$$\begin{array}{l}
\text{(1)} & \text{(2)} & \text{(3)} & \text{(3)} & \text{(4)} & \text{(4$$

fg = 16He

fg = 16He

fg = 16He

for =
$$\frac{1}{4}$$

for = $\frac{1}{4}$

Final područja propudant

Final područja propudant

$$m = 1.25$$
 $\Delta f = m$

$$M = \frac{SNR_0}{SNR_c} = M_{AWQN} \cdot \frac{S_N(SW_2)}{S_N(SW_2)} = 4,685$$

$$S_N = \frac{10^{-6}}{10.10^6} + 10^{-6}$$

$$f_{s} = 10MH_{2} \qquad A_{a} = 100dB$$

$$f_{s,int} = 100dH_{2}$$

$$R = 10^{3} = 1000$$

$$\Delta f = 6kH_{2}$$

$$20 \left(\frac{\log_{10} \left| H(e^{j\omega}) \right|}{R} \right) \leq -A_{\alpha}$$

$$20 \left(\frac{\log_{10} \left| \frac{1}{R} \frac{\sin\left(\frac{\alpha_{0}R}{2}\right)}{\sin\left(\frac{\alpha_{0}}{2}\right)} \right|}{Sin\left(\frac{\alpha_{0}}{2}\right)} \right) \leq -A_{\alpha}$$

$$\omega_{a} = \frac{2\pi}{R} - \frac{\sin k_{a}}{\sin k_{a}} = \frac{5}{134 \cdot 10^{-3}} \frac{\sin k_{a}}{\sin k_{a}} = \frac{1}{1000} \frac{\sin$$

$$N \ge \frac{-100}{20\log_{10}\left(\frac{1}{1000} - \frac{1}{2} + \frac{1}{1000}\right)} = 6,5 = 7N = 7$$

$$20\log_{10}\left(\frac{1}{1000} - \frac{1}{2} + \frac{1}{1000}\right) = 6,5 = 7N = 7$$

$$\sin\left(\frac{5,34.10^{-3}}{2}\right)$$

c)
$$\omega_{g} = \frac{B}{\xi_{2}} \cdot \lambda_{TI} = \frac{B_{TI}}{\xi_{2}} = 0.94$$

d)
$$PG_{CC} = 10 \log_{10}(R) = 30 dB$$

$$PG_{F} = 10 \log_{10}\left(\frac{f_{s_{2}}}{B}\right) = 10 \log_{10}\left(\frac{\pi}{\omega_{g}}\right) = 5123 dB$$

$$M = 4 \qquad \frac{N_0}{2} = 7.00^4 \qquad \nabla = \frac{N_0}{2} \cdot \frac{1}{T_s} = 0.02 V^2$$

$$6 \qquad 0 \qquad 0 \qquad 6$$

$$0 \qquad 1 \qquad 2$$

$$1 \qquad 1 \qquad -2$$

$$-2 \qquad 1 \qquad 0 \qquad -6$$

$$Pe_{1} = Pe_{4} = \begin{cases} f_{y}(y|S_{1})dy = \frac{1}{12\pi^{2}\sigma} \begin{cases} exp(-\frac{(y+6)^{2}}{2\sigma^{2}}) dy \\ -4 \end{cases}$$

$$4 = 0$$

$$4 = 0$$

$$\begin{array}{c}
46 = u \\
dy = du
\end{array}$$

$$\begin{array}{c}
4 = -4 = 2u = 2
\end{array}$$

$$\begin{array}{c}
4 = u = 2
\end{array}$$

$$\frac{\mathcal{U}}{\sqrt{2}} = 2$$

$$\mathcal{U} = 2 = 72 = \frac{2}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

