

Sistemas de Numeración

Prof. Silvana Panizzo

Introducción

Sistemas de numeración:

✓ No Posicionales: el valor del símbolo no depende la posición que este ocupe dentro del número.

Ejemplo: CCXXI (Números Romanos) — 221 en decimal

✓ Posicionales: el valor del símbolo depende la posición que este ocupe dentro del número o sea cada símbolo está afectado por un factor de escala.

Ejemplo: 521 ≠ 125 → El significado varia según la ubicación (numeración Decimal)

Sistemas de notación posicional (SNP)

- ✓ Formados por n cantidad de símbolos cuya combinación representa valores diferentes.
- ✓ Cada símbolo tiene un "peso" diferente según el lugar que ocupa.
- ✓ El "peso" es la base elevada a la posición que ocupa dentro del número.
- ✓ La suma de cada digito multiplicado por su "peso" permite obtener el valor final del número. En SNP toda cantidad puede ser expresado como un polinomio de potencias de la base.

$$= a_{n}b^{n} + ... + a_{3}b^{3} + a_{2}b^{2} + a_{1}b^{1} + a_{0}b^{0} + a_{-1}b^{-1} + a_{-2}b^{-2} + ... + a_{-n}b^{-n}$$
 a \rightarrow coeficiente, símbolo del SNP b \rightarrow potencia de la base

Sistema decimal

✓ Ejemplo en decimal:

- ✓ Base 10 → Posee 10 símbolos.
- ✓ Símbolos → 0 1 2 3 4 5 6 7 8 9

Como pasar de binario a decimal

❖ Sistema Binario

- ✓ Base 2 → Posee 2 símbolos.
- ✓ Símbolos → 01
- ✓ El numero $1011_{(2)}$, se lee uno, cero, uno, uno, cero en base 2.
 - $1011_{(2)} \rightarrow 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0$ (Polinomio de potencias de la base) = $\mathbf{11}_{(10)}$

De Octal y Hexadecimal a Sistema Decimal

Sistema Octal

- ✓ Base 8 → Posee 8 símbolos.
- ✓ Símbolos → 0 1 2 3 4 5 6 7 $375_{(8)}$ → 3 * 8² + 7 * 8¹ + 5 * 8⁰ (Polinomio de potencias de la base) = **253**₍₁₀₎

Sistema Hexadecimal

- ✓ Base 16 → Posee 16 símbolos.
- ✓ Símbolos → 0123456789 A B C D E F

 $2B8_{(16)}$ \rightarrow $2*16^2 + 11*16^1 + 8*16^0$ (Polinomio de potencias de la base) = **696**₍₁₀₎

El numero 2B8₍₁₆₎, se lee dos, b, ocho en base 16.

Actividad

- ✓ Convertir los siguientes números según su base al sistema decimal:
 - **1)** 11001001₍₂₎
 - 2) AC9₍₁₆₎
 - **3)** 205₍₈₎
- ✓ Armar una tabla de equivalencias entre la base decimal, binario, octal y hexadecimal hasta el numero 16 en decimal.
- ✓ Identificar características similares entre los SNP.

Decimal	Binario	Octal	Hexadecimal
1	I		

Actividad

- ✓ Convertir los siguientes números según su base al sistema decimal:
 - 1) 11001001₍₂₎ -> 201₍₁₀₎
 - 2) $AC9_{(16)} \rightarrow 2761_{(10)}$
 - **3)** 205₍₈₎ -> 133₍₁₀₎
- ✓ Armar una tabla de equivalencias entre la base decimal, binario, octal y hexadecimal hasta el numero 16 en decimal. Identificar características similares entre los SNP.

