## Algebraic Topology 1: Exercise 3

Yikai Teng & You Zhou

Exercise session: Thu. 8-10

## Exercise 3.1

(a) Recall the definition of geometric realization: For a simplicial set X, its geometric realization  $|X| = \coprod X_n \times \nabla^n / \sim$ , equipped with quotient topology inherited from  $\coprod X_n \times \nabla^n$ . Thus by the properties of quotient topology, a continuous map  $\coprod X_n \times \nabla^n \longrightarrow T$  induces a continuous map  $|X| \to T$  if and only if it factors through the quotient map:

$$\coprod X_n \times \nabla^n \longrightarrow_{\mathbb{T}} T$$

$$\downarrow^q$$

$$\coprod X_n \times \nabla^n / \sim$$

Thus we only need to check that equivalent elements under  $\sim$  are sent to the same target.

Recall that the equivalence relation  $\sim$  is spanned by  $(x, \alpha_*(t)) \sim (\alpha^*(x), t)$  for all  $x \in X_m, t \in \nabla^n, \alpha : [n] \to [m]$ . Thus we only need to ensure that  $f_m(x)(\alpha_*(t)) = f_n(\alpha^*(x))(t)$ . However, this equation follows directly from the following commutative diagram, which depicts the definition of  $f: X \to \mathcal{S}(T)$  being a morphism. (recall that  $\alpha^*$  on the right is just precompose with  $\alpha_*$ ).

$$X_{m} \xrightarrow{f_{m}} \mathcal{S}(T)_{m}$$

$$\downarrow^{\alpha^{*}} \qquad \downarrow^{-\circ\alpha_{*}}$$

$$X_{n} \xrightarrow{f_{n}} \mathcal{S}(T)_{n}$$

Thus we conclude that each morphism  $f: X \to \mathcal{S}(T)$  induces a map  $\hat{f}: |X| \to T$ .

(b) For notation reasons, we start by denoting the map described in the previous subproblem as  $\phi: Hom_{sim}(X, \mathcal{S}(T)) \to Hom_{TOP}(|X|, T)$  by sending  $f \mapsto \phi(f) = \hat{f}$ . We want to show that  $\phi$  is bijiective. We proceed by constructing an explicit inverse  $\psi: Hom_{TOP}(|X|, T) \to$  $Hom_{sim}(X, \mathcal{S}(T))$  described as follows:

Given a function  $g: \coprod (X_n \times \nabla^n)/\sim \longrightarrow T$ ,  $\psi(g)$  is a morphism  $X \to \mathcal{S}(T)$  such that  $\psi(g)_n$  sends  $x_n \in X_n$  to the map  $g(x_n, -) \in \mathcal{S}_n(T)$ .

1

Now we need to check that  $\phi$  and  $\psi$  are indeed inverse to each other.

 $(\phi \circ \psi)$ : Given a map  $g : \coprod (X_n \times \nabla^n)/\sim \longrightarrow T$ , by definition  $\psi(g)_n : X_n \to \mathcal{S}(T)$  with  $x \mapsto g(x,-)$ . Then by composing  $\phi$ , we end up with a map  $\phi(\psi(g)) : \coprod (X_n \times \nabla^n)/\sim \longrightarrow T$  sending  $(x,t) \mapsto \psi(g)_n(x)(t) = g(x,t)$ . Thus this composition is identity.

 $(\psi \circ \phi)$ : Given a morphism  $f: X \to \mathcal{S}(T)$ , we know by definition that  $\phi(f): \coprod (X_n \times \nabla^n)/\sim \longrightarrow T$  with  $(x,t) \mapsto f_n(x)(t)$ . Thus by composing  $\psi$ , we have the map  $\psi(\phi(f)): X \to \mathcal{S}(T)$  such that  $\psi(\phi(f))_n: X_n \to \mathcal{S}(T)_n$  by sending  $x \mapsto \phi(f)(x,-) = f_n(x)(-)$ , thus is the same map as f. Thus this composition is also identity.

Finally we conclude that the map  $\phi$  is a bijection.

(c) We want to show that  $\phi$  is natural in both diagram, i.e. we need to show that for all morphisms  $\alpha: Y \to X$  between simplicial sets, all continuous maps between topological spaces  $h: T \to T'$ , the following diagram commutes:

$$Hom_{\mathcal{S}}(X,\mathcal{S}(T)) \xrightarrow{\phi} Hom_{TOP}(|X|,T)$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom_{\mathcal{S}}(Y,\mathcal{S}(T')) \xrightarrow{\phi} Hom_{TOP}(|Y|,T')$ 

We prove commutativity by directly chasing the diagram, starting from the morphism  $f: X \to \mathcal{S}(T)$ .

