```
In [1]: # This notebook prepares the dataframes for analysis and runs
        # the Random Forest on the combined model (economic and sentiment features) and
        # the economic (only) model.
In [2]: | import warnings
        warnings.filterwarnings('ignore')
In [3]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.model_selection import GridSearchCV
        from sklearn.model selection import TimeSeriesSplit
        from sklearn.metrics import r2_score, mean_absolute_error
In [4]: # Quick look at the first two lines of the econ CSV
        with open('data/econ_vars.csv') as f:
            print(f.readline())
            next(f)
            print(f.readline())
        month_date,ur,pi_gr,nyse_gr,gdp_log_diff,tb_sqrt_diff,ics_log_diff,pce_gr_diff
        2011-01-01,9.1,0.002028679786119758,0.016528644263536174,-
        0.004803188602163777
In [5]: # Set data types for the econ features
        dts = {"month date": str, "ur": np.float64
            , "pi_gr": np.float64, "nyse_gr": np.float64
            , "gdp_log_diff": np.float64, "tb_sqrt_diff": np.float64
            , "ics_log_diff": np.float64, "pce_gr_diff": np.float64}
In [6]: # Import econ data
        data_raw = pd.read_csv("data/econ_vars.csv"
                           , sep=","
                           , skiprows=0
                          , dtype=dts)
In [7]: # Check the shape of the raw econ data
        data raw.shape
Out[7]: (91, 8)
In [8]: # Copy raw data
        data = data raw.copy()
In [9]: # Sort and reset index
        data.sort index(ascending=False, inplace=True)
        data.reset index(drop=True, inplace=True)
```

```
In [10]: # Check the dataframe
data.head()
```

Out[10]:

	month_date	ur	pi_gr	nyse_gr	gdp_log_diff	tb_sqrt_diff	ics_log_diff	pce_gr_diff
0	2018-06-01	4.0	0.003863	-0.001827	0.000000	0.014587	0.002039	-0.001110
1	2018-05-01	3.8	0.003728	0.000941	0.010188	0.037168	-0.008130	0.008168
2	2018-04-01	3.9	-0.004827	-0.002903	0.010188	0.022809	-0.025975	-0.008891
3	2018-03-01	4.1	0.003938	-0.015846	0.000000	0.050844	0.016907	0.007407
4	2018-02-01	4.1	0.003282	-0.053517	0.005479	0.065562	0.040947	0.001663

```
In [11]: # Quick look at the first two lines of the sentiment CSV
with open('data/rev_means_vars_stationary.csv') as f:
    print(f.readline())
    next(f)
    print(f.readline())
```

date,perc_pos_rev_weighted,perc_neg_rev_weighted,perc_uncert_rev_weighted,perc_l itig_rev_weighted,perc_modal_wk_rev_weighted,perc_modal_mod_rev_weighted,perc_constrain rev weighted,perc modal str rev weighted diff

2011-03-01, 1.9607048390000001, 0.979452392, 0.957424913, 0.073102265, 0.387478896, 0.560045154, 0.142131806, -0.0495581759999999

```
In [13]: # Check the sentiment data types
sent_raw.dtypes
```

```
Out[13]: date
                                               object
         perc_pos_rev_weighted
                                              float64
         perc_neg_rev_weighted
                                              float64
         perc_uncert_rev_weighted
                                              float64
         perc_litig_rev_weighted
                                              float64
         perc_modal_wk_rev_weighted
                                              float64
         perc_modal_mod_rev_weighted
                                              float64
                                              float64
         perc constrain rev weighted
         perc modal str rev weighted diff
                                              float64
         dtype: object
```

In [14]: # Drop any observations with Nan
sent_raw.dropna(inplace=True)

```
In [15]: #sort and reset index
    sent_raw.sort_values(by='date', ascending=False, inplace=True)
    sent_raw.reset_index(drop=True, inplace=True)
```

In [16]: # Confirm the shape of the dataframe
sent_raw.shape

Out[16]: (89, 9)

In [17]: # Check the dataframe
sent_raw.head()

Out[17]:

	date	perc_pos_rev_weighted	perc_neg_rev_weighted	perc_uncert_rev_weighted	perc_litig
0	2018-06-01	2.043836	0.890239	0.815790	0.094844
1	2018-05-01	1.915107	1.074677	0.803269	0.082565
2	2018-04-01	1.926137	1.068873	0.777739	0.095691
3	2018-03-01	2.016781	0.979256	0.800769	0.102810
4	2018-02-01	2.004129	0.963727	0.815629	0.098500

In [18]: # Copy raw data
sent = sent_raw.copy()

In [19]: # Filter econ observations to match the sentiment dataframe
 data = data.iloc[0:89,:]

In [20]: # Combine the econ and sentiment dataframes
data = pd.concat([data,sent], axis=1)

In [21]: # Replace the integer index with the date column
data = data.set_index("date")

