NASA Technical Paper 1848

1987

Three-Step Labyrinth Seal for High-Performance Turbomachines

Robert C. Hendricks

Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Office

Contents

1	Page
Summary	1
Introduction	1
Symbols	2
Apparatus and Instrumentation	2
Concentric Position	3
Flow Rate Data	3
Pressure Profiles	4
Fully Eccentric Position	4
Flow Rate Data	4
Pressure Profiles	5
Two-thirds Fully Eccentric Position	5
One-third Fully Eccentric Position	6
Gaseous Helium	6
Flow Coefficient	6
Circumferential Pressure Drop	6
Concentric Position	7
Fully Eccentric Position	7
Two-thirds Fully Eccentric Position	7
One-third Fully Eccentric Position	7
Summary of Results	7
Appendix—Used and Newly Machined Three-Step Labyrinth	
Seals for Space Shuttle Main Engines	8
References	8
Figures	9
Tables	
I.—Flow Rate and Pressure Drop Data for Three-Step	
Labyrinth Seal, Concentric Position	46
II.—Flow Rate and Pressure Drop Data for Three-Step	
Labyrinth Seal, Fully Eccentric Position	58
III.—Flow Rate and Pressure Drop Data for Three-Step	
Labyrinth Seal, Two-thirds Fully Eccentric Position	63

Summary

A three-step labyrinth seal with 12, 11, and 10 labyrinth teeth per step, respectively, at nominal diameters of 8.077, 7.976, and 7.874 cm (3.180, 3.140, and 3.100 in.) was tested. The configuration represented the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump). All tests were conducted under *static* (*nonrotating*) conditions. The test data included critical mass flux and pressure profiles over a wide range of fluid conditions at concentric, partially eccentric, and fully eccentric positions. ¹

The seal mass fluxes for the various positions differed by at most 5 percent and for all practical purposes can be treated as unaltered by eccentric positioning. This was also found to be the case for straight and three-step cylindrical seals in similar configurations.

The pressure profiles of the three-step labyrinth seal differed significantly from those of the cylindrical seals. Although the circumferential pressure drop showed positive stiffness at the first tooth of each step, as expected, this was completely reversed (i.e., negative stiffness) by the time the flow reached the reservoirs between steps. Such crossovers in the axial pressure distribution can provide little if any positive direct stiffness, which is required for stability in this or any other seal configuration. Circumferential pressure drop in the expansion cavity of the first tooth of each step generally increased with eccentricity and inlet stagnation pressure, although magnitudes at eccentricities of one-third and less were difficult to measure because of the small differences, the limits of the instrumentation, and difficulties with geometric alignment.

The method of corresponding states was applied to the helium mass flux data, which were found to have a pressure dependency, part of which can be attributed to the simplicity of the normalized flow relation and part to nonlinear effects of expanding fluid helium. Data for helium followed the parahydrogen and nitrogen results provided that the normalized pressure dependency was divided by an empirical constant of 10.

The leakage-rate characteristics for the labyrinth seal are quite good, but seal response to dynamic conditions for stabilizing a turbomachine would be quite poor unless some preconditioning such as antiswirl were introduced.

Introduction

In the early phases of the space shuttle main engine program excessive leakage and vibration engendered catastrophic turbomachine failures that in many cases destroyed the entire apparatus. From the accident investigations it was postulated that the excessive vibrations were caused by the seals. However, the seal geometry and fluid conditions leading to such unstable operations were unknown. A low-leakage seal with good dynamic response, low power consumption, and low heat dissipation during a rub should be the goal of every high-performance seal design. Accordingly a program was begun to evaluate seals for the space shuttle main engine fuel turbopumps.

One of the early shuttle-turbopump seal designs centered around a three-step labyrinth flow-path configuration that looked much like a set of deep-cut serrations. The three steps had 12, 11, and 10 labyrinth teeth per step, respectively, in the direction of flow at nominal diameters of 8.077, 7.976, and 7.874 cm (3.180, 3.140, and 3.100 in.). Two such seals were instrumented early in the program in order to investigate leakage and pressure profiles in a *nonrotating*, or *static*, configuration. One (called used) had been run in a turbopump and exhibited significant evidence of rubbing. The second (called newly machined) may have been installed, but there was no evidence of rubbing and its operating history is unknown.

Although the used-labyrinth-seal configuration was well instrumented, subsequent measurements revealed several geometric malformations, particularly in clearance, that indicated that the leakage rates for choked flows were beyond the capability of the test facility. Several test runs were made with fluid nitrogen and hydrogen. These runs demonstrated that hydrogen leakage was significantly higher than 0.3 kg/s (2/3 lbm/s) and that the pressure drop was insufficient to choke the flow. The used and newly machined labyrinth seal configurations are described in the appendix.

As a result of these preliminary tests interest centered on straight and three-step cylindrical seals, which are discussed in detail in references 1 and 2. The three-step labyrinth seal was thought to be of only academic interest. It was not investigated further until the end of the program, when the newly machined seal housing was modified to adapt it to the facility.

The modified three-step labyrinth seal configuration was investigated to determine the mass flux and pressure profiles,

¹All of the data and information obtained from these tests was released for general use in May 1977.

with special attention given to pressure profiles with the seal placed in offset, or eccentric, positions. The pressure profile differences due to eccentricity reflect the direct stiffness of a labyrinth flow-path seal and could be compared with profiles for the straight and three-step cylindrical seals (refs. 1 and 2). This comparison, however, is beyond the scope of this report.

Symbols

- area, cm² (in.²) A
- Cequivalent flow coefficient (constant)
- flow coefficient, $G_R/G_{R,v}$ C_f
- clearance, cm (in.) с
- D diameter, cm (in.)
- mass flux, g/cm² s (lbm/in.² s) \boldsymbol{G}
- reduced mass flux, $G/G^*(1 + \psi_0)$ G_R
- flow-normalizing parameter (6010 g/cm² s G^* (85.5 lbm/in.² s) for nitrogen), $\sqrt{P_c \rho_c/Z_c}$
- \boldsymbol{L} length, cm (in.)
- M molecular weight
- N number of orifices
- P pressure, MPa (psi)
- gas constant, MPa cm³/g K (psi in.³/lbm °R) R
- housing radius, cm (in.) R_H
- alignment pin radius, cm (in.) R_p
- seal centerbody radius, cm (in.) R_1
- Ttemperature, K (°R)
- thickness, cm (in.) t
- volume, cm³ (in.³) V
- w mass flow rate, g/s (lbm/s)
- Z compressibility, PV/RT
- α,β rake angles, deg (rad)
- clearance fraction, or eccentricity ϵ
- angular position, deg (rad) θ
- density, g/cm³ (lbm/in.³)
- quantum correction factor ψ_{o}

Subscripts:

- В backpressure
- thermodynamic critical value c
- e exit
- h hydraulic
- arbitrary axial position i
- inlet stagnation conditions 0
- R reduced by corresponding-states parameter
- ν venturi

0° reference position

180° to reference position 180°

Apparatus and Instrumentation

The basic facility (figs. 1 and 2), of the blowdown type,² was the same as that used for testing the straight and threestep cylindrical seals (refs. 1 and 2) and will not be described further herein.

Although the used-labyrinth-seal system as originally installed could not be choked because the clearances were too large, a new housing was machined to provide a 0.0127-cm (0.0050-in.) clearance. The results could then be compared with those for the straight cylindrical seal (ref. 1) and the threestep cylindrical seal (ref. 2), which had the same nominal clearance.

Dimensional details of the labyrinth surface and the pressure tap installation are given in figure 3(a). The pressure taps were located at 0° and 180°, and the configuration geometry was symmetric about the centerline. Each labyrinth tooth was 0.0254 cm (0.0100 in.) wide and had an expansion cavity 0.089 cm (0.035 in.) deep by 0.091 cm (0.036 in.) wide. This gave a length-to-clearance ratio L/c of 2 and a length-tohydraulic-diameter ratio L/D_h of 1. The basic labyrinth tooth was sharp edged. The sharpness of the leading edge is a key factor in leakage rates and dynamic stability. A practical, that is, rub-resistant, sharp-edge labyrinth seal tooth geometry is illustrated in the following sketch, where the rake angles α and β are greatly exaggerated (standard, forward- and rearfacing, and proposed tooth configurations are illustrated for comparison):

CD-86-23412

a

Si

(.

Ŋ

n

tŀ

lc

aı

rε

eı

re

рı

in

th

fl

le

tic

w

to

th

of

b,

sp

le.

ar

flı

in

m

pc

in

ca

W

th

va

ma

an

²The tank is filled with fluid, pressurized, and then exhausted to the atmosphere through vent piping. Fluid refers to a thermodynamic state, independent of temperature, pressure, or density. The use of the terms liquid and gaseous is redundant but convenient for many readers. In this sense the fluid enters the test section nominally in the liquid state except for gaseous runs. And in most cases two-phase flow can and probably does occur within the test section much of the time.

Generally α and β are less than 1° depending on thicknesses t_1 and t_2 , seal diameter, and fluid conditions. The flow path and rake angles α for the three steps are illustrated in figure 3(b). A photograph of the three-step labyrinth seal (fig. 4) shows the diametrically opposite sets of pressure taps and the newly machined and used geometries. The geometries are discussed in the appendix.

The nominal geometry (diameter by length) for the three steps of 12, 11, and 10 labyrinth teeth was 8.077 by 1.285 cm (3.180 by 0.506 in.), 7.976 by 1.168 cm (3.140 by 0.460 in.), and 7.874 by 1.052 cm (3.100 by 0.414 in.), respectively, with a clearance of 0.0127 cm (0.0050 in.). Because the geometry is complex, manufacturing can be a problem. However, the multiplicity of teeth and cavities provides the necessary loss coefficients associated with low leakage. Each step (figs. 3 and 4) empties into a pocket cavity, which serves as an inlet reservoir for the next step, with the last step (the 10-tooth step) emptying to the exit plane.

Flow tests of the installed newly machined labyrinth seal revealed higher than expected leakage rates and a small axial pressure profile response, similar to those associated with the used labyrinth seal. Changes in flow rate, pressure level, and inlet temperature all revealed minor profile variations at larger than expected flow rates. Because of a conviction that these flow rates were not characteristic of such a seal and that the leakage rates were too high (see refs. 1 to 3), another examination of the actual seal was undertaken. The newly machined seal was found to be shorter than specifications. It was short enough to bottom out at the inlet, so that some of the flow was diverted through the seal passage and the remainder along the splines of the simulated seal configuration (fig. 4), where it effectively bypassed the seal itself. Had the simulated shaft also been splined, such a leak could have easily gone undetected. Such leaks in an unfamiliar configuration are not readily detected and can result in consistent, reproducible, but erroneous mass flux and pressure profiles.³ A flat, soft aluminum gasket was installed to correct the problem, and subsequent initial gaseous mass flux data fell within the anticipated range.

Alignment of the seal was difficult, especially for eccentric positioning, and several methods were used, including indicating in a lathe. However, the best method was the careful and methodical use of alignment pins. A set of pins was carefully machined to fit between the simulated shaft and the housing for each of the four seal positions (eccentricity $\epsilon = 0, 1/3, 2/3, \text{ and } 1$). The diameters of these pins were varied according to the following formula:

$$R_H + R_p = \epsilon^2 + (R_1 - R_p)^2 - 2\epsilon(R_1 - R_p)\cos\theta$$

where R_1 is the seal centerbody (shaft) radius, R_H is the housing radius, R_p is the pin radius, θ is the angle with respect to the shaft and the position of eccentricity, and ϵ is the clearance fraction, or eccentricity, where $0 < \epsilon < 1$. Careful tightening of the simulated housing with the pins in place provided the final alignment. The centerbody was then fit into place and secured. The data for these configurations are given in tables I to III.

Concentric Position

Flow Rate Data

Although problems of accuracy and reproducibility were encountered with the pressure transducers at very low flow rates, the same transducers were used over the entire range of data for these seal tests.

Initial testing with gaseous nitrogen demonstrated that the design concept of the 12-, 11-, and 10-labyrinth-tooth seal in its revised configuration (newly machined seal with reworked housing) had substantially better leakage characteristics than either the straight or three-step cylindrical seals (refs. 1 and 2, respectively). The resulting data for reduced mass flow rate 5 G_R are given as a function of reduced inlet stagnation pressure $P_{R,o}$ in figure 5. Subsequent tests with gaseous hydrogen revealed similar results (fig. 6) while extending the applicability over a wider range of reduced inlet stagnation pressure and temperature. For this configuration mass flux does increase with eccentricity, but it is small.

Since the labyrinth seal design was based on gas dynamics concepts, some questions about its performance at fluid states between gas and liquid had to be resolved. Tests with fluid nitrogen (fig. 7) indicated that the seal pressure drop and flow rate behaved more like flow in a large-*L/D* tube (ref. 4). Aside from the flow rate being about one-third that for the straight cylindrical seal (ref. 1), the isotherms for fluid nitrogen were similar to those of references 1 to 6 and indicated the applicability of similarity parameters related through the corresponding-states principles. As such, these results can be applied to liquid oxygen and other fluids of simple molecular structure.

With liquid hydrogen⁶ as the test fluid the reduced mass flow rates (fig. 8) were quite similar to those with fluid nitrogen. However, an anomalous region appeared along the nominal 0.82 reduced isotherm (fig. 8(a)). A similar anomaly, noted in reference 1 for some pressure profiles, could not be

³An important factor in a practical application such as the space shuttle main engine (SSME) turbopumps.

⁴The partially assembled configuration was placed on a lathe faceplate, and an extensometer (indicator) was used at the exit plane to determine seal-passage alignment.

 $^{^5}$ Technically, this is mass flux, but for a constant-area duct mass flow rate and mass flux are the same to within the constant area A (also could be termed leakage rate).

⁶Herein hydrogen is equilibrum hydrogen—99 + percent parahydrogen in the liquid or fluid state (i.e., 75 percent orthohydrogen gas and 25 percent parahydrogen ambient pressurizing gas).

resolved but was believed to be a fault in the recording system. In this case, however, the flow tests were repeated at a later date and, as indicated in figure 8(b), the anomalous region did not appear to be valid. Still some question remains, since the flow rates do tend to "hump" above the theory in this region (e.g., refs. 5 and 6).

The use of liquid hydrogen not only satisfies the direct question of seal performance in fluid hydrogen, but also extends the range of application of the results to higher reduced pressures.

Pressure Profiles

As with previous seal studies (refs. 1 to 3) the pressure profiles were very sensitive to variations in eccentricity. For the concentric configuration the profiles become a measure of the accuracy with which the seal was centered, the concentricity of the centerbody and housing, the expected profile deviations, and the systematic errors. With highly sensitive and selectively placed instrumentation it should be possible to map the seal geometry. However, the instrumentation for these tests was not sensitive enough to provide such a map.

Except for the abnormal drops marking the inlets to each of the three steps, typical pressure profiles for gaseous flows of nitrogen and hydrogen (figs. 9 and 10) resembled those for flows in high-L/D tubes (ref. 4). Choking conditions were quite apparent at the exit, and subsequent changes of backpressure had little effect on the profile, to a point. (See fig. 11.) With gaseous nitrogen the maximum backpressure was attained at about 40 percent of the inlet pressure at the third step. Above that point the profiles were affected throughout the seal (the criterion for unchoking). The profiles were found to be asymmetric from side to side. This indicates that the eccentricity was perhaps not zero as anticipated or that the concentricity of the machined seal was not as expected. This point is discussed further in sections dealing with the eccentric positions. As shown in figure 12, flows with gaseous hydrogen had characteristics similar to flows with gaseous nitrogen. Again unchoking occurred for backpressures near 40 percent of the inlet pressure at the third step.

The fluid nitrogen profiles also appeared similar to those for a high-L/D tube (ref. 4). However, these tests did not include the control venturi used in reference 4 for determining choking conditions, and a distinctive assessment of choking could not be made. Figures 13 and 14 show that the profiles were nearly linear with both fluid nitrogen and fluid hydrogen, respectively, but that the exit pressure drop was slightly higher with hydrogen. It appeared that two-phase flows could occur in the latter part of the third stage, as was assumed to be the case in reference 4. The application of backpressure significantly altered the pressure profiles and to some extent decreased the flow rate with both fluid nitrogen and fluid hydrogen (figs. 15 and 16, respectively). Although the inlet

stagnation temperature increased during the test because of pressurant gas mixing, the response of the pressure profiles to backpressure appeared to be more than a simple temperature effect. Such profile response was also noted for two-phase flow through single orifices, but to a lesser extent. Here the response appeared to be amplified by the multiplicity of the orifices or sharp edges of the labyrinth teeth. (See also refs. 7 and 8.) Although the flow appeared to be choked at low backpressure. orifices do not completely choke. Comparing the pressure profiles in figures 13 to 16 shows a significant backpressure effect due to the liquid state. Such was not the case for either the straight (ref. 1) or the three-step cylindrical seal (ref. 2). Variations in backpressure, if not properly damped, lead to unstable pressure distributions. Increasing backpressure lowers the flow rate slightly. This in turn can decrease the backpressure, which increases flow rate. Thus either the system is locked into a loop or the shock is moved to an extreme location. The total effect depends heavily on the system time constant (i.e., system response to perturbations).

Fully Eccentric Position

Although it is generally agreed that the primary purpose of a seal is to reduce leakage rates, we must always be concerned with dynamics. A seal that excites instability is undesirable; a seal that may leak a little more but promotes stability is obviously more desirable. The previous section indicated that the fluid state may have a significant influence on stability. The following sections show how geometric displacement, or eccentricity, affects flow rates and pressure profiles, which in turn affect stability. As in previous seal tests (refs. 1 to 3) the seal centerbody was set in its fully eccentric (to the point of rub) position to determine seal response to a simulated dynamic condition.

Flow Rate Data

The flow rate data as in previous seal tests (refs. 1 to 3) were only marginally affected by the fully eccentric position. With gaseous nitrogen (fig. 17) the fully eccentric flow rates were at most 5 percent higher than the concentric flows rates. Similar results were noted with gaseous hydrogen (fig. 6). Superposition of the flow rate data for fluid nitrogen (fig. 18) on figure 7 revealed little change in flow rate between the concentric and fully eccentric positions. Similar results were noted with fluid hydrogen (fig. 19) when compared with figure 8. Again the eccentric flow rates were only a little higher.

It could be concluded that the fully eccentric configuration has reasonably low flow rates (leakage) and that these results are applicable to other fluids of simple molecular structure, including liquid oxygen, by using the corresponding-states principles. However, seal response to dynamic conditions remains to be investigated.

Pressure Profiles

In tests of the straight and three-step cylindrical seal configurations (refs. 1 to 3), the magnitude of the pressure profiles on the maximum-clearance side of the seal was lower than that on the minimum-clearance side. This resulted in restoring forces, or positive direct stiffness, a favorable response to system dynamics.⁷

Typical pressure profiles for the labyrinth seal in the fully eccentric position for gaseous nitrogen (fig. 20) indicated a favorable response to dynamics at the entrance of each step, but an unfavorable response at the exit of each step. The net response appeared to be neither favorable nor unfavorable (i.e., the direct stiffness was small and there would be no definitive response to system dynamics). Similar pressure profiles for fluid hydrogen (fig. 21) extended the range of application to higher reduced pressures. 8

As anticipated, the pressure drops across the inlet of the first labyrinth tooth of each step were dynamically favorable for the fully eccentric shaft position. However, note from figure 3 that the expansion cavity volume between labyrinth teeth was large as compared with the tooth volume (5:1) but only onehalf of the total clearance volume. Thus in addition to the axial flow the circumferential pressure drop initiated a circumferential flow. The resultant flow was assumed to spiral through the seal with a period equal to the seal length. The pressure due to circumferential flow at the exit was therefore higher at the side opposite the high-pressure side at the inlet. As a result the restoring forces were essentially zero. This is not a practical seal where dynamics are concerned unless upstream flow preconditioning is considered. Although instrumentation was not sufficient for determining details within the expansion cavities between labyrinth teeth, vortex patterns must have existed. It is known that for a rotating flow field vortices can give way to free-standing wave patterns (ref. 9).9

Results for the three-step cylindrical seal (ref. 2) indicated a substantial increase in pressure drop due to flow separation. Although the gaseous tests indicated essentially no restoring forces, if flow jetting occurred in the third stage of the labyrinth, the labyrinth seal could possibly be used for dynamic

 7 Because this configuration is static (nonrotating), only direct stiffness can be inferred. Nothing can be stated about mass, damping, or cross-coupling coefficients.

control as well as for leakage control with minimum torque and rubbing effects.

