## **IMPORTANT:**

Please refer to the <u>USC Center for Excellence in Teaching</u> for current best practices in syllabus and course design. This document is intended to be a customizable template that primarily includes the technical elements required for the Curriculum Office to forward your proposal to the UCOC.



**Course ID and Title: ECE599 Emerging Devices for** 

AI/ML Units: 4

Term—Day—Time: Fall 2022,

Day Time: Monday, Wednesday: 4:00 - 5:50 pm

Location: VHE 217

**Instructor: J. Joshua Yang** 

Office: PHE 608

**Office Hours: TBD** (The general guideline is for one weekly office hour for each class taught. Office hours do not count as contact

hours.)

Contact Info: jjoshusy@usc.edu (213) 740-4709.

**Teaching Assistant: TBD** 

Office: TBD

Office Hours: TBD Contact Info: TBD

## **Course Description**

In the era of 'big data' and 'Internet of Things', the traditional computing architecture based on CMOS hardware has become increasingly inefficient to support Artificial Intelligence (AI) and Machine Learning (ML). This course will cover the fundamentals of emerging materials, devices and how to use them to enable novel Artificial Intelligence and Machine Learning. Recent progress, current challenges and future directions will be reviewed and discussed. Application examples, such as memory devices for Machine Learning, Neuromorphic Computing and Artificial Intelligence, will be highlighted.

The course is intended to be self-contained by covering principles of materials and devices as well as basics of AI and ML enabled by the novel devices. The course is designed in a way to better prepare senior and master students for jobs in AI & ML with emgerging hardware and Ph. D students for interdisplinary research topics in unconventional computing.

#### **Learning Objectives**

- To understand the current status, challenges and possible solutions of the traditional computing hardware systems.
- To understand the principles of novel Artificial Intelligence and Machine Learning enabled by emerging materials and devices.
- To understand materials science fundamentals that are critical for designing, fabricating and understanding emerging devices for intelligent systems.
- To understand electronic and ionic devices that enable non von Neumann computing paradigms.
- To equip the students with broad knowledge in materials, devices, novel hardware based AI and ML, for a more intelligent job interview and a jump-start in related jobs.

Prerequisite(s): none Co-Requisite(s): none

**Concurrent Enrollment:** none

Recommended Preparation: introduction courses on semiconductor physics or solid state physics

#### Course Notes

This course will have Letter grading and lecture slides posted. There will be lab sessions for the students to operate some emerging electronic devices experimentally. There will also be course presentations for the students to practice literature search, reading, team working, presentation and Q&A on topics interesting to them.

# **Technological Proficiency and Hardware/Software Required** N/A

## **Required Readings and Supplementary Materials**

Course Materials

Lectures and lecture notes are the primary course materials.

Recommended Text

- Recent review articles: 'A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications' *Biologically Inspired Cognitive Architectures* (2017); 'Resistive switching materials for information processing', *Nature Review Materials* 5, 173 (2020) etc.
- Electronic Properties of Materials, by Rolf E. Hummel, Springer, 2001, 3rd Ed.
- Artificial Intelligence for Humans: Volumes 1-3, by Jeff Heaton, Heaton Research, Inc., 2013.
- Neural Computing: An Introduction, by R. Beale and T. Jackson, Taylor & Francis Group LLC, 1990.

• Materials Science and Engineering: An Introduction, by William D. Callister and David G. Rethwisch, Wiley, 2013, 9rd Ed.

## Useful Reference Texts

- Nanoelectronics and Information Technology, by Rainer Waser, Wiley-VCH, 2012, 3rd Ed.
- Physics of Semiconductor Devices, by Simon. M. Sze, Wiley, 2006, 3rd Ed.
- The Chua Lectures: From Memristors and Cellular Nonlinear Networks to the Edge of Chaos, by Leon O. Chua, World Scientific, 2020.
- Materials Science Of Thin Films, by Milton Ohring, Academic Press, 2002. 2nd Ed.

## **Description and Assessment of Assignments**

There will be Homeworks, Midterm and Final exams, Labs and Course Project (presentation), based on which the students are evaluated for grading.

## **Grading Breakdown**

| Assessment Tool (assignments) | Points | % of Grade |
|-------------------------------|--------|------------|
| Attendance                    | 10     | 10         |
| Homeworks                     | 15     | 15         |
| Labs                          | 10     | 10         |
| Midterm exam                  | 25     | 25         |
| Final exam                    | 25     | 25         |
| Course Project                | 15     | 15         |
| TOTAL                         | 100    | 100        |

## **Grading Scale**

Course final grades will be determined using the following scale

A 95-100

A- 90-94

B+ 87-89

B 83-86

B- 80-82

C+ 77-79

C 73-76

C- 70-72

D+ 67-69

D 63-66

D- 60-62

F 59 and below

## **Assignment Submission Policy**

Each assignment is expected to be submitted on time; late submissions within a week will result in 30% point deduction; late submission over a week will not be accepted.

## **Grading Timeline**

Within two weeks of the submission time.

## **Additional Policies**

N/A

## Course Schedule: A Weekly Breakdown

|         | Topics/Daily Activities                            | Readings/Preparation                                         | Deliverables             |
|---------|----------------------------------------------------|--------------------------------------------------------------|--------------------------|
| Week 1  | Issues of exsiting computer hardware for AI and ML | Lecture Notes                                                | Background survey        |
| Week 2  | Soutions with emerging device based hardware       | Lecture Notes                                                |                          |
| Week 3  | Materials properties                               | Lecture Notes                                                | Homework 1               |
| Week 4  | Electronic properties                              | Lecture Notes                                                |                          |
| Week 5  | Seconductor memory devices I                       | Lecture Notes                                                |                          |
| Week 6  | Seconductor memory devices II                      | Lecture Notes                                                | Homework 2               |
| Week 7  | Midterm exam                                       | Review Lecture Notes and Homeworks                           | exam                     |
| Week 8  | Emerging Memory devices I                          | Lecture Notes                                                |                          |
| Week 9  | Emerging Memory devices II                         | Lecture Notes                                                |                          |
| Week 10 | Emerging Logic devices                             | Lecture Notes                                                |                          |
| Week 11 | Device Testing Lab                                 | Review Device Lecture<br>Notes                               | Measurement results      |
| Week 12 | ML accelerators                                    | Lecture Notes                                                |                          |
| Week 13 | AI enabled by emerging devices                     | Lecture Notes                                                |                          |
| Week 14 | Machine Learning Lab                               | Review ML and Computing<br>Lecture Notes                     | Lab Report               |
| Week 15 | Course project                                     | Form teams, chose topics, lieterature search, prepare slides | Slides and Presentations |
| FINAL   | Final exam                                         | Reviewing Lecture Notes and Homeworks                        | exam                     |