计算方法 B——徐宽——2021 春

刘兮扬 PB19030782 misaka19090@mail.ustc.edu.cn

2021.03-06

本笔记使用 CC BY-NC-ND 4.0 协议 您可以自由复制、散布、展示及演出本作品 您必须按照作者或授权人所指定的方式,保留其姓名标示 您不得为商业目的而使用本作品 您不得改变、转变或改作本作品

目录

	0.4	11/11/14	- X 1 Artin X - X 1. L. Artin X 1. 11	_
	0.1		ī计算方法与算法》	
	0.2		顷序	
	0.3	讲课内	J容	 9
	0.4	学科特	点	 9
	0.5	作业.		 9
		0.5.1	作业严禁抄袭	 9
	0.6	考评.		 10
	0.7	学习成	〕果	 10
	0.8	Others		 10
1		方程组		11
	1.1	, , ,	』系统	
			下三角系统	
		1.1.2	上三角系统	 11
	1.2	高斯消	6去	 12
		1.2.1	LU 分解	 12
	1.3	选主元	的高斯消去	 14
		1.3.1	Example:	 14
		1.3.2	计算复杂度	 14
	1.4	求解线	性方程组的迭代方法	 15
		1.4.1	简单 (Jacobi) 方法	 15
		1.4.2	Gauss-Seidel 迭代	 15
		1.4.3	连续超松驰 (SOR) 法	 16
_				
2	-	性方程		17
	2.1		ž	
	2.2	. — . • • •	Ž	
		2.2.1	不动点迭代	 17
		2.2.2	定理 1:	 17
		2.2.3	定理 2: 压缩映射定理	 17
		2.2.4	定理 3:	 18
	2.3	松弛与	j Newton 法	 19
		2.3.1	Newton 迭代为二阶收敛	 19
		2.3.2	有限差分法	 19

2.4	弦截法	20
	2.4.1 收敛阶数 q	20
	2.4.2 几何意义	20
2.5	非线性方程组	21
特征	任何题	23
3.1		23
3.2		
坏件	_	25
		27
4.1		
4.0		
4.2		
4.0	—, v. <u> </u>	
	···	
4.4		
	4.4.1 Ronge 现象	31
		33
5.1	一范数	33
5.2	二范数与无穷范数	33
5.3	方法一	34
5.4	方法二	35
积分	→与微分	37
6.1	Newton-Cotes 积分	37
	6.1.1 积分方法	37
	6.1.2 误差	37
	6.1.3 代数精度	38
6.2	复化积分公式	39
	6.2.1 复化梯形公式	39
	6.2.2 复化 Simpson 公式	39
6.3		
6.4		
6.5		
	2.5 特征 3.1 3.2 4.1 4.2 4.3 4.4 4.4 4.5 5.1 5.2 5.3 5.4 4.6 6.2 6.3 6.4	2.4.1 收敛阶数 q 2.4.2 儿何意义 2.5 非线性方程组 特征值问题 3.1 幂法 3.1.1 算法— 3.1.2 对于多个相同特征值情况 3.1.3 反幂法和位移 3.2 Jacobi 方法 插值 4.1 Lagrange 輔值 (多项式補值) 4.1.1 Lagrange elsis 4.1.2 Lagrange 多项式误差 4.2 Newton 插值多项式 4.2.1 差商 4.2.2 插值多项式 4.2.3 差商意义 4.3 Hermite 插值 4.4 样条插值 4.4.1 Ronge 则象 最小二乘机合 5.1 一范数 5.2 二范数与无穷范数 5.3 方法— 5.4 方法二 积分与微分 6.1 Newton-Cotes 积分 6.1.1 积分方法 6.1.2 误差 6.1.3 代数精度 6.2 复化邻分公式 6.2.1 复化梯形公式 6.2.1 复化梯形公式 6.2.2 复化邻mp公式 6.3 自动控制误差的复化积分 6.3.1 算法 6.4 Ramberg 外插积分方法 6.5.3 请法 6.4 Ramberg 外插积分方法 6.4.1 Ramberg 算法

目录	5
71-	J

8	后记	ļ		53
	7.5	稳定性		52
	7.4	.1. 1////	·方程组	
	7.3		步法	
	7.2		E	
		7.1.4	收敛性	48
		7.1.3	中点公式(对应中心差分法)	48
		7.1.2	向后欧拉法	47
		7.1.1	向前欧拉法	47
	7.1	欧拉方	法	47
7	常微	分方程	初值问题	47
		6.6.2	全局法	45
		6.6.1	插值型数值微分	
	6.6	数值微	· :分	44

6 目录

前言

笔者的话

截止到 2021 年 8 月 21 日,此笔记尚未被徐宽老师批准允许公开笔记仅记录了大部分徐宽老师的板书内容由于关乎作业抄袭等原因: 上课时写出的伪代码并未完全收录于笔记中在上课时演示的程序代码及图片均为出现在笔记中极不建议通过仅阅读此笔记的方法学习本门课程另:祝各位取得自己应得的成绩,并学到真正的数值计算知识

此笔记使用方法

本笔记可能有(不少的)错误需要修正

本笔记可能有(不少的)缺漏

由于防止作业使用 Ctrl+C/V 进行抄袭,本笔记的 LaTeX 源代码将不会公开

由于徐宽老师要求使用 LaTeX 完成作业,建议各位可以尝试使用 LaTeX 或 Markdown 在课堂上进行笔记记录,并与本笔记进行交叉核验

对于本笔记中写"略"的内容,徐宽老师未在课堂上进行教学,但不代表不是考试内容

笔者本人对上文提到的考试、教学情况概不负责

对由于本笔记的错误导致的知识点漏洞概不负责

若希望对笔记进行修订,或是您有对笔记的补充,或希望对笔记进行补充,请联系作者。

8 目录

Chapter 0

0.1 《数值计算方法与算法》

0.2 讲课顺序

4、5、8、3 —— 《数值线性代数》 1、2、6、7 —— 《数值分析》

0.3 讲课内容

没有点名、没有课堂测验 只讲数值计算的方法,不说如何考试 考试与讲课内容有一定距离 使用 Matlab 进行演示

0.4 学科特点

计算数学不是纯理论学科,不能只看书,要做实验 是最好的纯实验学科,结果一致且可预期

0.5 作业

大作业,有程序,一个学期 3-4 次 作业使用 LaTeX 做

0.5.1 作业严禁抄袭

- 0. 不变的真理
- 1. 抄袭浪费了别人的时间
- 2. 防止不合理的卷

不允许出现的抄袭理由

- 1. 作业让宠物吃了
- 2. 作业交给其他同学去打印了, 那个同学没了
- 3. 让其它同学帮忙交, 但是没带到

10 目录

抄袭的后果

抄袭一次,整个学期作业成绩归零

0.6 考评

作业 50% 考试 50% 不确定是否调分

0.7 学习成果

能对计算数学有基础的认知 在今后遇到了类似的问题要如何处理

0.8 Others

书和考试较为紧密,要看书 鼓励一切努力学习的同学 对一切违反纪律的同学绝不手软

Chapter 1

线性方程组

1.1 三角型系统

1.1.1 下三角系统

$$\begin{pmatrix} a_{11} & & \\ a_{21} & a_{22} & \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
 (1.1)

$$x_{1} = \frac{y_{1}}{a_{11}}$$

$$x_{2} = \frac{y_{2} - a_{21}x_{1}}{a_{22}}$$

$$\dots$$
(1.2)
$$(1.3)$$

1.1.2 上三角系统

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} \\ a_{33} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
 (1.5)

逆向代入法

1.2 高斯消去

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
(1.6)

假设 A 的顺序主子式是非奇异的,则用两个初等变换,让 A 变成一个上三角矩阵

- 1. 将其中一行加到第二行
- 2. 交换两行

增广矩阵:

$$\begin{pmatrix} A \mid B \end{pmatrix} \tag{1.7}$$

定理1

假设 \hat{A} 与 A 通过上述两种交换得到,则 $\det(A) = 0 \Leftrightarrow \det(\hat{A}) = 0$

上述两种操作均不改变行列式的值

故显然

1.2.1 LU 分解

$$A\vec{x} = \vec{b}^{(0)} \qquad A^{(0)} = a_{ij}^{n \times n}$$
 (1.8)

$$A\vec{x} = \vec{b}^{(0)} \qquad A^{(0)} = a_{ij}^{n \times n}$$

$$a_{ij}^{(1)} = a_{ij}^{(0)} - \frac{a_{11}}{a_{i1}} a_{1j} \qquad (i = 2 \cdots n)$$

$$(1.8)$$

$$b_i^{(1)} = b_i^{(0)} - \frac{a_{11}}{a_{11}} b_1 \tag{1.10}$$

第一次消去除 a_{11} 外的第一列,第二次消去除 a_{12} a_{22} 外的第二列,以此类推 最终得到:

$$U\vec{x} = \begin{pmatrix} a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{(0)} & \cdots & a_{1n}^{(0)} \\ & a_{21}^{(1)} & a_{23}^{(1)} & \cdots & a_{2n}^{(1)} \\ & & a_{33}^{(2)} & \cdots & a_{3n}^{(2)} \\ & & \vdots & & \vdots \\ & & & a_{nn}^{(n-1)} \end{pmatrix} \vec{x} = \begin{pmatrix} b_{1}^{(0)} \\ b_{2}^{(1)} \\ b_{3}^{(2)} \\ \vdots \\ b_{n}^{(n-1)} \end{pmatrix} = \vec{y}$$

$$(1.11)$$

其中有如下关系:

1.2. 高斯消去 13

$$L\vec{y} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ m_{21} & 1 & 0 & \cdots & 0 \\ m_{31} & m_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & & \\ m_{n1} & m_{n2} & m_{n3} & \cdots & 1 \end{pmatrix} \vec{y} = \vec{b}$$
(1.12)

$$m_{ii} = -a_{ii}^{(j-2)}/a_{ii}^{j-2} \qquad (i \geqslant j)$$
(1.13)

对上述的变换,可写为TA = U,其中T为单位下三角矩阵

将L作为T的逆,则A = LU

L为单位下三角矩阵

综上,有:

$$A = LU \tag{1.14}$$

Prove:

$$A\vec{x} = \vec{b} \tag{1.15}$$

$$TA\vec{x} = T\vec{b} = \vec{y} \tag{1.16}$$

$$LTA\vec{x} = A\vec{x} = L\vec{y} = \vec{b} \tag{1.17}$$

以上为 LU 分解的 Doolittle 分解

对于 U 为单位上三角矩阵、L 为单位下三角矩阵的情况,叫 Crout 分解对 Doolittle 分解的上三角矩阵进行变化,可变为 LBU 分解

$$A = LDU ag{1.18}$$

L、U 均为单位矩阵,D 为对角矩阵

对于对称矩阵 A: 可以变成:

 $A = LDL^T$

对于正定对称矩阵 A,则 D为正对角阵,进行开方可以变为:

$$A = LL^{T} (1.19)$$

此为 Chelosky 分解

1.3 选主元的高斯消去

1.3.1 Example:

$$\begin{pmatrix} 0 & 4 & 1 \\ 1 & 1 & 2 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \\ 1 \end{pmatrix} \quad \Leftrightarrow \quad A\vec{x} = \vec{b}$$
 (1.20)

因为第一个主子式的行列式为 0, 无法进行高斯消元, 需要进行交换: 交换的原则是: 让对角元的值在每一列尽可能大 交换第 1、3 行:

$$A_{1} = P_{13}A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} A = \begin{pmatrix} 2 & -2 & 1 \\ 1 & 1 & 2 \\ 0 & 4 & 1 \end{pmatrix}$$
 (1.21)

之后交换第2、3行

$$A_2 = P_{23}A_1 = \begin{pmatrix} 2 & -2 & 1 \\ 0 & 4 & 1 \\ 1 & 1 & 2 \end{pmatrix} \tag{1.22}$$

$$\hat{A} = A_2 = PA \qquad P = P_{23}P_{13} \tag{1.23}$$

对这样的交换矩阵的总和 P 与最终得到的矩阵 \hat{A} , 有:

$$LU = \hat{A} = PA \qquad \Leftrightarrow P^T LU = A \tag{1.24}$$

此处注意:交换矩阵的逆为其转置 之后有:

$$\hat{A}\vec{x} = \vec{b} \tag{1.25}$$

$$\Rightarrow PA\vec{x} = P\vec{b} \tag{1.26}$$

$$\Rightarrow PL^T A \vec{x} = PL^T \vec{b} \tag{1.27}$$

$$\Rightarrow PLU\vec{x} = PL^T\vec{b} = PL\vec{y} \tag{1.28}$$

$$\Rightarrow U\vec{x} = \vec{y} \tag{1.29}$$

1.3.2 计算复杂度

对于高斯消去计算法,对 n 阶矩阵的复杂度为 n^3 对选主元的部分,对 n 阶矩阵的复杂度为 n^2

1.4 求解线性方程组的迭代方法

1.4.1 简单 (Jacobi) 方法

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
(1.30)

改写为:

$$x_1 = \frac{1}{a_{11}} \left(b_1 - a_{12} x_2 - a_{13} x_3 \dots - a_{1n} x_n \right)$$
 (1.31)

$$x_2 = \frac{1}{a_{22}} \left(b_2 - a_{21} x_1 - a_{23} x_3 \dots - a_{1n} x_n \right)$$
 (1.32)

$$(1.33)$$

$$x_n = \frac{1}{a_{nn}} \left(b_n - a_{n1} x_1 - a_{n2} x_2 - a_{n3} x_3 \dots - a_{n(n-1)} x_{n-1} \right)$$
(1.34)

进行迭代, 即可求解

可写为矩阵形式:

$$\begin{pmatrix}
x_1^{(k+1)} \\
x_2^{(k+1)} \\
x_3^{(k+1)} \\
\vdots \\
x_n^{(k+1)}
\end{pmatrix} = A \begin{pmatrix}
x_1^{(k)} \\
x_2^{(k)} \\
x_3^{(k)} \\
\vdots \\
x_n^{(k)}
\end{pmatrix} + \begin{pmatrix}
g_1 \\
g_2 \\
g_3 \\
\vdots \\
g_n
\end{pmatrix}$$
(1.35)

$$A = A_{ij}^{(n \times n)} = \begin{cases} 0 & (i = j) \\ -\frac{a_{ij}}{a_{ii}} x_j & (i \neq j) \end{cases}$$
 (1.36)

$$\vec{g} = g_i = \frac{b_i}{a_{ii}} \tag{1.37}$$

1.4.2 Gauss-Seidel 迭代

将 Jacobi 迭代的:

$$x_i^{(k+1)} = \sum_{j=1}^n r_{ij} x_j^{(k)} + g_i$$
 (1.38)

替代为

$$x_i^{(k+1)} = \sum_{i=1}^{i-1} r_{ij} x_j^{(k+1)} + \sum_{i=i}^{n} r_{ij} x_j^{(k)} + g_i$$
(1.39)

$$\updownarrow \tag{1.40}$$

$$x_i^{(k+1)} = \sum_{j=1}^n r_{ij} x_{(i,j)} + g_i \qquad x_{(i,j)} = \begin{cases} x_j^{(k+1)} & i \le j \\ x_j^{(k)} & i \ge j \end{cases}$$
(1.41)

矩阵形式为:

$$X^{(k+1)} = -D^{-1}LX^k (1.42)$$

1.4.3 连续超松驰 (SOR) 法

for
$$i = 1 : n$$
 (1.43)

$$\bar{x}_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{n} j = 1^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$
(1.44)

$$\delta_i = \bar{x_i} - x_i^{(k)} \tag{1.45}$$

$$x_i^{(k+1)} = x_i^{(k)} + \omega \delta_i \tag{1.46}$$

$$\Rightarrow x_i^{(k+1)} = \omega \bar{x_i} + (1 - \omega) x_i^{(k)} \tag{1.47}$$

其矩阵形式为:

$$\bar{x} = D^{-1} \left(b - L x^{(k+1)} - U x^{(k)} \right) \tag{1.48}$$

$$x^{(k+1)} = \omega D^{-1} \left(b - L x^{(k+1)} - U x^{(k)} \right) + (I - \omega) x^{(k)}$$
(1.49)

$$(I + \omega D^{-1}L)x^{(k+1)} = (I - \omega(D^{-1}U + I))x^{(k)} + \omega D^{-1}b$$
(1.50)

$$x^{(k+1)} = (I + \omega D^{-1}L)^{-1} \left((I - \omega (D^{-1}U + I))x^{(k)} + \omega D^{-1}b \right)$$
(1.51)

收敛性

$$Ax = b ag{1.52}$$

$$A = M - N \tag{1.53}$$

M的选取: 1. 容易求逆 2. 是 A的一个良好的近似

定理:

若谱半径
$$\rho(G) = \max(\lambda_i) < 1$$
,则 $e^{(k)} \to 0$ 收敛速度 $\frac{\|e^{(k+1)}\|}{e^{(k)}} \approx |\lambda_i| = \rho(G)$

Chapter 2

非线性方程求解

2.1 二分法

函数 f(x) 在 [a,b] 上连续且 f(a)f(b) < 0 则在 [a,b] 上至少有一个零点取 $x^{(1)} = \frac{a+b}{2}$ 以此类推

2.2 迭代法

2.2.1 不动点迭代

$$f(x) = 0 \Leftrightarrow x = g(x) \Rightarrow x_{i+1} = g(x_i) \tag{2.1}$$

$$\lim_{i \to \infty} x_i = \alpha \quad \alpha = g(\alpha) \Rightarrow f(\alpha) = 0 \tag{2.2}$$

2.2.2 定理 1:

定义(压缩):

 $g(x) \in [a, b]$ 连续且存在 0 < L < 1 使得:Lipeshitz 条件成立,即 $|g(x) - g(y)| \le L|x - y| \quad \forall x, y \in [a, b]$ 则称 g(x) 是 [a, b] 上的压缩。

2.2.3 定理 2: 压缩映射定理

若 g(x) 在 [a,b] 上连续,且 $\forall x \in [a,b]$ $\exists g(x) \in [a,b]$ 且 g(x) 在 [a,b] 压缩则对于任意初始值 $x_0 \in [a,b]$ 由 $x_{k+1} = g(x_k)$ 定义的数列收敛到唯一的不动点 $\xi \in [a,b]$ 证明:定理 1 以证明存在性,下证唯一性假设存在另一个不动点 $\eta \in [a,b]$

$$|\xi - \eta| = |g(\xi) - g(\eta)| \leqslant L|\xi - eta| \Rightarrow (1 - L)|\xi - \eta| \leqslant 0 \tag{2.3}$$

收敛性:

$$|x_k - \xi| = |g(x_{k-1}) - g(\xi)| \le L|x_{k-1} - \xi| \tag{2.4}$$

$$\lim_{k \to \infty} L^k = 0 \qquad \lim_{k \to \infty} |x_k - \xi| = 0 \tag{2.5}$$

中值定理 (MVT)

$$|g(x) - g(y)| = |g'(\eta)||x - y| \qquad \eta \in [x, y]$$
(2.6)

若 $g'(\eta) \leq L < 1$ 则 Lipeshitz 条件成立

2.2.4 定理 3:

在定理2的条件下:

$$|x_k - \xi| \le \frac{L^k}{1 - L} |x_1 - x_0| \tag{2.7}$$

prove:

$$|x - \xi| = |x_0 - x_1 + x_1 - \xi| \le |x_0 - x_1| + |x_1 - \xi| \le |x_0 - x_1| + L|x_0 - \xi| \tag{2.9}$$

$$|x_0 - \xi| \leqslant \frac{1}{1 - L} |x_0 - x_1| \Rightarrow |x_0 - \xi| \leqslant \frac{L^k}{1 - L} |x_0 - x_1| \leqslant \epsilon \tag{2.10}$$

定义(收敛):

假设 $\xi = \lim_{k \to \infty} x_k$ 如果存在收敛到 0 的一个正数数到 ϵ_k 和 $\mu \in (0.1)$ 使得:

$$|x_k - \xi| < \epsilon_k \quad k = 0, 1, 2 \cdots \qquad \lim_{k \to \infty} \frac{\epsilon_{k+1}}{\epsilon_k} = \mu$$
 (2.11)

则称 x_n 至少以线性速度收敛到 ξ , 若 $\mu = 0$ 则收敛超线性

若 $|x_k - \xi| = \epsilon_k$ 则为线性收敛

若 $|x_k - \xi| = \epsilon_k$ μ = 1 则为亚线性

$$\frac{\epsilon_{k+1}}{\epsilon_k} = \frac{|x_{k+2} - x_{k+1}|}{|x_{k+1} - x_k|} \tag{2.12}$$

2.3 松弛与 Newton 法

定义(松弛):

解 f(x) = 0 时,迭代序列 $x_{k+1} = x_k - \lambda f(x_k)$ $(\lambda \neq 0)$ 叫做松弛

$$x_{k+1} = x_k - \lambda(x_k)f(x_k) \Rightarrow g(x) = x - \lambda(x)f(x)$$
(2.13)

$$g'(x) \approx 1 - \lambda(x)f'(x) - \lambda'(x)f(x) \tag{2.14}$$

$$1 - \lambda(x)f'(x) = 0 \Rightarrow \lambda(x) = \frac{1}{f'(x)}$$

$$(2.15)$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \qquad \text{Newton}$$
 (2.16)

2.3.1 Newton 迭代为二阶收敛

prove:

$$0 = f(x_k) + (\xi - x_k)f'(x_k) + \frac{(\xi - x_k)^2}{2}f''(\eta_k) \qquad \eta_k \in [\xi, x_k]$$
(2.17)

$$\Rightarrow \xi - x_k + \frac{f(x_k)}{f'(x_k)} = -\frac{(\xi - x_k)^2 f''(x_k)}{2f'(x_k)} \qquad \text{ a.s. } f'(x_k) \neq 0$$
 (2.18)

$$\xi - x_{k+1}$$
 正比于 $(\xi - x_k)^2$ $\Rightarrow \lim_{k \to \infty} \frac{\epsilon_{k+1}}{\epsilon_k^2} = \mu$ 有界 (2.19)

几何意义:略

2.3.2 有限差分法

用截线逼近切线

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \tag{2.20}$$

2.4 弦截法

$$x_{k+1} = \frac{f(x)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

相比于牛顿法使用 $f(x_k),f'(x_k)$ 计算 x_{k+1} , 弦截法使用 $\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}$ 代替 $f'(x_k)$

2.4.1 收敛阶数 q

定理: 收敛阶数 $q = \frac{\sqrt{5}+1}{2} \approx 1.618$ prove:

$$x_{k+1} = \xi + e_{k+1} \tag{2.21}$$

$$x_k = \xi + e_k \tag{2.22}$$

$$x_{k-1} = \xi + e_{k-1} \tag{2.23}$$

(2.18) & (2.21) 可以得到

$$\xi + e_{k+1} = \xi + e_k - \frac{f(x_k)(e_k - e_{k-1})}{f(x_k) - f(x_{k-1})}$$
(2.24)

$$\Rightarrow e_{k+1} = \frac{e_{k-1}f(x_k) - e_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$
(2.25)

Lagrange:
$$\Rightarrow f'(\eta_k) = \frac{f(x_k) - f(\xi)}{x_k - \xi}$$
 $\eta_k \in (x_k, \xi)$ (2.26)

(2.23) & (2.24) 可以得到

$$e_{k+1} = e_{k-1}e_k \frac{f'(\eta_k) - f'(\eta_{k-1})}{f(x_k) - f(x_{k-1})} = e_{k-1}e_k \frac{f''(\bar{\eta_k})(\eta_k - \eta_{k-1})}{f'(\bar{x_k})(x_k - x_{k-1})}$$
(2.27)

$$\lim_{k \to \infty} e_{k+1} = e_{k-1} e_k \frac{f''(\xi)}{f'(\xi)} \neq \pi$$
(2.28)

最终得到:

$$\begin{cases} e_{k+1} & \propto e_k e_{k-1} \\ e_k & \propto e_{k-1}^q \implies e_k^q \propto e_k^{\frac{1}{q}+1} \\ e_{k+1} & \propto e_k^q \end{cases}$$
 (2.29)

$$q = \frac{1}{a} + 1 \tag{2.30}$$

2.4.2 几何意义

略, 见书

2.5. 非线性方程组 21

2.5 非线性方程组

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$
(2.31)

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad F(\vec{X}) = \begin{pmatrix} f_1(\vec{X}) \\ f_2(\vec{X}) \\ \vdots \\ f_n(\vec{X}) \end{pmatrix} \tag{2.32}$$

类比单变量的情况:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{2.33}$$

$$\rightarrow \vec{X}^{(k+1)} = \vec{X}^{(k)} - J^{-1}(\vec{X}^{(k)})F(\vec{X}^{(k)})$$
 (2.34)

$$J(\vec{X}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$
(2.35)

$$J(\vec{X}^{(k)})(\vec{X}^{(k+1)} - \vec{X}^{(k)}) = -F(\vec{X}^{(k)})$$
(2.36)

Chapter 3

特征值问题

3.1 幂法

假设矩阵 A 有 n 个线性无关的特征向量 $v_1 \cdots v_n$,对应的特征值为 $|\lambda_1| \ge \cdots \ge |\lambda_n|$

$$q^{(0)} = c_1 v_1 + \dots + c_n v_n \tag{3.1}$$

$$q^{(1)} = Aq^{(0)} = \sum_{i=1}^{n} c_i \lambda_i v_i$$
(3.2)

$$q^{(k)} = A^k q^{(0)} = \sum_{i=1}^n c_i \lambda_i^k v_i \qquad k = 1, 2, 3, \dots$$
 (3.3)

$$q^{(k)} = \lambda_1^k (c_1 v_1 + \sum_{i=2}^n c_i v_i \left(\frac{\lambda_i}{\lambda_1}\right)^k)$$
(3.4)

$$\Longrightarrow \begin{cases} q^{(k)} &\approx \lambda_1 c_1 v_1 \\ q^{(k+1)} &\approx \lambda_1^{k+1} c_1 v_1 \end{cases} \Rightarrow \lambda_1 \approx \frac{q_j^{(k+1)}}{q_j^{(k)}}$$

$$(3.5)$$

使用

$$\|q^{(k)}\|_{\infty} = \max_{1 \le j \le n} |q_j^{(n)}| \tag{3.6}$$

$$||q^{(k)}||_{\infty} = \max_{1 \le j \le n} |q_j^{(n)}|$$

$$||q^{(k)}||_{\infty} = \frac{q^{(k)}}{||q^{(k)}||_{\infty}} = \begin{pmatrix} q_1^{(k)} \\ q_2^{(k)} \\ \vdots \\ q_n^{(k)} \end{pmatrix} < 1$$

$$(3.6)$$

$$(3.7)$$

$$\Rightarrow \|q^{(k+1)}\|_{\infty} = \lambda \tag{3.8}$$

3.1.1 算法一

$$q^{old} = (1, 1, \dots, 1)^{\mathrm{T}}$$
 (3.9)

$$\bar{q}^{old} = q^{old} / \|q^{old}\|_{\infty}$$
 (3.10)

$$k = 1 \cdots m \tag{3.11}$$

$$\lambda = \|q^{new}\|_{\infty} \qquad 特征值 \tag{3.12}$$

$$\bar{q}^{new} = q^{new}/\lambda$$
 特征向量 (3.13)

3.1.2 对于多个相同特征值情况

$$|\lambda_1| = |\lambda_2| > |\lambda_3| \geqslant \dots \geqslant |\lambda_n| \tag{3.14}$$

$$q^{(k)} = \lambda^k (c_1 v_1 + c_2 v_2 + \sum_{i=3}^n c_i v_i \left(\frac{\lambda_i}{\lambda}\right)^k)$$
(3.15)

$$\begin{cases} q^{(k)} = \lambda^{k}(c_{1}v_{1} + c_{2}v_{2}) \\ q^{(k+1)} = \lambda^{k+1}(c_{1}v_{1} + c_{2}v_{2}) \\ q^{(k+2)} = \lambda^{k+2}(c_{1}v_{1} + c_{2}v_{2}) \end{cases} \rightarrow \frac{q_{j}^{(k+2)}}{q_{j}^{(k)}} \approx \lambda_{1}^{2} \Rightarrow \lambda_{1} = \sqrt{\frac{q_{j}^{(k+2)}}{q_{j}^{(k)}}}$$

$$(3.16)$$

$$\lambda_1 q^{(k)} + q^{(k+1)} \approx 2\lambda_1^{k+1} c_1 v_1 \tag{3.17}$$

$$\lambda_1 q^{(k)} - q^{(k+1)} \approx 2(-1)^k \lambda_1^{k+1} c_2 v_2 \tag{3.18}$$

3.1.3 反幂法和位移

引理1

A 非奇异,若 $Ax = \lambda x$,则 $A^{-1}x = \lambda^{-1}x$

引理2

若 $Ax = \lambda x$, 则 $(A - \rho I)x = (\lambda - \rho)x$

$$\lambda_1, \lambda_2, \cdots, \lambda_i, \cdots, \lambda_n \qquad (\lambda_i \approx \rho)$$
 (3.19)

$$\frac{\frac{1}{\lambda_k - \rho}}{\frac{1}{\lambda_i - \rho}}$$
 λ_k 是离 ρ 最近的特征值 (3.20)

$$\left(\frac{\lambda_i - \rho}{\lambda_k - \rho}\right) \tag{3.21}$$

$$q^{(k+1)} = (A - \rho I)q^{(k)} / \|q^{(k)}\|_{\infty} \Rightarrow (A - \rho I)q^{(k+1)} = \frac{q^{(k)}}{\|q^{(k)}\|_{\infty}}$$
(3.22)

若用反幂法求出的特征值为
$$\mu$$
 $\mu = \frac{1}{\lambda - \rho} \Rightarrow \lambda = \frac{1}{\mu} + \rho$ (3.23)

3.2. JACOBI 方法 25

Jacobi 方法 3.2

引理

若 P 可逆,则 A 与 $P^{-1}AP$ 有相同的特征值 若 A 为实对称矩阵 $(A = A^T)$, P 为正交阵 $(P^T = P^{-1})$, $A P^{-1}AP$ 特征值相同

Givens 旋转

$$R^{(pq)}(\theta) = \begin{pmatrix} 1 & \cdots & \cdots & \cdots & \cdots & 1 \\ \vdots & I & \vdots & I & \vdots & I & \vdots \\ 1 & \cdots & \cos \theta & 1 \cdots 1 & \sin \theta & \cdots & 1 \\ \vdots & I & \vdots & I & \vdots & I & \vdots \\ 1 & \cdots & -\sin \theta & 1 \cdots 1 & \cos \theta & \cdots & 1 \\ \vdots & I & \vdots & I & \vdots & I & \vdots \\ 1 & \cdots & \cdots & \cdots & \cdots & \cdots & 1 \end{pmatrix} \quad \text{line p}$$
(3.24)

$$R^{T}AR = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix} = \begin{pmatrix} -2sc & c^{2} - s^{2} \\ c^{2} - s^{2} & -2sc \end{pmatrix}$$
(3.25)

引理

对于实对称矩阵 $A \in \mathbb{R}^{n \times n}$ 和 $1 \le p < q \le n$, $\exists \theta \in [-\frac{\pi}{4}, +\frac{\pi}{4}]$, 使得 $R_{(\theta)}^{(pq)^T}AR_{(\theta)}^{(pq)}$ 在 (p,q),(q,p) 位置的元素为 0prove:

$$B = AR$$
 仅影响 p、q 列 (3.26)

$$\begin{cases} b_{1p} = a_{ip}c - a_{iq}s \\ b_{1q} = a_{ip}s + a_{iq}c \end{cases} \qquad i = 1, 2, \dots, n$$

$$C = R^T B \qquad \text{QSFip p. q } \text{?}$$

$$(3.27)$$

$$C = R^T B$$
 仅影响 p、q 行 (3.28)

$$\begin{cases} c_{pj} = b_{pj}c - b_{qj}s \\ c_{qj} = b_{pj}s + b_{qj}c \end{cases}$$
 $j = 1, 2, \dots, n$ (3.29)

$$C = R^{T}B \qquad 仅影响 p, q 行$$

$$\begin{cases} c_{pj} = b_{pj}c - b_{qj}s \\ c_{qj} = b_{pj}s + b_{qj}c \end{cases}$$

$$j = 1, 2, \dots, n$$

$$\begin{cases} c_{pp} = a_{pp}c^{2} - 2a_{pq}sc + a_{qq}s^{2} \\ c_{qq} = a_{qq}c^{2} - 2a_{pq}sc + a_{pp}s^{2} \\ c_{pq} = c_{qp} = 0 \end{cases}$$

$$(3.28)$$

$$(a_{pp} - a_{qq}) \frac{1}{2} \sin(2\theta) + a_{pq} \cos(2\theta) = 0$$
(3.31)

$$\tan(2\theta) = \frac{2a_{pq}}{a_{qq} - a_{pp}} \Rightarrow \theta = \frac{1}{2}\arctan\frac{2a_{pq}}{a_{qq} - a_{pp}} \in [-\frac{\pi}{4}, +\frac{\pi}{4}]$$
 (3.32)

