

•

Neonatal jaundice

- Sclera, mucosa and skin becomes jaundiced because of elevated serum bilirubin.
- > Jaundice is a pretty common phenomenon during neonatal phase.
- Severe and persistent jaundice may cause damage to brain and liver.

Why is jaundice so common among neonates?

Features of neonatal bilirubin metabolism

- Overproduction
- Unefficient transportation in blood
- Dysfunction of immature liver
- Enhanced entero-hepatic circulation

All the above do contribute to elevation of serum bilirubin in the first several days of life.

How to differentiate pathologic jaundice from physiologic jaundice?

Physiologic Jaundice: (all of following features)	Pathologic Jaundice: (any of following features)	
Appears in 2-3d of life	Early onset: appears within first 24hours of life	
Fade within 14d	Prolonged jaundice: persist >2w in term	
Total serum bilirubin (TB) ≤ 12.9mg/dl (221 μmol/L)	Severe jaundice: TB >221 µmol/L and/or DB 34 µmol/L or DB/TB >20%	
Normal overall condition	Rapid rising: TB increasing ≥85µmol /L/d or (8.5µmol/L/h)	
	Recurrent jaundice	

Because of the high susceptibility to bilirubin's neurotoxicity, neonatal jaundice of preterm babies should be treated as pathological jaundice.

A wrong opinion

Many people, including some clinicians, take neonatal jaundice for granted, because they consider it a physiological phenomenon.

Neonatal jaundice

- Sclera, mucosa and skin becomes jaundiced because of elevated serum bilirubin.
- ➤ Jaundice is a pretty common phenomenon during neonatal phase.
- Severe and persistent jaundice may cause damage to brain and liver.

Total serum bilirubin includs

- Unconjugated bilirubin: UB or IB
 - Fat-soluble: cross BBB
 - Deposit in brain → bilirubin encephalopathy
- Conjugated bilirubin: CB or DB
 - Water-soluble: excreted in feces and urine
 - Deposit in liver → hepaticcholestasis

ABE results from bilirubin neurotoxicity.

- Unconjugated bilirubin:
 - > Fat-soluble,
 - > Free (exceed the albumin-binding capacity)
- Higher permeability of BBB: immature
- Risk factors: susceptible to bilirubin neurotoxicity
 - > Preterm baby, esp. GA<34wks and BW<1500gm
 - > Serious illness: hemolytic diseases, infectious diseases, hypoxia, hypothermia or hyperthermia.

bilirubin encephalopathy ABE: acute bilirubin encephalopathy)

transient disturbance

Alert phase (12-24 hrs):

- ✓ Drowsy
- ✓Poor feeding
- ✓ Decreased muscle tone
- ✓ Decreased primitive reflex, eg. Moro reflex

bilirubin encephalopathy (kernicterus)

Catastrophic damage to brain

Convulsion phase (24-48 hrs) (about 1/3-1/2 die):

✓ Staring, hypertonia, lie on arched back (opisthotonos), seizure (trosion spasm)

Recovery phase (10 ds-2 wks): pseudo-normalize

√ recovery in muscle tone and reaction

Sequaele phase (post-neonatal):

✓ Mental retardation, choreoathetoid CP, epilepsy, learning difficulties, sensorineural deafness

Bile duct obstruction

- Conjugated hyperbilirubinemia
- Later onset, and slowly rise or prolonged
- Pale color of feces
- May be associated with intrauterine infection
- Liver function and ultrasound testing
- Intervention ASAP for better outcome

Breast milk jaundice

- Unconjugated hyperbilirubin
- Gradually rise, and then fade
- Pure breast-feeding
- Overall condition is good
- Other conditions should be excluded
- Do not recommend to discontinue breast-feeding

Neonatal hepatitis

- Conjugated hyperbilirubinemia
- Later onset, and slowly rise or prolonged
- May be associated with intrauterine infection: TORCH
- Abnormal hepatic function and/or ultrasound image

Neonatal septicemia

- Usually unconjugated hyperbilirubinemia
- Existence of risk factors
- Be aware:
 - Jaundice may be the unique sign in the early phase of sepsis
- Common pathogen in China:
 - E.coli, staphylococcus
- Blood culture and routine test

How to diagnose neonatal jaundice?

- ➤Clinical features
- ▶Laboratory tests
- ▶ Complications:
 - ➤ Bilirubin encephalopathy
 - ➤ Damage to heart and liver

Clinical features

- > Age at onset: guide to the likely cause
- > Progress speed:
 - hemolysis>septicemia>hepatitis
- > Color of urine and feces
- > Family history, pregnancy history
- Physical exam:
 - > jaundice, anemia, hepatosplenomegaly
 - > signs of central nervous systems

Age of onset is a useful guide to likely cause of jaundice.

