Comandos Scilab

a/b	a divido por b				
a\b	b divido por a				
inv(A), rref([A,eye(A)])	Inversa de la matriz A				
"*""./"".^"	Hace la operación elemento por elemento				
1 zeros (m,n)	1 Devuelve matriz nula de dimensión m x n				
2 zeros (A)	2 Devuelve matriz nula = dimensiones que A				
1 ones (m,n)	1 Devuelve matriz formada por "1" de dimensión m x n				
2 ones(A)	2 Devuelve matriz formada por "1" = dimensiones que A				
1 eye(m,n)	1 Devuelve matriz formada por 1 en diagonal y 0 el resto de dimensiones m x n Si m=n				
2 eye(A)	2 Devuelve matriz formada por 1 en diagonal y 0 el resto de dimensiones que A Identidad				
A(i,j)=expresión	Substituye el elemento i,j de la matriz por la expresión				
C=[A,B] o C=[A B]	C = (A B) construir nueva matriz, columnas de B se ponen a la derecha de las de A				
C=[A;B]	$C = {A \choose B}$ construir nueva matriz, filas de B se ponen bajo de A				
Tabajo con matrices:					
A(i,j)	Para el elemento que ocupa la posición fila i y columna j de la matriz A				
A(:,j)	Para la columna j de la matriz A				
A(i,:)	Para la fila i de la matriz A				
A(r:s,:)	Submatriz formada por las filas entre la r y la s de la matriz A				
A(:,r:s)	Submatriz formada por las columnas entre la r y la s de la matriz A				
A([r s],:)	Submatriz formada por las filas r y s de la matriz A				
A(:,[r s])	Submatriz formada por las columnas r y s de la matriz A				
A(i,:)=nueva fila	Modificar la fila i de la matriz A				
A(:,j)=nueva columna	Modificar la columna j de la matriz A				
s=poly(0,"s")	Definir una variable polinomica en la indeterminada s				
roots(p)	Raíces del polinomio				
horner(p,n)	Sustituye la variable polinomica por "n" en el polinomio p				
If condición then	Evaluar expresión lógica y ejecutar instrucciones, elseif y else son opcionales, puede haber				
instrucción	más de un elseif				
elseif cond. then	Ejemplo: x=-4; if x<0 then r=-x,elseif x==0 then r=0,else r=x,end				
instrucción	Sol: r=4				
else instrucciones					
end					
For variable=expresión do	La expresión suele ser una matriz y las ordenes se ejecutan para todas las columnas de la				
	matriz, los formatos más habituales son: "comienzo:paso:fin" o "comienzo:fin"				
instrucción,,					
instrucción, end	Escribe los cuadrados de los números impares entre 1 y 9				
ejemplo:					
for x=1:2:9 do [x,x^2],end					
while condición do	do puede sustituirse por then, la cláusula else se ejecuta cuando condición es falsa				
instrucciones, [,else					
instrucciones], end					
función(arg1, arg2)	Sintaxis de una función en scilab				
Exec('fichero.sci')	Ejecuta un fichero de texto de scilab				
A([i,j],:)=A([j,i],:)	Intercambio de filas aplicado a las filas i y j				
A(i,:)=p*A(i,:)	La fila i-ésima se multiplica por p				
A(i,:)=A(i,:)+p*A(j,:)	La fila i se cambia por la suma de la fila i y p veces la fila j				
Rref(A)	Proporciona la forma escalonada reducida de A				

