

ESP-12F WiFi 模块

规格书

版本 1.0

2015年8月23日

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

目录

1. 产品概述	2
1.1. 特点	3
1.2. 主要参数	4
2. 接口定义	5
3. 外型与尺寸	7
4. 功能描述	9
4.1. MCU	9
4.2. 存储描述	9
4.3. 晶振	9
4.4. 接口说明	10
4.5. 最大额定值	11
4.6. 建议工作环境	11
4.7. 数字端口特征	11
5. RF 参数	12
6. 功耗	13
7. 倾斜升温	14
8. 原理图	15
9. 产品试用	16

邮箱:2355526548@qq.com

1. 产品概述

ESP-12F WiFi 模块是由安信可科技开发的,该模块核心处理器 ESP8266 在较小尺寸封装中集成了业界领先的 Tensilica L106 超低功耗 32 位微型 MCU,带有 16 位精简模式,主频支持 80 MHz 和 160 MHz,支持 RTOS,集成 Wi-Fi MAC/BB/RF/PA/LNA,板载天线。

该模块支持标准的 IEEE802.11 b/g/n 协议,完整的 TCP/IP 协议栈。用户可以使用该模块为现有的设备添加联网功能,也可以构建独立的网络控制器。

ESP8266 是高性能无线 SOC,以最低成本提供最大实用性,为 WiFi 功能嵌入其他系统提供无限可能。

图 1 ESP8266EX 结构图

ESP8266EX 是一个完整且自成体系的 WiFi 网络解决方案,能够独立运行,也可以作为从机搭载于其他主机 MCU 运行。ESP8266EX 在搭载应用并作为设备中唯一的应用处理器时,能够直接从外接闪存中启动。内置的高速缓冲存储器有利于提高系统性能,并减少内存需求。

另外一种情况是,ESP8266EX 负责无线上网接入承担 WiFi 适配器的任务时,可以将其添加到任何基于微控制器的设计中,连接简单易行,只需通过 SPI /SDIO 接口或 I2C/UART 口即可。

ESP8266EX 强大的片上处理和存储能力,使其可通过 GPIO 口集成传感器及其他应用的特定设备,实现了最低前期的开发和运行中最少地占用系统资源。

ESP8266EX 高度片内集成,包括天线开关 balun、电源管理转换器,因此仅需极少的外部电路,且包括前端模组在内的整个解决方案在设计时将所占 PCB 空间降到最低。

有 ESP8266EX 的系统表现出来的领先特征有:节能在睡眠/唤醒模式之间的快速切换、配合低功率操作的自适应无线电偏置、前端信号的处理功能、故障排除和无线电系统共存特性为消除蜂窝/蓝牙/DDR/LVDS/LCD 干扰。

1.1. 特点

- 802.11 b/g/n
- 内置 Tensilica L106 超低功耗 32 位微型 MCU, 主频支持 80 MHz 和 160 MHz, 支持 RTOS
- 内置 10 bit 高精度 ADC
- 内置 TCP/IP 协议栈
- 内置 TR 开关、balun、LNA、功率放大器和匹配网络
- 内置 PLL、稳压器和电源管理组件,802.11b 模式下+20 dBm 的输出功率
- A-MPDU 、 A-MSDU 的聚合和 0.4 s 的保护间隔
- WiFi @ 2.4 GHz , 支持 WPA/WPA2 安全模式
- 支持 AT 远程升级及云端 OTA 升级
- 支持 STA/AP/STA+AP 工作模式
- 支持 Smart Config 功能 (包括 Android 和 iOS 设备)
- HSPI 、UART、I2C、I2S、IR Remote Control、PWM、GPIO
- 深度睡眠保持电流为 10 uA, 关断电流小于 5 uA
- 2 ms 之内唤醒、连接并传递数据包
- 待机状态消耗功率小于 1.0 mW (DTIM3)
- 工作温度范围:-40℃-125℃

