Chapter 3.5 Practice Problems

EXPECTED SKILLS:

- Be able to compute the local linear approximation of a function at a specific value.
- Know how to use the local linear approximation to estimate a given quantity.

PRACTICE PROBLEMS:

For problems 1-4, calculate the Local Linear Approximation, L(x), for the given function at the specified value of x_0 . Also, sketch f(x) and L(x) over the indicated interval

1.
$$f(x) = x^2 + 1$$
, $x_0 = 1$, $[0, 2]$

2.
$$f(x) = \frac{1}{2x - 1}, x_0 = 1, [0, 2]$$

3.
$$f(x) = e^{-x}, x_0 = 0, [-1, 1]$$

4.
$$f(x) = \tan(x), x_0 = \frac{\pi}{4}, \left[0, \frac{\pi}{2}\right]$$

For problems 5-10, use an appropriate local linear approximation to approximate the following values.

5.
$$(5.05)^3$$

6.
$$\sqrt{101}$$

7.
$$\sqrt[3]{28}$$

8.
$$e^{0.9}$$

9.
$$\cos 0.1$$

10.
$$\sin 61^{\circ}$$

11. Show that
$$(1-x)^5 \approx 1-5x$$
 for x near 0.

12. Show that
$$\ln(2x) \approx 2x - 1$$
 for x near $\frac{1}{2}$.

13. Consider
$$f(x) = (x+1)^{13}$$
.

- (a) Compute the Local Linear Approximation of f(x) at $x_0 = 0$.
- (b) Using your approximation, estimate $(0.99)^{13}$.
- (c) Using your approximation, estimate $(1.01)^{13}$

- 14. Let $f(x) = x^2$.
 - (a) Calculate the Local Linear Approximation, L(x), for f(x) at x = a.
 - (b) Does L(x) overestimate or underestimate f(x) near x = a? Explain.
- 15. **Multiple Choice:** Which of the following is the best local linear approximation for $f(x) = \tan(x)$ near $x = \frac{\pi}{4}$?
 - (a) $1 + \left(x \frac{\pi}{4}\right)$
 - (b) $1 + \frac{1}{2} \left(x \frac{\pi}{4} \right)$
 - (c) $1+\sqrt{2}\left(x-\frac{\pi}{4}\right)$
 - (d) $1 + 2\left(x \frac{\pi}{4}\right)$
 - (e) $2 + 2\left(x \frac{\pi}{4}\right)$