

Rodrigo de Barros Paes

Governança de Sistemas Multi-Agentes Abertos com Fidedignidade

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Informática da PUC-Rio como requisito parcial para obtenção do grau de Doutor em Informática.

Orientador: Carlos José Pereira de Lucena

Rodrigo de Barros Paes

Governança de Sistemas Multi-Agentes Abertos com Fidedignidade

Tese apresentada ao Programa de Pósgraduação em Informática da PUC-Rio como requisito parcial para obtenção do grau de Doutor em Informática. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Carlos José Pereira de Lucena

Orientador

Departamento de Informática - PUC-Rio

Prof. Arndt von Staa

Departamento de Informática – PUC-Rio

Prof^a. Simone Diniz Junqueira Barbosa

Departamento de Informática – PUC-Rio

Prof. Jaime Simão Sichman

Departamento de Engenharia de Computação e Sistemas Digitais - Escola Politécnica da Universidade de São Paulo

Prof. José Carlos Maldonado

Instituto de Ciências Matemáticas e de Computação – Universidade de São Paulo – São Carlos

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 02 de Outubro de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e dos orientadores.

Rodrigo de Barros Paes

Mestre em Informática pela PUC-Rio em 2005. Graduou-se em Ciência da Computação na Universidade Federal de Alagoas em 2003. É pesquisador associado ao Laboratório de Engenharia de Software (LES) da PUC-Rio, atuando na área de Engenharia de Software de Sistemas Multi-agentes e Qualidade de Software.

Ficha Catalográfica

Paes, Rodrigo de Barros

Governança de sistemas multi-agentes abertos com fidedignidade / Rodrigo de Barros Paes ; orientador: Carlos José Pereira de Lucena. – 2007.

196 f.: il.; 30 cm

Tese (Doutorado em Informática)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

1. Informática — Teses. 2. Sistemas multi-agentes. 3. Sistemas abertos. 4. Governança baseada em leis. 5. Leis de interação. 6. Fidedignidade. I. Lucena, Carlos José Pereira de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

Agradecimentos

"Ô mô fio quando é que você vai começar a trabalhar? Só quer saber de estudar né? Ô vida mansa! E a tese, defende quando? Pense num bicho nerd! Fique aí estudando que eu vou pegar uma prainha!"

Pois é, durante alguns anos escutei muitas variações das frases acima. Agora terminou mais uma etapa, uma etapa importante. Enfim! Agora o homem virou Doutor.

Pra mim, o fim do doutorado significa o encerramento de uma etapa que se iniciou em 1999, na Universidade Federal de Alagoas, quando eu iniciei o curso de graduação em Ciência da Computação. E como é bom o gostinho de encerrar etapas, principalmente quando dá tudo certo.

Mas obviamente que não se constrói nada sozinho, durante o caminho recebi muita ajuda de pessoas que contribuíram não só para a minha formação profissional quanto também para a minha formação pessoal. Foram várias as pessoas que eu deveria agradecer e com certeza esquecerei alguém (afinal de contas, memória nunca foi o meu forte). Por isso, manterei o meu foco de agradecimento no período do Doutorado.

Ao Professor Lucena, pelas várias contribuições técnicas em artigos, as inúmeras revisões na tese e a paciência por ter escutado pelo menos umas 30 apresentações sobre o mesmo tema. Queria agradecer também pelas experiências internacionais que me foram proporcionadas no Canadá, França e Inglaterra. Mas o principal agradecimento ao Lucena é a confiança depositada em mim tanto no aspecto

profissional quanto pessoal, o que me permitiu desempenhar várias atividades que contribuíram enormemente para as experiências que vivi aqui no Rio de Janeiro.

Ao Guga ... ihh ... esse aqui merece um agradecimento especial. Foi com o Guga que desenvolvi quase todos os trabalhos na PUC-Rio. Foi com ele que tive várias das discussões de direcionamentos de pesquisa, e até mesmo várias decisões de cunho profissional. Guga, valeu pela força cumpade!

