COM COMPOSITE

FF (Regaussian words): Let I hole and partiolic on F. Fiz y

 $a_n(y) = \int_0^\infty f(\epsilon_n y) e^{-2\pi i n t} dt$

Bootcolly just analytically continue the real expansion when see to rest of C

has say it is hold on $\mathfrak{D}^{\underline{n}}=\mathfrak{D}\cup(\omega_0)$ if f hold on f and $\lim_{y\to 0}f(\omega_0)f(\omega_0)$

Say f holic on f and has pole at iso if $\lim_{y\to\infty} f(z_y) = \infty$

Assume of hole or never on of and periodic. Then it has expense.

f(3)= ∑a, e^{2π;n3}

Let q=e^{3,111;8}, z ∈ f_y => |q|<|

Defa $\widetilde{f}(q) = \sum_{\substack{q \in P_1 \text{ as q}^n \\ -P_2 \text{ as q}}}$. Then \widetilde{f} is marg.

E)sourstein series (of up. k=0(mod 2)) let sety, k=4, k=7. Then Able

$$E_{k}(z) = \sum_{\substack{c,d \in \mathbb{Z} \\ (c,d)=i}} \underbrace{1}_{\substack{c,d \in \mathbb{Z} \\ (c,d)=i}}$$

Clm: $E_{k}(s)$ halo on 50 (in). $E_{k}\left(\frac{as_{k}t}{cs_{k}t}\right)=(cs_{k}t)^{k}$ $E_{k}(s)$

Assuming convergence line $E_k(x_1 e_k y_1) \cdot 2$, take $e^{x_1 \theta_k}$ so det1. It exp, the term ≈ 0 .

