

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY B.TECH. SEMESTER III [COMPUTER ENGINEERING] SUBJECT: (CE318) NAME: DESIGN OF DIGITAL CIRCUITS

Date Time Regulas 08/11/2013 10:00 to 1:00 pu

Seat No Day Max. Marks

Mednesday

INSTRUCTIONS:

0.1

- Answer each section in a separate answer book
- Figures to the right indicate maximum marks for that question.
- The symbols used carry their usual meanings.
- Assume suitable data, if required & mention them clearly,
- Draw neat sketches wherever necessary.

SECTION - I

	and directed.			
COL	C	(11)	Let r denote the number system and a Thomas	[10]
CO2	A	(b)	Let r denote the number system radix. The only value(s) of r that satisfy the equation $\sqrt{12I_r} = 1I_r$ is? Show the advantage of (r-1)'s complement over r's complement with an example.	[2]
CO2	E	(c)	For an a variable Roclean function of the state of the st	[2]
CO3	U	(d)	For an n - variable Boolean function how many maximum prime implicants are possible?	[2]
CO4	N	(e)	The size of the ROM needed to implement a 4 bit multiplier is ?	[2]
			The outputs of the two flip-flops Q1, Q2 in the figure shown are initialized to 0, 0. What is the sequence generated at O1 upon application of clock size 19.	

Q.2 Attempt Any TWO from the following questions. CO2 C (a)

1101

[5]

For the circuit shown in the above figure, determine the output of MUX 2 with steps. Show applications of the

- CO2 C (b) Design a 4-to-1 multiplexer using 2-to-4 Decoder, Support with the truth table and boolean expressions.
- CO2
- (c) Design a single combinational circuit for converting BCD to 2421 code using encoders and decoders. Also construct the truth table.
- Q3. Attempt the following:
- (a) Design a mod-6 counter with the sequence 10,11,12,13,14,15 using a binary counter with parallel load MSI. Show CO3 [10] [5] the steps with a state table, and a diagram.
- N (b) Show the State table, counting logic, state diagram and timing diagram of the counter shown in the below figure. **CO4** [5]

OR [10] 03. Attempt the following: CO3 (a) Design a 3 -bit Synchronous Counter which can count odd and even sequences in a single circuit based on Mode [5] Input M. Show the steps with a state table, and a diagram. CO4 (b) The below figure shows a binary counter with synchronous clear input. Determine the mod counting performed by the counter. Show the State table, counting logic, state diagram and timing diagram of the counter. SECTION - II 0.4 Do as directed. CO3 (a) [10] Analyze the circuit shown in the above figure, the output required is Y = AB + C'D'. Determine the gates G1 and G2 which will result in the expression Y. CO3 (b) Analyze the total number of self dual functions with n variables (with example). COI E D Latch D Latch En Clk Describe the functionality achieved by the circuit shown in the above figure. CO4 U (d) Explain the difference between Flip flop and a latch. (e) Apply the concept of Edge triggering and level triggering with their respective applications COL Q.5 Attempt Any TWO from the following questions. [10] CO₂ C (a) Design the circuit which converts a full adder to full-subtractor, derive the equations. (b) Design the circuit for function $F = \sum m(0,1,3,7,8)$. Minimize it using Quine-McCluskey Technique. CO2 C CO2 (c) Design the circuit for F(a,b,c) = a'c + ac' + b'c, showing the total number prime implicants, and Essential prime implicants. 0.6 Attempt the following: [10] (a) A sequential circuit has two flip flops A and B, two inputs x and y and an output z. The flip flop functions and the circuit output function are as follows: JA = xB + y'B', KA = xy'B', JB = xA', KB = xy' + A, and Z = xyA + x'y'B. CO3 151 Obtain the logic diagram, state table, state diagram, and state equations. (b) Design a synchronous counter using JK flip flop for the given State diagram. 0 [5] OR 0.6 Attempt the following: 1101 (a) The full adder receives two external inputs x and y; the third input z comes from the output of a D flip flop. The CO3 carry output is transferred to the flip flop every clock pulse. The external S output gives the sum of x,y, and z. Obtain the state table and state diagram of the sequential circuit. CO3 Design a counter that counts the decimal according to 2421 code using T flip flops, with state table and state C (b) diagram.

Bloom's Taxonomy levels: R-Remembering, U- Understanding, A-Applying, N-Analyzing, E- Evaluating,