Universidade Presbiteriana Mackenzie

Banco de Dados – Projeto Aplicado I

Dinâmica de Focos de Queimadas no Brasil (2019-2024)

Etapa 2 – Proposta Analítica e Análise Exploratória

Grupo: Ana Clara Silva de Souza; Cid Wallace Araujo de Oliveira; Eduardo Machado Silva; Frederico Ripamonte Borges

Repositório:

https://github.com/fredericorbgs/projeto_aplicado_grupo_12/

Sumário

In	trodi	ação	1
1	Org 1.1	anização e Contexto (Resumo da Etapa 1) Organização	2 2
	1.2 1.3	Área de Átuação	2 2
2	Obj	etivos do Projeto	3
	2.1 2.2	Objetivos Específicos	3
3	Dat	aset e Metadados (Detalhados)	4
	3.1	Arquivos e Estrutura	4
	3.2 3.3	Esquema de Campos (colunas principais)	
4	Dro	posta Analítica	6
4	4.1	Visão Geral	6
	4.1	Hipóteses e Métricas	6
	4.2	Método (explicável)	6
	4.4	Pipeline de Dados	6
	4.5	Resultados Esperados	
5	Aná	ilise Exploratória de Dados (AED)	8
	5.1	Perguntas-Guia	8
	5.2	Resumo da Amostra	8
		5.2.1 Distribuição por Bioma	8
		5.2.2 Distribuição por Unidade Federativa (Top 10)	8
	5.3	Medidas de Posição e Dispersão	9
	5.4	Distribuições e Correlações	9
		5.4.1 Análise dos Top 10 Estados	9
	5.5	Séries Temporais e Sazonalidade	9
		5.5.1 Padrões Observados	9
	5.6	Outliers e Anomalias	10
		5.6.1 Principais Anomalias Detectadas	10
		5.6.2 Interpretação	10
	5.7	Síntese da Análise Exploratória	11
6	Don	asitário a Alinhamanta	12

Referências 14

Lista de Figuras

4.1	Pipeline de dados da proposta analítica (scripts em src/ e notebook em notebooks/)	7
5.1	Distribuição de focos mensais por Bioma (2019-2024). O gráfico evidencia a variabilidade e concentração de focos nos diferentes biomas brasileiros,	
	com destaque para Amazônia e Cerrado	10
5.2	Top 10 UFs por número de focos (2019-2024). Estados da região Norte e	
	Centro-Oeste concentram a maior parte dos focos de queimadas	11
5.3	Séries temporais mensais de focos por Bioma (2019-2024). Observa-se clara	
	sazonalidade, com picos concentrados nos meses de seca (julho a outubro),	
	especialmente nos biomas Amazônia e Cerrado.	12

Lista de Tabelas

3.1	Dicionário de dados (reforçado)	4
5.1	Focos de queimadas por bioma (2019-2024)	9
5.2	Estados com maior número de focos (2019-2024)	9
5.3	Estatísticas da contagem diária de focos por bioma	10
5.4	Top 5 dias com picos anômalos de focos	11

Introdução

Dando sequência à Etapa 1 (organização, objetivos, cronograma e metadados), esta **Etapa 2** inclui: (i) a **Proposta Analítica** detalhada — com problema, hipóteses, métrica-alvo e *pipeline* de dados — e (ii) a **Análise Exploratória de Dados (AED)**, alinhada aos notebooks Python presentes no repositório. O foco é descrever variáveis, sumarizar medidas de posição/dispersão, distribuição, dados ausentes e outliers, ilustrando com gráficos.

Organização e Contexto (Resumo da Etapa 1)

1.1 Organização

INPE – Programa Queimadas. Missão: monitorar e disponibilizar informações sobre focos de queimadas/incêndios no Brasil, apoiando políticas públicas e gestão ambiental.

1.2 Área de Atuação

Monitoramento ambiental e gestão de riscos, com ênfase na dinâmica **espaço-temporal** de focos de calor por **bioma**, **UF** e **município**.

1.3 Problema de Pesquisa

Como caracterizar e priorizar a dinâmica de focos de queimadas (2019–2024), identificando sazonalidade, picos atípicos (anomalias) e áreas críticas?

Objetivos do Projeto

2.1 Objetivo Geral

Produzir: (i) **AED** 2019–2024 e (ii) **proposta analítica** para detecção de anomalias e priorização territorial.

2.2 Objetivos Específicos

- Descrever sazonalidade e variação temporal por bioma/UF/município.
- Identificar municípios críticos por frequência/intensidade de picos.
- Definir método simples e explicável para alertas (tendência+sazonalidade + escore robusto).
- Preparar data storytelling orientado à decisão (Etapa 3).

Dataset e Metadados (Detalhados)

3.1 Arquivos e Estrutura

CSVs anuais 2019-2024 em data/raw/queimadas/. Consolidado em data/processed/focos_2019_2024.parquet.

3.2 Esquema de Campos (colunas principais)

Tabela 3.1: Dicionário de dados (reforçado)

Coluna	Tipo	Exemplo	Descrição / Observações
id_bdq	inteiro/ID	1536654192	Identificador interno do banco de queimadas (chave técnica).
foco_id	UUID/str	c7ad19f5	Identificador único do foco observado.
data_pas	datetime	2021-04-27 16:35:00	Data/hora (UTC) do registro; base para agregações por dia/semana/- mês.
lat	float	-15.27	Latitude (graus decimais). Validação em [-33.8, 5.3] aprox. (território BR).
lon	float	-40.894	Longitude (graus decimais). Validação em [-74.1, -32.4] aprox. (BR).
pais	str (cat.)	Brasil	País de referência.
estado	str (cat.)	Bahia	UF padronizada (sigla/por extenso, harmonizada no ETL).
municipio	str (cat.)	Vitória da Conquista	Município normalizado (acentos/unicode e <i>case</i>).
bioma	str (cat.)	Mata Atlântica	Bioma do foco (ex.: Amazônia, Cerrado, Caatinga, Pampa, Panta- nal, Mata Atlântica).

Qualidade e Tratamento: normalização de encoding (UTF-8), remoção/ajuste de coordenadas inválidas, padronização de nomes de municípios/UF, cast de datas e geração de chaves derivadas (dia, semana ISO, mês, ano, bioma_uf).

3.3 Exemplo de Linha (CSV)

1536654192, c7ad19f5-cd70-35ed-85e0-35ca4f09f03b, -15.270000, -40.894000, 2021-04-27 16:35:00, Brasil, Bahia, Vitória da Conquista, Mata Atlântica

Proposta Analítica

4.1 Visão Geral

Problema: detectar picos atípicos de focos por unidade territorial, sinalizando anomalias em relação ao comportamento esperado (tendência + sazonalidade). Unidades de análise: bioma, UF e município. Série base: contagem de focos por dia (ou semana) por unidade.

4.2 Hipóteses e Métricas

- H1 Sazonalidade: existe padrão de alta na estação seca por bioma/UF.
- **H2** Anomalias: picos fora do envelope sazonal (limites robustos) indicam eventos críticos.
- **Métricas** por série: média, mediana, desvio padrão, variância, IQR, coeficiente de variação (CV), % acima da banda.

4.3 Método (explicável)

- 1. Agregar focos por dia/semana e por unidade.
- 2. Decompor série em tendência+sazonalidade *via* médias móveis (ETS simples opcional).
- 3. Calcular bandas de referência (mediana $\pm k \cdot \text{MAD}$ ou IQR) e z-score robusto.
- 4. Rotular anomalias (limiar: $|z| \geq 3$ ou acima da banda superior ajustada).
- 5. Gerar ranking de criticidade e painel (mapa + séries).

4.4 Pipeline de Dados

4.5 Resultados Esperados

• Séries por bioma/UF/município com envelope sazonal e % de excesso.

Figura 4.1: Pipeline de dados da proposta analítica (scripts em src/ e notebook em notebooks/).

- Lista priorizada de unidades com picos recentes e recorrência histórica.
- Painel com mapas (coroplético) e sparklines temporais.

Análise Exploratória de Dados (AED)

5.1 Perguntas-Guia

- Quantidade de linhas/colunas e tipos de dados.
- Medidas de posição e dispersão (média, mediana, quartis, desvio, variância, CV).
- Distribuição e frequência; correlações.
- Valores ausentes, inconsistências; anomalias/outliers.

5.2 Resumo da Amostra

Características gerais da base de dados:

- Total de registros: 2.008.071 focos de queimadas
- **Período**: 01/01/2019 a 31/12/2024 (6 anos completos)
- Cobertura temporal: Dados diários consolidados
- Granularidade espacial: Coordenadas geográficas, município, UF e bioma

5.2.1 Distribuição por Bioma

Os dados mostram concentração significativa em determinados biomas brasileiros:

5.2.2 Distribuição por Unidade Federativa (Top 10)

Observa-se forte concentração nas regiões Norte e Centro-Oeste do Brasil, áreas que abrangem principalmente os biomas Amazônia e Cerrado.

Tabela 5.1: Focos de queimadas por bioma (2019-2024)

Bioma	Número de focos
Amazônia	621.445
Cerrado	379.487
Caatinga	104.704
Mata Atlântica	98.467
Pantanal	63.114
Pampa	6.256

Tabela 5.2: Estados com maior número de focos (2019-2024)

Estado	Número de focos
Pará	230.850
Mato Grosso	202.710
Maranhão	115.631
Amazonas	114.400
Tocantins	74.762
Piauí	67.366
Rondônia	62.974
Bahia	60.539

5.3 Medidas de Posição e Dispersão

5.4 Distribuições e Correlações

A análise de distribuições revela padrões importantes nos dados de queimadas por bioma. O boxplot abaixo mostra a distribuição de focos mensais para cada bioma brasileiro entre 2019 e 2024.

