# Components and Examples of tikzircuit

## March 26, 2018

## Contents

| 1 | Introductory Examples  1.1 Bridge Rectifier                     | 5<br>5<br>6<br>7 |
|---|-----------------------------------------------------------------|------------------|
| 2 | chktex-file 1                                                   | 8                |
| 3 | chktex-file 11                                                  | 8                |
| 4 | chktex-file 12                                                  | 8                |
| 5 | chktex-file 26                                                  | 8                |
| 6 | chktex-file 36                                                  | 8                |
| 7 | chktex-file 37                                                  | 8                |
| 8 | chktex-file 8                                                   | 8                |
| 9 | Sources 9.1 Voltage Source in North-South Orientation           | <b>8</b>         |
|   | <ul><li>9.2 Voltage Source in South-North Orientation</li></ul> | 9                |
|   | <ul> <li>9.4 Voltage Source in East-West Orientation</li></ul>  | 9<br>10          |
|   |                                                                 | 10<br>10         |
|   |                                                                 | 10               |
|   |                                                                 | 11               |
|   | 9.10 Current Source in East-West Orientation                    | 11               |

| 10 | Voltage and Current Arrows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|    | 10.1 Voltage Arrow Between Two Nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                 |
|    | 10.2 Curved Voltage Arrow Between Two Nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                 |
|    | 10.3 Current Arrow in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
|    | 10.4 Current Arrow in South-North Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                 |
|    | 10.5 Current Arrow in West-East Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                 |
|    | 10.6 Current Arrow in East-West Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                 |
| 11 | Resistors, Capacitors and Inductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                 |
|    | 11.1 Resistor in West-East Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                 |
|    | 11.2 Resistor in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                 |
|    | 11.3 Capacitor in West-East Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                 |
|    | 11.4 Capacitor in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                 |
|    | 11.5 Inductor in West-East Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                 |
|    | 11.6 Inductor in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                 |
|    | 11.7 Inductor in North-South Orientation (Mirrored)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                 |
|    | 11.8 Varistor in West-East Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                 |
|    | 11.9 Potentiometer in West-East Orientation, North Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                 |
|    | 11.10Potentiometer in West-East Orientation, South Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                 |
|    | 11.11Potentiometer in North-South Orientation, East Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                 |
|    | 11.12Potentiometer in North-South Orientation, West Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                 |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-                                                 |
| 12 | Transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17<br>17                                           |
|    | 12.1 Transformer in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                 |
| 13 | Diodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17                                                 |
|    | 13.1 Diode In North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                                                 |
|    | 13.2 Diode in South-North Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                                                 |
|    | 13.3 Diode in West-East Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                 |
|    | 13.4 Diode in East-West Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
|    | 13.5 Zener Diode in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
|    | 13.5 Zener Diode in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                 |
|    | <ul><li>13.5 Zener Diode in North-South Orientation</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18<br>19                                           |
|    | 13.5 Zener Diode in North-South Orientation          13.6 Zener Diode in South-North Orientation          13.7 Zener Diode in West-East Orientation                                                                                                                                                                                                                                                                                                                                                                                                        | 18<br>19<br>19                                     |
|    | 13.5 Zener Diode in North-South Orientation          13.6 Zener Diode in South-North Orientation          13.7 Zener Diode in West-East Orientation          13.8 Zener Diode in East-West Orientation                                                                                                                                                                                                                                                                                                                                                     | 18<br>19<br>19                                     |
|    | 13.5 Zener Diode in North-South Orientation13.6 Zener Diode in South-North Orientation13.7 Zener Diode in West-East Orientation13.8 Zener Diode in East-West Orientation13.9 Schottky Diode in North-South Orientation                                                                                                                                                                                                                                                                                                                                     | 18<br>19<br>19<br>19                               |
|    | 13.5 Zener Diode in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18<br>19<br>19<br>19<br>19<br>20                   |
|    | 13.5 Zener Diode in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18<br>19<br>19<br>19<br>19<br>20<br>20             |
|    | 13.5 Zener Diode in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18<br>19<br>19<br>19<br>19<br>20<br>20<br>20       |
|    | 13.5 Zener Diode in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18<br>19<br>19<br>19<br>20<br>20<br>20<br>21       |
|    | 13.5 Zener Diode in North-South Orientation 13.6 Zener Diode in South-North Orientation 13.7 Zener Diode in West-East Orientation 13.8 Zener Diode in East-West Orientation 13.9 Schottky Diode in North-South Orientation 13.10Schottky Diode in South-North Orientation 13.11Schottky Diode in West-East Orientation 13.12Schottky Diode in East-West Orientation 13.13LED in North-South Orientation, Light in East Direction 13.14LED in North-South Orientation, Light in West Direction                                                              | 18<br>19<br>19<br>19<br>20<br>20<br>20<br>21<br>21 |
|    | 13.5 Zener Diode in North-South Orientation 13.6 Zener Diode in South-North Orientation 13.7 Zener Diode in West-East Orientation 13.8 Zener Diode in East-West Orientation 13.9 Schottky Diode in North-South Orientation 13.10Schottky Diode in South-North Orientation 13.11Schottky Diode in West-East Orientation 13.12Schottky Diode in East-West Orientation 13.13LED in North-South Orientation, Light in East Direction 13.14LED in North-South Orientation, Light in West Direction 13.15LED in South-North Orientation, Light in West Direction | 18<br>19<br>19<br>19<br>20<br>20<br>21<br>21<br>21 |

|    | 13.19photo diode in North-South Orientation, Light from West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 14 | Transistors  14.1 N-Channel JFET in North-South Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23 23 24 24 24 25 25 26                                                    |
| 15 | 15.3 OP-AMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |
| 16 | Amplifiers 16.1 Amplifier, Standardized Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>28</b> 28                                                               |
| 17 | Logic Gates  17.1 Inversion Symbol for Logic Gates Outputs  17.2 Logic Gate Symbol, IEC Standard  17.3 Logic AND Gate Symbol  17.4 Logic NAND Gate Symbol  17.5 Logic OR Gate Symbol  17.6 Logic NOR Gate Symbol  17.7 Logic NOT Gate Symbol  17.8 Logic XOR Gate Symbol  17.9 Logic XNOR Gate Symbol  17.10Logic AND Gate, ANSI Symbol  17.11Logic NAND Gate, ANSI Symbol  17.12Logic OR Gate, ANSI Symbol  17.13Logic NOR Gate, ANSI Symbol  17.14Logic NOT Gate, ANSI Symbol  17.15Logic XOR Gate, ANSI Symbol  17.15Logic XOR Gate, ANSI Symbol  17.16Logic XOR Gate, ANSI Symbol | 29<br>29<br>30<br>30<br>31<br>31<br>31<br>32<br>32<br>33<br>33<br>33<br>34 |
| 18 | Flip-Flops  18.1 General Flip-Flop Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>34</b>                                                                  |

| 18.2 General Flip-Flop Symbol for Negative Logic                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.3 Flip-Flop Changing on Rising Edge                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18.4 Flip-Flop Changing on Falling Edge                                                                                                                                                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18.7 RS Flip-Flop Changing on Rising Edge                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| * *                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                           | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ,                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ·                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                           | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10.221 dishibation, South North Birochon                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Miscellaneous                                                                                                                                                                                             | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.1 Ground as Symbol                                                                                                                                                                                     | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.2 Ground as Continued Drawing                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19.4 Junction (Black Filled Circle)                                                                                                                                                                       | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19.8 Invisible Node with Terminal Node Properties (Used with Voltage Arrows)                                                                                                                              | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.9 Speaker                                                                                                                                                                                              | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.10Buzzer                                                                                                                                                                                               | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.11Bulb                                                                                                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10.12 Multimaton (Cinala for Voltmaton on American)                                                                                                                                                       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.12Multimeter (Circle for Volumeter of Ammeter)                                                                                                                                                         | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.13Voltmeter (Circle for Voltmeter of Ammeter)                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19.13Voltmeter                                                                                                                                                                                            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.13Voltmeter                                                                                                                                                                                            | 44<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19.13Voltmeter                                                                                                                                                                                            | 44<br>44<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19.13Voltmeter19.14Ammeter19.15Brushless DC Electric Motor19.16Brushless DC Electric Generator19.17Brushes for Electric Motors and Generators                                                             | 44<br>44<br>45<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19.13 Voltmeter19.14 Ammeter19.15 Brushless DC Electric Motor19.16 Brushless DC Electric Generator19.17 Brushes for Electric Motors and Generators19.18 Brushless DC Electric Motor with Permanent Magnet | 44<br>44<br>45<br>45<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19.13Voltmeter19.14Ammeter19.15Brushless DC Electric Motor19.16Brushless DC Electric Generator19.17Brushes for Electric Motors and Generators                                                             | 44<br>44<br>45<br>45<br>45<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                           | 18.3 Flip-Flop Changing on Rising Edge 18.4 Flip-Flop Changing on Falling Edge 18.5 RS Flip-Flop 18.6 RS NAND Flip-Flop (Negative Logic) 18.7 RS Flip-Flop Changing on Rising Edge 18.8 RS Flip-Flop Changing on Falling Edge 18.9 JK Flip-Flop Changing on Rising Edge 18.10JK Master-Slave Flip-Flop 18.11D Flip-Flop Changing on Rising Edge 18.12T Flip-Flop Changing on Rising Edge 18.13T Flip-Flop Changing on Rising Edge 18.13T Flip-Flop Changing on Falling Edge 18.15Switch, West-East Direction 18.16Closed Switch, West-East Direction 18.17Switch, East-West Direction 18.18Closed Switch, East-West Direction 18.19Switch, South-North Direction 18.20Closed Switch, South-North Direction 18.21Pushbutton, West-East Direction 18.22Pushbutton, South-North Direction 18.22Pushbutton, South-North Direction 19.2 Ground as Continued Drawing 19.3 Connecting Terminal 19.4 Junction (Black Filled Circle) 19.5 Junction in the Middle of a Path 19.6 Connection Node (for Referencing, not Visible) 19.7 Midway Connection Node 19.8 Invisible Node with Terminal Node Properties (Used with Voltage Arrows) 19.9 Speaker 19.10Buzzer |

## 1 Introductory Examples

## 1.1 Bridge Rectifier



```
\begin{tikzpicture}
 \renewcommand{\voltagecolor}{blue}
 \voltagesourceNS{Uin}{(0.3,0)}{left}{$u_e(t)$}
 \label{left} $$ \diodeSn{diodeOne}{(1,1.3)}{left}{$D_{1}$} $$
 \label{linear_state} $$ \diodeSN{diodeThree}{(3,1.3)}{right}{$D_{3}$}$
 \label{linear_substitution} $$ \widetilde{SN}(diodeFour)_{(3,-1.3)}{right}_{$D_{4}$}$
 \draw (UinN) -- ++(0,0.2) node (UinHelpOne) {} -- (UinHelpOne -|
     diodeOneA) \junction{UinOne};
 \draw (UinS) -- ++(0,-0.2) node (UinHelpTwo) {} -- (UinHelpTwo -|
     diodeThreeA) \junction{UinTwo};
 \draw (diodeOneA) -- (diodeTwoC) (diodeThreeA) -- (diodeFourC);
 \draw (diodeThreeC) -- ++(0,0.3) \junction{jThree} -| (diodeOneC);
 \draw (diodeFourA) -- ++(0,-0.3) \junction{jFour} -| (diodeTwoA);
 \draw (jThree) -| (resistorN);
 \draw (jFour) -| (resistorS);
 \draw (jThree -| resistor) \junction{jrN} -- ++(1.4,0)
     \terminal{tuOutPlus};
 \draw (jFour -| resistor) \junction{jrS} -- (jFour -| tuOutPlus)
     \terminal{tuOutMinus};
 \end{tikzpicture}
```