Operador \	_ , , , , , , , , , , , , , , , , , , ,						
Operador \	Para resolver $A\vec{x} = \vec{b}$, A=matriz de coeficientes, b=vector términos independientes y						
$A\vec{x} = \vec{b}$ A\b	escribimos A\b						
	*Si es SCD, proporciona la solución única						
	*Si es SCI, A\b proporciona una de las soluciones						
	*Si es SI, calcula un vector aproximado por mínimos cuadrados de la solución, es decir, un						
	vector \vec{x} tal que el valor de la norma $ A\vec{x'} - \vec{b} $ es el minimo posible entre todos los posibles						
	vectores de $\overrightarrow{x'}$						
Solución general de un							
	calcular el núcleo: $A\vec{x} = \vec{0}$ instrucción: kernel(A)						
sistema utilizando \ y	ejemplo: A=[1 0 2 3; 7 1 1 1; 8 1 3 4; 9 1 5 7]; b=[6; 10; 16; 22];						
kernel	$x=A \ \Rightarrow$ sol: 1.2; 0; 0; 1.6 (solución particular) (\vec{u})						
(cantidad infinita de	clean(A*x-b) sol: 0; 0; 0 (si da esto, SCI, si da algo que no sea 0, SI)						
soluciones) → SCI	kernel(A) sol: (-0.149;0.843;0.451;-0.250) $(\overrightarrow{v_1})$ (-0.041;0.514;-0.706;0.484) $(\overrightarrow{v_2})$ (si da [] SCD y						
	la solución es x=A\b)						
	solución Sistema: $\vec{u} + \lambda_1 [\overrightarrow{v_1}] + \lambda_2 [\overrightarrow{v_2}]$						
Redes de flujo:	*flujo total que entra a un nodo = flujo total que sale del nodo						
Red consta de puntos	*flujo total que entra dentro de la red = flujo total que sale de la red						
(nodos, vértices) y de	Ejemplo:						
arcos que conectan todos	$A \stackrel{20}{\longleftarrow} B$						
o parte de los nodos)	Nodo A: $x + y = 20$						
	Nodo B: $z + 20 = t$ $0 \ 0 \ 1 \ -1 \ 0 \ -20$						
	Nodo C: $y+z=20$, $M=\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 20 \\ 1 & 0 & 0 & 0 & 1 & 10 \end{bmatrix}$.						
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	y calculamos, con Scilab, la forma escalonada reducida de M:						
	>M=[1 1 0 0 0 20;0 0 1 -1 0 -20;0 1 1 0 0 20;						
	> 1 0 0 0 -1 -10;0 0 0 -1 1 -10]); rref(M)						
	1. 0. 0. 0110. 0. 1. 0. 0. 1. 30.						
	0. 0. 1. 0 1 10.						
	0. 0. 0. 1 1. 10. 0. 0. 0. 0. 0. 0.						
	SCI \rightarrow x=-10+ λ , y=30- λ , z=-10+ λ , t=10+ λ , u= λ , como son líquidos (en este ejemplo) han						
	de cumplir que x,y,z,t,u ≥ 0 , por tanto el intervalo será [10,30]						
Método jacobi:							
$A\vec{x} = \vec{b}$ $A = L + D + U$	Ejemplo : $A = \begin{bmatrix} 2 & -10 & 3 \end{bmatrix}$ $A = L + D + U \rightarrow L = \begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 0 & -10 & 0 \end{bmatrix}$						
L (triangular inferior)	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $						
(tril(A)-D)	$ U = \begin{bmatrix} 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} $ always to \vec{x} as solve if a delicitation $ A\vec{x} - \vec{b} < \sum U = D + U = \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + \vec{c} + \vec{b} < \sum U = D + U = \vec{c} + $						
<u>D</u> (< <parte diagonal="">>)</parte>	de cumplir que x,y,z,t,u ≥ 0 , por tanto el intervalo será $\begin{bmatrix} 10,30 \end{bmatrix}$ Ejemplo : $A = \begin{bmatrix} 10 & 3 & 1 \\ 2 & -10 & 3 \\ 1 & 3 & 10 \end{bmatrix}$ $A = L + D + U \rightarrow L = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 10 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & 10 \end{bmatrix}$ $U = \begin{bmatrix} 0 & 3 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ el vector \vec{x} es solución del sistema $A\vec{x} = \vec{b} \leftrightarrow (L+D+U)\vec{x} = (L+D+U)\vec$						
(diag(A))	$\leftrightarrow D\vec{x} = \vec{b} - (L+U)\vec{x} \leftrightarrow \{\vec{x} = D^{-1}[\vec{b} - (L+U)\vec{x}]\}(1)$, D es invertible (elementos NO nulo de su						
<u>U</u> (triangular superior)	diagonal).						
(triu(A)-D)	El método jacobi es una técnica iterativa basa en la igualdad, siguientes pasos:						
	Tomamos una aproximación inicial de la solución $\overline{x_0}$, la sustituimos en el primer miembro de						
	(1) y calculamos otra aproximación $\overline{x_1}$, la sustituimos en el primer miembro de (1) y calculamos						
	otra aproximación \vec{x}_2 y asi sucesivamente, obtenemos una sucesión de vectores \vec{x}_0 , \vec{x}_1 , \vec{x}_2 tal						
	que:						
	$\vec{x}_{k+1} = D^{-1} [\vec{b} - (L+U)\vec{x}_k], k = 0,1,2,3 \dots$						
	Proposición 1: Si esta sucesión de vectores es convergente, el vector límite es una solución del						
	sistema de ecuaciones lineales.						
	Ejemplo:						
	TEORÍA PRÁCTICA 2 PÁGINA 2						

```
10x + 3y + z = 14

2x - 10y + 3z = -5 

x + 3y + 10z = 14

Con scilab:
  -->A=[10 \ 3 \ 1; \ 2 \ -10 \ 3; \ 1 \ 3 \ 10];
  -->D=diag([diag(A)])
                            -->L=tril(A)-D
                                                  -->U=triu(A)-D
   D =
                                                    U =
                             L =
       10.
               0.
                       0.
                                                               3.
                                 0.
                                              0.
                                                        0.
                                                                     1.
                                        0.
       0.
            - 10.
                       0.
                                 2.
                                        0.
                                                        0.
                                                               0.
                                                                      3.
                                              0.
             0.
       0.
                       10.
                                 1.
                                        3.
                                                        0.
                                                               0.
                                                                     0.
                                              0.
 -->F=inv(D)
                       -->R=L+U
                                           -->x0=[0; 0; 0];x1=F*(b-R*x0)
  F =
                         R =
                                            x1 =
     0.1
            0.
                   0.
                            0.
                                  3.
                                               1.4
                                        1.
          - 0.1
     0.
                   0.
                            2.
                                  0.
                                        3.
                                               0.5
     0.
            0.
                   0.1
                            1.
                                  3.
                                        0.
                                               1.4
 -->x2=F*(b-R*x1) -->x3=F*(b-R*x2) -->x4=F*(b-R*x3)
  x2 =
                                          x4 =
                      x3 =
      1.11
                         0.929
                                              0.9906
      1.2
                         1.055
                                              0.9645
      1.11
                         0.929
                                              0.9906
 -->x5=F*(b-R*x4) -->x6=F*(b-R*x5)
                      x6 =
 x5 =
     1.01159
                          1.000251
     0.9953
                          1.005795
     1.01159
                          1.000251
Vemos que converge a (1,1,1), para hacerlo con bucle:
 -->for i=1:6
 -->x=F*(b-R*x):
 -->end;
 -->x
      1.000251
      1.005795
      1.000251
Para comprobar si necesitamos hacer más operaciones, hacemos el mismo bucle pero hasta 50:
```

