Variables aléatoires à densité

I – Rappels sur la fonction de répartition

Définition 7.1 – Soit *X* une variable aléatoire. On appelle **fonction de répartition** de la variable aléatoire X la fonction F_X définie par

$$\forall x \in \mathbb{R}, \quad F_X(x) = P(X \leqslant x).$$

Proposition 7.2

Soit *X* une variable aléatoire discrète. On note le support $X(\Omega) = \{x_1, x_2, ...\}$ avec $x_1 < x_2 < ...$ Alors

 $F_X(x) = \begin{cases} 0 & \text{si } x < x_1, \\ P(X = x_1) + \dots + P(X = x_k) & \text{si } x_k \leqslant x < x_{k+1}, \\ 1 & \text{si } x \geqslant \max_{i \in \mathbb{N}} x_i. \end{cases}$

En particulier F_X est constante sur chaque intervalle $[x_k, x_{k+1}]$

Exemple 7.3 – Un sac contient cinq jetons numérotés de 1 à 5. Pour jouer une partie, on doit miser 1€. On tire au hasard un jeton. Si on tire le numéro 1 on gagne 4€, si on tire un numéro pair on reçoit 2€ et rien sinon. On note *X* le gain algébrique.

X est une variable aléatoire dont le support est donné par $X(\Omega) = \{-1, 1, 3\}$. La loi de X est donnée par $P(X = -1) = \frac{2}{5}$, $P(X = 1) = \frac{2}{5}$ et $P(X = 3) = \frac{1}{5}$. Je résume cela dans le tableau suivant :

X	-1	1	3
P(X = x)	$\frac{2}{5}$	$\frac{2}{5}$	$\frac{1}{5}$

Alors

- lorsque x < -1, $F_X(x) = 0$,
- lorsque x < -1, $F_X(x) = 0$, lorsque $-1 \le x < 1$, $F_X(x) = P(X = -1) = \frac{2}{5}$, lorsque $1 \le x < 3$, $F_X(x) = P(X = -1) + P(X = 1) = \frac{2}{5} + \frac{2}{5} = \frac{4}{5}$,
- lorsque $x \geqslant 3$, $F_X(x) = 1$.

Je résume ceci par

$$F_X(x) = \begin{cases} 0 & \text{si } x < -1, \\ \frac{2}{5} & \text{si } -1 \leqslant x < 1, \\ \frac{4}{5} & \text{si } 1 \leqslant x < 3, \\ 1 & \text{si } x \geqslant 3. \end{cases}$$

Et voici le tracé de la fonction de répartition :

II - Généralités

1 – Notion de variable aléatoire à densité

Définition 7.4 – Une fonction f définie sur \mathbb{R} est une **densité de probabilité** (ou simplement **densité**) si et seulement si elle vérifie les trois conditions suivantes :

- 1. f est positive : pour tout $x \in \mathbb{R}$, $f(x) \ge 0$.
- 2. f n'admet qu'un nombre **fini** de points de discontinuité.
- 3. L'intégrale impropre $\int_{-\infty}^{+\infty} f(t) dt$ converge et vaut $\int_{-\infty}^{+\infty} f(t) dt = 1$.

Exemple 7.5 – On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x}{\left(1 + e^x\right)^2}$. Montrer que la fonction f est une densité de probabilité.

Je vérifie les trois conditions de la définition :

- Pour tout $x \in \mathbb{R}$, $e^x > 0$ et $(1 + e^x)^2 > 0$. Donc $\forall x \in \mathbb{R}$, $f(x) \ge 0$.
- La fonction f est continue sur \mathbb{R} comme quotient de fonctions continues sur \mathbb{R} (dont le dénominateur ne s'annule pas).
- Il reste à montrer que l'intégrale $\int_{-\infty}^{+\infty} f(x) dx$ converge et vaut 1.

Je commence par étudier l'intégrale $\int_0^{+\infty} f(x) dx$.

Je fixe $M \ge 0$ et calcule l'intégrale $\int_0^M \frac{e^x}{(1+e^x)^2} dx$.

f semble être de la forme $\frac{u'}{u^2}$ avec $u(x) = 1 + e^x$. Puisque $u'(x) = e^x$, alors

$$\frac{u'(x)}{u(x)^2} = \frac{e^x}{(1+e^x)^2} = f(x).$$

Donc une primitive de f est donnée par $F(x) = -\frac{1}{u(x)} = -\frac{1}{1 + e^x}$.

