Organismo Público Descentralizado Federal

ALGEBRA LINEAL CENTRO DE ENSEÑANZA TECNICA INDUSTRIAL

ACADEMIA DE MATEMATICAS INGENIERIA AGO-DIC 2021

SEGUNDO PARCIAL

MODELO A

-		 	• •	
Fech	na:	1	1	

		recha: / /
Reg	Nombre del Alumno:	
Nombre del	Maestro ALBERTO HUERTA DIAZ	Salón:

INSTRUCCIONES CADA PROBLEMA TIENE UN VALOR DE 10 PUNTOS. TIEMPO DE RESOLUCION: 90 MINUTOS.

1.- Sean
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix}$$
 $y D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ matrices de 3x3. Obtenga AD

y DA. ¿Se cumple que AD = DA? Justifique su respuesta.

Respuesta: AD =DA =

2.- Sean $A = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$ y $C = \begin{bmatrix} 2 & 5 \\ -1 & 2 \end{bmatrix}$ matrices de 2x2. Determine, si existe, una matriz B tal que AB = C. Si existe, obténgala.

Respuesta: B =

3.- Resuelva para la matriz X, suponiendo las dimensiones adecuadas de las matrices y la existencia de inversas necesarias:

a).-
$$A(B + X) = D + C$$

Respuesta:
$$X =$$

b).-
$$A^t A(X + D) = AB$$
 Respuesta: $X =$

Respuesta:
$$X =$$

4.- Obtenga la matriz inversa de las matrices de 2x2 siguientes:

a).-
$$A = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$$
 Respuesta: $A^{-1} =$

b).-
$$B = \begin{bmatrix} 2 & 5 \\ -1 & 2 \end{bmatrix}$$
 Respuesta: $B^{-1} =$

5.- Determine si la siguiente matriz de 3x3 tienen inversa (calcule el determinante y concluya). Si la inversa existe, utilizando el método de matriz adjunta (por cofactores), obténgala:

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & -3 & 1 \\ 2 & -1 & 0 \end{bmatrix}$$
 Respuesta: det $A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & -3 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

$$A^{-1} =$$

6.- Sea
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 una matriz de 3x3 tal que det $A = 5$ a).- ¿Cuánto vale det $6A$? Respuesta: det $6A = 6$

Respuesta:
$$\det 6A =$$

b).- ¿Cuánto vale det
$$(3 A^4)$$
? Respuesta: det $(3 A^4)$ =

Respuesta:
$$det(3 A^4) =$$

c).- ¿Cuánto vale
$$\det \begin{bmatrix} a & b & c \\ 2d & 2e & 2f \\ 3g & 3h & 3i \end{bmatrix}$$
? Respuesta:

7.- Usando la regla de Cramer, resuelva los siguientes sistemas de ecuaciones:

a).-
$$\begin{cases} 4x_1 + x_2 = 6 \\ 5x_1 + 2x_2 = 7 \end{cases}$$
 Respuesta: $x_1 =$, $x_2 =$

b).-
$$\begin{cases} x_1 + 2x_2 - x_3 = 2\\ 2x_1 + 5x_2 + 2x_3 = -1\\ 7x_1 + 17x_2 + 6x_3 = -1 \end{cases}$$

Respuesta:
$$x_1 = , x_2 = , x_3 =$$

8.- a).- Obtenga el área del triángulo determinado por los puntos A(1,5), B(4,1) y C(8,3).

b).- Encuentre el área del paralelogramo cuyos vértices son A(0,0), B(-1,3),C(4,-5) y D(3,-2).Sugerencia: grafique los puntos.

9.- Determine los valores de x para los cuales los siguientes determinantes son cero:

a).-
$$\begin{vmatrix} x & x-1 \\ x+1 & x-3 \end{vmatrix}$$

Respuesta: x =

b).-
$$\begin{vmatrix} x & x & 9 \\ 2 & x & x \\ 0 & 1 & 1 \end{vmatrix}$$

Respuesta: x =

10.- Encuentre el volumen de los paralelepípedos determinados por el punto inicial A(1,1,0) y los vértices adyacentes:

a).-
$$B(3,5,2)$$
, $C(1,-3,8)$ y $D(2,-4,9)$ Respuesta: Volumen =