FUNICIDA CUSTOCE UZ OVISET PA SE SALSE STALNO , O "

$$f_{y}(y|0) = \frac{1}{|I|} v_{y} \exp \left[-\frac{(y+A)^{2}}{2 v_{y}^{2}} \right] = \frac{1}{|I|} v_{y}^{2} \exp \left[-\frac{(y+A)^{2}}{2 v_{y}^{2}} \right]$$

$$f_{y}(y|0) = \sqrt{\frac{T_{b}}{\pi N_{b}}} \exp \left[-\frac{(y+A)^{2}}{N_{b}/T_{b}} \right]$$

$$\int_{I} v_{y}^{2} = \sqrt{\frac{(y+A)^{2}}{T_{b}}} \exp \left[-\frac{(y+A)^{2}}{N_{b}/T_{b}} \right]$$

$$\int_{I} v_{y}^{2} = \sqrt{\frac{y+A}{N_{b}/T_{b}}} = \sqrt{\frac{y+A}{N_{b}/T_{b}}} = 2$$

$$\int_{I} v_{y}^{2} = v_{y}^{2} = 2$$

Per-Peo Pe = Pr Per + Po Peo =
$$\frac{1}{2}$$
 erfc ($\frac{|E_b|}{N_b}$)

 $\frac{1}{2}$ = $\frac{1}{2}$ $\frac{1}{2}$

(8.) Eastitui interval razmah od Ng uzoraha hoji se ostavlja između uzoraha

ta ispravnu demodulaciju potrebno je prepoznati početale simbola. Početale je ledše prepoznati alio mu svahi puta prethode nuk

Cillictii prehits prosiroje dijelom signala s njegovog luaja. Uloliho dote do pograste u određivanju početkem simbola, ebog cillictory prehitsa dogadit c'e se pomenh na periodictiom signalu. Amplitudna hambterishiha ostat c'e nepromijenjena, a u fazi c'e se pojavih pomah hoji možemo ishovishihi ea određivanje pravog položaja simbola

AWGN haval

$$P_{NC} = 2B_{N} \cdot N_{o}$$

$$P_{NO} = k_{dem} \cdot 2 \cdot B_{T} \cdot N_{o}$$

$$P_{NO} = k_{dem} \cdot 2 \cdot B_{T} \cdot N_{o}$$

$$P_{NC} = 2B_{N} \cdot N_{o}$$

Opée:
$$P_{NO} = k_{dem} \cdot 2 \int S_{N}(A) dA$$
 $P_{NC} = 2 B_{M} \cdot \frac{N_{o}}{2} = k_{o}$
 $P_{NC} = 2 \int S_{N}(A) dA$
 $M = \frac{P_{SO}}{k_{dem}} \cdot 2 \int S_{N}(A) dA$

MN = MAWGN. No SN(+)= - 10-6 umnon /f/+ 10-6

$$P_0 = \frac{U_0^2}{2} = 50W = V_0^2 = 100W$$

$$SNR_{0} = \frac{PDSB}{f_{M}N_{0}} = \frac{K_{0}P_{M}}{2f_{M}N_{0}} \qquad \frac{N_{0}}{2} = N_{T} = > N_{0} = 2N_{T}$$

$$2NR_0 = \frac{P_{DSB}}{2f_{M}N_{T}} = \frac{20}{2.3000 \cdot 10^{-7}} = 1,66.10^{9} =>42,223B$$

(4.1)
$$M=8$$
 $T_S=10 \text{ ms}$
 $\frac{N_0}{Z}=0,0007 \text{ W}^2/H_2$
 $\frac{1}{\sqrt{5}}$
 $\phi(\mathcal{E}) = \frac{s_1(\mathcal{E})}{\sqrt{6}}$
 $F_1 = \int_{S_1}^{T_S} (\mathcal{E}) d\mathcal{E} = \int_{Z_1}^{T_S} d\mathcal{E} = \mathcal{F}^2 \cdot T_S = 0,49$
 $\phi_1(\mathcal{E}) = \frac{\mathcal{F}}{\sqrt{9}} = 10$
 $S_{21} = \int_{S_2}^{T_S} (\mathcal{E}) d\mathcal{E}$

$$S_{21} = \int_{0}^{T_{5}} S_{2}(e) \phi_{i}(e) = \int_{0}^{T_{5}} S_{10}(e) =$$

$$g_2(\ell) = g_2(\ell) - g_2(\ell) = g$$

vehtori signala (ingo samo jedne hoordinato)