The gaseous nitrogen data for the fully eccentric position (fig. 20) indicate no such separation. Although there may have been a small favorable direct stiffness value, within the error of these experiments the net restoring forces and hence the direct stiffness were nearly zero. Remember that there was no rotation. In an actual case, rotation effects enter as noted in the **Introduction** and must be considered. Tests with fluid hydrogen revealed the same type of results, namely that the differences in the pressure profiles were essentially balanced and that the direct stiffness was nearly zero (fig. 21).

Backpressure tests did not alter these conclusions. Profiles with significant applied backpressure are discussed in the following section. Again these results apply to other simple fluids such as liquid oxygen via the corresponding-states principles.

Two-thirds Fully Eccentric Position

On several occasions researchers working with the hardware and theoretical approaches cited the need for data at various eccentricities. Although it is well known (refs. 1 to 3) that the pressure profiles are sensitive to small displacements and that the fully eccentric data represent the limiting case, the question still remains as to the quantitative behavior of the eccentricity and the restoring forces.

By using the alignment pins mentioned in the section Apparatus the seal centerbody was set two-thirds fully eccentric. As anticipated, the resulting flow rate was virtually unaffected by the offset, as noted in figure 17 for gaseous nitrogen and in figure 6 for gaseous hydrogen. Flow rate data for fluid hydrogen are given in figures 22 and 23. No fluid nitrogen data were taken for this configuration. The effects of initial inlet stagnation pressure on flow rate, as shown in figure 23, were investigated because some anomalous points had been noted and thought to be connected with the initial inlet pressure. ¹⁰ No real trend was found.

Equally undramatic were the effects of two-thirds eccentricity on the pressure profiles for gaseous nitrogen and fluid hydrogen. Circumferential flows are no less significant for the two-thirds fully eccentric case than for the fully eccentric case.

Comparing the pressure profiles for gaseous hydrogen (fig. 24) and fluid hydrogen (fig. 25) with figures 10 and 14 revealed few differences between the concentric and two-thirds fully eccentric profiles. As a comparison, gaseous nitrogen data with the seal centerbody set in the two-thirds fully eccentric, concentric, and fully eccentric positions (fig. 26) showed that the differences due to eccentric positioning were not large.

⁸Combining the merits of each configuration (i.e., using a labyrinth seal with a cylindrical inlet section) could provide leakage and dynamic control.

⁹Vortex shedding from sharp edges is well known. Here it was anticipated that the ''doughnut'' vortex shed from the sharp leading edge and a second vortex within the cavity were moderated and set into circumferential motion by the pressure differential between the minimum and maximum passage clearances. Since this pressure differential was cyclic, circumferential motion of the vortex was probably reversed, and the second vortex became dominant. Vortex motion is difficult to damp out and can lead to cavity-like formations that affect both flow rate and dynamic stability.

¹⁰Test runs were usually begun at some high pressure and sequentially reduced to lower pressures in discrete steps while taking data.

The effects of backpressure, noted in the section **Pressure rofiles**, showed similar trends for the two-thirds fully eccentric osition. Backpressure had little effect on the gaseous hydrogen ressure profiles (fig. 27) until it reached about 40 percent of ne inlet pressure at the third step, as noted for the other ositions (and perhaps should have been anticipated from heoretical considerations). On the other hand, the fluid hydrogen pressure profiles (fig. 28) were affected by small increases n backpressure, again as noted for the other eccentric positions.

One-third Fully Eccentric Position

Data taking was severely hampered by an early, unscheduled phaseout of the data acquisition system. However, operation of the cathode-ray tube was retained for another run. This procedure resulted in manual data reduction and visual averaging. Such results were qualitative, but their quantitative value was questionable (no tabulated results are available). Generally the flow rates were good, since fluctuations were small, but the pressure profile accuracy suffered from both averaging the fluctuations and failure to know the precise absolute level. Only gaseous nitrogen data (figs. 29 and 30) were taken for this configuration. Again the pressure profiles indicated essentially no net restoring forces.

Gaseous Helium

In an effort to extend the corresponding-states techniques to higher reduced temperatures and pressures, flow rate data for gaseous helium were taken (fig. 31). The first set of data, designated as "cold," were taken after a fluid nitrogen run. Although the system was purged, the liquid nitrogen radiation shield could have sufficiently cooled the tank for some liquid nitrogen to be retained in the bottom of the tank. Thus some mixture of helium and nitrogen could have passed through the system. Over the weekend the system warmed completely to ambient conditions, and the data taken, designated as "warm," indicated better linearity and less scatter.

Although the mass flow rate data for helium followed those for gaseous hydrogen when multiplied by $\sqrt{M_{\rm He}/M_{\rm H_2}}$, where M is molecular weight, the corresponding-states principles appeared to be violated. These helium data did not appear to reduce properly as did the data for the simple fluids (e.g., nitrogen, oxygen, argon, methane, and parahydrogen). Further investigation into the theory considering nonlinear fluid dynamic effects is required.

A second approach was to calculate the equivalent flow coefficient

$$\frac{G_{R,\psi_Q}\sqrt{T_{R,o}}}{P_{R,o} - P'_{R,o}} = \frac{C_f}{5} = C$$

where ψ_Q is the quantum correction factor, $P_{R,o} - P'_{R,o}$ is the reduced differential pressure, C_f is the flow coefficient, and

C is a constant. Figure 32(a) illustrates the variation of C with reduced pressure $P_{R,o}$. The hydrogen and nitrogen data tend to group, but it is clear that the helium data do not follow the corresponding-states principles. Since the thermodynamic critical pressure for helium is quite low, small changes in choking pressure are significant. Figure 32(b) illustrates the variation of flow coefficient with reduced differential pressure, where $P'_{R,o}$ is the minimum choking pressure. For helium $P'_{R,o} = 2$; for hydrogen, 0.25; and for nitrogen, 0.1. The dependency on pressure is strong. Although the calculated flow rates showed the same trend as the experimental data, their magnitude appeared to be low by 15 percent, and this difference was mostly pressure dependent. Carryover and jetting, which tend to increase with flow rate, could account for the remaining difference, but verification is not possible at this time. If one further normalizes the pressure as $(P_{R,o} - P'_{R,o})/10$ for gaseous helium only, all of these results collapse to a single locus with some scatter for the eccentric cases as contrasted with concentric flows (table IV). I have no explanation of why this works and call it an empirical relation accounting for nonlinear effects of expansion perhaps related to quantum fluid at room temperature.

Flow Coefficient

For fluid nitrogen data the flow coefficient $C_f = G_R/G_{R,\nu}$, where $G_{R,\nu}$ is the calculated flow through a venturi for inlet conditions $P_{R,o}$ and $T_{R,o}$, can be related to reduced inlet stagnation temperature $T_{R,o}$ but not to $P_{R,o}$ since it varied more than anticipated. The magnitude of C_f was less than one-half that of a Borda inlet tube with a length-to-diameter ratio L/D of 53, but temperature trends for the two tubes were similar (fig. 33). For a large range of reduced inlet stagnation temperatures above $T_{R,o} = 1.3$, C_f was constant. In the nearcritical region $(T_{R,o} \sim 1)$, calculated flows were less than measured flows, and C_f increased. In this region variations in the thermophysical properties became significant. For lower temperatures C_f decreased, and measured flows were actually less than calculated flows for a venturi at comparable $P_{R,o}$ and $T_{R,o}$. Although there is really no way to complete a locus joining these data bars, a form similar to the 53-L/D curve could be assumed. Equally valid could be two straight lines.

Although the magnitude of C_f for the straight cylindrical seal (ref. 1) more closely approximates that for the 53-L/D Borda inlet, one is not comparing C_f magnitude but trends with inlet stagnation temperature (and pressure). Further, in the absence of information, a form similar to the locus could be assumed.

Circumferential Pressure Drop

In an effort to gain some understanding of the pressure profiles within the three-step labyrinth seal, the circumferential pressure drop in the expansion cavity of the first tooth of each

step inlet

1

Conc The

the fir (fig. 3 for the pressure in the press

dimen It w within could misali

measu Fully

In the drops (fig. 3 about the predistril

Two-

In t press of the in th

One-

In at th first were due erro geoi

Posi with T sum ΔP, figt

tep $(\Delta P = P_{0^{\circ}} - P_{180^{\circ}})$ was investigated as a function of nlet stagnation pressure P_o for gaseous nitrogen.

Concentric Position

The circumferential pressure drops ΔP across the inlets of he first teeth of the first and second steps were nearly the same fig. 34). (The position of the three data points at high pressure for the second step has not been explained.) However, the pressure drop at the third step was significantly larger and nearly equal to the sum of the first and second drops. At this time it is difficult to understand why this should be the case when the number of teeth per step changed from 12 to 11 to 10. However the profile representing the average reservoir pressure for choked flow of gases through N equally spaced orifices is known to be parabolic. For N=33, where $N_1=12$, $N_2=11$, and $N_3=10$ equally spaced orifices, the implication is that the pressure drops across the first two steps could be nearly the same. These results also follow from one-dimensional choked-flow theory.

It was also difficult to accurately position the centerbody within the housing, and at low to zero eccentricities the error could be significant. Any pressure differential indicates some misalignment or other source of instability that could not be measured with this system.

Fully Eccentric Position

In the fully eccentric position the circumferential pressure drops at the first and second steps were again nearly the same (fig. 35), but the drop at the reservoir of the third step was about 85 percent of the sum across the first two steps. Also the pressure drops at the first and second steps were better distributed.

Two-thirds Fully Eccentric Position

In the two-thirds fully eccentric position the circumferential pressure drop at the third step appeared to be nearly the sum of those across the first and second steps, and a slight crossover in the first two steps was noted (fig. 36).

One-third Fully Eccentric Position

In the one-third fully eccentric position the pressure drop at the third step was about four-thirds of the sum across the first and second steps (fig. 37). Further, these pressure drops were less than in the concentric position. This may have been due to misalignment of the seal configuration (i.e., positioning error), where the one-third fully eccentric position was geometrically closer to being concentric than the concentric position, but was more probably due to the errors associated with manual/automatic data acquisition.

The circumferential pressure drops at each step are summarized in figure 38. Plotting the slope of these lines $\Delta P/P_o$ provided a variation with eccentricity, as shown in figure 39, and revealed that the profiles probably were not

uniform. For installation purposes the seal had to be reversed in its housing. Generally no significant difference could be attributed to rotating the seal centerbody 180°. If one assumes a 0.02-mm (0.0008-in.) positioning error at small eccentricities, which was possible, reversing the test results of the concentric and one-third fully eccentric positions could give a reasonable figure. At this point all that can be stated is that, as the eccentricity increased, the circumferential pressure drop at the first tooth of each step tended to increase. Further, the magnitude appeared to increase linearly with inlet stagnation pressure.

Summary of Results

Test data for a nonrotating three-step labyrinth seal with 12, 11, and 10 labyrinth teeth per step, respectively, at nominal diameters of 8.077, 7.976, and 7.874 cm (3.180, 3.140, and 3.100 in.) have been presented. These data included mass flux rate and pressure profiles over a wide range of fluid conditions at concentric, partially eccentric, and fully eccentric positions.

The mass fluxes for the nonrotating seal at various eccentric positions differed by at most 5 percent and for all practical purposes can be treated as unaltered by eccentric positioning. This was also found to be true for nonrotating straight and three-step cylindrical seals in similar configurations.

The pressure profiles of the three-step labyrinth seal differed significantly from those of the cylindrical seals. Although the circumferential pressure drop showed positive stiffness at the first tooth of each step, it decreased and showed negative stiffness at the last tooth and in the reservoir between steps. Such crossovers in the axial pressure distribution can provide little if any positive direct stiffness, which is required for stability in seal configurations. Circumferential pressure drop in the expansion cavity of the first tooth of each step generally increased with eccentricity and inlet stagnation pressure, although magnitudes at eccentricities of one-third and less were difficult to measure because of the small differences, the limits of the instrumentation, and difficulties with geometric alignment.

The method of corresponding states showed that the helium mass flux data had a pressure dependency, part of which can be attributed to the simplicity of the normalized flow relation and expansion of a quantum gas at ambient temperature. Data for helium followed the parahydrogen and nitrogen results provided that the normalized pressure dependency was divided by an empirical constant of 10.

The leakage-rate characteristics for the labyrinth seal are quite good, but seal response to dynamic conditions for stabilizing a turbomachine would be quite poor.

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135, October 16, 1986

Appendix—Used and Newly Machined Three-Step Labyrinth Seals for Space Shuttle Main Engines

Although both the used and newly machined labyrinth seals are discussed here, only data for the newly machined seal and housing are presented. Both seals were Inconel; the seals of references 1 and 3 were aluminum.

Measurement of the *used*-shuttle-seal configuration (fig. 4) and the associated housing revealed several geometric malformations:

- (1) The average clearance heights were large as compared with the average clearance of 0.0127 cm (0.0050 in.) for the straight and three-step cylindrical seals (refs. 1 and 2):
 - (a) Step 1, 0.508 cm (0.0200 in.)
 - (b) Step 2, 0.442 cm (0.0174 in.)
 - (c) Step 3, 0.340 cm (0.0134 in.)
 - (2) Steps 2 and 3 were tapered in the flow direction:
 - (a) Step 1, no appreciable taper
 - (b) Step 2, 0.023-cm (0.009-in.) taper
 - (c) Step 3, 0.018-cm (0.007-in.) taper

A closer examination showed that the labyrinth flow-path teeth had been worn down. This indicates several things:

- (1) Such wear must have created large amounts of heat (perhaps sparks).
- (2) The effectiveness of the labyrinth path would be greatly reduced because the flow coefficient of these geometries is quite sensitive to edge sharpness.
- (3) The shaft stiffness must have been considerably less than that required to maintain a stable configuration.

(4) Although it was not indicated directly, measurements implied that an axial shaft-to-housing motion could "valve off" the flow (see fig. 3) and result in a loss of stiffness.

As a result the *used* three-step labyrinth seal revealed several characteristics of which a seal designer should be aware. With an average flow area three times larger than that of the straight or three-step cylindrical seals, it would have flow rates well beyond the capability of the facility.

Although the *newly* machined seal looked much like the used seal (fig. 4), there were several important differences:

- (1) The steps were not tapered.
- (2) The labyrinth flow-path teeth were not worn.
- (3) The average flow area was twice that of the straight or three-step cylindrical seal.

The clearance heights decreased as the step diameter decreased, as shown in figure 3.

- (1) Step 1 clearance, 0.0368 cm (0.0145 in.)
- (2) Step 2 clearance, 0.0292 cm (0.0115 in.)
- (3) Step 3 clearance, 0.0216 cm (0.0085 in.)

Again the average clearance of the straight and three-step cylindrical seals was 0.0127 cm (0.0050 in.). Tests were completed for the used and newly machined labyrinth seals in the original housing, but no data of substance were recorded. Subsequently the housing was reconfigured to provide a nominal 0.0127-cm (0.0050-in.) clearance, and the data herein are based on the reconfigured newly machined seal.

References

- Hendricks, R.C.: Straight Cylindrical Seal for High-Performance Turbomachines. NASA TP-1850, 1987.
- Hendricks, R.C.: Three-Step Cylindrical Seal for High-Performance Turbomachines. NASA TP-1849, 1987.
- 3. Hendricks, R.C.: Some Flow Characteristics of Conventional and Tapered High Pressure Drop Simulated Seals. ASLE Preprint 79–LC-3B-2, Oct.
- Hendricks, R.C.; and Simoneau, R.J.: Two-Phase Choke Flow in Tubes with Very Large L/D. NASA TM-73726, 1977.
- Hendricks, R.C.; and Sengers, J.V.: Application of the Principle of Similarity to Fluid Mechanics. Water and Steam: Their Properties and Current Industrial Applications, J. Straub and K. Scheffler, eds., Pergamon, 1980, pp. 322-335. (Unabridged version as NASA TM-79258, 1979.)
- Simoneau, R.J.; and Hendricks, R.C.: Two-Phase Choked Flow of Cryogenic Fluids in Converging-Diverging Nozzles. NASA TP-1484, 1979.
- 7. Hendricks, R.C.; and Stetz, T.T.: Some Flow Phenomena Associated with Aligned, Sequential Apertures with Borda-Type Inlets. NASA TP-1792, 1980.
- 8. Hendricks, R.C.; and Stetz, T.T.: Flow Through Aligned Sequential Orifice Type Inlets. NASA TP-1967, 1980.
- Iwatsubo, T.: Evaluation of Instability Forces of Labyrinth Seals in Turbines or Compressors. Rotordynamic Instability Problems in High Performance Turbomachinery, NASA CP-2133, 1980.

Figure 1.—Schematic of seal test installation.

Figure 2.—Cross-sectional view of simulated seal configuration.

Figure 3.—Overview of pressure taps and geometry for three-step labyrinth seal. (Linear dimensions are in centimeters (inches), and surface finish on all machined surfaces is 32.)

(b) Step geometry.Figure 3.—Concluded.

(b)

12

C-79-3332

Figure 4.—Newly machined and used three-step labyrinth seals.

Figure 5.—Reduced mass flux of gaseous nitrogen through three-step labyrinth seal in concentric and one-third fully eccentric positions, as function of reduced inlet stagnation pressure. Area A, 0.3228 cm² (0.050 in.²); normalized flow G^*A , 373.8 g/s (0.822 lbm/s).

Figure 6.—Reduced mass flux of gaseous hydrogen through three-step labyrinth seal in concentric and two-thirds fully eccentric positions, as function of reduced inlet stagnation pressure. Area A, 0.3228 cm² (0.050 in.²); normalized flow G*A, 373.8 g/s (0.822 lbm/s).

Figure 7.—Reduced mass flux of fluid nitrogen through three-step labyrinth seal in concentric position, as function of reduced inlet stagnation pressure.

Figure 8.—Reduced mass flux of fluid hydrogen through three-step labyrinth seal in concentric position, as function of reduced inlet stagnation pressure.

 $Figure \\ T_{R,\epsilon}$

Figure 9.—Axial pressure distribution for gaseous nitrogen flow through three-step labyrinth seal in concentric position. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 2.1$.

Figure 10.—Axial pressure distribution for gaseous hydrogen flow through three-step labyrinth seal in concentric position. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 9$.

Figure 11.—Axial pressure distribution for gaseous nitrogen flow through three-step labyrinth seal in concentric position, with backpressure control. Nominal reduced inlet stagnation temperature $T_{R.o} \approx 2.2$.

Figure 12.—Axial pressure distribution for gaseous hydrogen flow through three-step labyrinth seal in concentric position, with backpressure control. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 9$.

Figur T_R

Figure 13.—Axial pressure distribution for fluid nitrogen flow through three-step labyrinth seal in concentric position. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 0.71$.

Figure 14.—Axial pressure distribution for fluid hydrogen flow through three-step labyrinth seal in concentric position. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 0.86$.

Figure 15.—Axial pressure distribution for fluid nitrogen flow through three-step labyrinth seal in concentric position, with backpressure control. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 0.72$.

Figure 16.—Axial pressure distribution for fluid hydrogen flow through three-step labyrinth seal in concentric position, with backpressure control. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 0.8$.

Figure 17.—Reduced mass flux of gaseous nitrogen through three-step labyrinth seal in fully eccentric, two-thirds fully eccentric, and concentric positions, as function of reduced inlet stagnation pressure. Area A, 0.3228 cm² (0.050 in.²); normalized flow G^*A , 1940 g/s (4.27 lbm/s).

Figure 18.—Reduced mass flux of fluid nitrogen through three-step labyrinth seal in fully eccentric position, with backpressure control, as function of reduced inlet stagnation pressure.

Figure 19.—Reduced mass flux of fluid hydrogen through three-step labyrinth seal in fully eccentric position, with backpressure control, as function of reduced inlet stagnation pressure.

Figure 20.—Axial pressure distribution for gaseous nitrogen flow through three-step labyrinth seal in fully eccentric position. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 2.3$.

Figure 21.—Axial pressure distribution for fluid hydrogen flow through three-step labyrinth seal in fully eccentric position.

Figure 22.—Reduced mass flux of fluid hydrogen through three-step labyrinth seal in two-thirds fully eccentric position, as function of reduced inlet stagnation pressure.

Figure 23.—Reduced mass flux of fluid hydrogen through three-step labyrinth seal in two-thirds fully eccentric position, as function of reduced inlet stagnation pressure.

Figure 24.—Axial pressure distribution for gaseous hydrogen flow through three-step labyrinth seal in two-thirds fully eccentric position.

Figure 25.—Axial pressure distribution for fluid hydrogen flow through three-step labyrinth seal in two-thirds fully eccentric position.

Figure 26.—Axial pressure distribution for gaseous nitrogen flow through three-step labyrinth seal in two-thirds fully eccentric, fully eccentric, and concentric positions.

Figure 27.—Axial pressure distribution for gaseous hydrogen flow through three-step labyrinth seal in two-thirds fully eccentric position, with backpressure control. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 9$.

Figure 28.—Axial pressure distribution for fluid hydrogen flow through three-step labyrinth seal in two-thirds fully eccentric position, with backpressure control. Nominal reduced inlet stagnation temperature $T_{R,o} \approx 0.8$.

Figure 29.—Reduced mass flux of gaseous nitrogen through three-step labyrinth seal in one-third fully eccentric position, as function of reduced inlet stagnation pressure.

Figure 30.—Axial pressure distribution for gaseous nitrogen flow through three-step labyrinth seal in one-third fully eccentric position. (No tabulated data available.)

٠.

Figure 31.—Reduced mass flux of gaseous helium through three-step labyrinth seal in two-thirds fully eccentric position, as function of reduced inlet stagnation pressure. Area A, 0.3228 cm² (0.050 in.²); normalized flow G*A, 232.8 g/s (0.512 lbm/s).

(a) Normalized with respect to inlet stagnation pressure. (b) Normalized with respect to pressure differential $P_{R,o}-P'_{R,o}$, where $P_{R,o}-P'_{R,o}$ is $(P_{R,o}-P'_{R,o})/10$ for helium. Figure 32.—Equivalent flow coefficient for gaseous nitrogen, hydrogen, and helium.

Figure 33.—Variation of flow coefficient with reduced inlet stagnation temperature for fluid nitrogen, with curve for Borda inlet tube with length-to-diameter ratio of 53.

Figure 34.—Circumferential pressure drop in expansion cavity of first tooth of each step of three-step labyrinth seal in concentric position, for gaseous nitrogen, as function of reduced inlet stagnation pressure.

Figure 35.—Circumferential pressure drop in expansion cavity of first tooth of each step of three-step labyrinth seal in fully eccentric position, for gaseous nitrogen, as function of reduced inlet stagnation pressure.

The state of the s

Figure 36.—Circumferential pressure drop in expansion cavity of first tooth of each step of three-step labyrinth seal in two-thirds fully eccentric position, for gaseous nitrogen, as function of reduced inlet stagnation pressure.

Figure 37.—Circumferential pressure drop in expansion cavity of first tooth of each step of three-step labyrinth seal in one-third fully eccentric position, for gaseous nitrogen, as function of reduced inlet stagnation pressure.

Figure 38.—Circumferential pressure drop at each step of three-step labyrinth seal in concentric, one-third fully eccentric, two-thirds fully eccentric, and fully eccentric positions, for gaseous nitrogen, as function of reduced inlet stagnation pressure.

Figure 39.—Slope of pressure difference, $\Delta P = P_{0^*} - P_{180^*}$, to inlet stagnation pressure P_o , at entrance of each step of three-step labyrinth seal, as function of eccentricity.

TABLE I.—FLOW RATE AND PRESSURE DROP DATA FOR THREE-STEP LAYBRINTH SEAL, CONCENTRIC POSITION

[Where two values are given, the top value is for the 0° circumferential position, and the bottom value is for the 180° circumferential position.]

(a) Nitrogen

P	Mra	0.12	0.14	0.19		0.31	0.42	0.36	0.52	0.27	0.16	0.48	0.20	0.19	0.18	0.16	0.15
	P ₁₀	0.22	0.19	0.23	0.27	0.34	0.44	0.39	0.53	0.30	0.20	0.50	0.25	0.24	0.22	0.21	0.20
	P ₉	0.32	0.50	0.72	0.90	$\frac{1.13}{1.17}$	1.46	1.30 1.34	1.71	0.99	0.57	1.61	0.41	0.38	0.37	0.33	0.31
MPa	P_8	0.65	1.05	1.54	1.96	2.50	3.27	2.88	3.87	2.16	$\frac{1.21}{1.17}$	3.59	1.75	1.48	1.14	0.88 0.86	0.69
to 10,	P_7	0.71	1.15	1.69	2.15	2.76	3.63	3.18	4.31	2.39	1.33	4.01	2.04	1.71	1.29	0.98	0.76
locations 1	P_6	0.73	$\frac{1.20}{1.19}$	1.75	2.23	2.86	3.76	3.30	4.47	2.48	1.38	4.16 4.18	2.21	1.84	1.38	1.04	0.80
pressure tap l	P _S	0.92	1.50	2.19	2.80	3.60	4.76	4.16	5.67	3.11	1.73	5.27	3.70	3.00	2.13	1.55	1.14
Ħ	P_4	0.96	1.55	2.28	2.91	3.74	4.94 5.02	4.32	5.89	3.22	1.79	5.47	3.92	3.16	2.24	1.63	1.18
Pressure	P_3	0.97	1.58	2.32	2.95	3.80	5.02	4.39	5.99	3.28	1.82		4.08 4.11	3.29	2.32	1.68	$\frac{1.23}{1.23}$
	P ₂	1.14	1.84	2.69	3.42	4.38	5.75	5.05	6.85	3.78	۲.۰	. w.w.	5.64	4.56	3.21		1.66
	P_1	1.16		7.	3.55	4.56	6.02	5.26		3.92		9.9.	5.94		NW	4.4	
P.	MPa	0.115	0.143	0.192	0.239	0.308	0.420	0.361	0.517	0.270	0.162	0.484	0.197	0.191	0.175	0.159	0.147
7	, K,o	2.124 (2.127	2.154	2.170	2.200	2.235	2.226	2.263	2.225	2.220	2.287	0.709	0.711	0.717	0.710	0.713
-	e S	.015	0.024	0.036	0.048	0.063	0.087	0.075	0.108	0.055	0.029	0.100	0.221	0.192	0.151	0.121	0.094
6	r,R,o	0.349 0	0.562	0.817	1.039	1.329	1.753	1.534	2.087	1.150	0.646	1.942	1.725	1.397	0.977	0.708	0.507
6	ro, MPa	1.19	· 6.º	«		. r	. 6.0	. 2.	? T.	. o.	. 21	. 9.	` ∞ •		4 W		2.4
	Γο, K	268.3	268.7	272.0	274.1	277.9	282.3	281.2	285.8	281.0	280.4	288.8	89.5	89.8	90.5	89.7	90.0
-	g/s,	17	46.86	70.51	92.19	122.09	168.84	145.21	208.66	106.17	56.29	193.11	428.51	372.08	291.98	234.86	182.94
	Run	3985	3986	3987	3988	3989 1	3990]	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000

TABLE I.—Continued.

人名 人名 人名 人名 医唇孔 化对 医克雷氏皮管 医多种氏管 医多种

(a) Continued.

		T							197									
P,,	MPa	0.14	0.37	0.27	0.21	0.17	0.16	0.34	0.27	0.21	0.17	0.14	0.11	0.40	0.23	0.17	0.11	0.30
	P ₁₀	0.19	0.43	0.31	0.25	0.22	0.21	0.38	0.31	0.26	0.22	0.19	0.16	0.44	0.27	0.22	0.16	0.35
	Pg	0.31	1.29	1.11	0.87	0.64	0.57	1.44	1.17	0.90	0.82	0.62	0.37	1.48	1.12	0.83	0.42	0.44
MPa	P_8	0.60	2.62	2.13	1.69	1.28	1.14	3.06	2.55	1.95	1.81	1.39	0.82	3.30	2.47	1.85	0.92	1.60
1 to 10, N	P_7	0.65	2.86 2.88	2.29	1.78	1.37	1.23	3.27	2.72 2.73	2.11	1.93	1.47	0.87	3.52	2.64	1.99	0.99	1.83
locations	P_6	0.68	3.00	2.37	1.83	1.42	1.27	3.37	2.80	2.17	1.99	1.52	0.90	3.63	2.73	2.05	1.03	1.97
pressure tap	P_{5}	0.93	4.16	3.10	2.24	1.71	1.56	4.30	3.37	2.66	2.44	1.88	1.12	4.53	3.39	2.55	1.27	3.12
Pressure at pre	P_4	0.97	4.33	3.21	2.31	1.74	1.59	4.44	3.45	2.73	2.50	1.93	1.15	4.65	3.47	2.61	1.31	3.28 3.34
Pres	P_3	1.00	4.45	3.29	2.35	1.77	1.62	4.54	3.51 3.53	2.78	2.54	1.96 1.98	1.17	4.74	3.54	2.66	1.33	3.40
	P_2	1.33	5.67	4.11	2.84	2.02	1.86	5.51	4.13	3.22	2.97	2.32	1.41	5.55	4.16	3.13	1.58	4.65
	P_1	1.37	5.94	4.27	2.93	2.06	1.88	5.74	4.25	3.29	3.04	2.38	1.43	5.74	4.27	3.21	1.62	4.88 4.88
P_B ,	MPa	0.142	0.373	0.267	0.208	0.166	0.155	0.339	0.268	0.212	0.170	0.138	0.108	0.401	0.231	0.171	.112	1.298
$T_{R,o}$		0.718	0.920	0.912	0.903	0.912	0.911	1.009	1.009	666.0	1.006	1.002	1.011	1.137 (1.112 (1.118 (1.124 0	0.709 0
S _x		.080	.194	.150	.110	.075	.063	.166	.121	.063	.053	.035	.017	.115	.073	950.	.019	.191
P _{R,o}		0.409.0	1.725 0	1.244 0	0.858 0	0.606 0	0.556 0	1.664 0	1.238 0	0.959 0	0.888 0	0.698 0	0.426 0	1.666 0	1.239 0	0.939 0	0.479 0	1.420 0
Po.	MPa	 04 0	5.89	4.25	. 93	2.07	. 90	5.69	4.23 4.28	.28	.03	2.38 2.41	.45	5.69	4.23	.21 .24	.65	.91
T_o	4	90.7 1	116.2 5	115.2 4	114.0 2	115.2 2	115.1 1	127.4 5	127.4 4	126.2 3	127.1 3	126.5 2	127.7 1	143.6 5	140.5 4	141.2 3	142.0 1	89.64
٠٤٠	g/s	154.99	376.31	291.30	214.27	144.89]	121.51	322.40 1	234.77 1	121.56 1	102.37	68.78 1	33.86 1	222.26 1	140.67 1	89.96 1	37.22 1	370.28
Run		4001	4002 3	4003 2	4004 2	4005 1	4006 13	4007 33	4008 23	4009 13	4010 10	4011 6	4012	4013 22	4014 14	4015 8	4016	4017 37

TABLE I.—Continued.

(a) Concluded.

	ž.,	10,	P.,	T_{o} , P_{o} , $P_{R,o}$ G_R	ž	$T_{R,o}$	P_B ,			Pres	Pressure at pressure tap locations 1 to 10, MPa	ssure tap	locations	1 to 10, N	1Pa			P _e ,
	8/8	×	MPa				MPa	P_1	P_2	P_3	P_4	P_{S}	P_6	P_7	P ₈	Pg	P_{10}	MPa
4032	52.44	247.3	4032 52.44 247.3 2.10 2.10	0.615 0.027	0.027	1.958	0.154	1.958 0.154 2.07 2.01 2.08 1.98	2.01	1.72 1.70 1.64 1.74 1.60	1.70	1.64	1.30 1.25 1.30 1.28	1.25	1.16 0.53 1.10 0.55	0.53	0.20	0.15
4033 52.48 248.7 2.12 2.12	52.48	248.7	2.12	0.619	0.619 0.027	1.969	.969 0.152	2.09	2.04	2.04 1.73 1.71 1.98 1.75 1.77	1.71	1.65	1.31 1.27 1.17 1.31 1.30 1.11	1.27	1.17	0.53	0.19	0.15
4034 94.41 259.7 3.59 3.62	94.41	259.7	3.59		1.052 0.049	2.056 0.241	0.241	3.58	3.46	2.98	3.01	2.84	4 2.25 2 7 2.26 2	.18	2.00	0.89	0.28	0.24
4035 155.72 268.7 5.53 5.59	55.72	268.7	5.53		1.619 0.080	2.127 0.380	0.380	5.55 5.55	5.34	4.63	4.55	4.40	3.48 3.35 3.50 3.41	. 41	3.06	1.34	0.41	0.38

(b) Nitrogen with backpressure control

Г		Τ									
P.,	MPa	0.19	0.48	0.61	0.76	06.0	1.04	1.52	0.92	1.02	1.19
	P ₁₀	0.24	$0.51 \\ 0.10$	0.64	$0.79 \\ 0.10$	$0.92 \\ 0.10$	1.06	1.53	0.95	1.04	1.21
	P_9	0.40	0.58	0.71	0.85	0.99	1.13	1.59	1.00	1.10	1.26
MPa	P_8	1.58	1.70	1.79	1.89	2.00	2.10	2.44	1.92	2.00	2.13
1 to 10, N	P_7	1.82	1.92	2.01	2.10	2.20	2.30	2.62	2.12	2.20	2.31
locations	P ₆	1.95	2.05	2.13	2.22	2.31	2.40	2.71	2.24	2.30	2.41
pressure tap locations	Ps	3.11	3.16	3.21	3.26	3.32	3.38	3.56	3.25	3.29	3.35
Pressure at pre	P_4	3.27	3.32	3.36	3.41	3.46	3.51	3.68	3.39	3.43	3.49
Pres	P_3	3.40	3.44	3.48	3.53	3.57	3.62	3.78	3.51 3.53	3.54	3.60
	P_2	4.64	4.65	4.66	4.67	4.68	4.70	4.74	4.67	4.67	4.69
	P_1	4.88	4.89	4.89	4.90	4.90	4.91	4.94 4.94	4.89	4.89	4.90
P_B ,	MPa	0.192	0.479	0.614	0.756	0.899	1.036	1.525	0.923	1.023	1.194
$T_{R,o}$		0.711	0.716	0.725	0.732 (0.736 (0.743	0.752	0.696	0.700	0.704 1
S _R		0.191	1.187	0.184	0.181	0.178	0.175	0.163	0.178	0.176	0.171
P _{R,o}		1.418 (1.420 0.187	1.421	1.424 0	1.426 0	1.428 0	1.435 0	1.421 0	1.421 0	1.425 0
P.,	MPa	4.85 4.91	4.85	4.86	4.86	4.87	4.88	4.90	4.86	4.85	4.87
Ţ,	×	89.8	90.4	91.6	92.4 4.86 4.93	93.0	93.9	95.0	87.9 4.86 4.91	88.4	88.9
· ž.	8/8	370.91	363.66	357.56	351.66	345.66	338.78	316.96	346.02	340.80	332.59
Run		4018	4019 3	4020 3	4021 3	4022 3	4023 3	4024 3	4025 3	4026 3	4027 3

TABLE I.—Continued.

かき お書き 教養の

(b) Continued.

P.,	MPa	1.29	1.48	1.82	0.21	0.34	0.47	0.62	0.75	1.02	1.30	1.58	0.34	0.68	0.75	0.82	0.89	0.49
	P ₁₀	1.30	1.49	6.98	0.71	0.37	0.50	0.63	0.76	1.03	$1.31 \\ 0.10$	1.59	0.37	0.69	0.76	0.83	0.89	0.54
	P_9	1.36	1.54	1.87	0.40	1.17 1.23	1.17	1.18	1.18	1.29	1.49	1.73	1.18	1.19	1.20	$\frac{1.21}{1.27}$	1.23	1.40
MPa	P_8	2.20	2.34	2.60	1.51	2.62	2.63	2.64	2.64	2.67	2.74	2.83	2.64	2.66	2.66	2.67	2.68	2.80
1 to 10,	P_7	2.38	2.51	2.75	1.73	2.88	2.89	2.89	2.90	2.92	2.98	3.06	2.90	2.922.98	2.92 2.98	2.93	2.94	2.97
p locations	P_6	2.48	2.60	2.83	1.87	2.98	$\frac{2.99}{3.01}$	3.00	3.00	3.03	3.08	3.16	3.00	3.03	3.03	3.03	3.05	3.06
pressure tap	P _S	3.39	3.47	3.62	3.03	3.76	3.77	3.78	3.78	3.80	3.83	3.88	3.79	3.81	3.81	3.82	3.83	3.82
Pressure at p	P_4	3.53	3.60	3.73	3.19	3.90	3.91	3.92	3.92	3.94	3.97	4.01	3.92	3.95	3.95	3.95	3.97	3.93
Pre	P_3	3.63	3.70	3.82	3.32	3.96	3.98	3.98	3.99	4.00	4.03	4.07	3.99	4.01	4.02	4.02	4.04	4.01
	P_2	4.70	4.72	4.75	4.61	4.57	4.59 4.51	4.59	4.60	4.61	4.63	4.66	4.61	4.63	4.63	4.63	4.65	4.81
	P_1	4.91 4.91	4.92	4.94	4.85	4.76	4.77	4.78	4.78	4.80	4.81 4.81	4.84	4.78	4.81 4.81	4.81 4.81	4.82	4.84 4.84	4.98
P _B ,	MPa	1.288	1.476	1.818	0.214	0.336	0.474	0.615	0.746	1.020	1.302	1.581	0.339	0.675	0.747	0.819	0.890	0.494
TR.o		0.709	0.713	0.718	0.715	2.217	2.200	2.202	2.203	2.205	2.207	2.209	2.210	2.225	2.226	2.226	2.234	0.945
GR		0.169	0.164	0.156	0.189	0.068	0.068	0.068	0.068	0.067	0.067	0.065	0.069	0.069	0.069	0.069	0.069	0.158
P _{R,o}		1.425	1.428	1.435	1.411	1.391	1.395	1.396	1.398	1.401	1.406	1.411	1.397	1.406	1.407	1.408	1.413	1.450
P _o ,	MPa	4.87	4.88	4.90	4.82 4.88	4.75	4.77	4.77	4.78	4.79	4.80	4.82	4.77	4.80	4.81	4.81	4.83 4.883	4.95 5.01
Το,	×	89.5	90.1	90.7	90.3	280.0	277.9	278.1	278.3	278.5	278.7	279.0	279.1	281.0	281.1	281.2	282.1	119.4
·¥,	s/g	327.94	318.96	301.81	367.45	132.33	132.75	132.40	131.88	130.72	129.22	126.93	133.47	133.20	132.90	132.91	133.29	306.39
Run		4028	4029	4030	4031	4036	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4048	4049

TABLE I.—Continued.

(b) Continued.

