

Rec'd PCT/PTO 20 JUL 2001

1

SEQUENCE LISTING

<110> NISHIKAWA, SATOMI
OEDA, KENJI

<120> PLANT PROMOTERS AND PLANT TERMINATORS

<130> 7372-70911

<140> 09/806,197

<141> 2001-03-27

<160> 29

<170> PatentIn Ver. 2.1

<210> 1

<211> 2052

<212> DNA

<213> *Daucus carota*

<400> 1

catgtgtgcc	ctacagcaca	tagggctgt	ttgggttggaa	gaagcagaag	ctgcttctga	60
cttcttc	tttgacctg	tttgataaaa	gaagtagaaaa	tatTTTaaa	aagctgcgaa	120
tactaactc	tctctcacaa	cttccgcTTc	ttttccaac	actttattaa	ctttttact	180
tctcatTTCT	actccacttc	tttgctataa	gcaagaaaatc	acttcttttta	agctaaccct	240
aacggcctca	ataaaagatc	attcataaat	gtatcttca	atTTTtaggat	aacaatacgt	300
gaacagggtt	atTTTTaac	gtgtcaacaa	attctaataa	tttacctgg	ccggtaaca	360
ccgtcttcca	agataatata	tttaatttt	gtagcctccc	tttaaccaa	attcgcatgc	420
aggacgactt	aggtgaatac	acattgtact	gtgagtctt	aaacaaagaa	caagtggttc	480
atgctcagcc	atcaaaattt	acaaaacccg	acacaacact	ctatccacgt	actatactt	540
tggccgaatg	cttctcaaaa	tgtttttat	atgtaaaata	atgccccatcc	aaggataagt	600
aaaattcccg	ttaaccagt	ttgttaatat	atatgtttac	acttacaaga	ggatattcgt	660
aatacttta	gacgacaaga	gacttaggtc	aaaaatggac	gctggtaaac	agcctagact	720
tggtcactga	taaatagata	attgttagta	taatatagt	ggatctacaa	tgacattaaa	780
attagagcta	ttaattaagt	tactaataaa	taagagaggt	tagtaaacag	aaagcaggta	840
aaaacaagag	cttgctgtc	tgtgtttagt	tgtgtgtggc	tcatttctt	aaaagtaatg	900
taaactgatc	taaagcacat	agaaaattttag	tacaggttaa	aacttttaca	agaatttata	960
ttaaaacgaaa	atcattttat	aacatgtctc	tcggctgtca	ttataatagg	gatcacttac	1020
tgatcatcca	ttaaaacctt	gttaaaaccaa	attcaatgag	ataaaatatc	ttacaatgaa	1080
aagaaggaca	atgtctctt	gaaaaaaaaa	ataggtaactc	cctccgtccc	tctgaaatgt	1140
atacatatgg	atggcacacg	gagactaaga	aaaatgtata	aagtaatgt	gagtaaaaag	1200
aaagagaaaag	aaaagtgggt	aaagttagcgg	gacccaccaa	tatataattt	atagatttag	1260
aaaagttagt	gaaagttagt	gggggtggg	atTTTTtat	tataaaaatt	tactatttt	1320
agaaaaggttt	gaaatgtata	gaatttagt	ggacatccat	aaaaggaaag	tgtatagaat	1380
taaatgggac	agagggagta	ataccttta	gatataaaa	ttttgtt	tttgatttca	1440
taagattata	aatctatgtt	ataatgataa	tataatttta	aaaataatac	tatattaatt	1500
ctgatttagtc	gattaccgccc	ttttataatt	ttacaataact	gagtaatatg	aataaattcag	1560
ttatctgaaa	agcaaataat	atcttgtaa	aacagcgttc	ggtcaaattgg	gaagttcatg	1620
tgtattcaat	agtttaata	taaaagtaaa	ttttaaattt	attgttattt	ttgtttcaga	1680
aattttaaaat	aaattattga	gcatggaaag	ttcacgggca	tcattgagca	gcactagact	1740
gtttgaacaa	tgtatgtccg	gtgtacatct	atgaccttcc	aactcaaact	agtgaataat	1800
gcattctaga	atacatctt	tcaaatttca	acaaacacag	ctttaacttt	tcttcaacg	1860
gattggaaatc	cttttctaaa	ctttttaaa	taaaaaaaat	gcattattgt	aatattttatc	1920
aacacctcaa	cattgatgtt	agcgtactat	aatagggtgc	tcttgggtct	ctactatcat	1980
cacatcaatc	ttacaccaca	aaccttgagc	ttaattttc	tacttattct	cagcaataac	2040
attctaaata	tc					2052

