

РОССИЙСКАЯ АКАДЕМИЯ НАУК ИНСТИТУТ ПРОБЛЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ

В.М. Вишневский

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЕКТИРОВАНИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

ТЕХНОСФЕРА

MOCKBA

2003

РОССИЙСКАЯ АКАДЕМИЯ НАУК ИНСТИТУТ ПРОБЛЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ

В.М. Вишневский

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЕКТИРОВАНИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

ТЕХНОСФЕРА

MOCKBA

2003

Использование теории сетей МО для исследования компьютерных сетей

Стохастический характер поступления данных и детерминированная обработка их в каналах связи и узлах коммутации предопределяют использование моделей теории МО для анализа и проектирования компьютерных сетей. Однако следует отметить, что исследование компьютерной сети в целом или отдельных протоколов (например, сквозных) с помощью простейших однофазных или двухфазных моделей МО (концепция «черного ящика»), характерное для ранних подходов, позволяет дать лишь некоторое качественное представление о характере протекания информационных процессов, так как не учитывает сложного взаимодействия устройств и процессов в компьютерной сети. В то же время указанные процессы естественно отображаются в моделях сетей МО, которые нашли широкое применение для анализа компьютерных сетей.

Модели сетей МО применяются для анализа характеристик протоколов практически всех уровней (в первую очередь второго, третьего и четвертого). На канальном уровне эти модели используются для определения эффективной скорости передачи данных (многочисленные работы по исследованию протоколов канального уровня HDLC, SDLC, BSC и т. д. описаны, например, в обзоре [113]). При анализе сквозных протоколов модели теории сетей МО позволяют находить межконцевую задержку сообщений (пакетов), определять параметры управления потоками и т.д. Сетевые модели отдельных компонент компьютерной сети адекватно отражают многоэтапный процесс обработки сообщений (пакетов) в этих устройствах, позволяя не только рассчитывать характеристики, но и осуществлять выбор различных параметров, например объемов буферной памяти узлов коммутации (см. раздел 6.4). Сложную структуру отдельных узлов необходимо учитывать и при расчете базовой сети передачи данных в целом. Иллюстрация такого подхода, учитывающего ограниченность буферной памяти УК и различные протоколы квитирования пакетов, приведена в разделе 6.2. В то же время необходимость решения оптимизационных задач (выбор топологии и пропускных способностей каналов связи, отыскание оптимальных маршрутов и т. д.) требует применения упрощенных моделей сетей МО, позволяющих находить

Леонард Клейнрок (англ. *Leonard Kleinrock*; род. 13 июня 1934, Нью-Йорк) — американский инженер и учёный в области информационных технологий и компьютерных сетей. Профессор Школы инженерного дела и прикладных наук Калифорнийского университета в Лос-Анджелесе. Клейнрок внёс существенный вклад в развитие компьютерных сетей и сыграл важную роль в развитии ARPANET в Лос-Анджелесе — сети, ставшей предшественником Интернета^[5].

Его теоретические работы по иерархической маршрутизации по настоящее время используются для работы современного Интернета.

Леонар	од Клейнрок	
англ. Leonard Kleinrock		
Дата рождения	13 июня 1934 ^{[1][2]} (83 года)	
Место рождения	Нью-Йорк, Нью-Йорк, США	
Страна	США ^{[3][4]}	
Научная сфера	инженерное дело, информатика	
Место работы	Калифорнийский университет в Лос- Анджелесе	
Альма-матер	Сити-колледж, Массачусетский технологический институт	
Известные ученики	Кристофер Филип Фергюсон Винтон Грей Серф	
Известен как	один из «отцов» Интернета	
Награды и премии	Национальная научная медаль (2007)	
Сайт	lk.cs.ucla.edu/index.html덦	
•	,	

