Семинар 4.

Специальные свойства бинарных отношений

Определение 4.1. Бинарное отношение $\rho \subseteq A^2$ называется:

1) **рефлексивным**, если $id_A \subseteq \rho$, т.е.

$$(\forall x \in A)((x, x) \in \rho);$$

2) **иррефлексивным**, если $id_A \cap \rho = \emptyset$, т.е.

$$(\forall x \in A)((x,x) \notin \rho);$$

3) **симметричным**, если $\rho^{-1} = \rho$, т.е.

$$(\forall x \forall y)((x,y) \in \rho \Rightarrow (y,x) \in \rho);$$

4) антисимметричным, если $\rho \cap \rho^{-1} \subseteq \mathrm{id}_A$, т.е.

$$(\forall x \forall y)(((x,y) \in \rho \land (y,x) \in \rho) \Rightarrow (x=y))$$

(в частности, м. б., что $\rho \cap \rho^{-1} = \emptyset$!); Эквивалентное определение:

$$(\forall x \forall y)(((x,y) \in \rho \land x \neq y) \Rightarrow \\ \Rightarrow ((y,x)) \notin \rho).$$

5) **транзитивным**, если $\rho \circ \rho \subseteq \rho$, т.е.

$$(\forall x \forall y \forall z)(((x,y) \in \rho \land (y,z) \in \rho) \Rightarrow \Rightarrow ((x,z) \in \rho));$$

6) плотным, если

$$(\forall x \forall y)(((x,y) \in \rho \Rightarrow (\exists z)((z \neq x) \land \land (z \neq y) \land ((x,z) \in \rho) \land ((z,y) \in \rho)).$$

Определение 4.2. Бинарное отношение называется:

- 1) эквивалентностью, если оно рефлексивно, симметрично и транзитивно;
- 2) толерантностью, если оно рефлексивно и симметрично,
- 3) **порядком** (или **частичным порядком**), если оно рефлексивно, антисимметрично и транзитивно;
 - 4) предпорядком (или квазипорядком), если оно рефлексивно и транзитивно;
 - 5) строгим порядком, если оно иррефлексивно, антисимметрично и транзитивно;
 - 6) строгим предпорядком, если оно иррефлексивно и транзитивно;

Можно говорить: "отношение эквивалентности, толерантности, порядка, предпорядка . . . " и т.п.

CЕМИНАР 4. 2

Пример 4.1.

а) Рассмотрим отношение ρ на множестве всех подмножеств некоторого множества $U: A \rho B \Leftrightarrow A \cap B \neq \emptyset$ и $\emptyset \rho \emptyset$. Покажем, что это отношение толерантности:

Поскольку для любого множества $A \in U$, $A \neq \emptyset$, $A \cap A = A \neq \emptyset$ и $\emptyset \rho \emptyset$, отношение

 ρ является рефлексивным.

Поскольку из $A\cap B\neq\varnothing$ следует, что $B\cap A\neq\varnothing$, отношение ρ является симметричным.

Вывод: это отношение толерантности.

Покажем, что ρ — не эквивалентность.

Поскольку из $A\cap B\neq\varnothing$ и $B\cap C\neq\varnothing$, никак не следует, что $A\cap C\neq\varnothing$, что легко видеть из диаграммы, отношение ρ не транзитивно.

б) Зададим на множестве натуральных чисел \mathbb{N} следующее отношение: $a \, | \, b = \, , a$ делит (является делителем) b ".

Это отношение рефлексивно, поскольку любое число является делителем самого себя.

Покажем антисимметричнсть.

Пусть a делит b и, с другой стороны, b делит a. Тогда найдется натуральное число t_1 , такое, что $b=at_1$, и найдется t_2 , такое, что $a=bt_2$. Отсюда $b=bt_2t_1$, что на множестве натуральных чисел возможно только при $t_1=t_2=1$. Следовательно, a=b. Покажем транзитивность.

Если a делит b, а b делит c, то найдутся такие натуральные числа t_1 , t_2 , такие, что $b=at_1$ и $c=bt_2$. Отсюда имеем $c=at_1t_2$, т.е. a — делитель c.

Таким образом, отношение делимости на множестве № является отношением порядка.

