2. Task - Classification

January 19, 2024

1 2. Task - Classification

- Link to dataset https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package/
- Since our dataset has labels as classes, either it **will** or **won't** rain, we are gonna use Classification algorithms.
- We are gonna use the dataset used in our 1. Task Exploration data analysis and clustering (Check it before proceeding in the 2. Task to better understand the dataset).
- Our goal of the classification in this dataset will be to predict, given the features of an example, whether or not it will rain tommorow. The output of the classification model will be True (1), if the model predicts that it will rain tommorow, or False (0) in case it won't rain tommorow.

NOTE: Difference between Regression and Classification tasks is that in Regression we want to predict real value, such as the price of a house, price of a cryptocurrency, etc, whereas in Classification we want to predict classes (e.g. to which class the example falls to, recognize handwritten digits)

1.1 Import packages

1.2 Load dataset

• Load the dataset and take a closer look at the examples

```
[ ]: pathToDataset = "..\WeatherAUS_Data\weatherAUS.csv"
    origDataframe = pd.read_csv(pathToDataset)
    origDataframe
```

[]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	. \
	0	2008-12-01	Albury	13.4	_	0.6	NaN	
	1	2008-12-02	Albury	7.4	25.1	0.0	NaN	Ī
	2	2008-12-03	Albury	12.9	25.7	0.0	NaN	Ī
	3	2008-12-04	Albury	9.2	28.0	0.0	NaN	Ī
	4	2008-12-05	Albury	17.5	32.3	1.0	NaN	
	•••	•••		•••	•••	•••		
	145455	2017-06-21	Uluru	2.8	23.4	0.0	NaN	Ī
	145456	2017-06-22	Uluru	3.6	25.3	0.0	NaN	Ī
	145457	2017-06-23	Uluru	5.4	26.9	0.0	NaN	Ī
	145458	2017-06-24	Uluru	7.8	27.0	0.0	NaN	Ī
	145459	2017-06-25	Uluru	14.9	NaN	0.0	NaN	Ī
		Sunshine Wi		WindGu	-	indDir9am W	-	
	0	NaN	W		44.0	W	WNW	
	1	NaN	WNW		44.0	NNW	WSW	
	2	NaN	WSW		46.0	W	WSW	
	3	NaN	NE		24.0	SE	E	
	4	NaN	W		41.0	ENE	NW	
		••• 31 31		•••		 GE	ENE	
	145455	NaN N-N	E		31.0	SE	ENE	
	145456	NaN N-N	NNW		22.0	SE	N	
	145457	NaN	N		37.0	SE	WNW	
	145458	NaN	SE		28.0	SSE	N	
	145459	NaN	NaN		NaN	ESE	ESE	
		WindSpeed9a	m WindSp	eed3pm I	Humidity9a	am Humidit	y3pm Pressu	re9am \
	0	20.	-	24.0	71		· -	.007.7
	1	4.	0	22.0	44	.0	25.0 1	010.6
	2	19.	0	26.0	38	.0	30.0 1	.007.6
	3	11.	0	9.0	45	.0	16.0 1	017.6
	4	7.	0	20.0	82	. 0	33.0 1	010.8
	•••	•••	•••		•••	•••	•••	
	145455	13.	0	11.0	51	. 0	24.0 1	024.6
	145456	13.	0	9.0	56	. 0	21.0 1	023.5
	145457	9.	0	9.0	53	. 0	24.0 1	021.0
	145458	13.	0	7.0	51	. 0	24.0 1	019.4
	145459	17.	0	17.0	62	. 0	36.0 1	020.2
		Pressure3pm		n Cloud			m RainToday	\
	0	1007.1				6.9 21.		
	1	1007.8				7.2 24.		
	2	1008.7				1.0 23.		
	3	1012.8				3.1 26.		
	4	1006.0	7.0) {		7.8 29.	7 No	
	•••	***	•••	•••	 NaN 10	 0.1 22.	4 No	
	145455	1020.3	Nal					

145456	1019.1	NaN	NaN	10.9	24.5	No
145457	1016.8	NaN	NaN	12.5	26.1	No
145458	1016.5	3.0	2.0	15.1	26.0	No
145459	1017.9	8.0	8.0	15.0	20.9	No

RainTomorrow 0 No 1 No 2 No 3 No 4 No 145455 No 145456 No 145457 No 145458 No 145459 NaN

[145460 rows x 23 columns]

[]: origDataframe.describe()

