Course Code: 23HS0830

<u>UNIT -I</u> MATRICES

1	a) Define rank of the matrix.	[L1][CO1]	[2M]
	b) Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ into Echelon form and find its rank?	[L3][CO1]	[2M]
	c) State Cauchy–Binet formulae.	[L1][CO1]	[2M]
	d) What is the Consistency and Inconsistency of system of linear equations?	[L1][CO1]	[2M]
	e) Solve by Gauss-Seidel method $x - 2y = -3$; $2x + 25y = 15$. [Only two iterations]	[L3][CO1]	[2 M]
2	a) Reduce the matrix $A = \begin{bmatrix} 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ 1 2 3 2 into Echelon form and find its rank?	[L3][CO1]	[5M]
	b) Reduce the matrix A to normal form and hence its rank A= $ \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix} $	[L3][CO1]	[5M]
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[L2][CO1]	[5M]
	b) Find whether the following equations are consistent if so solve them $x + y + 2z = 4$; $2x - y + 3z = 9$; $3x - y - z = 2$.	[L3][CO1]	[5M]
4	a) Reduce the matrix $\begin{bmatrix} 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} A = into Echelon form and$	[L3][CO1]	[5M]
	find its rank?		
	b) Solve completely the system of equations	FT 43F C 43	153.53
	4x + 2y + z + 3w = 0; $6x + 3y + 4z + 7w = 0$; $2x + y + w = 0$.	[L3][CO1]	[5M]
5	Find the inverse of the matrix $ \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix} $ A= using Gauss-Jordan method.	[L3][CO1]	[10M]
6	a) Solve completely the system of equations $x+2y+3z=0$, $3x+4y+4z=0$, $7x+10y+12z=0$.	[L3][CO1]	[5M]
	b) Show that the equations $x + y + z = 4$; $2x + 5y - 2z = 3$; $x + 7y - 7z = 5$ are not consistent.	[L2][CO1]	[5M]
7	Show that the only real number λ for which the system $x + 2y + 3z = \lambda x$; $3x + y + 2z = \lambda y$; $2x + 3y + z = \lambda z$ has non-zero solution is 6. and solve them when $\lambda = 6$.	[L2][CO1]	[10M]
8	Solve the equations $3x + y + 2z = 3$; $2x - 3y - z = -3$; $x + 2y + z = 4$ Using Gauss elimination method.	[L3][CO1]	[10M]
			_

R23

9	Express the following system in matrix form and solve by Gauss elimination method. $2x_1 + x_2 + 2x_3 + x_4 = 6$; $6x_1 - 6x_2 + 6x_3 + 12x_4 = 36$; $4x_1 + 3x_2 + 3x_3 - 3x_4 = -1$; $2x_1 + 2x_2 - x_3 + x_4 = 10$.	[L2][CO1]	[10M]
10	Solve the following system of equations by Gauss-Jacobi Iteration method $27x + 6y - z = 85$; $x + y + 54z = 110$; $6x + 15y + 2z = 72$.	[L3][CO1]	[10M]
11	Solve the following system of equations by Gauss-Siedel Iteration method $4x + 2y + z = 14$; $x + 5y - z = 10$; $x + y + 8z = 20$.	[L3][CO1]	[10M]

