(19) Weltorganisation für geistiges Eigentum Internationales Büro



# 

(43) Internationales Veröffentlichungsdatum 1. September 2005 (01.09.2005)

PCT

# (10) Internationale Veröffentlichungsnummer $WO\ 2005/080396\ A2$

(51) Internationale Patentklassifikation<sup>7</sup>: C07D 487/00

(21) Internationales Aktenzeichen: PCT/EP2005/001965

(22) Internationales Anmeldedatum:

24. Februar 2005 (24.02.2005)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 10 2004 009 178.1

25. Februar 2004 (25.02.2004) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SCHWÖGLER, Anja [DE/DE]; Heinrich-Lanz-Str. 3, 68165 Mannheim (DE). GEWEHR, Markus [DE/DE]; Goethestr. 21, 56288 Kastellaun (DE). MÜLLER, Bernd [DE/DE]; Stockingerstr. 7, 67227 Frankenthal (DE). GROTE, Thomas [DE/DE]; Im Höhnhausen 18, 67157 Wachenheim (DE). GRAMMENOS, Wassilios [GR/DE]; Alexander-Fleming-Str. 13, 67071 Ludwigshafen (DE). TORMO

I BLASCO, Jordi [ES/DE]; Carl-Benz-Str. 10-3, 69514 Laudenbach (DE). RHEINHEIMER, Joachim [DE/DE]; Merziger Str. 24, 67063 Ludwigshafen (DE). BLETTNER, Carsten [DE/DE]; Richard-Wagner-Str. 48, 68165 Mannheim (DE). SCHÄFER, Peter [DE/DE]; Römerstr. 1, 67308 Ottersheim (DE). SCHIEWECK, Frank [DE/DE]; Lindenweg 4, 67258 Hessheim (DE). WAGNER, Oliver [DE/DE]; Im Meisental 50, 67433 Neustadt (DE). STIERL, Reinhard [DE/DE]; Jahnstr. 8, 67251 Freinsheim (DE). SCHÖFL, Ulrich [DE/DE]; Erlenstr. 8, 68782 Brühl (DE). STRATHMANN, Siegfried [DE/DE]; Donnersbergstr. 9, 67117 Limburgerhof (DE). SCHERER, Maria [DE/DE]; Hermann-Jürgens-Str. 30, 76829 Godramstein (DE).

(74) Anwalt: REITSTÖTTER, KINZEBACH & PARTNER (GBR); Ludwigsplatz 4, 67059 Ludwigshafen (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

[Fortsetzung auf der nächsten Seite]

(54) Title: AZOLOPYRIMIDINE COMPOUNDS AND USE THEREOF FOR COMBATING PARASITIC FUNGI

(54) Bezeichnung: AZOLOPYRIMIDIN-VERBINDUNGEN UND IHRE VERWENDUNG ZUR BEKÄMPFUNG VON SCHADPILZEN



(57) Abstract: The invention relates to azolopyrimidine compounds of general formula (I), wherein A represents N or C-R<sup>6</sup>; X and Y, independent of one another, represent a chemical compound or oxygen, sulphur or a group N-R<sup>7</sup>; the variables R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup> and R<sup>7</sup> have the meanings cited in the claims and the description. The invention also relates to tautomers of compounds of formula (I) and to the agriculturally compatible salts of compounds (I) and of the tautomers thereof. The invention further relates to the use of azolopyrimidine compounds of general formula (I), to the tautomers thereof and to the agriculturally compatible salts thereof which are used to combat phytopathogenic fungi, and to a method for combating phytopathogenic fungi and means for combating fungi, said means containing at least one compound of general formula (I), a tautomer of formula (I) and/or

an agriculturally compatible salt thereof or the tautomer thereof and at least one liquid or solid carrier medium.

(57) Zusammenfassung: Die Erfindung betrifft Azolopyrimidin-Verbindungen der allgemeinen Formel (I) gelöst, worin A für N oder C-R<sup>6</sup> steht; X, Y unabhängig voneinander für eine chemische Bindung oder für Sauerstoff, Schwefel oder eine Gruppe N-R<sup>7</sup> stehen; worin die Variablen R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup> und R<sup>7</sup> die in den Ansprüchen und der Beschreibung angegebenen Bedeutungen aufweisen, Tautomere von Verbindungen der Formel (I) und die landwirtschaftlich verträglichen Salze von Verbindungen I und von deren Tautomeren. Die Erfindung betrifft weiterhin die Verwendung der Azolopyrimidin-Verbindungen der allgemeinen Formel (I), ihrer Tautomere und deren landwirtschaftlich verträglichen Salze zur Bekämpfung von pflanzenpathogenen Pilzen (=Schadpilzen) sowie ein Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen und ein Mittel zur Bekämpfung von Schadpilzen, enthaltend wenigstens eine Verbindung der allgemeinen Formel (I), ein Tautomer von (I) und/oder ein landwirtschaftlich verträgliches Salz davon oder von dessen Tautomer und wenigstens einen flüssigen oder festen Trägerstoff.



## WO 2005/080396 A2



PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL,

PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Azolopyrimidin-Verbindungen und ihre Verwendung zur Bekämpfung von Schadpilzen

### Beschreibung

Die vorliegende Erfindung betrifft neue Azolopyrimidin-Verbindungen und ihre Verwendung zur Bekämpfung von Schadpilzen sowie Pflanzenschutzmittel, die derartige Verbindungen als wirksamen Bestandteil enthalten.

Die EP-A 71792, US 5,994,360, EP-A 550113, DE-A 10223917, WO 02/48151 und WO 03/080615 beschreiben fungizid wirksame Pyrazolo[1,5-a]pyrimidine und Triazolo[1,5a]pyrimidine, die in der 6-Position des Azolopyrimidinrings eine gegebenenfalls substituierte Phenylgruppe und in der 7-Position NH<sub>2</sub> oder eine primäre oder sekundäre Aminogruppe tragen. Aus der WO 03/009687 sind ähnliche Triazolopyrimidine bekannt, die anstelle des ggf. substituierten Phenylrings in der 6-Position einen gegebenenfalls substituierten und/oder ungesättigten aliphatischen oder cycloaliphatischen Rest aufweisen und in der 7-Position NH<sub>2</sub> oder eine primäre oder sekundäre Aminogruppe tragen.

Die aus dem Stand der Technik bekannten Azolopyrimidine sind hinsichtlich ihrer fun-20 giziden Wirkung teilweise nicht zufriedenstellend oder besitzen unerwünschte Eigenschaften, wie eine geringe Nutzpflanzenverträglichkeit.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, neue Verbindungen mit besserer fungizider Wirksamkeit und/oder einer besseren Nutzpflanzenverträglichkeit bereitzustellen.

Diese Aufgabe wird überraschenderweise gelöst durch Azolopyrimidin-Verbindungen der allgemeinen Formel I

30

25

gelöst, worin

A für N oder C-R<sup>6</sup> steht;

X, Y unabhängig voneinander für eine chemische Bindung oder für Sauerstoff, Schwefel oder eine Gruppe N-R<sup>7</sup> stehen;

 $R^1$ ,  $R^2$ 

unabhängig voneinander für C<sub>1</sub>-C<sub>10</sub>-Alkyl, C<sub>2</sub>-C<sub>10</sub>-Alkenyl, C<sub>4</sub>-C<sub>10</sub>-Alkadienyl, C<sub>2</sub>-C<sub>10</sub>-Alkinyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>5</sub>-C<sub>8</sub>-Cycloalkenyl, C<sub>5</sub>-C<sub>10</sub>-Bicycloalkyl, Phenyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Naphthyl, Naphthyl, C<sub>1</sub>-C<sub>10</sub>-Alkyl, 5<sub>10</sub>-der 6-diedriges gesättigtes, teilweise ungesät

Naphthyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, 5- oder 6-gliedriges gesättigtes, teilweise ungesättigtes oder aromatisches Heterocyclyl oder

Heterocyclyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, die jeweils 1, 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen können, stehen, wobei die als R<sup>1</sup>, R<sup>2</sup> genannten Reste teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 Reste R<sup>8</sup> aufweisen können, wobei

15

10

5

Y-R<sup>1</sup> mit X-R<sup>2</sup> auch gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Carbo- oder Hetercyclus bilden können, wobei letzterer 1, 2, 3 oder 4 Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann, wobei der Carbo- und der Heterocyclus teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 der Reste R<sup>7</sup> und/oder R<sup>8</sup> aufweisen können; wobei

20

Y-R<sup>1</sup> und X-R<sup>2</sup> unabhängig voneinander auch für Wasserstoff, CN, NO<sub>2</sub> oder Halogen stehen können und wobei einer der Reste Y-R<sup>1</sup> und X-R<sup>2</sup>; auch OH, SH oder NH<sub>2</sub> bedeuten kann;

25

für  $C_1$ - $C_{10}$ -Alkyl,  $C_2$ - $C_{10}$ -Alkenyl,  $C_4$ - $C_{10}$ -Alkadienyl,  $C_2$ - $C_{10}$ -Alkinyl,  $C_3$ - $C_8$ -Cycloalkyl,  $C_5$ - $C_8$ -Cycloalkenyl,  $C_5$ - $C_{10}$ -Bicycloalkyl, Phenyl, Phenyl- $C_1$ - $C_4$ -alkyl, Naphthyl, einen 5- oder 6-gliedrigen, gesättigten, teilweise ungesättigten oder aromatischen Heterocyclus, der 1, 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann, steht,

35

30

wobei die als R³ genannten Reste teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 Reste R³ aufweisen können;

 $R^4$ 

 $R^3$ 

Halogen, Cyano,  $C_1$ - $C_6$ -Alkyl,  $C_1$ - $C_6$ -Haloalkyl,  $C_2$ - $C_6$ -Alkenyl,  $C_2$ - $C_6$ -Alkinyl,  $C_3$ - $C_8$ -Cycloalkyl,  $C_5$ - $C_8$ -Cycloalkenyl,  $OR^{10}$ ,  $SR^{10}$ ,  $NR^{11}R^{12}$ ,  $CH_2NR^{11}R^{12}$  oder  $C(W)R^{13}$  bedeutet;

40

R<sup>5</sup>, R<sup>6</sup> unabhängig voneinander für Wasserstoff, CN, NO<sub>2</sub>, NH<sub>2</sub>, CH<sub>2</sub>NH<sub>2</sub>, Halogen, C(W)R<sup>13</sup>, C(=N-OR<sup>15</sup>)R<sup>14</sup>, NHC(W)R<sup>16</sup>, C<sub>1</sub>-C<sub>6</sub>-Haloalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>2</sub>-C<sub>4</sub>-Alkenyl stehen;

| R <sup>7</sup> | für Wasserstoff, $C_1$ - $C_6$ -Alkyl, $C_1$ - $C_6$ -Alkoxy, $C_1$ - $C_6$ -Haloalkyl, $C_1$ - $C_6$ -Haloalkoxy, $C_2$ - $C_6$ -Alkenyl, $C_2$ - $C_6$ -Alkenyloxy, CN oder C(W)R <sup>17</sup> |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | steht;                                                                                                                                                                                            |

- 5 R<sup>8</sup> ausgewählt ist unter Halogen, Cyano, Nitro, OH, SH, NR<sup>18</sup>R<sup>19</sup>, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, Hydroxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, Hydroxy-C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-Alkoxy, C<sub>1</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyloxy, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyloxy, C<sub>1</sub>-C<sub>6</sub>-Alkylamino, C(W)R<sup>13</sup>,
  10 C(=N-OR<sup>15</sup>)R<sup>14</sup>, NHC(W)R<sup>16</sup>, Tris-C<sub>1</sub>-C<sub>6</sub>-alkylsilyl und Phenyl, das seinerseits 1, 2 oder 3 Reste aufweisen kann, die ausgewählt sind unter Cyano, Nitro, Halogen, OH, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, C<sub>1</sub>-C<sub>6</sub>-Haloalkyl, C<sub>1</sub>-C<sub>6</sub>-Haloalkoxy und C<sub>1</sub>-C<sub>6</sub>-Alkylthio;
- 15  $R^9$  für Halogen, Cyano, NH<sub>2</sub>, NO<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, C<sub>1</sub>-C<sub>6</sub>-Haloalkyl, C<sub>1</sub>-C<sub>6</sub>-Haloalkoxy, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyloxy, C(W)R<sup>13</sup>, C(=N-OR<sup>15</sup>)R<sup>14</sup> oder NHC(W)R<sup>16</sup>, steht;
- R<sup>10</sup> Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Haloalkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl oder C(W)R<sup>13</sup> bedeutet;
  - R<sup>11</sup>, R<sup>12</sup> unabhängig voneinander für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>4</sub>-C<sub>6</sub>-Alkadienyl, C<sub>2</sub>-C<sub>6</sub>-Alkinyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>5</sub>-C<sub>8</sub>-Cycloalkenyl, stehen, wobei die als R<sup>11</sup>, R<sup>12</sup> genannten Reste teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 Reste R<sup>8</sup> aufweisen können, wobei R<sup>11</sup> auch für eine Gruppe C(W)R<sup>13</sup> stehen kann und wobei
- R<sup>11</sup>, R<sup>12</sup> auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden können, der zusätzlich 1, 2 oder 3 weitere Heteroatome, ausgewählt unter O, S und N, als Ringglied aufweisen kann, wobei der Heterocyclus teilweise oder vollständig halogeniert sein und/oder 1, 2, 3 oder 4 der Reste R<sup>8</sup> aufweisen kann;
- 35 R<sup>13</sup> für Wasserstoff, OH, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, C<sub>1</sub>-C<sub>6</sub>-Haloalkyl, C<sub>1</sub>-C<sub>6</sub>-Haloalkoxy, C<sub>2</sub>-C<sub>6</sub>-Alkenyl oder NR<sup>18</sup>R<sup>19</sup> steht;
  - R<sup>14</sup>, R<sup>15</sup> unabhängig voneinander Wasserstoff oder C<sub>1</sub>-C<sub>6</sub>-Alkyl bedeuten;
- 40 R<sup>16</sup>, R<sup>17</sup> unabhängig voneinander für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkylamino oder Di-C<sub>1</sub>-C<sub>6</sub>-alkylamino stehen;
  - R<sup>18</sup>, R<sup>19</sup> unabhängig voneinander die für R<sup>11</sup> und R<sup>12</sup> genannten Bedeutungen aufweisen; und

W für Sauerstoff oder Schwefel steht;

durch die Tautomere der Verbindungen I sowie durch die landwirtschaftlich verträglichen Salze der Verbindungen I und von deren Tautomeren.

5

Gegenstand der vorliegenden Erfindung sind somit die Azolopyrimidin-Verbindungen der allgemeinen Formel I und deren landwirtschaftlich verträglichen Salze. Gegenstand der Erfindung sind auch deren Tautomere und die landwirtschaftlich verträglichen Salze dieser Tautomere.

10

Tautomere von Azolopyrimidin-Verbindungen der allgemeinen Formel I sind insbesondere die Verbindungen der nachstehend angegebenen Formel II

$$R^{5}$$
 $R^{4}$ 
 $R^{20}$ 
 $R^{10}$ 
 $R^{20}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{4}$ 

15

worin A, R<sup>3</sup>, R<sup>4</sup> und R<sup>5</sup> die zuvor für Formel I angegebenen Bedeutungen aufweisen,

V

 $R^{21}$ 

für eine chemische Bindung oder für Sauerstoff, Schwefel oder eine Gruppe N-R<sup>7</sup> steht;

20

W<sup>a</sup> für O, S oder eine Gruppe N-R<sup>21</sup> steht;

vv Idi O, O oder eine Ordppe iv-it Sterit

R<sup>20</sup> eine der in Formel I für R<sup>1</sup> bzw. R<sup>2</sup> angegebenen Bedeutungen aufweist;

25

eine der in Formel I für R<sup>1</sup> bzw. R<sup>2</sup> angegebenen Bedeutungen aufweist, wobei R<sup>21</sup> auch für Wasserstoff stehen kann; und

wenn W<sup>a</sup> für N-R<sup>21</sup> steht, V-R<sup>20</sup> und N-R<sup>21</sup> gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen ungesättigten Heterocyclus bilden können, wobei letzterer 1, 2, 3 oder 4 Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann, der teilweise oder vollständig halogeniert sein kann oder 1, 2, 3 oder 4 der zuvor genannten Reste R<sup>8</sup> aufweisen kann. Hierbei handelt es sich um Tautomere von solchen Verbindungen der Formel I, worin einer der Reste Y-R<sup>1</sup> oder X-R<sup>2</sup> für OH, SH, NH<sub>2</sub> oder NHR<sup>1</sup> bzw. NHR<sup>2</sup> (d.h. R<sup>7</sup> steht für Wasserstoff) stehen.

35

Zu den Tautomeren von Verbindungen der allgemeinen Formel I zählen weiterhin auch Verbindungen der Formel II'.

$$\begin{array}{c}
R^{2} \\
X \\
HN \\
R^{1a}
\end{array}$$

$$\begin{array}{c}
R^{5} \\
A \\
N
\end{array}$$

$$\begin{array}{c}
R^{3} \\
R^{4}
\end{array}$$
(II')

worin A, X, R², R³, R⁴ und R⁵ die zuvor angegebenen Bedeutungen aufweisen, und R¹a dem Rest R¹, abzüglich eines Wasserstoffatoms an der Bindungsstelle entspricht. Hierbei handelt es sich um Tautomere von Verbindungen der Formel I, worin Y eine Einfachbindung bedeutet und R¹ wenigstens ein enolisierbares Wasserstoffatom aufweist. In den Tautomeren der Formel II' kann R¹a mit X-R² und dem Kohlenstoffatom,
 an das sie gebunden sind, auch einen 5-, 6 oder 7-gliedrigen, ungesättigten Carbooder Heterocyclus bilden, wobei letzterer 1, 2, 3 oder 4 Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann, wobei der Carbo- und der Heterocyclus teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 der Reste R² und/oder R³ als Substituenten aufweisen können.

15

20

25

30

Gegenstand der vorliegenden Erfindung ist weiterhin die Verwendung der Azolopyrimidin-Verbindungen der allgemeinen Formel I, ihrer Tautomere und deren landwirtschaftlich verträglichen Salze zur Bekämpfung von pflanzenpathogenen Pilzen (= Schadpilzen) sowie ein Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, das dadurch gekennzeichnet ist, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I, einem Tautomer von I und/oder mit einem landwirtschaftlich verträglichen Salz von I oder dessen Tautomer behandelt.

Gegenstand der vorliegenden Erfindung sind weiterhin Mittel zur Bekämpfung von Schadpilzen, enthaltend wenigstens eine Verbindung der allgemeinen Formel I, ein Tautomer von I und/oder ein landwirtschaftlich verträgliches Salz davon oder von dessen Tautomer und wenigstens einen flüssigen oder festen Trägerstoff.

Die Verbindungen der Formel I und deren Tautomere können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren aufweisen und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomere oder Diastereomere als auch deren Gemische.

Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die fungizide Wirkung der Verbindungen I oder deren Tautomere nicht negativ beeinträchtigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier C<sub>1</sub>-C<sub>4</sub>-Alkylsubstituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C<sub>1</sub>-C<sub>4</sub>-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C<sub>1</sub>-C<sub>4</sub>-alkyl)sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, sowie die Anionen von C<sub>1</sub>-C<sub>4</sub>-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat. Sie können durch Reaktion von I mit einer Säure des entsprechenden
 Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.

Bei den in den vorstehenden Formeln angegebenen Definitionen der Variablen werden Sammelbegriffe verwendet, die allgemein repräsentativ für die jeweiligen Substituenten stehen. Die Bedeutung C<sub>n</sub>-C<sub>m</sub> gibt die jeweils mögliche Anzahl von Kohlenstoffatomen in dem jeweiligen Substituenten oder Substituententeil an:

Halogen: Fluor, Chlor, Brom und Jod;

Alkyl sowie alle Alkylteile in Alkoxy, Alkylthio, Alkoxyalkyl, Alkoxyalkoxy, Alkylamino und Dialkylamino: gesättigte, geradkettige oder verzweigte
Kohlenwasserstoffreste mit 1 bis 4, bis 6, bis 8 oder bis 10 Kohlenstoffatomen, z. B.
C<sub>1</sub>-C<sub>6</sub>-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl,
2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl,
 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl,
1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl,
1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl,
3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl,
1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

25

5

Halo(gen)alkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 4, bis 6, bis 8 oder bis 10 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z. B. C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Chlorfluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2-fluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1,1,1-Trifluorprop-2-yl;

10

**Alkenyl:** einfach ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, bis 6, bis 8 oder bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z. B. C<sub>2</sub>-C<sub>6</sub>-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl,

- 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl,
- 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl,
   1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl,
   1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl,
   1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl,
   1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl,
   3-Methyl-4-pentenyl,
   4-Methyl-4-pentenyl,
- 25 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl,
  - 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl,
  - 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl,
  - 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl,
  - 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl,
- 30 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl,
  - 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;

Alkadienyl: zweifach ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 4 bis 10 Kohlenstoffatomen und zwei Doppelbindungen in einer beliebigen
Position z. B. 1,3-Butadienyl, 1-Methyl-1,3-butadienyl, 2-Methyl-1,3-butadienyl,
Penta-1,3-dien-1-yl, Hexa-1,4-dien-1-yl, Hexa-1,4-dien-3-yl, Hexa-1,4-dien-6-yl,
Hexa-1,5-dien-1-yl, Hexa-1,5-dien-3-yl, Hepta-1,4-dien-1-yl,
Hepta-1,4-dien-3-yl, Hepta-1,4-dien-6-yl, Hepta-1,5-dien-7-yl, Hepta-1,5-dien-1-yl,
Hepta-1,5-dien-3-yl, Hepta-1,5-dien-4-yl, Hepta-1,5-dien-7-yl, Hepta-1,6-dien-1-yl,

Hepta-1,6-dien-3-yl, Hepta-1,6-dien-4-yl, Hepta-1,6-dien-5-yl, Hepta-1,6-dien-2-yl, Octa-1,4-dien-1-yl, Octa-1,4-dien-2-yl, Octa-1,4-dien-3-yl, Octa-1,4-dien-6-yl, Octa-1,4-dien-7-yl, Octa-1,5-dien-1-yl, Octa-1,5-dien-3-yl, Octa-1,5-dien-4-yl, Octa-1,5-dien-7-yl, Octa-1,6-dien-1-yl, Octa-1,6-dien-3-yl, Octa-1,6-dien-4-yl, Octa-1,6-dien-5-yl, Octa-1,6-dien-2-yl, Deca-1,4-dienyl, Deca-1,5-dienyl, Deca-1,6-dienyl, Deca-2,6-dienyl, Deca-2,7-dienyl, Deca-2,8-dienyl und dergleichen;

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 2 bis 6, 2
bis 8 oder 2 bis 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z. B. C<sub>2</sub>-C<sub>6</sub>-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 2-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-1-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-1-pentinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

20

5

**Cycloalkyl:** monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 8, vorzugsweise bis 6 Kohlenstoffringgliedern, wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;

Cycloalkenyl: monocyclische, einfach ungesättigte Kohlenwasserstoffgruppen mit 5 bis 8, vorzugsweise bis 6 Kohlenstoffringgliedern, wie Cyclopenten-1-yl, Cyclopenten-3-yl, Cyclohexen-1-yl, Cyclohexen-3-yl und Cyclohexen-4-yl;

Bicycloalkyl: bicyclischer Kohlenwasserstoffrest mit 5 bis 10 C-Atomen wie Bicyclo[2.2.1]hept-1-yl, Bicyclo[2.2.1]hept-2-yl, Bicyclo[2.2.1]hept-7-yl, Bicyclo[2.2.2]oct-1-yl, Bicyclo[2.2.2]oct-2-yl, Bicyclo[3.3.0]octyl und Bicyclo[4.4.0]decyl.

**Alkylamino** für einen über eine NH-Gruppe gebundene Alkylgruppe wie Methylamino, Ethylamino, n-Propylamino, Isopropylamino, n-Butylamino und dergleichen;

35

**Dialkylamino** für einen Rest der Formel N(Alkyl)<sub>2</sub>, worin Alkyl für einen der zuvor genannten Alkylreste mit in der Regel 1 bis 6 und insbesondere 1 bis 4 C-Atomen steht, z. B. für Dimethylamino, Diethylamino, Methylethylamino, N-Methyl-N-propylamino und dergleichen.

C<sub>1</sub>-C<sub>4</sub>-Alkoxy für eine über ein Sauerstoff gebundene Alkylgruppe mit 1 bis 4 C-Atomen: z. B. Methoxy, Ethoxy, n-Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy;

- C<sub>1</sub>-C<sub>6</sub>-Alkoxy: für C<sub>1</sub>-C<sub>4</sub>-Alkoxy, wie voranstehend genannt, sowie z. B. Pentoxy,
   1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,1-Dimethylpropoxy,
   1,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy,
   2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy,
   1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy,
   3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy,
   1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy oder 1-Ethyl-2-methylpropoxy;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy: für einen C<sub>1</sub>-C<sub>4</sub>-Alkoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod, vorzugsweise durch Fluor substituiert ist, also z. B. OCH<sub>2</sub>F, OCHF<sub>2</sub>, OCF<sub>3</sub>, OCH<sub>2</sub>CI, OCHCl<sub>2</sub>, OCCI<sub>3</sub>, Chlorfluor-methoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Bromethoxy, 2-Iodethoxy, 2,2-Difluorethoxy, 2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2-fluorethoxy, 2,2-Difluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,3-Dichlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, OCH<sub>2</sub>-C<sub>2</sub>F<sub>5</sub>, OCF<sub>2</sub>-C<sub>2</sub>F<sub>5</sub>, 1-(CH<sub>2</sub>F)-2-fluorethoxy, 1-(CH<sub>2</sub>CI)-2-chlorethoxy, 1-(CH<sub>2</sub>Br)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluor-

C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy: für C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, wie voranstehend genannt, sowie z. B. 5-Fluorpentoxy, 5-Chlorpentoxy, 5-Brompentoxy, 5-Iodpentoxy, Undecafluorpentoxy, 6-Fluorhexoxy, 6-Chlorhexoxy, 6-Bromhexoxy, 6-Iodhexoxy oder Dodecafluorhexoxy;

**Alkenyloxy:** Alkenyl wie vorstehend genannt, das über ein Sauerstoffatom gebunden ist, z. B. C<sub>2</sub>-C<sub>6</sub>-Alkenyloxy wie Vinyloxy, 1-Propenyloxy, 2-Propenyloxy,

1-Methylethenyloxy, 1-Butenyloxy, 2-Butenyloxy, 3-Butenyloxy,

butoxy;

25

- 1-Methyl-1-propenyloxy, 2-Methyl-1-propenyloxy, 1-Methyl-2-propenyloxy,
- 35 2-Methyl-2-propenyloxy, 1-Pentenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy,
  - 1-Methyl-1-butenyloxy, 2-Methyl-1-butenyloxy, 3-Methyl-1-butenyloxy,
  - 1-Methyl-2-butenyloxy, 2-Methyl-2-butenyloxy, 3-Methyl-2-butenyloxy,
  - 1-Methyl-3-butenyloxy, 2-Methyl-3-butenyloxy, 3-Methyl-3-butenyl,
  - 1,1-Dimethyl-2-propenyloxy, 1,2-Dimethyl-1-propenyloxy, 1,2-Dimethyl-2-propenyloxy,
- 40 1-Ethyl-1propenyloxy, 1-Ethyl-2-propenyloxy, 1-Hexenyloxy, 2-Hexenyloxy,

- 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-1-pentenyloxy,
- 2-Methyl-1-pentenyloxy, 3-Methyl-1-pentenyloxy, 4-Methyl-1-pentenyloxy,
- 1-Methyl-2-pentenyloxy, 2-Methyl-2-pentenyloxy, 3-Methyl-2-pentenyloxy,
- 4-Methyl-2-pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-3-pentenyloxy,
- 5 3-Methyl-3-pentenyloxy, 4-Methyl-3-pentenyloxy, 1-Methyl-4-pentenyloxy,
  - 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4-pentenyloxy,
  - 1,1-Dimethyl-2-butenyloxy, 1,1-Dimethyl-3-butenyloxy, 1,2-Dimethyl-1-butenyloxy,
  - 1,2-Dimethyl-2-butenyloxy, 1,2-Dimethyl-3-butenyloxy, 1,3-Dimethyl-1-butenyloxy,
  - 1,3-Dimethyl-2-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 2,2-Dimethyl-3-butenyloxy,
- 10 2,3-Dimethyl-1-butenyloxy, 2,3-Dimethyl-2-butenyloxy, 2,3-Dimethyl-3-butenyloxy,
  - 3,3-Dimethyl-1-butenyloxy, 3,3-Dimethyl-2-butenyloxy, 1-Ethyl-1-butenyloxy,
  - 1-Ethyl-2-butenyloxy, 1-Ethyl-3-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-2-butenyloxy,
  - 2-Ethyl-3-butenyloxy, 1,1,2-Trimethyl-2-propenyloxy, 1-Ethyl-1-methyl-2-propenyloxy,
  - 1-Ethyl-2-methyl-1propenyloxy und 1-Ethyl-2-methyl-2-propenyloxy;

15

25

30

**Alkinyloxy:** Alkinyl wie vorstehend genannt, das über ein Sauerstoffatom gebunden ist, z. B.  $C_3$ - $C_6$ -Alkinyloxy wie 2-Propinyloxy, 2-Butinyloxy, 3-Butinyloxy,

- 1-Methyl-2-propinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy,
- 1-Methyl-2-butinyloxy, 1-Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy,
- 20 1-Ethyl-2-propinyloxy, 2-Hexinyloxy, 3-Hexinyloxy, 4-Hexinyloxy, 5-Hexinyloxy,
  - 1-Methyl-2-pentinyloxy, 1-Methyl-3-pentinyloxy und dergleichen;

fünf- bis siebengliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus bzw. Heterocyclyl, enthaltend ein, zwei oder drei Heteroatome aus der Gruppe O, N oder S:

- ein gesättigter, teilweise (z.B. einfach) ungesättigter oder aromatischer, heterocyclischer Rest mit 5, 6 oder 7 Ringatomen, wovon 1, 2 oder 3 unter Stickstoff, Sauerstoff und Schwefel ausgewählt sind und die übrigen Ringatome für Kohlenstoff stehen, z. B.:
- 5- oder 6-gliedriges gesättigtes oder einfach ungesättigtes Heterocyclyl, enthaltend ein bis zwei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome als Ringglieder, z. B.
- 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 1-Pyrrolidinyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl,
- 40 2-Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl, 3-Pyrrolin-3-yl, 1-Piperidinyl,

2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl, 2-Tetrahydropyranyl,

- 4-Tetrahydropyranyl, 2-Tetrahydrothienyl, 3-Hexahydropyridazinyl,
- 4-Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl,
- 5-Hexahydropyrimidinyl und 2-Piperazinyl;

5

10

15

20

- 5-gliedriges aromatisches Heterocyclyl (= Heteroaryl bzw. Hetaryl), enthaltend neben Kohlenstoffatomen ein, zwei oder drei Stickstoffatome oder ein oder zwei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder, z. B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, und 1,3,4-Triazol-2-yl;
- 6-gliedriges Heterocyclyl (= Heteroaryl bzw. Hetaryl), enthaltend neben Kohlenstoffatomen ein oder zwei bzw. ein, zwei oder drei Stickstoffatome als Ringglieder, z. B. 2-Pyridinyl, 3-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 4-Pyridinyl, 2-Pyridinyl, 4-Pyridinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,2,4-Triazin-3-yl; 1,2,4-Triazin-5-yl, 1,2,4-Triazin-6-yl und 1,3,5-Triazin-2-yl;

Eine erste Ausführungsform der Erfindung betrifft Verbindungen der allgemeinen Formel I, worin A für N steht. Derartige Verbindungen werden im Folgenden auch als Verbindungen I-A bezeichnet. Eine zweite Ausführungsform der Erfindung betrifft Verbindungen der allgemeinen Formel I, worin A für C-R<sup>6</sup> steht. Derartige Verbindungen werden im Folgenden auch als Verbindungen I-B bezeichnet.

$$R^{5}$$
 $R^{4}$ 
 $R^{1}$ 
 $R^{5}$ 
 $R^{6}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{4}$ 
 $R^{5}$ 
 $R^{6}$ 
 $R^{6}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{4}$ 
 $R^{4}$ 
 $R^{4}$ 
 $R^{5}$ 
 $R^{6}$ 

25

Im Hinblick auf die fungizide Wirkung der erfindungsgemäßen Verbindungen sind solche Verbindung der Formel I bevorzugt, worin A, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> und R<sup>5</sup> insbesondere die im Folgenden angegebenen Bedeutungen aufweisen:

30

 $R^1$  und  $R^2$  stehen unabhängig voneinander für  $C_1$ - $C_{10}$ -Alkyl  $C_1$ - $C_{10}$ -Haloalkyl,  $C_3$ - $C_{10}$ -Alkenyl,  $C_3$ - $C_{10}$ -Haloalkenyl,  $C_3$ - $C_8$ -Cycloalkyl,  $C_5$ - $C_8$ -Cycloalkyl- $C_1$ - $C_{10}$ -alkyl,  $C_3$ - $C_8$ -Cycloalkyl- $C_2$ - $C_{10}$ -alkenyl, Phenyl oder Benzyl,

wobei die 6 letztgenannten Reste auch 1, 2, 3 oder 4 Substituenten, ausgewählt unter Halogen,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkyl und  $C_1$ - $C_4$ -Alkoxy tragen können, oder eine Gruppe X- $R^2$  oder Y- $R^1$  steht für Wasserstoff oder Halogen, speziell Chlor und der verbleibende Rest  $R^2$  bzw.  $R^1$  weist die hier als bevorzugt angegebenen Bedeutungen auf.

Im Folgenden werden bevorzugte Gruppen  $R^1$  und  $R^2$  näher erläutert. Die im Folgenden für  $R^1$  gemachten Angaben gelten entsprechend auch für  $R^2$ .  $R^1$  steht vorzugsweise für  $C_1$ - $C_4$ -Alkyl,  $C_2$ - $C_6$ -Alkenyl oder  $C_1$ - $C_8$ -Halogenalkyl. Sofern  $R^1$  für eine Alkyl-, Alkenyl- oder Alkinylgruppe steht, kann diese am  $\alpha$ -C-Atom eine Verzweigung aufweisen. In diesen Fällen entspricht die Gruppe  $R^1$  einer Gruppe  $R^1$ 

$$R^{1y}$$
 $R^{1z}$ 
 $R^{1z}$ 
 $R^{1z}$ 

in der # die Bindung zu dem Kohlenstoffatom der Iminogruppe oder zu Y darstellt und  $R^{1x}$   $C_1$ - $C_3$ -Alkyl oder  $C_1$ - $C_3$ -Halogenalkyl;

R<sup>1y</sup> Wasserstoff, C<sub>1</sub>-C<sub>3</sub>-Alkyl oder C<sub>1</sub>-C<sub>3</sub>-Halogenalkyl;

R<sup>1z</sup> C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>2</sub>-C<sub>8</sub>-Alkenyl oder C<sub>2</sub>-C<sub>8</sub>-Alkinyl, wobei R<sup>1z</sup> unsubstituiert oder partiell oder vollständig halogeniert sein und/oder eine bis drei Gruppen R<sup>8</sup> tragen kann; bedeuten.

Gleichermaßen bevorzugt sind Verbindungen I, in denen R<sup>1</sup> für einen 5- oder 6gliedrigen gesättigten oder aromatischen Heterocyclus, enthaltend ein oder zwei Heteroatome aus der Gruppe N, O und S steht, der durch eine oder zwei Alkyl- oder Halogenalkylgruppen substituiert sein kann.

Verbindungen I sind bevorzugt, in denen R<sup>1</sup> für eine Gruppe B steht:

$$F \xrightarrow{F} F$$

$$Z^{1} Z^{2} (CH_{2})_{q} - CHR^{22}$$

$$B$$

worin

5

10

20

25

35

30 Z<sup>1</sup> Wasserstoff, Fluor oder C<sub>1</sub>-C<sub>6</sub>-Fluoralkyl,

Z<sup>2</sup> Wasserstoff oder Fluor, oder

Z<sup>1</sup> und Z<sup>2</sup> bilden gemeinsam eine Doppelbindung;

q 0 oder 1 ist; und

R<sup>22</sup> Wasserstoff oder Methyl bedeuten.

Außerdem werden Verbindungen I bevorzugt, in denen  $R^1$  für  $C_3$ - $C_6$ -Cycloalkyl steht, welches durch  $C_1$ - $C_4$ -Alkyl substituiert sein kann.

Wenn X-R² mit Y-R¹ und dem C-Atom, an das sie gebunden sind einen gegebenenfalls substituierten Carbo- oder Heterocyclus bildet, dann ist dieser Cyclus vorzugsweise ausgewählt unter 5-, 6- oder 7-gliedrigen gesättigten oder einfach ungesättigten Cyclen, die gegebenenfalls ein Heteroatom als Ringglied umfassen. Beispielweise stehen dann X-R² mit Y-R¹ gemeinsam für -(CH₂)₂CH=CHCH₂-, -(CH₂)₂C(CH₃)=CHCH₂-, -(CH₂)₂CH(CH₃)(CH₂)₂-, -(CH₂)₂CHF(CH₂)₂-, -(CH₂)₃CHFCH₂-, -(CH₂)₂CH(CF₃)(CH₂)₂-, -(CH₂)₂-, -(CH₂)-, -(CH₂)-,

Unter den Verbindungen der allgemeinen Formel I sind weiterhin solche bevorzugt, worin  $R^3$  für einen Phenyl-Ring steht, der 1, 2, 3 oder 4, insbesondere 1, 2 oder 3 der zuvor angegebenen Reste  $R^9$  aufweist oder für Pentafluorphenyl steht. Vorzugsweise ist wenigstens einer der Reste  $R^9$  in der ortho-Position zur Bindungsstelle angeordnet.  $R^9$  ist dann insbesondere unter den folgenden Resten ausgewählt: Halogen, speziell Fluor oder Chlor, CN,  $C_1$ - $C_4$ -Alkyl, speziell Methyl oder Ethyl,  $C_1$ -Halogenalkyl, speziell Trifluormethyl,  $C_1$ - $C_4$ -Alkoxy, speziell Methoxy oder -C(=O)- $R^{13}$ , worin  $R^{13}$  die zuvor angegebenen Bedeutungen aufweist und insbesondere für Wasserstoff, Hydroxy,  $C_1$ - $C_4$ -Alkoxy,  $C_1$ - $C_4$ -Halogenalkoxy,  $C_1$ - $C_2$ -Alkylamino oder Di- $C_1$ - $C_2$ -alkylamino steht. Hierunter sind solche Verbindungen der allgemeinen Formel I bevorzugt, worin  $R^3$  für eine Gruppe der Formel

25

35

15

20

steht, worin

R<sup>a1</sup> für Fluor, Chlor, Methyl oder CF<sub>3</sub>;

30 R<sup>a2</sup> für Wasserstoff, Chlor oder Fluor;

für Wasserstoff, CN, NO<sub>2</sub>, Fluor, Chlor, C<sub>1</sub>-C<sub>4</sub>-Alkyl, speziell Methyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, speziell Methoxy oder eine Gruppe C(W)R<sup>13a</sup>, worin W für Sauerstoff oder Schwefel steht und R<sup>13a</sup> für C<sub>1</sub>-C<sub>4</sub>-Alkoxy, NH<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkylamino oder Di-C<sub>1</sub>-C<sub>4</sub>-alkylamino steht, wobei die Gruppe C(W)R<sup>13a</sup> insbesondere für C(O)OCH<sub>3</sub>, CONH<sub>2</sub>, C(S)OCH<sub>3</sub> steht;;

R<sup>a4</sup> für Wasserstoff, Chlor oder Fluor;

15

30

R<sup>a5</sup> für Wasserstoff, Fluor, Chlor oder C<sub>1</sub>-C<sub>4</sub>-Alkyl stehen.

Unter den Verbindungen der allgemeinen Formel I sind weiterhin solche Verbindungen bevorzugt, worin R³ für einen gegebenenfalls substituierten Kohlenwasserstoffrest mit 3 bis 8 C-Atomen, und insbesondere für gegebenenfalls substituiertes C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkylmethyl, C₃-C₆-Alkyl, C₁-C₆-Haloalkyl oder Benzyl und beispielsweise für Propyl, Isopropyl, Isobutyl, 1-Methylbutyl, tert-Butyl, n-Octyl, Cyclopropyl, Cylcopropylmethyl, Cyclopentyl, Cyclohexyl, 2,2,2-Trifluorethyl, Benzyl oder 2-, 3- oder 4-Chlorphenylmethyl steht.

Unter den Verbindungen der allgemeinen Formel I sind weiterhin solche Verbindungen bevorzugt, worin R³ für einen 5-oder 6-gliedrigen heteroaromatischen Rest steht, der 1, 2 oder 3 unter N, O und S ausgewählte Heteroatome als Ringglieder aufweist und der 1, 2, 3 oder 4 Reste R9 aufweisen kann.

