modèle aléatoire

Statistiq locale de niveaux

Statistiques spectrales pour des systèmes aléatoires dans le régime localisé

Trinh Tuan Phong Encadrant: Prof. Frédéric Klopp, IMJ, Université de Paris 6

Laboratoire Analyse, Géométrie et Applications

Journée de l'école doctorale-Bobigny 06 Juin 2012

Statistiques spectrales pour des systèmes aléatoires

modèle aléatoire discret

Statistique locale des niveaux

Figure: réseau \mathbb{Z}^d

modèle aléatoire discret

Statistiquo locale des niveaux

- **1** Modèle d'Anderson discret dans $l^2(\mathbb{Z}^d)$:
 - $H_{\omega} = -\Delta + V_{\omega}$.
 - ullet $-\Delta$: Laplacien discret.
 - V_{ω} : matrice diagonale dont les coefficients sont des v.a. i.i.d. avec une distribution assez régulière.

- **1** Modèle d'Anderson discret dans $l^2(\mathbb{Z}^d)$:
 - $H_{\omega} = -\Delta + V_{\omega}$.
 - $\bullet \ -\Delta : Laplacien \ discret.$
 - V_{ω} : matrice diagonale dont les coefficients sont des v.a. i.i.d. avec une distribution assez régulière.
- ② $\Lambda = [-L, L]^d$ un cube dans $\mathbb{Z}^d \Longrightarrow H_{\omega}(\Lambda)$. Laisser $|\Lambda| \to +\infty$.

- **1** Modèle d'Anderson discret dans $l^2(\mathbb{Z}^d)$:
 - $H_{\omega} = -\Delta + V_{\omega}$.
 - \bullet $-\Delta$: Laplacien discret.
 - V_{ω} : matrice diagonale dont les coefficients sont des v.a. i.i.d. avec une distribution assez régulière.
- $A = [-L, L]^d$ un cube dans $\mathbb{Z}^d \Longrightarrow H_{\omega}(\Lambda)$. Laisser $|\Lambda| \to +\infty$.

$$egin{bmatrix} \omega_{-L} & 1 & 0 & \dots & 1 \ 1 & \omega_{-L+1} & 1 & \dots & 0 \ dots & dots & dots & \dots & 1 \ 1 & 0 & \dots & 1 & \omega_L \end{bmatrix}$$

Statistiques spectrales pour des systèmes aléatoires

• $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.

Statistique locale des niveaux

- $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.
- Soit E une énergie dans le régime localisé.

- $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.
- Soit E une énergie dans le régime localisé.
- Niveaux renormalisés en E :

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E).$$

- $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.
- Soit E une énergie dans le régime localisé.
- Niveaux renormalisés en E :

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E).$$

Le processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ les valeurs propres de $H_{\omega}(\Lambda)$.
- Soit E une énergie dans le régime localisé.
- Niveaux renormalisés en E :

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E).$$

• Le processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

Theorem (Le résultat typique et important)

Sous quelques hypothèses appropriées, avec la probabilité 1,

$$\Sigma(\xi, E, \omega, \Lambda) \rightarrow un \text{ processus de Poisson}$$

guand $|\Lambda| \to +\infty$.

Statistiques spectrales pour des systèmes aléatoires

Statistique locale des niveaux

MERCI POUR VOTRE ATTENTION!