Introduction to Data Analysis

 $last\ rendered\ at:\ 2019-09-06\ 11:43:45$

Contents

Pr	reface	5
	0.1 Testing	5
1	General Introduction	7
2	Data	9
3	Probability	11
4	Models	13
5	Inference	15
6	Hypothesis Testing	17
7	Model Comparison	19
8	Generalized Regression Modeling	21

Preface

The book introduces key concepts of data analysis from a frequentist and a Bayesian tradition. It uses R to handle, plot and analyze data. It relies on simulation to illustrate selected statistical concepts.

0.1 Testing

This is a quote by Wickham (2014):

Tidy datasets [...] have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table.

This is a plot:

```
library(ggplot2)

ggplot(diamonds, aes(color)) +
  geom_bar(fill = "blue", alpha = .6) +
  theme_classic()
```

Contents

1 General Introduction

- what stats is about
- \bullet different practices
- learning goals

2 Data

 $learning\ goal:$ how to arrange, summarize and visualize (aspects of data) to address a question of interest ("hypothesis-driven data poking")

- different kinds of data
- summary statistics
- data wrangling
- data plotting

3 Probability

learning goal: get comfortable with basic notions of probability theory

- ullet probability distributions
- random variables
- conditional probability
- selected distributions

4 Models

learning goal: diagnosing the (conceptual) differences between kinds of statistical models

- priors & likelihood
- conceptual differences between frequentist and Bayesian approaches (revisited)
- notation (probabilistic causal networks)
- three example models:
 - "binomial model"
 - "factorial-design model"
 - simple linear regression model

5 Inference

- MLE vs posterior
- ullet confidence intervals
- ullet credible intervals
- briefly: algorithms for MLE & Bayesian inference

6 Hypothesis Testing

- \bullet binomial test
- t-test
- ANOVA
- linear regression

7 Model Comparison

- AIC
- likelihood ratio test
- Bayes factor

8 Generalized Regression Modeling

• applications

Wickham, Hadley. 2014. "Tidy Data." Journal of Statistical Software, Articles 59 (10): 1–23. https://doi.org/10.18637/jss.v059.i10.