Dès lors,

$$\int_0^M \frac{e^x}{(1+e^x)^2} \, \mathrm{d}x = \left[-\frac{1}{1+e^x} \right]_0^M = -\frac{1}{1+e^M} + \frac{1}{2}.$$

Or $\lim_{M \to +\infty} -\frac{1}{1+e^M} + \frac{1}{2} = \frac{1}{2}$ donc l'intégrale $\int_0^{+\infty} \frac{e^x}{\left(1+e^x\right)^2} dx$ converge et $\int_0^{+\infty} \frac{e^x}{\left(1+e^x\right)^2} dx = \frac{1}{2}$.

J'étudie ensuite $\int_{-\infty}^{0} f(x) dx$.

Je fixe $m \le 0$ et comme j'ai déjà calculé une primitive de f, alors directement

$$\int_{m}^{0} \frac{e^{x}}{(1+e^{x})^{2}} dx = \left[-\frac{1}{1+e^{x}} \right]_{m}^{0} = -\frac{1}{2} + \frac{1}{1+e^{m}}.$$

Or $\lim_{m \to -\infty} -\frac{1}{2} + \frac{1}{1 + e^m} = \frac{1}{2}$ donc l'intégrale $\int_{-\infty}^{0} \frac{e^x}{\left(1 + e^x\right)^2} dx$ converge et $\int_{-\infty}^{0} \frac{e^x}{\left(1 + e^x\right)^2} dx = \frac{1}{2}$.

Je conclus avec la relation de Chasles : l'intégrale $\int_{-\infty}^{+\infty} \frac{e^x}{(1+e^x)^2} dx$ converge et vaut

$$\int_{-\infty}^{+\infty} \frac{e^x}{\left(1 + e^x\right)^2} \, \mathrm{d}x = \int_{-\infty}^{0} \frac{e^x}{\left(1 + e^x\right)^2} \, \mathrm{d}x + \int_{0}^{+\infty} \frac{e^x}{\left(1 + e^x\right)^2} \, \mathrm{d}x = \frac{1}{2} + \frac{1}{2} = 1.$$

La fonction f vérifie les trois conditions de la définition, donc f est bien une densité de probabilité.

Définition 7.6 – Soient X une variable aléatoire et F_X sa fonction de répartition. On dit que X est une **variable aléatoire à densité** si et seulement s'il existe une densité de probabilité f telle que

$$\forall x \in \mathbb{R}, \quad F_X(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t.$$

Il est souvent nécessaire de distinguer plusieurs cas en fonction des différentes expressions de f(x).

Exemple 7.7 – Soit f la fonction définie sur \mathbb{R} par $f(t) = \begin{cases} \frac{2}{t^3} & \text{si } t \geqslant 1, \\ 0 & \text{sinon.} \end{cases}$

On admet que f est une densité de probabilité et on note X une variable aléatoire admettant f pour densité. Déterminer alors la fonction de répartition F_X de X.

Étant donnée l'expression de f, je dois distinguer deux cas selon les valeurs de x:

• Si x < 1, alors $]-\infty, x] \subset]-\infty, 1]$ et donc f est nulle sur $]-\infty, x]$. Alors

$$F_X(x) = \int_{-\infty}^x f(t) dt = \int_{-\infty}^x 0 dt = 0.$$

• Si $x \ge 1$, alors f est nulle sur $]-\infty,1]$ et $f(t)=\frac{2}{t^3}$ pour $t \in [1,x]$. Alors

$$F_X(x) = \int_{-\infty}^x f(t) dt = \int_{-\infty}^1 0 dt + \int_1^x \frac{2}{t^3} dt = 0 + \left[-\frac{1}{t^2} \right]_1^x = -\frac{1}{x^2} + \frac{1}{1} = 1 - \frac{1}{x^2}.$$

Finalement j'ai montré que

$$\forall x \in \mathbb{R}, \quad F_X(x) = \begin{cases} 1 - \frac{1}{x^2} & \text{si } x \geqslant 1, \\ 0 & \text{sinon.} \end{cases}$$

Théorème 7.8

Si X est une variable aléatoire à densité, de fonction de répartition F_X et de densité f, alors en chaque réel x où la fonction f est continue, $f(x) = F_X'(x)$.

