Day 10/11 Guided Notes

Name:		Date:			
Day 10:					
We will be able	to compare and contras	st equations that hav	e		
solution,solutions, or _		man	_ many solutions.		
	Equation wit	h ONE Solution			
• You can t	ell an equation has ONE	E solution if you solve	e it and get a		
	equal to a _		that makes the		
equation	true.				
• Ex: 6 <i>x</i> –	- 3 = 21				
	Equation wi	th NO Solution			
• There doe	es not exist a	for the	that		
makes th	e equation				
• An equati	ion does not have a solu	ition if you substitute	e your		
		and get a			
statemen	t				
• Ex. 5v 1	7 — 3× ± 1 ±	2 v			

Equation with INFINITE Solutions

- An equation has infinitely many solutions if for ______ value for the ______, then that value makes the ______ true
 ⇒ Equations are ______ true for the variable.
 This implies that for any solution to the ______ the equation will be true and when substituting the value, the value will always be equal to
- Ex: 4 + 5 + 7x = 2x + 5x + 9

Day 10/11 Guided Notes

3

Exercise: Thinking About Solutions

Let's solve and sort the equations into whether they have <u>ONE</u> solution, <u>NO</u> solutions, or <u>Infinite</u> Solutions:

1. n = n	 □ Variable = Number? → One Solution □ Is the equation a false statement? → No Solution □ Is the variable/number equal to itself? → Infinite Solution
$2. \ 5 + 3x = -10 + 2x$	 □ Variable = Number? → One Solution □ Is the equation a false statement? → No Solution □ Is the variable/number equal to itself? → Infinite Solution
3. 2v + 2 = 2v - 2	 □ Variable = Number? → One Solution □ Is the equation a false statement? → No Solution □ Is the variable/number equal to itself? → Infinite Solution

PRACTICE PROBLEMS:

- 1. Consider the unfinished equation: 12(x-3) + 18 =_____. Match the following expressions with the number of solutions the equation would have with that expression on the right-hand side.
 - a. 6(2x 3)

1. one solution

b. 4(3x - 3)

2. no solution

c. 4(2x - 3)

3. Infinite solutions

HINT: Try solving each of the following expressions and substitute your solution into the original equation!

Day 11: Structures of Equations to Determine Solutions

Teacher Modeling:

Sample Card:

Determine whether the following equation has

- a. one solution if there exists one solution, solve for it
- b. no solution
- c. infinite solutions

$$4x - 1 + 2x = 4(2x - 1)$$

Written Explanation:						

Scratch Paper for Card Exercises:

Day 10/11 Guided Notes

For each set of equations, determine whether it has no solutions, exactly
one solution, or has infinitely many solutions + describe how and why
you determined it. If an equation has one solution, solve to find the
value of that makes the statement true:

a.
$$6x + 8 = 7x + 13$$

b.
$$6x + 8 = 2(3x + 4)$$

c.
$$6x + 8 = 6x + 13$$

Lin was looking at the equation 2x-32+4(3x-2462)=14x. She said, "I can tell right away there are no solutions, because on the left side, you will have 2x+12x and a bunch of constants, but you have just 14x on the right side." Do you agree with Lin? Explain your reasoning.

2.