Bicausal optimal transport for SDEs with irregular coefficients

Benjamin A. Robinson (University of Vienna)

February 29, 2024 — Probability Seminar, University of Leeds

Supported by Austrian Science Fund (FWF) projects (Y782-N25), (P35519), (P34743).

Bicausal optimal transport for SDEs with irregular coefficients

Benjamin A. Robinson (University of Vienna)

February 29, 2024 — Probability Seminar, University of Leeds

Supported by Austrian Science Fund (FWF) projects (Y782-N25), (P35519), (P34743). Joint work with

Michaela Szölgyenyi University of Klagenfurt

Bicausal optimal transport for SDEs with irregular coefficients

Benjamin A. Robinson (University of Vienna)

February 29, 2024 — Probability Seminar, University of Leeds

Supported by Austrian Science Fund (FWF) projects (Y782-N25), (P35519), (P34743). Joint work with

Michaela Szölgyenyi Julio Backhoff-Veraguas University of Klagenfurt

University of Vienna

Sigrid Källblad KTH Stockholm

Bicausal optimal transport for SDEs with irregular coefficients

Benjamin A. Robinson (University of Vienna)

February 29, 2024 — Probability Seminar, University of Leeds

Supported by Austrian Science Fund (FWF) projects (Y782-N25), (P35519), (P34743). Joint work with

Michaela Szölgyenyi
University of Klagenfurt

Julio Backhoff-Veraguas
University of Vienna

Sigrid Källblad KTH Stockholm

Adapted Wasserstein distance between the laws of SDEs (with J. Backhoff-Veraguas and S. Källblad) — arXiv:2209.03243, 2022

Bicausal optimal transport for SDEs with irregular coefficients (with M. Szölgyenyi) — Preprint, 2024

Comparing stochastic models

Aim: Compute a measure of model uncertainty

$$\mathbb{P} \mapsto v(\mathbb{P}) = \sup_{\alpha \in \mathcal{A}} \mathbb{E}^{\mathbb{P}} [\mathcal{J}(\omega, \alpha)]$$

Comparing stochastic models

Aim: Compute a measure of model uncertainty

E.g.

$$\mathbb{P} \mapsto v(\mathbb{P}) = \sup_{\alpha \in \mathcal{A}} \mathbb{E}^{\mathbb{P}} [\mathcal{J}(\omega, \alpha)]$$

Want:

- Appropriate topology on laws of stochastic processes
- Distance we can actually compute

Comparing stochastic models

Aim: Compute a measure of model uncertainty

E.g.

$$\mathbb{P} \mapsto v(\mathbb{P}) = \sup_{\alpha \in \mathcal{A}} \mathbb{E}^{\mathbb{P}}[\mathcal{J}(\omega, \alpha)]$$

Want:

- Appropriate topology on laws of stochastic processes
- Distance we can actually compute

SDEs:

- Good computational methods available
- Rich class of models, beyond Lipschitz coefficients

Main result

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Main result

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$
$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$
$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$
$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Theorem [R., Szölgyenyi '24+]

Under "weak assumptions" on the coefficients, we can compute an "appropriate distance"

Main result

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Theorem [R., Szölgyenyi '24+]

Under "weak assumptions" on the coefficients, we can compute an "appropriate distance" by

$$d(\mu,
u)^p = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad ext{with } B = W.$$

$$b: \mathbb{R} \to \mathbb{R}, \ \sigma: \mathbb{R} \to [0, \infty), \ X_0 = x \in \mathbb{R},$$

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t. \tag{SDE}$$

$$b \colon \mathbb{R} \to \mathbb{R}, \ \sigma \colon \mathbb{R} \to [0, \infty), \ X_0 = x \in \mathbb{R},$$

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t. \tag{SDE}$$

Assumption (A)

b satisfies piecewise regularity conditions and exponential growth condition,

 σ is Lipschitz and non-zero at the discontinuity points of b.

$$b: \mathbb{R} \to \mathbb{R}, \ \sigma: \mathbb{R} \to [0, \infty), \ X_0 = x \in \mathbb{R},$$

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t. \tag{SDE}$$

Assumption (A)

b satisfies piecewise regularity conditions and exponential growth condition,

 σ is Lipschitz and non-zero at the discontinuity points of b.