(Go down then go right): We first go down. The morphism f is mapped to a morphism  $Y \to \mathcal{S}(T')$ , sending  $y_n \in Y_n$  to  $h_* \circ f_n \circ \alpha_n(y,n) \in \mathcal{S}(T')_n$ . This means if we apply  $\phi$  (go right), we get a map  $\coprod Y_n \times \nabla^n / \sim \longrightarrow T'$ , sending  $(y_n, t_n) \mapsto h(f_n(\alpha_n(y_n))(t_n))$ .

(Go right then go down): We first apply  $\phi$ , which means we get a map  $\coprod X_n \times \nabla^n / \sim \longrightarrow T$  sending  $(x_n, t_n) \mapsto f_n(x_n)(t_n)$ . Then we go down, and we again get the map  $\coprod Y_n \times \nabla^n / \sim \longrightarrow T'$ , sending  $(y_n, t_n) \mapsto h(f_n(\alpha_n(y_n))(t_n))$ .

Thus we conclude that the above diagram commutes, and thus  $\phi$  is natural with respect to both variables, and |=| and S are adjoint functor pair.

**Exercise 3.2** For any topological space T, we have the following calculation based on the ajunction we have from problem 1).

$$Hom_{TOP}(|\Delta[n] \times \Delta[1]|, T) = Hom_{\mathcal{S}}(\Delta[n] \times \Delta[1], \mathcal{S}(T))$$

$$= Hom_{\mathcal{S}}(\Delta[n], \mathcal{S}(T)) \times Hom_{\mathcal{S}}(\Delta[1], \mathcal{S}(T))$$

$$= Hom_{TOP}(|\Delta[n]|, T) \times Hom_{TOP}(|\Delta[n]|, T)$$

$$= Hom_{TOP}(|\Delta[n]| \times |\Delta[1]|, T)$$

Finally we apply Yoneda Lemma and we have  $|\Delta[n] \times \Delta[1]| \cong |\Delta[n]| \times |\Delta[1]|$ .

## Exercise 3.3

(a) Consider the following composition of functors (which we also denote by NI)

$$NI: \Delta^{\mathrm{op}} \xrightarrow{\mathcal{C}} \mathcal{C}\mathrm{at^{\mathrm{op}}} \xrightarrow{\mathrm{Hom}_{\mathcal{C}\mathrm{at}}(-,I)} (\mathrm{Sets}).$$

We first explain the notations involved. Here  $\mathcal{C}$ at is the category of all small categories. For every object [n] of  $\Delta$ , the functor  $\mathcal{C}$  sends [n] to a category  $\mathcal{C}_{[n]} := \mathcal{C}([n])$  defined as

- The set of objects is  $Ob(\mathcal{C}_{[n]}) = [n] = \{0, 1, \dots, n\};$
- $\operatorname{Hom}_{\mathcal{C}_{[n]}}(x,y) = \begin{cases} \{*\}, & \text{if } x \leq y \\ \emptyset, & \text{otherwise.} \end{cases}$  In other words, for  $x,y \in [n]$ , there is at most one morphism from x to y and the morphism exists if and only if  $x \leq y$ .

Every morphism  $\alpha \colon [n] \to [m]$  is sent by  $\mathcal{C}$  to a functor  $\mathcal{C}_{\alpha}$  from  $\mathcal{C}_{[m]}$  to  $\mathcal{C}_{[n]}$  defined as

- For every  $x \in [n], \mathcal{C}_{\alpha}(x) = \alpha(x)$
- A morphism  $x \to y$  in  $\mathcal{C}_{[n]}$  is sent to the unique morphism  $\alpha(x) \to \alpha(y)$ , which exists since  $\alpha$  is weakly monotone.

The second functor  $\operatorname{Hom}_{\operatorname{Cat}}(-,I)$  sends a small category  $\mathcal D$  to the set of all functors from  $\mathcal D$  to I, which is indeed a set since I is small. Its action on morphisms between small categories is natural.

Next we verify that this NI coincides with the NI defined in the problem for simplices by showing that giving a functor in  $\operatorname{Hom}_{\mathcal{C}\operatorname{at}}(\mathcal{C}_{[n]},I)$  is equivalent to giving a composable n-tuple of morphisms in I. Note that every morphism in  $\mathcal{C}_{[n]}$  can be written as composition of morphisms of the form  $(j-1) \to j$  with  $j \in \{1,\ldots,n\}$ . Thus giving images of all morphisms of  $\mathcal{C}_{[n]}$  is equivalent to only giving images of morphisms of form  $(j-1) \to j$ . Now If we have a functor F from  $\mathcal{C}_{[n]}$  to I, then we have for every  $x \in [n]$  an object F(x) of I and for every morphism  $(j-1) \to j$  in  $\mathcal{C}_{[n]}$  a morphism  $F_j \colon F(j-1) \to F(j)$  in I. Note that by definition the target of  $F_{j-1}$  equals the source of  $F_j$ , so  $(F_n, \ldots, F_1)$  is a composable n-tuple of morphisms in I. Conversely, given a composable n-tuple of morphisms in I, say  $(F_n, \ldots, F_1)$  as described in the problem, we may define  $F \colon \mathcal{C}_{[n]} \to I$  by

• 
$$F(j) := \begin{cases} \text{source}(F_{j+1}), & \text{if } 0 \le j < n \\ \text{target}(F_n), & \text{if } j = n. \end{cases}$$

• 
$$F((j-1) \rightarrow j) := F_i$$
.

