

Workshop on privacy for IOT

Héber Hwang Arcolezi

Université de Franche-Comté, UFR-STGI

Quick recap: TD and TP

- ~ 2h
- Group of two (if wish)
- Send to → heber.hwang_arcolezi [at] univ-fcomte [point] fr
- Questions in the discord group

Quick recap: Data Protection¹

- What? → Law designed to protect our personal data
- Why? → Every time we use a service, go to the doctor, pay taxes, online shopping, make mobile phone calls, ...
 - We transfer personal/sensitive data
 - Companies gather knowledge without consent (profiling, targeting, ...)
 - Citizens can 'only' hold up on data protection regulations (e.g., GDPR)
- Privacy → internationally recognized human right

Quick recap: Privacy-utility trade-off

- Given a dataset with personal (sensitive) data:
 - Health information
 - Social network activity
 - Location
 - Census data
- How can one:
 - 'Learn' (data mining) patterns and basic statistics
 - Without compromising the 'privacy' of users (?)

Research
Urban planning
Business development
Identify threats
...

Quick recap: Pseudonymization

- Identifier fields: deleted and replaced by an id.
- Advantage: calculations identical to those on the initial database
- Problems?

	Non-sensitive Sensitive						
		Sensitive					
ld	Zip	Age	Gender	Nationality	Disease		
1	13053	28	М	russian	heart		
2	13068	29	М	american	heart		
3	13068	21	F	japanese	viral		
4	13053	23	М	american	viral		
5	14853	49	М	indian	cancer		
6	14853	48	F	russian	heart		
7	14850	47	М	american	viral		
8	14850	49	F	american	viral		
9	13053	31	М	american	cancer		
10	13053	37	М	indian	cancer		
11	13068	36	F	japanese	cancer		
12	13068	35	F	american	cancer		

Quick recap: AOL Data Release²

A ID	Δ				
AnonID	Query				
	"people with last name 'Arnold"				
4417749	"landscapers in Lilburn, Ga"				
4417749	"60 single men"				
4417749	"dog that urinates on everything"				
4417749 dog-related queries					
→ Farly supression of data from the AOL sit					

- Thelma Arnold
- 62 years
- widow living in Lilburn, Ga.
- reidentified in 3 days

Quick recap: Massachusetts Gov³

- Pseudonymized and public medical database + Public voters list, USA census, 1990
- Sweeney's research: ~ 87% of the US population uniquely identifiable (Zip, DoB, Sex)
- Massachusetts Governor's medical data identification

Quick recap: *k*-anonymity³

- Make every record in the indistinguishable from at least k-1 others.
- "Safety in a group"
- How?
 - Clustering,
 - Suppression,
 - Generalization,
 - Dummy records, ...

dataset

Quick recap: *k*-anonymity

- Generalization, Mondrian algorithm, Incognito algorithm, ...
- Some problems?
 - Homogeneity
 - Background knowledge

	Quasi-IDentifiers			ers	Sensitive	
Id	Zip	Age	Gender	Nationality	Disease	
1	130**	[21; 31[*	*	heart)
2	130**	[21; 31[*	*	heart	l l
3	130**	[21; 31[*	*	viral	4 individuals
4	130**	[21; 31[*	*	viral	
5	148**	[41; 50[*	*	cancer	1
6	148**	[41; 50[*	*	heart	l l
7	148**	[41; 50]	*	*	viral	4 individuals
8	148**	[41; 50[*	*	viral	
9	130**	[31; 41]	*	*	cancer	1
10	130**	[31; 41[*	*	cancer	l l
11	130**	[31; 41[*	*	cancer	4 individuals
12	130**	[31; 41[*	*	cancer	

Quick recap

- Questions?
- Discussion
 - Personal data, why care?
 - Big data (IoT) and data mining

Plan

- Extensions of *k*-anonymity
 - *I*-diversity
 - *t*-closeness

I-diversity⁴

- Main idea → Each equivalent class (EQ) contains at least / wellrepresented sensitive values
- Database is *I*-diverse *iff* all its EQs are *I*-diverse

4-a	4-anonymity and 3-diversity							
	Quasi-IDentifiers			ers	Sensitive			
Id	Zip	Age	Gender	Nationality	Disease			
1	130**	[21; 41[*	*	heart			
2	130**	[21; 41[*	*	heart			
3	130**	[21; 41[*	*	viral			
4	130**	[21; 41]	*	*	viral	2		
9	130**	[21; 41]	*	*	cancer	∂ 3 sensitive val. ≠		
10	130**	[21; 41]	*	*	cancer			
11	130**	[21; 41[*	*	cancer			
12	130**	[31; 41[*	*	cancer	,		
5	148**	[41; 50[*	*	cancer)		
6	148**	[41; 50]	*	*	heart	3itivo val -/		
7	148**	[41; 50]	*	*	viral	3 sensitive val. ≠		
8	148**	[41; 50[*	*	viral)		

