

作業一

TOTAL POINTS 200

1.	Which of the following problems are best suited for machine learning?	10 points
	(i) Classifying numbers into primes and non-primes	
	(ii) Detecting potential fraud in credit card charges	
	(iii) Determining the time it would take a falling object to hit the ground	
	(iv) Determining the optimal cycle for traffic lights in a busy intersection	
	(v) Determining the age at which a particular medical test is recommended	
	(ii), (iv), and (v)	
	(i), (ii), (iii), and (iv)	
	none of the other choices	
	(i) and (ii)	
	(i), (iii), and (v)	
2	For Questions 2-5, identify the best type of learning that can be used to solve each task below.	10 points
	Play chess better by practicing different strategies and receive outcome as feedback.	
	none of other choices	
	unsupervised learning	
	reinforcement learning	
	active learning	
	supervised learning	
2	Categorize books into groups without pre-defined topics.	(10)
Э.		10 points
	reinforcement learning	
	none of other choices	
	supervised learning	
	unsupervised learning arthur learning	
	active learning	
4.	Recognize whether there is a face in the picture by a thousand face pictures and ten thousand nonface pictures.	10 points
	unsupervised learning	
	none of other choices	
	supervised learning	
	active learning reinforcement learning	
	O Telinorcement learning	
5.	Selectively schedule experiments on mice to quickly evaluate the potential of cancer medicines.	10 points
	none of other choices	TO POINCE
	unsupervised learning	
	reinforcement learning	
	supervised learning	
	active learning	
6.	Question 6-8 are about Off-Training-Set error.	10 points
		10 points
	Let $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N, \mathbf{x}_{N-1}, \dots, \mathbf{x}_{N-L}\}$ and $\mathcal{Y} = \{-1, +1\}$ (binary classification). Here the set of training examples is $\mathcal{D} = \left\{ (\mathbf{x}_n, y_n) \right\}_{n=1}^N$, where $y_n \in \mathcal{Y}$, and the set of test inputs is $\left\{ \mathbf{x}_{N-\ell} \right\}_{\ell=1}^L$. The Off-Training-Set error (OTS) with respect to an underlying target f and a hypothesis g is	
	$E_{OTS}(g,f) = rac{1}{L} \sum_{\ell=-L}^{L} \left[\left[g(\mathbf{x}_{N\!+\!\ell}) eq f(\mathbf{x}_{N\!-\!\ell}) ight] ight].$	
	ε =1	
	$\text{Consider } f(\mathbf{x}) = +1 \text{ for all } \mathbf{x} \text{ and } g(\mathbf{x}) = \left\{ \begin{array}{ll} +1, & \text{for } \mathbf{x} = \mathbf{x}_k \text{ and } k \text{ is odd and } 1 \leq k \leq N+L \\ -1, & \text{otherwise} \end{array} \right$	
	$E_{OTS}(g,f)=$? (Please note the difference between floor and ceiling functions in the choices)	
	onne of the other choices	
	$\bigcirc \ \ \tfrac{1}{L} \times \big(\big\lceil \tfrac{N+L}{2} \big\rceil - \big\lceil \tfrac{N}{2} \big\rceil \big)$	
	$\bigcirc \ \ \tfrac{1}{L} \times \big(\lfloor \tfrac{N+L}{2} \rfloor - \big\lceil \tfrac{N}{2} \big\rceil \big)$	
	$\bigcirc \ \ \tfrac{1}{L} \times \big(\big\lceil \tfrac{N+L}{2} \big\rceil - \big\lfloor \tfrac{N}{2} \big\rfloor \big)$	
7.	We say that a target function f can "generate" $\mathcal D$ in a noiseless setting if $f(\mathbf x_n)=y_n$ for all $(\mathbf x_n,y_n)\in \mathcal D$.	10 points

7. We say that a target function f can "generate" $\mathcal D$ in a noiseless setting if $f(\mathbf x_n)=y_n$ for all $(\mathbf x_n,y_n)\in\mathcal D$. 10. For all possible $f\colon\mathcal X\to\mathcal Y$, how many of them can generate $\mathcal D$ in a noiseless setting? Note that we call two functions f_1 and f_2 the same if $f_1(\mathbf x)=f_2(\mathbf x)$ for all $\mathbf x\in\mathcal X$.

