

Choose certainty.
Add value.

Report On

FCC CFR 47 Part 15C and Industry Canada Testing of the Modelabs Manufacture CD1D

COMMERCIAL-IN-CONFIDENCE

FCC ID: WCKCD1D

IC ID: IC 7343B

Document 75903927 Report 02 Issue 2

June 2008

TUV Product Service Ltd, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL
Tel: +44 (0) 1489 558100. Website: www.tuvps.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON FCC CFR 47 Part 15C and Industry Canada Testing of the

Modelabs Manufacture

CD1D

Document 75903927 Report 02 Issue 2

June 2008

PREPARED FOR Avantech Mobile

Rue Maurice Trintignant

72093 Le Mans

Cedex 9 France

PREPARED BY

Mener

N Bennett

Senior Administrator

APPROVED BY

J Adams

Authorised Signatory

M J Hardy

Authorised Signatory

DATED 26 June 2008

26 June 2008

This report has been up-issued to Issue 2 to amend the model name

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 15C and Industry Canada Testing. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineers

M P Hardy

S Rennett

A Fry

COMMERCIAL-IN-CONFIDENCE

CONTENTS

Section		Page No
1	REPORT SUMMARY	3
1.1	Introduction	4
1.2	Brief Summary of Results	
1.3	Declaration of Build Status	
1.4	Product Information	8
1.5	Test Conditions	
1.6	Deviations From the Standard	
1.7	Modification Record	10
2	TEST DETAILS	11
2.1	Conducted Emissions (AC Power Port)	12
2.2	Radiated Emissions (Enclosure Port)	19
2.3	Maximum Peak Output Power (Radiated)	
2.4	20dB Bandwidth	
2.5	Channel Dwell Time (DH1)	
2.6	Channel Dwell Time (DH3)	
2.7	Channel Dwell Time (DH5)	
2.8 2.9	Channel Seperation	
2.9	Number of Hopping Channels Spurious Conducted Emissions	
2.10	Maximum Peak Output Power (Conducted)	
3	TEST EQUIPMENT USED	
3.1	Test Equipment Used	77
3.2	Measurement Uncertainty	
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	81
4.1	Accreditation, Disclaimers and Copyright	82

SECTION 1

REPORT SUMMARY

FCC CFR 47 Part 15C and Industry Canada Testing of the Modelabs Manufacture CD1D

COMMERCIAL-IN-CONFIDENCE

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Modelabs Manufacture CD1D to the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210 Issue 7: 2007 and RSS-Gen: 2005.

Objective To perform Electromagnetic Compatibility (EMC)

Qualification Approval Testing to determine the Equipment

Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out.

Manufacturer Modelabs Manufacture

Part Number(s) CD1D

Serial Number(s) 031425000814000030

031425000815000110

IMEI Number(s) 004401750007177

004401750007698

Software Version 0259000505020000

Hardware Version PrePilot

Number of Samples Tested Two

Test Specification/Issue/Date FCC CFR 47 Part 15C: 2006

Industry Canada RSS-210 Issue 7: 2007 and

RSS-Gen: 2005

Incoming Release Declaration of Build Status

Date 02 June 2008

Disposal Held Pending Disposal

Not Applicable Not applicable

 Order Number
 08/000000152

 Date
 21 May 2008

 Start of Test
 05 June 2008

Finish of Test 12 June 2008

Name of Engineer(s) M P Hardy

S Bennett A Guy

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of results for each configuration, in accordance with FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210 Issue 7: 2007 and RSS-Gen: 2005, is shown below.

Configura	Configuration 1 - Mobile Handset								
Castian	Spec Clause		Test Description	Mada	Mad Chaha	Desult	Dana Chandand		
Section	FCC	Industry Canada	Test Description	Mode	Mod State	Result	Base Standard		
	15 200, 15 247/d)		Radiated Emissions (Enclosure Port)	1	0	Pass	500 05D 45 D 4450		
2.2	15.209, 15.247(d), 15.205	RSS-Gen, 7.2.3		2	0	Pass	FCC CFR 47 Part 15C and Industry Canada		
10.200	10.200			3	0	Pass	and industry Canada		
	DCC 240, A0, 4		1	0	Pass	F00 0FD 47 D-+ 450			
2.3	15.247(b)(3)	RSS-210, A8.4 RSS-Gen, 4.6	Maximum Peak Output Power (Radiated)	2	0	Pass	FCC CFR 47 Part 15C and Industry Canada		
				3	0	Pass	and maddify danada		
		D00 040 40 0 (4)	SS-210, A8.2 (1) SS-Gen, 4.4.2 20dB Bandwidth	1	0	Pass	FCC CFR 47 Part 15C and Industry Canada		
2.4	15.247(a)(1)			2	0	Pass			
		1100-0611, 4.4.2		3	0	Pass	and maddify danada		
2.5	15.247(a)	RSS-210, A8.1	Channel Dwell Time (DH1)	2	0	Pass	FCC CFR 47 Part 15C and Industry Canada		
2.6	15.247(a)	RSS-210, A8.1	Channel Dwell Time (DH3)	2	0	Pass	FCC CFR 47 Part 15C and Industry Canada		
2.7	15.247(a)	RSS-210, A8.1	Channel Dwell Time (DH5)	2	0	Pass	FCC CFR 47 Part 15C and Industry Canada		

Configuration 1 - Mobile Handset								
Section	Spec Clause		Test Description	Mode	Mod State	Result	Base Standard	
Section	FCC	Industry Canada	Test Description	Mode	Mod State	Result	base Standard	
2.8	15.247(a)(1)	RSS-210, A8.1 (b)	Channel Separation	4	0	Pass	FCC CFR 47 Part 15C and Industry Canada	
2.9	15.247(a)(1)	RSS-210, A8.1 (b)	Number of Hopping Channels	4	0	Pass	FCC CFR 47 Part 15C and Industry Canada	
2.10	15.247(c)	RSS-210, A8.5 and 2.7, Table 2 RSS-Gen, 4.7	Spurious Conducted Emissions	4	0	Pass	FCC CFR 47 Part 15C and Industry Canada	
		DCC 240 A0 4 (2)	Maximum Peak Output Power (Conducted)	1	0	Pass	500 050 450 4400	
2.11	15.247(b) (1)	47(b) (1) RSS-210, A8.4 (2) RSS-Gen, 4.6		2	0	Pass	FCC CFR 47 Part 15C and Industry Canada	
		1100 0011, 4.0		3	0	Pass	and industry Canada	

Configurat	Configuration 2 - Mobile Handset with AC Adaptor									
Spec Clause			Test Description	Mada	Mod State	Result	Described			
Section	FCC	Industry Canada	Test Description	Mode	Mod State	Result	Base Standard			
		15.207 RSS-Gen, 7.2.2 Conducted Emissions (AC Power Port)		1	0	Pass	500 05D 47 D 4450			
2.1	15.207		Conducted Emissions (AC Power Port)	2	0	Pass	FCC CFR 47 Part 15C and Industry Canada			
				3	0	Pass	and maddify Canada			

1.3 DECLARATION OF BUILD STATUS

	MAIN EUT
MANUFACTURING DESCRIPTION	Cellular mobile phone manufacturer
MANUFACTURER	Modelabs Manufacture
TYPE	Cellular mobile phone
PART NUMBER	CD1D
SERIAL NUMBER	031425000814000036
HARDWARE VERSION	PrePilot
SOFTWARE VERSION	0259000505020000
TRANSMITTER OPERATING RANGE	Part15C 869.2-893.8 MHz, 1930.2-1989.8 MHz, 2402- 2480MHz
RECEIVER OPERATING RANGE	N/A
COUNTRY OF ORIGIN	France
INTERMEDIATE FREQUENCIES	Direct conversion
ITU DESIGNATION OF EMISSION	300KGXW
HIGHEST INTERNALLY GENERATED FREQUENCY	2480MHz
OUTPUT POWER (W or dBm)	33dBm
FCC ID	WCKCD1D
Industry Canada ID	IC 7343B
BATT	ERY/POWER SUPPLY
MANUFACTURING DESCRIPTION	Batterie'e Manufacturer
MANUFACTURER	XWODA
TYPE	Lithium Ion
PART NUMBER	XWD00016063
VOLTAGE	3.7 V Nominal
COUNTRY OF ORIGIN	China

Signature

Date: 02 June 2008

Declaration of Build Status Serial Number: 75903927-01

1.4 PRODUCT INFORMATION

1.4.1 Technical Description

The Equipment Under Test (EUT) was a Modelabs Manufacture CD1D as shown in the photograph below. A full technical description can be found in the Manufacturers documentation.

Equipment Under Test

1.4.2 Test Configuration

Configuration 1: Mobile Handset with Battery

The EUT was configured in accordance with FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210 Issue 7: 2007 and RSS-Gen: 2005.

Configuration 2: Mobile Handset with AC Adaptor

The EUT was configured in accordance with FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210 Issue 7: 2007 and RSS-Gen: 2005.

1.4.3 Modes of Operation

Modes of operation of each EUT during testing were as follows:

Mode 1 - 2402 MHz Transmit

Mode 2 - 2441 MHz Transmit

Mode 3 - 2480 MHz Transmit

Mode 4 - Frequency Hopping

Information on the specific test modes utilised are detailed in the test procedure for each individual test.

1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure, test laboratories or an open test area as appropriate.

The EUT was powered from a designated battery, battery eliminator or 115V, 60Hz AC Adapter supply.

Configuration 1

The EUT was powered from a battery or battery eliminator supply of 3.7V nominal.

Configuration 2

The EUT was powered from an AC/DC adaptor powered from 115V 60Hz AC.

FCC Accreditation 90987 Octagon House, Fareham Test Laboratory

Industry Canada Accreditation 2932B-1 Octagon House, Fareham Test Laboratory

1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

1.7 MODIFICATION RECORD

No modifications were made to the EUT during testing.

SECTION 2

TEST DETAILS

FCC CFR 47 Part 15C and Industry Canada Testing of the Modelabs Manufacture CD1D

2.1 CONDUCTED EMISSIONS (AC POWER PORT)

2.1.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.207 Industry Canada RSS Gen: 2005, Clause 7.2.2

2.1.2 Equipment Under Test

CD1D, S/N: 031425000814000030 and IMEI: 004401750007177

2.1.3 Date of Test and Modification State

05 June 2008 - Modification State 0

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006 and Industry Canada RSS Gen: 2006.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 2 - Mode 1

- Mode 2

- Mode 3

2.1.6 Environmental Conditions

05 June 2008

Ambient Temperature 18°C

Relative Humidity 42%

Atmospheric Pressure 1014mbar

2.1.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS Gen: 2005 for Conducted Emissions (AC Power Port).

The test results are shown below.

