Package 'metasnf'

November 9, 2024

Title Meta Clustering with Similarity Network Fusion

Version 1.1.2

Description Framework to facilitate patient subtyping with similarity network fusion and meta clustering. The similarity network fusion (SNF) algorithm was introduced by Wang et al. (2014) in <doi:10.1038/nmeth.2810>. SNF is a data integration approach that can transform high-dimensional and diverse data types into a single similarity network suitable for clustering with minimal loss of information from each initial data source. The meta clustering approach was introduced by Caruana et al. (2006) in <doi:10.1109/ICDM.2006.103>. Meta clustering involves generating a wide range of cluster solutions by adjusting clustering hyperparameters, then clustering the solutions themselves into a manageable number of qualitatively similar solutions, and finally characterizing representative solutions to find ones that are best for the user's specific context. This package provides a framework to easily transform multimodal data into a wide range of similarity network fusion-derived cluster solutions as well as to visualize, characterize, and validate those solutions. Core package functionality includes easy customization of distance metrics, clustering algorithms, and SNF hyperparameters to generate diverse clustering solutions; calculation and plotting of associations between features, between patients, and between cluster solutions; and standard cluster validation approaches including resampled measures of cluster stability, standard metrics of cluster quality, and label propagation to evaluate generalizability in unseen data. Associated vignettes guide the user through using the package to identify patient subtypes while adhering to best practices for unsupervised learning.

License GPL (>= 3) Encoding UTF-8 RoxygenNote 7.3.2

Imports cluster, digest, dplyr, ggplot2, grDevices, MASS, mclust, methods, progressr, purrr, rlang, SNFtool, stats, tidyr, utils

Suggests circlize, ComplexHeatmap, InteractiveComplexHeatmap, clv, future, future.apply, knitr, rmarkdown, testthat (>= 3.0.0), ggalluvial, dbscan

Config/testthat/edition 3

Depends R (>= 4.1.0)

LazyData true

2 Contents

VignetteBuilder knitr
URL https://branchlab.github.io/metasnf/,
https://github.com/BRANCHlab/metasnf/
BugReports https://github.com/BRANCHlab/metasnf/issues
NeedsCompilation no
Author Prashanth S Velayudhan [aut, cre], Xiaoqiao Xu [aut], Prajkta Kallurkar [aut], Ana Patricia Balbon [aut], Maria T Secara [aut], Adam Taback [aut], Denise Sabac [aut], Nicholas Chan [aut], Shihao Ma [aut], Bo Wang [aut], Daniel Felsky [aut], Stephanie H Ameis [aut], Brian Cox [aut], Colin Hawco [aut], Lauren Erdman [aut], Anne L Wheeler [aut, ths]
Maintainer Prashanth S Velayudhan <psvelayu@gmail.com></psvelayu@gmail.com>
Repository CRAN

Contents

Date/Publication 2024-11-08 23:20:02 UTC

abcd_anxiety
abcd_colour
abcd_cort_sa
abcd_cort_t
abcd_depress
abcd_h_income
abcd_income
abcd_pubertal
abcd_subc_v
add_columns
add_settings_matrix_rows
adjusted_rand_index_heatmap
age_df
alluvial_cluster_plot
anxiety
arrange_dl
assemble_data
assoc nyal heatman 21

Contents 3

auto_plot	22
bar_plot	23
batch_nmi	24
batch_row_closure	25
batch_snf	26
batch_snf_subsamples	27
calculate_coclustering	29
calculate_db_indices	30
calculate_dunn_indices	30
calculate_silhouettes	31
calc_aris	31
calc_assoc_pval	32
calc_assoc_pval_matrix	32
cancer_diagnosis_df	33
cell_significance_fn	34
char_to_fac	34
check_dataless_annotations	35
check_hm_dependencies	35
check_similarity_matrices	36
chi_squared_pval	36
coclustering_coverage_check	37
cocluster_density	37
cocluster_heatmap	38
collapse_dl	39
colour_scale	40
convert_uids	
cort_sa	41
cort_t	
depress	
diagnosis_df	
discretisation	
discretisation_evec_data	44
dl_has_duplicates	45
dl_uid_first_col	
dl_variable_summary	
domains	
domain_merge	
_ &	48
drop_inputs	48
esm_manhattan_plot	40 49
estimate_nclust_given_graph	
euclidean_distance	50
expression_df	50
extend_solutions	51
fav_colour	52
fisher_exact_pval	52
gender_df	53
generate_annotations_list	54
generate clust alos list	55

4 Contents

generate_data_list	. 56
generate_distance_metrics_list	. 58
generate_settings_matrix	. 60
generate_weights_matrix	. 63
get_clusters	
get_cluster_df	. 65
get_cluster_solutions	. 65
get_complete_uids	
get_dist_matrix	
get_dl_subjects	. 67
get_heatmap_order	. 68
get_matrix_order	. 68
get_mean_pval	. 69
get_min_pval	. 69
get_pvals	. 70
get_representative_solutions	. 70
gower_distance	
namming_distance	
ncome	
ndividual	
itter_plot	
abel_prop	
abel_splits	
inear_adjust	
inear_model_pval	
ist_remove	
p_solutions_matrix	
nc_manhattan_plot	
merge_data_lists	
merge_df_list	
methylation_df	
no_subs	
numcol_to_numeric	
ord_reg_pval	
parallel_batch_snf	
prefix_dl_sk	
pubertal	. 84
oval_heatmap	. 84
random removal	
reduce dl to common	
remove dl na	
rename_dl	
reorder_dl_subs	
resample	
save_heatmap	
scale_diagonals	
settings_matrix_heatmap	
sew_euclidean_distance	
,cm_cuciiucuii_uisuiicc	. 14

abcd_anxiety 5

• —	eatmap	
• — —	ath	
·	nce	
_ _	ce	
	sic	
· —		
=		
-		
<u>*</u>		
· — —		
* —		
. —		
-		
<u> </u>		
· –		
1 —		
<u> </u>		
	_aris	
	gs_list	
-		
var_manhattan_plot		111
Index		112
abcd_anxiety	Mock ABCD anxiety data	

Description

A randomly shuffled and anonymized copy of anxiety data from the NIMH Data archive. The original file used was pdem02.txt. The file was pre-processed by the abcdutils package (https://github.com/BRANCHlab/abcdutils function get_cbcl_anxiety.

Usage

abcd_anxiety

6 abcd_colour

Format

abcd_anxiety:

A data frame with 275 rows and 2 columns:

patient The unique identifier of the ABCD dataset

cbcl_anxiety_r Ordinal value of impairment on CBCL anxiety, either 0 (no impairment), 1 (borderline clinical), or 2 (clinically impaired)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

abcd_colour

Mock ABCD "colour" data

Description

A randomly shuffled and anonymized copy of depression data from the NIMH Data archive. The original file used was pdem02.txt. The file was pre-processed by the abcdutils package (https://github.com/BRANCHlab/abcd function get_cbcl_depress. The data was transformed into categorical colour values to demonstrate the Chi-squared test capabilities of extend_solutions.

Usage

abcd_colour

Format

abcd_colour:

A data frame with 275 rows and 2 columns:

patient The unique identifier of the ABCD datasetcolour Categorical transformation of cbcl_depress.

abcd_cort_sa 7

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

abcd_cort_sa

Mock ABCD cortical surface area data

Description

A randomly shuffled and anonymized copy of cortical surface area data from the NIMH Data archive. The original file used was mrisdp10201.txt The file was pre-processed by the abcdutils package (https://github.com/BRANCHlab/abcdutils) function get_cort_t.

Usage

abcd_cort_sa

Format

abcd_cort_sa:

A data frame with 188 rows and 152 columns:

patient The unique identifier of the ABCD dataset

... Cortical surface areas of various ROIs (mm², I think)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and

8 abcd_cort_t

follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

abcd_cort_t

Mock ABCD cortical thickness data

Description

A randomly shuffled and anonymized copy of cortical thickness data from the NIMH Data archive. The original file used was mrisdp10201.txt The file was pre-processed by the abcdutils package (https://github.com/BRANCHlab/abcdutils) function get_cort_t.

Usage

abcd_cort_t

Format

abcd_cort_t:

A data frame with 188 rows and 152 columns:

patient The unique identifier of the ABCD dataset

... Cortical thicknesses of various ROIs (mm³, I think)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete

abcd_depress 9

listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

abcd_depress

Mock ABCD depression data

Description

A randomly shuffled and anonymized copy of depression data from the NIMH Data archive. The original file used was pdem02.txt. The file was pre-processed by the abcdutils package (https://github.com/BRANCHlab/abcdfunction get_cbcl_depress.

Usage

abcd_depress

Format

abcd_depress:

A data frame with 275 rows and 2 columns:

patient The unique identifier of the ABCD dataset

cbcl_depress_r Ordinal value of impairment on CBCL anxiety, either 0 (no impairment), 1 (borderline clinical), or 2 (clinically impaired)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

10 abcd_income

abcd_h_income

Mock ABCD income data

Description

Like abcd_income, but with no NAs in patient column

Usage

abcd_h_income

Format

abcd_income:

A data frame with 300 rows and 2 columns:

patient The unique identifier of the ABCD dataset

household_income Household income in 3 category levels (low = 1, medium = 2, high = 3)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

abcd_income

Mock ABCD income data

Description

A randomly shuffled and anonymized copy of income data from the NIMH Data archive. The original file used was pdem02.txt The file was pre-processed by the abcdutils package (https://github.com/BRANCHlab/abcdutils) function get_income.

abcd_pubertal 11

Usage

abcd_income

Format

abcd_income:

A data frame with 300 rows and 2 columns:

patient The unique identifier of the ABCD dataset

household_income Household income in 3 category levels (low = 1, medium = 2, high = 3)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

abcd_pubertal

Mock ABCD pubertal status data

Description

A randomly shuffled and anonymized copy of pubertal status data from the NIMH Data archive. The original files used were abcd_ssphp01.txt and abcd_ssphy01.txt. The file was pre-processed by the abcdutils package (https://github.com/BRANCHlab/abcdutils) function get_pubertal_status.

Usage

abcd_pubertal

Format

abcd_pubertal:

A data frame with 275 rows and 2 columns:

patient The unique identifier of the ABCD dataset

pubertal_status Average reported pubertal status between child and parent (1-5 categorical scale)

12 abcd_subc_v

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

abcd_subc_v

Mock ABCD subcortical volumes data

Description

A randomly shuffled and anonymized copy of subcortical volume data from the NIMH Data archive. The original file used was smrip10201.txt The file was pre-processed by the abcdutils package (https://github.com/BRANCHlab/abcdutils) function get_subc_v.

Usage

abcd_subc_v

Format

abcd_subc_v:

A data frame with 174 rows and 31 columns:

patient The unique identifier of the ABCD dataset

... Subcortical volumes of various ROIs (mm³, I think)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and

add_columns 13

follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

add_columns

Add columns to a dataframe

Description

Add new columns to a dataframe by providing a character vector of column names (param newcols) and a value to occupy each row of the new columns (param fill, NA by default).

Usage

```
add_columns(df, newcols, fill = NA)
```

Arguments

df The dataframe to extend

newcols The vector containing new column names

fill The values of the elements of the newly added columns. NA by default.

Value

extended_df The dataframe containing the added columns

add_settings_matrix_rows

Add settings matrix rows

Description

Add settings matrix rows

Usage

```
add_settings_matrix_rows(
  settings_matrix,
  seed = NULL,
 nrows = 0,
 min_removed_inputs = 0,
 max_removed_inputs = sum(startsWith(colnames(settings_matrix), "inc_")) - 1,
  dropout_dist = "exponential",
 min_alpha = NULL,
 max_alpha = NULL,
 min_k = NULL,
 \max_k = \text{NULL},
 min_t = NULL,
 max_t = NULL,
  alpha_values = NULL,
  k_values = NULL,
  t_values = NULL,
  possible_snf_schemes = c(1, 2, 3),
  clustering_algorithms = NULL,
  continuous_distances = NULL,
  discrete_distances = NULL,
  ordinal_distances = NULL,
  categorical_distances = NULL,
 mixed_distances = NULL,
  distance_metrics_list = NULL,
  snf_input_weights = NULL,
  snf_domain_weights = NULL,
  retry_limit = 10
)
```

Arguments

settings_matrix

The existing settings matrix

seed

set a seed for the random matrix generation. Setting this value will change the

seed of the global environment.

nrows

Number of rows to generate for the settings matrix.

min_removed_inputs

The smallest number of input dataframes that may be randomly removed. By default, 0.

max_removed_inputs

The largest number of input dataframes that may be randomly removed. By default, this is 1 less than all the provided input dataframes in the data_list.

dropout_dist

Parameter controlling how the random removal of input dataframes should occur. Can be "none" (no input dataframes are randomly removed), "uniform" (uniformly sample between min_removed_inputs and max_removed_inputs to

determine number of input dataframes to remove), or "exponential" (pick number of input dataframes to remove by sampling from min_removed_inputs to max removed inputs with an exponential distribution; default).

min_alpha

The minimum value that the alpha hyperparameter can have. Random assigned value of alpha for each row will be obtained by uniformly sampling numbers between min_alpha and max_alpha at intervals of 0.1. Cannot be used in conjunction with the alpha_values parameter.

max_alpha

The maximum value that the alpha hyperparameter can have. See min_alpha parameter. Cannot be used in conjunction with the alpha_values parameter.

min_k

The minimum value that the k hyperparameter can have. Random assigned value of k for each row will be obtained by uniformly sampling numbers between min_k and max_k at intervals of 1. Cannot be used in conjunction with the k_values parameter.

max_k

The maximum value that the k hyperparameter can have. See min_k parameter. Cannot be used in conjunction with the k_values parameter.

min_t

The minimum value that the t hyperparameter can have. Random assigned value of t for each row will be obtained by uniformly sampling numbers between min_t and max_t at intervals of 1. Cannot be used in conjunction with the t_values parameter.

max_t

The maximum value that the t hyperparameter can have. See min_t parameter. Cannot be used in conjunction with the t_values parameter.

alpha_values

A number or numeric vector of a set of possible values that alpha can take on. Value will be obtained by uniformly sampling the vector. Cannot be used in conjunction with the min_alpha or max_alpha parameters.

k_values

A number or numeric vector of a set of possible values that k can take on. Value will be obtained by uniformly sampling the vector. Cannot be used in conjunction with the min_k or max_k parameters.

t_values

A number or numeric vector of a set of possible values that t can take on. Value will be obtained by uniformly sampling the vector. Cannot be used in conjunction with the min_t or max_t parameters.

possible_snf_schemes

A vector containing the possible snf_schemes to uniformly randomly select from. By default, the vector contains all 3 possible schemes: c(1, 2, 3). 1 corresponds to the "individual" scheme, 2 corresponds to the "domain" scheme, and 3 corresponds to the "twostep" scheme.

clustering_algorithms

A list of clustering algorithms to uniformly randomly pick from when clustering. When not specified, randomly select between spectral clustering using the eigen-gap heuristic and spectral clustering using the rotation cost heuristic. See ?generate_clust_algs_list for more details on running custom clustering algorithms.

continuous_distances

A vector of continuous distance metrics to use when a custom distance_metrics_list is provided.

discrete_distances

A vector of categorical distance metrics to use when a custom distance_metrics_list is provided.

ordinal_distances

A vector of categorical distance metrics to use when a custom distance_metrics_list is provided.

categorical_distances

A vector of categorical distance metrics to use when a custom distance_metrics_list is provided.

mixed_distances

A vector of mixed distance metrics to use when a custom distance_metrics_list is provided.

distance_metrics_list

List containing distance metrics to vary over. See ?generate_distance_metrics_list.

snf_input_weights

Nested list containing weights for when SNF is used to merge individual input measures (see ?generate_snf_weights)

snf_domain_weights

Nested list containing weights for when SNF is used to merge domains (see ?generate_snf_weights)

retry_limit

The maximum number of attempts to generate a novel row. This function does not return matrices with identical rows. As the range of requested possible settings tightens and the number of requested rows increases, the risk of randomly generating a row that already exists increases. If a new random row has matched an existing row retry_limit number of times, the function will terminate.

