Precept 9: LDA, graph/network properties and analysis

COS424/524/SML302 Spring 2021 Xiaoyan Li

Topics:

- Latent Dirichlet Allocation (LDA)
- Graph Properties and Measurements
- Final Course Project
 - Final project proposal (4/16)
 - Poster session (5/3)
 - Final project report (5/5 by 5pm)

Dimension Reduction—basic idea

Compute a reduced representation Z of data X from p dimensional to k dimensional. X is a nxp matrix and Z is a nxk matrix where p >> k.

Q: What are the two main benefits of representing X with Z?

A: data compression, de-noising

Can reconstruct the p-dimensional data from the k-dimensional data.

Q: why?

A: can fill in missing values.

LDA as dimension reduction

Marginal likelihood of data:

$$x_d \mid \theta, \beta, \alpha, \eta \sim Mult(\theta_d^T \beta)$$

- We can rewrite this likelihood in terms of a matrix factorization.
- Consider variables and parameters as matrices: $X \in \mathbb{Z}^{D \times V}$, $\theta \in (0,1)^{D \times K}$, $\beta \in (0,1)^{K \times V}$

$$\begin{array}{c|c}
D & K & D \\
\hline
V & X & = V \beta & \bullet
\end{array}$$

PCA, SVD, NMF and LDA

- Principal Component Analysis(PCA):
 - row vectors in Λ : Λ 1, Λ 2, ... Λ k. are orthogonal.
- Singular Value Decomposition(SVD):
 - $X \sim X_k = U_k S_k V_k^T$ ($Z = U_k S_k$, $V_k^T = \Lambda$), both U and V are orthogonal, S is diagonal
- Non-Negative Matrix Factorization(NMF):
 - V = WH (W = Z , H = Λ); V, M, and H have no negative elements.
- Latent Dirichlet Allocation(LDA):
 - $\mathbf{X} = \boldsymbol{\beta}\boldsymbol{\theta}$, $\boldsymbol{\beta}$: word-to-topic matrix, $\boldsymbol{\theta}$: document-to-topic matrix
 - Each document in $\boldsymbol{\theta}$ is a distribution over topics, each column sums to 1
 - Each topic in β is a distribution over words, each column sums to 1.

Q1: How do you determine k=? (# of components, dimension of the reduced space)

Q2: Do they have unique solutions? Will they converge?

Q3: What do you do if you do not have enough memory to reconstruct the original data matrix?

Graph Properties and Measurements: Connectivity of a graph

Strongly connected

- A directed graph is called strongly connected if there is a path in each direction between each pair of vertices of the graph
- Can generate strongly connected subgraphs if the graph itself Is not strongly connected.

Weakly connected

 A directed graph is weakly connected if, and only if, the graph is connected when the direction of the edge between nodes is ignored.

Graph Properties and Measurements: Connectivity of a graph

 Q: Strongly connected, weakly connected, or not connected?

Graph Properties and Measurements: Connectivity of a graph

 Q: Strongly connected, weakly connected, or not connected?

Strong connected

Weak connected

Not connected

degree_centrality(v), in_degree_centrality(v)
 , out_degree_centrality(v)

closeness_centrality(v)

betweenness_centrality(v)

- degree_centrality (v), in_degree_centrality(v), out_degree_centrality(v)
 - The degree centrality for a node v is the fraction of nodes it is connected to.
 - The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to.
 - The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to.

Node	Degree_centrality
1	1/4
2	1/2
3	3/4
4	1/4
5	1/4

- closeness_centrality(v)
 - the reciprocal of the sum of the shortest path distances from v to all n-1 other nodes.
 - Since the sum of distances depends on the number of nodes in the graph,
 closeness is normalized by the sum of minimum possible distances n-1.
 - 1/(average distance to all other nodes)

Node	closeness_centrality
1	4/9
2	2/3
3	4/5
4	1/2
5	1/2

- betweenness_centrality(v)
 - the sum of the fraction of all-pairs shortest paths that pass through v
 - Since it scales with the number of pairs of nodes in the graph, betweenness is normalized with the number of pairs of nodes in the graph.
 - Divided by (n-1)(n-2)/2 for undirected graphs. (6 in the following graph)

Node	Betweeness_centrality
1	0
2	1/2
3	5/6
4	0
5	0

- degree_centrality (v) , in_degree_centrality(v) , out_degree_centrality(v)
 - The degree centrality for a node v is the fraction of nodes it is connected to.
 - The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to.
 - The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to.
- closeness_centrality(v)
 - the reciprocal of the sum of the shortest path distances from v to all n-1 other nodes.
 - Since the sum of distances depends on the number of nodes in the graph, closeness is normalized by the sum of minimum possible distances n-1.
- betweenness_centrality(v)
 - the sum of the fraction of all-pairs shortest paths that pass through v:

PageRank:

- PageRank of a node/webpage is the probability of that webpage being visited on a particular random walk.
- Q: What kinds of nodes are likely to have a higher PageRank

PageRanks for a simple network, expressed as percentages. https://en.wikipedia.org/wiki/PageRank

PageRank:

- PageRank of a node/webpage is the probability of that webpage being visited on a particular random walk.
- A node pointed by many nodes is likely to have a higher PageRank. E.g. Node B, and node E
- A node pointed by a node with a higher PageRank is likely to have a higher PageRank.