Configuration 2 - Mode 1

Live Line

Frequency (MHz)	QP Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.342	34.1	59.2	-25.1	21.7	49.2	-27.4
0.384	35.3	58.2	-22.9	21.2	48.2	-27.0
0.693	27.2	56.0	-28.8	14.7	46.0	-31.3
0.967	28.5	56.0	-27.5	16.3	46.0	-29.7
2.119	28.7	56.0	-27.3	14.8	46.0	-31.2
2.710	24.8	56.0	-31.2	14.1	46.0	-31.9

Neutral Line

Frequency (MHz)	QP Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.321	30.4	59.7	-29.3	20.5	49.7	-29.2
0.389	30.4	58.1	-27.7	21.6	48.1	-26.5
0.465	31.1	56.6	-25.4	21.2	46.6	-25.3
2.361	22.5	56.0	-33.5	12.5	46.0	-33.5
3.104	20.2	56.0	-35.8	10.6	46.0	-35.4
4.293	19.7	56.0	-36.3	10.2	46.0	-35.8

Configuration 2 - Mode 2

Live Line

Frequency (MHz)	QP Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.354	37.2	58.9	-21.7	22.5	48.9	-26.4
0.405	41.1	57.7	-16.6	26.7	47.7	-21.1
0.455	38.8	56.8	-18.0	25.1	46.8	-21.6
0.462	38.5	56.7	-18.1	24.4	46.7	-22.3
0.811	32.1	56.0	-23.9	18.4	46.0	-27.6
1.341	26.0	56.0	-30.0	16.2	46.0	-29.8
2.698	26.7	56.0	-29.3	15.4	46.0	-30.6

Neutral Line

Frequency (MHz)	QP Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.313	30.1	59.9	-29.8	20.5	49.9	-29.4
0.404	33.3	57.8	-24.4	23.6	47.8	-24.2
0.423	34.6	57.4	-22.8	23.0	47.4	-24.3
0.446	32.9	56.9	-24.1	22.0	46.9	-25.0
2.280	22.4	56.0	-33.6	12.7	46.0	-33.3
2.835	21.9	56.0	-34.1	12.5	46.0	-33.5

Configuration 2 - Mode 3

Live Line

Frequency (MHz)	QP Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.375	23.7	58.4	-34.7	15.3	48.4	-33.1
0.422	27.5	57.4	-29.9	16.3	47.4	-31.1
0.638	20.0	56.0	-36.0	12.9	46.0	-33.1
2.187	16.4	56.0	-39.6	9.2	46.0	-36.8
3.097	15.5	56.0	-40.5	8.4	46.0	-37.6
3.605	15.2	56.0	-40.8	8.4	46.0	-37.6

Neutral Line

Frequency (MHz)	QP Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.295	29.1	60.4	-31.2	20.2	50.4	-30.2
0.414	33.4	57.6	-24.2	22.7	47.6	-24.8
0.465	30.8	56.6	-25.8	21.2	46.6	-25.4
0.512	30.1	56.0	-25.9	20.1	46.0	-25.9
1.699	22.6	56.0	-33.4	13.0	46.0	-33.0
2.199	22.2	56.0	-33.8	12.7	46.0	-33.3

2.2 RADIATED EMISSIONS (ENCLOSURE PORT)

2.2.1 Specification Reference

FCC CFR 47 Part 15C: 2006. Clause 15.209, 15.247(d), 15.205 Industry Canada RSS-Gen: 2005, Clause 7.2.3

2.2.2 Equipment Under Test

CD1D, S/N: 031425000814000030 and IMEI: 004401750007177

2.2.3 Date of Test and Modification State

05 and 06 June 2008 - Modification State 0

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

2.2.6 Environmental Conditions

05 June 2008 06 June 2008

Ambient Temperature 19°C 19°C Relative Humidity 36% 36%

Atmospheric Pressure 1013mbar 1013mbar

2.2.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-Gen: 2005 for Radiated Emissions (Enclosure Port).

The test results are shown below.

Configuration 1 - Mode 1

30MHz to 1GHz (Combined Polarity)

Frequency	QP Level		QP Limit		QP Margin		Angle	Height	Polarity	
(MHz)	(dBuV/m)	(µV/m)	(dBuV/m)	(µV/m)	(dBuV/m)	(µV/m)	(Deg)	(m)	1 Olarity	
30.581	30.7	34.3	40.0	100.0	-9.3	65.7	360	1.00	Vertical	
90.698*	31.5	37.6	43.5	150.0	-12.0	112.4	233	1.05	Vertical	
550.656	32.6	42.7	46.0	200.0	-13.4	157.3	207	2.02	Vertical	
796.369	36.5	66.8	46.0	200.0	-9.5	133.2	188	1.46	Horizontal	
902.633	37.3	73.3	46.0	200.0	-8.7	126.7	159	1.00	Horizontal	
946.013	37.3	73.3	46.0	200.0	-8.7	126.7	64	1.00	Horizontal	

^{*}The frequencies from 88MHz to 100MHz were proved to be ambient emissions.

1GHz to 25GHz

No emissions were detected above the receiver noise floor with the exception of the carrier frequency.

