

Ravel: a database-defined network

Anduo Wang* Xueyuan Mei† Jason Croft† Matthew Caesar[†] Brighten Godfrey[†]

*Temple University †University of Illinois Urbana-Champaign

software-defined network

software-defined network

but network keeps evolving

but network keeps evolving

language-level orchestration restricted to each abstraction

composing (+) policy→ graph +? automata

integrate the runtime, hard-wiring internals?

current states of abstraction

current states of abstraction

enlarging body of abstractions

current states of abstraction

our perspective

SDN control revolves around data representation

- discard specialized, pre-compiled, fixed structures
- -adopt a plain data representation

our perspective

SDN control revolves around data representation

- discard specialized, pre-compiled, fixed structures
- -adopt a plain data representation
- use a universal data language

a database-defined network

- relation the plain data representation
 - table stored relation
 - view virtual relation

a database-defined network

- relation the plain data representation
 - table stored relation
 - view virtual relation
- -SQL the universal data language
 - query, update, trigger, rule

a database-defined network

- relation the plain data representation
 - table stored relation
 - view virtual relation
- -SQL the universal data language
 - query, update, trigger, rule
- SQL database the highperformance runtime
 - orchestration challenge: refine runtime behavior by data mediation

Ravel: a realization with SQL database

attractive features

- ad-hoc programmable abstraction via views
- orchestration across abstractions via view mechanism
- orchestration acrossapplications via data mediation
- network control via SQL

abstraction: network tables

firewall view: monitoring unsafe flows violating acl policy

```
CREATE TABLE acl (
  end1 integer, end2 integer, allow integer
);
```

firewall view: monitoring unsafe flows violating acl policy

```
CREATE TABLE acl (
  end1 integer, end2 integer, allow integer
);
```

firewall control: repairing violation

```
CREATE RULE acl_repair AS
   ON DELETE TO acl_violation
   DO INSTEAD
    DELETE FROM rm WHERE fid = OLD.fid;
```

firewall view: monitoring unsafe flows violating acl policy

```
CREATE TABLE acl (
  end1 integer, end2 integer, allow integer
);
```

firewall control: repairing violation

```
CREATE RULE acl_repair AS
   ON DELETE TO acl_violation
   DO INSTEAD
   DELETE FROM rm WHERE fid = OLD.fid;
```

- many more
 - routing, stateful firewall, service chain policy between subdomains ...

firewall view: monitoring unsafe flows violating acl policy

```
CREATE TABLE acl (
  end1 integer, end2 integer, allow integer
);
```

firewall control: repairing violation

```
CREATE RULE acl_repair AS
   ON DELETE TO acl_violation
   DO INSTEAD
   DELETE FROM rm WHERE fid = OLD.fid;
```

- many more
 - routing, stateful firewall, service chain policy between subdomains ...
- optimizing application by materializing views
 - (one order of magnitude) faster access with small maintenance overhead (.01~10ms)

SQL rule: upon broken path, re-route

SQL rule: upon broken path, re-route

Mininet link (172,39) down

SQL rule: upon broken path, re-route

		Y			
Г	shortest path				
	• • •	path			
l-		{,172,39,156,}			
±		{,172,38,148,}			
4					

	topology						
	sid	nid	active				
-	172	39	I				
+	172	39	0				

Mininet link (172,39) down

configuration					

re-route via (172, 38)

orchestration across applications

shortest path

configuration

orchestration across applications

configuration

iat tree			101		
k	switches	links	AS#	nodes	links
16	320	3072	4755	142	258
32	1280	24576	3356	1772	13640
64	5120	196608	7018	25382	11292
			2914	5939	16520

orchestrating access control(acl), load balancer(lb), and routing(rt): normalized per-rule delay (ms)

orchestrating access control(acl), load balancer(lb), and routing(rt): normalized per-rule delay (ms)

orchestrating access control(acl), load balancer(lb), and routing(rt): normalized per-rule delay (ms)

conclusion

conclusion

flexible abstraction via SQL

- ad-hoc extensible, orchestratable
- promising performance

conclusion

flexible abstraction via SQL

- ad-hoc extensible, orchestratable
- promising performance

looking forward

- application of database features
 - network-wide transaction
 - bootstrapping legacy networks
- enhancing database
 - better runtime: orchestration
 - better control decision: view analysis
- interpretability
 - integrate foreign applications, plug-n-play3rd party solvers

demo

```
🔞 🖨 🗊 Terminal
[croftj@clavius cli-ravel]$
```

demo

```
🔞 🖨 🗊 Terminal
[croftj@clavius cli-ravel]$
```


playtime

download Ravel and install

ravel-net.org/download

start playing: tutorials, add your own app

ravel-net.org

more to explore

github.com/ravel-net