Bulk Edge Correspondence to Chevron-type Graphene Nanoribbons

Chih-Yu HSU Dr. Mei-Yin CHOU NTU PHYS/IAMS

Sep. 13, 2017

Outline

Introduction

Band Structure

Edge State

Bulk Edge Correspondence

Chevron-type GNRs

Summary

The End

Appendix

Introduction

 "We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination belong to different electronic topological classes."

Termination type	Zigzag (N = Odd)	Zigzag' (N = Odd)	Zigzag (N = Even)	Bearded (N = Even)	
Unit cell shape	1 2 3 N-1 N				
Bulk Symmetry	Inversion/mirror	Inversion/mirror	Mirror	Inversion	
Z_2	$\frac{1+(-1)^{\left\lfloor \frac{N}{3}\right\rfloor+\left\lfloor \frac{N+1}{2}\right\rfloor}}{2}$	$\frac{1 - (-1)^{\left \frac{N}{3}\right + \left \frac{N+1}{2}\right }}{2}$		$\frac{1-(-1)^{\left\lfloor \frac{N}{3}\right\rfloor}}{2}$	

Ting Cao, Fangzhou Zhao, and Steven G. Louie, Phys. Rev. Lett. 119, 076401 (2017).

Graphene Nanoribbons

- Graphene: 2-dim
- Graphene Nanoribbons (GNRs): 1-dim
- Armchair GNRs
- Zigzag GNRs

GNRs Produced in Labs Recently

J. Am. Chem. Soc., 137 (28), pp 8872-8875 (2015). ACS Nano, 8 (9), pp 9181-9187 (2014). J. Am. Chem. Soc., 137 (18), pp 6097-6103 (2015). Nature Nanotechnology 10, 156-160 (2015). ACS Nano, 2013, 7 (7), pp 6123-6128. Nature 531, 489-492 (2016). J. Phys. Chem. C, 120 (5), pp 2684-2687 (2016).

AGNR Band Structure

- Tight-binding model
- $E = \pm t|2e^{-ik_x a/2}$ $\cos(\frac{\sqrt{3}a}{2}q_y) + e^{ik_x a}|$
- $q_y = \frac{2}{\sqrt{3}a} \frac{p\pi}{N+1}$
- Valence band v.s.
 Conduction band

AGNR Band Structure: Flat Band

- p = 4 $\rightarrow \cos \frac{p\pi}{N+1} = \cos \frac{\pi}{2} = 0$ \rightarrow flat valence or conduction band
- Energy dispersion: independent of k_x
- Eigenenergy= $\pm t$
- A flat band exists only when N is odd.

AGNR Band Structure: Energy Gap=0

•
$$k_X = 0$$

 $\rightarrow E = \pm t |2\cos\frac{p\pi}{N+1} + 1|$

•
$$N = 3m + 2, p = 2m + 2$$

 $\rightarrow \frac{p\pi}{N+1} = \frac{2\pi}{3}$
 $\rightarrow E = 0$
 $\rightarrow \text{ Energy gap} = 0$

ZGNR Band Structure

- AGNR BC $\phi_A(0) = \phi_A(N+1) = 0$ $\phi_B(0) = \phi_B(N+1) = 0$
- ZGNR BC $\phi_B(0) = 0$ $\phi_A(N+1) = 0$

- Armchair graphene nanoribbons $E = \pm |2e^{-ik_{x}a/2}\cos(\frac{\sqrt{3}a}{2}q_{y}) + e^{ik_{x}a}|$
- Zigzag graphene nanoribbons $E = \pm \sqrt{1 + g_k^2 + 2g_k \cos p}$ $F(p, N) \equiv \sin(pN) + g_k \sin(p(N+1)) = 0$

K. Wakabayashi, K. Sasaki, T. Nakanishi, and T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010).

ZGNR Band Structure

- The 2 solutions are different due to different BCs.
- The electronic states in flat bands, $\frac{2}{3}\pi \le |k| \le \pi$, corresponds to a state localized on the edge sites. (Edge state)

Figure 1: AGNR

Figure 2: ZGNR

ZGNR Edge State

- ullet Edge state \in Surface state
- Semi-infinite graphene sheet Flat band: $\frac{2}{3}\pi \le |k| \le \pi$
- Real part of wave function Amplitude \propto Radius / Color : \pm
- $k = \pi$: localized at edge sites