1GHz to 3.5GHz

Vertical Polarity

Date: 6.JUN.2008 05:32:58

Horizontal Polarity

Date: 6.JUN.2008 05:30:32

3.5GHz to 8GHz

Vertical Polarity

Date: 7.JUN.2008 22:25:51

Horizontal Polarity

Date: 7.JUN.2008 22:28:38

8GHz to 13GHz

Vertical Polarity

Date: 8.JUN.2008 01:15:00

Horizontal Polarity

Date: 8.JUN.2008 01:45:55

13GHz to 17GHz

Vertical Polarity

Date: 8.JUN.2008 01:18:47

Horizontal Polarity

Date: 8.JUN.2008 01:45:04

17GHz to 18GHz

Vertical Polarity

Date: 8.JUN.2008 01:21:32

Horizontal Polarity

Date: 8.JUN.2008 01:47:53

18GHz to 21.5GHz

Vertical Polarity

Date: 8.JUN.2008 05:55:18

Horizontal Polarity

Date: 8.JUN.2008 06:03:47

21.5GHz to 25GHz

Vertical Polarity

Date: 8.JUN.2008 05:58:06

Horizontal Polarity

Date: 8.JUN.2008 06:01:16

Configuration 1 - Mode 2

30MHz to 1GHz (Combined Polarity)

Frequency (MHz)	QP Level		QP Limit		QP Margin		Angle	Height	Polarity
	(dBuV/m)	(µV/m)	(dBuV/m)	(µV/m)	(dBuV/m)	(µV/m)	(Deg)	(m)	Polatily
31.164	30.7	34.3	40.0	100.0	-9.3	65.7	95	1.00	Vertical
88.506*	17.2	7.2	43.5	150.0	-26.3	142.8	112	1.00	Vertical
364.570	27.3	23.2	46.0	200.0	-18.7	176.8	27	1.28	Horizontal
565.110	32.7	43.2	46.0	200.0	-13.3	156.8	320	3.80	Horizontal
758.397	36.3	65.3	46.0	200.0	-9.7	134.7	125	2.14	Horizontal
880.690	36.9	70.0	46.0	200.0	-9.1	130.0	359	1.00	Vertical

^{*}The frequencies from 88MHz to 100MHz were proved to be ambient emissions.

1GHz to 25GHz

No emissions were detected above the receiver noise floor with the exception of the EUT transmit frequency

1GHz to 3.5GHz

Vertical Polarity

Date: 6.JUN.2008 05:18:17

Horizontal Polarity

Date: 6.JUN.2008 05:26:42

3.5GHz to 8GHz

Vertical Polarity

Date: 7.JUN.2008 22:57:08

Horizontal Polarity

Date: 7.JUN.2008 22:53:37

8GHz to 13GHz

Vertical Polarity

Date: 8.JUN.2008 02:21:31

Horizontal Polarity

Date: 8.JUN.2008 02:09:23

13GHz to 17GHz

Vertical Polarity

Date: 8.JUN.2008 02:19:00

Horizontal Polarity

Date: 8.JUN.2008 02:08:33

17GHz to 18GHz

Vertical Polarity

Date: 8.JUN.2008 02:15:59

Horizontal Polarity

Date: 8.JUN.2008 02:12:00

18GHz to 21.5GHz

Vertical Polarity

Date: 8.JUN.2008 05:42:11

Horizontal Polarity

Date: 8.JUN.2008 05:50:42

21.5GHz to 25GHz

Vertical Polarity

Date: 8.JUN.2008 05:44:43

Horizontal Polarity

Date: 8.JUN.2008 05:47:44

Configuration 1 - Mode 3

30Mhz to 1GHz (Combined Polarity)

Frequency	QP Level		QP Limit		QP Margin		Angle	Height	Polarity
(MHz)	(dBuV/m)	(µV/m)	(dBuV/m)	(µV/m)	(dBuV/m)	(µV/m)	(Deg)	(m)	1 Olarity
31.165	30.8	34.7	40.0	100.0	-9.2	65.3	292	1.00	Vertical
88.501*	19.8	9.8	43.5	150.0	-23.7	140.2	128	1.00	Vertical
642.901	34.4	52.5	46.0	200.0	-11.6	147.5	26	1.00	Vertical
761.806	36.4	66.1	46.0	200.0	-9.6	133.9	146	2.80	Horizontal
917.676	37.3	73.3	46.0	200.0	-8.7	126.7	360	1.43	Vertical
970.058	37.7	76.7	46.0	200.0	-16.3	123.3	21	3.02	Vertical

^{*}The frequencies from 88MHz to 100MHz were proved to be ambient emissions.

1GHz to 25GHz

Frequency GHz	Antenna Polarisation	Antenna Height Cm	EUT Arc Deg	Result Peak dBµV/m	Result Average dBµV/m	Peak Limit dBµV/m	Average Limit dBµV/m	Result
7.440	Vertical	100	107	49.18	40.54	74.0	54.0	Pass

No other emissions were detected above the receiver noise floor with the exception of the transmit frequncy.

Configuration 1 - Mode 3

1GHz to 3.5GHz

Vertical Polarity

Date: 6.JUN.2008 05:21:42

Horizontal Polarity

Date: 6.JUN.2008 05:15:22

3.5GHz to 8GHz

Vertical Polarity

Date: 7.JUN.2008 23:00:44

Horizontal Polarity

Date: 7.JUN.2008 23:04:12

8GHz to 13GHz

Vertical Polarity

Date: 8.JUN.2008 02:28:04

Horizontal Polarity

Date: 8.JUN.2008 03:20:20

13GHz to 17GHz

Vertical Polarity

Date: 8.JUN.2008 02:30:53

Horizontal Polarity

Date: 8.JUN.2008 02:39:51

17GHz to 18GHz

Vertical Polarity

Date: 8.JUN.2008 02:34:26

Horizontal Polarity

Date: 8.JUN.2008 02:37:28

18GHz to 21.5GHz

Vertical Polarity

Date: 8.JUN.2008 05:03:12

Horizontal Polarity

Date: 8.JUN.2008 04:53:57

21.5GHz to 25GHz

Vertical Polarity

Date: 8.JUN.2008 04:47:49

Horizontal Polarity

Date: 8.JUN.2008 04:51:45

2.3 MAXIMUM PEAK OUTPUT POWER (RADIATED)

2.3.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.209, 15.247(d), 15.205 Industry Canada Testing RSS-Gen: 2005, Clause 4.6 and RSS-210: 2007, Clause 4.6

2.3.2 Equipment Under Test

CD1D, S/N: 031425000814000030 and IMEI: 004401750007177

2.3.3 Date of Test and Modification State

05 and 06 June 2008 - Modification State 0

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006 and Industry Cananda.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

2.3.6 Environmental Conditions

05 June 2008 06 June 2008

Ambient Temperature 19°C 19°C Relative Humidity 36% 36%

Atmospheric Pressure 1013 mbar 1013 mbar

2.3.7 Test Procedure

Test Performed in accordance with 15.247.

