$20240903~{\rm MATH}3541~{\rm NOTE}~1[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Introduction	3
2	Definitions of Topological Space	3
3	Examples of Topological Space	3
4	Hausdorff Space	6

1 Introduction

Today, Prof. Hua introduced the definitions and examples of topological space. [2] Here, the Zariski topology is new to me. I found that whether it is Hausdorff depends on whether the corresponding field is finite. [3] Hence, I take this note to record them.

2 Definitions of Topological Space

Definition 2.1. (Open Definition of Topological Space)

Let X be a set, \mathcal{O} be a subset of $\mathcal{P}(X)$. If:

- 1. $\emptyset \in \mathcal{O}$ and $X \in \mathcal{O}$;
- 2. For all $(O_k)_{k=1}^m$ in \mathcal{O} , $\bigcap_{k=1}^m O_k \in \mathcal{O}$;
- 3. For all $(O_{\lambda})_{\lambda \in I}$ in $\mathcal{O}, \cup_{\lambda \in I} O_{\lambda} \in \mathcal{O}$,

then \mathcal{O} is a topology on X. For all $O \in \mathcal{O}$, U is open and O^c is closed.

Definition 2.2. (Closed Definition of Topological Space)

Let X be a set, \mathcal{C} be a subset of $\mathcal{P}(X)$. If:

- 1. $\emptyset \in \mathcal{C}$ and $X \in \mathcal{C}$;
- 2. For all $(C_k)_{k=1}^m$ in \mathcal{C} , $\bigcup_{k=1}^m C_k \in \mathcal{C}$;
- 3. For all $(C_{\lambda})_{{\lambda}\in I}$ in $\mathcal{C}, \cap_{{\lambda}\in I} C_{\lambda} \in \mathcal{C}$,

then \mathcal{C} is a topology on X. For all $C \in \mathcal{C}$, C is closed and C^c is open.

Proposition 2.3. The two definitions introduced above are logically equivalent.

Proof. We may divide our proof into three parts.

Part 1: $\emptyset^c = X$ and $X^c = \emptyset$,

so the first statements are equivalent;

Part 2: $(\cap_{k=1}^{m} O_k)^c = \cup_{k=1}^{m} O_k^c$ and $(\cup_{k=1}^{m} C_k)^c = \cap_{k=1}^{m} C_k^c$,

so the second statements are equivalent;

Part 3: $(\bigcup_{\lambda \in I} O_{\lambda})^c = \bigcap_{\lambda \in I} O_{\lambda}^c$ and $(\bigcap_{\lambda \in I} C_{\lambda})^c = \bigcup_{\lambda \in I} C_{\lambda}^c$,

so the third statements are equivalent,

Combine the three parts above, we've proven that the two definitions introduced above are logically equivalent. Quod. Erat. Demonstrandum. \Box

3 Examples of Topological Space

Definition 3.1. (Definition of Indiscrete Topology)

Let X be a set. We define $\mathcal{O} = \{\emptyset, X\}$ to be the indiscrete topology on X.

Proposition 3.2. The indiscrete topology induces a topological space.

Proof. We may divide our proof into three parts.

Part 1: $\emptyset \in \{\emptyset, X\} = \mathcal{O} \text{ and } X \in \{\emptyset, X\} = \mathcal{O};$

Part 2: $\emptyset \cap \emptyset = \emptyset$ and $\emptyset \cap X = \emptyset$ and $X \cap \emptyset = \emptyset$ and $X \cap X = X$;

Part 3: $\emptyset \cup \emptyset = \emptyset$ and $\emptyset \cup X = X$ and $X \cup \emptyset = X$ and $X \cup X = X$,

Combine the three parts above, we've proven that the indiscrete topology induces a topological space. Quod. Erat. Demonstrandum. \Box

Definition 3.3. (Definition of Discrete Topology)

Let X be a set. We define $\mathcal{O} = \mathcal{P}(X)$ be the discrete topology on X.

Proposition 3.4. The discrete topology induces a topological space.

Proof. We may divide our proof into three parts.