PageRanks for a simple network, expressed as percentages. https://en.wikipedia.org/wiki/PageRank

- PageRank
- Hubs and Authorities
 - also called Hyperlink-Induced Topic Search(HITS)
 algorithm, a link analysis algorithm that ranks web
 pages.
 - a hub is a node pointing to many other nodes (high out-degree)
 - An authority node is pointed to by many hubs.

Graph Properties and Measurements: proximity measures of node pairs

- Common neighbors: the number of neighbors shared by node u and v.
 - Score(u,v) = $|N(u) \cap N(v)|$, where N(u) and N(v) are the number of neighbors for u and v respectively.
 - Used in social network analysis(SNA) for link prediction
 - Given a snapshot of a social network, predict future interactions between members.
 - Assumption: if two people have more common friends, then the probability of future interaction between them is higher.

Graph Properties and Measurements: proximity measures of node pairs

 Jaccard coefficient: percentage of neighbors shared by two nodes.

- Score(u,v) =
$$\frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$

 adamic adar index: frequency-weighted common neighbors, more weights for nodes with less neighbors

- Score(u,v) =
$$\sum_{z \in N(u) \cap N(u)} \frac{1}{\log |N(z)|}$$

- Score(u,v) = $\sum_{z \in N(u) \cap N(u)} \frac{1}{\log |N(z)|}$ • Preferential attachment score: product of the number of neighbors of two nodes

$$- Score(u,v) = |N(u)|*|N(v)|$$

• Other proximity measures ...

Apply graph-based methods

- 1. Generate more graph-based features for classification
- 2. Use proximity measures of node pairs directly to predict their future interactions
 - Common neighbors, Jaccard coefficient, adamic_adar_index,
 Preferential attachment score, etc.
- 3. Identify some structures in the graph
 - Find strongly connected components, and identify nodes that are in the same strongly connected subgraphs
 - Identify important nodes, or nodes with some strange behaviors, etc.
- 4. Come up with your own ideas ...
- Q: Can I generate a graph with the HW3 data?
 - Nodes? Edges?

Final Project:

- Group project,
 - Work with 1-3 partners
- One-page proposal
 - Due 4/16, not graded
 - Feedback returned in about a week.
- Poster session
 - May 3rd. Online (one morning session and two afternoon sessions.)
- Final project report
 - 8-page
 - May 5th by 5pm

Final Project:

- Datasets
 - Existing, Cleaned, Processed...
 - Okay to use the data for HW1, HW2, or HW3
 - Describe size of the data, features. etc.
- Questions/tasks
 - Answer questions, answer them with the data
- Methods
 - Classifiers
 - Regressors
 - Unsupervised learning
- Evaluations
 - Accuracy/error, confusion matrix, ROC, precision, recall, F1 score,
 - R Squared, RMSE, MAE, ...
 - Intra-cluster distance, inter-cluster distance
 - Visualization of clusters, label the topics/clusters

Final Project:

- Cross-validation
 - Quantify generalization error,
 - hyperparameter tuning
- Bootstrapping
 - Confidence intervals
- Feature selection
 - Why and how
- Dimension reduction
 - PCA, truncated SVD, NMF, LDA...
 - How to decide the number of components/dimensions?
- Graph analysis
 - What are the nodes? Edges? directed or undirected?
- ...

Paper:

 Group discussion for COS524 in breakout rooms (~15 minutes)

- Share your opinions in the shared google doc:
 - Will send you the links in chat
 - You can focus on some of the questions

Come back for precept wrap up

Wrap up for Precept 9:

- Latent Dirichlet Allocation (LDA)
- Graph Properties and Measurements
- Final Course Project
 - Final project proposal (4/16)
 - Poster session (5/3)
 - Final project report (5/5 by 5pm)

Some Packages in Python

- NetworkX
 - Creation and manipulation of graphs and network analysis, purepython implementation.
 - https://networkx.github.io/documentation/networkx-1.10/reference/algorithms.html
- Graph-tool
 - implemented in C, https://pypi.python.org/pypi/graph-tool
- Igraph
 - implemented in C, https://igraph.org/python
- sklearn.decomposition.LatentDirichletAllocation
 - Latent Dirichlet Allocation with online variational Bayes algorithm
 - http://scikitlearn.org/stable/modules/generated/sklearn.decomposition.LatentDir ichletAllocation.html

Resources: (Some materials are taken from the following resources and lecture slides for cos424.)

- Latent Dirichlet Allocation from wikipedia
 - https://en.wikipedia.org/wiki/Latent Dirichlet allocation
- Link Analysis
 - https://www.csc2.ncsu.edu/faculty/nfsamato/practical-graph-mining-with-R/sample/chapter 5 LinkAnalysis.pdf
- Graph-tool performance comparison
 - https://graph-tool.skewed.de/performance
- Graph Properties & Measurements
 - https://reference.wolfram.com/language/guide/GraphPropertiesAndMeasurements.html