Standardisierte kompetenzorientierte schriftliche Reifeprüfung/Reife- und Diplomprüfung

Formelsammlung

Mathematik (AHS) Angewandte Mathematik (BHS) Berufsreifeprüfung Mathematik

Inhaltsverzeichnis

Kapitel		Seite
1	Mengen	3
2	Vorsilben	3
3	Potenzen	3
4	Logarithmen	4
5	Quadratische Gleichungen	4
6	Ebene Figuren	5
7	Körper	6
8	Trigonometrie	7
9	Komplexe Zahlen	8
10	Vektoren	8
11	Geraden	9
12	Matrizen	10
13	Folgen und Reihen	11
14	Änderungsmaße	11
15	Wachstums- und Abnahmeprozesse	12
16	Ableitung und Integral	13
17	Differenzialgleichungen 1. Ordnung	14
18	Statistik	15
19	Wahrscheinlichkeit	16
20	Lineare Regression	18
21	Finanzmathematik	19
22	Investitionsrechnung	20
23	Kosten- und Preistheorie	21
24	Technisch-naturwissenschaftliche Grundlagen	22
	Index	23

1 Mengen

\in	ist Element von
∉	ist nicht Element von
\cap	Durchschnitt(smenge)
U	Vereinigung(smenge)
C	echte Teilmenge
\subseteq	Teilmenge
\	Differenzmenge ("ohne")
{ }	leere Menge

Zahlenmengen

$\mathbb{N} = \{0, 1, 2,\}$	natürliche Zahlen
\mathbb{Z}	ganze Zahlen
$\mathbb Q$	rationale Zahlen
\mathbb{R}	reelle Zahlen
\mathbb{C}	komplexe Zahlen
$\mathbb{R}^{\scriptscriptstyle +}$ bzw. $\mathbb{R}^{\scriptscriptstyle -}$	positive bzw. negative reelle Zahlen
\mathbb{R}_0^+ bzw. \mathbb{R}_0^-	positive bzw. negative reelle Zahlen mit Null

2 Vorsilben

Tera-	Τ	10 ¹²	Dezi-	d	10 ⁻¹
Giga-	G	10 ⁹	Zenti-	С	10^{-2}
Mega-	М	10 ⁶	Milli-	m	10 ⁻³
Kilo-	k	10 ³	Mikro-	μ	10 ⁻⁶
Hekto-	h	10 ²	Nano-	n	10 ⁻⁹
Deka-	da	10 ¹	Pico-	р	10^{-12}

3 Potenzen

Potenzen mit ganzzahligen Exponenten

 $a \in \mathbb{R}; n \in \mathbb{N} \setminus \{0\}$ $a \in \mathbb{R} \setminus \{0\}; n \in \mathbb{N} \setminus \{0\}$

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ Faktoren}}$$
 $a^1 = a$ $a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$ $a^{-1} = \frac{1}{a}$ $a^0 = 1$

Potenzen mit rationalen Exponenten (Wurzeln)

 $a, b \in \mathbb{R}_0^+$; $n, k \in \mathbb{N} \setminus \{0\}$ mit $n \ge 2$

 $a = \sqrt[n]{b} \iff a^n = b$ $a^{\frac{1}{n}} = \sqrt[n]{a}$ $a^{\frac{k}{n}} = \sqrt[n]{a^k}$ $a^{-\frac{k}{n}} = \frac{1}{\sqrt[n]{a^k}}$ mit a > 0

Rechenregeln

$$a, b \in \mathbb{R} \setminus \{0\}; r, s \in \mathbb{Z}$$

bzw. $a, b \in \mathbb{R}^+; r, s \in \mathbb{Q}$

$$a, b \in \mathbb{R}_0^+; m, n, k \in \mathbb{N} \setminus \{0\} \quad \text{mit} \quad m, n \ge 2$$

$$a^r \cdot a^s = a^{r+s}$$

$$\frac{a^r}{a^s} = a^{r-s}$$

$$(a^r)^s = a^{r \cdot s}$$

$$(a \cdot b)^r = a^r \cdot b^r$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{a^k} = (\sqrt[n]{a})^k$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \ (b \neq 0)$$

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n \cdot m]{a}$$

Binomische Formeln

$$a, b \in \mathbb{R}; n \in \mathbb{N}$$

$$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

$$(a - b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

$$(a + b) \cdot (a - b) = a^2 - b^2$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$$

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot a^{n-k} \cdot b^{k}$$
$$(a-b)^{n} = \sum_{k=0}^{n} (-1)^{k} \cdot \binom{n}{k} \cdot a^{n-k} \cdot b^{k}$$

4 Logarithmen

$a, b, c \in \mathbb{R}^+$ mit $a \neq 1; x, r \in \mathbb{R}$

$$x = \log_{a}(b) \Leftrightarrow a^{x} = b$$

$$\log_a(b \cdot c) = \log_a(b) + \log_a(c) \qquad \log_a\left(\frac{b}{c}\right) = \log_a(b) - \log_a(c) \qquad \log_a(b') = r \cdot \log_a(b)$$

$$\log_a(a^x) = x \qquad \log_a(a) = 1 \qquad \log_a(1) = 0 \qquad \log_a\left(\frac{1}{a}\right) = -1 \qquad a^{\log_a(b)} = b$$

$$g_a\left(\frac{b}{c}\right) = \log_a(b) - \log_a(c)$$

$$\log_a\left(\frac{1}{a}\right) = -$$

$$\log_a(b^r) = r \cdot \log_a(b)$$

$$g_a\left(\frac{1}{a}\right) = -1$$

$$a^{\log_a(b)} = b$$

natürlicher Logarithmus (Logarithmus zur Basis e): $ln(b) = log_e(b)$ dekadischer Logarithmus (Logarithmus zur Basis 10): $lg(b) = log_{10}(b)$

5 Quadratische Gleichungen

$p, q \in \mathbb{R}$

$$a, b, c \in \mathbb{R}$$
 mit $a \neq 0$

$$x^{2} + p \cdot x + q = 0$$
$$X_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

$$a \cdot x^2 + b \cdot x + c = 0$$
$$X_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Satz von Vieta

 x_1 und x_2 sind genau dann die Lösungen der Gleichung $x^2 + p \cdot x + q = 0$, wenn gilt:

$$X_1 + X_2 = -p$$

$$X_1 \cdot X_2 = q$$

Zerlegung in Linearfaktoren

$$x^{2} + p \cdot x + q = (x - x_{1}) \cdot (x - x_{2})$$

6 Ebene Figuren

A ... Flächeninhalt

u ... Umfang

Dreieck

Allgemeines Dreieck

Heron'sche Flächenformel

$$A = \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)} \text{ mit } s = \frac{a + b + c}{2}$$

