HALL TICKET NO.	BOOKLET SL.NO. 214106
NAME OF THE CANDIDATE	BOOKLET CODE:
SIGNATURE OF THE CANDIDATE	INVIGILATOR'S SIGNATURE

(EEE)

ELECTRICAL AND ELECTRONICS ENGINEERING

INSTRUCTIONS TO CANDIDATES

1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand comer of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING BALL POINT PEN (BLUE/BLACK) ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.

Immediately on opening this Question Paper Booklet, check:

(a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)

(b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.

3. Use of Calculators, Mathematical Tables and Log books is not permitted.

4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.

- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using Ball Point Pen (Blue/Black) only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using Ball Point Pen (Blue/Black) only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.

8. The OMR Response Sheet will not be valued if the candidate:

- (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
- (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.

(c) Adopts any other malpractice.

- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.

11. Timings of Test: 10.00 A.M. to 1.00 P.M.

12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.

13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(EEE)

Note: (1) Answer all questions.

(2) Each question carries I mark. There are no negative marks.

(3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with Ball Point Pen (Blue/Black), only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

(4) The OMR Response Sheet will be invalidated if the circle is shaded using pencil or if more than

one circle is shaded against each question.

MATHEMATICS

1.
$$\int \left(\frac{x+2}{x+1}\right) dx =$$

(1)
$$x \log (x+1) + c$$

(2)
$$x \log (x+1) + 2 \log (x+1) + c$$

(3)
$$x + \log(x+1) + c$$

$$(4) \quad \frac{1}{x}\log(x+1)+c$$

$$\int \frac{x^2}{\sqrt{1+x^6}} dx =$$

(1)
$$\frac{1}{2}\sin^{-1}(x^3) + c$$

(2)
$$2\cos^{-1}(x^3) + c$$

(3)
$$\frac{1}{2}\cos h^{-1}(x^3) + c$$

(4)
$$\frac{1}{3}\sin h^{-1}(x^3) + c$$

3.
$$\int 8x^3 e^{2x} dx =$$

(1)
$$(4x^3-6x^2+6x-3)e^{2x}+c$$

(2)
$$4x^3 + 6x^2 + 6x + 3e^{2x} + c$$

(3)
$$\left(\frac{4x^2}{3} - \frac{2}{3}x + \frac{1}{3}\right)e^{2x} + c$$

(4)
$$\left(\frac{4x^2}{3} + \frac{2}{3}x - \frac{1}{3}\right)e^{2x} + c$$

4.
$$\lim_{n\to\infty} \left[\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right] =$$

(1)
$$\frac{\pi}{3}$$

$$(2) \quad \frac{\pi}{4}$$

$$(4) \log 3$$

$$5. \qquad \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx =$$

- $(1) \frac{\pi}{2}$
- (2) $\frac{\pi}{4}$
- (3) 0
- (4) 2
- The area of the region in the first quadrant enclosed by x-axis, y-axis, y = 3x-2 and y = 4 is 6.
 - (1) 16

- (3)
- $(4) \frac{8}{2}$
- The root mean square (RMS) value of $\log x$ over the range x = 1 to x = e is 7.

$$(1) \quad \frac{\sqrt{(e+1)}}{\sqrt{(e-2)}}$$

$$(2) \quad \frac{\sqrt{(e-2)}}{\sqrt{(e-1)}}$$

$$(3) \quad \frac{\sqrt{(e+2)}}{\sqrt{(e+1)}}$$

- (1) $\frac{\sqrt{(e+1)}}{\sqrt{(e-2)}}$ (2) $\frac{\sqrt{(e-2)}}{\sqrt{(e-1)}}$ (3) $\frac{\sqrt{(e+2)}}{\sqrt{(e+1)}}$ (4) $\frac{\sqrt{(e+2)}}{\sqrt{(e-1)}}$
- The differential equation formed by eliminating the arbitrary constants a and b in the relation 8. $y = a \cos(nx+b)$ is

$$(1) \quad \frac{d^2y}{dx^2} + n^2y = 0$$

$$(2) \quad \frac{d^3y}{dx^3} - x^3y = 0$$

(3)
$$\frac{dy}{dx} + ny = 0$$

$$(4) \quad \frac{d^2y}{dx^2} - y = 0$$

The solution of $\frac{dy}{dx} = e^{x-y}$

(1)
$$e^{x}-e^{-y}+c=0$$

$$(2) e^{x-y} + c$$

(3)
$$e^{r} + e^{-r} + c = 0$$

(4)
$$e^{x}-e^{y}+e^{c}=0$$

The solution of the differential equation $\tan x \frac{dy}{dx} + y = \sec x$ is

$$(1) \quad y \sin x - x = c$$

$$(2) \quad y \cot x + x = c$$

(3)
$$v = \tan x + c$$

(4)
$$y$$
 cosec $x = x + c$

- 11. The solution of the linear third order equation $\frac{d^3y}{dx^3} 7\frac{d^2y}{dx^2} + 16\frac{dy}{dx} 12y = 0$ is
 - (1) $y = c_1 e^{3x} + c_2 e^x + c_3 e^{4x}$

- (2) $y = c_1 e^{3x} + c_2 x e^x + c_3 e^{4x}$
- (3) $y = c_1 e^{2x} + c_2 x e^{3x} + c_3 e^{4x}$
- (4) $y = c_1 e^{3x} + (c_2 + c_3 x) e^{2x}$
- 12. If $y_1 = e^x$ and $y_2 = e^{-x}$ are two solutions of the homogeneous differential equation; then
 - (1) $y_3 = e^{2x}$ and $y_4 = e^{-2x}$ are also solutions of the equation
 - (2) $y_3 = xe^x$ and $y_4 = xe^{-x}$ are also solutions of the equation
 - (3) $y_3 = \cosh x$ and $y_4 = \sinh x$ are also solutions of the equation
 - (4) $y_1 = \cos x$ and $y_4 = \sin x$ are also solutions of the equation
- 13. The particular integral (P.I) of the equation $(D^2+D-6)y = 5e^{2x} + 6$ is
 - (1) $xe^{2x} 1$

