CANS2D モデルパッケージ md_flare

太陽フレア

2006. 1. 12.

1 はじめに

このモデルパッケージは、2 次元平面内での、太陽フレアの問題(熱伝導・彩層蒸発効果のはいった磁気リコネクション問題)を解くためのものである。基本的には、Yokoyama & Shibata (2001) の計算に倣っている。

2 仮定と基礎方程式

流体は非粘性・圧縮性・磁気拡散あり磁気流体とする。計算領域は 2 次元デカルト座標(xy 平面)で $\partial/\partial z=0$ と仮定する。解くのは、 密度 ρ 、圧力 p、速度 V_x 、 V_y 、 V_z 磁場 B_x 、 B_y 、 B_z についての 2 次元 MHD 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}\left(\rho V_x^2 + p + \frac{B^2}{8\pi} - \frac{B_x^2}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) = 0 \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_y^2 + p + \frac{B^2}{8\pi} - \frac{B_y^2}{4\pi}\right) = 0 \tag{3}$$

$$\frac{\partial}{\partial t}(\rho V_z) + \frac{\partial}{\partial x}\left(\rho V_x V_z - \frac{B_x B_z}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_y V_z - \frac{B_y B_z}{4\pi}\right) = 0 \tag{4}$$

$$\frac{\partial}{\partial t}(B_x) + \frac{\partial}{\partial y}(E_z) = 0 \tag{5}$$

$$\frac{\partial}{\partial t}(B_y) - \frac{\partial}{\partial x}(E_z) = 0 \tag{6}$$

$$\frac{\partial}{\partial t}(B_z) + \frac{\partial}{\partial x}(E_y) - \frac{\partial}{\partial y}(E_x) = 0 \tag{7}$$

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 + \frac{B^2}{8\pi} \right) + \frac{\partial}{\partial x} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_x + \frac{B_z E_y - B_y E_z}{4\pi} - (\kappa_{\parallel} \nabla_{\parallel} T)_x \right) + \frac{\partial}{\partial y} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_y + \frac{B_x E_z - B_z Ex}{4\pi} - (\kappa_{\parallel} \nabla_{\parallel} T)_y \right) = 0 \quad (8)$$

$$E_x = -V_y B_z + V_z B_y + \eta J_x, \quad E_y = -V_z B_x + V_x B_z + \eta J_y, \quad E_z = -V_x B_y + V_y B_x + \eta J_z$$
 (9)

$$J_x = \frac{\partial B_z}{\partial u}, \quad J_y = -\frac{\partial B_z}{\partial x}, \quad J_z = \frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial u}$$
 (10)

$$p = \frac{k_{\rm B}}{m} \rho T \tag{11}$$

である。ここで、 γ は比熱比、 η は磁気拡散 (後述)。さらに、演算記号 ∇_{\parallel} は、「磁力線に平行な方向の微分」を意味する。

 κ_{\parallel} は(磁力線に平行な方向の)熱伝導係数で、次のようにあらわされる。

$$\kappa_{\parallel} = \kappa_0 T^{5/2}$$

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 $C_{\rm S0}$ 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は初期電流シートの厚み、 $C_{\rm S0}$ は初期状態の音速。密度は初期の遠方($x>>L_0$)での値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位	
x, y	L_0	
V_x, V_y, V_z	$C_{ m S0}$	
t	$L_0/C_{\rm S0}$	
ho	$ ho_0$	
p	$ ho_0 C_{\mathrm{S}0}^2$	
B_x, B_y, B_z	$\sqrt{ ho_0 C_{ m S0}^2}$	

表 1: 変数と規格化単位

4 パラメータ・初期条件・計算条件・境界条件

 $0 < x < X_{
m bnd}$ 、 $0 < y < Y_{
m bnd}$ の領域を解く。初期状態は以下のようなもの。サブルーチン model で設定する。

$$B_x = 0$$

$$B_y = \sqrt{\frac{8\pi\alpha_0}{\gamma}} \tanh(2x)$$

$$B_z = \sqrt{\frac{8\pi\alpha_0}{\gamma}} \cosh^{-1}(2x)$$

$$p = \frac{1}{\gamma}$$

$$\rho = 1 + \frac{1}{2}(\rho_{\rm ch} - 1) \left[-\tanh\left(\frac{y - y_{\rm tr}}{w}\right) + 1 \right]$$

$$V_x = V_y = V_z = 0$$

で、 α_0 は初期プラズマベータの逆数。 $y < y_{\rm tr}$ の範囲は、太陽表面の高密度層 (彩層)を想定している。w=0.5 は、数値不安定を避けるための遷移幅で固定値。

また、磁気拡散は次のような空間分布をもつとする。

$$\eta = \eta_i (2\xi^3 - 3\xi^2 + 1) \text{ if } \xi < 1$$

ただし、

$$\xi = \frac{\sqrt{x^2 + (y - y_\eta)^2}}{r_\eta}$$

で η_i =定数、 r_η =定数はパラメータ。

パラメータ	値	コード中での変数名	設定サブルーチン名
境界の位置 x 方向 X_{bnd}	5	xmax	model
境界の位置 x 方向 $Y_{ m bnd}$	40	ymax	model
比熱比 γ	5/3	gm	model
初期プラズマベータの逆数 $lpha_0$	10	betai	model
磁気拡散定数の最大値 η_i	0.1	etai	model
磁気拡散の有効半径 r_η	0.8	retai	model
磁気拡散の位置 y_η	20	yeta	model
熱伝導の強さ κ_0	1	rkap0	model
彩層の密度 $ ho_{ m ch}$	10^{5}	rhoch	model
彩層・コロナ境界 $y_{ m tr}$	1	ytr	model

表 2: おもなパラメータ

境界条件は、すべて対称境界条件。x=0 で、 V_x 、 B_y は「絶対値が等しく符号反転で鏡面配置」、 ρ 、p、 V_y 、 V_z 、 B_x 、 B_z は「絶対値・符号が等しく鏡面配置」。 $x=X_{\rm bnd}$ で、 V_x 、 B_x は「絶対値が等しく符号反転で鏡面配置」。p0 で、p0 で、p0 で、p0 で、p0 で、p0 で、p0 で、p0 で、p1 は「絶対値・符号が等しく鏡面配置」。p2 は「絶対値・符号が等しく鏡面配置」。p3 は「絶対値が等しく符号反転で鏡面配置」。p4 な「絶対値・符号が等しく鏡面配置」。p5 な「絶対値が等しく符号反転で鏡面配置」。p6 なり、p7 なり、p8 な「絶対値・符号が等しく鏡面配置」。p9 な「絶対値・符号が等しく鏡面配置」。p9 なり、p9 なり、p9

計算パラメータは以下の通り(表3参照)。

5 参考文献

Yokoyama, T., Shibata, K., 2001, ApJ, 549, 1160-1174.

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数 x 方向	133	ix	main
グリッド数 y 方向	258	jx	main
マージン	4	margin	main
終了時刻	12	tend	main
出力時間間隔	1	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。