# Machine Learning: from Theory to Practice Unsupervised Learning Dimension Reduction and Clustering

F. d'Alché-Buc and E. Le Pennec

Fall 2016

# Outline



- Motivation
- Unsupervised Learning
- 3 Dimension Reduction
  - Reconstruction error
  - Distance preservation
- 4 Clustering



- Motivation
- 2 Unsupervised Learning
- 3 Dimension Reduction
  - Reconstruction error
  - Distance preservation
- 4 Clustering



- Marketing: finding groups of customers with similar behavior given a large database of customer data containing their properties and past buying records;
- Biology: classification of plants and animals given their features;
- Libraries: book ordering;
- Insurance: identifying groups of motor insurance policy holders with a high average claim cost; identifying frauds;
- City-planning: identifying groups of houses according to their house type, value and geographical location;
- Internet: document classification; clustering weblog data to discover groups of similar access patterns.





- Data: Base of customer data containing their properties and past buying records
- Goal: Use the customers *similarities* to find groups.
- Two directions:
  - **Clustering:** propose an explicit *grouping* of the customers
  - **Visualization:** propose a representation of the customers so that the groups are *visibles*

- Motivation
- Unsupervised Learning
- 3 Dimension Reduction
  - Reconstruction error
  - Distance preservation
- 4 Clustering





# A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.



## Experience, Task and Performance measure

- Training data :  $\mathcal{D} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$  (i.i.d.  $\sim \mathbf{P}$ )
- Predictor:  $f: \mathcal{X} \to \mathcal{Y}$  measurable
- Cost/Loss function :  $\ell(f(\mathbf{X}), Y)$  measure how well  $f(\mathbf{X})$  "predicts" Y
- Risk:

$$\mathcal{R}(f) = \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \mathbb{E}_{X}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y, f(\mathbf{X}))\right]\right]$$

• Often  $\ell(f(\mathbf{X}), Y) = ||f(\mathbf{X}) - Y||^2$  or  $\ell(f(\mathbf{X}), Y) = \mathbf{1}_{Y \neq f(\mathbf{X})}$ 

## Goal

• Learn a rule to construct a classifier  $\widehat{f} \in \mathcal{F}$  from the training data  $\mathcal{D}_n$  s.t. the risk  $\mathcal{R}(\widehat{f})$  is small on average or with high probability with respect to  $\mathcal{D}_n$ .

# Experience, Task and Performance measure

- Training data :  $\mathcal{D} = \{\mathbf{X}_1, \dots, \mathbf{X}_n\}$  (i.i.d.  $\sim \mathbf{P}$ )
- Task: ???
- Performance measure: ???
- No obvious task definition!

# Tasks for today

- Dimension reduction: construct a map of the data in a low dimensional space without distorting it too much.
- Clustering (or unsupervised classification): construct a grouping of the data in homogeneous classes.

ullet Space  ${\mathcal X}$  of possibly high dimension.

# Dimension Reduction Map

• Construct a map  $\Phi$  from the space  $\mathcal{X}$  into a space  $\mathcal{X}'$  of smaller dimension:

$$\Phi: \quad \mathcal{X} \to \mathcal{X}'$$
$$\boldsymbol{X} \mapsto \Phi(\boldsymbol{X})$$

• Map can be defined only on the dataset.

#### Motivations

- Visualization of the data
- Dimension reduction before further processing

• Need to control the distortion between  $\mathcal{D}$  and  $\Phi(\mathcal{D}) = \{\Phi(\mathbf{X}_1), \dots, \Phi(\mathbf{X}_n)\}$ 

# Distortion(s)

- Reconstruction error:
  - Construct  $\widetilde{\Phi}$  from  $\mathcal{X}'$  to  $\mathcal{X}$
  - Control the error between X and its reconstruction  $\Phi(\Phi(X))$
- Distance preservation:
  - Measure the distance between  $X_i$  and  $X_j$  and the distance between  $\Phi(X_i)$  and  $\Phi(X_j)$
  - Control the difference between those two distances
- Leads to different constructions....



- Training data :  $\mathcal{D} = \{\mathbf{X}_1, \dots, \mathbf{X}_n\} \in \mathcal{X}^n$  (i.i.d.  $\sim \mathbf{P}$ )
- Latent groups?