Л. Клейнрок

ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ С ОЧЕРЕДЯМИ

Перевод с английского под редакцией

д-ра техн. наук Б. С. Цыбакова

ИЗДАТЕЛЬСТВО «МИР» МОСКВА 1979

Л. Клейнрок

ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ С ОЧЕРЕДЯМИ

Перевод с английского под редакцией

д-ра техн. наук Б. С. Цыбакова

ИЗДАТЕЛЬСТВО «МИР» МОСКВА 1979

		C 0011					
Глава	а 5.	Сети ЭВМ; анализ и проектирование	-				307
	5.1.	Коллективное использование ресурсов					309
	5. 2.	Пекоторые контрасты и компромиссы	_				327
	5.3.	Структура сети и коммутация пакетов					330
	5.4.	Сеть ARPANET; описание существующей сети				·	343
	5.5.	Определения, модель и формулировки задач					354
	5.6.	Апализ задержки	:	•		•	360
	5.7.	Задача выбора пропускных способностей .		:		•	371
	5.8.	Задача распределения потоков			•	•	382
	5.9.	Задача выбора пропускных способностей и ра	спр	eae.	16111		002
		потоков					392
	5.10.	Некоторые топологические рассмотрения; примене	- NH9	·ĸ	сет		002
		ARPANET					395
	5.11.	Коммутация пакстов при передаче через спутиик		•	•	1	405
	5 12	Коммутация пакетов при наземной радиосвязи	•	•	•	•	441
		ература		•		•	455
	Зада		•	•	•	•	461
	00,10		•	•	•	•	101

Задача SP.1.1				
Минимизируемся целевая функция	Стоимость компьютерной сети			
Переменные задачи	Пропускные способности узлов сети			
Ограничение Допустимое значение числа паке				
	в сети — объем незавершенной ра-			
	боты			
Задача SP.2.1				
Минимизируемая целевая функция	Значение числа пакетов в сети —			
	объем незавершенной работы			
Переменные задачи	Пропускные способности узлов сети			
Ограничение	Стоимость компьютерной сети			

Задача SP.1.1		
Минимизируемая целевая функция $\min \sum_{j=1}^{M} F_j(\mu_j, m_j)$		
Переменные за- дачи	$\{m_j\}, \{\mu_j\}, j = \overline{1, M}$	
Ограничение	$\sum_{j=1}^{M} v_{j} L_{j}(\mu_{1}, m_{1}; \mu_{2}, m_{2}; \ldots; \mu_{M}, m_{M}) \leq L_{T}$	
Задача SP.2.1		
Минимизи- руемая целе- вая функция	$\min \sum_{j=1}^{M} v_j L_j(\mu_1, m_1; \mu_2, m_2; \dots; \mu_M, m_M)$	
Переменные задачи	$\{m_j\}, \{\mu_j\}, j = \overline{1, M}$	
Ограничение	$\sum_{j=1}^{M} F_j(\mu_j, m_j) \leq F_T$	

μ_j	Интенсивность обслуживания в j -м узле	
m_{j}	Число каналов в j -м узле	
$F_j(\mu_j, m_j)$	Стоимость j -го узла, зависящая от интенсивности обслу-	
	живания в канале и числа каналов в узле	
L_{j}	Среднее число заявок в j -м узле	
L_T	Предельно допустимое значение штрафа за наличие заявок в	
_	сети	
F_T	Верхнее граничное значение стоимости сети	
v_j	Штраф за наличие одной заявки	

Задача SP.1.1		
Минимизируема целевая функция	· \(\nabla E \land \tau \tau \tau \tau \tau \tau \tau \tau	
Переменные з	${m_j}, {\mu_j}, j = \overline{1, M}$	
Ограничение	$\sum_{j=1}^{M} v_{j} L_{j}(\mu_{1}, m_{1}; \mu_{2}, m_{2}; \ldots; \mu_{M}, m_{M}) \leq L_{T}$	
Задача SP.2.1		
Минимизи- руемая целе- вая функция	$\min \sum_{j=1}^{M} v_j L_j(\mu_1, m_1; \mu_2, m_2; \dots; \mu_M, m_M)$	
Переменные задачи	$\{m_j\}, \{\mu_j\}, j = \overline{1, M}$	
Ограничение	$\sum_{j=1}^{M} F_j(\mu_j, m_j) \leq F_T$	