	\bigcirc 2 ^N		
	none of the other choice		
		5	
	O 1		
	\odot 2 ^L		
	\bigcirc 2 ^{N+L}		
8.	. A determistic algorithm ${\cal A}$ is	defined as a procedure that takes ${\cal D}$ as an input, and outputs a hypothesis g . For any two	10 points
	deterministic algorithms \mathcal{A}_1 a probability,	and \mathcal{A}_2 , if all those f that can "generate" $\mathcal D$ in a noiseless setting are equally likely in	
	none of the other choice	s	
	$\bigcup_{\mathbb{E}_f \left\{ E_{OTS} \left(\mathcal{A}_1(\mathcal{D}), f \right) \right\}}$	$=\mathbb{E}_{f}\Big\{E_{OTS}ig(f,fig)\Big\}.$	
		$=\mathbb{E}_{f}\Big\{E_{OTS}ig(\mathcal{A}_{2}(\mathcal{D}),fig)\Big\}.$	
	For any given f that "ger	nerates" \mathcal{D}_r	
	$E_{OTS}(A_1(D), f) = E_C$	$_{OTS}(\mathcal{A}_2(\mathcal{D}),f).$	
		_	
	For any given f' that doe		
	$\{E_{OTS}(A_1(D), f')\}=$	$= \left\{ E_{OTS}ig(\mathcal{A}_2(\mathcal{D}), f'ig) ight\}.$	
9.	the fraction of orange marble	the bin model introduced in class. Consider a bin with infinitely many marbles, and let μ be as in the bin, and ν is the fraction of orange marbles in a sample of 10 marbles. If $\mu=0.5$, = μ ? Please choose the closest number.	10 points
	0.39		
	0.24		
	0.56		
	0.90		
	0.12		
10	If $\mu = 0.9$ what is the proba	bility of $ u=\mu$? Please choose the closest number.	10 points
		sing of p = p. Heast choose the closest hamber.	10 points
	0.56		
	0.39		
	0.24		
	0.12		
	0.90		
11	1. If $\mu=0.9$, what is the actual	probability of $ u \leq 0.1$?	10 points
	0.0×10^{-9}		
	\bigcirc 0.1 × 10 ⁻⁹		
	\bigcirc 8.5 \times 10 ⁻⁹		
	$\bigcirc \ 4.8 \times 10^{-9}$		
12	2. If $\mu=0.9$, what is the bound	d given by Hoeffding's Inequality for the probability of $ u \leq 0.1$?	10 points
	$\bigcirc \ 5.52 \times 10^{-4}$		
	\bigcirc 5.52 × 10 ⁻⁸		
	\bigcirc 5.52 × 10 ⁻¹⁰		
	\bigcirc 5.52 × 10 ⁻¹²		
13		hat happens with multiple bins using dice to indicate 6 bins. Please note that the dice is not om experiments in this problem. They are just used to bind the six faces together. The to drawing from the bag.	10 points
	Consider four kinds of dice in	a bag, with the same (super large) quantity for each kind.	
	A: all even numbers are color	red orange, all odd numbers are colored green	
		red green, all odd numbers are colored orange	
		orange, all large numbers (4~6) are colored green	
		green, all large numbers (4~6) are colored orange	
		g, what is the probability that we get 5 orange 1's?	
	0 1/256		
	$\bigcirc \frac{31}{256}$		
	$\bigcirc \frac{46}{256}$		
	O		

	$\frac{1}{256}$	
) 8 236	
() 31 256	
	$\frac{46}{256}$	
) none of the other choices	
	or Questions 15-20, you will play with PLA and pocket algorithm. First, we use an artificial data set to study PLA. The data	10 points
	tos://www.csje.ntu.edu.tw/-htlin/mooc/datasets/mlfound_math/hw1_15_train.dat	
	ach line of the data set contains one (\mathbf{x}_n,y_n) with $\mathbf{x}_n\in\mathbb{R}^4$. The first 4 numbers of the line contains the components of	
	in orderly, the last number is y_n .	
