1 Convexity I

1.1

Proof

Suppose f_1 and f_2 are convex on G. By convexity of f_1 and f_2 , we have

$$f_1(\theta x + (1 - \theta)z) \le \theta f_1(x) + (1 - \theta)f_1(z)$$

$$f_2(\theta x + (1 - \theta)z) \le \theta f_2(x) + (1 - \theta)f_2(z)$$

where $x, z \in G$, $\theta \in [0, 1]$. Consider the sum of f_1 and f_2 on G

$$f(\theta x + (1 - \theta)z) = f_1(\theta x + (1 - \theta)z) + f_2(\theta x + (1 - \theta)z)$$

$$\leq \theta [f_1(x) + f_2(x)] + (1 - \theta)[f_1(z) + f_2(z)]$$

$$= \theta f(x) + (1 - \theta)f(z)$$

1.2

1.2.1

Proof

Since g_i are convex on G, we have

$$q_i(\theta x + (1-\theta)z) < \theta q_i(x) + (1-\theta)q_i(z) \ \forall i$$

where $x, z \in G$, $\theta \in [0, 1]$.

Since h is monotone increasing in all components, we have $h(\dots, x_{i,1}, \dots) \le h(\dots, x_{i,2}, \dots)$ if $x_{i,1} \le x_{i,2}$ for any i. We therefore have

$$f(\theta x + (1 - \theta)z) = h(g_1(\theta x + (1 - \theta)z), \dots, g_n(\theta x + (1 - \theta)z))$$

$$\leq h(\theta g_1(x) + (1 - \theta)g_1(z), \dots, \theta g_n(x) + (1 - \theta)g_n(z))$$

$$\leq \theta h(g_1(x), \dots, g_n(x)) + (1 - \theta)h(g_1(z), \dots, g_n(z))$$

$$= \theta f(x) + (1 - \theta)f(z)$$

where line 2 to line 3 is by the convexity of h.

1.2.2

Proof

Since g_i are affine functions, they satisfy linearity property

$$g_i(ax + by) = qg_i(x) + bg_i(y)$$

We therefore have

$$f(\theta x + (1 - \theta)z) = h(g_1(\theta x + (1 - \theta)z), \dots, g_n(\theta x + (1 - \theta)z))$$

$$= h(\theta g_1(x) + (1 - \theta)g_1(z), \dots, \theta g_n(x) + (1 - \theta)g_n(z))$$

$$\leq \theta h(g_1(x), \dots, g_n(x)) + (1 - \theta)h(g_1(z), \dots, g_n(z))$$

$$= \theta f(x) + (1 - \theta)f(z)$$

where line 2 to line 3 is again by the convexity of h.

1.2.3

Proof

Since g_i are convex on G, we have

$$g_i(\theta x + (1 - \theta)z) \ge \theta g_i(x) + (1 - \theta)g_i(z) \ \forall i$$

where $x, z \in G$, $\theta \in [0, 1]$.

Since h is monotone decreasing in all components, we have $h(\cdots, x_{i,1}, \cdots) \le h(\cdots, x_{i,2}, \cdots)$ if $x_{i,1} >= x_{i,2}$ for any i. We therefore have

$$f(\theta x + (1 - \theta)z) = h(g_1(\theta x + (1 - \theta)z), \dots, g_n(\theta x + (1 - \theta)z))$$

$$\leq h(\theta g_1(x) + (1 - \theta)g_1(z), \dots, \theta g_n(x) + (1 - \theta)g_n(z))$$

$$\leq \theta h(g_1(x), \dots, g_n(x)) + (1 - \theta)h(g_1(z), \dots, g_n(z))$$

$$= \theta f(x) + (1 - \theta)f(z)$$

where line 2 to line 3 is by the convexity of h.

1.3

Proof

The maximum is achieved either inside the polyhedron or on its boundaries. We will discuss the two case. Let x be a point where maximum of f is achieved.

