Lecture: Duality

http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghe's lecture notes

Introduction

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with dom $L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , ν

lower bound property: if $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \geq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

Least-norm solution of linear equations

$$min x^T x$$
s.t. $Ax = b$

dual function

- Lagrangian is $L(x, \nu) = x^T x + \nu^T (Ax b)$
- to minimize *L* over *x*, set gradient equal to zero:

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \implies x = -(1/2)A^T \nu$$

• plug in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

a concave function of ν

Standard form LP

$$\min \quad c^T x$$
s.t. $Ax = b, \quad x \ge 0$

dual function

Lagrangian is

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$

= $-b^T \nu + (c + A^T \nu - \lambda)^T x$

L is affine in x, hence

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -b^{T} \nu & A^{T} \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda,\nu)|A^T\nu-\lambda+c=0\}$, hence concave

lower bound property: $p^* \ge -b^T \nu$ if $A^T \nu + c \ge 0$

6/35

Equality constrained norm minimization

$$\min ||x||$$

s.t. $Ax = b$

dual function

$$g(\nu) = \inf_{x} (\|x\| - \nu^{T} A x + b^{T} \nu) = \begin{cases} b^{T} \nu & \|A^{T} \nu\|_{*} \leq 1 \\ -\infty & \text{otherwise} \end{cases}$$

where $||v||_* = \sup_{||u|| \le 1} u^T v$ is dual norm of $||\cdot||$

proof: follows from $\inf_x(\|x\| - y^Tx) = 0$ if $\|y\|_* \le 1, -\infty$ otherwise

- if $||y||_* \le 1$, then $x y^T x \ge 0$ for all x, with equality if x = 0
- if $||y||_* > 1$, choose x = tu where $||u|| \le 1$, $u^T y = ||y||_* > 1$:

$$||x|| - y^T x = t(||u|| - ||y||_*) \to -\infty$$
 as $t \to \infty$

lower bound property: $p^* \ge b^T \nu$ if $||A^T \nu||_* \le 1$

7/35

Two-way partitioning

min
$$x^T W x$$

s.t. $x_i^2 = 1, i = 1,...,n$

- a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1,...,n\}$ in two sets; W_{ii} is cost of assigning i, j to the same set; $-W_{ii}$ is cost of assigning to different sets

dual function

$$\begin{split} g(\nu) &= \inf_{x} (x^T W x + \sum_{i} \nu_i (x_i^2 - 1)) = \inf_{x} x^T (W + \operatorname{diag}(\nu)) x - \mathbf{1}^T \nu \\ &= \begin{cases} -\mathbf{1}^T \nu & W + \operatorname{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

lower bound property: $p^* \ge -\mathbf{1}^T \nu$ if $W + \operatorname{diag}(\nu) \succeq 0$ example: $u = -\lambda_{\min}(W) \mathbf{1}$ gives bound $p^* \geq n \lambda_{\min}(W)$

Lagrange dual and conjugate function

min
$$f_0(x)$$

s.t. $Ax \le b$, $Cx = d$

dual function

$$g(\lambda, \nu) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* \left(-A^T \lambda - C^T \nu \right) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \text{dom } f} (y^T x f(x))$
- ullet simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The dual problem

Lagrange dual problem

$$\max \quad g(\lambda, \nu)$$

s.t. $\lambda > 0$

- finds best lower bound on p^* , obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d*
- λ, ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \mathrm{dom}\ g$ explicit

example: standard form LP and its dual (page 5-5)

$$\begin{aligned} & \min \quad c^T x & \max \quad -b^T \nu \\ & \text{s.t.} \quad Ax = b & \text{s.t.} \quad A^T \nu + c \geq 0 \\ & \quad x \geq 0 \end{aligned}$$

Weak and strong duality

weak duality: $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$\max \quad -\mathbf{1}^T \nu$$

s.t.
$$W + \operatorname{diag}(\nu) \succeq 0$$

gives a lower bound for the two-way partitioning problem on page 5-7

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

if it is strictly feasible, i.e.,

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, ..., m, \quad Ax = b$$

- \bullet also guarantees that the dual optimum is attained (if $p^*>-\infty$)
- can be sharpened: e.g., can replace int \mathcal{D} with relint \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality,...
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

$$min c^T x
s.t. Ax \le b$$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^{T} \lambda)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & A^{T} \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\max \quad -b^T \lambda$$
 s.t. $A^T \lambda + c = 0, \quad \lambda \ge 0$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}
- in fact, $p^* = d^*$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathbb{S}^n_{++}$)

$$\min \quad x^T P x$$

s.t.
$$Ax \le b$$

dual function

$$g(\lambda) = \inf_{x} \left(x^{T} P x + \lambda^{T} (A x - b) \right) = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

dual problem

$$\max - (1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

s.t. $\lambda \ge 0$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}
- in fact, $p^* = d^*$ always

A nonconvex problem with strong duality

$$\min \quad x^T A x + 2b^T x$$
s.t.
$$x^T x \le 1$$

 $A \not\succeq 0$, hence nonconvex

dual function:
$$g(\lambda) = \inf_{x} (x^{T}(A + \lambda I)x + 2b^{T}x - \lambda)$$

- unbounded below if $A + \lambda I \not\succeq 0$ or if $A + \lambda I \succeq 0$ and $b \notin \mathcal{R}(A + \lambda I)$
- minimized by $x = -(A + \lambda I)^{\dagger}b$ otherwise: $g(\lambda) = -b^{T}(A + \lambda I)^{\dagger}b \lambda$

dual problem and equivalent SDP:

$$\max -b^{T}(A + \lambda I)^{\dagger}b - \lambda \qquad \max -t - \lambda$$
s.t. $A + \lambda I \succeq 0$
 $b \in \mathcal{R}(A + \lambda I)$
s.t. $\begin{bmatrix} A + \lambda I & b \\ b^{T} & t \end{bmatrix} \succeq 0$

strong duality although primal problem is not convex (not easy to show)

Geometric interpretation

for simplicity, consider problem with one constraint $f_1(x) \leq 0$

interpretation of dual function:

$$g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u), \quad \text{where } \mathcal{G} = \{(f_1(x), f_0(x)) | x \in \mathcal{D}\}$$

- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t=g(\lambda)$

epigraph variation: same interpretation if $\mathcal G$ is replaced with

$$\mathcal{A} = \{(u,t)| f_1(x) \le u, f_0(x) \le t \text{ for some } x \in \mathcal{D}\}$$

strong duality

- \bullet holds if there is a non-vertical supporting hyperplane to $\mathcal A$ at $(0,p^*)$
- \bullet for convex problem, $\mathcal A$ is convex, hence has supp. hyperplane at $(0,p^*)$
- Slater's condition: if there exist $(\tilde{u},\tilde{t})\in\mathcal{A}$ with $\tilde{u}<0$, then supporting hyperplanes at $(0,p^*)$ must be non-vertical and $\tilde{u}=0$, then supporting hyperplanes at $(0,p^*)$ must be non-vertical and $\tilde{u}=0$, then supporting hyperplanes at $(0,p^*)$ must be non-vertical and $\tilde{u}=0$.

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*,ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^* f_i(x^*) = 0$ for i = 1, ..., m (known as complementary slackness):

$$\lambda_i^* > 0 \Longrightarrow f_i(x^*) = 0, \qquad f_i(x^*) < 0 \Longrightarrow \lambda_i^* = 0$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- **1** primal constraints: $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$
- ② dual constraints: $\lambda \ge 0$
- **3** complementary slackness: $\lambda_i f_i(x) = 0, i = 1, ..., m$
- gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5-17: if strong duality holds and $x,\,\lambda$, ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence,
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$$

if Slater's condition is satisfied:

x is optimal if and only if there exist λ , ν that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

example:water-filling (assume $\alpha_i > 0$)

min
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

s.t. $x \ge 0$, $\mathbf{1}^T x = 1$

x is optimal iff $x \ge 0$, $\mathbf{1}^T x = 1$, and there exist $\lambda \in \mathbb{R}^n$, $\nu \in \mathbb{R}$ such that

$$\lambda \ge 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

- if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$
- if $\nu \geq 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$
- determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu \alpha_i\} = 1$

interpretation

- *n* patches; level of patch *i* is at height α_i

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

$$\begin{aligned} & \min \quad f_0(x) & \max \quad g(\lambda, \nu) \\ & \text{s.t.} \quad f_i(x) \leq 0, \quad i = 1, ..., m \\ & \quad h_i(x) = 0, \quad i = 1, ..., p \end{aligned} \qquad \text{s.t.} \quad \lambda \geq 0$$

perturbed problem and its dual

$$\begin{aligned} & \min \quad f_0(x) & \max \quad g(\lambda, \nu) - u^T \lambda - v^T \nu \\ & \text{s.t.} \quad f_i(x) \leq u_i, \quad i = 1, ..., m & \text{s.t.} \quad \lambda \geq 0 \\ & \quad h_i(x) = v_i, \quad i = 1, ..., p \end{aligned}$$

- x is primal variable; u, v are parameters
- $p^*(u, v)$ is optimal value as a function of u, v
- we are interested in information about $p^*(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

global sensitivity result

assume strong duality holds for unperturbed problem, and that $\lambda^*,\,\nu^*$ are dual optimal for unperturbed problem

apply weak duality to perturbed problem:

$$p^{*}(u, v) \ge g(\lambda^{*}, \nu^{*}) - u^{T} \lambda^{*} - v^{T} \nu^{*}$$
$$= p^{*}(0, 0) - u^{T} \lambda^{*} - v^{T} \nu^{*}$$

sensitivity interpretation

- if λ^* large: p^* increases greatly if we tighten constraint i ($u_i < 0$)
- if λ^* small: p^* does not decrease much if we loosen constraint i $(u_i > 0)$
- if ν^* large and positive: p^* increases greatly if we take $v_i < 0$; if ν^* large and negative: p^* increases greatly if we take $v_i > 0$
- if ν^* small and positive: p^* does not decrease much if we take $v_i > 0$; if ν^* small and negative: p^* does not decrease much if we take $v_i < 0$

local sensitivity: if (in addition) $p^*(u, v)$ is differentiable at (0, 0), then

$$\lambda_i^* = -\frac{\partial p^*(0,0)}{\partial u_i}, \qquad \nu_i^* = -\frac{\partial p^*(0,0)}{\partial v_i}$$

proof (for λ_i^*): from global sensitivity result,

$$\frac{\partial p^{*}(0,0)}{\partial u_{i}} = \lim_{t \searrow 0} \frac{p^{*}(te_{i},0) - p^{*}(0,0)}{t} \ge -\lambda_{i}^{*}$$
$$\frac{\partial p^{*}(0,0)}{\partial u_{i}} = \lim_{t \nearrow 0} \frac{p^{*}(te_{i},0) - p^{*}(0,0)}{t} \le -\lambda_{i}^{*}$$

hence, equality

 $p^*(u)$ for a problem with one (inequality) constraint:

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

$$\min f_0(Ax+b)$$

- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

min
$$f_0(y)$$
 max $b^T \nu - f_0^*(\nu)$
s.t. $Ax + b - y = 0$ s.t. $A^T \nu = 0$

dual function follows from

$$\begin{split} g(\nu) &= \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu) \\ &= \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

norm approximation problem: $\min ||Ax - b||$

$$\min ||y||$$
s.t. $y = Ax - b$

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$\begin{split} g(\nu) &= \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu) \\ &= \begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases} \\ &= \begin{cases} b^T \nu & A^T \nu = 0, & \|\nu\|_* \leq 1 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

dual of norm approximation problem

$$\max \quad b^T \nu$$

s.t.
$$A^T \nu = 0, \quad \|\nu\|_* \le 1$$

Implicit constraints

LP with box constraints: primal and dual problem

$$\begin{aligned} & \min \quad c^T x & \max \quad -b^T \nu - \mathbf{1}^T \lambda_1 - \mathbf{1}^T \lambda_2 \\ & \text{s.t.} & Ax = b & \text{s.t.} & c + A^T \nu + \lambda_1 - \lambda_2 = 0 \\ & & -\mathbf{1} \le x \le \mathbf{1} & \lambda_1 \ge 0, \quad \lambda_2 \ge 0 \end{aligned}$$

reformulation with box constraints made implicit

$$\min \ f_0(x) = \begin{cases} c^T x & -1 \le x \le 1 \\ -\infty & \text{otherwise} \end{cases}$$
s.t. $Ax = b$

dual function

$$g(\nu) = \inf_{-1 \le x \le 1} (c^T x + \nu^T (Ax - b))$$

= $-b^T \nu - ||A^T \nu + c||_1$

dual problem: $\max -b^T \nu - \|A^T \nu + c\|_1$

Problems with generalized inequalities

min
$$f_0(x)$$

s.t. $f_i(x) \leq_{K_i} 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

 \preceq_{K_i} is generalized inequality on \mathbb{R}^{k_i}

definitions are parallel to scalar case:

- Lagrange multiplier for $f_i(x) \leq_{K_i} 0$ is vector $\lambda_i \in \mathbb{R}^{k_i}$
- Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$, is defined as

$$L(x, \lambda_1, \dots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$, is defined as

$$g(\lambda_1,\ldots,\lambda_m,\nu)=\inf_{x\in\mathcal{D}}L(x,\lambda_1,\ldots,\lambda_m,\nu)$$

lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, ..., \lambda_m, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \succeq_{K_i^*} 0$, then

$$f_0(\tilde{x}) \ge f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$

$$\ge \inf_{x \in \mathcal{D}} L(x, \lambda_1, ..., \lambda_m, \nu)$$

$$= g(\lambda_1, ..., \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1,...,\lambda_m,\nu)$

dual problem

$$\max \quad g(\lambda_1, ..., \lambda_m, \nu)$$
s.t.
$$\lambda_i \succeq_{K_i^*} 0, \quad i = 1, ..., m$$

- weak duality: $p^* \ge d^*$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP
$$(A_i, C \in \mathbb{S}^n)$$

$$\min \quad b^T y$$
s.t. $y_1 A_1 + \cdots + y_m A_m \leq C$

- Lagrange multiplier is matrix $Z \in \mathbb{S}^n$
- Lagrangian $L(y, Z) = b^T y + \operatorname{tr}(Z(y_1 A_1 + \dots + y_m A_m C))$
- dual function

$$g(Z) = \inf_{y} L(y, Z) = \begin{cases} -\operatorname{tr}(CZ) & \operatorname{tr}(A_{i}Z) + b_{i} = 0, & i = 1, ..., m \\ -\infty & \text{otherwise} \end{cases}$$

dual SDP

max
$$-\operatorname{tr}(CZ)$$

s.t. $Z \succeq 0, \operatorname{tr}(A_iZ) + b_i = 0, \quad i = 1, ..., m$

 $p^* = d^*$ if primal SDP is strictly feasible ($\exists y \text{ with } y_1A_1 + \cdots + y_mA_m \prec C$)

LP Duality

Strong duality: If a LP has an optimal solution, so does its dual, and their objective fun. are equal.

primal dual	finite	unbounded	infeasible
finite		×	×
unbounded	×	×	√
infeasible	×		√

- If $p^* = -\infty$, then $d^* \le p^* = -\infty$, hence dual is infeasible
- If $d^* = +\infty$, then $+\infty = d^* \le p^*$, hence primal is infeasible

•

min
$$x_1 + 2x_2$$
 max $p_1 + 3p_2$
s.t. $x_1 + x_2 = 1$ s.t. $p_1 + 2p_2 = 1$
 $2x_1 + 2x_2 = 3$ $p_1 + 2p_2 = 2$

SOCP/SDP Duality

(P)
$$\min c^{\top}x$$
 (D) $\max b^{\top}y$ s.t. $Ax = b, x_{Q} \succeq 0$ s.t. $A^{\top}y + s = c, s_{Q} \succeq 0$ (P) $\min \langle C, X \rangle$ s.t. $\langle A_{1}, X \rangle = b_{1}$... $\langle A_{m}, X \rangle = b_{m}$ $X \succeq 0$ (D) $\max b^{\top}y$ s.t. $\sum_{i} y_{i}A_{i} + S = C$ $S \succeq 0$

Strong duality

- If $p^* > -\infty$, (P) is **strictly** feasible, then (D) is feasible and $p^* = d^*$
- If $d^* < +\infty$, (D) is **strictly** feasible, then (P) is feasible and $p^* = d^*$
- If (P) and (D) has strictly feasible solutions, then both have optimal solutions.

Failure of SOCP Duality

inf
$$(1,-1,0)x$$
 sup y
s.t. $(0,0,1)x = 1$ s.t. $(0,0,1)^{\top}y + z = (1,-1,0)^{\top}$
 $x_{\mathcal{Q}} \succeq 0$ $z_{\mathcal{Q}} \succeq 0$

- primal: $\min x_0 x_1$, s.t. $x_0 \ge \sqrt{x_1^2 + 1}$; It holds $x_0 x_1 > 0$ and $x_0 x_1 \to 0$ if $x_0 = \sqrt{x_1^2 + 1} \to \infty$. Hence, $p^* = 0$, no finite solution
- dual: sup y s.t. $1 \ge \sqrt{1 + y^2}$. Hence, y = 0 $p^* = d^*$ but primal is not attainable.

34/35

Failure of SDP Duality

Consider

$$\min \left\langle \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, X \right\rangle
\text{s.t.} \quad \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, X \right\rangle = 0 \quad \max \quad 2y_2
\text{s.t.} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, X \right\rangle = 0 \quad \text{s.t.} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} y_1 + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 2 \end{pmatrix} y_2 \preceq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
X \succ 0$$

• primal:
$$x^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $p^* = 1$

• dual: $y^* = (0,0)$. Hence, $d^* = 0$

Both problems have finite optimal values, but $p^* \neq d^*$