Computer Systems Fundamentals

CSE 232 Computer Systems Fundamentals

Dr. Gamal Fahmy

Logic Gates

Gray Coded Number

- Rule of thumb
 - 1 bit change per increment

0	00
1	01
2	11
3	10

0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

- There are three types of logic gates from which we can build all digital computers.
- They're all related to semantic logic operators
- Consider:
- If Ahmed asks Tarek for Tennis AND Tarek accepts, then they'll go for a tennis game.

- Let T(*) be the truth value operator:
 - g = T(They'll go to a tennis game)
 - A = T(Ahmed Asks Tarek)
 - B = T(Tarek Accepts)
- g=A and B=A*B=AB
 - (If, Then provide the semantic equivalent of the equal sign.)

- There is an electrical analog to the AND operator.
- True = Switch Closed True = Light On

AND Operator
Truth Table

A	В	g=A B
(F) 0	(F) 0 1	(F) 0
0	1	0
1	0	0
1	1	1

Consider:

If Ahmed asks Tarek OR Mona Asks Tarek then, he'll go to a tennis game.

Let T(*) be the truth value operator:

g = T (He'll go to a tennis game)

A = T (Ahmed Asks Tarek)

B = T (Mona Asks Tarek)

g=A OR B = A + B

- There is an electrical analog to the OR operator.
- True = Switch Closed True = Light On

OR Operator Truth Table

A	В	g=A+B
(F) 0	(F) 0 1	(F) 0
0	1	1
1	0	1
1	1	1

Gates

An AND gate has the electrical schematic:

An OR gate has the electrical schematic:

$$\frac{A}{B} \underbrace{g=A+B}$$

Gates

One Last Logical operator/gate - NOT

NOT Operator
Truth Table

A g = A'

0 1

1 0

 All digital computers are built using ONLY these three gate types: AND, OR, Inverter

- All of our truth tables had 4 input combinations
 - 2 Ways to pick the first input
 - 2 Ways to pick the second input
 - 2² Input Combinations
 - How many input combinations for a 3 input gate?

3 Input AND/OR Truth Tables

3-input AND Truth Table

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

3-Input OR Truth Table

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

• Draw a Schematic for $g=A\overline{B}+\overline{C}D$

NAND Gate=NOT (AND)

NAND

Truth Table

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate = NOT(OR)

NOR

Truth Table

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

 Exclusive OR:Output = 1 if odd number of inputs = 1

$$A \longrightarrow Y = A \oplus B = A \overline{B} + \overline{A} B$$

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$Y = A \oplus B \oplus C$$

3-Input XOR Truth Table

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- It is representing inputs/ variables x,y,z and output as function on the inputs F(x,y,z)
- 2. + is OR
- 3. is AND
- 4. 'is NOT

Why study Boolean Algebra? Consider:

I claim this circuit is equivalent to:

- Could use a truth table.
- For a 10 Variable function need 2^{10} lines.

- George Boole (1815-1864), a mathematician sought to formalize logic using mathematical notation.
- He developed a consistent set of laws that were sufficient to define a new type of algebra: Boolean Algebra cf. Linear Algebra
- Many of the rules are the same as Linear Algebra. Some are different.

- There are 7 fundamental laws, that tell us what operations are valid in Boolean algebra.
- 1. Field: Boolean algebra operates over a field of numbers B with only two elements {0,1}.
- 2. Closure: For every a, b in B,
- a + b is in B
- a*b is in B

$$(1,0)$$
 $(1,0)$

3. Commutative laws: For every a, b in B,

•
$$a + b = b + a$$

•
$$ab = ba$$

» Similar to Linear Algebra

$$a \xrightarrow{g=a+b}$$

$$a$$
 b
 $f=a*b$

$$b \longrightarrow g=a+b$$

4. Associative laws: For every a, b, c in B,

•
$$(a+b)+c=a+(b+c)=a+b+c$$

•
$$(ab)$$
 $c = a$ $(bc) = abc$

» Similar to Linear Algebra

- 5. Distributive laws: For every a, b, c in B,
- a + (bc) = (a + b)(a + c) ('+' Distributes Over '*')
 (NOT Similar to Linear Algebra.)
- a(b + c) = (ab) + (ac) ("' Distributes Over '+')

 (Similar to Linear Algebra.)
- 6. Complement: For each a in B, there exists an element a in B (the complement of a) such that:
- a. $a + \overline{a} = 1$ (Similar to Mult. Inverse of Linear Algebra)
- b. $a^*\overline{a}=0$ (Similar to Additive. Inverse of Linear Algebra)

- 7. Identity
- a. There exists an identity element with respect to {+}, designated by 0, such that a + 0 = a for every a in B.
- (Similar to Additive Ident. of Linear Algebra)

