

у2018-2-2. Дерево поиска

А. Простое двоичное дерево поиска

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Реализуйте просто двоичное дерево поиска.

Входные данные

Входной файл содержит описание операций с деревом, их количество не превышает 100. В каждой строке находится одна из следующих операций:

- insert x добавить в дерево ключ x. Если ключ x есть в дереве, то ничего делать не надо;
- delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо;
- \bullet exists x если ключ x есть в дереве выведите «true», если нет «false»;
- $\operatorname{next} x$ выведите минимальный элемент в дереве, строго больший x, или « none » если такого нет;
- ullet prev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого нет.

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Выходные данные

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

Пример

BXOДНЫЕ ДАННЫЕ insert 2 insert 5

```
insert 3
exists 2
exists 4
next 4
prev 4
delete 5
next 4
prev 4

BBIXOQHWB Данные

true
false
5
3
none
3
```

В. Сбалансированное двоичное дерево поиска

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Реализуйте сбалансированное двоичное дерево поиска.

Входные данные

Входной файл содержит описание операций с деревом, их количество не превышает 10^5 . В каждой строке находится одна из следующих операций:

- insert x добавить в дерево ключ x. Если ключ x есть в дереве, то ничего делать не надо;
- delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо;
- exists x если ключ x есть в дереве выведите «true», если нет «false»;
- $\operatorname{next} x$ выведите минимальный элемент в дереве, строго больший x, или « none » если такого нет;
- prev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого нет.

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Выходные данные

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

Пример

С. Декартово дерево

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Вам даны пары чисел (a_i, b_i) . Необходимо построить декартово дерево, такое что i-я вершина имеет ключи (a_i, b_i) , вершины с ключом a_i образуют бинарное дерево поиска, а вершины с ключом b_i образуют кучу.

Входные данные

В первой строке записано число N — количество пар. Далее следует N ($1 \le N \le 300\ 000$) пар (a_i, b_i) . Для всех пар $|a_i|$, $|b_i| \le 1\ 000\ 000$. $a_i \ne a_j$ и $b_i \ne b_j$ для всех $i \ne j$.

Выходные данные

Если декартово дерево с таким набором ключей построить возможно, выведите в первой строке «YES», в противном случае выведите «NO». В случае ответа «YES» выведите N строк, каждая из которых должна описывать вершину. Описание вершины состоит из трёх чисел: номера предка, номера левого сына и номера правого сына. Если у вершины отсутствует предок или какой либо из сыновей, выведите на его месте число 0.

Если подходящих деревьев несколько, выведите любое.

Пример

D. Добавление ключей

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Вы работаете в компании Макрохард и вас попросили реализовать структуру данных, которая будет хранить множество целых ключей.

Будем считать, что ключи хранятся в бесконечном массиве A, проиндексированном с 1, исходно все его ячейки пусты. Структура данных должна поддерживать следующую операцию:

Insert (L, K), где L — позиция в массиве, а K — некоторое положительное целое число.

Операция должна выполняться следующим образом:

- Если ячейка A[L] пуста, присвоить $A[L] \ge ts \ K$.
- Если A[L] непуста, выполнить Insert (L+1 , A[L]) и затем присвоить $A[L] \ge ts \ K$.

По заданным N целым числам $L_1, L_2, ..., L_N$ выведите массив после выполнения последовательности операций:

Insert
$$(L_1, 1)$$
 Insert $(L_2, 2)$... Insert (L_N, N)

Входные данные

Первая строка входного файла содержит числа N — количество операций Insert, которое следует выполнить и M — максимальную позицию, которая используется в операциях Insert ($1 \le N \le 131\ 072$, $1 \le M \le 131\ 072$).

Следующая строка содержит N целых чисел L_i , которые описывают операции Insert, которые следует выполнить ($1 \le L_i \le M$).

Выходные данные

Выведите содержимое массива после выполнения всех сделанных операций Insert. На первой строке выведите W — номер максимальной непустой ячейки в массиве. Затем выведите W целых чисел — A[1], A[2], ..., A[W]. Выводите нули для пустых ячеек.