# Clustering

• Construct a map f from  $\mathcal{D}$  to  $\{1, \dots, K\}$  where K is a number of classes to be fixed:

$$f: \mathbf{X}_i \mapsto k_i$$

- Similar to classification except:
  - no ground truth (no given labels)
  - label only elements of the dataset!

#### Motivations

- Interpretation of the groups
- Use of the groups in further processing

- Need to define the quality of the cluster.
- No obvious measure!

# Clustering quality

- Inner homogeneity: samples in the same group should be similar.
- Outer inhomogeneity: samples in two different groups should be different.
- Several possible definitions of similar and different.
- Often based on the distance between the samples.
- Example based on the euclidean distance:
  - Inner homogeneity = intra class variance,
  - Outer inhomogeneity = inter class variance.
- **Beware:** choice of the number of cluster *K* often complex!



- Motivation
- 2 Unsupervised Learning
- 3 Dimension Reduction
  - Reconstruction error
  - Distance preservation
- 4 Clustering

ullet Space  ${\mathcal X}$  of possibly high dimension.

# Dimension Reduction Map

• Construct a map  $\Phi$  from the space  $\mathcal{X}$  into a space  $\mathcal{X}'$  of smaller dimension:

$$\Phi: \ \mathcal{X} \to \mathcal{X}'$$

$$\boldsymbol{X} \mapsto \boldsymbol{\Phi}(\boldsymbol{X})$$

#### Criterion

- Reconstruction error
- Distance preservation



- Motivation
- 2 Unsupervised Learning
- 3 Dimension Reduction
  - Reconstruction error
  - Distance preservation
- 4 Clustering



#### Goal

• Construct a map  $\Phi$  from the space  $\mathcal{X}$  into a space  $\mathcal{X}'$  of smaller dimension:

$$\Phi: \quad \mathcal{X} \to \mathcal{X}'$$
$$\mathbf{X} \mapsto \Phi(\mathbf{X})$$

- Construct  $\widetilde{\Phi}$  from  $\mathcal{X}'$  to  $\mathcal{X}$
- Control the error between **X** and its reconstruction  $\Phi(\Phi(\mathbf{X}))$
- Canonical example for  $\mathbf{X} \in \mathbb{R}^d$ : find  $\Phi$  and  $\Phi$  in a parametric family that minimize

$$\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{X}_{i}-\widetilde{\Phi}(\Phi(\mathbf{X}_{i}))\|^{2}$$

- $\mathcal{X} \in \mathbb{R}^d$  and  $\mathcal{X}' = \mathbb{R}^{d'}$
- Affine model  $\mathbf{X} \sim m + \sum_{l=1}^{d'} \mathbf{X}^{'(l)} V^{(l)}$  with  $(V^{(l)})$  an orthonormal family.
- Equivalent to:

$$\Phi(\mathbf{X}) = V^t(\mathbf{X} - m)$$
 and  $\widetilde{\Phi}(\mathbf{X}') = m + V\mathbf{X}'$ 

• Reconstruction error criterion:

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{X}_{i} - (m + VV^{t}(\mathbf{X}_{i} - m))\|^{2}$$

• Explicit solution: m is the empirical mean and V is any orthonormal basis of the space spanned by the d' first eigenvectors (the one with largest eigenvalues) of the empirical covariance matrix  $\frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_i - m)(\mathbf{X}_i - m)^t$ .



# PCA Algorithm

- Compute the empirical mean  $m = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$
- Compute the empirical covariance matrix  $\frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_i m)(\mathbf{X}_i m)^t$ .
- Compute the d' first eigenvectors of this matrix:  $V^{(1)}, \ldots, V^{(d')}$
- Set  $\Phi(\mathbf{X}) = V^t(\mathbf{X} m)$
- Complexity:  $O(n(1+d^2)+d'd^2)$
- Interpretation:
  - $\Phi(\mathbf{X}) = V^t(\mathbf{X} m)$ : coordinates in the restricted space.
  - $V^{(i)}$ : influence of each original coordinates in the ith new one.
- Scaling: This method is not invariant to a scaling of the variables! It is custom to normalize the variables (at least within groups) before applying PCA.



- PCA assumes  $\mathcal{X} = \mathbb{R}^d$ !
- How to deal with categorical values?
- MFA = PCA with clever coding strategy for categorical values.

# Categorical value code for a single variable

Classical redundant dummy coding:

$$\mathbf{X} \in \{1, \dots, V\} \mapsto P(\mathbf{X}) = (\mathbf{1}_{\mathbf{X}=1}, \dots, \mathbf{1}_{\mathbf{X}=V})^t$$

- Compute the mean (i.e. the empirical proportion)  $\overline{P} = \frac{1}{n}P(\mathbf{X})$
- Renormalize  $P(\mathbf{X})$  by  $1/\sqrt{(V-1)\overline{P}}$ :  $P(\mathbf{X}) \mapsto P^r(\mathbf{X})$

$$\left(\mathbf{1}_{\mathsf{X}=1},\ldots\mathbf{1}_{\mathsf{X}=V}\right)\mapsto\left(\frac{\mathbf{1}_{\mathsf{X}=1}}{\sqrt{(V-1)\overline{P}_1}},\ldots,\frac{\mathbf{1}_{\mathsf{X}=V}}{\sqrt{(V-1)\overline{P}_V}}\right)$$

•  $\chi^2$  type distance!



PCA becomes the minimization of

$$\frac{1}{n} \sum_{i=1}^{n} \|P^{r}(\mathbf{X}_{i}) - (m + VV^{t}(P^{r}(\mathbf{X}_{i}) - m))\|^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{v=1}^{V} \frac{\left|\mathbf{1}_{\mathbf{X}_{i}=v} - (m' + \sum_{l=1}^{d'} V^{(l)t}(P(\mathbf{X}_{i}) - m')V^{(l,v)})\right|^{2}}{(V-1)\overline{P}_{V}}$$

- Interpretation:
  - $m' = \overline{P}$
  - $\Phi(\mathbf{X}) = V^t(P^r\mathbf{X} m)$ : coordinates in the restricted space.
  - $V^{(l)}$  can be interpreted s as a probability profile.
- Complexity:  $O(n(1 + V^2) + d'V^2)$
- Link with Correspondence Analysis (CA)



# MFA Algorithm

- Redundant dummy coding of each categorical variable.
- Renormalization of each block of dummy variable.
- Classical PCA algorithm on the resulting variables
- Interpretation as a reconstruction error with a rescaled/ $\chi^2$  metric.
- Interpretation:
  - $\Phi(\mathbf{X}) = V^t(P^r(\mathbf{X}) m)$ : coordinates in the restricted space.
  - $V^{(l)}$ : influence of each modality/variable in the ith new coordinates.
- Scaling: This method is not invariant to a scaling of the continuous variables! It is custom to normalize the variables (at least within groups) before applying PCA.



#### PCA Model

PCA: Linear model assumption

$$\mathbf{X} \simeq m + \sum_{l=1}^{d'} \mathbf{X}'^{(l)} V^{(l)} = m + V \mathbf{X}'$$

- with
  - V<sup>(I)</sup> orthonormal
  - $\mathbf{X}^{\prime,(I)}$  without constrains.
- Two directions of extension:
  - Other constrains on V (or the coordinates in the restricted space): ICA, NMF, Dictionary approach
  - PCA on a non linear image of X: kernel-PCA
- Much more complex algorithm!

with



# ICA (Independent Component Analysis)

Linear model assumption

$$\mathbf{X} \simeq m + \sum_{l=1}^{d'} \mathbf{X}'^{(l)} V^{(l)} = m + V \mathbf{X}'$$

- $V^{(I)}$  without constrains.
- **X**′<sup>,(I)</sup> independent

# NMF (Non Negative Matrix Factorization)

• (Linear) Model assumption

$$\mathbf{X}\simeq m+\sum_{l=1}^{d'}\mathbf{X}'^{(l)}V^{(l)}=m+V\mathbf{X}'$$

- $V^{(l)}$  non negative
- $\mathbf{X}^{\prime,(l)}$  non negative.