特征向量
$$Q = R_{(\theta_1)}^{(p_1,q_1)} R_{(\theta_2)}^{(p_2,q_2)} \dots = \prod_k R_{(\theta_k)}^{(p_k,q_k)}$$
 (3.33)

算法

m,e,Q=I

for i = 1 to m

1 = diag(A);

[s,p,q]=max(abs(A-l));

if(s < e)

return 1 Q, quit;(1 为特征值、Q 为特征向量)

[A,R] = givens(A,p,q);

 $Q=Q \cdot R;$

end

end

$$(a_{pp} - a_{qq}) \frac{\sin \theta \cos \theta}{\cos^2 \theta} + a_{pq} \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta} = 0$$
(3.34)

$$(a_{pp} - a_{qq})\tan\theta + a_{pq}(1 - \tan^2\theta) = 0$$
(3.35)

1.
$$a_{pq} \neq 0$$
 $a_{pp} = a_{qq}$ $\Rightarrow \tan \theta = 1$ $\Rightarrow \theta = \frac{\pi}{4}$ $\Rightarrow \sin \theta = \cos \theta = \frac{\sqrt{2}}{2}$ (3.36)
2. $a_{pq} = 0$ $a_{pp} \neq a_{qq}$ $\Rightarrow \tan \theta = 0$ $\Rightarrow \theta = 0$ $\Rightarrow \sin \theta = 0$ $\cos \theta = 1$ (3.37)

2.
$$a_{pq} = 0$$
 $a_{pp} \neq a_{qq}$ $\Rightarrow \tan \theta = 0$ $\Rightarrow \theta = 0$ $\Rightarrow \sin \theta = 0$ $\cos \theta = 1$ (3.37)

3.
$$a_{pq} \neq 0$$
 $a_{pp} \neq a_{qq}$ $a_{pq} \tan^2 \theta - (a_{pp} - a_{qq}) \tan \theta - a_{pq} = 0$ (3.38)

$$\Rightarrow \tan \theta = \frac{(a_{pp} - a_{qq}) \pm \sqrt{(a_{pp} - a_{qq})^2 + 4a_{pq}}}{2a_{pq}}$$
 取较小的根 (3.39)

$$\sec^2 \theta = 1 + \tan^2 \theta \qquad \Rightarrow \cos \theta = \frac{1}{\sqrt{1 + \tan^2 \theta}} \qquad \Rightarrow \sin \theta \quad \cos \theta \quad \tan \theta \tag{3.40}$$

每次找最大的非对角线元素的值,然后使用 givens 旋转将其归零,最终让所有的非对角元素均极小,此时 对角元素的值即为特征值。

Chapter 4

插值

$$f(x) \in [a,b]$$
具备一定的光滑性 $f(x) \in \mathbb{C}^s$ $(s = 1,2,3,...\infty)$ (4.1)
$$\{x_0, x_1, x_2, \cdots, x_n\} \in [a,b] \quad \forall i \neq j \quad x_i \neq x_j$$
 (4.2)
$$\phi(x)$$
为某个函数空间上的一个函数 $\forall i = 0,1,2,\cdots,n \quad \phi(x_i) = f(x_i)$ (4.3)
$$\phi(x)$$
为关于插值点 $\{x_0, \cdots, x_n\}$ 的插值函数 (4.4)
$$\phi(x) = \sum_k c_k \phi_k(x) \quad \phi_k(x)$$
为基函数,满足全空间积分正交 (4.5)

4.1 Lagrange 插值 (多项式插值)

$$P_n(x) = \sum_{k=0}^n c_k x^k \tag{4.6}$$

$$\begin{cases} \sum_{k=0}^{n} c_k x_0^k &= f(x_0) \\ \sum_{k=0}^{n} c_k x_1^k &= f(x_1) \\ \vdots &= \vdots \\ \sum_{k=0}^{n} c_k x_n^k &= f(x_n) \end{cases}$$
(4.7)

$$\begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix} = \prod_{0 \le j < i \le n} (x_i - x_j) \ne 0$$

$$(4.8)$$

$\Rightarrow \exists ! P_n(x) \tag{4.9}$

4.1.1 Lagrange lesis

插值基函数:

$$l_k(x) = \prod_{\substack{0 \le i \le n \\ i \ne k}} \frac{(x - x_i)}{(x_k - x_i)} \tag{4.10}$$

28 CHAPTER 4. 插值

Lagrange 插值多项式:

$$P_n(x) = \sum_{k=0}^{n} f(x_k) l_k(x)$$
(4.11)

显然的,在插值点上:

$$l_k(x_i) = \delta_{ik} \tag{4.12}$$

4.1.2 Lagrange 多项式误差

对于 $P_n(x)$ 是 [a,b] 上过 $\{(x_i, f(x_i))\}$ 的 n 次插值,多项式 $f \in \mathbb{C}^{n+1}[a,b]$,则 $P_n(x)$ 的误差

1.
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i) \qquad \xi = \xi(x) \in [a, b]$$
 (4.13)

2.
$$f^{(n+1)} \le M \forall x \in [a, b] \Longrightarrow |R_n(x)| \le \frac{M}{(n+1)!} \prod_{i=0}^n |x - x_i|$$
 (4.14)

(4.15) 是 (4.14) 的一个显然的推论

以下仅证明 (4.14)

$$R_{n}(x) = f(x) - P_{n}(x) \tag{4.15}$$

$$P_n(x_i) = f(x_i)$$
 $i = 0, 1 \cdots n$ (4.16)

$$\Rightarrow R_n(x) \pm (a,b) \pm 有至少 n 个零点 \tag{4.17}$$

$$g(t) = f(t) = P_n(t) - k(x) \prod_{k=0}^{n} (t - x_k)$$
(4.18)

$$g(t)$$
至少有 n+2 个零点 (4.19)

⇒
$$g'(t)$$
至少有 n+1 个零点 Rolle's rule (4.20)

$$\Rightarrow g^{(n+1)}(t) = f^{(n+1)}(t) - K(x)(n+1)!$$
 至少有 1 个零点 (4.21)

$$\Rightarrow g^{(n+1)}(\xi) = f^{(n+1)}(\xi) - K(x)(n+1)! \tag{4.22}$$

$$\Rightarrow K(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \tag{4.23}$$

$$\Rightarrow R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0}^n (x - x_k) \quad \xi \in [a, b]$$
 (4.24)

4.2 Newton 插值多项式

4.2.1 差商

一阶差商

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \tag{4.25}$$

二阶差商

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$
(4.26)

k 阶差商

$$f[x_0, x_1, \cdots, x_k] = \frac{f[x_1, x_2, \cdots, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_0}$$
(4.27)

4.2.2 插值多项式

一阶

$$f[x, x_0] = \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow f(x) = f(x_0) + (x - x_0)f[x, x_0]$$
(4.28)

$$\implies f(x_0) = N_0(x) \qquad (x - x_0)f[x, x_0] = R_0(x) \tag{4.29}$$

(4.30)

二阶

$$f[x, x_0, x_1] = \frac{f[x, x_0] - f[x_0, x_1]}{x - x_1} \Rightarrow f[x, x_0] = f[x_0, x_1] + (x - x_1)f[x, x_0, x_1]$$

$$(4.31)$$

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + (x - x_0)(x - x_1)f[x, x_0, x_1]$$

$$(4.32)$$

$$N_1(x) = f(x_0) + f[x_0, x_1](x - x_0) \qquad R_1(x) = (x - x_0)(x - x_1)f[x, x_0, x_1]$$
(4.33)

30 CHAPTER 4. 插值

n-1 阶

$$f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \cdots + \prod_{k=0}^{n-2} (x - x_k)f[x_0, x_1, \dots, x_{n-1}] + \prod_{k=0}^{n-1} f[x, x_0, x_1, \dots, x_{n-1}]$$

$$(4.34)$$

$$N_{n-1}(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \dots + \prod_{k=0}^{n-2} (x - x_k)f[x_0, x_1, \dots, x_{n-1}]$$

$$(4.35)$$

$$R_{n-1}(x) = \prod_{k=0}^{n-1} f[x, x_0, x_1, \dots, x_{n-1}]$$
(4.36)

$$f[x, x_0, x_1, \cdots, x_n] = \frac{f[x, x_0, \cdots, x_{n-1}] - f[x_0, x_1, \cdots, x_n]}{x - x_n}$$
(4.37)

$$\Rightarrow f[x, x_0, \dots, x_{n-1}] = f[x_0, \dots, x_n] + (x - x_n) f[x, x_0, \dots, x_n]$$
(4.38)

$$f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + \dots + \prod_{k=0}^{n-1} (x - x_k)f[x_0, x_1, \dots, x_k] + \prod_{k=0}^{n} (x - x_k)f[x, x_0, \dots, x_k]$$
 (4.39)

$$N_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + \dots + \prod_{k=0}^{n-1} (x - x_k)f[x_0, x_1, \dots, x_k]$$
(4.40)

$$R_n(x) = \prod_{k=0}^{n} (x - x_k) f[x, x_0, \dots, x_k]$$
(4.41)

(4.42)

由对于 n+1 个确定点, 仅有一个 n 阶插值多项式, 因此:

$$P_n(x) = \sum_{k=0}^{n} f(x_k) l_k(x) = N_n(x) = \sum_{j=-1}^{n} -1 \left(f[x_0, x_1, \dots, x_{j+1}] \prod_{k=0}^{j} (x - x_k) \right)$$
(4.43)

$$f(x_k) = f[x_0, x_1, \cdots, x_{j+1}]$$
为系数 (4.44)

$$l_k(x) \prod_{k=0}^{j} (x - x_k)$$
为基函数 (4.45)

$$\Rightarrow R_n(x) = \prod_{k=0}^n (x - x_k) f[x, x_0, x_1, \dots, x_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0}^n (x - x_k)$$
(4.46)

4.2.3 差商意义

$$f[x_0, x_1] f'(\xi_1) \tag{4.47}$$

$$f[x_0, x_1, x_2] \frac{f''(\xi_2)}{2!} \tag{4.48}$$

$$f[x_0, x_1, \cdots, x_n] \frac{f^{(n)}(\xi_n)}{n!}$$
(4.49)

(4.50)

