Domain Generalization using Causal Matching

problem

domain generalization 问题:the task of learning a machine learning model that can generalize to unseen data distributions, after training on more than one data distributions.

Related Work

- 1. Learning common representation. 尝试学习能够独立与域存在的 表征 $\Phi(X)$,或者某个class内部的不随环境而改变的表征 $\Phi(X)$
- 2. Causality and domain generalization. 现有的将因果理论与泛化性能融合的方法,有假设 $Y \to X$ 的,也有假设 $X \to Y$ 的.本文的工作融合了上述两个方向

其他方法包括元学习,数据增强,参数分解,以及IRM之类的方法,作者也设置了对照实现

contribution

Insufficiency of class-conditional invariance

现有的主流方法核心思想一般是找到表征 $\Phi(X)$,使其满足

$$\Phi(X) \perp \!\!\! \perp D|Y \tag{1}$$

作者在这里给出了这种情形的反例,即说明满足(1),依旧无法做到泛化.

考虑一个二维的问题,两个表征的生成过程如下:

$$x_1 = x_c + \alpha_d \tag{2}$$

$$x_2 = \alpha_d \tag{3}$$

其中 x_c , α_d 是未观测到的量,并且后者会随环境而发生改变.并且 $y=f(x_c)=I(x_c\geq 0)$ 关系如下:

$$egin{align} Domain \ 1: X_c | Y = 1 \sim \mathcal{U}(1,3); X_c | Y = 0 \sim \mathcal{U}(-2,0); lpha \ Domain \ 2: X_c | Y = 1 \sim \mathcal{U}(0,2); X_c | Y = 0 \sim \mathcal{U}(-3,-1); lpha \ \end{cases}$$

于是就可以发现 $x_1|Y$ 能在各个Domain中的分布都是稳定的.于是给出

$$\Phi(x) = x_1 \tag{6}$$

于是依赖(6)进行训练会发现当 $x_1 > 1.5(0$ 到1之间任意一个数)时 Y = 1,否则Y = 0,但当测试环境为

$$\alpha_d = 0; X_c | Y = 1 \sim \mathcal{U}(0, 2); X_c | Y = 0 \sim \mathcal{U}(-2, 0), \quad (7)$$

那么这个分类器的就无法进行泛化了,正确率只有65%,过程如下图所示:

(a) Simple Example

这个例子中最合适的表征是 $x_1 - x_2$ 即 x_c ,但这个表征并不满足(1)式.于是作者给出了以下的推论,来说明何时(1)可以用于模型的泛化:

Proposition 1. Under the domain generalization setup as above, if $P(X_c|Y)$ remains the same across domains where x_c is the stable feature, then the class-conditional domain-invariant objective for learning representations yields a generalizable classifier such that the learnt representation $\Phi(\mathbf{x})$ is independent of the domain given x_c . Specifically, the entropy $H(d|x_c) = H(d|\Phi, x_c)$.

但在实际中 $P(X_c|Y)$ 会变,上述推论就很难成立

A Causal View of Domain Generalization

Figure 2. Structural causal models for the data-generating process. Observed variables are shaded; dashed arrows denote correlated nodes. *Object* may not be observed.

数据生成过程

考虑图像分类的任务,对于相同的对象(object,变量O),从不同的视角进行观测形成了不同的view或者说Domain.数据生成过程如(a)所示,高层的causal feature与Domain共同作用产生了像素信息X.同时causal feature也产生了label Y.

更加宽泛的causal graph是(b).其中有与object相关的变量 X_C 以及与Domain相关的 X_A .SCM模型描述如下:

$$o := g_o(y_{true}, \epsilon_o, \epsilon_{od}) \tag{8}$$

$$\mathbf{x}_c = g_{xc}(o) \tag{9}$$

$$\mathbf{x}_a := g_{xa}(d, o, \epsilon_{xa}) \tag{10}$$

$$\mathbf{x} := g_x(\mathbf{x}_c, \mathbf{x}_a, \epsilon_x) \tag{11}$$

$$y := h(\mathbf{x}_c, \epsilon_y) \tag{12}$$

数据生成过程

从(b)中可以发现 $Y\perp$,于是目标就转变为学习 $y=h(\mathbf{x_c})$,损失函数可以写成

$$rg\min_f \mathbb{E}_{(d,\mathbf{x},y)} l(y,f(\mathbf{x})) = rg\min_h \mathbb{E}[l(y,h(\mathbf{x}_c))]$$

但由于 X_C 是无法关测到的,于是我们需要学习映射 $\Phi: \mathcal{X} \to \mathcal{C}$.于是整体的要学习的是 $h(\Phi(X)): \mathcal{X} \to \mathcal{Y}$ 作者证明了

Proposition 2. Given observed data distribution P(Y, X, D, O) that may also include data obtained from interventions on domain D, multiple values of X_C yield exactly the same observational and interventional distributions and hence X_c is unidentifiable.

