Séries entières

1 Généralités

1.1 Définition d'une série entière et rayon de convergence

Définition 1.1 Série entière

On appelle **série entière** toute série de fonctions de la variable complexe ou réelle de la forme $\sum a_n z^n$ où $(a_n) \in \mathbb{C}^{\mathbb{N}}$.

Remarque. On s'autorise un abus de notation en confondant z^n et la fonction $z \mapsto z^n$.

Lemme 1.1 Lemme d'Abel

Soient $(a_n) \in \mathbb{C}^{\mathbb{N}}$ et $r \in \mathbb{R}_+^*$. Si la suite $(a_n r^n)$ est bornée, alors pour tout $z \in \mathbb{C}$ tel que |z| < r, la série $\sum a_n z^n$ converge absolument.

Définition 1.2 Rayon de convergence

Soit $\sum a_n z^n$ une série entière. On appelle **rayon de convergence** de cette série entière la borne supérieure

 $\sup\{r \in \mathbb{R}_+, (a_n r^n) \text{ est born\'ee}\} \in \mathbb{R}_+ \cup \{+\infty\}$

Remarque. Si la suite (a_n) est bornée, le rayon de convergence de la série entière $\sum a_n z^n$ est supérieur ou égal à 1.

Proposition 1.1

Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Soit $z \in \mathbb{C}$.

- Si |z| < R, alors $\sum a_n z^n$ converge absolument.
- Si |z| > R, alors $\sum a_n z^n$ diverge grossièrement.

Remarque. Si |z| = R, on ne peut rien dire.

Corollaire 1.1

Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Soit $z \in \mathbb{C}$.

- Si $\sum a_n z^n$ converge, alors $R \ge |z|$.
- Si $\sum a_n z^n$ diverge, alors $R \le |z|$.

Remarque. Si la suite (a_n) ne converge pas vers 0, la série $\sum a_n$ diverge. On en déduit que le rayon de convergence de la série entière $\sum a_n z^n$ est inférieur ou égal à 1.

Exemple 1.1

Considérons la série entière $\sum \cos(n)z^n$. Notons R son rayon de convergence.

- La suite de terme général cos(n) est bornée donc $R \ge 1$.
- La suite $(\cos(n))$ ne converge pas vers 0. Donc R \leq 1.

Ainsi R = 1.

Rappel | Règle de d'Alembert

Soit (u_n) une suite réelle **strictement positive** telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell\in\mathbb{R}_+\cup\{+\infty\}.$

- Si ℓ < 1, alors la série $\sum u_n$ converge absolument.
- Si $\ell > 1$, alors la série $\sum u_n$ diverge grossièrement.

Remarque. Si $\ell = 1$, on ne peut rien dire.

ATTENTION! La suite $\left(\frac{u_{n+1}}{u_n}\right)$ peut ne pas avoir de limite.

Proposition 1.2

Soit $\sum a_n z^n$ une série entière de rayon de convergence R telle que (a_n) ne s'annule pas à partir d'un certain rang. Si $\lim_{n\to +\infty} \frac{|a_{n+1}|}{|a_n|} = \ell \in \mathbb{R}_+ \cup \{+\infty\}$, alors $R = \frac{1}{\ell}$

Remarque. R = 0 si $\ell = +\infty$ et $R = +\infty$ si $\ell = 0$.

Exemple 1.2

- La série entière $\sum z^n$ a pour rayon de convergence 1 et pour somme $\frac{1}{1-z}$.
- La série entière $\sum \frac{z^n}{n!}$ a un rayon de convergence infini et a pour somme e^z .

Exercice 1.1

Déterminer le rayon de convergence de la série entière $\sum {2n \choose n} z^n$.

ATTENTION! On ne peut pas toujours utiliser la règle de d'Alembert pour calculer le raon de convergence d'une série de cette manière. Par exemple, la suite $\left(\frac{|a_{n+1}|}{|a_n|}\right)$ peut ne pas avoir de limite ou la suite (a_n) peut s'annuler une infinité de fois.

Exemple 1.3

Considérons la série entière $\sum a_n z^n$ avec $a_n = 2^n$ si n est pair et $a_n = 3^n$ si n est impair. On note R son rayon de

La suite de terme général $\frac{a_{n+1}}{a_n}$ n'admet pas de limite puisqu'elle prend alternativement les valeurs $\frac{3}{2}$ et $\frac{2}{3}$

Néanmoins la suite de terme général $u_n = \frac{a_n}{9^n}$ est bornée puisque $u_{2n} = \frac{4^n}{9^n} \le 1$ et $u_{2n+1} = 3$. Ainsi $R \ge \frac{1}{9}$. Mais si $r > \frac{1}{0}$, la suite de terme général $v_n = a_n r^n$ n'est pas bornée puisque la suite extraite de terme général $v_{2n+1} = 3 \cdot (9r)^n$ diverge vers $+\infty$. Ainsi le rayon de convergence vaut $\frac{1}{\alpha}$.

Exemple 1.4 Série lacunaire

Considérons par exemple la série entière $\sum 2^n z^{n^2}$. C'est bien une série entière dans le sens où elle est de même nature et de même somme que la série $\sum a_n z^n$ avec $a_n = 2^{\sqrt{n}}$ si n est un carré d'entier et $a_n = 0$ sinon. On ne peut pas calculer le rayon de convergence en étudiant la limite de la suite (a_{n+1}/a_n) puisque (a_n) s'annule une infinité de fois. On peut néanmoins appliquer la règle de d'Alembert directement.

$$\frac{|2^{n+1}z^{(n+1)^2|}}{|2^nz^{n^2}|} = 2|z|^{2n+1} \underset{n \to +\infty}{\longrightarrow} \begin{cases} 0 & \text{si } 0 < |z| < 1 \\ +\infty & \text{si } |z| > 1 \end{cases}$$

Ainsi le rayon de convergence de cette série entière vaut 1. On remarque notamment que $\frac{2^{n+1}}{2^n} \xrightarrow[n \to +\infty]{} 2$ mais le reayon de convergence ne vaut pas $\frac{1}{2}$.

Définition 1.3 Disque ouvert/intervalle ouvert de convergence

Soit $\sum a_n z^n$ une série entière de rayon de convergence R.

- On appelle **disque ouvert de convergence** le disque $D(0, R) = \{z \in \mathbb{C}, |z| < R\}$.
- On appelle intervalle ouvert de convergence l'intervalle] R, R[.

REMARQUE. Si $R = +\infty$, le disque ouvert de convergence est \mathbb{C} tandis que l'intervalle ouvert de convergence est \mathbb{R} .

Convergence au bord du disque ouvert de convergence -

On ne peut rien dire quant à la convergence d'une série entière au bord du disque ouvert de convergence. Par exemple, la série $\sum \frac{z^n}{n}$ a pour rayon de convergence 1 (critère de d'Alembert). La série harmonique $\sum \frac{1}{n}$ diverge tandis que la série harmonique alternée $\sum \frac{(-1)^n}{n}$ converge. On peut en fait montrer que si |z|=1, la série $\sum \frac{z^n}{n}$ converge si et seulement si $z \neq 1$.

1.2 Comparaison de séries entières

Proposition 1.3

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b .

- Si $|a_n| \le |b_n|$ à partir d'un certain rang, alors $R_a \ge R_b$.
- Si $a_n = \mathcal{O}(b_n)$, alors $R_a \ge R_b$.
- Si $|a_n| \underset{n \to +\infty}{\sim} |b_n|$, alors $R_a = R_b$.

Remarque. A fortiori, si $a_n = o(b_n)$, alors $R_a \ge R_b$.

Proposition 1.4

Pour tout $\alpha \in \mathbb{R}$, les séries entières $\sum a_n z^n$ et $\sum n^{\alpha} a_n z^n$ ont même rayon de convergence.

1.3 Opérations sur les séries entières

Proposition 1.5 Somme de deux séries entières

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Alors le rayon de convergence R de la série entière $\sum (a_n + b_n)z^n$ vérifie $R \ge \min(R_a, R_b)$. De plus, pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$,

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$$

Exercice 1.2

Montrer que si $R_a \neq R_b$, alors $R = \min(R_a, R_b)$ et donner un exemple où $R > \min(R_a, R_b)$ dans le cas où $R_a = R_b$.

