Inhalt Der Begriff der Differenzierbarkeit, Rechenregeln, Kurvendiskussion

Der Begriff der Differenzierbarkeit

Sei $D \subseteq \mathbb{R}$, $a \in D$ ein Häufungspunkt von D, d. h. es gibt eine Folge (x_n) in D mit $x_n \neq a$ für alle n und $\lim_{n\to\infty} x_n = a$.

Sei etwa D = I ein Intervall mit mehr als einem Punkt und $a \in I$.

Definition

 $f: D \to \mathbb{R}$ heißt differenzierbar in $a :\iff \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existiert

$$\iff \exists b \in \mathbb{R} : \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = b$$

$$\iff \exists b \in \mathbb{R} \ \forall \ \text{Folgen}\ (x_n) \ \text{in}\ D \setminus \{a\} \ \text{mit}\ \lim_{n \to \infty} x_n = a \ \text{gilt:}\ \lim_{n \to \infty} \frac{f(x_n) - f(a)}{x_n - a} = b.$$

b ist dann eindeutig bestimmt. Bezeichnung: $b = f'(a) = \frac{df}{dx}(a)$.

Anschaulich gibt der Differenzenquotient $\frac{f(x)-f(a)}{x-a}$ die f(x) f(a) Punkt (a, f(a)).

 $f:D\to\mathbb{R}$ heißt differenzierbar, wenn f in allen $a\in D$ differenzierbar ist. Dann heißt $f': D \to \mathbb{R}, x \mapsto f'(x)$ die Ableitung von f.

Beispiele a) Für $c \in \mathbb{R}$ ist $\widehat{c} : \mathbb{R} \to \mathbb{R}$, $x \mapsto c$ differenzierbar mit $\widehat{c}'(a) = 0$ für alle $a \in \mathbb{R}$. Beweis: Für $x \neq a$ gilt $\frac{\widehat{c}(x) - \widehat{c}(a)}{x - a} = \frac{c - c}{x - a} = 0 \to 0$ für $x \to a$.

b) id: $\mathbb{R} \to \mathbb{R}$, $x \mapsto x$ ist differenzierbar mit id'(a) = 1 für alle $a \in \mathbb{R}$.

Beweis: Für $x \neq a$ gilt $\frac{\mathrm{id}(x) - \mathrm{id}(a)}{x - a} = \frac{x - a}{x - a} = 1 \to 1$ für $x \to a$.

c) $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2$ ist differenzierbar mit f'(a) = 2a für alle $a \in \mathbb{R}$. Beweis: Für $x \neq a$ ist $\frac{f(x) - f(a)}{x - a} = \frac{x^2 - a^2}{x - a} = \frac{(x + a)(x - a)}{x - a} = x + a \to 2a$ für $x \to a$.

d) $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto |x|$ ist in 0 nicht differenzierbar.

Beweis: Für
$$x \neq 0$$
 ist $\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} 1 & \text{für } x > 0 \\ -1 & \text{für } x < 0 \end{cases}$.

Dann existiert $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ nicht, denn für die Folgen $(x_n), (y_n)$ mit $x_n := \frac{1}{n}$ und $y_n := -\frac{1}{n}$ gilt $x_n \to 0$, $y_n \to 0$, aber $\lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0} = 1$, $\lim_{n \to \infty} \frac{f(y_n) - f(0)}{y_n - 0} = -1$.

Satz 1 Ist $f: D \to \mathbb{R}$ in $a \in D$ differential differential forms in a stetig, also $\lim_{x \to a} f(x) = f(a)$.

Beweis: Da f in a differenzierbar ist, gibt es eine in a stetige Funktion $F:D\to\mathbb{R}$ mit $F(x) = \frac{f(x) - f(a)}{x - a}$ für $x \neq a$. Es gilt $f(x) = F(x) \cdot (x - a) + f(a)$ für alle $x \in D$. Also ist f(x) = f(x) - f(a)in a stetig.

