Lemma 1 For any policy π and any recurrent class $R_{\pi}^{\otimes i}$ in the Markov chain MC_{π}^{\otimes} , MC_{π}^{\otimes} satisfies one of the following conditions.

1.
$$\delta_{\pi,i}^{\otimes} \cap \bar{F}_j^{\otimes} \neq \emptyset$$
, $\forall j \in \{1,\ldots,n\}$,

2.
$$\delta_{\pi,i}^{\otimes} \cap \bar{F}_{j}^{\otimes} = \emptyset$$
, $\forall j \in \{1,\ldots,n\}$.

Let \mathcal{SV}^* be the set of optimal supervisors. Let $D_{SV^*}^{\otimes}$ denote the product DES D^{\otimes} controlled by the optimal supervisor SV^* .

For a Markov chain MC_{SV}^{\otimes} induced by a product MDP D^{\otimes} with a supervisor SV, let $S_{SV}^{\otimes} = T_{SV}^{\otimes} \sqcup R_{SV}^{\otimes 1} \sqcup \ldots \sqcup R_{SV}^{\otimes h}$ be the set of states in MC_{SV}^{\otimes} , where T_{SV}^{\otimes} is the set of transient states and $R_{SV}^{\otimes i}$ is the recurrent class for each $i \in \{1, \ldots, h\}$, and let $R(MC_{SV}^{\otimes})$ be the union of all recurrent classes in MC_{SV}^{\otimes} . Let $\delta_{SV,i}^{\otimes}$ be the set of transitions in a recurrent class $R_{SV}^{\otimes i}$, namely $\delta_{SV,i}^{\otimes} = \{(s^{\otimes}, e, s^{\otimes i}) \in \delta^{\otimes}; s^{\otimes} \in R_{SV}^{\otimes i}, \ P_T^{\otimes}(s^{\otimes i}|s^{\otimes}, e) > 0, P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes})) > 0\}$, and let $P_{SV}^{\otimes} : S_{SV}^{\otimes} \times S_{SV}^{\otimes} \to [0, 1]$ such that $P_{SV}^{\otimes} = \sum_{e \in SV(s^{\otimes})} P_T^{\otimes}(s^{\otimes i}|s^{\otimes}, e) P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes}))$ be the transition probability under SV.

Theorem 1 Let D^{\otimes} be the product DES corresponding to a DES D and an LTL formula φ . If there exists a supervisor SV satisfying φ , then there exist a discount factor γ^* and a positive reward r_p such that any algorithm that maximizes the expected discounted reward with $\gamma > \gamma^*$ and $r_p > ||\mathcal{R}_1||_{\infty}$ will find a supervisor satisfying φ .

Proof 1 Suppose that SV^* be an optimal supervisor but does not satisfy the LTL formula φ . Then, for any recurrent class $R_{SV^*}^{\otimes i}$ in the Markov chain $MC_{SV^*}^{\otimes}$ and any accepting set \bar{F}_j^{\otimes} of the product DES D^{\otimes} , $\delta_{SV^*,i}^{\otimes} \cap \bar{F}_j^{\otimes} = \emptyset$ holds by Lemma 1. Thus, the agent under the policy π^* can obtain rewards only in the set of transient states. We consider the best scenario in the assumption. Let $p^k(s,s')$ be the probability of going to a state s' in k time steps after leaving the state s, and let $Post(T_{\pi^*}^{\otimes})$ be the set of states in recurrent classes that can be transitioned from states in $T_{\pi^*}^{\otimes}$ by one event occurrence. For the initial state s_{init}^{\otimes} in the set of transient states, it holds that

$$\begin{split} V^{SV^*}(s_{init}^{\otimes}) &= \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in T_{\pi^*}^{\otimes}} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}) \\ &\qquad \sum_{s^{\otimes'} \in T_{\pi^*}^{\otimes} \cup Post(T_{\pi^*}^{\otimes})} \sum_{e \in SV(s^{\otimes})} P_T^{\otimes}(s^{\otimes'}|s^{\otimes}, e) P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes})) \mathcal{R}(s^{\otimes}, SV(s^{\otimes}), e, s^{\otimes'}) \\ &\leq r_p \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in T_{\pi^*}^{\otimes}} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}). \end{split}$$