Beispiele für heterocyclische Reste an R³ sind 1-, 2- oder 3-Pyrazolyl, 2- oder 3-Thienyl, z. B. 4-Thiazolyl, Isothiazolyl, z. B. 4-Isothiazolyl, Oxazolyl, z. B. 4-Oxazolyl, Isoxazolyl, z. B. 4-Isoxazolyl, Pyrrolyl, z. B. 2-Pyrrolyl, Imidazolyl, z. B. 1-Imidazolyl, Pyridyl, z. B. 2-, 3-, oder 4-pyridyl, Pyrazinyl, z. B. 2-Pyrazinyl, Pyridazin, z. B. 3-Pyridazinyl, Pyrimidinyl, z. B. 2-, 4- oder 5-Pyrimidinyl und 1,3,5-Triazinyl-2-yl, wobei die vorgenannten Reste unsubstituiert sein können oder, je nach Zahl der Kohlenstoffatome im Ring 1, 2, 3 oder 4 Reste R³ aufweisen können. Bevorzugte Reste R³ sind dabei Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, speziell C₁-C₂-Fluoralkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkoxycarbonyl.

Bevorzugte heteroaromatische Reste umfassen die nachfolgend angegebenen Reste Het-1 bis Het-21:

$$\mathbb{R}^{b1}$$
 $\mathbb{R}^{b2}$ 
 $\mathbb{R}^{b2}$ 
 $\mathbb{R}^{b1}$ 
 $\mathbb{R}^{b2}$ 
 $\mathbb{R}^{b1}$ 
 $\mathbb{R}^{b2}$ 
 $\mathbb{R}^{b1}$ 
 $\mathbb{R}^{b2}$ 
 $\mathbb{R}^{b1}$ 
 $\mathbb{R}^{b2}$ 
 $\mathbb{R}^{b1}$ 
 $\mathbb{R}^{b2}$ 
 $\mathbb{R}^{b2}$ 

worin

5

10

15

# die Anknüpfungsstelle bezeichnet; und

R<sup>b1</sup>, R<sup>b2</sup>, R<sup>b3</sup> und R<sup>b4</sup> unabhängig voneinander für Wasserstoff stehen oder die für R<sup>9</sup> genannten Bedeutungen aufweisen.

Vorzugsweise sind die Reste  $R^{b1}$ ,  $R^{b2}$ ,  $R^{b3}$  und  $R^{b4}$  unabhängig voneinander ausgewählt unter Wasserstoff, Halogen, Nitro, Cyano,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkyl, speziell  $C_1$ - $C_2$ -Fluoralkyl,  $C_1$ - $C_4$ -Alkoxy und  $C_1$ - $C_4$ -Alkoxycarbonyl. In einer besonders bevorzugten Ausführungsform sind  $R^{b1}$ ,  $R^{b2}$ ,  $R^{b3}$  und  $R^{b4}$  unabhängig voneinander ausgewählt unter Wasserstoff, Nitro, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Isopropyl, Trifluormethyl, Fluormethyl, Methoxy und Methoxycarbonyl.

Beispiele für Het-1 umfassen 3,5-Dimethylpyrazol-1-yl, 3,5-Diisopropylpyrazol-1-yl,

- 3-Methyl-5-isopropyl-pyrazol-1-yl, 3-lsopropyl-5-methyl-pyrazol-1-yl,
- 3-Ethyl-5-methyl-pyrazol-1-yl, 3,4,5-Trimethyl-pyrazol-1-yl,
- 3-Trifluormethyl-pyrazol-1-yl, 3-Trifluormethyl-5-methoxy-pyrazol-1-yl,
- 5 3-Trifluormethyl-5-methyl-pyrazol-1-yl, 3-Methyl-5-methoxypyrazol-1-yl,
  - 3,5-Dimethyl-4-chlor-pyrazol-1-yl und 3,5-Ditrifluormethyl-pyrazol-1-yl.

Beispiele für Het-2 umfassen 1,3-Dimethylpyrazol-5-yl und 1-Methyl-3-trifluormethylpyrazol-1-yl.

10

Beispiele für Het-3 umfassen 1,5-Dimethylpyrazol-3-yl und 1-Methyl-5-methoxypyrazol-3-yl.

Beispiele für Het-4 umfassen 1,3-Dimethylpyrazol-4-yl, 1,5-Dimethylpyrazol-4-yl,

15 1,3,5-Trimethylpyrazol-4-yl, 1-Methyl-3-trifluormethylpyrazol-4-yl und 1-Methyl-5-trifluormethylpyrazol-4-yl.

Beispiele für Het-5 umfassen 2-Thienyl, 5-Methylthiophen-2-yl, 5-Chlorthiophen-2-yl, 3,5-Dichlorthiophen-2-yl, 3,4,5-Trichlorthiophen-2-yl und 5-Bromthiophen-2-yl.

20

Beispiele für Het-6 umfassen 3-Thienyl, 2-Methylthiophen-3-yl, 2,5-Dichlorthiophen-3-yl, 2,4,5-Trichlor-thiophen-3-yl und 2,5-Dibromthiophen-3-yl.

Beispiele für Het-7 umfassen Thiazol-4-yl, 2-Methyl-thiazol-4-yl,

25 2-Methyl-5-chlor-thiazol-4-yl und 2,5-Dichlor-thiazol-4-yl.

Beispiele für Het-8 umfassen 3-Methyl-isothiazol-4-yl und 3-Methyl-5-chlor-isothiazol-4-yl.

30 Beispiele für Het-9 umfassen Oxazol-4-yl, 2-Methyl-oxazol-4-yl und 2,5-Dimethyloxazol-4-yl,

Beispiele für Het-10 umfassen Isoxazol-4-yl, 3,5-Dimethyl-isoxazol-4-yl und 3-Chlor-isoxazol-4-yl,

35

40

Beispiele für Het-11 umfassen 1-Methyl-pyrrol-2-yl, 1,4-Dimethyl-pyrrol-2-yl, 1-Methyl-5-chlor-pyrrol-2-yl und 1-Methyl-3,5-dichlorpyrrol-2-yl.

Beispiele für Het-12 umfassen 4,5-Dichlor-imidazol-1-yl und 4,5-Dimethyl-imidazol-1-yl.

Beispiele für Het-13 umfassen 2-Pyridyl, 3-Fluor-pyridin-2-yl, 3,5-Difluor-pyridin-2-yl,

- 3,5-Dichlor-pyridin-2-yl, 3-Fluor-5-trifluormethyl-pyridin-2-yl,
- 3-Trifluormethyl-pyridin-2-yl, 5-Nitro-pyridin-2-yl, 5-Cyano-pyridin-2-yl,
- 5-Methoxycarbonyl-pyridin-2-yl, 5-Trifluormethyl-pyridin-2-yl, 5-Methyl-pyridin-2-yl,
- 5 4-Methyl-pyridin-2-yl, 3-Methyl-pyridin-2-yl, 3-Ethyl-pyridin-2-yl und 6-Methyl-pyridin-2-yl.

Ein Beispiel für Het-14 ist 3-Pyridyl.

10 Ein Beispiel für Het-15 ist 4-Pyridyl.

Ein Beispiel für Het-16 ist Pyrazin-2-yl.

Beispiele für Het-17 umfassen Pyridazin-3-yl, 6-Chlor-pyridazin-3-yl,

15 6-Methoxy-pyridazin-3-yl

Beispiele für Het-18 umfassen 5-Chlorpyrimidin-4-yl, 5-Fluorpyrimidin-4-yl,

- 5-Fluor-6-chlorpyrimidin-4-yl, 2-Methyl-6-trifluormethyl-pyrimidin-4-yl,
- 2,5-Dimethyl-6-trifluormethyl-pyrimidin-4-yl, 5-Methyl-6-trifluormethyl-pyrimidin-4-yl,
- 20 6-Trifluormethyl-pyrimidin-4-yl, 2-Methyl-5-fluor-pyrimidin-4-yl,
  - 2-Methyl-5-chlor-pyrimidin-4-yl, 5-Chlor-6-methyl-pyrimdin-4-yl,
  - 5-Chlor-6-ethyl-pyrimdin-4-yl, 5-Chlor-6-isopropyl-pyrimdin-4-yl,
  - 5-Brom-6-methyl-pyrimidin-4-yl, 5-Fluor-6-methyl-pyrimidin-4-yl,
  - 5-Fluor-6-fluormethyl-pyrimidin-4-yl, 2,6-Dimethyl-5-chlor-pyrimdin-4-yl,
- 5,6-Dimethyl-pyrimidin-4-yl, 2,5-Dimethyl-pyrimidin-4-yl, 2,5,6-Trimethyl-pyrimidin-4-yl und 5-Methyl-6-methoxy-pyrimidin-4-yl.

Beispiele für Het-19 umfassen 4-Methyl-pyrimidin-5-yl, 4,6-Dimethyl-pyrimidin-5-yl, 2,4,6-Trimethylpyrimidin-5-yl und 4-Trifluormethyl-6-methyl-pyrimidin-5-yl.

30

Beispiele für Het-20 umfassen 4,6-Dimethylpyrimidin-2-yl,

- 4,5,6-Trimethylpyrimidin-2-yl, 4,6-Ditrifluormethyl-pyrimidin-2-yl und
- 4,6-Dimethyl-5-chlor-pyrimidin-2-yl.
- 35 Ein Beispiel für Het-21 ist 1,3,5-Triazin-2-yl.

Weiterhin hat es sich als vorteilhaft erwiesen, wenn R⁴ in Formel I für Halogen, CN, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, speziell Methoxy, oder C<sub>1</sub>-C<sub>4</sub>-Alkyl, speziell Methyl, steht. Hierunter sind insbesondere Verbindungen der allgemeinen Formel I bevorzugt, worin R⁴ für Halogen

steht. Bevorzugt sind auch Verbindungen der Formel I, worin R<sup>4</sup> für Methyl oder Methoxy steht.

Unter den Verbindungen der allgemeinen Formel I sind weiterhin solche Verbindungen bevorzugt, worin R<sup>5</sup> für Wasserstoff, Halogen, speziell Chlor oder Fluor, oder für C<sub>1</sub>-C<sub>4</sub>-Alkyl, speziell Methyl steht. In einer besonders bevorzugten Ausführungsform steht R<sup>5</sup> für Wasserstoff.

In den Verbindungen der allgemeinen Formel I-B steht R<sup>6</sup> vorzugsweise für Wasserstoff, Halogen, speziell Chlor oder Fluor, eine Gruppe C(W)R<sup>13b</sup>, worin W für Sauerstoff oder Schwefel steht und R<sup>13b</sup> für C<sub>1</sub>-C<sub>4</sub>-Alkoxy, NH<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkylamino oder Di-C<sub>1</sub>-C<sub>4</sub>-alkylamino steht, speziell C(O)OCH<sub>3</sub>, CONH<sub>2</sub>, C(S)OCH<sub>3</sub>, oder für C<sub>1</sub>-C<sub>4</sub>-Alkyl, speziell Methyl. Sofern R<sup>5</sup> von Wasserstoff verschieden ist, steht R<sup>6</sup> insbesondere für Wasserstoff. Besonders bevorzugt stehen in Formel I-B R<sup>5</sup> und R<sup>6</sup> für Wasserstoff.

In einer bevorzugten Ausführungsform der erfindungsgemäßen Verbindungen steht wenigstens eine der Variablen X oder Y in Formel I für eine chemische Bindung. Hierunter sind solche Verbindungen bevorzugt, worin eine der Gruppen Y-R<sup>1</sup> oder X-R<sup>2</sup> für Wasserstoff oder C<sub>1</sub>-C<sub>8</sub>-Alkyl und speziell C<sub>1</sub>-C<sub>4</sub>-Alkyl steht. Die andere dieser Gruppen Y-R<sup>1</sup> oder X-R<sup>2</sup> weist die zuvor angegebenen Bedeutungen auf. Insbesondere weisen dann R<sup>1</sup> und R<sup>2</sup> eine der als bevorzugt angegebenen Bedeutungen auf.

In einer besonders bevorzugten Ausführungsform der Verbindungen I stehen beide
Variablen X und Y für eine chemische Bindung. R¹ und R² haben dann unabhängig voneinander die zuvor angegebenen Bedeutungen und sind insbesondere ausgewählt unter Wasserstoff, C₁-C₁₀-Alkyl C₁-C₁₀-Haloalkyl, C₃-C₁₀-Alkenyl, C₃-C₁₀-Haloalkenyl, C₃-C₀-Cycloalkyl, C₅₃-C₀-Cycloalkyl, C₃-C₀-Cycloalkyl-C₁-C₁₀-alkyl, C₃-C₀-Cycloalkyl-C₂-C₁₀-alkenyl, Phenyl oder Benzyl, wobei die 6 letztgenannten Reste
auch 1, 2, 3 oder 4 Substituenten, ausgewählt unter Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl und C₁-C₄-Alkoxy tragen können, wobei einer der Reste R¹ oder R² auch für Halogen und speziell Chlor stehen kann. Hierunter sind solche Verbindungen besonders bevorzugt, worin einer der Reste R¹ oder R² für eine Gruppe der Formel C oder B wie vorstehend definiert steht.

Unter den Verbindungen I, worin X und Y jeweils für eine chemische Bindung stehen, sind solche Verbindungen bevorzugt, worin einer der Variablen R<sup>1</sup> oder R<sup>2</sup> für Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl steht und die andere Variable eine zuvor genannte, und insbesondere eine als bevorzugt genannte Bedeutung aufweist.

35

5

Unter den Verbindungen I, worin X und Y jeweils für eine chemische Bindung stehen, sind außerdem solche Verbindungen bevorzugt, worin einer der Variablen R<sup>1</sup> oder R<sup>2</sup> für Halogen, speziell für Chlor steht und die andere Variable eine zuvor genannte, und insbesondere eine als bevorzugt genannte Bedeutung aufweist.

5

20

25

 $R^7$  steht insbesondere für Wasserstoff oder  $C_1$ - $C_4$ -Alkyl. Verbindungen mit  $R^7$  = Wasserstoff können insbesondere auch in Form von Tautomeren der Formel II vorliegen, worin,  $W^a$  für eine Gruppe N- $R^{21}$  steht.

In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Verbindungen steht eine der Variablen X oder Y in Formel I für eine Gruppe NR<sup>7</sup>. Hierunter sind solche Verbindungen I bevorzugt, worin Y für N-R<sup>7</sup> steht, worin R<sup>7</sup> die zuvor genannten Bedeutungen und insbesondere eine als bevorzugt genannte Bedeutung aufweist. R<sup>1</sup> steht dann in der Gruppe -(NR<sup>7</sup>)-R<sup>1</sup> für C<sub>1</sub>-C<sub>10</sub>-Alkyl, C<sub>2</sub>-C<sub>10</sub>-Alkenyl, C<sub>4</sub>-C<sub>10</sub>-Alkadienyl,
 C<sub>2</sub>-C<sub>10</sub>-Alkinyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>5</sub>-C<sub>8</sub>-Cycloalkenyl, C<sub>5</sub>-C<sub>10</sub>-Bicycloalkyl, Phenyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Naphthyl, Naphthyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, wobei die als R<sup>1</sup> genannten Reste teilweise oder vollständig halogeniert sein können und/oder 1, 2, 3 oder 4 Reste R<sup>8</sup> aufweisen können. Ganz besonders bevorzugt sind Verbindungen der Formel I, worin die Gruppe (NR<sup>7</sup>)R<sup>1</sup> für C<sub>1</sub>-C<sub>6</sub>-Alkylamino oder Di-C<sub>1</sub>-C<sub>6</sub>-alkylamino, speziell

C<sub>1</sub>-C<sub>4</sub>-Alkylamino oder Di-C<sub>1</sub>-C<sub>4</sub>-alkylamino steht.

- Gleichermaßen bevorzugt sind Verbindungen I, worin in der Gruppe -(NR<sup>7</sup>)-R<sup>1</sup> die Substituenten R<sup>1</sup> und R<sup>7</sup> gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen 5- oder 6-gliedrigen gesättigten, teilweise ungesättigten oder aromatischen N-Heterocyclus stehen, der ein oder zwei weitere Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann und/oder 1, 2, 3 oder 4 Reste R<sup>8</sup> aufweisen kann, worin R<sup>8</sup> eine der zuvor genannten Bedeutungen und insbesondere eine als bevorzugt genannte Bedeutung aufweist.
- Hierunter sind solche Verbindungen I besonders bevorzugt, worin die Gruppe -(NR<sup>7</sup>)-R<sup>1</sup> für N-gebundenes 5- oder 6-gliedriges gesättigtes Heterocyclyl steht, das gegebenenfalls ein weiteres unter N, O und S ausgewähltes Heteroatom als Ringatom aufweist und das gegebenenfalls 1, 2, 3 oder 4 Substituenten R<sup>8</sup> trägt, die unter Halogen und C<sub>1</sub>-C<sub>4</sub>-Alkyl ausgewählt sind. In einer besonders bevorzugten Ausführungsform steht die Gruppe -(NR<sup>7</sup>)-R<sup>1</sup> für Piperidin-1-yl, 4-Methyl-1-piperidinyl, 1-Pyrrolidinyl, 2,5-Dihydropyrrol-1-yl, 4-Morpholinyl oder 4-Thiomorpholinyl.

Gleichermaßen bevorzugt sind Verbindungen I, worin X für eine chemische Bindung steht,  $R^2$  für Wasserstoff oder  $C_1$ - $C_4$ -Alkyl steht und die Gruppe -(NR<sup>7</sup>)-R<sup>1</sup> eine der

zuvor genannten Bedeutungen und insbesondere eine als bevorzugt genannte Bedeutung aufweist.

R<sup>8</sup> steht insbesondere für Halogen, speziell Fluor, C<sub>1</sub>-C<sub>4</sub>-Alkoxy oder C<sub>1</sub>-C<sub>4</sub>-Alkyl.

5

- In den Gruppen OR<sup>10</sup>, SR<sup>10</sup>, NR<sup>11</sup>R<sup>12</sup>, C(W)R<sup>13</sup>, C(=N-OR<sup>15</sup>)R<sup>14</sup>, NHC(W)R<sup>16</sup>, C(W)R<sup>17</sup> und NR<sup>18</sup>R<sup>19</sup> haben die Variablen insbesondere die im Folgenden angegebenen Bedeutungen:
- 10 R<sup>10</sup> steht insbesondere für H, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C(O)H oder C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl. OR<sup>10</sup> steht insbesondere für OH, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, O-C(O)H oder C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy. SR<sup>10</sup> steht insbesondere für SH oder S-C<sub>1</sub>-C<sub>4</sub>-Alkyl.
- R<sup>11</sup> und R<sup>12</sup> stehen insbesondere für H, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl(thiocarbonyl). Insbesondere steht NR<sup>11</sup>R<sup>12</sup> für NH<sub>2</sub>, NHCH<sub>3</sub>, NHC<sub>2</sub>H<sub>5</sub>, N(CH<sub>3</sub>)<sub>2</sub>, N(C<sub>2</sub>H<sub>5</sub>)CH<sub>3</sub>, NHC(O)CH<sub>3</sub> oder NHC(O)H.
  - $R^{13}$  steht insbesondere für H,  $C_1$ - $C_4$ -Alkyl, OH, NH<sub>2</sub>, NHCH<sub>3</sub>, NHC<sub>2</sub>H<sub>5</sub>, N(CH<sub>3</sub>)<sub>2</sub>, N(C<sub>2</sub>H<sub>5</sub>)CH<sub>3</sub> oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy.

