## Stochestic Process

Lect 1:

| Introduction                                                                |                                                                         |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Frequentist and ba                                                          | yesian.                                                                 |
|                                                                             | $Call \mathcal{D} = S \times S_{i=1}^{(i)}$                             |
| Data Matrix  X= [-x <sup>2</sup> ]  (CH)                                    | RNXD                                                                    |
| where $X^{(i)} = [X_1, \dots]$                                              | $- \times_{\mathcal{D}}^{(i)} \mathcal{J} \in \mathbb{R}^{\mathcal{D}}$ |
| we assume each x" from P(7/18) in [iii.                                     |                                                                         |
| from PC/18) in [1111                                                        | a manner.                                                               |
| Frequentist. assume B<br>then the probability to ob                         | is a constant.<br>serve N data points                                   |
| in i.i.d manner is $P(1) \theta\rangle = \prod_{i=1}^{N} P(x^{(i)} \theta)$ |                                                                         |
|                                                                             | nn use MLE<br>(Maximum likeliha                                         |
|                                                                             | estimator)                                                              |



$$=\int_{\Phi} P(y|x,\theta) P(\phi|y) d\theta$$

L> Marginalizhy out the parameter.
reduce the overfitting/