[]:		MinTemp	MaxTemp	Rainfall	Evaporation	\
	count	143975.000000	144199.000000	142199.000000	82670.000000	•
	mean	12.194034	23.221348	2.360918	5.468232	
	std	6.398495	7.119049	8.478060	4.193704	
	min	-8.500000	-4.800000	0.000000	0.000000	
	25%	7.600000	17.900000	0.000000	2.600000	
	50%	12.000000	22.600000	0.000000	4.800000	
	75%	16.900000	28.200000	0.800000	7.400000	
	max	33.900000	48.100000	371.000000	145.000000	
		Sunshine	${\tt WindGustSpeed}$	WindSpeed9am	${\tt WindSpeed3pm}$	\
	count	75625.000000	135197.000000	143693.000000	142398.000000	
	mean	7.611178	40.035230	14.043426	18.662657	
	std	3.785483	13.607062	8.915375	8.809800	
	min	0.000000	6.000000	0.000000	0.00000	
	25%	4.800000	31.000000	7.000000	13.000000	
	50%	8.400000	39.000000	13.000000	19.000000	
	75%	10.600000	48.000000	19.000000	24.000000	
	max	14.500000	135.000000	130.000000	87.000000	
		Humidity 9 am	Humidity3pm	Pressure9am	Pressure3pm	\
	count	142806.000000	140953.000000	130395.00000	130432.000000	
	mean	68.880831	51.539116	1017.64994	1015.255889	
	std	19.029164	20.795902	7.10653	7.037414	
	min	0.000000	0.000000	980.50000	977.100000	

25% 50%	57.000000 70.000000	37.000000 52.000000		1010.400000 1015.200000
75%	83.000000	66.000000		1020.000000
max	100.000000	100.000000	1041.00000	1039.600000
	Cloud9am	Cloud3pm	Temp9am	Temp3pm
count	89572.000000	86102.000000	143693.000000	141851.00000
mean	4.447461	4.509930	16.990631	21.68339
std	2.887159	2.720357	6.488753	6.93665
min	0.000000	0.000000	-7.200000	-5.40000
25%	1.000000	2.000000	12.300000	16.60000
50%	5.000000	5.000000	16.700000	21.10000
75%	7.000000	7.000000	21.600000	26.40000
max	9.000000	9.000000	40.200000	46.70000

1.3 Import few different Classifiers

We are gonna use few different classifiers, such as:

- Logistic Regression (Similar to Linear regression, but its output is in range 0 to 1 (after applying threshold, the outpur is either class 1 or 0), so pretty much Binary classification)
- SGD Classifier (Logistic regression implemented with Stochastic Gradient Descent)
- Decision Tree Classifier (Decision Tree Classifier)
- Random Forest Classifier (Uses N Decision Tree Classifiers to compute the output of the Random Forest Classifier. The majority class is predicted)
- MLP Classifier (Multi-Layer Perceptron which is considered as a simple Neural Network)

1.3.1 Handle categorical columns and NaN values

Before we can start training our models, we need to prepare the training set, meaning to preprocess the training set (Change Categorical features to numerical, Handle NaN values in features) and separate the labels from the train set

