CS 498ABD: Algorithms for Big Data, Spring 2019

Priority Sampling

Lecture 20 April 4, 2019

Chandra (UIUC) CS498ABD 1 Spring 2019 1 / 12

Sampling for data reduction

- X set of n points in the plane a_1, a_2, \ldots, a_n .
- Want to answer queries of the form: given some shape *C* (say circles), how many point inside *C*?
- standard data structures or brute force linear search say

Sampling for data reduction

- X set of n points in the plane a_1, a_2, \ldots, a_n .
- Want to answer queries of the form: given some shape *C* (say circles), how many point inside *C*?
- standard data structures or brute force linear search say

Question: Suppose n is too large and we can only store k points for some k < n.

Sampling approach:

- S sample of size k (with replacement). Store only S
- Given query C, compute $|C \cap S|$. What should we report as an estimate for $|C \cap X|$?

Sampling for data reduction

- X set of n points in the plane a_1, a_2, \ldots, a_n .
- Want to answer queries of the form: given some shape *C* (say circles), how many point inside *C*?
- standard data structures or brute force linear search say

Question: Suppose n is too large and we can only store k points for some k < n.

Sampling approach:

- S sample of size k (with replacement). Store only S
- Given query C, compute $|C \cap S|$. What should we report as an estimate for $|C \cap X|$? $\frac{n}{k}|S \cap X|$ which is an unbiased estimator

Weighted case

- X set of n points in the plane a_1, a_2, \ldots, a_n . Each point a_i has a non-negative weight w_i
- Want to answer queries of the form: given some shape *C* (say circles), what is weight of point inside *C*?

Question: Suppose n is too large and we can only store k points for some k < n.

Sampling approach?

Weighted case

- X set of n points in the plane a_1, a_2, \ldots, a_n . Each point a_i has a non-negative weight w_i
- Want to answer queries of the form: given some shape *C* (say circles), what is weight of point inside *C*?

Question: Suppose n is too large and we can only store k points for some k < n.

Sampling approach?

- Easy to see that uniform sampling is not ideal
- Sample in proportion to weight? Say a_i sampled with $p_i = w_i/W$ where $W = \sum_i w_i$.
- What do we set the weight of the sampled points to? Can we control sample size? What is the variance?

- Decide sampling probabilities p_1, p_2, \ldots, p_n
- Choose a_i independently with probability p_i and if i is chosen set $\hat{w}_i = w_i/p_i$. If i is not chosen we implicitly set $\hat{w}_i = 0$.

- Decide sampling probabilities p_1, p_2, \ldots, p_n
- Choose a_i independently with probability p_i and if i is chosen set $\hat{w}_i = w_i/p_i$. If i is not chosen we implicitly set $\hat{w}_i = 0$.
- For any i, $\mathbf{E}[\hat{w_i}] = w_i$.

- Decide sampling probabilities p_1, p_2, \ldots, p_n
- Choose a_i independently with probability p_i and if i is chosen set $\hat{w}_i = w_i/p_i$. If i is not chosen we implicitly set $\hat{w}_i = 0$.
- For any i, $E[\hat{w}_i] = w_i$. Hence for any C, $E[\hat{w}(C \cap S)] = E[w(C \cap S)]$.

- Decide sampling probabilities p_1, p_2, \ldots, p_n
- Choose a_i independently with probability p_i and if i is chosen set $\hat{w}_i = w_i/p_i$. If i is not chosen we implicitly set $\hat{w}_i = 0$.
- For any i, $E[\hat{w}_i] = w_i$. Hence for any C, $E[\hat{w}(C \cap S)] = E[w(C \cap S)]$.

Question: How should we choose p_i 's?

- Decide sampling probabilities p_1, p_2, \ldots, p_n
- Choose a_i independently with probability p_i and if i is chosen set $\hat{w}_i = w_i/p_i$. If i is not chosen we implicitly set $\hat{w}_i = 0$.
- For any i, $E[\hat{w}_i] = w_i$. Hence for any C, $E[\hat{w}(C \cap S)] = E[w(C \cap S)]$.

Question: How should we choose p_i's?

- Choose to reduce variance for queries of interest (depends on queries)
- Expected number of chosen points is $\sum_{i} p_{i}$ and hence choose p_{i} 's to roughly meet the memory bound.

Importance Sampling in Streaming Setting

Setting:

- points a_1, \ldots, a_n with weights arriving in stream
- have a memory size of k
- want to maintain a k-sample (to utilize memory as well as possible) such that we can estimate $w(C \cap X)$ accurately

Chandra (UIUC) CS498ABD 5 Spring 2019 5 / 12

[Duffield, Lund, Thorup]

- Queries are arbitrary subset sums so no structure there to exploit
- Focus on streaming aspect and using memory

Chandra (UIUC) CS498ABD 6 Spring 2019 6 / 12

[Duffield, Lund, Thorup]

- Queries are arbitrary subset sums so no structure there to exploit
- Focus on streaming aspect and using memory

Scheme:

- For each $i \in [n]$ set priority $q_i = w_i/u_i$ where u_i is chosen uniformly (and independently from other items) at random from [0,1].
- \bigcirc S is the set of items with the k highest priorities.
- **3** au is the (k+1)'st highest priority. If $k \geq n$ we set au = 0.
- If $i \in S$, set $\hat{w}_i = \max\{w_i, \tau\}$, else set $\hat{w}_i = 0$.

[Duffield,Lund,Thorup]

- Queries are arbitrary subset sums so no structure there to exploit
- Focus on streaming aspect and using memory

Scheme:

- For each $i \in [n]$ set priority $q_i = w_i/u_i$ where u_i is chosen uniformly (and independently from other items) at random from [0,1].
- \bullet τ is the (k+1)'st highest priority. If $k \geq n$ we set $\tau = 0$.
- \bullet If $i \in S$, set $\hat{w}_i = \max\{w_i, \tau\}$, else set $\hat{w}_i = 0$.

Claim: Can maintain S, τ in streaming setting

Chandra (UIUC) CS498ABD 6 Spring 2019

Intuition: from uniform weight case

- Suppose $w_i = 1$ for all i. Then sampling k without repetition can be done via adaptation of reservoir sampling.
- A different approach: pick a uniformly random $r_i \in [0, 1]$ for each i. And pick top k in terms of r_i values (simulates random permutation) but can be done in streaming fashion. Many other distributions would work too and picking top k according to $1/r_i$ works too.
- Why $1/r_i$? What is the expected value of τ ?

Priority Sampling: Properties

Lemma

 $\mathsf{E}[\hat{w}_i] = w_i.$

Priority Sampling: Properties

Lemma

$$\mathbf{E}[\hat{w}_i] = w_i$$

```
Fix i. Let A(\tau') be the event that the k'th highest priority among items j \neq i is \tau'. Note that i \in S if q_i = w_i/u_i \geq \tau' and if i \in S then \hat{w}_i = \max\{w_i, \tau'\}, otherwise \hat{w}_i = 0. To evaluate \Pr[i \in S \mid A(\tau')] we consider two cases. Case 1: w_i > \tau'. Here we have \Pr[i \in S \mid A(\tau')] = 1 and
```

Case 1: $w_i \ge \tau'$. Here we have $\Pr[i \in S \mid A(\tau')] = 1$ and $\hat{w}_i = w_i$.

Case 2: $w_i < \tau'$. Then $\Pr[i \in S \mid A(\tau')] = \frac{w_i}{\tau'}$ and $\hat{w}_i = \tau'$. In both cases we see that $E[\hat{w}_i] = w_i$.

Variance

Lemma

$$Var[\hat{w}_i] = \mathsf{E}[\hat{v}_i]$$
 where $\hat{v}_i = \{egin{array}{l} au \max\{0, au - w_i\} & \textit{if } i \in S \ 0 & \textit{if } i
ot\in S \ \end{array} \}$

Chandra (UIUC) CS498ABD 9 Spring 2019 9 / 12

Variance

Lemma

$$Var[\hat{w}_i] = \mathsf{E}[\hat{v}_i]$$
 where $\hat{v}_i = \{egin{array}{l} au \ \max\{0, au - w_i\} \ & ext{if } i \in S \ \ & ext{if } i
otin S \ \ \end{array} \}$

Fix *i*. We define $A(\tau')$ to be the event that τ' is the *k*'th highest priority among elements $j \neq i$.

