Topology: Homework 8

Peter Kagey

November 6, 2018

Problem 1.

- a. Express the map $\delta_i \circ F_j \colon \Delta_n \to \Delta_n \times [0,1]$ in terms of $(F_{j'} \times \mathrm{Id}_{[0,1]}) \circ \delta_{i'}$, $\delta_{i\pm 1} \circ F_{j'}$, $i_0 = \mathrm{Id}_{\Delta_n} \times 0$, or $i_1 = \mathrm{Id}_{\Delta_n} \times 1$.
- b. Let $f_0, f_1: X \to Y$ be homotopic by a homotopy $H: X \times [0,1] \to Y$. Define a linear map $K_n: C_n(X) \to C_{n+1}(Y)$ by

$$K_n(\sigma) = \sum_{i=0}^n (-1)^i H \circ (\sigma \times \mathrm{Id}_{[0,1]}) \circ \delta_i$$

for every simplex $\sigma \in C_n(X)$.

Show that

$$\partial_{n+1} \circ K_n + K_{n-1} \circ \partial_n = C_n(f_1) - C_n(f_0).$$

Proof.

- a. There are six cases to consider:
 - (i) When i = j = 0

$$(t_0, t_1, \dots, t_n) \xrightarrow{F_0} (0, t_0, t_1, \dots, t_n) \xrightarrow{\delta_0} ((t_0, t_1, \dots, t_n), \underbrace{t_0 + t_1 + \dots + t_n}_{1})$$

$$(t_0, t_1, \dots, t_n) \xrightarrow{i_1} ((t_0, t_1, \dots, t_n), 1)$$

so $\delta_i \circ F_j = i_1$.

(ii) When i = j > 0

$$(t_0, t_1, \dots, t_n) \xrightarrow{F_i} (t_0, t_1, \dots, t_{i-1}, 0, t_i, \dots, t_n) \xrightarrow{\delta_i} ((t_0, t_1, \dots, t_{i-1}, 0 + t_i, \dots t_n), t_i + \dots + t_n)$$

$$(t_0, t_1, \dots, t_n) \xrightarrow{F_i} (t_0, t_1, \dots, t_{i-1}, 0, t_i, \dots, t_n) \xrightarrow{\delta_{i-1}} ((t_0, t_1, \dots, t_{i-1} + 0, t_i, \dots t_n), 0 + t_i + \dots + t_n)$$
so $\delta_i \circ F_i = \delta_{i-1} \circ F_i$.

(iii) When j - 1 = i < n

$$(t_0, t_1, \dots, t_n) \xrightarrow{F_j} (t_0, t_1, \dots, t_{j-1}, 0, t_j, \dots, t_n) \xrightarrow{\delta_{j-1}} ((t_0, t_1, \dots, t_{j-1} + 0, t_j, \dots t_n), 0 + t_j + \dots + t_n)$$

$$(t_0, t_1, \dots, t_n) \xrightarrow{F_j} (t_0, t_1, \dots, t_{j-1}, 0, t_j, \dots, t_n) \xrightarrow{\delta_j} ((t_0, t_1, \dots, t_{j-1}, 0 + t_j, \dots t_n), t_j + \dots + t_n)$$
so $\delta_i \circ F_j = \delta_{i+1} \circ F_j$.

(iv) When j-1=i=n

$$(t_0, t_1, \dots, t_n) \xrightarrow{F_{n+1}} (t_0, t_1, \dots, t_n, 0) \xrightarrow{\delta_n} ((t_0, t_1, \dots, t_n), 0)$$
$$(t_0, t_1, \dots, t_n) \xrightarrow{i_0} ((t_0, t_1, \dots, t_n), 0)$$

so $\delta_n \circ F_{n+1} = i_0$.

(v) When j-1>i

$$(t_0, t_1, \dots, t_n) \xrightarrow{F_j} (t_0, \dots, t_{j-1}, 0, t_j, \dots, t_n)$$

$$\xrightarrow{\delta_i} ((t_0, \dots, t_i + t_{i+1}, \dots, t_{j-1}, 0, t_j, \dots, t_n), t_{i+1} + \dots + t_n)$$

$$(t_0, t_1, \dots, t_n) \xrightarrow{\delta_i} ((t_0, \dots, t_i + t_{i+1}, \dots, t_n), t_{i+1} \dots t_n)$$

$$\xrightarrow{F_{j-1} \times \mathrm{Id}_{[0,1]}} ((t_0, \dots, t_i + t_{i+1}, \dots, t_{j-1}, 0, t_j, \dots, t_n), t_{i+1} + \dots + t_n)$$

so $\delta_i \circ F_j = (F_{j-1} \times \mathrm{Id}_{[0,1]}) \circ \delta_i$.

(vi) When i > j

$$(t_0, t_1, \dots, t_n) \xrightarrow{F_j} (t_0, \dots, t_{j-1}, 0, t_j, \dots, t_n)$$

$$\xrightarrow{\delta_i} ((t_0, \dots, t_{j-1}, 0, t_j, \dots, t_{i-1} + t_i, \dots, t_n), t_i + \dots + t_n)$$

$$(t_0, t_1, \dots, t_n) \xrightarrow{\delta_{i-1}} ((t_0, \dots, t_{i-1} + t_i, \dots, t_n), t_i \dots t_n)$$

$$\xrightarrow{F_j \times \operatorname{Id}_{[0,1]}} ((t_0, \dots, t_{j-1}, 0, t_j, \dots, t_{i-1} + t_i, \dots, t_n), t_i + \dots + t_n)$$

so
$$\delta_i \circ F_j = (F_j \times \mathrm{Id}_{[0,1]}) \circ \delta_{i-1}$$
.

b. The two terms of the sum can be written as

$$\partial_{n+1}(K_n(\sigma)) = \partial_{n+1}\left(\sum_{i=0}^n (-1)^i H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ \delta_i\right) = \sum_{j=0}^{n+1} \sum_{i=0}^n (-1)^{i+j} H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ \delta_i \circ F_j$$

and

$$K_{n-1}(\partial_n(\sigma)) = \sum_{i=0}^{n-1} (-1)^i H \circ (\partial_n(\sigma) \times \operatorname{Id}_{[0,1]}) \circ \delta_i$$

$$= \sum_{i=0}^{n-1} (-1)^i H \circ \left(\sum_{j=0}^n (-1)^j \sigma \circ F_j \times \operatorname{Id}_{[0,1]} \right) \circ \delta_i$$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^n (-1)^{i+j} H \circ \left(\sigma \circ F_j \times \operatorname{Id}_{[0,1]} \right) \circ \delta_i$$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^n (-1)^{i+j} H \circ \left(\sigma \times \operatorname{Id}_{[0,1]} \right) \circ (F_j \times \operatorname{Id}_{[0,1]}) \circ \delta_i$$

This final sum can be split based on cases.

$$K_{n-1}(\partial_n(\sigma)) = \sum_{i=0}^{n-1} \sum_{j=0}^n (-1)^{i+j} H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ (F_j \times \operatorname{Id}_{[0,1]}) \circ \delta_i$$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^i (-1)^{i+j} H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ (F_j \times \operatorname{Id}_{[0,1]}) \circ \delta_i$$

$$+ \sum_{i=0}^{n-1} \sum_{j=i+1}^n (-1)^{i+j} H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ (F_j \times \operatorname{Id}_{[0,1]}) \circ \delta_i$$

Then these sums can be reindexed based on the above identities

$$K_{n-1}(\partial_{n}(\sigma)) = \sum_{i=1}^{n} \sum_{j=0}^{i-1} (-1)^{i-1+j} H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ (F_{j} \times \operatorname{Id}_{[0,1]}) \circ \delta_{i-1}$$

$$+ \sum_{i=0}^{n-1} \sum_{j=i+2}^{n+1} (-1)^{i+j-1} H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ (F_{j-1} \times \operatorname{Id}_{[0,1]}) \circ \delta_{i}$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{i-1} (-1)^{i-1+j} H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ \delta_{i} \circ F_{j}$$

$$+ \sum_{i=0}^{n-1} \sum_{j=i+2}^{n+1} (-1)^{i+j-1} H \circ (\sigma \times \operatorname{Id}_{[0,1]}) \circ \delta_{i} \circ F_{j}$$

Then adding this to $\partial_{n+1}(K_n(\sigma))$ yields

$$\partial_{n+1}(K_n(\sigma)) + K_{n-1}(\partial_n(\sigma)) = \sum_{j=0}^{n+1} \sum_{i=0}^n (-1)^{i+j} H \circ (\sigma \times \mathrm{Id}_{[0,1]}) \circ \delta_i \circ F_j$$

$$- \sum_{i=1}^n \sum_{j=0}^{i-1} (-1)^{i+j} H \circ (\sigma \times \mathrm{Id}_{[0,1]}) \circ \delta_i \circ F_j$$

$$- \sum_{i=0}^{n-1} \sum_{j=i+2}^{n+1} (-1)^{i+j} H \circ (\sigma \times \mathrm{Id}_{[0,1]}) \circ \delta_i \circ F_j$$

Problem 2.

Let X be a topological space. For all n, let $C_n(X)$ be the usual R-module of singular n-chains in X with coefficients in the ring R. In particular, $C_0(X) = \left\{\sum_{i=1}^k a_i x_i : a_i \in R, x_i \in X\right\}$ consists of all linear combinations of points in X. Consider the homomorphism $\widetilde{\partial}_0 \colon C_0(X) \to R$ defined by the property that $\widetilde{\partial}_0 \left(\sum_{i=1}^k a_i x_i\right) = \sum_{i=1}^k a_i$ For $n \in \mathbb{Z}$, define

$$\widetilde{C}_n(X) = \begin{cases} C_n(X) & n \ge 0 \\ R & n = -1 \\ 0 & n \le -2 \end{cases}$$

and define $\widetilde{\partial}_n\colon \widetilde{C}_n(X)\to \widetilde{C}_{n-1}(X)$ by the property that

$$\widetilde{\partial}_n = \begin{cases} \partial_n & n > 0 \\ \widetilde{\partial}_0 & n = 0 \\ 0 & n < 0. \end{cases}$$

Finally, let $\widetilde{H}_n(X) = \ker(\widetilde{\partial}_n) / \operatorname{Im}(\widetilde{\partial}_{n+1})$

- a. Show that $\widetilde{H}_n(X) = H_n(X)$ when $n \neq 0$.
- b. Show that $\widetilde{H}_0(X) = 0$ if X is path connected.
- c. Show that $\widetilde{H}_0(X) \cong \mathbb{R}^{n-1}$ if X has n path-connected components.

Proof.

a. For n > 0, $\widetilde{\partial}_n = \partial_n$ and $\widetilde{C}_n(X) = C_n(X)$, so in particular, $\ker(\widetilde{\partial}_n) = \ker(\partial_n)$ and $\operatorname{Im}(\widetilde{\partial}_n) = \operatorname{Im}(\partial_n)$. Therefore

$$\widetilde{H}_n(X) = \ker(\widetilde{\partial}_n) / \operatorname{Im}(\widetilde{\partial}_{n+1}) = \ker(\partial_n) / \operatorname{Im}(\partial_{n+1}) = H_n(X)$$

for n > 0.

When n < 0, $\widetilde{\partial}_n = 0$, so $\ker(\widetilde{\partial}_n) = \ker(0) = 0$. In particular, $\widetilde{H}_n(X) = \ker(0) / \operatorname{Im}(\widetilde{\partial}_{n+1}) = 0 = H_n(X)$ with the last equality by convention.

b. First note that

$$\partial_1(\sigma_i) = \sum_{j=0}^{1} (-1)^j \sigma_i \circ F_j = \sigma_i \circ F_0 - \sigma_i \circ F_1$$

so if $\sigma_i(0,1) = x_0$ and $\sigma_i(1,0) = x_1$, then $\partial_1(\sigma_i)$ is the constant map from the 0-simplex to the difference of the end points of σ_i , namely $1 \mapsto x_0 - x_1$.

Let $c = \sum_i c_i \sigma_i$ be an element of $C_1(X)$. Then

$$\partial_1 \Biggl(\sum_i c_i \sigma_i \Biggr) = \sum_i c_i \partial_1 (\sigma_i) = \sum_i c_i (x_{i,0} - x_{i,1}).$$

Then any element in $\operatorname{Im}(\partial_1)$ maps to 0 under $\widetilde{\partial}_0$

$$\widetilde{\partial}_0 \left(\sum_i c_i (x_{i,0} - x_{i,1}) \right) = \widetilde{\partial}_0 \left(\sum_i c_i x_{i,0} - \sum_i c_i x_{i,1} \right)$$

$$= \widetilde{\partial}_0 \left(\sum_i c_i x_{i,0} \right) - \widetilde{\partial}_0 \left(\sum_i c_i x_{i,1} \right)$$

$$= \sum_i c_i - \sum_i c_i$$

$$= 0$$

which shows that $\operatorname{Im}(\partial_1) \subset \ker(\widetilde{\partial}_0)$.

Next I will show that $\operatorname{Im}(\partial_1) \subset \ker(\widetilde{\partial}_0)$:

Let $c \in \ker(\widetilde{\partial}_0) \subset C_0(X)$ be written as $c = \sum_i c_i x_i$. Then, since X is path-connected, for each x_i , there exists a path path $\sigma_i \colon \Delta_1 \to X$ from x_i to some designated basepoint x_0 . Then let $c_1 \in C_1(X)$ be defined as $\sum_i c_i \sigma_i$. Then

$$\partial_1(c_1) = \partial_1 \left(\sum_i c_i \sigma_i \right)$$

$$= \sum_i c_i (x_i - x_0)$$

$$= \sum_i c_i x_i - \sum_i c_i x_0$$

$$= \sum_i c_i x_i - \left(\sum_i c_i \right) x_0$$

$$= c$$

Since each set contains the other, $\operatorname{Im}(\partial_1) = \ker(\widetilde{\partial}_0)$ and $\widetilde{H}_0(X) = \ker(\widetilde{\partial}_0)/\operatorname{Im}(\partial_1) = 0$.

c.

5