Self-Supervised Terrain Classification for Planetary Surface Exploration Rovers

Christopher A. Brooks and Karl lagnemma (2012)

Sébastien Michaud

Université Laval

10 avril 2014

Exploration spatiale : les motivations

L'observation et l'acquisition de données scientifiques directement à la surface d'une planète permettent d'obtenir des informations riches :

- Comprendre l'univers et son origine [5];
- Découvrir des traces de vie extraterrestre [2];
- Acquérir des ressources naturelles [2];
- Coloniser de nouvelles planètes [5] ;
- etc.

Mars observé par le robot Curiosity [3]

Exemples d'échecs

L'une des principales difficultés de la navigation pour les robots est l'identification autonome des régions pouvant être traversées sécuritairement.

- Opportunity 2005 : délais d'un mois pour dégager le véhicule [1];
- Spirit 2009 : immobilisation complète [4];
- Opportunity 2010 : fin de la mission à cause de l'immobilisation [1].

Objectif de l'article

Développer une technique permettant d'identifier de manière autonome les terrains potentiellement dangereux à distance, lorsque l'apparence visuelle du terrain n'est pas connue à priori.

Capteurs extéroceptifs et proprioceptifs

- Extéroceptif : mesure des objets relativement au robot.
- **Proprioceptif**: mesure interne au robot.

Classement supervisé

Concepts du classement :

- étiquette de classe
- échantillon (ou exemple ou donnée)
- entrainement;
- caractéristiques (ou features);
- frontière de décision.

Solution proposée

Classement auto-supervisé :

- un algorithme de classification permet d'identifier l'étiquette de classe d'une zone du terrain traversée par le robot grâce aux capteurs proprioceptifs;
- les étiquettes ainsi obtenues permettent d'entrainer un classifieur utilisant les données des capteurs extéroceptifs.

Avantages:

- élimine une étape d'étiquetage manuelle;
- l'apprentissage par expérience est adaptatif.

Classement proprioceptif

Le classificateur proprioceptif est indépendant du classificateur extéroceptif.

Deux classificateur proposés :

- basée sur les vibrations;
- basée sur la force de traction.

Première approche

- Les terrains mécaniquement différents induisent différentes vibrations.
- Approche développée par Brooks (2004) et Brook et lagnemma (2005).
- Amélioration par utilisation de Support Vector Machine (SVM) pour la classification.

Validation expérimentale (robot)

Robot TORTOISE

Capteur de vibrations

Validation expérimentale (environnement)

Plage de Wingaersheek

Résultats

Comparaison des vrais positifs (VP) par rapport au faux positifs (FP) :

Classe	VP (%)	FP (%)
Roche	> 50	< 1
Herbes	> 50	< 3
Sable	> 50	< 5

Confiance de l'étiquettes de classe attribué à un terrain : 92,3%.

Deuxième approche

- Basé sur la force de traction net entre la roue et le sol.
- Données utilisées :
 - couple (torque) : courant moteur ou capteur dédié ;
 - enlisement : camera ou capteur dédié.
- Métrique de traversabilité : coefficient de traction (μ_{tr}) définie par Wong (2001).
- Prédiction des bornes inférieures et supérieures de μ_{tr} et classement suivant les bornes inférieures

Validation expérimentale (banc d'essai)

Banc d'essai d'interaction roue-sol

Appareils de mesure

Validation expérimentale (Wingaersheek)

- Couple mesuré avec un capteur dédié.
- Enlisement mesuré avec une caméra selon l'approche proposé par Brooks et al. (2006)
- Mesures effectuées sur la roue avant droite.
 - Le cotrôle de la vitesse du robot est approximativement égale à la vitesse des trois autres roues.
- Valeurs de référence établies avec la caméra

Résultats de validation (banc d'essai)

Résultats d'estimation de la traction en banc d'essai

Résultats de validation (Wingaersheek)

Résultats d'estimation de la traction

Classe	Intervalle pour la	
	borne inférieur de μ_{tr}	
Α	0,5 à ∞	
В	0,25 à 0,5	
C	0,1 à 0,25	
D	0 à 0,1	
Е	$-\infty$ à 0	

Étiquettes des classes pour μ_{tr}

Classement extéroceptif

- Capteur utilisé : appareil stéréoscopique
- Données utilisées :
 - couleur en teinte saturation valeur (HSV);
 - texture visuelle (mesure des variations d'intensité locale);
 - géométrie du terrain.
- Trois classificateurs SVM distincts.
- Fusion par classificateur bayésien naif.
- Discrétisation en cellules (20 cm x 20 cm).

Validation expérimentale

- Six ensembles de données (trajets parcourus).
- Trajets d'au moins 10 mètres.
- Deux ou trois types de surface.
- Tous les chemins étaient distincts.
- Récolté au cours de 3 jours.
- Grande variété de luminosité.

Résultats de validation

Évaluation du rapport entre les VP et les FP.

Classe	VP (%)	FP (%)
Roche	> 96	< 3
Herbes	≈ 50	< 0,1
Sable	> 95	0

Au total 95,1% des terrains étaient bien identifiés.

Résultats de la méthode

Intégration des classificateurs développés précédemment :

- classificateur proprioceptif basé sur les vibrations et classificateur extéroceptif;
- classificateur basé sur le coefficient de traction et classificateur extéroceptif.

Approche par vibrations

Évaluation du rapport entre les VP et les FP.

Classe	VP (%)	FP (%)
Roche	> 25	< 1,5
Herbes	> 80	< 1
Sable	> 80	< 1

Les résultats de l'apprentissage auto-supervisé sont presque aussi bon que ceux supervisés manuellement.

Approche par coefficient de traction

- Classement attribué selon le coefficient de traction (A,B,C,D,E).
- Estimation conservatrice de μ_{tr} : $P(\mu_{tr} > valeur réelle) <math>\geq 80\%$.
 - évaluation par une somme pondérée des bornes inférieur des classes selon la probabilité d'appartenance à la classe.
 - Malheureusement, aucune valeur de référence n'était disponible.

Conclusion

- Approche de classification auto-supervisé pour la prédiction distante des contraintes non géométriques du terrains.
- Deux approche de classement proprioceptif :
 - vibrations, coefficient de traction.
- Un classement extéroceptif basé sur trois types d'information.
 - couleurs, textures visuelles et géométrie du terrain.
- Résultats prometteurs grâce aux expérimentations (TORTOISE, Wingaersheek).

Références

- [1] Christopher A. Brooks and Karl lagnemma. Selfsupervised terrain classification for planetary surface exploration rovers. *Journal of Field Robotics*, 29(3):445–468, 2012.
- [2] NASA. Mars, water and life, Avril 2014. URL http://mars.jpl.nasa.gov/msp98/why.html.
- [3] NASA. Curiosity, Avril 2014. URL http://www.nasa.gov/.
- [4] Wikipedia. Spirit (rover), Avril 2014. URL http://fr.wikipedia.org/wiki/Spirit_(rover).

Références (cont.)

[5] WordPress.com. Nine good reasons for space exploration, Avril 2014. URL http:

```
//martianchronicles.wordpress.com/2008/04/16/nine-good-reasons-for-space-exploration/.
```