In []:

```
import numpy as np # Data Handling
import matplotlib.pyplot as plt # Data Visualization
import pandas as pd # # Data Handling
import os # Working Directory
from sklearn.preprocessing import LabelEncoder, OneHotEncoder # Transformation of Categor
from sklearn.compose import ColumnTransformer # Transformation same as level encoding and
from sklearn.model_selection import train_test_split # Splitting Data into Train & Test
from sklearn.preprocessing import StandardScaler # Neural Networks --> generally standari
from sklearn.metrics import confusion_matrix # Model Evaluation
from sklearn.metrics import classification_report # Model Evaluation
import keras # Deep Learning Framework
from keras.models import Sequential # Adding layers in the Neural Network
from keras.layers import Dense # Adding layers in the Neural Network
```

In [8]:

```
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
ss = pd.read_csv("gender_submission.csv")
```

In [9]:

train.head()

Out[9]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										

In [10]:

```
test.head()
```

Out[10]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
- 4											

In [11]:

```
print("Training set shape: ", train.shape)
print("Test set shape: ", test.shape)
```

Training set shape: (891, 12) Test set shape: (418, 11)

In [12]:

ss.head()

Out[12]:

	Passengerld	Survived
0	892	0
1	893	1
2	894	0
3	895	0
4	896	1

In [13]:

ss.shape

Out[13]:

(418, 2)

In [14]:

```
train.info()
print('-'*40)
test.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): Non-Null Count Dtype # Column

-----0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 2 Pclass 891 non-null int64 3 891 non-null Name object 4 Sex 891 non-null object 5 Age 714 non-null float64 6 891 non-null int64 SibSp 7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

<class 'pandas.core.frame.DataFrame'> RangeIndex: 418 entries, 0 to 417 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Name	418 non-null	object
3	Sex	418 non-null	object
4	Age	332 non-null	float64
5	SibSp	418 non-null	int64
6	Parch	418 non-null	int64
7	Ticket	418 non-null	object
8	Fare	417 non-null	float64
9	Cabin	91 non-null	object
10	Embarked	418 non-null	object

dtypes: float64(2), int64(4), object(5)

memory usage: 36.0+ KB

In [15]:

```
train.isnull().sum().sort_values(ascending = False)
```

Out[15]:

Cabin 687 Age 177 Embarked 2 PassengerId 0 Survived 0 0 Pclass Name 0 Sex 0 SibSp 0 Parch 0 Ticket 0 Fare dtype: int64

In [16]:

```
test.isnull().sum().sort_values(ascending = False)
```

Out[16]:

Cabin 327 86 Age Fare 1 0 PassengerId 0 Pclass Name 0 0 Sex 0 SibSp Parch 0 Ticket 0 Embarked dtype: int64

In [17]:

train.describe()

Out[17]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [18]:

```
# Summary statistics for test set
test.describe()
```

Out[18]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

In [19]:

```
# Value counts of the sex column
train['Sex'].value_counts(dropna = False)
# Comment: There are more male passengers than female passengers on titanic
```

Out[19]:

male 577 female 314

Name: Sex, dtype: int64

In [20]:

```
train[['Sex', 'Survived']].groupby('Sex', as_index = False).mean().sort_values(by = 'Surv
```

Out[20]:

```
Sex Survived0 female 0.7420381 male 0.188908
```

In [21]:

```
sns.barplot(x = 'Sex', y ='Survived', data = train)
plt.ylabel('Survival Probability')
plt.title('Survival Probability by Gender')
```

Out[21]:

Text(0.5, 1.0, 'Survival Probability by Gender')

In [22]:

```
# Value counts of the Pclass column
train['Pclass'].value_counts(dropna = False)
```

Out[22]:

3 491

216
 184

Name: Pclass, dtype: int64

In [23]:

```
# Mean of survival by passenger class
train[['Pclass', 'Survived']].groupby(['Pclass'], as_index = False).mean().sort_values(by
```

Out[23]:

	Pclass	Survived
0	1	0.629630
1	2	0.472826
2	3	0.242363

In [24]:

```
sns.barplot(x = 'Pclass', y ='Survived', data = train)
plt.ylabel('Survival Probability')
plt.title('Survival Probability by Passenger Class')
```

Out[24]:

Text(0.5, 1.0, 'Survival Probability by Passenger Class')

In [26]:

```
sns.heatmap(train[['Survived', 'SibSp', 'Parch', 'Age', 'Fare']].corr(), annot = True, fm
# Comment: Fare seems to be the only feature that has a substantial correlation with surv
```

Out[26]:

<Axes: >

In [27]:

train['SibSp'].value_counts(dropna = False)

Out[27]:

5

Name: SibSp, dtype: int64

In [28]:

```
# Mean of survival by SibSp

train[['SibSp', 'Survived']].groupby('SibSp', as_index = False).mean().sort_values(by = '
```

Out[28]:

	SibSp	Survived
1	1	0.535885
2	2	0.464286
0	0	0.345395
3	3	0.250000
4	4	0.166667
5	5	0.000000
6	8	0.000000

In [29]:

```
sns.barplot(x = 'SibSp', y ='Survived', data = train)
plt.ylabel('Survival Probability')
plt.title('Survival Probability by SibSp')
```

Out[29]:

Text(0.5, 1.0, 'Survival Probability by SibSp')

In [30]:

```
# Value counts of the Parch column
train['Parch'].value_counts(dropna = False)
```

Out[30]:

- 0 678
- 1 118
- 2 80
- 5 5
- 3 5
- 4 4
- 6 1

Name: Parch, dtype: int64

In [31]:

```
# Mean of survival by Parch
train[['Parch', 'Survived']].groupby('Parch', as_index = False).mean().sort_values(by = '
```

Out[31]:

	Parch	Survived
3	3	0.600000
1	1	0.550847
2	2	0.500000
0	0	0.343658
5	5	0.200000
4	4	0.000000
6	6	0.000000

In [32]:

```
sns.barplot(x = 'Parch', y = 'Survived', data = train)
plt.ylabel('Survival Probability')
plt.title('Survival Probability by Parch')
```

Out[32]:

Text(0.5, 1.0, 'Survival Probability by Parch')

In [33]:

```
# Null values in Age column
train['Age'].isnull().sum()
```

Out[33]:

177

In [34]:

```
# Passenger age distribution
sns.distplot(train['Age'], label = 'Skewness: %.2f'%(train['Age'].skew()))
plt.legend(loc = 'best')
plt.title('Passenger Age Distribution')
```

C:\Users\rahul\AppData\Local\Temp\ipykernel_7916\385672501.py:3: UserWarni
ng:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(train['Age'], label = 'Skewness: %.2f'%(train['Age'].skew
()))

Out[34]:

Text(0.5, 1.0, 'Passenger Age Distribution')

In [35]:

```
# Age distribution by survival

g = sns.FacetGrid(train, col = 'Survived')
g.map(sns.distplot, 'Age')
```

E:\anaconda\lib\site-packages\seaborn\axisgrid.py:848: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14. 0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histolot` (an axes-level function for histogram

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

func(*plot_args, **plot_kwargs)

E:\anaconda\lib\site-packages\seaborn\axisgrid.py:848: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

func(*plot_args, **plot_kwargs)

Out[35]:

<seaborn.axisgrid.FacetGrid at 0x20cf7f6f0d0>

In [36]:

```
sns.kdeplot(train['Age'][train['Survived'] == 0], label = 'Did not survive')
sns.kdeplot(train['Age'][train['Survived'] == 1], label = 'Survived')
plt.xlabel('Age')
plt.title('Passenger Age Distribution by Survival')
```

Out[36]:

Text(0.5, 1.0, 'Passenger Age Distribution by Survival')

In [37]:

```
train['Fare'].isnull().sum()
```

Out[37]:

0

In [38]:

```
# Passenger fare distribution
sns.distplot(train['Fare'], label = 'Skewness: %.2f'%(train['Fare'].skew()))
plt.legend(loc = 'best')
plt.ylabel('Passenger Fare Distribution')
```

C:\Users\rahul\AppData\Local\Temp\ipykernel_7916\1143978767.py:3: UserWarn
ing:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(train['Fare'], label = 'Skewness: %.2f'%(train['Fare'].skew
()))

Out[38]:

Text(0, 0.5, 'Passenger Fare Distribution')


```
In [39]:
X_train = train.drop('Survived', axis = 1)
Y_train = train['Survived']
X_test = test.drop('PassengerId', axis = 1).copy()
print("X_train shape: ", X_train.shape)
print("Y_train shape: ", Y_train.shape)
print("X_test shape: ", X_test.shape)
                (891, 11)
X_train shape:
Y_train shape: (891,)
X_test shape: (418, 10)
In [41]:
train = train.drop(['Ticket', 'Cabin'], axis = 1)
test = test.drop(['Ticket', 'Cabin'], axis = 1)
In [42]:
# Missing values in training set
train.isnull().sum().sort_values(ascending = False)
Out[42]:
                177
Age
Embarked
                  2
PassengerId
                  0
Survived
                  0
Pclass
                  0
Name
                  0
Sex
                  0
                  0
SibSp
Parch
                  0
Fare
dtype: int64
In [43]:
# Compute the most frequent value of Embarked in training set
mode = train['Embarked'].dropna().mode()[0]
mode
Out[43]:
'S'
In [44]:
# Fill missing value in Embarked with mode
```

train['Embarked'].fillna(mode, inplace = True)

```
In [45]:
```

```
test.isnull().sum().sort_values(ascending = False)
```

Out[45]:

Age 86 Fare 1 PassengerId 0 Pclass 0 Name 0 Sex 0 SibSp 0 Parch 0 Embarked dtype: int64

In [46]:

```
# Compute median of Fare in test set

median = test['Fare'].dropna().median()
median
```

Out[46]:

14.4542

In [47]:

```
# Fill missing value in Fare with median

test['Fare'].fillna(median, inplace = True)
```

In [48]:

```
# Combine training set and test set
combine = pd.concat([train, test], axis = 0).reset_index(drop = True)
combine.head()
```

Out[48]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0.0	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	S
1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	71.2833	С
2	3	1.0	3	Heikkinen, Miss. Laina	female	26.0	0	0	7.9250	S
3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	53.1000	S
4	5	0.0	3	Allen, Mr. William Henry	male	35.0	0	0	8.0500	S
4										—

In [49]:

```
# Missing values in the combined dataset
combine.isnull().sum().sort_values(ascending = False)
```

Out[49]:

Survived	418
Age	263
PassengerId	0
Pclass	0
Name	0
Sex	0
SibSp	0
Parch	0
Fare	0
Embarked	0
dtype: int64	

In [52]:

```
sns.heatmap(combine.drop(['Survived', 'Name', 'PassengerId', 'Fare'], axis = 1).corr(), a
```

C:\Users\rahul\AppData\Local\Temp\ipykernel_7916\2145782946.py:1: FutureWa
rning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns o
r specify the value of numeric_only to silence this warning.
 sns.heatmap(combine.drop(['Survived', 'Name', 'PassengerId', 'Fare'], ax
is = 1).corr(), annot = True, cmap = 'coolwarm')

Out[52]:

<Axes: >

In []: