Name	
ID	No

ONLY THE ANSWERS IN THE ANSWER SHEET WILL BE GRADED.

Module 10: (20%)

- 1. Let x and y be real numbers, and n be a nonnegative integer. Please answer whether it is **True or False**.
 - 1.1 x > n if and only if [x] > n
- 1.2 $x \le n$ if and only if $|x| \le n$
 - 1.3 $[xy] \le [x][y]$
- 2. Solve $\lfloor \frac{n^2}{2} \rfloor = \lfloor \frac{n}{2} \rfloor^2$, where n is an integer. Find the number of possible solution n.
 - a. 1
 - b. 2
 - c. 3
 - d. 4
- 3. Find the smallest positive integer k such that $7 \mid 1^5 + 2^5 + 3^5 + ... + 99^5 + k$
 - a. 2
 - b. 3
 - c. 5
 - d. 6
- 4. Find the number of solutions in tuple of positive integers (m, n) of the equation $\frac{1}{m} + \frac{1}{n} = \frac{1}{6}$
 - a. 6
 - b. 9
 - c. 12
 - d. 18
- 5. Let $[a_1, a_2, a_3, ...]$ is simple continued fraction of $\frac{345}{12}$. Find $a_1 + a_2 + a_3 + ...$
 - a. 30
 - b. 32
 - c. 34
 - d. 36
- 6. For all positive integer n, let $T_n = 2^{2^n} + 1$. Find the greatest common divisor of T_m and T_n where (m, n) = (4, 5).
 - a. $2^1 1$
 - b. $2^2 1$
 - c. $2^3 1$
 - d. $2^4 1$

Name	
ID	No.

For questions 7-8, these are challenging problems, but I have confidence in your ability to solve them.

We define $v_p(x)$ to be the greatest power in which a prime p divides x; in particular, if $v_p(x) = \alpha$ then $p^{\alpha} \mid x$ but $p^{\alpha+1} \nmid x$.

Example. The greatest power of 3 that can divide 63 is 3^2 . because $3^2 = 9 \mid 63$ but $3^3 = 27 \nmid 63$. So $v_3(63) = 2$.

7. Find the number of 0's at the end of 2023!. (Hint: $Find \ v_p(2023!), \ p = ???$ I try to help you so much na)

Theorem

Let x and y be integer, let n be a positive integer, and let p be an odd prime such that $p \mid x - y$ and none of x and y is divisible by p. We have

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n)$$

8. Find the greatest number k such that $7^k \mid 2^{147} - 1$

Module 11 : (20%)

- 9. Find all integer x, y satisfying the condition 29x + 11y = 15 using Euclid's Algorithm
 - 9.1 Fill this table with integer answer

o. This time table with integer anewer				
i	r_{i}	$q_{_i}$	P_{i}	$Q_{_i}$
	29			
0	11			
1				
2				
3				
4				

9.2 if x = A + 11t and y = B - 29t for all integer t, find A, B

Quiz 6B (Module 10-12) Number Theory

Name_	
ID	No

- 10. If a simple continued fraction of $\frac{29}{11} = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{q_4}}}}$, find q_0, q_1, q_2, q_3, q_4
- 11. If a simple continued fraction of $\sqrt{3} = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{q_4 + \dots}}}}$, find q_0 , q_1 , q_2 , q_3 , q_4
- 12. let x be the smallest positive integer such $3^{2566} \equiv x \pmod{13}$ and let y be the smallest positive integer such $5^{2566} \equiv y \pmod{13}$ find $x^y + y^x \pmod{xy}$
- 13. We call positive integer x <u>"Tar number"</u> if and only if $7x^2 + 1 = (y)(y + 1)(y + 2)$ for some integer y. How many positive integer is <u>"Tar number"</u> (You can ans "**INF**" if you think there are infinite "Tar number")
- 14. Find smallest positive integer k that all integers x such

$$x \equiv 1 \pmod{3}$$

$$x \equiv 5 \pmod{7}$$

such $a = b^2$

$$x \equiv 4 \pmod{11}$$

then
$$x \equiv k \pmod{231}$$

15. (Bonus) Find sum of all positive integers n such 1! + 2! + 3! +... + n! is a perfect square (positive integer a is a perfect square if and only if there exists an integer b

