

Compiladores

Gramáticas livres de contexto

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt</pre>

DETI, Universidade de Aveiro

Ano letivo de 2022-2023

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 1/43

Sumário

- 1 Gramáticas livres de contexto (GLC)
- 2 Derivação e árvore de derivação
- 3 Ambiguidade
- 4 Projeto de gramáticas
- Operações sobre GLC
- 6 Limpeza de gramáticas

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 2/43

Gramáticas Definição

Uma gramática é um quádruplo G = (T, N, P, S), onde

- T é um conjunto finito não vazio de símbolos terminais;
- N, com $N \cap T = \emptyset$, é um conjunto finito não vazio de símbolos **não** terminais;
- P é um conjunto de produções (ou regras de rescrita), cada uma da forma α → β;
- $S \in N$ é o símbolo inicial.
- α e β são designados por cabeça da produção e corpo da produção, respetivamente.
- No caso geral $\alpha \in (N \cup T)^* \times N \times (N \cup T)^*$ e $\beta = (N \cup T)^*$.
- Em ANTLR:
 - os terminais são representados por ids começados por letra maíscula
 - os não terminais são representados por ids começados por letra minúscula

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 4/43

Gramáticas livres de contexto – GLC Definição

 ${\mathcal D}$ Uma gramática G=(T,N,P,S) diz-se **livre de contexto** (ou **independente do contexto**) se, para qualquer produção $(\alpha \to \beta) \in P$, as duas condições seguintes são satisfeitas

$$\alpha \in N$$
$$\beta \in (T \cup N)^*$$

- A linguagem gerada por uma gramática livre de contexto diz-se livre de contexto
- As gramáticas regulares são livres de contexto
- As gramáticas livres de contexto são fechadas sob as operações de reunião, concatenação e fecho
 - mas não o são sob as operações de intersecção e complementação.

• Note que: se $\beta \in T^* \cup T^*N$, então $\beta \in (T \cup N)^*$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 5/43

Derivação Exemplo

 \mathcal{Q} Considere, sobre o alfabeto $T = \{a, b, c\}$, a gramática

$$S \to \varepsilon \mid \mathsf{a} \; B \mid \mathsf{b} \; A \mid \mathsf{c} \; S$$

$$A \to \mathsf{a} \; S \mid \mathsf{b} \; A \; A \mid \mathsf{c} \; A$$

$$B \to \mathsf{a} \; B \; B \mid \mathsf{b} \; S \mid \mathsf{c} \; B$$

e transforme o símbolo inicial S na palavra aabcbc por aplicação sucessiva de produções da gramática

 \mathcal{R}

$$S\Rightarrow aB\Rightarrow aaBB\Rightarrow aabSB\Rightarrow aabcSB\Rightarrow aabcbS$$

 $\Rightarrow aabcbcS\Rightarrow aabcbc$

- Acabou de se obter uma derivação à esquerda da palavra aabcbc
- Cada passo dessa derivação é uma derivação direta à esquerda
- Quando há dois ou mais símbolos não terminais, opta-se por expandir primeiro o mais à esquerda

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 7/43

Derivação Definições

 ${\mathcal D}$ Dada uma palavra $\alpha A \beta$, com $A \in N$ e $\alpha, \beta \in (N \cup T)^*$, e uma produção $(A \to \gamma) \in P$, com $\gamma \in (N \cup T)^*$, chama-se **derivação direta** à rescrita de $\alpha A \beta$ em $\alpha \gamma \beta$, denotando-se

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

 ${\mathcal D}$ Dada uma palavra $\alpha A \beta$, com $A \in N$, $\alpha \in T^*$ e $\beta \in (N \cup T)^*$, e uma produção $(A \to \gamma) \in P$, com $\gamma \in (N \cup T)^*$, chama-se **derivação direta à esquerda** à rescrita de $\alpha A \beta$ em $\alpha \gamma \beta$, denotando-se

$$\alpha A\beta \stackrel{E}{\Rightarrow} \alpha \gamma \beta$$

 ${\mathcal D}$ Dada uma palavra $\alpha A \beta$, com $A \in N$, $\alpha \in (N \cup T)^*$ e $\beta \in T^*$, e uma produção $(A \to \gamma) \in P$, com $\gamma \in (N \cup T)^*$, chama-se **derivação direta à direita** à rescrita de $\alpha A \beta$ em $\alpha \gamma \beta$, denotando-se

$$\alpha A\beta \stackrel{D}{\Rightarrow} \alpha \gamma \beta$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 8/43

Derivação Definições

Chama-se derivação a uma sucessão de zero ou mais derivações diretas, denotando-se

$$\alpha \Rightarrow^* \beta \equiv \alpha = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \cdots \Rightarrow \gamma_n = \beta$$

onde n é o comprimento da derivação.

Chama-se derivação à esquerda a uma sucessão de zero ou mais derivações diretas à esquerda, denotando-se

$$\alpha \stackrel{E}{\Rightarrow} {}^*\beta \equiv \alpha_1 \stackrel{E}{\Rightarrow} \cdots \stackrel{E}{\Rightarrow} \alpha_n = \beta$$

onde n é o comprimento da derivação.

Chama-se derivação à direita a uma sucessão de zero ou mais derivações diretas à direita, denotando-se

$$\alpha \stackrel{D}{\Rightarrow} {}^*\beta \equiv \alpha = \gamma_0 \stackrel{D}{\Rightarrow} \gamma_1 \stackrel{D}{\Rightarrow} \cdots \stackrel{D}{\Rightarrow} \gamma_n = \beta$$

onde n é o comprimento da derivação.

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 9/43

Derivação Exemplo

 \mathcal{Q} Considere, sobre o alfabeto $T = \{a, b, c\}$, a gramática seguinte

$$S \, \rightarrow \, \varepsilon \, \mid \, \mathsf{a} \, \, B \, \mid \, \mathsf{b} \, \, A \, \mid \, \mathsf{c} \, \, S$$

$$A \,\rightarrow\, \mathbf{a}\,\, S \,\mid\, \mathbf{b}\,\, A\,\, A \,\mid\, \mathbf{c}\,\, A$$

$$B\,\rightarrow\,$$
 a B B $|$ b S $|$ c B

Determine as derivações à esquerda e à direita da palavra aabcbc

 \mathcal{R}

à esquerda

$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aabSB \Rightarrow aabcSB$$

 $\Rightarrow aabcB \Rightarrow aabcbS \Rightarrow aabcbc$

à direita

$$S\Rightarrow aB\Rightarrow aaBB\Rightarrow aaBbS\Rightarrow aaBbcS$$

 $\Rightarrow aaBbc\Rightarrow aabSbc\Rightarrow aabcSbc\Rightarrow aabcbc$

• Note que se usou \Rightarrow em vez de $\stackrel{D}{\Rightarrow}$ e $\stackrel{E}{\Rightarrow}$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 10/43

Derivação

Alternativas de derivação

 O grafo seguinte capta as alternativas de derivação. Considera-se novamente a palavra aabcbc e a gramática anterior

• Identifique os caminhos que correspondem às derivações à direita e à esquerda

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 11/43

Derivação Árvore de derivação

- Uma árvore de derivação (parse tree) é uma representação de uma derivação onde os nós-ramos são símbolos não terminais e os nós-folhas são símbolos terminais
- A árvore de derivação da palavra aabcbc na gramática anterior é

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 12/43

Ambiguidade

Ilustração através de um exemplo

- Considere a gramática $S \to S + S \mid S S \mid$ (S) | n e desenhe a árvore de derivação da palavra n+n-n
- $\ensuremath{\mathcal{R}}$ Podem obter-se duas árvores de derivação diferentes

Pode haver duas interpretações diferentes para a palavra; há ambiguidade

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 14/43

Ambiguidade Definição

- Diz-se que uma palavra é derivada ambiguamente se possuir duas ou mais árvores de derivação distintas
- Diz-se que uma gramática é **ambígua** se possuir pelo menos uma palavra gerada ambiguamente
- Frequentemente é possível definir-se uma gramática não ambígua que gera a mesma linguagem que uma ambígua
- No entanto, há gramáticas inerentemente ambíguas

Por exemplo, a linguagem

$$L = \{\mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid i = j \vee j = k\}$$

não possui uma gramática não ambígua que a represente.

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 15/43

Ambiguidade

Remoção da ambiguidade

 $\ensuremath{\mathcal{R}}$ Considere-se novamente a gramática

$$S \rightarrow S + S \mid S - S \mid (S) \mid n$$

e obtenha-se uma gramática não ambígua equivalente

 \mathcal{R}

$$S \to K \mid S + K \mid S - K$$
$$K \to n \mid (S)$$

Q Desenhe a árvore de derivação da palavra n+n-n na nova gramática

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 16/43

Projeto de gramáticas

Exemplo #1, solução #1

 ${\cal Q}\,$ Sobre o conjunto de terminais $T=\{{\tt a},{\tt b}\},$ determine uma gramática livre de contexto que represente a linguagem

$$L_1 \,=\, \{\omega \in T^* \,:\, \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega)\}$$

 \mathcal{R}_1

$$S\,\rightarrow\,\varepsilon$$
 $|$ a S b S $|$ b S a S

Q A gramática é ambígua? Analise a palavra aabbab

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 18/43

Exemplo #1, solução #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}_2

$$S \to \varepsilon \mid a B \mid b A$$

 $A \to a S \mid b A A$
 $B \to a B B \mid b S$

Q A gramática é ambígua?Analise a palavra aababb.

Falta expandir alguns nós

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023

19/43

Projeto de gramáticas

Exemplo #1, solução #3

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}_3

$$S \, \rightarrow \, \varepsilon \, \mid \, \mathbf{a} \, \mathrel{B} \, S \, \mid \, \mathbf{b} \, \mathrel{A} \, S$$

$$A \rightarrow a \mid b \mid A \mid A$$

$$B\,\rightarrow\,$$
 a $B\,\,B\,\mid\,$ b

Q A gramática é ambígua? Analise a palavra aababb

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 20/43

Exemplo #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_2 = \{\omega \in T^* : \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega)\}$$
 \mathcal{R}
$$S \to \varepsilon \mid \mathtt{a} \mid B \mid S \mid \mathtt{b} \mid A \mid S \mid \mathtt{c} \mid S$$

$$A \to \mathtt{a} \mid \mathtt{b} \mid A \mid A \mid \mathtt{c} \mid A$$

$$B \to \mathtt{a} \mid B \mid \mathtt{b} \mid \mathtt{c} \mid B$$

Q A gramática é ambígua?

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 21/43

Projeto de gramáticas

Exemplo #3, solução #1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_3 = \{\omega \in T^* \ : \ \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega) \land \\ \forall_{i \leq |\omega|} \ \#(\mathbf{a},\mathsf{prefix}(i,\omega)) \geq \#(\mathbf{b},\mathsf{prefix}(i,\omega)) \}$$

$$\mathcal{R}_1$$

$$S \to \varepsilon \mid \mathbf{a} \ S \ \mathbf{b} \ S \mid \mathbf{c} \ S$$

Q A gramática é ambígua? Analise a palavra aababb

- O número de ocorrências das letras a e b é igual, mas em qualquer prefixo das palavras da linguagem não pode haver mais bs que as, ou seja o a aparece antes
- Solução inspirada na do exemplo 1.1, removendo a produção $S \to b \ S \ a \ S$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 22/43

Exemplo #3: solução #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_3 = \{\omega \in T^* \,:\, \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega) \land \\ \forall_{i \leq |\omega|} \ \#(\mathbf{a},\mathsf{prefix}(i,\omega)) \geq \#(\mathbf{b},\mathsf{prefix}(i,\omega)) \}$$

$$\mathcal{R}_2$$

$$S \to \varepsilon \mid \mathbf{a} \ B \mid \mathbf{c} \ S$$

$$B \to \mathbf{a} \ B \ B \mid \mathbf{b} \ S \mid \mathbf{c} \ B$$

Q A gramática é ambígua? Analise a palavra aababb

• Solução inspirada na do exemplo 1.2, removendo a produção $S \to \mathtt{b} \ A$ e as começadas por A

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 23 / 43

Projeto de gramáticas

Exemplo #3: solução #3

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_3 = \{\omega \in T^* \,:\, \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega) \land \\ \forall_{i \leq |\omega|} \ \#(\mathtt{a},\mathsf{prefix}(i,\omega)) \geq \#(\mathtt{b},\mathsf{prefix}(i,\omega)) \}$$

$$\mathcal{R}_3$$

$$S \to \varepsilon \mid \mathtt{a} \mathrel{B} \mathrel{S} \mid \mathtt{c} \mathrel{S} \\ B \to \mathtt{a} \mathrel{B} \mathrel{B} \mid \mathtt{b} \mid \mathtt{c} \mathrel{B}$$

Q A gramática é ambígua? Analise a palavra aababb

• Solução inspirada na do exemplo 1.3, removendo a produção $S \to \flat \ A \ S$ e as começadas por A

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 24/43

Exercício

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c, (,), +, \star\}$, determine uma gramática independente do contexto que represente a linguagem

$$L = \{ \ \omega \in T^* \ : \\ \omega \text{ representa uma expressão regular sobre o alfabeto } \{ \mathtt{a}, \mathtt{b}, \mathtt{c} \} \}$$

 \mathcal{R} Em ANTLR, poder-se-ia fazer

mas em geral não, porque, em geral, as alternativas estão todas ao mesmo nível

- Como escrever a gramática de modo à precedência ser imposta por construção?
- Está a usar-se o operador + em vez do |

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 25/43

Projeto de gramáticas

Exercício (cont.)

 \mathcal{R} Em geral

- Uma expressão é vista como uma 'soma' de termos
- Um termo é visto como um 'produto' (concatenação) de fatores
- Um fator é visto como um 'fecho' de operandos
- Um operando ou é um elemento base ou uma expressão entre parêntesis
- Está a usar-se o operador + em vez do |

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 26 / 40

Reunião de GLC

Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L = \{ \omega \in T^* : \#(\mathtt{a}, \omega) = \#(\mathtt{b}, \omega) \lor \#(\mathtt{a}, \omega) = \#(\mathtt{c}, \omega) \}$$

$$L_1 = \{ \omega \in T^* : \#(\mathtt{a}, \omega) = \#(\mathtt{b}, \omega) \} \quad S_1 \to \varepsilon \mid \mathtt{a} S_1 \, \mathtt{b} S_1 \\ \mid \mathtt{b} S_1 \, \mathtt{a} S_1 \mid \mathtt{c} S_1$$

$$L_2 = \{ \omega \in T^* : \#(\mathtt{a}, \omega) = \#(\mathtt{c}, \omega) \} \quad S_2 \to \varepsilon \mid \mathtt{a} S_2 \, \mathtt{c} S_2 \\ \mid \mathtt{b} S_2 \mid \mathtt{c} S_2 \, \mathtt{a} S_2$$

$$L = L_1 \cup L_2 \quad S_1 \to \varepsilon \mid \mathtt{a} S_1 \, \mathtt{b} S_1 \\ \mid \mathtt{b} S_1 \, \mathtt{a} S_1 \mid \mathtt{c} S_1 \\ \mid \mathtt{b} S_2 \mid \mathtt{c} S_2 \, \mathtt{a} S_2$$

$$S_2 \to \varepsilon \mid \mathtt{a} S_2 \, \mathtt{c} S_2 \\ \mid \mathtt{b} S_2 \mid \mathtt{c} S_2 \, \mathtt{a} S_2$$

• Para esta linguagem, mesmo que as gramáticas de L_1 e L_2 não sejam ambíguas, a de L será ambígua. Porquê?

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 28/43

Operações sobre GLCs

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas livres de contexto quaisquer, com $N_1\cap N_2=\emptyset$.

A gramática G = (T, N, P, S) onde

$$T = T_1 \cup T_2$$

$$N = N_1 \cup N_2 \cup \{S\} \quad \text{com} \quad S \notin (N_1 \cup N_2)$$

$$P = \{S \rightarrow S_1, S \rightarrow S_2\} \cup P_1 \cup P_2$$

é livre de contexto e gera a linguagem $L = L(G_1) \cup L(G_2)$

- As novas produções $S \to S_i$, com i=1,2, permitem que G gere a linguagem $L(G_i)$
- Esta definição é idêntica à que foi dada para a operação de reunião nas gramáticas regulares

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 29/43

Concatenação de GLC Exemplo

 $L = \{ \omega_1 \omega_2 : \omega_1, \omega_2 \in T^* \}$

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$\mathcal{R} = \{ (a, \omega_{1}) = \#(b, \omega_{1}) \land \#(a, \omega_{2}) = \#(c, \omega_{2}) \}$$

$$L_{1} = \{ (a, \omega) = \#(b, \omega) \} \quad \begin{cases} S_{1} \to \varepsilon \mid a S_{1} \mid b S_{1} \\ \mid b S_{1} \mid a S_{1} \mid c S_{1} \end{cases}$$

$$L_{2} = \{ (a, \omega) = \#(c, \omega) \} \quad \begin{cases} S_{2} \to \varepsilon \mid a S_{2} \mid c S_{2} \mid c S_{2} \mid a S_{2} \end{cases}$$

$$L = L_{1} \cdot L_{2} \quad \begin{cases} S \to S_{1} \mid S_{2} \mid c \mid S_{2} \mid a \mid S_{1} \mid c \mid S_{1} \mid c \mid S_{1} \mid c \mid S_{1} \mid c \mid S_{1} \mid S_{2} \mid c \mid S_{2} \mid c \mid S_{2} \mid a \mid S_{2} \mid a \mid S_{2} \mid c \mid S_{2} \mid a \mid S_{2} \mid c \mid S_{2} \mid a \mid S_{2} \mid a$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 30/43

Operações sobre gramáticas:

Concatenação

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas livres de contexto quaisquer, com $N_1\cap N_2=\emptyset$.

A gramática G=(T,N,P,S) onde

$$T = T_1 \cup T_2$$
 $N = N_1 \cup N_2 \cup \{S\} \text{ com } S \notin (N_1 \cup N_2)$ $P = \{S \to S_1 S_2\} \cup P_1 \cup P_2$

é livre de contexto e gera a linguagem $L = L(G_1) \cdot L(G_2)$

- A nova produção $S \to S_1S_2\,$ justapõe palavras de $L(G_2)$ às de $L(G_1)$
- Esta definição é diferente da que foi dada para a operação de concatenação nas gramáticas regulares

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 31 / 43

Fecho de Kleene de GLC

Exemplo

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c\}$, determine uma gramática livre de contexto que represente a linguagem

$$L\,=\,\{\,\omega\in T^*\,:\,\#(\mathbf{a},\omega)\geq\#(\mathbf{b},\omega)\}$$

 \mathcal{R}

C		
	$X = \{ \omega \in T^* : \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega)\}$	$X ightarrow arepsilon \mid$ a $B \mid$ b $A \mid$ c X $A ightarrow$ a $X \mid$ b $A \mid$ c $A \mid$ $B ightarrow$ a $B \mid$ b $X \mid$ c $B \mid$
	$A = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) + 1 \}$	Basta usar o A anterior como símbolo inicial
-	$L = X \cup A^*$	$S \rightarrow \varepsilon \mid A S \mid X$ $X \rightarrow \varepsilon \mid a B \mid b A \mid c X$ $A \rightarrow a X \mid b A A \mid c A$ $B \rightarrow a B B \mid b X \mid c B$

• O fecho de A inclui a palavra vazia mas não as outras palavras com $\#_a = \#_b$

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023

Operações sobre gramáticas

Fecho de Kleene

Seja $G_1 = (T_1, N_1, P_1, S_1)$ uma gramática livre de contexto qualquer. A gramática G = (T, N, P, S) onde

$$\begin{array}{ll} T = T_1 \\ N = N_1 \, \cup \, \{S\} & \mathsf{com} \quad S \not \in N_1 \\ P = \{S \rightarrow \varepsilon, S \rightarrow S_1 S\} \, \cup \, P_1 \end{array}$$

é livre de contexto e gera a linguagem $L = (L(G_1))^*$

- A produção $S \to \varepsilon$, per si, garante que $L^0(G_1) \subseteq L(G)$
- As produções $S \to S_1 S$ e $S \to \varepsilon$ garantem que $L^i(G_1) \subseteq L(G)$, para qualquer i > 0
- Esta definição é diferente da que foi dada para a operação de fecho nas gramáticas regulares

ACP (DETI/UA)

Símbolos produtivos e improdutivos

Exemplo de ilustração

Q Sobre o conjunto de terminais $T = \{a, b, c, d\}$, considere a gramática

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ c C $|$ b B $|$ d $B
ightarrow$ d D $|$ b $C
ightarrow$ A C $|$ B D $|$ S D $D
ightarrow$ A D $|$ B C $|$ C S $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

- Tente expandir (através de uma derivação) o símbolo não terminal A para uma sequência apenas com símbolos terminais $(S \Rightarrow^* u, \text{ com } u \in T^*)$
 - $A \Rightarrow d$
- Faça o mesmo com o símbolo C
 - Não consegue
- A é um símbolo produtivo; C é um símbolo improdutivo

ACP (DETI/UA) Maio de 2023

Símbolos produtivos e improdutivos

Definição de símbolo produtivo

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo não terminal A diz-se **produtivo** se for possível expandi-lo para uma expressão contendo apenas símbolos terminais
- Ou seja, A é produtivo se

$$A \Rightarrow^+ u \quad \land \quad u \in T^*$$

- Caso contrário, diz-se que A é improdutivo
- Uma gramática é improdutiva se o seu símbolo inicial for improdutivo
- Na gramática

$$S \to \mathtt{a} \, \mathtt{b} \mid \mathtt{a} \, S \, \mathtt{b} \mid X$$

$$X \to \mathtt{c} \, X$$

- $S \not\in \text{produtivo, porque}$ $S \Rightarrow \text{ab} \land \text{ab} \in T^*$
- $X \neq \mathsf{c}X \Rightarrow \mathsf{c}X \Rightarrow \mathsf{c}X \Rightarrow^* \mathsf{c} \cdots \mathsf{c}X$

ACP (DETI/UA) Maio de 2023

Símbolos produtivos

Algoritmo de cálculo

• O conjunto dos símbolos produtivos, N_p , pode ser obtido por aplicação sucessiva das seguintes regras construtivas

```
 \begin{split} & \textbf{if} \ (A \to \alpha) \in P \ \ \textbf{and} \ \alpha \in T^* \ \ \textbf{then} \ A \in N_p \\ & \textbf{if} \ (A \to \alpha) \in P \ \ \textbf{and} \ \alpha \in (T \cup N_p)^* \ \ \textbf{then} \ A \in N_P \end{split}
```

Algoritmo de cálculo:

```
\begin{array}{lll} \mathbf{let} \ N_p \leftarrow \emptyset, & P_p \leftarrow P & \# \ N_p - \mathit{s\'imbolos} \ \mathit{produtivos} \\ \mathbf{repeat} \\ & \text{nothingAdded} \leftarrow \texttt{true} \\ & \mathbf{foreach} \ (A \rightarrow \alpha) \in P_p \ \ \mathbf{do} \\ & \mathbf{if} \ \alpha \in (T \cup N_p)^* \ \ \mathbf{then} & \#\mathit{se} \ \mathit{todos} \ \mathit{s\~ao} \ \mathit{terminais} \ \mathit{ou} \ \mathit{produtivos}, A \ \acute{e} \ \mathit{produtivos} \\ & \mathbf{if} \ A \not \in N_p \ \ \mathbf{then} & \#\mathit{se} \ \mathit{ainda} \ \mathit{n\~ao} \ \mathit{pertence} \ \mathit{aos} \ \mathit{produtivos} \\ & N_p \leftarrow N_p \cup \{A\} & \#\mathit{e} \ \acute{e} \ \mathit{processo} \\ & nothingAdded \leftarrow \ \mathit{false} & \#\mathit{e} \ \acute{e} \ \mathit{processo} \ \mathit{epetir} \ \mathit{o} \ \mathit{processo} \\ & P_p \leftarrow P_p - \{A \rightarrow \alpha\} & \#\mathit{a} \ \mathit{produ\~c\~ao} \ \mathit{j\'a} \ \mathit{n\~ao} \ \mathit{precisa} \ \mathit{de} \ \mathit{ser} \ \mathit{processada} \ \mathit{mais} \\ \mathbf{until} \ \mathit{nothingAdded} \ \mathbf{or} \ N_p = N \end{array}
```

