Московский Государственный Технический Университет им. Н. Э. Баумана

Лабораторная работа №2 по курсу: «Технологии машинного обучения»

Изучение библиотек обработки данных.

Выполнила: Студентка группы ИУ5-63 Нурлыева Д.Д.

Задание:

Часть 1.

Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments

Условие задания - https://archive.ics.uci.edu/ml/datasets/Adult

Часть 2.

Выполните следующие запросы с использованием двух различных библиотек - Pandas и PandaSQL:

- один произвольный запрос на соединение двух наборов данных
- один произвольный запрос на группировку набора данных с использованием функций агрегирования

Сравните время выполнения каждого запроса в Pandas и PandaSQL. Текст программы:

```
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)
# to draw pictures in jupyter notebook
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
# we don't like warnings
# you can comment the following 2 lines if you'd like to
import warnings
warnings.filterwarnings('ignore')
In [62]:
data = pd.read_csv('/Users/user/Desktop/adult.data.txt')
data.head()
Out[62]:
```

	age	workcl ass	fnlwg t	educat ion	educati on- num	marital -status	occupa tion	relation ship	race	sex	capita I-gain	capita I-loss	hours -per- week	native - count ry	salar y
0	39	State- gov	77516	Bachel ors	13	Never- married	Adm- clerical	Not-in- family	Whit e	Male	2174	0	40	United - States	<=50 K
1	50	Self- emp- not-inc	83311	Bachel ors	13	Married -civ- spouse	Exec- manage rial	Husban d	Whit e	Male	0	0	13	United - States	<=50 K

2	38	Private	215646	HS- grad	9	Divorce d	Handler s- cleaners	Not-in- family	Whit e	Male	0	0	40	United - States	<=50 K
3	53	Private	234721	11th	7	Married -civ- spouse	Handler s- cleaners	Husban d	Blac k	Male	0	0	40	United - States	<=50 K
4	28	Private	338409	Bachel ors	13	Married -civ- spouse	Prof- specialt y	Wife	Blac k	Femal e	0	0	40	Cuba	<=50 K

```
In [64]:
#1. How many men and women (sex feature) are represented
in this dataset?
data['sex'].value counts()
Out[64]:
Male
          21790
         10771
Female
Name: sex, dtype: int64
In [65]:
#2. What is the average age (age feature) of women?
data.loc[data['sex'] == 'Female', ['age']].mean()
Out[65]:
      36.85823
age
dtype: float64
In [68]:
#3. What is the percentage of German citizens (native-
country feature)?
float((data['native-country'] == 'Germany').sum()) /
data.shape[0]
Out[68]:
0.004207487485028101
In [69]:
#4-5. What are the mean and standard deviation of age for
those who earn more than 50K per year (salary feature)
and those who earn less than 50K per year?
ages1 = data[data["salary"] == "<=50K"]["age"]</pre>
ages2 = data[data["salary"] == ">50K"]["age"]
print("<=50K: = \{0\} \pm \{1\} years".format(ages1.mean(), 
ages1.std()))
print(" >50K: = \{0\} ± \{1\} years".format(ages2.mean(),
ages2.std()))
<=50K: = 36.78373786407767 ± 14.020088490824813 years
 >50K: = 44.24984058155847 ± 10.51902771985177 years
In [70]:
```

```
#6. Is it true that people who earn more than 50K have at
least high school education? (education - Bachelors,
Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate
feature)
high educations = set(["Bachelors", "Prof-school",
"Assoc-acdm",
                       "Assoc-voc", "Masters",
"Doctorate"])
def high educated(e):
    return e in high educations
data[data["salary"] == ">50K"]
["education"].map(high educated).all()
Out[70]:
False
In [71]:
#7. Display age statistics for each race (race feature)
and each gender (sex feature). Use groupby() and
describe(). Find the maximum age of men of Amer-Indian-
Eskimo race.
data.groupby(["race", "sex"])["age"].describe()
Out[71]:
```

		count	mean	std	min	25 %	50 %	75 %	max
race	sex								
Amer- Indian-	Fema le	119.0	37.117 647	13.114 991	17.0	27.0	36.0	46.0 0	80.0
Eskimo	Male	192.0	37.208 333	12.049 563	17.0	28.0	35.0	45.0 0	82.0
Asian- Pac-	Fema le	346.0	35.089 595	12.300 845	17.0	25.0	33.0	43.7 5	75.0
Islander	Male	693.0	39.073 593	12.883 944	18.0	29.0	37.0	46.0 0	90.0
Black	Fema le	1555. 0	37.854 019	12.637 197	17.0	28.0	37.0	46.0 0	90.0
	Male	1569. 0	37.682 600	12.882 612	17.0	27.0	36.0	46.0 0	90.0
Other	Fema le	109.0	31.678 899	11.631 599	17.0	23.0	29.0	39.0 0	74.0