Ao Professor Ricardo Choren, que contribui para a escrita de vários artigos e também em inúmeras discussões.

A banca examinadora, pelas valiosas contribuições técnicas a este trabalho.

A Vera, por todos os galhos, não, galhos não, árvores inteiras que foram quebradas por esta pessoa incansável.

Aos amigos Galuteta e Hyggo que mesmo distantes colaboraram com esta tese.

A toda a galera do LES que tornou o dia-a-dia uma experiência sempre agradável e produtiva. Em especial, ao Sérgio Ruivace que me ajudou com a implementação do estudo de caso do tráfego aéreo.

A minha família maravilhosa que esteve sempre presente, mesmo geograficamente distante. Um agradecimento super-especial para o Coroa (meu pai), minhas irmãs Kysi e Kely, minha vó Léa, minhas tias Séfora, Kilza, Soraya e Kênea e meu primo Edinho.

E o agradecimento final vai para a minha namorosa (mistura de namorada + esposa) Taíse. Ô ... quanta paciência você teve que ter né? Obrigado por tudo nesse período, obrigado por ficar sempre ao meu lado, tenha certeza que sem você, a estrada seria bem mais esburacada e desagradável.

Ahhh ... e pra cumprir o protocolo, ao CNPq pelo apoio financeiro.

Resumo

Paes, Rodrigo de Barros; Lucena, Carlos José Pereira de. **Governança de Sistemas Multi-Agentes Abertos com Fidedignidade.** Rio de Janeiro, 2007. 196p. Tese de Doutorado - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Sistemas multi-agentes abertos são frequentemente caracterizados como sistemas distribuídos onde agentes, que podem não ser conhecidos a priori, podem entrar ou sair do sistema a qualquer momento. Uma abordagem de governança estabelece regras de interação que precisam ser seguidas pelos agentes de um determinado sistema. O uso destas regras permite uma maior previsibilidade e controle sobre o comportamento observável do sistema. Nesta tese, apresenta-se uma abordagem de governança de sistemas multi-agentes abertos como adequada para lidar não apenas com o monitoramento e controle do comportamento dos agentes, mas também com aspectos de fidedignidade. Um software é dito fidedigno quando se pode confiar no mesmo através de verificações formais ou informais assumindo riscos de danos compatíveis com o serviço prestado pelo software. A incorporação de aspectos de fidedignidade em uma abordagem de governança tem como principal benefício a geração de uma tecnologia integrada que possui as vantagens de uma abordagem de governança e ao mesmo tempo lida com especificações de instrumentos de fidedignidade tais como prevenção e tolerância a faltas. A abordagem proposta é ilustrada através de um estudo de caso no contexto de controle de tráfego aéreo.

Palavras-chave

Sistemas Multi-agentes; Sistemas Abertos; Governança baseada em Leis; Leis de Interação; Fidedignidade

Abstract

Paes, Rodrigo de Barros; Lucena, Carlos José Pereira de. **Governance of Open Multi-Agent Systems with Dependability.** Rio de Janeiro, 2007. 196p. Doctoral Thesis - Computer Science Department, Pontifical Catholical University of Rio de Janeiro.

Open multi-agent systems are frequently characterized by having little or no control over the behavior of the agents. The internal implementation and architecture of agents usually are inaccessible, and different teams may have developed them but with no coordination between them. Furthermore, agents may enter or leave the system at their will. A governance approach defines the interaction rules that must be obeyed by the agents. These rules allow for a greater control and predictability of the observable system behavior. In this thesis, we propose a governance approach to deal not only with the monitoring and control of agents' behavior but also to deal with dependability concerns. The original definition of dependability is the ability to deliver service that can justifiably be trusted. A governance approach that also deals with dependability has as main benefit the reuse of the monitoring and enforcement present in the governance infrastructure for dependability. We present a case study in the context of an air traffic control system to illustrate our approach.

Keywords

Multi-Agent Systems; Open Systems; Law-Governed Approach; Dependability.

