Separation over infinite words

ANR DELTA, online

Rémi Morvan, LABRI, UNIV. BORDEAUX

based on works with

Thomas Colcombet & Sam van Gool.

4 January, 2022

Let $w \in A^*$ where $A = \{a, b, c, \ldots\}$.

Let
$$w \in A^*$$
 where $A = \{a, b, c, \ldots\}$.

$$w \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

Let
$$w \in A^*$$
 where $A = \{a, b, c, \ldots\}$.

$$w \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

Let
$$w \in A^*$$
 where $A = \{a, b, c, \ldots\}$.

$$w \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

Let
$$w \in A^*$$
 where $A = \{a, b, c, \ldots\}$.

$$w \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

i.e. $w \in A^* a A^* b A^*$.

FO-definability

```
FO-DEFINABILITY:
```

Input: Morphism $f: A^* \to M$

Question: Is f FO-definable? \leftarrow

$$f(u) := \begin{cases} m_1 & \text{if } u \models \varphi_1 \\ m_2 & \text{if } u \models \varphi_2 \\ \vdots & \vdots \\ m_n & \text{if } u \models \varphi_n \end{cases}$$

FO-definability

```
Theorem [Schützenberger '65 & McNaughton-Papert '71]:
```

A morphism $f: A^* \to M$ is FO-definable IFF im f is aperiodic.

Corollary: FO-DEFINABILITY is decidable.

FO-definability

Theorem [Schützenberger '65 & McNaughton-Papert '71]:

A morphism $f: A^* \to M$ is FO-definable IFF im f is aperiodic. \leftarrow

Corollary: FO-DEFINABILITY is decidable.

every group in im f is trivial

R. Morvan 2/12

Example!

$$f: \{a,b\}^* \to M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

Example!

$$f: \{a,b\}^* \to M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

f is not FO-definable... but still carries "FO-describable information"

	1	a	aa	0		
1	1	а	aa	0		
a	а	aa	а	0		
aa	aa	а	aa	0		
0	0	0	0	0		
0 _* group!						

Qualitative vs. quantitative

Qualitative vs. quantitative

Can we make a quantitative version of Schützenberger-McNaughton-Papert?

R. Morvan 4/12

Qualitative vs. quantitative

Can we make a quantitative version of Schützenberger-McNaughton-Papert?

R. Morvan 4/12

Henckell's theorem

Henckell theorem, revisited [Henckell '88]: To each morphism $f: A^* \to M$ we can *effectively* associate a function $g: A^* \to \mathcal{P}(M)$ such that:

- $f(u) \in g(u)$ for all u, and
- \cdot g is FO-definable, and
- g is minimal.

Back to the example

$$f: \{a,b\}^* \rightarrow M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

Back to the example

$$f: \{a,b\}^* \rightarrow M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

Goal:

 $g: A^* \to \mathcal{P}(M)$ s.t.

- $f(u) \in g(u)$ for all u,
- \cdot g is FO-definable, and
- \cdot g is minimal.

Back to the example

$$f: \{a,b\}^* \rightarrow M$$

$$u \mapsto \begin{cases} 1 & \text{if } u = \varepsilon \\ a & \text{if } u \in a(aa)^*, \\ aa & \text{if } u \in (aa)^+, \\ 0 & \text{if } u \text{ contains a 'b'} \end{cases}$$

$$g: \{a,b\}^* \rightarrow \mathcal{P}(M)$$

$$u \mapsto \begin{cases} \{1\} & \text{if } u = \varepsilon \\ \{a,aa\} & \text{if } u \in a^+, \\ \{0\} & \text{if } u \text{ contains a 'b'} \end{cases}$$

Goal:

 $g: A^* \to \mathcal{P}(M)$ s.t.

- $f(u) \in g(u)$ for all u,
- \cdot g is FO-definable, and
- g is minimal.

Henckell's theorem (bis)

Henckell theorem, revisited [Henckell '88]: To each morphism $f: A^* \to M$ we can *effectively* associate a function $g: A^* \to \mathcal{P}(M)$ such that:

- $f(u) \in g(u)$ for all u, and
- \cdot g is FO-definable, and
- *g* is minimal.

Key technique in the proof: "group saturation".

Observation: If im f is aperiodic, then the "group saturation" does nothing and f = g.

R. Morvan 7/12

Application: FO-separation

 L_1 and L_2 are **FO-separable** whenever there exists $\varphi \in FO$ such that

$$u \vDash \varphi$$
 for all $u \in L_1$ $v \nvDash \varphi$ for all $v \in L_2$

FO-SEPARABILITY:

Input: L_1, L_2 regular languages

Question: Are L_1 and L_2 FO-separable?

