FLS 6441 - Methods III: Explanation and Causation

Why Observational Data is Biased

Week 1 - Review

Jonathan Phillips

February 2019

Rest of the Course

Explanation

▶ What does it mean to explain something?

Explanation

- What does it mean to explain something?
- ► To give an account of what happens, and why

Why Observational Data is Biased

► The 'chain of causation'

Explanation	Causal Inference	Why Observational Data is Biased	Rest of the Course

Figure 1 Completion between Companied Annual Day Conta Character Community and the Number of Nichal

Explanation

► Why isn't correlation enough?

Rest of the Course

- ► Why isn't correlation enough?
 - ► For **prediction**, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates

- Why isn't correlation enough?
 - ► For **prediction**, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates
 - But for intervention, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates

- ► Why isn't correlation enough?
 - For prediction, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can reasonably predict it will have about 25 Nobel Laureates
 - But for intervention, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates
 - ► For **explanation**, correlation also fails it is no *explanation* to say that Switzerland has the most Nobel Laureates because it has the highest chocolate consumption

► Two perspectives on explanation:

Rest of the Course

► Two perspectives on explanation:

Causes of Effects	Effects of Causes		
What caused Y?	Does D cause Y?		
Why does Switzerland have so many Nobel laureates?	Does chocolate cause more Nobel laureates?		

Why Observational Data is Biased

► Two perspectives on explanation:

► Two perspectives on explanation:

 Identifying the source of ALL of the variation in Nobel Laureates Why Observational Data is Biased

Explanation

► Two perspectives on explanation:

- ► Identifying the source of ALL of the variation in Nobel Laureates
- ▶ An infinite task!

► Two perspectives on explanation:

- ► Identifying the source of ALL of the variation in Nobel Laureates
- ▶ An infinite task!

► Two perspectives on explanation:

- ► Identifying the source of ALL of the variation in Nobel Laureates
- An infinite task!

► Identifying how much **ONE** variable causes variation in Nobel Laureates

Explanation

► Two perspectives on explanation:

- Identifying the source of ALL of the variation in Nobel Laureates
- ► An infinite task!

- Identifying how much ONE variable causes variation in Nobel Laureates
- ► This we can do!

Rest of the Course

- ► A focus on a single explanatory variable *D* requires a clear definition of 'Treatment'
- ► AND to clearly define a 'Control'
 - What is the opposite of investing \$1bn in education?
 - No investment, or investing it elsewhere?
- ► Define treatment:

$$D_i = \begin{cases} 1, & \text{if treated} \\ 0, & \text{if not treated} \end{cases}$$

- ► Defining our outcome:
 - Is it the outcome we really care about? Or just what's easy to measure?
 - Tempting to look at many outcomes, but the risk of 'cherry-picking'
 - All outcomes are probabilistic (due to all the other factors we haven't accounted for)
 - If we study 20 outcomes, on average one will show a significant effect even with no real causal effect
 - So we also want a single outcome usually

- What are the units of our analysis?
- ▶ Countries? Political Parties? Individuals?
- ▶ eg. How does electoral system affect attitudes to redistribution?
 - Treatment at the national level
 - Outcome at the individual level
 - Measurement needed at the lowest (individual) level
- ▶ Units are **time-specific**: the same person 10 minutes later is a different unit

Deterministic Explanation

Why Observational Data is Biased

Explanation

Explanation

Deterministic Explanation

► Sufficient conditions: Every time D happens, Y happens

Deterministic Explanation

- Sufficient conditions: Every time D happens, Y happens
- Necessary conditions: Y does not happen if D does not happen ('but for')

Explanation

Deterministic Explanation

- Sufficient conditions: Every time D happens, Y happens
- ► Necessary conditions: Y does not happen if D does not happen ('but for')

Proababilistic Explanation

Why Observational Data is Biased

Deterministic Explanation

- Sufficient conditions: Every time D happens, Y happens
- Necessary conditions: Y does not happen if D does not happen ('but for')

Proababilistic Explanation

► If *D* happens, the **probability** of *Y* increases

Explanation

Deterministic Explanation

- Sufficient conditions: Every time D happens, Y happens
- ▶ Necessary conditions: Y does not happen if D does not happen ('but for')

Proababilistic Explanation

Why Observational Data is Biased

- ▶ If D happens, the **probability** of Y increases
- ▶ Treatment effects are a distribution, not a single value

Causal Inference

Explanation

▶ The causal effect of treatment is how each unit's outcome differs when it is treated and not treated

Why Observational Data is Biased

Explanation

► The causal effect of treatment is how each unit's outcome differs when it is treated and not treated

Why Observational Data is Biased

▶ This means comparing the **Potential Outcomes** for unit *i*:

$$Y_{Di} = \begin{cases} Y_{1i} \text{ Potential Outcome if unit i treated} \\ Y_{0i} \text{ Potential Outcome if unit i NOT treated} \end{cases}$$

▶ Individual Treatment Effect for unit $i = Y_{1i} - Y_{0i}$

► The causal effect of treatment is how each unit's outcome differs when it is treated and not treated

Why Observational Data is Biased

▶ This means comparing the **Potential Outcomes** for unit *i*:

$$Y_{Di} = \begin{cases} Y_{1i} \text{ GDP Growth of Brazil in 2010 if a Democracy} \\ Y_{0i} \text{ GDP Growth of Brazil in 2010 if NOT a Democracy} \end{cases}$$

▶ Individual Treatment Effect for unit $i = Y_{1i} - Y_{0i}$

► We are relying on **counterfactuals**

- ▶ We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?

Explanation

- ▶ We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?

Why Observational Data is Biased

 Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?

Explanation

- ▶ We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?

Why Observational Data is Biased

- Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
- Would Brazil have won the 2014 World Cup if Neymar had not been injured?

Explanation

- ▶ We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?

Why Observational Data is Biased

- Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
- Would Brazil have won the 2014 World Cup if Neymar had not been injured?

Potential Outcomes are just another Variable

	GDP Growth if Democracy	GDP Growth if NOT Democ-	Treatment Effect
		racy	
	Y ₁	<i>Y</i> ₀	$Y_1 - Y_0$
Brasil	4	1	3
Argentina	7	4	3
Bolivia	2	4	-2
Colombia	7	7	0
Peru	5	4	1

► Political Science is not about explaining individual events

- ► Political Science is not about explaining individual events
- ▶ We ideally want general theories that apply to many situations

Explanation

▶ Political Science is not about explaining individual events

- We ideally want general theories that apply to many situations
- ► To explain a systematic treatment not a single event we need multiple counterfactual comparisons

Explanation

▶ Political Science is not about explaining individual events

- We ideally want general theories that apply to many situations
- To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- ▶ We know how democracy works in Europe; the question is what will happen if it becomes more common in Africa?

- ▶ Political Science is not about explaining individual events
- We ideally want general theories that apply to many situations
- To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- ▶ We know how democracy works in Europe; the question is what will happen if it becomes more common in Africa?

Average Treatment Effect

We want to calculate an **Average Treatment Effect**

Explanation

▶ Political Science is not about explaining individual events

Why Observational Data is Biased

- We ideally want general theories that apply to many situations
- ► To explain a systematic treatment not a single event we need multiple counterfactual comparisons
- ▶ We know how democracy works in Europe; the question is what will happen if it becomes more common in Africa?

Average Treatment Effect

We want to calculate an **Average Treatment Effect**

$$ATE = E(Y_1 - Y_0) = E(Y_1) - E(Y_0) = \frac{\sum_{i} (Y_{1i} - Y_{0i})}{N}$$

Potential Outcomes are just another Variable

	GDP Growth if Democracy	GDP Growth if NOT Democ-	Treatment Effect
		racy	
	Y_1	Y ₀	Y_1-Y_0
Brasil	4	1	3
Argentina	7	4	3
Bolivia	2	4	-2
Colombia	7	7	0
Peru	5	4	1
Average Treatment Effect	5	4	1

Explanation

The Fundamental Problem of Causal Inference

No units can receive **both** treatment and control

- \triangleright So we can never observe both Y_1 and Y_0 for the same unit
- ► Individual Treatment Effects are Impossible to Estimate

Potential Outcomes Example

	Democracy?	GDP Growth if Democ-	GDP Growth if NOT Democ-	Treatment Effect
		racy	racy	
	Di	Y ₁	Y_0	Y_1-Y_0
Brasil	1	4	1	3
Argentina	0	7	4	3
Bolivia	1	2	4	-2
Colombia	0	7	7	0
Peru	0	5	4	1

Explanation

Potential Outcomes Example

	Democracy?	GDP Growth if Democ-	GDP Growth if NOT Democ-	Treatment Effect
		racy	racy	
	Di	Y_1	Y_0	$Y_1 - Y_0$
Brasil	1	4	?	?
Argentina	0	?	4	?
Bolivia	1	2	?	?
Colombia	0	?	7	?
Peru	0	?	4	?

Explanation

Potential Outcomes Example

	Democracy?	GDP Growth if Democ-	GDP Growth if NOT Democ-	Observed GDP Growth
		racy	racy	
	Di	Y_1	Y_0	Y
Brasil	1	4	?	4
Argentina	0	?	4	4
Bolivia	1	2	?	2
Colombia	0	?	7	7
Peru	0	?	4	4

► Actually, nothing stops us calculating the **Average Treatment Effect**

Explanation

- Actually, nothing stops us calculating the Average
 Treatment Effect
- ► The question is, is the ATE accurate?

Rest of the Course

Explanation

► The question is, is the ATE accurate? No!

- Actually, nothing stops us calculating the Average **Treatment Effect**
- ▶ The question is, is the ATE accurate? No!

	Democracy?	if Democ-	GDP Growth if NOT Democ-	Treatment Effect
	Di	racy Y ₁	racy Y ₀	$Y_1 - Y_0$
Brasil	1	4	?	?
Argentina	0	?	4	?
Bolivia	1	2	?	?
Colombia	0	?	7	?
Peru	0	?	4	?
Average Treat- ment Effect		3	5	-2

► So what went wrong?

Explanation

- So what went wrong?
- ► The potential outcomes we observe are a biased **representation** of the potential outcomes of all the units

Explanation

- So what went wrong?
- ► The potential outcomes we observe are a biased **representation** of the potential outcomes of all the units

Explanation

- So what went wrong?
- ► The potential outcomes we observe are a biased **representation** of the potential outcomes of all the units

Why Observational Data is Biased

 \blacktriangleright $E(Y_1)$ values are **biased lower** in the observed data

Explanation

- So what went wrong?
- ► The potential outcomes we observe are a biased representation of the potential outcomes of all the units

- \blacktriangleright $E(Y_1)$ values are **biased lower** in the observed data
- \blacktriangleright $E(Y_0)$ values are **biased higher** in the observed data

- So what went wrong?
- ► The potential outcomes we observe are a biased **representation** of the potential outcomes of all the units

- \blacktriangleright $E(Y_1)$ values are **biased lower** in the observed data
- \blacktriangleright $E(Y_0)$ values are **biased higher** in the observed data
- ► So $E(Y_1) E(Y_0)$ is **biased**

Explanation

Rest of the Course

Explanation

Explanation

Explanation

Section 3

Bias

- ▶ Why are potential outcomes biased in our data?
 - Omitted Variables
 - Reverse Causation
 - 3. Selection Bias
- ▶ In all of these cases the potential outcomes are distorted so basic regression is biased

A real causal relationship:

Being misled by omitted variable bias:

A real causal relationship:

Being misled by omitted variable bias:

► A third variable causes some units to have different values of potential outcomes, AND for those same units to be treated

A real causal relationship:

Being misled by omitted variable bias:

- ► A third variable causes some units to have different values of potential outcomes, AND for those same units to be treated
- ► So treated units have non-representative Y₁
- ▶ And control units have non-representative Y₀

A real causal relationship:

Being misled by omitted variable bias:

A real causal relationship:

Being misled by omitted variable bias:

 European countries faced conditions that encouraged both democracy and rapid GDP growth

Explanation

Rest of the Course

Reverse Causation

A real causal relationship:

Being misled by reverse causation:

A real causal relationship:

Being misled by reverse causation:

▶ D does not affect Y, but higher Y makes treatment (D) more likely

Explanation

Being misled by reverse causation:

- ► D does not affect Y, but higher Y makes treatment (D) more likely
- ► So the two variables are correlated

Rest of the Course

A real causal relationship:

Being misled by reverse causation:

A real causal relationship:

Being misled by reverse causation:

► GDP Growth encourages democratization

A real causal relationship:

Being misled by reverse causation:

- ► GDP Growth encourages democratization
- ➤ So democracies are more likely to have experienced high growth rates

►
$$E(Y_1 - Y_0) = 0$$

Why Observational Data is Biased

Reverse Causation

Explanation

Explanation

$$E(Y_1|D=1) - E(Y_0|D=0) = 5 - 2 = 3$$

Rest of the Course

Selection Bias

A real causal relationship:

Being misled by Selection Bias:

Selection Bias

Explanation

A real causal relationship:

Being misled by Selection Bias:

Rest of the Course

Explanation

Rest of the Course

A real causal relationship:

► The units which benefit most from treatment (largest $y_1 - y_0$) choose treatment

Being misled by Selection Bias:

Selection Bias

A real causal relationship:

GDP Growth GDP Growth Democracy Selection into Democracy

Democracy

- ▶ The units which benefit most from treatment (largest $y_1 - y_0$) choose treatment
- ▶ We don't see any of the low y₁'s of units which avoid treatment

Self-Selection Bias

Explanation

Rest of the Course

Self-Selection Bias

Explanation

► Countries which can boost their GDP growth by becoming a

Rest of the Course

Self-Selection Bias

Explanation

► Countries which can boost their GDP growth by becoming a

Self-Selection Bias

►
$$E(y_1) - E(y_0) = 0$$

Self-Selection Bias

$$E(y_1|D=1) - E(y_0|D=0) = 8.5$$

In all of these cases, which units receive 'treatment' (D_i = 1), and why, affect our estimate of the relationship between D and Y Explanation

► This is the **Treatment Assignment Mechanism**

Rest of the Course

Explanation

- In all of these cases, which units receive 'treatment' (D_i = 1), and why, affect our estimate of the relationship between D and Y
- This is the Treatment Assignment Mechanism
- Messy treatment assignment mechanisms are why basic regression is no use for explanation

Rest of the Course

- ▶ In all of these cases, which units receive 'treatment' $(D_i = 1)$, and why, affect our estimate of the relationship between D and Y
- This is the Treatment Assignment Mechanism
- Messy treatment assignment mechanisms are why basic regression is no use for explanation
 - ► It means our comparison control cases are really misleading

- ▶ In all of these cases, which units receive 'treatment' $(D_i = 1)$, and why, affect our estimate of the relationship between D and Y
 - This is the Treatment Assignment Mechanism
- Messy treatment assignment mechanisms are why basic regression is no use for explanation
 - It means our comparison control cases are really misleading
 - \triangleright Y_0 for Malaysia is not a good guide to the Y_0 for Switzerland

- ▶ In all of these cases, which units receive 'treatment' $(D_i = 1)$, and why, affect our estimate of the relationship between D and Y
 - This is the Treatment Assignment Mechanism
- Messy treatment assignment mechanisms are why basic regression is no use for explanation
 - ► It means our comparison control cases are really misleading
 - \triangleright Y_0 for Malaysia is not a good guide to the Y_0 for Switzerland
 - What would happen if the 'untreated' units got treated?

Explanation

Treatment Assignment Mechanism

The set of factors that determine why some units have D=0 and others have D=1

Rest of the Course

The comparability of treatment and control units depends on how they got to be treated

Treatment Assignment Mechanism

The set of factors that determine why some units have D=0 and others have D=1

► Explanation is more reliable where the **Treatment**Assignment Mechanism is Independent of Potential
Outcomes

► The comparability of treatment and control units depends on how they got to be treated

Treatment Assignment Mechanism

- Explanation is more reliable where the Treatment
 Assignment Mechanism is Independent of Potential
 Outcomes
 - Independent means the values of the potential outcomes give us no information about whether that unit was treated

► The comparability of treatment and control units depends on how they got to be treated

Treatment Assignment Mechanism

- Explanation is more reliable where the Treatment
 Assignment Mechanism is Independent of Potential
 Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated
 - \rightarrow $(Y_1, Y_0) \perp D$

The comparability of treatment and control units depends on how they got to be treated

Treatment Assignment Mechanism

- Explanation is more reliable where the Treatment
 Assignment Mechanism is Independent of Potential
 Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated
 - \rightarrow $(Y_1, Y_0) \perp D$
 - $ightharpoonup Pr(D|(Y_1, Y_0)) = Pr(D)$

► The comparability of treatment and control units depends on how they got to be treated