2.3.8 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-Gen: 2005 and RSS-210: 2007 for Maximum Peak Output Power.

The test results are shown below.

Frequency (MHz)	EIRP Result (dBm)	Limit (dBm)	EIRP Result (W)	Limit (W)
2.402	0.00	36.0	1.0	4000
2.441	1.78	36.0	1.5	4000
2.480	0.8	36.0	1.2	4000

ı	Limit	
ı	Limit	<4W or <+36dBm

2.4 20DB BANDWIDTH

2.4.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.247 (a)(1) Industry Canada RSS-Gen: 2005, Clause 4.4.2 and RSS-210, Clause A8.2(1)

2.4.2 Equipment Under Test

CD1D, S/N: 031425000815000110 and IMEI: 004401750007698

2.4.3 Date of Test and Modification State

10 June 2008 - Modification State 0

2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006 and Industry Canada.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

2.4.6 Environmental Conditions

10 June 2008

Ambient Temperature 18.6°C Relative Humidity 54.9%

2.4.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-Gen: 2005 and RSS-210: 2007 for 20dB Bandwidth.

The test results are shown below.

Configuration 1 - Modes 1, 2 & 3

Frequency (MHz)	Data Rate (Mbps)	20dB Bandwidth (kHz)
2402	DH1	869.73
2441	DH1	869.73
2480	DH1	865.73

Frequency (MHz)	Data Rate (Mbps)	20dB Bandwidth (kHz)
2402	DH3	921.84
2441	DH3	921.84
2480	DH3	917.83

Frequency (MHz)	Data Rate (Mbps)	20dB Bandwidth (kHz)
2402	DH5	917.83
2441	DH5	921.84
2480	DH5	917.83

Configuration 1 – Mode 2 – Maximum Power DH1

Configuration 1 – Mode 3 – Maximum Power DH1

Configuration 1 – Mode 2 – Maximum Power DH3

Configuration 1 – Mode 3 – Maximum Power DH3

Configuration 1 – Mode 1 – Maximum Power DH5

Configuration 1 – Mode 2 – Maximum Power DH5

Configuration 1 – Mode 3 – Maximum Power DH5

2.5 CHANNEL DWELL TIME (DH1)

2.5.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.247(a)(iii) Industry Canada RSS-210: 2007, Clause A8.1

2.5.2 Equipment Under Test

CD1D, S/N: 031425000815000110 and IMEI: 004401750007698

2.5.3 Date of Test and Modification State

10 June 2008 - Modification State 0

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006 and Industry Canada.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 2

2.5.6 Environmental Conditions

10 June 2008

Ambient Temperature 19.1°C Relative Humidity 62.3%

2.5.7 Test Procedure

Procedure: Test Performed in accordance with 15.247.

The Bluetooth system hops at a rate of 1600 times per second. Thus, this equates to 1600 timeslots in 1 second. The DH1 data rate operates on a Transmit on 1 timeslot and Receive on 1 timeslot basis. Thus, in 1 second, there are 800 Transmit timeslots and 800 Receive timeslots.

Thus:

1 Timeslot =
$$\frac{1}{1600}$$
 = 625 μ s

In 1 transmit timeslot, the transmit on time is only $405\mu s$. $220\mu s$ is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.

Document 75903927 Report 02 Issue 2

DH1 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle

So, with 800 Tx and 800 Rx timelsots, the transmitter is on for 800 x $405\mu s = 0.324$ seconds.

So, in 31.6 seconds, the transmitter dwell time per channel is:

$$31.6 \times 4.10 \text{ms} = 0.1296 \text{ seconds}$$

2.5.8 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210: 2007 Channel Dwell Time (DH1).

2.6 CHANNEL DWELL TIME (DH3)

2.6.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.247(a)(iii) Industry Canada RSS-210: 2007, Clause A8.1

2.6.2 Equipment Under Test

CD1D, S/N: 031425000815000110 and IMEI: 004401750007698

2.6.3 Date of Test and Modification State

10 June 2008 - Modification State 0

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006 and Industry Canada.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 2

2.6.6 Environmental Conditions

10 June 2008

Ambient Temperature 19.1°C Relative Humidity 62.3%

2.6.7 Test Procedure

Test Performed in accordance with 15.247.

The Bluetooth system hops at a rate of 1600 times per second. Thus, this equates to 1600 timeslots in 1 second. With data rate DH3, the data payload is higher and can use up to 3 timeslots. When more than one timeslot is used, the frequency does not hop and transmission is continuous on all 3 slots, (ie. no receive slot in-between the 3 transmit slots). The 220 μs off time for synthesizer re-tuning at the end of a slot is only used on the final slot. Thus, for one cycle, there are 3 transmit timeslots. 2 are 625 μs long and the final slot is transmitting for 405 μs .

The DH3 data rate operates on a Transmit on 3 timeslots and Receives on 1 timeslot basis, (assuming maximum data payload). The frequency-hopping rate is the same. Thus, in 1 second, there are 1200 Transmit timeslots and 400 Receive timeslots.

