CICLO DE VIDA E DESENVOLVIMENTO DE SOFTWARE

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Análise e Desenvolvimento de Sistemas

Prof. **Evandro Zatti,** M. Eng.

SOFTWARE

"O software de computador é o produto que profissionais de software constroem e dão suporte ao longo do tempo. Ele engloba os programas que executam em computador de qualquer tamanho e arquitetura, o conteúdo que é exibido quando o programa executa, e a informação descritiva tanto na forma física quanto virtual que abrange praticamente qualquer meio eletrônico."

(PRESSMAN e MAXIM, 2015, p. 1)

CICLO DE VIDA DO SOFTWARE

- O ciclo de vida de um software considera suas fases desde a concepção até a morte.
- É muito comum a confusão entre ciclo de vida e ciclo de desenvolvimento de software, este último também chamado de processo de software.

CICLO DE VIDA DO SOFTWARE

- O ciclo de vida considera as seguintes fases:
 - ✓ Definição;
 - ✓ Desenvolvimento;
 - ✓ Operação;
 - ✓ Retirada.

DEFINIÇÃO

- A fase de **definição** do software está relacionada às atividades iniciais da concepção:
 - ✓ Modelagem de Processos de Negócios;
 - ✓ Estudo de viabilidade (inclusive custo-benefício);
 - ✓ Análise de sistemas.

DESENVOLVIMENTO

- A fase de **desenvolvimento** do software considera:
 - ✓ Projeto (conceitual; arquitetura; interface; algoritmos e estruturas de dados);
 - ✓ Implementação (codificação, compilação, testes);
 - ✓ Verificação e Validação (garantia de qualidade).

OPERAÇÃO

- A fase de operação está relacionada a instalação e uso:
 - ✓ Distribuição;
 - ✓ Instalação e configuração;
 - ✓ Treinamento;
 - ✓ Utilização;
 - ✓ Manutenção.

RETIRADA

• A fase de **retirada** considera que o software não tem mais condição de continuar operando. Não é um processo simples, sendo que o estudo deve considerar processos de reengenharia, substituição gradual até o abandono.

CICLO DE VIDA DE DESENVOLVIMENTO / PROCESSO DE SOFTWARE

"Quando você trabalha para construir um produto ou sistema, é importante seguir uma série de passos prédefinidos – um roteiro que ajuda você a criar um resultado oportuno e de alta qualidade. O roteiro que você segue é chamado de **processo de software**."

(PRESSMAN e MAXIM, 2015, p. 30)

PROCESSO DE SOFTWARE

- De uma forma genérica, o processo de desenvolvimento de software poderia considerar as seguintes etapas:
 - ✓ Comunicação;
 - ✓ Planejamento;
 - ✓ Modelagem;
 - ✓ Construção;
 - ✓ Implantação.

PROCESSO DE SOFTWARE

- Considerando as práticas de gerenciamento de projetos, existem basicamente dois tipos de modelos de desenvolvimento de software:
 - ✓ Modelos prescritivos;
 - ✓ Modelagem ágil.
- Atualmente, utilizam-se os dois tipos em um mesmo projeto de software, uma vez que eles são complementares.

MODELOS PRESCRITIVOS

- Um modelo prescritivo de processos predefine um conjunto de atividades e marcos com geração e produtos para criação de software.
- São características dos modelos prescritivos:
 - ✓ Focam em procedimentos prescritivos e os produtos que devem ser criados;
 - ✓ Baseados no paradigma de comando e controle (interessante para gerências);
 - ✓ Minimização da presença do usuário/cliente.

MODELOS PRESCRITIVOS

- São modelos prescritivos:
 - ✓ Cascata (ciclo de vida clássico);
 - ✓ Modelos Incrementais:
 - Incremental;
 - RAD;
 - ✓ Modelos Evolucionários:
 - Prototipagem;
 - Espiral;
 - ✓ Processo Unificado (*Unified Process UP*):
 - Rational Unified Process (RUP) → IBM Rational Unified Process (IRUP)

CASCATA (CICLO DE VIDA CLÁSSICO)

CASCATA (CICLO DE VIDA CLÁSSICO)

- Comunicação
 - ✓ iniciação do projeto e levantamento de requisitos;
- Planejamento
 - ✓ estimativas, cronograma e monitoramento;
- Modelagem
 - ✓ análise e projeto;
- Construção
 - ✓ codificação e testes;
- Implantação
 - ✓ entrega, manutenção e feedback.

