Министерство образования и науки Российской Федерации $\Phi \Gamma BOУ$ «Петрозаводский государственный университет» Институт математики и информационных технологий Кафедра информатики и математического обеспечения

Промежуточный отчет о научно-исследовательской работе

Приложение дополненной реальности (наложение 3D объекта на картинку)

Выполнил:			
студент 2 курса группы 22	207 B. A.	Аверков	
		nodnuc	\overline{b}
Научный руководитель:			
к.фм.н., доцент К. А. Кул	лаков		
Оценка руководителя:			
		$no\partial nuc$	b
Представлен на кафедру			
«	»		2018 г.
-	подписи	принявшего ра	боту

Содержание

\mathbf{B}_{1}	ведеі	ние	2
1	Обз	вор технологии дополненой реальности	3
	1.1	Общие сведения	3
	1.2	Классификация AR - систем	3
	1.3	Unity Engine	5
		1.3.1 Vuforia	6
2	Пос	становка задачи	7
	2.1	Разработка приложения	7
3	Тек	ущие результаты	8
Бі	ибли	ографический список использованной литературы	9

Введение

Дисплей - это окно в виртуальный мир. Сложно заставить его выглядеть по-настоящему, пахнуть, звучать и давать себя почувствовать.Эти слова принадлежат учёному из США Айвену Эдварду Сазерленду.Именно за ним упрочилось звание «отца» компьютерной графики. Сазерленд произвел не только революцию в программировании, но и заложил основы для графических интерфейсов пользователя, изобретя и разработав первую действующую систему виртуальной и дополненной реальности (англ. augmented reality, AR).Говоря о последней, человек продолжает находиться в обычном состоянии, но с так называемыми дополнительными «опциями»,чего нельзя сказать о виртульной реальности. Поэтому об AR нужно говорить как о той особой среде, которая создается наложением информации или каких-либо объектов на мир вокруг нас в реальном времени.Термин augmented reality относится практически ко всем проектам, которые направлены исключительно на дополнение реальности любыми виртуальными элементами. Хотя первые разработки А.Сазерленда, как и всё новое, были далеки от совершенства,впоследствии они всё-таки нашли своё применение в производстве,к примеру, 3D - оборудования и тренажеров в авиационной промышленности. Первооткрывателями же augmented reality,адаптировавшие для дополненной реальности уже мобильные устройства,по праву считаются - британский основатель и генеральный директор компании Powa Technologies Даниэль Морис Вагнер и

всемирно известный программист Дитер Шмальстиг.Они разработали специальное программное обеспечение, которое позже усовершенствовал и внедрил Ральф Остерхаут, основатель американской компании Osterhout Design Group, производитель очков дополненной реальности.

Целью данной работы является изучение технологии дополненной реальности, интегрированной среды разработки Unity, а также изучение платформы дополненной реальности Vuforia. Важной задачей исследования является разработка приложения, которая позволит на основе данных технологий,предоставить пользователю представление о дополненой реальности.

1 Обзор технологии дополненой реальности

1.1 Общие сведения

Основой технологии дополненной реальности является система оптического трекинга. Для её работы необходимы следующие компоненты. Это специальные изображения (метки), визуальные идентификаторы для компьютерных моделей. Следующие компоненты это - камера, которая распознаёт метки и передает видеосигнал в компьютер, а также программное обеспечение, обрабатывающее переданный сигнал и совмещая виртуальные модели с изображениями реальных объектов. Яркий пример - параллельная лицевая цветная линия, показывающая нахождение ближайшего полевого игрока к воротам при телетрансляции футбольных матчей. Телезритель в «прямом эфире» видит стрелки с указанием точного расстояния от места штрафного удара до ворот.