1.2. 主要参数

表 1 介绍了该模组的主要参数。

表 1 参数表口

类别	参数	说明	
	标准认证	FCC/CE/TELEC	
无线参数	无线标准	802.11 b/g/n	
	频率范围	2.4GHz-2.5GHz (2400M-2483.5M)	
	¥6404÷ C	UART/HSPI/I2C/I2S/Ir Remote Contorl	
	数据接口	GPIO/PWM	
	工作电压	3.0~3.6V (建议 3.3V)	
7 7.	工作电流	平均值: 80mA	
硬件参数	工作温度	-40°~125°	
	存储温度	常温	
	封装大小	16mm * 24mm * 3mm	
	外部接□	N/A	
	无线网络模式	station/softAP/SoftAP+station	
	安全机制	WPA/WPA2	
	加密类型	WEP/TKIP/AES	
	升级固件	本地串口烧录 / 云端升级 / 主机下载烧录	
软件参数	<i>*b</i> /#.T.#	支持客户自定义服务器	
	软件开发	提供 SDK 给客户二次开发	
	网络协议	IPv4, TCP/UDP/HTTP/FTP	
	用户配置	AT+ 指令集, 云端服务器, Android/iOS APP	

2. 接口定义

ESP-12F 共接出 18 个接口,表 2 是接口定义。

表 2 **ESP-12F** 管脚功能定义

序号	Pin 脚名称	功能说明
1	RST	复位模组
2	ADC	A/D 转换结果。输入电压范围 0~1V,取值范围:0~1024
3	EN	芯片使能端, 高电平有效
4	IO16	GPIO16; 接到 RST 管脚时可做 deep sleep 的唤醒。
5	IO14	GPIO14; HSPI_CLK
6	IO12	GPIO12; HSPI_MISO
7	IO13	GPIO13; HSPI_MOSI; UART0_CTS
8	VCC	3.3V 供电
9	CS0	片选
10	MISO	从机输出主机输入

11	109	GPIO9
12	IO10	GBIO10
13	MOSI	主机输出从机输入
14	SCLK	时钟
15	GND	GND
16	IO15	GPIO15; MTDO; HSPICS; UART0_RTS
17	IO2	GPIO2; UART1_TXD
18	IO0	GPIO0
19	104	GPIO4
20	IO5	GPIO5
21	RXD	UARTO_RXD; GPIO3
22	TXD	UART0_TXD; GPIO1

表 3 引脚模式

模式	GPIO15	GPIO0	GPIO2		
UART 下载模式	低	低	高		
Flash Boot 模式	低	高	高		

表4接收灵敏度口

参数	最小小值	典型值	最大值	単位
输入频率	2412		2484	MHz
输入电阻		50		Ω
输入反射			-10	dB
72.2 Mbps 下 , PA 的输出功率	14	15	16	dBm

11b 模式下, PA 的输出功率	17.5	18.5	19.5	dBm
灵敏度				
DSSS, 1 Mbps		-98		dBm
CCK, 11 Mbps		-91		dBm
6 Mbps (1/2 BPSK)		-93		dBm
54 Mbps (3/4 64-QAM)		-75		dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)		-72		dBm
邻频抑制				
OFDM, 6 Mbps		37		dB
OFDM, 54 Mbps		21		dB
HT20, MCS0		37		dB
HT20, MCS7		20		dB

3. 外型与尺寸

ESP-12F 贴片式模组的外观尺寸寸为 16mm * 24mm * 3mm (如图 3 所示)。该模组采用的是容量为 4MB , 封装为 SOP-210 mil 的 SPI Flash。模组使用的是 3 DBi 的 PCB 板载天线。

图 3 ESP-12F 模组外观

图 4 ESP-12F 模组尺寸平面面图

表 5 ESP-12F 模组尺寸对照表

长	宽	高	PAD 尺寸(底部)	Pin 脚间距
16 mm	24 mm	3 mm	0.9 mm x 1.7 mm	2 mm

4. 功能描述

4.1. MCU

ESP8266EX 内置 Tensilica L106 超低功耗 32 位微型 MCU,带有 16 位精简模式,主频支持 80 MHz 和 160 MHz,支持 RTOS。目前 WiFi 协议栈只用了 20%的 MIPS,其他的都可以用来做应用开发。MCU 可通过以下接口和芯片其他部分协同工作:

- 1.连接存储控制器、也可以用来访问外接闪存的编码 RAM/ROM 接口 (iBus)
- 2.同样连接存储控制器的数据 RAM 接口 (dBus)
- 3.访问寄存器的 AHB 接口

4.2. 存储描述

4.2.1. 内置 SRAM 与 ROM

ESP8266EX 芯片自身内置了存储控制器,包含 ROM 和 SRAM。MCU 可以通过 iBus、dBus 和 AHB 接口访问存储控制器。这些接口都可以访问 ROM 或 RAM 单元,存储仲裁器以到达顺序确定运行顺序。基于目前我司 Demo SDK 的使用 SRAM 情况,用户可用剩余 SRAM 空间为:RAM size < 36kB(station 模式下,连上路由后,heap+data 区大致可用 36KB 左右。)目前 ESP8266EX 片上没有 programmable ROM,用户程序存放在 SPI Flash 中。

4.2.2. SPI Flash

当前 ESP8266EX 芯片支持使用 SPI 接口的外置 Flash, 理论上最大可支持到 16 MB 的 SPI flash。目前该模组外接的是 4MB 的 SPI Flash。

建议 Flash 容量: 1 MB-16MB。

支持的 SPI 模式:支持 Standard SPI、Dual SPI、DIO SPI、QIO SPI,以及 Quad SPI。注意,在下载固件时需要在下载工具中选择对应模式,否则下载后程序将无法得到正确的运行。

4.3. 晶振

目前晶体 40M, 26M及 24M 均支持,使用时请注意在下载工具中选择对应晶体类型。晶振输入输出所加的对地调节电容 C1、C2 可不设为固定值,该值范围在 6pF~22pF,具体值需要通过对系统测试后进行调节确定。基于目前市场中主流晶振的情况,一般 26Mhz 晶振的输入输出所加电容 C1、C2 在10pF以内;一般 40MHz 晶振的输入输出所加电容 10pF<C1、C2<22pF。

选用的晶振自身精度需在±10PPM。晶振的工作温度为-20°C-85°C。

晶振位置尽量靠近芯片的 XTAL Pins (走线不要太长),同时晶振走线须用地包起来良好屏蔽。

_

邮箱:2355526548@qq.com

电话:18923720150

晶振的输入输出走线不能打孔走线,即不能跨层。晶振的输入输出走线不能交叉,跨层交叉也不 行。

晶振的输入输出的 bypass 电容请靠近芯片左右侧摆放,尽量不要放在走线上。

晶振下方 4 层都不能走高频数字信号,最佳情况是晶振下方不走任何信号线,晶振 TOP 面的铺通区域越大越好。晶振为敏感器件,晶振周围不能有磁感应器件,比如大电感等。□

4.4. 接口说明

表 6 接口说明

接口名称	管脚	功能说明
HSPI 接□	IO12(MISO), IO13(MOSI), IO14(CLK), IO15(CS)	可外接 4SPI Flash、显示屏和 MCU 等。
PWM 接□	IO12(R), IO15(G),IO13(B)	demo 中提供 4 路 PWM (用户可自行扩展至 8 路),可用来控制彩灯,蜂鸣器,继电器及电机等。
IR 接□	IO14(IR_T), IO5(IR_R)	IR Remote Control4 接口由软件实现,接口使用 NEC 编码及调制解调,采用 38KHz 的调制载波。
ADC 接□	TOUT	可用于检测 VDD3P3 (Pin3,Pin4) 电源电压和 TOUT (Pin6)的输入电压(二者不可同时使用)。可用于传感器等应用。
I2C 接□	IO14(SCL), IO2(SDA)	可外接传感器及显示屏等
UART 接口	UARTO: TXD(U0TXD), RXD(U0RXD), IO15(RTS), IO13(CTS) UART1: IO2(TXD)	可外接 UART 接口的设备。 下载: U0TXD+U0RXD 或者 GPIO2+U0RXD 通信(UART0): U0TXD, U0RXD, MTDO(U0RTS), MTCK(U0CTS) Debug: UART1_TXD(GPIO2)可作为 debug 信息的打印。 UART0 在 ESP8266EX 上电默认会输出一些打印信息。对此敏感的应用,可以使用 UART 的内部引脚交换功能,在初始化的时候,将U0TXD,U0RXD分别与 U0RTS,U0CTS 交换。硬件上将 MTDOMTCK 连接到对应的 外部 MCU 的串口进行通信。

	12S 输入:	
	IO12 (I2SI_DATA) ;	
	IO13 (I2SI_BCK);	
	IO14 (I2SI_WS);	
I2S 接□	12S 输出:	主要用于音频采集、处理和传输。
	IO15 (I2SO_BCK);	
	IO3 (I2SO_DATA);	
	IO2 (I2SO_WS).	