2052

<210> 2
<211> 851
<212> DNA
<213> *Daucus carota*

<400> 2
ctgaaaagga agttcatcgca tctatcagca aaatttagaga acttgtgagg tcacagaagt 60
ctgaaggact agcggAACCT gaaACTGGGT ctcagaAGAG gatCACCTAC gagCAAGTGA 120
agaaaaATGGC aacttttATTt gatGACTTGT tgatATTtAT tgagaATTAC aactttGCAG 180
aaaAGCCAAC tctgcggTTT caggTTCTGG aattaATTAA gctttACAT cactatGGAA 240
gtgataCTAT tcgaAGCGGA gtggAGGAAG aacttGAGTA cgtGAATGAG aaaaATTCAg 300
caacacAGTA caagAAAGCT ctggAAAGTAA tgTTGAGAGt atGCAATAAG gagaATAACGG 360
ggatacGTCA aagtATTTT tacgacacAA tagAAAAGGC agaaAGGGAT aaAGTGTCT 420
atGAATGGTG aggaATTGGG acggTTTAGG ttAGCTTTAA aaaaAGTgACT tcttaCTTGA 480
agtaatGAAG tggAGTAGAA ctgataAGTA aAGTAATAAT tataAGTTAT taaAGTGTtT 540
ggAAAAGAAA tagaAGTTGT aaAGAAAAGT tagcATTTC tactTCCAAc ttatttCTCA 600
cgacttCTTA aaAGTACTTC ttactTTTT acacaAAACGG gtcaAGGAAA gtGGAAGCAA 660
aaAGCTGGAG ttacttCTTA taagaATGTT tataCTAAAT gagaAAATGAC aaACACAGAA 720
atgagaATGA atATGATTAT tggTTAATA atAGTGTATT ttatTTAAAA agatCGCATA 780
cattaccAGC cagatGAAGT tattcatCAC aactcacaAC aaAGTACAAA gaaaaAGTTG 840
caattCTGTC a 851

```
<210> 3
<211> 2048
<212> DNA
<213> Daucus carota
```

taaaaataaat	tattgagcat	gggaaagtca	cgggcatcat	tgagcagcac	tagactgttt	1740
gaacaatgtt	tgtccggtgt	acatctatga	ccttcact	caaacttagtg	aataatgcatt	1800
tctagaataac	atcttttcaa	atttcaacaa	acacagcttt	aacttttctt	tcaacggatt	1860
ggaatccctt	tctaaacttt	ttaaaataaaa	aaaaatgcatt	tattgtataa	tttatcaaca	1920
cctcaacatt	gatgttagcg	tactataaat	aggtgctctt	ggtgctctac	tatcatcaca	1980
tcaatcttac	accacaaacc	ttgagcttaa	tttttctact	tattctcagc	aatcacattc	2040
taaagatc						2048

<210> 4
<211> 2048
<212> DNA
<213> Dauc

<400> 4
catgtgtgcc ctacagcaca tagggcctgt ttgggttggaa gaagcagaag ctgcttcgt 60
cttcttc ttttgacctg ttgtataaaa gaagttagaaa tattttaaa aagctgcgaa 120
taacttc tcttcacaa cttccgcctc ttttccaaac actttattaa cttttttact 180
tctcatttct actccactc ttgcataaa gcaagaaaatc acttcttttca agctaacc 240
aacggcctca ataaaagatc attcataaaat gtatcttca atttttaggat aacaatacgt 300
gaacagggtt atttttaac gtgtcaacaa attctaataa ttttacctgg ccggtgaaaca 360
ccgttccca agataatata ttttaatttt gtgcctccc ttttacccaa attcgccagg 420
cgacttaggt gaatacacat tgtaactgtga gtctttaaaac aaagaacaag tggttcatgc 480
tcagccatca aaattgacaa aacccgacac aacactctat ccacgtacta tacttttggc 540
cgaatgcctc tcaaatgtt ttttatatgt aaaataatgc ccatccaagg ataagtaaaa 600
ttcccggtt accagttgt taatataat gtttacactt acaagaggat attcgtaata 660
cttttagacg acaagagact taggtcaaaa atggacgcgtg gtaaacagcc tagacttgg 720
cactgataaa tagataattt ttagtataat atagtaggat ctacaatgac attaaaatta 780
gagctattaa ttaagttact aataaataag agagggttagt aaacagaaaag caggtaaaaa 840
caagagcttgc tgctgtgt ttttagttgt gtgagctcat ttctttaaaa gtaatgtaaa 900
ctgatctaaa gcacatagaa atttagtaca gttttaaaact tttacaagaa ttatattaa 960
acgaaaatca ttttataaca tgtctctcggtt ctgtcattat aatagggtatc acttactgt 1020
catccattaa aaccttgtta aaacaaatttca aatgagataa aatatcttac aatgaaaaga 1080
aggacaatgt ctcttggaaa aaacaaatag gtactccctc cgtccctctg aaatgtatac 1140
atatggattt gacacggaga ctaagaaaaaa ttgtataaaatg aatgttaggt aaaaagaaaag 1200
agaaaagaaaaa gtgggtaaag tagcgggacc caccaatata taatttgatag atttagaaaa 1260
gtagttggaaa gttagtgggtt ggtgggattt ttatattata aaaatttact attttgagaa 1320
agttttgaaa tgatagaat tgagtggac atccataaaa gggaaagtgtaa tagaattaaa 1380
tgggacagag ggagtaatac ctttatgata tataaatttt tgttattttg atttcataag 1440
attataaatttca tatgttataa tgataatata attttaaaaaa taatactata ttaattctgt 1500
tttagtgcattt accgcctttt ataattttac aatactgagt aatatgtata aatcgttat 1560
ctgaaaagca aataatatct ttgtaaaaca gcgttccgtc aaatggaaag ttcatgtgt 1620
ttcaatagtt ttaatataaa agtaaattttt aaattaattt tgattttttgtt tcagaaatt 1680
taaaataaaat tattgagcat gggaaatgtca cgggcattat tgagcagcac tagactgttt 1740
gaacaatgtt tgccgggtt acatctatgt ctttcaact caaacttagt aataatgtat 1800
tctagaatac atcttttcaa atttcaacaa acacagctt aacttttctt tcaacggatt 1860
ggaatccctt tctaaacttt taaaataaa aaaaatgtcat tattgtataa tttatcaaca 1920
cctcaacattt gatgttagcg tactataat aggtgctt ggtgcttac tatcatcaca 1980
tcaatcttac accacaaacc tttagctttaa ttttcttact tattctcage aatcacattc 2040
taaagatc 2048

```
<210> 5
<211> 2056
<212> DNA
<213> Daucus carota
```

