Programming Homework A (Due 5/21)

- (1) Let W_n be a white Gaussian process with zero mean and unit variance. Generate a sample function of W_n , n = 1, 2, ..., 512. Find and plot the periodogram of W_n from its sample function. Apply the Bartlett's smoothing procedure and investigate its effect.
- (2) Let X_n be a random process consisting of two sinusoids in white noise $X_n = \alpha_1 \cos(n\omega_1 + \Theta_1) + \alpha_2 \cos(n\omega_2 + \Theta_2) + W_n$

where $\alpha_1 = 2$, $\alpha_2 = 1$, $\omega_1 = 0.3\pi$, $\omega_2 = 0.33\pi$. Θ_1 and Θ_2 are uniform random variables over $(-\pi,\pi)$, and W_n is a white Gaussian process described in part (1). Assume that Θ_1 , Θ_2 , and W_n are independent. Find and plot the periodogram of X_n from its sample function. Apply the Bartlett's smoothing procedure and investigate its effect.

Programming Homework A (Due 5/21)

(3) Let Y_n be an autoregressive (AR) process given by

$$Y_{n} = \sum_{k=1}^{4} a_{k} Y_{n-k} + W_{n}$$

where W_n is a white Gaussian process described in part (1). Find and plot the periodogram of Y_n from its sample function, and compare it with the (theoretical) power spectral density of Y_n . Apply the Bartlett's smoothing procedure and investigate its effect.

(Choose two sets of your own a_k 's.)