## **British Physics Olympiad Paper 1: Solutions**

To order free participation or merit certificates (for scores over 20), see www.bpho.org.uk

## Mark Scheme

## **Sept/Oct 2009**

Allow ecf where this gives sensible answers

Q1.

(a) The mass is simply the sum of the two individual masses i.e.97 kg

(2 marks)

(b)

i) Diagram of the form:



ii) 5 V drop across 0.2 W resistor leads to a current of 25 A maximum So power available at 225 V is 5.63 kW

(4 marks)

(c)

- i) Sound energy =  $0.1 \times mgh = 0.1 \times 2 \times 10^{-4} \times 9.8 \times 1$ =  $2 \times 10^{-4} \text{ J}$
- ii) Assume (maybe implicit) Energy is spread over half of a sphere Or allow for whole sphere and energy absorbed by ground But some comment should be made about the assumption

Ear receives energy = 
$$2 \times 10^{-4} \times \frac{\pi (6 \times 10^{-3})^2}{4} / \frac{1}{2} 4\pi 5^2$$

$$= 3.6 \times 10^{-11} \text{ J}$$
(4 marks)

(d) An image is formed on the screen (✓) and your eye now focuses rays of light which come from each point on the screen to form a new image. A mirror would direct rays from the room to your eye from other parts of the room. (✓)

(2 marks)

(e) There are several approaches:

For (a), since E = V/d then E halves (as d doubles), so Q halves, V is constant and hence energy stored halves.

For (b), Q is constant, so E is constant, so V doubles

For constant Q then the energy doubles

Ratio is 1:4 allow marks if answer given (not guessed)

(4 marks)

(f) Amplitude  $\rightarrow$  amplitude/4, so energy  $\rightarrow$  energy/16

This is four half lives

so time taken is 8.0 seconds, i.e. 1800 oscillations (ecf)

(3 marks)

(g)

- i) Archimedes upthrust/weight of the liquid displaced/etc. ✓
- ii) Sketch:



iii) By similar triangles:

iv) From the forces: weight of cone = weight of liquid displaced

$$\rho_c \frac{1}{3}\pi R^2 hg = \rho_w \frac{1}{3}\pi r^2 \ell g$$
substituting for  $\frac{h}{\ell}$ 

$$\rho_c h^3 = \rho_w \ell^3$$

$$\frac{\rho_c}{\rho_w} = \left(\frac{\ell}{h}\right)^2$$

(6 marks)



iii) Diagram of the form shown below, or with semicircles emerging or any alternative clear and reasonable interpretation



iii) minimum 
$$d$$
 is  $d_{min} \approx \lambda/2$   $\checkmark$  orientation: the two waves are collinear with the centres of the speakers  $\checkmark$  (6 marks)

(i) Angles shown to indicate angle  $q_e$  with angle of  $102^{\circ}$  inside the glass - 3 marks

Or statement that emerging ray is "above" the normal justified

✓

Two marks for suitable correct rays and angles



(3 marks)

(j) Field increases as  $1/r^2$ . So calculation is

$$\frac{B_1}{B_2} = \frac{R_2^2}{R_1^2}$$

$$\frac{10^{-2}}{B_2} = \frac{(10)^2}{(1.4 \times 10^6)^2}$$

$$B_2 = 10^{-2} \times 10^{-2} \times 1.96 \times 10^{12}$$

$$B_2 = 2.0 \times 10^8 \,\text{T}$$

Right idea ✓, numbers substituted ✓✓, answer ✓

(4 marks)

[Q1: 38]

**Q2.** 

i) 
$$m = const \times v^a \times g^b \times \rho^c$$
 (1 mark)

ii) The dimensions are given by

$$[v] = LT^{-1}$$
,  $[g] = LT^{-2}$ ,  $[r] = ML^{-3}$ 

So then we can write

$$M = (LT^{-1})^a \times (LT^{-2})^b \times (ML^{-3})^c \qquad \checkmark \eqno(4 \text{ marks})$$

iii) The powers of M, L, T on each side of the equation must be the same

For M: 
$$M^1 = M^c$$
 so that  $c = 1$ 

For L:  $L^0 = L^{a+b-3c}$  so that  $a+b-3c = 0$ 

For T:  $T^0 = T^{-a-2b}$  so that  $-a-2b = 0$ 
 $b = -3$  and  $a = 6$ 

(4 marks)

iv) 
$$m = const \times v^{6} \times g^{-3} \times \rho$$
 or all correct:  $\checkmark\checkmark$  
$$m = const \frac{v^{6} \rho}{g^{3}}$$

(2 marks)

v) The high power of v means that for a small increase in v there will be a relatively large increase in  $v^6$ . owtte

(1 mark)

[Q2: 12]