AND Operator Truth Table

A	В	g = A B
0	0	0
0	1	0
1	0	0
1	1	1

OR Operator Truth Table

A	В	g=A+	E
0	0	0	
0	1	1	
1	0	1	
1	1	1	

- b. There exists an identity element with respect to {*}, designated by 1, such that a*1 = a for every a in B.
- (Similar to Multiplicative. Ident. of Linear Algebra)

Summary

Commutative

$$a + b = b + a$$
 $ab = ba$

Associative

$$(a + b) + c = a + (b + c)$$

$$(ab)$$
 $c = a$ (bc)

Distributive

$$a + (bc) = (a+b)(a+c)$$

$$a(b+c) = (ab) + (ac)$$

Identity

$$a + 0 = a$$

$$a*1 = a$$

Complement

$$a+\overline{a}=1$$

$$a*\overline{a}=0$$

Or with 1

And with 0

$$a + 1 = 1$$

$$a *0 = 0$$

Idempotent

$$a + a = a$$

$$a * a = a$$

Duality Theorem: The Dual of every theorem is a valid theorem. The dual is constructed by interchanging:

$$1 \longleftrightarrow 0$$

$$+ \longleftrightarrow *$$

Or With 1: X+1=1

Dual of Or With 1: X*0=0 (And With 0)

Idempotent: X+X=X

Dual of Idempotent:X*X=X

One last useful Theorem: DeMorgan's Law

Gate Equivalency

DeMorgan's Law

$$\overline{a} \bullet \overline{b} = \overline{a+b}$$

a b b

Dual of DeMorgan's Law

$$\overline{a} + \overline{b} = \overline{a \bullet b}$$

Q:Why is this useful?

A: It allows us to build functions using only one gate type.

Q:Why do we use NAND/NOR gate to build functions rather than AND/OR logic?

A:NAND/NOR gates are physically smaller and faster.

Q:How does Gate Equivalency help when drawing schematics with one gate type? A:Let's look at three approaches.

 One approach is to construct AND/OR logic and replace each gate with it's equivalent using the figures shown below.

Function	Gate	NAND/Inverter Equiva	lent
X+Y	X X+Y	X — X+Y	$X+Y=\overline{\overline{X}\bullet\overline{Y}}$
X-Y	X — X.Y	X — X•Y	$X \cdot Y = \overline{\overline{X \cdot Y}}$
X+Y	$X \longrightarrow X+Y$	$X \longrightarrow \overline{X+Y}$	$\overline{X+Y} = \overline{\overline{X} \cdot \overline{Y}}$
X•Y	$\begin{array}{c} X \longrightarrow \overline{X \cdot Y} \\ Y \longrightarrow \overline{\end{array}$	X — X•Y	$\overline{X \cdot Y} = \overline{X \cdot Y}$
Gamal Fahmy			

- The drawback to such an approach is that you may use more than the minimal number of gates.
- The advantage is that the approach is simple.

	Function	Gate	NOR/Inverter Equiva	lent
_	X·Y	X — X·Y	X X·Y	$X \cdot Y = \overline{X + Y}$
	X+Y	X — X+Y	X — X+Y	$X+Y = \overline{\overline{X+Y}}$
	X·Y	$X \longrightarrow \overline{X \cdot Y}$	$X \longrightarrow \overline{X \cdot Y}$	$\overline{X \cdot Y} = \overline{\overline{X} + \overline{Y}}$
	X+Y	$X \longrightarrow X+Y$	$X \longrightarrow \overline{X+Y}$	$\overline{X+Y} = \overline{X+Y}$

- There are two traditional approaches that yield less costly realizations:
 - EX: Using ONLY NOR gates, draw a schematic for the following function: F=(a+b)(b+c)

Approach #1: Use DeMorgan's Law:

$$F = \overline{(a+b)(b+c)}$$

$$a \xrightarrow{b} F$$

- Drawbacks to using DeMorgan's Laws:
 - Some functions require many manipulations to get into proper form.
 - During these many manipulations it is easy to make mistakes.

EX: Using ONLY NOR gates, draw a schematic for the following function: F=(a+b)(b+c)

Approach #2:Use Gate Equivalency (Draw gate form that you need. Account for inversions.)

Note that the inversions cancel and we're left with AND/OR LOGIC.