Rechtwinkeliges Dreieck mit Hypotenuse c und Katheten a, b

$$A = \frac{a \cdot b}{2} = \frac{c \cdot h_c}{2}$$

$$h_c^2 = p \cdot q$$

$$a^2 = c \cdot p$$

$$b^2 = c \cdot q$$

Satz des Pythagoras

$$a^2 + b^2 = c^2$$

Ähnlichkeit und Strahlensatz

$$\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$$

Gleichseitiges Dreieck

$$A = \frac{a^2}{4} \cdot \sqrt{3} = \frac{a \cdot h}{2}$$

$$h = \frac{a}{2} \cdot \sqrt{3}$$

Viereck

Quadrat

$$A = a^2$$

$$u = 4 \cdot a$$

Rechteck

$$A = a \cdot b$$

$$u = 2 \cdot a + 2 \cdot b$$

Raute (Rhombus)

$$A = a \cdot h_a = \frac{e \cdot f}{2}$$

$$u = 4 \cdot a$$

Parallelogramm

$$A = a \cdot h_a = b \cdot h_b$$

$$u = 2 \cdot a + 2 \cdot b$$

Trapez

$$A = \frac{(a+c) \cdot h}{2}$$

$$u = a + b + c + d$$

Deltoid

$$A = \frac{e \cdot f}{2}$$

$$u = 2 \cdot a + 2 \cdot b$$

Kreis

$$A = \pi \cdot r^2 = \frac{\pi \cdot d^2}{4}$$
$$u = 2 \cdot \pi \cdot r = \pi \cdot d$$

Kreisbogen und Kreissektor

α im Gradmaß (°)

$$b = \pi \cdot r \cdot \frac{\alpha}{180^{\circ}}$$
$$A = \pi \cdot r^{2} \cdot \frac{\alpha}{360^{\circ}} = \frac{b \cdot r}{2}$$

7 Körper

- V... Volumen
- O ... Inhalt der Oberfläche
- G... Inhalt der Grundfläche

M ... Inhalt der Mantelfläche

u_G ... Umfang der Grundfläche

Prisma

$$V = G \cdot h$$

$$M = u_{\rm G} \cdot h$$

$$O = 2 \cdot G + M$$

Drehzylinder

$$V = \pi \cdot r^2 \cdot h$$

$$M = 2 \cdot \pi \cdot r \cdot h$$

$$O = 2 \cdot \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot h$$

Quader

$$V = a \cdot b \cdot c$$

$$O = 2 \cdot (a \cdot b + a \cdot c + b \cdot c)$$

Würfel

$$V = a^3$$

$$O=6\cdot a^2$$

Pyramide

$$V = \frac{G \cdot h}{3}$$

$$O = G + M$$

Drehkegel

$$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h$$

$$M = \pi \cdot r \cdot s$$

$$O = \pi \cdot r^2 + \pi \cdot r \cdot s$$

$$s = \sqrt{h^2 + r^2}$$

Kugel

$$V = \frac{4}{3} \cdot \pi \cdot r^3$$

$$O = 4 \cdot \pi \cdot r^2$$

8 Trigonometrie

Umrechnung zwischen Gradmaß und Bogenmaß

Trigonometrie im rechtwinkeligen Dreieck

Sinus:
$$sin(\alpha) = \frac{Gegenkathete \ von \ \alpha}{Hypotenuse}$$

Cosinus:
$$cos(\alpha) = \frac{Ankathete von \alpha}{Hypotenuse}$$

Tangens:
$$tan(\alpha) = \frac{Gegenkathete von \alpha}{Ankathete von \alpha}$$

Trigonometrie im Einheitskreis

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \quad \text{für} \quad \cos(\alpha) \neq 0$$

Trigonometrie im allgemeinen Dreieck

Sinussatz:
$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

Cosinussatz:
$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos(\alpha)$$

 $b^2 = a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos(\beta)$
 $c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\gamma)$

Trigonometrische Flächenformel:

$$A = \frac{1}{2} \cdot b \cdot c \cdot \sin(\alpha) = \frac{1}{2} \cdot a \cdot c \cdot \sin(\beta) = \frac{1}{2} \cdot a \cdot b \cdot \sin(\gamma)$$

Allgemeine Sinusfunktion (in Abhängigkeit von der Zeit t)

- A ... Amplitude
- $\omega \dots$ Kreisfrequenz
- ϕ ... Nullphasenwinkel

- T... Schwingungsdauer (Periodendauer)
- f ... Frequenz

9 Komplexe Zahlen

j bzw. i ... imaginäre Einheit mit j $^2=-1$ bzw. i $^2=-1$ a ... Realteil, $a\in\mathbb{R}$ r ... Betrag, $r\in\mathbb{R}^+_0$ b ... Imaginärteil, $b\in\mathbb{R}$ φ ... Argument, $\varphi\in\mathbb{R}$

Komponentenform

$$z = a + b \cdot j$$

Polarformen

$$z = r \cdot [\cos(\varphi) + j \cdot \sin(\varphi)] = r \cdot e^{j \cdot \varphi} = (r; \varphi) = r /\varphi$$

Umrechnungen

$$a = r \cdot \cos(\varphi)$$
 $r = \sqrt{a^2 + b^2}$
 $b = r \cdot \sin(\varphi)$ $\tan(\varphi) = \frac{b}{a}$

10 Vektoren

P, Q ... Punkte

Vektoren in ℝ²

Pfeil von P nach Q:

$$P = (p_1 | p_2), Q = (q_1 | q_2)$$

$$\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix}$$

Rechenregeln in \mathbb{R}^2

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \end{pmatrix}$$

$$k \cdot \overrightarrow{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \end{pmatrix}$$
 mit $k \in \mathbb{R}$

Skalarprodukt in \mathbb{R}^2

$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2$$

Betrag (Länge) eines Vektors in \mathbb{R}^2 $|\vec{a}| = \sqrt{a_1^2 + a_2^2}$

Normalvektoren
$$\vec{n}$$
 zu $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ in \mathbb{R}^2 $\vec{n} = k \cdot \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$ für $|\vec{a}| \neq 0$ und $k \in \mathbb{R} \setminus \{0\}$

Vektoren in \mathbb{R}^n

Pfeil von P nach Q:

$$P = (p_1 | p_2 | ... | p_n), Q = (q_1 | q_2 | ... | q_n)$$

$$\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \\ \vdots \\ q_n - p_n \end{pmatrix}$$

