MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

(PROCESSO SELETIVO DE ADMISSÃO À ESCOLA NAVAL / PSAEN-2009)

NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA

MATEMÁTICA E FÍSICA

PROVA DE MATEMÁTICA

1) Ao escrevermos $\frac{x^2}{x^4+1} = \frac{Ax+B}{a_1x^2+b_1x+c_1} + \frac{Cx+D}{a_2x^2+b_2x+c_2}$ onde

 $a_i,b_i,c_i\;(1\leq i\leq 2)$ e A,B,C e D são constantes reais, podemos afirmar que A^2+C^2 vale

- (A) $\frac{3}{8}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{4}$
- (D) $\frac{1}{8}$
- (E) 0

- 2) Sabendo que a equação $2x=3\sec\theta$, $\frac{\pi}{2}\langle\theta\langle\pi|$ define implicitamente θ como uma função de x, considere a função f de variável real x onde f(x) é o valor da expressão $\frac{5}{2} \csc\theta + \frac{2}{3} sen2\theta$ em termos de x.Qual o valor do produto $(x^2\sqrt{4x^2-9})f(x)$?
- (A) $5x^3 4x^2 9$
- (B) $5x^3 + 4x^2 9$
- (C) $-5x^3 4x^2 + 9$
- (D) $5x^3 4x^2 + 9$
- (E) $-5x^3 + 4x^2 9$

- 3) Sejam:
- a) f uma função real de variável real definida por $f(x) = arctg\left(\frac{x^3}{3} - x\right), \quad x > 1 \quad e$
- b) L a reta tangente ao gráfico da função $y=f^{-1}(x)$ no ponto $(0,f^{-1}(0))$. Quanto mede, em unidades de área, a área do triângulo formado pela reta L e os eixos coordenados?
- (A) $\frac{3}{2}$
- (B) 3
- (C) 1
- (D) $\frac{2}{3}$

- 4) Considere:
- a) $\vec{v}_{_{1}}$, $\vec{v}_{_{2}}$, $\vec{v}_{_{3}}$ e $\vec{v}_{_{4}}$ vetores não nulos no \Re^{3}
- b) a matriz $[v_{ij}]$ que descreve o produto escalar de \vec{v}_i por \vec{v}_j , $1 \le i \le 4$, $1 \le j \le 4$ e que é dada abaixo:

$$[v_{ij}] = \begin{bmatrix} 1 & \frac{2\sqrt{2}}{3} & \frac{-\sqrt{3}}{2} & \frac{1}{3} \\ \frac{2\sqrt{2}}{3} & 2 & -1 & 2 \\ \frac{-\sqrt{3}}{2} & -1 & 3 & \sqrt{3} \\ \frac{1}{3} & 2 & \sqrt{3} & 4 \end{bmatrix}$$

c) o triângulo **PQR** onde $\overrightarrow{QP} = \overrightarrow{v}_2$ e $\overrightarrow{QR} = \overrightarrow{v}_3$.

Qual o volume do prisma, cuja base \acute{e} o triângulo \emph{PQR} e a altura h igual a duas unidades de comprimento?

- (A) $\frac{\sqrt{5}}{4}$
- (B) $\frac{3\sqrt{5}}{4}$
- (c) $2\sqrt{5}$
- (D) $\frac{4\sqrt{5}}{5}$
- (E) $\sqrt{5}$

- 5) Os gráficos das funções reais f e g de variável real, definidas por $f(x)=4-x^2$ e $g(x)=\frac{5-x}{2}$ interceptam-se nos pontos A=(a,f(a)) e B=(b,f(b)), $a\leq b$. Considere os polígonos CAPBD onde C e D são as projeções ortogonais de A e B respectivamente sobre o eixo x e P(x,y), $a\leq x\leq b$ um ponto qualquer do gráfico da f. Dentre esses polígonos , seja Δ , aquele que tem área máxima. Qual o valor da área de Δ , em unidades de área ?
- (A) $\frac{530}{64}$
- (B) $\frac{505}{64}$
- (C) $\frac{445}{64}$
- (D) $\frac{125}{64}$
- (E) $\frac{95}{64}$