Limitation of *I*-diversity

- Example → Original DB:
 - One sensitive value: HIV test
 - Two outcomes: positive (1 %) and negative (99 %)
- Values with degrees of sensitivity very different:
 - Little opposition for the ones whose test is negative (like 99% of the population)
 - Strong reluctance to be known tested positive
- EQs with only negative outcomes do not need *I*-diversity

Limitation of *I*-diversity

- *I*-diversity is difficult to achieve: |DB| = 10,000, pos. (1 %) and neg. (99 %)
 - To achieve 2-diversity, there can be at most 10,000*1% = 100 EQs
- The overall distribution of sensitive values matters:
 - An EQ with equal number of positive and negative records
 - Diversity does not differentiate among:
 - EQ1: 49 positives and 1 negative
 - EQ2: 1 positive and 49 negatives

Limitation of *I*-diversity

Bob	
ZIP	Age
47688	29

3-diverse with sensitive : salary and disease						
ZIP	Age	Salary	Disease			
476**	2*	3K	gastric ulcer			
476**		4K	gastritis			
476**	2*	5K	stomach cancer			
4790*	≥ 40	6K	gastritis			
4790*	≥ 40	11K	grippe			
4790*	≥ 40	8K	bronchitis			
476**	3*	7K	bronchitis			
476** 476**	3*	9K	pneumonia			
476**	3*	10K	stomach cancer			

- Possible deductions from knowing that Bob is in EQ1
 - his Salary ([3K-5K]) is relatively low
 - suffers from stomach related diseases (semantic meaning matters...)

Plan

- Extensions of *k*-anonymity
 - *I*-diversity
 - t-closeness

t-closeness⁵

- Main idea \rightarrow Distribution of sensitive attribute values in each EQ should be close to that of the original dataset (<u>distance</u> $\leq t$)
- Measure <u>distance</u> between two distributions so that semantic relationship among sensitive attribute values is captured.
 - Earth Move Distance
- A DB is said to have t-closeness if all EQs have t-closeness
- Limitations:
 - Utility may suffer too much
 - Distinction between QIDs and sensitive attributes

t-closeness: example⁵

	ZIP Code	Age	Salary	Disease
1	47677	29	3K	gastric ulcer
2	47602	22	4K	gastritis
3	47678	27	5K	stomach cancer
4	47905	43	6K	gastritis
5	47909	52	11K	flu
6	47906	47	8K	bronchitis
7	47605	30	7K	bronchitis
8	47673	36	9K	pneumonia
9	47607	32	10K	stomach cancer

	ZIP Code	Age	Salary	Disease
1	4767*	≤ 40	3K	gastric ulcer
3	4767*	≤ 40	5K	stomach cancer
8	4767*	≤ 40	9K	pneumonia
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
2	4760*	≤ 40	4K	gastritis
7	4760*	≤ 40	7K	bronchitis
9	4760*	≤ 40	10K	stomach cancer

Table 3. Original Salary/Disease Table

Table 5. Table that has 0.167-closeness w.r.t. Salary and 0.278-closeness w.r.t. Disease

Summary

- k-anonymity, I-diversity, t-closeness:
 - Require: Difference between quasi-identifiers and sensitive attributes
 - Require: Model (or at least try to) background knowledge of adversaries
 - Not compositional
 - Syntactic privacy models: Privacy is a property of only the final output
 - Generalize the database entries until some syntactic condition is met
- Next session → From syntactical privacy notions to Differential Privacy⁶
 - Privacy is a property of the algorithm

References

- Privacy International. The Keys to Data Protection: A Guide for Policy Engagement on Data Protection. 2018
- 2. BARBARO, Michael, ZELLER, Tom, et HANSELL, Saul. A face is exposed for AOL searcher no. 4417749. New York Times, 2006, vol. 9, no 2008, p. 8.
- 3. Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05), 557-570.
- 4. Machanavajjhala, Ashwin, et al. "I-diversity: Privacy beyond k-anonymity." ACM Transactions on Knowledge Discovery from Data (TKDD) 1.1 (2007): 3-es.
- 5. Li, Ninghui, Tiancheng Li, and Suresh Venkatasubramanian. "t-closeness: Privacy beyond k-anonymity and l-diversity." 2007 IEEE 23rd International Conference on Data Engineering. IEEE, 2007.
- 6. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science (3–4), 211–407 (2014)

Thanks for your attention!

Further questions??

Feedback most welcome: D (email me)

