Considere o seguinte problema de programação inteira e a solução ótima da respetiva relaxação linear:

max 
$$2x_1 + 2x_2$$
  
suj.  $3x_1 + 2x_2 \le 6$   
 $3x_1 - 2x_2 \ge 0$   
 $x_1, x_2 \ge 0$  e inteiros

|       | $x_1$ | $x_2$ | $s_1$ | $s_2$ |     |
|-------|-------|-------|-------|-------|-----|
| $x_1$ | 1     | 0     | 1/6   | -1/6  | 1   |
| $x_2$ | 0     | 1     | 1/4   | 1/4   | 3/2 |
|       | 0     |       |       | 1/6   | 5   |

Na prática, para a solução de problemas de programação inteira, é frequente recorrer a métodos que combinam o uso de planos de corte com *branch and bound*. Determine a solução ótima (ou uma das soluções ótimas) deste problema de programação inteira, utilizando o método a seguir indicado:

- a) Introduza apenas 1 plano de corte.
- b) Determine a equação do plano de corte em função das variáveis de decisão do problema original.
- c) Partindo da solução obtida na alínea a), prossiga, utilizando o método de branch and bound.

14.1 max 
$$2x_1 + 2x_2$$
  
suj.  $3x_1 + 2x_2 \le 6$   
 $3x_1 - 2x_2 \ge 0$   
 $x_1, x_2 \ge 0$  e inteiros

|       | $x_1$ | $x_2$ | $s_1$ | $s_2$ |     |   |             |
|-------|-------|-------|-------|-------|-----|---|-------------|
| $x_1$ | 1     | 0     | 1/6   | -1/6  | 1   | - |             |
| $x_2$ | 0     | 1     | 1/4   | 1/4   | 3/2 |   | Fracionário |
|       | 0     | 0     | 5/6   | 1/6   | 5   | - |             |

Plano gerador de corte:

$$x_2 + \frac{1}{4}s_1 + \frac{1}{4}s_2 = \frac{3}{2}$$

Parte fracionária  $\rightarrow$  plano de corte:  $\frac{1}{4}s_1 + \frac{1}{4}s_2 \ge \frac{1}{2}$ 

$$\frac{1}{4}s_1 + \frac{1}{4}s_2 \ge \frac{1}{2}$$

 $Restrição \ge$ é  $necessário \ transformar \ em \le trocando \ os <math>sinais \ todos: -\frac{1}{4}s_1 - \frac{1}{4}s_2 \le -\frac{1}{2}$ 

Incluir plano de corte no quadro simplex:  $\chi_1$ 



14.1 max  $2x_1 + 2x_2$ suj.  $3x_1 + 2x_2 \le 6$   $3x_1 - 2x_2 \ge 0$  $x_1, x_2 \ge 0$  e inteiros

|       | $x_1$ |   | $s_1$ |             |     |
|-------|-------|---|-------|-------------|-----|
| $x_1$ | 1     | 0 | 1/6   | -1/6<br>1/4 | 1   |
| $x_2$ | 0     | 1 | 1/4   | 1/4         | 3/2 |
|       | 0     | 0 | 5/6   | 1/6         | 5   |

|                   | $x_1$ | $x_2$ | $s_1$                     | $s_2$ | $S_3$          |               |
|-------------------|-------|-------|---------------------------|-------|----------------|---------------|
| $x_1$ $x_2$ $s_2$ | 1     | 0     | 1/ <sub>3</sub><br>0<br>1 | 0     | $-\frac{2}{3}$ | $\frac{4}{3}$ |
| $x_2$             | 0     | 1     | 0                         | 0     | 1              | 1             |
| $s_2$             | 0     | 0     | 1                         | 1     | <b>-4</b>      | 2             |
|                   | 0     | 0     | $^{2}/_{3}$               | 0     | $^{2}/_{3}$    | $14/_{3}$     |

D) equação do plano de corte em função das variáveis de decisão do problema original

Plano de corte:  $\frac{1}{4}s_1 + \frac{1}{4}s_2 \ge \frac{1}{2}$ 

Substituindo na inequação:

$$\frac{1}{4}(6 - 3x_1 - 2x_2) + \frac{1}{4}(3x_1 - 2x_2) \ge \frac{1}{2}$$

$$\Leftrightarrow \frac{6}{4} - \frac{3}{4}x_1 - \frac{2}{4}x_2 + \frac{3}{4}x_1 - \frac{2}{4}x_2 \ge \frac{1}{2}$$

$$\Leftrightarrow -x_2 \ge \frac{1}{2} - \frac{3}{2}$$

$$\Leftrightarrow -x_2 \ge -1$$

$$\Leftrightarrow x_2 \le 1$$

C.A.

