GTM-T2 AircraftParameters See slso ./libs/AC-params_T2.m

MWS Variable	Value	Name	Units
S	5.9018	Wing Surface Area	ft^2
Cbar	0.9153	Mean Aerodynamic Chord	ft
b	6.8488	Wingspan	ft
mass	49.6/32.17405	Vehicle Mass	Slugs
CG	[-0.25 Cbar, 0, 0]	Center of Gravity	ft
CP	[-0.25 Cbar, 0, 0]	Aero Reference Point	ft
Ixx	1.327	Inertia X-axis	lbf·ft ²
Iyy	4.254	Inertia Y-axis	lbf·ft²
Izz	5.454	Inertia Z-axis	lbf·ft²
Ixz	0.120	Cross Inertia, XZ	lbf·ft²
RtEng	[-0.25Cbar, +1.1, 0.275]	Right Engine Location	ft
LfEng	[-0.25Cbar, -1.1, 0.275]	Left Engine Location	ft
symmetric_aero_on	1	Symmetry Corrections	boolean
StatesInp	X_0	Initial Conditions,12x1	various
bias	structure	Trim Offsets	various
Aero	structure	Aerodynamic Database	various

MWS.Aero: Aerodynamic Tables
See slso ./libs/T2_polynomial_aerodatabase.mat

Variable	Continuous Dimensions	Output Dimensions
C6_bas	$\alpha \times \beta$	$[C_X, C_Y, C_Z, C_l, C_m, C_n]$
dC6_rud	$\alpha \times \beta \times \text{rudder}$	$\left[\left[C_X, C_Y, C_Z, C_l, C_m, C_n \right] \right]$
$dC6_ail$	$\alpha \times \beta \times \text{aileron}$	$\left[\left[C_X, C_Y, C_Z, C_l, C_m, C_n \right] \right]$
$dC6_spo$	$\alpha \times \beta \times \text{spoiler}$	$\left[\left[C_X, C_Y, C_Z, C_l, C_m, C_n \right] \right]$
$dC3_ele$	$\alpha \times \beta \times \text{stab} \times \text{elevator}$	$\left[\left[C_X, C_Z, C_m \right] \right]$
dC3_flp	$\alpha \times \text{flap}$	$[C_X, C_Z, C_m]$
dC3_lgr	$\alpha \times \text{geardown}$	$\left[\left[C_X, C_Z, C_m \right] \right]$
$dC3_p$	$\alpha \times \hat{p_b}$	$\left[C_Y, C_l, C_n \right]$
$dC3_{-q}$	$\alpha \times \hat{q}_b$	$\left[C_Y, C_l, C_n \right]$
dC3_r	$\alpha \times \hat{r_b}$	$\left[C_Y, C_l, C_n \right]$
$dC6_{-w}$	$\alpha \times \hat{\omega} \times \beta$	$\left[C_X, C_Y, C_Z, C_l, C_m, C_n \right]$
dC3_sym	$\alpha \times \beta$	$\left[C_Y, C_l, C_n \right]$