<u>UNIT –II</u> EIGEN VALUES, EIGEN VECTORS AND ORTHOGONAL TRANSFORMATION

1	a) Define Eigen values and Eigen vectors of a matrix.	[L1][CO2]	[2M]
	$A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$ b) Find the Eigne values of the matrix	[L3][CO2]	[2M]
	c) State Cayley Hamilton theorem	[L1][CO2]	[2M]
	d) Convert the symmetric matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 1 \end{bmatrix}$ into the quadratic form.	[L2][CO2]	[2M]
	le) Find the symmetric matrix corresponding to the quadratic form	[L3][CO2]	[2 M]
2	a) For the matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$ find the Eigen values of $3A^3 + 5A^2 - 6A + 2I$.	[L3][CO2]	[5M]
	b) Determine the Eigen values of $A^{-1} \text{ where } A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	[L3][CO2]	[5M]
3	Find the Eigen values and corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$	[L3][CO2]	[10M]
4	Find the Eigen values and corresponding Eigen vectors of the matrix A and also $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$ Determine the modal matrix P $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix} \text{ of .Verify that } P^{-1}AP \text{ is } A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	[L3][CO2]	[10M]
5	Determine the modal matrix P a $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ of . Verify that $P^{-1}AP$ is diagonal matrix.	[L2][CO2]	[10M]
6	a) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$	[L2][CO2]	[5M]
	b) Show that the matrix $A = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ satisfies its characteristic equation.	[L2][CO2]	[5M]
7	$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}_{and find} A^{-1} and A^{4}$ Using Cayley Hamilton theorem	[L3][CO2]	[10M]

R23

8	Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation. Hence find A^{-1} .	[L2][CO2]	[10M]
9	a) State the nature of the Quadratic form $2x_1x_2 + 2x_1x_3 + 2x_2x_3$.	[L1][CO2]	[5M]
	b) Identify the nature of the Quadratic form $-3x_1^2 - 3x_2^2 - 3x_3^2 - 2x_1x_2 - 2x_1x_3 + 2x_2x_3$.	[L2][CO2]	[5M]
10	Reduce the Quadratic form $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ into canonical form by Orthogonal transformation and Find the Rank, Index and Signature of the canonical form.	[L3][CO2]	[10M]
11	Reduce the Quadratic form $2x^2 + 2y^2 + 2z^2 - 2xy - 2xz - 2yz$ into the canonical form by Orthogonal transformation and discuss its nature.	[L3][CO2]	[10M]

<u>UNIT -III</u> CALCULUS

	Citteeles		
1	a) State Rolle's theorem.	[L1][CO3]	[2M]
	b) Verify the Rolle's Theorem can be applied to the function $f(x) = \tan x$ in $[0, \square]$	[L2][CO3]	[2M]
	c) State Lagrange's mean value theorem.	[L1][CO3]	[2M]
	d) State Cauchy's mean value theorem.	[L1][CO3]	[2M]
	e) Expand Taylor's series of the function f(x) in powers of (x-a).	[L2][CO4]	[2M]
2	a) Verify Rolle's Theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $[0, \pi]$	[L2][CO3]	[5M]
	b) Verify Lagrange's mean value theorem for $f(x) = \log_e x$ in [1, e]	[L2][CO3]	[5M]
3	a) Verify Rolle's Theorem for the function $f(x) = log \left[\frac{x^2 + ab}{x(a+b)} \right]$ in $[a, b]$; $a,b>0$ b) Test whether the Lagrange's Mean value theorem holds $f(x) = x^3 - x^2 - 5x + 3$	[L2][CO3]	[5M]
	b) Test whether the Lagrange's Mean value theorem holds $f(x) = x^3 - x^2 - 5x + 3$	[L4][CO3]	[5M]
	in $[0,4]$ and if so find approximate value of c.		
4	a) Verify Rolle's theorem for the function $f(x) = x(x+3)e^{-\frac{x}{2}}$ in [-3,0]	[L2][CO3]	[5M]
	b) Verify Cauchy's mean value theorem for $f(x) = e^x$ and $g(x) = e^{-x}$ in [a, b].	[L2][CO3]	[5M]
5	a) Show that for any $x > 0$, $1 + x < e^x < 1 + xe^x$ using Lagrange's mean value theorem.		
	b) Verify Cauchy's Mean value theorem for $f(x) = x^3$ and $g(x) = x^2$ in [1,2]	[L2][CO3]	[5M]
6	a) Prove that $\frac{\pi}{3} - \frac{1}{5\sqrt{3}} > \cos^{-1}(\frac{3}{5}) > \frac{\pi}{3} - \frac{1}{8}$ using Lagrange's mean value theorem.	[L2][CO3]	[5M]
	b) Verify Cauchy's mean value theorem for $f(x) = sinx$; $g(x) = cosx$ in $\left[0, \frac{\pi}{2}\right]$.	[L2][CO3]	[5M]
7	a) Express the polynomial $2^{x^3 + 7x^2 + x}$ -6 in power of $(x - 2)$ by Taylor's series.	[L3][CO4]	[5M]
	b) Expand $\sin x$ in powers of $\left(x - \frac{\pi}{2}\right)$ up to the term containing $\left(x - \frac{\pi}{2}\right)^4$ assigning	[L2][CO4]	[5M]
	Taylor's series.	[[2][CO 4]	[#N /I]
8	a) Expand $\log_e x$ in powers of (x-1) and hence evaluate $\log 1.1$ correct to 4	[L2][CO4]	[5M]
	decimal places using Taylor's theorem.	ET 01000 43	153.60
	b) Obtain the Maclaurin's series expression of the following functions:	[L2][CO4]	[5M]
	i) e^x ii) $\cos x$ iii) $\sin x$		