$$3x_1 + 2x_2 + s_1 = 6 \iff s_1 = 6 - 3x_1 - 2x_2$$

$$-3x_1 + 2x_2 + s_2 = 0 \iff s_2 = 3x_1 - 2x_2$$

C) Partindo da solução obtida na alínea a) -> o método de *branch and bound* Da a) temos:

|                                                   | <b>,</b> |       |             |       | Ī              |             |
|---------------------------------------------------|----------|-------|-------------|-------|----------------|-------------|
|                                                   | $x_1$    | $x_2$ | $s_1$       | $S_2$ | $S_3$          |             |
| $x_1$                                             |          |       | $^{1}/_{3}$ |       | $-\frac{2}{3}$ | $^{4}/_{3}$ |
| $x_2$                                             | 0        | 1     | 0           | 0     | 1              |             |
| $egin{array}{c} x_2 \ oldsymbol{s_2} \end{array}$ | 0        | 0     | 0<br>1      | 1     | -4             | 2           |
|                                                   | 0        | 0     | $^{2}/_{3}$ | 0     | $^{2}/_{3}$    | $14/_{3}$   |



$$x_1 + \frac{1}{3}s_1 - \frac{2}{3}s_3 = \frac{4}{3}$$

$$\Leftrightarrow x_1 = \frac{4}{3} - \frac{1}{3}s_1 + \frac{2}{3}s_3$$

$$\frac{4}{3} - \frac{1}{3}s_1 + \frac{2}{3}s_3 \ge 2$$

$$\Leftrightarrow -\frac{1}{3}s_1 + \frac{2}{3}s_3 \ge \frac{2}{3}$$

$$\Leftrightarrow \frac{1}{3}s_1 - \frac{2}{3}s_3 \le -\frac{2}{3}$$

Novo plano de corte a acrescentar ao simplex

C) Partindo da solução obtida na alínea a) -> o método de *branch and bound* Da a) temos:

|       | -     |       |               |       |                |       |                |              |             |
|-------|-------|-------|---------------|-------|----------------|-------|----------------|--------------|-------------|
|       | $x_1$ | $x_2$ | $s_1$         | $S_2$ | $S_3$          | $S_4$ |                | z = 2        | 14/3        |
| $x_1$ | 1     | 0     | 1/3           | 0     | $-\frac{2}{3}$ | 0     | $^{4}/_{3}$    | -            | 4/3         |
| $x_2$ | 0     | 1     | 0             | 0     | 1              | 0     | 1              | $\chi_2$     |             |
| $s_2$ | 0     | 0     | 1             | 1     | 4              | 0     | 2              | 1            | w > 2       |
| $S_4$ | 0     | 0     | $\frac{1}{3}$ | 0     | $-\frac{2}{3}$ | 1     | $-\frac{2}{3}$ | $c_1 \leq 1$ | $x_1 \ge 2$ |
|       | 0     | 0     | $^{2}/_{3}$   | 0     | $\frac{2}{3}$  | 9/    | $\frac{14}{3}$ | _            | \           |
|       |       |       |               |       |                |       | Elemento       |              |             |
| Sim   | plex  | Dual  |               |       |                |       | Pivot          |              |             |

$$\frac{1}{3}s_1 - \frac{2}{3}s_3 \le -\frac{2}{3}$$

C) Partindo da solução obtida na alínea a)  $\rightarrow$  o método de *branch and bound* Da a) temos:

|       | $x_1$ | $x_2$ | $s_1$          | $S_2$ | $S_3$ | $S_4$          |   |
|-------|-------|-------|----------------|-------|-------|----------------|---|
| $x_1$ | 1     | 0     | 0              | 0     | 0     | -1             | 2 |
| $x_2$ | 0     | 1     | $-\frac{1}{2}$ | 0     | 0     | -1 $3/2$ $-6$  | 0 |
| $s_2$ | 0     | 0     | -1             | 1     | 0     | -6             | 6 |
| $S_3$ | 0     | 0     | $-\frac{1}{2}$ | 0     | 1     | $-\frac{3}{2}$ | 1 |
|       | 0     | 0     | 1              | 0     | 0     | 1              | 4 |

Solução inteira!! (1º solução incumbente de valor 4)



Nova restrição de partição a acrescentar ao simplex da alínea a)

C) Partindo da solução obtida na alínea a) -> o método de *branch and bound* Da a) temos:



$$\frac{1}{3}s_1 - \frac{2}{3}s_3 \le -\frac{1}{3}$$

#### Da a) temos:

|       | $x_1$ | $x_2$ | $S_1$ | $S_2$ | $S_3$             | $S_4$      |   |
|-------|-------|-------|-------|-------|-------------------|------------|---|
| $x_1$ | 1     | 0     | 0     | 0     | 0                 | 1          | 1 |
| $x_2$ | 0     | 1     | 0     | 0     | 1                 | 0          | 1 |
| $S_2$ | 0     | 0     | 0     | 1     | 6                 | <b>-</b> 3 | 1 |
| $s_1$ | 0     | 0     | 1     | 0     | 0<br>1<br>6<br>-2 | <b>-</b> 3 | 1 |
|       | 0     | 0     | 1     | 0     | 0                 | 1          | 4 |
|       |       |       |       |       |                   |            |   |



Da relaxação linear → enunciado

 $x_1 \le 1$ 



$$\frac{1}{3}s_1 - \frac{2}{3}s_3 \le -\frac{1}{3}$$

 $x_1 \ge 2$ 

Árvore toda explorada!

Solução inteira!!

(valor da solução = incumbente) → 2 soluções alternativas