Компютърни архитектури Кеш памети

Цел

- Запознаване с начина на работа на кеш паметта
- Запознаване с различните политики за разполагане в кеша и изследване на влиянието им върху производителността
- Изследване на влиянието на размера на кеш паметта върху производителността

План

- Теоретична част
- Практическа част
 - Симулация в MipsIT
 - Задачи и въпроси

Програми срещу процесори

- От гледна точка на програмирането
 - Паметта е непрекъснато голямо линейно пространство от запомнящи клетки
- От гледна точка на изпълнението в процесора
 - Регистри
 - Кеш памет
 - Основна памет
 - Твърд диск

Локалност на обръщенията

- По време на изпълнението си, програмите осъществяват достъп до малка част от своето адресно пространство
- Времева локалност
 - Вероятността отново да има обръщения към скоро достъпвани елементи в паметта е голяма
 - Например: инструкциите в цикъл; променливи, чиято стойност нараства или намалява в цикъл
- Пространствена локалност
 - Елементи в близост до тези, до които е имало достъп, наскоро, вероятно ще бъдат достъпвани в най-близко време
 - Например: достъпът до последователно разположените инструкции; достъпът до елементите в масив

Локалност на обръщенията

- Йерархия на паметта
- Всичко се съхранява на диска
- Скоро достъпваните (близко разположени) елементи от диска се копират в по-малката DRAM памет
 - Основна памет
- Наскоро достъпваните (близко разположени) елементи от DRAM се копират в по-малката SRAM памет
 - Кеш памет в CPU

Йерархия на паметта

Йерархия на паметта

Достъп до паметта

- Процесорът извлича данни и инструкции от паметта
- Посредством адрес процесорът посочва клетка от паметта, за да извлече информацията
- Информацията (данни или инструкции) може да се намира в:
 - Кеш паметта (с малък размер)
 - Основната памет (със среден размер)
 - Вторичната памет (диска) (с много голям размер)
- Къде да се търси?!
- Как да се търси информацията според предоставения от процесора адрес?!

Организация на кеш паметта?

Организация на кеш паметта

Кеш памет ↔ Основна памет

Кеш памет Основна памет

Дължината на един Cache line в байтове = Дължината на един Memory block в байтове

Малко на брой Cache lines

Много на брой Memory blocks

Адресът е според вида на съпоставяне

Адресът включва: Memory block + byte

Съпоставка с кеша (Cache mapping)

- Къде в кеш паметта се разполага един блок от основната паметта?
- Пряка съпоставка (Direct mapping)
 - Един "memory block" може да се постави само в един точно определен "cache line"
- Изцяло асоциативна съпоставка (Fully associative mapping)
 - Един "memory block" може да се постави във всеки един "cache line"
- Множествено асоциативна съпоставка (Setassociative mapping или N-way associative)
 - A memory block maps into N cache lines

Кеш с пряка съпоставка (Direct mapping Cache)

Кеш с изцяло асоциативна съпоставка (Fully associative cache)

Кеш с множествено асоциативна съпоставка (Set Associative cache)

Number of cache lines in each set

План

- Теоретична част
- Практическа част
 - Симулация в MipsIT
 - Задачи и въпроси

Създаване на нов проект

Добавяне на нов сорс файл

Компилиране

Отваряне на програмата за симулация MIPS 👺

Mips

Зареждане на компилираната програма в симулатора

Конфигуриране на кеш паметта

Конфигуриране на кеш паметта за инструкции

Конфигуриране на кеш паметта за данни

Кеш памет за инструкции (I-cache)

Кеш памет за данни (D-cache)

Резултати от симулацията

План

- Теоретична част
- Практическа част
 - Симулация в MipsIT
 - Задачи и въпроси

- С помощта на инструмента "<u>Address Bit Partitioner</u>" определете как трябва да се разпределят битове от адреса за достъп до следната система на паметта:
 - Размер на основната памет: 32 МБ
 - Memory size = 32MB
 - Размер на кеш паметта: 64 КБ
 - Cache size = 64 KB
 - Размер на блока: 16 байта
 - Block size = 16 Bytes
 - Множествено асоциативна с 8 блока в множество
 - Set associative with 8 blocks per set.

