WHAT IS CLAIMED IS:

1	A method of ablating cardiac tissue, comprising the steps of:	
2	providing an ablating device having an ablating element and a suction well, the	
3	suction well surrounding the ablating element, the suction well being coupled to a	
4	suction line which is coupled to a vacuum source;	
5	positioning the ablating device against the patient's epicardium;	
6	adhering the ablating device to the epicardium with the suction well; and	
7	ablating tissue with the ablating element after the adhering step.	
1	2. The method of claim 1, wherein:	
2	the ablating step is carried out to form a transmural lesion without penetrating	
3	the epicardium.	
1	3. The method of claim 1, wherein:	
2	the providing step is carried out with the device having means for determining	
3	when the suction well is adequately adhered to the epicardium.	
1	4. The method of claim 1, wherein:	
2	the providing step is carried out with the device having a temperature sensor	
3	positioned to measure the temperature of the tissue during the ablating step.	
I	5. The method of claim 4, wherein:	
2	the providing step is carried out with the temperature sensor being positioned	
3	between adjacent ablating elements.	
3	between adjacent ablating elements.	
1	6. The method of claim 1, wherein:	
2	the providing step is carried out with the suction well having an inner lip and	
3	an outer lip, the inner lip forming a closed wall around the ablating element, the	
4	device also having a fluid inlet and a fluid outlet for passing fluid into and out of a	
5	fluid chamber defined between the inner lip, the ablating element and the tissue.	

1	7. The method of claim 6, further comprising the step of:			
2	delivering a conductive fluid to the fluid inlet.			
l	8. The method of claim 7, wherein:			
2	the delivering step is carried out with the conductive fluid being hypertonic			
3	saline.			
i	9. The method of claim 6, further comprising the step of:			
2	delivering the fluid at a temperature of no more than 40°C.			
1	10. The method of claim 9, wherein:			
2	the delivering step is carried out with an average flow rate of fluid across each			
3	of a plurality of the ablating elements of at least 0.25 cc/sec.			
1	11. The method of claim 10, wherein:			
2	the delivering step is carried out with the average flow rate of fluid across each			
3	of the plurality of ablating elements is at least 0.50 cc/sec.			
1	12. The method of claim 1, wherein:			
2	the providing step is carried out with the ablating element having a width of			
3	0.2-0.5 inch and a length of 5-12 inches.			
1	13. The method of claim 1, wherein:			
2	the positioning step is carried out with the ablating element being positioned			
3	0.5-3 mm from the tissue.			
1	14. The method of claim 1, wherein:			
2	the providing step is carried out with the device having a plurality of cells,			
3	each cell having a suction well and at least one ablating element.			
l	15. The method of claim 14, wherein:			
2	the providing step is carried out with the device having 5-30 cells			

1	16. The method of claim 15, wherein:	
2	the providing step is carried out with the device having 10-25 cells.	
1	17. The method of claim 14, wherein:	
2	the providing step is carried out with the device having means for determining	
3	whether each of the dells is adequately adhered to the tissue.	
1	18. The method of claim 1, wherein:	
2	the providing step is carried out with the device having a locking mechanism;	
3	the method further comprising the steps of wrapping the device around the pulmonary	
4	veins and forming a closed loop by locking one part of the device to another part of	
5	the device with the locking mechanism.	
1	19. A device for ablating tissue comprising:	
2	a body having a plurality of cells, at least one suction well for adhering the	
3	cells to tissue to be ablated; and	
4	at least one ablating element contained within the suction well.	
1	20. The device of claim 19, wherein:	
2	the body has a plurality of suction wells and a suction lumen coupled to the	
3	plurality of suction wells.	
1	21. The device of claim 19, wherein:	
2	the body has 10-25 cells.	
1	22. The device of claim 19, further comprising:	
2	a fluid inlet positioned to deliver fluid within the suction well; and	
3	a fluid outlet which receives fluid from the fluid inlet.	
1	23. The device of claim 22, wherein:	
2	the ablating element has a long axis and a short axis; and	
3	the fluid inlet and fluid outlet are positioned on opposite sides of the ablating	
4	element along the short axis.	

1	24. The device of claim 13, wherein:		
2	the fluid in et is coupled to a source of conductive fluid.		
1	25. The device of claim 9, wherein:		
2	the ablating element is an RF electrode.		
1	26. The device of claim 18, wherein:		
2	the RF electrode has a length of 2-25 mm and a width of 1-6 mm.		
1	27. A device for ablating cardiac tissue, comprising:		
2	a body;		
3	an ablating element coupled to the body;		
4	a sensor positioned to measure a parameter at tissue ablated by the ablating		
5	element; and		
6	a control system coupled to the sensor and the ablating element, the control		
7	system receiving parameter measurements from the sensor, the control system being		
8	operably coupled to the ablating element and delivering energy to the ablating element		
9			
	. To sponse to the parameter measurements to create a resion in the tissue.		
1	28. The device of claim 27, wherein:		
2	the sensor is a temperature sensor; and		
3	the control system receives temperature change measurements over a period of		
4	time.		
1	29. The device of claim 28, wherein:		
2	the control system delivers energy to the ablating element until the temperature		
3	sensor measures a temperature below a threshold temperature.		
1	30. The device of claim 28, wherein:		
2	the control system delivers energy to the ablating element for a selected period		
3	of time while maintaining the temperature of a near surface of the tissue between 0-		
4	80°C.		

