

# **Robotics**

Servo Motor / LCD

School of Computing, Gachon University

Kang, Sangwoo





### **Basics**



### Servo Motor

- A servomotor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration.
- Servo motors have three wires: power, ground, and signal.
  - red : 5V
  - black or brown : GND
  - yellow, orange or white : signal





# **Basics** [cont'd]

- LCD (Liquid Crystal Display) screen is an electronic display module and find a wide range of applications
  - A 16x2 LCD display is very basic module and is very commonly used in various devices and circuits

| Pin no. | Symbol | Function                                     |
|---------|--------|----------------------------------------------|
| 1       | GND    | Power supply ground                          |
| 2       | VCC    | +5V supply                                   |
| 3       | VEE    | Contrast adjustment voltage                  |
| 4       | RS     | Register select (H: data, L: instruction)    |
| 5       | R/W    | Read/Write data (H: LCD -> μC, L: μC -> LCD) |
| 6       | E      | Enable pulse                                 |
| 7       | D0     | Data bit 0                                   |
| 8       | D1     | Data bit 1                                   |
| 9       | D2     | Data bit 2                                   |
| 10      | D3     | Data bit 3                                   |
| 11      | D4     | Data bit 4                                   |
| 12      | D5     | Data bit 5                                   |
| 13      | D6     | Data bit 6                                   |
| 14      | D7     | Data bit 7                                   |
| 15      | Α      | Anode of backlight LED                       |
| 16      | K      | Cathode of backlight LED                     |





### **Functions**



### Library : Servo

- Allows Arduino/Genuino boards to control a variety of servo motors.
- To use this library:
  - #include <Servo.h>

### Servo object

- Define a object of type Servo
- Syntax
  - Servo object;





### object.attach()

- Attach the Servo variable to a pin.
  - The Servo library supports only servos on only two pins: 9 and 10.
- Syntax
  - object.attach(pin)
- Parameters
  - object : a object of type Servo
  - pin: the number of the pin that the servo is attached to



### object.write()

- Writes a value to the servo, controlling the shaft accordingly. On a standard servo, this will set the angle of the shaft (in degrees), moving the shaft to that orientation. On a continuous rotation servo, this will set the speed of the servo.
- Syntax
  - object.write(angle)
- Parameters
  - object : a object of type Servo
  - angle: the value to write to the servo, from 0 to 180

#### G SCHOLL OF COMPUTING

# **Functions** [cont'd]

#### Example

```
#include <Servo.h>
Servo myservo;

void setup() {
  myservo.attach(9);
  myservo.write(90);  // set servo to mid-point
}
```



#### G SCHOLL OF COMPUTING

### **Functions** [cont'd]

#### Library : LiquidCrystal

- Allows communication with alphanumerical liquid crystal displays (LCDs).
- O To use this library:
  - #include <LiquidCrystal.h>

### LiquidCrystal()

- Creating a variable of type LiquidCrystal
- Syntax
  - LiquidCrystal object(rs, enable, d4, d5, d6, d7)
- Parameters
  - object: a variable of type LiquidCrystal
  - rs: the number of the Arduino pin that is connected to the RS pin on the LCD
  - enable: the number of the Arduino pin that is connected to the enable pin on the LCD
  - The LCD will be controlled using only the four data lines (d4, d5, d6, d7)





#### object.begin()

- Initializing the interface to the LCD screen, and specifies the dimensions (width and height)
   of the display. begin() needs to be called before any other LCD library commands.
- Syntax
  - object.begin(cols, rows)
- Parameters
  - object: a variable of type LiquidCrystal
  - cols: the number of columns that the display has
  - rows: the number of rows that the display has





### object.print()

- Printing text to the LCD
- Syntax
  - object.print(data)
  - object.print(data, BASE)
- Parameters
  - object: a variable of type LiquidCrystal
  - data: the data to print (char, byte, int, long, or string)
  - BASE (optional): the base in which to print numbers: BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base 16)



### setCursor()

- Positioning the LCD cursor
  - This function sets the location at which subsequent text written to the LCD will be displayed
- Syntax
  - object.setCursor(col, row)
- Parameters
  - object: a variable of type LiquidCrystal
  - col: the column at which to position the cursor (with 0 being the first column)
  - row: the row at which to position the cursor (with 0 being the first row)



#### G SCHOLL OF COMPUTING

# **Functions** [cont'd]

#### Example

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
void setup(){
 lcd.begin(16, 2);
                              //initialize
 lcd.setCursor(0, 0);
 lcd.print("hello, world!");
void loop() {}
```





#### object.noDisplay()

- Hiding the LCD cursor.
- Syntax
  - object.noDisplay()

### object.display()

- Turning on the LCD display, after it's been turned off with noDisplay().
  - This will restore the text (and cursor) that was on the display.
- Syntax
  - object.display()

### object.clear()

- Clearing the LCD screen and positions the cursor in the upper-left corner.
- Syntax
  - object.clear()



## Lab. 1 - Servo motor

Sweeps the shaft of a servo motor back and forth across 180 degrees.







### Lab. 2 - Servo motor + Potentiometer

- Control the position of a servo motor with your Arduino and a potentiometer.
  - The potentiometer should be wired so that its two outer pins are connected to power (+5V) and ground, and its middle pin is connected to analog input 0 on the board.





# Lab. 3 - LCD

Prints "Hello World!" to the LCD and adjust the screen contrast by The potentiometer.