Theorem [R., Szölgyenyi '24+]

Strong existence, pathwise uniqueness, and moment bounds hold for (SDE) with coefficients satisfying (A).

$$b: \mathbb{R} \to \mathbb{R}, \ \sigma: \mathbb{R} \to [0, \infty), \ X_0 = x \in \mathbb{R},$$

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t. \tag{SDE}$$

Assumption (A)

b satisfies piecewise regularity conditions and exponential growth condition,

 σ is Lipschitz and non-zero at the discontinuity points of b.

Theorem [R., Szölgyenyi '24+]

Strong existence, pathwise uniqueness, and moment bounds hold for (SDE) with coefficients satisfying (A). Moreover, for a transformation-based semi-implicit Euler scheme, we obtain strong convergence rates.

Ingredients

Ingredients

Probability measures μ, ν on \mathbb{R}^N

Find

$$\inf_{T: T_{\#}\mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N} |T_n(X) - X_n|^p\right]$$

Probability measures μ, ν on \mathbb{R}^N

Find

$$\inf_{T: T_{\#}\mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N} |T_n(X) - X_n|^p\right]$$

$$T(X) = (T_1(X_1, \dots, X_N), \dots, T_N(X_1, \dots, X_N))$$

Probability measures μ, ν on \mathbb{R}^N

Find

$$\inf_{T: T_{\#}\mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N} |T_n(X) - X_n|^p\right]$$

$$T(X) = (T_1(X_1, \dots, X_N), \dots, T_N(X_1, \dots, X_N))$$

Monge (1781)

Probability measures μ, ν on \mathbb{R}^N

Find

$$\inf_{T \colon T_{\#}\mu = \nu} \mathbb{E}\left[\sum_{n=1}^{N} |T_n(X) - X_n|^p\right]$$

$$T(X) = (T_1(X_1, \dots, X_N), \dots, T_N(X_1, \dots, X_N))$$

Monge (1781)

Kantorovich (1942) $\rightsquigarrow T$ random:

Probability measures μ, ν on \mathbb{R}^N

Find

$$\mathcal{W}_p^p(\mu,\nu) := \inf_{\pi \in \text{Cpl}(\mu,\nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

$$\mathrm{Cpl}(\mu,\nu) = \{\pi = \mathrm{Law}(X,Y) \colon \ X \sim \mu, Y \sim \nu\}$$

Monge (1781)

Kantorovich (1942) $\leadsto T$ random: replace (X, T(X)) with coupling $\pi = \text{Law}(X, Y), \ X \sim \mu, \ Y \sim \nu$

Probability measures μ, ν on \mathbb{R}^N

Find

$$\mathcal{W}_p^p(\mu,\nu) := \inf_{\pi \in \text{Cpl}(\mu,\nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

$$Cpl(\mu, \nu) = \{ \pi = Law(X, Y) \colon X \sim \mu, Y \sim \nu \}$$

Monge (1781)

Kantorovich (1942) $\leadsto T$ random: replace (X,T(X)) with coupling $\pi=\mathrm{Law}(X,Y)$, $X\sim\mu$, $Y\sim\nu$

Wasserstein distance metrises usual weak topology

$$V_n := \sup_{\tau} \mathbb{E}^{\mu_n}[X_{\tau}] \approx \frac{1}{2}$$

$$V \coloneqq \sup_{\tau} \mathbb{E}^{\mu}[X_{\tau}] = 0$$

$$V_n := \sup_{\tau} \mathbb{E}^{\mu_n}[X_{\tau}] \approx \frac{1}{2}$$
 $V := \sup_{\tau} \mathbb{E}^{\mu}[X_{\tau}] = 0$
$$V_n \not\to V$$

