ESERCIZI TIPO

a.y. 2024-2025

1 / 18

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia

CONVENZIONE NOTAZIONALE

Nel seguito, dati lo stato P di un automa deterministico A e la stringa $X_1X_2...X_n$, si indica con $P[X_1X_2...X_n]$ lo stato di A che si raggiunge da P tramite il cammino $X_1X_2...X_n$

Se la seguente affermazione è vera rispondere "VERO", altrimenti rispondere "FALSO": "Se i linguaggi \mathcal{L}_1 e \mathcal{L}_2 sono entrambi regolari allora $\mathcal{L}_1 \cup \mathcal{L}_2$ è regolare."

3 / 18

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia

ESERCIZIO

Scrivere l'enunciato del Pumping Lemma per i linguaggi liberi.

4 / 18

Sia \mathcal{N}_1 lo NFA con stato iniziale A, stato finale E e con la seguente funzione di transizione

	ϵ	a	Ь
A	{ <i>B</i> , <i>E</i> }	Ø	Ø
В	<i>{C}</i>	Ø	{ <i>E</i> }
С	Ø	{ <i>D</i> }	Ø
D	{ <i>E</i> }	Ø	{ <i>B</i> }
Ε	Ø	{ <i>E</i> }	{ <i>A</i> }

Chiamiamo $\mathcal D$ il DFA ottenuto da $\mathcal N_1$ per subset construction e Q lo stato iniziale di $\mathcal D$. Dire a quale sottoinsieme degli stati di $\mathcal N_1$ corrisponde $Q[\![ab]\!]$.

5 / 18

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia

ESERCIZIO

Sia \mathcal{D}_1 il DFA con stato iniziale A, stato finale D e con la seguente funzione di transizione

	a	b
Α	В	
В	D	С
С	D	
D		В

Chiamiamo \mathcal{D}_m il DFA ottenuto per minimizzazione di \mathcal{D}_1 e P lo stato iniziale di \mathcal{D}_m . Dire a quale sottoinsieme degli stati di \mathcal{D}_1 corrisponde $P[\![abab]\!]$.

Sia \mathcal{G}_1 la seguente grammatica:

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & \mathit{AaB} \mid \mathit{b} \\ \mathcal{A} & \rightarrow & \mathit{BcBaA} \mid \epsilon \\ \mathcal{B} & \rightarrow & \epsilon \end{array}$$

Scrivere l'intera riga della tabella di parsing LL(1) per \mathcal{G}_1 relativa al non-terminale B.

7 / 18

FORMAL LANGUAGES AND COMPILER

Paola Quaglia

ESERCIZIO

Sia $\mathcal{L} = \{ww \mid w \in \mathcal{L}((a \mid b)^*)\}$. Se \mathcal{L} è un linguaggio regolare rispondere "SI" e dire quanti stati ha il minimo DFA per il riconoscimento di \mathcal{L} e quanti di questi stati sono finali. Se invece \mathcal{L} non è regolare, allora rispondere "NO" e fornire una stringa z da utilizzare con successo nella dimostrazione per contraddizione rispetto al Pumping Lemma dei linguaggi regolari.

Sia $r = b^* \mid b^*a(\epsilon \mid a \mid b)^*$ e sia $\mathcal D$ il DFA minimo per il riconoscimento di $\mathcal L(r)$. Dire quanti stati ha $\mathcal D$ e quanti di questi stati sono finali.

9 / 18

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia

ESERCIZIO

Dimostrare che i linguaggi regolari sono chiusi per concatenazione.

Dimostrare che i linguaggi regolari sono chiusi per complementazione.

11 / 18

Formal Languages and Compilers

Paola Quaglia

ESERCIZIO

Dimostrare che i linguaggi regolari sono chiusi per intersezione.