- 6) Considere a função real f de variável real e as seguintes proposições:
- I)Se f é contínua em um intervalo aberto contendo $x=x_0$ e tem um máximo local em $x=x_0$ então $f'(x_0)=0$ e $f''(x_0)<0$.
- II) Se f é derivável em um intervalo aberto contendo $x=x_0$ e $f'(x_0)=0$ então f tem um máximo ou um mínimo local em $x=x_0$.
- III) Se f tem derivada estritamente positiva em todo o seu domínio então f é crescente em todo o seu domínio .
- IV) Se $\lim_{x\to a} f(x) = 1$ e $\lim_{x\to a} g(x)$ é infinito então $\lim_{x\to a} (f(x))^{g(x)} = 1$.
- V) Se f é derivável $\forall x \in \Re$, então $\lim_{s \to 0} \frac{f(x) f(x 2s)}{2s} = 2f'(x)$.

Podemos afirmar que

- (A) todas são falsas
- (B) todas são verdadeiras
- (C) apenas uma delas é verdadeira
- (D) apenas duas delas são verdadeiras
- (E) apenas uma delas é falsa

www.concursosmilitares.com.br

		_			abaixo, co for verda	-						
() [ois	planos	que	possuem 3	3 pc	ntos	em	comum	são	coincide	ntes.

- () Duas retas concorrentes no \Re^3 determinam um único plano.
- () Se dois planos $A \in B$ são ambos perpendiculares a um outro plano C, então os planos A e B são paralelos.

() Se duas retas r e s do \Re^3 são ambas perpendiculares a uma

() Se duas retas r e s no \Re^3 são paralelas a um plano A então r e s são paralelas.

Lendo a coluna da esquerda, de cima para baixo, encontra-se

(A) F F V F F

reta t, então r e s são paralelas.

- (B) V F V F F
- (C) V V V F F
- (D) F V V F V
- (E) F F V V V

8) As circunferências da figura abaixo possuem centro nos pontos T e Q, têm raios 3cm e 2cm ,respectivamente, são tangentes entre si e tangenciam os lados do quadrado ABCD nos pontos P,R,S e U.

Qual o valor da área da figura plana de vértices P,T,Q,R,e D em cm^2 ?

- (A) $\frac{(7\sqrt{2}+18)}{2\sqrt{2}}$
- (B) $\frac{(50\sqrt{2}+23)}{8}$
- (C) $\frac{(15\sqrt{2}+2)}{4}$
- (D) $\frac{(30\sqrt{2}+25)}{4}$
- (E) $\frac{(50\sqrt{2}+49)}{4}$

- 9) Considere um tanque na forma de um paralelepípedo com base retangular cuja altura mede 0.5m, contendo água até a metade de sua altura. O volume deste tanque coincide com o volume de um tronco de pirâmide regular de base hexagonal, com aresta lateral $5\,cm$ e áreas das bases $54\,\sqrt{3}\,cm^2$ e $6\sqrt{3}\,cm^2$ respectivamente. Um objeto, ao ser imerso completamente no tanque faz o nível da água subir $0.05\,m$. Qual o volume do objeto em cm^3 ?
- (A) $\frac{51\sqrt{3}}{10}$
- (B) $\frac{63\sqrt{3}}{10}$
- (C) $\frac{78\sqrt{3}}{10}$
- (D) $\frac{87\sqrt{3}}{10}$
- (E) $\frac{91\sqrt{3}}{10}$

10) A figura abaixo mostra-nos um esboço da visão frontal de uma esfera, um cilindro circular reto com eixo vertical e uma pirâmide regular de base quadrada, que foram guardados em um armário com porta, que possui a forma de um paralelepípedo retângulo com as menores dimensões possíveis para acomodar aqueles sólidos. Sabe-se que estes sólidos são tangentes entre si; todos tocam o fundo e o teto do armário; apoiam-se na base do armário; são feitos de material com espessura desprezível; a esfera e a pirâmide tocam as paredes laterais do armário; $120\,cm$ é a medida do comprimento do armário; $4\sqrt{11}\,dm$ é a medida do comprimento da diagonal do armário; e a porta pode ser fechada sem resistência, então, a medida do volume do armário não ocupado pelos sólidos vale

(A)
$$\frac{2^4(2^5-5\pi)}{3} dm^3$$

(B)
$$\frac{2^4(2^5+5\pi)}{3}m^3$$

(C)
$$\frac{2^4(2^3-5\pi)}{5} dm^3$$

(D)
$$\frac{2^4(2^6+10\pi)}{6} dam^3$$

(E)
$$\frac{2^4(2^6-10\pi)}{6} dm^3$$

11)Um triângulo retângulo está inscrito no círculo $x^2+y^2-6x+2y-15=0$ e possui dois vértices sobre a reta 7x+y+5=0. O terceiro vértice que está situado na reta de equação -2x+y+9=0 é

- (A) (7,4)
- (B) (6,3)
- (C) (7,-4)
- (D) (6,-4)
- (E) (7,-3)

12) Considere as funções reais f e g de variável real definidas por $f(x) = \frac{\sqrt{e^{2x-1}-1}}{\ln(4-x^2)} \quad \text{e} \quad g(x) = xe^{\frac{1}{x}} \quad \text{respectivamente,} \quad A \quad \text{e} \quad B$

subconjuntos dos números reais, tais que A é o domínio da função f e B o conjunto onde g é crescente. Podemos afirmar que $A\cap B$ é igual a

- (A) $\left[1,\sqrt{3}\right[\cup\right]\sqrt{3},+\infty$
- (B) $[1,2[\cup]2,+\infty[$
- (C) $]2,+\infty[$
- (D) $\left[1,\sqrt{3}\left[\cup\right]\sqrt{3},2\right[$
- (E) $]\sqrt{3},+\infty[$

13) Um paralelepípedo retângulo tem dimensões x,y e z expressas em unidades de comprimento e nesta ordem, formam uma P.G de razão 2. Sabendo que a área total do paralelepípedo mede 252 unidades de área, qual o ângulo formado pelos vetores $\vec{u}=(x-2,y-2,z-4)$ e $\vec{w}=(3,-2,1)$?

- (A) $arc\cos\frac{\sqrt{14}}{42}$
- (B) $arcsen \frac{5\sqrt{14}}{126}$
- (C) $arctg 2\sqrt{5}$
- (D) $arctg 5\sqrt{5}$
- (E) $arc\sec\frac{\sqrt{14}}{3}$

14) No sistema decimal, a quantidade de números ímpares positivos menores que 1000, com todos os algarismos distintos é

- (A) 360
- (B) 365
- (C) 405
- (D) 454
- (E) 500

15) Qual o valor de
$$\int sen 6x \cos x \, dx$$
?

$$(A) \quad -\frac{7\cos 7x}{2} - \frac{5\cos 5x}{2} + c$$

(B)
$$\frac{7sen7x}{2} + \frac{5sen5x}{2} + c$$

(C)
$$\frac{sen7x}{14} + \frac{sen5x}{10} + c$$

(D)
$$-\frac{\cos 7x}{14} - \frac{\cos 5x}{10} + c$$

$$(E) \quad \frac{7\cos 7x}{2} + \frac{5\cos 5x}{2} + c$$

16) Considere x_1, x_2 e $x_3 \in \Re$ raízes da equação $64x^3 - 56x^2 + 14x - 1 = 0$. Sabendo que x_1, x_2 e x_3 são termos consecutivos de uma P.G e estão em ordem decrescente, podemos afirmar que o valor da expressão $sen\left[(x_1+x_2)\pi\right] + tg\left[(4x_1x_3)\pi\right]$ vale

- (A) 0
- (B) $\frac{\sqrt{2}}{2}$
- (C) $\frac{2-\sqrt{2}}{2}$
- (D) 1
- $(E) \quad \frac{2+\sqrt{2}}{2}$
- 17) Coloque ${\bf F}$ (falso) ou ${\bf V}$ (verdadeiro) nas afirmativas abaixo, assinalando a seguir a alternativa correta.
- ()Se A e B são matrizes reais simétricas então AB também é simétrica
- () Se A é uma matriz real n \times n cujo termo geral é dado por $a_{ij} = (-1)^{i+j}$ então A é inversível
- ()Se A e B são matrizes reais $n \times n$ então $A^2 B^2 = (A-B).(A+B)$
- ()Se A é uma matriz real $n \times n$ e sua transposta é uma matriz inversível então a matriz A é inversível
- ()Se A $\acute{\rm e}$ uma matriz real quadrada e A^2 = 0 então A = 0

Lendo a coluna da esquerda, de cima para baixo, encontra-se

- (A) (F) (F) (F) (F)
- (B) (V) (V) (V) (F) (V)
- (C) (V) (V) (F) (F)
- (D) (F) (F) (F) (V) (F)
- (E) (F) (F) (V) (V)

Concurso: PSAEN – 2009

18) Seja S o subconjunto de \Re cujos elementos são todas as

subconjunto de

(A)
$$]-\infty,-5[\cup]1,+\infty[$$

(B)
$$]-\infty,-3]\cup[3,+\infty[$$

(C)
$$]-\infty,-5[\cup]3,+\infty[$$

(D)
$$]-\infty,-3] \cup [2,+\infty[$$

(E)
$$]-\infty,-2[\cup[4,+\infty[$$

19) O raio de uma esfera em dm é igual à posição ocupada pelo termo independente de x no desenvolvimento de

$$\left(25^{\frac{1}{2}\left(\frac{sen^2\frac{x}{2}}{2}\right)} + 5^{(1+\cos x)}\right)^{54}$$
 quando consideramos as potências de

expoentes decrescentes de $25^{\frac{1}{2}\left(sen^2\frac{x}{2}\right)}$. Quanto mede a área da superfície da esfera?

- (A) $10,24\pi m^2$
- (B) $115600\pi \ cm^2$
- (C) $1444\pi \ dm^2$
- (D) $1296\pi \ dm^2$
- (E) $19,36\pi m^2$

20) Considere o triângulo ABC dado abaixo, onde M_1, M_2 e M_3 são os pontos médios dos lados AC, BC e AB, respectivamente e k a razão da área do triângulo AIB para a área do triângulo IM_1M_2 e $f(x) = \left(\frac{1}{2}x^3 + x^2 - 2x - 11\right)\sqrt{2}$. Se um cubo se expande de tal modo que num determinado instante sua aresta mede 5dm e aumenta à razão de $|f(k)| \frac{dm}{\min}$ então podemos afirmar que a taxa de variação da área total da superfície deste sólido, neste instante, vale em $\frac{dm^2}{\min}$

 M_1

(C)
$$420\sqrt{2}$$

(D)
$$940\sqrt{2}$$

- 21) Um pequeno bloco de massa m está, devido ao atrito, em repouso sobre uma superfície cilíndrica numa posição que forma um ângulo θ com a vertical, conforme indica a figura. Os coeficientes de atrito estático e cinético entre o bloco e a superfície são, respectivamente, iguais a μ_{e} e $\mu_{\text{c}}.$ Considerando o bloco como uma partícula, quanto vale o módulo da força de atrito entre o bloco e a superfície?
- (A) $mgsen\theta$
- $(B) mqcos\theta$
- $(C) \mu_{e} mg$
- (D) μ_{e} mgsen θ
- (E) $\mu_c mg cos \theta$

