Method for estimating motion vector in moving picture

Patent Number: US6175593

Publication date:

2001-01-16

Inventor(s):

KIM HYUN MUN (KR); LEE YOUNG SU (KR); RA JONG BEOM (KR); SONG

BYUNG CHEOL (KR)

Applicant(s):

LG ELECTRONICS INC (US)

Application

Number:

US19980065623 19980424 Priority Number(s): KR19970036229 19970730

IPC Classification: H04N11/02

EC Classification: <u>H04N5/14M2</u>, <u>H04N7/26P36E4</u>

Equivalents:

JP2920210B2, KR226722

Abstract

A method for estimating a motion vector in a moving picture is disclosed, that selectively uses a bilinear interpolation to estimate a motion vector, which reduces a computational complexity. The method includes estimating Y component motions of all macroblocks and determining a coding prediction mode when a motion vector is obtained. Then, blocks for which the coding prediction mode is determined to be INTER mode are searched for halfpels. A vector having a smaller SAD to an 8x8 block in question from motion vectors (MVibil) obtained by a bilinear interpolation of a 16x16 block motion vector (MV6) and motion vectors of blocks around the 16x16 block is selected as an initial motion vector. A local search of the initial motion vectors of the 8x8 blocks in a 2 search region is made when the initial vectors of the 8x8 block are determined. Then, a 0.5 halfpel search is again made to obtain final motion vectors. The final motion vectors are used either in predicting a motion in 8x8 block units or in predicting a motion in 16x16 block units

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-69358

(43)公開日 平成11年(1999)3月9日

(51) Int.Cl.6

H 0 4 N 7/32

識別記号

FΙ H 0 4 N 7/137

請求項の数6 FD (全 10 頁) 審查請求 有

(21)出願番号

特願平9-233280

(22)出願日

平成9年(1997)8月15日

(31)優先権主張番号 36229/1997

(32)優先日

1997年7月30日

(33)優先権主張国

韓国(KR)

(71)出願人 591044131

エルジイ・セミコン・カンパニイ・リミテ

大韓民国 チュングチェオンプグード チ

ェオンジューシ・ヒュンダクーク・ヒャン

ギェオンードン・1

(72)発明者 ヒョン・ムン・キム

大韓民国・ソウル・ガンナムードン・スシ

ョードン・708・サムイク アパートメン

ト 405-309

(74)代理人 弁理士 山川 政樹

最終頁に続く

(54)【発明の名称】 動画像の動きベクトル予測方法

(57)【要約】

【課題】 動きベクトルの計算を双一次補間を選択的に 利用して行う方法で計算量と複雑度を改善した動画像の 動きベクトル予測方法を提供する。

【解決手段】 全てのマクロブロックのY成分に対して 動き予測を行う。動きベクトルが求められると符号化予 測モードを決定し、符号化予測モードが INTERモー ドと決定されたブロックに対してhalfpel探索を 行い、16×16ブロックの動きベクトル(MV16)と 周囲ブロックの動きベクトルを用いて双一次補間を行っ た動きベクトル (MVibil) のうち、該当8×8ブロッ クに対するSADの小さなベクトルを初期動きベクトル として選択する。

【特許請求の範囲】

【請求項1】 全てのマクロブロックのY(輝度)成分に対して動き予測を行う段階と、

動きベクトルが求められると符号化予測モードを決定する段階と

前記符号化予測モードがINTERモードと決定された ブロックに対してハーフ・ペル探索を行う段階と、

 16×16 ブロックの動きベクトル(MV_{16})と周囲ブロックの動きベクトルを用いて双一次補間を行った動きベクトル(MV_{bi1})のうち、該当 8×8 ブロックに対する SADの小さなベクトルを初期動きベクトルとして選択する段階と、

8×8ブロックの初期動きベクトルが全部決められる と、各々に対して±2の探索領域で局所的な探索を行う 段階と、

再度±0.5のハーフ・ペル探索を行って最終的な動きベクトルを探し、それを利用して8×8ブロック単位で動きを予測或いは16×16ブロック単位で動きを予測する段階と、を備えることを特徴とする動画像の動きベクトル予測方法。

【請求項2】 全てのマクロブロックのY成分に対する動き予測を、エフ・コードによる領域の全域において【数1】

$$SAD_{N}(x,y) = \sum_{i=1,j=1}^{N} | 以前VOPのMV - 現在ブロックのMV |$$

* (! (original VOP = = 0)

