Introducción a los espacios de Hilbert

Pregunta 1 (3 puntos)

En el espacio \mathcal{H} de las funciones reales derivables y con derivada continua en [0,1] se define

$$\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{R}$$

$$(f, g) \longmapsto \langle f, g \rangle = f(0)g(0) + \int_0^1 f'(t)g'(t) dt$$

- a) Demuestre que $\langle \cdot, \cdot \rangle$ es un producto interno en \mathcal{H} .
- b) Sea g la función constante 1, esto es, $g(t) = 1 \ \forall t \in [0,1]$. Determine el subespacio ortogonal a g.
- c) Sea $F = \{ f \in \mathcal{H} : f(0) = 0 \}$. Determine F^{\perp} .

Solución: a) $\langle f, f \rangle = (f(0))^2 + \int_0^1 (f'(t))^2 dt \ge 0$ pues $(f'(t))^2 \ge 0$ y $(f(0))^2$ para todo $t \in [0, 1]$.

Además si $\langle f, f \rangle = (f(0))^2 + \int_0^1 (f'(t))^2 dt = 0$, se cumple que f(0) = 0, y teniendo en cuenta que el integrando es una función continua positiva en [0, 1], resulta que f'(t) = 0 para todo $t \in [0, 1]$. Por tanto, f(t) = C para todo $t \in [0, 1]$ y de f(0) = 0 resulta que C = 0.

Claramente $\langle f, g \rangle = \langle g, f \rangle$ pues f(0)g(0) = g(0)f(0) y f'(t)g'(t) = g'(t)f'(t) para todo t.

Además para todo $\alpha, \beta \in \mathbb{R}$ y para todo $f, h, g \in \mathcal{H}$ se tiene:

$$\langle \alpha f + \beta h, g \rangle = (\alpha f(0) + \beta h(0))g(0) + \int_0^1 (\alpha f'(t) + \beta h'(t))g'(t) dt$$

$$= \alpha \Big(f(0)g(0) + \int_0^1 f'(t)g'(t) dt \Big) + \beta \Big(h(0)g(0) + \int_0^1 h'(t)g'(t) dt \Big)$$

$$= \alpha \langle f, g \rangle + \beta \langle h, g \rangle$$

b) Sea $f \in \mathcal{H}$ tal que f es ortogonal a g. Se cumple por tanto que $\langle f, g \rangle = f(0)g(0) + \int_0^1 f'(t)g'(t) dt = f(0) = 0$. En consecuencia el subespacio ortogonal a $\{g\}$ es:

$$\{g\}^{\perp} = \{f \in \mathcal{H} \colon f(0) = 0\}$$

c) Sea $h \in F^{\perp} = \{ f \in \mathcal{H} \colon f(0) = 0 \}^{\perp}$. Se cumple que

$$\langle h, f \rangle = h(0)f(0) + \int_0^1 h'(t)f'(t) dt = \int_0^1 h'(t)f'(t) dt$$

para todo $f \in F$. En particular para todo $f \in \{t, t^2, t^3, \dots\}$. Así pues si $h \in F^{\perp}$, entonces h' es ortogonal (con el producto interno usual de $L^2[0,1]$) al sistema completo $\{1, t, t^2, t^3, \dots\}$ de $L^2[0,1]$. Por tanto h'(t) = 0 y resulta que h(t) = C. En consecuencia, $F^{\perp} = \text{span}\{g\}$.

Nota: Aunque hemos demostrado directamente el apartado c) también puede deducirse observando que $\{g\}^{\perp} = (\operatorname{span}\{g\})^{\perp} = F$ y por tanto $F^{\perp} = (\operatorname{span}\{g\})^{\perp \perp}$. Dado que $\operatorname{span}\{g\}$ es un subespacio de dimensión finita, $\operatorname{span}\{g\}$ es un subespacio vectorial completo de \mathcal{H} y en consecuencia, del teorema 3.11 se deduce que $F^{\perp} = \operatorname{span}\{g\}^{\perp \perp} = \operatorname{span}\{g\}$.

Pregunta 2 (2,5 puntos)

En el espacio de sucesiones reales ℓ^2 , sea el conjunto:

$$C = \left\{ \left. \{x_n\}_{n=1}^{\infty} \in \ell^2 \colon x_n \ge 0 \text{ para todo } n \right\} \right.$$

- 1. Demuestre que C es un subconjunto convexo y cerrado de ℓ^2 .
- 2. Demuestre que la proyección P_C sobre C es:

$$P_C(\{x_1, x_2, \dots, x_n, \dots\}) = \{\max\{x_1, 0\}, \max\{x_2, 0\}, \dots, \max\{x_n, 0\}, \dots\}.$$

Solución:1) Convexidad de C: hay que comprobar que para todo $x, y \in C$ y para todo $\alpha \in \mathbb{R}$ tal que $0 \le \alpha \le 1$ se cumple que $\alpha x + (1 - \alpha)y \in C$. De $x = \{x_n\}_{n=1}^{\infty}, y = \{y_n\}_{n=1}^{\infty} \in C$ se deduce que $x_n \ge 0, y_n \ge 0$ para todo n y dado que $\alpha \ge 0, 1 - \alpha \ge 0$ entonces $\alpha x_n + (1 - \alpha)y_n \ge 0$ para todo n si $x_n, y_n \ge 0$ para todo n. Para ver que C es cerrado basta observar que si $\{x^{(k)}\}_{k=1}^{\infty}$ es una sucesión en C que converge en ℓ^2 a x, siendo

Para ver que C es cerrado basta observar que si $\{x^{(k)}\}_{k=1}^{\infty}$ es una sucesión en C que converge en ℓ^2 a x, siendo para cada k, $x^{(k)} = \{x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}, \dots\}$ y $x = \{x_1, x_2, \dots, x_n, \dots\}$, entonces para cada n fijo, la sucesión la sucesión de números reales positivos $\{x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(k)}, \dots\}$ converge a x_n y en consecuencia $x_n \ge 0$.