Définition 1.4 Produit de Cauchy de deux séries entières

On appelle **produit de Cauchy** de deux séries entières $\sum a_n z^n$ et $\sum b_n z^n$ la série entière $\sum c_n z^n$ où

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} = \sum_{k=0}^{n} a_{n-k} b_k$$

Proposition 1.6 Produit de Cauchy

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Alors le rayon de convergence R du produit de Cauchy $\sum c_n z^n$ de ces deux séries entières vérifie $R \ge \min(R_a, R_b)$. De plus, pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$,

$$\sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right)$$

Exemple 1.5

On pose $a_n = \sum_{k=0}^n \frac{1}{k!}$. On souhaite déterminer le rayon de convergence et calculer la somme de $\sum_{n \in \mathbb{N}} a_n z^n$.

Il est clair que $a_n \xrightarrow[n \to +\infty]{} e$ (somme partielle d'une série exponentielle). On en déduit que $\frac{|a_{n+1}|}{|a_n|} = \frac{a_{n+1}}{a_n} \xrightarrow[n \to +\infty]{} 1$. Ainsi le rayon de convergence de la série entière $\sum a_n z^n$ vaut 1 par la règle de d'Alembert.

De plus, les rayons de convergence des séries entières $\sum \frac{z^n}{n!}$ et $\sum z^n$ sont respectivement $+\infty$ et 1. On en déduit par produit de Cauchy que

$$\forall z \in \mathrm{D}(0,1), \ \sum_{n=0}^{+\infty} a_n z^n = \left(\sum_{n=0}^{+\infty} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{+\infty} z^n\right) = \frac{e^z}{1-z}$$

Exercice 1.3

On pose $H_n = \sum_{k=1}^n \frac{1}{k}$. Déterminer le rayon de convergence de la série entière $\sum_{n \in \mathbb{N}^*} H_n x^n$ et calculer sa somme.

Exercice 1.4

Donner un exemple où R > $min(R_a, R_b)$ et $R_a \neq R_b$.

2 Régularité de la somme

Proposition 2.1 Domaine de définition

Soit $\sum a_n z^n$ une série entière de somme S(z) et de rayon de convergence R. On note $\mathcal{D}_{\mathbb{C}}$ (resp. $\mathcal{D}_{\mathbb{R}}$) l'ensemble de définition complexe (resp. réel) de S, c'est-à-dire l'ensemble des $z \in \mathbb{C}$ (resp. $z \in \mathbb{R}$) tels que $\sum a_n z^n$ converge. Alors

- $D(0,R) \subset \mathcal{D}_{\mathbb{C}} \subset \overline{D(0,R)}$;
- $]-R,R[\subset \mathcal{D}_{\mathbb{R}}\subset [-R,R].$

Exercice 2.1

Déterminer le domaine définition réel de $x \mapsto \sum_{n=1}^{+\infty} \frac{x^n}{n}$.

Proposition 2.2 Convergence normale

Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Alors pour tout réel r < R, la série entière $\sum a_n z^n$ converge normalement le disque fermé de centre 0 et de rayon r.

ATTENTION! On ne peut pas affirmer qu'une série entière converge normalement sur le disque ouvert de convergence.

Corollaire 2.1 Continuité de la somme

La somme d'une série entière est continue sur son disque ouvert de convergence.

Proposition 2.3

L'application $z \in \mathbb{C} \mapsto e^z$ est continue sur \mathbb{C} .

A partir de maintenant, on s'intéreresse à la régularité de la somme d'une série entière d'une variable réelle.

Proposition 2.4 Primitive d'une série entière

Soient $\sum a_n x^n$ une série entière de la variable réelle, R son rayon de convergence et $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ sa somme. Soit F une primitive de f sur] – R, R[. Alors

- La série entière $\sum \frac{a_n}{n+1} x^{n+1}$ admet R pour rayon de convergence;
- $\forall x \in]-R, R[, F(x) = F(0) + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}.$

REMARQUE. Le rayon de convergence de la série entière «primitivée» est le même que celui de la série entière initiale.

