Feuille de TE 3 : Fonctions réciproques

Rappel: Comme annoncé lors de la séance de TD du 5 novembre, La feuille de TD6 (Fonctions réciproques) est *à terminer* pour le vendredi 19 novembre : les exercices 4 à 8 doivent *impérativement* avoir été traités et vous devez avoir réfléchi sur le problème (exercice 9).

Exercice 1. Fonctions réciproques (mai 2007)

On considère la fonction réelle f définie sur l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$ par la formule : $f(x)=\tan^3(x)+3\tan(x)$

- 1. Montrer que f est strictement croissante.
- 2. Déterminer l'image J de l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$ par la fonction f.
- 3. Montrer que f est une bijection de $]-\frac{\pi}{2},\frac{\pi}{2}[$ sur J.
- 4. Calculer la dérivée en 0 de la fonction réciproque f^{-1} de f.
- 5. Ecrire le développement limité de f^{-1} d'ordre 2 en 0.

Exercice 2. Fonctions réciproques (décembre 2007)

On considère la fonction réelle f définie sur $\mathbb R$ par $f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$

- 1. Montrer que $\forall x \in \mathbb{R}, f'(x) = 1 (f(x))^2$.
- 2. Déterminer l'image $J = f(\mathbb{R})$ de \mathbb{R} par f et montrer que f admet une application réciproque $g = f^{-1}$ définie sur J.
- 3. Déterminer la dérivée de la fonction g.
- 4. Expliciter g(y) en résolvant par rapport à x l'équation $y = \frac{e^x e^{-x}}{e^x + e^{-x}}$. Retrouver la valeur de g'(y).

Exercice 3. Bijection (juin 2009)

Soit $g: \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$g(x) = (x - 1)\arctan(x)$$

- 1. Calculer g'(x) et g''(x) pour tout $x \in \mathbb{R}$.
- 2. Etudier les variations de g' sur \mathbb{R} .
- 3. On pose : $J = g'(]-\infty, -1]$). Déterminer l'intervalle J.
- 4. Montre que l'équation g'(x) = 0 possède une unique solution c dans \mathbb{R} et que l'on a $c \in]0,1[$.
- 5. Montrer que la fonction q admet un minimum en c.