POSAN 2.0

O POSAN 2.0(Projeto ordinário de um sistema de arquivos novo) será fortemente baseado no modelo de sistemas de arquivos FAT 16, ele será dividido em 4 regiões, assim como no FAT16.

- Boot Sector
- FAT(File Allocation Table)
- Root Directory
- Data Sector

- Boot Sector

O Boot Sector ficará localizado no primeiro setor (cluster 0) da unidade de armazenamento. O Boot Sector contém informações que o sistema de arquivo usa para acessar o volume de dados. A divisão dos bits é apresentada na tabela a abaixo:

Offset	Tamanho	Descrição
(em Bytes)	(em Bytes)	
0	2	Número de bytes por setor
2	1	Número de setores por cluster
3	1	Quantidade de FATs
4	4	Número total de setores
8	2	Número de setores por FAT
10	2	Quantidade de clusters livres
12	2	Quantidade de setores reservados

- FAT

A FAT (Tabela de alocação de arquivos) é uma tabela que indica o estado e local de todos os clusters que existem dentro da unidade de armazenamento. Como o POSAN é baseado em FAT 16, a sua FAT possuirá 16 bits e desta forma existirão 65536 clusters endereçáveis, cada cluster possuirá 1 setor e cada setor terá 512 bytes.

Sendo assim, o sistema de arquivo será capaz de armazenar aproximadamente 32 Megabytes.

Root Directory

O diretório informará o nome do arquivo, o atributo do arquivo, o número do cluster inicial e o tamanho do arquivo em bytes. O diretório será expansível, não possuindo uma quantidade fixa de entradas, sendo assim, o cluster referente ao diretório raiz deverá ser guardado na FAT. O cluster do Root Directory será sempre o cluster 258. Abaixo é apresentado a divisão dos bits.

Offset (em Bytes)	Tamanho (em Bytes)	Descrição
0	25	Nome do arquivo
25	1	Atributo do arquivo
26	2	Cluster inicial do arquivo
28	4	Tamanho do arquivo em
		bytes

Os possíveis atributos para o arquivo serão: Diretório = 1, Arquivo = 2.

- Data Sector

O Data Sector é a região aonde efetivamente fica armazenado os dados dos arquivos no sistema, que serão indexados de acordo com a FAT, da mesma maneira que na FAT 16.

-Funcionamento

-Subdiretórios: No diretório raiz os subdiretórios possuem o valor de sua entrada marcada como 1, representando um diretório (offset 16). Nessa entrada estará demarcado o cluster que se encontra o começo do subdiretório (offset 17). O cluster do diretório em questão estará armazenado em uma entrada na FAT e caso esse diretório ocupe mais do que 16 entradas, haverá uma referência na FAT para o próximo cluster, caso contrário encontrará um marcador de último cluster ocupado por esse diretório (indicado na seção de marcadores).

-Formatando o disco: No primeiro cluster da unidade de armazenamento deverá ser escrito as informações referentes ao boot sector. Após isso deve ser feito um deslocamento de 1 cluster para se posicionar no início da FAT. A primeira entrada da FAT até a entrada 257 devem ser preenchidas, bloqueando a utilização do mesmo, pois são clusters reservados (boot sector e FAT). O cluster 258 será o cluster referente ao diretório raiz, como descrito na seção do diretório raiz, o restante das entradas da tabela receberão marcadores de livre.

-Listar o conteúdo de um diretório: Posiciona-se no primeiro cluster do diretório em questão. São listadas, então, todas as entradas desse diretório. Caso a quantidade de entradas seja igual a 16, deve-se analisar a entrada da FAT correspondente ao valor do primeiro cluster do diretório. Se houver um marcador de último cluster ocupado por esse diretório, todos os arquivos foram listados, senão deve-se ir ao próximo cluster indicado na FAT e recomeçar o processo.

-Copiar um arquivo do HD para o sistema de arquivos: Inicialmente encontra-se um cluster com marcador de livre na FAT. Ao ser encontrado, cria-se a entrada desse arquivo na FAT. Após isso, no diretório que esse arquivo está sendo copiado, deve ser criado a sua entrada e armazenado os dados necessários. Após isso o conteúdo do arquivo pode ser alocado no Data Sector no cluster especificado.

-Excluir um arquivo do sistema de arquivos: Para a exclusão de um arquivo é necessário ser encontrado seu cluster na FAT e colocado o marcador de livre. Caso esse arquivo ocupe mais de um cluster deve ser colocado o marcador de cluster livre em todas as entradas da FAT referentes ao mesmo. Após isso, no diretório referente ao arquivo, também deve ser colocado o marcador de arquivo deletado.

-Valores padrão do sistema de arquivo

- Número de bytes por setor = 512 bytes
- Números de setores por cluster = 1
- Número de setores = 2^{16} = 65536
- Ouantidade de FATs = 1
- Número de setores por FAT = 65536*16 = 1048576 bits, dessa forma o tamanho da FAT em setores é de 256 setores, esse resultado é dado por 1048576/8.
- Quantidade de clusters livres = 65536 1 = 65535 (excluindo o boot sector) , 65535 - 256 = 65279 (excluindo a FAT) e 65279-1 = 65278 (excluindo o diretório raiz).

-Marcadores usados no sistema

Marcadores	Significado
E5	Arquivo deletado
1	Cluster livre na FAT
0	Fim do arquivo
O valor a ser armazenado É igual do índice	Marcador do último cluster ocupado pelo diretório