	Male	162.0	34.654 321	11.355 531	17.0	26.0	32.0	42.0 0	77.0
White	Fema le	8642. 0	36.811 618	14.329 093	17.0	25.0	35.0	46.0 0	90.0
	Male	1917 4.0	39.652 498	13.436 029	17.0	29.0	38.0	49.0 0	90.0

```
In [72]:
#8. Among whom is the proportion of those who earn a lot
(>50K) greater: married or single men (marital-status
feature)? Consider as married those who have a marital-
status starting with Married (Married-civ-spouse,
Married-spouse-absent or Married-AF-spouse), the rest are
considered bachelors.
data.loc[(data['sex'] == 'Male') &
     (data['marital-status'].isin(['Never-married',
                                    'Separated',
                                    'Divorced',
                                    'Widowed'])),
'salary'].value counts()
Out[72]:
<=50K
         7552
>50K
          697
Name: salary, dtype: int64
In [73]:
data.loc[(data['sex'] == 'Male') &
     (data['marital-status'].str.startswith('Married')),
'salary'].value counts()
Out[73]:
<=50K
         7576
         5965
>50K
Name: salary, dtype: int64
In [74]:
data['marital-status'].value counts()
Out[74]:
Married-civ-spouse
                         14976
Never-married
                         10683
Divorced
                          4443
Separated
                          1025
                           993
Widowed
Married-spouse-absent
                           418
Married-AF-spouse
                            23
```

```
Name: marital-status, dtype: int64
In [75]:
#9. What is the maximum number of hours a person works
per week (hours-per-week feature)? How many people work
such a number of hours, and what is the percentage of
those who earn a lot (>50K) among them?
m = data["hours-per-week"].max()
print("Maximum is {} hours/week.".format(m))
people = data[data["hours-per-week"] == m]
c = people.shape[0]
print("{} people work this time at week.".format(c))
s = people[people["salary"] == ">50K"].shape[0]
print("{0:%} get >50K salary.".format(s / c))
Maximum is 99 hours/week.
85 people work this time at week.
29.411765% get >50K salary.
In [76]:
#10. Count the average time of work (hours-per-week) for
those who earn a little and a lot (salary) for each
country (native-country). What will these be for Japan?
p = pd.crosstab(data["native-country"], data["salary"],
                values=data['hours-per-week'],
aggfunc="mean")
р
Out[76]:
```

sala	ıry	<=50K		>50K
native-country				
?	40.164	760	45.547945	
Cambodia	41.416	667	40.000000	
Canada	37.914	634	45.641026	
China	37.381	818	38.900000	
Columbia	38.684	211	50.000000	
Cuba	37.985	714	42.440000	
Dominican-Republic	42.338	235	47.000000	

Ecuador	38.041667	48.750000
El-Salvador	36.030928	45.000000
England	40.483333	44.533333
France	41.058824	50.750000
Germany	39.139785	44.977273
Greece	41.809524	50.625000
Guatemala	39.360656	36.666667
Haiti	36.325000	42.750000
Holand-Netherlands	40.000000	NaN
Honduras	34.333333	60.000000
Hong	39.142857	45.000000
Hungary	31.300000	50.000000
India	38.233333	46.475000
Iran	41.440000	47.500000
Ireland	40.947368	48.000000
Italy	39.625000	45.400000
Jamaica	38.239437	41.100000
Japan	41.000000	47.958333
Laos	40.375000	40.000000
Mexico	40.003279	46.575758
Nicaragua	36.093750	37.500000
Outlying-US(Guam-USVI-etc)	41.857143	NaN
Peru	35.068966	40.000000
Philippines	38.065693	43.032787
Poland	38.166667	39.000000
Portugal	41.939394	41.500000
Puerto-Rico	38.470588	39.416667
Scotland	39.444444	46.666667
		