Decimal	Binario	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	102	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10 ₈	8
9	1001	11	9
10 ₁₀	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
			10 ₁₆

Conclusión de la Actividad

✓ El (uno, cero) 10, es el número que en cualquier sistema representa la base.

$$10_{(2)} = 1 * 2^1 + 0 * 2^0 = 2_{(10)}$$

$$10_{(8)} = 1 * 8^1 + 0 * 8^0 = 8_{(10)}$$

- ✓ Para analizar el contenido interno de los registros de la computadora se utilizan los sistemas octal y hexadecimal ya que permiten representar su contenido de forma compacta.
- ✓ Esto es posible porque 8 y 16 son potencias exactas de 2, 8=2³ y 16=2⁴ con lo cual se pueden convertir números del sistema binario al octal y hexadecimal tomando agrupaciones de 3 y 4 bits respectivamente y se lo conoce como pasaje directo entre bases.
- **✓** 0110 0100₍₂₎

Método de divisiones sucesivas x la base

- ❖ Se utiliza para pasar un número entero decimal a otras bases.
- ✓ De Decimal a Binario $100_{(10)} \longrightarrow 1100100_{(2)}$

✓ De decimal a Octal $100_{(10)} \longrightarrow 144_{(8)}$

✓ De decimal a Hexadecimal

$$100_{(10)} \longrightarrow 64_{(16)}$$

Método de multiplicaciones sucesivas x la base

❖ Se utiliza para pasar la parte fraccionaria de un número decimal a otras bases

✓ De Decimal a Binario

$$0.2_{(10)} \longrightarrow 0.0011_{(2)}$$

✓ De Decimal a Octal

$$0.2_{(10)} \longrightarrow 0.1463_{(2)}$$

✓ De Decimal a Hexadecimal

$$0,2_{(10)} \longrightarrow 0, 3_{(16)}$$

Actividad

- ✓ Convertir los siguientes números según su base al sistema indicado:
 - 1) $485_{(10)}$ -> Sistema binario
 - 2) 10,4₍₁₀₎ -> Sistema binario
 - **3)** 205₍₁₀₎ -> Sistema Octal
 - **4)** 27,32₍₁₀₎ -> Sistema Octal
 - 5) 169₍₁₀₎ -> Sistema Hexadecimal
 - 6) 18,23₍₁₀₎ -> Sistema Hexadecimal
- ✓ Los resultados obtenidos en Binario pasarlos a Octal y a Hexadecimal.
- ✓ Los resultados obtenidos en Octal pasarlos a Binario y a Hexadecimal.
- ✓ Los resultados obtenidos en Hexadecimal pasarlos a Binario y a Octal.

Números fraccionarios de Binario, Octal o Hexadecimal a Decimal

Se utiliza el polinomio de potencias a la base.

✓ Sistema Binario

$$1011,01_{(2)}$$
 \longrightarrow $1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 + 0*2^{-1} + 1*2^{-2} = 8 + 0 + 2 + 1 + 0 + 0,25 = 11,25(10)$

✓ Sistema Octal

$$375,2_{(8)}$$
 \rightarrow $3*8^2 + 7*8^1 + 5*8^0 + 2*8^{-1} = 192 + 56 + 5 + 0,25 = 253,25_{(10)}$

✓ Sistema Hexadecimal

$$2B8,2_{(16)} \rightarrow 2*16^2+11*16^1+8*16^0+2*16^{-1}=512+176+8+0,125=696,125_{(10)}$$

Resumen de conversión entre sistemas numéricos

- ✓ Conversion de octal, binario o hexadecimal a decimal:
 - Mediante el polinomio de potencias a la base (parte entera y fraccionaria)
- ✓ Conversion de decimal a hexadecimal, octal o binario:
 - Método de divisiones sucesivas x la base (parte entera)
 - Método de multiplicaciones sucesivas x la base (parte fraccionaria)
- ✓ Conversión hexadecimal u octal a binario: (y viceversa)
 - Pasaje directo entre bases.
- ✓ Conversión de octal a hexadecimal:
 - Se convierte primero de octal a decimal o binario y luego el valor obtenido a hexadecimal.
- ✓ Conversión de hexadecimal a octal:
 - Se convierte primero el valor hexadecimal a decimal o binario y luego el valor obtenido a octal.

Unidades

✓ Unidades básicas de información

Medida	Unidad	Equivalencia	Notacion exponencial
bit	bit	1 bit	
Byte	b	8 bits	
Kilobyte	KB	1024 bytes	210
Megabyte	MB	1024 KB	2 ²⁰
Gigabyte	GB	1024 MB	2 ³⁰
Terabyte	ТВ	1024 GB	2 ⁴⁰
Petabyte	PB	1024 TB	2 ⁵⁰
Exabyte	EB	1024 PB	2 ⁶⁰
Zetabyte	ZB	1024 EB	2 ⁷⁰
Yottabyte	YB	1024 ZB	2 ⁸⁰
Brontobyte	ВВ	1024 YB	2 ⁹⁰
Geopbyte	GeB	1024 BB	2100

- ✓ Unidades en las que trabaja la computadora
 - 4 bits → nibble

■ 32 bits → double Word (dWord)

• 8 bits \rightarrow byte

■ 64 bits → quadruple Word (qWord)

• 16 bits \rightarrow word

Mas unidades...