2 Rechenregeln für differenzierbare Funktionen

Satz 2 Seien $f, g: D \to \mathbb{R}$ in a differenzierbar und $c \in \mathbb{R}$. Dann gilt:

- a) (Summerregel) f + g ist in a differential and f(f + g)'(a) = f'(a) + g'(a).
- b) (Konstantenregel) cf ist in a differenzierbar mit (cf)'(a) = cf'(a).
- c) (Produktregel) fg ist in a differenzierbar mit (fg)'(a) = f'(a)g(a) + f(a)g'(a).
- d) (Quotientenregel) Ist $g(x) \neq 0$ für alle $x \in D$, so ist $\frac{f}{g}$ in a differenzierbar mit

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}.$$

e) (Kettenregel) Sei $h: E \to \mathbb{R}$ mit $f(D) \subseteq E$ in f(a) differenzierbar. Dann ist $h \circ f$ in a differenzierbar mit $(h \circ f)'(a) = h'(f(a)) \cdot f'(a)$.

Beweis: a) Für $x \neq a$ gilt $\frac{(f+g)(x)-(f+g)(a)}{x-a} = \frac{f(x)+g(x)-f(a)-g(a)}{x-a} = \frac{f(x)-f(a)}{x-a} + \frac{g(x)-g(a)}{x-a} \rightarrow f'(a) + g'(a)$ für $x \to a$.

- b) Für $x \neq a$ gilt $\frac{(cf)(x) (cf)(a)}{x a} = \frac{c \cdot f(x) c \cdot f(a)}{x a} = c \cdot \frac{f(x) f(a)}{x a} \to cf'(a)$ für $x \to a$.
- c) Für $x \neq a$ gilt

$$\frac{f(x)g(x) - f(a)g(a)}{x - a} = \frac{f(x) - f(a)}{x - a}g(a) + f(x)\frac{g(x) - g(a)}{x - a} \to f'(a)g(a) + f(a)g'(a)$$

für $x \to a$ (wegen $f(x) \to f(a)$ für $x \to a$).

d) Wir behandeln zunächst $\frac{1}{a}$. Für $x \neq a$ gilt

$$\frac{(\frac{1}{g})(x) - (\frac{1}{g})(a)}{x - a} = \frac{1}{g(x)g(a)} \cdot \frac{g(a) - g(x)}{x - a} = -\frac{1}{g(x)g(a)} \cdot \frac{g(x) - g(a)}{x - a} \to -\frac{1}{g(a)^2} \cdot g'(a)$$

für $x \to a$. Nach der Produktregel ist dann $\frac{f}{g} = f \cdot \frac{1}{g}$ in a differenzierbar mit

$$\left(\frac{f}{q}\right)'(a) = f'(a)\frac{1}{q(a)} + f(a)\left(\frac{1}{q}\right)'(a) = \frac{f'(a)}{q(a)} - f(a) \cdot \frac{g'(a)}{q(a)^2} = \frac{f'(a)g(a) - f(a)g'(a)}{q(a)^2}.$$

e) Sei b:=f(a). Da h in b differenzierbar ist, gibt es eine in b stetige Funktion H mit $H(y)=\frac{h(y)-h(b)}{y-b}$ für $y\neq b$, H(b)=h'(b). Es gilt $h(y)-h(b)=H(y)\cdot (y-b)$ für alle $y\in E$. Dann folgt (durch Einsetzen von f(x))

$$\frac{h(f(x)) - h(b)}{x - a} = H(f(x)) \cdot \frac{f(x) - b}{x - a} \to h'(b) \cdot f'(a) \quad \text{für } x \to a,$$

da $H(f(x)) \to H(f(a)) = h'(b)$ für $x \to a$ nach der Kettenregel für stetige Funktionen.

Anwendung der Produktregel Für alle $n \in \mathbb{N}$ ist $f_n : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^n$ differenzierbar mit $f'_n(x) = nx^{n-1}$ für alle $x \in \mathbb{R}$.

Beweis durch vollständige Induktion: n = 1: $f'_1(x) = (id)'(x) = 1$.