Module 12: (20%)

$$\phi(n)$$
 is Euler function

$$\phi(p) = p - 1$$
 if p is prime number

$$\phi(mn) = \phi(m) \times \phi(n)$$
 if n, m is positive and $gcd(m, n) = 1$

$$\phi(p^n) = p^n - p^{n-1}$$
 if p is prime number

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
 if n, m is positive integer, $gcd(n, a) = 1$

16. find

16.1.
$$\phi(5)$$

16.2.
$$\phi(43)$$

16.3.
$$\phi(2023)$$

16.4.
$$2^4 \mod 5$$

16.5.
$$7^{33} \mod 10$$

Quiz 6B (Module 10-12) Number Theory

Name _.	
ID	No

17. which statement is True. Given p is prime number, n is positive integer (**Answer in True or False**)

17.1.
$$p|\phi(p^n)$$
 for all $n > 2, p > 2$

17.2.
$$p^{n-1}|\phi(p^n)$$
 for all $n > 2, p > 2$

17.3.
$$\phi(2^n) = 2^{n-1}$$
 for all n

17.4.
$$\phi(p^n)$$
 is even for all $n, p > 2$

17.5.
$$2^n | \phi(6^n)$$
 for all $n > 1$

17.6.
$$4 \mid \phi(3^n)$$
 for all $n > 1$

18. find last 3 digit of 3^{3205}

19.
$$79|(3^A - 1)(3^{2A} + 3^A + 1)(3^{3A} + 1)$$
 and $A < 20$ find A

20.
$$143|(7^A - 1)(7^B - 1)$$
 Given $A < B$ and $B < 20$ find $A + B$

21. **(Bonus)** how many odd integer n such that $n \mid 3^n + 1$ (You can ans "**INF**" if you think there are infinite numbers)

22. fill the blank below

The following step is Example of RSA Public-key Cryptosystem The first step is to select two prime numbers. p = 23 and q = 37

The second step is to compute: public key $N = \underline{\mathbf{A}}$.

then find Carmichael's function of N which is $\lambda(\underline{\mathbf{A}}) = 396$.

The third step is to determine the public-key and private key:

We try to factorize m(396)+1 for m = 1, 2, 3, ... until we find a "good" factorization that can be used to obtain suitable k and k'.

in this example we use m = 2, $2(396)+1 = 793 = 13 \times 61$

Then in this example we use k = 13 and $k' = \mathbf{B}$

Note: The public key is $N = \underline{\mathbf{A}}$

The public-key is k = 13

The private-key is $k' = \mathbf{B}$

- 22.1. find <u>A</u>
- 22.2. find \underline{B}
- 22.3. encrypt number 2
- 22.4. encrypt number 1
- 22.5. decrypt number 850

Quiz 6B	(Module	10-12)
Number	Theory	

Name	
ID	No.

ANSWER SHEET for Quiz 6B

Module 10: Provide an answer in terms of TRUE OR FALSE ONLY.

No.	Answer					
1	1.1	True False	1.2	True False	1.3	True False

Choose the correct answer and provide the **X** mark.

Na	Choice			Na		Cho	oice		
No.	a.	b.	C.	d.	No.	a.	b.	C.	d.
2.					5.				
3.					6.				
4.									

Provide an answer in terms of **INTEGER ONLY**.

No.	Answ	/er
7.	8.	

Module 11: Choose the correct answer and provide the **X** mark.

Provide an answer in terms of INTEGER or "INF" ONLY.

No.9.1

i	$r_{_i}$	$q_{_{i}}$	P_{i}	Q_{i}
	29			
0	11			
1				
2				
3				
4				

Name	
ID	No

No.	Answer									
9.2	А					В				
10	$q_{0}^{}$		q_{1}		$q_{2}^{}$		$q_{_3}$	-	$q_{_4}$	
11	$q_{_{0}}$		$q_{1}^{}$		$q_{2}^{}$		$q_{_3}$		$q_{_4}$	

No.	Answer						
12.		13.		14.		15.	

<u>Module 12</u>: Provide an answer in terms of **INTEGER OR TRUE OR FALSE or** "**INF**" **ONLY**.

No.	Answer								
	16.1		16.2						
16	16.3		16.4						
	16.5		16.6						
17	17.1	True False	17.2	True False					
	17.3	True False	17.4	True False					
	17.5	True False	17.6	True False					

No.	Answer						
18.		19.		20.		21.	

No.	Answer							
	22.1		22.2					
22	22.3		22.4					
	22.5							