Flight Autonomy

Wygenerowano przez Doxygen 1.9.3

1	INDEKS KIAS	1
	1.1 Lista klas	1
2	Indeks plików	1
	2.1 Lista plików	1
3	Dokumentacja klas	2
	3.1 Dokumentacja klasy FlightAutonomy	2
	3.1.1 Opis szczegółowy	5
	3.1.2 Dokumentacja konstruktora i destruktora	5
	3.1.3 Dokumentacja funkcji składowych	5
	3.1.4 Dokumentacja atrybutów składowych	9
	3.2 Dokumentacja klasy FlightControl	11
	3.2.1 Dokumentacja konstruktora i destruktora	13
	3.2.2 Dokumentacja funkcji składowych	13
	3.2.3 Dokumentacja atrybutów składowych	16
	3.3 Dokumentacja klasy ImageReceiver	18
	3.3.1 Opis szczegółowy	19
	3.3.2 Dokumentacja konstruktora i destruktora	19
	3.3.3 Dokumentacja funkcji składowych	19
	3.3.4 Dokumentacja atrybutów składowych	21
	3.4 Dokumentacja klasy ObjectDetector	22
	3.4.1 Opis szczegółowy	23
	3.4.2 Dokumentacja konstruktora i destruktora	23
	3.4.3 Dokumentacja funkcji składowych	23
	3.4.4 Dokumentacja atrybutów składowych	25
	3.5 Dokumentacja struktury TelemetryData	26
	3.5.1 Opis szczegółowy	26
	3.5.2 Dokumentacja atrybutów składowych	27
4	Dokumentacja plików	28
	4.1 Dokumentacja pliku include/FlightAutonomy/algorithms.h	28
	4.1.1 Dokumentacja typów wyliczanych	28
	4.2 algorithms.h	29
	4.3 Dokumentacja pliku include/FlightAutonomy/defines.h	29
	4.3.1 Dokumentacja definicji	30
	4.3.2 Dokumentacja zmiennych	30
	4.4 defines.h	32
	4.5 Dokumentacja pliku include/FlightAutonomy/FlightAutonomy.h	32
	4.6 FlightAutonomy.h	33
	4.7 Dokumentacja pliku include/FlightAutonomy/FlightControl.h	34
	4.8 FlightControl.h	35
	4.9 Dokumentacja pliku include/FlightAutonomy/ImageReceiver.h	36

1 Indeks klas

	4.10 ImageReceiver.h	37
	4.11 Dokumentacja pliku include/FlightAutonomy/ObjectDetector.h	37
	4.12 ObjectDetector.h	38
	4.13 Dokumentacja pliku include/FlightAutonomy/TelemetryData.h	39
	4.14 TelemetryData.h	40
	4.15 Dokumentacja pliku src/FlightAutonomy.cpp	41
	4.16 Dokumentacja pliku src/FlightControl.cpp	41
	4.17 Dokumentacja pliku src/ImageReceiver.cpp	41
	4.18 Dokumentacja pliku src/main.cpp	42
	4.18.1 Dokumentacja funkcji	42
	4.19 Dokumentacja pliku src/ObjectDetector.cpp	42
Ind	eks	43
4	Indeks klas	
1	indeks kias	
1.1	Lista klas	
Tuta	aj znajdują się klasy, struktury, unie i interfejsy wraz z ich krótkimi opisami:	
	FlightAutonomy Klasa odpowiedzialna za kompleksową obsługę autonomii lotu bazującej na analizie wizyjnej. W klasie realizowany jest algorytm analizujący obraz odbierany z kamery i w przypadku wykrycia przeszkody wykonanie odpowiedniej reakcji w postaci zmiany trajektorii lotu maszyny. Wykorzystywany jest protokół MavLink do dwukierunkowej komunikacji z autopilotem i przesyłania komend sterujących	2
	FlightControl	11
	ImageReceiver Klasa odbierająca stream wideo z podanego źródła	18
	ObjectDetector Klasa odpowiedzialna za analizę i wykrywanie oraz określanie pozycji obiektów (w tym znacz- ników Aruco) znajdujących się na przekazanym obrazie	22
	TelemetryData Struktura przechowująca dane telemetryczne odebrane z pojazdu przez MavLink	26
2	Indeks plików	
2.1	Lista plików	
Tuta	aj znajduje się lista wszystkich plików z ich krótkimi opisami:	
	include/FlightAutonomy/algorithms.h	28
	include/FlightAutonomy/defines.h	29

include/FlightAutonomy/FlightAutonomy.h	32
include/FlightAutonomy/FlightControl.h	34
include/FlightAutonomy/ImageReceiver.h	36
include/FlightAutonomy/ObjectDetector.h	37
include/FlightAutonomy/TelemetryData.h	39
src/FlightAutonomy.cpp	41
src/FlightControl.cpp	41
src/ImageReceiver.cpp	41
src/main.cpp	42
src/ObjectDetector.cpp	42

3 Dokumentacja klas

3.1 Dokumentacja klasy FlightAutonomy

Klasa odpowiedzialna za kompleksową obsługę autonomii lotu bazującej na analizie wizyjnej. W klasie realizowany jest algorytm analizujący obraz odbierany z kamery i w przypadku wykrycia przeszkody wykonanie odpowiedniej reakcji w postaci zmiany trajektorii lotu maszyny. Wykorzystywany jest protokół MavLink do dwukierunkowej komunikacji z autopilotem i przesyłania komend sterujących.

#include <FlightAutonomy.h>

Diagram współpracy dla FlightAutonomy:

Metody publiczne

- FlightAutonomy ()
 - Konstruuje obiekt FlightAutonomy inicjalizując pola domyślnymi wartościami.
- ∼FlightAutonomy ()
 - Destuktor. W trybie debugowania niszczący okno OpenCV.
- bool connect ()

Inicjalizuje połączenie z autopilotem poprzez protokół MavLink oraz uruchamia tryb offboard.

bool isReady ()

Sprawdza czy maszyna jest gotowa do wykonywania algorytmu.

bool readArgs (const int argc, char **argv)

Wczytuje przekazane do programu parametry.

• bool spinOnce ()

Wykonuje pojedynczy krok algorytmu. Powinna być wywoływana jednokrotnie w trakcie każdego obrotu pętli głównej programu.

• bool ok ()

Sprawdza czy wszystkie elementy działają prawidłowo i czy nie pojawił się warunek wyjścia.

bool stop ()

Kończy działanie algorytmu i wyłącza tryb offboard.

· int getExitCode ()

Zwraca wartość kodu wyjścia.

void printExitStatus ()

Wyświetla status wyjścia według kodu w zmiennej exitCode.

Metody prywatne

int performStep (cv::Mat &img)

Wykonuje pojedyncza iterację dla wybranego algorytmu.

bool landingStep (cv::Mat &img)

Wykonuje jeden krok algorytmu lądowania.

mavsdk::Offboard::VelocityBodyYawspeed landingCalcVelo (cv::Mat &img, cv::Point2f arucoPosition)

Oblicza prędkości danej iteracji algorytmu lądowania.

bool avoidingStep (cv::Mat &img)

Wykonuje jeden krok algorytmu lądowania.

mavsdk::Offboard::VelocityBodyYawspeed avoidingCalcVelo (cv::Mat &img, cv::Point2f gatePosition, float angle)

Oblicza prędkości danej iteracji algorytmu przelotu przez bramkę, potrzebne do przelotu przez bramkę.

void checkTimeouts ()

Sprawdza czy nastąpiło przekroczenie zdefiniowanych czasów maksymalnych.

