Übungsblatt 03 Stochastik 2

Abgabe von: Linus Mußmächer

7. Mai 2023

3.1 Zentralübung

(i) Sei X_0 eine Zufallsvariable mit charakteristischer Funktion φ , d.h. $\mathbb{E}[\exp(itX)] = \varphi(t)$. Sei nun $\{X_k \mid k \in \mathbb{N}\}$ eine (abzählbare) Menge an paarweise unabhängigen, zu X gleichverteilten Zufallsvariablen. Weiterhin sei N eine Poisson-verteilte Zufallsvariable mit Parameter λ , d.h. $\mathbb{P}(N=k) = \exp(\lambda) \cdot \frac{\lambda^k}{k!}$ und $\varphi_N(t) = \exp(\lambda(\exp(it) - 1))$. N sei weiterhin von allen X_k unabhängig. Dann betrachten wir eine Zufallsvariable mit der folgenden Definition:

$$X = \sum_{k=1}^{\infty} \mathbb{1}(N \ge k) X_k = \sum_{k=1}^{N} X_k.$$

Dann ist

$$\mathbb{E}[X] = \sum_{n=0}^{\infty} \left(\mathbb{P}(N=n) \sum_{k=1}^{n} E[X_k] \right)$$

sowie

$$\varphi_X(t) = \mathbb{E}[\exp(itX)] \stackrel{(*)}{=} \sum_{n=0}^{\infty} \left(\mathbb{P}(N=n) \mathbb{E}\left[\exp\left(it \cdot \sum_{k=1}^{n} X_i\right) \right] \right) = \sum_{n=0}^{\infty} \left(\exp(-\lambda) \frac{\lambda^n}{n!} \varphi(t)^n \right)$$

$$= \exp(-\lambda) \sum_{n=0}^{\infty} \left(\frac{(\lambda \cdot \varphi(t))^n}{n!} \right) = \exp(-\lambda) \exp(\lambda \varphi(t))$$

$$= \exp(\lambda(\varphi(t) - 1)),$$

wobei wir in (*) dasselbe Prinzip wie in (ii) anwenden. Damit ist $e^{\lambda(\varphi-1)}$ wieder eine charakteristische Funktion.

(ii) Wir berechnen

$$\mathbb{E}[\exp(itZ)] = \mathbb{P}(Y=0) \cdot \mathbb{E}[\exp(itX_1)] + \mathbb{P}(Y=1) \cdot \mathbb{E}[\exp(itX_2)]$$
$$= \alpha \varphi_1(t) + (1-\alpha)\varphi_2(t)$$