(ここで、 $-64 \le x$, $y \ge 63$ 、N = 16である)を 基準として探索を行うことを特徴とする請求項1に記載 の動画像の動きベクトル予測方法。

【請求項3】 動きベクトルを求めるためのSAD値中 に、 N_B をマクロブロック内の画素の中でVOP内に含まれている画素の数とするとき、 SAD_{16} (0,0)の

値を $SAD_{16}(0,0) = SAD_{16}(0,0) - (N_B / 2 + 1)$ だけ減少させることを特徴とする請求項2に記載の動画像の動きベクトル予測方法。

【請求項4】 符号化予測モードの決定を、

【数2】

【数3】

モード選択基準値 =
$$\sum_{i=1,j=1}^{16-16}$$
 | 以前 VOP -マクロブロックの中間値 | * (! (original VOP ==0)

のパラメーターによりINTRAモード或いはINTE Rモードを決定することを特徴とする請求項1に記載の 動画像の動きベクトル予測方法。

【請求項5】 初期動きベクトルの決定は、 SAD^{i}_{bi1} $< SAD^{i}_{16} - 64$ である場合には MV^{i}_{bi1} を選択し、そうでない場合には MV_{16} を選択することを特徴とする請求項1に記載の動画像の動きベクトル予測方法。

【請求項6】 最終的な動きベクトルを探した後、動きベクトルの予測及び補償を、4つの 8×8 プロックのエラー(SAD_{18} , $1\leq i\leq 4$)の合と MV_{16} によるエラー(SAD_{16})とを比較して、

【数4】

$$\sum_{i=1}^{4} SAD_{8}^{i} < SAD_{16} - (N_{B} + 1)$$

であれば、4つの8×8の動きベクトルを用いて8×8 ブロック単位で動きを予測し、そうでなければ、16× 16ブロック単位で動きを予測することを特徴とする請 求項1に記載の動画像の動きベクトル予測方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、MPEG4に対応する動きベクトル予測に関し、特に動きベクトルの計算を双一次補間を選択的に利用して行う方法で計算量と複

雑度を改善した動画像の動きベクトル予測方法に関する。

[0002]

【従来の技術】現在標準化作業が進んでいるMPEG4 の概略的な推進内容は以下の通りである。MPEG4 は、今まで適用されてきたMPEG1、MPEG2の機 能とは全く異なる機能を追求するもので、通信、コンピ ューター、放送等の技術領域が融合されてマルチ化され る現在の傾向に対応するためのものである。すなわち、 独立的に技術の革新を成しとげた種々の技術領域を全て 包括できる融合技術領域の機能の実現、及びその応用分 野の開拓を目標とする。MPEG4が追求する方向は、 超低ビット率でAV符号化を可能にする技術、そして従 来とは全く異なる新たな機能の実現、等に大別される。 ここで、超低ビット率でAV符号化を可能にするべく試 みられている第1の方法としては、MPEG1、2で使 われているDCT変換技術を使用せず、全く新たな符号 化技術、例えばブロック境界での歪みが少なく且つ符号 化効率が高いウエーブレット符号化方式等をあげられ る。そして、第2の方法としては、MPEG1、2での 符号化がマクロブロック単位の動き補償を行っているの と異なり、アフィン変換などの他の方式で動き補償を行 うことをあげられる。第3の方法として、境界内符号化 (contour coding)とオブジェクト指向符号化方式を含む 領域基盤符号化 (region based coding)があげられる。 第4の方法として、1/1000以上の圧縮率を実現可 能なフラクタル符号化方式をあげることができる。

【0003】MPEG4で今まで十分に実現されない機能を具現するべく推進する新たな機能には以下の8つが上げられている。符号化効率の改善、内容に合わせる分解能可変性(スケーラビリティ)、内容操作とビット列の編集、エラー耐性の改善、マルチメディア・データベースのアクセス、複数の同期データの符号化、自然データと合成データのハイブリッド符号化、超低ビット率でのランダム・アクセス性の改善、等である。

【0004】以下、添付図面に基づき従来の技術の動画 像の動きベクトル予測方法を説明する。図1~図3は、 従来の技術のOBMC(Overlapped Block Motion Compe nsation)によるピクセル加重値を有する8×8ブロック のマトリックスである。MPEG4の標準化過程で提案 されている動きベクトル予測及び補償方法には、シャー プ社の多重モード歪曲予測(multimode warping predict ion)を用いた動き予測及び補償方法、NOKIA社の可 変ブロックサイズ(variable block size) の動き予測方 法などがある。これら方法は、優れた特性を有している が、計算量が多く、高複雑度などの問題をもっている。 現在、MPEG規格下の動きベクトル(MV)予測方法 の拡張モードでは16×16マクロブロック単位で動き 予測を行い、比較的エラーの大きな部分に対しては8× 8ブロック単位で動き予測を行う2段階の動き予測技法 を採用している。そして、動き補償技法としてはH.2 63にすでに適用されているOBMCを用いている。上 記した動き予測及び補償技術は、動き予測部で生じるブ ロック化現象、すなわちブロック歪みを除去するにかな り効果がある。

【0005】かかる動き予測及び補償技術の具体的な動作の流れは以下の通りである。まず、拡張モードが0N 状態になると、 16×16 マクロブロックサイズで動きベクトルを探す際に、 8×8 ブロックの動きベクトルを探すことになるが、その中心点を既に求めた 16×16 マクロブロックの動きベクトルに置き、x、y方向へ \pm 2. 5ピクセルをサーチして 8×8 ブロックの動きベクトルを求める。そして、0BMC過程を経るようになるが、基準フレームのピクセル値をP(i,j)、新たなピクセル値をP(i,j)とすれば、

<u>p</u>(i, j) = (q(i, j) * H₀(i, j) + r (i, j) * H₁(i, j) + s(i, j) * H₂(i, j) + 4) //8 ここで、

 $\begin{array}{l} {\rm q\ (i\ ,\ j\)} = {\rm p\ (i\ + M\,V^0_{\,x}\,,\ j\ + M\,V^0_{\,y}\,)} \\ {\rm r\ (i\ ,\ j\)} = {\rm p\ (i\ + M\,V^1_{\,x}\,,\ j\ + M\,V^1_{\,y}\,)} \end{array}$

 $s(i, j) = p(i + MV_{x}^{2}, j + MV_{y}^{2})$

である。図1~図3は0BMC過程におけるピクセル加

重値を示し、このような動き予測及び動き補償方法は動き予測部で発生するブロック化現象を効果的に遮断可能な技術である。

[0006]

【発明が解決しようとする課題】 2段階の動き予測技法を採択し、動き補償技法としてOBMCを用いている従来の技術においては、動き予測を16×16マクロブロック単位で行い、比較的エラーの大きな部分に対しては再度8×8ブロック単位で動き予測を行う2段階の動き予測方法を採用しているので、計算量が多く、且つ複雑であって効率性が落ちる。これは、超低ビット率でのAV(Audio/Video)符号化を可能にし且つ新たな機能を実現可能にする、などを目的として推進されるMPEG4に適切に対応しないという問題を引き起こす。本発明は、この種の従来の技術の動きベクトル予測技術の問題を解決するためになされたもので、動きベクトルの計算を双一次補間を選択的に利用して行う方法で計算量と複雑度を改善できる動画像の動きベクトル予測方法を提供することを目的とする。

[0007]

【課題を解決するための手段】MPEG4ビデオVMに おいて、動きベクトルの計算を双一次補間を選択的に利 用して行う方法で計算量と複雑度を改善した本発明の動 画像の動きベクトル予測方法は、全てのマクロブロック のY成分に対して動き予測を行う段階と、動きベクトル が求められると符号化予測モードを決定する段階と、符 号化予測モードが INTERモードと決定されたブロッ クに対してハーフ・ペル探索を行う段階と、16×16 ブロックの動きベクトル (MV16)と周囲ブロックの動 きベクトルを用いて双一次補間を行った動きベクトル (MVibil) のうち、該当8×8ブロックに対するSA D(Summation Absolute Differenial)の小さなベクトル を初期動きベクトルとして選択する段階と、8×8ブロ ックの初期動きベクトルが全部決められると、各々に対 して±2の探索領域で局所的な探索を行う段階と、再度 ±0.5のハーフ・ペル探索を行って最終的な動きベク トルを探し、それを利用して8×8ブロック単位で動き を予測或いは16×16ブロック単位で動きを予測する 段階と、を備えることを特徴とする。

[8000]

【発明の実施の形態】以下、添付図面に基づき本発明の実施形態の動画像の動きベクトル予測方法を詳細に説明する。図4、図5は、本実施形態のマクロブロックのマトリックス及び動きベクトル予測方法を示す構成図であり、図6、7は、本実施形態の動きベクトル予測方法を示すフローチャートである。本実施形態の動きベクトル予測方法は、8×8ブロックの動きベクトルを予測するにあたって、双一次補間を用いて拡張モード(MPEG 勧告案のH. 263のバージョンアップされたモードを指す)での動きベクトルの予測方法を改善したものであ

る。すなわち、初期動きベクトルとして、現在マクロブロックの動きベクトルだけを選ばずに、現在ブロックの動きベクトルと、その周囲ブロックの動きベクトルとのうちから選択的に適用することである。多重モード歪曲予測(multimode warping prediction)を用いた動き予測及び補償のように8×8ブロック内の全ての画素に対して双一次補間を行わず、8×8ブロックの中心画素の動きベクトルにのみ双一次補間を行うので、計算量はあまり大きくない。さらに、マクロブロック内にいろんな運動体がある場合、初期動きベクトルとして周囲の動きベクトルを利用して双一次補間を行ったベクトルを採択するのが、マクロブロックの動きベクトルを採択するよりも一層正確になる可能性がある。

【0009】図4、5は、本実施形態のマクロブロック内の4つの 8×8 ブロックの初期動きベクトルを求めるのを示す図である。すなわち、初期動きベクトルを求めるとは、既存のV M (Verification Model)の拡張モードでのように 16×16 ブロックの動きベクトルを全部採択するのでなく、エラー(Summation Absolute Differential; SAD) がより小さい場合には双一次補間した動

きベクトルを採択して用いる。そうしたあとで、各8×8ブロックの動きベクトルを中心とする狭い領域の探索を行う。この探索は、復号された前VOP(Video Object Plan)に対して行われる。4つの8×8MVによるエラーが16×16MVによるエラーよりも小さい場合には、そのマクロブロックは8×8ブロック単位で動き補償を行い、そうでない場合には16×16ブロック単位で動き補償を行う。

【0010】以下、上記の本実施形態の動画像の動きべクトル予測方法を実施形態に基づいてより詳細に説明する。まず、全てのマクロブロックのY(輝度)成分に対して整数単位の動き予測を行う(301S)。動き予測のための比較は、現在ブロックと一つ前の復号する前のVOPである前オリジナルVOP(previous original VOP)で探されたブロックとの間で行われる。ここで、前オリジナルVOPはVMで提案した技法によりパディング(padding)される。エフ・コード(予測フレームの間隙を示すコード)による探索領域で全域探索を行う。このときに使われる基準はSAD(マッチングエラー)であり、これを求める式は以下の通りである。【数5】

【0011】このように、現在マクロブロックの整数単

位の動きベクトルが求められると、以下のパラメーター をもって符号化予測モードを決める(302S)。符号

$$SAD_N(x,y) = \sum_{i=1}^{N} | 以前VOPのMV-現在プロックのMV| * (! (original VOP = = 0)$$

ここで、-64 \leq x、y \geq 63、N = 16 である。実際の画像では(0,0)ベクトルが多いため、SAD₁₆(0,0)の値を意図的に次の値だけ減少させる。SAD₁₆(0,0) = SAD₁₆(0,0) - (N_B /2+1)

ここで、N。は、マクロブロック内の画素の中でVOP

ここで、N_B はマクロブロック内の画素の中でVOP内 に含まれている画素の数である。 【数7】

化予測モードは、

【数6】

内に含まれている画素の数である。

モード選択基準値=
$$\sum_{i=1,j=1}^{16-16} | 以前VOP-マクロブロックの中間値| * (! (original VOP==0))$$

のパラメーターにより決められる。すなわち、前記モード選択基準値に基づいてINTRAモード或いはINTERモードを決定する。

【0012】このように、符号化予測モードが決定されると、INTERモードと決められたブロックに対してハーフ・ペル探索(半画素単位の動きベクトル予測)を行う。この際、MPEG4ビデオVMにおける一般的な探索法を探して、復号された前VOPに対して探索を行う(303S)。そして、各マクロブロックの動きベクトルがハーフ・ペル単位まで探せられると、マクロブロック内の4つの8×8ブロックの動きベクトルを探す。探索領域は、拡張モードで8×8探索を行う時の探索域の±2である。

【0013】上記した303Sの以後の過程を以下に詳細に説明する。既に提示されているVMとは異なり、探索が、復号された前VOPで行われ、探索の初期点が 16×16 ブロックの動きベクトルと固定されず、 16×16 ブロックの動きベクトルと固定されず、 16×16 ブロックの動きベクトル(MV_{16})と周囲ブロックの動きベクトルを用いて双一次補間を行った動きベクトル(MV_{bi1})のうち、該当 8×8 ブロックに対するSADの小さなベクトルを選択する。この MV_{bi1} は、ハーフ・ペル単位で予測され、双一次補間された動きベクトルが数多く選択されればされるほど、動きベクトルの大いの情報量が増加する。したがって、動きベクトルの情報量の増加を防ぐため、 MV_{bi1} によるエラー(SAD_{bi1} , $1\leq i\leq 1$

4)と MV_{16} によるエラー(SAD^{i}_{16} . 1 < i < 4)との間で以下の基準で初期動きベクトルを決定する。 $SAD^{i}_{bi1} < SAD^{i}_{16} - 64$ である場合には MV^{i}_{bi1} を選択し、そうでない場合には MV_{16} を選択する(304S)。

【0014】この基準に基づいて残りの3つの8×8ブロックの初期動きベクトルを決定する(305S)。4つの8×8ブロックの初期動きベクトルが決められると、各々について±2の探索領域で局所的な探索を行う(306S)。そして、±0.5のハーフ・ペル探索を行って最終的な動きベクトルを探す(307S)。次いで、最終的な動きベクトルを探せられると、4つの8×8ブロックのエラー(SAD $_{18}$, $1 \le i \le 4$)の和とMV $_{16}$ によるエラー(SAD $_{16}$)とを次の基準により比較する(308S)。

[0015]

【数8】

$$\sum_{i=1}^{4} SAD_{8}^{i} < SAD_{16} - (N_{B} + 1)$$

であれば、最終的に探索された4つの 8×8 の動きベクトルを用いて 8×8 ブロック単位で動きを予測し(309S)、そうでなければ 16×16 ブロック単位で動きを予測する(310S)。

【〇〇16】上記した本実施形態の動きベクトル予測方法は、8×8モードとして選択される場合、簡単な双一次補間による動きベクトル計算でVMよりも効果的にマクロブロックの特性に合う動き探索を行う。のみならず、前オリジナルVOPで局所的な探索を行わず、実際に最終的な動き補償に用いられる復号された前VOPで局所的な探索を行うため、VMの拡張モードよりも著しくブロック化現象が減少する。

【〇〇17】上記本実施形態の動き予測技術の原理を用いた実施の形態について説明する。図8a、bは、本実施形態の動き予測方法の実施の条件テーブルであり、図9~図11は、本実施形態の動き予測方法の実施の結果テーブルである。本実施形態は、動画像の動きベクトル予測技術を用いて実際の動きを予測するものであり、その実施の条件は以下の通りである。量子化パラメーター(QP)は各シーケンスに対して同じ値に固定され、全ての画素の動きベクトルはハーフ・ペル単位までH.263量子化テーブルを利用して量子化する。動き予測にはP-VOP(Predicitive-Viedo Object Plan)のみを利用し、初期VOPはI-VOP(Intra-Video Object Plan)を使用する。INTRA AC/DC予測が用いられ、デブロッキングフィルターはオフ状態とする。

【0018】このような条件にて符号化過程を図8a及び図8bの実施の条件テーブルと同様な内容で進行してデコーディングした結果が、図9~図11のテーブルの内容である。図9は、デブロッキングフィルターを用いなかった場合の結果であり、図10は、ループフィルタ

ーを用いた場合の結果であり、図11は、ポストフィルターを用いた場合の結果である。その結果をみると、VMと殆ど同じ歪曲率(rate-distortion)があらわれ、低速及び高速のアプリケーションにおけるデコーディングされた画像でブロック化現象が無く、且つ限界解像度を改善した画像を作ることができるのが分かる。

[0019]

