第一周 随机事件及其概率运算

1.3 事件间的关系与事件的运算

事件关系(包含,相等,互不相容,对立)

(1) 包含关系: 若事件 A,B满足 $A \subset B$,则称事件 B 包含事件 A,用示性函数表示为 $I_A(\omega) \leq I_B(\omega)$.

- (3) 互不相容关系,也称互斥关系:对于事件 A 、B ,如果不可能同时发生,则 A 、 B 称为互不相容事件,此时 $AB = \Phi$ 。用示性函数表示为 $I_A(\omega)I_B(\omega) = 0$.

(4) 对立关系: 如果两个事件 $A \setminus B$ 中, $B = A \setminus A$ 不发生",则 $A \setminus B$ 称为具有对立关系(或互逆关系),又称 $B \setminus A$ 的对立事件,记为 B = A 。

用示性函数表示为 $I_A(\omega) + I_B(\omega) = 1$.

事件运算(和,积,差,交换律,结合律,分配律,结合律,对偶律)

(1) 事件的和: 事件 A 与事件 B 的并集构成的事件称为事件 A 与事件 B 的和事件,记为 $A \cup B$ 或 A + B,即 $A \cup B = \{x \mid x \in A$ 或 $x \in B\}$,如图所示的阴影部分. 显然,当且仅当事件 A 与事件 B 至少有一个发生时,事件 $A \cup B$ 才发生。

n个事件 A_1, A_2, \dots, A_n 的和事件,即为 n个集合的并集 $\bigcup_{k=1}^n A_k$ 。

(2) 事件的积(或交): 事件 A 与事件 B 的交集构成的事件称为事件 A 与事件 B 的积(或交)事件,事件 A 与事件 B 同时发生。 记为 $A \cap B$ 或 AB 。

n个事件 A_1, A_2, \dots, A_n 的积事件,即为 n 个集合的交集 $\bigcap_{k=1}^{n} A_k$ 。

(3) 事件的差: 事件 A 与事件 B 的差集所构成的事件称为事件 A 与事件 B 的差事件,记为 A-B 。 $A-B=\{x\mid x\in A$ 且 $x\notin B\}=A\overline{B}$ 。 当且仅当事件 A 发生但事件 B 不发生时,事件 A-B 才发生.

例 1.3.1 某同学在篮球场上进行了连续 3 次投篮练习,记 $A_i = \{ \hat{\mathbf{x}} \mid x \in \mathbb{C} \}$,试 用 A_i (i = 1,2,3)表示事件:

- (1) $B_j = \{$ 连续 3 次投篮中恰好有 j 次投中篮筐 $\}$ (j = 0,1,2,3);
- (2) $C_k = \{$ 连续 3 次投篮中至少有 k 次投中篮筐 $\}$ (k = 0,1,2,3).

解: (1)
$$B_0 = \overline{A_1} \overline{A_2} \overline{A_3}$$
;

$$B_1 = A_1 \overline{A_2} \overline{A_3} \bigcup \overline{A_1} A_2 \overline{A_2} \bigcup \overline{A_1} \overline{A_2} A_3$$
;

$$B_2 = A_1 A_2 \overline{A_3} \cup A_1 \overline{A_2} A_3 \cup \overline{A_1} A_2 A_3$$
; $B_3 = A_1 A_2 A_3$.

(2)
$$C_0 = \Omega = B_0 \cup B_1 \cup B_2 \cup B_3$$
; $C_1 = A_1 \cup A_2 \cup A_3 = B_1 \cup B_2 \cup B_3$;

$$C_1 = A_1 \bigcup A_2 \bigcup A_3 = B_1 \bigcup B_2 \bigcup B_3$$
;

$$C_2 = A_1 A_2 \cup A_2 A_3 \cup A_3 A_1 = B_2 \cup B_3$$
; $C_3 = A_1 A_2 A_3 = B_3$

事件的运算律

交換律: $A \cup B = B \cup A$, AB = BA (即 $A \cap B = B \cap A$)

分配律: $(A \cup B) \cap C = AC \cup BC$, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

结合律: $(A \cup B) \cup C = A \cup (B \cup C)$, (AB)C = A(BC)

对偶律: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

事件概率的几条基本性质:

$$P(\Phi) = 0$$
, $P(\Omega) = 1$, $P(\overline{A}) = 1 - P(A)$,

$$P(A-B)=P(A)-P(AB), \qquad P(A+B)=P(A)+P(B)-P(AB)$$

例 1.3.2 袋中有编号为 $1,2,\dots,n$ 的 n 个球,从中有放回地任取 m 次,求取出的 m 个号码中最大编号恰好是 k 的概率。

分析: 最大编号不超过k的基本事件数为 $\frac{k''}{n''}$

解:设事件 A_k 为最大号码恰为k, B_k 表示最大号码不超过k,

则
$$A_k = B_k - B_{k-1}$$
, 且 $B_{k-1} \subset B_k$, 所以 $P(A_k) = P(B_k) - P(B_{k-1})$

又知
$$P(B_k) = \frac{k^m}{n^m}$$
 $(k = 1, 2, \dots, n)$,

得
$$P(A_k) = \frac{k^m - (k-1)^m}{n^m}$$
 $(k = 1, 2, \dots, n)$ 。

例 1.3.3 (匹配问题) n 封写给不同人的信随机放入 n 个写好收信人姓名的信封, 求 所有信件都装错了信封的概率。

解:将n封不同的信分别编号 $1,2,\dots,n$,n个对应的信封同样编号 $1,2,\dots,n$,

设事件 A_i 表示编号为i的信恰好装入了编号为i的信封,则所求概率

$$p_0 = 1 - P(A_1 \cup A_2 \cup \cdots \cup A_n)$$

概率的加法公式:

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P\left(A_{i}\right) - \sum_{1 \leq i_{1} < i_{2} \leq n} P\left(A_{i_{1}} A_{i_{2}}\right) + \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} P\left(A_{i_{1}} A_{i_{2}} A_{i_{3}}\right) - \dots + \left(-1\right)^{n-1} P\left(A_{1} A_{2} \cdots A_{n}\right)$$

$$p_0 = 1 - P(A_1 \cup A_2 \cup \cdots \cup A_n)$$

$$=1-\left[\sum_{i=1}^{n}P(A_{i})-\sum_{1\leq i_{1}< i_{1}\leq n}P(A_{i_{1}}A_{i_{2}})+\sum_{1\leq i_{1}< i_{1}< i_{2}\leq n}P(A_{i_{1}}A_{i_{2}}A_{i_{3}})-\cdots+(-1)^{n-1}P(A_{1}\cdots A_{n})\right]$$

$$P(A_{i_1}) = \frac{1}{n}, \quad P(A_{i_1}A_{i_2}\cdots A_{i_k}) = \frac{1}{n(n-1)\cdots(n-k+1)} \ (\forall 1 \le i_1 < i_2 < \cdots < i_k \le n)$$

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \cdots + (-1)^{n-1} \frac{1}{n!}$$

注意到
$$1-e^{-1}=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\cdots+\left(-1\right)^{n-1}\frac{1}{n!}+\cdots=\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}}{k!}$$

可得 $p_0 \approx e^{-1} \approx 0.37$, 当 $n \ge 4$ 时,这一估计值的误差不超过小于 1%。
