

HOTEL BOOKING DEMAND

Booking Cancellation Prediction

ABSTRACT

This data describes two datasets with hotel demand data from Portugal. One of the hotels is a resort hotel and the other is a city hotel. Each observation represents a hotel booking. Both datasets comprehend bookings due to arrive between the 1st of July, 2015 and the 31st of August, 2017, including bookings that effectively arrived and bookings that were canceled

Presented to: Prof. Ingrassia Data Analysis & Statistical Learning

Presented by:

Muhammad Zaffar, Syed 1000023608 Muhammad Hassan Ali 1000023619 Adeel 1000023622

Exploratory Data Analysis

The dataset for this report analysis is "Hotel Booking Demand," which may be accessed in the "Assignments for final reports" section of MS-Teams as well as on the Kaggle platform: https://www.kaggle.com/jessemostipak/hotel-booking-demand.

This data collection comprises booking information for a city hotel and a resort hotel, including when the booking was made, duration of stay, number of adults, children, and/or babies, and number of available parking spaces, among other things.

Three datasets will be used in the analysis:

- Train Data: About 60% of the units of the original dataset.
- Validation Data: About 20% of the units of the original dataset.
- Test Data: About 20% of the units of the original dataset.

The Target Variable to be predicted: "is_canceled" in the training dataset, which consists of two classes "0" or "1". 0 means "NO" and 1 means "Yes".

This dataset on hotel bookings can assist us in answering those queries as below:

Have you ever thought about when the optimal time to book a hotel stay is? Or what is the best length of stay to get the greatest daily rate? What if you wanted to know whether a hotel was likely to receive an unusually large number of special requests?

Also we can utilize this dataset to conduct research on a variety of issues such as booking cancellation prediction, customer segmentation, customer satiation, seasonality, and so on.

Attribute Specification

The dataset contains initially 71633 observations of 32 variables. We will drop the first variable which is for the Id of the hotels which has all the unique values also the ID variable is presented for the customers instead of designation for anonymity reasons and have all the unique values.

Also we have 2 missing values in the children variable so we will omit these missing values from the dataset.

When the transformation has been made, now the dataset has 31 variables with 71631 observations. Following are the variable type and description to understand the nature of the variable as per the information was collected.

Attribute	Attribute Type	Description
hotel	Categorical	booking information for a
		city hotel or a resort hotel
is_canceled	Categorical	Value indicating if the
(Target Variable)		booking was canceled (1) or
		not (0)
lead_time	Integer	Number of days that
		elapsed between the
		entering date of the booking
		into the PMS and the arrival
		date
arrival_date_year	Integer	Year of arrival date
arrival_date_month	Categorical	Month of arrival date with
		12 categories: "January" to
		"December"
arrival_date_week_number	Integer	Week number of the arrival
		date
arrival_date_day_of_month	Integer	Day of the month of the
		arrival date
stays_in_weekend_nights	Integer	Number of weekend nights
		(Saturday or Sunday) the
		guest stayed or booked to
		stay at the hotel
stays_in_week_nights	Integer	Number of week nights
		(Monday to Friday) the
		guest stayed or booked to
		stay at the hotel
adults	Integer	Number of adults
children	Integer	Number of childern
babies	Integer	Number of babies
meal	Categorical	Type of meal booked.
		Categories are presented in
		standard hospitality meal
		packages: Undefined/SC –
		no meal package; BB – Bed
		& Breakfast; HB – Half board

