Initial Nugget Evaluation Results for the TREC 2024 RAG Track with the AutoNuggetizer Framework

Ronak Pradeep¹, Nandan Thakur¹, Shivani Upadhyay¹, Daniel Campos², Nick Craswell³, Jimmy Lin¹

¹ University of Waterloo ² Snowflake ³ Microsoft

Abstract

This report provides an initial look at partial results from the TREC 2024 Retrieval-Augmented Generation (RAG) Track. We have identified RAG evaluation as a barrier to continued progress in information access (and more broadly, natural language processing and artificial intelligence), and it is our hope that we can contribute to tackling the many challenges in this space. The central hypothesis we explore in this work is that the nugget evaluation methodology, originally developed for the TREC Question Answering Track in 2003, provides a solid foundation for evaluating RAG systems. As such, our efforts have focused on "refactoring" this methodology, specifically applying large language models to both automatically create nuggets and to automatically assign nuggets to system answers. We call this the AutoNuggetizer framework. Within the TREC setup, we are able to calibrate our fully automatic process against a manual process whereby nuggets are created by human assessors semi-manually and then assigned manually to system answers. Based on initial results across 21 topics from 45 runs, we observe a strong correlation between scores derived from a fully automatic nugget evaluation and a (mostly) manual nugget evaluation by human assessors. This suggests that our fully automatic evaluation process can be used to guide future iterations of RAG systems.

1 Introduction

This report examines the partial results from the TREC 2024 Retrieval-Augment Generation (RAG) Track. There is, obviously, tremendous excitement and interest in RAG, but we feel that the *evaluation* of RAG output remains deficient from many perspectives. Furthermore, the lack of standardized evaluations presents a barrier to continued progress in information access, and more broadly, natural language processing and artificial intelligence. We hope to harness the institutional knowledge and resources provided by the National Institute of Standards and Technology (NIST) via the Text Retrieval Conference (TREC) to tackle these challenges. Now in its 33rd year, TREC has led the way in many aspects of evaluation in information retrieval (IR), natural language processing (NLP), and beyond, producing many innovations that the community (both researchers as well as practitioners) take for granted today. We hope that these efforts will lay similar foundations for standardization of RAG evaluation in the future.

Our central hypothesis is that the nugget evaluation methodology (Voorhees, 2003) provides a solid foundation for evaluating RAG systems. This methodology was originally articulated more than two decades ago in the context of the TREC Question Answering (QA) Track for evaluating answers to free-form "definition questions". This matches our RAG setting, where for a given query, there are claims or facts (i.e., nuggets) from different documents that are combined into a fluent and cohesive natural language response.

Query: how did african rulers contribute to the triangle trade

Answer: African rulers played a significant role in the triangular trade by capturing and supplying slaves to European traders. They actively participated in the trade by capturing individuals from inland areas and transporting them to the coast, where they were sold to European traders. This involvement was driven by the economic benefits they received, such as gold, guns, and other goods from Europe. Many African rulers and merchants developed new trade routes to avoid those who refused to cooperate, ensuring a steady supply of captives for the transatlantic slave trade. The trade was highly profitable for African rulers, who received a variety of European goods in exchange for slaves. This economic incentive led to the expansion of slave trade networks and the growth of states based on slavery, such as the Kingdom of Dahomey, which became one of the most prosperous nations due to its involvement in the slave trade. The triangular trade system involved three stages: the export of manufactured goods from Europe to Africa, the transportation of enslaved Africans to the Americas, and the return of goods such as sugar, coffee, and tobacco to Europe. African rulers were crucial in the first stage, where they exchanged captives for European goods, which were often luxury items or weapons that helped them gain military and political advantages over their rivals. Despite some African rulers voicing opposition to the practice, the lure of profits ensured their continued participation in the trade. The involvement of African rulers was essential for the success of the transatlantic slave trade, as European traders relied on them to capture and supply slaves from the African interior. This collaboration was fundamental to the operation of the triangular trade, as European traders were generally confined to coastal areas and depended on African intermediaries to procure slaves. In summary, African rulers contributed to the triangular trade by capturing and supplying slaves to European traders, driven by the economic benefits they received in exchange. Their involvement was crucial for the success and expansion of the transatlantic slave trade.

Table 1: Sample answer from the TREC 2024 RAG Track for topic 2024–35227. Note that here we have purposely omitted citations in the answer since this report does not cover *support*.

Given this starting point, our collective efforts have focused on "refactoring" the original nugget evaluation methodology in light of large language models (LLMs). Specifically, we leverage LLMs to both *automatically* create nuggets and *automatically* assign nuggets to system-generated answers. We implement our nugget evaluation methodology in the AutoNuggetizer framework. While this is not the first attempt to automate nugget evaluations (Lin and Demner-Fushman, 2005, 2006), the advent of LLMs provides opportunities that did not exist before.

The biggest advantage of our approach is minimal reinvention of the wheel, in that we are able to leverage the existing body of work that has gone into exploring the nugget evaluation methodology, e.g., (Lin and Zhang, 2007; Dang and Lin, 2007). For aspects that are not directly impacted by our use of LLMs, we can continue to assert findings from the literature without needing to carefully revalidate those claims again.

Furthermore, and unique to the TREC setup, we calibrate our fully automatic process against a (mostly) manual process whereby nuggets are created by NIST assessors semi-manually and assigned manually to system-generated answers by the same assessors.

It is important to qualify that this report focuses *only* on answer content (in terms of nuggets), and does not take into account *support*, or the requirement that the content be grounded by references into the underlying document collection. Thus, we do not consider possible LLM hallucinations at all. We will examine support in a separate report.

To provide the tl;dr —

Based on initial results across 21 topics from 45 runs, we observe a strong correlation between scores derived from a fully automatic nugget evaluation and a (mostly) manual nugget evaluation by NIST assessors. This suggests that our fully automatic evaluation process can be used to guide future iterations of RAG systems.

This report attempts to provide the experimental results to support the above assertion. ¹

¹We apologize in advance to our many colleagues who have done excellent work on RAG evaluation. Given the pressures of the strict TREC timeline, we did not have the opportunity to survey the field and acknowledge previous work in this report. Instead, we have decided to focus exclusively on our nugget evaluation methodology. A thorough discussion of the advantages and disadvantages of alternative approaches will be provided in a subsequent follow-up.

docid: msmarco_v2.1_doc_27_13195298#7_19215443

Title:

Text: How did some African rulers participate in the slave trade? African rulers had a major role in the slave trade. They benefited from the slave trade by capturing control of the slave trade. [...] Traders then returned to Europe with sugar, coffee, and tobacco. How did Africans change the Americas?"

NIST Judgment: 3

docid: msmarco_v2.1_doc_53_75729873#13_135844381

Title: -

Text: Lured by its profits, many African rulers continued to participate. African merchants developed new trade routes to avoid rulers who refused to cooperate. [...] The Africans were then transported across the Atlantic and sold in the West Indies. Merchants bought sugar, coffee, and tobacco in the West Indies and sailed to Europe with these products.

NIST Judgment: 0

docid: msmarco_v2.1_doc_37_390360760#3_822422101

Title: Atlantic slave trade

Text: Research published in 2006 reports the earliest known presence of African slaves in the New World. A burial ground in Campeche, Mexico, suggests slaves had been brought there not long after Hernán Cortés completed the subjugation of Aztec and Mayan Mexico. [...] The third and final part of the triangle was the return of goods to Europe from the Americas.

NIST Judgment: 2

docid: msmarco_v2.1_doc_23_1401225076#4_3089103831

Title: The Triangular Trade: APUSH Topics to Study [...]

Text: Twelve million Africans were captured in Africa with the intent to enter them into the slave trade. [...] The continent fell far behind the growth of the developing world, opening it up to European colonization in the 19th century. What are some historical people related to the Triangular Trade? Sir John Hawkins:

NIST Judgment: 2

docid: msmarco_v2.1_doc_33_1468082722#2_3121913532

Title: Roles played by leaders of African societies in continuing the trade [...]

At that time, there was no concept of being African – identity and loyalty were based on kinship or membership of a specific kingdom or society, rather than to the African continent. States based on slavery grew in power and influence. [...] Some African slave sellers became extremely wealthy from the expansion of the slave trade networks.

NIST Judgment: 2

Table 2: Sample retrieval results for topic 2024-35227 "how did african rulers contribute to the triangle trade".

2 The Setup of the TREC 2024 RAG Track

The TREC 2024 Retrieval-Augmented Generation (RAG) Track comprises three distinct but interconnected tasks: Retrieval (R), Augmented Generation (AG), and full Retrieval-Augmented Generation (RAG). Participants were given 301 queries (called topics in TREC parlance); their ultimate task was to return, for the AG and RAG tasks, well-formed answers for each individual query (up to a maximum of 400 words). The Retrieval (R) task can be viewed as an intermediate product in a full RAG pipeline.

