Asymptotic normality of our data-adaptive estimator

September 19, 2016

Let $\hat{P}_0 = \hat{Q}_0 \hat{g}_0$ be the limit of our initial estimator P_n^0 . Let $\delta_n(\hat{P}_0)$ the optimal truncation level under \hat{P}_0 .

Assume that we have an estimate $\hat{\delta}_n(\hat{P}_0)$ of $\delta_n(\hat{P}_0)$ such that $\hat{\delta}_n(\hat{P}_0) \sim C\delta_n(\hat{P}_0)$. With the usual notations,

$$\Psi_{\delta_n}(P_n^*) - \Psi_{\delta_n}(P_0) = -P_0 D_{\delta_n}^*(P_n^*) + R_{\delta_n}(P_n^*, P_0)$$

= $(P_n - P_0) D_{\delta_n}^*(P_n^*) - P_n D_{\delta_n}^*(P_n^*) + R_{\delta_n}(P_n^*, P_0).$

The targeting step ensures that that $P_n D_{\delta_n}^*(P_n^*) = 0$.

Let $\sigma^2(P)(\delta) = PD^*_{\delta}(P)^2$ and $b(P)(\delta) = \Psi_{\delta}(P) - \Psi_0(P)$. Assume that $\sigma(P)^2(\delta) \sim C_0 \delta^{-2\gamma(P)}$, $\gamma(P) \geq 0$, and $b(P)(\delta) = C_1 \delta^{1-\beta(P)}$, $\beta < 1$. Under these assumptions, the optimal truncation level under P is $\delta_n(P) = n^{-\frac{1}{2(\gamma(P)+1-\beta(P))}}$.

We have that

$$\Psi_{\delta_n}(P_n^*) - \Psi_{\delta_n}(P_0) = \delta_n(\hat{P}_0)^{-\gamma(\hat{P}_0)} (P_n - P_0) (\delta_n(\hat{P}_0)^{\gamma(\hat{P}_0)} D_{\delta_n}^*(P_n^*)) + R_{\delta_n(\hat{P}_0)} (P_n^*, P_0)$$

$$= \delta_n(\hat{P}_0)^{-\gamma(\hat{P}_0)} (P_n - P_0) Z_n(P_n^*) + R_{\delta_n(\hat{P}_0)} (P_n^*, P_0),$$

where I define $Z_n(P) = \delta_n(\hat{P_0})^{\gamma(\hat{P_0})} D_{\delta_n(\hat{P_0})}^*(P)$.

Assume that

- 1. $P_0\left(Z_n(P_n^*)-Z_\infty(\hat{P}_0)\right)^2\to 0$ for a $Z_\infty(\hat{P}_0)$ such that $\hat{P}_0Z_\infty(\hat{P}_0)^2<\infty$,
- 2. $Z_n(P_n^*)$ falls in a P_0 -Donsker class \mathcal{F} with probability tending to one,

3.
$$R_{\delta_n}(P_n^*, P_0) = o_P(\delta_n(\hat{P}_0)^{-\gamma(\hat{P}_0)}/\sqrt{n}) = o_P\left(n^{-\frac{1-\beta(\hat{P}_0)}{2(\gamma+1-\beta(\hat{P}_0))}}\right).$$

From (1) and (2) above, by equicontinuity of the empirical process on \mathcal{F} , $(P_n - P_0)(Z_n(P_n^*) - Z_{\infty}(\hat{P}_0)) = o_P(1/\sqrt{n})$.

Therefore

$$\Psi_{\delta_n}(P_n^*) - \Psi_{\delta_n}(P_0) = n^{\frac{\gamma(\hat{P_0})}{2(\gamma + 1 - \beta(\hat{P_0}))}} P_n\left(Z_{\infty}(\hat{P_0}) - P_0 Z_{\infty}(\hat{P_0})\right) + o_P\left(n^{-\frac{1 - \beta(\hat{P_0})}{2(\gamma(\hat{P_0}) + 1 - \beta(\hat{P_0}))}}\right),$$

and thus

$$n^{\frac{1-\beta(\hat{P}_0)}{2(\gamma(\hat{P}_0)+1-\beta(\hat{P}_0))}} \left(\Psi_{\delta_n}(P_n^*) - \Psi_{\delta_n}(P_0)\right) \xrightarrow{d} \mathcal{N}\left(0, P_0\left(Z_{\infty}(\hat{P}_0) - P_0Z_{\infty}(\hat{P}_0)\right)^2\right).$$