Exemple 2.1

La série entière $\sum_{n\in\mathbb{N}} (-1)^n x^n$ a pour rayon de convergence 1 et pour somme $\frac{1}{1+x}$. Puisque $x\mapsto \ln(1+x)$ est l'unique primitive nulle en 0 de $x\mapsto \frac{1}{1+x}$,

$$\forall x \in]-1,1[, \ln(1+x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n}$$

Proposition 2.5 Dérivation terme à terme

Soient $\sum a_n x^n$ une série entière de la variable réelle, R son rayon de convergence et $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ sa somme. Alors

- la série entière $\sum na_nx^{n-1}$ admet R pour rayon de convergence;
- f est de classe \mathcal{C}^1 sur] R, R[;
- $\forall x \in]-R, R[, f'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}.$

Exemple 2.2

On sait que

$$\forall x \in]-1,1[, \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

En dérivant, on obtient

$$\forall x \in]-1,1[, \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1} = \sum_{n=0}^{+\infty} (n+1)x^n$$

Corollaire 2.2 Dérivation terme à terme

Soient $\sum a_n x^n$ une série entière de la variable réelle, R son rayon de convergence et $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ sa somme. Alors

- f est de classe \mathcal{C}^{∞} sur] R, R[;
- pour tout $p \in \mathbb{N}$, la série entière $\sum \frac{n!}{(n-p)!} a_n x^{n-p}$ admet R pour rayon de convergence;
- $\forall p \in \mathbb{N}, \ \forall x \in]-R, R[, \ f^{(p)}(x) = \sum_{n=p}^{+\infty} \frac{n!}{(n-p)!} a_n x^{n-p}.$

Exercice 2.2

Montrer que

$$\forall q \in \mathbb{N}, \ \forall x \in]-1,1[, \ \frac{1}{(1-x)^{q+1}} = \sum_{n=q}^{+\infty} \binom{n}{q} x^{n-q}$$

Corollaire 2.3 Expression des coefficients à l'aide des dérivées successives

Soient $\sum a_n x^n$ une série entière de la variable réelle, de rayon de convergence non nul, et $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ sa somme. Alors

$$\forall n \in \mathbb{N}, \ a_n = \frac{f^{(n)}(0)}{n!}$$

Corollaire 2.4 Unicité des coefficients

Soient $\sum a_n x^n$ et $\sum b_n x^n$ deux séries entières. Si les sommes de ces deux séries entières coïncident sur un intervalle $]0,\alpha]$ avec $\alpha>0$, alors $a_n=b_n$ pour tout $n\in\mathbb{N}$.

Remarque. En particulier, si $\sum_{n\in\mathbb{N}}a_nz^n$ et $\sum_{n\in\mathbb{N}}b_nz^n$ sont des séries entières de rayon de convergence respectifs R_a et R_b strictement positifs dont les sommes coïncident sur un voisinage (réel ou complexe) de 0, alors

$$\forall z \in \mathbb{C}, \ |z| < \min(\mathbf{R}_a, \mathbf{R}_b) \implies \sum_{n=0}^{+\infty} a_n z^n = \sum_{n=0}^{+\infty} b_n z^n$$

Théorème 2.1 Convergence radiale (Abel)

Soit $\sum a_n x^n$ une série entière de rayon de convergence R > 0. Si $\sum a_n R^n$ converge, alors $\sum_{n=0}^{+\infty} a_n x^n \xrightarrow[x\to R^-]{+\infty} a_n R^n$.

Exemple 2.3

La série entière $\sum \frac{(-1)^{n-1}x^n}{n}$ admet 1 pour rayon de convergence et $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^n}{n} = \ln(1+x)$ pour tout $x \in]-1,1[$.

Or $\sum \frac{(-1)^{n-1}}{n}$ converge en vertu du critère spécial des séries alternées. D'après le théorème de convergence radiale d'Abel

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \lim_{x \to 1^{-}} \ln(1+x) = \ln 2$$

ATTENTION! Le fait que la somme d'une série entière $\sum a_n x^n$ de rayon de convergence R ait une limite en R⁻ n'implique pas que $\sum a_n R^n$ converge. Par exemple, la série $\sum_{n\in\mathbb{N}} (-1)^n x^n$ a pour rayon de convergence 1 et pour somme $\frac{1}{1+x}$. De plus, $x\mapsto \frac{1}{1+x}$ admet bien une limite en 1 mais $\sum_{n\in\mathbb{N}} (-1)^n$ diverge grossièrement.

Remarque. De manière générale, si la série $\sum a_n r^n$ converge pour un certain $r \in \mathbb{R}_+$, on peut toujours affirmer que $\sum_{n=0}^{+\infty} a_n x^n \xrightarrow[x \to r^-]{} \sum_{n=0}^{+\infty} a_n r^n$, même si r n'est pas le rayon de convergence de la série entière $\sum a_n x^n$. En effet, en notant R ce rayon de convergence, la convergence de la série $\sum a_n r^n$ assure que $R \ge r$. Si R = r, on est ramené au théorème de convergence radiale d'Abel à proprement parler. Si r < R, alors la continuité de $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ sur l'intervalle ouvert de convergence]-R, R[(et donc notamment en r) assure le résultat.

Exercice 2.3 Une réciproque du théorème d'Abel

Soit (a_n) une suite **positive** telle que la série entière $\sum a_n x^n$ possède un rayon de convergence R > 0. On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour $x \in]-R$, R[et on suppose que f admet une limite en R. Montrer que la série $\sum a_n R^n$ converge.

3 Fonctions développables en série entière et développements usuels

Définition 3.1 Fonction développable en série entière

Soient f une fonction d'une variable complexe à valeurs complexes et r > 0. On dit que f est **développable en série** entière sur le disque D(0,r) s'il existe une suite (a_n) telle que

$$\forall z \in D(0,r), \ f(z) = \sum_{n=0}^{+\infty} a_n z^n$$

Proposition 3.1 Série géométrique

$$\forall z \in \mathbb{C}, \ |z| < 1 \implies \frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$$

Proposition 3.2 Série exponentielle

$$\forall z \in \mathbb{C}, \ e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

Exercice 3.1

La fonction $z \in \mathbb{C} \mapsto \overline{z}$ est-elle développable en série entiere?

Définition 3.2 Fonction développable en série entière

Soient f une fonction d'une variable réelle à valeurs complexes et r > 0. On dit que f est **développable en série entière** sur]-r,r[s'il existe une suite (a_n) telle que

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Remarque. Notamment une fonction développable en série entière sur]-r,r[est de classe \mathcal{C}^{∞} sur]-r,r[.

REMARQUE. Une somme et un produit de fonctions développables en série entière est développable en série entière.

Définition 3.3 Série de Taylor

Soit f une fonction de classe \mathcal{C}^{∞} au voisinage de 0. On appelle **série de Taylor** la série entière $\sum_{n\in\mathbb{N}} \frac{f^{(n)}(0)}{n!} x^n$.

Proposition 3.3 Série de Taylor

Soit f une fonction développable en série entière sur]-r,r[. Alors f est de classe \mathcal{C}^{∞} sur]-r,r[et

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Remarque. Autrement dit, toute fonction développable en série entière est égale à la somme de sa série de Taylor sur un voisinage de 0.

Remarque. Si $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour $x \in]-r, r[(r > 0)]$, alors, d'après la formule de Taylor-Young,

$$\forall n \in \mathbb{N}, \ f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$

ATTENTION! Une fonction n'est pas toujours égale à la somme de sa série de Taylor sur un voisinage de 0. Par exemple, la fonction

$$f: x \in \mathbb{R} \mapsto \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

est de classe \mathcal{C}^{∞} sur \mathbb{R} et $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$. f ne peut être égale à sa somme de sa série de Taylor sur aucun voisinage de 0 puisqu'elle n'est jamais constamment nulle sur un tel voisinage.

Proposition 3.4 Exemples de fonctions développables en série entière

$$\forall x \in \mathbb{R}, \ e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!} \qquad \forall x \in \mathbb{R}, \ \operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$$

$$\forall x \in \mathbb{R}, \ \operatorname{sh}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} \qquad \forall x \in \mathbb{R}, \ \operatorname{cos}(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$$

$$\forall x \in \mathbb{R}, \ \operatorname{sin}(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} \qquad \forall x \in] -1, 1[, \ \operatorname{arctan}(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n} x^{2n+1}}{2n+1}$$

$$\forall x \in] -1, 1[, \ \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^{n} \qquad \forall x \in] -1, 1[, \ \ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^{n}}{n}$$

$$\forall x \in] -1, 1[, \ (1+x)^{\alpha} = \sum_{n=0}^{+\infty} \binom{\alpha}{n} x^{n}$$

REMARQUE. On convient que

$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} = \frac{1}{n!} \prod_{k=0}^{n-1} (\alpha - k)$$

En particulier, $\begin{pmatrix} \alpha \\ 0 \end{pmatrix} = 1$.

Remarque. Le développement en série entière de $x \mapsto \ln(1+x)$ est encore valable en 1 et celui de arctan est encore valable en -1.

Méthode Calcul de la somme de $\sum P(n)x^n$ où P est un polynôme

On fait apparaître la série géométrique et ses dérivées.

Exemple 3.1

On souhaite calculer la somme de la série entière $\sum_{n\in\mathbb{N}} (n^2 + 2n + 3)x^n$.

Tout d'abord le rayon de convergence vaut 1 par la règle de d'Alembert.

On remarque ensuite que

$$n^2 + 2n + 3 = n(n-1) + 3n + 3$$

Soit *x* ∈] -1,1[.

$$\sum_{n=0}^{+\infty} (n^2 + 2n + 3)x^n = \sum_{n=0}^{+\infty} n(n-1)x^n + 3\sum_{n=0}^{+\infty} nx^n + 3\sum_{n=0}^{+\infty} x^n$$

$$= x^2 \sum_{n=0}^{+\infty} n(n-1)x^{n-2} + 3x \sum_{n=0}^{+\infty} nx^{n-1} + 3\sum_{n=0}^{+\infty} x^n$$

$$= x^2 \frac{d^2}{dx^2} \left(\frac{1}{1-x}\right) + 3x \frac{d}{dx} \left(\frac{1}{1-x}\right) + \frac{3}{1-x}$$

$$= \frac{2x^2}{(1-x)^3} + \frac{3x}{(1-x)^2} + \frac{3}{1-x}$$

$$= \frac{2x^2 - 3x + 3}{(1-x)^3}$$

Méthode Calcul de la somme de $\sum F(n)x^n$ où F est une fraction rationnelle

On décompose F en éléments simples.

Exemple 3.2

On souhaite calculer la somme de la série entière $\sum_{n\geq 3} \frac{n+1}{n^2-3n+2} x^n$.

Tout d'abord le rayon de convergence vaut 1 par la règle de d'Alembert.

On remarque ensuite que

$$\frac{n+1}{n^2-3n+2} = \frac{3}{n-2} - \frac{2}{n-1}$$

Soit $x \in]-1,1[$. Alors

$$\sum_{n=3}^{+\infty} \frac{n+1}{n^2 - 3n + 2} x^n = 3 \sum_{n=3}^{+\infty} \frac{x^n}{n-2} - 2 \sum_{n=3}^{+\infty} \frac{x^n}{n-1}$$

$$= 3x^2 \sum_{n=1}^{+\infty} \frac{x^n}{n} - 2x \sum_{n=2}^{+\infty} \frac{x^n}{n}$$

$$= -3x^2 \ln(1-x) + 2x(\ln(1-x) + x)$$

$$= (2x - 3x^2) \ln(1-x) + 2x^2$$

Méthode Développer en série entière une fraction rationnelle

On décompose la fraction rationnelle en éléments simples. On remarque alors que

$$\forall z \in \mathbb{C}, |z| < |a| \implies \frac{1}{z - a} = -\frac{1}{a} \cdot \frac{1}{1 - \frac{z}{a}} = -\frac{1}{a} \sum_{n=0}^{+\infty} \frac{z^n}{a^n}$$

Le développement en série entière de $\frac{1}{(z-a)^p}$ peut être obtenu par dérivation.

Exemple 3.3 Développement en série entière d'une fraction rationnelle

Soit $F = \frac{X^2 - 9X + 5}{X^3 - 3X + 2}$. La partie entière de cette fraction rationnelle est clairement nulle. On remarque que 1 est racine du dénominateur donc

$$(X^3 - 3X + 2) = (X - 1)(X^2 + X - 2) = (X - 1)^2(X + 2)$$

Il existe donc $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que

$$F(X) = \frac{\alpha}{X - 1} + \frac{\beta}{(X - 1)^2} + \frac{\gamma}{X + 2}$$

Comme -2 est pôle simple,

$$\gamma = \frac{P(-2)}{O'(-2)} = \frac{27}{9} = 3$$

en notant $F = \frac{P}{Q}$. Par ailleurs, $\lim_{x \to +\infty} xF(x) = \alpha + \gamma = 1$ donc $\alpha = -2$. Enfin, $F(0) = -\alpha + \beta + \frac{1}{2}\gamma = \frac{5}{2}$ donc $\gamma = -1$.

$$F(X) = -\frac{2}{X-1} - \frac{1}{(X-1)^2} + \frac{3}{X+2} = \frac{2}{1-X} - \frac{1}{(1-X)^2} + \frac{3}{1+\frac{X}{2}}$$

On remarque alors que

$$\forall x \in]-1,1[, \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

En dérivant

$$\forall x \in]-1,1[, \ \frac{1}{(1-x)^2} = \sum_{n=0}^{+\infty} nx^{n-1} = \sum_{n=0}^{+\infty} (n+1)x^n$$

Par ailleurs

$$\forall x \in]-2, 2[, \frac{1}{1+\frac{x}{2}} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^n} x^n$$

On en déduit que F est développable en série entière sur]-1,1[et que

$$\forall x \in]-1,1[, F(x) = \sum_{n=0}^{+\infty} \left(1-n+3 \cdot \frac{(-1)^n}{2^n}\right) x^n$$

Méthode Déterminer un développement en série entière via une équation différentielle

Pour déterminer le développement en série entière d'une fonction f, on peut montrer qu'elle vérifie une équation différentielle linéaire à coefficients polynomiaux et en déduire une relation de récurrence sur les coefficients de cet éventuel développement en série entière.

Exemple 3.4

On souhaite montrer que la fonction $f: x \mapsto \frac{\arcsin x}{\sqrt{1-x^2}}$ est développable en série entière en l'origine et déterminer ce développement en série entière.

Comme arcsin et $x\mapsto \frac{1}{\sqrt{1-x^2}}$ sont développables en séries entières de rayon de convergence égal à 1, f est développable en série entière de rayon de convergence supérieur ou égal à 1 par produit de Cauchy.

De plus, f est dérivable sur]-1,1[et que

$$\forall x \in]-1,1[, f'(x) = \frac{1}{1-x^2} + \frac{x \arcsin x}{(1-x^2)^{\frac{3}{2}}}$$

ou encore

$$\forall x \in]-1, 1[, (1-x^2)f'(x) - xf(x) = 1$$

Comme f est développable en série entière sur]-1,1[, il existe $(a_n)\in\mathbb{R}^\mathbb{N}$ tel que

$$\forall x \in]-1,1[, f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

En reportant dans l'équation différentielle précédente, on obtient :

$$\sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n - \sum_{n=1}^{+\infty} (n-1)a_{n-1}x^n - \sum_{n=1}^{+\infty} a_{n-1}x^n = 1$$

ou encore

$$a_1 + \sum_{n=1}^{+\infty} \left[(n+1)a_{n+1} - na_{n-1} \right] x^n = 1$$

Par unicité du développement en série entière, $a_1 = 1$ et

$$\forall n \in \mathbb{N}^*, (n+1)a_{n+1} - na_{n-1} = 0$$

Notamment,

$$\forall n \in \mathbb{N}, \ a_{2n+1} = \frac{2n}{2n+1} a_{2n-1}$$

On en déduit que

$$\forall n \in \mathbb{N}, \ a_n = \frac{2^{2n}(n!)^2}{(2n+1)!} = \frac{2^{2n}}{(2n+1)\binom{2n}{n}}$$

Par ailleurs, $a_0 = f(0) = 0$ donc $a_{2n} = 0$ pour tout $n \in \mathbb{N}$.

Finalement

$$\forall x \in]-1,1[, \ f(x) = \sum_{n=0}^{+\infty} \frac{2^{2n}}{(2n+1)\binom{2n}{n}} x^{2n+1}$$