 $n \to n+1$: Es ist $f_{n+1}(x) = x \cdot x^n = x \cdot f_n(x)$. Mit der Produktregel (und der Induktionsvoraussetzung) folgt $f'_{n+1}(x) = 1 \cdot f_n(x) + x \cdot f'_n(x) = x^n + x \cdot nx^{n-1} = (n+1)x^n$.

Folgerung Jede Polynomfunktion $P : \mathbb{R} \to \mathbb{R}$, $x \mapsto P(x) = \sum_{k=0}^{n} a_k x^k$ ist differenzierbar mit $P'(x) = \sum_{k=0}^{n} k a_k x^{k-1}$.

3 Kurvendiskussion

Definition Sei $a \in D \subseteq \mathbb{R}$. $f: D \to \mathbb{R}$ hat in a ein *lokales Minimum*, wenn es ein $\varepsilon > 0$ gibt, so dass $f(a) \leq f(x)$ für alle $x \in]a - \varepsilon, a + \varepsilon[\cap D.$

f hat in a ein $lokales\ Maximum$, wenn es ein $\varepsilon > 0$ gibt, so dass $f(x) \leq f(a)$ für alle $x \in]a - \varepsilon, a + \varepsilon[\cap D]$.

In der Skizze hat f in a ein lokales Maximum und in b ein lokales Minimum.

Satz 3 Sei I ein Intervall mit den Endpunkten a, b, a < b. In $c \in]a, b[$ habe f ein lokales Minimum oder Maximum, und f sei differenzierbar in c. Dann gilt f'(c) = 0.

Beweis: f habe in c ein lokales Minimum. Dann gibt es ein $\varepsilon > 0$ mit $f(c) \le f(x)$ für alle $x \in]c - \varepsilon, c + \varepsilon[\cap I.$ Ohne Einschränkung gelte $]c - \varepsilon, c + \varepsilon[\subseteq I.$ Für alle $x \in [c, c + \varepsilon]$ gilt

$$\frac{f(x) - f(c)}{x - c} \ge 0.$$

Also ist $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \ge 0$. Für alle $x \in]c - \varepsilon, c[$ gilt $\frac{f(x) - f(c)}{x - c} \le 0$. Es folgt $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \le 0$. Also ist f'(c) = 0. Im Fall eines lokalen Maximums betrachte man -f.

Bemerkung Aus f'(c) = 0 für $c \in]a, b[$ folgt nicht, dass f in c ein lokales Minimum oder Maximum hat. Für $f : \mathbb{R} \to \mathbb{R}, \ x \mapsto x^3$ ist f'(0) = 0, aber f hat in 0 kein lokales Minimum oder Maximum.

Satz 4 (Satz von Rolle) Seien a < b, $f : [a,b] \rightarrow \mathbb{R}$ stetig auf [a,b] und differenzierbar auf]a,b[. Gilt f(a) = f(b), so existiert (mindestens) ein $c \in]a,b[$ mit f'(c) = 0.

Beweis: 1. Fall: f ist konstant, also f(x) = f(a) für alle $x \in [a, b]$. Dann gilt f'(c) = 0 für jedes $c \in [a, b]$.

2. Fall: Es gibt ein x mit f(x) < f(a) = f(b). Es gibt ein $c \in [a,b]$ mit $f(c) = \inf f([a,b])$ (nach dem Satz vom Minimum und Maximum). Wegen f(x) < f(a) = f(b) ist $c \neq a,b$, also ist $c \in]a,b[$. In c hat f ein (lokales) Minimum. Also gilt f'(c) = 0.

3. Fall: Es gibt ein x mit f(x) > f(a) = f(b). Es gibt ein $c \in [a, b]$ mit $f(c) = \sup f([a, b])$. Wegen f(x) > f(a) = f(b) ist $c \neq a, b$, also $c \in [a, b]$. In c hat f ein (lokales) Maximum. Es folgt f'(c) = 0.

