

Algorithmus basierend auf Elgamal

Client

- ⇒ Erstellt Bloom Filter der Daten
- \Rightarrow Verschlüsselt jede Stelle des Bloom Filters mittels ElGamal

$$(R_i, S_i) = (g^{r_i}, pk^{r_i} * g^{1-BF_1[i]})$$

- ⇒ Alice entschlüsselt mit sk Ciphertext von Bob
- ⇒ Bestimmt Anzahl der Einträge an denen beide Bloom Filter null sind
- ⇒ Schätzt hieraus die Gesamtmenge an SNPs

Server

- \Rightarrow Erstellt Bloom Filter der Daten
- \Rightarrow Selektiert jene Stellen Stellen in dem BF die den Eintrag null besitzen.
 - ⇒ Multipliziert an diesen Stellen die Werte des Ciphertextes vom Client auf

(V, W)

⇒ Rerandomisiert die entstandenen Ergebnisse

$$V = (g^s * \Pi_{i:BF_2[i]=0}R_i)$$

$$W = (pk^s * \Pi_{i:BF_2[i]=0}S_i)$$

Abschätzung der Elemente in einem Bloomfilter

$$|X| = \frac{\ln(\frac{z}{m})}{k * \ln(1 - \frac{1}{m})}$$

- \Rightarrow Wahrscheinlichkeit, dass ein Bloomfilterbit Null ist $z'=(1-\frac{1}{m})^{\mathsf{k^*}\;\mathsf{X}}$
- \Rightarrow Mit der Abschätzung $(1-\frac{t}{k})^k \approx e^{-t}$ gilt :

$$(1 - \frac{1}{m})^{k*x} = (1 - \frac{(k*x/m)}{k*x})^{k*x} \approx e^{\frac{-k*x}{m}}$$

⇒ Da binomialverteielt ist der Erwartungswert: $z = m * (1 - \frac{1}{m})^{k^* \times X} \approx m * e^{\frac{-k * x}{m}}$

Paillier - Verfahren

Schlüsselerzeugung:

- \Rightarrow Client wählt zwei Primzahlen p,q , mit ggt(pq,(p-1)(q-1))=1 undn =pq
- \Rightarrow Der Generator g so gewählt, sodass $g \in (\mathbb{Z}n^2\mathbb{Z})$ undn die Ordnung von g teilt.
- \Rightarrow Secrect key: $\lambda = kgV(p-1, q-1)$
- \Rightarrow Public Key: (n,g)

Verschlüsselung:

- \Rightarrow Nachricht $m \in \mathbb{Z}_n^*$
- \Rightarrow Client wählt Zufallszahl $r \in \mathbb{Z}_{n^2}^*$
- \Rightarrow Ciphertext $c = g^m * r^n \mod n^2$

Entschlüsselung:

- \Rightarrow Benötigt zunächst $L(x) = \frac{(x-1)}{n}$
- \Rightarrow Plaintext $m = \frac{L(c^{\lambda} \mod n^2)}{L(g^{\lambda} \mod n^2)} \mod n$

Homomorphie: Paillier ist homomorph gegenüber der Addition.

$$E(m_1 + m_2) = (E(m_1) * E(m_2))$$

Algorithmus basierend auf Paillier

Client

- ⇒ Erstellt Bloomfilter der Daten und invertiert jede Stelle des Bloomfilters
- ⇒ Verschlüsselt jede Stelle des Bloomfilters mittels Paillier

$$c_i = (g^{IBF[i]} * r^n) \mod n^2$$

- ⇒ Client entschlüsselt mit sk Ciphertexte von Server
- ⇒ Anzahl der entschlüsselten Nullen entspricht der Anzahl der sich überschneidenden **Flemente**

Server

[pk, c]

- ⇒ Erstellt für jedes Element des Datensatzes einen Bloomfilter seiner Daten
- ⇒ Selektiert in jedem Blommfilter jene Stellen die den Eintrag Fins besitzen
 - ⇒ Multipliziert an diesen Stellen die Werte des Ciphertextes des Clients auf

Rerand
$$e_j = (ej * enc_{pailier}(0))$$

mit

Beispiel

```
Sei X_{client} = rs12323, rs23453, rs34564 und X_{server} = rs98787, rs87676, rs76565. Der Bloomfilter BF sei definiert mit dem Array m = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 und den Hashfunktionen k_{1-3}. Zunächst wendet der Client die Hashfunktionen auf alle SNPs seines Datensatzes an: k_{1(rs12323)} = 1, k_{2(rs12323)} = 2, k_{3(rs12323)} = 5;
```


Ergebnisse - Elgamal

- ⇒ Dauer für Vergleich des gesamten Exomes bei wenigen Minuten.
- ⇒ Laufzeit Unabhängig davon wie stark die Überschneidung zwischen zwischen den Datensätzen ist.

Überschneidung	14000	7500	5000	2000
Runtime (sec)	221	247	211	222
Abw. zur Überschn.	0.01%	3.3%	8.8%	36.8%

Table 1: Hashfunktionen : 14, Anzahl Bloomfilter Bits:3029660, Größe der Datensätze: 15000 SNPs

Array	1442696	1009887	577079	144270
Runtime (sec)	108	83	47	11
Abweichung	4%	6%	13%	51%

Table 2: Datensatz 1000 SNPs, Überschneidung 100, Hashfunktionen: 10

- \Rightarrow Die Laufzeit ist linear abhängig zur Anzahl der Bloomfilterbits
- ⇒ Die Stärke der Abweichung ist ebenfalls linear abhängig zur Anzahl der Bloomfilter Bits

Hashf.	1	4	7	10	14
Runtime (sec)	7	27	44	62	104
Abweichung	11%	13%	10%	9%	9%

Table 3: Datensatz 1000 SNPs, Überschneidung 100, Array: 504944

⇒ Anzahl der Hashfunktionen hat deutlich weniger Einfluss, jedoch kommt es bei hoher Anzahl zu vermehrt Falsch positiven Ergebnissen.

Ergebnisse-Paillier

Array	14139	12119	10099	8080
Runtime (sec)	219	194	183	163
Abweichung	1%	4%	6%	24%

Table 4: Hashf.7, Überschneidung 100, SNPs 1000

- ⇒ Paillier deutlich langsamer als Elgamal
- ⇒ Benötigt deutlich kleinere Bloomfilter für selbe Genauigkeit, jedoch ist die Bitweise Verschlüsselung sehr langsam

Array	141385	100989	75742
Runtime (sec)	2420	2318	2007
Abweichung	1%	4%	13%

Table 5: Hashf.7, Überschneidung 7500, SNPs 15000

 \Rightarrow Zum Vergleich von gesamten Exomen ca. 40 min

Vergleich

Abweichung	0.1%	0.6%	2%	3%	4%	6%
Runtime elgamal	467	150	17	15	11	6
Runtime paillier	510	340	150	150	135	120

Table 6: Hashf.7, Überschneidung 100, SNPs 1000