Axe radical de deux cercles

Dans ce problème C, C', C'' désignent des cercles. On convient de noter systématiquement $\Omega, \Omega', \Omega''$ leurs centres et R, R', R'' > 0 leurs rayons respectifs.

Partie I - Puissance d'un point par rapport à un cercle

On appelle puissance d'un point M du plan pour un cercle $\mathcal C$ le réel $p_{\mathcal C}(M)=\Omega M^2-R^2$

On remarque que le cercle C est la réunion des points M tels que $p_c(M) = 0$.

1. Une droite $\mathcal D$ issue d'un point M du plan coupe un cercle $\mathcal C$ en deux points A et B distincts. On note A' le point de $\mathcal C$ diamétralement opposé à A.

Montrer que $\overline{MA}.\overline{MB} = \overline{MA}\cdot\overline{MA'} = p_{\mathcal{C}}(M)$.

- 2. Soit $\mathcal C$ un cercle, M un point extérieur à ce cercle. On note T et S les points de contacts des tangentes à $\mathcal C$ issues de M.
- 2.a Comment peut-on construire à la règle et au compas les points T et S?
- 2.b Montrer que $MT^2 = MS^2 = p_c(M)$
- 3. Soit A,B,C,D quatre points distincts tels que les droites (AB) et (CD) ne soient pas parallèles. On note M le point de concours des droites (AB) et (CD).

 Montrer que les points A,B,C,D sont cocycliques si et seulement si $\overline{MA.MB} = \overline{MC.MD}$.

Partie II - Axe radical de deux cercles

 \mathcal{C} et \mathcal{C}' désignent deux cercles non concentriques.

- 1. On note Δ l'ensemble des points M du plan tels que $p_{c'}(M) = p_c(M)$.
- 1.a On introduit I point milieu du segment $[\Omega, \Omega']$.

Montrer qu'un point M appartient à Δ ssi $\overrightarrow{\Omega\Omega'} \cdot \overrightarrow{IM} = k$ avec k une constante à préciser.

- 1.b En déduire que Δ est une droite orthogonale à la droite $(\Omega\Omega')$. Cette droite est appelé axe radical des cercles $\mathcal C$ et $\mathcal C'$.
- 2. Construction de l'axe radical dans le cas de cercles sécants :
- 2.a On suppose les cercles $\mathcal C$ et $\mathcal C'$ sécants en deux points A et B distincts. Déterminer l'axe radical de $\mathcal C$ et $\mathcal C'$.
- 2.b On suppose les cercles $\mathcal C$ et $\mathcal C'$ tangents en un point A. Déterminer l'axe radical de $\mathcal C$ et $\mathcal C'$.
- 3. On se donne trois cercles $\mathcal{C}, \mathcal{C}', \mathcal{C}''$ de centres $\Omega, \Omega', \Omega''$ non alignés. On note Δ (resp. Δ', Δ'') les axes radicaux des cercles \mathcal{C}' et \mathcal{C}'' (resp. \mathcal{C}'' et \mathcal{C} , \mathcal{C} et \mathcal{C}') Justifier que $\Delta, \Delta', \Delta''$ concourent en un point R. Ce point est appelé centre radical des cercles $\mathcal{C}, \mathcal{C}', \mathcal{C}''$.
- 4. Construction de l'axe radical dans le cas de cercles disjoints : On suppose ici que les cercles \mathcal{C} et \mathcal{C}' sont disjoints. Donner une construction géométrique de l'axe radical de \mathcal{C} et \mathcal{C}' basée sur l'introduction d'un troisième cercle sécant à \mathcal{C} et \mathcal{C}' .