9	Verify Taylor's theorem remainder up to 2 $f(x) = (1-x)^{\frac{5}{2}}$ for with Lagrange's form of terms in the interval [0,1].	[L2][CO4]	[10M]
10	a) Calculate the approximate value of $\sqrt{10}$ correct to 4 decimal places using Taylor's theorem.	[L3][CO4]	[5M]
	b) Show that $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$ by Maclaurin's theorem.	[L2][CO4]	[5M]
11	Using Maclaurin's series expand $\tan x$ up to the fifth power of x and hence find the series for log (sec x).	[L3][CO4]	[10M]

UNIT -IV

PARTIAL DIFFERENTIATION AND APPLICATIONS (MULTI VARIABLE CALCULUS)

1	a) Define Continuity of a function of two variables at a point.	[L1][CO5]	[2M]
	b) Evaluate $\lim_{y \to 2} \frac{\lim_{x \to 1} \frac{2x^2y}{x^2 + y^2 + 1}}{x^2 + y^2 + 1}$.	[L5][CO5]	[2M]
	c) If $x = u(1 - v)$; $y = uv$ then prove that $J\left(\frac{x,y}{u,v}\right) = u$	[L2][CO5]	[2M]
	d) State Functional Dependence.	[L1][CO5]	[2M]
	e) Define Extreme value of a function of two variables.	[L1][CO5]	[2M]
2	a) If $U = log(x^3 + y^3 + z^3 - 3xyz)$, prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 U = \frac{-9}{(X+Y+Z)^2}$	[L5][CO5]	[5M]
	b) If $u = tan^{-1} \left[\frac{2xy}{x^2 - y^2} \right]$ then Prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.	[L5][CO5]	[5M]
3	a)	[L2][CO5]	[5M]
	$\frac{dt}{dt} = \frac{1}{2} \text{ by total derivative.} \sqrt{1-t}$ $u = \sin^{-1}(x-y), \text{ where } x = 3t, y = 4t^3 \text{ , then show that}$ $du \qquad 3$		
	b) If $u = f(y - z, z - x, x - y)$ prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ by using Chain rule.	[L3][CO5]	[5M]
5	Expand $x^2y + 3y - 2$ in powers of $(x - 2)$ and $(y + 2)$ up to the term of 3^{rd} degree.	[L2][CO5]	[10M]
6	a) Expand $e^x siny$ in powers of x and y by Maclaurin series.	[L2][CO5]	[5M]
	b) If $u = x^2 - 2y$; $v = x + y + z$, $w = x - 2y + 3z$, then find Jacobian $J\left(\frac{u,v,w}{x,y,z}\right)$.	[L1][CO5]	[5M]
7	$\int_{a \in I_1} u = \frac{x+y}{1-xy}$ and $v = tan^{-1}x + tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$?	[L1][CO5]	[5M]
	b) Verify if $u = 2x - y + 3z$, $v = 2x - y - z$, $w = 2x - y + z$ are functionally dependent and if so, find the relation between them.	[L5][CO5]	[5M]
8	Examine the maxima and minima, if any, of the $f(x) = x^3y^2(1-x-y)$ function	[L4][CO5]	[10M]
9	a) Examine the function for extreme value $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$; $(x>0,y>0)$.	[L4][CO5]	[5M]
	b) Find the minimum value of $x^2+y^2+z^2$ given $x+y+z=3a$	[L1][CO5]	[5M]
10	a) Find the stationary points of $u(x,y) = sinx. siny. sin(x + y)$ where $0 < x < \pi$, $0 < y < \pi$ and find the maximum of u.	[L1][CO5]	[5M]
	b) Find the shortest distance from origin to the surface $xyz^2 = 2$.	[L1][CO5]	[5M]
11	a) Find a point on the plane $3x + 2y + z - 12 = 0$, which is nearest to the origin.	[L1][CO5]	[5M]
	b) Find the points on the sphere $x^2 \Box y^2 \Box z^2 \Box 4$ that are closest and farthest from the point $(3, 1, -1)$.	[L1][CO5]	[5M]

