Analyse statistique et empirique des modèles de *Word Embedding* sur Twitter

Kim Antunez, Romain Lesauvage, Alain Quartier-la-Tente sous l'encadrement de Benjamin Muller (Inria)

Table des matières

In	trod	uction	1
1	Imp	plémentation du modèle $Word2Vec$	2
	1.1	Le modèle Word2vec, un modèle de word-embedding	2
	1.2	L'algorithme Skip-Gram	4
2	Éva	lluation du modèle implémenté	7
	2.1	Comment évaluer le modèle ?	7
	2.2	Évaluation sur un corpus fictif	11
	2.3	Choix des meilleurs hyperparamètres pour le modèle	12
	2.4	Évaluation sur le corpus final	16
3	Ana	alyse des sentiments	19
	3.1	Description de la méthode et tests [Roro]	19
	3.2	Comparaison avec indicateurs insee	19
C	onclu	ısion	19

Introduction

Grâce à l'évolution des méthodes d'apprentissage profond ($Deep\ Learning$), l'appréhension du langage naturel est aujourd'hui devenue une discipline à part entière ($Natural\ Language\ Processing$). Ce succès s'explique en partie grâce à l'émergence de techniques non supervisées d'apprentissage de représentation de structures linguistiques. Les méthodes de $word\ embedding\ («\ plongement\ lexical\ »$ en français) permettent de représenter chaque mot d'un dictionnaire par un vecteur de nombres réels afin que les mots qui apparaissent dans des contextes similaires possèdent des vecteurs correspondants qui sont relativement proches (au sens d'une distance définie). Les modèles Word2Vec, développés par une équipe de recherche chez Google ($Mikolov\ et\ al\ (2013a)$), sont parmi les plus célèbres et sont ceux sur lesquels se concentrera notre projet.

Dans ce projet de statistiques appliquées, nous étudierons dans un premier temps en détail et implémenterons le modèle *Word2Vec* (Partie 1). Dans un deuxième temps, nous évaluerons la validité du modèle implémenté et l'appliquerons sur une base de données composée de plusieurs millions de tweets publiés en France entre 2013 et 2017 (Partie 2). Enfin, nous mobiliserons des techniques d'analyse de sentiments afin de créer des indicateurs qui pourront être comparés aux indicateurs produits dans la statistique publique, en particulier concernant l'opinion des ménages (Partie 3).

1 Implémentation du modèle Word2Vec

1.1 Le modèle Word2vec, un modèle de word-embedding

Le Natural Language Processing (NLP ou « traitement automatique du langage naturel ») est une branche de machine learning visant à analyser, traiter et reproduire le langage humain. Les modèles de NLP Word2Vec, développés par une équipe de recherche chez Google (Mikolov et al (2013a)), sont parmi les plus célèbres et utilisent le word-embedding – plongement lexical en français.

1.1.1 Historique : de la sémantique vectorielle à Word2Vec

La « sémantique vectorielle » est née dans les années 1950 ¹ . C'est une méthode algébrique de représentation d'un document visant à réaliser des tâches diverses (détecter le plagiat, filtrer des articles...). Il est alors nécessaire de capter de nombreux types de proximités entre mots : les synonymes (automobile / voiture), antonymes (froid / chaud), connotations positives *versus* négatives (heureux / triste), etc.

Un modèle répondant à ces exigences ne peut exister. Pour y répondre au mieux, la sémantique vectorielle puise son inspiration des travaux linguistiques des années 1950 et en particulier de l'« hypothèse de distribution » selon laquelle un mot se définit par son environnement, dit autrement : les mots qui se produisent dans un contexte identique tendent à avoir des significations similaires ².

Les premiers modèles sémantiques ³ représentaient les relations entre mots grâce à des très grandes matrices dont les dimensions correspondaient à la taille du vocabulaire (contenant donc beaucoup de 0 et dites *sparses*). Les méthodes de *word-embedding* qui sont ensuite apparues ont permis de représenter chaque mot d'un dictionnaire par un vecteur de nombres réels denses (peu de 0) de plus faible dimension (en général entre 50 et 1000). Si la réduction de dimension rend les vecteurs-mots moins facilement interprétables, elle a pour grand avantage de faciliter et d'accélérer les tâches d'apprentissage impliquant ces mots.

Mikolov et al (2013a) ont mis en avant en 2013 les méthodes de word-embedding à travers la création de Word2Vec. Ce modèle de réseaux de neurones ⁴ à deux couches est rapidement devenu une référence grâce à la grande précision des résultats qu'il permet d'obtenir, pouvant être entraîné en un temps record sur un corpus très volumineux.

^{1.} L'ouvrage Jurafsky & Martin (2019) permet de retracer avec une grande richesse l'évolution des méthodes de NLP.

^{2.} Comme l'a écrit le linguiste britannique John Rupert Firth en 1957, « Vous connaîtrez un mot par ses fréquentations ».

^{3.} Comme le term frequency-inverse document frequency (TF-IDF)

^{4.} C'est l'article Bengio et al (2003) qui a introduit dix ans avant Word2Vec le premier modèle d'apprentissage de représentation de vecteurs-mots à partir d'un réseau de neurone simple.

1.1.2 Word2 Vec, un modèle d'apprentissage « auto-supervisé »

Pour rappel, en sortie du modèle Word2Vec, chaque mot est représenté par un vecteur dont la dimension est fixée par la valeur d'un hyperparamètre. Les mots qui apparaissent dans des contextes similaires (« bonjour » et « salut » par exemple) seront représentés par des vecteurs relativement proches dans l'espace vectoriel de définition de ces vecteurs. Dans la même logique, Word2Vec permet également de réaliser des opérations vectorielles, comme dans l'exemple, souvent cité : $\overrightarrow{Paris} - \overrightarrow{France} + \overrightarrow{Italie} = \overrightarrow{Rome}$ qui provient de Mikolov $et\ al\ (2013a)$.

Deux architectures du modèle Word2Vec existent (voir graphique 1):

- L'approche *Continuous bags of words* dont l'objectif est d'estimer la probabilité d'observer un mot, appelé « **focus** », sachant le contexte dans lequel il apparaît (i.e. : les mots **voisins** qualifiés de « **contextes** »).
- L'approche *Skip-gram* a un objectif inverse : estimer, pour chaque mot du vocabulaire, la probabilité d'être proche du mot focus. C'est cette approche que nous étudions dans ce projet et dans la suite de ce rapport.

FIGURE 1 – Architecture des modèles Continuous bags of words (CBOW) et Skip-gram.

Pour transformer chaque mot en un vecteur, au lieu de simplement compter les fréquences d'apparition des mots contextes voisins d'un mot forcus ⁵, nous entraînons un réseau de neurones sur une tâche annexe : on construit un classifieur dont la tâche de prédiction est binaire et répond à la question (dans le cas Skip-Gram) « Est-ce que ce mot contexte est susceptible d'être voisin du mot focus ? ». La prédiction en elle-même ne nous intéresse pas, c'est plutôt le poids du classifieur en sortie du modèle qui correspondra aux word-embeddings.

