Otro cálculo de homología

Rafael Villarroel

2021-03-18 15:00 -0500

Consideremos el complejo simplicial Δ cuyo conjunto de caras maximales es $\mathcal{F}(\Delta) = \{abc, bcd\}$.

Calculemos $H_0(\Delta, R) = Z_0(\Delta, R)/B_0(\Delta, R)$. En este caso $Z_0(\Delta, R) = \ker \partial_0$, donde $\partial_0 : C_0(\Delta, R) \to C_{-1}(\Delta, R) = R$. La matriz (respecto a las bases usuales) de ∂_0 es (1111). Un conjunto de generadores del espacio nulo de esta matriz es $\{(1, -1, 0, 0), (1, 0, -1, 0), (1, 0, 0, -1)\}$, y esos vectores se corresponden con a - b, a - c, a - d.

Calculemos $B_0(\Delta, R)$, es decir, la imagen de

 $\partial_1: C_1(\Delta, R) \to C_0(\Delta, R)$. Tenemos que $\partial_1(b \wedge a) = a - b$, $\partial_1(c \wedge a) = a - c$, $\partial_1(c \wedge a + d \wedge c) = (a - c) + (c - d) = a - d$. Esto implica que $Z_0(\Delta, R) = B_0(\Delta, R)$, por lo tanto $H_0(\Delta, R) = 0$.

que $Z_0(\Delta, R) = B_0(\Delta, R)$, por lo tanto $H_0(\Delta, R) = 0$. Calculemos $H_1(\Delta, R) = Z_1(\Delta, R)/B_1(\Delta, R)$. Consideremos la frontera $\partial_1: C_1(\Delta, R) \to C_0(\Delta, R)$. En las bases dadas por las cadenas elementales, esa transformación lineal tiene matriz:

$$d = 0 \qquad 0 \qquad 1$$
 Figure: Matriz de ∂_1 El espacio nulo está generado por $(1,-1,1,0,0)^T, (-1,1,0,-1,1)^T$. El primer vector se corresponde con $a \wedge b - a \wedge c + b \wedge c$. El segundo vector se corresponde con $-a \wedge b + a \wedge c - b \wedge d + c \wedge d$. Estos dos

 $a \wedge b$ $a \wedge c$ $b \wedge c$ $b \wedge d$ $c \wedge d$

son generadores de $Z_1(\Delta, R)$. Rafael Villarroel Otro cálculo de homología 2021-03-18 15:00 -0500 El espacio $B_1(\Delta, R)$ es la imagen de la frontera $\partial_2 \colon C_2(\Delta, R) \to C_1(\Delta, R)$. Esta frontera tiene matriz:

$$\begin{array}{cccc} a \wedge b \wedge c & b \wedge c \wedge d \\ a \wedge b & 1 & 0 \\ a \wedge c & -1 & 0 \\ b \wedge c & 1 & 1 \\ b \wedge d & 0 & -1 \\ c \wedge d & 0 & 1 \end{array}$$

Figure: Matriz de ∂_2

Tenemos que $\partial_2(a \wedge b \wedge c) = a \wedge b - a \wedge c + b \wedge c$, y también que $\partial_2(b \wedge c \wedge d) = c \wedge d - b \wedge d + b \wedge c$. Estos dos vectores generan a $B_1(\Delta, R)$. Por lo tanto $B_1(\Delta, R) = \langle a \wedge b - a \wedge c + b \wedge c, c \wedge d - b \wedge d + b \wedge c \rangle$.

Tenemos entonces que el cociente $Z_1(\Delta, R)/B_1(\Delta, R)$ está

generado por

• $\overline{a \wedge b - a \wedge c + b \wedge c} = \overline{0}$ (pues $\partial_2(a \wedge b \wedge c) = a \wedge b - a \wedge c + b \wedge c$)

Como sus dos generadores son $\overline{0}$, se obtiene que $H_1(\Delta, R)$ es el grupo trivial.

Calculemos $H_2(\Delta, R) = Z_2(\Delta, R)/B_2(\Delta, R)$. En este caso $Z_2(\Delta, R) = \ker \partial_2 = 0$. Además $B_2(\Delta, R)$ es la imagen de $\partial_3: C_3(\Delta, R) \to C_2(\Delta, R)$, por lo que $B_2(\Delta, R) = 0$ (pues $C_3(\Delta, R) = 0$). Por lo tanto $H_2(\Delta, R) = 0$.

 $H_D(\Delta, R) = 0$). For to tanto $R_D(\Delta, R) = 0$ para todo p > 0.

Teorema Sean Δ_1 y Δ_2 complejos simpliciales tales que $|\Delta_1| \simeq |\Delta_2|$. Entonces $H_p(\Delta_1, R) \cong H_p(\Delta_2, R)$ para todo p > 0.