Algoritmos, Azar y Autómatas Resolución Ejercicios 4 a 6

Manuel Panichelli

October 19, 2021

Resultados previos

Lema 1 (Pequeño truco de límites). Relación entre lim inf / lim sup y lim Sean $(x_{1,n})_{n\geq 0}, (x_{2,n})_{n\geq 0}, \dots (x_{k,n})_{n\geq 0}$ una secuencia de números reales tales que $\sum_{i=1}^k x_{i,n} = 1$ y $c_1, c_2, \dots c_k$ numeros reales tales que $\sum_{i=1}^k c_i = 1$. Luego,

- 1. $\forall i \lim_{n\to\infty} x_{i,n} \ge c_i \implies \forall i \lim_{n\to\infty} x_{i,n} = c_i$
- 2. $\forall i \lim \sup_{n \to \infty} x_{i,n} \le c_i \implies \forall i \lim_{n \to \infty} x_{i,n} = c_i$

Vamos a aplicar esto para $k = b^{\ell}$, $x_{n,i} = \frac{\|x[1...n]\|_{w_i}}{b^{\ell}}$ con $i = 1, 2, ..., b^{\ell}$. Notar que

$$\sum_{i=1}^{b^{\ell}} \frac{\|x[1 \dots n]\|_{w_i}}{b^{\ell}} = 1,$$

ya que es la suma de las frecuencias, donde

- n = # palabras de ℓ caracteres (n posiciones que quiero mirar)
- $w_i = \text{palabras de longitud } \ell$.

0.1 Bad

Def. 1 (Malas palabras).

$$\operatorname{Bad}(A, k, w, \varepsilon) = \left\{ v \in A^k : \left| |v|_w - \frac{k}{b^{|w|}} \right| > \varepsilon k \right\}$$

Lema 2 (Hardy & Wright, Theorem 148). Sean $b \ge 2$ y k enteros positivos. Si $6/k \le \varepsilon \le 1/b$ entonces para cada símbolo d en A,

$$|Bad(A, k, d, \varepsilon)| < 4e^{-b\varepsilon^2k/6}b^k.$$

0.2 Turing

Prop. 1. Sea E_n el conjunto de candidatos del algoritmo de Turing,

Para cada n, E_n es una unión finita de intervalos abiertos con bordes racionales, y para $n \ge n_0$, $\mu E_n > 1 - 1/N_n^2$.

Corolario. $\bigcap_{n>0} E_n$ tiene medida positiva.

Prop. 2 (Medida de intersección).

$$\mu(A \cap B) = \mu(A \setminus B^c) \ge \mu(A) - \mu(B^c) = \mu(A) - (1 - \mu(B))$$

Ejercicio 4 - Piatetski-Shapiro

Demostrar la versión de ocurrencias alineadas de Piatetski-Shapiro

Teorema 1 (Piatetski-Shapiro). Sea x un número real, $b \geq 2$ un entero y $A = \{0, \ldots, b-1\}$. Las siguientes son equivalentes

- 1. x es normal a base b
- 2. Existe una constante C tal que para infinitas longitudes ℓ y para todo $w \in A^\ell$

$$\limsup_{n \to \infty} \frac{|x[1 \dots n]|_w}{n} < C \cdot b^{-\ell}.$$

3. Existe una constante C tal que para infinitas longitudes ℓ y para todo $w \in A^\ell$

$$\limsup_{n \to \infty} \frac{\|x[1 \dots n\ell]\|_w}{n} < C \cdot b^{-\ell}.$$

Lema 3. Para todo $w \in A^*$, $n \neq k$, contar la cantidad de apariciones de w en $x[1 \dots n\ell]$ es lo mismo que partir x en bloques de longitud ℓk alineados y contar dentro de cada uno.

$$||x[1...n\ell k]||_w = \sum_{v \in A^{\ell}k} ||x[1...n\ell k]||_v ||v||_w$$

No puede suceder que aparezca de forma alineada un w en el medio de dos bloques v, ya que como los bloques son de tamaño ℓk están alineados con las ocurrencias de w.

Def. 2. Defino Bad', un análogo a Bad pero para ocurrencias alineadas.

$$\operatorname{Bad}'(A, k, w, \varepsilon) = \left\{ v \in A^k : \left| \|v\|_w - \frac{k}{b^{|w|}} \right| > \varepsilon k \right\}$$

Lema 4. Sea v una buena palabra, es decir $v \in A^{\ell k} \setminus \text{Bad'}(A^{\ell}, k, w, \varepsilon)$. Se que la frecuencia de apariciones alineadas de w en v se parece mucho al esperado, k/b^{ℓ} . Por lo tanto, puedo multiplicar la cantidad de apariciones por un factor de achique pequeño y seguirá valiendo:

$$||v||_w \ge \frac{k}{b^{\ell}}(1-\varepsilon) \Leftrightarrow \frac{||v||_w}{k} \ge (1-\varepsilon)b^{-\ell}$$

Dem. de Piatetski-Shapiro. Voy a demostrar que $3. \Rightarrow 1.$

Sea ℓ una de las infinitas longitudes que cumple Piatetski Shapiro,

$$\limsup_{n \to \infty} \frac{\|x[1 \dots n\ell]\|_w}{n} < C \cdot b^{-\ell}. \tag{1}$$

Fijo $\varepsilon \leq 1/b^{\ell}, w \in A^{\ell}$ y sea k suficientemente grande tal que

$$|\mathrm{Bad}'(A^{\ell}, k, w, \varepsilon)| < \varepsilon b^{\ell k}$$
 (2)

Tengo que (con Bad' = Bad' $(A^{\ell}, k, w, \varepsilon)$)

$$\lim_{n \to \infty} \frac{\|x[1 \dots n\ell k]\|_{w}}{nk} = \sum_{v \in A^{\ell k}} \frac{\|x[1 \dots n\ell k]\|_{v} \|v\|_{w}}{n} \qquad (\text{Lema 3})$$

$$= \lim_{n \to \infty} \sum_{v \in A^{\ell k} \backslash \text{Bad'}} C + \sum_{v \in \text{Bad'}} C$$

$$\geq \lim_{n \to \infty} \sum_{v \in A^{\ell k} \backslash \text{Bad'}} \frac{\|x[1 \dots n\ell k]\|_{v}}{n} \frac{\|v\|_{w}}{k}$$

$$\geq (1 - \varepsilon)b^{-\ell} \lim_{n \to \infty} \sum_{v \in A^{\ell k} \backslash \text{Bad'}} \frac{\|x[1 \dots n\ell k]\|_{v}}{n} \qquad (\text{Lema 4})$$

$$= (1 - \varepsilon)b^{-\ell} \lim_{n \to \infty} \int_{v \in A^{\ell k} \backslash \text{Bad'}} \frac{\|x[1 \dots n\ell k]\|_{v}}{n} \qquad (\text{freq bad + freq good } = 1)$$

$$\geq (1 - \varepsilon)b^{-\ell} \left(1 - \sum_{v \in \text{Bad'}} \lim_{n \to \infty} \frac{\|x[1 \dots n\ell k]\|_{v}}{n}\right)$$

$$\geq (1 - \varepsilon)b^{-\ell} \left(1 - \sum_{v \in \text{Bad'}} \lim_{n \to \infty} \frac{\|x[1 \dots n\ell k]\|_{v}}{n}\right)$$

$$\geq (1 - \varepsilon)b^{-\ell} \left(1 - \sum_{v \in \text{Bad'}} C \cdot b^{-\ell k}\right) \qquad (1)$$

$$\geq (1 - \varepsilon)b^{-\ell} \left(1 - \varepsilon b^{\ell}Cb^{-\ell k}\right) \qquad (2)$$

$$= (1 - \varepsilon)b^{-\ell} (1 - C\varepsilon)$$

Y como esto vale para todo $\varepsilon \leq 1/b^{\ell}$ positivo, puedo tomar uno suficientemente chico como para que $(1-\varepsilon)$ y $(1-C\varepsilon)$ se acerquen a 1, y de esa forma

$$\liminf_{n \to \infty} \frac{\|x[1 \dots n\ell k]\|_w}{nk} \ge b^{-\ell}.$$

Como esto vale para toda $w \in A^{\ell}$, por el Lema 1

$$\lim_{n \to \infty} \frac{\|x[1 \dots n\ell k]\|_w}{nk} = b^{-\ell}.$$

Tomando n' = nk, tengo

$$\lim_{n'\to\infty} \frac{\|x[1\dots n'\ell]\|_w}{n'} = b^{-\ell}.$$

∴ x es normal.