Les voisins d'un mot focus reposent sur un hyperparamètre : la fenêtre (window ou w). Pour w=p, les voisins du mot focus sont les p mots précédents et les p mots suivants dans la phrase. Par exemple, dans la phrase :

"Le professeur de statistique est strict avec ses élèves."

Si le mot focus est « statistique » et si w=2, alors le contexte qui lui est associé est : [professeur, de, est, strict]; si le mot focus est « professeur » et si w=2, alors le contexte qui lui est associé est : [Le, de, statistique].

^{5.} Comme dans les premiers modèles sémantiques dits sparses.

Pour ce faire, nous entraînons le réseau de neurones en le nourrissant des paires [focus, contexte] ⁶ contenues dans les différentes phrases (ici tweets) du corpus afin qu'il puisse déterminer les probabilités d'apparition d'un mot dans le voisinage d'un autre mot (description de l'algorithme précis en partie 1.2).

Ainsi, la grande force du modèle d'apprentissage *Word2Vec* est qu'il est « auto-supervisé ». En effet, comme nous avons vu plus haut, le corpus est considéré comme une donnée d'entraînement implicitement supervisée, ce qui nous évite d'avoir à mobiliser des corpus annexes annotés.

1.2 L'algorithme Skip-Gram

L'objectif de cette partie est de décrire le fonctionnement de l'approche Skip-gram.

Dans la suite de ce projet nous noterons n la taille du vocabulaire (i.e. : le nombre de mots différents) et d la dimension retenue pour les word-embeddings. Comme décrit dans la partie 1.1.2, l'approche Skip-gram peut être vue comme un réseau de neurones avec trois couches avec : deux ou trois ? si trois, corriger aussi plus haut

- En entrée une matrice W_e de taille $n \times d$;
- En sortie une matrice W_S de taille $n \times d$.

Ces deux matrices sont initialisées en générant des lois normale $\mathcal{N}(0,1)$. Elles sont ensuite mises à jour, grâce aux couples [focus, contexte] construits à partir du contexte (voir partie 1.2.1), par un algorithme de descente de gradient. À la fin de l'algorithme ce sont ces matrices qui donneront la représentation vectorielle des mots du vocabulaire. Ainsi, la ligne i de la matrice $W = \frac{W_e + W_s}{2}$ donnera la représentation du $i^{\text{ème}}$ mot du vocabulaire.

1.2.1 Construction de la base d'entraînement

Peu de traitements sont effectués sur la base initiale : nous mettons tout en minuscule, remplaçons les ponctuations par des espaces, mais laissons tous les chiffres et les accents. Chaque phrase 7 est ensuite $tok\acute{e}nis\acute{e}e$ par la chaîne de caractère correspondant à un espace " " : on considère qu'il y a autant de mots de que chaînes de caractères séparées par un espace 8 .

```
"Que pensez-vous de CE projet ?(i.e. : qu'avez-vous retenu en 10min?)
```

Cette phrase est décomposée en 14 mots [que, pensez, vous, de, ce, projet, i, e, qu, avez, vous, retenu, en, 10min].

Comme décrit dans la partie 1.1.2, les couples [focus, contexte] dépendent d'un hyperparamètre : la fenêtre w. Pour éviter que les mots trop fréquents, souvent peu informatifs (comme les pronoms personnels), soient sur-entraînés, deux traitements sont effectués :

1. Pour chaque phrase on effectue un sous-échantillonnage (sub-sampling). Pour chaque mot w_i on note $z(w_i)$ la proportion d'apparition de ce mot, c'est-à-dire le rapport entre le nombre de

^{6.} Dans notre exemple : [statistique, professeur], [statistique, de]...

^{7.} Dans notre cas une phrase correspond à un tweet, même si ce tweet peut être composé de plusieurs phrases.

^{8.} Les mots composés sont donc considérés comme plusieurs mots distincts.

fois que ce mot apparaı̂t et le nombre total de mots. La probabilité de garder un mot le mot w_i est :

$$\mathbb{P}(w_i) = \min\left\{ \left(\sqrt{\frac{z(w_i)}{q}} + 1 \right) \times \frac{q}{z(w_i)}, 1 \right\}$$

Le paramètre q appelé « sample » – échantillonnage – contrôle le nombre de sous-échantillonnages pas clair, expliciter, éventuellement avec une ndbp . Si q vaut 0,001 (valeur par défaut) alors par exemples :

- $\mathbb{P}(w_i) = 1$ (w_i est toujours gardé) lorsque $z(w_i) \leq 0,0026$, c'est-à-dire si w_i représentent moins de 0,26 % du nombre total de mots.
- $\mathbb{P}(w_i) = 0.5 \ (50 \% \text{ de chance de garder } w_i) \text{ lorsque } z(w_i) = 0.00746.$
- $\mathbb{P}(w_i) = 0.033$ (3,3 % chance de garder w_i) lorsque $z(w_i) = 1,0$ (si le corpus n'est constitué que du mot w_i , ce qui serait bien sûr absurde).
- 2. Pour chaque phrase, on tire au hasard (selon une loi uniforme) un mot focus pour lequel on tire un mot *contexte* au hasard dans la fenêtre w en imposant que les deux mots choisis soient parmi les mots sous-échantillonnés sinon on retire ? éventuellement ndbp.

Par exemple, supposons que dans la phrase [que, pensez, vous, de, ce, projet, i, e, qu, avez, vous, retenu, en, $10\min$], les mots sous-échantillonnés soient les mots en position 2, 5, 6, 8, 9, 10, 11, 12, 13, 14. Pour mieux comprendre, nous remplaçons les mots non échantillonnés par « nonsubsampled ». La phrase devient [nonsubsampled, pensez, nonsubsampled, nonsubsampled, ce, projet, nonsubsampled, e, qu, avez, vous, retenu, en, $10\min$]. Si w=2 alors le mot focus tiré ne peut pas être « pensez » puisque dans ce cas il n'y aurait aucun mot contexte associé. Si le mot focus tiré est « qu » alors le mot contexte est tiré au hasard parmi [e, avez, vous].

Ce mécanisme va être répété sur toutes les phrases du corpus et l'ensemble du corpus va être parcouru plusieurs fois. Le nombre de fois que l'ensemble du corpus est parcouru est appelé *epochs*.

1.2.2 Descente de gradient

Pour chaque couple [focus, contexte], les matrice W_e et W_s sont mises à jour par descente de gradient. C'est-à-dire que $\theta^{(t)} = W_e$ et $\theta^{(t)} = W_s$, les matrices obtenues après la $t^{\text{ème}}$ itération de l'algorithme, sont mises à jour par l'équation :

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} L(\theta^{(t)})$$

avec η le taux d'apprentissage (un hyperparamètre à fixer) et $L(\theta)$ la fonction de perte.