$$V_n \not\to V$$
 but $\mu_n \rightharpoonup \mu$

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \inf_{T \colon T_{\#}\mu = \nu} \mathbb{E}\left[\sum_{n=1}^N |T_n(X) - X_n|^p\right]$$

$$T(X) = (T_1(X_1, \dots, X_N), \dots, T_N(X_1, \dots, X_N))$$

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \inf_{\substack{T \colon T_{\#}\mu = \nu \\ adapted}} \mathbb{E}\left[\sum_{n=1}^N |T_n(X) - X_n|^p\right]$$

$$T(X) = (T_1(X_1), T_2(X_1, X_2), \dots, T_N(X_1, \dots, X_N))$$

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \rightsquigarrow \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$
$$\operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu) = \{ \pi \in \operatorname{Cpl}(\mu, \nu) \colon \pi \text{ bicausal} \}$$

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \rightsquigarrow \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

$$\mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu) = \{ \pi \in \mathrm{Cpl}(\mu, \nu) \colon \pi \text{ bicausal} \}$$

More general cost functions → bicausal optimal transport

$$\inf_{\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu,\nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^{N} c_n(X_n, Y_n) \right]$$

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \rightsquigarrow \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$
$$\mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu) = \{ \pi \in \mathrm{Cpl}(\mu, \nu) \colon \pi \text{ bicausal} \}$$

More general cost functions → bicausal optimal transport

$$\inf_{\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu,\nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^{N} c_n(X_n, Y_n) \right]$$

 c_n continuous, polynomial growth, quasi-monotone

$$c_n(x,y) + c_n(x',y') - c_n(x,y') - c_n(x',y) \ge 0, \quad \forall x \le x', y \le y'$$

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \rightsquigarrow \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

$$\operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu) = \{ \pi \in \operatorname{Cpl}(\mu, \nu) \colon \pi \text{ bicausal} \}$$

More general cost functions → bicausal optimal transport

$$\inf_{\pi \in \operatorname{Cpl}_{bc}(\mu,\nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^{N} c_n(X_n, Y_n) \right]$$

 c_n continuous, polynomial growth, quasi-monotone

$$c_n(x,y) + c_n(x',y') - c_n(x,y') - c_n(x',y) \ge 0, \quad \forall x \le x', y \le y'$$

Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck, Bion-Nadal, Eder, Hellwig, Källblad, Pammer, Pflug, Pichler, Talay, Zalaschko,

Example revisited

$$V_n \coloneqq \sup_{\tau} \mathbb{E}^{\mu_n}[X_{\tau}] \approx \frac{1}{2}$$
 $V \coloneqq \sup_{\tau} \mathbb{E}^{\mu}[X_{\tau}] = 0$ $V_n \not\to V$ and $\mathcal{AW}_p(\mu_n, \mu) \not\to 0$

Continuous time

Similar definition of Wasserstein distance in continuous time w.r.t. L^p norm on $\Omega := C([0,T],\mathbb{R})$

$$\mu, \nu \in \mathcal{P}(\Omega) \quad \rightsquigarrow \quad \mathcal{W}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}(\mu, \nu)} \mathbb{E}^{\pi} \left[\int_0^T |\omega_t - \bar{\omega}_t|^p \mathrm{d}t \right]$$
$$\mathrm{Cpl}(\mu, \nu) = \{ \pi = \mathrm{Law}(X, Y) \colon X \sim \mu, Y \sim \nu \}$$

Continuous time

Similar definition of Wasserstein distance in continuous time w.r.t. L^p norm on $\Omega := C([0,T],\mathbb{R})$

$$\mu, \nu \in \mathcal{P}(\Omega) \quad \rightsquigarrow \quad \mathcal{W}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}(\mu, \nu)} \mathbb{E}^{\pi} \left[\int_0^T |\omega_t - \bar{\omega}_t|^p \mathrm{d}t \right]$$
$$\mathrm{Cpl}(\mu, \nu) = \{ \pi = \mathrm{Law}(X, Y) \colon X \sim \mu, Y \sim \nu \}$$