In [22]: # Create response variable
y_true = data['pce_gr_diff']

In [23]: # Drop the month_date column and the gdp column
data = data.drop(data.columns[[0,4,7]], axis=1)

In [24]: # Check the dataframe
 data.head()

Out[24]:

	ur	pi_gr	nyse_gr	tb_sqrt_diff	ics_log_diff	perc_pos_rev_weighted	perc_neg_rev
date							
2018-06-01	4.0	0.003863	-0.001827	0.014587	0.002039	2.043836	0.890239
2018-05-01	3.8	0.003728	0.000941	0.037168	-0.008130	1.915107	1.074677
2018-04-01	3.9	-0.004827	-0.002903	0.022809	-0.025975	1.926137	1.068873
2018-03-01	4.1	0.003938	-0.015846	0.050844	0.016907	2.016781	0.979256
2018-02-01	4.1	0.003282	-0.053517	0.065562	0.040947	2.004129	0.963727

In [25]: # Copy econ features to econ dataframe and drop all sentiment variables
 econ = data.drop(data.columns[[5,6,7,8,9,10,11,12]], axis=1)

```
In [26]: # Check the dataframe
  econ.head()
```

Out[26]:

	ur	pi_gr	nyse_gr	tb_sqrt_diff	ics_log_diff
date					
2018-06-01	4.0	0.003863	-0.001827	0.014587	0.002039
2018-05-01	3.8	0.003728	0.000941	0.037168	-0.008130
2018-04-01	3.9	-0.004827	-0.002903	0.022809	-0.025975
2018-03-01	4.1	0.003938	-0.015846	0.050844	0.016907
2018-02-01	4.1	0.003282	-0.053517	0.065562	0.040947

```
In [27]: # create time series cross validation split
    tscv = TimeSeriesSplit(n_splits=3)
    print(tscv)

TimeSeriesSplit(max_train_size=None, n_splits=3)
```

```
In [28]: # instantiate random forest object
rfreg = RandomForestRegressor()
```

```
In [31]: # fit random forest regressor
         comb_model_gs.fit(data, y_true)
         Fitting 3 folds for each of 108 candidates, totalling 324 fits
         [Parallel(n jobs=-1)]: Done 32 tasks
                                                     | elapsed:
         [Parallel(n jobs=-1)]: Done 324 out of 324 | elapsed:
                                                                   4.3s finished
Out[31]: GridSearchCV(cv=TimeSeriesSplit(max_train_size=None, n_splits=3),
                error score='raise',
                estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max dept
         h=None,
                    max features='auto', max leaf nodes=None,
                    min impurity decrease=0.0, min impurity split=None,
                    min samples leaf=1, min samples split=2,
                    min weight fraction leaf=0.0, n estimators=10, n jobs=1,
                    oob score=False, random state=None, verbose=0, warm start=False),
                fit params=None, iid=True, n jobs=-1,
                param grid={'n estimators': [50, 100], 'max features': [3, 4, 6], 'min sa
         mples_leaf': [3, 5, 10], 'max_depth': [3, None], 'min_samples_split': [2, 5,
         10], 'bootstrap': [True], 'random_state': [987]},
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='neg_mean_squared_error', verbose=1)
In [32]: # print grid search results sorted by mean test score
         comb_model_results = pd.DataFrame(comb_model_gs.cv_results_)
         headers = ['rank_test_score', 'mean_test_score', 'mean_train_score', 'mean_fit_time
         ','split0_train_score','split1_train_score','split2_train_score']
         comb_model_results.sort_values(by=["rank_test_score"], inplace=True, ascending=Tru
```

Out[32]:

comb model results[headers].head(10)

