2. Cautare cu actiuni nedeterministe

Problema aspiratorului determinist

- Locatii A,B care pot fi curate (C) sau murdare (M)
- Actiuni agent: St, Dr, Aspira, (nimic)
- 2 x 2² stari posibile (2 x 2ⁿ)
- M,M, Agent^A \rightarrow_{Dr} M,M, Agent^B
- M,M, Agent^A \rightarrow_{St} M,M, Agent^A
- \blacksquare M,M, Agent^A \rightarrow_{Aspira} C,M,Agent^A
- Stare initiala (M,M, Agent^A)
- Plan = [Aspira, Dr, Aspira]

4

Problema aspiratorului nedeterminist

Aspira nedeterminist

- daca Aspira in M atunci (C) sau (C si C patrat alaturat)
- daca Aspira in C atunci (C) sau (M)
- Stare initiala (M,M, Agent^A)
- Plan contingent =
 [Aspira,
 daca Stare = (C,M, Agent^A) atunci Dr, Aspira altfel nimic]
- Planul arbore SI/SAU

Problema aspiratorului nedeterminist

- Solutie un arbore SI/SAU:
 - stare scop in fiecare frunza
 - o actiune dintr-o ramura a unui nod SAU
 - toate actiunile din ramurile unui nod SI

Plan contingent

Algoritm Plan: Determina graf SI/SAU de actiuni

1. Inspec-SAU(S_i ,[])

/* intoarce plan contingent sau INSUCCES */

Inspec-SAU(S, Cale)

- 1. daca S este stare finala atunci intoarce Planul vid
- 2. daca S∈Cale atunci intoarce INSUCCES
- 3. **pentru** fiecare actiune A_i posibil de executat din S **executa**
 - 3.1 Plan \leftarrow Inspec-SI(Stari(S,A_i), [S|Cale])
 - 3.2 daca Plan \neq INSUCCES atunci intoarce [A_i|Plan]
- 4. intoarce INSUCCES sfarsit

Plan contingent

Inspec-SI(Stari, Cale)

- 1. pentru fiecare $S_i \in Stari$ executa
 - 1.1 $Plan_i \leftarrow Inspec-SAU(S_i, Cale)$
 - 1.2 daca Plan_i = INSUCCES atunci intoarce INSUCCES
- 2. intoarce

[if S_1 then $Plan_1$ else ...if S_{n-1} then $Plan_{n-1}$ else $Plan_n$] sfarsit