

AKADEMIA GÓRNICZO-HUTNICZA
IM. STANISŁAWA STASZICA W KRAKOWIE

Praca inżynierska

Projekt i realizacja sterowania napędami z wykorzystaniem bloków PLCopen

Dyplomant: Kamil Pieprzycki

Promotor: Dr Inż. Krzysztof Lalik

Wydział Inżynierii Mechanicznej i Robotyki Katedra Automatyzacji Procesów

Kraków, WIMiR

Cel i zakres pracy

Budowa wieloosiowego układu sterowania napędami oraz zaprezentowanie sposobów ich konfiguracji i uruchomienia przy wykorzystaniu środowisk programistycznych TIA Portal oraz STARTER.

W zakresie pracy zawiera się:

- utworzenie i modyfikacja projektu elektrycznego,
- > utworzenie i modyfikacja projektu mechanicznego,
- konfiguracja i uruchomienie napędów,
- stworzenie projektu w TIA Portal,
- konfiguracja funkcji bezpieczeństwa,
- przykłady sterowania prędkością i pozycją serwomechanizmów.

Technika serwo

- Motion Control poddziedzina automatyki realizująca zadania sterowania ruchem.
- W aplikacjach wymagających regulacji prędkości, pozycji i momentu obrotowego swoje zastosowanie znajdą serwonapędy.
- W oprogramowaniu TIA Portal sterowanie ruchem możliwe jest poprzez wysyłanie instrukcji od sterownika PLC do napędu.

Układ wieloosiowego sterowania napędami – projekt przenośnika portalowego

Projekt elektryczny – Dobór komponentów

Główne komponenty:

- Sterownik PLC SIMATIC S7-1500T
- Serwonapęd SINAMICS S120
- Serwomotor z przekładnią walcową
- Serwonapęd SINAMICS S210
- Serwomotor z przekładnią planetarną

Utworzenie projektu elektrycznego i uruchomienie napędów

Projekt mechaniczny

Realizacja bezpiecznej pracy

Wykorzystanie bloków funkcyjnych MC do realizacji ruchu w trybie JOG

Wykorzystanie bloków funkcyjnych MC do realizacji ruchu w trybie pozycjonującym

Wykorzystanie bloków funkcyjnych MC do realizacji zatrzymywania i resetowania napędów

Odczyt wartości fizycznych napędów

Panel sterowania

Prezentacja pracy przenośnika

Podsumowanie

Cele pracy zostały osiągnięte

- Zrealizowano projekt układu sterowania
- Skonfigurowano i uruchomiono serwonapędy

W przyszłości układ przenośnika portalowego będzie dalej rozwijany o zaawansowane systemy sterowania

Dziękuję za uwagę