Heap Sort

Varun Kumar

July 5, 2025

Constructing Max Heap: Insertion Method vs Build-Heap Method

1. Key Idea: Insertion Method

- Start with an empty heap.
- Insert one element at a time.
- After each insertion, perform **up-heap** (bubble **up**) to maintain heap property.

2. Key Idea: Build-Heap Method

- Start with all elements in array form.
- Treat it as a complete binary tree.
- Apply heapify (down-heap) from the last non-leaf node up to the root.

Comparisons and Swaps:

1. Insertion Method

- ullet For each insertion, worst-case comparisons = height of tree = $\log i$
- Total comparisons: $O(n \log n)$
- Each insertion may involve several swaps.

2. Build-Heap Method

- Heapify from $\left[\frac{n}{2}-1\right]$ to 0.
- Comparisons are fewer near the top.
- Total comparisons: O(n)
- Much more efficient than repeated insertion.

Optimal Behavior

- Insertion method: Intuitive but inefficient for large arrays.
- Build-heap method: Optimal and used in Heap Sort.
- For n elements, build-heap runs in O(n) while insertions take $O(n \log n)$.

Pseudocode: Insertion Method

```
insert(heap, value):
    heap.append(value)
    i = len(heap) - 1
    while i > 0:
        parent = (i - 1) // 2
        if heap[i] > heap[parent]:
            swap(heap[i], heap[parent])
        i = parent
    else:
        break
```

Pseudocode: Build-Heap Method

```
buildHeap(arr, n):
    for i in range(n//2 - 1, -1, -1):
        heapify(arr, n, i)

heapify(arr, n, i):
    largest = i
    left = 2*i + 1
    right = 2*i + 2

if left < n and arr[left] > arr[largest]:
    largest = left
    if right < n and arr[right] > arr[largest]:
        largest = right

if largest != i:
        swap(arr[i], arr[largest])
        heapify(arr, n, largest)
```

Example: Build Max Heap using Insertion Method

Input: Insert elements one-by-one from: [3, 5, 1, 10, 2, 7, 6, 4]

1. Insert $3 \to \text{No parent to compare}$

[3]

2. Insert 5

$$[3,5] \rightarrow 5$$
; $3 \Rightarrow \text{Swap} \Rightarrow [5,3]$

3. Insert 1

$$[5,3,1] \rightarrow 1$$
 ; $5 \Rightarrow$ No change

4. Insert 10

$$[5,3,1,10] \rightarrow 10$$
 ; $3 \Rightarrow \text{Swap} \Rightarrow [5,10,1,3]$
 10 ; $5 \Rightarrow \text{Swap} \Rightarrow [10,5,1,3]$

5. Insert 2

$$[10,5,1,3,2] \rightarrow 2 \ \text{;} \ 5 \Rightarrow \text{No change}$$

6. Insert 7

$$[10,5,1,3,2,7] \rightarrow 7$$
 ; $1 \Rightarrow \text{Swap} \Rightarrow [10,5,7,3,2,1]$

7. Insert 6

$$[10,5,7,3,2,1,6] \rightarrow 6$$
 ; $7 \Rightarrow \text{No change}$

8. Insert 4

$$[10,5,7,3,2,1,6,4] \rightarrow 4$$
 ; $3 \Rightarrow \text{Swap} \Rightarrow [10,5,7,4,2,1,6,3]$

Final Max Heap: [10, 5, 7, 4, 2, 1, 6, 3]

Example: Build Max Heap using Heapify

Input: [3, 5, 1, 10, 2, 7, 6, 4], n = 8

- 1. Start heapifying from $i = \lfloor n/2 \rfloor 1 = 3$
- 2. heapify(3):

Node: 10, Left: 4, Right: None \Rightarrow No change

3. heapify(2):

Node: 1, Left: 7, Right: $6 \Rightarrow 7 \ \ \ 1 \Rightarrow \text{Swap 1}$ and 7 New array: [3,5,7,10,2,1,6,4]

4. heapify(1):

Node: 5, Left: 10, Right: $2 \Rightarrow 10$; $5 \Rightarrow$ Swap 5 and 10 New array: [3,10,7,5,2,1,6,4]

5. heapify(3):

Node: 5, Left: 4, Right: None \Rightarrow No change

6. heapify(0):

Node: 3, Left: 10, Right: $7 \Rightarrow 10$; $3 \Rightarrow$ Swap 3 and 10 New array: [10,3,7,5,2,1,6,4]

7. heapify(1):

Node: 3, Left: 5, Right: $2 \Rightarrow 5$; $3 \Rightarrow$ Swap 3 and 5 New array: [10,5,7,3,2,1,6,4]

8. heapify(3):

Node: 3, Left: 4, Right: None $\Rightarrow 4$; 3 \Rightarrow Swap

Final array: [10, 5, 7, 4, 2, 1, 6, 3]

Final Max Heap: [10, 5, 7, 4, 2, 1, 6, 3]

Python code for Max-Heap Construction using Heapify from Middle to Root

```
def heapify(arr, n, i):
   largest = i
                          # Assume current index is largest
   left = 2 * i + 1
                          # Left child index
   right = 2 * i + 2
                          # Right child index
    # Check if left child exists and is greater than current largest
   if left < n and arr[left] > arr[largest]:
        largest = left
    # Check if right child exists and is greater than current largest
    if right < n and arr[right] > arr[largest]:
        largest = right
   # If largest is not the current index, swap and continue heapifying
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
        heapify(arr, n, largest)
def build_max_heap(arr):
   n = len(arr)
    # Start from last non-leaf node and move up to root
   for i in range (n//2 - 1, -1, -1):
        heapify(arr, n, i)
# Input array
arr = [3, 5, 1, 10, 2, 7, 6, 4]
print("Before-Build-Heap:", arr)
build_max_heap(arr)
print("After,Build-Heap:", arr)
```

Is Build-Heap Method Stable? If No, then why?