South	40.156250	51.437500
Taiwan	33.774194	46.800000
Thailand	42.866667	58.333333
Trinadad&Tobago	37.058824	40.00000
United-States	38.799127	45.505369
Vietnam	37.193548	39.200000
Yugoslavia	41.600000	49.500000

```
In [77]:
p.loc["Japan"]
Out[77]:
salary
<=50K
         41.000000
>50K
         47.958333
Name: Japan, dtype: float64
In [78]:
!pip install pandasql
Requirement already satisfied: pandasql in /anaconda3/
lib/python3.6/site-packages (0.7.3)
Requirement already satisfied: numpy in /anaconda3/lib/
python3.6/site-packages (from pandasql) (1.14.0)
Requirement already satisfied: pandas in /anaconda3/lib/
python3.6/site-packages (from pandasql) (0.22.0)
Requirement already satisfied: sqlalchemy in /anaconda3/
lib/python3.6/site-packages (from pandasql) (1.2.1)
Requirement already satisfied: python-dateutil>=2 in /
anaconda3/lib/python3.6/site-packages (from pandas-
>pandasq1) (2.6.1)
Requirement already satisfied: pytz>=2011k in /anaconda3/
lib/python3.6/site-packages (from pandas->pandasql)
(2017.3)
Requirement already satisfied: six>=1.5 in /anaconda3/
lib/python3.6/site-packages (from python-dateutil>=2-
>pandas=>pandasql) (1.11.0)
You are using pip version 19.0.1, however version 19.0.3
is available.
You should consider upgrading via the 'pip install --
upgrade pip' command.
In [80]:
```

```
android_devices = pd.read_csv('/Users/user/Desktop/
pandas/android_devices.csv')
user_device = pd.read_csv('/Users/user/Desktop/pandas/
user_device.csv')
user_usage = pd.read_csv('/Users/user/Desktop/pandas/
user_usage.csv')
In [81]:
android_devices.head()
Out[81]:
```

	Retail Branding	Marketing Name	Device	Model
0	NaN	NaN	AD681H	Smartfren Andromax AD681H
1	NaN	NaN	FJL21	FJL21
2	NaN	NaN	T31	Panasonic T31
3	NaN	NaN	hws7721g	MediaPad 7 Youth 2
4	3Q	OC1020A	OC1020A	OC1020A

In [82]:
user_device.head()
Out[82]:

	use_id	user_id	platform	platform_ver sion	device	use_type_ id
0	22782	26980	ios	10.2	iPhone7,2	2
1	22783	29628	android	6.0	Nexus 5	3
2	22784	28473	android	5.1	SM- G903F	1
3	22785	15200	ios	10.2	iPhone7,2	3
4	22786	28239	android	6.0	ONE E1003	1

In [83]:
user_usage.head()
Out[83]:

	outgoing_mins_per _month	outgoing_sms_per_ month	monthly_m b	use_id
0	21.97	4.82	1557.33	22787

1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

Out[91]:

	outgoing_min s_per_month	outgoing_sms _per_month	monthly _mb	use_i d	platfor m	device
0	21.97	4.82	1557.33	22787	androi d	GT- 19505
1	1710.08	136.88	7267.55	22788	androi d	SM- G930F
2	1710.08	136.88	7267.55	22789	androi d	SM- G930F
3	94.46	35.17	519.12	22790	androi d	D2303
4	71.59	79.26	1557.33	22792	androi d	SM- G361F

In [92]:
result.tail()

