Privacy-preserving movie recommendation mechanism: Top N recommendations with PNCF on perturbed user data

Mingyang Sun

Acknowledgement: The prototype algorithm is from the paper:

Differential Privacy for Neighborhood-based Collaborative Filtering

Author(s): Tianqing Zhu, Gang Li, Yongli Ren, Wanlei Zhou, Ping Xiong 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

Motivation

- · Recommender systems are applied worldwide in e-commerce
 - Netflix, YouTube, Taobao, Facebook Ads, Google Ads...
- · Privacy issues remain controversial
 - Netflix canceled privacy sequel after lawsuit

Prototype Algorithms used by RS

- Collaborative Filtering (CF)
- Matrix Decomposition
- Clustering
- Deep Learning Approaches

And more...

Prototype Algorithms used by RS

- Collaborative Filtering (CF)
- <- popular approach, but vulnerable to privacy attacks

- Matrix Decomposition
- Clustering
- Deep Learning Approaches

And more...

Traditional Solutions with DP

· McSherry et al.

"Differentially private recommender systems: Building privacy into the netflix prize contenders"

Private covariance matrix to randomize each user's rating before submitting to the system

· Machanavajjhala et al.

"Personalized social recommendations: accurate or private"

Graph link-based recommendation algorithm

Pitfall 1: Fail to Hide Similar Neighbors - KNN attack

- · k Sybil users
- · Inference from recommendations

User 1	1	5	3	4	3
User 2	4	1	5	2	5
User 3	2	5	3	5	4

Pitfall 2: Too Large Noise for Recommendation

· High sensitivity

Queries employed have high sensitivities.

· Naive mechanism

Previous work disregards characteristics of recommendation systems.

Private Neighbor Collaborative Filtering (PNCF)

Two private operations

- Private Neighbor Selection

exponential mechanism

find k neighbors Nk(ti) on item similarity matrix

- Perturbation

mask the ratings

employ zero mean Laplace noise

Algorithm

Algorithm 1 Private Neighbor Collaborative Filtering(*PNCF*)

Input: R, privacy parameter ϵ , truncated parameter w, number of neighbors k, u_a , t_i , I

Output: \hat{r}_{ai}

- 1. Compute item to item similarity Matrix S;
- 2. Private Neighbor Selection: select k neighbors $N_k(t_i)$ from I;
- 3. Perturbation: Perturb the similarity in $N_k(t_i)$ by adding $Lap(\frac{2k \cdot LS(i, \cdot)}{\epsilon})$ noise;
- 4. Predict \hat{r}_{ai} ;

Private Neighbor Selection

- · Naive exponential mechanism is too general
- · Solutions:
 - Recommendation-aware sensitivity with smooth bound B

- Truncated similarity in private neighbor selection

Recommendation-aware sensitivity with bound

· Recommendation-aware sensitivity (adapted based on LS)

$$RS(i,j) = \max_{i,j \in I} ||s(i,j) - s'(i,j)||_{1}$$

· Apply smooth bound to the sensitivity to reduce noise

$$B(RS(i,j)) = exp(-\beta) \cdot RS(i,j)$$

Truncated Similarity in Private Neighbor Selection

· Score function used to enhance the quality of selected neighbors

$$\hat{s}(i,j) = \max(s(i,j), s_k(i,\cdot) - w)$$

- C1: all items whose similarities are larger than
- C0: the rest of items

$$\exp\left(\frac{\epsilon \cdot s(i,j)}{4k \cdot RS(i,j)}\right)$$

Private Neighbor Selection Algorithm

 $N_k(t_i) = N_k(t_i) + t$;

8:

end for

```
Input: \epsilon, k, w, t_i, I, \mathbf{s}(i)
Output: N_k(t_i)
  1: Sort the vector s(i);
  2: C_1 = [t_i | s(i,j) \ge s_k(i,j) - w, t_i \in I],
      C_0 = [t_i | s(i,j) < s_k(i,j) - w, t_i \in I],
  3: for N=1:k do
  4: for each item t_i in t_i do
             Allocate probability as:
  5:
                                        \exp\left(\frac{\epsilon \cdot \hat{s}(i,j)}{4k \cdot RS(i,j)}\right)
               \sum_{j \in C_1} \exp\left(\frac{\epsilon \cdot \hat{s}(i,j)}{4k \cdot RS(i,j)}\right) + |C_0| \cdot \exp\left(\frac{\epsilon \cdot \hat{s}(i,j)}{4k \cdot RS(i,j)}\right).
         end for
  6.
          Sample an element t from C_1 and C_0 without replace-
  7:
          ment according to probability;
```

Utility Analysis

Suppose we randomly choose a small constant ρ less than 1, the following theorems could be proven.

- Theorem 1:

all $\rho > 0$, with probability at least $1 - \rho$, the similarity of all the items in $N_k(t_i)$ are larger than $s_k - w$, where $w = \min(s_k, \frac{4k \cdot RS}{\epsilon} \ln \frac{k \cdot (|v| - k)}{\rho})$.

Theorem 2:

Theorem 3.2: Given an item t_i , for all $\rho > 0$, with probability at least $1 - \rho$, the similarities of all neighbors $> s_k + w$ are present in $N_k(t_i)$, where $w = \min(s_k, \frac{4k \cdot RS}{\epsilon} \ln \frac{k \cdot (|v| - k)}{\rho})$.

Utility Analysis

Takeaway:

No item in selected neighbors has similarity less than $(s_k(i,\cdot) + w)$ and every item whose similarity is greater than $(s_k(i,\cdot) + w)$ is selected.

Privacy Analysis

Each selection round: $\left(\frac{\epsilon}{2k}\right)$

Privacy Neighbor Selection: $\left(\frac{\epsilon}{2}\right)$.

Perturbation: Laplace noise added to the Nk(ti) set $(\frac{\epsilon}{2})$

*Based on composition property of differential privacy

Performance - PNCF vs. DP

(a) PCC-item

Performance - GS vs. RS

(a) PCC-item

(b) COS-item

Performance - Naive vs. Improved EM

8.0 Baseline RS&NM 0.79 PNCF 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.71 10 15 20 25 5 30 35 40 45 50

(b) COS-item

Q&A

Thank you.