## **Signal Basics**

Digital Signal Processing

January 16, 2025



## **Review: Discrete-Time Signals**

## A discrete-time signal is a function

$$x: \mathbb{Z} \to B$$
,

for some output set B (typically  $B = \mathbb{R}$  or  $B = \mathbb{C}$ ).

Equivalently, x is a sequence

$$x[n] \in B, \quad -\infty \le n \le \infty.$$

## Sampled Continuous Signals

Discrete-time signals often come from continuous signals:



Here,  $T \in \mathbb{R}$  is the sampling period, T = (1/25)s = 0.04s

$$T = (1/25)s = 0.04s$$

and  $\frac{1}{T}$  is the **sampling frequency**.  $\frac{1}{T} = 25 Hz$ 

$$\frac{1}{T} = 25$$
Hz

## **Unit Sample Function**



Also known as the unit impulse function.

## **Shifting the Unit Impulse**

For any integer k,

$$\delta[n-k] = \begin{cases} 1, & n-k=0, \\ 0, & n-k \neq 0. \end{cases}$$

Or, in other words,

$$\delta[n-k] = \begin{cases} 1, & n=k, \\ 0, & n \neq k. \end{cases}$$

# **Shifting the Unit Impulse**



$$\delta[n-4] = \begin{cases} 1, & n=4, \\ 0, & n \neq 4. \end{cases}$$

# **Shifting the Unit Impulse**



$$\delta[n+3] = \begin{cases} 1, & n = -3, \\ 0, & n \neq -3, \end{cases}$$

## Scaling and Adding Shifted Impulses

We can scale and add shifted impulses to construct signals:



$$x[n] = 2\delta[n+4] - 3\delta[n+1] + \delta[n] - \delta[n-3]$$

# **Scaling and Adding Impulses**

In fact, any sequence, x[n], can be written as a sum of scaled, shifted impulses:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k].$$

## **Unit Step Function**



$$u[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0. \end{cases}$$

## Relationship Between Step and Impulse



$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

Discrete analogy to integration

## Relationship Between Step and Impulse



$$\delta[n] = u[n] - u[n-1]$$

Discrete analogy to differentiation

## A real exponential sequence is of the form

$$x[n] = A\alpha^n,$$

for constants  $A \in \mathbb{R}$  and  $\alpha \in \mathbb{R}$ .

When  $0 < \alpha < 1$ , we get exponential **decay**:



$$x[n] = 0.5^n$$

When  $\alpha > 1$ , we get exponential **growth**:



$$x[n] = 2^n$$

Note: taking reciprocal of  $\alpha$  is equivalent to time-reversal:

Let 
$$x[n] = \alpha^n$$
, then

$$x[-n] = \alpha^{-n} = (\alpha^{-1})^n = \left(\frac{1}{\alpha}\right)^n$$

When  $\alpha < 0$ , we get exponential **oscillation**:



$$x[n] = (-0.5)^n$$

Note: time shift is equivalent to multiplication:

Let 
$$x[n] = \alpha^n$$
, then

$$x[n-k] = \alpha^{n-k} = \alpha^n \alpha^{-k} = \alpha^{-k} x[n]$$

## **Remember the Cosine Function**



$$x(t) = \cos(t)$$

## **Remember the Cosine Function**



$$x(t) = \cos(2t)$$

## **Remember the Cosine Function**



$$x(t) = \cos(3t)$$

## Frequency

$$x(t) = \cos(\omega_0 t)$$

The **frequency**,  $\omega_0$ , is the number of times the cosine wave repeats in the interval  $[0, 2\pi]$ .

The **period**,  $T_0 = \frac{2\pi}{\omega_0}$ , is the length of time the cosine wave takes to repeat, i.e., the time interval between two consecutive peaks.

## **General Continuous Sinusoid**



$$A=2, \quad \omega_0=4\pi, \quad \phi=\pi$$

$$x(t) = A\cos(\omega_0 t + \phi)$$

A: amplitude

 $\omega_0$  : frequency

 $\phi$ : phase

## **Discrete-Time Sinusoidal Function**

## Discrete-time sinusoid is just a sampled continuous sinusoid



$$A = 2$$
,  $\omega_0 = \frac{4\pi}{25}$ ,  $\phi = 25\pi$ 

$$x[n] = A\cos(\omega_0 n + \phi)$$

A: amplitude

 $\omega_0$ : frequency

 $\phi$ : phase

# **Periodic Discrete-Time Signals**

## **Definition**

A signal, x[n], is said to be **periodic** if for some integer N > 0,

$$x[n] = x[n+N],$$

for all  $n \in \mathbb{Z}$ .

# **Periodicity of Sinusoids**

If 
$$x[n] = x[n+N]$$
 for a sinusoid, then

$$A\cos(\omega_0 n + \phi) = A\cos(\omega_0 (n+N) + \omega_0 N + \phi)$$
$$= A\cos(\omega_0 n + \omega_0 N + \phi)$$

This will only be true when

$$\omega_0 N = 2\pi k$$
, for some integer  $k$ .

So,  $\omega_0=2\pi\frac{k}{N}$  must be  $2\pi$  times a rational number.

## Periodic or Aperiodic?

$$x[n] = \cos(n)$$

## Not periodic!



## Periodic or Aperiodic?

$$x[n] = \cos\left(\frac{n\pi}{10}\right)$$

#### Periodic!



## Computing the Period of a Sinusoid

To get the period, N, write the frequency as

$$\omega_0 = 2\pi \frac{k}{N},$$

where  $\frac{k}{N}$  is a *simplified* fraction.

For the previous example:

$$\omega_0 = \frac{\pi}{10} = 2\pi \frac{1}{20},$$

so N = 20.

# **Weirdness with Discrete-Time Periodicity**



# Continuous Versions of These Cosine Waves



# **Energy of a Signal**

#### **Definition**

The **energy** of a signal, x[n], is defined as

$$E_x = \sum_{n = -\infty}^{\infty} |x[n]|^2.$$

# Power of a Signal

#### **Definition**

The **power** of a signal, x[n], is defined as

$$P_x = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2.$$

If x[n] is periodic, with period N, then

$$P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2.$$