

Introducción a los sistemas digitales

Tema 1

Resumen del tema

- Señales analógicas y digitales
- Señal binaria
- Las funciones lógicas básicas
- Circuitos integrados
- Ejemplo de sistemas digitales

Magnitudes analógicas

- Magnitud analógica: aquella que toma cualquier valor continuo dentro de un rango.
- Todas las magnitudes físicas son analógicas.

El mundo es analógico

- Ejemplos:
 - Temperatura, velocidad, voz, hora...

Magnitudes digitales

 Magnitud digital: aquella que toma un valor discreto dentro de un rango finito.

En la vida real se utilizan valores discretos.

- Ejemplos:
 - Panel de temperatura en la calle: 21°C ó 22°C, no 21.115°C
 - Relojes digitales

Conversión A/D

Ventajas de los sistemas digitales

- Procesado de datos
- Errores. Son menos propensos errores
- Transmisión de datos
 - Mayor velocidad
 - Más eficiencia y fiabilidad
 - Mayor inmunidad al ruido
- Almacenamiento de datos
 - Más fácil
 - Más compacto
- Más fácil diseño y mejor integración (chips)

Niveles lógicos

- Existen 2 niveles porque es muy fácil distinguirlos y los dispositivos son muy fáciles (equivalente a baratos) de fabricar.
- Los niveles lógicos equivalen a niveles de voltaje, que varían según la tecnología empleada.

Ruido

- Señales analógicas: las perturbaciones modifican el valor de la señal
- Señales digitales: la señal solo se ve afectada si la perturbación es superior al margen de tensión

Parámetros de las señales digitales binarias

Período y frecuencia

- Frecuencia (f): se mide en ciclos por segundo o Hertzios (Hz)
- Período (T): se mide en segundos

(b) No periódica

La señal de reloj

El cronograma

Operaciones lógicas básicas

La operación NOT

La operación AND

La operación OR

Funciones lógicas más complejas

- Función comparación
- Funciones aritméticas (suma, multiplicación...)
- Función conversión de código
- Función de codificación
- Función de decodificación
- Función de selección de datos
- Función de almacenamiento (registro, memoria...)
- Función de contador

Comparador

(a) Comparador básicos de magnitudes

(b) Ejemplo: A es menor que B (2<5) como indica el hecho de que esté ALTA la salida A<B

Codificador

Decodificador

Multiplexor / Demultiplexor

Registro

Contador

Circuitos integrados (función fija)

(a) Dual in-line package (DIP)

(b) Small-outline IC (SOIC)

El chip

Tecnologías de circuitos integrados

- Silicio:
 - TTL: Transistor-Transistor Logic
 - ECL: Emitter Coupled Logic
 - NMOS: Negative-Channel Metal-Oxide-Semiconductor
 - CMOS: Complementary MOS
- Arseniuro de galio (GaAs)
- Nivel de integración:
 - Small/Medium/Large/Very Large/Ultra Large Scale Integration→ SSI / MSI / LSI / VLSI / ULSI
 - SSI y MSI usan TTL o CMOS
 - VLSI y ULSI usan CMOS (antes NMOS)

Sistema digital sencillo

Sistema digital un poco más complejo

Preguntas