1 ЛІНІЙНИЙ ОБЧИСЛЮВАЛЬНИЙ ПРОЦЕС

Мета: навчитись використовувати лінійну обчислювальну структуру для розв'язку прикладних задач.

1.1 Короткі теоретичні відомості

Алгоритм — чіткий порядок дій, що однозначно призводить до рішення поставленої задачі.

Графічний спосіб — представлення алгоритмів у вигляді схем, що являють собою послідовність певних *графічних блоків* (символів дій). Ці блоки з'єднуються між собою *лініями потоку* інформації, що у разі неоднозначності сприйняття напрямку потоку інформації можуть забезпечиватись стрілками. Лінії потоку визначають черговість виконання блоків і зв'язок між ними.

Кожний символ дії являє собою певну геометричну фігуру, в середину якої може бути вписано відповідну дію, або группу дій. Види графічних блоків та детальна супутня інформація регламентується згідно до стандартів ISO-2636-73 та ISO-1028-73.

Пінійною називається структура, у якій **послідовно** здійснюється передача керування від одного функціонального блоку до наступного

1.2 Завдання

Обчислити значення функції використовуючи лінійну структуру та метод декомпозиції задачі на підзадачі. Завдання вибирати згідно свого варіанту (Завдання 5.1). Змінна х, послідовно приймає певні значення $x_{1,}x_{2,}x_{3,}x_{4}$, що надані у завданні. Параметри a, y - обирати довільно.

$$\beta = \ln^2 \frac{x + \cos x}{x - \sin x} - \frac{a}{3} \sqrt{(\sin^3 x + 1)^2 - \sqrt{e^{x - 1}}} + \sqrt{\frac{\sin^2 x + \cos x}{\sin x}}$$
 (1.1)

1.3 Хід роботи

1.3.1 Постановка задачі

Дано: $x, a \in \mathbb{R}$;

Додаткові дані: A,B,C,D∈ \mathbb{R}

Визначити: β ∈ \mathbb{R} .

1.3.2 Математична модель інформаційного процесу

$$\beta = \ln^2 \frac{x + \cos x}{x - \sin x} - \frac{a}{3} \sqrt{(\sin^3 x + 1)^2 - \sqrt{e^{x - 1}}} + \sqrt{\frac{\sin^2 x + \cos x}{\sin x}}$$

Скоригована математична модель:

$$A = \frac{x + \cos x}{x - \sin x} \tag{1.2}$$

$$B = (\sin^3 x + 1)^2 \tag{1.3}$$

$$C = \sqrt{e^{x-1}} \tag{1.4}$$

$$D = \sqrt{\frac{\sin^2 x + \cos x}{\sin x}} \tag{1.5}$$

$$\beta = \ln^2 A - \frac{a}{3} \sqrt{B - C} + D \tag{1.6}$$

1.3.3 Метод реалізації інформаційного процесу

Безпосередні обчислення.

1.3.4 Алгоритм реалізації інформаційного процесу

Рисунок 5.1 — Алгоритм обчислення функції β

1.3.5 Програмування

Побудова таблиці ідентифікаторів.

Таблиця 1.1 — Таблиця ідентифікаторів

№ 3/Π	Змінна або константа	Ідентифікатор	№ 3/П	Змінна або константа	Ідентифікатор
1	x	X	5	C	С
2	а	а	6	D	D
3	A	А	7	β	beta
4	В	В			

Запуск середовища розробки програмного забезпечення:

- Запустити Visual Studio.
- У середовищі створити новий проект C++: File \rightarrow New \rightarrow Project \rightarrow Console Application.

Введення тексту програми:

```
#include <iostream>
#include <math.h>
using namespace std;
int main()
      double x, a, A, B, C, D, beta;
      cout << "Input x=";</pre>
      cin >> x;
      cout << "Input a=";</pre>
      cin >> a;
      A = (x + \cos(x)) / (x - \sin(x));
      B = pow(pow(sin(x), 3) + 1, 2);
      C = sqrt(exp(x - 1));
      D = \operatorname{sqrt}((\sin(x) * \sin(x) + \cos(x)) / \sin(x));
      beta = log(A)*log(A) - a / 3.0*sqrt(B - C) + D;
      cout << "beta = " << beta << endl;</pre>
      system("PAUSE");
      return 0;
}
```

Запуск програми на виконання: F5.

