Advanced Ceramic Materials for Future Aerospace Applications

Ajay Misra

NASA Glenn Research Center

Cleveland, OH

Presented at 39th International Conference and Exposition on Advanced Ceramics and Composites, Jan 25 – 30, Daytona Beach, Florida

Widespread Use of Ceramics in Multiple Aerospace Systems

Ceramic Materials in Gas Turbine Engines

Thermal Barrier Coatings

Future challenges:

- Increased temperature capability
- Low thermal conductivity
- Erosion resistance
- Resistance to molten sand/glass deposit

CMCs for Gas Turbine Engine Hot Section

SiC/SiC CMC preferred

Environmental Barrier Coatings Required for CMCs EBC - Bondcoat-

CMC

Challenges for Increasing Temperature Capability of SiC/SiC CMCs for Gas Turbine Engines

2400°F Today

2700°F + Future

Advanced SiC Fiber

Dense, Si-free Matrix

Durable Environmental Barrier Coatings with 2700°F+ Capability

Increasing Use of CMCs in Aircraft

Boeing – CMC Exhaust Nozzle

NASA
Environmentally
Responsible
Aviation Project
– CMC Nozzle
Demonstration

GE Passport
Engine Exhaust
Nozzle

Ceramic Matrix Composites for Hypersonic Vehicles

3000 F + temperature capability required

Benefit: Reduced weight

Leading Edges

Hypersonic Control

Surfaces

Reentry TPS

Leading Edges

> Exhaust-Washed Structure

Acreage TPS

Actively Cooled CMC Combustor

Control Surfaces

Cooled Ceramic Matrix Composite Structures in Hypersonic and Rocket Propulsion

NASA GRC - Teledyne

AFRI

NASA GRC

EADS - Astrium

High Temperature Materials for Planetary Entry, Descent, and landing (EDL)

Thermal Barrier Seals

Woven SiC Fiber

Outer Fabric

Aerogel Insulation

Gas Barrier

High Temperature Ceramic Aerogel

High Temperature Thin Film Ceramic Sensors

SiC Pressure Sensor

metal contacts Ti / TaSi₂ / Pt

strain gages n-type SiC

isolation layer p-type SiC

substrate n-type SiC

Multifunctional TaN-Based Sensors

Ceramic Sheath for 2400°C – Capable Temperature Probe

Ion and Hall Thrusters for In-Space Propulsion

BN ceramic discharge chamber – sputter erosion limits life

 Provides higher exhaust velocity than chemical rockets – reduces propellant mass and reduction in launch mass

Life Limiting Mechanisms:

- Ion sputter erosion of electrodes and ceramics
- Erosion and depletion of cathode materials

Material Needs:

- High temperature sputter resistant electrodes and ceramics
- Long-life, low work function cathode (LaB₆ ZrB₂ eutectic promising)

Superconducting Ceramics in Electric Propulsion

Variable Specific Impulse Magnetoplasma Rocket (VASIMR)

Schematic overview of the VASIMR® system

Superconducting magnet for VASIMR

> MgB₂ round wire - Small diameter to

reduce ac loss

Solid Oxide Electrolyzer for Oxygen Generation on Mars

Mars Oxygen ISRU Experiment (MOXIE)

- Extract oxygen from the horrible Martian atmosphere by breaking down carbon dioxide.
- Enable a manned Mars mission to have oxygen ready and waiting when they arrived by sending remote oxygen generators to the surface ahead of time.

Glass Windows in Space Systems

Advanced Window Glass Materials for Space Systems

Damage of Glass
Windows due to
Micrometeroid Impact

Damaged Space Shuttle window

Damaged ISS window

Application of Piezoceramic Materials

ENGINES

Piezoeletric Devices

- Energy harvesting
- Power amplification
- Vibration suppression
- Noise suppression

AIRFRAME

Piezoresistive Devices

- Embedded pressure sensors
- Embedded strain sensors

Piezoelectric Devices

- Energy harvesting
- Cabin noise suppression
- Active flow control
- Variable control surfaces

Challenges:

- High temperature capability (>> 300°C)
- Large displacement
- Integration with structure and durability of integrated structure
- Multifunctionality

Piezoceramic Patches for Controlling Vibration of PMC Fan Blades

Fan Blade with Piezo patches

Fan Blade with Piezo Patch in Test Rig

Demonstration of Smart Rotor for Helicopters Using Piezoceramic Materials

- Smart rotor incorporates cutting edge changes to MD900 baseline rotor
 - Trailing edge control flap
 - Piezo-electric "smart" material actuators
- Effectiveness of flap for noise and vibration control demonstrated
- Closed-loop feedback control applied for first time to full-scale active rotor
- Initial demonstration of blade displacement technique

Power Conversion and Energy Storage System

Hybrid Electric Long-Aircraft Durati

Long-Duration EVA

- Need 2 4X increase in energy density of batteries
- Need > 5X increase in power density of fuel cell for electric aircraft

High Power Density Solid Oxide Fuel Cell

SiC Power
Electronics for
High Power Density
and Radiation
Tolerant Power
Processing System

High Energy Density Batteries

Ceramic electrolyte for solid state batteries

Ceramic cathode

Standard Power Module

All oxide ceramic components

Multifunctional systems with structural load bearing capability ??

Ceramics in Satellite Communication

- Ceramic dielectric materials with engineered properties for microwave, millimeter wave communication system
- Dielectric ceramics as resonators, filters, oscilators
- Miniaturization continuing trend

Piezoceramic materials"

- Change in shape of reflector to improve signal quality
- Vibration control
- Positioning control

Use of Ceramics in Space Telescope Mirror

Hubble Space Telescope Glass mirror

Herschel Space Telescope SiC mirror

James Webb Telescope, electrostrictive ceramic actuator to control the shape of mirrors

Future requirements: Lower cost and increase in aerial density

Concluding Remarks

- Will see increasing use of CMCs in aircraft challenge to increase temperature capability to > 2700°F; cost reduction required
- Goal of Durable 3000°F CMC system for hypersonics and rocket propulsion still remains a major challenge
- Increasing use of piezoceramic and dielectric type of materials
 - Multifunctional structures will be future
 - Integration with components without adversely impacting component performance is challenging
 - Miniaturization will be the trend
- For high power density and high energy density systems, engineered porous materials through advanced manufacturing processes will be required
 - Additive manufacturing likely to play a role
 - Increasing use of nanomaterials
- Significant potential for improving ceramic materials for in-space propulsion