

## Tópicos Avançados de Automação Industrial

TAAE 9

Prof° José W. R. Pereira



## Ciência de dados



#### Análise de Dados

A análise de dados é o processo de manipulação de dados através de ferramentas computacionais e estatísticas, de modo a buscar informações relevantes que auxiliam à tomada de decisão.



## Tipos de análise de dados

### Analista de Dados

#### Cientista de Dados





#### Desenvolvimento da Análise

Descritiva Diagnóstica Preditiva Prescritiva

#### 1. Problema de negócio:

- 1. O resultado da ação foi positivo ou negativo?
- 2. Por que os resultados foram esses?
- 3. Como tomar uma decisão?



#### Desenvolvimento da Análise

- 2. Descrever o comportamento dentro de um escopo;
- 3. **Diagnosticar** os motivos que produziram os comportamentos;
- 4. Prever o comportamento baseado em histórico;
- 5. **Prescrever/orientar** ações para alcançar as metas do negócio.



#### Análise Descritiva



Fornece um resumo simples de uma planilha de dados, através de indicadores, gráficos e tabelas.



| Cia Aérea | Horário |
|-----------|---------|
| Latam     | 11:10   |
| Gol       | 11:15   |
| Azul      | 11:20   |
| Gol       | 12:40   |
| Latam     | 12:45   |



#### Análise Descritiva



Realiza a exploração inicial dos dados, permitindo a compreensão da distribuição, valor central e dispersão dos dados, além da presença de possíveis outliers.





#### Características

- Resumo de dados:
  - Medidas de tendência central:
    - Média, Moda e Mediana;
  - o Medidas de dispersão:
    - Desvio padrão e Variância.
- Visualização de dados:
  - o Relação entre variáveis.
- Identificação de padrões.





田

Google Sheets

#### Ferramentas

Descritiva

Diagnóstica

Preditiva

Prescritiva

- 1. Planilha de cálculos: Excel, Google Sheets;
- 2. Softwares estatísticos: SPSS, Stata;
- 3. Software de visualização de dados: Tableu, Power BI
- 4. Linguagem de programação: Python, R











### Análise Diagnóstica

Descritiva Diagnóstica Preditiva Prescritiva

#### Busca:

- entender os motivos ou causas por trás de determinado fenômeno ou resultado.
- identificar padrões e relações nos dados que podem explicar mudanças ou tendências observadas.



#### Características

Descritiva

Diagnóstica

Preditiva

Prescritiva

- Investigativa:
  - O Buscando entender as causas subjacentes de um fenômeno ou problema.
- Baseada em Hipóteses:
  - Uma hipótese é proposta e a análise é usada para testar ela.





#### Características

Descritiva

Diagnóstica

Preditiva

Prescritiva

- Uso de dados históricos:
  - O Identificar tendências, padrões e relações que podem explicar os resultados atuais.
- Análise Multivariada:
  - Pode envolver múltiplas variáveis ao mesmo tempo, com interações complexas que podem estar influenciando um resultado.
- Interpretação cuidadosa.





#### Ferramentas

- Análise de regressão:
  - O Identificar a relação entre variáveis dependentes e independentes;
- Análise de correlação:
  - Determinar a relação entre duas ou mais variáveis;





#### Ferramentas

Descritiva

Diagnóstica

Preditiva

Prescritiva

- Análise de *cluster*:
  - Agrupa por características semelhantes;
- Análise de causa e efeito (Diagrama de Ishikawa):
  - O Proporciona uma visão ampla e identificação de possíveis causas de um problema.







#### Análise Preditiva

- Análise estatística que tem como objetivo prever resultados futuros com base em dados históricos e técnicas de modelagem.
- Coleta de dados >> modelo estatístico >> Previsão



#### Características

- 1. Baseada em modelos: Estatísticos e de Machine Learning.
- 2. Usa histórico de dados: Treinamento dos modelos.
- 3. Multivariável:
  Consideram a interação entre muitas variáveis.
- 4. Preditiva, mas não infalível: Sempre há um grau de incerteza.
- 5. Orientada para a ação:
  Resultados orientam a tomada de decisão.



