Chapter 5 Analysis of Sequential Systems

Figure 5.2 Conceptual view of a sequential system.

- Sequential systems (finite state machine)
 - systems with memory
 - Output depends on present input and past history
- Synchronous systems
 - Clock signal regulates input, internal, and output signal

Clock

- Alternating sequence of 0 and 1 at a regular rate
 - Two kinds: 0 and 1 in same length, 0 longer than 1

Moore machine

• A system with one input x and one output z such that z = 1 iff x has been 1 for at least three consecutive clock times

Trace 5.1 Three consecutive 1's.

\boldsymbol{x}	0	1	1	0	1	1	1	0	0	1	0	1	1	1	1	1	0	0			
Z.	?	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	0	0

- Output depends only on state of the system after the desired input pattern has occurred (not the present input).
- Such system is called Moore machine (Moore model)
- Output of the first input is unknown because no history
- Moore machine (finite state machine): output values are determined solely by its current state

Moore machine (state table, state diagram)

Table 5.1 A state table.

Present	Next		
state	x = 0	x = 1	Output
A	A	В	0
B	A	C	0
C	A	D	0
D	A	D	1

Figure 5.3 A state diagram.

 x
 0
 1
 1
 0
 1
 1
 0
 0
 1
 0
 1
 1
 0
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Mealy machine

 Output depends on not only on the present state of the machine but also on the present input.

	c	l*		z
q	x=0	x=1	x=0	x=1
А	А	В	0	0
В	А	С	0	0
С	А	С	0	1

х	0	1	1	0	1	1	1	0	0	1	0	1	0	1	1	1	1	1	0	0		
q	?	Α	В	С	Α	В	С	С	Α	Α	В	Α	В	Α	В	С	C	С	С	Α	Α	
z	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0

Latch

S	R	Q	Q(next)	Q'(next)
0	0	0	0	1
0	0	1	1	0
0	1	X	0	1
1	0	\mathbf{X}	1	0
1	1	X	0	0

(a) Logic schematic

- (b) Truth table
- SR latch is the simplest memory element two cross-coupled NOR gates

•
$$Q' = (S + Q)'$$

•
$$Q = (R + Q')'$$

- two input signals
 - the set signal $\rightarrow S$, the reset signal $\rightarrow R$
- two output signals
 - set state $\rightarrow Q=1$ (Q=0), reset state $\rightarrow Q=0$, (Q=1)

SR Latch timing

S and R signal overlapping problem

Gated latch

- Gate signal is inactive (= 0)
 - > SG, RG are both 0. Latch remains unchanged.
- Gate signal is active (= 1)
 - > Latch stores 0 or 1.

Clocked SR latch

С	S	R	Q	Q(next)
0	X	X	0	0
0	X	X	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	X	0
1	1	0	X	1
1	1	1	X	NA

(a) Graphic symbol

(b) Logic schematic

(c) Truth table

- two input and a third control input *C*
- $C=1 \rightarrow$ operate as SR latch, $C=0 \rightarrow$ setting or resetting
- The gated SR latch is called a clocked SR latch

Gated D latch

- only one input **D** and a control input **C**
- D input to the S input and D to the R input of the SR latch
- ullet S and R will never equal 1 at same time
- $C=1 \rightarrow$ same values as input D, $C=0 \rightarrow$ last value of D

С	D	Q	Q(next)
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

(a) Graphic symbol

(b) Logic schematic

(c) Truth table

Gated D latch timing

Flip Flops

- A flip flop is a clocked binary storage device, that is, a device that stores either 0 or 1. The value will change on the appropriate transition of the clock.
- Trailing edge triggered (falling) or Leading edge triggered (rising) by clock signal
- D flip flop
- SR flip flop
- JK flip flop
- T flip flop

D flip flop

Output is just the input delayed until the next active clock transition.
 The next state of the D flip flop is the value of D before the clock transition

Trailing-edge Triggered

Leading-edge Triggered

D	q*
0	0
1	1

D flip flop using two D latches

Clk	D	Q	Qnext	Q_{next}'
0	×	0	0	1
0	×	1	1	0
1	×	0	0	1
1	×	1	1	0
	0	×	0	1
	1	×	1	0

(b)

(a) $-D \qquad Q - \\ - > Clk \quad Q' -$

(c)

Clock and D of (a) and (b) results same q

(negative edge triggered)

Master-slave flip flops

By connecting two D flip flops

Figure 5.11 Two flip flops.

Figure 5.12 Timing for two flip flops.

SR flip flop

Table 5.5 SR flip flop behavioral tables.

S	R	q	q^*	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	_	not
1	1	1	-	allowed

	q^*	R	S
	q	0	0
	Ô	1	0
	1	0	1
not allowed	_	1	1

Figure 5.15 SR flip flop state diagram.

Map 5.1 SR flip flop behavioral map.

SR flip flop

$$q^* = S + R'q$$

Figure 5.16 SR flip flop timing diagram.

SR flip flop

S	R	Q	Qnext	Q_{next}'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	×	×
1	1	1	×	×

(b)

JK flip flop

Table 5.7 *JK* flip flop behavioral tables.

