Data Exploration

Rett Kinsey and Emre Guvenilir

What We Know About MNIST

- 28x28 Pixel Images where each image is classified as a digit
 0-9
- 60,000 training set data points with 10,000 test set data points
- We can display the images utilizing pyplot and cmap in Jupyter
- Utilizing grayscale values

Features

- Features depends on which model type we choose to proceed with
- Individual grayscale value of each pixel (whether or not a pixel is being used)
 - This can be split into a binary value based on a cutoff or left as is.
- Relationship between those pixels
 - > There are algorithms that can detect lines and curves.
 - But to use these algorithms would both be extremely taxing
 - And would likely drift out of machine learning
- Could also do some type of total brightness values
- Also possible to use reference figures to establish a base similarity.
 - > Select one 2 and compare everything to that 2 to get 2 likeness.

Model Types

- K-Nearest-Neighbors
 - > Feature: Grayscale value of individual pixels

Pros	Cons
 Easier to code Can compare to wider number of images compared to next idea 	 Large processing time and incredibly large dataset to carry around Processing done at time of prediction making

Model Types

- Decision Tree
 - > Calculating similarity to a singular example of each digit
 - > The similarity would be the features of the decision tree

Pros	Cons
 Less processing time at time of prediction Can expand comparison to be the average across many examples Easily explainable 	 Bias by initial choice of examples Processing done at time of prediction making

Data Processing

- ❖ We will want to be able to locate a specific pixel (i.e. [0][0],[10][10])
- For Knn we will likely want to utilize distance metrics to identify patterns over weighted voting
- ❖ If we utilize decision trees, we were likely utilize pruning in our processes
- Parallelization is something that could be used as the dataset is extremely large
 - > Dividing a computational task into smaller subtasks to be executed simultaneously
 - We could leverage this to find patterns simultaneously and have a "bank of patterns" to match against

Ethical Considerations

Data Privacy

These are handwritten digits, and while they are not identifiable to a person, there could be security concerns if used to identify a specific individual's handwriting

Transparency

The model should be well-documented to build trust in how the model was built to ensure the interpretation of output is trusted

Deployment Considerations

If such a model were to be applied for tasks such as automated grading on math assignments, many concerns appear in the accuracy and generalizability of the model