Rechenregeln in \mathbb{R}^n

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ \vdots \\ a_n \pm b_n \end{pmatrix}$$

$$k \cdot \vec{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \\ \vdots \\ k \cdot a_n \end{pmatrix} \quad \text{mit} \quad k \in \mathbb{R}$$

Skalarprodukt in \mathbb{R}^n

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$$

Betrag (Länge) eines Vektors in \mathbb{R}^n

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

Orthogonalitätskriterium in \mathbb{R}^2 und \mathbb{R}^3

$$\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b} \text{ für } |\vec{a}| \neq 0 \text{ und } |\vec{b}| \neq 0$$

Parallelitätskriterium in \mathbb{R}^2 und \mathbb{R}^3

$$\vec{a} \parallel \vec{b} \iff \vec{a} = k \cdot \vec{b} \text{ für } |\vec{a}| \neq 0, |\vec{b}| \neq 0 \text{ und } k \in \mathbb{R} \setminus \{0\}$$

Winkel φ zwischen \vec{a} und \vec{b} in \mathbb{R}^2 und \mathbb{R}^3

$$cos(\varphi) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$
 für $|\overrightarrow{a}| \neq 0$ und $|\overrightarrow{b}| \neq 0$

Einheitsvektor \vec{a}_0 in Richtung \vec{a}

$$\vec{a}_0 = \frac{1}{|\vec{a}|} \cdot \vec{a}$$
 für $|\vec{a}| \neq 0$

Vektorprodukt in \mathbb{R}^3

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - a_1 \cdot b_3 \\ a_1 \cdot b_2 - a_2 \cdot b_1 \end{pmatrix}$$

11 Geraden

g ... Gerade \overrightarrow{g} ... ein Richtungsvektor der Geraden g ... ein Normalvektor der Geraden g ... Punkte auf der Geraden g ... Steigung der Geraden g ... Steigungswinkel der Geraden g a, b, c, k, $d \in \mathbb{R}$

Parameterdarstellung einer Geraden g in \mathbb{R}^2 und \mathbb{R}^3

$$g: X = P + t \cdot \overrightarrow{g}$$
 mit $t \in \mathbb{R}$

Gleichung einer Geraden g in \mathbb{R}^2

explizite Form der Geradengleichung: $g: y = k \cdot x + d$ dabei gilt $k = \tan(\alpha)$ allgemeine Geradengleichung: $g: a \cdot x + b \cdot y = c$ Normalvektordarstellung: $g: \vec{n} \cdot X = \vec{n} \cdot P$ dabei gilt $\vec{n} \parallel \begin{pmatrix} a \\ b \end{pmatrix}$ für $\begin{pmatrix} a \\ b \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

12 Matrizen

 $a_{ii}, b_{ii} \in \mathbb{R}; i, j, m, n, p \in \mathbb{N} \setminus \{0\}; k \in \mathbb{R}$

Addition/Subtraktion von Matrizen

$$\begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \cdots a_{mn} \end{pmatrix} \pm \begin{pmatrix} b_{11} \cdots b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} \cdots b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} \pm b_{11} & \dots & a_{1n} \pm b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \pm b_{m1} & \dots & a_{mn} \pm b_{mn} \end{pmatrix}$$

$$k \cdot \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} k \cdot a_{11} & \dots & k \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ k \cdot a_{m1} & \dots & k \cdot a_{mn} \end{pmatrix}$$

Multiplikation einer Matrix mit einer Zahl k

$$k \cdot \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} k \cdot a_{11} \cdots k \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ k \cdot a_{m1} \cdots k \cdot a_{mn} \end{pmatrix}$$

Multiplikation von Matrizen

$$\mathbf{A} \dots m \times p$$
-Matrix

$$\boldsymbol{B} \dots p \times n$$
-Matrix

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} \dots m \times n$$
-Matrix

Einheitsmatrix *E*

Transponierte Matrix A^{T}

Inverse Matrix A⁻¹ einer quadratischen Matrix A

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{E}$$

$$\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{E}$$

Lineare Gleichungssysteme in Matrizenschreibweise (n Gleichungen in n Variablen)

$$a_{11} \cdot X_1 + a_{12} \cdot X_2 + \dots + a_{1n} \cdot X_n = b_1$$

$$a_{21} \cdot X_1 + a_{22} \cdot X_2 + \dots + a_{2n} \cdot X_n = b_2$$

$$\dots$$

$$a_{n1} \cdot X_1 + a_{n2} \cdot X_2 + \dots + a_{nn} \cdot X_n = b_n$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\overrightarrow{A} \qquad \cdot \overrightarrow{X} = \overrightarrow{b}$$

Wenn die inverse Matrix \mathbf{A}^{-1} existiert, dann gilt: $\overrightarrow{x} = \mathbf{A}^{-1} \cdot \overrightarrow{b}$

Produktionsprozesse

A ... quadratische Verflechtungsmatrix \vec{x} ... Produktionsvektor

E ... Einheitsmatrix *n* ... Nachfragevektor

$$\overrightarrow{x} = A \cdot \overrightarrow{x} + \overrightarrow{n}$$

$$\overrightarrow{\mathbf{x}} = (\mathbf{E} - \mathbf{A})^{-1} \cdot \overrightarrow{\mathbf{n}}$$

$$\overrightarrow{n} = (E - A) \cdot \overrightarrow{x}$$

13 Folgen und Reihen

Arithmetische Folge

$$(a_n) = (a_1, a_2, a_3, ...)$$

$$d = a_{n+1} - a_n$$

Rekursives Bildungsgesetz

$$a_{n+1} = a_n + d$$
 und Angabe von a_1

Explizites Bildungsgesetz

$$a_n = a_1 + (n - 1) \cdot d$$

Endliche arithmetische Reihe

Summe s, der ersten n Glieder

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_{n-1} + a_n$$

$$S_n = \frac{n}{2} \cdot (a_1 + a_n) = \frac{n}{2} \cdot [2 \cdot a_1 + (n-1) \cdot d]$$

Geometrische Folge

$$(b_n) = (b_1, b_2, b_3, ...)$$

$$q = \frac{b_{n+1}}{b_n}$$

Rekursives Bildungsgesetz

$$b_{n+1} = b_n \cdot q$$
 und Angabe von b_1

Explizites Bildungsgesetz

$$b_n = b_1 \cdot q^{n-1}$$

Endliche geometrische Reihe

Summe s, der ersten n Glieder

$$S_n = \sum_{i=1}^n b_i = b_1 + b_2 + \dots + b_{n-1} + b_n$$

$$s_n = b_1 \cdot \frac{q^n - 1}{q - 1}$$
 für $q \neq 1$

Unendliche geometrische Reihe

 $\sum_{n=1}^{\infty} b_n \text{ ist genau dann konvergent,}$ wenn |q| < 1

wenn
$$|q| < 1$$

$$s = \lim_{n \to \infty} s_n = \frac{b_1}{1 - q} \quad \text{für} \quad |q| < 1$$