Exemple 7.9 – Soit *X* une variable aléatoire de fonction de répartition $F_X(x) = \begin{cases} 0 & \text{si } x < 1, \\ 1 - \frac{1}{x} & \text{si } x \geqslant 1. \end{cases}$

On admet que *X* est une variable aléatoire à densité. Déterminer une densité de *X*.

La fonction F_X est dérivable sur $\mathbb{R} \setminus \{1\}$ et pour tout $x \in \mathbb{R}$, $F_X'(x) = \begin{cases} 0 & \text{si } x < 1, \\ \frac{1}{x^2} & \text{si } x > 1. \end{cases}$ Donc une densité de f est donnée par

$$f(x) = \begin{cases} 0 & \text{si } x < 1, \\ \frac{1}{x^2} & \text{si } x \ge 1. \end{cases}$$

Remarque 7.10 – Il n'y a pas unicité de la densité pour une variable aléatoire donnée : si f est une densité de X, alors toute fonction g positive égale à f sauf en un nombre fini de points est aussi une densité de X.

2 - Calculs de probabilités avec des variables aléatoires à densité

Proposition 7.11

Soit X une variable aléatoire à densité, de fonction de répartition F_X et de densité f.

Soient a et b deux réels tels que a < b. On rappelle que $P(X \le a) = F_X(a) = \int_{-\infty}^a f(t) dt$.

•
$$P(X \leqslant a) = F_X(a) = \int_{-\infty}^a f_X(t) dt$$
,

•
$$P(X \geqslant a) = 1 - F_X(a) = \int_a^{+\infty} f_X(t) dt$$

•
$$P(X = a) = 0$$
,

•
$$P(a \leqslant X \leqslant b) = F_X(b) - F_X(a) = \int_a^b f_X(t) dt$$
.

Si on connaît la fonction de répartition de X, alors on utilise les formules mettant en jeu F_X (les intégrales sont déjà calculées). Sinon, on utilise les formules avec les intégrales mettant en jeu la densité f.

Exemple 7.12 –

1. Soit *X* une variable aléatoire à densité, de fonction de répartition $F_X(x) = \begin{cases} 0 & \text{si } x < 2, \\ 1 - \frac{8}{x^3} & \text{si } x \ge 2. \end{cases}$ Calculer $P(X \ge 0)$, $P(-1 \le X < 3)$ et P(X < 4).

Je connais la fonction de répartition F_X de X donc j'utilise donc les formules avec F_X :

•
$$P(X \ge 0) = 1 - P(X \le 0) = 1 - F_X(0) = 1 - 0 = 1$$

•
$$P(-1 \le X < 3) = F_X(3) - F_X(-1) = \left(1 - \frac{8}{3^3}\right) - 0 = 1 - \frac{8}{27} = \frac{27 - 8}{27} = \frac{19}{27}$$

•
$$P(X < 4) = F_X(4) = 1 - \frac{8}{4^3} = 1 - \frac{8}{64} = 1 - \frac{1}{8} = \frac{8 - 1}{8} = \frac{7}{8}$$

2. Soit X une variable aléatoire à densité, de densité $f(t) = \begin{cases} 0 & \text{si } t \leq 0, \\ e^{-t} & \text{si } t > 0. \end{cases}$

Je ne connais que la densité f de X donc je dois utiliser les formules avec les intégrales :

•
$$P(X \le 2) = \int_{-\infty}^{2} f(t) dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{2} e^{-t} dt = 0 + \int_{0}^{2} e^{-t} dt.$$

Une primitive de $f(t) = e^{-t}$ est donnée par $F(t) = -e^{-t}$. Alors

$$P(X \le 2) = \int_0^2 e^{-t} dt = \left[-e^{-t} \right]_0^2 = -e^{-2} + 1 = 1 - \frac{1}{e^2}.$$

•
$$P(2 < X \le 3) = \int_2^3 f(t) dt = \int_2^3 e^{-t} dt$$
.

$$P(2 < X \le 3) = \int_2^3 e^{-t} dt = \left[-e^{-t} \right]_2^3 = -e^{-3} + e^{-2} = \frac{1}{e^2} - \frac{1}{e^3} = \frac{e-1}{e^3}.$$

•
$$P(X \ge 1) = \int_{1}^{+\infty} f(t) dt = \int_{1}^{+\infty} e^{-t} dt$$
. Il s'agit d'une intégrale impropre.