μ_j	Интенсивность обслуживания в j -м узле
m_j	Число каналов в j -м узле
$F_j(\mu_j, m_j)$	Стоимость j -го узла, зависящая от интенсивности обслу-
	живания в канале и числа каналов в узле
L_{j}	Среднее число заявок в j -м узле
L_T	Предельно допустимое значение штрафа за наличие заявок в
	сети
F_T	Верхнее граничное значение стоимости сети
v_j	Штраф за наличие одной заявки

Классификация задач оптимизации разомкнутых ССМО

 $\alpha/\beta/\chi/\delta$,

где:

$$\alpha \in \{SP1.1, SP2.1\};$$

$$\beta \in \{J, G\};$$

$$\chi \in \{S, M\};$$

$$\delta \in \{R, N\}.$$

Параметр α обозначает тип задачи оптимизации; β — тип сети СМО: сеть Джексона J или немарковская сеть G; χ — количество каналов в узлах: одноканальная сеть S или многоканальная M; δ — переменные задачи (оптимизируемые параметры сети): интенсивности обслуживания в узлах R или числа каналов в узлах N.

Классификация задач оптимизации разомкнутых ССМО

 $\alpha/\beta/\chi/\delta$,

где:

$$\alpha \in \{SP1.1, SP2.1\};$$

$$\beta \in \{J, G\};$$

$$\chi \in \{S, M\};$$

$$\delta \in \{R, N\}.$$

Параметр α обозначает тип задачи оптимизации; β — тип сети СМО: сеть Джексона J или немарковская сеть G; χ — количество каналов в узлах: одноканальная сеть S или многоканальная M; δ — переменные задачи (оптимизируемые параметры сети): интенсивности обслуживания в узлах R или числа каналов в узлах N.

Оптимизация сетей Джексона

SP.2.1/J/S/R

$$\min_{\{\mu_i\}} \left(L(\{\mu_i\}, \beta) = \sum_{j=1}^{M} L_j(\mu_j) = \sum_{j=1}^{M} \left(\frac{\lambda_j}{\mu_j - \lambda_j} \right) \right) \\
\sum_{j=1}^{M} v_j \mu_j = F_T$$
(5.1)

где

 $\{\mu_i\} = (\mu_1, \mu_2, \dots, \mu_M)$ — вектор интенсивностей обслуживания в узлах сети,

 λ_j — интенсивность потока на входе в j – $\underline{\mathbf{m}}$ узел,

 $L_j(\mu_j)$ — среднее число заявок в $j-\underline{\mathbf{M}}$ узле,

 $v_j \mu_j$ — стоимость j – го узла (линейная функция интенсивности μ_j),

 F_T — стоимость сети СМО.

Оптимизация сетей Джексона. Решение Л. Клейнрока

SP.2.1/J/S/R

Функция Лагранжа приобретает следующий вид:

$$L(\{\mu_i\}, \beta) = \sum_{j=1}^n \left(\frac{\lambda_j}{\mu_j - \lambda_j}\right) + \beta \left(\sum_{j=1}^M \nu_j \mu_j - F_T\right), \qquad (5.2)$$

$$\begin{cases} \frac{\partial L}{\partial \mu_{j}} = -\lambda_{j} (\mu_{j} - \lambda_{j})^{-2} + \beta v_{j} = 0, & j = \overline{1, M}; \\ \sum_{j=1}^{M} v_{j} \mu_{j} = F_{T} \end{cases}$$

$$\mu_{j}^{*} = \lambda_{j} + \frac{\sqrt{v_{j}\lambda_{j}}}{\sum_{i=1}^{M} \sqrt{v_{i}\lambda_{i}}} \left(\frac{F_{T} - \sum_{i=1}^{n} v_{i}\lambda_{i}}{v_{j}} \right), \quad j = \overline{1, M},$$

Оптимизация сетей Джексона. Решение Л. Клейнрока

$$\min_{\{\mu_i\}} \sum_{j=1}^{M} v_j \mu_j = F_T$$

$$\sum_{j=1}^{M} \left(\frac{\lambda_j}{\mu_j - \lambda_j}\right) = L_T$$

$$\mu_j^* = \lambda_j + \frac{\sum_{i=1}^M \sqrt{v_i \lambda_i}}{L_T} \cdot \sqrt{\frac{\lambda_j}{v_j}}, \quad j = \overline{1, M}.$$

