Aula 5 Memória Virtual

Introdução

- Programas maiores que a memória disponível?
 - Programa dividido em módulos → Overlays

- Antes: divisão a cargo do programador
- Hoje: memória virtual

Paginação

- Página
 - Espaço de endereçamento virtual
- Moldura de página
 - Unidades correspondentes na memória física

Paginação

MMU

- Unidade de gerenciamento de memória
- Mapeia endereços virtuais em endereço físicos

Paginação

- Página não mapeada
 - Page fault (interrupção)
 - SO → escolhe moldura pouco usada para a substituição

Tabela de Páginas

Forma mais simples de mapear

Tabela de Páginas

- Problemas
 - Tabela pode ser extremamente grande
 - O mapeamento deve ser rápido

Tabelas de Páginas

Multinível

- Minimiza o problema
- Evitando que todas as tabelas sejam mantidas na memória

Second-level page tables

Memória associativa

- TLB (Translation lookaside buffer)
 - Dispositivo dentro da MMU
 - Contém pequeno número de entradas que agiliza o mapeamento das páginas

Valid	Virtual page	Modified	Protection	Page frame
1	140	1	RW	31
1	20	0	RX	38
1	130	1	RW	29
1	129	1	RW	62
1	19	0	RX	50
1	21	0	RX	45
1	860	1	RW	14
1	861	1	RW	75

Tabela de Páginas Invertida

- Uma entrada por moldura de página
 - Ao invés de uma entrada por página do endereçamento virtual
- Economiza muito espaço
 - Tradução de endereços é mais lenta

Tabela de Páginas Invertida

Substituição de Páginas

- Algoritmos
 - Ótimo
 - NUR
 - FIFO
 - Segunda Chance
 - Relógio

- MRU
- NFU
- Envelhecimento
- Conjunto de trabalho
- WSClock

Algoritmo Ótimo

- Simples porém irrealizável
- Rótulo:
 - Número de instruções antes da página ser usada
- Substituir a página com maior rótulo

NUR

- Página não usada recentemente
 - SO contabiliza se a página foi referenciada ou modificada (leitura e escrita)
 - Classe 0: não referenciada e não modificada
 - Classe 1: não referenciada e modificada
 - Classe 2: referenciada e não modificada
 - Classe 3: referenciada e modificada
 - Remove aleatoriamente uma página da classe mais baixa (não vazia)

FIFO

- Primeira a entrar, primeira a sair
- SO mantém uma lista por ordem de entrada da página na memória
- Page fault → substitui a página a mais tempo na memoria

Segunda Chance

- Modificação do algoritmo FIFO
- Da segunda chance se a página mais antiga estiver sendo usada

Relógio

Similar ao algoritmo de Segunda Chance

MRU

- Menos recentemente usada
 - Manter lista com a página mais recentemente usada no início e a menos recentemente usada no final
 - Atualizar a lista a cada referência de memória
 - Oneroso

NFU

- Não usada frequentemente
 - Contador de uso por página
 - Descarta página com menor contador

Pode descartar página usada recentemente

Envelhecimento

- Semelhante ao NFU
 - Ao invés do contador, faz o shift binário

Conjunto de Trabalho

- Páginas que um processo usa em um instante
 - Localidade de referência → processos não acessas uniformemente seus espaços de endereçamento
 - Acessos tendem a se agrupar em um subconjunto de páginas
- Objetivo: manter esse subconjunto de páginas juntas na memória

Conjunto de Trabalho

WSClock

- Conjunto de trabalho → oneroso
- WSClock: mesmo princípio porém em lista circular

Resumo

Algorithm	Comment		
Optimal	Not implementable, but useful as a benchmark		
NRU (Not Recently Used)	Very crude approximation of LRU		
FIFO (First-In, First-Out)	Might throw out important pages		
Second, chance	Big improvement over FIFO		
Clock	Realistic		
LRU (Least Recently Used)	Excellent, but difficult to implement exactly		
NFU (Not Frequently Used)	Fairly crude approximation to LRU		
Aging	Efficient algorithm that approximates LRU well		
Working set	Somewhat expensive to implement		
WSClock	Good efficient algorithm		