Pl	ease initialize your algorithm with ${f w}=0$ and take ${ m sign}(0)$ as -1 . Please always remember to add $x_0=1$ to each ${f x}_n$.	
	nplement a version of PLA by visiting examples in the naive cycle using the order of examples in the data set. Run the gorithm on the data set. What is the number of updates before the algorithm halts?	
) < 10 updates	
) 11 - 30 updates	
	31 - 50 updates	
) ≥ 201 updates	
) 51 - 200 updates	
th	nplement a version of PLA by visiting examples in fixed, pre-determined random cycles throughout the algorithm. Run e algorithm on the data set. Please repeat your experiment for 2000 times, each with a different random seed. What is eaverage number of updates before the algorithm halts?	10 points
) < 10updates	
() 11 - 30 updates	
	31 - 50 updates	
	$) \geq 201$ updates	
) 51 - 200 updates	
ch	anging the update rule to be $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta y_{n(t)} \mathbf{x}_{n(t)}$	10 points
14/	ith $\eta=0.5$. Note that your PLA in the previous Question corresponds to $\eta=1$. Please repeat your experiment for 2000	
	mes, each with a different random seed. What is the average number of updates before the algorithm halts?	
() < 10 updates	
) 11 - 30 updates	
() 11-30 updates) 31-50 updates	
	31 - 50 updates	
C 18. N	a) $31 \cdot 50$ updates $) \geq 201 \text{ updates}$ $) 51 \cdot 200 \text{ updates}$ ext, we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add	10 points
() () () () () () () () () () () () () (3 31 - 50 updates) 201 updates) 51 - 200 updates ext. we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add (e*pocket* steps to the algorithm. We will use	10 points
I8. N th	a) 31 - 50 updates) ≥ 201 updates) 51 - 200 updates ext, we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add the "pocket" steps to the algorithm. We will use ttps://www.csle.ntu.edu.tw/-htlin/mooc/datasets/mlfound_math/hw1_18_train.dat	10 points
18. N th	3 31 - 50 updates) 201 updates) 51 - 200 updates ext. we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add (e*pocket* steps to the algorithm. We will use	10 points
118. N th	3 1 - 50 updates > 201 updates > 201 updates > 51 - 200 updates ext. we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add et "pocket" steps to the algorithm. We will use ttps://www.csie.ntu.edu.tw/-htlin/mooc/datasets/milfound_math/hw1_18_train.dat t the training data set 𝒪 and	10 points
118. N th	3.1 - 50 updates ≥ 201 updates > 51 - 200 updates > 51 - 200 updates ext. we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add et "pocket" steps to the algorithm. We will use ttps://www.csie.ntu.edu.tw/-htlin/mooc/datasets/milfound_math/hw1_18_train.dat is the training data set 𝒪, and ttps://www.csie.ntu.edu.tw/-htlin/mooc/datasets/milfound_math/hw1_18_test.dat	10 points
ls. N th	3.1 - 50 updates 201 updates 51 - 200 updates 21 - 200 updates 22 - 201 updates 23 - 200 updates 24 - 200 updates 25 - 200 updates 26 - 200 updates 27 - 200 updates 28 - 200 updates 28 - 200 updates 28 - 200 updates 29 - 200 updates 29 - 200 updates 20 u	10 points
ls. N th	3.1 - 50 updates 201 updates 51 - 200 updates 21 - 200 updates 22 - 201 updates 23 - 200 updates 24 - 200 updates 25 - 200 updates 26 - 200 updates 27 - 200 updates 28 - 200 updates 28 - 200 updates 28 - 200 updates 29 - 200 updates 29 - 200 updates 20 u	10 points
ht h	3.1 - 50 updates 201 updates 51 - 200 updates 21 - 200 updates 22 - 201 updates 23 - 200 updates 24 - 200 updates 25 - 200 updates 26 - 200 updates 27 - 200 updates 28 - 200 updates 28 - 200 updates 28 - 200 updates 29 - 200 updates 29 - 200 updates 20 u	10 points
