Urban Sound Classification

Springboard DSC Capstone Project 2

Urban Sound Classification

- Automatically classify urban sound into categories
- Feature extraction process: Librosa
- Feature representation methods: Mfccs, Tonnetz, mel, chroma_stft
- Baseline modeling using Logistic Regression; Xgboost and Cnn used for extended analysis

Problem Statement & Goals

- Successfully extract data from audio files
- Find useful insights from data using visualization techniques
- Create a model that accurately label audio files into their respective class

DATA

- The dataset is composed of 8732 labeled audio files
- Data was extracted from audio files using Librosa library and it was represented by following methods: Mfccs, Tonnetz, Chroma, mel and contrast
- Training data frame has 5435 rows and 196 columns
- Does not requires data wrangling for further analysis

Class Distribution

Data Visualization in 3D using Mfccs

Data Visualization

Inferential Statistics

Pearson's correlation coefficient test was conducted to measure the statistical relationship between Minor_x-axis of drilling and street music classes.

Baseline Modeling - Logistic Regression

Extended Analysis - Decision Tree Classifier

XGBoost Classifier

CNN Neural Network - Keras w/ Tensorflow

ML Models Evaluation

Model	Logistic Regression	Decision Tree Classifier	XGBoost Classifier	CNN Neural Networks
Accuracy	79%	68%	88%	93%
Weighted F1 avg	.79	.68	.88	.93

- CNN Neural Networks out performed other models
 - Accuracy = 93%
 - Weighted F1 Average = 93%

Recommendations

- The automatic classification of urban sounds is relevant in many areas and has a variety of applications including surveillance, highlight extraction, environmental monitoring, video summarization etc.
- It also has the potential of improving the quality of life of city dwellers by providing a data-driven understanding of urban sound and noise patterns.

Thank you!