Quantitative Management Modeling assignment module 6

vineeth goud maddi

10/18/2022

installing and Activating the required packages

```
library("lpSolveAPI")
library("lpSolve")
library("tinytex")
```

Formulate and solve this transportation problem using R

Creating a table for better understanding of the data

```
tab \leftarrow matrix(c(22,14,30,600,100,
                  16,20,24,625,120,
                  80,60,70,"-","-"), ncol=5,byrow=T)
colnames(tab) <- c("Warehouse1", "Warehouse2", "Warehouse3", "ProductionCost", "ProductionCapacity")</pre>
rownames(tab) <- c("PlantA", "PlantB", "Demand")</pre>
tab <- as.table(tab)</pre>
tab
##
           Warehouse1 Warehouse2 Warehouse3 ProductionCost ProductionCapacity
## PlantA 22
                       14
                                   30
                                               600
                                                               100
                                               625
## PlantB 16
                       20
                                   24
                                                               120
## Demand 80
                       60
                                   70
```

The Objective Function is to Minimize the Transportation cost

$$Z = 622X_{11} + 614X_{12} + 630X_{13} + 0X_{14} + 641X_{21} + 645X_{22} + 649X_{23} + 0X_{24}$$

Subject to the following constraints

Supply Constraints
$$X_{11} + X_{12} + X_{13} + X_{14} <= 100$$

$$X_{21} + X_{22} + X_{23} + X_{24} <= 120$$

Demand Constraints

$$X_{11} + X_{21} >= 80$$

 $X_{12} + X_{22} >= 60$
 $X_{13} + X_{23} >= 70$

$$X_{14} + X_{24} > = 10$$

```
Non – Negativity Constraints X_{ij} >= 0 Where i = 1,2 and j = 1,2,3,4
```

```
#Since demand is not equal to supply creating dummy variables
#Creating a matrix for the given objective function
trans1 <- matrix(c(622,614,630,0,
                 641,645,649,0), ncol=4, byrow=T)
trans1
        [,1] [,2] [,3] [,4]
## [1,]
        622 614
                  630
## [2,]
        641 645
                  649
                           0
#Defining the column names and row names
colnames(trans1) <- c("Warehouse1", "Warehouse2", "Warehouse3", "Dummy")</pre>
rownames(trans1) <- c("PlantA", "PlantB")</pre>
trans1
##
          Warehouse1 Warehouse2 Warehouse3 Dummy
## PlantA
                 622
                             614
                                        630
## PlantB
                 641
                             645
                                        649
                                                 0
#Defining the row signs and row values
row.signs <- rep("<=",2)
row.rhs <- c(100, 120)
#Since it's supply function it cannot be greater than the specified units.
#Defining the column signs and column values
col.signs <- rep(">=",4)
col.rhs \leftarrow c(80,60,70,10)
#Since it's demand function it can be greater than the specified units.
#Running the lp.transport function
lptrans1 <- lp.transport(trans1,"min", row.signs,row.rhs,col.signs,col.rhs)</pre>
#Getting the objective value
lptrans1$objval
```

[1] 132790

The minimization value so obtained is \$132,790 which is the minimal combined cost thereby attained from the combined cost of production and shipping the defibrilators.

```
#Getting the constraints value
lptrans1$solution
```

```
## [,1] [,2] [,3] [,4]
## [1,] 0 60 40 0
## [2,] 80 0 30 10
```

80 AEDs in Plant B - Warehouse1

60 AEDs in Plant A - Warehouse2

40 AEDs in Plant A - Warehouse3

30 AEDs in Plant B - Warehouse3 should be created in each facility, supplied to each of the three warehouses of the wholesalers, and then packaged to reduce the overall cost of manufacturing and shipment..

2. Formulate the dual of this transportation problem

Since the primary goal was to reduce transportation costs, the secondary goal would be to increase value added (VA).

$$Maximize VA = 80WH_1 + 60WH_2 + 70WH_3 - 100P_A - 120P_B$$

Subject to the following constraints

Total Payments Constraints

$$WH_1 - P_A >= 622$$

$$WH_2 - P_A >= 614$$

$$WH_3 - P_A >= 630$$

$$WH_1 - P_B > = 641$$

$$WH_2 - P_B > = 645$$

$$WH_3 - P_B > = 649$$

Where
$$WH_1 = Warehouse 1$$

$$WH_2 = Warehouse 2$$

$$WH_3 = Warehouse 3$$

$$P_A = Plant 1$$

$$P_B = Plant 2$$

3. Make an economic interpretation of the dual

$$WH_1 <= 622 + P_A$$

$$WH_2 <= 614 + P_A$$

$$WH_3 <= 630 + P_A$$

$$WH_1 <= 641 + P_B$$

$$WH_2 <= 645 + P_B$$

$$WH_3 <= 649 + P_B$$

From the above we get to see that $WH_1 - P_A >= 622$

that can be exponented as $WH_1 \le 622 + P_A$

Here WH_1 is considered as the price payments being received at the origin which is nothing else,

but the revenue, whereas $P_A + 622$ is the money paid at the origin at $Plant_A$

Therefore the equation turns, out to be $MR_1 >= MC_1$.

For a profit maximization, The Marginal Revenue(MR) should be equal to Marginal Costs(MC)

Therefore, $MR_1 = MC_1$

Based on above interpretation, we can conclude that, Profit maximization takes place if MC is equal to MR.

If MR < MC, We must lower plant costs in order to reach the Marginal Revenue (MR).

If MR > MC, We must boost manufacturing supply if we are to reach the Marginal Revenue (MR).