Лабораторная работа № 1 «Проверка статистических гипотез»

студент Когановский Г.И. группы Б22-534.

Дата сдачи: 31.10.24

Ведущий преподаватель: Трофимов А.Г.

оценка: подпись: _____

Вариант №7

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проверки статистических гипотез.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическ ое ожидание, m_i	Дисперсия, σ_i^2
X_1	N(-1,2)	$m_1 = -1, \sigma_1 = 2$	$m_1 = -1$	$\sigma_1^2 = 4$
X_2	R(-2,0)	a = -2, b = 0	$m_2 = -1$	$\sigma_2^2 = \frac{1}{3}$

Указание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i	Объем выборки, n_i
X_1	$m_1 = -0.78$	$s_1 = 3.98$	$s_1 = 1.99$	$n_1 = 100$
X_2	$m_2 = -0.97$	$s_2 = 0.33$	$s_2 = 0.57$	$n_2 = 100$
Pooled	-0.88	2.16	1.47	200

Указание: для расчета использовать функции **mean, var, std (scipy.stats: describe)**

2. Однопараметрические критерии

Для случайной величины X_1 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при α = 0.01	Ошибка стат. решения
z-test	$X_1 \sim N(m_1, \sigma_1)$	-3.87	0.99	Принимается H_0	-
t-test	$M(X_1) = m_1$	1.11	0.13	Принимается H_0	-
χ²-test (m – изв)	$X_1 \sim N(m_1, s_1)$	10.6	0.23	Принимается H_0	-
χ²-test (m – не изв)	$X_1 \sim N(\bar{X}_1, s_1)$	8.91	0.26	Принимается H_0	-

Указание: для проверки гипотез использовать функции ztest, ttest, vartest (scipy.stats: ttest_1samp, chisquare)

3. Двухвыборочные критерии

Для случайных величин X_1, X_2 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = 0.01$	Ошибк а стат. решени я
2-sample t-test	$M(X_1) = M(X_2)$	0.93	0.18	Принимается H_0	-
2-sample F-test (m – изв)	$D(X_1) = D(X_2)$	12.33	$1.11 \cdot 10^{-16}$	Принимается H_0	-
2-sample F-test (m – не изв)	$D(X_1) = D(X_2)$	12.21	$1.11 \cdot 10^{-16}$	Принимается H_0	ı

Указание: для проверки гипотез использовать функции ttest2, vartest2 (scipy.stats: ttest ind, chisquare)

4. Исследование распределений статистик критерия

Статистическая гипотеза: H_0 : $\sigma_1 = 2 (m_1 - \text{не изв.})$

Формула расчёта статистики критерия $Z: \chi^2 = \frac{(n-1)s^2}{\sigma^2}$

Формула расчёта статистики
$$P ext{-value}$$
: $f(x)=\left\{egin{array}{ll} \frac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)}, & x\geq 0 \\ 0, & x<0 \end{array}\right.$

Число серий экспериментов N = 1000

Теоретические характеристики:

СВ	Распределение в условиях H_0	Параметры	Математическое ожидание	Дисперсия	С.к.о.
Z	$Z \sim \chi^2(n-1)$		n - 1 = 99	2n-2=198	$ \sqrt{2n-2} \\ = 14.07 $
P-value	<i>P</i> − <i>value</i> ~ <i>R</i> (0,1)		1/2 = 0.5	1/12 ~ 0.083	$1/\sqrt{12}$ ~ 0.288

Выборочные характеристики:

СВ	Среднее	Оценка дисперсии	Оценка с.к.о.
Z	98.5	202.0	14.21
P-value	0.49	0.086	0.293

Указание: при расчете выборочных значений статистики критерия использовать функции norminv, tinv, chi2inf, finv (scipy.stats: norm.ppf, t.ppf, chi2.ppf, f.ppf)

Гистограмма частот статистики Z и теоретическая функция $f_{Z}(z \mid H_{0})$:

Гистограмма частот статистики P-value и теоретическая функция $f_P(p \mid H_0)$:

Лабораторный практикум по курсу «Математическая статистика»

Указание: для построения гистограмм и теоретических функций плотности использовать функции hist, normpdf, tpdf, chi2pdf, fpdf (scipy.stats: norm.pdf, t.pdf, chi2.pdf, f.pdf, histogram; matplotlib.pyplot: hist)