2) Veamos que el mejor aproximante de $x \in \ell^2$ en C es

$$y = P_C(x) = P_C(\{x_1, x_2, \dots, x_n, \dots\}) = \{\max\{x_1, 0\}, \max\{x_2, 0\}, \dots, \max\{x_n, 0\} \dots\}.$$

En efecto, como para todo $b \ge 0$ y para todo $a \in \mathbb{R}$ se cumple que

$$|a - \max(a, 0)| = \begin{cases} 0 & \text{si } a \ge 0 \\ |a| & \text{si } a < 0 \end{cases} \le |a - b|$$

en consecuencia

$$||x - P_C(x)||_2^2 = \sum_{n=1}^{\infty} (x_n - \max(x_n, 0))^2 \le \sum_{n=1}^{\infty} (x_n - z_n)^2$$

para toda sucesión $\{z_n\}_{n=1}^{\infty} \in C$. Por tanto, $P_C(x)$ es el mejor aproximante de $x \in \ell^2$ en C.

Pregunta 3 (2 puntos) Sean \mathcal{H} un espacio prehilbertiano complejo ($\mathbb{K} = \mathbb{C}$) y $T \colon \mathcal{H} \to \mathcal{H}$ un operador lineal. Demuestre que si $\langle T(x), x \rangle = 0$ para todo $x \in \mathcal{H}$, entonces T(x) = 0 para todo $x \in \mathcal{H}$.

Solución: Veamos que si $\langle T(x), x \rangle = 0$ para todo $x \in \mathcal{H}$, entonces T(x) = 0 para todo $x \in \mathcal{H}$. En primer lugar deducimos que si $\langle T(x), x \rangle = 0$ para todo $x \in \mathcal{H}$, entonces $\langle T(x), y \rangle = 0$ para todo $x, y \in \mathcal{H}$. En efecto, sean $x, y \in \mathcal{H}$. Como

$$0 = \langle T(x+y), x+y \rangle = \langle T(x), x \rangle + \langle T(y), x \rangle + \langle T(x), y \rangle + \langle T(y), y \rangle$$
$$= \langle T(y), x \rangle + \langle T(x), y \rangle$$

para todo $x, y \in \mathcal{H}$. En consecuencia, aplicando lo anterior a x y a iy también se obtiene

$$0 = \langle T(iy), x \rangle + \langle T(x), iy \rangle = i \langle T(y), x \rangle + \bar{i} \langle T(x), y \rangle$$
$$= i(\langle T(y), x \rangle - \langle T(x), y \rangle)$$

Por tanto se satisfacen las dos igualdades $\langle T(y), x \rangle - \langle T(x), y \rangle = 0$ y $\langle T(y), x \rangle + \langle T(x), y \rangle = 0$, de donde se concluye que $\langle T(x), y \rangle = 0$ para todo $x, y \in \mathcal{H}$.

Finalmente, tomando y = T(x) se obtiene que $||T(x)||^2 = 0$, esto es, T(x) = 0 para todo $x \in \mathcal{H}$.

Pregunta 15 Sea en ℓ^2 la sucesión $\{\mathbf{v}_n\}_{n\geq 1}$ dada por $\mathbf{v}_n = \{\overbrace{0,0,\ldots,0}^{2(n-1) \text{ terminos}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0,\ldots\}.$

- a) Demuestre que $\{\mathbf{v}_n\}_{n\geq 1}$, es un sistema ortonormal de ℓ^2 .
- b) Sea $\mathbf{x} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$. Compruebe si $\mathbf{x} = \sum_{n=1}^{\infty} \langle x, \mathbf{v}_n \rangle \mathbf{v}_n$. ¿Qué se puede concluir sobre $\{\mathbf{v}_n\}_{n \geq 1}$?

Solución: a) Para todo n se tiene que $\|\mathbf{v}_n\| = \sqrt{(1/2 + 1/2)} = 1$.

Por otro lado, si $n \neq j$ se cumple que $\langle \mathbf{v}_n, \mathbf{v}_j \rangle = 0$ pues los elementos no nulos de \mathbf{v}_n son los términos 2n - 1 y 2n mientras que los elementos no nulos de \mathbf{v}_j son los términos 2j - 1 y 2j y no coinciden.

b) Para cada $n \ge 1$

$$\langle x, \mathbf{v}_n \rangle = \frac{1}{2n-1} \frac{1}{\sqrt{2}} + \frac{1}{2n} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{2n+2n-1}{2n(2n-1)} = \frac{4n-1}{2\sqrt{2}n(2n-1)}$$

y por tanto

$$\langle x, \mathbf{v}_n \rangle \mathbf{v}_n = \{ \overbrace{0, 0, \dots, 0}^{2(n-1)}, \frac{4n-1}{4n(2n-1)}, \frac{4n-1}{4n(2n-1)}, 0, 0, \dots \}.$$

En consecuencia, $\sum_{n=1}^{\infty} \langle x, \mathbf{v}_n \rangle \mathbf{v}_n = \{\underbrace{\frac{3}{4}, \frac{3}{4}, \frac{7}{24}, \frac{7}{24}, \dots, \frac{4n-1}{4n(2n-1)}, \frac{4n-1}{4n(2n-1)}, \dots \}$, donde se ve que $\mathbf{x} \neq \sum_{n=1}^{\infty} \langle x, \mathbf{v}_n \rangle \mathbf{v}_n$. Se puede por tanto concluir que $\{\mathbf{v}_n\}_{n\geq 1}$ no es un sistema ortonormal completo de ℓ^2 .