1.3.6 Тестуванння та виявлення помилок

Для виявлення алгоритмічних помилок та вирішення проблеми достовірності отриманих результатів можна виконати обчислення у електронній таблиці і порвняти отримані розв'язки.

Для цього у OpenOffice.org Calc створюємо електронну книгу "Обчислення функцій", яку зберігаємо у особисту теку. Далі *Лист* І перейменовуємо на ЛР5 та виконуємо обчислення за формою:

	Α	В	D	Е	F	G	I			
1	1 Обчислення функції									
2										
3	3 Вхідні дані			Додаті	Додаткові позначення		Отриманий результат			
4	а	х	A=	B=	C=	D=	Beta=			
5	0,21	0,5	=(B5+COS(B5))/(B5-SIN(B5))	=(SIN(B5)^3+1)^2	=SQRT(EXP(B5-1))	=SQRT((SIN(B5)^2+COS(B5))/SIN(B5))	=LN(D5)^2-(\$A\$5/3)*SQRT(E5-F5)+G5			
6		-12	=(B6+COS(B6))/(B6-SIN(B6))	=(SIN(B6)^3+1)^2	=SQRT(EXP(B6-1))	=SQRT((SIN(B6)^2+COS(B6))/SIN(B6))	=LN(D6)^2-(\$A\$5/3)*SQRT(E6-F6)+G6			
7		-5	=(B7+COS(B7))/(B7-SIN(B7))	=(SIN(B7)^3+1)^2	=SQRT(EXP(B7-1))	=SQRT((SIN(B7)^2+COS(B7))/SIN(B7))	=LN(D7)^2-(\$A\$5/3)*SQRT(E7-F7)+G7			
8		1	=(B8+COS(B8))/(B8-SIN(B8))	=(SIN(B8)^3+1)^2	=SQRT(EXP(B8-1))	=SQRT((SIN(B8)^2+COS(B8))/SIN(B8))	=LN(D8)^2-(\$A\$5/3)*SQRT(E8-F8)+G8			

Рисунок 1.2 — Обчислення функцій (1.2) — (1.6) у ET

У випадку, коли результати отримані двома різними способами не співпадають, необхідно продовжити роботу над виправленням помилок. Одним зі способів є виведення на екран проміжних результатів обчислення. Для цього до коду програми необхідно добавити команди виведення проміжних результатів на екран:

```
#include <cstdlib>
#include <iostream>
#include <math.h>
using namespace std;
int main(int argc, char** argv)
      double x, a, A, B, C, D, beta;
      cout << "Input x=";</pre>
      cin >> x;
      cout << "Input a=";</pre>
      cin >> a;
      A = (x + \cos(x)) / (x - \sin(x));
      cout << "A="<<A<<endl;</pre>
      B = pow(pow(sin(x), 3) + 1, 2);
      cout << "B=" << B << endl;</pre>
      C = sqrt(exp(x - 1));
      cout << "C=" << C<< endl;</pre>
      D = \operatorname{sqrt}((\sin(x) * \sin(x) + \cos(x)) / \sin(x));
      cout << "D=" << D << endl;</pre>
      beta = log(A)*log(A) - a / 3.0*sqrt(B - C) + D;
      cout << "beta = " << beta << endl;</pre>
      system("PAUSE");
      return 0;
}
```

1.3.7 Обчислення, обробка і аналіз результатів

У ході виконання даної роботи отримано наступні результати:

```
Input x=0.5
Input a=0.21
A=66.9559
B=1.23253
C=0.778801
D=1.51984
beta = 19.1466
Для продолжения нажмите любую клавишу . . .
```

Рисунок 1.3 — Результат обчислень при x=0.5

```
Input x=-12
Input a=0.21
A=0.889888
B=1.33284
C=0.00150344
D=1.45232
beta = 1.38517
Для продолжения нажмите любую клавишу . . .
```