Je fixe $M \ge 1$ et calcule l'intégrale $\int_1^M e^{-t} dt$:

$$\int_{1}^{M} e^{-t} dt = \left[-e^{-t} \right]_{1}^{M} = -e^{-M} + e^{-1}.$$

Or $\lim_{M \to +\infty} -e^{-M} + e^{-1} = e^{-1}$ donc l'intégrale converge et vaut e^{-1} . Ainsi

$$P(X \ge 1) = \int_1^{+\infty} e^{-t} dt = e^{-1} = \frac{1}{e}.$$

Remarque 7.13 – Pour une variable aléatoire à densité, les probabilités ponctuelles P(X = a) sont nulles. Ainsi les symboles \leq (ou \geq) peuvent être remplacés par < (ou >) sans modifier les formules ci-dessus.

3 - Espérance d'une variable à densité

Définition 7.14 – Soient X une variable aléatoire et f sa densité. Alors X admet une espérance si et seulement si l'intégrale impropre $\int_{-\infty}^{+\infty} t f(t) \, \mathrm{d}t$ converge. Dans ce cas, l'espérance de X est le réel noté E(X) défini par

$$E(X) = \int_{-\infty}^{+\infty} t f(t) \, \mathrm{d}t.$$

Exemple 7.15 – Soit X une variable aléatoire de densité $f(t) = \begin{cases} \frac{3}{t^4} & \text{si } t \geqslant 1, \\ 0 & \text{si } t < 1. \end{cases}$ X admet-elle une espérance? Si oui, la calculer.

J'étudie l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$.

Étant donnée l'expression de f, j'étudie séparément les intégrales $\int_{-\infty}^{1} t f(t) dt$ et $\int_{1}^{+\infty} t f(t) dt$.

• Puisque f est nulle sur $]-\infty,1]$, alors $\int_{-\infty}^1 t f(t) dt = \int_{-\infty}^1 t \times 0 dt = \int_{-\infty}^1 0 dt$ converge et vaut 0.

• Puis $\int_{1}^{+\infty} t f(t) dt = \int_{1}^{+\infty} t \times \frac{3}{t^4} dt = \int_{1}^{+\infty} \frac{3}{t^3} dt$.

Je dois maintenant étudier la convergence de cette intégrale $\int_{1}^{+\infty} \frac{3}{t^3} dt$.

Je fixe $M \ge 1$ et calcule l'intégrale $\int_1^M \frac{3}{t^3} dt$:

$$\int_{1}^{M} \frac{3}{t^{3}} dt = 3 \times \int_{1}^{M} \frac{1}{t^{3}} dt = 3 \times \left[-\frac{1}{2t^{2}} \right]_{1}^{M} = 3 \times \left(-\frac{1}{2M^{2}} + \frac{1}{2} \right) = \frac{3}{2} - \frac{3}{2M^{2}}.$$

Or $\lim_{M\to+\infty}\frac{3}{2}-\frac{3}{2M^2}=\frac{3}{2}$ donc l'intégrale converge et vaut $\int_1^{+\infty}\frac{3}{t^3}\,\mathrm{d}t=\frac{3}{2}.$

Finalement, par la relation de Chasles, X admet une espérance et

$$E(X) = \int_{-\infty}^{+\infty} t f(t) dt = \int_{-\infty}^{1} t f(t) dt + \int_{1}^{+\infty} t f(t) dt = 0 + \frac{3}{2} = \frac{3}{2}.$$

4 - Variance d'une variable aléatoire à densité

Définition 7.16 – Soient X une variable aléatoire et f sa densité. Sous réserve d'existence, la variance de X est le réel noté V(X) défini par $V(X) = \int_{-\infty}^{+\infty} (t - E(X))^2 f(t) dt$.

En pratique, X admet une variance si et seulement si l'intégrale impropre $\int_{-\infty}^{+\infty} t^2 f(t) dt$ converge.

