Combinatorial Identities: Table III: Binomial Identities Derived from Trigonometric and Exponential Series

From the seven unpublished manuscripts of H. W. Gould Edited and Compiled by Jocelyn Quaintance

May 3, 2010

1 Basic Trigonometric Series

Remark 1.1 Throughout this chapter, we assume n and a are nonnegative integers. We assume x and y are real or complex numbers.

1.1 Telescoping Trigonometric Series

$$\sum_{k=1}^{n} \sin \frac{2k+1}{2} x = \frac{\cos(n+1)x - \cos x}{-2\sin\frac{x}{2}}, \qquad n \ge 1$$
 (1.1)

$$\sum_{k=1}^{n} \sin \frac{2k+1}{2} x = \frac{\sin \frac{(n+2)x}{2} \cdot \sin \frac{nx}{2}}{\sin \frac{x}{2}}, \qquad n \ge 1$$
 (1.2)

$$\sum_{k=1}^{n} \cos \frac{2k+1}{2} x = \frac{\sin(n+1)x - \sin x}{2\sin\frac{x}{2}}, \qquad n \ge 1$$
 (1.3)

$$\sum_{k=1}^{n} \cos \frac{2k+1}{2} x = \frac{\cos \frac{(n+2)x}{2} \cdot \sin \frac{nx}{2}}{\sin \frac{x}{2}}, \qquad n \ge 1$$
 (1.4)

$$\sum_{k=1}^{n} \frac{\sin \frac{k}{(k+1)!} x}{\cos \frac{x}{k!} \cdot \cos \frac{x}{(k+1)!}} = \tan x - \tan \frac{x}{(n+1)!}, \qquad n \ge 1$$
 (1.5)

$$\sum_{k=1}^{\infty} \frac{\sin\frac{k}{(k+1)!}x}{\cos\frac{x}{k!} \cdot \cos\frac{x}{(k+1)!}} = \tan x \tag{1.6}$$

$$\sum_{k=1}^{n} \frac{\tan 2^{k} x}{\cos 2^{k+1} x} = \tan 2^{n+1} x - \tan 2x, \qquad n \ge 1$$
 (1.7)

$$\sum_{k=1}^{n} \sec(k+1)x \cdot \sec kx = \frac{\tan(n+1)x - \tan x}{\sin x}, \qquad n \ge 1$$
 (1.8)

$$\sum_{k=1}^{n} \sin(x + (k-1)y) = \frac{\sin(x + \frac{n-1}{2}y) \cdot \sin\frac{ny}{2}}{\sin\frac{y}{2}}, \qquad n \ge 1$$
 (1.9)

$$\sum_{k=1}^{n} \sin kx = \frac{\sin \frac{(n+1)x}{2} \cdot \sin \frac{nx}{2}}{\sin \frac{x}{2}}, \qquad n \ge 1$$
 (1.10)

$$\sum_{k=1}^{n} \sin(2k-1)x = \frac{\sin^2 nx}{\sin x}, \qquad n \ge 1$$
 (1.11)

$$\sum_{k=1}^{n} k \cos \frac{(2k+1)x}{2} = \frac{(n+1)\sin(n+1)x \cdot \sin \frac{x}{2} - \sin \frac{(n+2)x}{2} \cdot \sin \frac{(n+1)x}{2}}{2\sin^2 \frac{x}{2}}$$
(1.12)

$$\sum_{k=1}^{n} \cos(x + (k-1)y) = \frac{\cos(x + \frac{n-1}{2}y) \cdot \sin\frac{ny}{2}}{\sin\frac{y}{2}}, \qquad n \ge 1$$
 (1.13)

$$\sum_{k=1}^{n} \cos kx = \frac{\cos \frac{(n+1)x}{2} \cdot \sin \frac{nx}{2}}{\sin \frac{x}{2}}, \qquad n \ge 1$$
 (1.14)

$$\sum_{k=1}^{n} \cos(2k-1)x = \frac{\sin 2nx}{2\sin x}, \qquad n \ge 1$$
 (1.15)

$$\sum_{k=0}^{n} \cos^3(x+ky) = \frac{\cos(3x+\frac{3ny}{2})\sin(\frac{3y(n+1)}{2})}{4\sin\frac{3y}{2}} + \frac{3\cos(x+\frac{ny}{2})\sin\frac{(n+1)y}{2}}{4\sin\frac{y}{2}}$$
(1.16)

1.2 Sums and Products Based on Double Angle Formulas

$$\prod_{k=0}^{n} \cos 2^k x = \frac{\sin 2^{n+1} x}{2^{n+1} \sin x} \tag{1.17}$$

$$\prod_{k=1}^{n} \cos \frac{x}{2^k} = \frac{\sin x}{2^n \sin \frac{x}{2^n}}, \qquad n \ge 1$$
 (1.18)

$$\prod_{k=1}^{\infty} \cos \frac{x}{2^k} = \frac{\sin x}{x} \tag{1.19}$$

$$\sum_{k=1}^{n} \sin^2 kx = \frac{n}{2} - \frac{\cos(n+1)x \cdot \sin nx}{2\sin x}, \qquad n \ge 1$$
 (1.20)

$$\sum_{k=1}^{n} \cos^2 kx = \frac{n}{2} + \frac{\cos(n+1)x \cdot \sin nx}{2\sin x}, \qquad n \ge 1$$
 (1.21)

1.3 Sums Based on Half Angle Formulas

$$\sum_{k=1}^{n} \csc 2^{k-1} x = \cot \frac{x}{2} - \cot 2^{n-1} x, \qquad n \ge 1$$
 (1.22)

$$\sum_{k=0}^{n} \csc \frac{x}{2^k} = \cot \frac{x}{2^{n+1}} - \cot x \tag{1.23}$$

$$\sum_{k=1}^{n} \frac{1}{2^{k-1}} \tan \frac{x}{2^{k-1}} = \frac{1}{2^{n-1}} \cot \frac{x}{2^{n-1}} - 2 \cot 2x, \qquad n \ge 1$$
 (1.24)

$$\sum_{k=1}^{\infty} \frac{1}{2^{k-1}} \tan \frac{x}{2^{k-1}} = \frac{1}{x} - 2 \cot 2x \tag{1.25}$$

1.4 Miscellaneous Trigonometric Series

$$\sum_{k=a}^{n-1} 3^k \sin^3 \frac{x}{3^{k+1}} = \frac{1}{4} \left(3^n \sin \frac{x}{3^n} - 3^a \sin \frac{x}{3^a} \right), \qquad n \ge 1$$
 (1.26)

$$\sum_{k=a}^{n-1} (-3)^k \cos^3 \frac{x}{3^{k+1}} = \frac{1}{4} \left((-3)^a \cos \frac{x}{3^a} - (-3)^n \cos \frac{x}{3^n} \right), \qquad n \ge 1$$
 (1.27)

2 The Exponential Function with Trigonometric Series

Remark 2.1 Throughout this chapter, we assume n and r are nonnegative integers. We let x, y, and z denote real or complex numbers. Furthermore, we reserve $i \equiv \sqrt{-1}$. Finally if x is a real number, we let [x] denote the floor of x.

2.1 Limit Definition for e

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \sum_{r=0}^n \binom{n}{r} \left(\frac{1}{n} \right)^r$$
 (2.1)

2.2 The Exponential Series and Various Applications

2.2.1 The Exponential Series

$$e^z = \sum_{r=0}^{\infty} \frac{z^r}{r!} \tag{2.2}$$

2.2.2 Series from $e^{ix} = \cos x + i \sin x$

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = \cos x \tag{2.3}$$

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = \sin x \tag{2.4}$$

$$\sum_{n=0}^{\infty} \frac{x^n \cos ny}{n!} = e^{x \cos y} \cos(x \sin y)$$
 (2.5)

$$\sum_{n=0}^{\infty} \frac{x^n \sin ny}{n!} = e^{x \cos y} \sin(x \sin y)$$
 (2.6)

Remark 2.2 The following identity is from Problem 415 of The Mathematics Magazine, May 1960. Solutions to this problem are found in The Mathematics Magazine, Vol. 34, No. 3, 1961, P. 178.

$$\sum_{k=0}^{n} \binom{n}{k} \cos kx \cdot \sin(n-k)x = 2^{n-1} \sin nx \tag{2.7}$$

$$\cos^{n} x \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^{k} \binom{n}{2k} \tan^{2k} x = \cos nx$$
 (2.8)

$$\cos^{n} x \sum_{k=0}^{\left[\frac{n-1}{2}\right]} (-1)^{k} {n \choose 2k+1} \tan^{2k+1} x = \sin nx, \qquad n \ge 1$$
 (2.9)

2.3 Expansions of $(e^{ix}\pm 1)^n$

2.3.1 Expansions of $(e^{ix} + 1)^n$

$$\sum_{k=0}^{n} \binom{n}{k} \cos kx = 2^n \cos \frac{nx}{2} \left(\cos \frac{x}{2}\right)^n \tag{2.10}$$

$$\sum_{k=0}^{n} \binom{n}{k} \sin kx = 2^n \sin \frac{nx}{2} \left(\cos \frac{x}{2}\right)^n \tag{2.11}$$

2.3.2 Expansions of $(e^{ix}-1)^n$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \cos kx = (-2)^n \cos \frac{n(x+\pi)}{2} \left(\sin \frac{x}{2}\right)^n \tag{2.12}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \sin kx = (-2)^n \sin \frac{n(x+\pi)}{2} \left(\sin \frac{x}{2}\right)^n \tag{2.13}$$

Inversion of Identity (2.12)

$$\sum_{k=1}^{n} (-1)^{k-1} 2^k \left(\sin \frac{x}{2} \right)^k \cos \frac{k(x+\pi)}{2} + n = \sum_{k=1}^{n} (-1)^{k-1} \binom{n+1}{k+1} \cos kx$$
 (2.14)

2.3.3 Applications of Equations (2.10), (2.11), (2.12), and (2.13)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{2k} \cos kx = 2^{n-1} \left(\cos^n \left(\frac{x}{4} \right) \cos \left(\frac{nx}{4} \right) + (-1)^n \sin^n \left(\frac{x}{4} \right) \cos \left(\frac{n\pi}{2} + \frac{nx}{4} \right) \right) \tag{2.15}$$

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} \binom{n}{2k+1} \cos(2k+1)x = 2^{n-1} \cos^n\left(\frac{x}{2}\right) \cos\left(\frac{nx}{2}\right) - 2^{n-1} (-1)^n \sin^n\left(\frac{x}{2}\right) \cos\left(\frac{n(\pi+x)}{2}\right), \qquad n \ge 1$$
 (2.16)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{2k} \sin kx = 2^{n-1} \left(\cos^n\left(\frac{x}{4}\right) \sin\left(\frac{nx}{4}\right) + (-1)^n \sin^n\left(\frac{x}{4}\right) \sin\left(\frac{n\pi}{2} + \frac{nx}{4}\right)\right) \tag{2.17}$$

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} \binom{n}{2k+1} \sin(2k+1)x = 2^{n-1} \cos^n\left(\frac{x}{2}\right) \sin\left(\frac{nx}{2}\right) - 2^{n-1} (-1)^n \sin^n\left(\frac{x}{2}\right) \sin\left(\frac{n(\pi+x)}{2}\right), \qquad n \ge 1$$
 (2.18)

2.4 The Geometric Series $\sum_{k=1}^{n} (ye^{ix})^k$

$$\sum_{k=1}^{n} y^k \cos kx = \frac{y^{n+2} \cos nx - y^{n+1} \cos(n+1)x + y \cos x - y^2}{y^2 - 2y \cos x + 1}, \qquad n \ge 1$$
 (2.19)

$$\sum_{k=1}^{n} y^{k} \sin kx = \frac{y^{n+2} \sin nx - y^{n+1} \sin((n+1)x) + y \sin x}{y^{2} - 2y \cos x + 1}, \qquad n \ge 1$$
 (2.20)

$$\sum_{k=1}^{\infty} y^k \cos kx = \frac{y \cos x - y^2}{y^2 - 2y \cos x + 1}, \qquad |y| < 1$$
 (2.21)

$$\sum_{k=1}^{\infty} y^k \sin kx = \frac{y \sin x}{y^2 - 2y \cos x + 1}, \qquad |y| < 1$$
 (2.22)

$$\sum_{k=1}^{\infty} \frac{y^k \cos kx}{k} = \frac{1}{2} \ln \frac{1}{1 - 2y \cos x + y^2}, \qquad |y| < 1,$$
(2.23)

if y is a complex number, use the prinple value of $\ln y$

$$\sum_{k=1}^{\infty} \frac{y^k \sin kx}{k} = \arctan \frac{y \sin x}{1 - y \cos x}, \qquad |y| < 1$$
 (2.24)

3 Advanced Trigonometric Series Expansions

Remark 3.1 Throughout this chapter, we assume n and j are nonnegative integers, while x and y are real or complex numbers. We also let [x] denote the floor of x (for real x).

3.1 Two Identities Associated with Coefficients in Trigonometric Expansions

3.1.1 First Identity

$$\sum_{k=j}^{\left[\frac{n}{2}\right]} {n+1 \choose 2k+1} {k \choose j} = 2^{n-2j} {n-j \choose j}, \qquad j \le \left[\frac{n}{2}\right]$$

$$(3.1)$$

Applications of Equation (3.1)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n+1}{2k+1} = 2^n \tag{3.2}$$

$$\sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} {n+1 \choose 2k+1} k = (n-1)2^{n-2}, \qquad n \ge 1$$
 (3.3)

$$\sum_{k=0}^{n} {4n+1 \choose 2n-2k} {k+n \choose n} = 2^{2n} {3n \choose n}$$
 (3.4)

3.1.2 Second Identity

$$\sum_{k=j}^{\left[\frac{n}{2}\right]} \binom{n}{2k} \binom{k}{j} = 2^{n-2j} \binom{n-j}{j} - 2^{n-1-2j} \binom{n-1-j}{j}, \qquad j \le \left[\frac{n}{2}\right] \tag{3.5}$$

Restatement of Equation (3.5)

$$\sum_{k=j}^{\left[\frac{n}{2}\right]} \binom{n}{2k} \binom{k}{j} = \frac{n2^{n-2j-1}}{n-j} \binom{n-j}{j}, \qquad j \leq \left[\frac{n}{2}\right] \tag{3.6}$$

Applications of Equation (3.5)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{2k} = 2^{n-1} \tag{3.7}$$

$$\sum_{k=1}^{\left[\frac{n}{2}\right]} \binom{n}{2k} k = n2^{n-2}, \qquad n \ge 2$$
 (3.8)

Applications of Equation (3.6)

$$\sum_{k=0}^{n} {4n \choose 2n-2k} {k+n \choose n} = \frac{2^{2n+1}}{3} {3n \choose n}$$
 (3.9)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} {n-k \choose k} \frac{x^k}{n-k} = \frac{(1+\sqrt{4x+1})^n + (1-\sqrt{4x+1})^n}{n2^n}, \qquad n \ge 1$$
 (3.10)

Applications of Equation (3.10)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} {n-k \choose k} \frac{1}{n-k} = \frac{(1+\sqrt{5})^n + (1-\sqrt{5})^n}{n2^n}, \qquad n \ge 1$$
 (3.11)

Remark 3.2 The following identity is equivalent of Example 44, p. 445 of Hardy's Pure Mathematics.

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n-k}{k} \frac{1}{n-k} = \begin{cases} (-1)^{n-1} \frac{1}{n}, & \text{if } n \text{ is not a multiple of 3} \\ (-1)^n \frac{2}{n}, & \text{if } n \text{ is a multiple of 3} \end{cases}$$
(3.12)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} {n-k \choose k} \frac{6^k}{n-k} = \frac{3^n + (-1)^n 2^n}{n}, \qquad n \ge 1$$
 (3.13)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n-k}{k} \frac{4^{n-k}}{n-k} = \frac{2^{n+1}}{n}, \qquad n \ge 1$$
 (3.14)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n-k}{k} \frac{4^{n-k}}{k+1} = \frac{4^{n+1} - 2^{n+1}}{n+2}$$
(3.15)

3.2 Expansion of $\frac{\sin(n+1)x}{\sin x}$

$$\frac{\sin(n+1)x}{\sin x} = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n-k}{k} (2\cos x)^{n-2k}$$
(3.16)

3.3 Expansion of $\cos nx$

$$\cos nx = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \cos^{n-2k} x \left(2^{n-2k} \binom{n-k}{k} - 2^{n-1-2k} \binom{n-k-1}{k} \right)$$
(3.17)

$$\cos nx = \frac{n}{2} \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n-k}{k} \frac{(2\cos x)^{n-2k}}{n-k}, \qquad n \ge 1$$
 (3.18)

3.4 Expansions of $\cos 2nx$

3.4.1 Using $\sin^{2k} x$

$$\cos 2nx = \sum_{k=0}^{n} (-1)^k \sin^{2k} x \sum_{j=0}^{k} {2n \choose 2j} {n-k \choose k-j}$$
(3.19)

$$\sum_{j=0}^{k} {2n \choose 2j} {n-j \choose k-j} = \frac{2^{2k}}{(2k)!} \prod_{j=0}^{k-1} (n^2 - j^2) = \frac{n}{n+k} {n+k \choose 2k} 2^{2k}$$
(3.20)

Restatement of Equation (3.19)

$$\cos 2nx = \sum_{k=0}^{n} (-1)^k \frac{n}{n+k} \binom{n+k}{2k} 2^{2k} \sin^{2k} x, \qquad n \ge 1$$
 (3.21)

3.4.2 Using $\cos^{2k} x$

$$\cos 2nx = \sum_{k=0}^{n} (-1)^{n-k} \frac{n}{n+k} \binom{n+k}{2k} 2^{2k} \cos^{2k} x, \qquad n \ge 1$$
 (3.22)

3.4.3 Binomial Identities Resulting From the Coefficient of $\cos^{2k} x$ in Equation (3.22)

$$\sum_{k=j}^{n} (-1)^k \binom{k}{j} \frac{n}{n+k} \binom{n+k}{2k} 2^{2k} = (-1)^n \frac{n}{n+j} \binom{n+j}{2j} 2^{2j}, \qquad n \ge 1$$
 (3.23)

$$\sum_{k=0}^{n} (-1)^k \frac{n}{n+k} \binom{n+k}{2k} 2^{2k} = (-1)^n, \qquad n \ge 1$$
 (3.24)

$$\sum_{k=1}^{n} (-1)^k \frac{2^{2k}}{(2k)!} \prod_{j=0}^{k-1} (n^2 - j^2) = (-1)^n - 1, \qquad n \ge 1$$
 (3.25)

Generalization of Equation (3.20)

$$\sum_{k=0}^{n} {2x \choose 2k} {x-k \choose n-k} = \frac{2^{2n}}{(2n)!} \prod_{k=0}^{n-1} (n^2 - k^2) = \frac{x}{x+n} {x+n \choose 2n} 2^{2n}$$
(3.26)

3.4.4 Applications of Equation (3.26)

$$\sum_{k=0}^{n} (-1)^k \binom{2n}{n-k} \binom{2n+2k+1}{2k} = (-1)^n (n+1) 2^{2n}$$
(3.27)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{2^{2k}}{\binom{2k}{k}} = \frac{1}{1-2n}$$
 (3.28)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{x+k}{k} \frac{2^{2k}}{\binom{2k}{k}(x+k)} = (-1)^n \frac{\binom{2x}{2n}}{x\binom{x}{n}}, \qquad x \neq 0$$
 (3.29)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{n+k}{k} \frac{2^{2k}}{\binom{2k}{k}(n+k)} = \frac{(-1)^n}{n}, \qquad n \ge 1$$
 (3.30)

nth Difference of the Harmonic Series

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \sum_{j=1}^{2k} \frac{1}{j} = \frac{1}{2n} + \frac{2^{2n-1}}{n \binom{2n}{n}}, \qquad n \ge 1$$
 (3.31)

Inversion of Equation (3.31)

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{2^{2k}}{k \binom{2k}{k}} = 2 \sum_{j=1}^{2n} \frac{1}{j} - \sum_{j=1}^{n} \frac{1}{j}, \qquad n \ge 1$$
 (3.32)

3.5 Expansions of $\frac{\sin(2n+1)x}{\sin x}$

3.5.1 Using $\sin^{2k} x$

$$\sin(2n+1)x = \sum_{k=0}^{n} (-1)^k \sin^{2k+1} x \sum_{j=0}^{k} {2n+1 \choose 2j+1} {n-j \choose k-j}$$
(3.33)

$$\sum_{j=0}^{k} {2n+1 \choose 2j+1} {n-j \choose k-j} = \frac{2n+1}{(2k+1)!} \prod_{j=0}^{k-1} \left((2n+1)^2 - (2j+1)^2 \right)$$
$$= 2^{2k} \frac{2n+1}{n-k} {n+k \choose 2k+1}$$
(3.34)

$$\sum_{j=0}^{k} {2n+1 \choose 2k-2j+1} {n-k+j \choose j} = \frac{2n+1}{(2k+1)!} \prod_{j=0}^{k-1} \left((2n+1)^2 - (2j+1)^2 \right)$$

$$= 2^{2k} \frac{2n+1}{n-k} {n+k \choose 2k+1}$$
(3.35)

Restatement of Equation (3.33)

$$\sin(2n+1)x = \sum_{k=0}^{n} (-1)^k 2^{2k} \frac{2n+1}{n-k} \binom{n+k}{2k+1} \sin^{2k+1} x \tag{3.36}$$

3.5.2 Using $\cos^{2k} x$

$$\frac{\sin(2n+1)x}{\sin x} = \sum_{k=0}^{n} (-1)^{n-k} \cos^{2k} x \sum_{j=0}^{k} {2n+1 \choose 2k-2j} {n-k+j \choose j}$$
(3.37)

$$\frac{\sin(2n+1)x}{\sin x} = \sum_{k=0}^{n} (-1)^{n-k} \cos^{2k} x \sum_{j=0}^{k} {2n+1 \choose 2j} {n-j \choose k-j}$$
(3.38)

3.5.3 Binomial Identities Resulting From Coefficient of $\sin^{2k} x$ in Equation (3.36)

$$\sum_{k=j}^{n} (-1)^k 2^{2k} \frac{2n+1}{n-k} \binom{n+k}{2k+1} \binom{n}{j} = (-1)^n \sum_{r=0}^{j} \binom{2n+1}{2r} \binom{n-r}{j-r}$$
(3.39)

$$\sum_{k=0}^{n} (-1)^k 2^{2k} \frac{2n+1}{n-k} \binom{n+k}{2k+1} = (-1)^n$$
(3.40)

Generalization of Equation (3.34)

$$\sum_{k=0}^{n} {2x+1 \choose 2k+1} {x-k \choose n-k} = \frac{2x+1}{(2n+1)!} \prod_{k=0}^{n-1} \left((2x+1)^2 - (2k+1)^2 \right)$$
$$= 2^{2n} \frac{2x+1}{2n+1} {x+n \choose 2n}$$
(3.41)

3.5.4 Product Expansion for $\frac{\sin(2n+1)x}{\sin x}$

$$\frac{\sin(2n+1)x}{\sin x} = (2n+1) \prod_{k=1}^{n} \left(1 - \frac{\sin^2 x}{\sin^2 \frac{\pi k}{2n+1}} \right), \qquad n \ge 1$$
 (3.42)

3.6 Series for $\cos^n x$

$$2^{n-1}\cos^n x = \sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{k} \cos(n-2k)x - \frac{1}{2} \binom{n}{\left[\frac{n}{2}\right]} \frac{(-1)^n + 1}{2} \cos x \tag{3.43}$$

3.6.1 Applications of Equation (3.43)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{k} = 2^{n-1} + \frac{1}{2} \binom{n}{\left[\frac{n}{2}\right]} \frac{(-1)^n + 1}{2}$$
(3.44)

$$\cos^{2n+1} x = \frac{1}{2^{2n}} \sum_{k=0}^{n} {2n+1 \choose k} \cos(2n+1-2k)x$$
 (3.45)

$$\int \cos^{2n+1} x \, dx = \frac{1}{2^{2n}} \sum_{k=0}^{n} {2n+1 \choose k} \frac{\sin(2n+1-2k)x}{2n+1-2k} + C \tag{3.46}$$

$$\cos^{2n} x = \frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} {2n \choose k} \cos(2n-2k)x + \frac{1}{2^{2n}} {2n \choose n}, \qquad n \ge 1$$
 (3.47)

$$\int \cos^{2n} x \, dx = \frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} {2n \choose k} \frac{\sin(2n-2k)x}{2n-2k} + \frac{1}{2^{2n}} {2n \choose n} x + C, \qquad n \ge 1$$
 (3.48)

$$\frac{\sin(2n+1)x}{\sin x} = 2\sum_{k=0}^{n}\cos 2kx - 1\tag{3.49}$$

3.7 Series for $\sin^n x$

$$2^{n-1}\sin^n x = \sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{k} \cos\left((n-2k)x - \frac{n-2k}{2}\pi\right) - \frac{1}{2} \binom{n}{\left[\frac{n}{2}\right]} \frac{(-1)^n + 1}{2}$$
(3.50)

3.7.1 Applications of Equation (3.50)

$$\sin^{2n} x = \frac{(-1)^n}{2^{2n-1}} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \cos(2n-2k)x + \frac{1}{2^{2n}} \binom{2n}{n}, \qquad n \ge 1$$
 (3.51)

$$\int \sin^{2n} x \, dx = \frac{(-1)^n}{2^{2n-1}} \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} \frac{\sin(2n-2k)x}{2n-2k} + \frac{1}{2^{2n}} \binom{2n}{n} + C, \qquad n \ge 1$$
 (3.52)

$$\sin^{2n+1} x = \frac{(-1)^n}{2^{2n}} \sum_{k=0}^n (-1)^k \binom{2n+1}{k} \sin(2n+1-2k)x \tag{3.53}$$

$$\int \sin^{2n+1} x \, dx = \frac{(-1)^n}{2^{2n}} \sum_{k=0}^n (-1)^{k+1} \binom{2n+1}{k} \frac{\cos(2n+1-2k)x}{2n+1-2k} + C \tag{3.54}$$

4 Advanced Trigonometric Product Expansions

Remark 4.1 For this chapter, we assume n is a nonnegative integer, while x, y, and z are real or complex numbers. We also assume, that whenever x is a real number, [x] denotes the floor of x.

4.1 Product Expansion of $\cos nx - \cos ny$

$$\cos nx - \cos ny = 2^{n-1} \prod_{k=0}^{n-1} \left(\cos x - \cos \left(y + \frac{2k\pi}{n} \right) \right), \qquad n \ge 1$$
 (4.1)

4.1.1 Applications of Equation (4.1)

$$\cos nx + 1 = 2^{n-1} \prod_{k=0}^{n-1} \left(\cos x - \cos \frac{2k+1}{n} \pi \right), \qquad n \ge 1$$
 (4.2)

$$\prod_{k=0}^{n-1} \cos\left(y + \frac{2k\pi}{n}\right) = \frac{1}{2^{n-1}} \left((-1)^{\left[\frac{n}{2}\right]} \frac{1 + (-1)^n}{2} - (-1)^n \cos ny \right), \qquad n \ge 1$$
 (4.3)

$$\prod_{k=0}^{2n-1} \cos\left(y + \frac{k\pi}{n}\right) = \frac{(-1)^n - \cos 2ny}{2^{2n-1}}, \qquad n \ge 1$$
 (4.4)

$$\prod_{k=0}^{2n} \cos\left(y + \frac{2k\pi}{2n+1}\right) = \frac{\cos(2n+1)y}{2^{2n}} \tag{4.5}$$

$$\prod_{k=0}^{2n} \cos \frac{2k\pi}{2n+1} = \frac{1}{2^{2n}} \tag{4.6}$$

$$\prod_{k=0}^{2n} \cos \frac{2k+1}{2n+1} \pi = -\frac{1}{2^{2n}} \tag{4.7}$$

$$\prod_{k=0}^{4n+1} \cos \frac{k\pi}{2n+1} = -\frac{1}{2^{4n}} \tag{4.8}$$

4.1.2 Product Expansion of $\sin nx$

$$\sin nx = 2^{n-1} \prod_{k=0}^{n-1} \sin\left(x + \frac{k\pi}{n}\right), \qquad n \ge 1$$
 (4.9)

Applications of Equation (4.9)

$$\sin^2 \frac{ny}{2} = 2^{2n-2} \prod_{k=0}^{n-1} \sin^2 \left(\frac{y}{2} + \frac{k\pi}{n} \right), \qquad n \ge 1$$
 (4.10)

$$\prod_{k=0}^{n-1} \sin\left(\frac{k\pi + x}{n}\right) = \frac{\sin x}{2^{n-1}}, \qquad n \ge 1$$
 (4.11)

$$\prod_{k=1}^{n-1} \cos \frac{k\pi}{n} = \frac{(-1)^{\left[\frac{n}{2}\right]}}{2^{n-1}} \left(\frac{1 - (-1)^n}{2}\right), \qquad n \ge 2$$
(4.12)

$$\prod_{k=1}^{2n} \cos \frac{k\pi}{2n+1} = \frac{(-1)^n}{2^{2n}}, \qquad n \ge 1$$
 (4.13)

$$\prod_{k=1}^{n-1} \sin \frac{k\pi}{n} = \frac{n}{2^{n-1}}, \qquad n \ge 2 \tag{4.14}$$

$$\prod_{k=1}^{n-1} \Gamma\left(\frac{k}{n}\right) = \frac{(2\pi)^{\frac{n-1}{2}}}{\sqrt{n}}, \qquad n \ge 1$$

$$(4.15)$$

$$\prod_{k=1}^{n-1} \cot \frac{k\pi}{n} = \frac{(-1)^{\left[\frac{n}{2}\right]}}{n} \left(\frac{1 - (-1)^n}{2}\right), \qquad n \ge 2$$
(4.16)

$$n \cot nx = \sum_{k=0}^{n-1} \cot \left(x + \frac{k\pi}{n} \right), \qquad n \ge 1$$
 (4.17)

$$n^2 \csc^2 nx = \sum_{k=0}^{n-1} \csc^2 \left(x + \frac{k\pi}{n} \right), \qquad n \ge 1$$
 (4.18)

4.2 Various Product Expansions Involving Equations (4.11) and (4.14)

4.2.1 Expansions Involving Equation (4.14)

$$\prod_{k=1}^{n-1} \left(\sin \frac{k\pi}{n} \right)^k = \frac{\sqrt{n^n}}{2^{\frac{n(n-1)}{2}}}, \qquad n \ge 2$$
 (4.19)

Remark 4.2 The following identity, proposed by J. E. Wilkins, Jr., is found in Problem E1044 of The American Math. Monthly, Vol. 59, No. 10, December 1952.

$$\prod_{k=1}^{n-1} \left(2\sin\frac{k\pi}{n} \right)^k = \sqrt{n^n}, \qquad n \ge 2$$
 (4.20)

4.2.2 Expansion Involving Equation (4.11)

$$\prod_{k=1}^{n-1} \left(\sin \frac{k\pi - x}{n} \sin \frac{k\pi + x}{n} \right)^k = \frac{1}{2^{n(n-1)}} \left(\frac{\sin x}{\sin \frac{x}{n}} \right)^n, \qquad n \ge 2$$
 (4.21)

Applications of Equation (4.21)

$$\prod_{k=1}^{n-1} \left(\cos \frac{k\pi}{n}\right)^{2k} = \frac{(-1)^{\frac{n(n-1)}{2}}}{2^{n(n-1)}} (-1)^{n\left[\frac{n}{2}\right]} \left(\frac{1-(-1)^n}{2}\right)^n, \qquad n \ge 2$$
 (4.22)

$$n^{2} \cot x - n \cot \frac{x}{n} = \sum_{k=1}^{n-1} k \left(\cot \frac{k\pi + x}{n} - \cot \frac{k\pi - x}{n} \right), \qquad n \ge 2$$
 (4.23)

$$\sum_{k=1}^{n-1} k \csc \frac{k\pi + x}{n} \cdot \csc \frac{k\pi - x}{n} = \frac{n \cot \frac{x}{n} - n^2 \cot x}{\sin \frac{2x}{n}}, \qquad n \ge 2$$
 (4.24)

4.2.3 Product Expansion for $\tan x$

$$\tan x = \prod_{k=0}^{2n-1} \left(\sin \frac{k\pi + 2x}{2n} \right)^{(-1)^k}, \qquad n \ge 1$$
 (4.25)

Applications of Equation (4.25)

$$\sum_{k=0}^{2n-1} (-1)^k \cot \frac{k\pi + 2x}{2n} = \frac{2n}{\sin 2x}, \qquad n \ge 1$$
 (4.26)

$$\sum_{k=0}^{2n-1} (-1)^k \cot \frac{2k+1}{4n} \pi = 2n, \qquad n \ge 1$$
 (4.27)

$$\sum_{k=0}^{2n-1} (-1)^k \cot \frac{3k+1}{6n} \pi = \frac{4n\sqrt{3}}{3}, \qquad n \ge 1$$
 (4.28)

$$\sum_{k=0}^{2n-1} (-1)^k \csc^2 \frac{k\pi + 2x}{2n} = 4n^2 \csc 2x \cdot \cot 2x, \qquad n \ge 1$$
 (4.29)

$$\sum_{k=0}^{2n-1} \cot \frac{4k+1}{4n} \pi = 2n, \qquad n \ge 1$$
 (4.30)

$$\sum_{k=0}^{n-1} \cot \frac{4k+1}{4n} \pi = n, \qquad n \ge 1$$
 (4.31)

Remark 4.3 The following identity is Problem 4220 of The American Math Monthly, Vol. 58, No.1, May 1952.

$$\sum_{k=0}^{n-1} (-1)^k \tan \frac{2k+1}{4n} \pi = (-1)^{n+1} n, \qquad n \ge 1$$
 (4.32)

$$\sum_{k=0}^{n-1} \tan \frac{4k+1}{4n} \pi = (-1)^{n+1} n, \qquad n \ge 1$$
 (4.33)

4.3 Expansions of $\cot z$

$$\cot z = \frac{1}{2n+1} \cot \frac{z}{2n+1} + \sum_{k=1}^{n} \left(\frac{1}{2n+1} \cot \frac{z+k\pi}{2n+1} + \frac{1}{2n+1} \cot \frac{z-k\pi}{2n+1} \right)$$
(4.34)

$$\cot z = \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{1}{z + k\pi} + \frac{1}{z - k\pi} \right), \qquad z \text{ not a multiple of } \pi$$
 (4.35)

$$\pi \cot \pi z = \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{1}{z+k} + \frac{1}{z-k} \right), \qquad z \text{ not integral}$$
 (4.36)

4.3.1 Applications of Equation (4.36)

$$\pi \csc \pi z = \frac{1}{z} + \sum_{k=1}^{\infty} (-1)^k \frac{2z}{z^2 - k^2}, \qquad z \text{ not integral}$$
 (4.37)

$$\pi^2 \csc^2 \pi z = \sum_{k=-\infty}^{\infty} \frac{1}{(z-k)^2}, \qquad z \text{ not integral}$$
 (4.38)

$$\pi^3 \cot \pi z \csc^2 \pi z = \sum_{k=-\infty}^{\infty} \frac{1}{(z-k)^3}, \qquad z \text{ not integral}$$
 (4.39)

$$\pi^4 \left(\csc^4 \pi z - \frac{2}{3} \csc^2 \pi z \right) = \sum_{k=-\infty}^{\infty} \frac{1}{(z-k)^4}, \qquad z \text{ not integral}$$
 (4.40)

$$\pi \tan \frac{\pi z}{2} = \sum_{k=0}^{\infty} \frac{4z}{(2k+1)^2 - z^2}$$
 (4.41)

$$\pi \sec \pi z = \sum_{k=0}^{\infty} (-1)^k \frac{2k+1}{\left(\frac{2k+1}{2}\right)^2 - z^2}$$
(4.42)

4.4 Expansions of $z \cot z$ via the Bernoulli Numbers

Remark 4.4 In this section, we let \mathcal{B}_n denote the n^{th} Bernoulli number.

$$z \cot z = \sum_{k=0}^{\infty} (-1)^k \frac{2^{2k} \mathcal{B}_{2k}}{(2k)!} z^{2k}, \qquad |z| < \pi$$
(4.43)

$$z \cot z = 1 - 2 \sum_{j=1}^{\infty} \frac{z^{2j}}{\pi^{2j}} \sum_{k=1}^{\infty} \frac{1}{k^{2j}}, \qquad |z| < \pi$$
 (4.44)

4.4.1 Applications of Equations (4.43) and (4.44)

$$\sum_{k=1}^{\infty} \frac{1}{k^{2n}} = (-1)^{n-1} \frac{2^{2n-1} \pi^{2n}}{(2n)!} \mathcal{B}_{2n}, \qquad n \ge 1$$
(4.45)

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^{2n}} = (-1)^{n-1} \frac{(2^{2n}-1)\pi^{2n}}{2(2n)!} \mathcal{B}_{2n}, \qquad n \ge 1$$
 (4.46)

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{2n}} = (-1)^{n-1} \frac{(2^{2n} - 1)\pi^{2n}}{(2n)!} \mathcal{B}_{2n}, \qquad n \ge 1$$
(4.47)

$$\tan z = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{2^{2k} (2^{2k} - 1) \mathcal{B}_{2k}}{(2k)!} z^{2k-1}, \qquad |z| < \frac{\pi}{2}$$
(4.48)

$$\frac{z}{\sin z} = \sum_{k=0}^{\infty} (-1)^n \frac{2(1 - 2^{2k-1})\mathcal{B}_{2k}}{(2k)!} z^{2k}, \qquad |z| < \pi, \ z \neq 0$$
 (4.49)

5 Series Associated with the Beta Function

Remark 5.1 We assume m, n, k, and r are nonnegative integers, while x, y, and t are real or complex numbers. If necessary, we use the Gamma function to evaluate x! as $\Gamma(x) = (x-1)!$. Finally, recall that [x] denotes the floor of x (for real x).

5.1 Formulas from $\int_0^{\frac{\pi}{2}} \sin^x t \cos^y t \, dt$

$$\int_0^{\frac{\pi}{2}} \sin^x t \, \cos^y t \, dt = \frac{\pi}{2^{x+y+1}} \frac{x!y!}{\left(\frac{x}{2}\right)! \left(\frac{y}{2}\right)! \left(\frac{x+y}{2}\right)!}$$
(5.1)

$$\int_0^{\frac{\pi}{2}} \sin^{2k} x \cos^{2n} x \, dx = \frac{\pi \binom{2k}{k} \binom{2n}{n}}{2^{2n+2k+1} \binom{n+k}{k}}$$
 (5.2)

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \cos^n x \, dx = \frac{\pi}{2^{n+1}} \binom{n}{\frac{n}{2}}$$
 (5.3)