<u>UNIT -V</u> MULTIPLE INTEGRALS (MULTI VARIABLE CALCULUS)

	(
1	a) Evaluate $\int_0^2 \int_0^x y dy dx$	[L5][CO6]	[2M]
	b) Evaluate $\int_0^{\pi} \int_0^{a \sin \theta} r dr d\theta$	[L5][CO6]	[2M]
	c) Transform the integral into polar coordinates, $\int_0^a \int_0^{\sqrt{a^2 - x^2}} (x^2 + y^2) dy dx$. d) Find the area enclosed by the parabolas $x^2 = y$ and $y^2 = x$.	[L2][CO6]	[2M]
	d) Find the area enclosed by the parabolas $x^2 = y$ and $y^2 = x$.	[L1][CO6]	[2M]
	e) Evaluate $I = \int_0^1 \int_1^2 \int_2^3 xyz dx dy dz$.	[L5][CO6]	[2M]
2	a) Evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$	[L5][CO6]	[5M]
	b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dx dy dz}{\sqrt{1-x^2-y^2-z^2}}$	[L5][CO6]	[5M]
3	a) Evaluate $\iint (x^2 + y^2) dx dy$ in the positive quadrant for which $x + y \le 1$.	[L5][CO6]	[5M]
	b) Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$.	[L5][CO6]	[5M]
4	a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} (x^2 + y^2) dy dx$	[L5][CO6]	[5M]
	b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by converting to polar coordinates.	[L5][CO6]	[5M]
5	a) Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.	[L2][CO6]	[5M]
	b) Evaluate the integral by transforming into polar coordinates	[L3][CO6]	[5M]
	a) Evaluate $\int_0^1 \int_x^{\sqrt{x}} y \sqrt{x^2 + y^2} dx dy$.		
6	a) Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dx dy$.	[L5][CO6]	[5M]
	b) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx.$	[L5][CO6]	[5M]
7	Change the order of integration in $I = \int_{0}^{1} \int_{x^2}^{2-x} (xy) dy dx$ and hence evaluate the same.	[L1][CO6]	[10M]
8	a) By changing order of integration, evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$.	[L3][CO6]	[5M]
	b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	[L5][CO6]	[5M]
9	a) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	[L1][CO6]	[5M]
	b) Evaluate $\int_1^s \int_1^{\log y} \int_1^{e^x} \log z \ dz dx dy$.	[L5][CO6]	[5M]
10	a) Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.	[L1][CO6]	[5M]
	b) Evaluate $\iint \int (x^2 + y^2 + z^2) dx dy dz$ taken over the volume enclosed by the sphere $x^2 + y^2 + z^2 = 1$, by transforming into spherical polar coordinates.	[L5][CO6]	[5M]
11	a) Evaluate the triple integral $\iiint xy^2zdxdydz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.	[L5][CO6]	[5M]
	b) Calculate the volume of the solid bounded by the planes $x = 0, y = 0, x + y + z = a$ and $z = 0$	[L1][CO6]	[5M]

Course Code: 23HS0830

Prepared by: Dept. of Mathematics