§8.1 欧式空间,长度,夹角 习题参考答案

1. 设 A 是 n 是可逆实矩阵,定义映射 $(-,-): \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ 如下: $(\alpha,\beta) = \alpha^T A^T A \beta$. 求证: (-,-) 是一个内积,因而 \mathbb{R}^n 对于 (-,-) 构成一个欧式空间.

证明: $\forall \alpha, \beta, \gamma \in \mathbb{R}^n$, 有

- 1) $(\alpha, \beta) = \alpha^T A^T A \beta = (\alpha^T A^T A \beta)^T = \beta^T A^T A \alpha = (\beta, \alpha);$
- 2) $(\alpha + \beta, \gamma) = (\alpha + \beta)^T A^T A \gamma = \alpha^T A^T A \gamma + \beta^T A^T A \gamma = (\alpha, \gamma) + (\beta, \gamma);$
- 3) $\forall c \in \mathbb{R}, (c\alpha, \beta) = (c\alpha)^T A^T A \beta = c\alpha^T A^T A \beta = c(\alpha, \beta);$
- 4) $(\alpha,\alpha)=\alpha^TA^TA\alpha=(A\alpha)^TA\alpha$. 记 $(A\alpha)^T=(x_1,x_2,\cdots,x_n)^T\in\mathbb{R}^n$,则 $(A\alpha)^TA\alpha=x_1^2+x_2^2+\cdots+x_n^2\geq 0$ 即 $(\alpha,\alpha)\geq 0$,并且当且仅当 $A\alpha=0$ 即 $(x_1,x_2,\cdots,x_n)^T=0$ 时等号成立. 注意到 A 可逆,因此 $A\alpha=0$ 当且仅当 $\alpha=0$. 故当且仅当 $\alpha=0$ 时, $(\alpha,\alpha)=0$.

综上得 (-,-) 是一个内积,因此 \mathbb{R}^n 对于 (-,-) 构成一个欧式空间. \square

- 2. 求证: 对于欧式空间 V 中的任意向量 α, β 有
- (1) $|\alpha + \beta|^2 + |\alpha \beta|^2 = 2|\alpha|^2 + 2|\beta|^2$;
- (2) $(\alpha, \beta) = \frac{1}{4} |\alpha + \beta|^2 \frac{1}{4} |\alpha \beta|^2$;
- $(3) |\alpha + \beta| \le |\alpha| + |\beta|.$
- 证明: (1) $|\alpha + \beta|^2 + |\alpha \beta|^2 = (\alpha + \beta, \alpha + \beta) + (\alpha \beta, \alpha \beta) = |\alpha|^2 + 2(\alpha, \beta) + |\beta|^2 + |\alpha|^2 2(\alpha, \beta) + |\beta|^2 = 2|\alpha|^2 + 2|\beta|^2$
- (2) $\frac{1}{4}|\alpha + \beta|^2 \frac{1}{4}|\alpha \beta|^2 = \frac{1}{4}[(\alpha + \beta, \alpha + \beta) (\alpha \beta, \alpha \beta)] = \frac{1}{4}[(\alpha, \alpha) + 2(\alpha, \beta) + (\beta, \beta) (\alpha, \alpha) + 2(\alpha, \beta) (\beta, \beta)] = (\alpha, \beta)$
- (3) $|\alpha + \beta|^2 = (\alpha + \beta, \alpha + \beta) = |\alpha|^2 + 2(\alpha, \beta) + |\beta|^2 \le |\alpha|^2 + 2|\alpha||\beta| + |\beta|^2 = (|\alpha| + |\beta|)^2$, 进而 $|\alpha + \beta| \le |\alpha| + |\beta|$. □
 - 3. 在 \mathbb{R}^4 中, 求 α , β 的夹角.
 - (1) $\alpha = (2, 1, 3, 2), \beta = (1, 2, -2, 1);$
 - (2) $\alpha = (1, 1, 1, 1), \beta = (0, 1, 0, 0)$
 - 解: 设 α , β 夹角为 θ .
 - (1) $\cos \theta = \frac{(\alpha, \beta)}{|\alpha||\beta|} = \frac{0}{180} = 0$, Fig. $\theta = \frac{\pi}{2}$.
 - (2) 同 (1), 得 $\theta = \frac{\pi}{3}$.
 - 4. 在欧式空间 V 中, 定义两个向量 α , β 的距离为 $|\alpha \beta|$. 求证:
 - (1) $\stackrel{.}{\underline{}}$ $\underline{\alpha} \neq \beta$ $\underline{\text{rt}}$, $|\alpha \beta| > 0$;
 - (2) $|\alpha \beta| = |\beta \alpha|$;
 - $(3) |\alpha \beta| \le |\alpha \gamma| + |\gamma \beta|.$