Ejercicio 5 - Turing

Adaptar el algoritmo de Turing para que genere un número normal en base 2 y 3, y que lo exprese en base 3 en vez de base 2. Demostrar su correctitud.

Obs. Un número real x es normal en base 2 y 3 si es simplemente normal en todas las bases 2^i y 3^i para $i \in \mathbb{N}$.

Def (Discrepancia simple). Sea $x \in [0, 1]$ un real en el intervalo unitario y x_b su expansión en base b. Definimos su **discrepancia simple** para algún N tamaño de segmento inicial de la siguiente forma,

$$\Delta_N(x_b) = \max_{d \in \{0, \dots, b-1\}} \left| \frac{|x_b[1 \dots N]|_d}{N} - \frac{1}{b} \right|.$$

x será simplemente normal en base b si,

$$\lim_{N \to \infty} \Delta_N(x_b) = 0.$$

 \mathbf{Def} (Pasos del algoritmo). Usamos n como el paso del algoritmo y definimos las sig funciones,

 $N_n=2^{n_0+2n}$, el número de dígitos vistos en el paso n, donde $n_0=11$ (n_0 solo está ahí para simplificar las cuentas)

 $\boldsymbol{b_n} = \lfloor \log N_n \rfloor$ es la base más grande considerada en el paso n

 $\varepsilon_n = 1/b_n$ es la diferencia entre la frecuencia esperada de dígitos y la frecuencia actual en el paso n. El *nivel de tolerancia*, dependiente de la cantidad de bases que se están viendo.

 $b_n \ge 2$ y es no decreciente y no acotada, N_n es no decreciente y no acotada, y ε_n es no creciente y va a 0.

Def (Conjuntos de candidatos). Definimos los conjuntos de números reales

$$E_0 = (0, 1)$$

$$E_n = \bigcap_{b \in B} \{ x \in (0, 1) : \Delta_{N_n}(x_b) < \varepsilon_n \}$$

Donde B es el conjunto de bases consideradas,

$$B = \{b \mid b \in \{2, \dots, b_n\} \text{ y } \exists i \in \mathbb{N} : b = 3^i \text{ o } b = 2^i\}$$

Para cada n, el conjunto E_n consiste de todos los números reales cuyas expansiones en las bases $2, 3, 4, 9, \ldots, b_n$ exhiben **buenas frecuencias** de digitos hasta ε_n , en los primeros N_n digitos (en el segmento inicial de tamaño N_n)

El algoritmo en sí es el siguiente, con output $y_1y_2y_3...$

Paso inicial,
$$n = 0$$
. $I_0 = (0, 1)$, $E_0 = (0, 1)$

Paso recursivo, n > 1

En el paso anterior computamos I_{n-1} . Sean I_n^0, I_n^1 y I_n^2 el primer, segundo y tercer tercio de I_{n-1} respectivamente.

- Si
$$\mu\left(I_n^0 \cap \bigcap_{j=0}^n E_j\right) > 1/N_n$$
 entonces $I_n = I_n^0$ y $y_n = 0$.

– Si
$$\mu\left(I_n^1 \cap \bigcap_{j=0}^n E_j\right) > 1/N_n$$
 entonces $I_n = I_n^1$ y $y_n = 1$.

$$- Sino, I_n = I_n^2 y y_n = 2.$$

 μA es la medida de Lebesgue de A.

Demostración de correctitud de Turing adaptado

La estrategia para demostrar la correctitud del algoritmo consiste en mostrar que,

- $\bigcap_{n\geq 0} E_n$ tiene medida positiva y consiste de números normales en base 2 y 3.
- El algoritmo genera $x = 0.y_1y_2y_3... \in \bigcap_{n \geq 1} I_n$
- El algoritmo preserva el invariante $\mu\left(I_n\cap\bigcap_{j=1}^n E_j\right)>0$ (hay números)
- En el infinito,

$$\bigcap_{n\geq 1} I_n = \bigcap_{n\geq 0} \left(I_n \cap \bigcap_{j=1}^n E_j \right)$$

Esto es así pues $(I_n)_{n\geq 0}$ es anotado y se cumple el invariante $\mu(I_n\cap_{j=0}^n E_j)$

Juntando todo, el algoritmo genera x, y

$$x \in \bigcap_{n \ge 1} I_n = \bigcap_{n \ge 0} \left(I_n \cap \bigcap_{j=1}^n E_j \right) \subset \bigcap_{n \ge 0} E_n$$

Luego, como todos los elementos de la intersección de candidatos son normales en base 2 y 3, el punto $x = 0.y_1y_2y_3...$ que pertenece a ese conjunto es normal en base 2 y 3.

Veamos las demostraciones pendientes de los puntos,

Lema. El conjunto $\bigcap_{n\geq 0} E_n$ tiene medida positiva y consiste solo números normales en base 2 y 3.

Proof. Veamos que tiene medida positiva y que son normales en base 2 y 3.

 \bullet Como el conjunto E_n del algoritmo de Turing original

$$E_n = \bigcap_{b \in \{2,\dots,b_n\}} \{x \in (0,1) : \Delta_{N_n}(x_b) < \varepsilon_n\}$$

tiene medida positiva (Prop 1), y este considera menos bases para la intersección (solo múltiplos de 2 y 3 en vez de todas), va a tener más elementos, y por lo tanto

$$E'_n \supset E_n \Rightarrow \mu E'_n > \mu E_n > 0 \Rightarrow \mu E'_n > 0.$$

• Quiero ver que consiste de números normales en base 2 y 3. Sea $x \in \bigcap_{n \ge 0} E_n$. Luego, para todo $n, x \in E_n$, entonces para $b \in B$

$$\Delta_{N_n}(x_b) \leq \varepsilon_n$$
.

Sea b una base y M una posición. Tomo n tal que,

$$N_n \leq M < N_{n+1}$$
.

Como

$$\Delta_N(x_b) = \max_{d \in \{0, \dots, b-1\}} \left| \frac{|x_b[1 \dots N]|_d}{N} - \frac{1}{b} \right|,$$

Tengo que para todo d

$$\Delta_N(x_b) < \varepsilon_n \Leftrightarrow \frac{|x_b[1 \dots N]|_d}{N} - \frac{1}{b} < \varepsilon_n$$
$$\Leftrightarrow |x_b[1 \dots N]|_d < \left(\varepsilon_n + \frac{1}{b}\right)N$$

Para cada b mas chico que b_n tenemos que para todo dígito $d \in \{0, \dots, b-1\}$

$$\frac{|x_b[1\dots M]|_d}{M} \le \frac{|x_b[1\dots N_{n+1}]|_d}{N_n}$$

$$\le \frac{N_{n+1}}{N_n} \left(\varepsilon_{n+1} + \frac{1}{b}\right)$$

$$= \frac{2^{n_0+2n+2}}{2^{n_0+2n}} \left(\varepsilon_{n+1} + \frac{1}{b}\right)$$

$$= 4\left(\varepsilon_{n+1} + \frac{1}{b}\right)$$

Luego para cada base $b \in B$,

$$\limsup_{n \to \infty} \frac{|x_b[1 \dots N]|_b}{N} < 4b^{-1}$$

Y para cada base $b \in B$ y cada digito en base b,

$$\limsup_{n \to \infty} \frac{|x_b[1 \dots N]|_b}{N} < 4b^{-\ell}$$

Por lo tanto, por Piatetski-Shapiro x es simplemente normal en toda base $b \in B$, por lo que es normal en bases 2 y 3.

Lema (Invariante). La siguiente condición es invariante en cada paso n del algoritmo,

$$\mu\left(I_n\cap\bigcap_{j=1}^n E_j\right)>0.$$

Proof. Lo demostramos por inducción sobre n. Recordando que $N_n = 2^{n_0 + 2n}$

• CB (n = 0)Tenemos que

$$\mu(I_0 \cap E_0) = \mu((0,1)) = 1 > \frac{1}{N_0^2} = \frac{1}{2^{2n_0}}$$

• PI $(n \Rightarrow n+1)$ Tenemos como HI que vale para n,

$$\mu\left(I_n\cap\bigcap_{j=0}^n E_j\right) > \frac{1}{N_n}.$$

Veamos que vale para n+1. Por la Prop. 1 sabemos que $\mu E_n > 1-1/N_n^2$, luego

$$\mu\left(I_n \cap \bigcap_{j=0}^{n+1} E_j\right) = \mu\left(\left(I_n \cap \bigcap_{j=0}^n E_j\right) \cap E_{n+1}\right)$$

$$\geq \mu\left(I_n \cap \bigcap_{j=0}^n E_j\right) - \mu\left(E_{n+1}^c\right) \quad \text{(Prop 2)}$$

$$> \frac{1}{N_n} - \frac{1}{N_{n+1}^2}$$

$$> \frac{2}{N_{n+1}}$$
(HI y Prop. 1)

Y finalmente, el algoritmo elije I_{n+1} entre I_n^0, I_n^1 e I_n^2 asegurando que

$$\mu\left(I_{n+1}\cap\bigcap_{j=0}^{n+1}E_{j}\right)>\frac{1}{N_{n+1}}.$$

Ejercicio 6 - BHS

Adaptar el algoritmo BHS para generar un número normal en base 2 y 3 (en vez de uno absolutamente normal) y expresarlo en su expansión fraccionaria en base 3 (en vez de base 2).

Def (b-ario). Decimos que un intervalo es b-ario (o b-ádico) de orden n si tiene la forma

$$\left(\frac{a}{b^n}, \frac{a+1}{b^n}\right)$$

para algun entero a tal que $0 \le a < b^n$.

Si σ_b y τ_b son intervalos *b*-arios y $\tau_b \subseteq \sigma_b$ decimos que el *orden relativo* de τ_b con respecto a σ_b es el orden de τ_b menos el orden de σ_b .

Lema 5 (Lemma 3.1 BHS 2013). Sean u y v bloques y ε un real positivo,

1. Si $\Delta(u) < \varepsilon$ y $\Delta(v) < \varepsilon$ entonces $\Delta(uv) < \varepsilon$.

Si u es buena y v también, entonces su concatenación lo es. Esto me dice que si cuento dígito, puedo considerar la suma de las proporciones y va a andar todo bien.

2. Si $\Delta(u) < \varepsilon, v = a_1 \dots a_{|v|} \text{ y } |v|/|u| < \varepsilon \text{ entonces } \Delta(vu) < 2\varepsilon \text{ y para cada}$ $\ell \text{ tal que } 1 \le \ell \le |v|, \Delta(ua_1a_2 \dots a_\ell) < 2\varepsilon.$

 $|v|/|u|<arepsilon\Leftrightarrow |v|<arepsilon|u|$, y como arepsilon es un número chiquito entre 0 y 1, se interpreta como que u es muy chica en comparación a v.

Concatenar una palabrita mucho mas chica que una buena al lado de una buena a lo sumo empeora el doble la discrepancia

Para el algoritmo, nos dice que lo que ya viste no hace falta volverlo a mirar, podés mirar cosas nuevas. Si tengo un buen segmento inicial y lo que elijo para agregar es cortito, a lo sumo llevo mi discrepancia al doble.

Lema 6 (Lemma 3.4 BHS2013). Para cualquier intervalo I y cualquier base b, hay un subintervalo b-ario J tal que $\mu J \ge \mu I/(2b)$.

Podemos encontrar J grande y b-ádico que se parezca mucho en medida

Def (t-sequences). Una t-sequence $\overrightarrow{\sigma}$ es una secuencia de intervalos $(\sigma_2, \dots, \sigma_t)$ tales que

- Para cada base $b = 2, ..., t, \sigma_b$ es b-ario.
- Para cada base $b = 3, \ldots, t, \sigma_b \subset \sigma_{b-1}$ y $\mu \sigma_b \geq \mu \sigma_{b-1}/(2b)$.

Son intervalos anidados, con la medida lo más grande posible.