Thus:

Document 75903927 Report 02 Issue 2

1 Timeslot =
$$\frac{1}{1600}$$
 = $625 \mu s$

The first 2 Transmit timeslots are transmitting for the complete $625\mu s$. In the third transmit slot, the transmit on time is only $405\mu s$. $220\mu s$ is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.

<u>DH3 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle, (Maximum Payload)</u>

Thus, the transmitter for one complete transmit and receive cycle would be on for:

$$Tx$$
 (2 x 625 μ s) + (1 x 405 μ s) = 1.655ms

So:

$$800 \times 625 \mu s = 0.5 \text{ seconds}$$

 $400 \times 405 \mu s = 0.162 \text{ seconds}$

Thus:
$$0.5 + 0.162 = 0.662$$
 seconds

Document 75903927 Report 02 Issue 2

So, in 31.6 seconds, the transmitter dwell time per channel is:

 $31.6 \times 8.379 \text{ms} = 0.2648 \text{ seconds}$

2.6.8 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210: 2007 Channel Dwell Time (DH3).

2.7 CHANNEL DWELL TIME (DH5)

2.7.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.247(a)(iii) Industry Canada RSS-210: 2007, Clause A8.1

2.7.2 Equipment Under Test

CD1D, S/N: 031425000815000110 and IMEI: 004401750007698

2.7.3 Date of Test and Modification State

10 June 2008 - Modification State 0

2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.7.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006 and Industry Canada.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 2

2.7.6 Environmental Conditions

10 June 2008

Ambient Temperature 19.1°C Relative Humidity 62.3%

2.7.7 Test Procedure

Test Performed in accordance with 15.247.

The Bluetooth system hops at a rate of 1600 times per second. Thus, this equates to 1600 timeslots in 1 second. With data rate DH5, the data payload is higher and can use up to 5 timeslots. When more than one timeslot is used, the frequency does not hop and transmission is continuous on all 5 slots, (ie. no receive slot in-between the 5 transmit slots). The 220 μs off time for synthesizer re-tuning at the end of a slot is only used on the final slot. Thus, for one cycle, there are 5 transmit timeslots. 4 are 625 μs long and the final slot is transmitting for $405\mu s$.

The DH5 data rate operates on a Transmit on 5 timeslots and Receives on 1 timeslot basis, (assuming maximum data payload). The frequency-hopping rate is the same. Thus, in 1 second, there are 1333.3 Transmit timeslots and 266.7 Receive timeslots.

Thus:

1 Timeslot =
$$\frac{1}{1600}$$
 = $625\mu s$

The first 4 Transmit timeslots are transmitting for the complete $625\mu s$. In the fifth transmit slot, the transmit on time is only $405\mu s$. $220\mu s$ is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.

<u>DH5 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle, (Maximum Payload)</u>

Thus, the transmitter for one complete transmit and receive cycle would be on for:

Tx
$$(2 \times 625 \mu s) + (1 \times 405 \mu s)$$
 = 2.905ms

So:

$$1066.7 \times 625 \mu s = 0.666 \text{ seconds}$$

 $266.7 \times 405 \mu s = 0.108 \text{ seconds}$

Document 75903927 Report 02 Issue 2

Thus: 0.666 + 0.108 = 0.774 seconds

 $\therefore \quad \underline{\text{Total Tx Time On}} \quad = \quad \underline{0.774} \quad = \quad 9.797 \text{ms}$

No Of Channels 79

So, in 31.6 seconds, the transmitter dwell time per channel is:

 $31.6 \times 9.797 \text{ms} = 0.31 \text{ seconds}$

2.7.8 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210: 2007 Channel Dwell Time (DH5).

2.8 CHANNEL SEPERATION

2.8.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.247(a)(1) Industry Canada RSS-210: 2007, A8.1(b)

2.8.2 Equipment Under Test

CD1D, S/N: 031425000815000110 and IMEI: 004401750007698

2.8.3 Date of Test and Modification State

11 June 2008 - Modification State 0

2.8.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.8.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 4

2.8.6 Environmental Conditions

11 June 2008

Ambient Temperature 18.8°C Relative Humidity 48.5%

2.8.7 Test Procedure

The EUT was transmitted at maximum power into a Spectrum Analyser. The trace was set to Max Hold to store several adjacent channels on screen. Using the marker delta function, the markers were positioned to show the separation between adjacent channels.

2.8.8 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210: 2007, Clause A8.1(b) for Channel Separation.

The test results are shown below.

The system channel separation is specified as being 1MHz. The measured channel separation from the plot above is: 1000kHz.

Limit	>25kHz

2.9 NUMBER OF HOPPING CHANNELS

2.9.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.247(a)(1) Industry Canada RSS-210: 2007, Clause A8.1(b)

2.9.2 Equipment Under Test

CD1D, S/N: 031425000815000110 and IMEI: 004401750007698

2.9.3 Date of Test and Modification State

10 June 2008 - Modification State 0

2.9.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.9.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 4

2.9.6 Environmental Conditions

10 June 2008

Ambient Temperature 22.3°C Relative Humidity 43.1%

2.9.7 Test Procedure

Test Performed in accordance with 15.247.

The EUT was connected to a Spectrum Analyser via a cable. The EUT was set to transmit on maximum power and hopping on all channels. The span was adjusted to show the individual channels. To reasonably display the number of channels, the occupied band was split into four traces. The display trace was set to Max Hold and the plots recorded.

2.9.8 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210: 2007 for Number of Hopping Channels.

The test results are shown below.