Le modèle Word2vec a initialement été construit en utilisant une fonction de perte dérivée de la fonction softmax (voir partie 1.2.2.1 et Mikolov et al (2013a)). L'algorithme a ensuite été amélioré en utilisant le negative sampling (voir partie 1.2.2.2 et Mikolov et al (2013b)).

1.2.2.1 Version softmax Étant donné les mots w_1, \ldots, w_T utilisés pour entraı̂ner le modèle, l'objectif du modèle Skip-Gram est de maximiser la quantité :

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-w \le j \le w, j \ne 0} \log \mathbb{P}(w_{t+j}|w_t) \tag{1}$$

où:

- w est la fenêtre ;
- les w_{t+j} sont les mots voisins de w_t (w_t est donc un mot contexte et w_{t+j} un mot focus); être bien sûr que c'est pas l'inverse mais si ça se trouve c'est ça.
- $\mathbb{P}(w_{t+j}|w_t)$ est la probabilité d'observer le mot focus w_{t+j} sachant que l'on a observé le mot contexte w_t . Cette quantité est calculée en fonction des matrices W_e et W_s à partir de la fonction softmax 9 :

$$\mathbb{P}(w_{focus}|w_{context}) = \frac{\exp(W_{s,w_{focus}} \times {}^{t}W_{e,w_{contexte}})}{\sum_{i=1}^{n} \exp(W_{s,w_{i}} \times {}^{t}W_{e,w_{contexte}})}$$

avec W_{e,w_i} et W_{s,w_i} les représentations vectorielles du mot w_i respectivement dans la matrice d'entrée et de sortie et n la taille du vocabulaire.

De manière équivalente à l'équation (1), qu'il faut maximiser, pour chaque couple [focus, contexte] on associe la fonction de perte suivante, qu'il faut minimiser :

$$L(W_e, W_s) = -\log \mathbb{P}(w_{focus}|w_{context})$$

L'inconvénient de cette méthode est qu'elle est très gourmande en temps de calcul :

- Pour chaque couple [focus, contexte], la complexité du calcul de $\log \mathbb{P}(w_{focus}|w_{context})$ est proportionnelle à la taille du vocabulaire ;
- La complexité du calcul de $\nabla_{\theta} \log \mathbb{P}(w_{focus}|w_{context})$ dans l'étape de descente de gradient est aussi proportionnelle à la taille du vocabulaire. à conserver ? Alain

La taille du vocabulaire pouvant être très grande (par exemple, dans notre base de tweets, cette taille est de 70 330), le temps de calcul peut vite devenir très important.

C'est pourquoi la version softmax est très peu utilisée dans les implémentations de Skip-Gram. Une approche alternative, negative sampling avec une fonction sigmoïde, moins gourmande en temps de calcul, est alors souvent préférée 10 .

1.2.2.2 Version *negative sampling* Le *negative sampling* est basé sur le concept de *Noise Contrastive Estimation* – estimation contrastée du bruit – selon lequel un bon modèle logistique devrait être capable de différentier un faux signal d'un vrai signal à clarifier?

Dans cette approche, plutôt que de mettre à jour l'ensemble des représentations vectorielles des mots pour chaque couple [focus, contexte], on tire K mots au hasard du vocabulaire $(w_{neg,i})_{i=1..K}$, selon une distribution $P_n(w)$, en considérant que ces mots ne seront pas des mots voisins de focus ¹¹. L'idée du negative sampling est donc de transformer un problème de classification multi-classes en un problème de classification binaire : pour chaque couple [focus, mot2], on cherche à déterminer si mot2 est dans le contexte de focus. Si c'est le cas, alors la décision D=1 (mot2 est positif et est le contexte), sinon D=0 (mot négatif, appartient à $(w_{neg,i})_{i=1..K}$).

^{9.} Étant donné le vecteur $z = (z_1, \ldots, z_n)$ la fonction softmax est la fonction qui à z associe le vecteur dont la $j^{\text{ème}}$ coordonnée est égale à $\frac{\exp(z_j)}{\sum_{i=1}^n \exp(z_i)}$.

^{10.} Une autre alternative à l'approche softmax parfois utilisée est l'approches hierarchical softmax qui se base sur l'utilisation d'arbres binaires de classification. La complexité de cet algorithme est proportionnelle à $\log_2 n$ mais reste plus importante que celle de l'approche negative sampling.

^{11.} Il est bien sûr possible que parmi les mots tirés au hasard il y ait des mots qui soient vraiment dans le contexte. Cependant, puisque la taille du vocabulaire est très grande, on considère que cette erreur est négligeable.

On cherche donc à maximiser $\mathbb{P}(D=1|w_{focus},w_{contexte})$ et $\mathbb{P}(D=0|w_{focus},w_{neg,i})$. Pour estimer ces probabilités on utilise une fonction sigmoïde plutôt que la fonction softmax :

$$\mathbb{P}(D=1|w_{focus}, w_{contexte}) = \sigma(W_{e,w_{focus}}{}^tW_{s,w_{contexte}}) = \frac{1}{1 + \exp(-W_{e,w_{focus}}{}^tW_{s,w_{contexte}})}$$

et:

$$\mathbb{P}(D = 0 | w_{focus}, w_{neg, i}) = \sigma(-W_{e, w_{focus}}{}^t W_{s, w_{neg, i}}) = \frac{1}{1 + \exp(W_{e, w_{focus}}{}^t W_{s, w_{neg, i}})}$$

Par rapport à l'approche softmax, on cherche toujours à maximiser la quantité de l'équation (1) mais en estimant $\log \mathbb{P}(w_{focus}|w_{context})$ par :

$$\mathbb{P}(w_{focus}|w_{context}) = \log \underbrace{\sigma(W_{e,w_{focus}}^t W_{s,w_{contexte}})}_{\mathbb{P}(D=1|w_{focus},w_{contexte})} + \sum_{i=1}^K \mathbb{E}_{w_{neg,i} \sim P_n(w)} [\log \underbrace{\sigma(-W_{e,w_{focus}}^t W_{s,w_{neg,i}})}_{\mathbb{P}(D=0|w_{focus},w_{neg,i})}]$$

Pour chaque couple [focus, contexte] et un ensemble $(w_{neg,i})_{i=1..K}$ de mots négatifs tirés, on associe la fonction de perte suivante :

$$L(W_e, W_s) = -\log \sigma(W_{e, w_{focus}}^t W_{s, w_{contexte}}) - \sum_{i=1}^K \log \sigma(-W_{e, w_{focus}}^t W_{s, w_{neg, i}})$$

La complexité est ici bien plus faible que pour la fonction softmax puiqu'elle est proportionnelle à K. Mikolov et al (2013b) trouvent, empiriquement, que la meilleure distribution pour générer les mots négatifs est :

$$\mathbb{P}(w_i) = \frac{z(w_i)^{3/4}}{\sum_{j=1}^n z(w_j)^{3/4}}$$

Avec $z(w_i)$ la fréquence d'apparition du mot w_i . Ils recommandent de prendre $K \in \{5, ..., 20\}$ pour les petites bases de données et $K \in \{2, ..., 5\}$ pour les grandes bases de données. Dans ce projet nous utiliserons K = 5.