Throughout this paper, we use topic 2024–35227 "how did african rulers contribute to the triangle trade" as a running example. A system-generated answer is provided in Table 1; in this case, the answer was generated using GPT-40 (Pradeep et al., 2024). Note that we have purposely omitted citations from this answer. Actual submissions to the TREC 2024 RAG Track took the form of structured JSON data wherein each answer sentence is explicitly linked to citations of documents within the corpus that (purportedly) support the assertions made in the sentence. This report does *not* consider the evaluation of support, i.e., attempts to measure the appropriateness of citations. We will discuss this important aspect of RAG evaluation in a separate paper.

The Retrieval (R) task adopts a standard *ad hoc* retrieval setup, where systems are tasked with returning ranked lists of relevant passages from the MS MARCO V2.1 deduped segment collection (Pradeep et al., 2024), which traces its lineage back to the original MS MARCO dataset (Bajaj et al., 2018). Unlike previous MS MARCO data, where passages were selected to be short human-readable answers, the V2.1 passages adopted a sliding window approach over full documents to generate more "natural" content. These passages form segments (sometimes called "chunks") suitable for RAG. Table 2 shows an example of retrieval results (i.e., from the R task) from the MS MARCO V2.1 segment collection. These results can then serve as prompt input for LLM-based answer generation.

- why are cancer rates higher on the east coast
- · how using maps can impact your pedagogy
- why was dame van winkle portrayed so negatively
- what is scientific evidence for or against the use of yoghurt
- what target stors's policies for shoplifting

Figure 1: Examples of five topics taken from the TREC 2024 RAG Track, demonstrating the real-world user queries.

In the Augmented Generation (AG) task, participants receive a fixed list of 100 retrieved results to generate their answers, provided by the organizers. In the retrieval-augmented generation (RAG) task, participants were free to retrieve and choose any document from the corpus to generate their answers.

This paper focuses on analyzing the results of system-generated answers only from the AG and RAG tasks. For interested readers, we have written a separate report focused specifically on the retrieval task (Upadhyay et al., 2024a).

Corpus Characteristics. The evaluation corpus—MS MARCO V2.1 deduped segment collection (Pradeep et al., 2024)—encompasses a total of 113,520,750 text passages, i.e., segments. These passages were derived through a data processing pipeline applied to the MS MARCO V2 document collection (Craswell et al., 2022). The preparation involved two key steps:

- 1. Document deduplication: The original collection of 11,959,635 documents underwent near-duplicate removal using locality-sensitive hashing (LSH), implementing MinHash with 9-gram shingles. This process resulted in 10,960,555 unique documents.
- 2. Passage generation: The deduped document collection was segmented into text passages using an overlapping sliding window approach, incorporating the parameters presented below. The resulting passages were typically 500–1000 characters in length.
 - A window size of 10 sentences long
 - A stride length of 5 sentences long

While these segments (passages) constitute the fundamental retrieval units, we adopt the convention of referring to them as "documents" throughout this report.

Topic Selection and Characteristics. Our evaluation uses contemporary topics sourced from Bing Search logs, specifically selecting non-factoid queries that demand comprehensive, multi-faceted, and potentially subjective responses (Rosset et al., 2024). Unlike previous MS MARCO queries, which were designed to be answered in a sentence or two, this query selection method gives us queries that need to be answered by multiple nuggets, potentially extracted from multiple documents.

The set of test topics was constructed near the submission deadline (late July 2024), rather than reusing queries that had already been publicly released in Rosset et al. (2024). This timing strategy primarily addresses concerns about relevance judgment contamination, though it's worth noting that the passage corpus is likely to be already contained in LLM pretraining data given its web-based nature and open-source availability.

The final topics, curated by NIST annotators, comprise 301 topics (queries) in total. Figure 1 presents representative examples that accurately highlight the nature of real-world user information needs, including their original formulation with grammatical inconsistencies and spelling errors.

Reference Ranked Lists. We provided participants with reference ranked lists for those who did not wish to perform retrieval on the document collection themselves. This represents input to the AG task, where participants could focus on the "augmented generation" part of RAG. We provided the top documents for each query based on an effective multi-stage ranking pipeline, described below:

The ranked lists that we provided to participants for AG integrate a combination of both first-stage retrievers and rerankers. For first-stage retrieval, we employed a combination of a traditional retriever, BM25 + Rocchio, available in Anserini (Yang et al., 2017); GTE-L, a dense retrieval model from

Figure 2: The high-level overview of the TREC 2024 RAG Track.

Alibaba-NLP (Li et al., 2023); and two Snowflake ArcticEmbed dense retrieval models (Merrick et al., 2024), ArcticEmbed-M and ArcticEmbed-L. For each method, we retrieved the top 3K documents. To leverage the strengths of multiple retrieval strategies, we performed reciprocal rank fusion (RRF) across all retrieved results; hybrid approaches have demonstrated improved retrieval effectiveness across multiple TREC tracks (Lassance et al., 2023).

Following retrieval, we deployed a cascading neural reranking pipeline to further refine the ranked lists. We used monoT5-3B (Nogueira et al., 2020; Pradeep et al., 2021), a pointwise reranker model that reranks the top 3K documents from the retrieval stage, which are again fused with RRF from the retrieval stage.

We finally incorporated RankZephyr, a state-of-the-art listwise reranker (Pradeep et al., 2023), which takes a query and a list of passages as input and produces a reordered list based on the query-document relevance. We used RankZephyr to rerank the top 100 candidates from the retrieval + rerank stage, which we yet again fused with the results from the retrieval + rerank stage. RankZephyr is available through the rank_llm Python package, making our entire pipeline reproducible. Finally, the top 100 reranked documents from the official collection are provided to the AG participants.

3 The Nugget Evaluation Methodology

A high-level overview of the evaluation flow for the TREC 2024 RAG Track is shown in Figure 2. In this report, we are only concerned with the nugget evaluation methodology (the orange boxes in the figure). In particular, we do not discuss the evaluation of support (i.e., citations) at all. For retrieval, we can point interested readers to a separate report detailing our findings (Upadhyay et al., 2024a). Note that the figure is taken from track guidelines posted in Spring 2024 and thus slightly outdated. The actual evaluation workflow we implemented is substantively similar, but with slightly different terminology.

The gist of the nugget evaluation methodology is as follows, where we quote from Voorhees (2003):

The assessor first created a list of "information nuggets" about the [query]. An information nugget was defined as a fact for which the assessor could make a binary decision as to whether a response contained the nugget. At the end of this step, the assessor decided which nuggets were vital—nuggets that must appear in [a response] for that [response] to be good.

Automatic nugget creation (AutoNuggets) using UMBRELA qrels

African rulers captured and sold slaves to Europeans (vital)

African rulers waged wars to capture more slaves (vital)

African rulers exchanged slaves for firearms (vital)

African rulers' involvement was crucial for the trade's scale (vital)

African rulers' involvement increased due to European demand (vital)

African rulers captured slaves from raids and wars (vital)

African rulers' control and supply of captives was significant (vital)

African rulers transported captives to coastal slave forts (vital)

African rulers traded slaves for textiles and ironware (vital)

African rulers grew wealthy from the slave trade (okay)

African rulers' alliances with Europeans were fundamental (okay)

African rulers' trade caused increased tension and violence (okay)

African rulers' actions led to internal African upheavals (okay)

African rulers' alliances resulted in rival community attacks (okay)

African rulers' trade led to increased internal slavery (okay)

Table 3: Automatically created nuggets for topic id 2024-35227 "how did african rulers contribute to the triangle trade" using documents considered by UMBRELA to be relevant.

The assessor went on to the second step once the nugget list was created. In this step the assessor went through each of the system responses in turn and marked (whether) each nugget appeared in the response.

Our AutoNuggetizer framework represents a "refactoring" of this nugget evaluation methodology, brought up to date with respect to the latest advances in LLMs and the LLM-as-a-judge literature. While there have been previous attempts to automate nugget evaluations (Lin and Demner-Fushman, 2005, 2006), this effort represents the first since the advent of modern LLMs, which provide capabilities that did not previously exist.

As a concrete example, the nuggets for topic 2024-35227 "how did african rulers contribute to the triangle trade" are shown in Table 3. In this case, the nuggets were automatically created from documents considered by UMBRELA to be at least related to the topic; more details below, and see Upadhyay et al. (2024a) for a complete account of the relevance assessment process. These nuggets capture elements of what should be in a good answer, divided into "vital" and "okay" categories. "Vital" nuggets are those, as Voorhees (2003) articulates, must be present in a good response, while "okay" nuggets are "good to have", but are not absolutely necessary.

