TDAB01 Sannolikhetslära och Statistik

Jose M. Peña IDA, Linköpings Universitet

Föreläsning 2

Översikt

- Deskriptiv statistik
- Slumpvariabler
- Sannolikhetsfördelning
- ► Väntevärde och varians
- ► Kovarians och korrelation
- ► Chebyshevs olikhet

Deskriptiv statistik

• Mätningar: x_1, x_2, \ldots, x_n .

Exemple: Prestanda för n = 209 datorer.

• Medelvärde: $\bar{x} = 4.037$.

► Histogram.

 10 mätningar > 6, dvs ca 2.8% (10/209) av mätningarna hade hög prestanda (> 6).

Slumpvariabler

Definition. En slumpvariabel X är en funktion från utfallsrummet Ω till $\mathbb R$

$$X = f(\omega)$$

där $\omega \in \Omega$ är ett utfall.

- Obs. Xs värden är disjunkta och uttämmande, dvs utfall.
- Slumpvariabler är praktiska: Vi bryr oss ofta bara om enklare variabler
 (X) vars utfall är en funktion av den underliggande slumpen ω.
- Två typer av slumpvariabler:
 - **Kontinuerlig**: X antar värden i \mathbb{R} (eller (0,1)). Längdhopp.
 - **Diskret:** X antar ett ändligt (t ex $\{0,1,2,\ldots,n\}$) eller uppräkneligt $(\{0,1,2,\ldots\})$ antal värden. Höjdhopp.
- Ett annat ord f\u00f6r slumpvariabel (eng. random variable) \u00e4r stokastisk variabel (eng. stochastic variable).
- Funktionen f() måste vara mätbar. Teknikalitet. Hänger ihop med sigma-algebra (se sid 14-15 i Baron). Måtteori.

Slumpvariabler: Några exempel

- Exempel: Kasta två tärningar.

 - X = antalet prickar på två kast.
- Exempel: Singla två mynt.
 - $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}.$
 - X = antalet H (krona). X kan anta värdena 0, 1, 2.
 - P(X=0) = 1/4
 - P(X=0)=1/1
 - P(X=2)=1/4.
- Exempel: Flyga quadcopter.
 - Ω = abstrakt utfallsrum med alla möjliga utfall på faktorer som bestämmer quadcopterns resväg.
 - $X = \text{tre-dimensionella koordinater } (x,y,z) \text{ över } quadcopterns position vid tidpunkt } t$.

Sannolikhetsfördelning

Definition. (Sannolikhets)fördelningen för en slumpvariabel X är sannolikheterna för alla dess utfall, dvs

$$P(x) = \mathbf{P}\{X = x\}$$

för alla möjliga utfall x.

- Stora och små bokstäver spelar roll:
 - X är slumpvariabeln. Exempel: Summan av två tärningarna
 - ▶ x är ett **givet utfall**. Exempel: 7 prickar.
- ► Fet stil eller ej spelar roll:
 - **P** är sannolikheten för ett givet utfall. $P\{X = x\}$ betyder egentligen "Sannolikheten för alla de utfall ((1,6),(2,5), etc) som ger summan 7".
 - P(x) är en enkel reellvärd funktion, precis som i vanlig analys.
- För diskreta slumpvariabler kallas P(x) ofta för **pmf** (probability mass function).
- ▶ Slumpvariabelns **support**: $\{x : P(x) > 0\}$.

Fördelningsfunktion

Definition. Fördelningsfunktionen för en slumpvariabel X defineras som

$$F(x) = P\{X \le x\} = \sum_{y \le x} P(y).$$

En sannolikhetsfördelning summerar till 1:

$$\sum_{\mathsf{alla}\,x} P(x) = \sum_{\mathsf{alla}\,x} P\{X = x\} = 1.$$

Fördelningsfunktionen är icke-avtagande mellan 0 och 1:

$$\lim_{x\downarrow -\infty} F(x) = 0 \qquad \lim_{x\uparrow +\infty} F(x) = 1.$$

 Fördelningsfunktionen kallas också för den kumulativa täthetsfunktionen (cumulative density function), eller cdf.

7/23

Sannolikhets- och fördelningsfunktion

X	0	1	2	3	4
P(x)	0.15	0.20	0.40	0.20	0.05
F(x)	0.15	0.35	0.75	0.95	1.00

• Obs. $P(a < X \le b) = F(b) - F(a)$.