Существует множество программных продуктов для мобильных устройств, которые позволяют при помощи дополненной реальности получить необходимые сведения об окружении: браузеры дополненной реальности и специализированные программы для отдельных сервисов, компаний или даже единственных моделей. Само распространение дополненной реальности и нарастающая известность технологии среди потребителей связано с тем, что вычислительная мощность и набор датчиков в аппаратных платформах для смартфонов и планшетов-компьютеров позволяют производить наложение любых цифровых данных на получаемое в реальном времени со встроенных в устройства камер изображение. Часть решений в этой области воплощается в виде нательных компьютеров (в том числе в качестве элементов умной одежды) для постоянного контакта со средой дополненной реальности. Мы рассмотрим ниже несколько инструментов, которые обеспечат

разработчка всем необходимым для создания приложения.

1.2 Классификация АВ - систем

Системы дополненной реальности классифицируются следующими способами. По типу представления информации системы бывают:

- 1. Визуальные в таких системах источником информации для человека является изображение.
- 2. Аудио такие системы подают человеку информацию в виде звука.
- 3. Аудиовизуальные системы, которые соединили в себе два предыдущих типа.

По типу устройств, от которых система AR получает информацию окружающем мире:

- 1. Геопозиционные такие системы ориентируются, прежде всего, на сигналы систем позиционирования GPS или ГЛОНАСС, также могут использовать дополнительно компас и акселерометр для определения угла поворота относительно вертикали и азимута.
- 2. Оптические для подобных систем изображение, полученное с камеры, является источником информации.

По степени мобильности системы дополненной реальности можно классифицировать как:

- 1. Стационарные системы этого типа нельзя перемещать, так как это приведет к сбою работы.
- 2. Мобильные такие системы можно без труда перемещать.

Системы можно различать по степени взаимодействия с пользователем:

1. Автономные – системы, задача которых заключается в том, чтобы предоставить пользователю нужную информацию.

2. Интерактивные – происходит активное взаимодействие с пользователем, который на свои действия получает ответ от системы.

Технические средства, применяемые при разработке программного обеспечения AR. Существует целый набор библиотек для разработки приложения дополненной реальности:

- 1. OpenCV библиотека алгоритмов компьютерного зрения, обработки изображений и численных алгоритмов общего назначения с открытым кодом.
- 2. Vuforia SDK это программное обеспечение для мобильных устройств, которое позволяет создавать приложения дополненной реальности. Оно использует технологию компьютерного зрения для того, чтобы распознавать и отслеживать плоские изображений и простые 3D-объекты в режиме реального времени;
- 3. ARToolkit это библиотека компьютерного слежения для создания приложений с дополненной реальностью Для этого ПО использует возможности видео слежения, расчет реального положения и ориентации камеры по отношению к квадратному физическому маркеру в режиме реального времени.
- 4. Metaio SDK готовая библиотека для создания мобильных приложений дополненной реальности.
- 5. String библиотека для создания мобильных приложений ориентирована на iOS устройства.

1.3 Unity Engine

Unity Engine позволяет создавать приложения, работающие под такими операционными системами, как Windows, OS X, Windows Phone, Android, Apple iOS, Linux, а также на популярных игровых приставках Wii, PlayStation 3, PlayStation 4, Xbox 360, Xbox One.

Рис. 1: Рабочая область

Впервые об игровом движке Unity пользователи мира узнали в 2005 году из материалов Всемирной конференция для разработчиков на платформах Apple, которая ежегодно проводится в Калифорнии, США (Worldwide Developers Conference). Главными достоинствами Unity в деле разработки компьютерных игр являются наличие визуальной среды, межплатформенная поддержка и модульная система компонентов . Но существует и ряд существенных недостатков. Это ограничение визуального редактора при работе с многокомпонентными схемами, когда в сложных сценах визуальная работа затрудняется. Другим недостатком является отсутствие поддержки Unity ссылок на внешние библиотеки, работу с которыми программистам приходится настраивать самостоятельно, и это также затрудняет командную работу. Ещё один недостаток связан с использованием шаблонов экземпляров.С одной стороны, эта концепция Unity предлагает гибкий подход визуального редактирования объектов,с другой, редактирование таких шаблонов является сложным.Вместе с тем,редактор Unity имеет простой и понятный Drag and Drop интерфейс. Его не сложно настроить, а дополнительную настройку можно производить в редакторе непосредственново время игр. Приложения, созданные с помощью Unity, поддерживают DirectX и OpenGL.

Выпуск Unity состоялся в 2005 году и с того времени идёт постоянное его развитие. Основными преимуществами Unity являются наличие визуальной среды разработки, межплатформенной поддержки и модульной системы компонентов.

1.3.1 Vuforia

Vuforia — это платформа дополненной реальности и инструментарий разработчика программного обеспечения дополненной реальности (Software Development Kit — SDK) для

Рис. 2: Режим Просмотра

мобильных устройств, разработанные компании Qualcomm. Vuforia использует технологии компьютерного зрения, а также отслеживания плоских изображений и простых объёмных реальных объектов (к примеру, кубических) в реальном времени. С версии 2.5 Vuforia распознаёт текст, а с 2.6 — имеет возможность распознавать цилиндрические маркеры.

Возможность регистрации изображений позволяет разработчикам располагать и ориентировать виртуальные объекты, такие, как 3D-модели и медиаконтент, в связке с реальными образами при просмотре через камеры мобильных устройств. Виртуальный объект ориентируется на реальном образе так, чтобы точка зрения наблюдателя относилась к ним одинаковым образом для достижения главного эффекта — ощущения, что виртуальный объект является частью реального мира.

Vuforia поддерживает различные 2D- и 3D-типы мишеней, включая безмаркерные Image Target, трёхмерные мишени Multi-Target, а также реперные маркеры, выделяющие в сцене объекты для их распознавания. Дополнительные функции включают обнаружение преград с использованием так называемых «Виртуальных кнопок» («Virtual Buttons»), детектирование целей и возможность программно создавать и реконфигурировать цели в рамках самомодифицирующегося кода.

Vuforia предоставляет интерфейсы программирования приложений на языках C++, Java, Objective-C, и .Net через интеграцию с игровым движком Unity. Таким образом SDK поддерживает разработку нативных AR-приложений для iOS и Android, в то же время предполагая разработку в Unity, результаты которой могут быть легко перенесены на обе платформы. Приложения дополненной реальности, созданные на платформе Vuforia, совместимы с широким спектром устройств, включая iPhone, iPad, смартфоны и планшеты на Android с версии 2.2 и процессором, начиная с архитектур ARMv6 или 7 с

возможностью проведения вычислений с плавающей запятой.

2 Постановка задачи

2.1 Разработка приложения

Для достижения поставленной цели необходимо решить задачи:

- 1. Изучить Vuforia Engine Library
- 2. Изучить принцип эксплуатации Unity Engine
- 3. Научиться адаптровать UI под разный тип устройств
- 4. Проработка поведения камеры устройства и 3D модели

3 Текущие результаты

На данный момент получены результаты:

- 1. Проработано распознование при условиях дневного освещения
- 2. Проделана работа над адаптацией UI под разный тип устройств
- 3. Реализовано заимодействие с 3D объектом (передвежение)

Листинг 1: Реализация автофокуса для лучшего распознования маркера на языке Си Шарп

```
using UnityEngine;
using System.Collections;
using Vuforia;
public class CameraFocusController : MonoBehaviour
{
```

```
void Start()
```

```
{
         var vuforia = Vuforia AR Controller . Instance;
         vuforia. Register Vuforia Started Callback (On Vuforia Started);
         vuforia.RegisterOnPauseCallback(OnPaused);
}
private void OnVuforiaStarted()
         Camera Device \ . \ Instance \ . \ Set Focus Mode
         (CameraDevice.FocusMode.FOCUS_MODE_CONTINUOUSAUTO);
}
private void OnPaused(bool paused)
if (!paused)
                  {
         Camera Device \ . \ Instance \ . \ Set Focus Mode
         (CameraDevice.FocusMode.FOCUS_MODE_CONTINUSAUTO);
                  }
         }
}
```

Список литературы