Lidov-Kozai 90° Attractor

Yubo Su

Date

1 Equations

1.1 Bin's Papers

Our major references will be Bin's paper with Diego + Dong in 2015 (LML15) and Bin's later paper with Dong on spin-orbit misalignment (LL18). The target of study is §4.3 of LL18, where a 90° attractor in spin-orbit misalignment seems to appear when the octupole effect is negligible.

When the octupole effect is negligible, we define vectors

$$\mathbf{j} = \sqrt{1 - e^2} \hat{n},\tag{1}$$

$$\mathbf{e} = e\hat{u}.\tag{2}$$

Here, \mathbf{j} is the dimensionless angular momentum vector and \mathbf{e} is the eccentricity vector; see LML15 for precise definitions. Note that $\mathbf{j} \cdot \mathbf{e} = 0$, $j^2 + e^2 = 1$. Then, the EOM for the inner and outer vectors satisfy to quadrupolar order

$$\frac{\mathrm{d}\mathbf{j}_1}{\mathrm{d}t} = \frac{3}{4t_{LK}} \left[(\mathbf{j}_1 \cdot \hat{n}_2)(\mathbf{j}_1 \times \hat{n}_2) - 5(\mathbf{e}_1 \cdot \hat{n}_2)(\mathbf{e}_1 \times \hat{n}_2) \right],\tag{3}$$

$$\frac{\mathrm{d}\mathbf{e}_1}{\mathrm{d}t} = \frac{3}{4t_{LK}} \left[(\mathbf{j}_1 \cdot \hat{n}_2)(\mathbf{e}_1 \times \hat{n}_2) + 2\mathbf{j}_1 \times \mathbf{e}_1 - 5(\mathbf{e}_1 \cdot \hat{n}_2)(\mathbf{j}_1 \times \hat{n}_2) \right]. \tag{4}$$

Let's assume for the time being that $L_1 \ll L_2$, so the system is sufficiently hierarchical that \mathbf{j}_2 , \mathbf{e}_2 are constants. Note for reference that

$$t_{LK} \equiv \frac{L_1}{\mu_1 \Phi_0} = \frac{1}{n_1} \left(\frac{m_0 + m_1}{m_2} \right) \left(\frac{a_2}{a_1} \right)^3 \left(1 - e_2^2 \right)^{3/2}. \tag{5}$$

Here, $n_1 \equiv \sqrt{G(m_0 + m_1)/a_1^3}$. Finally, the GR effects (Peters 1964) cause decays of **L** and **e** as

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}\Big|_{GW} = -\frac{32}{5} \frac{G^{7/2}}{c^5} \frac{\mu^2 m_{12}^{5/2}}{a^{7/2}} \frac{1 + 7e^2/8}{\left(1 - e^2\right)^2} \hat{L},$$
(6)

$$\frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t}\Big|_{GW} = -\frac{304}{15} \frac{G^3}{c^5} \frac{\mu m_{12}^2}{a^4 (1 - e^2)^{5/2}} \left(1 + \frac{121}{304} e^2\right) \mathbf{e}.$$
(7)

Here, $m_{12} \equiv m_1 + m_2$.

Given this system (from LML15), we can then add the spin-orbit coupling term, which is given in LL18 to be

$$\frac{\mathrm{d}\hat{S}_1}{\mathrm{d}t} = \Omega_{SL}\hat{L}_1 \times \hat{S}_1,\tag{8}$$

$$\Omega_{SL} = \frac{3Gn(m_2 + \mu/3)}{2c^2a(1 - e^2)}.$$
(9)

Note that μ is the reduced mass of the inner binary. We can drop the back-reaction term since $S_1 \ll L_1$. What is observed is that, as this system is evolved forward in time and GR coalesces the inner binary, $\theta_{sl} \equiv \arccos(\hat{S} \cdot \hat{L}_1)$ goes to 90° consistently. The relevant figure is Fig. 19 of LL18, which shows that for a close-in, low-eccentricity perturber $(\bar{a}_{\text{out,eff}} \propto a_{out})$, the focusing is significantly stronger. Note that initially, $I \equiv \arccos(\hat{L}_1 \cdot \hat{L}_2) \approx 90^\circ$ while $\theta_{sl} \approx 0$.

In LL18, an adiabaticity parameter is defined:

$$\mathscr{A} \equiv \left| \frac{\Omega_{SL}}{\Omega_L} \right|,\tag{10}$$

where $\Omega_L \simeq \left\langle \frac{\mathrm{d}\hat{L}_1}{\mathrm{d}t} \right\rangle_{LK}$ to quadrupolar order. As the inner binary coalesces, $\mathscr A$ transitions from $\ll 1$ to $\gg 1$ (as Ω_{SL} is a GR effect so ramps up very quickly as orbital separation decreases).

1.2 Intuitive Picture

Looking at LL18, in praticular at Fig 4,

2/2 Yubo Su