DIFRACȚIA LUMINII PE FANTE MULTIPLE ȘI REȚELE

Facultatea de Automatică și Calculatoare Anul II, semestrul I, grupa 322CD Pascu Ioana-Călina Sîrboiu Patricia Octavia Văideanu Renata-Georgia Scopul lucrării este de a pune în evidență fenomenul de difracție în lumină monocromatică, în aproximația Fraunhofer pe o fantă și determinarea lărgimii acesteia pe mai multe fante de aceeasi lărgime.

Pentru a studia fenomenul de difracție a unei radiații monocromatice, s-a folosit un laser cu He-Ne care trece printr-un obiect difractant — o succesiune de porțiuni rectangulare, opace și transparente, ambele cu dimensiuni de ordinul lungimii de undă. Laserul a fost deplasat pe verticală și rotit în plan orizontal până când fascicolul său a căzut pe mijlocul axei fantei studiate. Vernierul milimetric a fost rotit așa încât fotodioda să se deplaseze către maximul central de difracție.

Măsurătorile au fost realizate prin translatarea vernierului, pentru a obține pozițiile maximelor și minimelor de intensitate. Pentru fantele A și B, s-a măsurat din 5 în 5 mm, iar pentru fanta C, din 2.5 în 2.5 mm.

Cele trei grafice de mai jos reprezintă dependențele imaginilor difractate de poziții pentru fantele A, B și C în funcție de măsurătorile obținute.

În urma măsurătorilor, $tabelul\ 1$ a fost completat cu pozițiile primelor 3 minime de intensitate pentru fanta C.

Pozitia fata de MC		Stang	a MC	Dreapta MC	
ordin minim		2	1	1	2
Pozitie X rigla	Masurat. 1	25,5	25,25	15,25	13,5
	Masurat. 2	25,75	25	15,5	13,25
	Masurat. 3	25,75	25,5	15,25	13,5

Tabelul 1

Apoi, pentru cele 3 fante, au fost măsurate pozițiile maximelor de intensitate și intensitățile $U_{\rm f}$ corespunzătoare:

Pozitia fata de MC		Stang	a MC	Dreapta MC	
Ordin maxim		2	1	1	2
Fanta A	X maxim	28,5	27	5,5	2
	UF (mV)	0,53	0,54	0,48	0,47
Fanta B	X maxim	5	24,5	18,5	16,5
	UF (mV)	4,83	14,14	5,62	7,73
Fanta C	X maxim	24,5	22,25	16,75	14,5
	UF (mV)	15,75	51	31	9,8

Tabelul 2

Folosind datele din *Tabelul 1*, s-a calculat distanța medie x_{mn} a minimului de ordin n și lungimea de undă λ cu formulele:

$$x_{mn} = \left| \frac{x_{sn} - x_{dn}}{2} \right|$$

$$\lambda_{n} = \frac{x_{mn} \cdot a}{n \cdot D}$$

unde D = 107cm, a = 0,1 mm.

	Masuratoare 1		Masuratoare 2		Masuratoare 3	
Ordin maxim	1	2	1	2	1	2
xmn(mm)	5	6	4,75	6,25	5,125	6,125
lambda (nm)	467,29	560,748	443,925	584,112	478,972	572,43

Tabelul 3

Cu cele 6 valori obținute, se calculează media și abaterea pătratică medie, prezentând rezultatele sub forma:

$$\lambda = (\bar{\lambda} \, \pm \, \sigma_{\lambda})$$

unde $\bar{\lambda}=517,91\mathrm{nm}$ și $\sigma_{\lambda}=61,22\mathrm{nm}.$