UNIVERSIDAD DE CONCEPCIÓN

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA LNB/MVH/JAA/jaa

Listado de Ejercicios 5 Álgebra I (525147)

Problema 1 (En práctica) Considere los puntos A = (1, 1, 0), B = (2, 1, 2) y C = (1, 0, 1), y los vectores $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OA}$ y $\vec{c} = \overrightarrow{OC}$, donde O = (0, 0, 0).

- a) Calcule $d\left(A,B\right),d\left(A,C\right),d\left(B,C\right),\left\Vert \vec{a}\right\Vert ,\left\Vert \vec{b}\right\Vert ,\left\Vert \vec{c}\right\Vert ,\left(2\vec{a}\right)\cdot\vec{b},\left(-\vec{b}\right)\times\vec{c}$ y $\vec{b}\cdot(\vec{c}\times\vec{a}).$
- b) Determine los ángulos entre \vec{a} , \vec{b} y \vec{c} .
- c) Describa el conjunto de los vectores $\vec{x} \in \mathbb{R}^3$ tales que
 - c.1) \vec{x} es paralelo a \vec{c} y $||\vec{x}|| = 1$.
 - c.2) \vec{x} es perpendicular a \vec{a} y \vec{b} .
 - c.3) $\|\vec{x} \vec{a}\| = \|\vec{x} \vec{c}\|.$

Problema 2 Determine un vector $\vec{r} \in \mathbb{R}^3$ tal que

- a) $\|\vec{r}\| = 4$, el ángulo entre \vec{r} e $\hat{\imath}$ es de $\frac{\pi}{4}$ y el ángulo entre \vec{r} y $\hat{\jmath}$ es de $\frac{\pi}{3}$.
- b) el ángulo entre \vec{r} e $\hat{\imath}$ es de $\frac{\pi}{4}$, el ángulo entre \vec{r} y $\hat{\jmath}$ es de $\frac{\pi}{3}$, y \vec{r} es perpendicular a [1,2,2] .

Problema 3 (En práctica) Sean $\vec{a}, \vec{b} \in \mathbb{R}^3$ dos vectores dados por $\vec{a} = [1, -1, \alpha]$ y $\vec{b} = [-2, -\alpha, 4]$, donde $\alpha \in \mathbb{R}$. Determine el o los valores de α tales que

- a) \vec{a} y \vec{b} son paralelos.
- b) \vec{a} y \vec{b} son pependiculares.
- c) La proyecciór ortogonal de \vec{b} sobre \vec{a} es igual a $\left[\frac{4}{3}, -\frac{4}{3}, \frac{8}{3}\right]$.

Problema 4 Sean $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$, tales que \vec{b} y \vec{c} son perpendiculares, y $\alpha \in \mathbb{R}$. Demuestre que, si $\vec{a} \cdot \vec{b} \neq 0$, entonces

$$\vec{x} = \frac{1}{\left(\vec{a} \cdot \vec{b}\right)} \left(\vec{a} \times \vec{c} + \alpha \vec{b}\right)$$

satisface

- a) $\vec{a} \cdot \vec{x} = \alpha$.
- b) $\vec{x} \times \vec{b} = \vec{c}$.

Problema 5 Sean A=(1,6,1), B=(-2,1,4), C=(3,0,0) y D=(2,2,-4). Determine el volumen del paralelepípedo con lados concurrentes \overline{AB} , \overline{AC} y \overline{AD} .

Problema 6 (En práctica) Determine el o los valores de la constante $\alpha \in \mathbb{R}$ tal que $L_1 \cap L_2 \neq \emptyset$, donde L_1 y L_2 son las rectas dadas por

$$L_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^{3} \middle| t \in \mathbb{R} \right\}$$

$$L_{2} : \frac{x+1}{2} = \frac{y-2}{2} = z+1$$

Problema 7 (En práctica) Considere los puntos A = (2,3,1) y B = (1,2,3), y la recta

$$L_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \in \mathbb{R}^{3} \middle| t \in \mathbb{R} \right\}$$

- a) Encuentre la distancia de A a L_1 y de B a L_1
- b) Encuentre la ecuación de la recta L_2 que pasa por A y es paralela a L_1 .
- c) Encuentre la ecuación de la recta L_3 que pasa por B y es perpendicular a L_1 .
- d) Encuentre la distancia entre las rectas L_2 y L_3 .

