GigaDevice Semiconductor Inc.

GD32F310xx Arm[®] Cortex[®]-M4 32-bit MCU

Datasheet

Revision 1.8

(Dec. 2023)

Table of Contents

T	able d	of Contents	.1
L	ist of	Figures	. 4
L	ist of	Tables	. 5
1	Ge	neral description	. 7
2		vice overview	
	2.1	Device information	
	2.2	Block diagram	
		-	
	2.3	Pinouts and pin assignment	
	2.4	Memory map	14
	2.5	Clock tree	16
	2.6	Pin definitions	17
	2.6.	1 GD32F310Cx LQFP48 pin definitions	17
	2.6.	2 GD32F310Kx LQFP32 pin definitions	20
	2.6.	3 GD32F310KxU6 QFN32 pin definitions	22
	2.6.	4 GD32F310Gx QFN28 pin definitions	24
	2.6.	5 GD32F310FxP6 TSSOP20 pin definitions	26
	2.6.	6 GD32F310xx pin alternate functions	28
3	Fu	nctional description	32
	3.1	Arm® Cortex®-M4 core	32
	3.2	On-chip memory	32
	3.3	Clock, reset and supply management	33
	3.4	Boot modes	
	3.5		34
		Analog to digital converter (ADC)	
3.6			
	3.7	DMA	35
3.8		General-purpose inputs/outputs (GPIOs)	35
	3.9	Timers and PWM generation	35
	3.10	Real time clock (RTC)	36
	3.11	Inter-integrated circuit (I2C)	37
	3 12	Serial peripheral interface (SPI)	37

	3.13	Universal synchronous asynchronous receiver transmitter (USART)	38
	3.14	Inter-IC sound (I2S)	38
	3.15	Debug mode	38
	3.16	Package and operation temperature	38
4	Ele	ctrical characteristics	39
	4.1	Absolute maximum ratings	39
	4.2	Operating conditions characteristics	39
	4.3	Power consumption	41
	4.4	EMC characteristics	46
	4.5	Power supply supervisor characteristics	48
	4.6	Electrical sensitivity	48
	4.7	External clock characteristics	49
	4.8	Internal clock characteristics	51
	4.9	PLL characteristics	53
	4.10	Memory characteristics	53
	4.11	NRST pin characteristics	54
	4.12	GPIO characteristics	54
	4.13	ADC characteristics	56
	4.14	Temperature sensor characteristics	58
	4.15	I2C characteristics	58
	4.16	SPI characteristics	59
	4.17	I2S characteristics	61
	4.18	USART characteristics	63
	4.19	TIMER characteristics	63
	4.20	WDGT characteristics	63
	4.21	Parameter conditions	64
5	Pac	ckage information	65
	5.1	LQFP48 package outline dimensions	65
	5.2	LQFP32 package outline dimensions	67
	5.3	QFN32 package outline dimensions	69
	5.4	QFN28 package outline dimensions	71
	5.5	TSSOP20 package outline dimensions	73

	5.6	Thermal characteristics	75
b	Or	dering informationdering information	11
7	Re	vision history	78

List of Figures

Figure 2-1. GD32F310xx block diagram	10
Figure 2-2. GD32F310Cx LQFP48 pinouts	11
Figure 2-3. GD32F310Kx LQFP32 pinouts	11
Figure 2-4. GD32F310KxU6 QFN32 pinouts	12
Figure 2-5. GD32F310Gx QFN28 pinouts	12
Figure 2-6. GD32F310FxP6 TSSOP20 pinouts	13
Figure 2-7. GD32F310xx clock tree	16
Figure 4-1. Recommended power supply decoupling capacitors ⁽¹⁾	40
Figure 4-2. Typical supply current consumption in Run mode	45
Figure 4-3. Typical supply current consumption in Sleep mode	45
Figure 4-4. Recommended external NRST pin circuit ⁽¹⁾	54
Figure 4-5. I/O port AC characteristics definition	56
Figure 4-6. I2C bus timing diagram	59
Figure 4-7. SPI timing diagram - master mode	60
Figure 4-8. SPI timing diagram - slave mode	60
Figure 4-9. I2S timing diagram - master mode	62
Figure 4-10. I2S timing diagram - slave mode	62
Figure 5-1. LQFP48 package outline	65
Figure 5-2. LQFP48 recommended footprint	66
Figure 5-3. LQFP32 package outline	67
Figure 5-4. LQFP32 recommended footprint	68
Figure 5-5. QFN32 package outline	69
Figure 5-6. QFN32 recommended footprint	70
Figure 5-7. QFN28 package outline	71
Figure 5-8. QFN28 recommended footprint	72
Figure 5-9. TSSOP20 package outline	73
Figure 5-10. TSSOP20 recommended footprint	74

List of Tables

Table 2-1. GD32F310xx devices features and peripheral list	8
Table 2-2. GD32F310xx devices features and peripheral list (continued)	9
Table 2-3. GD32F310xx memory map	14
Table 2-4. GD32F310Cx LQFP48 pin definitions	17
Table 2-5. GD32F310Kx LQFP32 pin definitions	20
Table 2-6. GD32F310KxU6 QFN32 pin definitions	22
Table 2-7. GD32F310Gx QFN28 pin definitions	24
Table 2-8. GD32F310FxP6 TSSOP20 pin definitions	26
Table 2-9. Port A alternate functions summary	28
Table 2-10. Port B alternate functions summary	29
Table 2-11. Port C alternate functions summary	30
Table 2-12. Port D alternate functions summary	30
Table 2-13. Port F alternate functions summary	31
Table 4-1. Absolute maximum ratings ⁽¹⁾⁽⁴⁾	39
Table 4-2. DC operating conditions	39
Table 4-3. Clock frequency ⁽¹⁾	40
Table 4-4. Operating conditions at Power up/ Power down(1)	40
Table 4-5. Start-up timings of Operating conditions ⁽¹⁾⁽²⁾⁽³⁾	40
Table 4-6. Power saving mode wakeup timings characteristics(1)(2)	
Table 4-7.Power consumption characteristics(2)(3)(3)(4)(5)(6)	41
Table 4-8. Peripheral current consumption characteristics ⁽¹⁾	
Table 4-9. EMS characteristics ⁽¹⁾	46
Table 4-10. EMI characteristics ⁽¹⁾	47
Table 4-11. Power supply supervisor characteristics	
Table 4-12. ESD characteristics ⁽¹⁾	
Table 4-13. Static latch-up characteristics ⁽¹⁾	49
Table 4-14. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics	49
Table 4-15. High speed external user clock characteristics (HXTAL in bypass mode)	49
Table 4-16. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics .	50
Table 4-17. Low speed external user clock characteristics (LXTAL in bypass mode)	50
Table 4-18. High speed internal clock (IRC8M) characteristics	51
Table 4-19. Low speed internal clock (IRC40K) characteristics	51
Table 4-20. High speed internal clock (IRC28M) characteristics	52
Table 4-21. High speed internal clock (IRC48M) characteristics	52
Table 4-22. PLL characteristics	
Table 4-23 Flash memory characteristics ⁽¹⁾	
Table 4-24. NRST pin characteristics	
Table 4-25. I/O port DC characteristics ⁽¹⁾⁽³⁾	
Table 4-26. I/O port AC characteristics ⁽¹⁾⁽²⁾	
Table 4-27. ADC characteristics	56

Table 4-28. ADC R _{AIN} max for f _{ADC} = 36 MHz ⁽¹⁾	57
Table 4-29. ADC dynamic accuracy at f _{ADC} = 14 MHz ⁽¹⁾	57
Table 4-30. ADC dynamic accuracy at f _{ADC} = 28 MHz ⁽¹⁾	57
Table 4-31.ADC dynamic accuracy at f _{ADC} = 36 MHz ⁽¹⁾	57
Table 4-32. ADC static accuracy at f _{ADC} = 14 MHz ⁽¹⁾	57
Table 4-33. Temperature sensor characteristics ⁽¹⁾	58
Table 4-34. I2C characteristics ⁽¹⁾⁽²⁾⁽³⁾	58
Table 4-35. Standard SPI characteristics	59
Table 4-36. I2S characteristics	61
Table 4-37. USART characteristics ⁽¹⁾	63
Table 4-38. TIMER characteristics ⁽¹⁾	63
Table 4-39. FWDGT min/max timeout period at 40 kHz (IRC40K) ⁽¹⁾	63
Table 4-40. WWDGT min-max timeout value at 36 MHz (f _{PCLK1}) ⁽¹⁾	64
Table 5-1. LQFP48 package dimensions	65
Table 5-2. LQFP32 package dimensions	67
Table 5-3. QFN32 package dimensions	69
Table 5-4. QFN28 package dimensions	71
Table 5-5. TSSOP20 package dimensions	
Table 5-6. Package thermal characteristics ⁽¹⁾	75
Table 6-1. Part ordering code for GD32F310xx devices	77
Table 7-1. Revision history	78

1 General description

The GD32F310xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the Arm® Cortex®-M4 RISC core with best cost-performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex®-M4 core features implement a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides a powerful trace technology for enhanced application security and advanced debug support.

The GD32F310xx device incorporates the Arm® Cortex®-M4 32-bit processor core operating at 72 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 64 KB on-chip Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC, up to five general 16-bit timers, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, an I2S, two USARTs.

The device operates from a 2.6 to 3.6 V power supply and available in -40 to +85 °C temperature range for grade 6 devices, or -40 to +105 °C temperature range for grade 7 devices. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32F310xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

2 Device overview

2.1 Device information

Table 2-1. GD32F310xx devices features and peripheral list

Part Number		GD32F310xx							
		F4P6	F6P6	F8P6	G8U6	K6T6	K8T6	K8U6	C8T6
	Code area (KB)	16	32	64	64	32	64	64	64
Flash	Data area (KB)	0	0	0	0	0	0	0	0
	Total (KB)	16	32	64	64	32	64	64	64
	SRAM (KB)	4	6	8	8	6	8	8	8
	General timer	4	4	4	5	4	5	5	5
	(16-bit)	(2,13,15,16)	(2,13,15,16)	(2,13,15,16)	(2,13-16)	(2,13,15,16)	(2,13-16)	(2,13-16)	(2,13-16)
	Advanced	1	1	1	1	1	1	1	1
Timers	timer (16-bit)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Ţ	SysTick	1	1	1	1	1	1	1	1
	Watchdog	2	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1	1
	USART	1	2	2	2	2	2	2	2
		(0)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)
/ity	I2C	1	1	2	2	1	2	2	2
cti		(0)	(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)	(0-1)
Connectivity	SPI	1	1	2	2	1	2	2	2
0		(0)	(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)	(0-1)
	I2S	1	1	1	1	1	1	1	1
	GPIO	15	15	15	23	25	25	27	39
	EXTI	12	12	12	14	16	16	16	16
	Units	1	1	1	1	1	1	1	1
ADC	Channels (External)	9	9	9	10	10	10	10	10
	Channels (Internal)	3	3	3	3	3	3	3	3
	Package	Т	SSOP20	l	QFN28	LQF	P32	QFN32	LQFP48

Table 2-2. GD32F310xx devices features and peripheral list (continued)

	e 2-2. GD32i 310XX devices it	GD32F310xx			
	Part Number	G8U7	K8T7	C8T7	
	Code area (KB)	64	64	64	
Flash	Data area (KB)	0	0	0	
	Total (KB)	64	64	64	
	SRAM (KB)	8	8	8	
	General timer (16-bit)	5 (2,13-16)	5 (2,13-16)	5 (2,13-16)	
	Advanced timer (16-bit)	1	1	1	
	SysTick	(0)	(o) 1	(o) 1	
	Watchdog	2	2	2	
	RTC	1	1	1	
	USART	2 (0-1)	2	2	
tivity	I2C	2	2	2	
Connectivity	SPI	2	2	2	
	I2S	1	1	1	
	GPIO	23	25	39	
	EXTI	14	16	16	
	Units	1	1	1	
ADC	Channels (External)	10	10	10	
	Channels (Internal)	3	3	3	
	Package	QFN28	LQFP32	LQFP48	

