### MAT137 Lecture 31

Huan Vo

University of Toronto

February 15, 2018

### Agenda

Definitions of improper integrals.

The Basic Comparison Test (BCT).

#### Definition

Let  $a \in \mathbb{R}$ .

Let f be a continuous function on  $[a, \infty)$ .

We define the integral of f from a to  $\infty$  as

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

provided this limit exists (as a finite number). In this case the integral is said to be **convergent**, otherwise it is said to be **divergent**.

**Example.** Evaluate the integral

$$\int_{1}^{\infty} \frac{\ln x}{x^2} \, \mathrm{d}x.$$

#### Definition

Let  $b \in \mathbb{R}$ .

Let f be a continuous function on  $(-\infty, b]$ .

We define the integral of f from  $-\infty$  to b as

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

provided this limit exists (as a finite number). In this case the integral is said to be **convergent**, otherwise it is said to be **divergent**.

**Example.** Evaluate the integral

$$\int_{-\infty}^{0} \frac{x}{x^4 + 4} \, \mathrm{d}x.$$

#### **Definition**

Let  $a \in \mathbb{R}$ .

Let f be a continuous function on  $(-\infty, \infty)$ .

We define the integral of f from  $-\infty$  to  $\infty$  as

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx.$$

provided that each limit on the right hand side exists (as a finite number). In this case the integral is said to be **convergent**, otherwise it is said to be **divergent**.

Example. Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx, \quad \int_{-\infty}^{\infty} x e^{-x^2} dx.$$

#### Gabriel's Horn

**Gabriel's Horn** is the surface obtained by revolving the graph of y=1/x,  $1 \le x < \infty$  about the x-axis





### Gabriel's Horn

- (a) Find the area of the region bounded by the x-axis and the graph of y=1/x,  $1 \le x < \infty$ .
- (b) Find the volume of the Gabriel's Horn.
- (c) The surface area of the surface obtained by revolving y=f(x),  $f(x) \geq 0$ ,  $a \leq x \leq b$  about the x-axis is given by

$$\int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, \mathrm{d}x.$$

Show that the surface area of the Gabriel's Horn diverges to  $\infty$ .

So the Gabriel's Horn has finite volume but infinite surface area!

#### **Definition**

(a) If f is continuous on [a,b) and is discontinuous at b, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx$$

provided this limit exists (as a finite number). In this case the integral is said to be **convergent**, otherwise it is said to be **divergent**.

(b) If f is continuous on (a,b] and is discontinuous at a, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx$$

provided this limit exists (as a finite number). In this case the integral is said to be **convergent**, otherwise it is said to be **divergent**.

Show that

$$\int_0^1 \frac{1}{x^p} \, \mathrm{d}x \text{ converges if and only if } p < 1.$$
 (1)

Contrast that with

$$\left| \int_{1}^{\infty} \frac{1}{x^{p}} \, \mathrm{d}x \text{ converges if and only if } p > 1. \right| \tag{2}$$

Show that

$$\int_0^1 x^p \ln x \, \mathrm{d}x \text{ converges if and only if } p > -1.$$
 (3)

#### **Definition**

If f has a discontinuity at c, where a < c < b, then we define

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

provided each limit on the right hand side exists (as a finite number). In this case the integral is said to be **convergent**, otherwise it is said to be **divergent**.

Exercise. Evaluate the integral

$$\int_{-2}^{1} \frac{\mathrm{d}x}{x^{2/5}}.$$

Huan Vo (UofT) MAT137 Lecture 31 February 15, 2018 10 / 15

Recall that the following argument

$$\int_{-1}^{1} \frac{1}{x^4} \, \mathrm{d}x = \left. -\frac{1}{3x^3} \right|_{-1}^{1} = -\frac{2}{3}$$

is WRONG because we cannot apply FTC 2 in this case. The integral is an improper integral. Show that it diverges.

### Improper Integrals

Evaluate the improper integral

$$\int_0^\infty \frac{1}{\sqrt{x}(1+x)} \, \mathrm{d}x$$

by writing it as

$$\int_0^1 \frac{1}{\sqrt{x}(1+x)} \, \mathrm{d}x + \int_1^\infty \frac{1}{\sqrt{x}(1+x)} \, \mathrm{d}x.$$

The first integral is improper of type 2 and the second integral is improper of type 1.

Huan Vo (UofT) MAT137 Lecture 31 February 15, 2018 12 / 15

# The Basic Comparison Test (BCT)

Most of the times we cannot evaluate improper integrals directly. But it is possible to check whether they converge or diverge using the following theorem.

#### **Theorem**

Suppose that f and g are continuous functions with  $f(x) \ge g(x) \ge 0$  for  $x \ge a$ .

(a) If 
$$\int_a^\infty f(x) \, \mathrm{d}x$$
 is convergent, then  $\int_a^\infty g(x) \, \mathrm{d}x$  is convergent.

(b) If 
$$\int_a^\infty g(x) dx$$
 is divergent, then  $\int_a^\infty f(x) dx$  is divergent.

**Exercise.** The BCT still holds for improper integrals of type 2. Write down the statement for that case.

#### The BCT

Use the BCT to determine whether the following integral is convergent or divergent. Recall the basic integrals (1), (2), (3).

(a) 
$$\int_{1}^{\infty} \frac{1 + \cos^2 x}{x^{2/3}} \, \mathrm{d}x.$$

(b) 
$$\int_0^{\pi} \frac{\sin^2 x}{\sqrt[3]{x}} \, \mathrm{d}x$$
.

(c) 
$$\int_0^\infty \frac{\arctan(x^2)}{1+e^x} \, \mathrm{d}x.$$

Next Class: Monday February 26

Watch videos 12.9, 12.10 in Playlist 12.