1	31. The device of claim 28, further comprising:	
2	a plurality of ablating elements; and	
3	a plurality of temperature sensors, wherein at least two temperature sensors	
4	correspond to each ablating element; and	
5	the control system receives the temperature change measurements from the at	
6	least two temperature sensors for each ablating element.	
1	32. The device of claim 31, wherein:	
2	each of the plurality of temperature sensors corresponds to one of the ablating	
3	elements; and	
4	the control system delivers energy to at least one of the ablating elements for	
5	which the corresponding temperature sensor measures a lowest temperature.	
l	33. The device of claim 27, wherein:	
2	the body has a locking mechanism for locking one part of the body to another	
3	part of the body to form a closed loop.	
1	34. A method of delivering energy to ablate tissue, comprising the steps of:	
2	providing a device having an ablating element;	
3	positioning the device at a tissue site, the tissue site having a near surface and	
4	a far surface;	
5	measuring a temperature change at the tissue site over a period of time;	
6	analyzing the temperature change to provide a tissue characterization; and	
7	ablating the tissue in response to the tissue characterization.	
1	35. The method of claim 34, wherein:	
2	the analyzing and ablating steps are controlled by a control system;	
3	the positioning step is carried out with the tissue site having a near surface and	
4	a far surface; and	
5	the ablating step being carried out by maintaining the near surface temperature	
6	at a temperature of 0-80°C during the ablating step.	

1	36. The method of claim 34, wherein:			
2	the providing step is carried out with the device having an ablating element;			
3	and			
4	the method also including the step of changing the temperature of the tissue			
5	with the ablating element; and			
6	the ablating step is carried out with the ablating element.			
1	37. The method of claim 34, wherein:			
2	the positioning step is carried out with the device being in contact with the			
3	epicardium.			
1	38. The method of claim 34, wherein:			
2	the ablating step is carried out using the results of the measuring step to			
3	approximate when the far surface achieves a target temperature.			
1	39. The method of claim 34, wherein:			
2	the ablating step is carried out with input of at least one variable from a list of			
3	variables consisting of presence of fat, amount of fat, flow rate of blood, tissue			
4	thickness and temperature of blood.			
1	40. The method of claim 34, wherein:			
2	the ablating step is carried out with a plurality of ablating elements, wherein			
3	no more than 50% of the ablating elements are activated at one time.			
1	41. The method of claim 34, wherein:			
2	the providing step is carried out with the device having a plurality of suction			
3	wells, at least one of the ablating elements being positioned in each of the suction			
4	wells.			
1	42. A device for ablating tissue, comprising:			
2	an elongate body having an end, the elongate body having at least one ablating			
3	element; and			

5 along the length of the body.			
	along the length of the body.		
1 43. The device of claim 42, wherein:			
the elongate body has a plurality of ablating	g elements.		
1 44. The device of claim 43, wherein:			
the suction wells are coupled to a suction le	umen.		
1 45. The device of claim 47, further con	nprising:		
a second suction lumen coupled to another	plurality of suction wells.		
1 46. The device of claim 46, wherein:			
the suction lymer is formed by a tube attac	hed to the body.		
$V \setminus$			
1 47. The device of claim 42, wherein:			
2 the suction well surrounds the ablating eler	ment.		
1 48. The device of claim 44, wherein:			
2 the suction well is formed by an inner lip a	nd an outer lip;		
3 the device further comprising a fluid inlet and a fluid	uid outlet, the fluid inlet and outlet		
being configured to pass a fluid into and out of a space bounded by the inner lip.			
The device of claim 46, wherein:			
the fluid outlet is coupled to a suction lumen which is also coupled to at least			
3 one of the suction wells.			
1 50. A method of creating a continuous	ablation lesion in heart tissue,		
comprising the steps of:			
providing a first ablating section and a seco	ond ablating section, the first and		
4 second ablating sections each having an end and a	n ablating element;		
5 positioning the first and second ablating se	ctions in contact with the		
6 epicardium;			