En plus d'être moins coûteuse en temps de calcul, cette méthode permet aussi de corriger la surestimation des poids des mots contextes tirés au hasard par rapport à l'approche softmax. En effet, on cherche à minimiser la proximité des mots négatifs au mot focus.

2 Évaluation du modèle implémenté

2.1 Comment évaluer le modèle ?

Malgré l'utilisation généralisée des *word embeddings*, très peu de travaux théoriques expliquent ce qui est réellement capturé par ces représentations de mots.

C'est pourquoi ce modèle est principalement évalué à l'aide de méthodes empiriques. Nous allons décrire dans cette partie 2.1 quelques méthodes que nous avons retenues pour évaluer la qualité des vecteurs-mots obtenus.

2.1.1 Distance entre deux mots

L'un des enjeux principaux du modèle étant de pouvoir estimer la proximité entre deux vecteurs-mots, nous pouvons tout d'abord mesurer cette dernière par des calculs de distance.

Il existe différents types de distances. Chacune d'elles possède des propriétés intéressantes et s'adaptent plus ou moins bien au problème traité. Nous avons ici retenu deux distances classiquement utilisées :

— la distance euclidienne : $d_e(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||_2$

La longueur du vecteur mot, captée dans le cas de la distance euclidienne, est positivement corrélée à la fréquence d'apparition du mot (Schakel & Wilson (2015)). Cette information peut s'avérer utile dans l'analyse de la signification des mots, notamment lorsque l'on effectue des opérations sur les vecteurs (comme l'exemple de $\overrightarrow{Paris} - \overrightarrow{France} + \overrightarrow{Italie} = \overrightarrow{Rome}$ dans Mikolov et al (2013a)).

Toutefois, cette dépendance à la fréquence d'apparition peut également fausser l'analyse. C'est pourquoi nous avons choisi, par la suite, de normaliser les vecteurs :

$$d_e(\vec{u}, \vec{v}) = \left\| \frac{\vec{u}}{\|\vec{u}\|_2} - \frac{\vec{v}}{\|\vec{v}\|_2} \right\|_2$$

— la similarité cosinus : $d_c(\vec{u}, \vec{v}) = \frac{\vec{u}.\vec{v}}{\|\vec{u}\|_2 \|\vec{v}\|_2}$.

La similarité cosinus correspond au produit scalaire entre les deux vecteurs normalisés. Elle mesure ainsi l'angle formé entre deux vecteurs-mots.

C'est la distance que de nombreux papiers fondateurs de la méthode Word2Vec (comme Mikolov et al (2013a) ou Levy & Golberg (2015)) utilisent, avec l'argument selon lequel les mots apparaissant dans des contextes similaires sont groupés dans la même direction durant l'entraînement. Une similarité est proche de +1 si deux mots sont positivement reliés (proches), de -1 s'ils sont négativement reliés (éloignés) et de 0 s'ils ne sont pas « reliés ».

Il est toutefois délicat d'interpréter une similarité proche de -1. On pourrait intuitivement penser à des antonymes, comme « grand » et « petit », mais en pratique, les antonymes sont susceptibles d'apparaître dans des contextes semblables et sont donc bien souvent positivement corrélés.

2.1.2 Analyse en Composantes Principales

Une fois le modèle *Word2Vec* entraîné, nous obtenons des *word-embeddings* pour chacun de nos mots, représentés par des vecteurs de grandes dimensions (20, 50 ou même supérieures à 100).

Dès lors, il devient complexe de bien observer la proximité entre deux mots. C'est pourquoi il devient utile de mobiliser des méthodes de réduction de dimensions comme l'analyse en composantes principales (ACP). En effet, l'objectif premier de cette méthode est de projeter un nuage de points sur un espace de dimension inférieure. Cela permet de rendre l'information moins redondante et plus visuelle, tout en étant le plus proche possible de la réalité.

Considérons le cas où nous disposons de n individus (dans notre cas les mots) et de p variables (dans notre cas, leurs composantes ou dimensions issues du modèle Word2Vec). On note $X=(x_{ij})$ la matrice de taille (n,p) des données brutes, où x_{ij} représente la valeur de la j-ème variable pour le i-ème individu. Afin de donner à chaque individu le même poids, nous centrons et réduisons les colonnes de notre matrice de données. On notera par la suite $Z=(z_{ij})$ la matrice des données centrées et réduites.

La construction des axes de l'ACP est faite par projection orthogonale. Nous utilisons ici le produit scalaire $\langle x, y \rangle_N = x^t N y$ avec la métrique $N = diag(\frac{1}{n}, ..., \frac{1}{n})$. Ainsi, la projection orthogonale d'un individu i (vecteur ligne) z_i sur une droite de vecteur directeur v vaut t_i et les coordonnées de projection des n individus valent Zv.

Les vecteurs directeurs des axes sont définis de manière à maximiser la dispersion du nuage (son inertie) des individus projetés et conserver ainsi au mieux les distances entre les individus. L'inertie se définit comme

$$I(Z) = \frac{1}{n} \sum_{i=1}^{n} d_e^2(z_i, \bar{z}) = \sum_{i=1}^{n} var(z^i) = p$$

avec $d_e(z_i, z_{i'})$ la distance euclidienne entre deux individus z_i et $z_{i'}$: $d_e(z_i, z_{i'}) = \sum_{j=1}^p (z_{ij} - z_{i'j})^{2}$.

On trouve tout d'abord le vecteur directeur v_1 qui orientera le premier axe de l'ACP grâce au programme suivant :

$$v_1 = \underset{\|v\|=1}{\operatorname{argmax}} Var(Zv) = \underset{\|v\|=1}{\operatorname{argmax}} v^t Rv$$

où $R = Var(Z) = \frac{1}{n}Z^tZ$ est la matrice des corrélations entre les p variables. La norme du vecteur v se calcule dans ce nouvel espace comme $||v|| = \sqrt{\langle v,v\rangle} = v^tv = \sqrt{\sum_{i=1}^p v_i^2}$

Puis, on choisit v_2 orthogonal à v_1 tel que l'inertie soit toujours maximisée :

$$v_2 = \underset{\|v\|=1, \, v \perp v_1}{\operatorname{argmax}} \, Var(Zv)$$

En procédant de manière séquentielle, on obtient q < r axes orthogonaux avec r = rg(Z) et q choisi par le statisticien ¹³.

On peut montrer que $\forall k < q$:

- v_k est un vecteur propre associé à la k^e valeur propre λ_k de R;
- la composante principale Zv_k est centrée et $V(Zv_k) = \lambda_k$;
- Les Zv_k ne sont pas corrélés entre eux.