Document 75903927 Report 02 Issue 2

Trace Showing Channels 1 - 23

Trace Showing Channels 24 - 43

Trace Showing Channels 64 - 79

Limit	≥75 channels
 	

2.10 SPURIOUS CONDUCTED EMISSIONS

2.10.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.247(c)

Industry Canada RSS-210: 2007, Clause A8.5 and 2.7, Table 2 and

RSS-Gen: 2005, Clause 4.7

2.10.2 Equipment Under Test

CD1D, S/N: 031425000815000110 and IMEI: 004401750007698

2.10.3 Date of Test and Modification State

12 June 2008 - Modification State 0

2.10.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.10.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 4

2.10.6 Environmental Conditions

12 June 2008

Ambient Temperature 17.7°C Relative Humidity 59.6%

2.10.7 Test Procedure

In accordance with Part 15.247(c), the Spurious Conducted Emissions from the antenna terminal were measured. The transmitter output power was attenuated using an RF splitter, the frequency spectrum investigated from 9kHz to 25 GHz. The EUT was set to transmit on full power and frequency hopping on all channels. The resolution and video bandwidths were set to 100kHz in accordance with Part 15.247. The spectrum analyser detector was set to Max Hold.

With the EUT transmitting at maximum power, the Spectrum Analyser was set to Max Hold and the fundamental peak measured in a RBW and VBW of 100kHz. This level was used to determine the limit line as displayed on the plots of -20dBc.

The maximum path loss across each measurement band was used as the reference level offset to ensure worst case results.

2.10.8 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-210: 2007, RSS-Gen: 2005 for Spurious Conducted Emissions.

The test results are shown below.

<u>Spurious Conducted Emissions (9kHz – 4GHz)</u> <u>Frequency Hopping On All Channels – Maximum Power (DH1) Configuration 1 - Mode 4</u>

Spurious Conducted Emissions (4GHz – 18GHz)

Frequency Hopping On All Channels - Maximum Power (DH1) Configuration 1 - Mode 4

Spurious Conducted Emissions (18GHz - 25GHz)

Frequency Hopping On All Channels - Maximum Power (DH1) Configuration 1 - Mode 4

Spurious Conducted Emissions (9kHz - 4GHz)

Frequency Hopping On All Channels - Maximum Power (DH3) Configuration 1 - Mode 4

Spurious Conducted Emissions (4GHz – 18GHz)

Frequency Hopping On All Channels - Maximum Power (DH3) Configuration 1 - Mode 4

Spurious Conducted Emissions (18GHz – 25GHz)

Frequency Hopping On All Channels - Maximum Power (DH3) Configuration 1 - Mode 4

Spurious Conducted Emissions (9kHz - 4GHz)

Frequency Hopping On All Channels - Maximum Power (DH5) Configuration 1 - Mode 4

<u>Spurious Conducted Emissions (4GHz – 18GHz)</u> <u>Frequency Hopping On All Channels – Maximum Power (DH5) Configuration 1 - Mode 4</u>

Spurious Conducted Emissions (18GHz - 25GHz)

Frequency Hopping On All Channels - Maximum Power (DH5) Configuration 1 - Mode 4

2.11 MAXIMUM PEAK OUTPUT POWER (CONDUCTED)

2.11.1 Specification Reference

FCC CFR 47 Part 15C: 2006, Clause 15.247(b)(1) Industry Canada RSS-Gen: 2005, Clause 4.6 and RSS-210: 2007, Clause A8.4(2)

2.11.2 Equipment Under Test

CD1D, S/N: 031425000815000110 and IMEI: 004401750007698

2.11.3 Date of Test and Modification State

10 June 2008 - Modification State 0

2.11.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.11.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15: 2006 and Industry Canada.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

2.11.6 Environmental Conditions

10 June 2008

Ambient Temperature 18.1°C Relative Humidity 48.5%

2.11.7 Test Procedure

Test Performed in accordance with 15.247.

The EUT was connected to a Peak Power Analyser, (8990A), via an RF cable. Using a Signal Generator and the 8990A, the path loss of the cable was measured and entered as an offset adjustment into the 8990A. The peak level was recorded and compared with the test limits.

2.11.8 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C: 2006 and Industry Canada RSS-Gen: 2005 and RSS-210: 2007 for Maximum Peak Output Power (Conducted).

The test results are shown below.

Configuration 1 - Modes 1, 2 & 3

DH1 Results

Frequency (MHz)	Path Loss (dB)	Output Power (dBm)	Result (mW)
2402.0	7.53	-0.02	0.99
2441.0	7.47	+0.41	1.09
2480.0	7.54	+0.85	1.21

DH3 Results

Frequency (MHz)	Path Loss (dB)	Output Power (dBm)	Result (mW)
2402.0	7.53	+0.21	1.04
2441.0	7.47	+0.52	1.12
2480.0	7.54	+0.94	1.24

DH5 Results

Frequency (MHz)	Path Loss (dB)	Output Power (dBm)	Result (mW)
2402.0	7.53	+0.22	1.05
2441.0	7.47	+0.55	1.12
2480.0	7.54	+0.95	1.24

