3.2 — Market Competition & Surpluses

ECON 306 • Microeconomic Analysis • Spring 2021 Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microS21
- microS21.classes.ryansafner.com

The Algebra of Calculating Equilibrium

The Algebra of Calculating Equilibrium

- Simple algebra to find equilibrium prices and quantities if we know supply and demand functions
- Remember, supply and demand are each mathematical functions relating price to quantity:
 - \circ Demand: $q_D = f(p)$
 - \circ Supply: $q_S = f(p)$
- We know at equilibrium: $q_D = q_S$

Calculating Equilibrium: Example I

Example: Take our example supply and demand functions:

$$q_d = 10 - p$$
$$q_s = 2p - 8$$

• In equilibrium: quantity demanded equals quantity supplied

Calculating Equilibrium: Example II

Example: Let the supply and demand functions for a market be:

$$q_D = 30 - 0.5p$$
$$q_S = 2p - 40$$

- 1. Find equilibrium quantity and price (q^*, p^*) .
- 2. Sketch a rough graph.

Price Competition in Markets

Price Competition in Markets I

- Markets allocate resources based on individuals' reservation prices:
 - Buyers' max. willingness to pay
 - Sellers' min. willingness to accept
- Goods flow to those who value them the highest and away from those who value them the lowest

Price Competition in Markets II

- It might look like it, but competition in markets is **NOT** between buyers vs. sellers!
- In markets: buyers compete with other buyers and sellers compete with other sellers

Price Competition in Markets III

- Buyers want to pay the *lowest* price to buy a good
- But they face competition from other buyers over the same scarce goods
- Buyers attempt to raise their bids above others' reservation prices to obtain the goods

Price Competition in Markets IV

- Sellers want to get the *highest* price for a good they sell
- But they face competition from other sellers over the same potential customers
- Sellers attempt to lower their asking prices below others' reservation prices to sell their goods

- Imagine a small public horse market
- 3 people, A, B, and C each own 1 horse
- 3 people, D, E, and F each are potentially interested in buying a horse

This example is based on Eugen von Bohm-Bawerk's famous example in *Capital and*

Interest (1884)

Person	Reservation Price
Seller A	Minimum WTA: \$400
Seller B	Minimum WTA: \$500
Seller C	Minimum WTA: \$600
Buyer D	Maximum WTP: \$600
Buyer E	Maximum WTP: \$500
Buyer F	Maximum WTP: \$400

- Suppose Buyer F announces she will pay \$400 for a horse
- Only Seller A is willing to sell at \$400
- Buyers D, E, and F are willing to buy at \$400
 - D and E are willing to pay more than F to obtain the 1 horse
 - They raise their bids above \$400 to attract sellers

Person	Reservation Price
Seller A	Minimum WTA: \$400
Seller B	Minimum WTA: \$500
Seller C	Minimum WTA: \$600
Buyer D	Maximum WTP: \$600
Buyer E	Maximum WTP: \$500
Buyer F	Maximum WTP: \$400

- Suppose Seller C announces he will sell his horse for \$600
- Only Buyer D is willing to buy at \$600
- Sellers A, B, and C are willing to sell at \$600
 - A and B are willing to accept *less* than
 C to sell their horses
 - They lower their asks *below* \$600 to attract buyers

- If the market price reaches \$500 (through bids and asks changing)
- Sellers A and B sell their horses for \$500 each
- Buyers D and E buy them at \$500 each

- At \$500, B and E are the "marginal" buyer and seller, the "last" ones that just got off the fence to exchange in the market
 - B has WTA just low enough to sell
 - E has WTP just high enough to buy
- The marginal pair actually are the ones that "set" the market price!