类似于 Taylor 展开, 用差商替代微商

4.3. HERMITE 插值 31

4.3 Hermite 插值

没啥用, 不讲

4.4 样条插值

Ronge 现象

在等距点过多情况下的高阶插值会引起极大误差

解决方法: 低阶分段(样条)或高阶不等距节点高阶不等距节点: 切比雪夫、勒让德、雅各比、盖德堡 对一组节点 x_k

三次样条差值:

$$P_3^i(x)$$
由 $x_{i-1}, x_i, x_{i+1}, x_{i+2}$ 构建,对应 $x \in [x_i, x_{i+1}]$ (4.51)

$$P_3^{i-1}(x)$$
由 $x_{i-2}, x_{i-1}, x_i, x_{i+1}$ 构建,对应 $x \in [x_{i-1}, x_i]$ (4.52)

限制条件:

$$P_2^i(x_i) = f(x_i) \tag{4.53}$$

$$P_3^{i-1}(x_i) = P^i(x_i) (4.54)$$

$$(P_3^{i-1})'(x_i) = (P_3^{i-1})'(x_i)$$
(4.55)

$$(P_3^{i-1})''(x_i) = (P_3^{i-1})''(x_i)$$
(4.56)

$$S_i(x) = A_i x^3 + B_i x^2 + C_i x + D_i (4.57)$$

$$S_{i}(x) = A_{i}x^{3} + B_{i}x^{2} + C_{i}x + D_{i}$$

$$\begin{cases}
S_{i}(x_{i}) = y_{i} = f(x_{i}) & n+1 \\
S_{i-1} = S_{i}(x_{i}) & n-1 \\
S'_{i-1}(x_{i}) = S'_{i}(x_{i}) & n-1 \\
S''_{i-1}(x_{i}) = S'_{i}(x_{i}) & n-1
\end{cases}$$

$$(4.57)$$

$$(4.58)$$

$$\exists Z''(x_i) = M_i \qquad S'(x_i) = m_i \qquad h_i = x_{i+1} - x_i$$

$$S_i''(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} M_i + \frac{x - x_i}{x_{i+1} - x_i} M_{i+1}$$
(4.59)

$$\begin{cases}
S_i'(x) = \frac{(x_{i+1} - x)^3 M_i + (x - x_i)^3 M_{i+1}}{6h_i} + c_i (x_{i+1} - x) + d_i (x - x_i) \\
c_i = \frac{y_i}{h_i} - \frac{h_i M_i}{6} \qquad d_i = \frac{y_{i+1}}{h_i} - \frac{h_i M_{i+1}}{6}
\end{cases}$$
(4.60)

$$S_{i}(x) = \frac{(x_{i+1} - x)^{3} + (x - x_{i})^{3} M_{i+1}}{6h_{i}} + \frac{(x_{i+1} - x)y_{i} + (x - x_{i})y_{i+1}}{h_{i}} - \frac{h_{i}}{6} \left[(x_{i+1} - x)M_{i} + (x - x_{i})M_{i+1} \right]$$

$$(4.61)$$

$$S_i'(x) = \frac{-M_i(x_{i+1} - x)^2 + M_{i+1}(x - x_i)^2}{2h_i} + \frac{y_{i+1} - y_i}{h_i} + \frac{h_i}{6}(M_i - M_{i+1})$$
(4.62)

$$\begin{cases} \mu_{i} M_{i-1} + 2M_{i} + \lambda_{i} M_{i+1} = d_{i} & i = 1, 2, \dots, n-1 \\ \lambda_{i} = \frac{h_{i}}{h_{i} + h_{i-1}} & \mu_{i} = 1 - \lambda_{i} & d_{i} = \frac{6}{h_{i} + h_{i+1}} \left(\frac{y_{i+1} - y_{i}}{h_{i}} - \frac{y_{i} - y_{i-1}}{h_{i}} \right) \end{cases}$$

$$(4.63)$$

32 CHAPTER 4. 插值

最终得到:

(对于给定 M_0, M_n)

$$\begin{pmatrix} 2 & \lambda_{1} & & & & \\ \mu_{2} & 2 & \lambda_{2} & & & \\ & \mu_{3} & 2 & \lambda_{3} & & \\ & \ddots & \ddots & \ddots & \\ & & \mu_{n-2} & 2 & \lambda_{n-2} \\ & & & \mu_{n-1} & 2 \end{pmatrix} \begin{pmatrix} M_{1} \\ M_{2} \\ M_{3} \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{pmatrix} = \begin{pmatrix} d_{1} - \mu_{1} M_{0} \\ d_{2} \\ d_{3} \\ \vdots \\ d_{n-2} \\ d_{n-1} - \lambda_{n-1} M_{n} \end{pmatrix}$$

$$(4.64)$$

也可给定 m_0, m_n 或周期性边界条件 $m_0 = m_n$ $M_0 = M_n$

Chapter 5

最小二乘拟合

$$\Phi = (\phi(x_0), \phi(x_1), \dots, \phi(x_m)) \sim Y = (y_1, y_2, \dots, y_m)$$
(5.1)

距离尽可能小

5.1 一范数

$$\|\Phi - Y\|_1 = \sum_{i=1}^m |\phi(x_i) - y_i|$$
(5.2)

5.2 二范数与无穷范数

二范数是最常用的

$$\|\Phi - Y\|_2 = \left(\sum_{i=1}^m |\phi(x_i) - y_i|^2\right)^{1/2} \tag{5.3}$$

$$\|\Phi - Y\|_{\infty} = \max |\phi(x_i) - y_i|$$
 (5.4)

$$\phi = \sum_{i=1}^{m} \alpha_i \phi_i \tag{5.5}$$

 $\left\{oldsymbol{\phi}_{i}
ight\}_{i=1}^{m}$ 是一组基 找 $\left\{oldsymbol{lpha}_{i}
ight\}_{i=1}^{m}$ 使得 $\left\|oldsymbol{\Phi}-y_{i}
ight\|_{2}$ 最小

$$A_{m*n} = \begin{pmatrix} \phi_1(x_1) & \phi_2(x_1) & \cdots & \phi_n(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \cdots & \phi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(x_m) & \phi_2(x_m) & \cdots & \phi_n(x_m) \end{pmatrix}$$
(5.6)

$$A_{m*n} = \begin{pmatrix} \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \cdots & \phi_{n}(x_{1}) \\ \phi_{1}(x_{2}) & \phi_{2}(x_{2}) & \cdots & \phi_{n}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{1}(x_{m}) & \phi_{2}(x_{m}) & \cdots & \phi_{n}(x_{m}) \end{pmatrix}$$

$$\alpha_{n*1} = \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

$$Y_{m*1} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{pmatrix} ||A\alpha - Y||_{2} ||A|| ||A||$$

$$Y_{m*1} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} \|A\alpha - Y\|_2$$
最小化 $m >> n$ (5.8)

$$\Longrightarrow A\alpha \approx Y \tag{5.9}$$

 $A\alpha = Y$ 大部分无解 实际应寻找 $A^T A \alpha = A^T Y$

最小二乘法即为寻找在二范数下最小的解

5.3 方法一

先证明 (5.11) 的解恰为 (5.10) 得解 证明 (5.11) 有解相当于证明 $rank(A^T A) = n$

定理

$$\|A\alpha - Y\|_2$$
最小 (5.10)

等价于
$$A^T A \alpha = A^T Y$$
 (5.11)

prove:

$$Ax = 0 \Rightarrow A^T A x = 0 \tag{5.12}$$

$$A^{T}Ax = 0 \Rightarrow x^{T}A^{T}A = 0 \Rightarrow ||Ax||_{2}^{2} = 0 \Rightarrow Ax = 0$$
 (5.13)

(5.12)与(5.13)同解

$$rank(A^{T}A) = rank(A) = n (5.14)$$

(5.15)

5.4. 方法二 35

 $||A\alpha - Y||$ 达到最小值当且仅当 $A^TA\alpha = A^TY$

$$Y - A\alpha \perp A$$
的列空间 (5.16)

$$\Leftrightarrow A^{T}(Y_{A}\alpha) = 0 \Leftrightarrow A^{T}A\alpha = A^{T}Y \tag{5.17}$$

5.4 方法二

$$\min_{\alpha}(\|A\alpha - Y\|) \Leftrightarrow \min_{\alpha} \frac{1}{2}(\|A\alpha - Y\|^2) = \min_{\alpha} R(\alpha)$$
(5.18)

$$R(\alpha) = \frac{1}{2} \left[\sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{j} \phi_{j}(x_{i}) - Y_{i} \right)^{2} \right]$$
 (5.19)

$$\frac{\partial R(\alpha)}{\partial \alpha_i} = 0 \qquad j = 1, 2, \cdots, n \tag{5.20}$$

$$\Rightarrow \sum_{i=1}^{m} \left[\phi_j(x_i) \left(\sum_{k=1}^{n} \alpha_k \phi_k(x_i) - Y_i \right) \right] = 0 \tag{5.21}$$

$$\Rightarrow \sum_{i=1}^{m} \phi_{j}(x_{i}) \sum_{k=1}^{n} \alpha_{k} \phi_{k}(x_{i}) = \sum_{i=1}^{m} \phi_{j}(x_{i}) Y_{i}$$
 (5.22)

$$R(\alpha) = \frac{1}{2}\alpha^{T}A^{T}A - Y^{T}A\alpha + \frac{1}{2}||Y||_{2}^{2}$$
(5.23)

$$R(\alpha + \Delta \alpha) = R(\alpha) + \sum_{j=0}^{n} \Delta \alpha_{j} \frac{\partial R(\alpha)}{\partial \alpha_{j}} + \frac{1}{2} \sum_{j=0}^{n} \sum_{k=0}^{n} \Delta \alpha_{j} \Delta \alpha_{k} \frac{\partial^{2} R(\alpha)}{\partial \alpha_{j} \partial \alpha_{k}}$$
 (5.24)

$$R(\alpha + \Delta \alpha) = R(\alpha) + \Delta \alpha^T A^T A \alpha \geqslant R(\alpha)$$
(5.25)

$$\frac{\partial^2 R(\alpha)}{\partial \alpha_j \partial \alpha_k} = (A^T A)_{jk} \tag{5.26}$$

$$\Delta \alpha^T A^T A \alpha = \|A \Delta \alpha\|_2^2 \tag{5.27}$$

Chapter 6

积分与微分

6.1 Newton-Cotes 积分

6.1.1 积分方法

$$I(f) = \int_{a}^{b} f(x) dx \approx I_{n}(f) = \int_{a}^{b} L_{n}(x) dx = \int_{a}^{b} \sum_{i=0}^{n} l_{i}(x) f(x_{i}) dx$$
(6.1)

$$=\sum_{i=0}^{n}\omega_{i}f(x_{i})$$
 积分权重 $\omega_{i}=\int_{a}^{b}l_{i}(x)\mathrm{d}x$ 误差 $E_{n}(f)=I(f)-I_{n}(f)=\int_{a}^{b}f(x)-L_{n}(x)\mathrm{d}x=\int_{a}^{b}R_{n}(x)\mathrm{d}x$ (6.2)

$$= \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi(x)) \prod_{i=1}^{n} (x - x_{i}) dx$$
 (6.3)

(6.4)