20

- R<sup>14</sup> steht insbesondere für C<sub>1</sub>-C<sub>4</sub>-Alkyl.
- R<sup>15</sup> steht insbesondere für C₁-C₄-Alkyl.
- 25 R<sup>16</sup> steht insbesondere für Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl.
  - $R^{17}$  steht insbesondere für H,  $C_1$ - $C_4$ -Alkyl oder  $C_1$ - $C_4$ -Alkoxy.
- R<sup>18</sup> und R<sup>19</sup> stehen insbesondere für H, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl oder
  C<sub>1</sub>-C<sub>4</sub>-Alkyl(thiocarbonyl). Insbesondere steht NR<sup>18</sup>R<sup>19</sup> für NH<sub>2</sub>, NHCH<sub>3</sub>, NHC<sub>2</sub>H<sub>5</sub>,
  N(CH<sub>3</sub>)<sub>2</sub>, N(C<sub>2</sub>H<sub>5</sub>)CH<sub>3</sub>, NHC(O)CH<sub>3</sub> oder NHC(O)H.
  - Besonders bevorzugte Verbindungen der allgemeinen Formel I sind die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluor-6-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A1). Beispiele hierfür sind die Verbindungen I-A1.1 bis I-A1.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A2). Beispiele hierfür sind die Verbindungen I-A2.1 bis I-A2.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Dichlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A3). Beispiele hierfür sind die Verbindungen I-A3.1 bis I-A3.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluor-6-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A4). Beispiele hierfür sind die Verbindungen I-A4.1 bis I-A4.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,4,6-Trifluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A5). Beispiele hierfür sind die Verbindungen I-A5.1 bis I-A5.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluor-4-methoxyphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A6). Beispiele hierfür sind die Verbindungen I-A6.1 bis I-A6.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Chlor-6-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A7). Beispiele hierfür sind die Verbindungen I-A7.1 bis I-A7.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für Pentafluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A8). Beispiele hierfür sind die Verbindungen I-A8.1 bis I-A8.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Methyl-4-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A9). Beispiele hierfür sind die Verbindungen I-A9.1 bis I-A9.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Trifluormethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A10). Beispiele hierfür sind die Verbindungen I-A10.1 bis I-A10.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Methoxy-6-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A11). Beispiele hierfür sind die Verbindungen I-A11.1 bis I-A11.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

5

10

15

20

35

40

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A12). Beispiele hierfür sind die Verbindungen I-A12.1 bis I-A12.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A13). Beispiele hierfür sind die Verbindungen I-A13.1 bis I-A13.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,4-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A14). Beispiele hierfür sind die Verbindungen I-A14.1 bis I-A14.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluor-4-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A15). Beispiele hierfür sind die Verbindungen I-A15.1 bis I-A15.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 4-Fluor-6-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A16). Beispiele hierfür sind die Verbindungen I-A16.1 bis I-A16.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,3-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A17). Beispiele hierfür sind die Verbindungen I-A17.1 bis I-A17.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,5-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A18). Beispiele hierfür sind die Verbindungen I-A18.1 bis I-A18.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebe16en Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,3,4-Trifluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A19). Beispiele hierfür sind die Verbindungen I-A19.1 bis I-A19.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A20). Beispiele hierfür sind die Verbindungen I-A20.1 bis I-A20.414, worin X-R² und Y-R¹
 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,4-Dimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A21). Beispiele hierfür sind die Verbindungen I-A21.1 bis I-A21.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Methyl-4-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A22). Beispiele hierfür sind die Verbindungen I-A22.1 bis I-A22.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluor-4-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A23). Beispiele hierfür sind die Verbindungen I-A23.1 bis I-A23.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Dimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A24). Beispiele hierfür sind die Verbindungen I-A24.1 bis I-A24.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,4,5-Trimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A25). Beispiele hierfür sind die Verbindungen I-A25.1 bis I-A25.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluor-4-cyanophenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A26). Beispiele hierfür sind die Verbindungen I-A26.1 bis I-A26.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluor-4-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A27). Beispiele hierfür sind die Verbindungen I-A27.1 bis I-A27.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluor-4-methoxycarbonylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A28). Beispiele hierfür sind die Verbindungen I-A28.1 bis I-A28.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Trifluormethyl-4-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A29). Beispiele hierfür sind die Verbindungen I-A29.1 bis I-A29.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Trifluormethyl-5-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A30). Beispiele hierfür sind die Verbindungen I-A30.1 bis I-A30.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Trifluormethyl-5-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A31). Beispiele hierfür sind die Verbindungen I-A31.1 bis I-A31.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluor-6-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A32). Beispiele hierfür sind die Verbindungen I-A32.1 bis I-A32.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A33). Beispiele hierfür sind die Verbindungen I-A33.1 bis I-A33.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Dichlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A34). Beispiele hierfür sind die Verbindungen I-A34.1 bis I-A34.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluor-6-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A35). Beispiele hierfür sind die Verbindungen I-A35.1 bis I-A35.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,4,6-Trifluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A36). Beispiele hierfür sind die Verbindungen I-A36.1 bis I-A36.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

5

10

15

20

35

40

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluor-4-methoxyphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A37). Beispiele hierfür sind die Verbindungen I-A37.1 bis I-A37.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Chlor-6-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A38). Beispiele hierfür sind die Verbindungen I-A38.1 bis I-A38.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für Pentafluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A39). Beispiele hierfür sind die Verbindungen I-A39.1 bis I-A39.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Methyl-4-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A40). Beispiele hierfür sind die Verbindungen I-A40.1 bis I-A40.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Trifluormethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A41). Beispiele hierfür sind die Verbindungen I-A41.1 bis I-A41.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

5

10

15

20

35

40

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Methoxy-6-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A42). Beispiele hierfür sind die Verbindungen I-A42.1 bis I-A42.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A43). Beispiele hierfür sind die Verbindungen I-A43.1 bis I-A43.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A44). Beispiele hierfür sind die Verbindungen I-A44.1 bis I-A44.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,4-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A45). Beispiele hierfür sind die Verbindungen I-A45.1 bis I-A45.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluor-4-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A46). Beispiele hierfür sind die Verbindungen I-A46.1 bis I-A46.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 4-Fluor-6-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A47). Beispiele hierfür sind die Verbindungen I-A47.1 bis I-A47.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,3-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A48). Beispiele hierfür sind die Verbindungen I-A48.1 bis I-A48.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,5-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A49). Beispiele hierfür sind die Verbindungen I-A49.1 bis I-A49.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,3,4-Trifluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A50). Beispiele hierfür sind die Verbindungen I-A50.1 bis I-A50.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A51). Beispiele hierfür sind die Verbindungen I-A51.1 bis I-A51.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,4-Dimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A51). Beispiele hierfür sind die Verbindungen I-A51.1 bis I-A51.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Methyl-4-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A52). Beispiele hierfür sind die Verbindungen I-A52.1 bis I-A52.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Fluor-4-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A53). Beispiele hierfür sind die Verbindungen I-A53.1 bis I-A53.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Dimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A54). Beispiele hierfür sind die Verbindungen I-A54.1 bis I-A54.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,4,5-Trimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A55). Beispiele hierfür sind die Verbindungen I-A55.1 bis I-A55.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluor-4-cyanophenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A56). Beispiele hierfür sind die Verbindungen I-A56.1 bis I-A56.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluor-4-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A57). Beispiele hierfür sind die Verbindungen I-A57.1 bis I-A57.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2,6-Difluor-4-methoxycarbonylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A58). Beispiele hierfür sind die Verbindungen I-A58.1 bis I-A58.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Trifluormethyl-4-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A59). Beispiele hierfür sind die Verbindungen I-A59.1 bis I-A59.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Trifluormethyl-5-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A60). Beispiele hierfür sind die Verbindungen I-A60.1 bis I-A60.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Triazolopyrimidine der allgemeinen Formel I-A, worin R³ für 2-Trifluormethyl-5-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-A61). Beispiele hierfür sind die Verbindungen I-A61.1 bis I-A61.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluor-6-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B1). Beispiele hierfür sind die Verbindungen I-B1.1 bis I-B1.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B2). Beispiele hierfür sind die Verbindungen I-B2.1 bis I-B2.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Dichlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B3). Beispiele hierfür sind die Verbindungen I-B3.1 bis I-B3.414, worin X-R² und Y-R¹
 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluor-6-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B4). Beispiele hierfür sind die Verbindungen I-B4.1 bis I-B4.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,4,6-Trifluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B5). Beispiele hierfür sind die Verbindungen I-B5.1 bis I-B5.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluor-4-methoxyphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B6). Beispiele hierfür sind die Verbindungen I-B6.1 bis I-B6.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Chlor-6-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B7). Beispiele hierfür sind die Verbindungen I-B7.1 bis I-B7.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für Pentafluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B8). Beispiele hierfür sind die Verbindungen I-B8.1 bis I-B8.414, worin X-R² und Y-R¹
 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Methyl-4-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B9). Beispiele hierfür sind die Verbindungen I-B9.1 bis I-B9.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Trifluormethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B10). Beispiele hierfür sind die Verbindungen I-B10.1 bis I-B10.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Methoxy-6-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B11). Beispiele hierfür sind die Verbindungen I-B11.1 bis I-B11.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B12). Beispiele hierfür sind die Verbindungen I-B12.1 bis I-B12.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B13). Beispiele hierfür sind die Verbindungen I-B13.1 bis I-B13.414, worin X-R² und Y-R¹
 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,4-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B14). Beispiele hierfür sind die Verbindungen I-B14.1 bis I-B14.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluor-4-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B15). Beispiele hierfür sind die Verbindungen I-B15.1 bis I-B15.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 4-Fluor-6-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B16). Beispiele hierfür sind die Verbindungen I-B16.1 bis I-B16.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,3-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B17). Beispiele hierfür sind die Verbindungen I-B17.1 bis I-B17.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,5-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B18). Beispiele hierfür sind die Verbindungen I-B18.1 bis I-B18.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebe16en Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,3,4-Trifluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B19). Beispiele hierfür sind die Verbindungen I-B19.1 bis I-B19.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B20). Beispiele hierfür sind die Verbindungen I-B20.1 bis I-B20.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,4-Dimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B21). Beispiele hierfür sind die Verbindungen I-B21.1 bis I-B21.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Methyl-4-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B22). Beispiele hierfür sind die Verbindungen I-B22.1 bis I-B22.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluor-4-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B23). Beispiele hierfür sind die Verbindungen I-B23.1 bis I-B23.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Dimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B24). Beispiele hierfür sind die Verbindungen I-B24.1 bis I-B24.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,4,5-Trimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B25). Beispiele hierfür sind die Verbindungen I-B25.1 bis I-B25.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluor-4-cyanophenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B26). Beispiele hierfür sind die Verbindungen I-B26.1 bis I-B26.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluor-4-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B27). Beispiele hierfür sind die Verbindungen I-B27.1 bis I-B27.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluor-4-methoxycarbonylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B28). Beispiele hierfür sind die Verbindungen I-B28.1 bis I-B28.414,
 worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Trifluormethyl-4-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B29). Beispiele hierfür sind die Verbindungen I-B29.1 bis I-B29.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Trifluormethyl-5-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B30). Beispiele hierfür sind die Verbindungen I-B30.1 bis I-B30.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Trifluormethyl-5-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B31). Beispiele hierfür sind die Verbindungen I-B31.1 bis I-B31.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluor-6-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B32). Beispiele hierfür sind die Verbindungen I-B32.1 bis I-B32.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B33). Beispiele hierfür sind die Verbindungen I-B33.1 bis I-B33.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Dichlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B34). Beispiele hierfür sind die Verbindungen I-B34.1 bis I-B34.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluor-6-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B35). Beispiele hierfür sind die Verbindungen I-B35.1 bis I-B35.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,4,6-Trifluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B36). Beispiele hierfür sind die Verbindungen I-B36.1 bis I-B36.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluor-4-methoxyphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B37). Beispiele hierfür sind die Verbindungen I-B37.1 bis I-B37.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Chlor-6-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B38). Beispiele hierfür sind die Verbindungen I-B38.1 bis I-B38.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für Pentafluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B39). Beispiele hierfür sind die Verbindungen I-B39.1 bis I-B39.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Methyl-4-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B40). Beispiele hierfür sind die Verbindungen I-B40.1 bis I-B40.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Trifluormethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B41). Beispiele hierfür sind die Verbindungen I-B41.1 bis I-B41.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Methoxy-6-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B42). Beispiele hierfür sind die Verbindungen I-B42.1 bis I-B42.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B43). Beispiele hierfür sind die Verbindungen I-B43.1 bis I-B43.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B44). Beispiele hierfür sind die Verbindungen I-B44.1 bis I-B44.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,4-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B45). Beispiele hierfür sind die Verbindungen I-B45.1 bis I-B45.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluor-4-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B46). Beispiele hierfür sind die Verbindungen I-B46.1 bis I-B46.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 4-Fluor-6-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B47). Beispiele hierfür sind die Verbindungen I-B47.1 bis I-B47.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,3-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B48). Beispiele hierfür sind die Verbindungen I-B48.1 bis I-B48.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,5-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B49). Beispiele hierfür sind die Verbindungen I-B49.1 bis I-B49.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

5

10

15

20

35

40

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,3,4-Trifluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B50). Beispiele hierfür sind die Verbindungen I-B50.1 bis I-B50.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-Bs). Beispiele hierfür sind die Verbindungen I-B51.1 bis I-B51.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,4-Dimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B51). Beispiele hierfür sind die Verbindungen I-B51.1 bis I-B51.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Methyl-4-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B52). Beispiele hierfür sind die Verbindungen I-B52.1 bis I-B52.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Fluor-4-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B53). Beispiele hierfür sind die Verbindungen I-B53.1 bis I-B53.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Dimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B54). Beispiele hierfür sind die Verbindungen I-B54.1 bis I-B54.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,4,5-Trimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B55). Beispiele hierfür sind die Verbindungen I-B55.1 bis I-B55.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluor-4-cyanophenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B56). Beispiele hierfür sind die Verbindungen I-B56.1 bis I-B56.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluor-4-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B57). Beispiele hierfür sind die Verbindungen I-B57.1 bis I-B57.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2,6-Difluor-4-methoxycarbonylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B58). Beispiele hierfür sind die Verbindungen I-B58.1 bis I-B58.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

35

5

10

15

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Trifluormethyl-4-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B59). Beispiele hierfür sind die Verbindungen I-B59.1 bis I-B59.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Trifluormethyl-5-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B60). Beispiele hierfür sind die Verbindungen I-B60.1 bis I-B60.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

Besonders bevorzugte Verbindungen der allgemeinen Formel I sind auch die Pyrazolopyrimidine der allgemeinen Formel I-B, worin R³ für 2-Trifluormethyl-5-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet und X, Y, R¹ und R² die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen I-B61). Beispiele hierfür sind die Verbindungen I-B61.1 bis I-B61.414, worin X-R² und Y-R¹ gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.

## 25 Tabelle A:

5

10

15

| Nr. | Y-R <sup>1</sup> | X-R <sup>2</sup>                                 |
|-----|------------------|--------------------------------------------------|
| 1   | Н                | Н                                                |
| 2   | CH₃              | Н                                                |
| 3   | CH₃              | CH₃                                              |
| 4   | CH₃              | CH₂CH₃                                           |
| 5   | CH₃              | CI                                               |
| 6   | CH₃              | OCH₃                                             |
| 7   | CH₃              | OC₂H₅                                            |
| 8   | CH₃              | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 9   | CH₃              | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 10  | CH₃              | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |

| Nr. | Y-R <sup>1</sup>                 | X-R <sup>2</sup>                                 |
|-----|----------------------------------|--------------------------------------------------|
| 11  | CH₂CH₃                           | Н                                                |
| 12  | CH₂CH₃                           | CH₃                                              |
| 13  | CH₂CH₃                           | CH₂CH₃                                           |
| 14  | CH₂CH₃                           | CI                                               |
| 15  | CH₂CH₃                           | OCH₃                                             |
| 16  | CH₂CH₃                           | OC₂H₅                                            |
| 17  | CH₂CH₃                           | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 18  | CH₂CH₃                           | N(CH₃)C₂H₅                                       |
| 19  | CH₂CH₃                           | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 20  | CH₂CF₃                           | Н                                                |
| 21  | CH₂CF₃                           | CH₃                                              |
| 22  | CH₂CF₃                           | CH₂CH₃                                           |
| 23  | CH₂CF₃                           | CI                                               |
| 24  | CH₂CF₃                           | OCH₃                                             |
| 25  | CH₂CF₃                           | OC₂H₅                                            |
| 26  | CH₂CF₃                           | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 27  | CH₂CF₃                           | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 28  | CH₂CF₃                           | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 29  | CH₂CCI₃                          | Н                                                |
| 30  | CH₂CCI₃                          | CH <sub>3</sub>                                  |
| 31  | CH₂CCI₃                          | CH₂CH₃                                           |
| 32  | CH <sub>2</sub> CCI <sub>3</sub> | CI                                               |
| 33  | CH₂CCI₃                          | OCH₃                                             |
| 34  | CH₂CCI₃                          | OC₂H₅                                            |
| 35  | CH₂CCI₃                          | N(CH₃)₂                                          |
| 36  | CH₂CCI₃                          | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 37  | CH₂CCI₃                          | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 38  | CH₂CH₂CH₃                        | Н                                                |
| 39  | CH₂CH₂CH₃                        | CH <sub>3</sub>                                  |
| 40  | CH₂CH₂CH₃                        | CH₂CH₃                                           |

| Nr. | Y-R <sup>1</sup>                                         | X-R <sup>2</sup>                                 |
|-----|----------------------------------------------------------|--------------------------------------------------|
| 41  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>          | CH₂CH₂CH₃                                        |
| 42  | CH₂CH₂CH₃                                                | Cl                                               |
| 43  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>          | OCH₃                                             |
| 44  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>          | OC₂H₅                                            |
| 45  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>          | N(CH₃)₂                                          |
| 46  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>          | N(CH₃)C₂H₅                                       |
| 47  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>          | N(CH₃)C(O)CH₃                                    |
| 48  | CH(CH₃)₂                                                 | Н                                                |
| 49  | CH(CH₃)₂                                                 | CH₃                                              |
| 50  | CH(CH₃)₂                                                 | CH₂CH₃                                           |
| 51  | CH(CH₃)₂                                                 | Cl                                               |
| 52  | CH(CH₃)₂                                                 | OCH₃                                             |
| 53  | CH(CH₃)₂                                                 | OC₂H₅                                            |
| 54  | CH(CH <sub>3</sub> ) <sub>2</sub>                        | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 55  | CH(CH₃)₂                                                 | N(CH₃)C₂H₅                                       |
| 56  | CH(CH <sub>3</sub> ) <sub>2</sub>                        | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 57  | (±) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub> | Н                                                |
| 58  | (±) CH(CH₃)-CH₂CH₃                                       | CH <sub>3</sub>                                  |
| 59  | (±) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                                           |
| 60  | (±) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub> | Cl                                               |
| 61  | (±) CH(CH₃)-CH₂CH₃                                       | OCH₃                                             |
| 62  | (±) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub> | OC <sub>2</sub> H₅                               |
| 63  | (±) CH(CH₃)-CH₂CH₃                                       | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 64  | (±) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub> | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 65  | (±) CH(CH₃)-CH₂CH₃                                       | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 66  | (S) CH(CH₃)-CH₂CH₃                                       | Н                                                |
| 67  | (S) CH(CH₃)-CH₂CH₃                                       | CH₃                                              |
| 68  | (S) CH(CH₃)-CH₂CH₃                                       | CH₂CH₃                                           |
| 69  | (S) CH(CH₃)-CH₂CH₃                                       | CI                                               |
| 70  | (S) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub> | OCH₃                                             |

| Nr. | Y-R <sup>1</sup>                                           | X-R <sup>2</sup>                                 |
|-----|------------------------------------------------------------|--------------------------------------------------|
| 71  | (S) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | OC₂H₅                                            |
| 72  | (S) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 73  | (S) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | N(CH₃)C₂H₅                                       |
| 74  | (S) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | N(CH₃)C(O)CH₃                                    |
| 75  | (R) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | Н                                                |
| 76  | (R) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | CH <sub>3</sub>                                  |
| 77  | (R) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | CH₂CH₃                                           |
| 78  | (R) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | CI                                               |
| 79  | (R) CH(CH₃)-CH₂CH₃                                         | OCH₃                                             |
| 80  | (R) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | OC₂H₅                                            |
| 81  | (R) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 82  | (R) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   | N(CH₃)C₂H₅                                       |
| 83  | (R) CH(CH₃)-CH₂CH₃                                         | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 84  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | Н                                                |
| 85  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | CH₃                                              |
| 86  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | CH₂CH₃                                           |
| 87  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | Cl                                               |
| 88  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | OCH₃                                             |
| 89  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | OC₂H₅                                            |
| 90  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 91  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 92  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 93  | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | Н                                                |
| 94  | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | CH <sub>3</sub>                                  |
| 95  | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | CH₂CH₃                                           |
| 96  | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | Cl                                               |
| 97  | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | OCH₃                                             |
| 98  | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | OC₂H₅                                            |
| 99  | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 100 | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
|     | <u> </u>                                                   |                                                  |