On obtient alors la matrice F = ZV des nouvelles coordonnées factorielles des individus, avec $V = (v_1, \dots, v_q)$ la matrice des vecteurs propres.

Nous utilisons ici l'ACP en vue d'identifier les individus (ici, nos mots) qui sont proches. Pour ce faire, il suffit de représenter les coordonnées factorielles de la matrice F dans des repères, en général en 2 dimensions pour une question de lisibilité. Deux mots apparaissant dans des contextes similaires seront proches sur ce repère et orientés dans la même direction.

Enfin, pour juger de la qualité de la réduction de dimension, on calcule souvent la proportion de l'inertie totale expliquée par les q premières composantes principales.

$$\frac{V(F)}{I(Z)} = \frac{\sum_{i=1}^{q} \lambda_i}{p}$$

^{12.} Nous travaillons ici dans le cadre d'une ACP normée où la matrice X a été centrée puis réduite. La réduction de X a modifié les distances initiales entre individus $(d_e(z_i, z_{i'}) \neq d_e(x_i, x_{i'}))$. Cela n'aurait pas été le cas si la matrice Y avait été uniquement centrée (ACP non normée).

^{13.} Différentes méthodes existent afin de déterminer le q optimal, comme la règle de Kaiser ou encore celle du coude.

2.1.3 Algorithme t-distributed Stochastic Neighbor Embedding

Bien que l'ACP soit une première manière de résumer l'information contenue dans nos vecteurs, elle présente des limites, notamment dans les vecteurs aux trop grandes dimensions, pour lesquels l'inertie des premiers axes de l'ACP peut se révéler faible.

Pour combler ces lacunes, un autre algorithme de réduction de dimension peut être utilisé, celui dit du *t-distributed Stochastic Neighbor Embedding* (t-SNE). Contrairement à l'ACP, cet algorithme est stochastique et non-linéaire et il favorise l'apparition de groupes de mots proches. Sa philosophie demeure cependant identique : représenter dans un espace à dimension réduite notre nuage de points de manière à repérer les mots proches.

La première étape de l'algorithme consiste à calculer les similarités entre les n vecteurs-mots $(x_i)_{i=1...n}$. La similarité entre x_i et x_j se mesure comme étant la probabilité conditionnelle $p_{j|i}$ de choisir x_j comme voisin de x_i , si les voisins étaient tirés au sort selon une loi $\mathcal{N}(x_i, \sigma_i)^{14}$:

$$p_{j|i} = \frac{\exp\left(-\frac{(d_e(x_i - x_j))^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(-\frac{(d_e(x_i - x_k))^2}{2\sigma_i^2}\right)}$$

La seconde étape de l'algorithme consiste à trouver le nouvel espace de projection à faible nombre de dimensions. On appellera g_i les x_i projetés dans cet espace que l'on cherche à déterminer. De la même manière que précédemment, on exprime des probabilité conditionnelles $q_{j|i}$ en fonction des g_i mais qui suivent cette fois-ci une distribution de Student – d'où le nom de l'algorithme – plutôt qu'une loi gaussienne 15 .

$$q_{j|i} = \frac{(1 + (d_e(g_i - g_j))^2)^{-1}}{\sum_{k \neq i} (1 + (d_e(g_i - g_k))^2)^{-1}}$$

Afin d'obtenir les g_i , on minimise, par descente de gradient, la divergence de Kullback-Leibler entre les distributions de probabilité P et Q :

$$KL(P,Q) = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$
 avec $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$

Comme dans l'algorithme de l'ACP, l'algorithme de t-SNE nous permet d'obtenir une nouvelle projection des x_i . Il faut cependant analyser avec précaution ses résultats. L'algorithme n'étant pas linéaire, l'interprétation de la taille des *clusters* obtenus ou de la distance qui les sépare n'est alors pas directe.

^{14.} σ_i doit être calculé de manière à adapter la loi conditionnelle aux données. Une faible dispersion autour de x_i entraînera un σ_i faible et réciproquement. Il s'agit de trouver le σ_i qui minimise ce qui est appelé en théorie de l'information la « perplexité », c'est-à-dire un indicateur qui décrit à quel point une distribution de probabilité réussit à prédire un échantillon.

^{15.} Dans un espace à faible dimension, la dispersion des vecteurs est réduite. La distribution de Student possède des queues plus épaisses que la loi normale, ce qui permet de mieux différencier les vecteurs distants des vecteurs similaires.

mot 1	mot 2	similarité
corde	sourire	0,00
midi	ficelle	0,00
corde	ficelle	3,33
automobile	auto	3,94
coq	coq	4,00

Table 1 – Base de données de jugement humain

2.1.4 Jugement humain

Les word-embeddings obtenus par Word2Vec sont censés regrouper les mots qui apparaissent dans un contexte similaire. Une dernière façon de vérifier la qualité de nos vecteurs-mots est de les comparer à un jugement humain. Pour ce faire, nous utilisons la liste de référence RG-65 pour le français ¹⁶ (Boumedyen Billami & Gala (2017)). Elle contient 65 paires de noms communs (tableau 1) évaluées sur une échelle de 0 (non liés) à 4 (très liés).

Nous calculons ensuite la corrélation de Spearman entre les similarités cosinus de ces différentes paires issues de notre modèle (notées ici $(X_i)_{i=1..n}$) et les scores proposés ci-dessus par des êtres humains (notés ici $(Y_i)_{i=1..n}$).

La corrélation de Spearman est égale au coefficient de corrélation de Pearson calculé sur les variables de rang.

$$r_s = \operatorname{corr}(\operatorname{rg}_X, \operatorname{rg}_Y) = \frac{\operatorname{cov}(\operatorname{rg}_X, \operatorname{rg}_Y)}{\sigma_{\operatorname{rg}_X}\sigma_{\operatorname{rg}_Y}}$$

La variable de rang rg_{X_i} est définie telle que $\operatorname{rg}_{X_i} = j \iff X_i = X_{(j)}$ (X_i est la jème plus petite variable).

Pour tester la significativité de ce coefficient, nous utilisons la loi sous (H_0) de la statistique de test $z = \operatorname{arctanh}(r_s) = \frac{1}{2} \ln \frac{1+r}{1-r} \stackrel{H_0}{\sim} \mathcal{N}(0, \frac{1}{n-3})$ et obtenons l'intervalle de confiance suivant :

$$IC_{\alpha}(r_s) = \left[\tanh\left(z - \frac{q_{1-\frac{\alpha}{2}}}{\sqrt{n-3}}\right), \tanh\left(z + \frac{q_{1-\frac{\alpha}{2}}}{\sqrt{n-3}}\right) \right]$$

avec $q_{1-\frac{\alpha}{2}}$ le quantile d'ordre $1-\frac{\alpha}{2}$ d'une loi $\mathcal{N}(0,1)$.

