ÖVEGES JÓZSEF Fizikaverseny

II. forduló 2015. április 17. VII. osztály

JAVÍTÓKULCS

I. feladat

A vasútállomás 1200 m -re van a lakástól. Magdi 4 perc alatt 400 m -t tesz meg, Peti pedig 3 perc alatt 240 m -t. Magdi sebessége: $v_{\text{Magdi}} = 400 \ m/4 \ \text{min} = 100 \ m/\text{min}$ vagy $v_{\text{Magdi}} = 400 \ m/240 \ s = 5/3 \ m/s$	1 p 1 p
Magdi a vasútállomásra $t_{\text{Magdi}} = 1200 \ m/100 \ m/\text{min} = 12 \ \text{perc alatt \'er ki}.$ Peti sebessége: $v_{\text{Peti}} = 240 \ m/$ 3 min = 80 m/min vagy $v_{\text{Peti}} = 240 \ m/180 \ s = 4/3 \ m/s$ Peti a vasútállomásra $t_{\text{Peti}} = 1200 \ m/(80 \ m/\text{min}) = 15 \ \text{perc alatt \'er ki}.$	1 p 1 p 1 p
Magdi 12 perc alatt ér oda és 2 perc alatt veszi meg a jegyet az 14 perc. Peti 15 perc alatt ér ki, a jegy már Magdinál lehet.	1 p
Vagy: Magdi meg tudja vásárolni a jegyet, mert $t_{\text{Peti}} - t_{\text{Magdi}} = 3$ perc > 2 perc ami a jegyvásárlá szükséges.	íshoz
II. feladat	
a.) $F = k\Delta l$ $k = 1N/\Delta l$ $k = 100 \text{ N/m}$ $F_1 = 100N/m$. 0,015 m	
A rugó F _r = 1,5N erőt fejt ki a hasábra. A súrlódási erő Fs = 1,5N, mert a hasáb egyenletesen mozog két egyenlő nagyságú,	1 p
ellentétes irányítású erő (a súrlódási erő és a húzóerő) hatására.	1 p
b.) Fs = 0,3G a hasáb súlya: G = Fs/0,3 = $(1,5/0,3)$ N = 5N A hasáb tömege: $m = 0,5 \ kg$.	2 p
c.) A hasáb térfogata: $V = 2 cm \cdot 4 cm \cdot 8 cm = 64 cm^3$ A hasáb sűrűsége: $\rho = m/V = 7,8 g/cm^3 = 7813 kg/m^3$	1 p 1 p
d) A hasáb mozgatása során végzett munka: $L = F_r \cdot s = 1,5N \cdot 1,5 m$ $L = 2,25J$	1 p
III. feladat	
 a.) Az energiamegmaradás elvét alkalmazva a C pontban a test rendelkezik mozgási és helyzeti energiával is, az összegük a h magasságból induló helyzeti energiával egyenlő mgh = 1/4(mgh_c) + mgh_c 	5.
$h = 5/4(h_c) = 3 m$ (1 p a helyzeti energiáért, 1 p a mozgási energiáért, 1 p az összenergiáért, 1 p az összefüggés felismeréséért, kiszámítva h értéke 1p)	5 p
b) - a BD szakaszon B-től megállásig, a mozgási energia változása az ezt létrehozó munkavégzéssel egyenlő $\Delta E_m = F_s \cdot BD$	1 p

1 p

- a B pontban a mozgási energia egyenlő a h magasságból származó helyzeti energiával $Eh = E_{mB}$ 1 p $mgh = \Delta E_m = F_s \cdot BD$ 2 p $3mg = F_s \cdot BD$, $3G = F_s \cdot G/2$ vagy $F_s/mg = 50\%$ 1 p

IV. feladat

1 p a rajzért az erőkkel

a.) jelölve G-vel a gerenda súlyát, d-vel a hosszát, egy ember G/3 nagyságú erővel tartja a gerendát 1 p A rudat tartók mindenike szintén G/3 erővel, ami azt jelenti, a rúd 2(G/3) erővel tartja a gerendát. 1 p A gerenda egyensúlyának feltétele (a gerenda szabad végét véve forgási pontnak), Gd/2 = 2(G/3)x + (G/3)d 4 p Innen x = d/4, x = 1 m a gerenda végétől 1 m-re teszik a rudat 1 p

b.)

1 p a rajzért az erőkkel

Az A ponthoz viszonyítva a gerenda egyensúlyi feltétele: $G(d/2) + G'3m = F_B \cdot d$ $F_B = 1950N$ erővel hat a tartófal a gerendára, 2 p a falat terhelő azzal ellentétes irányítású erő $F'_B = 1950N$ 2 p A B ponthoz viszonyítva a gerenda egyensúlyi feltétele: $G'1m + G(d/2) = F_A \cdot d$ $F_A = 950N$, az előbbivel hasonlóan $F'_A = 950N$ 4 p