Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Fizyki i Informatyki Stosowanej Informatyka Stosowana

Metody Numeryczne

Metoda bezpośrednia rozwiązywania problemu własnego

Rozkład QR metodą Hauseholdera

Ireneusz Bugański

1. Problem do rozwiązania

Zadaniem jest wyznaczenie widma wibracyjnego cząstki acetylenu. Acetylen jest cząstką liniową o dwóch atomach węgla oraz dwóch atomach wodoru (Rys. 1.). Układ po wychyleniu z położenia równowagi będzie drgał zgodnie z poniższymi równaniami ruchu:

$$m_{H} \frac{\mathrm{d}^{2} x_{1}}{\mathrm{d}t^{2}} = -k_{CH} x_{1} + k_{CH} x_{2},$$

$$m_{C} \frac{\mathrm{d}^{2} x_{2}}{\mathrm{d}t^{2}} = k_{CH} x_{1} - (k_{CH} + k_{CC}) + k_{CH} x_{2} + k_{CC} x_{3},$$

$$m_{C} \frac{\mathrm{d}^{2} x_{3}}{\mathrm{d}t^{2}} = k_{CC} x_{2} - (k_{CH} + k_{CC}) + k_{CH} x_{3} + k_{CH} x_{4},$$

$$m_{H} \frac{\mathrm{d}^{2} x_{4}}{\mathrm{d}t^{2}} = k_{CH} x_{3} - k_{CH} x_{4},$$

$$(1)$$

gdzie m_H, m_C – odpowiednio masa atomu wodoru oraz węgla, k_{CH}, k_{CC} – stałe siłowe oddziaływania węgiel-wodór oraz węgiel-węgiel, $x_i, i=1,2,3,4$ – wychylenie atomu i z położenia równowagi. Rozwiązanie układu równań jest równanie postaci $x_i(t)=A_i\exp(i\omega t)$, gdzie ω jest częstością drgań cząstki. Układ równań (1) można zapisać w sposób macierzowy, tj.

$$\begin{pmatrix} \frac{k_{CH}}{m_H} & -\frac{k_{CH}}{m_H} & 0 & 0\\ -\frac{k_{CH}}{m_C} & \frac{k_{CH} + k_{CC}}{m_C} & -\frac{k_{CC}}{m_C} & 0\\ 0 & -\frac{k_{CC}}{m_C} & \frac{k_{CH} + k_{CC}}{m_C} & -\frac{k_{CH}}{m_C}\\ 0 & 0 & -\frac{k_{CH}}{m_H} & \frac{k_{CH}}{m_H} \end{pmatrix} \begin{pmatrix} A_1\\ A_2\\ A_3\\ A_4 \end{pmatrix} = \omega^2 \begin{pmatrix} A_1\\ A_2\\ A_3\\ A_4 \end{pmatrix}. \tag{2}$$

Równanie (2) prezentuje problem własny $D\mathbf{A} = \lambda \mathbf{A}$, gdzie wektor $\mathbf{A} = (A_1 \ A_2 \ A_3 \ A_4)^T$ jest wektorem własnym, a $\lambda = \omega^2$ wartością własną macierzy współczynników D.

Zadania do wykonania:

- 1. Zdefiniować macierz współczynników D, przyjmując $k_{CH}=5.92\cdot 10^2\frac{\text{kg}}{\text{s}^2}$, $k_{CC}=15.8\cdot 10^2\frac{\text{kg}}{\text{s}^2}$, $m_H=1$ amu, $m_C=12$ amu, 1 amu $m_C=1.6605\cdot 10^{-27}$ kg.
- 2. Wykorzystując metodę Hauseholdera, znaleźć rozkład QR macierzy D. Macierz D = QR, gdzie Q macierz ortogonalna ($Q^TQ = I$) oraz R macierz trójkątna górna.
- 3. Wykonując iteracyjnie rozkład QR znajdź wektory własne macierzy D.
- 4. Po wykonaniu IT = 200 iteracji wyznacz wektory własne macierzy D.
- 5. W sprawozdaniu wypisz wartości i wektory własne macierzy D

