

(2)

AD-A214 690

A TIGHT AMORTIZED BOUND FOR PATH REVERSAL

David Ginat
Daniel D. Sleator
Robert E. Tarjan

CS-TR-163-88

June 1988

AD-A214-87-K-0467

DTIC
ELECTED
NOV 29 1989
S D
D CG

Approved for public release
Distribution Unlimited

88 11 21 164

A Tight Amortized Bound for Path Reversal

David Gajta¹

Daniel D. Sleator²

Robert E. Tarjan³

June, 1988

ABSTRACT

Path reversal is a form of path compression used in a disjoint set union algorithm and a mutual exclusion algorithm. We derive a tight upper bound on the amortized cost of path reversal.

ACCESSION NO.	
UTIS	CCR 87-1
DATE	1-28
SEARCHED	<input type="checkbox"/>
SERIALIZED	<input type="checkbox"/>
INDEXED	<input type="checkbox"/>
FILED	<input type="checkbox"/>
By	per CS
DISTRIBUTION	
Availability Status	
Acq. Date	1-28-88
Dist.	Internal
A-1	

¹ Department of Computer Science, University of Maryland.

² Department of Computer Science, Carnegie-Mellon University. Research partially supported by DARPA, ARPA order 4976, amendment 19, monitored by the Air Force Aeronautics Laboratory under Contract No. F33615-87-C-1499, by the National Science Foundation under Grant No. CCR 8658139, and by AT&T Bell Laboratories.

³ Department of Computer Science, Princeton University, and AT&T Bell Laboratories. Research partially supported by NSF Grant No. DCR-8605962 and ONR Contract No. N00014-87-K-0467.

A Tight Amortized Bound for Path Reversal

David Gajer¹

Daniel D. Sleator²

Robert E. Tarjan³

June, 1988

Let T be a rooted n -node tree. A *path reversal* at a node x in T is performed by traversing the path from x to the tree root r and making x the parent of each node on the path other than x . Thus x becomes the new tree root. (See Figure 1.) The *cost* of the reversal is the number of edges on the path reversed. Path reversal is a variant of the standard path compression algorithm for maintaining disjoint sets under union [5]. It has also been used in a novel mutual execution algorithm [2,6].

Figure 1. Path reversal. Triangles denote subtrees.

¹ Department of Computer Science, University of Maryland.

² Department of Computer Science, Carnegie-Mellon University. Research partially supported by DARPA, ARPA order 4976, amendment 19, monitored by the Air Force Aeronautics Laboratory under Contract No. F33615-87-C-1499, by the National Science Foundation under Grant No. CCR 8658139, and by AT&T Bell Laboratories.

³ Department of Computer Science, Princeton University, and AT&T Bell Laboratories. Research partially supported by NSF Grant No. DCR-8605962 and ONR Contract No. N00014-87-K-0467.

Suppose that a sequence of m reversals is performed on an arbitrary initial tree. What is the total cost of the sequence? Let $T(n,m)$ be the worst-case cost of such a sequence, and let $A(n,m) = T(n,m)/m$. We are most interested in the value of $A(n,m)$ for fixed n as m grows. As discussed by Tarjan and Van Leeuwen [5], binomial trees provide a class of examples showing that $A(n,m) \geq \lfloor \log n \rfloor^*$, and their rather complicated analysis gives an upper bound of $A(n,m) = O(\log n + \frac{n \log n}{m})$. Ginali and Shankar [2] prove that $A(n,m) \leq 2\log n + \frac{n \log n}{m}$. We shall prove that $A(n,m) \leq \log n + \frac{n \log n}{2m}$. In the special case that the initial tree consists of a root with $n-1$ children, which is the case in the mutual exclusion algorithm, the bound is $A(n,m) \leq \log n$.

To obtain the bound, we apply the *potential function* method of amortized analysis. (See [4].) Let the *size* $s(x)$ of a node x in T be the number of descendants of x , including x itself. Let the *potential* of T be $\Phi(T) = \frac{1}{2} \sum_{x \in T} \log s(x)$. Define the *amortized cost* of a path reversal over a path of k edges to be $k - \Phi(T) + \Phi(T')$, where T and T' are the trees before and after the reversal, respectively. For any sequence of m reversals, we have

$$\sum_{i=1}^m a_i = \sum_{i=1}^m (t_i - \Phi_{i-1} + \Phi_i) = \sum_{i=1}^m t_i - \Phi_0 + \Phi_m,$$

where a_i , t_i , and Φ_i are the amortized cost of the i^{th} reversal, the actual cost of the i^{th} reversal, and the potential after the i^{th} reversal, respectively, and Φ_0 is the potential of the initial tree. Since $\Phi_0 \leq \frac{n}{2} \log n$ and $\Phi_m \geq \frac{1}{2} \log n$, this inequality yields

$$\sum_{i=1}^m t_i \leq \sum_{i=1}^m a_i + \frac{1}{2}(n-1)\log n,$$

which in turn implies

$$A(n,m) \leq \frac{1}{m} \sum_{i=1}^m a_i + \frac{n \log n}{2m}.$$

* All logarithms in this paper are base two.

We shall prove that the amortized cost of any reversal is at most $\log n$, thereby showing that $A(n,m) \leq \log n + \frac{n \log n}{2m}$. When the initial tree consists of a root with $n-1$ children, the bound drops to $A(n,m) \leq \log n$, since then $\Phi_0 \leq \Phi_m$, and the extra additive term drops out.