【発明の効果】かかる本発明の動画像の動きベクトル予 測方法において、請求項1、2、3にかかる発明は、符 号化過程において、MPEG4ビデオVM4.0とは異 なりOBMCを使用しないので、計算量を大幅に減少さ せることができ、複雑度を減少させる効果があり、シン タクス上の変化が無いため、VMへの適用性を高め得る 効果がある。請求項4にかかる発明は、符号化予測モー ドを決定することによりINTRAモードは純粋空間変 換を行い、INTERモードの場合にのみ選択的に動き ベクトルの計算を双一次補間を利用して行う。したがっ て、MPEG4ビデオVMに効率よく適用し計算量を減 少させ得る効果がある。請求項5、6にかかる発明は、 8×8モードが選択される場合、簡単な双一次補間によ る動きベクトル計算によりVMよりも効果的にマクロブ ロックの特性に合う動き探索を行うばかりか、前オリジ ナルVOPで局所的な探索を行わず、実際に最終的な動 き補償に用いられる復号された前VOPで局所的な探索 を行うことでVMの拡張モードよりも著しくブロック化 現象を減少させる効果がある。

【図面の簡単な説明】

【図1】 従来の技術のOBMCによるピクセル加重値を有する8×8ブロックのマトリックス。

【図2】 従来の技術のOBMCによるピクセル加重値を有する8×8ブロックのマトリックス。

【図3】 従来の技術のOBMCによるピクセル加重値を有する8×8ブロックのマトリックス。

【図4】 本発明実施形態のマクロブロックのマトリックス及び動きベクトル予測方法を示す構成図。

【図5】 本発明実施形態のマクロブロックのマトリックス及び動きベクトル予測方法を示す構成図。

【図6】 実施形態の動きベクトル予測方法を示すフローチャート。

【図7】 実施形態の動きベクトル予測方法を示すフローチャート。

【図8】 実施形態の動きベクトル予測方法の実施の条件テーブル。

【図9】 実施形態の動きベクトル予測方法の実施の結果テーブル。

【図10】 実施形態の動きベクトル予測方法の実施の結果テーブル。

【図11】 実施形態の動きベクトル予測方法の実施の結果テーブル。

【図1】				【図2】								【図3】																
4	5	5	5	5	5	5	4	1			_	_		Γ.	r <u>-</u> -	T	-	_	1		_		_				_	
5	5	5	5	5	5	5	5	1			2	2	2	2	2	2	2	2	l		2	1	1	1	1.	1	1	2
<u> </u>	├-		<u> </u>	<u> </u>	H-	-		-		٠.	1	1	2	2	2	2	1	1	ł		2	2	1	1	1		2	2
5	5	6	6	6	6	5	5	_			Γ_1	1	1	1	1	1	1	1		•	2	2	7	1	1	1	2	2
5	5	6	6	-6	6	5	5				—	╁	H	-	 	÷	 	÷	i		Ė	<u> </u>	 `	-	<u> </u>	<u> </u>	<u> </u>	H
5	5	6	6	6	6	5	5	1			\vdash	1	<u> </u>	<u> </u>	<u></u>		1	1			2	2	1	1	1	1	2	2
1	-	 	ı —	<u> </u>	<u> </u>			ł		,	1	1	1	1	1 ·	1	1	1			2	2	1	1	1	1	2	2
5	5	6	6	6	6	5	5]		:	T	1	1	1	7	1	1	1	Ī		2	2	1	1	1	1	2	2
5	5	5	5	5	5	5	5	١.			<u> </u>	<u> </u>	۱÷	<u> </u>	÷	<u>'</u>	-	 '-			_		H		Ŀ	<u> </u>	-	1
4	5	5	5	5	5	5	4	1			1	1	2	2	2	2	1	1			2	2	1	1	1	1	2	2
<u> </u>		Ľ.	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	Ľ		Ļ]			2	2	2	2	2	2	2	2			2	1	1	1	1	1	1	2
	<h0のとうゼル四重数></h0のとうゼル四重数>												< 対1のにチモル加重数 >															

