Complex Analysis

Alec Zabel-Mena

 $\underline{\text{Text}}$

Complex Analysis (4^{th} edition) Serge Lang

May 3, 2023

Contents

1	Complex Numbers and Funtions		
	1.1	Complex Numbers	5
	1.2	Complex Valued Functions	5
	1.3	Complex Differentiation and Holomorphic Functions	6
2	Power Series		9
	2.1	Formal Power Series	S
	2.2	Convergent Power Series	11

4 CONTENTS

Chapter 1

Complex Numbers and Funtions

1.1 Complex Numbers

1.2 Complex Valued Functions

Definition. We define a **complex valued function** to be a function $f: S \to \mathbb{C}$, where $S \subseteq \mathbb{C}$. Writing f(z) = f(x+iy) = u(x,y) + iv(x,y), where $u: U_1 \times U_1 \to \mathbb{R}$ and $v: V_1 \times V_2 \to \mathbb{R}$ are real valued functions (with U_1, U_2, V_1, V_2 open in \mathbb{R}), we define the **real part** of f to be Re f = u(x,y), and the **imaginary part** of f to be Im f = v(x,y).

Remark. It should be noted that the domain of a complex valued function f depends on the domain of its real and imaginary parts, and vice versa.

Example 1.1. (1) The real and imaginary parts of the complex valued function $f(z) = x^3y + i\sin(x+y)$ to be $u(x,y) = x^3y$ and $v(x,y) = \sin(x+y)$, respectively.

(2) Consider the complex valued function $f(z) = z^n$, for $n \in \mathbb{Z}^+$. Writing $z = re^{i\theta}$, we get $f(z) = r^n \cos n\theta + ir^n \sin n\theta$. The real part of f is then $u(x,y) = r^n \cos n\theta$, and the imaginary part of f to be $v(x,y) = r^n \sin n\theta$.

Lettinh $\overline{B^1} = \{z \in \mathbb{C} : |z| \leq 1\}$ the closed unit ballm notice if $z \in \overline{B^1}$, then $|z^n| = |z|^n \leq 1^n = 1$, so that $z^n \in \overline{B^1}$, and hence $f(\overline{B^1}) = \overline{B^1}$.

Definition. We call the solutions to the polynomial $z^n - 1$ over \mathbb{C} the complex n-th roots of unity.

Theorem 1.2.1. Let ξ be a complex n-th root of unity. Then $\xi = e^{\frac{2i\pi}{n}}$.

Corollory. If ξ is an n-th root of unity, then so is ξ^k for all $k \in \mathbb{Z}/n\mathbb{Z}$.

1.3 Complex Differentiation and Holomorphic Functions

Definition. Let U be an open set of \mathbb{C} , and let $w \in U$. We call a complex valued function $f: U \to \mathbb{C}$ complex differentiable at w if the limit

$$f'(w) = \lim_{h \to 0} \frac{f(w+h) - f(w)}{h} = \lim_{z \to w} \frac{f(z) - f(w)}{z - w}$$

exists. We call f'(w) the **complex derivative** of f at w.

Theorem 1.3.1. Let $f: U \to \mathbb{C}$ and $g: U \to \mathbb{C}$ be complex valued functions. If f and g are complex differentiable at a point $z \in U$, then following are true

(1) f + g is complex differentiable at z, with

$$(f+g)'(z) = f'(z) + g'(z)$$

(2) (fg)' is complex differentiable at z, with

$$(fg)'(z) = f'(z)g(z) + f(z)g'(z)$$

Corollory. The function $\frac{f}{g}$ is complex differentiable at z, provided $g(z) \neq 0$, with

$$\left(\frac{f}{g}\right)'(z) = \frac{g(z)f'(z) - f(z) - g'(z)}{(g(z))^2}$$

Example 1.2. For all $n \in \mathbb{Z}^+$, the function $f(z) = z^n$ is complex differentiable on all of \mathbb{C} , with $f'(z) = nz^{n-1}$. In fact, z^n is what we call a "holomorphic" function.

