Now we are going to prove the main result of this section. As in the proof of Thm.2.10 we will utilize pseudo-resolvents on a suitable F-product of the Banach lattice. To simplify the proof we isolate two lemmas.

<u>Lemma</u> 3.10. Let F be a filter on \mathbb{N} which is finer than the Frechet filter and let \mathbb{E}_{F} be the F-product of the Banach lattice E. Given $R \in L(E)$ and denoting its canonical extension to \mathbb{E}_{F} by \mathbb{R}_{F} the following is true:

If $\alpha \in A\sigma(R) \setminus P\sigma(R)$ then $\ker(\alpha - R_{\sharp})$ is infinite dimensional.

<u>Proof:</u> Let $(f_n)_{n\geq 1}$ be a normalized approximate eigenvector of R corresponding to α . Since every accumulation point of (f_n) is an eigenvector of R , the assumption $\alpha \notin P\sigma(A)$ implies that (f_n) does not have any accumulation points. Then there exist an $\epsilon > 0$ and a subsequence (g_n) of (f_n) such that

(3.14) $\|g_n - g_m\| \ge \varepsilon$ whenever $n \ne m$.

Obviously, (\textbf{g}_n) is a normalized approximate eigenvector of R and so is every subsequence of (\textbf{g}_n) . In particular for $k\in\mathbb{N}$ the sequence $(\textbf{g}_{n+k})_{n\geq 1}$ is a normalized approximate eigenvector of R . Then the elements $g^k\in E_F$ given by $g^k:=((\textbf{g}_{n+k})_{n\geq 1}+c_F(E))$ are normalized eigenvectors of R_F corresponding to α . As a consequence of (3.14) we obtain

 $\|\hat{g}^k - \hat{g}^m\| = F - \lim\sup\|g_{n+k} - g_{n+m}\| \ge \varepsilon \quad \text{provided that } k \ne m \text{ .}$ This shows that the unit ball in $\ker(\alpha - R_F)$ is not relatively compact, hence $\ker(\alpha - R_F)$ has to be infinite dimensional .

<u>Lemma</u> 3.11. Let E be a Banach lattice and let M , L be two linear subspaces of E .

Assume that $f \in M$ implies $|f| \in L$, then dim $L \ge \dim M$.

<u>Proof.</u> Let $\{g_1, g_2, \ldots, g_m\}$ (m≥1) be any (finite) subset of M which is linearly independent. For $u := \sum_{n=1}^{m} |g_n|$ all vectors g_n are contained in the principal ideal E_u which (by the Kakutani-Krein Theorem) is isomorphic to a space C(K). Considering g_1 , g_2 , ..., g_m as continuous functions on K, there exist points x_1 , x_2 , ..., $x_m \in K$ and functions h_1 , h_2 , ..., $h_m \in \text{span}\{g_1, g_2, \ldots, g_m\}$ such that $h_i(x_j) = \delta_{ij}$. Then $|h_i|(x_j) = \delta_{ij}$ hence $\{|h_j|: 1 \le j \le m\}$