	>for i=1:50 >x=F*(b-R*x); >end;				
	>x				
	x =				
	1.				
	1.				
	1. Efectivamente, converge a (1,1,1) que es la solución.				
Método Gauss-Seidel:	Es una ligera modificación de jacobi (generalmente nº más pequeño de iteraciones)				
$A\vec{x} = \vec{b}$ $A = L + D + U$	La igualdad ahora será la siguiente: $(L+D)\vec{x}=\vec{b}-U\vec{x}$ Comenzamos con un vector inicial				
<u>L</u> (triangular inferior)	cualquiera \vec{x}_0 y calculamos \vec{x}_1 de manera que: $(L+D)\vec{x}_1=\vec{b}-U\vec{x}_0$, ahora calculamos \vec{x}_2 de				

(tril(A)-D) D (<<parte diagonal>>) (diag(A)) U (triangular superior)

(triu(A)-D)

manera que: $(L+D)\vec{x}_2 = \vec{b} - U\vec{x}_1$ y así sucesivamente.

Ejemplo:

-->M=L+D; x0=[0; 0; 0];

Scilab:

Primero hemos de ejecutar el fichero "SustitucionProgresiva.sci"

-->x1=SustitucionProgresiva(M,b-U*x0) -->x2=SustitucionProgresiva(M,b-U*x1) x1 =x2 =1.4 1.0634 0.78 1.02048 1.026 0.987516

-->x3=SustitucionProgresiva(M,b-U*x2) -->x4=SustitucionProgresiva(M,b-U*x3) x4 =0.9951044 1.0012266

0.9952757 1.0008174 1.0019069 0.9996321

-->x5=SustitucionProgresiva(M,b-U*x4) -->x6=SustitucionProgresiva(M,b-U*x5) x6 =

0.9997916 1.000039 0.9998480 1.0000277 1.0000665 0.9999878

Con la función for podemos efectuar más iteraciones, si queremos:

x = -->x=x0; 1. 1. -->for(i=1:50) x=SustitucionProgresiva(M,b-U*x); end;

-->x

Criterio de convergencia

Es posible que al aplicar jacobi o Gauss-Seidel, la sucesión sea divergente, pero si la matriz de coeficientes es de tipo especial, podemos garantizar la convergencia de ambos métodos.

Def. 1: Una matriz cuadrada es estrictamente diagonalmente dominante si en todas las filas el valor absoluto del elemento de la diagonal es más grande que la suma de los valores del resto de los elementos de esta fila. (también se puede hacer por columnas)

sistema (multiplicarlo por matrices elementales) para obtener un sistema equivalente cur matriz si sea estrictamente diagonal dominante. Teorema: si una matriz es diagonalmente dominante, los métodos de jacobi y gauss-seid convergentes. Matrices estocásticas: Una matriz es estocástica si NO hay ningún elemento negativo y si la suma de los elemen las columnas da 1. Cadena de Markov: Para estudiar la convergencia escribiremos las siguientes instrucciones: $ \mathbf{Ejemplo}: P = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} \mathbf{y} \ \vec{x}_0 = \left(\frac{1}{3}, \frac{2}{3}, 0\right) \\>\mathbf{P} = \begin{bmatrix} 1/2 & 0 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} \mathbf{y} \ \vec{x}_0 = \begin{bmatrix} 1/3 & 2/3 & 0 \\ 1/2 & 0 & 1 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 1/3 & 2/3 & 0 \\ 1/3 & 3/3 & 0 \end{bmatrix}; \mathbf{p} = 1 = 0 = 0 = 0 $	el son tos de			
Teorema: si una matriz es diagonalmente dominante, los métodos de jacobi y gauss-seido convergentes. Matrices estocásticas: Una matriz es estocástica si NO hay ningún elemento negativo y si la suma de los elemen las columnas da 1. Cadena de Markov: Para estudiar la convergencia escribiremos las siguientes instrucciones: $Fill = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} y \vec{x}_0 = \left(\frac{1}{3}, \frac{2}{3}, 0\right)$	tos de			