Part 1: $\emptyset \in \mathcal{P}(X) = \mathcal{O}$ and $X \in \mathcal{P}(X) = \mathcal{O}$;

Part 2: For all $(O_k)_{k=1}^m$ in $\mathcal{O} = \mathcal{P}(X)$, $\bigcap_{k=1}^m O_k \in \mathcal{P}(X) = \mathcal{O}$;

Part 3: For all $(O_{\lambda})_{{\lambda}\in I}$ in $\mathcal{O}=\mathcal{P}(X), \cup_{{\lambda}\in I}O_{\lambda}\in\mathcal{P}(X)=\mathcal{O},$

Combine the three parts above, we've proven that the discrete topology induces a topological space. Quod. Erat. Demonstrandum. \Box

Definition 3.5. (Definition of Finite Complement Topology)

Let X be a set. We define $\mathcal{C} = \{C, X \in \mathcal{P}(X) : C \text{ is a finite set} \}$ as the finite complement topology on X.

Proposition 3.6. The finite complement topology induces a topological space.

Proof. We may divide our proof into three parts.

Part 1: $\emptyset \in \mathcal{P}(X)$ is finite, so $\emptyset \in \mathcal{C}$, and by definition, $X \in \mathcal{C}$;

Part 2: For all $(C_k)_{k=1}^m$ in \mathcal{C} :

Case 2.1: If some $C_k = X$, then $\bigcup_{k=1}^m C_k = X \in \mathcal{C}$;

Case 2.2: If all $C_k \neq X$, then $\bigcup_{k=1}^m C_k \in \mathcal{P}(X)$ is finite, so $\bigcup_{k=1}^m C_k \in \mathcal{C}$,

this implies C is closed under finite union;

Part 3: For all $(C_{\lambda})_{{\lambda} \in I}$ in \mathcal{C} :

Case 3.1: If all $C_{\lambda} = X$, then $\cap_{\lambda \in I} C_{\lambda} = X \in \mathcal{C}$;

Case 3.2: If some $C_{\lambda} \neq X$, then $\cap_{\lambda \in I} C_{\lambda} \in \mathcal{P}(X)$ is finite, so $\cap_{\lambda \in I} C_{\lambda} \in \mathcal{C}$,

this implies \mathcal{C} is closed under arbitrary intersection,

Combine the three parts above, we've proven that the finite complement topology induces a topological space. Quod. Erat. Demonstrandum. \Box

Definition 3.7. (Definition of Metric Space Topology)

Let X be a metric space equipped with metric d. We define $\mathcal{O} = \{O \in \mathcal{P}(X) : \forall x \in O, \exists r > 0, B(x, r) \subseteq O\}$ as the metric space topology on X.

Proposition 3.8. The metric space topology induces a topological space.

Proof. We may divide our proof into three parts.

Part 1: For \emptyset , the hypothesis $\forall x \in \emptyset$ is a contradiction, so the conditional is true, which implies $\emptyset \in \mathcal{O}$, and for $X, \forall x \in X, \exists 1 > 0, B(x, 1) \subseteq X$, which implies $X \in \mathcal{O}$;

Part 2: For all $(O_k)_{k=1}^m$ in \mathcal{O} , for all $x \in \bigcap_{k=1}^m O_k$, each O_k gives $r_k > 0$, such that $B(x, r_k) \subseteq O_k$. Hence, there exists $r = \min(r_k)_{k=1}^n > 0$, such that $B(x, r) \subseteq \bigcap_{k=1}^m O_k \in \mathcal{O}$, this implies \mathcal{O} is closed under finite intersection;

Part 3: For all $(O_{\lambda})_{{\lambda}\in I}$ in \mathcal{O} , for all $x\in \bigcup_{k=1}^m O_k$, x is in some O_k , so there exists $r_k>0$, such that $B(x,r_k)\subseteq O_k\subseteq \bigcup_{k=1}^m O_k\in \mathcal{O}$, this implies \mathcal{O} is closed under arbitrary union, Combine the three parts above, we've proven that the metric space topology induces a topological space. Quod. Erat. Demonstrandum.