- 22) Em uma academia de ginástica, uma pessoa exerce sobre um aparelho, durante dois segundos, uma força constante de 400N. A função temporal da velocidade da mão que provoca essa força é mostrada no gráfico abaixo. A velocidade da mão tem a mesma direção e sentido da força durante todo o movimento. Quais são, respectivamente, o trabalho realizado pela força nesse intervalo de tempo, e a potência máxima aplicada ao aparelho?
- (A) 200N.m e 200W
- (B) 400N.m e 200W
- (C) 400N.m e 400W
- (D) 800N.m e 400W
- (E) 800N.m e 800W

23) Dois vasos cilíndricos idênticos C_1 e C_2 flutuam na água em posição vertical, conforme indica a figura. O vaso C_1 contém um líquido de massa específica ρ_1 e o vaso C_2 , um líquido de massa específica ρ_2 . O gráfico mostra como h varia com x, onde h é a altura submersa de cada vaso e x é a altura da coluna de líquido dentro de cada vaso. Sendo assim, qual a razão ρ_1/ρ_2 ?

Dados: sen30° = $\frac{1}{2}$; sen60° = $\frac{\sqrt{3}}{2}$.

- (A) $\frac{\sqrt{3}}{2}$
- (B) $\frac{2}{3}$
- (C) $\frac{\sqrt{3}}{3}$
- (D) $\frac{\sqrt{2}}{3}$
- (E) $\frac{1}{3}$

- 24) Um carro de testes parte do repouso com uma aceleração constante de $6.00 \, \text{m/s}^2$ em uma pista retilínea. Ao atingir a velocidade de $216 \, \text{km/h}$, é submetido a uma desaceleração constante até parar. Qual foi o módulo da desaceleração, em $\, \text{m/s}^2$, considerando que a distância total percorrida pelo carro foi de $750 \, \text{m}$?
- (A)3,50
- (B)4,00
- (C)4,50
- (D) 5,00
- (E)5,50

- 25) Uma partícula de carga q e massa m foi acelerada a partir do repouso por uma diferença de potencial V. Em seguida, ela penetrou pelo orifício X numa região de campo magnético constante de módulo B e saiu através do orifício Y, logo após ter percorrido a trajetória circular de raio R indicada na figura. Considere desprezíveis os efeitos gravitacionais. Agora suponha que uma segunda partícula de carga q e massa 3m seja acelerada a partir do repouso pela mesma diferença de potencial V e, em seguida, penetre na região de campo magnético constante pelo mesmo orifício X. Para que a segunda partícula saia da região de campo magnético pelo orifício Y, após ter percorrido a mesma trajetória da primeira partícula, o módulo do campo magnético deve ser alterado para
- (A) O campo não deve ser alterado.
- (B) $\frac{B}{3}$
- (C) $\frac{\sqrt{3}}{3}$ B
- (D) $\sqrt{3}$ B
- (E) $3\sqrt{3}$ B

26) Numa dada região do espaço, temos um campo elétrico constante (vertical para cima) de módulo E=4,0N/C e, perpendicular a este, um campo magnético também constante de módulo B=8,0T. Num determinado instante, uma partícula de carga positiva q é lançada com velocidade \vec{v} nesta região, na direção perpendicular, tanto ao campo elétrico quanto ao campo magnético, conforme indica a figura. Com relação à trajetória da partícula, indique a opção correta.

- (A) Se v=2,0m/s, a trajetória será a 2.
- (B) Se v=1,5m/s, a trajetória será a 3.
- (C) Se v=1,0m/s, a trajetória será a 2.
- (D) Se v=0,5m/s, a trajetória será a 1.
- (E) Se v=0,1m/s, a trajetória será a 3.

27) Uma pequena esfera de massa m está presa a um fio ideal de comprimento L=0,4m, que tem sua outra extremidade presa ao teto, conforme indica a figura. No instante t=0, quando o fio faz um ângulo de 5° com a vertical, a esfera é abandonada com velocidade zero. Despreze todos os atritos. Qual a distância, em metros, percorrida pela esfera após 36 segundos?

Dado: $g=10m/s^2$.