Если распространить это отношение на множество целых чисел, то оно будет уже только предпорядком, поскольку не будет антисимметричным. Например, 2 делится на -2, и -2 делится на 2, однако $2 \neq -2$.

в) Рассмотрим множество всех подмножеств множества $A - \mathcal{B}(A)$. Покажем, что отношение включения \subseteq на множестве $\mathcal{B}(A)$ есть порядок.

Это отношение рефлексивно, т.к. для любого множества X справедливо $X\subseteq X$.

Поскольку для любых двух множеств X и Y из $(X \subseteq Y)$ и $(Y \subseteq X)$ следует, что X = Y, рассматриваемое отношение антисимметрично.

Из определения включения вытекает, что если $(X \subseteq Y)$ и $(Y \subseteq Z)$, то $X \subseteq Z$. Следовательно, отношение транзитивно.

- **4.1.** Исследовать свойства (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность) следующих отношений:
 - (a) $M = \{a, b, c, d\}$,

$$\Phi = \{(a, a), (a, b), (c, a), (b, d), (a, d), (b, c)\};$$

- (б) $m \rho k$, если m-k делится на n, где $m \in \mathbb{Z}$, $k \in \mathbb{Z}$, $n \in \mathbb{Z}$;
- (в) $x \varphi y$, если $(x y) \le 2$, $x \in R$, $y \in R$.
- **4.2.** Пусть $X=\{x\,|\,x\in[0,1]\}$, $\rho=\{(x,\,y)\,|\,x,y\in X, x< y$ и $|x-y|<0.5\}$. Построить графики отношений ρ и ρ^{-1} . Исследовать свойства отношения ρ . Что можно сказать о свойствах обратного отношения?
- **4.3.** Отношение σ связывает клетки шахматной доски: две клетки связаны, если с одной на другую можно перейти ходом коня. Записать отношение с помощью логических высказываний, исследовать его свойства.
- **4.4.** Пусть τ и π отношения на $\mathbb{N} \times \mathbb{N}$: $(a,b) \tau (c,d)$, если $a \leq c$ и $b \leq d$; $(a,b) \pi (c,d)$, если $a \leq c$ и $b \geq d$. Являются ли τ и π отношениями порядка и почему?
- **4.5.** Пусть v определено на множестве положительных рациональных чисел: (a/b)v(c/d), если $ad \leq bc$. Показать, что v является отношением линейного порядка.
- **4.6.** Пусть A произвольное множество и ρ , σ отношения на множестве $2^A \times 2^A$ (прямом произведении множества всех подмножеств A на себя).
 - (a) $(P,Q)\sigma(X,Y)$, если $(P\subseteq X)$ и $(Q\subseteq Y)$;
 - (б) $(P,Q)\rho(X,Y)$, если $(P\triangle Q)\subseteq (X\triangle Y)$;

CЕМИНАР 4. 3

Являются ли ρ и σ отношениями порядка?

4.7. Рассмотрим множество квадратных матриц размером 2×2 , элементами которых являются целые числа. Является ли заданное ниже отношение τ отношением порядка? Линейного порядка?

- (a) $A\tau B$, если $a_{ij} \leq b_{ij}$, i, j = 1, 2;
- (б) $A\tau B$, если $a_{ij} \leq b_{ij}$, i,j=1,2 и хотя бы для одной пары элементов неравенство строгое.
- **4.8.** Пусть F множество функций, непрерывных на [a,b] . Исследовать свойства отношения τ :
- (a) $f(x)\tau g(x)$, если $\int_a^b f(x)\,dx=\int_a^b g(x)\,dx$. Является ли τ отношением эквивалентности?
 - (б) $f(x)\tau g(x)$, если $\int_a^b f(x)\,dx \leq \int_a^b g(x)\,dx$. Является ли τ отношением порядка?
- **4.9.** Пусть M —некоторое множество, а $2^M \setminus \{\varnothing\}$ множество всех его подмножеств без пустого множества. Два множества из 2^M связаны отношением τ , если они имеют хотя бы одно непустое общее подмножество. Является ли в общем случае τ отношением порядка. Какими свойствами будет обладать отношение τ , если $M = \{a, b\}$