即给定观测数据P(X,Y,D,O),依旧无法识别出唯一确定的 X_C ,除非对X,Y的作用机制有一定的约束才有可能确定唯一的 Φ

A "perfect-match" invariant

因为直接识别 X_c 不太可行,于是作者尝试找到一个变量来表征 X_c .通过观察可知 X_c 具有

- 1. $X_C \perp \!\!\! \perp D|O$
- 2. $X_C \not\perp \!\!\! \perp O$

第一个特征说明相同的object的 X_C 不会随着Domain而发生变化,为此作者引入了如下的损失项:

$$\sum_{\Omega(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')})) = 0. \tag{13}$$

其中 $\Omega: \mathcal{X} \times \mathcal{X} \to \{0,1\}$ 等于1说明两个case中的object是一致的.

另外还需要让 X_C 能够反映足够的O的信息.于是损失函数设置为

$$f_{\text{perfectmatch}} = \arg\min_{h,\Phi} \sum_{d=1}^{m} L_d(h(\Phi(X)), Y)$$
 (14)

s.t.
$$\sum_{\Omega(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')})) = 0$$
 (15)

其中
$$L_d(h(\Phi(X),Y)) = \sum_{i=1}^{n_d} l(h(\Phi(\mathbf{x}_i^{(d)}), y_i^{(d)}).$$

实际上满足(2)的 $\Phi(X)$ 会有很多,而且一般都有比较不错的效果,但是作者想要寻找**能够stable的** Φ ,并且不能与 X_a 之间存在关联.

作者给出了以下的定理:

Theorem 1. For a finite number of domains m, as the number of examples in each domain $n_d \to \infty$,

- 1. The set of representations that satisfy the condition $\sum_{\Omega(j,k)=1; d\neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')})) = 0 \text{ contains the optimal } \Phi(\mathbf{x}) = X_C \text{ that minimizes the domain generalization loss in (1).}$
- 2. Assuming that $P(X_a|O,D) < 1$ for every high-level feature X_a that is directly caused by domain, and for P-admissible loss functions (Miller et al., 1993) whose minimization is conditional expectation (e.g., ℓ_2 or crossentropy), a loss-minimizing classifier for the following loss is the true function f^* , for some value of λ .

$$f_{\text{perfectmatch}} = \arg\min_{h,\Phi} \sum_{d=1}^{m} L_d(h(\Phi(X)), Y) + \lambda \sum_{\Omega(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')}))$$
(3)

这个定理想说明, $\Phi(\mathbf{x}) = X_C$ 必然是满足(13)的,并且利用(14),(15)得到的最优解f一定是关于 X_C 的函数而不是一个常数项.但在证明过程中存在假设:至少有一个object或者说Domain, $P(X_a|D=d,O=o)<1$ 即对于某个object,在某个Domain中,生成的非causal feature是随机的而不是确定性的,那么这个假设可能无法应用于Domain只有两个并且作用是确定性的情况,因为这时很有可能学到的 Φ 是依赖于 X_a 的,作者认为通过对模型大小的正则可以缓解这个问题,或者我觉得使用多个Domain的数据可能也可以解决这个问题

考虑我们有两个Domain的数图片,一个Domain为原图,另一个Domain为原图旋转过一个固定的角度 α ,那么这时 X_a 就会是角度 α ,而学到的 Φ 可能就

是倒转 α ,此时就可能两个Domain输入之后结果是一样的,但这种模型是不存在泛化能力的,没有办法泛化至其他Domain之上.

MatchDG: Matching without objects

很多情况下object information是未知的,这时损失函数(3)就没办法使用了,因为无法直接从数据集中找到源自同一object但是Domain不同的反事实 case,于是作者使用了两阶段的迭代对比学习方法来模拟object match,目标为学习matching: $\Omega: \mathcal{X} \times \mathcal{X} \to \{0,1\}$,即学习一种判别机制来判别两个样本是否属于同一个object.并且当这个判别机制判别出 $\Omega(\mathbf{x},\mathbf{x}')=1$ 时, x_c,x_c' 之间的差距要非常小.这里作者使用了以下的假设:

Assumption 1. Let $(\mathbf{x}_i^{(a)}, y)$, $(\mathbf{x}_j^{(a)}, y)$ be any two points that belong to the same class, and let $(\mathbf{x}_k^{(d)}y')$ be any other point that has a different class label. Then the distance in causal features between \mathbf{x}_i and \mathbf{x}_j is smaller than that between \mathbf{x}_i and \mathbf{x}_k or \mathbf{x}_j and \mathbf{x}_k : $\operatorname{dist}(x_{c,i}^{(d)}, x_{c,j}^{(d')}) \leq \operatorname{dist}(x_{c,i}^{(d)}, x_{c,k}^{(d')})$ and $\operatorname{dist}(x_{c,j}^{(d)}, x_{c,i}^{(d')}) \leq \operatorname{dist}(x_{c,j}^{(d)}, x_{c,k}^{(d')})$.

