

IRS2108/IRS21084(S)PbF HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, 5 V, and 15 V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- High-side output in phase with HIN input
- Low-side output out of phase with LIN input
- Logic and power ground +/- 5 V offset
- Internal 540 ns deadtime, and programmable up to 5 μs with one external R_{DT} resistor (IRS21084)
- Lower di/dt gate driver for better noise immunity
- RoHS compliant

Description

The IRS2108/IRS21084 are high voltage, high speed power MOSFET and IGBT drivers with dependent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse cur-

Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Deadtime (ns)	Ground Pins	ton/toff (ns)
2106/2301	HIN/LIN	no	no none COM		220/200
21064	HIIN/LIIN	110	none	Vss/COM	220/200
2108	HIN/LIN	yes	Internal 540	COM	220/200
21084	TIIIV/LIIV	yes	Programmable 540 - 5000	Vss/COM	220/200
2109/2302	IN/SD	yes	Internal 540	COM	750/200
21094	IIV/SD	yes	Programmable 540 - 5000	Vss/COM	730/200
2304	HIN/LIN	yes	Internal 100	СОМ	160/140

rent buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

IRS2108/IRS21084(S)PbF

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating absolute voltage	-0.3	625		
Vs	High-side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3	
V _{CC}	Low-side and logic fixed supply voltage		-0.3	25	
V _{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3	V
DT	Programmable deadtime pin voltage (IRS2	1084 only)	V _{SS} - 0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN & LIN)		V _{SS} - 0.3	V _{CC} + 0.3	
V _{SS}	Logic ground (IRS21084 only)	V _{CC} - 25	V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns
		(8 lead PDIP)	_	1.0	
D_	Package power dissipation @ TA ≤ +25 °C	(8 lead SOIC)	_	0.625	
P_{D}	Fackage power dissipation @ TA \leq +25 C	(14 lead PDIP)	_	1.6	W
		(14 lead SOIC)	_	1.0	
		(8 lead PDIP)	_	125	
Du	Thermal registeres innation to embient	(8 lead SOIC)	_	200	
RthJA	Thermal resistance, junction to ambient	(14 lead PDIP)	_	75	°C/W
		(14 lead SOIC)	_	120	
TJ	Junction temperature		_	150	
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units	
VB	High-side floating supply absolute voltage		V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage		Note 1	600	
VHO	High-side floating output voltage	Vs	V _B		
Vcc	Low-side and logic fixed supply voltage	10	20		
V _{LO}	Low-side output voltage	0	Vcc	V	
	IRS210		COM	Vcc	•
V _{IN}	Logic input voltage	IRS21084	V _{SS}	V _{CC}	
DT	Programmable deadtime pin voltage (IRS21084 only)		Vs	Vcc	
V _{SS}	Logic ground (IRS21084 only)		-5	5	
T _A	Ambient temperature		-40	125	∞

Note 1: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25 °C, DT = V_{SS} unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	220	300		V _S = 0 V
toff	Turn-off propagation delay	_	200	280		V _S = 0 V or 600 V
MT	Delay matching ton - toff	_	0	30		
t _r	Turn-on rise time	_	100	220	ns	\/- = 0\/
tf	Turn-off fall time	_	35	80		V _S = 0 V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	400	540	680		R _{DT} = 0 Ω
וט	HO turn-off to LO turn-on (DTHO-LO)	4	5	6	μs	$R_{DT} = 200 \text{ k}\Omega \text{ (IR21084)}$
MDT	Deadtime metalian - DT oug DT ou	_	0	60	ns	R _{DT} =0 Ω
	Deadtime matching = DTLO-HO - DTHO-LO		0	600		R_{DT} = 200 k Ω (IR21084)

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, DT= V_{SS} and T_A = 25 °C unless otherwise specified. The V_{IL} , V_{IH} , and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: HIN and \overline{LIN} . The V_O , I_O , and R_{OD} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage for HIN & logic "0" for LIN	2.5	_	_		V 40 V +- 20 V
V _{IL}	Logic "0" input voltage for HIN & logic "1" for LIN	_	_	0.8	V	V _{CC} = 10 V to 20 V
VoH	High level output voltage, V _{BIAS} - V _O	_	0.05	0.2	· •	I _O = 2 mA
V _{OL}	Low level output voltage, VO	_	0.02	0.1		10 - 2 IIIA
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600 V
I _{QBS}	Quiescent V _{BS} supply current	20	75	130	μA	V _{IN} = 0 V or 5 V
looo	Quioscont Voo supply current	0.4	1.0	1.6	mA	V _{IN} = 0 V or 5 V
lacc	Quiescent V _{CC} supply current 0.4 1.		1.0	1.0	ША	RDT=0 Ω
I _{IN+}	Logic "1" input bias current	_	5	5 20		HIN = 5 V, LIN = 0 V
I _{IN-}	Logic "0" input bias current	_	_	5	μA	$\overline{\text{HIN} = 0 \text{ V}, \ \overline{\text{LIN}} = 5 \text{ V}}$
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	9.8		
V _{BSUV+}	threshold	0.0	0.9	9.0		
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative going	7.4	8.2	9.0		
V _{BSUV} -	threshold	7.4	0.2	9.0	V	
Vccuvh	Hysteresis	0.3	0.7			
V _{BSUVH}	Tysteresis	0.3	0.7	_		
lo+	Output high short circuit pulsed current	120	290			V _O = 0 V,
10+	Output high short circuit pulsed current	120	290		mA	PW ≤ 10 µs
10-	Output low short circuit pulsed current	250	50 600	600 —	''''	V _O = 15 V,
.0-	Output low short circuit puised current					PW ≤ 10 µs