#### Ferramentas

- 1. Python: Pandas, NumPy, Sci-kit Learn.
- 2. R: Análise estatística e gráficos.
- 3. SAS: Statistical Analysis System (financeiro e saúde).
- 4. SPSS: Software de fácil usabilidade e com ampla gama de ferramentas disponíveis.
- 5. Excel: Aplicado quando não se requer técnicas estatísticas avançadas.



#### Análise Prescritiva

Descritiva Diagnóstica Preditiva Prescritiva

Fornece recomendações sobre o que deve ser feito, utilizando técnicas avançadas que levam em consideração uma variedade de cenários e possíveis resultados, para ajudar os tomadores de decisão a entender as implicações de diferentes cursos de ação.



#### Características

- 1. Recomendações de ação;
- 2. Consideração de diferentes cenários;
- 3. Otimização de operações;
- 4. Auxílio à tomada de decisão;
- 5. Adaptação a mudanças nas condições: pode incorporar novos dados à medida que se tornem disponíveis.



#### Ferramentas

- 1. Softwares de modelagem: Python, R, SAS, SPSS
- 2. Ferramentas de otimização: Gurobi, CPLEX
- 3. Ferramentas de simulação: Simul8, AnyLogic
- 4. Ferramentas de visualização de dados: Tableau, Power BI
- 5. Plataformas de machine learning: Azure ML, Amazon SageMaker





using Auto ML (PyCaret)



#### Problema:

é necessário prever passageiros futuros após 1960.



#### Dataset Description 📕

- There are 2 variables in this data set namely:
  - Month, and
  - #Passengers.

 ← The following is the structure of the data set.

| Variable Name | Description                       | Sample Data       |  |  |
|---------------|-----------------------------------|-------------------|--|--|
| Month         | Date of records (yyyy-mm format). | 1949-01; 1949-02; |  |  |
| #Passengers   | Total air passengers              | 112; 118;         |  |  |





PyCaret is an open-source machine learning package written in low-code that enables Data Scientists to automate their machine learning processes. It reduces the model experimentation process, allowing for the achievement of specific outcomes with less code.



#### 1.3 | Quick Overview of PyCaret Classification Module 🔬

The time series forecasting module in PyCaret (pycaret.time\_series.setup) is a machine learning module that is used to handle time series analysis problems. With PyCaret, a data scientist/user can do forecasting with several models, namely:

- · Seasonal Naive Forecaster,
- · Exponential Smoothing,
- ARIMA,
- · Polynomial Trend Forecaster,
- K Neighbors w/ Cond. Deseasonalize & Detrending,
- · Linear w/ Cond. Deseasonalize & Detrending,
- · Elastic Net w/ Cond. Deseasonalize & Detrending,
- Ride w/ Cond. Deseasonalize & Detrending,
- Lasso Net w/ Cond. Deseasonalize & Detrending,
- Extreme Gradient Boosting w/ Cond. Deseasonalize & Detrending, and more.





```
# --- Importing Libraries ---
import datetime
import numpy as np
import pandas as pd
import warnings
import pycaret
import kaleido
import plotly.express as px
from pycaret.time_series import *
from pycaret.utils import enable_colab
# --- Libraries Settings ---
warnings.filterwarnings('ignore')
enable_colab()
```



```
# --- Reading Dataset ---

df = pd.read_csv('../input/air-passengers-forecast-dataset/AirPassengers.csv')

df.head().style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}).h

ide_index()
```

| Month   | #Passengers |
|---------|-------------|
| 1949-01 | 112         |
| 1949-02 | 118         |
| 1949-03 | 132         |
| 1949-04 | 129         |
| 1949-05 | 121         |

.: Imported Dataset Info :.