# Dictionary

- (Linear) Model assumption
  - $\mathbf{X} \simeq m \sum_{l}^{d'} \mathbf{X}'^{(l)} V^{(l)} = m + V \mathbf{X}'$
- with
  - $V^{(I)}$  without constrains
  - X' sparse (with a lot of 0)

## kernel PCA

- Linear model assumption
- $\Psi(\mathbf{X}-m)\simeq\sum_{l=1}^{d'}\mathbf{X}^{\prime,(l)}V^{(l)}=V\mathbf{X}^{\prime}$ with
- - V<sup>(I)</sup> orthonormal
  - X' without constrains.



• Linear model assumption:

$$\mathbf{X} \simeq m + \sum_{l=1}^{d'} \mathbf{X}'^{(l)} V^{(l)} = m + V \mathbf{X}'$$

Vector rewriting

$$\mathbf{X}^t \simeq m^t + \mathbf{X}'^t V^t$$

# Matrix Rewriting and Low Rank Factorization

Matrix rewriting



• Low rank matrix factorization! (Truncated SVD solution...)



# **SVD** Decomposition

• Any matrix  $n \times d$  matrix A can de decomposed as



with U and V two orthononormal matrices and  $\Sigma$  a diagonal matrix with decreasing values.



# Low Rank Approximation

• The best low rank approximation or rank *r* is obtained by restriction of the matrices to the first *r* dimensions:



for both the operator norm and the Frobenius norm!

• PCA: Frobenius norm, d' = r and

$$\begin{pmatrix} \mathbf{X}_1^t - m^t \\ \vdots \\ \vdots \\ \mathbf{X}_n^t - m^t \end{pmatrix} \leftrightarrow A, \quad \begin{pmatrix} \mathbf{X}_1'^t \\ \vdots \\ \vdots \\ \mathbf{X}_n'^t \end{pmatrix} \leftrightarrow \mathbf{U_r} \Sigma_{r,r}, \quad \mathbf{V^t} \leftrightarrow \mathbf{V_r^t}$$



- Motivation
- 2 Unsupervised Learning
- 3 Dimension Reduction
  - Reconstruction error
  - Distance preservation
- 4 Clustering



- Different point of view!
- Focus on pairwise distance  $d(X_i, X_i)$ .

# Distance Preservation

• Construct a map  $\Phi$  from the space  $\mathcal{X}$  into a space  $\mathcal{X}'$  of smaller dimension:

$$\Phi: \mathcal{X} \to \mathcal{X}'$$

$$\boldsymbol{X} \mapsto \boldsymbol{\Phi}(\boldsymbol{X}) = \boldsymbol{X}'$$

such that

$$d(\mathbf{X}_i,\mathbf{X}_j) \sim d'(\mathbf{X}_i',\mathbf{X}_j')$$

• Most natural criterion:

$$\frac{1}{n^2}\sum_{i=1}^n\sum_{i=1}^n\left|d(\mathbf{X}_i,\mathbf{X}_j)-d'(\mathbf{X}_i',\mathbf{X}_j')\right|^2$$

• Φ often defined only on **D**...



# Random Projection Heuristic

- Draw at random d' unit vector (direction)  $U_i$ .
- Use  $\mathbf{X}' = U^t(\mathbf{X} m)$  with  $m = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i$
- **Property:** If **X** lives in a space of dimension d'', then, as soon as,  $d' \sim d'' \log(d'')$ ,

$$\|\mathbf{X}_i - \mathbf{X}_j\|^2 \sim \frac{d}{d'} \|\mathbf{X}_i' - \mathbf{X}_j'\|^2$$

Do not really use the data!



- For each point  $X_i$ , define a neighborhood  $\mathcal{N}_i$  (either by a distance or a number of points).
- Compute some weights  $W_{i,j}$  such that

$$W_{i,j} = 0$$
 if  $\mathbf{X}_j \notin \mathcal{N}_i$   
 $\mathbf{X}_i \sim \sum_j W_{i,j} \mathbf{X}_j$ 

ullet Find some  $old X_i'$  in a space  $\mathcal X'$  of smaller dimension such that  $old X_i' \sim \sum_i W_{i,j} old X_j'$ 

LLE: use a least square metric for the fits.



