A. Which of the following is a proposition?

- (a) $(1+2)^2 = 1^2 + 2 \cdot 1 \cdot 2 + 2^2$.
- (b) $\sqrt{42}$.
- (c) x-y.
- (d) 1 < 3.
- (e) 3 < 1.
- (f) Every positive even integer can be written as the sum of two primes.

B. Let A, B be propositions. Determine a truth table for the propositions

- (a) $\neg (A \land \neg B)$,
- (b) $\neg A \lor B$,

and compare them to the truth table for $A \Rightarrow B$.

C. Let A, B be any propositions and F a contradiction. Using truth tables, prove

$$A \Rightarrow B$$
 and $A \land \neg B \Rightarrow F$ are logically equivalent.

D. Let A, B and C be any propositions and T a tautology. Using truth tables, prove

- (a) $(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$ and T are logically equivalent,
- (b) $A \Leftrightarrow B$ and $(A \Rightarrow B) \land (B \Rightarrow A)$ are logically equivalent.

E. Let A, B and C be any propositions. Prove

- (a) $(A \wedge B) \wedge C$ and $A \wedge (B \wedge C)$ are logically equivalent,
- (b) $(A \vee B) \wedge C$ and $(A \wedge C) \vee (B \wedge C)$ are logically equivalent.

F. For this exercise, the corresponding class of x is Ω :="all possible AI students". We define predicates

- $P(\cdot)$: "Student ... was in at least one Math lesson".
- $Q(\cdot)$: "Student ... was in all Math lessons".

Write the following propositions and their negations in words.

- (a) $\forall x \in \Omega : P(x)$.
- (b) $\exists x \in \Omega : P(x)$.
- (c) $\forall x \in \Omega : Q(x)$.
- (d) $\exists x \in \Omega : Q(x)$.