation

- Bad with Geometric Changes
- Bad with Untrained Images
- Loss of Color Information

Limitation

- Bad with Geometric Changes
- Bad with Untrained Images
- Loss of Color Information(for painting→photo task)

Identity Loss
$$L_{identity}(G, F) = E_{x \sim p_{data}(x)}[\|G(x) - x\|_{1}] + E_{y \sim p_{data}(y)}[\|F(y) - y\|_{1}]$$

Thank You!

Figure 10: Collection style transfer I: we transfer input images into the artistic styles of Monet, Van Gogh, Cezanne, and Ukiyo-e. Please see our website for additional examples.

Figure 11: Collection style transfer II: we transfer input images into the artistic styles of Monet, Van Gogh, Cezanne, Ukiyo-e. Please see our website for additional examples.

Thank You!

Figure 12: Relatively successful results on mapping Monet's paintings to a photographic style. Please see our website for additional examples.

