

Static Timing Analysis (STA)

Lecture #05: Characteristics of Timing Arc (Part #02) - Unatenes

Video Lecture Link

Characteristics of Timing Arc:

- 1) Delay
- 2) Unateness
- 3) Slew

2) Unateness:

How the output (of a cell) changes for different types of transition on input

Specifies how the output is responding for a particular input and how much time it will take

A timing arc can have 3 types of unateness

A) Positive unate:

- When rising input results in rising output OR falling input results in falling output
- Example: Buffer, AND, OR

B) Negative unate:

- When rising transition on input results in falling transition on output OR falling transition in input results in rising transition on output

- Example: Inverter, NAND

C) Non-unate:

- No relationship between input (source) and output (sink) pin

- Example : XOR, XNOR

Example: Buffer Liberty File

Example: AND Gate

1) For rising edge –
$$A = 0; B (0 \rightarrow 1) => Y = 0$$
(No Change, Constant)

$$A = 1$$
; $B (0 \rightarrow 1) => Y (0 \rightarrow 1)$
(Change and follows B)

$$A (0 -> 1); B = 0 => Y = 0$$

(No Change)

$$A(0 \rightarrow 1)$$
; $B = 1 \Rightarrow Y(0 \rightarrow 1)$
(Change and follows A)

2) For falling edge -

$$A = 0$$
; $B(1 \rightarrow 0) => Y = 0$
(No Change, Constant)

$$A = 1$$
; $B(1 \rightarrow 0) => Y(1 \rightarrow 0)$
(Change and follows B)

$$A (1 -> 0) ; B = 0 => Y = 0$$
 (No Change)

$$A(1 \rightarrow 0)$$
; $B = 1 \Rightarrow Y(1 \rightarrow 0)$
(Change and follows A)

Note: Rising input results in rising output and falling input results in falling output

=> Positive Unate

VE

Static Timing Analysis (STA) – Characteristics of Timing Arc - Unateness

Example: Inverter

There are two timing arcs in inverter -

- *A)* Rising input A to Y (Falling output Y)
- *B)* Falling input A to Y (Rising output Y)

Note: Output is inversely proportional to the input edge

- Negative Unate

Example: X-OR Gate

1) For rising edge -

$$A = 0$$
; $B(0 \rightarrow 1) => Y(0 \rightarrow 1)$
(Change and follows B)

$$A = 1$$
; $B(0 \rightarrow 1) => Y(1 \rightarrow 0)$
(Change and follows B with inverted edge)

$$A (0 \rightarrow 1)$$
; $B = 0 \Rightarrow Y (0 \rightarrow 1)$
(Change and follows A)

$$A(0 \rightarrow 1)$$
; $B = 1 \Rightarrow Y(1 \rightarrow 0)$
(Change and follows A with inverted edge)

2) For Falling edge -

$$A = 0$$
; $B(1 \rightarrow 0) => Y(1 \rightarrow 0)$
(Change and follows B)

$$A = 1$$
; $B(1 \rightarrow 0) => Y(0 \rightarrow 1)$
(Change and follows B with inverted edge)

$$A(1 \rightarrow 0)$$
; $B = 0 \Rightarrow Y(1 \rightarrow 0)$
(Change and follows A)

$$A(1 \rightarrow 0)$$
; $B = 1 \Rightarrow Y(0 \rightarrow 1)$
(Change and follows A with inverted edge)

Note: The output transition can not be determined by the direction of an input and it also depends on the state of other inputs

- Non-unate

Exercise #1 : Find out the Unateness of NOR Gate

Best Free VLSI Content

- 1. Verilog HDL Crash Course Link
- 2. Static Timing Analysis (STA) Theory Concepts Link
- 3. Static Timing Analysis (STA) Practice/Interview Questions Link
- 4. Low Power VLSI Design Theory Concepts <u>Link</u>
- 5. Low Power VLSI Design (LPVLSI) Practice/Interview Questions Link
- 6. Digital ASIC Design Verilog Projects Link

Please Like, Comment, Share & Subscribe My Channel in Order to Reach Out the Content to a Larger Audience.

Thanks !!