convergentes. Matrices estocásticas: Una matriz es estocástica si NO hay ningún elemento negativo y si la suma de los elemen las columnas da 1. Cadena de Markov: Para estudiar la convergencia escribiremos las siguientes instrucciones: $Fiemplo: P = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} y \vec{x}_0 = \left(\frac{1}{3}, \frac{2}{3}, 0\right)$	tos de			
Matrices estocásticas:Una matriz es estocástica si NO hay ningún elemento negativo y si la suma de los elemen las columnas da 1.Cadena de Markov:Para estudiar la convergencia escribiremos las siguientes instrucciones:Ejemplo: $P = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} y \vec{x}_0 = \left(\frac{1}{3}, \frac{2}{3}, 0\right)$	¢0			
las columnas da 1. Cadena de Markov: Para estudiar la convergencia escribiremos las siguientes instrucciones:	¢0			
Cadena de Markov: Para estudiar la convergencia escribiremos las siguientes instrucciones: $ \mathbf{Ejemplo}: P = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} y \vec{x}_0 = \left(\frac{1}{3}, \frac{2}{3}, 0\right) $				
Ejemplo: $P = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} y \vec{x}_0 = (\frac{1}{3}, \frac{2}{3}, 0)$				
Ejemplo: $P = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix} y \vec{x}_0 = (\frac{1}{3}, \frac{2}{3}, 0)$				
>P=[1/2 0 0; 0 1 0; 1/2 0 1];x0=[1/3; 2/3; 0];P^10*x0>P^30*x				
ans = ans =	D-10			
0.6666667				
0.3330078 0.333				
0.000010	.0000			
>P^50*x0>clean(ans)				
ans = ans =				
2.961D-16 0.				
0.6666667 0.6666667				
0.3333333 0.3333333				
	Vemos que el proceso es convergente al vector de probabilidad (0, 2/3, 1/3),			
Puede haber más de 1 vector estacionario, si $\vec{x}_0 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$, el vector es (0, 1/3, 2/3)				
Vector Estacionario kernel(A-eye(A)) ejemple:				
cuando hay más de 1:>kernel (A-eye(A))				
ans =				
0. 0.				
0. 0. 0. 1.				
1. 0.				
Si scilab nos devuelve esto, el conjunto de vectores estacionarios de A es:	1. 0.			
$\{\lambda(0,0,0,1)+\mu(0,0,1,0)=(0,0,\mu,\lambda): \lambda\neq 0 \text{ ó } \mu\neq 0\}$	·			
Vector estacionario de Dividiendo todos los vectores de este conjunto entre la suma de sus componentes				
probabilidad: obtendremos los vectores de probabilidad estacionarios.				
Ejemplo: vector estacionario = $(0, \lambda_1, \lambda_2)$, los vectores de probabilidad serán: $\frac{1}{\lambda_1 + \lambda_2}(0, \lambda_1, \lambda_2)$	· ·			
Ejemplo: vector estacionario = $\lambda(0.5449493, 0.7784989, 0.3113996)$, los vectores de				
probabilidad serán: $\frac{1}{1/0.5440403.0.7704090.0.3113090} \lambda \left[0.7784989 \right] = \{ 0.4761905 \}$	probabilidad serán: $\frac{1}{\lambda(0.5449493,0.7784989,0.3113996)} \lambda \begin{bmatrix} 0.5449493 \\ 0.7784989 \\ 0.3113996 \end{bmatrix} = \begin{bmatrix} 0.33333333 \\ 0.4761905 \\ 0.1904762 \end{bmatrix}$			
[0.3113996] [0.1904762]	[0.3113996] \[0.1904762 \]			
Descomposición LU [L,U]=lu(A): nos devuelve la descomposición LU sin permutar (L no será triangular inferior	-			
	[L,U,P]=lu(A): nos devuelve la descomposición LU de la matriz A permutada, L será triangular			
inferior. (L es la triangular inferior, U la triangular superior y P no es nada)				
Resolución de sistemas mediante LU:				
Ejemplo:				

