JEE ASSIGNMENT 6

1

(2023 - 4 Marks)

(2023 - 4 Marks)

(2023 - 4 Marks)

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Yellanki Siddhanth (EE24BTECH11059)

1) The set of all values of a for which $\lim_{x\to a} ([x-5] - [2x+2]) = 0$, where $[\cdot]$ denotes

3) The locus of the mid points of the chords of the circle $C1: (x-4)^2 + (y-5)^2 = 4$

b) (-7.5, -6.5] c) [-7.5, -6.5] d) (-7.5, -6.5)

b) $p \lor ((\sim p) \land q)$ c) $p \lor (p \land q)$ d) $p \lor (p \land (\sim q))$

the greatest integer less than or equal to \cdot , is equal to

2) Let p and q be two statements. Then $\sim (p \land (p \Rightarrow \sim q))$ is equivalent to

2023 Jan 24 Shift 2 1 to 15

a) [-7.5, -6.5]

a) $(\sim p) \vee q$

which subtend an angle θ_i at the centre of the circle C_1 , is a circle of radius r_i . If $\theta_1 = \frac{\pi}{3}, \theta_3 = \frac{2\pi}{3}$ and $r_1^2 = r_2^2 + r_3^2$, then θ_2 is equal to (2023 - 4 Marks)						
a) $\frac{3\pi}{4}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{6}$	d) $\frac{\pi}{2}$			
4) If $f(x) = \frac{2^{2x}}{2^{2x}+1}$	$\frac{x}{x^2}$, $x \in \mathbb{R}$, then $f\left(\frac{1}{2023}\right) +$	$f\left(\frac{2}{2023}\right) + \dots + f\left(\frac{2}{2023}\right)$	$\left(\frac{2022}{2023}\right)$ is equal to (2023 - 4 Marks)			
a) 1010	b) 2011	c) 1011	d) 2010			
5) If the system of equations						
x + 2y + 3z = 3						
4x + 3y - 4z = 4						
$8x + 4y - \lambda z = 9 + \mu$						
has infinitely many solutions, then the ordered pair (λ,μ) is equal to : (2023 - 4 Marks)						
a) $\left(-\frac{72}{5}, \frac{21}{5}\right)$	b) $\left(\frac{72}{5}, -\frac{21}{5}\right)$	c) $\left(\frac{72}{5}, \frac{21}{5}\right)$	d) $\left(-\frac{72}{5}, -\frac{21}{5}\right)$			
6) Let the plane containing the line of intersection of the planes $P_1: x + (\lambda + 4)y + z = 1$						

and $P_2: 2x+y+z=2$ pass through the points (0,1,0) and (1,0,1). Then the distance

of the point $(2, \lambda, -\lambda)$ from the plane P_2 is

(2023 - 4 Marks)

d) $2\sqrt{6}$

d) 10

	$\alpha + \beta + \gamma$ is equal to	(2023 - 4 Marks)				
	a) -1	b) 1	c) 3	d) 5		
9)	9) Let A be a 3×3 matrix such that $ adj(adj(adjA)) = 12^4$. Then $ A^{-1}adjA $ is equal to (2023 - 4 Marks)					
	a) 12	b) $2\sqrt{3}$	c) $\sqrt{6}$	d) 1		
10)	The value of $\left(\frac{1+\sin\frac{2\pi}{4}}{1+\sin\frac{2\pi}{4}}\right)$	$\left(\frac{2\pi}{9} + i\cos\frac{2\pi}{9}\right)^3$ is		(2023 - 4 Marks)		
	a) $\frac{1}{2} (\sqrt{3} + 1)$ b) $-\frac{1}{2} (1 - i\sqrt{3})$		c) $\frac{1}{2} (1 - \sqrt{3})$ d) $-\frac{1}{2} (\sqrt{3} - 1)$			
11) The number of square matrices of order 5 with entries from the set {0, 1}, such that the sum of all the elements in each row is 1 and the sum of all the elements in each column is also 1, is (2023 - 4 Marks)						
	a) 120b) 225		c) 150 d) 125			
12)	$\int_{\frac{3\sqrt{3}}{4}}^{\frac{3\sqrt{3}}{4}} \frac{48}{\sqrt{9-4x^2}} dx \text{ is eq}$	ual to		(2023 - 4 Marks)		
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{3}$	d) 2π		
13) The number of real solutions of the equation $3\left(x^2 + \frac{1}{x^2}\right) - 2\left(x + \frac{1}{x}\right) + 5 = 0$ is (2023 - 4 Marks)						
	a) 3	b) 0	c) 2	d) 4		
14)	14) Let $\alpha = 4\hat{i} + 3\hat{j} + 5\hat{k}$ and $\beta = 2\hat{i} + 4\hat{j}$. Let β_1 be parallel to α and β_2 be perpendicular to α . If $\beta = \beta_1 + \beta_2$, then the value of $5\beta_2 \cdot (\hat{i} + \hat{j} + \hat{k})$ is (2023 - 4 Marks)					

c) $5\sqrt{6}$

8) If the foot of the perpendicular drawn from (1, 9, 7) to the line passing through the point (3, 2, 1) and parallel to the planes x + 2y + z = 0 and 3y - z = 3 is (α, β, γ) , then

c) 15

7) If $\left(\binom{30}{1}\right)^2 + 2\left(\binom{30}{2}\right)^2 + 3\left(\binom{30}{3}\right)^2 + \dots + 30\left(\binom{30}{30}\right)^2 = \frac{\alpha 60!}{(30!)^2}$, then α is equal to

a) $4\sqrt{6}$

a) 60

b) $3\sqrt{6}$

b) 30

a) 7

b) 9

c) 6

d) 11

15) Let f(x) be a function such that $f(x+y) = f(x) \cdot f(y)$ for all $x, y \in \mathbb{R}$. If f(1) = 3 and $\sum_{k=1}^{n} f(k) = 3279$, then the value of n is. (2023 - 4 Marks)

a) 8b) 9

c) 6

d) 7