7	wrapping the first and second ablating sections around at least one vessel;		
8	interlocking the first and second sections to form a closed loop around the at		
9	least one vessel.		
1	51. A method of creating a continuous lesion in tissue, comprising the		
2	steps of:		
3	providing an ablating device having an ablating element;		
4	positioning the ablating device in contact with the epicardium;		
5	ablating tissue to create a first lesion;		
6	moving the ablating device to a location adjacent the first lesion;		
7	ablating tissue with the ablating element to create a second lesion which is		
8	continuous with the first lesion.		
1	52. A method of creating a lesion from an epicardial location, comprising		
2	the steps of:		
3	providing a first device and a second device slidably coupled to the first		
4	device, at least one of the first and second devices having an ablating element;		
5	introducing the first and second devices into the pericardial space;		
6	ablating tissue to form a first lesion with the ablating element;		
7	moving at least one of the first and second devices relative to the other; and		
8	forming a second lesion after the moving step.		
1	53. A method of ablating cardiac tissue, comprising the steps of:		
2	providing an ablating device having an ablating element and a suction well, the		
3	suction well being coupled to a suction line which is coupled to a vacuum source, the		
4	ablating device also having means for determining when the suction well is adhered to		
5	the epicardium;		
6	positioning the ablating device against the patient's epicardium;		
7	adhering the ablating device to the epicardium with the suction well; and		
8	ablating tissue with the ablating element after the adhering step.		
1	54. The method of claim 53, wherein:		

2	the providing step is carried out with the determining means being a sensor
3	selected from the group of sensors consisting of a flow rate sensor, a pressure sensor
4	and an electric circuit.
ì	55. A device for ablating epicardial tissue, comprising:
2	a body;
3	an ablating element mounted to the body;
4	a suction well on the body for adhering the body to the epicardium; and
5	means for determining when the suction well is adhered to the epicardium;
1	56. The method of claim 55, wherein:
2	the determining means is a sensor selected from the group of sensors
3	consisting of a flow rate sensor, a pressure sensor and an electric circuit.
1	57. A method of ablating cardiac tissue, comprising:
2	providing an ablating device having an ablating element, a fluid inlet, and a
3	fluid outlet;
4	positioning the ablating element in contact with a patient's epicardium;
5	flowing fluid through the fluid inlet and fluid outlet to cool tissue laterally
6	spaced from the ablating element; and
7	ablating tissue with the ablating element.
1	58. The method of claim 57, wherein:
2	the providing step is carried out with the ablating device having a vacuum
3	lumen, the fluid outlet being coupled to the fluid outlet; and
4	the method further comprising the step of withdrawing fluid through the fluid
5	outlet with the vacuum lumen.
1	59. The method of claim 57, wherein:
2	the providing step is carried out with the fluid also flowing along a backside of
3	the ablating element.

1	60. The m	ethod of claim 57, wherein:
2	the providing	step is carried out with the ablating device having at least one
3	suction well; and	
4	the method fu	ther including the step of adhering the ablating device to the
5	epicardium with the s	uction well.
1	61. The m	ethod of claim 61, wherein:
2	the flowing st	p is carried out with the fluid cooling an area on the epicardium
3	adjacent to the ablating	ng element.
1		ce for ablating tissue, comprising:
2	1 //	a plurality of cells, each cell having an ablating element; and
3	a number of b	inges positioned between the cells.
	V 1)
1	1 1	evice of claim 62, wherein:
2	_	rmed of a material and the hinges are formed by integrally
3	formed portions of th	e material.
	64 Th. 1	trice of alaims 60 whomeins
1		t least 5.20 cells
2	the body has a	t least 5-30 cells.
1	65. The de	vice of claim 62, wherein:
2		at least one suction well and a suction lumen coupled to the
3	suction well.	
1	66. The de	evice of claim 65, wherein:
2	the body has 5	5-30 suction wells, a number of the suction wells being coupled
3	to the suction lumen.	
1	67. The de	evice of claim 66, wherein:
2	the body has t	wo suction lumens extending around the device, the plurality of
3	suction wells being co	oupled to at least one of the two suction lumens.

1	68. The device of claim 66, wherein:
2	the body has a fluid inlet and a fluid outlet, the fluid inlet and fluid outlet.
1	69. The device of claim 68, wherein:
2	each of the cells has a fluid inlet and a fluid outlet.
1	70. The device of claim 68, wherein:
2	the fluid inlet and fluid outlet are positioned to deliver fluid across a backside
3	of the ablating element.
1	71. The device of claim 68, wherein:
2	the fluid inlet and fluid outlet are positioned to deliver fluid across a frontside
3	of the ablating element and in contact with the tissue being ablated.
1	72. The device of claim 62, further comprising:
2	a fluid conduit which receives a coolant, the fluid conduit directing the fluid to
3	a position on the tissue adjacent to the ablating element.
1	73. The device of claim 72, wherein:
2	the fluid conduit directs the fluid to at least two lateral sides of the ablating element.
1	74. The device of claim 62, wherein:
2	the body is made of an elastomeric material.