

Article

Parallelization of Genetic Algorithms and Propagation Techniques

Vasileios Charilogis¹, Ioannis G. Tsoulos^{2,*}

- Department of Informatics and Telecommunications, University of Ioannina, Greece; v.charilog@uoi.gr
- ² Department of Informatics and Telecommunications, University of Ioannina, Greece; itsoulos@uoi.gr
- * Correspondence: itsoulos@uoi.gr;
- [†] Current address: Department of Informatics and Telecommunications, University of Ioannina, Greece.
- [‡] These authors contributed equally to this work.

Abstract: In the field of global optimization, various methods have been developed for locating the global minimum. One of the most popular approaches is optimization using genetic algorithms. These algorithms, belonging to the category of stochastic optimization methods, have the capability to address both symmetric and asymmetric mathematical models. Their popularity stems from their exceptional performance in identifying effective solutions for the optimization process. However, this method requires computational resources and time, prompting the need for parallel techniques. In the context of this research, we propose innovative changes aiming at the efficient parallelization of genetic algorithms. This innovative method employs autonomous parallel computing units, periodically sharing the optimal solutions they discover. The implementation of this proposed methodology across various computational challenges has garnered significant interest, as the results demonstrate exceptional performance. It has been observed that increasing the number of computational threads, in combination with solution exchange techniques, can significantly reduce the number of calls to the objective function. This constitutes a critical speed criterion for finding the global minimum.

Keywords: Parallel techniques; Global optimization; Genetic algorithms; Evolutionary techniques

Citation: Charilogis V.; Tsoulos I.G.; Parallelization of Genetic Algorithms and Propagation Techniques. *Journal Not Specified* **2023**, *1*, 0.

https://doi.org/

Received:
Revised:
Accepted:
Published:

Copyright: © 2024 by the authors. Submitted to *Journal Not Specified* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

19

20

21

22

24

27

29

30

31

33

37

41

43

44

45

48

49

50

51

52

54

56

58

64

1. Introduction

Global optimization refers to an approach where solving an optimization problem aims to explore the entire search space. The main issue is that this approach can demand excessive time and computational resources, especially when the search space is large. To address this, techniques such as local optimization, parallelization, or advanced optimization methods that consider the problem's structures are often employed. The typical form of a continuous optimization problem, aiming to find the minimum, is formulated through the following function $f: S \to R$, $S \subset R^n$ is defined as

$$x^* = \arg\min_{x \in S} f(x). \tag{1}$$

The set *S* is defined as:

$$S = [a_1, b_1] \otimes [a_2, b_2] \otimes \dots [a_n, b_n]$$

The a_i and b_i are the left and right bounds respectively for the point x_i . Each point x_i must take values within the interval $[a_i, b_i]$.

For the resolution of the problem, various methods of global optimization have been developed, which have been successfully applied to a wide range of problems in various fields, such as Medicine [30,31], Chemistry [32–34], Physics [35–37], Economics [38,39], etc. Global optimization methods are divided into two main categories: deterministic and stochastic methods. In the first category belong the interval methods [40,41], where the set *S* is iteratively divided into subregions and those that do not contain the global solution are discarded based on predefined criteria. In the second category, the search for the global minimum is based on randomness. Some stochastic optimization methods that have been used by researchers include Ant Colony Optimization [42,43], Controlled Random Search [44–46], Particle Swarm Optimization [47–49], Simulated Annealing [50–52], Differential Evolution [53,54], and genetic algorithms [55–57]. Finally, there is a plethora of research referring to metaheuristic algorithms [58–60], offering new perspectives and solutions to problems in various fields.

In this article, a widely adopted method for solving the equation 1 is utilized, which is the use of genetic algorithms (GA), a choice that has gained ground due to its exceptional effectiveness in identifying efficient solutions. Genetic algorithms, initially proposed by John Holland, constitute a fundamental technique in the field of stochastic methods[1]. Inspired by biology, these algorithms simulate the principles of evolution, including genetic mutation, natural selection, and exchange of genetic material [2,4]. The integration of genetic algorithms with machine learning has proven effective in addressing complex problems and validating models. This interaction is highlighted in applications such as the design and optimization of 5G networks, contributing to path loss estimation and improving performance in indoor environments [5]. It is also applied to optimizing the movement of digital robots [6] and conserving energy in industrial robots with two arms [7]. Additionally, genetic algorithms have been employed to find optimal operating conditions for motors [8], optimize the placement of electric vehicle charging stations [9], manage energy [10], and have applications in other fields such as medicine [11,12] and agriculture [13]. Although genetic algorithms have proven to be effective, the optimization process requires significant computational resources and time. This emphasizes the necessity of implementing parallel techniques, as the execution of algorithms is significantly accelerated by the combined use of multiple computational resources. For this reason, we employ the parallel genetic algorithm. The parallel genetic algorithm refers to a variation of the genetic algorithm that utilizes parallel computations to achieve its objective. In the parallel genetic algorithm, various computational resources work simultaneously, rather than executing sequentially. This accelerates the optimization process and allows for the efficient exploration of the solution space. Parallel genetic algorithms are useful when solving a problem that demands a substantial computational load or when many possible solutions need to be examined. Parallel execution enables the algorithm to handle multiple solutions simultaneously, achieving faster and more efficient performance. Regarding the

73

74

83

91

92

100

102

103

104

108

111

113

115

117

implementation of a Parallel Genetic Algorithm (PGA), there are mainly four types of PGA models: global parallelization, island model, cellular model, and hybrid model [14]. Global parallelization within a genetic algorithm is achieved through the simultaneous handling of multiple temporary solutions by a central population. The evaluation process is executed in parallel, allowing for effective exploration and evolution of solutions. Management of temporary solutions, parallel evaluation, creation of new solutions, and replacement are presented as fundamental operational stages. Parallelization enables a more efficient execution of the genetic algorithm, improving the performance of the evaluation and evolution process [14]. The island model is a PGA that manages several subpopulations on separate islands, executing the genetic algorithm process on each island simultaneously for a different set of solutions. We will analyze this specific method and its operation in the next section in detail. In the case of the parallel cellular model of genetic algorithms, solutions are organized into a grid. Various diversity operators, such as crossover and mutation, are applied to neighboring regions within the grid. For each solution, a descendant factor is created, replacing its position within the birth region. The model is flexible regarding the structure of the grid, neighborhood strategies, and settings. Implementations may involve multiple processors or graphical processing units, with information exchange possible through physical communication networks [14]. Different implementations can manage various parameters and operators for each solution in the grid. As for the parallel hybrid approach in genetic algorithms, it combines different models of parallel genetic algorithms to solve problems. For example, a hybrid model may be used that combines the island model with global parallelization. In this case, each island executes genetic algorithms in parallel, handling its solutions within a grid. The hybrid island model can also be used with another island model, where the two island models are combined. Finally, a hybrid island-cellular model is possible, where the island model serves as the base, and each island performs cellular parallelization [14].

The present study focuses on the island model, where the total population is divided into independent subpopulations that operate concurrently and independently to find candidate solutions. However, periodically, a migration process of chromosomes with good functional values is applied, which replaces the chromosomes that appear to contribute to better solutions. Additionally, local optimization (LSR) is periodically applied to expedite the overall algorithm. This approach, combined with dissemination techniques, results in a significant improvement in the overall performance of the genetic algorithm.

The remaining portion of the article follows this structure: In section 2, the genetic algorithm is analyzed, its parallelization is discussed, as well as dissemination techniques (PT or migration methodologies), and the termination criterion. Subsequently, in section 3, the test functions used are presented in detail, along with the experimental results. Finally, in section 4, some conclusions are outlined, and future explorations are formulated.