Value

settings_matrix A settings matrix

```
adjusted_rand_index_heatmap
```

Heatmap of pairwise adjusted rand indices between solutions

Description

Heatmap of pairwise adjusted rand indices between solutions

Usage

```
adjusted_rand_index_heatmap(
    aris,
    order = NULL,
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    log_graph = FALSE,
```

age_df

```
scale_diag = "none",
min_colour = "#282828",
max_colour = "firebrick2",
col = circlize::colorRamp2(c(min(aris), max(aris)), c(min_colour, max_colour)),
...
)
```

Arguments

aris Matrix of adjusted rand indices from calc_aris()
order Numeric vector containing row order of the heatmap.

cluster_rows Whether rows should be clustered.

cluster_columns

Whether columns should be clustered.

log_graph If TRUE, log transforms the graph.

scale_diag Method of rescaling matrix diagonals. Can be "none" (don't change diagonals),

"mean" (replace diagonals with average value of off-diagonals), or "zero" (re-

place diagonals with 0).

min_colour Colour used for the lowest value in the heatmap.

Colour used for the highest value in the heatmap.

col Colour ramp to use for the heatmap.

... Additional parameters passed to similarity_matrix_heatmap(), the function

that this function wraps.

Value

Returns a heatmap (class "Heatmap" from package ComplexHeatmap) that displays the pairwise adjusted Rand indices (similarities) between the cluster solutions of the provided solutions matrix.

age_df Mock age data

Description

Mock age data

Usage

age_df

Format

age_df:

A data frame with 200 rows and 2 columns:

patient_id Random three-digit number uniquely identifying the patient
age Mock age feature

18 alluvial_cluster_plot

Source

This data came from the SNFtool package, with slight modifications.

alluvial_cluster_plot Alluvial plot of patients across cluster counts and important features

Description

Alluvial plot of patients across cluster counts and important features

Usage

```
alluvial_cluster_plot(
  cluster_sequence,
  similarity_matrix,
  data_list = NULL,
  data = NULL,
  key_outcome,
  key_label = key_outcome,
  extra_outcomes = NULL,
  title = NULL
)
```

Arguments

cluster_sequence

A list of clustering algorithms (typically, the same algorithm varied over differ-

ent numbers of clusters).

similarity_matrix

A similarity matrix.

data_list A nested list of input data from generate_data_list().

A dataframe that contains features to include in the plot. data

The name of the feature that determines how each patient stream is coloured in key_outcome

the alluvial plot.

Name of key outcome to be used for the plot legend. key_label

extra_outcomes Names of additional features to add to the plot.

title Title of the plot.

Value

An alluvial plot (class "gg" and "ggplot") showing distribution of a feature across varying number cluster solutions.

anxiety 19

anxiety

Mock ABCD anxiety data

Description

Like the mock dataframe "abcd_colour", but with "unique_id" as the "uid".

Usage

anxiety

Format

anxiety:

A data frame with 275 rows and 2 columns:

unique_id The unique identifier of the ABCD dataset

cbcl_anxiety_r Ordinal value of impairment on CBCL anxiety, either 0 (no impairment), 1 (borderline clinical), or 2 (clinically impaired)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

20 assemble_data

arrange_dl

Given a data_list object, sort data elements by subjectkey

Description

Given a data_list object, sort data elements by subjectkey

Usage

```
arrange_dl(data_list)
```

Arguments

data_list

A nested list of input data from generate_data_list().

Value

arranged_data_list The arranged data_list object

assemble_data

Collapse a dataframe and/or a data_list into a single dataframe

Description

Collapse a dataframe and/or a data_list into a single dataframe

Usage

```
assemble_data(data, data_list)
```

Arguments

data

A dataframe.

data_list

A nested list of input data from generate_data_list().

Value

A class "data.frame" object containing all the features of the provided data frame and/or data list.

assoc_pval_heatmap 21

assoc_pval_heatmap

Heatmap of pairwise associations between features

Description

Heatmap of pairwise associations between features

Usage

```
assoc_pval_heatmap(
  correlation_matrix,
  scale_diag = "max"
  cluster_rows = TRUE,
  cluster_columns = TRUE,
  show_row_names = TRUE,
  show_column_names = TRUE,
  show_heatmap_legend = FALSE,
  confounders = NULL,
  out_of_models = NULL,
  annotation_colours = NULL,
  labels_colour = NULL,
  split_by_domain = FALSE,
  data_list = NULL,
  significance_stars = TRUE,
  slice_font_size = 8,
)
```

Arguments

correlation_matrix

Matrix containing all pairwise association p-values. The recommended way to obtain this matrix is through the calc_assoc_pval function.

scale_diag Parameter that controls how the diagonals of the correlation_

Parameter that controls how the diagonals of the correlation_matrix are adjusted in the heatmap. For best viewing, this is set to "max", which will match the diagonals to whichever pairwise association has the highest p-value.

 ${\tt cluster_rows} \qquad {\tt Parameter~for~Complex Heatmap:: Heatmap.~Will~be~ignored~if~split_by_domain}$

is also provided.

cluster_columns

Parameter for ComplexHeatmap::Heatmap. Will be ignored if split_by_domain is also provided.

show_row_names Parameter for ComplexHeatmap::Heatmap.

show_column_names

Parameter for ComplexHeatmap::Heatmap.

show_heatmap_legend

Parameter for ComplexHeatmap::Heatmap.

22 auto_plot

confounders A named list where the elements are columns in the correlation_matrix and the names are the corresponding display names. Like confounders, but a named list of out of model measures (who are also out_of_models present as columns in the correlation_matrix). annotation_colours Named list of heatmap annotations and their colours. labels_colour Vector of colours to use for the columns and rows of the heatmap. split_by_domain The results of dl_var_summar - a dataframe that has the domain of every feature in the plotted data. columns of the correlation_matrix. Will be used to "slice" the heatmap into visually separated sections. data_list A nested list of input data from generate_data_list(). significance_stars If TRUE (default), plots significance stars on heatmap cells

slice_font_size

Font size for domain separating labels.

A 11'd' and a constant of the Constant Hardward

. Additional parameters passed into ComplexHeatmap::Heatmap.

Value

Returns a heatmap (class "Heatmap" from package ComplexHeatmap) that displays the pairwise associations between features from the provided correlation_matrix.

auto_plot

Automatically plot features across clusters

Description

Given a single row of a solutions matrix and data provided through data_list and/or target_list arguments, this function will return a series of bar and/or jitter plots based on feature types.

Usage

```
auto_plot(
    solutions_matrix_row = NULL,
    data_list = NULL,
    cluster_df = NULL,
    target_list = NULL,
    return_plots = TRUE,
    save = NULL,
    jitter_width = 6,
    jitter_height = 6,
    bar_width = 6,
    verbose = FALSE
)
```

bar_plot 23

Arguments

solutions_matrix_row

A single row of a solutions matrix.

data_list A data_list containing data to plot.

cluster_df Directly provide a cluster df rather than a solutions matrix. Useful if plotting

data from label propagated results.

target_list A target_list containing data to plot.

return_plots If TRUE, the function will return a list of plots. If FALSE, the function will

instead return the full data frame used for plotting.

save If a string is provided, plots will be saved and this string will be used to prefix

plot names.

jitter_width Width of jitter plots if save is specified.

jitter_height Height of jitter plots if save is specified.

bar_width Width of bar plots if save is specified.

bar_height Height of bar plots if save is specified.

verbose If TRUE, print progress to console.

Value

By default, returns a list of plots (class "gg", "ggplot") with one plot for every feature in the provided data list and/or target list. If return_plots is FALSE, will instead return a single "data.frame" object containing every provided feature for every observation in long format.

bar_plot Bar plot separating a feature by cluster	
---	--

Description

Bar plot separating a feature by cluster

Usage

```
bar_plot(df, feature)
```

Arguments

df A data.frame containing cluster column and the feature to plot.

feature The feature to plot.

Value

A bar plot (class "gg", "ggplot") showing the distribution of a feature across clusters.

24 batch_nmi

batch_nmi

Calculate feature NMIs for a data_list and a derived solutions_matrix

Description

Calculate feature NMIs for a data_list and a derived solutions_matrix

Usage

```
batch_nmi(
  data_list,
  solutions_matrix,
  clust_algs_list = NULL,
  distance_metrics_list = NULL,
  automatic_standard_normalize = FALSE,
  transpose = TRUE,
  ignore_inclusions = TRUE,
  verbose = FALSE
)
```

Arguments

data_list

A nested list of input data from generate_data_list(). Use the same value as was used in the original call to batch_snf().

solutions_matrix

Result of batch_snf storing cluster solutions and the settings that were used to generate them. Use the same value as was used in the original call to batch_snf().

clust_algs_list

List of custom clustering algorithms to apply to the final fused network. See ?generate_clust_algs_list. Use the same value as was used in the original call to batch_snf().

distance_metrics_list

An optional nested list containing which distance metric function should be used for the various feature types (continuous, discrete, ordinal, categorical, and mixed). Use the same value as was used in the original call to batch_snf().

automatic_standard_normalize

If TRUE, will automatically apply standard normalization prior to calculation of any distance matrices. Use the same value as was used in the original call to batch_snf().

transpose

If TRUE, will transpose the output dataframe.

ignore_inclusions

If TRUE, will ignore the inclusion columns in the solutions matrix and calculate NMIs for all features. If FALSE, will give NAs for features that were dropped on a given settings_matrix row.

verbose

If TRUE, print progress to console.

batch_row_closure 25

Value

A "data.frame" class object containing one row for every feature in the provided data list and one column for every solution in the provided solutions matrix. Populated values show the calculated NMI score for each feature-solution combination.

batch_row_closure

Generate closure function to run batch_snf in an apply-friendly format

Description

Generate closure function to run batch_snf in an apply-friendly format

Usage

```
batch_row_closure(
  data_list,
  distance_metrics_list,
  clust_algs_list,
  settings_matrix,
  weights_matrix,
  similarity_matrix_dir,
  return_similarity_matrices,
  prog
)
```

Arguments

data_list A nested list of input data from generate_data_list().
distance_metrics_list

An optional nested list containing which distance metric function should be used for the various feature types (continuous, discrete, ordinal, categorical, and mixed). See ?generate_distance_metrics_list for details on how to build this.

clust_algs_list

List of custom clustering algorithms to apply to the final fused network. See ?generate_clust_algs_list.

settings_matrix

matrix indicating parameters to iterate SNF through.

weights_matrix A matrix containing feature weights to use during distance matrix calculation. See ?generate_weights_matrix for details on how to build this.

similarity_matrix_dir

If specified, this directory will be used to save all generated similarity matrices.

return_similarity_matrices

If TRUE, function will return a list where the first element is the solutions matrix and the second element is a list of similarity matrices for each row in the solutions matrix. Default FALSE.

prog Progressr function to update parallel processing progress

26 batch_snf

Value

A "function" class object used to run batch_snf in lapply-form for parallel processing.

batch_snf

Run variations of SNF.

Description

This is the core function of the metasnf package. Using the information stored in a settings_matrix (see ?generate_settings_matrix) and a data_list (see ?generate_data_list), run repeated complete SNF pipelines to generate a broad space of post-SNF cluster solutions.

Usage

```
batch_snf(
  data_list,
  settings_matrix,
  processes = 1,
  return_similarity_matrices = FALSE,
  similarity_matrix_dir = NULL,
  clust_algs_list = NULL,
  suppress_clustering = FALSE,
  distance_metrics_list = NULL,
  weights_matrix = NULL,
  automatic_standard_normalize = FALSE,
  verbose = FALSE
)
```

Arguments

data_list A nested list of input data from generate_data_list(). settings_matrix

A data.frame where each row completely defines an SNF pipeline transforming individual input dataframes into a final cluster solution. See ?generate_settings_matrix or https://branchlab.github.io/metasnf/articles/settings_matrix.html for more details.

processes

Specify number of processes used to complete SNF iterations

- 1 (default) Sequential processing: function will iterate through the settings_matrix one row at a time with a for loop. This option will not make use of multiple CPU cores, but will show a progress bar.
- 2 or higher: Parallel processing will use the future.apply::future_apply to distribute the SNF iterations across the specified number of CPU cores. If higher than the number of available cores, a warning will be printed and the maximum number of cores will be used.
- max: All available cores will be used.

batch_snf_subsamples 27

return_similarity_matrices

If TRUE, function will return a list where the first element is the solutions matrix and the second element is a list of similarity matrices for each row in the solutions matrix. Default FALSE.

similarity_matrix_dir

If specified, this directory will be used to save all generated similarity matrices.

clust_algs_list

List of custom clustering algorithms to apply to the final fused network. See ?generate_clust_algs_list.

suppress_clustering

If FALSE (default), will apply default or custom clustering algorithms to provide cluster solutions on every iteration of SNF. If TRUE, parameter similarity_matrix_dir must be specified.

distance_metrics_list

An optional nested list containing which distance metric function should be used for the various feature types (continuous, discrete, ordinal, categorical, and mixed). See ?generate_distance_metrics_list for details on how to build this.

weights_matrix A matrix containing feature weights to use during distance matrix calculation. See ?generate_weights_matrix for details on how to build this.

automatic_standard_normalize

If TRUE, will automatically apply standard normalization prior to calculation of any distance matrices. This parameter cannot be used in conjunction with a custom distance metrics list. If you wish to supply custom distance metrics but also always have standard normalization, simply ensure that the numeric (continuous, discrete, and ordinal) distance metrics are only populated with distance metric functions that apply standard normalization. See https://branchlab.github.io/metasnf/articles/distance

to learn more.

verbose

If TRUE, print time remaining estimates to console.

