Equivalence

EECS 20
Lecture 12 (February 12, 2001)
Tom Henzinger

Quiz

1. Draw the transition diagram of the system

$$\begin{aligned} &\text{Delay}_0 \colon [\text{ Nats}_0 \to \text{Bins }] \to [\text{ Nats}_0 \to \text{Bins }] \\ &\forall \ x \in [\text{ Nats}_0 \to \text{Bins }] \ , \ \forall \ y \in \text{ Nats}_0 \ , \end{aligned}$$

$$(\text{ Delay}_0 \ (x)) \ (y) \ = \ \left\{ \begin{array}{cc} 0 & \text{if } \ y = 0 \\ x \ (y-1) & \text{if } \ y > 0 \end{array} \right.$$

2. Draw the transition diagram of the system

State before time t:

- 0 if input at time t-1 was 0, or if t=0
- 1 if input at time t-1 was 1

State: (q1, q2)

1,1

Well-formed!

Feedback:
$$[Nats_0 \rightarrow Unit] \rightarrow [Nats_0 \rightarrow Bins]$$

where Unit =
$$\{\cdot\}$$
.

Inputs: Unit

Outputs: Bins

States: { 0, 1 }

initialState = 0

q	X	output (q,x)	nextState (q,x)
0	•	0	0
1	•	1	1

Only one run!

A state q of a state machine M is unreachable iff

q occurs on no run of M; that is, iff

there is no path from the initial state of M to q.

Unreachable states can be removed without changing the system (input/output function) implemented by M.

A more interesting system without inputs

State-machine implementation of Counter

where $\forall n \in \text{Nats}_0$, inc (n) = n + 1.

One run

Infinitely many states

Yet another system without inputs

where $\forall n \in \text{Nats}_0$, incMod4 (n) = (n + 1) mod 4.

Transition diagram of ModCounter

A discrete-time reactive system can have many different state-machine implementations.

Two state machines M1 and M2 are equivalent iff

they implement the same system (input/output function); that is, iff

- 1. Inputs [M1] = Inputs [M2],
- 2. Outputs [M1] = Outputs [M2], and
- 3. $\forall x \in [\text{Nats}_0 \rightarrow \text{Inputs}], M1(x) = M2(x).$

 \in [Nats₀ \rightarrow Outputs]

Equivalent State Machines

Equivalent State Machines

2 states

1 state

Equivalent State Machines

2 states

3 states

Theorem:

Two state machines M1 and M2 are equivalent iff

there exists a bisimulation between M1 and M2.

A binary relation B between States [M1] and States [M2]; that is, B \subseteq States [M1] \times States [M2].

A binary relation $B \subseteq States$ [M1] \times States [M2] is a bisimulation

iff

```
    (initialState [M1], initialState [M2]) ∈ B and
    ∀ p ∈ States [M1], ∀ q ∈ States [M2],
    if (p,q) ∈ B,
    then ∀ x ∈ Inputs [M1],
    output [M1](p,x) = output [M2](q,x) and
    (nextState [M1](p,x), nextState [M2](q,x)) ∈ B.
```

Bisimulation $B = \{ (0, a), (1, b) \}$

Bisimulation $B = \{ (p_0, q_0) \}$

Bisimulation $B = \{ (p_0, q_i), (p_0, q_0), (p_1, q_1) \}$

Equivalence between state machines: refers only to input and output signals.

Bisimulation between state machines: refers to states.

Why is bisimulation useful?

"Equivalence" says something about infinitely many possible input signals.

For finite state machines, "bisimulation" says something about finitely many possible relationships between states.

Bisimulation, therefore, is easier to check than equivalence.