Пример

Е. И снова сумма

ограничение по времени на тест: 3 секунды

ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- $\operatorname{sum}(l,r)$ вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l \leq x \leq r$.

Входные данные

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\ 000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+i», либо «?lr». Операция «?lr» задает запрос sum(l,r).

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию add(i). Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция $add((i+y) \mod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Выходные данные

Для каждого запроса выведите одно число — ответ на запрос.

Пример

```
ВХОДНЫЕ ДАННЫЕ

6
+ 1
+ 3
+ 3
? 2 4
+ 1
? 2 4

ВЫХОДНЫЕ ДАННЫЕ

Скопировать

Скопировать
```

K-й максимум

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Входные данные

Первая строка входного файла содержит натуральное число n — количество команд ($n \leq 100\,000$). Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно ($|k_i| \leq 10^9$). Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Выходные данные

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

Пример

ľ	7
	5
	3
	$\frac{10}{10}$
	7
	5

G. Переместить в начало

ограничение по времени на тест: 6 секунд ограничение по памяти на тест: 512 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Вам дан массив $a_1 = 1$, $a_2 = 2$, ..., $a_n = n$ и последовальность операций: переместить элементы с l_i по r_i в начало массива. Например, для массива 2, 3, 6, 1, 5, 4, после операции (2, 4) новый порядок будет 3, 6, 1, 2, 5, 4. А после применения операции (3, 4) порядок элементов в массиве будет 1, 2, 3, 6, 5, 4.

Выведите порядок элементов в массиве после выполнения всех операций.

Входные данные

В первой строке входного файла указаны числа n и m ($2 \le n \le 100~000$, $1 \le m \le 100~000$) — число элементов в массиве и число операций. Следующие m строк содержат операции в виде двух целых чисел: l i и r i ($1 \le l$ $i \le r$ $i \le n$).

Выходные данные

Выведите n целых чисел — порядок элементов в массиве после применения всех операций.

Пример

входные данные 6 3 2 4 3 5 2 2 выходные данные 1 4 5 2 3 6

Условие недоступно на русском языке

I. Эх, дороги

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

В многострадальном Тридесятом государстве опять готовится дорожная реформа. Впрочем, надо признать, дороги в этом государстве находятся в довольно плачевном состоянии. Так что реформа не повредит. Одна проблема — дорожникам не развернуться, поскольку в стране действует жесткий закон — из каждого города должно вести не более двух дорог. Все дороги в государстве двусторонние, то есть по ним разрешено движение в обоих направлениях (разумеется, разметка отсутствует). В результате реформы некоторые дороги будут строиться, а некоторые другие закрываться на бессрочный ремонт.

Петя работает диспетчером в службе грузоперевозок на дальние расстояния. В связи с предстоящими реформами, ему необходимо оперативно определять оптимальные маршруты между городами в условиях постоянно меняющейся дорожной ситуации. В силу большого количества пробок и сотрудников дорожной полиции в городах, критерием оптимальности маршрута считается количество промежуточных городов, которые необходимо проехать.

Помогите Пете по заданной последовательности сообщений об изменении структуры дорог и запросам об оптимальном способе проезда из одного города в другой, оперативно отвечать на запросы.

Входные данные

В первой строке входного файла заданы числа n — количество городов, m — количество дорог в начале реформы и q — количество сообщений об изменении дорожной структуры и запросов ($1 \le n, m \le 100\ 000, q \le 200\ 000$). Следующие m строк содержат по два целых числа каждая — пары городов, соединенных дорогами перед реформой. Следующие q строк содержат по три элемента, разделенных пробелами. «+ i j» означает строительство дороги от города i до города j, «- i j» означает закрытие дороги от города i до города i i i означает запрос об оптимальном пути между городами i и j.

Гарантируется, что в начале и после каждого изменения никакие два города не соединены более чем одной дорогой, и из каждого города выходит не более двух дорог. Никакой город не соединяется дорогой сам с собой.

Выходные данные

На каждый запрос вида «?~i~j» выведите одно число — минимальное количество промежуточных городов на маршруте из города i в город j. Если проехать из i в j невозможно, выведите - 1.

Пример

Codeforces (c) Copyright 2010-2020 Михаил Мирзаянов Соревнования по программированию 2.0