	>C=[0 -2 1;3 0 2;0 2 4];[L,U]=lu(C)							
	ь –							
	3. 0. 2. 0. 1. 0.							
	0 2. 1. 1. 0. 0.							
	0. 0. 5. 0 1. 1.							
	V. = 1. 1.							
	>y=L\[1;2;3]>x=U\y							
	y = x =							
	2. 0.1333333							
	2.							
	**							
	4. 0.8							
	La calveión coró y (0.1222222 0.1.0.8) (2/15, 4/10, 4/5)							
Calculo de determinantes	La solución será x=(0.13333333, -0.1, 0.8)=(2/15, -1/10, 4/5) Scilab lo hace mediante LU, teniendo en cuenta que A=LU, det(A)= det(L)det(U)							
Calculo de determinantes	*det(L)=±1 (+ cuando número de operaciones elementales de intercambio sea par y – cuando							
	sea impar) *det(U)=±1 (+ cuando número de operaciones elementales de intercambio sea par y – cuando sea impar) *det(U)=producto de la diagonal							
Calculo de inversas	Scilab hace lo siguiente: 1 obtiene LU de A, 2 calcula det(U), 3 si det(U)=0, no tiene inversa							
	4 si det(U)≠0, calcula U ⁻¹ , finalmente, A ⁻¹ =U ⁻¹ L ⁻¹							
Ortogonalidad	Comprobamos si 2 vectores son ortogonales con su producto escalar:							
	uv=u'*v, si el resultado da 0, son ortogonales							
Norma de un vector	norm(w)							
Vector unitario asociado a w	t=w/norm(w), el resultado de t es el vector unitario asociado a w, lo podemos comprobar							
Base subespacio fila	calculando la norma de t (esta debe de dar 1) NF=kernel(A)							
Base subespacio columna	NC=kernel(A')							
Proyección ortogonal	Ejemplo: recta W=<(1,-2,5)> vector x=(0,1,1) sobre W:							
	Scilab:							
(RECTA)	u=[1;-2;5]							
	x=[0;1;1]							
	q=u/norm(u)							
Drovesión ertegenal	(q'*x)*q (el resultado de esto último es la proyección ortogonal) Ejemplo: W=subespacio vectorial de R³ con base S={(1,2,3),(-3,5,1)} y vector x=(2,3,4)							
Proyección ortogonal	Scilab:							
(Subespacio vectorial)	u1=[1;2;3]; u2=[-3;-5;1];							
(0.000)	MS=[u1 u2]							
	matriz de proyección Pw:							
	x=[2; 3; 4];							
	PW=MS*inv(MS'*MS)*MS'							
	PW*x (el resultado de esto último es la proyección ortogonal)							
Solución por mínimos	x=A\b, proporciona una solución por mínimos cuadrados en caso de que A no sea una matriz							
cuadrados	cuadrada							