\*\*\*\*\*\*\*\*\*

Total Rows: 144

Total Columns: 2

\*\*\*\*\*\*\*\*\*



```
# --- Descriptive Statistics
df.describe().T.style.background_gradient(cmap='GnBu').set_properties(**{'font-family': 'Segoe U
I'})
```

|             | count      | mean       | std        | min        | 25%        | 50%        | 75%        | max        |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
| #Passengers | 144.000000 | 280.298611 | 119.966317 | 104.000000 | 180.000000 | 265.500000 | 360.500000 | 622.000000 |



```
# --- Change `Month` Column Type to datetime ---
df['Month'] = pd.to_datetime(df['Month'])

# --- Set `Month` Column as Index ---
df.set_index('Month', inplace=True, drop=True)
df.head(3).style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe U
I'}).hide_index()
```



### 5. | PyCaret Setup 🌣

- This section will implement PyCaret by calling TimeSeriesExperiment() function.
- For experiment purposes, the <u>number of folds</u> that used in cross validation will be set to 3 and the <u>forecast horizon</u> used will be set to 12 (last 12 points in the dataset will be set as test).

```
# --- Setup PyCaret ---
s = setup(df, fh = 12, fold = 3, session_id = 123)
```



```
# --- Setup PyCaret ---
s = setup(df, fh = 12, fold = 3, session_id = 123)
```

|    | Description                 | Value                   |
|----|-----------------------------|-------------------------|
| 0  | session_id                  | 123                     |
| 1  | Target                      | #Passengers             |
| 2  | Approach                    | Univariate              |
| 3  | Exogenous Variables         | Not Present             |
| 4  | Data shape                  | (144, 1)                |
| 5  | Train data shape            | (132, 1)                |
| 6  | Test data shape             | (12, 1)                 |
| 7  | Fold Generator              | ExpandingWindowSplitter |
| 8  | Fold Number                 | 3                       |
| 9  | Enforce Prediction Interval | False                   |
| 10 | Seasonal Period(s) Tested   | 12                      |



# --- Perform Statistical Test --check\_stats()

|   | Test    | Test Name  | Data   | Property           | Setting | Value        |
|---|---------|------------|--------|--------------------|---------|--------------|
| 0 | Summary | Statistics | Actual | Length             |         | 144.0        |
| 1 | Summary | Statistics | Actual | Mean               |         | 280.298611   |
| 2 | Summary | Statistics | Actual | Median             |         | 265.5        |
| 3 | Summary | Statistics | Actual | Standard Deviation |         | 119.966317   |
| 4 | Summary | Statistics | Actual | Variance           |         | 14391.917201 |
| 5 | Summary | Statistics | Actual | Kurtosis           |         | -0.364942    |
| 6 | Summary | Statistics | Actual | Skewness           |         | 0.58316      |



From the statistical test results above, it can be concluded that:

- The series is not stationary (ADF p-value more than 0.05)
- The series is not adequate (Ljung-Box p-value less than 0.05)



```
# --- Time Series Plot ---
plot_model(plot = 'ts', fig_kwargs = {'hoverinfo': 'none', 'big_data_threshold': 15})
```

Time Series | Target = #Passengers





```
# --- Train & Test Plot ---
plot_model(plot = 'train_test_split', fig_kwargs = {'hoverinfo': 'none', 'big_data_threshold': 1
5})
```

Train Test Split





```
# --- CV Plot ---
plot_model(plot = 'cv', fig_kwargs = {'hoverinfo': 'none', 'big_data_threshold': 15})
```

