CENTRO PAULA SOUZA

	,		
FACULDADE DE TECNOLOG			ADV EUGGEN
FACULDADE DE LECNOLOG	IIA DE JUNDIAI :	- DLFUIADU	AN I FUSSLIN

MANUAL DE CONFIGURAÇÃO PARA COMUNICAÇÃO ENTRE ELIPSE E3 E ARDUINO

INDICE

1.	PR	RÉ-REQUISITOS	1
	1.1.	Elipse E3	1
	1.2.	Driver de Comunicação	1
	1.3.	Arduino	1
	1.4.	Biblioteca ModbusSlave	2
2.	HA	ARDWARE	3
3	SC	DETWARE	3

LISTA DE FIGURAS

1.	PF	RE-REQUISITOS	1
	1.1.	Elipse E3	1
	Fiç	gura 1: Download Software Elipse E3	1
	1.2.	Driver de Comunicação	1
	Fiç	gura 2: Download Driver Modbus	1
	1.3.	Arduino	1
	Fiç	gura 3: Downlaod Arduino IDE	2
	1.4.	Biblioteca ModbusSlave	2
	Fiç	gura 4: Simulando o Arduino como escravo Modbus	3
2.	HA	ARDWARE	3
3.	SC	OFTWARE	3
	Fiç	gura 5: Criando um novo domínio	4
	Fiç	gura 6: Configurando o Projeto	5
	Fiç	gura 7: Seguindo o assistente de aplicações	6
	Fiç	gura 8: Aplicação configurada	7
	Fiç	gura 9: Configurando o Driver - Modbus	8
	Fiç	gura 10: Configurando o Driver - Serial	9
	Fiç	gura 11: Configurando o Driver - Operação 1	9
	Fiç	gura 12: Configurando o Driver - Operação 2	. 10
	Fiç	gura 13: Configurando o Driver - Operação 3	. 10
	Fiç	gura 14: Configurando o Driver - Operação 4	. 10
	Fig	gura 15: Configurando o Driver - Adicionando o LED	. 11
	Fiç	gura 16: Configurando o Driver - Adicionando controle da camada física	. 12
	Fig	gura 17: Design da Tela Inicial	. 13

Figura 18: Adicionando botões	. 14
Figura 19: Adicionando associações nos botões	. 15
Figura 20: Configurando associação digital	. 16
Figura 21: Configurando associação por tabela	. 17
Figura 22: Configurando o tipo de coloração dos botões	. 18
Figura 23: Incluindo script no botão	. 19
Figura 24: Usando AppBrowser	. 20
Figura 25: Codificando o Liga e Desliga do LED	. 20
Figura 26: Executando a aplicação	. 21

1. PRÉ-REQUISITOS

1.1. Elipse E3

Deve ser realizado o download do software Elipse E3 e ter realizado a instalação do mesmo no computador através do <u>primeiro link</u> nas seções de referências deste arquivo.

Figura 1: Download Software Elipse E3

1.2. Driver de Comunicação

Realizar download do Driver Modicon Master (ASC/RTU/TCP) no site da Elipse através do <u>primeiro link</u> nas seções de referências deste arquivo.

Figura 2: Download Driver Modbus

1.3. Arduino

Deve ser realizado o download do software Arduino e ter realizado a instalação do mesmo no computador através do terceiro link nas seções de referências deste arquivo.

Download the Arduino IDE

Figura 3: Downlaod Arduino IDE

1.4. Biblioteca ModbusSlave

Importe a biblioteca ModbusSlave para a IDE Arduino através do menu "Sketch > Include Library > Add .ZIP Library", que pode ser adquirida no segundo link ou quinto link na seção de referência deste arquivo.

Após inclusão da biblioteca, abrir o arquivo "ModbusSlave_0.ino" dentro da pasta "Arduino > ModbusSlave_0" que pode ser adquirido no segundo link na seção de referência deste documento, como mostra a seguir:

Figura 4: Simulando o Arduino como escravo Modbus

2. HARDWARE

Depois dos passos concluídos conforme mostra o tópico anterior, deve-se conectar um LED em uma protoboard ligados a saída digital 8 e ao GND do Arduino, como pode ser analisado no <u>quarto link</u> na seção de referências deste documento.

3. SOFTWARE

Após executar o programa "**studio.exe**", deve-se criar um novo domínio, como segue:

Figura 5: Criando um novo domínio

Seguir o assistente de aplicações clicando sempre em "Avançar", lembrando aonde será gravada aplicação no campo "Salvar a aplicação na pasta".

Figura 6: Configurando o Projeto

Figura 7: Seguindo o assistente de aplicações

Seguindo o assistente de aplicações corretamente, no final será exibido uma tela conforme segue:

Figura 8: Aplicação configurada

Para melhor organização e manutenção do projeto, deve-se acessar o diretório em que foi salvo a propriedade, normalmente em "C:\Program Files\Elipse Software\Elipse E3\Projects\Projeto1" e criar uma arvore de pastas, como a seguir: "Driver > Modbus". Dentro desta página deve ser colocada o driver de comunicação que foi adquirido na seção 1.2.

No "Organizer" mostrado no canto esquerdo da aplicação, deve-se expandir a propriedade de "Objetos de Servidor" e clicar com o botão direito do mouse em "Drivers e OPC" e clicar em "Inserir driver de comunicação em" e selecionar o nome do projeto que foi escolhido no início do manual e selecionar o driver de comunicação.

Após esse procedimento, será aberto uma tela pedindo para realizar a configuração do driver: Na aba **Modbus** parametrize conforme figura a seguir:

Figura 9: Configurando o Driver - Modbus

Na aba **Setup**, configure a propriedade *PhysicalLayer* como **serial** e na aba **Serial** conforme a imagem abaixo (*vale lembrar que a "port" deve ser a mesma conectada pelo Arduino*):

Figura 10: Configurando o Driver - Serial

Na aba de **Operations**, clique na operação em questão e clique em **"edit"**, depois configure as operações conforme imagens abaixo:

Figura 11: Configurando o Driver - Operação 1

Figura 12: Configurando o Driver - Operação 2

Figura 13: Configurando o Driver - Operação 3

Figura 14: Configurando o Driver - Operação 4

Após essa configuração, clicar em **adicionar > tag de comunicação** e informar o nome do tag "**LED**". Após isso, configurar o P1/N1, P2/N2, P3/N3 e P4/N4, conforme imagem a seguir:

Figura 15: Configurando o Driver - Adicionando o LED

Clicar em **tag browser** e expandir a pasta **IOKit > General**, após isso arrastar o tag IO.PhysicalLayerStatus para o campo esquerdo, como na imagem a seguir:

Figura 16: Configurando o Driver - Adicionando controle da camada física

No "Organizer", expandir a opção de telas e dar dois cliques em Telalnicial, que foi criado automaticamente no início da aplicação. Verificar que esteja selecionado "design" na opção da tela, como na imagem a seguir:

Figura 17: Design da Tela Inicial

Certifique-se que no menu de ferramentas no meu superior na opção "visualizar" esteja mostrando a opção "Galeria". Com esta opção habilitada, clique em Galeria e arraste duas vezes o primeiro ícone da biblioteca de "3-D Pushbuttons etc" para o centro da Telalnicial, como segue na imagem:

Figura 18: Adicionando botões

Clique com o botão direito do mouse no primeiro ícone, e clique em "propriedades" e selecione a aba de "associações", conforme a imagem a seguir:

Figura 19: Adicionando associações nos botões

Crie uma associação digital na propriedade de OverrideFillColor com as cores que achar melhor e no campo fonte clique nos "3 pontinhos" e com o editor selecione Servidor > Driver1 > Led > Value, e clique em colar. Segue imagem:

Figura 20: Configurando associação digital

Da mesma forma, realize o procedimento para o segundo botão, mas crie uma associação por tabela na mesma propriedade de OverrideFillColor, mas dessa vez, selecione IO.PhysicalLayerStatus dentro do driver, segue imagem com as opções:

Figura 21: Configurando associação por tabela

Em ambos os botões, configure a propriedade de **OverrideFillMode** para "3 – **ByBrightness**", conforme na imagem:

Figura 22: Configurando o tipo de coloração dos botões

No primeiro botão, onde fizemos uma associação digital, vamos então dar dois cliques sobre ele, assim será mostrado o editor de programação, clique na opção de "script".

Figura 23: Incluindo script no botão

Precisamos saber qual a localização do LED que vamos acender, dentro da aplicação, e para isso vamos utilizar o **AppBrowser**, conforme segue:

Figura 24: Usando AppBrowser

Por fim, o código deve se assemelhar com:

```
Click: Fires when object is clicked on

Clock: Fires when object is clicked on

Clock is clicked.

Clock is clicked on

Application. GetObject ("Driver1.LED") . Value

Application. GetObject ("Driver1.LED") . Value = not (Cbool (bool))

End Sub
```

Figura 25: Codificando o Liga e Desliga do LED

Agora sim a aplicação está pronta para ser iniciada, clique em "Executar Aplicativo" para que a aplicação inicie:

Figura 26: Executando a aplicação

REFERÊNCIAS

ELIPSE SOFTWARE. Disponível em < https://www.elipse.com.br/downloads>. Acesso em 16 de maio de 2018.

ELIPSE KNOWLEDGE. Comunicando o Arduino com Elipse E3 e/ou Elipse SCADA. Disponível em < http://kb.elipse.com.br/pt-br/questions/5369/Comunicando+o+Arduino+com+Elipse+E3+e%7B47%7Dou+Elipse+SCADA Acesso em 16 de maio de 2018.

ARDUINO. Disponível em < https://www.arduino.cc/en/Main/Software>. Acesso em 16 de maio de 2018.

FATECINO. **Projeto No. 1 Controle de um** LED. Disponível em http://fatecjd.edu.br/fatecino/arq_projetos/02-Projeto-1-LED.pdf>. Acesso em 16 de maio de 2018.

GOOGLE. arduino-modbus-slave. Disponível em

https://code.google.com/archive/p/arduino-modbus-slave/downloads> Acesso em 16 de maio de 2018.