

第九章 分立元件放大电路

- 9.1 放大概述
- 9.2 放大电路的组成和工作原理
- 9.3 放大电路的分析方法
- 9.4 常用单管放大电路
- 9.5 放大电路的频率特性和其它*

§9.3 放大电路的分析方法

复杂电路,复杂信号,如何求解?

工程和科学研究方法:

尝试从简单的、特殊的情况着手,再去探讨一般、普遍的情况!

静态分析

动态分析

一、静态分析

只考虑直流电源的作用

电路中各电流和电压的大小为一不随时间变化的量

直流通路

直流通路画法:令输入交流信号为零,电容相当于开路

静态分析

估算电路的静态工作点: I_{BQ} 、 I_{CQ} 、 U_{CEQ}

 U_{BE} 为PN结导通压降, 近似为常量

$\gt U_{CEQ}$, I_{CQ}

根据电流放大作用

$$I_{CQ} \approx \beta I_{BQ}$$

根据KVL

$$U_{CEQ} = V_{CC} - I_{CQ}R_C$$

设置静态工作点的作用是提供交流信号的工作平台

直流通路

二、动态分析

只讨论电路在静态工作点基础上对交流输入 u_i 的交流响应 u_o

交流通路

通过交流通路求解电路对交流输入ui的响应

交流等效电路

交流通路

非线性晶体管

晶体管的微变等效电路

线性化---》交流等效电路

线性化的条件:

晶体管工作于小信号(微变量)情况

晶体管的微变等效电路

输入端

对输入的交流小信号而言, 晶体管的输入端电阻r_{he}等效

$$r_{\rm be} = \frac{\Delta u_{\rm BE}}{\Delta i_{\rm B}} \bigg|_{U_{\rm CE}} = \frac{u_{\rm be}}{i_{\rm b}} \bigg|_{U_{\rm CE}}$$

对于小功率三极管:

$$r_{\rm be} \approx r_{\rm bb'} + (1+\beta) \frac{26({\rm mV})}{I_{\rm E}({\rm mA})}(\Omega)$$

 r_{bb} 一般取200 Ω

 r_{be} 值约几百欧到几千欧

晶体管的微变等效电路

输出端

输出特性曲线近似平行等距 输出端相当于一个受*i_b*控制的 电流源

$$\beta = \frac{\Delta i_{\rm C}}{\Delta i_{\rm B}} \bigg|_{U_{\rm CE}} = \frac{i_{\rm c}}{i_{\rm b}} \bigg|_{U_{\rm CE}}$$

如考虑 u_{CE} 对 i_C 的影响,输出端还要并联一个大电阻 r_{ce}

$$r_{\rm ce} = \frac{\Delta u_{\rm CE}}{\Delta i_{\rm C}} \bigg|_{I_{\rm B}} = \frac{u_{\rm ce}}{i_{\rm c}} \bigg|_{I_{\rm B}}$$

 $r_{\rm ce}$ 约几十千欧到几百千欧

简化的h参数等效模型

简化的h参数等效模型

晶体管的b、e之间可用r_{be}等效代替 晶体管的c、e之间可用一电流受控源等效代替 弄清楚等效的条件,如何等效?

放大电路的微变等效电路

将交流通路中的三极管用简化的h参数等效电路代替

电压放大倍数

$$\dot{U}_{\rm i} = \dot{I}_{\rm b} r_{\rm be}$$

$$\dot{U}_{\mathrm{o}} = -\dot{I}_{\mathrm{c}} R_{L}' = -\beta \dot{I}_{\mathrm{b}} R_{L}'$$