✓ Submúltiplos

- Nano \rightarrow 10⁻⁹
- Pico \rightarrow 10⁻¹²
- Femto $\rightarrow 10^{-15}$

- Atto $\rightarrow 10^{-18}$
- Zepto → 10⁻²¹
- Yocto → 10⁻²⁴

✓ Tipos de datos primitivos

- Long \rightarrow 64 bits
- Int \rightarrow 32 bits
- Short \rightarrow 16 bits
- Byte \rightarrow 8 bits

- Float \rightarrow 32 bits
- Double \rightarrow 64 bits
- Boolean \rightarrow 32 bits
- Char \rightarrow 8 bits por caracter

Operaciones fundamentales en binario

✓ **Suma**: la suma entre dos bits tiene 4 combinaciones posibles:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$ y me llevo o acarreo 1

Ejemplo + 101
111
1100

✓ **Resta** : la resta se realiza con una suma, esto es sumando al minuendo el complemento a la base del sustraendo (usar circuitos sumadores para hacer restas, rehusar el mismo circuito)

$$0 - 0 = 0$$

 $0 - 1 = 1$ le pide una unidad a la posición siguiente
 $1 - 0 = 1$
 $1 - 1 = 0$

Ejemplo

Ejemplo

1101

0110

Operaciones fundamentales en Octal y en Hexadecimal

- ✓ Es igual que en sistema binario ya que son SNP, solo lo que cambia es la base del sistema.
- ✓ Ejemplos octal

✓ Ejemplos hexadecimal

Complemento de un número

✓ Complemento a la base, a la raíz, auténtico

El complemento a la base de un número N, es el resultado de elevar la base a la cantidad de dígitos del número, menos el número dado.

$$C_b N = B^n - N$$

• Ejemplos

$$C_{10} 7 = 10^1 - 7 = 3$$

$$C_{10} 548 = 10^3 - 548 = 1000 - 548 = 452$$

$$C_{10} 05 = 10^2 - 05 = 95$$

Complemento de un número

✓ Complemento a la base -1 o Restringido

Complemento a la base -1 de un número N, es la base elevada a la potencia dada por la cantidad de dígitos del número, menos 1, menos el número.

$$C_{b-1}N = (B^n - 1) - N$$

Ejemplos

•
$$C_{10-1}$$
 7 = $(10^1 - 1) - 7 = (10 - 1) - 7 = 9 - 7 = 2$

•
$$C_{10-1}$$
 548 = $(10^3 - 1) - 548 = (1000 - 1) - 548 = 999 - 548 = 451$

$$\quad \quad \mathbf{C}_{10\text{-}1} \ 05 = (10^2 - 1) - 05 = (100 - 1) - 05 = \ 99 - \ 05 = 94$$

Complemento en binario

- - $C_2 1 = 10^1 1 = 1$
 - $C_2 11 = 10^2 11 = 100 11 = 01$
 - $C_2 110 = 10^3 110 = 1000 110 = 010$
- ✓ Complemento a la base -1 o Restringido \longrightarrow C_1

•
$$C_{2-1} 1 = (10^1 - 1) - 1 = 1 - 1 = 0$$

•
$$C_{2-1} 11 = (10^2 - 1) - 11 = 11 - 11 = 00$$

•
$$C_{2-1} 110 = (10^3 - 1) - 110 = 111 - 110 = 001$$

✓ Regla practica para calcular el complemento en binario:

C₁: Se invierten todos los dígitos

C₂: Se invierten todos los dígitos y se suma 1

Actividad

- ✓ Calcular el complemento a 2 para los siguientes números binarios ya expresados en su formato:
 - 1) 1100110011
 - 2) 01101
 - 3) 10000000
 - 4) 01111111