Отчет о выполнении работы №2.3.1 Получение и измерение вакуума

Воейко Андрей Александрович, Б01–109 Долгопрудный, 2022

1 Аннотация.

В работе регистрируется концентрация геллия и воздуха от временис помощью датчиков теплопроводности при разных начальных давлениях смеси газов. Также в ней определятеся коэффицент диффузии по резльтатам измерений.

2 Теоретические сведения и описание установки.

Диффузией называется самопроизвольное перемешивание молекул, происходящее вследствие их теплового движения. Соответственно, в жидкостях она происходят быстрее, чем в твердых телах, но медленне. чем в газообразных веществах. Диффузия молекул одного рода называется самодиффузией, а перемешивание разных молекул — взаимной диффузией.

Для исследования взаимной диффузии газов и определения коэффицента диффузии используется установка, изображенная на рисунке 3.2. Два сосуда с объемами $V_1 = 1200 \pm 30 \text{ см}^3$ и $V_2 = 1200 \pm 30 \text{ см}^3$ соединены трубкой длины l и сечения S, причем $l/S = 5.5 \pm 0.5 \text{ см}^{-1}$. Сосуды заполнены смесь. двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии концентрация компонентов в обоих сосудах с течением времени выравнивается. Рассмотрим процесс выравнивания концентрации. Пусть концентрации

Рис. 1: Схема экспериментальной установки.

одного из компонентов смеси в сосудах V_1 и V_2 равны n_1 и n_2 . Плотность диффузионного потока любого компонента (т. е. количество вещества,

проходящее в единицу времени через единичную поверхность) определяется законом Фика:

$$j = -D\frac{\delta n}{\delta x},\tag{1}$$

где D — коэффицента взаимной диффузии газов, а j — плотность потока частиц. В наших условиях решение задачи упрощается благодаря тому, что объем соединительной трубки мал по сравнению с объемами сосудов, а концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему. Диффузионный поток в любои сечении трубки одинаков. Поэтому $J = DS(\delta n/\delta x)$ не меняется вдоль трубки. Следовательно,

$$J = -DS \, \frac{n_1 - n_2}{l}.\tag{2}$$

Обохначим через Δn_1 и Δn_2 изменения концентрации в объемах V_1 и V_2 за время Δt . Тогда $V_1\Delta n_1$ равно измерению количества компонента в объеме V_1 , а $V_2\Delta n_2$ — измерению количества того компонента в V_2 . Из закона сохранения везества следует, что $V_1n_1+V_2n_2=$ const, откуда $V_1\Delta n_1=-V_2\Delta n_2$. Эти изменения происходят вследствие диффузии, поэтому

$$V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t = -DS \frac{n_1 - n_2}{l} \Delta t. \tag{3}$$

Деля это равенство на Δt , получаем

$$V_1 \frac{dn_1}{dt} = -DS \frac{n_1 - n_2}{l}, \quad V_2 \frac{dn_2}{dt} = DS \frac{n_1 - n_2}{l}.$$
 (4)

Разделив уравнения на V_1 и V_2 соответственно, и вычитая одно из другого, получаем

$$\frac{dn_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS\left(\frac{1}{V_1} + \frac{1}{V_1}\right). \tag{5}$$

Введем новую переменную $n_1 - n_2$.

$$\frac{d(n_1 - n_1)}{dt} = -\frac{n_1 - n_2}{l} DS\left(\frac{1}{V_1} + \frac{1}{V_1}\right),\,$$

$$fracd(n_1 - n_1)n_1 - n_2 = -\frac{DS}{l}\left(\frac{1}{V_1} + \frac{1}{V_1}\right)dt.$$

Теперь уравнение можно проинтегрировать

$$n_1 - n_2 = (n_1 - n_2)_0 e^{-t/\tau},$$
 (6)