MODELO INCREMENTAL

MODELO INCREMENTAL

- Quando um Modelo Incremental é usado, o primeiro incremento frequentemente é chamado de núcleo do produto.
- Isto é, os requisitos básicos são satisfeitos, mas muitas características suplementares deixam de ser elaboradas.
- O núcleo do produto é usado pelo cliente e um plano é desenvolvido para o próximo incremento como resultado do uso e/ou avaliação.

MODELO RAD

MODELO RAD

- O Rapid Application Development (RAD) é um modelo de processo de software incremental que enfatiza um ciclo de desenvolvimento curto.
- O Modelo RAD é uma adaptação, de alta velocidade, do modelo em cascata, no qual a agilidade é conseguida com o uso de uma abordagem de construção baseada em componentes.

PROTOTIPAGEM

PROTOTIPAGEM

- A prototipagem é recomendada quando o cliente define um conjunto de objetivos gerais para o software, mas não identifica detalhadamente requisitos de entrada, processamento ou saída;
- Também sugere-se utilizar quando o desenvolvedor não está seguro sobre a eficiência de um algoritmo, da adaptabilidade de um sistema operacional ou da forma que a interação humano-computador deve assumir.

ESPIRAL

ESPIRAL

- Usando o Modelo Espiral, o software é desenvolvido em uma série de versões evolucionárias;
- Durante as primeiras iterações, as versões podem ser um modelo de papel ou protótipo;
- Durante as últimas iterações, são produzidas versões cada vez mais completas do sistema submetido à engenharia.

PROCESSO UNIFICADO

- É um processo de software orientado por casos de uso, centrado na arquitetura, iterativo e incremental;
- É uma tentativa de apoiar-se nos melhores recursos e características dos modelos convencionais de processo de software, incluindo muitos dos melhores princípios de desenvolvimento ágil;
- Reconhece a importância da comunicação com o cliente e dos métodos diretos para descrever a visão do cliente de um sistema;
- Sugere um fluxo de processo iterativo e incremental.

PROCESSO UNIFICADO

- Fases do Processo Unificado:
 - ✓ Iniciação: abrange atividades de comunicação com o cliente e de planejamento;
 - ✓ Elaboração: inclui a comunicação com o cliente e atividades de modelagem do processo genérico;
 - ✓ Construção: usando o modelo arquitetural como entrada, desenvolve ou adquire os componentes de software que vão tornar cada caso de uso operacional;
 - ✓ Transição: abrange os últimos estágios da atividade genérica de construção e a primeira parte da atividade genérica de implantação.

PROCESSO UNIFICADO

Modelagem de negócios

Requisitos

Análise e Projeto

Implementação

Teste

Implantação

Gerenciamento de Configuração e Mudanças

Gerenciamento de Projetos

Ambiente

fonte: KRUCHTEN, 2003 (adaptado)

MANIFESTO ÁGIL

- Um grupo inicial de 17 metodologistas formou a *Agile Software Development Alliance* (<u>www.agilealliance.org</u>) em fevereiro de 2001.
- Este grupo definiu o que se chama hoje de Manifesto Ágil, que possui um conjunto de princípios que definem critérios para os processos de desenvolvimento ágil de software: Modelagem Ágil.

VALORES DO MANIFESTO ÁGIL

- Indivíduos e interações valem mais que processos e ferramentas;
- Um software funcionando vale mais que documentação extensa;
- A colaboração do cliente vale mais que a negociação de contrato;
- Responder a mudanças vale mais que seguir um plano.

- 1. Satisfazer ao cliente mediante entregas de software de valor em tempo hábil e continuamente.
- 2. Receber bem mudanças de requisitos, mesmo em uma fase mais avançada de desenvolvimento. Os processos ágeis direcionam as mudanças para obter vantagens competitivas para o cliente.

- 3. Entregar software em funcionamento com frequência de algumas semanas a alguns meses, de preferencia na menor escala de tempo.
- 4. As equipes de negócios e de desenvolvimento devem trabalhar juntas diariamente e durante todo o projeto.
- 5. Construa projetos ao redor de indivíduos motivados. Dê-lhes o ambiente e o apoio de que eles precisam e confie neles para realizar o trabalho.

- 6. O método mais eficiente para levar informações para a equipe de desenvolvimento e fazê-las circular é a conversa cara a cara.
- 7. Ter o software funcionando é a principal medida de progresso.
- 8. Processos ágeis promovem o desenvolvimento sustentável. Os patrocinadores, desenvolvedores e usuários deveriam ser capazes de manter um ritmo constante indefinidamente.