Sumário

1 Introdução	18
1.1. Problema	21
1.2. Limitações de Abordagens Existentes	21
1.3. Solução Proposta	22
1.4. Contribuições	23
1.5. Organização da Tese	24
2 Capítulo 6 - Incorporação de Fidedignidade na Abordagem de	
Governança	24
3 O Meta-Modelo de Leis: XMLaw	26
3.1. Descrição Detalhada dos Elementos do Modelo Conceitual	29
3.2. Modelo de Eventos	50
3.3. Contextos	52
3.4. Lista de eventos	52
3.5. Gramática	53
3.6. Considerações Finais	55
4 Trabalhos Relacionados ao Meta-Modelo	56
4.1. Relação do Modelo Conceitual do XMLaw com uma	
Abordagem de Baixo Nível Baseada em Eventos	59
4.2. Relação do Modelo Conceitual do XMLaw com uma	
Abordagem de Alto Nível não Baseada em Eventos	66
4.3. Moise +	68
4.4. Estudos de Caso	69
4.5. Considerações Finais	79
5 Infra-estrutura de Implementação: M-Law	81
5.1. Ciclo de Vida do Mediador MLaw	85
5.2. Arquitetura e Implementação	86

5.3. Trabalhos relacionados ao Middleware	94
5.4. Considerações Finais e Exemplos de Utilização do M-Law	97
6 Fidedignidade	99
6.1. Detecção de Falhas	102
7 Incorporação de Fidedignidade na Abordagem de Governança	104
7.1. Implementação de Duas Estratégias de Tolerância a Faltas	
Através do XMLaw	104
7.2. Dependability Explicit Computing e Leis	113
8 Estudo de Caso: Controle de Tráfego Aéreo	130
8.1. Leis em CTAs	130
8.2. Fontes de Problemas em Sistemas de CTA	131
8.3. Engenharia do Sistema	133
8.4. Casos de Uso	135
8.5. Arquitetura	141
8.6. Análise da Governança	143
8.7. Análise da Fidedignidade	146
8.8. Dependability Explicit Computing	168
8.9. Resumo dos Artefatos de Lei Gerados no Estudo de Caso	174
8.10. Considerações Finais	180
9 Conclusões	182
9.1. Resultados	183
9.2. Limitações	185
9.3. Trabalhos Futuros	185
Referências	189

Lista de Figuras

Figura 1 – Governança sob a Otica das Disciplinas de Inteligência	
Artificial, Ciências Sociais e Engenharia de Software	27
Figura 2 – Modelo Conceitual do XMLaw	28
Figura 3 – Ciclo de Vida de um Elemento de Lei	51
Figura 4 – Exemplo de Protocolo	62
Figura 5 - Exemplo da Necessidade de Sincronização entre os	
Controladores para a Identificação de Propriedades Globais.	65
Figura 6 - Protocolo de Interação do Estudo de Caso da Equipe	
de Compradores	73
Figura 7 - Protocolo de Interação do Estudo de Caso Centro de	
Conferências	77
Figura 8 – Arquitetura do Mediador M-Law	81
Figura 9 – Componentes Principais do M-Law	82
Figura 10 – Projeto do Elemento <i>Scene</i>	84
Figura 11 – API cliente: classes LawFacade e Agent	85
Figura 12 – Ciclo de Vida do Mediador M-Law	86
Figura 13 – Diagrama de Pacotes	87
Figura 14 – Diagrama de Deployment	87
Figura 15 – Diagrama de Classes do Pacote <i>agent</i>	88
Figura 16 - Diagrama de Classes do Pacote communication	90
Figura 17 – Diagrama de Classes do Pacote <i>jade</i>	91
Figura 18 – Diagrama de Classes do Pacote <i>event</i>	92
Figura 19 – Diagrama de classes do Pacote <i>execution</i>	93
Figura 20 - Relacionamento entre falta, erro e falha (Avizienis,	
Laprie et al. 2004)	106
Figura 21 – Estratégia Forward Recovery (Avizienis, Laprie et al.	
2004)	108
Figura 22 – Sistema de Controle de Vendas	109
Figura 23 - Protocolo de Interação do Sistema de Controle de	
Vendas	110

