Vereinheitlichung des T0-Modells: Grundlagen, Dunkle Energie und Galaxien-Dynamik

Johann Pascher

27. März 2025

Zusammenfassung

Diese Arbeit präsentiert einen einheitlichen Rahmen für das T0-Modell, der seine grundlegenden Prinzipien mit Anwendungen auf Dunkle Energie und Galaxien-Dynamik in einem statischen Universum integriert. Basierend auf absoluter Zeit und variabler Masse steht das T0-Modell im Gegensatz zur Relativitätstheorie mit relativer Zeit und konstanter Masse und bietet alternative Erklärungen für kosmische Rotverschiebung (durch Energieverlust), Dunkle Energie (emergent aus dem intrinsischen Zeitfeld T(x)) und Galaxien-Dynamik (durch Massenvariation ohne Dunkle Materie). Dieses Papier gewährleistet mathematische Konsistenz über diese Bereiche hinweg und bietet eine umfassende Theorie mit experimentell überprüfbaren Vorhersagen.

Inhaltsverzeichnis

1	Einführung in das T0-Modell: Grundlegende Konzepte	2
	1.1 Grundannahmen des T0-Modells	2
	1.2 Intrinsische Zeit und Zeit-Masse-Dualität	2
	1.3 Vereinheitlichte Lagrangedichte	2
	1.4 Die Rolle der Gravitation im T0-Modell	2
2	Dunkle Energie im T0-Modell	3
	2.1 Neuinterpretation der Dunklen Energie	3
	2.2 Feldtheoretische Beschreibung	3
	2.3 Energietransfer und Rotverschiebung	3
3	Galaxien-Dynamik im T0-Modell	3
	3.1 Flache Rotationskurven ohne Dunkle Materie	3
	3.2 Effektive Gravitationskonstante	3
4	Vereinheitlichte mathematische Formulierung	4
	4.1 Gemeinsame Feldgleichungen	4
	4.2 Konsistente Parametrierung	4
5	Experimentelle Tests des T0-Modells	4
	5.1 Gemeinsame Vorhersagen	4
	5.2 Tests für Galaxien-Dynamik	4
6	Vergleich mit dem Λ CDM-Standardmodell	5
7	Zusammenfassung	5

1 Einführung in das T0-Modell: Grundlegende Konzepte

1.1 Grundannahmen des T0-Modells

Das T0-Modell basiert auf Annahmen, die in [3] und [1] ausführlich hergeleitet sind:

Grundannahmen des T0-Modells

- Zeit ist absolut und universell konstant ([3], Abschnitt "Zeit-Masse-Dualität").
- Masse variiert als $m = \frac{\hbar}{T(x)c^2}$, wobei T(x) das intrinsische Zeitfeld ist ([3], Abschnitt "Intrinsische Zeit").
- Gravitation entsteht aus Gradienten von T(x) ([1], Abschnitt "Emergente Gravitation").
- Rotverschiebung resultiert aus Energieverlust: $1 + z = e^{\alpha d}$ ([2], Abschnitt "Energieverlust").

1.2 Intrinsische Zeit und Zeit-Masse-Dualität

Die intrinsische Zeit T(x) ist definiert als:

$$T(x) = \frac{\hbar}{mc^2} \tag{1}$$

Details in [3] (Abschnitt "Definition der intrinsischen Zeit"). Dies führt zur Dualität:

- Standardmodell: Relative Zeit, konstante Masse.
- **T0-Modell**: Absolute Zeit, variable Masse ([3]).

1.3 Vereinheitlichte Lagrangedichte

Die Lagrangedichte ist in [5] (Abschnitt "Gesamt-Lagrangedichte") hergeleitet:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{Higgs}} + \mathcal{L}_{\text{intrinsic}}$$
 (2)

Mit $\mathcal{L}_{\text{intrinsic}} = \frac{1}{2} \partial_{\mu} T(x) \partial^{\mu} T(x) - V(T(x)).$

1.4 Die Rolle der Gravitation im T0-Modell

Gravitation emergiert aus T(x):

Satz 1.1 (Emergenz der Gravitation).

$$\nabla T(x) = -\frac{\hbar}{m^2 c^2} \nabla m \sim \nabla \Phi_g \tag{3}$$

Siehe [1] (Abschnitt "Emergente Gravitation").

2 Dunkle Energie im T0-Modell

2.1 Neuinterpretation der Dunklen Energie

Dunkle Energie ist ein emergenter Effekt von T(x):

- Λ **CDM**: Kosmologische Konstante.
- **T0-Modell**: Energieaustausch über T(x) ([8], Abschnitt "Dunkle Energie").

Energiedichte:

$$\rho_{DE}(r) = \frac{\kappa}{r^2} \tag{4}$$

2.2 Feldtheoretische Beschreibung

$$\mathcal{L}_{\text{intrinsic}} = \frac{1}{2} \partial_{\mu} T(x) \partial^{\mu} T(x) - V(T(x))$$
 (5)

Feldgleichung:

$$\Box T(x) - \frac{dV}{dT(x)} = 0 \tag{6}$$

Siehe [5].

