

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3109</u>	К работе допущен
Студент Суханкин Дмитрий Юрьевич	Работы выполнена
Преподаватель Крылов В. А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

«Исследование распределения случайной

Величины»

- 1. Цель работы.
 - 1. Провести многократные измерения определенного интервала времени.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, выполняемые при выполнении работы.

Исследование закономерностей в распределении случайных чисел.

3. Объект исследования.

Статические закономерности.

- 4. Метод экспериментального исследования.
 - 1. Анализ
 - 2. Лабораторный эксперимент
- 5. Рабочие формулы и исходные данные.
 - 1. Формулы:

Закон распределения исследуемой величины

$$\rho(t) = \lim_{\substack{n \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N \Delta t} = \frac{1}{N} \frac{dN}{dt}$$

Нормальное распределение, описанное функцией Гаусса

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$$

Среднее арифметическое результатов измерений (выборочное среднее)

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i$$

Выборочное среднеквадратическое отклонение

$$\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N(t_i - \langle t \rangle_N)^2}$$

Нормальное распределение, описанное функцией Гаусса, если подставить $t = \langle t \rangle$ для определения максимальной высоты гистограммы

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$

Соотношение для вероятности попадания результата измерение в интервал $[t_1,t_2]$

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t) dt \approx \frac{N_{12}}{N}$$

Доверительный интервал для измеряемого промежутка времени $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$

Для нахождения приближенных значений границ интервалов

$$\begin{aligned} & \left[t_N - \sigma_{\langle N \rangle}, \langle t \rangle_N + \sigma_N \right] \\ & \left[t_N - 2\sigma_{\langle N \rangle}, \langle t \rangle_N + 2\sigma_N \right] \\ & \left[t_N - 3\sigma_{\langle N \rangle}, \langle t \rangle_N + 3\sigma_N \right] \end{aligned}$$

Стандартные доверительные интервалы для нахождения приближенных значений вероятности

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], P_{\sigma} \approx 0.683$$

 $t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], P_{\sigma} \approx 0.954$
 $t \in [\langle t \rangle - 3\sigma, \langle t \rangle + \sigma 3], P_{\sigma} \approx 0.997$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	прибора
1	Часы	Измеритель времени	0-60 с	0,5 c
2	Электронный	Измеритель времени	0-60 с	0,005 c*
	секундомер			

^{*} Цена деления составляет 0,01 с

7. Схема установки.

8. Результаты прямых измерений и их обработки.

No	t_i , c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	10.30	0	0
2	10.26	-0.04	0
3	10.16	-0.14	0.02
4	10.42	0.12	0.01
5	10.32	0.02	0
6	10.08	-0.22	0.05
7	10.11	-0.19	0.04
8	10.25	-0.05	0
9	10.24	-0.06	0
10	10.36	0.06	0
11	9.92	-0.38	0.14
12	10.31	0.01	0
13	10.2	-0.1	0.01
14	10.46	0.16	0.03
15	10.46	0.16	0.03
16	10.47	0.17	0.03
17	10.1	-0.2	0.04
18	10.48	0.18	0.03
19	10.49	0.19	0.04
20	10.5	0.2	0.04
21	10.06	-0.24	0.06
22	10.4	0.1	0.01
23	10.52	0.22	0.05
24	10.35	0.05	0
25	10.34	0.04	0
26	10.33	0.02	0

N₂	t_i , c	$t_i - \langle t \rangle_N, c$	$\frac{(t_i - \langle t \rangle_N)^2, c^2}{0}$
27	10.3	0	0
28	10.29	-0.01	0
29	10.27	-0.03	0
30	10.26	-0.04	0
31	10.24	-0.06	0
32	10.23	-0.07	0
33	10.21	-0.09	0.01
34	10.19	-0.11	0.01
35	10.18	-0.12	0.01
36	10.34	0.04	0
37	10.35	0.05	0
38	9.86	-0.44	0.19
39	10.36	0.06	0
40	10.37	0.07	0
41	10.38	0.08	0.01
42	10.38	0.08	0.01
43	10.39	0.09	0.01
44	10.4	0.1	0.01
45	10.41	0.11	0.01
46	10.41	0.11	0.01
47	10.42	0.12	0.01
48	10.43	0.13	0.02
49	10.43	0.13	0.02
50	10.44	0.14	0.02
	$\langle t \rangle_N = 10.30 \ c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2 = 1.01 \mathrm{c}$	$\sigma_N = 0.14 c$ $\rho_{max} = 2.857 c^{-1}$

Найдем выборочное среднеквадратичное отклонение

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1.01}{49}} \approx \sqrt{0.0206} \approx 0.14 c$$

Найдем максимальную высоту гистограммы
$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} \approx \frac{1}{0.35} \approx 2.857 \ c^{-1}$$

$$t_{min} = 9.86 \ c$$

$$t_{max} = 10.52 c$$

9. Расчет результатов косвенных измерений.

Границы	ΔN	ΔN	$t_{\rm cp}$, c	$\rho(t), c^{-1}$
интервалов, с		$\frac{\Delta N}{N\Delta t}$, c^{-1}	•	
9.86	3	0.1875	10.02	0.384252
10.18				
10.19	26	8.6	10.22	2.412199
10.25				
10.26	3	1	10.29	2.832764
10.32				
10.33	13	8.6	10.345	2.697016
10.36				
10.37	5	2.5	10.39	2.309824
10.41				
10.41	4	2.6	10.425	1.906382
10.44				
10.46	9	3	10.49	1.130755
10.52				

Примеры вычислений для первого интервала:

$$\begin{split} \frac{\Delta N}{N\Delta t} &= \frac{3}{50 \cdot 0.32} = 0.1875 \, c^{-1} \\ t_{\rm cp} &= \frac{(9.86 + 10.18)}{2} = 10.02 \, c \\ \rho(t) &= \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right) = \frac{1}{0.14 \cdot \sqrt{2\pi}} \exp\left(-\frac{(10.02 - 10.30)^2}{2 \cdot (0.14)^2}\right) \approx \\ \approx 2.84 \cdot 0.1353 = 0.384252 \, c^{-1} \end{split}$$

	Интервал, с		ΔN	ΔN	P
	ОТ	до	ΔIV	N	r l
$\langle t \rangle_N \pm \sigma_N$	10.16	10.44	37	0.74	0.683
$\langle t \rangle_N \pm 2\sigma_N$	10.02	10.58	48	0.96	0.954
$\langle t \rangle_N \pm 3\sigma_N$	9.88	10.72	49	0.98	0.997

10. Размер погрешностей измерений.

Среднеквадратичное отклонение среднего значения

$$\sigma_{(t)} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \frac{1.01}{2450} \approx 0.0004 \text{ c}$$

 $\alpha = 0.95$

 $t_{\alpha,N} = 2$ (табличное значение)

 $\Delta t = t_{lpha,N} \cdot \sigma_{\langle t \rangle} = 0.0008$ с — доверительный интервал для измеряемого в работе промежутка

11.Графики.

12.Окончательные результаты.

$$\alpha = P(t \in [\langle t \rangle - \Delta t; \langle t \rangle + \Delta t]$$

$$\alpha = P(t \in [10.2992; 10.3008]$$

13. Выводы и анализ результатов работы.

Входе данной работы было сделано по 50 измерений одного и того же отрезка времени. Указанными в методических указаниях формулами было доказано, что при проведении большого количества измерений, эти случайные величины можно описать закономерностями. Была построена гистограмма, кривая Гаусса, найдено среднее значение и дисперсия данной выборки.