Theorem 1.3.2 (The Chain Rule). Let U and V be open sets of \mathbb{C} , and let $f: U \to \mathbb{C}$, and $g: V \to \mathbb{C}$ be complex valued functions, with $f(U) \subseteq V$. If f is complex differentiable at a point $z \in Z$, and g is complex differentiable at the point $f(z) \in f(U)$, then $g \circ f$ is complex differentiable at z with

$$(g \circ f)'(z) = (g' \circ f)(z)f'(z) = g'(f(z))f'(z)$$

Definition. We call a complex valued function $f:U\to\mathbb{C}$ holomorphic on U if it is complex differentiable at every point of U.

Remark. It is convention to simply say that f is "holomorphic" when it is holomorphic on all of \mathbb{C} .

Definition. Let $f: U \to \mathbb{C}$ a complex valued function with f(z) = u(x,y) + iv(x,y). We define the **vector field** of f to be the map $F: U \to V \to \mathbb{R} \times \mathbb{R}$ defined by

$$F(x,y) = (u(x,y), v(x,y))$$

Where U and V are open in \mathbb{R} .

Theorem 1.3.3. If f is holomorphic on its domain, then F is real differentiable on its domain (respectively to the domain of f) and has derivative

$$\operatorname{Jac} F = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

Where $\operatorname{Jac} F$ is the Jacobian of F.

Corollory. $f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}$, and the we have the following of equations

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

Theorem 1.3.4. If $u : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, and $v : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continuously real differentiable realvalued functions satisfying the equations

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

Then the function f(z)u(x,y) + iv(x,y) is holomorphic on its domain.

Definition. Let $u: U_1 \times U_2 \to \mathbb{R}$ and $v: V_1 \times V_2 \to \mathbb{R}$ be continuously real differentiable real valued functions. We define the **Cauchy-Riemann equations** to be the set of equations

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

Chapter 2

Power Series

2.1 Formal Power Series

Definition. Let F be a field, we define the set F[[x]] of all series of the form

$$f(x) = \sum_{n=0}^{\infty} a_0 x^n$$
, where $a_0, \dots, a_n, \dots \in F$

the set of formal power series over F. We call the elements of F[[x]] formal power series.

Definition. Let $f(x) = \sum_{n=0}^{\infty} a_0 x^n$ a formal power series over a field F. We define the **order** of f to be the smallest integer n for which $a_n \neq 0$, and write ord f = n. We call the term a_0 of f the **constant term** of f.

Lemma 2.1.1. Let F be a field, and define the operations + and \cdot on F by

$$f(x) + g(x) = \sum_{n=0}^{\infty} c_n x^n \text{ where } c_n = a_n + b_n$$
$$f(x)g(x) = \sum_{n=0}^{\infty} d_n x^n \text{ where } c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

Where $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ are formal power series over F. Then F[[x]] forms a commutative ring under + and \cdot .

Corollory. Define the action $F \times F[[x]] \to F[[x]]$ by

$$\alpha f(x) = \sum_{n=0}^{\infty} (\alpha a_n) x^n$$

Then F[[x]] is an F-module under this action.

Lemma 2.1.2. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ be formal power series over a field F. Then ord fg = ord f + ord g.

Definition. Let $f \in F[[x]]$ be a formal power series over a field F. We say that a formal power series $g \in F[[x]]$ is an **inverse** of f if fg = 1.

Lemma 2.1.3. If $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is a formal power series over a field F, with nonzero constant term, then there exists an inverse of f.

Proof. Consider the series $a_0^{-1}f(x)$ instead of f. Reacall also that the geometric series

$$\frac{1}{1-r} = 1 + r + r^2 + \dots$$

is a formal power series in r over F. Then $(1-r)(1+r+r^2+\ldots)=1$. Now, let f(x)=1-h(x), where $h(x)=-(a_1x+a_2x^2+\ldots)$ and consider $\phi(h)=1+h+h^2+\ldots$. Observbe that ord $h^n \geq n$ sicne $h^n=(-1)a_1^nx^n+\ldots$. Thus, if m>n, then h^m has all coefficients of order less than n equal to 0, and the n-th coefficient of ϕ is the n-th coefficient of the sum

$$1 + h + h^2 + \dots + h^n$$

Then, we get by the above geometric series that

$$(1 - h(x))\phi(h) = (1 - h(x))(1 + h + h(x)^2 + \dots) = 1 + \dots = 1$$

Example 2.1. Let $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ By lemma 2.1.3, since $\cos x$ has nonzero constant term, it has an invers $g(x) = \frac{1}{\cos x}$. Notice that

$$\frac{1}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots} = 1 + (\frac{x^2}{2!} - \frac{x^4}{4!} + \dots) + (\frac{x^2}{2!} - \frac{x^4}{4!} + \dots)^2 + \dots$$

$$= 1 + \frac{x^2}{2!} - \frac{x^4}{4!} + \dots + \frac{x^4}{(2!)^2}$$

$$= 1 + \frac{x^2}{2!} + (-\frac{1}{24} + \frac{1}{4})x^2 + \dots$$

Which gives coefficients of g(x) up to order 4.

Definition. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ a power series over a field F, and let $h(x) = c_1 x + \dots$ a power series of order greater than 1. We define the **substitute** of h in f to be the power series

$$f \circ h(x) = a_0 + a_1 h(x) + a_2 h(x)^2 + \dots$$

Definition. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ be power series over a field F. We call f congruent to g modulo x^n if $a_k = b_k$ for all $k \in \mathbb{Z}/n\mathbb{Z}$. That is, f and g have the same coefficients of terms of order up to n-1. We write $f \equiv g \mod x^2$.

Lemma 2.1.4. Congruence of power series modulo x^n defines an equivalence relation.

Lemma 2.1.5. If $f_1 \equiv f_2 \mod x^n$ and $g_1 \equiv g_2 \mod x^n$, then $f_1 + g_1 \equiv f_2 g_2 \mod x^n$ and $f_1 g_1 \equiv f_2 g_2 \mod x^n$. Moreover, if h_1 and h_2 are formal power series with zero constant term, and $h_1 \equiv h_2 \mod x^n$, then $f_1 \circ h_1 \equiv f_1 \circ h_2 \mod x^n$.

Proof. We prove for substitutions of h_1 in f_1 only. Let p_1 and p_2 polynomials of degree $\deg = n-1$ such that $f_1 \equiv p_1(x) \mod x^n$ and $f_2 \equiv p_2(x) \mod x^n$. By hypothesis, we get $p_1 \equiv p_2 \mod x^n$, and since $\deg p_1, \deg p_2 = n-1$, this makes $p_1 = p_2$. Then $f_1 \circ h \equiv p_1 \circ h = p_2 \circ h \equiv f_2 \circ h$. Now, let q(x) the polynomial of degree n-1 such that $h_1 \equiv h_2 \equiv q(x) \mod x^n$ Writing $p(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$. Then we get $p_1 \circ h_1 \equiv p_2 \circ h_2 \mod x^n$ and we are done.

Corollory. Two power series f and g are equal if, and only if $f \equiv g \mod x^n$ for all $n \in \mathbb{Z}^+$.

Corollory. $(f_1 + f_2) \circ h = (f_1 \circ h) + (f_2 \circ h)$, and $(f_1 f_2) \circ h = (f_1 \circ h)(f_2 \circ h)$. That is, composition of power series distributes over the addition and multiplication of power series.

Corollory. Provided that ord $f_2 = 0$, then

$$\left(\frac{f_1}{f_2}\right) \circ h = \frac{f_1 \circ h}{f_2 \circ h}$$

Example 2.2. Consider the power series for $\frac{1}{\sin x}$. We have by definition that

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = x(1 - \frac{x^2}{3!} + \frac{x^4}{5!})$$

so that

$$\frac{1}{\sin x} = \frac{1}{x(1 - \frac{x^2}{3!} + \frac{x^4}{5!})} = \frac{1}{x}(1 + \frac{x^2}{3!} - \frac{x^4}{5!} + \left(\frac{x^2}{3!}\right)^2 + \dots) = \frac{1}{x} + \frac{x}{3!} + \left(\frac{1}{(3!)^2} - \frac{1}{5!}\right)x^3 + \dots$$

2.2 Convergent Power Series

Definition. Let $\{z_n\}_{n\in\mathbb{Z}^+}$ a sequence of complex numbers, and consider the series $\sum_{n=0}^{\infty} z_n$. We define the *n*-th partial sum to be

$$s_n = \sum_{k=1}^n z_k$$

and we say that the series **converges** if there exists a $w \in \mathbb{C}$ for which $\lim \{s_n\} = w$ as $n \to \infty$. We call w the **sum** of the series.

Lemma 2.2.1. Let $A = \sum \alpha_n$ and $B = \sum_n be$ convergent series with n-th partial sums s_n and t_n . Then the sum and product of A and B converge, with

$$A + B = \sum (\alpha_n + \underline{n}) \text{ and } AB = \lim_{n \to \infty} \{s_n t_n\}$$

Definition. Let $\sum \alpha_n$ a series of complex numbers. We say that $\sum \alpha_n$ converges absolutely if the series of real numbers $\sum |\alpha_n|$ converges.

Lemma 2.2.2. If $\sum \alpha_n$ is a series of complex numbers which converges absolutely, then it converges.

Proof. Let $s_n = \sum_{k=1}^n \alpha_k$, then for $m \leq n$, notice that $s_n - s_m = \alpha + m_1 + \dots + \alpha_n$, hence $|s_n - s_m| \leq \sum_{k=m+1}^n |\alpha_k|$. By absolute convergence, let $\varepsilon > 0$ then there exists an N > 0 such that $\sum |\alpha_k| < \varepsilon$ whenever $m, n \geq N$. Thus $|s_n - s_m| < \varepsilon$ which makes $\sum \alpha_n$ converge.

Lemma 2.2.3. Let $\sum c_n$ be a convergent series of real numbers greater than 0. If $\{\alpha_n\}$ is a sequence of complex numbers such that $|\alpha_n| < c_n$ for all $n \in \mathbb{Z}^+$, then $\sum \alpha_n$ converges absolutely.

Proof. Notice that the partial sums $\sum_{k=1}^{n} c_n$ are bounded, hence $\sum |\alpha_n| \leq \sum c_k$.

Lemma 2.2.4. Let $\{\alpha_n\}$ a sequence of complex numbers. Then the following are true

- (1) If $\sum \alpha_n$ is absolutely convergent, then the series obtained by permuting terms is absolutely convergent, with the same limit.
- (2) If $\sum_{n=1}^{\infty} (\sum_{m=1}^{n} \alpha_{mn})$ is absolutely convergent, then so is the series $\sum_{m=1}^{n} (\sum_{n=1}^{\infty} \alpha_{mn})$, and they converge to the same limit.

Definition. Let $S \subseteq \mathbb{C}$, and let f be a bounded complex valued function on S. We define the **sup norm** of f on S to be

$$||f||_S = \sup_{z \in S} \{|f(z)|\}$$

Lemma 2.2.5. Let $S \subseteq \mathbb{C}$. The sup norm of a complex valued function on S defines a metric on \mathbb{C} .