## 1.2 Strain Gauges Bridge



```
\begin{tikzpicture}
 \renewcommand{\voltagecolor}{black}
 \opampNormInv{op}{(0,0)}
 \label{local_rone} $$\operatorname{Three}_{(opInPlus-|rOne)}_{\space{0.5cm}} = SI_{150}_{\ohm}_{\space{0.5cm}} $$
 \draw (rOneE) -- (opInMinus) \mjunction{jopInMinus};
 \draw (rThreeE) -- (opInPlus) \mjunction{jopInPlus};
 \phi = \phi + (-6,0) \cnode{dms};
 \int \sqrt{y} = in \{-0.8/1.2/0ne, -0.8/-1.2/Two, 0.8/1.2/Three, \}
                        0.8/-1.2/Four}{%
     \draw[-latex] (dms)++(\x,\y) ++(-0.4,-0.4) -- ++(0.8,0.8);
 \draw (dmsOneN) -- ++(0,0.8) \cnode{foo};
 \draw (dmsThreeN) -- (dmsThree|-foo) -- (foo) \mjunction{jdmsN};
 \displaystyle \frac{draw (jdmsN) -- ++(0,0.8) \text{terminal}\{tudmsPlus} node [left] {\SI\{15\}\{\volt\}\};}
 \draw (dmsTwoS) -- ++(0,-0.8) \cnode{foo};
 \draw (dmsFourS) -- (dmsFour|-foo) -- (foo) \mjunction{jdmsS};
 \draw (jdmsS) -- ++(0,-0.5) \cnode{gnddms};
 \gnd{(gnddms)}
 \draw (dmsOneS) -- (dmsTwoN) (rOneW) -- (rOne-|dmsOne) \junction{jLeft};
 \draw (dmsThreeS) -- (dmsFourN);
 \draw (rThreeW) -- (rThree-|dmsThree) \junction{jRight};
 \draw (jopInPlus) -- (rFourN) (rFourS) -- ++(0,-0.5) \cnode{gndRFour};
 \gnd{(gndRFour)}
 \draw (jopInMinus) |- (rTwoW);
```

```
\draw (opOut) -- ++(1,0) \junction{jopOut} |- (rTwoE);
\draw (jopOut) -- ++(1,0) \terminal{tuaPlus};
\draw (tuaPlus|-gnddms) \cnode{gndOut} -- ++(0,0.5) \terminal{tuaMinus};
\gnd{(gndOut)}
\voltagearrow{(tuaPlus)}{(tuaMinus)}{right}{$u_{a}$}
\end{tikzpicture}
```

#### 1.3 Astable Multivibrator



```
\begin{tikzpicture}
 \renewcommand{\voltagecolor}{red}
 \BJTnpnNSMirror{bjtOne}{(0,0)}
 \path (bjtOne) ++(-0.2,0) node[left] {BC 550};
 \BJTnpnNS{bjtTwo}{(bjtOne)++(7.8,0)}
 \path (bjtTwo) ++(0.2,0) node [right] {BC 550};
 \ledNSW{ledOne}{(bjtOneC)++(0,1.8)}{$D_{1}$}
 \ledNSE{ledTwo}{(bjtTwoC |- ledOne)}{$D_{2}$}
 \label{ledOne} $$\operatorname{C}_{C,1}$}{\$XI{470}}{\mathbb R}^{C,1}}
 \capacitorWE{cOne}{(ledOne)++(1.2,-1)}{$C_{1}}{$xI_{47}{\min cro\hat{s}}}
 \path (c0ne)++(-0.3,0.2) node \{\$+\$\};
 \rcone \resistorNS{rOne}{(rcOne)++(2.5,0)}{}{$R_{1}$}
 \capacitorWE\{cTwo\}\{(ledTwo)++(-1.2,-1)\}\{\$C_{2}\}\$\}\{\$SI\{47\}\{\micro\farad\}\$\}
 \path (cTwo)++(0.3,0.2) node \{\$+\$\};
 \draw (rcOneN) -- ++(0,0.5) \junction{jrcN} -| (uN);
 \draw (bjtOneE) -- ++(0,-0.5) \junction{jbjtE} -| (uS);
 \draw (jrcN) -| (rcTwoN);
 \draw (jbjtE) -| (bjtTwoE);
 \draw (rOneN) -- (rOne |- jrcN) \junction{jrOneN};
```

```
\draw (rTwoN) -- (rTwo |- jrcN) \junction{jrTwoN};
\draw (rcOneS) -- (ledOneA) (ledOneC) -- (bjtOneC);
\draw (rcTwoS) -- (ledTwoA) (ledTwoC) -- (bjtTwoC);
\draw (bjtOneC |- cOne) \junction{jbjtOneC} -- (cOneW);
\draw (bjtTwoC |- cTwo) \junction{jbjtTwoC} -- (cTwoE);
\draw (cOneE) -- (cOne -| rOne) \junction{jcOneW} -- (rOneS);
\draw (cTwoW) -- (cTwo -| rTwo) \junction{jcTwoE} -- (rTwoS);
\draw (jcOneW) -- (rTwo |- bjtTwo) -- (bjtTwoB);
\draw (jcTwoE) -- (rOne |- bjtOne) -- (bjtOneB);
\end{tikzpicture}
```

- 2 chktex-file 1
- 3 chktex-file 11
- 4 chktex-file 12
- 5 chktex-file 26
- 6 chktex-file 36
- 7 chktex-file 37
- 8 chktex-file 8
- 9 Sources
- 9.1 Voltage Source in North-South Orientation

```
\voltagesourceNS{name}{position}{align:left|right}{text}
```

node endings: N: north, S: south

```
\renewcommand{\voltagecolor}{blue}
\renewcommand{\fillcolor}{lightgray}
\voltagesourceNS{u}{(0,0)}{left}{\SI{1}{\volt}}
\draw (uN) -- ++(0,0.5) (uS) -- ++(0,-0.5);
```



## 9.2 Voltage Source in South-North Orientation

\voltagesourceSN{name}{position}{align:left|right}{text}

node endings: N: north, S: south

#### Example:



## 9.3 Voltage Source in West-East Orientation

\voltagesourceWE{name}{position}{align:above|below}{text}

node endings: W: west, E: east

#### Example:

$$\voltagesourceWE{u}{(0,0)}{above}{\SI{1}{\volt}}\draw (uW) -- ++(-0.5,0) (uE) -- ++(0.5,0);$$



## 9.4 Voltage Source in East-West Orientation

\voltagesourceEW{name}{position}{align:above|below}{text}

node endings: W: west, E: east



## 9.5 Battery in North-South Orientation

\batteryNS{name}{position}{left text}{right text}

node endings: N: north, S: south

Example:

$$\batteryNS\{u\}\{(0,0)\}\{\$U_{b}\}\{\SI\{1\}\{\volt\}\}\draw\ (uN) -- ++(0,0.5)\ (uS) -- ++(0,-0.5);$$

 $U_b \stackrel{\downarrow}{=} 1 \text{ V}$ 

## 9.6 Battery in South-North Orientation

\batterySN{name}{position}{left text}{right text}

node endings: N: north, S: south

Example:

 $U_b \stackrel{\downarrow}{-} 1 V$ 

## 9.7 Current Source in North-South Orientation

\currentsourceNS{name}{position}{align:left|right}{text}

node endings: N: north, S: south

Example:

 $\bigoplus I$ 

## 9.8 Current Source in South-North Orientation

\currentsourceSN{name}{position}{align:left|right}{text}

node endings: N: north, S: south

Example:



#### 9.9 Current Source in West-East Orientation

\currentsourceWE{name}{position}{align:above|below}{text}

node endings: W: west, E: east

Example:



#### 9.10 Current Source in East-West Orientation

\currentsourceEW{name}{position}{align:above|below}{text}

node endings: W: west, E: east

Example:



## 10 Voltage and Current Arrows

## 10.1 Voltage Arrow Between Two Nodes

\voltagearrow{begin}{end}{text parameters}{text}

```
Example:
\draw (0,1) -- (1,1) \terminal{tOne};
\draw (0,0) -- (1,0) \terminal{tTwo};
\voltagearrow{(tOne)}{(tTwo)}{right}{$U$}
```

## 10.2 Curved Voltage Arrow Between Two Nodes

\voltagearrowC{begin}{end}{control option}{text parameters}{text}

```
Example:
\draw (0,1) -- (1,1) \terminal{tA};
\draw (0,0) -- (1,0) \terminal{tB};

\voltagearrowC{(tA)}{(tB)}{+(1,0) and +(1,0)}{left}{$U$}
```

#### 10.3 Current Arrow in North-South Orientation

\currentarrowNS{position}{align:left|right}{text}

# Example: \draw (0,0) -- (0,1) \mnode{ia}; \currentarrowNS{(ia)}{left}{\$I\$}



\currentarrowSN{position}{align:left|right}{text}

```
Example:
```

```
\draw (0,0) -- (0,1) \mnode{ia};
\currentarrowSN{(ia)}{left}{$I$}
```

## 10.5 Current Arrow in West-East Orientation

\currentarrowWE{position}{align:above|below}{text}

```
Example:
\draw (0,0) -- (1,0) \mnode{ia};
\currentarrowWE{(ia)}{above}{$I$}
```

#### 10.6 Current Arrow in East-West Orientation

\currentarrowEW{position}{align:above|below}{text}

Example:
\draw (0,0) -- (1,0) \mnode{ia};
\currentarrowEW{(ia)}{above}{\$I\$}



## 11 Resistors, Capacitors and Inductors

#### 11.1 Resistor in West-East Orientation

\resistorWE{name}{position}{text above}{text below}

node endings: W: west, E: east

Example:



#### 11.2 Resistor in North-South Orientation

\resistorWE{name}{position}{text left}{text right}

node endings: N: north, S: south

Example:

$$\rsistorNS{r}{(0,0)}{R_{1}}{} \ \draw (rN) -- ++(0,0.5) (rS) -- ++(0,-0.5);$$



## 11.3 Capacitor in West-East Orientation

\capacitorWE{name}{position}{text above}{text below}

node endings: W: west, E: east

Example:

## 11.4 Capacitor in North-South Orientation

\capacitorNS{name}{position}{text left}{text right}

node endings: N: north, S: south

Example:

#### 11.5 Inductor in West-East Orientation

\inductorWE{name}{position}{text above}{text below}

node endings: W: west, E: east

Example:

#### 11.6 Inductor in North-South Orientation

\inductorNS{name}{position}{text left}{text right}

node endings: N: north, S: south

## 11.7 Inductor in North-South Orientation (Mirrored)

\inductorNS{name}{position}{text left}{text right}

node endings: N: north, S: south

Example:

#### 11.8 Varistor in West-East Orientation

\varistorWE{name}{position}{text left}{text right}{controlling voltage}

node endings: W: west, E: east

Example:

#### 11.9 Potentiometer in West-East Orientation, North Connection

\potentiometerWEN{name}{position}{text}

node endings: W: west, E: east, N: north

## 11.10 Potentiometer in West-East Orientation, South Connection

\potentiometerWES{name}{position}{text}

node endings: W: west, E: east, S: south

## Example:

## 11.11 Potentiometer in North-South Orientation, East Connection

\potentiometerNSE{name}{position}{text}

node endings: N: north, S: south, E: east

#### Example:



## 11.12 Potentiometer in North-South Orientation, West Connection

\potentiometerNSW{name}{position}{text}

node endings: N: north, S: south, W: west

```
\potentiometerNSW{p}{(0,0)}{$R_{1}$}
\draw (pS) -- ++(0,-0.5) (pN) -- ++(0,0.5);
\draw (pW) -- ++(-0.5,0);
```



## 12 Transformer

#### 12.1 Transformer in North-South Orientation

\transformerNS{name}{position}

node endings: N: north, S: south

#### Example:

```
\transformerNS{tf}{(0,0)}
\draw (tfAN) -- ++(-0.5,0) (tfAS) -- ++(-0.5,0);
\draw (tfBN) -- ++( 0.5,0) (tfBS) -- ++( 0.5,0);
```



## 13 Diodes

#### 13.1 Diode In North-South Orientation

\diodeNS{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

## Example:

$$\label{lem:diodens} $$ \draw (dA) -- ++(0,0.5) (dC) -- ++(0,-0.5);$$



#### 13.2 Diode in South-North Orientation

\diodeSN{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

Example:



#### 13.3 Diode in West-East Orientation

\diodeWE{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:

$$\label{local_def} $$ \widetilde{d}_{(0,0)}_{above}_{5D_{1}}^{1}$ \draw (dA) -- ++(-0.5,0) (dC) -- ++(0.5,0);$$



#### 13.4 Diode in East-West Orientation

\diodeEW{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:



#### 13.5 Zener Diode in North-South Orientation

\zDiodeNS{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode



#### 13.6 Zener Diode in South-North Orientation

\zDiodeSN{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

Example:

 $D_1 \stackrel{\downarrow}{\bigwedge}$ 

#### 13.7 Zener Diode in West-East Orientation

\zDiodeWE{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:

$$\zDiodeWE{zd}{(0,0)}{above}{$D_{1}$} \draw (zdA) -- ++(-0.5,0) (zdC) -- ++(0.5,0);$$



## 13.8 Zener Diode in East-West Orientation

\zDiodeEW{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:

$$\label{local_substitution} $$\zDiodeEW{zd}{(0,0)}{above}{$D_{1}$} \draw (zdA) -- ++(0.5,0) (zdC) -- ++(-0.5,0);$$

 $D_1$ 

#### 13.9 Schottky Diode in North-South Orientation

\sDiodeNS{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

Example:



## 13.10 Schottky Diode in South-North Orientation

\sDiodeSN{name}{position}{align:left|right}{text}

node endings: A: anode, C: cathode

Example:

$$\s DiodeSN{zd}{(0,0)}{left}{$D_{1}$} \draw (zdA) -- ++(0,-0.5) (zdC) -- ++(0,0.5);$$



## 13.11 Schottky Diode in West-East Orientation

\sDiodeWE{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode

Example:

$$\sDiodeWE{zd}{(0,0)}{above}{$D_{1}$} \draw (zdA) -- ++(-0.5,0) (zdC) -- ++(0.5,0);$$



## 13.12 Schottky Diode in East-West Orientation

\sDiodeEW{name}{position}{align:above|below}{text}

node endings: A: anode, C: cathode



## 13.13 LED in North-South Orientation, Light in East Direction

\ledNSE{name}{position}{text}

node endings: A: anode, C: cathode

Example:

$$\label{ledNSE} $$ \left(0,0\right)_{\SD_{1}}$ \draw (ledA) -- ++(0,0.5) (ledC) -- ++(0,-0.5);$$



## 13.14 LED in North-South Orientation, Light in West Direction

\ledNSW{name}{position}{text}

node endings: A: anode, C: cathode

Example:

$$\label{ledNSW} $$ \left( (0,0) \right) $$ D_{1}$ \ \draw (ledA) -- ++ (0,0.5) (ledC) -- ++ (0,-0.5);$$



#### 13.15 LED in South-North Orientation, Light in West Direction

\ledSNW{name}{position}{text}

node endings: A: anode, C: cathode

Example:



## 13.16 LED in West-East orientation, Light in North Direction

\ledWEN{name}{position}{text}

node endings: A: anode, C: cathode

Example:

$$\label{led} $$ \left( 0,0 \right) { $D_{1} $} $$ \\ \draw (ledA) -- ++ (-0.5,0) (ledC) -- ++ (0.5,0); $$ D_{1}$$$

## 13.17 LED in East-West orientation, Light in North Direction

\ledEWN{name}{position}{text}

node endings: A: anode, C: cathode

Example:

## 13.18 Photo Diode in North-South Orientation, Light from East

\photodiodeNSE{name}{position}{text}

node endings: A: anode, C: cathode

Example:

\photodiodeNSE{pd}{(0,0)}{\$D\_{1}\$} \draw (pdA) -- ++(0,0.5) (pdC) -- ++(0,-0.5); 
$$D_1 = \sum_{i=1}^{n} D_i = \sum_{i=1}^{n} D$$

## 13.19 photo diode in North-South Orientation, Light from West

\photodiodeNSW{name}{position}{text}

node endings: A: anode, C: cathode

## 13.20 photo diode in South-North Orientation, Light from West

\photodiodeSNW{name}{position}{text}

node endings: A: anode, C: cathode

Example:



## 14 Transistors

#### 14.1 N-Channel JFET in North-South Orientation

\nChnJFETNS{name}{position}

node endings: D: drain, G: gate, S: source

Example:



#### 14.2 N-Channel JFET in West-East Orientation

\nChnJFETWE{name}{position}

node endings: D: drain, G: gate, S: source

$$D \longrightarrow S$$

#### 14.3 Enhancement-Mode N-Channel MOSFET in North-South Orientation

\NMOSFETenhNS{name}{position}

node endings: D: drain, G: gate, S: source, B: bulk

#### Example:

#### 14.4 Enhancement-Mode P-Channel MOSFET in North-South Orientation

\PMOSFETenhNS{name}{position}

node endings: D: drain, G: gate, S: source, B: bulk

#### Example:

#### 14.5 NPN Bipolar Junction Transistor in North-South Orientation

\BJTnpnNS{name}{position}

node endings: B: basis, E: emitter, C: collector

## 14.6 NPN Bipolar Junction Transistor in North-South Orientation (Mirrored)

\BJTnpnNSMirror{name}{position}

node endings: B: basis, E: emitter, C: collector

## Example:

```
\BJTnpnNSMirror{b}{(0,0)}
\path (bB) node [right]{B};
\path (bC) node [above]{C};
\path (bE) node [below]{E};
```

## 14.7 NPN Bipolar Junction Transistor in South-North Orientation

\BJTnpnSN{name}{position}

node endings: B: basis, E: emitter, C: collector

## Example:

```
BJTnpnSN\{b\}\{(0,0)\}
\path (bB) node [left]{B};
\path (bC) node [below]{C};
\path (bE) node [above]{E};
```

## 14.8 NPN Bipolar Junction Transistor in East-West Orientation

\BJTnpnEW{name}{position}

node endings: B: basis, E: emitter, C: collector

```
\BJTnpnEW\{b\}\{(0,0)\}\
                                                                     E \longrightarrow C
B
\path (bB) node [below]{B};
\path (bC) node [right]{C};
\path (bE) node [left]{E};
```

## 14.9 PNP Bipolar Junction Transistor in North-South Orientation

```
\BJTpnpNS{name}{position}
```

node endings: B: basis, E: emitter, C: collector

#### Example:

```
\BJTpnpNS{b}{(0,0)}
\path (bB) node [left]{B};
\path (bC) node [above]{C};
\path (bE) node [below]{E};
```

## 15 Operational Amplifiers

## 15.1 OP-AMP, Standardized Symbol

\opampNorm{name}{position}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

#### 15.2 OP-AMP, Standardized Symbol, N-Input above P-Input

\opampNormInv{name}{position}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

#### 15.3 OP-AMP

\opamp{name}{position}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

#### 15.4 OP-AMP, N-Input above P-Input

\opampInv{name}{position}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

```
\label{eq:composition} $$ \operatorname{opampInv}(0,0) $$ \\ \operatorname{draw} (\operatorname{opampOut}) -- ++(0.5,0); $$ \\ \operatorname{draw} (\operatorname{opInMinus}) -- ++(-0.5,0); $$ \\ \operatorname{draw} (\operatorname{opInPlus}) -- ++(0,0.3) \ \operatorname{node} \ [above] $$ +U_{0}; $$ \\ \operatorname{draw} (\operatorname{opUbattPlus}) -- ++(0,-0.3) \ \operatorname{node} \ [below] $$ -U_{0}; $$ \\ \operatorname{draw} (\operatorname{opUbattMinus}) -- ++(0,-0.3) \ \operatorname{node} \ [below] $$ -U_{0}; $$ \\ \operatorname{draw} (\operatorname{opGnd}) -- ++(0,-0.2) \ -| ++(0.3,-0.1) \ \operatorname{cnode} \ [gnd]; $$ \\ \operatorname{gnd} \{(gnd)\} $$
```

## 15.5 General Amplifier

\amplifier{name}{position}

node endings: OutPlus: p-output OutMinus: n-output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

## 16 Amplifiers

#### 16.1 Amplifier, Standardized Symbol

\ampNorm{name}{position}{amplification factor}

node endings: Out: output, InMinus: n-input, InPlus: p-input, UbattPlus: positive power supply, UbattMinus: negative power supply Gnd: ground

## 17 Logic Gates

## 17.1 Inversion Symbol for Logic Gates Outputs

\NOTcircle{name}{position}

```
Example:
\draw (0,0) -- (0,1);
\NOTcircle{n}{(0,0.5)}
```

## 17.2 Logic Gate Symbol, IEC Standard

\LogicGateIEC{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\LogicGateIEC{g}{(0,0)}

\draw (gIn) -- ++(-0.2,0);

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gN) -- ++(0,0.2);

\draw (gS) -- ++(0,-0.2);
```

## 17.3 Logic AND Gate Symbol

\GateAND{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateAND{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gInS) -- ++(-0.5,0);
```

## 17.4 Logic NAND Gate Symbol

\GateNAND{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateNAND{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gInS) -- ++(-0.5,0);
```

## 17.5 Logic OR Gate Symbol

\GateOR{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateOR{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gInS) -- ++(-0.5,0);
```

## 17.6 Logic NOR Gate Symbol

\GateNOR{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:
\GateNOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

## 17.7 Logic NOT Gate Symbol

\GateNOT{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateNOT{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gIn) -- ++(-0.5,0);
```

## 17.8 Logic XOR Gate Symbol

\GateXOR{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example:

\GateXOR{g}{(0,0)}

\draw (gOut) -- ++(0.5,0);

\draw (gInN) -- ++(-0.5,0);

\draw (gInS) -- ++(-0.5,0);
```

## 17.9 Logic XNOR Gate Symbol

\GateXNOR{name}{position}

node endings: In: input, Out: output, InN: north input, InS: south input, N: north, S: south

```
Example: \GateXNOR{g}{(0,0)}
```

```
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```



## 17.10 Logic AND Gate, ANSI Symbol

\ANSIGateAND{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

## Example:

```
\ANSIGateAND{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```



## 17.11 Logic NAND Gate, ANSI Symbol

\ANSIGateNAND{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

```
\ANSIGateNAND{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```



## 17.12 Logic OR Gate, ANSI Symbol

\ANSIGateOR{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

#### Example:

```
\ANSIGateOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

## 17.13 Logic NOR Gate, ANSI Symbol

\ANSIGateNOR{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

#### Example:

```
\ANSIGateNOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

## 17.14 Logic NOT Gate, ANSI Symbol

\ANSIGateNOT{name}{position}

node endings: Out: output, In: input, N: north, S: south

#### Example:

```
\ANSIGateNOT{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gIn) -- ++(-0.5,0);
```



## 17.15 Logic XOR Gate, ANSI Symbol

\ANSIGateXOR{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

## Example:

```
\ANSIGateXOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

## 17.16 Logic XNOR Gate, ANSI Symbol

\ANSIGateXNOR{name}{position}

node endings: Out: output, InN: north input, InS: south input, N: north, S: south

#### Example:

```
\ANSIGateXNOR{g}{(0,0)}
\draw (gOut) -- ++(0.5,0);
\draw (gInN) -- ++(-0.5,0);
\draw (gInS) -- ++(-0.5,0);
```

## 18 Flip-Flops

#### 18.1 General Flip-Flop Symbol

```
\FlipFlop{name}{position}
```

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

## Example:

```
\FlipFlop{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

#### 18.2 General Flip-Flop Symbol for Negative Logic

\FlipFlopNegLogic{name}{position}

## Example:

```
\FlipFlopNegLogic{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

## 18.3 Flip-Flop Changing on Rising Edge

\FlipFlopRisingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

#### Example:

```
\FlipFlopRisingEdge{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffW) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

## 18.4 Flip-Flop Changing on Falling Edge

\FlipFlopFallingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

#### Example:

```
\FlipFlopFallingEdge{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffInC) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

#### 18.5 RS Flip-Flop

\RSFlipFlop{name}{position}

#### Example:

```
\RSFlipFlop{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

## 18.6 RS NAND Flip-Flop (Negative Logic)

\RSNANDFlipFlop{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

## Example:

```
\label{eq:continuous_state} $$ \RSNANDFlipFlop{ff}{(0,0)} $$ $$ $$ \draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0); $$ $$ $$ \draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0); $$ $$ $$ $$ $$ $$ $$ $$ $$ $$
```

## 18.7 RS Flip-Flop Changing on Rising Edge

\RSFlipFlopRisingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

#### Example:

```
\RSFlipFlopRisingEdge{ff}{(0,0)}
\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);
\draw (ffW) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

#### 18.8 RS Flip-Flop Changing on Falling Edge

\RSFlipFlopFallingEdge{name}{position}

## Example: \RSFlipFlopFallingEdge{ff}{(0,0)} \draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0); \draw (ffInC) -- ++(-0.5,0); \draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);

## 18.9 JK Flip-Flop Changing on Rising Edge

\JKFlipFlopRisingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

```
Example:

\JKFlipFlopRisingEdge{ff}{(0,0)}

\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);

\draw (ffW) -- ++(-0.5,0);

\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

#### 18.10 JK Master-Slave Flip-Flop

\JKMSFlipFlop{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

```
Example:

\JKMSFlipFlop{ff}{(0,0)}

\draw (ffInN) -- ++(-0.5,0) (ffInS) -- ++(-0.5,0);

\draw (ffW) -- ++(-0.5,0);

\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

#### 18.11 D Flip-Flop Changing on Rising Edge

\DFlipFlopRisingEdge{name}{position}

```
Example:

\DFlipFlopRisingEdge{ff}{(0,0)}

\draw (ffInN) -- ++(-0.5,0);

\draw (ffW) -- ++(-0.5,0);

\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

## 18.12 T Flip-Flop Changing on Rising Edge

\TFlipFlopRisingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

```
Example:

\TFlipFlopRisingEdge{ff}{(0,0)}
\draw (ffW) -- ++(-0.5,0);
\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

#### 18.13 T Flip-Flop Changing on Falling Edge

\TFlipFlopFallingEdge{name}{position}

node endings: OutN: north output, OutS: south output InN: north input, InS: south input, N: north, S: south W: middle input

```
Example:

\TFlipFlopFallingEdge{ff}{(0,0)}

\draw (ffInC) -- ++(-0.5,0);

\draw (ffOutN) -- ++(0.5,0) (ffOutS) -- ++(0.5,0);
```

#### 18.14 Monoflop

\Monoflop{name}{position}

#### Example:

#### 18.15 Switch, West-East Direction

\switchWE{name}{position}

node endings: W: west, E: east, N: north connection

#### Example:

```
\switchWE{s}{(0,0)}
\draw (sW) -- ++(-0.5,0) (sE) -- ++(0.5,0);
```

## 18.16 Closed Switch, West-East Direction

\switchClosedWE{name}{position}

node endings: W: west, E: east, N: north connection

#### Example:

```
\switchClosedWE{s}{(0,0)}
\draw (sW) -- ++(-0.5,0) (sE) -- ++(0.5,0);
```

#### 18.17 Switch, East-West Direction

\switchEW{name}{position}

node endings: W: west, E: east, N: north connection

```
\switchEW{s}{(0,0)}
\draw (sW) -- ++(-0.5,0) (sE) -- ++(0.5,0);
```

#### 18.18 Closed Switch, East-West Direction

\switchClosedEW{name}{position}

node endings: W: west, E: east, N: north connection

Example:

\switchClosedEW{s}{(0,0)} \draw (sW) -- ++(-0.5,0) (sE) -- ++(0.5,0);

#### 18.19 Switch, South-North Direction

\switchSN{name}{position}

node endings: S: south, N: north, W: west connection

Example:

 $\sitchSN{s}{(0,0)}$ \draw (sS) -- ++(0,-0.5) (sN) -- ++(0,0.5);

## 18.20 Closed Switch, South-North Direction

\switchClosedSN{name}{position}

node endings: S: south, N: north, W: west connection

Example:

\switchClosedSN{s}{(0,0)} \draw (sS) -- ++(0,-0.5) (sN) -- ++(0,0.5);

## 18.21 Pushbutton, West-East Direction

\pushbuttonWE{name}{position}

node endings: W: west, E: east, N: north connection

```
Example: 
\pushbuttonWE{b}{(0,0)}
\draw (bW) -- ++(-0.5,0) (bE) -- ++(0.5,0);
```



## 18.22 Pushbutton, South-North Direction

\pushbuttonSN{name}{position}

node endings: S: south, N: north, W: west connection

Example:

$$\begin{tabular}{ll} $$ \sup_{0,0} & (0,0) \\ draw (bS) -- ++(0,-0.5) (bN) -- ++(0,0.5); \\ \end{tabular}$$



## 19 Miscellaneous

## 19.1 Ground as Symbol

\gnd{position}



## 19.2 Ground as Continued Drawing

\gndNow

## **19.3 Connecting Terminal**

```
\terminal{name}

node endings: Con: use terminal as connector (no space when wired)

Example:
\renewcommand{\fillcolor}{\white}
\draw (0,0) -- ++(1,0) \terminal{t};
```

## 19.4 Junction (Black Filled Circle)

```
\junction{name}
```

```
Example: \draw (0,0) -- (1,0); \draw (0.5,0) \junction{j} -- ++(0,-0.5);
```

#### 19.5 Junction in the Middle of a Path

```
\junction{name}
```

```
Example: \draw (0,0) -- (1,0) \mjunction{j} (j) -- ++(1,0);
```

## 19.6 Connection Node (for Referencing, not Visible)

\cnode{name}

```
Example:
```

```
\draw (0,0) -- (0.5,0) \cnode{c} -- (0.5,0.5);
\draw (c) -- ++(0,-0.5);
```

## 19.7 Midway Connection Node

\mnode{name}

# 19.8 Invisible Node with Terminal Node Properties (Used with Voltage Arrows)

 $\ne {name}$ 

```
Example: \draw (0,0) -- ++(1,0) \tnode{t}; ----
```

## 19.9 Speaker

\speakerWE{name}{position}

node endings: N: north, S: south,

Example:

```
\speakerWE{sp}{(0,0)}
\draw (spN) -- ++(0,0.5) (spS) -- ++(0,-0.5);
```



#### 19.10 Buzzer

\piezobuzzerWE{name}{position}

node endings: N: north, S: south,

```
\piezobuzzerWE{bz}{(0,0)}
\draw (bzN) -- ++(0,0.5) (bzS) -- ++(0,-0.5);
```



#### 19.11 Bulb

\bulb{name}{position}

node endings: N: north, S: south, W: west, E: east

Example:



## 19.12 Multimeter (Circle for Voltmeter or Ammeter)

\multimeter{name}{position}{letter}

node endings: N: north, S: south, W: west, E: east

Example:

$$\label{eq:multimeter_m} $$ \operatorname{m}_{(0,0)}_{M} \draw (mN) -- ++(0,0.5) (mS) -- ++(0,-0.5);$$



#### 19.13 Voltmeter

\voltmeter{name}{position}

node endings: N: north, S: south, W: west, E: east

Example:

$$\label{eq:continuous} $$ \operatorname{v}_{(0,0)} $$ \draw (vN) -- ++(0,0.5) (vS) -- ++(0,-0.5);$$



## 19.14 Ammeter

\ammeter{name}{position}

node endings: N: north, S: south, W: west, E: east

Example:



## 19.15 Brushless DC Electric Motor

\BLDCMotor{name}{position}{pin1}{pin2}

node endings: N: north, S: south, W: west, E: east

Example:



## 19.16 Brushless DC Electric Generator

\BLDCGenerator{name}{position}{pin1}{pin2}

node endings: N: north, S: south, W: west, E: east

Example:



#### 19.17 Brushes for Electric Motors and Generators

\brushes{position}

Only usful in combination with motors or generators.

Example:

\brushes{(0,0)}

## 19.18 Brushless DC Electric Motor with Permanent Magnet

\permanentMagnetBLDCMotor{name}{position}{pin1}{pin2}

node endings: N: north, S: south, W: west, E: east

#### Example:

```
\permanentMagnetBLDCMotor{motor}{(0,0)}{$A_1$}{$A_2$}
\draw (motorN) -- ++(0,0.5);
\draw (motorS) -- ++(0,-0.5);
```



## 19.19 DC Electric Motor with Permanent Magnet

\permanentMagnetDCMotor{name}{position}{pin1}{pin2}

node endings: N: north, S: south, W: west, E: east

#### Example:

```
\permanentMagnetDCMotor{motor}{(0,0)}{$A_1$}{$A_2$}
\draw (motorN) -- ++(0,0.5);
\draw (motorS) -- ++(0,-0.5);
```



#### 19.20 Shunt DC Electric Motor

\shuntDCMotor{name}{position}

node endings: N: north, S: south, W: west, E: east

```
\shuntDCMotor{motor}{(0,0)}
\draw (motorN) -- ++(0,0.5);
\draw (motorS) -- ++(0,-0.5);
```



## 19.21 Series DC Electric Motor

\seriesDCMotor{name}{position}

node endings: N: north, S: south, W: west, E: east

```
\seriesDCMotor{motor}{(0,0)}
\draw (motorN) -- ++(0,0.5);
\draw (motorS) -- ++(0,-0.5);
```