2.2 Block diagram

Figure 2-1. GD32F310xx block diagram

2.3 Pinouts and pin assignment

Figure 2-2. GD32F310Cx LQFP48 pinouts

Figure 2-3. GD32F310Kx LQFP32 pinouts

Figure 2-4. GD32F310KxU6 QFN32 pinouts

Figure 2-5. GD32F310Gx QFN28 pinouts

Figure 2-6. GD32F310FxP6 TSSOP20 pinouts

2.4 Memory map

Table 2-3. GD32F310xx memory map

Pre-defined Regions	Bus	Address	Peripherals
		0xE000 0000 - 0xE00F FFFF	Cortex®-M4 internal peripherals
External Device		0xA000 0000 - 0xDFFF FFFF	Reserved
External RAM		0x6000 0000 - 0x9FFF FFFF	Reserved
	AUD4	0x5004 0000 - 0x5FFF FFFF	Reserved
	AHB1	0x5000 0000 - 0x5003 FFFF	Reserved
		0x4800 1800 - 0x4FFF FFFF	Reserved
		0x4800 1400 - 0x4800 17FF	GPIOF
		0x4800 1000 - 0x4800 13FF	Reserved
	AHB2	0x4800 0C00 - 0x4800 0FFF	GPIOD
		0x4800 0800 - 0x4800 0BFF	GPIOC
		0x4800 0400 - 0x4800 07FF	GPIOB
		0x4800 0000 - 0x4800 03FF	GPIOA
		0x4002 4400 - 0x47FF FFFF	Reserved
		0x4002 4000 - 0x4002 43FF	Reserved
		0x4002 3400 - 0x4002 3FFF	Reserved
	AHB1	0x4002 3000 - 0x4002 33FF	CRC
		0x4002 2400 - 0x4002 2FFF	Reserved
		0x4002 2000 - 0x4002 23FF	FMC
		0x4002 1400 - 0x4002 1FFF	Reserved
Davish anala		0x4002 1000 - 0x4002 13FF	RCU
Peripherals		0x4002 0400 - 0x4002 0FFF	Reserved
		0x4002 0000 - 0x4002 03FF	DMA
		0x4001 8000 - 0x4001 FFFF	Reserved
		0x4001 5C00 - 0x4001 7FFF	Reserved
		0x4001 4C00 - 0x4001 5BFF	Reserved
		0x4001 4800 - 0x4001 4BFF	TIMER16
		0x4001 4400 - 0x4001 47FF	TIMER15
		0x4001 4000 - 0x4001 43FF	TIMER14
		0x4001 3C00 - 0x4001 3FFF	Reserved
	APB2	0x4001 3800 - 0x4001 3BFF	USART0
		0x4001 3400 - 0x4001 37FF	Reserved
		0x4001 3000 - 0x4001 33FF	SPI0/I2S0
		0x4001 2C00 - 0x4001 2FFF	TIMER0
		0x4001 2800 - 0x4001 2BFF	Reserved
		0x4001 2400 - 0x4001 27FF	ADC
		0x4001 0800 - 0x4001 23FF	Reserved
		0x4001 0400 - 0x4001 07FF	EXTI

			JDJZI J TOXX Datasticc
Pre-defined Regions	Bus	Address	Peripherals
		0x4001 0000 - 0x4001 03FF	SYSCFG
		0x4000 CC00 - 0x4000 FFFF	Reserved
		0x4000 C800 - 0x4000 CBFF	CTC
		0x4000 C400 - 0x4000 C7FF	Reserved
		0x4000 C000 - 0x4000 C3FF	Reserved
		0x4000 8000 - 0x4000 BFFF	Reserved
		0x4000 7C00 - 0x4000 7FFF	Reserved
		0x4000 7800 - 0x4000 7BFF	Reserved
		0x4000 7400 - 0x4000 77FF	Reserved
		0x4000 7000 - 0x4000 73FF	PMU
		0x4000 6400 - 0x4000 6FFF	Reserved
		0x4000 6000 - 0x4000 63FF	Reserved
		0x4000 5C00 - 0x4000 5FFF	Reserved
		0x4000 5800 - 0x4000 5BFF	I2C1
		0x4000 5400 - 0x4000 57FF	I2C0
	4554	0x4000 4800 - 0x4000 53FF	Reserved
	APB1	0x4000 4400 - 0x4000 47FF	USART1
		0x4000 4000 - 0x4000 43FF	Reserved
		0x4000 3C00 - 0x4000 3FFF	Reserved
		0x4000 3800 - 0x4000 3BFF	SPI1
		0x4000 3400 - 0x4000 37FF	Reserved
		0x4000 3000 - 0x4000 33FF	FWDGT
		0x4000 2C00 - 0x4000 2FFF	WWDGT
		0x4000 2800 - 0x4000 2BFF	RTC
		0x4000 2400 - 0x4000 27FF	Reserved
		0x4000 2000 - 0x4000 23FF	TIMER13
		0x4000 1400 - 0x4000 1FFF	Reserved
		0x4000 1000 - 0x4000 13FF	Reserved
		0x4000 0800 - 0x4000 0FFF	Reserved
		0x4000 0400 - 0x4000 07FF	TIMER2
		0x4000 0000 - 0x4000 03FF	Reserved
SRAM		0x2000 4000 - 0x3FFF FFFF	Reserved
JRAW		0x2000 0000 - 0x2000 3FFF	SRAM
		0x1FFF FC00 - 0x1FFF FFFF	Reserved
		0x1FFF F800 - 0x1FFF FBFF	Option bytes
		0x1FFF EC00 - 0x1FFF F7FF	System memory
Code		0x0802 0000 - 0x1FFF EBFF	Reserved
		0x0800 0000 - 0x0801 FFFF	Main Flash memory
		0x0010 0000 - 0x07FF FFFF	Reserved
		0x0000 0000 - 0x000F FFFF	Aliased to Flash or system memory

2.5 Clock tree

Figure 2-7. GD32F310xx clock tree

Note:

If the APB prescaler is 1, the timer clock frequencies are set to AHB frequency divide by 1. Otherwise, they are set to the AHB frequency divide by half of APB prescaler.

Legend:

HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillators IRC40K: Internal 40K RC oscillator IRC48M: Internal 48M RC oscillator IRC28M: Internal 28M RC oscillators

2.6 Pin definitions

2.6.1 GD32F310Cx LQFP48 pin definitions

Table 2-4. GD32F310Cx LQFP48 pin definitions

GD32F310Cx LQFP48					
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description	
V_{BAT}	1	Р		Default: V _{BAT}	
PC13- TAMPER- RTC	2	I/O		Default: PC13 Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1	
PC14- OSC32IN	3	I/O		Default: PC14 Additional: OSC32IN	
PC15- OSC32OUT	4	I/O		Default: PC15 Additional: OSC32OUT	
PF0-OSCIN	5	I/O	5VT	Default: PF0 Alternate: CTC_SYNC Additional: OSCIN	
PF1- OSCOUT	6	I/O	5VT	Default: PF1 Additional: OSCOUT	
NRST	7	I/O		Default: NRST	
V _{SSA}	8	Р		Default: V _{SSA}	
V_{DDA}	9	Р		Default: V _{DDA}	
PA0-WKUP	10	I/O		Default: PA0 Alternate: USART1_CTS, I2C1_SCL Additional: ADC_IN0, RTC_TAMP1, WKUP0	
PA1	11	I/O		Default: PA1 Alternate: USART1_RTS, I2C1_SDA, EVENTOUT Additional: ADC_IN1	
PA2	12	I/O		Default: PA2 Alternate: USART1_TX, TIMER14_CH0 Additional: ADC_IN2	
PA3	13	I/O		Default: PA3 Alternate: USART1_RX, TIMER14_CH1 Additional: ADC_IN3	
PA4	14	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART1_CK, TIMER13_CH0, SPI1_NSS Additional: ADC_IN4	
PA5	15	I/O		Default: PA5 Alternate: SPI0_SCK, I2S0_CK Additional: ADC_IN5	
PA6	16	I/O		Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,	

GD32F310Cx LQFP48						
		Pin	I/O			
Pin Name	Pins	Type ⁽¹⁾	Level ⁽²⁾	Functions description		
				TIMER0_BRKIN, TIMER15_CH0, EVENTOUT		
				Additional: ADC_IN6		
				Default: PA7		
				Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,		
PA7	17	17 I/O		TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,		
				EVENTOUT		
				Additional: ADC_IN7		
				Default: PB0		
PB0	18	I/O		Alternate: TIMER2_CH2, TIMER0_CH1_ON, USART1_RX, EVENTOUT		
				Additional: ADC_IN8		
				Default: PB1		
				Alternate: TIMER2_CH3, TIMER13_CH0,		
PB1	19	I/O		TIMER0_CH2_ON, SPI1_SCK		
				Additional: ADC_IN9		
PB2	20	I/O	5VT	Default: PB2		
PB10	21	I/O	5VT	Default: PB10		
PBIU	21	1/0	371	Alternate: I2C1_SCL, SPI1_IO2		
PB11	22	I/O	5VT	Default: PB11		
			011	Alternate: I2C1_SDA, EVENTOUT, SPI1_IO3		
Vss	23	Р		Default: Vss		
V_{DD}	24	Р		Default: V _{DD}		
	25		• • • • • • • • • • • • • • • • • • • •	Default: PB12		
PB12		I/O		Alternate: SPI1_NSS, TIMER0_BRKIN, I2C1_SMBA,		
				EVENTOUT		
PB13	26	I/O	5VT	Default: PB13		
				Alternate: SPI1_SCK, TIMER0_CH0_ON		
5544			E) (T	Default: PB14		
PB14	27	I/O	5VT	Alternate: SPI1_MISO, TIMER0_CH1_ON, TIMER14_CH0		
				Default: PB15		
				Alternate: SPI1_MOSI, TIMER0_CH2_ON,		
PB15	28	I/O	5VT	TIMER14_CH0_ON, TIMER14_CH1		
				Additional: RTC_REFIN, WKUP6		
				Default: PA8		
PA8	29	I/O	5VT	Alternate: USART0_CK, TIMER0_CH0, CK_OUT,		
	23			USART1_TX, EVENTOUT,CTC_SYNC		
				Default: PA9		
PA9	30	I/O	5VT	Alternate: USART0_TX, TIMER0_CH1,		
				TIMER14_BKIN , I2C0_SCL		
				Default: PA10		
PA10	31	I/O	5VT	Alternate: USART0_RX, TIMER0_CH2,		
				TIMER16_BKIN, I2C0_SDA		

GD32F310Cx LQFP48								
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description				
PA11	32	I/O	5VT	Default: PA11 Alternate: USART0_CTS, TIMER0_CH3, EVENTOUT, SPI1_IO2				
PA12	33	I/O	5VT	Default: PA12 Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3				
PA13	34	I/O	5VT	Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO				
PF6	35	I/O	5VT	Default: PF6 Alternate: I2C1_SCL				
PF7	36	I/O	5VT	Default: PF7 Alternate: I2C1_SDA				
PA14	37	I/O	5VT	Default: PA14 Alternate: USART1_TX, SWCLK, SPI1_MOSI				
PA15	38	I/O	5VT	Default: PA15 Alternate: SPI0_NSS, I2S0_WS, USART1_RX SPI1_NSS, EVENTOUT				
PB3	39	I/O	5VT	Default: PB3 Alternate: SPI0_SCK, I2S0_CK, EVENTOUT				
PB4	40	I/O	5VT	Default: PB4 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT				
PB5	41	I/O	5VT	Default: PB5 Alternate: SPI0_MOSI, I2S0_SD, I2C0_SMBA, TIMER15_BKIN, TIMER2_CH1 Additional:WKUP5				
PB6	42	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON				
PB7	43	I/O	5VT	Default: PB7 Alternate: I2C0_SDA, USART0_RX, TIMER16_CH0_ON				
воото	44	I		Default: BOOT0				
PB8	45	I/O	5VT	Default: PB8 Alternate: I2C0_SCL, TIMER15_CH0				
PB9	46	I/O	5VT	Default: PB9 Alternate: I2C0_SDA, IFRP_OUT,TIMER16_CH0, EVENTOUT, I2S0_MCK				
V _{SS}	47	Р		Default: Vss				
V _{DD}	48	Р		Default: V _{DD}				

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.

2.6.2 GD32F310Kx LQFP32 pin definitions

Table 2-5. GD32F310Kx LQFP32 pin definitions

GD32F310Kx LQFP32							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description			
V_{DD}	1	Р		Default: V _{DD}			
				Default: PF0			
PF0-OSCIN	2	I/O	5VT	Alternate: CTC_SYNC			
				Additional: OSCIN			
PF1-	3	I/O	5VT	Default: PF1			
OSCOUT	3	1/0	371	Additional: OSCOUT			
NRST	4	I/O		Default: NRST			
V_{DDA}	5	Р		Default: V _{DDA}			
				Default: PA0			
PA0-WKUP	6	I/O		Alternate: USART1_CTS ⁽³⁾ , I2C1_SCL ⁽⁴⁾			
				Additional: ADC_IN0, RTC_TAMP1, WKUP0			
				Default: PA1			
PA1	7	I/O		Alternate: USART1_RTS ⁽³⁾ , I2C1_SDA ⁽⁴⁾ , EVENTOUT			
				Additional: ADC_IN1			
				Default: PA2			
PA2 8		I/O		Alternate: USART1_TX ⁽³⁾ , TIMER14_CH0 ⁽⁴⁾			
				Additional: ADC_IN2			
		9 1/0		Default: PA3			
PA3	9			Alternate: USART1_RX ⁽³⁾ , TIMER14_CH1 ⁽⁴⁾			
				Additional: ADC_IN3			
		I/O		Default: PA4			
PA4	10			Alternate: SPI0_NSS, I2S0_WS, USART1_CK ⁽³⁾ ,			
.,	10			TIMER13_CH0, SPI1_NSS ⁽⁴⁾			
				Additional: ADC_IN4			
				Default: PA5			
PA5	11	I/O		Alternate: SPI0_SCK, I2S0_CK			
				Additional: ADC_IN5			
				Default: PA6			
PA6	12	I/O		Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,			
				TIMER0_BRKIN, TIMER15_CH0, EVENTOUT			
				Additional: ADC_IN6			
				Default: PA7			
DAZ	40	1/0		Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,			
PA7	13	I/O		TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,			
				EVENTOUT			
				Additional: ADC_IN7 Default: PB0			
				Alternate: TIMER2_CH2, TIMER0_CH1_ON,			
PB0	14	I/O		USART1_RX ⁽³⁾ , EVENTOUT			
				Additional: ADC_IN8			
PB1	15	I/O		Default: PB1			
FDI	10	1/0		Delault. FD1			

