

吉林省志安科技有限公司

电线塔基础稳定性安全评估报告

TERRIA	
项目名称	
	电线塔基础稳定性项目
项目类型	
电线塔基础稳定性计算	
计算条件	
基础与荷载参数	
基础宽度 b:	4m
基础长度 1:	4m
基础埋深 d:	2m
水平力作用高度 h:	15m
塔腿轴向压力 N:	500kN
基础及覆土总重 G:	800kN
水平力 Fw:	100kN
地质参数	
地勘承载力标准值 fak:	200kPa
基底以下土重度 γ:	18kN/m³
基底以上土平均重度 γm:	18kN/m³
宽度修正系数 ηb:	0.3
深度修正系数 ηd:	1.6
基底摩擦系数 μ:	0.4

规范依据

- 1. 《建筑地基基础设计规范》GB50007-2011
- 2. 《110kV~750kV架空输电线路设计规范》GB 50545-2010
- 3. 《架空输电线路基础设计技术规程》DL/T 5219-2014
- 4. 《电力工程高压送电线路设计手册》DL/T 5092-1999
- 5. 《岩土工程勘察规范》GB50021-2001

主要计算公式

1. 修正后地基承载力计算:

 $fa = fak + \eta b \cdot \gamma \cdot (b-3) + \eta d \cdot \gamma m \cdot (d-0.5)$

式中: fa - 修正后地基承载力; fak - 标准承载力; ηb,ηd - 宽度和深度修正系数; γ,γm - 土体重度

2. 基底压力计算:

 $Pmax/min = N/A \pm M/W$

式中: N - 总竖向力; A - 基底面积; M - 倾覆力矩; W - 截面抵抗矩

3. 地基承载力验算:

 $Pmax \leq 1.2fa$, \square $Pmin \geq 0$

最大压力不超过修正承载力的1.2倍,最小压力不小于零(无拉应力)

4. 抗倾覆稳定性验算:

 $Kov = Mr/Mo \ge 1.5$

式中: Mr - 抗倾覆力矩; Mo - 倾覆力矩; 1.5 - 抗倾覆安全系数

5. 抗滑移稳定性验算:

 $Ks = (N\!\cdot\!\mu + c\!\cdot\!A)/H \geq 1.3$

式中: µ-基底摩擦系数; c-粘聚力; A-基底面积; H-水平力; 1.3-抗滑移安全系数

6. 截面抵抗矩计算:

 $W\,=\,b\cdot l^2/6$

式中: W - 截面抵抗矩; b - 基础宽度; I - 基础长度

7. 倾覆力矩计算:

 $Mo = Fw \cdot h$

式中: Fw - 水平风荷载; h - 风荷载作用点高度

计算步骤

步骤1: 根据地质条件和基础尺寸计算修正后地基承载力fa

步骤2: 计算基底最大和最小压力Pmax、Pmin

步骤3: 验算地基承载力: Pmax ≤ 1.2fa且Pmin ≥ 0

步骤4: 验算抗倾覆稳定性: Kov = Mr/Mo ≥ 1.5

步骤5: 验算抗滑移稳定性: Ks ≥ 1.3

步骤6:综合评估基础稳定性并提出优化建议

计算结果与规范对比

			2/3
验算项目	计算值	规范要求	验算结果

地基承载力验算	Ī	Pmax = 221.88 kPa, Pmin = -59.38 kPa	Pmax ≤ 1.2 × fa = 298.32 kPa, Pmin ≥ 0	不通过
抗倾覆稳定性验	算	K = 1.73	K ≥ 1.5	通过
抗滑移稳定性验	算	Kh = 5.20	Kh ≥ 1.3	通过

可视化验算结果

电线塔基础稳定性安全评估报告

整体安全状况:需要关注

综合以上计算分析,该电线塔基础设计存在安全隐患,部分稳定性指标不满足规范要求,需要对基础设计方案进行调整优化,确保基础稳定性满足安全要求后方可施工。

验算通过情况统计:

地基承载力验算: X 不通过抗倾覆稳定性验算: ✓ 通过抗滑移稳定性验算: ✓ 通过

技术建议:

1建议1:基底出现拉应力,建议增加基础自重或减小倾覆力矩。

2建议2:建议重新设计基础参数,确保所有验算项目均满足规范要求。

3建议3: 如条件限制无法调整基础尺寸,可考虑地基处理措施提高承载力。

评估结论:

综合以上计算分析,该电线塔基础设计存在安全隐患,部分稳定性指标不满足规范要求,需要对基础设计方案进行调整优化,确保基础稳定性满足安全要求后方可施工。

计算日期: 2025/08/07

报告生成时间: 2025/8/7 22:02:07

技术支持: 吉林省志安科技有限公司