Wolves and Moose Of Isle Royale

Michaela Friedman - Muneeb Khawaja - Vlad Cojocaru

Objective

Help researchers and policymakers make better decisions about preservation and better understand predator-prey ecosystems by developing a predictive and explanatory model to answer:

- → How do moose and wolf populations depend on one another on Isle Royale?
- → What <u>annual temperature increase</u> is necessary to kill off moose population by 2050?

Methodology

We utilized data compiled by scientists between **1959–2019** on Isle Royale.

Assumptions

- Future populations will display similar trends to past populations.
- The Wolves grow if there are a certain number of Moose and vice versa, which we refer to as *Wolf and Moose thresholds*.
- After **63 degrees fahrenheit**, Moose will die off proportionally to temp.
- Yearly temperature increase is constant.

- Randomly select a growth rate from two sets derived from data for each population.
- Use those growth rates, current populations and temperature to calculate the new population at time (t+1).

Results

20

10

5.

2010

2020

Years:2010-2060

₩ 15 ·

Wolf-Moose Threshold Sweep

Probabilistic graph using Moose and Wolf inflection points, while disregarding the impact of temperature.

Temp. Increase Sweep

An increase of **o.6F** is required to kill the moose by 2050.

Conclusions

Our probabilistic model simulates populations realistically, and is within the bounds of the actual data. Our model is fruitful, accurate, but not precise.

Limitations:

Past growth might not represent future growth. Temperature increase might not be constant.

Moose dying proportionally to temp increase.

- We do not consider the impact of global warming on wolves.
- We do not consider other natural disasters.

Possible Improvements:

predation rate

migration

carrying capacities

geographical location

seasonal behaviors