ALGORITMO GOLUB-KAHAN BIDIAGONAL APLICADO A **EIGENFACES**

Carlos Enrique Nosa Guzman Brayan Alejandro Romero Castro Juan Carlos Galvis Arrieta

Tercera conferencia colombiana de Matemáticas aplicadas e industriales - MAPI 3

14 de junio del 2024

Contenidos

- Eigenfaces
- 2 SVD
- 3 Algoritmo
 - Primera parte
 - Segunda parte
- 4 Ventajas del algoritmo
- Resultados
- 6 Referencias

genfaces SVD Algoritmo Ventajas del algoritmo Resultados Referencias 2000 00 000000 0 0 0

¿Qué es una cara propia (eigenface)?

Una cara propia es el nombre dado a un componente principal de un conjunto de imágenes. El cálculo de eigenfaces se hace con el objetivo de reducir la dimensionalidad de un conjunto de imágenes y poder describir con 'poca' información los rasgos principales de los rostros en cuestión. Esta técnica es usada en el reconocimiento y reconstrucción de rostros.

Figura: Cara propia en diferentes visualizaciones. Realización propia.

Conjunto de datos

Figura: Cara de ejemplo de conjunto de datos (dimensiones: $m \times n \times k =$ $140 \times 100 \times 3$). Tomado de [1].

- La base de datos fue desarrollada por la Universidad de Chicago. (Véase [1])
- Es una herramienta diseñada. para la investigación científica. Es de libre acceso.
- En total posee p = 821fotografías de individuos masculinos y femeninos entre los 17 y 65 años provenientes de Estados Unidos e India.

■ Construir la matriz *M* que tenga en sus columnas a cada imagen.

Calcular la cara promedio.

Centrar cada una de las imágenes.

Calcular la matriz de varianza del conjunto de datos.

$$\hat{Var}[M] = E[M^TM] - E[M]^T E[M] = E[M^TM] = \frac{1}{mn}M^TM.$$

La matriz $\frac{1}{mn}M^TM$ tiene dimensiones $p \times p$.

- Una vez obtenida la matriz de varianza estimada $\hat{Var}[M] = \frac{1}{mn} M^T M$ del vector aleatorio \hat{M} , se hace análisis de componentes principales (ACP).
 - El ACP es una técnica de medición de variabilidad de un conjunto de datos.

Figura: Conjunto de datos en \mathbb{R}^2 . Imagen tomada de [2].

■ A nivel computacional, el *ACP* se puede hacer mediante la descomposición en valores singulares (SVD) de una matriz asociada al conjunto de datos.

Descomposición en valores singulares (SVD)

Teorema.

Para toda matriz $A_{m \times n}$ existen matrices U, B y V tales que $A_{m \times n} = U_{m \times m} B_{m \times n} V_{n \times n}^T$ con U y V son ortogonales y B una matriz diagonal. De otra manera,

$$A = \sum_{i=1}^{\min\{m,n\}} b_{ii} \boldsymbol{u}_i \boldsymbol{v}_i^T.$$

$$A = \begin{bmatrix} U & & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} V^T & & \\ & &$$

- Finalmente, si $M = U\Sigma V^T$ con $U \in \mathbb{R}^{mn \times mn}$, $\Sigma \in \mathbb{R}^{mn \times p}$ y $V \in \mathbb{R}^{p \times p}$, entonces
 - U contiene en sus columnas las caras propias.
 - $M^TM = V\Sigma^T\Sigma V^T$.

Figura: Valores propios de M^TM .

Truncamiento	R	G	В
1	26.2997	28.512	29.016
5	64.7753	65.6549	66.2674
10	72.4903	73.3829	74.0402
20	79.4073	79.975	80.6594
30	83.1439	83.4289	83.9529
40	85.5571	85.7124	86.1336
50	87.3247	87.404	87.7408
100	92.0806	92.0154	92.1941
150	94.3655	94.2783	94.4015
200	95.7495	95.6663	95.7595
250	96.7332	96.6525	96.7274
300	97.4582	97.3808	97.4399
500	99.0418	98.9709	98.982
750	99.8234	99.8137	99.8146
821	100	100	100

Figura: Tabla de porcentaje de varianza.

Algoritmo

La idea del algoritmo es primero bidiagonalizar a *A*, y luego aplicar un iteración *QR* implícita a la matriz bidiagonal resultante, para obtener una descomposición SVD de *A*.

Se bidiagonaliza por Householder.

Algoritmo

■ Se hace SVD de la parte bidiagonal $B' = U'_B \Sigma' V_B^T$, quedando la descomposición de A requerida.

$$A = UU_B'\Sigma'V_B^TV^T$$

Primera parte

Para bidiagonlizar *A*, se aplican reflexiones de Householder, que ayudarán a **cerar** filas y columnas.

$$B' = \begin{bmatrix} B \\ 0 \end{bmatrix} = U_n \cdots U_1 A V_1 \cdots V_{n-2}$$

Se refleja en vecotores canonicos

Reflexión con eje de simetria el normal de v

$$H_v = I - \frac{2vv^T}{v^Tv}$$

Primera parte

$$B' \leftrightarrow B'V_1 = \begin{bmatrix} \times & \times & 0 \\ 0 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}$$

$$B' \leftrightarrow U_1 B' = \begin{vmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{vmatrix}$$

$$B' \leftarrow U_2 B' = \begin{vmatrix} \times & \times & 0 \\ 0 & \times & \times \\ 0 & 0 & \times \\ 0 & 0 & \times \end{vmatrix}$$

$$B' \leftrightarrow U_3 B' = \begin{bmatrix} \times & \times & 0 \\ 0 & \times & \times \\ 0 & 0 & \times \\ 0 & 0 & 0 \end{bmatrix}$$