【図4】 【図9】

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20000000000000000 30000000000000000 40000000000000000 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6000000000000000 70000000000000000 800000000000000000 90000000000000000 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0000000000000000 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ラー.ケン a	. \	/M4.0	本電明の東地の野祭			
(シカスオーム・スースト コレーム率)	PSNR(dB)	No. of bits	PSNR(dB)	No. of bits		
Container Ship,QCIF,7.5Hz	29.58	102253	29.67	105705		
Hall_monitor,QCIF,7.5Hz	29.97	99024	30.08	101296		
Mother & Daughter,QCIF,7.5Hz	32.50	103763	32.58	102811		
Container Ship,QCIF,10Hz	33.09	263330	33.08	262243		
Mother & Daughter,QCIF,10Hz	35.15	233671	35.15	233636		
Silent voice, QCIF,10Hz	30.83	245347	30.83	248668		
Coostguard,QCIF,10Hz	29.46	.506299	29.42	504584		
Foreman,QCIF,10Hz	30.95	452697	30.83	447310		
News,CIF,7.5Hz	30.97	461677	31.05	468218		
Coastguard,QCIF,15Hz	26.10	1114199	26.23	1187291		
Foreman,QCIF,15Hz	28.27	1071640	28.56	1109205		
News,CIF,15Hz	33.99	1149310	33.00	1146030		

O: 16×16 77070+7857 646

【図5】

【図6】

【図7】

【図8】

а

[,4*724-772]

				•
シーナンス	レグリューション	フレームギ	皇子なパラメーター	I'mcode
Container Ship	QCIF	7.5 Hz	16	1
Container Ship	QCIF	10 Hz	9	• 1
Hall Monitor	QCIF	7.5 Hz	17	1
Mother and Daughter	QCIF	7.5 Hz	14	1
Mother and Daughter	QCIF	10 Hz	8	1

, QCIF = Quarter Common Intermediate Formate

Ь

[87724-772]

シーケンス	トイリュート・ン	フレーム車	見それパラメニタニ	1_4064
Coastguard	QCIF	10 Hz	13	1
Coastguard	CIF	. 15 Hz	. 31	1
Foreman	QCIF	. 10 Hz	13	2
Foremon	CIF	15 Hz	31	2
News ·	CIF	7.5 Hz	19	1
News	CIF	15 Hz	.11	1
Silent Voice	QCIF	10 Hz	13	1

【図10】

シーケンス (シナストムのも) フレベキ)		<i>ilg-</i> 吉⊞にを 14.0	ルインルローを、用いた			
(55-742.4-4)	PSNR(dB)	No. of bits	PSNR(dB)	No. of bits		
Container Ship,QCIF,7.5Hz	29.47	106684	29.57	110562		
Hall_monitor,QCIF,7.5Hz	30.10	99785	30.23	101429		
Mother & Daughter,QCIF,7.5Hz	32.64	102860	32.69	102319		
Container Ship,QCIF,10Hz	32.97	264534	33.00	264293		
Mather & Daughter,QCIF,10Hz	35.24	232781	35.22	234110		
Silent voice, QCIF,10Hz	31.09	242789	31.16	245020		
Coastguard,QCIF,10Hz	29.41	513488	29.40	509962		
Foreman,QCIF,10Hz	30.96	457022	30.94	452059		
News,CIF,7.5Hz	31.04	462535	31.16	468965		
Coastguard,QCIF,15Hz	26.07	1124808	26.24	1199566		
Foremon,QCIF,15Hz	28.28	1072672	28.63	1110456		
News,CIF,15Hz	34.01	1154367	34.07	1146655		

【図11】

ミーケンス (シーウスネムストーマタ、フレーイ字)		つを用uた 14.0	ボストフルータを用った			
(> >>==================================	PSNR(dB)	No. of bills	PSNR(dB)	No. of bits		
Container Ship,QCIF,7.5Hz	29.67	102253	29.74	105705		
Hall_monitor,QCIF,7.5Hz	30.14	99024	30.24	101296		
Mother & Daughter,QCIF,7.5Hz	32.62	103763	32.72	102811		
Container Ship,QCIF,10Hz	33.18	253330	33.17	262243		
Mother & Daughter,QCIF,10Hz	35.26	233671	35.27	233636		
Silent voice, QCIF,10Hz	31.07	245347	31.10	248668		
Coostguard,QCIF,10Hz	29.46	506299	29.43	504584		
Foreman,QCIF,10Hz	31.00	450697	30.93	447310		
News,CIF,7.5Hz	31.09	461677	31.19	468218		
Coastguard,QCIF,15Hz	26.09	1114199	26.24	1187291		
Foreman,QCIF,15Hz	28.33	1071640	28.67	1109205		
News,CIF,15Hz	34.12	1149310	34.14	1146030		

フロントページの続き

(72)発明者 ジョン・ビョム・ラ

大韓民国・デジョンーシ・ユションーク・ドリョードン・383-2・カハクギスルオン ギョス アパートメント 3-104