Value

By default, returns a solutions matrix (class "data.frame"), a a data frame containing one row for every row of the provided settings matrix, all the original columns of that settings matrix, and new columns containing the assigned cluster of each observation from the cluster solution derived by that row's settings. If return_similarity_matrices is TRUE, the function will instead return a list containing the solutions matrix as well as a list of the final similarity matrices (class "matrix") generated by SNF for each row of the settings matrix. If suppress_clustering is TRUE, the solutions matrix will not be returned in the output.

batch_snf_subsamples Run SNF clustering pipeline on a list of subsampled data lists.

Description

Run SNF clustering pipeline on a list of subsampled data lists.

Usage

```
batch_snf_subsamples(
      data_list_subsamples,
      settings_matrix,
      processes = 1,
      return_similarity_matrices = FALSE,
      clust_algs_list = NULL,
      suppress_clustering = FALSE,
      distance_metrics_list = NULL,
      weights_matrix = NULL,
      automatic_standard_normalize = FALSE,
      return_solutions_matrices = FALSE,
      verbose = FALSE
    )
Arguments
    data_list_subsamples
                     A list of subsampled data lists. This object is generated by the function batch_snf_subsamples().
    settings_matrix
                     A settings matrix defining the parameters of the SNF pipelines to be applied to
                     the subsampled data lists.
                     See ?batch_snf.
    processes
    return_similarity_matrices
                     See ?batch_snf.
    clust_algs_list
                     See ?batch_snf.
    suppress_clustering
                     See ?batch_snf.
    distance_metrics_list
                    See ?batch snf.
    weights_matrix See ?batch_snf.
    automatic_standard_normalize
                     See ?batch snf.
    return_solutions_matrices
                     If TRUE, includes the solutions matrices corresponding to each subsample in
                     the output.
```

Value

verbose

By default, returns a one-element list: cluster_solutions, which is itself a list of cluster solution data frames corresponding to each of the provided data list subsamples. Setting the parameters return_similarity_matrices and return_solutions_matrices to TRUE will turn the result of the function to a three-element list containing the corresponding solutions matrices and final fused similarity matrices of those cluster solutions, should you require these objects for your own stability calculations.

If TRUE, print time remaining estimates to console.

calculate_coclustering 29

calculate_coclustering

Calculate coclustering data.

Description

Calculate coclustering data.

Usage

calculate_coclustering(subsample_solutions, solutions_matrix, verbose = FALSE)

Arguments

subsample_solutions

A list of containing cluster solutions from distinct subsamples of the data. This object is generated by the function batch_snf_subsamples(). These solutions should correspond to the ones in the solutions matrix.

solutions_matrix

A solutions matrix. This object is generated by the function batch_snf(). The solutions in the solutions matrix should correspond to those in the subsample solutions.

verbose

If TRUE, print time remaining estimates to console.

Value

A list containing the following components:

- cocluster_dfs: A list of dataframes, one per cluster solution, that shows the number of times that every pair of subjects in the original cluster solution occurred in the same subsample, the number of times that every pair clustered together in a subsample, and the corresponding fraction of times that every pair clustered together in a subsample.
- cocluster_ss_mats: The number of times every pair of subjects occurred in the same subsample, formatted as a pairwise matrix.
- cocluster_sc_mats: The number of times every pair of subjects occurred in the same cluster, formatted as a pairwise matrix.
- cocluster_cf_mats: The fraction of times every pair of subjects occurred in the same cluster, formatted as a pairwise matrix.
- cocluster_summary: Specifically among pairs of subjects that clustered together in the original
 full cluster solution, what fraction of those pairs remained clustered together throughout the
 subsample solutions. This information is formatted as a dataframe with one row per cluster
 solution.

Description

Given a solutions_matrix and a list of similarity_matrices (or a single similarity_matrix if the solutions_matrix has only 1 row), return a vector of Davies-Bouldin indices

Usage

```
calculate_db_indices(solutions_matrix, similarity_matrices)
```

Arguments

```
solutions_matrix
A solutions_matrix (see ?batch_snf)
similarity_matrices
A list of similarity matrices (see ?batch_snf)
```

Value

davies_bouldin_indices A vector of Davies-Bouldin indices for each cluster solution.

```
calculate_dunn_indices
```

Calculate Dunn indices

Description

Given a solutions_matrix and a list of similarity_matrices (or a single similarity_matrix if the solutions_matrix has only 1 row), return vector of Dunn indices

Usage

```
calculate_dunn_indices(solutions_matrix, similarity_matrices)
```

Arguments

```
solutions_matrix
A solutions_matrix (see ?batch_snf)
similarity_matrices
A list of similarity matrices (see ?batch_snf)
```

Value

dunn_indices A vector of Dunn indices for each cluster solution

calculate_silhouettes 31

calculate_silhouettes Calculate silhouette scores

Description

Given a solutions_matrix and a list of similarity_matrices (or a single similarity_matrix if the solutions_matrix has only 1 row), return a list of 'silhouette' objects from the cluster package

Usage

```
calculate_silhouettes(solutions_matrix, similarity_matrices)
```

Arguments

```
solutions_matrix
```

A solutions_matrix (see ?batch_snf)

similarity_matrices

A list of similarity matrices (see ?batch_snf)

Value

silhouette_scores A list of "silhouette" objects from the cluster package.

calc_aris

Meta-cluster calculations

Description

Generate matrix of pairwise cluster-solution similarities by Adjusted Rand index calculations.

Usage

```
calc_aris(solutions_matrix, processes = 1, verbose = FALSE)
```

Arguments

solutions_matrix

solutions_matrix containing cluster solutions to calculate pairwise ARIs for.

processes

Specify number of processes used to complete calculations

- 1 (default) Sequential processing
- 2 or higher: Parallel processing will use the future.apply::future_apply to distribute the calculations across the specified number of CPU cores. If higher than the number of available cores, a warning will be printed and the maximum number of cores will be used.
- max: All available cores will be used. Note that no progress indicator is available during multi-core processing.

verbose

If TRUE, print progress to console.

Value

om_aris ARIs between clustering solutions of an solutions matrix

-		-
calc	assoc	nval

Calculate p-values based on feature vectors and their types

Description

Calculate p-values based on feature vectors and their types

Usage

```
calc_assoc_pval(var1, var2, type1, type2, cat_test = "chi_squared")
```

Arguments

var1	A single vector containing a feature.
var2	A single vector containing a feature.
type1	The type of var1 (continuous, discrete, ordinal, categorical).
type2	The type of var2 (continuous, discrete, ordinal, categorical).
cat_test	String indicating which statistical test will be used to associate cluster with a categorical feature. Options are "chi_squared" for the Chi-squared test and "fisher_exact" for Fisher's exact test.

Value

pval A p-value from a statistical test based on the provided types. Currently, this will either be the F-test p-value from a linear model if at least one feature is non-categorical, or the chi-squared test p-value if both features are categorical.

```
calc_assoc_pval_matrix
```

Calculate p-values for all pairwise associations of features in a data_list

Description

Calculate p-values for all pairwise associations of features in a data_list

Usage

```
calc_assoc_pval_matrix(data_list, verbose = FALSE, cat_test = "chi_squared")
```

cancer_diagnosis_df 33

Arguments

data_list A nested list of input data from generate_data_list().

verbose If TRUE, prints new line everytime a p-value is being calculated.

cat_test String indicating which statistical test will be used to associate cluster with

a categorical feature. Options are "chi_squared" for the Chi-squared test and

"fisher_exact" for Fisher's exact test.

Value

A "matrix" class object containing pairwise association p-values between the features in the provided data list.

cancer_diagnosis_df Mock diagnosis data

Description

This is the same data as diagnosis_df, with renamed features and columns.

Usage

```
cancer_diagnosis_df
```

Format

cancer_diagnosis_df:

A data frame with 200 rows and 2 columns:

patient_id Random three-digit number uniquely identifying the patient **diagnosis** Mock cancer diagnosis feature (1, 2, or 3)

Source

This data came from the SNFtool package, with slight modifications.

char_to_fac

cell_significance_fn Place significance stars on ComplexHeatmap cells.

Description

This is an internal function meant to be used to by the assoc_pval_heatmap function.

Usage

```
cell_significance_fn(data)
```

Arguments

data

The matrix containing the cells to base the significance stars on.

Value

cell_fn Another function that is well-formatted for usage as the cell_fun argument in Complex-Heatmap::Heatmap.

char_to_fac

Convert character-type columns of a dataframe to factor-type

Description

Convert character-type columns of a dataframe to factor-type

Usage

```
char_to_fac(df)
```

Arguments

df

A dataframe

Value

df_converted The dataframe with factor-type columns instead of char-type columns

check_dataless_annotations

Helper function to stop annotation building when no data was provided

Description

Helper function to stop annotation building when no data was provided

Usage

```
check_dataless_annotations(annotation_requests, data)
```

Arguments

annotation_requests

A list of requested annotations

data

A dataframe with data to build annotations

Value

Does not return any value. This function just raises an error when annotations are requested without any provided data for a heatmap.

Description

Check for ComplexHeatmap and circlize dependencies

Usage

```
check_hm_dependencies()
```

Value

Does not return any value. This function just checks that the ComplexHeatmap and circlize packages are installed.

36 chi_squared_pval

```
check_similarity_matrices
```

Check validity of similarity matrices

Description

Check to see if similarity matrices in a list have the following properties:

- 1. The maximum value in the entire matrix is 0.5
- 2. Every value in the diagonal is 0.5

Usage

```
check_similarity_matrices(similarity_matrices)
```

Arguments

```
similarity_matrices
```

A list of similarity matrices

Value

valid_matrices Boolean indicating if properties are met by all similarity matrices

```
chi_squared_pval
```

Chi-squared test p-value (generic)

Description

Return p-value for chi-squared test for any two features

Usage

```
chi_squared_pval(cat_var1, cat_var2)
```

Arguments

```
cat_var1 A categorical feature.
cat_var2 A categorical feature.
```

Value

```
pval A p-value (class "numeric").
```

coclustering_coverage_check

Coclustering coverage check

Description

Check if coclustered data has at least one subsample in which every pair of subjects were a part of simultaneously.

Usage

```
coclustering_coverage_check(cocluster_df, action = "warn")
```

Arguments

cocluster_df Dataframe containing coclustering data.

action Control if parent function should warn or stop.

Value

This function does not return any value. It checks a cocluster_df for complete coverage (all pairs occur in the same solution at least once). Will raise a warning or error if coverage is incomplete depending on the value of the action parameter.

cocluster_density

Density plot coclustering stability across subsampled data.

Description

This function creates a density plot that shows, for all pairs of observations that originally clustered together, the distribution of the the fractions that those pairs clustered together across subsampled data.

Usage

```
cocluster_density(cocluster_df)
```

Arguments

cocluster_df A dataframe containing coclustering data for a single cluster solution. This object is generated by the calculate_coclustering function.

jest is generated by the editated_coeffactor ing is

Value

Density plot (class "gg", "ggplot") of the distribution of coclustering across pairs and subsamples of the data.

38 cocluster_heatmap

cocluster_heatmap

Heatmap of observation co-clustering across resampled data.

Description

Create a heatmap that shows the distribution of observation co-clustering across resampled data.

Usage

```
cocluster_heatmap(
  cocluster_df,
  cluster_rows = TRUE,
  cluster_columns = TRUE,
  show_row_names = FALSE,
  show_column_names = FALSE,
  data_list = NULL,
  data = NULL,
  left_bar = NULL,
  right_bar = NULL,
  top_bar = NULL,
  bottom_bar = NULL,
  left_hm = NULL,
  right_hm = NULL,
  top_hm = NULL,
  bottom_hm = NULL,
  annotation_colours = NULL,
  min_colour = NULL,
 max_colour = NULL,
)
```

Arguments

```
cocluster_df
                 A dataframe containing coclustering data for a single cluster solution. This ob-
                 ject is generated by the calculate_coclustering function.
                 Argument passed to ComplexHeatmap::Heatmap().
cluster_rows
cluster_columns
                 Argument passed to ComplexHeatmap::Heatmap().
show_row_names Argument passed to ComplexHeatmap::Heatmap().
show_column_names
                 Argument passed to ComplexHeatmap::Heatmap().
data_list
                 See ?similarity_matrix_heatmap.
                 See ?similarity_matrix_heatmap.
data
left_bar
                 See ?similarity_matrix_heatmap.
                 See ?similarity_matrix_heatmap.
right_bar
```

collapse_dl 39

top_bar	See ?similarity_matrix_heatmap.		
bottom_bar	See ?similarity_matrix_heatmap.		
left_hm	See ?similarity_matrix_heatmap.		
right_hm	See ?similarity_matrix_heatmap.		
top_hm	See ?similarity_matrix_heatmap.		
bottom_hm	See ?similarity_matrix_heatmap.		
annotation_colours			
	See ?similarity_matrix_heatmap.		
min_colour	See ?similarity_matrix_heatmap.		
max_colour	See ?similarity_matrix_heatmap.		
	Arguments passed to ComplexHeatmap::Heatmap().		

Value

Heatmap (class "Heatmap" from ComplexHeatmap) object showing the distribution of observation co-clustering across resampled data.

collapse_dl	Collapse a data_list into a single dataframe

Description

Collapse a data_list into a single dataframe

Usage

```
collapse_dl(data_list)
```

Arguments

data_list A nested list of input data from generate_data_list().

Value

A "data.frame"-formatted version of the provided data list.

40 convert_uids

-		-	
റവ	OHE	scal	Δ

Return a colour ramp for a given vector

Description

Given a numeric vector and min and max colour values, return a colour ramp that assigns a colour to each element in the vector. This function is a wrapper for circlize::colorRamp2.'

Usage

```
colour_scale(data, min_colour, max_colour)
```

Arguments

data Vector of numeric values.
min_colour Minimum colour value.
max_colour Maximum colour value.

Value

A "function" class object that can build a circlize-style colour ramp.

convert_uids

Convert unique identifiers of data_list to 'subjectkey'

Description

Column name "subjectkey" is reserved for the unique identifier of subjects. This function ensures all dataframes have their UID set as "subjectkey".