Simultanfördelning

- Låt X och Y vara slumpvariabler.
- (X, Y) är en slumpvektor med typiskt utfall (x, y).
- ightharpoonup Fördelningen för (X, Y) kallas simultanfördelning.

$$P(x,y) = P\{(X,Y) = (x,y)\} = P\{X = x \cap Y = y\}.$$

Simultanfördelningen är en sannolikhetsfördelning:

$$\sum_{x}\sum_{y}P(x,y)=1.$$

Exempel: X = Spam/Ham och Y = Inbox/Spambox.

	Spam	Ham
Inbox	0.02	0.88
Spambox	0.09	0.01

Simultanfördelningen: "Vad är sannolikheten att få ett ham-mejl och att det hamnar i spamboxen ?"

Simultanfördelning

Exempel: X = avkastning aktie X och Y = avkastning aktie Y.

		Aktie Y		
		Låg	Medel	Hög
	Låg	0.05	0.05	0.15
Aktie X	Medel	0.10	0.30	0.20
	Hög	0.05	0.05	0.05

- ▶ Aktieportfölj: 50% i aktie X och 50% i aktie Y.
- Simultanfördelningen: "Vad är sannolikheten att min aktieportfölj får medelavkastning?"

Marginalfördelning

- ► Fördelningen för bara X kallas marginalfördelningen (för X).
- ► Fördelningen för bara Y kallas marginalfördelningen (för Y).
- Marginalfördelningen: "Vad är sannolikheten att få ett spam-mejl (oavsett var det hamnar)?"
- Marginalfördelningen fås genom att summera ut den andra variabeln:

$$P_X(x) = \sum_y P(x,y)$$

$$P_Y(y) = \sum_x P(x,y)$$

- Jämför med lagen om total sannolikhet (Fö1).
- Exempel: X = Spam/Ham och Y = Inbox/Spambox.

	Spam	Ham	
Inbox	0.02	0.88	0.9
Spambox	0.09	0.01	0.1
	0.11	0.89	

Marginalfördelning

Exempel: X = avkastning aktie X och Y = avkastning aktie Y.

	Aktie Y				
		Låg	Medel	Hög	
	Låg	0.05	0.05	0.15	0.25
Aktie X	Medel	0.10	0.30	0.20	0.6
	Hög	0.05	0.05	0.05	0.15
		0.20	0.40	0.40	

▶ Vilka portföljandelar är optimala ? Beslut under osäkerhet.

Oberoende

Definition. Slumpvariablerna X och Y är oberoende om

$$P(x,y) = P_X(x) \cdot P_Y(y)$$

för alla värden på x och y.

▶ Exempel: X = Spam/Ham och Y = Inbox/Spambox.

	Spam	Ham	
Inbox	0.02	0.88	0.9
Spambox	0.09	0.01	0.1
	0.11	0.89	

Valet av box är inte oberoende av om mejlet är ham eller spam:

$$P(\text{inbox}) \cdot P(\text{ham}) = 0.9 \cdot 0.89 = 0.801 \neq 0.88 = P(\text{inbox}, \text{ham})$$

- $P(\text{inbox}|\text{ham}) = \frac{P(\text{inbox},\text{ham})}{P(\text{ham})} = \frac{0.88}{0.89} = 0.988 > 0.9 = P(\text{inbox}).$
- Lättare att gissa box om man vet att mejlet är ham.

Lägesmått

- ▶ En sannolikhetsfördelning P(x) beskriver **all** osäkerhet om X.
- Kan vara komplicerat att förmedla hela P(x), speciellt om X är en fler-dimensionell slumpvektor.
- ► Naturliga lägesmått:
 - ▶ Median, m. $P(X \le m) = 0.5$. Hälften av sannolikhetsmassan ligger till vänster om m.
 - **Väntevärdet** (eng. expected value), μ eller $\mathbb{E}(X)$, är det genomsnittliga värdet för X:

$$\mu = \mathbb{E}(X) = \sum_{x} x \cdot P(x).$$

Typvärdet (eng. mode) är det mest sannolika värdet, dvs arg $\max_{x} P(x)$.

Lägesmått: Exempel

X	0	1	2	3	4
P(x)	0.15	0.20	0.40	0.20	0.05

Väntevärdet

$$\mathbb{E}(X) = 0 \cdot 0.15 + 1 \cdot 0.20 + 2 \cdot 0.40 + 3 \cdot 0.20 + 4 \cdot 0.05 = 1.8$$

Alternativ definition av median m: $p(X \le m) \ge 1/2$ och $p(X \ge m) \ge 1/2$. Då, m = 2.

