TIPI STRUTTURATI Array e Strutture

Fondamenti di Programmazione 2022/2023

Francesco Tortorella

Tipi strutturati

- In alcuni casi, l'informazione che bisogna elaborare consiste di un'aggregazione di valori, piuttosto che di un valore solo.
- Questo significa che sarebbe conveniente indicare l'insieme di valori di interesse con una sola variabile piuttosto che con tante variabili quante sono i valori da considerare: una variabile di tipo strutturato.

Tipi strutturati: perché?

- Le informazioni con cui entriamo in contatto nella vita nella maggior parte dei casi è forma aggregata
- Molteplici informazioni semplici sono raggruppate insieme assumendo un significato ben preciso così da rendere naturale il trattamento nella loro globalità, esattamente come se fossero informazioni semplici.
- **Es.:**
 - I nomi degli esami che uno studente dovrà sostenere nel suo corso di studi
 - Una data (data di nascita, data di matrimonio, data di scadenza bollo auto)

Tipi strutturati: come?

- Per introdurre un dato strutturato è necessario definire:
 - il tipo di ogni informazione componente il dato strutturato;
 - il costruttore di tipo strutturato, ovvero una forma sintattica che il linguaggio deve mettere a disposizione del programmatore per definire dei tipi aggiuntivi a quelli di base (detti tipi semplici) che consentano l'aggregazione di informazioni;
 - una funzione di accesso agli elementi; un'informazione strutturata deve infatti poter essere usata, oltre che nella sua interezza, avendo anche accesso ai singole parti; ciò si realizza mediante una funzione di accesso che rappresenta la forma sintattica da usare per accedere alle singole componenti dell'informazione strutturata a partire dal nome collettivo.

Tipi strutturati: quali?

- Esistono due tipi di variabili aggregate:
 - i vettori (arrays) e
 - le strutture (struct o record).

Array

Un array è strutturato come un insieme di variabili, tutte dello stesso tipo, identificato da un nome unico. Gli elementi dell'array sono disposti in memoria in posizioni consecutive

Definizione di un array

- Per definire una variabile array, è necessario specificare:
 - il nome della variabile array
 - il tipo degli elementi
 - il numero degli elementi presenti (cardinalità dell'array)

Funzione di accesso agli elementi dell'array

Per accedere ai singoli elementi di un array, è necessario specificare il nome della variabile array e la posizione dell'elemento di interesse tramite un valore intero (variabile o costante) che si definisce indice.

Caratteristiche dell'array

Poiché tutti gli elementi di un vettore appartengono ad un medesimo tipo T, il tipo dell'array è dato dal prodotto cartesiano di T, tante volte per quanti sono gli elementi del vettore:

```
T_{array} = (T \times T \times .... \times T)
```

- L'insieme di tutti i valori possibili dell'array si ottiene considerando che ogni suo elemento assume un valore in T e quindi l'insieme di tutti gli elementi è un elemento del suddetto prodotto cartesiano.
- Dal punto di vista della notazione simbolica, l'array è rappresentato:

dove **T_indice** è il tipo dell'indice, ovvero l'insieme dei possibili valori dell'indice.

Array bidimensionali

- Finora abbiamo considerato array monodimensionali, i quali richiedono un solo indice per l'individuazione di un elemento.
- È possibile definire anche array bidimensionali, in cui l'organizzazione degli elementi è di tipo matriciale.
- In questo caso, sono necessari due indici per identificare un elemento nell'array.
- Questo tipo strutturato permette di affrontare tutte quelle situazioni in cui è necessario lavorare con matrici, tabelle, ecc.

Definizione di un array bidimensionale

- Per definire un array bidimensionale, è necessario specificare:
 - il nome della variabile array
 - il tipo degli elementi
 - il numero degli elementi presenti nelle due dimensioni (cardinalità di riga e cardinalità di colonna dell'array)

Organizzazione di un array bidimensionale

Funzione di accesso agli elementi dell'array bidimensionale

Per accedere ai singoli elementi di un array bidimensionale, è necessario specificare il nome della variabile array e gli indici di riga e di colonna che individuano l'elemento desiderato.

Struttura

- Una struttura o record è un insieme finito di elementi:
 - il numero degli elementi è rigidamente fissato a priori
 - gli elementi possono essere di tipo diverso
 - il tipo di ciascun elemento componente (campo) è prefissato
 - l'accesso ai singoli elementi avviene tramite un identificatore
- Per accedere ad un particolare elemento di una variabile di tipo struttura è quindi necessario specificare il nome della variabile ed il nome con cui l'elemento viene identificato

Caratteristiche della struttura

Una struttura è una collezione di dati il cui tipo coincide con il prodotto cartesiano delle sue componenti; se indichiamo con c₁, c₂, ..., c_n le informazioni che compongono la struttura e siano T₁, T₂, ... T_n i rispettivi tipi. Se indichiamo con T_struttura il tipo strutturato introdotto:

$$T_struttura = (T_1 \times T_2 \times, \ldots \times T_n)$$

La variabile del tipo $T_struttura$ ha un valore strutturato costituito dall'insieme dei valori delle singole componenti. Poiché ogni sua componente c_i può assumere uno dei valori nel corrispondente tipo T_i , l'insieme dei valori di un'informazione strutturata è pari alle possibili combinazioni di valori, rappresentato dal suddetto prodotto cartesiano.

Esempi

Un tipo per gestire le carte francesi:

```
T_carta = {valore: intero[1..13], seme: Semi}
dove intero[a..b]denota il tipo costituito dall'insieme di tutti i
valori interi compresi tra a e b.
```

Un tipo per gestire i numeri complessi:

```
T_complesso = {re: reale, imm: reale}
```

