Analysis - PMA 4 -

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

January 12, 2021

Overview

Goal

ightharpoonup A subset of \mathbb{R}^k is closed and bounded iff it is compact.

Definition

Let E be a subset of a metric space X.

▶ A family $\{G_{\alpha}\}$ of open subsets in X is called an open cover of E if

$$E \subset \bigcup_{\alpha} G_{\alpha}$$
.

▶ A subfamily $\{G_{\beta}\}$ of $\{G_{\alpha}\}$ is called an subcover of E if

$$E \subset \bigcup_{\beta} G_{\beta}$$
.

▶ If $\{G_{\beta}\}$ is finite, say $\{G_{\alpha_1}, \cdots, G_{\alpha_n}\}$, it is called a finite subcover of E.

Definition (Compact Set)

A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.

Remark

Every finite subset is compact.

Theorem

Suppose $K \subset Y \subset X$. Then K is compact relative to X iff K is compact relative to Y.

Theorem

Compact subsets of metric spaces are closed.

Theorem

Closed subsets of compact sets are compact.

Corollary

If F is closed and K is compact, then $F \cap K$ is compact.

Theorem

If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then $\cap K_{\alpha}$ is nonempty.

Corollary

If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$, then $\bigcap_{n=1}^{\infty} K_n$ is not empty.

Theorem

If E is an infinite subset of a compact set K, then E has a limit point in K.

Theorem (The Nested Interval Theorem)

If $\{I_n\}$ is a sequence of intervals in \mathbb{R}^1 , such that $I_n\supset I_{n+1}$, then $\cap_{n=1}^\infty I_n$ is not empty.

Theorem

Let k be a positive integer. If $\{I_n\}$ is a sequence of k-cells such that $I_n \supset I_{n+1}$, then $\bigcap_{n=1}^{\infty} I_n$ is not empty.

Theorem

Every k-cell is compact.

Theorem

If a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point in E.

The equivalence of (a) and (b) is known as the Heine-Borel Theorem.

Theorem (Weierstrass)

Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Ex 2.10

Let X be an infinite set. Define a metric d by

$$d(p,q) = \begin{cases} 1 & p \neq q \\ 0 & p = q \end{cases}.$$

Which subsets of X is compact?

Ex 2.12

Prove that $K = \{0\} \cup \{\frac{1}{n} : n = 1, 2, \dots\}$ is compact directly from the definition.

Ex 2.13

Construct a compact set of real numbers whose limit points form a countable set.

Ex 2.15

Theorem) If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then $\cap K_{\alpha}$ is nonempty.

Show that the above theorem becomes false if the word "compact" is replaced by "closed" or by "bounded."

Ex 2.16

Regard \mathbb{Q} as a metric space with d(p,q) = |p-q|. Let $E = \{p \in \mathbb{Q} : 2 < p^2 < 3\}$. Show that E is closed and bounded in \mathbb{Q} , but is not compact. Is E open in \mathbb{Q} ?

Goal

► Construct the Cantor Set.

Theorem

Let P be a nonempty perfect set in \mathbb{R}^k . Then P is uncountable.

Corollary

Every interval [a,b] (a < b) is uncountable. In particular, \mathbb{R} is uncountable.

The Cantor Set

$$n = 0$$

$$0$$

$$1$$

$$n = 1$$

$$0$$

$$\frac{1}{3}$$

$$\frac{2}{3}$$

$$1$$

$$n = 2$$

$$0$$

$$\frac{1}{9}$$

$$\frac{2}{9}$$

$$\frac{1}{3}$$

$$\frac{2}{3}$$

$$\frac{7}{9}$$

$$\frac{8}{9}$$

$$1$$

$$n = 3$$

$$-----$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

The Cantor Set, Method 1

We will construct a sequence $\{a_{n,k}\}$ for $n=0,1,2,\cdots$ and $k=0,1,\cdots,2^{n+1}-1$ as follows:

- ▶ Define $a_{0.0} = 0, a_{0.1} = 1.$
- ightharpoonup Assume $a_{n-1,k}$'s are defined and define

$$a_{n,4k} = a_{n-1,2k}, a_{n,4k+1} = a_{n,4k} + \frac{1}{3^n}, a_{n,4k+2} = a_{n,4k} + \frac{2}{3^n}, a_{n,4k+3} = a_{n-1,2k+1}$$

Let
$$I_{n,k}=[a_{n,2k},a_{n,2k+1}]$$
 $(k=0,1,\cdots,2^n-1)$ and $E_n=\cup_k I_{n,k}$. For example,

$$E_0 = [0, 1], E_1 = \left[\frac{0}{3}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{3}{3}\right], E_2 = \left[\frac{0}{9}, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, \frac{9}{9}\right]$$

The Cantor Set, Method 1

Then

- (a) $E_1 \supset E_2 \supset E_3 \supset \cdots$;
- (b) E_n is the union of 2^n intervals, each of length 3^{-n}

The set

$$P = \bigcap_{n=1}^{\infty} E_n$$

is called the Cantor set. Since each E_n is closed, so is P and since $P \subset [0,1]$, P is bounded. Hence P is compact.

The Cantor Set, Method 2

$$C = \left\{ \sum_{1}^{\infty} a_j 3^{-j} : a_j = 0, 2 \right\}$$

Note that each $x \in [0,1]$ has a unique base-3 decimal expansion unless x is of the form $p3^{-k}$ for some integers p,k; for example

$$\frac{1}{3} = \frac{2}{3} \sum_{1}^{\infty} \left(\frac{1}{3}\right)^n = \frac{2}{3^2} + \frac{2}{3^3} + \frac{2}{3^3} + \cdots, \frac{2}{3} = \frac{1}{3} + \frac{2}{3^2} + \frac{2}{3^3} + \frac{2}{3^3} + \cdots$$

In this case, we can choose an expansion such that $a_j \neq 1$ for all j. Otherwise,

$$a_1 = 1 \iff \frac{1}{3} < x < \frac{2}{3},$$

$$a_1 \neq 1 \text{ and } a_2 = 1 \iff \frac{1}{9} < x < \frac{2}{9} \text{ or } \frac{7}{9} < x < \frac{8}{9},$$

and so forth. Hence, C = P is the Cantor set.

Properties of the Cantor Set (Folland)

▶ Let *P* be the Cantor set. Then there is no segment of the form

$$\left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right)$$

has a point in common with P.

- ightharpoonup There is no segment which is contained in P.
- ▶ Thus for $x \in [0,1]$, $x \in P$ iff x is an end point of for some $I_{n,k}$.
- ightharpoonup P is perfect.
- ► Hence *P* is uncountable.

Ex 2.18

There is a nonempty perfect set without rationals.

Remark

- ▶ Cantor-Bendixson theorem says if F is an uncountable closed set, then $F = P \cup C$ where P is perfect and S is at most countable.
- ▶ Enumerate all rational, $\{q_n\}$, and let $G = \bigcup_{1}^{\infty} N_{2^{-n}}(q_n)$. Then $G \neq \mathbb{R}$ because $2\sum_{1}^{\infty} 2^{-n} = 2$. Thus $F = G^c$ is closed and uncountable. So there is a perfect set P such that $P \subset F$. Since $\mathbb{Q} \subset G$, $P(\subset F)$ contains no rational.

Connected Sets

Definition

- Two subsets A and B of a metric space X are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty.
- ▶ If a subset E of X is not a union of two nonempty separated sets, E is said to be connected.

Example

- \blacktriangleright [0, 1] and (1, 2) are not separated.
- \blacktriangleright (0,1) and (1,2) are separated.

Connected Sets

Theorem

A subset E of the real line \mathbb{R}^1 is connected iff it has the following property: if $x,y \in E$ and x < z < y, then $z \in E$.

Ex 2.19

- (a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.
- (b) Prove the same for disjoint open sets.
- (c) Fix $p \in X$, $\delta > 0$, define A and B to be the sets

$$A = \{ q \in X : d(p, q) < \delta \}; B = \{ q \in X : d(p, q) > \delta \}.$$

Prove that A and B are separated.

(d) Prove that every connected metric space with at least two points is uncountable.

The End