Show that

$$E[\hat{v}_i \mid A(\tau')] = E[\hat{w}_i^2 \mid A(\tau')] - w_i^2.$$

Since u_i is independent of au' we can remove conditioning

Chandra (UIUC) CS498ABD 9 Spring 2019 9

Variance

$$E[\hat{v}_i \mid A(\tau')] = E[\hat{w}_i^2 \mid A(\tau')] - w_i^2.$$

$$E[\hat{v}_{i} \mid A(\tau')] = Pr[i \in S \mid A(\tau')] \times E[\hat{v}_{i} \mid i \in S \land A(\tau')]$$

$$= \min\{1, w_{i}/\tau'\} \times \tau' \max\{0, \tau' - w_{i}\}$$

$$= \max\{0, w_{i}\tau' - w_{i}^{2}\}.$$

Chandra (UIUC) CS498ABD 10 Spring 2019 10 / 12

$$E[\hat{v}_i \mid A(\tau')] = E[\hat{w}_i^2 \mid A(\tau')] - w_i^2.$$

$$E[\hat{v}_{i} \mid A(\tau')] = Pr[i \in S \mid A(\tau')] \times E[\hat{v}_{i} \mid i \in S \land A(\tau')]$$

$$= \min\{1, w_{i}/\tau'\} \times \tau' \max\{0, \tau' - w_{i}\}$$

$$= \max\{0, w_{i}\tau' - w_{i}^{2}\}.$$

$$E[\hat{w}_i^2 \mid A(\tau')] = Pr[i \in S \mid A(\tau')] \times E[\hat{w}_i^2 \mid i \in S \land A(\tau')]$$

$$= \min\{1, w_i/\tau'\} \times (\max\{w_i, \tau'\})^2$$

$$= \max\{w_i^2, w_i\tau'\}.$$

Chandra (UIUC) CS498ABD 10 Spring 2019 10 / 12

Lemma

If $k \geq 2$ for any $i \neq j$, $E[\hat{w}_i \hat{w}_j] = w_i w_j$.

More generally

Lemma

Fix any set $C \subset [n]$. $\mathbf{E}[\prod_{i \in C} \hat{w}_i] = \prod_{i \in C} w_i$ if $|C| \leq k$ and is $\mathbf{0}$ if |C| > k.

Lemma

If $k \geq 2$ for any $i \neq j$, $E[\hat{w}_i \hat{w}_j] = w_i w_j$.

More generally

Lemma

Fix any set $C \subset [n]$. $\mathbf{E}[\prod_{i \in C} \hat{w}_i] = \prod_{i \in C} w_i$ if $|C| \leq k$ and is $\mathbf{0}$ if |C| > k.

Requires a proof by induction. See notes

Lemma

If $k \geq 2$ for any $i \neq j$, $E[\hat{w}_i \hat{w}_j] = w_i w_j$.

More generally

Lemma

Fix any set $C \subset [n]$. $\mathbf{E}[\prod_{i \in C} \hat{w}_i] = \prod_{i \in C} w_i$ if $|C| \leq k$ and is $\mathbf{0}$ if |C| > k.

Requires a proof by induction. See notes

Why is this interesting/non-obvious? In vanilla importance sampling the variables \hat{w}_i are independent. However, here the variables are correlated because we choose exactly k. Nevertheless, they exhibit properties similar to independence.

Spring 2019

11 / 12

Lemma

If $k \geq 2$ for any $i \neq j$, $E[\hat{w}_i \hat{w}_j] = w_i w_j$.

Consequence:

- Fix C. Unbiased estimator of $w(C \cap X)$ is $\hat{w}(C \cap S)$.
- Can we know the variance of the estimate to know if we are doing ok?
- $Var[\hat{w}(C \cap X)] = \sum_{i \in C \cap S} Var[\hat{w}_i] = \sum_{i \in C \cap S} E[v_i]$. Hence, storing τ and \hat{w}_i values suffices to estimate the variance of the estimate.