The functor is well-defined by composability of  $(F_n, \ldots, F_1)$  and it clearly preserves identity and composition of morphisms. This finishes this verification. Moreove r, the above argument shows that a functor in  $\operatorname{Hom}_{\mathcal{C}at}(\mathcal{C}_{[n]}, I)$  is determined by the image of all morphisms  $(j-1) \to j$  under it.

Finally we verify that the action of  $d_i$ :  $[n-1] \to [n]$  on  $(NI)_n$  is as required. The case for  $s_i$  will be similar and thus omitted. First,  $d_i$  induces a functor  $\mathcal{C}_{d_i}: \mathcal{C}_{[n-1]} \to \mathcal{C}_{[n]}$ , whose action on objects and morphisms are explained in the first paragraph. This  $\mathcal{C}_{d_i}$  induces morphism of sets

$$\operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[n]}, I) \to \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[n-1]}, I)$$

$$\left( \text{images of } (j-1 \to j) \atop 1 \le j \le n \right) \mapsto \left( \text{images of } d_i(j-1) \to d_i(j) \atop 1 \le j \le n-1 \right).$$

Therefore, when j < i, the image of  $f_j$  is still  $f_j$ . When j = i, the image of  $f_j$  is  $f_{j+1} \circ f_j$  since  $d_i(i-1) \to d_i(i)$  is composition of  $(i-1) \to i$  and  $i \to (i+1)$ . When j > i, the image of  $f_j$  is  $f_{j+1}$ , as the morphism  $d_i(j-1) \to d_i(j)$  becomes  $j \to j+1$ . This finishes the verification and hence the proof.

(b) For every  $[n] \in \Delta$ , the definition of  $(NF)_n$  is already given in the problem. So we only need to verify that for every morphism  $\alpha \colon [n] \to [m]$ , the diagram

$$(NI)_{m} \xrightarrow{(NF)_{m}} (NJ)_{m}$$

$$\downarrow^{\alpha^{*}} \qquad \downarrow^{\alpha^{*}}$$

$$(NI)_{n} \xrightarrow{(NF)_{n}} (NJ)_{n}$$

commutes. For this, let  $(f_m, \ldots, f_1) \in (NI)_m$ . By the equivalence

$$\{\text{elements in } (NI)_m\} \leftrightarrow \{\text{functors in } \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[m]}, I) \leftrightarrow \left\{ \begin{array}{l} \text{image of morphisms } (j-1) \to j \\ \text{under a functor in } \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[m]}, I) \end{array} \right\}$$

established in part (a), we may write  $f_j = G((j-1) \to j)$  for all  $j \in [m]$  and some functor  $G \in \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[m]}, I)$ . Then by definition of maps in the diagram the image of  $f_j$  under  $\alpha^* \circ (NF)_m$  and  $(NF)_n \circ \alpha^*$  are both  $F \circ G(\alpha(j-1) \to \alpha(j))$ .

(c) The inverse morphism  $\psi \colon NI \times NJ \to N(I \times J)$  can be constructed as

$$(NI \times NJ)_n = (NI)_n \times (NJ)_n \xrightarrow{\psi_n} N(I \times J)_n$$
$$(f_n, \dots, f_1) \times (g_n, \dots, g_1) \mapsto (f_n \times g_n, \dots, f_1 \times g_1)$$

By writing elements of  $(NI)_n$  as images of morphisms in  $\mathcal{C}_{[n]}$  under some functor from  $\mathcal{C}_{[n]}$  to I, as we did in the previous parts, we can show that for every  $\alpha \in \operatorname{Mor}_{\Delta}([n],[m])$  the diagram

$$(NI)_{m} \times (NJ)_{m} \xrightarrow{\psi_{m}} N(I \times J)_{m}$$

$$\downarrow^{\alpha^{*}} \qquad \qquad \downarrow^{\alpha^{*}}$$

$$(NI)_{n} \times (NJ)_{n} \xrightarrow{\psi_{n}} N(I \times J)_{n}$$

commutes. Thus  $\psi$  is indeed a morphism between simplicial sets. By computing directly the action on elements, we can show that both the compositions

$$(NI \times NJ)_n = (NI)_n \times (NJ)_n \xrightarrow{\psi_n} N(I \times J)_n \xrightarrow{(N_{\text{proj}_I}, N_{\text{proj}_J})_n} (NI)_n \times (NJ)_n = (NI \times NJ)_n$$
and 
$$N(I \times J)_n \xrightarrow{(N_{\text{proj}_I}, N_{\text{proj}_J})_n} (NI)_n \times (NJ)_n = (NI \times NJ)_n \xrightarrow{\psi_n} N(I \times J)_n$$

are identities. So  $(N_{\text{proj}_I}, N_{\text{proj}_J})$  is an isomorphism between simplicial sets.