Usage

```
convert_uids(data_list, uid = NULL)
```

Arguments

data_list A nested list of input data from generate_data_list().

uid (string) the name of the uid column currently used data

Value

dl_renamed_id data list with 'subjectkey' as UID

cort_sa 41

cort_sa

Mock ABCD cortical surface area data

Description

Like the mock dataframe "abcd_cort_sa", but with "unique_id" as the "uid".

Usage

cort_sa

Format

cort sa:

A data frame with 188 rows and 152 columns:

unique_id The unique identifier of the ABCD dataset

... Cortical surface areas of various ROIs (mm², I think)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

cort_t

Mock ABCD cortical thickness data

Description

Like the mock dataframe "abcd_cort_t", but with "unique_id" as the "uid".

42 depress

Usage

cort_t

Format

cort t:

A data frame with 188 rows and 152 columns:

unique_id The unique identifier of the ABCD dataset

... Cortical thicknesses of various ROIs (mm³, I think)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

depress

Mock ABCD depression data

Description

Like the mock dataframe "abcd_depress", but with "unique_id" as the "uid".

Usage

depress

Format

depress:

A data frame with 275 rows and 2 columns:

unique_id The unique identifier of the ABCD dataset

cbcl_depress_r Ordinal value of impairment on CBCL anxiety, either 0 (no impairment), 1 (borderline clinical), or 2 (clinically impaired)

diagnosis_df 43

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

diagnosis_df

Mock diagnosis data

Description

This is the same data as cancer_diagnosis_df, with renamed features and columns.

Usage

diagnosis_df

Format

diagnosis_df:

A data frame with 200 rows and 2 columns:

patient_id Random three-digit number uniquely identifying the patientdiagnosis Mock diagnosis feature

Source

This data came from the SNFtool package, with slight modifications.

discretisation

Internal function for estimate_nclust_given_graph

Description

Internal function taken from SNF tool to use for number of cluster estimation.

Usage

```
discretisation(eigenvectors)
```

Arguments

```
eigenvectors Matrix of eigenvectors.
```

Value

"Matrix" class object, intermediate product in spectral clustering.

```
discretisation_evec_data
```

 $Internal\,function\,for\,\verb"estimate_nclust_given_graph"$

Description

Internal function taken from SNF tool to use for number of cluster estimation.

Usage

```
discretisation_evec_data(eigenvector)
```

Arguments

eigenvector Matrix of eigenvectors

Value

"Matrix" class object discretizing provided eigenvector to values 0 or 1.

dl_has_duplicates 45

dl_has_duplicates

Check if data list contains any duplicate features

Description

Check if data list contains any duplicate features

Usage

```
dl_has_duplicates(data_list)
```

Arguments

data_list

A nested list of input data from generate_data_list().

Value

Doesn't return any value. Raises warning if there are features with duplicate names in a generated data list.

dl_uid_first_col

Make the subjectkey UID columns of a data_list first

Description

Make the subjectkey UID columns of a data_list first

Usage

```
dl_uid_first_col(data_list)
```

Arguments

data_list

A nested list of input data from generate_data_list().

Value

A data list ("list"-class object) in which each data-subcomponent has "subjectkey" positioned as its first column.

46 domains

dl_variable_summary

Variable-level summary of a data_list

Description

Variable-level summary of a data_list

Usage

```
dl_variable_summary(data_list)
```

Arguments

data_list

A nested list of input data from generate_data_list().

Value

variable_level_summary A dataframe containing the name, type, and domain of every variable in a data_list.

domains

Domains

Description

Domains

Usage

```
domains(data_list)
```

Arguments

data_list

A nested list of input data from generate_data_list().

Value

domain_list list of domains

domain_merge 47

domain_merge SNF scheme: Domain merge

Description

Given a data_list, returns a new data_list where all data objects of a particlar domain have been concatenated.

Usage

```
domain_merge(
  data_list,
  cont_dist_fn,
  disc_dist_fn,
  ord_dist_fn,
  cat_dist_fn,
  mix_dist_fn,
  weights_row,
  k,
  alpha,
  t
)
```

Arguments

```
data_list
                  A nested list of input data from generate_data_list().
cont_dist_fn
                  distance metric function for continuous data.
disc_dist_fn
                  distance metric function for discrete data.
ord_dist_fn
                  distance metric function for ordinal data.
cat_dist_fn
                  distance metric function for categorical data.
                  distance metric function for mixed data.
mix_dist_fn
weights_row
                  dataframe row containing feature weights.
k
                  k hyperparameter.
alpha
                  alpha/eta/sigma hyperparameter.
t
                  SNF number of iterations hyperparameter.
```

Value

fused_network The final fused network (class "matrix", "array") generated by SNF.

48 esm_manhattan_plot

drop_inputs

Execute inclusion

Description

Given a data list and a settings matrix row, returns a data list of selected inputs

Usage

```
drop_inputs(settings_matrix_row, data_list)
```

Arguments

```
settings_matrix_row
Row of a settings matrix.

data_list A nested list of input data from generate_data_list().
```

Value

A data list (class "list") in which any component with a corresponding 0 value in the provided settings matrix row has been removed.

esm_manhattan_plot

Manhattan plot of feature-cluster association p-values

Description

Manhattan plot of feature-cluster association p-values

Usage

```
esm_manhattan_plot(
  esm,
  neg_log_pval_thresh = 5,
  threshold = NULL,
  point_size = 5,
   jitter_width = 0.1,
   jitter_height = 0.1,
  text_size = 15,
  plot_title = NULL,
  hide_x_labels = FALSE,
  bonferroni_line = FALSE
)
```

Arguments

esm Extended solutions matrix storing associations between features and cluster as-

signments. See ?extend_solutions.

neg_log_pval_thresh

Threshold for negative log p-values.

threshold P-value threshold to plot dashed line at.

point_size Size of points in the plot.

jitter_width Width of jitter. jitter_height Height of jitter.

text_size Size of text in the plot.

plot_title Title of the plot.

hide_x_labels If TRUE, hides x-axis labels.

bonferroni_line

If TRUE, plots a dashed black line at the Bonferroni-corrected equivalent of the

p-value threshold.

Value

A Manhattan plot (class "gg", "ggplot") showing the association p-values of features against each solution in the provided solutions matrix.

estimate_nclust_given_graph

Estimate number of clusters for a similarity matrix

Description

Calculate eigengap and rotation-cost estimates of the number of clusters to use when clustering a similarity matrix. This function was adapted from SNFtool::estimateClustersGivenGraph, but scales up the Laplacian operator prior to eigenvalue calculations to minimize the risk of floating point-related errors.

Usage

```
estimate_nclust_given_graph(W, NUMC = 2:10)
```

Arguments

W Similarity matrix to calculate number of clusters for.

NUMC Range of cluster counts to consider among when picking best number of clus-

ters.

Value

A list containing the top two eigengap and rotation-cost estimates for the number of clusters in a given similarity matrix.

50 expression_df

euclidean_distance Distance metric: Euclidean distance

Description

Distance metric: Euclidean distance

Usage

```
euclidean_distance(df, weights_row)
```

Arguments

df Dataframe containing at least 1 data column

weights_row Single-row dataframe where the column names contain the column names in df

and the row contains the corresponding weights_row.

Value

distance_matrix A distance matrix.

expression_df

Modification of SNFtool mock dataframe "Data1"

Description

Modification of SNFtool mock dataframe "Data1"

Usage

```
expression_df
```

Format

```
expression_df:
```

A data frame with 200 rows and 3 columns:

gene_1_expression Mock gene expression feature

gene_2_expression Mock gene expression feature

patient_id Random three-digit number uniquely identifying the patient

Source

This data came from the SNFtool package, with slight modifications.

extend_solutions 51

extend_solutions	Extend an solutions matrix to include outcome evaluations

Description

Extend an solutions matrix to include outcome evaluations

Usage

```
extend_solutions(
   solutions_matrix,
   target_list = NULL,
   data_list = NULL,
   cat_test = "chi_squared",
   calculate_summaries = TRUE,
   min_pval = 1e-10,
   processes = 1,
   verbose = FALSE
)
```

Arguments

solutions_matrix

Result of batch_snf storing cluster solutions and the settings that were used to generate them.

target_list A data_lis

A data_list with features to calculate p-values for. Features in the target list will be included during a value summers measure calculations.

be included during p-value summary measure calculations.

data_list A data_list with features to calcualte p-values for, but that should not be incor-

porated into p-value summary measure columns (i.e., min/mean/max p-value

columns).

a categorical feature. Options are "chi_squared" for the Chi-squared test and

"fisher exact" for Fisher's exact test.

calculate_summaries

If TRUE, the function will calculate the minimum and mean p-values for each

row of the solutions matrix.

min_pval If assigned a value, any p-value less than this will be replaced with this value.

processes The number of processes to use for parallelization. Progress is only reported for

sequential processing (processes = 1).

verbose If TRUE, print progress to console.

Value

extended_solutions_matrix an extended solutions matrix that contains p-value columns for each outcome in the provided target_list

52 fisher_exact_pval

fav_colour

Mock ABCD "colour" data

Description

Like the mock dataframe "abcd_colour", but with "unique_id" as the "uid".

Usage

fav_colour

Format

fav_colour:

A data frame with 275 rows and 2 columns:

unique_id The unique identifier of the ABCD dataset
colour Categorical transformation of cbcl_depress.

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

fisher_exact_pval

Fisher exact test p-value

Description

Return p-value for Fisher exact test for any two features

gender_df 53

Usage

```
fisher_exact_pval(cat_var1, cat_var2)
```

Arguments

cat_var1 A categorical feature.
cat_var2 A categorical feature.

Value

```
pval A p-value (class "numeric").
```

gender_df

Mock gender data

Description

Mock gender data

Usage

gender_df

Format

gender_df:

A data frame with 200 rows and 2 columns:

patient_id Random three-digit number uniquely identifying the patient
gender_df Mock gene methylation feature

Source

This data came from the SNFtool package, with slight modifications.

```
generate_annotations_list
```

Generate annotations list

Description

Intermediate function that takes in formatted lists of features and the annotations they should be viewed through and returns annotation objects usable by ComplexHeatmap::Heatmap.

Usage

```
generate_annotations_list(
   df,
   left_bar = NULL,
   right_bar = NULL,
   top_bar = NULL,
   bottom_bar = NULL,
   left_hm = NULL,
   right_hm = NULL,
   top_hm = NULL,
   bottom_hm = NULL,
   show_legend = TRUE,
   annotation_colours = NULL)
```

Arguments

df	Dataframe containing all the data that is specified in the remaining arguments.	
left_bar	Named list of strings, where the strings are features in df that should be used for a barplot annotation on the left of the plot and the names are the names that will be used to caption the plots and their legends.	
right_bar	See left_bar.	
top_bar	See left_bar.	
bottom_bar	See left_bar.	
left_hm	Like left_bar, but with a heatmap annotation instead of a barplot annotation.	
right_hm	See left_hm.	
top_hm	See left_hm.	
bottom_hm	See left_hm.	
show_legend	Add legends to the annotations.	
annotation_colours		
	Named list of heatmap annotations and their colours.	

Value

annotations_list A named list of all the annotations.

```
generate_clust_algs_list
```

Generate a list of custom clustering algorithms

Description

This function can be used to specify custom clustering algorithms to apply to the final similarity matrices produced by each run of the batch_snf function.

Usage

```
generate_clust_algs_list(..., disable_base = FALSE)
```

Arguments

... An arbitrary number of named clustering functions (see examples below)

disable base

If TRUE, do not prepend the base clustering algorithms (spectral_eigen and spectral_rot, which apply spectral clustering and use the eigen-gap and rotation cost heuristics respectively for determining the number of clusters in the graph.

Value

A list of clustering algorithm functions that can be passed into the batch_snf and generate_settings_list functions.

Examples

```
# Using just the base clustering algorithms ------
# This will just contain spectral_eigen and spectral_rot
clust_algs_list <- generate_clust_algs_list()</pre>
# Adding algorithms provided by the package ------
# This will contain the base clustering algorithms (spectral_eigen,
# spectral_rot) as well as two pre-defined spectral clustering functions
# that force the number of clusters to be two or five
clust_algs_list <- generate_clust_algs_list(</pre>
   "two_cluster_spectral" = spectral_two,
   "five_cluster_spectral" = spectral_five
)
# Adding your own algorithms ------
# This will contain the base and user-provided clustering algorithms
my_clustering_algorithm <- function(similarity_matrix) {</pre>
   # your code that converts similarity matrix to clusters here...
   # solution_data <- list(</pre>
         "solution" = solution,
         "nclust" = number_of_clusters
   # )
```

56 generate_data_list

```
# return(solution_data)
}

# Suppress the base algorithms-----
# This will contain only user-provided clustering algorithms

clust_algs_list <- generate_clust_algs_list(
    "two_cluster_spectral" = spectral_two,
    "five_cluster_spectral" = spectral_five,
    disable_base = TRUE
)</pre>
```

generate_data_list

Generate a data_list

Description

This function generates the major data object that will be processed when iterating through the each SNF pipeline defined in the settings_matrix. The data_list is a named and nested list containing input dataframes (data), the name of that input dataframe (for the user's reference), the 'domain' of that dataframe (the broader source of information that the input dataframe is capturing, determined by user's domain knowledge), and the type of feature stored in the dataframe (continuous, discrete, ordinal, categorical, or mixed).

Usage

```
generate_data_list(
    ...,
    uid = NULL,
    test_subjects = NULL,
    train_subjects = NULL,
    sort_subjects = TRUE,
    remove_missing = TRUE,
    return_missing = FALSE
)
```

Arguments

```
Any number of list formatted as (df, "df_name", "df_domain", "df_type") OR any number of lists of lists formatted as (df, "df_name", "df_domain", "df_type") uid (string) the name of the uid column currently used data test_subjects character vector of test subjects (useful if building a full data list for label propagation)

train_subjects character vector of train subjects (useful if building a full data list for label propagation)

sort_subjects If TRUE, the subjects in the data_list will be sorted
```

generate_data_list 57

remove_missing If TRUE (default), subjects with incomplete data will be dropped from data_list creation. Setting this value to FALSE may lead to unusual and/or unstable results during SNF, clustering, p-value calculations or label propagation.

return_missing If TRUE, function returns a list where the first element is the data_list and the second element is a vector of unique IDs of patients who were removed during the complete data filtration step.

Value

A nested "list" class object. Each list component contains a 4-item list of a data frame, the user-assigned name of the data frame, the user-assigned domain of the data frame, and the user-labeled type of the data frame.

