Определение 1. *Полем* называется любое множество k, на котором заданы операции *сложения* (+) и *умножения* (·), удовлетворяющие следующим условиям (аксиомам поля):

- (A1) Для любых $a, b \in \mathbb{R}$ выполнено равенство a + b = b + a (коммутативность сложения).
- (A2) Для любых $a, b, c \in \mathbb{R}$ выполнено равенство (a + b) + c = a + (b + c) (ассоциативность сложения).
- (A3) В \Bbbk существует такой элемент 0, что для любого $a \in \Bbbk$ выполнено равенство a + 0 = a (существование нуля).
- (A4) Для любого $a \in \mathbb{k}$ существует такой $b \in \mathbb{k}$, что a + b = 0 (существование противоположного элемента: такой элемент b называется противоположным к a и обозначается -a).
- (M1) Для любых $a, b \in \mathbb{k}$ выполнено равенство $a \cdot b = b \cdot a$ (коммутативность умножения).
- (M2) Для любых $a, b, c \in \mathbb{R}$ выполнено равенство $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (ассоциативность умножения).
- (М3) В k существует такой элемент 1, не равный нулю, что для любого $a \in k$ выполнено равенство $a \cdot 1 = a$ (существование единицы).
- (М4) Для любого $a \in \mathbb{k}$, не равного нулю, существует такой $b \in \mathbb{k}$, что $a \cdot b = 1$ (существование обратного элемента: такой элемент b называется обратным к a и обозначается $\frac{1}{a}$ или a^{-1}).
- (АМ) Для любых $a,b,c \in \mathbb{R}$ выполнено равенство $a \cdot (b+c) = a \cdot b + a \cdot c$ (дистрибутивность умножения относительно сложения).

Задача 1. Пусть k — поле. Докажите, что

- а) в к есть только один ноль;
- б) у каждого элемента только один противоположный;
- в) для любого $a \in \mathbb{k}$ выполнено равенство -(-a) = a;
- **r)** для любых $a, b \in \mathbb{k}$ уравнение a + x = b имеет ровно одно решение в \mathbb{k} (оно обозначается b a; таким образом, в поле определена операция *вычитания*).

Задача 2. Пусть k — поле. Докажите, что

- а) в к есть только одна единица;
- б) у каждого ненулевого элемента только один обратный;
- в) для любого ненулевого $a \in \mathbb{k}$ выполнено равенство $(a^{-1})^{-1} = a;$
- г) для любого $b \in \mathbb{k}$ и любого ненулевого $a \in \mathbb{k}$ уравнение $a \cdot x = b$ имеет ровно одно решение в \mathbb{k} (оно обозначается $\frac{b}{a}$; таким образом, в поле определена операция denenus на ненулевые элементы).

Задача 3. Пусть k — поле. Докажите, что

- а) для любого $a \in \mathbb{k}$ выполнено равенство $a \cdot 0 = 0$;
- **б)** если $a \cdot b = 0$, то a = 0 или b = 0.
- в)* Останется ли верным утверждение пункта б), если исключить из аксиом поля аксиому M4?

Задача 4. Пусть k — поле. Докажите, что для любого $a \in k$ выполнены равенства

- a) $a \cdot (-1) = -a$;
- **6)** $(-a) \cdot (-a) = a \cdot a;$
- в) $(-a)^{-1} = -(a^{-1})$, если $a \neq 0$.

Задача 5. Пусть \mathbbm{k} — поле. Докажите, что для любых $a,c\in\mathbbm{k}$ и любых ненулевых $b,d\in\mathbbm{k}$ выполнено равенство $a \cdot c = a \cdot c = a \cdot d + b \cdot c$

a)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$
; 6) $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}$.

Задача 6. Какие из следующих числовых множеств являются полями: \mathbb{N} , \mathbb{Z} , \mathbb{Q} ?

Задача 7. Является ли полем множество чисел вида $a + b\sqrt{2}$, где $a, b \in \mathbb{Q}$ (сложение и умножение обычные)?

Задача 8. Пусть $\mathbb{R}(x)$ — множество $\left\{\frac{P(x)}{Q(x)} \mid P(x), Q(x) \in \mathbb{R}[x], \ Q(x) \text{ не равен нулевому многочлену}\right\}$.

Является ли $\mathbb{R}(x)$ полем (с обычным сложением и умножением)?

Задача 9. Существует ли поле из а) одного элемента; б) двух элементов; в) трёх элементов?

Задача 10*. Постройте поле из p элементов, где p — произвольное простое число.

Задача 11*. Постройте поле из четырёх элементов.