Homework 4

CMPSC 360

Kinner Parikh February 6, 2022

Question 1:

NEWS_KIT = I was reading the newspaper in the kitchen GLASS_KIT \rightarrow GLASS_KIT \rightarrow GLASS_KIT GLASS_BREAK H2: GLASS_BREAK H3: \neg GLASS_BREAK H3: \neg GLASS_BREAK H3: \neg GLASS_BREAK H4: NEWS_LIV \rightarrow I was reading the newspaper in the living room GLASS_COFF = My glasses are on the coffee table H5: NEWS_LIV \rightarrow GLASS_COFF

1. GLASS_KIT \rightarrow GLASS_BREAK	H2
2. ¬GLASS_BREAK	H3
3. ¬GLASS_KIT	Modus Tollens on 1 and 2
4. NEWS_KIT \rightarrow GLASS_KIT	H1
5. ¬NEWS_KIT	Modus Tollens on 4 and 3
6. NEWS_LIV \vee NEWS_KIT	H4
7. NEWS_LIV	Disjunctive Syllogism on 6 and 5
8. NEWS_LIV \rightarrow GLASS_COFF	H5

9. GLASS_COFF Modus Ponens on 8 and 7

Therefore, the glasses are at on the coffee table.

Question 2:

$$\begin{array}{llll} \text{H1: } (\neg v \vee \neg p) \rightarrow (s \wedge z) \\ \text{H2: } s \rightarrow o \\ \text{H3: } \neg o \\ \text{C: } v \\ \\ \hline \\ 1. & s \rightarrow o \\ 2. & \neg o \\ & & \text{H3} \\ 3. & \neg s \\ & & \text{Modus Tollens on 1 and 2} \\ 4. & (\neg v \vee \neg p) \rightarrow (s \wedge z) \\ & & \text{H1} \\ 5. & \neg v \rightarrow (s \wedge z) \\ & & \text{Additive rule on 4} \\ 6. & \neg v \rightarrow s \\ & & \text{Simplification of 5} \\ 7. & \neg \neg v \\ & & \text{Modus Tollens of 6 and 3} \\ 8. & v \\ & & \text{Double negation on 7} \\ \end{array}$$

Question 3:

- 1. This is not a valid argument (a^2 is positive, but a could be $\pm a$)
- 2. This is a valid argument (the only solution for $\sqrt{0^2}$ is 0)

Question 4:

 $P(x)=if\ x$ has taken CMPSC-360, then they can take CMPSC-465 next semester

$$\frac{\forall x \mathbf{P}(x)}{\therefore \mathbf{P}(c) \text{ if } c \in \mathbf{U}}$$

The argument is valid because of universal instantiation.

Question 5:

For all natural numbers $n, \frac{n}{3} + \frac{n^2}{2} + \frac{n^3}{6}$ is a natural number

Proof:

Suppose n, and we know that $n \in \mathbb{N}$

By definition of multiplies,

Question 8: