INSTITUTO TECNOLOGICO DE PABELLON DE ARTEAGA

6-12-2019

PROYECTO FINAL

OSCAR ATZIN
MARTINEZ AVILA

EDUARDO FLORES
GALLEGOS

¿Qué son las Matemáticas Discretas?

Las matemáticas discretas son un área de las matemáticas encargadas del estudio de los conjuntos discretos: finitos o infinitos numerables.

Unidad I

¿Qué es un sistema numérico?

Es una serie de símbolos y reglas encargadas de la construcción de números válidos.

¿Cuáles son los métodos para agregar signo a los números binarios?

Es un sistema de numeración en el que los números se representan utilizando solamente dos cifras: **cero y uno** (0 y 1).

Mencione una aplicación de los sistemas numéricos binarios, octales o hexadecimales: En la informática y en las direcciones Ip.

Realice las siguientes conversiones.

Decimal a binario Decimal a Hexadecimal 252=FC

4786=1001010110010 36 =24

255 = 11111111

 Decimal
 a
 Octal
 Binario a Octal

 252=374
 10100111=247

 2067=4023
 10000001=201

Binario a hexadecimal

Binario a Decimal 1111111=255 10111111=BF 11111000= 248

01111101=7D

 Hexadecimal a Decimal
 Hexadecimal
 a
 Binario

 AFDC1001=2950434817
 2102550=100001000001001010101010000

 DDBBCEF=232504559
 100CB001=10000000011001011000000000001

Realice los siguientes ejercicios.

Operaciones Binarias

11001101 11001101 10111011 100110001/101 +10110001 * 101

101111110 11100 1110100111 111101

Operaciones con Octales

115470664	20152420	41714421644	no se puede
+36547122	-36547122	* 562	* 3
56721542	56721542	56721542	37568651

Operaciones con Hexadecimales

AF137DBB	101001CD
+981001DD	+AFDCBAAE

14723F98 BFECBC7B

Unidad II

¿Qué es una proposición?

Una oración que tiene que tener un verdadero o un falso.

¿Qué es una tabla de verdad?

Es una tabla que nos muestra diferentes resultados ya sea falso o verdadero

¿Cómo se denota la conjunción de p y q?

La conjunción es un operador que opera sobre dos valores de verdad, típicamente los valores de verdad de dos proposiciones, devolviendo el valor de verdad *verdadero* cuando ambas proposiciones son verdaderas, y *falso* en cualquier otro caso. Es decir es verdadera cuando ambas son verdaderas.

Elabore las tablas de verdad para p y q.

р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

¿Cómo se denota la disyunción de p y q?

La disyunción es un operador que opera sobre dos valores de verdad, típicamente los valores de verdad de dos proposiciones, devolviendo el valor de verdad *verdadero* cuando una de las proposiciones es verdadera, o cuando ambas lo son, y *falso* cuando ambas son falsas.

Elabore las tablas de verdad para p y q.

р	q	р <u>v</u> q
V	V	F
٧	F	V
F	V	V
F	F	F

¿Cómo se denota la proposición condicional de p y q?

El condicional material es un operador que opera sobre dos valores de verdad, típicamente los valores de verdad de dos proposiciones, devolviendo el valor de verdad *falso* sólo cuando la primera proposición es verdadera y la segunda falsa, y *verdadero* en cualquier otro caso.

Elabore las tablas de verdad para p y q.

p	q	$p \rightarrow q$
V	٧	٧
V	F	F
F	٧	٧
F	F	V

¿Cómo se denota la proposición bidireccional de p y q?

El bicondicional o doble implicación es un operador que funciona sobre dos valores de verdad, típicamente los valores de verdad de dos proposiciones, devolviendo el valor de verdad *verdadero* cuando ambas proposiciones tienen el mismo valor de verdad, y falso cuando sus valores de verdad difieren.

Elabore sus tablas de verdad

para p y q.