Newton-Cotes 取 [a,b] 上等距点 $x_i = a + ih$ $i = 0, 1, \dots, n$ $h = \frac{b-a}{n}$

$$\omega_i = \int_a^b l_i(x) dx = \int_a^b \prod_{\substack{\leqslant k \leqslant n \\ k \neq i}} \frac{x - x_k}{x_i - x_k} dx \quad x = a + th \quad x_i = a + ih$$

$$(6.5)$$

$$\frac{h}{i!(n-i)!(-1)^{n-i}} \int_0^n t(t-1)\cdots(t-i+1)(t-i-1)\cdots(t-n)dt$$
(6.6)

$$\omega_i = (b - a)c_i^{(n)} \tag{6.7}$$

6.1.2 误差

对 n 为奇数且 $f \in C^{n+1}[a,b]$

$$E_n(f) = \frac{h^{n+2} f^{(n+1)}(\xi)}{(n+1)!} \int_0^n t(t-1) \cdots (t-n) dt$$
(6.8)

对 n 为偶数且 $f \in C^{n+2}[a,b]$

$$E_n(f) = \frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_0^n t^2(t-1) \cdots (t-n) dt$$
(6.9)

6.1.3 代数精度

如果 $E(x^k) = I(x^k) - I_n(x^k) = 0$ $k = 0, 1, \dots, m$ 且 $E(x^{m+1}) \neq 0$,则 $I_n(f)$ 有 m 阶的代数精度

一阶精度

n=1 $x_0=a$ $x_1=b$ 梯形公式

$$I(f) \approx I_n(f) = T_1(f) = \frac{(b-a)}{2} [f(a) - f(b)] \qquad \omega_0 = \omega_1 = \frac{b-a}{2}$$
 (6.10)

$$E_1(f) = \frac{f''(\eta)}{2} \int_a^b (x - a)(x - b) dx = -\frac{f''(\eta)}{12} (b - a)^3 \quad \eta \in [a, b]$$
 (6.11)

三阶精度

n=2 $x_0=a$ $x_1=\frac{a+b}{2}$ $x_2=b$ Simpson's Rule

$$I(f) = I_2(f) = \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right]$$
 (6.12)

$$\omega_0 = \omega_2 = \frac{b-a}{6}$$
 $\omega_1 = \frac{2}{3}(b-a)$ (6.13)

$$E_2(f) = \frac{f^{(4)}(\eta)}{4!} \int_a^b x(x-a)(x-\frac{a+b}{2})(x-b) dx$$
 (6.14)

$$=\frac{f^{(4)}(\eta)}{2880}(b-a)^5 \qquad \eta \in [a,b] \tag{6.15}$$

6.2. 复化积分公式 39

6.2 复化积分公式

6.2.1 复化梯形公式

$$I(f) = \int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) dx$$
 (6.16)

$$= \sum_{i=0}^{n-1} \left(\frac{h}{2} [f(x_i) + f(x_{i+1})] - f''(\xi_i) \frac{h^3}{12} \right)$$
 (6.17)

$$= h \left[\frac{1}{2} f(a) + \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} f(b) \right] - \sum_{i=0}^{n-1} f''(\xi_i) \frac{h^3}{12}$$
(6.18)

$$T_n(f) = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(a+ih) + f(b) \right]$$
 (6.19)

$$E_n(f) = -\frac{h^3}{12} \sum_{i=0}^{n-1} f''(\xi_i) = \frac{\text{în} \, \text{liz}}{12} - \frac{h^3}{12} n f''(\xi) = -\frac{(b-a)^3}{12n^2} f''(\xi)$$
(6.20)

应用 $M = \max_{a \le x \le b} |f''(x)|$

$$\left| E_n(f) \right| \leqslant \frac{(b-a)^3}{12n^2} M < \epsilon \Rightarrow \left\lceil \sqrt{\frac{(b-a)^3 M}{12\epsilon}} \right\rceil \tag{6.21}$$

6.2.2 复化 Simpson 公式

$$x_i = a + ih$$
 $i = 0, 1, \dots, n$ $h = \frac{b-a}{n}$ $n = 2m$ $m \in \mathbb{Z}$ (6.22)

$$I(f) = \int_{a}^{b} f(x) dx = \sum_{i=0}^{m-1} \int_{x_{2i+2}}^{x_{2i+2}} f(x) dx$$
 (6.23)

$$= \sum_{i=0}^{m-1} \frac{2h}{6} \left[f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}) \right] + \sum_{i=0}^{m-1} \left(-\frac{(2h)^5}{2880} f^{(4)}(\xi_i) \right)$$
 (6.24)

两部分分别是复化 Simpson 公式和误差项

$$S_n(f) = \frac{h}{3} \left[f(a) + 4 \sum_{i=0}^{m-1} f(x_{2i+1}) + 2 \sum_{i=1}^{m-1} f(x_{2i}) + f(b) \right]$$
 (6.25)

$$E_n(f) = -\frac{(2h)^5}{2880} \sum_{i=0}^{m-1} f^{(4)}(\xi_i) = -\frac{(2h)^5}{2880} f^{(4)}(\xi) = -\frac{(b-a)^5}{2880m^4} f^{(4)}(\xi)$$
(6.26)

$$= -\frac{(b-a)^5}{180n^4} f^{(4)}(\xi) \tag{6.27}$$

$$M = \max_{a \le c, b} \left| f^{(4)}(x) \right| \tag{6.28}$$

$$\left| E_n(f) \right| \leqslant \frac{(b-a)^5 M}{2880 m^4} \leqslant \epsilon \Rightarrow m \geqslant \left\lceil \sqrt[4]{\frac{(b-a)^5 M}{2880 \epsilon}} \right\rceil \quad \xi \in [a,b] \tag{6.29}$$

6.3 自动控制误差的复化积分

$$T_n(f) = h_n \left[\frac{1}{2} f(a) + \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} f(b) \right] \qquad h_n = \frac{b-a}{n}$$
 (6.30)

$$T_{2n}(f) = \frac{h_n}{2} \left[\frac{1}{2} f(a) + \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} f(b) + \sum_{i=0}^{n-1} f(x_{i+1/2}) \right]$$
 (6.31)

$$= \frac{1}{2}T_n(f) + \frac{h}{2}\sum_{i=0}^{n-1} f(x_{i+1/2})$$
(6.32)

估计误差

n 足够大时, $f''(\xi) \approx f''(\eta)$

$$I(f) - T_n(f) = -\frac{(b-a)}{12}h^2f''(\xi)$$
(6.33)

$$I(f) - T_{2n}(f) = -\frac{b-a}{12} \frac{h^2}{4} f''(\eta)$$
(6.34)

$$I(f) - T_n(f) \approx 4 \left(I(f) - T_{2n}(f) \right)$$
 (6.35)

$$\Rightarrow I(f) - T_{2n}(f) \approx \frac{1}{3} \left(T_{2n}(f) - T_{n}(f) \right) \tag{6.36}$$

$$\left|I(f) - T_{2n}(f)\right| < \epsilon \Rightarrow \left|T_{2n}(f) - T_{n}(f)\right| < 3\epsilon \tag{6.37}$$

6.3.1 算法

给定 ϵ, n, h ,计算 $T_n(T_{\text{old}})$ $T_{2n}(T_{\text{new}})$ while $|T_{\text{old}} - T_{\text{new}}| > 3\epsilon$ $T_{\text{new}} = \frac{1}{2}T_{\text{old}} + \frac{h}{2}\sum_{i=0}^{n-1}f(x_{i+1/2})$ $h = \frac{h}{2}$ n = 2n

6.4 Ramberg 外插积分方法

$$f(x) = f(x_{i+\frac{1}{2}}) + (x - x_{i+\frac{1}{2}})f'(x_{i+\frac{1}{2}}) + \frac{1}{2}(x - x_{i+\frac{1}{2}})^2 f''(x_{i+\frac{1}{2}}) + \frac{1}{6}(x - x_{i+\frac{1}{2}})^3 f'''(x_{i+\frac{1}{2}}) + \cdots$$
 (6.38)

$$\int_{x_{i}}^{x_{i+1}} f(x) dx = h f(x_{i+\frac{1}{2}}) + \frac{1}{2} (x - x_{i+\frac{1}{2}})^{2} \Big|_{x_{i}}^{x_{i+1}} f'(x_{i+\frac{1}{2}}) + \cdots$$
(6.39)

$$f(x_i) = f(x_{i+\frac{1}{2}}) - \frac{h}{2}f'(x_i + \frac{1}{2}) + \frac{h^2}{8}f''(x_{i+\frac{1}{2}}) - \frac{h^3}{48}f'''(x_{i+\frac{1}{2}}) + \cdots$$
(6.40)

$$f(x_{i+1}) = \cdots \tag{6.41}$$

$$\Rightarrow f(x_{i+\frac{1}{2}}) = \frac{f(x_i) - f(x_{i+1})}{2} - \frac{h^2}{8} f''(x_{i+\frac{1}{2}}) - \frac{h^4}{384} f^{(4)}(x_{i+\frac{1}{2}})$$
(6.42)

$$\int_{x_{i}}^{x_{i+1}} f(x) dx = h \frac{f(x_{i}) + f(x_{i+1})}{2} - \frac{h^{3}}{12} f''(x_{i+\frac{1}{2}}) - \frac{h^{5}}{480} f^{(4)}(x_{i+\frac{1}{2}})$$
(6.43)

$$I(f) = \int_{a}^{b} f(x) dx = \sum_{i=0}^{m-1} \int_{x_{i}}^{x_{i+1}} f(x) dx = T_{n} - \frac{h^{3}}{12} \sum_{i=0}^{m-1} f''(x_{i+\frac{1}{2}}) - \frac{h^{5}}{480} \sum_{i=0}^{m-1} f^{(4)}(x_{i+\frac{1}{2}})$$
(6.44)

$$=T_n - nf''(\xi) - nf^{(4)}(\eta) \tag{6.45}$$

$$I(f) = T_n - \frac{b-a}{12}h^2f''(\xi) - \frac{b-a}{480}h^4f^{(4)}(\eta)$$
(6.46)

$$R_{00} = t_n = I - c_1 h^2 - c_2 h^4 - c_3 h^6 - \cdots$$
(6.47)

$$R_{10} = T_{2n} = I - \frac{c_1}{4}h^2 - \frac{c_2}{16}h^4 - \frac{c_3}{64}h^6 - \dots$$
 (6.48)

$$\frac{1}{3}\left((6.49) \times 4 - (6.48)\right) \Rightarrow R_{11} = \frac{4R_1 - R_0}{3} = I + \frac{c_2}{4}h^4 + \frac{5}{16}c_3h^6 + \cdots$$
 (6.49)

$$R_{20} = T_{4n} = I - \frac{c_1}{16}h^2 - \frac{c_2}{256}h^4 - \frac{c_3}{4096}h^6 + \cdots$$
 (6.50)

$$R_{21} = \frac{4R_2 - R_1}{3} = I + \frac{c_2}{64}h4 + \frac{5c_3}{1024}h^6 + \cdots$$
 (6.51)

$$R_{22} = \frac{16R_{21} - R_{11}}{15} = I + \frac{c_2}{64}h^4 + \frac{5c_3}{1024}h^6 + \cdots$$
 (6.52)