Problema 8 En cada cada caso, encuentre la ecuación de la recta tal que

- a) Pasa por los puntos P = (0, -1, 3) y $Q = (\frac{1}{2}, -1, 2)$
- b) Es paralela a la recta $L: \frac{x-1}{2} = 2 y = -z + 5$ y pasa por el punto P = (-1, 3, 4).
- c) Es perpendicular a la recta $L: \frac{x-1}{2} = y-1 = \frac{z+3}{2}$ y pasa por el punto P = (3, -2, 1).

Problema 9 (En práctica) Sean las rectas L_1 y L_2 definidas por

$$L_1 = \left\{ (x, y, z) \in \mathbb{R}^3 \mid (x, y, z) = (1, -1, 4) + t (1, 2, 0) \land t \in \mathbb{R} \right\}$$
$$L_1 = \left\{ (x, y, z) \in \mathbb{R}^3 \middle| \frac{1 - x}{5} = \frac{y + 1}{4} = \frac{z - 4}{8} \right\}$$

- a) Determine la intersección entre L_1 y L_2
- b) Defina la ecuación del plano Π que contiene a las rectas L_1 y L_2 .

Problema 10 En cada cada caso, encuentre la ecuación del plano tal que

- a) Pasa por el punto (2,3,1) y está generado por los vectores [3,2,1] y [-1,-2,-3].
- b) Pasa por el punto (2,3,1) y es paralelo al plano que pasa por el origen y es generado por los vectores [2,0,2] y [1,1,1].

Problema 11 (Distancia entre un punto y una recta) Considere una recta L, con vector director $\vec{r} \in \mathbb{R}^3$, y un punto $A \in \mathbb{R}^3$. Demuestre que la distancia de A a la recta L está dada por

$$d(A, L) = \frac{\left\| \vec{r} \times \overrightarrow{P_0 A} \right\|}{\left\| \vec{r} \right\|}$$

donde $P_0 \in L$.

Problema 12 (Distancia entre un punto y un plano) (En práctica) Considere el punto $P=(x_0,y_0,z_0)\in\mathbb{R}^3$ y el plano $\Pi=\{(x,y,z)\in\mathbb{R}^3|ax+by+cz=d\}$, donde $a,b,c,d\in\mathbb{R}$. Demuestre que la distancia entre el punto P y el plano Π está dada por

$$d(P,\Pi) = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

Problema 13 Sean A=(2,3,2) y B=(-1,1,4). Encuentre todos los puntos $P\in\mathbb{R}^3$ tales que $\overline{AB}\perp\overline{AP}$. Describa dicho conjunto.

Problema 14 Encuentre, si existe, el valor de $\alpha \in \mathbb{R}$ tal que la distancia del punto (2, -3, -4) al plano de ecuación x + 2y + 2z = 6, sea igual a $\sqrt{37}$.

Problema 15 Sean $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ tres vectores en el origen. Demuestre que \vec{u}, \vec{v} y \vec{w} son coplanares si y sólo si

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = 0$$

Problema 16 (En práctica) Calcule la distancia desde el punto (-1, 1, -2) al plano que pasa por los puntos (1, -1, 1), (-2, 1, 3) y (4, -5, -2).

Problema 17 Sean $\vec{u} = [4, 0, 0]$ y $\vec{v} = [\alpha, \beta, 0]$ dos vectores en \mathbb{R}^3 .

- a) Determine el o los valores de α y β de modo que \vec{u} , \vec{v} y $\vec{u} \vec{v}$ formen los lados de un triángulo equilátero.
- b) Halle el volumen del tetraedro regular que tiene como base el triángulo formado por \vec{u} , \vec{v} y $\vec{u} \vec{v}$.

Problema 18 Demuestre que las diagonales de un rombo son perpendiculares.

Problema 19 (En práctica) Sean Π_1 el plano perpendicular a [1, -1, 3] y que pasa por el punto (2, 1, 0), y Π_2 el plano de ecuación 3x - y + 2z = -1. Encuentre $\Pi_1 \cap \Pi_2$.

Problema 20 Demuestre que, si los vectores $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ son perpendiculares entre sí, entonces

$$|\vec{u} \cdot (\vec{v} \times \vec{w})| = \|\vec{u}\| \, \|\vec{v}\| \, \|\vec{w}\|$$

Problema 21 Sean $\vec{u}, \vec{v} \in \mathbb{R}^3$ dos vectores no nulos y no paralelos. Sea $\vec{n} = \vec{u} \times (\vec{u} \times \vec{v})$.