2.2 Évaluation sur un corpus fictif

Avant de nous attaquer au jeu de données complet décrit plus bas, nous avons évalué un premier corpus fictif afin de nous assurer de la robustesse et de la validité du modèle implémenté. Nous avons associé dix couples (du type [voiture, camion]), à dix mots contextes différents ([véhicule, moto...]). Le corpus fictif est formé de 10 000 phrases composées chacune d'un mot d'un couple, de cinq mots du contexte et de trois mots bruits, tous tirés aléatoirement.

^{16.} Le RG-65 a fait appel à 18 évaluateurs humains. La base, initialement mobilisée dans un article anglophone (Rubenstein & Goodenough (1965)) a été traduite de l'anglais.

mot	similarité cosinus
énorme	0,991
taille	0,991
vanille	0,061
salissures	0,054

Table 2 – Mots les plus proches de « grand » par similarité cosinus

Note: Paramètres utilisés: ep = 50 / lr = 0.01 / w = 5 / dim = 10.

FIGURE 2 – Évaluation du modèle sur données fictives

Note: Paramètres utilisés: ep = 50 / lr = 0.01 / w = 5 / dim = 10.

Nous avons ensuite mis en œuvre les différentes techniques d'évaluation ¹⁷ présentées en partie 2.1 sur les word-embeddings obtenus grâce à ce corpus fictif.

Les résultats semblent concluants : la similarité cosinus montre bien une forte corrélation entre les mots focus et contexte du corpus initial et une faible corrélation avec les mots bruits (tableau 2). L'ACP et l'algorithme t-SNE permettent également de montrer graphiquement cette proximité (figure 2). Les clusters apparaissent de manière plus évidente avec t-SNE.

2.3 Choix des meilleurs hyperparamètres pour le modèle

Une fois nous être assurés de la bonne implémentation du modèle (partie 2.2) grâce au corpus fictif, nous nous sommes attachés à identifier les hyperparamètres les plus pertinents au regard des données dont nous disposons.

Ces données correspondent à un ensemble de 1,3 million de tweets ¹⁸ postés en France entre 2014 et

^{17.} à l'exception de la méthode par « jugement humain » puisque le corpus est ici créé fictivement par ordinateur sans prêter attention au réel sens des mots.

^{18.} Ces tweets, achetés à twitter, sont la propriété de l'Inria.

2017, supposés être représentatifs de l'ensemble de tweets nationaux publiés durant cette période.

Le modèle Word2Vec version Skip-gram, décrit en partie 1, fait en effet intervenir un certain nombre d'hyperparamètres parmi lesquels :

- ep : le nombre d'« epochs »
- lr ou α : le « learning rate », ou taux d'apprentissage
- w (window): la taille de la fenêtre de sélection des mots contextes
- dim: la dimension des vecteurs-mots (ou word-embeddings)

Or, la performance de nombreuses méthodes de *machine learning*, dont *Word2Vec*, dépend fortement des valeurs choisies pour ces paramètres, ces valeurs étant elles-mêmes très dépendantes des données mobilisées.

Même si les méthodes d'optimisation bayésiennes deviennent de plus en plus performantes pour optimiser la valeur de ces hyperparamètres en tenant compte de leurs interactions (Hutter, Hoos & Leyton-Brown (2014)), ce choix s'effectue régulièrement de manière empirique, en testant différentes valeurs d'hyperparamètres sur les données mobilisées. C'est l'approche que nous retenons ici.

Le package Gensim (« Generate Similar »), dans lequel la méthode Word2Vec est implémentée, est un des outils actuels les plus robustes et performants ¹⁹ pour la modélisation sémantique non supervisée (Řehůřek & Sojka (2010)).

Nous avons choisi de mobiliser **Gensim** dans la suite de ce rapport, en parallèle du modèle que nous avons implémenté, en raison de son temps d'exécution bien plus rapide ²⁰. Cette rapidité d'exécution nous a permis de réaliser des tests d'hyperparamètres plus nombreux.

Pour réaliser ces tests, nous avons fait tourner le modèle *Word2Vec* plusieurs fois en modifiant un à un les paramètres. Nous avons ensuite évalué ces différents modèles par la méthode du « jugement humain » (cf. partie 2.1.4) en comparant la mesure de la similarité cosinus ²¹ entre deux mots obtenue à partir de notre modèle à l'évaluation subjective de cette proximité par des individus. En outre, un même modèle est lancé six fois (six « seeds » différentes) afin de construire des intervalles de confiance de la matière décrite précédemment, en empilant les six échantillons de mesure de proximités correspondant aux six implémentations d'un même modèle ²².

2.3.1 Nombre d'epochs, taille de fenêtre et taux d'apprentissage

Pour cette première série de tests d'hyperparamètres, nous avons fixé la dimension des *word-embeddings* à 50^{23} et évalué l'impact du nombre d'epochs, de la taille de la fenêtre et du taux d'apprentissage (figure 3).

^{19.} Grâce à sa dépendance à NumPy, Gensim puise dans des bibliothèques de bas niveau. Ainsi, alors que le code de haut niveau est du Python, c'est en fait du Fortran et du C hautement optimisés qui sont utilisés, ce qui rend Gensim bien plus performant que PyTorch que nous avons utilisé pour implémenter le modèle décrit en partie 1.

^{20.} À titre d'exemple, alors qu'une epoch sur l'ensemble des tweets met une vingtaine d'heures à tourner pour « notre » modèle, elle met 1 minute via Gensim.

^{21.} Nous avons également évalué les modèles en utilisant (l'inverse de) la distance euclidienne à la place de la similarité cosinus. L'effet des paramètres devient alors bien moins clair et la performance du modèle est inférieure, ce va dans le sens de l'utilisation plus fréquente de la méthode de la similarité cosinus dans la littérature.

^{22.} Pour chaque modèle, nous calculons les statistiques de rang des 65 paires de mots de la base de jugement humain ainsi que le rang des similarités cosinus des mots obtenus en sortie du modèle. Nous réalisons ces actions pour les six implémentations du même modèle et empilons les résultats obtenus. C'est à partir de cette base empilée de 6x65 lignes moins les données manquantes que nous calculons chaque intervalle de confiance selon la formule décrite en partie 2.1.4.

^{23.} En réalisant les mêmes tests sur uniquement 100 000 tweets, puis en testant une dimension de word-embeddings de 20, les effets observés et commentés ici se confirment.

FIGURE 3 – Tests d'hyperparamètres : epochs, fenêtre et taux d'apprentissage

 $Note: Paramètres\ utilisés: dim=50$

Le trait horizontal correspond au coefficient de Spearman calculé sur les échantillons empilés des six modèles et la barre verticale à l'intervalle de confiance associé.

2.3.1.1 Le nombre d'epochs

Le nombre d'epochs à un effet net. Passer de 10 à 100 epochs fait nettement augmenter le score de corrélation de Spearman entre données subjectives et données en sortie du modèle.

 \bullet Nous retenons alors le paramètre ep = 100.

2.3.1.2 Le taux d'apprentissage

La valeur 0,02 semble donner systématiquement de meilleurs résultats que 0,01. En réalisant davantage de tests de taux d'apprentissage en fixant les autres hyperparamètres, les différents taux d'apprentissage présentent des performances similaires ²⁴.

