

COM3503/4503/6503: 3D Computer Graphics

Lecture 11: Anti-aliasing

Dr. Steve Maddock Room G011, Regent Court s.maddock@sheffield.ac.uk

1. Introduction

- World coordinate system floating point
- Screen coordinate system (x,y) integer space (and f.pt. z depth)
- Sample a continuous function using discrete (regular) locations:

Durand, F., 6.837 Intro to Computer Graphics, MIT, 2006, http://people.csail.mit.edu/fredo/

1.1 Artefacts that need to be addressed

Jagged silhouette edges – produces 'crawling' in animation

Jagged edge patterns change depending on line orientation

1.1 Artefacts that need to be addressed

Small objects are missed – produces 'scintillation' in animation

Long thin objects may completely disappear.

1.1 Artefacts that need to be addressed

 Texture breaks up in perspective views – produces Moiré patterns in animation

2. Sampling

- If sampling density is high enough, a signal can be reconstructed
 - Sample curve (the signal) at discrete (regular) locations...
 - ... then fit a curve (fit the lowest frequency curve possible)

- Insufficient sampling leads to aliases in the reconstruction
 - The signal is interpreted as a different (lower) frequency
 - Alias a signal travelling in disguise as another frequency

2.1 Mixtures of frequencies

- A complex signal is a mixture of frequencies
 - Further details see Fourier analysis, Fourier transform

2.2 The sampling theorem (Shannon, 1949)

- Important in all modern electronic technology involving information.
- Consider a signal that has no frequencies above a certain value B
 - Bandlimited
- If the frequency of samples is f_s , the sampling theorem says that these uniform samples are a complete representation if $B < f_s/2$
 - To avoid aliases, f_s > 2B
 - Aliasing will occur if the sampling occurs at less than twice the highest frequency component in the information being sampled
 - 2B is the Nyquist limit (Nyquist, 1928)
- Further details see Fourier analysis, Fourier transform

http://www.belllabs.com/news/2001/febru ary/26/1.html

3. Solutions?

- Sample more often
 - Can't keep doing this forever
 - Just raises Nyquist limit
 - (cf. The rise of mega-pixel resolutions for digital cameras)
- Remove the high frequencies in the image
 - Lose information, but better than aliasing
 - Produces blurring

Blurring in CG

- Rasterisation: compute at higher resolution; then filter / re-sample to produce lower resolution
- Ray tracing: same problems as rasterisation, but can take advantage of nature of ray tracing to do it differently
- Textures: blur the texture image before use

4. Blurring

Basic idea: Averaging using a sliding window

Simple averaging:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

every sample gets the same weight

Steve Marschner, CS4620 Introduction to computer graphics, http://www.cs.cornell.edu/~srm/, 2008

4.1 Moving weighted average

 $\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Weights: [..., 0,1,1,1,1,1,0,...]/5

Bell curve (gaussian-like) weights [..., 1,4,6,4,1, ...]/16

Marschner, 08

4.2 Filters

- Sequence of weights a[j] is called a filter
- Filter is non-zero over its region of support
- Filter is normalised so that it sums to 1.0
- Most filters are symmetric

Bell curve (gaussian-like) weights [..., 1,4,6,4,1, ...]/16

$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

each sample gets its own weight (normally zero far away)

Marschner, 08

4.3 Convolution and filtering

Moving average is convolution with a box filter

Marschner, 08

4.4 2D

 A Gaussian kernel gives less weight to pixels further from the centre of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	2	1
 16	2	4	2
10	1	2	1

4.4 2D

• This Gaussian kernel is an approximation of a Gaussian function:

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

In equation form:

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

5. Anti-aliasing and computer graphics

- 1. Pre-filtering 'infinite' samples per pixel
 - Calculate the precise contribution of fragments of projected object structure as it appears in a pixel (Carpenter, 84; Catmull, 86)
- 2. No filtering one sample per pixel
 - Do nothing real-time animation, or as a preview method.
- 3. Post-filtering n uniform samples per pixel
 - Commonest approach render a virtual image at n times resolution of final screen image, then filter this
- 4. Post-filtering stochastic sampling
 - Similar to (3), except pixel samples are 'jittered' (see ray tracing)

Consider a single pixel

• Increase frequency of sampling grid (i.e. increase spatial resolution of pixel array) and average results down to final screen resolution

- Sample at n times resolution → virtual image
- Re-sample at display resolution using a filter
- Digital convolution: window is centred on a supersample and a weighted sum of products is obtained by multiplying each supersample by the corresponding weight in the filter

Table 4.1 Bartlett windows used in postfiltering a supersampled image.

3×3				5×5					7×7						
1	2	1	1	2	3	2	1	1	2	3	4	3	2	1	
2	4	2	2	4	6	4	2	2	4	6	8	6	4	2	
1 2	2	1	3	6	9	6	3	3	6	9	12	9	6	3	
			2	4	6	4	2	4	8	12	16	12	8	4	
			1	2	3	2	1	3	6	9	12	9	6	3	
								2	4	6	8	6	4	2	
								1	2	3	4	3	2	1	

↑ Resolution:

2x

3x

4x

Fig. 14.32 Digital filtering. Filter is used to combine samples to create a new

Ray tracing example:

One sample per pixel

Ray tracing example:

Four samples per pixel

- Easily incorporated into (i) rasterization+z-buffer, and (ii) ray tracing
- Drawbacks:
 - 'Global' method computation is not context dependent
 - Z-buffer: Memory requirements (although can be done as a multipass technique requiring only two buffers)
 - Only increases Nyquist limit
 - Trade off aliasing for blurring

Watt,00

7. Post-filtering – non-uniform sampling

- Incorporated into ray tracing, not standard rendering pipeline
- Based on idea that eye contains array of non-uniformly distributed photoreceptors
- **Jittering**: Uniform sample + random perturbation
- Sampling is now non-uniform
- In practice, adds noise to image trades noise for aliasing

Durand, 06

Jittered supersampling

Figure 11

Jittered sampling of a slowly moving texture with jitter of 0, .5, and 1 from left to right
© Dr Steve Maddock, The University of Sheffield in rates of 1 and 2 from top to bottom.

7.1 Post filtering – adaptive supersampling

For ray tracing: Use more sub-pixel samples around edges

Durand, 06

8. Anti-aliasing and texture mapping

- Necessary because small detail is often coherent, and there are compression issues
- How to map the texture area seen through the pixel window to a single pixel value?

Durand, 06

8. Anti-aliasing and texture mapping

Magnification for display

Use a filter.

Magnification better,
but blurry

64x64 pixels

Original Texture

Minification for display

Durand, 06

8. Anti-aliasing and texture mapping

- Solution is to blur (pre-filter) the texture remove the high frequencies in the texture
- Essentially, we want to convolve the texture with a filter kernel centered at the sample (i.e. pixel center)
- Expensive, but can be approximated

projected texture in image plane

box filter in texture plane

Durand, 06

8.1 Mip-mapping (Multum In Parvo: much in little space) (Williams, 83)

- Instead of a single texture map, many images are used, all derived by averaging down the original image
 - Image pyramid
- For example, a 64x64 image would be represented as the 64x64 image, a 32x32 image, a 16x16 image, and so on down to a 1x1 image.

Durand, 06 Marschner, 08

8.1 Mip-mapping

• The original texture is pre-filtered (blurred) to remove high frequencies

10-level mip map

Memory format of a mip map

Durand, 06

8.1 Mip-mapping

- Based on distance a particular mip-map is used
- For close-up views the highresolution texture map is used
- For distant views, a low resolution map is used

8.1 Mip-mapping

 To integrate into an interpolation process, the rate of (u,v) change over a polygon with respect to x and y is calculated and two levels in the mip-map set are chosen, with interpolation between mipmaps used for the final texture value

$$D = \text{maxOf} \left[\left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 \right)^{\frac{1}{2}}, \\ \left(\left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right)^{\frac{1}{2}} \right]$$

8.2 Mip-mapping example

demo

Not antialiased Rendering time: 1

With mipmapping Rendering time: ~2.3

Supersampled at a rate of nine samples to one pixel Rendering time: ~3.5

9:1 supersampling and mipmapping Rendering time: ~9

The SIGGRAPH 97 Education Slide set

9. Summary

- Insufficient sampling of a signal leads to aliases
- In computer graphics aliases manifest themselves in missing small objects and textures breaking up in perspective views
- There are four general approaches to anti-aliasing in computer graphics:
 - 1. Pre-filtering 'infinite' samples per pixel
 - 2. No filtering one sample per pixel
 - 3. Post-filtering n uniform samples per pixel. Most common form used with rasterization and z-buffer for polygon mesh rendering
 - 4. Post-filtering stochastic sampling. Easy to add in to ray tracing
- For 2D textures, most common anti-aliasing approach is mip-mapping, which is a pre-filtering approach