CA1: Online Assignment

CSE523: ADVANCED DATA STRUCTURE AND ALGORITHMS

MAX MARKS: 30

Last Date of Submission: 06-Oct-2021

*Submit your assignment only on UMS

Assignment should be Handwritten only

Late submission would not be accepted.

Section: K21ML				Section: K21DS			Section: K21BB				
Reg. No.	Name	RollNo.	Set No.	Reg. No.	Name	RollNo.	Set No.	В	Name	RollNo.	Set No.
12100559	Mogalraj Kushal Dath	A01	Α	12100856	Pragathi Sudarshan	A01	Α	12100260	Wahengbam Indraram Singh	A01	Α
12100819	Lakkoju Asha	A02	В	12100921	Arbaj Ansari	A02	В	12100338	Sahibdeep Singh	A02	В
12101546	Kunal Pamu	A03	С	12101021	Aisha Karim	A03	С	12101033	Prashant Kumar	A03	С
12102959	Banala Rajesh	A04	Α	12101270	Patil Yuvraj Deepak	A04	Α	12101407	Syed Simrin fathima	A04	Α
12103921	P S Sai Avinash	A05	В	12101748	Md Khadimul Islam Zim	A05	В	12101434	Shambhavi Sinha	A05	В
12106154	Rishabh Saxena	A06	С	12103328	Shveta Yadav	A06	С	12101542	Manish Kumar	A06	С
12106756	Sapna Katoch	A07	Α	12103891	Shaif Mehraj Makhdoomi	A07	Α	12102292	Dhupaati Krishna Theja	A07	Α
12107802	Vikas Ruhil	A08	В	12104030	Maloof Bashir	A08	В	12102490	Ramanjot	A08	В
12108099	Umesh Verma	A09	С	12104215	Sumit Kumar	A09	С	12102713	Mahima Yadav	A09	С
12108690	Mohd Shah rukh	A10	Α	12106034	Peetla Suresh	A10	Α	12103566	Nikkondi Dheeraj	A11	Α
12110529	Kumar Rethik	A11	В	12106696	Ritik Bansal	A11	В	12104076	Akash Pundir	A12	В
12111866	Sushant Kumar	A12	С	12107356	Shalabh Dwivedi	A12	С	12104400	Hemant	A13	С
12104489	Shreya Singh	A13	Α	12107500	Akash Dilkumar	A13	Α	12104415	Sandeep Yadav	A14	Α
12111936	Ravindra Singh Kushwaha	A14	В	12108582	CHITTEM Harika	A14	В	12104623	Saurav Kumar	A15	В
12110916	Taiwo Ekundayo Soewu	A15	С	12109223	Tshering Lhamo	A15	С	12105651	Neeraj Sharma	A16	С
12112501	Suyash Tiwari	A16	Α	12110068	Jatin Gupta	A16	Α	12105871	Manish kumar yadav	A17	Α
12113685	Sk Rakib UI Islam Rahat	A17	В	12111124	Sivarathri Susrutha	A17	В	12105949	Bodem Niharika	A19	В
12113689	Gouri Shankar Chakraborty	A18	С	12111786	Deepak MVS	A18	С	12105979	Akash Singh	A20	С
				12112439	Gedela Suseel Kumar	A19	Α	12107361	KM Akanksha Pandey	A21	Α
								12107704	Sandeep Kaur	A22	В
								12108171	Nayan Chakrabarty	A23	С
								12108388	Suraj Kumar Sharma	A24	Α
Please check your Set No. from this list and							40400000	Md Abu Hanif	A25	B	

Please check your **Set No.** from this list and solve that assignment only. Wrong assignment attempled would result in deduction of marks.

ı	12107361	KM Akanksha Pandey	A21	Α
٦	12107704	Sandeep Kaur	A22	В
	12108171	Nayan Chakrabarty	A23	С
	12108388	Suraj Kumar Sharma	A24	Α
	12108872	Md Abu Hanif	A25	В
	12110473	Ritesh Kumar Shukla	A26	С
	12110497	Athmakuri Vishnu Vardhan	A27	Α
	12110830	Nicodemus Peter Ngufuli	A28	В
	12110897	Md Khadimul Islam Zim	A29	С
	12111717	Aanand Kumar mishra	A31	Α
	12112504	ABHIUDEY KABOTRA	A32	В
	12113547	Tarun Kumar	A33	С
Ī	12113664	Ankush Kumar Shah	A34	Α
•				

SET-A

Note: Attempt all questions. Q1, Q2 are of 10 marks each and Q3, Q4 carries 5 marks each

1) Explain the following graph in detail (along with some suitable example) in context to Asymptotic notations in algorithms complexity.

- 2) Calculate (in form of a table of values) the growth rates of **log n, n, nlogn, n², n³, 2ⁿ** for the values of 'n' ranging from 1 to 18. After creating a table of values, summarize the "comparison of these growth rates" in a short paragraph.
- 3) Solve the following recurrence relation (step-by-step) using Master's theorem. Also explain which case of Master theorem is applied to get the solution to this recurrence relation and why?

 $T(n) = \langle vour \ registration \ number \rangle T(n/2) + n^2$

[Eg: If your registration number is 1210118, then this recurrence relation would be: $T(n) = 1210118 T(n/2) + n^2$]

4) "The Big-O notation estimates the maximum running time possible for an algorithm of input size n". Explain the statement with appropriate reason.

SET-B

Note: Attempt all questions. Q1, Q2 are of 10 marks each and Q3, Q4 carries 5 marks each

1) What does the following graph depict in context to asymptotic notations used for finding time complexity of an algorithm? Explain in detail with help of an example.

- 2) Calculate (in form of a table of values) the growth rates of **n**, 100**n**, **n**², 11**n**², **n**³, 2ⁿ for the values of 'n' ranging from 1 to 19. After creating a table of values, summarize the "comparison of these growth rates" in a short paragraph.
- 3) Solve the following recurrence relation (step-by-step) using Master's theorem. Also explain which case of Master theorem is applied to get the solution to this recurrence relation and why?

T(n) =<your registration number> T(n/2) + nlogn

[Eg: if your registration number is 1210118, then this recurrence relation would be T(n) = 1210118 T(n/2) + nlogn]

4) What do you mean by "Time-Space tradeoff" in context to algorithm complexity? Explain with a brief scenario.

SET-C

Note: Attempt all questions. Q1, Q2 are of 10 marks each and Q3, Q4 carries 5 marks each

1) What does the following graph depict in context to asymptotic notations used for finding time complexity of an algorithm? Explain in detail with help of an example.

- 2) Calculate (in form of a table of values) the growth rates of **n**, **n**², **n**²-**n**, **n**²+**99**, **n**³, **n**³+**234** for the values of '**n**'= **2**, **6**, **10**,**14**, ... **upto 74**. After creating a table of values, summarize the "comparison of these growth rates" in a short paragraph.
- 3) Solve the following recurrence relation using Master's theorem-

T(n) = <your registration number> $T(n/4) + n^{0.51}$

[Eg: if your registration number is 1210118, then this recurrence relation would be: $T(\mathbf{n}) = 1210118 \ T(n/4) + n^{0.51}$]

4) Differentiate between **Exact time complexity** and **Approximate time complexity**. Which one is better and why?