	GD32F310Kx LQFP32							
		Pin	1/0					
Pin Name	Pins	Type ⁽¹⁾	Level ⁽²⁾	Functions description				
		,,,		Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, SPI1_SCK ⁽⁴⁾ Additional: ADC_IN9				
V _{SS}	16	Р		Default: V _{SS}				
V_{DD}	17	Р		Default: V _{DD}				
PA8	18	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX ⁽³⁾ , EVENTOUT, CTC_SYNC				
PA9	19	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN ⁽⁴⁾ , I2C0_SCL				
PA10	20	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2, TIMER16_BRKIN, I2C0_SDA				
PA11	21	I/O	5VT	Default: PA11 Alternate: USART0_CTS, TIMER0_CH3, EVENTOUT, SPI1_IO2 ⁽⁴⁾				
PA12	22	I/O	5VT	Default: PA12 Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3 ⁽⁴⁾				
PA13	23	I/O	5VT	Default: PA13 Alternate: SWDIO, IFRP_OUT, SPI1_MISO ⁽⁴⁾				
PA14	24	I/O	5VT	Default: PA14 Alternate: USART1_TX ⁽³⁾ , SWCLK, SPI1_MOSI ⁽⁴⁾				
PA15	25	I/O	5VT	Default: PA15 Alternate: SPI0_NSS, I2S0_WS, USART1_RX ⁽³⁾ , SPI1_NSS ⁽⁴⁾ , EVENTOUT				
PB3	26	I/O	5VT	Default: PB3 Alternate: SPI0_SCK, I2S0_CK, EVENTOUT				
PB4	27	I/O	5VT	Default: PB4 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT				
PB5	28	I/O	5VT	Default: PB5 Alternate: SPI0_MOSI, I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1 Additional: WKUP5				
PB6	29	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON				
PB7	30	I/O	5VT	Default: PB7 Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON				
воото	31	I		Default: BOOT0				
Vss	32	Р		Default: Vss				

(1) Type: I = input, O = output, P = power.

- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32F310K8/6 devices.
- (4) Functions are available on GD32F310K8 devices only.

2.6.3 GD32F310KxU6 QFN32 pin definitions

Table 2-6. GD32F310KxU6 QFN32 pin definitions

GD32F310KxU6 QFN32							
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description			
V_{DD}	1	Р		Default: V _{DD}			
PF0-OSCIN	2	I/O	5VT	Default: PF0 Alternate: CTC_SYNC			
PF1- OSCOUT	3	I/O	5VT	Additional: OSCIN Default: PF1 Additional: OSCOUT			
NRST	4	I/O		Default: NRST			
V _{DDA}	5	Р		Default: V _{DDA}			
PA0-WKUP	6	I/O		Default: PA0 Alternate: USART1_CTS ⁽³⁾ , I2C1_SCL ⁽⁴⁾ Additional: ADC_IN0, RTC_TAMP1, WKUP0			
PA1	7	I/O		Default: PA1 Alternate: USART1_RTS ⁽³⁾ , I2C1_SDA ⁽⁴⁾ , EVENTOUT Additional: ADC_IN1			
PA2	8	I/O	Default: PA2 Alternate: USART1_TX ⁽³⁾ , TIMER14_CH0 ⁽⁴⁾ Additional: ADC_IN2				
PA3	9	I/O		Default: PA3 Alternate: USART1_RX ⁽³⁾ , TIMER14_CH1 ⁽⁴⁾ Additional: ADC_IN3			
PA4	10	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART1_CK ⁽³⁾ , TIMER13_CH0, SPI1_NSS ⁽⁴⁾ Additional: ADC_IN4			
PA5	11	I/O		Default: PA5 Alternate: SPI0_SCK, I2S0_CK Additional: ADC_IN5			
PA6	12	I/O		Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, EVENTOUT Additional: ADC_IN6			
PA7	13	I/O		Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, EVENTOUT Additional: ADC_IN7			
PB0	14	I/O		Default: PB0			

	GD32F3 TUXX DataSHEE								
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description					
				Alternate: TIMER2_CH2, TIMER0_CH1_ON, USART1_RX ⁽³⁾ , EVENTOUT Additional: ADC_IN8					
PB1	15	I/O		Default: PB1 Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, SPI1_SCK ⁽⁴⁾ Additional: ADC_IN9					
PB2	16	I/O	5VT	Default: PB2					
V_{DD}	17	Р		Default: V _{DD}					
PA8	18	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX ⁽³⁾ , EVENTOUT, CTC_SYNC					
PA9	19	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN ⁽⁴⁾ , I2C0_SCL					
PA10	20	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2, TIMER16_BRKIN, I2C0_SDA					
PA11	21	I/O	5VT	Default: PA11 Alternate: USART0_CTS, TIMER0_CH3, EVENTOUT, SPI1_IO2 ⁽⁴⁾					
PA12	22	I/O	5VT	Default: PA12 Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3 ⁽⁴⁾					
PA13	23	I/O	5VT	Default: PA13 Alternate: SWDIO, IFRP_OUT, SPI1_MISO ⁽⁴⁾					
PA14	24	I/O	5VT	Default: PA14 Alternate: USART1_TX ⁽³⁾ , SWCLK, SPI1_MOSI ⁽⁴⁾					
PA15	25	I/O	5VT	Default: PA15 Alternate: SPI0_NSS, I2S0_WS, USART1_RX ⁽³⁾ , SPI1_NSS ⁽⁴⁾ , EVENTOUT					
PB3	26	I/O	5VT	Default: PB3 Alternate: SPI0_SCK, I2S0_CK, EVENTOUT					
PB4	27	I/O	5VT	Default: PB4 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT					
PB5	28	I/O	5VT	Default: PB5 Alternate: SPI0_MOSI, I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1 Additional: WKUP5					
PB6	29	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON					
PB7	30	I/O	5VT	Default: PB7 Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON					

	GD32F310KxU6 QFN32						
Pin Name	Pins	Pins Pin I/O Functions description		Functions description			
		Type ⁽¹⁾	Level ⁽²⁾				
воото	31	1		Default: BOOT0			
DDO	00	1/0	5VT	Default: PB8			
PB8	32	I/O		Alternate: I2C0_SCL, TIMER15_CH0			

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32F310K8/6 devices.
- (4) Functions are available on GD32F310K8 devices only.

2.6.4 GD32F310Gx QFN28 pin definitions

Table 2-7. GD32F310Gx QFN28 pin definitions

			GD3	2F310Gx QFN28			
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description			
воото	1	I		Default: BOOT0			
PF0-OSCIN	2	I/O	5VT	Default: PF0 Alternate: CTC_SYNC Additional: OSCIN			
PF1- OSCOUT	3	I/O	5VT	Default: PF1 Additional: OSCOUT			
NRST	4	I/O		Default: NRST			
V_{DDA}	5	Р		Default: V _{DDA}			
PA0-WKUP	6	I/O		Default: PA0 Alternate: USART1_CTS, I2C1_SCL Additional: ADC_IN0, RTC_TAMP1, WKUP0			
PA1	7	I/O		Default: PA1 Alternate: USART1_RTS, I2C1_SDA, EVENTOUT Additional: ADC_IN1			
PA2	8	I/O		Default: PA2 Alternate: USART1_TX, TIMER14_CH0 Additional: ADC_IN2			
PA3	9	I/O		Default: PA3 Alternate: USART1_RX, TIMER14_CH1 Additional: ADC_IN3			
PA4	10	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART1_CK, TIMER13_CH0, SPI1_NSS Additional: ADC_IN4			
PA5	11	I/O		Default: PA5 Alternate: SPI0_SCK, I2S0_CK Additional: ADC_IN5			
PA6	12	I/O		Default: PA6			

GD32F310Gx QFN28								
		Pin	I/O					
Pin Name	Pins	Type ⁽¹⁾	Level ⁽²⁾	Functions description				
				Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, EVENTOUT				
				Additional: ADC_IN6				
				Default: PA7				
PA7	13	I/O		Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,				
				EVENTOUT				
				Additional: ADC_IN7				
PB0	14	I/O		Default: PB0 Alternate: TIMER2_CH2, TIMER0_CH1_ON, USART1_RX, EVENTOUT				
				Additional: ADC_IN8				
				Default: PB1				
PB1	15	I/O		Alternate: TIMER2_CH3, TIMER13_CH0,				
				TIMERO_CH2_ON, SPI1_SCK				
V _{SS}	16	Р		Additional: ADC_IN9				
VSS	17	Р		Default: V _{SS} Default: V _{DD}				
VDD	17	Г		Default: PA8				
PA8	18	I/O	5VT	Alternate: USARTO_CK, TIMERO_CHO, CK_OUT, USART1_TX, EVENTOUT,CTC_SYNC				
				Default: PA9				
PA9	19	I/O	5VT	Alternate: USART0_TX, TIMER0_CH1,				
				TIMER14_BKIN , I2C0_SCL				
			5VT	Default: PA10				
PA10	20	I/O		Alternate: USARTO_RX, TIMERO_CH2,				
				TIMER16_BKIN, I2C0_SDA				
PA13	21	I/O	5VT	Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO				
				Default: PA14				
PA14	22	I/O	5VT	Alternate: USART1_TX, SWCLK, SPI1_MOSI				
				Default: PA15				
PA15	23	I/O	5VT	Alternate: SPI0_NSS, I2S0_WS, USART1_RX,				
				SPI1_NSS, EVENTOUT				
PB3	24	I/O	5VT	Default: PB3				
. 23				Alternate: SPI0_SCK, I2S0_CK, EVENTOUT				
DD 4	05	1/0	F. /-	Default: PB4				
PB4	25	I/O	5VT	Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT				
				Default: PB5				
				Alternate: SPI0_MOSI, I2S0_SD, I2C0_SMBA,				
PB5	26	I/O	5VT	TIMER15_BKIN, TIMER2_CH1				
				Additional:WKUP5				
PB6	27	I/O	5VT	Default: PB6				

	GD32F310Gx QFN28							
Pin Name	Pins	Pin	1/0	Functions description				
		Type ⁽¹⁾	Level ⁽²⁾					
				Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON				
				Default: PB7				
PB7	28	I/O	5VT	Alternate:	I2C0_SDA,	USART0_RX,		
				TIMER16_CH0_	ON			

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.

2.6.5 GD32F310FxP6 TSSOP20 pin definitions

Table 2-8. GD32F310FxP6 TSSOP20 pin definitions

			GD32F	310FxP6 TSSOP20			
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description			
воото	1	I		Default: BOOT0			
PF0-OSCIN	2	I/O	5VT	Default: PF0 Alternate: CTC_SYNC Additional: OSCIN			
PF1- OSCOUT	3	I/O	5VT	Default: PF1 Additional: OSCOUT			
NRST	4	I/O		Default: NRST			
V_{DDA}	5	Р		Default: V _{DDA}			
PA0-WKUP	6	I/O		Default: PA0 Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , I2C1_SCL ⁽⁵⁾ Additional: ADC_IN0, RTC_TAMP1, WKUP0			
PA1	7	I/O		Default: PA1 Alternate: USART0_RTS ⁽³⁾ , USART1_RTS ⁽⁴⁾ , I2C1_SDA ⁽⁵⁾ , EVENTOUT Additional: ADC_IN1			
PA2	8	I/O		Default: PA2 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ Additional: ADC_IN2			
PA3	9	I/O		Default: PA3 Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ Additional: ADC_IN3			
PA4	10	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_CK ⁽³⁾ , USART1_CK ⁽⁴⁾ , TIMER13_CH0, SPI1_NSS ⁽⁵⁾ Additional: ADC_IN4			
PA5	11	I/O		Default: PA5 Alternate: SPI0_SCK, I2S0_CK Additional: ADC_IN5			

	GD32F310FxP6 TSSOP20								
Pin Name	Pins	Pin	I/O	Functions description					
· iii rtailio	1 1110	Type ⁽¹⁾	Level ⁽²⁾	i unodono decomption					
PA6	12	I/O		Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, EVENTOUT Additional: ADC_IN6					
PA7	13	I/O		Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, EVENTOUT Additional: ADC_IN7					
PB1	14	I/O		Default: PB1 Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, SPI1_SCK ⁽⁵⁾ Additional: ADC_IN9					
Vss	15	Р		Default: Vss					
V_{DD}	16	Р		Default: V _{DD}					
PA9	17	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1, I2C0_SCL					
PA10	18	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2, TIMER16_BKIN, I2C0_SDA					
PA13	19	I/O	5VT	Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO ⁽⁵⁾					
PA14	20	I/O	5VT	Default: PA14 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK, SPI1_MOSI ⁽⁵⁾					

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32F310F4 devices only.
- (4) Functions are available on GD32F310F8/6 devices.
- (5) Functions are available on GD32F310F8 devices.

