Aula 2

Conceitos básicos de grafos

Profa. Ariane Machado Lima

BASEADA NOS SLIDES DO CAP 7 DO LIVRO:

O que é isso? Para que serve?

O que é isso? Para que serve?

Como representamos essas informações?

Grafos

- Grafo: conjunto de vértices e arestas.
- Vértice: objeto simples que pode ter nome e outros atributos.
- Aresta: conexão entre dois vértices.

As arestas também podem ter atributos (normalmente um "peso")

- Notação: G = (V, A)
 - G: grafo
 - V: conjunto de vértices
 - A: conjunto de arestas

Grafos

- Que outras coisas podem ser modeladas por grafos?
- Que perguntas podemos fazer nesses problemas?

Grafos - Motivação

- Muitas aplicações em computação necessitam considerar conjunto de conexões entre pares de objetos:
 - Existe um caminho para ir de um objeto a outro seguindo as conexões?
 - Qual é a menor distância entre um objeto e outro objeto?
 - Quantos outros objetos podem ser alcançados a partir de um determinado objeto?
- Existe um tipo abstrato chamado grafo que é usado para modelar tais situações.

Aplicações

- Alguns exemplos de problemas práticos que podem ser resolvidos através de uma modelagem em grafos:
 - Ajudar máquinas de busca a localizar informação relevante na Web.
 - Descobrir os melhores casamentos entre posições disponíveis em empresas e pessoas que aplicaram para as posições de interesse.
 - Descobrir qual é o roteiro mais curto para visitar as principais cidades de uma região turística.

Retomando...

- Grafo: conjunto de vértices e arestas.
- Vértice: objeto simples que pode ter nome e outros atributos.
- Aresta: conexão entre dois vértices.

- Notação: G = (V, A)
 - G: grafo
 - V: conjunto de vértices
 - A: conjunto de arestas

Retomando...

- Grafo: conjunto de vértices e arestas.
- Vértice: objeto simples que pode ter nome e outros atributos.
- Aresta: conexão entre dois vértices.

- Notação: G = (V, A)
 - G: grafo
 - V: conjunto de vértices
 - A: conjunto de arestas

Será que essa aresta, como está aqui, é o suficiente para caracterizar conexões?

Retomando...

- Grafo: conjunto de vértices e arestas.
- Vértice: objeto simples que pode ter nome e outros atributos.
- Aresta: conexão entre dois vértices.

- Notação: G = (V, A)
 - G: grafo
 - V: conjunto de vértices
 - A: conjunto de arestas

Será que essa aresta, como está aqui, é o suficiente para caracterizar conexões?

Imagine fazer um caminho pelas ruas das cidades... com mão e contra-mão....

- Um **grafo direcionado** G é um par (V,A), onde V é um conjunto finito de vértices e A é uma relação binária em V.
 - Uma aresta (u, v) sai do vértice u e entra no vértice v. O vértice v é adjacente ao vértice u. (adjacente vem depois)
 - Podem existir arestas de um vértice para ele mesmo, chamadas de self-loops.

Como descrever self-loop em u?

- Um **grafo direcionado** G é um par (V,A), onde V é um conjunto finito de vértices e A é uma relação binária em V.
 - Uma aresta (u, v) sai do vértice u e entra no vértice v. O vértice v é adjacente ao vértice u. (adjacente vem depois)
 - Podem existir arestas de um vértice para ele mesmo, chamadas de self-loops.

Como descrever self-loop em u?

- Um **grafo direcionado** G é um par (V,A), onde V é um conjunto finito de vértices e A é uma relação binária em V.
 - Uma aresta (u, v) sai do vértice u e entra no vértice v. O vértice v é adjacente ao vértice u. (adjacente vem depois)
 - Podem existir arestas de um vértice para ele mesmo, chamadas de self-loops.
 Como descrever self-loop em u?

Descreva matematicamente (formalmente) esse grafo:

- Um **grafo direcionado** G é um par (V, A), onde V é um conjunto finito de vértices e A é uma relação binária em V.
 - Uma aresta (u,v) sai do vértice u e entra no vértice v. O vértice v é adjacente ao vértice u. (adjacente vem depois)
 - Podem existir arestas de um vértice para ele mesmo, chamadas de self-loops. Como descrever self-loop em u?

Descreva matematicamente (formalmente) esse grafo:

$$G = (V,A)$$

 $V = \{0, 1, 2, 3, 4, 5\}$
 $A = \{(0,1), (0,3), (1,2), (1,3), (2,2), (2,3), (3,0), (5,4)\}$

(u, u)

- Um **grafo não direcionado** G é um par (V,A), onde o conjunto de arestas A é constituído de pares de vértices não ordenados.
 - As arestas (u,v) e (v,u) são consideradas como uma única aresta. A relação de adjacência é simétrica. (apenas uma participa da
 - Self-loops não são permitidos.

definição do grafo)

- Um **grafo não direcionado** G é um par (V,A), onde o conjunto de arestas A é constituído de pares de vértices não ordenados.
 - As arestas (u,v) e (v,u) são consideradas como uma única aresta. A relação de adjacência é simétrica. (apenas uma participa da

definição do grafo)

- Self-loops não são permitidos.

Descreva matematicamente (formalmente) esse grafo:

- Um **grafo não direcionado** G é um par (V,A), onde o conjunto de arestas A é constituído de pares de vértices não ordenados.
 - As arestas (u,v) e (v,u) são consideradas como uma única aresta. A relação de adjacência é simétrica. (apenas uma participa da
 - Self-loops não são permitidos.

(apenas uma participa da definição do grafo)

Descreva matematicamente (formalmente) esse grafo:

$$G = (V,A)$$

 $V = \{0, 1, 2, 3, 4, 5\}$
 $A = \{(0,1), (1,2), (2,0), (4,5)\}$

- Um **grafo não direcionado** G é um par (V,A), onde o conjunto de arestas A é constituído de pares de vértices não ordenados.
 - As arestas (u, v) e (v, u) são consideradas como uma única aresta. A relação de adjacência é simétrica.
 - Self-loops não são permitidos.

(apenas uma participa da definição do grafo)

Descreva matematicamente (formalmente) esse grafo:

$$G = (V,A)$$

 $V = \{0, 1, 2, 3, 4, 5\}$
 $A = \{(0,1), (1,2), (2,0), (4,5)\}$

Posso inverter os vértices nas arestas?

- Um **grafo não direcionado** G é um par (V,A), onde o conjunto de arestas A é constituído de pares de vértices não ordenados.
 - As arestas (u,v) e (v,u) são consideradas como uma única aresta. A relação de adjacência é simétrica. (apenas uma participa da
 - Self-loops não são permitidos.

(apenas uma participa da definição do grafo)

Descreva matematicamente (formalmente) esse grafo:

$$G = (V,A)$$

 $V = \{0, 1, 2, 3, 4, 5\}$
 $A = \{(1,0), (1,2), (2,0), (4,5)\}$

Posso inverter os vértices nas arestas?

- Em um grafo direcionado, um vizinho de um vértice u é qualquer vértice adjacente a u na versão não direcionada de G.
- Em um grafo não direcionado, u e v são vizinhos se eles são adjacentes.

1 é adjacente a 3 ?

1 é vizinho de 3?

3 é adjacente a 1 ?

3 é vizinho de 1?

1 é adjacente a 3 ?

1 é vizinho de 3?

3 é adjacente a 1 ?

3 é vizinho de 1?

- Em um grafo direcionado, um vizinho de um vértice u é qualquer vértice adjacente a u na versão não direcionada de G.
- Em um grafo não direcionado, u e v são vizinhos se eles são adjacentes.

1 é adjacente a 3 ? Não 1 é vizinho de 3 ? Sim 3 é adjacente a 1 ? 3 é vizinho de 1 ? 1 é adjacente a 3 ? Sim 1 é vizinho de 3 ? Sim 3 é adjacente a 1 ? 3 é vizinho de 1 ?

- Em um grafo direcionado, um vizinho de um vértice u é qualquer vértice adjacente a u na versão não direcionada de G.
- Em um grafo não direcionado, u e v são vizinhos se eles são adjacentes.

1 é adjacente a 3 ? Não 1 é vizinho de 3 ? Sim 3 é adjacente a 1 ? Sim 3 é vizinho de 1 ? Sim 1 é adjacente a 3 ? Sim 1 é vizinho de 3 ? Sim 3 é adjacente a 1 ? Sim 3 é vizinho de 1 ? Sim

- Em um grafo direcionado, um vizinho de um vértice u é qualquer vértice adjacente a u na versão não direcionada de G.
- Em um grafo não direcionado, u e v são vizinhos se eles são adjacentes.

1 é adjacente a 3 ? Não 1 é vizinho de 3 ? Sim 3 é adjacente a 1 ? Sim 3 é vizinho de 1 ? Sim 1 é adjacente a 3 ? Sim 1 é vizinho de 3 ? Sim 3 é adjacente a 1 ? Sim 3 é vizinho de 1 ? Sim

Observação

Essas definições anteriores referem-se aos grafos "simples"

Há ainda os multigrafos (nos quais múltiplas arestas paralelas são permitidas)

Observação

Ou ainda os pseudografos (não orientados nos quais self-loops são permitidos)

Observação

Nesta disciplina iremos estudar apenas os grafos simples (a menos que algo diferente seja explitamente mencionado, por exemplo em exercícios ou EP's)

Ex: Redes Sociais

Que informação pode ser interessante eu querer obter de uma rede social?

Ex: Redes Sociais

Que informação pode ser interessante eu querer obter de uma rede social?

Pessoas potencialmente mais influentes?

Como eu obtenho essa informação do grafo?

Ex: Redes Sociais

Que informação pode ser interessante eu querer obter de uma rede social?

Pessoas potencialmente mais influentes?

Como eu obtenho essa informação do grafo?

→ tamanho da rede de contato? nr de seguidores?

(não direcionado x direcionado)

Grau de um Vértice

- Em grafos não direcionados:
 - O grau de um vértice é o número de arestas que incidem nele.
 - Um vérice de grau zero é dito isolado ou não conectado.
 - Ex.: O vértice 1 tem grau e o vértice
 3

Grau de um Vértice

- Em grafos não direcionados:
 - O grau de um vértice é o número de arestas que incidem nele.
 - Um vérice de grau zero é dito isolado ou não conectado.
 - Ex.: O vértice 1 tem grau 2 e o vértice
 3 é isolado.

Ex: número de colaborações entre pesquisadores

https:// www.researchgat e.net/ publication/ 328272425 Anali se e gestao de _analise_de_red es de colaborac ao entre pesqui sadores de prog ramas_de_posgraduacao strict o sensu com a _utilizacao_da_fe rramenta_comput acional Scriptlatt es

Grau de um Vértice

- Em grafos direcionados
 - O grau de um vértice é o número de arestas que saem dele (out-degree) mais o número de arestas que chegam nele (in-degree).
 - Ex.: O vértice 2 tem in-degree outdegree e grau

Grau de um Vértice

- Em grafos direcionados
 - O grau de um vértice é o número de arestas que saem dele (out-degree) mais o número de arestas que chegam nele (in-degree).
 - Ex.: O vértice 2 tem in-degree 2, outdegree 2 e grau 4.

Grau de um Vértice

Se eu quero saber o número de seguidores de alguém, que informação eu quero?

- Em grafos direcionados
 - O grau de um vértice é o número de arestas que saem dele (out-degree) mais o número de arestas que chegam nele (in-degree).
 - Ex.: O vértice 2 tem in-degree 2, outdegree 2 e grau 4.

Grau de um Vértice

Se eu quero saber o número de seguidores de alguém, que informação eu quero?

In-degree ou out-degree, depende de como você modela o grafo...

- Em grafos direcionados
 - O grau de um vértice é o número de arestas que saem dele (out-degree) mais o número de arestas que chegam nele (in-degree).
 - Ex.: O vértice 2 tem in-degree 2, outdegree 2 e grau 4.