где $(n_1 - n_2)_0$ — разность концентраций в начальный момент времени,

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{DS}.\tag{7}$$

Формула 6 показывает, что разность концентраций убывает по экспоненциальному закону, и тем быстрее, чем меньше τ (постоянная времени процесса). Как видно, величина τ определяется геометрическими размерами установки (l, S, V_1, V_2) и величиной коэффицента диффузии D. Для измерения концентраций в данной установке применяются датчики теплопроводности D_1 , D_2 (см рис. 3.2) и используется зависимость теплопроводности газовой смеси от ее состава. Тонкая проволочка радиуса $r_{\rm np}$, протянутая вдоль оси стеклянного цилиндра радиуса $R_{\rm q}$, нагревается током. Тепло от проволочки к стенке цилиндра перерходят главным образом вследствие теплопроводности газа, находящегося внутри цилиндра. Количества тепла, передающееся стенке в единицу времени, получим по формуле

$$Q = \varkappa \frac{2\pi L}{\ln(R_{\text{II}}/r_{\text{IIP}})} (T_1 - T_2), \tag{8}$$

где \varkappa — теплопроводность, L — длина нити, T_1 , T_2 — температуры проволочки и стенки. При заданном режтиме нагревания ($Q={\rm const}$) температура проволочки и соответственно ее сопротивление определяются теплопроводностью газ и, следовательно, ее составом.

Для измерения разности концентраций газов используется мостовая схема (рис. 2).

Здесь D_1 и D_2 — датчики теплопроводности, расположенные а сосудах V_1 и V_2 . Сопротивления R_1 , R_2 и R служат для установки прибора на нуль (балансировка моста). В одну из диагоналей моста включен гальванометр, к другой подключается небольшое постоянное напряжение. В одну из диагоналей моста включен гальванометр, к другой подключается небольшое постоянное напряжение. Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью. При заполнении сосудов свесями различного состава возникает «разбаланс» моста, зависящий от разности концентраций.

Рис. 2: Принципиальная схема моста.

Зависимости теплопроводности смеси газов от ее состава, вообще говоря, довольно сложна, но при достаточно малых изменениях концентрации ($\sim 15\%$) величину тока можно считать прямо пропорциональной разности концентраций (в этом случае поправка не превышает 0.5%).

В процессе диффузии разность концентраций убывает по закону 6. По тому же закону изменяются и показания гальванометра.

$$V = V_0 e^{-t/\tau}, (9)$$

где V — напряжение, показываемое гальванометром в текущий момент времени, V_0 — показываемое в начальный момент времени.

3 Результаты измерений и обработка данных.

3.1 Первая серия измерений $(P_1 = 38.8 \text{ торр})$.

Очистим установку от всех газов, которые там есть. Затем запускаем воздух при давлении $P_1=38,8$ торр. В сосуд V_1 к воздуху добавим некоторое количество гелия. Теперь уравняем давления, открыв краны K_1 и K_2 . Диффузия здесь будет происходить довольно медленно, и к тому в нашей работе исследутся закон, описывающий изменение разницы давлений.

Теперь откроем кран K_3 и начнем измерения. Результаты представленны в таблицах 1 и 2. По результатам измерений построим график.

Рис. 3: График результатов измерения зависимости V от времени в первой серии измерений (P=38.8 торр).

3.2 Вторая серия измерений ($P_2 = 83.5$ торр).

Повторим измерения для давления $P_2=83.5$ торр. Результаты представленны в таблицах 3, 4, 5, 6, 7. По результатам измерений построим график.

Рис. 4: График результатов измерения зависимости V от времени в первой серии измерений ($P=38.8~{
m topp}$).