Оптимизация сетей Джексона. Решение Л. Клейнрока

5.16. Рассмотрите идеализированную сеть связи с N=4 узлами, для которой справедлива простая модель с M/M/1, следующая из (5.19). Предполагается, что $\mu=1$, а матрица трафика (γ_{jk}) и матрица маршрутов (r_{ij}) (где r_{ij} — номер следующего узла, в который должно быть передано сообщение, если сейчас оно находится в узле j и окончательно адресовано узлу i) имеют вид

$$(\gamma_{jk}) = \begin{bmatrix} 0 & 2 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 4 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \qquad (r_{ij}) = \begin{bmatrix} -3 & 1 & 3 \\ 2 & -1 & 2 \\ 2 & 3 & -3 \\ 4 & 3 & 1 & - \end{bmatrix}.$$

Оптимизация сетей Джексона. Решение Л. Клейнрока

Л. Клейнрок

ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ С ОЧЕРЕДЯМИ

Перевод с английского под редакцией

д-ра техн, наук Б. С. Цыбакова

ИЗДАТЕЛЬСТВО «МИР» МОСКВА 1979

- a) Найдите среднюю длину пути n.
- б) Пусть задана полная пропускная способность $C = \sum C_i = 34$. Найдите пропускные способности $\{C_i\}$, которые минимизируют среднюю задержку сообщения T.
- в) Изобразите сеть, снабдите каждое ребро стрелкой и парой (λ_i, C_i) .
- г) Найдите Т.
- д) Определите длину канала, как в равенстве (5.40).
 - 1) Найдите длину всех путей из узла 1 к узлу 3 и укажите кратчайший путь.
 - 2) Пошел ли по этому пути трафик γ_{13} ? Сохранится ли ответ в оптимизированных сетях?
- e) Пусть сделан *пропорциональный* выбор пропускных способностей. Найдите $\{C_i\}$ и T и проведите сравнение c результатами n. c.
- ж) Пусть матрица маршрутов заменяется на следующую:

$$(r_{ij}) = \begin{bmatrix} -1 & 1 & 1 \\ 2 & -2 & 2 \\ 3 & 3 & -3 \\ 4 & 4 & 4 & - \end{bmatrix}.$$

Найдите T, если (γ_{jk}) , μ и C остаются прежними и пронзводится оптимальный выбор пропускных способностей.

Алгоритмы поиска оптимальных решений задач SP.1.1/J/M/N и SP.2.1/J/M/N

$$L_{j}(m_{j}, \mu_{j}, \lambda_{j}) = \frac{\frac{\lambda_{j}}{m_{j}\mu_{j}} \left(\frac{\lambda_{j}}{\mu_{j}}\right)^{m_{j}} \cdot P_{0}}{m_{j} \cdot m_{j}! \left(1 - \frac{\lambda_{j}}{m_{j}\mu_{j}}\right)^{2}},$$
(5.8)

где

$$P_{\theta} = \begin{bmatrix} 1 + \sum_{i=1}^{m_j} \left(\frac{\lambda_j}{\mu_j}\right)^i \\ 1 + \sum_{i=1}^{m_j} \frac{i!}{i!} + \frac{\left(\frac{\lambda_j}{\mu_j}\right)^{m_j+1}}{m_j! \left(m_j - \frac{\lambda_j}{m_j \mu_j}\right)} \end{bmatrix}^{-1}, a$$

 m_j, μ_j, λ_j — число каналов, интенсивность обслуживания и интенсив-

ность входного потока j — го узла типа M/M/m соответственно.