P.,	MPa	0.52	0.68	0.84	0.98	1.11	1.25	1.38	0.40	0.39	0.47	0.62	0.77	06.0	1.04	1.17	m :	1.45	
	P ₁₀	0.56	0.71	0.86	0.99	1.13	1.26	1.40	0.44	0.44	0.51	0.65	0.79	0.92	1.06	1.19	1.33	1.46	14 m 20 m
	P_9	1.36	1.37	1.38	1.42	1.47	1.54	1.62	1.36	1.31	1.32	1.33	1.35	1.37	1.42	1.48	1.58	1.67	
MPa	P ₈	2.65	2.63	2.64	2.65	2.67	2.69	2.73	2.67	2.89	2.83	2.89	2.90	2.91	2.92	2.93	2.96	2.98	
to 10.	P_7	2.83	2.81	2.82	2.82	2.84	2.86	2.90	2.84	3.06	3.06	3.06	3.06	3.07	3.08	$\frac{3.10}{3.11}$	3.12	3.14	
locations 1		2.93	2.91	2.91	2.92	2.93	2.95	2.99	2.93	3.13	$\frac{3.13}{3.12}$	3.14	3.14 3.13	3.15	3.16	3.17	3.19	3.22	
nressure fan	ì	3.73	3.72	3.72	3.72	3.73	3.75	3.77	3.74	3.83	3.82	3.83	3.83	3.83	3.84	3.85	3.86	3.88	
1 7	1 4	3.85	3.84	3.84	3.84	3.85	3.86	3.88	3.86	3.93	3.93	3.93	3.93	3.93	3.94	3.95	3.96	3.97	
Dressure	P ₃	3.94	3.92	3.92	3.93	3.93	3.95	3.97	3.94	4.00	4.00	4.00	4.00	4.00	4.01	4.02	4.03	4.04	
	P2	4.80	4.79	4.79	4.79	4.80	4.80	4.81	4.79	4.74	4.74	4.74	4.74	4.74	4.74	4.75	4.76	4.76	
	P	4.97	4.97	4.97	4.97	4.97	4.98	4.98	4.96	4.90	4.90	4.90	4.89	4.90	4.90	4.91	4.91	4.91	
6	r _B ,	.525	.683	.843	0.975	1.112	1.254	1.383	0.403	0.392	0.473	0.625	0.770	0.897	1.039	1.174	1.322	1.454	
	I.R.o	0.938 0	0.938 0	0.939 0	0.941 (0.942	0.945	0.948	0.949	1.015	1.016	1.017	1.018	1.019	1.021	1.021	1.023	1.024	
-	 5	.161	.161	.160	.159	.157	.156	.153	.160	.139	0.139	0.138	0.138	0.137	0.136	0.134	0.133	0.131	
	P _{R,o}	1.446 0	1.446 0	1.446 0	1.446 0	1.447 0	1.449 0	1.451 0	1.445 0	1.425 0	1.425 (1.424 (1.424 (1.425	1.426	1.427	1.428	1.430	
-	<i>Р_о,</i> МРа	_	40	4-0	. 94	.95	. 95	96.	7 6 .	. %.	. ∞ σ	. 00.0	. 80.0	· • • • •	4.87	∞ ∽	. 800		
-	Τ _o , χ	→ v.	18.5 4	18.6 4	18.8 4	19.0 4 5	19.3 4	19.7 4	19.8 4 5	28.2 4	28.3	28.4	28.6	28.7	28.9	129.0 4	129.2	129.3	
	w, 9/s	66 1	1.98 1	0.26 1	7.96 1	5.16 1	1.81	97.61 1	1.05 1	9.52 1	9.14 1	8.13 1	56.86 1	65.08 1	63.08 1	60.45	57.82	54.50	
-	Run ,	050 31	051 31	052 31	053 30	054 30	055 30	056 2	057 31	1058 26	4059 26	4060 26	4061 26	4062 26	4063 26	4064 26	4065 25	4066 2	
		4	4	4	4	4	4	4	4	4									

TABLE I.—Continued.

(b) Concluded.

P _e ,	MPa	0.42	0.35	0.51	0.62	0.76	06.0	1.03	1.17	1.31	1.44	0.36
	P ₁₀	0.45	0.39	0.54	0.64	0.77	0.91	1.05	1.18	1.31	1.45	0.38
	P_9	1.32	1.30	1.31	$\frac{1.31}{1.38}$	$\frac{1.33}{1.39}$	1.35	1.38	1.45	1.54	1.64	1.28
MPa	P_8	2.91	2.91	2.92	2.91	2.90	2.89	2.89	2.89	2.91	2.94	2.82
	P_7	3.09	3.10	3.11	3.10	3.09	3.09	3.08	3.08	3.09	3.12	3.01
locations	P_6	3.16	3.20	3.20	3.20	3.19	3.18	3.17	3.17	3.19	$\frac{3.21}{3.19}$	3.12
Pressure at pressure tap locations 1 to 10,	P_{5}	3.85	3.95	3.95	3.94	3.94	3.93	3.93	3.93	3.93	3.94	3.89
sure at pre	P_4	3.95	4.05	4.05	4.04 4.10	4.04 4.10	4.04	4.03	4.03	4.04	4.05	4.00
Pres	P_3	4.02	4.12	4.12	4.12	4.11 4.14	4.11	4.11 4.13	4.10	4.11 4.13	4.12	4.08
	P_2	4.75	4.81	4.81	4.81	4.81	4.81	4.81	4.81	4.81	4.81	4.79
	P_1	4.90	4.96	4.96	4.95	4.95	4.96	4.96	4.96	4.96	4.96	4.94
P_B ,	MPa	0.417	0.352	0.514	0.622	0.757	0.899	1.033	1.170	1.307	1.444	0.357
$T_{R,o}$		1.025	1.109	1.113	1.115	1.117	1.120	1.122	1.124	1.127	1.134	1.146
G_R		0.136	0.097	960.1	.095	960.	.093	0.092	0.091	060.	.087	0.088
$P_{R,o}$		1.426 (1.442 (1.441 0.096	1.441 0.095	1.441 0.094	1.441 0.093	1.441 0.092	1.441 0.091	1.442 0.090	1.442 0.087	1.435 (
P _o ,	MPa		+ . 93 + . 99	. 92	+ . 92 + . 98	92	t. 92 t. 99	. 92	t. 92 t. 99	+ . 93 + . 99	4.93	.90
T_o ,	*	129.4	140.1	140.6 ,	140.8 (141.1 (141.4 (141.7 (142.0 (142.4 (143.2 (144.7 (
٠٤,	s/s	264.14 129.4 4.87 4.94	188.40 140.1 4.93 4.99	185.71 140.6 4.92 4.98	4070 183.72 140.8 4.92 4.98	181.61 141.1 4.92 4.98	180.25 141.4 4.92 4.99	179.00 141.7 4.92 4.99	4074 177.13 142.0 4.92 4.99	174.82 142.4 4.93 4.99	4076 169.75 143.2 4.93 4.99	4077 171.07 144.7 4.90 4.97
Run		4067 2	4068 1	4069 1	4070 1	4071 1	4072 1	4073 1	4074 1	4075 1	4076 1	4077 1

TABLE I.—Continued.

(c) Hydrogen

		•					6											
P _e ,	MP	0.12	0.16	0.21	0.27	0.34	0.39	0.44	0.34	0.25	0.21	0.17	0.14	0.29	0.24	0.20	0.17	0.15
	P_{10}	0.17	0.20	0.24	0.35	0.36	0.70	0.46	0.39	0.30	0.25	0.23	0.20	0.34	0.29	0.24	0.22	0.20
	P_9	0.34	0.54	0.71	0.90	1.12	1.25	1.40	0.89	0.72	0.57	0.46	0.36	0.68	0.60	0.52	0.43	0.36
MPa	P_8	0.73	1.15	1.53	1.97	2.49	2.80	3.15 2.95	2.35	1.69	1.22	0.97 0.96	0.75	1.86	1.52	1.14	0.90	0.78
1 to 10, N	P_7	0.79	1.25	1.67	2.16	2.75	$\frac{3.10}{3.16}$	3.50	2.61	1.85	1.31	1.03	0.79	2.09	1.70	1.24	0.97	0.82
locations	P_6	0.82	1.30	1.74	2.25	2.86	3.23	3.64	2.75	1.94 1.94	1.37	1.06	0.81	2.21	1.79	1.31	1.00	0.85
essure tap	P _S	1.02	1.63	2.19	2.83	3.61	4.08	4.61	3.97	2.71	1.84	1.37	0.98	3.36	2.65	1.84	1.34	1.06
Pressure at pressure tap	P_4	1.06	1.70	2.27	2.95	3.75	4.24	4.80	4.14	2.82 2.86	1.91	1.41	1.01	3.52	2.77	1.91	1.39	1.10
Pres	P_3	1.07	1.71	2.30	2.99	3.81	4.30	4.87	4.25	2.88	1.94	1.43	1.01	3.63	2.85	1.96	1.40	1.10
	P ₂	1.28	2.02	2.69	3.48	4.41	4.97	5.62 5.54	5.53	3.76	2.54	1.83	1.24	4.91	3.87	2.63	1.85	1.41
	P ₁	1.30	2.08	2.78	3.60	4.59	5.18	5.86	5.74	3.90	2.62	1.88	1.25	5.11	4.02	2.72	1.90	1.44
P _B ,	MPa	0.116	0.158	0.208	0.267	0.341	0.394	0.440	0.340	0.254	0.208	0.174	0.143	0.290	0.239	0.199	0.173	0.152
TRO		8.906	8.970	9.003	9.024	9.036	9.018	8.997	0.885	0.873	0.852	0.861	0.870	0.827	0.824	0.818	0.812	0.827
ž		0.023	0.038	0.054	0.072	0.093	0.107	0.122	.299	.226	.180	.146	.105	.285	0.241	0.180	0.163	0.087
PRO		1.027	1.619 (2.157 (2.784 (3.533 (3.987	4.501	4.392 0	2.997 0	2.021 0	1.461 0	0.985 0	3.918 0	3.086	2.100 (1.478 (1.128 (
P _a ,	MPa	1.33	2.10	2.79	3.61 3.63	4.58 4.62	5.17	5.83	5.69	3.88	2.62	1.89 1.90	1.28 1.28	5.08	4.00	2.72	1.92 1.93	1.46 1.47
$T_{o,}$	×	293.9	296.0	297.1	297.8	298.2	297.6	296.9	29.5	28.8	28.1	28.4	28.7	27.3	27.2	27.0	26.8	27.3
٠.٤	s/g	8.63	14.37	20.00	26.80	34.86	39.83	45.58	111.74	84.32	67.20	54.42	39.18	106.51	90.15	67.30	61.09	32.43
Run		4083	4084	4085	4086	4087	4088	4089	4098 1	6605	4100 (4101	4102	4103 1	4104	4105	4106	4107

TABLE I.—Continued.

The second secon

(c) Continued.

P.,	1Fa	14	13	30	24	19	17	13	13	30	24	20	16	14	5.3	54	0.	2
	4	·		0					0.	0			0	0.	0.5	0.2	0.2	0.1
,	P ₁₀	0.19	0.18	0.35	0.29	0.24	0.22	0.18	0.18	0.35	$0.29 \\ 0.10$	$0.25 \\ 0.10$	0.22	0.19	0.34	0.28	0.24	0.20
،	P ₉	0.33	0.29	0.85	0.71	0.59	0.49	0.32	0.32	0.94	0.81	0.68	0.54	0.41	1.01	0.84	0.67	$0.53 \\ 0.55$
MPa	P ₈	0.70	0.60	2.18 2.11	1.68	1.28	1.05	0.66	0.64	2.37	1.89	1.52	$\frac{1.27}{1.25}$	0.94	2.46	1.94	1.57	1.22
~	P_7	0.74	0.63	2.44	1.85	1.39	1.12	0.71	0.69	2.63	2.08	1.63	1.34	1.01	2.71	2.10	1.68	1.29
2	P_6	0.76	0.66	2.57	$\frac{1.95}{1.95}$	1.45	1.17	0.73	0.72	2.77	2.18	1.70	1.38	1.04	2.83	2.19	1.74	1.32
pressure tap	P ₅	$0.92 \\ 0.91$	0.81	3.85	2.81	2.00	1.53	0.91	0.89	4.08 4.03	3.08	2.29	1.74	1.29	4.01 3.96	2.97	2.24	1.67
	F4	0.95	0.84 0.86	4.03 4.10	2.94	2.08	1.59	0.93	0.92	4.26	3.21	2.37	1.80	1.33	4.17	3.08	2.31	1.71
Pres	r ₃	0.95	0.83	4.15	3.01	2.13	1.61	0.93	0.92	4.38	3.29	2.42	1.81 1.84	1.33	4.27	3.14	2.34	1.73
a	72	1.18	1.01	5.54	4.03	2.81	2.10	1.13	$\frac{1.11}{1.08}$	5.78	4.34	3.14	2.27	1.62	5.53 5.45	4.04	2.93	2.13
q	1.1	1.20	1.01	5.76	4.18 4.18	2.90	2.15	1.13	$\frac{1.11}{1.12}$	6.00	4.49	3.24	2.32	1.64	5.73	4.17	3.01	2.17
P_B , MPa		0.144	0.129	0.304	0.238	0.194	1.170	0.130	1.128	.305	. 238	.197	.162	.135	.293	.242	.195	.149
$T_{R,o}$		0.836	0.861 (0.927 (0.903	0.894	0.891 0	0.894 (0.903 0	1.012 0	0.994 0	1.006 0	1.042 0	1.012 0	1.148 0	1.115 0	1.152 0	1.103 0
Š		0.069	0.050	0.302	.249	.162	.142	.070	060.	.296	.239	.175	.139	.102	.267	.208	.149	.105
P _{R,0}		0.943 (0.800	4.406 0	3.211 0	2.243 0	1.671 0	0.894 0	0.879 0	4.592 0	3.445 0	2.498 0	1.806 0	1.289 0	4.387 0	3.204 0	2.320 0	1.687 0
Po, MPa		1.22	1.04	5.71	4.16 4.21	2.91	2.16 2.18	1.16	1.14	5.95	4.46 4.52	3.24	2.34 2.36	1.67	5.69	4.15	3.01	2.19 2.20
Тο,		27.6	28.4	30.6	29.8	29.5	29.4	29.5	29.8	33.4	32.8	33.2	34.4	33.4	37.9	36.8	38.0	36.4
w, g/s		25.86	18.59	112.71	93.20	60.54	53.20	26.02	33.58	110.54	89.35	65.60	51.83	38.00	99.72	77.70	55.75	39.26
Run		4108	4109	4110 1	4111	4112	4113	4115	4116	4117 1	4118	4119	4120	4121	4122	4123	4124	4125

TABLE I.—Continued.

(c) Continued.

Pe,	MPa	0.13	0.11	0.29	0.22	0.17	0.11	0.10	0.25	0.21	0.18	0.81	1.64	1.40	0.25	0.52	0.75	0.99
	P_{10}	0.17	$0.17 \\ 0.09$	0.34	0.33	$0.22 \\ 0.10$	0.16	0.16	0.30	0.84	0.52	0.83	1.04	$1.31 \\ 0.10$	0.30	0.53	0.76	60.0
	P_9	0.43	0.56	1.33	1.30	$0.91 \\ 0.91$	0.32	0.23	0.66	0.57	0.49	0.86	$\frac{1.06}{1.09}$	1.43	0.53	0.60	0.81	1.03
MPa	P_8	0.83	1.09	2.88	2.38	1.79	0.78	0.52	2.06	1.61	$\frac{1.21}{1.17}$	1.46	1.61	$\frac{1.88}{1.86}$	1.43	1.46	1.61	1.78
to 10,	P_7	0.88 0.89	$\frac{1.13}{1.14}$	3.14	2.55	1.91	0.82	0.55	2.35	1.82	1.34	1.57	1.71	1.96 1.97	1.60	1.63	1.77	$\frac{1.92}{1.94}$
locations 1	P_6	0.91	1.16	3.27	2.64	1.97	0.85	0.57	2.50	$\frac{1.93}{1.94}$	1.41	1.63	1.77	2.01	1.68	1.72	1.85	2.00
pressure tap locations	P _S	1.13	$\frac{1.36}{1.35}$	4.43	3.42	2.50	1.07	0.71	3.96	2.96 2.91	2.08	2.21 2.18	2.29	2.45	2.54	2.55	2.63	2.73
Pressure at pre	P_4	1.16	1.39	4.58	3.52	2.57	1.10	0.73	4.15	3.10	2.17	2.29	2.37	2.51	2.66	2.67	2.75 2.81	2.83
Press	P_3	$1.17 \\ 1.18$	1.39	4.67	3.58	2.63	1.11	0.73	4.29	3.20	2.22	2.33	2.40	2.54	2.73	2.75	2.81	2.89
	P_2	1.42	1.63	5.81	4.39	3.16	1.36	0.91	5.85	4.39	3.05	3.06	3.08	$\frac{3.11}{3.08}$	3.75	3.75	3.76	3.78
	P_1	1.43	1.63	6.00	4.51 4.51	3.23	1.37	0.90	6.09	4.56	3.16	3.16	3.17	3.19	3.89	3.89	3.90	3.91
P_{B} ,	MPa	0.128	0.113	0.292	0.224	0.170	0.110	0.105	0.253	0.210	0.177	0.807	1.040	1.399	0.252	0.521	0.750	0.988
T _{R,o}		1.003	1.155	1.430	1.412	1.412	1.439	1.433	0.797	0.779	0.773	0.794	0.806	0.839	0.764	0.770	0.788	0.803
ž		9.000	0.050	0.229	0.165	0.104	0.033	0.021	0.328	0.269	0.201	0.188	0.177	0.157	0.240	0.237	0.228	0.218
P _{R,o}		1.121	1.275	4.587	3.455	2.483	1.078	0.720	4.662	3.502	2.438	2.441	2.449	2.462	2.994	2.993	3.002	3.008
P _o ,	MPa	1.45	1.65	5.94	4.48 4.54	3.22	1.40	0.93	6.04	4.54	3.16	3.16 3.20	3.17	3.19	3.88	3.88	3.89	3.90
T _o ,	*	33.1	38.1	47.2	9.95	46.6	47.5	47.3	26.3	25.7	25.5	26.2	26.6	27.7	25.2	25.4	26.0	26.5
, X,	s/g	27.82	18.64	85.43	61.57	38.92	12.39	7.90	122.42	100.40	75.32	70.15	66.14	58.83	89.77	88.62	85.08	81.54
Run		4126	4127	4128	4129	4130	4132	4133	4134 1	4135 1	4136	4137	4138	4139	4140	4141	4142	4143

TABLE I.—Continued.

(c) Continued.

, e	9	6,7		0.7	0.7	0.7	0.7	20	90	0.7	20	0.7	0.7	20	20	90	0.7	20
P _e ,] .	-	0.	9.	0.	0.	0.	0.	0.	0.	0.	0.	0.0	0.	0.	0.0	9.	0.
P. 9	2 ^	0.10	0.17	0.34	$0.28 \\ 0.10$	0.24	0.22	$0.19 \\ 0.10$	$0.18 \\ 0.10$	$0.16 \\ 0.10$	0.33	0.27	0.23	0.21	0.19	0.52	0.09	0.43
P	6	1.39	0.26	0.87	0.80	0.67	0.56	0.44	0.37	0.36	0.74	0.64	0.57	0.47	0.40	1.17	1.01	0.83
MPa	∞ ^	2.26	0.57	2.26	1.91	1.50	1.23	0.93	0.68	0.55	2.08	1.69	1.33	1.02	0.84 0.84	2.75	2.22 2.18	1.76
to 10,	-	2.44	0.61	2.53	2.12 2.14	1.63	1.31	0.99	0.73	0.58	2.35	1.90	1.47	1.10	0.89	3.03	2.42	1.89
locations 1	٠	2.52 2.52	0.64	2.69	2.24	1.71	1.37	1.02	0.75	0.60	2.50	2.02	1.55	1.16	0.93	3.17	2.52	1.96
pressure tap 1	, j	3.09	0.79	4.05	3.25	2.35	1.79	1.25	0.93	0.73	3.85	3.02	2.23	1.58	1.18	4.43	3.39	2.51
l tal	4	3.23	0.82	4.25	3.40	2.45	1.86	1.29	96.0	0.75	4.05	3.17	2.34	1.65	1.23	4.61	3.52	2.60
Pressure P. F	~ (3.26	0.82	4.37	3.49	2.50	1.90	1.30	0.96 0.98	0.75	4.17	3.26	2.39	1.67	1.24	4.71	3.58	2.63
P,	7 9	3.81	1.00	5.86	4.67	3.31	2.46	1.61	1.17	0.91	5.65	4.45	3.25	2.24	1.60	6.00	4.55	3.28
<i>P</i> ,	- °	3.95	1.01	6.10	4.85	3.43	2.54	1.65	1.18	0.92	5.89 5.90	4.62	3.37	2.31	1.64	6.21	4.69	3.38
P _B ,	1	1.286	990.0	0.067	0.068	0.069	0.069	0.068	0.065	0.068	0.067	0.068	0.068	990.0	0.068	0.063	0.068	0.068
$T_{R,o}$	۱ ا	1.806	0.912	0.927	0.942	0.939	0.942	0.933	0.933	0.894	0.836	0.827	0.824	0.827	0.852	1.121 (1.118 (1.136 (
G _R	۹ ۱	160.0	000.0	0.313	0.263	0.201	0.156	0.103	0.068	0.034	0.319	0.270	0.214	0.160	0.117	0.282	0.224	0.160
P _{R,o}		3.029	0.787	4.666	3.720	2.637	1.958	1.282	0.924	0.723 (4.508	3.544	2.600	1.789	1.277	4.752 (3.600 (2.601 (
P _o , MPa	۱ ۹	3.43 3.98	1.02	6.05	4.82	3.42	2.54 2.53	1.66 1.66	1.20	0.94	5.84	4.59	3.37	2.32	1.65	6.16 6.18	4.66	3.37
T _o ,		9.60	30.1	30.6	31.1	31.0	31.1	30.8	30.8	29.5	27.6	27.3	27.2	27.3	28.1	37.0 6	36.9	37.5
w, 89/s		33.98	0.00	117.17	98.29	75.05	58.24	38.55	25.41	12.89	19.28	00.80	80.08	59.80	43.60	05.52	83.64	59.76
Run		5	4149	4150 1	4151	4152	4153	4154	4155	4156	4157 1	4158 1	4159	4160	4161	4166 1	4167	4168

TABLE I.—Continued.

