Web Data Mining

Lecture 11: Mining Data Streams

Jaroslav Kuchař & Milan Dojčinovski

jaroslav.kuchar@fit.cvut.cz, milan.dojchinovski@fit.cvut.cz

Czech Technical University in Prague - Faculty of Information Technologies - Software and Web Engineering

Summer semester 2019/2020 Humla v0.3

Overview

- Introduction
- Stream Data Processing
- Approaches
- Technologies

Introduction

Motivation

- Traditional approaches assume to have all data available in the database
- Data is not static
 - \rightarrow Data is growing all the time
 - \rightarrow Every second new data is generated
 - → Data arrives in a stream and if it is not processed immediately or stored, then it is lost forever.

Application context

- When your data is too large to fit in the memory
- When new data is constantly being generated, and/or is dependent upon time

Examples – Web data

- Sensor data
- Telcos, activity data, Social networks, Real-time recommendations, Fraud or Spam detection,

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

-3-

Internet Minute

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

-4-

Data Mining Overview

• Single Machine Data Mining

* Edo Liberty, Jelani Nelson: Streaming Data Mining - KDD 2012 tutorial on practical algorithms in mining streaming data.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 5 -

Distributed Storage

• Distributed Storage

* Edo Liberty, Jelani Nelson: Streaming Data Mining - KDD 2012 tutorial on practical algorithms in mining streaming data.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 6 -

Distributed Computation

• Distributed Computation

* Edo Liberty, Jelani Nelson: Streaming Data Mining - KDD 2012 tutorial on practical algorithms in mining streaming data.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

-7-

Streaming Model

• Streaming Model

* Edo Liberty, Jelani Nelson: Streaming Data Mining - KDD 2012 tutorial on practical algorithms in mining streaming data.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

-8-

Data Streams

- Characteristics
 - High volume (possibly infinite) of continuous data
 - Data arrive at a rapid rate
 - Data distribution changes on the fly
 - Limited access to historical data
 - Can't store them all
- Static vs Streaming data
 - "If the data distribution is stable, mining a data stream is largely the same as mining a large data set, since statistically we can draw and mine a sufficient sample"
- Challenges
 - The data is evolving
 - Finding and understanding changes
 - Maintaining an updated model

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 9 **-**

Types of changes in Data

- Evolving/drifting data = data distribution changes over time
 - Feature drift
 - \rightarrow distribution of input data X changes
 - Real concept drift
 - \rightarrow relation between input X and target y changes
 - Arrival of new information
- Examples
 - Feature drift

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 10 -

Mining Streaming Data

• Mining streaming data

* A. Bifet, J. Gama, R. Gavalda, G. Krempl, M. Pechenizkiy, B. Pfahringer, M. Spiliopoulou, I. Zliobaite: Advanced Topics on Data Stream Mining -

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 11 -

Model Adaptation

• Model Adaptation

* A. Bifet, J. Gama, R. Gavalda, G. Krempl, M. Pechenizkiy, B. Pfahringer, M. Spiliopoulou, I. Zliobaite: Advanced Topics on Data Stream Mining -

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 12 -

Computing in Data Streams

- Axioms
 - One pass
 - Low time per item read, process, discard
 - Sublinear memory only summaries or sketches
 - Anytime, real-time answers
 - The stream evolves over time
- Characteristics
 - Approximate answers are often OK
 - Algorithms use a source of independent random bits
 → So different runs give different outputs
 - But "most runs" are "approximately correct"

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 13 -

Overview

- Introduction
- Stream Data Processing
- Approaches
- Technologies

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 14 -

Sampling

- Sampling
 - Find uniform random samples of an infinite data stream
- Input
 - Stream of data that arrive online
 - Sample size k
 - Sample range
 - \rightarrow entire stream
 - → most recent window (count-based or time-based)
- Output
 - k elements chosen uniformly at random within the sample range

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 15 -

Reservoir Sampling

- Classical algorithm
 Goal: maintains a fixed-size uniform random sample
 - Approach
 - \rightarrow Put the first k elements from the stream into the repository
 - \rightarrow When the i-th element arrives
 - \rightarrow Add it to reservoir S with probability p
 - \rightarrow If added, randomly remove an element from S
- Duplicates
 - Stream contains duplicate elements
 - Any value occurring frequently in the sample is a wasteful use of the available space