2. Method description

2.1. The Genetic Algorithm

Genetic algorithms are inspired by natural selection and the process of evolution in nature. In their basic form, they start with an initial population of chromosomes, representing possible solutions to a specific problem. Each chromosome is represented as a "gene", and its length is equal to the dimension of the problem. The algorithm processes these solutions through iterative steps, replicating and evolving the population of solutions. At each generation, the selected solutions are crossed and mutated to improve their fit to the problem[3]. As generations progress, the population converges toward solutions with improved fit to the problem. Important factors affecting genetic algorithm performance include population size, selection rate, crossover and mutation probabilities, and strategic replacement of solutions. The choice of these parameters affects the ability of the algorithm to explore the solution space and converge to the optimal result. Subsequently, the operation of the genetic algorithm is presented through the replication and advancement of solution populations step by step:[20,21]:

120

121

122

123

124

125

126

127

128

129

130

131

132

133

136

137

138

140

141

142

145

147

149

150

151

152

153

154

155

156

157

159

161

162

163

165

- Initialization: We start by creating an initial population of solutions that represent potential answers to the problem. Each solution is represented as a set of parameters or "genes."
 - 1. **Set** N_c as the number of chromosomes.
 - 2. **Set** N_g the maximum number of allowed generations.
 - 3. **Initialize** randomly the N_c chromosomes in S.
 - 4. **Set** as p_s the selection rate of the algorithm, with $p_s \le 1$.
 - 5. **Set** as p_m the mutation rate, with $p_m \le 1$.
 - 6. **Set** generation=0.
 - 7. **For** every chromosome g_i , $i = 1, ..., N_c$ **Calculate** the fitness $f_i = f(g_i)$ of chromosome g_i .
- Selection: A subset of the current solutions is selected based on their quality, measured by a cost or fitness function. The most adapted solutions have higher chances of being selected. Chromosomes are sorted in an order of fitness contribution. Denote as N_b the integer part of $(1 p_s) \times N_c$. Chromosomes with lower functional values remain in the next generation. Conversely, a percentage of chromosomes with high functional values participate in the crossover process and are replaced by the offspring. Each offspring is created from two chromosomes (parents) of the population through the tournament selection process N_t . The population selected for the tournament process is determined by the following condition.
 - 1. If $N_c \ge 100$ then Set $N_t = 10$ Else Set: $N_t = 4$
 - 2. End if.
- Crossover: Two selected solutions (parents) are combined to create new solutions (offspring). During crossover, genes are exchanged between parents, introducing diversity. For each selected pair of parents (z,w), two additional chromosomes, represented by \tilde{z} and \tilde{w} , are generated through the following equations.

$$\tilde{z}_i = a_i z_i + (1 - a_i) w_i
\tilde{w}_i = a_i w_i + (1 - a_i) z_i$$
(2)

where i = 1, ..., n. The values a_i are uniformly distributed random numbers, with $a_i \in [-0.5, 1.5]$ [22].

- Replacement:
 - 1. **For** $i = N_b + 1$ to N_c **do**
 - (a) **Replace** g_i using the next offspring created in the crossover procedure.
 - 2. EndFor
- Evaluation: The new offspring are evaluated based on the fitness function to determine how well they solve the problem.
- Mutation: Some genes in the offspring are randomly modified. This introduces more diversity into the population and helps identify new solutions.
 - 1. **For** every chromosome g_i , $i = 1, ..., N_c$ do
 - (a) **For** each element j = 1,...,n of g_i a uniformly distributed random number $r \in [0,1]$ is drawn. The element is altered randomly if $r \leq p_m$.
 - 2. EndFor
- Generation: **Set** generation = generation + 1. The above steps are repeated for multiple generations or until a termination criterion of Tsoulos 2.3 [24] is met, such as achieving the desired fitness or specifying a predetermined maximum number of generations.
- Local search step: For improving the success in finding better solutions, a process of local optimization search takes place. In the present study, the Broyden Fletcher Goldfarb Shanno (BFGS) variant proposed by Powell [23] was employed as the local search procedure.

167

169

170

172

173

174

175

176

178

180

182

184

2.2. Parallelization of Genetic Algorithm and Propagation techniques

In the parallel island model Figure 1, an evolving population is divided into various "islands", each working concurrently to optimize a specific set of solutions. In contrast to classical parallelization, which handles a central population, the island model features decentralized populations evolving independently. Each island exchanges information with others at specific points in evolution through migration, where solutions move from one island to another, influencing the overall convergence toward the optimal solution. Migration settings determine how often it occurs and which solutions are selected for exchange. Each island can follow a similar search strategy, but for more variety or faster convergence, different approaches can be employed. Islands may have identical or diverse strategies, providing flexibility and efficiency in exploring the solution space. To implement this parallel model, each island is connected to a computational resource. For instance, as depicted in images of Figure 2, the execution of the parallel islands model involves five islands, each managing a distinct set of solutions using five processors units (PU). During the migration process, information related to solutions is exchanged among PU. In the same Figure 2, the four different techniques for spreading the chromosomes with the best functional values are depicted. In Figure 2a, we observe the migration of the best chromosomes from one island to another randomly chosen. In Figure 2b, from a randomly chosen island to all others, in Figure 2c, from all islands to a randomly chosen one, and finally, in Figure 2d, migration occurs from each island to all the others.

Algorithm 1 The overall algorithm

- 1. **Set** as N_I the total number of parallel processing units.
- 2. **Set** as N_R as the number of generations, after which each processing unit will send its best chromosomes to the remaining processing units.
- 3. **Set** *N*_P as the number of migrated chromosomes between the parallel processing units.
- 4. **Set** *PT* as propagation technique.
- 5. **Set** K = 0 the generation number.
- 6. **For** $j = 1, ..., N_I$ do in parallel
 - (a) **Execute** an generation of the GA algorithm described in algorithm 2.1 on processing unit *j*.
 - (b) If $K \mod N_R = 0$, then
 - i. **Get** the best N_P chromosomes from algorithm j.
 - ii. **Propagate** these N_P chromosomes to the rest of processing units using some propagation scheme that will be described subsequently.
 - (c) EndIf
- 7. End For
- 8. Update K = K + 1
- 9. **Check** the proposed termination rule. If the termination rule is valid, then goto step 9a else goto step 6.
 - (a) **Terminate** and report the best value from all processing units. Apply a local search procedure to this located value to enhance the located global minimum.

Figure 1. Parallelization of GA

The migration or propagation techniques, as described in this study, are periodically and synchronously performed in N_R iterations on each processing unit. Below are the migration techniques that could be defined:

- 1to1: Optimal solutions migrate from a random island to another random one, replacing the worst solutions.2a
- 1toN: Optimal solutions migrate from a random island to all others, replacing the worst solutions.2b
- Nto1: All islands send their optimal solutions to a random island, replacing the worst solutions.2c
- NtoN: All islands send their optimal solutions to all other islands, replacing the worst solutions.2d

199

200

201

202

204

205

206

207

208

209

210

211

213

214

If we assume that the migration method "ItoN" is executed, then a random island will transfer chromosomes to the other islands, except for itself. However, we kept the label "N" instead of "N-1" because the chromosomes exist on the island that sends them.

The number of solutions participating in the migration and replacement process is fully customizable and will be referred to in the experiments below.

Figure 2. Islands and propagation

2.3. Termination rule

The termination criterion employed in this study was originally introduced in the research conducted by Tsoulos [24]

- Set generation = generation+1
- In each generation, the chromosome with the best functional value $f(g_{best})$ is identified from the entire population. If this value remains the best for a specific number of generations, then the algorithm terminates. Consider $\sigma^{(generation)}$ as the associated variance at generation iter. The termination rule is formulated as:

$$generation \geq N_g \ or \ \sigma^{(generation)} \leq rac{\sigma^{(klast)}}{2}$$

where *Klast* is the last generation where a new functional value was found.

