Tablas:

cliente(cid, cnombre, teléfono, dirección, edad)

pizzas(zid, znombre, tamaño, precio)

pedido(cid, zid, phora, paño, pmes, pdía, cantidad)

Consulta:

Π cnombre, cid, zid (σ znombre='muzarella' Λ paño > 2015 (cliente ⋈pizzas ⋈ pedido))

Asumir que el optimizador sigue el siguiente orden:

- 1. Optimización heurística siguiendo las siguientes reglas:
 - Realizar selección tempranamente
 - o Realizar proyección tempranamente
 - o Hacer selección más restrictiva
 - Ciertas selecciones pueden ser combinadas con producto cartesiano para tornar las operaciones en una reunión (natural o selectiva)
- 2. Optimización de costo usando programación dinámica para las reuniones naturales.

Se tiene la siguiente información de las tablas:

cliente	pizzas	pedido
500 tuplas	40 tuplas	5000 tuplas
	V(pizzas,tamaño) = 4	V(pedido,Zid) = 40
	V(pizzas,znombre) = 10	V(pedido,cid) = 500
		V(pedido,paño) = 10

Al aplicar la optimización heurística se obtiene

Πcnombre, cid, zid (σznombre='muzarella' ∧ paño > 2015 (cliente ⋈ pizzas ⋈ pedido))

Primera condición de select en pizzas y segunda condición en pedido

Πcnombre, cid, zid (cliente ⋈ σznombre='muzarella' pizzas ⋈ σ paño > 2015 pedido))

Empujo proyecciones

Πcnombre, cid Cliente ⋈ (Πzid σznombre='muzarella' pizzas) ⋈ (Πcid, zid σ paño > 2015 pedido)

Luego, teniendo en cuenta la optimización de costos: Creo la tabla inicial de size, cost y best plan:

	{ cliente }	{ pizzas }	{ pedidos }
size	500	40	5000
cost	0	0	0
best plan	cliente	pizzas	pedidos

Ahora generamos pares de tablas, aún sin resultados intermedios y tomando la tabla de menor cantidad de registros a la izquierda de la reunión:

```
|cliente × pizzas| = |cliente| *|pizzas|
=20000
|pizzas ⋈ pedidos| = |pizzas| *|pedidos| * 1/max(V(pizzas,zid), V(pedidos, zid))
=5000
|pedidos ⋈ cliente| = |pedidos| *|cliente| * 1/max(V(pedidos,cid), V(cliente, cid))
=5000
```

	{ cliente, pizzas }	{ pizzas, pedidos }	{ pedidos, cliente }
size	20000	5000	5000
cost	0	0	0
best plan	pizzas × cliente	pizzas ⋈ pedidos	cliente ⋈ pedidos

Finalmente los tríos de tablas, solo teniendo en cuenta el costo

	{ cliente, pizzas } + { pedidos }	{ pizzas, pedidos } + { cliente }	{ pedidos, cliente } + { pizzas }
cost	25000	5500	5040

Encontramos que realizar primero la reunión entre pedidos y cliente, y luego con pizzas, obtenemos el menor costo.

Para completar, calculamos:

```
|(cliente \bowtie pedidos) \bowtie pizzas| = |cliente \bowtie pedidos| * |pizzas| * 1/max(V(cliente \bowtie pedidos, cid), V(pizzas, zid))
= 5000 * 40 * 1/5000 = 40
```

Quedando la tabla:

	{ pedidos, cliente, pizzas }	
size	40	
cost	5040	
best plan	(cliente ⋈ pedidos) ⋈ pizzas	

y reorganizando la consulta:

 Π cnombre, cid **cliente** \bowtie (Π cid, zid σ paño > 2015 **pedido**) \bowtie (Π zid σ znombre='muzarella' pizzas)