(c) Continued.

						7		7	7					0.7	7	7	_	7
P 6,	MPa	0.07	0.07	0.07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	P_{10}	0.44	0.68	0.55	0.48	0.69	0.42	1.22	0.32	0.56	0.47	0.42	0.35	0.34	0.32	0.52	0.44	0.40
	P_9	0.67	0.60	1.16	1.00	0.79	0.67	0.51	0.45	1.60	1.47	1.27	0.49	0.43	0.37	1.33	1.04	0.76
MPa	P_8	1.30	1.30	2.69	2.16	1.66	1.40	1.05	0.81	3.24	2.59	2.10	1.04	0.84 0.84	0.61	3.25	2.44	1.72
to 10,	P_7	1.36	1.33	2.93	2.34	1.78	1.49	1.11	0.86	3.47	2.76 2.76	2.21	1.10 1.10	0.0 88.0 88.8	0.64	3.51	2.64	1.86
locations 1	P ₆	1.40	1.34	3.07	2.44	1.85	1.54	1.15	0.92	3.61	2.85	2.28	1.14	$0.91 \\ 0.92$	99.0	3.64	2.74	1.92
pressure tap 1		1.69	1.45	4.14	3.25	2.42	1.93	1.39	1.28	4.61	3.56	2.77	1.40	1.11	0.79	4.58	3.41	2.38
at	64	1.74	1.46	4.29	3.37	2.50	2.00	1.42	1.30	4.75	3.66	2.85	1.44	1.15	0.82	4.73	3.53	2.48
Pressure	P ₃	1.74	1.46	4.37	3.42	2.54	2.01	1.43	1.29	4.83	3.71	2.87	1.45	1.14	0.81	4.78	3.56	2.49
	P ₂	2.09	1.61	5.44	4.30	3.20	2.50	1.73	1.42	5.83	4.47	3.42	1.75	1.39	0.98	5.53 4.83	4.13	2.91
	P ₁	2.13	1.61	5.62 5.64	4.44 4.45	3.30	2.57	1.76	1.42	6.00	4.58	3.50	1.78	1.40	98.0	9.	22	2.99
a	MPa	790.	.067	990.	. 068	.067	0.067	0.068	0.067	0.067	0.067	0.068	0.067	0.065	0.068	990.0	0.068	0.068
F	IR,o	1.127 0	1.115 0	1.012 0	1.015 0	1.006 0	1.021	1.003 (1.042 (1.355 (1.409	1.394	1.406	1 397	1.379	4.197	4.445	4.473
,	<u> </u>	080	042	. 269	.223	. 771.	.133	.093	. 043	.228	.161	.114	. 045	.033	.020	.256	.154	0.098
	P.R.o	.652 0	.253 0	.308 0	.407 0	541 0	988 0	1.371 0	1.109 0	4.595 0	3.519 0	2.693 0	1.390 0	1.100 0	0.773 0	4.369 0	3.270 0	2.306 (
-	<i>P_o,</i> MPa	14 1	4 94	4 6 6	3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 2m	L L	~ ~	. ቁጥ ቁክ	95	5.56	. o-c	0 0 0	. 20	1 00	7 401	. 2. 24.	6.6.
H	Γ_o , Γ_o	7.2 2	6.8 1	3.4	3.5	33.2 3.	33.7 2.	33.1 1.	34.4 1. 1.								5 146.7 4	47.62
-	ν, φ/s	31	5.60 3	100.41 3	3.34 3	6.29	9.61	34.73	6.16	5.29	0.10	2.66	16.79	2.20	7.48	95.87 1	57.53 1	36.81 1
	Run	169 2	170 1	4171 10	4172 8	4173 6	4174 4	4175 3	4176 1	4177 8	4178 6	4179 4	4180 1	4181 1	4182	4183 9	4184 5	4185

TABLE I.—Concluded.

(c) Concluded.

P _e ,	MPa	0.07	0.07
	P_{10}	0.21	0.15
	P_9	0.74	0.32
fPa	P_8	1.70	0.72
1 to 10, N	P_7 P_8	1.84	U.77 0.78
Pressure at pressure tap locations 1 to 10, MPa	P_6	5 2.88 2.47 2.45 2.36 1.91 1.84 1.70 0.74 0.21 0.07 5 2.83 2.51 2.51 2.31 1.93 1.86 1.62 0.76 0.10	0.80 0.81
essure tap	P_4 P_5	2.36	0.99
sure at pr	P_4	2.45	1.03
Pres	P_3	2.47	1.03
	P ₂	2.88	1.24
	P_1	2.95	1.25
P_B ,	MPa	.812 0.068	.627 0.067
$T_{R,o}$		4.812	4.627
G_R		0.088	0.034
P _{R.o}		2.283 0.088	0.987 0.034
P _o ,	MPa	2.96	1.28
T_o	×	158.8	152.7
ъ,	s/g	4186 32.91 158.8 2.96 2.96	4187 12.69 152.7 1.28 1.27
Run		4186	4187

(d) Hydrogen with backpressure control

P _e ,	MPa	0.23	0.27	0.41	0.62	92.0	66.0	1.25	1.45	0.07	0.07	0.07	0.07
	P ₁₀	0.26	0.30	0.43	0.64	11.38	7.11	1.34	1.46	0.28	0.32	0.39	0.45
	P_9	0.78	0.78	0.79	0.84 0.85	0.92	1.10	1.33	1.52	0.60	0.61	0.64	0.68
MPa	P_8	1.71	1.71	1.72	1.73	1.76	1.83	1.94	2.04	1.58	1.59	1.60	1.64
1 to 10,	P_7	1.87	1.87	1.87	1.89	1.91	$\frac{1.97}{2.01}$	2.07	2.16	1.77	1.78	1.79	1.83
pressure tap locations	P_6	1.95	1.95	1.95	1.96	$\frac{1.99}{2.00}$	2.04	2.14	2.22	1.88	$\frac{1.89}{1.90}$	1.90	1.94
essure tap	P _S	2.44	2.44	2.44	2.45	2.47	2.51	2.56	2.62	2.82 2.78	2.82	2.83	2.85
Pressure at pr	P_4	2.53	2.53	2.54	2.55	2.56	2.59	2.64	2.69	2.96	2.96	2.97	2.99
Pre	P ₃	2.56	2.56	2.57	2.58	2.59	2.63	2.68	2.72 2.76	3.04	3.04	3.05	3.07
	P_2	2.99	2.99	3.00	3.01	3.01	3.04	3.06	3.09	4.16	4.16	4.16	4.16
	$P_{\rm l}$	3.09	3.10	3.10	3.11	3.12	3.14	3.16	3.19	4.33 4.34	4.33	4.33	4.34
P_B ,	MPa	0.228	0.269	905.0	0.615	0.761	0.991	1.253	1.450	990.0	0.068	0.068	0.068
TR,o		9.036	600.6	9.000	8.994	8.991	8.985	8.982	8.982	0.800	0.812	0.818	0.852
S		090.0	0.060	0.060	0.060	0.059	0.058	0.056	0.054	0.259	0.257	0.254	0.250
P _{R,o}		2.394	2.395	2.400	2.407	2.410	2.425	2.444	2.458	3.323	3.325	3.325	3.329
P _o ,	MPa	3.10	3.10	3.11	3.12	3.12	3.14	3.17	3.19	4.31	4.31	4.31	4.31
Το,	Ж	298.2	297.3	297.0	296.8	296.7	296.5	296.4 3.17 3.19	296.4 3.19 3.21	26.4	26.8	27.0	28.1
٠,٤	g/s	22.56	22.56	22.50	22.33	22.12	21.66	20.93	20.30	96.85	95.95	94.98	93.29
Run		4090	4091	4092	4093	4004	4095	9605	4097	4162	4163	4164	4165

TABLE II.—FLOW RATE AND PRESSURE DROP DATA FOR THREE-STEP LABYRINTH SEAL, FULLY ECCENTRIC POSITION

[Where two values are given, the top value is for the 0° circumferential position (maximum clearance), and the bottom value is for the 180° circumferential position (minimum clearance).]

(a) Nitrogen

MPa	0.14	0.16	0.20	0.25	0.29	0.33	0.37	0.41	0.24	0.20	0.19	0.17	0.16	0.29	0.25	0.37	0.18
P ₁₀	0.15	$0.16 \\ 0.18$	$0.19 \\ 0.22$	0.23	0.26	0.30	0.33	0.37	0.26	0.23	0.21	0.20	$0.19 \\ 0.19$	0.32	0.26	0.51	0.19
P_9	0.30	0.45	0.65	0.89	$1.05 \\ 0.91$	$\frac{1.23}{1.06}$	1.38	1.53	0.46	0.40	0.38	0.33	$0.31 \\ 0.28$	1.35	1.13	0.97	0.63
P ₈	0.53	0.80	1.16	1.58	1.90	2.22 2.51	2.51	2.80	1.58	$\frac{1.25}{1.33}$	$0.99 \\ 1.05$	0.75	0.56	2.42	2.07	2.34	1.20
P_7	0.68	1.04	1.52	2.08	2.49	2.92	3.30	3.69	2.07	1.60	1.23	0.91	0.65	2.83	2.34	1.64	1.37
P_6	0.70	1.07	1.55	2.11	2.53	2.97	3.35	3.75	2.23	1.72	1.31	0.96	0.68	2.93	2.41	1.69	1.41
Ps	0.80	$\frac{1.22}{1.29}$	1.78	2.45	2.95	3.46	3.92	4.41	3.61	2.69	1.97	1.40	0.93	3.87	3.00	2.07	1.70
P_4	$0.91 \\ 0.92$	1.38	2.02	2.76	3.31	3.89	4.40 4.34	4.94	4.02 3.98	3.00	2.20	1.54	1.01	4.24 4.16	3.25	2.23	1.80
P_3	0.90	1.39	2.03	2.78	3.34	3.93	4.45	4.99	4.12	3.06	2.23	1.56	1.02	4.27	3.25	2.23	1.81
P_2	1.02	1.56	2.26	3.09	3.72	4.37	4.95 5.15	5.55	5.48	4.09	2.98	2.08	1.34	5.23	3.91	2.81	2.05
P_1	$\frac{1.09}{1.09}$	1.67	2.42	3.32	3.98	4.69	5.31 5.32	5.95	5.99	4.46	3.22	2.24	1.41	5.62	4.16	2.96	2.12
MPa	0.136	0.160	0.197	0.247	0.286	0.329	0.368	0.411	0.238	3.204	1.186	0.174	0.165	0.293	0.246	0.369	0.181
	2.321	2.333	2.325	2.324	2.299	2.295	2.294	2.301	.700	0.703	0.705	0.703	0.709	0.935	0.932	0.884	0.929
	0.015	0.024	.036	0.050	.061	.073	.083	.095		.185	.150	.118	. 088	.186	.145	.216	.075
	0.327 (0.495 (0.717 (0.976	1.169 (1.371 (1.552 (1.738 0	1.743 0	1.302 0	0.946.0	0.659.0	0.422 0	1.634 0	1.213 0	0.822 0	0.624 0
MPa	1.12	1.69	2.45	3.33	3.99	4.68	5.30	5.94	. 95	. 45	. 23	. 25	44.	.58	. 14	. 81	2.13
×	293.2	7	9.	ι.	290.4	289.8			4.88	88.88	89.1 3	88.8	89.6 1				117.3 2
s/g	29.58	46.46	69.93	97.74					35.15	58.95	91.50	29.81	69.80	. 93			
	4355	4356	4357	4358	4359 1	4360 1	4361 1	4362 1									4371 146.26
	K MPa MPa P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_{10}	g/s K MPa MPa MPa P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_{10} MPa MPa P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_{10} P_9 P_{10} P_9 P_{10} P_9 P_9 P_{10}	g/s K MPa MPa P ₁ P ₂ P ₃ P ₄ P ₅ P ₆ P ₇ P ₈ P ₉ P ₁₀ MP 29.58 293.2 1.12 0.327 0.015 2.321 0.136 1.09 1.02 0.91 0.80 0.70 0.68 0.53 0.30 0.15 0.1 46.46 294.7 1.69 0.92 0.89 0.92 0.68 0.65 0.61 0.27 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.15 0.15 0.16 0.15 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.15 0.15<	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29.58 293.2 1.12 0.327 0.015 2.321 0.136 1.09 1.02 0.90 0.91 0.80 0.70 0.68 0.53 0.30 0.15 0.15 0.13 1.09 1.05 0.89 0.92 0.85 0.68 0.65 0.61 0.27 0.16 0.15 0.15 1.09 1.05 0.89 0.92 0.85 0.68 0.65 0.61 0.27 0.16 0.15 0.15 1.09 1.05 0.89 0.92 0.85 0.68 0.65 0.61 0.27 0.16 0.15 0.15 1.67 1.62 1.37 1.38 1.22 1.07 1.09 0.92 0.49 0.91 0.92 0.90 0.91 0.00 0.92 0.40 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9/5 K MPa Probability Probability	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g/s K MPa MPa P ₁ P ₂ P ₃ P ₆ P ₇ <	9/8 K MPa NPa P ₁ P ₂ P ₃ P ₄ P ₅ P ₄ P ₅ P ₄ P ₅ P ₇ <	g/s K MPa Pri Pri	9/8 K Mah P <td>8/8 K MPA PA PA</td> <td>29.5 K Mrh Mrh Pr Pr</td> <td> 29.58 293.2 1112 0.327 0.015 2.321 0.136 1.09 1.02 0.89 0.92 0.85 0.68 0.65 0</td> <td> 29.5 K MPa MPa MPa MPa MPa Pa Pa</td>	8/8 K MPA PA PA	29.5 K Mrh Mrh Pr Pr	29.58 293.2 1112 0.327 0.015 2.321 0.136 1.09 1.02 0.89 0.92 0.85 0.68 0.65 0	29.5 K MPa MPa MPa MPa MPa Pa Pa

TABLE II.—Continued.

7.16 6.00

(a) Concluded.

P _e ,	MPa	0.31	0.27	0.23	0.21	0.17	0.37	0.26	0.20	0.30	0.26	0.21	0.35	0.23	0.14	0.13	0.25	1.25
	P_{10}	0.32 (0.28	0.23 (0.20	0.17 (0.40	0.28 (0.22 0	0.32	0.27 (0.20	0.34 (0.22 0	0.15 0	0.15 0	0.23 0	0.23 0
	P_9	1.52	1.29	1.04	0.92	0.75	1.31	1.12	0.80	1.48	1.22	0.92	1.56	1.19	0.50	0.37	1.29	1.21
MPa	P_8	3.00	2.63	2.06	1.79	1.47	2.32	1.95	1.52	2.85	2.45	$\frac{1.79}{1.88}$	3.15	2.30	1.00	0.74	2.56	2.39
1 to 10,	P_7	3.40	2.94	2.39	2.09	1.68	2.72 2.67	2.24	1.66	3.24	2.75	2.10	3.60	2.66	1.15	0.84 0.84	3.02	2.88
p locations	P_6	3.49	3.00	2.46	2.16	$\frac{1.73}{1.71}$	2.83	2.32	1.70	3.33	2.82	2.16	3.70	2.74	$\frac{1.19}{1.18}$	0.88	$\frac{3.11}{3.07}$	2.96
pressure tap	Ps	4.34	3.60	2.98	2.59	2.10	3.80	2.97	2.00	4.18	3.34	2.61	4.52	3.35	1.45	$\frac{1.06}{1.07}$	3.79	3.64
Pressure at p	P ₄	4.69	3.85	3.16	2.77	2.23	4.16 4.08	3.24	2.13	4.53	3.58	2.80	4.83	3.57	1.54	$\frac{1.13}{1.15}$	4.07	3.92
Pr	P_3	4.71	3.86	3.16	2.78	2.23	4.19 4.18	3.24	2.13	4.54	3.58	2.81	4.85	3.59	1.55	1.13	4.09	3.97
	P ₂	5.55	4.49	3.58	$\frac{3.19}{3.23}$	2.60	5.18	3.97	2.50	5.40	4.13	3.20	5.57	4.16	1.81	1.34	4.65	4.56
	P ₁	5.92	4.75	3.74	3.31	2.71	5.58	4.24	2.63	5.77	4.37	3.34	5.87	4.35	$\frac{1.89}{1.90}$	$\frac{1.38}{1.39}$	4.92	4.83
P_B ,	MPa	0.313	0.272	0.233	0.207	0.172	0.372	0.257	0.197	0.305	0.256	0.212	0.348	0.230	0.141	0.130	0.249	0.249
$T_{R,o}$		1.023	1.014	1.014	1.001	1.006	006.0	0.897	0.901	1.004	1.005	1.002	1.115	1.119	1.127	1.122	1.430	1.432
Š		0.169	0.138	0.098	990.0	0.044	0.193	0.156	0.103	0.173	0.131	0.067	0.131	0.077	0.025	0.017	0.070	0.065
PRO		1.719	1.381	1.092	0.968	0.796	1.623	1.239	0.773	1.678	1.275	0.975	1.708	1.270	0.558	0.413	1.430	1.408
P.,	MPa	5.87	4.72	3.73	3.31	2.72	5.55 5.53	4.23	2.64	5.73	4.36	3.33	5.84	4.34	1.91	1.41	4.89 4.88	4.81
Τ,,	K	129.2	128.1	128.1	126.4	127.0	113.7	113.3	113.8	126.8	126.9	126.5	140.8	141.3	142.4	141.7	180.6	180.8
٤.	s/s	328.82	267.35	189.97	128.91	86.27	374.60	302.95	200.71	335.08	253.53	129.49	253.63	149.64	47.57	33.43	135.06	126.62
Run		4372	4373	4374	4375	4376	4377	4378	4379	4381	4382	4383	4384	4385	4386	4387	4388	4389

TABLE II.—Continued.