Рисунок 1.4 — Результат обчислень при x=-12

```
Input x=-5
Input a=0.21
A=0.791475
B=3.54104
C=0.0497871
D=1.12015
beta = 1.04405
Для продолжения нажмите любую клавишу . . .
```

Рисунок 1.5 — Результат обчислень при x=-5

```
Input x=1
Input a=0.21
A=9.71622
B=2.54665
C=1
D=1.21802
beta = 6.30111
Для продолжения нажмите любую клавишу . . .
```

Рисунок 1.6 — Результат обчислень при x=1

Обчислення функції									
Вхідні дані		Вхідні дані Додаткові позначенн		103начення	ення		Отриманий результат		
а	Х		A=	B=	C=	D=		Beta=	
0,21	0,5		66,955947735	1,2325338424	0,7788007831	1,5198398798		19,146597579	
	-12		0,8898880192	1,3328355578	0,0015034392	1,4523244556		1,3851655722	
	-5		0,791474702	3,5410401401	0,0497870684	1,1201505212		1,044045521	
	1		9,7162169588	2,5466518024	1	1,2180162564		6,3011109369	

Рисунок 1.7 — Результат обчислень у електронній таблиці

Порівнюючи результати, отримані трьома різними способами з високою вірогідністю можна стверджувати, що обчислення виконано правильно, так як отримані значення співпали.

1.4 Програми та обладнання.

У даному підрозділі студент описує обладнання, програмні продукти та складові, що були використані при опрацюванні даної лабораторної роботи.

1.5 Висновки.

У даному підрозділі студент робить висновки за опрацюванням даної лабораторної роботи з урахуванням поставленої мети.

Завдання № 5.1

№	Вираз	X ₁	X ₂	X3	X4
1.	$\alpha = \lg \frac{ 3 a^2 x^4 + a x^2 + y }{e^{x+y} + e^{x-y}} + \sqrt{\frac{ x^2 \sin(ax) - y^3 \cos(ax) }{1 + \sin^2(ax) + \cos^2(ay)}} - \lg^2 \frac{x}{2} + \frac{\cos x \cdot \lg y}{e^{ax}},$	0,5	12	-1,005	-5
2.	$\beta = \sin(ax) \cdot tg \frac{y}{2} - \sqrt{\frac{a \cdot tg^3 x - 2a^2 \cdot tg x + 1}{\sin(x+y) + \cos(x-y)}} + \ln\left 2\cos^3(ax) - \frac{\sqrt{\sin^2 y + 1}}{2 - \cos(ax)} \right ;$	0,47	3	-0,42	-2
3.	$\psi = \sqrt{\frac{a^2 \operatorname{tg}^4 x - 3\cos^2 y}{e^x + e^y}} + \log_2 \frac{ 2 a \cdot x^3 - 3 a^2 \cdot x + y }{3 + \sin x + \cos y + 3} + \cos (ax) \cdot (1 + \operatorname{ctg} y);$	0,31	4	-0,06	-1
4.	$\delta = \sqrt{\frac{\operatorname{tg}^{4} \frac{x}{a} + \operatorname{tg}^{2} \frac{y}{a} + 1}{\sqrt{ 3 + \sin x - \cos^{3} y }}} - \ln\left \frac{a \cdot x^{3} - 3a^{2} \cdot x + y}{3 - \sin(x + y) - \cos(x - y)} \right + a \cdot \operatorname{tg}^{2} \frac{x}{2} + \frac{\cos x \cdot \operatorname{tg} y}{e^{a \cdot x}};$	0,59	2	-0,15	-3
5.	$\phi = \sin(ax) \cdot tg \frac{y}{2} - \sqrt{\frac{ a \cdot tg^3 x - 2a^2 \cdot tgx + 1 }{\sin(x+y) + \cos(x-y)}} - \log_2 \frac{e^{ax} + e^{ay} + 1}{\sqrt{\sin^4(x+y) + a^2 \cos^2(x-y) + 3}};$	0,38	6	-0,28	-6
6.	$\gamma = \lg \frac{3 a^2 x^4 + a x^2 + y}{e^{x+y} + e^{x-y}} + \sqrt{\frac{ x^2 \sin(ax) - y^4 \cos(ax) }{1 + \sin^2(ax) + \cos^2(ax)}} - \lg^3 \frac{x}{2} + \frac{\cos x \cdot \lg y}{e^{ax}};$	0,9	10	-0,76	-4
7.	$\lambda = \cos(ax) \cdot (1 + \cot y) + \ln \left \frac{a \cdot x^3 - 3 \cdot a^2 \cdot x + y}{3 - \sin(x + y) - \cos(x - y)} \right + \sqrt{\frac{\tan^4 \frac{x}{a} + \tan^2 \frac{y}{a} + 1}{\sqrt{ 3 + \sin x - \cos^3 y }}},$	0,5	12	-0,407	-5