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 37/43

Símbolos acessíveis e inacessíveis

Exemplo de ilustração

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c, d\}$, considere a gramática

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ c C $|$ b B $|$ d $B
ightarrow$ d D $|$ b $C
ightarrow$ A C $|$ B D $|$ S D $D
ightarrow$ A D $|$ B C $|$ C S $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

- Tente alcançar (através de uma derivação) o símbolo não terminal C a partir do símbolo inicial (S) $(S \Rightarrow^* \alpha C \beta, \text{ com } \alpha, \beta \in (T \cup N)^*)$
 - $S \Rightarrow b B \Rightarrow b d D \Rightarrow b d B C$
- Faça o mesmo com o símbolo E
 - Não consegue
- C é um símbolo **acessível**; E é um símbolo **inacessível**

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 38/43

Símbolos acessíveis e inacessíveis

Definição de símbolo acessível

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo terminal ou não terminal x diz-se **acessível** se for possível expandir S (o símbolo inicial) para uma expressão que contenha x
- Ou seja, x é acessível se

$$S \Rightarrow^* \alpha x \beta$$

- Caso contrário, diz-se que x é inacessível
- Na gramática

$$S
ightarrow \varepsilon$$
 | a S b | c C c $C
ightarrow c$ S c $D
ightarrow$ d X d $X
ightarrow C$ C

- D, d, e X são inacessíveis
- Os restantes são acessíveis

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 39/43

Símbolos acessíveis

Algoritmo de cálculo

• O conjunto dos seus símbolos acessíveis, V_A , pode ser obtido por aplicação das seguintes regras construtivas

$$S \in V_A$$
 if $A o lpha B eta \in P$ and $A \in V_A$ then $B \in V_A$

Algoritmo de cálculo:

```
V_A \leftarrow \{S\}
                                       # no fim, ficará com todos os símbolos acessíveis
N_A \leftarrow \{S\}
                    # conjunto de símbolos não terminais acessíveis a processar
repeat
    X \leftarrow \text{elementOf}(N_A)
                                                   \# retira um elemento qualquer de N_A
     foreach (X \to \alpha) \in P do
          foreach x in \alpha do
              if x \not\in V_A then \# se ainda não está marcado como acessível
                   V_A \leftarrow V_A \cup \{x\}
                                                                           # passa a estar
                   \texttt{if}\ x \in N \ \texttt{then}
                                                       # se adicinalmente é não terminal
                        N_A \leftarrow N_A \cup \{x\}
                                                                # terá de ser processado
until N_A = \emptyset
```

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 40/43

Gramáticas limpas

Algoritmo de limpeza

- Numa gramática, os símbolos inacessíveis e os símbolos improdutivos são símbolos inúteis
- Se tais símbolos forem removidos obtém-se uma gramática equivalente
- Diz-se que uma gramática é limpa se não possuir símbolos inúteis
- Para limpar uma gramática deve-se:
 - começar por a expurgar dos símbolos improdutivos
 - só depois remover os inacessíveis

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 41/43

Gramáticas limpas Exemplo #1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{a,b,c,d\}$, determine uma gramática limpa equivalente à gramática seguinte

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ c C $|$ b B $|$ d $B
ightarrow$ d D $|$ b $C
ightarrow$ A C $|$ B D $|$ S D $D
ightarrow$ A D $|$ B C $|$ C S $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

Cálculo dos símbolos produtivos

```
1 Inicialmente N_p \leftarrow \emptyset

2 A \rightarrow d \land d \in T^* \implies N_p \leftarrow N_p \cup \{A\}

3 B \rightarrow b \land b \in T^* \implies N_p \leftarrow N_p \cup \{B\}

4 E \rightarrow \varepsilon \land \varepsilon \in T^* \implies N_p \leftarrow N_p \cup \{E\}

5 S \rightarrow a A b \land a, A, b \in (T \cup N_p)^* \implies N_p \leftarrow N_p \cup \{S\}

6 Nada mais se consegue acrescentar a N_p \implies C e D são improdutivos
```

Gramáticas limpas Exemplo #1, cont.

Gramática após a remoção dos símbolos improdutivos

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ b B $|$ d $B
ightarrow$ b $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

- Cálculo dos símbolos não terminais acessíveis sobre a nova gramática
 - 1 S é acessível, porque é o inicial
 - 2 sendo S acessível, de $S \rightarrow a$ A b, tem-se que A é acessível
 - 3 sendo S acessível, de $S \to b$ B, tem-se que B é acessível
 - 4 de *A* só se chega a *B*, que já foi marcado como acessível
 - 5 de B não se chega a nenhum não terminal
 - 6 Logo E não é acessível, pelo que a gramática limpa é

$$S \rightarrow a A b \mid b B$$
 $A \rightarrow b B \mid d$ $B \rightarrow b$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 43/43

Compiladores

Análise sintática descendente

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt</pre>

DETI, Universidade de Aveiro

Ano letivo de 2022-2023

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 1/43

Sumário

- 1 Análise sintática descendente
- 2 Analisador (parser) recursivo-descendente preditivo
- 3 Fatorização à esquerda
- 4 Remoção de recursividade à esquerda
- **5** Conjuntos *first*, *follow* e *predict*
- **6** Tabela de decisão de um reconhecedor descendente LL(1)

ACP (DETI/UA) Como 2022/2023 Maio de 2023 2/43

Análise sintática Introdução

- Dada uma gramática G=(T,N,P,S) e uma palavra $u\in T^*$, o papel da análise sintática é:
 - descobrir uma derivação que a partir de S produza u
 - gerar uma árvore de derivação ($\it parse tree$) que transforme $\it S$ (a raiz) em $\it u$ (as folhas)
- Se nenhuma derivação/árvore existir, então $u \notin L(G)$
- A análise sintática pode ser descendente ou ascendente
- Na análise sintática descendente:
 - a derivação pretendida é à esquerda
 - a árvore é gerada a partir da raiz, descendo para as folhas
- Na análise sintática ascendente:
 - a derivação pretendida é à direita
 - a árvore é gerada a partir das folhas, subindo para a raiz
- O objetivo final é a transformação da gramática num programa (reconhecedor sintático) que produza tais derivações/árvores
 - Para as gramáticas independentes do contexto, estes reconhecedores são os autómatos de pilha

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 4/43

Análise sintática descendente Exemplo

• Considere a gramática

• Desenhe-se a árvore de derivação da palavra n+n*n a partir de S

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 5/43

Análise sintática descendente

- Existem diferentes abordagens à análise sintática descendente
- Análise sintática descendente recursiva
 - Os símbolos não terminais transformam-se em funções recursivas
 - Abordagem genérica
 - Pode requerer um algoritmo de backtracking (tentativa e erro) para descobrir a produção a aplicar a cada momento
- Análise sintática descendente preditiva
 - Abordagem recursiva ou através de uma tabela de decisão
 - No caso da tabela, os símbolos não terminais transformam-se no alfabeto da pilha
 - Não requer backtracking
 - A produção a aplicar a cada momento é escolhida com base no primeiro(s) token(s) da entrada que ainda não foram consumidos (lookahead)
 - São designados LL(k)
 - k é o número (máximo) de *tokens* usados na tomada de decisão
 - ullet O primeiro L significa que a entrada é analisada da esquerda para a direita
 - ullet O segundo L significa que se faz uma derivação à esquerda
 - Assenta em 3 elementos de análise
 - os conjuntos first, follow e predict

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 6/43

Analisador (*parser*) recursivo-descendente preditivo Exemplo #1

Sobre o alfabeto {a,b}, considere linguagem

$$L = \{a^n b^n : n \ge 0\}$$

descrita pela gramática

$$S \to \mathsf{a} \ S \ \mathsf{b} \ | \ arepsilon$$

 Construa-se um programa com lookahead de 1, em que o símbolo não terminal S seja uma função recursiva, que reconheça a linguagem L.

```
void S(void)
                                                      void eat(int c)
int lookahead:
                        switch(lookahead)
                                                        if (lookahead != c) error()
int main()
                          case 'a':
                           eat('a'); S(); eat('b'); }
  while (1)
                           break;
                                                      void epsilon()
                          default:
   printf(">> ");
                            epsilon();
    adv();
                            break;
   S();
    eat('\n');
                                                      void error()
                       }
   printf("\n");
                                                        printf("Unexpected symbol\n");
                       void adv()
  return 0;
                                                        exit(1);
                         lookahead = getchar();
```

Analisador (*parser*) recursivo-descendente Análise do exemplo #1

No programa anterior:

- lookahead é uma variável global que representa o próximo símbolo à entrada
- adv () é uma função que avança na entrada, colocando em lookahead o próximo símbolo
- eat (c) é uma função que verifica se no lookahead está o símbolo c, gerando erro se não estiver, e avança para o próximo
- Há duas produções da gramática com cabeça S, sendo a decisão central do programa a escolha de qual usar face ao valor do lookahead.
 - deve escolher-se $S \rightarrow a S b$ se o lookahead for a
 - e $S \rightarrow \varepsilon$ se o lookahead for \$ ou b

No programa anterior, o símbolo \$, marcador de fim de entrada, corresponde ao \n

Uma palavra é aceite pelo programa se e só se

S(); eat(\$) não der erro.

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 9/43

Analisador (*parser*) recursivo-descendente preditivo Exemplo #2

• Sobre o alfabeto {a,b}, considere linguagem

$$L\,=\,\{\omega\in T^*\,:\,\#(\mathbf{a},\omega)=\#(\mathbf{b},\omega)\}$$

descrita pela gramática

$$S \to \varepsilon$$
 | a $B S$ | b $A S$ | A \to a | b $A A$ | B \to a $B B$ | b

- Construa um programa em que os símbolos não terminais sejas funções recursivas que reconheça a linguagem L.
- O programa terá 3 funções recursivas, $A, B \in S$, semelhantes à função S do exemplo anterior
- Em A, deve escolher-se $A \rightarrow a$ se lookahead for a e $A \rightarrow b$ A A se for b
- Em B, deve escolher-se $B \to b$ se lookahead for $b \in B \to a$ $B \in B$ se for a
- Em S, deve escolher-se $S \to a$ B S se lookahead for a, $S \to b$ A S se for b e $S \to \varepsilon$ se for \$ (este último, mais tarde saber-se-á porquê)

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 10/43

Analisador (parser) recursivo-descendente preditivo Exemplo #2a

• Sobre o alfabeto {a,b}, considere linguagem

$$L = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

descrita pela gramática

$$S
ightarrow \varepsilon \mid$$
 a $B \mid$ b A
 $A
ightarrow$ a $S \mid$ b A A
 $B
ightarrow$ a $B \mid$ b S

- Construa um programa em que os símbolos não terminais sejas funções recursivas que reconheça a linguagem L.
- O programa terá 3 funções recursivas, A,B e S, semelhantes à função S do exemplo anterior, exceto no critério de escolha da produção $S \to \varepsilon$
- Escolher $S \to \varepsilon$ quando lookahead for \$ pode não resolver
- Por exemplo, com o lookahead igual a a, há situações em que se tem de escolher $S \to$ a B e outras $S \to \varepsilon$
- É o que acontece com a entrada bbaa $S \Rightarrow bA \Rightarrow bbA \Rightarrow bbaSA \Rightarrow \cdots$

momento em que o S tem de ser expandido para ε e o lookahead $\acute{\mathbf{e}}$ a

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 11/43

Analisador (*parser*) recursivo-descendente preditivo Exemplo #2b

• Sobre o alfabeto {a,b}, considere linguagem

$$L\,=\,\{\omega\in T^*\,:\,\#(\mathbf{a},\omega)=\#(\mathbf{b},\omega)\}$$

descrita pela gramática

- \bullet Construa um programa em que os símbolos não terminais sejas funções recursivas que reconheça a linguagem L
- Tal como no caso anterior, escolher $S \to \varepsilon$ quando lookahead for \$ pode não resolver