14 Änderungsmaße

Für eine auf einem Intervall [a; b] definierte reelle Funktion f gilt:

Absolute Änderung von f in [a; b]

$$f(b) - f(a)$$

Relative (prozentuelle) Änderung von f in [a; b]

$$\frac{f(b) - f(a)}{f(a)} \quad \text{für} \quad f(a) \neq 0$$

Differenzenquotient (mittlere Änderungsrate) von f in [a; b] bzw. in $[x; x + \Delta x]$

$$\frac{f(b) - f(a)}{b - a}$$
 bzw. $\frac{f(x + \Delta x) - f(x)}{\Delta x}$ für $b \neq a$ bzw. $\Delta x \neq 0$

Differenzialquotient (lokale bzw. "momentane" Änderungsrate) von f an der Stelle x

$$f'(x) = \lim_{x_1 \to x} \frac{f(x_1) - f(x)}{x_1 - x}$$
 bzw. $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

15 Wachstums- und Abnahmeprozesse

t ... Zeit

N(t) ... Bestand zur Zeit t

 $N_0 = N(0)$... Bestand zur Zeit t = 0

Linear

 $k \in \mathbb{R}^{+}$

lineares Wachstum	$N(t) = N_0 + k \cdot t$
-------------------	--------------------------

lineare Abnahme
$$N(t) = N_0 - k \cdot t$$

Exponentiell

 $a, \lambda \in \mathbb{R}^+$ mit $a \neq 1$ und $N_0 > 0$

a ... Änderungsfaktor

exponentielles Wachstum $N(t) = N_0 \cdot a^t$ $N(t) = N_0 \cdot e^{A \cdot t}$	exponentielles Wachstum	$\mathcal{N}(t) = \mathcal{N}_{0} \cdot a^{t}$	$\mathcal{N}(t) = \mathcal{N}_0 \cdot e^{\lambda \cdot t}$
---	-------------------------	--	--

für a > 1

exponentielle Abnahme $N(t) = N_0 \cdot a^t$ $N(t) = N_0 \cdot e^{-\lambda \cdot t}$

für 0 < a < 1

Beschränkt

 $S, a, \lambda \in \mathbb{R}^+ \text{ mit } 0 < a < 1$

S... Sättigungswert, Kapazitätsgrenze

beschränktes Wachstum	$N(t) = S - b \cdot a^t$	$N(t) = S - b \cdot e^{-\lambda}$
(Sättigungsfunktion)	mit $b = S - N_0$	mit $b = S - N_0$

beschränkte Abnahme $N(t) = S + b \cdot a^t$ $N(t) = S + b \cdot e^{-\lambda \cdot t}$ (Abklingfunktion) mit $b = |S - N_0|$ mit $b = |S - N_0|$

Logistisch

 $S, a, \lambda \in \mathbb{R}^+ \text{ mit } 0 < a < 1 \text{ und } N_0 > 0$

S... Sättigungswert, Kapazitätsgrenze

logistisches Wachstum $N(t) = \frac{S}{1 + c \cdot a^t}$ $N(t) = \frac{S}{1 + c \cdot e^{-\lambda \cdot t}}$

 $mit c = \frac{S - N_0}{N_0} \qquad mit c = \frac{S - N_0}{N_0}$

12

16 Ableitung und Integral

 $f,g,h\dots$ auf ganz $\mathbb R$ oder einem Intervall definierte differenzierbare Funktionen $f',g',h'\dots$ Ableitungsfunktionen $F,G,H\dots$ Stammfunktionen

 $C, k, q \in \mathbb{R}; a \in \mathbb{R}^+ \setminus \{1\}$

Unbestimmtes Integral

$$\int f(x) \, dx = F(x) + C \quad \text{mit} \quad F' = f$$

Bestimmtes Integral

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

Funktion	Ableitungsfunktion	Stammfunktion
f(x) = k	f'(x) = 0	$F(x) = k \cdot x$
$f(x) = x^q$	$f'(x) = q \cdot x^{q-1}$	$F(x) = \frac{x^{q+1}}{q+1} \text{für} q \neq -1$ $F(x) = \ln(x) \text{für} q = -1$
$f(x) = e^x$	$f'(x) = e^x$	$F(x) = e^x$
$f(x) = a^x$	$f'(x) = \ln(a) \cdot a^x$	$F(x) = \frac{a^x}{\ln(a)}$
$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$	$F(x) = x \cdot \ln(x) - x$
$f(x) = \log_a(x)$	$f'(x) = \frac{1}{x \cdot \ln(a)}$	$F(x) = \frac{1}{\ln(a)} \cdot (x \cdot \ln(x) - x)$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	$F(x) = -\cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	$F(x) = \sin(x)$
$f(x) = \tan(x)$	$f'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$F(x) = -\ln(\cos(x))$
$g(x) = k \cdot f(x)$	$g'(x) = k \cdot f'(x)$	$G(x) = k \cdot F(x)$
$h(x) = f(x) \pm g(x)$	$h'(x) = f'(x) \pm g'(x)$	$H(x) = F(x) \pm G(x)$
$g(x) = f(k \cdot x)$	$g'(x) = k \cdot f'(k \cdot x)$	$G(x) = \frac{1}{k} \cdot F(k \cdot x)$

Ableitungsregeln

Faktorregel	$(k \cdot f)' = k \cdot f'$
Summenregel	$(f \pm g)' = f' \pm g'$
Produktregel	$(f \cdot g)' = f' \cdot g + f \cdot g'$
Quotientenregel	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$ für $g(x) \neq 0$
Kettenregel	$h(x) = f(g(x)) \Rightarrow h'(x) = f'(g(x)) \cdot g'(x)$

Integrationsmethode - lineare Substitution

$$\int f(a \cdot x + b) \, \mathrm{d}x = \frac{F(a \cdot x + b)}{a} + C$$

Volumen V von Rotationskörpern

Rotation des Graphen einer Funktion f mit y = f(x) um eine Koordinatenachse

Rotation um die x-Achse ($a \le x \le b$)

Rotation um die y-Achse ($c \le y \le d$) $V_x = \pi \cdot \int_a^b y^2 \, dx$ $V_y = \pi \cdot \int_c^d x^2 \, dy$