Rys. 1. Cząstka acetylenu wraz ze stałymi zadania

2. Rozkład QR metodą Hauseholdera

Poniższe kroki obliczeniowe pozwalają uzyskać rozkład *QR* macierzy D:

- 1. Zdefiniuj macierz R = D oraz Q = I. Rozmiar macierzy Q jest taki sam jak macierzy D (w przypadku macierzy symetrycznej)
- 2. Dalsze operacje wykonaj w pętli wykonującej się N-1 razy, gdzie N jest wymiarem macierzy D.
- 3. Znajdź wektor $\mathbf{u} = \mathbf{x} ||\mathbf{x}||\mathbf{e}$, gdzie \mathbf{x} jest *i*-tym wektorem kolumnowym macierzy R (i jest również numerem iteracji), gdzie wszystkie elementy wektora o indeksie mniejszym niż i są wyzerowane; \mathbf{e} jest wektorem, którego wszystkie elementy są równe 0, z wyjątkiem elementu i go, który wynosi 1.
- 4. Znajdź wektor $\mathbf{v} = \mathbf{u}/\|\mathbf{u}\|$.
- 5. Znajdź macierz $Q_t = I 2\mathbf{v}\mathbf{v}^T$.
- 6. Wykonaj działania: $Q = Q_t Q$ oraz $R = Q_t R$.
- 7. Po zakończeniu działania pętli otrzymana macierz R jest macierzą górnotrójkątną. Aby otrzymać poprawną macierz Q musimy do zmiennej przechowującej macierz Q przypisać jej transpozycję, tj. wykonać operację $Q = Q^T$.
- 8. Można sprawdzić, że D = QR.

3. Wyznaczenie wartości i wektorów własnych

Wartości własne wyznacza się poprzez iteracyjnie:

- 1. Przyjmij macierz H = D oraz P = I.
- 2. Kolejne operacje wykonaj w petli IT = 200 iteracji.
- 3. Znajdź rozkład H = QR.
- 4. Przypisz do zmiennej H = RQ odwrócony iloczyn macierzy Q i R.
- 5. Przypisz do zmiennej P = PQ.

Po zakończeniu działania pętli, otrzymana macierz H ma na diagonali kolejne wartości własne macierzy D.

Aby wyznaczyć i- ty wektor własny \mathbf{x}_i macierzy H należy wykonać operacje:

$$\mathbf{x}_{i}(j) = \begin{cases} 0, & j > i \\ 1 & j = i \\ -\frac{\sum_{k=j+1}^{i} H(j,k)\mathbf{x}_{i}(k)}{H(j,j) - H(i,i)} & j < i \end{cases}$$
(3)

Wektory \mathbf{x}_i należy znormalizować, tj. podzielić wektor przez jego długość. Wektor własny macierzy D można otrzymać, mnożąc wektor \mathbf{x}_i przez macierz P, tj. $\mathbf{A}_i = P\mathbf{x}_i$.

Rozwiązanie:

$$\omega_1^2 = 4.0502e29\frac{1}{s}, \omega_2^2 = 3.8611e29\frac{1}{s}, \omega_3^2 = 1.3945e29\frac{1}{s}, \omega_2^2 = 0\frac{1}{s}$$

lub

$$\omega_1^2 = 673.0415, \omega_2^2 = 6.41.3333, \omega_3^2 = 231.6251 \ \omega_2^2 = 0$$

dla wyników, gdzie masa została podana w amu, a nie w kilogramach.

Wektory własne:

$$\mathbf{A}_1 = \begin{pmatrix} 0.7006 \\ -0.0959 \\ 0.0959 \\ -0.7005 \end{pmatrix}, \mathbf{A}_2 = \begin{pmatrix} 0.7047 \\ -0.0587 \\ -0.0587 \\ 0.7047 \end{pmatrix}, \mathbf{A}_3 = \begin{pmatrix} 0.6040 \\ 0.3677 \\ -03677 \\ -0.6040 \end{pmatrix}, \mathbf{A}_4 = \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{pmatrix}$$