2.6.6 GD32F310xx pin alternate functions

Table 2-9. Port A alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PA0		USART0_CTS ⁽¹⁾			I2C1_SCL ⁽³⁾		
1 70		USART1_CTS ⁽²⁾			1201_30L\/		
PA1	EVENTOUT	USART0_RTS ⁽¹⁾			I2C1_SDA ⁽³⁾		
1 71	LVLIVIOOI	USART1_RTS(2)			1201_0DA		
PA2	TIMER14_C	USART0_TX ⁽¹⁾					
1712	H0	USART1_TX ⁽²⁾					
PA3	TIMER14_C	USART0_RX ⁽¹⁾					
1 //3	H1	USART1_RX ⁽²⁾					
PA4	SPI0_NSS/	USART0_CK ⁽¹⁾			TIMER13_C		SPI1_NSS(
1 //-	I2S0_WS	USART1_CK ⁽²⁾			H0		3)
PA5	SPI0_SCK/						
FAS	12S0_CK						
PA6	SPI0_MISO/I	TIMER2_CH0	TIMER0_BRKIN			TIMER1	EVENTOU
FAU	2S0_MCK	TIMERZ_CHO	TIMERO_BRRIN			5_CH0	Т
PA7	SPI0_MOSI/	TIMER2 CH1	TIMER0_CH0_O		TIMER13_C	TIMER1	EVENTOU
FAI	I2S0_SD	TIMERZ_CITI	N		H0	6_CH0	Т
PA8	CK_OUT	USART0_CK	TIMER0_CH0	EVENT	USART1_T		CTC_SYN
FAO	CK_001	USANTO_CK	TIMERO_CHO	OUT	X ⁽²⁾		С
PA9	TIMER14_B	USART0_TX	TIMER0_CH1		I2C0_SCL		
FA9	KIN	USAKTU_TX	TIMERO_CITI		1200_30L		
PA10	TIMER16_B	USART0_RX	TIMER0_CH2		I2C0_SDA		
PAIU	KIN	USANTU_NX	TIMERO_CHZ		12C0_3DA		
PA11	EVENTOUT	USART0_CTS	TIMER0_CH3				SPI1_IO2 ⁽³⁾
PA12	EVENTOUT	USART0_RTS	TIMER0_ETI				SPI1_IO3 ⁽³⁾
PA13	CWDIO	IFRP_OUT					SPI1_MIS
PAIS	SWDIO	IFRP_OUT					O ⁽³⁾
DA44	CMCLK	USART0_TX ⁽¹⁾					SPI1_MOS
PA14	SWCLK	USART1_TX ⁽²⁾					I (3)
PA15	SPI0_NSS/	USART0_RX ⁽¹⁾		EVENT			SPI1_NSS(
PAIS	12S0_WS	USART1_RX ⁽²⁾		OUT			3)

Table 2-10. Port B alternate functions summary

	Table 2-10. Port B alternate functions summary							
Pin Nam e	AF0	AF1	AF2	AF3	AF4	AF5	AF6	
PB0	EVENTOUT	TIMER2_CH2	TIMER0_CH1_ON		USART1 _RX ⁽²⁾			
PB1	TIMER13_CH 0	TIMER2_CH3	TIMER0_CH2_ON				SPI1_SCK ⁽	
PB2								
PB3	SPI0_SCK / I2S0_CK	EVENTOUT						
PB4	SPI0_MISO / I2S0_MCK	TIMER2_CH0	EVENTOUT					
PB5	SPI0_MOSI / I2S0_SD	TIMER2_CH1	TIMER15_BKIN	I2C0_SMB A				
PB6	USARTO_TX	I2C0_SCL	TIMER15_CH0_O N					
PB7	USART0_RX	I2C0_SDA	TIMER16_CH0_O N					
PB8		I2C0_SCL	TIMER15_CH0					
PB9	IFRP_OUT	I2C0_SDA	TIMER16_CH0	EVENTOU T		I2S0_M CK		
PB10		I2C0_SCL ⁽¹⁾ I2C1_SCL ⁽³⁾					SPI1_IO2 ⁽³⁾	
PB11	EVENTOUT	I2C0_SDA ^{(1),} I2C1_SDA ⁽³⁾					SPI1_IO3 ⁽³⁾	
PB12	SPI0_NSS ⁽¹⁾ SPI1_NSS ⁽³⁾	EVENTOUT	TIMER0_BRKIN		I2C1_SM BA ⁽³⁾			
PB13	SPI0_SCK ⁽¹⁾ SPI1_SCK ⁽³⁾		TIMER0_CH0_ON					
PB14	SPI0_MISO ⁽¹⁾ SPI1_MISO ⁽³⁾	TIMER14_CH 0	TIMER0_CH1_ON					
PB15	SPI0_MOSI ⁽¹⁾ SPI1_MOSI ⁽³⁾	TIMER14_CH 1	TIMER0_CH2_ON	TIMER14_ CH0_ON				

Table 2-11. Port C alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PC0	EVENTOUT						
PC1	EVENTOUT						
PC2	EVENTOUT						
PC3	EVENTOUT						
PC4	EVENTOUT						
PC5							
PC6	TIMER2_CH0		I2S0_MCK				
PC7	TIMER2_CH1						
PC8	TIMER2_CH2						
PC9	TIMER2_CH3						
PC10							
PC11							
PC12							
PC13							
PC14							
PC15							

Table 2-12. Port D alternate functions summary

Pin	12.1 010			-			
Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PD0							
PD1							
PD2	TIMER2_ETI						
PD3							
PD4							
PD5							
PD6							
PD7							
PD8							
PD9							
PD10							
PD11							
PD12							
PD13							
PD14							
PD15							

Table 2-13. Port F alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PF0	CTC_SYNC						
PF1							
PF2							
PF3							
PF4	EVENTOUT						
PF5	EVENTOUT						
DEC	I2C0_SCL ⁽¹⁾						
PF6	I2C1_SCL ⁽³⁾						
PF7	I2C0_SDA ⁽¹⁾						
FF7	I2C1_SDA ⁽³⁾						
PF8							
PF9							
PF10							
PF11							
PF12							
PF13							
PF14							
PF15							

- (1) Functions are available on GD32F310x4 devices only.
- (2) Functions are available on GD32F310x8/6 devices.
- (3) Functions are available on GD32F310x8 devices.

3 Functional description

3.1 Arm[®] Cortex[®]-M4 core

The Arm® Cortex®-M4 processor is a high performance embedded processor with DSP instructions which allow efficient signal processing and complex algorithm execution. It brings an efficient, easy-to-use blend of control and signal processing capabilities to meet the digital signal control markets demand. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.

32-bit Arm® Cortex®-M4 processor core:

- Up to 72 MHz operation frequency
- Single-cycle multiplication and hardware divider
- Floating Point Unit (FPU)
- Integrated DSP instructions
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex®-M4 processor is based on the Armv7-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M4:

- Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
- Nested Vectored Interrupt Controller (NVIC)
- Flash Patch and Breakpoint (FPB)
- Data Watchpoint and Trace (DWT)
- Instrument Trace Macrocell (ITM)
- Serial Wire Debug Port (SW-DP)
- Trace Port Interface Unit (TPIU)

3.2 On-chip memory

- Up to 64 Kbytes of Flash memory
- The region of the MCU executing instructions without waiting time is up to 64K bytes (in case that Flash size equal to 16K, 32K or 64K, all memory is no waiting time). A long delay when CPU fetches the instructions out of the range.
- Up to 8 Kbytes of SRAM with hardware parity checking

The Arm® Cortex®-M4 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 64 Kbytes of inner Flash at most, which includes code Flash and data Flash is available for storing programs and data, and there is

no waiting time within code Flash area when CPU executes instructions. <u>Table 2-3.</u> <u>GD32F310xx memory map</u> shows the memory map of the GD32F310xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3 Clock, reset and supply management

- Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
- Internal 48 MHz RC oscillator
- Internal 28 MHz RC oscillator
- Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- Integrated system clock PLL
- 2.6 to 3.6 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 72 MHz/36 MHz/36 MHz. See *Figure 2-7. GD32F310xx clock tree* for details on the clock tree.

The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- V_{DD} range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL.
- V_{BAT} range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main Flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in

the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15).

3.5 Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

Sleep mode

In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

■ Deep-sleep mode

In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC tamper and timestamp, LVD output and USART wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.

■ Standby mode

In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

3.6 Analog to digital converter (ADC)

- 12-bit SAR ADC's conversion rate is up to 2.86 MSPS
- 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
- Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
- Input voltage range: V_{SSA} to V_{DDA} (2.6 to 3.6 V)
- Temperature sensor

One 12-bit 2.86 MSPS multi-channel ADCs are integrated in the device. It has a total of 19 multiplexed channels: 10 external channels, 1 channel for internal temperature sensor (V_{SENSE}), 1 channel for internal reference voltage (V_{REFINT}) and 1 channel for battery voltage (V_{BAT}). The input voltage range is between V_{SSA} and V_{DDA}. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered from the events generated by the general level 0 timers (TIMER2) and the advanced timer (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

3.7 DMA

- 7 channel DMA controller
- Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs and I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

3.8 General-purpose inputs/outputs (GPIOs)

- Up to 39 fast GPIOs, all mappable on 16 external interrupt lines
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 39 general purpose I/O pins (GPIO) in GD32F310xx, named PA0 ~ PA15 and PB0 ~ PB15, PC13 ~ PC15, PF0, PF1, PF6, PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (pushpull, open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

3.9 Timers and PWM generation

- One 16-bit advanced timer (TIMER0) and five 16-bit general timers (TIMER2, TIMER13 ~ TIMER16)
- Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input

- 16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge-aligned or center-aligned mode) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.

The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER2 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.

The GD32F310xx have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.

The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.10 Real time clock (RTC)

Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.

- Calendar with subsecond, seconds, minutes, hours, week day, date, year and month automatically correction
- Alarm function with wake up from deep-sleep and standby mode capability
- On-the-fly correction for synchronization with master clock. Digital calibration with 0.954 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler.

3.11 Inter-integrated circuit (I2C)

- Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.12 Serial peripheral interface (SPI)

- Up to two SPI interfaces with a frequency of up to 18 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

3.13 Universal synchronous asynchronous receiver transmitter (USART)

- Up to two USARTs with operating frequency up to 4.5 MB/s
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- ISO 7816-3 compliant smart card interface

The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

3.14 Inter-IC sound (I2S)

- One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPIO
- Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F310xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

3.15 Debug mode

Serial wire debug port (SW-DP)

Debug capabilities can be accessed by a debug tool via serial wire.

3.16 Package and operation temperature

- LQFP48 (GD32F310Cx), LQFP32 (GD32F310KxT6), QFN32 (GD32F310KxU6), QFN28 (GD32F310GxU6) and TSSOP20 (GD32F310FxP6)
- Operation temperature range: -40°C to +85°C for grade 6 devices (industrial level), or –
 40 to +105 °C for grade 7 devices (industrial level)

4 Electrical characteristics

4.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 4-1. Absolute maximum ratings(1)(4)

Symbol	Parameter	Min	Max	Unit
V _{DD}	External voltage range ⁽²⁾	Vss - 0.3	V _{SS} + 3.6	V
V_{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 3.6	V
V _{BAT}	External battery supply voltage	V _{SS} - 0.3	V _{SS} + 3.6	V
Vin	Input voltage on 5V tolerant pin ⁽³⁾	V _{SS} - 0.3	V _{DD} + 3.6	V
VIN	Input voltage on other I/O	Vss - 0.3	3.6	V
$ \Delta V_{DDx} $	Variations between different VDD power pins	_	50	mV
V _{SSX} -V _{SS}	Variations between different ground pins	_	50	mV
lio	Maximum current for GPIO pin	_	±25	mA
_	Operating temperature range for grade 6 device	-40	+85	°C
T _A	Operating temperature range for grade 7 device	-40	+105	
	Power dissipation at T _A = 85°C of LQFP48 ⁽⁵⁾	_	621	
	Power dissipation at T _A = 85°C of LQFP32 ⁽⁵⁾	_	605	
	Power dissipation at T _A = 85°C of QFN32 ⁽⁵⁾	_	825	
P _D	Power dissipation at T _A = 85°C of QFN28 ⁽⁵⁾	_	605	mW
PD	Power dissipation at T _A = 85°C of TSSOP20 ⁽⁵⁾	_	553	IIIVV
	Power dissipation at T _A = 105°C of LQFP48 ⁽⁵⁾	_	311	
	Power dissipation at T _A = 105°C of LQFP32 ⁽⁵⁾	_	303	
	Power dissipation at T _A = 105°C of QFN28 ⁽⁵⁾	_	303	
T _{STG}	Storage temperature range	-65	+150	°C
TJ	Maximum junction temperature		125	°C

⁽¹⁾ Guaranteed by design, not tested in production.

4.2 Operating conditions characteristics

Table 4-2. DC operating conditions

ool Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
---------------	------------	--------------------	-----	--------------------	------	--

⁽²⁾ All main power and ground pins should be connected to an external power source within the allowable range.

⁽³⁾ V_{IN} maximum value cannot exceed 5.5 V.

⁽⁴⁾ It is recommended that VDD and VDDA are powered by the same source. The maximum difference between VDD and VDDA does not exceed 300 mV during power-up and operation.

⁽⁵⁾ For grade 6 devices, the parameter of $T_A=85^{\circ}C$, For grade 7 devices, the parameter of $T_A=105^{\circ}C$.