Definition 3.9. (Definition of Zariski Topology)

Let \mathbb{F} be a field, $(x_l)_{l=1}^n$ be n independent indeterminates, and $\mathbb{F}[x_l]_{l=1}^n$ be the corresponding polynomial ring. We define $\mathcal{C} = \{C \in \mathcal{P}(\mathbb{F}^n) : \exists T \in \mathcal{P}(\mathbb{F}[x_l]_{l=1}^n), C \text{ is the solution set of } T\}$ as the Zariski topology on \mathbb{F}^n .

Proposition 3.10. The Zariski topology induces a topological space.

Proof. We may divide our proof into three parts.

Part 1: $\emptyset \in \mathcal{P}(\mathbb{F}^n)$ is the solution set of $\{1\}$, so $\emptyset \in \mathcal{C}$, and $\mathbb{F}^n \in \mathcal{P}(\mathbb{F}^n)$ is the solution set of $\{0\}$, so $\mathbb{F}^n \in \mathcal{C}$;

Part 2: For all $(C_k)_{k=1}^m$ in \mathcal{C} , assume that each C_k is the solution set of $T_k \in \mathcal{P}(\mathbb{F}[x_l]_{l=1}^n)$:

Step 2.1: In this step, we prove that $\bigcup_{k=1}^{m} C_k$ is contained in the solution set of $\prod_{k=1}^{m} T_k$. Let's prove this directly.

For all $(\xi_l)_{l=1}^n$ in $\bigcup_{k=1}^m C_k$, $(\xi_l)_{l=1}^n$ is in some C_k , so all polynomial in T_k vanishes at $(\xi_l)_{l=1}^n$. Hence, all polynomial in $\prod_{k=1}^m C_k$ also vanishes at $(\xi_l)_l^n$, this implies $\bigcup_{k=1}^m C_k$ is contained in the solution set of $\prod_{k=1}^m T_k$.

Step 2.2: In this step, we prove that the solution set of $\prod_{k=1}^{m} T_k$ is contained in $\bigcup_{k=1}^{m} C_k$. Let's prove the contrapositive.

For all $(\xi_l)_{l=1}^n$ not in $\bigcup_{k=1}^m C_k$, it is not in each C_k , so each C_k gives $f_k(x_l)_{l=1}^n$ which doesn't vanish at $(\xi_l)_{l=1}^n$. Hence, some polynomial $\Pi_{k=1}^m f_k(x_l)_{l=1}^n$ in $\Pi_{k=1}^m T_k$ doesn't vanish at $(\xi_l)_{l=1}^n$, this implies $(\xi_l)_{l=1}^n$ is not in the solution set of $\Pi_{k=1}^m T_k$.

The two steps above shows $\bigcup_{k=1}^{m} C_k$ is indeed a solution set of some $\prod_{k=1}^{m} T_k \in \mathcal{P}(\mathbb{F}[x_l]_l^n)$, which implies \mathcal{C} is closed under finite union.

Part 3: For all $(C_{\lambda})_{{\lambda}\in I}$ in \mathcal{C} , assume that each C_{λ} is the solution set of $T_{\lambda}\in \mathcal{P}(\mathbb{F}[x_{l}]_{l=1}^{n})$: **Step 3.1:** In this step, we prove that $\cap_{{\lambda}\in I}C_{\lambda}$ is contained in the solution set of $\cup_{{\lambda}\in I}T_{\lambda}$. Let's prove this directly.

For all $(\xi_l)_{l=1}^n$ in $\cap_{\lambda \in I} C_\lambda$, $(\xi_l)_{l=1}^n$ is in each C_λ , so all polynomial in T_λ vanishes at $(\xi_l)_{l=1}^n$. Hence, all polynomial in $\cup_{\lambda \in I} T_\lambda$ vanishes at $(\xi_l)_{l=1}^n$, this implies $\cap_{\lambda \in I} C_\lambda$ is contained in the solution set of $\cup_{\lambda \in I} T_\lambda$.

Step 3.2: In this step, we prove that the solution set of $\bigcup_{\lambda \in I} T_{\lambda}$ is contained in $\bigcap_{\lambda \in I} C_{\lambda}$. Let's prove the contrapositive.