• Suppose x is inside P

Any line that passes through x must intersect the polyhedron at two points, denoted x_1 and x_2 . Then we know that $x = \theta x_1 + (1 - \theta)x_2$ for some θ . By convexity of f we have

$$f(x) = f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) \le \max\{f(x_1), f(x_2)\}\$$

However, since x is strictly inside P (assumed that if x is a maximum, then it is not on boundary), $f(x_1)$ and $f(x_2)$ must be strictly smaller than f(x) as they are both on the boundary of P. Thus a contradiction with the above equation. Therefore, maximum must be achieved at boundaries of P.

• Suppose x is on the boundary of PAssume the two vertices of the boundary are x_1 and x_2 , we know that there is a θ such that $x = \theta x_1 + (1 - \theta)x_2$. By convexity of f we have

$$f(x) = f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) \le \max\{f(x_1), f(x_2)\}\$$

Therefore, maximum is achieved at one of x_1 and x_2 or both.

2 Convexity II

2.1

Feasible region is shaded bluish purple and the intersection $d_1(0.5, 0.5)$ is the optimal (x_1*, x_2*)

2.2

For region R, consider $g(x)=1-x_1-x_2=c$ where c is a constant. Then $x_1=1-c-x_2$. Therefore, we have $f(x)=x_1^2+x_2^2=2x_2^2+2(c-1)x_2+(c-1)^2$. This function achieves minimum at $x_2=\frac{1-c}{2}$, which yields $f(x)_min=\frac{(c-1)^2}{2}$. Notice that f(x) is unbounded above. Therefore, for a given c, all points above $\frac{(c-1)^2}{2}$ is achievable. For region F, we need $g(x)\leq 0$, which means $y=g(w)\leq 0$. The purple region

is R, and the green region is F.

2.3

Using the stationary condition, we differentiate $L(x,\lambda)$ with respect to x_1 to get $2x_1^* - \lambda^* = 0$. Since we already know from part 1 that the optimal $(x_1^*, x_2^*) = (0.5, 0.5)$, we obtain that $\lambda^* = 1$. Therefore, easy to see that we need to plot point $(y,z) = (1-0.5-0.5, 0.5^2+0.5^2) = (0,0.5)$, and the line $z+y = min(x_1^2+x_2^2+(1-x_1-x_2)) = 0.5^2+0.5^2+(1-0.5-0.5) = 0.5$.

2.4

$$q(\lambda) = \min_{x} f(x) + \lambda g(x)$$

For a fixed x, we know that $f(x)+\lambda g(x)$ is affine with respect to λ , and therefore is concave. $q(\lambda)$ is equivalent to the minimum of a collection of concave functions (i.e. $f(x)+\lambda g(x)$ for different values of x), and therefore is also concave.

3 Support Vector Machine

3.1

The Lagrangian is the following:

$$\mathcal{L}(w, b, \epsilon, \alpha, \beta) = \frac{1}{2} w^T w + C \sum_{i=1}^n \epsilon_i + \sum_{i=1}^n \alpha_i [1 - \epsilon_i - y_i(w^T x_i + b)] - \sum_{i=1}^n \beta_i \cdot \epsilon_i$$

Apply KKT conditions, we have:

Primal feasibility: $y_i(w^T x_i + b) \ge (1 - \epsilon_i), \ \epsilon_i \ge 0, \ \forall i$

Dual feasibility: $\alpha_i \geq 0, \ \beta \geq 0, \ \forall i$

Complementary slackness: $\alpha_i[1 - \epsilon_i - y_i(w^T x_i + b)] = 0, \ \beta_i \epsilon_i = 0, \ \forall i$

Stationary:

• Differentiate against w:

$$w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0$$

• Differentiate against b:

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

• Differentiate against ϵ_i :

$$\alpha_i + \beta_i = C, \forall i$$

Plug in the stationary conditions back into the Lagrangian, we will have the following:

$$\mathcal{L}(w^*, b^*, \epsilon^*, \alpha, \beta) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$$

The dual problem is maximizing the above with respect to all α and β . The dual feasibility constraint $\beta_i \geq 0$ can be modified to $C - \alpha_i \geq 0$ by one of the relations derived. Therefore, the dual problem will contain only α in the expression to be maximized as well as all the feasibility constraints.

