Input B_H_REFv1.12_Market_	economic_simulation.txt	The EnergyPLAN model 16	5.1										
Electricity demand (TWh/year): Flexible demand0,00	Group 2: MW-e MJ/s elec. Ther COP CEEP re CHP 0 1500 0,40 0,50 Minimum Heat Pump 0 0 3,00 Stabilisal Boiler 0 0,90 Minimum Group 3: CHP 443 82 0,21 0,47 Heat Pum Heat Pump 0 0 3,00 Maximum Boiler 0 0,90 Maximum	capacities Sintion share 0,98 stition share of CHP 0,00 share of CHP 0,00 share of CHP 0,00 share of CHP 0 0 MW share of CHP 0 0 MW share of Charge 1: 0 share 1: 0 share 1: 0 share 2: 175 share 2: 175 share 2: 440 share 2: 0 share	torage Efficiencies GWh Elec. Ther 0 0,80 0,90 3 0,90 0,90 0 0,80 0,00										
Demand after solar and CSHP 1,13 0,00 0,50 1,63 Wind 87 MW 0,16 TWh/year 0,00 Grid Photo Voltaic 35 MW 0,08 TWh/year 0,00 stabili- River Hydro 172 MW 0,44 TWh/year 0,00 sation River Hydro 0 MW 0 TWh/year 0,00 share Hydro Power 1685 MW 3,79 TWh/year Geothermal/Nuclear 0 MW 0 TWh/year	Heatstorage: gr.2: 0 GWh gr.30 GWh Multiplica Dependence Gr.1: 0,00 0,00 Gr.2: 0,00 GWh Gr.30 GWh Multiplica Dependence Gr.30 GWh Gr.30 GWh Multiplica Dependence Gr.30 GWh Multiplica Dependence Gr.30 GWh Gr.30 GWh Multiplica Dependence Gr.30 GWh Gr.30 GWh Multiplica Dependence Gr.30 GWh Gr.	ation factor 1,00 ency factor 0,00 EUR/MWh pr. MW (TWh/year) Coal Oil Market Price 39 EUR/MWh Transport 0,00 13,43 erage 0 GWh Household 1,15 0,41	Ngas Biomass 0,01 0,00 0,71 13,47										
Output District Heating Electricity Exchange													
Demand Production Distr. Waste-	Consumption Ba- Elec. Flex.& Elec- Hydro Tur- H	Production Balance ly- Geo- Waste·· Stab-	Payment										
heating Solar CSHP DHP CHP HP ELT Boiler EH MW	lance demandTransp HP trolyser EH Pump bine RES dr MW MW M	ro thermal CSHP CHP PP Load Imp Exp CEEP EEP MW											