Continuous time

Similar definition of adapted Wasserstein distance in continuous time w.r.t. L^p norm on $\Omega \coloneqq C([0,T],\mathbb{R})$

$$\mu, \nu \in \mathcal{P}(\Omega) \quad \rightsquigarrow \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \text{Cpl}_{bc}(\mu, \nu)} \mathbb{E}^{\pi} \left[\int_0^T |\omega_t - \bar{\omega}_t|^p dt \right]$$
$$\text{Cpl}_{bc}(\mu, \nu) = \{ \pi \in \text{Cpl}(\mu, \nu) \colon \pi \text{ bicausal} \}$$

Ingredients

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$
$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$
$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$
$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Theorem [R., Szölgyenyi '24+]

Under "weak assumptions" on the coefficients, we can compute an "appropriate distance"

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Theorem [R., Szölgyenyi '24+]

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Theorem [R., Szölgyenyi '24+]

$$\mathcal{AW}_p^p(\mu, \nu) = \mathbb{E}\left[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\right], \quad \text{with } B = W.$$

Coupling SDEs

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [Backhoff-Veraguas, Källblad, R. '22]

Optimising over bicausal couplings $\pi \in \operatorname{Cpl}_{\mathrm{bc}}(\mu, \nu)$ \Leftrightarrow Optimising over correlations between B, W

Coupling SDEs

Theorem [Backhoff-Veraguas, Källblad, R. '22]

Optimising over bicausal couplings $\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu,\nu)$

Optimising over correlations between B, W

Product coupling

B, W independent

Synchronous coupling

Choose the same driving Brownian motion B=W.

Ingredients

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \rightsquigarrow \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \rightsquigarrow \text{Law}(\bar{X}) = \nu$$

Theorem [R., Szölgyenyi '24+]

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [R., Szölgyenyi '24+]

Under "weak assumptions" on the coefficients, we can compute the adapted Wasserstein distance by

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

1. Discretise SDEs;

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [R., Szölgyenyi '24+]

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs;
- 2. Solve discrete-time bicausal optimal transport problem;

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [R., Szölgyenyi '24+]

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs;
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [R., Szölgyenyi '24+]

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs:
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

Knothe-Rosenblatt rearrangement

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

Knothe-Rosenblatt rearrangement

— generalisation of monotone rearrangement

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

Knothe-Rosenblatt rearrangement

$$Y_k = T_k^{KR}(X_1, \dots, X_k) = F_{\nu_{Y_1, \dots, Y_{k-1}}}^{-1} \circ F_{\mu_{X_1, \dots, X_{k-1}}}(X_k),$$

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

Knothe-Rosenblatt rearrangement

$$Y_k = T_k^{KR}(X_1, \dots, X_k) = F_{\nu_{Y_1, \dots, Y_{k-1}}}^{-1} \circ F_{\mu_{X_1, \dots, X_{k-1}}}(X_k),$$

Theorem [Rüschendorf '85] [Posch '23+]

For μ, ν stochastically co-monotone, the unique optimiser is the Knothe–Rosenblatt rearrangement.

This induces the adapted weak topology.

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [R., Szölgyenyi '24+]

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs;
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t$$

Euler scheme

$$X_0^h = X_0,$$

 $X_t^h = X_{kh}^h + b(X_{kh})(t - kh), \quad t \in (kh, (k+1)h].$

$$dX_t = b(X_t)dt + \frac{dW_t}{dX_t}$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

 $X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$$

Write $X_k^h := X_{kh}^h$ and $\mu^h = \operatorname{Law}((X_k^h)_k)$.

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

 $X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$

Write $X_k^h := X_{kh}^h$ and $\mu^h = \text{Law}((X_k^h)_k)$.

Remark

 $X^h_k\mapsto X^h_{(k+1)}$ is increasing if b is Lipschitz, $h\ll 1$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

 $X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$

Write $X_k^h := X_{kh}^h$ and $\mu^h = \text{Law}((X_k^h)_k)$.