Thus, the nugget evaluation methodology comprises two main steps:

Nugget Creation. This corresponds to the first step in the nugget evaluation methodology described by Voorhees (2003), often dubbed "nuggetization". Nuggets must be created based on an input set of documents under consideration; the input set is a design choice that we detail below. Note that part of the nugget creation process is the determination of whether a nugget is "vital" or "okay".

In the original implementation of the evaluation methodology in 2003, NIST assessors manually formulated these nuggets based on documents in the pool that they assessed to be relevant. That is, nugget creation followed relevance assessment (via pooling). In our AutoNuggetizer framework, we have attempted to automate this process, using LLMs to generate what we call AutoNuggets (see Section 3.1).

It is important to note that while nuggets manifest as short natural language phrases or sentences, they are formulated at the semantic or conceptual level, and thus may or may not correspond to phrases or other lexical realizations in source documents.

Nugget Assignment. This corresponds to the second step in the nugget evaluation methodology described by Voorhees (2003). After the nuggets have been created, the list can be treated like "an answer key". The assessor then reads the answer of each system to perform nugget assignment, which is a determination of whether each nugget appears in the response. That is: Does a system's answer contain this particular nugget? In our AutoNuggetizer framework, nugget assignment is performed automatically by an LLM (see Section 3.3).

It is important to note that the nugget assignment process is performed at the semantic or conceptual level, not merely based on lexical matching (and hence requires understanding, inference, and reasoning). In particular, a nugget can be assigned to an answer (i.e., appears in the answer) even if there is no lexical overlap between the nugget itself and the system's output.

After the nugget assignment process, we arrive at a record of which nuggets were found in which systems' answers. At this point, it is straightforward to compute various metrics to quantify the quality of a response and the overall score of a run. We refer interested readers to Voorhees (2003) for details on how final scores were computed previously; we adopt a different approach to quantifying answer quality in our evaluation (see Section 3.5).

Within our general AutoNuggetizer framework, we can instantiate a number of variants. In this work, we considered two conditions:

- Automatic nugget creation with manual post-editing (AutoNuggets+Edits) and manual nugget assignment (ManualAssign). In this condition, we start with the set of documents that have been manually judged by NIST assessors to be relevant, which serves as the input to AutoNuggets to create nuggets automatically (using an LLM, as described in Section 3.1). These nuggets are then post-edited by NIST assessors, who may add, eliminate, or combine nuggets. Nugget creation here represents a semi-manual process where the LLM makes suggestions, but the overall process remains very much driven by human assessors. Once these nuggets are created, the nugget assignment process is performed manually by the same NIST assessor (see Section 3.4). That is, the assessor reads each system's response to determine which nuggets are contained in it.
- Automatic nugget creation (AutoNuggets) and automatic nugget assignment (AutoAssign). In this
 condition, we start with the set of documents that have been assessed as relevant by UMBRELA,
 which is a fully automated process. Nuggets are then automatically created from this set, using
 AutoNuggets (see Section 3.1). Given the nuggets, the nugget assignment process is also fully
 automatic, using AutoAssign (see Section 3.3). Thus, this condition is fully automatic, end to end.

Details are provided below.

3.1 Automatic Nugget Creation

The first step in our AutoNuggetizer framework is to extract a list of atomic information units that we call nuggets from a set of input documents. This nugget creation process, sometimes dubbed "nuggetization", is crucial to characterize the information that should be contained in a high-quality answer to a user query.

To perform nuggetization, we employ GPT-40 through the Azure endpoint. The nuggetization process is run over all documents that are judged to be at least "related" to the query (grade ≥ 1). Note that, depending on the actual evaluation condition (see above), these relevance judgments are either provided by NIST assessors or by UMBRELA (Upadhyay et al., 2024b). Details about relevance assessments are discussed in Upadhyay et al. (2024a)

The LLM is prompted to update a list of nuggets that collectively represent the key information elements required to fully answer the query, conditioned on the provided context (documents). The first iteration for each query starts out with an empty pythonic list. Our prompt design encourages the model to produce comprehensive and diverse nuggets, ensuring broad coverage of different aspects of the user's information need. This iterative approach allows for the generation of a rich set of nuggets, capturing both explicit and implicit information requirements derived from the query. We aim to generate nuggets that are neither too broad nor too specific. Informed by Voorhees (2003) and previous implementations of nugget evaluations, we limit generation to at most 30 nuggets.

Once we have generated a set of nuggets for a given query, the next step is to assess the importance of each nugget. We again use GPT-40; following Voorhees (2003), the LLM is asked to assign an importance label of either "vital" or "okay" with the prompt shown in Figure 4.

At this point, we sort the nuggets in descending order of importance and select the first 20 nuggets. This approach usually trims a few okay nuggets and, less frequently, some vital nuggets (when there are over 20 of them). Note that these nuggets are ordered by decreasing importance, as imposed by the prompt in Figure 3. The resultant nugget set, we dub AutoNuggets.

Automatic nugget creation (AutoNuggets) using NIST qrels

African rulers captured and sold slaves to European traders (vital)

African rulers exchanged slaves for firearms and goods (vital)

African rulers' involvement was crucial for the transatlantic slave trade (vital)

African rulers' cooperation enabled large-scale slave trade (vital)

African rulers sold war captives, criminals, and debtors (vital)

African rulers benefited from the slave trade (vital) African rulers waged wars to capture more slaves (vital)

African rulers' complicity was essential for the slave trade's scale (vital)

African rulers' dominance over the interior facilitated the trade (vital)

African rulers' involvement led to human trafficking on an industrial scale (vital)

African rulers' participation was motivated by access to European goods (vital)

African rulers' participation increased their wealth and power (okay)

African rulers' actions had a lasting negative impact on Africa (okay)

African rulers received European goods for slaves (okay)

African rulers transported captives to coastal slave forts (okay)

African rulers formed alliances with European traders (okay)

African rulers' actions were influenced by existing African slavery practices (okay)

African rulers demanded consumer articles and gold for captives (okay)

African rulers encouraged European traders to come to their ports (okay)

Post-edited nuggets (AutoNuggets+Edits) using NIST qrels

African rulers sold slaves to European traders (vital)

African rulers transported captives to coastal slave forts (vital)

African rulers formed alliances with European traders (vital)

African rulers' cooperation enabled large-scale slave trade (vital)

African rulers' dominance over the interior facilitated the trade (vital)

African rulers encouraged European traders to come to their ports (vital)

African rulers sold war captives to European traders (okay)

African rulers sold criminals to European traders (okay)

African rulers sold debtors to European traders (okay)

African rulers waged wars to capture more slaves (okay)

African rulers conducted raids to capture more slaves (okay)

African rulers received consumer goods for slaves (okay)

African rulers received firearms for slaves (okay)

African rulers benefited from the slave trade (okay)

African rulers' participation increased their wealth (okay)

African rulers' participation increased their power (okay)

African rulers demanded gold for captives (okay)

African rulers' actions had a lasting negative impact on Africa (okay)

Table 4: Comparison of nuggets before and after human post-editing.

3.2 Semi-Manual Nugget Creation

In the condition that we denote as AutoNuggets+Edits, NIST assessors post-edit nuggets that have been proposed by AutoNuggets. Here, we start with the set of documents that have been manually judged by NIST assessors to be at least "related" to the query (grade ≥ 1), which serves as the input to AutoNuggets to create nuggets automatically (see Section 3.1). Note that in this case, the input set of documents has already been judged by humans to be at least related to the user's query, unlike with the UMBRELA labels, which are generated automatically.

The automatically generated nuggets that we provide to NIST assessors are prepared in a slightly different way: for each query, we create a set of 30 nuggets without any indication of importance. This over-generation is deliberate. These nuggets are then edited by NIST assessors, who may add, eliminate, or combine nuggets. The NIST assessors perform this task by concurrently considering the list of relevant documents for that topic. The process takes roughly an hour per topic, which suggests that the NIST assessors are not merely "rubber stamping" automatically generated nuggets, but are actually carefully deliberating over the formulation of the nuggets.

An example of this process is shown in Table 4 for our running example. On the top, we have the automatically generated nuggets, and on the bottom, we have the post-edited nuggets.

3.3 Automatic Nugget Assignment

The final component of our AutoNuggetizer framework, AutoAssign, automatically assigns nuggets to systems' answers. We adopt a listwise approach to nugget assignment, where the LLM is used to analyze an answer and determine if each nugget is fully supported (support), partially supported

SYSTEM: You are NuggetizeLLM, an intelligent assistant that can update a list of atomic nuggets to best provide all the information required for the query.

