Einleitung

Projektarbeit Automata Tools

Ziel des Projektes ist die Erstellung einer Bibliothek, die den Umgang mit regulären Sprachen ermöglicht.

Projektteilnehmer:

Daniel Dreibrodt, Florian Hemmelgarn, Fabian Ickerott, Sebastian Kowelek, Yacine Smaoui, Konstantin Steinmiller

Anforderungen

Projektarbeit Automata Tools

Erforderliche Formalismen

- Reguläre Ausdrücke
- Reguläre Grammatiken
- Endliche Automaten

Erforderliche Algorithmen

- Konvertierung
- Minimierung
- Äquivalenzprüfung

Inhaltsverzeichnis

- 1. Reguläre Sprache
- 2. Reguläre Ausdrücke (Regular Expression)
- 3. Reguläre Grammatik (Regular Grammar)
- 4. Endlicher Zustandsautomat (Finite State Automata)
- 5. Konvertierung
- 6. Minimierung
- 7. Äquivalenzprüfung

Reguläre Sprache

- Formale Sprache
 - Menge von akzeptablen/korrekten Zeichenketten
 - Zusammengesetzt aus einem Vorrat von Zeichenfolgen (Alphabet)
- Reguläre Sprache
 - definiert durch
 - Regulären Ausdruck
 - Reguläre Grammatik
 - Endlichen Automaten

Regulärer Ausdruck

- Deklarative, algebraische Darstellung regulärer Sprachen
- Einzelne Zeichenkette
- Verknüpfung von Ausdrücken mit Operatoren
 - Aneinanderreihung (Und-Operator): a . b
 - Alternative (Oder-Operator): a | b
 - Wiederholung (Stern-Operator): a*
- Ausdrücke sind beliebige Zeichenfolgen
 - Enthalten keine Leerzeichen & Operatoren

Regulärer Ausdruck - Beispiele

Projektarbeit Automata Tools

Regulärer Ausdruck

a.b

a|b

a.(a|b)

a*

 $(a|b|c)^*$

Akzeptierte Zeichenfolgen

"ab"

"a", "b"

"aa", "ab"

"", "a", "aa", "aaa", ...

"", "a", "ab", "bca", "ccba", ...

Regulärer Ausdruck - Datenstruktur

Projektarbeit Automata Tools

Speichern als Ausdruckbaum

Reguläre Grammatik

Projektarbeit Automata Tools

Definition:

Eine Grammatik G = (T, N, P, S) besteht aus:

T Menge aus Terminalsymbolen(kurz: Terminale)

N Menge einer Nichtterminalsymbole(kurz: Nichtterminale)

T und N sind disjunkte Mengen.

 $S \in N$ Startsymbol

 $P \subseteq N \times V^*$ Menge der Produktionen; $(A,x) \in P$, mit $A \in N$ und $x \in V^*$;

statt (A,x) schreibt man $A \rightarrow x$

 $V = T \cup N$ heißt auch Vokabular, seine Elemente heißen Symbole

Rechtslineare Grammatik Definition:

Eine Grammatik G = (T, N, P, S) ist eine rechtslineare Grammatik, wenn sie folgenden Anforderungen genügt:

$$X \rightarrow aY$$

$$X \rightarrow a$$

$$X \rightarrow \varepsilon$$

Mit $X,Y \in N$ und $a \in T$.

Reguläre Grammatik - Beispiele

Projektarbeit Automata Tools

```
Terminale := {a,b}
Nichtterminale := {S,A,B}
Start-Symbol := S
Produktionen := {
   S := a A
   A := b B
   B := b B,
   B := b
```

Regulär:

 In den Produktionen sind alle Terminale entweder auf der linken oder rechten Seite der Nichtterminale

Nicht-Regulär:

- In den Produktionen sind Terminale und Nichtterminale gemischt
 - A := a A B b A

Reguläre Grammatik – UML Diagramm

Endlicher Zustandsautomat

Projektarbeit Automata Tools

Definition:

Ein Automat $A = (Q, \Sigma, \delta, q_0, F)$ besteht aus:

Q endliche Menge aller Zustände

 Σ Eingabealphabet $\delta: O \times \Sigma \to O$ Übergangsfunktion

 $\delta: Q \times \Sigma \to Q$ Übergangsfunktion $q_0 \in Q$ Startzustand $F \subseteq Q$ Endzustände

Deterministischer/ nicht deterministischer Automat

Bei einem deterministischen Automaten ist der Zustandswechsel eindeutig beschrieben.