№	t, c	<i>V</i> , мВ	No॒	t, c	<i>V</i> , мВ	№	t, c	V, MB
1	1,042	16,02	83	83,042	12,71	165	165,042	10,01
2	2,042	15,95	84	84,042	12,73	166	166,042	9,94
3	3,042	15,93	85	85,042	12,74	167	167,042	9,94
4	4,042	15,86	86	86,042	12,72	168	168,042	9,96
5	5,042	15,79	87	87,042	12,73	169	169,042	9,91
6	6,042	15,75	88	88,042	12,64	170	170,042	9,88
7	7,042	15,72	89	89,042	12,57	171	171,042	9,82
8	8,042	15,75	90	90,042	12,55	172	172,042	9,77
9	9,042	15,73	91	91,042	12,50	173	173,042	9,75
10	10,042	15,62	92	92,042	12,45	174	174,042	9,66
11	11,042	$15,\!56$	93	93,042	12,41	175	175,042	9,64
12	12,042	15,49	94	94,042	12,42	176	176,042	9,63
13	13,042	15,40	95	95,042	12,46	177	177,042	9,61
14	14,042	15,38	96	96,042	12,39	178	178,042	9,59
15	15,042	$15,\!33$	97	97,042	12,30	179	179,042	9,57
16	16,042	$15,\!29$	98	98,042	12,24	180	180,042	9,58
17	17,042	15,30	99	99,042	12,14	181	181,042	9,58
18	18,042	$15,\!20$	100	100,042	12,11	182	182,042	9,54
19	19,042	15,07	101	101,042	12,05	183	183,042	9,51
20	20,042	14,99	102	102,042	12,05	184	184,042	9,52
21	21,042	15,00	103	103,042	12,03	185	185,042	9,46
22	22,042	14,90	104	104,042	12,05	186	186,042	9,44
23	23,042	14,87	105	105,042	12,03	187	187,042	9,41
24	24,042	14,89	106	106,042	11,89	188	188,042	9,37
25	25,042	14,88	107	107,042	11,82	189	189,042	9,36
26	26,042	14,88	108	108,042	11,79	190	190,042	9,43
27	27,042	14,82	109	109,042	11,78	191	191,042	9,41
28	28,042	14,71	110	110,042	11,73	192	192,042	9,34
29	29,042	14,63	111	111,042	11,69	193	193,042	9,33
30	30,042	$14,\!55$	112	112,042	11,70	194	194,042	9,32
31	31,042	$14,\!52$	113	113,042	11,63	195	195,042	9,29
32	32,042	14,51	114	114,042	11,59	196	196,042	9,26
33	33,042	14,50	115	115,042	11,58	197	197,042	9,20
34	34,042	14,48	116	116,042	11,56	198	198,042	9,16
35	35,042	14,48	117	117,042	11,55	199	199,042	9,15
36	36,042	14,44	118	118,042	11,58	200	200,042	9,07
37	37,042	14,42	119	119,042	11,57	201	201,042	9,03
38	38,042	14,38	120	120,042	11,51	202	202,042	9,07
39	39,042	14,32	121	121,042	11,44	203	203,042	9,02
40	40,042	14,25	122	122,042	11,42	204	204,042	8,95
41	41,042	14,16	123	123,042	11,37	205	205,042	8,97
Nº	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ	No	t, c	V, мВ

Таблица 1: Результаты измерения зависимости V от времени в первой серии измерений ($P=38,\!8$ торр). 7