V_{DD}	Supply voltage		2.6	3.3	3.6	V
V_{DDA}	Analog supply voltage	Same as V _{DD}	2.6	3.3	3.6	V
V_{BAT}	Battery supply voltage	_	1.8(2)	_	3.6	V

- (1) Based on characterization, not tested in production.
- (2) In the application which V_{BAT} supply the backup domains, if the V_{BAT} voltage drops below the minimum value, when V_{DD} is powered on again, it is necessary to refresh the registers of backup domains and enable LXTAL again.

Figure 4-1. Recommended power supply decoupling capacitors(1)

(1) All decoupling capacitors need to be as close as possible to the pins on the PCB board. More details refer to AN057 GD32F3x0 Hardware Development Guide.

Table 4-3. Clock frequency(1)

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK1}	AHB1 clock frequency	_	0	72	MHz
f _{HCLK2}	AHB2 clock frequency	_	0	72	MHz
f _{APB1}	APB1 clock frequency	_	0	36	MHz
f _{APB2}	APB2 clock frequency	_	0	36	MHz

(1) Guaranteed by design, not tested in production.

Table 4-4. Operating conditions at Power up/ Power down⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t	V _{DD} rise time rate		0	8	us /V
t∨DD	V _{DD} fall time rate	_	20	8	μ5 / ν

(1) Guaranteed by design, not tested in production.

Table 4-5. Start-up timings of Operating conditions (1)(2)(3)

Symbol	Parameter	Conditions	Тур	Unit
4	Start up time	Clock source from HXTAL	33.2	ma
Tstart-up	Start-up time	Clock source from IRC8M	31.8	ms

- (1) Based on characterization, not tested in production.
- (2) After power-up, the start-up time is the time between the rising edge of NRST high and the main function.
- (3) PLL is off.

Table 4-6. Power saving mode wakeup timings characteristics(1)(2)

Symbol	Parameter	Тур	Unit
t _{Sleep}	Wakeup from Sleep mode	2.8	
4_	Wakeup from Deep-sleep mode(LDO On)	3.6	μs
IDeep-sleep	Wakeup from Deep-sleep mode (LDO in low power mode)	3.6	
t _{Standby}	Wakeup from Standby mode	31.6	ms

⁽¹⁾ Based on characterization, not tested in production.

4.3 Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 4-7.Power consumption characteristics (2)(3)(3)(4)(5)(6)

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 72 MHz, All peripherals enabled	_	14.64	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 72 MHz, All peripherals disabled	_	10.91	_	mA
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals enabled	_	10.29	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 48 MHz, All peripherals disabled	_	7.80	_	mA
IDD + IDDA	Supply current (Run mode)	$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 36 MHz, All peripherals enabled		8.10	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 36 MHz, All peripherals disabled		6.23	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 24 MHz, All peripherals enabled	_	5.91	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 24 MHz, All peripherals disabled	_	4.67	_	mA
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$ System clock = 16 MHz, All peripherals enabled	_	4.45	_	mA

The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: $V_{DD} = V_{DDA} = 3.3 \text{ V}$, IRC8M = System clock = 8 MHz.

	Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
-	Symbol	Parameter		IVIIII	тур	IVIAX	Onit
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$		0.00		
			System clock = 16 MHz, All peripherals	_	3.62	_	mA
			disabled				
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
			System clock = 8 MHz, All peripherals	_	3.01	_	mA
			enabled				
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz},$				
			System clock = 8 MHz, All peripherals	_	2.51	_	mA
			disabled				
			$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 4 \text{ MHz},$				
			System clock = 4 MHz, All peripherals	_	1.11	_	mA
			enabled				
			$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 4 \text{ MHz,}$				
			System clock = 4 MHz, All peripherals	_	0.86	_	mA
			disabled				
			$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 2 \text{ MHz,}$				
			System clock = 2 MHz, All peripherals	_	0.7	_	mA
			enabled				
			$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 2 \text{ MHz,}$				
			System clock = 2 MHz, All peripherals	_	0.58	_	mA
			disabled				
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
			clock off, System clock = 72 MHz, All	_	9.03	_	mA
			peripherals enabled				
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
			clock off, System clock = 72 MHz, All	_	4.77	_	mA
			peripherals disabled				
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
			clock off, System clock = 48 MHz, All	_	6.53	_	mA
			peripherals enabled				
			VDD = VDDA = 3.3 V, HXTAL = 8 MHz,				
		Supply current	CPU clock off, System clock = 48 MHz, All	_	3.69	_	mA
		(Sleep mode)	peripherals disabled				
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU				
			clock off, System clock = 36 MHz, All	_	5.27	_	mA
			•		0.27		''''
			peripherals enabled $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{ CPU}$				
				_	3.14	_	mA
			clock off, System clock = 36 MHz, All		0.14		'''
			peripherals disabled				
			V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		1 01		m^
			clock off, System clock = 24 MHz, All		4.01	_	mA
			peripherals enabled				

Symbol	Parameter	Conditions		Typ ⁽¹⁾		Unit	1
Syllibol	Parameter		IVIIII	тур	IVIAX	Ullit	
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		0.00		^	
		clock off, System clock = 24 MHz, All	_	2.60	_	mA	
		peripherals disabled					
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{CPU}$		0.40			
		clock off, System clock = 16 MHz, All	_	3.18	_	mA	
		peripherals enabled					
		V _{DD} = V _{DDA} = 3.3 V, HXTAL = 8 MHz, CPU		0.00			
		clock off, System clock = 16 MHz, All	_	2.23	_	mA	
		peripherals disabled					
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 8 \text{ MHz, CPU}$		0.00			
		clock off, System clock = 8 MHz, All	_	2.38	_	mA	
		peripherals enabled					
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{CPU}$		4.00			
		clock off, System clock = 8 MHz, All	_	1.82	_	mA	
		peripherals disabled					
		$V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 4 \text{ MHz}, \text{CPU}$					
		clock off, System clock = 4 MHz, All	_	0.77	_	mA	
		peripherals enabled					
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 4 \text{ MHz, CPU}$					
		clock off, System clock = 4 MHz, All	_	0.49	_	mA	
		peripherals disabled					
		$V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 2 \text{ MHz, CPU}$					
		clock off, System clock = 2 MHz, All	_	0.52	_	mA	
		peripherals enabled					
		VDD = VDDA = 3.3 V, HXTAL = 2 MHz,		0.00			
		CPU clock off, System clock =2 MHz, All	_	0.38	_	mA	
		peripherals disabled					
		$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LDO in normal power		470.00	000.00		
		and normal driver mode, IRC40K off, RTC	_	172.26	330.00	μA	
		off					
	Supply current	$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LDO in low power and	_	120.37	278.11 ⁽¹⁾	μΑ	
	(Deep-sleep	normal driver mode, IRC40K off, RTC off					
	mode)	$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LDO in normal power	_	146.29	304.03 ⁽¹⁾	μΑ	
		and low driver mode, IRC40K off, RTC off					
		$V_{DD} = V_{DDA} = 3.3 \text{ V}$, LDO in low power and	_	94.66	252.40 ⁽¹⁾	μΑ	
		low driver mode, IRC40K off, RTC off					
		$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL off, IRC40K on,}$	_	6.96	13.16 ⁽¹⁾	μΑ	
		RTC on					
		$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL off, IRC40K on,}$	_	6.63	12.83 ⁽¹⁾	μΑ	
	Supply current	RTC off					
	(Standby mode)	$V_{DD} = V_{DDA} = 3.3 \text{ V, LXTAL off, IRC40K off,}$	_	5.90	12.10	μΑ	
		RTC off, VDDA Monitor on					
		V _{DD} = V _{DDA} = 3.3 V, LXTAL off, IRC40K off,	_	3.69	9.89(1)	μΑ	
		RTC off, V _{DDA} Monitor off					

		00921				
Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V_{DD} off, V_{DDA} off, V_{BAT} = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL High driving	_	2.32	_	μΑ
		V_{DD} off, V_{DDA} off, $V_{BAT} = 3.3$ V, LXTAL on with external crystal, RTC on, LXTAL High driving	_	2.10	_	μA
		V_{DD} off, V_{DDA} off, $V_{BAT} = 2.6$ V, LXTAL on with external crystal, RTC on, LXTAL High driving	_	1.85	_	μA
		V _{DD} off, V _{DDA} off, V _{BAT} = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving	_	1.90	_	μA
		V_{DD} off, V_{DDA} off, V_{BAT} = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving	_	1.68	_	μA
la va	Battery supply	V _{DD} off, V _{DDA} off, V _{BAT} = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving	_	1.44	_	μA
Іват	current	V _{DD} off, V _{DDA} off, V _{BAT} = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving	_	1.47	_	μΑ
		V_{DD} off, V_{DDA} off, V_{BAT} = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving	_	1.24	_	μА
		V _{DD} off, V _{DDA} off, V _{BAT} = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving	_	1.01	_	μA
		V_{DD} off, V_{DDA} off, V_{BAT} = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Low driving	_	1.32	_	μА
		V_{DD} off, V_{DDA} off, V_{BAT} = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Low driving	_	1.12	_	μA
		V_{DD} off, V_{DDA} off, V_{BAT} = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Low driving	_	0.88	_	μΑ

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all values given for T_A = 25 $^{\circ}C$ and test result is mean value.
- (3) When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL.
- (4) When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL.
- (5) When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.
- (6) All GPIOs are configured as analog mode except standby mode.

Figure 4-2. Typical supply current consumption in Run mode

Table 4-8. Peripheral current consumption characteristics(1)

	Peripherials ⁽³⁾	Typical consumption ⁽¹⁾	Unit
ALID4	CRC	0.10	
AHB1	DMA	0.32	mA
AHB2	GPIOF	0.11	

	Peripherials ⁽³⁾	Typical consumption ⁽¹⁾	Unit
	GPIOD	0.10	
	GPIOC	0.13	
	GPIOB	0.13	
	GPIOA	0.13	
	TIMER16	0.24	
	TIMER15	0.24	
	TIMER14	0.31	
APB2	USART0	0.41	
	TIMER0	0.50	
	SPI0	0.19	
	ADC ⁽²⁾	0.91	
	PMU	0.31	
	I2C1	0.17	
	I2C0	0.17	
	USART1	0.15	
APB1	SPI1	0.12	
	WWDGT	0.11	
	TIMER13	0.15	
	TIMER2	0.29	
	1280	0.17	

⁽¹⁾ Based on characterization, not tested in production.

4.4 EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in <u>Table 4-9. EMS characteristics</u>(1), based on the EMS levels and classes compliant with IEC 61000 series standard.

Table 4-9. EMS characteristics(1)

Symbol	Parameter	Conditions	Level/Class
	Voltage applied to all device pine to	$V_{DD} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C},$	
V _{ESD}	Voltage applied to all device pins to induce a functional disturbance	LQFP48, f _{HCLK} = 72 MHz	3A
	induce a functional disturbance	conforms to IEC 61000-4-2	
	Fast transient voltage burst applied to	$V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C},$	
V _{FTB}	induce a functional disturbance through	LQFP48, f _{HCLK} = 72 MHz	3A
	100 pF on VDD and VSS pins	conforms to IEC 61000-4-4	

⁽¹⁾ Based on characterization, not tested in production.

EMI (Electromagnetic Interference) emission test result is given in the Table 4-10. EMI

⁽²⁾ System clock = f_{HCLK} = 72 MHz, f_{APB1} = $f_{HCLK}/2$, f_{APB2} = f_{HCLK} , f_{ADCCLK} = $f_{APB2}/2$, ADCON bit is set to 1.

⁽³⁾ If there is no other description, then HXTAL = 8 MHz, System clock = f_{HCLK} = 72 MHz, f_{APB1} = $f_{HCLK}/2$, f_{APB2} = f_{HCLK} .

<u>characteristics</u>⁽¹⁾, The electromagnetic field emitted by the device are monitored while an application, executing EEMBC code, is running. The test is compliant with SAE J1752-3:2017 standard which specifies the test board and the pin loading.

Table 4-10. EMI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Tested frequency band	Max vs. [fhxtal/fhclk] 8/72 MHz	Unit
		V_{DD} = 3.6 V, T_A = +25 °C,	0.15 to 30 MHz	-1.19	
Semi	Peak level	LQFP48, f _{HCLK} = 72 MHz,	30 to 130 MHz	3.08	dΒμV
		conforms to SAE J1752-	420 MH = 45 40H=	0.00	
		3:2017	130 MHz to 1GHz	8.82	

⁽¹⁾ Based on characterization, not tested in production.