- (A) 0,8
- (B) 1,0
- (C) 2,0
- (D) 3,0
- (E) 4,0

Concurso: PSAEN - 2009

28) Suponha um sistema isolado de três partículas de mesma massa, m = $3.0.10^{-17}\,\mathrm{kg}$, carregadas positivamente e fixadas nos vértices de um triângulo equilátero de lado a = $2.0\,\mathrm{m}$, conforme indica a figura. As partículas possuem as seguintes cargas, $q_1 = q_2 = 8.0.10^{-8}\mathrm{C}$ e $q_3 = 5.0.10^{-8}\mathrm{C}$. Considere o sistema no vácuo e as interações gravitacionais desprezíveis. Suponha, agora, que a partícula q_3 seja liberada, enquanto q_1 e q_2 permanecem fixas nas mesmas posições. Qual a velocidade da partícula q_3 , em m/s, quando esta estiver a 5.0m de distância da partícula q_1 ?

Dado: $k_0 = 9.10^9 \text{ Nm}^2/\text{C}^2$.

- $(A) 2.4.10^7$
- (B) $1,2.10^7$
- $(C) 2,4.10^6$
- (D) $1.2.10^6$
- $(E) 2,4.10^5$

- 29) O centro de massa de um sistema de duas partículas se desloca no espaço com uma aceleração constante $\vec{a}=4,0\hat{i}+3,0\hat{j}\,(\text{m/s}^2)$. Num dado instante t, o centro de massa desse sistema está sobre a reta y=5,0m com uma velocidade $\vec{v}=4,0\hat{i}\,(\text{m/s})$, sendo que uma das partículas está sobre a origem e a outra, que possui massa de 1,5kg, encontra-se na posição $\vec{r}=3,0\hat{i}+8,0\hat{j}\,(\text{m})$. Quanto valem, respectivamente, o módulo da quantidade de movimento do sistema no instante t, e o módulo da resultante das forças externas que atuam no sistema?
- (A) 7,6 kgm/s e 10N
- (B) 7,6 kgm/s e 12N
- (C) 9,6 kgm/s = 11N
- (D) 9,6 kgm/s e 12N
- (E) 11,6 kgm/s e 10N

30) Ao se efetuar medidas do nível de intensidade do som emitido por uma dada fonte, verifica-se uma redução constante de 5,0dB ao ano. Sendo, $P_{\rm o}$ a potência original da fonte e P a potência dez anos depois, qual a razão $P_{\rm o}/P$?

- $(A) 10^{0.5}$
- (B) $10^{1,5}$
- (C) 10^5
- (D) 10¹⁵
- $(E) 10^{50}$

- 31) Um foguete foi lançado da superfície da Terra com uma velocidade $v=\frac{2}{5}\,v_e\,,$ onde v_e é a velocidade de escape do foguete. Sendo $R_T,$ o raio da Terra, qual a altitude máxima alcançada pelo foguete?
- (A) $\frac{4}{31}$ R_T
- (B) $\frac{2}{29}$ R_T
- (C) $\frac{4}{27} R_T$
- (D) $\frac{2}{25} R_T$
- (E) $\frac{4}{21}$ R_T

- 32) Analise as afirmativas abaixo.
- I Quando a temperatura do ar se eleva num processo aproximadamente adiabático, verificamos que a pressão aumenta.
- II Para um gás ideal, as moléculas não exercem ação mútua, a não ser durante as eventuais colisões que devem ser perfeitamente elásticas.
- III A energia interna, ou seja, o calor de uma amostra de gás ideal é a soma das energias cinéticas de todas as moléculas que o constitui.
- IV Numa transformação isotérmica, uma amostra de gás não sofre alterações na sua energia interna.
- V O ciclo de Carnot idealiza o funcionamento de uma máquina térmica onde o seu rendimento é o maior possível, ou seja, 100%.