- 9. Atenção contínua à excelência técnica e a um bom projeto aumentam a agilidade.
- 10. Simplicidade a arte de maximizar a quantidade de trabalho não realizado é essencial.
- 11. As melhores arquiteturas, requisitos e projetos provêm de equipes organizadas.
- 12. Em intervalos regulares, a equipe deve refletir sobre como se torna mais eficaz e então se ajustar e adaptar seu comportamento.

MODELAGEM ÁGIL

- A Modelagem Ágil (MA) é uma metodologia baseada na prática para modelagem e documentação eficazes de sistemas baseados em software;
- É baseada em um conjunto de práticas (princípios e valores) para profissionais de software aplicarem em seu dia a dia;
- Não é um processo prescritivo;
- Não define procedimentos detalhados de como criar um determinado tipo de modelo, e sim fornece conselhos sobre como ser um modelador eficiente.

OBJETIVOS DA MODELAGEM ÁGIL

- Definir e mostrar como colocar em prática um conjunto e valores, princípios e práticas relativas uma modelagem eficaz e leve;
- Lidar com a questão de como aplicar técnicas de modelagem em projetos de software adotando uma perspectiva ágil;
- Discutir como você pode melhorar seus atividades de modelagem adotando uma perspectiva "quase ágil" para o desenvolvimento de software e equipes de projeto.

PAPÉIS DA MODELAGEM ÁGIL

- Modelador É qualquer pessoa que siga a metodologia MA, aplicando as práticas desta com seus princípios e valores.
- Desenvolvedor É quem adota uma perspectiva ágil de desenvolvimento de software.

O QUE É OU NÃO MODELAGEM ÁGIL?

- A MA é uma atitude, não um processo prescritivo;
- A MA é um suplemento dos métodos pré-existentes não uma metodologia completa;
- A MA é complementar aos processos de modelagem;
- A MA é uma maneira de trabalhar em conjunto de modo eficaz e alcançar os objetivos dos clientes do projeto;
- A MA é eficaz e trata de eficácia;
- A MA é algo que funciona na prática, não é uma teoria acadêmica;

O QUE É OU NÃO MODELAGEM ÁGIL?

- A MA não é uma bala de prata;
- A MA foi feita para o desenvolvedor médio, mas não é uma substituição de pessoas competentes;
- A MA não é um ataque à documentação;
- A MA não é um ataque às ferramentas CASE.

VALORES DA MODELAGEM ÁGIL

- São valores da Modelagem Ágil:
 - ✓ Comunicação;
 - ✓ Simplicidade;
 - ✓ Retorno;
 - ✓ Coragem;
 - ✓ Humildade.
- Entenda os valores a seguir:

VALOR: COMUNICAÇÃO

- É uma via de duas mãos, ambas fornecem e obtém informações como resultado;
- Comunicação eficaz entre todos os envolvidos (desenvolvedores e cliente);
- Ilustre sua comunicação, faça-se entender, desenhe se for preciso...

VALOR: SIMPLICIDADE

- Não complique, use a Regra KISS (Keep It Simple, Stupid) –
 Mantenha Isto Simples, Estúpido.
- Não inclua complicações do tipo:
 - ✓ Padrões complexos demais;
 - ✓ Criar arquiteturas em excesso para que o sistema suporte possíveis requisitos futuros;
 - ✓ Desenvolver infraestrutura complexa;
 - ✓ Não crie cenários com base em suposições.

VALOR: RETORNO

• A única forma de verificar se seu modelo está correto é obtendo feedback.

- Desenvolva o modelo em equipe;
- Revise o modelo com seu público-alvo;
- Implemente o modelo;
- Teste a aceitação.

• Revisões informais e revisões formais.

VALOR: CORAGEM

- Utilizar MA é um desafio, pois é uma novidade para a maioria das pessoas;
- Acredite em pessoas e em si mesmo;
- Coragem para manter a estratégia nos momentos difíceis;
- Coragem para reconhecer falhas e que comete erros;
- Coragem para confiar que poderá superar os problemas que surgirão no futuro.

VALOR: HUMILDADE

- Reconhecer que não sabe tudo.
- Humildade para respeitar as pessoas que trabalham com você.
- Ter consciência que elas podem ser melhores que você em alguns aspectos (um conhecimento complementa o outro).
- Ter consciência que as pessoas que trabalham com você tem pontos de vistas, conhecimentos e expectativas diferentes de você.

10 PRINCÍPIOS DA MODELAGEM ÁGIL

- Lembre que o software é seu objetivo principal;
- Saiba que possibilitar o próximo trabalho é seu objetivo secundário;
- Diminua a carga de trabalho;
- Adote a simplicidade;
- Encampe a mudança;
- Mude de forma incremental;
- Modele com um propósito;
- Tenha mais de um modelo;
- Incentive o trabalho de qualidade;
- Maximize o retorno que seus cliente obterão.