- Дайте пояснение за всяко от изброените:
 - Блок
 - Размер на кеш паметта
 - Размер на блока
 - Брой на множествата

- На следващия слайд е дадена <u>програма</u> на "С", с две функции.
- И двете функции връщат като резултат сумата от всички елементи в двумерен масив.
- Разликата между функциите е, че обхождат елементите в масива в различен ред.
- Това на пръв поглед изглежда маловажно, но когато се използва кеш памет може да се отчете извесна разлика.
- Разгледайте внимателно <u>програмата</u>, за да разберете в какъв ред се използват елементите от масива.

```
#include <stdio.h>
#include <idt entrypt.h>
#define N 10
int A[N][N];
// Функция 1
int SumByColRow (int Matrix[N][N]) {
  int i, j, Sum = 0, Time;
  flush cache();
  timer start();
  for (i = 0; i < N; i ++) {
     for (i = 0; i < N; i ++) {
        Time = timer stop();
   printf("SumByColRow time: %d\n", Time);
   return Sum; } // Продължава ...
```

```
// Функция 2
int SumByRowCol (int Matrix[N][N]) {
   int i, j, Sum = 0, Time;
  flush cache(); timer start();
  for (i = 0; i < N; i ++) { for (j = 0; j < N; j ++) {
           Sum += Matrix[i][j] } }
   Time = timer stop();
   printf("SumByRowCol time: %d\n", Time);
   return Sum; }
main () {
   int a, b;
   printf ("Laboratory Exercise, Task 3\n");
   // Run one of the cases below;
  //comment out the other
   // Case 1
   a = SumByColRow(A);
   printf ("The sum is %d\n", a);
    // Case 2 b = SumByRowCol (A);
   //printf ("The sum is %d\n", b); } //Kpaŭ
```

- Създайте проект в средата за разработка MIPS.
- Въведете <u>горната програма</u>, компилирайте и заредете в симулатора (mips.exe).
- Стартирайте програмата в симулатора с настройките по подразбиране и изследвайте как работи кеш паметта за инструкции.
- Попълнете таблицата.

Настройки	Функция от	I-cache	D-cache	Simulation
	програмата	Hit rate	Hit rate	time
По подразбиране	SumByColRow			
	SumByRowCol			

Въпроси

- Как 32-битовият адрес се използва за достъп до кеш паметта?
- Какво се случва когато няма съвпадение в кеша, т. е. когато се получи "cache miss"?
- Какво се случва когато има съвпадение, т. е. когато се получи "cache hit"?
- Какъв е размерът на блока?
- За какво служи т. нар. маркер (tag)?

- Попълнете следващата <u>таблица</u>, като стартирате програмата с показаните настройки.
- Изследвайте ефекта от промяната на параметрите.

Настройки	Функция от програмата	I-cache Hit rate	D-cache Hit rate	Simulation time
I-cache and D-cache: cache size=32; Others: default	SumByColRow			
	SumByRowCol			
I-cache and D-cache: blockSize=8; Others: default	SumByColRow			
	SumByRowCol			
I-cache and D-cache: Number of blocks in sets =2; Others: default	SumByColRow			
	SumByRowCol			
D-cache Write: policy=WriteBack; Others: default	SumByColRow			
	SumByRowCol			
D-cache: Replacement policy=FIFO; Others: default	SumByColRow			
	SumByRowCol			

- Компилирайте горната <u>програмата</u>, като преди това от менюто Project->Settings повишите нивото на оптимизация, чрез Optimization level = 3 (High).
- Симулирайте програмата в Mips, като зададете настройките от следващата таблица.
- Изследвайте как работи кеш паметта за данни и попълнете <u>таблицата</u>.

Настройки	Функция от	I-cache	D-cache	Simulation
	програмата	Hit rate	Hit rate	time
I-cache: Disable Penalty(*) D-cache: cache size=64; block size= 16; Others: Default	SumByColRow			
	SumByRowCol			

Въпроси

- Изследвайте внимателно функциите SumByColRow и SumByRowCol.
- Обяснете в какъв ред се обхождат адресите в едната и в другата функция.
- Установете какви са стойностите за "cache hits" в двете функции. Има ли разлика? Защо?
- Ще ви бъде от помощ, ако може да откриете в какъв ред се разполагат елементите на двумерния масив в основната памет.

Заключение

- След приключване на упражнението бихте могли да дискутирате и да разбирате следните въпроси:
 - Каква е основната идея на кеш паметта?
 - Как размерът на блока влияе на ефективността на кеш паметта?
 - Какво е относителното бързодействие на кеш паметта спрямо основната DRAM памет?
 - Оптимални ли са параметрите на кеш паметта според програмния код?
 - Как могат да се изберат оптимални параметри за кеш паметта?