Álgebra Linear e Geometria Analítica

1. Conjunto dos Números Complexos (Revisões)

Engenharia Informática/Segurança Informática em Redes e Computadores, ESTG-P.PORTO

Maria João Polidoro (mjp@estg.ipp.pt) Teófilo Melo (tmelo@estg.ipp.pt)

2021-2022

- Conjunto dos complexos
- Representação geométrica
- Operações na forma algébrica
- Operações na forma trigonométrica

00000

Conjunto dos complexos

- Leonhard Euler (1707-1783) introduziu o conceito de quantidade imaginária para representar $\sqrt{-1}$.
- $ightharpoonup i = \sqrt{-1}$ é a unidade imaginária.
- ▶ ℂ é conjunto dos números complexos.

Conjunto dos complexos

00000

Definicão

Seja $z \in \mathbb{C}$ um número complexo. A sua forma algébrica (cartesiana ou retangular) é definida por:

$$z = a + bi$$

onde $a, b \in \mathbb{R}$ e i designa a unidade imaginária.

Definicão

Diz-se que z é um número imaginário puro se a=0 e $b\neq 0$. Por outro lado, se b=0então z é um número real.

00000

Conjunto dos complexos

Definição

Dois números complexos são iguais, se e só se, têm partes reais e imaginárias iguais, isto é:

$$a + bi = c + di \Leftrightarrow a = c \land b = d$$
.

Chama-se conjugado de um número complexo z = a + bi ao número complexo $\bar{z} = a - bi$, isto é, aquele que tem a mesma parte real e parte imaginária simétrica.

Definição

Seja $z \in \mathbb{C}$ um número complexo.

- **1** $\bar{z} = z$ se e só se $z \in \mathbb{R}$, isto é, só os números reais são conjugados de si próprios.

Sumário

- Conjunto dos complexos
- Representação geométrica
- Operações na forma algébrica
- Operações na forma trigonométrica

Propriedades

O eixo dos xx é designado por eixo real.

000

- ► O eixo dos yy é designado por eixo imaginário.
- ightharpoonup O ponto P(a,b) é o afixo (imagem) de z.
- O afixo diz-se um ponto do plano de Argand.
- ► A cada número complexo z corresponde o vetor \overrightarrow{OP} .

Figura: z = a + bi

Interpretação geométrica

Seja $z = a + bi \in \mathbb{C}$.

- Conjugado: $\bar{z} = a bi$ é a reflexão de z relativamente ao eixo real.
- ightharpoonup Simétrico: -z = -a bi tem o afixo simétrico ao de z.
- Módulo de z: $\rho = |z| = \sqrt{a^2 + b^2}$.

Sumário

- Conjunto dos complexos
- Representação geométrica
- Operações na forma algébrica
- Operações na forma trigonométrica

Adição de números complexos

Definição

Sejam $z_1 = a + bi$ e $z_2 = c + di$ dois números complexos com a, b, c e $d \in \mathbb{R}$. A adição de dois números (ou mais) complexos é ainda um número complexo em que a parte real é a adição das partes reais, e a parte imaginária é a adição das partes imaginárias, ou seja:

$$z_1 + z_2 = (a+c) + (b+d)i$$
.

Interpretação geométrica

$$ightharpoonup z = a + bi \rightarrow P_1(a, b)$$

$$\triangleright$$
 $w = c + di \rightarrow P_2(c, d)$

$$ightharpoonup z o vetor \overrightarrow{OP_1}$$

$$\blacktriangleright$$
 $w \rightarrow \text{vetor } \overrightarrow{OP_2}$

$$ightharpoonup z + w = (a+c) + (b+d)i$$

$$\overrightarrow{OP} = \overrightarrow{OP_1} + \overrightarrow{OP_2} \text{ (regra do paralelogramo)}$$

Sejam $z_1 = a + bi$ e $z_2 = c + di$ dois números complexos com $a, b, c \in A$. subtração de z_1 por z_2 não é mais que a soma de z_1 com o simétrico de z_2 , ou seja:

$$z_1-z_2=z_1+(-z_2)=(a-c)+(b-d)i$$
.

Multiplicação de números complexos

Definição

Sejam $z_1=a+bi$ e $z_2=c+di$ dois números complexos com a, b, c e $d \in \mathbb{R}$. A multiplicação de dois números complexos procede-se como se estivéssemos a multiplicar dois números reais, aplicando a propriedade distributiva da multiplicação em relação à adição algébrica e tendo em conta que $i^2=-1$, isto é:

$$z_1 \times z_2 = (ac - bd) + (ad + bc)i$$
.

Multiplicação de números complexos

Interpretação geométrica

Sejam $z_1 = a + bi$ e $z_2 = c + di$ dois números complexos. Tem-se que:

$$z_1 \times z_2 = (a+bi) \times (c+di) = \underbrace{(a+bi) \times c}_{(I)} + \underbrace{(a+bi) \times di}_{(II)}$$

- (I) Multiplicação por um número real c determinar o produto do vetor (a,b) pelo número real c.
- (II) Multiplicação por um imaginário puro di determinar o produto do vetor (a,b) pelo número real d, e fazer uma rotação de 90° ao vetor obtido.
- (III) Adicionar os vetores obtidos em (I) e (II).