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 12/43

Analisador (parser) recursivo-descendente preditivo Exemplo #3

• Sobre o alfabeto {a,b}, considere linguagem

$$L = \{a^n b^n : n \ge 1\}$$

descrita pela gramática

$$S \, o \,$$
 a S b $|$ a b

- Construa um programa em que o símbolo não terminal S seja uma função recursiva que reconheça a linguagem L.
- Como escolher entre as duas produções se ambas começam pelo mesmo símbolo?
- Há duas abordagens:
 - Pôr em evidência o a à esqueda, transformando a gramática para

$$\begin{array}{c} S \to \mathbf{a} \ X \\ X \to S \ \mathbf{b} \ | \ \mathbf{b} \end{array}$$

- Aumentar o número de símbolos de lookahead para 2
 - se for aa, escolhe-se $S \to a S b$
 - se for ab, escolhe-se $S \to a$ b

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 13/4

Analisador (*parser*) recursivo-descendente preditivo Exemplo #4

• Sobre o alfabeto {a,b}, considere linguagem

$$L \,=\, \{(\mathrm{ab})^n\,:\, n\geq 1\}$$

descrita pela gramática

$$S \to S$$
 a b \mid a b

- Construa um programa em que o símbolo não terminal S seja uma função recursiva que reconheça a linguagem L.
- Escolher a primeira produção cria um ciclo infinito, por causa da recursividade à esquerda
 - O ANTLR consegue lidar com este tipo (simples) de recursividade à esquerda, mas falha com outros tipos
 - Mas, em geral os reconhecedores descendentes n\u00e3o lidam bem com recursividade \u00e0 esquerda
- Solução geral: eliminar a recursividade à esquerda

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 14/43

Questões a resolver

- Q Que fazer quando há prefixos comuns?
- R Pô-los em evidência (fatorização à esquerda)
- Q Como lidar com a recursividade à esquerda?
- R Transformá-la em recursividade à direita
- Q Para que valores do *lookahead* usar uma regra $A \to \alpha$?
- \mathcal{R} predict $(A \to \alpha)$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 15/40

Fatorização à esquerda

Exemplo de ilustração

• Sobre o alfabeto {a,b}, considere linguagem

$$L = \{a^n b^n : n \ge 1\}$$

descrita pela gramática

$$S \, o \,$$
 a S b $|$ a b

- Obtenha uma gramática equivalente, pondo em evidência o a
- Relaxando a definição standard de gramática que se tem usado, pode obter-se

$$S$$
 \rightarrow a (S b \mid b $)$

 e criando um símbolo não terminal que represente o que está entre parêntesis, obtem-se a gramatica

• Esta gramática permite a construção de um programa preditivo com lookahead de

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 17/43

Recursividade direta simples

• A gramática seguinte, onde α e β representam sequências de símbolos terminais e/ou não terminais, com β não começando por A, representa genericamente a recursividade direta simples à esquerda

$$\begin{array}{ccc} A & \rightarrow & A & \alpha \\ & | & \beta \end{array}$$

Aplicando a primeira produção n vezes e a seguir a segunda, obtem-se

$$A \Rightarrow A \alpha \Rightarrow A \alpha \alpha \Rightarrow A \alpha \cdots \alpha \alpha \Rightarrow \beta \underbrace{\alpha \cdots \alpha \alpha}_{n > 0}$$

• Ou seja

$$A = \beta \alpha^n \quad n \ge 0$$

• Que corresponde ao β seguido do fecho de α , podendo ser representada pela gramática

$$\begin{array}{ccc} A \to \beta & X \\ X \to \varepsilon \\ & \mid \alpha & X \end{array}$$

• Em ANTLR seria possível fazer-se $A \rightarrow \beta$ (α) *

ACP (DETI/UA)

Comp 2022/2023

Maia da 2022

19/43

Eliminação de recursividade à esquerda

Exemplo com recursividade direta simples

• Para a gramática

$$S \, o \, S$$
 a b
$$\mid \, {
m c} \, \, {
m b} \, \, {
m a}$$

obtenha-se uma gramática equivalente sem recursividade à esquerda

Aplicando a estratégia anterior, tem-se

$$S \Rightarrow S \underbrace{\mathtt{a}\,\mathtt{b}}_{\alpha} \Rightarrow S \underbrace{\mathtt{a}\,\mathtt{b}}_{\alpha} \cdots \underbrace{\mathtt{a}\,\mathtt{b}}_{\alpha} \Rightarrow \underbrace{\mathtt{c}\,\mathtt{b}\,\mathtt{a}}_{\beta} \underbrace{\mathtt{a}\,\mathtt{b}}_{\alpha} \cdots \underbrace{\mathtt{a}\,\mathtt{b}}_{\alpha}$$

• Ou seja

$$S = (\underbrace{\operatorname{cba}}_{\beta}) (\underbrace{\operatorname{ab}}_{\alpha})^n, \qquad n \ge 0$$

• Que corresponde à gramática

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 20/43

Recursividade direta múltipla

• A gramática seguinte, onde α_i e β_j representam sequências de símbolos terminais e/ou não terminais, com os β_j não começando por A, representa genericamente a recursividade direta múltipla à esquerda

$$A \to A \alpha_1 \mid A \alpha_2 \mid \cdots \mid A \alpha_n$$
$$\mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m$$

Aplicando a estratégia anterior, tem-se

$$A = (\beta_1 \mid \beta_2 \mid \cdots \mid \beta_m)(\alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n)^k \quad k \ge 0$$

Que corresponde à gramática

$$A \to \beta_1 X \mid \beta_2 X \mid \cdots \mid \beta_m X$$

$$X \to \varepsilon$$

$$\mid \alpha_1 X \mid \alpha_2 X \mid \cdots \mid \alpha_n X$$

• Em ANTLR seria possível fazer-se $(\beta_1 \mid \beta_2 \mid \cdots \mid \beta_m)(\alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n)*$

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023

21/43

Eliminação de recursividade à esquerda

Exemplo com recursividade direta múltipla

 Obtenha-se uma gramática equivalente à seguinte sem recursividade à esquerda

$$S \rightarrow S$$
 a b | S c | b b | c c

As palavras da linguagem são da forma

$$S = (bb|cc)(ab|c)^k, \qquad k \ge 0$$

• Obtendo-se a gramática

$$S \to b b X \mid c c X$$

$$X \to \varepsilon$$

$$\mid a b X \mid c X$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 22/43

Ilustração de recursividade indireta

 Aplique-se o procedimento anterior à gramática seguinte, assumindo que a recursividade à esquerda está no A

$$S \to A$$
 a \mid b
$$A \to A$$
 c \mid S d \mid ε

O resultado seria

$$S \to A$$
 a | b $A \to S$ d X | $X \to \varepsilon$ | c X

A recursividade n\u00e3o foi eliminada

$$S \Rightarrow A \Rightarrow S d X \Rightarrow A d X a$$

- Porque a recursividade existe de forma indireta
- Como resolver a recursividade à esquerda (direta e indireta)?
- S pode transformar-se em algo começado por A que, por sua vez, se pode transformar em algo que começa por S

ACP (DETI/UA) Maio de 2023

Eliminação de recursividade à esquerda

Recursividade indireta

• Considere a gramática (genérica) seguinte, em que alguns dos α_i , β_i , \cdots , Ω_i podem começar por A_i , com $i, j = 1, 2, \cdots, n$

$$A_{1} \rightarrow \alpha_{1} \mid \beta_{1} \mid \cdots \mid \Omega_{1}$$

$$A_{2} \rightarrow \alpha_{2} \mid \beta_{2} \mid \cdots \mid \Omega_{2}$$

$$\cdots$$

$$A_{n} \rightarrow \alpha_{n} \mid \beta_{n} \mid \cdots \mid \Omega_{n}$$

- Algoritmo:
 - Define-se uma ordem para os símbolos não terminais, por exemplo A_1, A_2, \cdots, A_n
 - Para cada A_i:
 - fazem-se transformações de equivalência de modo a garantir que nenhuma produção com cabeça A_i se expande em algo começado por A_i , com i < i
 - elimina-se a recursividade à esquerda direta que as produções começadas por A_i possam ter

Exemplo com recursividade indireta

• Aplique-se este procedimento à gramática seguinte, estabelecendo-se a ordem $S,\,A$

$$S \to A$$
a | b
$$A \to A \text{ c } \mid S \text{ d } \mid \varepsilon$$

- As produções começadas por S satisfazem a condição, pelo que não é necessária qualquer transformção
- A produção $A \to S$ d viola a regra definida, pelo que, nela, S é substituído por $(A \ a \ | \ b)$, obtendo-se

$$S \to A$$
a | b
$$A \to A$$
c | A ad | bd | ε

 Elimina-se a recursividade à esquerda direta das produções começadas por A, obtendo-se

$$S \to A$$
 a $|$ b
$$A \to \text{b d } X \ | \ X$$

$$X \to \varepsilon \ | \ \text{c } X \ | \ \text{a d } X$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 25/43

Conjuntos predict, first e follow Definições

- Considere uma gramática G=(T,N,P,S) e uma produção $(A \to \alpha) \in P$
- O conjunto **predict** $(A \to \alpha)$ representa os valores de *lookahead* para os quais A deve ser expandido para α . Define-se por:

$$\begin{array}{ll} \mathbf{predict}\left(A \to \alpha\right) = \\ \left\{ \begin{array}{ll} \mathbf{first}\left(\alpha\right) & \varepsilon \not\in \mathbf{first}\left(\alpha\right) \\ \left(\mathbf{first}\left(\alpha\right) - \left\{\varepsilon\right\}\right) \cup \mathbf{follow}\left(A\right) & \varepsilon \in \mathbf{first}\left(\alpha\right) \end{array} \right. \end{array}$$

• O conjunto **first** (α) representa as letras (símbolos terminais) pelas quais as palavras geradas por α podem começar mais ε se for possível transformar todo o α em ε . Define-se por:

$$\mathbf{first}(\alpha) = \{t \in T : \alpha \Rightarrow^* t\omega \land \omega \in T^*\} \cup \{\varepsilon : \alpha \Rightarrow^* \varepsilon\}$$

• O conjunto follow(A) representa as letras (símbolos terminais) que podem aparecer imediatamente à frente de A numa derivação. Define-se por:

$$\mathbf{follow}\,(A) = \{t \in T_\$ \ : \ S \ \Rightarrow^* \ \gamma \, A \, t \, \omega\} \quad \text{com} \quad T_\$ = \{T \cup \$\}$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 27/43

Conjunto first

Algoritmo de cálculo

Trata-se de um algoritmo recursivo

```
\begin{aligned} &\textbf{first} \left(\alpha\right) \left\{\\ &\textbf{if} \left(\alpha = \varepsilon\right) \textbf{ then}\\ &\textbf{return} \left\{\varepsilon\right\}\\ &h = \textbf{head} \left(\alpha\right) \quad \# com \left|h\right| = 1\\ &\omega = \textbf{tail} \left(\alpha\right) \quad \# tal \ que \ \alpha = h \ \omega\\ &\textbf{if} \left(h \in T\right) \textbf{ then}\\ &\textbf{return} \left\{h\right\}\\ &\textbf{else}\\ &\textbf{return} \quad \bigcup_{(h \to \beta_i) \in P} \textbf{first} \left(\beta_i \ \omega\right) \quad \# concatenação \ de \ \beta_i \ com \ \omega\\ & \end{cases} \end{aligned}
```

- Note que no último return o argumento do first é $\beta_i \omega$, concatenação dos β_i (que vêm dos corpos das produções começadas por h) com o ω (tail do α
- Este algoritmo pode n\u00e3o convergir se a gram\u00e1tica tiver recursividade \u00e0 esquerda

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023

28/43

Conjunto first Exemplo #1

• Considere a gramatica

- $\bullet \ \, {\rm Determine} \,\, {\rm o} \,\, {\rm conjunto} \,\, {\rm \bf first} \, ({\rm a} \, S) \\$
 - $\bullet\,$ Porque a S começa pelo símbolo terminal a

$$\mathbf{first} (a S) = \{a\}.$$

- $\bullet \ \, {\rm Determine} \,\, {\rm o} \,\, {\rm conjunto} \,\, {\rm \bf first} \, (B\,C) \\$
 - ullet Porque $B\,C$ começa pelo símbolo não terminal B

$$\mathtt{first}\,(B\,C) = \mathtt{first}\,(C)\,\cup\,\mathtt{first}\,(\mathrm{b}\,S\,C)$$

 $\bullet\,$ Porque C começa pelo símbolo não terminal C

$$\mathbf{first}(C) = \mathbf{first}(c) \cup \mathbf{first}(cS)$$

$$\therefore \mathbf{first}(BC) = \mathbf{first}(c) \cup \mathbf{first}(cS) \cup \mathbf{first}(bSC) = \{b, c\}$$

- Note que, embora B se possa transformar em $\varepsilon,\,\varepsilon\not\in\mathtt{first}\,(B\,C)$
- Por essa razão, first $(BC) \neq \texttt{first}(B) \cup \texttt{first}(C)$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 29/43

Conjunto first Exemplo #2

Considere a gramatica

- Determine o conjunto first(BC)
 - Porque BC começa pelo símbolo não terminal B

$$\mathtt{first}\,(B\,C) = \mathtt{first}\,(C)\,\cup\,\mathtt{first}\,(\mathrm{b}\,S\,C)$$

• Porque C começa pelo símbolo não terminal C

```
\begin{split} &\mathbf{first}\,(C) = \mathbf{first}\,(\varepsilon) \, \cup \, \mathbf{first}\,(c\,S) \\ &\mathbf{first}\,(B\,C) = \mathbf{first}\,(\varepsilon) \, \cup \, \mathbf{first}\,(c\,S) \, \cup \, \mathbf{first}\,(\mathrm{b}\,S\,C) \\ &= \{\varepsilon, \mathrm{b}, \mathrm{c}\} \end{split}
```

- Note que a gramática não é a mesma
- Note que $\varepsilon \in \mathtt{first}\,(B\,C)$ apenas porque todo o $B\,C$ se pode transformar em ε

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 30 / 43

Conjunto follow

Algoritmo de cálculo

- Os conjuntos follow podem ser calculados através de um algoritmo iterativo envolvendo todos os símbolos não terminais
- Aplicam-se as seguintes regras:

 - 2 if $(A \to \alpha B \in P)$ then follow $(B) \supseteq$ follow (A)
 - 3 if $(A \to \alpha B\beta \in P) \land (\varepsilon \not\in \mathtt{first}(\beta))$ then $\mathtt{follow}(B) \supseteq \mathtt{first}(\beta)$
 - 4 if $(A \to \alpha B\beta \in P) \land (\varepsilon \in \mathtt{first}(\beta))$ then $\mathtt{follow}(B) \supseteq ((\mathtt{first}(\beta) \{\varepsilon\}) \cup \mathtt{follow}(A))$
- Partindo de conjuntos vazios, aplicam-se sucessivamente estas regras até que nada seja acrescentado
- Note que ⊇ significa contém e não está contido

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 31 / 43

Conjunto follow Exemplo #1

Considere a gramatica

- Determine o conjunto follow(B)
 - Procuram-se ocurrências de B no lado direito das produções. Há uma: B C
 - A produção $S \to B\,C$ encaixa nas regras 3 ou 4, dependendo de o ε pertencer ou não ao first (C)
 - **first** (C) = {c}
 - \therefore follow $(B) \supseteq$ first (C) [regra 3]
 - Não havendo mais contribuições, tem-se

$$\mathtt{follow}\left(B\right)=\left\{c\right\}$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 32/43

Conjunto follow Exemplo #2

• Considere a gramatica

- Determine o conjunto follow(B)
 - A produção $S \to B\,C$ encaixa nas regras 3 ou 4, dependendo de o ε pertencer ou não ao first (C)
 - first $(C) = \{\varepsilon, c\}$
 - : $follow(B) \supseteq ((first(C) \{\varepsilon\}) \cup follow(S))$ [regra 4]
 - Porque S é o símbolo inicial, $\$ \in \mathbf{follow}(S)$ [regra 1]
 - A produção $S \to \operatorname{a} S$ é irrelevante, porque diz que $\operatorname{follow}(S) \supseteq \operatorname{follow}(S)$
 - A produção $B \to \mathrm{b}\, S$ diz que $\mathrm{follow}\,(S) \supseteq \mathrm{follow}\,(B)$
 - A produção $C
 ightarrow \operatorname{c} S$ diz que $\operatorname{follow}\left(S\right) \supseteq \operatorname{follow}\left(C\right)$
 - A produção $S \to B\,C$ diz que $\operatorname{follow}\,(C) \supseteq \operatorname{follow}\,(S)$
 - Pelas contribuições tem-se que

$$\mathbf{follow}\left(B\right)=\left\{ \mathtt{c},\$\right\}$$

• Também se ficou a saber que $\operatorname{follow}(S) = \operatorname{follow}(B) = \operatorname{follow}(C)$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 33 / 40

Conjunto follow Exemplo #3

Considere a gramatica

- Determine o conjunto follow(B)
 - A produção $S \to B\,C$ encaixa nas regras 3 ou 4, dependendo de o ε pertencer ou não ao **first** (C)
 - first $(C) = \{\varepsilon, a, b\}$
 - \therefore follow $(B) \supseteq (\mathbf{first}(C) \{\varepsilon\}) \cup \mathbf{follow}(S)$
 - Porque S é o símbolo inicial, $\$ \in \mathtt{follow}(S)$
 - A produção $S \to a S$ é irrelevante, porque diz que follow $(S) \supseteq$ follow (S)
 - A produção $B \to b S$ diz que follow $(S) \supseteq$ follow (B)
 - A produção $C \to S \subset \operatorname{diz} \operatorname{\mathsf{que}} \operatorname{\mathtt{follow}}(S) \supseteq \{ \subset \}$
 - Pelas contribuições tem-se que follow (B) = {a,b,c,\$}
 - Note que o ε nunca pertence a um follow

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 34/43

Reconhecedor descendente preditivo

Tabela de decisão (parsing table)

- Para uma gramática G=(T,N,P,S) e um *lookahead* de 1, o reconhecedor descendente pode basear-se numa tabela de decisão
- Corresponde a uma função $\tau: N \times T_\$ \to \wp(P)$, onde $T_\$ = T \cup \$$ e $\wp(P)$ representa o conjunto dos subconjuntos de P
- Pode ser representada por uma tabela, onde os elementos de N indexam as linhas, os elementos de $T_\$$ indexam as colunas, e as células são subconjuntos de P
- Pode ser obtida (ou a tabela preenchida) usando o seguinte algoritmo:

Algoritmo:

$$\begin{array}{ll} \operatorname{\bf foreach}\,(n,t)\,\in\,(N\times T_\$) \\ \tau(n,t)=\emptyset & \textit{\# começa-se com as c\'elulas vazias} \\ \operatorname{\bf foreach}\,(A\to\alpha)\,\in\,P \\ &\operatorname{\bf foreach}\,t\,\in\operatorname{\bf predict}\,(A\to\alpha) \\ &\operatorname{add}\,(A\to\alpha)\,\operatorname{\ to\ }\tau(A,t) \end{array}$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 36/43

Tabela de decisão

Exemplo #1

• Considere a gramatica

$$S \, o \,$$
 a S b $\mid \, \, arepsilon$

 Preencha a tabela de decisão de um reconhecedor descendente desta linguagem com lookahead de 1

$$\label{eq:first} \begin{split} \mathbf{first} & (\mathbf{a} \, S \, \mathbf{b}) = \{\mathbf{a}\} \\ & \therefore \, \mathbf{predict} \, (S \to \mathbf{a} \, S \, \mathbf{b}) = \{\mathbf{a}\} \end{split}$$

Tabela de decisão

$$\begin{aligned} & \textbf{first} \left(\varepsilon \right) = \left\{ \varepsilon \right\} \\ & \textbf{follow} \left(S \right) = \left\{ \$, \texttt{b} \right\} \\ & \therefore \ \textbf{predict} \left(S \to \varepsilon \right) = \left\{ \$, \texttt{b} \right\} \end{aligned}$$

- Não havendo células com 2 ou mais produções, a gramática é LL(1)
- Para simplificação, optou-se por pôr nas células apenas o corpo da produção, uma vez que a cabeça é definida pela linha da tabela

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 37/43

Tabela de decisão Exemplo #2

Considere a gramatica

 Preencha a tabela de decisão de um reconhecedor descendente desta linguagem com lookahead de 1

$$\begin{aligned} \mathbf{predict} & (S \to \mathbf{a} \ B \ S) = \{\mathbf{a}\} \\ \mathbf{predict} & (S \to \mathbf{b} \ A \ S) = \{\mathbf{b}\} \\ \mathbf{predict} & (S \to \varepsilon) = \{\$\} \\ \mathbf{predict} & (A \to \mathbf{a}) = \{\mathbf{a}\} \\ \mathbf{predict} & (A \to \mathbf{b} \ A \ A) = \{\mathbf{b}\} \\ \mathbf{predict} & (B \to \mathbf{b}) = \{\mathbf{b}\} \\ \mathbf{predict} & (B \to \mathbf{a} \ B \ B) = \{\mathbf{a}\} \end{aligned}$$

Tabela de decisão

	a	b	\$
S	a BS	b AS	ε
A	a	b AA	
B	a BB	b	

As células vazias correspondem a situações de erro

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 38/43

Tabela de decisão

Exemplo #2a

• Considere a gramatica

 Preencha a tabela de decisão de um reconhecedor descendente desta linguagem com lookahead de 1

$$\begin{aligned} &\mathbf{predict}\,(S \to \mathbf{a}\,B) = \{\mathbf{a}\} \\ &\mathbf{predict}\,(S \to \mathbf{b}\,A) = \{\mathbf{b}\} \\ &\mathbf{predict}\,(S \to \varepsilon) = \{\mathbf{a},\mathbf{b},\$\} \\ &\mathbf{predict}\,(A \to \mathbf{a}\,S) = \{\mathbf{a}\} \\ &\mathbf{predict}\,(A \to \mathbf{b}\,A\,A) = \{\mathbf{b}\} \\ &\mathbf{predict}\,(B \to \mathbf{b}\,S) = \{\mathbf{b}\} \\ &\mathbf{predict}\,(B \to \mathbf{a}\,B\,B) = \{\mathbf{a}\} \end{aligned}$$

Tabela de decisão

	a	b	\$
S	a B $,arepsilon$	b $A,arepsilon$	ε
A	a S	b AA	
B	a <i>B B</i>	b S	

• As células (S, a) e (S, b) têm duas produções cada, o que torna o reconhecimento inviável para um *lookahead* de 1, pelo que a linguagem não é LL(1)

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 39 / 43

Tabela de decisão Exemplo #2b

_ ..

• Considere a gramatica
$$S \rightarrow \varepsilon$$

$$\mid$$
 a S b S \mid b S a S

 Preencha a tabela de decisão de um reconhecedor descendente desta linguagem com lookahead de 1

$$\mathbf{predict}\left(S \to \mathtt{a}\,S\,\mathtt{b}\,S\right) = \{\mathtt{a}\}$$

$$\mathbf{predict}\left(S \to \mathtt{b}\,S\,\mathtt{a}\,S\right) = \{\mathtt{b}\}$$

$$\mathbf{predict}\left(S \to \varepsilon\right) = \{\mathtt{a},\mathtt{b},\$\}$$

Tabela de decisão

	a	b	\$
S	a A b S $,arepsilon$	b S a S , $arepsilon$	ε

• As células (S, a) e (S, b) têm duas produções cada, o que torna o reconhecimento inviável para um *lookahead* de 1, pelo que a linguagem não é LL(1)

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 40 / 43

Tabela de decisão

Exemplo #3

• Considere, sobre o alfabeto $\{i, f, v, , ; \}$, a linguagem L_4 descrita pela gramática

- Obtenha-se uma tabela de decisão de um reconhecedor descendente, com *lookahead* de 1, que reconheça a linguagem L_4 .
 - Pretende-se que, se necessário, se transforme a gramática numa equivalente que seja LL(1)
 - Neste caso, existem produções com prefixos comuns (os conjuntos predict não são disjuntos)
- Antes de calcular os conjuntos predict é necessário começar por fatorizar à esquerda, por causa das produções com cabeça L

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 41/43

Tabela de decisão

Exemplo #3 (cont.)

```
predict(D \rightarrow TL;) = ?
                                         first(TL;) = ?
                                        \mathbf{first}(T) = \mathbf{first}(i) \cup \mathbf{first}(f) = \{i\} \cup \{f\}
                                        \therefore first (TL;) = \{i, f\}
                                        \therefore predict (D \rightarrow TL;) == \{i, f\}
                                     predict(T \rightarrow i) = ?
D \rightarrow T L;
                                        first(i) = \{i\}
T \rightarrow i
                                        \therefore predict (T \rightarrow i) = \{i\}
    f
                                     predict(T \rightarrow f) = \{f\}
                                  \mathtt{predict}\left(L 	o 	ext{v}\,X\right) = ?
L \rightarrow v X
                                        \mathbf{first} (\lor X) = \{\lor\}
X \rightarrow
                                        \therefore predict (L \rightarrow \lor X) = \{\lor\}
     \mid , L
                                     predict(X \rightarrow \varepsilon) = ?
                                        first(\varepsilon) = \{\varepsilon\}
                                        \therefore predict (X \to \varepsilon) = \text{follow}(X)
                                        follow(X) = follow(L) = \{;\}
                                        \therefore predict (X \to \varepsilon) = \{;\}
                                     predict(X \rightarrow L) = \{L, L\}
```

ACP (DETI/UA) Maio de 2023 42/43

Tabela de decisão

Exemplo #3 (cont.)