As afirmativas corretas são, somente,

- (A) I, II e IV
- (B) II, III e IV
- (C) III, IV e V
- (D) I, II e V
- (E) I, III e V

33) Na figura, um fio de densidade linear μ_2 e comprimento L_2 está soldado nas suas extremidades a dois fios de mesma densidade linear μ_1 e de comprimentos L_1 e L_3 . O fio composto está preso em uma de suas extremidades (ponto P) a um oscilador senoidal de freqüência variável e na outra extremidade a um ponto fixo Q. Verifica-se que, para uma certa freqüência do oscilador, forma-se uma onda estacionária com 7 nós, tendo os pontos de solda e o ponto Q como nós. No ponto P, a amplitude de oscilação é suficientemente pequena para que este ponto também seja um

nó. Considere que $L_3 = 3L_1 = 2L_2$. Qual a razão $\frac{\mu_2}{\mu_1}\,?$

- (A) $\frac{9}{2}$
- (B) $\frac{7}{3}$
- (C) $\frac{16}{9}$
- (D) $\frac{17}{11}$
- $(E) \quad \frac{13}{7}$

34) O circuito abaixo é utilizado para disparar o flash de uma máquina fotográfica. Movendo a chave S para o ponto 1, fecha-se o circuito de forma a carregar os capacitores C_1 e C_2 . Quando os capacitores estão completamente carregados, a chave S é movida para o ponto 2 e toda energia armazenada nos capacitores é liberada e utilizada no disparo do flash. Sendo, $R_1=6,0\Omega$, $R_2=3,0\Omega$, $R_3=2,0\Omega$, $C_1=4,0\mu F$, $C_2=8,0\mu F$ e V=1,5V, qual a energia, em microjoules, utilizada no disparo do flash?

- (B) $\frac{21}{8}$
- (C) $\frac{11}{8}$
- (D) $\frac{9}{8}$
- (E) $\frac{5}{8}$

www.concursosmilitares.com.br

Concurso: PSAEN – 2009

35) Uma barra condutora, de comprimento a=0,5m e resistência elétrica 2,0 Ω , está presa por dois pontos de solda, R e S, a uma haste metálica em forma de U de resistência elétrica desprezível que se encontra fixa sobre uma mesa, numa região de campo magnético \vec{B} , conforme indica a figura. Ao disparo de um cronômetro, o módulo do campo magnético começa a variar no tempo segundo a equação B=4,0+8,0t, onde o campo magnético é medido em tesla e o tempo em segundos. Sabe-se que os pontos de solda romperão, se uma força igual ou superior a 20N for aplicada a cada um deles. Qual é o instante, em segundos, em que os pontos de solda R e S romperão?

/ Λ	١	2		
lΑ	1	- 5	-	\neg

36) Um gás pode expandir do estado inicial i para o estado final f seguindo a trajetória $A(1 \rightarrow 5 \rightarrow 4)$ ou a trajetória $B(1 \rightarrow 2 \rightarrow 3 \rightarrow 4)$ do diagrama PV abaixo. A variação da energia interna do gás é de 20J ao expandir de i a f pela trajetória A. Seguindo a trajetória B, do estado 1 para o estado 3 o trabalho realizado pelo gás é, em valor absoluto, igual a 25J e do estado 3 para o estado 4 o trabalho é 13J. Qual o calor trocado com o meio ambiente quando o gás vai do estado 2 para o estado 3?

- (A) 32J cedidos pelo gás.
- (B) 32J absorvidos pelo gás.
- (C) 8,0J cedidos pelo gás.
- (D) 8,0J absorvidos pelo gás.
- (E) não há troca de calor.

37) Uma bola de golfe percorre 7,2m horizontalmente e atinge uma altura máxima de 1,8m antes de colidir com o solo. Durante o choque com o solo, a bola sofre um impulso na vertical e imediatamente após o choque sua velocidade forma um ângulo de 30° com a horizontal, conforme indica a figura. Quanto vale o coeficiente de restituição da colisão?

1,8m

7,2m

Dados: $g=10m/s^2$; $sen30^\circ = \frac{1}{2}$; $sen60^\circ = \frac{\sqrt{3}}{2}$.

