# Primal-Dual Subgradient Method

- equality constrained problems
- inequality constrained problems

## Primal-dual subgradient method

minimize 
$$f_0(x)$$
 subject to  $f_i(x) \leq 0, \qquad i = 1, \dots, m$   $Ax = b$ 

with variable  $x \in \mathbf{R}^n$ ,  $f_i : \mathbf{R}^n \to \mathbf{R}$  convex

- primal-dual subgradient method updates both primal and dual variables
- these converge to primal-dual optimal values

#### **Equality constrained problem**

convex equality constrained problem

minimize 
$$f(x)$$
  
subject to  $Ax = b$ 

with variable x and optimal value  $p^*$ 

• we will work instead with (equivalent) augmented problem

minimize 
$$f(x) + (\rho/2) ||Ax - b||_2^2$$
 subject to  $Ax = b$ 

where  $\rho > 0$ 

## **Augmented Lagrangian and optimality conditions**

• augmented Lagrangian is

$$L(x,\nu) = f(x) + \nu^{T}(Ax - b) + (\rho/2)||Ax - b||_{2}^{2}$$

ullet (x, 
u) primal-dual optimal if and only if

$$0 \in \partial_x L(x,\nu) = \partial f(x) + A^T \nu + \rho A^T (Ax - b)$$

$$0 = -\nabla_{\nu}L(x,\nu) = b - Ax$$

• same as 
$$0 \in T(x,\nu)$$
, with  $z=(x,\nu)$  and  $T(x,\nu)=\left[\begin{array}{c} \partial_x L(x,\nu) \\ -\nabla_\nu L(x,\nu) \end{array}\right]$ 

• T is a monotone operator (much more on this later)

## Primal-dual subgradient method

primal-dual subgradient method is

$$z^{(k+1)} = z^{(k)} - \alpha_k T^{(k)}$$

where  $T^{(k)} \in T(z^{(k)})$  and  $\alpha_k$  is step length

• more explicitly:

$$x^{(k+1)} = x^{(k)} - \alpha_k (g^{(k)} + A^T \nu^{(k)} + \rho A^T (Ax^{(k)} - b))$$
  
$$\nu^{(k+1)} = \nu^{(k)} + \alpha_k (Ax^{(k)} - b)$$

where  $g^{(k)} \in \partial f(x^{(k)})$ 

#### Convergence

with step size  $\alpha_k = \gamma_k / \|T^{(k)}\|_2$ ,

$$\gamma_k > 0, \quad \sum_k \gamma_k = \infty, \quad \sum_k \gamma_k^2 < \infty$$

we get convergence:

$$f(x^{(k)}) \to p^*, \qquad Ax^{(k)} - b \to 0$$

## Inequality constrained problem

convex inequality constrained problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \qquad i = 1, \dots, m$ 

with variable x, optimal value  $p^{\star}$ 

• (equivalent) augmented problem

minimize 
$$f_0(x) + (\rho/2) ||F(x)||_2^2$$
 subject to  $F(x) \leq 0$ 

where 
$$F(x) = (f_1(x)_+, \dots, f_m(x)_+), \ \rho > 0$$

## Augmented Lagrangian and optimality conditions

augmented Lagrangian is

$$L(x,\lambda) = f_0(x) + \lambda^T F(x) + (\rho/2) ||F(x)||_2^2$$

 $\bullet$   $(x,\lambda)$  primal-dual optimal if and only if

$$0 \in \partial_x L(x,\lambda) = \partial f_0(x) + \sum_{i=1}^m (\lambda_i + \rho f_i(x)_+) \partial f_i(x)_+$$
$$0 = -\nabla_\lambda L(x,\lambda) = -F(x)$$

#### Primal-dual subgradient method

• define  $z=(x,\nu)$  and

$$T(x,\lambda) = \begin{bmatrix} \partial_x L(x,\lambda) \\ -\nabla_\lambda L(x,\lambda) \end{bmatrix}$$

(T is the KKT operator for the problem, and is monotone)

• primal-dual subgradient method is

$$z^{(k+1)} = z^{(k)} - \alpha_k T^{(k)}$$

where  $T^{(k)} \in T(z^{(k)})$  and  $\alpha_k$  is step length

more explicitly:

$$x^{(k+1)} = x^{(k)} - \alpha_k \left( g_0^{(k)} + \sum_{i=1}^m (\lambda_i^{(k)} + \rho f_i(x^{(k)})_+) g_i^{(k)} \right)$$

$$\lambda_i^{(k+1)} = \lambda_i^{(k)} + \alpha_k f_i(x^{(k)})_+, \quad i = 1, \dots, m$$

where 
$$g_0^{(k)} \in \partial f_0(x^{(k)})$$
,  $g_i^{(k)} \in \partial f_i(x^{(k)})_+$ ,  $i = 1, \ldots, m$ 

 $\bullet$  note that  $\lambda_i^{(k)}$  can only increase with k

#### Convergence

with step size  $\alpha_k = \gamma_k / \|T^{(k)}\|_2$ ,

$$\gamma_k > 0, \quad \sum_k \gamma_k = \infty, \quad \sum_k \gamma_k^2 < \infty$$

we get convergence:

$$f_0(x^{(k)}) \to p^*, \qquad f_i(x^{(k)})_+ \to 0, \quad i = 1, \dots, m$$

## **Example: Inequality constrained LP**

minimize 
$$c^T x$$
 subject to  $Ax \leq b$ 

primal-dual subgradient update is

$$x^{(k+1)} = x^{(k)} - \alpha_k \left( c + A^T M^{(k)} (\lambda^{(k)} + \rho (Ax^{(k)} - b)_+) \right)$$
$$\lambda^{(k+1)} = \lambda^{(k)} + \alpha_k (Ax^{(k)} - b)_+$$

where  $M^{(k)}$  is a diagonal matrix

$$M_{ii}^{(k)} = \begin{cases} 1 & a_i^T x^{(k)} > b_i \\ 0 & a_i^T x^{(k)} \le b_i \end{cases}$$

problem instance with n=20, m=200,  $p^{\star}\approx -3.4$  step size  $\alpha_k=1/(k\|T^{(k)}\|_2)$ 



Prof. S. Boyd, EE364b, Stanford University