12. Der Existenzsatz von Peano

Definition

Sei $D \subseteq \mathbb{R}^2$, $f: D \to \mathbb{R}$ eine Funktion und $(x_0, y_0) \in D$ und $I \subseteq \mathbb{R}$ ein Intervall. Die Gleichung:

(i)
$$y(x) = y_0 + \int_{x_0}^x f(t, y(t))dt$$
 $(x \in I)$

heißt eine Integralgleichung. $y \in C(I)$ heißt eine Lösung von (i) auf $I : \iff (t, y(t)) \in D$ $\forall t \in I$ und es gilt $(i) \forall x \in I$.

Wir betrachten auch noch das AWP

(ii)
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Satz 12.1 (Zusammenhang Integral- und Differenzialgleichung)

 $D, f, (x_0, y_0)$ und I seien wie oben und $y \in C(I)$. Es sei $f \in C(D, \mathbb{R})$.

- (1) y ist eine Lösung von (i) auf $I \iff$ y ist eine Lösung von (ii) auf I
- (2) Sei I = [a, b] und $D = I \times R$. Ist $T : C(I) \to C(I)$ def. durch $(T_y)(x) := y_0 + \int_{x_0}^x f(t, y(t)) dt$, $x \in I$, so gilt: y ist eine Lösung von (ii) auf $I \iff T_y = y$

Beweis

- (1) " \Longrightarrow ": $y(x_0) = y_0$; Durch Differentation: $y'(x) = f(x, y(x)) \ \forall x \in I$ " \Leftarrow ": $y'(x) = f(t, y(t)) \ \forall t \in I \text{ und } y(x_0) = y_0 \implies \int_{x_0}^x f(t, y(t)) dt = \int_{x_0}^x y'(t) dt = y(x) y(x_0) = y(x) y_0 \ \forall x \in I$
- (2) $T_y = y \iff y \text{ löst } (i) \text{ auf } I \iff y \text{ löst } (ii) \text{ auf } I.$

Satz 12.2 (Lösungen auf Teilintervallen)

Sei $D \subseteq \mathbb{R}^2, f: D \to \mathbb{R}$ eine Funktion und $\Gamma \neq \emptyset$ (Γ ist Indexmenge). Für jedes $\gamma \in \Gamma$ sei $y_{\gamma}: I_{\gamma} \to \mathbb{R}$ (wobei $I_{\gamma} \subseteq \mathbb{R}$ ein Intervall) eine Lösung der Dgl.:

$$(+) y'(x) = f(x,y)$$

auf I_{γ}

Weiter sei $\bigcap_{\gamma \in \Gamma} I_{\gamma} \neq \emptyset$ und für je zwei Lösungen $y_{\gamma_1} : I_{\gamma_1} \to \mathbb{R}, y_{\gamma_2} : I_{\gamma_2} \to \mathbb{R}$ von (+) gelte $y_{\gamma_1} = y_{\gamma_2}$ auf $I_{\gamma_1} \cap I_{\gamma_2}$.

Setzt man $I := \bigcup_{\gamma \in \Gamma} I_{\gamma}$ und $y(x) := y_{\gamma}(x)$, falls $x \in I_{\gamma}$, so ist I ein Intervall und y eine Lösung von (+) auf I.

Beweis

Übung. ■

Folgerung 12.3

Sei $I = [a, b], S := I \times \mathbb{R}, f : S \to \mathbb{R}$ eine Funktion, $x_0 \in (a, b), y_0 \in \mathbb{R}, I_1 := [a, x_0], I_2 := [x_0, b]$ und $y_1 : I_1 \to \mathbb{R}, y_2 : I_2 \to \mathbb{R}$ seien Lösungen des AWPs

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

auf I_1 bzw I_2 . Definiert man $y: I \to \mathbb{R}$ durch

$$y(x) := \begin{cases} y_1(x), & \text{falls } x \in I_1 \\ y_2(x), & \text{falls } x \in I_2 \end{cases}$$

so ist y eine Lösung des AWPs auf I.

Satz 12.4 (Der Existenzsatz von Peano (Version I))

I und S seien wie in 12.3, $x_0 \in I, y_0 \in \mathbb{R}$ und $f \in C(S, \mathbb{R})$ sei beschränkt. Dann hat das AWP:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

eine Lösung auf I.