Out[92]:

	outgoing_mins _per_month	outgoing_sms _per_month	monthly _mb	use_i d	platfor m	devic e
235	260.66	68.44	896.96	25008	NaN	NaN
236	97.12	36.50	2815.00	25040	NaN	NaN
237	355.93	12.37	6828.09	25046	NaN	NaN
238	632.06	120.46	1453.16	25058	NaN	NaN
239	488.70	906.92	3089.85	25220	NaN	NaN

```
In [94]:
#агрегация
result.agg({'outgoing mins per month':
['sum', 'min', 'max', 'mean'], 'outgoing sms per month':
['sum','min','max','mean']})
Out[94]:
```

	outgoing_mins_per_month	outgoing_sms_per_month
sum	65894.200000	23752.390000
min	0.500000	0.250000
max	1816.630000	906.920000
mean	274.559167	98.968292

```
In [97]:
#Pandasql
import pandasql as ps
def ex pandasql(result):
    simple query = '''
        SELECT
            outgoing mins per month,
            monthly mb,
            platform
        FROM result
        where platform='ios'
        LIMIT 10
        1 1 1
    return ps.sqldf(simple query, locals())
In [98]:
ex pandasql(result)
```

Out[98]:

	outgoing_mins_per_month	monthly_mb	platform
0	681.44	1271.39	ios
1	50.68	650.92	ios

```
In [99]:
def agg_ps(result):
    agg ps = '''
    SELECT
            count(*),
            platform
        FROM result
```

```
GROUP BY platform

LIMIT 10

return ps.sqldf(agg_ps, locals())

In [100]:
agg_ps(result)
Out[100]:
```

 count(*)
 platform

 0
 81
 None

 1
 157
 android

 2
 2
 ios

```
In [104]:
def join_ps(user_usage, user_device):
    join_ps = '''
    SELECT*
    FROM user_usage t0
    JOIN user_device t1
    ON t0.use_id = t1.use_id'''
    return ps.sqldf(join_ps)
In [105]:
join_ps(user_usage, user_device)
```

Out[105]:

	outgoing _mins_p er_mont h	outgoing _sms_pe r_month	mon thly_ mb	us e_i d	us e_i d	use r_id	plat for m	platfo rm_ve rsion	devi ce	use_ type _id
0	21.97	4.82	1557 .33	2278	2278	1292	and roid	4.3	GT- 1950 5	1
1	1710.08	136.88	7267 .55	2278	2278	2871	and roid	6.0	SM- G93 OF	1
2	1710.08	136.88	7267 .55	2278	2278	2871	and roid	6.0	SM- G93 0F	1
3	94.46	35.17	519. 12	2279	2279	2959	and roid	5.1	D23 03	1

4	71.59	79.26	1557 .33	2279	2279	2821	and roid	5.1	SM- G36 1F	1
5	71.59	79.26	1557 .33	2279	2279	2821	and roid	5.1	SM- G36 1F	1
6	71.59	79.26	519. 12	2279	2279	2821	and roid	5.1	SM- G36 1F	1
7	71.59	79.26	519. 12	2279	2279	2821	and roid	5.1	SM- G36 1F	1
8	30.92	22.77	3114 .67	2279	2279	2964	and roid	6.0	ONE PLU S A300 3	1
9	69.80	14.70	2595 5.55	2280	2280	1097	and roid	4.4	GT- 1950 5	1
10	554.41	150.06	3114 .67	2280	2280	2964	and roid	6.0	SM- G93 5F	1
11	189.10	24.08	519. 12	2280	2280	2964	and roid	4.2	GT- 1919 5	1
12	283.30	107.47	1557 3.33	2280	2280	2161	and roid	6.0	A000 1	1
13	324.34	92.52	519. 12	2280	2280	2906	and roid	6.0	SM- G90 0F	1
14	797.06	7.67	519. 12	228	228 ⁻	2341	and roid	4.4	HTC Desir e 510	1
15	797.06	7.67	1557 3.33	228	228	2341	and roid	4.4	HTC Desir e 510	1

16	797.06	7.67	1557 3.33	228 ⁻	228 ⁻	2341	and roid	4.4	HTC Desir e 510	1
17	797.06	7.67	1557 3.33	228 ⁻	228 ⁻	2341	and roid	4.4	HTC Desir e 510	1
18	797.06	7.67	1557 3.33	228 ⁻	228	2341	and roid	4.4	HTC Desir e 510	1
19	78.80	327.33	1038 2.21	228 ⁻	228 ⁻	2965	and roid	4.4	HTC One mini 2	1
20	78.80	327.33	1557 3.33	2282	2282	2965	and roid	4.4	HTC One mini 2	1
21	78.80	327.33	1557 3.33	2282	2282	2965	and roid	4.4	HTC One mini 2	1
22	164.10	192.64	3114 .67	2282	2282	2965	and roid	6.0	SM- G90 0F	1
23	208.26	91.76	5191 .12	2282	2282	2895	and roid	6.0	SM- G90 0F	1
24	681.44	47.35	1271 .39	2282	2282	2965	ios	10.1	iPho ne7, 2	2
25	324.27	91.50	519. 12	2283	2283	2906	and roid	6.0	SM- G90 0F	1
26	85.97	26.94	407. 01	2283	2283	6541	and roid	4.1	GT- 1819 0N	1