• In case the above conditions are not met, proceed to step 2.

3. Experiments

3.1. Test functions

To assess the effectiveness of the proposed method in locating the overall minimum of functions, a set of test functions sourced from pertinent literature [15,18] were employed

218

219

220

221

222

223

224

225

227

228

230

231

233

234

235

236

237

239

240

241

242

and are outlined below. The test functions, apart from their dimensionality, minima, and scalable nature, possess an additional characteristic: symmetry. According to Z.-M. Gao et al.[27], non-symmetric test functions present more challenges with classical optimization methods in terms of the success rate in finding the minimum. However, with the proposed addition, namely, periodic local optimization, it appears that the success rate tends to become almost 100% in all these functions. Of course, the classification of these functions as symmetric or asymmetric may be a challenging task, as it depends largely on how they are defined and utilized in the literature or source material.

The following is the list of test functions:

• **Bent Cigar function** The function is

$$f(x) = x_1^2 + 10^6 \sum_{i=2}^{n} x_i^2$$

with the global minimum $f(x^*) = 0$. For the conducted experiments the value n = 10 was used.

• **Bf1** function. The function Bohachevsky 1 is given by the equation

$$f(x) = x_1^2 + 2x_2^2 - \frac{3}{10}\cos(3\pi x_1) - \frac{4}{10}\cos(4\pi x_2) + \frac{7}{10}\cos(4\pi x_2) +$$

with $x \in [-100, 100]^2$.

Bf2 function. The function Bohachevsky 2 is given by the equation

$$f(x) = x_1^2 + 2x_2^2 - \frac{3}{10}\cos(3\pi x_1)\cos(4\pi x_2) + \frac{3}{10}$$

with $x \in [-50, 50]^2$.

- **Branin** function. The function is defined by $f(x) = \left(x_2 \frac{5.1}{4\pi^2}x_1^2 + \frac{5}{\pi}x_1 6\right)^2 + 10\left(1 \frac{1}{8\pi}\right)\cos(x_1) + 10 \text{ with } -5 \le x_1 \le 10, \ 0 \le x_2 \le 15.$ The value of global minimum is 0.397887.with $x \in [-10, 10]^2$.
- CM function. The Cosine Mixture function is given by the equation

$$f(x) = \sum_{i=1}^{n} x_i^2 - \frac{1}{10} \sum_{i=1}^{n} \cos(5\pi x_i)$$

with $x \in [-1,1]^n$. For the conducted experiments the value n = 4 was used.

• **Discus function** The function is defined as

$$f(x) = 10^6 x_1^2 + \sum_{i=2}^n x_i^2$$

with global minimum $f(x^*) = 0$. For the conducted experiments the value n = 10 was used.

• **Easom** function The function is given by the equation

$$f(x) = -\cos(x_1)\cos(x_2)\exp((x_2 - \pi)^2 - (x_1 - \pi)^2)$$

with $x \in [-100, 100]^2$ and global minimum -1.0

• **Exponential** function. The function is given by

$$f(x) = -\exp\left(-0.5\sum_{i=1}^{n} x_i^2\right), \quad -1 \le x_i \le 1$$

246

247

25.3

256

258

260

261

The global minimum is situated at $x^* = (0, 0, ..., 0)$ with a value -1. In our experiments, we applied this function for n = 4, 16, 64, and referred to the respective instances as EXP4, EXP16, EXP64, EXP100.

• **Griewank2** function. The function is given by

$$f(x) = 1 + \frac{1}{200} \sum_{i=1}^{2} x_i^2 - \prod_{i=1}^{2} \frac{\cos(x_i)}{\sqrt{(i)}}, \quad x \in [-100, 100]^2$$

The global minimum is located at the $x^* = (0, 0, ..., 0)$ with value 0.

- **Gkls** function. f(x) = Gkls(x, n, w), is a function with w local minima, described in [16] with $x \in [-1,1]^n$ and n a positive integer between 2 and 100. The value of the global minimum is -1 and in our experiments we have used n = 2,3 and w = 50,100.
- Hansen function. $f(x) = \sum_{i=1}^5 i \cos[(i-1)x_1+i] \sum_{j=1}^5 j \cos[(j+1)x_2+j], x \in [-10,10]^2$. The global minimum of the function is -176.541793.
- Hartman 3 function. The function is given by

$$f(x) = -\sum_{i=1}^{4} c_i \exp\left(-\sum_{j=1}^{3} a_{ij} (x_j - p_{ij})^2\right)$$

with
$$x \in [0,1]^3$$
 and $a = \begin{pmatrix} 3 & 10 & 30 \\ 0.1 & 10 & 35 \\ 3 & 10 & 30 \\ 0.1 & 10 & 35 \end{pmatrix}$, $c = \begin{pmatrix} 1 \\ 1.2 \\ 3 \\ 3.2 \end{pmatrix}$ and

$$p = \begin{pmatrix} 0.3689 & 0.117 & 0.2673 \\ 0.4699 & 0.4387 & 0.747 \\ 0.1091 & 0.8732 & 0.5547 \\ 0.03815 & 0.5743 & 0.8828 \end{pmatrix}$$

The value of global minimum is -3.862782.

• Hartman 6 function.

$$f(x) = -\sum_{i=1}^{4} c_i \exp\left(-\sum_{j=1}^{6} a_{ij} (x_j - p_{ij})^2\right)$$

with
$$x \in [0,1]^6$$
 and $a = \begin{pmatrix} 10 & 3 & 17 & 3.5 & 1.7 & 8 \\ 0.05 & 10 & 17 & 0.1 & 8 & 14 \\ 3 & 3.5 & 1.7 & 10 & 17 & 8 \\ 17 & 8 & 0.05 & 10 & 0.1 & 14 \end{pmatrix}$, $c = \begin{pmatrix} 1 \\ 1.2 \\ 3 \\ 3.2 \end{pmatrix}$ and

$$p = \left(\begin{array}{ccccc} 0.1312 & 0.1696 & 0.5569 & 0.0124 & 0.8283 & 0.5886 \\ 0.2329 & 0.4135 & 0.8307 & 0.3736 & 0.1004 & 0.9991 \\ 0.2348 & 0.1451 & 0.3522 & 0.2883 & 0.3047 & 0.6650 \\ 0.4047 & 0.8828 & 0.8732 & 0.5743 & 0.1091 & 0.0381 \\ \end{array} \right)$$

the value of global minimum is -3.322368.

• High Conditioned Elliptic function, defined as

$$f(x) = \sum_{i=1}^{n} \left(10^{6}\right)^{\frac{i-1}{n-1}} x_{i}^{2}$$

Featuring a global minimum at $f(x^*) = 0$, the experiments were conducted using the value n = 10

264

267

268

269

270

271

272

273

275

• **Potential** function. As a test case, the molecular conformation corresponding to the global minimum of the energy of N atoms interacting via the Lennard-Jones potential [17] is utilized. The function to be minimized is defined as follows:

$$V_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$
 (3)

In the current experiments two different cases were studied: N = 3, 5

• **Rastrigin** function. The function is given by

$$f(x) = x_1^2 + x_2^2 - \cos(18x_1) - \cos(18x_2), \quad x \in [-1, 1]^2$$

• Shekel 7 function.

$$f(x) = -\sum_{i=1}^{7} \frac{1}{(x - a_i)(x - a_i)^T + c_i}$$

with
$$x \in [0, 10]^4$$
 and $a = \begin{pmatrix} 4 & 4 & 4 & 4 \\ 1 & 1 & 1 & 1 \\ 8 & 8 & 8 & 8 \\ 6 & 6 & 6 & 6 \\ 3 & 7 & 3 & 7 \\ 2 & 9 & 2 & 9 \\ 5 & 3 & 5 & 3 \end{pmatrix}$, $c = \begin{pmatrix} 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.3 \end{pmatrix}$.

