Enero-Marzo 2002, segundo parcial

- 1. Demuestre que la función $f(x) = x^3 9x + 8$ admite inversa en el intervalo $[\sqrt{3}, 7]$ y halle $(f^{-1})'(8)$.
- 2. Halle la pendiente de la recta tangente a la curva de ecuación $\arctan{(2y-x+1)}=\frac{y}{2}$ en el punto $\left(\pi,\frac{\pi}{2}\right)$.
- 3. Halle la derivada de $y=(2x+7)^{\cos(x)}$ para $x\in\left(-\frac{7}{2},\infty\right)$.
- 4. Halle las siguientes integrales:

a)
$$\int_0^{\sqrt{3}} \frac{5e^{\arctan(z)}}{1+z^2} dz$$

b) Para
$$s > 0$$

$$\int \frac{ds}{8s\sqrt{1 - \ln^2(s)}}.$$

c) Para
$$x \in \mathbb{R}$$
 $\int \frac{e^x(e^x+5)}{4+e^{2x}} dx$

d) Para
$$x > 0$$
 $\int \frac{\ln(3x)}{x \ln(9x)} dx$

e) Para
$$t \in \left(0, \frac{\pi}{2}\right)$$
 $\int \frac{9dt}{\sin(2t)\ln(\tan(t))}$