Dans ce cas, l'intégrale précédente est l'espérance de X^2 , *i.e.* $E(X^2) = \int_{-\infty}^{+\infty} t^2 f(t) dt$, et la variance s'obtient grâce à la formule de König-Huygens :

$$V(X) = E(X^2) - E(X)^2.$$

Exemple 7.17 – On reprend la variable aléatoire *X* de l'exemple précédent, de densité

$$f(t) = \begin{cases} \frac{3}{t^4} & \text{si } t \geqslant 1, \\ 0 & \text{si } t < 1. \end{cases}$$

X admet-elle une variance? Si oui, la calculer.

Je sais déjà que X admet une espérance et que $E(X) = \frac{3}{2}$. Je regarde maintenant si $E(X^2)$ existe. Pour cela, j'étudie l'intégrale $\int_{-\infty}^{+\infty} t^2 f(t) dt$.

De la même manière, j'étudie séparément les intégrales $\int_{-\infty}^1 t^2 f(t) dt$ et $\int_1^{+\infty} t^2 f(t) dt$.

- Tout d'abord, $\int_{-\infty}^{1} t^2 f(t) dt = \int_{-\infty}^{1} t^2 \times 0 dt = \int_{-\infty}^{1} 0 dt$ converge et vaut 0.
- Puis $\int_{1}^{+\infty} t^2 f(t) dt = \int_{1}^{+\infty} t^2 \times \frac{3}{t^4} dt = \int_{1}^{+\infty} \frac{3}{t^2} dt$.

Je dois maintenant étudier la convergence de cette intégrale $\int_{1}^{+\infty} \frac{3}{t^2} dt$.

Je fixe $M \ge 1$ et calcule l'intégrale $\int_1^M \frac{3}{t^2} dt$:

$$\int_{1}^{M} \frac{3}{t^{2}} dt = 3 \times \int_{1}^{M} \frac{1}{t^{2}} dt = 3 \times \left[-\frac{1}{t} \right]_{1}^{M} = 3 \times \left(-\frac{1}{M} + \frac{1}{1} \right) = 3 - \frac{3}{M}.$$

Or $\lim_{M \to +\infty} 3 - \frac{3}{M} = 3$ donc l'intégrale converge et vaut $\int_{1}^{+\infty} \frac{3}{t^2} dt = 3$.

Finalement, par la relation de Chasles, X^2 admet une espérance et

$$E(X^{2}) = \int_{-\infty}^{+\infty} t^{2} f(t) dt = \int_{-\infty}^{1} t^{2} f(t) dt + \int_{1}^{+\infty} t^{2} f(t) dt = 0 + 3 = 3.$$

J'en déduis donc que la variable aléatoire \boldsymbol{X} admet une variance.

Pour la calculer, j'applique la formule de König-Huygens :

$$V(X) = E(X^2) - E(X)^2 = 3 - \left(\frac{3}{2}\right)^2 = 3 - \frac{9}{4} = \frac{12 - 9}{4} = \frac{3}{4}.$$

Proposition 7.18

Soient X une variable aléatoire à densité et a et b deux réels. Les résultats rencontrés dans les chapitres précédents se prolongent aussi dans ce cas, sous réserve que toutes les quantités impliquées existent :

- Par linéarité de l'espérance, E(aX + b) = aE(X) + b.
- La variance n'est pas linéaire, mais $V(aX + b) = a^2V(X)$
- L'écart-type d'une variable aléatoire X est défini comme la racine carrée de la variance de X.

Méthode 7.19 – Fonction de répartition d'une variable aléatoire de la forme Y = aX + b

Pour déterminer la fonction de répartition F_Y d'une variable aléatoire de la forme Y = aX + b, en connaissant la fonction de répartition de X:

- 1. On exprime la fonction de répartition F_Y de Y en fonction de celle F_X de X, en passant par les probabilités grâce à la formule $F_Y(y) = P(Y \le y)$.
- 2. On utilise alors l'expression de $F_X(x)$ pour obtenir l'expression de $F_Y(y)$.

Exemple 7.20 - On reprend un des exemples précédents.

