

Student Projects For the New Navy 44 Sail Training

Assoc. Prof. Paul Miller, D.Eng., PE

Naval Architecture and Ocean Engineering
Department
United States Naval Academy
2005

Safety at Sea Seminar

Vessel Background

- 44-Foot Offshore Sailing Craft for USNA
 - 1939 Luders Wood Yawl
 - 1966 Luders Glass Yawl
 - 1985 McCurdy and

Rhodes Sloop
Safety is Paramount - Low Maintenance -10 Crew - Good I
- 2003 PYD sloop

Student Research Opportunities at USNA

- Summer Internship
 - ~120 manhours
- Independent Research Project
 - ~ **140** manhours
- Capstone Course
 - ~ **190** manhours
- Trident Project
 - ~ 580 manhours

Total student involvement was about 2000 manhours!

2005 Safety at Sea Seminar

Presentation Overview

- Nine student projects by eleven students ranging from materials to Computational Fluid Dynamics.
- Student projects both educational and useful in Navy 44 design development

Incline Experiment, Full-Scale Resistance and VPP

- Researcher:Aaron DeMeyer
- Goals: Establish baseline stability and resistance data and develop a VPP tool for future research.

*

Full-Scale Incline

- Incline experiment at full-load (vs IMS) CSNTS condition
 - More stores, equipment, spare
- Two digital inclinometers
- 8500 pounds
- Righting moment
 decreased 1.2%

Uncorrected (for added weight) Righting Moment

2005 Safety at Sea Seminar

Full-Scale Resistance

VPP provided by Chris Todter

- Initial used parametric drag prediction
- Updated included strut, shaft,

2005 Slide 7 Safety at Sea Seminar

Capstone Design Project

- Researchers: Mark **Arvidson, Peter** Firenze, Cecily **Taylor**
- Goal: Develop a preliminary design of a new Navy 44 using the same constraints as the current vessel

2005

Slide 8 Safety at Sea Seminar

Capstone Design Project

- All design aspects evaluated and discussed with outside designers
- VPP used to improve performance incrementally

F .			201100			
	M&R	"Mk 2"	Mid 44			
		preliminary				
LOA (ft)	43.9	44.0	44.0			
LWL (ft)	34.2	36.8	38.4			
Beam (ft)	12.4	12.4	12.4			
Draft (ft)	7.25	7.42	7.42			
Disp (lb)	28,600	27,700	24,200			
Sail Area (sq ft)	1017	1080	1017			
Disp-Length ratio	320.3	249.1	190.8			
SA-Disp ratio	17.4	18.8	19.4			
LPS (deg)	129	130	143			

Capstone Design Course

2005 Safety at Sea Seminar

Capstone Design Project

All the designs had roughly the same drag at 6.5 knots boat speed upright. (S/L ratio of 1.1) The biggest differences were seen at higher speeds (winds greater than 10 knots).

*

Laminate Upgrade

- Researcher: Mark Arvidson
- Goals: Determine the hull laminate with the best combination of toughness, cost, stiffness and strength to ABS Guide
- Approach:
 - Laminate analysis programs
 - Coupon and panel tests
 - Impact tests

Laminate Selection

2005 Safety at Sea Seminar

*

Laminate Selection

Safety at Sea Seminar

On Water Testing

Alternate Wood Laminate

- Researcher: Kent Simodynes
- Goals: Using ABS, Navy and other analysis methods determine an alternate wood laminate for the Navy 44
- Approach: Analysis, coupon and panel tests

*

Alternate Wood Laminate

- All three
 methods
 agreed with
 test results for
 Carvel planking
- Cold-molded were 160-205% stronger than ABS and Navy, 77-120% for CLT/Tsai-Wu

Using the same FOS, wood would be about 400 pounds (2%) h

Keel Section and Shape

- Researcher: Aaron DeMeyer
- Goals: Improve the performance of the new boat through keel planform, section and VCG placement and structural modifications.
- Approach: VPP, tank testing, CFD (with help from Paul Bogataj)
- Solution: J5013 with 5% area reduction and 6" lower VCG yielded an average 8% lower keel drag for an Olympic course at 6, 12, 20 knots wind speed. 0-8 sec/mi improvement.

