VE320 Homework Seven

Due: 2021/7/12 23:59

In the following problems, if not stated,

For silicon pn junctions: $D_n = 25 \text{cm}^2/\text{s}$, $D_p = 10 \text{cm}^2/\text{s}$, $\tau_{n0} = 5 \times 10^{-7} \text{s}$, $\tau_{p0} = 10^{-7} \text{s}$ For GaAs pn junctions: $D_n = 205 \text{cm}^2/\text{s}$, $D_p = 9.8 \text{cm}^2/\text{s}$, $\tau_{n0} = 5 \times 10^{-8} \text{s}$, $\tau_{p0} = 10^{-8} \text{s}$

- 1. An ideal silicon pn junction at T=300 K is under forward bias. The minority carrier lifetimes are $\tau_{n0}=10^{-6}$ s and $\tau_{p0}=10^{-7}$ s. The doping concentration in the n region is $N_d=10^{16}$ cm⁻³. **Plot** the ratio of hole current to the total current crossing the space charge region as the p-region doping concentration varies over the range $10^{15} \le N_a \le 10^{18}$ cm⁻³. (Use a log scale for the doping concentrations.)
- 2. Consider a silicon pn junction diode with an applied reverse-biased voltage of $V_R = 5$ V. The doping concentrations are $N_a = N_d = 4 \times 10^{16}$ cm⁻³ and the cross-sectional area is $A = 10^{-4}$ cm². Assume minority carrier lifetimes of $\tau_0 = \tau_{n0} = \tau_{p0} = 10^{-7}$ s. Calculate the (a) ideal reverse-saturation current, (b) reverse-biased generation current, and (c) the ratio of the generation current to ideal saturation current.
- 3. Consider a GaAs pn junction diode with a cross-sectional area of $A=2\times 10^{-4}~\rm cm^2$ and doping concentrations of $N_a=N_d=7\times 10^{16}~\rm cm^{-3}$. The electron and hole mobility values are $\mu_n=5500~\rm cm^2/V\cdot s$ and $\mu_p=220~\rm cm^2/V\cdot s$, respectively, and the lifetime values are $\tau_0=\tau_{n0}=\tau_{p0}=2\times 10^{-8}~\rm s$.
 - (a) Calculate the ideal diode current at a (i) reverse-biased voltage of $V_R=3$ V, (ii) forward-bias voltage of $V_a=0.6$ V, (iii) forward-bias voltage of $V_a=0.8$ V, and (iv) forward-bias voltage of $V_a=1.0$ V
 - (b) (i) Calculate the generation current at $V_R=3$ V. Assuming the recombination current extrapolated to $V_a=0$ is $I_{ro}=6\times10^{-14}$ A, determine the generation current at (ii) $V_a=0.6$ V, (iii) $V_a=0.8$ V, and (iv) $V_a=1.0$ V
- 4. (a) Consider a Schottky diode at T=300 K that is formed with tungsten on n-type silicon. Use the figure below to determine the barrier height. Assume a doping concentration of $N_d=10^{16}$ cm⁻³ and assume a cross-sectional area $A=10^{-4}$ cm². Determine the forward-bias voltage required to induce a current of (i) 10μ A, (ii) 100μ A, and (iii) 1 mA.
 - (b) Repeat part (a) for a temperature of T = 350 K. (Neglect the barrier lowering effect.)

- 5. (a) The contact resistance of an ohmic contact is $R_c = 5 \times 10^{-5} \Omega \cdot \text{cm}^2$. The cross-sectional area of the junction is 10^{-5} cm². Determine the voltage across the junction if the current is
 - (i) $I = 1 \text{ mA} \text{ and } (ii) I = 100 \mu\text{A}.$
 - (b) Repeat part (a) if the cross-sectional area is 10^{-6} cm².
- 6. A metal, with a work function $\phi_m = 4.2$ V, is deposited on an n-type silicon semiconductor with $\chi_s = 4.0$ V and $E_g = 1.12$ eV. Assume no interface states exist at the junction. Let T = 300 K.
 - (a) **Sketch** the energy-band diagram for zero bias for the case when no space charge region exists at the junction.
 - (b) Determine N_d so that the condition in part (a) is satisfied.
 - (c) What is the potential barrier height seen by electrons in the metal moving into the semiconductor?
- 7. A metal-semiconductor junction is formed between a metal with a work function of 4.3eV and p-type silicon with an electron affinity of 4.0eV. The acceptor doping concentration in the silicon is $N_a = 5 \times 10^{16}$ cm⁻³. Assume T = 300 K.
 - (a) Sketch the thermal equilibrium energy-band diagram.
 - (b) Determine the height of the Schottky barrier.
 - (c) Sketch the energy-band diagram with an applied reverse-biased voltage of $V_R = 3 \text{ V}$.
 - (d) **Sketch** the energy-band diagram with an applied forward-bias voltage of $V_a = 0.25 \text{ V}$