Spis treści

Przegląd podstawowych zagadnień związanych z wielomianami	1
Postawowe definicje	1
Postać iloczynowa wielomianu i dzielenie wielomianu	9
Pochodna wielomianu i jej obliczanie	4
Metoda Newtona oraz wielowymiarowa metoda Newtona	٠ 4
Opis klasycznej metody Newtona	4
Zastosowanie klasycznej metody Newtona do szukania zer wielomianu	-
Zastosowanie klasycznej metody Newtona do szukania zer wielomianu	

Przegląd podstawowych zagadnień związanych z wielomianami

Postawowe definicje

Definicja 1. Wielomianem stopnia $n \in \mathbb{N}$ nad ciałem \mathbb{K} będziemy nazywać przekształcenie $\mathbb{K}^n \mapsto \mathbb{K}$ zadane wzorem $W(x) = a_0 + a_1 x + \ldots + a_n x^n$, gdzie a_i to pewne współczynniki z ciała \mathbb{K} .

Definicja 2. Niech W będzie pewnym wielomianem (nad ciałem \mathbb{K}). Liczbę a, taką że W(a) = 0, będziemy nazywać pierwiastkiem wielomianu.

Uwaga 1. Z faktu, że wielomian W ma współczynniki z ciała \mathbb{K} , nie wynika fakt, że jego pierwiastki również będą należeć do \mathbb{K} . Klasycznym przykładem jest wielomian x^2+1 , który ma współczynniki rzeczywiste, a jego pierwiastkami są liczby zespolone.

Uwaga 2. Istnieją takie ciała \mathbb{K} , że dla dowolnego wielomianu stopnia większego od 0 wszystkie jego pierwiastki należą do \mathbb{K} . Ciała takie będziemy nazywać algebraicznie domkniętymi. Przykładem takiego ciała jest \mathbb{C} , czego nie będziemy dowodzić.

Podczas całego tego sprawozdania będziemy zajmować się następującym problemem:

Problem znajdowania miejsc zerowych wielomianu

Niech W będzie wielomianem. Celem jest znaleźć zbiór $ker(W) = \{a \mid W(a) = 0\}.$

Powyższy problem, choć pozornie prosty, jest sformułowany bardzo ogólnie. Na potrzeby tej pracy od tej pory ograniczymy się tylko do \mathbb{R} oraz \mathbb{C} , choć nic nie staje na przeszkodzie by poeksperymentować z innymi ciałami. Aktualnie nie wiemy czy każdy wielomian ma pierwiastki, a jeśli ma to czy ich zbiór jest skończony. Nie znamy również żadnych metod rozwiązywania W(x)=0. By lepiej zrozumieć podane zagadnienie przejdźmy przez ciąg różnych definicji, algorytmów, twierdzeń i lematów związanych z wielomianami (warto je zrozumieć, gdyż kolejne rozdziały będą z nich korzystać).

Twierdzenie 1. Każdy wielomian W(x) nad \mathbb{C} stopnia $n \in \mathbb{N}_+$ ma co najmniej jeden pierwiastek.

Dowód. To twierdzenie jest nazywane zasadniczym twierdzeniem algebry. Dowód [1] s. 105.

Wniosek 1. $|ker(W)| \leq n$, gdzie n to stopień wielomianu W.

Postać iloczynowa wielomianu i dzielenie wielomianu

Definicja 3. Wielomian W(x) nazywamy podzielnym przez wielomian P(x), różny od wielomianu zerowego, wtedy i tylko wtedy, gdy istnieje taki wielomian Q(x), że W(x) = Q(x) * P(x). Wielomian Q(x) nazywamy ilorazem wielomianu W(x) przez P(x). Mówimy, że wielomian P(x) jest dzielnikiem wielomianu P(x).

Definicja 4. Dowolny wielomian W(x) możemy zapisać jako $W(x) = P(x) \cdot Q(x) + R(x)$ dla pewnych wielomianów P, Q, R. Mówimy, że wielomian W(x) jest podzielny przez Q(x) jeżeli R(x) = 0.

Twierdzenie 2. Wielomian W(x) jest podzielny przez wielomian Q(x) = (x - a) wtedy i tylko wtedy, gdy W(a) = 0.

$$Dow \acute{o}d.$$
 W [2]

Chcielibyśmy umieć w efektywny sposób realizować procedurę dzielenie wielomianu przez jednomiany postaci x - a. Służy do tego następujący algorytm:

- 1. $P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$
- 2. Niech $\alpha = a_n$
- 3. Kolejno dla $k = n 1, n 2, \dots 0$ wykonaj $\alpha := a_k + x\alpha$.
- 4. Wynik to $p(x) = \alpha$.

Dokładny opis metody oraz jej analizę możemy znaleźć w [3] (s 103).

Pochodna wielomianu i jej obliczanie

TUTAJ DODAĆ OPIS DOTYCZĄCY POCHODNYCH I OBLICZANIA ICH DLA WIELOMIANU.

Metoda Newtona oraz wielowymiarowa metoda Newtona

Opis klasycznej metody Newtona

Klasyczną metodą Newtona zastosowaną dla pewnego punktu startowego p oraz funkcji $f: \mathbb{R} \to \mathbb{R}$ klasy C^1 nazywać będziemy metodę iteracyjną postaci:

$$x_n = \begin{cases} p, & gdy \ n = 0 \\ x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, & w.p.p. \end{cases}$$

Analize klasycznej metody Newtona można znaleźć w [3] na stronach 71-81.

Zastosowanie klasycznej metody Newtona do szukania zer wielomianu

Jeśli mamy wielomian o współczynnikach i pierwiastkach rzeczywistych możemy policzyć jego pierwiastki za pomocą klasycznej metody Newtona. Podstawiamy za f z poprzedniego opisu nasz wielomian, a f' to jego pochodna. Po znalezieniu jednego pierwiastka (nazwijmy go a) dzielimy nasz wielomian przez x-a i uruchamiamy program dla otrzymanego wielomianu. Proces kontynuujemy tak długo, aż dojdziemy do wielomianu o stopniu 0.

Uwaga 3. Wartość w punkcie wielomianu i jego pochodnej możemy wyznaczyć z pomocą schematu Hornera, który był omówiony wcześniej (w kodzie przykładowym skorzystaliśmy z funkcji bibliotecznych dla większej czytelności).

```
using Polynomials
# W - wielomian, n - stopnien wielomianu, p - punkt startowy, eps - dokladnosc

function klasyczna_metoda_newtona(W, n, p, eps)
   dW = polyint(W)  # oblicza pochodna wielomianu
   x_n = p

while abs(polyval(W, x_n)) >= eps  # dopoki blad >= prezycja
   x_n = x_n - (polyval(W, x_n)/polyval(dW, x_n))
   end

return x_n  # zwroc szukany pierwiastek
end
```

Uwaga 4. Powyższa metoda nie nadaje się do obliczania miejsc zerowych wielomianu, którego pierwiastki są zespolone (z powodu tego, że operujemy tutaj na tylko rzeczywistych przybliżeniach x_n).

Metoda Newtona dla funkcji wielu zmiennych

TODO

Metoda Newtona dla funkcji zespolonych

Lemat 1. Dowolną funkcję $f: \mathbb{C} \mapsto \mathbb{C}$ możemy zapisać jako

$$f(z) = f(x+yi) = P(x,y) + iQ(x,y),$$

 $gdzie \ x, y \in \mathbb{R}, \ P(x, y) \in \mathbb{R}, \ Q(x, y) \in \mathbb{R}$

Przykład 1.

$$f(z) = z^3 - 2z = f(x+iy) = (x+iy)^3 - 2(x+iy) = (x^3 - 3xy^2 - 2x) + i(3x^2y - y^3 - 2y) = P(x,y) + iQ(x,y)$$

Niech f(z) = P(x, y) + iQ(x, y). Możemy teraz skorzystać z metody Newtona dla funkcji wielu zmiennych.

$$v_{n+1} = v_n - \frac{f(v_n)}{f'(v_n)}$$

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n \\ y_n \end{pmatrix} - J^{-1} \begin{pmatrix} P(x_n, y_n) \\ Q(x_n, y_n) \end{pmatrix} = \begin{pmatrix} x_n \\ y_n \end{pmatrix} - \begin{pmatrix} \frac{\partial P}{\partial x}(x_n, y_n) & \frac{\partial P}{\partial y}(x_n, y_n) \\ \frac{\partial Q}{\partial x}(x_n, y_n) & \frac{\partial Q}{\partial y}(x_n, y_n) \end{pmatrix}^{-1} \begin{pmatrix} P(x_n, y_n) \\ Q(x_n, y_n) \end{pmatrix}$$

Ponieważ wielomian jest funkcją holomorficzną, to zachodzi równanie Cauchy'ego-Riemanna:

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}, \ -\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Oznaczając $P = P(x_n, y_n), Q = Q(x_n, y_n), P_x = \frac{\partial P}{\partial x}(x_n, y_n), Q_x = \frac{\partial Q}{\partial x}(x_n, y_n)$ oraz korzystając ze wzoru na macierz odwrotną możemy uprościć wzór na metodę Newtona do postaci:

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n - \frac{PP_x + QQ_x}{Px^2 + Qx^2} \\ y_n - \frac{PP_y + QQ_y}{Px^2 + Qx^2} \end{pmatrix}$$

Literatura

- [1] Leja, Franciszek. Funkcje zespolone, Warszawa: PWN, 1976
- [2] Aleksiej I., Kostrikin Wstęp do algebry. Podstawy algebry, Warszawa: PWN, 2008
- [3] David Kincaid, Ward Cheney Analiza numeryczna, Warszawa: WNT, 2006
- [4] Lily Yau, Adi Ben-Israel *The Newton and Halley Methods for Complex Roots*, The American Mathematical Monthly 105(1998), 806–818