Cluster Analysis

Statistics 407, ISU

Definition

The aim of cluster analysis is to	cases
(objects) according to their	on the
variables. It is also often called	
classification, meaning that classificat	ion is the
ultimate goal, but the classes (groups)	are not
known ahead of time.	
Hence the first task in cluster analysis construct the class information. To det closeness we start with measuring the	termine
distances.	

Distance Measures

Let $\mathbf{X} = (X_1 \ X_2 \ \dots X_p)'$ and $\mathbf{Y} = (Y_1 \ Y_2 \ \dots Y_p)'$ be two points in p-space (two rows of a data matrix).

Euclidean Distance:

$$d(\mathbf{X}, \mathbf{Y}) = \sqrt{(\mathbf{X} - \mathbf{Y})'(\mathbf{X} - \mathbf{Y})} = \sqrt{(X_1 - Y_1)^2 + \dots + (X_p - Y_p)^2}$$

Statistical Distance:

$$d(\mathbf{X}, \mathbf{Y}) = \sqrt{(\mathbf{X} - \mathbf{Y})' S^{-1} (\mathbf{X} - \mathbf{Y})}$$

Both of these distance measures benefit from _____ the variables first.

3

Distance Metrics

- Kendall tau distance: _____ each variable. For all _____ of elements of the two points, count 1 for each pair which the ranks are in the same relationship (___, ___; ____) and 0 otherwise.
- Measures the ______ between two points, eg height value is often as highly ranked as weight value says that the two variables are positively correlated. Not as affected by outliers as raw data values.

Distance Metrics

- Pearson correlation: d=____
 - d=_ when r=1
- Pearson square correlation: d=_____
 - d=_ when r=0, d=_ when r=1 or -1
- Measures the similarity in _____, rather than global closeness

Also can be considered to be _____ distance

Hierarchical Clustering

- Hierarchical algorithms sequentially
 (or ____) cases to make clusters.
- Process can be viewed using a
- The vertical heights of the dendrogram are used to decide _____.

Linkage

ter is formed, conta	uning two or
there are now multi	iple ways to
from the	to
or cases. For exar	nple, we
the distance from o	one cluster
s the minimum inte	erpoint
the maximum inter	point
he average interpoi	int distance.
lled	Each
nges the results of t	he
sis.	
	from the or cases. For exarched the distance from a the minimum intended the maximum international inter

Common linkage methods

The intercluster distance is described by:

- **Single:** the distance between the two _____ points.
- **Complete:** the distance between the two _____ points.
- **Average:** the _____ of all the interpoint distance.
- **Centroid:** the distance between the two _____.
- Wards: the smallest increase in the ______ after fusing two clusters, like ANOVA.

Single Linkage

Closest points define the intercluster distance

Complete Linkage

Farthest points define the intercluster distance

Average Linkage

Cluster 1

Cluster 2

Average of all of the distances defines the intercluster distance

1

Centroid Linkage

Cluster 1

Cluster 2

Distance between the cluster means defines the intercluster distance

Ward Linkage

Ratio of sum of squared distance from means, between one cluster, and the two clusters defines the intercluster distance

Example

Ε

i	X 1	X 2
A	1	1
В	1	0
С	0	2
D	2	4
E 5-	3	5
4-		С

Euclidean distances

	Α	В	С	D	E
Α	0	1	1.4	3.2	4.5
В	1	0	2.2	4.1	5.4
С			0		4.2
D	3.2	4.1	2.8	0	1.4
Е	4.5		4.2	1.4	0

Step 1.1

Join the two closest points into a cluster.

	Α	В	С	D	E
Α	0	1	1.4	3.2	4.5
В	1	0	2.2	4.1	5.4
С	1.4	2.2	0	2.8	4.2
D	3.2	4.1	2.8	0	1.4
E	4.5	5.4	4.2	1.4	0

15

Step 1.2

Reduce the distance matrix, using the linkage methods. Draw the dendrogram.

	AB	С	D	E
AB	0	1.8		
С	1.8	0	2.8	4.2
D	3.6		0	1.4
Е		4.2	1.4	0

1 0 A B C D E

Average linkage used.

Step 2.1

Join the two closest points into a cluster.

	AB	C	D	Е
AB	0	1.8	3.6	4.9
С	1.8	0	2.8	4.2
D	3.6	2.8	0	1.4
E	4.9	4.2	1.4	0

17

Step 2.1

Join the two closest points into a cluster.

	AB	С	D	Е
AB	0	1.8	3.6	4.9
С	1.8	0	2.8	4.2
D	3.6	2.8	0	1.4
Е	4.9	4.2	1.4	0

Step 2.2

Reduce the distance matrix, using the linkage methods. Draw the dendrogram.

	AB	С	DE
AB	0	1.8	
С		0	
DE	4.3	3.5	0

Average linkage used.

18

Step 3.1

Join the two closest points into a cluster.

	AB	С	DE
AB	0	1.8	4.3
С	1.8	0	3.5
DE	4.3	3.5	0

Step 3.1

Join the two closest points into a cluster.

	AB	C	DE
AB	0	1.8	4.3
С	1.8	0	3.5
DE	4.3	3.5	0

19

Step 3.1

Join the two closest points into a cluster.

	AB	С	DE
AB	0	1.8	4.3
С	1.8	0	3.5
DE	4.3	3.5	0

Step 2.2

Reduce the distance matrix, using the linkage methods. Draw the dendrogram.

	ABC	DE
ABC	0	
DE	4.0	0

Average linkage used.

20

Step 3

Join last two clusters