6.4.1 Ramberg 算法

给定 $a, b \in \mathbb{N}$ f(x)] $quad n = 1 \rightarrow h = b - a$

$$R_{00} = \frac{h}{2} (f(a) + f(b)) \qquad h_k = \frac{h}{2^k} \quad k = 0, 1, \dots, N$$
 (6.53)

fork = 1: N
$$(6.54)$$

$$R_{k0} = \frac{1}{2} \left(R_{k-1,0} + h_{k-1} \sum_{i=1}^{2^{k-1}} f\left(a + (2i-1)h_k\right) \right)$$
(6.55)

$$forj = 1 : k$$
 (6.56)

$$R_{kj} = \frac{4^{j} R_{k,j-1} - R_{k-1,j-1}}{4^{j} - 1} \tag{6.57}$$

end (6.58)

if $(|R_{k,k}-R_{k-1,k-1}|<\epsilon)$, exit;

end

6.5 高斯积分

$$I(f) \approx I_n(f) = \sum_{i=0}^n \omega_i f(x_i) \quad \omega_i = \int_{-1}^1 l_i(x) dx$$

$$(6.59)$$

$$E_n(f) = \frac{1}{(n+1)!} \int_{-1}^{1} f^{(n+1)}(\xi(x)) \prod_{i=0}^{n} (x - x_i) dx$$
 (6.60)

若 f(x) 为一个至多为 n 阶的多项式,则有 $f^{(n+1)}(\xi(x)) = 0 \Rightarrow$ n 阶代数精度

6.5.1 Legendre 多项式

Legendre 多项式定义在 [-1,1] 上

$$\phi_{-1}(x) = 0 \qquad \phi_0(x) = 1 \qquad \phi_{j+1}(x) \frac{2J+1}{j+1} x \phi_j \phi_j(x) = \frac{j}{j+1} \phi_{j-1}(x) \quad j \geqslant 0$$
 (6.61)

$$\int_{-1}^{1} \phi_i(x)\phi_j(x)dx = \begin{cases} 0 & i \neq j \\ \frac{2}{2j+1} & i = j \end{cases}$$
 (6.62)

对于任意多项式 g(x) $(deg(g(x)) \le n)$ $\int_{-1}^{1} g(x)\phi_{n+1}(x)dx = 0$ 将 Legendre 常数归一化:

$$P_{j}(x) = \sqrt{\frac{2j+1}{2}}\phi_{j}(x) \tag{6.63}$$

$$\int_{-1}^{1} P_i(x) P_j(x) dx = \delta_{ij}$$
 (6.64)

$$xP_{j}(x) = a_{j}P_{j+1}(x) + c_{j}P_{j-1}(x) \qquad a_{j} = \frac{1}{\sqrt{1 - \frac{1}{(2(j+1))^{2}}}} \qquad c_{j} = \frac{1}{2\sqrt{1 - \frac{1}{(2j)^{2}}}}$$
(6.65)

从而得到 Legendre 矩阵:

 $\stackrel{\text{def}}{=} x = x_i \ (x = 0, 1, \dots n)$

$$x_{i} \begin{pmatrix} P_{0}(x) \\ P_{1}(x) \\ P_{2}(x) \\ P_{3}(x) \\ \vdots \\ P_{n}(x) \end{pmatrix} = J_{n} \begin{pmatrix} P_{0}(x) \\ P_{1}(x) \\ P_{2}(x) \\ P_{2}(x) \\ P_{3}(x) \\ \vdots \\ P_{n}(x) \end{pmatrix}$$
(6.67)

其中 x_i 为 J_n 的特征值, P_i 为对应的特征向量(不唯一),且有 $P_i^T P_j = 0$ $i \neq j$

6.5. 高斯积分 43

考虑

$$\int_{-1}^{1} P_i(x) P_j(x) dx \qquad 0 \leqslant i, j \leqslant n \quad deg(P_i(x) P_j(x)) \leqslant 2n \tag{6.68}$$

$$\sum_{k=0}^{n} \omega_k P_i(x_k) P_k(x_k) = \delta_{ij}$$
(6.69)

P 为行正交矩阵, 即 $PP^T = I$ $P^TP \neq I$

$$P^T W P = I ag{6.71}$$

$$PP^{T}WPP^{-1} = PIP^{-1} \Rightarrow PP^{T}W = I \tag{6.72}$$

$$P^{-T}P^{T}WPP^{T} = P^{-T}IP^{T} \Rightarrow WPP^{T} = I \Rightarrow W^{-1} = PP^{T}$$
(6.73)

$$W^{-1} = diag\left(\sum_{i=0}^{n} P_{j}^{2}(x_{i})\right) \quad i = 0 \cdots n$$
(6.74)

$$\Rightarrow \omega_i = \frac{1}{\sum_{i=0}^n P_i^2(x_i)} = \frac{1}{\|P_i\|_2^2} \tag{6.75}$$

In matlab:
$$\tilde{P}_i = c_i P_i$$
 s.t. $\|\tilde{P}_i\|_2 = 1$ (6.76)

$$c_i = \sqrt{2}\tilde{P}_0(x_i) \tag{6.77}$$

$$\begin{pmatrix} \tilde{P}_0(x_i) \\ \tilde{P}_1(x_i) \\ \vdots \\ \tilde{P}_n(x_i) \end{pmatrix} = c_i \begin{pmatrix} P_0(x_i) \\ P_1(x_i) \\ \vdots \\ P_n(x_i) \end{pmatrix} \Rightarrow \frac{1}{\sqrt{2}} \int_{-1}^1 P_0^2(x) dx = 1$$

$$(6.78)$$

$$\omega_i = \frac{1}{\|P_i\|_2^2} = \frac{c_i^2}{\|\tilde{P}_i\|_2^2} = c_i^2 = 2\tilde{P}_0^2(x_i) \text{LAPACK in matlab}$$
(6.79)

6.6 数值微分

6.6.1 插值型数值微分

导数:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) - f(x-h)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$
(6.80)

向前差分

导数:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h} \tag{6.81}$$

误差:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \cdots$$
(6.82)

$$R(x) = f'(x_0) - \frac{f(x_0 + h) - f(x_0)}{h} = -\frac{h}{2}f''(x_0) + \dots = O(h)$$
(6.83)

向后差分

导数:

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h} \tag{6.84}$$

误差:

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) + \cdots$$
(6.85)

$$R(x) = f'(x_0) - \frac{f(x_0) - f(x_0 - h)}{h} = -\frac{h}{2}f''(x_0) + \dots = O(h)$$
(6.86)

中心差分

导数:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h} \tag{6.87}$$

误差:

$$R(x) = \frac{h^2}{6}f''(x_0) + \dots = O(h^2) \Rightarrow R(x) = O(h^2) \Rightarrow R = ch^2 \Rightarrow \ln R = 2\ln h + \ln c$$
 (6.88)

6.6.2 全局法

$$f(x) \approx P_n(x) = \sum_{i=0}^{n} l_i(x) f(x_i)$$
 (6.89)

$$f'(x) \approx P_n(x) = \sum_{i=0}^{n} l_i'(x) f(x_i)$$
 (6.90)

$$R(x) = \left(\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)\right)$$
(6.91)

Chapter 7

常微分方程初值问题

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(0) = y_0 \end{cases} t \in [0, b]$$
 (7.1)

7.1 欧拉方法

7.1.1 向前欧拉法

由差分推导:

$$y'(t_n) \approx \frac{y(t_{n+1}) - y(t_n)}{h} \Rightarrow y(t_{n+1}) \approx y(t_n) + hf(t, y(t_n)) \qquad \text{ \text{ \text{fight}}}$$

$$y_{n+1} = y_n + h f(t_n, y_n) \qquad \text{向前欧拉法}$$

$$(7.3)$$

由积分推导:

$$y'(t) = f(t, y(t)) \tag{7.4}$$

$$\Rightarrow \int_{t_n}^{t_{n+1}} f'(t) dt = \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$
 (7.5)

$$\Rightarrow y(t_{n+1}) = y(t_n) + \int_{t}^{t_{n+1}} f(t, y(t)) dt$$
 (7.6)

$$\approx y(t_n) + h f(t_n, y(t_n)) \tag{7.7}$$

$$y_{n+1} = y_n + h f(t_n, y_n) (7.8)$$

7.1.2 向后欧拉法

由差分推导

$$y'(t_{n+1}) = \frac{y(t_{n+1}) - y(t_n)}{h} \tag{7.9}$$

$$\Rightarrow y(t_{n+1}) \approx y(t_n) + h f(t_{n+1}, y(t_{n+1})) \tag{7.10}$$

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}) (7.11)$$

由积分推导

$$y(t_{n+1}) = f(t_{n+1}, y(t_{n+1}))$$
(7.12)

$$\Rightarrow y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$
 (7.13)

$$\approx y(t_n) + h f(t_{n+1}, y_{n+1}) \tag{7.14}$$

向前欧拉法的稳定性较差,向后欧拉法的计算要求较大,但解较稳定。

7.1.3 中点公式(对应中心差分法)

由差分推导:

$$y'(t_n) \approx \frac{y(t_{n+1}) - y(t_{n-1})}{2h} \tag{7.15}$$

$$\Rightarrow y(t_{n+1}) = y(t_{n-1}) + 2hf(t_n, y(t_n)) \tag{7.16}$$

由积分推导:

$$y(t_{n+1}) = y(t_{n-1}) + \int_{t_{n-1}}^{t_{n+1}} f(t, y(t)) dt$$
(7.18)

$$\approx y(t_{n-1}) + 2hf(t_n, y(t_n)) \tag{7.19}$$

$$yn + 1 = y(t_{n-1}) + 2hf(t_n, y(t_n))$$
(7.20)

7.1.4 收敛性

局部截断误差

Taylor 展开

$$y(t_{n+1}) + y(t_n) + h f(t_n, y(t_n)) + \frac{h^2}{2} f'(\xi) \quad \xi \in [t_n, t_{n+1}]$$
(7.21)

(7.22)

向前欧拉法: $\Diamond y_n = y(t_n)$, 即仅考虑一步的误差

$$\Rightarrow T_{n+1} = y(t_{n+1}) - y_{n+1} = \frac{h^2}{2} f'(\xi_n) = O(h^2)$$
(7.23)

如果 $T \propto h^{p+1}$ 则称方法为 P 阶方法

整体误差

皮卡-林德洛夫定理(唯一性)

$$|f(t, y_1) - f(t, y_2)| \le \mathcal{L}|y_1 - y_2|$$
 (7.25)

则初值问题
$$y'(t) = f(t, y(t))$$
 $y(0) = y_0$ 有唯一解 (7.26)

