

Our Team

Aaron

M.A. Empirical **Democracy Research** 3 years experience in market research

Katrin

B.Sc. Geography >10 years Recruiting Consulting, Automotive, Energy

M.Sc. Mechanical **Engineering Product Manager** 3D Printing, No-Code

Laurent

Ravi

PhD Computational Chemistry, 7 years experience as postdoctoral researcher

Agenda

O1 Introduction O2 Data Analysis

Models 04 Conclusion & Outlook

Timeline & used tools

Forecast

Energy market

Imbalance Energy Price

Imbalance Energy Price

Why forecast the imbalance energy price?

• Imbalance energy price calculated every 15 min BUT published in following month

• Know in advance to make BUY / SALE decisions

Data Overview

Imbalance Energy Price

Price range (in € / MWh)

24.500 €

-6.500 €

Imbalance Energy - Distribution

Trend & Seasonality

Trend:

• Stationary process (no trend)

Seasonality:

Minor seasonalities

Models

Overview

Models:

- Baseline
- SARIMA
- Prophet

Univariate (1 Feature)

Multivariate (6 features)

Forecast horizon:

- 1h
- 6h
- 12h

Approach:

Classification

High Positive

Baseline Model

• 1 hour shift to forecast price

High Positive

Low Positive

Close to 0

Low Negative

High Negative

Accuracy (%)

Error: ±60 € / MWh

Accuracy: 37%

Final (SARIMA) Model:

Univariate: 1 Hour Forecast

	Error (€/MWh)
Baseline	±60
Univariate	±50
Multivariate	±50

Comparison: 1 Hour Forecast

	Accuracy (%)
Baseline	37
Univariate	28
Multivariate	28

Model comparison over several time horizons

	Accuracy (%)
1 Hour	28
6 Hour	24
12 Hour	22

Conclusions

- Complex problem
- Simple models already good for forecasting
- More advanced models: better performance at lower positive prices
- Comparable accuracy for longer time horizons
- Forecasting can be done quickly

Outlook

Use more complex algorithms (e.g. neural networks)

Further investigation on additional features

Tuning for other price segments

Thank you for your attention!

Katrin Mulinski

Laurent Hartmann

Ravi Tripathi