Functional Block Diagram

Lead Definitions

Symbol	Description
HIN	Logic input for high-side gate driver output (HO), in phase (referenced to COM for IRS2108
	and VSS for IRS21084)
LIN	Logic input for low-side gate driver output (LO), out of phase (referenced to COM for IRS2108
	and VSS for IRS21084)
DT	Programmable deadtime lead, referenced to VSS (IR21084 only)
VSS	Logic ground (IRS21084 only)
V _B	High-side floating supply
НО	High-side gate driver output
Vs	High-side floating supply return
Vcc	Low-side and logic fixed supply
LO	Low-side gate driver output
COM	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 3. Deadtime Waveform Definitions

Figure 2. Switching Time Waveform Definitions

IRS2108/IRS21084(S)PbF

Figure 4A. Turn-On Propagation Delay vs. Temperature

Figure 4B. Turn-On Propagation Delay vs. Supply Voltage

Figure 5A. Turn-Off Propagation Delay vs.Temperature

Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage

IRS2108/IRS21084(S)PbF

(a) 400 (b) 400 (b) 400 (c) 400 (d) 40

500

Figure 6A. Turn-On Rise Time vs.Temperature

Figure 6B. Turn-On Rise Time vs. Supply Voltage

Figure 7A. Turn-Off Fall Time vs. Temperature

Figure 7B. Turn-Off Fall Time vs. Input voltage

IRS2108/IRS21084(S)PbF

Figure 8A. Deadtime vs. Temperature

Figure 8B. Deadtime vs. Supply Voltage

Figure 8C. Deadtime vs. $R_{\rm DT}$ (IR21084 Only)

Figure 9A. Logic "1" Input Voltage vs. Temperature

IRS2108/IRS21084(S)PbF

Figure 9B. Logic "1" Input Voltage vs. Supply Voltage

Figure 10A. Logic "0" Input Voltage vs. Temperature

Figure 10B. Logic "0" Input Voltage vs. Supply Voltage

Figure 11A. High Level Output Voltage vs. Temperature

IRS2108/IRS21084(S)PbF

Figure 11B. High Lovel Output Voltage vs. Supply Voltage

Figure 12A. Low Level Output Voltage vs.Temperature

Figure 12B. Low Level Output Voltage vs. Supply Voltage

Figure 13A. Offset Supply Leakage Current vs. Temperature

IRS2108/IRS21084(S)PbF

Figure 13B. Offset Supply Leakage Current vs. Temperature

Figure 14A. V_{BS} Supply Current vs. Temperature

Figure 14B. V_{BS} Supply Current vs. Supply Voltage

Figure 15A. V_{cc} Supply Current vs. Temperature

IRS2108/IRS21084(S)PbF

Figure 15B. V_{CC} Supply Current vs. Supply Voltage

Figure 16A. Logic "1" Input Current vs. Temperature

Figure 16B. Logic "1" Input Current vs. Supply Voltage

Figure 17A. Logic "0" Input Bias Current vs. Temperature

IRS2108/IRS21084(S)PbF

Figure 17B. Logic "0" Input Bias Current vs. Voltage

Figure 18. V_{CC} Undervoltage Threshold (+) vs. Temperature

Figure 19. V_{CC} Undervoltage Threshold (-) vs. Temperature

Figure 20. V_{BS} Undervoltage Threshold (+) vs. Temperature

IRS2108/IRS21084(S)PbF

Figure 21. V_{BS} Undervoltage Threshold (-) vs. Temperature

Figure 22A. Output Source Current vs. Temperature

Figure 22B. Output Source Current vs. Supply Voltage

Figure 23A. Output Sink Current vs.Temperature

IRS2108/IRS21084(S)PbF

Figure 23B. Output Sink Current vs. Supply Voltage

Figure 24. Maximum $\rm V_s$ Negative Offset vs. Supply Voltage

Figure 25. IRS2108 vs. Frequency (IRFBC20), $\rm R_{\rm gate}\!=\!\!33~\Omega,~V_{\rm CC}\!=\!\!15~V$

