Simulation Preorder

Lecture #25 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

February 3, 2009

Overview Lecture #25

- ⇒ Simulation Order
 - Simulation Equivalence
 - Comparing Trace Equivalence, Bisimulation and Simulation
 - Universal Fragment of CTL*

Simulation order

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be transition systems.

A *simulation* for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall s_1 \in I_1 \exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}$
- 2. for all $(s_1, s_2) \in \mathcal{R}$ it holds:
 - (a) $L_1(s_1) = L_2(s_2)$
 - (b) if $s_1' \in \textit{Post}(s_1)$ then there exists $s_2' \in \textit{Post}(s_2)$ with $(s_1', s_2') \in \mathcal{R}$

 $TS_1 \leq TS_2$ iff there exists a simulation \mathcal{R} for (TS_1, TS_2)

Simulation order

but <u>not</u> necessarily:

Example

The use of simulations

- As a notion of correctness for refinement
 - $TS \prec TS'$ whenever TS is obtained by deleting transitions from TS'
 - e.g., nondeterminism is resolved by choosing one alternative
- As a notion of correctness for abstraction
 - abstract from concrete values of certain program or control variables
 - use instead abstract values or ignore their value completely
 - used in e.g., software model checking of C and Java
 - formalised by an abstraction function f that maps s onto its abstraction f(s)

Abstraction function

- $f: S \to \widehat{S}$ is an abstraction function if $f(s) = f(s') \Rightarrow L(s) = L(s')$
 - S is a set of concrete states and \widehat{S} a set of abstract states, i.e. $|\widehat{S}| <\!\!< |S|$
- Abstraction functions are useful for:
 - data abstraction: abstract from values of program or control variables

 $f:\mathsf{concrete}$ data domain o abstract data domain

predicate abstraction: use predicates over the program variables

 $f: \mathsf{state} \to \mathsf{valuations}$ of the predicates

localization reduction: partition program variables into visible and invisible

f: all variables \rightarrow visible variables

Abstract transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and abstraction function $f : S \rightarrow \widehat{S}$ let:

$$TS_f = (\widehat{S}, Act, \rightarrow_f, I_f, AP, L_f),$$
 the abstraction of TS under f

where

- \rightarrow_f is defined by: $\frac{s \xrightarrow{\alpha} s'}{f(s) \xrightarrow{\alpha}_f f(s')}$
- $I_f = \{ f(s) \mid s \in I \}$
- $L_f(f(s)) = L(s)$; for $s \in \widehat{S} \setminus f(S)$, labeling is undefined

 $\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a simulation for (TS, TS_f)

Example(s)

Simulation order on paths

Whenever we have:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$$
 \mathcal{R}
 t_0

this can be completed to

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$$
 $\mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R}$
 $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \dots$

the proof of this fact is by induction on the length of the path note that a finite path may be simulated by a prefix of an infinite path!

Simulation is a pre-order

 \leq is a preorder, i.e., reflexive and transitive

Overview Lecture #25

- Simulation Order
- ⇒ Simulation Equivalence
 - Comparing Trace Equivalence, Bisimulation and Simulation
 - Universal Fragment of CTL*

Simulation equivalence

 TS_1 and TS_2 are simulation equivalent, denoted $TS_1 \simeq TS_2$, if $TS_1 \preceq TS_2$ and $TS_2 \preceq TS_1$

Simulation order on states

A *simulation* for $TS = (S, Act, \rightarrow, I, AP, L)$ is a binary relation $\mathcal{R} \subseteq S \times S$ such that for all $(s_1, s_2) \in \mathcal{R}$:

1.
$$L(s_1) = L(s_2)$$

2. if $s_1' \in \textit{Post}(s_1)$ then there exists an $s_2' \in \textit{Post}(s_2)$ with $(s_1', s_2') \in \mathcal{R}$

 s_1 is simulated by s_2 , denoted by $s_1 \preceq_{TS} s_2$, if there exists a simulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$

 $s_1 \preceq_{\mathit{TS}} s_2$ if and only if $\mathit{TS}_{s_1} \preceq \mathit{TS}_{s_2}$

 $s_1 \simeq_{\mathsf{TS}} s_2$ if and only if $s_1 \preceq_{\mathsf{TS}} s_2$ and $s_2 \preceq_{\mathsf{TS}} s_1$

Simulation quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and simulation equivalence $\simeq \subseteq S \times S$ let

$$TS/\simeq = (S', \{\tau\}, \rightarrow', I', AP, L'),$$
 the *quotient* of TS under \simeq

where

$$\bullet \ S' = S/{\simeq} = \ \{ \ [s]_{\simeq} \mid s \in S \ \} \ \text{and} \ I' = \{ \ [s]_{\simeq} \mid s \in I \ \}$$

- \rightarrow' is defined by: $\frac{s \xrightarrow{\alpha} s'}{[s]_{\simeq} \xrightarrow{\tau'} [s']_{\simeq}}$
- $L'([s]_{\simeq}) = L(s)$

lemma: $TS \simeq TS/\simeq$; proof not straightforward!

Overview Lecture #25

- Simulation Order
- Simulation Equivalence
- ⇒ Comparing Trace Equivalence, Bisimulation and Simulation
 - Universal Fragment of CTL*

Trace, bisimulation and simulation equivalence

Similar but not bisimilar

 $TS_{left} \simeq TS_{right}$ but $TS_{left} \not\sim TS_{right}$

Terminal states and determinism

For transition systems TS_1 and TS_2 over AP:

If TS₁ has no terminal states:

$$TS_1 \leq TS_2$$
 implies $Traces(TS_1) \subseteq Traces(TS_2)$

• If *TS*₁ is *AP*-deterministic:

$$TS_1 \simeq TS_2$$
 iff $Traces(TS_1) = Traces(TS_2)$ iff $TS_1 \sim TS_2$

- $TS = (S, Act, \rightarrow, I, AP, L)$ is AP-deterministic if:
 - 1. for $A \subseteq AP$: $|I \cap \{s \mid L(s) = A\}| \leqslant 1$, and
 - 2. $s \xrightarrow{\alpha} s'$ and $s \xrightarrow{\alpha} s''$ and L(s') = L(s'') implies s' = s''

Overview Lecture #25

- Simulation Order
- Simulation Equivalence
- Comparing Trace Equivalence, Bisimulation and Simulation
- ⇒ Universal Fragment of CTL*

Universal fragment of CTL*

∀CTL* *state-formulas* are formed according to:

$$\Phi ::= \mathsf{true} \; \middle| \; \mathsf{false} \; \middle| \; a \; \middle| \; \neg a \; \middle| \; \Phi_1 \wedge \Phi_2 \; \middle| \; \Phi_1 \, \lor \, \Phi_2 \; \middle| \; \forall arphi$$

where $a \in AP$ and φ is a path-formula

∀CTL* *path-formulas* are formed according to:

$$\varphi \,::=\, \Phi \, \, \Big| \, \, \bigcirc \varphi \, \, \Big| \, \, \varphi_1 \wedge \varphi_2 \, \, \Big| \, \, \varphi_1 \, \vee \, \varphi_2 \, \, \Big| \, \, \varphi_1 \, \mathsf{U} \, \varphi_2 \, \, \Big| \, \, \varphi_1 \, \mathsf{R} \, \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

in \forall CTL, the only path operators are $\bigcirc \Phi$, $\Phi_1 \cup \Phi_2$ and $\Phi_1 \cap \Phi_2$

Universal CTL* contains LTL

For every LTL formula there exists an equivalent ∀CTL* formula

Simulation order and ∀CTL*

Let TS be a finite transition system (without terminal states) and s, s' states in TS.

The following statements are equivalent:

(1)
$$s \preceq_{TS} s'$$

- (2) for all $\forall \mathsf{CTL}^*$ -formulas $\Phi \colon s' \models \Phi$ implies $s \models \Phi$
- (3) for all \forall CTL-formulas Φ : $s' \models \Phi$ implies $s \models \Phi$

proof is carried out in three steps: (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)

Example

Existential fragment of CTL*

∃CTL* *state-formulas* are formed according to:

$$\Phi ::= \mathsf{true} \; \middle| \; \mathsf{false} \; \middle| \; a \; \middle| \; \neg a \; \middle| \; \Phi_1 \wedge \Phi_2 \; \middle| \; \Phi_1 \, \lor \, \Phi_2 \; \middle| \; \exists \varphi$$

where $a \in AP$ and φ is a path-formula

∃CTL* path-formulas are formed according to:

$$\varphi ::= \Phi \quad \bigcirc \varphi \quad \varphi_1 \wedge \varphi_2 \quad \varphi_1 \vee \varphi_2 \quad \varphi_1 \cup \varphi_2 \quad \varphi_1 \cap \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

in \exists *CTL*, the only path operators are $\bigcirc \Phi$, $\Phi_1 \cup \Phi_2$ and $\Phi_1 \cap \Phi_2$

Simulation order and ∃CTL*

Let TS be a finite transition system (without terminal states) and s, s' states in TS.

The following statements are equivalent:

(1)
$$s \preceq_{TS} s'$$

- (2) for all $\exists \mathsf{CTL}^*$ -formulas $\Phi \colon s \models \Phi$ implies $s' \models \Phi$
- (3) for all $\exists \mathsf{CTL}$ -formulas Φ : $\mathbf{s} \models \Phi$ implies $s' \models \Phi$

Overview implementation relations

	bisimulation	simulation	trace
	equivalence	order	equivalence
preservation of temporal-logical properties	CTL*	∀CTL*/∃CTL*	LTL
	CTL	∀CTL/∃CTL	(LT properties)
checking equivalence	PTIME	PTIME	PSPACE- complete
graph minimization	PTIME $\mathcal{O}(M\log S)$	$\begin{array}{c} PTIME \\ \mathcal{O}(M\!\cdot\! S) \end{array}$	_