

Institute for Software Integrated Systems Vanderbilt University

A Hands-on Introduction to Deep Learning with DeepForge

Brian Broll brian.broll@vanderbilt.edu

Overview

- What is DeepForge?
 - Overview
 - Core Concepts
- CIFAR-10 Tutorial
- Advanced Topics
 - Infrastructure Integration
 - Data Provenance
 - Interactive Editing
- Demos
- Q&A

Background

Deep Learning

- A deep neural network is an artificial neural network with multiple hidden layers
- Flexible enough to be applied to a number of problems including:
 - Speech-to-text
 - Image segmentation
 - Image classification
 - Learning embeddings
 - Styling images
- State of art in almost everything

DeepForge

What is DeepForge?

DeepForge is a platform for applying deep learning within diverse scientific domains that integrates with existing infrastructure.

The goal is to promote simplicity, collaboration, and reproducibility through:

- Domain specific visual/textual editors
 - Design neural networks (with error, shape feedback)
 - Create and execute workflows from the browser
- Automatic version control
- Data provenance
- Real-time collaborative editing
- Integration with existing HPC and storage resources

High-Level Overview

Design **Architectures**

Build Training/Testing **Pipelines** (from **Operations**)

Execute Pipelines

Core Concepts

Core Concepts

- Two different types of concepts:
 - Concepts for creating executable pipelines
 - Concepts for designing neural network architectures
- Four main concepts are creating executable pipelines
 - Operations
 - Pipelines
 - Jobs
 - Executions
- Two high-level concepts for designing neural networks architectures
 - Architectures
 - Layers

Pipeline Concepts

- Operations are functions with multiple, named inputs and outputs
- Attributes and references can be set at design time to specify configurable parameters
 - For example, iterations may be specified in a training operation
- Pipelines represent some machine learning task composed of operations
 - Examples include training, prediction, or data augmentation
- Pipelines can also contain *Input* and *Output* operations to specify inputs/outputs of the entire pipeline

Example Pipeline

Pipeline Concepts

- Jobs are executable operations which contain the operation definition and metadata about the execution
 - This includes console output and plots
- Executions represent an executable instance of a pipeline (composed of jobs)

Neural Network Concepts

- The neural network concepts are pretty standard.
- Neural network architectures are composed of layers.
- Layers are parameterized in a variety of ways including the number of units, kernel size, dropout ratio, etc.

Neural Network Examples

Dimensionality Feedback

Error Messages (During Construction)

Hands-on with CIFAR-10!

Advanced Topics

Infrastructure Integration

- DeepForge does not provide any compute or storage resources for use when executing pipelines*
- As shown in the tutorial, these capabilities are provided by integrating with existing platforms like SciServer.
- This integration is supported through the use of compute adapters and storage adapters.

^{*} Technically, DeepForge can be configured to use a notebook-style of execution and storage but this is disabled on the public deployment.

Compute Adapters

- Compute adapters are used to execute jobs and pipelines.
 Each job will use the appropriate storage adapters for fetching and storing relevant data.
- Supported compute adapters:
 - SciServer Compute
 - WebGME Executor Framework (Connect your own machine)
 - Server execution (disabled on the public deployment)

Storage Adapters

- Storage adapters are used to fetch and store data -DeepForge does not store any associated data (such as training data or trained models).
- Supported storage adapters:
 - SciServer Files
 - S3 Object Storage
 - WebGME Blob Storage (disabled on the public deployment)

Demos

Questions?

- Related Resources and Links:
 - Website: https://deepforge.org
 - Documentation: http://deepforge.readthedocs.org/
 - Deployment: https://editor.deepforge.org
 - Source Code:
 - https://github.com/deepforge-dev/deepforge
 - Slack Channel: https://slack.deepforge.org