8.	$\mu = a \cdot \lg^{2} \frac{x}{2} + \frac{\cos x \cdot \lg y}{e^{ax}} + \sqrt{\frac{ x^{2} \sin(ax) - y^{3} \cos(ax) }{1 + \sin^{2}(ax) + \cos^{2}(ax)}} + \sin(ax) \cdot \lg \frac{y}{2};$	0,72	7	-0,59	-9
9.	$v = \sqrt{\frac{a \cdot tg^{3} x - 3\cos y}{e^{x} + e^{y}}} - \log_{2} \frac{e^{ax} + e^{ay} + 1}{\sqrt{\sin^{4} x + a \cdot \cos^{2} y + 3}} - \ln\left 2 \cdot \cos^{3} x - \frac{\sqrt{\sin^{2} y + 1}}{2 - \cos x} \right ;$	0,43	11	-0,31	-8
10.	$\sigma = \ln \left \frac{2 a \cdot x^3 - 3 a^2 x + y}{3 - \sin(x + y) - \cos(x - y)} \right + \sqrt{\frac{\operatorname{tg}^4 \frac{x}{a} \operatorname{tg}^2 \frac{y}{a} + 1}{\sqrt{ 3 + \sin x - \cos^3 y }}} - \operatorname{tg}^2 \frac{x}{2} + \frac{\cos x \cdot \operatorname{tg} y}{e^{ax}};$	0,41	5	-0,205	-5
11.	$\rho = \sqrt{\frac{ x^2 \cdot \sin(ax) - y^3 \cdot \cos(ax) }{1 + \sin^2(ax) + \cos^2(ay)}} - \log_2 \frac{e^{ax} + e^{ay} + 1}{\sqrt{\sin^4(x+y) + a \cdot \cos^2(x-y) + 3}} - \lg \frac{3a^2x^4 + ax^2 + y}{e^{x+y} + e^{x-y}};$	0,59	3	-0,42	-2
12.	$\zeta = \ln \left \frac{a x^3 - 3 a^2 x + y}{3 - \sin(x + y) - \cos(x - y)} \right - \ln \left 2 \cos^3(ax) - \frac{\sqrt{\sin^2 y + 1}}{2 - \cos(ax)} \right + \sqrt{\frac{\tan^4 \frac{x}{a} + \tan^2 \frac{y}{a} + 1}{\sqrt{3 + \sin x - \cos^3 y}}};$	0,3	4	-0,26	-1
13.	$\varepsilon = \frac{\cos(ax) - a^2 \cdot \sin^2(ax) + a^3 \left[1 + tg(ax) \cdot ctg y\right]}{\sqrt{e^{x+y} + e^{x-y}}} + \sqrt{\frac{\left x^2 \cdot \sin(ax) - y^3 \cdot \cos(ax)\right }{1 + \sin^2(ax) + \cos^2(ax)}} - \lg \frac{3 a^2 x^4 + ax^2 + y}{e^{x-y}},$	0,89	2	-0,15	-3
14.	$\eta = \sqrt{\frac{\lg^4 \frac{x}{a} + \lg^2 \frac{y}{a} + 1}{\sqrt{ 3 + \sin x - \cos^3 y }}} - \lg^2 \frac{x}{2} + \frac{\cos x \cdot \lg y}{e^{ax}} - \lg \left \frac{\sqrt{\sin^2 y + 1}}{2 - \cos x} \right + \ln \left \frac{ax^3 - 3a^2x + y}{3 - \sin(x + y) - \cos(x - y)} \right ;$	0,32	6	-0,28	-6
15.	$\Delta = \sqrt{\frac{\lg^4(ax) + 1}{\sqrt{ 3 + \sin(ax) }}} - \frac{\lg(3x^4 + y)}{e^{x + y} + e^{x - y}} - \sqrt{\frac{ x^2 \sin(ax) - y^3 \cos(ax) }{1 + \sin^2(ax) + \cos^2(ay)}} - \ln\left \cos^3(ax) - \frac{\sqrt{\sin^2(ay) + 1}}{2 - \cos(ax)}\right ;$	0,29	10	-0,76	-4