(2) $e^{2x} + 1$

(3) $5xe^{2x} + 1$

- (4) $e^{2x} 1$
- 14. The particular integral of $(D^2+16)y=8\cos 4x$ is
 - (1) cos 4x

(2) $x \sin 4x$

 $(3) -\frac{1}{4}\sin 4x$

 $(4) \quad -\frac{1}{4}\cos 4x$

- 15. If $A = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 2 \\ -3 & 5 & 1 \end{bmatrix}$ then,
 - $(1) \quad A = A^T$

(2) A is a diagonal matrix

(3) A is a singular matrix

(4) A is a nonsingular matrix

16. If
$$A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 then

- (1) The minors of first row elements are respectively -3, -1.5
- (2) The cofactors of second row elements respectively are 1, -1, 1
- (3) The cofactors of first row elements respectively are -3, -1, -5
- The minors of second row elements respectively are 7, 5, -13 (4)
- 17. If A, B, C are non singular matrices of order 3 then

(1)
$$A(BC) \neq (AB)C$$

(2)
$$(ABC)^T = A^T B^T C^T$$

(3)
$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

(4)
$$(ABC)^{-1} = 1/(ABC)$$

18. If
$$\begin{bmatrix} 3 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$
, then

(1)
$$x = -1, y = 4$$

(2)
$$x = 2, y = -1$$

(3)
$$x = 4, y = -1$$

(2)
$$x = 2, y = -1$$

(4) $x = -1, y = 2$

- 19. If w is the cube root of unity then $\begin{bmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{bmatrix} =$
 - (1) 0
- (2) 1
- (3) -1
- (4) 2

20. If
$$\frac{x^2 + 13x + 15}{(2x+3)(x+3)^2} = \frac{A}{2x+3} + \frac{B}{x+3} + \frac{C}{(x+3)^2}$$
 then C =

- (1) 10
- (2) 5
- (3) 3
- (4)

21. If
$$\frac{2x+1}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1}$$
 then $A =$

- (1) -1 (2) $\frac{2}{3}$ (3) $-\frac{3}{2}$
- (4) $-\frac{2}{3}$

Set Code:	T2

Booklet Code:

		Doomiet Code

- Which of the following statement is TRUE
 - (A) The period of $\sin x$ is π and the period of $\csc x$ is 2π
 - (B) The period of $\cos x$ is 2π and the period of $\sec x$ is 2π
 - (C) The period of tan x is 2π and the period of cot x is π
 - (D) The period of cosec x is π and the period of sec x is 3π
 - (1) A
- (2) B
- (3) C
- (4) D

- 23. The range of $3\cos\theta 4\sin\theta$ is
 - (1) [-1,1]
- (2) [0,4]
- (3) [-5, 5]
- (4) [-4,0]

- 24. If $A+B=45^\circ$, then $(1+\tan A)(1+\tan B)=$
 - (1) 0
- (2) 1
- (3) $\frac{1}{2}$
- (4) 2

- 25. $\left(\frac{\sin 2A}{1-\cos 2A}\right)\left(\frac{1-\cos A}{\cos A}\right) =$
 - (1) $\tan \frac{A}{2}$ (2) $\cos \frac{A}{2}$
- (3) $\sec \frac{A}{2}$ (4) $\csc \frac{A}{2}$
- 26. The value of $\frac{\sin 70^{\circ} \cos 40^{\circ}}{\cos 50^{\circ} \sin 20^{\circ}} =$
 - (1) 1
- (2) $\frac{1}{\sqrt{2}}$
- (4) 0
- 27. 4 sin $\frac{11\theta}{2}$ cos $\frac{11}{2}\theta$ cos 5θ expressed as sum or difference is
 - (1) $\sin 15 \theta \sin 6 \theta$

(2) $\sin 16 \theta + \sin 6 \theta$

(3) $\sin 11 \theta + \sin 8 \theta$

- (4) $\sin 11 \theta \sin 8 \theta$
- 28. If $2\cos^2\theta + 11\sin\theta = 7$, the principal value of θ is
 - (1) 60°

- (3) 30° (4) $22\frac{1}{2}$

Set Code : T

Booklet Code :

29. Which one of the following equation is FALSE

(1) $\cos^{-1}(-x) = \pi - \cos^{-1}x$

- (2) $\sin^{-1}(-x) = \pi \sin^{-1} x$
- (3) If $-1 \le x \le 1$, then $\cos^{-1}x + \sin^{-1}x = \frac{\pi}{2}$ (4) $\sin^{-1}x \ne \frac{1}{\sin x}$

In any triangle ABC, $\Sigma (b+c) \cos A =$ 30.

- (1) a+b+c
- (2) 2(a+b+c)
- $(3)^{-3}(a+b+c)$
- (4) 0

With the usual notation, in a triangle ABC

$$s\left[\frac{r_1-r}{a}+\frac{r_2-r}{b}+\frac{r_3-r}{c}\right]=$$

- (1) $2(r_1+r_2+r_3)$ (2) $3(r_1+r_2+r_3)$ (3) $r_1+r_2+r_3$

32. The modulus amplitude form of $-\sqrt{3} + i$ is

- (1) $2 \operatorname{cis} \frac{5\pi}{6}$ (2) $2 \operatorname{cis} \frac{3\pi}{6}$ (3) $2 \operatorname{cis} \frac{\pi}{3}$ (4) $2 \operatorname{cis} \frac{\pi}{6}$

33. If $x = \cos\theta + i\sin\theta$, then the value of $x^6 + \left(\frac{1}{x^6}\right)$

- (1) 0
- (2) $2i\sin\theta\theta$
- (3) $2 \cos 6 \theta$
- (4) $2(\cos 6 \theta + \sin 6 \theta)$