Figura 24 – Diagrama de Seqüência do Estudo de Caso	117
Figura 25 – Arquitetura do Estudo de Caso de DepEx	118
Figura 26 – Protocolo de Interação do Estudo de Caso de DepEx	123
Figura 27 - Modelo Entidade-Relacionamento do Banco de Dados	
de Metadados	125
Figura 28 - Exemplos de Agentes Cadastrados no Banco de	
Dados	126
Figura 29 – Exemplos de Informações de Fidedignidade	126
Figura 30 – Modelagem do Espaço Aéreo em um CTA	133
Figura 31 – Arquitetura do Estudo de Caso	142
Figura 32 – Protocolo de Interação da Cena Controle de Pista	143
Figura 33 - Protocolo de Interação da Cena Decolagem	144
Figura 34 - Protocolo de Interação da Cena Vôo	145
Figura 35 - Protocolo de Interação da Cena Aterrissagem	146
Figura 36 - Arquitetura do Estudo de Caso com a Inclusão do	
Agente Detector de Falhas	152
Figura 37 – Protocolo de Interação da cena de vôo	157
Figura 38 – Protocolo de Interação da Cena de Vôo	159
Figura 39 – Protocolo de Interação da Cena de Controle de Pista	163
Figura 40 - Protocolo da Cena de Aterrissagem com a inclusão	
dos estados s5 e s6	166
Figura 41 - Protocolo da Cena de Aterrissagem Modificado com a	
inclusão dos estados s7 e s8.	167
Figura 42 – GQM do Objetivo G01	171
Figura 43 – Modelo do Banco de Dados	171
Figura 44 - GQM do Estudo de Caso para a Identificação dos	
Metadados	174
Figura 45 – Arquitetura do Estudo de Caso do Controle de Tráfego	
Aéreo	175
Figura 46 – Tela da Visão Geral do Sistema	178
Figura 47 – Tela Representando o Agente Piloto	179
Figura 48 – Tela Representando a Visão do Agente Controlador	180

Lista de Tabelas

Tabela 1 – Dimensoes de Preocupações de Cada Elemento do	
XMLaw	29
Tabela 2 – Lista de Eventos	53
Tabela 3 – Lista dos Principais Eventos do LGI	61
Tabela 4 – Lista das Principais Operações do LGI	62
Tabela 5 – Mapeamento entre o XMLaw e o LGI	64
Tabela 6 - Relacionamento entre os Modelos Conceituais de	
XMLaw e IE	68
Tabela 7 – Linha de Raciocínio para a Especificação XMLaw do	
Requisito #3 nas Linhas 35, 39, 43 e 45.	121
Tabela 8 – Descrição dos Atributos do Banco de Dados	126
Tabela 9 – Guia de Análise de Governança	143
Tabela 10 – Elicitação das Ameaças	149
Tabela 11 – Estratégias de Mitigação das Ameaças	151
Tabela 12 – Descrição dos Atributos do Banco de Dados	172
Tabela 13- Exemplo de Tupla Inserida no Banco de Dados	172

Lista de Código

Código 1 – Exemplo de Clock Ativado e Desativado por	
Transições	31
Código 2 – Exemplo de Clock Ativado por uma Transição ou	
Norma.	32
Código 3 – Exemplo do Papel Utilizado em uma Mensagem para	
Definir o Remetente e o Destinatário	32
Código 4 - Exemplo do Papel Utilizado para Definir os Criadores	
e Participantes de uma Cena	33
Código 5 – Exemplo da Especificação do Agente em uma	
Mensagem XMLaw	34
Código 6 – Exemplo de Mensagem Simples	35
Código 7 – Exemplo de Mensagem com Representação dos	
Agentes	35
Código 8 – Exemplo de Mensagem com a Performativa Explícita	36
Código 9 – Exemplo de Mensagem Complexa	36
Código 10 – Exemplo do Elemento Law	37
Código 11 – Exemplo de uma Cena com Criadores, Participantes,	
Mensagens, Estados e Transições.	39
Código 12 – Exemplo de Norma	41
Código 13 – Exemplo de uma Constraint Utilizada em uma	
Transição	43
Código 14 – Código Java de uma Constraint	43
Código 15 – Exemplo de Protocolo com o Nome Declarado	45
Código 16 – Exemplo de Protocolo sem a Declaração do Nome	45
Código 17 – Exemplo de Lei que Declara uma Action	49
Código 18 – Exemplo de Implementação de Action	49
Código 19 – Pseudocódigo para a Ativação de uma Norma Devido	