* Haixun Wang, Jian Pei, Philip S. Yu: Online Mining of Data Streams: Problems, Applications and Progress.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

Moving Window

- Moving Window
 - Timeliness
 - \rightarrow old data are not useful
 - Restrict samples to a window of recent data
 - → As new data arrives, old data "expires"
 - Reservoir sampling cannot handle data expiration
- Naive algorithm
 - Place a moving window of size N on the stream
 - an old element y expires when a new element x arrives

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 17 -

Other Processing

- Sketches
 - Sampling techniques and sliding window models focus on a small part of the data
 - Sketches try to summarize the entire data, often at multiple levels of detail
 - → build a small-space summary for a distribution vector (e.g., histogram)
- Randomized Algorithms
 - mainly consider Monte Carlo algorithms
 - → has bounds on the running time but may not return the correct result
 - may err with some small, but controllable, probability.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 18 -

Overview

- Introduction
- Stream Data Processing
- Approaches
- Technologies

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 19 -

Approaches

- Tasks
 - Trivial
 - → count items, sum values, find min/max, sample
 - Nontrivial
 - → alert on new item, most frequent item, finding median
- Examples of
 - Item frequencies
 - Count distinct items

_

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 20 -

Item frequencies - Naive approach

- Item frequencies
 - n counters
 - Computing f(i) for all i is easy in O(n) space.

* Edo Liberty. Jelani Nelson: Streaming Data Mining - KDD 2012 tutorial on practical algorithms in mining streaming data

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 21 -

Item frequencies - sampling

- Item frequencies sampling We sample with probability p and estimate f(i) = 1/p A(i)
 - O(pN) space

* Edo Liberty, Jelani Nelson: Streaming Data Mining - KDD 2012 tutorial on practical algorithms in mining streaming data.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

Item frequencies - Count-Min Sketch

• Count-min sketch

- limited amount of counters
- Items are counted in buckets according to a hash function

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 23 -

Item frequencies - Count-Min Sketch

• Count-min sketch

- approximate frequencies in sublinear space
- matrix with w columns and d rows initialized to zeros
- each row has a hash function
- When elements arrive
 - \rightarrow hash for each row
 - \rightarrow increment each counter by 1
- freq(element) = min counter value

• Minimum value

- possibility for collision for elements
- may overestimate

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 24 -

Identifying frequent items - Lossy Counting

Lossy Counting

- Application in the Frequent Pattern Mining
 - \rightarrow Association Rules
- Approach
 - \rightarrow Incoming stream is divided into buckets of size w
 - → Compute frequencies according to the bucket
 - \rightarrow At bucket boundary, decrease all counters by 1

At bucket boundary, decrease all counters by 1

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 25 -

Finding Frequent Itemsets

Approach

- load as many buckets as possible to the main memory
- delete entry if the updated frequency is less than bucket number
- decrease the frequency by number of buckets

* Mining Data Streams: https://www.slideshare.net/Krish_ver2/51-mining-data-streams.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 26 **-**

Finding Frequent Itemsets (cont.)

• Load as many buckets as possible to the main memory

• Algorithm

* Frequency Counts over Data Streams: https://www.cse.ust.hk/vldb2002/VLDB2002-proceedings/slides/S10P03slides.pdf.

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 27 -

Count Distinct Items

- Flajolet–Martin algorithm
 - probabilistic computing
 - refined in LogLog and HyperLogLog
 - → Billions of distinct values in 1.5KB of RAM with 2% relative error
- The main idea Cardinality estimation
 - Algorithm
 - $\rightarrow n = 0$
 - \rightarrow For each input item
 - \rightarrow hash item into i bit string
 - → count trailing zeros in the bit string
 - \rightarrow if the count > n
 - $\rightarrow n = count$
 - \rightarrow Cardinality = 2^n
- Assumptions
 - a good hash function
 - in random data, a sequence of n zero bits will occur once in every 2^n elements, on average

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 28 **-**

Count Distinct Items (cont.)

