Stock Propagation

Liam Sefton, Giacomo Radaelli, Dalton Kohl

Yfinance API

- Open-source tool that uses
 Yahoo's publicly available APIs
- Allows users to download market data from Yahoo! Finance
- Ticker module
 - ticker.get_financials()
 - ticker.get_balance_sheet()
 - ticker.get_cashflow()
- yfinance.download()

Data Mining

- Used stock data from S&P 500
- Selected several attributes from balance sheet, cashflow, and financial statement of each stock
- Extracted SPY ETF data
 - tracks the S&P 500
- Created CSV file containing extracted data for each stock
 - Three samples per stock (each sample represents different year)

Show: Income Statement Balance Sho	eet Cash Flow		
Income Statement All numbers in thousands			
Get access to 40+ years of historical data with Yahoo Finance Plus Esser			
Breakdown	ттм	3/31/2021	
> Total Revenue	10,754	9,168	
Cost of Revenue	7,476	6,461	
Gross Profit	3,278	2,707	
> Operating Expense	3,371	3,323	
Operating Income	-93	-616	

Problems with Yfinance API

- Extract close data from next day if there was no close data for current day
- Extremely slow data extraction
 - Approximately 6 samples per minute (2 stocks)
 - ~4.17 hours to complete

Cleaning Dirty Data

- Out of the initial 1500 samples,
 only ~900 had clean data
- The majority of lines are either too long, too short or contain numbers with multiple decimal points
- Even removing the lines with mistakes described above, lines containing "nan" values can slip through

754384629153,0.3475814931987807,0. 553199947,-0.08648162571462736,0.1 34277740872173,-0.0679665951061211 342784120109,-0.0651450183399034,0 77331268648261, nan, 0.5884039290635 1562349735534541, nan, 0.57621796351 732180293501048,-0.002402166317260 65975876,-0.22700278379214353,0.57 5718079,-0.2221262437214064,0.5817 382541167,-0.20245200258862445,0.5 26136,0.09595366740369768,0.500658 324117149,0.0862578764605227,0.431

Data Preprocessing

- Using the raw information from companies of vastly different sizes is not a good idea
- Rescaling the data is a possible option, but there is some degree of information loss with basic rescaling
- Representing the data in a way that keeps their values close together while still preserving the full information would be ideal

Data Preprocessing

- Our solution was to change the data we were mining for, some examples:
 - Net assets -> (Net assets)/(Total assets)
 - Cash -> (Cash)/(Total assets)
 - Current liabilities -> (Current liabilities)/(Total liabilities)
 - Gross profit -> (Gross profit)/(Total revenue)
- Pricing data was also changed
 - Price 1yr before "current" -> % increase to "current"
 - SPY price 1yr before "current" -> % increase in SPY price to "current"
 - Price 1yr after "current" -> % increase from "current" to 1yr after "current"
- This way the information is preserved while also changing the range in values from something like [-1000000, 1000000] to something about [-1, 2]

Network Architecture (using pytorch)

```
class StockPropagation(nn.Module):
   def __init__(self):
        super(StockPropagation, self).__init__()
       #This creates the layers
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(19, 15),
            nn.Tanh(),
           nn.Linear(15, 10),
           nn.Tanh(),
           nn.Linear(10, 5),
            nn.Tanh(),
            nn.Linear(5, 1)
   def forward(self, x):
       #forward function must be defined, so we give it the layers we created above
        return self.linear_relu_stack(x)
```

Network Architecture

- For the learning algorithm (called the optimizer in pytorch), we settled on using Adam, a version of Stochastic Gradient Descent that stores past gradients and adapts the learning rate for each parameter individually.
- (We don't really understand the math, we just did a lot of experiments)
- Top right figure is the output variance with SGD, bottom right is from Adam

Network Architecture - Activation functions

- Sigmoid results were around ~40%-50% (bad)
- ReLU results were around ~45%-55%
- Tanh+ReLU results were around ~55%-65%
- Keep in mind that if the net output all buy signals it would get 45% correct (the proportion of samples in the testing set that have the buy signal as their target value)
- Nets with pure ReLU or Sigmoid would cause output clumping, shown on the next couple of slides