Ex: Logística

Como fazer rotas de distribuição?

https://blog.longa.com.br/roteirizacao-logistica/

Ex: Logística

Como fazer rotas de distribuição?

https://blog.longa.com.br/roteirizacao-logistica/

- O que é um caminho?
- Quero repetir lugares?
- Quero voltar ao ponto de partida ao final?

- Um caminho de **comprimento** k de um vértice x a um vértice y em um grafo G = (V, A) é
- O comprimento de um caminho é o número de arestas nele,

- Um caminho de **comprimento** k de um vértice x a um vértice y em um grafo G = (V, A) é uma sequência de vértices $(v_0, v_1, v_2, \dots, v_k)$ tal que $x = v_0$ e $y = v_k$, e $(v_{i-1}, v_i) \in A$ para $i = 1, 2, \dots, k$.
- O comprimento de um caminho é o número de arestas nele, isto é, o caminho contém os vértices $v_0, v_1, v_2, \ldots, v_k$ e as arestas $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$.
- Se existir um caminho c de x a y então y é alcançável a partir de x via c.

- Um caminho de **comprimento** k de um vértice x a um vértice y em um grafo G = (V, A) é uma sequência de vértices $(v_0, v_1, v_2, \dots, v_k)$ tal que $x = v_0$ e $y = v_k$, e $(v_{i-1}, v_i) \in A$ para $i = 1, 2, \dots, k$.
- O comprimento de um caminho é o número de arestas nele, isto é, o caminho contém os vértices $v_0, v_1, v_2, \ldots, v_k$ e as arestas $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$.
- Se existir um caminho c de x a y então y é **alcançável** a partir de x via c.

Lembra do exemplo das redes sociais, quem segue quem?

- Um caminho de **comprimento** k de um vértice x a um vértice y em um grafo G = (V, A) é uma sequência de vértices $(v_0, v_1, v_2, \dots, v_k)$ tal que $x = v_0$ e $y = v_k$, e $(v_{i-1}, v_i) \in A$ para $i = 1, 2, \dots, k$.
- O comprimento de um caminho é o número de arestas nele, isto é, o caminho contém os vértices $v_0, v_1, v_2, \ldots, v_k$ e as arestas $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$.
- Se existir um caminho c de x a y então y é **alcançável** a partir de x via c.
- Um caminho é simples se todos os vértices do caminho são distintos.

Ex.: O caminho (0,1,2,3) é simples e tem comprimento 3. O caminho (1,3,0,3) não é simples.

O que é um ciclo? (grafos não direcionados e direcionados)

O que é um ciclo? (grafos não direcionados e direcionados)

(2) é um ciclo? (1)?

- Em um grafo direcionado:
 - Um caminho (v_0, v_1, \dots, v_k) forma um ciclo se $v_0 = v_k$ e o caminho contém pelo menos uma aresta.
 - O ciclo é simples se os vértices v_1, v_2, \ldots, v_k são distintos.
 - O self-loop é um ciclo de tamanho 1.
 - Dois caminhos (v_0, v_1, \ldots, v_k) e $(v'_0, v'_1, \ldots, v'_k)$ formam o mesmo ciclo se existir um inteiro j tal que $v'_i = v_{(i+j) \bmod k}$ para $i = 0, 1, \ldots, k-1$.

Ex.: O caminho (0,1,2,3,0) forma um ciclo. O caminho(0,1,3,0) forma o mesmo ciclo que os caminhos (1,3,0,1) e (3,0,1,3).

- Em um grafo não direcionado:
 - Um caminho (v_0, v_1, \dots, v_k) forma um ciclo se $v_0 = v_k$ e o caminho contém pelo menos três arestas.
 - O ciclo é simples se os vértices v_1, v_2, \ldots, v_k são distintos.

Ex.: O caminho (0, 1, 2, 0) é um ciclo.

Referências

ZIVIANI, N. Projetos de Algoritmos - com implementações em Pascal e C. 3ª ed. revista e ampliada Cengage Learning, 2011. Cap 7