- Researcher: Adam Driessen
- Goals: Determine if IMS-style bulb influences grounding (and ungrounding) characteristics
- Approach: Gravity towed tank testing in Coastal Lab 2-D beach tank

Set up - 2 Hull/Keel Models; Constant Force, Not Constant 9

2005 Safety at Sea Seminar Slide 20

2005 Safety at Sea Seminar

1												
	Slope = 1:8											
		Velocity	Avg Force	COV								
		(kts)	(lbs)									
	MR44	6.88	1.87	8.6%								
	MID44	7.43	2.01	8.2%								
	MR44	3.33	0.92	19.1%								
	MID44	3.4	0.56	18.0%								

Slope = 1:12										
	Velocity	Avg Force	COV							
	(kts)	(lbs)								
MR44	6.88	2.14	8.9%							
MID44	7.43	2.14	16.1%							
MR44	3.33	0.95	15.5%							
MID44	3.4	0.91	21.5%							

Pull off force less for bulb twice, once for fin, once was equa

Rudder Design Comparison

- Researcher: Ted Huebner
- Goals: Determine relative performance in a sail training environment of spade and skeg rudders.
- Approach: Full scale and tank testing (resistance and tactical diameter)

Rudder Design Comaparison

Radius
Boat Lengths
1.63
1.39
1.24
1.22
1.22
1.89
1.35
1.22
1.22

Rudder Design Comparison

Rudder Design Comparison

Tank Test/CFD/VPP Study

- Researcher: Jon Silverberg
- Goals: Compare modern prediction methods and improve preliminary design
- Approach: CFD, tank testing and

Slide 27

Tank Testing

- New model built to PYD preliminary design
- Data Recorded
 - Drag
 - Lift
 - Yaw Moment
 - Pitch
- Tests included
 - Upright Conditions
 - Sailing Conditions
 - Viscous Corrections
- Performed more than
 570 runs

SPLASH - CFD

Speed = 7.1 knots Heel = 15 deg Yaw = 4 deg Rudder = 6 deg

Code by
Bruce
Rosen of
South Bay
Simulatio
ns and Joe
Laiosa
from
Navair at
Patuxent

 Calculated inviscid fluid velocities across a discretized hull for all tank test cases