(b) Hydrogen

MPs	.038 8.815 0.167 1.96 1.87 1.64 1.64 1.47 1 1.98 1.91 1.64 1.63 1.53 1.53 1.55 8.903 0.213 2.78 2.63 2.31 2.31 2.08 1 2.78 2.68 2.31 2.28 2.16 1
8 0.038 8.815 0.167 1.96 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.65	.038 8.815 0.167 1.96 1.87 1.64 1.64 1.47 1 1.98 1.91 1.64 1.63 1.53 1.53 1 .055 8.903 0.213 2.78 2.63 2.31 2.31 2.08 1 2.78 2.68 2.31 2.28 2.16 1
0.055 8.903 0.213 2.31 2.31 2.16 1.72 1.52 0.55 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 2.93 2.93 2.93 2.93 2.93 2.93 2.94 2.93 0.24 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.24 0.22 0.24	.055 8.903 0.213 2.78 2.63 2.31 2.31 2.08 1 2.78 2.68 2.31 2.28 2.16 1
6 0.074 8.955 0.261 3.58 3.45 2.99 2.98 2.68 2.26 2.21 1.72 1.95 0.95 0.26 0.95 0.26 0.35 0.26 0.35 0.26 0.35 0.26 0.35 0.26 0.37 0.35 0.37 0.35 0.37 0.35 0.37 0.35 0.37 0.36 0.37 0.35 0.37 0.36 0.37 0.35 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.38 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36 0.38 0.39 0.36	
3.478 0.095 8.982 0.319 4.50 4.25 3.77 3.75 3.75 3.89 2.85 2.78 2.16 1.18 0.22 0.3 3.911 0.108 8.976 0.355 5.09 4.25 4.25 4.22 3.81 3.12 3.12 3.10 2.75 1.13 0.35 0.3 4.472 0.125 8.961 0.405 5.83 5.60 4.84 4.76 4.54 3.57 3.65 3.56 2.27 1.13 0.35 0.44 4.873 0.329 0.867 0.335 6.35 6.38 6.11 4.59 4.25 2.82 2.82 2.66 2.27 0.91 0.34 4.873 0.329 0.867 0.335 6.35 6.38 6.11 4.59 4.25 2.82 2.82 2.82 2.82 2.27 0.91 0.34 4.874 0.124 0.125 0.861 0.232 3.00 2.88 2.21 2.23 2.02 1.49 1.42 1.20 1.95 0.20 0.2 2.329 0.192 0.861 0.232 3.00 2.88 2.21 2.23 2.02 1.49 1.42 1.20 0.46 0.20 0.2 4.691 0.330 0.855 0.323 6.13 5.72 4.37 4.35 3.97 2.57 2.47 1.99 0.46 0.20 0.21 4.691 0.330 0.855 0.323 6.13 5.72 4.37 4.25 3.97 2.52 2.47 1.99 0.46 0.20 0.21 4.691 0.330 0.855 0.323 6.10 5.72 2.45 1.88 1.90 1.74 1.27 1.10 0.99 0.61 0.25 0.25 4.718 0.117 0.994 0.323 6.15 5.78 2.45 1.88 1.90 1.77 1.27 1.21 1.02 0.56 0.25 4.718 0.311 0.994 0.323 6.15 5.78 2.45 1.88 1.90 1.77 1.27 1.21 1.02 0.56 0.25 3.585 0.250 1.009 0.201 4.65 4.59 2.45 1.88 3.45 3.18 2.78 2.66 2.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0	.074 8.955 0.261 3.56 3.38 2.99 2.98 2.68 2 3.58 3.45 2.97 2.93 2.79 2
4.472 0.11 0.108 8.976 0.355 9.06 4.78 4.22 4.15 3.20 3.12 3.01 2.75 11.15 0.35 0.4 4.89 4.22 4.15 3.16 3.16 1.15 0.35 0.4 4.84 4.76 4.54 3.56 3.56 2.75 1.19 0.40 0.37 0.62 2.77 3.62 2.71 1.49 0.40 0.37 0.62 2.77 3.62 2.77 1.62 2.77 2.62 2.27 0.81 0.30 0.39 0.46 0.37 0.62 2.22 2.66 2.27 2.66 2.27 2.66 2.77 2.62 2.77 2.62 2.27 0.81 0.39 0.87	.095 8.982 0.319 4.50 4.25 3.77 3.75 3.39 2 4.52 4.35 3.75 3.70 3.52 2
4.472 0.125 8.961 0.405 5.78 5.47 4.87 4.37 3.65 3.56 2.76 1.49 0.37 0.49 4.15 4.25 3.57 3.62 2.76 1.130 0.40 0.87 0.81 0.34 0.37 0.81 0.81 0.84 0.87 0.81 0.82 0.81 0.82 0.81 0.82 0.81 0.82 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.83 0.83 0.83 0.83 0.83 0.84 0.83 0.83 0.84 0.83 0.83 0.84 0.83 0.83 0.84 0.83 0.83 0.83	.108 8.976 0.355 5.06 4.78 4.25 4.22 3.81 3 5.09 4.89 4.22 4.15 3.96 3
4.873 0.329 0.867 0.335 6.38 6.11 4.69 4.25 2.77 2.66 2.27 2.66 2.27 0.81 0.34 0.36 3.515 0.258 0.873 0.26 4.56 4.31 4.62 2.77 2.66 2.77 2.66 2.27 2.06 2.27 0.81 0.78 0.30 0.20 0.20 2.329 0.192 0.861 0.232 2.88 2.21 2.23 2.02 1.49 1.42 1.29 1.64 0.24 0.24 0.21 2.28 2.88 2.88 1.40 1.40 1.40 0.92 0.46 0.28 0.24 0.21 2.28 2.88 2.88 1.40 1.40 1.40 0.98 0.44 0.19 0.44 0.19 0.805 0.32 0.32 0.30 0.30 0.30 0.30 0.30 0.30	.125 8.961 0.405 5.79 5.47 4.87 4.84 4.37 3 5.83 5.60 4.84 4.76 4.54 3
3.515 0.258 0.873 0.269 4.56 4.31 3.31 3.31 3.00 2.11 2.00 1.64 0.78 0.30 0.27 2.329 0.192 0.861 0.232 3.00 2.86 2.21 2.23 2.02 1.49 1.42 1.29 0.58 0.29 0.25 1.444 0.124 0.903 0.193 1.83 1.78 1.42 1.44 1.35 1.07 1.04 0.92 0.46 0.29 0.21 2.012 0.030 0.855 0.323 6.10 5.72 4.37 4.35 3.90 2.62 2.47 1.95 0.75 0.75 0.33 0.31 2.018 0.179 0.845 0.214 2.59 2.45 1.88 1.90 1.71 1.27 1.21 1.38 0.69 0.25 0.32 1.284 0.123 0.845 0.183 1.62 1.57 1.24 1.26 1.15 0.91 0.88 0.83 0.40 0.20 2.553 0.192 1.000 0.226 3.30 3.42 3.42 3.42 3.42 2.72 1.70 1.00 0.225 2.14 1.70 0.93 0.40 0.20 0.10 2.553 0.192 1.000 0.226 3.30 3.14 2.47 2.47 2.47 2.70 1.04 0.99 0.78 0.70 0.20 0.10 2.553 0.192 1.000 0.226 3.30 3.14 2.47 2.47 2.47 2.70 1.04 0.99 0.70 0.22 3.14 2.47 2.47 2.70 0.10 1.04 0.90 0.20 0.20 0.20 0.20 0.20 0.20 0.20	.329 0.867 0.335 6.35 5.98 4.61 4.59 4.16 2 6.38 6.11 4.62 4.49 4.22 2
2.329 0.192 0.861 0.232 3.00 2.86 2.23 2.18 2.05 1.49 1.43 1.21 0.64 0.25 0.28 0.23 1.44 0.124 0.903 0.193 1.83 1.78 1.42 1.42 1.45 1.35 1.07 1.04 0.98 0.46 0.20 0.1 0.1 1.84 0.124 0.903 0.193 1.84 1.77 1.44 1.44 1.44 1.35 1.07 1.04 0.98 0.46 0.20 0.1 1.84 1.77 1.44 1.44 1.45 1.35 1.07 1.04 0.98 0.46 0.20 0.1 1.84 1.25 1.27 1.07 1.04 0.98 0.46 0.19 0.1 1.84 0.19 0.35 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	.258 0.873 0.269 4.56 4.31 3.31 3.31 3.00 2 4.58 4.38 3.32 3.24 3.04 2
1.444 0.124 0.903 0.193 1.84 1.77 1.44 1.45 1.53 1.07 1.04 0.98 0.44 0.19 0.20 0.1 4.691 0.330 0.855 0.323 6.13 5.86 4.37 4.24 3.97 2.67 2.47 1.95 0.85 0.33 0.35 3.096 0.245 0.845 0.276 4.37 4.24 3.97 2.67 2.47 1.95 0.85 0.33 0.35 2.018 0.245 0.845 0.249 4.00 3.76 2.86 2.87 2.57 1.80 1.71 1.27 1.29 1.49 0.61 0.25 0.25 0.24 0.20 0.61 0.25 0.25 0.24 0.20 0.71 0.89 0.61 0.25 0.25 0.21 1.26 1.26 1.74 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.25 1.26 1.25 1.25	.192 0.861 0.232 3.00 2.86 2.21 2.23 2.02 1 3.02 2.89 2.23 2.18 2.05 1
4.691 0.330 0.855 0.323 6.10 5.72 4.37 4.25 3.90 2.62 2.47 1.95 0.85 0.33 0.33 0.35 0.245 0.839 0.249 4.00 3.76 2.86 2.87 2.87 2.57 1.80 1.71 1.38 0.69 0.75 0.33 0.25 0.20 0.245 0.839 0.249 4.00 3.76 2.86 2.87 2.87 2.57 1.80 1.71 1.28 0.69 0.60 0.25 0.25 0.24 0.25 0.25 0.27 0.29 0.24 0.25 0.249 1.90 1.71 1.27 1.27 1.20 1.09 0.50 0.50 0.21 0.25 0.24 1.80 1.71 1.26 1.27 1.20 1.09 0.50 0.50 0.21 0.25 0.24 1.80 1.71 1.26 1.26 1.27 1.20 1.09 0.50 0.50 0.20 0.1 0.25 0.24 1.26 1.25 1.27 1.26 1.27 1.20 1.09 0.50 0.50 0.20 0.1 0.20 0.1 0.88 0.33 0.33 0.33 0.33 0.33 0.33 0.33	.124 0.903 0.193 1.83 1.78 1.42 1.45 1.33 1 1.84 1.77 1.44 1.44 1.35 1
1 3.096 0.245 0.839 0.249 4.00 3.76 2.86 2.87 2.57 1.80 1.71 1.38 0.69 0.26 0.25 0.25 1.80 0.179 0.845 0.214 2.59 2.45 1.88 1.90 1.71 1.27 1.21 1.02 0.54 0.51 0.23 0.2 1.284 0.123 0.845 0.183 1.62 1.57 1.24 1.26 1.15 0.91 0.89 0.78 0.40 0.50 0.19 1.1 1.27 1.20 1.09 0.20 0.19 1.63 1.57 1.25 1.175 0.91 0.89 0.78 0.40 0.20 0.19 1.1 1.25 1.174 0.91 0.89 0.78 0.40 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.1	.330 0.855 0.323 6.10 5.72 4.37 4.35 3.90 2. 6.13 5.86 4.37 4.24 3.97 2
2.018 0.179 0.845 0.214 2.59 2.45 1.88 1.90 1.71 1.27 1.21 1.02 0.54 0.23 0.25 0.21	.245 0.839 0.249 4.00 3.76 2.86 2.87 2.57 l 4.02 3.85 2.87 2.80 2.61 l
1.284 0.123 0.845 0.183 1.62 1.57 1.24 1.26 1.15 0.91 0.89 0.78 0.40 0.20 0.19 0.18 1.05 1.57 1.25 1.17 0.91 0.98 0.88 0.83 0.38 0.19 0.19 0.10 0.31 0.994 0.323 6.15 5.78 4.50 4.49 4.06 2.83 2.69 2.18 1.07 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.33	.179 0.845 0.214 2.59 2.45 1.88 1.90 1.71 1 2.60 2.49 1.90 1.87 1.74 1
4.718 0.311 0.994 0.323 6.15 5.78 4.50 4.49 4.06 2.83 2.69 2.18 1.07 0.32 0.33 0.51 0.92 0.33 0.93 0.33 0.33 0.29 0.29 0.20 0.20 0.20 0.20 0.20 0.20	.123 0.845 0.183 1.62 1.57 1.24 1.26 1.15 0 1.63 1.57 1.25 1.25 1.17 0
3 3.585 0.250 1.009 0.261 4.65 4.39 3.42 3.42 3.10 2.25 2.14 1.78 0.89 0.29 0.29 0.25 2.563 0.192 1.000 0.226 3.30 3.14 2.47 2.49 2.27 1.72 1.65 1.41 0.72 0.23 0.23 2.25 2.563 0.192 1.000 0.226 3.30 3.14 2.47 2.49 2.27 1.70 1.64 1.50 0.66 0.23 0.23	.311 0.994 0.323 6.15 5.78 4.50 4.49 4.06 2 6.17 5.92 4.50 4.38 4.13 2
2.563 0.192 1.000 0.226 3.30 3.14 2.47 2.49 2.27 1.72 1.65 1.41 0.72 0.23 0.2 3 0.2	.250 1.009 0.261 4.65 4.39 3.42 3.42 3.10 2 4.67 4.48 3.43 3.34 3.15 2
	.192 1.000 0.226 3.30 3.14 2.47 2.49 2.27 1 3.32 3.19 2.48 2.44 2.29 1

TABLE II.—Continued.

(b) Concluded.

	MPa	0.19	0.31	56	21	19	14	32	.26
	2	1		0.26	0.21	0.1	0.1		0.2
	P ₁₀	0.20	1 0 10	20	0.22				44
	P_9	0.58		0, 00	0.74	10,10	44	MO	1.24
MPa	P ₈	1.21	2.35	1.91	1.51	1.21	0.97	2.73	2.30
1 to 10,	P_{γ}	1.38	2.87	2.27	1.74	1.37	$\frac{1.09}{1.09}$	3.25	2.68
locations	P_6	1.42	3.01	2.37	1.81	1.41	1.11	3.41	2.79
Pressure at pressure tap locations 1 to 10,	P _S	1.76	4.19	3.19	2.30	1.75	1.30	4.57	3.61
sure at pr	P_4	1.90	4.61	3.50	2.50	1.88	1.38	4.95	3.88
Pres	P_3	1.88	4.62	3.49	2.48	1.86	1.35	4.96	3.88
	P_2	2.31	5.83	4.40	3.07	2.27	1.58	6.05	4.67
	P ₁	2.40	6.19	4.64	3.20	2.34	1.61	6.35	4.90
P _B ,	MPa	0.194	0.310	0.256	0.213	0.186	0.144	0.320	0.256
T _{R,o}		1.052	1.112	1.100	1.124 (1.100 (1.103 (1.418 (1.430 0
S_R		.132	.297	. 235	.163	.120	.058	.252	.184
$P_{R,o}$		1.873 0.132	4.745 0.297	3.577 0.235	2.487 0.163	1.827 0.120	1.262 0.058	4.863 0.252	3.755 0.184
Po,	Mra	.43							
T _o ,	4	34.7 2	36.7 6	36.3 4	37.1 3	36.32	36.4 1	46.8 6.30 6.32	47.2 4.87
۶, ۴۰	6/3	49.21 34.7 2.43 2.42	4416 111.06 36.7 6.15 6.17	87.74 36.3 4.64 4.64	61.00 37.1 3.22 3.22	44.83 36.3 2.37 2.36	21.55 36.4 1.64 1.62	94.35	68.96
Run		4415	4416 1		4418			4421	4422

(c) Hydrogen with backpressure control

Г		T					
P.,	MPa	0.21	0.18	0.16	0.25	0.56	0.76
	P_{10}	0.20	0.17	0.16	0.27	0.55	0.75
	Po	1.15	0.87	0.52	0.60	0.66	0.82
(Pa	P ₈	1.91	1.46	1.10	1.34	1.40	1.53
1 to 10, N	P_7	2.18	1.67	1.27	1.70	1.76	1.88
locations	P_6	2.26	1.72	1.31	1.80	1.86	1.98
essure tap	P_{S}	2.83	2.14	1.64	2.69	2.71	2.79
Pressure at pressure tap locations 1 to 10, MPa	P_4	3.03	2.29	1.76	2.96	3.03	3.10
Pres	P_3	3.01	2.27	1.75	2.96	3.04	3.10
	P_2	3.59	2.72	2.11	4.00	4.05	4.07
	P_1	3.72	2.80	2.16	4.38	4.40	4.41
P_B ,	MPa	0.208	0.175	0.156	0.252	0.557	0.763
$T_{R,o}$		1.439	1.430	1.455	794	785	0.794
ž		1.128	.089	.063	.266	.262	
$P_{R,o}$		2.875 0.128	2.171 0.089	1.688 0.063	3.390 0.266 0.	3.394 0.262 0.	3.396 0.255
Po,	INITA	3.73	2.81	2.19	4.39	4.40	4.40 4.41
Γο, Κ	4	47.5	47.2	48.0	26.2	25.9	26.2
٥,٧	â	4423 47.74 47.5 3.73 3.73	4424 33.23 47.2 2.81 2.81	23.42 48.0 2.19 2.18	99.39 26.2 4.39 4.40	97.84 25.9 4.40 4.40	4428 95.50 26.2 4.40 4.41
L L		4423	4424	4425	4426	4427	4428

TABLE II.—Concluded.

(c) Concluded.

P.,	MPa	0.86	0.89	0.29	0.70	98.0	1.24
	P_{10}	0.85	0.88	0.30	0.63	0.77	1.25
	P_9	0.92	0.95	0.87	0.91	$\frac{1.00}{0.98}$	1.35
MPa	P_8	1.61	1.64	1.63	1.66	1.74	2.03
1 to 10, 1	P_7	1.96	1.98	1.99	2.01	2.08	2.34
locations	P ₆	2.05	2.07	2.09	2.11	$\frac{2.18}{2.15}$	2.43
Pressure at pressure tap locations 1 to 10, MPa	P _S	2.84	2.85	2.94	2.95	3.01	3.17
ssure at p	P ₄	3.15	3.16	3.24	3.25	3.29	3.43
Pre	P ₃	3.15	3.16	3.25	3.25	3.30	3.43
	P ₂	4.11	4.14	4.21	4.22	4.24	4.28
	P ₁	4.41	4.41 4.44	4.48	4.48	4.49	4.51
P_{B}	MPa	0.860	0.887	0.897 0.293	0.921 0.702	0.863	1.030 1.243
TRA	2	0.809	0.839	0.897	0.921	0.958	1.030
Š	4	0.252	0.247	0.231	3.447 0.232	3.458 0.226	3.470 0.212
Pp.	Y.	3.401 0.252	3.402 0.247	3.448 0.231	3.447	3.458	3.470
P.,	MPa	4.41	4.41 4.42	4.47	30.4 4.47	4.48	4.50
T.,	×	26.7	27.7	86.39 29.6 4.47	30.4	84.38 31.6 4.48 4.49	34.0
۶٠ ج	g/s	4429 94.16 26.7 4.41	4430 92.44 27.7 4.41 4.42		86.87	84.38	4434 79.40 34.0 4.50
Run		4429	4430	4431	4432	4433	4434

TABLE III.—FLOW RATE AND PRESSURE DROP DATA FOR THREE-STEP LABYRINTH SEAL, TWO-THIRDS FULLY ECCENTRIC POSITION

[Where two values are given, the top value is for the 0° circumferential position (minimum clearance), and the bottom value is for the 180° circumferential position (maximum clearance).]