- (A) $\frac{\sqrt{3}}{2}$
- (B) $\frac{2}{3}$
- (C) $\frac{\sqrt{3}}{3}$
- (D) $\frac{\sqrt{2}}{3}$
- (E) $\frac{1}{3}$

38) Duas amostras A e B de massas $m_A=2.0 \, \mathrm{kg}$ e $m_B=4.0 \, \mathrm{kg}$ estão a diferentes temperaturas quando, no instante t=0, são colocadas em contato num recipiente termicamente isolado. O gráfico da fig.a, mostra a temperatura das duas amostras em função do tempo, enquanto o gráfico da fig.b mostra a variação da temperatura sofrida pela amostra A em função da energia recebida por unidade de massa. Da leitura dos gráficos, qual é a taxa, em quilojoules/minuto, com que o material da amostra B perde calor?

- (A)2,6
- (B)3,2
- (C)5,6
- (D)6,4
- (E)8,4

39) Cinco molas estão dispostas nas posições indicadas na figura, de modo a constituirem um amortecedor de impacto. Um bloco de massa 60,0kg cai verticalmente, a partir do repouso, de uma altura de 2,20m acima do topo das molas. As três molas menores têm constante elástica $k_1=200\mbox{N/m}$, as duas maiores $k_2=500\mbox{N/m}$ e estão todas inicialmente em seu tamanho natural. Qual é a máxima velocidade, em m/s, que o bloco irá atingir durante a queda?

40) No circuito abaixo, todas as fontes de tensão são ideais, e algumas estão sendo carregadas. Quais as fontes que estão sendo carregadas e qual o potencial do ponto A indicado no circuito?

- (A) E_1 , E_2 , E_4 e +42V
- (B) E_1 , E_2 , E_4 e +54V
- (C) E_{1} , E_{3} e +42V
- (D) E_1 , E_3 e +36V
- (E) E_1 , E_3 e +54V

DIRETORIA DE ENSINO DA MARINHA PROCESSO SELETIVO DE ADMISSÃO À ESCOLA NAVAL (PSAEN/2009)

	MATEMÁTIC	A E FÍSICA			
AMARELA	AZUL	VERDE	ROSA		
01 C	01 A	01 B	01 C		
02 C	02 B	02 E	02 в		
03 B	03 E	03 B	03 D		
04 E	04 C	04 B	04 C		
05 B	05 A	05 D	05 B		
06 A	06 A	06 E	06 в		
07 A	07 C	07 B	07 D		
08 E	08 B	08 A	08 C		
09 C	09 D	09 C	09 в		
10 "A" e "E"	10 в	10 D	10 A		
11 B	11 E	11 D	11 E		
12 D	12 D	12 D	12 E		
13 A	13 D	13 C	13 E		
14 в	14 E	14 E	14 D		
15 D	15 B	15 A	15 E		
16 E	16 "A" e "E"	16 "A" e "E"	16 A		
17 D	17 D	17 A	17 D		
18 D	18 C	18 E	18 C		
19 C	19 C	19 C	19 A		
20 E	20 E	20 C	20 "A" e "E"		
21 A	21 C	21 E	21 D		
22 C	22 B	22 A	22 В		
23 E	23 E	23 D	23 В		
24 в	24 D	24 E	24 E		
25 D	25 E	25 B	25 C		
26 в	26 A	26 В	26 E		
27 E	27 В	27 C	27 A		
28 D	28 D	28 A	28 A		
29 D	29 E	29 D	29 C		
30 C	30 A	30 A	30 E		
31 E	31 A	31 C	31 A		
32 A	32 C	32 C	32 D		
33 C	33 D	33 E	33 C		
34 A	34 C	34 D	34 D		
35 E	35 A	35 C	35 Anulada		
36 Anulada	36 B	36 A	36 E		
37 C	37 Anulada	37 E	37 D		
38 B	38 D	38 Anulada	38 C		
39 D	39 E	39 B	39 A		
40 A	40 C	40 D	40 B		