Bogenlänge s des Graphen einer Funktion f im Intervall [a; b]

$$s = \int_a^b \sqrt{1 + (f'(x))^2} \, \mathrm{d}x$$

Linearer Mittelwert *m* einer Funktion *f* im Intervall [*a*; *b*]

$$m = \frac{1}{b-a} \cdot \int_a^b f(x) \, \mathrm{d}x$$

17 Differenzialgleichungen 1. Ordnung

Differenzialgleichungen mit trennbaren Variablen

$$y' = f(x) \cdot g(y)$$
 bzw. $\frac{dy}{dx} = f(x) \cdot g(y)$ mit $y = y(x)$

Lineare Differenzialgleichung 1. Ordnung mit konstanten Koeffizienten

y ... allgemeine Lösung der inhomogenen Differenzialgleichung

 y_h ... allgemeine Lösung der homogenen Differenzialgleichung $y' + a \cdot y = 0$

 $y_{\rm p}$... partikuläre (spezielle) Lösung der inhomogenen Differenzialgleichung

s ... Störfunktion

$$y' + a \cdot y = s(x)$$
 mit $a \in \mathbb{R}$, $y = y(x)$
 $y = y_h + y_p$

18 Statistik

 x_1, x_2, \dots, x_n ... eine Liste von n reellen Zahlen

Dabei treten k verschiedene Werte x_1, x_2, \dots, x_k auf.

 H_i ... absolute Häufigkeit von X_i mit $H_1 + H_2 + ... + H_k = n$

Relative Häufigkeit h_i von x_i

$$h_i = \frac{H_i}{n}$$

Lagemaße

Arithmetisches Mittel \bar{x}

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$$

$$\overline{X} = \frac{X_1 \cdot H_1 + X_2 \cdot H_2 + \dots + X_k \cdot H_k}{n} = \frac{1}{n} \cdot \sum_{i=1}^{k} X_i \cdot H_i$$

Median \tilde{x} bei metrischen Daten

 $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)} \dots$ geordnete Liste mit n Werten

$$\tilde{X} = \begin{cases} X_{\left(\frac{n+1}{2}\right)} & \dots \text{ für } n \text{ ungerade} \\ \frac{1}{2} \cdot \left(X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}\right) \dots \text{ für } n \text{ gerade} \end{cases}$$

Quartile

 q_1 : Mindestens 25 % der Werte sind kleiner oder gleich q_1 , zugleich sind mindestens 75 % der Werte größer oder gleich q_1 .

 $q_2 = \tilde{x}$: Mindestens 50 % der Werte sind kleiner oder gleich q_2 , zugleich sind mindestens 50 % der Werte größer oder gleich q_2 .

 q_3 : Mindestens 75 % der Werte sind kleiner oder gleich q_3 , zugleich sind mindestens 25 % der Werte größer oder gleich q_3 .

Streuungsmaße

Spannweite: $X_{\text{max}} - X_{\text{min}}$

(Inter)quartilsabstand: $q_3 - q_1$

s² ... (empirische) Varianz einer Datenliste

 $s \dots$ (empirische) Standardabweichung einer Datenliste

$$S^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
$$S = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$S^{2} = \frac{1}{n} \cdot \sum_{i=1}^{k} (x_{i} - \overline{x})^{2} \cdot H_{i}$$

Geometrisches Mittel \overline{X}_{geo} $\overline{X}_{geo} = \sqrt[n]{X_1 \cdot X_2 \cdot \ldots \cdot X_n}$ für $X_i > 0$

$$s = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{k} (x_i - \overline{x})^2 \cdot H_i}$$

Wenn aus einer Stichprobe vom Umfang n die Varianz einer Grundgesamtheit geschätzt werden soll:

$$S_{n-1}^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
$$S_{n-1} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$S_{n-1}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^k (x_i - \overline{x})^2 \cdot H_i$$

$$S_{n-1} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{k} (x_i - \overline{x})^2 \cdot H_i}$$

19 Wahrscheinlichkeit

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N}$ mit $k \le n$

A, B ... Ereignisse

 \overline{A} bzw. $\neg A$... Gegenereignis von A

 $A \cap B$ bzw. $A \wedge B \dots A$ und B (sowohl das Ereignis A als auch das Ereignis B treten ein)

 $A \cup B$ bzw. $A \vee B \dots A$ oder B (mindestens eines der beiden Ereignisse A und B tritt ein)

P(A) ... Wahrscheinlichkeit für das Eintreten des Ereignisses A

P(A|B) ... Wahrscheinlichkeit für das Eintreten des Ereignisses A unter der Voraussetzung, dass das Ereignis B eingetreten ist (bedingte Wahrscheinlichkeit)

Fakultät (Faktorielle)

$$n! = n \cdot (n-1) \cdot ... \cdot 1$$
 $0! = 1$

Binomialkoeffizient

$$1! = 1 \qquad \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Wahrscheinlichkeit bei einem Laplace-Versuch

$$P(A) = \frac{\text{Anzahl der für } A \text{ günstigen Ausgänge}}{\text{Anzahl der möglichen Ausgänge}}$$

Elementare Regeln

$$P(\overline{A}) = 1 - P(A)$$

bzw.
$$P(\neg A) = 1 - P(A)$$

$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

bzw.
$$P(A \wedge B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

Wenn A und B (stochastisch) unabhängig voneinander sind:

$$P(A \cap B) = P(A) \cdot P(B)$$

bzw.
$$P(A \wedge B) = P(A) \cdot P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

bzw.
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Wenn A und B unvereinbar sind:

$$P(A \cup B) = P(A) + P(B)$$

bzw.
$$P(A \lor B) = P(A) + P(B)$$

Bedingte Wahrscheinlichkeit von A unter der Bedingung B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

bzw.
$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

Satz von Bayes

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} = \frac{P(A) \cdot P(B|A)}{P(A) \cdot P(B|A) + P(\overline{A}) \cdot P(B|\overline{A})}$$

bzw.

