МП-31 Захаров Дмитро

Викладач: Півень О.Л.

§ Закон великих чисел §

Задача 1: Завдання 1

Умова. Дана послідовність незалежних випадкових величин $\{\xi_n\}_{n\in\mathbb{N}}$. Випадкова величина $\xi_n, n \geq 3$ може приймати тільки три значення $-\sqrt{n}, 0, \sqrt{n}$ з ймовірностями, що дорівнюють, відповідно $\frac{1}{n}, 1-\frac{2}{n}, \frac{1}{n}$, величини ξ_1, ξ_2 мають дисперсію. Чи можна застосувати до цієї послідовності закон великих чисел?

Розв'язання. Маємо $\mathbb{E}[\xi_n] = 0$ та $\mathrm{Var}[\xi_n] = 2$, також нехай маємо дисперсії $\sigma_i^2 = \mathrm{Var}[\xi_i], \ i \in \{1,2\}$. Тоді справедливо

$$\forall n \in \mathbb{N} : \operatorname{Var}[\xi_n] \le \max\{\sigma_1^2, \sigma_2^2, 2\} \tag{1.1}$$

Таким чином, за теоремою Чебишева, закон великих чисел застосовний.

Задача 2: Завдання 2

Умова. Дана послідовність незалежних випадкових величин $\{\xi_n\}_{n\in\mathbb{N}}$. Випадкова величина ξ_n може приймати тільки три значення $-\alpha n, 0, \alpha n \ (\alpha>0)$ з ймовірностями, що дорівнюють, відповідно (a) $\frac{1}{2n^2}, 1-\frac{1}{n^2}, \frac{1}{2n^2}, \ (\delta) \frac{1}{2^n}, 1-\frac{1}{2^{n-1}}, \frac{1}{2^n}$. Чи можна застосувати до цієї послідовності закон великих чисел?

Розв'язання.

 Πy нкm a. $\mathbb{E}[\xi_n]=0$, тому дисперсія:

$$Var[\xi_n] = (-\alpha n)^2 \cdot \frac{1}{2n^2} + (\alpha n)^2 \cdot \frac{1}{2n^2} = \alpha^2$$
 (2.1)

Таким чином, за теоремою Чебишева, закон великих чисел застосовний. Пункт б. Знову $\mathbb{E}[\xi_n] = 0$, тому дисперсія:

$$Var[\xi_n] = \frac{2 \cdot (\alpha n)^2}{2^n} = \frac{\alpha^2 n^2}{2^{n-1}}$$
 (2.2)

Легко бачити, що $\lim_{n\to\infty} \mathrm{Var}[\xi_n] = 0$, тому послідовність $\{\mathrm{Var}[\xi_n]\}_{n\in\mathbb{N}}$ обмежена, а отже за теоремою Чебишева, закон великих чисел застосовний.