	rank_test_score	mean_test_score	mean_train_score	mean_fit_time	split0_train_score	split1_tra
93	1	-0.00002	-0.00008	0.194232	-0.000011	-0.000007
91	1	-0.00002	-0.00008	0.203017	-0.000011	-0.000007
39	3	-0.00002	-0.000010	0.182110	-0.000011	-0.000009
37	3	-0.00002	-0.000010	0.176719	-0.000011	-0.000009
43	5	-0.00002	-0.000015	0.177317	-0.000021	-0.000012
47	5	-0.00002	-0.000015	0.183128	-0.000021	-0.000012
45	5	-0.00002	-0.000015	0.175593	-0.000021	-0.000012
42	8	-0.00002	-0.000015	0.092832	-0.000020	-0.000012
44	8	-0.00002	-0.000015	0.087386	-0.000020	-0.000012
46	8	-0.00002	-0.000015	0.093360	-0.000020	-0.000012

```
In [33]: # View the optimal random forest model parameters
comb_model_gs.best_estimator_
```

```
In [34]: print("Combined model MSE: {}".format(comb_model_gs.best_score_))
         Combined model MSE: -2.0119435819526655e-05
In [35]: # Run a new model using the best model from the grid search
         comb_best_model = comb_model_gs.best_params_
         rfreg_features = RandomForestRegressor(**comb_best_model)
         rfreg features.fit(data, y_true)
Out[35]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                    max features=6, max leaf nodes=None, min impurity decrease=0.0,
                    min impurity split=None, min samples leaf=3,
                    min_samples_split=2, min_weight_fraction_leaf=0.0,
                    n_estimators=100, n_jobs=1, oob_score=False, random_state=987,
                    verbose=0, warm_start=False)
In [36]: # Plot the feature importances
         feature_importance = rfreg_features.feature_importances_
         feature importance = 100.0 * (feature importance / feature importance.max())
         sorted idx = np.argsort(feature importance)
         pos = np.arange(sorted_idx.shape[0]) + .5
         plt.figure(figsize=(10, 10))
         plt.barh(pos, feature importance[sorted idx], align='center', color='navy')
         plt.yticks(pos, np.asanyarray(data.columns.tolist())[sorted idx]) # data is X
         plt.xlabel('Relative Importance')
         plt.title('Combined Model Feature Importance')
         plt.show()
```



```
In [37]: # establish parameters for grid search object
         parameters = {"n_estimators": [50, 100],
             "max features": [2, 3, 4],
             "min_samples_leaf": [3, 5, 10],
             "max_depth": [3, None],
             "min_samples_split": [2, 5, 10],
             "bootstrap": [True],
             "random_state": [987]
In [38]: # create a grid search object
         econ model gs = GridSearchCV(estimator=rfreg
                             , n_{jobs=-1} \# parallel execution -1 is all processors
                             , verbose=1 # low verbosity
                             , param grid=parameters
                             , cv=tscv # KFolds = 3
                             , scoring="neg mean squared error"
In [39]: # fit random forest regressor
         econ model gs.fit(econ, y true)
         Fitting 3 folds for each of 108 candidates, totalling 324 fits
         [Parallel(n_jobs=-1)]: Done 32 tasks
                                                                   0.8s
                                                     elapsed:
         [Parallel(n_jobs=-1)]: Done 324 out of 324 | elapsed:
                                                                   4.2s finished
Out[39]: GridSearchCV(cv=TimeSeriesSplit(max_train_size=None, n_splits=3),
                error_score='raise',
                estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max dept
         h=None.
                    max_features='auto', max_leaf_nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None,
                    min_samples_leaf=1, min_samples_split=2,
                    min weight fraction leaf=0.0, n estimators=10, n jobs=1,
                    oob score=False, random state=None, verbose=0, warm start=False),
                fit_params=None, iid=True, n_jobs=-1,
                param_grid={'n_estimators': [50, 100], 'max_features': [2, 3, 4], 'min_sa
         mples leaf': [3, 5, 10], 'max depth': [3, None], 'min samples split': [2, 5,
         10], 'bootstrap': [True], 'random state': [987]},
                pre dispatch='2*n jobs', refit=True, return train score='warn',
                scoring='neg_mean_squared_error', verbose=1)
```

In [40]: # print results sorted by mean test score
 econ_model_results = pd.DataFrame(econ_model_gs.cv_results_)
 headers = ['rank_test_score', 'mean_test_score', 'mean_train_score', 'mean_fit_time
 ','split0_train_score','split1_train_score', 'split2_train_score']
 econ_model_results.sort_values(by=["rank_test_score"], inplace=True, ascending=Tru
 e)
 econ_model_results[headers].head(10)

Out[40]:

	rank_test_score	mean_test_score	mean_train_score	mean_fit_time	split0_train_score	split1_tı
53	1	-0.000021	-0.000023	0.172886	-0.000033	-0.0000
105	1	-0.000021	-0.000023	0.134153	-0.000033	-0.0000
103	1	-0.000021	-0.000023	0.141396	-0.000033	-0.0000
51	1	-0.000021	-0.000023	0.174077	-0.000033	-0.0000
49	1	-0.000021	-0.000023	0.181301	-0.000033	-0.0000
107	1	-0.000021	-0.000023	0.104362	-0.000033	-0.0000
50	7	-0.000021	-0.000023	0.089039	-0.000033	-0.0000
52	7	-0.000021	-0.000023	0.093082	-0.000033	-0.0000
106	7	-0.000021	-0.000023	0.056159	-0.000033	-0.0000
48	7	-0.000021	-0.000023	0.092212	-0.000033	-0.0000

```
In [41]: econ_model_gs.best_estimator_
```

```
In [42]: print("Economic model MSE: {}".format(econ_model_gs.best_score_))
```

Economic model MSE: -2.0665388481727326e-05

```
In [43]: # Run a new model using the best model from the grid search
    econ_best_model = econ_model_gs.best_params_
    rfreg_features = RandomForestRegressor(**econ_best_model)
    rfreg_features.fit(econ, y_true)
```

