Lecture # 16 CHE331A

Introduction and Design equations for Ideal reactors
(BR, CSTR, PFR, PBR)

Basic Concepts in Chemical kinetics and Design/Analysis of Isothermal Reactors

Collection and Analysis of Data

Design of Isothermal Reactors for Multiple Reactions

Nonelementary Homogeneous Reactions

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Reactions do not necessarily follow zero, first or second order rate laws

▶ Previously, simple power law models were used to the rate laws

$$-r_A = k C_A^{\alpha} C_B^{\beta}$$

- Large number of reactions exist that have non-integer values or follow more involved forms of the rate law
- ► Examples:

○
$$CH_3CHO \rightarrow CH_4 + CO$$
 rate law: $-r_{CH3CHO} = kC_{CH3CHO}^{3/2}$

○
$$H_2 + Br_2 \rightarrow 2HBr$$
 rate law: $r_{HBr} = k_1 \frac{c_{H2} c_{Br2}^{3/2}}{c_{HBr} + k_2 c_{Br2}}$

Rate laws that do not follow integer orders usually have several elementary steps

- ▶ The number of elementary steps involve at least one active intermediate
- ► Active intermediate is
 - A short lived molecule present in small amounts that reacts as fast as it is formed
 - ∘ Formed by **collision** with other molecules $A + M \rightarrow A^* + M$
 - Formed when the translational K.E is transferred during collision into the internal energies, particularly vibrational, leading to bond rupture, rearrangement and decomposition
 - Not formed just due to molecules moving at high velocity

Theory of *Active Intermediates* suggests that the intermediate does not react instantaneously

Since the Active Intermediate reacts as fast as it can be formed

$$r_{A^*}=0$$

- ► This is referred to as the Pseudo-Steady-State Hypothesis (PSSH)
- ▶ Thus, if the active intermediate is involved in several reactions

$$r_{A^*} = \sum_{i=1}^{n} r_{iA^*} = 0$$
 where n is the number of reactions

Active intermediate include free radicals, ionic intermediates, and enzyme-substrate complex

Gas-phase decomposition of azomethane (AZO) to ethane and nitrogen as an example

$$(CH_3)_2N_2 \to C_2H_6 + N_2$$

- ▶ Order changes from 1st order to 2nd order when pressure is reduced
 - $\circ r_{C2H6} \propto C_{AZO} \longrightarrow \text{at pressures greater than 1 atm (high conc of AZO)}$
 - $color r_{C2H6} \propto C_{AZO}^2 \longrightarrow at low pressures (below 50 mm Hg, low conc)$
- Change in order explained by following elementary reaction steps

$$\circ (CH_3)_2N_2 + (CH_3)_2N_2 \xrightarrow{\kappa_{1AZO^*}} (CH_3)_2N_2 + [(CH_3)_2N_2]^*$$

$$\circ [(CH_3)_2N_2]^* + (CH_3)_2N_2 \xrightarrow{k_{2AZO^*}} (CH_3)_2N_2 + (CH_3)_2N_2$$

$$\circ [(CH_3)_2N_2]^* \xrightarrow{k_{3AZO^*}} C_2H_6 + N_2$$

Rate laws for AZO decomposition in terms of the elementary steps is difficult to implement

► The rate laws are:

$$(CH_3)_2N_2 + (CH_3)_2N_2 \xrightarrow{k_{1AZO^*}} (CH_3)_2N_2 + [(CH_3)_2N_2]^* \quad r_{1AZO^*} = k_{1AZO^*}C_{AZO}^2$$

$$[(CH_3)_2N_2]^* + (CH_3)_2N_2 \xrightarrow{k_{2AZO^*}} (CH_3)_2N_2 + (CH_3)_2N_2 \quad r_{2AZO^*} = -k_{2AZO^*}C_{AZO}C_{AZO^*}$$

$$[(CH_3)_2N_2]^* \xrightarrow{k_{3AZO^*}} C_2H_6 + N_2 \qquad \qquad r_{3AZO^*} = -k_{3AZO^*}C_{AZO^*}$$

- ▶ The rate of formation of C_2H_6 can be given by: $r_{C2H6} = k_{3AZO*}C_{AZO*}$
- ▶ These rate laws require the conc of the *active intermediate*
- ▶ We can apply PSSH to obtain rate laws in terms of measurable concentrations

Pseudo-Steady-State-Hypothesis (PSSH) can help in developing useful Rate Laws

- $rac{r_{AZO^*}}{r_{AZO^*}} = \sum_{i=1}^{3} r_{i,AZO^*} = r_{1AZO^*} + r_{2AZO^*} + r_{3AZO^*} = 0$
- $ho r_{AZO^*} = k_{1AZO^*} C_{AZO}^2 k_{2AZO^*} C_{AZO} C_{AZO^*} k_{3AZO^*} C_{AZO^*} = 0$
- Thus, $C_{AZO*} = \frac{k_1 C_{AZO}^2}{k_2 C_{AZO} + k_3}$, substituting into $r_{C2H6} = k_{3AZO*} C_{AZO*}$

$$r_{C2H6} = \frac{k_1 k_3 C_{AZO}^2}{k_2 C_{AZO} + k_3} \quad using \rightarrow k_i's$$

- ► At low AZO concentrations $k_2C_{AZO} \ll k_3$ $r_{C2H6} = k_1C_{AZO}^2$
- At high AZO concentrations $k_2C_{AZO}\gg k_3$ $r_{C2H6}=\frac{k_1k_3}{k_2}C_{AZO}=kC_{AZO}$
- ► Thus, the change in "apparent" order is observed and the rate law is consistent