Treatment Assignment Mechanism

- Explanation is more reliable where the Treatment
 Assignment Mechanism is Independent of Potential
 Outcomes
 - ► Independent means the values of the potential outcomes give us no information about whether that unit was treated
 - \rightarrow $(Y_1, Y_0) \perp D$
 - ► $Pr(D|(Y_1, Y_0)) = Pr(D)$
 - Potential outcomes are 'balanced' across control and treatment groups

Rest of the Course

➤ The rest of the course is mostly about the types of treatment assignment mechanisms that **avoid these biases** and provide plausible counterfactuals

- Controlled Experiments where we control the treatment assignment
 - ► Field Experiments
 - Survey Experiments
 - Lab Experiments

- 2. **Natural Experiments** where the assignment mechanism creates balanced potential outcomes
 - Randomized natural experiments
 - Regression Discontinuities
 - Instrumental Variables

- 3. **Observable Studies:** What if no suitable treatment assignments are available?
 - No historical examples of natural experiments
 - Not feasible or ethical to run a field experiment
 - Remember the purpose of using these specific treatment assignment mechanisms is to achieve comparable potential outcomes
 - One alternative way of making potential outcomes comparable is to selectively use Observable Data
 - Difference-in-Differences
 - Controlling for confouding variables
 - Matching

Analysis Types and Assumptions

Week	Assumption:	Researcher Controls Treatment Assign- ment?	Treatment Assign- ment Inde- pendent of Potential Outcomes	SUTVA	Additional Assump- tions
	Controlled Experiments				
1	Field Experiments	✓	✓	√	
2	Survey and Lab Experiments	√	√	√	Controlled Environment for treatment exposure
	Natural Experiments				
3	Randomized Natural Experiments	х	✓	√	
4	Instrumental Variables	х	√	√	First stage and Exclusion Re- striction (Instrument explains treatment but not outcome)
5	Regression Discontinuity	X	√	√	Continuity of covariates; No manipulation; No compounding discontinuities
	Observational Studies				
6	Difference-in-Differences	x	х	√	No Time-varying confounders; Parallel Trends
7	Controlling for Confounding	х	х	✓	Blocking all Back-door paths
8	Matching	X	X	√	Overlap in sample characteristics

- 4. **Small-N studies:** Some research questions have few units available
 - How do we learn about the political economy of development with few units?
 - ▶ We can at least avoid some key biases:
 - Comparative Case Studies
 - Process Tracing

- ▶ But **how much** can we learn from a causal analysis?
- Is this an accurate representation of what would happen in the real-world?
 - What was the policy problem (/academic question) you were trying to solve?
 - What details differ? Eg. context of how treatment was applied
- Generalizability to other units (External validity)
 - Would the same thing happen in another country? Next year?
 - Look out for variation in treatment, context, spillovers, learning etc.
- Any generalization requires assumptions

- ▶ We will try to identify abstract, portable processes
 - Causal Mechanisms
- **Portable:** If the weather affects election turnout ONLY in Acre, is that a useful causal mechanism?
- ▶ **Abstract:** If unions are good at mobilizing support, but so are churches, the mechanism is collective action, not union organization
- ▶ We still need to define the scope conditions in which we think this causal mechanism will operate as expected

Explanation

- ► Examples of Causal Mechanisms:
 - Citizens
 - Electoral Accountability
 - Client Power
 - Collective Action
 - Social Trust/Sanctioning
 - Wealth Effects
 - Elites
 - Violence/Coercion
 - Brokerage/Patronage
 - Persuasion/Framing
 - Incumbency Power
 - Institutions
 - Power Devolution/Median Voter
 - Network Effects
 - Evolutionary Selection
 - Conversion/Layering/Drift/Replacement

- ► Examples of Causal Mechanisms:
 - Citizens
 - Electoral Accountability Class 5
 - Client Power Class 6
 - Collective Action Class 11
 - Social Trust/Sanctioning Class 4
 - Wealth Effects
 - Elites
 - Violence/Coercion Class 8
 - Brokerage/Patronage Class 9
 - Persuasion/Framing
 - Incumbency Power Class 7
 - Institutions
 - Power Devolution/Median Voter Class 3
 - Network Effects
 - Evolutionary Selection
 - Conversion/Layering/Drift/Replacement Class 12