#### MDS Heuristic

• If  $d(x,y) = ||x-y||^2$ , one can compute a Gram matrix

$$(\mathbf{X}_i - m)^t (\mathbf{X}_j - m)$$

for  $m = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i$ 

• Match the *scalar* products:

$$\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n\left|(\mathbf{X}_i-m)^t(\mathbf{X}_j-m)-\mathbf{X}_i'^t\mathbf{X}_j'\right|^2$$

- Linear method:  $\mathbf{X}' = U^t(\mathbf{X} m)$  with U orthonormal
- Beware: X is unknown!



• Resulting criterion: minimization in  $U^t(\mathbf{X}_i - m)$  of

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n |(\mathbf{X}_i - m)^t (\mathbf{X}_j - m) - (\mathbf{X}_i - m)^t U U^t (\mathbf{X}_j - m)|^2$$

without knowing explicitly  $\boldsymbol{X}...$ 

- Explicit solution obtained through the eigendecomposition of the know Gram matrix  $(\mathbf{X}_i m)^t (\mathbf{X}_j m)$  by keeping only the d' largest eigenvalues.
- In this case, MDS yields the same result than the PCA (but with different inputs, distance between observation vs correlations)!

- **Explanation:** Same SVD problem up to a transposition:
  - MDS

$$\overline{\mathbf{X}}_{(n)}^t \overline{\mathbf{X}}_{(n)} \sim \overline{\mathbf{X}}_{(n)}^t U U^t \overline{\mathbf{X}}_{(n)}$$

PCA

$$\overline{\mathbf{X}}_{(n)}\overline{\mathbf{X}}_{(n)}^t \sim U^t \overline{\mathbf{X}}_{(n)} \overline{\mathbf{X}}_{(n)}^t U$$

• Complexity: ACP  $O(d'd^2)$  vs MDS  $O(d'n^2)...$ 

#### **MDS**

- Apply this algorithm even if  $d(x, y) \neq ||x y||^2$ !
- **True distance minimization:** Simple gradient descent can be used (can be stuck in local minima).



- MDS: equivalent to PCA (but more expensive) if  $d(x,y) = ||x-y||^2!$
- ISOMAP: use a localized distance instead to limit the influence of very far point.

#### **ISOMAP**

• For each point  $X_i$ , define a neighborhood  $\mathcal{N}_i$  (either by a distance or a number of points) and let

$$d_0(\mathbf{X}_i, \mathbf{X}_j) = egin{cases} +\infty & ext{if } \mathbf{X}_j 
otin \mathcal{N}_i \\ \|\mathbf{X}_i - \mathbf{X}_j\|^2 & ext{otherwise} \end{cases}$$

- Compute the shortest path distance for each pair.
- Use the MDS algorithm with this distance



# Graph heuristic

- Construct a graph with weighted edges  $w_{i,j}$  measuring the proximity of  $\mathbf{X}_i$  and  $\mathbf{X}_j$  ( $w_{i,j}$  large if close and 0 if there is no information).
- ullet Find the points  $\mathbf{X}_i' \in \mathbb{R}^{d'}$  minimizing

$$\frac{1}{n} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} \|\mathbf{X}'_i - \mathbf{X}'_j\|^2$$

- Need of a constraint on the size of  $X'_{i}$ ...
- Explicit solution through linear algebra: d' eigenvectors with smallest eigenvalues of the Laplacian of the graph D-W, where D is a diagonal matrix with  $D_{i,i} = \sum_{i} w_{i,j}$ .
- Variation on the definition of the Laplacian...



### SNE heuristic

• From  $X_i \in \mathcal{X}$ , construct a set of conditional probability:

$$P_{j|i} = \frac{e^{-\|\mathbf{X}_i - \mathbf{X}_j\|^2 / 2\sigma_i^2}}{\sum_{k \neq i} e^{-\|\mathbf{X}_i - \mathbf{X}_j\|^2 / 2\sigma_i^2}} \qquad P_{i|i} = 0$$

• Find  $\mathbf{X}_i'$  in  $\mathbb{R}^{d'}$  such that the set of conditional probability:

$$Q_{j|i} = \frac{e^{-\|\mathbf{X}_i' - \mathbf{X}_j'\|^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|\mathbf{X}_i' - \mathbf{X}_j'\|^2/2\sigma_i^2}} \qquad Q_{i|i} = 0$$

is close from P.

