GPCell: A Performant Framework for Gaussian Processes in Bioinformatics

Tristan Sones-Dykes

School of Mathematics and Statistics, The University of St Andrews

2025-04-01

Agenda

- Motivation & Background
- Problem Statement
- GPCell: Your Solution
- Methods & Results Overview
- Discussion & Impact
- ► Future Work
- Conclusion & Takeaways
- Assessment Criteria
- ▶ Q & A

Motivation & Background

- ► Importance of Gene Expression Regulation
 - Fundamental to cellular processes
- Historical Foundations
 - ▶ Jacob and Monod (1961)
 - ► Hardin, Hall, and Rosbash (1990)
 - Phillips et al. (2017)
- Introduction to Gaussian Processes
 - Non-parametric, probabilistic, and flexible modeling approach

Problem Statement

- **▶** Limitations in Prior Work:
 - MATLAB-based approach in Phillips et al. (2017)
 - Domain-specific application and limited extensibility
- ▶ The Need for GPCell:
 - A general, extensible Python framework for GP fitting and oscillation detection

GPCell: Your Solution

- Overview:
 - A Python library built on TensorFlow Probability
- Key Features:
 - Oscillator Detector: Class for analyzing gene expression oscillations
 - Extensible framework (e.g., integration of MCMC methods)
 - ▶ Strong type system and automated CI/CD pipeline
 - Multiprocessing pipeline for improved performance
- (Consider adding code snippets or diagrams here)

Methods & Results Overview

- **▶** Validation:
 - ► Tested on diverse datasets (synthetic and real data)
- **Performance:**
 - Speed improvements using multiprocessing
 - Accuracy in oscillation detection
- **Visuals:**
 - Include charts/diagrams to illustrate model fitting and results

Discussion & Impact

- Strengths:
 - Extensibility and user-friendly design
 - ▶ Enhanced reproducibility for bioinformatics research
- Challenges:
 - Managing performance bottlenecks
 - Addressing edge cases in complex datasets
- Broader Impact:
 - Provides a robust platform for advanced GP modeling in bioinformatics

Future Work

- Enhancements:
 - Integration of additional kernels and priors
 - Further development of visualization tools
- ► Applications:
 - Integration with wet lab pipelines for real-time data analysis

Conclusion & Takeaways

- ▶ GPCell bridges the gap between advanced statistical methods and bioinformatics.
- It provides a scalable, extensible, and reproducible framework for Gaussian Process modeling.
- Opens new avenues for scientific discovery and research efficiency.

Assessment Criteria

- Content:
 - ▶ Substance, structure, and depth of understanding
 - Accuracy of the presented information
- Delivery:
 - Clarity of communication and engagement
 - ▶ Effective use of slides and visual aids
- Overall Presentation Quality:
 - Professionalism and impact of the presentation

Q & A

Thank you!

Questions?

- Hardin, Paul E., Jeffrey C. Hall, and Michael Rosbash. 1990. "Feedback of the Drosophila Period Gene Product on Circadian Cycling of Its Messenger RNA Levels." *Nature* 343 (6258): 536–40. https://doi.org/10.1038/343536a0.
- Jacob, François, and Jacques Monod. 1961. "Genetic Regulatory Mechanisms in the Synthesis of Proteins." *Journal of Molecular Biology* 3 (3): 318–56. https://doi.org/10.1016/S0022-2836(61)80072-7.
- Phillips, Nick E., Cerys Manning, Nancy Papalopulu, and Magnus Rattray. 2017. "Identifying Stochastic Oscillations in Single-Cell Live Imaging Time Series Using Gaussian Processes." *PLOS Computational Biology* 13 (5): e1005479. https://doi.org/10.1371/journal.pcbi.1005479.