<400> 5

catgtgtgcc ctacagcaca tagggcctgt ttggttgaga gaagcagaag ctgcttcga 60
 cttcttcc tttgacctg tttgtataaa gaagttagaaa tattttaaa aagctgcgaa 120
 tactaacttc tctctcacaa cttccgccttc tttccaaac actttattaa ctttttact 180
 ttcatttct actccacttc tttgtataaa gcaagaaatc acttcttta agctaaccct 240
 aacggcctca ataaaagato attcataaaat gtatcttca attttaggt aacaataacgt 300
 gaacagggtt atttttaac gtgtcaacaa attctaataa ttttacctgg ccggtaaca 360
 ccgtcttcca agataatattt ttagcctccc ttttaaccaa attcgcatgc 420
 aggacgactt aggtgaatac acattgtact gtgagtctt aaacaaagaa caagtggtc 480
 atgctcagcc atcaaaattt acaaaacccg acacaacact ctatccacgt actataactt 540
 tggccgaatg cttctcaaaa tggttttat atgtaaaata atgccccatcc aaggataagt 600
 aaaattcccg ttttaaccgt ttgttaatata atatgtttac acttacaaga ggatattcgt 660
 aatacttta gacgacaaga gacttagtc aaaaatggac gctggtaaac agcctagact 720
 tggtcactga taaatagata attgttagta taatatagtt ggatctacaa tgacattaaa 780
 attagagcta ttaattaagt tactaataaa taagagaggt tagtaaacag aaagcagta 840
 aaaacaaagag cttgctgctg tgggtttatgt tgggtgagc tcatttctt aaaagtaatg 900
 taaactgatc taaagcacat agaaaatttac tacaggtaaa aacttttaca agaatttata 960
 ttaaacgaaa atcattttat aacatgtctc tcggctgtca ttataatagg gatcacttac 1020
 tgcattatcca taaaacccctt gttaaaacaa attcaatgag ataaaatatc ttacaatgaa 1080
 aagaaggaca atgtctctt gaaaaacaa ataggtactc cctccgtccc tctgaaatgt 1140
 atacatatgg attggacacg gagactaaga aaaaatgtata aagtaatgtt gagtaaaaag 1200
 aaagagaaaag aaaagtgggt aaagtacgg gacccaccaa tatataattt atagatttag 1260
 aaaagtagtt gaaagtagtg ggtgggtggg atttttatataaaaaatt tactattttg 1320
 agaaaatgtt gaaatgtata gaattggatg ggacatccat aaaaggaaag tgtatagaat 1380
 taaatggac agaggagta atacattttat gatataaaa ttttgttat tttgatttca 1440
 taagattata aatctatgtt ataatgataa tataattttttaaaaataatc tatattttt 1500
 ctgatttagtc gattaccgccc ttttataattt ttacaatact gagtaatatg aataaattcag 1560
 ttatctgaaa agcaaataat atctttgtaa aacagcgttc ggtccaaatgg gaagttcatg 1620
 tgtattcaat agttttaata taaaagtaaa ttttaatttta attgttattt ttgtttcaga 1680
 aattttaaaat aaattattga gcatggaaag ttcacgggca tcattgagca gcactagact 1740
 gtttgaacaa tgtatgtccg gtgtacatct atgaccttca aactcaaact agtgaataat 1800
 gcattctagc tagaatacat ctttccaaat ttcaacaaac acagctttaa cttttcttc 1860
 aacggatgg aatccttttcaactttttaaaaataaaaaaa aaatgcatta ttgtatattt 1920
 tatcaacacc tcaacattga tggtagcgta ctataaatag gtgctctgg tgctctacta 1980
 tcacacatc aatcttacac cacaaacccctt gagcttaattt tttctactta ttctcagcaa 2040
 tcacattcta aagatc 2056

<210> 6

<211> 739

<212> DNA

<213> Daucus carota

<220>

<221> CDS

<222> (14)..(475)

<400> 6

cattctaaat atc atg ggt gcc cag agc cat tca ctc gag atc act tct	49	
Met Gly Ala Gln Ser His Ser Leu Glu Ile Thr Ser		
1	5	10

tca gtc tcc gca gag aaa ata ttc agc ggc att gtc ctt gat gtt gat	97	
Ser Val Ser Ala Glu Lys Ile Phe Ser Gly Ile Val Leu Asp Val Asp		
15	20	25

aca gtt att ccc aag gct gcc ccc gga gct tac aag agt gtc gat gtt 145
 Thr Val Ile Pro Lys Ala Ala Pro Gly Ala Tyr Lys Ser Val Asp Val
 30 35 40

 aaa gga gac ggt gga gct gga acc gtc aga att atc acc ctt ccc gaa 193
 Lys Gly Asp Gly Gly Ala Gly Thr Val Arg Ile Ile Thr Leu Pro Glu
 45 50 55 60

 ggt agc cca atc acc tca atg acg gtt agg act gat gca gtg aac aag 241
 Gly Ser Pro Ile Thr Ser Met Thr Val Arg Thr Asp Ala Val Asn Lys
 65 70 75

 gag gcc ttg aca tac gat tcc aca gtc att gat gga gac atc ctt cta 289
 Glu Ala Leu Thr Tyr Asp Ser Thr Val Ile Asp Gly Asp Ile Leu Leu
 80 85 90