Satz 5 (Mittelwertsatz) Sei $f : [a,b] \to \mathbb{R}$ stetig auf [a,b] und differenzierbar auf [a,b]. Dann gibt es (mindestens) ein $c \in [a,b]$ mit

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Beweis: Wir betrachten die Hilfsfunktion $h:[a,b]\to\mathbb{R}$ mit $h(x):=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$. h ist stetig auf [a,b] und differenzierbar auf [a,b[. Es gilt

$$h(a) = f(a), \ h(b) = f(b) - \frac{f(b) - f(a)}{b - a}(b - a) = f(a).$$

Nach dem Satz von Rolle gibt es ein $c \in]a, b[$ mit h'(c) = 0. Es ist $h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$. Es folgt $0 = h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$.

3

Im Folgenden sei I ein Intervall mit mehr als einem Punkt. $\overset{\circ}{I}$ sei das Intervall ohne die Endpunkte (also z. B. $\overset{\circ}{I} = [a,b]$).

Satz 6 Sei $f: I \to \mathbb{R}$ stetig und in \mathring{I} differenzierbar mit f'(x) = 0 für alle $x \in \mathring{I}$. Dann ist f eine konstante Funktion.

Beweis: Seien $x, y \in I$ mit x < y beliebig. Nach dem Mittelwertsatz gibt es ein $c \in]x, y[$ mit $\frac{f(y) - f(x)}{y - x} = f'(c) = 0$. Also gilt f(y) = f(x).

Satz 7 Sei $f: I \to \mathbb{R}$ stetig und in $\overset{\circ}{I}$ differenzierbar. Dann gilt:

- (1) Ist $f'(x) \geq 0$ für alle $x \in \overset{\circ}{I}$, so ist f monoton wachsend, d.h. für alle $x, y \in I$ mit $x \leq y$ ist $f(x) \leq f(y)$.
- (2) Ist $f'(x) \leq 0$ für alle $x \in I$, so ist f monoton fallend, d. h. für alle $x, y \in I$ mit $x \leq y$ ist $f(x) \geq f(y)$.

Beweis zu (1): Seien $x, y \in I$ mit x < y. Nach dem Mittelwertsatz existiert ein $c \in]x, y[$ mit $\frac{f(y) - f(x)}{y - x} = f'(c) \ge 0$. Wegen y - x > 0 folgt $f(y) - f(x) \ge 0$, also $f(y) \ge f(x)$.

Satz 8 Sei $f: I \to \mathbb{R}$ stetig und in \mathring{I} differenzierbar. Es sei $c \in \mathring{I}$. Dann gilt:

- (1) Gilt $f'(x) \leq 0$ für x < c, $x \in \overset{\circ}{I}$ und $f'(x) \geq 0$ für x > c, $x \in \overset{\circ}{I}$, so hat f in c ein absolutes Minimum, d.h. $f(c) \leq f(x)$ für alle $x \in I$.
- (2) Gilt $f'(x) \ge 0$ für x < c, $x \in I$ und $f'(x) \le 0$ für x > c, $x \in I$, so hat f in c ein absolutes Maximum, d. h. $f(c) \ge f(x)$ für alle $x \in I$.

Beweis zu (1): f ist in $\{x \in I \mid x \leq c\}$ monoton fallend und in $\{x \in I \mid x \geq c\}$ monoton wachsend. Für $x \leq c$ ist also $f(x) \geq f(c)$, für $x \geq c$ ist $f(x) \geq f(c)$. Damit hat f in c ein absolutes Minimum.

Beispiel Sei $h:]0, \infty[\to \mathbb{R}, \ h(x) := x + \frac{1}{x}$. Dann ist h differenzierbar mit $h'(x) = 1 - \frac{1}{x^2}$. Für 0 < x < 1, also $\frac{1}{x^2} > 1$, ist $h'(x) = 1 - \frac{1}{x^2} < 0$. Für x > 1, also $\frac{1}{x^2} < 1$, ist $h'(x) = 1 - \frac{1}{x^2} > 0$. Nach Satz 8 hat h in 1 ein absolutes Minimum. Es ist h(1) = 2.