- General Approach for building functions with 2-input NAND gates:
 - 1. Break function into two pieces.
 - 2. If the pieces form a:
 - AND/NAND function ===> build function with NAND+Inverters/NAND.
 - OR function ===>build with NAND (OR with inverted inputs)
 - NOR (F=X+Y) function ===>Work with complement of the function (F =X+Y), which is an OR, then complement F to get F.
- © Gamal Fahmy 3. Recursively apply these rules

• Ex: Assume you have the forms:

$$- F=(A+B) + BC$$

- & want to find a NAND gate implementation.
- Break the function in the following way.

$$- F(A \dots Z) = \overline{g(A \dots Z) + h(A \dots Z)}$$

- General Approach for building function with 2-input NOR gates:
 - 1. Break function into two pieces.
 - 2. If the pieces form an:
 - OR/NOR function ===> build function with NOR+Inverters/NOR
 - AND function ===> build function with NOR (AND with inverted inputs)
 - NAND (F=X*Y) function ===>Work with complement of the function (F), which is an AND, then complement F to get F.
 - 3. Recursively apply these rules.

- EX: Assume you have the forms:
 - F=(A+B) + BC
- Want to find a NOR gate implementation.
- Break the function in the following way.

$$-F(A ... Z)=\overline{g(A ... Z)} + h(A ... Z).$$

The Uniting Theorem:

Minimize the following function:

Defn: Two 1's are address adjacent if their 'addresses' differ in only one bit position.

We can use this connection between adjacency and the Uniting Thm.to visually implement the uniting Theorem:

Rule of Thumb(Min SOP): Eliminate the literal with CHANGING Address bit and write Canonical SOP for group of 1's using remaining literals.

Α	В	F	
0	0	0	
0	1	0	
1	0	1	$\int F = A$
1	1	1	

TEAMS: Find Min. SOP form for the following Truth Table:

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

$$F = \overline{A}\overline{B} + A\overline{B}$$

Q? Are the 1's address adjacent?

By analogy we can generate a rule of thumb for generating a Minimum POS form.

Rule of Thumb(Min POS): Eliminate the literal with CHANGING Address bit and write Canonical POS for group of 0's using remaining literals.

Ex: Find Min. POS form for the following Truth Table:

Α	В	С	F	
0	0	0	0	
0	0	1	0	\sim \sim \sim
0	1	0	1	\rightarrow F=(A+C)
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Ex: Find Min. POS form for the following Truth Table:

SOP and POS Forms

- We need to be able to translate a truth table description into a logical expression.
 Two forms are used:
- Sum-of-Products and Product-of-Sums Canonical Form
- Consider first Sum-of-Products Canonical Form Using an Example:

SOP Canonical Form

Term #	Α	В	С	F	F1	F2	F3	F 4	F1+F2+F3+F4
0	0	0	0	1	1	0	0	0	1
1	0	0	1	1	0	1	0	0	1
2	0	1	0	0	0	0	0	0	0
3	0	1	1	0	0	0	0	0	0
4	1	0	0	0	0	0	0	0	0
5	1	0	1	1	0	0	1	0	1
6	1	1	0	1	0	0	0	1	1
7	1	1	1	0	0	0	0	0	0

Construct Each Function F1, F2, etc.

$$F1 = \overline{A}\overline{B}\overline{C} \square F2 = \overline{A}\overline{B}C \square F3 = \overline{A}\overline{B}C$$

$$\Box F4 = \underline{A} \underline{B} \underline{C}
F = \underline{A} \underline{B} \underline{C} + \underline{A} \underline{B} \underline{C} + A \underline{B} \underline{C} + A \underline{B} \underline{C}$$

SOP Canonical Form

Term #	Α	В	С	F
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

- Minterm: "Product" term containing all literals used by the function.
- Minterm Short-hand Notation:

$$F = \sum m(0,1,5,6)$$

$$F = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}C + AB\overline{C}$$

POS Canonical Form

Term #	Α	В	С	F	FA	FB	FC	FD	FA*FB*FC*FD
0	0	0	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1
2	0	1	0	0	0	1	1	1	0
3	0	1	1	0	1	0	1	1	0
4	1	0	0	0	1	1	0	1	0
5	1	0	1	1	1	1	1	1	1
6	1	1	0	1	1	1	1	1	1
7	1	1	1	0	1	1	1	0	0

- □ Construct Each Function FA, FB, etc.
- \Box FA=A+B+C \Box FB=A+B+C
 - \square FC= $\overline{A}+B+C$ \square FD=A+B+C
- \Box F=(A+B+C) (A+B+C) (A+B+C) (A+B+C)

POS Canonical Form

Term #	Α	В	С	F
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

- Maxterm: "Sum" term containing all literals used by the function.
- Maxterm Short-hand **Notation:**

$$F = \sum m(0,1,5,6) \qquad F = \prod M(2,3,4,7)$$

$$F = \Pi M(2,3,4,7)$$

$$\Box \ F = (A + \overline{B} + C) \ (A + \overline{B} + \overline{C}) \ (\overline{A} + B + C) \ (\overline{A} + \overline{B} + \overline{C})$$

Compare MinTerm and MaxTerm notation. What do you observe about the union of the integer arguments?

Home work

Problems:

Homework 3,4,5