Segunda parte

Se puede emplear la iteración QR para diagonalizar $T = B^T B$, y a $\hat{T} = BB^T$, como

$$T = QDQ^{T}$$
$$\hat{T} = \hat{Q}D\hat{Q}^{T}$$

Por medio del teorema Q implícito de [3] (Pag. 454 y Pag. 416) es posible asegurar que la descomposición SVD de B, está dada por:

$$B = \hat{Q}D^{1/2}Q^T$$

Esto resulta lento pues hace uso de productos grandes, como $T_k = R_{k-1}Q_{k-1}$, además que se hace T y \hat{T} por separado.

Para evitar aplicar el algoritmo QR a las matrices T y \hat{T} se realiza de manera implícita:

- En el algoritmo QR se computaban matrices de Givens $G_1, G_2, \ldots, G_{n-1}$, tales que $Q_1 = G_1 G_2 \ldots G_{n-1}$, y $T_1 = Q_1^T T Q_1$ era tridiagonal, con off $(T_1) \le$ off(T).
- Solo es necesario calcular la matriz G_1 , aplicarla a B y luego de esto, llevar al producto BG_1 nuevamente a una matriz bidiagonal.

Segunda parte

Se hace iteración QR, de forma implícita por medio del siguiente procedimiento:

Primer paso de la iteración QR de forma implicita

$$B = \begin{bmatrix} \times & \times & 0 & 0 \\ 0 & \times & \times & 0 \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix}$$

$$B = \begin{bmatrix} \times & \times & 0 & 0 \\ 0 & \times & \times & 0 \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix} \qquad B \leftrightarrow BG_1 = \begin{bmatrix} \times & \times & 0 & 0 \\ + & \times & \times & 0 \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix}$$

$$B \leftarrow U_1^T B = \begin{vmatrix} \times & \times & + & 0 \\ 0 & \times & \times & 0 \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{vmatrix}$$

$$B \leftrightarrow U_1^T B = \begin{bmatrix} \times & \times & + & 0 \\ 0 & \times & \times & 0 \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix} \qquad B \leftrightarrow BV_2 = \begin{bmatrix} \times & \times & 0 & 0 \\ 0 & \times & \times & 0 \\ 0 & + & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix}$$

$$B \leftrightarrow U_1^T B = \begin{bmatrix} \times & \times & 0 & 0 \\ 0 & \times & \times & + \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix}$$

$$B \leftrightarrow U_1^T B = \begin{bmatrix} \times & \times & 0 & 0 \\ 0 & \times & \times & + \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix} \qquad B \leftrightarrow BV_3 = \begin{bmatrix} \times & \times & 0 & 0 \\ 0 & \times & \times & 0 \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \end{bmatrix}$$

$$B_1 = (U_{n-1}^T \cdots U_1^T) \cdot B \cdot (G_1 \cdot V_2 \cdots V_{n-1}) = U^T B V$$

$$T_1 = B_1 B_1^T$$

Luego lo volvemos aplicar a B₁

Ventajas del algoritmo

- Sirve para cualquier tipo de matriz m x n, característica que no tienen muchos métodos, que requieren condiciones muy específicas sobre las matrices.
- Aunque la primera parte del algoritmo puede tener multiplicaciones grandes, esta es una parte mínima del algoritmo, pues solo se realizan 2n – 2 multiplicaciones de estas, y luego se aprovecha el enfoque en pequeñas secciones de las matrices que tienen las rotaciones de Givens, haciendo que la convergencia sea cúbica (Pag 263 de [3])
- Tiene un sustento teórico muy fuerte, estable y bastante estudiado, al estar basado completamente en matrices ortogonales, su modificación o cambios según requiera el tipo de matriz puede ser fácilmente adaptado.

Resultados

La comparación entre métodos se hizo tomando un máximo de 1000 iteraciones y un error umbral fuera de la diagonal de D de 10^{-5} ; se tomó el promedio de correr el programa con cada método cinco veces, para la misma matriz M de tamaño 821 \times 821.

	Tiempo en minutos	Precisión $ \Sigma_r V - VD _F^2$
Potencias con Deflación	11.13	$1.8765 \cdot 10^{-4}$
Potencias matriz Ortogonal	13.44	$1.3527 \cdot 10^{-6}$
Jacobi	0.66	$5.1705 \cdot 10^{-27}$
Golub and Kahan	1.96	$9.9853 \cdot 10^{-10}$

$$\sum_{i=1}^{821} ||M^{T}Mv_{i} - v_{i}\sigma_{i}^{2}||_{2}^{2} = ||M^{T}MV - V\Sigma^{T}\Sigma||_{F}^{2}$$
$$= ||\Sigma_{r}V - VD||_{F}^{2}$$

Referencias

- [1] Cfd | Chicago Face Database. (s.f.). Recuperado 22 de noviembre de 2023, de https://www.chicagofaces.org/
- [2] Golub, Gene Howard, y Charles F. Van Loan. Matrix Computations. JHU Press, 2013.
- [3] Jolliffe I. T. Principal Component Analysis. Springer-Verlag, 2002. DOI.org, https://doi.org/10.1007/b98835.