

Profº Agnaldo Cieslak

- Tabela verdade.
 - São as possíveis combinações de valores lógicos das proposições
 - Para cada combinação a tabela nos dá o valor da expressão resultante.

Р	→ P
V	F
F	V

Exemplo: tabela verdade da negação

- Conjunção
 - p ∧ q -> lê-se "p e q"
 - Denota simultaneidade para ser verdade
 - Falsa nos demais casos

р	q	p Λq
V	V	V
V	F	F
F	V	F
F	F	F

- Disjunção
 - p √ q -> lê-se "p ou q"
 - Denota que pelo menos ocorra pelo menos 1 para resultar em V(verdade);
 - Falso quando ambas forem falsas;

р	q	p Vq
V	V	V
V	F	V
F	V	V
F	F	F

- Disjunção exclusiva <u>V</u>
 - p <u>V</u> q -> lê-se "ou p ou q"
 - Denota que se um for verdadeiro o outro necessariamente será falso para resultar em V(verdade);
 - Será Falso quando ambas forem verdadeiras ou ambas forem falsas;

р	q	р <u>V</u> (7
V	V	F	
V	F	V	
F	V	V	
F	F	F	

- Condição
 - p → q -> lê-se "se p então q"
 - Premissa [\forall]: se p[\forall] então q[\forall] para que p \rightarrow q[\forall]
 - Premissa [F]: se p[v] e q[F] -> falso [F]

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

- -- Uma condição suficiente gera um resultado necessário.
 - se chove e não tem nuvem [F]
- Ex.: [V] Se chove (V), então tem nuvem no céu (V).
 - [F] Se chove (V), então não tem nuvem no céu(F).
- Podemos dizer: chover é condição suficiente para ter nuvem no céu e ter nuvem no céu é condição necessária para chover.
- A proposição não precisa necessariamente ter um sentido real para nós. Se a lua é feita de queijo, então existe um único dragão azul.
- Desafio para pesquisar:
- É possível representar $p \rightarrow q$ em termos dos conectivos \neg , V, A?

- Bi-Condição
 - − p ← ¬ q -> lê-se "p se e somente se q"
 - Condição nos dois sentidos, simultaneidade;
 - Ida; p é a premissa e q é a conclusão;
 - Volta: q é a premissa e p é a conclusão;
 - Verdadeira: quando p e q forem iguais

р	q	p↔q
V	V	V
V	F	F
F	V	F
F	F	V

- A ideia (significado) do conectivo bicondicional é abordar duas informações que acontecem juntas ou deixam de acontecer juntas (simultaneidade)
- Expressões que denotam a bi-condição:
- − p se e só se q.
- Se p então q e se q então p.
- − p somente se q e q somente se p.
- − Todo p é q e todo q é p.
- p é condição suficiente e necessária para q.
- q é condição suficiente e necessária para p.

Você vencerá se e só se você se esforçar, ou seja, só vence quem se esforça, quem esforça vence, assim esforço é condição necessária para você vencer.

Linguagem natural para simbólica

Mas e Não/nem . . . nem

p = Está quente.

q = Está ensolarado.

Exemplo: (a) Não está quente mas está ensolarado.

"Mas" =
$$\Lambda \dots \neg p \wedge q$$
.

(b) Não está quente nem ensolarado.

"Nem p nem q" = $\neg p \land \neg q$

OPERAÇÃO	CONECTIVO	ESTRUTURA LÓGICA
Negação	~, ¬	Não p , Não q
Conjunção	٨	p e q
Disjunção inclusiva	V	р ои q
Disjunção exclusiva	<u>V</u>	Ou p ou q
Condicional	→	Se p então q
Bicondicional	\leftrightarrow	p se, e somente se q

Desenvolvimento de tabela verdade para proposições complexas

•
$$p \land \neg q \rightarrow p$$

P	q	¬ q	(p ^ ¬ q)	<mark>p ^ ¬ q —> p</mark>
V	V	F	F	V
V	F	V	V	V
F	V	F	F	V
F	F	V	F	V

Desenvolvimento de tabela verdade para proposições complexas

•
$$\neg p \land r \longrightarrow q \lor \neg r$$
 $2^{3}=8$

р	q	r	¬р	٦r	¬ p ^ r	q V ¬ r	¬ p ^ r —> q v ¬ r
V	V	V	F	F	F	V	V
V	V	F	F	V	F	V	V
V	F	V	F	F	F	F	V
V	F	F	F	V	F	V	V
F	V	V	V	F	V	V	V
F	V	F	V	V	F	V	V
F	F	V	V	F	V	F	F
F	F	F	V	V	F	V	V

- Ordem de precedência dos conectivos
- Na confecção de tabelas verdade precisamos obedecer a ordem dos conectivos conforme sua precedência
- Cada proposição complexa deve ser analisada e seguir a ordem de resolução conforme tabela abaixo:

Ordem de procedência

1.Conectivos entre
parênteses, dos mais
internos para os mais
externos;
2.Negação
3.Conjunção
4.Disjunção
5.Condição
6.Bicondição
6.Bicondição

$p \lor q \land r$	$p \lor (q \land r)$
$p \wedge q \Rightarrow r \vee z$	$(p \land q) \Rightarrow (r \lor z)$
$p \Rightarrow q \lor r \Leftrightarrow z$	$(p \Rightarrow (q \lor r)) \Leftrightarrow z$

Rápida revisão:

www.kahoot.it

1334837

Atividade 4 - Exemplo de aplicação:

Jorge tem 18 anos, gosta de samba e costuma frequentemente comentar isto nas suas redes sociais e nos fóruns que participa, onde sinaliza a paixão por camisas com o tema de samba. Porém, por superstição, ele informa ainda que não gosta de camisas totalmente pretas e totalmente brancas.

Através de um sistema de recomendação de conteúdo pode-se ter a seguinte proposição para a situação problema citada:

Jorge compra camisas se elas forem diferentes de preta ou branca e tem que ser sobre samba. As variáveis são as cores e a preferência pessoal dele.

C: ação de comprar

p: cor preta

q: cor branca

r: tema da camisa de samba

Em grupos:

1-Interpretar e elaborar uma proposição para a situação;

2-Montar e resolver a tabela verdade;

3-Na concepção da equipe em que situações Jorge compraria uma camisa?

4-Discussão e debate: 30/09.