Atrybuty prywatne

• ImageReceiver imgRec

Odbiornik obrazu z kamery.

· FlightControl flightCtrl

Kontrola lotu maszyny.

ObjectDetector objDetect

Wykrywacz obiektów na obrazie z kamery.

· Algorithms currAlg

Obecnie wykonywany algorytm.

• int landingPadID = 68

ID znacznika Aruco lądowiska.

• int gateArucos [4] = {10, 11, 12, 13}

ID znaczników umieszczonych na bramce zgodnie z ruchem wskazówek zegara.

• int exitCode

Kod wyjścia z systemu: 0 - kontynuuj pracę, 1 - wyjście normalne, 2 - niepoprawna wysokość, 3 - nie wykryto znaczników przez zadany czas.

std::chrono::steady_clock::time_point timeoutCounter

Odlicza czas do automatycznego wyjścia z programu w przypadku nie wykrywania znaczników.

3.1.1 Opis szczegółowy

Klasa odpowiedzialna za kompleksową obsługę autonomii lotu bazującej na analizie wizyjnej. W klasie realizowany jest algorytm analizujący obraz odbierany z kamery i w przypadku wykrycia przeszkody wykonanie odpowiedniej reakcji w postaci zmiany trajektorii lotu maszyny. Wykorzystywany jest protokół MavLink do dwukierunkowej komunikacji z autopilotem i przesyłania komend sterujących.

3.1.2 Dokumentacja konstruktora i destruktora

```
3.1.2.1 FlightAutonomy() FlightAutonomy::FlightAutonomy ( )
```

Konstruuje obiekt FlightAutonomy inicjalizując pola domyślnymi wartościami.

```
3.1.2.2 ~FlightAutonomy() FlightAutonomy::~FlightAutonomy ()
```

Destuktor. W trybie debugowania niszczący okno OpenCV.

3.1.3 Dokumentacja funkcji składowych

Oblicza prędkości danej iteracji algorytmu przelotu przez bramkę, potrzebne do przelotu przez bramkę.

Parametry

img	Przetwarzana ramka obrazu.
gatePosition	Pozycja bramki na obrazie.
angle	Kąt pochylenia bramki.

Zwraca

mavsdk::Offboard::VelocityBodyYawspeed

Wykonuje jeden krok algorytmu lądowania.

Parametry

```
img Najnowsza ramka obrazu.
```

Zwraca

true Poprawnie wykonano krok algorytmu.

false Błąd podczas wykonywania kroku algorytmu.

3.1.3.3 checkTimeouts() void FlightAutonomy::checkTimeouts () [private]

Sprawdza czy nastąpiło przekroczenie zdefiniowanych czasów maksymalnych.

3.1.3.4 connect() bool FlightAutonomy::connect ()

Inicjalizuje połączenie z autopilotem poprzez protokół MavLink oraz uruchamia tryb offboard.

Zwraca

true Połączenie zostało nawiązane.

false Wystąpił błąd podczas nawiązywania połączenia.

3.1.3.5 **getExitCode()** int FlightAutonomy::getExitCode ()

Zwraca wartość kodu wyjścia.

Zwraca

int Wartość kodu wyjścia.

3.1.3.6 isReady() bool FlightAutonomy::isReady ()

Sprawdza czy maszyna jest gotowa do wykonywania algorytmu.

Zwraca

true Maszyna jest gotowa.

false Maszyna nie jest gotowa.

Oblicza prędkości danej iteracji algorytmu lądowania.

Parametry

img	Przetwarzana ramka obrazu.
arucoPosition	Pozycja znacznika lądowiska na obrazie.

Zwraca

mavsdk::Offboard::VelocityBodyYawspeed

Wykonuje jeden krok algorytmu lądowania.

Parametry

img		Najnowsza ramka obrazu.
-----	--	-------------------------

Zwraca

true Poprawnie wykonano krok algorytmu.

false Błąd podczas wykonywania kroku algorytmu.

3.1.3.9 **ok()** bool FlightAutonomy::ok ()

Sprawdza czy wszystkie elementy działają prawidłowo i czy nie pojawił się warunek wyjścia.

Zwraca

true Wszystkie komponenty działają prawidłowo i nie pojawił się warunek wyjścia.

false Pojawił się błąd działania lub warunek wyjścia.

Wykonuje pojedyncza iterację dla wybranego algorytmu.

Parametry

img Najnowsza odebrana ramka obrazu.

Zwraca

int Kod zwrócony przez algorytm.

3.1.3.11 printExitStatus() void FlightAutonomy::printExitStatus ()

Wyświetla status wyjścia według kodu w zmiennej exitCode.

Wczytuje przekazane do programu parametry.

Parametry

argc	Liczba parametrów
argv	Wskaźnik na tablicę parametrów

Zwraca

true Poprawnie wczytano parametry. false Nie można wczytać parametrów.

3.1.3.13 **spinOnce()** bool FlightAutonomy::spinOnce ()

Wykonuje pojedynczy krok algorytmu. Powinna być wywoływana jednokrotnie w trakcie każdego obrotu pętli głównej programu.

3.1.3.14 stop() bool FlightAutonomy::stop ()

Kończy działanie algorytmu i wyłącza tryb offboard.

Zwraca

true Pomyślnie zakończono działanie.

false Pojawił się błąd podczas próby zakończenia działania.

3.1.4 Dokumentacja atrybutów składowych

```
3.1.4.1 currAlg Algorithms FlightAutonomy::currAlg [private]
```

Obecnie wykonywany algorytm.

```
3.1.4.2 exitCode int FlightAutonomy::exitCode [private]
```

Kod wyjścia z systemu: 0 - kontynuuj pracę, 1 - wyjście normalne, 2 - niepoprawna wysokość, 3 - nie wykryto znaczników przez zadany czas.

```
3.1.4.3 flightCtrl FlightControl FlightAutonomy::flightCtrl [private]
```

Kontrola lotu maszyny.

```
3.1.4.4 gateArucos int FlightAutonomy::gateArucos[4] = {10, 11, 12, 13} [private]
```

ID znaczników umieszczonych na bramce zgodnie z ruchem wskazówek zegara.

```
3.1.4.5 imgRec ImageReceiver FlightAutonomy::imgRec [private]
```

Odbiornik obrazu z kamery.

3.1.4.6 landingPadID int FlightAutonomy::landingPadID = 68 [private]

ID znacznika Aruco lądowiska.

3.1.4.7 objDetect ObjectDetector FlightAutonomy::objDetect [private]

Wykrywacz obiektów na obrazie z kamery.

3.1.4.8 timeoutCounter std::chrono::steady_clock::time_point FlightAutonomy::timeoutCounter [private]

Odlicza czas do automatycznego wyjścia z programu w przypadku nie wykrywania znaczników.

Dokumentacja dla tej klasy została wygenerowana z plików:

- include/FlightAutonomy/FlightAutonomy.h
- src/FlightAutonomy.cpp

3.2 Dokumentacja klasy FlightControl

#include <FlightControl.h>

Diagram współpracy dla FlightControl:

Metody publiczne

• FlightControl ()=default

Tworzy nowy obiekt klasy FlightControl.

∼FlightControl ()=default

Niszczy dany obiekt klasy FlightControl.

• bool connect ()

Inicjalizuje połączenie z autopilotem.

bool checkStatus ()

Sprawdza stan maszyny pod kątem gotowości do działania systemu.

mavsdk::Telemetry::EulerAngle getEulerAngle ()

Zwraca aktualne kąty pochylenia maszyny.

void setConnectionURL (const std::string url)

Ustawia wartość pola connectionURL.

void printTelem ()

Wyświetla w konsoli podstawowe dane telemetryczne.

• bool observeInAir ()

Sprawdzenie czy maszyna jest w trakcie lotu.

• bool startOffbard ()

Aktywuje kontrolę w trybie offboard i ustawia prędkości ciała na 0.

bool stopOffboard ()

Zatrzymuje kontrolę w trybie offboard.

• bool setOffbardVelo (mavsdk::Offboard::VelocityBodyYawspeed veloBodyYawspeed)

Ustawia prędkości liniowe dla ciała w trybie offboard.

• bool land ()

Wyzwala tryb lądowania w obecnym punkcie.

• float getAltitude ()

Zwraca ostatnią wysokość relatywną maszyny nad ziemią.

mavsdk::Telemetry::FlightMode getFlightMode ()

Zwraca aktualny tryb lotu.

bool checkVelo (mavsdk::Offboard::VelocityBodyYawspeed &velocities)

Sprawdza czy zadane prędkości mieszczą się w dopuszczalnych wartościach i jeżeli nie mieszczą się, wprowadza korektę.

Metody prywatne

std::shared_ptr< mavsdk::System > getSystem ()

Zwraca obecny system.

• void subscribeTelem ()

Subskrybuje wymagane tematy.

Atrybuty prywatne

std::string connectionURL

Adres połączenia protokołu MAVLink.

mavsdk::Mavsdk mavsdk

Pozwala na zarządzanie połączeniami.

 $\bullet \ \, std::shared_ptr{<} \ \, mavsdk::System > \underbrace{system}$

Obiekt reprezentujący system (autopilot)

std::shared ptr< mavsdk::Info > info

Dostarcza informacji o systemie.

std::shared_ptr< mavsdk::Telemetry > telemetry

Pozwala na odbiór danych telemetrycznych.

- std::shared_ptr< mavsdk::Action > action
 - Pozwala na wykonywanie prostych akcji.
- std::shared_ptr< mavsdk::Offboard > offboard

Pozwala na kontrolę w trybie offboard.

TelemetryData telemData

Przechowuje dane telemetryczne odebrane przez MAVLink.

3.2.1 Dokumentacja konstruktora i destruktora

3.2.1.1 FlightControl() FlightControl::FlightControl () [default]

Tworzy nowy obiekt klasy FlightControl.

3.2.1.2 ~FlightControl() FlightControl::~FlightControl () [default]

Niszczy dany obiekt klasy FlightControl.

3.2.2 Dokumentacja funkcji składowych

$\textbf{3.2.2.1} \quad \textbf{checkStatus()} \quad \texttt{bool FlightControl::checkStatus ()}$

Sprawdza stan maszyny pod kątem gotowości do działania systemu.

Zwraca

true Maszyna jest gotowa do wykonywania algorytmu.

false Maszyna nie jest gotowa do wykonywania algorytmu.

```
3.2.2.2 checkVelo() bool FlightControl::checkVelo ( mavsdk::Offboard::VelocityBodyYawspeed & velocities )
```

Sprawdza czy zadane prędkości mieszczą się w dopuszczalnych wartościach i jeżeli nie mieszczą się, wprowadza korektę.

Parametry

velocities Prędkości podlegające sprawdzeniu.

Zwraca

true Wartości prędkości mieszczą się w zadanym przedziale.

false Wartości prędkości nie mieszczą się w zadanym przedziale, wprowadzona zastała korekta.

3.2.2.3 connect() bool FlightControl::connect ()

Inicjalizuje połączenie z autopilotem.

Zwraca

true Pomyślnie nawiązano połącznie.

false Wystąpił błąd podczan nawiązywania połączenia.

3.2.2.4 getAltitude() float FlightControl::getAltitude ()

Zwraca ostatnią wysokość relatywną maszyny nad ziemią.

Zwraca

float Wysokość AGL maszyny.

3.2.2.5 getEulerAngle() mavsdk::Telemetry::EulerAngle FlightControl::getEulerAngle ()

Zwraca aktualne kąty pochylenia maszyny.

Zwraca

mavsdk::Telemetry::EulerAngle Kąty Eulera

$\textbf{3.2.2.6} \quad \textbf{getFlightMode()} \quad \texttt{mavsdk::Telemetry::FlightMode FlightControl::getFlightMode ()} \\$

Zwraca aktualny tryb lotu.

Zwraca

Aktualny tryb lotu.

3.2.2.7 getSystem() std::shared_ptr< mavsdk::System > FlightControl::getSystem () [private]

Zwraca obecny system.

Zwraca

std::shared_ptr<mavsdk::System> Obecny system

3.2.2.8 land() bool FlightControl::land ()

Wyzwala tryb lądowania w obecnym punkcie.

Zwraca

true Pomyślnie aktywowano tryb lądowanie.

false Wystąpił błąd podczas aktywowania trybu lądowania.

 $\textbf{3.2.2.9} \quad \textbf{observeInAir()} \quad \texttt{bool FlightControl::observeInAir ()}$

Sprawdzenie czy maszyna jest w trakcie lotu.

Zwraca

true Maszyna jest w trakcie lotu.

false Maszyna nie jest w trakcie lotu.

3.2.2.10 printTelem() void FlightControl::printTelem ()

Wyświetla w konsoli podstawowe dane telemetryczne.

3.2.2.11 setConnectionURL() void FlightControl::setConnectionURL (const std::string url)

Ustawia wartość pola connectionURL.

Parametry

url Nowy url do ustawienia.

```
3.2.2.12 setOffbardVelo() bool FlightControl::setOffbardVelo ( mavsdk::Offboard::VelocityBodyYawspeed veloBodyYawspeed )
```

Ustawia prędkości liniowe dla ciała w trybie offboard.

Zwraca

true Pomyślnie ustawiono prędkość.

false Wystąpił błąd podczas ustawiania prędkości.

3.2.2.13 startOffbard() bool FlightControl::startOffbard ()

Aktywuje kontrolę w trybie offboard i ustawia prędkości ciała na 0.

Zwraca

true Pomyślnie aktywowano kontrolę offboard.

false Wystąpił błąd podczas aktywowania kontroli offboard.

$\bf 3.2.2.14$ $\bf stopOffboard()$ bool FlightControl::stopOffboard ()

Zatrzymuje kontrolę w trybie offboard.

Zwraca

true Pomyślnie zatrzymano kontrolę offboard.

false Wystąpił błąd podczas zatrzymywania kontroli offboard.

3.2.2.15 subscribeTelem() void FlightControl::subscribeTelem () [private]

Subskrybuje wymagane tematy.

3.2.3 Dokumentacja atrybutów składowych

3.2.3.1 action std::shared_ptr<mavsdk::Action> FlightControl::action [private]

Pozwala na wykonywanie prostych akcji.

3.2.3.2 connectionURL std::string FlightControl::connectionURL [private]

Adres połączenia protokołu MAVLink.

3.2.3.3 info std::shared_ptr<mavsdk::Info> FlightControl::info [private]

Dostarcza informacji o systemie.

3.2.3.4 mavsdk mavsdk::Mavsdk FlightControl::mavsdk [private]

Pozwala na zarządzanie połączeniami.

3.2.3.5 offboard std::shared_ptr<mavsdk::Offboard> FlightControl::offboard [private]

Pozwala na kontrolę w trybie offboard.

3.2.3.6 system std::shared_ptr<mavsdk::System> FlightControl::system [private]

Obiekt reprezentujący system (autopilot)

3.2.3.7 telemData TelemetryData FlightControl::telemData [private]

Przechowuje dane telemetryczne odebrane przez MAVLink.

 $\textbf{3.2.3.8} \quad \textbf{telemetry} \quad \texttt{std::shared_ptr} < \texttt{mavsdk::Telemetry} > \texttt{FlightControl::telemetry} \quad \texttt{[private]}$

Pozwala na odbiór danych telemetrycznych.

Dokumentacja dla tej klasy została wygenerowana z plików:

- include/FlightAutonomy/FlightControl.h
- src/FlightControl.cpp

3.3 Dokumentacja klasy ImageReceiver

Klasa odbierająca stream wideo z podanego źródła.

#include <ImageReceiver.h>

Diagram współpracy dla ImageReceiver:

ImageReceiver

- cap
- deviceID
- apiID
- camlmage
- + ImageReceiver()
- + ImageReceiver()
- + ~ImageReceiver()
- + open()
- + receiveImage()
- + setDevice()
- + getImage()

Metody publiczne

• ImageReceiver ()=default

Konstruuje obiekt ImageReceiver.

ImageReceiver (int deviceID, int apiID=0)

Konstruuje obiekt ImageReceiver wpisując przekazane wartości do pól tworzonego obiektu.

∼ImageReceiver ()=default

Niszczy obiekt ImageReceiver.

• bool open ()

Otwiera wejście kamery.

• void receiveImage ()

Pobiera ramkę z wejścia kamery.

• void setDevice (int _deviceID, int _apiID=0)

Set the Device object.

• cv::Mat getImage ()

Zwraca najnowszą odebraną ramkę obrazu.

Atrybuty prywatne

cv::VideoCapture cap

Obiekt przechwytujący stream video.

• int deviceID = 0

Kamera 0 - domyślna.

• int apiID = cv::CAP_ANY

Domyślnie autodetekcja.

cv::Mat camImage

Najnowsza ramka odebrana z kamer.

3.3.1 Opis szczegółowy

Klasa odbierająca stream wideo z podanego źródła.

3.3.2 Dokumentacja konstruktora i destruktora

```
3.3.2.1 | ImageReceiver() [1/2] | ImageReceiver::ImageReceiver ( ) [default]
```

Konstruuje obiekt ImageReceiver.

Konstruuje obiekt ImageReceiver wpisując przekazane wartości do pól tworzonego obiektu.

```
3.3.2.3 ∼ImageReceiver() ImageReceiver::∼ImageReceiver ( ) [default]
```

Niszczy obiekt ImageReceiver.

3.3.3 Dokumentacja funkcji składowych

```
3.3.3.1 getImage() cv::Mat ImageReceiver::getImage ( )
```

Zwraca najnowszą odebraną ramkę obrazu.

Zwraca

Ramka obrazu.

```
3.3.3.2 open() bool ImageReceiver::open ( )
```

Otwiera wejście kamery.

Zwraca

true Pomyślnie otwarto wejście kamery.

false Wystąpił błąd podczas otwierania wejścia kamery.

```
3.3.3.3 receiveImage() void ImageReceiver::receiveImage ( )
```

Pobiera ramkę z wejścia kamery.

Set the Device object.

Parametry

_deviceID	
_apiID	

3.3.4 Dokumentacja atrybutów składowych

```
3.3.4.1 apilD int ImageReceiver::apiID = cv::CAP_ANY [private]
```

Domyślnie autodetekcja.

3.3.4.2 camimage cv::Mat ImageReceiver::camImage [private]

Najnowsza ramka odebrana z kamer.

3.3.4.3 cap cv::VideoCapture ImageReceiver::cap [private]

Obiekt przechwytujący stream video.

3.3.4.4 deviceID int ImageReceiver::deviceID = 0 [private]

Kamera 0 - domyślna.

Dokumentacja dla tej klasy została wygenerowana z plików:

- include/FlightAutonomy/ImageReceiver.h
- src/ImageReceiver.cpp

3.4 Dokumentacja klasy ObjectDetector

Klasa odpowiedzialna za analizę i wykrywanie oraz określanie pozycji obiektów (w tym znaczników Aruco) znajdujących się na przekazanym obrazie.

```
#include <ObjectDetector.h>
```

Diagram współpracy dla ObjectDetector:

ObjectDetector

- marklds
- markCor
- rejected
- params
- dict
- + ObjectDetector()
- + ObjectDetector()
- + ~ObjectDetector()
- + detectArucoSingle()
- + detectArucoGate()
- calcCenter()
- calcMarkerSize()

Metody publiczne

• ObjectDetector ()

Konstruuje obiekt klasy ObjectDetector inicjalizując listę parametrów i słownik wartościami domyślnymi.

- ObjectDetector (cv::Ptr< cv::aruco::DetectorParameters > _params, cv::Ptr< cv::aruco::Dictionary > _dict)

 Konstruuje obiekt klasy ObjectDetector inicjalizując listę parametrów i słownik przekazanymi wartościami.
- ∼ObjectDetector ()=default

Destruktor domyślny.

cv::Point2f detectArucoSingle (const cv::Mat &img, int arucoID)

Wykrywa znaczniki Aruco na przekazanej ramce obrazu i oblicza koordynaty środka znacznika. Zwraca (-1, -1) jeżeli nie wykryto znacznika.

• std::tuple < cv::Point2f, float, float > detectArucoGate (const cv::Mat &img, int arucoIDs[4])

Wykrywa bramkę składającą się z czterech znaczników i oblicza jej środek. Zwraca (-1, -1, -1) jeżeli nie wykryto bramki.

Metody prywatne

cv::Point2f calcCenter (std::vector< cv::Point2f > corners)

Oblicza środek znacznika aruco na podstawie przekazanego wektora koordynatów wierzchołków.

float calcMarkerSize (std::vector< cv::Point2f > corners, int imgHeight)

Oblicza względny rozmiar znacznika na ramce obrazu.

Atrybuty prywatne

std::vector< int > marklds

Wektor wszystkich wykrytych na obrazie znaczników.

std::vector< std::vector< cv::Point2f >> markCor

Wektor wektorów koordynatów każdego wykrytecho znacznika.

• std::vector< std::vector< cv::Point2f >> rejected

Wektor odrzuconych potencjalnych obiektów będących znacznikami.

cv::Ptr< cv::aruco::DetectorParameters > params

Wskaźnik na parametry algorytmu wykrywającego znaczniki.

• cv::Ptr< cv::aruco::Dictionary > dict

Wskaźnik na słownik znaczników.

3.4.1 Opis szczegółowy

Klasa odpowiedzialna za analizę i wykrywanie oraz określanie pozycji obiektów (w tym znaczników Aruco) znajdujących się na przekazanym obrazie.

3.4.2 Dokumentacja konstruktora i destruktora

```
3.4.2.1 ObjectDetector() [1/2] ObjectDetector::ObjectDetector ( )
```

Konstruuje obiekt klasy ObjectDetector inicjalizując listę parametrów i słownik wartościami domyślnymi.

Konstruuje obiekt klasy ObjectDetector inicjalizując listę parametrów i słownik przekazanymi wartościami.

Parametry

_params	Parametry algorytmu wykrywania znaczników.	
_dict	Słownik którym ma się posługiwać algorytm wykrywania znaczników.	

$\textbf{3.4.2.3} \quad \sim \textbf{ObjectDetector()} \quad \texttt{ObjectDetector::} \sim \texttt{ObjectDetector ()} \quad \texttt{[default]}$

Destruktor domyślny.

3.4.3 Dokumentacja funkcji składowych

```
3.4.3.1 calcCenter() cv::Point2f ObjectDetector::calcCenter ( std::vector< cv::Point2f > corners ) [private]
```

Oblicza środek znacznika aruco na podstawie przekazanego wektora koordynatów wierzchołków.

Parametry

```
corners Wektor zawierający koordynaty kolejnych wierzchołków znacznika.
```

Zwraca

cv::Point2f Obliczony środek znacznika.

Oblicza względny rozmiar znacznika na ramce obrazu.

Parametry

corners	Wektor zawierający koordynaty kolejnych wierzchołków znacznika.
imgHeight	Wysokość analizowanego obrazu.

Zwraca

float Względny rozmiar znacznika dla osi X i Y.

Wykrywa bramkę składającą się z czterech znaczników i oblicza jej środek. Zwraca (-1, -1, -1) jeżeli nie wykryto bramki.

Parametry

img	Ramka obrazu na której mają zostać wykryte znaczniki.
arucoIDs	Tablica identyfikatorów kolejnych znaczników tworzących bramkę.

Zwraca

std::tuple<cv::Point2f, float, float> Koordynaty środka bramki, jej rozmiar, i pochylenie.

```
3.4.3.4 detectArucoSingle() cv::Point2f ObjectDetector::detectArucoSingle ( const cv::Mat & img, int arucoID )
```

Wykrywa znaczniki Aruco na przekazanej ramce obrazu i oblicza koordynaty środka znacznika. Zwraca (-1, -1) jeżeli nie wykryto znacznika.

Parametry

img	Ramka obrazu na której mają zostać wykryte znaczniki.
arucoID	ID znacznika Aruco którego koordynaty mają zostać określone.

Zwraca

cv::Point2f Koordynaty środka znacznika Aruco.

3.4.4 Dokumentacja atrybutów składowych

```
3.4.4.1 dict cv::Ptr<cv::aruco::Dictionary> ObjectDetector::dict [private]
```

Wskaźnik na słownik znaczników.

3.4.4.2 markCor std::vector<std::vector<cv::Point2f> > ObjectDetector::markCor [private]

Wektor wektorów koordynatów każdego wykrytecho znacznika.

```
3.4.4.3 markIds std::vector<int> ObjectDetector::markIds [private]
```

Wektor wszystkich wykrytych na obrazie znaczników.

3.4.4.4 params cv::Ptr<cv::aruco::DetectorParameters> ObjectDetector::params [private]

Wskaźnik na parametry algorytmu wykrywającego znaczniki.

3.4.4.5 rejected std::vector<std::vector<cv::Point2f> > ObjectDetector::rejected [private]

Wektor odrzuconych potencjalnych obiektów będących znacznikami.

Dokumentacja dla tej klasy została wygenerowana z plików:

- include/FlightAutonomy/ObjectDetector.h
- src/ObjectDetector.cpp

3.5 Dokumentacja struktury TelemetryData

Struktura przechowująca dane telemetryczne odebrane z pojazdu przez MavLink.

```
#include <TelemetryData.h>
```

Diagram współpracy dla TelemetryData:

TelemetryData

- + UUID
- + health
- + flightMode
- + isArmed
- + inAir
- + batteryPercent
- + altitude
- + eulerAngle
- + odom

Atrybuty publiczne

• uint64_t UUID = 0

Identyfikator systemu.

• bool health = false

Stan pojazdu. Domyślnie niegotowy do lotu.

• mavsdk::Telemetry::FlightMode flightMode

Tryb lotu.

• bool isArmed = false

Stan uzbrojenia. Domyślnie rozbrojony.

• bool inAir = false

Czy pojazd jest w powietrzu.

• float batteryPercent = -1

Stan naładowania akumulatorów.

• float altitude = 0

Wysokość relatywna względem miejsca startu.

• mavsdk::Telemetry::EulerAngle eulerAngle

Aktualne kąty pochylenia autopilota.

• mavsdk::Telemetry::Odometry odom

Aktualne dane otometryczne.

3.5.1 Opis szczegółowy

Struktura przechowująca dane telemetryczne odebrane z pojazdu przez MavLink.

3.5.2 Dokumentacja atrybutów składowych

3.5.2.1 altitude float TelemetryData::altitude = 0

Wysokość relatywna względem miejsca startu.

3.5.2.2 batteryPercent float TelemetryData::batteryPercent = -1

Stan naładowania akumulatorów.

3.5.2.3 eulerAngle mavsdk::Telemetry::EulerAngle TelemetryData::eulerAngle

Aktualne kąty pochylenia autopilota.

 $\textbf{3.5.2.4} \quad \textbf{flightMode} \quad \texttt{mavsdk::Telemetry::FlightMode} \quad \texttt{TelemetryData::flightMode}$

Tryb lotu.

3.5.2.5 health bool TelemetryData::health = false

Stan pojazdu. Domyślnie niegotowy do lotu.

3.5.2.6 inAir bool TelemetryData::inAir = false

Czy pojazd jest w powietrzu.

3.5.2.7 isArmed bool TelemetryData::isArmed = false

Stan uzbrojenia. Domyślnie rozbrojony.

3.5.2.8 odom mavsdk::Telemetry::Odometry TelemetryData::odom

Aktualne dane otometryczne.

3.5.2.9 UUID uint64_t TelemetryData::UUID = 0

Identyfikator systemu.

Dokumentacja dla tej struktury została wygenerowana z pliku:

• include/FlightAutonomy/TelemetryData.h

4 Dokumentacja plików

4.1 Dokumentacja pliku include/FlightAutonomy/algorithms.h

Ten wykres pokazuje, które pliki bezpośrednio lub pośrednio załączają ten plik:

Wyliczenia

enum Algorithms { arucoLanding = 0 , gateRacing , normalLanding , forwardFlight }
 Zawiera dostępne algorytmy i tryby lotu.

4.1.1 Dokumentacja typów wyliczanych

4.1.1.1 Algorithms enum Algorithms

Zawiera dostępne algorytmy i tryby lotu.

4.2 algorithms.h

Wartości wyliczeń

arucoLanding	Algorytm precyzyjnego lądowania.
gateRacing	Algorytm przelotu przez bramki.
normalLanding	Automatyczne lądowanie w obecnej lokalizacji.
forwardFlight	Tryb lotu do przodu przez określony czas.

4.2 algorithms.h

ldź do dokumentacji tego pliku.

```
1 #pragma once
2
6 enum Algorithms
7 {
8     arucoLanding = 0,
9     gateRacing,
10     normalLanding,
11     forwardFlight
12 };
```

4.3 Dokumentacja pliku include/FlightAutonomy/defines.h

Ten wykres pokazuje, które pliki bezpośrednio lub pośrednio załączają ten plik:

Definicje

• #define FA DEBUG

Tryb debugowania wyświetlający oknie z obrazem odbieranym z kamery.

Zmienne

• const float MAX_VELO_HORI_MS = 1

Maksymalna wartość prędkości w poziomie (osie X i Y) w m/.

• const float MAX VELO VERT MS = 0.75

Maksymalna wartość prędkości w pionie (oś Z) w m/s.

const float MAX YAWSPEED = 30

Maksymalna wartość prędkości kątowej wokół osi Z (yaw) w stopniach na sekundę

• const float MAX FLIGHT ALT = 10

Maksymalna wysokość do której system może zostać uruchomiony.

• const float MID_THRESHOLD = 0.4

Próg do którego przyjmowana jest odległość jako bliska środka obrazu.

const float LAND_ALT = 1

Wysokość AGL w metrach poniżej której następuje przyziemienie w danym miejscu.

• const float RACING ALT = 15

Wysokość AGL w metrach na której musi się znajdować maszyna podczas pokonywania bramki.

• const float IS STRAIGHT ANGLE = 1.25

Kąt poniżej którego przyjmuje się że maszyna jest na wprost bramki.

• const float CAM HFOV = 60

Horyzontalny kąt widzenia kamery w stopniach.

• const float CAM VFOV = 45

Wertykalny kat widzenia kamery w stopniach.

• const int NO_DETECT_TIMEOUT = 10

Czas po którym nastąpi przerwanie działania w przypadku nie wykrywania znaczników.

• const int FORWARD_FLIGHT_TIMEOUT = 7

Czas przez który maszyna leci do przodu aby pokonać przeszkodę

4.3.1 Dokumentacja definicji

4.3.1.1 FA_DEBUG #define FA_DEBUG

Tryb debugowania wyświetlający oknie z obrazem odbieranym z kamery.

4.3.2 Dokumentacja zmiennych

4.3.2.1 CAM_HFOV const float CAM_HFOV = 60

Horyzontalny kat widzenia kamery w stopniach.

4.3.2.2 CAM_VFOV const float CAM_VFOV = 45

Wertykalny kąt widzenia kamery w stopniach.

4.3.2.3 FORWARD_FLIGHT_TIMEOUT const int FORWARD_FLIGHT_TIMEOUT = 7

Czas przez który maszyna leci do przodu aby pokonać przeszkodę

4.3.2.4 IS_STRAIGHT_ANGLE const float IS_STRAIGHT_ANGLE = 1.25

Kąt poniżej którego przyjmuje się że maszyna jest na wprost bramki.

4.3.2.5 LAND_ALT const float LAND_ALT = 1

Wysokość AGL w metrach poniżej której następuje przyziemienie w danym miejscu.

4.3.2.6 MAX_FLIGHT_ALT const float MAX_FLIGHT_ALT = 10

Maksymalna wysokość do której system może zostać uruchomiony.

4.3.2.7 MAX_VELO_HORI_MS const float MAX_VELO_HORI_MS = 1

Maksymalna wartość prędkości w poziomie (osie X i Y) w m/.

4.3.2.8 MAX_VELO_VERT_MS const float MAX_VELO_VERT_MS = 0.75

Maksymalna wartość prędkości w pionie (oś Z) w m/s.

4.3.2.9 MAX_YAWSPEED const float MAX_YAWSPEED = 30

Maksymalna wartość prędkości kątowej wokół osi Z (yaw) w stopniach na sekundę

4.3.2.10 MID_THRESHOLD const float MID_THRESHOLD = 0.4

Próg do którego przyjmowana jest odległość jako bliska środka obrazu.

4.3.2.11 NO_DETECT_TIMEOUT const int NO_DETECT_TIMEOUT = 10

Czas po którym nastąpi przerwanie działania w przypadku nie wykrywania znaczników.

```
4.3.2.12 RACING_ALT const float RACING_ALT = 15
```

Wysokość AGL w metrach na której musi się znajdować maszyna podczas pokonywania bramki.

4.4 defines.h

ldź do dokumentacji tego pliku.

```
1 #pragma once
2
3 #define FA_DEBUG
4
5 const float MAX_VELO_HORI_MS = 1;
6 const float MAX_VELO_VERT_MS = 0.75;
7 const float MAX_YAWSPEED = 30;
8 const float MAX_FLIGHT_ALT = 10;
9 const float MID_THRESHOLD = 0.4;
10 const float LAND_ALT = 1;
11 const float RACING_ALT = 15;
12 const float IS_STRAIGHT_ANGLE = 1.25;
13
14 const float CAM_HFOV = 60;
15 const float CAM_VFOV = 45;
16
17 const int NO_DETECT_TIMEOUT = 10;
18 const int FORWARD_FLIGHT_TIMEOUT = 7;
```

4.5 Dokumentacja pliku include/FlightAutonomy/FlightAutonomy.h

```
#include "FlightAutonomy/defines.h"
#include <opencv2/opencv.hpp>
#include <chrono>
#include "FlightAutonomy/ImageReceiver.h"
#include "FlightAutonomy/FlightControl.h"
#include "FlightAutonomy/ObjectDetector.h"
#include "FlightAutonomy/algorithms.h"
Wykres zależności załączania dla FlightAutonomy.h:
```


Ten wykres pokazuje, które pliki bezpośrednio lub pośrednio załączają ten plik:

Komponenty

class FlightAutonomy

Klasa odpowiedzialna za kompleksową obsługę autonomii lotu bazującej na analizie wizyjnej. W klasie realizowany jest algorytm analizujący obraz odbierany z kamery i w przypadku wykrycia przeszkody wykonanie odpowiedniej reakcji w postaci zmiany trajektorii lotu maszyny. Wykorzystywany jest protokół MavLink do dwukierunkowej komunikacji z autopilotem i przesyłania komend sterujących.

4.6 FlightAutonomy.h

ldź do dokumentacji tego pliku.

```
1 #pragma once
3 #include "FlightAutonomy/defines.h"
5 #include <opencv2/opencv.hpp>
6 #ifdef FA_DEBUG
  #include <opencv2/highgui/highgui.hpp>
8 #endif
10
11 #include "FlightAutonomy/ImageReceiver.h"
#include "FlightAutonomy/FlightControl.h"

13 #include "FlightAutonomy/ObjectDetector.h"
14 #include "FlightAutonomy/algorithms.h"
21 class FlightAutonomy
22
23 #ifdef FA_DEBUG
       const std::string OPENCV_WINDOW = "Cam View";
24
25 #endif
27
       ImageReceiver imgRec;
2.8
       FlightControl flightCtrl;
29
       ObjectDetector objDetect;
       Algorithms currAlg;
30
       int landingPadID = 68;
31
       int gateArucos[4] = {10, 11, 12, 13};
32
34
       std::chrono::steady_clock::time_point timeoutCounter;
35
36 public:
       FlightAutonomy();
40
45
       ~FlightAutonomy();
53
       bool connect();
54
61
       bool isReadv();
62
       bool readArgs(const int argc, char **argv);
```

```
78
       bool spinOnce();
79
       bool ok();
86
87
94
       bool stop();
101
        int getExitCode();
102
106
        void printExitStatus();
107
108 private:
        int performStep(cv::Mat &img);
116
117
126
       bool landingStep(cv::Mat &img);
127
135
       mavsdk::Offboard::VelocityBodyYawspeed landingCalcVelo(cv::Mat &img, cv::Point2f arucoPosition);
136
145
       bool avoidingStep(cv::Mat &img);
155
        mavsdk::Offboard::VelocityBodyYawspeed avoidingCalcVelo(cv::Mat &img, cv::Point2f gatePosition,
       float angle);
156
160
        void checkTimeouts();
161 };
```

4.7 Dokumentacja pliku include/FlightAutonomy/FlightControl.h

```
#include <future>
#include <chrono>
#include <iostream>
#include <thread>
#include <mavsdk/mavsdk.h>
#include <mavsdk/plugins/info/info.h>
#include <mavsdk/plugins/action/action.h>
#include <mavsdk/plugins/telemetry/telemetry.h>
#include <mavsdk/plugins/offboard/offboard.h>
#include "defines.h"
#include "TelemetryData.h"
```

Wykres zależności załączania dla FlightControl.h:

4.8 FlightControl.h 35

Ten wykres pokazuje, które pliki bezpośrednio lub pośrednio załączają ten plik:

Komponenty

· class FlightControl

4.8 FlightControl.h

ldź do dokumentacji tego pliku.

```
1 #pragma once
3 #include <future>
4 #include <chrono>
5 #include <iostream>
6 #include <thread>
7 #include <mavsdk/mavsdk.h>
8 #include <mavsdk/plugins/info/info.h>
9 #include <mavsdk/plugins/action/action.h>
10 #include <mavsdk/plugins/telemetry/telemetry.h>
11 #include <mavsdk/plugins/offboard/offboard.h>
12
13 #include "defines.h"
14 #include "TelemetryData.h"
16 class FlightControl
17 {
       std::string connectionURL;
18
19
20
       mavsdk::Mavsdk mavsdk;
       std::shared_ptr<mavsdk::System> system;
       std::shared_ptr<mavsdk::Info> info;
2.3
       std::shared_ptr<mavsdk::Telemetry> telemetry;
       std::shared_ptr<mavsdk::Action> action;
24
25
       std::shared_ptr<mavsdk::Offboard> offboard;
26
27
       TelemetryData telemData;
28
34
       std::shared_ptr<mavsdk::System> getSystem();
35
40
       void subscribeTelem();
41
42 public:
       FlightControl() = default;
47
51
       ~FlightControl() = default;
52
59
       bool connect();
60
       bool checkStatus();
```

```
68
74
75
       mavsdk::Telemetry::EulerAngle getEulerAngle();
       void setConnectionURL(const std::string url);
81
82
86
       void printTelem();
94
       bool observeInAir();
95
102
        bool startOffbard();
103
110
        bool stopOffboard();
111
118
        bool setOffbardVelo(mavsdk::Offboard::VelocityBodyYawspeed veloBodyYawspeed);
119
126
127
        bool land();
133
        float getAltitude();
134
140
        mavsdk::Telemetry::FlightMode getFlightMode();
141
149
150 };
        bool checkVelo(mavsdk::Offboard::VelocityBodyYawspeed &velocities);
```

4.9 Dokumentacja pliku include/FlightAutonomy/ImageReceiver.h

```
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/videoio.hpp>
Wykres zależności załączania dla ImageReceiver.h:
```


Ten wykres pokazuje, które pliki bezpośrednio lub pośrednio załączają ten plik:

Komponenty

· class ImageReceiver

Klasa odbierająca stream wideo z podanego źródła.

4.10 ImageReceiver.h

ldź do dokumentacji tego pliku.

```
1 #pragma once
3 #include <opencv2/imgproc/imgproc.hpp>
4 #include <opencv2/videoio.hpp>
9 class ImageReceiver
       cv::VideoCapture cap;
12
       int deviceID = 0;
13
       int apiID = cv::CAP_ANY;
       cv::Mat camImage;
14
15
16 public:
       ImageReceiver() = default;
21
2.5
       ImageReceiver(int deviceID, int apiID = 0);
26
30
       ~ImageReceiver() = default;
31
38
       bool open();
39
43
       void receiveImage();
44
       void setDevice(int _deviceID, int _apiID = 0);
51
52
       cv::Mat getImage();
59 };
```

4.11 Dokumentacja pliku include/FlightAutonomy/ObjectDetector.h

```
#include "FlightAutonomy/defines.h"
#include <tuple>
```

```
#include <opencv2/core/mat.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/aruco.hpp>
```

Wykres zależności załączania dla ObjectDetector.h:

Ten wykres pokazuje, które pliki bezpośrednio lub pośrednio załączają ten plik:

Komponenty

· class ObjectDetector

Klasa odpowiedzialna za analizę i wykrywanie oraz określanie pozycji obiektów (w tym znaczników Aruco) znajdujących się na przekazanym obrazie.

4.12 ObjectDetector.h

ldź do dokumentacji tego pliku.

```
1 #pragma once
2 #include "FlightAutonomy/defines.h"
3
4 #include <tuple>
5 #include <opencv2/core/mat.hpp>
6 #include <opencv2/imgproc.hpp>
7 #include <opencv2/aruco.hpp>
8
13 class ObjectDetector
14 {
15     std::vector<int> markIds;
16     std::vector<std::vector<cv::Point2f» markCor;
17     std::vector<std::vector<cv::Point2f» rejected;
18</pre>
```

```
19
       cv::Ptr<cv::aruco::DetectorParameters> params;
       cv::Ptr<cv::aruco::Dictionary> dict;
21
22 public:
      ObjectDetector();
26
34
      ObjectDetector(cv::Ptr<cv::aruco::DetectorParameters> _params, cv::Ptr<cv::aruco::Dictionary> _dict);
35
39
      ~ObjectDetector() = default;
40
      cv::Point2f detectArucoSingle(const cv::Mat &img, int arucoID);
48
49
      std::tuple<cv::Point2f, float, float> detectArucoGate(const cv::Mat &img, int arucoIDs[4]);
59 private:
66
       cv::Point2f calcCenter(std::vector<cv::Point2f> corners);
67
       float calcMarkerSize(std::vector<cv::Point2f> corners, int imgHeight);
75
```

4.13 Dokumentacja pliku include/FlightAutonomy/TelemetryData.h

Ten wykres pokazuje, które pliki bezpośrednio lub pośrednio załączają ten plik:

Komponenty

struct TelemetryData

Struktura przechowująca dane telemetryczne odebrane z pojazdu przez MavLink.

4.14 TelemetryData.h

ldź do dokumentacji tego pliku.

```
1 #pragma once
3 #include <mavsdk/plugins/telemetry/telemetry.h>
8 struct TelemetryData
        uint64_t UUID = 0;
bool health = false;
10
11
        mavsdk::Telemetry::FlightMode flightMode;
12
13
        bool isArmed = false;
bool inAir = false;
14
15
16
17
18
        float batteryPercent = -1;
19
        float altitude = 0;
20
        mavsdk::Telemetry::EulerAngle eulerAngle;
22
23 };
        mavsdk::Telemetry::Odometry odom;
```

4.15 Dokumentacja pliku src/FlightAutonomy.cpp

#include "FlightAutonomy/FlightAutonomy.h" Wykres zależności załączania dla FlightAutonomy.cpp:

4.16 Dokumentacja pliku src/FlightControl.cpp

#include "FlightAutonomy/FlightControl.h"
Wykres zależności załączania dla FlightControl.cpp:

4.17 Dokumentacja pliku src/ImageReceiver.cpp

#include "FlightAutonomy/ImageReceiver.h"
Wykres zależności załączania dla ImageReceiver.cpp:

4.18 Dokumentacja pliku src/main.cpp

#include "FlightAutonomy/FlightAutonomy.h" Wykres zależności załączania dla main.cpp:

Funkcje

- void printHelp (std::string progName)
- int main (int argc, char **argv)

4.18.1 Dokumentacja funkcji

4.18.1.2 printHelp() void printHelp (
$$std::string progName)$$

4.19 Dokumentacja pliku src/ObjectDetector.cpp

#include "FlightAutonomy/ObjectDetector.h"
Wykres zależności załączania dla ObjectDetector.cpp:

Indeks

\sim FlightAutonomy	currAlg
FlightAutonomy, 5	FlightAutonomy, 9
~FlightControl	C ,
FlightControl, 13	defines.h
~ImageReceiver	CAM_HFOV, 30
ImageReceiver, 19	CAM_VFOV, 30
~ObjectDetector	FA DEBUG, 30
ObjectDetector, 23	FORWARD_FLIGHT_TIMEOUT, 30
Objectibation, 20	IS STRAIGHT ANGLE, 31
action	LAND ALT, 31
FlightControl, 16	MAX_FLIGHT_ALT, 31
Algorithms	MAX VELO HORI MS, 31
algorithms.h, 28	MAX_VELO_VERT_MS, 31
algorithms.h	MAX YAWSPEED, 31
Algorithms, 28	MID THRESHOLD, 31
arucoLanding, 29	NO_DETECT_TIMEOUT, 31
-	RACING ALT, 32
forwardFlight, 29	- · · ·
gateRacing, 29	detectArucoGate
normalLanding, 29	ObjectDetector, 24
altitude	detectArucoSingle
TelemetryData, 27	ObjectDetector, 24
apilD	deviceID
ImageReceiver, 21	ImageReceiver, 21
arucoLanding	dict
algorithms.h, 29	ObjectDetector, 25
avoidingCalcVelo	
FlightAutonomy, 5	eulerAngle
avoidingStep	TelemetryData, 27
FlightAutonomy, 5	exitCode
	FlightAutonomy, 10
batteryPercent	EA DEDUG
TelemetryData, 27	FA_DEBUG
	defines.h, 30
calcCenter	FlightAutonomy, 2
ObjectDetector, 23	~FlightAutonomy, 5
calcMarkerSize	avoidingCalcVelo, 5
ObjectDetector, 24	avoidingStep, 5
CAM_HFOV	checkTimeouts, 7
defines.h, 30	connect, 7
CAM_VFOV	currAlg, 9
defines.h, 30	exitCode, 10
camImage	FlightAutonomy, 5
ImageReceiver, 21	flightCtrl, 10
сар	gateArucos, 10
ImageReceiver, 21	getExitCode, 7
checkStatus	imgRec, 10
FlightControl, 13	isReady, 7
checkTimeouts	landingCalcVelo, 7
FlightAutonomy, 7	landingPadID, 10
checkVelo	landingStep, 8
FlightControl, 13	objDetect, 10
connect	ok, 8
FlightAutonomy, 7	performStep, 8
FlightControl, 14	printExitStatus, 9
connectionURL	readArgs, 9
FlightControl, 16	spinOnce, 9
i lightControl, To	spirionce, y

44 INDEKS

stop, 9	apilD, 21
timeoutCounter, 10	camlmage, 21
FlightControl, 11	cap, 21
\sim FlightControl, 13	deviceID, 21
action, 16	getlmage, 19
checkStatus, 13	ImageReceiver, 19
checkVelo, 13	open, 19
connect, 14	receivelmage, 19
connectionURL, 16	setDevice, 20
FlightControl, 13	imgRec
getAltitude, 14	FlightAutonomy, 10
getEulerAngle, 14	inAir
getFlightMode, 14	TelemetryData, 27
getSystem, 14	include/FlightAutonomy/algorithms.h, 28, 29
info, 17	include/FlightAutonomy/defines.h, 29, 32
land, 15	include/FlightAutonomy/FlightAutonomy.h, 32, 33
mavsdk, 17	include/FlightAutonomy/FlightControl.h, 34, 35
observeInAir, 15	include/FlightAutonomy/ImageReceiver.h, 36, 37
offboard, 17	include/FlightAutonomy/ObjectDetector.h, 37, 38
printTelem, 15	include/FlightAutonomy/TelemetryData.h, 39, 40
setConnectionURL, 15	info
setOffbardVelo, 15	FlightControl, 17
startOffbard, 16	IS STRAIGHT ANGLE
stopOffboard, 16	defines.h, 31
•	isArmed
subscribeTelem, 16	
system, 17	TelemetryData, 27
telemData, 17	isReady
telemetry, 17	FlightAutonomy, 7
flightCtrl	land
FlightAutonomy, 10	
flightMode	FlightControl, 15
TelemetryData, 27	LAND_ALT
FORWARD_FLIGHT_TIMEOUT	defines.h, 31
defines.h, 30	landingCalcVelo
forwardFlight	FlightAutonomy, 7
algorithms.h, 29	landingPadID
	FlightAutonomy, 10
gateArucos	landingStep
FlightAutonomy, 10	FlightAutonomy, 8
gateRacing	
algorithms.h, 29	main
getAltitude	main.cpp, 42
FlightControl, 14	main.cpp
getEulerAngle	main, 42
FlightControl, 14	printHelp, 42
getExitCode	markCor
FlightAutonomy, 7	ObjectDetector, 25
getFlightMode	marklds
FlightControl, 14	ObjectDetector, 25
getlmage	mavsdk
ImageReceiver, 19	FlightControl, 17
getSystem	MAX_FLIGHT_ALT
FlightControl, 14	defines.h, 31
,	MAX_VELO_HORI_MS
health	defines.h, 31
TelemetryData, 27	MAX_VELO_VERT_MS
•	defines.h, 31
ImageReceiver, 18	MAX YAWSPEED
\sim ImageReceiver, 19	defines.h, 31
-	, -

INDEKS 45

MID_THRESHOLD defines.h, 31	spinOnce FlightAutonomy, 9
NO_DETECT_TIMEOUT defines.h, 31	src/FlightAutonomy.cpp, 41 src/FlightControl.cpp, 41 src/ImageReceiver.cpp, 41
normalLanding algorithms.h, 29	src/main.cpp, 42 src/ObjectDetector.cpp, 42
objDetect FlightAutonomy, 10	startOffbard FlightControl, 16 stop
ObjectDetector, 22 ~ObjectDetector, 23 calcCenter, 23 calcMarkerSize, 24	FlightAutonomy, 9 stopOffboard FlightControl, 16 subscribeTelem
detectArucoGate, 24 detectArucoSingle, 24 dict, 25	FlightControl, 16 system FlightControl, 17
markCor, 25 markIds, 25 ObjectDetector, 23	telemData FlightControl, 17
params, 25 rejected, 25 observeInAir	telemetry FlightControl, 17
FlightControl, 15 odom	TelemetryData, 26 altitude, 27 batteryPercent, 27
TelemetryData, 27 offboard FlightControl, 17	eulerAngle, 27 flightMode, 27 health, 27
ok FlightAutonomy, 8	inAir, 27 isArmed, 27
ImageReceiver, 19	odom, 27 UUID, 28 timeoutCounter
params ObjectDetector, 25	FlightAutonomy, 10
performStep FlightAutonomy, 8 printExitStatus	UUID TelemetryData, 28
FlightAutonomy, 9 printHelp	
main.cpp, 42 printTelem FlightControl, 15	
RACING_ALT defines.h, 32	
readArgs FlightAutonomy, 9	
receiveImage ImageReceiver, 19 rejected	
ObjectDetector, 25	
setConnectionURL FlightControl, 15 setDevice	
ImageReceiver, 20 setOffbardVelo	
FlightControl, 15	