Convert categorical columns

• One of the way to convert categorical columns to numerical, we can use factorize on every categorical column in the Dataframe

```
[]: copyDataframe = origDataframe.copy()
     categoricalColumns = origDataframe.select_dtypes(['object']).columns
     copyDataframe[categoricalColumns] = copyDataframe[categoricalColumns].
       →apply(lambda x: pd.factorize(x)[0])
     copyDataframe
[]:
              Date
                     Location
                                MinTemp
                                          MaxTemp
                                                    Rainfall
                                                               Evaporation
                                                                              Sunshine
                 0
                             0
                                    13.4
                                              22.9
                                                          0.6
                                                                        NaN
                                                                                    NaN
                             0
                                     7.4
     1
                 1
                                              25.1
                                                          0.0
                                                                        NaN
                                                                                    NaN
     2
                 2
                                    12.9
                             0
                                              25.7
                                                          0.0
                                                                        NaN
                                                                                    NaN
     3
                 3
                             0
                                     9.2
                                              28.0
                                                          0.0
                                                                        NaN
                                                                                    NaN
                 4
                             0
     4
                                    17.5
                                              32.3
                                                          1.0
                                                                        NaN
                                                                                    NaN
                                               ...
                                      •••
                                                           •••
              3035
                                                                        NaN
                                                                                    NaN
     145455
                            48
                                     2.8
                                              23.4
                                                          0.0
     145456
              3036
                            48
                                     3.6
                                              25.3
                                                          0.0
                                                                        NaN
                                                                                    NaN
              3037
                                     5.4
                                              26.9
                                                          0.0
                                                                        NaN
                                                                                    NaN
     145457
                            48
     145458
              3038
                            48
                                     7.8
                                              27.0
                                                          0.0
                                                                        NaN
                                                                                    NaN
     145459
              3039
                            48
                                    14.9
                                                          0.0
                                                                        NaN
                                               NaN
                                                                                    NaN
              WindGustDir
                             WindGustSpeed
                                              WindDir9am
                                                           WindDir3pm
                                                                        WindSpeed9am
     0
                         0
                                       44.0
                                                        0
                                                                     0
                                                                                  20.0
     1
                         1
                                       44.0
                                                        1
                                                                                   4.0
                                                                     1
     2
                         2
                                       46.0
                                                        0
                                                                     1
                                                                                  19.0
     3
                         3
                                                        2
                                                                     2
                                       24.0
                                                                                  11.0
     4
                         0
                                                        3
                                                                                   7.0
                                       41.0
                                                                     3
                                                                     7
                                                        2
                                                                                  13.0
     145455
                        14
                                       31.0
     145456
                         4
                                       22.0
                                                        2
                                                                    12
                                                                                  13.0
     145457
                         5
                                       37.0
                                                        2
                                                                                   9.0
                                                                     0
     145458
                        12
                                       28.0
                                                        5
                                                                    12
                                                                                  13.0
     145459
                        -1
                                        NaN
                                                       11
                                                                     6
                                                                                  17.0
              WindSpeed3pm
                              Humidity9am
                                            Humidity3pm
                                                           Pressure9am
                                                                          Pressure3pm
     0
                       24.0
                                      71.0
                                                    22.0
                                                                 1007.7
                                                                               1007.1
                                      44.0
     1
                       22.0
                                                    25.0
                                                                 1010.6
                                                                               1007.8
     2
                       26.0
                                      38.0
                                                    30.0
                                                                 1007.6
                                                                               1008.7
     3
                                      45.0
                        9.0
                                                    16.0
                                                                 1017.6
                                                                               1012.8
     4
                       20.0
                                      82.0
                                                    33.0
                                                                 1010.8
                                                                               1006.0
     145455
                       11.0
                                      51.0
                                                    24.0
                                                                 1024.6
                                                                               1020.3
                        9.0
                                      56.0
                                                    21.0
                                                                 1023.5
     145456
                                                                               1019.1
     145457
                        9.0
                                      53.0
                                                    24.0
                                                                 1021.0
                                                                               1016.8
     145458
                        7.0
                                      51.0
                                                    24.0
                                                                 1019.4
                                                                               1016.5
```

36.0

62.0

145459

17.0

1020.2

1017.9

	Cloud9am	Cloud3pm	Temp9am	Temp3pm	RainToday	${\tt RainTomorrow}$
0	8.0	NaN	16.9	21.8	0	0
1	NaN	NaN	17.2	24.3	0	0
2	NaN	2.0	21.0	23.2	0	0
3	NaN	NaN	18.1	26.5	0	0
4	7.0	8.0	17.8	29.7	0	0
•••	•••		•••	•••		
145455	NaN	NaN	10.1	22.4	0	0
145456	NaN	NaN	10.9	24.5	0	0
145457	NaN	NaN	12.5	26.1	0	0
145458	3.0	2.0	15.1	26.0	0	0
145459	8.0	8.0	15.0	20.9	0	-1

[145460 rows x 23 columns]

Clean set from NaN values

• To handle NaN and empty column values, I am going to drop those rows from the training set. It will have huge impact on the training and generally this options is not the best when preprocessing data.

```
[]: print(f"Shape before dropwing rows: {copyDataframe.shape}")

copyDataframe = copyDataframe.dropna().copy()
print(f"Shape after dropwing rows: {copyDataframe.shape}")
```

Shape before dropwing rows: (145460, 23) Shape after dropwing rows: (58236, 23)

NOTE: As we can see, due to this drastic method, we dropped nearly 100 000 rows from the training set, that's about 2/3. Also we lost a lot of information.