7.1. 欧拉方法 47

$$e_{n+1} = y(t_{n+1}) - y_{n+1} = y(t_n) - y_n + h\left[f(t_n, y_\ell t_n)) - f(t_n, y_n)\right] + T_{n+1}$$

$$(7.27)$$

$$|e_{n+1}| \le |e_n| + h \left| f(t_n, y(t_n)) - f(t_n, y_n) \right| + |T_{n+1}| \tag{7.28}$$

$$\leq |e_n| + h\mathcal{L}|y(t_n) - y_n| + |T_{n+1}| \leq (1 + h\mathcal{L})|e_n| + T \qquad T = \max T_n$$
 (7.29)

$$\leq (1 + h\mathcal{L}) \left[(1 + h\mathcal{L}) |e_{n-1}| + T \right] + T \tag{7.30}$$

$$\leq (1 + h\mathcal{L})^{n+1} |e_0| + T + (1 + h\mathcal{L})T + (1 + h\mathcal{L})^2 T + \dots + (1 + h\mathcal{L})^n T$$
(7.31)

$$= (1 + h\mathcal{L})^{n+1} |e_0| + \frac{(1 + h\mathcal{L})^{n+1} - 1}{h\mathcal{L}} T$$
(7.32)

$$\leq e^{(n+1)h\mathcal{L}}\left(|e_0| + \frac{T}{h\mathcal{L}}\right) \qquad (1+x)^n \leq e^{nx}$$
 (7.33)

$$=e^{(b-a)\mathcal{L}}\left(|e_0|+\frac{T}{Ch}\right) \tag{7.34}$$

其中 T_{n+1} 为单步误差 e_0 为初值引入误差

7.2 单步法

2D-Taylor

$$f(x+h,y+l) = f(x,y) + hf_x(x,y) + lf_y(x,y) + \frac{h^2}{2}f_{xx}(x,y) + hlf_{xy}(x,y) + \frac{l^2}{2}f_{yy}(x,y) + \cdots$$
 (7.35)

$$y(t_{i+1}) - y(t_i) - hf(t_i, y(t_i)) = T_i = \frac{y''(t_i)}{2}h^2 + O(h^3)$$
(7.36)

$$\Rightarrow y(t_{i+1}) - y_{t_i} - hf(t_i, y(t_i)) - \frac{h^2}{2}y''(t_i) = O(h^3)$$
(7.37)

$$y''(t_i) = \frac{d^2y}{dt^2} \bigg|_{t=t_i} = \frac{d}{dt} f(t, y(t)) \bigg|_{t=t_i} = \frac{dt}{d} f(t_i, y(t_i))$$
(7.38)

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t,y(t)) = \frac{\partial f}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial f}{\partial t}$$
(7.39)

$$= f_{y}(t, y(t)) y'(t) + f_{t}(t, y(t)) = f_{y}(t, y(t)) f(t, y(t)) + f_{t}(t, y(t))$$
(7.40)

$$\Rightarrow y(t_{i+1}) \approx y(t_i) + h f(t_i, y(t_i)) + \frac{h^2}{2} \frac{d}{dt} f(t_i, y(t_i)) + O(h^3)$$
(7.41)

$$\approx y(t_i) + h \left[f(t_i, y(t_i)) + \frac{h}{2} \left(f_y(t_i, y(t_i)) f(t_i, y(t_i)) + f_t(t_i, y(t_i)) \right) \right] + O(h^3)$$
(7.42)

$$\gamma f(t+\alpha, y+\beta) = \gamma \left(f(t,y) + \alpha f_t(t,y) + \beta f_v(t,y) \right) + \cdots$$
 (7.43)

$$\begin{cases} \gamma = 1 \\ \gamma \alpha = \frac{h}{2} \\ \gamma \beta = \frac{h}{2} f(t_i, y(t_i)) \end{cases} \implies \begin{cases} \gamma = 1 \\ \alpha = \frac{h}{2} \\ \beta = \frac{h}{2} f(t_i, y(t_i)) \end{cases}$$
(7.44)

$$y(t_{i+1}) = y(t_i) + hf\left(t_i + \frac{h}{2}, y(t_i) + \frac{h}{2}f(t_i, y(t_i))\right) + O(h^3)$$
(7.45)

$$y_{i+1} = y_i + hf\left(t_i + \frac{h}{2}, y_i + \frac{h}{2}f(t_i, y_i)\right)$$
(7.46)

or
$$K_1 = hf(t_i, y_i)$$
 $K_2 = hf(t_i + \frac{h}{2}, y_i + \frac{K_1}{2})$ $y_{i+1} = y_i + K_2$ (7.47)

称为中点公式法,又称 Ronge-Kutta 二阶方法 (RK2)

7.3. 线性多步法 49

7.3 线性多步法

$$y'(t) = f(t, y(t)) \Rightarrow y(t_n) = y(t_{n-p}) + \int_{t_{n-p}}^{t_n} f(t, y(t)) dt$$
(7.48)

用 Lagrange 插值多项式近似 f(t, y(t)) 注意,Lagrange 插值多项式有 qp

$$y(t_n) = y(t_{n-p}) \int_{t_{n-p}}^{t_n} L_{n-q}^n(t) dt$$
 (7.49)

$$y_n = y_{n-p} + \int_{t_{n-p}}^{t_n} L_{n-q}^n(t) dt$$
 隐式格式 (7.50)

$$y_n = y_{n-p} + \int_{t_{n-p}}^{t_n} L_{n-q}^{n-1}(t) dt$$
 显式格式 (7.51)

$$L_{n-q}^{n}(t) = \sum_{k=n-q}^{n} f_k l_k(t) \qquad l_k(t) \text{ is Lagrange basis function}$$
(7.52)

$$f_k = f(t_k, y_k) \tag{7.53}$$

$$y_n = y_{n-p} + \sum_{k=n-q}^{n} f_k \int_{t_{n-n}}^{t_n} l_k(t) dt$$
 (7.54)

$$y_n - y_{n-p} = \sum_{k=n-q}^{n} f_k \int_{t_{n-p}}^{t_n} l_k(t) dt$$
 (7.55)

 $s = \max(p, q)$ 假设一个 s 步的线性多步法

所有的线性多步法:

$$\begin{cases} \text{Adam-B} & \alpha : j = 0, -1 & \beta : j = -1, -2, \cdots \\ \text{Adam-M} & \alpha : j = 0, -1 & \beta : j = 0, -1, -2, \cdots \\ \text{Nystion} & \alpha : j = 0, -2 & \beta : j = -1, -2, \cdots \\ \text{G-M-S} & \alpha : j = 0, -2 & \beta : j = 0, -1, -2, \cdots \\ \text{B-D} & \alpha : j = 0, -1, -2, \cdots & \beta : j = 0 \end{cases}$$

$$(7.57)$$

一种线性多步法:

$$y_n = y_{n-2} + f_{n-1} \int_{t_{n-2}}^{t_n} l_{n-1}(t) dt + f_{n-2} \int_{t_{n-2}}^{t_n} l_{n-2}(t) dt + f_{n-3} \int_{t_{n-2}}^{t_n} l_{n-3}(t) dt$$
(7.58)

$$= y_{n-2} + f_{n-1} \int_{t_{n-2}}^{t_n} \frac{(t - t_{n-2})(t - t_{n-3})}{(t_{n-1} - t_{n-2})(t_{n-1} - t_{n-2})} dt \qquad = \frac{7}{3}h$$
 (7.59)

$$+f_{n-2} \int_{t_{n-2}}^{t_n} \frac{(t - t_{n-1})(t - t_{n-3})}{(t_{n-2} - t_{n-1})(t_{n-2} - t_{n-3})} dt = -\frac{2}{3}h$$
(7.60)

$$+f_{n-3} \int_{t_{n-2}}^{t_n} \frac{(t - t_{n-1})(t - t_{n-2})}{(t_{n-3} - t_{n-1})(t_{n-3} - t_{n-2})} dt = -\frac{h}{3}$$
(7.61)

$$\Rightarrow y_n = y_{n-2} + \frac{h}{3} \left(7f_{n-1} - 2f_{n-2} + f_{n-3} \right) \tag{7.62}$$

误差:

假设
$$y_{n-1} = y(t_{n-1})$$
 $y_{n-2} = y(t_{n-2})$ $y_{n-3} = y(t_{n-3})$ (7.63)

$$\Rightarrow f_{n-1} = f(t_{n-1}, y_{\ell}t_{n-1})) \qquad f_{n-2} = f(t_{n-2}, y_{\ell}t_{n-2})) \qquad f_{n-3} = f(t_{n-3}, y_{\ell}t_{n-3}))$$

$$(7.64)$$

$$y_n = y(t_{n-2}) + \frac{h}{3} \left(7y'(t_{n-1}) - 2y'(t_{n-2}) + y'(t_{n-3}) \right)$$
(7.65)

$$T_n = y(t_n) - y_n = y(t_n)y(t_{n-2}) - \frac{h}{3} \left(7y'(t_{n-1}) - 3y'(t_{n-2}) + y'(t_{n-3}) \right)$$
(7.66)

$$y(t_n) = y(t_{n-1}) + hy'(t_{n-1}) + \frac{h^2}{2}y''(t_{n-1}) + \frac{h^3}{3!}y'''(t_{n-1}) + O(h^4)$$
(7.67)

$$y(t_{n-2}) = () - () + () - () + O(h^4)$$
(7.68)

$$y'(t_{n-2}) = y'(t_{n-1}) - hy''(t_{n-1}) + \frac{h^2}{2}y'''(t_{n-2}) + O(h^3)$$
(7.69)

$$y'(t_{n-3}) = y'(t_{n-1}) - 2hy''(t_{n-1}) + 2h^2y'''(t_{n-2}) + O(h^3)$$
(7.70)

$$\Rightarrow T_n = O(h^4) \Rightarrow 四阶 \tag{7.71}$$

例:

$$p = 1 \quad q = 2 \Rightarrow 显式 \tag{7.72}$$

$$y(t_n) = y(t_{n-1}) + \int_{t_{n-1}}^{t_n} f(t_{n-2}, y(t_{n-2})) l_{n-2}(t) + f(t_{n-1}, y(t_{n-1})) l_{n-1}(t) + R(t) dt \qquad R(t)$$
 (7.73)

$$= y(t_{n-1}) + \frac{h}{2} \left(3f(t_{n-1}y(t_{n-1})) - f(t_{n-2}, y(t_{n-2})) \right) + T_n$$
(7.74)

$$T_n = \int_{t_{n-1}}^{t_n} R(t) dt = \int_{t_{n-1}}^{t_n} \frac{y'''(\xi)}{2!} (t - t_{n-1})(t - t_{n-2}) dt = O(h^3)$$
 (7.75)

$$\Rightarrow y_n = y_{n-1} + \frac{h}{2} (3f_{n-1} - f_{n-2})$$
 两步二阶 A-B 方法 (7.76)

7.4 常微分方程组

略, 见书

7.5 稳定性

略

Chapter 8

后记

首先我还是得说,徐宽讲得真是好!

虽然记下了这么多的笔记,但徐宽老师的作业依旧不是很简单的任务,建议大家依然认真听课并认真做笔记。

极不建议翘课或者不看课本。