27	244.88	105.95	1557 .33	2283	2283	2929	and roid	6.0	D58 03	1
28	135.09	42.02	5191 .12	2283	2283	2484	and roid	6.0	E665 3	1
29	57.49	16.73	1557 3.33	2283	2283	2965	and roid	6.0	A000 1	1
129	322.33	86.39	3114 .67	2300	2300	2889	and roid	6.0	SM- G92 0F	1
130	124.70	4.64	11.6 8	2300	2300	2970	and roid	5.1	HUA WEI CUN -L01	1
131	37.27	136.10	1557 .33	2300	2300	2669	and roid	6.0	SM- G90 0F	1
132	50.68	540.60	650. 92	230	2301	2971	ios	9.3	iPho ne6, 2	2
133	28.74	29.52	3114 .67	230 ⁻	230 ⁻	1426	and roid	6.0	SM- G90 0F	1
134	87.76	140.61	1557 .33	230	2301	2894	and roid	6.0	SM- A300 FU	1
135	99.81	403.78	3114 .67	230	230 ⁻	2971	and roid	6.0	SM- G90 0F	1
136	55.96	0.25	2076 .45	230	230	2966	and roid	6.0	F311 1	1
137	101.59	84.41	5191 .12	230 ⁻	230 ⁻	2945	and roid	6.0	Moto G (4)	1
138	126.30	135.35	519. 12	230 ⁻	230	2971	and roid	5.1	SM- J320 FN	1

139	42.93	124.33	519. 12	2302	2302	2971	and roid	5.1	SM- G36 1F	1
140	63.56	26.87	9344	2302	2302	2822	and roid	6.0	SM- G93 0F	1
141	157.33	8.87	1557 .33	2302	2302	2964	and roid	7.0	ONE PLU S A300 3	1
142	70.34	18.00	212. 64	2302	2302	2863	and roid	6.0	Moto E2(4 G- LTE)	1
143	532.98	44.36	2076 .45	2302	2302	2276	and roid	6.0	ONE A200 3	1
144	60.08	261.33	1245 8.67	2302	2302	1810	and roid	4.4	X11	1
145	92.52	162.39	1557 .33	2302	2302	2971	and roid	5.1	C66 03	1
146	22.85	34.54	6577 .12	2302	2302	2971	and roid	6.0	HTC One_ M8	1
147	227.13	76.94	0.00	2303	2303	2797	and roid	5.1	SM- J320 FN	1
148	227.13	76.94	1038 .21	2303	2303	2797	and roid	5.1	SM- J320 FN	1
149	227.13	76.94	1038 .21	2303	2303	2797	and roid	5.1	SM- J320 FN	1
150	57.66	62.85	1557 .33	2303	2303	2971	and roid	5.1	VF-7 95	1

151	180.18	17.49	2076 .45	2303	2303	2972	and roid	5.1	SM- G53 1F	1
152	12.85	58.32	74.4 0	2304	2304	2972	and roid	4.4	HTC Desir e 620	1
153	198.59	90.49	5191 .12	2304	2304	2895	and roid	6.0	SM- G90 OF	1
154	198.59	90.49	5191 .12	2304	2304	2895	and roid	6.0	SM- G90 OF	1
155	198.59	90.49	3114 .67	2304	2304	2895	and roid	6.0	SM- G90 0F	1
156	106.65	82.13	5191 .12	2304	2304	2945	and roid	6.0	Moto G (4)	1
157	344.53	20.53	519. 12	2304	2304	2972	and roid	6.0	SM- G90 0F	1
158	42.75	46.83	5191 .12	230	2305	2025	and roid	5.1	Voda fone Sma rt ultra 6	1

159 rows × 10 columns