Age of the onset	Unconjugated bilirubin	Conjugated bilirubin(>15%TB)
<24hrs	Hemolytic disorders	Congenital infection
24hrs-2wks	Physiological, Breast milk, hemolysis	Infection???
>2wks(persistent/ prolonged)	Breast milk, Infection, Hemolysis, Hypothyroidism	Hepatitis, Bile duct obstruction

Laboratory tests

- Complete Blood Counting, blood film
- >Serum bilirubin: TB, DB
- ➤Others:
 - <u>►immunological tests for hemolysis</u>
 - ▶G-6-PD activity and gene detect,
 - >liver function test and belly ultrasound,
 - >serological test of intrauterine infection
 - ➤Nervous system:
 - ➤brain-stem auditory evoked potential (BAEP),
 - ➤ cranial images(ultrasound, CT, MRI),
 - >neuro-behavior neonatal assessment (NBNA)

Transcutaneous jaundice meter

Minibilirubin Mornitor

Serum bilirubin test

Magnetic resonance image of 21-month-old with kernicterus. Area of abnormality is the symmetric high-intensity signal in the area of the globus pallidus (arrows).

Courtesy of M.J. Maisels.

How to treat neonatal jaundice?

Phototherapy* * *

Exchange transfusion* *

Assistant treatment with drugs

Aims of intervention

To decrease serum uncongugated bilirubin level ASAP, so to prevent bilirubin damage to brain!

Treatment

- No specific bilirubin level is definitely safe or toxic for all infants.
- Low levels in a sick infant may be more detrimental than high levels in a well infant.
- There is no consensus among pediatricians on the bilirubin levels at which phototherapy and exchange transfusion should be performed.

General guidelines of phototherapy

- Term well infants >24 hours old
 - phototherapy when uSB >12.9 mg/dl (221 μmol/l)
- Preterm well infants >24 hours old
 - phototherapy when uSB >8 mg/dl (120 μmol/l)
- Lower threshold for phototherapy if unwell

Prophylactic phototherapy if

- uSBR > 6mg/dl (100 μmol/l)
 <24 hours old
- evidence of hemolysis
- extensive bruising

Phototherapy

- Photoisomerization
 - converts bilirubin to a less toxic isomer
 - conversion is rapid
 - reabsorbed into blood stream and excreted in bile
 - re-conversion to uSB occurs in the gut
 - clearance is slow
- Other mechanisms exist

Mechanism of Phototherapy: Photoisomerization

Suitable Wavelength

- Light source with output range between 280-700 nm (bilirubin adsorbs light in 400-500 nm range)
- Blue lamps peak output: 425-475 nm
- Cool white lamps peak output: 550-600 nm

Techniques

- Adequate <u>skin exposure</u>
- Eye protection
- Temperature control
- cots, heat shields, incubators
- Monitor hydration eg.weight measurements
- Blue/white light versus biliblanket

Side effects

- ↑ insensible water loss
- Diarrhoea
- Retinal damage (in animal experiment)
- 'Bronze baby' syndrome
- Degradation of amino acid solutions in TPN

Principles of Exchange Transfusion

- Removes bilirubin from extravascular space
- Removes red cell antibodies
- Removes sensitized red cells
- Correction of anemia
- Single-volume exchange removes 63% of infant's blood volume
- Double-volume exchange removes 87%

Exchange transfusion

- Indications:
 - Hemolytic disease: cord Hb <11 gm/dl and cord uSB >4.5 mg/dl (75μmol/l)
 - uSB rising over 1mg/dl/hr (17μmol/l/hr) despite intensive phototherapy
 - uSB >20 mg/dl (340 μmol/l) in term infants.
 Lower if symptomatic
 - Progressive anemia

Assistant drugs

- Alkalization of blood:
 - transfusion of sodium bicarbonate
- Supplement of albumin
- Inhibition of immune hemolysis:
 - a large dose of IVIG
- Decreasing of entero-hepatic circulation:
 - Enough feeding if permission
 - Intake of probiotics

Assistant drugs

- Chinese traditional herb?
- Sn-mesoporphyrin?
 - no DB, RCT yet
 - reports showed effective in lowering max SB and need for phototherapy and exchange transfusion
 - 6 μmol/kg given IM
 - not yet approved by FDA

Prophylaxis of RhD hemolysis

- Introduction of prophylactic anti-D immunoglobulin for rhesus negative mother:
 - When rhesus negative mother carrying rhesus positive fetus, 30µg anti-D immunoglobulin should be given by intramuscular route when GA is 28wks, 32wks, and <72hrs after delivery and abortion.

TAECHING REQIREMENTS

- 1. difference between pathological jaundice and physiological jaundice of neonates.
- 2. common causes of neonatal jaundice in China.
- 3. common pathogens of neonatal sepsis in China.
- > 3. clinical features of neonatal haemolysis.
- ➤ 4. laboratory investigations about neonatal haemolysis .
- > 5. treatment of neonatal jaundice.