Outp																													
		District Heating										Electricity														Excha			
	Demand Production								Consumption							Production							Balance						
	Distr. heating	Solar	Waste- CSHP		CHP	HP	ELT	Boiler	EH	Ba- lance		Flex.& dTransp		Elec- trolyse	r EH	Hydro Pump		RES	Hy- dro t	Geo- hermal	Waste CSHF		PP	Stab- Load	Imp	Exp	CEEP	EEP	Paymei Imp
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	%	MW	MW	MW	MW	Million E
January	391	0	0	271	81	0	0	0	0	39	795	7	4	0	701	0	0	100	467	0	0	435	505	140	0	0	0	0	0
February	307	0	0	213	75	0	0	0	0	18	822	7	3	0	550	0	0	84	405	0	0	407	486	144	0	0	0	0	0
March	283	0	0	197	72	0	0	0	0	14	761	7	3	0	508	0	0	108	454	0	0	389	322	147	5	0	0	0	0
April	190	0	0	132	53	0	0	0	0	5	806	7	2	0	341	0	0	61	424	0	0	288	383	155	0	0	0	0	0
May	114	0	0	79	35	0	0	0	0	0	874	7	1	0	204	0	0	50	365	0	0	187	482	160	2	0	0	0	0
June	70	0	0	49	21	0	0	0	0	0	1010	7	1	0	126	0	0	59	397	0	0	116	571	156	0	0	0	0	0
July	48	0	0	33	15	0	0	0	0	0	1121	7	1	0	86	0	0	62	487	0	0	79	584	154	2	0	0	0	0
August	41	0	0	28	12	0	0	0	0	0	1079	7	0	0	73	0	0	58	576	0	0	67	459	155	0	0	0	0	0
Septembe	r 62	0	0	43	19	0	0	0	0	0	1058	7	1	0	111	0	0	67	480	0	0	102	528	153	0	0	0	0	0
October	147	0	0	102	45	0	0	0	0	0	984	7	2	0	263	0	0	81	340	0	0	241	594	149	0	0	0	0	0
Novembei	256	0	0	178	67	0	0	0	0	11	917	7	3	0	459	0	0	85	420	0	0	361	520	145	0	0	0	0	0
December	315	0	0	219	76	0	0	0	0	20	924	7	4	0	565	0	0	109	367	0	0	412	611	140	0	0	0	0	0
Average	185	0	0	129	48	0	0	0	0	9	930	7	2	0	332	0	0	77	432	0	0	257	504	150	1	0	0	0	Average
Maximum	610	0	0	424	82	0	0	0	0	104	1577	13	7	0	1094	0	0	233	798	0	0	443	1336	886	807	0	0	0	(EUR/N
Minimum	9	0	0	6	3	0	0	0	0	0	65	0	0	0	17	0	0	0	0	0	0	15	0	124	0	0	0	0	0
TWh/year	1,63	0,00	0,00	1,13	0,42	0,00	0,00	0,00	0,00	0,08	8,17	0,06	0,02	0,00	2,91	0,00	0,00	0,68	3,79	0,00	0,00	2,25	4,43		0,01	0,00	0,00	0,00	0
FUEL BA	LANCE	(TWh/y	ear):							Wa	ste/ C/	AES Bio	Con-E	lectro-		PV an	d Wind	off					Indus	try	lmp	/Exp C	orrecte	d CO	2 emissio
	DHP	CHP	2 CHP	3 Во	iler2 B	oiler3	PP	Geo/N	u.Hydr	o HTI	_ El	c.ly. vei	sion F	uel	Wind	CSP	Wav	е Нус	dro S	olar.Th	Transp.	.housel	ո.Varioւ	us Tota	al _I İı	mp/Exp	Net	Т Т	otal Net
Coal	0,64	-	0,84		-	- 1	5,13	-	-	-			-	-	-	-	-	-		-	-	1,15	8,29	26,06	3 (),02	26,08	10),79 10,80
Oil	0,02	-	-		-		0,00	-	-	-			_	-	-	-	-	-		- 13	,43	0,41	3,18	17,04	1 (0,00	17,04	4	,45 4,45
N.Gas	0,48	-	_		_		0,00	_	_	_			_	_	_	-	_	-		- 0		0,71	1,99	4,00	1	0,00	4,00		,93 1,12
Biomass		_	0,04		_		0,00	_	_	_			_	-	-	-	-	_		_	, -	3,47	0,59	14,47	- 1),00	14,47		0,00 0,00
Renewal		_	-,,,		_	_	-	_	3.79	_			_	_	0.16	0.08	_	4,2	:3	_	-	, -	-	4,4	- 1),00	4,47		0,00 0,00
H2 etc.	_	_	_		_	_	_	_	-,	_			_	-	-	-,-3	_	-,-		_	_	_	_	0,00),00	0,00		0,00 0,00
Biofuel	_	_	0,00	1	_	_	_	_	_	_			_	-	_	_	_	_		_	_	_	_	0,00	1),00	0,00	-	0,00 0,00
Nuclear/0	ccs -	-	-		-	-	-	-	-	-			-	-	-	-	-	-		-	-	-	-	0,00	- 1),00	0,00		0,00 0,00
Total	1,51		0,88		_	- 1	5,14		3,79					_	0,16	0,08		4,2	23	- 14	,25 1	5,74	14,06	66,05	5 (0,02	66,07	16	6,18 16,37
· Jui	1,01		0,50				٠,		0,.0						٥, ١٥	5,00		٠,٧		1-7	,	٠,، ،	. 1,00	55,00	٠ ١ ١	,,,,,	55,51	1 '0	.,

Output specifications B_H_REFv1.12_Market_economic_simulation.tyThe EnergyPLAN model 16.1

