

Figure 1A**Figure 1B**

Figure 1C

A**B****Figure 2**

4/18

A

B

Figure 3

Replacement Sheet

5/18

336
atg ggt gcg aga gca tca gta tta agc ggg gga gaa tta gat cga tgg gaa aaa att cgg

396 M1
tta agg cca gcc gga aag aaa aaa tat aaa tta aaa cat ata gta tgg gca agc agg gag
G G C G C G C C

456
cta gaa cga ttc gca gtt aat cct ggc ctg tta gaa aca tca gaa ggc tgt aga caa ata

516 M2
ctg gga cag cta caa cca tcc ctt cag aca gga tca gaa gaa ctt aga tca tta tat aat
G G C C C C C

576 M3
aca gta gca acc ctc tat tgt gtg cat caa agg ata gag ata aaa gac acc aag gaa gct
C G C C G

636 M4
tta gac aag ata gag gaa gag caa aac aaa agt aag aaa aaa gca cag caa gca gca gct
G TCC G G C G

696
gac aca gga cac agc aat cag gtc agc caa aat tac

Figure 4

Figure 5

Replacement Sheet

6/18

Figure 6

Replacement Sheet

7/18

Figure 7

Replacement Sheet

8/18

Figure 8

Replacement Sheet

9/18

Figure 9A

10/18

Figure 9B

11/18

**Identification of INS regions within the
env mRNA using the p19 vector.**

<u>FRAGMENT SIZE</u>		<u>INS EFFECT</u>
A 276	██████ 7584-7859	none
B 234	██████ 7684-7884, 7927-7959	none
C 323	██████ 7595-7884, 7927-7959	10 X
D 128	████ 7939-8066	none
E 478	██████████ 7939-8416	10 X
F 362	██████ 8200-8581	> 100 X
G 330	████ 7266-7595	3-5X
E 668	██████████ 5523-6190	10 X

Figure 10

12/18

Identification of INS regions within the
env mRNA using the p37M1-10D vector.

(Fig 5 env,
formerly fig D)

Figure 11

Elimination of negative effects of CRS

Figure 12

Replacement Sheet

14/18

POINT MUTATIONS ELIMINATING THE NEGATIVE EFFECTS OF CRS IN THE pol REGION
(nucleotides 3700-4194) (SEQ ID NO:127)

GGTACCGCACACAAGGAATTGGAGAAATGAACAAAGTAGATAAAATTAGTCAGTGCTGGAATCAGGAAAGTACTATTT
TAGATGGAATAAGCCCAAGATGAAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTGATTAACTCG
CCACCTGTAGTAGCAAAAGAAATAGTAGGCCAGCTGTGATAAAATGTCAGCTAAAGGAGAACCCATGGACAAGTAGA
CTGTAGTCCAGGAATATGCCAACTAGATTGACACATTAGAAGGAAAAGTTATCCTGGTAGCAGTTCATGTAGCCAGTG
g g c c g cc g g g g g
GATATATAGAAGGAGTTATTCCAGCAGAACAGGGCAGGAACAGCATATTTCTCTTTAAATTAAGCAGGAAGATGG
CCAGTAAAAACAAATACATACTGACAATGGCAGCAATTTCACCGGTGCTACGGTTAGGGCCGCTGTTGGGGGGAAAT
c g c a c t
CAAGCAGGAATTGG

Figure 13

COMPLETE NUCLEOTIDE SEQUENCE OF p37M-1-10D
AND
AMINO ACID SEQUENCE OF p37^{gag} PROTEIN (SEQ ID NO:129)