4.5. 最大额定值

表 7 最大大额定值

额定值	条件 值		单位
存储温度		-40 to 125	°C
最大焊接温度	260		°C
供电压	IPC/JEDEC J-STD-020	+3.0 to +3.6	V

4.6. 建议工作环境

表 8 建议工作环境

工作环境	名称	最小值	典型值	最大值	单位
工作温度		-40	20	125	°C
供电电压	VDD	3.0	3.3	3.6	V

4.7. 数字端口特征

表 9 数字端口特征

端口	典型值	最小值	典型值	最大值	単位
输入逻辑电平低	VIL	-0.3		0.25VDD	V

输入逻辑电平高	ViH	0.75VDD	VDD+0.3	V
输出逻辑电平低	Vol	N	0.1VDD	V
输出逻辑电平高	Vон	0.8VDD	N	V

注意:如无特殊说明,测试条件为: VDD = 3.3 V, 温度为 20 ℃。□

5. RF 参数

表 10 RF 参数

描述	最小值	典型值	最大值	单位	
输入频率	2400		2483.5	MHz	
输入阻抗值		50		ohm	
输入反射值			-10	dB	
PA 输出功率为 72.2 Mbps	15.5	16.5	17.5	dBm	
11b 模式下 PA 输出功率	19.5	20.5	21.5	dBm	
接收灵敏度					
CCK, 1 Mbps		-98		dBm	
CCK, 11 Mbps		-91		dBm	
6 Mbps (1/2 BPSK)		-93		dBm	
54 Mbps (3/4 64-QAM)		-75		dBm	
HT20, MCS7 (65 Mbps, 72.2 Mbps)		-72		dBm	
邻频抑制					
OFDM, 6 Mbps		37		dB	
OFDM, 54 Mbps		21		dB 1	

HT20, MCS0	37	dB
HT20, MCS7	20	dB

6. 功耗

下列功耗数据是基于 3.3V 的电源、25°C 的周围温度,并使用内部稳压器测得。

- [1] 所有测量均在没有 SAW 滤波器的情况下,于天线接口处完成。
- [2] 所有发射数据是基于 90% 的占空比,在持续发射的模式下测得的。

表 11 功耗

模式	最小值	典型值	最大值	单位
传送 802.11b, CCK 11Mbps, Ρουτ=+17dBm		170		mA
传送 802.11g, OFDM 54Mbps, Роит =+15dBm		140		mA
传送 802.11n, MCS7, Роит =+13dBm		120		mA
接收 802.11b,包长 1024 字节, -80dBm		50		mA
接收 802.11g,包长 1024 字节, -70dBm		56		mA
接收 802.11n,包长 1024 字节, -65dBm		56		mA
Modem-Sleep①		15		mA
Light-Sleep②		0.9		mA
Deep-Sleep③		10		uA
Power Off		0.5		uA

注①: Modem-Sleep用于需要 CPU 一直处于工作状态如 PWM 或 I2S 应用等。在保持 WiFi 连接时,如果没有数据传输,可根据 802.11 标准 (如 U-APSD),关闭 WiFi Modem 电路来省电。例如,在 DTIM3 时,每 sleep 300mS,醒来3mS 接收 AP的 Beacon 包等,则整体平均电流约 15mA。

注②: Light-Sleep 用于 CPU 可暂停的应用,如 WiFi 开关。在保持 WiFi 连接时,如果没有数据传输,可根据 802.11 标准(如 U-APSD),关闭 WiFi Modem 电路并暂停 CPU 来省电。例如,在DTIM3 时,每 sleep 300 ms,醒来 3ms 接收 AP 的 Beacon 包等,则整体平均电流约 0.9 mA。

注③: Deep-Sleep 不需一直保持 WiFi 连接,很长时间才发送一次数据包的应用,如每 100 秒测量一次温度的传感器。例如,每 300 s 醒来后需 0.3s - 1s 连上 AP 发送数据,则整体平均电流可远小于1mA。

7. 倾斜升温

表 12 倾斜升温

表 12	似斜升温
倾斜升温 Ts 最大值 - TL	最大值 3℃/秒
预热	
最小温度值 (T _S Min.)	150℃
典型温度值 (T _s Typ.)	175℃
最大温度值 (T _s Max.)	200°C
时间 (T _s)	60~180 秒
倾斜升温 (T∟to T _P)	最大值 3℃/秒
持续时间 / 温度 (T _L) / 时间 (T _L)	217℃/60~150 秒
温度峰值 (T _P)	最高温度值 260℃, 持续 10 秒
目标温度峰值 (Tp目标值)	260°C+0/-5°C
实际峰值 (t₂) 5℃ 持续时间	20~40 秒
倾斜降温	最大值 6℃/秒
从 25℃ 调至温度峰值所需时间(t)	最大8分钟

8. 原理图

图 5 ESP-12F 原理图

