INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

1. Name of the Academic Unit: Computer Science & Engineering

2. Subject Name: Programming Paradigms for Computation

L-T-P: 3-1-0 **Credits:** 4

3. Pre-requisites: None

4. Syllabus and reference books:

Syllabus:

- Introduction to Models of Computation: Basics of Machine Models and Data Models. Data Structures and Algorithms. Computational Modeling of Real-world Phenomena. Computational Simulations and Learning. Modular Programming using Python.
- 2. Problem Solving and Algorithms: Concept of an Algorithm Termination and Correctness. Algorithms to Programs Problem Specification, Decomposition and Refinement. Program Design Issues Structured Programming, Data and Control Abstractions. Numerical Analysis Problems.
- **3.** Functional Paradigm: Abstractions with Functions, Designing Functions as Abstractions, Higher-order functions, Variable Scoping, Recursions.
- **4.** Abstractions with Data: Data Abstraction, Data Sequences, Temporal and Spatial Data, Data Manipulation using Python Tuples, Strings and Iterators.
- **5.** Introduction to Algorithmic Complexity: Efficiency Issues in Programming; Time and Space Measures. Illustration with Searching and Sorting Algorithms, Experiments with Running Time of Algorithms.
- **6.** Object Oriented Paradigm: Object Oriented Programming Classes and Objects. Object Abstraction, Inheritance. Recursive Objects Linked Lists, Trees and Graph Model, Object Oriented Programming using Python.
- **7.** Data Representation and Visualization: Working with Experimental Data, Loading Data and Basic Visualization Techniques in Python.
- **8.** Numerical Computations: Simulations, Interpolations, Optimizations. Solving Various Systems of Equations. Aspects of Error/Accuracy, Convergence, Efficiency, etc., Estimation Metrics and Graphical Visualization using Python.
- **9.** Introduction to Machine Learning Paradigm: Linear Classification and Regression, Plotting Error/Accuracy and Convergence.
- **10.**Logic Programming Paradigm: Introduction to Declarative Programs and Logic Programming. Goal/Constraint Satisfaction, Backtracking, Unification, Logic Programming with Prolog.
- 11. Advanced Computing Paradigms: Parallel Computing, Quantum Computing.

Reference Books:

- 1) John V. Guttag; "Introduction to Computation and Programming Using Python"; 3rd Edition, The MIT Press, 2021 (Python Version).
- 2) Harold Abelson, Gerald Jay Sussman; "Structure and Interpretation of Computer Programs"; 2nd Edition, The MIT Press, 1996 (Scheme Version)
- 3) John DeNero; "Composing Programs"; Python3 Programming Language Version of SICP Book. URL: https://www.composingprograms.com/
- 4) Alfred V. Aho and Jeffrey D. Ullman; "Foundations of Computer Science"; 1st Edition, W. H. Freeman & Co Ltd., 1994. URL: http://infolab.stanford.edu/~ullman/focs.html
- 5) Additional NOTES and SLIDES Prepared by the Instructors.

5. Lecture-wise break-up:

	Programming Paradigms for Computation		
Serial No	Topics		urs T
Lecture 1	Introduction to Models of Computation: Basics of Machine Models and Data Models. Data Structures and Algorithms. Computational Modeling of Real-world Phenomena. Computational Simulations and Learning.	3	
Tutorial 1	Introduction to Python Programming Language: Branching and Iteration, Modular Programming.		1
Lecture 2	Problem Solving and Algorithms: Concept of an Algorithm - Termination and Correctness. Algorithms to Programs - Problem Specification, Decomposition and Refinement. Program Design Issues - Structured Programming, Data and Control Abstractions.	3	
Tutorial 2	Example Problem Solving: Numerical Analysis Algorithm - Root Finding (Greedy vs Bisection method).		1
Lecture 3	Functional Paradigm: Abstractions with Functions. Designing Functions as Abstractions. Higher-order Functions, Recursions.	5	
Tutorial 3	Functions using Python Programming: Variable Scoping; Higher-order Functions.		2

Lecture 4	Abstractions with Data: Data Abstraction, Data Sequences, Temporal and Spatial Data.		
Tutorial 4	Data Manipulation using Python Programming: Tuples, Strings and Iterators.		1
Lecture 5	Introduction to Algorithmic Complexity: Efficiency Issues in Programming; Time and Space Measures. Illustration with Searching and Sorting Algorithms.	3	
Tutorial 5	Experiments with Running Time of Algorithms: Plotting running times of Different Algorithms.		1
Lecture 6	Object Oriented Paradigm: Object Oriented Programming - Classes and Objects. Object Abstraction, Inheritance. Recursive Objects – Linked Lists, Trees, and Graph Model.	5	
Tutorial 6	Object Oriented Programming using Python: Python Objects, Classes, Inheritance, Instances. Python Trees, Linked Lists, Graphs.		2
Lecture 7	Data Representation and Visualization: Working with Experimental Data.	3	
Tutorial 7	Data Visualization using Python: Loading Data and Basic Visualization Techniques in Python.		1
Lecture 8	Numerical Computations: Simulations, Interpolations, Optimizations. Solving Various Systems of Equations. Aspects of Error / Accuracy, Convergence, Efficiency, etc.	5	
Tutorial 8	Implementation of Numerical Computations: Estimation Metrics and Graphical Visualization.		2
Lecture 9	Introduction to Machine Learning Paradigm: Linear Classification and Regression.	3	
Tutorial 9	Implementation of Linear Classification and Regression: Plotting Error / Accuracy and Convergence.		1
Lecture 10	Logic Programming Paradigm: Introduction to Declarative Programs and Logic Programming. Goal / Constraint Satisfaction, Backtracking, Unification.	3	

Tutorial 10	Logic Programming with Prolog: Example Declarative Programs.			1
Lecture 11	Advanced Computing Paradigms: Parallel Computing, Quantum Computing.		2	
		Total number of Hours : 50	37	13