TD 1 : Continuité, dérivabilité

1 Continuité

Exercice 1 Étudier la continuité des fonctions suivantes

- 1. La fonction f définie par $f(x) = e^{-1/x}$ si x > 0 et f(x) = 0 si $x \le 0$.
- 2. La fonction g définie par $g(x) = \frac{1}{\ln|x|}$ si $x \notin \{0, 1, -1\}$ et g(x) = 0 si x = 0, 1 ou -1.
- 3. La fonction h définie par $h(x) = x \sin \frac{1}{x}$ si $x \neq 0$ et h(0) = 0.
- 4. La fonction ψ définie par $\psi(x) = E(x) + |x E(x)|^4$, où E(x) désigne la partie entière de x.

Exercice 2 Soit $f: \mathbb{R} \to \mathbb{R}$ et $x_0 \in \mathbb{R}$. On suppose que f est continue au point x_0 et que $f(x_0) > 0$. Montrer qu'il existe c > 0 et un intervalle I contenant x_0 tel que $f(x) \ge c$ sur I.

Exercice 3 Déterminer les fonctions $f : \mathbb{R} \to \mathbb{R}$ continues en 0 et 1 telles que $f(x) = f(x^2)$ pour tout x réel.

2 Dérivabilité

Exercice 4

- 1. Montrer que pour tout $x \ge 0$, on a $\sin x \le x$.
- 2. Montrer que pour x > -1 on a $\ln(1+x) \le x$.
- 3. Montrer que pour tout x réel on a $e^x \ge 1 + x$.

Exercice 5 On pose $h_1(x) = e^{-x}$ pour tout $x \in \mathbb{R}$. Montrer que h_1 est de classe C^{∞} sur \mathbb{R} et, pour tout $n \geq 0$, donner l'expression de sa dérivée n-ième.

Exercice 6 Soit h_2 définie par $h_3(x) = x^3 \sin \frac{1}{x}$ si $x \neq 0$ et $h_2(0) = 0$. Montrer que h_2 est de classe C^1 . Est-elle C^2 ? Est-elle C^3 ?

Exercice 7 Soit h_3 définie par $h_3(x) = e^{-1/x^2}$ si $x \ge 0$ et $h_3(x) = 0$ si x < 0. Montrer que h_3 est de classe C^{∞} .

Exercice 8 Soit f dérivable en 0. Déterminer les limites suivantes

$$\lim_{x \to 0} \frac{f(2x) - f(0)}{2x} \quad \text{et} \quad \lim_{x \to 0} \frac{f(2x) - f(x)}{x}.$$

Exercice 9 Soit f dérivable sur \mathbb{R} . Déterminer, pour tout réel a, la valeur de $\lim_{x\to a} \frac{xf(a)-af(x)}{x-a}$. **Exercice 10** Montrer qu'une fonction C^1 est Lispschitz sur tout intervalle. Montrer que $x\mapsto x^2$ et $x\mapsto e^x$ ne sont pas Lipschitz sur \mathbb{R} . Est-ce que tout fonction Lipschitz est forcément C^1 ?