USER: Update the list of atomic nuggets of information (1-12 words), if needed, so they best provide the information required for the query. Leverage only the initial list of nuggets (if exists) and the provided context (this is an iterative process). Return only the final list of all nuggets in a Pythonic list format (even if no updates). Make sure there is no redundant information. Ensure the updated nugget list has at most 30 nuggets (can be less), keeping only the most vital ones. Order them in decreasing order of importance. Prefer nuggets that provide more interesting information.

```
Search Query: \{query\}
Context:
[1] \{seg_1\}
[2] \{seg_2\}
...
[10] \{seg_{10}\}
Search Query: \{query\}
Initial Nugget List: \{n_{i-1}\}
Initial Nugget List Length: \{len(n_{i-1})\}
Only update the list of atomic nuggets (if needed, else return as is). Do not explain. Always answer in short nuggets (not questions). List in the form ["a", "b", ...] and a and b are strings with no mention of ". Updated Nugget List:
\mathbf{LLM:} [n_{i+1,1}, \ldots]
```

Figure 3: Prompt for the iterative LLM-based nuggetization at turn *i*.

SYSTEM: You are NuggetizeScoreLLM, an intelligent assistant that can label a list of atomic nuggets based on their importance for a given search query.

USER: Based on the query, label each of the $\{len(n_f)\}$ nuggets either a vital or okay based on the following criteria. Vital nuggets represent concepts that must be present in a "good" answer; on the other hand, okay nuggets contribute worthwhile information about the target but are not essential. Return the list of labels in a Pythonic list format (type: List[str]). The list should be in the same order as the input nuggets. Make sure to provide a label for each nugget.

```
Search Query: \{query\}
Nugget List: \{n_f\}
Only return the list of labels (List[str]). Do not explain.
Labels:
LLM: ["vital", "okay", ...]
```

Figure 4: Prompt for determining the importance of nuggets. At each turn, at most 10 nuggets are passed to the LLM.

SYSTEM: You are NuggetizeAssignerLLM, an intelligent assistant that can label a list of atomic nuggets based on if they are captured by a given passage.

USER: Based on the query and passage, label each of the $\{len(n_f)\}$ nuggets either as support, partial_support, or not_support using the following criteria. A nugget that is fully captured in the passage should be labeled as support. A nugget that is partially captured in the passage should be labeled as partial_support. If the nugget is not captured at all, label it as not_support. Return the list of labels in a Pythonic list format (type: List[str]). The list should be in the same order as the input nuggets. Make sure to provide a label for each nugget.

```
Search Query: \{query\}
Passage: \{p\}
Nugget List: \{n_f\}
Only return the list of labels (List[str]). Do not explain.
Labels:
LLM: ["support", "not_support", "partial_support", ...]
```

Figure 5: Prompt for nugget assignment. At each turn, at most 10 nuggets are passed to the LLM.

Nuggets	Assignment
Automatic nugget creation (AutoNuggets) using UMBRELA qrels, AutoAssign	
African rulers captured and sold slaves to Europeans (vital)	Support
African rulers waged wars to capture more slaves (vital)	Not Support
African rulers exchanged slaves for firearms (vital)	Partial Support
African rulers' involvement was crucial for the trade's scale (vital)	Support
African rulers' involvement increased due to European demand (vital)	Partial Support
African rulers captured slaves from raids and wars (vital)	Partial Support
African rulers' control and supply of captives was significant (vital)	Support
African rulers transported captives to coastal slave forts (vital)	Support
African rulers traded slaves for textiles and ironware (vital)	Not Support
African rulers grew wealthy from the slave trade (okay)	Support
African rulers' alliances with Europeans were fundamental (okay)	Support
African rulers' trade caused increased tension and violence (okay)	Partial Support
African rulers' actions led to internal African upheavals (okay)	Partial Support
African rulers' alliances resulted in rival community attacks (okay)	Partial Support
African rulers' trade led to increased internal slavery (okay)	Partial Support
Post-edited nuggets (AutoNuggets+Edits) using NIST qrels, ManualAssign	
African rulers sold slaves to European traders (vital)	Support
African rulers sold war captives to European traders (okay)	Not Support
African rulers sold criminals to European traders (okay)	Not Support
African rulers sold debtors to European traders (okay)	Not Support
African rulers transported captives to coastal slave forts (vital)	Not Support
African rulers waged wars to capture more slaves (okay)	Not Support
African rulers conducted raids to capture more slaves (okay)	Not Support
African rulers formed alliances with European traders (vital)	Not Support
African rulers' cooperation enabled large-scale slave trade (vital)	Not Support
African rulers' dominance over the interior facilitated the trade (vital)	Not Support
African rulers encouraged European traders to come to their ports (vital)	Not Support
African rulers received consumer goods for slaves (okay)	Support
African rulers received firearms for slaves (okay)	Support
African rulers benefited from the slave trade (okay)	Support
African rulers' participation increased their wealth (okay)	Not Support
African rulers' participation increased their power (okay)	Not Support
African rulers demanded gold for captives (okay)	Support
African rulers' actions had a lasting negative impact on Africa (okay)	Not Support

Accionment

Table 5: Comparison of nugget assignment and nugget creation approaches.

(partial_support), or not supported (not_support) by the answer. Again, we employ GPT-40 through the Azure endpoint, with the prompt shown in Figure 5. We iteratively prompt the model with at most 10 nuggets to evaluate assignment at each step.

3.4 Manual Nugget Assignment

In the manual nugget assignment process, we leverage the expertise of the original NIST annotator involved in creating the list of nuggets. The annotator examines each answer text, assigning each nugget one of three labels based on the extent of its support: support, partial_support, and not_support (same as with automatic assignment). It is worth clarifying that annotators in this step are not shown any LLM output, so this is a fully manual process.

By involving the same annotator responsible for nugget creation, we ensure continuity and consistency in nugget interpretation. This continuity helps maintain reliability across the nugget assignment process, as the annotator applies the original context and intent behind each nugget to the assessment of answer coverage.

An example is shown in Table 5: on the top, we show fully automatic assignment (AutoAssign) of automatically created nuggets (AutoNuggets) using UMBRELA qrels; on the bottom, we show manual assignment (ManualAssign) of post-edited nuggets (AutoNuggets+Edits) using NIST qrels. The answer being evaluated is the one shown in Table 1.

3.5 Scoring

Nuggete

At this point in the evaluation, we have already completed nugget creation and nugget assignment. For each query, we have a list of nuggets, and for each system's response, we have a record of

which nuggets it contains, in terms of a three-way judgment: support, partial_support, and not_support (either manual or automatic nugget assignment).

The final step is to compute the score for a system's response to a query q. The score of a run is simply the mean of the score across all queries. We compute the following scores per query:

All (A) This score is the average of the scores for all nuggets in an answer. Given:

$$s_i = \begin{cases} 1 & \text{if assignment = support} \\ 0.5 & \text{if assignment = partial_support} \\ 0 & \text{otherwise} \end{cases} \tag{1}$$

The "All" score is then calculated as:

$$A = \frac{\sum_{i} s_{i}}{N_{\text{nuggets}}}$$

All Strict (A_{strict}) This variant is calculated the same as the "All" score above, but with stricter nugget matching:

$$ss_i = \begin{cases} 1 & \text{if assignment = support} \\ 0 & \text{otherwise} \end{cases}$$

$$A_{\text{strict}} = \frac{\sum_i ss_i}{N_{\text{nuccets}}}$$

$$(2)$$

Vital (V) This score is the average of the scores for only the vital nuggets in the answer, where n^v represents the subset of the vital nuggets. We define s_i^v in the same exact way as s_i above, but only over the vital nuggets:

$$V = \frac{\sum_{i} s_{i}^{v}}{|\mathbf{n}^{v}|}$$

Vital Strict (V_{strict}) This score is used as the primary metric in the evaluation. It is calculated the same as V, but with stricter nugget matching. We define ss_i^v in the same exact way as ss_i above, but only over the vital nuggets:

$$V_{ ext{strict}} = rac{\sum_{i} s s_{i}^{v}}{|\mathbf{n}^{\mathbf{v}}|}$$

Weighted Score (W) Here we assign a weight of 1 to vital nuggets and 0.5 to okay nuggets. We define n^v to be the vital nuggets and n^o to be the okay nuggets. The score s_i^v is defined the same as above; the score s_i^o is defined similarly, but over okay nuggets. Then:

$$W = \frac{\sum s_i^v + 0.5 \cdot \sum s_i^o}{|\mathbf{n}^v| + 0.5 \cdot |\mathbf{n}^o|}$$

Weighted Score Strict (W_{strict}) This variant is calculated the same way as the Weighted Score, but using the stricter nugget matching, i.e., ss_i^v and its counterpart ss_i^o .

$$W_{\text{strict}} = \frac{\sum ss_i^v + 0.5 \cdot \sum ss_i^o}{|\mathbf{n}^{\mathbf{v}}| + 0.5 \cdot |\mathbf{n}^{\mathbf{o}}|}$$

4 Results

For the TREC 2024 RAG Track, NIST received 93 runs from 20 groups for the RAG task and 53 runs from 11 groups for the AG task. Given resource constraints, the NIST annotators were able to

Figure 6: Scatter plot showing correlations between manual vs. automatic $V_{\rm strict}$ scores for AG and RAG runs, over 21 topics that have been manually evaluated by NIST. The x axis shows automatic scores from the AutoNuggets / AutoAssign condition and the y axis shows manual scores from the AutoNuggets+Edits / ManualAssign condition. Red circles (RAG runs) and orange squares (AG runs) represent run-level scores from Tables 6 and 7. Blue circles (RAG runs) and purple squares (AG runs) show all topic/run combinations. The top-left box reports Kendall's τ correlations at the run level (red circles/orange squares), over all topic/run combinations (blue circles/purple squares), and the variant where we compute Kendall's τ per topic, and then average over the per-topic values.

evaluate only the two highest priority submissions from each group across the RAG and AG tasks, which translates into 31 runs from 18 groups for RAG and 14 runs from 9 groups for AG.

