作业四 地转流计算

要求:

1.利用 2018-01 和 2018-07 的月平均资料计算北太平洋 6°N-35°N 范围内的地转流,选取 1500db 作为参考零面画出 10db,100 db,250 db,500 db 等四个深度层上的流场和流速 2.利用上面计算结果, 计算北赤道流水体输运 (如 130°E, 8°N-18°N 断面),比较讨论两月结果差异,也可进一步比较不同断面的差异

数据使用:

TS_201801_GLB.nc TS_201807_GLB.nc

主要变量说明

Key: PRES

Long Name: Pressure

Units: decibar Shape: (25,)

Key: TOI

Long Name: Temperature.(ITS90)

Units: degree_Celsius Shape: (25, 132, 360)

Key: SOI

Long Name: Salinity.(PSS-78)

Units: psu

Shape: (25, 132, 360)

编写环境说明:

3.10.10 packaged by Anaconda, In	c. (main, Mar 21 2023, 18:39:17) [MSC v.1916 64 bit (AMD64)]
gsw	3.6.16.post1
numpy	1.23.5
netCDF4	1.6.2
matplotlib	3.7.1
matplotlib-inline	0.1.6

计算步骤

- 1. 计算格点距离和科里奥利力参数
 - a. 经度按照 1°=111KM 计算
 - b. 纬度按照 1°=111KM*COS(lat) 计算
 - c. 科里奥利力参数计算公式如下

$$f = 2\omega sin\varphi$$

- 2. 计算比容异常
 - a. 此步骤使用 GSW-Python 中的 gsw.specvol anom standard
 - b. 具体信息参见 Jupyter Notebook 中的 Markdown 描述页面
- 3. 计算重力位势异常
 - a. 公式如下:

$$\Delta \delta_{\emptyset_i} = \sum_{k=i}^{n-1} \overline{\delta_k} \Delta p_k$$

- 4. 计算地转流速
 - a. 公式如下

$$U_{i} - U_{n} = -\frac{10}{fL_{y}} \left(\sum_{k=i}^{n-1} \delta_{\emptyset B_{k}} - \sum_{k=i}^{n-1} \delta_{\emptyset_{A_{k}}} \right)$$

$$V_{i} - V_{n} = -\frac{10}{fL_{x}} \left(\sum_{k=i}^{n-1} \delta_{\emptyset B_{k}} - \sum_{k=i}^{n-1} \delta_{\emptyset_{A_{k}}} \right)$$

5. 计算流水体输运 原理阐释 计算每个网格面积:

$$\Delta \{Lat\} = |Lat_2 - Lat_1|$$

$$d_{Depth} = \triangle Depth \times 1000$$

$$d_{Lat} = \triangle Lat \times \cos(Lat) \times 111000$$

$$Area = d_{Lat} \times d_{Depth}$$

计算每个网格的流水通量:

$$Flux = V \times Area$$

计算每个纬度的流水通量:

$$F = \sum_{i=1}^{N_L} Flux_i$$

其中,Area和Flux均为二维数组,每一行代表一个纬度,每个元素分别代表一个深度和经度对应的网格面积和流水通量。F为一维数组,每个元素代表每个纬度的流水通量。

注:

- 全过程在 x 方向(经向)均是右减左 全过程在 y 方向(纬向)均是上减下

结果展示:

流场与流速可视化

2018-01 10 dbar

2018-01 100 dbar

2018-01 250 dbar

2018-07 10 dbar

2018-07 250 dbar

2018-01 500 dbar

2018-07 100 dbar

2018-07 500 dbar

流体输运

