DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

MA101: Mathematics I, July - November, 2014

Tutorial Sheet: LA - 5

- 1. Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$. Prove that
 - (a) $|\mathbf{x}.\mathbf{y}| \le ||\mathbf{x}|| \, ||\mathbf{y}||$ (Cauchy-Schwarz inequality);
 - (b) $|\mathbf{x}.\mathbf{y}| = ||\mathbf{x}|| \, ||\mathbf{y}||$ if and only if \mathbf{x} and \mathbf{y} are linearly dependent;
 - (c) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.
- 2. Let $V = \{[x, y, z, w]^t \in \mathbb{C}^4 : x = z + iw, y = z w\}$. Show that V is a subspace of \mathbb{C}^4 . Find a basis for each of V and V^{\perp} .
- 3. Let A be a 2×2 orthogonal matrix. Show that there exists a real number θ such that $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ or $A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$. In the first case, A rotates the vectors of \mathbb{R}^2 by the angle θ counterclockwise, and in the second case, A reflects the vectors of \mathbb{R}^2 about a line; in this case find the line.
- 4. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an orthonormal basis of \mathbb{C}^n . Show that for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\mathbf{x}.\mathbf{y} = \sum_{i=1}^{n} (\mathbf{x}.\mathbf{v}_i)(\mathbf{v}_i.\mathbf{y})$$
 and $\mathbf{x}.\mathbf{x} \ge \sum_{i=1}^{k} |(\mathbf{x}.\mathbf{v}_i)|^2$ for $1 \le k \le n$.

Further, show that $\mathbf{x}.\mathbf{x} = \sum_{i=1}^{k} |(\mathbf{x}.\mathbf{v}_i)|^2$ iff $\mathbf{x} \in \text{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$, where $1 \leq k \leq n$.

- 5. Let W be a subspace of \mathbb{C}^n and let $\mathbf{u} \in \mathbb{C}^n$. Show that $\mathbf{v} \in W$ is the projection of \mathbf{u} onto W if and only if $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u} \mathbf{w}\|$ for every $\mathbf{w} \in W$.
- 6. Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ be an orthogonal set of non-zero vectors in \mathbb{C}^n . Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_q$ be some vectors in \mathbb{C}^n that are orthogonal to S. If p + q > n then show that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_q$ are linearly dependent.
- 7. Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n, n \geq 2$ such that $\|\mathbf{v}\| = \|\mathbf{w}\| = 1$. Prove that there exists an orthogonal matrix A such that $A(\mathbf{v}) = \mathbf{w}$ and $\det(A) = 1$.

Tutorial Sheet: LA - 6

- 1. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a linearly independent set of a vector space V. Write $\mathbf{w}_1 = \mathbf{v}_1$ and $\mathbf{w}_k = \sum_{i=1}^k c_{ik} \mathbf{v}_i$ for $2 \le k \le n$ such that $c_{ik} > 0$ for all $1 \le i \le n, 2 \le k \le n$. Show that the set $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ is also linearly independent.
- 2. Consider the vector space $\mathbb{R}_4[x]$ of all polynomials with real coefficients of degree at most 4. Show that $\{p(x) \in \mathbb{R}_4[x] : p(1) = p(-1) = 0\}$ is a subspace of $\mathbb{R}_4[x]$. Determine a basis and the dimension of this subspace.

- 3. Let $M_n(\mathbb{R})$ denote the vector space of all $n \times n$ real matrices. Show that the set $S_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : A = A^t\}$ is a subspace of $M_n(\mathbb{R})$. Also, find a basis and the dimension of $S_n(\mathbb{R})$.
- 4. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ be a basis for a vector space V. Show that the set $\{\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_2 + \mathbf{x}_3, \dots, \mathbf{x}_n + \mathbf{x}_1\}$ is also a basis for V if and only if n is an odd integer.
- 5. Let W_1 and W_2 be two subspaces of a finite dimensional vector space V. Show that $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$.
- 6. Let V be a finite dimensional vector space and let V_1 and V_2 be two subspaces of V. If $\dim(V_1+V_2)=\dim(V_1\cap V_2)+1$, show that either $V_1+V_2=V_1,V_1\cap V_2=V_2$ or $V_1+V_2=V_2,V_1\cap V_2=V_1$. (Equivalently, for subspaces V_1 and V_2 of V, if neither contains the other, then

$$\dim(V_1 + V_2) \ge \dim(V_1 \cap V_2) + 2.$$

7. Find the coordinates of the vector $[1,2,3]^t$ with respect to the bases B and C for \mathbb{R}^3 , where

$$B = \{[1, 1, 0]^t, [0, 1, 1]^t, [1, 0, 1]^t\} \text{ and } C = \{[1, 1, 1]^t, [1, 1, -1]^t, [1, -1, 1]^t\}.$$

Also, find the matrix P such that $[\mathbf{x}]_B = P[\mathbf{x}]_C$ for all $\mathbf{x} \in \mathbb{R}^3$.