Sistema Internacional de Medidas

Curso de Física 2019-2

1. Introducción.

Al medir una cantidad, siempre la comparamos con un estándar de referencia.

El sistema de unidades empleado por los científicos en todo el mundo se denomina comúnmente "sistema métrico" aunque, desde 1960, su nombre oficial es **Sistema Internacional**, o **SI**.

Son 7 unidades sobre las que se fundamenta el sistema y de cuya combinación se obtienen todas las unidades derivadas.

Magnitud	Unidad	Símbolo
longitud	metro	m
masa	kilogramo	kg
tiempo	segundo	S
corriente eléctrica	ampere	Α
temperatura termodinámica	kelvin	K
intensidad luminosa	candela	cd
cantidad de sustancia	mol	mol

1.1. Metro

Es la longitud de la trayectoria recorrida por la luz en el vacío en un lapso de 1/299792458 de segundo.

1.2. Masa

Es la masa igual a la del prototipo internacional del kilogramo: un cilindro de platino iridio de diámetro y altura iguales (39 mm)

Curiosidades sobre el cilindro:

- I. Se fabricó en 1889.
- II. La proporción de platino es del $90\,\%$ y $10\,\%$ de iridio.
- III. Está resguardado en la Oficina del Buró Internacional de Pesos y Medidas (BIPM)
- IV. Existen sólo 6 copias oficiales.
- v. Se han distribuido 80 copias en el mundo para adaptarlas como prototipos.
- VI. El manejo de la campana es extremadamente cuidadoso, ya que evita el contacto con polvo, humedad, etc.

1.3. Segundo

Es la duración de 9192631770 períodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133.

1.4. Ampere

Es la intensidad de una corriente constante que mantenida en dos conductores paralelos, rectilíneos de longitud infinita, de sección circular despreciable, colocados a un metro de distancia entre sí, en el vacío, producirá entre ellos una fuerza igual a $2\times 10^{-7}~{\rm N}~{\rm m}^{-1}$

1.5. Kelvin

Es la fracción de 1/273.16 de la temperatura termodinámica del punto triple del agua.

Es de uso común expresar una temperatura termodinámica (**T**) en función de su diferencia por relación a la temperatura de referencia $T_0 = 273.15 \, \text{K}$, punto de congelación del agua.

Esta diferencia de temperatura es llamada temperatura Celsius (t) y se define como

$$t-T-T_0$$

La unidad de temperatura Celsius es el grado Celsius (°C) igual a la unidad kelvin por definición.

1.6. Candela

Es la intensidad luminosa en una dirección dada de una fuente que emite una radiación monocromática de frecuencia $540 \times 10^{12}\,\mathrm{Hz}$ y cuya intensidad energética en esa dirección es $1/683\,\mathrm{W}\,\mathrm{sr}^{-1}$.

Esterorradián: Se define como un ángulo sólido que, teniendo su centro en el de una esfera, tiene una superficie (sobre la esfera) igual al cuadrado del radio. El ángulo sólido de una esfera completa es $4~\pi$ estereorradianes.

1.7. mol

Es la cantidad de sustancia que contiene tantas entidades elementales como existen átomos en 0.012 kg de carbono 12.

En general, un mol de cualquier sustancia contiene 6.022×10^{23} moléculas o átomos de dicha sustancia.

Así pues, en un mol de agua (H_2O) hay 6.022×10^{23} moléculas de H_2O . En Estados Unidos el día del mol se celebra cada 23 de octubre, entre las 6:02 de la mañana y las 6:02 de la tarde aprovechando los dígitos del número de Avogadro.

2. Unidades derivadas

Estas unidades se forman por combinaciones simples de las unidades del SI de base de acuerdo con las leyes de la física.

Magnitud	Unidad SI derivada	Símbolo
superficie	metro cuadrado	m ²
volumen	metro cúbico	m ³
velocidad	metro por segundo	m/s
aceleración	metro por segundo al cuadrado	m/s^2
densidad	kilogramo por metro cúbico	kg/m^3
volumen específico	metro cúbico por kilogramo	m ³ /kg
densidad de corriente	ampere por metro cuadrado	A/m^2
campo magnético	ampere por metro	A/m
concentración (de can- tidad de sustancia)	mol por metro cúbico	mol/m ³
luminancia	candela por metro cuadrado	cd/m^2

3. Unidades derivadas con nombres y símbolos.

Para facilitar la expresión de unidades derivadas formadas de las combinaciones de unidades de base, se le ha dado a un cierto número de ellas un nombre y un símbolo especial.

Magnitud	Nombre unidad	Símbolo	Unidades SI	Otra expresión SI
ángulo plano	radián	rad	$m \cdot m^{-1} = 1$	
ángulo sólido	esterradián	sr	$m^2 \cdot m^{-2} = 1$	
frecuencia	hertz	Hz	s ⁻¹	
fuerza	newton	N	m kg s ⁻²	
presión	pascal	Pa	m ⁻¹ kg s ⁻²	N/m
trabajo, energía, cantidad de calor	joule	J	m kg s ⁻²	Nm
potencia, flujo eléctrico	watt	W	m kg s ⁻³	
carga eléctrica	coulomb	С	sA	
diferencia de po- tencial	volt	V	m kg s ⁻³ A ⁻¹	W/A
capacitancia eléc- trica	farad	F	m ⁻² kg ⁻¹ A ⁴	C/A
resistencia eléctri- ca	ohm	Ω	m ² kg s ³ A ⁻²	V/A
conductancia eléctrica	siemens	S	m ⁻² kg ⁻¹ s ³ A ²	A/V