CS & IT

ENGINERING

DISCRETE MATHS
SET THEORY

Lecture No. 07

By-SATISH YADAV SIR

02 Theorems in Composition of function

03 Examples in Composition of function

Composition of function:

$$f:A \rightarrow B g:B \rightarrow c qof:A \rightarrow c$$

$$f,g,h:R\rightarrow R$$

$$((hog)of)n$$
 $(hog)of(n))$
 $hog(n)$
 $hog(n)$
 $ho(n^2+5)$

composition of function is associative in nature.

Pw

$$f(n) = \alpha$$

$$f(y) = b$$

$$f(y) = b$$

$$f(z) = c$$

$$f: n \rightarrow y \qquad (1:10)$$

$$a \rightarrow x \qquad f \cdot | y \rightarrow n$$

$$b \rightarrow y \qquad n \rightarrow a$$

$$e \rightarrow z \qquad y \rightarrow b$$

$$1:10 \qquad z \rightarrow c$$

Invevse of function will only exist when it is 1:1. Corresponde

-> Inverse emist.

Invertible function

$$f(n)=n+1. f: 2\rightarrow 2.$$

$$2:11$$
ontov

identity function:

$$f: A \rightarrow B \qquad g: B \rightarrow C$$

$$(90f)^{-1} = f^{-1}09$$
 $(90f)^{-1} = f^{-1}09$

Theck?

$$f^{-1}(B_1UB_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$
 $f^{-1}(B_1\cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
 $g(n) = 1 - n + n^2 \quad f(n) = an + b \quad determite (a,b)$
 $(go)(n) = gn^2 - gn + 3$