Note that human annotation is ongoing as of November 14, 2024. The annotations completed by November 8, 2024 form the basis of partial results that we report here. To be clear, our analyses are over 21 topics that have been fully judged across the 31 RAG runs and 14 AG runs discussed above. We plan to provide more exhaustive analyses once annotations are complete.

Table 6 shows scores for AG and RAG runs under the AutoNuggets+Edits / ManualAssign condition: automatic nugget creation with manual post-editing and manual nugget assignment. Table 7 shows scores for the same runs, over the same topics, but for the AutoNuggets / AutoAssign condition: automatic nugget creation and automatic nugget assignment. These tables present results for (mostly) manual nugget evaluation and fully automatic nugget evaluation, respectively.

The biggest question, of course, is whether the manual scores and the automatic scores correlate?

Figure 7: Scatter plot of L and $V_{\rm strict}$ from Table 6 over 21 topics that have been manually evaluated by NIST. The red/orange dots show run-level scores and the blue/purple dots show all topic/run combinations. Circles indicate RAG submissions and squares, AG.

The answer is, yes. This is shown in Figure 6, which is a scatter plot of V_{strict} from Tables 6 and 7. The solid red circles and solid orange squares represent run-level V_{strict} scores: red squares represent RAG runs and orange squares represent AG runs. As reported in the top left corner, we observe a Kendall's τ correlation of 0.783, which represents substantial agreement, especially considering that we only have results over 21 topics.

Also in Figure 6, the blue circles and purple squares show all topic/run combinations: blue circles for RAG and purple squares for AG. If we treat each topic/run combination as an observation and compute Kendall's τ over all these observations, we arrive at a value of 0.324, which is rather low. Alternatively, if we compute Kendall's τ for each topic, and then average across the per-topic correlations, we arrive at a figure of 0.518, also shown in the top-left corner.

The conclusion based on these results seem clear: while there is substantial disagreement on a topic-by-topic basis between the automatic and manual evaluation, at the run level, the rank correlation is substantial. To repeat our top-level findings from the introduction: We observe a strong correlation between scores derived from a fully automatic nugget evaluation and a (mostly) manual nugget evaluation by NIST assessors.

Evaluation of RAG is, of course, complex and multi-faceted. Our $V_{\rm strict}$ score captures the presence of vital nuggets, but this needs to be balanced by the length of the answer. Although our guidelines cap answer length at 400 words, there are teams who submitted answers that were much shorter on average. Answer length is shown by L in Table 6 and Table 7, measured in terms of the total number of standard whitespace words in the answer.

To explore the impact of answer length on answer quality, Figure 7 plots $V_{\rm strict}$ from Table 6 (i.e., the AutoNuggets+Edits / ManualAssign condition) vs. length L, both at the run level and across all topic/run combinations. We see that, indeed, there is a general correlation between $V_{\rm strict}$ and answer length. However, we also see relatively large variations in answer quality, even holding answer length constant: points that are vertically aligned have the same (mean) answer length, but contain different amounts of vital nuggets. From this, we can trace a Pareto-optimal curve for the systems in the evaluation—that is, for a given answer length, what is the best that current systems can accomplish?

In these results, we have adopted the strategy of presenting RAG and AG submissions together. In Figures 6 and 7, this done with different colors and shapes. While this approach increases clutter, it easily provides a comparison between RAG and AG runs as a whole. Interesting, it does *not* appear to be the case that full RAG submissions outperform AG submissions in general, which suggests that the reference ranked lists that we provided to AG participants seem "good enough" from the perspective of answer generation.

Finally, in Table 8, we show scores under the AutoNuggets / AutoAssign condition for all runs submitted to evaluation, across all 301 topics provided to the participants.

Due to time constraints, we have not conducted all the analyses we wished to have performed. The results and analyses that we present here answer many questions but raise even more, which we hope to address later.

5 Conclusions

While we are certainly not the first to propose a RAG evaluation methodology, we view our efforts as having two main distinguishing characteristics: First, by building on the nugget evaluation methodology dating back over two decades, we minimize reinvention of the wheel. The information retrieval literature has a long tradition of deliberate and careful meta-evaluations that validate evaluation methodologies, and much work has examined different aspects of nugget evaluations. For aspects of the evaluation that are not dependent on LLMs, we can simply build on existing findings. Second, we have demonstrated strong correlations between scores derived from a fully automatic nugget evaluation and a (mostly) manual nugget evaluation. Coupled with the first point, the manual scores for nugget evaluations have at least achieved reasonable acceptance by the community on how to evaluate free-form answers to complex questions. We show that the evaluation methodology can be automated using LLMs.

Under the AutoNuggets / AutoAssign condition in our AutoNuggetizer framework, we are able to provide evaluation scores for all runs submitted to the TREC 2024 RAG Track, across all 301 topics—at only the cost of LLM inference. Our framework has the potential to enable rapid iteration on RAG systems in a fully automatic manner, while providing some confidence that the automatically generated metrics have some degree of correlation to answer quality as determined by human assessors. We can now potentially climb hills quickly and in a meaningful way!

Acknowledgments

This work would not have been possible without Hoa Trang Dang, Ian Soboroff, and the team at NIST. We are grateful for their contributions. This research was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Additional funding is provided by Snowflake and Microsoft via the Accelerating Foundation Models Research program. Thanks to Corby Rosset for providing our Bing query test set, based on the methodology developed in Rosset et al. (2024)

References

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2018. MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. *arXiv:1611.09268* (2018).

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, Jimmy Lin, Ellen M. Voorhees, and Ian Soboroff. 2022. Overview of the TREC 2022 Deep Learning Track. In *Proceedings of the Thirty-First Text REtrieval Conference (TREC 2022)*. Gaithersburg, Maryland.

Hoa Trang Dang and Jimmy Lin. 2007. Different Structures for Evaluating Answers to Complex Questions: Pyramids Won't Topple, and Neither Will Human Assessors. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL 2007)*. Prague, Czech Republic.

- Carlos Lassance, Ronak Pradeep, and Jimmy Lin. 2023. Naverloo @ TREC Deep Learning and NeuCLIR 2023: As Easy as Zero, One, Two, Three Cascading Dual Encoders, Mono, Duo, and Listo for Ad-Hoc Retrieval. In *Proceedings of the Thirty-Second Text Retrieval Conference (TREC 2023)*. Gaithersburg, Maryland.
- Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. 2023. Towards general text embeddings with multi-stage contrastive learning. *arXiv:2308.03281* (2023).
- Jimmy Lin and Dina Demner-Fushman. 2005. Automatically Evaluating Answers to Definition Questions. In Proceedings of the 2005 Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP 2005). Vancouver, British Columbia, Canada.
- Jimmy Lin and Dina Demner-Fushman. 2006. Methods for Automatically Evaluating Answers to Complex Questions. *Information Retrieval* 9, 5 (2006).
- Jimmy Lin and Pengyi Zhang. 2007. Deconstructing Nuggets: The Stability and Reliability of Complex Question Answering Evaluation. In *Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007)*. Amsterdam, the Netherlands.
- Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel Campos. 2024. Arctic-Embed: Scalable, Efficient, and Accurate Text Embedding Models. *arXiv:2405.05374* (2024).
- Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Document Ranking with a Pretrained Sequence-to-Sequence Model. In *Findings of the Association for Computational Linguistics: EMNLP 2020*. Association for Computational Linguistics, Online.
- Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models. *arXiv:2101.05667* (2021).
- Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze! *CoRR* abs/2312.02724 (2023). arXiv:2312.02724
- Ronak Pradeep, Nandan Thakur, Sahel Sharifymoghaddam, Eric Zhang, Ryan Nguyen, Daniel Campos, Nick Craswell, and Jimmy Lin. 2024. Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track. *arXiv*:2406.16828 (2024).
- Corby Rosset, Ho-Lam Chung, Guanghui Qin, Ethan C. Chau, Zhuo Feng, Ahmed Awadallah, Jennifer Neville, and Nikhil Rao. 2024. Researchy Questions: A Dataset of Multi-Perspective, Decompositional Questions for LLM Web Agents. *arXiv:2402.17896* (2024).
- Shivani Upadhyay, Ronak Pradeep, Nandan Thakur, Daniel Campos, Nick Craswell, Ian Soboroff, Hoa Trang Dang, and Jimmy Lin. 2024a. A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look. *arXiv:2411.08275* (2024).
- Shivani Upadhyay, Ronak Pradeep, Nandan Thakur, Nick Craswell, and Jimmy Lin. 2024b. UMBRELA: UMbrela is the (Open-Source Reproduction of the) Bing RELevance Assessor. *arXiv:2406.06519* (2024).
- Ellen M. Voorhees. 2003. Overview of the TREC 2003 Question Answering Track. In *Proceedings* of the Twelfth Text REtrieval Conference (TREC 2003). Gaithersburg, Maryland.
- Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the Use of Lucene for Information Retrieval Research. In *Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2017)*. Tokyo, Japan.

