COMS W4701: Artificial Intelligence

Lecture 11a: Convolutional Neural Networks

Slide materials adapted from Stanford's CS231n

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Topics

Computer vision

Feature extraction

Image classification

Convolutional neural networks

Computer Vision

- Vision is perception using visible light reflected by environment objects
- Digital cameras (e.g., color, depth, stereo) are sensors that capture light and transform them to digital images
- Computer vision is concerned with acquiring, processing, and understanding digital images in order to extract symbolic information

Image segmentation

3D object detection

Map - 3D reconstruction

Pose estimation

Image Representation

- A basic way to represent images is with a grid of pixels
- The value I(x, y) of a pixel indicates light *intensity*
- For greyscale, I(x, y) typically ranges from 0 (black) to 255 (white)
- For color, we may have multiple *channels* for intensities in different colors
- Common color models: RGB (red, green, blue), HSV (hue, saturation, value)
- Basic image processing applies a specified function to the values I(x,y)
- Ex: Brightness adjustment: $I(x,y) + \beta$; contrast adjustment: $\alpha I(x,y)$

Image Kernels

- Spatial filters transform images using functions on pixel neighborhoods
- Uses: Image enhancement, information extraction, pattern detection
- Most filters can be computed using the convolution operation:

$$I'(x,y) = F * I = \sum_{i=-M}^{M} \sum_{j=-N}^{N} F(i,j)I(x+i,y+j)$$

- where F is a $(2M + 1) \times (2N + 1)$ mask or **kernel** matrix
- Special care should be taken at grid boundaries

30	3,	22	1	0
02	0_2	1_0	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Examples of Filters

- Moving average filter $B = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ blurs or smooths out an image
- Normalization maintains image brightness

Feature Detection

- **Features** in images are interest points that differ from the immediate neighborhood, e.g. in intensity, color, or texture
- Many geometric features like edges and corners can provide semantic content for tasks like reconstruction, estimation, and detection

- An edge is a region with large change in intensity along one dimension but negligible change along the orthogonal direction
- Edges can be detected using differentiation filters and looking for spikes

Edges and Corners

Sobel kernels for edge detection:

$$S_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} S_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

- More sophisticated filters involve pre-smoothing and post-thresholding
- Corners may also be of interest, e.g. for 3D reconstruction and panorama stitching

Image Descriptors

- More generally, image descriptors are features that can be compared across images, useful for object detection and matching
- Need to be repeatable (invariant wrt transformations) and distinctive
- Many detection algorithms, e.g., SIFT (scale-invariant feature transform)

Image Classification

- Image classification is the task of assigning an image a class or label
- Challenges: Variation in viewpoints, scale, and lighting, deformation, occlusion, background clutter, intra-class variation
- Recall softmax function for generalizing logistic model to multi-class case
- Learn a set of weights for each class

$$h_i(f(\mathbf{x})) = \frac{\exp(f(\mathbf{x})_i)}{\sum_{k=1}^K \exp(f(\mathbf{x})_k)}$$

 x_i

Problem: Linear models are a poor choice!

Convolutional Neural Networks

- Performance of linear models depends heavily on the specified features
- Not easy to specify for general image classification beyond raw pixels
- We can use neural networks with pixels as inputs, but this representation does not preserve spatial information
- Fully connected networks have too many weights for a typical image size
- A ConvNet is a special network architecture that preserves image structure and reduces the number of parameters used

Convolution Layers

- Convolution layers apply a set of 3-dimensional filters to the input image
- As with "regular" filters, they see spatial relationships in pixel neighborhoods
- Convolution in a neural network is a form of parameter sharing, since a given filter is applied to all pixel neighborhoods in the image
- Convolution is also equivalent to translation
- The set of outputs from all filters make up a new image called an activation map

Feature Learning

- Since we have many filters, each one can detect its own "relevant" feature
- ConvNets typically have multiple convolution layers, and learned features typically progress from more primitive (edges/corners) to more high-level
- The receptive field of a filter also increases with each successive layer

Pooling Layers

- Pooling layers downsample and shrink the image
- Reduces the number of parameters and computation in the network, and can help prevent overfitting

 As conv layers extract more informative features, can afford to lower resolution

- Typical pooling operations: MAX, MEAN
- Can be implemented similarly to filters

224x224x64

112x112x64

Other Layers

- Convolution layers apply *linear* operations, so it is still necessary to include nonlinear activation layers like ReLU
- Latter layers will act like a usual neural network, so these will typically be fully connected to compute flexible nonlinear functions of activation maps
- Output will be a typical softmax layer for classification

LeNet, LeCun et al. 1998

ImageNet

- ConvNets process images end-to-end since they perform both feature extraction and classification simultaneously
- Lots of data sets to train on, like <u>ImageNet</u>: over 14M images, 30k categories

- ConvNets surpassed human accuracy in annual competition in the 2010s
- Modern architectures continue to improve over classical methods

Summary

- Vision is perception that transforms light into digital images
- Computer vision gathers, processes, and analyzes image data
- One important way of understanding images is to extract features
- Hand-designed features are often insufficient for image classification
- Convolutional neural networks are especially effective to resolve these issues
- Advantages: Spatial locality, parameter sharing, known and proven architectures