- 一、选择题
- 1.D
- 2.B
- 3.C

二、填空题

- 1.0
- 2.F(x)(1 F(y))
- $3.\frac{1}{2}$.

三、解答题

1. 2.(1) 利用规范性:

X	y_1	y_2	y_3	$P(X = x_i) = p_i.$
x_1	$\frac{1}{24}$	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{4}$
x_2	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{3}{4}$
$P(Y = y_j) = p_{\cdot j}$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	1

$$\int_0^{\frac{\pi}{2}} \int_0^1 A \cos x \frac{1}{\sqrt{1 - y^2}} dx dy = 1.$$

$$\Rightarrow A = \frac{2}{\pi}.$$

(2)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_0^1 \frac{2}{\pi} \cos x \frac{1}{\sqrt{1 - y^2}} dy = \cos x.$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_0^{\frac{\pi}{2}} \frac{2}{\pi} \cos x \frac{1}{\sqrt{1 - y^2}} dx = \frac{2}{\pi \sqrt{1 - y^2}}.$$

(3)
$$P(X \le \frac{\pi}{3}) = \int_0^{\frac{\pi}{3}} f_X(x) dx = \int_0^{\frac{\pi}{3}} \cos x dx = \frac{\sqrt{3}}{2}.$$

$$P(Y \ge \frac{1}{2}) = \int_1^{\frac{1}{2}} f_Y(y) dy = \int_{\frac{1}{3}}^1 \frac{2}{\pi \sqrt{1 - y^2}} dy = \frac{2}{3}.$$

(4) 因为对一切 $(x,y) \in \mathbb{R}^2$

$$f(x,y) = f_X(x)f_Y(y)$$

成立, 所以 X 与 Y 独立.

3. (1) 经计算可得 $m(G) = \frac{1}{3}$, 于是

$$f(x,y) = \begin{cases} 3, & 0 \le x \le 1, 0 \le y \le x^2; \\ 0, & \text{\sharp} \dot{\Xi}. \end{cases}$$

(2)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{x^2} 3dy = 3x^2.$$

也可以根据公式

$$f(x,y) = f_X(x)f_{Y|X}(y,x)$$

因为 (X,Y) 在 G 上是均匀分布, 所以 $f_{Y|X}(y|x) \sim U(0,x^2)$. 于是

$$f_X(x) = \frac{f(x,y)}{f_{Y|X}(y|x)} = \begin{cases} 3x^2, & (x,y) \in G; \\ 0, & \sharp : \end{cases}$$

同理可得

$$f_Y(y) = 3(1 - \sqrt{y}).$$

(3) 因为

$$f(x,y) \neq f_X(x) \cdot f_Y(y)$$

所以 X 与 Y 不独立.