Run ID	Task	$V_{ m strict}$	V	$W_{ m strict}$	W	$A_{ m strict}$	A	L
ldisnu.ldilab_gpt_4o	AG	0.6666	0.6758	0.5947	0.6113	0.5581	0.5784	290.86
h2oloo.listgalore_gpt4o_ragnarokv4_top20	RAG	0.6411	0.6589	0.5785	0.6044	0.5483	0.5764	287.71
neu.neuragfix	RAG	0.6372	0.6534	0.5896	0.6138	0.5626	0.5906	327.62
neu.neurag	RAG	0.6133	0.6243	0.5745	0.5931	0.5511	0.5734	327.62
ldisnu.dilab_repllama_listt5_pass3_gpt4o	RAG	0.6121	0.6217	0.5681	0.5764	0.5425	0.5497	291.90
coordinators.baseline_frag_rag24.test_gpt-4o_top20	RAG	0.6074	0.6284	0.5541	0.5787	0.5242	0.5493	306.43
softbank-meisei.agtask-bm25-colbert_faiss-gpt4o-llama70b	AG	0.5497	0.5685	0.5124	0.5297	0.4901	0.5060	213.81
KML.gpt_mini	AG	0.5476	0.5605	0.5281	0.5456	0.5148	0.5345	373.62
CIR.cir_gpt-4o-mini_no_reranking_50_0.5_100_301_p1	AG	0.5298	0.5509	0.4990	0.5248	0.4794	0.5073	151.90
coordinators.baseline_frag_rag24.test_command-r-plus_top20	RAG	0.5261	0.5366	0.4963	0.5141	0.4768	0.4975	234.05
ncsu-las.LAS-splade-mxbai-rrf-mmr8	RAG	0.5254	0.5452	0.4825	0.5014	0.4638	0.4817	299.33
coordinators.baseline_rag24.test_l31_70b_instruct_top20	AG	0.5218	0.5326	0.4558	0.4720	0.4274	0.4462	194.10
webis.webis-rag-run1-taskrag	RAG	0.5131	0.5386	0.4769	0.5002	0.4591	0.4806	177.62
CIR.cir_gpt-4o-mini_Cosine_50_0.5_100_301_p1	AG	0.5104	0.5176	0.4831	0.4951	0.4640	0.4784	161.57
KML.cohere+post_processing	AG	0.5055	0.5154	0.4609	0.4707	0.4370	0.4466	342.57
WaterlooClarke.UWCrag	RAG	0.4856	0.4894	0.4407	0.4493	0.4194	0.4300	170.43
buw.buw	RAG	0.4806	0.4899	0.4174	0.4258	0.3880	0.3954	193.86
ncsu-las.LAS-splade-mxbai-mmr8-RAG	RAG	0.4637	0.4807	0.4500	0.4670	0.4316	0.4484	296.05
softbank-meisei.rag_bm25-colbert_faiss-gpt4o-llama70b	RAG	0.4610	0.4814	0.4263	0.4450	0.4046	0.4216	179.10
Ruc01.ruc001	RAG	0.4479	0.4640	0.3916	0.4054	0.3620	0.3744	236.48
h2oloo.listgalore_131-70b_ragnarokv4_top20	RAG	0.4477	0.4594	0.3960	0.4137	0.3701	0.3910	208.24
citi.BEST_cot_gpt3.5	RAG	0.4448	0.4529	0.3961	0.4074	0.3690	0.3817	198.86
webis.webis-rag-run0-taskrag	RAG	0.4407	0.4584	0.4148	0.4342	0.3989	0.4185	162.95
InfoLab.UDInfolab.RAG.Query	RAG	0.4383	0.4489	0.4181	0.4319	0.4014	0.4165	149.33
InfoLab.UDInfolab.RAG.AnsAI	RAG	0.4322	0.4455	0.4099	0.4249	0.3905	0.4057	158.05
IITD-IRL.ag_rag_gpt35_expansion_rrf_20	AG	0.4282	0.4387	0.4004	0.4091	0.3817	0.3890	97.19
ielab.ielab-b70bf-70bqfs-ad_hoc	RAG	0.4240	0.4331	0.3740	0.3888	0.3500	0.3673	180.29
TREMA-UNH.Ranked_Iterative_Fact_Extraction	AG	0.4014	0.4176	0.3678	0.3885	0.3522	0.3753	373.05
citi.SECOND_cot_gpt3.5	RAG	0.4008	0.4123	0.3628	0.3776	0.3395	0.3556	171.10
TREMA-UNH.Enhanced_Iterative_Fact_Refinement	AG	0.3971	0.4143	0.3773	0.3953	0.3662	0.3853	379.95
IITD-IRL.zeph_test_rag_rrf_expand_query	RAG	0.3826	0.3958	0.3422	0.3547	0.3227	0.3344	84.48
uis-iai.baseline_top_5	AG	0.3785	0.3909	0.3394	0.3500	0.3194	0.3285	82.43
WaterlooClarke.UWCgarag	RAG	0.3733	0.3945	0.3535	0.3723	0.3435	0.3605	223.48
buw.oneshot_post_sentenced	RAG	0.3563	0.3682	0.3256	0.3392	0.3087	0.3221	214.19
IIIA-UNIPD.iiia_standard_p1_straight_ag	AG	0.3491	0.3591	0.3289	0.3403	0.3146	0.3264	133.48
uis-iai.ginger_top_5	AG	0.3256	0.3390	0.2953	0.3169	0.2803	0.3050	102.71
ielab.ielab-b70bf-70bqp-70bafs	RAG	0.3067	0.3155 0.3280	0.2681 0.2754	0.2780 0.2991	0.2496 0.2642	0.2598 0.2861	84.05 79.43
uog-tht.FT-llama3	RAG	0.3017						
uog-tht.ICL-mistral	RAG AG	0.2899	0.3128 0.2924	0.2698 0.2604	0.2887 0.2719	0.2608 0.2525	0.2769 0.2629	79.48 91.24
IIIA-UNIPD.iiia_dedup_p1_straight_ag								
SGU.qrant_bge_gemini ii_research.iiresearch-bm25-top10-llama3-8b-instruct	RAG RAG	0.2546 0.1999	0.2599 0.2043	0.2071 0.1798	0.2143 0.1850	0.1862 0.1672	0.1948 0.1724	128.10 178.76
IRIT.ISIR-IRIT-zephyr_query_gen	RAG	0.1999	0.2043	0.1798	0.1830	0.1672	0.1724	151.62
IRIT.ISIR-IRIT-zepnyr_query_gen IRIT.ISIR-IRIT-zephyr_p2	RAG	0.1346	0.1868	0.1433	0.1725	0.1338	0.1617	131.62
webis.webis-manual	RAG	0.1469	0.1726	0.1378	0.1393	0.1290	0.1474	29.24
wedis.wedis-manual	KAU	0.0040	0.0607	0.0732	0.0918	0.0767	0.0942	29.24
Min		0.0079	0.0079	0.0117	0.0127	0.0121	0.0134	9.95
Median		0.4126	0.4234	0.3962	0.4119	0.3759	0.3978	179.71
Max		0.8148	0.8258	0.7480	0.7650	0.7185	0.7385	390.00

Table 6: Scores for AG and RAG runs under the AutoNuggets+Edits / ManualAssign condition, over 21 topics that have been manually evaluated by NIST.

Run ID	Task	$V_{ m strict}$	V	$W_{ m strict}$	W	$A_{ m strict}$	A	L
h2oloo.listgalore_gpt4o_ragnarokv4_top20	RAG	0.4772	0.5965	0.4665	0.5868	0.4623	0.5818	287.71
neu.neuragfix	RAG	0.4456	0.5616	0.4242	0.5405	0.4144	0.5300	327.62
neu.neurag	RAG	0.4345	0.5502	0.4176	0.5320	0.4097	0.5230	327.62
coordinators.baseline_frag_rag24.test_gpt-4o_top20	RAG	0.4340	0.5614	0.4245	0.5492	0.4221	0.5440	306.43
CIR.cir_gpt-4o-mini_no_reranking_50_0.5_100_301_p1	AG	0.4254	0.5531	0.4044	0.5292	0.3957	0.5178	151.90
softbank-meisei.agtask-bm25-colbert_faiss-gpt4o-llama70b	AG	0.4245	0.5433	0.4031	0.5245	0.3930	0.5145	213.81
ldisnu.dilab_repllama_listt5_pass3_gpt4o	RAG	0.4171	0.5330	0.3965	0.5193	0.3840	0.5105	291.90
CIR.cir_gpt-4o-mini_Cosine_50_0.5_100_301_p1	AG	0.4164	0.5163	0.3970	0.5012	0.3863	0.4924	161.57
ldisnu.ldilab_gpt_4o	AG	0.4153	0.5512	0.3961	0.5292	0.3873	0.5182	290.86
webis.webis-rag-run1-taskrag	RAG	0.4050	0.5249	0.3879	0.5085	0.3792	0.4999	177.62
KML.gpt_mini	AG	0.4000	0.5516	0.3681	0.5271	0.3533	0.5161	373.62
webis.webis-rag-run0-taskrag	RAG	0.3906	0.4850	0.3800	0.4783	0.3751	0.4756	162.95
ncsu-las.LAS-splade-mxbai-mmr8-RAG	RAG	0.3886	0.4877	0.3676	0.4711	0.3582	0.4636	296.05
KML.cohere+post_processing	AG	0.3818	0.5033	0.3541	0.4858	0.3400	0.4773	342.57
InfoLab.UDInfolab.RAG.AnsAI	RAG	0.3768	0.4951	0.3497	0.4677	0.3357	0.4538	158.05
ncsu-las.LAS-splade-mxbai-rrf-mmr8	RAG	0.3729	0.4974	0.3502	0.4760	0.3411	0.4669	299.33
coordinators.baseline_frag_rag24.test_command-r-plus_top20	RAG	0.3696	0.4849	0.3502	0.4702	0.3407	0.4628	234.05
h2oloo.listgalore_l31-70b_ragnarokv4_top20	RAG	0.3630	0.4718	0.3325	0.4498	0.3144	0.4368	208.24
WaterlooClarke.UWCgarag	RAG	0.3452	0.4894	0.3186	0.4610	0.3023	0.4447	223.48
softbank-meisei.rag_bm25-colbert_faiss-gpt4o-llama70b	RAG	0.3390	0.4405	0.3009	0.4123	0.2804	0.3983	179.10
WaterlooClarke.UWCrag	RAG	0.3325	0.4319	0.3070	0.4145	0.2936	0.4047	170.43
InfoLab.UDInfolab.RAG.Query	RAG	0.3255	0.4467	0.3046	0.4348	0.2951	0.4292	149.33
coordinators.baseline_rag24.test_131_70b_instruct_top20	AG	0.3213	0.4448	0.3136	0.4412	0.3088	0.4393	194.10
citi.SECOND_cot_gpt3.5	RAG	0.2999	0.4126	0.2763	0.3852	0.2652	0.3721	171.10
citi.BEST_cot_gpt3.5	RAG	0.2971	0.4024	0.2813	0.3940	0.2725	0.3888	198.86
IITD-IRL.ag_rag_gpt35_expansion_rrf_20	AG	0.2920	0.4044	0.2807	0.3909	0.2760	0.3841	97.19
IIIA-UNIPD.iiia_standard_p1_straight_ag	AG	0.2854	0.3996	0.2658	0.3856	0.2542	0.3768	133.48
Ruc01.ruc001	RAG	0.2840	0.3836	0.2819	0.3845	0.2813	0.3855	236.48
ielab.ielab-b70bf-70bqfs-ad_hoc	RAG	0.2781	0.4021	0.2525	0.3829	0.2380	0.3715	180.29
buw.buw	RAG	0.2757	0.3890	0.2633	0.3737	0.2561	0.3652	193.86
IITD-IRL.zeph_test_rag_rrf_expand_query	RAG	0.2673	0.3610	0.2527	0.3444	0.2449	0.3347	84.48
TREMA-UNH.Ranked_Iterative_Fact_Extraction_and	AG	0.2662	0.3849	0.2554	0.3760	0.2500	0.3719	373.05
buw.oneshot_post_sentenced	RAG	0.2575	0.3817	0.2401	0.3650	0.2311	0.3562	214.19
uis-iai.baseline_top_5	AG	0.2496	0.3656	0.2294	0.3467	0.2182	0.3362	82.43
TREMA-UNH.Enhanced Iterative Fact Refinement	AG	0.2475	0.3904	0.2355	0.3778	0.2285	0.3707	379.95
ielab.ielab-b70bf-70bgp-70bafs	RAG	0.2244	0.3281	0.2219	0.3210	0.2192	0.3154	84.05
uis-iai.ginger_top_5	AG	0.2109	0.3321	0.2065	0.3278	0.2052	0.3264	102.71
uog-tht.ICL-mistral	RAG	0.2012	0.3268	0.1828	0.3091	0.1731	0.2999	79.48
uog-tht.FT-llama3	RAG	0.2012	0.3206	0.1813	0.3041	0.1707	0.2956	79.43
IIIA-UNIPD.iiia_dedup_p1_straight_ag	AG	0.2004	0.3045	0.1957	0.2975	0.1919	0.2923	91.24
ii research.iiresearch-bm25-top10-llama3-8b-instruct	RAG	0.1378	0.2023	0.1258	0.1918	0.1196	0.1870	178.76
SGU.qrant_bge_gemini	RAG	0.1343	0.1975	0.1277	0.1896	0.1163	0.1873	128.10
IRIT.ISIR-IRIT-zephyr_query_gen	RAG	0.1310	0.2294	0.1295	0.2243	0.1274	0.2212	151.62
IRIT.ISIR-IRIT-zephyr_p2	RAG	0.1310	0.2241	0.1233	0.2174	0.1274	0.2125	148.10
webis.webis-manual	RAG	0.0687	0.0968	0.0750	0.0995	0.0797	0.1025	29.24
Min		0.0073	0.0150	0.0122	0.0190	0.0143	0.0210	9.95
Median		0.3121	0.4388	0.2967	0.4271	0.2837	0.4183	179.71

Table 7: Scores for AG and RAG runs under the AutoNuggets / AutoAssign condition, over 21 topics that have been manually evaluated by NIST.