Let $x_0, x_1, x_2, \dots, x_k$ be a path that is reversed, and let A be the amortized cost of the reversal. For $0 \leq i \leq k$, let s_i be the size of x_i before the reversal. The size of x_0 after the reversal is s_k , and the size of s_i after the reversal, for $1 \leq i \leq k$, is $s_i - s_{i-1}$. We can thus write A as

$$\begin{aligned} A &= k - \sum_{i=0}^k \frac{1}{2} \log s_i + \frac{1}{2} \log s_k + \sum_{i=1}^k \frac{1}{2} \log (s_i - s_{i-1}) \\ &= k + \frac{1}{2} \sum_{i=0}^{k-1} (\log (s_{i+1} - s_i) - \log s_i) \\ &= k + \frac{1}{2} \sum_{i=0}^{k-1} \log ((s_{i+1} - s_i)/s_i). \end{aligned}$$

For $0 \leq i \leq k-1$, let $\alpha_i = s_{i+1}/s_i$. Note that $(s_{i+1} - s_i)/s_i = \alpha_i - 1$. We have

$$\begin{aligned} A &= k + \frac{1}{2} \sum_{i=0}^{k-1} \log (\alpha_i - 1) \\ &= \sum_{i=0}^{k-1} \left(1 + \frac{1}{2} \log (\alpha_i - 1) \right) \end{aligned}$$

We now make use of the following inequality, which will be verified below: for all $\alpha > 1$, $1 + \frac{1}{2} \log(\alpha-1) \leq \log \alpha$. From this inequality we obtain

$$\begin{aligned} A &\leq \sum_{i=0}^{k-1} \log \alpha_i \\ &= \sum_{i=0}^{k-1} \log (s_{i+1}/s_i) = \sum_{i=0}^{k-1} (\log s_{i+1} - \log s_i) \\ &= \log s_k - \log s_0 \\ &\leq \log n, \end{aligned}$$

since $s_k = n$ and $s_0 \geq 1$.

This completes the amortized analysis. We verify the needed inequality by the following chain of reasoning:

$$\begin{aligned} 0 &\leq (\alpha-1)^2 \\ \Rightarrow 0 &\leq \alpha^2 - 4\alpha + 4 \\ \Rightarrow 4(\alpha-1) &\leq \alpha^2 \\ \Rightarrow \log(4(\alpha-1)) &\leq \log(\alpha^2) \\ \Rightarrow 2 + \log(\alpha-1) &\leq 2\log\alpha \\ \Rightarrow 1 + \frac{1}{2}\log(\alpha-1) &\leq \log\alpha. \end{aligned}$$

We conclude with some remarks. The definition of the potential function used here has been borrowed from Sleator and Tarjan's analysis of splay trees [3]; it has also been used to analyze pairing heaps [1]. As in the case of splay trees, the upper bound can be generalized in the following way. Assign to each tree node x a fixed but arbitrary positive weight $w(x)$. Define the *total weight* of x , $tw(x)$, to be the sum of the weights of all descendants of x , including x itself. Define the potential of the tree T to be $\Phi(T) = \frac{1}{2} \sum_{x \in T} \log tw(x)$. A straightforward extension of the above analysis shows that the total cost of a sequence of m reversals is at most $\sum_{i=1}^m \log(W/w_i) + \Phi_0 - \Phi_m$, where w_i is the weight of the node x_i at which the i^{th} reversal starts and W is the sum of all the node weights.

Choosing $w(x) = 1$ for all $x \in T$ gives our original result. Choosing $w(x) = f(x) + 1$, where $f(x)$ is the number of times a reversal begins at x , gives an upper bound for the total time of all reversals of $\sum_{i=1}^m \log\left(\frac{n+m}{f(x_i)}\right) + \frac{1}{2} \sum_{x \in T} \log\left(\frac{n+m}{f(x)}\right)$.

It is striking that the "sum of logarithms" potential function serves to analyze three different data structures. We are at a loss to explain this phenomenon; whereas there is a clear connection between splay trees and pairing heaps (see [1]), no such connection between trees with path reversal and the other two data structures is apparent. In the case of path reversal, the sum of logarithms potential function gives a bound that is exact to within an additive term depending only on the initial and final trees. It would be extremely interesting and useful to have a systematic method for deriving appropriate potential functions. The three examples of splaying, pairing, and reversal offer a setting in which to search for such a method.

Acknowledgement. The first author thanks D. Mount and A. U. Shankar for valuable discussions and useful comments.

References

- [1] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, "The pairing heap: a new form of self-adjusting heap," *Algorithmica* **1** (1986), 111-129.
- [2] D. Ginat and A. Udaya Shankar, "Correctness proof and amortization analysis of a $\log N$ distributed mutual exclusion algorithm," Technical Report CS-TR-2038, Department of Computer Science, University of Maryland, 1988.
- [3] D. D. Sleator and R. E. Tarjan, "Self-adjusting binary search trees," *J. Assoc. Comput. Mach.* **32** (1985), 652-686.
- [4] R. E. Tarjan, "Amortized computational complexity," *SIAM J. Alg. Disc. Meth* **6** (1985), 306-318.
- [5] R. E. Tarjan and J. Van Leeuwen, "Worst-case analysis of set union algorithms," *J. Assoc. Comput. Mach.* **31** (1984), 245-281.
- [6] M. Trehel and M. Naimi, "A distributed algorithm for mutual exclusion based on data structures and fault tolerance," *Sixth Annual International Phoenix Conf. on Computers and Communication*, Scottsdale, Arizona, February 1987, 35-39.