 gaa ttc atc gaa tcc att gaa acc cat atg gta gtt gtg cca act gct 337
 Glu Phe Ile Glu Ser Ile Glu Thr His Met Val Val Val Pro Thr Ala
 95 100 105

 gac gga ggt agc att acc aag acc act gcc ata ttc cac acc aaa ggc 385
 Asp Gly Gly Ser Ile Thr Lys Thr Ala Ile Phe His Thr Lys Gly
 110 115 120

 gat gcc gtg gtt cct gag gag aac atc aag ttt gca gat gct cag aac 433
 Asp Ala Val Val Pro Glu Glu Asn Ile Lys Phe Ala Asp Ala Gln Asn
 125 130 135 140

 act gct ctt ttc aag gct att gag gcc tac ctc att gct aat 475
 Thr Ala Leu Phe Lys Ala Ile Glu Ala Tyr Leu Ile Ala Asn
 145 150

 taagctgagc tctcaacttc cgtaattta tgagttagtg gaggaattgc aacgtttct 535
 tttgtgtttt gtttcgagc aacttcataa tttacagagt gagtgacagt cagtgacaga 595
 attgcaactt tctctttgtta ctgggttgtg acttgtgatg aataacttca tctggctgg 655
 aatgtatgcg atcttttaa ataatatgca ctattattaa accaataatc atattcatc 715
 tcaaaaaaaaaaaaaaaa aaaaaaaa 739

<210> 7
 <211> 2052
 <212> DNA
 <213> Daucus carota

<400> 7
 catgtgtgcc ctacagcaca tagggcctgt ttgggtgaga gaagcagaag ctgcttctga 60
 cttcttcttc ttttgacctg tttgtataaa gaagtagaaa tattttaaa aagctgcgaa 120
 tactaacttc tctctcacaa ctccgcttc tttccaaac actttattaa cttttttact 180
 tctcatttct actccacttc tttgctataa gcaagaaaatc acttcttta agctaaccga 240
 aacggcctca ataaaagatc attcataaat gtatcttca attttaggt aacaataacgt 300
 gaacagggtt attttttaac gtgtcaacaa attctaataa ttttacctgg ccggtaaca 360
 ccgtcttcca agataatata ttttaattt gtagcctccc ttttaaccaa attcgcatgc 420
 aggacgactt aggtgaatac acattgtact gtgagtcttt aaacaaaagaa caagtggtc 480
 atgctcagcc atcaaaaattt acaaaaacccg acacaacact ctatccacgt actataactt 540

tggccgaatg cttctcaaaa tgtttttat atgtaaaata atgcccattc aaggataagt 600
 aaaattcccg ttaaccagt ttgttaatat atatgtttac acttacaaga ggatattcgt 660
 aatactttt gacgacaaga gacttaggtc aaaaatggac gctgtaaac agcctagact 720
 tggtaactga taaatagata attgttagta taatatagtt ggatctacaa tgacattaaa 780
 attagagcta ttaattaaatg tactaataaa taagagaggt tagtaaacag aaagcaggt 840
 aaaacaagag ctgcgtcgtg tgtgttagt tgtgtgagc tcatttctt aaaagtaatg 900
 taaactgatc taaagcacat agaaatttag tacaggttaa aactttaca agaatttata 960
 tttaaacgaaa atcatttt aacatgtctc tcggctgtca ttataatagg gatcacttac 1020
 tgatcatcca tttaaacctt gttaaaacaa attcaatgag ataaaaatatc ttacaatgaa 1080
 aagaaggaca atgtctctt gaaaaaaaaa ataggtactc cctccgtccc tctgaaatgt 1140
 atacatatgg attggacacg gagactaaga aaaatgtata aagtaatgtt gагтaaaаг 1200
 aaagagaaaag aaaagtgggt aaagttagcgg gaccaccaa tatataattg atagatttag 1260
 aaaagttagt gaaagtagtg ggtgggtggg atttttat tataaaaatt tactatttg 1320
 agaaagtttt gaaatgtata gaattgagtg ggacatccat aaaaggaaag tгтатагаат 1380
 taaatggac agaggagta atacctttt gatataataa ttttgttat ttgatttca 1440
 taagattata aatctatgtt ataatgataa tataattttt aaaaataatac tatattaatt 1500
 ctgatttagtc gattaccgcc ttttataatt ttacaataact gagtaatatg aataaattcag 1560
 ttatctgaaa agcaaataat atctttgtaa aacagcgttc ggtcaaatgg gaagttcatg 1620
 tgtattcaat agtttataa taaaagtaaa tttaaattt attgttattt ttgatttca 1680
 aattttaaaat aaattattga gcatggaaag ttacacggca tcattgagca gcactagact 1740
 gtttgaacaa tгтатgtccg gtgtacatct atgaccttc aactcaaact agtgaataat 1800
 gcattctaga atacatctt tcaaatttca acaaacacag cttaactt tcttcaacg 1860
 gattggaatc ctttctaaa cttttaaaaa taaaaaaaaat gcattattgt aatatttatac 1920
 aacacctcaa cattgatgtt agcgtactat aaataggtgc tcttgggtct ctactatcat 1980
 cacatcaatc ttacaccaca aaccttgagc ttaattttc tacttattct cagcaatcac 2040
 attctaaaga tc 2052