PRINCÍPIOS SUPLEMENTARES DA MA

- São princípios suplementares da MA:
 - ✓ O conteúdo é mais importante que a forma;
 - ✓ Todos podem aprender com todos;
 - ✓ Conheça seus modelos;
 - ✓ Adaptação local;
 - ✓ Comunicação aberta e honesta;
 - ✓ Trabalhe com o instinto das pessoas.
- Entenda os princípios suplementares:

PRINC.: O CONTEÚDO É MAIS IMPORTANTE QUE A FORMA

- Qualquer modelo pode ser representado de várias maneiras:
 - ✓ Esboço mental, papel, post-it, quadro, utilizando ferramentas, protótipos, linguagem de programação...;
- O meio pode deixar o modelo mais atrativo, porém o conteúdo do mesmo é o mais importante.

PRINC.: TODOS PODEM APRENDER COM TODOS

- Os modeladores ágeis reconhecem que nunca sabem tudo sobre algo;
- Existe sempre uma oportunidade de aprendizado:
 - ✓ Estender o conhecimento;
- As tecnologias mudam rapidamente.

PRINC.: CONHEÇA SEUS MODELOS

- Muitos modelos podem ser empregados;
- Então é preciso conhecer os pontos fortes e os pontos fracos de cada modelo, somente assim pode-se utilizá-los com eficiência e eficácia.

PRINC.: ADAPTAÇÃO LOCAL

- Talvez seja necessário modificar a MA para que a mesma reflita seu ambiente;
- Analise seu ambiente, reflita sobre sua organização, seus colegas, seus cliente e o próprio projeto;
- Adaptar a MA para atender sua necessidade;
- Pessoas diferentes \rightarrow aplicações diferentes de MA;
- A aplicação varia, mas os valores, princípios e práticas continuam os mesmos;
- MA não funciona em todas as situações.

PRINC.: COMUNICAÇÃO ABERTA E HONESTA

- Liberdade para oferecer sugestões;
- Liberdade para expressar opiniões;
- Humildade para ouvir opiniões, discutir novas possibilidade e adotar novas estratégias.

PRINC.: TRABALHE COM O INSTINTO ...

- Acredite no seu feeling. Muitas vezes sabemos que algo não vai funcionar e não conseguimos embasamento para justificar, mas acredite em seu instinto;
- O tempo e a experiência nos levam a ter percepção dos fatos e torna nosso instinto mais aguçado, apurado;
- Não esqueça que um dos valores do MA é a coragem.

PRÁTICAS DA MODELAGEM ÁGIL

- São o coração da MA;
- São elas que devem ser aplicadas nos projetos.

PRÁTICAS BÁSICAS

- 1. Modelagem iterativa e incremental:
 - ✓ Aplique o(s) artefato(s) correto(s);
 - ✓ Crie diversos modelos em paralelo;
 - ✓ Itere em outro artefato;
 - Modele incrementalmente.
- 2. Trabalho em Equipe:
 - ✓ Modele com outras pessoas;
 - ✓ Organize uma participação ativa dos cliente;
 - ✓ Promova a posse coletiva;
 - ✓ Mostre os modelos publicamente.

PRÁTICAS BÁSICAS

3. Simplicidade:

- ✓ Crie conteúdo simples;
- ✓ Mostre os modelos de modo simples;
- ✓ Use as ferramentas de modo simples.

4. Validação:

- ✓ Considere a testabilidade;
- ✓ Comprove com código.

PRÁTICAS SUPLEMENTARES

1. Produtividade

- ✓ Aplique as convenções da modelagem;
- ✓ Utilize os padrões com moderações;
- ✓ Reuse os recursos já existentes.

2. Documentação

- ✓ Descarte os modelos temporários;
- ✓ Formalize os modelos de contrato;
- ✓ Atualize apenas quando necessário.

3. Motivação

- ✓ Modele para entender;
- ✓ Modele para comunicar.

RESUMO

The Best Practices of Agile Modeling

RESUMO

As Melhores Práticas da Modelagem Ágil

REFERÊNCIAS

- PRESSMAN, R. W, MAXIM B. R. **Software Engineering A Practitioner's Approach**. 8th ed. New York: McGraw-Hill, 2015.
- KOLB, J. Compartilhando.
 - ✓ Disponível em: http://www.jkolb.com.br. Acesso em 20/01/2018.
- KRUCHTEN, P. *Rational Unified Process Made Easy*. Boston: Addison-Wesley Professional, 2003.