5.2 Applications of Equation (5.2)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2k}{k} \frac{1}{\binom{n+k}{k}} = 1$$
 (5.4)

$$\sum_{k=0}^{2n} \binom{2n}{k} \binom{-\frac{1}{2}}{k} \frac{2^{2k}}{\binom{n+k}{k}} = 1$$
 (5.5)

$$\sum_{k=0}^{2n} (-1)^k \binom{3n}{n+k} \binom{2k}{k} = \binom{3n}{n} \tag{5.6}$$

$$\sum_{k=0}^{2n} {3n \choose 2n-k} {-\frac{1}{2} \choose k} 2^{2k} = {3n \choose n}$$
 (5.7)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2n+2k}{n+k} 3^{2n-k} = \binom{2n}{n}$$
 (5.8)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} \frac{z^{2k}}{\binom{m+k}{k}} = \frac{2^{2m+1}}{\pi \binom{2m}{m}} \int_0^{\frac{\pi}{2}} (1 - 4z^2 \sin^2 x)^n \cos^{2m} x \, dx \tag{5.9}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} \frac{z^{2k}}{\binom{m+k}{k}} = \frac{2^{2m+1}}{\pi \binom{2m}{m}} \int_0^{\frac{\pi}{2}} (1 - 4z^2 \cos^2 x)^n \sin^{2m} x \, dx \tag{5.10}$$

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2k}{k} \frac{1}{\binom{n+k}{k} 2^{2k}} = \frac{\binom{6n}{3n}}{2^{4n} \binom{2n}{n}}$$
 (5.11)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2k}{k} \frac{1}{\binom{n+r+k}{k}} = \frac{2^{2n+2r+1}}{\pi \binom{2n+2r}{n+r}} \int_0^{\frac{\pi}{2}} \cos^{2r} x (\cos 3x)^{2n} dx$$
 (5.12)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2k}{k} \frac{1}{\binom{n+r+k}{k}} = \frac{2^{2n+2r+1}}{\pi \binom{2n+2r}{n+r}} \int_0^{\frac{\pi}{2}} \sin^{2r} x (\sin 3x)^{2n} dx$$
 (5.13)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} \frac{1}{2^{2k}} = \frac{1}{2^{2n}} \binom{2n}{n}$$
 (5.14)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} = (-1)^n \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} 3^{n-k}$$
 (5.15)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} \frac{1}{2^{2k} \binom{m+k}{k}} = \frac{\binom{2m+2n}{m+n}}{2^{2n} \binom{2m}{m}}$$
 (5.16)

5.3 Generalization of Equation (5.12)

$$\sum_{k=0}^{2n+1} (-1)^k \binom{2n+1}{k} \binom{2k}{k} \frac{1}{\binom{n+r+k}{k}} = \frac{2^{2n+2r+1}}{\pi \binom{2n+2r}{n+r}} \int_0^{\frac{\pi}{2}} \cos^{2r-1} x (\cos 3x)^{2n+1} dx$$
 (5.17)

5.3.1 Various Applications of 5.17 and 5.12

$$\sum_{k=0}^{2n+1} (-1)^k \binom{2n+1}{k} \binom{2k}{k} \frac{1}{\binom{n+1+k}{k}} = 0$$
 (5.18)

$$\sum_{k=0}^{2n+1} (-1)^k \binom{2n+1}{k} \binom{2k}{k} \frac{1}{\binom{n+2+k}{k}} = \frac{n+2}{2(2n+3)}$$
 (5.19)

$$\sum_{k=0}^{2n+1} (-1)^k \binom{2n+1}{k} \binom{2k}{k} \frac{1}{\binom{n+k}{k}} = -1$$
 (5.20)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2k}{k} \frac{1}{\binom{n+1+k}{k}} = \frac{n+1}{2n+1}$$
 (5.21)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2k}{k} \frac{1}{\binom{n+2+k}{k}} = \frac{3(n+1)(n+2)}{2(2n+1)(2n+3)}$$
 (5.22)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2k}{k} \frac{1}{\binom{n-1+k}{k}} = 3, \qquad n \ge 1$$
 (5.23)

$$\sum_{k=0}^{2n+1} (-1)^k \binom{2n+1}{k} \binom{2k}{k} \frac{1}{\binom{n-1+k}{k}} = -\frac{5n+2}{n}, \qquad n \ge 1$$
 (5.24)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} \frac{1}{\binom{\left[\frac{n-2}{2}\right]+k}{k}} = 3 - \left(8 + \frac{4}{n-1}\right) \frac{1 - (-1)^n}{2}, \qquad n \ge 2$$
 (5.25)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} \frac{1}{\binom{\left[\frac{n-1}{2}\right]+k}{k}} = 2(-1)^n + 1, \qquad n \ge 1$$
 (5.26)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} \frac{1}{\binom{\left[\frac{n}{2}\right]+k}{k}} = (-1)^n$$
 (5.27)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2k}{k} \frac{1}{\binom{\left[\frac{n+1}{2}\right]+k}{k}} = \frac{(-1)^n + 1}{2}$$
 (5.28)

5.3.2 Application of Equation (5.21)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2n+2k}{n+k} \frac{3^{2n-k}}{n+k+1} = \binom{2n}{n}$$
 (5.29)

5.3.3 Application of Equation (5.20)

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2k}{k} \frac{2k+1}{\binom{n+k}{k}(n+k+1)} = 1$$
 (5.30)

6 Complex Roots of Unity in Series

Remark 6.1 Throughout this chapter, we let $i \equiv \sqrt{-1}$. We assume, unless otherwise specified, that n and k are nonnegative integers, while x, y and z denote real or complex numbers. We also let [x] denote the floor of x (x real).

6.1 Definition of w_n and Basic Orthogonality Relations

6.1.1 Definition of n^{th} Roots of Unity

Let

$$w_n = \cos\frac{2\pi}{n} + i\sin 2\pi n. \tag{6.1}$$

The n^{th} roots of unity are

$$w_n^k = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}, \qquad k = 0, 1, 2, ..., n - 1.$$
 (6.2)

6.1.2 Orthogonality Relations

$$\frac{1}{n} \sum_{k=0}^{n-1} w_n^{kr} = \begin{cases} 1, & r = \alpha n \\ 0, & r \neq \alpha n, \end{cases} \quad n \ge 2, \quad r \text{ and } \alpha \text{ integers}$$
 (6.3)

$$\sum_{k=0}^{n-1} (-1)^k w_n^{rk} = \begin{cases} 0, & \text{if } n \text{ is even, } n \ge 1\\ \frac{2}{1+w_n^r} & \text{if } n \text{ is odd} \end{cases}$$
 r an integer (6.4)

Applications of Equation (6.3)

$$\sum_{k=0}^{\infty} \frac{x^{kn}}{(kn)!} = \frac{1}{n} \sum_{k=0}^{n-1} e^{xw_n^k}, \qquad n \ge 1$$
 (6.5)

Remark 6.2 Let z be a complex number. We let \bar{z} denote the conjugate of z.