4.5 Power supply supervisor characteristics

Table 4-11. Power supply supervisor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LVDT[2:0] = 000, rising edge	_	2.15	_	V
		LVDT[2:0] = 000, falling edge	_	2.04	_	٧
		LVDT[2:0] = 001, rising edge	_	2.30	_	٧
		LVDT[2:0] = 001, falling edge	_	2.20	_	٧
		LVDT[2:0] = 010, rising edge		2.44	_	٧
		LVDT[2:0] = 010, falling edge	_	2.34	_	٧
		LVDT[2:0] = 011, rising edge	_	2.57	_	٧
$V_{LVD}^{(1)}$	Low Voltage Detector	LVDT[2:0] = 011, falling edge	_	2.46	_	٧
V LVD√ γ	Threshold	LVDT[2:0] = 100, rising edge	_	2.72	_	٧
		LVDT[2:0] = 100, falling edge	_	2.61	_	٧
		LVDT[2:0] = 101, rising edge	_	2.86	_	٧
		LVDT[2:0] = 101, falling edge	_	2.74	_	٧
		LVDT[2:0] = 110, rising edge	_	3.00	_	٧
		LVDT[2:0] = 110, falling edge	_	2.88	_	٧
		LVDT[2:0] = 111, rising edge	_	3.14	_	٧
		LVDT[2:0] = 111, falling edge	_	3.03	_	٧
V _{LVDhyst} ⁽²⁾	LVD hysteresis		_	100	_	mV
V _{POR} ⁽¹⁾	Power on reset threshold		_	2.38	_	٧
V _{PDR} ⁽¹⁾	Power down reset			1.84		V
	threshold	_		1.01		
V _{PDRhyst} ⁽²⁾	PDR hysteresis		_	600	_	mV
trsttempo ⁽²⁾	Reset temporization			2		ms

⁽¹⁾ Based on characterization, not tested in production.

4.6 Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up

⁽²⁾ Guaranteed by design, not tested in production.

(LU) test is based on the two measurement methods.

Table 4-12. ESD characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C;		_	2000	V
	voltage (human body model)	JS-001-2017	_			v
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C;			E00	
	voltage (charge device model)	JS-002-2018	_	_	500	V

⁽¹⁾ Based on characterization, not tested in production.

Table 4-13. Static latch-up characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
LU	I-test	T 25 °C: IESD70D			±200	mA
	V _{supply} over voltage	T _A = 25 °C; JESD78D	_		5.4	V

⁽¹⁾ Based on characterization, not tested in production.

4.7 External clock characteristics

Table 4-14. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL} ⁽¹⁾	Crystal or ceramic frequency	2.6 V ≤ V _{DD} ≤ 3.6 V	4	8	32	MHz
R _F ⁽²⁾	Feedback resistor	V _{DD} = 3.3 V	_	400	_	kΩ
	Recommended matching					
C _{HXTAL} (2)(3)	capacitance on OSCIN and	_	_	20	30	pF
	OSCOUT					
Ducy _(HXTAL) ⁽²⁾	Crystal or ceramic duty cycle	_	30	50	70	%
g _m (2)	Oscillator transconductance	Startup	_	25	_	mA/V
	Crystal or caramia aparating	V _{DD} = 3.3 V, f _{HCLK} =				
I _{DD(HXTAL)} ⁽¹⁾	Crystal or ceramic operating	$f_{IRC8M} = 8 MHz$	_	1.1	_	mA
	current	T _A = 25 °C				
		V _{DD} = 3.3 V, f _{HCLK} =				
tsuhxtal ⁽¹⁾	Crystal or ceramic startup time	$f_{IRC8M} = 8 MHz$	_	1.4	_	ms
		T _A = 25 °C				

⁽¹⁾ Based on characterization, not tested in production.

Table 4-15. High speed external user clock characteristics (HXTAL in bypass mode)

	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	(1)	External clock source or oscillator	V - 2 2 V	1		50	MHz
	f _{HXTAL_ext} ⁽¹⁾	frequency	$V_{DD} = 3.3 V$	1	8	50	IVI⊓Z

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ C_{HXTAL1} = C_{HXTAL2} = 2*(C_{LOAD} - C_S), For C_{HXTAL1} and C_{HXTAL2}, it is recommended matching capacitance on OSCIN and OSCOUT. For C_{LOAD}, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S, it is PCB and MCU pin stray capacitance.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{HXTALH} ⁽²⁾	OSCIN input pin high level voltage	V _{DD} = 3.3 V	$0.7 V_{DD}$	_	V_{DD}	V
V _{HXTALL} ⁽²⁾	OSCIN input pin low level voltage	V DD - 3.3 V	Vss	_	$0.3~V_{DD}$	V
t _{H/L(HXTAL)} ⁽²⁾	OSCIN high or low time	_	5	_	_	20
t _{R/F(HXTAL)} (2)	OSCIN rise or fall time	_	_	_	10	ns
C _{IN} (2)	OSCIN input capacitance	_	_	5	_	pF
Ducy _(HXTAL) (2)	Duty cycle	_	30	50	70	%

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

Table 4-16. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL} (1)	Crystal or ceramic frequency	_	_	32.768		kHz
C _{LXTAL} ⁽²⁾⁽³⁾	Recommended matching capacitance on OSC32IN and OSC32OUT	I		15		pF
Ducy _(LXTAL) (2)	Crystal or ceramic duty cycle		30	_	70	%
$g_{m^{(2)}}$		Lower driving capability	ı	4	1	
	Oscillator transconductance	Medium low driving capability	l	6	l	
		Medium high driving capability	1	12	1	μA/V
		Higher driving capability		18		
		Lower driving capability	_	0.8	_	
. (1)	Crystal or ceramic operating	Medium low driving capability	-	0.9		
Iddlxtal ⁽¹⁾	current	Medium high driving capability	ı	1.3	1	μΑ
		Higher driving capability	_	1.8	_	
tsulxtal ⁽¹⁾⁽⁴⁾	Crystal or ceramic startup time	_		0.8	_	s

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) $C_{LXTAL1} = C_{LXTAL2} = 2*(C_{LOAD} C_S)$, For C_{LXTAL1} and C_{LXTAL2} , it is recommended matching capacitance on OSC32IN and OSC32OUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance.
- (4) t_{SULXTAL} is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.

Table 4-17. Low speed external user clock characteristics (LXTAL in bypass mode)

	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ĺ	f _{LXTAL_ext} (1)	External clock source or oscillator	V _{DD} = 3.3 V	_	32.768	1000	kHz

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	frequency					
V _{LXTALH} ⁽²⁾	OSC32IN input pin high level voltage	_	0.7 V _{DD}	_	V _{DD}	.,
V _{LXTALL} ⁽²⁾	OSC32IN input pin low level voltage	_	Vss	_	0.3 V _{DD}	V
t _{H/L(LXTAL)} (2)	OSC32IN high or low time	_	450	_	_	
t _{R/F(LXTAL)} (2)	OSC32IN rise or fall time	_	_	_	50	ns
C _{IN} ⁽²⁾	OSC32IN input capacitance	_	_	5	_	pF
Ducy _(LXTAL) (2)	Duty cycle	_	30	50	70	%

⁽¹⁾ Based on characterization, not tested in production.

4.8 Internal clock characteristics

Table 4-18. High speed internal clock (IRC8M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC8M}	High Speed Internal Oscillator (IRC8M) frequency	$V_{DD} = V_{DDA} = 3.3 \text{ V}$		8	_	MHz
ACC _{IRC8M}	IRC8M oscillator	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C} \text{ for}$ grade 6 devices	_	-0.62 to 0.46 ⁽¹⁾	_	
	Frequency accuracy, Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim +105 \text{ °C} \text{ for}$ grade 7 devices	_	-0.7 to 0.46 ⁽¹⁾	_	%
		$V_{DD} = V_{DDA} = 3.3 \text{ V, } T_A =$ 25 °C	-1.0		+1.0	
	IRC8M oscillator Frequency accuracy, User trimming step ⁽¹⁾	1		0.5	_	%
Ducyirc8m ⁽²	IRC8M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
IDDAIRC8M ⁽¹⁾	IRC8M oscillator operating current	V _{DD} = V _{DDA} = 3.3 V	_	58	_	μA
tsuirc8m ⁽¹⁾	IRC8M oscillator startup time	V _{DD} = V _{DDA} = 3.3 V	_	1.2	_	μs

⁽¹⁾ Based on characterization, not tested in production.

Table 4-19. Low speed internal clock (IRC40K) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC40K} ⁽¹⁾	Low Speed Internal oscillator	$V_{DD} = V_{DDA} = 3.3 \text{ V}$		40		kHz
	(IRC40K) frequency	VDD - VDDA - 3.3 V		1 40		KI IZ

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDAIRC40K} ⁽²⁾	IRC40K oscillator operating current	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	0.5		μΑ
tsuirc40K ⁽²⁾	IRC40K oscillator startup time	$V_{DD} = V_{DDA} = 3.3 \text{ V}$		75	l	μs

- (1) Guaranteed by design, not tested in production.
- (2) Based on characterization, not tested in production.

Table 4-20. High speed internal clock (IRC28M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
firc28M	High Speed Internal Oscillator (IRC28M) frequency	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	28	_	MHz
ACCIRC28M		$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim +85 \text{ °C for}$ grade 6 devices	_	-0.86 to	_	
	IRC28M oscillator Frequency accuracy, Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim +105 \text{ °C for}$ grade 7 devices	_	-1.02 to	_	%
		$V_{DD} = V_{DDA} = 3.3 \text{ V, } T_A =$ 25 °C	-1.0	_	+1.0	
	IRC28M oscillator Frequency accuracy, User trimming step ⁽¹⁾	_	_	0.5	_	%
D _{IRC28M} ⁽²⁾	IRC28M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
IDDAIRC28M ⁽¹⁾	IRC28M oscillator operating current	V _{DD} = V _{DDA} = 3.3 V	_	114	_	μΑ
t _{SUIRC28M} ⁽¹⁾	IRC28M oscillator startup time	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	_	1.6	_	μs

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

Table 4-21. High speed internal clock (IRC48M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
firc48M	High Speed Internal Oscillator (IRC48M) frequency	V _{DD} = V _{DDA} = 3.3 V		48		MHz
ACC	IRC48M oscillator Frequency accuracy, Factory-trimmed	$V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_{A} = -40 \text{ °C} \sim +85 \text{ °C for grade}$ 6 devices $V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_{A} = -40 \text{ °C} \sim +105 \text{ °C for}$	_	-0.81 to 0.35 ⁽¹⁾ -0.86 to 0.35 ⁽¹⁾	_	%
ACCIRC48M		grade 7 devices $V_{DD} = V_{DDA} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C}$	-2.0	—	+2.0	
	IRC48M oscillator Frequency accuracy, User trimming step ⁽¹⁾	_		0.12	_	%

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
D _{IRC48M} ⁽²⁾	IRC48M oscillator duty cycle	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	45	50	55	%
I _{DDAIRC48M} ⁽¹⁾	IRC48M oscillator operating current	V _{DD} = V _{DDA} = 3.3 V	l	238	_	μΑ
tsuirc ₄₈ M ⁽¹⁾	IRC48M oscillator startup time	V _{DD} = V _{DDA} = 3.3 V	1	1.3		μs

⁽¹⁾ Based on characterization, not tested in production.

4.9 PLL characteristics

Table 4-22. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN} (1)	PLL input clock frequency	_	1	_	25	MHz
f _{PLLOUT} (2)	PLL output clock frequency	_	16	_	72	MHz
f _{VCO} ⁽²⁾	PLL VCO output clock frequency	_	_	_	72	MHz
t _{LOCK} (2)	PLL lock time		_	_	300	μs
I _{DDA} ^{(1) (3)}	Current consumption on V _{DDA}	VCO freq = 72 MHz	_	210		μΑ
Jitter _{PLL} (4)	Cycle to cycle Jitter (rms)	System sleek	_	32.1		nc
JILLETPLL	Cycle to cycle Jitter (peak to peak)	System clock		255.6		ps

⁽¹⁾ Based on characterization, not tested in production.

4.10 Memory characteristics

Table 4-23 Flash memory characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
	Number of guaranteed					
PEcyc	program /erase cycles before		100	_	_	kcycles
	failure (Endurance)	_				
t	Read time at code flash area			1	-	hclks
tread	Read time at data flash area		56	_	3536	TICIKS
t _{RET}	Data retention time			20		years
t _{PROG}	Word programming time		-	37.5	86	μs
terase	Page erase time	T _A range ⁽²⁾		45	300	ms
t _{MERASE(64KB)}	Mass erase time		_	0.5	1.6	S

⁽¹⁾ Guaranteed by design and/or characterization, not 100% tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ System clock = IRC8M = 8 MHz, $f_{PLLOUT} = 72 MHz$.

⁽⁴⁾ Value given with main PLL running.

(2) For grade 6 devices, T_A range= -40°C ~ +85°C. For grade 7 devices, T_A range= -40°C ~ +105°C.

4.11 NRST pin characteristics

Table 4-24. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	0.03/43/4	-0.5		0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	$2.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA} \leq$	$0.7~V_{DD}$		V _{DD} + 0.5	V
V _{hyst} ⁽²⁾	Schmidt trigger Voltage hysteresis	3.6 V	_	360	_	mV
R _{pu} ⁽²⁾	Pull-up equivalent resistor	_	_	40	_	kΩ

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

Figure 4-4. Recommended external NRST pin circuit⁽¹⁾

(1) Unless the voltage on NRST pin go below VIL(NRST) level, the device would not generate a reliable reset.

