

Statistical & Machine Learning

Minh PHAN

Group project: In Class Kaggle competition

AGENDA

HAPPINESS IS

...when your code runs without error.

4 FROMAGE PIZZA

Fernando Delgado

Used to work in finance as a Global Business Services Trainee, but the hunger for data (and pain au chocolat) led him to.... France and an MSc in Big Data Analytics. He is an expert in data wrangling, predictive modelling and out-of-the box thinking. When he's not asking "how can we improve our Kaggle score", he enjoys eating Mexican food, travelling and playing music.

Sofie Ghysels

Has a background in HR, international trade and communications and has worked in various HR roles at multinational companies in Belgium and France. She has a knack for organization and a passion for reporting and data visualization tools. When not scheduling in team meetings or sharing Belgian chocolates with her colleagues, Sofie can be found watching reality series, walking or hanging out with friends.

Nour Azar

Has more than five years of experience as an accountant and external auditor in highly demanding environments. She is known for her critical thinking skillset and problemsolving abilities. Nour has a passion for machine learning and enjoys getting her hands dirty during all aspects of the modelling pipeline. Nour did community volunteering in her home country Lebanon and in her free time you might see her eating delicious food and getting outside.

BUSINESS PROBLEM

Portuguese Bank Telemarketing Campaign

Classification Goal → Subscribe or Not

Success of Bank Telemarketing

DATA SCIENCE PROBLEM

Problem Type

Classification Supervised (Yes/No 1 or 0)

Data-Science Tools

Logistic Regression
Random Forest
Gradient Boosting
K Nearest Neighbors
Support Vector Machine

Expected Results

Model evaluation with AUC to perform predictions: probability of subscribe

Missing Values by Variable Type

We decide not to remove outliers since they are similar on both sets

Marital Status Distribution

Age Distribution

Target Variable Distribution

Target variable not equally distributed.

PRE-PROCESSING DATA

PRE-PROCESSING DATA

Outliers

Missing Values

- Numericals: mean and mode.
 « Missing » tracker column
- Categoricals are filled with « missing »

PRE-PROCESSING DATA

Ordinal Encoding for Categoricals

Education		Education
basic.4y		1
basic.6y		2
basic.9y		3
high.school		4
illiterate	,	5
professional.course		6
university.degree		7
unknown		8

Decision Tree-Based Remapping

FEATURE ENGINEERING

Since all variables are anonymized, we can't create features based on meaning:

VARIABLE SELECTION

With Fisher Score Methodology, out of 194 Variables we select the best 55:

METHODOLOGY

Model Evaluation with Validation AUC

We fit models to 5 different classification methods.

METHODOLOGY

Hyper Parameter Tuning

Logistic Regression is the best performer.

EXPERIMENTAL SETUP

RESULTS

Cross Validated AUC on Full Train Set

	Train_AUC	Test_AUC	CV_AUC F	ull_Train_AUC Nev	v_CV_AUC
Logistic N4	0.79360	0.80145	0.78858	0.79565	0.79138
Logistic	0.79350	0.80122	0.78854	0.79573	0.79138
Logistic N2	0.79403	0.79992	0.78811	0.79603	0.79114
XGBoost	0.79997	0.80121	0.78735	0.80044	0.79053
XGBoost GS2	0.79524	0.79680	0.78799	0.79581	0.78956
RandomF GS4	0.79021	0.79055	0.78377	0.79028	0.78508
RandomF GS3	0.79044	0.79088	0.78370	0.79055	0.78506

Team 4 fromage pizza thanks you for listening!

while(project!=over) work();