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} = \frac{P(A) \cdot P(B|A)}{P(A) \cdot P(B|A) + P(\neg A) \cdot P(B|\neg A)}$$

Erwartungswert μ einer diskreten Zufallsvariablen X mit den Werten $x_1, x_2, ..., x_n$

$$\mu = E(X) = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) + \dots + x_n \cdot P(X = x_n) = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$$

Varianz σ^2 einer diskreten Zufallsvariablen X mit den Werten $x_1, x_2, ..., x_n$

$$\sigma^2 = V(X) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(X = x_i)$$

Standardabweichung σ

$$\sigma = \sqrt{V(X)}$$

Binomialverteilung

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N}; p \in \mathbb{R} \text{ mit } k \leq n \text{ und } 0 \leq p \leq 1$

Zufallsvariable X ist binomialverteilt mit den Parametern n und p

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$$

Erwartungswert: $E(X) = \mu = n \cdot p$ Varianz: $V(X) = \sigma^2 = n \cdot p \cdot (1 - p)$

Normalverteilung

 $\mu, \sigma \in \mathbb{R} \text{ mit } \sigma > 0$

f ... Dichtefunktion

F... Verteilungsfunktion

 ϕ ... Dichtefunktion der Standardnormalverteilung

φ ... Verteilungsfunktion der Standardnormalverteilung

Normalverteilung $N(\mu; \sigma^2)$: Zufallsvariable X ist normalverteilt mit dem Erwartungswert μ und der Standardabweichung σ bzw. der Varianz σ^2

$$P(X \le x_1) = F(x_1) = \int_{-\infty}^{x_1} f(x) \, dx = \int_{-\infty}^{x_1} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot \left(\frac{x - \mu}{\sigma}\right)^2} \, dx$$

Wahrscheinlichkeiten für σ -Umgebungen

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0,683$$

$$P(\mu - 2 \cdot \sigma \le X \le \mu + 2 \cdot \sigma) \approx 0.954$$

$$P(\mu - 3 \cdot \sigma \le X \le \mu + 3 \cdot \sigma) \approx 0.997$$

Standardnormalverteilung N(0; 1)

$$Z = \frac{X - \mu}{\sigma}$$

$$\phi(z) = P(Z \le z) = \int_{-\infty}^{z} \varphi(x) \, \mathrm{d}x = \frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} \, \mathrm{d}x$$

$$\phi(-z) = 1 - \phi(z)$$

$$P(-z \le Z \le z) = 2 \cdot \phi(z) - 1$$

$$P(-z \le Z \le z)$$
 = 90 %
 = 95 %
 = 99 %

 z
 $\approx 1,645$
 $\approx 1,960$
 $\approx 2,576$

Zufallsstreubereich und Konfidenzintervall

 $\mu, \sigma, \alpha \in \mathbb{R}$ mit $\sigma > 0$ und $0 < \alpha < 1$

 \bar{x} ... Stichprobenmittelwert

 s_{n-1} ... Standardabweichung einer Stichprobe

n ... Stichprobenumfang

 $z_{1-\frac{\alpha}{2}}$... $\left(1-\frac{\alpha}{2}\right)$ -Quantil der Standardnormalverteilung

 $t_{f;1-\frac{\alpha}{2}}\dots\left(1-\frac{\alpha}{2}\right)$ -Quantil der t-Verteilung mit f Freiheitsgraden

Zweiseitiger $(1-\alpha)$ -Zufallsstreubereich für einen Einzelwert einer normalverteilten Zufallsvariablen

$$\left[\mu-Z_{1-\frac{\alpha}{2}}\cdot\sigma;\;\mu+Z_{1-\frac{\alpha}{2}}\cdot\sigma\right]$$

Zweiseitiger $(1 - \alpha)$ -Zufallsstreubereich für den Stichprobenmittelwert normalverteilter Werte

$$\left[\mu-Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}};\;\mu+Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\right]$$

Zweiseitiges $(1-\alpha)$ -Konfidenzintervall für den Erwartungswert einer normalverteilten Zufallsvariablen

$$\sigma$$
 bekannt: $\left[\overline{X} - Z_{1-\frac{\alpha}{2}} \cdot \frac{\mathcal{O}}{\sqrt{n}}; \overline{X} + Z_{1-\frac{\alpha}{2}} \cdot \frac{\mathcal{O}}{\sqrt{n}} \right]$

$$\sigma \text{ unbekannt: } \left[\overline{x} - t_{f; 1 - \frac{\alpha}{2}} \cdot \frac{s_{n-1}}{\sqrt{n}}; \overline{x} + t_{f; 1 - \frac{\alpha}{2}} \cdot \frac{s_{n-1}}{\sqrt{n}}\right] \quad \text{mit} \quad f = n-1$$

20 Lineare Regression

 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \dots$ Wertepaare

 \bar{x} , \bar{y} ... arithmetisches Mittel der x_i bzw. y_i

Lineare Regressionsfunktion f mit $f(x) = k \cdot x + d$

$$k = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$d = \overline{y} - k \cdot \overline{x}$$

Korrelationskoeffizient nach Pearson

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

21 Finanzmathematik

Zinsen und Zinseszinsen

K₀ ... Anfangskapital

K_n ... Endkapital nach n Jahren

i ... Jahreszinssatz

einfache Verzinsung: $K_n = K_0 \cdot (1 + i \cdot n)$

Zinseszinsen: $K_n = K_0 \cdot (1 + i)^n$

Unterjährige Verzinsung

$$K_n = K_0 \cdot (1 + i_m)^{n \cdot m}$$

$$i_m = \sqrt[m]{1+i} - 1$$
unterjähriger Zinssatz i_m

$$i_m = \sqrt[m]{1+i} - 1$$

$$aquivalente Zinssatze$$

$$i = (1+i_m)^m - 1$$
effektiver Jahreszinssatz i

Rentenrechnung

R... Ratenhöhe

n ... Anzahl der Raten

i ... Zinssatz

q = 1 + i ... Aufzinsungsfaktor

Voraussetzung: Rentenperiode = Zinsperiode

	nachschüssig	vorschüssig
Endwert <i>E</i>	$E_{\text{nach}} = R \cdot \frac{q^n - 1}{q - 1}$	$E_{\text{vor}} = R \cdot \frac{q^n - 1}{q - 1} \cdot q$
Barwert <i>B</i>	$B_{\text{nach}} = R \cdot \frac{q^n - 1}{q - 1} \cdot \frac{1}{q^n}$	$B_{\text{vor}} = R \cdot \frac{q^n - 1}{q - 1} \cdot \frac{1}{q^{n-1}}$

Tilgungsplan

Zeitabschnitt	Zinsanteil	Tilgungsanteil	Annuität	Restschuld
0				K_{0}
1	$K_0 \cdot i$	T_1	$A_1 = K_0 \cdot i + T_1$	$K_1 = K_0 - T_1$

22 Investitionsrechnung

 E_t ... Einnahmen im Jahr t

 A_t ... Ausgaben im Jahr t

A₀ ... Anschaffungskosten

R, ... Rückflüsse im Jahr t

i ... kalkulatorischer Zinssatz (Jahreszinssatz)

n ... Nutzungsdauer in Jahren

 $i_{\rm w}$... Wiederveranlagungszinssatz (Jahreszinssatz)

