Frequenzdarstellung durch Fourier-Transformation

Frequenzbereich

- → Bisher Signal nur im *Zeitbereich* betrachtet,
 - Amplitude (Signalstärke) als Funktion der Zeit dargestellt
- → Signal im *Frequenzbereich*,
 - Welche Frequenzanteile im Signal in welcher "Stärke" vorkommen
 - Nützlich für Signalverarbeitung
 - Hilft beim Verstehen des Signals
 - Frequenzrepräsentation eines Signals: Spektrum
 - Hier erst einmal: Amplitudenspektrum, Phase: Später

Quelle: Wikipedia (englisch, "Frequency")

Frequenzbereich

- → Frequenz: "Schwingungen pro Zeiteinheit",
 - Bei Zeiteinheit 1 Sekunde: Einheit Hertz
 - 1 Hertz = 1 Schwingung pro Sekunde.
- → Beispiel: Die Frequenz der Sinuswellen steigt von oben nach unten. x ist die Zeitachse.

Quelle: Wikipedia (englisch, "Frequency")

Frequenzbereich

- → Beispiel: Links Signale im Zeitbereich, rechts Signale im Frequenzbereich.
 - Oben: Frequenz ω_0
 - Mitte: Frequenz ω_1 .
- → Reelle Signale: Frequenzdarstellung symmetrisch.
- → Unten: Summe der Signale.
 - Kompliziertes Signal besteht aus mehreren Frequenzen.
 - Sinusschwingungen haben eine reine Frequenz.
- → Frequenzbereich: Die x-Achse zeigt die Frequenz! (rechts)

EEG-Frequenzbänder

- EEG wird häufig in Frequenzbereiche mit den Namen delta, theta, alpha, beta, und gamma bezeichnet (Nomenklatur)
- Frequenzeinteilung ist empirisch entstanden
- Synchronisierung der Gehirnpotentiale über größere Kortexareale
- Bänder haben unterschiedlichen neurowissenschaftlichen Hintergrund (teilweise nicht vollständig bekannt)
- Anzahl der Bänder und genaue Grenzen variieren je nach Autor
- Grenzen und Intensität der Rhythmen sind personenspezifisch
- Amplituden werden relativ zum zugrundeliegenden Rhythmus betrachtet

EEG-Frequenzbänder

→ Unterschiedliche Wachheitsgrade führen zu Änderungen des EEG Frequenz-Spektrums

Alpha	8 – 13 Hz	20 – 120 μV	Wach, entspannt, Augen geschlossen
Beta	13 – 30 Hz	5 – 50 μV	Augen offen, Aufmerksamkeit
Gamma	31 – 60 Hz	< 10 μV	Anspruchsvolle Tätigkeiten, Konzentration, Lernen
Theta	4 – 8 Hz	20 – 100 μV	Übergang zum Schlaf, leichte Schlafphase, Reaktion nur noch auf starke Umweltreize
Delta	0.5 – 4 Hz	5 – 250 μV	Traumlose Tiefschlafphase (ansonsten Hinweis auf patholog. Veränderungen)

Topographie von Gehirnaktivität im EEG

- EEG hat schlechte r\u00e4umliche Aufl\u00f6sung
- Trotzdem häufig hilfreich die grobe topographische Struktur des EEG zu analysieren
- Scalp maps: Grafischen Darstellung der Hirnaktivität an der Kopfoberfläche (Energie interpoliert zwischen den Elektroden)
- Plot zeigt
 - Spektren der einzelnen Kanäle
 - Örtliche Energieverteilung bei
 6, 10 und 22Hz durch scalp maps
- Komplexere Verfahren zur Quellenlokalisation aus EEG existieren haben aber eine r\u00e4umliche Aufl\u00f6sung von einigen Zentimetern

EEG im Frequenzbereich

- → Spektrale Leistung (d.h. Amplitude im Zeitbereich) nimmt mit steigender Frequenz ab (y-Achse ist logarithmisch)
- → Deutlich im Spektrum erkennbar
 - 1 Hz: stark Frontale Aktivität vmtl. Augenartefakte
 - 10 Hz: okzipitale Alpha
 Aktivität
 - 60 Hz: Netzbrummen (USA)
- → Beispiel: Visueller
 Aufmerksamkeitstask

(Makeig et al. J Neurosci. 19:2665-80, 1999)

- 128 Hz Sampling Rate
- 32 Kanäle

Spektrum EEG

- EEG
- Motor-Imagery
 - Versuchsperson stellt sich vor, Hand zu bewegen

Continuous-Time Fourier Transform (CTFT)

Sei x(t) ein Signal (eine Funktion) im Zeitbereich. Dann ist die Fourier-Transformierte gegeben durch

$$X(\omega) = F(x)(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt.$$

Die Umkehrung der Fourier-Transformation ist

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

wobei komplexe Zahl $X(\omega) = re^{j\varphi} = r(\cos(\varphi) + j\sin(\varphi))$

und $j = \sqrt{-1}$

 $|X(\omega)|$ = Amplitude der Frequenz Winkel φ = Phase der Frequenz

Grafik: Wikipedia, "Komplexe Zahl"

z=a+bi=re^{iφ}

Continuous-Time Fourier Transform (CTFT)

Die Fourier-Transformation ist:

- Linear: $F((x+y)(t)) = F(x(t)) + F(y(t)), F(a \cdot x(t)) = aF(x(t)).$
- Umkehrbar: Auf geeigneten Definitionsbereichen hat die Fourier-Transformation ein Inverses (siehe letzte Folie). Daraus folgt direkt, dass bei der Fourier-Transformation keinerlei Information verlorengeht.
- $X(\omega)$ ist ein Wert, der angibt, welchen "Anteil" die Frequenz ω am Eingabesignal hat.
- Die Fourier-Transformierte einer Funktion ist (i.a.) komplex: Der Betrag |X(ω)| ist die zur betreffenden Frequenz gehörende Amplitude, der Winkel zwischen Real- und Imaginärteil ist die Phase.
 - Entsprechend:
 - Punktweiser Betrag des Spektrums: "Betragsspektrum"
 - Punktweiser Winkel: "Phasenspektrum"
- Problem: Aus der Fourier-Transformation eines Signals kann man nicht direkt herauslesen, zu welcher Zeit ein bestimmter Frequenzanteil aufgetreten ist.

Discrete-Time Fourier Transform (DTFT)

Fourier-Transformation ist eine kontinuierliche mathematische Funktion.

Wie können wir die Idee auf diskrete Signale übertragen?

Definiere zeitdiskrete Fouriertransformation (DTFT) mit Abtastzeit $t_A = 1/f_A$ eines diskreten Signals x[n] durch

$$X(\omega) = F(x[n]) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega nt_a}$$

mit der kontinuierlichen Umkehrung

$$x[n] = t_A \int_{-f_A}^{f_A} X(\omega) \cdot e^{j\omega n t_A} d\omega = DTFT^{-1} \{X(\omega)\}$$

Wenn x[n] durch diskretes Sampling einer kontinuierlichen Funktion entstanden ist, dann approximiert die DTFT die kontinuierliche Fourier-Transformation.

Achtung: die DTFT eines diskreten Signals ist (erst einmal) durch einen kontinuierlichen Parameter ω parametrisiert.

Discrete-Time Fourier Transform (DTFT)

- Die DTFT ist periodisch in ω mit Periode 2π , daher betrachtet man im Frequenzbereich nur die Frequenzen von $-\pi$ bis π .
 - In der DTFT sind nur Frequenzen unterhalb der halben Abtastrate (Nyquist-Frequenz) korrekt wiedergegeben. π entspricht dann der maximalen Frequenz.
- Es gibt einen schnellen Algorithmus (FFT), um die diskrete Fourier-Transformation auszurechnen. Daher kann man die DTFT in der Praxis sehr gut anwenden.
- Auch die DTFT ist komplex.
- Selbes Problem wie bei der CTFT: Aus der diskreten Fourier-Transformation eines Signals kann man nicht herauslesen, zu welcher Zeit ein bestimmter Frequenzanteil aufgetreten ist.

Beispiel für die DTFT

- Zugrundeliegendes Signal: Reellwertige Exponentialfolge (oberes Bild)
- Mittleres Bild: Amplitude (Betrag) der DTFT
- Unteres Bild: Phase (komplexes Argument) der DTFT

In der Praxis

- FFT Implementierungen wie Sand am Meer (Matlab, numpy, ...)
- Meist nur Betrag betrachtet
- Phase ignoriert
- Wichtig sind
 - Abtastrate → Nyquist Rate
 - Fensterlänge
- Python:
 - numpy.fft.rfft
 - numpy.fft.rfftfreq

Oder: MNE

http://timeoff08.blogspot.de/2013/08/fouriertransformation-in-der-praxis.html

In der Praxis

- Ergebnis aus FFT so lang wie Fenster
- Negative und Positive Frequenzen
 - Nur hälfte interessant
 - (Fensterlänge / 2) = Anzahl Frequenzbins
- Nyquist-Frequenz / Frequenzbins entspricht Bin-Breite
- Fenstergröße kritisch
 - tradeoff zwischen zeitlicher /
 Frequenzauflösung
- Also:
 - Sampling-Rate: 80 Kilo Hz
 - Nyquist-Frequenz: 40 KHz
 - 20 ms Fenster = 0.02 * 80000 =
 1600 Sample → 800 Frequenzbins
 - Bin-Breite = 40000 / 800 = 50 Hz