证明: (1) 由内积定义知 $|\alpha - \beta| = \sqrt{(\alpha - \beta, \alpha - \beta)} \ge 0$, 且等号成立当且仅当 $\alpha - \beta = 0$, 即 $|\alpha - \beta| = 0$ 当且仅当 $\alpha = \beta$. 故结论成立.

- (2) $|\alpha \beta| = |-(\beta \alpha)| = |-1||\beta \alpha| = |\beta \alpha|$;
- (3) 由习题 2(3), $|\alpha \beta| = |\alpha \gamma + \gamma \beta| \le |\alpha \gamma| + |\gamma \beta|$. \square
- 5. \mathbb{R}^4 中,求与向量 $\beta = (1, -1, -1, 1), \gamma = (2, 1, 1, 3)$ 正交的所有向量.

解: 设所求向量为 $\alpha = (a_1, a_2, a_3, a_4)$. 依题意,有

$$(\alpha, \beta) = a_1 - a_2 - a_3 + a_4 = 0, (\alpha, \gamma) = 2a_1 + a_2 + a_3 + 3a_4 = 0.$$

联立上面两个方程组,解得 $a_1=-\frac{4}{3}a_4, a_2=-a_3-\frac{1}{3}a_4, a_3=a_3, a_4=a_4$. 那么该方程组基础解系为 $\alpha_1=(0,-1,1,0), \alpha_2=(-\frac{4}{3},-\frac{1}{3},0,1),$ 所以与向量 $\beta=(1,-1,-1,1), \gamma=(2,1,1,3)$ 正交的所有向量 是 $k_1\alpha_1+k_2\alpha_2$, 其中 $k_1,k_2\in\mathbb{R}$.

- 6. 设 $\xi_1, \xi_2, \dots, \xi_n$ 是 n 维欧式空间 V 的一个基, 证明:
- (1) 如果 $\alpha \in V$ 使得 $(\alpha, \xi_i) = 0 (i = 1, 2, \dots, n)$, 那么 $\alpha = 0$;
- (2) 如果 $\alpha_1, \alpha_2 \in V$ 使得 $(\alpha_1, \xi_i) = (\alpha_2, \xi_i)(i = 1, 2, \dots, n)$, 那么 $\alpha_1 = \alpha_2$.

证明: (1) 因 $\xi_1, \xi_2, \dots, \xi_n$ 是 V 的一个基,因此对 $\alpha \in V$,可设 $\alpha = x_1\xi_1 + x_2\xi_2 + \dots + x_n\xi_n$,其中 $x_i(i=1,2,\dots,n)\in\mathbb{R}$. 那么由 $(\alpha,\xi_i)=0$,有 $(\alpha,\alpha)=(\alpha,x_1\xi_1+x_2\xi_2+\dots+x_n\xi_n)=x_1(\alpha,\xi_1)+x_2(\alpha,\xi_2)+\dots+x_n(\alpha,\xi_n)=0$ 即 $(\alpha,\alpha)=0$,从而由内积定义知,只能 $\alpha=0$;

(2) 由 $(\alpha_1, \xi_i) = (\alpha_2, \xi_i)(i = 1, 2, \dots, n)$ 得 $(\alpha_1 - \alpha_2, \xi_i) = 0(i = 1, 2, \dots, n)$. 由 (1) 知 $\alpha_1 = \alpha_2$.

(黄雪娥解答)