







Time stamp

Host

Event type

Event ID

## ello 12UPF20000PP10Y

|                                    |   |   |   |   |   |    |    |    |    |    |    | 039 | 7  |
|------------------------------------|---|---|---|---|---|----|----|----|----|----|----|-----|----|
| THAE                               | - | 2 | 4 | 7 | 6 | 15 | 16 | 18 | 19 | 21 | 23 | 25  | 30 |
| EVENT EVENT TIME<br>ID CLASS STAMP | 1 | 4 | 1 | - | 4 | -  | 4  | -  | 2  | -  | 4  | 4   | 1  |
| EVENT                              | _ | 2 | က | 4 | 5 | 9  | 7  | 8  | 6  | 10 | 11 | 12  | 13 |
|                                    |   |   |   |   |   |    |    |    |    |    |    |     |    |
|                                    |   |   |   |   |   |    |    |    |    |    |    |     |    |
|                                    |   |   |   |   |   |    |    |    |    |    |    |     | _  |

Event class

{Event

9 51

2

2

4 2 9

5 8

N

8

19

က

9 5 =

α

type ID, host ID }

{1, 3} {2,1} {2,2}

ध्य ध

2 2

2 2

12

13

2

8

Table: original events

step 510

Table: event after mapping

Table: mapping for event class

(620

991

\$ 60

Q

0 0



■ Input: a set of candidates Ck, count information at all previous levels and a threshold minp

■ Output: a set of pruned candidates *C*/*k* 

Algorithm

• For each pattern pat in Ck

For each item a in pat

• Compute: prob = Count(pat-a)/Count(a);

• if prob < minp

-Ck = Ck-pat

- break the for-loop

• Return Ck



■ Input: pattern pat, all count information, and a threshold minp

■ Output: true if pat is a qualified m-pattern; otherwise false.

Algorithm

• For each a in pat

ightharpoonup = Count(pat)/Count(a)

• if prob < minp

return false

• Return true

■ This algorithm is O(k)

FIG. 8B

## 10/10 40192000679US1



F16. 9