99日本国特許庁(JP)

印 実用新案出願公告

⑫ 実 用 新 案 公 報 (Y2)

昭55-4518

Mint. Cl.3 F 02 B 25 / 22

識別記号

庁内整理番号 6706 - 3 G

2040公告 昭和55年(1980)2月1日

(全4頁)

ᡚクランク室子圧縮式2サイクル内燃機関

昭50-86128 20事

②出 頤 昭50(1975)6月20日

開 昭52-1912

③昭52(1977)1月8日

彻考 案 者 岩井富 男

磐田市中泉1797

10出 顄 ヤマハ発動機株式会社

磐田市新貝2500

②代 理 人 弁理士 早川政名 外1名 (公害防止関連技術)

切実用新案登録 請求の範囲

トン側壁により前気排気口および掃気口を開閉せ しめると共に クランク室負圧に よりエア 一供給通 路を介して前記掃気口に接続した掃気通路にエア ーを吸引し該エアーを前記掃気口が開口する掃気 行程初期にクランク室から送られる燃料混合気に 20 先立つてシリンダ内へ供給せしめるクランク室予 圧縮式 2サイクル内燃機関において、上記エアー 供給通路には、機関の低回転・低負荷運転状態に おいて零を含む微少量のエアーを流通させ且つ前 記運転状態以外においてエア一流通量を増大させ 25 態において零を含む微少量のエアーを流通させ且 る可変弁を設けた構造。

考案の詳細な説明

本考案はクランク室予圧縮式2サイクル内燃機 関に関し、さらに 詳しくは 前記内燃機関における 燃料混合気の吹き抜け防止装置の改良に係る。

一般に、クランク室予圧縮式2サイクル内燃機 関においては掃気ロよりシリンダ内に送入された 燃料混合気 (新気)の一部が排気行程の終期に燃 焼ガスとともに排気口から排気通路に流出し外部 に放出されて大気汚染の原因となっていることが 35 知られている。

そこで従来は上記原因を解消せしとして、掃気

口が開口する掃気行程の初期において予め掃気通 路内へ導入されたエアーを掃気流の一部として燃 料混合気に先立つてシリンダ内に供給し燃焼ガス と掃気流との間にエア一層を形成して燃焼ガスと 5 ともに前記エア一層を排気口より流出させること により前記燃料混合気が吹き抜けることを防止す る装置がみられる。

然るに上記従来装置は吸入されるエア一量を特 に制御していないので機関の高負荷運転状態に 適 10 したエアー量を設定すれば、アイドリング、低負 荷運定時にはシリンダ内の燃料混合気が過剰に希 薄化されて着火不良をおこし燃焼動作が不安定に なる原因となり、一方、アイドリング、低負荷運 転状態に適する少量のエア ―供給量に 設定すれば シリンダ側壁に排気口および掃気口を有しピス 16 アイドリング、低負荷以外の高負荷運転時にはエ アー量が不足して効果的に本来の新気吹き抜けを 防止し得なくなる不具合がある。

> 而して本考案は叙上従来欠点を解消して、所期 の新気吹き抜け機能を果すと共に機関の性能を低 下させない内燃機関を提 共せんとするもので、斯 る本考案クランク室予圧縮式2サイクル内燃機関 は、 クランク室負圧に より掃気口に 接続した 掃気 通路内へエアーを掃気行程の開始以前に導入する エアー供給通路に、機関の低回転・低負荷運転状 つ前記運転状態以外においてエアー流通量を増大 させる可変弁を設けたことを特徴とする。

本考案実施の一例を図面により説明すれば、第 1 図は2 サイクル内燃機関を示し、1 はシリンダ 30 2はクランク室、3は吸気管、4は気化器であつ て、上記シリンダ1内にはピストン5を上下摺動 自在に備える。

シリンダ1の側壁には掃気口6,6および排気 ロ7を穿設し、その掃気口6,6は掃気通圧6' **,6′を介して前記クランク室2に接続せしめ、** 排気口7は排気通路7′に連接する。

上記ピストン5はシ内ンダ1内を昇降動して前

[3725

実公 昭55-4518

(2)

記掃気口6、6および排気口1を開閉せしめると 共に前記吸気管3内の吸気通路3′を通し燃料混 台紅をクランク室 2 内に吸入せしめるもので、燃

焼行程後の下降時に排気ロ7を開口させ、若干お より前記クランク室2内の燃料混合気(新気)を 掃気流としてシリンダ1 内に送入し該シリンダ1 内の燃料ガスを排出口7より排出させる排気・掃 気行程を行なう。

3

上記吸気通路3′内にはスロツト操作により開 10 度が調整される吸気絞り弁8を設け、該絞り弁8 と一体的に回動する支軸8′を吸気管3の側壁に に突出させ、この支軸8′に揺板9を一体的回動 自在に取付ける。

