"Machine Learning and Computational Statistics"

6th Homework

Exercise 1:

Consider the model $x=\mu+\eta$ ($x,\mu,\eta\in R$) and a set of measurements $Y=\{x_1,x_2,...,x_N\}$, which are noisy versions of μ . Assume that we have prior knowledge about μ saying that it lies close to μ_0 . Formulating the ridge regression problem as follows

min
$$J(\mu) = \sum_{n=1}^{N} (x_n - \mu)^2$$
,

subject to
$$(\mu - \mu_0)^2 \le \rho$$

Prove that

$$\hat{\mu}_{RR} = \frac{\sum_{n=1}^{N} x_n + \lambda \mu_0}{N + \lambda}$$

where λ is a user defined parameter.

<u>Hint:</u> Define the Lagrangian function $L(\mu) = \sum_{n=1}^{N} (x_n - \mu)^2 + \lambda((\mu - \mu_0)^2 - \rho)$ (λ is the Lagrange multiplier corresponding to the constraint).

Exercise 2:

Consider the case where the data at hand are modeled by a pdf of the form

$$p(x) = \sum_{j=1}^{m} P_j p(x \mid j), \quad \sum_{j=1}^{m} P_j = 1, \quad \int_{-\infty}^{+\infty} p(x \mid j) = 1$$

where P_j , j=1,...,m, are the a priori probabilities of the pdfs p(x|j), which involved in the definition of p(x). In the "parameter updating" part of the EM-algorithm, which allows the estimation of the parameters of p(x|j)'s as well as P_j 's, we need to solve the problem

$$[P_1, P_2, ..., P_m] = argmax_{[P_1, P_2, ..., P_m]} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) \ln P_i$$
, subject to $\sum_{i=1}^{m} P_i = 1$,

for fixed $P(j|x_i)$'s (see also slide 6 of the 6th Lecture). Prove that, independently of the form adopted for each p(x|j), the solution of the above problem is

$$P_{j} = \frac{1}{N} \sum_{i=1}^{N} P(j|x_{i}), j = 1, ..., m.$$

Hint: In this case we have an equality constraint. Work as follows:

- 1. Define the Lagrangian function $L(P_1,P_2,\ldots,P_m)=\sum_{i=1}^N\sum_{j=1}^mP(j|\boldsymbol{x_i})\ln P_j+\lambda(\sum_{j=1}^mP_j-1),$
- 2. Solve the equations $\frac{\partial L(P_1,P_2,...,P_m)}{\partial P_j}=0, j=1,...,m$, expressing each P_j in terms of λ .

- 3. Substitute P_j 's in the constraint equation $\sum_{j=1}^m P_j = 1$ and solve with respect to λ .
- 4. Compute P_i 's from the equations derived in step 2 above.

<u>Note:</u> In the case of equality constraints, the final solution does not involve the Lagrangian multipliers.

Exercise 3 (python code):

Consider the two data sets X_1 and X_2 contained in the attached file "HW6.mat", each one of them containing 4-dimensional data vectors, in its rows. The vectors of X_1 stem from the pdf $p_1(x)$, while those of X_2 stem from the pdf $p_2(x)$.

```
(a) Based on X_1, estimate the values of p_1(x) at the following points: x_1 = (2.01, 2.99, 3.98, 5.02) , x_2 = (20.78, -15.26, 19.38, -25.02) , x_3 = (3.08, 3.88, 4.15, 6.02).
```

```
(b) Based on X_2, estimate the values of p_2(\mathbf{x}) at the following points: \mathbf{x}_1 = (0.05, 0.15, -0.12, -0.08), \ \mathbf{x}_2 = (7.18, 7.98, 9.12, 9.94), \ \mathbf{x}_3 = (3.48, 4.01, 4.55, 4.96), \ \mathbf{x}_4 = (20.78, -15.26, 19.38, -25.02).
```

Hints:

- To load the data sets use the script "HW6.ipynb".
- Use the Sklearn.mixture.GaussianMixture class (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html), if you are willing to use Gaussian mixtures modelling.
- It could be proved useful for the modelling of each pdf to compute the mean of each data set and then to consider the distances of the data vectors from it. However, other methods can also be applied.