Examples

```
heart rate df <- data.frame(
   patient_id = c("1", "2", "3"),
   var1 = c(0.04, 0.1, 0.3),
    var2 = c(30, 2, 0.3)
)
personality_test_df <- data.frame(</pre>
    patient_id = c("1", "2", "3"),
    var3 = c(900, 1990, 373),
   var4 = c(509, 2209, 83)
)
survey_response_df <- data.frame(</pre>
   patient_id = c("1", "2", "3"),
   var5 = c(1, 3, 3),
   var6 = c(2, 3, 3)
)
city_df <- data.frame(</pre>
    patient_id = c("1", "2", "3"),
    var7 = c("toronto", "montreal", "vancouver")
)
# Explicitly (Name each nested list element):
data_list <- generate_data_list(</pre>
   list(
        data = heart_rate_df,
        name = "heart_rate",
        domain = "clinical",
        type = "continuous"
    ),
    list(
        data = personality_test_df,
        name = "personality_test",
        domain = "surveys",
        type = "continuous"
    ),
```

```
list(
        data = survey_response_df,
        name = "survey_response",
        domain = "surveys",
        type = "ordinal"
    ),
    list(
        data = city_df,
        name = "city",
        domain = "location",
        type = "categorical"
    ),
    uid = "patient_id"
)
# Compact loading
data_list <- generate_data_list(</pre>
    list(heart_rate_df, "heart_rate", "clinical", "continuous"),
    list(personality\_test\_df, \ "personality\_test", \ "surveys", \ "continuous"),
    list(survey_response_df, "survey_response", "surveys", "ordinal"),
    list(city_df, "city", "location", "categorical"),
    uid = "patient_id"
)
# Printing data_list summaries
summarize_dl(data_list)
# Alternative loading: providing a single list of lists
list_of_lists <- list(</pre>
    list(heart_rate_df, "data1", "domain1", "continuous"),
    list(personality_test_df, "data2", "domain2", "continuous")
)
dl <- generate_data_list(</pre>
   list_of_lists,
   uid = "patient_id"
)
```

generate_distance_metrics_list

Generate a list of distance metrics

Description

This function can be used to specify custom distance metrics

Usage

```
generate_distance_metrics_list(
  continuous_distances = NULL,
```

```
discrete_distances = NULL,
  ordinal_distances = NULL,
  categorical_distances = NULL,
  mixed_distances = NULL,
  keep_defaults = TRUE
)
```

Arguments

continuous_distances

A named list of distance metric functions discrete_distances

A named list of distance metric functions

ordinal_distances

A named list of distance metric functions

categorical_distances

A named list of distance metric functions

mixed_distances

A named list of distance metric functions

keep_defaults If TRUE (default), prepend the base distance metrics (euclidean and standard normalized euclidean)

Value

distance_metrics_list A well-formatted list of distance metrics

Examples

```
# Using just the base distance metrics ------
distance_metrics_list <- generate_distance_metrics_list()</pre>
# Adding your own metrics -----
# This will contain the base and user-provided clustering algorithms
my_distance_metric <- function(df) {</pre>
   # your code that converts a dataframe to a distance metric here...
   # return(distance_metric)
}
distance_metrics_list <- generate_distance_metrics_list(</pre>
   continuous_distances = list(
        "my_distance_metric" = my_distance_metric
)
# Suppress the base metrics-----
# This will contain only user-provided clustering algorithms
distance_metrics_list <- generate_distance_metrics_list(</pre>
   continuous_distances = list(
        "my_distance_metric" = my_distance_metric
   ),
```

```
discrete_distances = list(
         "my_distance_metric" = my_distance_metric
),
         ordinal_distances = list(
             "my_distance_metric" = my_distance_metric
),
         categorical_distances = list(
             "my_distance_metric" = my_distance_metric
),
         mixed_distances = list(
             "my_distance_metric" = my_distance_metric
),
         keep_defaults = FALSE
)
```

generate_settings_matrix

Build a settings matrix

Description

The settings_matrix is a dataframe whose rows completely specify the hyperparameters and decisions required to transform individual input dataframes (found in a data_list, see ?generate_data_list) into a single similarity matrix through SNF. The format of the settings matrix is as follows:

- A column named "row_id": This column is used to keep track of the rows and should have integer values only.
- A column named "alpha": This column contains the value of the alpha hyperparameter that will be used on that run of the SNF pipeline.
- A column named "k": Like above, but for the K (nearest neighbours) hyperparameter.
- A column named "t": Like above, but for the t (number of iterations) hyperparameter.
- A column named "clust_alg": Specification of which clustering algorithm will be applied to
 the final similarity matrix to identify patient subtypes. By default, this column can take on the
 integer values 1 or 2, which correspond to spectral clustering where the number of clusters is
 determined by the eigen-gap or rotation cost heuristic respectively. You can learn more about
 this parameter here: https://branchlab.github.io/metasnf/articles/clustering_algorithms.html.
- A column named "cont_dist": Specification of which distance metric will be used for dataframes
 of purely continuous data. You can learn about this metric and its defaults here: https://branchlab.github.io/metasnf/artic
- A column named "disc_dist": Like above, but for discrete dataframes.
- A column named "ord_dist": Like above, but for ordinal dataframes.
- A column named "cat_dist": Like above, but for categorical dataframes.
- A column named "mixed_dist": Like above, but for mixed-type (e.g., both categorical and discrete) dataframes.

• One column for every input dataframe in the corresponding data_list which can either have the value of 0 or 1. The name of the column should be formatted as "inc_[]" where the square brackets are replaced with the name (as found in dl_summary(data_list)\$"name") of each dataframe. When 0, that dataframe will be excluded from that run of the SNF pipeline. When 1, that dataframe will be included.

Usage

```
generate_settings_matrix(
  data_list,
  seed = NULL,
  nrows = 0,
 min_removed_inputs = 0,
 max_removed_inputs = length(data_list) - 1,
  dropout_dist = "exponential",
 min_alpha = NULL,
 max_alpha = NULL,
 min_k = NULL,
 \max_{k} = \text{NULL},
 min_t = NULL,
 max_t = NULL,
  alpha_values = NULL,
  k_values = NULL,
  t_values = NULL,
  possible_snf_schemes = c(1, 2, 3),
  clustering_algorithms = NULL,
  continuous_distances = NULL,
  discrete_distances = NULL,
  ordinal_distances = NULL,
  categorical_distances = NULL,
 mixed_distances = NULL,
  distance_metrics_list = NULL,
  snf_input_weights = NULL,
  snf_domain_weights = NULL,
  retry_limit = 10
)
```

Arguments

data_list A nested list of input data from generate_data_list().

seed (DEPRECATED) set the global seed. To ensure reproducible settings matrices are generated, manually call set.seed() prior to settings matrix generation

instead of using this parameter.

nrows Number of rows to generate for the settings matrix.

min_removed_inputs

The smallest number of input dataframes that may be randomly removed. By default, 0.

max_removed_inputs

The largest number of input dataframes that may be randomly removed. By default, this is 1 less than all the provided input dataframes in the data_list.

dropout_dist

Parameter controlling how the random removal of input dataframes should occur. Can be "none" (no input dataframes are randomly removed), "uniform" (uniformly sample between min_removed_inputs and max_removed_inputs to determine number of input dataframes to remove), or "exponential" (pick number of input dataframes to remove by sampling from min_removed_inputs to max_removed_inputs with an exponential distribution; the default).

min_alpha

The minimum value that the alpha hyperparameter can have. Random assigned value of alpha for each row will be obtained by uniformly sampling numbers between min_alpha and max_alpha at intervals of 0.1. Cannot be used in conjunction with the alpha_values parameter.

max_alpha

The maximum value that the alpha hyperparameter can have. See min_alpha parameter. Cannot be used in conjunction with the alpha_values parameter.

min k

The minimum value that the k hyperparameter can have. Random assigned value of k for each row will be obtained by uniformly sampling numbers between min_k and max_k at intervals of 1. Cannot be used in conjunction with the k_values parameter.

max_k

The maximum value that the k hyperparameter can have. See min_k parameter. Cannot be used in conjunction with the k_values parameter.

min_t

The minimum value that the t hyperparameter can have. Random assigned value of t for each row will be obtained by uniformly sampling numbers between min_t and max_t at intervals of 1. Cannot be used in conjunction with the t_values parameter.

max_t

The maximum value that the t hyperparameter can have. See min_t parameter. Cannot be used in conjunction with the t_values parameter.

alpha_values

A number or numeric vector of a set of possible values that alpha can take on. Value will be obtained by uniformly sampling the vector. Cannot be used in conjunction with the min_alpha or max_alpha parameters.

k values

A number or numeric vector of a set of possible values that k can take on. Value will be obtained by uniformly sampling the vector. Cannot be used in conjunction with the min_k or max_k parameters.

t_values

A number or numeric vector of a set of possible values that t can take on. Value will be obtained by uniformly sampling the vector. Cannot be used in conjunction with the min_t or max_t parameters.

possible_snf_schemes

A vector containing the possible snf_schemes to uniformly randomly select from. By default, the vector contains all 3 possible schemes: c(1, 2, 3). 1 corresponds to the "individual" scheme, 2 corresponds to the "domain" scheme, and 3 corresponds to the "twostep" scheme.

clustering_algorithms

A list of clustering algorithms to uniformly randomly pick from when clustering. When not specified, randomly select between spectral clustering using the eigen-gap heuristic and spectral clustering using the rotation cost heuristic. See

63

?generate_clust_algs_list for more details on running custom clustering algorithms.

continuous_distances

A vector of continuous distance metrics to use when a custom distance_metrics_list is provided.

discrete_distances

A vector of categorical distance metrics to use when a custom distance_metrics_list is provided.

ordinal_distances

A vector of categorical distance metrics to use when a custom distance_metrics_list is provided.

categorical_distances

A vector of categorical distance metrics to use when a custom distance_metrics_list is provided.

mixed_distances

A vector of mixed distance metrics to use when a custom distance_metrics_list is provided.

distance_metrics_list

List containing distance metrics to vary over. See ?generate_distance_metrics_list.

snf_input_weights

Nested list containing weights for when SNF is used to merge individual input measures (see ?generate_snf_weights)

snf_domain_weights

Nested list containing weights for when SNF is used to merge domains (see ?generate_snf_weights)

retry_limit

The maximum number of attempts to generate a novel row. This function does not return matrices with identical rows. As the range of requested possible settings tightens and the number of requested rows increases, the risk of randomly generating a row that already exists increases. If a new random row has matched an existing row retry_limit number of times, the function will terminate.

Value

settings_matrix A settings matrix

generate_weights_matrix

Generate a matrix to store feature weights

Description

Generate a matrix to store feature weights

Usage

```
generate_weights_matrix(data_list = NULL, nrow = 1, fill = "ones")
```

get_clusters

Arguments

data_list A nested list of input data from generate_data_list().

Number of rows to generate the template weights matrix for.

String indicating what to populate generate rows with. Can be "ones" (default; fill matrix with 1), "uniform" (fill matrix with uniformly distributed random values), or "exponential" (fill matrix with exponentially distributed random values).

Value

weights_matrix A properly formatted matrix containing columns for all the features that require weights and rows.

get_clusters

Extract cluster membership vector from one solutions matrix row

Description

This function takes in a single row of a solutions matrix and returns a vector containing the cluster assignments for each observation. It is similar to get_cluster_df(), which takes a solutions matrix with only one row and returns a dataframe with two columns: "cluster" and "subjectkey" '(the UID of the observation) and get_cluster_solutions(), which takes a solutions matrix with any number of rows and returns a dataframe indicating the cluster assignments for each of those rows.

Usage

```
get_clusters(solutions_matrix_row)
```

Arguments

```
solutions_matrix_row
Output matrix row.
```

Value

clusters Vector of assigned clusters.

get_cluster_df 65

get_cluster_df

Extract cluster membership information from one solutions matrix row

Description

This function takes in a single row of a solutions matrix and returns a dataframe containing the cluster assignments for each subjectkey. It is similar to get_clusters(), which takes one solutions matrix row and returns a vector of cluster assignments' and get_cluster_solutions(), which takes a solutions matrix with any number of rows and returns a dataframe indicating the cluster assignments for each of those rows.

Usage

```
get_cluster_df(solutions_matrix_row)
```

Arguments

solutions_matrix_row

One row from a solutions matrix.

Value

cluster_df dataframe of cluster and subjectkey.

get_cluster_solutions Extract cluster membership information from a solutions_matrix

Description

This function takes in a solutions matrix and returns a dataframe containing the cluster assignments for each subjectkey. It is similar to 'get_clusters(), which takes one solutions matrix row and returns a vector of cluster assignments' and get_cluster_df(), which takes a solutions matrix with only one row and returns a dataframe with two columns: "cluster" and "subjectkey" (the UID of the observation).

Usage

```
get_cluster_solutions(solutions_matrix)
```

Arguments

```
solutions_matrix
```

A solutions_matrix.

get_dist_matrix

Value

cluster_solutions A "data.frame" object where each row is an observation and each column (apart from the subjectkey column) indicates the cluster that observation was assigned to for the corresponding solutions matrix row.

get_complete_uids

Pull complete-data UIDs from a list of dataframes

Description

Pull complete-data UIDs from a list of dataframes

Usage

```
get_complete_uids(list_of_dfs, uid)
```

Arguments

list_of_dfs List of dataframes.

uid Name of column across dataframes containing UIDs

Value

A character vector of the UIDs of observations that have complete data across the provided list of dataframes.

get_dist_matrix

Calculate distance matrices

Description

Given a dataframe of numerical features, return a euclidean distance matrix.

Usage

```
get_dist_matrix(
    df,
    input_type,
    cont_dist_fn,
    disc_dist_fn,
    ord_dist_fn,
    cat_dist_fn,
    mix_dist_fn,
    weights_row
)
```

get_dl_subjects 67

Arguments

df	Raw dataframe with subject IDs in column "subjectkey"
input_type	Either "numeric" (resulting in euclidean distances), "categorical" (resulting in binary distances), or "mixed" (resulting in gower distances)
cont_dist_fn	distance metric function for continuous data
disc_dist_fn	distance metric function for discrete data
ord_dist_fn	distance metric function for ordinal data
cat_dist_fn	distance metric function for categorical data
mix_dist_fn	distance metric function for mixed data
weights_row	Single-row dataframe where the column names contain the column names in df and the row contains the corresponding weights_row.

Value

dist_matrix Matrix of inter-observation distances.

get_dl_subjects	Extract subjects from a data_list

Description

Extract subjects from a data_list

Usage

```
get_dl_subjects(data_list, prefix = FALSE)
```

Arguments

data_list	A nested list of input data from generate_data_list().
prefix	If TRUE, preserves the "subject_" prefix added to UIDs when creating a data_list.

Value

A character vector of the UID labels contained in a data list.