- Notice the most possible exchanges take place at a market price of \$500
 - 2 horses get exchanged
- Any price above or below \$500, only 1 horse would get exchanged
 - Also, at least one other buyer or seller would raise/lower their bid/ask

- At \$500, C and F are the "excluded" buyers and sellers
 - C has WTA too high to sell
 - F has WTP too low to buy

Person	Reservation Price
Seller A	Minimum WTA: \$400
Seller B	Minimum WTA: \$500
Seller C	Minimum WTA: \$600
Buyer D	Maximum WTP: \$600
Buyer E	Maximum WTP: \$500
Buyer F	Maximum WTP: \$400

- At \$500, A and D are the "inframarginal" buyers and sellers
 - A has WTA *lower* than market price, earns extra \$100 surplus from exchange
 - D has WTP *higher* than market price, earns extra \$100 surplus from exchange
- These buyers and sellers benefit the most from exchange

Economic Surplus

Market-Clearing Prices

 Supply and demand set the marketclearing price for all units exchanged (bought and sold)

Consumer Surplus I

- Demand function measures how much you would hypothetically be willing to pay for various quantities
 - "reservation price"
- You often *actually* pay (the marketclearing price, p^*) a lot less than your reservation price
- The difference is **consumer surplus**

$$CS = WTP - p^*$$

Consumer Surplus II

$$CS = \frac{1}{2}bh$$

$$CS = \frac{1}{2}(5 - 0)(\$10 - \$5)$$

$$CS = \$12.50$$

Consumer Surplus III

 An increase in market price reduces consumer surplus

$$CS' = \frac{1}{2}bh$$

$$CS' = \frac{1}{2}(3 - 0)(\$10 - \$7)$$

$$CS' = \$4.50$$

Consumer Surplus IV

 An decrease in market price increases consumer surplus

$$CS' = \frac{1}{2}bh$$

$$CS' = \frac{1}{2}(7 - 0)(\$10 - \$3)$$

$$CS' = \$24.50$$

Consumer Surplus V

 A relatively inelastic demand curve generates more consumer surplus

$$CS = \frac{1}{2}(5 - 0)(\$10 - \$5)$$

$$CS = \$12.50$$

Consumer Surplus V

 A relatively inelastic demand curve generates more consumer surplus

$$CS = \frac{1}{2}(5 - 0)(\$10 - \$5)$$

$$CS = \$12.50$$

 A relatively elastic demand curve generates less consumer surplus

$$CS = \frac{1}{2}(5 - 0)(\$7 - \$5)$$
$$CS = \$5.00$$

Producer Surplus I

- Supply function measures how much you would hypothetically be willing to accept to sell various quantities
 - "reservation price"
- You often *actually* receive (the marketclearing price, p^*) a lot more than your reservation price
- The difference is **producer surplus**

$$PS = p^* - WTA$$

Producer Surplus II

$$PS = \frac{1}{2}bh$$

$$PS = \frac{1}{2}(5-0)(\$5 - \$0)$$

$$PS = \$12.50$$

Producer Surplus III

An increase in market price increases producer surplus

$$PS' = \frac{1}{2}bh$$

$$PS' = \frac{1}{2}(7 - 0)(\$7 - \$0)$$

$$PS' = \$24.50$$

Producer Surplus IV

 An decrease in market price decreases producer surplus

$$PS' = \frac{1}{2}bh$$

$$PS' = \frac{1}{2}(3-0)(\$3-\$0)$$

$$PS' = \$4.50$$

Producer Surplus V

 A relatively inelastic supply curve generates more producer surplus

$$PS = \frac{1}{2}(5 - 0)(\$5 - \$0)$$

$$PS = \$12.50$$

Producer Surplus V

 A relatively inelastic supply curve generates more producer surplus

$$PS = \frac{1}{2}(5 - 0)(\$5 - \$0)$$

$$PS = \$12.50$$

A relatively elastic supply curve generates less producer surplus

$$PS = \frac{1}{2}(5 - 0)(\$5 - \$3)$$

$$PS = \$5.00$$

Elasticities and Surpluses I

- The more elastic curve at p^{*} generates less surplus
 - More options, easier to change choices, less benefit from any one particular exchange
- The less elastic curve at p^* generates **more** surplus
 - Fewer options, harder to change choices, more benefit from any one particular exchange
- This is important for policies such as price controls, taxes, etc.

Elasticities and Surpluses II

- A good visual rule of thumb:
- Compare distance between choke price and p^* for each curve
- Bigger distance

 less elastic in equilibrium (and vice versa)
 - ⇒ more surplus

Example

Example: Using last class's supply and demand functions:

$$q_D = 10 - p$$
$$q_S = 2p - 8$$

- 1. Calculate the price elasticity of demand and the price elasticity of supply in equilibrium.
- 2. Calculate the consumer surplus and producer surplus. Shade each on the graph.
- 3. Who gets more surplus, consumers or producers, and why?