

Machine Learning

Master Degree in Computer Science

Curriculum in Data Science and Engineering

Who we are

Lorenzo Rosasco (instr) lorenzo.rosasco@unige.it

Nicoletta Noceti (instr) nicoletta.noceti@unige.it

Jacopo Dapueto (TA) jacopo.dapueto@edu.unige.it

Paolo Didier Alfano (TA) paolo.alfano@iit.it

Today

Course aims, logistics and rules

Course aims, logistics and rules

The role of ML in our study course

Artificial Intelligence Track	Data Analytics Track
Machine Learning (<u>pillar</u>)	Machine Learning (<u>pillar</u>)
Deep Learning (track specific) Computational Vision (track specific)	Predictive Analytics Projects (elective)
Sequential prediction and Reinforcement Learning (elective) Trustworthy AI (elective)	AI and law (elective)
•	

AI and law (elective)

Aims of the course

- This course provides an introduction to the fundamental methods at the core of modern machine learning
- It covers theoretical foundations as well as essential algorithms for machine learning complemented by practical lab sessions (with Python and Jupyter Notebook)

Program

A bit oh theory	Statistical learning	
	Bias and variance and cross- validation	
Local methods	KNNs	
Global methods	Regularized networks	
	Neural networks	
	Convolutional Neural Networks	
Intepretable models	Feature selection	
	Decision Trees	
Clustering	KMeans	
Dimensionality reduction	PCA	

Classes time and place

- Class times
 - **Monday 9-11 Room 710**
 - Wednesday 11-13 Room 710
 - Friday 14-16 Room 505/SW2
- 72+2 hours (~8 hours for the camp, ~38 hours of theory and algorithms, ~18 hours of lab activities, ~10 hours of other activities) - Mid-terms

 - An example of written exam

- Hands-on activities \rightarrow Optional submission few days after the class
- A mid-term in two parts → «More structured» hands-on activities
- Quiz → A «filter» in view of the final exam
- Written exam → 5 exercises/ questions / coding

If you submit them all you gain a +1 on the final grade →
Participation point

- Hands-on activities \rightarrow Optional submission few days after the class
- A mid-term in two parts → «More structured» hands-on activities
- Quiz → A «filter» in view of the final exam
- Written exam → 5 exercises/ questions / coding

- Hands-on activities \rightarrow Optional submission few days after the class
- A mid-term in two parts → «More structured» hands-on activities
- Quiz → A «filter» in view of the final exam
- Written exam → 5 exercises/ questions / coding

You can work in groups of at most 3 people

If you submit them and the evaluation is good, you will have the opportunity of accessing to a shorter written exam (3 Q instead of 5)

- Hands-on activities → Optional submission few days after the class
- A mid-term in two parts → «More structured» hands-on activities
- Quiz → A «filter» in view of the final exam
- Written exam → 5 exercises/ questions / coding

You can work in groups of at most 3 people

If you submit them and the evaluation is good, you will have the opportunity of accessing to a shorter written exam (3 Q instead of 5)

- Hands-on activities → Optional submission few days after the class
- A mid-term in two parts → «More structured» hands-on activities
- Quiz → A «filter» in view of the final exam

No grade, just passed/not passed

Written exam → 5 exercises/ questions / coding

To summarize, you can attend the course in two ways:

- Actively participating: 1 mid-term in 2 parts + 3 written
 exercises / questions /coding [+ weekly hands-on submissions]
- 5 written exercises/ questions / coding

To summarize, you can attend the course in two ways:

- Actively participating: 1 mid-term in 2 parts + 3 written

 [+1]
 exercises / questions /coding [+ weekly hands-on submissions]
- 5 written exercises / questions / coding

Prerequisites

 Basics of programming, linear algebra, calculus, probabilities, and statistics

References

Introductory Machine Learning Notes¹

Lorenzo Rosasco

DIBRIS, Universita' degli Studi di Genova

LCSL, Massachusetts Institute of Technology and Istituto Italiano di Tecnologia

lrosasco@mit.edu

December 21, 2017

Hastie, Tibshirani and Friedman

The Elements of Statistical Learning

- MIT 9.520: Statistical Learning Theory and Applications
- MLCC videos
- Stanford CS229 Machine Learning
- All references reported on our Aulaweb 2022 module MACHINE LEARNING 90498

References

If you have suggestions or find any typos in the notes please fill this form:

https://goo.gl/forms/OPJ9Ggk1aWYObYCB3

Introductory Machine Learning Notes¹

Lorenzo Rosasco

DIBRIS, Universita' degli Studi di Genova LCSL, Massachusetts Institute of Technology and Istituto Italiano di Tecnologia lrosasco@mit.edu December 21, 2017 Hastie, Tibshirani and Friedman

