1 Constructions

Definition 1.1 (Product). Let \mathcal{X} and \mathcal{Y} are topology spaces, the product of \mathcal{X} and \mathcal{Y} , $\mathcal{X} \times \mathcal{Y}$ is a topology space, which open set is a union of the product of open sets in \mathcal{X} and \mathcal{Y} , that is, $\bigcup_i V_i \times W_i$ where V_i is an open set of \mathcal{X} and W_i is an open set of \mathcal{Y} (It won't work if the open set is just a product of open sets from both space).

Proof. We need to show that $\mathcal{X} \times \mathcal{Y}$ is a topology space.

- 1. $\mathcal{X} \times \mathcal{Y}$ is an open set since both \mathcal{X} and \mathcal{Y} are open set, similarly, \emptyset is an open set in $\mathcal{X} \times \mathcal{Y}$.
- 2. Trivial.

3.

$$\bigcup_{a,b} (V_a \cap V_b) \times (W_a \cap W_b)$$

Exercise 1.1. Let \mathscr{B} be a collection of open sets in a topological space \mathcal{X} . Show that \mathscr{B} is base in \mathcal{X} iff for any point $x \in \mathcal{X}$ and any neighborhood N, there is $B \in \mathscr{B}$ such that $x \in B \subseteq N$.

Proof.

- (\Rightarrow) We know N can be expressed as a union of some open sets in \mathscr{B} , that is, $N = B_0 \cup B_1 \cup \ldots$ Then there is B_i such that $x \in B_i$, and we know $B_i \subseteq N$, so $x \in B_i \subseteq N$.
- (\Leftarrow) For any open set A, consider any point $x \in A$, we know A is a neighborhood of x, so there is $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq A$. Then $\bigcup_{x \in A} B_x$ is a subset of A, but note that $x \in B_x$, so $\bigcup_{x \in A} B_x$ contains all points of A, so $\bigcup_{x \in A} B_x = A$.

Theorem 1.1. Let \mathscr{B} be a set of subsets in some set \mathcal{X} . Show that \mathscr{B} is a base of some topology on \mathcal{X} iff it satisfies the following conditions:

1. \mathscr{B} coverse \mathcal{X} , that is, for any $x \in \mathcal{X}$, there is $B \in \mathscr{B}$ such that $x \in B$.

2. For any $B_1, B_2 \in \mathcal{B}$, $x \in B_1 \cap B_2$, then there exists a set $B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$.

Proof. (\Rightarrow) Trivial by the previous exercise.

 (\Leftarrow) Let \mathscr{O} the set of all unions of sets of \mathscr{B} . We claim \mathscr{O} is a topology on \mathcal{X} . First, $\emptyset \in \mathscr{O}$ since it is the result of union of no set. And $\mathcal{X} \in \mathscr{O}$ since \mathscr{B} covers \mathcal{X} . Obviously, the union of any sets of \mathscr{O} is in \mathscr{O} .

Let $O_0, O_1 \in \mathcal{O}$, then $O_0 = \bigcup_i B_i$ and $O_1 = \bigcup_j B_j$. For any $x \in O_0 \cap O_1$, we have $x \in B_x \subseteq O_0 \cap O_1$ where $B_x \in \mathcal{O}$ by (2). Then $O_0 \cap O_1 = \bigcup_x = B_x$, therefore $O_0 \cap O_1 \in \mathcal{O}$ cause it is a union of some set B_x .

Definition 1.2 (Prebase). Suppose \mathscr{P} is a collection of subsets in \mathscr{X} that covers the whole space. Show that the set of all finite intersections of sets in \mathscr{P} is a base for some topology on \mathscr{X} .

Proof. We denote all finite intersections of sets in \mathscr{P} as P, then $\mathscr{P} \subseteq P$ since $\forall S \in P, S \cap S = S$. So P covers \mathscr{X} . For any $B_0, B_1 \in P$ and $x \in B_0 \cap B_1$, it is obvious that $x \in B_0 \cap B_1 \subseteq B_0 \cap B_1 \in P$. So \mathscr{P} is a base for some topology on \mathscr{X} by the previous theorem.

Theorem 1.2. Let \mathscr{P} be a prebase for the topology on \mathcal{Y} . Show that a map $f: \mathcal{X} \to \mathcal{Y}$ is continuous iff $f^{-1}(P)$ is open for any $P \in \mathscr{P}$.

Proof. (\Rightarrow) Obviously, every set in \mathscr{P} is open.

 (\Leftarrow) For any open set in \mathcal{Y} , it is a union of sets in \mathscr{P} , that is, $\bigcup_i P_i$. Then $f^{-1}(\bigcup_i P_i) = \bigcup_i f^{-1}(P_i)$ which is a union of open sets, so it is also open. \square

2 Compactness

Exercise 2.1. Let $\{V_{\alpha}\}$ be an open cover of a topological space \mathcal{X} . Show that $W \subseteq \mathcal{X}$ is open iff $W \cap V_{\alpha}$ is open for any $V_{\alpha} \in \langle V_{\alpha} \rangle$.