

Dans cette présentation

Présentation du projet

Technologies utilisées et organisation

Partie 2

Description des algorithmes et des résultats

Partie 1

Analyse des résultats

Conclusion

Retour d'expérience et analyse de notre travail

Contenu du projet

Partie 1	Exercices de compréhension et d'échauffement avec algorithmes papiers	
Partie 2	Utilisation d'algorithmes de recherche opérationnelle pour optimiser le stockage de containers	
1 dimension	Longueur des objets uniquement	
2 dimensions	Largeur en plus	
3 dimensions	Longueur, largeur et hauteur	
Site internet de présentation François a développé un site internet de visualisation très complet et dynamique		

Technologies utilisées et organisation

Technologies utilisées

La répartition du travail

François

Romain

Quentin

Visualisation web et dimension 2

Dimension 1 et 3

Partie 1 et dimension 2

car problème NP-difficile

Notions

Bin packing

Problème d'optimisation combinatoire classique Solution exactes compliquées car problème NP-difficile

Heuristique

Méthode imparfaite mais rapide

Notions

Heuristique

Méthode imparfaite mais rapide

Ratio temps d'exécution/ Précision du résultat

Bin packing

Problème d'optimisation combinatoire classique Solution exactes compliquées car problème NP-difficile

Partie 1

Questions et réponses

Mixed Integer Linear Programming

Caractéristiques:

- Fonction objectif
- -Contrainte
- Variables décisionnelles

Utilité:

Le MILP permet de trouver la meilleure solution possible en respectant les contraintes données.

4	A	В	С
1	Objet	Masse	Utilité
2	Pompe	0,2	1,5
3	Démonte-pneus	0,1	1,5
4	Gourde	1	2
5	Chambre à air	0,2	0,5
6	Clé de 15	0,3	1
7	Multi-tool	0,2	1,7
8	Pince multiprise	0,4	0,8
9	Couteau suisse	0,2	1,5
10	Compresses	0,1	0,4
11	Désinfectant	0,2	0,6
12	Veste de pluie	0,4	1
13	Pantalon de pluie	0,4	0,75
14	Crème solaire	0,4	1,75
15	Carte IGN	0,1	0,2
16	Batterie Portable	0,5	0,4
17	Téléphone mobile	0,4	2
18	Lampes	0,3	1,8
19	Arrache Manivelle	0,4	0
	Bouchon valve		
20	chromé bleu	0,01	0,1
21	Maillon rapide	0,05	1,4
22	Barre de céréales	0,4	0,8
23	Fruits	0,6	1,3
24	Rustines	0,05	1,5

ed Integer Programming

- **Fonction objectif** : La somme des utilités des objets sélectionnés, pondérée par la variable binaire prendreo
- Contrainte: La somme des poids des objets sélectionnés ne doit pas dépasser la capacité C du sac à dos.
- **Variables décisionnelles**: prendreo est une variable binaire pour chaque objet o, qui indique s'il est sélectionné.

Algorithme pour la solution exacte du sac à dos

- -Idéal pour des données de petite taille.
- Temps de calcul élevé pour de grandes instances à cause de sa complexité exponentielle.
- Complexité exponentielle nombre d'objets. $O(2^n)$ où **n** est le nombre d'objets.
- Nécessite d'explorer toutes les combinaisons possibles.

Algo A			
С	Utilité max	Temps calcul	
2	15	1ms	
3	17.85	1.3ms	
4	19.95	2ms	
5	22	2.5ms	

Algorithme pour la solution heuristique du sac à dos

- Complexité moindre, $O(n \log n)$ à $O(n^2)$

- Pas besoin d'explorer toutes les combinaisons.
- Rapide, même pour de grandes instances.
- Convient lorsque des solutions approximatives sont suffisantes.
- Ne garantit pas une solution optimale.

Alma D			
Algo B			
С	Utilité max	Temps calcul	
2	14.75	18us	
3	17.45	7us	
4	19.75	6us	
5	21.75	5us	

Comparaison

- -> Algorithme A pour une précision absolue et si le temps de calcul n'est pas un problème.
- -> Algorithme B pour un calcul rapide et si des solutions approximatives suffisent.
- -Tout dépendra de la taille des données et des exigences de temps de réponse.

Algo A			Algo B		
С	Utilité max	Temps calcul	С	Utilité max	Temps calcul
2	15	1ms	2	14.75	18us
3	17.85	1.3ms	3	17.45	7us
4	19.95	2ms	4	19.75	6us
5	22	2.5ms	5	21.75	5us

Partie 2

D1, D2 et D3

Algorithme 1D

Online:

Offline:

Nombre de wagons nécessaires (d=1 Online): 45 Dimension non occupée pour d=1 Online : 44.54 mètres Time taken: 0.0 seconds

Nombre de wagons nécessaires (d=1 Offline) : 44 Dimension non occupée pour d=1 Offline : 32.95 mètres Time taken: 0.0 seconds

Algorithme 1D

```
Combinaisons des marchandises dans les wagons (Online):
Wagon 1: [(10.0, 'Tubes acier'), (1.0, 'Acide chlorhydrique')]
Wagon 2: [(9.0, 'Tubes acier'), (2.0, 'Godet pelleteuse')]
Wagon 3: [(7.5, 'Tubes acier'), (3.0, 'Tubes PVC'), (1.0, 'Ardoises')]
Wagon 4: [(11.0, 'Rails ')]
Wagon 5: [(3.0, 'Echaffaudage'), (3.0, 'Verre'), (4.0, 'Ciment')]
Wagon 6: [(5.0, 'Bois vrac'), (6.0, 'Troncs chênes')]
Wagon 7: [(7.0, 'Troncs hêtres'), (4.0, 'Papier')]
Wagon 8: [(5.0, 'Pompe à chaleur'), (6.0, 'Cuivre')]
Wagon 9: [(5.0, 'Zinc'), (3.0, 'Verre brun vrac'), (3.0, 'Pièces métalliques')]
Wagon 10: [(7.0, 'Carton'), (2.0, 'Tuiles'), (2.2, 'Chanvre isolation')]
Wagon 11: [(9.0, 'Verre blanc vrac'), (2.0, 'Aluminium')]
Wagon 12: [(5.0, 'Briques rouges'), (6.0, 'Pièces métalliques')]
Wagon 13: [(7.0, 'Pièces métalliques'), (4.0, 'Vitraux')]
Wagon 14: [(6.0, 'Carrelage'), (3.0, 'Tôles'), (2.0, 'Aluminium')]
Wagon 15: [(7.0, 'Tôles'), (3.0, 'Tôles')]
Wagon 42: [(3.0, 'Pneus '), (4.0, 'Pneus '), (3.0, 'Pneus ')]
Wagon 43: [(3.0, 'Pneus '), (5.0, 'Pneus '), (3.0, 'Pneus ')]
Wagon 44: [(4.0, 'Pneus '), (4.0, 'Pneus '), (2.0, 'Pneus ')]
Wagon 45: [(6.0, 'Pneus ')]
```

Algorithme 2D - Approches

Algorithme 2D — Meilleure solution trouvée

Retourne le DataFrame des données

get_items

Extrait les données voulue du DataFrame et les stocke

pack_items (fonction principale)

Essaye de placer un item : try_place_item Ou créer un wagon : create_new_wagon

create_new_wagon

Créer un nouveau wagon. Initialise les espaces libres initiaux. Place le premier item.

Algorithme 2D – Meilleure solution

update_free_spaces

Met à jour les espaces libres d'un wagon après placement d'un objet

try_place_item

Tente de placer l'item dans le wagon. Si placé, update_free_spaces est appelée

convert_to_json

Renvoie les données en json

Détail: update_free_spaces

Init

Initialisation d'une liste d'espace libre (Tout le wagon)

Division

Division de l'espace libre en 4 zones autour de l'objet

Verification

Vérifie l'intersection entre l'objet placé et chaque espace libre pour les mettre à jour

Filtrage

Elimination des espaces possédants des dimensions non positives

Algorithme 2D – Meilleure solution

update_free_spaces

Met à jour les espaces libres d'un wagon après placement d'un objet

try_place_item

Tente de placer l'item dans le wagon. Si placé, update_free_spaces est appelée

convert_to_json

Renvoie les données en json

Algorithme 3D

```
Marchandises lues depuis le fichier Excel et triées par volume décroissant:
Numéro d'objet: 51, Désignation: Semi conducteurs, Length: 6.1, Width: 2.2, Height: 2.3
Numéro d'objet: 38, Désignation: Batteries automobile, Length: 7.0, Width: 1.4, Height: 2.5
Numéro d'objet: 68, Désignation: Lithium, Length: 4.0, Width: 2.1, Height: 2.5
Numéro d'objet: 36, Désignation: Textiles à recycler, Length: 6.0, Width: 1.3, Height: 2.5
Numéro d'objet: 31, Désignation: Tôles, Length: 6.0, Width: 1.9, Height: 1.6
Numéro d'objet: 28, Désignation: Carrelage, Length: 6.0, Width: 1.2, Height: 2.5
Numéro d'objet: 19, Désignation: Verre blanc vrac, Length: 9.0, Width: 0.9, Height: 2.2
Numéro d'objet: 59, Désignation: Aluminium, Length: 4.0, Width: 2.1, Height: 2.1
Numéro d'obiet: 60, Désignation: Aluminium, Length: 6.0, Width: 1.5, Height: 1.9
Numéro d'obiet: 13. Désignation: Troncs hêtres. Length: 7.0. Width: 1.6. Height: 1.5
Numéro d'objet: 89, Désignation: Poutre , Length: 5.0, Width: 1.6, Height: 2.1
Numéro d'objet: 15, Désignation: Cuivre, Length: 6.0, Width: 2.0, Height: 1.4
Numéro d'objet: 70, Désignation: Lithium, Length: 6.0, Width: 1.3, Height: 2.0
Numéro d'objet: 30, Désignation: Tôles, Length: 9.0, Width: 1.7, Height: 1.0
Numéro d'objet: 50, Désignation: Semi conducteurs, Length: 8.7, Width: 1.3, Height: 1.3
Numéro d'objet: 32, Désignation: Tôles, Length: 3.0, Width: 2.2, Height: 2.2
Numéro d'objet: 87, Désignation: Poutre , Length: 6.0, Width: 1.2, Height: 2.0
Numéro d'objet: 79, Désignation: Contreplagué, Length: 3.0, Width: 2.0, Height: 2.3
Numéro d'objet: 52, Désignation: Semi conducteurs, Length: 3.3, Width: 1.8, Height: 2.3
Numéro d'objet: 22, Désignation: Pièces métalliques, Length: 6.0, Width: 1.6, Height: 1.4
Numéro d'objet: 66, Désignation: Lithium, Length: 3.0, Width: 2.0, Height: 2.2
Numéro d'objet: 21, Désignation: Briques rouges, Length: 5.0, Width: 1.1, Height: 2.4
Numéro d'objet: 43, Désignation: Laine de bois, Length: 8.0, Width: 0.9, Height: 1.8
Numéro d'objet: 14, Désignation: Pompe à chaleur, Length: 5.0, Width: 1.1, Height: 2.3
Numéro d'objet: 2, Désignation: Tubes acier, Length: 9.0, Width: 2.0, Height: 0.7
Numéro d'objet: 42, Désignation: Acier , Length: 8.0, Width: 0.9, Height: 1.7
Numéro d'objet: 64, Désignation: Aluminium, Length: 6.0, Width: 1.8, Height: 1.1
Numéro d'objet: 12, Désignation: Troncs chênes, Length: 6.0, Width: 1.9, Height: 1.0
```

Algorithme 3D Online:

Temps d'exécution pour charger les marchandises dans les conteneurs: 9.1417 secondes

Nombre total de wagons utilisés: 21

Espace non utilisé totale 486.582

Offline:

Temps d'exécution pour charger les marchandises dans les conteneurs: 12.9392 secondes

Nombre total de wagons utilisés: 18

Espace non utilisé totale 296.832

Algorithme 3D

```
Conteneur 4:

Marchandise ID: 31, Désignation: Tôles, Position: (0.0, 0.0, 0.0), Dimensions: (6.0, 1.9, 1.6)

Marchandise ID: 89, Désignation: Poutre, Position: (6.0, 0.0, 0.0), Dimensions: (5.0, 1.6, 2.1)

Marchandise ID: 65, Désignation: Lithium, Position: (0.0, 0.0, 1.6), Dimensions: (6.0, 1.9, 0.9)

Marchandise ID: 74, Désignation: Contreplaqué, Position: (6.0, 1.6, 0.0), Dimensions: (5.0, 0.6, 1.8)

Marchandise ID: 73, Désignation: Contreplaqué, Position: (6.0, 1.6, 1.8), Dimensions: (5.0, 0.6, 0.5)
```


Quarter subjects

Catégorie	Wagons	Chrono
D1 Online	45	Environ 0 sec
D1 Offline	44	Environ 0 sec
D2 Online	32	Environ 0 sec
D2 Offline	29	Environ 0 sec
D3 Online	21	9.14 sec
D3 Offline	18	12.93 sec

Retour d'expérience

Au travers de ce problème concret, découverte d'un nouveau domaine

Compétition

L'affichage des résultats au tableau

Coopération

Pas de méthode agile

Approfondir

Sujet à priori simple mais complexe à optimiser