Figure 14A

Replacement Sheet

16/18

1 TGGAAGGGCT AATTTGGTCC CAAAAAAGAC AAGAGATCCT TGATCTGTGG ATCTACCACA ACAAGGCTA
 71 CTTCCCTGAT TGGCAGAACT ACACACCAGG GCCAGGGATC AGATATCCAC TGACCTTGG ATGGTGCTTC
 141 AAGTTAGTAC CAGTTGAACC AGAGCAAGTA GAAGAGGCCA AATAAGGAGA GAAGAACAGC TTGTTACACC
 211 CTATGAGCCA GCATGGGATG GAGGACCCGG AGGGAGAACT ATTAGTGTGG AAGTTTGACA GCCTCCTAGC
 281 ATTCGTCAC ATGGCCCGAG AGCTGGATCC GGAGTACTAC AAAGACTGCT GACATCGAGC TTTCTACAAG
 351 GGACTTTCCG CTGGGGACTT TCCAGGGAGG TGTGGCTGG CGGGACTGG GGAGTGGCGA GCCCTCAGAT
 421 GCTACATATA AGCAGCTGCT TTTTGCCTGT ACTGGGTCTC TCTGGTTAGA CCAGATCTGA GCCTGGGAGC
 491 TCTCTGGCTA ACTAGGGAAC CCACTGCTTA AGCCTCAATA AAGCTTGCT TGAGTGCTCA AAGTAGTGTG
 561 TGCCCGTCTG TTGTGTGACT CTGGTAACTA GAGATCCCTC AGACCCTTT AGTCAGTGTG GAAAATCTCT
 631 AGCAGTGGCG CCCGAACAGG GACTTGAAAG CGAAAGTAAA GCCAGAGGAG ATCTCTCGAC GCAGGACTCG
 BssHII (711) →
 701 GCTTGCTGAAGCGCGCTCGACAGAGAGATGGGTGCGAGAGCGTCAGTTAACGGGGGAGATTAGATCGATGG
 1 MetGlyAlaArgAlaSerValLeuSerGlyGlyGluLeuAspArgTrp
 777 GAAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAGAAGTACAAGCTAAAGCACATCGTATGGGCAAGCAGGGAGCTAG
 17 ▶ GluLysIleArgLeuArgProGlyGlyLysLysTyrLysLeuLysHisIleValTrpAlaSerArgGluLeuG
 853 AACGATTCGCAGTTAACCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATC
 42 ▶ IuArgPheAlaValAsnProGlyLeuLeuGluThrSerGluGlyCysArgGlnIleLeuGlyGlnLeuGlnProSe
 929 CCTTCAGACAGGATCAGAGGAGCTCGATCACTAACACACAGTAGCAACCCCTCTATTGTGTGCACCAGCGGATA
 67 ▶ rLeuGlnThrGlySerGluGluLeuArgSerLeuTyrAsnThrValAlaThrLeuTyrCysValHisGlnArgIle
 1005 GAGATCAAGGACACCAAGGAAGCTTAGACAAGATAGAGGAAGAGC AAAACAAGTCCAAGAAGAAGGCCAGCAGG
 93 ▶ GluIleLysAspThrLysGluAlaLeuAspLysIleGluGluGlnAsnLysSerLysLysAlaGlnGlnA
 1081 CAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAAATTACCCCTATAGTCAGAACATCCAGGGGCAAATGGT
 118 ▶ laAlaAlaAspThrGlyHisSerAsnGlnValSerGlnAsnTyrProIleValGlnAsnIleGlnGlyGlnMetVa
 1157 ACATCAGGCCATATCACCTAGAACTTAAATGCATGGTAAAGTAGTAGAAGAGAAGGCTTCAGCCAGAAGTG
 11 ▶ lHisGlnAlaIleSerProArgThrLeuAsnAlaTrpValLysValValGluGluLysAlaPheSerProGluVal
 1233 ATACCCATGTTTCAGCATTATCAGAAGGAGCCACCCCCACAGGACCTGAACACGATGTTGAAACACCGTGGGGGAC
 37 ▶ IleProMetPheSerAlaLeuSerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyH
 1309 ATCAAGCAGCCATGCAAATGTTAAAGAGACCATCAATGAGGAAGCTGCAGAATGGATAGAGTCATCCAGTGC
 62 ▶ 62isGlnAlaAlaMetGlnMetLeuLysGluThrIleAsnGluAlaAlaGluTrpAspArgValHisProValHi
 1385 TGCAGGGCCTATTGCACCAAGGCCAGATGAGAGAACCAAGGGAGTGACATACAGGAACACTACTAGTACCCCTTCAG
 87 ▶ sAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAspIleAlaGlyThrThrSerThrLeuGln
 1461 GAACAAATAGGATGGATGACAATAATCCACCTATCCAGTAGGAGAGATCTACAAGAGGTGGATAATCCTGGGAT
 113 ▶ GluGlnIleGlyTrpMetThrAsnAsnProProIleProValGlyGluIleTyrLysArgTrpIleIleLeuGlyL
 1537 TGAACAAAGATCGTGAGGATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAGGAACCCCTTAGAGA
 138 ▶ euAsnLysIleValArgMetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAs

Figure 14B

Replacement Sheet

17/18

1613 CTATGTAGACCGGTTCTATAAAACTCTAAGAGCTGAGCAAGCTCACAGGAGGTAAAAAATTGGATGACAGAAAACC
 163 pTyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnGluValLysAsnTrpMetThrGluThr

 1689 TGTTGGTCAAAATCGAACCCAGATTGTAAGACCCTCTGAAGGCTCTCGGCCAGCGCTACACTAGAAGGAAA
 189 LeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLysAlaLeuGlyProAlaAlaThrLeuGluGluM
 stop (1818) XbaI (1838)
 1765 TGATGACAGCATGTCAGGGAGTAGGAGGACCCGGCATAAGGCAAGAGTTTGATGGATCCACTAGTTCTAGACT
 214 etMetThrAlaCysGlnGlyValGlyGlyProGlyHisLysAlaArgValLeu →
 ApaI (1848)
 1841 CGAGGGGGGG CCCGGTACCT TTAAGACCAA TGACTTACAA GGCAGCTGTA GATCTTAGCC ACTTTTTAAA

 1911 AGAAAAGGGG GGACTGGAAG GGCTAATTCA CTCCCCAAGA AGACAAGATA TCCTTGATCT GTGGATCTAC

 1981 CACACACAAG GCTACTTCCC TGATTGGCAG AACTACACAC CAGGGCCAGG GGTAGATAT CCACTGACCT

 2051 TTGGATGGTG CTACAAGCTA GTACCAAGTTG AGCCAGATAA GGTAGAAGAG GCCAATAAAG GAGAGAACAC

 2121 CAGCTTGTCA CACCCGTGTA GCCTGCATGG AATGGATGAC CCTGAGAGAG AAGTGTAGA GTGGAGGTT

 2191 GACAGCCGCC TAGCATTCA TCACGTGGCC CGAGAGCTGC ATCCGGAGTA CTTCAAGAAC TGCTGACATC

 2261 GAGCTTGCTA CAAGGGACTT TCCGCTGGGG ACTTTCCAGG GAGGCGTGGC CTGGCGGGGA CTGGGGACTG

 2331 GCGAGCCCTC AGATGCTGCA TATAAGCAGC TGCTTTTGCTG CTGTACTGGG TCTCTCTGGT TAGACCAGAT

 2401 CTGAGCCTGG GAGCTCTCTG GCTAACTAGG GAACCCACTG CTTAAGCCTC AATAAAGCTT GCCTTGAGTG

 2471 CTTCAAGTAG TGTGTGCCCG TCTGTTGTGT GACTCTGGTA ACTAGAGATC CCTCAGACCC TTTTAGTCAG

 2541 TGTGGAAAAT CTCTAGCACC CCCCAGGAGG TAGAGGTTGC AGTGAGCCAA GATCGCGCCA CTGCATTCCA

 2611 GCCTGGGCAA GAAAACAAGA CTGCTAAAAA TAATAATAAT AAGTTAAGGG TATTAAATAT ATTATACAT
 2681 GGAGGTCTATA AAAATATATA TATTGGGCT GGGCGCAGTG GCTCACACCT GCGCCCGGCC CTTGGGAGG
 2751 CCGAGGCAGG TGGATCACCT GAGTTGGGA GTTCCAGACC AGCCTGACCA ACATGGAGAA ACCCCTTCTC
 2821 TGTGTATTT TAGTAGATT TATTGATGT GTATTTATT CACAGGTATT TCTGGAAAAC TGAAGACTGTT