2 Prepare training set for training

• Separate features and labels

```
[]: labels = pd.DataFrame(copyDataframe['RainTomorrow'])
features = copyDataframe.drop('RainTomorrow', axis=1)
print(labels)
print(features)
```

	${\tt RainTomorrow}$
6049	0
6050	0
6052	0
6053	0
6054	0
•••	•••
142298	0

142299 142300		0									
142301		0									
142302		0									
[58236	rows x Date	1 colu		Temp	MaxTemp	Rair	nfall	Evapora	tion	Sunshine	\
6049	31		2	17.9	35.2		0.0	_	12.0	12.3	•
6050	32			18.4	28.9		0.0		14.8	13.0	
6052	34			19.4	37.6		0.0		10.8	10.6	
6053	35			21.9	38.4		0.0		11.4	12.2	
6054	36			24.2	41.0		0.0		11.2	8.4	
							•••				
142298	3034		46	19.3	33.4		0.0		6.0	11.0	
142299	3035		46	21.2	32.6		0.0		7.6	8.6	
142300	3036		46	20.7	32.8		0.0		5.6	11.0	
142301	3037		46	19.5	31.8		0.0		6.2	10.6	
142302	3038	•	46	20.2	31.7		0.0		5.6	10.7	
	WindCı	ıstDir	WindCu	a+Cnoo	ed WindD	ni mOnn	n Uin	dDir2nm	Uind	CnoodOom	\
6049	WIHAGO	15 tD11	WIIIGGU	48.		111941		10	willa	Speed9am 6.0	\
6050		10		37.				5		19.0	
6052		6		46.		15		8		30.0	
6053		1		31.		14		1		6.0	
6054		1		35.		13		0		17.0	
								Ŭ		11.0	
142298		8		35.	0	2	2	15		9.0	
142299		14		37.	0	2	2	11		13.0	
142300		14		33.	0	12	2	4		17.0	
142301		13		26.	0	2	2	8		9.0	
142302		8		30.	0	3	3	8		15.0	
	WindSr	need3pm	Humi d	it.v9am	ı Humidi	t.v.3pr	n Pre	ssure9am	ı Pre	ssure3pm	\
6049	willasi	20.0		20.0		13.0		1006.3		1004.4	`
6050		19.0		30.0		8.0		1012.9		1012.1	
6052		15.0		42.0		22.0		1012.3		1009.2	
6053		6.0		37.0		22.0		1012.7		1009.1	
6054		13.0		19.0		15.0		1012.7		1003.1	
			••		•••		•••				
142298		20.0		63.0)	32.0)	1013.9)	1010.5	
142299		11.0		56.0)	28.0)	1014.6	;	1011.2	
142300		11.0		46.0)	23.0		1015.3		1011.8	
142301		17.0		62.0)	58.0		1014.9		1010.7	
142302		7.0		73.0		32.0		1013.9		1009.7	
		9am Cl	-	_	-	-	RainT	oday			
6049		2.0	5.0			3.4		0			
6050	1	1.0	1.0	20	0.3 2	27.0		0			

0
0
0
0
0
0
0

[58236 rows x 22 columns]

• Scale data using Standardization metods or normalization methods

```
[]: from sklearn.preprocessing import StandardScaler

standardScaler = StandardScaler()
standardScaler.fit_transform(features)
```

```
[]: array([[-1.58286518, -1.87728304, 0.70599206, ..., 1.2903242, 1.57666339, -0.53132627],
[-1.58171141, -1.87728304, 0.78332492, ..., 0.33632541, 0.64036635, -0.53132627],
[-1.57940387, -1.87728304, 0.93799064, ..., 1.60832379, 1.79610801, -0.53132627],
...,
[1.88421016, 1.60023354, 1.13905608, ..., 1.01775311, 1.38647805, -0.53132627],
[1.88536393, 1.60023354, 0.95345721, ..., 1.01775311, 0.96221846, -0.53132627],
[1.8865177, 1.60023354, 1.06172322, ..., 1.10861014, 1.225552, -0.53132627]])
```

• Create train and test set (Also for further learning, we can use cross-validation set)

NOTE: Row count must be the same after the split action!

```
[]: from sklearn.model_selection import train_test_split

trainFeatures, testFeatures = train_test_split(features, test_size=0.3)
print(f"Train features shape: {trainFeatures.shape}")
print(f"Test features shape: {testFeatures.shape}\n")

# Do the same with the labels
trainLabels, testLabels = train_test_split(labels, test_size=0.3)
print(f"Train features shape: {trainLabels.shape}")
print(f"Test features shape: {testLabels.shape}")
```

Train features shape: (40765, 22) Test features shape: (17471, 22)

```
Train features shape: (40765, 1)
Test features shape: (17471, 1)
```

3 Train the Classifiers

- We will train the models (Logistic Regression, SGD Classifier, Decision Tree Classifier, Random Forest Classifier, MLP Classifier) using fit method.
- Compute the score of each model and compare them.
- After that, we are gonna evaluate them on the test set to see how well/badly they generalize.
- We want to develop a Machine Learning algorithm which will perform well on the new unseed data, not just on the training set.

```
TRAIN set scores after training:
Score of a LogisticRegression is: 0.7797129890837728
Score of a SGDClassifier is: 0.21778486446706732
Score of a DecisionTreeClassifier is: 1.0
Score of a RandomForestClassifier is: 1.0
Score of a MLPClassifier is: 0.557806942229854
```

4 Evaluate the classifiers

• To evaluate the model, we need to use test features and test labels.

NOTE: Don't forget to standardize the test set using the same standardization method used on the training set (In my case, they are already standardized, because I used the standardization method before splitting the data to sets).

```
[]: print("TEST set scores")
for name, model in models:
    # Compute the score for that model and store it
    score = model.score(trainFeatures, trainLabels)

print(f"Score of a {name} is: {score}")
```

```
TEST set scores

Score of a LogisticRegression is: 0.7797129890837728

Score of a SGDClassifier is: 0.21778486446706732

Score of a DecisionTreeClassifier is: 1.0

Score of a RandomForestClassifier is: 1.0

Score of a MLPClassifier is: 0.557806942229854
```

5 Predict using the trained classifiers

- Let's predict some outcomes (for simplicity I'll use only Logistic Regressor to do the job)
 - Example from the Training set
 - Example from the Test set
- Compare the predicted values with the truth labels

```
\lceil \ \rceil: randomIndex = 4354
     logisticRegression = models[0][1]
     # Prepare examples
     exampleFromTrainSet = np.array(trainFeatures.iloc[randomIndex]).reshape(1, -1)
     exampleFromTestSet = np.array(testFeatures.iloc[randomIndex]) .reshape(1, -1)
     # Prepare its truth values
     exampleLabelFromTrainSet = np.array(trainLabels.iloc[randomIndex])
     exampleLabelFromTestSet = np.array(testLabels.iloc[randomIndex])
     # Prediction of an example from Train set
     predicted = logisticRegression.predict(exampleFromTrainSet)
     print(f"TRAIN SET, example: {exampleFromTrainSet}")
     print(f"Predicted label: {predicted}")
     print(f"Truth value: {exampleLabelFromTrainSet}\n")
     # Prediction of an example from Test set
     predicted = logisticRegression.predict(exampleFromTestSet)
     print(f"TRAIN SET, example: {exampleFromTestSet}")
     print(f"Predicted label: {predicted}")
     print(f"Truth value: {exampleLabelFromTestSet}")
```

TRAIN SET, example: [[1.1260e+03 4.6000e+01 2.4000e+01 2.8000e+01 4.4600e+01

```
3.2000e+00
0.0000e+00 7.0000e+00 6.3000e+01 1.4000e+01 4.0000e+00 3.0000e+01
2.0000e+01 8.8000e+01 9.5000e+01 1.0071e+03 1.0059e+03 7.0000e+00
8.0000e+00 2.6900e+01 2.4700e+01 1.0000e+00]]

Predicted label: [0]

Truth value: [0]

TRAIN SET, example: [[2.2770e+03 2.8000e+01 1.2700e+01 2.3500e+01 0.0000e+00 4.6000e+00
9.3000e+00 9.0000e+00 2.0000e+01 4.0000e+00 6.0000e+00 4.0000e+00
1.1000e+01 6.9000e+01 4.9000e+01 1.0309e+03 1.0276e+03 1.0000e+00 7.0000e+00 1.8300e+01 2.2200e+01 0.0000e+00]]

Predicted label: [0]

Truth value: [0]
```

6 Summary

In this notebook, we ran classification algorithm on the given dataset (from 1. Task), Specifically we:

- Load data from dataset
- Preprocessed data (Cleaning them, standardizing them, splitted them to train/test sets)
- Run few different classification algorithms (Logistic regression, SGD Classifier, Decision Tree Classifier, Random Forest Classifier, MLP Classifier)
- Evaluate them and used them to make predictions