	District Heating Production																												
	G	Gr.1			Gr.2								Gr.3									RES specification							
	District				District		00115				5 "		Stor-	Ba-	District		00115				.			Ва-		RES2			īotal
	heating MW	Solar	CSHP MW	MW	heating MW	Solar MW	CSHP MW	MW	HP MW	ELT MW	Boiler MW	EH MW	age MW	lance MW	heating MW	Solar	CSHP MW	MW	HP MW	ELT MW	Boiler MW	EH MW	age MW	lance MW	Wind MW	Photo F MW	River I 4 MW	4-7 o MW	MW
January	271	0	0	271	0	0	0	0	0	0	Λ	0	0	0	119	0	0	81	0	0	Λ	0	0	39	18	7	75	0	100
February		0	0	213	0	0	0	0	0	0	0	0	0	0	94	0	0	75	0	0	0	0	0	18	23	8	54	0	84
March	197	0	0	197	0	0	0	0	0	0	0	0	0	0	86	0	0	72	0	0	0	0	0	14	29	8	71	0	108
April	132	0	0	132	0	0	0	0	0	0	0	0	0	0	58	0	0	53	0	0	0	0	0	5	19	11	31	0	61
May	79	0	0	79	0	0	0	0	0	0	0	0	0	0	35	0	0	35	0	0	0	0	0	0	21	10	20	0	50
June	49	0	0	49	0	0	0	0	0	0	0	0	0	0	21	0	0	21	0	0	0	0	0	0	12	12	35	0	59
July	33	0	0	33	0	0	0	0	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	0	10	13	38	0	62
August	28	0	0	28	0	0	0	0	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	0	12	12	34	0	58
Septemb		0	0	43	0	0	0	0	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	0	15	10	42	0	67
October	102 er 178	0	0	102 178	0	0	0	0	0	0	0	0	0	0	45 70	0	0	45 67	0	0	0	0	0	0 11	16	8	57 61	0	81
Novembe Decembe		0 0	0	219	0	0	0	0	0	0	0	0	0	0	78 96	0	0	76	0	0	0	0	0	11 20	17 27	3	61 79	0	85 109
																													103
Average	129	0	0	129	0	0	0	0	0	0	0	0	0	0	56	0	0	48	0	0	0	0	0	9	18	9	50	0	77
Maximum		0	0	424	0	0	0	0	0	0	0	0	0	0	186	0	0	82	0	0	0	0	0	104	87	35	172	0	233
Minimum	6	0	0	6	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0
Total for t	the whol	e year																											1
TWh/yea	r 1,13	0,00	0,00	1,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,50	0,00	0,00	0,42	0,00	0,00	0,00	0,00		0,08	0,16	0,08	0,44	0,00	0,68

Own use of heat from industrial CH0,00 TWh/year

1142

TOTAL ANNUAL COSTS = 4596

RES Share: 28,7 Percent of Primary Energy 41,9 Percent of Electricity

Annual Investment costs = TOTAL ANNUAL COSTS =

										5. 0 tL 0/ t	C							,
ANNUAL COSTS (Million EUR	₹)		DHP &	CHP2	PP	Indi-	Trans	Indu.	Deman	d Bio-	Syn-	CO2Hy	SynHy	SynHy	Stor-	Sum	lm-	Ex-
Total Fuel ex Ngas exchange =	1958		Boilers	CHP3	CAES	vidual	port	Var.	Sum	gas	gas	gas	gas	gas	age		port	port
Uranium = 0			MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
Coal = 263			444	0	0	474	4	000	500	0	0	0	•	0	•	F00	500	
FuelOil = 121		January	114	0	0	171	1	239	526	0	0	0	0	0	0	526	526	0
Gasoil/Diesel= 891		February	90	0	0	134	1	259	485	0	0	0	0	0	0	485	485	0
Petrol/JP = 157		March	83	0	0	124	1	242	451	0	0	0	0	0	0	451	451	0
Gas handling = 30		April	56	0	0	83	1	193	334	0	0	0	0	0	0	334	334	0
Biomass = 495		May	33	0	0	50	1	172	257	0	0	0	0	0	0	257	257	0
Food income = 0		June	21	0	0	31	1	140	193	0	0	0	0	0	0	193	193	0
		July	14	0	0	21	1	159	195	0	0	0	0	0	0	195	195	0
Waste = 0		August	12	0	0	18	1	112	143	0	0	0	0	0	0	143	143	0
Total Ngas Exchange costs =	64	September	18	0	0	27	1	156	203	0	0	0	0	0	0	203	203	0
	0.40	October	43	0	0	64	1	384	493	0	0	0	0	0	0	493	493	0
Marginal operation costs =	349	November	75	0	0	112	1	267	456	0	0	0	0	0	0	456	456	0
Total Electricity exchange =	0	December	92	0	1	138	1	391	624	0	0	0	0	0	0	624	624	0
Import = 0		Average	54	0	0	81	1	226	363	0	0	0	0	0	0	363	363	0
Export = 0		Maximum	179	0	8	268	1	739	881	0	0	0	n	0	0	881	881	ň
Bottleneck = 0		Minimum	3	0	0	200	1	0	9	0	0	0	0	0	0	9	9	ŏ
Fixed imp/ex= 0		William	3	U	U	4	'	U	9	U	U	U	U	U	U	9	9	· ·
Total CO2 emission costs =	0	Total for th	e whole	year														ļ
Total GOZ ellission costs -	U	TWh/year	0,48	0,00	0,00	0,71	0,01	1,99	3,19	0,00	0,00	0,00	0,00	0,00	0,00	3,19	3,19	0,00
Total variable costs =	2372																	ļ
Fixed operation costs =	1082																	ļ
1																		

4,6 TWh electricity from RES

NATURAL GAS EXCHANGE

17-april-2022 [15:54]