34. The most general second degree equation $ax^2+2hxy+by^2+2gx+2fy+c=0$ represents a circle if

(1), a+b=0, h=0

(2) a-b=0, h=0

(3) $a-b=0, h \neq 0$

(4) $a+b \neq 0, h \neq 0$

35. The equation of the circle whose radius is $\sqrt{(a^2-b^2)}$ and whose center is (-a, -b) is

- (1) $x^2+y^2+2ax+2by+2a^2=0$
- (1) $x^2+y^2+2ax+2by+2a^2=0$ (2) $x^2+y^2-2ax+2(a^2+b^2)=0$ (3) $x^2+y^2+2ax+2by+2(a^2-b^2)=0$ (4) $x^2+y^2+2ax+2bx+2b^2=0$

36. The coordinates of the parabola $y^2 = 18x$ such that the ordinate equals to three times of the abscissa is

- (1) (3, 9)
- $(2) \cdot (2,6)$
- (3) (1,3)
- (4) (162, 54)

		7
Booklet	Code	:

- 37. With respect to the ellipse $5x^2+7y^2=11$, the point (4, -3)
 - (1) Is a focus

- (2) lies with in the ellipse
- (3) lies outside the ellipse
- (4) lies on the ellipse
- 38. For the Hyperbola $4x^2-9y^2=36$, the coordinates of the foci are
- (1) $(\pm\sqrt{13},0)$ (2) $(\pm\sqrt{31},0)$ (3) $(\pm6,0)$
- (4) $(0,\pm 6)$
- Which of the following statements are FALSE
 - (A) The equation of the tangent at the point (x', y') of the circle $x^2+y^2=a^2$ is $xx'+yy'=a^2$
 - (B) The eccentricity of a parabola is unity
 - (C) The eccentricity of an ellipse is greater than unity
 - (D) The eccentricity of a hyperbola is less than unity
 - (1) A,B
- (2) A,D
- (3) B,C
- (4) C, D

- 40. $\lim_{x \to \infty} \frac{3^{x+1} + 4}{3^{x+2} + 4} =$
 - (1) 1 -
- (2) 0
- (3) $\frac{3}{4}$
- (4) $\frac{1}{3}$

- 41. Derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with reference to x is

- (1) $\frac{2}{1+x^2}$ (2) $\frac{1}{1-x^2}$ (3) 2x (4) $\sqrt{1+x^2}$
- 42. If $y = x^{3x}$, (x > 0) then $\frac{dy}{dx} =$
 - (1) $3.x^{3r-1}$
- (2) $3x^{2x}$
- (3) $3y(1+\log x)$ (4) $\frac{3y}{\log x}$

Set Code: Booklet Code :

43. If
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
 then $\frac{dy}{dx} =$

(1)
$$\left(\frac{x}{y}\right)^{\frac{1}{3}}$$
 (2) $-\left(\frac{y}{x}\right)^{\frac{1}{3}}$ (3) $-\left(\frac{x}{y}\right)^{\frac{1}{3}}$ (4) $\left(\frac{y}{x}\right)^{\frac{1}{3}}$

- The derivative of $\log \sec x$ with respect to $\tan x$ is
 - (1) $\sec x \cdot \tan x$ (2) $\cos x \cdot \cot x$
 - (3) $\cos x \cdot \sin x$ (4) $\sec x \cdot \cot x$
- The coordinates of the point P(x, y) on the curve of $y = x^2 4x + 5$ such that the tangent at P is parallel to y = 2x+4 are
 - (1) (3, 2)
- (2) (1, 2)
- (3) (2, 1)
- (4) (5, 4)

- 46. The function $f(x) = x \log^2 x$ has
 - (1) Maximum value occurs when $x = \frac{1}{e}$ (2) Maximum value occurs when x = e
 - (3) Maximum value occurs when $x = e^{-2}$ (4) Maximum value occurs when $x = e^2$
- In a cube the percentage increase in side is 2 units. The percentage increases in the volume of the cube is
 - (1) 3
- (2) 6
- (3) 8
- (4) 16

- 48. The curves $x = y^2$ and xy = m cut at right angle if
 - (1) m = 0
- (2) $m^2 = 8$ (3) $8m^2 = 1$ (4) m = -1

49. If
$$u = e^{ax} \sin by$$
, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} =$

- (1) $(a^2-b^2)u$ (2) a^2+b^2
- (3) $(a^2+b^2)u$ (4) (a+b)u

$$50. \quad \int \frac{\cos \sqrt{x}}{\sqrt{x}} dx =$$

(1)
$$\sqrt{x} \sin \sqrt{x} + c$$
 (2) $2 \sin \sqrt{x} + c$ (3) $\sqrt{\cos x} + c$ (4) $\frac{\sin \sqrt{x}}{\sqrt{x}} + c$

Set Code : T2

Booklet Code : B

PHYSICS

51.	In thermodynamics, $dQ = 0$ and $dU = -dV$	W is true	for	
	(1) Isothermal process		Adiabatic process	
	(3) Isochoric process	(4)	[LT TO THE PORT OF THE PORT O	
52.	A sample of an ideal gas has volume V, pre of the gas is m. The density of the gas is			ne mass of each molecule
•	(1) P/kVT (2) mkT	(3)	mP/kT (4)	P/kT
53.	A gas does 4.5 J of external work during internal energy will be			perature falls by 2 K. Its
	(1) increase by 4.5 J	(2)	increase by 9.0 J	
	(3) decrease by 4.5 J	(4)	decrease by 2.25 J	
54.	One mole of an ideal gas ($\gamma = 5/3$) is mixe γ of the mixture			
	(1) 3/2 (2) 4/3	(3)	23/15 (4)	35/23
55.	In a given process on an ideal gas, dW = 0	and dQ	< 0. Then for the ga	s
	(1) the temperature will decrease		T	
	(3) the pressure will remain constant			
56.	for a metal whose work function is W ₀ /2			
	(1) $\lambda_0/4$ (2) $\lambda_0/2$	(3)	$4\lambda_0$ (4)	$2\lambda_0$
57.	The propagation of light through an optic			
	(1) Refraction			tion
	(3) Interference	(4)	Diffraction	¥
58.	The dimensions of angular momentum ar	re		
	(1) MLT^{-1} (2) $ML^{-1}T$	(3)	$ML^{0}T^{-2} \qquad (4)$	ML ² T-1
59.	The SI unit of universal gas constant R is		_	
	(1) Newton K ⁻¹ mol ⁻¹	(2)	Joule K-1 mol-1	
	(3) Watt K-1 mol-1	(4)	erg K-1 mol-1	
		94000 940		

										Code : T2
		*							Booklet	Code : B
60.	The magni	tude of the	result					_		
	(1) 2A					(2)	$\sqrt{\left(A^2 + B^2\right)}$ $\sqrt{\left(A^2 - B^2\right)}$			
	(3) 2 <i>B</i>			1		(4)	$\sqrt{\left(A^2-B^2\right)}$			
61.	Given A.B	$s = 0$ and $A \times$	C = 0	, the angl	e betwe	en B	and C is 180°			
	(1) 135°	12	(2)	90°		(3)	180°	(4)	45°	
62.	A projecti	le has a max	imun	range of	f200m.	Ther	naximum heig	ht attair	ed by it	is
	(1) 75 m	l					100 m			
	(3) 25 m	1				(4)	50 m			
63.	to the bloc	fmass M is l k and a forc be	ying c e <i>F</i> is	on a horiz applied a	ontal fri t the fre	ction e end	less surface. Or parallel to the	ne end o surface.	f a rope The fore	mass m is fixed ce acting on the
	(1) FM/) (1991)				(2)	Fm/(M+m)			
	(3) FM/					(4)	F			
64.	A block of of 100 N a	fweight 200 acting at an a	N is pangle	pulled alc of 30°. Ti	ong a ro he coefi	ficien	t of friction bet	tween th	ie block	peed by a force and the surface
	(1) 0.58		(2)	0.75		(3)	0.45	(4)	0.65	
65.	the weigh	t of the boy boy should	. If g	is the ac	celerati	on du is	thstand a maxing to gravity, to 3g/2	mum ter he mini (4)	mum ac	al to two-thirds celeration with
66.	N bullets	each of mas	ss m k	o are fire	d with	a velo	city v m/s, at t	he rate	of n bull	lets per second,
00.	upon a wa	all. The reac	tion c	ffered by	the wa	ll to ti	he bullets is giv	ven by_		
	(1) nNv					(2)	nNmv			
	(3) Nm	o/n				(4)	nNm/v			
67.	A machin	a maximu	a bul m for	llet of marce of 14	ass 40 g 4 Non	with the	a velocity of gun. The num	1200 n ber of	n/s. The bullets	man holding it he can fire per
	(1) 4		(2)	1		(3)	3	(4)	8	

Set Code :	T2
Booklet Code :[В

68.	A horizontal force F pulls a 20 kg box at a constant speed along a horizontal floor. If the coefficient of friction between the box and the floor is 0.25. The work done by the force F in moving the box through a distance of 2 m							
		49 J		1	(2)	147 J		
	(3)	1 96 J			(4)	98 J		
69.				nd length / is mad is mgl/2				nd. The potential energy
	(1)	mgl/4	(2)	mgl/2	(3)	mgl	(4)	mgl/3
70.	If m	omentum is incr	eased	by 20%, then kir	netic e	energy increases	by	
				7.7%				
71.								ent is half the amplitude
	(1)	1/5	(2)	rgy is 3/4	(3)	1/2	(4)	1/4
72.	For	a particle executi	ing S.I	H.M starting from	n equi	ilibrium positior	the p	hase is $\frac{\pi}{2}$ when it has
	(1)	maximum displ	acem	ent	(2)	maximum energ	gy	
	(3)	half the displace	emeni	l .	(4)	maximum velo	city	
73.		rticle executes S nd to go from A/2			nd x =	+A. The time tak	en for	it to go from 0 to A/2 is
		$T_1 = 2 T_2$			(2)	$T_1 = T_2$		
	(3)	$T_1 < T_2$			(4)	$T_1 = T_2$ $T_1 > T_2$		
74.		sounds of wave			ravelli	ing in a medium	produ	ce 10 beats per second.
	(1)	300 m/s	(2)	320 m/s	(3)	350 m/s	(4)	1200 m/s
75.		observer moves to		and the first of the same of t	rce of	sound with a ve	locity	one tenth the velocity of
	(1)		12	0.1%	(3)	5%	(4)	10%

Set Code :	T2
Booklet Code :	В

CHEMISTRY

76.	Gla	ss is corroded by		
	(1)	Fluorine (dry or wet)	(2)	Sulphuric acid (concentrated)
	(3)	Phosphoric acid	(4)	Carbonic acid
7 7.	The	most resistant material to alkaline cor	Tosion	ı iş
	(1)	Cast iron	(2)	Nickel
	(3)	Aluminium	(4)	Brass
78.	The	monomer of polyvinyl chloride is		
50000		Chloro ethene	(2)	Ethylene dichloride
	(3)	Ethyl chloride	(4)	Chloroform
79.	Poly	thene is		
	(1)	An addition polymerization product	(2)	A condensation polymerization product
	(3)	The state of the s	(4)	
80.	Tefl	on is		
	(1)	Phenol formaldehyde	(2)	An inorganic polymer
	(3)	Poly tetrafluoroethylene	(4)	A monomer
81.	Wate	er gas constitutes mainly of		
	(1)	CO and H,	(2)	CO and N,
	(3)	CO ₂ and H ₂	(4)	CH ₄ and H ₂
82.	The	lightest particle is		
	(1)	Positron	(2)	Neutron
	(3)	Proton	(4)	α-particle
83.		electron has spin quantum number of +	1/ 2 an	d magnetic quantum number of -1, it cannot be
	(1)	d orbital (2) f orbital	(3)	p orbital (4) s orbital