3.2

• If $y_i(w^Tx_i + b) < 1$: We have $\epsilon_i > 0$ which is a positive penalty. Since $\beta_i \epsilon_i = 0$, we know that $\beta_i = 0$. Since $\alpha_i + \beta_i = C$, we know that $\alpha_i = C \neq 0$

• If $y_i(w^Tx_i + b) = 1$: We have $\epsilon_i = 0$. Since $\beta_i\epsilon_i = 0$, we know that $\beta_i \geq 0$. Since $\alpha_i + \beta_i = C$, we know that $0 \leq \alpha_i \leq C$. In this case, a_i can be 0, but it also means that the optimal of α_i can be in this large range and it is not necessary that we pick a zero α in the quadratic programming process.

4 Kernels

4.1

We can define the Hilbert space using either kernel function as below:

$$H_k = \operatorname{span}(k(\cdot, x) : x \in X)$$

where $k(x, y) = x^T y$.

By Representer theorem, we know that there exists an optimal solution that maximizes L, and is of the following form:

$$f^* = \sum_{i=1}^n a_i k(\cdot, x_i)$$

where a_i are some constants.

4.2

4.2.1

Since k_1 and k_2 are valid kernels, we know that feature space mapping ϕ_1 and ϕ_2 exists and

$$k_1(x, z) = \langle \phi_1(x), \phi_1(z) \rangle$$

 $k_2(x, z) = \langle \phi_2(x), \phi_2(z) \rangle$

then

$$k(x,z) = \alpha k_1(x,z) + \beta k_2(x,z)$$

$$= \langle \sqrt{\alpha}\phi_1(x), \sqrt{\alpha}\phi_1(z) \rangle + \langle \sqrt{\beta}\phi_2(x), \sqrt{\beta}\phi_2(z) \rangle$$

$$= \langle \sqrt{\alpha}\phi_1(x)\sqrt{\beta}\phi_2(x), \sqrt{\alpha}\phi_1(z)\sqrt{\beta}\phi_2(z) \rangle$$

which represents the concatenation of feature spaces.

4.2.2

By Mercer's theorem, we can write the kernel functions in the following way

$$k_1(x,z) = \sum_{i=1}^{\infty} a_i \phi_i(x) \phi_i(z)$$

$$k_2(x,z) = \sum_{i=1}^{\infty} b_i \psi_i(x) \psi_i(z)$$

Therefore,

$$k(x,z) = \left(\sum_{i=1}^{\infty} a_i \phi_i(x) \phi_i(z)\right) \left(\sum_{i=1}^{\infty} b_i \psi_i(x) \psi_i(z)\right)$$
$$= \sum_{i,j} a_i b_j \phi_i(x) \psi_i(x) \ \psi_i(z) \phi_i(z)$$

Let $f_k(\cdot) = \phi_i(\cdot)\psi_j(\cdot)$ and $m_k = a_ib_j$ such that each ordered pair (i, j) is mapped to a unique k. Then we have

$$k(x,z) = \sum_{k=1}^{\infty} m_k f_k(x) f_k(z)$$

which corresponds to the feature map $\Phi(x) = [\cdots, \sqrt{m_k} f_k(x), \cdots]$ using ordinary dot product as the inner product.

4.2.3

We can find the feature map to be $\Phi(x) = [f(x)]$

4.2.4

Suppose $f(k_1(x,z)) = \sum_{i=0}^n a_i k_1(x,z)^i$, then the new kernel is just a linear combination of monomials. Each monomial is a product of several valid kernels (in this case, product of k_1). Therefore, by results of the previous proofs, $k(x,z) = f(k_1(x,z))$ is a valid kernel.

4.2.5

Consider e^{2ax^Tz} , we can apply Taylor expansion as the following:

$$e^{2ax^Tz} = \sum_{i=0}^{n} (2a)^i \frac{(x^Tz)^i}{i!}$$

which is a positive (coefficients are positive) linear combination of the valid kernel $k(x,z) = x^T z$. Therefore, $e^2 a x^T z$ is a valid kernel. Then

$$e^{-a|x-z|^2} = e^{-ax^Tx}e^{-az^Tz}e^{2a(x^Tz)}$$

By results of earlier proofs, $e^{-ax^Tx}e^{-az^Tz}=f(x)g(z)$ is a valid kernel, and therefore, the product overall is a valid kernel.