JALPAIGURI GOVERNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE] JGEC/B.TECH./ ME / OE-ME8021/2024-25

Renewable Energy Resources

-	Time: 1 Ho	wr
	The figures in the margin indicate full marks. Candidates are instructed to write the answers in their own words as far as practicable. Inswer any three questions	315-15
1.	Classify geothermal energy resources based on i) geothermal energy available areas and ii) geothermal energy recovery systems.	5
2.	 i) What is Biomass? ii) Make a brief comparison between Floating-Drum and Fixed-Drum type biogas plant. 	4
3.	Make a comparison between Conventional energy and Renewable energy.	
A	Determine i) Power available in the wind (Pw), ii) Power extracted by the turbine (P _T) and iii) Power Coefficient (C _P) from the following data: rotor diameter is 70m, air density is 1.23 kg/m ³ , upstream wind velocity is 15m/s, downstream wind velocity is 60% of free wind.	5
5.	Determine i) Local Apparent Time [Solar time], ii) Declination angle (δ), iii) Hour angle (ω) corresponding to 11.00 hour (IST) at Jalpaiguri (26.5° N, 89° E) on 13th May. Indian standard time is based on 82.5° E. Consider Equation of Time Correction as (-) 4 minutes.	5

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE JGEC/B.TECH./ ME / PE-ME 802 A5/2024-25

Turbo Machinery

Time: 1 Hour

Fu	ll Marks: 15	uı
	The figures in the margin indicate full marks. Candidates are instructed to write the answers in their own words as far as practicable. aswer any three questions	3x5=15
	D S AND F OR S S S S S S S S S S S S S S S S S S	5
1.	Derive the governing Euler equation for a turbine or pump.	5
2.	Differentiate between impulse and reaction turbine. $\cot \alpha$	- 5
3.	Differentiate between impulse and reaction turbine. Prove that Degree of reaction for Francis turbine is $R = 1 - \frac{\cot \alpha}{2 \cot \alpha - \cot \theta }$ where is α nozzle angle and θ is	
	vane angle at entry.	5
4	vane angle at entry. Derive specific speed of a turbine $N_S = \frac{N\sqrt{P}}{H^{5/4}}$ where H is head, P is power, and N is rpm. Finally, the Same specific speed coefficient and power coefficient.	_
5.	Explain terms flow coefficient, head coefficient and power coefficient	3

JALPAIGURI GOVT. ENGINEERING COLLEGE

Industrial Engineering (OE-ME801A)

Answer any three:

Class Test 3 X 5 = 15

1. What is the purpose of carrying out work study? What do you mean by 'therbligs'?

3 + 2

2. State the principles of motion economy related to use of human body and arrangement of work place. 2.5 x 2

3. The table below shows the demand for a particular product of the last twelve months.

1	2	3	. 4	5	6	7	8	9	10	11	12
12	15	19	.23	27	30	32	. 33	37	41	49	58

- (i) Compute the monthly demand forecast for months 5 to 12 using a 4 month moving average method. What would be your demand forecast in month 13?
- (ii) Use exponential smoothing with a smoothing constant of 0.2 to compute the demand forecast for the month 13.
- 4, Define production planning and control (PPC). State the functions of PPC.

Jalpaiguri Government Engineering College

Class Test B.Tech

Automobile Engineering 8th Sem

Full Marks: 15

Time: 1 hour

(PE-ME801A2)

Group A (Answer any five)

2x5 = 10

- V. Define stoichiometric fuel-air (F/A) ratio.
- 2. Draw the layout of forced fuel feed system.
 - 3. Write a short note on camber.
 - . 4. What is the necessity for multiple gears in an automobile?
 - 5. What do you mean by traction effort?
 - 6. Write in brief about lean and rich mixtures of F/A ratio.

Group B

1x5 = 5

7. a. Illustrate the working principle of carburetor.

Or

b. Illustrate the working principle of simple differential with neat diagram.