№	t, c	<i>V</i> , мВ	№	t, c	<i>V</i> , мВ	Nº	t, c	<i>V</i> , мВ
42	42,042	14,06	124	124,042	11,32	206	206,042	8,95
43	43,042	14,03	125	125,042	11,34	207	207,042	8,95
44	44,042	14,06	126	126,042	11,30	208	208,042	8,95
45	45,042	14,03	127	127,042	11,28	209	209,042	8,91
46	46,042	13,99	128	128,042	11,29	210	210,042	8,91
47	47,042	13,94	129	129,042	11,26	211	211,042	8,82
48	48,042	13,96	130	130,042	11,18	212	212,042	8,72
49	49,042	13,94	131	131,042	11,13	213	213,042	8,71
50	50,042	13,88	132	132,042	11,12	214	214,042	8,71
51	51,042	13,84	133	133,042	11,15	215	215,042	8,70
52	52,042	13,80	134	134,042	11,17	216	216,042	8,75
53	53,042	13,78	135	135,042	11,08	217	217,042	8,71
54	54,042	13,77	136	136,042	10,96	218	218,042	8,69
55	55,042	13,70	137	137,042	10,92	219	219,042	8,66
56	56,042	13,66	138	138,042	10,82	220	220,042	8,66
57	57,042	13,62	139	139,042	10,81	221	$221,\!042$	8,66
58	58,042	13,56	140	140,042	10,75	222	$222,\!042$	8,56
59	59,042	13,50	141	141,042	10,76	223	$223,\!042$	8,51
60	60,042	13,50	142	142,042	10,75	224	224,042	8,54
61	61,042	13,45	143	143,042	10,77	225	$225,\!042$	8,52
62	62,042	13,50	144	144,042	10,82	226	226,042	8,46
63	63,042	13,42	145	145,042	10,77	227	227,042	8,49
64	64,042	13,39	146	146,042	10,69	228	228,042	8,45
65	65,042	13,33	147	147,042	10,65	229	229,042	8,43
66	66,042	13,27	148	148,042	10,66	230	230,042	8,40
67	67,042	13,26	149	149,042	10,63	231	231,042	8,31
68	68,042	13,21	150	150,042	10,57	232	232,042	8,33
69	69,042	13,13	151	151,042	10,55	233	233,042	8,34
70	60,042	13,10	152	152,042	10,61	234	234,042	8,30
71	61,042	13,06	153	153,042	10,58	235	235,042	8,28
72	72,042	13,03	154	154,042	10,53	236	236,042	8,21
73	73,042	13,01	155	155,042	10,51	237	237,042	8,17
74	74,042	13,01	156	156,042	10,37	238	238,042	8,19
75	75,042	12,98	157	157,042	10,31	239	239,042	8,15
76	76,042	12,95	158	158,042	10,20	240	240,042	8,15
77	77,042	12,96	159	159,042	10,16	241	241,042	8,11
78	78,042	12,96	160	160,042	10,15	242	242,042	8,05
79	79,042	12,90	161	161,042	10,13	243	243,042	8,17
80	80,042	12,83	162	162,042	10,12	244	244,042	8,08
81	81,042	12,76	163	163,042	10,09	245	245,042	8,02
82	82,042	12,68	164	164,042	10,05	246	246,042	7,92
Nº	t, c	V, мВ	$\mathcal{N}_{\overline{\mathbf{o}}}$	t, c	V, мВ	No॒	t, c	V, мВ

Таблица 2: Результаты измерения зависимости V от времени в первой серии измерений ($P=38,\!8$ торр). $_8$