=> postoji samo sedna funheija boze!

$$S_{1} = S_{11} = \begin{cases} S_{1}(t) \phi_{1}(t) dt = 7.10 \cdot 10^{2} = 0.7 = 16.7 \\ S_{2} = S_{21} = \int_{0}^{7} S_{2}(t) \phi_{1}(t) dt = 5.10 \cdot 10^{2} = 0.5 = 16.7 \end{cases}$$

$$S_{3} = S_{34} = 3.10^{-1} = 0.10^{-1} = 0.5 = 16.7$$

$$\int_{-2}^{2} \frac{N_{o}}{25} = \frac{0.0007}{0.001} = 0.07 V^{2}$$

$$\frac{\partial^{2} dx}{\partial x^{2}} = \frac{1}{\sqrt{2\pi^{2}}} \int_{-6}^{6} \frac{1}{\sqrt{2\pi^{2}}} dy = \frac{1}$$

$$P_{e1} = \frac{1}{\sqrt{2\pi}} \int \exp\left[\frac{-2^2}{2\sigma^2}\right] dz = \frac{2}{\sqrt{2}\sigma} = u$$

$$du = \frac{1}{\sqrt{2}\sigma} dz = \sqrt{2\pi} \int \exp\left(-u^2\right) du$$

$$dz = \sqrt{2}\sigma du = \frac{1}{\sqrt{2}\sigma} \int \exp\left(-u^2\right) du$$

$$dz = 1 \Rightarrow u = \frac{1}{\sqrt{2}\sigma}$$

$$dz = 0 \Rightarrow u = \infty$$

$$\frac{2}{\pi} \int_{\mathbb{R}} \exp(-z^2) dz = \operatorname{ertc}(u)$$

$$P_{e1} = \frac{1}{2} \operatorname{erfc}\left(\frac{1}{E_F}\right)$$

$$000 -7$$
 $001 -6$
 $011 -3$
 $010 -1$

$$-N\log_{10}\left(\frac{\omega_{2}^{2}-\omega_{PPF1}}{B_{PPF1}-\omega_{2}}\right)=-3=>N=\frac{3}{\log\left(\frac{\omega_{2}^{2}-\omega_{PPF1}}{B_{PPF1}-\omega_{2}}\right)}=2,398N=3$$

c)
$$PG_{crc} = 10 \log_{10} \left(\frac{f_{S1}}{f_{Se}} \right) = 10 \log_{10} (R) = 18,06$$
 $PG_{FIR} = 10 \log_{10} \left(\frac{f_{S2}}{f_{kanala}} \right) = 6,99$
 $(>140 \text{ LHz})$

(4.)
$$[-7V, 7V]$$

$$M = \emptyset$$

$$\sigma^{2} = 0.07V^{2}$$

1	1	The same of the sa	1		100	-7	
D	/	~			19	+ Jew d	aidy
Per	= 12 m	- le	xp - (8	+7)2/1	18=	-6=>u=1	,)
00	,	-6	1 2	02 105	1	シルミ	0 /
- le	xp (-1	2) du=	120=2	1 du=1.	26d2/		/
	(26		M=1=72.	/	/ :	2	

$$=\frac{\sqrt{2}\tau}{\sqrt{2}\tau} \left(\exp\left(-\frac{z^2}{2}\right) dz = \frac{1}{2} \operatorname{erfc}\left(\frac{1}{\sqrt{2}\tau}\right).$$

Kpm=? B=?

$$K_{\omega} = \frac{m \cdot \omega_m}{U_m} \Rightarrow K_f = \frac{m \cdot f_m}{U_m} \Rightarrow m = \frac{K_f \cdot U_m}{f_m} = 8,29$$

$$U_{s}(s) = U_{m}(s) \cdot \frac{2}{R + \frac{1}{sc}} = U_{ms}(s) \cdot \frac{sRE}{1 + sRC} = U_{m}\frac{sc}{1 + sRC} = U_{m}(s) \cdot sE$$

$$U_{t}(t) = \tau \frac{du_{m}(t)}{dt}$$

$$U_{FM}(t) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt dt dt) = U_{0} \cdot \cos(\omega_{0} t_{+} K_{w} \cdot \int u_{t}(t) dt dt dt$$