• Flajolet–Martin example – ... 01010101001000

- $-P(n trailing zeros) = (1/2)^n$
- Number of seen hashes $= 2^n$
 - $\rightarrow \dots \{000, 001, 010, 011, 100, 101, 110, 111\}$

id	H(id)	trailing zeros	max zeros	
Α	0111001001	0	0	
В	1000110100	2	2	
С	1101111000	3	3	
D	1001010110	1	3	
Е	1101011100	2	3	

Assumptions

- if we had seen 2 distinct items, we would expect 1 trailing zero
- if we had seen 4 distinct items, we would expect 2 trailing zero
- reasonable estimation is 2^n

Improvements

- more independent hashes or prefix and subhashes
- compute mean values

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 29 -

Count Distinct Items (cont.)

```
# https://jeremykun.com/2016/01/04/hashing-to-estimate-the-size-of-a-stream/
import random
def randomHash(modulus):
    a, b = random.randint(0, modulus-1), random.randint(0, modulus-1)
    def f(x):
       return (a*x + b) % modulus
    return f
def average(L):
   return sum(L) / len(L)
def numDistinctElements(stream, numParallelHashes=10):
   modulus = 2**20
    hashes = [randomHash(modulus) for _ in range(numParallelHashes)]
   minima = [modulus] * numParallelHashes
    currentEstimate = 0
   for i in stream:
      hashValues = [h(i) for h in hashes]
        for i, newValue in enumerate(hashValues):
          if newValue < minima[i]:</pre>
                minima[i] = newValue
   currentEstimate = modulus / average(minima)
   return currentEstimate
S = [random.randint(1,2**20) for i in range(10000)]
for k in (10,50,100):
   print(numDistinctElements(S, k))
# 9110.130321459601
# 9463.682310469314
# 10447.105708877154
```

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 30 -

Computing Moving Average

• Sliding Window Approaches

```
import numpy as np
full = []
queue1 = []
size = 3
def add1(value):
        if len(queue1) < size:</pre>
               queue1.append(value)
         else:
               del queue1[0]
                queuel.append(value)
       return sum (queue1) /len (queue1)
for i in range(10):
        a = random.randint(0,100)
        full.append(a)
        print("add({}) - moving={} - total={}".format(a, addl(a), np.mean(full)))
add(83) - moving=83.0 - total=83.0 add(53) - moving=68.0 - total=68.0
add(53) - moving=68.0 - total=68.0
add(28) - moving=54.66666666666664 - total=54.6666666666664
add(18) - moving=33.0 - total=45.5
add(42) - moving=29.33333333333332 - total=44.8
add(60) - moving=40.0 - total=47.3333333333333
add(39) - moving=47.0 - total=46.142857142857146
add(37) - moving=45.333333333333336 - total=45.0
add(11) - moving=29.0 - total=41.22222222222222
add(12) - moving=20.0 - total=38.3
```

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 31 -

Overview

- Introduction
- Stream Data Processing
- Approaches
- Technologies

Technologies

- Stream Processing Systems
 - can handle a nearly unlimited amount of data, but they only process one (true stream processing) or very few (micro-batch processing) items at a time
- Many existing technologies
 - Apache Storm
 - → stream processing framework, extremely low latency, near real-time processing
 - Apache Samza
 - → tightly tied to the Apache Kafka messaging system
 - Apache Spark
 - → batch processing framework with stream processing capabilities
 - Apache Flink
 - → stream processing framework that can also handle batch tasks

– ...

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 33 -

Apache Spark Example

• Docker Jupyter Notebook Python, Spark, Mesos Stack

```
docker pull jupyter/pyspark-notebook docker run -it --rm --add-host=parent-host:10.0.0.10 -p 8880:8880 -v $PWD:/home/jovyan/work ju
```

Processing stream

```
from pyspark import SparkContext
from pyspark.streaming import StreamingContext

sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)
lines = ssc.socketTextStream("parent-host", 9999)
words = lines.flatMap(lambda line: line.split(" "))
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)
wordCounts.pprint()
ssc.start()  # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate
```

Generate stream

```
1 | nc -1k 9999
```

Outputs

```
1 (hello,1)
2 (world,1)
```

Lecture 11: Mining Data Streams - Jaroslav Kuchař & Milan Dojčinovski

- 34 -