• Shekel 5 function.

$$f(x) = -\sum_{i=1}^{5} \frac{1}{(x - a_i)(x - a_i)^T + c_i}$$

with
$$x \in [0, 10]^4$$
 and $a = \begin{pmatrix} 4 & 4 & 4 & 4 \\ 1 & 1 & 1 & 1 \\ 8 & 8 & 8 & 8 \\ 6 & 6 & 6 & 6 \\ 3 & 7 & 3 & 7 \end{pmatrix}$, $c = \begin{pmatrix} 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \end{pmatrix}$.

Shekel 10 function.

$$f(x) = -\sum_{i=1}^{10} \frac{1}{(x - a_i)(x - a_i)^T + c_i}$$

with
$$x \in [0, 10]^4$$
 and $a = \begin{pmatrix} 4 & 4 & 4 & 4 \\ 1 & 1 & 1 & 1 \\ 8 & 8 & 8 & 8 \\ 6 & 6 & 6 & 6 \\ 3 & 7 & 3 & 7 \\ 2 & 9 & 2 & 9 \\ 5 & 5 & 3 & 3 \\ 8 & 1 & 8 & 1 \\ 6 & 2 & 6 & 2 \\ 7 & 3.6 & 7 & 3.6 \end{pmatrix}, c = \begin{pmatrix} 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.3 \\ 0.7 \\ 0.5 \\ 0.6 \end{pmatrix}$

Sinusoidal function. The function is given by

$$f(x) = -\left(2.5 \prod_{i=1}^{n} \sin(x_i - z) + \prod_{i=1}^{n} \sin(5(x_i - z))\right), \quad 0 \le x_i \le \pi.$$

The global minimum is situated at $x^* = (2.09435, 2.09435, ..., 2.09435)$ with a value $f(x^*) = -3.5$. In the performed experiments, we examined scenarios with n = 4, 8

283

284

294

296

297

and $z = \frac{\pi}{6}$. The parameter zis employed to offset the position of the global minimum [19].

• **Test2N** function. This function is given by the equation

$$f(x) = \frac{1}{2} \sum_{i=1}^{n} x_i^4 - 16x_i^2 + 5x_i, \quad x_i \in [-5, 5].$$

The function has 2^n in the specified range and in our experiments we used n = 4,5,6,7,8,9.

• **Test30N** function. This function is given by

$$f(x) = \frac{1}{10}\sin^2(3\pi x_1)\sum_{i=2}^{n-1} \left((x_i - 1)^2 \left(1 + \sin^2(3\pi x_{i+1}) \right) \right) + (x_n - 1)^2 \left(1 + \sin^2(2\pi x_n) \right)$$

with $x \in [-10, 10]$. The function has 30^n local minima in the specified range and we used n = 3, 4 in the conducted experiments.

3.2. Experimental results

To ensure the reliability and validity of the research, the experiments were conducted 30 times and cover Tables 2, 3 and 4.

The Table 2includes various test functions with combinations of parallel computing units and chromosomes. For each function, we have the number of calls to the objective function and the computation time. In all problems, there is a reduction in the number of function calls and execution time as the number of parallel computing units (PU) increases. In any case, the number of chromosomes remains constant, that is, 1PUx500chrom, 2PUx250chrom, etc. This is a positive outcome, indicating that parallelization improves the performance of the genetic algorithm. The parameters used are in accordance with Table 11.

In Figure 3, we observe a reduction in the calls to the objective function as the number of computing units increases. Similarly, in Box Figure 4, there is a decrease in the computation time of the problem with the increase in computing units.

Table 1. The following settings were initially used to conduct the experiments

Parameter	value	Explanation
N_c	500x1, 250x2, 100x5, 50x10	Chromosomes
N_g	200	Max generations
N_I	1, 2, 5, 10	Processing units or islands
N_R	no propagation in 2, 1: in every generation in 3	Rate of propagation
N_P	0 in 2, 10 : in 3	Chromosomes for migration
PT	no in Table 2, 1to1 2a, 1toN 2b, Nto1 2c, NtoN 2d	Propagation technique
StR	Double Box2.3	Termination rule
p_s	10%	Selection rate
p_m	5%	Mutation rate
LSR	0.1% in Table 2, 0.5% in Table 3	Local search rate

Table 2. Statistical analysis comparing execution times (seconds) and function calls across varying numbers of processor units.

Problems	$N_i = 1$ $N_c = 500$	$N_i = 1$ $N_c = 500$	$N_i = 2$ $N_c = 250$	$N_i = 2$ $N_C = 250$	$N_i = 5$ $N_c = 100$	$N_i = 5$ $N_c = 100$	$N_i = 10$ $N_c = 50$	$N_i = 10$ $N_c = 50$
	Calls	Time	Calls	Time	Calls	Time	Calls	Time
BF1	10578	0.557	10555	0.193	10533	0.126	10511	0.121
BF2	10568	0.554	10545	0.192	10523	0.127	10533	0.119
BRANIN	46793	2.308	31231	0.562	11125	0.134	10533	0.169
CAMEL	26537	1.338	15875	0.29	15833	0.188	10861	0.123
CIGAR10	10502	1.089	10577	0.383	10583	0.222	10541	0.206
CM4	10614	1.054	10583	0.249	10581	0.151	10556	0.139
DISCUS10	10548	1.09	10532	0.382	10500	0.222	10502	0.205
EASOM	100762	4.504	100610	1.66	94541	1.089	22845	0.248
ELP10	10601	1.15	10590	0.436	10574	0.26	10557	0.242
EXP4	16621	1.092	10587	0.249	10560	0.15	10544	0.143
EXP16	10680	1.336	10654	0.53	10643	0.287	10626	0.258
EXP64	10857	2.333	10829	1.235	10814	0.825	10830	0.728
EXP100	10855	3.517	10901	1.763	10868	1.25	10887	1.052
GKLS250	50804	2.825	25832	0.607	11711	0.194	10870(93)	0.198
GKLS350	40707	2.327	23720	0.522	17646	0.26	14130	0.202
GRIEWANK2	10555	0.565	10532	0.197	10517	0.126	10492	0.118
GRIEWANK10	10679	1.079	10629	0.407	10613	0.239	10609	0.22
POTENTIAL3	39607	2.057	34327	0.881	18313	0.34	15471	0.279
PONTENTIAL5	33542	1.653	33737	1.074	12040	0.34	11082	0.291
PONTENTIAL6	28901(3)	1.56	26419(16)	1.018	14265(3)	0.478	11109(10)	0.356
PONTENTIAL10	42644(13)	3.316	37897(23)	2.538	14080(10)	0.937	11319(6)	0.66
HANSEN	46894(90)	2.494	28191(80)	0.575	11085(56)	0.153	11065	0.158
HARTMAN3	22235	1.525	19030	0.379	16463	0.212	12048	0.146
HARTMAN6	18352	1.505	15902	0.429	16726	0.279	12243	0.196
RASTRIGIN	16567	0.855	10543	0.193	10521	0.125	10506	0.116
ROSENBROCK8	10863	0.916	10700	0.333	10698	0.199	10772	0.196
POSENBROCK16	10918	1.371	10946	0.516	10867	0.304	10886	0.271
SHEKEL5	32319(50)	2.069	17913(50)	0.412	11185(36)	0.159	11010(40)	0.15
SHEKEL7	51183(73)	3.277	14981(53)	0.342	11457(60)	0.163	11035(50)	0.154
SHEKEL10	47337(70)	2.977	46927(76)	1.113	16310(56)	0.23	11329(70)	0.152
SINU4	66625(83)	4.344	31511(86)	0.77	13979(73)	0.211	11004(43)	0.161
SINU8	29705	2.57	27613	0.987	24592	0.549	11422	0.236
TEST2N4	25553	1.558	17701	0.397	24763	0.359	13217	0.178
TEST2N5	20297	1.327	18440	0.457	16759	0.265	11483	0.168
TEST2N6	20450	1.311	20837	0.566	18123	0.315	11988	0.194
TEST2N7	26113	1.924	23940	0.723	20825	0.384	11339	0.196
TEST2N8	18846	1.454	18549	0.585	16700	0.329	11658	0.218
TEST2N9	18154	1.582	18803	0.649	17100	0.368	13299	0.262
TEST30N3	49235	2.46	24129	0.458	14743	0.188	12345	0.152
TEST30N4	29667	1.553	17501	0.358	13367	0.186	11778	0.151

302

304

308

310

In Table 2 The values in parentheses represent the percentage of runs where the global optimum was successfully identified. The absence of this fraction indicates a 100% success rate, signifying that the global minimum was found in every execution.

Figure 3. Statistical comparison of function calls with different number of processor units.

Figure 4. Statistical comparison of times with different number of processor units.

Figures 3 and 4, extracting information from Table 2, demonstrate the effectiveness of the parallel process of the genetic algorithm. Specifically, in Figure 3, the objective function calls are reduced to half of the initial calls with only two computational units. This reduction in calls continues significantly with the increase in computational units. In Figure 4, we observe a similar behavior in the algorithm termination times. In this case, the times are noticeably shorter in the parallel process with ten (10) computational units compared to a single computational unit. In the comparisons presented above, a decrease in the required computational power is observed, as shown in Figure 3, along with a reduction in the time needed to find solutions, as depicted in Figure 4. In 2, additional interesting details are presented regarding the objective function calls and computational times, including: minimum, maximum, average, and standard deviation. In conclusion, as the workload is

distributed across an increasing number of computing units, there is an improvement in performance. This fact enhances the overall methodology.

Table 3. Evaluating function calls and time (seconds) using various propagation techniques for comparison.

Problems	no	no	1to1	1to1	1toN	1toN	Nto1	Nto1	NtoN	NtoN
	propagation	propagation	Calls	Time	Calls	Time	Calls	Time	Calls	Time
	Calls	Time								
BF1	10809	0.123	10741	0.127	10770	0.126	10746	0.127	10808	0.136
BF2	10725	0.124	10773	0.126	10764	0.13	10783	0.126	10731	0.136
BRANIN	48364	0.56	31470	0.397	18776	0.251	35367	0.448	19224	0.284
CAMEL	29087	0.337	18597	0.23	14429	0.185	24977	0.313	19341	0.286
CIGAR10	10854	0.233	10880	0.216	10915	0.222	10890	0.22	10869	0.235
CM4	10911	0.147	10923	0.15	10941	0.15	10918	0.15	10915	0.163
DISCUS10	10651	0.222	10632	0.213	10651	0.217	10641	0.22	10606	0.231
EASOM	99569	1.094	100163	1.106	100160	1.121	100155	1.139	98336	1.156
ELP10	10832	0.276	10902	0.261	10829	0.266	10811	0.26	10952	0.278
EXP4	10803	0.151	12037	0.167	12695	0.183	11416	0.164	10819	0.158
EXP16	11228	0.272	11259	0.276	11262	0.285	11253	0.28	11260	0.294
EXP64	12127	0.837	12204	0.848	12184	0.85	12151	0.849	12199	0.877
EXP100	12396	1.397	12376	1.4	12372	1.36	12460	1.387	12414	1.42
GKLS250	48672	0.813	55586	0.949	31493	0.564	58638	1.007	27840	0.532
GKLS350	55231	0.815	42100	0.636	28609	0.459	46923	0.72	25341	0.428
GRIEWANK2	10682	0.127	10670	0.125	10697	0.126	10683	0.127	10684	0.134
GRIEWANK10	11144	0.239	11102	0.232	11123	0.239	11171	0.229	11153	0.254
POTENTIAL3	45748	0.832	33598	0.643	17276	0.347	32603	0.631	16870	0.358
PONTENTIAL5	41946	1.156	41112	1.179	19912	0.597	37687	1.089	19622	0.614
PONTENTIAL6	46507	1.639	40518	1.449	21941	0.817	36138	1.315	21528	0.844
PONTENTIAL10	47031	3.4	45166	3.361	40212	3.239	42057	3.183	34750	2.883
HANSEN	63130	0.85	65414	0.918	39649	0.595	67369	0.947	31149	0.507
HARTMAN3	19170	0.248	20339	0.274	16280	0.226	20001	0.265	14587	0.219
HARTMAN6	23725	0.423	16856	0.285	14141	0.233	16955	0.288	13964	0.239
RASTRIGIN	11264	0.147	11256	0.132	10652	0.126	10668	0.128	11290	0.145
ROSENBROCK8	11727	0.204	11892	0.2	11681	0.203	11708	0.199	11882	0.217
POSENBROCK16	12372	0.42	12187	0.304	12394	0.313	12438	0.324	12455	0.324
SHEKEL5	44893	0.645	54184	0.751	34937	0.491	53277	0.755	40859	0.621
SHEKEL7	45722	0.638	55109	0.778	33440	0.472	49029	0.702	46066	0.696
SHEKEL10	58361	0.854	49400	0.721	32691	0.471	52798	0.783	38305	0.608
SINU4	64584	0.972	59414	0.922	36052	0.591	62924	0.972	52937	0.857
SINU8	32572	0.793	25552	0.63	19461	0.462	28744	0.716	18173	0.445
TEST2N4	23430	0.339	20474	0.3	17001	0.261	21468	0.316	18436	0.294
TEST2N5	22662	0.358	20614	0.33	16171	0.262	19697	0.316	16421	0.282
TEST2N6	21663	0.365	18721	0.323	16600	0.289	19556	0.339	14633	0.299
TEST2N7	24401	0.456	18990	0.354	15792	0.3	20967	0.405	13995	0.28
TEST2N8	21017	0.418	18532	0.369	16644	0.339	20139	0.413	13980	0.298
TEST2N9	22684	0.488	18538	0.407	16302	0.353	18929	0.421	14620	0.344
TEST30N3	24524	0.318	22799	0.296	20436	0.297	23186	0.311	19968	0.316
TEST30N4	21090	0.28	25160	0.358	21216	0.319	19444	0.276	16711	0.267
Total	1164308	24.01	1088240	22.74	829551	18.33	1097765	22.86	836693	18.95

317

319

320

321

322

324

Figure 5. Statistical Comparison of function calls with different number of processor units and different propagation techniques

Figure 6. Comparison of times (seconds) with different number of processor units and different propagation techniques

The parameters applied for the creation of Table 3 correspond to those presented in Table 1. Chromosome migration with the best functional values occurs in every generation, involving a specific number of chromosomes ten, $N_P = 10$ participating in the propagation process. To achieve a more effective implementation of propagation techniques, we proceeded to increase the local optimization rate applied to Table 3 from 0.1% (as presented in Table 2) to 0.5% *LSR*. However, the procedure of local optimization was maintained at certain levels because an excessive increase would result in an elevated number of calls to the objective function. Conversely, reducing the LSR would lead to a decrease in the success rate concerning the identification of optimal chromosomes. In the statistical representation of Figure 5, we observe the superiority of the '1 to N' propagation, meaning the transfer of ten chromosomes from a random island to all others. Equally, effective appears to be the

329

331

332

 $^{\prime}N$ to N^{\prime} propagation. As a general rule, if we classify migration methods based on their performance, they will be ranked as follows: $^{\prime}1toN^{\prime}$ 2b, $^{\prime}NtoN^{\prime}$ 2d, $^{\prime}1to1^{\prime}2a$, and $^{\prime}Nto1^{\prime}2c$. The first two strategies, where migration occurs across all islands, demonstrate better performance compared to the other two, where migration only affects one island. The success of $^{\prime}1toN^{\prime}$ 2b and $^{\prime}NtoN^{\prime}$ 2d , albeit with a slight difference, appears to be due to the migration of the best chromosomes to all islands. This leads to an improvement in the convergence of the algorithm towards better candidate solutions in a shorter time frame. The actual times are shown in Figure 6.

Table 4. Comparison of function calls using different stochastic optimization methods

PROBLEMS PSO IPSO RDE TDE GA PGA BF1 50398 11478 7943(86) 5535 10578 10501 BF2 50397 11292 8472(76) 5539 10568 10510 BRANIN 44800 10849 5513 5514 46793 10838 CAMEL 48242 11051 5555 5514 26537 11087 CIGAR10 50581 12331 5586 100573 10502 10568 CM4 48559 11767 5550 5538 10614 10548 DISCUSI0 50523 14328 18187 100518 10548 10503 EASOM 21786 10938 29256 24691 100762 10797 ELP10 49837 4323 11933 100584 10601 1053 EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
BF2 50397 11292 8472(76) 5539 10568 10510 BRANIN 44800 10849 5513 5514 46793 10838 CAMEL 48242 11051 5555 5514 26537 11087 CIGARIO 50581 12331 5586 100573 10502 10566 CM4 48559 11767 5550 5538 10614 10548 DISCUSIO 50523 14328 18187 100518 10548 10503 EASOM 21786 10938 29256 24691 100762 10797 ELP10 49837 4323 11933 100584 10601 10559 EXP4 48523 11041 46752 19467 16621 10503 EXP46 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS250 43925	PROBLEMS	PSO	IPSO	RDE	TDE	GA	PGA
BRANIN 44800 10849 5513 5514 46793 10838 CAMEL 48242 11051 5555 5514 26537 11087 CIGAR10 50581 12331 5586 100573 10502 10566 CM4 48559 11767 5550 5538 10614 10548 DISCUS10 50523 14328 18187 100518 10548 10503 EASOM 21786 10938 29256 24691 100762 10797 ELP10 49837 4323 11933 100584 10601 10559 EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 1155696 GRIEWANK2 44021 <td>BF1</td> <td>50398</td> <td>11478</td> <td>7943(86)</td> <td>5535</td> <td>10578</td> <td>10501</td>	BF1	50398	11478	7943(86)	5535	10578	10501
CAMEL 48242 11051 5555 5514 26537 11087 CIGAR10 50581 12331 5586 100573 10502 10566 CM4 48559 11767 5550 5538 10614 10548 DISCUS10 50523 14328 18187 100518 10548 10503 EASOM 21786 10938 29256 24691 100762 10797 ELP10 49837 4323 11933 100584 10601 10559 EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50	BF2	50397	11292	8472(76)	5539	10568	10510
CIGAR10 50581 12331 5586 100573 10502 10566 CM4 48559 11767 5550 5538 10614 10548 DISCUS10 50523 14328 18187 100518 10548 10503 EASOM 21786 10938 29256 24691 100762 10797 ELP10 49837 4323 11933 100584 10601 10559 EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3	BRANIN	44800	10849	5513	5514	46793	10838
CM4 48559 11767 5550 5538 10614 10548 DISCUS10 50523 14328 18187 100518 10548 10503 EASOM 21786 10938 29256 24691 100762 10797 ELP10 49837 4323 11933 100584 10601 10559 EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIA	CAMEL	48242	11051	5555	5514	26537	11087
DISCUS10 50523 14328 18187 100518 10548 10503 EASOM 21786 10938 29256 24691 100762 10797 ELP10 49837 4323 11933 100584 10601 10559 EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10)	CIGAR10	50581	12331	5586	100573	10502	10566
EASOM 21786 10938 29256 24691 100762 10797 ELP10 49837 4323 11933 100584 10601 10559 EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24114(66) 5607(6) 5588(3) 28901(3) 11143(10)	CM4	48559	11767	5550	5538	10614	10548
ELP10 49837 4323 11933 100584 10601 10559 EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(DISCUS10	50523	14328	18187	100518	10548	10503
EXP4 48523 11041 46752 19467 16621 10503 EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13311 5522 5521 46894(90) <td< td=""><td>EASOM</td><td>21786</td><td>10938</td><td>29256</td><td>24691</td><td>100762</td><td>10797</td></td<>	EASOM	21786	10938	29256	24691	100762	10797
EXP16 50518 10973 5537 69494 10680 10595 GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 <	ELP10	49837	4323	11933	100584	10601	10559
GKLS250 43925 10869 41016 11430 50804 10893(76) GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567	EXP4	48523	11041	46752	19467	16621	10503
GKLS350 48202 10750 56220 16831 40707 11555(96) GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567	EXP16	50518	10973	5537	69494	10680	10595
GRIEWANK2 44021 13514 5538 5533 10555 10498 GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 <td>GKLS250</td> <td>43925</td> <td>10869</td> <td>41016</td> <td>11430</td> <td>50804</td> <td>10893(76)</td>	GKLS250	43925	10869	41016	11430	50804	10893(76)
GRIEWANK10 50557(3) 12258(86) 5612(13) 85742(3) 10679 10576 POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 1091	GKLS350	48202	10750	56220	16831	40707	11555(96)
POTENTIAL3 49213 12124 5530 5523 39607 11039 PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(GRIEWANK2	44021	13514	5538	5533	10555	10498
PONTENTIAL5 50548 16027 5587 5569 33542 11134 PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL10 50124(63) 14176 5535(90) 5523	GRIEWANK10	50557(3)	12258(86)	5612(13)	85742(3)	10679	10576
PONTENTIAL6 50558(3) 24414(66) 5607(6) 5588(3) 28901(3) 11143(10) PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SINU4 49239 11349 5527 5510	POTENTIAL3	49213	12124	5530	5523	39607	11039
PONTENTIAL10 50641(6) 31434 5670(3) 5661(6) 42644(13) 11290(20) HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 2	PONTENTIAL5	50548	16027	5587	5569	33542	11134
HANSEN 47296 13131 5522 5521 46894(90) 11055 HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705<	PONTENTIAL6	50558(3)	24414(66)	5607(6)	5588(3)	28901(3)	11143(10)
HARTMAN3 47778 10961 5525 5522 22235 11097 HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 2553<	PONTENTIAL10	50641(6)	31434	5670(3)	5661(6)	42644(13)	11290(20)
HARTMAN6 50088(33) 11085(86) 5536(83) 5536 18352 11273 RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56)	HANSEN	47296	13131	5522	5521	46894(90)	11055
RASTRIGIN 47433 11594 5542 5524 16567 10506 ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N4 49177 20839 5514 5511 296	HARTMAN3	47778	10961	5525	5522	22235	11097
ROSENBROCK8 50549 13487 72088 100503 10863 10645 POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 2966	HARTMAN6	50088(33)	11085(86)	5536(83)	5536	18352	11273
POSENBROCK16 50584 12659 21517 10645 10918 10957 SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	RASTRIGIN	47433	11594	5542	5524	16567	10506
SHEKEL5 49944(33) 13058(93) 5532(86) 5524(93) 32319(50) 10883(43) SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	ROSENBROCK8	50549	13487	72088	100503	10863	10645
SHEKEL7 50062(53) 12134(96) 5533(96) 5523 51183(73) 10926(53) SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	POSENBROCK16	50584	12659	21517	10645	10918	10957
SHEKEL10 50124(63) 14176 5535(90) 5523 47337(70) 11207(80) SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	SHEKEL5	49944(33)	13058(93)	5532(86)	5524(93)	32319(50)	10883(43)
SINU4 49239 11349 5527 5510 66625(83) 11063(76) SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	SHEKEL7	50062(53)	12134(96)	5533(96)	5523	51183(73)	10926(53)
SINU8 50224 11295 5537(80) 5520 29705 11378 TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	SHEKEL10	50124(63)	14176	5535(90)	5523	47337(70)	11207(80)
TEST2N4 50112(93) 13173 5529 5519 25553 11049 TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	SINU4	49239	11349	5527	5510	66625(83)	11063(76)
TEST2N9 50517(13) 17510(60) 5546(6) 5535(56) 18154 11145 TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	SINU8	50224	11295	5537(80)	5520	29705	11378
TEST30N3 44301 19638 5515 5511 49235 11051 TEST30N4 49177 20839 5514 5511 29667 11301	TEST2N4	50112(93)	13173	5529	5519	25553	11049
TEST30N4 49177 20839 5514 5511 29667 11301	TEST2N9	50517(13)	17510(60)	5546(6)	5535(56)	18154	11145
	TEST30N3	44301	19638	5515	5511	49235	11051
TOTAL 1639257 457850 446562 767771 997850 370671	TEST30N4	49177	20839	5514	5511	29667	11301
	TOTAL	1639257	457850	446562	767771	997850	370671

Figure 7. Statistical comparison of function calls using different stochastic optimization methods

Figure 8. Comparison of total function calls using different stochastic optimization methods

For conducting experiments among stochastic methods of global optimization, including Particle Swarm Optimization (PSO), Improved PSO (IPSO)[28], Differential Evolution with random selection (DE), Differential Evolution with tournament selection (TDE)[29], Genetic Algorithm (GA), and Parallel Genetic Algorithm (PGA), certain parameters remained constant. The population size for all methods is 500 particles or agents or chromosomes. In PGA, the population consists of 20PUx25chrom, while all other parameters remain the same as those described in table 2. Any method employing LSR maintained this parameter at the same value. The double box is a termination rule that is the same for all methods. The values resulting from experiments in the comparison4 table are depicted in 7 and 8 figures. The box plots of Figure 7 reveal the superiority of PGA, as objective function calls remain approximately at 10,000 across all problems. Conversely, IPSO, DE, and TDE (especially DE) exhibit a low number of calls in some problems, while in others, they display significant increases. During initialization and optimization, each method has a specific lower limit of calls, which varies from method to method. PGA easily reaches this threshold with very

35.2

small deviations, as illustrated in the same figure. The 8 figure presents the total call values for each method.

Figure 9. Different variations of the ELP problem

In Figure 9, it is observed that with the collaboration of sublisting units, the process of finding minima is significantly accelerated.

4. Conclusions

According to the relevant literature, despite the high success rate they exhibit in finding good functional values, genetic algorithms require significant computational power, leading to longer processing times. This manuscript introduces a parallel technique for global optimization, where a genetic algorithm is employed to solve the problem. Specifically, the initial population of chromosomes is divided into various subpopulations that run on different computational units. During the optimization process, the islands operate independently but periodically exchange chromosomes with good functional values. The number of chromosomes participating in migration is limited by the crossover and mutation rates. Additionally, periodic local optimization is performed on each computational unit, which, in turn, should not require excessive computational power (function calls).

Experimental results revealed that even parallelization with just two computational units significantly reduces both the number of function calls and processing time, proving to be quite effective even with more computational units. Furthermore, it was observed that the most effective information exchange technique was the so-called '1toN,' with a slight difference from the 'NtoN,' where a randomly selected subpopulation sends information to all other subpopulations. Moreover, the 'NtoN' technique, where all subpopulations send information to all other subpopulations, seems to perform equally well.

Similar dissemination techniques have been applied to other stochastic methods, such as the Differential Evolution (DE) method by Charilogis and Tsoulos [25] and the Particle Swarm Optimization (PSO) method by Charilogis and Tsoulos [26]. In the case of Differential Evolution, the proposed dissemination technique is '1to1' 2a and not '1toN'

378

379 380

382

383

386

387

388

390

393

394

403

404

405

406

407

408

411

412

413

414

415

416

417

418

423

424

425

2b as suggested in this study. However, in the case of PSO and GA, the recommended dissemination technique is the same.

The parallelization of various methodologies of genetic algorithms or even different stochastic techniques for global optimization can be explored with the aim of improving the methodology. However, in such heterogeneous environments, more efficient termination criteria are required, or even their combined use.

Author Contributions: I.G. Tsoulos conceptualized the idea and methodology, supervised the technical aspects related to the software, and contributed to manuscript preparation. V. Charilogis conducted the experiments using various datasets, performed statistical analysis, and collaborated with all authors in manuscript preparation. All authors have reviewed and endorsed the conclusive version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors have no conflicts of interest to declare.

Different variations of the ELP problem

References

1. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73.

- 2. Stender, J. Parallel Genetic Algorithms: Theory & Applications; IOS Press: Amsterdam, The Netherlands, 1993.
- Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Publishing Company: Reading, MA, USA, 1989.
- 4. Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996.
- 5. :Santana, Y.H.; Alonso, R.M.; Nieto, G.G.; Martens, L.; Joseph, W.; Plets, D. Indoor genetic algorithm-based 5G network planning using a machine learning model for path loss estimation. Appl. Sci. 2022, 12, 3923.
- 6. : Liu, X.; Jiang, D.; Tao, B.; Jiang, G.; Sun, Y.; Kong, J.; Chen, B. Genetic algorithm-based trajectory optimization for digital twin robots. Front. Bioeng. Biotechnol. 2022, 9, 793782. [7]:
- 7. Nonoyama, K.; Liu, Z.; Fujiwara, T.; Alam, M.M.; Nishi, T. Energy-efficient robot configuration and motion planning using genetic algorithm and particle swarm optimization. Energies 2022, 15, 2074.
- 8. Liu, K.; Deng, B.; Shen, Q.; Yang, J.; Li, Y. Optimization based on genetic algorithms on energy conservation potential of a high speed SI engine fueled with butanol–gasoline blends. Energy Rep. 2022, 8, 69–80.
- 9. Zhou, G.; Zhu, Z.; Luo, S. Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm. Energy 2022, 247, 123437
- 10. Min, D.; Song, Z.; Chen, H.; Wang, T.; Zhang, T. Genetic algorithm optimized neural network based fuel cell hybrid electric vehicle energy management strategy under start-stop condition. Appl. Energy 2022, 306, 118036
- 11. Doewes, R.I.; Nair, R.; Sharma, T. Diagnosis of COVID-19 through blood sample using ensemble genetic algorithms and machine learning classifier. World J. Eng. 2022, 19, 175–182.
- 12. Choudhury, S.; Rana, M.; Chakraborty, A.; Majumder, S.; Roy, S.; RoyChowdhury, A.; Datta, S. Design of patient specific basal dental implant using Finite Element method and Artificial Neural Network technique. J. Eng. Med. 2022, 236, 1375–1387.
- 13. Chen, Q.; Hu, X. Design of intelligent control system for agricultural greenhouses based on adaptive improved genetic algorithm for multi-energy supply system. Energy Rep. 2022, 8, 12126–12138
- 14. Tomohiro Harada and Enrique Alba. 2020. Parallel Genetic Algorithms: A Useful Survey. ACM Comput. Surv. 53, 4, Article 86 (August 2020), 39 pages. https://doi.org/10.1145/3400031
- 15. C.A. Floudas, P.M. Pardalos, C. Adjiman, W. Esposoto, Z. Gümüs, S. Harding, J. Klepeis, C. Meyer, C. Schweiger, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, Dordrecht, 1999.
- 16. M. Gaviano, D.E. Ksasov, D. Lera, Y.D. Sergeyev, Software for generation of classes of test functions with known local and global minima for global optimization, ACM Trans. Math. Softw. 29, pp. 469-480, 2003.
- 17. J.E. Lennard-Jones, On the Determination of Molecular Fields, Proc. R. Soc. Lond. A 106, pp. 463-477, 1924.
- M. Montaz Ali, Charoenchai Khompatraporn, Zelda B. Zabinsky, A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems, Journal of Global Optimization 31, pp 635-672, 2005.

431

432

433

434

435

436

438

439

440

441

442

443

444

445

446

450

451

45.2

453

454

455

458

459

460

461

462

463

464

465

466

468

469

470

471 472

473

474

476

478

479

480

481

482

483

- 19. Z.B. Zabinsky, D.L. Graesser, M.E. Tuttle, G.I. Kim, Global optimization of composite laminates using improving hit and run, In: Recent advances in global optimization, pp. 343-368, 1992.
- Yu, X., Gen, M. (2010). Introduction to Evolutionary Algorithms. Springer London Dordrecht Heidelberg New York. ISBN 978-1-84996-128-8 e-ISBN 978-1-84996-129-5 DOI 10.1007/978-1-84996-129-5.
- 21. Lawrence D. (1991). Handbook Of Genetic Algorithms. Publisher: Thomson Publishing Group (First Edition)
- 22. P. Kaelo, M.M. Ali, Integrated crossover rules in real coded genetic algorithms, European Journal of Operational Research 176, pp. 60-76, 2007.
- 23. M.J.D Powell, A Tolerant Algorithm for Linearly Constrained Optimization Calculations, Mathematical Programming 45, pp. 547-566, 1989.
- 24. Tsoulos, I.G. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 2008, 203, 598-607.
- 25. Charilogis, V.; Tsoulos, I.G. A Parallel Implementation of the Differential Evolution Method. Analytics 2023, 2, 17–30.
- 26. Charilogis, V.; Tsoulos, I.G.; Tzallas, A. (2023). An Improved Parallel Particle Swarm Optimization. SN Computer Science (2023) 4:766
- 27. Gao, Z.M., Zhao, J., Hu,Y.R., Chen, H.F. (2021). The Challenge for the Nature Inspired Global Optimization Algorithms: Non-Symmetric Benchmark Functions. IEEE Access, July 26, 2021.
- Charilogis, V., Tsoulos, I. (2022). Toward an Ideal Particle Swarm Optimizer for Multidimensional Functions. Information 2022, 13(5), 217; Doi:10.3390/info13050217.
- 29. Charilogis, V., Tsoulos, I., Tzallas, A., Karvounis, E. (2022). Modifications for the Differential Evolution Algorithm. Symmetry 2022,14(3),447; Doi: 10.3390/sym14030447
- 30. Eva K. Lee, Large-Scale Optimization-Based Classification Models in Medicine and Biology, Annals of Biomedical Engineering 35, pp 1095-1109, 2007.
- 31. Y. Cherruault, Global optimization in biology and medicine, Mathematical and Computer Modelling 20, pp. 119-132, 1994.
- S. Heiles, R. L. Johnston, Global optimization of clusters using electronic structure methods, Int. J. Quantum Chem. 113, pp. 2091– 2109, 2013.
- 33. W.H. Shin, J.K. Kim, D.S. Kim, C. Seok, GalaxyDock2: Protein–ligand docking using beta-complex and global optimization, J. Comput. Chem. **34**, pp. 2647–2656, 2013.
- 34. A. Liwo, J. Lee, D.R. Ripoll, J. Pillardy, H. A. Scheraga, Protein structure prediction by global optimization of a potential energy function, Biophysics **96**, pp. 5482-5485, 1999.
- 35. L. Yang, D. Robin, F. Sannibale, C. Steier, W. Wan, Global optimization of an accelerator lattice using multiobjective genetic algorithms, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 609, pp. 50-57, 2009.
- 36. E. Iuliano, Global optimization of benchmark aerodynamic cases using physics-based surrogate models, Aerospace Science and Technology 67, pp.273-286, 2017.
- 37. Q. Duan, S. Sorooshian, V. Gupta, Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resources Research 28, pp. 1015-1031, 1992.
- 38. Zwe-Lee Gaing, Particle swarm optimization to solving the economic dispatch considering the generator constraints, IEEE Transactions on **18** Power Systems, pp. 1187-1195, 2003.
- 39. C. D. Maranas, I. P. Androulakis, C. A. Floudas, A. J. Berger, J. M. Mulvey, Solving long-term financial planning problems via global optimization, Journal of Economic Dynamics and Control **21**, pp. 1405-1425, 1997.
- 40. M.A. Wolfe, Interval methods for global optimization, Applied Mathematics and Computation 75, pp. 179-206, 1996.
- 41. T. Csendes and D. Ratz, Subdivision Direction Selection in Interval Methods for Global Optimization, SIAM J. Numer. Anal. 34, pp. 922–938, 1997.
- 42. M. Dorigo, M. Birattari and T. Stutzle, Ant colony optimization, IEEE Computational Intelligence Magazine 1, pp. 28-39, 2006.
- 43. K. Socha, M. Dorigo, Ant colony optimization for continuous domains, European Journal of Operational Research 185, pp. 1155-1173, 2008.
- W. L. Price, Global optimization by controlled random search, Journal of Optimization Theory and Applications 40, pp. 333-348, 1983.
- 45. Ivan Křivý, Josef Tvrdík, The controlled random search algorithm in optimizing regression models, Computational Statistics & Data Analysis **20**, pp. 229-234, 1995.
- 46. M.M. Ali, A. Törn, and S. Viitanen, A Numerical Comparison of Some Modified Controlled Random Search Algorithms, Journal of Global Optimization 11,pp. 377–385,1997.
- 47. J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 International Conference on Neural Networks, 1995, pp. 1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968.
- 48. Riccardo Poli, James Kennedy kennedy, Tim Blackwell, Particle swarm optimization An Overview, Swarm Intelligence 1, pp 33-57, 2007.
- 49. Ioan Cristian Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Information Processing Letters **85**, pp. 317-325, 2003.
- 50. S. Kirkpatrick, CD Gelatt, , MP Vecchi, Optimization by simulated annealing, Science 220, pp. 671-680, 1983.
- 51. L. Ingber, Very fast simulated re-annealing, Mathematical and Computer Modelling 12, pp. 967-973, 1989.

490

491

492

493

494

495

497

498

- 52. R.W. Eglese, Simulated annealing: A tool for operational research, Simulated annealing: A tool for operational research 46, pp. 271-281, 1990.
- 53. R. Storn, K. Price, Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization 11, pp. 341-359, 1997.
- 54. J. Liu, J. Lampinen, A Fuzzy Adaptive Differential Evolution Algorithm. Soft Comput 9, pp.448–462, 2005.
- 55. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, Reading, Massachussets, 1989.
- 56. Z. Michaelewicz, Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, Berlin, 1996.
- 57. S.A. Grady, M.Y. Hussaini, M.M. Abdullah, Placement of wind turbines using genetic algorithms, Renewable Energy **30**, pp. 259-270, 2005.
- 58. I. BoussaïD, J. Lepagnot, P. Siarry, P., A survey on optimization metaheuristics. Information sciences 237, pp. 82-117, 2013.
- 59. T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, A. Cosar, A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering 137, 106040, 2019.
- 60. K. Hussain, M.N.M. Salleh, S. Cheng, Y. Shi, Metaheuristic research: a comprehensive survey. Artificial Intelligence Review 52, pp. 2191-2233, 2019.