STAT 2220 - Fall 2007 Solution to Assignment 6

5-30. a) Mean_{Diff} = 74-2430 - 73.4797 = 0.7633

$$T = \frac{\overline{D} - \Delta_0}{S_D / \sqrt{n}} = \frac{0.7633 - 0}{2.905560 \sqrt{12}} = 0.91$$

P-value = 2*P(t > |0.91|): for df = 11 we obtain 2*(0.1 < P-value < 0.25) = 0.2 < P-value < 0.5

```
Paired T-Test and Cl: X1, X2

Paired T for X1 - X2

N Mean StDev SE Mean
X1 12 74.2430 1.8603 0.5370
X2 12 73.4797 1.9040 0.5496
Difference 12 0.7633 2.905560 0.838763

95% CI for mean difference: (-1.082805, 2.609404)
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.91 P-Value = (0.2, 0.5)
```

Since p-value is bigger than 0.05, the null hypothesis cannot be rejected at the 0.05 level.

- b) It is a two-sided test
- c) 99%CI on the difference in means

$$\begin{split} \overline{d} - t_{\alpha/2,n-1} \left(\frac{s_d}{\sqrt{n}} \right) &\leq \mu_d \leq \overline{d} + t_{\alpha/2,n-1} \left(\frac{s_d}{\sqrt{n}} \right) \\ 0.7633 - 3.106 \left(\frac{2.90556}{\sqrt{12}} \right) &\leq \mu_d \leq 0.7633 + 3.106 \left(\frac{2.90556}{\sqrt{12}} \right) \\ -1.842 &\leq \mu_d \leq 3.368 \end{split}$$

d) From the 95%CI for mean difference, since zero (0) is included in the interval, we cannot reject the null hypothesis

- 5-82. b) From Minitab, the test statistic is found to be $T_0 = 4.22$, The p-value is 0.001
 - c) From Minitab, the p-value is found to be 0.001

d)
$$\overline{x}_1 = 16.36$$
 $\overline{x}_2 = 11.48$
 $s_1 = 2.07$ $s_2 = 2.37$
 $n_1 = 9$ $n_2 = 6$

99% confidence interval:
$$t_{\alpha/2,n_1+n_2-2} = t_{0.005,13}$$
 where $t_{0.005,13} = 3.012$

$$\begin{split} s_p &= \sqrt{\frac{8(2.07)^2 + 5(2.37)^2}{13}} = 2.19 \\ &\left(\overline{x}_1 - \overline{x}_2\right) - t_{\alpha/2, n_1 + n_2 - 2} \Big(s_p\Big) \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \leq \mu_1 - \mu_2 \leq \Big(\overline{x}_1 - \overline{x}_2\Big) + t_{\alpha/2, n_1 + n_2 - 2} \Big(s_p\Big) \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \\ &\left(16.36 - 11.48\right) - 3.012 \Big(2.19\Big) \sqrt{\frac{1}{9} + \frac{1}{6}} \leq \mu_1 - \mu_2 \leq \Big(16.36 - 11.48\Big) + 3.012 \Big(2.19\Big) \sqrt{\frac{1}{9} + \frac{1}{6}} \\ &1.40 \leq \mu_1 - \mu_2 \leq 8.36 \end{split}$$

6-6. a) The plot below implies that a simple linear regression seems reasonable in this situation.

b) The regression equation is y = -10.1 + 0.174 x

Predictor	Coef	StDev	T	P
Constant	-10.132	1.995	-5.08	0.000
X	0.17429	0.02383	7.31	0.000

$$S = 1.318$$
 $R-Sq = 74.8%$ $R-Sq(adj) = 73.4%$

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	92.934	92.934	53.50	0.000
Residual Error	18	31.266	1.737		
Total	19	124.200			

An estimate of $\hat{\sigma}^2 = 1.737$

c) $\hat{y} = -10.1 + 0.174(85) = 4.69$. The predicted mean rise in blood pressure level associated with a sound pressure level of 85 decibels is 4.69 millimeters of mercury.

- 6-10. a) 4.683
 - b) (4.055, 5.312)
 - c) (1.844, 7.523)
 - d) The prediction interval is wider than the confidence interval.
- 6-12. a) The regression equation is BOD = 0.658 + 0.178 Time

 $\hat{y} = 0.658 + 0.178x$

 $\hat{\sigma}^2 = 0.083$

b)
$$\hat{y} = 0.658 + 0.178(15) = 3.328$$

c)
$$0.178(3) = 0.534$$

d)
$$\hat{y} = 0.658 + 0.178(6) = 1.726$$

 $e = y - \hat{y} = 1.9 - 1.726 = 0.174$

e) Fitted \hat{y}_i :

0.83585

1.01391

1.37002

1.72613

2.08225

2.43836

2.79447

3.15058

3.50670

3.86281

4.21892

All the points would lie along the 45 degree line $y = \hat{y}$. That is, the regression model would estimate the values exactly. At this point, the graph of observed vs. predicted indicates that the simple linear regression model provides a reasonable fit to the data.