- ullet t-SNE: use a Student-t term  $(1+\|\mathbf{X}_i'-\mathbf{X}_j'\|^2)^{-1}$  for  $\mathbf{X}_i'$
- Minimize the Kullback-Leibler divergence  $(\sum_{i,j} P_{j|i} \log \frac{P_{j|i}}{Q_{j|i}})$  by a simple gradient descent (can be stuck in local minima).
- Parameters  $\sigma_i$  such that  $H(P_i) = -\sum_{j=1}^n P_{j|i} \log P_{j|i} = \text{cst.}$



- Motivation
- 2 Unsupervised Learning
- Oimension Reduction
  - Reconstruction error
  - Distance preservation
- 4 Clustering



- Training data :  $\mathcal{D} = \{\mathbf{X}_1, \dots, \mathbf{X}_n\} \in \mathcal{X}^n$  (i.i.d.  $\sim \mathbf{P}$ )
- Latent groups?

# Clustering

• Construct a map f from  $\mathcal{D}$  to  $\{1, \dots, K\}$  where K is a number of classes to be fixed:

$$f: \mathbf{X}_i \mapsto k_i$$

## Motivations

- Interpretation of the groups
- Use of the groups in further processing
- Several strategies possible!
- Can use dimension reduction as a preprocessing.



#### Partition Heuristic

- Clustering is defined by a partition in K classes...
- that minimizes a homogeneity criterion.

### K- Means

- Cluster k defined by a center  $\mu_k$ .
- Each sample is associated to the closest center.
- ullet Centers defined as the minimizer of  $\sum_{i=1}^{n} \min_{k} \|\mathbf{X}_i \mu_k\|^2$
- Iterative scheme (Loyd):
  - ullet Start by a (pseudo) random choice for the centers  $\mu_k$
  - Assign each samples to its nearby center
  - Replace the center of a cluster by the mean on its assigned samples.
  - Repeat the last two steps until convergence.























#### Other schemes:

- McQueen: modify the mean each time a sample is assigned to a new cluster.
- Hartigan: modify the mean by removing the considered sample, assign it to the nearby center and recompute the new mean after assignment.
- A good initialization is crucial!
  - Initialize by samples.
  - k-Mean++: try to take them as separated as possible.
  - No guarantee to converge to a global optimum: repeat and keep the best result!
- Complexity :  $O(n \times K \times T)$  where T is the number of step in the algorithm.



- k-Medoid: use a sample as a center
  - PAM: for a given cluster, use the sample that minimizes the intra distance (sum of the squared distance to the other points)
  - Approximate medoid: for a given cluster, assign the point that is the closest to the mean.
- Complexity:
  - PAM:  $O(n^2 \times T)$  in the worst case!
  - Approximate medoid:  $O(n \times K \times T)$  where T is the number of step in the algorithm.
- Remark: Any distance can be used...



### Model Heuristic

• Use a generative model of the data:

$$\mathbb{P}\left\{\mathbf{X}\right\} = \sum_{k=1}^{K} \pi_{k} \mathbb{P}_{\theta_{k}} \left\{\mathbf{X} | k\right\}$$

where  $\pi_k$  are proportions and  $\mathbb{P}_{\theta} \{ \mathbf{X} | k \}$  are parametric probability models.

- Estimate those parameters (often by a ML principle).
- Assign each observations to the class maximizing the a posteriori probability (obtained by Bayes formula)

$$\frac{\widehat{\pi_k} \mathbb{P}_{\widehat{\theta_k}} \left\{ \mathbf{X} | k \right\}}{\sum_{k'=1}^{K} \widehat{\pi_{k'}} \mathbb{P}_{\widehat{\theta_{k'}}} \left\{ \mathbf{X} | k' \right\}}$$

Link with Generative model in supervised classification!



• Large choice of parametric models.

### Gaussian Mixture Model

Use

$$\mathbb{P}_{\theta_k}\left\{\mathbf{X}|k\right\} \sim \mathcal{N}(\mu_k, \Sigma_k)$$
 with  $\mathcal{N}(\mu, \Sigma)$  the Gaussian law of mean  $\mu$  and covariance matrix  $\Sigma$ .