| Nr. | Y-R <sup>1</sup>                                           | X-R <sup>2</sup>                       |
|-----|------------------------------------------------------------|----------------------------------------|
| 101 | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH₃)C(O)CH₃                          |
| 102 | (R) CH(CH₃)-CH(CH₃)₂                                       | Н                                      |
| 103 | (R) CH(CH₃)-CH(CH₃)₂                                       | CH₃                                    |
| 104 | (R) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | CH₂CH₃                                 |
| 105 | (R) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | CI                                     |
| 106 | (R) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | OCH₃                                   |
| 107 | (R) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | OC₂H₅                                  |
| 108 | (R) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH₃)₂                                |
| 109 | (R) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH₃)C₂H₅                             |
| 110 | (R) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> | N(CH₃)C(O)CH₃                          |
| 111 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | Н                                      |
| 112 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | CH₃                                    |
| 113 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | CH₂CH₃                                 |
| 114 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | Cl                                     |
| 115 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | OCH₃                                   |
| 116 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | OC₂H₅                                  |
| 117 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | N(CH <sub>3</sub> ) <sub>2</sub>       |
| 118 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | N(CH₃)C₂H₅                             |
| 119 | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | N(CH <sub>3</sub> )C(O)CH <sub>3</sub> |
| 120 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | Н                                      |
| 121 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | CH₃                                    |
| 122 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | CH₂CH₃                                 |
| 123 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | Cl                                     |
| 124 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | OCH <sub>3</sub>                       |
| 125 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | OC₂H₅                                  |
| 126 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | N(CH <sub>3</sub> ) <sub>2</sub>       |
| 127 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | N(CH₃)C₂H₅                             |
| 128 | (S) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | N(CH <sub>3</sub> )C(O)CH <sub>3</sub> |
| 129 | (R) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | Н                                      |
| 130 | (R) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  | CH <sub>3</sub>                        |

| Nr. | Y-R <sup>1</sup>                                          | X-R <sup>2</sup>                                 |
|-----|-----------------------------------------------------------|--------------------------------------------------|
| 131 | (R) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub> | CH₂CH₃                                           |
| 132 | (R) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub> | CI                                               |
| 133 | (R) CH(CH₃)-C(CH₃)₃                                       | OCH₃                                             |
| 134 | (R) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub> | OC₂H₅                                            |
| 135 | (R) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub> | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 136 | (R) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub> | N(CH₃)C₂H₅                                       |
| 137 | (R) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub> | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 138 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | Н                                                |
| 139 | (±) CH(CH₃)-CF₃                                           | CH <sub>3</sub>                                  |
| 140 | (±) CH(CH₃)-CF₃                                           | CH₂CH₃                                           |
| 141 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | CI                                               |
| 142 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | OCH₃                                             |
| 143 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | OC₂H₅                                            |
| 144 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 145 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 146 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 147 | (S) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | Н                                                |
| 148 | (S) CH(CH₃)-CF₃                                           | CH₃                                              |
| 149 | (S) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | CH₂CH₃                                           |
| 150 | (S) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | CI                                               |
| 151 | (S) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | OCH₃                                             |
| 152 | (S) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | OC₂H₅                                            |
| 153 | (S) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 154 | (S) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 155 | (S) CH(CH₃)-CF₃                                           | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 156 | (R) CH(CH₃)-CF₃                                           | Н                                                |
| 157 | (R) CH(CH <sub>3</sub> )-CF <sub>3</sub>                  | CH₃                                              |
| 158 | (R) CH(CH₃)-CF₃                                           | CH₂CH₃                                           |
| 159 | (R) CH(CH₃)-CF₃                                           | CI                                               |
| 160 | (R) CH(CH₃)-CF₃                                           | OCH <sub>3</sub>                                 |

| Nr. | Y-R <sup>1</sup>                          | X-R <sup>2</sup>                                 |
|-----|-------------------------------------------|--------------------------------------------------|
| 161 | (R) CH(CH₃)-CF₃                           | OC₂H₅                                            |
| 162 | (R) CH(CH₃)-CF₃                           | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 163 | (R) CH(CH <sub>3</sub> )-CF <sub>3</sub>  | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 164 | (R) CH(CH₃)-CF₃                           | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 165 | (±) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | Н                                                |
| 166 | (±) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | CH <sub>3</sub>                                  |
| 167 | (±) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | CH₂CH₃                                           |
| 168 | (±) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | CI                                               |
| 169 | (±) CH(CH₃)-CCl₃                          | OCH₃                                             |
| 170 | (±) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | OC₂H₅                                            |
| 171 | (±) CH(CH <sub>3</sub> )-CCI <sub>3</sub> | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 172 | (±) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 173 | (±) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 174 | (S) CH(CH₃)-CCI₃                          | Н                                                |
| 175 | (S) CH(CH₃)-CCI₃                          | CH <sub>3</sub>                                  |
| 176 | (S) CH(CH₃)-CCI₃                          | CH₂CH₃                                           |
| 177 | (S) CH(CH₃)-CCl₃                          | CI                                               |
| 178 | (S) CH(CH₃)-CCl₃                          | OCH₃                                             |
| 179 | (S) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | OC₂H₅                                            |
| 180 | (S) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 181 | (S) CH(CH₃)-CCI₃                          | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 182 | (S) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 183 | (R) CH(CH <sub>3</sub> )-CCl <sub>3</sub> | Н                                                |
| 184 | (R) CH(CH₃)-CCI₃                          | CH <sub>3</sub>                                  |
| 185 | (R) CH(CH₃)-CCl₃                          | CH <sub>2</sub> CH <sub>3</sub>                  |
| 186 | (R) CH(CH₃)-CCl₃                          | CI                                               |
| 187 | (R) CH(CH₃)-CCl₃                          | OCH₃                                             |
| 188 | (R) CH(CH₃)-CCI₃                          | OC₂H₅                                            |
| 189 | (R) CH(CH₃)-CCl₃                          | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 190 | (R) CH(CH₃)-CCI₃                          | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |

| Nr. | Y-R <sup>1</sup>                                                | X-R <sup>2</sup>                       |
|-----|-----------------------------------------------------------------|----------------------------------------|
| 191 | (R) CH(CH <sub>3</sub> )-CCl <sub>3</sub>                       | N(CH <sub>3</sub> )C(O)CH <sub>3</sub> |
| 192 | CH₂CF₂CF₃                                                       | Н                                      |
| 193 | CH <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub>                 | CH₃                                    |
| 194 | CH <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub>                 | CH₂CH₃                                 |
| 195 | CH₂CF₂CF₃                                                       | CI                                     |
| 196 | CH₂CF₂CF₃                                                       | OCH₃                                   |
| 197 | CH₂CF₂CF₃                                                       | OC₂H₅                                  |
| 198 | CH₂CF₂CF₃                                                       | N(CH <sub>3</sub> ) <sub>2</sub>       |
| 199 | CH₂CF₂CF₃                                                       | N(CH₃)C₂H₅                             |
| 200 | CH₂CF₂CF₃                                                       | N(CH₃)C(O)CH₃                          |
| 201 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | Н                                      |
| 202 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CH₃                                    |
| 203 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CH₂CH₃                                 |
| 204 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CI                                     |
| 205 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | OCH₃                                   |
| 206 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | OC <sub>2</sub> H <sub>5</sub>         |
| 207 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | N(CH <sub>3</sub> ) <sub>2</sub>       |
| 208 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | N(CH₃)C₂H₅                             |
| 209 | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | N(CH <sub>3</sub> )C(O)CH <sub>3</sub> |
| 210 | CH₂C(CH₃)=CH₂                                                   | Н                                      |
| 211 | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             | CH <sub>3</sub>                        |
| 212 | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             | CH₂CH₃                                 |
| 213 | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             | CI                                     |
| 214 | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             | OCH₃                                   |
| 215 | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             | OC₂H₅                                  |
| 216 | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             | N(CH₃)₂                                |
| 217 | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             | N(CH₃)C₂H₅                             |
| 218 | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             | N(CH <sub>3</sub> )C(O)CH <sub>3</sub> |
| 219 | CH₂CH=CH₂                                                       | Н                                      |
| 220 | CH₂CH=CH₂                                                       | CH₃                                    |

| Nr. | Y-R <sup>1</sup>                                        | X-R <sup>2</sup>                                 |
|-----|---------------------------------------------------------|--------------------------------------------------|
| 221 | CH <sub>2</sub> CH=CH <sub>2</sub>                      | CH₂CH₃                                           |
| 222 | CH <sub>2</sub> CH=CH <sub>2</sub>                      | Cl                                               |
| 223 | CH <sub>2</sub> CH=CH <sub>2</sub>                      | OCH <sub>3</sub>                                 |
| 224 | CH <sub>2</sub> CH=CH <sub>2</sub>                      | OC₂H₅                                            |
| 225 | CH <sub>2</sub> CH=CH <sub>2</sub>                      | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 226 | CH <sub>2</sub> CH=CH <sub>2</sub>                      | N(CH₃)C₂H₅                                       |
| 227 | CH <sub>2</sub> CH=CH <sub>2</sub>                      | N(CH₃)C(O)CH₃                                    |
| 228 | CH(CH₃)CH=CH₂                                           | Н                                                |
| 229 | CH(CH₃)CH=CH₂                                           | CH₃                                              |
| 230 | CH(CH₃)CH=CH₂                                           | CH₂CH₃                                           |
| 231 | CH(CH₃)CH=CH₂                                           | Cl                                               |
| 232 | CH(CH₃)CH=CH₂                                           | OCH₃                                             |
| 233 | CH(CH₃)CH=CH₂                                           | OC₂H₅                                            |
| 234 | CH(CH₃)CH=CH₂                                           | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 235 | CH(CH₃)CH=CH₂                                           | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 236 | CH(CH₃)CH=CH₂                                           | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 237 | CH(CH <sub>3</sub> )C(CH <sub>3</sub> )=CH <sub>2</sub> | Н                                                |
| 238 | CH(CH <sub>3</sub> )C(CH <sub>3</sub> )=CH <sub>2</sub> | CH₃                                              |
| 239 | CH(CH <sub>3</sub> )C(CH <sub>3</sub> )=CH <sub>2</sub> | CH₂CH₃                                           |
| 240 | CH(CH <sub>3</sub> )C(CH <sub>3</sub> )=CH <sub>2</sub> | CI                                               |
| 241 | CH(CH₃)C(CH₃)=CH₂                                       | OCH₃                                             |
| 242 | CH(CH₃)C(CH₃)=CH₂                                       | OC₂H₅                                            |
| 243 | CH(CH₃)C(CH₃)=CH₂                                       | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 244 | CH(CH <sub>3</sub> )C(CH <sub>3</sub> )=CH <sub>2</sub> | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 245 | CH(CH₃)C(CH₃)=CH₂                                       | N(CH₃)C(O)CH₃                                    |
| 246 | Cyclopentyl                                             | Н                                                |
| 247 | Cyclopentyl                                             | CH₃                                              |
| 248 | Cyclopentyl                                             | CH₂CH₃                                           |
| 249 | Cyclopentyl                                             | CI                                               |
| 250 | Cyclopentyl                                             | OCH₃                                             |

| Nr. | Y-R <sup>1</sup> | X-R <sup>2</sup>                                 |
|-----|------------------|--------------------------------------------------|
| 251 | Cyclopentyl      | OC₂H₅                                            |
| 252 | Cyclopentyl      | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 253 | Cyclopentyl      | N(CH₃)C₂H₅                                       |
| 254 | Cyclopentyl      | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 255 | Cyclohexyl       | Н                                                |
| 256 | Cyclohexyl       | CH₃                                              |
| 257 | Cyclohexyl       | CH₂CH₃                                           |
| 258 | Cyclohexyl       | CI                                               |
| 259 | Cyclohexyl       | OCH₃                                             |
| 260 | Cyclohexyl       | OC₂H₅                                            |
| 261 | Cyclohexyl       | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 262 | Cyclohexyl       | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 263 | Cyclohexyl       | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 264 | CF <sub>3</sub>  | Н                                                |
| 265 | CF <sub>3</sub>  | CH <sub>3</sub>                                  |
| 266 | CF <sub>3</sub>  | CH₂CH₃                                           |
| 267 | CF <sub>3</sub>  | CI                                               |
| 268 | CF <sub>3</sub>  | OCH₃                                             |
| 269 | CF <sub>3</sub>  | OC₂H₅                                            |
| 270 | CF <sub>3</sub>  | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 271 | CF <sub>3</sub>  | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> |
| 272 | CF <sub>3</sub>  | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>           |
| 273 | CCI <sub>3</sub> | Н                                                |
| 274 | CCI <sub>3</sub> | CH <sub>3</sub>                                  |
| 275 | CCI <sub>3</sub> | CH₂CH₃                                           |
| 276 | CCI <sub>3</sub> | CI                                               |
| 277 | CCl <sub>3</sub> | OCH₃                                             |
| 278 | CCI <sub>3</sub> | OC₂H₅                                            |
| 279 | CCI <sub>3</sub> | N(CH <sub>3</sub> ) <sub>2</sub>                 |
| 280 | CCI <sub>3</sub> | N(CH <sub>3</sub> )C₂H₅                          |

| Nr. | Y-R <sup>1</sup>                                | X-R <sup>2</sup>                       |
|-----|-------------------------------------------------|----------------------------------------|
| 281 | CCI <sub>3</sub>                                | N(CH₃)C(O)CH₃                          |
| 282 | CF₂CF₃                                          | Н                                      |
| 283 | CF₂CF₃                                          | CH₃                                    |
| 284 | CF <sub>2</sub> CF <sub>3</sub>                 | CH₂CH₃                                 |
| 285 | CF <sub>2</sub> CF <sub>3</sub>                 | CI                                     |
| 286 | CF <sub>2</sub> CF <sub>3</sub>                 | OCH₃                                   |
| 287 | CF <sub>2</sub> CF <sub>3</sub>                 | OC₂H₅                                  |
| 288 | CF <sub>2</sub> CF <sub>3</sub>                 | N(CH <sub>3</sub> ) <sub>2</sub>       |
| 289 | CF <sub>2</sub> CF <sub>3</sub>                 | N(CH₃)C₂H₅                             |
| 290 | CF₂CF₃                                          | N(CH <sub>3</sub> )C(O)CH <sub>3</sub> |
| 291 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | Н                                      |
| 292 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CH₃                                    |
| 293 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CH₂CH₃                                 |
| 294 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CI                                     |
| 295 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | OCH₃                                   |
| 296 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | OC <sub>2</sub> H <sub>5</sub>         |
| 297 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | N(CH <sub>3</sub> ) <sub>2</sub>       |
| 298 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | N(CH₃)C₂H₅                             |
| 299 | (CF <sub>2</sub> )₂CF <sub>3</sub>              | N(CH <sub>3</sub> )C(O)CH <sub>3</sub> |
| 300 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | Н                                      |
| 301 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | CH <sub>3</sub>                        |
| 302 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | CH₂CH₃                                 |
| 303 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | CI                                     |
| 304 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | OCH₃                                   |
| 305 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | OC₂H₅                                  |
| 306 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | N(CH <sub>3</sub> ) <sub>2</sub>       |
| 307 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | N(CH₃)C₂H₅                             |
| 308 | C(CH <sub>3</sub> )=CH <sub>2</sub>             | N(CH <sub>3</sub> )C(O)CH <sub>3</sub> |
| 309 | CH=CH₂                                          | Н                                      |
| 310 | CH=CH <sub>2</sub>                              | CH₃                                    |

| Nr. | Y-R <sup>1</sup>                                                                       | X-R <sup>2</sup>                                                         |  |
|-----|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| 311 | CH=CH₂                                                                                 | CH₂CH₃                                                                   |  |
| 312 | CH=CH <sub>2</sub>                                                                     | Cl                                                                       |  |
| 313 | CH=CH₂                                                                                 | OCH₃                                                                     |  |
| 314 | CH=CH₂                                                                                 | OC₂H₅                                                                    |  |
| 315 | CH=CH₂                                                                                 | N(CH <sub>3</sub> ) <sub>2</sub>                                         |  |
| 316 | CH=CH₂                                                                                 | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub>                         |  |
| 317 | CH=CH₂                                                                                 | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>                                   |  |
| 318 | Phenyl                                                                                 | Н                                                                        |  |
| 319 | Phenyl                                                                                 | CH₃                                                                      |  |
| 320 | Phenyl                                                                                 | CH₂CH₃                                                                   |  |
| 321 | Phenyl                                                                                 | CI                                                                       |  |
| 322 | Phenyl                                                                                 | OCH₃                                                                     |  |
| 323 | Phenyl                                                                                 | OC₂H₅                                                                    |  |
| 324 | Phenyl                                                                                 | N(CH <sub>3</sub> ) <sub>2</sub>                                         |  |
| 325 | Phenyl                                                                                 | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub>                         |  |
| 326 | Phenyl                                                                                 | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>                                   |  |
| 327 | CH₂Phenyl                                                                              | Н                                                                        |  |
| 328 | CH₂Phenyl                                                                              | CH₃                                                                      |  |
| 329 | CH₂Phenyl                                                                              | CH₂CH₃                                                                   |  |
| 330 | CH₂Phenyl                                                                              | CI                                                                       |  |
| 331 | CH₂Phenyl                                                                              | OCH <sub>3</sub>                                                         |  |
| 332 | CH₂Phenyl                                                                              | OC <sub>2</sub> H <sub>5</sub>                                           |  |
| 333 | CH₂Phenyl                                                                              | N(CH₃)₂                                                                  |  |
| 334 | CH₂Phenyl                                                                              | N(CH₃)C₂H₅                                                               |  |
| 335 | CH₂Phenyl                                                                              | N(CH₃)C(O)CH₃                                                            |  |
| 336 | -(CH₂)₂C                                                                               | -(CH <sub>2</sub> ) <sub>2</sub> CH=CHCH <sub>2</sub> -                  |  |
| 337 | -(CH <sub>2</sub> ) <sub>2</sub> C(C                                                   | -(CH <sub>2</sub> ) <sub>2</sub> C(CH <sub>3</sub> )=CHCH <sub>2</sub> - |  |
| 338 | -(CH <sub>2</sub> ) <sub>2</sub> CH(CH <sub>3</sub> )(CH <sub>2</sub> ) <sub>2</sub> - |                                                                          |  |
| 339 | -(CH <sub>2</sub> ) <sub>2</sub> CHF(CH <sub>2</sub> ) <sub>2</sub> -                  |                                                                          |  |
| 340 | -(CH <sub>2</sub> ) <sub>3</sub>                                                       | CHFCH₂-                                                                  |  |

| Nr. | Y-R <sup>1</sup>                                                    | X-R <sup>2</sup>                                                                       |  |
|-----|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| 341 | -(CH <sub>2</sub> ) <sub>2</sub> CH(                                | -(CH <sub>2</sub> ) <sub>2</sub> CH(CF <sub>3</sub> )(CH <sub>2</sub> ) <sub>2</sub> - |  |
| 342 | -(CH <sub>2</sub> ) <sub>2</sub> O(CH <sub>2</sub> ) <sub>2</sub> - |                                                                                        |  |
| 343 | -(CH <sub>2</sub> ) <sub>2</sub> S(CH <sub>2</sub> ) <sub>2</sub> - |                                                                                        |  |
| 344 | -(CI                                                                | -(CH <sub>2</sub> ) <sub>5</sub> -                                                     |  |
| 345 | -(CH <sub>2</sub> ) <sub>6</sub> -                                  |                                                                                        |  |
| 346 | -(CH <sub>2</sub> ) <sub>4</sub> -                                  |                                                                                        |  |
| 347 | -CH₂CH=CHCH₂-                                                       |                                                                                        |  |
| 348 | -CH(CH <sub>3</sub> )(CH <sub>2</sub> ) <sub>3</sub> -              |                                                                                        |  |
| 349 | -CH₂CH(CH₃)(CH₂)₂-                                                  |                                                                                        |  |
| 350 | 1-Piperidinyl                                                       | Н                                                                                      |  |
| 351 | 1-Piperidinyl                                                       | CH <sub>3</sub>                                                                        |  |
| 352 | 1-Piperidinyl                                                       | CH₂CH₃                                                                                 |  |
| 353 | 1-Pyrrolidinyl                                                      | Н                                                                                      |  |
| 354 | 1-Pyrrolidinyl                                                      | CH₃                                                                                    |  |
| 355 | 1-Pyrrolidinyl                                                      | CH₂CH₃                                                                                 |  |
| 356 | Morpholin-4-yl                                                      | Н                                                                                      |  |
| 357 | Morpholin-4-yl                                                      | CH₃                                                                                    |  |
| 358 | Morpholin-4-yl                                                      | CH₂CH₃                                                                                 |  |
| 359 | 2,5-Dihydropyrrol-1-yl                                              | Н                                                                                      |  |
| 360 | 2,5-Dihydropyrrol-1-yl                                              | CH₃                                                                                    |  |
| 361 | 2,5-Dihydropyrrol-1-yl                                              | CH₂CH₃                                                                                 |  |
| 362 | Н                                                                   | CI                                                                                     |  |
| 363 | Н                                                                   | OCH₃                                                                                   |  |
| 364 | Н                                                                   | OC₂H₅                                                                                  |  |
| 365 | Н                                                                   | N(CH <sub>3</sub> ) <sub>2</sub>                                                       |  |
| 366 | Н                                                                   | N(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub>                                       |  |
| 367 | Н                                                                   | N(CH <sub>3</sub> )C(O)CH <sub>3</sub>                                                 |  |
| 368 | Н                                                                   | CH(CH <sub>3</sub> ) <sub>2</sub>                                                      |  |
| 369 | Н                                                                   | CH₂CH(CH₃)₂                                                                            |  |
| 370 | Н                                                                   | CH(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>3</sub>                                    |  |

| Nr. | Y-R <sup>1</sup>                                | X-R <sup>2</sup>                                  |
|-----|-------------------------------------------------|---------------------------------------------------|
| 371 | Н                                               | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 372 | CH₃                                             | CH(CH <sub>3</sub> ) <sub>2</sub>                 |
| 373 | CH₃                                             | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 374 | CH₃                                             | CH(CH₃)CH₂CH₃                                     |
| 375 | CH₃                                             | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 376 | CH₂CH₃                                          | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 377 | CH₂CH₃                                          | CH(CH₃)CH₂CH₃                                     |
| 378 | CH₂CH₃                                          | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 379 | CH₂CF₃                                          | CH(CH <sub>3</sub> ) <sub>2</sub>                 |
| 380 | CH₂CF₃                                          | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 381 | CH₂CF₃                                          | CH(CH₃)CH₂CH₃                                     |
| 382 | CH₂CF₃                                          | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 383 | CH₂CH₂CH₃                                       | CH(CH <sub>3</sub> ) <sub>2</sub>                 |
| 384 | CH₂CH₂CH₃                                       | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 385 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH(CH₃)CH₂CH₃                                     |
| 386 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 387 | CH(CH₃)₂                                        | CH(CH₃)₂                                          |
| 388 | CH(CH₃)₂                                        | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 389 | CH(CH₃)₂                                        | CH(CH₃)CH₂CH₃                                     |
| 390 | CH(CH₃)₂                                        | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 391 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>        | CH(CH₃)₂                                          |
| 392 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>        | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 393 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>        | CH(CH₃)CH₂CH₃                                     |
| 394 | (±) CH(CH <sub>3</sub> )-CF <sub>3</sub>        | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 395 | (S) CH(CH <sub>3</sub> )-CF <sub>3</sub>        | CH(CH <sub>3</sub> ) <sub>2</sub>                 |
| 396 | (S) CH(CH₃)-CF₃                                 | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 397 | (S) CH(CH₃)-CF₃                                 | CH(CH₃)CH₂CH₃                                     |
| 398 | (S) CH(CH₃)-CF₃                                 | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 399 | CH₂CF₂CF₃                                       | CH(CH₃)₂                                          |
| 400 | CH <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub> | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |

| Nr. | Y-R <sup>1</sup>                                | X-R <sup>2</sup>                                  |
|-----|-------------------------------------------------|---------------------------------------------------|
| 401 | CH <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub> | CH(CH₃)CH₂CH₃                                     |
| 402 | CH <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub> | C(CH <sub>3</sub> ) <sub>3</sub>                  |
| 403 | CF <sub>3</sub>                                 | CH(CH <sub>3</sub> ) <sub>2</sub>                 |
| 404 | CF <sub>3</sub>                                 | CH₂CH(CH₃)₂                                       |
| 405 | CF <sub>3</sub>                                 | CH(CH₃)CH₂CH₃                                     |
| 406 | CF <sub>3</sub>                                 | C(CH₃)₃                                           |
| 407 | CF <sub>2</sub> CF <sub>3</sub>                 | CH(CH <sub>3</sub> ) <sub>2</sub>                 |
| 408 | CF <sub>2</sub> CF <sub>3</sub>                 | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 409 | CF₂CF₃                                          | CH(CH₃)CH₂CH₃                                     |
| 410 | CF₂CF₃                                          | C(CH₃)₃                                           |
| 411 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CH(CH <sub>3</sub> ) <sub>2</sub>                 |
| 412 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |
| 413 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | CH(CH₃)CH₂CH₃                                     |
| 414 | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> | C(CH₃)₃                                           |

Weitere bevorzugte Ausführungsformen der Erfindung betreffen Tautomere der Formel II. Unter den Tautomeren der allgemeinen Formel II sind solche Verbindungen bevorzugt, worin W<sup>a</sup> für O oder S steht. In den Tautomeren der Formel II steht V vorzugsweise für eine chemische Bindung. Bezüglich bevorzugter Bedeutungen der Variablen R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> und A gilt das zuvor für Formel I Gesagte. Bevorzugte Reste R<sup>20</sup> sind solche, die in Formel I als bevorzugte Reste für R<sup>1</sup> bzw. R<sup>2</sup> angegeben werden. Insbesondere steht R<sup>20</sup> für einen Rest der Formeln C oder B wie für R<sup>1</sup> bzw. R<sup>2</sup> angegeben.

10 Bevorzugte Tautomere II sind insbesondere die Verbindungen der Formeln II-A und II-B

worin R³, R⁴, R⁵, R⁶ und R²⁰ die zuvor angegebenen Bedeutungen aufweisen.

5

10

15

20

25

40

Hierunter besonders bevorzugt sind die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluor-6-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A1 und II-B1). Beispiele hierfür sind die Verbindungen II-A1.1 bis II-A1.39 und II-B1.1 bis II-B1.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die auch zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A2 und II-B2). Beispiele hierfür sind die Verbindungen II-A2.1 bis II-A2.39 und II-B2.1 bis II-B2.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind weiterhin die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Dichlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A3 und II-B3). Beispiele hierfür sind die Verbindungen II-A3.1 bis II-A3.39 und II-B3.1 bis II-B3.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluor-6-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A4 und II-B4). Beispiele hierfür sind die Verbindungen II-A4.1 bis II-A4.39 und II-B4.1 bis II-B4.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,4,6-Trifluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A5 und II-B5). Beispiele hierfür sind die Verbindungen II-A5.1 bis II-A5.39 und II-B5.1 bis II-B5.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluor-4-methoxyphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A6 und II-B6). Bei-

spiele hierfür sind die Verbindungen II-A6.1 bis II-A6.39 und II-B6.1 bis II-B6.39, worin R<sup>20</sup> die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Chlor-6-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A7 und II-B7). Beispiele hierfür sind die Verbindungen II-A7.1 bis II-A7.39 und II-B7.1 bis II-B7.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

10

15

20

35

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für Pentafluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A8 und II-B8). Beispiele hierfür sind die Verbindungen II-A8.1 bis II-A8.39 und II-B8.1 bis II-B8.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Methyl-4-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A9 und II-B9). Beispiele hierfür sind die Verbindungen II-A9.1 bis II-A9.39 und II-B9.1 bis II-B9.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Triflluormethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A10 und II-B10). Beispiele hierfür sind die Verbindungen II-A10.1 bis II-A10.39 und II-B10.1 bis II-B10.39, worin
 R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Methoxy-6-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A11 und II-B11). Beispiele hierfür sind die Verbindungen II-A11.1 bis II-A11.39 und II-B11.1 bis II-B11.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

25

30

35

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A12 und II-B12). Beispiele hierfür sind die Verbindungen II-A12.1 bis II-A12.39 und II-B12.1 bis II-B12.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A13 und II-B13). Beispiele hierfür sind die Verbindungen II-A13.1 bis II-A13.39 und II-B13.1 bis II-B13.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,4-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A14 und II-B14). Beispiele hierfür sind die Verbindungen II-A14.1 bis II-A14.39 und II-B14.1 bis II-B14.39, worin
 R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluor-4-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A15 und II-B15). Beispiele hierfür sind die Verbindungen II-A15.1 bis II-A15.39 und II-B15.1 bis II-B15.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 4-Fluor-2-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A16 und II-B16). Beispiele hierfür sind die Verbindungen II-A16.1 bis II-A16.39 und II-B16.1 bis II-B16.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,3-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A17 und II-B17). Beispiele

hierfür sind die Verbindungen II-A17.1 bis II-A17.39 und II-B17.1 bis II-B17.39, worin R<sup>20</sup> die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,5-Difluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A18 und II-B18). Beispiele hierfür sind die Verbindungen II-A18.1 bis II-A18.39 und II-B18.1 bis II-B18.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

10

15

20

35

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,3,4-Triflluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A19 und II-B19). Beispiele hierfür sind die Verbindungen II-A19.1 bis II-A19.39 und II-B19.1 bis II-B19.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A20 und II-B20). Beispiele hierfür sind die Verbindungen II-A20.1 bis II-A20.39 und II-B20.1 bis II-B20.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,4-Dimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A21 und II-B21). Beispiele hierfür sind die Verbindungen II-A21.1 bis II-A21.39 und II-B21.1 bis II-B21.39, worin
 R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Methyl-4-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A22 und II-B22). Beispiele hierfür sind die Verbindungen II-A22.1 bis II-A22.39 und II-B22.1 bis II-B22.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluor-4-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A23 und II-B23). Beispiele hierfür sind die Verbindungen II-A23.1 bis II-A23.39 und II-B23.1 bis II-B23.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Dimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A24 und II-B24). Beispiele hierfür sind die Verbindungen II-A24.1 bis II-A24.39 und II-B24.1 bis II-B24.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

10

25

30

35

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,4,5-Trimethylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A25 und II-B25). Beispiele hierfür sind die Verbindungen II-A25.1 bis II-A25.39 und II-B25.1 bis II-B25.39, worin
 R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluor-4-cyanophenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A26 und II-B26). Beispiele hierfür sind die Verbindungen II-A26.1 bis II-A26.39 und II-B26.1 bis II-B26.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluor-4-methylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A27 und II-B27). Beispiele hierfür sind die Verbindungen II-A27.1 bis II-A27.39 und II-B27.1 bis II-B27.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluor-4-methoxycarbonylphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A28 und II-

B28). Beispiele hierfür sind die Verbindungen II-A28.1 bis II-A28.39 und II-B28.1 bis II-B28.39, worin R<sup>20</sup> die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Trifluormethyl-4-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-29 und II-B29). Beispiele hierfür sind die Verbindungen II-A29.1 bis II-A29.39 und II-B29.1 bis II-B29.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

10

15

20

35

Hierunter besonders bevorzugt sind die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Trifluormethyl-5-fluorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A30 und II-B30). Beispiele hierfür sind die Verbindungen II-A30.1 bis II-A30.39 und II-B30.1 bis II-B30.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Trifluormethyl-5-chlorphenyl steht, R⁴ für Chlor steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A31 und II-B31). Beispiele hierfür sind die Verbindungen II-A31.1 bis II-A31.39 und II-B31.1 bis II-B31.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind weiterhin die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluor-6-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A32 und II-B32). Beispiele hierfür sind die Verbindungen II-A32.1 bis II-A32.39 und II-B32.1 bis II-B32.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die auch zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A33 und II-B33). Beispiele hierfür sind die Verbindungen II-A33.1 bis II-A33.39 und II-B33.1 bis II-B33.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

25

30

35

Hierunter besonders bevorzugt sind weiterhin die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Dichlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A34 und II-B34). Beispiele hierfür sind die Verbindungen II-A34.1 bis II-A34.39 und II-B34.1 bis II-B34.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluor-6-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A35 und II-B35). Beispiele hierfür sind die Verbindungen II-A35.1 bis II-A35.39 und II-B35.1 bis II-B35.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,4,6-Trifluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A36 und II-B36). Beispiele hierfür sind die Verbindungen II-A36.1 bis II-A36.39 und II-B36.1 bis II-B36.39, worin
 R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluor-4-methoxyphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A37 und II-B37). Beispiele hierfür sind die Verbindungen II-A37.1 bis II-A37.39 und II-B37.1 bis II-B37.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Chlor-6-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A38 und II-B38). Beispiele hierfür sind die Verbindungen II-A38.1 bis II-A38.39 und II-B38.1 bis II-B38.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Methyl-4-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A39 und II-B39). Beispiele

hierfür sind die Verbindungen II-A39.1 bis II-A39.39 und II-B39.1 bis II-B39.39, worin R<sup>20</sup> die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für Pentafluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A40 und II-B40). Beispiele hierfür sind die Verbindungen II-A40.1 bis II-A40.39 und II-B40.1 bis II-B40.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

10

15

20

35

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Triflluormethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A41 und II-B41). Beispiele hierfür sind die Verbindungen II-A41.1 bis II-A41.39 und II-B41.1 bis II-B41.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Methoxy-6-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A42 und II-B42). Beispiele hierfür sind die Verbindungen II-A42.1 bis II-A42.39 und II-B42.1 bis II-B42.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A43 und II-B43). Beispiele hierfür sind die Verbindungen II-A43.1 bis II-A43.39 und II-B43.1 bis II-B43.39, worin
 R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A44und II-B44). Beispiele hierfür sind die Verbindungen II-A44.1 bis II-A44.39 und II-B44.1 bis II-B44.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

25

30

35

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,4-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A45 und II-B45). Beispiele hierfür sind die Verbindungen II-A45.1 bis II-A45.39 und II-B45.1 bis II-B45.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluor-4-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-46 und II-B46). Beispiele hierfür sind die Verbindungen II-A46.1 bis II-A46.39 und II-B46.1 bis II-B46.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 4-Fluor-2-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A47 und II-B47). Beispiele hierfür sind die Verbindungen II-A47.1 bis II-A47.39 und II-B47.1 bis II-B47.39, worin
 R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,3-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A48 und II-B48). Beispiele hierfür sind die Verbindungen II-A48.1 bis II-A48.39 und II-B48.1 bis II-B48.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,5-Difluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A49 und II-B49). Beispiele hierfür sind die Verbindungen II-A49.1 bis II-A49.39 und II-B49.1 bis II-B49.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,3,4-Triflluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A50 und II-B50). Beispiele

hierfür sind die Verbindungen II-A50.1 bis II-A50.39 und II-B50.1 bis II-B50.39, worin R<sup>20</sup> die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A51 und II-B51). Beispiele hierfür sind die Verbindungen II-A51.1 bis II-A51.39 und II-B51.1 bis II-B51.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

10

15

20

35

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,4-Dimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A52 und II-B52). Beispiele hierfür sind die Verbindungen II-A52.1 bis II-A52.39 und II-B52.1 bis II-B52.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Methyl-4-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A53 und II-B53). Beispiele hierfür sind die Verbindungen II-A53.1 bis II-A53.39 und II-B53.1 bis II-B53.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Fluor-4-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A54 und II-B54). Beispiele hierfür sind die Verbindungen II-A54.1 bis II-A54.39 und II-B54.1 bis II-B54.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Dimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A55 und II-B55). Beispiele hierfür sind die Verbindungen II-A55.1 bis II-A55.39 und II-B55.1 bis II-B55.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

5

10

25

40

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,4,5-Trimethylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A56 und II-B56). Beispiele hierfür sind die Verbindungen II-A56.1 bis II-A56.39 und II-B56.1 bis II-B56.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluor-4-cyanophenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A57 und II-B57). Beispiele hierfür sind die Verbindungen II-A57.1 bis II-A57.39 und II-B57.1 bis II-B57.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluor-4-methylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A58 und II-B58). Beispiele hierfür sind die Verbindungen II-A58.1 bis II-A58.39 und II-B58.1 bis II
20 B58.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2,6-Difluor-4-methoxycarbonylphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A59 und II-B59). Beispiele hierfür sind die Verbindungen II-A59.1 bis II-A59.39 und II-B59.1 bis II-B59.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind auch die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Trifluormethyl-4-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-60 und II-B60). Beispiele hierfür sind die Verbindungen II-A60.1 bis II-A60.39 und II-B60.1 bis II-B60.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Trifluormethyl-5-fluorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A61 und II-B61). Bei-

spiele hierfür sind die Verbindungen II-A61.1 bis II-A61.39 und II-B61.1 bis II-B61.39, worin R<sup>20</sup> die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

Hierunter besonders bevorzugt sind die Verbindungen der Formeln II-A und II-B, worin R³ für 2-Trifluormethyl-5-chlorphenyl steht, R⁴ für Methyl steht, R⁵ Wasserstoff bedeutet, R⁶ Wasserstoff bedeutet und R²⁰ die zuvor genannten und insbesondere die als bevorzugt genannten Bedeutungen aufweisen (Verbindungen II-A62 und II-B62). Beispiele hierfür sind die Verbindungen II-A62.1 bis II-A62.39 und II-B62.1 bis II-B62.39, worin R²⁰ die in einer Zeile der Tabelle B angegebene Bedeutung aufweist.

10

Tabelle B

| Nr. | R <sup>20</sup>                                            |  |  |  |  |
|-----|------------------------------------------------------------|--|--|--|--|
| 1   | Н                                                          |  |  |  |  |
| 2   | CH₃                                                        |  |  |  |  |
| 3   | CH₂CH₃                                                     |  |  |  |  |
| 4   | CH₂CF₃                                                     |  |  |  |  |
| 5   | CH <sub>2</sub> CCI <sub>3</sub>                           |  |  |  |  |
| 6   | CH₂CH₂CH₃                                                  |  |  |  |  |
| 7   | CH(CH <sub>3</sub> ) <sub>2</sub>                          |  |  |  |  |
| 8   | (±) CH(CH <sub>3</sub> )-CH <sub>2</sub> CH <sub>3</sub>   |  |  |  |  |
| 9   | (S) CH(CH₃)-CH₂CH₃                                         |  |  |  |  |
| 10  | (R) CH(CH₃)-CH₂CH₃                                         |  |  |  |  |
| 11  | (±) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> |  |  |  |  |
| 12  | (S) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> |  |  |  |  |
| 13  | (R) CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> ) <sub>2</sub> |  |  |  |  |
| 14  | (±) CH(CH <sub>3</sub> )-C(CH <sub>3</sub> ) <sub>3</sub>  |  |  |  |  |
| 15  | (S) CH(CH₃)-C(CH₃)₃                                        |  |  |  |  |
| 16  | (R) CH(CH₃)-C(CH₃)₃                                        |  |  |  |  |
| 17  | (±) CH(CH₃)-CF₃                                            |  |  |  |  |
| 18  | (S) CH(CH₃)-CF₃                                            |  |  |  |  |
| 19  | (R) CH(CH₃)-CF₃                                            |  |  |  |  |
| 20  | (±) CH(CH <sub>3</sub> )-CCl <sub>3</sub>                  |  |  |  |  |
| 21  | (S) CH(CH₃)-CCI₃                                           |  |  |  |  |

| Nr. | R <sup>20</sup>                                                 |  |  |  |  |
|-----|-----------------------------------------------------------------|--|--|--|--|
| 22  | (R) CH(CH₃)-CCI₃                                                |  |  |  |  |
| 23  | CH <sub>2</sub> CF <sub>2</sub> CF <sub>3</sub>                 |  |  |  |  |
| 24  | CH <sub>2</sub> (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub> |  |  |  |  |
| 25  | CH <sub>2</sub> C(CH <sub>3</sub> )=CH <sub>2</sub>             |  |  |  |  |
| 26  | CH <sub>2</sub> CH=CH <sub>2</sub>                              |  |  |  |  |
| 27  | CH(CH₃)CH=CH₂                                                   |  |  |  |  |
| 28  | CH(CH <sub>3</sub> )C(CH <sub>3</sub> )=CH <sub>2</sub>         |  |  |  |  |
| 29  | Cyclopentyl                                                     |  |  |  |  |
| 30  | Cyclohexyl                                                      |  |  |  |  |
| 31  | Cyclopropyl                                                     |  |  |  |  |
| 32  | CF <sub>3</sub>                                                 |  |  |  |  |
| 33  | CCI <sub>3</sub>                                                |  |  |  |  |
| 34  | CF₂CF₃                                                          |  |  |  |  |
| 35  | (CF <sub>2</sub> ) <sub>2</sub> CF <sub>3</sub>                 |  |  |  |  |
| 36  | C(CH₃)=CH₂                                                      |  |  |  |  |
| 37  | CH=CH₂                                                          |  |  |  |  |
| 38  | Phenyl                                                          |  |  |  |  |
| 39  | CH₂Phenyl                                                       |  |  |  |  |

Die erfindungsgemäßen Verbindungen der Formel I können in Analogie zu an sich bekannten Methoden des Standes der Technik ausgehend von 7-Aminoazolopyrimidinen der allgemeinen Formel III oder 7-Halogenazolopyrimidinen der Formel IV

$$R^{5} \xrightarrow{N \xrightarrow{N}} R^{3}$$
 (III); 
$$R^{5} \xrightarrow{N \xrightarrow{N}} R^{4}$$
 (IV)

5

10

nach den in den folgenden Schemata dargestellten Synthesen hergestellt werden. In den Verbindungen der Formeln III und IV haben A, R³, R⁴ und R⁵ die vorgenannten Bedeutungen. Hal steht für Halogen, insbesondere für Chlor oder Brom. Die Verbindungen III und IV sind aus dem eingangs zitierten Stand der Technik bekannt oder können in Analogie zu den dort beschriebenen Verfahren hergestellt werden.

