北京大学数学科学学院期末试题

2008 -2009 学年第2学期

考试科目:		应用随机分析			考试时间:		2009 3	¥ (3 月	18日
姓	名: _		·		学	号:				
	_ <u> </u>	c	ᅷᆜᄧ	:#ハ 70 ハ	-	1 85 1 <i>C</i>	八盆	O BE -	10.7	4 41 ⊃

本试卷共 $_{6}$ 道大题,满分 70 分。第 1 题 16 分、第 2 题 10 分,第 3 、 4 题每题 12 分,第 5 、 6 题每题 10 分,平时成绩满分 30 分

- 1. (1) 我们通常用 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in T}, P)$ 来表示一个带 σ 代数 (或 σ 域, 或事件域, 或事件体) 流的概率空间, 其中 $T=[0,\infty)$ 或 $\{0,1,2,\cdots\}$,叙述其中每一项的定义。 (注意: 不能只写名称)
- (2) 设 $(X_t)_{t\geq 0}$ 是概率空间 (Ω, \mathcal{F}, P) 上的一个随机过程,定义 $\mathcal{F}_t^X = \sigma\{X_s, s\leq t\}$ 。写出 (Ω, \mathcal{F}, P) 上随机过程 $(Y_t)_{t\geq 0}$ 是 $(\mathcal{F}_t^X)_{t\geq 0}$ 鞅的定义。
- (3) 设 $(B_t)_{t\geq 0}$ 是 (Ω, \mathcal{F}, P) 上的 Brown 运动,且假设 $B_0=0$, $\mathcal{F}_t^B=\sigma(B_s, s\leq t)$,判断下面三个过程是否为 $(\mathcal{F}_t^B)_{t\geq 0}$ 鞅?并说明理由。
 - (i.) $e^{\frac{1}{2}t}\cos B_t + e^{\frac{1}{2}t}\sin B_t$; (ii.) $\int_0^t e^{t-s}dB_s$; (iii.) $tB_t \int_0^t B_s ds$.
- \mathscr{L} (1) 设 X,Y 是概率空间 (Ω,\mathcal{F},P) 上的两个随机变量,且 $E|X|<\infty$,写出 X 关于 Y 的条件数学期望 E[X|Y] 的定义。
- (2) 设 ξ, η 是概率空间 (Ω, \mathcal{F}, P) 上的两个独立同分布连续型随机变量,且 $E|\xi|<\infty$ 。证明:下面的等式几乎处处成立,

$$E[\xi|\xi+\eta] = E[\eta|\xi+\eta] = \frac{\xi+\eta}{2}.$$

 \mathcal{S} . 设 $(B_t)_{t\geq 0}$ 是概率空间 (Ω,\mathcal{F},P) 上的一维 Brown 运动, $\mathcal{F}^B_t = \sigma(B_s,s\leq t),$ $(X_t)_{t\geq 0}$ 是一个关于 $(\mathcal{F}^B_t)_{t\geq 0}$ 可知 (适应) 的连续随机过程,而且,对于任意的 $t\geq 0$,任意的 $\omega\in\Omega,$ $|X_t(\omega)|< M<\infty,$ M 是一常数。直接利用 Ito 随机积分、Riemann-Stieltjes 积分的定义证明:若对于任意的 $\omega\in\Omega,$ $X_t(\omega)$ 是 [0,T] 上的有界变差函数,则下式成立:

$$\int_0^T X_t dB_t = X_T B_T - X_0 B_0 - \int_0^T B_t dX_t \ .$$

、4. 考虑如下的随机微分方程

$$\left(egin{array}{c} dX_t \ dY_t \end{array}
ight) = -rac{1}{2} \left(egin{array}{c} X_t \ Y_t \end{array}
ight) dt + A \left(egin{array}{c} X_t \ Y_t \end{array}
ight) dB_t,$$

其中 $(B_t)_{t\geq 0}$ 是一维 Brown 运动, A 是 2×2 的常数矩阵。求出一个 A 使得若 $(X_t,Y_t)^T$ 的初值是常数 $(x_0,y_0)^T$ 且满足 $\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1, a>0,b>0$,则对于任意的 $t>0,\frac{X_t^2}{a^2}+\frac{Y_t^2}{b^2}=1$. 并验证你的结论。 (T 表示矩阵转置)

 $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_n, \ n=0,1,2,\cdots \end{aligned} \end{aligned}$ 是独立同分布的随机变量序列, $\mathcal{F}_n=\sigma(\xi_k,k\leq n),$ $P(\xi_1=1)=P(\xi_1=-1)=\frac{1}{2}.$ $\{\eta_n\ n=1,2,\cdots\}$ 是一列随机变量,满足任意的 $n\geq 1,\ \eta_n$ 是 \mathcal{F}_{n-1} 可知的(可测的),且 $|\eta_n|=1.$ 设 $S_n=\Sigma_{k=1}^n\eta_k\xi_k,\ n\geq 1,$ 令 $S_0=0,\ \tau=\inf\{n\geq 0,S_n<0\}.$ 证明: (1) $P(\tau<\infty)=1;$ (2) $E\tau=\infty.$

6. 设 $\theta \in \mathbb{R}$, A 为 2×2 对称常数矩阵。 $(B_1, B_2)^T$ 是一个 2 维 Brown 运动, (T 表示矩阵转置) 考虑如下的随机微分方程

$$\left(\begin{array}{c} dX_t \\ dY_t \end{array} \right) = A \left(\begin{array}{c} X_t \\ Y_t \end{array} \right) dt + \left(\begin{array}{cc} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{array} \right) \left(\begin{array}{c} dB_{1,t} \\ dB_{2,t} \end{array} \right).$$

(提示: 设 B 是 2×2 矩阵, 则定义 $e^{tB} \equiv \sum_{k=0}^{\infty} \frac{t^k B^k}{k!}$.)

- (1) 设初值为 $(X_0, Y_0)^T = (x_0, y_0)^T$ 是常数时, 解上述方程;
- (2) 已知上述方程的解是一个马氏过程,请计算出它的转移概率密度;
- (3) 写出转移概率密度满足的 Kolmogorov 向前、向后方程;
- (4) 对于 A, 给出不变概率密度存在的充要条件, 并验证你的结论:
- (5) 若不变概率密度存在,写出具体形式,并验证你的结论,