

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Topología II

Autor: Jesús Muñoz Velasco

Índice general

0.1.	Conexión														Ę
0.2.	Conexión por arcos														6

Tema 0. Conexión por arcos

0.1. Conexión

Notación. Notaremos por e.t al espacio topológico (X, \mathcal{T}) o diremos X es un e.t.

Definición 0.1. Se dice que un e.t X es no conexo si existen U y V abiertos disjuntos y no vacíos tales que $X = U \cup V$.

Proposición 0.1. Dado un e.t. X equivalen las siguientes afirmaciones:

- (i) X es conexo.
- (ii) Los únicos subconjuntos de X que son abiertos y cerrados a la vez son el vacío y el total.
- (iii) Los únicos subconjuntos de X con frontera vacía son el vacío y el total.

Teorema 0.2. El ser conexo se conserva por aplicaciones continuas. En particular, ser conexo es una propiedad topológica (se conserva por homeomorfismos).

Teorema 0.3. La unión de una colección de subconjuntos conexos que tienen un punto común de un e.t. X es también conexa.

Teorema 0.4. Si A es un subconjunto del e.t. X y A es conexo, entonces dado B con $A \subset B \subset \overline{A}$, entonces se tiene que B también es conexo. En particular, la adherencia de un conexo siempre es un conjunto conexo.

Teorema 0.5. Dados dos espacios topológicos X, Y se cumple que $X \times Y$ es conexo (con la topología producto) si y solo si X e Y son conexos.

Teorema 0.6. Los conjuntos conexos de \mathbb{R} con la topología usual son exactamente los intervalos (incluyendo los puntos).

Definición 0.2. Dados un e.t. X y un punto x_0 se define la componente conexa de x_0 es X como el mayor conexo de X que contiene a x_0

Teorema 0.7. Las componentes conexas de un e.t. X forman una partición de X es conjuntos conexos maximales y cerrados.

Topología II Índice general

0.2. Conexión por arcos

Definición 0.3. Un **arco** (o camino) en un espacio topológico X es una aplicación continua $\alpha : [0,1] \to X$. Si además $\alpha(0) = \alpha(1)$ diremos que α es un lazo.

Diremos que un arco $\alpha:[0,1]\to X$ une x con y si se verifica que $\alpha(0)=x$ y $\alpha(1)=y$. Si α es un arco, diremos que está basado en x (o su punto base es x) si $\alpha(0)=x=\alpha(1)$.

Denotaremos por

$$\Omega(X; x, y) = \{\alpha : [0, 1] \to X \text{ continua } : \alpha(0) = x, \quad \alpha(1) = y\}$$

al conjunto de arcos que unen x con y. Denotaremos además por

$$\Omega(X;x) = \{\alpha : [0,1] \to X \text{ continua } : \alpha(0) = x = \alpha(1)\}$$

al conjunto de lazos basados en x.

Ejemplo.

1. Dados un e.t. X y un punto $x_0 \in X$ siempre se tiene que

$$\varepsilon_{x_0}: [0,1] \to X$$

$$t \mapsto x_0$$

es un lazo basado en x_0 . De hecho, si X tiene la topología discreta, entonces los únicos arcos que hay en X son los arcos constantes.

Esto se debe a que $\alpha^{-1}(\{x_0\})$ será abierto y cerrado y por tanto $\alpha^{-1}(\{x_0\}) \in \{\emptyset, X\}$

2. Sean $\alpha:[0,1]\to X$ un arco uniendo x con y y $\beta:[0,1]\to X$ un arco uniendo y con z.

$$\alpha * \beta : [0,1] \to X : (\alpha * \beta)(t) = \begin{cases} \alpha(2t) & \text{si} \quad 0 \leqslant t \leqslant 1/2 \\ \beta(2t-1) & \text{si} \quad 1/2 \leqslant t \leqslant 1 \end{cases}$$

Entonces $\alpha * \beta$ es continua ya que $(\alpha * \beta)_{|_{[0,1/2]}}$ y $(\alpha * \beta)_{|_{[1/2,1]}}$ lo son y para t=1/2 se tiene que

$$\alpha\left(2\cdot\frac{1}{2}\right) = \alpha(1) = \beta(0) = \beta\left(2\cdot\frac{1}{2} - 1\right)$$

con $\left[0, \frac{1}{2}\right]$ y $\left[\frac{1}{2}, 1\right]$ cerrados

3. Si $\alpha:[0,1]\to X$ es un arco uniendo x con y, entonces

$$\tilde{\alpha}: [0,1] \to X$$

$$t \mapsto \alpha(1-t)$$

es un arco que une y con x.

Topología II Índice general

Definición 0.4. Decimos que un e.t. X es **arcoconexo** (o **conexo por arcos**) si para cualesquiera $x, y \in X$ existe un arco en X que une el punto x con el punto y.

Si X es un e.t. y $A\subset X$, diremos que A es arcoconexo si A es arcoconexo con la topología de inducida de X

Teorema 0.8. Todo e.t. arcoconexo es conexo.

Demostración. Dado $x_0 \in X$ fijo y $x \in X$ cualquiera existe $\alpha : [0, 1] \to X$ un arco tal que $\alpha(0) = x_0$ y $\alpha(1) = x$. En particular, como el intervalo [0, 1] es conexo y α es continua, entonces se tiene que $\alpha([0, 1])$ es conexo y podremos escribir

$$X = \bigcup_{x \in X} \{x\} \subseteq \bigcup_{x \in X} \alpha_x([0, 1]) \in X \Rightarrow X = \bigcup_{x \in X} \alpha_x\{[0, 1]\}$$

y además $x_0 \in \bigcap_{x \in X} \alpha_x\{[0,1]\}$ por lo que X es conexo.

Ejemplo. Consideramos $X_n = [0,1] \times \left\{\frac{1}{n}\right\}, n \in \mathbb{N} \text{ y } X_0 = \{1\} \times [0,1].$ Llamamos $X = \{(0,0)\} \cup \left(\bigcup_{n \in \mathbb{N} \cup \{0\}} X_n\right)$ y queremos ver que X es conexo pero no es arcoconexo.

Si denotamos por $Y = \bigcup_{n \in \mathbb{N} \cup \{0\}} X_n$ es conexo porque es unión de los X_n que son todos conexos y cada uno de ellos corta a uno fijo, X_0 . Entonces X es conexo porque $Y \subset X \subset \overline{Y}$. Veamos sin embargo que X no es arcoconexo.

Para ello vamos a demostrar que si $\alpha:[0,1]\to X:\alpha$ es continua con $\alpha(0)=(0,0)$, entonces $\alpha(t)=(0,0)$ para todo $t\in[0,1]$.

Escribimos $\alpha(t) = (x(t), y(t)) \in \mathbb{R}^2$, como $\alpha(0) = (0, 0)$, si tomamos $((-1/2, 1/2) \times (-1/2, 1/2)) \cap X$ un abierto que contiene al origen, entonces $\exists \varepsilon > 0$ tal que $\alpha([0, \varepsilon)) \subseteq ((-1/2, 1/2) \times (-1/2, 1/2)) \cap X$. Como y(t) es continua y se tiene que $y([0, \varepsilon)) \subseteq \{0\} \cup \bigcup_{n>2} \{\frac{1}{n}\}$. Por el teorema del valor intermedio tenemos que $y([0, \varepsilon)) = \{0\}$ por lo que $\alpha([0, \varepsilon)) = \{(0, 0)\}$