 \bullet Nous retenons alors le paramètre lr = 0.02.

2.3.1.3 La taille de la fenêtre

La taille de la fenêtre ne semble pas jouer un rôle majeur, et dépend beaucoup des autres paramètres choisis.

Certains travaux (Levy & Golberg (2014)) indiquent que, suivant la taille de fenêtre choisie, les informations capturées sont différentes. Cela pourrait expliquer la complexité de choisir la « meilleure » taille de fenêtre. Alors que les « grandes » fenêtres capturent des informations sur le domaine du

^{24.} En fixant les paramètres dim = 50, ep = 100 et w = 4 (celles du modèle retenu in fine), et en testant les taux d'apprentissage 0,005, 0,01, 0,02, 0,03 et 0,04, les valeurs moyennes des corrélations s'échelonnent entre 0,41 et 0,48, soit des valeurs proches.

FIGURE 4 – Tests d'hyperparamètres : dimension des *word-embeddings*

Note : Paramètres utilisés : ep = 100 / w = 4 / lr = 0.02. Le trait horizontal correspond au coefficient de Spearman calculé sur les échantillons empilés des six modèles et la barre verticale à l'intervalle de confiance associé.

mot (autres mots de tout type étant utilisés dans des discussions connexes), les « petites » fenêtres saisissent davantage le mot en lui-même (ses extensions, synonymes, lui sont alors proches). La valeur de 4 représente une taille de fenêtre « ni trop grande ni trop petite » et qui présente de bons résultats dans la plupart des tests effectués.

 \bullet Nous retenons alors le paramètre $\mathbf{w} = 4$.

2.3.2 Dimension des vecteurs-mots

On cherche cette fois-ci à évaluer l'effet de la dimension des word-embeddings. Selon certains papiers (comme Pennington, Socher & Manning (2014)), la qualité des représentations vectorielles s'améliore à mesure que l'on augmente la taille du vecteur, mais seulement jusqu'à atteindre 300 dimensions ²⁵. Après 300 dimensions, la qualité des vecteurs commence à diminuer et le temps de calcul augmente considérablement.

En pratique, en comparant l'effet de la dimension des vecteurs (modèle fixé à ep = 100, w = 4 et lr = 0,02), on observe bien une augmentation de l'efficacité du modèle jusqu'en dimension 300 et une efficacité moindre en dimension 500 (figure 4). Bien que l'efficacité du modèle semble meilleure en dimension 300, la dimension 100 améliore la rapidité de l'algorithme, pour des résultats d'une qualité similaire.

 \bullet Nous retenons alors le paramètre dim = 100.

^{25.} La dimension des vecteurs doit également être adaptée à la taille du vocabulaire. Un des articles fondateurs de word2vec (Mikolov et al (2013a)) recommande donc d'augmenter à la fois la dimension des vecteurs et la quantité de données d'apprentissage. Par exemple, avec un vocabulaire d'une centaine de mots, il serait inefficace d'utiliser des projections en grande dimension (risque de surapprentissage).

bonjour	femme	1	samedi
(669 apparitions)	(264 apparitions)	(765 apparitions)	(203 apparitions)
(0.59)	quelle (0,49)	5 (0,55)	soir (0,57)
\circ (0,59)	cette $(0,46)$	mois $(0,51)$	vivement (0,51)
merci $(0,54)$	une $(0,44)$	10 (0,49)	demain $(0,50)$
nuit (0,48)	vie (0,44)	2(0,48)	end $(0,48)$
bisous $(0,47)$	grippe $(0,44)$	top (0,48)	weekend $(0,47)$
bonne (0,47)	belle $(0,43)$	depuis $(0,47)$	matin (0,45)
(0,46)	ma(0,43)	saison $(0,46)$	jeudi (0,45)
vous $(0,46)$	magnifique $(0,43)$	ans $(0,44)$	prochain (0,43)
plaisir $(0,44)$	nouvelle $(0,43)$	jours $(0,43)$	week $(0,43)$
allez $(0,43)$	vidéo $(0,39)$	3 (0,43)	(0,42)

Table 3-10 plus proches voisins par similarité cosinus avec « notre » modèle Note : Paramètres utilisés : ep = 80 / w = 4 / lr = 0.02 / dim = 100 / base : 100 000 tweets

La similarité cosinus de chaque paire de mots est renseignée entre les parenthèses.

2.4 Évaluation sur le corpus final

2.4.1 Avec « notre » modèle

Nous avons ensuite fait tourner le modèle que nous avons implémenté en utilisant les paramètres retenus précédemment ²⁶ mais uniquement sur 100 000 tweets et 80 epochs pour des questions de temps de calcul ²⁷.

Les résultats obtenus semblent relativement satisfaisants. La recherche des plus proches voisins par similarité cosinus (dont quelques exemples sont illustrés en tableau 3) donne des résultats proches de l'intuition.

Par ailleurs, le coefficient de Spearman entre la similarité cosinus des mots obtenus et le jugement humain est de 0,571 (p-valeur : 4,1 %). Toutefois, ce bon résultat est à considérer avec précaution puisque seuls 13 des couples de mots de la base RG-65 ont été reconnus dans le corpus de 100 000 tweets que nous utilisons ici.

Enfin, les représentations graphiques des positions des mots via des ACP et les sommes vectorielles sur les mots ²⁸ donnent des résultats bien moins concluants que le modèle Gensim entraîné sur l'ensemble des tweets (cf. partie 2.4.2).

2.4.2 Avec le modèle Gensim

Le modèle <code>Gensim</code> ²⁹ donne des résultats encore plus convaincants que précédemment, ayant été davantage entraîné, et sur un corpus plus fourni (ensemble des tweets). En effet, les vecteurs-mots en sortie du modèle <code>Gensim</code> sur l'ensemble des tweets (figure 5) sont davantage répartis dans l'ensemble du plan, alors que les mots en sortie du modèle que nous avons implémenté sur 100 000 tweets sont

^{26.} w = 4, lr = 0.02 et dim = 100

^{27.} près de 18h.

^{28.} comme l'exemple de $\overrightarrow{Paris} - \overrightarrow{France} + \overrightarrow{Italie} = \overrightarrow{Rome}$ dans Mikolov et al (2013a)

^{29.} w = 4, lr = 0.02, dim = 100 et ep = 100.

FIGURE 5 – Position des mots en fonction de leur nombre d'occurrences (Modèle Gensim)

FIGURE 6 – Position des mots en fonction de leur nombre d'occurrences (« notre » modèle)

Note : Paramètres utilisés : ep = 100 (gauche) ou 80 (droite) / w = 4 / lr = 0.02 / dim = 100. Méthode utilisée : ACP, deux premiers axes.

bonjour	femme	1	samedi
(17 043 apparitions)	(6 177 apparitions)	(21 055 apparitions)	(4 917 apparitions)
bonsoir (0.85)	fille (0,86)	2 (0,65)	vendredi (0,88)
bjr $(0,75)$	copine $(0,74)$	3(0,64)	jeudi (0,86)
hello (0,71)	meuf $(0,71)$	6(0,63)	lundi (0.83)
salut (0,66)	demoiselle (0,66)	4(0,62)	mercredi (0.83)
coucou(0,55)	nana $(0,66)$	7 (0,60)	dimanche (0.83)
transmets $(0,49)$	nièce $(0,66)$	5(0,58)	mardi (0,76)
désagrément $(0,48)$	sœur (0.65)	9(0,58)	demain $(0,72)$
avezvous $(0,48)$	barbe $(0,65)$	8 (0,56)	barathon $(0,56)$
bettembourg (0,48)	maman (0,64)	1e(0.55)	22h45 (0,55)
hey $(0,47)$	princesse $(0,64)$	34 (0,53)	20h (0,54)

Table 4-10 plus proches voisins par similarité cosinus avec le modèle Gensim Note : Paramètres utilisés : ep = 100 / w = 4 / lr = 0.02 / dim = 100 / base : ensemble des tweets La similarité cosinus de chaque paire de mots est renseignée entre les parenthèses.

répartis en fonction de leur nombre d'occurrences, les mots les moins fréquents n'ayant probablement pas (ou peu) été entraînés (figure 6).

Le coefficient de Spearman a une valeur semblable à précédemment : 0,495 mais sa p-valeur est proche de 0~% et, cette fois-ci, 52 des couples de mots de la base RG-65 ont été reconnus dans le corpus de tweets.

Les 10 plus proches voisins calculés par similarité cosinus (tableau 4) semblent encore davantage pertinents. Les plus proches voisins de « 1 » contiennent davantage de chiffres, de « samedi » davantage de jours de la semaine et le tableau contient désormais des synonymes de « femme » et de « bonjour ». Certains mots surprenants subsistent toutefois, comme par exemple « transmets », « désagrément » et « betembourg », voisins de « bonjour ». Toutefois, la fréquence d'apparition de ces mots dans le corpus est faible (moins d'une centaine d'occurrences). La projection de certains vecteurs-mots sur les deux premiers axes d'une ACP (figure 7) nous confirme la qualité de l'entraînement du corpus sur l'ensemble de tweets.

Enfin, nous avons réalisé des opérations sur les mots-vecteurs. Si l'opération $\overrightarrow{Roi} - \overrightarrow{Homme} + \overrightarrow{Femme} =$

FIGURE 7 – ACP sur un corpus réduit de mots

Note : Paramètres utilisés : ep = 100 / w = 4 / lr = 0,02 / dim = 100 / base : ensemble des tweets

FIGURE 8 - \overrightarrow{Roi} - \overrightarrow{Homme} + \overrightarrow{Femme} = ? FIGURE 9 - \overrightarrow{Paris} - \overrightarrow{France} + \overrightarrow{Italie} = ? Note: Paramètres utilisés: ep = 100 / w = 4 / lr = 0.02 / dim = 100.

Les mots en vert correspondent à ceux présents dans l'opération, le mot en rouge le mot que l'on serait supposé trouver et les mots en orange les 10 mots les plus proches du résultat de l'opération vectorielle.

 \overrightarrow{Reine} (figure 8) semble fonctionner ³⁰, l'opération $\overrightarrow{Paris} - \overrightarrow{France} + \overrightarrow{Italie}$ (cf. Mikolov et al (2013a), figure 9) n'identifie pas « Rome » dans les mots les plus proches mais d'autres villes comme « Lyon » (similarité cosinus de 0,62). « Rome » semble effectivement située « trop en haut » dans le plan de l'ACP par rapport aux autres villes. Peut-être ce mot n'a-t-il pas suffisamment été entraîné (246 apparitions dans les tweets contre 46433 pour Lyon par exemple) pour que le vecteur-mot obtenu soit pertinent, ou peut-être que, dans les tweets mobilisés, le mot « Rome » s'utilise dans un contexte différent de l'article de Mikolov.

^{30.} Les similarités cosinus obtenues sont les suivantes : $corr(\overrightarrow{Roi}, \overrightarrow{Homme}) = 0, 34, corr(\overrightarrow{Homme}, \overrightarrow{Femme}) = 0, 35$ et $corr(\overrightarrow{Roi} - \overrightarrow{Homme} + \overrightarrow{Femme}, \overrightarrow{Reine}) = 0, 67$. \overrightarrow{Reine} est bien le mot le plus proche de la somme vectorielle calculée.

- 3 Analyse des sentiments
- 3.1 Description de la méthode et tests [Roro]
- 3.2 Comparaison avec indicateurs insee

Conclusion

Références

- Bengio, Y., Ducharme, R., Vincent, P., Janvin, C. (2003). A Neural Probabilistic Language Model. JMLR, 3:1137–1155. https://papers.nips.cc/paper/1839-a-neural-probabilistic-language-model.pdf.
- Boumedyen Billami, M., Gala, N (2017). Création et validation de signatures sémantiques : application à la mesure de similarité sémantique et à la substitution lexicale. TALN 2017. https://hal.archives-ouvertes.fr/hal-01528117/document.
- Hutter, F., Hoos, H., Leyton-Brown, K., (2014). An Efficient Approach for Assessing Hyperparameter Importance. PMLR 32(1):754-762. http://proceedings.mlr.press/v32/hutter14.pdf.
- Jurafsky, D., Martin, J. H. (2019). Speech and Language Processing (3rd ed. draft). Prentice Hall. https://web.stanford.edu/~jurafsky/slp3/edbook_oct162019.pdf.
- Levy, O., Golberg, Y. (2015). Neural Word Embedding as Implicit Matrix Factorization. https://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf.
- Levy, O., Golberg, Y. (2014). Dependency-based word embeddings. ACL. http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf.
- Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013a). Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781. https://arxiv.org/pdf/1301.3781.pdf.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of words and phrases and their compositionality, arXiv:1310.4546. https://arxiv.org/pdf/1310.4546.pdf.
- Pennington, J., Socher, R., Manning, C. D., (2014). Glove: global vectors for word representation. Proc. of EMNLP,1532 1543. https://www.aclweb.org/anthology/D14-1162.pdf.
- Řehůřek, R., Sojka, P. (2010). Software Framework for Topic Modelling with Large Corpora. Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks. p. 46–50, 5 pp. ISBN 2-9517408-6-7. https://is.muni.cz/publication/884893/en.
- Rubenstein, H., Goodenough, J. B. (1965). Contextual Correlates of Synonymy. Commun. ACM, 8 (10), 627–633. https://dl.acm.org/doi/10.1145/365628.365657.
- Schakel, A. M., Wilson, B. J. (2015). Measuring Word Significance using Distributed Representations of Words. arXiv:1508.02297. https://arxiv.org/pdf/1508.02297v1.pdf.