Laboratorium Fizyki 2		Data wykonania ćwiczenia: 16.10.2013 Środa 9.45-12.45
Justyna Ilczuk	Jacek Rosiński	Data złożenia sprawozdania: 13 listopada 2013
Wydział Fizyki	Grupa: K-1 Rok akademicki: 2013/2014	Nr ćwiczenia: 7
Prowadzący: Piotr Panecki		Ocena końcowa:

1 Cel ćwiczenia

Celem ćwiczenia było zbadanie zjawiska tunelowania dla fal elektromagnetycznych. Badając przechodzenie fali Elektromagnerycznej spodziewamy się zobaczyć zmniejszanie się mocy dali wraz z odegłością, zależności $E e^{-\gamma x}$.

2 Wstęp

Fala elektromagnetyczna ulega zjawisku całkowitego wewnętrznego odbcia - zależność $\frac{n_1}{n_2} \cdot \sin \theta_g r = 1$. Zanikanie wiązki światła na granicy dwóch ośrodków, nie oznacza że pole elektryczne i magnetyczne fali elektromagnetycznej zanika w sposób skokowy na granicy dwóch ośrodków. Te pola wnikają na pewną głębokość do obszary, w którym fala elektromagnetyczna się nie propaguje. Jeśli jednak grubość warstwy w której pole zanika jest mała, a za nią znajduje się obszar, w którym fala elektromagnetyczna może się rozprzestrzeniać, to jej część przejdzie do tego obszaru, co określamy jako efekt tunelowy.

Aby sprawdzić powyższą hipteze używaliśmy testu χ^2 zgodnie z poniższym wzorem.

$$\chi^2 = \sum_{i=1}^n \left(\frac{y_i - f(x_i)}{\sigma_i} \right)^2$$

Gdzie y_i to nasze wyniki, zaś $f(x_i)$ to wyniki pochodzące z dopasowanej prostej. σ_i to niepewności pomiarów. χ^2 po zsumoawniu odpowiada na pytanie czy hipoteza, jaką stawiamy jest prawdziwa:

- $\chi^2 \gg 1$ hipoteza przez nas postawiona jest fałszywa
- $\chi^2 \approx 1$ hipoteza jest zgodna z doświadczeniem

3 Użyty sprzet i układy pomiarowe

Do przeprowadzenia eksperymenty używaliśmy:

- 1. Modulatora fal EM (mikrofalowych, centymetrowych)
- 2. Miernika uniwersalnego Metatronik V640 połączonego z odniornikiem fal Elektromagnetycznych
- 3. Miarki z podziałką milimetrową do przesuwania sunstancji o odmiennym współczynniku załamania

Opracowanie wyników 4

Wyniki pomiarów przedstawiamy poniżej w tabelce:

Pomiary odbitej wiązki:

x [cm]	V [mV]	zakres [mV]
18	127	150
16.5	123	150
15	119	150
13	115	150
12.2	105	150
11.8	95	150
11.3	80	150
11	63	150
10.8	42	150
10.5	23	50
10.3	15	50
9.9	3.3	5

Pomiary wiązki, która przetunelowała:

г 1	X 7	1 [77]
x [cm]	V [mV]	zakres [mV]
10.3	105	150
10.7	87	150
11	71	150
11.2	55	150
11.4	46	150
11.6	36	50
12	25	50
12.3	19	50
12.8	9	50
13.4	4.5	15
13.8	3.3	5
14.5	1.7	5
15	0.9	1.5
16.4	0.5	1.5

$$E = E_0 cos(wt - k_{II}y)e^{-\gamma x}$$
$$\gamma = n_2 k_0$$

Rysunek 1: zależności jakie wyszły

Dopasowaliśmy krzywe wykładnicze metodą najmniejszych kwadratów, używając do tego biblioteki do obliczeń naukowych

scipy.optimize

$$y = ae^{-bx} + c$$

$$a = 115.42$$

$$b = 0.76$$

$$c = -4.27$$

Macierz kowariancji otrzymanych współczynników:

1.46e+01	7.76e-03	-4.45e+00
7.76e-03	3.69e-03	1.29e-01
-4.45e+00	1.28e-01	7.23e+00

niestety wyliczone przez nas χ^2 zredukowane miało wartość ok. 3000. Analizując nasze pomiary i wyniki, doszliśmy do wniosku, że tak wysoką wartość χ^2 uzyskaliśmy przez zaniżenie niepewności pomiarowych w naszym doświadczeniu.

W doświadczeniu również otrzymaliśmy szanse zmierzenia długości fali. W tm celu Użyliśmy płytki z otworami, które były co ok 1 cm. Płytka ustawiona w sposób blokujący przepuszczała część promieniowania, wiec nei mżna jej było nazwać polaryzatorem, a jedynei płytką półprzepuszczalną. Na podstawie tej właściwości przeprowadziliśmy dwa eksperymenty (zmiana odległości płytki półprzepuszczalnej i interferometr Michelsona) z których wynikało ze długość fali wynosi 1 : $\lambda = 3, 2(0,3)cm$, $\lambda = 3, 1(0,3)cm$.

5 Wnioski

W doświadczeniu zaobserwowano tunelowanie fali elektromagnetycznej, której moc spada eksponencjalnie wraz ze odległością ośrodków rozchodzenia się fali. Fala mikrofalowa jakiej używaliśmy miała długość około 3.2 cm.