2.3 Energietransfer und Rotverschiebung

Rotverschiebung durch Energieverlust:

$$\frac{dE_{\gamma}}{dx} = -\alpha E_{\gamma}, \quad 1 + z = e^{\alpha d} \tag{7}$$

Mit $\alpha \approx 2.3 \times 10^{-18} \,\mathrm{m}^{-1}$ ([2]).

3 Galaxien-Dynamik im T0-Modell

3.1 Flache Rotationskurven ohne Dunkle Materie

Rotationskurven:

$$v^2(r) = \frac{GM(r)}{r} + \kappa r \tag{8}$$

 $\kappa \approx 4.8 \times 10^{-11} \, \mathrm{m \, s^{-2}}$ ([1]).

3.2 Effektive Gravitationskonstante

$$G_{\text{eff}}(r) = G\left(1 + \beta_{\text{T}} \frac{\kappa}{r}\right) \tag{9}$$

Mit $\beta_{\rm T}^{\rm SI} \approx 0.008$ ([3]).

4 Vereinheitlichte mathematische Formulierung

4.1 Gemeinsame Feldgleichungen

Wirkung:

$$S_{\text{unified}} = \int \mathcal{L}_{\text{total}} d^4 x \tag{10}$$

Statisches Universum:

$$\left(\frac{\dot{m}}{m}\right)^2 = \frac{8\pi G}{3}\rho_{\text{eff}} \tag{11}$$

$$\frac{\ddot{m}}{m} = -\frac{4\pi G}{3}(\rho_{\text{eff}} + 3p_{\text{eff}}) \tag{12}$$

4.2 Konsistente Parametrierung

Parameter:

- $\alpha \approx 2.3 \times 10^{-18} \,\mathrm{m}^{-1}$
- $\kappa \approx 4.8 \times 10^{-11} \,\mathrm{m \, s^{-2}}$
- $\beta_{\rm T}^{\rm SI} \approx 0.008, \, \beta_{\rm T}^{\rm nat} = 1 \, ([3]).$

Beziehung:

$$\kappa = \beta_{\rm T} \frac{yvc^2}{r_g^2} \tag{13}$$

5 Experimentelle Tests des T0-Modells

5.1 Gemeinsame Vorhersagen

- 1. Massenabhängige Zeitevolution ([7]).
- 2. Umgebungsabhängige Rotverschiebung: $\frac{z_{\rm Cluster}}{z_{\rm Leerraum}} \approx 1 + 0.003.$
- 3. Differentielle Rotverschiebung: $\frac{z(\lambda_1)}{z(\lambda_2)} \approx 1 + \beta_T \frac{\lambda_1 \lambda_2}{\lambda_0}$.

5.2 Tests für Galaxien-Dynamik

- 1. Tully-Fisher-Relation: $L \propto v_{\rm max}^{4+\epsilon}, \ \epsilon \approx \beta_{\rm T}.$
- 2. Gravitationslinseneffekte: $\alpha_{\rm lens} \propto \int \nabla \Phi \, dz$ ([1]).

6 Vergleich mit dem \(\Lambda\)CDM-Standardmodell

$\Lambda ext{CDM-Modell}$	T0-Modell
Dunkle Materie als Teilchen	Keine Dunkle Materie, Massenvariation
NFW-Profil: $\rho_{\rm DM}(r)$	$ ho_{ ext{eff}}(r) pprox rac{\kappa}{r^2}$
Relative Zeit, konstante Masse	Absolute Zeit, variable Masse
Dunkle Energie treibt Expansion	Dunkle Energie aus $T(x)$ -Austausch
Rotverschiebung durch Expansion	Rotverschiebung durch Energieverlust
Expandierendes Universum	Statisches Universum

7 Zusammenfassung

Das T0-Modell vereint absolute Zeit und variable Masse, um kosmische Phänomene zu erklären, gestützt durch interne Konsistenz und Verweise auf [1, 3, 2].

Literatur

- [1] Pascher, J. (2025). Massenvariation in Galaxien: Eine Analyse im T0-Modell mit emergenter Gravitation. 30. März 2025.
- [2] Pascher, J. (2025). Kompensatorische und additive Effekte: Eine Analyse der Messdifferenzen zwischen dem T0-Modell und dem ACDM-Standardmodell. 2. April 2025.
- [3] Pascher, J. (2025). Zeit-Masse-Dualitätstheorie (T0-Modell): Ableitung der Parameter κ , α und β . 4. April 2025.
- [4] Pascher, J. (2025). Anpassung der Temperatureinheiten in natürlichen Einheiten und CMB-Messungen. 2. April 2025.
- [5] Pascher, J. (2025). Von Zeitdilatation zu Massenvariation: Mathematische Kernformulierungen der Zeit-Masse-Dualitätstheorie. 29. März 2025.
- [6] Pascher, J. (2025). Mathematische Formulierung des Higgs-Mechanismus in der Zeit-Masse-Dualität. 28. März 2025.
- [7] Pascher, J. (2025). Dynamische Masse von Photonen und ihre Auswirkungen auf Nichtlokalität im T0-Modell. 25. März 2025.
- [8] Pascher, J. (2025). Dunkle Energie im T0-Modell: Eine mathematische Analyse der Energiedynamik. 3. April 2025.