Reasoning with Metric Temporal Logic and Resettable Skewed Clocks

Alberto Bombardelli Stefano Tonetta

Fondazione Bruno Kessler - Trento, Italy University of Trento, Italy

May 16, 2023

DRTS: Distributed Real Time Systems

Multiple components

- Multiple components
- Message passing

- Multiple components
- Message passing
- Local time

- Multiple components
- Message passing
- Local time
- Synchronization e.g. Berkeley algorithm

- Multiple components
- Message passing
- Local time
- Synchronization e.g. Berkeley algorithm
- Timing constraints

DRTS: Distributed Real Time Systems

- Multiple components
- Message passing
- Local time
- **Synchronization** e.g. Berkeley algorithm
- Timing constraints

Verification of timed properties: MTL

Clock synchronization: Non-monotonicity problem

- Distributed MTL: $U_{\mathcal{I}}^{\mathbf{c}}$
- Time can decrease with resets
- Timed model checking relies on time monotonicity
- Non-monotonic MTL only studied theoretically (data-words + decidability) (Carapelle et al., 2014)

- $\varphi_i := G^c_{\leq 5}(y_i \leq 2) \ \forall i \in \{1, 2\}$
- φ_i holds iff $y_i \leq 2$ holds in [0,4] and [5, 16/3]

Notion of time:

Notion of time:

Discrete: $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \dots$

ullet Singular intervals [ullet] (only 1 time point)

Notion of time:

Discrete: $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \dots$ Super-dense: $(-)[\bullet](-)[\bullet] \dots$

- Singular intervals [●] (only 1 time point)
- Open intervals (—) (densely infinite time points)

Notion of time:

Discrete: $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \dots$ Super-dense: $(-)[\bullet](-)[\bullet] \dots$

- Singular intervals [●] (only 1 time point)
- Open intervals (—) (densely infinite time points)

Metric Temporal Logic (MTL):

- Extend LTL with bounds on modalities, e.g. $F_{\leq 5}a$
- $F_{\le 5}a$ means "a will become true once in at most 5 time units"

Notion of time:

Discrete: $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \dots$ Super-dense: $(-)[\bullet](-)[\bullet] \dots$

- Singular intervals [●] (only 1 time point)
- Open intervals (—) (densely infinite time points)

Metric Temporal Logic (MTL):

- Extend LTL with bounds on modalities, e.g. $F_{\leq 5}a$
- $F_{\leq 5}a$ means "a will become true once in at most 5 time units"

Distributed MTL:

- \bullet Extend MTL referring bounds to clock values, $F^c_{\leq 5}a$
- ullet $F^c_{\leq 5}a$ means "a will become true once in at most 5 clock time units"
- Clock assumptions:
 - **1** Clocks are differentiable in dense intervals $\frac{d\pi(t)(c)}{dt} \in [1-\epsilon, 1+\epsilon]$
 - Olocks diverge

$$\begin{split} &G(fault \rightarrow G^{cl_1}_{\leq p} \neg alive) \land \\ &G(G^{cl_2}_{\leq p} \neg alive \rightarrow (F^{cl_2}_{\leq p} alarm)) \rightarrow \\ &G(fault \rightarrow F^{cl}_{\leq p} alarm) \end{split}$$

If clocks are perfect: Valid

$$\begin{split} &G(fault \rightarrow G^{cl_1}_{\leq p} \neg alive) \land \\ &G(G^{cl_2}_{\leq p} \neg alive \rightarrow (F^{cl_2}_{\leq p} alarm)) \rightarrow \\ &G(fault \rightarrow F^{cl}_{\leq p} alarm) \end{split}$$

$$\begin{split} &G(fault \to G^{cl_1}_{\leq \tilde{p}} \neg alive) \land \\ &G(G^{cl_2}_{\leq p} \neg alive \to (F^{cl_2}_{\leq p} alarm)) \to \\ &G(fault \to F^{cl}_{\leq \tilde{p}} alarm) \end{split}$$

Valid with $\tilde{p} = p(1 + 2\epsilon/(1 - \epsilon))$ and no reset

$$\begin{split} G(fault \to G^{cl_1}_{\leq p+4\tilde{q}} \neg alive) \land \\ G(G^{cl_2}_{\leq p} \neg alive \to (F^{cl_2}_{\leq p} alarm)) \to \\ G(fault \to F^{cl}_{\leq p+4\tilde{q}} alarm) \\ \text{with } \tilde{q} = q(1+2\epsilon/(1-\epsilon)) \end{split}$$