Tabela de decisão

	i	f	V	,	;	\$
D	TL;	TL;				
T	i	f				
L			$\vee X$			
X				, L	ε	

As células vazias são situações de erro

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 43/43

Compiladores

Análise sintática ascendente

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt</pre>

DETI, Universidade de Aveiro

Ano letivo de 2022-2023

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 1/39

Sumário

- Introdução
- 2 Conflitos
- 3 Construção de um reconhecedor
- 4 Conjunto de itens
- 5 Tabela de decisão de um reconhecedor ascendente

ACP (DETI/UA) Como 2022/2023 Maio de 2023 2/39

Ilustração por um exemplo

Considere a gramática

$$D \rightarrow T \ L$$
;
 $T \rightarrow i \mid r$
 $L \rightarrow v \mid L$, v

que representa uma declaração de variáveis a la C

- Como reconhecer a palavra " $u = i \vee , \vee ;$ " como pertencente à linguagem definida pela gramática dada?
- Se u pertence à linguagem definida pela gramática, então $D \Rightarrow^+ u$
- Gerando uma derivação à direita, tem-se
 D ⇒ T L; ⇒ T L, v; ⇒ T v, v; ⇒ i v, v;
- Tente-se agora fazer a derivação no sentido contrário, isto é, indo de u para D

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 4/39

Análise sintática ascendente

Ilustração por um exemplo (cont.)

Considere a gramática

e $\mathit{reduza}\text{-}\mathit{se}$ a palavra " $u=\mathtt{i} \ \mathtt{v}$, \mathtt{v} ;" ao símbolo inicial D

•

```
\begin{array}{lll} \verb"i" v" , \verb"v" ; & & & & \\ \Leftarrow T \verb"v" , \verb"v" ; & & & & \\ \Leftarrow T L , \verb"v" ; & & & & \\ \Leftrightarrow T L ; & & & & \\ \Leftarrow T L ; & & & & \\ \Leftrightarrow D & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

· Colocando ao contrário, tem-se

$$D \Rightarrow TL; \Rightarrow TL, v; \Rightarrow Tv, v; \Rightarrow iv, v;$$

que corresponde à derivação à direita da palavra " $u=\mathrm{i}\,\mathrm{v}$, v ; "

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 5/39

Ilustração por um exemplo (cont.)

 A tabela seguinte mostra como, na prática, se realiza esta (retro)derivação

pilha	entrada	\mid próxima ação $\stackrel{L o ext{ v }\mid}{}$
	iv, v; \$	deslocamento
i	v, v; \$	redução por $T o exttt{i}$
T	v, v; \$	deslocamento
$T \mathtt{v}$, v;\$	redução por $L o v$
TL	, v;\$	deslocamento
TL ,	v;\$	deslocamento
TL , $ extsf{v}$; \$	redução por $L o L$, $ imes$
TL	; \$	deslocamento
TL ;	\$	redução por $D o TL$;
D	\$	deslocamento / aceitação
D\$		aceitação

- A palavra à entrada foi reduzida ao símbolo inicial pelo que é aceite como pertencendo à linguagem
- A aceitação pode ser feita antes de consumir o \$ ou depois

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023

Análise sintática ascendente

Ilustração de um erro sintático

 Veja-se a reação deste procedimento a uma entrada errada, por exemplo a palavra $i \vee v$;.

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o exttt{i}$
T	vv;\$	deslocamento
T \vee	v;\$	redução por $L o { t v}$
TL	v;\$	deslocamento
TL \vee	; \$	rejeição

- Rejeita porque L \vee não corresponde ao prefixo de uma produção da gramática
- Na realidade, o erro poderia ter sido detetado dois passos antes, aquando da segunda redução, porque $\forall \notin follow(L)$
 - v corresponde ao símbolo à entrada
 - L é o símbolo que iria aparecer no topo da pilha se se fizesse a redução por $L \to v$

Ilustração de conflito entre deslocamento e redução

Considere a gramática

e aplique-se o procedimento anterior à palavra i cicaea

pilha	entrada	próxima ação
	icicaea\$	deslocamento
i	cicaea\$	deslocamento
iс	icaea\$	deslocamento
ici	caea\$	deslocamento
icic	aea\$	deslocamento
icica	e a \$	redução por $S o$ a
$\mathtt{icic}S$	e a \$	conflito:
		– redução por $S ightarrow \mathtt{i} \circ S$
		– deslocamento para tentar $S ightarrow \mathtt{i} \circ S \circ S$

Esta gramática representa uma estrutura típica em linguagens de programação.
 Qual?

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 9/39

Análise sintática ascendente

Ilustração de conflito entre reduções

Considere a gramática

e aplique-se o procedimento anterior à palavra ${\ \, {}_{\ \, {}_{\ \, {}_{\ \, {}_{}}}}$

pilha	entrada	próxima ação
	С\$	deslocamento
С	\$	conflito:
		– redução usando $A ightarrow { iny c}$
		– redução usando $B ightarrow \mathtt{c}$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 10/39

Ilustração de falso conflito

Considere a gramática

e aplique-se o procedimento de reconhecimento à palavra "a < a > a"

pilha	entrada	próxima ação
	a <a>a\$	deslocamento
a	<a>a\$	falso conflito:
	– redução usando $S o$ a	
		– deslocamento para tentar $S ightarrow$ a P

• Deslocamento, porque se se optasse pela redução no topo da pilha ficaria um S e $< \not\in \mathbf{follow}(S)$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 11/39

Análise sintática ascendente

Ilustração de falso conflito (cont.)

• Optando pelo deslocamento e continuando...

pilha	entrada	próxima ação
	a < a > a \$	deslocamento
a	<a>a \$	deslocamento, porque $< ot \in \mathbf{follow}\left(S\right)$
a <	a > a \$	deslocamento
a < a	> a \$	redução por $S o$ a
a < S	> a \$	deslocamento
a < S >	a \$	deslocamento, porque a $ ot\in$ follow (P)
a < S > a	\$	redução por $S o$ a
a < S > S	\$	redução por $P o < S > S$
a P	\$	redução por $S o$ a P
S	\$	deslocamento
S\$		aceitação

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 12/39

Eliminação de conflito

- Pode ser possível alterar uma gramática de modo a eliminar a fonte de conflito
- Considerando que se pretendia optar pelo deslocamento, a gramática da esquerda gera a mesma linguagem que a da direita e está isenta de conflitos.

$$S
ightarrow ext{a} \ | ext{ic} ext{C} S \ | ext{ic} ext{C} S' ext{e} S \ | ext{ic} ext{C} S' ext{e} S'$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 13/39

Análise sintática ascendente

if..then..else sem conflitos

• Considere a gramática seguinte e processe-se a palavra "i c i c a e a"

$$S
ightarrow$$
 a | i c S | i c S' e S $S'
ightarrow$ a | i c S' e S'

pilha	entrada	próxima ação	
	icicaea\$	deslocamento	
i	cicaea\$	deslocamento	
ic	icaea\$	deslocamento	
ici	caea\$	deslocamento	
icic	aea\$	deslocamento	
icica	ea\$	redução por $S' o$ a $\ /\!\!/ \mathrm{e} \in \mathtt{follow}(S'), \mathrm{e} \not\in \mathtt{follow}(S)$	
$\mathtt{icic}S'$	ea\$	deslocamento	
$\mathtt{icic}S'$ e	a \$	deslocamento	
icicS'ea	\$	redução por $S o$ a // $\$\in$ follow $(S),\$ ot\in$ follow (S')	
icicS'eS	\$	redução por $S o \mathtt{i} \circ S' \in S$	
$\mathtt{i} \mathtt{c} S$	\$	redução por $S ightarrow \mathtt{i} \circ S$	
S	\$	deslocamento e aceitação	

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 14/39

Construção de um reconhecedor ascendente Abordagem

 Como determinar de forma sistemática a ação a realizar (deslocamento, redução, aceitação, rejeição)?

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o exttt{i}$
T	vv;\$	deslocamento
$T { m v}$	v ; \$	rejeição

- A ação a realizar em cada passo do procedimento de reconhecimento deslocamento, redução, aceitação ou rejeição – depende da configuração em cada momento
- Uma configuração é formada pelo conteúdo da pilha mais a parte da entrada ainda não processada
- A pilha é conhecida na realidade, é preenchida pelo procedimento de reconhecimento
- Da entrada, em cada momento, apenas se conhece o lookahead

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 16/39

Construção de um reconhecedor ascendente Abordagem (cont.)

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o exttt{i}$
T	vv;\$	deslocamento
$T \mathbf{v}$	v ; \$	rejeição

- Quantos símbolos da pilha usar?
- Poder-se-á usar apenas um?
- Se se quiser e puder construir um reconhecedor que apenas use o símbolo no topo, uma pilha onde se guardam os símbolos terminais e não terminais tem pouco interesse
- Mas pode definir-se um alfabeto adequado para a pilha
- Os símbolos a colocar na pilha devem representar estados no processo de deslocamento/redução/aceitação
- Por exemplo, um dado símbolo pode significar que, na produção " $D \to TL$;", já se processou algo que corresponde ao "TL", faltando o ";"

ACP (DETI/UA) Comp 2022/2023 Majo de 2023 17/39

Construção de um reconhecedor ascendente Itens de uma gramática

- O alfabeto da pilha representa assim o conjunto de possíveis estados nesse processo de reconhecimento
- Cada estado representa um conjunto de itens
- Cada item representa o quanto de uma produção já foi processado e o quanto ainda falta processar
 - Usa-se um ponto (·) ao longo dos símbolos de uma produção para o representar
- A produção $A \rightarrow B_1 \ B_2 \ B_3$ produz 4 itens:

$$A \rightarrow \cdot B_1 \ B_2 \ B_3$$

$$A \rightarrow B_1 \cdot B_2 \ B_3$$

$$A \rightarrow B_1 \ B_2 \cdot B_3$$

$$A \rightarrow B_1 \ B_2 \ B_3 \cdot$$

• A produção $A \to \varepsilon$ produz um único item:

$$A \rightarrow \cdot$$

• Um item com um ponto (·) à direita representa uma ação de redução

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 18/39

Conjunto dos conjuntos de itens

Ilustração com um exemplo

• Considere a gramática

• Reconhecer a palavra $u=u_1u_2\cdots u_n$, significa reduzir u\$ a S\$, então, o estado inicial no processo de reconhecimento pode ser definido por

$$Z_0 = \{S \rightarrow \cdot E \$\}$$

- O facto de o ponto (·) se encontrar imediatamente à esquerda de um símbolo significa que para se avançar no processo de reconhecimento é preciso obter esse símbolo
 - Se o símbolo é terminal, isso corresponde a uma ação de deslocamento
 - Se o símbolo é não terminal, é preciso dar-se a redução de uma produção que o produza
 - Isso é considerado juntando ao conjunto os itens iniciais das produções cuja cabeça é o símbolo pretendido

$$Z_0 = \{ S \rightarrow \cdot E \, \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

 Se aparecerem novos símbolos não terminais imediatamente à direita de um ponto (·), repete-se o processo. Faz-se o fecho (closure)

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 20/39

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

Evolução de Z₀:

$$Z_0 = \{ S \rightarrow \cdot E \$ \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

• O estado Z_0 pode evoluir por ocorrência de um E, um a ou um (, que correspondem aos símbolos que aparecem imediatamente à direita do ponto (•)

$$\delta(Z_0,E)=\{\,S o E\cdot\$\,\}=Z_1$$
 um estado novo $\delta(Z_0,\mathtt{a})=\{\,E o\mathtt{a}\cdot\}=Z_2$ um estado novo $\delta(Z_0,\mathtt{()}=\{\,E o\mathtt{(}\cdot E\,\mathtt{)}\,\}=Z_3$ um estado novo

• Z_3 tem de ser estendido pela função de fecho, uma vez que o ponto (•) ficou imediatamente à esquerda de um símbolo não terminal (E)

$$Z_3 = \delta(Z_0, \cdot) = \{ E \rightarrow \cdot \cdot E \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

• Z_2 , apenas possui um item terminal (com o ponto (•) à direita), que representa uma situação passível de redução, neste caso pela produção $E \to a$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 21/39

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

• Evolução de Z_1 :

$$Z_1 = \{ S \to E \cdot \$ \}$$

Apenas evolui por ocorrência de um \$

$$\delta(Z_1,\$) \,=\, \{\,S \to E\,\$\, \cdot\,\} \qquad \Longrightarrow \mathsf{ACCEPT}$$

que corresponde à situação de aceitação

- Se o símbolo inicial da gramática não aparecer no corpo de qualquer produção (como acontece aqui), Pode-se considerar Z_1 como uma situação de aceitação se o *lookahead* for \$
- Evolução de Z_3 :

$$Z_3 = \{E \rightarrow (\cdot E)\} \cup \{E \rightarrow \cdot a, E \rightarrow \cdot (E)\}$$

• Pode evoluir por ocorrência de um E, um a ou um (

$$\delta(Z_3,E)=\{\,E o(\,E\,ullet\,)\,\}=Z_4$$
 um estado novo $\delta(Z_3,{
m a})=\{\,E o{
m a}\,ullet\,\}=Z_2$ um estado repetido

$$\delta(Z_3,\, ()\, =\, \{\, E
ightarrow\, (\, {m \cdot}\, E\,)\,\, \} = Z_3$$
 um estado repetido

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

Evolução de Z₄

$$Z_4 = \{ E \rightarrow (E \cdot) \}$$

• Apenas evolui por ocorrência de)

$$\delta(Z_4,)) = \{E \rightarrow (E) \cdot \} = Z_5$$
 um estado novo

- Z_5 apenas possui um item terminal, que representa uma situação passível de redução pela regra $E \rightarrow (E)$
- Pode acontecer que um dado elemento (conjunto de itens) possua itens terminais (associados a reduções) e não terminais

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 23/3

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

Pondo tudo junto

$$\begin{split} Z_0 &= \{\, S \to \cdot E \, \} \, \cup \, \{\, E \to \cdot \, \mathsf{a} \, , \, E \to \cdot \, (E \,) \,\, \} \\ Z_1 &= \delta(Z_0, E) = \{\, S \to E \cdot \, \!\!\! \} \,\, \\ Z_2 &= \delta(Z_0, \, \mathsf{a}) = \{\, E \to \, \mathsf{a} \cdot \, \} \,\, \\ Z_3 &= \delta(Z_0, \, () = \{\, E \to \, (\cdot \, E \,) \,\, \} \, \cup \, \{\, E \to \cdot \, \mathsf{a} \, , \, E \to \cdot \, (E \,) \,\, \} \\ Z_4 &= \delta(Z_3, E) = \{\, E \to \, (E \cdot) \,\, \} \,\, \\ Z_5 &= \delta(Z_4, \,) \,) = \{\, E \to \, (E) \cdot \, \} \end{split}$$

Representando na forma de um autómato, tem-se

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 24/39

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

- Neste autómato, os estados representam o alfabeto da pilha
- As transições representam operações de push
- As transições etiquetadas com símbolos terminais representam adicionalmente ações de deslocamento (shift)
- As ações de redução provocam operações de pop, em número igual ao número de elementos do corpo da produção
- As transições etiquetadas com símbolos não terminais ocorrem após as ações de redução
- Tudo isto representa o funcionamento de um autómato de pilha que permite fazer o reconhecimento da linguagem

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 25/39

Tabela de decisão de um reconhecedor ascendente Introdução

- O autómato de pilha pode ser implementado usando uma tabela de decisão
- Esta tabela contém duas matrizes, ACTION e GOTO
 - as linhas de ambas são indexadas pelo alfabeto da pilha (conjunto de conjuntos de itens)
- A matriz ACTION representa ações
 - as colunas s\(\tilde{a}\) indexadas pelos s\(\times\) imbolos terminais da gram\(\tilde{a}\) tica, incluindo o marcador de fim de entrada (\(\frac{s}{a}\))
 - As células contêm as ações shift, reduce, accept ou error
 - No caso de shift, também inclui o próximo símbolo a colocar na pilha
- A matriz GOTO representa a operação após uma redução
 - as colunas são indexadas pelos símbolos não terminais da gramática
 - As células indicam que valor colocar na stack após uma ação de redução

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 27/39

Tabela de decisão de um reconhecedor ascendente Exemplo

Considere-se o conjunto de conjunto de itens obtido anteriormente

$$\begin{split} Z_0 &= \{\, S \to \cdot E \, \} \, \cup \, \{\, E \to \cdot \, \mathsf{a} \, , \, E \to \cdot \, (E \,) \,\, \} \\ Z_1 &= \delta(Z_0, E) = \{\, S \to E \cdot \, \} \,\, \\ Z_2 &= \delta(Z_0, \, \mathsf{a}) = \{\, E \to \, \mathsf{a} \cdot \, \} \\ Z_3 &= \delta(Z_0, \, () = \{\, E \to \, (\cdot E \,) \,\, \} \, \cup \, \{\, E \to \cdot \, \mathsf{a} \, , \, E \to \cdot \, (E \,) \,\, \} \\ Z_4 &= \delta(Z_3, E) = \{\, E \to \, (E \cdot) \,\, \} \\ Z_5 &= \delta(Z_4, \,) \,) = \{\, E \to \, (E) \cdot \, \} \end{split}$$

• E o correspondente autómato de pilha

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 28/39

Tabela de decisão de um reconhecedor ascendente Exemplo

A este autómato de pilha

• Corresponde a tabela de decisão

		ACTION			GOTO
	a	a () \$		E	
Z_0	shift, Z_2	shift, Z_3			Z_1
$\overline{Z_1}$				ACCEPT	
Z_2			reduce, $E o$ a	reduce, $E ightarrow$ a	
Z_3	shift, Z_2	shift, Z_3			Z_4
Z_4			shift, Z_5		
Z_5			reduce, $E \rightarrow (E)$	reduce, $E ightarrow$ (E)	

 Com lookahead de 1, as reduções apenas são colocadas nas colunas correspondentes aos follow.

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 29/39

Reconhecedor ascendente

Algoritmo de reconhecimento

	ACTION			GOTO	
	a	()	\$	E
Z_0	shift, Z_2	shift, Z_3			Z_1
Z_1				ACCEPT	
Z_2			reduce, $E o a$	reduce, $E o a$	
Z_3	shift, Z_2	shift, Z_3			Z_4
Z_4			shift, Z_5		
Z_5			reduce, $E ightarrow$ (E)	reduce, $E \rightarrow (E)$	

 Com base na tabela de decisão, o procedimento de reconhecimento pode ser implementado pelo seguinte algoritmo

