

Экспериментатор одновременно подбрасывает монету (М) и кидает игральную кость (К). Какое количество информации содержится в эксперименте (Э)?

Аддитивность:

$$i(\exists) = i(M) + i(K) = > i(12 \text{ исходов}) = i(2 \text{ исхода}) + i(6 \text{ исходов}) : \log_x 12 = \log_x 2 + \log_x 6$$

Неотрицательность:

Функция $log_{\nu}N$ неотрицательно при любом x>1 и N>1

Монотонность:

С увеличением p(M) или p(K) функция $i(\mathfrak{I})$ монотонно возрастает.

Принцип неопределённости:

При наличии всегда только одного исхода (монета и кость с магнитом) количество информации равно нулю: $\log_{\star}1 + log_{\star}1 = 0$

Мера Хартли подходит лишь для систем с равновероятными состояниями. Если состояния системы S не равновероятны, используют меру Шеннона:

$$i(S) = -\sum_{i=1}^{N} p_i \cdot log_2 p_i,$$

где N — число состояний системы, рі — вероятность того, что система S находится в состоянии і (сумма всех p_i равна 1).

Формула Хартли является частным случаем формулы Шеннона!

Пример 1. Количество информации в акте подбрасывания обычной монеты по формуле Хартли равно $\log_2 2 = 1$ бит. По формуле Шеннона получим то же $i_{s1} = -0, 5*\log_2 0, 5 - 0, 5*\log_2 0, 5 = 1$ бит.

Пример 2. При подбрасывании монеты со смещённым центром тяжести количество непредсказуемости становится меньше: $i_{s2} = -0,75 * \log_2 0,75 - 0,25 * \log_2 0,25 \approx 0,8$ бит.