La definición implica que $\mu \sigma_t \geq (\mu \sigma_2)/(2^t t!)$ (es un peor caso, no siempre ocurre y a veces calza justo)

Def (Refinamiento). Dos definiciones,

- Una t-sequence $\overrightarrow{\tau} = (\tau_2, \dots, \tau_t)$ refina una t'-secuencia $\overrightarrow{\sigma} = (\sigma_2, \dots, \sigma_{t'})$ si $t' \leq t$ y $\tau_b \subset \sigma_b$ para cada $b = 2, \dots, t'$.
- Un refinamiento tiene discrepancia menor a ε si para cada $b=2,\ldots,t'$ hay palabras u,v tales que $\sigma_b=I_u,\tau_b=I_{uv}$ y $\Delta(v)<\varepsilon$.

El τ que elegiste tiene una discrepancia $< \varepsilon$.

Lema 7. Sean $t \geq 2$ un entero, $t' = t \vee t + 1$, $\varepsilon < 1/t$ un real positivo. Luego, toda t-sequence $\overset{\rightarrow}{\sigma} = (\sigma_2, \dots, \sigma_t)$ admite un refinamiento $\overset{\rightarrow}{\tau} = (\tau_2, \dots, tau_{t'})$ con discrepancia menor a ε .

El orden relativo de τ_2 puede ser cualquier entero k tal que

$$k \geq \max\left\{\frac{6}{\varepsilon}, \frac{24(\log_2 t)(\log(t!))}{\varepsilon^2}\right\}.$$

Def (Pasos del algoritmo). El algoritmo considera las siguientes funciones para un paso n dado,

 $t_n = \max(2, \lfloor \sqrt[4]{\log n} \rfloor)$ es la máxima base a considerar en el paso n,

 $\boldsymbol{\varepsilon_n} = 1/t_n$ es la discrepancia máxima tolerada en el paso n, y

 $\mathbf{N_n} = \lfloor \log_3 n \rfloor + n_{\text{start}}$ es el número de dígitos en base 3 agregados en el paso n,

Donde n_{start} es el minimo entero que valida la condición del Lema 7. Por lo tanto, requerimos que para todo n > 0,

$$\left\lfloor \log_3 n \right\rfloor + n_{\text{start}} \geq \max \left\{ \frac{6}{\varepsilon}, \frac{24(\log_2 t)(\log(t!))}{\varepsilon^2} \right\}.$$

Algoritmo

Tiene de output $x = y_1 y_2 y_3 \dots$ que son los símbolos en la expansión en base 3 de un número normal en base 2 y 3.

Paso inicial (n = 1)

 $\overrightarrow{\sigma}_1 = (\sigma_3)$, con $\sigma_3 = (0,1)$. Observo que (0,1) es triádico, pues

$$\sigma_3 = \left(\frac{0}{3^0}, \frac{1}{3^0}\right).$$

Paso recursivo (n > 1)

En el paso anterior computamos $\overrightarrow{\sigma}_{n-1} = (\sigma_3, \sigma_2, \dots, \sigma_{t_n-1}).$

Tomamos $\sigma_n = (\tau_3, \tau_2, \dots, \tau_{t_n})$ la t_n -sequence más a la izquierda que refina $\overrightarrow{\sigma}_{n-1}$ con discrepancia menor que ε_n tal que si $\sigma_3 = I_u$ entonces $\tau_3 = I_{uv}$ con $|v| = N_n$.

Ponemos $y_{M_n+1} \dots y_{M_n+N_n} = v$ donde $M_n = \sum_{j=1}^n N_j$.

El algoritmo construye $\overrightarrow{\sigma}_0, \overrightarrow{\sigma}_1, \overrightarrow{\sigma}_2, \dots$ tal que $\overrightarrow{\sigma}_0 = (0,1)$ y para cada $n \ge 1$, $\overrightarrow{\sigma}_n$ es una t_n -sequencia que refina $\overrightarrow{\sigma}_{n-1}$ con discrepancia ε_n y tal que el orden de $\sigma_{n,2}$ es N_n mas el orden de $\sigma_{n-1,2}$.

Genera un número real x en base 3 que pertenece a la intersección de todos los intervalos, por lo que es simplemente normal en toda base $b \in B$, y es normal en base 2 y 3.