Nº	t, c	<i>V</i> , мВ	No॒	t, c	<i>V</i> , мВ	№	t, c	V, мВ
1	0,000	16,02	183	181,867	12,71	365	165,867	10,01
2	0,966	16,02	184	182,867	12,71	366	165,867	10,01
3	1,901	16,02	185	183,867	12,71	367	165,867	10,01
4	2,867	16,02	186	184,042	12,71	368	165,042	10,01
5	3,867	16,02	187	185,867	12,71	369	165,867	10,01
6	4,867	16,02	188	186,867	12,71	370	165,867	10,01
7	5,867	16,02	189	187,867	12,71	371	165,867	10,01
8	6,867	16,02	190	188,867	12,71	372	$165,\!867$	10,01
9	7,867	16,02	191	189,867	12,71	373	$165,\!867$	10,01
10	8,867	16,02	192	190,867	12,71	374	$165,\!867$	10,01
11	9,867	16,02	193	191,867	12,71	375	$165,\!867$	10,01
12	10,867	16,02	194	192,867	12,71	376	$165,\!867$	10,01
13	11,867	16,02	195	193,867	12,71	377	$165,\!867$	10,01
14	12,867	16,02	196	194,867	12,71	378	$165,\!867$	10,01
15	13,867	16,02	197	195,867	12,71	379	$165,\!867$	10,01
16	14,867	16,02	198	$196,\!867$	12,71	380	$165,\!867$	10,01
17	15,867	16,02	199	$197,\!867$	12,71	381	$165,\!867$	10,01
18	16,867	16,02	200	198,867	12,71	382	$165,\!867$	10,01
19	17,867	16,02	201	199,867	12,71	383	$165,\!867$	10,01
20	18,867	16,02	202	200,867	12,71	384	$165,\!867$	10,01
21	19,867	16,02	203	201,867	12,71	385	$165,\!867$	10,01
22	20,867	16,02	204	202,867	12,71	386	$165,\!867$	10,01
23	21,867	16,02	205	203,867	12,71	387	$165,\!867$	10,01
24	22,867	16,02	206	204,867	12,71	388	$165,\!867$	10,01
25	23,867	16,02	207	$205,\!867$	12,71	389	$165,\!867$	10,01
26	24,867	16,02	208	206,867	12,71	390	$165,\!867$	10,01
27	25,867	16,02	209	207,867	12,71	391	$165,\!867$	10,01
28	26,867	16,02	200	208,867	12,71	392	$165,\!867$	10,01
29	27,867	16,02	211	209,867	12,71	393	$165,\!867$	10,01
30	28,867	16,02	212	200,867	12,71	394	$165,\!867$	10,01
31	29,867	16,02	213	211,867	12,71	395	165,867	10,01
32	30,867	16,02	214	212,867	12,71	396	165,867	10,01
33	31,867	16,02	215	213,867	12,71	397	165,867	10,01
34	32,867	16,02	216	214,867	12,71	398	165,867	10,01
35	33,867	16,02	217	215,867	12,71	399	165,867	10,01
36	34,867	16,02	218	216,867	12,71	400	165,867	10,01
37	35,042	16,02	219	217,867	12,71	401	165,867	10,01
38	36,042	16,02	220	218,867	12,71	402	165,867	10,01
39	37,042	16,02	221	219,867	12,71	403	165,867	10,01
40	38,042	16,02	222	220,867	12,71	404	165,867	10,01
41	39,042	16,02	223	221,867	12,71	405	165,867	10,01
Nº	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ	No	t, c	V, мВ

Таблица 3: Результаты измерения зависимости V от времени во второй серии измерений (P=83,5 торр). $_9$