68 get_matrix_order

get_heatmap_order	Return the row or column ordering present in a heatmap	

Description

Return the row or column ordering present in a heatmap

Usage

```
get_heatmap_order(heatmap, type = "rows")
```

Arguments

heatmap A heatmap object to collect ordering from.

type The type of ordering to return. Either "rows" or "columns".

Value

A numeric vector of the ordering used within the provided ComplexHeatmap "Heatmap" object.

<pre>get_matrix_order</pre>	Return the hierarchical clustering order of a matrix	
get_matrix_order	Return the hierarchical clustering order of a matrix	

Description

Return the hierarchical clustering order of a matrix

Usage

```
get_matrix_order(matrix, dist_method = "euclidean", hclust_method = "complete")
```

Arguments

matrix Matrix to cluster.

dist_method Distance method to apply to the matrix. Argument is directly passed into stats::dist.

Options include "euclidean", "maximum", "manhattan", "canberra", "binary", or

"minkowski".

hclust_method Which agglomerative method to be passed into stats::hclust. Options include

"ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median",

or "centroid".

Value

A numeric vector of the ordering derivied by the specified hierarchical clustering method applied to the provided matrix.

get_mean_pval 69

get_mean_pval

Get mean p-value

Description

Given an solutions matrix row containing evaluated p-values, returns mean.

Usage

```
get_mean_pval(solutions_matrix_row)
```

Arguments

```
solutions_matrix_row row of solutions_matrix object
```

Value

mean_pval mean p-value

get_min_pval

Get minimum p-value

Description

Given an solutions matrix row containing evaluated p-values, returns min.

Usage

```
get_min_pval(solutions_matrix_row)
```

Arguments

```
solutions_matrix_row
    row of solutions_matrix object
```

Value

min_pval minimum p-value

get_pvals

Get p-values from an extended solutions matrix

Description

This function can be used to neatly format the p-values associated with an extended solutions matrix. It can also calculate the negative logs of those p-values to make it easier to interpret large-scale differences.

Usage

```
get_pvals(
  extended_solutions_matrix,
  negative_log = FALSE,
  keep_summaries = TRUE
)
```

Arguments

```
extended_solutions_matrix
```

The output of extend_solutions. A dataframe that contains at least one p-value column ending in "_pval".

 $\label{eq:log_problem} \mbox{negative_log} \quad \mbox{ If TRUE, will replace p-values with negative log p-values.}$

keep_summaries If FALSE, will remove the mean, min, and max p-value.

Value

A "data.frame" class object Of only the p-value related columns of the provided extended_solutions_matrix.

```
get_representative_solutions
```

Extract representative solutions from a matrix of ARIs

Description

Following clustering with batch_snf, a matrix of pairwise ARIs that show how related each cluster solution is to each other can be generated by the calc_aris function. Partitioning of the ARI matrix can be done by visual inspection of adjusted_rand_index_heatmap() or by shiny_annotator. Given the indices of meta cluster boundaries, this function will return a single representative solution from each meta cluster based on maximum average ARI to all other solutions within that meta cluster.

gower_distance 71

Usage

```
get_representative_solutions(
    aris,
    split_vector,
    order,
    solutions_matrix,
    filter_fn = NULL
)
```

Arguments

aris Matrix of adjusted rand indices from calc_aris()

split_vector A vector of partition indices.

order Numeric vector indicating row ordering of settings matrix.

solutions_matrix

Output of batch_snf containing cluster solutions.

filter_fn Optional function to filter the meta-cluster by prior to maximum average ARI

determination. This can be useful if you are explicitly trying to select a solution that meets a certain condition, such as only picking from the 4 cluster solutions within a meta cluster. An example valid function could be fn <- function(x)

x[x\$"nclust" == 4,].

Value

A "data.frame" class object corresponding to a subset of the provided solutions matrix in which only one row is present per meta cluster.

gower_distance Distance metric: Gower distance

Description

Distance metric: Gower distance

Usage

```
gower_distance(df, weights_row)
```

Arguments

df Dataframe containing at least 1 data column.

weights_row For compatibility - function does not accept weights.

Value

distance_matrix A distance matrix.

72 income

hamming_distance

Distance metric: Hamming distance

Description

Distance metric: Hamming distance

Usage

```
hamming_distance(df, weights_row)
```

Arguments

df Dataframe containing one subjectkey column in the first column and at least 1

categorical data column. All feature data should be categorical.

weights_row Single-row dataframe where the column names contain the column names in df

and the row contains the corresponding weights.

Value

distance_matrix A distance matrix.

income

Mock ABCD income data

Description

Like the mock dataframe "abcd_h_income", but with "unique_id" as the "uid". Like the mock dataframe "abcd_cort_sa", but with "unique_id" as the "uid".

Usage

income

income

Format

income:

A data frame with 300 rows and 2 columns:

unique_id The unique identifier of the ABCD dataset

household_income Household income in 3 category levels (low = 1, medium = 2, high = 3)

income:

A data frame with 300 rows and 2 columns:

unique_id The unique identifier of the ABCD dataset

household_income Household income in 3 category levels (low = 1, medium = 2, high = 3)

individual 73

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

individual SNF Scheme: Individual

Description

The "vanilla" scheme - does distance matrix conversions of each input dataframe in a list and

```
individual(
  data_list,
  cont_dist_fn,
```

74 jitter_plot

```
disc_dist_fn,
  ord_dist_fn,
  cat_dist_fn,
  mix_dist_fn,
  weights_row,
  k,
  alpha,
  t
)
```

Arguments

data_list A nested list of input data from generate_data_list(). cont_dist_fn distance metric function for continuous data. disc_dist_fn distance metric function for discrete data. ord_dist_fn distance metric function for ordinal data. cat_dist_fn distance metric function for categorical data. distance metric function for mixed data. mix_dist_fn weights_row dataframe row containing feature weights. k hyperparameter. alpha/eta/sigma hyperparameter. alpha t SNF number of iterations hyperparameter.

Value

fused_network The final fused network (class "matrix", "array") generated by SNF.

jitter_plot

Jitter plot separating a feature by cluster

Description

Jitter plot separating a feature by cluster

Usage

```
jitter_plot(df, feature)
```

Arguments

df A data.frame containing cluster column and the feature to plot.

feature The feature to plot.

Value

A jitter+violin plot (class "gg", "ggplot") showing the distribution of a feature across clusters.

label_prop 75

Description

Given a full fused network (one containing both pre-labeled training subjects and unlabeled test-subjects) and the clusters of the pre-labeled subjects, return a label propagated list of clusters for all subjects. This function is derived from SNFtool::groupPredict. Modifications are made to take a full fused network as input, rather than taking input dataframes and running SNF internally. This ensures that alternative approaches to data normalization and distance matrix calculations can be chosen by the user.

Usage

```
label_prop(full_fused_network, clusters)
```

Arguments

full_fused_network

Network made by running SNF on training and test subjects together

clusters

a vector of training subject assigned clusters in matching order as they appear in

full_fused_network

Value

new_clusters list of cluster labels for all subjects

Lahe	l_spl	lits
TUDE	P	

Convert a vector of partition indices into meta cluster labels

Description

Convert a vector of partition indices into meta cluster labels

Usage

```
label_splits(split_vector, nrow)
```

Arguments

split_vector A vector of partition indices.

nrow The number of rows in the data being partitioned.

76 linear_model_pval

Value

A character vector that expands the split_vector into an nrow-length sequence of ascending letters of the alphabet. If the split vector is c(3, 6) and the number of rows is 8, the result will be a vector of two "A"s (up to the first index, 3), three "B"s (up to the second index, 6), and three "C"s (up to and including the last index, 8).

linear_adjust

Linearly correct data_list by features with unwanted signal

Description

Given a data_list to correct and another data_list of categorical features to linearly adjust for, corrects the first data_list based on the residuals of the linear model relating the numeric features in the first data_list to the unwanted signal features in the second data list.

Usage

```
linear_adjust(data_list, unwanted_signal_list, sig_digs = NULL)
```

Arguments

data_list A nested list of input data from generate_data_list(). unwanted_signal_list

A data_list of categorical features that should have their mean differences removed in the first data list.

sig_digs Number of significant digits to round the residuals to.

Value

A data list ("list") in which each data component has been converted to contain residuals off of the linear model built against the features in the unwanted_signal_list.

linear_model_pval

Linear model p-value (generic)

Description

Return p-value of F-test for a linear model of any two features

```
linear_model_pval(predictor, response)
```

list_remove 77

Arguments

predictor A categorical or numeric feature.

response A numeric feature.

Value

pval A p-value (class "numeric").

list_remove

Remove items from a data_list

Description

Removes specified elements from a provided data_list

Usage

```
list_remove(list_object, ...)
```

Arguments

list_object The data_list containing components to be removed

... Any number of components to remove from the list object, passed as strings

Value

A "list"-class object in which any specified elements have been removed.

lp_solutions_matrix

Label propagate cluster solutions to unclustered subjects

Description

Given a solutions_matrix derived from training subjects and a full_data_list containing both training and test subjects, re-run SNF to generate a total affinity matrix of both train and subjects and use the label propagation algorithm to assigned predicted clusters to test subjects.

```
lp_solutions_matrix(
    train_solutions_matrix,
    full_data_list,
    distance_metrics_list = NULL,
    weights_matrix = NULL,
    verbose = FALSE
)
```

78 mc_manhattan_plot

Arguments

```
train_solutions_matrix
```

A solutions_matrix derived from the training set. The propagation algorithm is slow and should be used for validating a top or top few meaningful chosen clustering solutions. It is advisable to use only a small subset of rows from the original training solutions matrix for label propagation.

full_data_list A data_list containing subjects from both the training and testing sets. distance_metrics_list

Like above - the distance_metrics_list (if any) that was used for the original batch_snf call.

weights_matrix Like above.

verbose If TRUE, print progress to console.

Value

labeled_df a dataframe containing a column for subjectkeys, a column for whether the subject was in the train (original) or test (held out) set, and one column per row of the solutions matrix indicating the original and propagated clusters.

mc_manhattan_plot

Manhattan plot of feature-meta cluster associaiton p-values

Description

Given a dataframe of representative meta cluster solutions (see get_representative_solutions(), returns a Manhattan plot for showing feature separation across all features in provided data/target_lists.

```
mc_manhattan_plot(
  extended_solutions_matrix,
  data_list = NULL,
  target_list = NULL,
  variable_order = NULL,
  neg_log_pval_thresh = 5,
  threshold = NULL,
  point_size = 5,
  text_size = 20,
  plot_title = NULL,
  xints = NULL,
  hide_x_labels = FALSE,
  domain_colours = NULL
)
```

merge_data_lists 79

Arguments

extended_solutions_matrix

A solutions_matrix that contains "_pval" columns containing the values to be

plotted. This object is the output of extend_solutions().

data_list List of dataframes containing data information.

target_list List of dataframes containing target information.

variable_order Order of features to be displayed in the plot.

neg_log_pval_thresh

Threshold for negative log p-values.

threshold p-value threshold to plot horizontal dashed line at.

point_size Size of points in the plot. text_size Size of text in the plot.

plot_title Title of the plot.

xints Either "outcomes" or a vector of numeric values to plot vertical lines at.

hide_x_labels If TRUE, hides x-axis labels.

domain_colours Named vector of colours for domains.

Value

A Manhattan plot (class "gg", "ggplot") showing the association p-values of features against each solution in the provided solutions matrix, stratified by meta cluster label.

merge_data_lists

Horizontally merge compatible data lists

Description

Join two data_lists with the same components (dataframes) but separate observations. To instead merge two data_lists that have the same observations but different components, simply use c().

Usage

```
merge_data_lists(data_list1, data_list2)
```

Arguments

data_list1 The first data_list to merge.

data_list2 The second data_list to merge.

Value

A data list ("list"-class object) containing the observations of both provided data lists.

80 methylation_df

mer	σe	df	1	i	c.	+
IIIEI	ze-	uı	_	т	3	ι

Merge list of dataframes

Description

Merge list of dataframes

Usage

```
merge_df_list(df_list, join = "inner", uid = "subjectkey", no_na = FALSE)
```

Arguments

df_list list of dataframes

join String indicating if join should be "inner" or "full" uid Column name to join on. Default is "subjectkey"

no_na Whether to remove NA values from the merged dataframe

Value

merged_df inner join of all dataframes in list

 ${\tt methylation_df}$

Modification of SNFtool mock dataframe "Data2"

Description

Modification of SNFtool mock dataframe "Data2"

Usage

```
methylation_df
```

Format

```
methylation_df:
```

A data frame with 200 rows and 3 columns:

gene_1_expression Mock gene methylation feature
gene_2_expression Mock gene methylation feature

patient_id Random three-digit number uniquely identifying the patient

Source

This data came from the SNFtool package, with slight modifications.

no_subs

no_subs Select all columns of a dataframe not starting with the 'subject_' prefix.

Description

Removes the 'subject_' prefixed columns from a dataframe. Useful for printing solutions_matrix structures to the console.

Usage

```
no_subs(df)
```

Arguments

df

A dataframe

Value

df_no_subs Dataframe without subjects

 $\verb|numcol_to_numeric||$

Convert dataframe columns to numeric type

Description

Converts all columns in a dataframe that can be converted to numeric type to numeric type.

Usage

```
numcol_to_numeric(df)
```

Arguments

df

A dataframe

Value

df The dataframe with all possible columns converted to type numeric

82 parallel_batch_snf

ord_reg_pval

Ordinal regression p-value

Description

Returns the overall p-value of an ordinal regression on a categorical predictor and response vetors. If the ordinal response

Usage

```
ord_reg_pval(predictor, response)
```

Arguments

predictor A categorical or numeric feature.

response A numeric feature.

Value

```
pval A p-value (class "numeric").
```

parallel_batch_snf

Parallel processing form of batch_snf

Description

Parallel processing form of batch_snf

```
parallel_batch_snf(
  data_list,
  distance_metrics_list,
  clust_algs_list,
  settings_matrix,
  weights_matrix,
  similarity_matrix_dir,
  return_similarity_matrices,
  processes
)
```

prefix_dl_sk 83

Arguments

data_list A nested list of input data from generate_data_list().

distance_metrics_list

An optional nested list containing which distance metric function should be used for the various feature types (continuous, discrete, ordinal, categorical, and mixed). See ?generate_distance_metrics_list for details on how to build this.

clust_algs_list

List of custom clustering algorithms to apply to the final fused network. See ?generate_clust_algs_list.

settings_matrix

matrix indicating parameters to iterate SNF through.

weights_matrix A matrix containing feature weights to use during distance matrix calculation. See ?generate_weights_matrix for details on how to build this.

similarity_matrix_dir

If specified, this directory will be used to save all generated similarity matrices.

return_similarity_matrices

If TRUE, function will return a list where the first element is the solutions matrix and the second element is a list of similarity matrices for each row in the solutions_matrix. Default FALSE.

processes Number of parallel processes used when executing SNF.

Value

The same values as ?batch snf().

prefix_dl_sk

Add "subject " prefix to all UID values in subjectkey column

Description

Add "subject_" prefix to all UID values in subjectkey column

Usage

```
prefix_dl_sk(data_list)
```

Arguments

data_list A nested list of input data from generate_data_list().

Value

data_list A data_list without NAs

84 pval_heatmap

pubertal

Mock ABCD pubertal status data

Description

Like the mock dataframe "abcd_pubertal", but with "unique_id" as the "uid".

Usage

pubertal

Format

pubertal:

A data frame with 275 rows and 2 columns:

unique_id The unique identifier of the ABCD dataset

pubertal_status Average reported pubertal status between child and parent (1-5 categorical scale)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

pval_heatmap

Heatmap of p-values

Description

Heatmap of p-values

pval_heatmap 85

Usage

```
pval_heatmap(
  pvals,
  order = NULL,
  cluster_columns = TRUE,
  cluster_rows = FALSE,
  show_row_names = FALSE,
  show_column_names = TRUE,
 min_colour = "red2",
 mid_colour = "lightyellow",
 max_colour = "slateblue4",
 legend_breaks = c(0, 0.5, 1),
 col = circlize::colorRamp2(legend_breaks, c(min_colour, mid_colour, max_colour)),
 heatmap\_legend\_param = list(color\_bar = "continuous", title = "p-value", at = c(0, 0.5, 0.5)
    1)),
  rect_gp = grid::gpar(col = "black"),
  column_split_vector = NULL,
  row_split_vector = NULL,
  column_split = NULL,
  row_split = NULL,
)
```

Arguments

```
pvals
                 A matrix of p-values.
order
                 Numeric vector containing row order of the heatmap.
cluster_columns
                  Whether columns should be sorted by hierarchical clustering.
                  Whether rows should be sorted by hierarchical clustering.
cluster_rows
show_row_names Whether row names should be shown.
show_column_names
                  Whether column names should be shown.
min_colour
                 Colour used for the lowest value in the heatmap.
mid_colour
                 Colour used for the middle value in the heatmap.
max_colour
                 Colour used for the highest value in the heatmap.
legend_breaks
                 Numeric vector of breaks for the legend.
                 Colour function for ComplexHeatmap::Heatmap()
heatmap_legend_param
                 Legend function for ComplexHeatmap::Heatmap()
rect_gp
                 Cell border function for ComplexHeatmap::Heatmap()
column_split_vector
                  Vector of indices to split columns by.
row_split_vector
                  Vector of indices to split rows by.
```

86 random_removal

```
column_split Standard parameter of ComplexHeatmap::Heatmap.
row_split Standard parameter of ComplexHeatmap::Heatmap.
... Additional parameters passed to ComplexHeatmap::Heatmap.
```

Value

Returns a heatmap (class "Heatmap" from package ComplexHeatmap) that displays the provided p-values.

random_removal

Generate random removal sequence

Description

Helper function to contribute to rows within the settings matrix. Number of columns removed follows a uniform or exponential probability distribution.

Usage

```
random_removal(
  columns,
  min_removed_inputs,
  max_removed_inputs,
  dropout_dist = "exponential"
)
```

Arguments

columns Columns of the settings_matrix that are passed in min_removed_inputs

The smallest number of input dataframes that may be randomly removed.

max_removed_inputs

The largest number of input dataframes that may be randomly removed.

dropout_dist

Indication of how input dataframes should be dropped. can be "none" (no dropout), "uniform" (uniformly draw number between min and max removed inputs), or "exponential" (like uniform, but using an exponential distribution; default).

Value

inclusions_df Dataframe that can be rbind'ed to the settings_matrix

87 reduce_dl_to_common

reduce_dl_to_common Reduce data_list to common subjects

Description

Given a data_list object, reduce each nested dataframe to contain only the set of subjects that are shared by all nested dataframes

Usage

```
reduce_dl_to_common(data_list)
```

Arguments

data_list

A nested list of input data from generate_data_list().

Value

reduced_data_list The data_list object subsetted only to subjectssnf shared across all nested dataframes

remove_dl_na

Remove NAs from a data_list object

Description

Remove NAs from a data_list object

Usage

```
remove_dl_na(data_list, return_missing = FALSE)
```

Arguments

data_list

A nested list of input data from generate_data_list().

return_missing If TRUE, function returns a list where the first element is the data_list and the second element is a vector of unique IDs of patients who were removed during

the complete data filtration step.

Value

data_list A data_list without NAs

88 rename_dl

rename_dl

Rename features in a data_list

Description

Rename features in a data_list

Usage

```
rename_dl(data_list, name_mapping)
```

Arguments

data_list A nested list of input data from generate_data_list().

name_mapping A named vector where the values are the features to be renamed and the names

are the new names for those features.

Value

A data list ("list"-class object) with adjusted feature names.

Examples

```
library(metasnf)

data_list <- generate_data_list(
    list(pubertal, "pubertal_status", "demographics", "continuous"),
    list(anxiety, "anxiety", "behaviour", "ordinal"),
    list(depress, "depressed", "behaviour", "ordinal"),
    uid = "unique_id"
)

summarize_dl(data_list, "feature")

name_changes <- c(
    "anxiety_score" = "cbcl_anxiety_r",
    "depression_score" = "cbcl_depress_r"
)

data_list <- rename_dl(data_list, name_changes)

summarize_dl(data_list, "feature")</pre>
```

reorder_dl_subs

reorder_dl_subs

Reorder the subjects in a data_list

Description

Reorder the subjects in a data_list

Usage

```
reorder_dl_subs(data_list, ordered_subjects)
```

Arguments

```
data_list A nested list of input data from generate_data_list(). ordered_subjects
```

A vector of the subjectkey values in the data_list in the desired order of the sorted data_list.

Value

A data list ("list"-class object) with reordered observations.

resample

Helper resample function found in ?sample

Description

Like sample, but when given a single value x, returns back that single value instead of a random value from 1 to x.

Usage

```
resample(x, ...)
```

Arguments

x Vector or single value to sample from

... Remaining arguments for base::sample function

Value

Numeric vector result of running base::sample.

90 scale_diagonals

save_heatmap	Save a heatmap object to a fil	e
	1 3	

Description

Save a heatmap object to a file

Usage

```
save_heatmap(heatmap, path, width = 480, height = 480, res = 100)
```

Arguments

heatmap The heatmap object to save.

path The path to save the heatmap to.

width The width of the heatmap.

height The height of the heatmap.

res The resolution of the heatmap.

Value

Does not return any value. Saves heatmap to file.

scale_diagonals	Adjust the diagonals of a matrix

Description

Adjust the diagonals of a matrix to reduce contrast with off-diagonals during plotting.

Usage

```
scale_diagonals(matrix, method = "mean")
```

Arguments

matrix Matrix to rescale.

method Method of rescaling. Can be:

- "mean" (replace diagonals with average value of off-diagonals)
- "zero" (replace diagonals with 0)
- "min" (replace diagonals with min value of off-diagonals)
- "max" (replace diagonals with max value of off-diagonals)

Value

A "matrix" class object with rescaled diagonals.

```
settings_matrix_heatmap
```

Heatmap for visualizing a settings matrix

Description

Scales settings matrix values between 0 and 1 and plots as a heatmap. Rows can be reordered to match prior meta clustering results.

Usage

```
settings_matrix_heatmap(
    settings_matrix,
    order = NULL,
    remove_fixed_columns = TRUE,
    show_column_names = TRUE,
    show_row_names = TRUE,
    rect_gp = grid::gpar(col = "black"),
    colour_breaks = c(0, 1),
    colours = c("black", "darkseagreen"),
    column_split_vector = NULL,
    row_split_vector = NULL,
    column_split = NULL,
    column_title = NULL,
    ...
)
```

Arguments

```
settings_matrix
                  Matrix indicating parameters to iterate SNF through.
order
                 Numeric vector indicating row ordering of settings matrix.
remove_fixed_columns
                  Whether columns that have no variation should be removed.
show_column_names
                  Whether column names should be shown.
show_row_names Whether row names should be shown.
                 Cell border function for ComplexHeatmap::Heatmap.
rect_gp
colour_breaks
                 Numeric vector of breaks for the legend.
colours
                  Vector of colours to use for the heatmap. Should match the length of colour_breaks.
column_split_vector
                  Vector of indices to split columns by.
row_split_vector
                  Vector of indices to split rows by.
```

92 shiny_annotator

column_split Standard parameter of ComplexHeatmap::Heatmap.
row_split Standard parameter of ComplexHeatmap::Heatmap.
column_title Standard parameter of ComplexHeatmap::Heatmap.

... Additional parameters passed to ComplexHeatmap::Heatmap.

Value

Returns a heatmap (class "Heatmap" from package ComplexHeatmap) that displays the scaled values of the provided settings matrix.

sew_euclidean_distance

Squared (excluding weights) Euclidean distance

Description

Squared (excluding weights) Euclidean distance

Usage

```
sew_euclidean_distance(df, weights_row)
```

Arguments

df Dataframe containing at least 1 data column.

weights_row Single-row dataframe where the column names contain the column names in df

and the row contains the corresponding weights.

Value

distance_matrix A distance matrix.

shiny_annotator

Launch shiny app to identify meta cluster boundaries

Description

Launch shiny app to identify meta cluster boundaries

Usage

```
shiny_annotator(ari_heatmap)
```

Arguments

ari_heatmap Heatmap of ARIs to divide into meta clusters.

Value

Does not return any value. Launches interactive shiny applet.

```
similarity_matrix_heatmap
Plot heatmap of similarity matrix
```

Description

Plot heatmap of similarity matrix

Usage

```
similarity_matrix_heatmap(
  similarity_matrix,
 order = NULL,
  cluster_solution = NULL,
  scale_diag = "mean",
  log\_graph = TRUE,
  cluster_rows = FALSE,
  cluster_columns = FALSE,
  show_row_names = FALSE,
  show_column_names = FALSE,
  data_list = NULL,
  data = NULL,
  left_bar = NULL,
  right_bar = NULL,
  top_bar = NULL,
  bottom_bar = NULL,
  left_hm = NULL,
  right_hm = NULL,
  top_hm = NULL,
  bottom_hm = NULL,
  annotation_colours = NULL,
 min_colour = NULL,
 max_colour = NULL,
 split_vector = NULL,
  row_split = NULL,
  column_split = NULL,
)
```

Arguments

```
similarity_matrix
A similarity matrix
```

order Vector of numbers to reorder the similarity matrix (and data if provided). Over-

writes ordering specified by cluster_solution param.

cluster_solution

Vector containing cluster assignments.

scale_diag Method of rescaling matrix diagonals. Can be "none" (don't change diagonals),

"mean" (replace diagonals with average value of off-diagonals), or "zero" (re-

place diagonals with 0).

log_graph If TRUE, log transforms the graph.

cluster_rows Parameter for ComplexHeatmap::Heatmap.

cluster_columns

Parameter for ComplexHeatmap::Heatmap.

show_row_names Parameter for ComplexHeatmap::Heatmap.

show_column_names

Parameter for ComplexHeatmap::Heatmap.

data_list A nested list of input data from generate_data_list().

data A dataframe containing elements requested for annotation.

left_bar Named list of strings, where the strings are features in df that should be used for

a barplot annotation on the left of the plot and the names are the names that will

be used to caption the plots and their legends.

right_bar See left_bar.
top_bar See left_bar.
bottom_bar See left_bar.

left_hm Like left_bar, but with a heatmap annotation instead of a barplot annotation.

right_hm See left_hm.
top_hm See left_hm.
bottom_hm See left_hm.

annotation_colours

Named list of heatmap annotations and their colours.

min_colour Colour used for the lowest value in the heatmap.

Colour used for the highest value in the heatmap.

split_vector A vector of partition indices.

row_split Standard parameter of ComplexHeatmap::Heatmap.
column_split Standard parameter of ComplexHeatmap::Heatmap.

... Additional parameters passed into ComplexHeatmap::Heatmap.

Value

Returns a heatmap (class "Heatmap" from package ComplexHeatmap) that displays the similarities between observations in the provided matrix.

similarity_matrix_path 95

```
similarity_matrix_path
```

Generate a complete path and filename to store an similarity matrix

Description

Generate a complete path and filename to store an similarity matrix

Usage

```
similarity_matrix_path(similarity_matrix_dir, i)
```

Arguments

```
similarity_matrix_dir
```

Directory to store similarity matrices

i Corresponding settings matrix row

Value

path Complete path and filename to store an similarity matrix

```
siw_euclidean_distance
```

Squared (including weights) Euclidean distance

Description

Squared (including weights) Euclidean distance

Usage

```
siw_euclidean_distance(df, weights_row)
```

Arguments

df Dataframe containing at least 1 data column.

weights_row Single-row dataframe where the column names contain the column names in df

and the row contains the corresponding weights.

Value

distance_matrix A distance matrix.

96 snf_step

snf_step	Convert a data list to a similarity matrix through a variety of SNF schemes

Description

Convert a data list to a similarity matrix through a variety of SNF schemes

Usage

```
snf_step(
  data_list,
  scheme,
  k = 20,
  alpha = 0.5,
  t = 20,
  cont_dist_fn,
  disc_dist_fn,
  ord_dist_fn,
  cat_dist_fn,
  mix_dist_fn,
  weights_row
)
```

Arguments

data_list	A nested list of input data from generate_data_list().
scheme	Which SNF system to use to achieve the final fused network.
k	k hyperparameter.
alpha	alpha/eta/sigma hyperparameter.
t	SNF number of iterations hyperparameter.
cont_dist_fn	distance metric function for continuous data.
disc_dist_fn	distance metric function for discrete data.
ord_dist_fn	distance metric function for ordinal data.
cat_dist_fn	distance metric function for categorical data.
mix_dist_fn	distance metric function for mixed data.
weights_row	dataframe row containing feature weights.

Value

fused_network The final fused network (class "matrix", "array") generated by SNF.

sn_euclidean_distance 97

sn_euclidean_distance Distance metric: Standard normalization then Euclidean

Description

Distance metric: Standard normalization then Euclidean

Usage

```
sn_euclidean_distance(df, weights_row)
```

Arguments

df Dataframe containing at least 1 data column.

weights_row Single-row dataframe where the column names contain the column names in df

and the row contains the corresponding weights.

Value

distance_matrix A distance matrix.

spectral_eigen

Clustering algorithm: Spectral clustering with eigen-gap heuristic

Description

Applies spectral clustering to similarity matrix. Number of clusters is based on the eigen-gap heuristic.

Usage

```
spectral_eigen(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

98 spectral_eight

```
spectral_eigen_classic
```

Clustering algorithm: Spectral clustering with eigen-gap heuristic

Description

Applies spectral clustering to similarity matrix. Number of clusters is based on the eigen-gap heuristic. Range of possible cluster solutions is fixed between 2 and 5 inclusive.

Usage

```
spectral_eigen_classic(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

solution_data A list storing cluster assignments ("solution") and the number of clusters ("nclust").

spectral_eight

Clustering algorithm: Spectral clustering for a eight cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks eight clusters.

Usage

```
spectral_eight(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

spectral_five 99

spectral_five

Clustering algorithm: Spectral clustering for a five cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks five clusters.

Usage

```
spectral_five(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

solution_data A list storing cluster assignments ("solution") and the number of clusters ("nclust").

spectral_four

Clustering algorithm: Spectral clustering for a four cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks four clusters.

Usage

```
spectral_four(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

spectral_rot

spectral_nine

Clustering algorithm: Spectral clustering for a nine cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks nine clusters.

Usage

```
spectral_nine(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

solution_data A list storing cluster assignments ("solution") and the number of clusters ("nclust").

spectral_rot

Clustering algorithm: Spectral clustering with rotation cost heuristic

Description

Applies spectral clustering to similarity matrix. Number of clusters is based on the rotation cost heuristic.

Usage

```
spectral_rot(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

spectral_rot_classic 101

spectral_rot_classic Clustering algorithm: Spectral clustering with rotation cost heuristic

Description

Applies spectral clustering to similarity matrix. Number of clusters is based on the rotation cost heuristic.

Usage

```
spectral_rot_classic(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

solution_data A list storing cluster assignments ("solution") and the number of clusters ("nclust").

spectral_seven

Clustering algorithm: Spectral clustering for a seven cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks seven clusters.

Usage

```
spectral_seven(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

spectral_ten

spectral_six

Clustering algorithm: Spectral clustering for a six cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks six clusters.

Usage

```
spectral_six(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

solution_data A list storing cluster assignments ("solution") and the number of clusters ("nclust").

spectral_ten

Clustering algorithm: Spectral clustering for a ten cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks ten clusters.

Usage

```
spectral_ten(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

spectral_three 103

spectral_three

Clustering algorithm: Spectral clustering for a three cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks three clusters.

Usage

```
spectral_three(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

solution_data A list storing cluster assignments ("solution") and the number of clusters ("nclust").

spectral_two

Clustering algorithm: Spectral clustering for a two cluster solution

Description

Applies spectral clustering to similarity matrix. Seeks two clusters.

Usage

```
spectral_two(similarity_matrix)
```

Arguments

```
similarity_matrix
```

A similarity matrix.

Value

104 subc_v

split_parser

Helper function to determine which row and columns to split on

Description

Helper function to determine which row and columns to split on

Usage

```
split_parser(
  row_split_vector = NULL,
  column_split_vector = NULL,
  row_split = NULL,
  column_split = NULL,
  n_rows,
  n_columns
)
```

Arguments

```
row_split_vector
```

A vector of row indices to split on.

column_split_vector

A vector of column indices to split on.

row_split Standard parameter of ComplexHeatmap::Heatmap.
column_split Standard parameter of ComplexHeatmap::Heatmap.

n_rows The number of rows in the data.
n_columns The number of columns in the data.

Value

"list"-class object containing row_split and column_split character vectors to pass into Complex-Heatmap::Heatmap.

subc_v

Mock ABCD subcortical volumes data

Description

Like the mock dataframe "abcd_subc_v", but with "unique_id" as the "uid".

```
subc_v
```

subs 105

Format

subc_v:

A data frame with 174 rows and 31 columns:

unique_id The unique identifier of the ABCD dataset

... Subcortical volumes of various ROIs (mm³, I think)

Source

Though this data is no longer "real" ABCD data, the reference for using ABCD as a data source is below:

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

subs

Select all columns of a dataframe starting with a given string prefix.

Description

Removes the columns that are not prefixed with 'subject_' prefixed columns from a dataframe. Useful intermediate step for extracting subject UIDs from an solutions_matrix structure.

Usage

subs(df)

Arguments

df

Dataframe

Value

df_subs Dataframe with only 'subject_' prefixed columns

Description

Given a data list, return a list of smaller data lists that are generated through random sampling (without replacement).

Usage

```
subsample_data_list(
  data_list,
  n_subsamples,
  subsample_fraction = NULL,
  n_subjects = NULL
)
```

Arguments

```
data_list A nested list of input data from generate_data_list().

n_subsamples Number of subsamples to create.

subsample_fraction

Percentage of patients to include per subsample.

n_subjects Number of patients to include per subsample.
```

Value

A "list" class object containing n_subsamples number of data lists. Each of those data lists contains a random subsample_fraction fraction of the observations of the provided data list.

```
subsample_pairwise_aris
```

Calculate pairwise adjusted Rand indices across subsamples of data

Description

Calculate pairwise adjusted Rand indices across subsamples of data

```
subsample_pairwise_aris(
  subsample_solutions,
  return_raw_aris = FALSE,
  verbose = FALSE
)
```

Arguments

subsample_solutions

A list of containing cluster solutions from distinct subsamples of the data. This object is generated by the function batch_snf_subsamples().

return_raw_aris

Whether the ARI matrix used to calculate the average ARI across subsamples

should be returned.

verbose

If TRUE, print time remaining estimates to console.

Value

If return_raw_aris is FALSE, this function will return

```
summarize_clust_algs_list
```

Summarize a clust_algs_list object

Description

Summarize a clust_algs_list object

Usage

```
summarize_clust_algs_list(clust_algs_list)
```

Arguments

```
clust_algs_list
```

A clust_algs_list object

Value

summary_df "data.frame" class object containing the name and index of each clustering algorithm in te provided clust_algs_list.

108 summarize_dml

summarize_dl

Summarize a data list

Description

Summarize a data list

Usage

```
summarize_dl(data_list, scope = "component")
```

Arguments

data_list A

A nested list of input data from generate_data_list().

scope

The level of detail for the summary. Options are:

- "component" (default): One row per component (dataframe) in the data_list.
- "feature": One row for each feature in the data_list.

Value

"data.frame"-class object summarizing all components (or features if scope == "component").

summarize_dml

Summarize metrics contained in a distance_metrics_list

Description

Summarize metrics contained in a distance_metrics_list

Usage

```
summarize_dml(distance_metrics_list)
```

Arguments

```
\label{eq:distance_metrics_list} A \; distance\_metrics\_list.
```

Value

"data.frame"-class object summarizing items in a distance metrics list.

summarize_pvals 109

summarize_pvals

Summarize p-value columns of an extended solutions matrix

Description

Summarize p-value columns of an extended solutions matrix

Usage

```
summarize_pvals(extended_solutions_matrix)
```

Arguments

Value

The provided extended solutions matrix along with columns for the min, mean, and maximum across p-values for each row.

train_test_assign

Training and testing split

Description

Given a vector of subject_id and a threshold, returns a list of which members should be in the training set and which should be in the testing set. The function relies on whether or not the absolute value of the Jenkins's one_at_a_time hash function exceeds the maximum possible value (2147483647) multiplied by the threshold.

Usage

```
train_test_assign(train_frac, subjects, seed = 42)
```

Arguments

train_frac The fraction (0 to 1) of subjects for training subjects

The available subjects for distribution

seed Seed used for Jenkins's one_at_a_time hash function

Value

split a named list containing the training and testing subject_ids

110 two_step_merge

two_step_merge	Two step SNF
----------------	--------------

Description

Individual dataframes into individual similarity matrices into one fused network per domain into one final fused network.

Usage

```
two_step_merge(
  data_list,
  k = 20,
  alpha = 0.5,
  t = 20,
  cont_dist_fn,
  disc_dist_fn,
  ord_dist_fn,
  cat_dist_fn,
  mix_dist_fn,
  weights_row
)
```

Arguments

```
A nested list of input data from generate_data_list().
data_list
                  k hyperparameter.
alpha
                  alpha/eta/sigma hyperparameter.
                  SNF number of iterations hyperparameter.
cont_dist_fn
                  distance metric function for continuous data.
                  distance metric function for discrete data.
disc_dist_fn
ord_dist_fn
                  distance metric function for ordinal data.
cat_dist_fn
                  distance metric function for categorical data.
mix_dist_fn
                  distance metric function for mixed data.
weights_row
                  dataframe row containing feature weights.
```

Value

fused_network The final fused network (class "matrix", "array") generated by SNF.

var_manhattan_plot 111

var_manhattan_plot

Manhattan plot of feature-feature associaiton p-values

Description

Manhattan plot of feature-feature associaiton p-values

Usage

```
var_manhattan_plot(
  data_list,
  key_var,
  neg_log_pval_thresh = 5,
  threshold = NULL,
  point_size = 5,
  text_size = 20,
  plot_title = NULL,
  hide_x_labels = FALSE,
  bonferroni_line = FALSE)
```

Arguments

data_list List of dataframes containing data information.

key_var Feature for which the association p-values of all other features are plotted.

neg_log_pval_thresh

Threshold for negative log p-values.

threshold p-value threshold to plot dashed line at.

point_size Size of points in the plot.
text_size Size of text in the plot.
plot_title Title of the plot.

hide_x_labels If TRUE, hides x-axis labels.

bonferroni_line

If TRUE, plots a dashed black line at the Bonferroni-corrected equivalent of the p-value threshold.

Value

A Manhattan plot (class "gg", "ggplot") showing the association p-values of features against one key feature in a data list.

Index

* datasets	arrange_dl, 20
abcd_anxiety, 5	assemble_data, 20
abcd_colour, 6	assoc_pval_heatmap, 21
abcd_cort_sa, 7	auto_plot, 22
abcd_cort_t, 8	•
abcd_depress, 9	bar_plot, 23
abcd_h_income, 10	batch_nmi, 24
abcd_income, 10	batch_row_closure, 25
abcd_pubertal, 11	batch_snf, 26
abcd_subc_v, 12	batch_snf_subsamples, 27
age_df, 17	
anxiety, 19	calc_aris, 31
<pre>cancer_diagnosis_df, 33</pre>	calc_assoc_pval, 32
cort_sa, 41	<pre>calc_assoc_pval_matrix, 32</pre>
cort_t, 41	calculate_coclustering, 29
depress, 42	<pre>calculate_db_indices, 30</pre>
diagnosis_df,43	calculate_dunn_indices, 30
expression_df, 50	calculate_silhouettes, 31
fav_colour, 52	cancer_diagnosis_df, 33
gender_df, 53	cell_significance_fn,34
income, 72	char_to_fac, 34
methylation_df, 80	<pre>check_dataless_annotations, 35</pre>
pubertal, 84	<pre>check_hm_dependencies, 35</pre>
subc_v, 104	<pre>check_similarity_matrices, 36</pre>
	chi_squared_pval, 36
abcd_anxiety, 5	cocluster_density, 37
abcd_colour, 6	cocluster_heatmap, 38
abcd_cort_sa, 7	coclustering_coverage_check, 37
abcd_cort_t, 8	collapse_dl, 39
abcd_depress, 9	colour_scale, 40
abcd_h_income, 10	convert_uids, 40
abcd_income, 10	cort_sa, 41
abcd_pubertal, 11	cort_t, 41
abcd_subc_v, 12	
add_columns, 13	depress, 42
add_settings_matrix_rows, 13	diagnosis_df, 43
adjusted_rand_index_heatmap, 16	discretisation, 44
age_df, 17	discretisation_evec_data, 44
alluvial_cluster_plot, 18	dl_has_duplicates, 45
anxiety, 19	dl_uid_first_col,45

INDEX 113

dl_variable_summary, 46 domain_merge, 47 domains, 46	merge_data_lists, 79 merge_df_list, 80 methylation_df, 80
drop_inputs, 48	
	no_subs, 81
esm_manhattan_plot, 48	<pre>numcol_to_numeric, 81</pre>
estimate_nclust_given_graph, 49	
euclidean_distance, 50	ord_reg_pval, 82
expression_df, 50	
extend_solutions, 51	parallel_batch_snf, 82
	prefix_dl_sk,83
fav_colour, 52	pubertal, 84
fisher_exact_pval, 52	pval_heatmap, 84
gender_df, 53	random_removal, 86
generate_annotations_list, 54	reduce_dl_to_common, 87
<pre>generate_clust_algs_list, 55</pre>	remove_dl_na, 87
generate_data_list, 56	rename_dl, 88
<pre>generate_distance_metrics_list, 58</pre>	reorder_dl_subs, 89
generate_settings_matrix, 60	resample, 89
generate_weights_matrix, 63	resumpte, o
get_cluster_df, 65	save_heatmap, 90
get_cluster_solutions, 65	scale_diagonals, 90
get_clusters, 64	settings_matrix_heatmap, 91
<pre>get_complete_uids, 66</pre>	sew_euclidean_distance, 92
<pre>get_dist_matrix, 66</pre>	shiny_annotator, 92
<pre>get_dl_subjects, 67</pre>	<pre>similarity_matrix_heatmap, 93</pre>
<pre>get_heatmap_order, 68</pre>	similarity_matrix_path, 95
<pre>get_matrix_order, 68</pre>	siw_euclidean_distance, 95
<pre>get_mean_pval, 69</pre>	sn_euclidean_distance, 97
<pre>get_min_pval, 69</pre>	snf_step, 96
get_pvals, 70	spectral_eigen, 97
<pre>get_representative_solutions, 70</pre>	spectral_eigen_classic, 98
<pre>gower_distance, 71</pre>	spectral_eight, 98
	spectral_five, 99
hamming_distance, 72	spectral_four, 99
	spectral_nine, 100
income, 72	spectral_rot, 100
individual, 73	spectral_rot_classic, 101
jitter_plot,74	spectral_seven, 101
jittei _piot, /+	spectral_six, 102
label_prop, 75	spectral_ten, 102
label_splits, 75	spectral_three, 103
linear_adjust, 76	spectral_two, 103
linear_model_pval, 76	split_parser, 104
list_remove, 77	subc_v, 104
lp_solutions_matrix, 77	subs, 105
	subsample_data_list, 106
mc_manhattan_plot, 78	subsample_pairwise_aris, 106

114 INDEX

```
summarize_clust_algs_list, 107
summarize_dl, 108
summarize_dml, 108
summarize_pvals, 109
train_test_assign, 109
two_step_merge, 110
var_manhattan_plot, 111
```