Lägesmått säger inget om spridningen

▶ Väntevärdet är ett lägesmått. Ingen info om fördelningens spridning.

Varians

- ▶ Storleken på avvikelserna $x \mathbb{E}(X)$ säger något om spridningen.
- ▶ Idé till spridningsmått: Den förväntade avvikelsen

$$\mathbb{E}(X-\mu) = \sum_{x} P(x) \cdot (X-\mu)$$

- Problem: $\mathbb{E}(X \mu)$ är alltid exakt noll, eftersom positiva och negativa avvikelser tar ut varandra.
- Varians: Förväntade kvadrerade avvikelsen

$$\sigma^2 = Var(X) = \mathbb{E}\left[\left(X - \mu\right)^2\right] = \sum_{x} (x - \mu)^2 \cdot P(x).$$

Alternativ formel

$$Var(X) = \mathbb{E}(X^2) - \mu^2$$
.

▶ **Standardavvikelse**: $\sigma = Std(X) = \sqrt{Var(X)}$. Samma skala som X.

Egenskaper hos väntevärde och varians

- ▶ $\mathbb{E}(c) = c$, där c är en konstant.
- $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b \mod a, b \text{ konstanter.}$
- $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$
- $\mathbb{E}(aX + bY + c) = a\mathbb{E}(X) + b\mathbb{E}(Y) + c \text{ med } a, b, c \text{ konstanter.}$
- $Var(aX + b) = a^2 \cdot Var(X)$
- ▶ Om X och Y oberoende: $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$
- ▶ Om X och Y oberoende: Var(X + Y) = Var(X) + Var(Y).

Deskriptiv statistik: Beroende

Kovarians och korrelation

- Mått på samvariation. Sammanfattning av simultanfördelning.
- ▶ Kovarians mellan X och Y:

$$\sigma_{XY} = Cov(X, Y) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)\left(Y - \mathbb{E}(Y)\right)\right]$$

- Positiv kovarians:
 - X tenderar att vara större än $\mathbb{E}(X)$ samtidigt som Y tenderar att vara större än $\mathbb{E}(Y)$.
 - X tenderar att vara mindre än $\mathbb{E}(X)$ samtidigt som Y tenderar att vara mindre än $\mathbb{E}(Y)$.
- Negativ kovarians: X tenderar att vara större än $\mathbb{E}(X)$ samtidigt som Y tenderar att vara mindre än $\mathbb{E}(Y)$, och tvärtom.
- ▶ Korrelationskoefficienten mellan X och Y

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{Std(X) \cdot Std(Y)}.$$

- ▶ Obs. $-1 \le \rho \le 1$.
- Om $|\rho| = 1$, då Y är en linjär funktion av X.

Egenskaper hos kovarians

- ightharpoonup Cov(X,Y) = Cov(Y,X)
- ► $Var(aX + bY + c) = a^2 \cdot Var(X) + b^2 \cdot Var(Y) + 2a \cdot b \cdot Cov(X, Y)$ med a, b, c konstanter.
- $Cov(a \cdot X + b, c \cdot Y + d) = a \cdot c \cdot Cov(X, Y)$
- Om X och Y oberoende, då Cov(X, Y) = 0 and $\rho(X, Y) = 0$.
- Men Cov(X, Y) = 0 eller $\rho(X, Y) = 0$ innebär **inte** att X och Y är oberoende.

Chebyshevs olikhet

- ▶ Väntevärdet μ och variansen σ^2 innehåller information om sannolikhetsfördelningen.
- Chebyshevs olikhet: Givet μ och σ^2 så kommer X ligga i intervallet $[\mu \varepsilon, \mu + \varepsilon]$ med en sannolikhet som är åtminstone $1 (\sigma/\varepsilon)^2$.
- Chebyshevs olikhet

$$P(|X - \mu| > \varepsilon) \le \left(\frac{\sigma}{\varepsilon}\right)^2$$

- Notera att Chebyshevs olikhet endast kräver vetskap om μ och σ^2 . Inget andra egenskaper behövs (symmetri, skevhet).
- Men den lilla information har sitt pris: $\left(\frac{\sigma}{\varepsilon}\right)^2$ är ofta bra mycket större än den sanna sannolikheten $P(|X \mu| > \varepsilon)$.
- Chebyshevs olikhet är ofta nyttig i teoretiska sammanhang.

Översikt

- Deskriptiv statistik
- Slumpvariabler
- Sannolikhetsfördelning
- ► Väntevärde och varians
- ► Kovarians och korrelation
- Chebyshevs olikhet