 2891 TTTCTCTAC TCTGATACCA CAAGAACATC CAGCACAGAG GAAGACTCT GTGATCAAAT GTGGTGGGAG
 2961 AGGGAGTTT TCACCAGCAC ATGAGCAGTC AGTCTCGCC CAGACTCGG GGGTGTCTT CGGTCAGTT
 3031 CCAACACCCG CTGCGTGGAG AGAGGTAGA CCACAGGGTG AGGGCTCAGT CCCCAGACAA TAAACACCCA
 3101 AGACATAAAC ACCAACACAGG TCCACCCCGC CTGCTGCCA GGCAGAGCG ATTCAACAAAG ACAGGAATTA
 3171 GGATAGAGAA AGAGTAAGTC ACACAGAGCC GGCTGTGCGG GAGAACGGAG TTCTATTATG ACTCAAATCA
 3241 GTCTCCCCAA GCATTCGGGG ATCAGAGTTT TTAAGGATAA CTTAGTGTGT AGGGGCCAG TGAGTTGGAG
 3311 ATGAAAGCGT AGGGAGTCGA AGGTGTCCTT TTGCGCCGAG TCAGTTCTG GGTGGGGCC ACAAGATCGG
 3381 ATGAGCCAGT TTATCAATCC GGGGGTGCCTA GCTGATCCAT GGAGTGCAGG GTCTGCAAAA TATCTCAAGC
 3451 ACTGATTGAT CTTAGGTTT ACAATAGTGA TGTACCCCA GGAACAATTG GGGGAAGGTC AGAATCTTGT
 3521 ACCCTGTAGC TGCACTGACTC CTAACACATA ATTCTTTTT TGTGTTTATT TGAGACAGGG
 PstI (3639)
 3591 TCTCACTCTG TCACCTAGGC TGGAGTGCAG TGGTGAATC ACAGCTCACT GCAGCCCTA GAGCGGCCGC
 3661 CACCGCGGTG GAGCTCAAAT TCGCCCTATA GTGAGTCGTA TTACAATTCA CTGGCCGTG TTTTACAACG
 3731 TCGTGAATGG GAAAACCTG GCGTTACCCA ACTTAATCGC CTTGCGACAC ATCCCCCTT CGCCAGCTGG
 3801 CGTAATAGCG AAGAGGCCCG CACCGATCGC CCTTCCCAAC AGTTGCCAG CCTGAATGGC GAATGGCGCG
 3871 AAATTGTAAGA CGTTAATATT TTGTTAAAT TCGCGTAAA TTTTGTAA ATCAGCTCAT TTTTAACCA
 3941 ATAGGCCGAA ATCGGCAAA TCCCTTATAA ATCAAAAGAA TAGACCGAGA TAGGGTTGAG TGGTGTCCCA
 4011 GTTTGGAACA AGAGTCCACT ATTAAGAAC GTGGACTCCA ACGTCAAAGG GCGAAAACC GTCTATCAGG
 4081 GCGATGGCCC ACTACGTGAA CCATCACCCCT AATCAAGTTT TTTGGGTGAG AGGTGCCGTA AAGCACTAAA
 4151 TCGGAACCCCT AAAGGGAGCC CCCGATTAG AGTTGACGG GGAAAGCCGG CGAACGTGGC GAGAAAGGAA
 4221 GGGAGAAAG CGAAAGGAGC GGGCGCTAGG GCGCTGGCAA GTGTAGCGGT CACGCTGCGC GTAACCACCA
 4291 CACCCGCCGC GCTTAATGCG CCGCTACAGG GCGCTGCCA GGTGGCACTT TTCGGGAAA TGTGCGCGGA
 4361 ACCCTATTGTTT CTTTATTCTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA

Figure 14C

Replacement Sheet

18/18

4431 TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT GTCGCCCTTA TTCCCTTTT
 4501 TGCAGCATT TGCTTCTG TTTTGCTCA CCCAGAACG CTGGTAAAG TAAAAGATGC TGAAGATCAG
 4571 TTGGGTGCAC GAGTGGGTTA CATCGAACTG GATCTCAACA CGGGTAAGAT CCTTGAGAGT TTTCGCCCCG
 4641 AAGAACGTTT TCCAATGATG AGCAGTTTA AAGTCTGCT ATGTGGCGC GTATTATCCC GTATTGACGC
 4711 CCGGCAAGAG CAACTCGGTG GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC ACCAGTCACA
 4781 GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCCTGC CATAACCATG AGTGATAACA
 4851 CTGCGGCCAA CTTACTCTG ACAACGATCG GAGGACCGAA GGAGCTAAC GCTTTTTGC ACAACATGGG
 4921 GGATCATGTA ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA TACCAAACGA CGAGCGTGAC
 4991 ACCACGATGC CTGTAGCAAT GGCAACAACG TTGCGAAAC TATTAACCTGG CGAAGTACTT ACTCTAGCTT
 5061 CCCGGCAACA ATTAATAGAC TGGATGGAGG CGGATAAAAGT TGCAGGACCA CTTCTGCCTCG CCGCCCTTCC
 5131 GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG CGTGGGTCTC CGGGTATCAT TGCAGCACTG
 5201 GGGCCAGATG GAAAGCCCTC CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC
 5271 GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA CTGTAGCACC AAGTTTACTC
 5341 ATATATACTT TAGATTGATT TAAAATTCTCA TTTTTAATT AAAAGGATCT AGGTGAAGAT CCTTTTTGAT
 5411 ATATCTCATGA CAAAATCCC TAAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCGTA GAAAAGATCA
 5481 AAGGATCTTC TTGAGATCCT TTTTTCTGC CGCTAATCTG CTGTTGCAA AAAAAAAAC CACCGCTACC
 5551 AGCGGTGGTT TGTGCGCCG ATCAAGAGCT ACCAACTCTT TTTCGAAGG TAATCGCTT CAGCAGAGCG
 5621 CAGATAACAA ATACTGCTCT TCTAGTGTAG CGTAGTTAG GCCACCACT CAAGAACTCT GTAGCACCGC
 5691 CTACATACCT CGCTCTGCTA ATCCGTAC CAGTGGCTGC TGCCAGTGGC GATAAGTCGT GTCTTACCGG
 5761 GTTGGACTCA AGACGATAGT TACCGGATAA GCGCCAGCGG TCGGGCTGAA CGGGGGTTTC GTGCACACAG
 5831 CCCAGCTGG AGCGAACGAC CTACACCAGA CTGAGATACC TACAGCTGA GCTATGAGAA AGCGCCACGC
 5901 TTCCCGAAGG GAGAAAGGCG GACAGGTATC CGGTAAGCGG CAGGGTCCGA ACAGGAGAGC GCACGGGGA
 5971 GCTTCCAGGG GGAAACGCCG GGTATCTTTA TACTCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCA
 6041 TTTTTGTGAT GCTCGTCAGG GGGGGGGAGC CTATGGAAAA ACGCCAGCA CGCGCCCTTT TTACGGTTCC
 6111 TGGCCTTTTG CTGGCCTTT GCTCACATGT TCTTCCTGC GTTATCCCT GATTCTGTGG ATAACCGTAT
 6181 TACCGCCTTT GAGTGAGCTG ATACCCTCG CGCAGCCGA ACGACCAGC GCAGCGAGTC AGTGAGCGAG
 6251 GAAGCGGAAG AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTATTAA TGCAGCTGGC
 6321 ACGACAGGTT TCCCAGCTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAAT GTGAGTTAGC TCACTCATTA
 6391 GGCACCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGAA TTGTGAGCGG ATAACAATT
 6461 CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTCG GAATTAAACCC TCACTAAAGG GAACAAAAGC
 PstI (6533)
 6531 TGCTGCAGGG TCCCTAACTG CCAAGCCCCA CAGTGTGCC TGAGGCTGCC CCTTCCTCT AGCGGCTGCC
 6601 CCCACTCGGC TTGCTTCTC CTAGTTCAAG TTACTTGCCTC TCAGCCAAGG TCTGAAACTA GGTCGCGACA
 6671 GAGCGGTAAG ACTGCGAGAG AAAGAGACCA GCTTACAGG GGGTTTATCA CAGTGCACCC TGACAGTCG
 6741 CAGCCTCACCA GGGGGTTTAC CACATTGCAC CCTGACAGTC GTCAGCCTCA CAGGGGGTTT ATCACAGTGC
 6811 ACCCTTACAA TCATTCCATT TGATTCACAA TTTTTTGTG CTCTACTGTG CCTAACCTGT AAGTTAAATT
 6881 TGATCAGAGG TGTGTTCCA GAGGGAAAA CAGTATATAC AGGGTTCACT ACTATCGCAT TTCAAGGCCTC
 6951 CACCTGGTC TTGGAATGTG TCCCCCGAGG GGTGATGACT ACCTCAGTTG GATCTCCACA GGTCACAGTG
 7021 ACACAAAGATA ACCAACACAC CTCCCAAGGC TACCAACATG GGCCGCCCTC CACGTGCACA TGGCCGGAGG
 7091 AACTGCCATG TCGGAGGTGC AAGCACACCT CGGCATCAGA GTCCCTGGTG TGGAGGGAGG GACCAGCGCA
 7161 GCTTCCAGCC ATCCACCTGA TGAACAGAAC CTAGGGAAAG CCCCCAGTTCT ACTTACACCA GGAAAGGC

Figure 14D