Nº	t, c	<i>V</i> , мВ	№	t, c	<i>V</i> , мВ	№	t, c	V, мВ
42	40,867	16,02	224	222,867	12,71	406	165,867	10,01
43	41,867	16,02	225	223,867	12,71	407	165,867	10,01
44	42,867	16,02	226	224,867	12,71	408	165,867	10,01
45	43,867	16,02	227	225,867	12,71	409	165,867	10,01
46	44,867	16,02	228	226,867	12,71	410	165,867	10,01
47	45,867	16,02	229	227,867	12,71	411	165,867	10,01
48	46,867	16,02	230	228,867	12,71	412	165,867	10,01
49	47,867	16,02	231	229,867	12,71	413	165,867	10,01
50	48,867	16,02	232	230,867	12,71	414	165,867	10,01
51	49,867	16,02	233	231,867	12,71	415	$165,\!867$	10,01
52	50,867	16,02	234	232,867	12,71	416	$165,\!867$	10,01
53	51,867	16,02	235	233,867	12,71	417	$165,\!867$	10,01
54	52,867	16,02	236	234,867	12,71	418	$165,\!867$	10,01
55	53,867	16,02	237	235,867	12,71	419	$165,\!867$	10,01
56	54,867	16,02	238	$236,\!867$	12,71	420	$165,\!867$	10,01
57	55,867	16,02	239	$237,\!867$	12,71	421	$165,\!867$	10,01
58	56,867	16,02	240	$238,\!867$	12,71	422	$165,\!867$	10,01
59	57,867	16,02	241	$239,\!867$	12,71	423	$165,\!867$	10,01
60	58,867	16,02	242	$240,\!867$	12,71	424	$165,\!867$	10,01
61	59,867	16,02	243	$241,\!867$	12,71	425	$165,\!867$	10,01
62	60,867	16,02	244	$242,\!867$	12,71	426	$165,\!867$	10,01
63	61,867	16,02	245	$243,\!867$	12,71	427	$165,\!867$	10,01
64	62,867	16,02	246	$244,\!867$	12,71	428	$165,\!867$	10,01
65	63,867	16,02	247	$245,\!867$	12,71	429	$165,\!867$	10,01
66	64,867	16,02	248	$246,\!867$	12,71	430	$165,\!867$	10,01
67	65,867	16,02	249	$247,\!867$	12,71	431	$165,\!867$	10,01
68	66,867	16,02	250	$248,\!867$	12,71	432	$165,\!867$	10,01
69	67,867	16,02	251	$249,\!867$	12,71	433	$165,\!867$	10,01
70	68,867	16,02	252	$250,\!867$	12,71	434	$165,\!867$	10,01
71	69,867	16,02	253	251,867	12,71	435	$165,\!867$	10,01
72	70,867	16,02	254	$252,\!867$	12,71	436	$165,\!867$	10,01
73	71,867	16,02	255	$253,\!867$	12,71	437	$165,\!867$	10,01
74	72,867	16,02	256	254,867	12,71	438	$165,\!867$	10,01
75	73,867	16,02	257	255,867	12,71	439	$165,\!867$	10,01
76	74,867	16,02	258	256,867	12,71	440	$165,\!867$	10,01
77	75,867	16,02	259	257,867	12,71	441	165,867	10,01
78	76,867	16,02	260	258,867	12,71	442	165,867	10,01
79	77,867	16,02	261	259,867	12,71	443	165,867	10,01
80	78,867	16,02	262	260,867	12,71	444	165,867	10,01
81	79,867	16,02	263	261,867	12,71	445	165,867	10,01
82	80,867	16,02	264	262,867	12,71	446	165,867	10,01
Nº	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ

Таблица 4: Результаты измерения зависимости V от времени во второй серии измерений ($P=83.5~{
m topp}$). 10