```
\begin{array}{lll} \operatorname{push}\left(Z_{0}\right) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

 Note que após os pops o símbolo no top pode mudar e é o novo símbolo que é usado no GOTO

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 30/39

Reconhecedor ascendente

Ilustração com o exemplo anterior

	ACTION			GOTO	
	a	()	\$	Е
Z_0	shift, Z_2	shift, Z_3			Z_1
Z_1				ACCEPT	
Z_2			reduce, $E o$ a	reduce, $E \rightarrow a$	
Z_3	shift, Z_2	shift, Z_3			Z_4
Z_4			shift, Z_5		
Z_5			reduce, $E \rightarrow (E)$	reduce, $E o (E)$	

• Aplique-se este algoritmo à palavra ((a))

pilha	entrada	próxima ação
$\overline{Z_0}$	((a))\$	$ACTION(Z_0,\ () = (shift,\ Z_3)$
$Z_0 Z_3$	(a))\$	$ACTION(Z_3,\ () = (shift,\ Z_3)$
$Z_0 Z_3 Z_3$	a))\$	$ACTION(Z_3, a) = (shift, Z_2)$
$Z_0 Z_3 Z_3 Z_2$))\$	$ACTION(Z_2,)) = (reduce\ E o a) (1\ pop)$
$Z_0 Z_3 Z_3$	[E]	$GOTO(Z_3,E) = Z_4 (push Z_4)$
$Z_0 Z_3 Z_3 Z_4$))\$	$ACTION(Z_4,)) = (shift, Z_5)$
$Z_0 Z_3 Z_3 Z_4 Z_5$) \$	$ACTION(Z_5,)) = (reduce\ E o (E)) $ (3 pops)
$Z_0 Z_3$	[E]	$GOTO(Z_3,E) = Z_4 (push Z_4)$
$Z_0 Z_3 Z_4$) \$	$ACTION(Z_4,)) = (shift, Z_5)$
$Z_0 Z_3 Z_4 Z_5$	\$	$ACTION(Z_5,\$) = (reduce\ E \to (E)) (3\ pops)$
Z_0	[E]	$GOTO(Z_0,E) = Z_1 (push Z_1)$
$Z_0 Z_1$	\$	$ACTION(Z_1, \$) = ACCEPT$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 31/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3

Q Determine-se a tabela de decisão para um reconhecedor ascendente com lookahead 1 da gramática seguinte

$$S \rightarrow a \mid (S) \mid aP \mid (S) S$$

 $P \rightarrow (S) \mid (S) S$

 O primeiro passo corresponde a alterar a gramática de modo ao símbolo inicial não aparecer do lado direito

$$S_0 \rightarrow S$$

 $S \rightarrow a \mid (S) \mid aP \mid (S) S$
 $P \rightarrow (S) \mid (S) S$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 32/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

O passo seguinte corresponde a calcular o conjunto de conjunto de itens

$$Z_0 = \{S_0 \to \cdot S \}$$

$$\cup \{S \to \cdot \mathbf{a}, S \to \cdot (S), S \to \cdot \mathbf{a} P, S \to \cdot (S) S \}$$
 fecho
$$\overline{\delta(Z_0, S)} = \{S_0 \to S \cdot \$\} = Z_1$$
 um estado novo
$$\cup \{P \to \cdot (S), P \to \cdot (S) S\} = Z_2$$
 fecho
$$\overline{\delta(Z_0, \mathbf{a})} = \{S \to \mathbf{a} \cdot \mathbf{a}, S \to \mathbf{a} \cdot P\}$$
 um estado novo
$$\cup \{P \to \cdot (S), P \to \cdot (S) S\} = Z_2$$
 fecho
$$\overline{\delta(Z_0, \mathbf{a})} = \{S \to (\cdot S), S \to (\cdot S) S\}$$
 um estado novo
$$\cup \{S \to \cdot \mathbf{a}, S \to \cdot (S), S \to \cdot \mathbf{a} P, S \to \cdot (S) S\} = Z_3$$
 fecho
$$\overline{\delta(Z_2, P)} = \{S \to \mathbf{a} P \cdot \} = Z_4$$
 um estado novo
$$\overline{\delta(Z_2, \mathbf{a})} = \{P \to (\cdot S), P \to (\cdot S) S\}$$
 um estado novo
$$\cup \{S \to \cdot \mathbf{a}, S \to \cdot (S), S \to \cdot \mathbf{a} P, S \to \cdot (S) S\} = Z_5$$
 fecho
$$\overline{\delta(Z_3, S)} = \{S \to (S \to \cdot), S \to (S \to \cdot) S\} = Z_6$$
 um estado novo
$$\overline{\delta(Z_3, \mathbf{a})} = \{S \to \mathbf{a} \cdot S, S \to \mathbf{a} \cdot P\} = Z_2$$
 um estado repetido
$$\overline{\delta(Z_3, \mathbf{a})} = \{S \to (\cdot S), S \to (\cdot S) S\} = Z_3$$
 um estado repetido
$$\overline{\delta(Z_3, \mathbf{a})} = \{S \to (\cdot S), S \to (\cdot S) S\} = Z_3$$
 um estado repetido

$$\begin{array}{l} S_0 \, \rightarrow \, S \\ \\ S \, \rightarrow \, \mathrm{a} \mid \, (\, S\,) \, \mid \, \mathrm{a} \, P \mid \, (\, S\,) \, \, S \\ \\ P \, \rightarrow \, (\, S\,) \, \mid \, (\, S\,) \, \, S \end{array}$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 33/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

 continuando, apenas mostrando os elementos envolvidos em processamento

$$Z_2 = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} \cup \cdots$$

$$Z_3 = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} \cup \cdots$$

$$Z_5 = \{P \rightarrow (\cdot S), P \rightarrow (\cdot S) S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$Z_6 = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\}$$

$$\delta(Z_5, S) = \{P \rightarrow (S \cdot), P \rightarrow (S \cdot) S\} = Z_7$$

$$\delta(Z_5, a) = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} = Z_2$$

$$\delta(Z_5, a) = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\} = Z_3$$

$$\delta(Z_5, b) = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\} = Z_3$$

$$Um \text{ estado repetido}$$

$$\delta(Z_6, b) = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S \cdot), S \rightarrow \cdot a P, S \rightarrow \cdot (S \cdot) S\} = Z_8$$

$$\delta(Z_7, b) = \{P \rightarrow (S \cdot), P \rightarrow (S \cdot) S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S \cdot), S \rightarrow \cdot a P, S \rightarrow \cdot (S \cdot) S\} = Z_9$$

$$Um \text{ estado novo}$$

ACP (DETI/UA)