Set Code :	T2
oklat Cada	D

								Booklet Code : B
84.		ion that is iso eld		ic with CO is	(3)	0,-	(4)	N ₂ *
85.	The	hydrogen bond is	stror	ngest in				/
	(1)	O-HS	(2)	S-HO	(3)	F-HF	(4)	F-HO
86.	The	molecule having	pyran	nidal shape				
		PCI ₃	1000	SO ₃	(3)	CO ₃ 2-	(4)	NO ₃ -
87.	Crys	stals of a sodium	chlor	ide belong to the	syste	m		
	00000	Orthorhombic		20 10 10 10 10 10 10 10 10 10 10 10 10 10		Trigonal	(4)	Monoclinic
88.	The	pH of 0.05 M ac	etic a	cid is $(K_a = 2 \times 10)$	⁻⁵)			
	(1)		(2)	135 S 	(3)	10-3	(4)	3
89.		volume in ml. of tion of H,PO, is	0.1 M	I solution of NaO	Hreq	uired to complete	ely ne	utralize 100 ml of 0.3 M
	(1)		(2)	600	(3)	300	(4)	30
90.				oxylic acids are 4 m is the one havid			l I res	pectively. The strongest
		4.19	-	3.41		0.23	(4)	4.76
	(1)	4.17	(-)	3.41	(2)	0.23	(4)	4.70
91.	357			8, then its pOH v				
	(1)	7	(2)	1	(3)	6	(4)	10
92.				otential for Li*/I				/Ag are -3.05, -0.762
	(1)	Ag	(2)	H ₂	(3)	Zn	(4)	Li
93.		standard reduction = Zn ⁺² + 2e ⁻ E° =		tential for the fol	lowin	g half-cell reacti	ons a	re
	Fe=	$Fe^{+2} + 2e^{-}E^{o} = $	-0.44	V				
	The	E.M.F. for the ce	II rea	ction Fe+2+Zn -	Zn+2	+ Fe will be		
		−0.32 V		+0.32 V		+1.20 V	(4)	-1.20 V

Set Code : T2 Booklet Code : B
ution of its salt is (4) Al
g/lit
xygen content ttlement
sulphonate from detergents in

(1) KCl is present in calomel electrode (2) K* and Cl- ions are not iso electronic (3) K* and Cl- ions have the same transport number (4) KCl is an electrolyte 95. The metal that cannot be obtained by electrolysis of aqueous sol (2) Au (3) Cu (1) Ag 96. BOD of raw municipal sewage may be about (1) 2-5 mg/lit (2) 5-10 mg/lit (4) 2000-3000 ms (3) 150-300 mg/lit 97. The pH value of potable water should be between (1) 1 to 1.5 (2) 6.5 to 8 (3) 13 to 14 (4) 4 to 5 98. Deaeration of high pressure boiler feed water is done to reduce (1) Foaming from boilers (2) Its dissolved o (3) Its silica content (4) Caustic embrit 99. Presence of non-biodegradable substances like alkyl benzene s polluted water stream causes (1) Fire hazards (2) Explosion hazards (4) Depletion of dissolved oxygen (3) Persistent foam 100. Presence of soluble organics in polluted water causes (2) Depletion of oxygen (1) Undesirable plants growth (4) Explosion hazards (3) Fire hazards

94. In salt bridge, KCl is used because

Set Code : T2

Booklet Code : B

ELECTRICAL AND ELECTRO. CS ENGINEERING

01.	Unit	of specific energy consumption is		
	(1)	Watt hour per km	(2)	Joule Sec
	(3)	Killo watt hours	(4)	Watt h per tonne - Km
02.	Тгар	ezoidal speed - time curve pertains to		
	(1)	Urban Service	(2)	Mainline S ice
	(3)	Suburban Service	(4)	1 and 3
103	Dist	ance between two stops is 1 Km. The	e avera	age speed is 36 i ph, scheduled speed is 30
		ph. Stopping time is	secon	ids.
	(1)	20 (2) 40	(3)	10 (16
104	. The	friction of track is proportional to		1
	(1)	(Speed) ² (2) \sqrt{Speed}	(3)	Speed (4) $\frac{1}{ed}$
105	. Free	e running time is almost zero for		
	(1)	(2) 22 34 3 34 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(2)	Urban service
	(3)	Suburban service	(4)	2 and 3
106	For	agricultural pump - sets	_ type	of motor is used
	(1)			3 phase Squirrel cage Induction. tor
	(3)		(4)	3 phase Synchronous motor
10		22037 who light the purpose of choke i	e	
10	22.00	230V, tube light the purpose of choke i		tion process
	(1)			
	(2)		tage ac	cross the tube to about 80 V
	(3)	Both I and 2		
	(4)	To make and break the circuit		

108.	Earthing of	equipment	is necessary	for protectio	n against
------	-------------	-----------	--------------	---------------	-----------

(1) Overvoltage

- (2) Over loading
- (3) High temperature of conductor
- (4) Danger of Electric shock

