Classification de Sons

Clément Gousseau

2 août 2019

Plan de l'exposé

Pre-Processing : construction de log-melspectrogrammes

Classification

Motivation

spectrogramme : image (signal 2D) représentant un son (signal 1D)

Pourquoi?

Motivation

Parce que...

 \longrightarrow très bons résultats des réseaux de neurones artificiels sur la classification d'images

Transformée de Fourier

domaine temporel Fourier domaine fréquentiel

du Signal au Spectrogramme

On extrait un morceau du signal à l'aide d'une fenêtre glissante :

hop length: number of samples between windows; nfft: window length; nmels: résolution fréquentielle.

On calcule le spectre de Fourier sur cet extrait :

On juxtapose les spectres de Fourier selon l'axe temporel :

du Spectrogramme au Melspectrogramme

échelle de fréquence basée sur la perception de l'oreille humaine

du Melspectrogramme au log-Melspectrogramme

échelle log pour l'amplitude — meilleure représentation

Jeu de données et Tâche

Sons de la base de données UrbanSound8K

8372 sons de moins de 4 secondes appartenant aux classes :

```
0: air conditioner
```

- 1 : car_horn
- 2 : children_playing
- 3: dog bark
- 4 : drilling (forage)
- 5: engine_idling
- 6: gun shot
- 7: jackhammer (marteau-piqueur)
- 8 : siren
- 9 : street music

Chaque son appartient à une et une seule classe.

Pipeline

Réseaux de neurones artificiels

merci