CSE 232 SPRING 2020

PROJECT 2

Murat YILDIZ

1801042004

Note: Multiplication is avaliable only if given a and b inputs positive number, you must enter inputs and press start button to see result, C signal is compare a with 0 and send 1 if a>0, it is enough to press start button 1 cycle.

GENERAL CIRCUIT

Generalization of C code as state diagram

FSM state diagram

Datapath

Truth Table

For states

s2	s1	s0	S	\mathbf{C}	n2	$\mathbf{n}\mathbf{l}$	n0
0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	1
0	0	0	1	1	1	0	1
0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	0	0
0	1	0	0	1	0	1	1
0	1	0	1	0	0	0	0
0	1	0	1	1	0	1	1
0	1	1	0	0	1	1	0
0	1	1	0	1	1	1	0
0	1	1	1	0	1	1	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0
1	0	0	1	0	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	0	0	1	0
1	0	1	0	1	0	1	0
1	0	1	1	0	0	1	0
1	0	1	1	1	0	1	0
1	1	0	0	0	0	1	0
1	1	0	0	1	0	1	0
1	1	0	1	0	0	1	0
1	1	0	1	1	0	1	0
1	1	1	0	0	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	0	0	0	0
1	1	1	1	1	0	0	0

For outputs

s2	s1	s0	la	lb	lm	Select
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	1	1	1	1
1	1	0	1	0	0	0
1	1	1	0	0	0	0

Boolean Expression

For states

$$= (11-12-13-14) s2 s1 s0' (S' C' + S' C + S C' + S C) = (S' (C' + C) + S(C' + C)) = (S' + S) = s2 s1 s0' 1$$

$$n1 = s1 s0' C + s2' s1 s0 + s2 s1' s0 + s2 s1 s0'$$

$$= (1-2) s2' s1' s0' S (C' + C) = s2' s1' s0' S 1$$

=
$$(3-4)$$
 s2' s1 s0' C $(S' + S)$ = s2' s1 s0' C 1

For outputs

Circuit