Wir führen zwei Beweise. In beiden sei $M := \sup\{|f(x,y)| : (x,y) \in S\}$ und $T : C(I) \to C(I)$ sei definiert durch $(T_y)(x) := y_0 + \int_{x_0}^x f(t,y(t)) \ (x \in I)$

Beweis (mit 11.3)

Sei $A \subseteq C(I)$ sei wie in 11.5 (mit obigen M). 11.5 $\Longrightarrow A \neq \emptyset$, A ist konvex und kompakt. $T: A \to C(I)$ ist stetig. Wegen 11.3 und 12.1(2) ist nur noch zu zeigen: $T(A) \subseteq A$. Sei $y \in A$. Dann $(T_y)(x_0) = y_0$. Weiter gilt

$$\forall x, \overline{x} \in I: |(T_y)(x) - (T_y)(\overline{x})| = |\int_x^{\overline{x}} \underbrace{f(t, y(t))}_{\leq M} dt| \leq M \cdot |x - \overline{x}|. \text{ Also: } T_y \in A. \text{ Somit: } T(A) \subseteq A_{\blacksquare}$$

Beweis (Nr.2)

Wir unterscheiden 3. Fälle: $x_0 = a, x_0 = b$ und $x_0 \in (a, b)$. Wir führen den Beweis nur für den Fall $x_0 = a$ (den Fall $x_0 = b$ zeigt man analog; der Fall $x_0 \in (a, b)$ folgt aus 12.3 und den ersten beiden Fällen).

Sei also $x_0 = a$. o.B.d.A. $x_0 + \frac{1}{n} = a + \frac{1}{n} \in I \ \forall n \in I$. Für $n \in \mathbb{N}$ definieren wir $z_n : (-\infty, b] \to \mathbb{R}$ durch

$$z_n(x) := \begin{cases} y_0, & \text{falls } x \le x_0 = a \\ y_0 + \int_{x_0}^x f(t, z_n(t - \frac{1}{n}) dt, & \text{falls } x \in I \end{cases}$$

Beh.: z_n ist auf I wohldefiniert.

Sei $x \in [x_0, x_0 + \frac{1}{n}]$ und $t \in [x_0, x] \implies t - \frac{1}{n} \le x - \frac{1}{n} \le x_0 \implies z_n(t - \frac{1}{n}) = y_0 \implies z_n(x) = \sum_{n=0}^{\infty} \frac{1}{n} z_n(x)$ $y_0 + \int_{x_0}^x f(t, y_0) dt$, also $z_n(x)$ ist wohldef.

Sei $x \in [x_0 + \frac{1}{n}, x_0 + \frac{2}{n}]$ und $t \in [x_0, x] \implies t - \frac{1}{n} \le x - \frac{1}{n} \in [x_0, x_0 + \frac{1}{n}] \implies z_n(t - \frac{1}{n})$ wohldef. $\implies z_n(x)$ ist wohldefiniert, etc...

Übung: $z_n \in C(-\infty, b]$.

Insbesondere: $z_n \in C(I)$. Es ist $z_n(x_0) = y_0$. Für $x, \overline{x} \in I : |z_n(x) - z_n(\overline{x})| = |\int_x^{\overline{x}} f(t, z_n(t - z_n(t)))|$ $(z_n)dt \leq M \cdot |x-\overline{x}|$. 11.4 $\implies (z_n)$ enthält eine auf I gleichmäßige konvergente Teilfolge. o.B.d.A.: (z_n) konvergiert auf I glm.