р	q	p⇔q
٧	٧	V
٧	F	F
F	٧	F
F	F	V

I. Encuentre el valor de verdad si p=V, q=V y r=F (Valor 15 %).

1.
$$(q \lor p \lor \neg (q \land p)) = V$$

2.
$$(p \land r) \Leftrightarrow (r \rightarrow (q \land p) \lor p) = V$$

3.
$$P \lor q \Leftrightarrow \neg r = V$$

III. Encuentre las tablas de verdad de cada proposición (Valor 30 %).

1.
$$(p \land r) \Leftrightarrow (r \rightarrow (q \land p) \lor p) =$$

PQR	$(P \land R) \leftrightarrow (R \rightarrow ((Q \land P) \lor P))$
ттт	T
TTF	F
TFT	
TFF	
FTT	
FTF	
FFT	
FFF	

2.
$$P \lor q \Leftrightarrow \neg r =$$

3.
$$(q \lor p \lor \neg (q \land p)) =$$

VI. Determine si hay equivalencia entre cada par de proposiciones (Valor 30 %).

- 4. $P = p \wedge (q \vee r), Q = (p \vee q) \wedge (p \vee r) = NO SON EQUIBALENTES$
- 5. $P = (p \rightarrow q) \land (q \rightarrow r), Q = p \rightarrow r = NO SON EQUIBALENTES$
- 6. P= p \wedge (¬q V r), Q=p V (q \wedge ¬ r)= NO SON EQUIBALENTES

IV. Formule la expresión simbólica de los siguientes ejercicios usando (Valor 15%):

p: Hoy es lunes

q: Está nublado

R: Hace frio

- 1. $\neg p \rightarrow (q \lor r) = Hoy no es lunes si y solo si (Esta nublado o Hace frio)$
- 2. $\neg q \rightarrow (r \lor \neg p) = No \text{ esta nublado si y solo si (Hace frio o No es lunes)}$
- 3. $(p \lor (q \lor r)) \rightarrow (r \lor (q \lor p)) = (Hoy es lunes o (Esta nublado o Hace frio)) si y solo si (Hace frio o (Esta nublado o Hoy es lunes))$

Unidad III

¿Qué es el álgebra booleana? R=Es una estructura algebraica que esquematiza las operaciones lógicas.

Escriba las Reglas del Álgebra de Boole

1.A+0=A 7.A*A=A

2. A+1=1 8.A*-A=0

3.A*0=0 9.-A=A

4. A*1=A 10.A+AB=A

5. A+A=A 11.A+-AB=A

6. A+-A=1 12. (A+B) (A+C)=A

Escriba los Teoremas de Morgan.

-xy=-x+-y

-x+-y=-x-y

Escriba las Leyes del Álgebra de Boole.

Propiedades del álgebra de Boole

```
1) Conmutativa
                                  5) Elemento absorbente
   a+b = b+a
                                       a+1 = 1
    a \cdot b = b \cdot a
                                       a \cdot 0 = 0
                                  6) Ley del complementario
2) Asociativa
                                     a+ā = 1
     a+b+c=a+(b+c)
                                       a \cdot \bar{a} = 0
     a \cdot b \cdot c = a \cdot (b \cdot c)
                                   7) Idempotente
                                                              9) Teoremas de Demorgan
                                      a+a=a
                                                                       \overline{a+b} = \overline{a} \cdot \overline{b}
3) Distributiva
                                       a \cdot a = a
    a \cdot (b+c) = a \cdot b + a.c
                                                                       \overline{a \cdot b} = \overline{a} + \overline{b}
     a+(b\cdot c) = (a+b)\cdot (a+c); ojo!
4) Elemento neutro
                                    8) Simplificativa
     a+0=a

    a+a·b = a

    a \cdot 1 = a
                                    • a \cdot (a+b) = a
```

Simplifique los siguientes circuitos y elabore las tablas de verdad y los circuitos lógicos (valor 20%) antes y después de la simplificación. Compruebe que la simplificación es correcta con las tablas de verdad (valor 60%).

SIMPLIFICASION

BC+AC

2. <u>BC</u> + <u>B</u>

SIMPLIFICASION

-B

SIMPLIFICASION

Α

Unidad IV

¿Qué es un conjunto?

Es una colección de elementos con características similares considerada en sí misma como un objeto.

¿Cómo se puede describir un conjunto?

Con un diagrama de Venn

Mencione 3 operaciones con conjuntos.

