Uebungsblatt 1

André Harms, Oliver Steenbuck

19.04.2012

Inhaltsverzeichnis

1	Aufgabe 1		
	1.1	Formale Definition des Netzes	2
	1.2	Schalthäufigkeit	
2		gabe 2	2
	2.1	Formale Definition des Netzes	2
	2.2	Schalthäufigkeit	3
3			
	3.1	Formale Definition des Netzes	3
	3.2	Schaltschritte	3
		3.2.1 Schaltschritt 1	3
		3.2.2 Schaltschritt 2	3
	3.3	Konflikte	3
4	Auf	gabe 4	3

Abbildungsverzeichnis

Listings

1 Aufgabe 1

1.1 Formale Definition des Netzes

$$N = \{P, T, W, M_0\} \tag{1}$$

$$P = \{p1, p2, p3, p4\} \tag{2}$$

$$T = \{t1, t2, t3\} \tag{3}$$

$$W(x,y) = \begin{cases} 2 \text{ ;falls } (x,y) \in \{(t1,p2), (t2,p3)\} \\ 1 \text{ ;falls } (x,y) \in \{(p1,t1), (p2,t2), (p3,t3), (t3,p1), (t3,p4)\} \\ 0 \text{ ;sonst} \end{cases}$$

$$M_0(x) = \begin{cases} 1 \text{ ;falls } x = p1 \\ 0 \text{ ;sonst} \end{cases}$$

$$(5)$$

$$M_0(x) = \begin{cases} 1 & \text{;falls } x = p1 \\ 0 & \text{;sonst} \end{cases}$$
 (5)

1.2 Schalthäufigkeit

Das Netz kann beliebig oft schalten.

2 Aufgabe 2

2.1 Formale Definition des Netzes

$$N = \{P, T, W, M_0\} \tag{6}$$

$$P = \{p1, p2, p3, p4\} \tag{7}$$

$$T = \{t1, t2, t3\} \tag{8}$$

$$W(x,y) = \begin{cases} 2 \text{ ;falls } (x,y) \in \{(t1,p2), (t2,p3)\} \\ 1 \text{ ;falls } (x,y) \in \{(p1,t1), (p2,t2), (p3,t3), (t3,p1), (t3,p4)\} \\ 0 \text{ ;sonst} \end{cases}$$
(9)

$$M_0(x) = \begin{cases} 1 & \text{falls } x = p1 \\ 0 & \text{sonst} \end{cases}$$
 (10)

$$M_0(x) = \begin{cases} 1 & \text{;falls } x = p1 \\ 0 & \text{;sonst} \end{cases}$$

$$K(x) = \begin{cases} 7 & \text{;falls } x = p1 \\ 4 & \text{;falls } x = p4 \\ \omega & \text{;sonst} \end{cases}$$

$$(10)$$

Generiert am: 5. April 2012

Oliver Steenbuck, André Harms

2/3

2.2 Schalthäufigkeit

Nein, da durch die Kapazität auf p4 die Transition t3 maximal 4 mal geschaltet werden kann und p1 diese Transition benötigt.

3 Aufgabe 3

3.1 Formale Definition des Netzes

$$N = \{P, T, F, M_0\} \tag{12}$$

$$P = \{p1, p2, p3\} \tag{13}$$

$$T = \{t1, t2, t3\} \tag{14}$$

$$F(x,y) = \begin{cases} 1 \text{ ;falls } (x,y) \in \{(p1,t1),(t1,p2),(t1,p3),(p2,t2),(t2,t1),(p3,t3),(t3,p1)\} \\ 0 \text{ ;sonst} \end{cases}$$

(15)

$$M_0(x) = \begin{cases} 1 \text{ ;falls } x = p1\\ 0 \text{ ;sonst} \end{cases}$$
 (16)

3.2 Schaltschritte

3.2.1 Schaltschritt 1

$$t1$$
 ist M-aktiviert da gilt $p \in \bullet t : M(p) \ge W(p, t)$ (17)

genauer
$$\left\{ M(p1) \ge W(p1, t1) = 1 \ge 1 \quad M \stackrel{t1}{\rightarrow} M' \right\}$$
 (18)

3.2.2 Schaltschritt 2

3.3 Konflikte

Es besteht ein Rückwärtskonflikt bei p1 da die beiden Tansitionen t2 und t3 nach schalten.

4 Aufgabe 4

Generiert am: 5. April 2012

Oliver Steenbuck, André Harms