 $y(x) := \lim_{n \to \infty} z_n(x) \ (x \in I)$. AI $\implies y \in C(I)$. Also $z_n \to y$ bzgl. $\|\cdot\|_{\infty}$. $(\|z_n - y\|_{\infty} \to 0)$ $(n \to \infty)$;

$$g_n(t) := z_n(t - \frac{1}{n}) \ (t \in I). \ \forall t \in I : |g_n(t) - y(t)| = |g_n(t) - z_n(t) + z_n(t) - y(t)| \le |\underbrace{z_n(t - \frac{1}{n}) - z_n(t)}_{\leq \underline{M}}| + \underbrace{z_n(t - \frac{$$

$$|\underbrace{z_n(t) - y(t)}_{\leq ||z_n - y||_{-1}}|$$

 $\Longrightarrow \|g_n(t) - y(t)\|_{\infty} \leq \frac{M}{n} + \|z_n - y\|_{\infty} \,\forall n \in \mathbb{N} \implies g_n \to y \text{ bzgl. } \|\cdot\|_{\infty} \text{ (glm. konv.)}$ $T: C(I) \to C(I) \text{ ist stetig} \implies T_{g_n} \to T_y \text{ bzgl. } \|\cdot\|_{\infty}$ $(T_{g_n})(x) = y_0 + \int_{x_0}^x f(t, z_n(t - \frac{1}{n})) dt = z_n(x) \forall x \in I \implies T_{g_n} = z_n \text{ auf } I.$ Also $T_y = y$ und damit folgt, y löst das AWP auf I.

Satz 12.5 (Der Existenzsatz von Peano (Version II))

Es sei $I = [a, b] \subseteq \mathbb{R}, x_0 \in I, y_0 \in \mathbb{R}, s > 0$ und $R := I \times [y_0 - s, y_0 + s]$ Es sei $f \in C(R, \mathbb{R}), M := \max\{|f(x, y)| : (x, y) \in R\}$ und

 $J:=I\cap [x_0-\frac{s}{M},x_0+\frac{s}{M}].$ Dann hat das AWP:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

eine Lösung auf J.

Beweis

 $S := I \times \mathbb{R}$. Def. $g : S \to \mathbb{R}$ durch:

$$g(x,y) = \begin{cases} f(x,y), & (x,y) \in \mathbb{R} \\ f\left(x, y_0 + s \frac{y - y_0}{|y - y_0|}\right), & x \in I, |y - y_0| \ge s \end{cases}$$

Dann: g = f auf R, $|g| \le M$ auf S und $g \in C(S, \mathbb{R})$ Betrachte das AWP

$$(+) \begin{cases} y' = g(x, y) \\ y(x_0) = y_0 \end{cases}$$

 $12.4 \implies (+)$ hat eine Lösung \overline{y} auf $I. 12.1 \implies$

$$(*) \ \overline{y}(x) = y_0 + \int_{x_0}^x g(t, \overline{y}(t)) dt \ \forall x \in I$$

Sei $x \in J$. Sei $y := \overline{y}|_J$. Dann: $|y(x) - y_0| = |\overline{y}(x) - y_0|$

$$\stackrel{(*)}{=} |\int_{x_0}^x g(t, \overline{y}(t)) dt| \leq M|x - x_0| \leq M \cdot \frac{s}{M} = s \implies (x, y(x)) \in R$$

$$\implies (t, y(t)) \in R \text{ für } t \text{ zwischen } x \text{ und } x_0.$$

$$\implies y(x) = y_0 + \int_{x_0}^x f(t, g(t)) dt \ \forall x \in J$$

$$\implies y(x) = y_0 + \int_{x_0}^x f(t, g(t)) dt \ \forall x \in J$$

 $\stackrel{12.1}{\Longrightarrow}\ y$ löst das AWP auf J

Satz 12.6 (Der Existenzsatz von Peano (Version III))

Sei $D \in \mathbb{R}^2$ offen, $(x_0, y_0) \in D$ und $f \in C(D, \mathbb{R})$. Dann ex. $\delta > 0$: das AWP

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

hat eine Lösung $y: K \to \mathbb{R}$, wobei $K = [x_0 - \delta, x_0 + \delta]$ (also $x_0 \in K^0$)

Beweis

$$D ext{ offen} \implies \exists r, s > 0 : R := [x_0 - r, x_0 + r] \times [y_0 - s, y_0 + s] \subseteq D$$

$$M := \max\{|f(x,y)| : (x,y) \in \mathbb{R}\}$$

$$\delta := \max\{r, \frac{s}{M}\}, K := [x_0 - \delta, x_0 + \delta]$$
 12.5 \Longrightarrow Beh.