OmegaPi0 Efficiency

November 28 2023
Open Analysis Discussion
Karthik Suresh

Details Reaction1 1_14__m1_1_7_8_9_14 Reaction1:Flags B4 T0 S1 M7 F1

The reaction is:

- MC
 - 10Million events, Fall 2018 data
 - All of it shown here
 - tree gpi0pippimmissg B4 F1 T0 S1 M7
- Data
 - Analysis Launch Fall2018 Ver20
 - tree_gpi0pippimmissg__B4_F1_T0_S1_M7
 - All of it shown here

$p\gamma ightarrow$	$n\pi^0(u)$	\rightarrow	π^+	π^{-}	$-\pi^0$
PI	ph w	/	/ \	/ \	/ (

The reaction in ReactionFilter is;

$$p\gamma \to p\pi^0 [\gamma_2\gamma_3]\pi^+\pi^-\gamma_1(\gamma_4)$$

Cut Name	Value ^{Absolute}		
π_{ij}^{0} cut ij = [14, 23]	$\mathit{M}(\pi^0) - \mathit{M}(\gamma_i \gamma_j) \leq 0.100 GeV$		
Anti π^0_{ij} ij = [12, 13, 24, 34]	$\mathit{M}(\pi^0) - \mathit{M}(\gamma_i \gamma_j) \geq 0.100 GeV$		
ω_{14} cut	$M(\omega) - M(\pi^+\pi^-(\gamma_1\gamma_4)) \le 0.025 \mathrm{GeV}$		
Anti ω_{ij} cut ij = [12, 13, 23, 24, 34]	$\mathit{M}(\omega) - \mathit{M}(\pi^+\pi^-(\gamma_1\gamma_4)) \geq 0.025\mathrm{GeV}$		

Recoil mass (Missing)

Fall 2018 Data

Theta distribution

After all Cuts

Fall 2018 MC - b1 Simulations

Current recipe to compute efficiency

 $\epsilon = rac{\omega_{inv}}{\omega_{inv} + \omega_{miss}; 1 \, shower}$

Breaking into momentum and theta bins (Invariant Mass)

Trying out various fits to capture the background

3 Fit functions have been tried so far.

<u>Double Gaussian with constrained</u> <u>mean and Total intensity</u> with an exponential of degree 2 seems to model the spectrum well.

Choosing Fit Function dynamically based on Chi2/NDF

Each Fit repeated 20 times with Random initialized parameters.

Certainly need to improve with Caution

"Preliminary" efficiency for $0.10 < p_{,y} < 0.50 \text{ GeV}$

- Point into the BCAL Use fitted yields of ω to check if found
- Method 1 Work with missing ω mass before and after
- loose 2y cuts. $\omega_{miss}; 4\ good\ showers$ ω_{miss} ; 3 or 4 good showers

Method 2

fitting function to extract Signal Yield

- Fit invariant ω mass if missing photon found
- Else fit missing ω mass.
 - $\omega_{inv} + \omega_{miss}$; 1 shower

Pros: Promising statistics compared to all other studies

Con: Fitting the ω tricky. Still working on finalizing the

- Charged tracks π^+ , π^- , p
- 2 photons corresponding to Bachelor π^0
- Another neutral shower is found along with an extra shower which makes up π^0 of the ω

Promising statistics in this channel

Also, May be show a plot on higher theta spectrum where one cannot see eta but can see omega peak

Details Reaction1 1_14__m1_1_7_8_9_14 Reaction1:Flags B4 T0 S1 M7 F1

The reaction is:

- MC
 - 10Million events, Fall 2018 data
 - All of it shown here
 - tree gpi0pippimmissg B4 F1 T0 S1 M7
- Data
 - Analysis Launch Fall2018 Ver20
 - tree_gpi0pippimmissg__B4_F1_T0_S1_M7
 - About 15% of data is shown here

	0		+		- 0
$p\gamma ightarrow$	$p\pi^*\omega$	\rightarrow	π	π	π

The reaction in ReactionFilter is;

$$p\gamma \to p\pi^0 [\gamma_2\gamma_3]\pi^+\pi^-\gamma_1(\gamma_4)$$

Cut Name	Value ^{Absolute}		
π_{ij}^{0} cut ij = [14, 23]	$\mathit{M}(\pi^0) - \mathit{M}(\gamma_i \gamma_j) \leq 0.100 GeV$		
Anti π^0_{ij} ij = [12, 13, 24, 34]	$\mathit{M}(\pi^0) - \mathit{M}(\gamma_i \gamma_j) \geq 0.100 GeV$		
ω_{14} cut	$M(\omega) - M(\pi^+\pi^-(\gamma_1\gamma_4)) \le 0.025 \mathrm{GeV}$		
Anti ω_{ij} cut ij = [12, 13, 23, 24, 34]	$\mathit{M}(\omega) - \mathit{M}(\pi^+\pi^-(\gamma_1\gamma_4)) \geq 0.025\mathrm{GeV}$		

Configuration

```
1 # add the plugins to be included in the analysis of the *.hddm data file
3 2 PLUGINS ReactionFilter, mcthrown tree
5 4 # for simulation, specify the mc variation to retrieve the correct calibration constants
6 5 JANA CALIB CONTEXT variation=mc
7 6 #REST:DATAVERSIONSTRING recon RunPeriod-2017-01 ver03
8 7 #ANALYSIS:DATAVERSIONSTRING analysis RunPeriod-2017-01 ver32
9 8
10 9 #ANALYSIS:DATAVERSIONSTRING analysis-2017_01-ver32
1110 #NALYSIS:DATAVERSIONSTRING analysis-2018 08-ver04
1211 #REST:DATAVERSIONSTRING recon RunPeriod-2017-01 ver03
1312 #ANALYSIS:DATAVERSIONSTRING analysis RunPeriod-2017-01 ver035
1413
1514 # if requested multiple threads/cores in glogin or gsub command then use multithreading
1615 NTHREADS 8
1716
1817 # List possible reactions to study in ReactionFilter plugin
1918 # The format follows
2019 # https://halldsvn.jlab.org/repos/trunk/scripts/monitoring/launch/jana analysis.config
2120
2221 #Reaction1 1 14 7 7 8 9 14
2322 #Reaction1:Flags B4
2423
2524 #COMBO: MAX NEUTRALS 10
2625 #Reaction1:Flags B4 T10
2726
2827 Reaction1 1 14 m1 1 7 8 9 14
  28 Reaction1:Flags B4 T0 S1 M7 F1
```