

Universidade Federal de Roraima Departamento de Ciência da Computação Arquitetura e Organização de Computadores

LISTA DE EXERCÍCIO 02

Aluno: FRANCIS NUTEFE TSIGBEY

Matricula: 201514401

1) Quais as vantagens de um processador multiciclo em relação a um uniciclo?

Um processador uniciclo executa cada instrução em um único ciclo de clock, mas nem todos os componentes são usados em todas as instruções e isso faz com que os componentes que não sendo usados fiquem ociosos. Em um processador multiciclo cada componente é executado em um ciclo de clock, ou seja, uma instrução que use n componentes gastará n ciclos de clock. Apenas com essa mudança já é possível obter uma melhoria de desempenho, uma vez que cada ciclo que clock poderá ter duração menor, em outras palavras, o processador ficará mais rápido. Outra vantagem que o multiciclo tem é estar apto para usar uma técnica chamada pipelining. Onde as instruções podem ser executadas em paralelo, enquanto o componente X executa uma parte da instrução, o componente Y executa outra parte de outra instrução.

2) Quais as modificações necessárias em um processador multiciclo simples para que se introduza a função de pipeline?

Deve-se utilizar 4 registradores entre os 5 estágios do pipeline, um registrador é colocado entre a transição de um estágio para o outro, devendo ser capaz de armazenar todos os dados que passam por ele, dados que poderão ser utilizados por outra instrução no próximo ciclo. É necessário ter um registrador para busca e decodificação de instruções, um registrador para decodificação da instrução e cálculo de endereço, um registrador para cálculo de endereço e acesso à memória de dados, e um registrador para acesso à memória de dados e escrita de registradores. E todos esses registradores precisam ter capacidade suficiente para armazenar todos os dados que passam por eles.

3) Considerando o pipeline do MIPS (simples com MEM compartilhada para instrução e dados) euma iteração de loop conforme o trecho de programa abaixo, relacione os conflitos que podem ocorrer e seus consequentes stalls. Qual o speedup (por iteração) para o programa em relação à versão sem pipeline?

Loop: sub \$t2, \$t2, 4 lw \$t1, 0(\$t2) //Conflito de dados:
esperando \$t2

add \$t3, \$t1, \$t4 //Conflito de dados: Esperando pela função load \$t1

add \$t4, \$t3, \$t3

sw \$t4, 0(\$t2) // Conflito de dados: Esperando pela escrita do \$t4

beq \$t2, \$0, loop // Conflito Estrutural: memória em uso pelo sw

6+8+6+6+7+5 = 38 ns tempo de execução

4) No programa abaixo, relacione as dependências (dados, WAR, WAW e outros) existentes.

div.d F1, F2, F3 sub.d F4, F5, F1 s.d F4, 4(F10) add.d F5, F6, F7 div.d F4, F5, F6

Raw:

Sub.d depende de F1 em div.d. s.d depende de F4 em sub.d. div.d depende de F5 em add.d.

WAR:

Add.d escreve em F5 que sub.d lê.

WAW

Sub.d usa F4 e pode terminar depois de div.d

5) Em relação a memória cache. Um computador tem CPI 1 quando todos os acessos à memória acertam no cache. Loads e Stores totalizam 50% das instruções. Se a penalidade por miss é de 25 ciclos e o miss rate é 2%, qual o desempenho relativo se o computador acertar todos os acessos?

CPU tempo ideal = (CPU ciclos de clock + Ciclos de Clock de Stall de Memória) x Período de ciclo de Clock =>

CPU tempo ideal = (IC x CPI + 0) x Período de ciclo de Clock =>

CPU tempo ideal = IC x 1 x Período de ciclo de Clock

Ciclos de clock de stall de memória = $IC \times (1 + 0.5) \times 0.02 \times 25 = IC \times 0.75$

CPU tempo real = (IC x 1 + IC x 0,75) x Período de ciclo de Clock =>

CPU tempo real = IC x 1,75 x Período de ciclo de Clock

Comparando os desempenhos com stalls pelo ideal:

 $\frac{IC \times 1,75 \times Período de ciclo de Clock}{IC \times 1 \times Período de ciclo de Clock} = 1,75$

Obs: (A solução da questão 5 foi adaptado do slide 23 do professor Herbert)

6) Descreva os seguintes conceitos:

a) Write through

Escrita ao mesmo tempo no cache e na memória. A vantagem é baixa latência e alta taxa de transferência para aplicativos que exigem muita gravação. Mas a desvantagem é que há risco de disponibilidade de dados porque o cache pode falhar (e sofrer perda de dados) antes que os dados sejam mantidos no armazenamento de backup. Esse resultado nos dados sendo perdidos.

b) Write back

Escrita somente no cache e atualização na memória somente na substituição do bloco. Em geral, os dados são também gravados no *backing store* em segundo plano, mas a confirmação de conclusão não está bloqueada.

Vantagem: Garante uma recuperação rápida, garantindo que os dados estejam no armazenamento de apoio e não sejam perdidos caso o cache seja interrompido.

Desvantagem: A gravação de dados sofrerá latência, já que você precisa gravar em dois lugares sempre.

c) Localidade Temporal

Posições de memória, uma vez referenciadas, tendem a ser referenciadas novamente dentro de um curto espaço de tempo.

d) Localidade Espacial

Se uma posição de memória é referenciada, posições de memória cujos endereços sejam próximos a ela tendem a ser logo referenciadas.