REDES DE COMPUTADORES Y LABORATORIO

Christian Camilo Urcuqui López, MSc

Bienvenidos a la segunda parte ...

BIBLIOGRAFÍA

COMPETENCIAS

- Explique la funcionalidad y los servicios de la capa de red de Internet
- Explique la tunelización
- Describa el enrutamiento entre redes
- Describa el protocolo IP versión 4
- Aplique la API de Java (NetworkInterface) para obtener información de los dispositivos de acceso a la red.

Figura 1-21. El modelo de referencia TCP/IP.

- Dimos un recorrido general de los modelos entendiendo la comunicación general entre un emisor y un receptor.
- Revisamos la capa física, vimos su comunicación (bits), los medios de transmisión guiados y no guiados, sus enlaces y dispositivos.
- Revisamos la capa de enlace de datos, vimos su comunicación (tramas), Ethernet conmutada, puentes (switches) y VLAN.

Router, Enrutador o Encaminador

Figura 4-45. (a) Qué dispositivo está en cada capa

OBJETIVO

Java

Nivel de			
aplicación	Inicia o acepta una petición		
Nivel de	Agrega información de formato, presentación y		
presentación	codificación al paquete	Comining	
Nivel de	Agrega información de flujo de tráfico para determinar	Servicios	
sesión	cuándo se enviará el paquete		
Nivel de			
transporte	Agrega información sobre el control de errores		
	Agrega al paquete información sobre dirección y		Enlaces
Nivel de red	secuencia		Dispositivos
Nivel de	Agrega información de comprobación de errores y	Infraestructura	Dishositivos
enlace	prepara los datos para la conexión física		Comunicación
Nivel físico	Envía los paquetes como una secuencia de bits		

- Es la capa más baja que maneja la transmisión de extremo a extremo.
- Debe conocer la topología de la red y elegir las rutas apropiadas.
- Responsable del **enrutamiento**, es decir, debe estar en la capacidad de escoger la mejor ruta para no sobrecargar los enlaces y los dispositivos de enrutamiento.
- Provee el mecanismo para conectar dos o más redes (interred).

Figura 5-1. El entorno de los protocolos de la capa de red.

- Recordemos...cada capa se comunica con otra a través de una interfaz.
- Los servicios de esta capa deben estar orientados a cumplir los siguientes objetivos:
 - Los servicios deben ser independientes de la tecnología del enrutador.
 - La capa de transporte debe estar aislada de la cantidad, tipo y topología de los enrutadores presentes.
 - Las direcciones de red disponibles para la capa de transporte deben usar un plan de numeración uniforme, incluso a través de redes LAN y WAN.

Servicios orientados a conexión o sin conexión? - batalla campal Ganador – Protocolo IP

(a)

Interconexión de redes

- Hemos visto distintos tipos de redes, por ejemplo, PAN, LAN, MAN y WAN. También, describimos Ethernet y 802.11. Hay numerosos protocolos con uso muy difundido a través de estas redes (en cada capa). Problemas de heterogeneidad y escalabilidad.
- Sería más simple unir redes si todas usaran una sola tecnología de red.

Cómo difieren las redes

Aspecto	Algunas posibilidades	
Servicio ofrecido.	Sin conexión vs. orientado a conexión.	
Direccionamiento.	Distintos tamaños, plano o jerárquico.	
Difusión.	Presente o ausente (también multidifusión).	
Tamaño de paquete.	Cada red tiene su propio valor máximo.	
Ordenamiento.	Entrega ordenada y desordenada.	
Calidad del servicio.	Presente o ausente; muchos tipos distintos.	
Confiabilidad.	Distintos niveles de pérdida.	
Seguridad.	Reglas de privacidad, cifrado, etcétera.	
Parámetros.	Distintos tiempos de expiración, especificaciones de flujo, etcétera	
Contabilidad.	Por tiempo de conexión, paquete, byte o ninguna.	

Figura 5-38. Algunas de las diversas formas en que pueden diferir las redes.

LA CAPA DE RED - TUNELIZACIÓN

- **Tunelización** (tunneling) es una técnica que permite encapsular un protocolo de red sobre otro creando un túnel de información a través de la red.
- Enrutador multiprotocolo.
- Una de sus utilidades es conectar hosts y redes aisladas mediante el uso de otras redes.
- La red que resulta se denomina **red superpuesta** (*overlay*), ya que realmente está superpuesta sobre la red base.

Figura 5-40. Tunelización de un paquete de París a Londres.

LA CAPA DE RED - TUNELIZACIÓN

- La desventaja de la tunelización es que no se puede llegar a ninguno de los hosts en la red que se tuneliza debido a que los paquetes no pueden escapar a mitad del túnel.
- Podemos hablar de redes privadas virtuales (VPN).

Figura 5-41. Tunelización de un auto de Francia a Inglaterra.

LA CAPA DE RED — ENRUTAMIENTO DE REDES

- Las redes internamente pueden usar distintos algoritmos de enrutamiento y esto es un problema que se presenta tanto en una sola red y en una interred.
- Las redes manejadas por distintos proveedores conducen a problemas más grades, es decir, cada proveedor puede especificar su mecanismo de enrutamiento dependiendo de sus necesidades (por ejemplo, menor retardo versus menos costo, y seguridad).
- Puerta de enlace (enrutador), es un dispositivo más "inteligente" que el puente ya que además utilizar la misma función, aplica algoritmos de enrutamiento y permite la interred y también incluye otros recursos (por ejemplo, firewall).

LA CAPA DE RED — ENRUTAMIENTO DE REDES

- Actualmente, la mayoría de routers combinan las funcionalidades de un switch y un hub.
- Dentro de cada red, se utiliza un protocolo de intradominio o de puerta de enlace interior para el enrutamiento.
- Para las redes que conforman interred se utiliza un protocolo interdominio o de puerta de enlace exterior.
- AS (Autonomous System), es una red que opera independiente de las demás, un ejemplo de estas es una red de un ISP.
- Las leyes de los países influyen en la información que se transmite de un lugar a otro, todos estos factores están envueltos en el concepto de una política de enrutamiento que gobierna como las AS seleccionan los enrutadores que van a usar

LA CAPA DE RED DE INTERNET

- RFC (Request for Comments) son una serie de publicaciones de la IETF (Internet Engineering Task Force). IETF es una organización abierta conformada por diseñadores, operadores, vendedores e investigadores que velan por la evolución de la arquitectura de Internet y su operación.
- https://www.rfc-editor.org/info/rfc1958

I E T F°

LA CAPA DE RED DE INTERNET

- La Internet puede verse como un conjunto de redes, o AS interconectadas.
- Existen varias redes troncales (backbones) principales construidas a partir de líneas de alto ancho de banda y enrutadores rápidos. Los backbone más grandes, son los que conectan a todos los demás y son conocidas como redes de Nivel 1.
- Las redes de Nivel 1 son conectadas a ISP que proporcionan acceso a Internet para todos los hogares y negocios, centros de datos y redes regionales (de nivel medio)
- A las redes regionales se conectan más ISP, LAN de muchas universidades y empresas, y otras redes de punta.

LA CAPA DE RED DE INTERNET

INTERNET PROTOCOL (IP)

- El "pegamento" que mantiene unida a Internet es el protocolo de capa de red, IP. A diferencia de los otros protocolos, IP se diseño desde el principio con la interconexión de redes en mente.
- Podemos visualizar la capa de red así: su trabajo es proporcionar un medio de mejor esfuerzo (es decir, sin garantía) para transportar paquetes de la fuente al destino, sin importar si estas máquinas están en la misma red o si hay otras redes entre ellas.

INTERNET PROTOCOL (IP)

- La comunicación funciona de la siguiente forma:
 - La capa de transporte toma flujos de datos y los divide para poder enviarlos como paquetes IP.
 - Los enrutadores IP reenvían cada paquete a Internet a través de una ruta que integra varios enrutadores hasta llegar al destino.
 - En el destino, la capa de red entrega los datos a la capa de transporte, que a su vez los entrega al proceso de receptor.
 - Cuando todas las piezas llegan a la máquina destino, la capa de red las ensambla hasta formar el datagrama original.

INTERNET PROTOCOL (IP)

Para la próxima semana veremos IPv4 en mayor detalle

LECTURAS

	1. Arboleda, L. (2012). Programación en Red con Java. 2. Harold, E. (2004). Java network programming. " O'Reilly Media, Inc.". 3. Tanenbaum, A. S. (2003). Redes de computadoras. Pearson educación. 4. Reese, R. M. (2015). Learning Network Programming with Java. Packt Publishing Ltd.
Actividades DESPUÉS clase	A1. Leer del libro 3, la página 305-307, la secciones 5.5.3 y 5.5.4, 374-379 - Revisado A2. Leer del libro 2 las páginas 107-116

REFERENCIAS

- 1. https://3.bp.blogspot.com/-
 RPoJvwyN3Ic/WtQVBltajaI/AAAAAAAAWY/tzutcLAvXlwvHM0TSOyho2GxduD
 G14HIwCLcBGAs/s640/Site-to-site-ipsec-example.png
- 2. <a href="http://www.rfwireless-world.com/images/IPSec-Transport-mode-vs-IPS
- 3. http://richardgoyette.com/Infosec/Alice/images/encrypt3.jpg
- 4. https://i.pinimg.com/originals/3e/53/42/3e534245a610e82dd09bf17e5c828c84. jpg