Московский Физико-Технический Институт (государственный университет)

Работа 4.3.1.

Цель работы:

Исследовать дифракцию Френеля на узкой щели, на краю экрана, на тонкой нити; исследовать дифракцию Фраунгофера на щели и проследить, как влияют изменение ширины щели и её смещение на характер дифракционной картины; исследовать картину дифракции на двух щелях и оценить влияние размеров источника на чёткость картины; исследовать влияние дифракции на разрешающую способность оптических инструментов. В работе используются:

оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

Теоретическое введение и установка

А. Дифракция Френеля

Схема установки для наблюдения дифракции Френеля представлена на рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π .

Рис. 1: Схема установки для наблюдения дифракции Френеля

Щель S_2 освещается параллельным пучком монохроматического света с помощью коллиматора, образованного объективом O_1 и щелью S_1 , находящейся в его фокусе. На щель S_1 сфокусировано изображение спектральной линии, выделенной из спектра ртутной лампы Π при помощи простого монохроматора C.

Распределение интенсивности света в плоскости наблюдения Π проще всего рассчитывать с помощью зон Френеля (для щели их иногда называют зонами Шустера). При освещении щели S_2 параллельным пучком лучей (плоская волна) зоны Френеля представляют собой полоски, параллельные краям щели (рис. 2). Результирующая амплитуда в точке наблюдения определяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина m зон Френеля z_m определяется соотношением

$$z_m = \sqrt{am\lambda},\tag{1}$$

где a — расстояние от щели до плоскости наблюдения (рис. 1), а λ — длина волны.

Вид наблюдаемой дифракционной картины определяется числом Френеля Φ : квадрат числа Френеля

 $\Phi^2 = \frac{D}{\sqrt{a\lambda}}.$

Дифракционная картина отсутствует, когда плоскость наблюдения Π совпадает с плоскостью щели: при $\Phi \to \infty$ мы имеем дело с геометрической оптикой. При небольшом удалении от щели, когда число Френеля $\Phi \gg 1$ (на щели укладывается огромное число зон), дифракционная картина наблюдается только в узкой области на границе света и тени у краёв экрана.

При последующем небольшом удалении от щели (или изменении ширины щели S_2) эти две группы дифракционных полос перемещаются практически независимо друг от друга. При дальнейшем увеличении расстояния (или уменьшении ширины щели S_2) обе системы дифракционных полос постепенно сближаются и, наконец, при $\Phi \gtrsim 1$ накладываются друг на друга. Распределение интенсивности в плоскости наблюдения в этом случае определяется числом зон Френеля, укладывающихся на полуширине щели. Если это число равно m, то в поле зрения наблюдается n=m-1 тёмных полос. Таким образом, по виду дифракционной картины можно оценить число зон Френеля на полуширине щели.

Б. Дифракция Фраунгофера на щели

Принцип Гюйгенса-Френеля:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Теперь рассмотрим первое применение этого принципа, получившее название метод зон Φ ренеля

Для этого рассмотрим действие световой волны действующей из точки A в какой-то точке B. В этом случае можно,

Рис. 2: Построение зон Френеля

взяв точку M_0 в качестве центра (см. рис. 1), построить ряд концентрических сфер, радиусы которых начинаются с b и увеличиваются каждый раз на половину длины волны $\frac{\lambda}{2}$. При пересечении с плоским фронтом волны F эти сферы дадут концентрические окружности. Таким образом, на фронте волны появятся кольцевые зоны (зоны Френеля) с радиусами r_1, r_2 и т. д.

Из геометрических соображений посчитав, можно получить, что

$$r_i = i\sqrt{a\lambda}. (2)$$

Картина дифракции упрощается, когда ширина щели становится значительно меньше ширины первой зоны Френеля, т.е. если

$$D \ll \sqrt{a\lambda} \tag{3}$$

Это условие всегда выполняется при достаточно большом a. В этом случае говорят, что $\partial u \phi pakuu \alpha \Phi payhro \phi epa$. Дифракционную картину в этом случае называются $\partial u \phi pakuu e u \Phi payhro \phi epa$. При выполнении пункта (2) у нас упрощаются фазовые соотношения, что поясняет рис. 2, в итоге с хорошим приближением можно считать, что разность хода между крайними лучами, приходящими от щели в точке наблюдения P, с хорошим приближением равна

$$\Delta = r_2 - r_1 \approx D \sin \theta \approx D \cdot \theta \tag{4}$$

Здесь предполагается, что θ достаточно мал. Дифракцию Фраунгофера можно наблюдать на установке рис. 1, но для удобства к подобной установке добавляется объектив O_2 .

Рис. 4: Схема установки 2.

Дифракционная картина здесь наблюдается в фокальной плоскости объектива O_2 . Каждому значению θ соответствует в этой плоскости точка, отстоящая от оптической оси на расстоянии

$$X = f_2 \tan \theta \approx f_2 \theta. \tag{5}$$

Объектив не вносит разности хода между интерферирующими лучам, поэтому в его фокальной плоскости наблюдается неискажённая дифракционная картина. При $\theta=0$ разность хода между лучами нулевая, поэтому в центре поля зрения дифракционный максимум. Первый минимум соответствует θ_1 такому, что в точке наблюдения разность хода пробегаем все значения от 0 до 2π . Аналогично рассуждая, для m-й полосы

$$\theta_m = \frac{m\lambda}{D} \tag{6}$$

Расстояние X_m тёмной полосы от оптической оси из (5) и (6)

$$X_m = f_2 m \frac{\lambda}{D} \tag{7}$$

В. Дифракция Фраунгофера для двух щелей

Для наблюдения дифракции Фраунгофера на двух щелях S_2 заменим экраном Э с двумя щелями. При этом для оценки влияния ширины входной щели на чёткость вместо S_1 поставим щель с микрометрическим винтом. Два дифракционных изображения входной щели, одно из которых образовано лучами, прошедшими через левую, а другое – через правую щели, накладываются друг на друга. Если входная щель достаточно узка, то дифракционная картина в плоскости Π подобна той, что получалась при дифракции на одной щели, однако вся картинка испещерена рядом дополнительных узких полос, наличие

Рис. 5: Схема установки В.

которых объясняется суперпозицией световых воли через разные щели. Светлая интерфереционная полоса наблюдается в случаях, когда разность хода равна целому числу длин воли. Таким образом, угловая координата максимума порядка m равна

$$\theta_m = \frac{m\lambda}{d},\tag{8}$$

где d – расстояние между щелями. Отсюда расстояние между соседними интерфереционными полосами в плоскости Π равно

$$\delta x = f_2 \frac{\lambda}{d} \tag{9}$$

Число интерференционных полос укладывающихся в области центрального максимума равна отношению ширины главного максимума $\frac{2\lambda f_2}{D}$ к расстоянию между соседними полосами:

$$n = \frac{2\lambda f_2}{D} \frac{1}{\delta f} = \frac{2d}{D}.$$
 (10)

При дифракции света на двух щелях чёткая система интерференционных полос наблюдается только при достаточно узкой ширине входной щели S. При увеличении ширины картинка пропадает и появляется вновь, но полосы при этом сильно размыты и видны плохо.

Г. Влияние дифракции на разрешающую способность оптического инструмента

Рис. 6: Схема установки 4.

В отсутствие щели S_2 линзы O_1 и O_2 создают на плоскости П изоюражение щели S_1 и это изображение рассматриваются микроскопом М. Таким образом, установку можно рассматривать как оптический инструмент, предназначенные для получения изображения предмета. Если перед O_2 расположить S_2 , то изображение объекта будет искажено из-за дифракции. Чем меньше ширина щели, тем сильнее искажение. Качественной характеристикой этого искажения может служить φ_{min} — минимальное угловое расстояние между объектами (источниками), которые всё ещё воспринимаются как раздельные. Поместим вместо S_1 экран Э с двумя щелями с расстоянием d. Тогда на S_2 будут падать два пучка света с углом

$$\varphi = \frac{d}{f_1} \tag{11}$$

Из геометрии расстояние l между изображениями щелей в плоскости Π равно

$$l = \varphi f_2 = d \frac{f_2}{f_1}. \tag{12}$$

Ширина $\Delta \varphi$ определяется дифракцией на S_2 . Условия, при которых изображения различимы разные для разных наблюдателей, поэтому используют критерий Рэлея – максимум одного дифракционного пятна должен совпадать с минимумом другого. В наших условиях это значит, что угловая полуширина $\frac{\lambda}{D}$ равна угловому расстоянию $\frac{l}{f_2}$.