(d) We claim that there is an isomorphism  $\varphi \colon \Delta[1] \to N[1]$  between simplicial sets, which will be constructed later. If this holds, we have the following diagram (identify NI with  $NI \times \Delta[0]$ )



where NH is the morphism constructed from H as in part (b). The commutativity of this diagram can be showed by routine verifications on simplices, using the definition of each maps and the equivalence (1). And the existence of such a commutative diagram is just the definition of a simplicial homotopy between NF and NG.

Now we show our claim by briefly explaining the construction of the isomorphism  $\varphi \colon \Delta[1] \to N[1]$ . For every  $n \in \mathbb{N}$ , define

$$\varphi_n \colon (\Delta[1])_n \to (N[1])_n$$

$$(g \colon [n] \to [1]) \mapsto (g_n, \dots, g_1), \text{ with } g_j = \begin{cases} \mathrm{Id}_0, & \text{if } g(j) = g(j-1) = 0\\ f \colon 0 \to 1, & \text{if } g(j) = 1, g(j-1) = 0\\ \mathrm{Id}_1, & \text{if } g(j) = g(j-1) = 1. \end{cases}$$

For every  $\alpha \colon [n] \to [m]$ , The diagram

$$(\Delta[1])_m \xrightarrow{\alpha^*} (\Delta[1])_n$$

$$\downarrow^{\varphi_m} \qquad \qquad \downarrow^{\varphi_n}$$

$$(N[1])_m \xrightarrow{\alpha^*} (N[1])_n$$

commutes because if we choose some  $(g: [m] \to [1]) \in (\Delta[1])_m$ , then by computing with the definition of maps and the equivalence (1), we find that

$$\alpha^* \circ \varphi_m(g) = \varphi_n \circ \alpha^*(g) = (g_n, \dots, g_1)$$
with  $g_j = \begin{cases} \operatorname{Id}_0, & \text{if } g \circ \alpha(j) = g \circ \alpha(j-1) = 0\\ f \colon 0 \to 1, & \text{if } g \circ \alpha(j) = 1, g \circ \alpha(j-1) = 0\\ \operatorname{Id}_1, & \text{if } g \circ \alpha(j) = g \circ \alpha(j-1) = 1. \end{cases}$ 

So  $\varphi$  is a morphism. Now we describe its inverse  $\psi \colon N[1] \to \Delta[1]$ . Given some composable *n*-tuple  $(g_n, \ldots, g_1) \in (N[1])_n$ , there are three possibilities (by composability)

- $g_n = \cdots = g_1 = \mathrm{Id}_0$
- There is one j such that  $g_n = \cdots = g_{j+1} = \mathrm{Id}_1$ ,  $g_j = f$  and  $g_{j-1} = \cdots = g_1 = \mathrm{Id}_0$
- $g_n = \cdots = g_1 = \mathrm{Id}_1$

In the first case, we let  $\psi_n(g_n, \ldots, g_1)$  sends [n] to 0. In the second case,  $\psi_n(g_n, \ldots, g_1)$  send  $1, \ldots, j-1$  to 0 and  $j, \ldots, n$  to 1. In the third case,  $\psi_n(g_n, \ldots, g_1)$  sends [n] to 1. It is then straightforward to verify that  $\psi$  is indeed a morphism and that both  $(\psi \circ \varphi)_n$  and  $(\varphi \circ \psi)_n$  are identities for all  $n \in \mathbb{N}$ .

(e) Let  $F: I \to J$  and  $G: J \to I$  be functors such that there exist natural transformations  $\tau \colon GF \to \operatorname{Id}_I$  and  $\tau' \colon FG \to \operatorname{Id}_J$ . The process in part (d) shows that  $\tau$  yields a simplicial homotopy between  $N(GF) = NG \circ NF$  and  $N(\operatorname{Id}_I) = \operatorname{Id}_{NI}$ . Similarly,  $\tau'$  yields a simplicial homotopy between  $N(FG) = NF \circ NG$  and  $N(\operatorname{Id}_J) = \operatorname{Id}_{NJ}$ . Thus NI and NJ are homotopy equivalent simplicial sets.