J	K	q	q^*
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

J	K	q^*
0	0	q
0	1	q 0
1	0	1
1	1	q'

Figure 5.19 JK flip flop state diagram.

Map 5.2 JK flip flop behavioral map.

$$q^* = Jq' + K'q$$

JK flip flop

J	K	Q	Qnext	Q_{next}'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

(b)

JK flip flop timing

T flip flop

Table 5.6 T flip flop behavioral tables.

T	q	q^*
0	0	0
0	1	1
1	0	1
1	1	0

T	q^*
0	q
1	q'

Figure 5.17 T flip flop state diagram.

$$q^* = T \oplus q$$

Figure 5.18 *T* flip flop timing diagram.

T flip flop

T	Q	Qnext	Q_{next}'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

(b)

Summary of flip flop

FLIP-FLOP NAME	FLIP-FLOP SYMBOL	CHARACTERISTIC TABLE	CHARACTERISTIC EQUATION	EXCIT TABLE	ATION :		
SR	$-S \qquad Q - Clk - R \qquad Q' - R$	S R Q(next) 0 0 Q 0 1 0 1 0 1 1 1 NA	Q(next) = S + R'Q $SR = 0$	0 0 1 1	0 1 0 1	0 1 0 X	X 0 1 0
JK	— J Q — → Clk — K Q'—	J K Q(next) 0 0 Q 0 1 0 1 0 1 1 1 Q'	Q(next) = JQ' + K'Q	0 0 1 1	Q(next) 0 1 0 1 1	0 1 X X	X X 1 0
D	$\begin{array}{ccc} -D & Q \\ - & Clk \\ Q' - & \end{array}$	D Q(next) 0 0 1 1	Q(next) = D	0 0 1 1	Q(next) 0 1 0 1 1	0 1 0 1	
Т	$-T \qquad Q \qquad -$ $- > Clk \qquad Q' \qquad -$	7 Q(next) 0 Q 1 Q'	Q(next) = TQ' + T'Q	0 0 1 1	Q(next) 0 1 0 1	0 1 1 0	

D flip flop Moore model circuit

Equation

$$D_1 = q_1 q_2' + x q_1'$$

 $D_2 = x q_1$
 $z = q_2'$

Construct (1) state table and (2) state diagram from the circuit

	q_1^*	q_2^*	
$q_{1}q_{2}$	x = 0	x = 1	z
0 0	0	1	1
0 1	0	1	0
1 0	1	1	1
1 1	0	0	0

Equation

$$D_1 = q_1 q_2' + x q_1'$$

 $D_2 = x q_1$
 $z = q_2'$

For next state $q^* = D$ q1* = D1q2* = D2

Table 5.8a Partial state table. Table 5.8b Complete state table.

	$q_1^* \ q_2^*$		
q_1q_2	x = 0	x = 1	z
0 0	0 0	1 0	1
0 1	0 0	1 0	0
1 0	1 0	1 1	1
1 1	0 0	0 1	0

Figure 5.22 A Moore state diagram.

JK flip flop Moore model circuit

Equation

$$J_A = x$$
 $K_A = xB'$
 $J_B = K_b = x + A'$
 $z = A + B$

Construct (1) state table and (2) state diagram from the circuit

Table 5.7 *JK* flip flop behavioral tables.

J	K	q	q^*
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

J	K	q^*
0	0	q
0	1	$q \\ 0$
1	0	1
1	1	q'

Table 5.9b State table with A* entered.

A* B*			
A B	x = 0	x = 1	z
0 0	0	1	0
0 1	0	1	1
1 0	1	0	1
1 1	1	1	1

Equation

$$J_A = x$$
 $K_A = xB'$
 $J_B = K_b = x + A'$
 $z = A + B$

Table 5.9a

State table with first two entries.

	A* B*		
A B	x = 0	x = 1	z
0 0	0 1		0
0 1	0 0		1
1 0			1
1 1			1

Table 5.9c

Completed state table.

	A°		
A B	x = 0	x = 1	z
0 0	0 1	1 1	0
0 1	0 0	1 0	1
1 0	1 0	0 1	1
1 1	1 1	1 0	1

State diagram

Table 5.9c Completed state table.

	A* B*		
A B	x = 0	x = 1	z
0 0	0 1	1 1	0
0 1	0 0	1 0	1
1 0	1 0	0 1	1
1 1	1 1	1 0	1

A Mealy Model

Figure 5.26 A Mealy model.

analysis

$$\begin{aligned} D_1 &= xq_1 + xq_2 \\ D_2 &= xq_1'q_2' \\ z &= xq_1 \end{aligned} \qquad \begin{aligned} &\text{In D flip flops, q* = D} \\ q1^* &= xq1 + xq2 \\ q2^* &= xq1'q2' \end{aligned}$$

Table 5.10 State table for the Mealy system.

	q^*		z	
q	x = 0	x = 1	x = 0	x = 1
0 0	0 0	0 1	0	0
0 1	0 0	1 0	0	0
1 0	0 0	1 0	0	1
1 1	0 0	1 0	0	1

Figure 5.27 State diagram for a Mealy model.