109. The insulation resistance test is performed with

(1) Ohm - meter

(2) Megger

(3) Earth - tester

(4) Wheatstone Bridge

110. In full wave centre tapped rectifier, each diode conducts for a period of ______ degrees

- (1) 180
- (2) 90
- (3) 270
- (4) 360

111. Which of the following is a negative resistance device

(1) Junction diode

(2) Zener diode

(3) UJT

(4) BJT

112. For a junction transistor, relation between \propto and β is

$$(1) \quad \alpha = \frac{\beta}{1 - \beta}$$

$$(2) \quad \beta = \frac{\infty}{1-\infty}$$

(3)
$$\alpha = \beta + I$$

$$(4) \quad \beta = \frac{\alpha}{1+\alpha}$$

113. Which of the following configuration is normally used in cascading of Amplifiers

(1) Common emitter

(2) Common base

- (3) Common Collector
- (4) All the above

114. Voltage gain of CC amplifier or an emitter follower is

(1) Less than ONE

(2) Greater than ONE

(3) Zero

(4) Infinity

									Se	t Code :	[2]
								!	Bookle	t Code :	B
15.	Whic	ch of the following	osc	illator employs	R-C	phase s	hift circ	uit		· ·	
	(1)				(2)						
	(3)	ich of the following oscillator employs R - C phase shift circuit Heartly oscillator Crystal oscillator R - C phase shift oscillator, the phase shift in each R - C network is									
16.	In R	- C phase shift osc	illat	or, the phase shi	ift in e	ach R -	C netw	ork is		degr	ees
	(1)	ich of the following oscillator employs R - C phase shift circuit Heartly oscillator Crystal oscillator (2) Colpits oscillator Crystal oscillator (4) Wein Bridge oscillator C-C phase shift oscillator, the phase shift in each R - C network is									
117.	Whi	ch of the following	is n	ot a basic logic	gate						
	(1)	AND)	(2)	NOT					
	(3)	NOR			(4)	OR					
118.	Two	input XOR (Exclu	sive	OR) gate has an	outpu	t of ON	IE when	the two	o i npu ts	are	
	(1)	1, 0			(2)	1, 1					
	(3)	0, 0			(4)	All the	above				
				5		1					
119.											
	(2)							0.00			
	(3)									degrees	
	(4)	Two half adders a	nda	two input AND	gate						
120	SCI	R (Silicon - control	led l	Rectifier) has							
	(1)	2 junctions, 3 lay	ers		(2)		0.000	•			
	(3)	4 junctions, 5 lay	ers		(4)	3 june	ctions, 4	layers			
121	. SCI	R goes into full cor	ıduc	tion when							
	(1)	Forward voltage	is ap	plied between A	node	and cath	node				
	(2)	Current pulse is	appl	ied to the gate							
40	(3)	Both 1 and 2									
	(4)	None of these									

19-B

(EEE)

Set Code :	T2
oklet Code :	R

122.	The device that can be turned ON by a short positive pulse and turned off by a short Negative
	pulse to its gate

- (1) Gate turn off Transistor
- (2) SCR

(3) DIAC

- (4) TRIAC
- 123. The anode current of SCR must be more than ______ to maintain required amount of carrier flow across the junction
 - (1) Holding Current

- (2) Latching Current
- (3) Reverse leakage Current
- (4) Forward leakage Current
- 124. The maximum $\frac{di}{dt}$ for SCR in the circuit is where e = 440 Sin 314 t

(1) 1.76 A/Sec

(2) 17.6 A/Sec

(3) · 17.6 A/μ Sec

- (4) 1.76 A/μSec
- 125. A single phase fully controlled bridge converter is a _____ type of converter
 - (1) ONE quadrant

(2) Three quadrant

(3) Two quadrant

- (4) Four quadrant
- 126. For speed control and braking in Electric Automobiles _____ are used
 - (1) Choppers

(2) Converters

(3) Inverters

(4) AC regulators

Set Code:	T2
Booklet Code:	В

127.	A cy	cloconverter is a		
	(1)	Phase angle changer	(2)	Frequency changer
	(3)	Wave form changer	(4)	Amplitude changer
128.	Wav	e form output voltage of a single pl		
	(1)	Pure sinusoidal	(2)	Triangular
	(3)	Trapezoidal	(4)	Square wave
129.	"Sta	tor voltage control" of an induction	motor ca	n be achieved by using
	(1)	DC chopper		
	(2)	Controlled rectifier		
	(3)	AC voltage controller		
	(4)	Step down cycloconverter		
130.	Unii	nterruption Power Supply (UPS) is	used in _	<u> </u>
	(1)	Communication links	(2)	Computers
	(3)	Important instrumentation	(4)	All the above
131.	The	architecture of 8051 is	_	*
	(1)	Von Neuman	(2)	Harvard Architecture
	(3)	Distributed Architecture	(4)	Both 1 and 3
132.	In 8	051, the instructions 'anl' and 'orl	' belongs	to instruction set
	(1)	Data transfer		Arithmetic
	(3)	Logical	(4)	Interrupt flow control
122	P. II	avvian conditions should estinfu fo	- 8051 to	entre programming mode
133.	100000000	lowing conditions should satisfy for		PSEN must be low
	(1)	REST must be high	(2)	
	(3)	ALE must be high	(4)	All the above

Set Code :	T2
Booklet Code :	

- (1) Program Status Word (PSW)
- (2) Accumulator registers A and B
- (3) Special purpose registers
- (4) All the above

135. Material which has highest conductivity

(1) Gold

(2) Silver

(3) Copper

(4) Aluminum

136. Inductance L stores energy in _____ field and stored energy is equal to _____

(1) Electric, $\frac{1}{2}Ll^2$

(2) Electric, Ll²

(3) Magnetic, $\frac{1}{2}LI^2$

(4) Magnetic, L12

137. A capacitor with initial Voltage V₀, at t = 0⁺ acts as _____

(1) Open circuit

(2) Short circuit

(3) Current source V

(4) Voltage source V₀

138. Three Resistors each 6 ohms are connected in delta. Its equivalent star connection value.

- (1) 6 ohms
- (2) 18 ohms
- (3) 2 ohms
- (4) 3 ohms

139. In the circuit given, I, I, currents respectively are

(1) 3A, 6A

(2) 6A, 3A

(3) 4.5A, 4.5A

(4) 5A,4A

Set Code :	T
Set Code .	14

Booklet Code :

=			
	n		I
	н	•	ı

140. The Battery capacity is expressed in

(1) Watts

(2) Amps

(3) Ampere hours

(4) Volts

141. Thevenin's equivalent resistance across terminals AB is ohms

(1) 6

(4) 3

142. A lap wound d.c generator has 400 Conductors and 8 poles. The voltage induced per conductor is 2V. The machine generates a voltage of

- (1) 200V
- (2) 400V
- (3) 100V
- (4) 800V

143. The d.c machine is provided with interpoles and compensating winding. These are connected in with armature winding.

- (1) Parallel
- (2) Series
- (3) Interpoles in series and compensating in parallel
- Interpoles in parallel and compensating in series (4)

144. Which of the following tests require two identical d.c machines.

(1) Swinburne's

(2) Brake test

(3) Hopkinson

(4) Retardation test

145. The frequency of induced emf in d.c generator

- $(1)^{-}\frac{PN}{60}$
- (2) $\frac{PN}{30}$
- (3)