相同类的样本的causal feature之间的距离要大于不同类的样本的causal feature的距离

Contrastive Loss

对比学习是一种无监督的学习范式,将相同标签但是源自不同域的特征输入到两个特征学习器之中,最终要求label相同的特征学习到的表征相似,但 label不同的表征学习到的特征差距尽量大.

作者在这里使用了迭代的方法,来确定哪些样本之间是要进行配对的,或者说那些样本之间有相同的label并且来自不同的Domain.具体的匹配过程如

下:

具体的实现过程是这样的

Initialization (构造random match) : 首先我们对每一个类选择一个基域(包含该类元素最多的类),对基类的所有数据点进行遍历。对每个数据点,我们随机的在剩下 K-1 个域中给他匹配标签相同的元素,因此会构造出一个 (N',K) 大小的数据矩阵,这里 N' 即所有类的基域大小之和,K是总共的域的数目。

Phase 1: 采样一个batch的数据 (B,K) ,对batch中的每个数据点最小化对比损失,和他具有相同object不同域的样本作为正样本,不同object样本作为负样本。

$$l(\mathbf{x}_j, \mathbf{x}_k) = -\log \frac{e^{\sin(j,k)/\tau}}{e^{\sin(j,k)/\tau} + \sum_{i=0, y_i \neq y_j}^{B} e^{\sin(j,i)/\tau}}$$

每 t 个epoch使用通过对比学习学到的representation更新一次我们的match。首先还是要选基域,但是在基域选定后,我们不再随机的在剩下域中挑选sample,我们为基域中的该类的每个样本在其他域中找representation距离最近的点作为正样本。

在Phase 1结束时,我们根据学习到的最终表示的 L_2 距离更新匹配的数据矩阵。我们称这些匹配为推论匹配。

Phase 2: 我们使用下列损失函数,但是match使用我们第一阶段学到的。网络从头开始训练(第一阶段学到的网络只是用来做匹配而已)。但是第一阶段学到的匹配可能不能包含所有的数据点,因此作者在每次训练除了从数据矩阵采样 (B,K) 的数据外,还通过随机匹配再产生 (B,K) 的数据。

$$f_{\texttt{randommatch}} = \arg\min_{h,\Phi} \sum_{d=1}^m L_d(h(\Phi(X)), Y) + \lambda \sum_{\Omega_Y(j,k)=1; d \neq d'} \operatorname{dist}(\Phi(\mathbf{x}_j^{(d)}), \Phi(\mathbf{x}_k^{(d')}))$$

实验测试

模型测试中有以下的实验结果:

	U	· · · · · ·				J I		**
Dataset	Source	ERM	MASF	CSD	IRM	RandMatch	MatchDG	PerfMatch (Oracle)
Rotated MNIST	15, 30, 45, 60, 75	93.0 (0.11)	93.2 (0.2)	94.5 (0.35)	92.8 (0.53)	93.4 (0.26)	95.1 (0.25)	96.0 (0.41)
	30, 45, 60	76.2 (1.27)	69.4 (1.32)	77.7 (1.88)	75.7 (1.11)	78.3 (0.55)	83.6 (1.44)	89.7 (1.68)
	30, 45	59.7 (1.75)	60.8 (1.53)	62.0 (1.31)	59.5 (2.61)	63.8 (3.92)	69.7 (1.30)	80.4 (1.79)
Rotated Fashion MNIST	15, 30, 45, 60, 75	77.9 (0.13)	72.4 (2.9)	78.7 (0.38)	77.8 (0.02)	77.0 (0.42)	80.9 (0.26)	81.6 (0.46)
	30, 45, 60	36.1 (1.91)	29.7 (1.73)	36.3 (2.65)	37.8 (1.85)	38.4 (2.73)	43.8 (1.33)	54.0 (2.79)
	30, 45	26.1 (1.10)	22.8 (1.26)	24.2 (1.69)	26.6 (1.06)	26.9 (0.34)	33.0 (0.72)	41.8 (1.78)

可以看到作者**还验证了当训练使用的dataset减少时模型的测试效果**(这是可以借鉴的点)