강의	정보처리 필기	강사	조대호
차시 명	[CA-05강] 자료의 내부적 표현과 외부적 표현	차시	5차시

학습내용

☞ 자료의 내부적 표현방법과 외부적 표현방법

학습목표

☞ 자료의 내부적 표현방법의 정의와 종류를 이해 할 수 있다. 자료의 외부적 표현방법의 정의와 종류를 이해 할 수 있다.

학습내용

1. 자료의 내부적 표현

2. 고정소수점 - 10진 연산의 표현

10진 연산 : 10진수 1자리를 2진수 4자리로 표현하는 방식 예> 10진수 46을 2진화 10진코드로 표현하면? 01000110

Unpacked format(FDFDFD····SD) - 1byte로 1자리 표현

Zone	Digit	Zone	Digit	Zone	Digit	 Sign	Digit
		← 1B	yte →	 			

+1234

Z	D	Ζ	D	Ζ	D	S	D
1111	0001	1111	0010	1111	0011	1100	0100
F	1	F	2	F	3	С	4

Sign

양수 : C , 음수 : D

-1234

Z	D	Z	D	Z	D	S	D
1111	0001	1111	0010	1111	0011	1101	0100
F	1	F	2	F	3	D	4

Packed format(DDDD···S) - 1byte로 2자리 표현

Digit	Digit	Digit	Digit	Digit	Digit	 Digit	Sign
		← 1B	yte →				

+1234

D	D	D	D	D	S
0000	0001	0010	0011	0100	1100
0	1	2	3	4	C

Sign

양수 : C , 음수 : D

-1234

D	D	D	D	D	S
0000	0001	0010	0011	0100	1101
0	1	2	3	4	ם

3. 고정소수점 - 2 진 연산의 표현

10진수 전체 값을 2진수로 변환하여 표현하는 방식

음수 표현방식

종 류	표현 방법	예 제 (-25의 표현)	비고	표현 범위 (n: 비트 개수)
부호화 절대치 (=부호 및 크기) (Signed Magnitude)	양수 표현 ↓ 부호비트 0→1	00011001	2가지 형태의 0 존재	-2 ⁿ⁻¹ -1
부호화 1의 보수 (Signed 1's Complement)	양수 표현 ↓ 1의 보수	00011001	(-0, +0) (0005)	+(2 ⁿ⁻¹ -1)
부호화 2의 보수 (Signed 2's Complement)	양수 표현 ↓ 2의 보수	00011001	한 가지 형태의 0만 존재 (+0)	-2 ⁿ⁻¹

4. 부동 소수점(Floating Point) 표현

특징>

매우 큰 수 나 매우 작은 수를 표현할 때 사용 표현의 정밀도를 높일 수 있음 수 표현에 필요한 자리 수에 있어 효율적임 과학이나 공학, 수학적인 응용에 주로 사용되는 수 표현 부동 소수점 수의 연산은 고정 소수점 연산에 비해 복잡하며, 연산 시간이 많이 걸림

부동 소수점에서 음수 표현법> 지수는 부호에 관계없이 bias 값에 더함 가수의 부호가 양수(+)이면 0, 음수(-)이면 1로 표현

5. 자료의 외부적 표현

ASCII 코드(American Standard Code for Information Interchange) IBM사에서 개발, 데이터 통신 및 마이크로 컴퓨터에서 많이 채택됨 7BIT 코드로 128개의 문자를 표현

BCD 코드(Binary Coded Decimal, 2진화 10진코드)

10진수 1자리의 수를 2진수 4bit로 표현

8421코드라고도 함

대표적 가중치 코드(Weight Code)

10진수 입,출력이 간편

자체 보수화는 불가능

BCD코드 변환 예제>

456 634

956 396

EBCDIC(Extended BCD Interchange Code, 확장 2진화 10진코드)

- 8개 비트(4개의 ZONE BIT + 4개의 DIGIT BIT)와 1개의 패리티 비트로 구성됨\\

IBM사에서 개발한 것으로 대형 컴퓨터용으로 쓰임 예제> EBCDIC로 10진수 5를 표현 : 11110101

3초과 코드(Excess-3 Code)

10진수를 표현하기 위한 부호

BCD부호에 3을 더한 것과 같음

부호를 구성하는 어떤 비트 값도 0 이 아님

BCD code 중에서 산술 연산 작용에 가장 적합

대표적인 자기 보수 코드, 비가중치 코드

예제> 10진수 8을 Excess-3코드로 표시하면? 1000+0011=1011

10진수 9를 Excess-3 코드로 표시하면? 1001 + 0011 = 1100

패리티 검사 코드(Parity Check Code)

오류검사를 위해 Data bit 외에 1 Bit의 패리티 체크 비트를 추가하는 것

패리티비트 : 오류검출을 하기 위해 사용하는 비트

1 Bit의 오류만 검출 가능

홀수 패리티(Odd, 기수)와 짝수(Even, 우수) 패리티가 있음

그레이 코드(Gray Code)

A/D변환, 입/출력 장치 등에 주로 사용됨

예제 ① 2진수 (1010)2 을 그레이 코드 변환하면? 1111

- ② 2진수 11011을 그레이 코드로 변환하면? 10110
- ③ Gray code (011011)G을 binary number로 변환시키면? (010010)2

해밍 코드(Hamming Code)

오류검출 및 교정이 가능한 코드

1bit의 오류만 교정할 수 있음

해밍코드의 1,2,4,8,16 ··· 2의 N승 번째는 오류검출을 위한 패리티 비트임.

예제> 해밍코드 전체가 16비트인경우 데이터 비트, 패리티 비트의 수는?

1,2,4,8,16(5bit) : 패리티비트, 나머지 11bit : 데이터비트

코드의 분류

분 류	코드 종류			
가중치 코드	BCD(8421) 코드, 2421 코드, Biquinary 코드,			
(Weighted Code)	51111 코드, 7421 코드			
비가중치 코드				
(Non-Weighted Code,	Excess-3 코드, Gray 코드, 2 out-of 5 코드			
Unweighted Code)				
자기 보수 코드	Excess-3 코드, 2421 코드, 51111 코드			
(Self-Complementary Code)	Excess-3 코드, Z4Z1 코드, 51111 코드			
O로 건축이 크드	Hamming 코드, 패리티 검사 코드,			
오류 검출용 코드	Biquinary 코드, 2 out-of 5 코드			

요점정리

- 1. 자료의 내부적 표현방법의 정의와 종류를 정리합니다.
- 2. 자료의 외부적 표현방법의 정의와 종류를 정리합니다.

다음차시예고

수고하셨습니다. 다음 6<u>주차</u>에서는 "[CA-6강] 프로세서와 명령어"에 대해서 학습하도록 하겠습니다.