其中
$$R'_L = R_c // R_L$$

$$\dot{A}_u = \frac{U_o}{\dot{U}_i} = -\frac{\beta R_L'}{r_{\rm be}}$$

2. 输入电阻

3. 输出电阻

放大电路对其负载而言,相当于信号源,其内阻就是放大电路的输出电阻

含受控源电路可采用加压求流法求等效电阻

加压求流法

- 1.去掉负载电阻,令电路中所有的独立电源为零
- 2. 在输出端加电压求电流

$$\mathbf{R}_{\mathbf{0}} = \frac{U}{\dot{I}}$$

3. 输出电阻

加压求流法

$$R_{\rm o} = \frac{U}{\dot{I}}$$

$$R_{\rm o} = R_{\rm c}$$

例: 已知 $V_{CC}=12$ V, $R_C=4$ k Ω , $R_B=300$ k Ω , $\beta=37.5$ 试求单管共射放大电路的静态工作点

直流通路
$$I_{BQ} = \frac{V_{CC} - 0.7}{R_b} \approx \frac{V_{CC}}{R_b} = \frac{12}{300 \times 10^3} = 40 \mu A$$

$$I_{\rm CQ} \approx \beta I_{\rm BQ} = 37.5 \times 40 \times 10^{-3} = 1.5 \,\text{mA}$$

$$U_{\text{CEQ}} = V_{\text{CC}} - I_{\text{CQ}} R_{\text{C}} = 12 - 1.5 \times 4 = 6 \text{V}$$

例:已知 $U_{CC}=12$ V, $R_C=4$ k Ω , $R_L=4$ k Ω , $R_B=300$ k Ω , $\beta=37.5$,晶体管导通时 $U_{BEQ}=0.7$ V。试计算单管共射放大电路的交流性能

$$A_{u} = -\beta \frac{R_{L}^{'}}{r_{be}}$$

$$= -37.5 \times \frac{4//4}{0.867} = -86.5$$

$$= -86.5$$

$$u_{o} \qquad r_{be} = r_{bb} + (1+\beta) \frac{26 \text{(mV)}}{I_{E} \text{(mA)}}$$

$$r_{be} = 0.867 K\Omega$$

$$R_{i} = R_{B}//r_{be} \approx r_{be}$$

$$R_i = R_B / / r_{be} pprox r_{be}$$
 $R_O = R_C = 4K\Omega$

放大电路的分析方法小结

静态: 放大电路无输入信号时的工作状态

动态: 放大电路有输入信号时的工作状态

静态分析: 直流通路

放大工作的平台

动态分析: 交流通路

交流性能

图解法

放大电路的交流等效电路

三、图解法分析

晶体管输出特性曲线

晶体管输入特性曲线

从晶体管特性曲线着手分析放大电路

图解法分析

静态

$$I_{BQ} = \frac{V_{CC} - U_{BE}}{R_B}$$

$U_{CE} \sim I_C$ 满足什么关系?

1. 三极管的输出特性

$$i_C = f(u_{CE}) \mid_{I_B = I_{BO}}$$

2. 电路约束方程 $U_{CE} = V_{CC} - I_C R_C$

图解法分析

动态

交

通

路

动态时 i_c 和 u_{ce} 的关系?

其中:

 $R_L' = R_C / / R_L$

交流负载线

过Q点作一条直线,斜率为 $1/R'_L$

电压放大倍数: u_0 和 u_i 的峰值之比

图解法的应用: 放大电路的失真分析

图解法的应用: 放大电路的失真分析

Q点过低,信号很容易进入截止区

放大电路产生 截止失真

适当<u>增加</u>基极 电流可消除截 止失真

图解法的应用: 放大电路的失真分析

Q点过高,信 号进入饱和区

放大电路产生 饱和失真

适当<u>减小</u>基极 电流可消除饱 和失真

已知晶体管的 β =80, r_{be} =1k Ω , \dot{U}_i =20mV;静态时 U_{BEO} =0.7V, U_{CEO} =4V, I_{BO} =20 μ A

已知晶体管的 β =80, $r_{\rm be}$ =1k Ω , \dot{U}_i =20mV;静态时 $U_{\rm BEO}$ =0.7V, $U_{\rm CEO}$ =4V, $I_{\rm BO}$ =20 μA

已知晶体管的 β =80, $r_{\rm be}$ =1k Ω , \dot{U}_i =20mV;静态时 $U_{\rm BEO}$ =0.7V, $U_{\rm CEO}$ =4V, $I_{\rm BO}$ =20 μ A

已知晶体管的 β =80, $r_{\rm be}$ =1k Ω , \dot{U}_i =20mV;静态时 $U_{\rm BEO}$ =0.7V, $U_{\rm CEO}$ =4V, $I_{\rm BO}$ =20 μ A

提交