アー供給管10を一体的に突設する。

エアー供給管10は一本のエアー供給通路aか ら二本に分岐せるエアー供給通路a′,a′を備 えた構造からなり、その分岐状のエアー供給通路a , a′の先端は前記掃気通路 6′の上端部に開 20 口して連通状となす(第2,3図)。

エアー供給通路aはその外端をエアーグリーナ 一(図示せず)を介して大気に 開口せしめ、供給 通路a 内には該通路の開口量を調節する可変弁1 1を設ける。

エアー供給通路a′, a′内には 掃気通路 6′ から供給通路a 方向への逆流を阻止する逆止弁1 2,12を設け、また図中の13,13は逆止弁 12,12のストッパである。

上記可変弁11は機関の運転状態によつてその 30 前示実施例と同一部材を示す。 開度が変化するように設定する。

すなわち可変弁11は機関のアイドリング・低 負荷運転状態においてはエアー供給通路 a を遮断 若しくは開口面積を小さくしてエアー流通量を零 時以外の高負荷運転状態においてはエアー供給通 路aの開口面積を大きくしてエアー流通量が増大 するように設定する。

今、実施例においては前記可変弁11の支軸1 4 をエアー供給管10の側壁に回動自在に突出さ せ、該支軸 1 4 に作動片 1 5 を一体的回動自在に 取付け、この作動片15と前記吸気絞り弁8に連 結せる揺板9とを連杆16を介して連結し、吸気 絞り弁8の開度と可変弁11の開度とを第4図に

示す線図のように連動させる。

上記吸気絞り弁8と可変弁11との連動により 吸気通路3′を通る吸入空気量に略比例したエア 一量がエアー供給通路a , a′ , a′ を介してシ くれて掃気口 6 , 6 を開口させて該掃気口 6 , 6 5 リンダ 1 内に供給されて燃料混合気の希釈が防止 できる。

而して、以上のように構成した内燃機関は、前 記ピストン5の上昇時に生ずるクランク室2の負 圧によつてエアー供給通路a を流通するエアーが 供給通路a′, a′を介して掃気口6, 6に近い 掃気通路 6′、6′に吸引され、燃焼行程後のピ ストン5の下降時に掃気口6が開口する掃気行程 の初期に前記掃気通路6′,6′内に吸引された エアーが掃気口6,6を通してシリンダ1内に供 上記シリンダ1の排気ロ7と反対側の側壁にエ 15 給され、シリンダ1内の燃焼ガスと掃気通路を通 してシリンダ内へ流入する掃気流とのあいだにエ アー層を形成する。

> そして上記エアー供給量すな わち クランク室負 圧により掃気通路 6′, 6′内に吸引されるエア 一量はエアー供給通路a内の可変弁11によつて 調整され機関がアイドリング、低負荷運転時には 零若しくは微少量、それ以外の運転時には該運転 状態に適合する多量に設定される。

第5図はエアー供給管構造の他の実施例を示す 25 もので、エアー供給管 1 0′のエアー供給通路 b は別々の開口部17、17を介して分岐状のエア 一供給通路 b′, b′に連通し、その各開口部 1 7,17に夫々送止弁12′,12′を設けたも のである。第5図において前述符号と同一符号は

本考案は叙上の如く構成したので、掃気口が開 口する掃気行程初期にクランク室から送られる燃 料混合気に先立つて掃気通路内へエアーが供給さ れてシリンダ内の燃焼ガスと掃気流とのあいだに 若しくは微少量にし、上記アイドリング・低負荷 35 エアー層を形成し、燃料混合気の吹き抜けを防止 することができると共に上記エア一供給量は機関 の低回転・低負荷運転時には零若しくは微少量で あるから燃料混合気の過度の希薄化を防ぎ、した がつて新火不良をなくし燃焼動作を安定させるこ 40 とができる。又、機関の前記低回転・低負荷時以 外の運転時には前記シリンダ内へのエアー供給量 が増大するので、前記新気の吹き抜け防止作用を 効果的に果すことができる。

依つて、所期の目的を達成し得る。

(William)

(3)

奥公 昭55-4518

図面の簡単な説明

第1図は本考案内燃機関の縦断側面図、第2図 はそのII-II線に沿える断面図、第3図は第2図 のIII —III線に沿える断面図、第4 図は可変弁と吸 気紋り弁の開度連動関係を示す線図、第5図は前 5 アー供給通路、11は可変弁である。 記第2図と同一断面線で示したエア 一供給管の他

の実施例を表わす断面図である。

図中、1はシリンダ、6は掃気口、6′は掃気 通路、7は排気口、7′は排気通路、10,10 ′ はエアー供給管、a,a′ および b , b′ はエ

1

(4)

奥公 昭55-4518

BEST AVAILABLE COPY