Decidable

- Take $f: A^* \to M$ which recognises L_1 and L_2 .
- Build $g: A^* \to \mathcal{P}(M)$.
- Does $g[L_1] \cap g[L_2] = \varnothing$?

 ω -words: FO cannot capture group-like phenomena [Perrin '84] (qualitative) & [Place-Zeitoun '16] (quantitative).

```
\omega-words: FO cannot capture group-like phenomena [Perrin '84] (qualitative) & [Place-Zeitoun '16] (quantitative).
```

Words indexed by countable ordinals:

Example: bca, $cabc(ab)^{\omega}$, $(ab^{\omega}c)^{\omega}$, etc.

R. Morvan 9/12

```
\omega-words: FO cannot capture group-like phenomena [Perrin '84] (qualitative) & [Place-Zeitoun '16] (quantitative).
```

Words indexed by countable ordinals:

```
Example: bca, cabc(ab)^{\omega}, (ab^{\omega}c)^{\omega}, etc.
```

```
\exists x. \ \text{last}(x) \land a(x) where \text{last}(x) := \forall y. \ y \leqslant x. The word has a last position, and it is an 'a'.
```

R. Morvan 9/12

```
\omega-words: FO cannot capture group-like phenomena [Perrin '84] (qualitative) & [Place-Zeitoun '16] (quantitative).
```

Words indexed by countable ordinals:

```
Example: bca, cabc(ab)^{\omega}, (ab^{\omega}c)^{\omega}, etc.
```

```
\exists x. \ \text{last}(x) \land a(x) where \text{last}(x) := \forall y. \ y \leqslant x. The word has a last position, and it is an 'a'.
```

```
a^{\omega}cb^{\omega}ca (ab)^{\omega}b a^{\omega} yes no no
```

FO cannot capture group-like phenomena:

[Bedon '01] (qualitative) & [FoSSaCS 2022] (quantitative).

Example over countable ordinals

empty word		ε	а			
finite & odd	ε	ε	а	aa	a^{ω}	$a^{\omega}a$
finite & even	а	а	aa	а	a^{ω}	$a^{\omega}a$
infinite & even suffix	aa	aa	a a ^ω a	aa	a^{ω}	$a^{\omega}a$
infinite & odd suffix	a^{ω}	a^{ω}	$a^{\omega}a$	a^{ω}	a^{ω}	$a^{\omega}a$
	$a^{\omega}a$	$a^{\omega}a$	a^{ω}	$a^{\omega}a$	a^{ω}	$a^{\omega}a$

R. Morvan 10/12

Example over countable ordinals

R. Morvan 10/12

Example over countable ordinals

$$g: u \mapsto \begin{cases} \{\varepsilon\} & \text{if } u \text{ is empty} \\ \{a, aa\} & \text{if } u \text{ is finite} \\ \{a^{\omega}, a^{\omega}a\} & \text{if } u \text{ is infinite} \end{cases}$$

R. Morvan 10/12

Countable words

Words indexed by countable linear orders:

Example: a^{ζ} , $(ab)^{\eta}$, etc.

MSO-definable languages ⇔ languages recognised by some algebras [Carton-Colcombet-Puppis '18]

R. Morvan 11/12

Countable words

Words indexed by countable linear orders:

Example: a^{ζ} , $(ab)^{\eta}$, etc.

MSO-definable languages ⇔ languages recognised by some algebras [Carton-Colcombet-Puppis '18]

Qualitative results: [Bedon-Rispal '12, Bès-Carton '11 & Colcombet-Sreejith '15]. No quantitative result.

Much harder: FO is not capable to detect:

- · groups,
- gaps (ex: a^{ω} and $a^{\omega}a^{\omega^*}a^{\omega}$ are FO-equivalent),
- · shuffles.

Conclusion: characterisations of FO

Domain (count. linear order)	Characterisation:	Qualitative	Quantitative
Finite	groups	[Schützenberger '65 & McNaughton-Papert '71]	[Henckell '88]
ω	groups	[Perrin '84]	[Place-Zeitoun '16]
Ordinals	groups	[Bedon '01]	Fossacs 2022
Scattered	groups, gaps	[Bès-Carton '11]	ongoing work
Countable	groups, gaps, shuffles	[Colcombet-Sreejith '15]	ongoing work

Fossacs 2022: for words over countable ordinals,

- FO-pointlikes are computable
- \cdot FO-separability & FO-coverability are decidable