#### Train Cross-Validation Splits









Classical Decomposition (additive) | #Passengers Seasonal Period = 12





# --- Time Series Models --models()

|             | Name                                            | Reference                                            | Turbo |
|-------------|-------------------------------------------------|------------------------------------------------------|-------|
| ID          |                                                 |                                                      |       |
| naive       | Naive Forecaster                                | sktime.forecasting.naive.NaiveForecaster             | True  |
| grand_means | Grand Means Forecaster                          | sktime.forecasting.naive.NaiveForecaster             | True  |
| snaive      | Seasonal Naive Forecaster                       | sktime.forecasting.naive.NaiveForecaster             | True  |
| polytrend   | Polynomial Trend Forecaster                     | sktime. for ecasting. trend. Polynomial Trend Foreca | True  |
| arima       | ARIMA                                           | sktime.forecasting.arima.ARIMA                       | True  |
| auto_arima  | Auto ARIMA                                      | sktime.forecasting.arima.AutoARIMA                   | True  |
| exp_smooth  | Exponential Smoothing                           | sktime.forecasting.exp_smoothing.ExponentialSm       | True  |
| croston     | Croston                                         | sktime.forecasting.croston.Croston                   | True  |
| ets         | ETS                                             | sktime.forecasting.ets.AutoETS                       | True  |
| theta       | Theta Forecaster                                | sktime.forecasting.theta.ThetaForecaster             | True  |
| tbats       | TBATS                                           | sktime.forecasting.tbats.TBATS                       | False |
| bats        | BATS                                            | sktime.forecasting.bats.BATS                         | False |
| lr_cds_dt   | Linear w/ Cond. Deseasonalize & Detrending      | pycaret.containers.models.time_series.BaseCdsD       | True  |
| en_cds_dt   | Elastic Net w/ Cond. Deseasonalize & Detrending | pycaret.containers.models.time_series.BaseCdsD       | True  |



# --- Compare Models ---

best = compare\_models()

|                 | Model                                                              | MAE     | RMSE    | MAPE   | SMAPE  | MASE   | RMSSE  | R2     | TT<br>(Sec) |
|-----------------|--------------------------------------------------------------------|---------|---------|--------|--------|--------|--------|--------|-------------|
| exp_smooth      | Exponential<br>Smoothing                                           | 17.1926 | 20.1633 | 0.0435 | 0.0439 | 0.5852 | 0.6105 | 0.8918 | 0.0933      |
| et_cds_dt       | Extra Trees w/<br>Cond.<br>Deseasonalize<br>& Detrending           | 19.4653 | 24.1050 | 0.0484 | 0.0484 | 0.6602 | 0.7288 | 0.8459 | 0.5300      |
| huber_cds_dt    | Huber w/ Cond.<br>Deseasonalize<br>& Detrending                    | 20.0334 | 25.9670 | 0.0491 | 0.0499 | 0.6813 | 0.7866 | 0.8113 | 0.0400      |
| arima           | ARIMA                                                              | 20.0069 | 22.2199 | 0.0501 | 0.0507 | 0.6830 | 0.6735 | 0.8677 | 0.4833      |
| catboost_cds_dt | CatBoost<br>Regressor w/<br>Cond.<br>Deseasonalize<br>& Detrending | 20.9112 | 26.8907 | 0.0505 | 0.0509 | 0.7106 | 0.8146 | 0.8085 | 1.5933      |
| ridge_cds_dt    | Ridge w/ Cond.<br>Deseasonalize<br>& Detrending                    | 20.6086 | 25.4405 | 0.0509 | 0.0514 | 0.7004 | 0.7703 | 0.8215 | 0.0300      |



```
# --- Plot Forecasting Performance & Insample ---
plot_model(best, plot = 'forecast', fig_kwargs = {'hoverinfo': 'none','big_data_
threshold': 15})
plot_model(best, plot = 'insample', fig_kwargs = {'hoverinfo': 'none','big_data_
threshold': 15})
```

Actual vs. 'Out-of-Sample' Forecast | #Passengers

Actual vs. 'In-Sample' Forecast | #Passengers







## Previsão de passageiros futuros

### Forecasting Future Passengers

Actual vs. 'Out-of-Sample' Forecast | #Passengers





### 6. | Saving Model 💾

```
# --- Save Model in Pickle File ---
save_model(best, 'exp_smooth_final_model')
```



## Tópicos Avançados de Automação Industrial

Prof° José W. R. Pereira jose.pereira@ifsp.edu.br josewrpereira.github.io/docs