(a) Nitrogen

Pressure at pressure tap locations 1 to 10, MPa P_{c} Pressure at pressure tap locations 1 to 10, MPa P_{c} Pressure at pressure tap locations 1 to 10, MPa P_{c} Pressure at pressure tap locations 1 to 10, MPa P_{c} Pressure at pressure tap locations 1 to 10, MPa P_{c} Pressure at pressure tap locations 1 to 10, MPa P_{c} Pressure tap locations 1 to 10, MPa
MPa 0.46 0.21 0.1 0.42 0.22 0.1 0.58 0.32 0.1 0.58 0.32 0.1 0.73 0.40 0.1 0.94 0.42 0.1 0.95 0.40 0.1 1.20 0.53 0.1 1.68 0.75 0.2 1.68 0.73 0.2 1.51 0.81 0.2 1.52 0.99 0.1 2.08 0.90 0.3 2.78 1.12 0.3 2.78 1.34 0.3 2.83 1.50 0.3 3.17 1.34 0.4 2.83 1.50 0.3
MPa Ps
APa 9.00 9
s P ₆ P ₇
s P ₆ S P ₇
20 20 20 20 20 20 20 20 20 20 20 20 20 2
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
2.5 Sure at p 0.63 0.693 0.90 0.90 0.90 1.14 1.21 1.34 1.42 1.72 1.72 1.81 2.53 2.53 3.04 3.17 3.17 4.09 4.69 4.69
Pre
P ₂ P ₃ P ₄ P ₂ P ₃ P ₄ P ₃ P ₄ P ₅ P ₆ P ₇ P ₆ P ₇
P ₁ P ₁ P ₁ P ₁ P ₁ P ₁ P ₁ P ₂ P ₃ P ₃ P ₃ P ₃ P ₃ P ₄ P ₃ P ₄ P ₅ P ₇ P ₇
P _B . MPa 0.067 0.068 0.069 0.069 0.069 0.070 0.070
2.235 2.235 2.238 2.295 2.330 2.332 2.335 2.335 2.335
0.011 0.012 0.023 0.044 0.057 0.057 0.058
0.238 0.011 0.238 0.011 0.424 0.020 0.496 0.023 0.633 0.031 0.885 0.044 1.106 0.057 1.234 0.064 1.478 0.078 1.693 0.091
MPa MPa 11.1 11.1 11.1 11.6 11.6 11.6 11.6 11.
8/s K MPa 20.67 282.3 0.81 29.41 287.1 1.15 38.11 289.0 1.45 45.51 289.8 1.69 85.97 294.3 3.02 24.01 293.4 4.22 24.01 293.4 4.22 51.42 294.9 5.05 51.42 294.9 5.05
Run 4208 4209 4210 4211 4212 4214 1 4215 1 4216 1

(b) Hydrogen

P _e ,	MPa	0.04	0.04	90.0	0.11
	P_{10}	0.16	0.16	0.18	$0.22 \\ 0.19$
	P_9	0.32	0.32	0.43	0.63
МРа	P_7 P_8 P_9 P_{10}	0.72	0.73	0.97	1.43
Pressure at pressure tap locations 1 to 10, MPa	P_7	0.77	0.78	1.04	1.55
locations	P_1 P_2 P_3 P_4 P_5 P_6	0.80	0.81	1.09	1.61
essure tap	P _S	1.00	1.01	1.36	2.02
ssure at pr	P_4	1.04	1.05	1.41	$\frac{2.10}{2.18}$
Pre	P_3	1.05	1.06	1.42	2.13
	P_2	1.26	1.27	1.69	2.52
		1.29	1.29	1.74	2.59
ĺ	MPa	930 0.044 1.29 1.26 1.05 1.04 1.00 0.80 0.77 0.72 0.32 0.16 0.04 1.29 1.20 1.09 1.10 0.96 0.83 0.80 0.66 0.35 0.14	.933 0.045 1.29 1.27 1.06 1.05 1.01 0.81 0.78 0.73 0.32 0.16 0.04 1.30 1.21 1.09 1.10 0.97 0.84 0.81 0.66 0.36 0.14	.052 0.062 1.74 1.69 1.42 1.41 1.36 1.09 1.04 0.97 0.43 0.18 0.06 1.74 1.63 1.47 1.47 1.30 1.12 1.09 0.88 0.48 0.15	188 0.109 2.59 2.52 2.13 2.10 2.02 1.61 1.55 1.43 0.63 0.22 2.59 2.43 2.18 2.18 1.94 1.66 1.62 1.29 0.70 0.19
$T_{R,o}$		8.930	8.933	9.052	
G_R		0.024	0.024	0.033	0.052
P_{ρ} , P_{ρ} , $P_{R,o}$ G_R		4222 9.02 294.7 1.31 1.012 0.024 8. 1.30	4223 9.06 294.8 1.32 1.016 0.024 8. 1.30	4224 12.51 298.7 1.76 1.357 0.033 9. 1.74	2.014 0.052 9
P _o ,	MPa	1.31	1.32	1.76	2.61
T_o	Ж	294.7	294.8	298.7	303.2
٠,٤٠	s/g	9.02	9.06	12.51	4225 19.58 303.2 2.61 2.59
Run		4222	4223	4224	4225

TABLE III.—Continued.

(b) Continued.

P _e ,	MPa	0.19	0.28	0.38	0.21	0.22	0.16	0.13	0.11	0.09	0.08	0.21	0.16	0.12	0.10	0.08	0.04	0.19
	P_{10}	0.30	0.38	0.48	0.32	0.33	0.27	0.23	0.21	$0.19 \\ 0.19$	0.18	0.32	0.27	0.23	0.20	0.19	0.16	0.30
	P_9	0.92	1.19	1.47	$0.98 \\ 1.09$	0.72	0.63	0.55	0.47	0.38	0.31	0.95	0.86	0.70	0.56	0.46	0.52	0.74
MPa	P_8	2.13	2.80	3.51	2.29	2.12	1.73	1.38	1.06	0.80	0.67	2.41	2.07	1.65	1.34	1.05	0.81	2.11
1 to 10, M	P_7	2.32	3.06	3.86	2.49	2.45	1.97	1.56	1.18 1.20	0.86	0.72	2.70	2.30	1.79	1.43	1.14	0.87	2.43
locations	P_6	2.40 2.48	3.17	4.01	2.59	2.59	2.09	1.64	1.24	0.90	0.74	2.84	2.41	$\frac{1.86}{1.88}$	1.48	1.18	0.90	2.58
pressure tap	Ps	3.04	4.04	5.11	3.26	4.02	3.15	2.40	1.74	1.17	0.92	4.14	3.41	2.46	1.88	1.46	1.17	4.00
at	P_4	3.15	4.19	5.30	3.38	4.35	3.32	2.53	1.82	1.23	0.96	4.34	3.57	2.56	1.95	1.51	$\frac{1.20}{1.23}$	4.21
Pressure	P_3	3.20	4.25	5.38	3.43	4.36	3.41	2.59	1.85	1.24	96.0	4.44	3.65	2.65	1.97	1.52	$\frac{1.20}{1.22}$	4.33
	P_2	3.78	5.01	6.34	4.06	5.93	4.67	3.53	2.50	1.62	$\frac{1.22}{1.18}$	5.87	4.82	3.34	2.47	1.87	1.40	5.90
	P	3.89	5.16	6.54	4.17	6.14	4.83 4.84	3.66	2.59	1.67	1.24	6.06	4.96	3.43	2.53	1.90	1.41	6.12
P _B ,	MPa	0.194	0.283	0.383	0.210	0.225	0.163	0.129	0.108	0.087	0.075	0.210	0.161	0.123	0.099	0.079	0.043	0.186
TP	o.	9.267	9.279	9.224	9.142	0.833	0.821	0.815	0.800	0.812	0.818	1.052	1.045	1.088	1.076	1.039	1.058	0.852
3	4	0.103	0.140	0.145	0.089	0.341	0.287	0.238	0.186	0.133	0.103	0.304	0.260	0.183	0.137	0.104	0.053	0.336
Pos	ο'ν	3.010 (3.989 (5.040 (3.227 (4.716 (3.717	2.824	2.008	1.304	0.978	4.652	3.816	2.647	1.964	1.481	1.103	4.690
P	MPa	3.90	5.17	6.53	4.18 4.16	6.11 6.12	4.82	3.66 3.66	2.60	1.69	1.27	6.03	4.95	3.43	ro ro	1.92	1.43	
7.	ê ×	305.8	306.2	304.4	301.7	27.5	27.1	26.9	26.4	26.8	27.0	34.7	34.5	35.9	35.5	34.3	34.9	28.1
.3	s/g	38.55	52.48	54.38	33.22	127.38	107.39	88.88	69.57	49.80	38.46	113.81	97.22	68.34	51.21	38.90	19.68	125.41
Riin		4226	4227	4228	4229	4238 1	4239 1	4240	4241	4242	4243	4244 1	4245	4246	4247	4248	4249	4250

TO THE WOOD OF THE HARM TO THE STATE OF THE

TABLE III.—Continued.

(b) Continued.

P _e ,	MPa	0.13	0.11	0.20	0.18	0.13	0.08	0.04	0.03	0.16	0.15	0.07	90.0	0.17	0.11	0.09	0.08	0.07
	P ₁₀	0.24	0.22	0.31	0.28	0.23	0.19	0.15	0.14	0.28	0.26	$0.18 \\ 0.15$	$0.15 \\ 0.13$	0.28	0.22	6.20 0.19	$0.19 \\ 0.18$	0.18
	Pg	0.66	0.57	1.01	0.94	0.76	0.59	0.40	0.88	1.08	1.07	0.52	0.29	0.59	0.50	0.44	0.37	0.31
MPa	P_8	1.74	1.35	2.42	2.22	1.79	1.29	1.26	1.04	2.39	2.32	1.32	0.69	1.52	$\frac{1.17}{1.12}$	0.95	0.78	0.67
1 to 10, M	P_7	1.99	1.52	2.68	2.45	1.95	1.39	1.28	1.05	2.60	2.53	1.43	0.75	1.73	1.31	1.06	0.86	0.72
locations	P_6	2.10	1.59	2.80	2.55	2.02	1.44	1.30	1.05	2.70	2.62	1.48	0.78	1.82	1.37	1.10	0.89	0.75
pressure tap		3.18	2.32	3.92	3.52	2.67	1.83	1.42	1.07	3.55	3.42	1.89	0.98	2.72	$\frac{1.98}{1.92}$	1.53	$\frac{1.17}{1.14}$	0.94
Pressure at pre	P_4	3.34	2.44	4.09	3.67	2.77	$\frac{1.89}{1.95}$	1.45	1.08	3.67	3.53	1.95	1.02	2.86	2.08	1.61	1.23	0.98
Pres	P_3	3.44	2.50	4.18 4.24	3.74	2.82	1.91	1.44	$\frac{1.06}{1.08}$	3.73	3.59	1.97	1.02	2.94	2.13 2.18	1.63	1.24	0.98
	P_2	4.71	3.40	5.40	4.82	3.57	2.36	$\frac{1.62}{1.59}$	1.11	4.60	4.40	2.41	$\frac{1.25}{1.22}$	4.02	2.91	$\frac{2.20}{2.13}$	1.64	1.26
	P_1	4.87 4.88	3.52	5.56	4.97	3.67	2.41	1.63	$\frac{1.09}{1.10}$	4.70	4.50	2.46	1.26	4.17 4.18	3.01	2.28	1.68	1.28
P_B ,	MPa	0.133	0.110	0.203	0.177	0.126	0.079	0.040	0.031	0.165	0.152	0.068	0.039	0.170	0.114	0.093	0.079	0.067
TRO		0.852	0.839	1.188	1.179	1.182	1.158	1.158	1.130	1.509	1.521	1.521	1.564	0.821	0.815	908.0	0.806	0.815
S,	:	0.286	0.220	0.261	0.237	0.175	0.107	0.036	000.0	0.165	0.156	0.071	0.031	0.245	0.230	0.190	0.167	0.118
PRO		3.748	2.714	4.265	3.815	2.830	1.857	1.264	0.860	3.609	3.464	1.907	966.0	3.210	2.329	1.766	1.314	1.012
P.,	MPa	4.86	3.52	5.53 5.53	4.94	3.67	2.41	1.64	1.11	4.68	4.49	2.47	1.29	4.16 4.16	3.02	2.29	1.70	1.31
To,	, ×	28.1	27.7	39.2	38.9	39.0	38.2	38.2	37.3	8.64	50.2	50.2	51.6	27.1	26.9	26.6	26.6	26.9
ĸ,	s/g	.06.89	82.07	97.43	88.44	65.46	39.83	13.50	0.00	61.56	58.18	26.40	11.49	91.51	86.00	71.11	62.30	44.28
Run		4251 1	4252	4253	4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4264	4265	4266	4267

TABLE III.—Continued.

(b) Continued.

P. 6.	MFa	90.0	0.13	0.14	0.20	0.28	0.41	0.24	0.21	0.19	0.16	0.16	0.24	0.18	0.16	0.16	0.14	0.28
	P_{10}	0.17	0.16	0.17	0.22	0.30	0.43	0.27	0.23	$0.21 \\ 0.19$	$0.19 \\ 0.17$	$0.18 \\ 0.16$	0.26	$0.20 \\ 0.18$	$0.18 \\ 0.17$	0.18	0.17	0.30
	P_9	0.24	0.29	0.41	0.65	0.96	1.36	0.54	0.46	0.40	0.31	0.29	0.50	0.36	0.30	0.30	0.22	0.57
MPa	P_8	0.52	0.67	0.95	1.50	2.24	3.25	1.20	0.99	0.85	0.68	0.57	1.14	0.76	0.65	0.62	0.39	1.60
1 to 10, M	P_7	0.56	0.72	1.01	1.62	2.43	3.55	1.32	$\frac{1.08}{1.09}$	$0.91 \\ 0.92$	0.73	0.62	1.26	0.82	0.68	0.65	0.42	1.81
locations	P_6	0.58	0.74	$\frac{1.05}{1.08}$	1.68	2.53	3.69	1.38	1.12	0.94	0.75	0.64	1.31	0.85	0.70	0.67	0.43	1.92
pressure tap	P _s	0.72	0.93	1.32	2.13	3.20	4.71	1.93	1.51	$\frac{1.22}{1.19}$	0.92	0.79	1.84	$\frac{1.11}{1.08}$	0.88	0.82	0.53	2.92
at	P_4	0.74	0.97	1.37	2.20	3.31	4.88	2.02	1.58	1.27	0.95	0.82	$\frac{1.93}{1.99}$	1.16	0.91	0.85	0.56	3.08
Pressure	P_3	0.73	96.0	1.37	2.22	3.35	4.94 5.06	2.05	1.60	1.28	0.95	0.81	1.96	1.16	0.90	0.84 0.86	0.54	3.16
	P_2	0.90	$\frac{1.18}{1.13}$	1.64	2.63	3.94	5.79	2.73	2.10	1.66	$\frac{1.19}{1.14}$	0.98	 	1.52	1.16	1.06	0.68	4.31 4.18
	P_1	0.91		1.67	2.70	0.0	5.98	2.83	2.17	1.70	1.20	0.99		1.55	1.17	$\frac{1.07}{1.08}$	0.67	4.49
P.	MPa	0.055	0.130	0.145	0.201	0.284	0.414	0.242	0.209	0.187	0.163	0.155	0.238	0.179	0.159	0.156	0.138	0.279
T.	o, X,	0.815	7.130	7.936	8.485	8.800	8.976	0.839	0.836	0.839	0.839	0.858	0.797	0.788	0.797	0.797	0.827	0.776
0	~	0.053	.021	0.030	0.053	0.084	0.130	0.186	0.151	0.150	0.081	0.079	0.198	0.097	0.089	0.107	0.046	0.275
a	1 R,o	0.721 0	0.946 0	1.320 0	2.110	3.154	4.630	2.200 (1.693 (1.335 (0.941	0.789	2.117	1.226	0.933	0.853	0.547	3.468
0	fo, MPa	0.93	. 40			. 00		`∞.«	:-		. ~.	1.02	2.74	1.59	1.21			44
F	ιο, Κ	26.9	235.3	261.9	280.0	290.4	296.2	27.7	27.6	27.7	27.7	28.3	26.3	26.0	26.3	26.3	27.3	25.6
	ε, β/s	19.96	7.68	11.32	19.73	31.42	48.50	69.64	56.57	55.91	30.46	29.45	73.92	36.08	33.19	40.07	17.22	102.88
	Kun ——	4268	4574	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4286	4287	4288	4289	4290

TABLE III.—Continued.

者 本 本

(b) Continued.

·	e l		6	<u></u>	9.	30	<u>ب</u>	6	6 0	2	6.		رخ	50	32	25	€0	15
Pe,	Ĭ	0.2	0.1	0.1	0.1	. 0	0.2	0.1	0.1	0.2	0.1	. ŭ	0.1	0.5	0.3	0.5	0.1	0.
	P ₁₀	0.24	0.21	$0.19 \\ 0.17$	$0.18 \\ 0.16$	0.33	0.26	0.22	$0.20 \\ 0.18$	0.24	0.21	$0.19 \\ 0.17$	$0.18 \\ 0.17$	0.22	0.35	0.28	$0.21 \\ 0.16$	0.18
	Pg	0.49	0.43	0.36	0.30	0.66	0.57	0.48	0.44	0.40	0.36	0.33	0.30	0.57	1.35	1.25	0.66	0.44
MPa	P ₈	1.25	0.97	0.75	0.63	2.16	1.67	1.23	0.96	0.97	0.80	0.68	0.60	1.41	3.15	2.51	1.68	1.09
1 to 10, N	P_{7}	1.40	$\frac{1.08}{1.09}$	0.81	0.67	2.50	$\begin{array}{c} 1.91 \\ 1.93 \end{array}$	1.38	1.05	$\frac{1.08}{1.09}$	0.88	0.74	0.63	1.59	3.45	2.71	$\frac{1.81}{1.82}$	1.17
locations	P_6	1.48	1.13	0.84	0.69	2.66	2.02	1.45	1.10	1.13	0.92	0.77	0.66	1.68	3.59	2.81	$\frac{1.88}{1.89}$	1.21
pressure tap	P _S	2.18	1.60	1.13	0.87	4.22	3.11	2.14	1.54	1.64	1.30	1.04	0.85	2.50	4.83	3.66	2.40	1.54
Pressure at pr	P_4	2.29	1.68	1.18	0.91	4.45	3.28	2.25	1.61	1.73	1.36	1.09	0.89	2.64	5.00	3.78	2.48	1.59
Pres	P_3	2.34	1.71	1.19	0.91	4.57	3.36	2.30	1.63	1.76	1.37	1.09	0.89	2.69	5.08	3.83	2.50	1.60
	P_2	3.20	2.32	1.58	1.17	6.22	4.62	3.14	2.20	2.40	1.87	1.47	1.17	3.67	6.23	4.67	3.05	1.95
	P_1	3.33	2.40	1.63	1.19	6.47	4.80	3.26	2.27	2.50	1.93	1.50	1.19	3.82	6.41	4.79	$\frac{3.11}{3.12}$	$\frac{1.98}{1.99}$
P_B ,	MPa	0.214	0.190	0.168	0.157	0.297	0.234	0.190	0.175	0.218	0.188	0.166	0.154	0.197	0.321	0.252	0.182	0.152
TRO		0.767	0.770	0.779	0.776	0.785	0.776	0.770	0.785	0.721	0.718	0.730	0.739	0.788	1.576	1.509	1.570	1.548
S		0.225	0.179	0.136	0.100	0.357	0.290	0.224	0.170	0.202	0.153	0.124	0.116	0.245	0.230	0.169	0.093	0.054
P _{R.o}		2.579 (1.871	1.282 (0.944	4.975	3.698	2.535 (1.774	1.942	1.519	1.189	0.944	2.951	4.930	3.696	2.414	1.551
P _o ,	ИРа	34	45 0 0 4 0	.65	.22	45	.79	229	30	52	94	54	22	.82	.39	.79	.13	. 99
Το,	-	25.3 3.	25.4 2.	5.7 1	25.6 1.	25.9 6.	5.6 4	4.53	25.9 2.	3.8 2.	23.7 1	24.1 1	24.4 1	26.03	52.0 6	49.8 4	51.8 3	51.1 2
-	g/s	3.99 2	6.91 2	0.90 2	.35	3.40 2	8.24 2	3.65 2	3.51 2	5.63 2	90.	6.37 2	3.50 2	1.70 2	5.93	3.04 4	4.81	0.05
Run		4291 83	4292 66	4293 50	4294 37	4295 133	4296 108	4297 83	4298 63	4299 7!	4300 57	4301 40	4302 43	4363 9.	4304 8	4305 6	4306 3	4307 2

TABLE III.—Continued.

(b) Concluded.

مي ا	MPa	1.50 1.23 1.23 1.19 0.94 0.90 0.84 0.34 0.17 0.14 1.46 1.25 1.26 1.16 0.95 0.91 0.80 0.37 0.13	0.13
	P_{10}	0.17	0.17
	P_9	0.34	0.26
lPa	P_8	0.84	0.63
l to 10, N	P_7	0.90	0.68
locations	P_6	0.94	0.70
Pressure at pressure tap locations 1 to 10, MPa	P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_{10}	1.19	0.89
sure at pre	P ₄	1.23	0.92
Press	P_3	1.23	0.92
	P ₁ P ₂	1.50	1.13
	P	1.51	1.13
P _B ,	MPa	.527 0.137 1.51	.558 0.130
T_{B}	A,O	1.527	1.558
65	 K	0.039	0.027
P. G.	o'X'	1.196 0.039	0.904 0.027
d	, o, MPa	1.55	1.17
7	×	50.4	51.4
.3	s/s	4308 14.55 50.4 1.55	4309 10.19 51.4 1.17 1.15
Dina		4308	4309

(c) Hydrogen with backpressure control

3.28 2.59	3.44 3.39	1	
3 13 2 67 2			4.18 4.07
3.28 2.60 3.13 2.68	3.45 3.4		.19 4.0 .19 3.9
3.29 2.61 2	3.46 3.41 3.54 3.52	6 M	4.20 4.09 4.21 3.93
3.30 2.62 2	3.47 3.42 3.55 3.53		4.22 4.10 4.22 3.94
3.32 2.64 2	3.48 3.43 3.55	19	4.23 4.11 4.23 3.96
3.33 2.66 2 3.18 2.74 2	3.50 3.45 3.58 3.57	20	4.24 4.1 4.24 3.9
3 3.36 2.71 2 3 3.22 2.78 2	3.53 3.48 3.61 3.60	40	4.26 4.16 4.26 3.99
3.06 2.43 2 2.92 2.50 2	3.22 3.17	-19	3.91 3.83 3.91 3.60
2.73 1.84 1 2.65 1.87 1	2.94 2.87 3.00 2.95	60 00	4.13 3.98 4.15 3.80
2.74 1.87 1 2.68 1.90 1	2.94 2.88 3.01 2.97	89 9	4.13 3.98 4.14 3.86
2.79 2.07 1	3.04 2.97 3.10	90	4.14 4.00 4.16 3.89
2.94 2.18 2 2.87 2.20 2	3.11 3.05	20	4.15 4.02 4.17 3.92
3.07 2.39 2.	3.22 3.17	50.00	4.17 4.05

4.10

TABLE III.—Continued.

