# Issues with text: Sparse encoding of tokens

A token is an element of the finite set  ${f V}$ 

- It is thus a categorical variable
- ullet Which is naturally represented by a vector of length  $||\mathbf{V}||$ 
  - One Hot Encoded (OHE)

So, in theory, we already know how to perform NLP

- Encode text as a sequence of OHE vectors
- Apply techniques (e.g., RNN) specialzed to sequences

This approach may be both

- Impractical
- Sub-optimal: not taking advantage of properties inherent in text

Let us suppose that we had a function that maps a token to a OHE vector  $\operatorname{rep}:\operatorname{token}\mapsto\mathbb{R}^{n_{\mathbf{V}}}$ 

Thus

$$\operatorname{rep}(\mathbf{w}_{(t)})$$

is the OHE vector for  $\mathbf{w}_{(t)} \in \mathbf{V}$ 

The first issue we encounter:

- $oldsymbol{\cdot}$   $oldsymbol{V}$  is big! A decent vocabulary is easily thousands of token
- ullet So the OHE is a long vector ( $||\mathbf{V}||$ )

Thus, OHE may not be practical

It is also potentially failing to take advantage of relationships between tokens

• There is clearly a relationship between tokens  $\frac{dog,dogs}{but \textit{no}} \ \text{relationship between their OHE vectors} \\ \text{rep}(dog), \text{rep}(dogs)$ 

### OHE vectors are sparse

- All zero
- Except for a single element

The sparsity both wastes space and is the cause for not capturing potential relationships between words

We will subsequently demonstrate a dense encoding of tokens that solves both issues.

# Issues with text: variable length sequences

Another issue with text: the sequence length is variable, not constant.

The reason this may be an issue

- Classical Machine Learning models (e.g. Logistic Regression) can only deal with fixed length inputs
- The final layer in a Neural Network is usually an implementation of a Classical model

Fortunately, we can easily identify two solutions to this issue.

Both involve reducing a variable length sequence to a fixed length encoding.

Once tokens have been encoded as a sequence of numeric vectors the solutions are

- Replace the variable number of tokens by a summary statistic (sum/average) over the tokens
- Use the final state of an RNN as an encoding of the sequence

As a notational convenience we will extend  ${\bf rep}$  to sequences  ${\bf w}$ :

$$\operatorname{rep}(\mathbf{w}) = \left[\operatorname{rep}(\mathbf{w}_{(t)})|1 \leq t \leq ||\mathbf{w}||
ight]$$

# Traditional methods for summarizing a variable length sequence

The simplest way to derive a fixed length encoding of a sequence is by a summarization operation.

This is the approach that was pursued in "traditional" (pre-Neural Network) NLP.

## Recall what a Global Pooling layer does

- Each row is a feature over multiple spatial/temporal locations (tokens in the sequence)
- Is transformed to a single value
- Preserving the feature/channel dimension

#### Global Pooling 3 features over spatial locations to 3 features over one location

#### Where does feature occur in input

| Kernel 1                                                               | Machine<br>Learning               | Learning<br>is | is<br>easy | easy<br>not | not<br>hard |  |  |  |
|------------------------------------------------------------------------|-----------------------------------|----------------|------------|-------------|-------------|--|--|--|
| Pattern: "Machine Learning"                                            |                                   |                |            |             |             |  |  |  |
| Kernel 2                                                               | Machine<br>Learning               | Learning<br>is | is<br>easy | easy<br>not | not<br>hard |  |  |  |
| Pattern: "Is easy"                                                     |                                   |                |            |             |             |  |  |  |
| Kernel 3                                                               | Machine<br>Learning               | Learning<br>is | is<br>easy | easy<br>not | not<br>hard |  |  |  |
| Pattern: "not hard"  Global Pooling  Feature exists somewhere in input |                                   |                |            |             |             |  |  |  |
| Machine Learning                                                       | Machine Learning is easy not hard |                |            |             |             |  |  |  |
| is easy                                                                | Machine Learning is easy not hard |                |            |             |             |  |  |  |
| not hard                                                               | Machine Learning is easy not hard |                |            |             |             |  |  |  |

Unfortunately, the summarization (sum/average) of a sequence

• Will lose the ordering relationship among the tokens

"Machine Learning is easy not hard"

"Machine Learning is hard not easy"

both have the same summary.



