

λ-Calculus

Professor: Suman Saha

The λ -Calculus

Alonzo Church, 1930s

A pure λ -term is defined inductively as follows:

- Any variable x is a λ -term
- If t is a λ -term, so is λx . t (abstraction)
- If t_1, t_2 are λ -terms, so is t_1t_2 (application)

Analogy in C:

Abstraction: int f (int x) {return x+1}

Application: f(2)

The λ -Calculus Syntax

The λ-Calculus to Programming Language

Anonymous Functions

Functions has the form of λx . tFunctions are **anonymous**

```
In C, we write int id (int x) {return x}
In \lambda-calculus, we write \lambda x.
```

CMPSC 461 - Programming Language Concepts

λ-Term Example

Identity function: λx . x

Application: $(\lambda x. x) y$ [apply identity function to

parameter y]

How to parse a λ-term

- 1. λ binding extends to the rightmost part $\lambda x. x \lambda y. yz$ is parsed as $\lambda x. (x (\lambda y. (yz)))$
- 2. Applications are left-associative

 $t_1 t_2 t_3$ is parsed as $(t_1 t_2) t_3$

λ-Term Example (Parsing)

λ-Term Example

How to parse a λ-term

- 1. λ binding extends to the rightmost part $\lambda x. x \lambda y. yz$ is parsed as $\lambda x. (x (\lambda y. (yz)))$
- 2. Applications are left-associative

$$t_1 t_2 t_3$$
 is parsed as $(t_1 t_2) t_3$

$$\lambda x. x (\lambda y. y) z$$
?

$$x \lambda x. y x \lambda z. z$$
?

λ-Term Example (Parsing)

Number of Parameters

In the pure λ -calculus, λ only bind one parameter

For convenience, we write $\lambda x \ y. \ t$ as a **shorthand** for $\lambda x. (\lambda y. \ t)$

This process of removing parameters is called *currying*

CMPSC 461 - Programming Language Concepts

The λ -Calculus

A pure λ -term t is defined inductively as follows:

- Any variable x is a λ -term
- If t is a λ -term, so is λx . t (abstraction)
- If t_1 , t_2 are λ -terms, so is t_1t_2 (application)

We use x, y, z, ... for variables

The definition above defines an infinite set, named t

Syntax vs. Semantics

Syntax: the structure/form of lambda terms

$$t ::= x \mid t_0 \mid t_1 \mid \lambda x \cdot t$$

Semantics: the meaning of lambda terms

- Lambda calculus defines computation
- What computation is defined by t?

Capture-Avoiding Substitution

In λ-calculus, computation is defined by capture-avoiding substitution

 $t\{y/x\}$ means substitute **all free** x in t with y


```
Analogy in C:
int x;
...
int f (int x) {return x}
```

Capture-Avoiding Substitution (Example)

 $(\lambda x.\lambda y.x y) y$

Bound vs. Free Variables

In $(\lambda x. t)$, the variable x in t is **bound** to λx

A variable is *free* if it is not bound to any λ

A variable is bound to the closest λ

Examples

 $(\lambda x. x)$ x applies the identity function to x (i.e., the x after dot is bound to λ)

 $\lambda x. \lambda x. x$ is a function that takes a parameter, and returns the identity function (i.e., the inner-most x is bound to the second λ)

More Formally ...

In $(\lambda x. t)$, all free variables x in t is **bound** to λx A variable is **free** if it is not bound to any λ

Systematically, we define free variables as follows:

- $FV(x) = \{x\}$
- $FV(t_1 t_2) = FV(t_1) \cup FV(t_2)$
- FV $(\lambda x. t)$ = FV $(t) \{x\}$

Let Var(t) be all variables used in t, the bound variables in t (written BD(t)) are BD(t) = Var(t) - FV(t)

Free Variables: Examples

• FV((x y))

• $FV((\lambda (x) x) y)$

Free Variables: Example

• $FV((\lambda (x) x) x)$

Free Variables: Example

• $FV((\lambda (y) ((\lambda (x) (z x)) x)))$

α-Reduction (Informal)

Identity function: $\lambda x. x$

is the same as $\lambda y. y$ and $\lambda z. z$ etc.

Observation: the name of a parameter is irrelevant in λ-calculus

```
Analogy in C:

int f (int x) {return x}

Is same as
int f (int y) {return y}

Is same as
int f (int z) {return z}
```

CMPSC 461 - Programming Language Concepts

α-Reduction (formal)

 $\lambda x. t = \lambda y. (t \{y/x\})$ when $y \notin FV(t)$ where $t \{y/x\}$ is capture-avoiding substitution

$$(\lambda x. x x) = (\lambda y. y y)$$

$$(\lambda x. x x) \neq (\lambda y. x y)$$

$$x \neq y$$

$$(\lambda x. \lambda x. x) \neq (\lambda y. \lambda x. y)$$

Subtle point: what if y is captured in t? Use α -reduction to rename the captured y in t

β -Reduction (Informal)

Identity function: λx . x

$$(\lambda x. x) y = y$$

Observation: we can substitute the formal parameter with the true parameter

Analogy in C:

Abstraction: int f (int x) {return x}

Application: f(y) evaluates to y

β -Reduction

The key reduction rule in λ calculus

$$(\lambda x. t_1) t_2 = t_1 \{t_2/x\}$$

Capture-avoiding substitution

Example 1: $(\lambda x. x x) y$

$$β$$
-Reduction ($λx$. t_1) $t_2 = t_1\{t_2/x\}$


```
Example 1: (\lambda x. (x x)) y

In this case, (x x) corresponds to t_1, y corresponds to t_2

\mathsf{FV}(t_2) = y. \ y is not in t_1, hence, not bound

The first rule of substitution applies, which gives (\lambda x. (x x)) y = y y
```


• $((\lambda (f) (f (f (\lambda (x) x)))) (\lambda (x) x))$

• $((\lambda (x) (x x)) (\lambda (x) (x x)))$