(d) Helium

		T						A										
P ,	MPa	0.13	0.13	0.16	0.14	0.16	0.19	0.24	0.27	0.31	0.36	0.15	0.14	0.14	0.16	0.19	0.21	0.21
	P ₁₀	0.16	0.15	0.19	0.18	0.18	0.21	0.47	0.29	0.32	0.36	0.17	$0.16 \\ 0.13$	0.16	0.18	0.20	0.22	0.23
	P_9	0.29	0.28	0.55	0.38	0.48	0.63	0.82	0.94	1.06	1.18	0.41	0.30	0.34	0.46	0.59	0.66	0.68
MPa	P_8	0.68	0.66	1.34	0.92	1.18	1.54	2.05	2.34	2.65	2.94	0.98	0.71	0.80	1.09	1.41	1.58	1.64
1 to 10, N	P_7	0.73	0.72	1.44	0.99	1.26	1.66	2.21 2.28	2.54	2.88	3.21	1.05	0.76	0.86	1.17	1.52	1.70	1.76
locations	P_6	0.75	0.74	1.49	1.02	1.31	1.72	2.30	2.64	3.00	3.34	1.10	0.79	0.89	1.22	1.58	1.78	1.84
pressure tap	P ₅	0.96	0.94	1.89	1.31	1.68	2.20	2.94	3.39	3.85	4.29	1.40	1.00	1.13	1.55	2.01	2.26	2.34
Pressure at pro	P_4	0.99	$0.97 \\ 1.02$	1.96	1.35	1.73	2.27	3.03	3.58	3.97	4.43	1.44	1.03	1.16	1.60	2.08	2.33	2.41
Pres	P_3	0.99	0.97	1.96	1.36	1.74	2.29	3.07	3.54	4.02 4.11	4.50	1.45	1.04	1.17	1.61	2.10	2.36	2.44
	P_2	1.21	$\frac{1.19}{1.13}$	2.45	1.68	2.12	2.79	3.64	4.18	4.74	5.28	1.76	1.26	1.42	1.93	2.50	2.80	2.89
	P ₁	1.22	1.22	2.48	1.68	2.14	2.85	3.72	4.29	4.87	5.44	1.78	1.27	1.43	1.96	2.55	2.87	2.96
P_B ,	MPa	0.134	0.129	0.164	0.145	0.159	0.188	0.237	0.274	0.314	0.357	0.152	0.135	0.141	0.161	0.189	0.206	0.212
$T_{R,o}$		5.288	7.019	0.077	0.962	3.346	5.558	8.019	9.731	1.308	2.577	6.173	7.269	0.788	1.712	2.712 (3.212 (3.558 (
G_R		.046 3	.043 3	.095 4	4 790.	.088 4	.114 4	.161 4	.191 4	.223 5	.254 5	.068 4	.051 4	.057 5	.081 5	.109 5	.125 5	.130 5.
P _{R,o}		5.595 0	5.555 0	11.101 0	7.577 0	9.608 0	2.665 0	6.498 0	8.996 0	1.546 0	4.022 0	7.793 0	5.793 0	6.507 0	8.828 0	1.405 0	2.775 0	3.194 0
P.,	MPa	1.27	1.26	2.52 1 2.48	1.72	2.18 2.15	.88	5.74 1	1.31	2 84 2	3.45 2	73	31	 844 44	. 00	.59 1	. 90 1	1 96
T_o	*	183.5 1	192.5 1	208.4 2	213.0 1	225.4 2	236.92	249.7 3	258.6 4	266.8 4	273.4 5	240.1 1	245.8 1	264.1 1	268.9 2	274.1 2	276.7 2	278.5 2
· ž,	g/s	10.71	10.08	22.07	15.68	20.39	26.50	37.38	44.52	51.79	59.18	15.83 2	11.80 2	13.28 2	18.78 2	25.32	29.05 2	30.31 2
Run		4315	4316	4317	4318	4319	4320	4321	4322	4323	4324	4325	4326	4327	4328	4329	4330	4331

TABLE III.—Continued.

(d) Concluded.

		T								
P	MPa	0.12	0.14	0.18	0.26	0.34	0.44	0.30	0.19	0.14
	P.s	0.13	0.15	0.18	0.26	0.34	0.44	0.30	0.20	0.15
	Po	0.24	0.38	0.54	0.82	1.09	1.37	$\frac{0.98}{1.08}$	0.60	0.36
MPa	Po	0.57	0.89	1.29	1.97	2.66	3.36	2.38	1.44	0.83
s 1 to 10,	P	0.61	0.96	1.39	2.14	2.89	3.68	2.58	1.55	0.89
p locations	P _e	0.65	1.00	1.45	2.23	3.02	3.84	2.70	1.62	0.93
pressure tap locations 1 to 10,	Ps	0.81	1.26	1.83	2.84	3.87	4.94	3.45	2.05	1.17
Pressure at p	P ₄	0.83	1.30	$\frac{1.89}{1.97}$	2.94	4.00	5.12	3.56	2.11	1.21
Pre	P ₃	0.83	1.31	$\begin{array}{c} 1.91 \\ 1.96 \end{array}$	2.98	4.06 4.14	5.20	3.62	2.14	1.22
	P ₂	1.02	1.57	2.27	3.50	4.75	6.06	4.24 4.11	2.54	1.46
	P_1	1.04	1.62	2.34	3.62	4.92	6.28	4.38	2.61	1.50
T _{R,o} P _B ,	MPa	.923 0.121	577 0.143	692 0.179	981 0.255	.788 0.345	192 0.441	769 0.304	50 0.194	981 0.142
T,		53.	54.	55.6	56.	57.7	•		57.2	•
S _x		4.674 0.041 53	7.211 0.066	0.101	0.165		0.309	0.207	0.115	0.062
P _{R,o}		4.674	7.211	10.396 0.101	15.991 0.165	21.687 0.235	27.639 0.309 58	19.335 0.207 57	11.586 0.115 57	6.692 0.062 56
P _o ,	MPa	1.06	1.64	2.36	3.63	4.92	6.27	4.39	2.63	1.52
T_o	×	9.62 280.4 1.06 1.04	15.39 283.8 1.64 1.61	23.42 289.6 2.36	38.47 296.3 3.63 3.59	54.77 300.5 4.92 4.88	71.92 302.6 6.27 6.22	300.4	26.76 297.7 2.63 2.60	296.3
٠٤,٠	s/g	9.62	15.39	23.42	38.47	54.77	71.92	48.24 300.4 4.39 4.35	26.76	4349 14.40 296.3 1.52 1.49
Run		4341	4342	4343	4344	4345	4346	4347	4348	4349

(e) Helium with backpressure control

		T					
P	MPa	0.24	0.46	0.56	0.68	0.83	1.06
	P ₁₀	0.26	0.46	0.57	0.69	0.84	100
	Po	0.78	0.80	0.83	$0.89 \\ 0.91$	0.99	1.16
MPa	P ₈	1.90	1.91	1.91	1.93 1.73	1.96	2.02
1 to 10,	P ₇	2.05	2.06	2.06	2.08	2.10	2.16
locations	P ₆	2.13	2.14	2.15	2.16	2.19	2.24
ressure tap	Ps	2.72	2.73	2.73	2.74	2.75	2.79
Pressure at pressure tap locations 1 to 10, MPa	P ₄	2.81	2.82	2.82	2.83	2.84	2.88
Pre	P_3	2.84	2.85	2.85	2.86	2.87	2.98
	P_2	3.36	3.37	3.37	3.37	3.38	83.40 82.40
	P_1	3.45	3.46	3.46	3.47	3.47	3.50
P_B ,	MPa	.423 0.241	0.457	0.565	0.683	0.831	1.035
T _{R,o}		4.423	4.404	4.500	4.673	4.904	5.058
G_R		.155 5	.154 5	.154 5	.154 5	.152 5	.150 5
P _{R,o}		4332 36.04 283.0 3.48 15.339 0.155 54 3.44	4333 35.95 282.9 3.49 15.370 0.154 54.404 0.457 3.45	35.87 283.4 3.49 15.366 0.154 54.500 0.565 3.45	5.396 0	5.419 0	4337 34.98 286.3 3.52 15.511 0.150 55.058 1.035
P _o ,	MPa	.48	.49 1	.49 1	.49 1 .46	. 50 1	5.52 1
T_o	4	83.03	382.9 3	83.4 3	84.3 3	85.53	286.3
	g/s	36.04 2	35.95 2	35.87 2	35.75 2	35.47 2	34.98
Run		4332	4333	4334	4335 35.75 284.3 3.49 15.396 0.154 54.673 0.683 3.46	4336 35.47 285.5 3.50 15.419 0.152 54.904 0.831 3.46	4337

(e) Concluded.

P _e ,	MPa	1.21	1.37	0.24
	P ₁₀	$\frac{1.22}{1.17}$	1.38	0.25 0
	P_9	$\frac{1.32}{1.29}$	1.46	0.79
APa	P_8	2.09	2.17	1.90
locations 1 to 10, MPa	P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_{10}	2.23	2.29	2.06
locations	P_6	2.30	2.36	2.14
Pressure at pressure tap l	P _S	2.83	2.87	2.82 2.73 2.14 2.91 2.61 2.20
ssure at pr	P_4	2.91	2.95	2.82
Pre	P_3	2.94	2.98	2.85
	P_1 P_2	3.42	3.44	3.37
	P ₁	3.51 3.52	3.53	3.46
P_B ,	MPa	154 1.212	250 1.372	346 0.244
$T_{R,o}$		5.154	5.250	
G_R		.148 5	.145 5	.156 5
T_o , P_o , $P_{R,o}$ G_R		4338 34.37 286.8 3.54 15.581 0.148 55. 3.50	4339 33.81 287.3 3.55 15.652 0.145 55. 3.52	4340 36.38 287.8 3.49 15.374 0.156 55. 3.45
P.,	MPa	3.54	3.55	3.49
T_o	×	286.8	287.3	287.8
٠٤,	s/g	34.37	33.81	36.38
Run		4338	4339	4340

TABLE IV.—DATA FOR GASEOUS HELIUM

[Inlet stagnation temperature, T_o , 280 K.]

Run	Reduced	Reduced dif-	Reduced	Reduced	Equivalent flow	$\delta_{\Lambda \mathcal{I}}$	$P_{R,o}/10$
	stagnation	pressure,	flux,	stagna-	coefficient,		
	pressure,	$P_{R,o} - P_{R,o}'$	క	tion	C		
	$P_{R,o}$			temper-			
				ature,			
				- K,0			
4341	4.674	2.67	0.041	53.92	0.058	0.0644	0.467
4342	7.211	5.2	990:	54.58	.061	9290.	.72
4343	10.40	2.4	101.	55.69	.065	.0724	1 .
4344	16.00	14.0	.165	57.0	.070	6220.	1.60
4345	21.70	14.7	.235	57.8	.074	.0823	2.17
4346	27.60	25.6	309	58.0	920.	.0850	2.76
4347	19.30	19.3	.207	57.7	.073	.0815	1.93
4348	11.59	9.6	.115	57.2	.067	.0750	1.16
4349	69.9	4.7	.062	57.0	.063	.0700	19:

1. Report No.	2. Government Acce	ssion No.	3. Recipient's Catalo	g No.
NASA TP-1848				*
4. Title and Subtitle			5. Report Date	104).
Three-Step Labyrinth Seal for H	ligh-Performance Turboma	achines	June 1987	
			6. Performing Organ	ization Code
			505-62-21	
7. Author(s)			8. Performing Organ	ization Report No.
Robert C. Hendricks			E-3186	
			10. Work Unit No.	
Performing Organization Name and Ad	dress		11. Contract or Grant	No.
National Aeronautics and Space	Administration			
Lewis Research Center Cleveland, Ohio 44135			13. Type of Report an	d Pariod Court
Cieveland, Onio 44133				
2. Sponsoring Agency Name and Address			Technical Pape	
National Aeronautics and Space	Administration		14. Sponsoring Agency	y Code
Washington, D.C. 20546				
5. Supplementary Notes Data and information contained				
3. Abstract			***************************************	
A three-step labyrinth seal wit	h 12, 11, and 10 labyrintl	i teeth per step, rest	ectively was tested	d under static
(nonrotating) conditions. The cospace shuttle main engine fuel purange of fluid conditions at conc	nfiguration represented the amp). The test data include	e seal for a high-per led critical mass flux	formance turbopum and pressure profi	p (e.g., the iles over a wide
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over	nfiguration represented thump). The test data includentric, partially eccentric, the entire range of fluid of	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than	formance turbopum and pressure profiseal positions. The those for data coll	p (e.g., the iles over a wide seal mass fluxes lected for similar
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conc (leakage rates) were lower over straight and three-step cylindrical	nfiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of l seals, and this conforme	e seal for a high-per led critical mass flux and fully eccentric onditions tested than d somewhat to expec	formance turbopum and pressure profi- seal positions. The those for data coll ctations. However,	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position	nfiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conforments indicated little, if any,	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expect direct stiffness for the	formance turbopum and pressure profi- seal positions. The those for data coll- ctations. However, his configuration in	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on the state of the constant of	nfiguration represented the tump). The test data include entric, partially eccentric, the entire range of fluid of seals, and this conforments indicated little, if any, and for the straight and threspectory configuration, is	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to exper- direct stiffness for the ee-step cylindrical seanlet and exit parame	formance turbopum and pressure profit seal positions. The those for data coll ctations. However, his configuration in eals over the range ters, fluid phase, at	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condinal rotation. The
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states were straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions.	infiguration represented the tump). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conforments indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid tumps.	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the ee-step cylindrical seallet and exit parame ux data, which were	formance turbopum and pressure profit seal positions. The those for data collectations. However, his configuration in eals over the range ters, fluid phase, a found to have a pr	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condination. The ressure depend-
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium	infiguration represented the timp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conformed is indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluit corresponded to the para	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the ee-step cylindrical seallet and exit parame ux data, which were	formance turbopum and pressure profit seal positions. The those for data collectations. However, his configuration in eals over the range ters, fluid phase, a found to have a progen data but require	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condination. The ressure depended an empirical
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest	infiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conformed in indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the parallel comparison with the st	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the ee-step cylindrical seanlet and exit parame ax data, which were ahydrogen and nitrograight and three-step	formance turbopum and pressure profi- seal positions. The those for data coll- ctations. However, his configuration in eals over the range ters, fluid phase, a found to have a pro- gen data but require cylindrical seals the	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condination. The ressure dependent an empirical ne three-step
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure.	infiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conformed in indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the parallel comparison with the st	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the ee-step cylindrical seanlet and exit parame ax data, which were ahydrogen and nitrograight and three-step	formance turbopum and pressure profi- seal positions. The those for data coll- ctations. However, his configuration in eals over the range ters, fluid phase, a found to have a pro- gen data but require cylindrical seals the	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condinal rotation. The ressure dependent an empirical me three-step
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest	infiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conformed in indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the parallel comparison with the st	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the ee-step cylindrical seanlet and exit parame ax data, which were ahydrogen and nitrograight and three-step	formance turbopum and pressure profi- seal positions. The those for data coll- ctations. However, his configuration in eals over the range ters, fluid phase, a found to have a pro- gen data but require cylindrical seals the	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condinal rotation. The ressure dependent an empirical me three-step
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest	infiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conformed in indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the parallel comparison with the st	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the ee-step cylindrical seanlet and exit parame ax data, which were ahydrogen and nitrograight and three-step	formance turbopum and pressure profi- seal positions. The those for data coll- ctations. However, his configuration in eals over the range ters, fluid phase, a found to have a pro- gen data but require cylindrical seals the	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condinal rotation. The ressure dependent an empirical me three-step
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest shaft to the concentric position.	infiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conformed in indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the parallel comparison with the st	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the ee-step cylindrical seanlet and exit parame ax data, which were ahydrogen and nitrograight and three-step	formance turbopum and pressure profi- seal positions. The those for data coll- ctations. However, his configuration in eals over the range ters, fluid phase, and found to have a pro- gen data but require explindrical seals the storing an out-of-ba	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condinal rotation. The ressure dependent an empirical me three-step
(nonrotating) conditions. The conspace shuttle main engine fuel prange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest shaft to the concentric position.	nfiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conformed is indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the parallal comparison with the straight and the	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to expec- direct stiffness for the ee-step cylindrical seallet and exit parame and the early data, which were ahydrogen and nitrogaright and three-step lowest forces for res	formance turbopum and pressure profit seal positions. The those for data collectations. However, his configuration in eals over the range ters, fluid phase, a found to have a present data but require cylindrical seals the storing an out-of-barent	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condinal rotation. The ressure dependent an empirical me three-step
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest shaft to the concentric position.	nfiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conforments indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the para In comparison with the stadynamic stability and the chanics; Space	e seal for a high-per- led critical mass flux and fully eccentric onditions tested than d somewhat to exped direct stiffness for thee-step cylindrical se nlet and exit parame ux data, which were ahydrogen and nitrog raight and three-step lowest forces for res	formance turbopum and pressure profit seal positions. The those for data collectations. However, his configuration in eals over the range ters, fluid phase, and found to have a proper data but required cylindrical seals the storing an out-of-batent eunlimited	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condination. The ressure dependent an empirical ne three-step
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest shaft to the concentric position.	nfiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conforments indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the para In comparison with the stadynamic stability and the chanics; Space	e seal for a high-periled critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the estep cylindrical senlet and exit parame ux data, which were ahydrogen and nitrograight and three-step lowest forces for results. 18. Distribution Statem Unclassified—	formance turbopum and pressure profit seal positions. The those for data collectations. However, his configuration in eals over the range ters, fluid phase, and found to have a proper data but required cylindrical seals the storing an out-of-barent eunlimited	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condination. The ressure dependent an empirical ne three-step
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest shaft to the concentric position. 7. Key Words (Suggested by Author(s)) Seals; Turbomachines, Fluid measures shuttle main engine; Dynamics; Interpretation of the concentric position.	nfiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conforments indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the para In comparison with the stadynamic stability and the chanics; Space	e seal for a high-periled critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the estep cylindrical senlet and exit parame ux data, which were ahydrogen and nitrograight and three-step lowest forces for results. 18. Distribution Statem Unclassified—	formance turbopum and pressure profit seal positions. The those for data collectations. However, his configuration in eals over the range ters, fluid phase, and found to have a proper data but required cylindrical seals the storing an out-of-barent eunlimited	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condinate rotation. The ressure depended an empirical ne three-step lance dynamic
(nonrotating) conditions. The conspace shuttle main engine fuel purange of fluid conditions at conce (leakage rates) were lower over straight and three-step cylindrical profiles for the eccentric position significant direct stiffness reported tions. Seal dynamics depend on method of corresponding states we ency for helium. Data for helium correction for reduced pressure. labyrinth seal offers the poorest shaft to the concentric position. 7. Key Words (Suggested by Author(s)) Seals; Turbomachines, Fluid medical states and states are concentrated by the concentration of the concentrations.	nfiguration represented the amp). The test data include entric, partially eccentric, the entire range of fluid of a seals, and this conforments indicated little, if any, and for the straight and the geometric configuration, it was applied to the mass fluid corresponded to the para In comparison with the stadynamic stability and the chanics; Space	e seal for a high-periled critical mass flux and fully eccentric onditions tested than d somewhat to expedirect stiffness for the ee-step cylindrical sentet and exit parame ax data, which were thydrogen and nitrograight and three-step lowest forces for results. Distribution Statem Unclassified—STAR Categor	formance turbopum and pressure profit seal positions. The those for data collectations. However, his configuration in eals over the range ters, fluid phase, and found to have a proper data but required cylindrical seals the storing an out-of-barent eunlimited	p (e.g., the iles over a wide seal mass fluxes ected for similar the pressure contrast to of test condination. The ressure dependent an empirical ne three-step