If cl1 and cl2 are synchronized to cl every q: property **Valid** $(q \ll p)$

$$\begin{split} G(fault \to G^{cl_1}_{\leq p+4\tilde{q}} \neg alive) \land \\ G(G^{cl_2}_{\leq p} \neg alive \to (F^{cl_2}_{\leq p} alarm)) \to \\ G(fault \to F^{cl}_{\leq p+4\tilde{q}} alarm) \\ \text{with } \tilde{q} = q(1+2\epsilon/(1-\epsilon)) \end{split}$$

If cl1 and cl2 are synchronized to cl every q: property **Valid** $(q \ll p)$ "Compositional" case:

- $\psi_{sync} := G \bigwedge_{i \in \{1,2\}} (F^{cl_i}_{\leq q}(next(cl_i) = cl) \wedge (change(cl_i) \rightarrow next(cl_i) = cl))$
- Prove $\psi_{sync} \to G(|cl_1 cl_2| \le r)$
- Prove $G(|cl_1 cl_2| \le r)$ entails the property

Syntax:

 $\mathsf{MTLSK}: \phi := \cdots \mid \overbrace{\phi_1 U_{\mathcal{I}}^c \phi_2}^{\mathsf{"Distributed until"}} \mid \overbrace{\phi_1 \overline{U}_{\mathcal{I}}^c \phi_2}^{\mathsf{"Strict distr. until"}} (\mathcal{I} \text{ is an interval of } \mathbb{R})$

Syntax:

$$\mathsf{MTLSK}: \phi := \cdots \mid \overbrace{\phi_1 U_{\mathcal{I}}^c \phi_2}^{\mathsf{"Distributed until"}} \mid \overbrace{\phi_1 \overline{U}_{\mathcal{I}}^c \phi_2}^{\mathsf{"Strict distr. until"}} (\mathcal{I} \text{ is an interval of } \mathbb{R})$$

Semantics (by example)

Syntax:

$$\mathsf{MTLSK}: \phi := \cdots \mid \overbrace{\phi_1 U_{\mathcal{I}}^c \phi_2}^{\mathsf{"Distributed until"}} \mid \underbrace{\phi_1 \overline{U}_{\mathcal{I}}^c \phi_2}^{\mathsf{"Strict distr. until"}} (\mathcal{I} \text{ is an interval of } \mathbb{R})$$

Semantics (by example)

$$\varphi_{blue} := G(r(i_{msg}) \to F^c_{\leq 5/4} s(o_{msg}))$$

Syntax:

$$\mathsf{MTLSK}: \phi := \cdots \mid \overbrace{\phi_1 U_{\mathcal{I}}^c \phi_2}^{\mathsf{"Distributed until"}} \mid \underbrace{\phi_1 \overline{U}_{\mathcal{I}}^c \phi_2}^{\mathsf{"Strict distr. until"}} (\mathcal{I} \text{ is an interval of } \mathbb{R})$$

Semantics (by example)

$$\varphi_{blue} := G(r(i_{msg}) \to F^c_{\leq 5/4} s(o_{msg}))$$

$$\varphi_{red} := G(r(i_{msg}) \to \overline{F}^c_{\leq 5/4} s(o_{msg}))$$

Syntax:

$$\mathsf{MTLSK}: \phi := \cdots \mid \overbrace{\phi_1 U_{\mathcal{I}}^c \phi_2}^{\mathsf{"Distributed until"}} \mid \underbrace{\phi_1 \overline{U_{\mathcal{I}}^c \phi_2}}^{\mathsf{"Strict distr. until"}} (\mathcal{I} \text{ is an interval of } \mathbb{R})$$

Semantics (by example)

$$\varphi_{blue} := G(r(i_{msg}) \to F^c_{\leq 5/4} s(o_{msg}))$$

$$\varphi_{\operatorname{red}} := G(r(i_{msg}) \to \overline{F}_{\leq 5/4}^c s(o_{msg}))$$

 φ_{blue} holds. φ_{red} does not hold.

Contribution

Verification of a parametrized fragment of MTLSK:

- Extends boolean logic with theories over reals (arithmetic, next, ...).
- Parameterized bounds ($F_{\leq p}^c$ where p is a parameter).
- Limits bounds to $\lhd p$ and $\triangleright p$ where $\lhd \in \{<, \leq\}, \rhd \in \{\geq, >\}.$

Contribution

Verification of a parametrized fragment of MTLSK:

- Extends boolean logic with theories over reals (arithmetic, next, ...).
- Parameterized bounds ($F_{\leq p}^c$ where p is a parameter).
- Limits bounds to $\triangleleft p$ and $\triangleright p$ where $\triangleleft \in \{<, \leq\}, \triangleright \in \{\geq, >\}$.

High level idea:

Reduce to LTL- \mathcal{T} model checking (inspired by (Cimatti et al., 2019)):

- Consider a "convenient" intermediate logic
- 2 Encode MTLSK into that logic
- 3 Discretize model + logic (from $(-) \rightarrow \bullet to \bullet \rightarrow \bullet \rightarrow \bullet)$
- Encode intermediate logic to LTL- \mathcal{T}

$(MTL_{0,+\infty})$ (Cimatti et al., 2019):

- What is the value of time at the first encounter of φ ?
- Exploit time monotonicity.
- $F_{\leq p}\varphi \approx time \ at \ next \ \varphi time \leq p$

$(MTL_{0,+\infty})$ (Cimatti et al., 2019):

- What is the value of time at the first encounter of φ ?
- Exploit time monotonicity.
- $F_{\leq p}\varphi \approx time \ at \ next \ \varphi time \leq p$

Can we apply it to MTLSK?

```
(MTL_{0,+\infty}) (Cimatti et al., 2019):
```

- What is the value of time at the first encounter of φ ?
- Exploit time monotonicity.
- $F_{\leq p}\varphi \approx time \ at \ next \ \varphi time \leq p$

Can we apply it to MTLSK? (Spoiler: No!)

$(MTL_{0,+\infty})$ (Cimatti et al., 2019):

- What is the value of time at the first encounter of φ ?
- Exploit time monotonicity.
- $F_{\leq p}\varphi \approx time \ at \ next \ \varphi time \leq p$

Can we apply it to MTLSK? (Spoiler: No!) Example 1:

Is $F_{\leq 3}^c \varphi$ satisfied? $c \ at \ next \ \varphi - c \leq 3$?

$(MTL_{0,+\infty})$ (Cimatti et al., 2019):

- What is the value of time at the first encounter of φ ?
- Exploit time monotonicity.
- $F_{\leq p}\varphi \approx time \ at \ next \ \varphi time \leq p$

Can we apply it to MTLSK? (Spoiler: No!) *Example 1:*

Is $F^c_{\leq 3} \varphi$ satisfied? Yes! $c \ at \ next \ \varphi - c \leq 3?$ No! :(

Problem: at next does not consider points after the reset

Encoding: part 1-2

$(MTL_{0,+\infty})$ (Cimatti et al., 2019):

- What is the value of time at the first encounter of φ ?
- Exploit time monotonicity.
- $F_{\leq p}\varphi \approx time \ at \ next \ \varphi time \leq p$

Can we apply it to MTLSK? (Spoiler: No!) Example 2:

Is $\overline{F}_{\leq 3}^c \varphi$ satisfied? $c \ at \ next \ \varphi - c < 3$?

Encoding: part 1-2

$(MTL_{0,+\infty})$ (Cimatti et al., 2019):

- What is the value of time at the first encounter of φ ?
- Exploit time monotonicity.
- $F_{\leq p}\varphi \approx time \ at \ next \ \varphi time \leq p$

Can we apply it to MTLSK? (Spoiler: No!) Example 2:

Is $\overline{F}_{\leq 3}^c \varphi$ satisfied? No! :($c \ at \ next \ \varphi - c \leq 3$? Yes!

Problem: at next does not consider points surpassing the threshold!

- $F^c_{\leq n}\varphi$
- $F_{\triangleright p}^c \varphi$:
- $\overline{F}_{\lhd p}^c \varphi$:

- $\bullet \ F^c_{\lhd p}\varphi \colon \ \text{Is} \ \min(\blacksquare_\varphi) c \lhd p$
- $F_{\rhd p}^c \varphi$: $\overline{F}_{\lhd p}^c \varphi$:

- $\bullet \ F^c_{\lhd p}\varphi \colon \ \text{Is} \ \min(\blacksquare_\varphi) c \lhd p$
- $\bullet \ F^c_{\rhd p}\varphi \colon \ \text{Is} \ \max(\blacksquare_\varphi) c \rhd p$
- $\bullet \ \overline{F}^c_{\lhd p} \varphi :$

- $F^c_{\lhd p} \varphi$: Is $min(\blacksquare_{\varphi}) c \lhd p$
- $F_{\rhd p}^c \varphi$: Is $max(\blacksquare_{\varphi}) c \rhd p$
- $\overline{F}_{\lhd p}^c \varphi$: Is $max(\square_{\varphi}) c \lhd p$

Encoding: part 3-4

Discretization:

Produce an equisatisfiable φ_D as follows:

- Global time encoded as real diverging variable
- ② In each open interval every subformula arphi' do not change its value
- **3** Each interval encoded as two points: $(-) \Rightarrow \bullet \longrightarrow \bullet$
- Clocks are encoded as differences w.r.t. time varable

Encoding: part 3-4

Discretization:

Produce an equisatisfiable φ_D as follows:

- Global time encoded as real diverging variable
- 2 In each open interval every subformula φ' do not change its value
- **3** Each interval encoded as two points: $(-) \Rightarrow \bullet \longrightarrow \bullet$
- Clocks are encoded as differences w.r.t. time varable

Intermediate logic to LTL- \mathcal{T} :

- Operators mapped to equisat monitors
- Encoding min/max in discrete time is easier
- Technicalities/assumptions to guarantees existence of min/max.

Implementation:

• Implemented inside timed nuXmv(Cimatti et al., 2019)

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

Experiments:

 $oldsymbol{0} pprox 60$ valid and pprox 40 invalid properties to validate semantics

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

- $oldsymbol{0} pprox 60$ valid and pprox 40 invalid properties to validate semantics
 - Most tautologies proved in less than 10 sec

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

- \bullet \bullet \bullet 0 valid and \approx 40 invalid properties to validate semantics
 - Most tautologies proved in less than 10 sec
 - Half of the tautologies were proved in less that 2 sec

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

- \bullet \bullet \bullet 0 valid and \approx 40 invalid properties to validate semantics
 - Most tautologies proved in less than 10 sec
 - Half of the tautologies were proved in less that 2 sec
 - All the invalid formulae were disproved by BMC in less than 2 second

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

- \bullet \bullet \bullet 0 valid and \approx 40 invalid properties to validate semantics
 - Most tautologies proved in less than 10 sec
 - Half of the tautologies were proved in less that 2 sec
 - All the invalid formulae were disproved by BMC in less than 2 second
- Parametric models on amount of components

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

- \bullet \bullet \bullet 0 valid and \approx 40 invalid properties to validate semantics
 - Most tautologies proved in less than 10 sec
 - Half of the tautologies were proved in less that 2 sec
 - All the invalid formulae were disproved by BMC in less than 2 second
- Parametric models on amount of components
- Timed simplification of Wheel Brake System

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

- \bullet \bullet \bullet 0 valid and \approx 40 invalid properties to validate semantics
 - Most tautologies proved in less than 10 sec
 - Half of the tautologies were proved in less that 2 sec
 - All the invalid formulae were disproved by BMC in less than 2 second
- Parametric models on amount of components
- Timed simplification of Wheel Brake System
- lacktriangle Experiments instantiated parameters λ and ϵ

Implementation:

- Implemented inside timed nuXmv(Cimatti et al., 2019)
- Algorithm klive ic3-ia(Cimatti et al., 2014a) and kzeno(Cimatti et al., 2014b) (in lockstep with BMC) and BMC.
- Use of model parameters λ (max dist. c time during discrete transitions) and ϵ (derivative drift w.r.t. time)

Experiments:

- ullet pprox 60 valid and pprox 40 invalid properties to validate semantics
- Parametric models on amount of components
- Timed simplification of Wheel Brake System
- ${\bf @}$ Experiments instantiated parameters λ and ϵ

Overall:

- ≈ 400 valid instances (per alg.): <2 sec ≈ 40 , <10 sec ≈ 90 , <2 min ≈ 190 and <10 min ≈ 270
- ≈ 240 invalid instances (BMC): <2 sec ≈ 220 , <10 sec =228, <2 min =231 and <10 min =232

Result table (subset)

Formula	Time in sec.	λ	ϵ	alg	valid
$G(\overline{F}_{\leq p}^c a \to F_{\leq p}^c a)$	2.81	any	any	ic3	True
$F(c = p) \to F(((\overline{G}_{\leq p}^c a) \land (\overline{G}_{\geq p}^c \neg a)) \to \bot)$	3.62	any	0.4	kzeno	True
$(q \ge p) \to G((\overline{G}_{\le q}^c a) \to (\overline{G}_{\le p}^c a))$	0.38	any	any	ic3	True
$G^{c}_{\leq p}a \to G(a \lor c > p)$	9.03	any	any	kzeno	True
$G^{c}_{\leq p}a \to G(a \lor c > p)$	1.09	any	any	ic3	True
$(q \ge p) \to G((G_{\ge p}^c a) \to (G_{\ge q}^c a))$	2.22	any	any	ic3	True
$\Phi_{exp} := q = p(2 + \epsilon) + 2\lambda \wedge (G(fault \rightarrow G \neg alive) \wedge$	94.26	14.0	0.1	ic3	True
$G(\overline{G}^{cl}_{\leq p} \neg alive \rightarrow (\overline{F}^{cl}_{\leq p} alarm))) \rightarrow G(fault \rightarrow F_{[0,q]} alarm)$					
$(G((Reset(cl1) \rightarrow next(cl1) = cl) \land (\neg Reset(cl))) \land (\neg Reset(cl))) \land (\neg Reset(cl))) \land (\neg Reset(cl)) \land (\neg Reset(cl))) \land (\neg Reset(cl)) \land (\neg Re$	7.05	any	any	kzeno	True
$GF^{cl}_{\leq q}(next(cl) = cl1)) \rightarrow G(cl - cl1 \leq q * (1 + 2\epsilon/(1 - \epsilon)))$					
$\overline{G(f \to \overline{G}^{cl1}_{\leq p} \neg alv) \land G(\overline{G}^{cl2}_{\leq p-4r} \neg alv \to (\overline{F}^{cl2}_{\leq p} alm))) \to G(f \to \overline{G}^{cl2}_{\leq p} \neg alv)} \to G(f \to \overline{G}^{cl2}_{\leq p} \neg alv) \to $	19.86	any	any	ic3	True
$G(F_{\leq p}^{c}a \to \overline{F}_{\leq p}^{c}a)$	0.27	any	any	bmc	False
$G((a \lor Xa) \to (F^{c}_{\leq 0} a \land F^{c}_{\geq 0} a))$	0.18	any	any	bmc	False
Bounded Response invalid with 11 clocks	1.36	any	any	bmc	False

Table: Some MTLSK properties and their verification results.

Results - λ and ϵ

(a) λ evaluation

(b) ϵ evaluation

Results - parametric formulae

(a) Fischer experimental evaluation

(b) BR experimental evaluation

Conclusion and future work

Conclusion

- Studied non-monotonic MTL encoding to discrete LTL
- MTLSK verification implemented as an extension of *timed nuXmv* with *interval semantics*.

Conclusion and future work

Conclusion

- Studied non-monotonic MTL encoding to discrete LTL
- MTLSK verification implemented as an extension of timed nuXmv with interval semantics.

Future work:

- Efficient techniques to find counterexample using BMC as in(Bu et al., 2010)
- Study async compositional with I/O components as in(Bombardelli & Tonetta, 2022)
- Case studies on Biphase Mark protocol, 8N1 protocol,
- Relax constraints on clocks for synchronization algorithms

Questions?

Notion of time

Notion of time

- Discrete: (pointwise) $T=\mathbb{N}, \mathbf{0}=0, \nu(0), \nu(1), \ldots$ is a non-decreasing divergent sequence
- Dense: (monotonic) $T = \mathbb{R}_0^+, \mathbf{0} = 0, \nu(r) = r$
- Super-dense: (weakly-monotonic)
 - ① $T \subset \mathbb{N} \times \mathbb{R}_0^+$ s.t. $I_0, \mathcal{I}_1, \ldots$ are almost-adiacents time intervals over \mathbb{R}_0^+ and $I_i = \{r \mid \langle i, r \rangle \in T\}$

Υ rewriting

LTL-min-max:

If
$$\pi, t \models \varphi U \psi$$
 then $\pi(t)(min\Delta^c_{\varphi U \psi}) = \min(\pi(t)(U^c_{\varphi U \psi})) - \pi(t)(c)$
If $\pi, t \models (\varphi U \psi) \wedge F(\neg \varphi \vee G \neg \psi)$ then
$$\pi(t)(max\Delta^c_{\varphi U \psi}) = \max(\pi(t)(U^c_{\varphi U \psi})) - \pi(t)(c)$$
If $\pi, t \models F \varphi$ then $\pi(t)(maxbef\Delta^c_{\varphi}) = \max(Bef^c_{\pi}(t, \varphi)) - \pi(t)(c)$

$$\begin{split} \pi(t)(U^c_{\varphi U\psi}) := & \{\pi(t')(c)|t' \geq t: \pi, t' \models \psi \text{ and for all } t \leq t'' < t': \pi, t'' \models \varphi \} \\ \pi(t)(Bef^c_{\varphi}) := & \{\pi(t')(c)|t' \geq t: \text{ for all } t < t'' < t': \pi, t'' \nvDash \varphi \}. \end{split}$$

T rewriting

LTL-min-max:

```
If \pi, t \models \varphi U \psi then \pi(t)(min\Delta^c_{\varphi U \psi}) = \min(\pi(t)(U^c_{\varphi U \psi})) - \pi(t)(c)

If \pi, t \models (\varphi U \psi) \wedge F(\neg \varphi \vee G \neg \psi) then \pi(t)(max\Delta^c_{\varphi U \psi}) = \max(\pi(t)(U^c_{\varphi U \psi})) - \pi(t)(c)
If \pi, t \models F \varphi then \pi(t)(maxbef\Delta^c_{\varphi}) = \max(Bef^c_{\pi}(t, \varphi)) - \pi(t)(c)
```

$$\pi(t)(U^c_{\varphi U\psi}) := \{\pi(t')(c)|t' \geq t : \pi, t' \models \psi \text{ and for all } t \leq t'' < t' : \pi, t'' \models \varphi\}$$

$$\pi(t)(Bef^c_{\varphi}) := \{\pi(t')(c)|t' \geq t : \text{ for all } t < t'' < t' : \pi, t'' \nvDash \varphi\}.$$

$$\Upsilon :$$

$$\Upsilon(\varphi U_{\lhd p}^{c}\psi) := \Upsilon(\varphi U\psi) \wedge \min\Delta_{\Upsilon(\varphi U\psi)} \lhd p$$

$$\Upsilon(\varphi U_{\rhd p}^{c}\psi) := \Upsilon(G(\varphi \wedge F\psi)) \vee \Upsilon(\varphi U\psi) \wedge \max\Delta_{\Upsilon(\varphi U\psi)} \rhd p$$

$$\Upsilon(\varphi \overline{U}_{\lhd p}^{c}\psi) := \Upsilon(\varphi U\psi) \wedge \max bef \Delta_{\Upsilon(\psi)}^{c} \lhd p$$

19 / 23

\mathcal{D} discretization (based on (Cimatti *et al.*, 2019))

$$\phi_{D} := \psi_{time} \land \bigwedge_{c \in C} \psi_{clock}^{c} \land \psi_{\iota} \land \mathcal{D}(\phi)$$

$$\psi_{time} := time = 0 \land G(time' - time = \delta) \land G(\delta > 0 \rightarrow \bigwedge_{v \in V} (v' = v))$$

$$\psi_{clock}^{c} := diff_{c} = 0 \land G(diff_{c}' - diff_{c} = \delta_{c} - \delta) \land$$

$$G((\delta > 0 \rightarrow \delta_{c} \in [\delta(1 - \epsilon), \delta(1 + \epsilon)]) \land (\delta = 0 \rightarrow |diff_{c}| \leq \lambda))$$

$$\psi_{\iota} := \iota \land G((\iota \land \delta = 0 \land X\iota) \lor (\iota \land \delta > 0 \land X\neg\iota) \lor (\neg\iota \land \delta > 0 \land X\iota)) \land$$

$$G((\zeta' - \zeta = \delta) \lor (\zeta \geq 1 \land \zeta = 0)) \land GF(\zeta \geq 1 \land \zeta' = 0)$$

\mathcal{D} discretization (contd)

$$\begin{split} \mathcal{D}(X\varphi) := &\iota \wedge X(\iota \wedge \mathcal{D}(\varphi)) \\ \mathcal{D}(\tilde{X}\varphi) := &(\neg \iota \wedge \mathcal{D}(\varphi)) \vee X(\neg \iota \wedge \mathcal{D}(\varphi)) \\ \mathcal{D}(\varphi U\psi) := &\mathcal{D}(\psi) \vee (\mathcal{D}(\varphi)U\tilde{\psi}) \\ \mathcal{D}(\min\Delta^c_{\varphi U\psi}) := &ite(\mathcal{D}(\psi) \wedge 0 \leq \min\Delta^c_{\mathcal{D}(\varphi)U\tilde{\psi}}, 0, \min\Delta^c_{\mathcal{D}(\varphi)U\tilde{\psi}}) \\ \mathcal{D}(\max\Delta^c_{\varphi U\psi}) := &ite(\mathcal{D}(\psi) \wedge 0 \geq \max\Delta^c_{\mathcal{D}(\varphi)U\tilde{\psi}}, 0, \max\Delta^c_{\mathcal{D}(\varphi)U\tilde{\psi}}) \\ \mathcal{D}(\max\Delta^c_{\varphi}) := &maxbef\Delta^c_{\mathcal{D}(\varphi)} \\ & \text{where } \tilde{\psi} = \mathcal{D}(\psi) \wedge (\iota \vee \mathcal{D}(\varphi)). \end{split}$$

LTL-min-max discrete time encoding

$$\begin{split} \mathcal{R}epl(\Psi, \min \Delta^c_{\varphi U \psi}) &:= G(\varphi U \psi \to \rho_{\min \Delta^c_{\varphi U \psi}} = \\ ite(\psi \land (\neg (\varphi \tilde{U} \psi) \lor 0 \le \rho'_{\min \Delta^c_{\varphi U \psi}} + \delta_c), 0, \rho'_{\min \Delta^c_{\varphi U \psi}} + \delta_c) \land \\ & (F(\psi \land \rho_{\min \Delta^c_{\varphi U \psi}} = 0))) \to \Psi \lceil \min \Delta^c_{\varphi U \psi} / \rho_{\min \Delta^c_{\varphi U \psi}} \rfloor \end{split}$$

LTL-min-max discrete time encoding

$$\begin{split} \mathcal{R}epl(\Psi, \min \Delta^{c}_{\varphi U \psi}) &:= G(\varphi U \psi \to \rho_{\min \Delta^{c}_{\varphi U \psi}} = \\ ite(\psi \land (\neg (\varphi \tilde{U} \psi) \lor 0 \leq \rho'_{\min \Delta^{c}_{\varphi U \psi}} + \delta_{c}), 0, \rho'_{\min \Delta^{c}_{\varphi U \psi}} + \delta_{c}) \land \\ & (F(\psi \land \rho_{\min \Delta^{c}_{\varphi U \psi}} = 0))) \to \Psi \lceil \min \Delta^{c}_{\varphi U \psi} / \rho_{\min \Delta^{c}_{\varphi U \psi}} \rfloor \\ & \mathcal{R}epl(\Psi, \max bef \Delta^{c}_{\varphi}) := G(F\varphi \to \\ & \rho_{\max bef \Delta^{c}_{\varphi}} = ite(\varphi \lor 0 \geq \rho'_{\max bef \Delta^{c}_{\varphi}} + \delta_{c}, 0, \rho'_{\max bef \Delta^{c}_{\varphi}} + \delta_{c})) \to \\ & \Psi \lceil \max bef \Delta^{c}_{\varphi} / \rho_{\max bef \Delta^{c}_{\varphi}} \rfloor \end{split}$$

Bibliography

Bombardelli, Alberto, & Tonetta, Stefano. 2022.

Asynchronous Composition of Local Interface LTL Properties.

Pages 508-526 of: NFM.

Bombardelli, Alberto, & Tonetta, Stefano. 2023.

Metric Temporal Logic with Resettable Skewed Clocks - version with proofs.

In: DATE.

To appear, preproceeding version available at https://es-static.fbk.eu/people/bombardelli/papers/date23/extended_abstract.pdf.

Bu, Lei, Cimatti, Alessandro, Li, Xuandong, Mover, Sergio, & Tonetta, Stefano. 2010.

Model Checking of Hybrid Systems Using Shallow Synchronization. $Pages\ 155-169\ of:\ FMOODS/FORTE.$

LNCS, vol. 6117.

Carapelle, Claudia, Feng, Shiguang, Gil, Oliver Fernandez, & Quaas,