Homework 01

DarkSharpness

2023.09.21

目录

T5

由题,因为交换群,所以 $\forall a,b \in G, \ (a \circ b)^m = (a^m) \circ (b^m) = ee = e$,因此 $a \circ b \in G$ 。对于任意的 $a \in G, \ a^m = e, \ e = a \circ a^{-1^m} = a^m \circ (a^{-1})^m = e \circ (a^{-1})^m = (a^{-1})^m$. 所以 $a^{-1} \in G$ 。因此 $H \not\in G$ 的子群。

T6

 $\forall a,b\in H,$ 设 $a=gXg^{-1},$ $b=gYg^{-1}$,则 $ab=gXg^{-1}gYg^{-1}=gXYg^{-1}\in H$ 。且 $a^{-1}=g^{-1}X^{-1}g=gX^{-1}g^{-1}\in H$ 。因此 H 是 G 的子群。

注: 由群的性质,显然 X^{-1} , XY 也在群内。

T7

 $\forall x,y\in C(a),\ xya=xay=axy$,因此 $xy\in C(a)$ 。同时, $x^{-1}a^{-1}=(ax)^{-1}=(xa)^{-1}=a^{-1}x^{-1}$,因此 (左右分别乘以 a 之后) $ax^{-1}=x^{-1}a$,因此 $x^{-1}\in C(a)$ 。

T8

 $C(G) = \{g \in G | gx = xg, \forall x \in G\} \text{ 因此显然,} \forall a \in G \text{ , } C(G) \subseteq C(a) \text{ , } \text{ 因此显然 } C(G) \subseteq \bigcap_{a \in G} C(a)$ 。而由定义, $\forall x \in \bigcap_{a \in G} C(a) \text{ , } \forall a \in G, xa = ax \text{ , } \text{ 因此 } x \in C(G) \text{ , } \text{ 所以 } \bigcap_{a \in G} C(a) \subseteq C(G) \text{ .}$ 综上 $\bigcap_{a \in G} C(a) = C(G) \text{ .}$

T18

在整数加群中, $\forall a \in \langle m \rangle, b \in \langle n \rangle \exists x, y$,满足 $\forall a = xm, y = bn$ 。记 $m_0 = \frac{m}{d}, n_1 = \frac{n}{d}$,则 $a + b = xm + yn = d(xm_0 + yn_0) \in \langle d \rangle$ 。因此 $\langle m, n \rangle \subseteq \langle d \rangle$ 。而因为 $(m_0, n_0) = 1$,所以当

 $xm_0+yn_0=1$ 可以取遍 $\mathbb Z$ 。因此 $\forall x\in\langle d\rangle$,必定满足 $x\in\langle m,n\rangle$ 。因此 $\langle d\rangle\subseteq\langle m,n\rangle$ 。因此 $\langle m,n\rangle=\langle d\rangle$ 。

T19

充分性显然。下证明其必要性。若 $\langle m \rangle = \langle n \rangle$,考虑群中绝对值非零且最小的一项,分别为 |m| 和 |n| 。因为 $\langle m \rangle = \langle n \rangle$,所以 |m| = |n| ,所以 $m = \pm n$ 。

补充

如果 $N = n_1 \cdot n_2$ 且 gcd(n1, n2) = 1 。 则

$$\mathbb{Z}_N^* = \mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^*$$

证明: $\mathbb{Z}_N^* = \{1,2,\ldots,N-1\}$ 。 而 $\mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^* = \{d|xn_1+yn_2\equiv d(modN),0 < d < N, \forall x,y\}$ 。 因为 $(n_1,n_2)=1$, 故存在 x,y 使得 $xn_1+yn_2\equiv 1(modN)$ 。 因此 d 可以取遍 $1,2,\ldots,N-1$,因此

$$\mathbb{Z}_N^* = \mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^*$$