¿Qué es un subconjunto?

Un conjunto B es subconjunto de un conjunto A si B «está contenido» dentro de A. subconjuntos:

¿Qué es un diagrama de Hasse?

Es una representación gráfica simplificada de un conjunto parcialmente ordenado finito.

Escriba tres ejemplos.

Bibliografía

https://matedisunidad3.wordpress.com/tag/conjuncion/

http://cb.mty.itesm.mx/tc1003/lecturas/tc1003-051p.pdf

https://compilandoconocimiento.com/discretas/

https://metodosnumericossite.wordpress.com/2016/10/02/numeros-binarios/

https://www.google.com/search?q=leyes+de+la+algebra+booleana&rlz=1C1NDCM_esMX770MX770&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjNpo2E46HmAhWFJzQIHUM2A5wQ_AUoAXoECAwQAw&biw=1920&bih=920#imgrc=wABL0htf_u9vYM

https://www.google.com/search?q=operaciones+con+conjunto&tbm=isch&ved=2ahUKEwiB7e6E46HmAhWFla0KHUGJADEQ2-

<u>cCegQIABAA&oq=operaciones+con+conjunto&gs_l=img.3..0l10.35161.40022..40400...0.0.0.253.4578.0j1_5j9.....0...1..gws-wiz-</u>

img......0i67. zPIH0kZ0No&ei=M67qXcGHKIWrtgXBkoKIAw&bih=920&biw=1920&rlz=1C1NDCM_esMX77 0MX770

https://www.smartick.es/blog/matematicas/recursos-didacticos/conjuntos-subconjuntos/

https://www.google.com/search?q=que+es+un+subconjunto&rlz=1C1NDCM_esMX770MX770&hl=es&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiuj9-o46HmAhX-GDQIHaj4CwMQ_AUoAXoECBEQAw&biw=1920&bih=920

 $\frac{https://www.google.com/search?q=diagrama+de+hasse\&tbm=isch\&ved=2ahUKEwi8xuux46HmAhVX96w}{KHSqbB9sQ2-}$

<u>cCegQIABAA&oq=diagrama+de+hass&gs_l=img.1.0.0l4j0i30j0i24l5.17810.22423..23435...2.0..0.227.3176.</u> 0j16j2.....0....1..gws-wiz-

img......0i67j0i131j0i10.8fqYViCaGas&ei=ka7qXfy5O9fuswWqtp7YDQ&bih=920&biw=1920&rlz=1C1NDC M esMX770MX770&hl=es

Anexos

Línea de tiempo del personaje que se expuso en la U3.

Código del proyecto de la U3.

```
doble
= [ 1
, 0 ]
        # Tabla de verdad de o
        print ( ' p \ t q \ t r \ t p or q or r ' )
        imprimir ( ' - ' * 38 )
        para p en doble:
            para q en doble:
                para r en doble:
                    print (p, q, r, p or q or r, sep = ' \setminus t')
        print ()
        int = [ Verdadero , Falso ]
        # Tabla de verdad de AND
        print ( ' p \ t q \ t r \ t p y q y r ' )
        imprimir ( ' - ' * 38 )
        para p en int :
            para q en int :
                para r en int :
                    print (p, q, r, p y q y r, sep = ' \ t ' )
        print ()
```

```
# Tabla de verdad de NOT
print ( ' p \ t no p ' )
imprimir ( ' - ' * 13 )
para p en doble:
    print (p, no p, sep = ' \ t ' )
booleanos = [ verdadero , falso ]
# Tabla de verdad de bidireccional (<-->)
print ( ' p \ t q \ t r \ t p es q es r ' )
imprimir ( ' - ' * 38 )
para p en booleanos:
    para q en booleanos:
        para r en booleanos:
            print (p, q, r, p es q es r, sep = ' \setminus t')
print ()
```

doble = [1 , 0]

```
int = [ Verdadero , Falso ]
# Tabla de verdad de Direccional (<-->)
print ( ' p \ t q \ t p -> q ' )
imprimir ( ' - ' * 22 )
para p en int :
    para q en int :
    print (p, q, no p or (q es p), sep = ' \ t ' )
```