Алгоритмы поиска оптимальных решений задач SP.1.1/J/M/N и SP.2.1/J/M/N

Предпосылки решения задач SP.1.1/J/M/N и SP.2.1/J/M/N

- 1. Сеть СМО находится в установившемся режиме и найдены интенсивности потоков $\left\{ \boldsymbol{\lambda}_{j} \right\}$, $\boldsymbol{j} = \overline{\boldsymbol{1,M}}$ в узлах сети.
- 2. Для заданных интенсивностей $\left\{ \mu_{j} \right\}$, $j = \overline{1,M}$ определены минимально возможные числа $m_{j}^{0} = \left| \frac{\lambda_{j}}{\mu_{j}} \right| + 1$, $j = \overline{1,M}$ каналов в узлах, при условии
- $\frac{\lambda_j}{\mu_j}$ < 1 наличия установившегося режима в каждом узле.
- 3. Для каждого узла j-го узла формируются два показателя его реакции на единичное увеличение числа каналов: приращение стоимости $\Delta F_j(m_j+1)$ узла и уменьшение числа заявок $\Delta L_j(m_j+1)$ в узле.

$$\Delta F_j(m_j+1) = F_j(m_j+1) - F_j(m_j) \ge 0$$

$$\Delta L_j(m_j+1) = L_j(m_j+1) - L_j(m_j) < \theta$$

Алгоритм 1 решения задачи SP.1.1/J/M/N

SP.1.1/J/M/N

$$\min_{\{m_j\}} F(m) = F(\{m_j\}) = \sum_{j=1}^{M} F_j(m_j)$$

$$L(m) = L(\{m_j\}) = \sum_{j=1}^{M} v_j L_j(m_j) \le L_T$$

$$m_j \ge m_j^0, \quad j = \overline{1, M}; \quad m_j - \text{int } eger$$
(5.10)

Для каждого j-го узла рассчитывается индекс приоритета $PI_j(m_j)$

на добавление канала по следующей формуле

$$PI_{j}(m_{j}) = \frac{\Delta F_{j}(m_{j} + 1)}{-v_{j}\Delta L_{j}(m_{j} + 1)}$$
 (5.9)

Алгоритм 1 решения задачи SP.1.1/J/M/N

Шаг 1. Найти
$$\{m_j^0\}$$
, $j = \overline{1,M}$, идти к шагу 2

оптимальное решение,

Идти к шагу 9, иначе идти к шагу 3.

Шаг 3. Найти
$$PI(m) = \{PI_j(m_j)\}$$
, $j = \overline{1,M}$, идти к шагу 4

$$\mathbf{H}$$
аг 4. Найти $PI_{j^*} = \underset{(j)}{min} PI_{j}(m_j)$, идти к шагу 5

Шаг 5.
$$m_{j^*} = m_{j^*} + 1$$
, идти к шагу 6

Шаг 6. Пересчитать
$$L(j^*)$$
, $F_j(m_{j^*})$, $PI_{j^*}(m_{j^*})$, идти к шагу 7

Шаг 7. Коррекция
$$m, L(m), F(m), PI(m)$$
, идти к шагу 8

Шаг 8. Если
$$L(m) \le L_T$$
, то вектор $m = \{m_j\}$, $j = \overline{1,M}$ есть

оптимальное решение,

Идти к шагу 9, иначе идти к шагу 4

Шаг 9. ОСТАНОВ

Алгоритм 2 решения задачи SP.2.1/J/M/N

SP.2.1/J/M/N

$$\min_{\substack{\{m_j\}\\ \{m_j\}}} L(\{m_j\}) = \sum_{j=1}^{M} v_j L_j(m_j)$$

$$\sum_{j=1}^{M} m_j = M1$$

 $m_j \ge m_j^0$, $j = \overline{1, M}$; $m_j - \text{integer}$

(5.12)

Для каждого j го узла рассчитывается индекс приоритета $PI_j(m_j)$

на добавление канала по следующей формуле

$$PI_{j}(m_{j}) = -v_{j}\Delta L_{j}(m_{j} + 1) \qquad (5.11)$$

Алгоритм 2 решения задачи SP.2.1/J/M/N

Шаг 1. Найти
$$\{m_j^0\}$$
, $j = \overline{1,M}$, идти к шагу 2

Шаг 2. Если
$$\sum_{j=1}^{M} m_j^0 = M1$$
, вектор $\left\{m_j^0\right\}$, $j = \overline{1,M}$ есть оптимальное

решение,

Идти к шагу 7, иначе идти к шагу 3.

$$\mathbf{H}$$
аг 3. Найти $\{PI_{j}(m_{j})\}, j = \overline{1,M}$, идти к шагу 4