Endlicher Zustandsautomat – NEA zu DEA

	а	b
S0{A}	{B,C}	-
S1{B,C}	-	{A,C}
S2{A,C}	{B,C}	{C}
S3{C}	-	{C}

Implementierung: Konvertierungsrichtungen

Konvertierung RG ↔ FSA

Projektarbeit Automata Tools

Konvertiere jede Produktion, in Abhängigkeit von seiner Form

Konvertierung RE zu FSA

Projektarbeit Automata Tools

- Baumdurchlauf in post-order: Von unten nach oben
- Ausdruck: a

Und-Verknüpfung: a.b

Konvertierung RE zu FSA

Projektarbeit Automata Tools

Oder-Verknüpfung: a|b

Wiederholung: a*

Konvertierung FSA zu RE

Projektarbeit Automata Tools

- Gleichung für die Transitionen aus jeden Zustand
- Löse Gleichungssystem für Startzustand

Gleichungssystem:

$$s0 = a s1 | b s2 | \epsilon$$

 $s1 = a s2 | b s0$

$$s2 = a s0 | b s1$$

- Ergebnis abhängig von Lösungsreihenfolge
- Implementation: Brzozowskis Algebraische Methode

Minimierung von Finite States Automata

- Ein Minimalautomat für eine Sprache *L* ist derjenige mit der minimalen Anzahl von Zuständen
- Gesucht ist also ein äquivalenter Automat, der eine minimale Anzahl von Zustände hat
- Zwei Algorithmen sind dafür implementiert:
 - <u>Table-filling-Algorithmus:</u> abgeleitet aus dem Äquivalenz-Satz von Myhill und Nerode. In diesem Projekt ist er nur auf "totale" Automaten anwendbar, kann aber erweitert werden.
 - Moore Algorithmus

Minimierung: Table-filling-Algorithmus

Projektarbeit Automata Tools

Idee: in einem Matrix, Markiere alle Paare von Zuständen die nicht äquivalent sind.

Formal: zwei Zustände P, Q sind nicht äquivalent, wenn es einen Satz ω gibt, so dass einer von $\delta(P,\omega)$ oder $\delta(Q,\omega)$ ein akzeptierender Zustand und der andere ein nichtakzeptierender Zustand ist.

B und G äquivalent?

F und C äquivalent?

B und G äquivalent?: (B,G) ist nicht Markiert, also wir wissen noch nicht.

F und C äquivalent?: Nein!

B und G äquivalent?: (B,G) ist nicht Markiert, also wir wissen noch nicht.

F und C äquivalent?: Nein!

Minimierung: Table-filling-Algorithmus – Der Algorithmus

- 1. Initialisiere alle Paare in der Matrix als nichtmarkiert, und ohne "dependencies".
- 2. Markiere alle Paare von akzeptierenden Zuständen und nicht akzeptierenden Zuständen.
- 3. Für alle nicht markierte Paare P,Q und jedes Eingabesymbol a:
 - 1. Sei X = $\delta(P,a)$, Y = $\delta(Q,a)$.
 - Falls (X,Y) nicht markiert, füge (P,Q) zu den dependencies von (X,Y) hinzu,
 - 3. Sonst markiere (P,Q), und markiere alle dependencies von (P,Q).

Minimierung: Moore Algorithmus

Beispielautomat

Minimierter Automat

- •Unterteile states in accepting and rejecting und behandle im Folgenden beide Bereiche unabhängig von einander
- •Gib für jeden Übergang die Endgruppe jedes states an
- •Erzeuge für jede Abweichung eine neue Gruppe und fülle sie mit den entsprechenden states
- •Wiederholung bis keine Abweichung vorhanden → Automat ist minimal

Äquivalenz

- Eingabe: Zwei deterministische, minimale Automaten
- Bei unteschiedlicher Zustandsanzahl
 - Trivialer Fall: Automaten sind nicht äquivalent
- Ansonsten
 - Überprüfung ob Startzustände der Automaten äquivalent sind
- Zwei Zustände sind äquivalent, wenn
 - Für alle Elemente des Alphabets die jeweils erreichbaren Zustände äquivalent sind

Vielen Dank für Ihre Aufmerksamkeit