Lista 1 de Teoria dos Números: Matemática Discreta II – 2022.2

- **Q1.** Para cada par de inteiros a e b, encontre inteiros q (quociente) e r (resto) com divisão de a por b .
- (a) a = 258 e b = 12.
- **(b)** a = 573 e b = -16.
- (c) a = -381 e b = 14.
- (d) a = -433 e b = -17.
 - Q2. Encontre todos os divisores positivos de
- (a) 18.
- **(b)** $256 = 2^8$.
- (c) $392 = 2^3 \cdot 7^2$.
 - Q3. Liste todos primos entre 50 e 100.
 - **Q4.** Sejam a = 8316 e b = 10920.
- (a) Encontre d = mdc(a,b), o máximo divisor comum de $a \in b$.
- (b) Encontre os inteiros m e b tal que d=ma+nb.
- (c) Encontre mmc(a,b), o mínimo múltiplo comum de $a \in b$.
 - Q5. Encontre a fatorização única de cada número:
- (a) 135.
- **(b)** 1330.
- (c) 3105.
- (d) 211.
 - **Q6.** Sejam $a = 2^3 \cdot 3^5 \cdot 5^4 \cdot 11^6 \cdot 17^3$ e $b = 2^5 \cdot 5^3 \cdot 7^2 \cdot 11^4 \cdot 13^2$. Encontre o mdc(a,b) e o mmc(a,b).
 - Q7. Quais congruências são verdadeiras?
- (a) $446 \equiv 278 \pmod{7}$.
- **(b)** $793 \equiv 682 \pmod{9}$.
- (c) $269 \equiv 413 \pmod{12}$.
- (d) $473 \equiv 369 \pmod{26}$.
- (e) $445 \equiv 536 \pmod{18}$.
- (f) $383 \equiv 126 \pmod{15}$.
- **Q8.** Encontre o menor inteiro em valor absoluto que é congruente modulo m=7 para cada número:
- (a) 386.
- **(b)** 257.

- (c) -192.
- (d) -466.
- **Q9.** Encontre todos números entre -50 e 50 que são congruentes a 21 módulo m=12, isto é, encontre todo x tal que $-50 \le x \le 50$ e $x \equiv 21 \pmod{12}$.
 - **Q10.** Encontre um sistema de resíduos reduzido módulo m e a função $\phi(m)$ de Euler.
- (a) m = 9.
- **(b)** m = 16.
- (c) m = 7.
 - **Q11.** Exibição as tabelas de adição e multiplação para \mathbf{Z}_4 .
 - **Q12.** Resolva a equação de congruência $f(x) = 4x^4 3x^3 + 2x^2 + 5x 4 \equiv 0 \pmod{6}$.
 - **Q13.** Resolva a equação de congruência $f(x) = 26x^4 31x^3 + 46x^2 76x + 57 \equiv 0 \pmod{8}$.
 - Q14. Resolva cada equação de congruência linear:
- (a) $3x = 2 \pmod{8}$
- **(b)** $6x = 5 \pmod{9}$
- (c) $4x = 6 \pmod{10}$
 - **Q15.** Resolva a equação de congruência $1092x \equiv 213 \pmod{2295}$.
 - **Q16.** Resolva a equação de congruência $455x \equiv 204 \pmod{469}$.
- Q17. Encontre a solução (menor inteiro positivo) comum para o seguinte sistema de três equações congruentes:
- $x \equiv 2 \pmod{3}$;
- $x \equiv 4 \pmod{7}$;
- $x \equiv 6 \pmod{10}$.

Gabarito

- Q1.
 - (a) q = 21 e r = 6.
 - **(b)** q = -35 e r = 13.
 - (c) q = -28 e r = 11.
 - (d) q = 26 e r = 9.
- Q2.
 - (a) 1, 2, 3, 6, 9, 18.
 - **(b)** 1, 2, 4, 8, 16, 32, 64, 128, 256.
 - (c) 1, 2, 4, 8, 7, 14, 28, 56, 49, 98, 196, 392.
- **Q3.** 51, 53, 57, 59, 61, 67, 71, 73, 79, 83, 87, 89, 91, 93, 97.
- Q4.
 - (a) d = 84.

- **(b)** m = -21 e n = 16.
- (c) 1081080.
- Q5.
 - (a) $3^3 \cdot 5$
 - **(b)** $2 \cdot 5 \cdot 7 \cdot 19$
 - (c) $3^3 \cdot 5 \cdot 23$
 - (d) 211 não pode ser fatorado. Ele é um número primo.
- **Q6.** $mdc = 2^3 \cdot 5^3 \cdot 11^4$ e $mmc = 2^5 \cdot 3^5 \cdot 5^4 \cdot 7^2 \cdot 11^6 \cdot 13^2 \cdot 17^3$.
- Q7.
 - (a) verdadeiro.
 - (b) falso.
 - (c) verdadeiro.
 - (d) verdadeiro.
 - (e) falso.
 - (f) falso.
- Q8.
 - (a) 1.
 - **(b)** -2.
 - **(c)** -3.
 - (d) 3
- **Q9.** -39, -27, -15, -3, 9, 21, 33, 46.
- Q10.
 - (a) $\{1,2,4,5,7,8\}, \phi(9)=6.$
 - **(b)** $\{1,3,5,7,9,11,13,15\}, \phi(16) = 8.$
 - (c) $\{1,2,3,4,5,6\}, \phi(7)=6.$
- Q11. Ver Tabelas 1 e 2.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Tabela 1: Tabela de adição - questão 11.

• **Q12.** 2,5.

X	0	1	2	3
0	0	0	0	0
1	0	1	2	3
$\frac{1}{2}$	0	2	0	2
3	0	3	2	1

Tabela 2: Tabela de multiplicação - questão 11.

- **Q13.** 3.
- Q14.
 - (a) 6.
 - (b) Nenhuma solução.
 - (c) 4 e 9.
- **Q15.** 389, 1154 e 1919.
- $\bullet\,$ Q16. A equação não tem solução.
- **Q17.** 116.