Architettura degli Elaboratori

Lezione 10 – ROM, PROM, PAL e PLA

Giuseppe Cota

Dipartimento di Scienze Matematiche Fisiche e Informatiche Università degli Studi di Parma

Diodo

- V_a : tensione anodo
- V_c : tensione catodo
- Il diodo può essere visto come una specie di interruttore
- Permette il passaggio di corrente dall'anodo verso il catodo solo se $V_a V_c = \Delta V > \epsilon$ (assumiamo $\epsilon = 0$)
- Quindi:
 - Se V_a alta e V_c bassa → Resistenza ~0, ossia **interruttore chiuso**, ossia **passaggio di corrente**.
 - Se V_a bassa → Resistenza ∞, ossia interruttore aperto, ossia nessun passaggio di corrente

Output enable

- Molto spesso i circuiti integrati hanno un segnale di input chiamato output enable (OE).
 - Se questo segnale è attivo allora il circuito (e il suo output) è attivo.
 - Se questo segnale non è attivo allora l'output del circuito è in alta impedenza, ossia è come se il circuito fosse completamente staccato dalla linea di output
- Abbiamo due tipi di segnali di output enable:
 - Attivo alto, il circuito è attivo quando il segnale OE è alto (segnale a 1)
 - Attivo basso, il circuito è attivo quando il segnale OE è basso (segnale a 0).
 - Uso la notazione \overline{OE} e si aggiunge un pallino di negazione al punto di ingresso del segnale stesso.

Esempio di NAND con OE

X	Υ	ŌĒ	Z
0	0	0	1
0	1	0	1
1	0	0	1
1	1	0	0
-	-	1	ϕ

Dove ϕ è lo stato di alta impedenza

Realizzazione di una tabella di verità

 Posso realizzare qualunque funzione di m variabili con un numero di porte AND pari al numero di mintermini e una porta OR con un numero di ingressi pari al numero di mintermini a 1 (formula canonica SOP).

- La rete ha come uscita $z = \overline{x_1}x_2 + x_1\overline{x_2} = x_1 \oplus x_2$
- Configurando opportunamente la matrice dei contatti posso realizzare qualunque funzione logica.
- La struttura può essere estesa con più uscite → una rete a m ingressi e k uscite.
 - Una rete del genere fornisce per ogni configurazione degli m ingressi una configurazione sulle k uscite \rightarrow una ROM (Read Only Memory) di $M = 2^m$ celle di k bit ciascuna

Decoder e tabella di verità

• Il numero binario corrispondente alla combinazione degli m ingressi rappresenta l'*indirizzo* della cella.

Read Only Memory (ROM)

ROM con 8 celle a 4 bit

Read Only Memory (ROM)

- Nelle ROM propriamente dette, all'inizio la matrice non ha alcun contatto tra righe e colonne.
- Il costruttore inserisce delle connessioni (diodi) in base al contenuto che si vuole memorizzare.
 - È il costruttore che programma la ROM.
- Non è possibile variare il contenuto della ROM una volta programmata.

Programmable ROM (PROM)

- Nelle PROM (Programmable Read Only Memory), il costruttore crea una matrice di contatto che ha inizialmente tutti i punti di contatto tra righe e colonne, attraverso un diodo e un fusibile.
 - Inizialmente tutti i bit sono a 1.
- Se voglio programmare un bit a 0 devo fondere il relativo fusibile.
 - È l'utente che programma la PROM.

Organizzazione di una PROM

- Una PROM è un dispositivo programmabile dall'utente in cui è presente una matrice di AND fissa e una matrice di OR programmabile.
 - La matrice di AND è fissata una volta per tutte dal costruttore
 - La matrice di OR può essere programmata dall'utente/progettista per realizzare le funzioni desiderate.

Rete logica di una PROM

EPROM e EEPROM

- EPROM (Erasable PROM): si programmano come le PROM, ma è
 possibile cancellare la programmazione corrente esponendo la
 piastrina al quarzo, posta in superficie, ai raggi ultravioletti. Sono
 programmabili migliaia di volte.
- **EEPROM (Electrically Erasable)**: si programmano e si cancellano per via elettrica, di solito all'interno dello stesso apparecchio nel quale sono utilizzate. Sono programmabili centinaia di migliaia di volte.

PAL e PLA

 I dispositivi PAL (Programmable Array Logic) hanno una matrice di OR fissa, con connessioni stabilite dal costruttore e una matrice di AND programmabile

PAL

- I PLA (Programmable Logic Array) sono dispositivi in cui è programmabile sia la matrice di AND sia la matricedi OR.
 - Massima flessibilità

PLA

PLA

Domande?

Riferimenti principali

Appendice A di Calcolatori elettronici. Architettura e
 Organizzazione, Giacomo Bucci. McGraw-Hill Education, 2017.
 http://highered.mheducation.com/sites/dl/free/8838675465/1098336/
 AppA.pdf (download gratuito)