 $k = \frac{2}{3}\pi$: penetrated into inner sites

Zak Phase and Parity

- Berry phase: geometric phase $\gamma = i \oint_{\mathcal{C}} \langle n, t | \nabla_R | n, t \rangle dR$
- 1-dim Brilloiun zone \rightarrow circle
- Zak phase: Berry phase in solid state $Z = i \int_{-\pi}^{\pi} \langle u_{nk} | \partial_k | u_{nk} \rangle dk$
- Zak phase = intercell part (indep. of origin) + intracell part
 Origin of the unit cell = Inversion or mirror center
 → Zak phase = intercell part
- An easier way to compute Zak phase is by computing parity.

$$\bullet \ (-1)^{Z_2} = e^{i\sum_n \gamma_n^{inter}} = \prod_{k=0,\pi} \delta(k)$$

$$\delta(k) = \prod_{n \in occupied} \xi_n(k)$$

Zak phase: bulk property

Prediction of n_s

- n_s:number of in-gap surface states below Fermi level
- $n_s = \frac{\sum\limits_{n \in occupied} \gamma_n^{inter}}{\pi} \mod 2$
- For systems with inversion symmetry,

$$Z_2 = (n_0^{I,-} + n_{\pi}^{I,-}) \mod 2 = 0$$

 $\rightarrow n_s \mod 2 = 0$
 $Z_2 = (n_0^{I,-} + n_{\pi}^{I,-}) \mod 2 = 1$
 $\rightarrow n_s \mod 2 = 1$

• For systems with mirror symmetry,

$$Z_2 = (n_0^{M,-} + n_{\pi}^{M,-}) \mod 2 = 0$$

 $\rightarrow n_s \mod 2 = 0$
 $Z_2 = (n_0^{M,-} + n_{\pi}^{M,-}) \mod 2 = 1$
 $\rightarrow n_s \mod 2 = 1$

AGNR

•
$$Z_2 = \frac{1 - (-1)^{\left[\frac{4}{3}\right] + \left[\frac{4+1}{2}\right]}}{2} = 1$$

N	$n_0^{M,-}$	$n_{\pi}^{M,-}$	$Z_2 = n_0^{M,-} + n_{\pi}^{M,-} \mod 2$	ns
4	1	2	1	1

Figure 3: Zigzag Figure 4: N=4

AGNR

•
$$Z_2 = \frac{1 - (-1)^{\left[\frac{7}{3}\right] + \left[\frac{7+1}{2}\right]}}{2} = 0$$

N	$n_0^{I,-}$	$n_{\pi}^{I,-}$	$Z_2 = n_0^{I,-} + n_{\pi}^{I,-} \mod 2$	ns
7	3	3	0	0
N	$n_0^{M,-}$	$n_{\pi}^{M,-}$	$Z_2 = n_0^{M,-} + n_{\pi}^{M,-} \mod 2$	ns
7	2	4	0	0

Figure 5: Zigzag' Figure 6: N=7

 "Graphene nanoribbons, or single-layer graphite are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices."

- Mirror symmetry
- $Z_2 = 1$

Figure 7: Mirror symmetry

Figure 8: Unit cell

- Inversion symmetry
- $Z_2 = 0$

Figure 9: Inversion symmetry

Figure 10: Unit cell

- Check band structure
- Band structure calculated by DFT
- Band structure calculated by TB

- Mirror symmetry $Z_2 = 1 \rightarrow n_s \mod 2 = 1$ Surface state: 1 pair
- Inversion symmetry $Z_2 = 0 \rightarrow n_s \mod 2 = 0$ Surface state: 0 pair

Figure 11: Mirror symmetry

Figure 12: Inversion symmetry

Summary

- Bulk: Z₂ (Zak phase)
 Edge: Surface states (Edge states)
 Bulk Edge correpondence: Z₂ predicts n_s
- In chevron-type GNRs,
 Z₂ depends on the end termination.
- In chevron-type GNRs,
 Z₂ successfully predicts the number of surface states.
- Future work:
 Combine the 2 types of unit cell might show surface states.