E... Endwert der wiederveranlagten Rückflüsse

$$R_t = E_t - A_t$$

Kapitalwert C₀

$$C_0 = -A_0 + \left[\frac{R_1}{(1+i)} + \frac{R_2}{(1+i)^2} + \dots + \frac{R_n}{(1+i)^n} \right]$$

Interner Zinssatz *i*_{intern}

$$-A_0 + \left[\frac{R_1}{(1+i_{\text{intern}})} + \frac{R_2}{(1+i_{\text{intern}})^2} + \dots + \frac{R_n}{(1+i_{\text{intern}})^n} \right] = 0$$

Modifizierter interner Zinssatz i_{mod}

$$A_0 \cdot (1 + i_{\text{mod}})^n = E$$
 mit $E = R_1 \cdot (1 + i_{\text{w}})^{n-1} + R_2 \cdot (1 + i_{\text{w}})^{n-2} + \dots + R_{n-1} \cdot (1 + i_{\text{w}}) + R_n$

23 Kosten- und Preistheorie

\boldsymbol{x} produzierte, angebotene, nachgefragte bzw. verkaufte N	Menge $(x \ge 0)$
Kostenfunktion <i>K</i>	K(x)
Fixkosten <i>F</i>	K(0)
variable Kostenfunktion $K_{\scriptscriptstyle extsf{v}}$	$K_{v}(x) = K(x) - F$
Grenzkostenfunktion <i>K'</i>	K'(x)
Stückkostenfunktion (Durchschnittskostenfunktion) \overline{K}	$\overline{K}(x) = \frac{K(x)}{x}$
variable Stückkostenfunktion (variable Durchschnittskostenfunktion) $\overline{K_{\!\scriptscriptstyle \mathrm{V}}}$	$\overline{K_{\vee}}(x) = \frac{K_{\vee}(x)}{x}$
Betriebsoptimum x _{opt}	$\overline{K}'(x_{\text{opt}}) = 0$ (Minimumstelle von \overline{K})
langfristige Preisuntergrenze (kostendeckender Preis)	$\overline{K}(x_{\mathrm{opt}})$
Betriebsminimum x _{min}	$\overline{K}_{v}'(x_{\min}) = 0$ (Minimumstelle von \overline{K}_{v})
kurzfristige Preisuntergrenze	$\overline{K}_{v}(x_{min})$
Kostenkehre	K''(x) = 0
progressiver Kostenverlauf	K''(x) > 0
degressiver Kostenverlauf	K''(x) < 0
Preis <i>p</i>	
Preisfunktion der Nachfrage (Preis-Absatz-Funktion) $ ho_{\scriptscriptstyle m N}$	$\rho_{N}(x)$
Preisfunktion des Angebots $ ho_{\scriptscriptstyle ext{A}}$	$\rho_{\scriptscriptstyle A}\!(\!x\!)$
Marktgleichgewicht	$p_{A}(x) = p_{N}(x)$
Höchstpreis	$ ho_{_{ m N}}$ (0)
Sättigungsmenge	$\rho_{N}(x) = 0$
Erlösfunktion (Umsatzfunktion) <i>E</i>	$E(x) = p \cdot x$ bzw. $E(x) = p_N(x) \cdot x$
Grenzerlösfunktion <i>E'</i>	E'(x)
Gewinnfunktion <i>G</i>	G(x) = E(x) - K(x)
Grenzgewinnfunktion G'	G'(x)
untere Gewinngrenze (Break-even-Point, Gewinnschwelle) $x_{\rm u}$ obere Gewinngrenze $x_{\rm o}$	$G(x_u) = G(x_o) = 0$ mit $x_u \le x_o$
Gewinnbereich (Gewinnzone)	$[X_{u}; X_{o}]$
	1 4 0 3

24 Technisch-naturwissenschaftliche Grundlagen

 $\varrho \dots$ Dichte $t \dots$ Zeit $m \dots$ Masse $s \dots$ Weg

 $V \dots Volumen$ $v \dots Geschwindigkeit$ $F \dots Kraft$ $a \dots Beschleunigung$

 $W \dots$ Arbeit $v_0 \dots$ Anfangsgeschwindigkeit

P... Leistung

Dichte $\varrho = \frac{m}{V}$

Kraft $F = m \cdot a$

Arbeit $W = F \cdot s$

Leistung $P = \frac{W}{t}$

Bewegungsvorgänge

Geschwindigkeit bei einer gleichförmigen geradlinigen Bewegung $v = \frac{s}{t}$

Geschwindigkeit bei einer gleichmäßig beschleunigten geradlinigen Bewegung $v = a \cdot t + v_0$

Geschwindigkeit in Abhängigkeit von der Zeit t v(t) = s'(t)

Beschleunigung in Abhängigkeit von der Zeit t a(t) = v'(t) = s''(t)