4.12 **GPIO** characteristics

Table 4-25. I/O port DC characteristics(1)(3)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Standard IO Low level input	2.6 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V			0.3 V _{DD}	V
VIL	voltage	2.0 V 3 VDD - VDDA 3 3.0 V			0.5 VDD	V
VIL	5V-tolerant IO Low level	2.6 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V	_		0.3 V _{DD}	V
	input voltage	2.0 V \(\text{VDD} - \text{VDDA} \(\text{S} \) V				V
	Standard IO High level	2.6 V ≤ V _{DD} = V _{DDA} ≤ 3.6 V	0.7 V _{DD}	_	_	V
V _{IH}	input voltage	2.0 V 3 VDD - VDDA 3 3.0 V				V
VIH	5V-tolerant IO High level	$2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$	0.7 V _{DD}			V
	input voltage	2.0 V 3 VDD - VDDA 3 3.0 V	0.7 VDD			V
	Low level output voltage	$V_{DD} = 2.6 \text{ V}$		0.14	_	
Vol	for 8 IO Pins	$V_{DD} = 3.3 \text{ V}$		0.13	_	V
	(each I _{IO} = +8 mA)	V _{DD} = 3.6 V	_	0.12	_	

Symbol	Parar	meter	Conditions	Min	Тур	Max	Unit
	Low level output voltage		V _{DD} = 2.6 V	_	0.36	_	
Vol	for 8 IO	O Pins	V _{DD} = 3.3 V	_	0.32	_	V
	(each I _{IO} =	= +20 mA)	V _{DD} = 3.6 V		0.31		
	High level or	utput voltage	V _{DD} = 2.6 V	_	2.42	-	
Vон	VoH for 8 IO P		V _{DD} = 3.3 V	_	3.16	-	V
	(each I _{IO} = +8 mA)		V _{DD} = 3.6 V		3.47		
	High level or	utput voltage	V _{DD} = 2.6 V		2.15		
V _{OH}	for 8 IO	O Pins	V _{DD} = 3.3 V	_	2.92	_	V
	(each I _{IO} = +20 mA)		V _{DD} = 3.6 V	_	3.24		
R _{PU} ⁽²⁾	Internal pull-	All pins	V _{IN} = V _{SS}	30	40	50	kΩ
K _{PU} (-)	up resistor	PA10	_	7.5	10	13.5	kΩ
R _{PD} ⁽²⁾	Internal pull-	All pins	$V_{IN} = V_{DD}$	30	40	50	kΩ
KPD(=)	down resistor	PA10	_	7.5	10	13.5	kΩ

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current(typical source capability:3 mA shared between these IOs, but sink capability is same as other IO), the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF).

Table 4-26. I/O port AC characteristics(1)(2)

GPIOx_OSPD[1:0] bit value ⁽³⁾	Parameter	Conditions	Тур	Unit
CDIOv. OSDD0 > OSDDv(1:0) - V0		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	36.82	
GPIOx_OSPD0->OSPDy[1:0] = X0 (IO_Speed = 2 MHz)	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	43.91	ns
(10_opood = 2 Wil 12)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	49.92	
GPIOx_OSPD0->OSPDy[1:0] = 01		$2.6 \le V_{DD} \le 3.6 \text{ V, } C_L = 10 \text{ pF}$	9.27	
(IO_Speed = 10 MHz)	T_{Rise}/T_{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V, } C_L = 30 \text{ pF}$	10.46	ns
(10_Speed = 10 Minz)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	11.72	
GPIOx OSPD0->OSPDy[1:0] = 11	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V, } C_L = 10 \text{ pF}$	1.66	
(IO_Speed = 50 MHz)		$2.6 \le V_{DD} \le 3.6 \text{V}, C_L = 30 \text{ pF}$	2.43	ns
(10_Speed = 30 Wil 12)		$2.6 \le V_{DD} \le 3.6 \text{ V, } C_L = 50 \text{ pF}$	3.2	
GPIOx_OSPD0->OSPDy[1:0] = 11 and		$2.6 \le V_{DD} \le 3.6 \text{ V, } C_L = 10 \text{ pF}$	1.36	
GPIOx_OSPD1->SPDy = 1	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{V}, C_L = 30 \text{ pF}$	2.11	ns
(IO_Speed mode = MAX)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	2.8	

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all test results given for $T_A = 25$ °C.
- (3) The I/O speed is configured using the GPIOx_OSPD0->OSPDy [1:0] bits. Refer to the GD32F3x0 user manual which is selected to set the GPIO port output speed.
- (4) The maximum frequency is defined in <u>Figure 4-5. I/O port AC characteristics definition</u>, and maximum frequency cannot exceed 72 MHz.

Figure 4-5. I/O port AC characteristics definition

4.13 ADC characteristics

Table 4-27. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{DDA}^{(1)}$	Operating voltage		2.6	3.3	3.6	V
V _{IN} ⁽¹⁾	ADC input voltage range	_	0	_	V_{DDA}	V
f _{ADC} ⁽¹⁾	ADC clock	_	0.1	_	36	MHz
		12-bit	0.007	١	2.57	
fs ⁽¹⁾	Compling rate	10-bit	0.008	_	3.00	MSPS
IS ⁽¹⁾	Sampling rate	8-bit	0.01	_	3.60	MSPS
		6-bit	0.011	_	4.50	
V _{AIN} ⁽¹⁾	Analog input voltage	10 external; 3 internal	0	_	V_{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See Equation 1	_	_	171	kΩ
R _{ADC} ⁽²⁾	Input sampling switch		_	1	0.2	kΩ
. IABO	resistance				0.1	
C _{ADC} ⁽²⁾	Input sampling capacitance	No pin/pad capacitance	_		4	pF
	1 1 3 1	included				'
t _{CAL} (2)	Calibration time	$f_{ADC} = 40 \text{ MHz}$	_	3.63	_	μs
t _s (2)	Sampling time	$f_{ADC} = 40 \text{ MHz}$	0.04		6.65	μs
	Total conversion	12-bit	_	14	_	
t _{CONV} (2)	Total conversion	10-bit	_	12	_	1/f
ICONV(=)	time(including sampling time)	8-bit		10	_	1/ f _{ADC}
	uille)	6-bit	_	8	_	
tsu ⁽²⁾	Startup time		_	_	1	μS

⁽¹⁾ Based on characterization, not tested in production.

Equation 1: R_{AIN} max formula
$$R_{AIN} < \frac{T_s}{f_{ADC}*C_{ADC}*ln(2^{N+2})} - R_{ADC}$$

The formula above ($\underline{\textbf{Equation 1}}$) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

⁽²⁾ Guaranteed by design, not tested in production.

Table 4-28. ADC R_{AIN} max for $f_{ADC} = 36 \text{ MHz}^{(1)}$

T _s (cycles)	t _s (µs)	R _{AlNmax} (kΩ)
1.5	0.04	0.8
7.5	0.20	5.1
13.5	0.37	9.4
28.5	0.79	20.1
41.5	1.15	29.4
55.5	1.54	39.5
71.5	1.98	50.9
239.5	6.65	171

⁽¹⁾ Based on characterization, not tested in production.

Table 4-29. ADC dynamic accuracy at $f_{ADC} = 14 \text{ MHz}^{(1)}$

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} = 14 MHz	_	10.9		bits
SNDR	Signal-to-noise and distortion ratio	$V_{DDA} = V_{DD} = 3.3 \text{ V}$	_	67.3	1	
SNR	Signal-to-noise ratio	Input Frequency = 20 kHz	_	67.6		dB
THD	Total harmonic distortion	Temperature = 25°C	_	-79		

⁽¹⁾ Based on characterization, not tested in production.

Table 4-30. ADC dynamic accuracy at f_{ADC} = 28 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} = 28 MHz		10.8	_	bits
SNDR	Signal-to-noise and distortion ratio	$V_{DDA} = V_{DD} = 3.3 \text{ V}$	_	66.7	_	
SNR	Signal-to-noise ratio	Input Frequency = 20 kHz	_	67.0	_	dB
THD	Total harmonic distortion	Temperature = 25 ℃	_	-78	_	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-31.ADC dynamic accuracy at f_{ADC} = 36 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} = 36 MHz	_	10.8	_	bits
SNDR	Signal-to-noise and distortion ratio	$V_{DDA} = V_{DD} = 3.3 \text{ V}$	_	66.7	_	
SNR	Signal-to-noise ratio	Input Frequency = 20	_	67.0	_	dB
THD	Total harmonic distortion	kHz		-78		uБ
טרוו	Total Hairnoriic distortion	Temperature = 25°C	_	-70		

⁽¹⁾ Based on characterization, not tested in production.

Table 4-32. ADC static accuracy at $f_{ADC} = 14 \text{ MHz}^{(1)}$

Symbol	Parameter	Test conditions	Тур	Max	Unit
Offset	Offset error	f _{ADC} = 14 MHz	±1		
DNL	Differential linearity error	V _{DDA} = V _{DD} = 3.3 V	±1	_	LSB
INL	Integral linearity error	VUDA - VDD - 3.3 V	±1.5	_	

⁽¹⁾ Based on characterization, not tested in production.

4.14 Temperature sensor characteristics

Table 4-33. Temperature sensor characteristics(1)

Symbol	Parameter	Min	Тур	Max	Unit
T∟	VSENSE linearity with temperature		±1.5	_	$^{\circ}\mathbb{C}$
Avg_Slope	Average slope	_	4.3	_	mV/℃
V ₂₅	Voltage at 25 °C	_	1.45	_	V
ts_temp (2)	ADC sampling time when reading the temperature	_	17.1	_	μs

⁽¹⁾ Based on characterization, not tested in production.

4.15 I2C characteristics

Table 4-34. I2C characteristics(1)(2)(3)

Symbol	Parameter	Conditions		ndard ode	Fastı	mode	Fast mode plus		Unit
			Min	Max	Min	Max	Min	Max	
t _{SCL(H)}	SCL clock high time	1	4.0	l	0.6	_	0.2	_	μs
t _{SCL(L)}	SCL clock low time	1	4.7	ı	1.3	_	0.5	_	μs
tsu(SDA)	SDA setup time		250	ı	100	_	50	_	ns
t _{H(SDA)}	SDA data hold time	_	0(3)	3450	0	900	0	450	ns
t _{R(SDA/SCL)}	SDA and SCL rise time		l	1000	l	300	_	120	ns
t _{F(SDA/SCL)}	SDA and SCL fall time			300		300	_	120	ns
t _{H(STA)}	Start condition hold time		4.0		0.6	_	0.26	_	μs
t _{SU(STA)}	Repeated Start condition setup time	1	4.7		0.6	_	0.26	_	μs
tsu(sto)	Stop condition setup time	_	4.0		0.6		0.26	_	μs
tBUFF	Stop to Start condition time (bus free)	_	4.7	_	1.3	_	0.5	_	μs

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ Shortest sampling time can be determined in the application by multiple iterations.

⁽²⁾ To ensure the standard mode I2C frequency, f_{PCLK1} must be at least 2 MHz. To ensure the fast mode I2C frequency, f_{PCLK1} must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f_{PCLK1} must be at least a multiple of 10 MHz.

(3) The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL.

Figure 4-6. I2C bus timing diagram

4.16 SPI characteristics

Table 4-35. Standard SPI characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK} ⁽¹⁾	SCK clock frequency			_	18	MHz
t _{SCK(H)} (1)	SCK clock high time	Master mode, f _{PCLKx} = 72 MHz	25.78	27.78	29.78	ns
t _{SCK(L)} (1)	SCK clock low time	Master mode, f _{PCLKx} = 72 MHz	25.78	27.78	29.78	ns
		SPI master mode				
t _{V(MO)} (2)	Data output valid time	_	_	6.67	_	ns
t _{H(MO)} ⁽²⁾	Data output hold time		_	5.67	_	ns
t _{SU(MI)} ⁽¹⁾	Data input setup time	_	1	_	_	ns
t _{H(MI)} (1)	Data input hold time	_	0	_	_	ns
		SPI slave mode				
t _{SU(NSS)} (1)	NSS enable setup time		0	_	_	ns
t _{H(NSS)} ⁽¹⁾	NSS enable hold time		1	_	_	ns
t _{A(SO)} (2)	Data output access time			10.8	_	ns
t _{DIS(SO)} (2)	Data output disable time	_	_	15.5	_	ns
t _{V(SO)} (2)	Data output valid time		_	13.5	_	ns
t _{H(SO)} (2)	Data output hold time	_	_	11.1	_	ns
t _{SU(SI)} (1)	Data input setup time	_	0		_	ns
t _{H(SI)} (1)	Data input hold time	_	3	_	_	ns

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ Based on characterization, not tested in production.