By the property of the transient states, for any state s^{\otimes} in $T_{\pi^*}^{\otimes}$, there exists a bounded positive value m such that $\sum_{k=0}^{\infty} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}) \leq \sum_{k=0}^{\infty} p^k(s_{init}^{\otimes}, s^{\otimes}) < 1$

- m [1]. Therefore, there exists a bounded positive value \bar{m} such that $V^{\pi^*}(s_{init}^{\otimes}) < \bar{m}$. Let \bar{SV} be a supervisor satisfying φ . We consider the following two cases.
 - 1. Assume that the initial state s_{init}^{\otimes} is in a recurrent class $R_{\bar{\pi}}^{\otimes i}$ for some $i \in \{1, \ldots, h\}$. For any accepting set \bar{F}_j^{\otimes} , $\delta_{\bar{\pi}, i}^{\otimes} \cap \bar{F}_j^{\otimes} \neq \emptyset$ holds by the definition of $\bar{\pi}$. The expected discounted reward for s_{init}^{\otimes} is given by

$$\begin{split} V^{\bar{\pi}}(s_{init}^{\otimes}) &= \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in R_{\bar{SV}}^{\otimes i}} \gamma^{k} p^{k}(s_{init}^{\otimes}, s^{\otimes}) \\ &\sum_{s^{\otimes'} \in R_{\bar{SV}}^{\otimes i}} \sum_{e \in SV(s^{\otimes})} P_{T}^{\otimes}(s^{\otimes'}|s^{\otimes}, e) P_{E}^{\otimes}(e|s^{\otimes}, SV(s^{\otimes})) \mathcal{R}(s^{\otimes}, \bar{SV}(s^{\otimes}), e, s^{\otimes'}). \end{split}$$

Since s_{init}^{\otimes} is in $R_{\pi}^{\otimes i}$, there exists a set of positive numbers $K = \{k \; ; \; k \geq n, p^k(s_{init}^{\otimes}, s_{init}^{\otimes}) > 0\}$ [1]. We consider the worst scenario in this case. For the stopping time of first returning the initial state, it holds that

$$\begin{split} V^{\bar{\pi}}(s_{init}^{\otimes}) > & \mathbb{E}[\gamma^{k} r_{p} - (1 + \ldots + \gamma^{k}) || \mathcal{R}_{1} ||_{\infty} + \gamma^{k} V^{\bar{\pi}}(s_{init}^{\otimes})] \\ \geq & \gamma^{\mathbb{E}[k]} r_{p} - (1 + \ldots + \gamma^{\mathbb{E}[k]}) || \mathcal{R}_{1} ||_{\infty} + \gamma^{\mathbb{E}[k]} V^{\bar{\pi}}(s_{init}^{\otimes}) \\ = & \frac{\gamma^{\mathbb{E}[k]} r_{p} - (1 + \ldots + \gamma^{\mathbb{E}[k]}) || \mathcal{R}_{1} ||_{\infty}}{1 - \gamma^{\mathbb{E}[k]}}, \end{split}$$

References

- [1] R. Durrett, *Essentials of Stochastic Processes*, 2nd Edition. ser. Springer texts in statistics. New York; London; Springer, 2012.
- [2] L. Breuer, "Introduction to Stochastic Processes," [Online]. Available: https://www.kent.ac.uk/smsas/personal/lb209/files/sp07.pdf
- [3] S.M. Ross, *Stochastic Processes*, 2nd Edition. University of California, Wiley, 1995.
- [4] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, "Convergence results for single-step on-policy reinforcement learning algorithms" *Machine Learning*, vol. 38, no. 3, pp. 287–308, 1998.
- [5] J. Kretínský, T. Meggendorfer, S. Sickert, "Owl: A library for ω-words, automata, and LTL," in Proc. 16th International Symposium on Automated Technology for Verification and Analysis, 2018, pp. 543–550.