- a) Demuestre que $\|\vec{n}\| = \|\vec{u}\| \|\vec{u} \times \vec{v}\|$
- b) Si u = [1, 0, 1] y v = [1, 0, 0], determine el ángulo entre \vec{n} y \vec{v} .

Problema 22 (En práctica) Considere la recta $L_1 = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y, z) = (1, 1, 0) + t(2, 1, 2) \land t \in \mathbb{R}\}$

- a) Encuentre la distancia de la recta L al origen.
- b) Encuentre la ecuación del plano Π que pasa por el origen y que contiene a la recta L.
- c) Sea L_0 la recta que pasa por el origen y es paralela a L. ¿Pertenece L_0 al plano Π ?
- d) ¿Cuál es la distancia entre L_0 y L?

Problema 23 Sean $a, b, c \in \mathbb{R} \setminus \{0\}$. Determine la ecuación del plano Π que pasa por los puntos (a, 0, 0), (0, b, 0) y (0, 0, c). Encuentre la ecuación de la recta perpendicular a Π que pasa por el origen.

Ejercicios de evaluaciones anteriores

Problema 24 (En práctica) Sean la recta L_1 y el plano Π definidos por

$$L_1 = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y, z) = (-2, 2, 6) + t(-3, 1, 4) \land t \in \mathbb{R} \}$$
$$\Pi = \{(x, y, z) \in \mathbb{R}^3 \mid 8x - 4y + 7z = 0 \}$$

Pruebe que L es paralela a Π y calcule la distancia entre ellos.

Problema 25 Considere las siguientes rectas

$$L_1: x - 1 = -\frac{y}{2} = \frac{z + 7}{2}$$
$$L_2: \frac{x + 2}{2} = -\frac{y - 3}{3} = -\frac{z}{4}$$

- a) Encuentre la intersección entre L_1 y L_2 .
- b) Determine la ecuación del plano Π , el cual es perpendicular a la recta L_1 y contiene a la recta L_2 .
- c) Calcule la distancia entre las rectas L_1 y L_2 .

Problema 26 Sean $a, b \in \mathbb{R}$. Considere los puntos A = (a, 0, 0) y $B = (\frac{5}{2}, 1, 3)$, la recta L_1 , la cual contiene el punto A = (a, 0, 0) y es paralela al vector $\vec{r} = [1, b, 0]$, y el plano

$$\Pi_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y - 3z = 1\}$$

- a) Determine los valores de a y b tales que la recta L_1 está contenida en el plano Π_1 . En lo que sigue, considere los valores de a y b como los obtenidos en la pregunta anterior.
- b) Encuentre la ecuación del plano Π_2 , el cual es perpendicular a Π_1 y contiene a la recta L_1 .
- c) Determine la ecuación de la recta L_2 que pasa por los puntos A y B. ¿Las rectas L_1 y L_2 son perpendiculares?

Problema 27 Considere las rectas L_1 y L_2 dadas por

$$L_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 - 2t \\ t - 1 \\ -t \end{pmatrix} \in \mathbb{R}^{3} \middle| t \in \mathbb{R} \right\}$$
$$L_{2} : \frac{y - 1}{2} = -(z + 2) \land x = -1$$

y los puntos A = (0, 2, -1) y B = (-1, -1, 2).

- a) Determine la recta L_3 que contiene los puntos A y B.
- b) Determine C, el punto de intersección entre las rectas L_1 y L_2 .
- c) Determine la ecuación del plano Π ortogonal a L_3 y que contiene a la intersección de L_1 y L_2 .

Problema 28 (En práctica) Considere los siguientes planos

$$\Pi_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - 2y + 2z = -2\}$$

$$\Pi_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 4z = 5\}$$

- a) Encuentre la ecuación de la recta $L_1=\Pi_1\cap\Pi_2.$
- b) Encuentre la ecuación de la recta L_2 , la cual cual contiene al punto A=(1,0,4) y es perpendicular a L_1 .
- c) Calcule la distancia entre A y L_1 .
- d) Determine la ecuación del plano Π_3 que contiene las rectas L_1 y L_2

Segundo Trimestre, 2016 15 de septiembre de 2016