Figure 4-7. SPI timing diagram - master mode

Figure 4-8. SPI timing diagram - slave mode

4.17 I2S characteristics

Table 4-36. I2S characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode (data: 16 bits,	3 084	3.086	3 089	
fcĸ ⁽¹⁾	Clock frequency	Audio frequency = 96 kHz)	3.004	3.000	3.000	MHz
		Slave mode	0	_	10	
t _H ⁽¹⁾	Clock high time		162	_	_	ns
t _L (1)	Clock low time	_	162	_	_	ns
t _{V(WS)} (2)	WS valid time	Master mode	_	1.88	_	ns
t _{H(WS)} (2)	WS hold time	Master mode	_	2.5	_	ns
t _{SU(WS)} (1)	WS setup time	Slave mode	0	_	_	ns
t _{H(WS)} (1)	WS hold time	Slave mode	2	_	_	ns
Duay (1)	I2S slave input clock duty	Clave made		50		%
Ducy _(sck) (1)	cycle	Slave mode	_	50	_	%
tsu(SD_MR) (1)	Data input setup time	Master mode	2	_	_	ns
tsu(SD_SR) (1)	Data input setup time	Slave mode	0	_	_	ns
t _{H(SD_MR)} (1)	Data input hold time	Master receiver	0	_	_	ns
th(SD_SR) (1)	Data input hold time	Slave receiver	1	_	_	ns
4 (2)	Data autout valid time	Slave transmitter		40.5		
tv (SD_ST) (2)	Data output valid time	(after enable edge)	_	13.5	_	ns
4 (2)	Data autaut hald time	Slave transmitter		13.8		20
t _{H (SD_ST)} ⁽²⁾	Data output hold time	(after enable edge)		13.0	_	ns
T(2)	Data autnut valid time	Master transmitter		7.55		20
T _{V(SD_MT)} ⁽²⁾	Data output valid time	(after enable edge)		7.55		ns
t.,,,,,,,,(2)	Master transmitter		0 22		nc	
t _{H(SD_MT)} ⁽²⁾	Data output hold time	(after enable edge)		8.33	_	ns

⁽¹⁾ Guaranteed by design, not tested in production

⁽²⁾ Based on characterization, not tested in production.

Figure 4-9. I2S timing diagram - master mode

Figure 4-10. I2S timing diagram - slave mode

4.18 USART characteristics

Table 4-37. USART characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck	SCK clock frequency	f _{PCLKx} = 72 MHz	_	_	36	MHz
t _{SCK(H)}	SCK clock high time	f _{PCLKx} = 72 MHz	13.8	_	_	ns
tsck(L)	SCK clock low time	f _{PCLKx} = 72 MHz	13.8	_	_	ns

⁽¹⁾ Guaranteed by design, not tested in production.

4.19 TIMER characteristics

Table 4-38. TIMER characteristics(1)

Symbol	Parameter	Conditions	Min	Max	Unit
+	Timer resolution time		1		tTIMERXCLK
t _{res}	Timer resolution time	ftimerxclk = 72 MHz	13.9	_	ns
4	Timer external clock	_	0	f _{TIMERxCLK} /2	MHz
f _{EXT}	frequency	ftimerxclk = 72 MHz	0 36		MHz
RES	Timer resolution	_	_	16	bit
	16-bit counter clock period	_	1	65536	tTIMERXCLK
t _{COUNTER}	when internal clock is selected	f _{TIMERxCLK} = 72 MHz	ftimerxclk = 72 MHz 0.0139 910		μs
t	Maximum possible count		_	65536 × 65536	tTIMERXCLK
tmax_count	Maximum possible count	ftimerxclk = 72 MHz	_	59.6	s

⁽¹⁾ Guaranteed by design, not tested in production.

4.20 WDGT characteristics

Table 4-39. FWDGT min/max timeout period at 40 kHz (IRC40K)(1)

Prescaler divider	PSC[2:0] bits	Min timeout RLD[11:0]	Max timeout RLD[11:0] =	Unit
Troodalor dividor	1 00[2:0] 5:10	= 0x000	0xFFF	
1/4	000	0.025	409.525	
1/8	001	0.025	819.025	
1/16	010	0.025	1638.025	
1/32	011	0.025	3276.025	ms
1/64	100	0.025	6552.025	
1/128	101	0.025	13104.025	
1/256	110 or 111	0.025	26208.025	

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-40. WWDGT min-max timeout value at 36 MHz (f_{PCLK1})⁽¹⁾

		(: 52)				
Prescaler divider	PSC[1:0]	Min timeout value CNT[6:0] = 0x40	Unit	Max timeout value CNT[6:0] = 0x7F	Unit	
1/1	00	113.78		7.28		
1/2	01	227.56		14.56	mo	
1/4	10	455.11	μs	29.13	ms	
1/8	11	910.22		58.25		

⁽¹⁾ Guaranteed by design, not tested in production.

4.21 Parameter conditions

Unless otherwise specified, all values given for V_{DD} = V_{DDA} = 3.3 V, T_A = 25 $^{\circ}$ C.

5 Package information

5.1 LQFP48 package outline dimensions

Figure 5-1. LQFP48 package outline

Table 5-1. LQFP48 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	_	0.50	_
eB	8.10	_	8.25
L	0.45		0.75
L1	_	1.00	
θ	0°		7°

(Original dimensions are in millimeters)

Figure 5-2. LQFP48 recommended footprint

5.2 LQFP32 package outline dimensions

Figure 5-3. LQFP32 package outline

Table 5-2. LQFP32 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.33	_	0.41
b1	0.32	0.35	0.38
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	_	0.80	_
eB	8.10	_	8.25
L	0.45	_	0.75
L1	_	1.00	_
θ	0°	_	7°

(Original dimensions are in millimeters)

Figure 5-4. LQFP32 recommended footprint

5.3 QFN32 package outline dimensions

Figure 5-5. QFN32 package outline

Table 5-3. QFN32 package dimensions

Symbol	Min	Тур	Max
А	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.18	0.25	0.30
С	0.18	0.20	0.25
D	4.90	5.00	5.10
D2	3.40	3.50	3.60
E	4.90	5.00	5.10
E2	3.40	3.50	3.60
е	_	0.50	_
h	0.30	0.35	0.40
L	0.35	0.40	0.45
Ne	_	3.50	_

Figure 5-6. QFN32 recommended footprint

5.4 QFN28 package outline dimensions

Figure 5-7. QFN28 package outline

Table 5-4. QFN28 package dimensions

Symbol	Min	Тур	Max
А	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.15	0.20	0.25
b1	_	0.14	_
С	0.18	0.20	0.25
D	3.90	4.00	4.10
D2	2.70	2.80	2.90
E	3.90	4.00	4.10
E2	2.70	2.80	2.90
е	_	0.40	_
h	0.30	0.35	0.40
L	0.30	0.35	0.40
Nd	_	2.40	_
Ne	_	2.40	_

Figure 5-8. QFN28 recommended footprint

5.5 TSSOP20 package outline dimensions

Figure 5-9. TSSOP20 package outline

Table 5-5. TSSOP20 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.20
A1	0.05	_	0.15
A2	0.80	1.00	1.05
A3	0.39	0.44	0.49
b	0.20	_	0.28
b1	0.19	0.22	0.25
С	0.13		0.17
c1	0.12	0.13	0.14
D	6.40	6.50	6.60
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
е	_	0.65	_
L	0.45	0.60	0.75
L1	_	1.00	
θ	0°	_	8°

Figure 5-10. TSSOP20 recommended footprint

5.6 Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter "0". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

 θ_{JA} : Thermal resistance, junction-to-ambient.

 θ_{JB} : Thermal resistance, junction-to-board.

 θ_{JC} : Thermal resistance, junction-to-case.

ΨJB: Thermal characterization parameter, junction-to-board.

ΨЈТ: Thermal characterization parameter, junction-to-top center.

$$\theta_{JA} = (T_J - T_A)/P_D \tag{5-1}$$

$$\theta_{JB} = (T_J - T_B)/P_D \tag{5-2}$$

$$\theta_{JC} = (T_J - T_C)/P_D \tag{5-3}$$

Where, T_J = Junction temperature.

 T_A = Ambient temperature

T_B = Board temperature

T_C = Case temperature which is monitoring on package surface

P_D = Total power dissipation

 θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θ_{JA} can be considerate as better overall thermal performance. θ_{JA} is generally used to estimate junction temperature.

 θ_{JB} is used to measure the heat flow resistance between the chip surface and the PCB board.

 θ_{JC} represents the thermal resistance between the chip surface and the package top case. θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Table 5-6. Package thermal characteristics⁽¹⁾

Symbol	Condition	Package	Value	Unit
		LQFP48	64.40	
		LQFP32	66.11	
θ_{JA}	Natural convection, 2S2P PCB	QFN32	48.50 °C/	°C/W
		QFN28	66.07	
		TSSOP20	72.35	
0	Cold plate 2020 DCD	LQFP48 42.3	42.32	°C \\\\
θјв	Cold plate, 2S2P PCB	LQFP32	42.66	°C/W

Symbol	Condition	Package	Value	Unit
		QFN32	28.32	
		QFN28	32.52	
		TSSOP20	53.01	
		LQFP48	22.47	
		LQFP32	30.06	
θις	Cold plate, 2S2P PCB	QFN32	24.07	°C/W
		QFN28	30.58	
		TSSOP20	25.05	
		LQFP48	42.42	
		LQFP32	43.18	
ΨЈВ	Natural convection, 2S2P PCB	QFN32	28.93	°C/W
		QFN28	32.55	
		TSSOP20	53.15	
		LQFP48	1.74	
		LQFP32	4.56	
$\Psi_{ m JT}$	Natural convection, 2S2P PCB	QFN32	3.33	°C/W
		QFN28	3.27	
		TSSOP20	1.93	

⁽¹⁾ Thermal characteristics are based on simulation, and meet JEDEC specification.

6 Ordering information

Table 6-1. Part ordering code for GD32F310xx devices

	Townseture				
Ordering code	Flash (KB)	Package	Package type	Temperature operating range	
GD32F310C8T6	64	LQFP48	Green	Industrial -40 °C to +85 °C	
GD32F310C8T7	64	LQFP48	Green	Industrial -40 °C to +105 °C	
GD32F310K8T6	64	LQFP32	Green	Industrial -40 °C to +85 °C	
GD32F310K8T7	64	LQFP32	Green	Industrial -40 °C to +105 °C	
GD32F310K6T6	32	LQFP32	Green	Industrial -40 °C to +85 °C	
GD32F310K8U6	64	QFN32	Green	Industrial -40 °C to +85 °C	
GD32F310G8U6TR	64	QFN28	Green	Industrial -40 °C to +85 °C	
GD32F310G8U7TR	64	QFN28	Green	Industrial -40 °C to +105 °C	
GD32F310F8P6TR	64	TSSOP20	Green	Industrial -40 °C to +85 °C	
GD32F310F6P6TR	32	TSSOP20	Green	Industrial -40 °C to +85 °C	
GD32F310F4P6TR	16	TSSOP20	Green	Industrial -40 °C to +85 °C	

7 Revision history

Table 7-1. Revision history

Revision No.	Description	Date
1.0	Initial Release	Dec.4, 2021
	Update <u>Arm® Cortex®-M4 core</u> .	
	Update <u>Debug mode</u> .	
	Update <u>Table 4-24. I/O port DC characteristics(1)(3)</u>	
	Update Table 4-25. I/O port AC characteristics(1)(2)	
	Update Table 4-26. ADC characteristics	
1.1	Update <u>Table 4-27. ADC RAIN max for fADC = 36 MHz(1)</u> .	Apr.7, 2022
	Update <u>Table 4-28. ADC dynamic accuracy at fADC = 14</u> MHz(1)	
	Update <u>Table 4-29. ADC dynamic accuracy at fADC = 28</u>	
	MHz(1) . Update Table 4-30.ADC dynamic accuracy at fADC = 36	
	MHz(1) .	
	Update <u>I2C characteristics</u> .	
	Update <i>Absolute maximum ratings</i> .	
	Update <i>Thermal characteristics</i> .	
	Update NRST pin characteristics .	
	Update <i>External clock characteristics</i> .	Jul. 29, 2022
1.2	Update <u>Internal clock characteristics</u> .	
	Update <i>PLL characteristics</i> .	, -
	Update <i>GPIO characteristics</i> .	
	Update <u>Table 2-1. GD32F310xx devices features and</u>	
	peripheral list.	
	Update <u>On-chip memory</u> .	
	Update <u>General description</u> .	
	Add Table 2-2. GD32F310xx devices features and	
	peripheral list (continued).	
	Update <i>Pinouts and pin assignment</i> .	
	Update <i>Pin definitions</i> .	
1.3	Update Package and operation temperature .	Aug. 22, 2022
	Update <i>Absolute maximum ratings</i> .	
	Update Operating conditions characteristics .	
	Update <i>Internal clock characteristics</i> .	
	Update <i>Memory characteristics</i> .	
	Update Ordering information .	
1.4	Update Table 2-6. GD32F310KxU6 QFN32 pin definitions.	Sen 1/ 2022
1.4	Update Table 2-7. GD32F310Gx QFN28 pin definitions.	Sep. 14, 2022

Revision No.	Description	Date
1.5	Update Power consumption .	Dec. 21, 2022
1.5	Update <i>I2C characteristics</i> .	Dec. 21, 2022
	Update Table 4-1. Absolute maximum ratings(1)(4)	
1.6	Update <i>Package information</i> .	Mar. 7, 2023
	Update Ordering information .	
	Update Table 2-4 GD32F310Cx LQFP48 pin definitions.	
	Update Table 2-5 GD32F310Kx LQFP32 pin definitions.	
1.7	Update Table 2-6 GD32F310KxU6 QFN32 pin definitions.	Jun. 15, 2023
1.7	Update Table 2-7 GD32F310Gx QFN28 pin definitions.	Juli. 15, 2025
	Update Table 2-8 GD32F310FxP6 TSSOP20 pin definitions.	
	Add note in chapter Operating conditions characteristics .	
1.8	Update <i>GPIO characteristics</i> .	Dec. 4, 2023

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2023 GigaDevice - All rights reserved