		(breakfast and one other
		meal – usually dinner);
country	Categorical	Country of origin
		Market segment
market_segment	Categorical	
		designation. In categories,
		the term "TA" means
		"Travel Agents" and "TO"
	0	means "Tour Operators"
distribution_channel	Categorical	Booking distribution
		channel. The term "TA"
		means "Travel Agents" and
		"TO" means "Tour
		Operators"
is_repeated_guest	Categorical	Value indicating if the
		booking name was from a
		repeated guest (1) or not (0
previous_cancellations	Integer	Number of previous
		bookings that were
		cancelled by the customer
		prior to the current booking
agent	Categorical	ID of the travel agency that
		made the booking
previous_bookings_not_canceled	Integer	Number of previous
		bookings not cancelled by
		the customer prior to the
		current booking
reserved_room_type	Categorical	Code of room type reserved.
		Code is presented instead of
		designation for anonymity
		reasons
assigned_room_type	Categorical	Code for the type of room
	Ū	assigned to the booking.
		Sometimes the assigned
		room type differs from the
		reserved room type due to
		hotel operation reasons
		(e.g. overbooking) or by
		customer request. Code is
		presented instead of
		designation for anonymity
		reasons
booking_changes	Integer	Number of changes or
2229_0863		amendments made to the
		amenaments made to the

	T	handing for a the
		booking from the moment
		the booking was entered on
		the PMS until the moment
		of check-in or cancellation
deposit_type	Categorical	Indication on if the
		customer made a deposit to
		guarantee the booking. This
		variable can assume three
		categories: No Deposit – no
		deposit was made; Non
		Refund – a deposit was
		made in the value of the
		total stay cost; Refundable –
		a deposit was made with a
		value under the total cost of
		stay.
company	Categorical	ID of the company/entity
		that made the booking or
		responsible for paying the
		booking. ID is presented
		instead of designation for
		anonymity reasons
days in waiting list	Integer	Number of days the booking
, = = 5=		was in the waiting list
		before it was confirmed to
		the customer
customer_type	Categorical	Type of booking, assuming
//		one of four categories:
		Contract - when the booking
		has an allotment or other
		type of contract associated
		to it;
		Group – when the booking
		is associated to a group;
		Transient – when the
		booking is not part of a
		group or contract, and is not
		associated to other
		transient booking;
		Transient-party – when the
		booking is transient, but is
		associated to at least other
		transient booking

adr	Numeric	Average Daily Rate as
		defined
required_car_parking_spaces	Integer	Number of car parking
		spaces required by the
		customer
total_of_special_requests	Integer	Number of special requests
		made by the customer (e.g.
		twin bed or high floor)
reservation_status_date	Date	Date at which the last status
		was set. This variable can be
		used in conjunction with the
		Reservation Status to
		understand when was the
		booking canceled or when
		did the customer checked-
		out of the hotel

The Dataset consists of 14 variables that are categorical type, 16 variables that are of numeric type and 1 variable of Date type.

The main objective is to find out which criteria are the most successful in the forecast of cancelations of bookings. In this report, we will also classify our datasets by various techniques so that we can calculate the maximum precision for the main purpose. This helps us lower the booking cancelation after realizing which aspects have to be increased or decreased to mitigate the booking cancellation.

Data Exploration

Given Below are the descriptive statistics of the hotel booking dataset by which we can see that the mean, median, minimum, and maximum of the variables;

	Continuous										
Variable	Minimum	1 st Quartile	Median	Mean	3 rd Quartile	Maximum	Others				
lead_time	0.0	18.0	69.0	103.8	160.0	737.0	-				
arrival_da	2015	2016	2016	2016	2017	2017	-				
te_year											
arrival_da	1.0	16.0	28.0	27.19	38.0	53.0	-				
te_week_											
number											
arrival_da	1.0	8.0	16.0	15.77	23.0	31.0	-				
te_day_of											
_month											
stays_in_	0.0	0.0	1.0	0.924	2.0	18.0	-				
weekend_											
nights											

stays_in_ week_nig hts	0.0	1.0	2.0	2.497	3.0	42.0	-
adults	0.0	2.0	2.0	1.857	2.0	55.0	-
children	0.0	0.0	0.0	0.104	0.0	10.0	-
babies	0.0	0.0	0.0	0.007	0.0	10.0	-
previous_ cancellati ons	0.0	0.0	0.0	0.08	0.0	26.0	-
previous_ bookings_ not_cance led	0.0	0.0	0.0	0.136	0.0	70.0	-
booking_c hanges	0.0	0.0	0.0	0.223	0.0	21.0	-
days_in_ waiting_li st	0.0	0.0	0.0	2.35	0.0	391.0	-
adr	-6.38	69.0	94.67	101.9	126.0	5400	-
required_ car_parki ng_spaces	0.0	0.0	0.0	0.062	0.0	8.0	-
total_of_s pecial_req uests	0.0	0.0	0.0	0.571	1.0	5.0	-
			D	ate			
reservatio n_status_ date	2014-10- 17	2016-02-01	2016- 08-06	2016- 07-29	2017-02-08	2017-09- 14	-

