Revisão de Eletricidade Circuitos Elétricos

O que mais importa?

- Tensão
- Corrente
- Potência
- Energia

Ferramental básico

- Funções (plano x, y)
- Derivadas e integrais
- Funções senoidais
- Série e Transformada de

Fourier

Bateria descarregada!

- a) Qual dos carros está com a bateria descarregada?
- b) Considere que i = 10 A. Se a conexão ficar ativa por 1 minuto, quanta energia será transferida?

1ª Lei de Kirchhoff (Lei das Correntes ou Leis dos Nós)

Em um nó, a soma das correntes elétricas que entram é igual à soma das correntes que saem, ou seja, um nó não acumula carga:

$$\sum_{k=1}^{N} i_{k} = 0 \qquad \text{Ex.:} \qquad i_{1}$$

$$i_{1} + i_{4} = i_{2} + i_{3}$$

Isso é devido ao Princípio da Conservação da Carga Elétrica, o qual estabelece que num ponto qualquer a quantidade de carga elétrica que chega deve ser exatamente igual à quantidade que sai.

2ª Lei de Kirchhoff (Lei das Tensões ou Leis das Malhas)

A soma algébrica das tensões em um percurso fechado é nula:

2ª Lei de Kirchhoff (Lei das Tensões ou Leis das Malhas)

A soma algébrica das tensões em um percurso fechado é nula:

Quanto vale *i*?

Exercício: Calcule i e v_{ab} ?

Outras Ferramentas (de análise)

- Divisor de tensão
- Divisor de corrente
- Máxima transferência de potência
- Casamento de impedâncias

Considerações Práticas

Resistores

Resistores

Capacitores

Capacitores de placas paralelas

Eq. Física (estrutural)

$$Q = C.V$$
 Eq. elétrica

Capacitores eletrolíticos

Capacitores reais

C – capacitância nominal

ESR – resistência equivalente série

ESL – indutância equivalente série

Rp – resistência equivalente paralela

Capacitores reais – resposta em frequência

Capacitores em circuitos digitais

Carga e descarga

1 - Carga

2 - Descarga

2 - Descarga

2 - Descarga

3 – Carga & Descarga

Simulação com Systemvision

