Foundations of Distributed Systems

José Orlando Pereira

HASLab / Departamento de Informática Universidade do Minho

2019/2020

Motivation

• What is truly unique about <u>distributed</u> <u>systems</u>?

Case study: Leader election

- Select a unique leader in a distributed system
- Useful for:
 - Coordination
 - Efficiency
 - •

Abstraction

No sockets/clients/servers/ byte buffers/threads/...

米

- Reasoning in terms of:
 - *n* processes: sequences of discrete computation events
 - n² channels: connect send/receive events in pairs of processes

Case study: Simple algorithm

- Each process trying to be the leader sends its network address to all others
- Each process considers the process with the highest address to be the leader

In practice

- Tight timeouts are dangerous:
 - E.g., proportional to mean delay
 - Means low coverage

- Large timeouts are not useful:
 - E.g., proportional to high percentile
 - Taking advantage of time causes a very large performance penalty

In practice

- Solutions that do not use time might have better performance:
 - Run time proportional to mean delay
 - Even if more message exchanges are necessary

Asynchronous system model

- Assume no global time reference
- Assume no bounds on:
 - clock drift
 - processing time
 - message passing time
- Can we still solve the problem?

Example: Approach

- Start with a synchronous reliable fully connected network
- Relax the system model:
 - Unbounded message loss
 - Large/unknown graph diameter
 - Dynamic graph
- Example: Leader election

Example: Leader election

Summary

- A system model is a set of assumptions:
 - "what we believe about the world"
- A system model is an abstraction
- An algorithm solves a problem in a system model:

Summary

Asynchronous system model abstracts:

- Heterogeneity
- Dynamics
- Uncertainty
- Much simpler than handling them explicitly
- Leads to widely applicable solutions

Summary

- What is truly unique about distributed systems?
 - Uncertainty!
- Challenge:
 - Perform a computation in spite of uncertainty