Ajuste de rectas (mínimos cuadrados)

 $y = \beta_0 + \beta_1 x$ En forma matricial: (matriz diseño(X)*vector parámetro($\vec{\beta}$)=vector observación (\vec{y})

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix} * \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

Vector residual= $\vec{\epsilon} = \vec{v} - X\vec{\beta}$

Ejemplo: Puntos: (0,1), (1,1), (2,2) y (3,2) recta = $y = \beta_0 + \beta_1 x$

Scilab:

X=[1 0;1 1;1 2;1 3], y=[1;1;2;2]

X1=X'*X, y1=X'*y

b=X1\y1 (solución)

norm(y-X*b) (error)

Ajuste de curvas (mínimos cuadrados)

 $y = \beta_0 f_0(x) + \beta_1 f_1(x) + \dots + \beta_k f_k(x)$ (f0,f1... son funciones conocidas y β0, β1.... Son los parámetros que debemos determinar) en forma matricial:

$$\begin{bmatrix} f_0(x_1) & f_1(x_1) & \dots & f_k(x_1) \\ f_0(x_2) & f_1(x_2) & \dots & f_k(x_2) \\ \dots & & \dots & \\ f_0(x_n) & f_1(x_n) & \dots & f_k(x_n) \end{bmatrix} * \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_k \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

Ejemplo:

1	2	3	4	5
1.8	2.7	3.4	3.8	3.9

Determinar vector parámetro, vector residual y la curva de mínimos cuadrados asociada a la función: $y = \beta_0 + \beta_1 x + \beta_2 x^2$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

1.- resolver por mínimos cuadrados el sistema de ecuaciones lineales $\vec{y} = X\vec{\beta}$:

$$\begin{bmatrix} 1,8\\2,7\\3,4\\3,8\\3,9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & 4\\1 & 3 & 9\\1 & 4 & 16\\1 & 5 & 25 \end{bmatrix} \begin{bmatrix} \beta_0\\\beta_1\\\beta_2 \end{bmatrix}$$

2.- Calculamos:

$$\mathsf{X}^t\mathsf{X} = \begin{bmatrix} 5 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix}, \qquad \mathsf{X}^t\vec{y} = \begin{bmatrix} 15,6 \\ 52,1 \\ 201,5 \end{bmatrix}$$

3.- Resolviendo el sistema $X^t X \vec{\beta} = X^t \vec{y}$ obtendremos el vector que minimiza el error.

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 0.58 \\ 1.34 \\ -0.136 \end{bmatrix}.$$

La parábola será: $y = 0.58 + 1.34x - 0.136x^2$

Si calculamos $\vec{\epsilon} = \vec{y} - X\vec{\beta}$, obtendremos el vector residual:

$$\begin{bmatrix} 0,114 \\ -0,026 \\ 0,008 \\ 0,014 \\ 0,008 \end{bmatrix}$$

Con Scilab:

Introducimos las matrices X, \vec{y} :

--> X=[1 1 1;1 2 4;1 3 9;1 4 16;1 5 25], y=[1.8;2.7;3.4;3.8;3.9];

Y con la función \ obtenemos la solución por mínimos cuadrados:

0.58

1.3442857

- 0.1357143

Luego la parábola que mejor se aproxima a los datos tiene los parámetros de b y su error residual será

$$-->ER=norm(y-X*b)$$

$$ER =$$

0.0338062