Kpm = Kw = 27kf = 3456 rad/v Kpm

(a)
$$M=4$$
 $\frac{1}{2},3$
 $\frac{1}{2}$
 $\frac{1}{2},3$
 $\frac{1}{2}$
 $\frac{1}{$

(4.) d = 4 - udeljenos t između točala $\frac{N_0}{2} = 0.3 \text{ W/H}_2$

19
$$5kH_2$$

 $f_0 = 400 \ kH_2$
 $A_p = 0,05dB$ $R = 50S2$
 $L_1C = ?$
 $A_s = ?$

a)
$$I+(\omega) = \frac{R}{R+j(\omega L-\frac{1}{\omega c})}$$

$$\omega_{R} = \frac{1}{\sqrt{ic}} = \omega_{0}$$

$$20\log|H(f_0-f_m)| \ge -Ap$$

 $f_1 = 400-5 = 395 \text{ kHz}$

$$\frac{R}{\sqrt{R^{2}j(\omega_{1}L-\frac{1}{\omega_{1}C})^{2}}} = 10^{-\frac{A_{P}}{20}} / \frac{2}{20} / \frac{1}{20} /$$

$$\frac{L'|\omega_{l} - \frac{1}{\omega_{l}LQ}| = R|10^{\frac{AP}{10-10}}|}{\frac{\omega_{o}^{2}}{\omega_{l}} = 2\pi \frac{f_{o}^{2}}{F_{l}}} = 85\mu H_{q}$$

$$C = \frac{1}{4\pi^2 f_0^2} = 1.86 \, nF$$

$$6) A = -20 \log \left| \frac{1}{3} H(3f_0 - f_m) \right| = 30.7 \, dB$$

$$\begin{cases} 1 - 884 H_{2} & 0 \\ \frac{1}{6} - 924 H_{2} & 0 \\ \frac{1}{6} - 924 H_{2} & \frac{1}{6} - 924 H_{2} \\ \frac{1}{6} - 924 H_$$

e)
$$PG_{CC} = 10 \log_{10}(R) = 21 dB \Rightarrow 6dB = 15it$$
 $\frac{21}{6} = 3.5$
 $PG_{F} = 10 \log_{10}(\frac{6s_{e}}{B}) = 4.26dB \Rightarrow 3dB = 0.5 \text{ bit}$
 $PG_{F} = 10 \log_{10}(\frac{6s_{e}}{B}) = 4.26dB \Rightarrow 3dB = 0.5 \text{ bit}$
 $PG_{F} = 10 \log_{10}(\frac{6s_{e}}{B}) = 4.26dB \Rightarrow 3dB = 0.5 \text{ bit}$
 $PG_{F} = 10 \log_{10}(\frac{6s_{e}}{B}) = 4.26dB \Rightarrow 3dB = 0.5 \text{ bit}$
 $PG_{F} = 10 \log_{10}(\frac{6s_{e}}{B}) = 4.26dB \Rightarrow 3dB = 0.5 \text{ bit}$
 $PG_{F} = 10 \log_{10}(R) = 3.5$
 $PG_{F} =$

 $|H(\omega)| = 6|H(\omega)|^{2} - 8|H(\omega)|^{4} + 3|H(\omega)|^{4} = 5^{4} + 6ic(\omega)$ $|H(\omega)| = 6|H(\omega)|^{2} - 8|H(\omega)|^{4} = 6|H(\omega)|^{2} - 8|H(\omega)|^{3} = 6|H(\omega)|^{4} = 6|H(\omega)|$

 $H(z) = 6H(z) \cdot e^{-2D} \cdot 8H(z) \cdot e^{-D} + 3H(z)$ L = N(R-1) + 1 D = L-1 - 1/4

$$D = \frac{L-1}{2} = \frac{N(R-1)}{2}$$

$$H_{CIC} = \left(\frac{1}{R} \frac{1-2^{-R}}{1-2^{-1}}\right)^{N}$$