5.4.1 Análise dos Top 10 Estados

A concentração espacial dos focos é um fator crítico para priorização de políticas públicas. A figura a seguir apresenta os 10 estados com maior número de focos registrados no período analisado.

5.5 Séries Temporais e Sazonalidade

A análise temporal dos focos de queimadas revela padrões sazonais consistentes ao longo dos anos. A série temporal por bioma demonstra a dinâmica dos focos ao longo do período 2019-2024, permitindo identificar picos sazonais e tendências de longo prazo.

5.5.1 Padrões Observados

- Sazonalidade: Concentração de focos nos meses secos (julho-outubro)
- Picos históricos: Anos de 2020 e 2024 apresentam picos significativos

Tabela 5.3: Estatísticas da contagem diária de focos por bioma

Variável	count	min	p50	max	std	$\overline{ ext{CV}}$
focos_dia (bioma=Amazônia)	2192	0	93.5	4496	483.74	5.17
$focos_dia (bioma=Cerrado)$	2192	0	31.0	2459	229.07	7.39

Figura 5.1: Distribuição de focos mensais por Bioma (2019-2024). O gráfico evidencia a variabilidade e concentração de focos nos diferentes biomas brasileiros, com destaque para Amazônia e Cerrado.

- Variação por bioma: Amazônia e Cerrado mostram maior variabilidade
- Tendência: Necessário monitoramento contínuo para detecção de mudanças estruturais

5.6 Outliers e Anomalias

A detecção de anomalias foi realizada utilizando **z-score robusto (MAD - Median Absolute Deviation)** sobre as séries temporais diárias. O método identifica dias com número de focos significativamente acima do esperado.

5.6.1 Principais Anomalias Detectadas

Os dias com maior número de focos (anomalias críticas) identificados no período foram:

5.6.2 Interpretação

- Pico histórico: Outubro de 2020 registrou o maior pico do período
- Ano recente crítico: Setembro de 2024 concentra 4 dos 5 maiores picos

Figura 5.2: Top 10 UFs por número de focos (2019-2024). Estados da região Norte e Centro-Oeste concentram a maior parte dos focos de queimadas.

Tabela 5.4: Top 5 dias com picos anômalos de focos

Data	Focos	Z-score robusto
01/10/2020	8.396	18.99
07/09/2024	8.152	18.40
03/09/2024	8.073	18.22
10/09/2024	7.745	17.43
05/09/2024	7.365	16.53

- Padrão temporal: Anomalias concentram-se no período seco (agosto-outubro)
- Implicações: Eventos críticos demandam resposta emergencial coordenada

Lista completa de anomalias disponível em data/processed/anomalias_top.csv, identificando 50 eventos críticos para análise aprofundada e ações prioritárias.

5.7 Síntese da Análise Exploratória

A análise exploratória de dados realizada sobre mais de 2 milhões de registros de focos de queimadas entre 2019 e 2024 revelou os seguintes achados principais:

- Concentração espacial: Amazônia e Cerrado concentram aproximadamente 50% dos focos, com estados como Pará, Mato Grosso e Maranhão liderando as ocorrências.
- 2. Padrão sazonal consistente: Clara concentração de focos nos meses de seca (julho a outubro), com variações anuais significativas que sugerem influência de fatores climáticos e antropogênicos.

Figura 5.3: Séries temporais mensais de focos por Bioma (2019-2024). Observa-se clara sazonalidade, com picos concentrados nos meses de seca (julho a outubro), especialmente nos biomas Amazônia e Cerrado.

- 3. Eventos críticos: Identificação de picos anômalos, especialmente em outubro/2020 e setembro/2024, que demandam investigação detalhada sobre causas e impactos.
- 4. Qualidade dos dados: Base consolidada apresenta estrutura adequada para análises preditivas e detecção de anomalias, com tratamento apropriado de valores ausentes e validação de coordenadas geográficas.
- 5. **Implicações para modelagem**: Os padrões identificados justificam a proposta analítica de decomposição de séries temporais e detecção de anomalias por métodos estatísticos robustos.

Os artefatos gerados (figuras, tabelas e CSVs processados) fornecem base sólida para a próxima etapa de modelagem e *data storytelling* orientado à decisão.

Repositório e Alinhamento

Repositório: https://github.com/fredericorbgs/projeto_aplicado_grupo_12/Estrutura (alto nível): data/raw, data/processed, src, notebooks, figs/eda, docs. Scripts e notebook foram desenvolvidos em Python, com comentários, boas práticas e geração automática de artefatos referenciados neste relatório.

Referências

```
INPE – Programa Queimadas (documentação pública).
Materiais e orientações do componente curricular.
Repositório do projeto: <a href="https://github.com/fredericorbgs/projeto_aplicado_grupo_12/">https://github.com/fredericorbgs/projeto_aplicado_grupo_12/</a>
```