DISCRETE MATHEMATICS AND GRAPH THEORY
DIGITAL ASSIGNMENT I

OM ASHISH MISHRA 16BCE0789 U(a) Without using truth table show that 7(PV(7PAQ)) = 7PA7QAns: 7 (PV (7PAQ)) => 7P 17 (7P19) [By De Margon's law] => 7PN (7(7P) V7(9))[By De morganis Law] => 7P 1 (PV79) [By Double regation law] => (7PNP) V (7PN79) [By Ristributine law] => FV(7P 172) [By Negation law] [By Identify law] => (7P 17g) (b) Obtain principle disjunctive normal form (PDNF) for (P12) V (7P13) V (213). Ans: (P 12) V (7P13) V (213) => (PAQAT) V (7PAMAT) V (QAMAT) [By Identity low] => (PAQA(91V791)) V (7PA(9V79)AM) V ((p V7p) N q N m) [By Negation law] => (pngnn) v(pngn7か) v (7pngnn) v (7P17917) V (P1917) V (P1917) [By Distribution law]

```
=> (pngnn) V(pngn7s) V(7pngnn) V
     (7pn7qnn) (PDNF)
  Hene (PAGASI)V (PAGATS) V (7PAGAS)
          V (7P179 ns) is the required PDNF.
(2)(a) Obtain a Conjunctive normal form (C.N.F)
of 7(PVQ) (PAQ)
Ans: We know that (P () Q) = (P -) Q) ~ (Q -> P)
     Consider 7 (PVQ) (PAQ)
   = (7(PVQ) > (PAQ)) \ ((QAP) >7(PVQ))
  = \left( 7 \left( 7 \left( P V Q \right) \right) V \left( P \Lambda Q \right) \right) \wedge \left( 7 \left( P \Lambda Q \right) V 7 \left( P V Q \right) \right)
                     [ By Implication law]
  = ((PVQ)V(PAQ)) A ((7PV7Q)V(7PA7Q))
                 [By Double Negation law and Pe-morgon law ]
  = ((PUQVP) N(PVQVQ)) N ((TP VTQ UTP) N
       (7PMQM7Q)) [By Ristributive low]
  = ((PVQ) \ (PVQ)) \ \((\7PV7Q) \ \ (\7PV7Q))
                  [By Idempotent law]
 = (PVQ) ~ (7PV7Q) [By Idempotentlaw]
   Heme (PVQ) 1 (7PV7Q) is the C.N.F.
```

(6) Show that RVS is tautologically implied by $(P \vee Q) \wedge (P \rightarrow R) \wedge (Q \rightarrow S)$

Ans: The Touth Table

P	Q	R	S	PVQ	P>R	Q >s	(PVQ) n (PAR) n(Q >1)	RVS	X>Y
-	Т	Т	T	_	-	-	×	Y	T
T				T	T	TF	T	+	一一
T	T	T	F	T			F	T	T
T	T	F	T	T	F	T	F	F	T
T		F	F	T	F	f +	+	T	丁
T		T	T	T	T	TT	T	T	T
T		T	F	T	T	+	T F	T	T
T		F	T	T	F	+	F	F	T
T	F	F	F	T		+		T	一
F	T	T	T	T	T		E	T	T
F	1	T	F	T	T	F	T F	_	-
				Т	T	T	T	T	T
F	1	F	T			F	F	F	T
F		F	F	T	T			T	T
F	F	T	T	F	T	T	F		
F		T	F	F	T	T	F	T	T
								-	T
F			T	F	T	T	F		T
F	F	F	F	F	T	T	£	F	

Here X: (PVQ) \(P \rightarrow R) \(\lambda \rightarrow S)
Y: RVS

Sime X > Y is therefore toutology, (RUS) is tautologically implied by (PUQ) ~ (P -> R) ~ (Q -> S).

- (3) (a) Show that the following premises are irransistent.
 - (i) "If Jack misses many classes through illness, then he fails high school."
 - (ii) "If Jork foils high school, then he is uneducated."
 - (iii) "If Jack reads a lot of books, then he is not uneducated"
 - (iv) " Tack misses many classes through illness and reads a lot of books".
 - Ans: Let P: Tock misses many classes Q: Tack fails high school R! Tock reads a lot of books S: Tock is uneducated,

Now the given statement becomes P > Q, Q > S, R > 75, PAR

 $\frac{Steps}{1. P \rightarrow Q}$ $1. P \rightarrow Q$ $2. Q \rightarrow S$ $3. P \rightarrow S$

4. R-275

Reasons

By Trule P

By Trule P

By Trule P

By Trule T, from 1, 2

and P > Q, Q > R => P -> R

By Trule P

By Jule T and P-1Q = 7Q+7P 5. S →7R By rule T, 3,5 and P >0, Q > R, P > R 6. PBTR By rule P 7. PAR By sul T from 6 8. JPUTR By such T and 7(PAR) = 9. 7 (PAR) 77470 10. (PNR) N7 (PNR) By orule T from 7,9 and P, Q => PAQ Here the inconsistency is proved. (b) Show that $(\ni x) M(n)$ follows logically from the premises $(n) (H(n) \rightarrow M(x)) \wedge (\ni x) H(n)$. Reasons Ano: Steps By mule P 1. (n) (H(n) -> M(n)) By rule US [universal] 2. H(y) -> M(y) By rule FS [Existential]
By rule FS [Specification] 3. (3m) H (m) 4. H(3) By rule T from 2,4 5. m(3) and $P, P \rightarrow Q \equiv Q$ By rule EG[Enistertial] 6. (32) M(2) Hence (3 n) m (n) follows logically from the premises (n) (4 (n) of m(x)) 1 (3x) H(x) is proved

- 4) Perone or disprove the validity of the following argument.
 - in "All men are fallible", (ii) "All kings are men" and the combision is "All kings are fallible!

Ans: Let M(n): n is mon K(n): n is king

F(n): n is fallible

Then the premises are

Yn[M(n) > f(n)], Yn[K(n) > M(n)]

... Yn[K(n) > f(n)]

Steps 1. Yn[m(r) > F(n)]

2. $M(3) \rightarrow F(3)$

3. Yn[k(n) > M(n)]

4. K(3) -> M(3)

5. K(3) -> F(3)

6. Yn [k (m) -> f m)]

Reason
By rule P
By rule T and US
By rule P
By rule T and US
By rule T from 2, 4
and P - Q , Q - R = P - R
By rule T and US

where US = Universal specification
UG = Universal beneralisation

"All kings are follible." Hence Proved.