The Elements of Statistical Learning

- MIT 9.520: Statistical Learning Theory and Applications
- MLCC videos
- Stanford CS229 Machine Learning
- All references reported on our Aulaweb 2024 module MACHINE LEARNING 90498

Good time for questions

Welcome to Machine Learning

What is (Machine) Learning

Intelligent Systems

Technologically advanced machines that **perceive** and **respond to** the world around them. Intelligent systems can take many forms (automated vacuums, facial recognition programs, personalized shopping suggestions)

Data Science

An inter-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from many structural and unstructured data

BUT ALSO

a concept to unify statistics, data analysis and their related methods in order to understand and analyse actual phenomena with data

Intelligence

The Turing test

https://www.youtube.com/watch?feature=oembed&v=3wLqsRLvV-c

The birth of a dream... But how did it go?

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer

•Dartmouth Summer Research Conference on Artificial Intelligence organised by John McCarthy and proposed by McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon.

Around the same time in Genova

P.A.P.A.

First optical character recognition able to learn from examples (Genova, Istituto di Fisica, 1961)

7943 7945 7948 7950 7955 7956

Web crawlers and other AI-based information extraction programs become essential in widespread use of the World Wide Web.

1943 1945 1948 1950 1955 1956 Late 19905

The Deep Blue chess machine (IBM) beats the world chess champion, Garry Kasparov.

7943 7945 7948 7950 7955 7956 Late 19905 2004

DARPA introduces the DARPA Grand Challenge requiring competitors to produce autonomous vehicles for prize money.

How are we doing now?

How are we doing now?

https://youtu.be/pW6nZXeWlGM

How do we do this?

Two Pillars

"It takes these very simple-minded instructions—'Go fetch a number, add it to this number, put the result there, perceive if it's greater than this other number'—but executes them at a rate of, let's say, 1,000,000 per second. At 1,000,000 per second, the results appear to be magic."

[Playboy, Feb. 1, 1985]

DATA

COMPUTERS

Machine Learning

Electronic nose sniffs asthma
Device developed by Itaian researcher in Netherland

SYSTEMS THAT ARE TRAINED ON DATA RATHER THAN BEING PROGRAMMED

Use your voice to send

search for information, and more.

messages, set reminders,

Siri

Machine Learning

"It is the field of study that gives computers the ability to learn without being explicitly programmed"

- Arthur L. Samuel, AI pioneer, 1959

What is (Machine) Learning

Intelligent Systems

Data Science

Basic setting: Regression (with an example)

DATA

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:
2250	?
6000	?

$$(x_1,y_1),\ldots,(x_n,y_n)$$

Living area (feet 2)	#bedrooms	Price (1000\$s)	
2104	3	400	
1600	3	330	
2400	3	369	
1416	2	232	
3000	4	540	
:	:	:	

You are looking for a function such that

$$y_i \simeq f(x_i)$$

And able to generalize to new data

Machine Learning

Traditional programming paradigm

Machine Learning

Traditional programming paradigm

Machine Learning paradigm

Basic setting: regression

Basic setting: classification

$$Y = \{-1, 1\}$$

$$X \subseteq \mathbb{R}^2$$

$$x_i = [x_i^1, x_i^2]$$

$$S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

Text Classification

Subject	Date	Time	Body	Spam?			
I has the viagra for you	03/12/1992	12:23 pm	Hi! I noticed that you are a software engineer so here's the pleasure you were looking for	Yes			
Important business	05/29/1995	01:24 pm	Give me your account number and you'll be rich. I'm totally serial	Yes			
Business Plan	05/23/1996	07:19 pm	As per our conversation, here's the business plan for our new venture Warm regards	No			
Job Opportunity	02/29/1998	08:19 am	Hi !I am trying to fill a position for a PHP	Yes			
[A few thousand rows ommitted]							
Call mom	05/23/2000	02:14 pm	Call mom. She's been trying to reach you for a few days now	No			

Image classification

(b) Trees

Supervised Learning

$$(x_1,y_1),\ldots,(x_n,y_n)$$

GENERATOR:

generates vectors according to "certain rules" which are **unknown** but **fixed**

SUPERVISOR: transforms the vectors into output values. It is **unknown** but **it exists** and **does not change**

UnSupervised Learning

$$(x_1, y_1), \ldots, (x_n, y_n)$$

Metaphor: learning without a teacher

The goal of unsupervised learning is to directly infer **properties** of the data without the help of a supervisor or teacher providing correct answers or degree-of-error for each observation

A Turing test – Code LYANAZ

A B Which one is real?

UniGe MalGa