16.	$\Lambda = \left \frac{a x^3 - 3 a^2 x + y}{3 - \sin(x + y) - \cos(x - y)} \right + \frac{\sqrt{\lg^4 \frac{x}{a} + \lg^2 \frac{y}{a} + 1}}{\sqrt{ 3 + \sin x - \cos^3 y }} + \cos \frac{x}{a} \left(1 + \operatorname{ctg} \frac{y}{a} \right) - a \cdot \lg^2 \frac{x}{2 a};$	0,16	8	-0,11	-7
17.	$\omega = \sin(ax) \cdot tg \frac{y}{2} - \sqrt{\frac{ x^2 \sin x - y^3 \cos y }{1 + \sin^2(ax) + \cos^2(ay)}} + a \cdot tg^2 \frac{ax}{2} + \frac{\cos(ax)}{e^{ax}} - \ln\left(\frac{\sqrt{\sin^2 y + 1}}{2 - \cos(ax)}\right);$	0,74	7	-0,89	-9
18.	$\zeta = \sqrt{\frac{\lg^3 x + 3\cos y}{e^x + e^y}} + \operatorname{ctg}^3 x - \frac{\sqrt{\sin^2 y + 1}}{3 + \cos(ax)} + \ln\left 2\sin^4(ax) - \frac{\sqrt{\cos^2(ay) + 0.5}}{1 + \cos(ax)}\right ;$	0,18	10	-0,33	-8
19.	$\alpha = \operatorname{tg}^{2} \frac{x}{2} + \frac{\cos y \cdot \operatorname{tg} x}{e^{ax}} - \operatorname{tg} \left \frac{\sqrt{\sin^{2} y + 1}}{2 - \cos x} \right + \ln \left \frac{ax^{3} + 3a^{2}x^{2} + xy + y^{2}}{3 - \sin(x + y) - \cos(x - y)} \right + (1 + \operatorname{ctg} y)(\sin^{2} y + a^{2}x);$	0,5	1	-1,305	-5
20.	$\rho = \log_2 \frac{e^{ax} + e^{ax} + 1}{\sqrt{\sin^4(x+y) + a\cos^2(x-y) + 3}} + \sqrt{\frac{ x^2\sin(ax) - y^3\cos(ax) }{1 + \sin^2(ax) + \cos^2(ay)}} - \lg \frac{3a^2x^4 + ax^2 + y}{e^{x+y} + e^{x-y}};$	0,71	3	-0,42	-2
21.	$v = \ln \left 2\cos^3(ax) - \frac{\sqrt{\sin^2 y + 1}}{2 - \cos(ax)} \right - \lg \frac{e^{ax} + e^{ay} + 1}{\sqrt{\sin^4(x + y) + a \cdot \cos^2(x - y) + 3}} + \sqrt{\frac{a \cdot \lg^3 x + 3\cos y}{e^x + e^y}};$	0,38	4	-0,06	-1
22.	$\varphi = \sin(ax) \operatorname{tg} \frac{a}{2} + \sqrt{\frac{a \cdot \operatorname{tg}^{3} x - 2 a^{2} \operatorname{tg} x + 1}{\sin(x + y) + \cos(x - y)}} + \log_{2} \frac{e^{ax} + e^{ax} + 1}{\sqrt{\cos^{4}(x + y) + a \cos^{2}(x - y) + 4}};$	0,35	2	-0,15	-3
23.	$\beta = \sqrt{\frac{a \cdot \lg^3 x - 2 a^2 \lg x + 1}{\sin(x+y) + \cos(x-y)}} - \sqrt{\frac{ x^2 \sin(ax) - y^3 \cos(ax) }{1 + \sin^2(ax) + \cos^2(ay)}} + \ln \left \frac{2 \cos^3(ax) - \sqrt{\sin^2(ay) + 1}}{2 - \cos(ax)} \right ;$	0,91	6	-0,28	-6
24.	$\delta = \frac{3 \operatorname{tg}^4 \frac{x}{a} + \operatorname{tg}^2 \frac{y}{a} + 1}{\sqrt{ 4 + \sin x - \cos^3 y }} + \sin \frac{y}{2} \operatorname{tg}^2 \frac{x}{2} + \frac{\cos x \cdot \operatorname{tg} y}{e^{ax}} + \ln \left \frac{2 a x^3 - 3 a^2 x + y}{3 - \sin (x + y) - \cos (x - y)} \right ;$	0,6	12	-1,005	-5