<210> 8
<211> 154
<212> PRT
<213> Daucus carota

<400> 8
Met Gly Ala Gln Ser His Ser Leu Glu Ile Thr Ser Ser Val Ser Ala
1 5 10 15

Glu Lys Ile Phe Ser Gly Ile Val Leu Asp Val Asp Thr Val Ile Pro
20 25 30

Lys Ala Ala Pro Gly Ala Tyr Lys Ser Val Asp Val Lys Gly Asp Gly
35 40 45

Gly Ala Gly Thr Val Arg Ile Ile Thr Leu Pro Glu Gly Ser Pro Ile
50 55 60

Thr Ser Met Thr Val Arg Thr Asp Ala Val Asn Lys Glu Ala Leu Thr
65 70 75 80

Tyr Asp Ser Thr Val Ile Asp Gly Asp Ile Leu Leu Glu Phe Ile Glu
85 90 95

Ser Ile Glu Thr His Met Val Val Pro Thr Ala Asp Gly Gly Ser
100 105 110

Ile Thr Lys Thr Thr Ala Ile Phe His Thr Lys Gly Asp Ala Val Val
115 120 125

Pro Glu Glu Asn Ile Lys Phe Ala Asp Ala Gln Asn Thr Ala Leu Phe
130 135 140

Lys Ala Ile Glu Ala Tyr Leu Ile Ala Asn
145 150

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 9
gggtttcaat ggattcgatg 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 10
gcagatgctc agaacactgc 20

<210> 11
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 11
ggcagctggc acccatgata tttagaatg 29

<210> 12
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 12
ggcagctgtt cataattac agagtgagtg acagtcag 38

<210> 13
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 13
aacaatttca cacaggaaac agctatgacc 30

<210> 14
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 14
cagtcacgac gttgtaaaac gacggccagt 30

<210> 15
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 15
ggaagcttca tgtgtgccct acagcaca 28

<210> 16
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 16
ggtctagaga tctttagaat gtgattgctg 30

<210> 17
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 17
atcaacacct caacattgat gtttagcgtac

30

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 18
tctgcatcg cgaaactgtac

20

<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 19
acatgtggag tgaagagtat c

21

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 20
gataatcatc gcaagaccgg

20

<210> 21
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 21
gggaattctc agattgtcg ttccgcctt cag 33

<210> 22
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 22
cagatctggg gaaccctgtg gttg 24

<210> 23
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 23
ggtctagaga tctttagaat gtgattgctg 30

<210> 24
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 24
aacaatgtat gtccggtgta catctatgac 30

<210> 25
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 25
ttcataattt acagagttag tgacagtcag 30

<210> 26
<211> 34

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 26
gggaattcct gaaaaggaag ttcatcgatc tatac

34

<210> 27
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 27
gtaaaaacgac ggccagt

17

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 28
aggacgactt aggtgaatac

20

<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 29
atacatcttt tcaaatttca

20