Verbindungen der Formel I, worin X und Y für eine chemische Bindung stehen, können beispielsweise nach dem von G. A. Grasa et al. J. Org. Chem. 2001, 66(23) S. 7729-7737 oder Stauffer et. al, Org. Lett. 2002, 2(10), S. 1423-1426 beschriebenen Methoden durch Umsetzung des 7-Haloazolopyrimidins IV mit einem Imin der Formel V in Gegenwart von Palladium-Katalysatoren hergestellt werden (siehe Schema 1)

## Schema 1:

5

10

15

20

25

30

(IV) + 
$$R^{2c}$$
  $R^{1c}$   $P^{1c}$   $R^{2c}$   $R^{3}$   $R^{4}$ 

In Schema 1 haben A, R³, R⁴ und R⁵ die zuvor genannten Bedeutungen. R¹c und R²c stehen unabhängig voneinander für Wasserstoff oder haben die für R¹ bzw. R² angegebenen Bedeutungen oder R¹c bildet mit R²c und mit dem Kohlenstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Carbooder Heterocyclus, wobei letzterer 1, 2, 3 oder 4 Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann, wobei der Carbo- und der Heterocyclus teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 der Reste R⁵ und/oder R⁵ aufweisen können.

Verbindungen der Formel I, worin X und Y für eine chemische Bindung stehen, können weiterhin nach dem in Schema 2 dargestellten Verfahren aus den entsprechenden 7-Aminoazolopyrimidinen III hergestellt werden. Hierzu überführt man zunächst Verbindung III nach der von Llamas-Saiz et al. beschriebenen Methode (J. Chem. Soc. Perkin Trans. 2, 1991, S. 1667-1676) in das Phosphaimin VI, welches anschließend durch Umsetzung mit einem Aldehyd oder einem Keton VII nach den von Bravo et al. Synlett 1996, S. 887 ff. und Takahashi et al, Synthesis, 1998, S. 986-990 beschriebenen Methoden in die entsprechende Verbindung I umgewandelt werden kann (siehe Schema 2):

Schema 2:

(III) 
$$\longrightarrow$$
  $R^{5}$   $\stackrel{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{N}}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}}{\overset{N}}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}}{\overset{N}{\underset{N}}{\overset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\overset{N}{\underset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\overset{N}{\underset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\underset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}{\overset{N}{\overset{N}}{\overset{N}}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}$ 

In Schema 2 haben A, R³, R⁴ und R⁵ die zuvor genannten Bedeutungen. R¹b und R²b stehen unabhängig voneinander für Wasserstoff oder haben die für R¹ bzw. R² angegebenen Bedeutungen oder R¹b bildet mit R²b und mit dem Kohlenstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Carbo- oder Heterocyclus, wobei letzterer 1, 2, 3 oder 4 Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann, wobei der Carbo- und der Heterocyclus teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 der Reste R² und/oder R³ aufweisen können. R steht für Aryl wie Phenyl, das gegebenenfalls substituiert ist, z.B. mit 1, 2 oder 3 Substituenten, die unter Halogen, Alkyl oder Alkoxy ausgewählt sind.

Verbindungen der allgemeinen Formel I, worin Y-R<sup>1</sup> (oder X-R<sup>2</sup>) für Halogen, X (bzw. Y) eine Einfachbindung bedeutet und R<sup>2</sup> die zuvor genannten Bedeutungen aufweist, können aus den entsprechenden Tautomeren der Formel II, worin W<sup>a</sup> für Sauerstoff steht, R<sup>20</sup> dem Rest R<sup>2</sup> entspricht und V eine Bindung bedeutet, nach der von Stevens et al., J. Am. Chem. Soc. 1953, 75, S. 657-660 beschriebenen Methode durch Umsetzung mit einem Halogenierungsmittel [Hal] hergestellt werden (siehe Schema 3).

Schema 3:

5

10

15

20

(III) 
$$R^{5}$$
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{5}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{5}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{5}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{5}$ 
 $R^{3}$ 
 $R^{5}$ 
 $R^{5}$ 

In Schema 3 haben A, R<sup>1</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> und R<sup>7</sup> die zuvor genannten Bedeutungen. Beispiele für Halogenierungsmittel [Hal] sind Phosphorhalogenide und Schwefelhalogenverbindungen wie Phosphoroxybromid, Phosphoroxychlorid, Phosphorpentachlorid, Thionylchlorid, Thionylbromid oder Sulfurylchlorid. Die Umsetzung kann in Substanz oder in Gegenwart eines Lösungsmittels durchgeführt werden. In einer Ausführungsform führt man die Umsetzung in Gegenwart eines tertiären Amins wie Triethylamin oder Pyridin als Base durch. In einer anderen bevorzugten Ausführungsform führt man die Umsetzung in einen aromatischen Kohlenwasserstoff wie Toluol in Gegenwart katalytischer Mengen eines Amids wie Dimethylformamid durch. Übliche Reaktionstemperaturen betragen von –20 bis 200 °C oder vorzugsweise von 0 bis 160 °C.

5

10

15

20

Die Halogenverbindungen I, worin Y-R¹ (oder X-R²) für Halogen steht, können ihrerseits in die entsprechenden Verbindungen I, worin Y für Sauerstoff steht, umgewandelt werden, indem man sie mit einem Alkohol der Formel R¹-OH nach der von Stevens et al., J. Am. Chem. Soc. 1953, 75, S. 657-660 et al. beschriebenen Methode umsetzt. In analoger Weise erhält man aus den Verbindungen I, worin X-R² für Halogen steht, die Verbindungen I, worin X für Sauerstoff steht. Außerdem kann man in analoger Weise durch Umsetzung mit sekundären Aminen der Formel R¹-NH-R² die Verbindungen der Formel I herstellen, worin X eine Bindung bedeutet und Y für eine Gruppe R² steht. Außerdem kann man in analoger Weise durch Umsetzung mit Thioalkoholen der For-

mel R¹-SH die Verbindungen der Formel I herstellen, worin X eine Bindung bedeutet und Y für S steht (siehe Schema 3).

Verbindungen der Formel I, worin X für eine chemische Bindung und Y-R¹ für einen Rest der Formel  $N(R^7)R^1$  steht, kann man aus den Verbindungen III durch Umsetzung mit Carbonsäureamid-Analoga VIII nach den von S. Leistner et al., Pharmazie 1991, 46, S. 457-458, und Troschütz et al., Arch. Pharm. 1993, 326, 857-864, beschriebenen Methoden herstellen (siehe Schema 4). R" steht für C₁-C₆-Alkyl. Verbindungen der Formel I, worin X für eine chemische Bindung und Y für O steht, kann man durch Umsetzung von III mit Orthoestern der Formel IX nach der von Troschütz et al. Arch. Pharm. 1993, 326, 857-864, beschriebenen Methode herstellen (siehe Schema 4). In Schema 4 haben A,  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  und  $R^7$  die zuvor genannten Bedeutungen.

## Schema 4:

5

10

15

20

25

$$(R"O)_{2}CR^{2}-NR^{1}R^{7}$$

$$(VIII)$$

$$(R^{1}O)_{3}CR^{2}$$

$$(IX)$$

$$R^{5}$$

$$R^{4}$$

$$R^{4}$$

Die Tautomere der Formel II, worin W<sup>a</sup> = O und V eine chemische Bindung ist, können aus den 7-Aminoazolopyrimidinen III nach üblichen Amidierungsverfahren hergestellt werden, z. B. durch Umsetzung mit Carbonsäuren oder Carbonsäurederivaten der Formel R<sup>23</sup>-CO-L, worin R<sup>23</sup> eine der für R<sup>20</sup> angegebenen Bedeutungen aufweist und L für eine nucleophil verdrängbare Abgangsgruppe, z. B. für OH, Halogen, insbesondere Chlor oder für den Rest einer Aktivester-Gruppe wie p-Nitrophenoxy steht, gegebenenfalls in Gegenwart geeigneter Katalysatoren, Hilfsbasen, z. B. tertiäre Amine wie Triethylamin oder Pyridin-Verbindungen, und/oder Dehydratisierungsmitteln, z. B. Carbodiimide. Methoden hierzu sind aus dem Stand der Technik bekannt und können in analoger Weise zur Herstellung der Verbindungen II mit W<sup>a</sup> = O angewendet werden

(siehe z. B. Werbel et al. J. Heterocycl Chem. 1987, 24, S. 345; Stevens et al. loc.cit. siehe auch J. March, "Advanced Organic Synthesis, 3. Auflage, Wiley & Sons, New-York 1985, S. 370-376 und dort zitierte Literatur). Verbindungen II mit W<sup>a</sup> = S können aus den Verbindungen II mit W<sup>a</sup> = O durch Umsetzung mit Schwefelungsmitteln hergestellt werden. In analoger Weise können Verbindungen der Formel II, worin V für O oder S steht, durch Umsetzung von III mit Derivaten der Kohlensäure oder der Thiokohlensäure, z. B. Chlorameisensäureestern oder Carbonaten hergestellt werden. Verbindungen II, worin V für NH steht, können durch Umsetzung von III mit Isocyanaten oder Isothiocyanaten hergestellt werden.

10

15

5

Verbindungen der Formel II, worin W<sup>a</sup> für S oder O steht, können auch durch Alkylierungsmittel in die entsprechenden Verbindungen I überführt werden, worin X für O oder S steht (Schema 5). In Schema 5 haben A, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> und R<sup>20</sup> die vorgenannten Bedeutungen. W<sup>a</sup> und X stehen für S oder O. Y hat die zuvor erwähnten Bedeutungen und steht insbesondere für eine chemische Bindung.

## Schema 5:

$$R^{5} \longrightarrow R^{4}$$

$$||\{W^{a} = S, O\}|$$

$$X-R^{2}$$

$$||\{X = S, O; V = Y\}|$$

Weiterhin können Verbindungen der nachstehend angegebenen Formel I, worin Y für eine chemische Bindung und X für Sauerstoff steht, sowie Verbindungen I, worin X-R² für Halogen und Y für eine chemische Bindung steht, durch Umsetzung mit Ammoniak oder einem primären Amin H₂N-R²¹ in Verbindungen II umgewandelt werden, worin W³ für eine Gruppe NH oder NR²¹ steht und V-R²⁰ der Gruppe R¹ entspricht (Schema 6). Diese Verbindungen können dann durch Alkylierung mit einem Alkylierungsmittel R³-L, worin L für eine nucleophil verdrängbare Abgangsgruppe steht, z. B. für Halogen, (Halo)Alkylsulfonat wie Mesylat oder Triflat, oder Arylsulfonat wie Tosylat, in die Imide I überführt werden, worin Y eine chemische Bindung und X eine Gruppe NR³ bedeuten und R²¹ dem Rest R² entspricht.

30

20

25

Schema 6:

$$R^{5} \longrightarrow R^{4} \longrightarrow R^{5} \longrightarrow R^{5} \longrightarrow R^{5} \longrightarrow R^{5} \longrightarrow R^{5} \longrightarrow R^{5} \longrightarrow R^{7} \longrightarrow R^{7$$

In Schema 6 haben A, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> und R<sup>7</sup> die zuvor genannten Bedeutungen.

Die in den Schemata 1 bis 6 dargestellten Reaktionen können in Substanz oder in Lösung durchgeführt werden. Geeignete Lösungsmittel sind Wasser, aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, oder Salzsäure oder Essigsäure. Es können auch Gemische der genannten Lösungsmittel

Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z. B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z. T. in Form farbloser oder schwach bräunlicher, zäher Öle an, die unter vermindertem Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

25 Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.

20

Sofern bei der Synthese Isomerengemische anfallen, ist im allgemeinen jedoch eine Trennung nicht unbedingt erforderlich, da sich die einzelnen Isomere teilweise während der Aufbereitung für die Anwendung oder bei der Anwendung (z. B. unter Licht-, Säure- oder Baseneinwirkung) ineinander umwandeln können. Entsprechende Umwandlungen können auch nach der Anwendung, beispielsweise bei der Behandlung

von Pflanzen in der behandelten Pflanze oder im zu bekämpfenden Schadpilz erfolgen.

- Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen,
  insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und
  Basidiomyceten. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz
  als Blatt- und Bodenfungizide eingesetzt werden.
- Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

15

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- · Alternaria-Arten an Gemüse und Obst,
- Bipolaris- und Drechslera-Arten an Getreide, Reis und Rasen,
- Blumeria graminis (echter Mehltau) an Getreide,
- Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
  - Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
  - Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
  - Mycosphaerella-Arten an Getreide, Bananen und Erdnüssen,
  - Phytophthora infestans an Kartoffeln und Tomaten,
- Plasmopara viticola an Reben,
  - Podosphaera leucotricha an Äpfeln,
  - Pseudocercosporella herpotrichoides an Weizen und Gerste,
  - Pseudoperonospora-Arten an Hopfen und Gurken,
  - Puccinia-Arten an Getreide,
- 30 Pyricularia oryzae an Reis,
  - Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
  - Septoria tritici und Stagonospora nodorum an Weizen,
  - Uncinula necator an Reben,
  - Ustilago-Arten an Getreide und Zuckerrohr, sowie
- Venturia-Arten (Schorf) an Äpfeln und Birnen.

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Pae-cilomyces variotii* im Materialschutz (z. B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.

Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

5

15

20

25

30

35

40

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 0,1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm Saatgut benötigt.

Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Kubikmeter behandelten Materials.

Die Verbindungen I können in die üblichen Formulierungen überführt werden, z. B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

Die Formulierungen werden in bekannter Weise hergestellt, z. B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Wasser, aromatische Lösungsmittel (z. B. Solvesso Produkte, Xylol), Paraffine (z. B. Erdölfraktionen), Alkohole (z. B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z. B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,
- Trägerstoffe wie natürliche Gesteinsmehle (z. B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z. B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z. B. Po-

lyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Lignin-sulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkyl-arylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpoly-glykoletheracetal, Sorbitester,
 Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z. B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z. B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

20

30

35

40

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z. B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z. B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z. B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im Allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

82

Beispiele für Formulierungen umfassen Produkte zur Verdünnung in Wasser, z. B.

A Wasserlösliche Konzentrate (SL):

10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff;

10 B Dispergierbare Konzentrate (DC):

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Cyclohexanon unter Zusatz eines Dispergiermittels z. B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion;

15 C Emulgierbare Konzentrate (EC):

15 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion;

20 D Emulsionen (EW, EO):

25

30

40

40 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion,

E Suspensionen (SC, OD):

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs;

F Wasserdispergierbare und wasserlösliche Granulate (WG, SG):

50 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z. B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs;

Wasserdispergierbare und wasserlösliche Pulver (WP, SP): 75 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs;

sowie Produkte für die Direktapplikation, z.B.

H Stäube (DP):

5

35

40

- 10 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubemittel;
  - I Granulate (GR, FG, GG, MG):
- 15 0.5 Gew.-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95,5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation;
- 20 J ULV- Lösungen (UL); 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einem organischen Lösungsmittel z. B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.
- Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z. B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.
  - Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10 %, vorzugsweise zwischen 0,01 und 1 %.

84

5

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

15

20

25

35

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z. B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- · Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
- Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph
- Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyrodinyl,
  - Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
  - Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Hexaconazol, Imazalil, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Tebuconazol, Triadimenol, Triflumizol, Triflumizol,
  - Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
  - Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,

- Heterocylische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Probenazol, Proquinazid, Pyrifenox, Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,
- Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches Kupfersulfat,
- Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl
- Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
- 10 Schwefel

5

15

20

25

30

35

- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Dazomet, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid
- Strobilurine wie Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl,
   Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin,
- Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolylfluanid
- Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

Synthesebeispiele

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen benutzt. Die so erhaltenen Verbindungen sind in den anschließenden Tabellen mit physikalischen Angaben aufgeführt.

Beispiel 1: N'-[5-Chlor-6-(2,4,6-trifluorphenyl)-(1,2,4-triazolo-[1,5-a]pyrimidin-7-yl)]- N,N-dimethylformamidin

In einem Kolben legte man 3 ml Dimethylformamid vor, kühlte auf –8 °C, tropfte hierzu 0,5 ml Phosphorylchlorid (POCl<sub>3</sub>) und rührte 5 min. bei –8 °C. Anschließend gab man hierzu eine Lösung von 336 mg 7-Amino-5-chlor-6-(2,4,6-trifluorphenyl)triazolo[1,5-a]pyrimidin-Hydrochlorid in 1 ml Dimethylformamid und 0,14 ml Triethylamin. Nach 1 h entfernte man die Kühlung und rührte 72 h nach. Dann gab man die Reaktionsmischung auf Eiswasser, stellte mit konzentriertem Ammoniak alkalisch und saugte den entstandenen Niederschlag ab. Man erhielt so die Titelverbindung in einer Ausbeute von 66 % mit einem Schmelzpunkt von 188 – 190 °C.

In analoger Weise wurden die in Tabelle 1 angegebenen Verbindungen der Formel I-A hergestellt (Beispiele 2 und 3).

Tabelle 1:

15

20

35

| Nr. | Y-R <sup>1</sup>                  | X-R <sup>2</sup> | R <sup>3</sup>       | R⁴ | R⁵ | Smp. [°C] |
|-----|-----------------------------------|------------------|----------------------|----|----|-----------|
| 1   | -N(CH <sub>3</sub> ) <sub>2</sub> | Н                | 2,4,6-Trifluorphenyl | CI | Н  | 188-190   |
| 2   | 1-Piperidinyl                     | Н                | 2,4,6-Trifluorphenyl | CI | Н  | 112-115   |
| 3   | 1-Pyrrolidinyl                    | Н                | 2,4,6-Trifluorphenyl | CI | Н  | 137-142 * |

Smp. Schmelzpunkt

\* 85 % Reinheit

10 Beispiel 4: N-[5-Chlor-6-(2,4,6-trifluorphenyl)-(1,2,4-triazolo-[1,5-a]pyrimidin-7-yl)]acetamid

18 ml Toluol, 0,3 ml Triethylamin, 88 mg Acetylchlorid und 250 mg 7-Amino-5-chlor-6-(2,4,6-trifluorphenyl)triazolo[1,5-a]pyrimidin-Hydrochlorid wurden 12 h bei 120 °C gerührt. Man kühlte auf Raumtemperatur und engte im Vakuum ein, wobei man einen beigefarbenen Rückstand erhielt. Dieser wurde in Dichlormethan aufgenommen und die Mischung mit Wasser gewaschen. Die organische Phase wurde im Vakuum eingeengt, wobei man die Titelverbindung in einer Ausbeute von 31 % als beigefarbenen Feststoff mit einem Schmelzpunkt von 108 – 111 °C erhielt.

Beispiel 5: N-[5-Chlor-6-(2,4,6-trifluorphenyl)-(1,2,4-triazolo-[1,5-a]pyrimidin-7-yl)]-propionamid

Unter Verwendung von Propionylchlorid anstelle von Acetylchlorid erhielt man gemäß dem Verfahren aus Beispiel 4 die Titelverbindung mit einem Schmelzpunkt von 162 - 165 °C.

Beispiele für die Wirkung gegen Schadpilze

Die fungizide Wirkung der Verbindungen der Formel I ließ sich durch die folgenden Versuche zeigen:

Die Wirkstoffe wurden getrennt als eine Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

Anwendungsbeispiel 1 - Wirksamkeit gegen die Dürrfleckenkrankheit verursacht durch Alternaria solani

Blätter von Tomatenpflanzen der Sorte "Goldene Prinzessin" wurden mit einer wässrigen
 Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am nächsten Tag wurden die behandelten Pflanzen mit einer Sporenaufschwemmung von Alternaria solani, in einer 2 %igen wässrigen Biomalzlösung mit einer Dichte von 0,17 x 10<sup>6</sup> Sporen/ml infiziert. Anschließend wurden die Versuchspflanzen in einer mit Wasserdampf gesättigten Kammer bei Temperaturen von 20 bis 22 °C aufgestellt. Nach 5 Tagen hatte sich die Krankheit auf den unbehandelten, jedoch infizierten Pflanzen so stark entwickelt, dass der Befall visuell ermittelt werden konnte.

In diesem Test zeigten die mit 250 ppm der Wirkstoffe aus Beispiel 1, 2 beziehungsweise 3 behandelten Pflanzen einen Befall kleiner gleich 1 %, während die unbehandelten Pflanzen zu 80 % befallen waren.