No	t, c	<i>V</i> , мВ	Ŋ <u>o</u>	t, c	<i>V</i> , мВ	No॒	t, c	<i>V</i> , мВ
83	81,867	16,02	265	263,867	12,71	447	165,867	10,01
84	81,867	16,02	266	264,867	12,71	448	165,867	10,01
85	83,867	16,02	267	265,867	12,71	449	165,867	10,01
86	84,867	16,02	268	266,867	12,71	450	165,867	10,01
87	85,867	16,02	269	267,867	12,71	451	165,867	10,01
88	86,867	16,02	270	268,867	12,71	452	165,867	10,01
89	87,867	16,02	271	269,867	12,71	453	$165,\!867$	10,01
90	88,867	16,02	272	270,867	12,71	454	165,867	10,01
91	89,867	16,02	273	271,867	12,71	455	$165,\!867$	10,01
92	90,867	16,02	274	272,867	12,71	456	$165,\!867$	10,01
93	91,867	16,02	275	273,867	12,71	457	$165,\!867$	10,01
94	92,867	16,02	276	274,867	12,71	458	$165,\!867$	10,01
95	93,867	16,02	277	275,867	12,71	459	$165,\!867$	10,01
96	94,867	16,02	278	276,867	12,71	460	$165,\!867$	10,01
97	95,867	16,02	279	277,867	12,71	461	$165,\!867$	10,01
98	96,867	16,02	280	278,867	12,71	462	$165,\!867$	10,01
99	97,867	16,02	281	279,867	12,71	463	$165,\!867$	10,01
100	98,867	16,02	282	280,867	12,71	464	$165,\!867$	10,01
101	99,867	16,02	283	281,867	12,71	465	$165,\!867$	10,01
102	100,867	16,02	284	282,867	12,71	466	$165,\!867$	10,01
103	101,867	16,02	285	283,867	12,71	467	$165,\!867$	10,01
104	102,867	16,02	286	284,867	12,71	468	$165,\!867$	10,01
105	103,867	16,02	287	285,867	12,71	469	$165,\!867$	10,01
106	104,867	16,02	288	286,867	12,71	470	$165,\!867$	10,01
107	105,867	16,02	289	287,867	12,71	471	$165,\!867$	10,01
108	106,867	16,02	290	288,867	12,71	472	$165,\!867$	10,01
109	107,867	16,02	291	289,867	12,71	473	$165,\!867$	10,01
110	108,867	16,02	292	290,867	12,71	474	$165,\!867$	10,01
111	109,867	16,02	293	291,867	12,71	475	$165,\!867$	10,01
112	110,867	16,02	294	292,867	12,71	476	$165,\!867$	10,01
113	111,867	16,02	295	293,867	12,71	477	$165,\!867$	10,01
114	112,867	16,02	296	294,867	12,71	478	165,867	10,01
115	113,867	16,02	297	295,867	12,71	479	$165,\!867$	10,01
116	114,867	16,02	298	296,867	12,71	480	165,867	10,01
117	115,867	16,02	299	297,867	12,71	481	165,867	10,01
118	116,867	16,02	300	298,867	12,71	482	165,867	10,01
119	117,867	16,02	301	299,867	12,71	483	165,867	10,01
120	118,867	16,02	302	300,867	12,71	484	165,867	10,01
121	119,867	16,02	303	301,867	12,71	485	165,867	10,01
122	120,867	16,02	304	302,867	12,71	486	165,867	10,01
123	121,867	16,02	305	303,867	12,71	487	165,867	10,01
$N_{\overline{0}}$	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ	No॒	t, c	V, мВ

Таблица 5: Результаты измерения зависимости V от времени во второй серии измерений ($P=83,5\ \mathrm{topp}$). 11

