- 1. Величина X равномерна на [0;1] и $Y = (\cos X + X^2)/(2 + e^X)$.
 - (a) Найдите $\mathbb{E}(Y)$ с помощью численного интегрирования
 - (b) Найдите оценку для $\mathbb{E}(Y)$ с помощью случайной выборки размера $n=100,\,n=10^4,\,n=10^7.$

Хинт: могут помочь функции integrate, mean, runif:)

- 2. Величины X и Y независимы и равномерны на [0;1].
 - (a) Найдите $\mathbb{C}\mathrm{orr}\left(XY,\frac{1}{X+Y}\right)$ с помощью численного интегрирования
 - (b) Найдите оценку для \mathbb{C} orr $\left(XY, \frac{1}{X+Y}\right)$ с помощью случайной выборки размера $n=100,\, n=10^4,\, n=10^7.$

Xинт: могут помочь функции adaptIntegrate из пакета cubature, mean, runif :)

- 3. С помощью встроенных функций R найдите:
 - (a) Вероятность $\mathbb{P}(X > 10)$, если X нормально распределена $\mathbb{N}(5;30)$
 - (b) Число a, такое что $\mathbb{P}(X>a)=0.9876,$ если X нормально распределена $\mathbb{N}(5;30)$
 - (c) Вероятность $\mathbb{P}(X>30|X>20),$ если X- распределена по Пуассону с $\lambda=4$
 - (d) Вероятность $\mathbb{P}(X \in [20; 40])$, если X биномиальна Bin(70, 0.3).

Хинт: могут помочь функции pnorm, qnorm, ppois, pbinom:)