Figure 26. IRS2108 vs. Frequency (IRFBC30), $\rm R_{\rm gate} {=} 22~\Omega,~V_{\rm CC} {=} 15~V$

IRS2108/IRS21084(S)PbF

Figure 27. IRS2108 vs. Frequency (IRFBC40), $\rm R_{\rm gate} {=} 15\,\Omega,\, \rm V_{\rm CC} {=} 15\,V$

Figure 28. IRS2108 vs. Frequency (IRFPE50), $\rm R_{\rm gate}$ =10 $\Omega, \, \rm V_{\rm cc}$ =15 V

Figure 29. IRS21084 vs. Frequency (IRFBC20), $\rm R_{gate} = 33~\Omega,~V_{cc} = 15~V$

Figure 30. IRS21084 vs. Frequency (IRFBC30), R_{gate} =22 Ω , V_{cc} =15 V

IRS2108/IRS21084(S)PbF

Figure 31. IRS21084 vs. Frequency (IRFBC40), $$R_{\text{qate}}$=15\,\Omega,\,V_{\text{CC}}$=15\,V$

Figure 32. IRS21084 vs. Frequency (IRFPE50), $\rm R_{oate}$ =10 $\Omega,\,\rm V_{cc}$ =15 V

Figure 33. IRS2108S vs. Frequency (IRFBC20), $\rm R_{gate} = 33~\Omega,~V_{CC} = 15~V$

Figure 34. IRS2108S vs. Frequency (IRFBC30), $$\rm R_{oate}$=22\,\Omega,\,V_{cc}$=15\,V$

IRS2108/IRS21084(S)PbF

Figure 35. IRS2108S vs. Frequency (IRFBC40), $\rm R_{\rm qate}$ =15 $\Omega,\,\rm V_{\rm CC}$ =15 V

Figure 36. IRS2108S vs. Frequency (IRFPE50), $\rm R_{oate}$ =10 $\Omega, \, \rm V_{cc}$ =15 V

Figure 37. IRS21084S vs. Frequency (IRFBC20), $\rm R_{gate} = 33~\Omega,~V_{cc} = 15~V$

Figure 38. IR21084S vs. Frequency (IRFBC30), $\rm R_{\rm gate}$ =22 $\Omega,\,\rm V_{\rm CC}$ =15 V

IRS2108/IRS21084(S)PbF

Figure 39. IRS21084S vs. Frequency (IRFBC40), $\rm R_{\rm gate}$ =15 $\Omega,\,\rm V_{\rm CC}$ =15 V

Figure 40. IRS21084S vs. Frequency (IRFPE50), $\rm R_{gate} {=} 10~\Omega, \, \rm V_{CC} {=} 15~V$

Case outlines

IRS2108/IRS21084(S)PbF

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN						
	Metric		lm p erial			
Code	Min	Max	Min	Max		
Α	7.90	8.10	0.311	0.318		
В	3.90	4.10	0.153	0.161		
С	11.70	12.30	0.46	0.484		
D	5.45	5.55	0.214	0.218		
E	6.30	6.50	0.248	0.255		
F	5.10	5.30	0.200	0.208		
G	1.50	n/a	0.059	n/a		
Н	1.50	1.60	0.059	0.062		

REEL DIMENSIONS FOR 8SOICN							
	M etric		Imperial				
Code	Min	Max	Min	Max			
Α	329.60	330.25	12.976	13.001			
В	20.95	21.45	0.824	0.844			
С	12.80	13.20	0.503	0.519			
D	1.95	2.45	0.767	0.096			
E	98.00	102.00	3.858	4.015			
F	n/a	18.40	n/a	0.724			
G	14.50	17.10	0.570	0.673			
Н	12.40	14.40	0.488	0.566			

IRS2108/IRS21084(S)PbF

Tape & Reel 14-lead SOIC

CARRIER TAPE DIMENSION FOR 14SOICN

OXXXXII CANA DAMI DA CONTRA CO						
	M etric		lm p	erial		
Code	Min	Max	Min	Max		
Α	7.90	8.10	0.311	0.318		
В	3.90	4.10	0.153	0.161		
С	15.70	16.30	0.618	0.641		
D	7.40	7.60	0.291	0.299		
E	6.40	6.60	0.252	0.260		
F	9.40	9.60	0.370	0.378		
G	1.50	n/a	0.059	n/a		
Н	1.50	1.60	0.059	0.062		

REEL DIMENSIONS FOR 14SOICN

	Ме	tric	lm p	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.40	n/a	0.881
G	18.50	21.10	0.728	0.830
Н	16.40	18.40	0.645	0.724

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2108PbF 8-Lead SOIC IRS2108SPbF 8-Lead SOIC Tape & Reel IRS2108STRPbF 14-Lead PDIP IRS21084PbF 14-Lead SOIC IRS21084SPbF 14-Lead SOIC Tape & Reel IRS21084STRPbF

International

TOR Rectifier

The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

Data and specifications subject to change without notice. 12/4/2006