Limit	<1W or <+30dBm
-------	----------------

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.1 EMC - Conducted	Emissions				
LISN (1 Phase)	Chase	MN 2050	336	12	18-Mar-2009
Transient Limiter	Hewlett Packard	11947A	2378	12	19-Jun-2008
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	15-Mar-2009
Sections 2.2 and 2.3 EMC - Ra	diated Emissions				
Radiocommunications Tester	Rohde & Schwarz	CMU 200	39	12	27-Oct-2008
Antenna (Double Ridge Guide)	Link Microtek Ltd	AM180HA-K-TU2	230	24	22-Jun-2008
Antenna (Double Ridge Guide, 1GHz-18GHz)	EMCO	3115	234	12	29-Jun-2008
Antenna (Double Ridge Guide, 1GHz-18GHz)	EMCO	3115	235	12	29-Jun-2008
Pre-Amplifier	Phase One	PS04-0085	1532	-	TU
Pre-Amplifier	Phase One	PS04-0086	1533	-	TU
Pre-Amplifier	Phase One	PSO4-0087	1534	0	TU
Screened Room (5)	Rainford	Rainford	1545	36	11-Feb-2011
Mast Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Turntable/Mast Controller	EMCO	2090	1607	-	TU
Antenna (Bilog)	Chase	CBL6143	2904	24	28-Nov-2009
Signal Generator (10MHz to 40GHz)	Rohde & Schwarz	SMR40	3171	12	11-Jul-2008
Signal Generator: 10MHz to 20GHz	Rohde & Schwarz	SMR20	3475	12	27-Nov-2008
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	15-Mar-2009
Section 2.8 - Channel Separati	on				
Power Splitter	Weinschel	1506A	607	12	18-Sep-2008
Test Receiver	Rohde & Schwarz	ESIB40	1006	12	14-May-2009
Power Supply Unit	Various	SC1398	2754	0	TU
Attenuator (3dB)	Suhner	6803.17.B	3026	12	20-Mar-2009
Multimeter	Fluke	77 Series II	3067	12	15-May-2009
Hygrometer	Rotronic	I-1000	3220	12	9-Apr-2009

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due	
Section 2.10– Spurious Conducted Emissions						
Filter (High Pass)	Lorch	SHP7-7000-SR	566	12	TU	
Power Splitter	Weinschel	1506A	607	12	18-Sep-2008	
Test Receiver	Rohde & Schwarz	ESIB40	1006	12	14-May-2009	
Programmable Power Supply	Iso-tech	IPS 2010	2436	12	21-Sep-2008	
Power Supply Unit	Various	SC1398	2754	0	TU	
GSM Test Set	Rohde & Schwarz	CMU 200	2809	12	21-Apr-2009	
Attenuator (3dB)	Suhner	6803.17.B	3026	12	20-Mar-2009	
Multimeter	Fluke	77 Series II	3067	12	15-May-2009	
Attenuator (20dB, 50W)	Aeroflex / Weinschel	47-20-34	3165	12	30-May-2009	
Attenuator (10dB, 50W)	Aeroflex / Weinschel	47-10-34	3166	12	30-May-2009	
Hygrometer	Rotronic	I-1000	3220	12	9-Apr-2009	
Power Divider (N), 1W	Weinschel	1506A	3345	12	6-May-2009	
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3355	12	22-Apr-2009	
1m RF Cable sma(m)-sma(m)	Reynolds	262-0248-1000	3453	12	17-Sep-2008	
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	16-Apr-2009	
3 GHz High Pass Filter	K&L 5wave	11SH10- 3000/X18000-O/O	3552	12	16-Apr-2009	
Section 2.11 - Maximum Peak Output Power						
Peak Power Analyser	Hewlett Packard	8990A	107	12	24-Jan-2009	
Power Sensor	Hewlett Packard	84812A	2743	12	24-Jan-2009	
Power Supply Unit	Various	SC1398	2754	0	TU	
Multimeter	Fluke	77 Series II	3067	12	15-May-2009	
Hygrometer	Rotronic	I-1000	3220	12	9-Apr-2009	
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	16-Apr-2009	

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.4, 2.5, 2.6, 2.7 and 2.9 - 20dB Bandwidth, Channel Dwell Time and Number of Hopping Channels					
Power Splitter	Weinschel	1506A	607	12	18-Sep-2008
Test Receiver	Rohde & Schwarz	ESIB40	1006	12	14-May-2009
Programmable Power Supply	Iso-tech	IPS 2010	2436	12	21-Sep-2008
Power Supply Unit	Various	SC1398	2754	0	TU
GSM Test Set	Rohde & Schwarz	CMU 200	2809	12	21-Apr-2009
Attenuator (3dB)	Suhner	6803.17.B	3026	12	20-Mar-2009
Multimeter	Fluke	77 Series II	3067	12	15-May-2009
Attenuator (20dB, 50W)	Aeroflex / Weinschel	47-20-34	3165	12	30-May-2009
Attenuator (10dB, 50W)	Aeroflex / Weinschel	47-10-34	3166	12	30-May-2009
Hygrometer	Rotronic	I-1000	3220	12	9-Apr-2009
Power Divider (N), 1W	Weinschel	1506A	3345	12	6-May-2009
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3355	12	22-Apr-2009
1m RF Cable sma(m)-sma(m)	Reynolds	262-0248-1000	3453	12	17-Sep-2008

TU - Traceability Unscheduled

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	Frequency / Parameter	MU
Radiated Emissions, Bilog Antenna, AOATS	30MHz to 1GHz Amplitude	5.1dB*
Radiated Emissions, Horn Antenna, AOATS	1GHz to 40GHz Amplitude	6.3dB*
Conducted Emissions, LISN	150kHz to 30MHz Amplitude	3.2dB*
Conducted Emissions, ISN	150kHz to 30MHz Amplitude	2.1dB
Substitution Antenna, Radiated Field	30MHz to 18GHz Amplitude	2.6dB

Worst case error for both Time and Frequency measurement 12 parts in 10⁶.

^{*} In accordance with CISPR 16-4

[†] In accordance with UKAS Lab 34

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV Product Service Limited

© 2008 TÜV Product Service Limited