Index

A	Differenzmenge 3	Grenzgewinnfunktion 21
Abklingfunktion 12	diskrete Zufallsvariable 17	Grenzkostenfunktion 21
Ableitung 13	Drehkegel 6	Grundfläche 6
Ableitungsfunktion 13	Drehzylinder 6	
Ableitungsregeln 13	Dreieck 5	Н
absolute Änderung 11	Durchschnitt(smenge) 3	Hekto- 3
absolute Häufigkeit 15	Durchschnittskostenfunktion 21	Heron'sche Flächenformel 5
Ähnlichkeit 5	Daronoon mitokooto mariktion 21	Höchstpreis 21
allgemeine Geradengleichung 9	E	homogene Differenzial-
allgemeines Dreieck 5, 7	ebene Figuren 5	gleichung 14
Amplitude 7	echte Teilmenge 3	Hypotenuse 5, 7
Änderungsfaktor 12	effektiver Jahreszinssatz 19	Trypoteriuse 5, 7
Änderungsmaße 11	einfache Verzinsung 19	1
Änderungsrate 11	Einheitskreis 7	Imaginärteil 8
Anderdrigsrate 11 Anfangskapital 19	Einheitsmatrix 10	inhomogene Differenzial-
Annuität 19	Einheitsvektor 9	
	Element 3	gleichung 14 Integral 13
Anschaffungskosten 20		integral 13 interner Zinssatz 20
äquivalente Zinssätze 19	Endkapital 19	
Arbeit 22	Endwert 19, 20	Interquartilsabstand 15
arithmetische Folge 11	Erlösfunktion 21	inverse Matrix 10
arithmetisches Mittel 15	Erwartungswert 17	Investitionsrechnung 20
arithmetische Reihe 11	explizites Bildungsgesetz 11	
Aufzinsungsfaktor 19	exponentielle Abnahme 12	J
В	exponentielles Wachstum 12	Jahreszinssatz 19, 20
B	_	14
Barwert 19	F	K
bedingte Wahrscheinlichkeit 16	Faktorielle 16	kalkulatorischer Zinssatz 20
Beschleunigung 22	Faktorregel 13	Kapazitätsgrenze 12
beschränkte Abnahme 12	Fakultät 16	Kapitalwert 20
beschränktes Wachstum 12	Finanzmathematik 19	Kathete 5, 7
bestimmtes Integral 13	Fixkosten 21	Kettenregel 13
Betrag (eines Vektors) 8	Flächeninhalt 5	Kilo- 3
Betriebsminimum 21	Folgen 11	komplexe Zahlen 8
Betriebsoptimum 21	Freiheitsgrad 18	Komponentenform 8
Bewegungsvorgänge 22	Frequenz 7	Konfidenzintervall 18
Binomialkoeffizient 16	_	Körper 6
Binomialverteilung 17	G	Korrelationskoeffizient 18
binomische Formeln 4	ganze Zahlen 3	Kosten- und Preistheorie 21
Bogenlänge 14	Gegenereignis 16	kostendeckender Preis 21
Bogenmaß 7	geometrische Folge 11	Kostenfunktion 21
Break-even-Point 21	geometrische Reihe 11	Kostenkehre 21
_	geometrisches Mittel 15	Kraft 22
C	Gerade 9	Kreis 6
Cosinus 7	Geradengleichung 9	Kreisbogen 6
Cosinussatz 7	Geschwindigkeit 22	Kreisfrequenz 7
Cournot'scher Punkt 21	Gewinnbereich 21	Kreissektor 6
	Gewinnfunktion 21	Kugel 6
D	Gewinngrenze 21	kurzfristige Preisuntergrenze 21
degressiver Kostenverlauf 21	Gewinnschwelle 21	
Deka- 3	Gewinnzone 21	L
dekadischer Logarithmus 4	Giga- 3	Lagemaße 15
Deltoid 5	gleichförmige geradlinige	langfristige Preisuntergrenze 21
Dezi- 3	Bewegung 22	Laplace-Versuch 16
Dichte 22	gleichmäßig beschleunigte	leere Menge 3
Dichtefunktion 17	geradlinige Bewegung 22	Leistung 22
Differenzenquotient 11	gleichseitiges Dreieck 5	lineare Abnahme 12
Differenzialgleichungen 14	Gradmaß 7	lineare Gleichungssysteme 10
Differenzialquotient 11	Grenzerlösfunktion 21	lineare Regression 18

lineare Substitution 14 Q Т linearer Mittelwert 14 Quader 6 Tangens 7 lineares Wachstum 12 Quadrat 5 Teilmenae 3 quadratische Gleichungen 4 Tera- 3 Linearfaktoren 4 Logarithmen 4 Quantil 18 Tilgungsanteil 19 logistisches Wachstum 12 Tilgungsplan 19 Quartil 15 lokale Änderungsrate 11 Quartilsabstand 15 transponierte Matrix 10 Quotientenregel 13 Trapez 5 М trennbare Variablen 14 Mantelfläche 6 R Trigonometrie 7 Marktgleichgewicht 21 Rate 19 trigonometrische Flächenformel 7 Masse 22 Ratenhöhe 19 t-Verteilung 18 Matrix 10 rationale Exponenten 3 Median 15 rationale Zahlen 3 U Umfang 5,6 Mega- 3 Raute 5 Mengen 3 Realteil 8 Umsatzfunktion 21 Mikro- 3 Rechteck 5 unbestimmtes Integral 13 Milli- 3 rechtwinkeliges Dreieck 5, 7 unendliche geometrische Reihe 11 Mittelwert 15 reelle Zahlen 3 unterjährige Verzinsung 19 mittlere Änderungsrate 11 Reihen 11 modifizierter interner Zinssatz 20 rekursives Bildungsgesetz 11 ٧ variable Durchschnittskostenmomentane Änderungsrate 11 relative Änderung 11 relative Häufigkeit 15 funktion 21 variable Kostenfunktion 21 Rentenrechnung 19 Nachfragevektor 10 Restschuld 19 variable Stückkostenfunktion 21 nachschüssig 19 Rhombus 5 Varianz 15, 17 Nano- 3 Richtungsvektor 9 Vektoren 8 natürliche Zahlen 3 Rotationskörper 14 Vektorprodukt 9 natürlicher Logarithmus 4 Rückflüsse 20 Vereinigung(smenge) 3 Normalvektor 8 Verflechtungsmatrix 10 Normalverteilung 17 Verteilungsfunktion 17 Verzinsung 19 Sättigungsfunktion 12 Nullphasenwinkel 7 Nutzungsdauer 20 Sättigungsmenge 21 Viereck 5 Sättigungswert 12 Volumen 6, 14, 22 0 Satz des Pythagoras 5 vorschüssig 19 Oberfläche 6 Satz von Bayes 16 Vorsilben 3 Orthogonalitätskriterium 9 Satz von Vieta 4 W Schwingungsdauer 7 Sigma-Umgebungen 17 Wahrscheinlichkeit 16, 17 Parallelitätskriterium 9 Sinus 7 Wiederveranlagungszinssatz 20 Parallelogramm 5 Sinusfunktion 7 Winkel 7 Parameterdarstellung 9 Sinussatz 7 Würfel 6 Periodendauer 7 Skalarprodukt 8 Wurzeln 3 Pico- 3 Spannweite 15 Polarformen 8 Stammfunktion 13 Ζ Zahlenmengen 3 Potenzen 3 Standardabweichung 15, 17 Preis 21 Standardnormalverteilung 17 Zenti- 3 Zinsanteil 19 Preis-Absatz-Funktion 21 Statistik 15 Preisfunktion der Nachfrage 21 Steigung 9 Zinsen 19 Preisfunktion des Angebots 21 Steigungswinkel 9 Zinseszinsen 19 Prisma 6 Stichprobe 15, 18 Zinssatz 19 Produktionsprozesse 10 Stichprobenmittelwert 18 Zufallsstreubereich 18 Produktionsvektor 10 Stichprobenumfang 18 Zufallsvariable 17 Produktregel 13 Störfunktion 14 progressiver Kostenverlauf 21 Strahlensatz 5 σ -Umgebungen 17 prozentuelle Änderung 11 Streuungsmaße 15 Pyramide 6 Stückkostenfunktion 21

Summenregel 13