MULTI-CONTROLLED NOT GATE DECOMPOSITION

ÁKOS NAGY

This document explains the contents of the accompanying Jupyter notebook, MCX.IPYNB. We construct a multi-controlled NOT gate following the work of da Silva et al. in [1]. We do not reproduce the proof of their results here, those are readily available in the published paper, only the construction.

1. The multi-controlled NOT gate

Let $MCX^{[n]}$ be a quantum gate on n+1 qubits, that is controlled by the first n qubits and if all of those are in state $|1\rangle$, then it acts as a NOT, or X, gate on the last. In other words, its matrix in the computational basis (still referred to as MCX^n) has the form

$$MCX_{ij}^{[n]} = \begin{cases} 1, & \text{if } i = j \& i < 2^{n+1} - 2, \text{or}(i, j) \in \{(2^{n+1} - 1, 2^{n+1} - 2), (2^{n+1} - 2, 2^{n+1} - 1)\}, \\ 0, & \text{otherwise.} \end{cases}$$

for example, when n = 2, we get

$$MCX^{[2]} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Remark 1.1. Note that QISKIT uses "endian" labeling for qubits, thus one gets the above matrix if the target qubit is the first one, not the last. Hence, in my code, I do that same get the matrix above. The target qubit can be easily changed from the first to the k^{th} by replacing the line

to

where $1 \le k \le n+1$.

Date: October 15, 2023.

In order to simplify our construction, we note that the Hadamard gates, H, satisfies $H^2 = \mathbb{1}_2$, $H = U(\frac{\pi}{2}, 0, \pi)$, and X = HZH, all of which is easily verifiable, thus it is enough to construct a multi-controlled Z gate, call $MCZ^{[n]}$, (for which any qubit can be regarded as the target) and then $MCX^{[n]} = U^{(t)}(\frac{\pi}{2}, 0, \pi)MCZ^{[n]}U^{(t)}(\frac{\pi}{2}, 0, \pi)$, where the superscript $T^{(t)}$ means that the gate is applied to the target qubit. Hence, we outline the construction of $MCZ^{[n]}$ below only.

Using [1, Equation 3] or [1, Figure 1], with U = Z (in their notation), we can break down the construction of $MCZ^{[n]}$ to the following steps:

- 1. For each $i \in \{1, ..., n-1\}$, in the usual order, add a $\sqrt[i+1]{Z}$ to the target qubit, controlled by the $(n+1-i)^{\text{th}}$ control qubit and then for each $j \in \{n-i, ..., n-1\}$, in the usual order, add an $R_X\left(\frac{\pi}{2^i}\right)$ gate to the j^{th} control qubit, controlled by the $(n+1-i)^{\text{th}}$ control qubit.
- 2. apply (1) for i = n also.
- 3. Apply the inverse of (1).
- 4. Apply (1) again, but without the controlled $\sqrt[i+1]{Z}$ gates.
- 5. Apply (4) for i = n also.
- 6. Apply the inverse of (4).

Finally, note that we use controlled gates that are not, yet, decomposed into U and CNOT gates, but that can always be done; see [2, Chapter 4.3]. We only need two types, controlled R_X and controlled phase gates, which can be given (for any $\alpha \in [0, 2\pi)$ and $x, y \in \{0, 1\}$) as follows:

For a concrete implementation of the code (and some further comments), please see the accompanying code.

REFERENCES

- [1] Adenilton J. Da Silva and Daniel K. Park, *Linear-depth quantum circuits for multiqubit controlled gates*, Physical Review A **106** (2022), no. 4, 042602. †1, 2
- [2] Michael A Nielsen and Isaac L Chuang, *Quantum computation and quantum information*, Phys. Today **54** (2001), no. 2, 60. †2

(Ákos Nagy) BEIT CANADA INC.

URL: akosnagy.com

Email address: akosnagymath@gmail.com