Remark

 $X^h_k\mapsto X^h_{(k+1)}$ is increasing if b is Lipschitz, $h\ll 1$

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

Monotone Euler-Maruyama scheme

$$X_0^h = X_0,$$

 $X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + \sigma(X_{kh})(W_t^h - W_{kh}^h), \ t \in (kh, (k+1)h].$

$$W_t^h - W_{kh}^h = W_{t \wedge \tau^h} - W_{kh}, \quad \tau_k^h := \inf\{t > kh : |W_t - W_{kh}| > A_h|\}$$

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

Monotone Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + \sigma(X_{kh})(W_t^h - W_{kh}^h), \ t \in (kh, (k+1)h].$$

$$W_t^h - W_{kh}^h = W_{t \wedge \tau_k^h} - W_{kh}, \quad \tau_k^h := \inf\{t > kh : |W_t - W_{kh}| > A_h|\}$$

 $\text{Write} \quad X_k^h := X_{kh}^h \quad \text{and} \quad \mu^h = \operatorname{Law}((X_k^h)_k).$

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

Monotone Euler-Maruyama scheme

$$X_0^h = X_0,$$

 $X_t^h = X_{bh}^h + b(X_{bh})(t - kh) + \sigma(X_{bh})(W_t^h - W_{bh}^h), \ t \in (kh, (k+1)h].$

$$W_t^h - W_{kh}^h = W_{t \wedge \tau_k^h} - W_{kh}, \quad \tau_k^h := \inf\{t > kh : |W_t - W_{kh}| > A_h|\}$$

Write $X_k^h := X_{kh}^h$ and $\mu^h = \text{Law}((X_k^h)_k)$.

Lemma [Backhoff-Veraguas, Källblad, R. '22]

For b, σ Lipschitz, the monotone Euler–Maruyama scheme is stochastically increasing.

Hence the Knothe–Rosenblatt rearrangement is optimal for μ^h, ν^h .

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [R., Szölgyenyi '24+]

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs:
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [R., Szölgyenyi '24+]

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs:
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

Assumption (A)

Drift $b : \mathbb{R} \to \mathbb{R}$ satisfies the following conditions piecewise:

- absolute continuity
- one-sided Lipschitz condition
- two-sided local Lipschitz condition
- exponential growth

Assumption (A)

Drift $b \colon \mathbb{R} \to \mathbb{R}$ satisfies the following conditions piecewise:

- absolute continuity
- one-sided Lipschitz condition
- two-sided local Lipschitz condition
- exponential growth

Assumption (A)

Drift $b \colon \mathbb{R} \to \mathbb{R}$ satisfies the following conditions piecewise:

- absolute continuity
- one-sided Lipschitz condition
- two-sided local Lipschitz condition
- exponential growth

Diffusion $\sigma \colon \mathbb{R} \to [0, \infty)$ satisfies

- global Lipschitz condition
- $-\sigma(\xi_k)\neq 0$, for $k\in\{1,\ldots,m\}$ no uniform ellipticity

Under Assumption (A), the scheme is constructed as follows:

1. Apply the transformation G from [Leobacher, Szölgyenyi '17] to (SDE),

$$Z = G(X)$$
$$dZ_t = \tilde{b}(Z_t)dt + \tilde{\sigma}(Z_t)dW_t$$

 \tilde{b} one-sided Lipschitz, exponential growth, locally Lipschitz, a.c. $\tilde{\sigma}$ Lipschitz

Under Assumption (A) , the scheme is constructed as follows:

- 1. Apply the transformation G from [Leobacher, Szölgyenyi '17] to (SDE),
- 2. Apply a semi-implicit Euler scheme with truncated Brownian increments to the transformed SDE,

$$Z = G(X)$$
$$dZ_t = \tilde{b}(Z_t)dt + \tilde{\sigma}(Z_t)dW_t$$

$$Z^h_{(k+1)h} = Z^h_{kh} + \tilde{b}(Z^h_{(k+1)h}) \cdot h + \tilde{\sigma}(Z^h_{kh})(W^h_{(k+1)h} - W^h_{kh})$$

Under Assumption (A) , the scheme is constructed as follows:

- 1. Apply the transformation G from [Leobacher, Szölgyenyi '17] to (SDE),
- 2. Apply a semi-implicit Euler scheme with truncated Brownian increments to the transformed SDE,
- 3. Transform back.

$$Z = G(X)$$
$$dZ_t = \tilde{b}(Z_t)dt + \tilde{\sigma}(Z_t)dW_t$$

$$Z^h_{(k+1)h} = Z^h_{kh} + \tilde{b}(Z^h_{(k+1)h}) \cdot h + \tilde{\sigma}(Z^h_{kh})(W^h_{(k+1)h} - W^h_{kh})$$

$$X_{kh}^h = G^{-1}(Z_{kh}^h)$$

Under Assumption (A) , the scheme is constructed as follows:

- 1. Apply the transformation G from [Leobacher, Szölgyenyi '17] to (SDE),
- 2. Apply a semi-implicit Euler scheme with truncated Brownian increments to the transformed SDE,
- 3. Transform back.

Theorem [R., Szölgyenyi '24]

Let (b,σ) satisfy Assumption (A). Then (SDE) admits a unique strong solution and, for all $p\geq 1$, there exists $C_p\geq 0$ such that

$$\mathbb{E}\Big[|X_T - X_T^h|^p\Big]^{\frac{1}{p}} \le \begin{cases} C_p h^{\frac{1}{2}}, & p \in [1, 2], \\ C_p h^{\frac{1}{p(p-1)}}, & p \ge 2. \end{cases}$$

Ingredients

Assumptions

(A) discontinuous drift with exponential growth (time-homog.);

Assumptions

- (A) discontinuous drift with exponential growth (time-homog.);
- (B) bounded measurable drift, α -Hölder and uniformly elliptic σ ;

Assumptions

- (A) discontinuous drift with exponential growth (time-homog.);
- (B) bounded measurable drift, α -Hölder and uniformly elliptic σ ;
- (C) continuous coefficients, linear growth, pathwise uniqueness.

Assumptions

- (A) discontinuous drift with exponential growth (time-homog.);
- (B) bounded measurable drift, α -Hölder and uniformly elliptic σ ;
- (C) continuous coefficients, linear growth, pathwise uniqueness.

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Assumptions

- (A) discontinuous drift with exponential growth (time-homog.);
- (B) bounded measurable drift, α -Hölder and uniformly elliptic σ ;
- (C) continuous coefficients, linear growth, pathwise uniqueness.

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Main Theorem [R., Szölgyenyi '24+]

Let (b,σ) and $(\bar{b},\bar{\sigma})$ each satisfy one of assumptions (A), (B), (C). Then, for $p\in[1,\infty)$, the adapted Wasserstein distance is given by

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \text{ with } B = W$$

Assumptions

- (A) discontinuous drift with exponential growth (time-homog.);
- (B) bounded measurable drift, α -Hölder and uniformly elliptic σ ;
- (C) continuous coefficients, linear growth, pathwise uniqueness.

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Main Theorem [R., Szölgyenyi '24+]

Let (b,σ) and $(\bar{b},\bar{\sigma})$ each satisfy one of assumptions (A), (B), (C). Then, for $p\in[1,\infty)$, the adapted Wasserstein distance is given by

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\left[\int_0^T |X_t - \bar{X}_t|^p dt\right], \text{ with } \mathbf{B} = \mathbf{W}$$

Synchronous coupling solves general bicausal transport problem

Future research directions

- Extension to higher dimensions
 - Examples in [Backhoff-Veraguas, Källblad, R. '22] show that the synchronous coupling is not always optimal
- Extension to jump-diffusions
- Extension to neural SDEs, McKean–Vlasov SDEs
- Convergence of optimisers
 - Use density estimates for SDEs from [Backhoff-Veraguas, Unterberger '23]
- Application to uniqueness of mimicking martingales

Summary

- We compute adapted Wasserstein distance between SDEs with irregular coefficients
- We prove strong convergence rates for a numerical scheme for SDEs with discontinuous and exponentially growing drift

References:

