

Aula de Eletrônica

Circuitos divisores de tensão e corrente

Prof. Dr. Ricardo Luiz Barros de Freitas

Divisores

• Os circuitos divisores fornecem em sua saída uma tensão ou uma corrente com valor menor que o de entrada.

Divisores de tensão

- A figura ilustra o circuito divisor de tensão básico.
- A tensão de entrada U é aplicada nos terminais 1 e 2.
- A tensão de saída VSO é obtida entre os terminais 3 e 2, sendo este último comum para a entrada e para a saída.
- Nesta seção, vamos estudar os circuitos divisores de tensão sem carga e com carga, cada tipo permitindo diferentes configurações.
- Em cada caso, a tensão de saída será representada por VSO (sem carga) ou por VS (com carga).
- A seguir, vamos calcular a tensão de saída tanto para o circuito da figura como para variantes desse circuito empregadas na prática.

- Nessa situação, **nenhuma carga** (resistência) é conectada aos terminais 3 e 2 da saída.
- A divisão de tensão pode ser feita com tensão de saída constante ou variável.

- Divisor com tensão de saída constante
- Retomando a figura, vamos calcular a tensão de saída VSO em função da tensão de entrada U e das resistências R₁ e R₂.
- A resistência total da associação em serie de R₁ e
 R₂ vale:

$$R_T = R_1 + R_2$$

• A corrente I que passa pelos resistores e obtida pela lei de Ohm:

$$i = \frac{U}{R_T} = \frac{U}{R_1 + R_2}$$

- Divisor com tensão de saída constante
- Como a tensão de saída VSO e a tensão sobre o resistor R₂, podemos obtê-la pela lei de Ohm e pela equação:

$$V_{SO} = R_2.I = R_2.\frac{U}{R_1 + R_2}$$

$$V_{SO} = U.\frac{R_2}{R_1 + R_2}$$

• Divisor com tensão de saída constante

$$V_{SO} = U \cdot \frac{R_2}{R_1 + R_2}$$

• Essa é a equação da tensão de saída do circuito divisor de tensão em vazio (sem carga), que pode ser descrita da seguinte forma:

• A tensão de saída (V_{SO}) é igual a tensão U da fonte (gerador) multiplicada pela razão entre a resistência R_2 sobre a qual se mede V_S e a somatória das resistências do circuito $R_1 + R_2$.

- Divisor com tensão de saída constante
- Exemplo:
- Determine as resistências do circuito divisor de tensão de modo a obter a tensão de saída em vazio de 18 V, sabendo que a resistência total do circuito vista da fonte $(R_1 + R_2)$ e de 6 $k\Omega$ e a tensão de entrada e de 24 V.

- Divisor com tensão de saída constante
- Solução:
- O enunciado diz que:

$$R_T = R_1 + R_2 = 6k\Omega = 6000\Omega$$

$$V_{SO} = 18 = U.\frac{R_2}{R_1 + R_2} = 24.\frac{R_2}{6x1000}$$

$$24.\frac{R_2}{6x1000} = 18$$

$$R_2 = 4500\Omega = 4,5k\Omega$$

$$R_T = R_1 + R_2$$

 $R_1 = R_T - R_2 = 6k - 4, 5K = 6000 - 4500 = 1500\Omega$
 $R_1 = 1, 5K\Omega$

Solução:

$$R_1 = 1,5K\Omega$$

$$R_2 = 4.5K\Omega$$

- Divisor com tensão de saída constante
- Consiste em acrescentar a saída de um dos circuitos anteriores uma carga denominada RL.
- A tensão de saída com carga $V_{\rm S}$ é menor que os valores $V_{\rm S0}$ anteriormente calculados sem a inserção de carga.

• Divisor com tensão de saída constante

- Ao inserir RL nos terminais de saída, a corrente I_1 através do resistor R_1 sofre acréscimo, passando a ser $I_1 = I_2 + I_L$.
- Aumento na corrente significa queda de tensão maior no resistor R_1 , causando decréscimo em V_S .
- Nota-se na figura que R_L está em paralelo com R₂, reduzindo o valor da resistência equivalente entre os terminais 3 e 2.
- Assim, verifica-se que a tensão de saída sofre decréscimo.

- Divisor com tensão de saída constante
- Cálculo de VS
- Associando R_L em paralelo com R_2 , obtém-se o resistor equivalente R'.
- Tem-se um novo divisor de tensão com resistor superior de valor R₁ e resistor inferior de valor R₂, dado por:

$$R' = R_2 / / R_L$$

$$R' = \frac{R_2 . R_L}{R_2 + R_L}$$

- Divisor com tensão de saída constante
- Cálculo de VS
- O circuito da figura anterior pode ser, então, redesenhado, conforme a figura ao lado:

$$R' = R_2 / / R_L$$

$$R' = \frac{R_2 \cdot R_L}{R_2 + R_L}$$

- Divisor com tensão de saída constante
- Cálculo de VS
- A resistencia total vista entre os terminais 1 e 2 vale:

$$R_T = R_1 + R'$$

- Divisor com tensão de saída constante
- Cálculo de VS
- A resistência total vista entre os terminais 1 e 2 vale:

$$R_T = R_1 + R'$$

• Assim:

$$R_T = R_1 + \frac{R_2 . R_L}{R_2 + R_L}$$

- Divisor com tensão de saída constante
- Cálculo de V_s
- A tensão de saída V_S pode ser facilmente calculada pela formula do divisor de tensão sem carga: R'

$$V_S = U.rac{R'}{R_{\scriptscriptstyle 1} + R'}$$

$$V_{S} = U \cdot \frac{\frac{R_{2} \cdot R_{L}}{R_{2} + R_{L}}}{R_{1} + \frac{R_{2} \cdot R_{L}}{R_{2} + R_{L}}} = U \cdot \frac{\frac{R_{2} \cdot R_{L}}{R_{2} + R_{L}}}{\frac{R_{1}(R_{2} + R_{L}) + R_{2} \cdot R_{L}}{R_{2} + R_{L}}}$$

$$R_{2} \cdot R_{L}$$

$$R_{3} \cdot R_{L}$$

- Divisor com tensão de saída constante
- Observação
- Se o numerador e o denominador da equação forem divididos por RL, obtém-se:

$$V_{S} = U.\frac{(R_{2}.R_{L}) \div R_{L}}{(R_{1}.R_{2} + R_{1}.R_{L} + R_{2}.R_{L}) \div R_{L}}$$

$$V_{S} = U.\frac{R_{2}}{\left(\frac{R_{1}.R_{2}}{R_{L}}\right) + R_{1} + R_{2}}$$

- Divisor com tensão de saída constante
- Observação
- Se R_L for muito maior que R₁ e R₂, o termo:

$$\left(rac{R_1.R_2}{R_L}
ight)$$

• Torna-se muito pequeno, valendo a relação:

$$V_S = U \cdot \frac{R_2}{R_1 + R_2}$$

• Essa é a equação do divisor de tensão sem carga.

- Divisor com tensão de saída constante
- Exemplo
- Determine a tensão de saída V_s no circuito da figura para os seguintes valores de R_L:

- $R_1 = 3k3 \Omega$
- $R_1 = 30 \text{ k}\Omega$
- $R_1 = 100 \text{ k}\Omega$
- $R_L = \infty$ (divisor de tensão sem carga)

- Divisor com tensão de saída constante
- Solução:
- Determine a tensão de saída V_S no circuito da figura para os seguintes valores de R_I:
- Para $R_L = 3k3 \Omega$:

$$V_S = 16. \frac{3k3x3k3}{4k7.3k3 + 4k7.3k3 + 3k3.3k3}$$
$$V_S = 4,16V$$

- Divisor com tensão de saída constante
- Solução:
- Determine a tensão de saída V_S no circuito da figura para os seguintes valores de R_I:
- Para $R_L = 30k \Omega$:

$$V_S = 16. \frac{3k3x30k}{4k7.3k3 + 4k7.30k + 3k3.30k}$$
$$V_S = 6,20V$$

- Divisor com tensão de saída constante
- Solução:
- Determine a tensão de saída V_S no circuito da figura para os seguintes valores de R_I:
- Para $R_L = 100k \Omega$:

$$V_S = 16. \frac{3k3x100k}{4k7.3k3 + 4k7.100k + 3k3.100k}$$
$$V_S = 6,47V$$

- Divisor com tensão de saída constante
- Solução:
- Determine a tensão de saída V_S no circuito da figura para os seguintes valores de R_I:
- Para $R_L = \infty$:

$$V_S = 16. \frac{3k3}{4k7 + 3k3}$$
$$V_S = 6,60V$$

- Divisor com corrente de saída constante
- Vamos analisar aqui apenas a situação do divisor de corrente fixo.
- Calculam-se a seguir as correntes I_1 e I_2 em função da corrente total I e das resistências R_1 e R_2 , mostradas na figura:

- Divisor com corrente de saída constante
- Aplicando a lei de Ohm, obtém-se as correntes I₁ e
 I₂ sobre os resistores R₁ e R₂.
- Como estão associados em paralelo, eles ficam submetidos a mesma tensão U.

$$I_1 = \frac{U}{R_1}$$

$$I_2 = \frac{U}{R_2}$$

- Divisor com corrente de saída constante
- Agora, calcula-se a corrente total I:

$$I = I_1 + I_2$$

$$I = \frac{U}{R_{eq}}$$

- Divisor com corrente de saída constante
- R_{eq} e a resistência equivalente da associação em paralelo de R₁ e R₂, calculada por:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

• E lembrando que:

$$I = \frac{U}{R_{eq}}$$
 $U = R_{eq}.I$

- Divisor com corrente de saída constante
- Calculamos as correntes:

$$I_{1} = \frac{R_{eq}.I}{R_{1}} = \frac{\frac{R_{1}.R_{2}}{R_{1} + R_{2}}.I}{R_{1}} = \frac{R_{2}}{R_{1} + R_{2}}.I$$

$$I_{2} = \frac{R_{eq}.I}{R_{2}} = \frac{\frac{R_{1}.R_{2}}{R_{1} + R_{2}}.I}{R_{2}} = \frac{R_{1}}{R_{1} + R_{2}}.I$$

 Uma vez conhecida a corrente total no circuito em paralelo, a corrente em cada resistência é o produto da corrente total pela razão entre a resistência do outro ramo e a soma das resistências do circuito em paralelo.

- Divisor com tensão de saída constante
- Exemplo
- Determine as correntes I_1 e I_2 do circuito da figura:

- Divisor com corrente de saída constante
- Solução:

$$I_1 = \frac{3k}{1k + 3k} x4m = 3,00mA$$

$$I_2 = \frac{1k}{1k + 3k} x4m = 1,00mA$$