Set Code :	T2
Booklet Code :	R

									100
146.	The	efficiency of d.o	mach	ine is maxim	um when	variable losse	s are equ	al to	
	(1)	Constant Loss	es		(2)	Zero			
	(3)	Half of consta	nt loss	es	(4)	Twice consta	ant losses	3	
147.	D.C	motor used for	lifts an	d Hoists					
	(1)	Shunt			(2)	Series			
	(3)	Differential Co	mpou	nd	(4)	Cumulative (Compour	ıd	
148.		C. shunt motor i		ting at 1000r	pm supply	ing full load. S	Suddenly	field winding	is opened.
	(1)	Zero			(2)	1000rpm			
	(3)	500rpm		s.	(4)	Tends to go	to i nfini t	y	
149.		V D.C. shunt moven by motor is	otor has	s armature re	sistance o	f0.5ohms. If t	the back	emf is 200V,	the current
	(1)	400A	(2)	44 0A	(3)	40A	(4)	80A	
150.	Dyn	amometer type	instrun	nents are gen	erally use	d for measure	ement of		
	(1)	Power	(2)	Voltage	(3)	Current	(4)	Energy	
151.	LVE	OT is a		type of trans	ducer				
	(1)	Capacitive			(2)	Inductive			
	(3)	Resistive			(4)	Strain			
152.	PMI	MC instrument	scale is	S	and is	used to meas	ure	quantity	
	(1)	Uniform, d.c	•		(2)	Non-uniform	n, d.c		
	(3)	Uniform, a.c			(4)	Non uniform	n, a.c		
153.	And	erson bridge is	used to	measure	•				
	(1)	Capacitance	,		(2)	Resistance			
	(3)	Inductance			(4)	Strain			_
	# 8								

Set Code :	T2
Booklet Code :	R

wave form of V volts

- (1) $\frac{\mathbf{v}}{2}$
- (2) $\frac{V}{\sqrt{2}}$ (3) $\frac{V}{\sqrt{2}}$ (4) $\frac{V}{2}$

155. In two wattmeter method of measuring power, one of the wattmeter reads zero, when the power factor is

- (1) 0.5
- (2) Zero
- (3) UPF
- (4) 0.8

156. In a R - L - C series circuit R = 3 ohms $X_L = 2$ ohms, $X_C = 6$ ohms, the power factor is

- (1) 0.4 lead
- (2) 0.6 lag
- (3) 0.6 lead
- (4) 0.4 lag

157. A series R - L - C circuit with R = 10Ω is connected to 100V a.c supply. When the circuit is under resonance, the current is _____ amps and power factor is _____.

(1) 10A, 0.5p.f

(2) 10A, UPF

(3) 10A, 0.8pf

(4) 10A, zero p.f

158. f_1 and f_2 are, Lower and Upper half power frequencies, Resonant frequency is

- (1) $\frac{f_1 + f_2}{2}$ (2) $f_1 f_2$ (3) $\sqrt{\frac{f_1 + f_2}{2}}$ (4) $\sqrt{f_1 f_2}$

159. Two winding transformer is linked

(1) Conductively

(2) Electrically

(3) Magnetically

(4) Both 2 and 3

160. If rated d.c Voltage, instead of a.c Voltage is applied to primary of the transformer

(1) Secondary will burn

- (2) Primary will burn
- (3) Secondary Voltage is high
- (4) None of these

161. A transformer steps up voltage by a factor 100. Ratio of primary to secondary currents is

- (1) 1
- (2) 0.1
- (3) 0.01
- (4) 100

Set Code:	T2
Booklet Code:	В

			•				2	Booklet Code : B
162.		nsformer has 2% of leading is	resis	tance voltage dro	p and	4% reactance vo	ltage	drop. The regulation at
	(1)	0.8	(2)	4	(3)	-0.8	(4)	-4
163.								en and wattmeter readsing of wattmeter is
	(1)	11 0W	(2)	11W	(3)	1100W	(4)	220W
	$ \frac{P_c}{P_c} $ i		ull lo	ad copper loss, th	e max	kimum efficie <mark>n</mark> cy	occu	rs at 3/4 full load. Then
	(1)	3 4	(2)	9 16	(3)	16 9	(4)	4/3
165.	The will	1.51	of a tr	ansformer at 25	Hz fre	equency is 40W.	At 50	Hz frequency the loss
	(1)	40W	(2)	160W	(3)	20W	(4)	80W
166.		is the short pitch	_					
	(1)	Cos «	(2)	$Cos \frac{\infty}{2}$	(3)	Sin ∝	(4)	$\sin \frac{\alpha}{2}$
167.	In a	n alternator the re	activ	e power is contro	lled b	WORKS TO STATE OF THE STATE OF		
	(1)	Excitation			(2)	Prime mover in	- ·	
	(3)	Phase sequence	2		(4)	Prime - mover:	speed	

168. In an alternator, the armature reaction effect is completely demagnetizing when the power factor is

(1) UPF

(2) 0.5 Lead

(3) Zero lag

(4) Zero lead

	Set Code: T2
	Booklet Code : B
(2)	Zero starting torque
	50% of full load torque at starting

170.	The synchronous r	tor acts as synchronous condenser when excitation is
------	-------------------	--

100% normal

69. 3 phase synchronous motor has

(1) Very high starting torque

(3) Very low starting torque

(2) Under excitation

(3) Over excitation

(4) None of these

171. As the load on synchronous motor is increased, the speed

- (1) Decreases
- (2) Increases
- (3) Remains constant for some time and falls rapidly
- (4) Remain constant and load angle is increased to meet additional load.

