Procesos Estocásticos (66.75): Trabajo Práctico n.1

Cáceres, Julieta (#)

Rozanec, Matias (#97404) rozanecm@gmail.com

8.mayo.2018

Índice

Ι	Resolución	3
1.	Ejercicio 1: Cálculo de ganancia de los repetidores analógicos	3
2.	Ejercicio 2: Probabilidad de error del sistema analógico	4
3.	Ejercicio 3: Probabilidad de error del sistema digital	5
4.	Ejercicio 4: Simulación Monte Carlo de las probabilidades de error	6

Parte I

Resolución

1. Ejercicio 1: Cálculo de ganancia de los repetidores analógicos

$$\varepsilon_{X_i} = Var(X_i) = E(X_i^2) + E(X_i)^2 \tag{1}$$

$$E[X_r^2] = (A^2p(A) + (-A)^2p(-A)) = (A^2\frac{1}{2} + A^2\frac{1}{2}) = A^2 = A^2$$
 (2)

$$E[X_r]^2 = (Ap(A) + (-A)p(-A))^2 = (A\frac{1}{2} - A\frac{1}{2})^2 = 0^2 = 0$$
(3)

Por lo tanto,

$$\varepsilon_{X_i} = A^2 \Leftrightarrow A = \sqrt{\varepsilon_{X_i}} \tag{4}$$

Como $X_n = G_i X_{i-1} h + G_i W_{i-1}$, entonces:

$$\varepsilon_n = Var(X_n) = (G_i h)^2 Var(X_{i-1}) + G_i^2 \sigma^2$$
(5)

Por enunciado vale que $\varepsilon_i = \varepsilon_{i-1}$, por lo tanto

$$\varepsilon_n = (G_i h)^2 \varepsilon_i + G_i^2 \sigma^2 \Leftrightarrow \frac{\varepsilon_n}{h^2 \varepsilon_i + \sigma^2} = G_i^2 \Leftrightarrow G_i = \sqrt{\frac{\varepsilon_n}{h^2 \varepsilon_i + \sigma^2}}$$
 (6)

Por lo tanto, se tiene que

$$G_i = \frac{1}{h} \sqrt{\frac{SNR}{SNR + 1}} \tag{7}$$

2.	Ejercicio 2:	Probabilidad	de error	del sistema	analógico

3. Ejercicio 3: Probabilidad de error del sistema digital

4.	Ejercicio 4: Simulación Monte Carlo de las probabilidades de error