Definition. Let $\{f_n\}_{n\in\mathbb{Z}^+}$ a sequence of complex valued functions on a set $S\subseteq\mathbb{C}$. We say that the $\{f_n\}$ converges uniformly on S if there exists a bounded complex valued function f on S such that for all $\varepsilon > 0$, there is an N > 0 for which

$$||f_n - f||_S < \varepsilon$$
 whenever $n \ge N$

We call $\{f_n\}$ Cauchy if for every $\varepsilon > 0$ there is an N > 0 for which

$$||f_n - f_m||_S < \varepsilon$$
 whenever $n, m \ge N$

Theorem 2.2.6. Let $\{f_n\}$ be a sequence of complex valued functions on a set $S \subseteq \mathbb{C}$. If $\{f_n\}$ is Cauchy, then it converges uniformly.

Proof. We have for all $z \in S$, take $f(z) = \lim f_n(z)$ as $n \to \infty$. Then for $\varepsilon > 0$ there is an N > 0 for which $|f_n(z) - f_m(z)| < \varepsilon$ for al $z \in S$ and $m, n \ge N$. Now, for $n \ge N$, take $m(n) \ge N$ large enough so that $|f(z) - f_{m(n)}(z)| < \varepsilon$. Then we get that

$$|f(z) - f_n(z)| \le |f(z) - f_{m(n)}(z)| + |f_{m(n)}(z) - f_n(z)| < \varepsilon + ||f_{m(n)} - f_n|| < 2\varepsilon$$

Corollory. If $\{f_n\}$ is bounded for all $n \in \mathbb{Z}^+$, then so is f.

Definition. We say a series of complex valued functions on a domain $S \subseteq \mathbb{C}$, $\sum f_n$ converges uniformly if the sequence $\{s_n\}$ of n-th partial sums converges uniformly. We say that $\sum f_n$ converges absolutely if for all $z \in S$, $\sum |f_n(z)|$ converges.

Theorem 2.2.7 (The Comparison Test). Let $\{c_n\}$ be a sequence of real numbers greater than 0 such that $\sum c_n$ converges. Let $\{f_n\}$ a sequence of complex valued functions on a domain $S \subseteq \mathbb{C}$ such that $||f_n||_S \leq c_n$ for all $n \in \mathbb{Z}^+$. Then the series $\sum f_n$ converges uniformly, and converges absolutely.

Proof. Let $m \leq n$. Then $||s_n - s_m|| \leq \sum_{k=m+1}^n ||f_k||_S \leq \sum c_k$. Since $\sum c_k$ converges, the uniform and absolute convergnce of $\sum f_n$ follows.

Theorem 2.2.8. Let $S \subseteq \mathbb{C}$ and $\{f_n\}$ a sequence of continuous complex valued functions on S. If $\{f_n\}$ converges uniformly to a complex valued function f on S, then f is also continuous.

Proof. let $\alpha \in S$ and n be large enough such that $||f - f_n||_S < \varepsilon$ for some $\varepsilon > 0$. By the continuity of f_n at α , choose $\xi 0$ such that $|f_n(z) - f_n(\alpha)| < \varepsilon$ whenever $|z - \alpha| < \varepsilon$. Then observe that $|f(z) - f(\alpha)| \le |f(z) - f_n(z)| + |f_n(z) - f_n(\alpha)| + |f_n(\alpha) - f(\alpha)| < 2||f - f_n|| + \varepsilon < 3\varepsilon$

Theorem 2.2.9. Let $\{a_n\}$ a sequence of complex numbers, and let r > 0 such that $\sum |a_n| r^n$ converges. Then the power series $\sum a_n z^n$ converges absolutely and converges uniformly whenever $|z| \leq r$.

Example 2.3. (1) Let r > 0 and consider the series

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Then $\exp z$ converges absolutely and uniformly whenever $|z| \leq r$. Indeed, let $c_n = \frac{r^n}{n!}$, then

Bibliography

- [1] W. R. Wade, An introduction to analysis. Upper Saddle River, NJ: Pearson Education, 2004.
- [2] W. Rudin, Principles of mathematical analysis. New York: McGraw-Hill, 1976.