Comp 2022/202

Maio de 2023

34/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

continuando...

$$Z_2 = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} \cup \cdots$$

$$Z_3 = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} \cup \cdots$$

$$Z_8 = \{S \rightarrow (S) \cdot, S \rightarrow (S) \cdot S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$Z_9 = \{P \rightarrow (S) \cdot, P \rightarrow (S) \cdot S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$\delta(Z_8, S) = S \rightarrow (S) S \cdot \} = Z_{10} \qquad \text{um estado novo}$$

$$\delta(Z_8, a) = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_8, C) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_3 \qquad \text{um estado repetido}$$

$$\delta(Z_9, S) = \{P \rightarrow (S) S \cdot\} = Z_{11} \qquad \text{um estado novo}$$

$$\delta(Z_9, a) = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_9, C) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_3 \qquad \text{um estado repetido}$$

$$\delta(Z_9, C) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_3 \qquad \text{um estado repetido}$$

$$\delta(Z_9, C) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_3 \qquad \text{um estado repetido}$$

$$\begin{array}{l} S_0 \,\rightarrow\, S \\ S \,\rightarrow\, \mathrm{a} \mid\, (\,S\,)\,\mid\, \mathrm{a}\,P\,\mid\, (\,S\,)\,\, S \\ P \,\rightarrow\, (\,S\,)\,\mid\, (\,S\,)\,\, S \end{array}$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 35/3

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

O que resulta em

$$\begin{array}{l} S_0 \,\rightarrow\, S \\ S \,\rightarrow\, \mathrm{a} \mid\, (\,S\,)\,\mid\, \mathrm{a}\,P\,\mid\, (\,S\,)\,\,S \\ P \,\rightarrow\, (\,S\,)\,\mid\, (\,S\,)\,\,S \end{array}$$

ACP (DETI/UA)

Comp 2022/202

Maio de 2023

36/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

O que resulta em

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 37/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

• E finalmente a tabela de decisão

	a	()	\$	S	P
Z_0	shift, Z_2	shift, Z_3			Z_1	
$\overline{Z_1}$				ACCEPT		
$\overline{Z_2}$		shift, Z_5	$\mathit{reduce}S o \mathtt{a}$	$\mathit{reduce}S o a$		Z_4
$\overline{Z_3}$	shift, Z_2	shift, Z_3			Z_6	
$\overline{Z_4}$			$\mathit{reduce}S o \mathtt{a}P$	$\operatorname{\mathit{reduce}} S o \operatorname{a} P$		
$\overline{Z_5}$	shift, Z_2	shift, Z_3			Z_7	
Z_6			shift, Z_8			
$\overline{Z_7}$			shift, Z_{9}			
$\overline{Z_8}$	shift, Z_2	shift, Z_3	$\mathit{reduce}S o (S)$	$\mathit{reduce}S o (S)$	Z_{10}	
Z_9	shift, Z_2	shift, Z_3	reduce $P ightarrow$ (S)	reduce $P ightarrow$ (S)	Z_{11}	
$\overline{Z_{10}}$			$\mathit{reduce}S o (S) S$	reduce $S ightarrow$ (S) S		
Z_{11}			reduce $P ightarrow$ (S) S	reduce $P ightarrow$ (S) S		

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 38/38

Tabela de decisão de um reconhecedor ascendente Exercício

Q Determine-se a tabela de decisão para um reconhecedor ascendente com lookahead 1 da gramática seguinte

$$S
ightarrow arepsilon \mid S \ B$$
 a $\mid S \ A$ b
$$A
ightarrow$$
 a $\mid A \ A$ b
$$B
ightarrow B \ B$$
 a \mid b

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 39/39

Compiladores

Gramáticas de atributos

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt</pre>

DETI, Universidade de Aveiro

Ano letivo de 2022-2023

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 1/13

Sumário

- Conteúdo semântico
- Gramática de atributos
- 3 Avaliação dirigida pela sintaxe

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 2/13

Conteúdo semântico

Ilustração com uma expressão aritmética

 Considere a gramática seguinte, onde num é um token que representa

- Desenhe-se a árvore de derivação da palavra "1+2*3"
- Como dar significado a esta árvore?
 - Associando a cada símbolo um atributo que armazene o valor que a sub-árvore de que é raiz representa
 - 2 Relacionando os atributos associados aos símbolos de cada produção através de regras de cálculo

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 4/13

Conteúdo semântico

Ilustração com uma expressão aritmética

 Considere a gramática seguinte, onde num é um token que representa

- Desenhe-se a árvore de derivação da palavra "1+2*3"
- Como dar significado a esta árvore?
 - Associando a cada símbolo um atributo que armazene o valor que a sub-árvore de que é raiz representa
 - Relacionando os atributos associados aos símbolos de cada produção através de regras de cálculo

- As setas vermelhas representam dependência entre atributos
 - o sentido indica qual influencia qual

Conteúdo semântico

Ilustração com uma declaração de variáveis

 Considere a gramática seguinte, onde id é um token que representa o nome de uma variável

$$D \to T \ L$$

$$T \to \mathbf{i} \ | \ \mathbf{f}$$

$$L \to \mathbf{id} \ | \ L \ , \ \mathbf{id}$$

- desenhe-se a árvore de derivação da palavra i a, b
- Associe-se
 - a T e L um atributo t que armazene o tipo

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 5/13

Conteúdo semântico

Ilustração com uma declaração de variáveis

 Considere a gramática seguinte, onde id é um token que representa o nome de uma variável

$$D \to T \ L$$

$$T \to \mathbf{i} \ | \ \mathbf{f}$$

$$L \to \mathrm{id} \ | \ L \ , \ \mathrm{id}$$

- desenhe-se a árvore de derivação da palavra i a, b
- Associe-se
 - a T e L um atributo t que armazene o tipo

- As setas vermelhas representam dependência entre atributos
 - o sentido indica qual influencia qual

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 5/13

Gramática de atributos

Atributos, regras semânticas e definição semântica

- A análise sintática per se não atribui um significado às produções de uma gramática
 - É esse o papel da gramática de atributos
 - Isso é feito através de atributos e de regras semânticas
- Os atributos estão associados aos símbolos da gramática (terminais ou não terminais)
 - Cada símbolo terminal ou n\u00e3o terminal pode ter associado um conjunto de zero ou mais atributos
 - Um atributo pode ser uma palavra, um número, um tipo, uma posição de memória, ...
- As regras semânticas estão associadas às produções da gramática
 - Determinam os valores de atributos de símbolos não terminais em função de outros atributos
 - Podem ter efeitos laterais (alteração de uma estrutura de dados, ...)
- Uma definição semântica é composta por
 - uma gramática independente de contexto
 - um conjunto de atributos associados aos seus símbolos
 - um conjunto de regras semânticas associadas às suas produções
- Usar-se-á com o mesmo significado o termo gramática de atributos

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 7/13

Gramática de atributos

Regras semânticas

Seja G = (T, N, S, P) uma gramática independente do contexto

• A cada produção $A \to B_1 B_2 \cdots B_n \in P$, com $B_i \in (T \cup N)^*$, podem associar-se regras semânticas para o cálculo dos valores dos atributos de símbolos não terminais

$$b = f(c_1, c_2, \cdots, c_n)$$

onde

- b é um atributo do símbolo A ou de um dos símbolos não terminais presentes em $B_1 B_2 \cdots B_n$
- c_1, c_2, \cdots, c_n são atributos dos símbolos que ocorrem na produção
- Podem ainda associar-se regras semânticas com efeitos colaterais

$$g(c_1,c_2,\cdots,c_n)$$

 Embora este caso possa considerar-se o anterior atuando sobre um atributo fictício

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 8/13

Gramática de atributos

Tipos de atributos

- Os atributos podem ser classificados como sintetizados ou herdados
- Considere-se uma produção $A \to B_1 B_2 \cdots B_n \in P$, com $B_i \in (T \cup N)^*$, e uma função de cálculo de um atributo associada a essa produção

$$b = f(c_1, c_2, \cdots, c_n)$$

- O atributo b diz-se **sintetizado** se b está associado a A e todos os c_j , com $j = 1, 2, \dots, n$, estão associados a símbolos do corpo da produção
- O atributo b diz-se **herdado** se b está associado a um dos símbolos não terminais do corpo da produção

 Todos os atributos são sintetizados

- *T.t* é sintetizado
- L.t é herdado

ACP (DETI/UA)

Comp 2022/202

Junho de 2023

9/13

Gramática de atributos

Representação

- Uma gramática de atributos pode ser representada por uma tabela em que se associam as regras semânticas às produções da gramática
- Para o exemplo das expressões aritméticas, tem-se

Produções	Regras semânticas
F o num	$F.v = \mathrm{num.}v$
$F \rightarrow (E)$	F.v = E.v
$T \to F$	T.v = F.v
$T_1 \rightarrow T_2 \star F$	$T_1.v = T_2.v * F.v$
$E \to T$	E.v = T.v
$E_1 \rightarrow E_2 + T$	$E_1.v = E_2.v + T.v$

- Note que se assume que o símbolo terminal num tem um atributo chamado v com o valor correspondente.
- O ANTLR n\u00e3o suporta atributos nos terminais (tokens)

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 10/13

Gramática de atributos

Representação

- Uma gramática de atributos pode ser representada por uma tabela em que se associam as regras semânticas às produções da gramática
- Para o exemplo da declaração de variáveis, tem-se

Produções	Regras semânticas
$T \rightarrow i$	T.t = int
$T \to f$	T.t = float
$D \to T L$	L.t = T.t
$L_1 ightarrow L_2$, id	$L_2.t = L_1.t$
	addsym(id. n , $L_1.t$)
$L o \mathrm{id}$	addsym(id.n, L.t)

- Assume-se que o símbolo terminal id tem um atributo chamado n com o valor correspondente
- Neste caso, para além do cálculo de atributos, faz-se a inserção numa tabela de símbolos (addsym)

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 11/13

Avaliação dirigida pela sintaxe

- Numa avaliação dirigida pela sintaxe o cálculo dos atributos é feito à medida que é feita a análise sintática.
- Num analisador sintático ascendente (caso do bison) todos os atributos têm de ser sintetizados
- Num analisador sintático descendente (caso do Antlr) além de sintetizados os atributos podem ser herdados, desde que de símbolos à esquerda ou do símbolo pai
- para definir a ordem de cálculo dos atributos, usa-se o grafo de dependências

$$A \to X Y$$

$$A.a = f(X.x, Y.y)$$

$$X.w = g(A.a, Y.y)$$

Aqui as setas apontam no sentido das dependências

ACP (DETI/UA) Comp 2022/2023 Junho de 2023 13/1