Hopfbündel

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

3-Sphäre S^3

Die 3-Sphäre $S^3\subset\mathbb{R}^4$ ist mit $\underline{p}=(p_1,p_2,p_3,p_4)\in\mathbb{R}^4$ definiert durch $\|\underline{p}\|=1$. Identifiziert man durch die Korrespondenz

$$(x^1, y^1, x^2, y^2) \leftrightarrow (x^1 + iy^1, x^2 + iy^2)$$

 \mathbb{R}^4 mit \mathbb{C}^2 , dann erhält man für die 3-Sphäre

$$S^3 = \left\{ \left(z^1, z^2\right) \in \mathbb{C}^2: \quad \left|z^1\right|^2 + \left|z^2\right|^2 = 1 \right\}.$$

Diese Darstellung von S^3 ist von 4 Parametern abhängig, es sind aber nur 3 nötig. Also macht man z.B. mit $r_1, r_2 \ge 0$ und $\xi_1, \xi_2 \in \mathbb{R}$ den Ansatz $z^1 = r_1 \exp{(i\xi_1)}$ und $z^2 = r_2 \exp{(i\xi_2)}$. Es muss dann $r_1^2 + r_2^2 = 1$ gelten. Man erhält so die Parametrierung für S^3 (siehe dazu im Anhang die Behauptung 1)

$$S^{3} = \left\{ \left(\cos \left(\frac{\phi}{2} \right) \exp \left(i\xi_{1} \right), \sin \left(\frac{\phi}{2} \right) \exp \left(i\xi_{2} \right) \right) : \quad \xi_{1}, \xi_{2} \in \mathbb{R}, 0 \leq \frac{\phi}{2} \leq \frac{\pi}{2}, \right\}.$$
 (1)

Es werden im folgenden drei Fälle für die Beträge von z^1 und z^2 behandelt.

Fall 1: $|z^1|^2 = |z^2|^2$

Aus (1) folgt $\cos\left(\frac{\phi}{2}\right)=\sin\left(\frac{\phi}{2}\right)$ und damit $\frac{\phi}{2}=\frac{\pi}{4}$ und $\left|z^{1}\right|=\left|z^{2}\right|=\frac{\sqrt{2}}{2}$. Die 3-Sphäre S^{3} in diesem Fall ist der 2-dimensionale Torus

$$T = \left\{ \left(\frac{\sqrt{2}}{2} \exp\left(i\xi_1\right), \frac{\sqrt{2}}{2} \exp\left(i\xi_2\right) \right) : \quad \xi_1, \xi_2 \in \mathbb{R} \right\}.$$
 (2)

Fall 2: $|z^1|^2 \le |z^2|^2$

Abbildung 1: Torus Tund Kreislinie $K = \{0\} \times S^1$

Aus (1) folgt $\cos\left(\frac{\phi}{2}\right) \leq \sin\left(\frac{\phi}{2}\right)$ und wegen $\frac{\phi}{2} \in \left[0, \frac{\pi}{2}\right]$ ergibt sich $\frac{\pi}{4} \leq \frac{\phi}{2} \leq \frac{\pi}{2}$.

Für das untere Limit $\frac{\phi}{2} = \frac{\pi}{4}$ ergibt sich T. Für das obere Limit $\frac{\phi}{2} = \frac{\pi}{2}$ folgt $z^1 = 0$, $z^2 = 1$ und das ergibt die Kreislinie

$$K = \left\{ \left(0, \frac{\sqrt{2}}{2} \exp\left(i\xi_2\right) \right) : \quad \xi_2 \in \mathbb{R} \right\}$$
$$= \left\{ 0 \right\} \times S^1.$$

Für jeden Wert $\frac{\phi}{2}$ zwischen $\frac{\pi}{4}$ und $\frac{\pi}{2}$ ergibt sich jeweils ein 2-dimensionaler Torus $T_{\frac{\phi}{2}}$ mit $T_{\frac{\phi}{2}} \subseteq T$. Durch die Vereinigung der Kreislinie K und aller 2-dimensionalen Tori $T_{\frac{\phi}{2}}$ entsteht der Volltorus

$$K_1 = \{ (z^1, z^2) \in \mathbb{C}^2 : |z^1| \le |z^2| \}$$
 (3)

.

Fall 3: $|z^1|^2 \ge |z^2|^2$

Abbildung 2:

Anhang

Behauptung 1

Es existiert für jedes Tupel (r_1, r_2) mit $r_1, r_2 \ge 0$ und $r_1^2 + r_2^2 = 1$ ein eindeutig bestimmter Winkel $\phi \in \left[0, \frac{\pi}{2}\right]$ mit $r_1 = \cos{(\phi)}$ und $r_2 = \sin{(\phi)}$.

Beweis

Zu r_1 kann man den Winkel $\phi_1 = \arccos(r_1)$ hinzubestimmen und zu r_2 den Winkel $\phi_2 = \arcsin(r_2)$.

Aus $r_1^2 + r_2^2 = 1$ folgt $r_2 = \pm \sqrt{1 - r_1^2}$. Wegen $r_2 \ge 0$ kommt nur das positive Vorzeichen in Frage. Also gilt $r_2 = \sqrt{1 - r_1^2}$.

Wegen (siehe dazu [2])

$$\arccos(x) = \arcsin\left(\sqrt{1-x^2}\right)$$

ergibt sich

$$\phi_2 = \arcsin(r_2) = \arcsin\left(\sqrt{1 - r_1^2}\right) = \arccos(r_1) = \phi_1.$$

Die beiden Winkel ϕ_1 und ϕ_2 sind also identisch.

Für $x \ge 0$ gilt $0 \le \arcsin(x) \le \frac{\pi}{2}$ und $0 \le \arccos(x) \le \frac{\pi}{2}$. Für den Winkel ϕ gilt also $\phi \in [0, \frac{\pi}{2}]$.

Literatur

- [1] Topology, Geometry and Gauge fields; Naber, Gregory; Springer Science+Business Media; 2011
- $[2] \ https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie \#Additions theoreme; \ Abschnitt: \ Umrechnung in andere trigonometrische Funktionen$