172. 3 phase, 400V, 50Hz induction motor is running at 4% slip. The frequency of rotor induced emf is

(1) 50Hz

(2) 2Hz

(3) 4Hz

(4) 20Hz

173. In terms of air gap power P_e, slip S, copper loss: Mechanical power developed of Induction motor is

(1) $SP_{e}: (1-S) P_{e}$

(2) $(1-S) P_a : SP_a$

(3) $SP_g: \frac{Pg}{S}$

(4) $SP_g: \frac{Pg}{1-S}$

174. r_2 , x_2 are stand still resistance and reactance of induction motor, s is the slip. Condition for Maximum torque is

(1) $r_2 = (1-s) x_2$ (2) $x_2 = s r_2$ (3) $r_2 = s x_2$ (4) $r_2 = x_2/s$

175. In a 3 phase induction motor, developed torque T in terms of supply voltage V is proportional to

(1) V

(2) V^2

(3) \sqrt{V}

(4) $\frac{1}{v^2}$

		*				Set Code:
Ψ.						Booklet Code:
176.	<u> </u>	single phase inc	ductio	n mot	tor has	s high starting torque
	(1)	Shaded pole			(2)	Split phase
	(3)	Capacitor run			(4)	Capacitor start
177.		motor used in com	puter (contro	olled o	devices
	(1)					Induction motor
	(3)	Stepper motor			(4)	Reluctance motor
178.	Effe	ect of water hammer can be	elimin	ated l	by usia	ng
	(1)	Spill way			(2)	Surge tank
	(3)	Draft tube			(4)	Fore-bay
179.	Ove	rall efficiency of thermal po	wer p	lant		
	(1)	$\eta_{boiler} \times \eta_{turbine}$			(2)	$\eta_{turbine} \times \eta_{gen}$
	(3)	$\eta_{boiler} \times \eta_{coal\ plant} \times \eta_{gen}$			(4)	$\eta_{boiler} \times \eta_{turbine} \times \eta_{gen}$
180.	Loa	d factor of power plant				
	(1)	Average demand Max demand			(2)	Average demand Plant Capacity
	(3)	Max demand Connected demand			(4)	Max demand Average demand
181.		used to extract hea	t fron	n flue	gases	for heating feedwater to boiler
	(1)	Super heater			(2)	Air preheater
	(3)	Economiser			(4)	Condenser

(3) Heavy water (4) Beryllium

182. _____ material is used for controlling chain reaction in Nuclear Reactor

(2) Boron

(1) Thorium

Set Code : T2

Booklet Code :	B

183.	83 Relay is used for protection of short transmission lines.									
	(1)	Reactance			(2)	Impedance				
	(3)	МНО			(4)	Over current				
184.	Bucl	hholz relay is H	oused	in	of the	e transformer				
	(1)	Trans former ta	ınk							
	(2)	Conservator								
	(3)	Pipe line conne	ecting 1	transformer tank	and c	onservator				
	(4)	Transformer bu	shing							
185.		protection of sta	r/ delta	power transfort	mer, th	e CTs of differ e	ntial p	rotection of	trans former	
	(1)	star / delta			(2)	delta / star				
	(3)	delta / delta			(4)	star/star				
186.		Relay	used	for protection of	on of 3 phase alternator stator faults					
	(1)	Over current re	elay		(2)	Distance relay				
	(3)	Buchholz relay	7		(4)	Differential relay				
187.	The	making current	of C.E	B is	times of breaking current					
	(1)	2	(2)	3	(3)	2.55	(4)	3.55		
188.	The	length of short	transm	ission line is up	to abo	out	km	ı .		
	(1)	80	(2)	150	(3)	200	(4)	300		
189.		increase the po		ansmission thro	ugh th	ne transmission	line, v	which of th	e following	
	(l)	Voltage			(2)	Line inductand	ce			
	(3)	Line capacitan	ice		(4)	Line resistance	е			

190. For level supports, the sag is given by

- $(1) \quad \frac{Wl^2}{2T} \qquad \qquad (2) \quad \frac{Wl}{8T}$
- $(3) \quad \frac{Wl^2}{8T}$
- $(4) \quad \frac{Wl^2}{6T}$

191. $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ Parameters of short line

- (1) $\begin{bmatrix} 1 & 0 \\ 1 & Z \end{bmatrix}$ (2) $\begin{bmatrix} 1 & Z \\ 0 & 0 \end{bmatrix}$ (3) $\begin{bmatrix} 1 & 1 \\ Z & 1 \end{bmatrix}$ (4) $\begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix}$

192. Which of the following power distribution system gives better reliability

(1) Radial system

(2) Ringmain system

(3) D.C. 3 - wire system

(4) Tapered distribution

193. Due to Ferranti effect on long line, the sending end voltage V_s and receiving end voltage V_r are related

- (1) $V_s = V_r$ (2) $V_s > V_r$ (3) $V_s < V_r$ (4) $V_s = \frac{V_r}{2}$

194. In H.V D.C transmission, the d.c voltage of d.c line Vd in terms of firing angle ∝ is proportional to

- (1) $\cos \alpha$ (2) $\cos \frac{\alpha}{2}$ (3) $\sin \alpha$
- Tan ∞

195. The sag of a transmission line is least affected by

- (1) Self weight of conductor
- (2) Temperature of surrounding air
- (3) Current through conductor
- (4) Ice deposit on conductor

conductor 196. The corona loss is reduced using _____

(1) Large diameter

(2) Hollow

(3) Bundled

(4) All of these

Set Code :	T2
Booklet Code :	В

197.	The	medium transm	ission	lines are repr	resented by	y		
	(1)	Equivalent T			(2)	Equivalent π		
	(3)	1 or 2			(4)	Series imped	ance Z	
198.	The	distance between	n two	stations in ca	se of urba	n service		
	(1)	< 1 km	(2)	> 1 km	(3)	10 km	(4)	10 0km
1 9 9.	The	scheduled spee	d is alv	vays	th	e average spee	ed	
	(1)	Greater than			(2)	Less than		
	(3)	Equal to			(4)	None of thes	e	
200.	Lon	g distance railw	ay trac	tion operates	on			
	(1)	600 D.C			(2)	400 V, 3 phas	se a.c	
	(3)	25 KV single	nhase		c (4)	15 KV 3 pha	se a c	