ht as for which the	3.1 - 50 updates) ≥ 201 updates ext. we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add et "pocket" steps to the algorithm. We will use ttps://www.csie.ntu.edu.tw/-htlin/mooc/datasets/milfound_math/hw1_18_train.dat is the training data set \(\mathcal{D} \). and ttps://www.csie.ntu.edu.tw/-htlin/mooc/datasets/milfound_math/hw1_18_test.dat is the test set for "verifying" the g returned by your algorithm (see lecture 4 about verifying). The sets are of the same irmat as the previous one. Run the pocket algorithm with a total of 50 updates on \(\mathcal{D} \), and verify the performance of \(\mathcal{POCKET} \) using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is it average error rate on the test set?	10 points
hth as for which the first	3.1 - 50 updates ≥ 201 updates > 1.200 updates > 51 - 200 updates > 51 - 200 updates 52 - 201 updates 53 - 201 updates 54 - 201 updates 55 - 201 updates 56 - 201 updates 57 - 201 updates 58 - 201 updates 58 - 201 updates 59 - 201 updates 50 upda	10 points
bit as for which the first	3.1 - 50 updates ≥ 201 updates > 51 - 200 updates 52 - 201 updates 53 - 201 updates 52 - 201 updates 52 - 201 updates 52 - 201 updates 53 - 201 updates 54 - 201 updates 52 - 201 updates 52 - 201 updates 53 - 201 updates 54 - 201 updates 54 - 201 updates 55 - 201 updates 56 - 201 updates 57 - 201 updates 57 - 201 updates 58 - 201 updates 59 - 201 updates 59 - 201 updates 50 - 201 u	10 points
las. N th	3.1 - 50 updates) ≥ 201 updates) 51 - 200 updates ext, we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add the "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm with 18 train.dat so the training data set \$\mathcal{D}\$, and to "pocket" steps to "pocket" using the sets are of the same armat as the previous one. Run the pocket algorithm with a total of 50 updates on \$\mathcal{D}\$, and verify the performance of the pocket using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is a verage error rate on the test set? • < 0.2 • < 0.2 • < 0.2 • < 0.4 • < 0.4 • < 0.6 • < 0.8	10 points
118. N th	3.1 - 50 updates ≥ 201 updates > 51 - 200 updates 52 - 201 updates 53 - 201 updates 52 - 201 updates 52 - 201 updates 52 - 201 updates 53 - 201 updates 54 - 201 updates 52 - 201 updates 52 - 201 updates 53 - 201 updates 54 - 201 updates 54 - 201 updates 55 - 201 updates 56 - 201 updates 57 - 201 updates 57 - 201 updates 58 - 201 updates 59 - 201 updates 59 - 201 updates 50 - 201 u	10 points
bit as for which the first	3.1 - 50 updates) ≥ 201 updates) 51 - 200 updates ext, we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add the "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm. We will use to "pocket" steps to the algorithm with 18 train.dat so the training data set \$\mathcal{D}\$, and to "pocket" steps to "pocket" using the sets are of the same armat as the previous one. Run the pocket algorithm with a total of 50 updates on \$\mathcal{D}\$, and verify the performance of the pocket using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is a verage error rate on the test set? • < 0.2 • < 0.2 • < 0.2 • < 0.4 • < 0.4 • < 0.6 • < 0.8	10 points
