\mathcal{P} ráctica \mathcal{G} eneral \mathcal{E} spacios \mathcal{V} ectoriales (Parte I)

- 1. Basados en las operaciones adición y multiplicación escalar que se definen, respectivamente, determine, para cada uno de los casos, si $(\mathbb{R}^2, +, \cdot \mathbb{R})$ es un espacio vectorial o no lo es.
 - (a) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2); \delta(x, y) = (\delta x, 0)$
 - (b) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, 0); \delta(x, y) = (\delta x, \delta y)$
 - (c) $(x_1, x_2) + (y_1, y_2) = (|x_1 + y_1|, |x_2 + y_2|); \delta(x, y) = (|\delta x|, |\delta y|)$
- 2. Considere algún espacio vectorial $(\mathcal{V}, +, \cdot \mathbb{R})$. Demuestre, $\forall x, y \in \mathcal{V}, \forall \alpha, \lambda \in \mathbb{R}$, cada una de las propiedades siguientes:
 - (a) 0 x = 0
 - (b) $\lambda 0 = 0$
 - (c) $(-\lambda) x = -(\lambda x)$
 - (d) $\lambda(-x) = -(\lambda x)$
 - (e) $(-\lambda)(-x) = \lambda x$

- (f) $\alpha x \lambda x = (\alpha \lambda) x$
- (g) $\lambda x \lambda y = \lambda (x y)$
- (h) $\delta x = \mathbf{0} \Rightarrow \delta = 0 \lor x = \mathbf{0}$ (ó ambos)
- (i) $\delta x = \delta y \land \delta \neq 0 \Rightarrow x = y$
- (j) $\delta x = \lambda x \land x \neq \mathbf{0} \Rightarrow \delta = \lambda$
- 3. Demuestre que un subconjunto \mathcal{W} de algún espacio vectorial $(\mathcal{V}, + \cdot \mathbb{R})$ es un subespacio vectorial de \mathcal{V} si, y sólo si, $\mathcal{W} \neq \emptyset$, $x + y \in \mathcal{W}$ y $\delta x \in \mathcal{W}$, $\forall x, y \in \mathcal{W}$, $\forall \delta \in \mathbb{R}$.
- 4. Sean $(\mathcal{V}, + \cdot \mathbb{R})$ algún espacio vectorial y $\mathcal{W} \subseteq \mathcal{V}$. Demuestre que \mathcal{W} es un subespacio vectorial de \mathcal{V} si, y sólo si, $\mathbf{0} \in \mathcal{W}$ y $\delta x + y \in \mathcal{W}, \forall x, y \in \mathcal{W}, \forall \delta \in \mathbb{R}$.
- 5. Considere la *adición* y la *multiplicación escalar* definidas en \mathbb{R}^n y determine, para cada uno de los casos, si $(\mathcal{V}, +, \cdot \mathbb{R})$ corresponde con un espacio vectorial o no.
 - (a) $\mathcal{V} = \left\{ (a, b, c, d, e) \in \mathbb{R}^5 \middle/ a = b, a + c = 1, 2d e = 0 \right\}$
 - (b) $\mathcal{V} = \left\{ (a, 0, a + b, b, a b) \middle/ a, b \in \mathbb{R} \right\}$
 - (c) $\mathcal{V} = \left\{ (a, b, c, d) \in \mathbb{R}^4 \middle/ a + b c = 0, -2a b + 3c = 0 \right\}$
- 6. Considere la *adición* y la *multiplicación escalar* definidas en C[a,b] y determine, para cada uno de los casos, si $(V, +, \cdot \mathbb{R})$ corresponde con un subespacio de C[a,b] o no.
 - (a) $\mathcal{V} = \left\{ f \in \mathcal{C}[a, b] \middle/ f(a) = f(b) \right\}$
 - (b) $\mathcal{V} = \left\{ f \in \mathcal{C}[a, b] \middle/ f(-x) = f(x), \forall x \in [a, b] \right\}$
 - (c) $\mathcal{V} = \left\{ f \in \mathcal{C}[a, b] \middle/ \int_a^b f(t) dt = 0 \right\}$
 - (d) $\mathcal{V} = \left\{ f \in \mathcal{C}[a, b] \middle/ \int_a^b f(t) dt = 1 \right\}$

- 7. Considere la adición y la multiplicación escalar definidas en \mathbb{R}^n y determine lo que se pide en cada caso:
 - (a) Verifique que $W_1 = \left\{ (a, b, c) \in \mathbb{R}^3 \middle/ a 4b c = 0 \right\}$ es subespacio de \mathbb{R}^3 .
 - (b) Verifique que $W_2 = \left\{ (a, b, c) \in \mathbb{R}^3 / 2a 7b + c = 0 \right\}$ es subespacio de \mathbb{R}^3 .
 - (c) Determine el conjunto $\mathcal{H} = \mathcal{W}_1 \cap \mathcal{W}_2$ y verifique que \mathcal{H} es subespacio de \mathbb{R}^3 .
- 8. Sean W_1 y W_2 dos subespacios de \mathbb{R}^3 , tales que $W_1 = \left\{ (a, b, c) \in \mathbb{R}^3 \middle/ (a b + 2c = 0) \right\}$ y $W_2 = \left\{ (a, b, c) \in \mathbb{R}^3 \middle/ (2a 3b + c = 0) \right\}$. Responda a lo que se pide en cada caso:
 - (a) Determine el conjunto $W_1 \cap W_2$ y verifique que $W_1 \cap W_2$ es subespacio de \mathbb{R}^3 .
 - (b) ¿Si $u, v \in \mathcal{W}_1 \cup \mathcal{W}_2$, entonces $u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$? Justifique.
- 9. Sea $\mathcal{V} = \{A \in \mathcal{M}_3(\mathbb{R}) / A \text{ es invertible} \}$. En \mathcal{V} se definen las operaciones adición y multiplicación escalar de la manera siguiente: $\forall A, B \in \mathcal{V}, \forall \delta \in \mathbb{R}, A + B = AB, \delta \cdot A = \delta A$ ¿Es $(\mathcal{V}, +, \cdot \mathbb{R})$ un espacio vectorial? Justifique.
- 10. Si $W = \{(x, y, z) \in \mathbb{R}^3 / ax + by + cz = 0, \text{ con } a, b \text{ y } c \text{ números reales fijos} \}$, demuestre que W es subespacio de \mathbb{R}^3 .
- 11. Sea $\mathcal{W} = \left\{ (x, y, y x) \in \mathbb{R}^3 \middle/ y \ge 0 \right\}$ ¿Es \mathcal{W} subespacio vectorial de \mathbb{R}^3 ? Justifique.
- 12. Si $\mathcal{W} = \left\{ (x,y) \in \mathbb{R}^2 \middle/ ax + by = 1, \text{ con } a \text{ y } b \text{ constantes reales} \right\}$ ¿Es \mathcal{W} subespacio de \mathbb{R}^2 ? Justifique.
- 13. Si $\mathcal{W} = \left\{ (x,y) \in \mathbb{R}^2 \middle| ax + by = 0, \text{ con } a \text{ y } b \text{ constantes reales} \right\}$ ¿Es \mathcal{W} subespacio de \mathbb{R}^2 ? Justifique.
- 14. Demuestre que los únicos subespacios de $(\mathbb{R}, +, \cdot \mathbb{R})$ son $(\mathbb{R}, +, \cdot \mathbb{R})$ y $(\{0\}, +, \cdot \mathbb{R})$.
- 15. Sea $\mathcal{W} = \left\{ \begin{pmatrix} -b & a \\ a & b \end{pmatrix} \middle/ a, b \in \mathbb{R} \right\}$. Demuestre que \mathcal{W} es subespacio de $\mathcal{M}_2(\mathbb{R})$.

Definición 1 (suma)

Si W_1 y W_2 son subconjuntos no vacíos de algún espacio vectorial $(\mathcal{V}, +, \cdot \mathbb{R})$, la suma de W_1 y W_2 , denotada por $W_1 + W_2$, está definida como: $W_1 + W_2 = \left\{v_1 + v_2 \middle/ v_1 \in W_1, v_2 \in W_2\right\}$

16. Con base en la definición 1, demuestre que si W_1 y W_2 son subespacios de $(V, +, \cdot \mathbb{R})$, entonces $W_1 + W_2$ también es un subespacio de V.

Definición 2 (suma directa)

Un espacio vectorial \mathcal{V} es llamado la suma directa de \mathcal{W}_1 y \mathcal{W}_2 , si \mathcal{W}_1 y \mathcal{W}_2 son subespacios de \mathcal{V} , tales que $\mathcal{W}_1 \cap \mathcal{W}_2 = \left\{ \boldsymbol{0} \right\}$ y $\mathcal{W}_1 + \mathcal{W}_2 = \mathcal{V}$; en este caso, se escribe $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$.

17. Considere los subconjuntos de \mathbb{R}^3 que se enuncian y, con base en las definiciones 1 y 2, realice lo que se pide en cada caso.

$$\mathcal{W}_{1} = \left\{ (a, b, -a - b) \middle/ a, b \in \mathbb{R} \right\} \qquad \mathcal{W}_{2} = \left\{ (a, b, a) \middle/ a, b \in \mathbb{R} \right\} \qquad \mathcal{W}_{3} = \left\{ (0, 0, a) \middle/ a \in \mathbb{R} \right\}$$

(a) Verifique que W_1, W_2 y W_3 son subespacios de \mathbb{R}^3 .

- (b) Determine $W_1 + W_2$, $W_1 + W_3$ y $W_2 + W_3$.
- (c) De las tres sumas realizadas en el inciso anterior ¿Cuál o cuáles corresponde(n) con suma directa?
- 18. Considere en \mathbb{R}^3 los vectores $u_1 = (1, -1, 3)$, $u_2 = (2, 4, 0)$, $u_3 = (4, 2, 6)$ y $u_4 = (1, 5, 6)$.
 - (a) Exprese (si es posible) u_3 como combinación lineal de u_1 y u_2 .
 - (b) $u_4 \in \mathcal{G}en(\{u_1, u_2\})?$
- 19. Considere los vectores p(x), q(x), r(x) y s(x), definidos por:

$$p(x) = 4x^2 + x + 2$$
, $q(x) = 3x^2 - x + 1$, $r(x) = 5x^2 + 2x + 3$ y $s(x) = 5x^2 + 9x + 5$

$$is (x) \in \mathcal{G}en (\{p(x), q(x), r(x)\})?$$

20. Considere los vectores A, B, C, D y E definidos por:

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 2 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & -2 \\ 0 & -2 \end{pmatrix}, \quad D = \begin{pmatrix} -1 & 7 \\ 5 & 1 \end{pmatrix} \quad \text{y} \quad E = \begin{pmatrix} 6 & -1 \\ -8 & -8 \end{pmatrix}$$

- (a) $i D \in \mathcal{G}en(\{A, B, C\})$?
- (b) $iE \in Gen(\{A, B, C\})$?
- 21. Para cada uno de los casos que se enuncian, determine si los vectores u, v y w generan \mathbb{R}^3 o no.
 - (a) u = (1, 1, 1), v = (2, 2, 0) y w = (3, 0, 0)
 - (b) u = (1, 1, 0), v = (0, 1, 1) y w = (1, 0, 1)
 - (c) u = (2, -1, 3), v = (4, 1, 2), w = (8, -1, 8)
- 22. Considere el conjunto $\mathcal{B} = \{(k-2,1,-1),(2,-k,4),(8,-11,1+k)\}$ ¿Para qué valor o valores de k se cumple que \mathcal{B} es l.d?
- 23. Sean $\mathcal{S} = \{(1, 1, 9, -4), (2, -1, 3, 2), (-1, 1, 1, -3)\}$ y u = (a, b, 0, -1). Determine el valor o los valores de los parámetros a y b, de manera que se cumpla que $u \in \mathcal{G}en(\mathcal{S})$.
- 24. Para cada uno de los casos que se enuncian, determine si el conjunto \mathcal{B} es l.d o l.i.
 - (a) $\mathcal{B} = \{(1, -2, 3), (2, -2, 0), (0, 1, 7)\}$
 - (b) $\mathcal{B} = \left\{1, x 1, (x 1)^2, (x 1)^3\right\}$
 - (c) $\mathcal{B} = \{(-1, 2), (2, 0), (0, 3)\}$
 - (d) $\mathcal{B} = \{(1, -3, 0), (11, -6, 12)\}$
 - (e) $\mathcal{B} = \{x 2x^2, x^2 4x, 8x^2 7x\}$
 - (f) $\mathcal{B} = \{(4,4,0,0), (0,0,6,6), (-5,0,5,5)\}$
 - (g) $\mathcal{B} = \{3 x, 2x(x 1), x^2 1, 3(2 x^2), x + 2\}$
- 25. Suponga que u, v y w son vectores l.i de algún espacio vectorial \mathcal{V} . Determine si los vectores x, y y z definidos en cada caso son l.d o l.i.
 - (a) x = u + v 3w, y = u + 3v w y z = v + w
 - (b) x = u + v 2w, y = u v w y z = u + w
 - (c) x = u, y = u + v y z = u + v + w
- 26. Sean $(\mathcal{V}, +, \cdot \mathbb{R})$ algún espacio vectorial y $\mathcal{S} = \{v_1, v_2, \dots, v_n\}$ un subconjunto de \mathcal{V} , tal que \mathcal{S} es l.i. Si $v \in \mathcal{V}$, tal que $v \notin \mathcal{G}en(\mathcal{S})$, demuestre que el conjunto $\mathcal{S}' = \{v_1, v_2, \dots, v_n, v\}$ es l.i.