Stock Price Prediction Using Deep Learning Technique

A stock price prediction project utilizing Long Short-Term Memory model. Leveraging the yfinance library, you have the flexibility to select your target stock and the time frame.

Import Library

```
In [126]: import yfinance as yf
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import math
   from sklearn.preprocessing import MinMaxScaler
   from keras.models import Sequential
   from keras.layers import Dense, LSTM, Dropout
   import warnings
   warnings.filterwarnings('ignore')
```

Access Data and Input Variables

Enter the stock ticker, date, and the epoch times. Noted that the first 80% of the date will be used for training, and the remaining 20% will be used for validation.

Example Inputs: "googl", "2010-01-01", "2023-08-20"

```
In [127]: Company = input("Ticker of the Stock:")
Date1 = input("Start(YYYY-MM-DD):")
Date2 = input("End(YYYY-MM-DD):")
```

Data Exploration

```
In [128]: Data = yf.download(Company,Date1, Date2)
Data =Data.reset_index()
Data
```

[********** 100%*********** 1 of 1 completed

Out[128]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2010-01-04	15.689439	15.753504	15.621622	15.684434	15.684434	78169752
1	2010-01-05	15.695195	15.711712	15.554054	15.615365	15.615365	120067812
2	2010-01-06	15.662162	15.662162	15.174174	15.221722	15.221722	158988852
3	2010-01-07	15.250250	15.265265	14.831081	14.867367	14.867367	256315428
4	2010-01-08	14.814815	15.096346	14.742492	15.065566	15.065566	188783028
3425	2023-08-14	129.389999	131.369995	128.960007	131.330002	131.330002	24695600
3426	2023-08-15	131.100006	131.419998	129.279999	129.779999	129.779999	19770700
3427	2023-08-16	128.699997	130.279999	127.870003	128.699997	128.699997	25216100
3428	2023-08-17	129.800003	131.990005	129.289993	129.919998	129.919998	33446300
3429	2023-08-18	128.509995	129.250000	126.379997	127.459999	127.459999	30491300

```
Data columns (total 7 columns):
              Column
                          Non-Null Count Dtype
           0
               Date
                          3430 non-null
                                          datetime64[ns]
           1
               0pen
                          3430 non-null
                                          float64
               High
                          3430 non-null
                                          float64
                          3430 non-null
           3
                                          float64
               Low
                          3430 non-null
                                          float64
               Close
               Adj Close 3430 non-null
                                          float64
                          3430 non-null
                                           int64
           6
               Volume
          dtypes: datetime64[ns](1), float64(5), int64(1)
          memory usage: 187.7 KB
In [130]: Data.isnull().sum()
Out[130]: Date
          0pen
          High
                       0
```

Data Visualization

0

0

0

0

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3430 entries, 0 to 3429

Stock Price

Low

Close

Volume

Adj Close

dtype: int64

In [129]: Data.info()

```
In [131]: fig, ax = plt.subplots(figsize=(16,10))
    plt.title("Stock Price", fontsize="20")
    ax.plot(Data["Date"], Data["Close"], color="Blue")
    ax.set_ylabel("Stock Price")
    plt.grid()
    plt.show()
```


Moving Average

Out[132]: <matplotlib.legend.Legend at 0x2bcf39f5160>

Volume

```
In [133]: fig, ax = plt.subplots(figsize=(16,8))
    plt.title("Volume Chart", fontsize="20")
    ax.bar(Data["Date"], Data["Volume"])
    ax.set_ylabel("Volumes")
    plt.grid()
    plt.show()
```


Daily Return

```
Data["Daily Return"] = Data["Close"].pct_change(1)
In [134]:
          Data["Daily Return"]
Out[134]: 0
                        NaN
                  -0.004404
          2
                  -0.025209
          3
                  -0.023280
          4
                  0.013331
          3425
                  0.013662
          3426
                  -0.011802
          3427
                  -0.008322
          3428
                  0.009479
          3429
                  -0.018935
          Name: Daily Return, Length: 3430, dtype: float64
In [135]: fig, ax = plt.subplots(figsize=(16,8))
          plt.title("Stock Price Daily Return", fontsize="20")
          ax.plot(Data["Date"], Data["Daily Return"], color="Darkviolet")
          ax.set_ylabel("Daily Return")
          plt.grid()
          plt.show()
```



```
In [136]: #Distribution of Daily Return(Volatility)
Data.iloc[Data["Daily Return"].argmax()]
Data["Daily Return"].hist(bins=100, color='Darkviolet')
```

Out[136]: <AxesSubplot:>

Cumulative Return

```
In [137]: Data["Cumulative Return"] = (1+Data["Daily Return"]).cumprod()
          Data["Cumulative Return"]
Out[137]: 0
                       NaN
                  0.995596
          2
                  0.970499
          3
                  0.947906
          4
                  0.960543
          3425
                  8.373270
          3426
                  8.274446
                  8.205588
          3427
          3428
                  8.283372
                  8.126528
          3429
          Name: Cumulative Return, Length: 3430, dtype: float64
```

```
In [138]: #Cumultative Return of the stock during the given period
fig, ax = plt.subplots(figsize=(16,8))
plt.title("Stock Cumulative Return", fontsize="20")
ax.plot(Data["Date"], Data["Cumulative Return"], color="Darkcyan")
ax.set_ylabel("Cumultative Return")
plt.grid()
plt.show()
```


Splitting Data into Training and Validation Sets

```
In [139]: Data['Date'] = pd.to_datetime(Data['Date'])
Data.set_index('Date',inplace=True)
Close = Data.filter(['Close'])
CloseValue = Close.values
TrainingDataLength = math.ceil(len(CloseValue)*.8)
TrainingDataLength
```

Out[139]: 2744

Scaling data

[0.83891764]])

```
In [141]: | X_train, Y_train = [],[]
          Backcandles = 60
          TrainData = PriceData[0:TrainingDataLength]
          for i in range(Backcandles,len(TrainData)):
               X_train.append(TrainData[i-Backcandles:i, 0])
               Y_train.append(TrainData[i,0])
               if i<= Backcandles:</pre>
                   print("X_train:",X_train,"\nY_train:",Y_train)
          X_train,Y_train = np.array(X_train), np.array(Y_train)
          X_train: [array([0.03434761, 0.03385045, 0.03101697, 0.02846629, 0.02989295,
                  0.02972903, 0.02781422, 0.02720357, 0.02770073, 0.02592643,
                  0.02729904,\ 0.02600028,\ 0.02646323,\ 0.02052427,\ 0.01872114,
                  0.01915706, 0.01909942, 0.01769259, 0.01690901, 0.01746381,
                  0.01712157,\ 0.01886885,\ 0.01633979,\ 0.01715219,\ 0.01754487,
                  0.01807987,\ 0.01772141,\ 0.01807266,\ 0.01748183,\ 0.01895531,
                  0.0183987 \ , \ 0.01930117, \ 0.01885804, \ 0.01922551, \ 0.01783308,
                  0.01718461,\ 0.01627675,\ 0.01634339,\ 0.01740437,\ 0.01891208,
                  0.01967945,\ 0.02134927,\ 0.02308214,\ 0.02277051,\ 0.02235801,
                  0.02528697, 0.02613178, 0.02584357, 0.02289661, 0.02326047,
                  0.02332532, 0.02347663, 0.02232379, 0.02187345, 0.02034233,
                  0.02184283, 0.02284257, 0.02280834, 0.02276511, 0.02353248])]
          Y_train: [0.023606326054810806]
In [142]: X train = X train.reshape(X train.shape[0], X train.shape[1], 1)
          X train.shape
```

Out[142]: (2684, 60, 1)

LSTM Model Building, Compiling, and Training

```
In [143]: Model = Sequential([
         LSTM(50, return_sequences = True, input_shape = (X_train.shape[1], 1)),
         (Dropout(0.2)),
         LSTM((50)),
         (Dropout(0.2)),
         (Dense(32)),
         (Dense(1))
      ])
      Model.compile(optimizer="adam", loss="mean_squared_error")
      Model.fit(X_train, Y_train, batch_size=32, epochs=10)
      Model.summary()
       Epoch 1/10
      Epoch 2/10
       Epoch 3/10
      Epoch 4/10
      Epoch 5/10
      84/84 [============= - - 4s 44ms/step - loss: 3.4685e-04
      Epoch 6/10
      84/84 [============ - - 4s 43ms/step - loss: 3.3997e-04
       Epoch 7/10
      Epoch 8/10
       84/84 [================ ] - 4s 43ms/step - loss: 2.5720e-04
      Epoch 9/10
      Epoch 10/10
      Model: "sequential_4"
       Layer (type)
                         Output Shape
                                           Param #
       ______
       lstm 8 (LSTM)
                         (None, 60, 50)
                                           10400
       dropout_8 (Dropout)
                     (None, 60, 50)
       1stm 9 (LSTM)
                         (None, 50)
                                           20200
       dropout 9 (Dropout)
                          (None, 50)
       dense_8 (Dense)
                          (None, 32)
                                           1632
       dense 9 (Dense)
                          (None, 1)
                                           33
       ______
      Total params: 32265 (126.04 KB)
      Trainable params: 32265 (126.04 KB)
      Non-trainable params: 0 (0.00 Byte)
In [144]:
      test_data= PriceData[TrainingDataLength-Backcandles:, :]
       x_test, y_test = [], CloseValue[TrainingDataLength:,:]
      for i in range(Backcandles,len(test_data)):
         x_test.append(test_data[i-Backcandles:i,0])
      x test = np.array(x test)
      x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1],1))
      x_test.shape
Out[144]: (686, 60, 1)
```

Results of the Prediction

Root-Mean-Square Error

A higher RMSE value generally indicates poorer predictive performance. Hence, our training objective is to "minimize RMSE".

```
In [145]: Pred = Model.predict(x_test)
    Pred = scaler.inverse_transform(Pred)
    RMSE = np.sqrt(np.mean(Pred - y_test)**2)
    RMSE
```

22/22 [========] - 1s 15ms/step

Out[145]: 1.8634645779000774

Prediction Results

```
In [146]: TrainingSet,ValidationSet = Close[:TrainingDataLength],Close[TrainingDataLength:]
    ValidationSet["Predictions"] = Pred
    ValidationSet
```

Out[146]: Close Predictions

Date		
2020-11-25	88.206497	87.938492
2020-11-27	89.350998	87.956757
2020-11-30	87.720001	88.047287
2020-12-01	89.767998	88.097267
2020-12-02	91.248497	88.225983
2023-08-14	131.330002	127.871643
2023-08-15	129.779999	127.996346
2023-08-16	128.699997	128.046631
2023-08-17	129.919998	127.986809
2023-08-18	127.459999	127.922981

686 rows × 2 columns

Visualization

```
In [147]: plt.figure(figsize=(16,8))
   plt.title("Stock Price Prediction During the Validation Period", fontsize = 20)
   plt.ylabel("Close Price")
   plt.plot(ValidationSet["Close"],linewidth=1,color = "Darkviolet")
   plt.plot(ValidationSet["Predictions"],linewidth=1,color = "Red")
   plt.legend(["Stock Price","Predictions"])
```

Out[147]: <matplotlib.legend.Legend at 0x2bcf77b77c0>


```
In [148]: plt.figure(figsize=(16,8))
   plt.title("Stock Price Prediction", fontsize=20)
   plt.ylabel("Close Price" )
   plt.plot(TrainingSet["Close"], color = "Darkblue")
   plt.plot(ValidationSet["Close"],color = "Blue")
   plt.plot(ValidationSet["Predictions"],linewidth=0.75,color = "Red")
   plt.legend(["Train","Stock Price","Predictions"])
```

Out[148]: <matplotlib.legend.Legend at 0x2bc888228b0>

Please note that using LSTM with raw stock price data is impractical and using min-max scaler to scale the price data is also unreasonable, since the raw stock price data is neither stationarity nor extrpolation. You'll find out it doesn't work in real-life (The prediction results seems accurate because it's nothing but a delay curve :P).

When utilizing LSTM for financial data prediction, forecasting "Log Return" might be a better option. This project is better suited as a programming example for basic machine learning rather than a precise stock price prediction.