Answer: No, the Build-Heap Method is not stable.

- It uses heapify() which swaps elements without checking their original position.
- On equal values, it may move the element that appeared earlier in the input to a lower position in the heap.
- This violates the principle of stability: "equal elements retain their original order".

Example of Instability in Build-Heap

Input with tagged equal elements:

- Initial positions: 4a before 4b
- When heapify is called at index 0:
 - Children: 4b and 3
 - Heapify may choose 4b (right child) over 4a (root)
 - After swap: [(4b), (3), (4a)]
- Now 4b appears before 4a original order broken.

Hence, Build-Heap is not stable.

Why Heap Sort is Unstable

Heap Sort is **not stable** because it may change the relative order of equal elements.

Unstable Operation: swap() in heapify()

Root Cause of Instability

- During the heapify() process in buildHeap(), nodes are compared and swapped.
- If two elements have the same value, their original order can be reversed by swapping.
- This violates the definition of a stable sort.

Example: Loss of Stability

Consider the input array with values and tags:

- Both elements A and C have value 4.
- After applying heapify, the element (4, C) may be moved above (4, A).
- This reverses their original order and makes the sort unstable.

How to Make Build-Heap Stable? Stable Heap Suggestion

To preserve stability:

- During comparisons, compare tuples: (value, original_index)
- If two elements have the same value, prefer the one with the **smaller** original index.
- This avoids swapping equal elements out of order.

Thus, standard buildHeap() is unstable due to arbitrary swaps of equal values. To fix this, we must track and respect original positions.

Modified Comparison Example

- Compare (4, 0) and (4, 2):
 - Values equal: 4 = 4
 - Use index: $0 < 2 \rightarrow \text{keep}$ (4, 0) above
- Thus, original order is preserved.

Note: This requires more memory (to store index) and slightly slower comparisons, but gives **stability**.

Python code for Max-Heap Construction using Insertion Method

```
def insert_max_heap(heap, value):
    heap.append(value) # Add new value at the end
    i = len(heap) - 1 # Index of inserted value
    # Bubble up (up-heap) to maintain max-heap property
    while i > 0:
        parent = (i - 1) // 2
        if heap[i] > heap[parent]:
            # Swap if child is greater than parent
            heap[i], heap[parent] = heap[parent], heap[i]
            i = parent
        else:
            break
# Input array
arr = [3, 5, 1, 10, 2, 7, 6, 4]
heap = []
print("Step-by-step_insertion_into_Max-Heap:")
for val in arr:
    insert_max_heap(heap, val)
    print(heap)
```

Is Insertion based Heap Sort Stable? If no, then why?

Answer: No, Heap Sort is not stable.

- Heapify and swap operations reorder elements based on value only.
- They do not preserve the original order of equal elements.
- This violates the condition of stability.

Example Demonstrating Instability

Assume elements have labels to distinguish duplicates:

- Input array: [(5a), 4, (5b), 3]
- Note: 5a and 5b have equal values but different initial positions.

Step: Build Max Heap

- Heapify at index 1: no change
- Heapify at index 0:
 - Compares 5a (index 0) and 5b (index 2)
 - May pick 5b as root (due to implementation order)

Resulting Heap: [(5b), 4, (5a), 3]

Conclusion: Relative order of equal elements 5a, 5b is changed.

Which Operation Causes Instability?

heapify():

- Selects the largest among parent, left, right no regard for original position.
- On tie (equal values), any child may be chosen.
- This leads to non-stable reordering.

Can Heap Sort be Made Stable?

- Yes, by storing a tuple (value, original_index).
- Modify comparisons to break ties using index.
- But this is not standard Heap Sort anymore.

Time Complexity of Heap Sort

- Best Case: $O(n \log n)$
 - Even in the best scenario, Heap Sort does not benefit from partial ordering.
 - Every element still needs to be heapified and extracted.
- Average Case: $O(n \log n)$
 - On average, heap construction takes O(n) and each of the n extractions takes $O(\log n)$.
- Worst Case: $O(n \log n)$
 - In the worst case, all heapify operations go to the bottom of the tree.
 - Each delete-max operation takes $O(\log n)$.

Space Complexity

• Auxiliary Space: O(1) (in-place sorting)

Heap Sort Summary Table

Case	Comparisons	Swaps	Time	Adaptive	Stable
Best Case	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No	No
Average Case	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No	No
Worst Case	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No	No

1 GATE CSE 2004

The elements 32, 15, 20, 30, 12, 25, 16 are inserted one by one in the given order into a maxHeap. The resultant maxheap is