Exemple 7.20 – On reprend un des exemples $f(t) = \begin{cases} \frac{2}{t^3} & \text{si } t \geqslant 1, \\ 0 & \text{sinon.} \end{cases}$

On admet que f est une densité de probabilité et on note X une variable aléatoire admettant fpour densité. On sait déjà que la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_X(x) = \begin{cases} 1 - \frac{1}{x^2} & \text{si } x \geqslant 1, \\ 0 & \text{sinon.} \end{cases}$$

Soit Y = 2X + 3. Déterminer la fonction de répartition F_Y de Y.

Je commence par exprimer la fonction de répartition F_Y de Y en fonction de celle de X:

$$F_Y(y) = P(Y \le y) = P(2X + 3 \le y) = P(2X \le y - 3) = P(X \le \frac{y - 3}{2}) = F_X(\frac{y - 3}{2})$$

Alors j'utilise l'expression de F_X pour obtenir celle de F_Y .

J'opère par disjonction de cas selon les valeurs de $\frac{y-3}{2}$:

• Si
$$\frac{y-3}{2} < 1$$
, *i.e.* $y-3 < 2 \iff y < 2+3=5$, alors $F_Y(y) = 0$.

• Si
$$\frac{y-3}{2} \ge 1$$
, *i.e.* $y \ge 5$, alors $F_Y(y) = 1 - \frac{1}{\left(\frac{y-3}{2}\right)^2} = 1 - \frac{1}{\frac{(y-3)^2}{4}} = 1 - \frac{4}{(y-3)^2}$.

Finalement j'obtiens que

$$\forall y \in \mathbb{R}, \quad F_Y(y) = \begin{cases} 1 - \frac{4}{(y-3)^2} & \text{si } y \geqslant 5, \\ 0 & \text{si } y < 5. \end{cases}$$

III - Lois usuelles à densité

1 - Loi uniforme sur un intervalle

Dans ce paragraphe, a et b désignent deux réels tels que a < b.

Définition 7.21 – Une variable aléatoire X suit une **loi uniforme** sur [a,b] lorsque X est la variable aléatoire de densité f définie par

$$f(t) = \begin{cases} \frac{1}{b-a} & \text{si } t \in [a,b], \\ 0 & \text{si } t \notin [a,b]. \end{cases}$$

On note $X \hookrightarrow \mathcal{U}([a,b])$.

Voici la représentation graphique de la densité f d'une loi uniforme sur [a, b]:

Remarque 7.22 -

• La loi uniforme sur [a, b] est la loi du tirage au hasard d'un nombre dans cet intervalle : la variable X a autant de chance de tomber n'importe où dans l'intervalle [a,b].

- La fonction f définie sur [a,b] par $f(t)=\frac{1}{b-a}$ est bien une densité de probabilité sur l'intervalle [a,b] puisque
 - ightharpoonup f est positive et continue sur $\mathbb{R} \setminus \{a, b\}$,

Proposition 7.23

Si X suit une loi uniforme sur [a, b], alors la fonction de répartition F_X de X est donnée par

$$F_X(x) = \begin{cases} 0 & \text{si } x < a, \\ \frac{x-a}{b-a} & \text{si } x \in [a,b], \\ 1 & \text{si } x > b. \end{cases}$$

Voici la représentation graphique de la fonction de répartition F_X d'une loi uniforme sur [a, b]:

Proposition 7.24

Si X suit une loi uniforme sur [a, b], alors X admet une espérance et une variance et

$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a)^2}{12}$.

Exemple 7.25 – Le temps d'attente T, exprimé en minutes, auprès du standard téléphonique du service après-vente d'une entreprise suit une loi uniforme sur l'intervalle [0.5, 9.5].

- 1. Quelle est la probabilité que le temps d'attente soit inférieur à deux minutes?
- 2. Quelle est la probabilité que le temps d'attente soit supérieur à trois minutes?
- 3. Quel est le temps d'attente moyen auprès du standard téléphonique?
- 1. La probabilité que le temps d'attente soit inférieur à deux minutes est donnée par

$$P(T \le 2) = F_T(2) = \frac{2 - 0.5}{9} = \frac{1}{6}$$

2. La probabilité que le temps d'attente soit supérieur à trois minutes est donnée par

$$P(T \ge 3) = 1 - F_T(3) = \frac{9.5 - 3}{9} = \frac{13}{18}$$

3. L'espérance de T est donnée par $E(T) = \frac{0.5 + 9.5}{2} = 5$. Le temps d'attente moyen auprès du standard téléphonique est de cinq minutes.