- Efficient optimization algorithm available (EM)
- Often some constrain on the covariance matrices: identical, with a similar structure...
- Strong connection with K-means when the covariance matrices are assumed to be the same multiple of the identity.



# Probabilistic latent semantic analysis (PLSA)

- Couples words/documents (w, d)
- Model:

$$\mathbb{P}\left\{\left(w,d\right)\right\} = \mathbb{P}\left\{d\right\} \sum_{k=1}^{K} \mathbb{P}\left\{k|d\right\} \mathbb{P}_{\theta_{k}}\left\{w|k\right\}$$

with k the (hidden) topic,  $\mathbb{P}\{k|d\}$  a topic probability and  $\mathbb{P}\{w|k\}$  a multinomial law for a given topic.

Clustering according to

$$\mathbb{P}\left\{k|(w,d)\right\} = \frac{\widehat{\mathbb{P}\left\{k|d\right\}}\mathbb{P}_{\widehat{\theta}_{k}}\left\{w|k\right\}}{\sum_{k'}\widehat{\mathbb{P}\left\{k'|d\right\}}\mathbb{P}_{\widehat{\theta}_{k'}}\left\{w|k'\right\}}$$

- Same idea than GMM!
- Bayesian variant called LDA.



- Framework based on density estimation principle.
- Assign a probability of membership.
- Lots of theoretical studies...
- Model selection principle can be used to select K the number of class:
  - AIC / BIC /MDL penalization
  - Cross Validation is also possible!
- Complexity:  $O(n \times K \times T)$



## Density heuristic

- Cluster are connected dense zone separated by low density zone.
- Not all points belong to a cluster.
- Basic bricks:
  - Estimate the density.
  - Find points with high densities.
  - Gather those points according to the density
- Density estimation:
  - Classical kernel density estimate...
- Gathering:
  - Link points of high density and use the resulted component.
  - Move them toward top of density hill by following the gradient and gather all the points arriving at the same summit.









- Examples:
  - DBSCAN: link point of high densities using a very simple kernel.
  - PdfCLuster: find connected zone of high density.
  - Mean-shift: move points toward top of density *hill* following an evolving kernel density estimate.
- Complexity:  $O(n^2 \times T)$  in the worst case.
- Can be reduced to  $O(n \log(n)T)$  if samples can be encoded in a tree structure (n-body problem type approximation).



# Agglomerative Clustering Heuristic

- Start with very small clusters (a sample by cluster?)
- Sequential merging of the most similar clusters...
- according to some greedy criterion  $\Delta$ .
- Generates a hierarchy of clustering instead of a single one.
- Need to select the number of cluster afterwards.
- Several choice for the merging criterion...
- Examples:
  - Minimum Linkage: merge the closest cluster in term of the usual distance
  - Ward Indice: merge the two clusters yielding the less inner inertia loss (k-means criterion)



## Algorithm

- Start with  $(C_i^{(0)}) = (\{\mathbf{X}_i\})$  the collection of all singletons.
- At step s, we have n-s clusters  $(C_i^{(s)})$ :
  - $\bullet$  Find the two clusters the most similar according to a criterion  $\Delta\colon$

$$(i, i') = \underset{(j,j')}{\operatorname{argmin}} \Delta(\mathcal{C}_j^{(s)}, \mathcal{C}_{j'}^{(s)})$$

- ullet Merge  $\mathcal{C}_i^{(s)}$  and  $\mathcal{C}_{i'}^{(s)}$  into  $\mathcal{C}_i^{(s+1)}$
- ullet Keep the n-s-2 other clusters  $\mathcal{C}^{(s+1)}_{i''}=\mathcal{C}^{(s)}_{i''}$
- Repeat until there is only one cluster.
- Complexity:  $O(n^3)$  if no restriction on the merging possibilities.
- Can be reduced to  $O(n^2)$  if only a bounded number of merging is possible for a given cluster.







# Merging criterion based on the distance between points

Minimum linkage:

$$\Delta(\mathcal{C}_i, \mathcal{C}_j) = \min_{\mathbf{X}_i \in \mathcal{C}_i} \min_{\mathbf{X}_{\in} \mathcal{C}_j} d(\mathbf{X}_i, \mathbf{X}_j)$$

Maximum linkage:

$$\Delta(C_i, C_j) = \max_{\mathbf{X}_i \in C_i} \max_{\mathbf{X} \in C_i} d(\mathbf{X}_i, \mathbf{X}_j)$$

Average linkage:

$$\Delta(\mathcal{C}_i, \mathcal{C}_j) = \frac{1}{|\mathcal{C}_i||\mathcal{C}_j|} \sum_{\mathbf{X}_i \in \mathcal{C}_i} \sum_{\mathbf{X}_{\in} \mathcal{C}_i} d(\mathbf{X}_i, \mathbf{X}_j)$$

Clustering based on the proximity...



# Merging criterion based on the inertia (distance to the mean)

• Ward Indice:

$$\begin{split} \Delta(\mathcal{C}_i, \mathcal{C}_j) &= \sum_{\mathbf{X}_i \in \mathcal{C}_i} \left( d^2(\mathbf{X}_i, \mu_{\mathcal{C}_i \cup \mathcal{C}_j}) - d^2(\mathbf{X}_i, \mu_{\mathcal{C}_i}) \right) \\ &+ \sum_{\mathbf{X}_j \in \mathcal{C}_j} \left( d^2(\mathbf{X}_j, \mu_{\mathcal{C}_i \cup \mathcal{C}_j}) - d^2(\mathbf{X}_j, \mu_{\mathcal{C}_j}) \right) \end{split}$$

• If *d* is the euclidian distance:

$$\Delta(\mathcal{C}_i, \mathcal{C}_j) = \frac{2|\mathcal{C}_i||\mathcal{C}_j|}{|\mathcal{C}_i| + |\mathcal{C}_i|} d^2(\mu_{\mathcal{C}_i}, \mu_{\mathcal{C}_j})$$

 Same criterion than in the k-means algorithm but greedy optimization.



#### Grid heuristic

- Split the space in pieces
- Group those of high density according to their proximity
- Similar to density based estimate (with partition based initial clustering)
- Space splitting can be fixed or adaptive to the data.
- Examples:
  - STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN type algorithm
  - AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus *k*-means type assignment from high density leaves.
  - CLIQUE: Tensorial grid and 1D detection.
- Linked to Divisive clustering (DIANA)



## Graph based

- Spectral clustering: dimension reduction + k-means
- Message passing:
- Max Flow / Min Flow:
- Evolutionary algorithm,
- ...



# Large dataset issue

- When *n* is large, a  $O(n^{\alpha} \log n)$  with  $\alpha > 1$  is not acceptable!
- How to deal with such a situation?
- **Beware:** Computing all the pairwise distance requires  $O(n^2)$  operations!

## Ideas

- Sampling
- Online processing
- Simplification
- Parallelization



## Sampling heuristic

- Use only a subsample to construct the clustering.
- $\bullet$  Assign the other points to the constructed clusters afterwards.
- Requires a clustering method that can assign new points (partition, model...)
- Often repetition and choice of the best clustering
- Example:
  - CLARA: K-medoid with sampling and repetition



### Online heuristic

- Modify the current clusters according to the value of a single observation.
- Requires compactly described clusters.
- Examples:
  - Add to an existing cluster (and modify it) if it is close enough and create a new cluster otherwise (k-means without reassignment)
  - Stochastic descent gradient (GMM)
- May leads to far from optimal clustering.
- Often used in a sequential way:
  - Several passes
  - Two step algorithm:
    - Generate a large number n' of clusters using the online algorithm (with  $n' \ll n$ )
    - Cluster the clusters with a more accurate algorithm.



# Simplification heuristic

- Simplify the algorithm to be more efficient at the cost of some precision.
- Algorithm dependent!
- Examples:
  - Replace groups of observation (preliminary cluster) by the (approximate) statistics.
  - Approximate the distances by cheaper ones.
  - Use n-body type techniques.



### Parallelization heuristic

- Split the computation on several computers.
- Algorithm dependent!
- Examples:
  - Distance computation in k-means, parameter gradient in model based clustering
  - Grid density estimation, Space splitting strategies
- Classical batch sampling not easy to perform as partitions are not easily merged...