Categorical									
hotel		arrival_date_month		meal		country			
City Hotel	47586	August	8293	BB	55337	PRT	29092		
Resort Hotel	24045	July	7632	FB	465	GBR	7257		
		May	7133	НВ	8711	FRA	6306		
is_canceled	is_canceled		6699	SC	6397	ESP	5138		
0	45099	April	6625	Undefined	721	DEU	4362		
1	26532	June	6569			ITA	2223		
		Others 28680		customer	_type	Others	17253		
deposit_type				Contract	2450				
No Deposit	62804	is_repeated_guest		Group	343				
No Refund	8732	0	69339	Transient	53821				

Refundable	95	1	2292	Transient- party	15017			
market_segment distribution_channel company								
				-	_ <u>-</u>			
Aviation	144	Corporate	4018	NULL	67566			
Complementary	415	Direct	8752	40	540			
Corporate	3162	GDS	127	223	464			
Direct	7608	TA/TO	58733	67	146			
Groups	11857	Undefined	1	45	141			
Offline TA/TO	14534			153	128			
Online TA	33911			Other	2646			
reserved_room_t	ype	assigned_room_t	assigned_room_type					
Α	51591	Α	44401	9	19252			
D	11477	D	15159	NULL	9781			
E	3952	E	4755	240	8302			
F	1763	F	2240	1	4327			
G	1259	G	1542	14	2174			
В	646	С	1433	7	2137			
Other	943	Other	2101	Other	25658			

We can see that in our dataset, certain variables have a mean that is higher than the median, while others have a median that is higher than the mean. So, in general, but not always, if the median is lower than the mean, we may see significant outliers at the high end of the distribution, while if the mean is lower than the median, we may see major outliers at the low end. To have a detailed overview of the variables, we will perform a univariate analysis to narrate the pattern of response to the variables.

Above are the histograms shows us the distribution of the continuous data in the Hotel Booking dataset. Also we will plot the bar plot for the distribution to determine the existence of relationships between the variables and the class variable.

We use the bar graph to see the relationship between the variables as follows:

Above bar graph gives us the following information for the given data for both hotels:

- The City Hotel received around 65 percent of all booking inquiries, while the Resort Hotel received 35 percent.
- > We can see from the graph that the months of April to October had the highest amount of hotel booking requests.
- ➤ The reservation has been made mostly for the BB bread & breakfast for both hotels.
- The reservation for both the hotels mostly made from the peoples, who don't belong to Portugal.
- Most of the tourist didn't pay any deposit at the time of reservation.
- > Very few of the tourists have visited previously in both the hotels.
- ➤ Most of the customer are from "Transient" and "Online TA" also the distribution channel was "TA/TO".
- At the time of reservation, mostly the reserved room and the assigned room at arrival was A.
- Most of the tourists didn't have any agent and company at the time of reservation.

Correlation between the Variables

This is a preliminary analysis of the data in the original space, the upper triangle of the matrix there are the coefficients of correlation between variables. Specifically, if we look at the plot, we can see that there is a correlation between some variables also there is no correlation between variables as we can see that the correlation between children and arrival_date_week_number is 0.01 which is nearly 0, arrival_date_year & arrival_date_week_number, which is -0.54 have a negative correlation also stays_in_weekend_nights & stays_in_week_nights, which is 0.50 having a positive correlation.

As we can observe that the positive correlation for stays_in_weekend_nights & stays_in_week_nights is having a positive correlation but arrival_date_year & arrival date week number having a negative correlation.

Modeling

Logistic Regression

```
[1] 71631
glm.fit: fitted probabilities numerically 0 or 1 occurred
glm(formula = is_canceled ~ hotel + lead_time + arrival_date_year +
    arrival_date_month + stays_in_weekend_nights + arrival_date_day_of_month +
    stays_in_week_nights + arrival_date_week_number + adults +
    children + babies + meal + market_segment + distribution_channel +
    is_repeated_guest + previous_cancellations + previous_bookings_not_canceled +
    booking_changes + deposit_type + days_in_waiting_list + customer_type +
    adr + total_of_special_requests + required_car_parking_spaces,
    family = binomial, data = train_hb)
Deviance Residuals:
   Min
             1Q
                  Median
                                        Max
-8.4904 -0.7893 -0.4677
                            0.3458
                                     5.6286
```

```
Coefficients:
                                 Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                -4.348e+02 4.205e+01 -10.341 < 2e-16 ***
                                -4.590e-02 2.228e-02 -2.060 0.039390 *
hotel
                                 2.622e-03 1.155e-04 22.699 < 2e-16 ***
lead_time
                                 2.115e-01 2.087e-02 10.130 < 2e-16 ***
arrival_date_year
                                 3.479e-01 1.069e-01
arrival_date_month
                                                         3.254 0.001140 **
stays_in_weekend_nights
                                 4.188e-02 1.124e-02
                                                         3.727 0.000194 ***
arrival_date_day_of_month
                                 1.228e-02 3.696e-03
                                                         3.324 0.000887 ***
                                3.571e-02 5.931e-03 6.021 1.73e-09 ***
-7.625e-02 2.455e-02 -3.106 0.001898 **
1.199e-01 2.020e-02 5.937 2.90e-09 ***
1.764e-01 2.374e-02 7.431 1.08e-13 ***
stays_in_week_nights
                                                         6.021 1.73e-09 ***
arrival_date_week_number
                                                         5.937 2.90e-09 ***
adults
children.
                                                        7.431 1.08e-13 ***
                                 2.329e-01 9.677e-02
                                                        2.407 0.016092 *
babies
meal
                                -1.432e-02 8.573e-03 -1.670 0.094859 .
market_segment
                                5.487e-01 1.609e-02 34.091 < 2e-16 ***
distribution_channel
                                -3.159e-01 2.131e-02 -14.821 < 2e-16 ***
                               -5.927e-01 1.030e-01 -5.752 8.80e-09 ***
is_repeated_quest
                                3.071e+00 7.929e-02 38.730 < 2e-16 ***
previous_cancellations
previous_bookings_not_canceled -4.674e-01 3.177e-02 -14.709 < 2e-16 ***
                               -3.881e-01 1.940e-02 -20.007 < 2e-16 ***
booking_changes
                                4.469e+00 7.970e-02 56.079 < 2e-16 ***
deposit_type
                                -7.671e-04 6.055e-04 -1.267 0.205225
days_in_waiting_list
                                -2.562e-02 1.837e-02 -1.394 0.163187
customer_type
                                4.206e-03 2.436e-04 17.266 < 2e-16 ***
adr
                                -6.217e-01 1.412e-02 -44.041 < 2e-16 ***
total_of_special_requests
required_car_parking_spaces -2.361e+04 9.883e+05 -0.024 0.980939
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 94434 on 71630 degrees of freedom
Residual deviance: 64757 on 71606 degrees of freedom
AIC: 64807
Number of Fisher Scoring iterations: 14
glm.pred2_L
                 0
        No 42854 12412
        Yes 2245 14120
glm.pred2_L
                 0
        No 42854 12412 55266
        Yes 2245 14120 16365
        Sum 45099 26532 71631
[1] 20.46181
```

```
glm.pred2_T 0 1
NO 14341 4046
Yes 693 4800

glm.pred2_T 0 1 Sum
NO 14341 4046 18387
Yes 693 4800 5493
Sum 15034 8846 23880
[1] 19.84506
```

We can see the p value of all coefficients are significantly small so we can reject null hypothesis and realize these variables are completely related to the model.

Observing the above confusion matrix, we can see that the diagonal elements indicate correct predictions, while other represents incorrect predictions. In general 14341 + 4800 are true-positive & true-negative and 4046+693 false-positive and false-negative predicted. While delta is 19.84 which is quite higher.

Neural Network

```
Mode
                 Length Class
                             call
call
                  6 -none-
                 1000 -none- numeric
response
                24000 -none-
covariate
                              numeric
model.list
                 2 -none-
                               list
                   1 -none-
                              function
err.fct
act.fct
                   1 -none-
                              function
output.act.fct
                   1 -none-
                              function
                   1 -none- logical
linear.output
                   25 data.frame list
data
exclude
                   0 -none- NULL
net.result
                   5 -none-
                               list
weights
                   5 -none-
                               list
                   5 -none-
                               list
generalized.weights 5 -none- list result.matrix 280 -none- numeric [,1]
generalized.weights
                                     [,2]
                                                 [,3]
Intercept.to.1layhid1 -0.50219235 1.897465700 -0.875869629 -0.261016314
V1.to.1layhid1
                   0.13153117 -2.271925486 -0.363100999 -0.642269499
                              0.980464139 1.247008646 -0.340968618
V2.to.1layhid1
                   -0.07891709
                          [,5]
                  115.059500922
error
reached.threshold
                   0.009882676
                   18.000000000
Intercept.to.1layhid1 -1.330034111
V1.to.1layhid1
                   -0.850580314
V2.to.1layhid1
                   -1.788830742
```

```
[1] 115.0595 115.0595 113.2149 115.0595 115.0595
[1] 3
     [,1]
[1,]
        0
[2,]
        0
[3,]
        0
[4,]
[5,]
[6,]
        0
        0
        0
           [,1]
[1,] 0.3491061
[2,] 0.3491061
[3,] 0.3491061
[4,] 0.3491061
[5,] 0.3491061
[6,] 0.3491061
      [,1]
         0
[1,]
[2,]
         0
[3,]
         0
[4,]
         0
[5,]
         0
[6,]
         0
           yhat_test
y_valid_hb
                0
                       1
                            Sum
        0
            14794
                     240 15034
       1
             8371
                     475 8846
        Sum 23165
                     715 23880
[1] 0.6394054
```

Observing the above confusion matrix, we can see that the diagonal elements indicate correct predictions, while other represents incorrect predictions. In general 14794 + 475 are true-positive & true-negative and 240+8371 false-positive and false-negative predicted. While accuracy is better than the logistic regression but still not good enough.

Random Forest

```
call:
randomForest(formula = is_canceled ~ hotel + lead_time + arrival_date_year +
arrival_date_month + stays_in_weekend_nights + arrival_date_day_of_month +
stays_in_week_nights + arrival_date_week_number + adults +
                                                        children + babies + meal
+ market_segment + distribution_channel +
                                         is_repeated_quest + previous_cancellations
+ previous_bookings_not_canceled +
                                 booking_changes + deposit_type +
days_in_waiting_list + customer_type +
                                      adr + total_of_special_requests +
required_car_parking_spaces, data = train_hb, mtry = 24, ntree = 10)
             Type of random forest: regression
                   Number of trees: 10
No. of variables tried at each split: 24
         Mean of squared residuals: 0.1280721
                  % var explained: 45.08
 [1] 0.1085559
 [1] 0.3294782
1 2 3 4 5 6
001000
            yhat_test
y_valid_hb 0
                         1
                              Sum
            13653 1381 15034
              2201 6645 8846
         1
         Sum 15854 8026 23880
[1] 0.85
```

Observing the above confusion matrix, we can see that the diagonal elements indicate correct predictions, while other represents incorrect predictions. In general 13653 + 6645 are true-positive & true-negative and 1381+2201 false-positive and false-negative predicted. While accuracy is better than the both neural-network and logistic regression.

We can clearly observe that the better model for the hotel booking prediction is Random Forest.