

Joseph Redmon Yolov 1

Yolov2

Yolov3

Alexey Bochkovskiy

Yolov4

ultralytics

Yolov5

Yolo网络讲解

https://github.com/YunYang1994/tensorflow-yolov3

CONTENTS

测试

- 1.输入
- 2.网络结构
 - 3.输出
 - 4.解码
- 5.后处理与非极大值抑制(NMS)

训练

- 1.标签
- 2.置信度损失
- 3.定位损失
- 4.类别概率损失

1. 长宽相等的正方形

2.32的倍数

ih, iw = target_size h, w, _ = image.shape

scale = min(iw/w, ih/h) nw, nh = int(scale * w), int(scale * h) image_resized = cv2.resize(image, (nw, nh))

image_paded = np.full(shape=[ih, iw, 3], fill_value=128.0) dw, dh = (iw - nw) // 2, (ih-nh) // 2 image_paded[dh:nh+dh, dw:nw+dw, :] = image_resized image_paded = image_paded / 255.

用多张图来进行增强 CutMix

mosaic

网络结构

FPN (Feature Pyramid Networks)

PAN (Path Aggregation Network)

通道数

3*(num_class +5).

类别数

t_x, t_y, t_w, t_h和原始置信度

通道数

 $3*(num_class+5).$

$bx=(sigmoid(t_x)+cx)*stride$	(1)
by=(sigmoid(t_y)+cy)*stride	(2)
bw=p _w e ^{tw} *stride	(3)
bh=p _h e ^{th*} stride	(4)
conf=sigmoid(raw_conf)	(5)
prob=siamoid(raw prob)	(6)

 b_x 、 b_y 、 b_h 、 b_w ——中心横纵坐标与高宽 p_h 和 p_w ——先验框的高和宽 t_x 和 t_y ——物体中心距离网格左上角位置的预测偏移量 t_w 和 t_h ——物体相对于先验框的预测偏移量 c_x 和 c_y ——网格左上角的坐标 Stride——最后特征图缩放的比例

- 1. 还原
- 2. 筛选

(52*52+26*26+13*13)*3 = 10647

类别置信度(Score) = 置信度(Conf)*类别概率(Prob) < threshold

core.utils.postprocess_boxes

Diou Ciou

Fast NMS, Cluster NMS, Matrix NMS

```
classes_in_img = list(set(bboxes[:, 5]))
best_bboxes = []
for cls in classes_in_img:
   cls_mask = (bboxes[:, 5] == cls)
   cls_bboxes = bboxes[cls_mask]
   while len(cls_bboxes) > 0:
       max_ind = np.argmax(cls_bboxes[:, 4])
       best_bbox = cls_bboxes[max_ind]
       best_bboxes.append(best_bbox)
       cls_bboxes = np.concatenate([cls_bboxes[: max_ind], cls_bboxes[max_ind + 1:]])
       iou = bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4])
       weight = np.ones((len(iou),), dtype=np.float32)
       assert method in ['nms', 'soft-nms']
       if method == 'nms':
            iou_mask = iou > iou_threshold
           weight[iou_mask] = 0.0
       if method == 'soft-nms':
           weight = np.exp(-(1.0 * iou ** 2 / sigma))
       cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight
       score_mask = cls_bboxes[:, 4] > 0.
       cls_bboxes = cls_bboxes[score_mask]
```


图像预处理 网络输出偏移值 解码

后处理与非极大值抑制

image_path x_min, y_min, x_max, y_max,
class_id x_min, y_min ,..., class_id

ImageNet >> COCO

Yo1o9000

对照的标准

(52*52+26*26+13*13)*3 = 10647个 Iou与阈值进行比较

best_anchor_ind = np.argmax(np.array(iou).reshape(-1), axis=-1) best_detect = int(best_anchor_ind / self.anchor_per_scale) best_anchor = int(best_anchor_ind % self.anchor_per_scale)

- 1. 一个网格负责一个物体检测
- 2. 得到的特征图的边长最好是一个奇数
- 3. smooth_onehot

置信度损失

Iou与阈值进行比较

负样本与忽略样本的确定

$$L_{focalloss} = -\alpha_t (1 - p_t)^{\mu * \gamma} \log(p_t)$$

Retinanet Yolo 19161 vs. 6300

预测框与标签框的中心横纵坐标、高宽之间的损失

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{obj} \left(x_i - \hat{x_i} \right)^2 + (y_i - \hat{y_i})^2)
ight] + \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} 1_{ij}^{obj} \left[(\sqrt{w_i} - \sqrt{\hat{w_i}})^2 + (\sqrt{h_i} - \sqrt{\hat{h_i}})^2
ight]$$

 $MSE,L1 \rightarrow IoU \rightarrow GIoU$

平衡大小框的位置损失

(2 - label.h*label.w)

prob_loss = respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=label_prob, logits=conv_raw_prob)