∨ DataGraveyard	
≡ batch 0-200.txt	U
≡ batch_0-200.txt	U
≣ batch_200-300.txt	U
≣ batch_300-400.txt	U
≡ batch_300-400temp.txt	U
≣ batch_400-500.txt	U
≡ batch200-300.txt	U
≡ binary_testing_no_nans	U
■ binarytesting.txt	U
≡ binarytestingclean.txt	U
■ binarytraining.txt	U
■ bipolartesting.txt	U
■ bipolartraining.txt	U
≡ emaildata.txt	U
≡ nicebinarytesting.txt	U
□ recenttraining.txt	U
testing_no_nans.txt	U
testingnew.txt testingnew.txt	U
	U
☐ training_no_nans.txt	U
	U
	U
	U

Tanh (2 hidden layers, layer count: [19, 15, 10, 5], Adam)

Sigmoid (same architecture)

Training Methodology

- For the training and validation sets, the target value represents the % increase over 1yr
- The loss function (we chose to use mean squared errors) compares the predicted % increase with the target value
- We graph the change in the loss function by taking the average of |target - output| for each epoch
- The training ends when either the graphed loss converges (behaves asymptotically) or the graphed loss on the validation set increases (overfitting)

10/46000000014/0"A-'10400/0/070 03996,0.12846025758969645 3959735746.0.19990049063814058 461,-0.0826433500189548 782103,0.44813829245480796 9735746,0.13448607366928095 58461.-0.018951157751754134 **0118500557178,-0.04593845281042486** 368105,0.11592842854266855 *0*9404047,-0.4475540798684363 3467.-0.10699593718330183 7411216868105,-0.27738151846568393 .28251121076233177 3573768461,0.0827574922572097 1782103,0.3324271267309674 5,-0.0814404802526049 315,0.20078015082496356 **05,0.20391878940496422** 592,0.19964464565608583 5808578959735746,0.4001293391232213 .3516283944926257 7411216868105,-0.42749734833189146 4601188257,0.16208964233345377 5613573768461,-0.06889972732243915 4390977099427,0.022212881296708988 71306208,0.032893532189304374

Testing Methodology

- In the testing set we actually change the target value:
 - Any target value greater than .1 -> 1
 - Any target value less than .1 -> 0
- We also created "nice" testing sets where we made these changes:
 - Nice testing set 1 (for stocks that at least increase 5%)
 - Any target value greater than .05 -> 1
 - Any target value less than .05 -> 0
 - Very nice testing set 2 (for stocks that at least don't decrease)
 - Any target value greater than 0 -> 1
 - Any target value less than or equal to 0 -> 0

```
746,1
565613573768461,0
192771782103,1
735746,0
45778315,1
6868105,1
31805692,1
6,0.26808578959735746,1
461,1
0.3617411216868105,0
264484601188257,1
0.4565613573768461,0
.34994390977099427,0
3145371306208,0
2862,1
17051749997,0
65613573768461,0
062.1
0.33802341083645526,0
38545778315,0
```

Overfitting prevention

- Our main overfitting prevention comes from our validation set
- We end training when the error on the validation set increases
- Our validation set is just the testing set without binary outputs

Overfitting prevention

- Another common method to prevent overfitting is dropout, we also tried this approach, but found much worse overall results
- The average accuracy of the net when dropout is applied in training is around 50%
- Top right graph is validation set error by epoch
- Bottom right graph is variation spread by epoch

Results

We found the most success with the following:

- Architecture: 2 hidden layers with 15 neurons in the first hidden layer and 10 in the second hidden layer
- Loss function: Mean Squared Errors
- Learning algorithm: Adam + backpropagation
- Activation function: Tanh
- Learning rate: 0.000005

Results

100 run result (13 hours of running):

- Sample mean: 0.7295137663611784
- Sample standard deviation: 0.015129025774311732
- 99% confidence interval: [0.7291, 0.7299]
- Interpretation: Our net can predict 10% stock price increases over a 1 year period with ~73% accuracy (~80% accuracy for very nice testing set and ~75% for the nice testing set)
- Keep in mind, the proportion of the testing set that has 10% increases is 45%, so this is not a result of the net outputting all buy signals or outputting buy signals randomly

Possible extensions

Ways the accuracy could be improved is with:

- Data changes
 - More data
 - Different inputs
 - Higher quality data (bloomberg terminal)
- Full exploration of pytorch optimizers, loss functions and activation functions via automation
- More computing power for longer and faster training
 - Currently an 800 epoch run takes more than 10 minutes, so testing changes becomes very slow, especially since a few runs must be conducted for a reasonable sample size