Multiplicação de números complexos

Divisão de números complexos

Definição

Sejam $z_1 = a + bi$ e $z_2 = c + di$ dois números complexos com a, b, c e $d \in \mathbb{R}$. Tem-se que:

$$\frac{z_1}{z_2} = \frac{z_1 \times \overline{z}_2}{z_2 \times \overline{z}_2} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}.$$

Definicão

Seja $z = a + bi \in \mathbb{C}$. O inverso de z que se representa por z^{-1} , é determinado da seguinte forma:

$$z^{-1} = \frac{1}{z} = \frac{a - bi}{(a + bi)(a - bi)} = \frac{a - bi}{a^2 + b^2}.$$

Sabendo que $i^4 = 1$ tem-se que:

$$i^n = i^{4q+r} = (i^4)^q \times i^r = i^r.$$

Operações na forma algébrica 000000000000

Propriedade

Definição

Sejam $z, w \in \mathbb{C}$ e $n \in \mathbb{N}$.

$$Re(z) = \frac{z + \overline{z}}{2} e Im(z) = \frac{z - \overline{z}}{2i}$$

$$|\bar{z}| = |z|$$

adição	+
subtração	-
multiplicação	*
divisão	/
potenciação	^
unidade imaginária	% i

Tabela: Operadores aritméticos

a+bi	<pre>complex(a,b)</pre>
conjugado	conj(x)
parte real	real(x)
parte imaginária	imag(x)
módulo	abs(x)

Tabela: Funções matemáticas

Sumário

- Conjunto dos complexos
- Representação geométrica
- Operações na forma algébrica
- 4 Operações na forma trigonométrica

Seja $z = a + bi \in \mathbb{C}$ um número complexo. A sua forma trigonométrica é definida por:

$$z = \rho \operatorname{cis}(\theta)$$

com $\rho \in \mathbb{R}$ e $0 \le \theta \le 2\pi$.

- $\rho = \sqrt{a^2 + b^2}$ é a medida do comprimento \overline{OP} , dito módulo de z.
- θ é a medida do ângulo definido pelo semi-eixo positivo dos xx e pelo segmento \overline{OP} , designado por argumento de z, tal que $0 < \theta < 2\pi$.
- $ightharpoonup z = a + bi = \rho \operatorname{cis}(\theta) = \rho (\cos(\theta) + i \operatorname{sen}(\theta))$
- $ightharpoonup a = \rho \cos(\theta), b = \rho \sin(\theta)$

Seja $z = \rho \operatorname{cis}(\theta) \in \mathbb{C}$.

O conjugado de z é definido por:

$$\bar{z} = \rho \operatorname{cis}(-\theta)$$
.

O simétrico de z é definido por:

$$-z = \rho \operatorname{cis}(\theta + \pi).$$

Dois números complexos não nulos são iguais se e só se têm módulos iguais, e os seus argumentos diferem apenas por um múltiplo inteiro de 2π , isto é:

$$\rho_1 \operatorname{cis}(\theta_1) = \rho_2 \operatorname{cis}(\theta_2) \Leftrightarrow \rho_1 = \rho_2 \wedge \theta_1 \equiv \theta_2 \pmod{2\pi}.$$

Sejam $z_1 = \rho_1 \operatorname{cis}(\theta_1)$ e $z_2 = \rho_2 \operatorname{cis}(\theta_2)$ dois números complexos não nulos. Tem-se que:

$$z_1 \times z_2 = \rho_1 \rho_2 \operatorname{cis}(\theta_1 + \theta_2).$$

Sejam $z_1 = \rho_1 \operatorname{cis}(\theta_1)$ e $z_2 = \rho_2 \operatorname{cis}(\theta_2)$ dois números complexos não nulos. Tem-se que:

$$\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} \operatorname{cis}(\theta_1 - \theta_2).$$

Seja $z = \rho \operatorname{cis}(\theta)$ então o inverso de z é definido por:

$$z^{-1} = \rho^{-1}\operatorname{cis}(-\theta).$$

Sejam $n \in \mathbb{N}$ e $z = \rho \operatorname{cis}(\theta)$. Tem-se que:

$$z^n = \rho^n \operatorname{cis}(n\theta)$$
.

De outra forma:

$$z^{-n} = \frac{1}{z^n} = \frac{1}{\rho^n} \operatorname{cis}(-n\theta).$$

Seja $z = \rho \operatorname{cis}(\theta)$. Tem-se que:

$$\sqrt[n]{z} = \sqrt[n]{\rho} \operatorname{cis}\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right), k \in \{0, 1, \dots, n-1\}.$$