$$\frac{1}{n} \sum_{k=0}^{n-1} w_n^{k\alpha} \bar{w}_n^{k\beta} = \begin{pmatrix} 0 \\ \alpha - \beta \end{pmatrix}, \ n \ge 2, \ 0 \le \alpha, \beta \le n - 1$$
 (6.6)

 α and β are nonnegative integers

Let $f_n(x) = \sum_{j=1}^{n-1} a_j x^j$. Then,

$$f_n(x) = \frac{1}{n} \sum_{i=1}^{n-1} \sum_{k=0}^{n-1} \bar{w}_n^{kj} f_n(x w_n^k), \qquad n \ge 2$$
(6.7)

6.2 Complex Roots of Unity in Evaluation of Series

6.2.1 Evaluation of $\sum_{k=0}^{n} f(kr)$

Remark 6.3 In this section, we assume r is a positive integer. We also assume f is a real or complex valued function whose domain contains the set of nonnegative integers.

$$\sum_{k=0}^{n} f(kr) = \frac{1}{r} \sum_{k=0}^{r} \sum_{j=1}^{r} w_r^{jk} f(k)$$
(6.8)

$$\sum_{k=0}^{n} f(kr) = \frac{1}{r} \sum_{k=0}^{r} \sum_{j=1}^{r} \cos \frac{2\pi jk}{r} f(k), \qquad f \text{ real valued}$$
 (6.9)

$$\sum_{k=0}^{\left[\frac{n}{r}\right]} \binom{n}{rk} f(kr) = \frac{1}{r} \sum_{k=0}^{n} \sum_{j=1}^{r} \binom{n}{k} \cos \frac{2\pi jk}{r} f(k), \qquad f \text{ real valued}$$
 (6.10)

6.2.2 Applications of Equation (6.8)

$$\sum_{k=0}^{\left[\frac{n}{r}\right]} \binom{n}{rk} = \frac{1}{r} \sum_{k=1}^{r} (1 + w_r^k)^n \tag{6.11}$$

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n}{2k} = \begin{cases} 2^{n-1}, & n \ge 1\\ 1, & n = 0 \end{cases}$$
 (6.12)

$$\sum_{k=0}^{\left[\frac{n}{r}\right]} \binom{n}{rk} = \frac{2^n}{r} \sum_{j=1}^r \left(\cos\frac{\pi j}{r}\right)^n \cos\frac{n\pi j}{r} \tag{6.13}$$

$$\sum_{k=0}^{\left[\frac{n}{3}\right]} \binom{n}{3k} = \frac{1}{3} \left(2^n + 2\cos\frac{n\pi}{3} \right) \tag{6.14}$$

$$\sum_{k=0}^{n} {3n \choose 3k} = \frac{1}{3} (2^{3n} + 2(-1)^n)$$
 (6.15)

$$\sum_{k=0}^{\left[\frac{n}{4}\right]} \binom{n}{4k} = \frac{1}{4} \left(2^n + 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4} \right) \tag{6.16}$$

$$\sum_{k=0}^{n} {4n \choose 4k} = \frac{1}{4} (2^{4n} + (-1)^n 2^{2n+1})$$
(6.17)

$$\sum_{k=1}^{n} (-1)^k \left(\cos \frac{\pi k}{n}\right)^n = \frac{n}{2^{n-1}}, \qquad n \ge 1$$
 (6.18)

$$\sum_{k=0}^{\left[\frac{n}{r}\right]} \binom{n}{rk} x^{rk} = \frac{1}{r} \sum_{k=1}^{r} (1 + xw_r^k)^n$$
 (6.19)

$$\sum_{k=0}^{\left[\frac{n-a}{r}\right]} \binom{n}{a+kr} x^{a+kr} = \frac{1}{r} \sum_{k=1}^{r} (w_r^k)^{-a} (1+xw_r^k)^n, \quad 0 \le a \le n, \quad a \le r-1, \quad a \text{ an integer } (6.20)$$

$$\sum_{k=0}^{\left[\frac{n-a}{r}\right]} \binom{n}{a+kr} = \frac{1}{r} \sum_{k=1}^{r} \left(2\cos\frac{\pi k}{r}\right)^n \cos\frac{(n-2a)k\pi}{r},\tag{6.21}$$

 $0 \le a \le n$, $a \le r - 1$, a an integer

$$\sum_{k=0}^{\left[\frac{n-1}{3}\right]} \binom{n}{3k+1} = \frac{1}{3} \left(2^n + 2\cos\frac{(n-2)\pi}{3}\right), \qquad n \ge 1$$
 (6.22)

$$\sum_{k=0}^{\left[\frac{2n}{3}\right]} \binom{n}{3k-n} = \frac{2^n + 2(-1)^n}{3} \tag{6.23}$$

Remark 6.4 The following identity is W. J. Taylor's Problem 4152 Page 163 of The American Math. Monthly, 1945.

$$\frac{1}{2n} \sum_{k=1}^{2n} \left(2\cos\frac{\pi k}{2n} \right)^{2n} \cos\frac{\alpha k\pi}{n} = \binom{2n}{n-\alpha}, \text{ n and } \alpha \text{ integers, } n \ge 1, -n < \alpha < n$$
 (6.24)

$$\frac{2^{2n}}{2n} \sum_{k=1}^{2n} \left(\cos \frac{k\pi}{2n} \right)^{2n} = \binom{2n}{n}, \qquad n \ge 1$$
 (6.25)

$$\sum_{k=1}^{n} \left(\cos\frac{k\pi}{n}\right)^{2n} = \frac{n}{2^{2n}} \left(\binom{2n}{n} + 2\right), \qquad n \ge 1$$

$$(6.26)$$

$$\sum_{k=1}^{n} \left(\cos \frac{(2k-1)\pi}{2n} \right)^{2n} = \frac{n}{2^{2n}} \left(\binom{2n}{n} - 2 \right), \qquad n \ge 1$$
 (6.27)

6.2.3 Convolution Formula via Equation (6.8)

Remark 6.5 In this section, we assume g is a real or complex valued function whose domain contains the set of nonnegative integers. We will also assume r is a nonnegative integer.

$$\sum_{k=0}^{\infty} x^{rk} f(k) \sum_{j=0}^{\infty} x^{j} g(j) = \sum_{j=0}^{\infty} \sum_{k=0}^{\left[\frac{j}{r}\right]} f(k) g(j-rk)$$
(6.28)

$$e^{x}\left(e^{\frac{x^{n}}{n}}-1\right) = \sum_{j=1}^{\infty} x^{j} \sum_{k=1}^{\left[\frac{j}{n}\right]} \frac{1}{n^{k} k! (j-kn)!}, \qquad n \ge 2$$
 (6.29)