- Why ?
 - Many different ways of executing a given query
 - Huge differences in cost
- Example:
 - select * from person where ssn = "123"
 - Size of person = 1GB
 - Sequential Scan:
 - Takes 1GB / (100MB/s) = 10s
 - Use an index on SSN (assuming one exists):
 - Approx 4 Random I/Os = 20ms

- Many choices
 - Using indexes or not, which join method (hash, vs merge, vs NL)
 - What join order?
 - Given a join query on R, S, T, should I join R with S first, or S with T first?
- This is an optimization problem
 - Number of different choices is very very large
 - Step 1: Figuring out the solution space
 - Step 2: Finding algorithms/heuristics to search through the solution space

- Relational expressions
 - Drawn as a tree
 - List the operations and the order

These query plans produce the same final result

Which query plan is probably faster?

- Plan on left
- Plan on right
- c. Costs are similar

similar

- Execution plans
 - Evaluation expressions annotated with the methods used

Steps:

- Generate all possible execution plans for the query
- Figure out the cost for each of them
- Choose the best

- Not done exactly as listed above
 - Too many different execution plans for that
 - Typically interleave all of these into a single efficient search algorithm

- Steps (detail):
 - Generate all possible execution plans for the query
 - First generate all equivalent expressions
 - Then consider all annotations for the operations
 - Figure out the cost for each of them
 - Compute cost for each operation
 - Using the formulas discussed in prior weeks
 - One problem: How do we know the number of result tuples for, say,
 - Count them or estimate...

 $\sigma_{balance < 2500}(account)$

Choose the best

Cost estimation

- Computing operator costs requires information like:
 - Primary key?
 - Sorted or not, which attribute
 - So we can decide whether need to sort again
 - How many tuples in the relation, how many blocks?
 - How many tuples match a predicate like "age > 40"?
 - E.g. Need to know how many index pages need to be read
 - Intermediate result sizes
 - E.g. (R JOIN S) is input to another join operation need to know if it fits in memory
 - And so on...

Cost estimation

- Some info is static and maintained in the metadata
 - Primary key?
 - Sorted or not, which attribute
 - So we can decide whether need to sort again
 - How many tuples in the relation, how many blocks?
- Typically kept in special "catalog" table in the DB
 - E.g., "all_tab_columns" in Oracle
 - E.g., "pg_database" in Postgres

Cost estimation

- Others need to be estimated:
 - How many tuples match a predicate like "age > 40"?
 - Intermediate result sizes
- The problem variously called:
 - "intermediate result size estimation"
 - "selectivity estimation"
- Very important to estimate reasonably well
 - e.g. consider "SELECT * FROM R WHERE zipcode = 20742"
 - We estimate that there are 10 matches, and choose to use a secondary index (remember: random I/Os)
 - Turns out there are 10000 matches
 - Using a secondary index very bad idea
 - Optimizer often chooses nested-loop joins if one relation very small...
 underestimation can be very bad

Selectivity Estimation

Basic idea:

- Maintain some information about the tables
 - More information → more accurate estimation
 - More information → higher storage cost, higher update cost
- Make uniformity and randomness assumptions to fill in the gaps.

Example:

- For a relation "people", we keep:
 - Total number of tuples = 100,000
 - Distinct "zipcode" values that appear in it = 100
- Given a query: "zipcode = 20742"
 - We estimated the number of matching tuples as: 100,000/100 = 1000
- What if I wanted more accurate information?
 - Keep histograms…

- A condensed, approximate version of the "frequency distribution"
 - Divide the range of the attribute value in "buckets"
 - For each bucket, keep the total count
 - Assume uniformity within a bucket

- Given a query: zipcode = " 20742"
 - Find the bucket (Number 3)
 - Say the associated count = 45000
 - Assume uniform distribution within the bucket: 45,000/200 = 225

- What if the ranges are typically not full?
 - ie., only a few of the zipcodes are actually in use?
- With each bucket, also keep the number of zipcodes that are valid
- Now the estimate would be: 45,000/80 = 562.50
- More Information → Better estimation

- Very widely used in practice
 - One-dimensional histograms kept on almost all columns of interest
 - ie., the columns that are commonly referenced in queries
 - Sometimes: multi-dimensional histograms also make sense
 - Less commonly used as of now
- Two common types of histograms:
 - Equi-depth
 - The attribute value range partitioned such that each bucket contains about the same number of values
 - Equi-width
 - The attribute value range partitioned in equal-sized buckets
 - others...

Estimating sizes of the results of various operations

- Guiding principle:
 - Use all the information available
 - Make uniformity and randomness assumptions otherwise
 - Many formulas, but not very complicated...
 - In most cases, your initial intuition is probably correct

Basic statistics

- Basic information stored for all relations
 - $n_r = |r| = \text{number of tuples in a relation } r$.
 - b_r : number of blocks containing tuples of r.
 - I_r: size of a tuple of r.
 - f_r : blocking factor of r i.e., the number of tuples of r that fit into one block.
 - V(A, r): number of distinct values that appear in r for attribute A; same as the size of $\prod_A(r)$.
 - MAX(A, r): th maximum value of A that appears in r
 - MIN(A, r)
 - If tuples of r are stored together physically in a file, then:

$$b_r = \left| \frac{n_r}{f_r} \right|$$

Selection Size Estimation

- $\sigma_{A=v}(r)$
 - $n_r / V(A,r)$: number of records that will satisfy the selection
 - equality condition on a key attribute: size estimate = 1
- $\sigma_{A \le V}(r)$ (case of $\sigma_{A \ge V}(r)$ is symmetric)
 - Let c denote the estimated number of tuples satisfying the condition.
 - If min(A,r) and max(A,r) are available in catalog
 - c = 0 if v < min(A,r)

•
$$C = n_r \cdot \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$$

- If histograms available, can refine above estimate
- In absence of statistical information c is assumed to be $n_r/2$.

Size Estimation of Complex Selections

- selectivity(θ_i) = the probability that a tuple in r satisfies θ_i .
 - If s_i is the number of satisfying tuples in r_i , then selectivity $(\theta_i) = s_i / n_r$
- **conjunction:** $\sigma_{\theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n}$ (*r*). Assuming independence, estimate of tuples in the result is:

$$n_r * \frac{s_1 * s_2 * \dots * s_n}{n_r^n}$$

• **disjunction:** $\sigma_{\theta 1 \vee \theta 2 \vee \ldots \vee \theta n}(r)$. Estimated number of tuples:

$$n_r * \left(1 - \left(1 - \frac{S_1}{n_r}\right) * \left(1 - \frac{S_2}{n_r}\right) * \dots * \left(1 - \frac{S_n}{n_r}\right)\right)$$

• negation: $\sigma_{-\theta}(r)$. Estimated number of tuples: $n_r - size(\sigma_{\theta}(r))$

of tuples produced in worst case: R JOIN S: R.a = S.a a is primary key of S |R| = 10,000; |S| = 5000

- A. 5000
- в. 10000
- c. 15000
- D. 50,000,000

Joins

- R JOIN S: R.a = S.a
 - |R| = 10,000; |S| = 5000
- CASE 1: a is key for S
 - Worst case: each tuple of R joins with exactly one tuple of S
 - So: |R JOIN S| = |R| = 10,000
- CASE 2: a is key for R
 - Similar --- so |S| = 5,000

Joins

- R JOIN S: R.a = S.a
 - |R| = 10,000; |S| = 5000
- CASE 3: a is not a key for either
 - Reason with the distributions on a
 - Say: the domain of a: V(A, R) = 100 (the number of distinct values a can take)
 - THEN, assuming uniformity
 - For each value of a
 - We have 10,000/100 = 100 tuples of R with that value of a
 - We have 5000/100 = 50 tuples of S with that value of a
 - All of these will join with each other, and produce 100 *50 = 5000
 - So total number of results in the join:
 - 5000 * 100 (distinct values) = 500,000
 - We can improve the accuracy if we know the distributions on a better
 - Say using a histogram

Equivalence of Expressions

- Two relational expressions equivalent iff:
 - Their result is identical on all legal databases
- Equivalence rules:
 - Allow replacing one expression with another
- Examples:

1.
$$\sigma_{\theta_1 \wedge \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

2. Selections are commutative

$$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

Equivalence Rules

• Examples:

3.
$$\Pi_{L_1}(\Pi_{L_2}(...(\Pi_{L_n}(E))...)) = \Pi_{L_1}(E)$$

7(a). If θ_0 only involves attributes from E_1

$$\sigma_{\theta 0}(\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta 0}(\mathsf{E}_1))^{\bowtie} \ _{\theta} \mathsf{E}_2$$

- And so on...
 - Many rules of this type
 - See textbook for more examples

Example

• Find the names of all customers with an account at a Brooklyn branch whose account balance is over \$1000.

$$\Pi_{customer_name}(\sigma_{branch_city} = \text{``Brooklyn''} \land balance > 1000$$

$$(branch \bowtie (account \bowtie depositor)))$$

Apply the rules one by one

$$\Pi_{customer_name}((\sigma_{branch_city} = \text{``Brooklyn''} \land balance > 1000)$$

$$(branch \bowtie account)) \bowtie depositor)$$

$$\Pi_{customer_name}(((\sigma_{branch_city = "Brooklyn"}(branch))) \bowtie (\sigma_{balance > 1000}(account))) \bowtie depositor)$$

Example

Equivalence of Expressions

- The rules give us a way to enumerate all equivalent expressions
 - Note that the expressions don't contain physical access methods, join methods etc...
- Simple Algorithm:
 - Start with the original expression
 - Apply all possible applicable rules to get a new set of expressions
 - Repeat with this new set of expressions
 - Till no new expressions are generated

Equivalence of Expressions

- Works, but is not feasible
- Consider a simple case:
 - R1 ⋈ (R2 ⋈ (R3 ⋈ (... ⋈ Rn)))....)
- Just join commutativity and associativity can give us up to $n! * 2^n$ plans to consider
 - Typically enumeration combined with the search process

Evaluation Plans

- We still need to choose the join methods etc..
 - Option 1: Choose for each operation separately
 - Usually okay, but sometimes the operators interact
 - Consider joining three relations on the same attribute:
 - $R1 \bowtie_a (R2 \bowtie_a R3)$
 - Best option for R2 join R3 might be hash-join
 - But if R1 is sorted on a, then sort-merge join is preferable
 - Because it produces the result in sorted order by a
- Also, pipelining or materialization
- Such issues typically arise when doing the optimization

- Integral component of query processing
- One of the most complex pieces of code in a database system
- Active area of research
 - E.g. JSON Query Optimization
 - What if you don't know anything about the statistics
 - Better statistics
 - How to prune search space
 - How good is good enough?