Шаг 4. Найти
$$PI_{j^*} = \underset{(j)}{maxPI_{j}}(m_{j})$$
, идти к шагу 5

Шаг 5.
$$m_{j^*} = m_{j^*} + 1$$
, идти к шагу 6

Шаг 6. Если
$$\sum\limits_{j=1}^n m_j = M1$$
, вектор $\left\{m_j\right\}$, $j = \overline{1,M}$ есть оптимальное

решение,

Идти к шагу 8, иначе идти к шагу 7

Шаг 7. Пересчет
$$PI_{j}(m_{j}^{*})$$
,

идти к шагу 3

Шаг 8. ОСТАНОВ

Оптимизация замкнутых сетей СМО

Пусть стоимость сети S как функция вектора $\mu = \{\mu_1, \mu_2, ..., \mu_M\}$ задается следующим образом:

$$\mathbf{S} = \sum_{j=1}^{M} c_j \mathbf{\mu}_j^{\mathbf{\beta}_j} \tag{5.13}$$

Здесь c_j – стоимостные коэффициенты; β_j – некоторые неотрицательные коэффициенты нелинейности. Коэффициенты c_j можно для многоканальной сети СМО интерпретировать, как числа каналов в j-м узле.

Оптимизация замкнутых сетей СМО

Производительности узлов обслуживания (интенсивности выходящих из узлов заявок) в замкнутых экспоненциальных сетях пропорциональны друг другу, поэтому под производительностью сети λ можно понимать производительность одного из узлов сети (например, первого, т.е. λ_1). Задача оптимизации данной замкнутой однородной сети СМО состоит в максимизации производительности сети при стоимости, не превосходящей заданной.

Оптимизация замкнутых сетей СМО

Формальные постановки задачи оптимизации замкнутой сети СМО

$$\max_{\mu} \lambda_1 = \omega_1 G_M(N-1)/G_M(N)$$

$$S = \sum_{j=1}^{M} c_j \mu_j^{\beta_j} = S^*, \quad \mu > 0.$$

$$\min_{\mathbf{\mu}} S = \sum_{j=1}^{M} c_j \mu_j^{\mathbf{\beta}_j}$$

$$\lambda_1 = \omega_1 G_M(N-1)/G_M(N) = \lambda^*$$

Оптимизация замкнутых сетей СМО

$$\max_{\mu} \lambda_1 = \omega_1 G_M(N-1)/G_M(N) \quad (5.14)$$

$$S = \sum_{j=1}^{M} c_j \mu_j^{\beta_j} = S^*, \quad \mu > 0 \quad (5.15)$$

Функция Лагранжа

$$Q = \lambda_1 + \gamma (S - S^*)$$

$$\frac{\partial \lambda_1}{\partial \mu_i} + \gamma \frac{\partial S}{\partial \mu_i} = 0 \quad , \qquad i = \overline{1, M} \quad . \tag{5.16}$$

Далее будем использовать важные расчетные соотношения, полученные в [18] в результате доказательства соответствующих теорем:

$$\frac{\partial \lambda_i(N)}{\partial \mu_i} = \frac{1}{\mu_i} \lambda_i(N) \left[\overline{n_i}(N) - \overline{n_i}(N-1) \right]$$
 (5.17)

И

$$\frac{\partial \lambda_i(N)}{\partial \mu_j} = \frac{1}{\mu_j} \lambda_i(N) \left[\overline{n_j}(N) - \overline{n_j}(N-1) \right] , \qquad (5.18)$$

Оптимизация замкнутых сетей СМО

Далее будем использовать важные расчетные соотношения, полу-

ченные в [18] в результате доказательства соответствующих теорем:

$$\frac{\partial \lambda_i(N)}{\partial \mu_i} = \frac{1}{\mu_i} \lambda_i(N) \left[\overline{n_i}(N) - \overline{n_i}(N-1) \right]$$
 (5.17)

$$\frac{\partial \lambda_i(N)}{\partial \mu_j} = \frac{1}{\mu_j} \lambda_i(N) \left[\overline{n_j}(N) - \overline{n_j}(N-1) \right] , \qquad (5.18)$$