25.	$\theta = \cos(ax)[1 + \cot(ay)] + \sqrt{\frac{ x^2 \sin(ax) - y^3 \cos(ax) }{1 + \sin^2(ax) + \cos^2(ay)}} - \lg \frac{e^{ax} + e^{ay} + 1}{\sin^4(x+y) + a\cos^2(x-y) + 3};$	0,47	3	-0,42	-2
26.	$y = \lg \frac{3 a^2 x^4 + a x^2 + y}{e^{x+y} + e^{x-y}} + \sqrt{\frac{(\operatorname{tg}^3 x + \cos y)}{e^x + e^y}} - \operatorname{tg}^2 \frac{x}{2} + \frac{\cos x \cdot \operatorname{tg} y}{e^{ax}} (1 + \operatorname{ctg} y) - \ln \frac{\sqrt{\sin^2 y + 1}}{2 + \cos x};$	0,31	4	-0,06	-1
27.	$\Delta = \frac{\operatorname{tg}^{4} \frac{x}{a} + \operatorname{tg}^{2} \frac{y}{a} + 1}{\sqrt{\left 3 + \sin x - \cos^{3} y\right }} - \frac{3 a^{2} x^{4} + a x^{2} + y}{e^{x + y} + e^{x - y}} + \ln\left 2\cos^{3}(a x) - \frac{\sqrt{\sin^{2} y + 1}}{2 + \cos(a x)}\right - \left(\operatorname{tg} \frac{x}{2 a} + 1\right);$	0,59	2	-0,15	-3
28.	$\Psi = tg^{2} \frac{ax}{2} + \sqrt{\frac{tg^{3}x - 2a^{2}tgx + 1}{\sin(x+y) + \cos(x-y)}} + \sqrt{\frac{tg^{4}ax - tg^{2}ay + 1}{\sqrt{ 3 + \sin x - \cos^{3}y }}} - \ln\left 2\cos^{3}(ax) - \frac{\sin^{2}(ay)}{\cos(ax)}\right ;$	0,38	6	-0,28	-6
29.	$\lambda = \frac{\cos(ax)}{(1+\cot y)} - \ln\left \frac{ax^3 - 3a^2x + y}{3-\sin(x+y) - \cos(x-y)}\right - \log_2\frac{e^{ax} + e^{ay} + 1}{\sqrt{\sin^4(x+y) + a\cos^2(x-y) + 3}};$	0,5	1	-1,043	-5
30.	$\varphi = \frac{a \cdot \lg^3 x - 2 a^2 \lg x + 1}{\sin(x+y) + \cos(x-y)} - \sqrt{\frac{ x^2 \sin x - y^3 \cos y }{1 + \sin^2(ax) + \cos^2(ay)}} + \ln\left 4\cos^3 x - \frac{\sin(ay) + 1}{3 - \cos(ax)} \right $	0,47	3	-0,42	-2