

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u> <u>Search</u> <u>Course team</u>

corres	efined structure on a calibration sample has a width of 50 µm. Using the 50x objective, a ponding number of 96 pixels is determined. How wide (in micrometer) is a sample that is 86 pixels using the 20x objective?
0	18 μm
0	112 µm
0	66 μm
0	413 μm
Based corres of the structor further for further for further for further for further for further furth	on the calibration measurement, 1 pixel corresponds to 50/96=0.52 µm. Thus, 86 pixels would pond to 50/96*86=44.8 µm using the same lens. However, due to the 2.5 times smaller magnification 20x objective, the structure appears by that factor smaller. Hence, the actual dimension of the ure is 44.8*2.5=112 µm. rther information, please see video "Optical microscopy" at 06:33. ch of the following parts are additionally necessary when performing differential interference contrast node imaging on an optical microscope operated in the bright field (BF) mode? Nomarski prism Polarizer Patch stop Aperture
	Laser
~	
n DIC peams with a the int heigh Flactor	mode, a polarizer polarizes the incoming light. The Nomarski prism splits the incoming light into two is that are polarized at 90° to each other which then are focused on two adjacent spots on the sample distance of approximately 200 nm. The Nomarski prism recombines the two polarized rays and lateral transfer is to filter out the University disease is to filter out the University disease is to filter out the University disease source in DIC mode. The Patch stop is used in Dic mode.
or fu	ice & Honor Code Privacy Policy rther information, please see video "Optical microscopy" at 02:54, and the reference link "Details about the previous text module.
3. Whi	ch of the following statements are true regarding the comparison of the bright field (BF) and dark field naging mode in optical microscopy?

✓ The DF mode enhances the detection of scattered light from the sample
☐ The BF mode shows surface irregularities better than DF
✓ BF images show the samples' true colors
The microscope setup is exactly the same
For the DF mode a different light source is needed
BF and DF modes provide complementary information on the sample surface and thus both should be used for the investigation of MEMS surfaces

~

Explanation

In DF mode, a patch stop blocks the central part of the light beam instead of the outer part.

DF mode is better suited to reveal surface irregularities because it detects scattered light and the brightness of the background is lower compared to the BF mode.

The same light source can be used in both BF and DF mode.

For further information, please see video "Optical microscopy" at 02:54 and 04:28.