hit	3 1 - 50 updates ≥ 201 updates > 51 - 200 updates 51 - 200 updates 51 - 200 updates **Ext. we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add (ie "pocket" steps to the algorithm. We will use ttos://www.csie.ntu.edu.tw/-htlin/mooc/datasets/mlfound_math/hw1_18_train.dat **In the training data set **D**, and ttos://www.csie.ntu.edu.tw/-htlin/mooc/datasets/mlfound_math/hw1_18_test.dat **In the test set for "verifying" the **g returned by your algorithm (see lecture 4 about verifying). The sets are of the same rmat as the previous one. Run the pocket algorithm with a total of 50 updates on **D**, and verify the performance of **POCKET** Using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is it average error rate on the test set? • < 0.2 • < 0.2 • < 0.2 • < 0.2 • < 0.4 • < 0.4 • < 0.6 • < 0.8 **Odify your algorithm in Question 18 to return w ₅₀ (the PLA vector after 50 updates) instead of **\footnote{w}\$ (the pocket vector)	
118. N the hind asset of the h	3 1 - 50 updates 3 201 updates 5 1 - 200 updates ext. we play with the pocket algorithm. Modify your PLA in Question 16 to visit examples purely randomly, and then add or "pocket" steps to the algorithm. We will use tops://www.csie.ntu.edu.tw/-htlin/mooc/datasets/milfound_math/hw1_18_train.dat st the training data set \mathcal{D}\$, and tops://www.csie.ntu.edu.tw/-htlin/mooc/datasets/milfound_math/hw1_18_test.dat st the test set for "verifying" the g returned by your algorithm (see lecture 4 about verifying). The sets are of the same rmat as the previous one. Run the pocket algorithm with a total of 50 updates on \mathcal{D}\$, and verify the performance of \(\textit{POCKET} \) using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set? 9 < 0.2 10.2 - 0.4 10.4 - 0.6 20.8 10.6 - 0.8 10.6 - 0.8 10.6 ol 30 10.7 10.7 11.7 12.7 13.7 14.7 15.7 16.7 16.7 17.7 18.7	
118. N th	3 1 - 50 updates ≥ 201 updates > 51 - 200 updates 52 - 201 updates 53 - 200 updates 52 - 201 updates 53 - 200 updates 54 - 201 updates 54 - 201 updates 54 - 201 updates 54 - 201 updates 55 - 200 updates 52 - 201 updates 56 - 201 updates 52 - 201 updates 56 - 201 updates 52 - 201 updates 57 - 201 updates 52 - 201 updates 58 - 201 updates 52 - 201 updates 59 - 201 updates 50 updates	

 ○ 0.6 - 0.8 20. Modify your algorithm in Question 18 to run for 100 updates instead of 50, and verify the performance of w POCKET using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set? ○ < 0.2 ○ 0.2 - 0.4 ○ 0.4 - 0.6 ○ ≥ 0.8 ○ 0.6 - 0.8 I. Ching Chang, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code	
20. Modify your algorithm in Question 18 to run for 100 updates instead of 50 , and verify the performance of \mathbf{w}_{POCKET} using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set? a < 0.2 b $< 0.2 \cdot 0.4$ c $< 0.4 \cdot 0.6$ d < 0.8	
20. Modify your algorithm in Question 18 to run for 100 updates instead of 50 , and verify the performance of \mathbf{w}_{POCKET} using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set? (a) $< 0.2 \cdot 0.4$ (b) $< 0.4 \cdot 0.6$	
20. Modify your algorithm in Question 18 to run for 100 updates instead of 50 , and verify the performance of \mathbf{w}_{POCKET} using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set?	
20. Modify your algorithm in Question 18 to run for 100 updates instead of 50 , and verify the performance of \mathbf{w}_{POCKET} using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set?	
20. Modify your algorithm in Question 18 to run for 100 updates instead of 50 , and verify the performance of \mathbf{w}_{FOCKET} using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set?	
20. Modify your algorithm in Question 18 to run for 100 updates instead of 50 , and verify the performance of \mathbf{w}_{POCKET} using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average	
○ 0.6 - 0.8	
$\bigcirc \geq 0.8$	
O.4-0.6	
0.2 - 0.4	
\bigcirc < 0.2	