Suites de variables aléatoires

- Notion d'indépendance pour un couple
 - \star) d'événements : A, B indépendants si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$
 - *) de va discrètes :

X, Y indép. si $\forall (x, y) \in (X, Y)(\Omega), \ \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \times \mathbb{P}(Y = y)$ (la loi conjointe est le produit des deux marginales)

- Généralisation : l'indépendance mutuelle d'une suite $(X_1,...,X_n)$
 - *) Définition par l'ensemble de conditions : $\forall (x_1, ..., x_n) \in (X_1, ..., X_n)(\Omega), \ \mathbb{P}\left(\bigcap_{i=1}^n [X_i = x_i]\right) = \prod_{i=1}^n \left[\mathbb{P}\left(X_i = x_i\right)\right]$ soit $\mathbb{P}(X_1 = x_1, ..., X_n = x_n) = \mathbb{P}(X_1 = x_1) \times ... \times \mathbb{P}(X_n = x_n)$
 - *) Variables indépendantes et identiquement distribuées : modélisation d'une suite de lancers de « dés/pièces/tirages avec remise etc. »
- ▶ Le principe des coalitions

Si $X_1...X_r, X_{r+1}...X_{r+n}$ sont mutuellement indépendantes, alors deux variables s'écrivant $Y = f(X_1, ..., X_r)$ et $Z = g(X_{r+1}, ..., X_{r+n})$ sont indépendantes (Y et Z coalitions disjointes)

Exemples et transfert de lois

- ▶ Espérance et variance d'une somme
 - On a toujours (sous réserve de convergence) $\mathbb{E}[X_1 + ... + X_n] = \mathbb{E}[X_1] + ... + \mathbb{E}[X_n]$
 - Pour des va. indépendantes, (s. rés. de cv.) $Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n)$
- ▶ Le processus de Bernoulli Cas particulier important (explicitement tractable)
 - ▶ modélise la répétition d'une épreuve de Bernoulli à 2 issues : Échec (0) / Succès (1)
 - ▶ toutes de loi $\forall i, \epsilon_i \hookrightarrow \mathcal{B}(p), 0 (la « même » épreuve à chaque rép.)$
 - elles sont mutuellement indépendantes (processus sans mémoire)
- Loi binomiale $\mathcal{B}(n,p)$
 - *) elle modélise le nb. de succès : parmi n essais d'un processus de Bernoulli $\epsilon_1, ..., \epsilon_n \hookrightarrow \mathcal{B}(p)$ sans mémoire (iid)
 - \star) Stabilité en loi par la somme indépendante : Soient X_1, X_2 va. On suppose :
 - $X_1 \hookrightarrow \mathcal{B}(n_1, p)$ et $X_2 \hookrightarrow \mathcal{B}(n_2, p)$
 - X_1, X_2 indépendantes

Alors $X_1 + X_2 \hookrightarrow \mathcal{B}(n_1 + n_2, p)$ (Lemme des coalitions aux sommes des n_1 premiers/ n_2 derniers tirages)

- Loi géométrique $\mathcal{G}(p)$
 - *) elle modélise le rang d'apparition T du premier succès : dans un processus de Bernoulli $\epsilon_1, \epsilon_2, ... \hookrightarrow \mathcal{B}(p)$ sans mémoire (iid)
 - *) Fonction d'anti-répartition : $\mathbb{P}(T > n) = q^n$.
 - *) Min de 2 géométriques indépendantes : Savoir retrouver :
 - ightharpoonup pour $T_1 \hookrightarrow \mathcal{G}(p_1)$ et $T_2 \hookrightarrow \mathcal{G}(p_2)$
 - T_1, T_2 indépendantes et $I = \min(T_1, T_2)$

alors: $\mathbb{P}(I > n) = \mathbb{P}(T_1 > n) \times \mathbb{P}(T_2 > n) = (q_1 q_2)^n$, d'où $I \hookrightarrow \mathcal{G}(1 - q_1 q_2)$.

- ▶ Stabilité de la loi de Poisson par somme indépendante
 - $X_1 \hookrightarrow \mathcal{P}(\lambda_1)$ et $X_2 \hookrightarrow \mathcal{P}(\lambda_2)$
 - X_1, X_2 indépendantes

Alors $X_1 + X_2 \hookrightarrow \mathcal{P}(\lambda_1 + \lambda_2)$ (par l'étude de la loi conjointe)

Généralisation pour une somme de « Poisson » mutuellement indépendantes