ao Disparo de uma Transição	50
Código 20 - Pseudocódigo para Compor uma Norma com um	
Clock.	51
Código 21 - Definição dos Eventos que Ativam um Elemento de	
Lei	52
Código 22 – Gramática XMLaw	55
Código 23 - Mapeamento do Protocolo da Figura 4 usando	
XMLaw	63
Código 24 – Mapeamento do Protocolo da Figura 4 usando LGI	63
Código 25 - Redirecionamento de Mensagens para um Mediador	
Central	66
Código 26 - XMLaw do Estudo de Caso da Equipe de	
Compradores	73
Código 27 - Constraint que Verifica se o Agente é de Fato o	
Gerente Atual	74
Código 28 – Action que Troca o Gerente Atual	74
Código 29 - Constraint que Verifica se o Agente que está	
Cedendo Dinheiro Realmente tem Dinheiro para Ceder	74
Código 30 - Action que Atualiza os Orçamentos e que é Utilizado	
nas Mensagens de giveBudget e removeBudget	75
Código 31 -XMLaw da Cena appointmentProposal	78
Código 32 – Pseudocódigo do Sistema Distribuído Ping-Pong	101
Código 33 – Processo Pong com a Inclusão de uma Falta	102
Código 34 - Especificação da Lei do Sistema de Controle de	
Vendas	110
Código 35 – XMLaw do Estudo de Caso de DepEx	124
Código 36 – Implementação Java da constraint checkContent	125
Código 37 - Action updateClockMetadata implementada através	
da classe Java <i>DecAvailability</i>	125
Código 38 - Protocolo de interação em XMLaw da cena	
groundControl	144
Código 39 – Protocolo de interação em XMLaw da cena take-off	144
Código 40 – Protocolo de Interação em XMLaw da cena flight	146

Código 41 - XMLaw da cena de vôo com a estratégia de	
mitigação da ameaça CDL01	153
Código 42 – Implementação da Constraint CheckDistance	154
Código 43 – XMLaw da Cena de Vôo com a Estratégia de	
Mitigação da Ameaça CDL02	155
Código 44 – XMLaw da Cena de Decolagem com a Estratégia de	
Mitigação da Ameaça CDL03	156
Código 45 – XMLaw da Cena de Vôo com a Estratégia de	
Mitigação da Ameaça CDL05	158
Código 46 - XMLaw da Cena de Vôo com a Estratégia de	
Mitigação da Ameaça CDL06	160
Código 47 – XMLaw Utilizando o Agente Detector de Falhas	161
Código 48 - Utilização do Agente Detector de Falhas para	
Reportar Falhas de Comunicação com os Radares.	162
Código 49 – XMLaw de Mitigação da Ameaça CDL09.	163
Código 50 – XMLaw de Mitigação da Ameaça CDL11	165
Código 51 – XMLaw de Mitigação da Ameaça CDL12	166
Código 52 – XMLaw de Mitigação da Ameaça CDL13	168
Código 53 – Cena <i>flight</i> Modificada com a Inserção da <i>action</i> para	
Armazenar os Dados no Banco de Dados	173

Lista de Siglas e Abreviaturas

IE Instituição Eletrônica

UML Unified Modeling Language

SMA Sistema Multi-Agente

CTA Controle de Tráfego Aéreo