Exercice 1.

1. (a) F est dérivable sur $]0; +\infty[$ et pour tout réel x de cet intervalle :

$$F'(x) = 1 \times \ln x + x \times \ln x - 1$$
$$= \ln x$$
$$= f(x)$$

Par conséquent F' = f donc F est une primitive de f sur]0; $+\infty[$. On a donc : $I = \int_{-\epsilon}^{e} f(x) dx = F(e) - F(1) = (e \ln e - e) - (1 \ln 1 - 1) = 0 - (-1) = 1$.

(b)
$$J = \int_{1}^{e} (\ln x)^{2} dx$$
.

On pose $u(x) = (\ln x)^2$ et v'(x) = 1, on a $J = \int_1^e u(x)v'(x) dx$.

u et v sont dérivables sur [1; e] à dérivées continues, donc on peut effectuer une intégration par parties.

On a : $u'(x) = 2 \times \frac{\ln x}{x}$ et v(x) = x par exemple. Il vient :

$$J = \left[x(\ln x)^2 \right]_1^e - \int_1^e 2 \frac{\ln x}{x} \times x \, dx$$
$$= e - 2 \int_1^e \ln x \, dx$$
$$= e - 2I$$

- (c) Puisque I = 1, on obtient : J = e 2.
- (d) Pour tout x de [1; e], $0 \le \ln x \le 1$ donc $0 \le (\ln x)^2 \le \ln x$ donc $g(x) \le f(x)$. Par conséquent :

$$A = \int_{1}^{e} f(x) dx - \int_{1}^{e} g(x) dx$$
$$= I - J$$
$$= 3 - e$$

2. On a $M(x; \ln(x))$ et $N(x; (\ln(x))^2)$ donc $MN = \ln x - (\ln x)^2$. Posons $h(x) = \ln x - (\ln x)^2$. h est dérivable sur [1; e] et pour tout x de cet intervalle, $h'(x) = \frac{1}{x} - 2\frac{\ln x}{x} = \frac{1 - 2\ln x}{x}$.

$$h'(x) = 0 \iff \ln x = \frac{1}{2} \iff x = e^{\frac{1}{2}} = \sqrt{e}.$$

Puisque x est positif, h'(x) est du signe de $1 - 2 \ln x$.

$$1 - 2\ln x > 0 \iff \ln x < \frac{1}{2} \iff x < e^{\frac{1}{2}} \iff x < \sqrt{e}.$$

Par conséquent, h a un maximum pour $x = \sqrt{e}$.

$$h(\sqrt{e}) = \ln(\sqrt{e}) - (\ln(\sqrt{e}))^2 = \frac{1}{2} - (\frac{1}{2})^2 = \frac{1}{4}.$$

MN est maximum pour $x = \sqrt{e}$ et vaut alors $\frac{1}{4}$.

Exercice 2.

Soit la fonction définie sur \mathbb{R} par $f(x) = \cos(x) + \sin^2(x)$.

1. (a) Pour tout réel x,

$$f(x + 2\pi) = \cos(x + 2\pi) + \sin^2(x + 2\pi)$$

= $\cos(x) + \sin^2(x)$ car $\cos(x + 2\pi) = \cos(x)$ et $\sin(x + 2\pi) = \sin(x)$
= $f(x)$

On en déduit que f est bien 2π – périodique.

(b) Pour tout réel $x, -x \in \mathbb{R}$,

$$f(-x) = \cos(-x) + \sin^2(-x)$$

$$= \cos(-x) + (\sin(-x))^2$$

$$= \cos(x) + (-\sin(x))^2$$

$$= \cos(x) + \sin^2(x)$$

$$= f(x)$$

On en déduit que f est paire.

- (c) f étant 2π périodique et paire, on peut restreindre l'intervalle d'étude à $[0; \pi]$.
- 2. (a) f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = -\sin(x) + 2\sin(x)\cos(x)$$
$$= \sin(x)(2\cos(x) - 1)$$

(b) Pour tout réel x de l'intervalle $[0; \pi]$ on a $\sin(x) \ge 0$. Or $2\cos(x) - 1 \ge 0 \Longleftrightarrow \cos(x) \ge \frac{1}{2}$.

Or
$$2\cos(x) - 1 \ge 0 \iff \cos(x) \ge \frac{1}{2}$$
.

À l'aide du cercle trigonométrique, sur $[0; \pi]$, l'inéquation $\cos(x) \geqslant \frac{1}{2}$ a pour solution $\left[0; \frac{\pi}{3}\right]$. On en déduit le signe de f'(x) sur $[0; \pi]$:

x	0		$\frac{\pi}{3}$		π
signe de $\sin(x)$	0	+	0	+	0
$\begin{array}{c c} \text{signe de} \\ 2\cos(x) - 1 \end{array}$		+	0	_	
signe de $f'(x)$	0	+	0	_	0

On en déduit le tableau de variation de f sur $[0; \pi]$:

x	0	$\frac{\pi}{3}$	π
Variation de f	1	$\frac{5}{4}$	1

3. Voici le tracé complet sur $[-2\pi\,;\,2\pi]$:

3. Voici le tracé complet sur $[-2\pi\,;\,2\pi]$:

3. Voici le tracé complet sur $[-2\pi\,;\,2\pi]$:

3. Voici le tracé complet sur $[-2\pi\,;\,2\pi]$:

