Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Session 5: loglinear regression part 2

Levi Waldron

CUNY SPH Biostatistics 2

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Learning objectives and outline

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Learning objectives

- 1 Define and identify over-dispersion in count data
- Define the negative binomial (NB) distribution and identify applications for it
- 3 Define zero-inflated count models
 - 4 Fit and interpret Poisson and NB, with and without zero inflation

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Outline

- Review of log-linear Poisson glm
- 2 Review of diagnostics and interpretation of coefficients
 - 3 Over-dispersion
 - Negative Binomial distribution
- 4 Zero-inflated models
- Vittinghoff section 8.1-8.3

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Review

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Components of GLM

- Random component specifies the conditional distribution for the response variable - it doesn't have to be normal but can be any distribution that belongs to the "exponential" family of distributions
- Systematic component specifies linear function of predictors (linear predictor)
- Link [denoted by g(.)] specifies the relationship between the expected value of the random component and the systematic component, can be linear or nonlinear

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Motivating example: Choice of Distribution

- Count data are often modeled as Poisson distributed:
 - mean λ is greater than 0
 - variance is also λ
 - Probability density $P(k,\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Poisson model: the GLM

The **systematic part** of the GLM is:

$$log(\lambda_i) = \beta_0 + \beta_1 RACE_i + \beta_2 TRT_i + \beta_3 ALCH_i + \beta_4 DRUG_i$$

Or alternatively:

$$\lambda_{i} = \exp(\beta_{0} + \beta_{1} RACE_{i} + \beta_{2} TRT_{i} + \beta_{3} ALCH_{i} + \beta_{4} DRUG_{i})$$

The **random part** is (Recall the λ_i is both the mean and variance of a Poisson distribution):

$$y_i \sim Poisson(\lambda_i)$$

loglinear regression part 2 Levi Waldron

Session 5:

Learning objectives and outline

Review Over-

dispersion

Zero Inflation

##

Example: Risky Drug Use Behavior

- Load the "needle sharing" dataset
- Outcome is # times the drug user shared a syringe in the past month (shared syr)
 - Predictors: sex, ethn, homeless
 - filtered to only sex "M" or "F", ethn "White", "AA", "Hispanic"

```
## cols(
##
     id = col double(),
     sex = col character(),
##
     ethn = col character(),
##
##
     age = col double(),
##
     dprsn dx = col double(),
##
     sexabuse = col_double(),
##
     shared_syr = col_double(),
     hivstat = col double(),
##
```

-- Column specification

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Example: Risky Drug Use Behavior

Exploratory plots

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Risky Drug Use Behavior: fitting a Poisson model

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Risky Drug Use Behavior: residuals plots

* Poisson model is definitely not a good fit.

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Over-dispersion

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

When the Poisson model doesn't fit

- inference from log-linear models is sensitive to assumptions on the distribution of residuals (e.g. Poisson)
- In the Poisson distribution, the variance is equal to the mean.
- *i.e.* if subjects with a particular pattern of covariates have a mean of 4 visits/yr, then variance is also 4 and the standard deviation is 2 visits / yr.
- The Poisson distribution often fails when the variance exceeds the mean
 - You can check this assumption
- Can use alternative random distributions:
 - Negative binomial distribution
- Can introduce zero-inflation

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Negative binomial distribution

- The binomial distribution is the number of successes in n trials:
 - Roll a die ten times, how many times do you see a 6?
- The negative binomial distribution is the number of successes it takes to observe r failures:
 - How many times do you have to roll the die to see a 6 ten times?
 - Note that the number of rolls is no longer fixed.
 - In this example, p=5/6 and a 6 is a "failure"

Levi Waldron
Learning objectives and outline
Review
Over- dispersion
Zero Inflation

Session 5: loglinear

regression part 2

Negative binomial GLM

One way to parametrize a NB model is with a **systematic part** equivalent to the Poisson model:

$$log(\lambda_i) = \beta_0 + \beta_1 RACE_i + \beta_2 TRT_i + \beta_3 ALCH_i + \beta_4 DRUG_i$$
Or:

 $\lambda_i = exp(\beta_0 + \beta_1 RACE_i + \beta_2 TRT_i + \beta_3 ALCH_i + \beta_4 DRUG_i)$

And a random part:

$$y_i \sim \mathsf{NB}(\lambda_i, heta)$$

- θ is a **dispersion parameter** that is estimated
- When 0 0 it is a mixed at the Deisson model
- When θ = 0 it is equivalent to Poisson model
 MASS::glm.nb() uses this parametrization, dnbinom()
- does not
 The Poisson model can be considered **nested** within the Negative Binomial model

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Negative Binomial Random Distribution

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Compare Poisson vs. Negative Binomial

Negative Binomial Distribution has two parameters: # of trials n, and probability of success p


```
Risky drug behavior: Negative
 regression
  part 2
                                 Binomial Regression
Levi Waldron
          library(MASS)
Learning
          fit.negbin <- glm.nb(shared_syr ~ sex + ethn + homele
objectives and
                                  data = needledat2)
Review
           summary(fit.negbin)
Over-
dispersion
Zero Inflation
          ##
           ## Call:
           ## glm.nb(formula = shared_syr ~ sex + ethn + homeles
                  init.theta = 0.07743871374, link = log)
           ##
           ##
           ## Deviance Residuals:
           ##
                  Min
                             10
                                 Median
                                                 30
                                                          Max
           ## -0.8801 -0.7787 -0.6895 -0.5748
                                                       1.5675
          ##
          ## Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
           ##
```

Session 5: loglinear

Levi Waldroi
Learning objectives an outline
Review
Over- dispersion
Zero Inflation

Session 5: loglinear

regression part 2

Recall the Deviance:

the difference in df of the two models:

'log Lik.' -147.1277 (df=6) (ll.pois <- logLik(fit.pois))</pre>

'log Lik.' -730.0133 (df=5)

'log Lik.' 1.675949e-255 (df=6)

pchisq(2 * (11.negbin - 11.pois), df=1, lower.tail=FA

(ll.negbin <- logLik(fit.negbin))</pre>

Likelihood ratio test $\Delta(D) = -2 * \Delta(\log \text{ likelihood})$ And recall the difference in deviance under H_0 (no improvement in fit) is chi-square distributed, with df equal to

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Risky Drug Use Behavior: NB regression residuals plots

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Zero Inflation

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Zero inflated "two-step" models

Step 1: logistic model to determine whether count is zero or Poisson/NB

Step 2: Poisson or NB regression distribution for y_i not set to zero by 1.

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Poisson Distribution with Zero Inflation

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Risky drug behavior: Zero-inflated Poisson regression

```
Learning
objectives and
outline
          ##
Review
          ## Call:
Over-
dispersion
          ## zeroinfl(formula = shared_syr ~ sex + ethn + homel
Zero Inflation
                 dist = "poisson")
          ##
          ##
          ## Pearson residuals:
          ##
                 Min
                           10 Median
                                            30
                                                    Max
          ## -1.0761 -0.5784 -0.4030 -0.3341 10.6835
          ##
          ## Count model coefficients (poisson with log link):
                           Estimate Std. Error z value Pr(>|z|)
          ##
          ## (Intercept)
                                         0.1796 17.908 < 2e-16
                             3.2168
          ## sexM
                           -1.4725
                                         0.1442 -10.212 < 2e-16
          ## ethnHispanic -0.1524
                                        0.1576 -0.968 0.333244
```

summary(fit.ZIpois)

Zero-inflated Poisson

regression - the model

Session 5: loglinear

regression part 2

Levi Waldron

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Risky drug behavior: Zero-inflated Negative Binomial regression

- *NOTE*: zero-inflation model can include any of your variables as predictors
- WARNING Default in zerinf1() function is to use all variables as predictors in logistic model

```
Session 5:
loglinear
regression
part 2
```

Levi Waldron

Learning ##

outline

Overdispersion

Zero Inflation

Zero-inflated Negative

summary(fit.ZInegbin)

```
##
## Call:
## zeroinfl(formula = shared syr ~ sex + ethn + homeless, data = needledat2,
      dist = "negbin")
##
##
## Pearson residuals:
      Min
               10 Median
                              30
                                    Max
## -0.5402 -0.3255 -0.2714 -0.1926 5.1496
##
## Count model coefficients (negbin with log link):
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                2.8410
                          1.1845 2.399 0.01646 *
## sexM
               -2.2282 0.9351 -2.383 0.01718 *
## ethnHispanic -0.4123 0.9831 -0.419 0.67492
## ethnWhite -0.4299 0.8648 -0.497 0.61908
## homelessyes 1.9460 0.7103 2.740 0.00615 **
## Log(theta) -1.1971
                           0.5159 -2.320 0.02032 *
##
## Zero-inflation model coefficients (binomial with logit link):
              Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                1 6867
                           0.8465
                                  1 993
                                           0.0463 *
## seyM
                           0.8016 -1.238 0.2159
                -0.9920
                                          0.9627
## ethnHispanic -13.1868
                         281.9134 -0.047
## ethnWhite
              -0.7455
                           0.7304 -1.021
                                           0.3074
## homelessves 0.3554
                          0.7397 0.480
                                           0.6309
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Theta = 0.3021
## Number of iterations in BFGS optimization: 24
```

Levi Waldron

Learning objectives and

Review

Overdispersion

Zero Inflation

Zero-inflated Negative Binomial regression - simplified ZI model

- Model is much more interpretable if the exposure of interest is *not* included in the zero-inflation model.
 E.g. with HIV status as the only predictor in zero inflation.
- E.g. with HIV status as the only predictor in zero-inflation model:

```
Session 5:
loglinear
regression
part 2
```

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Zero-inflated Negative

summary(fit.ZInb2)

```
##
## Call:
## zeroinfl(formula = shared_syr ~ sex + ethn + homeless + hiv | hiv, data = needledat2,
##
      dist = "negbin")
##
## Pearson residuals:
      Min
               10 Median
                              30
                                     Max
## -0 4299 -0 3646 -0 3559 -0 3299 6 3053
##
## Count model coefficients (negbin with log link):
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                 3.6685
                           0.9470 3.874 0.000107 ***
## sexM
                -1.7648 0.6205 -2.844 0.004454 **
## ethnHispanic -1.5807 0.7446 -2.123 0.033769 *
## ethnWhite -1.1267 0.6924 -1.627 0.103687
## homelessyes 1.0313 0.5693 1.812 0.070028 .
## hivpositive -1.0820 1.0167 -1.064 0.287235
## hivves
           2.3724
                           0.7829 3.030 0.002444 **
## Log(theta)
                0.1395
                           0.4647 0.300 0.764009
## Zero-inflation model coefficients (binomial with logit link):
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.2163
                           0.2851
                                    4.265
                                            2e-05 ***
## hivpositive -0.3493
                           0.9389 -0.372
                                            0.710
## hivves
               -17.9654 3065.6271 -0.006
                                            0.995
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Theta = 1.1497
## Number of iterations in BFGS optimization: 12
```

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Intercept-only zero-inflation

```
fit.ZInb3 <- zeroinfl(shared svr~sex+ethn+homeless|1.
                      dist="negbin", data=needledat2)
summary(fit.ZInb3)
##
## Call:
## zeroinfl(formula = shared_syr ~ sex + ethn + homeless | 1, data = needledat2,
      dist = "negbin")
##
## Pearson residuals:
      Min
               10 Median
                              30
                                     Max
## -0.3159 -0.3123 -0.3040 -0.2953 5.2940
##
## Count model coefficients (negbin with log link):
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 2.08542 1.42671 1.462 0.1438
## seyM
              -1.43809 0.89189 -1.612 0.1069
## ethnHispanic 0.48130 1.16642 0.413 0.6799
## ethnWhite -0.07418 0.81066 -0.092 0.9271
## homelessves 1.62076 0.67706 2.394 0.0167 *
## Log(theta) -1.12538 0.89372 -1.259 0.2080
##
## Zero-inflation model coefficients (binomial with logit link):
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5211
                          0.7600 0.686
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Theta = 0.3245
## Number of iterations in BFGS optimization: 13
## Log-likelihood: -146.8 on 7 Df
```

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Residuals vs. fitted values

I invisibly define functions plotpanel1 and plotpanel2 that will work for all types of models (see lab). These use Pearson residuals.

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Quantile-quantile plots for residuals

Normal Q-Q Plot

still over-dispersed - ideas?

loglinear regression part 2 Levi Waldron

Session 5:

Learning objectives and outline

Review

Overdispersion

Zero Inflation

(3) (4)

> (5) sexM -0.925***

Dependent variable:

shared syr

Poisson

negative

binomial count data (1) (2)

zero-inflated

Inference from the different

models

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Example of plotting observed and predicted counts

Levi Waldron

Learning objectives and outline

Review

Overdispersion

Zero Inflation

Resources for R (and SAS)

- Short, practical tutrorials on regression in R and SAS from UCLA at http://www.ats.ucla.edu/stat/:
 - Poisson Regression: http://www.ats.ucla.edu/stat/r/dae/poissonreg.htm
 - Negative Binomial: http://www.ats.ucla.edu/stat/r/dae/nbreg.htm
 - Zero-inflated Poisson: http://www.ats.ucla.edu/stat/r/dae/zipoisson.htm
 - Zero-inflated Negative Binomial: http://www.ats.ucla.edu/stat/r/dae/zinbreg.htm