2 - Loi exponentielle

Dans ce paragraphe, λ désigne un réel strictement positif.

Définition 7.26 – Une variable aléatoire X suit une **loi exponentielle** de paramètre λ lorsque X est la variable aléatoire de densité f définie par

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{si } t \geqslant 0, \\ 0 & \text{si } t < 0. \end{cases}$$

On note $X \hookrightarrow \mathcal{E}(\lambda)$.

Voici la représentation graphique de la densité f d'une loi exponentielle de paramètre λ :

Remarque 7.27 - Les lois exponentielles sont utilisées pour modéliser des durées de vie.

- Proposition 7.28

Si X suit une loi exponentielle de paramètre λ , alors la fonction de répartition F_X de X est donnée par

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \geqslant 0, \\ 0 & \text{si } x < 0. \end{cases}$$

Voici la représentation graphique de la fonction de répartition d'une loi exponentielle de paramètre λ :

Exemple 7.29 – Soit X une variable aléatoire dont la fonction de répartition F_X est donnée par

$$F_X(x) = \frac{e^x - 1}{e^x}$$
 si $x \ge 0$ et $F_X(x) = 0$ sinon. Retrouver la loi de X .

Pour tout $x \ge 0$,

$$F_X(x) = \frac{e^x - 1}{e^x} = 1 - \frac{1}{e^x} = 1 - e^{-x}.$$

Je reconnais alors en F_X la fonction de répartition d'une variable aléatoire suivant la loi exponentielle de paramètre $\lambda = 1$, *i.e.* $Y \hookrightarrow \mathcal{E}(1)$.

Proposition 7.30

Si X suit une loi exponentielle de paramètre λ , alors X admet une espérance et une variance et

$$E(X) = \frac{1}{\lambda}$$
 et $V(X) = \frac{1}{\lambda^2}$.

3 - Loi normale

Dans ce paragraphe, m désigne un réel et σ un réel strictement positif.

Définition 7.31 – Une variable aléatoire X suit une **loi normale** de paramètres m et σ^2 lorsque X est la variable aléatoire de densité f définie par

$$\forall t \in \mathbb{R}, \quad f(t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(t-m)^2}{2\sigma^2}}.$$

On note $X \hookrightarrow \mathcal{N}(m, \sigma^2)$.

Proposition 7.32

Si X suit une loi normale de paramètres m et σ^2 , alors X admet une espérance et une variance et

$$E(X) = m$$
 et $V(X) = \sigma^2$.

4 - Loi normale centrée réduite

Définition 7.33 – On appelle **loi normale centrée réduite** la **loi normale** de paramètres m = 0 et $\sigma^2 = 1^2 = 1$. On note $X \hookrightarrow \mathcal{N}(0, 1)$.

Une variable aléatoire X suit la **loi normale centrée réduite** lorsque X est la variable aléatoire de densité f définie par

$$\forall t \in \mathbb{R}, \quad f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}.$$

La fonction de répartition de X est la fonction notée Φ définie par

$$\forall x \in \mathbb{R}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

Remarque 7.34 – On ne sait pas expliciter Φ à l'aide des fonctions usuelles, mais on dispose d'un tableau de valeurs de $\Phi(x)$ pour différentes valeurs de $x \ge 0$.

La courbe de la fonction de densité de la loi normale centrée réduite est symétrique par rapport à l'axe des ordonnées, donc les probabilités $P(X \le 0)$ et $P(X \ge 0)$ sont égales.

Comme $P(X \le 0) + P(X \ge 0) = 1$, alors

$$P(X \leqslant 0) = P(X \geqslant 0) = \frac{1}{2}.$$

Théorème 7 35

On sait déjà que $\Phi(0) = \frac{1}{2}$. Plus généralement, pour tout réel x, la fonction Φ vérifie

$$\Phi(-x) = 1 - \Phi(x).$$

Théorème 7.36

Soit X une variable aléatoire. Alors

X suit une loi normale $\mathcal{N}(m, \sigma^2)$ \iff $\frac{X-m}{\sigma}$ suit la loi normale centrée réduite $\mathcal{N}(0, 1)$.