Anwendungsbeispiel 2 - Wirksamkeit gegen Netzfleckenkrankheit der Gerste verursacht durch *Pyrenophora teres* bei 1 Tag protektiver Anwendung

Blätter von in Töpfen gewachsenen Gerstenkeimlingen der Sorte "Igri" wurden mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. 24 Stunden nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer wässrigen Sporensuspension von *Pyrenophora [syn. Drechslera] teres*, dem Erreger der Netzfleckenkrankheit, inokuliert. Anschließend wurden die Pflanzen im Gewächshaus bei Temperaturen zwischen 20 und 24 °C und 95 bis 100 % relativer Luftfeuchtigkeit aufgestellt. Nach 6 Tagen wurde das Ausmaß der Mehltauentwicklung visuell anhand des Befalls der Blattfläche in % ermittelt.

30 In diesem Test zeigten die mit 250 ppm der Wirkstoffe aus Beispiel 1, 2 beziehungsweise 3 behandelten Pflanzen einen Befall ≤ 10 %, während die unbehandelten Pflanzen zu 100 % befallen waren.

20

25

35

40

Anwendungsbeispiel 3 - Aktivität gegen die Krautfäule an Tomaten verursacht durch Phytophthora infestans bei protektiver Behandlung

Blätter von getopften Tomatenpflanzen wurden mit einer wässrigen Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer wässrigen Sporenaufschwemmung von *Phytophthora infestans* infiziert. Anschließend wurden die Pflanzen in einer wasserdampfgesättigten Kammer bei Temperaturen zwischen 18 und 20 °C aufgestellt. Nach 6 Tagen hatte sich die Krautfäule auf den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.

In diesem Test zeigten die mit 250 ppm des Wirkstoffs aus Beispiel 5 behandelten Pflanzen einen Befall von kleiner gleich 15 %, während die unbehandelten Pflanzen zu 70 % befallen waren.

5

15

Anwendungsbeispiel 4 – Protektive Wirksamkeit gegen Reisbrand verursacht durch *Pyricularia oryzae* im Mikrotiter-Test.

Die Wirkstoffe wurden getrennt als Stammlösung formuliert und mit einer Konzentration von 10000 ppm in DMSO. Die Wirkstoffe wurden entsprechend der angegebenen Konzentration mit Wasser verdünnt.

50 µl der benötigten Wirkstoffkonzentration wurden in eine Mikrotiterplatte (MTP) pipettiert. Anschließend erfolgte die Inokkulation mit 50 µl einer wässrigen Sporensuspension von\_Pyricularia oryzae. Die Platten wurden in einer wasserdampfgesättigten Kammer bei Temperaturen von 18 °C aufgestellt. Mit einem Absorptionsphotometer wurden die Mikrotiterplatten am 7. Tag nach der Inokkulation bei 405 nm gemessen.

Der gemessene Parameter wurde mit dem Wachstum der wirkstofffreien Kontrolle und 20 Leerwert errechnet, um das relative Wachstum in % der Pathogene in den einzelnen Wirkstoffen zu ermitteln.

In diesem Test war das relative Wachstum der Sporensuspension kleiner gleich 1 % bei Verwendung von 125 ppm des Wirkstoffs aus Beispiel 4.

## Patentansprüche

Azolopyrimidin-Verbindungen der allgemeinen Formel I

worin

5

10

15

20

25

30

35

A für N oder C-R<sup>6</sup> steht;

X, Y unabhängig voneinander für eine chemische Bindung oder für Sauerstoff, Schwefel oder eine Gruppe N-R<sup>7</sup> stehen;

R<sup>1</sup>, R<sup>2</sup> unabhängig voneinander für C<sub>1</sub>-C<sub>10</sub>-Alkyl, C<sub>2</sub>-C<sub>10</sub>-Alkenyl, C<sub>4</sub>-C<sub>10</sub>-Alkadienyl, C<sub>2</sub>-C<sub>10</sub>-Alkinyl, C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>5</sub>-C<sub>8</sub>-Cycloalkenyl, C<sub>5</sub>-C<sub>10</sub>-Bicycloalkyl, Phenyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Naphthyl, Naphthyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, 5- oder 6-gliedriges gesättigtes, teilweise ungesättigtes oder aromatisches Heterocyclyl oder Heterocyclyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, die jeweils 1, 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen können, stehen, wobei die als R<sup>1</sup>, R<sup>2</sup> genannten Reste teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 Reste R<sup>8</sup> aufweisen können, wobei

Y-R<sup>1</sup> mit X-R<sup>2</sup> auch gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Carbo- oder Heterocyclus bilden können, wobei letzterer 1, 2, 3 oder 4 Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann, wobei der Carbo- und der Heterocyclus teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 der Reste R<sup>7</sup> und/oder R<sup>8</sup> aufweisen können; wobei

Y-R<sup>1</sup> und X-R<sup>2</sup> unabhängig voneinander auch für Wasserstoff, CN, NO<sub>2</sub> oder Halogen stehen können und wobei einer der Reste Y-R<sup>1</sup> und X-R<sup>2</sup>; auch OH, SH oder NH<sub>2</sub> bedeuten kann;

|    |                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | R <sup>3</sup>                    | für C <sub>1</sub> -C <sub>10</sub> -Alkyl, C <sub>2</sub> -C <sub>10</sub> -Alkenyl, C <sub>4</sub> -C <sub>10</sub> -Alkadienyl, C <sub>2</sub> -C <sub>10</sub> -Alkinyl, C <sub>3</sub> -C <sub>8</sub> -Cycloalkyl, C <sub>5</sub> -C <sub>8</sub> -Cycloalkenyl, C <sub>5</sub> -C <sub>10</sub> -Bicycloalkyl, Phenyl, Phenyl-C <sub>1</sub> -C <sub>4</sub> -alkyl, Naphthyl, einen 5- oder 6-gliedrigen, gesättigten, teilweise ungesättigten oder aromatischen Heterocyclus, der 1, 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann, steht, wobei die als R <sup>3</sup> genannten Reste teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 Reste R <sup>9</sup> aufweisen können;                                                                                                                                                                                                                                                                                                                  |
| 10 | R⁴                                | Halogen, Cyano, $C_1$ - $C_6$ -Alkyl, $C_1$ - $C_6$ -Haloalkyl, $C_2$ - $C_6$ -Alkenyl, $C_2$ - $C_6$ -Alkinyl, $C_3$ - $C_8$ -Cycloalkyl, $C_5$ - $C_8$ -Cycloalkenyl, $OR^{10}$ , $SR^{10}$ , $NR^{11}R^{12}$ , $CH_2NR^{11}R^{12}$ oder $C(W)R^{13}$ bedeutet;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15 | R⁵, R <sup>6</sup>                | unabhängig voneinander für Wasserstoff, CN, $NO_2$ , $NH_2$ , $CH_2NH_2$ , Halogen, $C(W)R^{13}$ , $C(=N-OR^{15})R^{14}$ , $NHC(W)R^{16}$ , $C_1-C_6$ -Haloalkyl, $C_1-C_4$ -Alkyl oder $C_2-C_4$ -Alkenyl stehen;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 | R <sup>7</sup>                    | für Wasserstoff, $C_1$ - $C_6$ -Alkyl, $C_1$ - $C_6$ -Alkoxy, $C_1$ - $C_6$ -Haloalkyl, $C_1$ - $C_6$ -Haloalkoxy, $C_2$ - $C_6$ -Alkenyl, $C_2$ - $C_6$ -Alkenyloxy, CN oder C(W)R <sup>17</sup> steht;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25 | R <sup>8</sup>                    | ausgewählt ist unter Halogen, Cyano, Nitro, OH, SH, NR <sup>18</sup> R <sup>19</sup> , C <sub>1</sub> -C <sub>6</sub> -Alkyl, C <sub>3</sub> -C <sub>8</sub> -Cycloalkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy, Hydroxy-C <sub>1</sub> -C <sub>6</sub> -alkyl, Hydroxy-C <sub>1</sub> -C <sub>6</sub> -alkoxy, C <sub>1</sub> -C <sub>6</sub> -Alkoxy-C <sub>1</sub> -C <sub>6</sub> -alkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy-C <sub>1</sub> -C <sub>6</sub> -alkoxy, C <sub>1</sub> -C <sub>6</sub> -Alkoxy-C <sub>1</sub> -C <sub>6</sub> -Alkoxy, C <sub>1</sub> -C <sub>6</sub> -Alkylthio, C <sub>2</sub> -C <sub>6</sub> -Alkenyl, C <sub>2</sub> -C <sub>6</sub> -Alkenyloxy, C <sub>2</sub> -C <sub>6</sub> -Alkinyl, C <sub>2</sub> -C <sub>6</sub> -Alkinyloxy, C <sub>1</sub> -C <sub>6</sub> -Alkylamino, C(W)R <sup>13</sup> , C(=N-OR <sup>15</sup> )R <sup>14</sup> , NHC(W)R <sup>16</sup> , Tris-C <sub>1</sub> -C <sub>6</sub> -alkylsilyl und Phenyl, das seinerseits 1, 2 oder 3 Reste aufweisen kann, die ausgewählt sind unter Cyano, |
| 30 |                                   | Nitro, Halogen, OH, $C_1$ - $C_6$ -Alkyl, $C_1$ - $C_6$ -Alkoxy, $C_1$ - $C_6$ -Haloalkyl, $C_1$ - $C_6$ -Haloalkoxy und $C_1$ - $C_6$ -Alkylthio;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 35 | R°                                | für Halogen, Cyano, NH <sub>2</sub> , NO <sub>2</sub> , C <sub>1</sub> -C <sub>6</sub> -Alkyl, C <sub>3</sub> -C <sub>8</sub> -Cycloalkyl, C <sub>1</sub> -C <sub>6</sub> -Alkoxy, C <sub>1</sub> -C <sub>6</sub> -Haloalkyl, C <sub>1</sub> -C <sub>6</sub> -Haloalkoxy, C <sub>2</sub> -C <sub>6</sub> -Alkenyl, C <sub>2</sub> -C <sub>6</sub> -Alkenyloxy, C(W)R <sup>13</sup> , C(=N-OR <sup>15</sup> )R <sup>14</sup> oder NHC(W)R <sup>16</sup> , steht;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | R <sup>10</sup>                   | Wasserstoff, $C_1$ - $C_6$ -Alkyl, $C_1$ - $C_6$ -Haloalkyl, $C_2$ - $C_6$ -Alkenyl oder $C(W)R^{13}$ bedeutet;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40 | R <sup>11</sup> , R <sup>12</sup> | unabhängig voneinander für Wasserstoff, $C_1$ - $C_6$ -Alkyl, $C_2$ - $C_6$ -Alkenyl, $C_4$ - $C_6$ -Alkadienyl, $C_2$ - $C_6$ -Alkinyl, $C_3$ - $C_8$ -Cycloalkyl, $C_5$ - $C_8$ -Cycloalkenyl, stehen, wobei die als $R^{11}$ , $R^{12}$ genannten Reste teilweise oder vollständig halogeniert sein können oder 1, 2, 3 oder 4 Reste $R^8$ aufwei-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

R<sup>14</sup>. R<sup>15</sup>

35

sen können, wobei R<sup>11</sup> auch für eine Gruppe C(W)R<sup>13</sup> stehen kann und wobei

unabhängig voneinander Wasserstoff oder C<sub>1</sub>-C<sub>6</sub>-Alkyl bedeuten;

- auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden können, der zusätzlich 1, 2 oder 3 weitere Heteroatome, ausgewählt unter O, S und N, als Ringglied aufweisen kann, wobei der Heterocyclus teilweise oder vollständig halogeniert sein und/oder 1, 2, 3 oder 4 der Reste R<sup>8</sup> aufweisen kann;
- 10  $R^{13} \qquad \qquad \text{für Wasserstoff, OH, C}_1\text{-C}_6\text{-Alkyl, C}_1\text{-C}_6\text{-Alkoxy, C}_1\text{-C}_6\text{-Haloalkyl,} \\ C_1\text{-C}_6\text{-Haloalkoxy, C}_2\text{-C}_6\text{-Alkenyl oder NR}^{18}R^{19} \text{ steht;}$
- 15

  R<sup>16</sup>, R<sup>17</sup> unabhängig voneinander für Wasserstoff, C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkoxy, NH<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>-Alkylamino oder Di-C<sub>1</sub>-C<sub>6</sub>-alkylamino stehen;
- R<sup>18</sup>, R<sup>19</sup> unabhängig voneinander die für R<sup>11</sup> und R<sup>12</sup> genannten Bedeutungen aufweisen; und
  - W für Sauerstoff oder Schwefel steht;
- die Tautomere der Verbindungen I sowie die landwirtschaftlich verträglichen Salze von Verbindungen I und von deren Tautomeren.
  - 2. Verbindungen der allgemeinen Formel I nach Anspruch 1, worin wenigstens eine der Variablen X oder Y für eine chemische Bindung steht.
- 30 3. Verbindungen der allgemeinen Formel I nach Anspruch 2, worin eine der Gruppen Y-R¹ oder X-R² für Wasserstoff oder C₁-C₄-Alkyl steht.
  - 4. Verbindungen der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin beide Variablen X und Y für eine chemische Bindung stehen.
  - Verbindungen der allgemeinen Formel I nach Anspruch 4, worin R¹ und R² unabhängig voneinander ausgewählt sind unter Wasserstoff, C₁-C₁₀-Alkyl, C₁-C₁₀-Haloalkyl, C₃-C₁₀-Alkenyl, C₃-C₁₀-Haloalkenyl, C₃-C₀-Cycloalkyl, C₃-C₀-Cycloalkyl, C₃-C₀-Cycloalkyl, C₃-C₀-Cycloalkyl, C₃-C₀-Cycloalkyl,
- C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl-C<sub>2</sub>-C<sub>10</sub>-alkenyl, Phenyl oder Benzyl, wobei die 6 letztgenannten Reste auch 1, 2, 3 oder 4 Substituenten, ausgewählt unter Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und C<sub>1</sub>-C<sub>4</sub>-Alkoxy tragen können.

92
 Verbindungen der allgemeinen Formel I nach Anspruch 4. worin eine der Gru

WO 2005/080396

25

35

6. Verbindungen der allgemeinen Formel I nach Anspruch 4, worin eine der Gruppen R<sup>1</sup> oder R<sup>2</sup> für Halogen steht.

PCT/EP2005/001965

- Verbindungen der allgemeinen Formel I nach Anspruch 6, worin die verbleibende Gruppe R¹ oder R² für Wasserstoff, C₁-C₁₀-Alkyl C₁-C₁₀-Haloalkyl, C₃-C₁₀-Alkenyl, C₃-C₁₀-Haloalkenyl, C₃-C₀-Cycloalkyl, C₅-C₀-Cycloalkenyl, C₃-C₀-Cycloalkyl-C₁-C₁₀-alkyl, C₃-C₀-Cycloalkyl-C₂-C₁₀-alkenyl, Phenyl oder Benzyl steht, wobei die 6 letztgenannten Reste auch 1, 2, 3 oder 4 Substituenten, ausgewählt unter Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl und C₁-C₄-Alkoxy tragen können.
- Verbindungen der allgemeinen Formel I nach einem der Ansprüche 1 bis 3, worin die Gruppe Y-R¹ für eine Gruppe (NR²)-R¹ steht, worin R² die zuvor genannten Bedeutungen aufweist und R¹ für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₄-C₁₀-Alkadienyl, C₂-C₁₀-Alkinyl, C₃-C₀-Cycloalkyl, C₅-C₀-Cycloalkenyl, C₅-C₁₀-Bicycloalkyl, Phenyl, Phenyl-C₁-C₄-alkyl, Naphthyl, Naphthyl-C₁-C₄-alkyl steht und wobei die als R¹ genannten Reste teilweise oder vollständig halogeniert sein können und/oder 1, 2, 3 oder 4 Reste R³ aufweisen können, oder
- 20 R<sup>1</sup> mit R<sup>7</sup> und mit dem Stickstoffatom, an das sie gebunden sind, einen fünfoder sechsgliedrigen gesättigten, teilweise ungesättigten oder aromatischen N-Heterocyclus bildet, der ein oder zwei weitere Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann und/oder 1, 2, 3 oder 4 Reste R<sup>8</sup> aufweisen kann.
  - 9. Verbindungen der allgemeinen Formel I nach Anspruch 8, worin X eine chemische Bindung bedeutet und R² für Wasserstoff oder C<sub>1</sub>-C<sub>4</sub>-Alkyl steht.
- Verbindungen der allgemeinen Formel I nach Anspruch 8 oder 9, worin die Gruppe (NR<sup>7</sup>)R<sup>1</sup> für C<sub>1</sub>-C<sub>6</sub>-Alkylamino, Di-C<sub>1</sub>-C<sub>6</sub>-alkylamino oder für N-gebundenes 5- oder 6-gliedriges gesättigtes Heterocyclyl steht, das gegebenenfalls ein weiteres unter N, O und S ausgewähltes Heteroatom als Ringatom aufweist und das gegebenenfalls 1, 2, 3 oder 4 Substituenten R<sup>8</sup> trägt, die unter Halogen und C<sub>1</sub>-C<sub>4</sub>-Alkyl ausgewählt sind.
  - 11. Verbindungen der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin R³ für einen Phenyl-Ring steht, der 1, 2, 3 oder 4 Reste R9 aufweist.
- 40 12. Verbindungen der allgemeinen Formel I nach Anspruch 11, worin R³ für eine Gruppe der Formel

steht, worin

20

30

 $R^{a1}$ für Fluor, Chlor, Trifluormethyl oder Methyl;

 $R^{a2}$ für Wasserstoff, Chlor oder Fluor; 5

> $R^{a3}$ für Wasserstoff, CN, NO<sub>2</sub>, Fluor, Chlor, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy oder eine Gruppe C(W)R<sup>13a</sup>, worin R<sup>13a</sup> für C<sub>1</sub>-C<sub>4</sub>-Alkoxy, NH<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkylamino oder Di-C<sub>1</sub>-C<sub>4</sub>-alkylamino steht;

R<sup>a4</sup> für Wasserstoff, Chlor oder Fluor;

 $R^{a5}$ für Wasserstoff, Fluor, Chlor oder C<sub>1</sub>-C<sub>4</sub>-Alkyl stehen. 10

- Verbindungen der allgemeinen Formel I nach einem der vorhergehenden An-13. sprüche, worin R<sup>4</sup> für Halogen, CN, Methyl oder Methoxy steht.
- Verbindungen der allgemeinen Formel I nach Anspruch 13, worin R<sup>4</sup> für Halogen 15 14. steht.
  - Verbindungen der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin R<sup>5</sup> für Wasserstoff steht.

16. Verbindungen der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin A für N steht.

17. Verbindungen nach einem der vorhergehenden Ansprüche in Form der Tauto-25 mere der allgemeinen Formel II

worin A, R<sup>3</sup>, R<sup>4</sup> und R<sup>5</sup> die zuvor für Formel I angegebenen Bedeutungen aufweisen,

für eine chemische Bindung oder für Sauerstoff, Schwefel oder eine V Gruppe N-R<sup>7</sup> steht;

W<sup>a</sup> für O, S oder eine Gruppe N-R<sup>21</sup> steht;

kämpfung von pflanzenpathogenen Pilzen.

5

15

30

R<sup>20</sup> eine der in Formel I für R<sup>1</sup> bzw. R<sup>2</sup> angegebenen Bedeutungen aufweist;

R<sup>21</sup> eine der in Formel I für R<sup>1</sup> bzw. R<sup>2</sup> angegebenen Bedeutungen aufweist oder für Wasserstoff steht; und

wenn W<sup>a</sup> für N-R<sup>21</sup> steht, V-R<sup>20</sup> und N-R<sup>21</sup> gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen ungesättigten Heterocyclus bilden können, wobei letzterer 1, 2, 3 oder 4 Heteroatome, ausgewählt unter O, S und N als Ringglied aufweisen kann, der teilweise oder vollständig halogeniert sein kann oder 1, 2, 3 oder 4 der zuvor genannten Reste R<sup>8</sup> aufweisen kann.

18. Verwendung von Verbindung der allgemeinen Formel I gemäß einem der Ansprüche 1 bis 17 und von deren landwirtschaftlich verträglichen Salzen zur Be-

20 19. Mittel zur Bekämpfung von pflanzenpathogenen Pilzen, enthaltend wenigstens eine Verbindung der allgemeinen Formel I gemäß einem der Ansprüche 1 bis 17 und/oder ein landwirtschaftlich verträgliches Salz von I und wenigstens einen flüssigen oder festen Trägerstoff.

25. Verfahren zur Bekämpfung von pflanzenpathogenen Pilzen, dadurch gekennzeichnet, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I gemäß einem der Ansprüche 1 bis 17 und/oder mit einem landwirtschaftlich verträglichen Salz von I behandelt.