DS Mécanique des Fluides Avancée

Exercice 1

On considère un fluide visqueux en écoulement horizontal sur un plan de dimensions supposées infinies

Le profil de vitesse pour cet écoulement plan, est donné par :

$$V_x = 2z^3 + 3z^2$$
.

 $V_y = 0$

 $V_z = 1$

- 1. Déterminer l'équation des lignes de courant.
- 2. Calculer la valeur de la contrainte de cisaillement :
- Au contact du fluide avec le plan.
- A 10 cm du contact du fluide avec le plan.
- A 15 cm contact du fluide avec le plan.

On donne la viscosité dynamique du liquide $\mu = 3.8.10^{-2} \text{ N.s/m}^2$.

Exercice 2

On considère un écoulement orthoradial d'axe polaire Oz appelé tourbillon tel que :

pour r < a, $rot[v(M)] = ye_z où y est une constante algébrique.$ pour <math>r > a, rot[v(M)] = 0

1. Etablir l'expression de v(M) en coordonnées polaire pour r < a et r >a

Ce tourbillon est dit ponctuel dans le plan Oxy si l'on considère que si a \rightarrow 0 et $\gamma \rightarrow +\infty$ le produit $\pi a^2 y$ demeure égal à la valeur finie Γ que l'on nomme intensité du tourbillon.

2. Donner l'expression de v(M) en coordonnées polaires (r >a) avec Γ comme paramètre.

Exercice 3

Un fluide de viscosité dynamique μ et de masse volumique ρ , s'écoule en régime stationnaire et incompressible dans une conduite cylindrique d'axe O_z , de longueur L et rayon R.

Du fait des symétries du problème, on cherche en coordonnées cylindriques un champ des vitesses et un champ de pression de la forme : $V(M) = V_z(r, z)$ e_0 et P(M) = P(r, z)

- 1. Montrer que V_z(r, z) ne dépend pas de z.
- 2. On néglige la pesanteur.
- 2.a. Montrer que le champ des accélérations est nul.
- 2.b. Montrer que la pression P ne dépend pas de r.
- 3. On considère les conditions aux limites suivantes :

$$V_z(R) = 0$$
; $P(0) = P_1$ et $P(L) = P_2$

- 3.a. Donner l'expression de P(z) et de V_z(r)
- 3.b. Donner l'expression du débit volumique Dv.
- 3.c. En déduire l'expression du débit massique Dm.
- 4. Calculer la chute de pression dans une artère de longueur L = 1m, de rayon R = 0, 5cm, où le débit volumique vaut D_v = $80 \text{cm}^3.\text{s}^{-1}$, sachant que la viscosité du sang vaut μ = 4.10^{-3} Pa.s.