Análise Numérica Aula 10 — EDO e Método de Euler

Prof. Adriano Barbosa

FACET — UFGD

6 de março de 2017

Motivação

Descrevendo o movimento da mola pela função x(t)

Lei de Hooke: F = -kxLei de Newton: F = ma

$$Logo, \ m\frac{d^2x}{dt^2} = -kx$$

Portanto,

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

Conceitos

Uma Equação Diferencial Ordinária (EDO) é uma equação que relaciona uma função e suas derivadas. Seja y(t) definida no intervalo [a, b]:

$$\frac{dy}{dt} = f(t, y)$$
 ou $y' = f(t, y)$

Outros exemplos:

$$y' = f(x, y)$$

$$y'' = f(t, y, y')$$

$$y^{(n)} = f(t, y, y', y'', \dots, y^{(n-1)})$$

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)})$$

$$x^{(n)} = f(t, x, x', x'', \dots, x^{(n-1)})$$

Conceitos

Exemplo: $x'' = -\frac{k}{m}x$

$$x(t) = \operatorname{sen}\left(\frac{\sqrt{k}}{\sqrt{m}}t\right)$$
$$x(t) = \cos\left(\frac{\sqrt{k}}{\sqrt{m}}t\right)$$

são soluções da EDO.

$$x(t) = c_1 \operatorname{sen}\left(rac{\sqrt{k}}{\sqrt{m}}t
ight) + c_2 \cos\left(rac{\sqrt{k}}{\sqrt{m}}t
ight)$$

é a solução geral da EDO.

Conceitos

Problema de valor inicial (PVI):

$$y' = f(t, y), \ y(a) = y_0$$

Exemplo (modelo populacional): P' = kP, P(0) = 2

$$P(t) = ce^{kt} \Rightarrow P'(t) = c(ke^{kt}) = k(ce^{kt}) = kP(t)$$

para cada $c \in \mathbb{R}$, $P(t) = ce^{kt}$ é solução da EDO.

Solução do PVI:

$$2 = P(0) = ce^{k0} = c$$

$$\Rightarrow P(t) = 2e^{kt}$$

Conceitos

Condição de Lipschitz:

f(t,y) satisfaz a condição de Lipschtiz na variável y num conjunto $D \subset \mathbb{R}^2$ se existe uma constante L>0 tal que

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$$

Teorema:

Suponha que $D=\{(t,y)|t\in[a,b]\ e\ y\in\mathbb{R}\}$ e que f(t,y) é contínua em D. Se f satisfaz a condição de Lipschitz em D na variável y, então o PVI

$$y'=f(t,y), \quad y(a)=y_0$$

tem solução única y(t) para $t \in [a, b]$.

Conceitos

Um PVI é dito **bem posto** quando possui solução única e pequenas perturbações na proposição do problema geram perturbações correspondentemente pequenas na solução.

Teorema:

Seja $D = \{(t,y)|t \in [a,b] \ e \ y \in \mathbb{R}\}$. Se f(t,y) é contínua e satisfaz a condição de Lipschitz em D na variável y, então o PVI

$$y' = f(t, y), \quad t \in [a, b], \quad y(a) = y_0$$

é bem posto.

Conceitos

Teorema de Taylor:

Suponha $f \in C^n[a, b]$, que $f^{(n+1)}$ exista em [a, b] e $x_0 \in [a, b]$. Para todo $x \in [a, b]$, existe um número $\xi(x) \in [x_0, x]$ onde

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0)^{n+1}$$

Método de Euler

A solução do PVI y' = f(t, y), $y(a) = y_0$, $t \in [a, b]$ é uma função.

O método de Euler irá encontrar uma aproximação para y(t) em vários valores de $t \in [a, b]$ (pontos da malha).

Podemos encontrar uma aproximação para a solução usando algum método de interpolação.

Método de Euler

Dividindo o intervalo [a,b] em N partes iguais, cada parte tem medida $h=\frac{b-a}{N}$.

Podemos definir os pontos da malha como:

$$t_i = a + ih, \ \forall i = 0, 1, 2, \dots, N$$
 $h = t_{i+1} - t_i$

Esses serão os valores de t para os quais o método irá encontrar o valor de y(t).

Método de Euler

Suponha que a solução y(t) tenha segunda derivada contínua em [a,b], então, para cada $i=0,1,\ldots,N-1$:

$$y(t_{i+1}) = y(t_i) + y'(t_i)(t_{i+1} - t_i) + \frac{y''(\xi(t_{i+1}))}{2}(t_{i+1} - t_i)^2$$

$$\Rightarrow y(t_{i+1}) = y(t_i) + y'(t_i)h + \frac{y''(\xi(t_{i+1}))}{2}h^2$$

$$\Rightarrow y(t_{i+1}) \approx y(t_i) + f(t_i, y(t_i))h$$

Método de Euler

O método calcula $w_i \approx y(t_i)$, para i = 1, 2, ..., N:

- $w_0 = y_0$
- $w_{i+1} = w_i + h f(t_i, w_i)$, para i = 0, 1, ..., N-1

Método de Euler

Exemplo:
$$y' = y - t^2 + 1$$
, $t \in [0, 2]$, $y(0) = 0.5$

N = 4:

Método de Euler

Exemplo:
$$y' = y - t^2 + 1$$
, $t \in [0, 2]$, $y(0) = 0.5$

$$N = 10$$
:

t_i	w_i	$y_i = y(t_i)$	$ y_i - w_i $
0.0	0.5000000	0.5000000	0.0000000
0.2	0.8000000	0.8292986	0.0292986
0.4	1.1520000	1.2140877	0.0620877
0.6	1.5504000	1.6489406	0.0985406
0.8	1.9884800	2.1272295	0.1387495
1.0	2.4581760	2.6408591	0.1826831
1.2	2.9498112	3.1799415	0.2301303
1.4	3.4517734	3.7324000	0.2806266
1.6	3.9501281	4.2834838	0.3333557
1.8	4.4281538	4.8151763	0.3870225
2.0	4.8657845	5.3054720	0.4396874

Trabalho

Descreva o método de Taylor de ordens superiores. Apresente um exemplo e plote o gráfico da solução exata e da aproximação dada pelo método.