## Bag of Words (BOW): Pooling

We define a reduction operation CBOW

- convert a sequence  $\mathbf{w}$  of  $||\mathbf{w}||$  elements
- ullet each element of length  $||\operatorname{rep}(\mathbf{w}_{(t)})||$
- to a fixed length vector of length  $||\mathrm{rep}(\mathbf{w}_{(t)})||$

This will necessarily lose token order: this method is called Bag of Words (BOW)

There are many operators to achieve the reduction, which we will group under the name pooling

### Sum/Average

$$ext{CBOW}(\mathbf{w}) = \sum_{t=1}^{||\mathbf{w}||} ext{rep}(\mathbf{w}_{(t)})$$

Since  $\mathbf{w}_{(t)}$  is a vector, the addition operation is element-wise.

So the composite vector for the sequence is the sum of the vectors of each element in the sequence.

We can easily turn the Sum into an average by dividing by  $||\mathbf{w}||$ 

#### **Count vectorization:**

In the special case that

$$\operatorname{rep}(\mathbf{w}_{(t)}) = \operatorname{OHE}(\mathbf{w}_{(t)})$$

 $\mathrm{CBOW}(\mathbf{w})_j$  is equal to the number of occurrences in sequence  $\mathbf{w}$  of the  $j^{th}$  word in  $\mathbf{V}$ .

This is often called Count Vectorization.

#### TF-IDF

Count Vectorization is simple but ignores a basic fact or language

ullet Word "importance" is often inversely correlated with frequency in  ${f V}$ 

In English:

- The words "a", "the" and "is" are extremely high frequency (so high counts in most sequences **w**).
- But are so common as to convey little meaning

On the other hand, a rare word (or sequence of words) may be very distinctive ("Machine Learning").

#### Term Frequency, Inverse Document Frequency (TF-IDF)

- Is based on the idea that a word that is infequent in the wide corpus (collection of text)
- But is frequent in a particular document (one text in the collection) in the corpus is very meaningul in the context of the document.

#### So a document

- In which "Machine Learning" occured a disproportionately high (relative to the broad corpus) number of times
- Is likely to indicate that the document is dealing with the subject of Machine Learning.

Note A similar idea is behind many Web search algorithms (Google).

TF-IDF is similar to the Count Vectorizer, but with modified counts that are the product of

- The frequency of a token within a single document
- The inverse of the frequency of the token relative to all documents
- v is a token
- d is a document (collection of tokens) in set of documents D  $\operatorname{tf}(v,d) = \operatorname{frequency} \operatorname{of} \operatorname{word} v \operatorname{in} \operatorname{document} d \qquad (\operatorname{Term} \operatorname{Frequenc} \operatorname{df}(v) = \operatorname{number} \operatorname{of} \operatorname{documents} \operatorname{that} \operatorname{contain} \operatorname{word} v$   $\operatorname{idf}(v) = \log(\frac{||D||}{\operatorname{df}(v)}) + 1 \qquad \qquad \operatorname{Inverse} \operatorname{Document}$

$$\operatorname{tf-idf}(v,d) = \operatorname{tf}(v,d) * \operatorname{idf}(v)$$

Thus,  $\operatorname{tf-idf}(v, d)$  is high (token v is important to document d):

- ullet For tokens v that occur infrequently in the corpus (resulting in high inverse:  $\mathrm{idf}(v)$ )
- ullet But which occur frequently in a particular document  $d{:}\operatorname{tf}(v,d)$

# Using an RNN to obtain a fixed length encoding of a variable length sequence

As a refresher, here is our picture of the RNN API:



Although we don't know exactly what  $\mathbf{h}_{(t)}$  represents, recall that

ullet It is a summary of the prefix of input  ${f x}$  ending at step t

Thus  $h_{(T)}$  is a summary of sequence  $[\mathbf{x}_{(1)},\ldots,\mathbf{x}_{(T)}]$ 

It will be typical to see a Neural Network for an NLP task having an architecture

- That uses an RNN to process input x
- Followed by other Layers
- . Culminating in "head" layer  $m{L}$  implementing a Classical Layer (e.g., Logistic Regression)



Classifier

## Conclusion

Text data is characterized by

- Tokens that are categorical variables
- Variable length sequences of tokens

We presented some "obvious" methods to deal with both issues, but they clearly have limitations.

We will move beyond the limitations in a subsequent module.

```
In [2]: print("Done")
```

Done