For all $(\xi_l)_{l=1}^n$ not in $\cap_{\lambda \in I} C_\lambda$, $(\xi_l)_{l=1}^n$ is not in some C_λ , so some polynomial $f_\lambda(x_l)_{l=1}^n$ in T_λ doesn't vanish at $(\xi_l)_{l=1}^n$. Hence, some polynomial $f_\lambda(x_l)_{l=1}^n$ in $\cup_{\lambda \in I} T_\lambda$ doesn't vanish at $(\xi_l)_{l=1}^n$, this implies $(\xi_l)_{l=1}^n$ is not in the solution set of $\cup_{\lambda \in I} T_\lambda$.

The two steps above shows $\cap_{\lambda \in I} C_{\lambda}$ is indeed a solution set of some $\cup_{\lambda \in I} T_{\lambda} \in \mathcal{P}(\mathbb{F}[x_l]_{l=1}^n)$, which implies \mathcal{C} is closed under arbitrary intersection.

Combine the three parts above, we've proven that the Zariski topology induces a topological space. Quod. Erat. Demonstrandum.

By the way, Prof. Hua also mentioned in class that for any $T \in \mathcal{P}(\mathbb{F}[x_l]_{l=1}^n)$, the solution set of T is the same thing as the solution set of gen T. As ideal has better structure than an arbitrary set, without loss of generality, we may assume that T is an ideal when dealing with the Zariski topological space $(\mathbb{F}^n, \mathcal{C})$.

4 Hausdorff Space

Definition 4.1. (Definition of Hausdorff Space)

Let (X, \mathcal{O}) be a topological space. If for all $x_1, x_2 \in X$, there exist $O_1, O_2 \in \mathcal{O}$, such that $x_1 \in O_1$ and $x_2 \in O_2$ and $O_1 \cap O_2 = \emptyset$, then (X, \mathcal{O}) is Hausdorff.

Proposition 4.2. If a topological space (X, \mathcal{O}) is induced by a metric d, then it is Hausdorff.

Proof. For all $x_1, x_2 \in X$, there exist $B(x_1, d(x_1, x_2)/2), B(x_2, d(x_1, x_2)/2) \in \mathcal{O}$, such that $x_1 \in B(x_1, d(x_1, x_2)/2)$ and $x_2 \in B(x_2, d(x_1, x_2)/2)$ and $B(x_1, d(x_1, x_2)/2) \cap B(x_2, d(x_1, x_2)/2) = \emptyset$, so (X, \mathcal{O}) is Hausdorff. Quod. Erat. Demonstrandum.

We will encounter "manifold" afterwards, which "locally resembles \mathbb{R}^n ". One criterion for a topological space to be a manifold is that it is Hausdorff.

Proposition 4.3. If X has at least two elements x_1, x_2 , then the indiscrete topological space (X, \mathcal{O}) is not Hausdorff.

Proof. There exist $x_1, x_2 \in X$, such that for all $O_1, O_2 \in \mathcal{O}$:

$$x_1 \in O_1 \text{ and } x_2 \in O_2 \implies O_1 = O_2 = X \implies O_1 \cap O_2 \neq \emptyset$$

So the three conditions fail to hold simultaneously, which implies (X, \mathcal{O}) is not Hausdorff. Quod. Erat. Demonstrandum.

Proposition 4.4. The discrete topological space (X, \mathcal{O}) is induced by the following metric $d: X \times X \to \mathbb{R}$:

$$d(x_1, x_2) = \begin{cases} 0 & \text{if } x_1 = x_2; \\ 1 & \text{if } x_1 \neq x_2; \end{cases}$$

So (X, \mathcal{O}) is Hausdorff.

Proof. It suffices to show that the metric topology \mathcal{O} contains $\mathcal{P}(X)$. For all $O \in \mathcal{P}(X)$, for all $x \in O$, there exists 1 > 0, such that $B(x,1) = \{x\} \subseteq O$, so $O \in \mathcal{O}$, which implies $\mathcal{P}(X) \subseteq \mathcal{O}$. Quod. Erat. Demonstrandum.

Proposition 4.5. If X is finite, then the finite complement topological space (X, \mathcal{O}) and the discrete topological space (X, \mathcal{O}) are identical, thus Hausdorff.

Proposition 4.6. If X is infinite, then the finite complement topological space (X, \mathcal{C}) is not Hausdorff.

Proof. There exist $x_1, x_2 \in X$, such that for all $C_1, C_2 \in \mathcal{C}$:

$$x_1 \notin C_1$$
 and $x_2 \notin C_2 \implies C_1, C_2$ are finite $\implies C_1 \cup C_2$ is finite $\implies C_1 \cup C_2 \neq X$

So the three conditions fail to hold simultaneously, which implies (X, \mathcal{C}) is not Hausdorff. Quod. Erat. Demonstrandum.

Proposition 4.7. If a field \mathbb{F} is finite, then the Zariski topological space $(\mathbb{F}^n, \mathcal{C})$ and the discrete topological space $(\mathbb{F}^n, \mathcal{O})$ are identical, thus Hausdorff.

Proof. It suffices to show that the Zariski topology \mathcal{C} contains all singleton $(\xi_l)_{l=1}^n$. Define $T = \{x_l - \xi_l\}_{l=1}^n \subseteq \mathcal{P}(\mathbb{F}[x_l]_{l=1}^n)$. The solution set of T is $\{(\xi_l)_{l=1}^n\} \in \mathcal{C}$. Quod. Erat. Demonstrandum.

To prove that the Zariski topological space $(\mathbb{F}^n, \mathcal{C})$ is not Hausdorff when \mathbb{F} is infinite, we shall prove several lemmas.

Lemma 4.8. If a field \mathbb{F} is infinite, then the Zariski topological space $(\mathbb{F}, \mathcal{C})$ and the finite complement topological space $(\mathbb{F}, \mathcal{C})$ are identical, thus Hausdorff.

Proof. For all $C \in \mathcal{P}(X) \setminus \{X\}$:

C is in the Zariski topology $\iff \exists f(x_l)_{l=1}^n \in \mathbb{F}[x_l]_{l=1}^n$ with $\deg f(x_l)_{l=1}^n > -\infty$ $C \text{ is the solution set of } f(x_l)_{l=1}^n$ $\iff C \text{ is finite}$ $\iff C \text{ is in the finite complement topology}$

Lemma 4.9. If a topological space (X_1, \mathcal{O}_1) is Hausdorff, then its subspace (X_2, \mathcal{O}_2) is also Hausdorff.

Proof. For all $x_1, x_2 \in X_2$, they can be regarded as points in X_1 , so there exist $O_1, O_2 \in \mathcal{O}_1$, such that $x_1 \in O_1$ and $x_2 \in O_2$ and $O_1 \cap O_2 = \emptyset$. Hence, there exists $O_1 \cap X_2, O_2 \cap X_2 \in \mathcal{O}_2$, such that $x_1 \in O_1 \cap X_2$ and $x_2 \in O_2 \cap X_2$ and $(O_1 \cap X_2) \cap (O_2 \cap X_2) = \emptyset$. Quod. Erat. Demonstrandum.

Proposition 4.10. If a field \mathbb{F} is infinite, then the Zariski topological space $(\mathbb{F}^n, \mathcal{C})$ is not Hausdorff, where $n \geq 2$.

Proof. Assume to the contrary that the Zariski topological space $(\mathbb{F}^n, \mathcal{C})$ is Hausdorff, then its subspace $(\mathbb{F} \times \{0\}^{n-1}, \mathcal{C}')$ is Hausdorff. But this subspace is homeomorphic to the Zariski topological space $(\mathbb{F}, \mathcal{C}'')$, which is already proven to be not Hausdorff, so we've arrived at a contradiction.

Hence, the assumption is false, and we've proven that the Zariski topological space $(\mathbb{F}^n, \mathcal{C})$ is not Hausdorff. Quod. Erat. Demonstrandum.

References

- [1] H. Ren, "Template for math notes," 2021.
- [2] P. J.-H. L. Dr. Tak Wing Ching and P. Z. Hua, "Introduction to topology," 2024, lecture notes, HKU, Spring 2024.
- [3] E. Wofsey, "The zariski topology on \mathbb{F}^n is never hausdorff if n>0 and \mathbb{F} is infinite." https://math.stackexchange.com/questions/1918669/when-is-the-zariski-topology-t-2, Sep 2016.