Méthode 7.37 - Calculer des probabilités pour une loi normale

Pour calculer les probabilités d'une loi normale, on utilise les formules donnant les probabilités à l'aide de la fonction de répartition :

$$P(X \leqslant a) = F_X(a)$$
, $P(X \geqslant b) = 1 - F_X(b)$ et $P(a \leqslant X \leqslant b) = F_X(b) - F_X(a)$.

Deux cas se présentent alors :

- Si X suit la loi normale centrée réduite, alors on utilise ces formules et le tableau des valeurs de $\Phi(x)$ pour $x \ge 0$, en se ramenant si besoin à x positif grâce à la formule $\Phi(-x) = 1 - \Phi(x)$.
- Si *X* suit une loi normale quelconque, avec $m \neq 0$ ou $\sigma \neq 1$, alors on se ramène au cas d'une variable aléatoire suivant la loi normale centrée réduite :

$$X$$
 suit la loi $\mathcal{N}\left(m,\sigma^2\right) \quad \Longleftrightarrow \quad \frac{X-m}{\sigma}$ suit la loi $\mathcal{N}(0,1)$.

On conclut alors à l'aide du premier point.

Exemple 7.38 –

1. Soit *X* une variable aléatoire qui suit la loi normale centrée réduite $\mathcal{N}(0,1)$. Calculer les probabilités $P(X \le 0.65)$, P(X > 0.23)et $P(-0.5 < X \le 1.23)$.

La variable aléatoire X suit la loi $\mathcal{N}(0,1)$ donc je peux directement utiliser le tableau donnant les valeurs de $\Phi(x)$ avec l'aide des formules :

$$P(X \le 0.65) = \Phi(0.65) = 0.7422,$$

$$P(X > 0.23) = 1 - \Phi(0.23) = 1 - 0.5910 = 0.4090,$$

$$P(-0.5 < X \le 1.23) = \Phi(1.23) - \Phi(-0.5) = \Phi(1.23) - (1 - \Phi(0.5)) = 0.8907 - (1 - 0.6915) = 0.5822.$$

2. Soit *X* une variable aléatoire qui suit la loi normale $\mathcal{N}(1,4)$.

Calculer les probabilités P(X < 3), $P(X \ge -1)$ et $P(0 \le X < 5)$.

La variable aléatoire X suit la loi $\mathcal{N}(1,4)$, où m=1 et $\sigma^2=4$, *i.e.* $\sigma=2$. D'après le théorème, la variable aléatoire $\frac{X-1}{2}$ suit la loi $\mathcal{N}(0,1)$. Alors

$$P(X < 3) = P\left(\frac{X - 1}{2} < \frac{3 - 1}{2}\right) = P\left(\frac{X - 1}{2} < 1\right) = \Phi(1) = 0.8413,$$

$$P(X \ge -1) = P\left(\frac{X - 1}{2} \ge \frac{-1 - 1}{2}\right) = P\left(\frac{X - 1}{2} \ge -1\right) = 1 - \Phi(-1) = 1 - \left(1 - \Phi(1)\right) = 0.8413,$$

$$P(0 \le X < 5) = P\left(\frac{0 - 1}{2} \le \frac{X - 1}{2} < \frac{5 - 1}{2}\right) = P\left(-0.5 \le \frac{X - 1}{2} < 2\right)$$

$$= \Phi(2) - \Phi(-0.5) = \Phi(2) - \left(1 - \Phi(0.5)\right) = 0.9772 - \left(1 - 0.6915\right) = 0.6687.$$

Fonction de répartition Φ d'une variable aléatoire X suivant la loi normale centrée réduite $\mathcal{N}(0,1)$.

$$\Phi(x) = P(X \leqslant x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
 et $\Phi(-x) = 1 - \Phi(x)$.

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Pour trouver la valeur de $\Phi(x)$ dans le tableau, on repère les dixièmes de x en ligne et les centièmes en colonne. Par exemple, la valeur de $\Phi(1.72)$ se lit sur la ligne débutant par 1.7 et la colonne 0.02. On trouve $\Phi(1.72) = 0.9573$.