№	t, c	<i>V</i> , мВ	№	t, c	<i>V</i> , мВ	No	t, c	V, мВ
124	122,867	16,02	306	304,867	12,71	488	165,867	10,01
125	123,867	16,02	307	305,867	12,71	489	165,867	10,01
126	124,867	16,02	318	306,867	12,71	490	165,867	10,01
127	125,867	16,02	309	307,867	12,71	491	165,867	10,01
128	126,867	16,02	310	318,867	12,71	492	165,867	10,01
129	127,867	16,02	311	309,867	12,71	493	165,867	10,01
130	128,867	16,02	312	310,867	12,71	494	165,867	10,01
131	129,867	16,02	313	311,867	12,71	495	165,867	10,01
132	130,867	16,02	314	312,867	12,71	496	165,867	10,01
133	131,867	16,02	315	313,867	12,71	497	165,867	10,01
134	132,867	16,02	316	314,867	12,71	498	165,867	10,01
135	133,867	16,02	317	315,867	12,71	499	165,867	10,01
136	134,867	16,02	318	316,867	12,71	500	$165,\!867$	10,01
137	$135,\!867$	16,02	319	317,867	12,71	501	$165,\!867$	10,01
138	136,867	16,02	320	318,867	12,71	502	$165,\!867$	10,01
139	137,867	16,02	321	319,867	12,71	503	$165,\!867$	10,01
140	138,867	16,02	322	320,867	12,71	504	$165,\!867$	10,01
141	$139,\!867$	16,02	323	321,867	12,71	505	$165,\!867$	10,01
142	$140,\!867$	16,02	324	322,867	12,71	506	$165,\!867$	10,01
143	$141,\!867$	16,02	325	323,867	12,71	507	$165,\!867$	10,01
144	$142,\!867$	16,02	326	324,867	12,71	508	165,867	10,01
145	$143,\!867$	16,02	327	325,867	12,71	509	$165,\!867$	10,01
146	$144,\!867$	16,02	328	326,867	12,71	510	165,867	10,01
147	$145,\!867$	16,02	329	327,867	12,71	511	$165,\!867$	10,01
148	$146,\!867$	16,02	330	328,867	12,71	512	$165,\!867$	10,01
149	$147,\!867$	16,02	331	329,867	12,71	513	$165,\!867$	10,01
150	148,867	16,02	332	330,867	12,71	514	$165,\!867$	10,01
151	$149,\!867$	16,02	333	331,867	12,71	515	$165,\!867$	10,01
152	$150,\!867$	16,02	334	332,867	12,71	516	$165,\!867$	10,01
153	151,867	16,02	335	333,867	12,71	517	165,867	10,01
154	152,867	16,02	336	334,867	12,71	518	165,867	10,01
155	153,867	16,02	337	335,867	12,71	519	165,867	10,01
156	154,867	16,02	338	336,867	12,71	520	165,867	10,01
157	155,867	16,02	339	337,867	12,71	521	165,867	10,01
158	156,867	16,02	340	338,867	12,71	522	165,867	10,01
159	157,867	16,02	341	339,867	12,71	523	165,867	10,01
160	158,867	16,02	342	340,867	12,71	524	165,867	10,01
161	159,867	16,02	343	341,867	12,71	525	165,867	10,01
162	160,867	16,02	344	342,867	12,71	526	165,867	10,01
163	161,867	16,02	345	343,867	12,71	527	165,867	10,01
164	162,867	16,02	346	344,867	12,71	528	165,867	10,01
$N_{\overline{0}}$	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ

$N_{\overline{0}}$	t, c	V, мВ	No	t, c	V, мВ	No	t, c	V, мВ
165	163,867	16,02	347	345,867	12,71	529	$165,\!867$	10,01
166	164,867	16,02	348	$346,\!867$	12,71	530	$165,\!867$	10,01
167	165,867	16,02	349	$347,\!867$	12,71	531	$165,\!867$	10,01
168	166,867	16,02	350	$348,\!867$	12,71	532	$165,\!867$	10,01
169	167,867	16,02	351	$349,\!867$	12,71	533	$165,\!867$	10,01
170	168,867	16,02	352	$350,\!867$	12,71	534	$165,\!867$	10,01
171	169,867	16,02	353	$351,\!867$	12,71	535	$165,\!867$	10,01
172	170,867	16,02	354	$352,\!867$	12,71	536	$165,\!867$	10,01
173	171,867	16,02	355	$353,\!867$	12,71	537	$165,\!867$	10,01
174	172,867	16,02	356	$354,\!867$	12,71	538	$165,\!867$	10,01
175	173,867	16,02	357	$355,\!867$	12,71	539	$165,\!867$	10,01
176	174,867	16,02	358	$356,\!867$	12,71	540	$165,\!867$	10,01
177	175,867	16,02	359	$357,\!867$	12,71	541	$165,\!867$	10,01
178	176,867	16,02	360	$358,\!867$	12,71	542	$165,\!867$	10,01
179	177,867	16,02	361	$359,\!867$	12,71	543	$165,\!867$	10,01
180	178,867	16,02	362	$360,\!867$	12,71	544	$165,\!867$	10,01
181	179,867	16,02	363	$361,\!867$	12,71	545	$165,\!867$	10,01
182	180,867	16,02	363	83,867	12,71			
Nº	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ	$N_{\overline{0}}$	t, c	V, мВ

Таблица 7: Результаты измерения зависимости V от времени во второй серии измерений $(P=83.5\ \mathrm{topp}).$