The End

Appendix-1 Tight-binding Model

- Tight-binding approximation $H = \sum_{i} \epsilon_{i} |i\rangle \langle i| \sum_{i,j} t_{i,j} |i\rangle \langle j|$ on-site term hopping term
- Schrödinger's equation

$$H\Psi = E\Psi \begin{pmatrix} \epsilon & \mu \\ \mu^* & \epsilon \end{pmatrix} \begin{pmatrix} C_A \\ C_B \end{pmatrix} = E \begin{pmatrix} C_A \\ C_B \end{pmatrix}$$

Appendix-1 Tight-binding Model

Bloch's theorem

$$\begin{aligned} |\Psi\rangle_{A} &= \frac{1}{N_{A}} \sum_{i=1}^{N} \sum_{x_{A_{i}}} e^{ik_{x}x_{A_{i}}} \phi_{A}(i) |A_{i}\rangle \\ |\Psi\rangle_{B} &= \frac{1}{N_{B}} \sum_{i=1}^{N} \sum_{x_{B_{i}}} e^{ik_{x}x_{B_{i}}} \phi_{B}(i) |B_{i}\rangle \end{aligned}$$

• Boundary Condition $\phi_A(0) = \phi_B(0) = 0$ $\phi_B(N+1) = \phi_B(N+1) = 0$ N: width of the unit cell

Appendix-1 Tight-binding Model

- BC solution $\phi_A(i) = \phi_B(i) = \sin\left(\frac{\sqrt{3}a}{2}q_y\right) = 0$ $q_y = \frac{2}{\sqrt{3}a}\frac{p\pi}{N+1}$ p = 1, 2, ..., n (band pair number)
- $\mu =_A \langle \Psi | H | \Psi \rangle_B = -t [2e^{-ik_x a/2} \cos(\frac{\sqrt{3}a}{2}q_y) + e^{ik_x a}]$
- $E = \epsilon \pm |\mu|, \ \epsilon = 0$ $E = \pm t|2e^{-ik_xa/2}\cos\left(\frac{\sqrt{3}a}{2}q_y\right) + e^{ik_xa}|$

$$\delta_1 = (a, 0)$$

$$\delta_2 = \left(-\frac{a}{2}, \frac{\sqrt{3}a}{2}\right)$$

$$\delta_3 = \left(-\frac{a}{2}, -\frac{\sqrt{3}a}{2}\right)$$

Appendix-2 ZGNR Edge State

• Bloch's theorem \rightarrow Boundary: e^{ikn} Fermi level \rightarrow A solution of E=0Charge density $\propto \cos^{-2m}(\frac{k}{2})$

Figure 13: Analytical scheme of wave functions

Appendix-3 Zak Phase and Wave Parity

- Bloch Hamiltonian $H(k)|u_{nk}\rangle = E_{nk}|u_{nk}\rangle$
- Inversion symmetry $IHI^{-1} = H$ $IH(k)I^{-1} = H(-k)$
- Phase relation $I |u_{nk}\rangle = e^{i\phi(k)} |u_{n-k}\rangle$
- Zak phase $Z = \int_{-\pi}^{\pi} dki \langle u_{nk} | \partial_k | u_{nk} \rangle$

Appendix-3 Zak Phase and Wave Parity

- Calculated result by using the above material $Z = -\int_0^{\pi} dk \frac{\partial \phi(k)}{\partial k} = \phi(0) \phi(\pi)$
- $H(\pi) |u_{n\pi}\rangle = E_{n\pi} |u_{n\pi}\rangle$ $I |u_{n\pi}\rangle = \xi_n(\pi) |u_{n\pi}\rangle, \xi_n(\pi) = e^{i\phi(\pi)}$ $H(0) |u_{n0}\rangle = E_{n0} |u_{n0}\rangle$ $I |u_{n0}\rangle = \xi_n(0) |u_{n0}\rangle, \xi_n(0) = e^{i\phi(0)}$
- $e^{i(\phi(0)-\phi(\pi))} = \xi_n(0)/\xi_n(\pi) = \xi_n(0)\xi_n(\pi)$
- $\bullet \ (-1)^{Z_2} = e^{i\sum_n \gamma_n^{inter}} = \prod_{k=0,\pi} \delta(k)$ $\delta(k) = \prod_{n \in occupied} \xi_n(k)$