PCSail VPP modified for tank and CFD Results

Microsoft Excel - VPTI//XLS																	
	图 Ele Edit View Insert Format Tools Data Window Help Solver Goal Seek □ 番目 日本 「																
	=		, 💖 🐰 🖺 🗈	🖺 🍼 KA 🕶 CH	- 🦺 Σ f _*	A Z A L	100% - 🕎	Lucida Sans Ur	nicode 🕶 10 ·	B / U	■ ■ ■	\$%,	:8 : 8 : ≢ : ≢	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	\$\bullet\$ \bullet\$
	N47		=														
Paste Special 🙀 😭		Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	Р
ste	1																
Sp.	2		TWA	TWS	AWA	AWS	TBS	VMG	ABS	SS	Yaw Ang	Rudder Ang	Heel Angle	SailComb	flat/reef	Mastrake	crew
Ci.	3	5 11 1	[deg]	[knots]	[deg]	[knots]	[knots]	[knots]	[knots]	[knots]	[deg]	[deg]	[deg]	[text]	[% / %]	[ft of CE]	[% Width]
	5	Full-scale Model	40.0 40.0	20.0	26.1 26.1	24.3 12.9	7.31 3.9	5.19 5.2	7.36 3.9	0.70 0.4	5.1 5.4	3.2 3.2	19.8 20.5	MJ MI	1 0.74	-1.26 -1.39	100.00% 100.00%
	6	Model	40.0	10.6		Fn 12.9	0.360	5.2	3.9	0.4	3.4	3.2	20.5	IVIJ	0.74	-1.59	100.00%
12	7					111	0.300										Run
* a	8		Fauation 1: Fo	rces x-direction	1			Equation 2: Mo	ment x-direct	ion							rtuii
- I	9		Drag	=	Drive			Rmx +	(Liftk *	Cek)+	(Liftr *	Cer)	=	heelf *	Cesz		Reset
-	10		618.386	=	617.836			-45822.904	1911.297	3.627	-25.097	2.884	=	2102.741	22.201		
	11		Difference	-0.549						-53506.105	+	6860.113	=	-46683.981			
	12		% Difference	-0.04%								Difference	-37.989				
	13											% Difference	-0.04%			VPP Variables	
	14															Is it bad?	0
-	15			rces y-direction				Equation 4: Mo								Can't Change	
- 1	16		Liftk +	Liftr	=	Lift Sails		Lr *	Cer	=	(LS *	CESx) +	(Ds *	CESy)		1 / Change	6
-	17		1911.297	-25.097	=	1902.988		-25.097	27.888	=	1902.988	-2.883	617.836	5.256		Boundaries?	FALSE
- 1	18			1886.200	=	1902.988			-699.897	0	-679.707					Is there error?	
H	19 20			Difference % Difference	16.788 0.44%				Difference % Difference	-2.88%						Cgz	-0.818
- 1	21			% Difference	0.4470				% Difference	-2.0070							
- 1	22																
- 1	23		Hydrodynamic	Matrix				Aerodynamic A	nswer		Vectors	lateral direc	vmg	speed	angle		
ı	24		drag	liftk	liftr	rmmt		sails			SideSlip	0.535		0.699			
- 1	25		618.386	0.000	0.000	0.000)	617.836)		Fmotion	4.729		7.356			
	26		0.000	-6932.502	72.389	53506.105		46683.981	Į .		Sum	5.264	5.186	7.389	45.4		
	27		0.000	1911.297	-25.097	0.000		1902.988									
	28		0.000	0.000	-699.897	0.000	J	-679.707	J								
	29																
	30			dynamic Matrix			,	Solution	,		% Error	Delta Error				Variable	Delta
	31		0.002	0.000	0.000	0.000		0.999		drag	0.04%				Speed	3.913	0.000
-	32		0.000	0.000	0.001	0.000	}	1.008		liftk liftr	0.44%				Heel	20.450	0.000
-	34		0.000	0.000	0.000	-0.001 0.000		0.971 1.002		rmmt	0.00%		Solution?		Yaw Rudder	5.424 3.200	0.000
	35		0.000	0.000	0.000	0.000)	1.002	J	mint	0.04%		TRUE		Mastrake	38.607	0.000
- 1	36										0.4470		TRUE		Mastrake	36.007	0.000
ŀ	37																
	38																
	39	TWA	TWS	AWA	AWS	TBS	Max this var	ABS	Heel	Yaw	Rudder	Flat	Reef	Rake	Heel Moment	Sideforce	Drive
	40	40.000	20.000	26.089	24.339		5.186	7.356	20.450	5.424	3.200	1.000	0.740	-1.393	46683.981	1902.988	
	41																
	42																

Performance Predictions

Low wind speeds showed variable results due to simplifications in the aerodynamic model

All other wind speeds showed excellent correlation between all velocity predictions

שמובנץ מנשבם שבווווומו

Final VPP Resu

- Used Tank results and CFD iterations
- VPP and CFD used to look at variations of rig, weight, stability, rudder design
- Suggested changes documented and discussed

2005 Safety at Sea Ser

Polar Diagram for the Mk II Navy 44 STC

Final Results?

- Info from student projects documented and used to develop "consensus" design traits.
- New hull, keel, and rudder shapes.
- New cockpit layout.
- New structural design.
- Students are now submariners, pilots, SWOs and Marines

