ECE 120 Midterm 1 HKN Review Session

Exam Time: Tuesday, September 20 (7:00-8:30pm)

Logistics

Exam: Tuesday, September 20, 7pm-8:30pm

Conflict exam: <u>5pm-6:30pm</u>

Location: Check Compass for room assignment

UA Review Session: Sunday, September 18, 2pm-4pm

Abstraction/Levels of Transformation

- Abstraction the means to simply events without going into heavy specifics, reducing information to the essentials
- Levels of Transformation
 - Problem Statement
 - Algorithm
 - Program
 - Instruction Set Architecture
 - Microarchitecture
 - Logic gates
 - Devices

Binary Types

Unsigned

- Can only represent nonnegative integers
- O K = number of bits
- Total unique representations → 2^k
- Range \rightarrow 0 to (2^k-1)

Signed - Magnitude

- First bit determines if positive or negative → 1 = negative, 0 = positive
- Rest of bits determine magnitude
- Range \rightarrow --(2^(k-1)-1) to (2^(k-1)-1)

1's Complement

- Positive numbers represented just like unsigned
- Negative numbers represented by flipping all the bits
- Range \rightarrow --(2^(k-1)-1) to (2^(k-1)-1)

Binary Types *

2's complement

- Positive numbers lead with "0", negative numbers lead with "1"
- \circ K bits \rightarrow can represent 2^k total numbers, half being positive and half being negative
- Can represent positive numbers from range --($2^{(k-1)}$) to ($2^{(k-1)}$ -1)
- Procedure for 2's complement (PFA):
 - PLACEHOLDER BITS
 - **FLIP ALL BITS**
 - ADD 1

Hexadecimal*

- Base 16, Uses 0-9 and A-F
- Takes groups of 4 bits and represents them as symbols
 - o Ex: 0011 1101 0110 1110 → 3 D 6 E
- To go from hex to binary, write out each hex value into 4 bit binary
 - Ex: 4E7F → 0100 1110 0111 1111
- Shortens binary representation by a factor of 4

Overflow in Operations

- 2 primary operations: addition and subtraction
- Checking for Overflow
 - Unsigned operations
 - There is a nonzero carry bit (bit carries out of bit range)
 - 2's Complement operations
 - Result has wrong sign if
 - 2 positive numbers sum to negative number
 - 2 negative numbers sum to positive number
 - NOTE: in 2's complement, a positive and negative number added never results in overflow
 - Quick Check- For MSB, does carry in bit = carry out bit (i.e. $C_n = C_{n-1}$)?
 - If not, overflow has occurred

Floating Point

- Use IEEE 754 standard (32 total bits)
 - o 1 sign bit
 - 8 exponent bits
 - o 23 mantissa bits
- Increased precision
 - => decreased range

Floating Point (cont.)

- Special Cases
 - Denormalized representation
 - Exponent = 0
 - Mantissa takes any value
 - Formula: (-1)^s * 0.Mantissa * 2⁻¹²⁶
 - Exponent is all 1s
 - Mantissa = 0
 - (-1)^s * infinity
 - Mantissa not equal to 0
 - NaN

Boolean Operators *

- NOT
- AND, NAND
- XOR, XNOR
 - \circ A XOR B = A (NOT B) + (NOT A) B
- OR, NOR
- Note:
 - Order of precedence:
 - (), NOT, AND, OR
 - o AND, NOT, and OR are logically complete

а	b	out
0	0	0
0	1	0
1	0	0
1	1	1

а	b	out
0	0	0
0	1	1
1	0	1
1	1	1

а	b	out
0	0	0
0	1	1
1	0	1
1	1	0

in	out
0	1
1	0

C Programming

- Basic Characteristics
 - High level/independent (of ISA), procedural, expressive
- Variables
 - Int, double, float, char
 - Note that result is truncated during integer division!
- Operators
 - Order of precedence: *, /, % and then +, -
- C Constructs
 - Sequential
 - Conditional (if, else if)
 - Iterative (for, while loops)

Flow Chart Components

Cheat Sheet: Recommendations

- Common powers of 2
- 2's Complement
 - Converting to/from (PFA)
 - Representable range with K bits
- Floating Point
 - Formula for general case
 - Special cases
- Overflow Conditions (both unsigned and 2's complement)
- Harder boolean operators
 - o XNOR, XOR, NAND, NOR
- Basic C syntax

General Advice

- Use your Cheat Sheet!
 - Don't memorize
- Read the directions carefully!!!!
- Don't be afraid to ask questions
- Relax and trust what you've learned :)