Tutorium 4

Funktionentheorie

26. & 27. Mai 2025

Organisatorisches

https://fdf-uni.github.io/ft

Homotope Kurven

Definition

Sei $\Omega\subset\mathbb{C}$ offen und seien γ_0,γ_1 zwei Kurven in Ω , die im gleichen Punkt α beginnen und im gleichen Punkt β enden. Die Kurven γ_0 und γ_1 heißen homotop in Ω ,wenn es für alle Parametrisierungen $z_0,z_1:[a,b]\to\Omega$ von γ_0 und γ_1 eine stetige Abbildung $\Gamma:[a,b]\times[0,1]\to\Omega, (t,s)\to\Gamma_s(t)$ gibt mit

$$\Gamma_s(a) = \alpha,$$
 $\Gamma_s(b) = \beta$ $\forall s \in [0, 1]$ $\Gamma_0(t) = z_0(t),$ $\Gamma_1(t) = z_1(t)$ $\forall t \in [a, b]$

Homotope Kurven

Definition

Sei $\Omega \subset \mathbb{C}$ offen und seien γ_0, γ_1 zwei Kurven in Ω , die im gleichen Punkt α beginnen und im gleichen Punkt β enden. Die Kurven γ_0 und γ_1 heißen homotop in Ω ,wenn es für alle Parametrisierungen $z_0, z_1 : [a, b] \to \Omega$ von γ_0 und γ_1 eine stetige Abbildung $\Gamma: [a,b] \times [0,1] \to \Omega, (t,s) \to \Gamma_s(t)$ gibt mit

$$\Gamma_s(a) = \alpha,$$

 $\Gamma_0(t) = z_0(t)$

$$\Gamma_s(b) = \beta$$

$$\forall s \in [0,1]$$

$$\Gamma_0(t)=z_0(t),$$

$$\Gamma_1(t)=z_1(t)$$

$$\forall t \in [a, b]$$

Homotopieinvarianz des Kurvenintegrals

Theorem

Sei $\Omega \subset \mathbb{C}$ offen, $f: \Omega \to \mathbb{C}$ holomorph und seien γ_0 , γ_1 in Ω homotope Kurven. Dann ist

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz.$$

Definition

Eine offene Menge $\Omega\subset\mathbb{C}$ heißt zusammenhängend, falls es nicht zwei nicht-leere, disjunkte, offene Mengen $U_1,U_2\subseteq\mathbb{C}$ mit $\Omega=U_1\cup U_2$ gibt. Sie heißt wegzusammenhängend, falls für alle $z_1,z_2\in\Omega$ eine stetige Kurve $\gamma\colon [0,1]\to\mathbb{C}$ mit $\gamma(0)=z_1$ und $\gamma(1)=z_2$ existiert.

Definition

Eine offene Menge $\Omega\subset\mathbb{C}$ heißt zusammenhängend, falls es nicht zwei nicht-leere, disjunkte, offene Mengen $U_1,U_2\subseteq\mathbb{C}$ mit $\Omega=U_1\cup U_2$ gibt. Sie heißt wegzusammenhängend, falls für alle $z_1,z_2\in\Omega$ eine stetige Kurve $\gamma\colon [0,1]\to\mathbb{C}$ mit $\gamma(0)=z_1$ und $\gamma(1)=z_2$ existiert.

Bemerkung: Für $\Omega\subset\mathbb{C}$ offen sind zusammenhängend und wegzusammenhängend äquivalent. (Allgemein gilt nur " \Leftarrow " in topologischen Räumen, " \Rightarrow " benötigt Zusatzvoraussetzungen.)

Definition

Eine offene Menge $\Omega\subset\mathbb{C}$ heißt zusammenhängend, falls es nicht zwei nicht-leere, disjunkte, offene Mengen $U_1,U_2\subseteq\mathbb{C}$ mit $\Omega=U_1\cup U_2$ gibt. Sie heißt wegzusammenhängend, falls für alle $z_1,z_2\in\Omega$ eine stetige Kurve $\gamma\colon [0,1]\to\mathbb{C}$ mit $\gamma(0)=z_1$ und $\gamma(1)=z_2$ existiert.

Bemerkung: Für $\Omega\subset\mathbb{C}$ offen sind zusammenhängend und wegzusammenhängend äquivalent. (Allgemein gilt nur " \Leftarrow " in topologischen Räumen, " \Rightarrow " benötigt Zusatzvoraussetzungen.)

Definition

Unter einem *Gebiet* verstehen wir eine nicht-leere, offene, zusammenhängende Menge $\Omega\subset\mathbb{C}.$

Definition

Eine zusammenhängende, offene Menge $\Omega \subset \mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

einfach zusammenhängend

nicht einfach zusammenhängend

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

einfach zusammenhängend

nicht einfach zusammenhängend

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

einfach zusammenhängend

nicht einfach zusammenhängend

Definition

Eine zusammenhängende, offene Menge $\Omega\subset\mathbb{C}$ heißt einfach zusammenhängend, falls je zwei Kurven mit denselben Endpunkten homotop in Ω sind (äquivalent: jede geschlossene Kurve ist homotop zu einer konstanten Kurve, man sagt auch, sie ist nullhomotop).

Intuition: Man kann in der Menge jedes "Lasso zusammenziehen":

einfach zusammenhängend

nicht einfach zusammenhängend

Cauchysche Integralformel

Cauchysche Integralformel

Theorem

Seien $\Omega \subset \mathbb{C}$ offen und $f: \Omega \to \mathbb{C}$ holomorph. Dann ist f beliebig oft (komplex) differenzierbar in Ω und für jede Kreisscheibe D mit $\overline{D} \subset \Omega$ gilt mit $C := \partial D$, $z \in D$ und $n \in \mathbb{N}_0$, dass

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta.$$

Cauchysche Integralformel

Theorem

Seien $\Omega \subset \mathbb{C}$ offen und $f: \Omega \to \mathbb{C}$ holomorph. Dann ist f beliebig oft (komplex) differenzierbar in Ω und für jede Kreisscheibe D mit $\overline{D} \subset \Omega$ gilt mit $C := \partial D$, $z \in D$ und $n \in \mathbb{N}_0$, dass

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta.$$

Hieraus folgt beispielsweise auch folgende Mittelwertseigenschaft (für geeignete z und r):

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(z + re^{i\varphi}) d\varphi.$$

Holomorphe Funktionen sind analytisch

Holomorphe Funktionen sind analytisch

Theorem

Sei $\Omega \subset \mathbb{C}$ und $f: \Omega \to \mathbb{C}$ holomorph. Dann ist f analytisch in Ω und für jedes $z_0 \in \Omega$ gilt

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \qquad |z - z_0| < \text{dist}(z_0, \partial \Omega).$$

Holomorphe Funktionen sind analytisch

Theorem

Sei $\Omega \subset \mathbb{C}$ und $f: \Omega \to \mathbb{C}$ holomorph. Dann ist f analytisch in Ω und für jedes $z_0 \in \Omega$ gilt

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \qquad |z - z_0| < \text{dist}(z_0, \partial \Omega).$$

Theorem (Identitätssatz)

Sei $\Omega \subset \mathbb{C}$ offen und zusammenhängend und seien $f,g:\Omega \to \mathbb{C}$ analytisch in Ω . Falls es eine konvergente Folge $(w_k) \subset \Omega$ von paarweise verschiedenen Punkten mit Grenzwert in Ω gibt, sodass $f(w_k) = g(w_k)$ für alle k, so gilt f(z) = g(z) für alle $z \in \Omega$.