Run ID	Task	$V_{ m strict}$	V	$W_{ m strict}$	W	$A_{ m strict}$	A	
coordinators.all_nuggets	RAG	0.9692	0.9790	0.9492	0.9640	0.9386	0.9561	127.5
h2oloo.listgalore_gpt4o_ragnarokv4_top20	RAG	0.4546	0.5840	0.4318	0.5598	0.4202	0.5472	287.1
neu.neuragfix	RAG	0.4422	0.5639	0.4162	0.5384	0.4026	0.5249	336.3
neu.neurag	RAG	0.4416	0.5647	0.4160	0.5399	0.4026	0.5266	336.3
uis-iai.ginger-fluency_top_20	AG	0.4267	0.5766	0.4151	0.5627	0.4091	0.5554	377.5
ncsu-las.LAS-T5-mxbai-mmr8-RAG	RAG	0.4233	0.5528	0.4027	0.5303	0.3914	0.5181	293.2
softbank-meisei.agtask-bm25-colbert_faiss-gpt4o-llama70b	AG	0.4196	0.5464	0.3996	0.5236	0.3901	0.5125	222.4
ldisnu.ldilab_gpt_4o coordinators.baseline_rag24.test_gpt-4o_top20	AG AG	0.4186 0.4173	0.5366 0.5389	0.3965 0.3948	0.5143 0.5156	0.3853 0.3830	0.5030 0.5035	295.9 300.9
ldisnu.dilab_repllama_listt5_pass3_gpt4o	RAG	0.4173	0.5325	0.3938	0.5100	0.3818	0.3033	297.2
coordinators.baseline_frag_rag24.test_gpt-4o_top20	RAG	0.4141	0.5348	0.3924	0.5117	0.3810	0.4997	300.9
ncsu-las.LAS_splad_mxbai-rrf-occams_50_RAG	RAG	0.4136	0.5414	0.3952	0.5213	0.3849	0.5103	364.
ldisnu.dilab_repllama_listt5_pass4_gpt4o	RAG	0.4081	0.5215	0.3872	0.4998	0.3751	0.4873	294.
webis.webis-rag-run1-taskrag	RAG	0.4079	0.5437	0.3823	0.5161	0.3690	0.5016	183.
ldisnu.dilab_repllama_listt5_pass2_gpt4o	RAG	0.4061	0.5265	0.3885	0.5059	0.3785	0.4944	296.
ncsu-las.LAS-splade-mxbai-rrf-mmr8-doc	RAG	0.4056	0.5263	0.3864	0.5045	0.3760	0.4928	288.
ldisnu.dilab_repllama_listt5_pass1_gpt4o	RAG	0.4055	0.5203	0.3840	0.4980	0.3724	0.4860	290.
KML.gpt_mini	AG	0.4010	0.5478	0.3839	0.5297	0.3750	0.5202	373.
webis.webis-ag-run1-taskrag	AG	0.3991	0.5392	0.3765	0.5150	0.3647	0.5026	180.
CIR.cir_gpt-4o-mini_Cosine_50_0.5_100_301_p3	AG	0.3982	0.5434	0.3796	0.5218	0.3689	0.5097	177.
ncsu-las.LAS-splade-mxbai-mmr8-RAG	RAG	0.3978	0.5184	0.3791	0.5002	0.3691	0.4906	301.
h2oloo.listgalore_gpt4o_ragnarokv4nocite_top20	RAG	0.3964	0.5509	0.3693	0.5213	0.3545	0.5056	327.
CIR.cir_gpt-4o-mini_Cosine_50_0.75_100_301_p1	AG	0.3903	0.5234	0.3695	0.5035	0.3583	0.4931	160.
CIR.cir_gpt-4o-mini_Cosine_50_1.0_100_301_p1	AG	0.3880	0.5222	0.3693	0.5009	0.3594	0.4897	160.
CIR.cir_gpt-4o-mini_Cosine_50_0.5_100_301_p2	AG	0.3875	0.5285	0.3659	0.5055	0.3537	0.4929	170.
ncsu-las.LAS-splade-mxbai-rrf-mmr8	RAG	0.3871	0.5208	0.3709	0.5041	0.3621	0.4947	295.
CIR.cir_gpt-4o-mini_no_reranking_50_0.5_100_301_p1	AG	0.3860	0.5210	0.3705	0.5031	0.3627	0.4943	159
CIR.cir_gpt-4o-mini_Cosine_50_0.5_100_301_p1	AG	0.3824	0.5269	0.3617	0.5030	0.3502	0.4901	157.
CIR.cir_gpt-4o-mini_Cosine_50_0.25_100_301_p1	AG	0.3822	0.5226	0.3576	0.4952	0.3435	0.4801	158.
webis.webis-rag-run0-taskrag	RAG	0.3800	0.5102	0.3572	0.4833	0.3449	0.4693	165.
KML.gpt_mini_double_prompt	AG	0.3777	0.5357	0.3545	0.5097	0.3422	0.4961	372.
uis-iai.ginger-fluency_top_10	AG	0.3690	0.5088	0.3591	0.4959	0.3539	0.4895	256.
WaterlooClarke.UWCgarag	RAG	0.3664	0.5150	0.3411	0.4872	0.3273	0.4721	207
InfoLab.UDInfolab.RAG.bge.QueryAnsAI.tuned	RAG	0.3646	0.4925	0.3394	0.4659	0.3264	0.4524	156.
softbank-meisei.ragtask-bm25-rank_zephyr-gpt4o-llama70b	RAG	0.3616	0.4830	0.3404	0.4603	0.3288	0.4480	226.
coordinators.baseline_frag_rag24.test_command-r-plus_top20	RAG	0.3596	0.4923	0.3535	0.4825	0.3496	0.4767	251.
WaterlooClarke.UWCrag_stepbystep	RAG	0.3587	0.4883 0.4947	0.3293 0.3362	0.4570 0.4688	0.3139 0.3248	0.4406	157. 158.
InfoLab.UDInfolab.AG-v2 coordinators.baseline_rag24.test_command-r-plus_top20	AG AG	0.3581 0.3574	0.4947	0.3524	0.4850	0.3492	0.4555 0.4796	251.
WaterlooClarke.UWCrag	RAG	0.3574	0.4942	0.3324	0.4606	0.3492	0.4467	182.
webis.webis-ag-run0-taskrag	AG	0.3568	0.4941	0.3324	0.4736	0.3193	0.4639	157.
CIR.cir_gpt-4o-mini_Cosine_20_0.5_100_301_p1	AG	0.3566	0.5020	0.3334	0.4779	0.3201	0.4644	148.
InfoLab.UDInfolab.RAG.AnsAI	RAG	0.3566	0.4889	0.3326	0.4616	0.3199	0.4473	157
InfoLab.UDInfolab.AG-v1	AG	0.3560	0.4943	0.3337	0.4684	0.3224	0.4550	159.
InfoLab.UDInfolab.bgeV2	RAG	0.3553	0.4903	0.3296	0.4627	0.3152	0.4475	156
KML.cohere+post_processing	AG	0.3530	0.4936	0.3352	0.4747	0.3253	0.4647	330.
InfoLab.UDInfolab.RAG.Query	RAG	0.3511	0.4890	0.3270	0.4643	0.3142	0.4511	159.
h2oloo.listgalore_131-70b_ragnarokv4_top20	RAG	0.3493	0.4839	0.3239	0.4543	0.3106	0.4389	228
CIR.cir_gpt-4o-mini_Jaccard_50_0.5_100_301_p0	AG	0.3487	0.4967	0.3259	0.4712	0.3138	0.4577	139.
softbank-meisei.rag_bm25-colbert_faiss-gpt4o-llama70b	RAG	0.3464	0.4745	0.3271	0.4539	0.3169	0.4429	189.
InfoLab.UDInfolab.RAG.bge.tuned	RAG	0.3455	0.4862	0.3236	0.4624	0.3121	0.4495	157
InfoLab.UDInfolab.RAG.bge.QueryAgm.tuned	RAG	0.3452	0.4849	0.3262	0.4622	0.3160	0.4500	159
CIR.cir_gpt-4o-mini_Jaccard_50_1.0_100_301_p0	AG	0.3434	0.4830	0.3191	0.4562	0.3060	0.4421	135.
coordinators.baseline_rag24.test_l31_70b_instruct_top20	AG	0.3356	0.4643	0.3140	0.4392	0.3026	0.4261	196
h2oloo.listgalore_l31-70b_ragnarokv4nocite_top20	RAG	0.3243	0.4760	0.2967	0.4460	0.2813	0.4297	277
citi.BEST_gpt3.5	RAG	0.3164	0.4398	0.2976	0.4197	0.2879	0.4090	183
webis.webis-rag-run3-taskrag	RAG	0.3116	0.4247	0.2870	0.3976	0.2742	0.3836	153
ielab.ielab-b70bf-70bqfs-ad_hoc	RAG	0.3100	0.4390	0.2925	0.4191	0.2835	0.4086	205
citi.SECOND_cot_gpt3.5	RAG	0.3085	0.4336	0.2890	0.4108	0.2794	0.3992	191
citi.BEST_cot_gpt3.5	RAG	0.3077	0.4328	0.2933	0.4173	0.2854	0.4088	197
Ruc01.ruc001	RAG	0.3024	0.4258	0.2880	0.4086	0.2803	0.3996	237
citi.SECOND_gpt3.5	RAG	0.2951	0.4288	0.2783	0.4083	0.2692	0.3975	179
uog-tht.PG-mistral	RAG	0.2906	0.4174	0.2772	0.4005	0.2690	0.3908	197
ielab.ielab-b8bf-8bzs-ad_hoc	RAG	0.2879	0.4184	0.2749	0.4045	0.2674	0.3968	175
	RAG	0.2849	0.4185	0.2724	0.4044	0.2650	0.3964	175
ielab.ielab-b8bf-8bfs-ad_hoc	RAG	0.2820	0.4022	0.2642	0.3825	0.2546	0.3720	155
citi.BEST_gpt3.5_another_prompt	DAC	0.2795	0.4024	0.2619	0.3809	0.2521	0.3691 0.3645	87
citi.BEST_gpt3.5_another_prompt IITD-IRL.zeph_test_rag_rrf_expand_query	RAG		0.2002					90
citi.BEST_gpt3.5_another_prompt IITD-IRL.zeph_test_rag_rrf_expand_query IITD-IRL.ag_rag_gpt35_expansion_rrf_20	AG	0.2762	0.3992	0.2577	0.3761	0.2486		
citi.BEST_gpt3.5_another_prompt IITD-IRL.zeph_test_rag_rrf_expand_query IITD-IRL.ag_rag_gpt35_expansion_rrf_20 IITD-IRL.zeph_test_rag24_doc_query_expansion+rrf	AG RAG	0.2762 0.2750	0.4028	0.2554	0.3801	0.2446	0.3678	88
citi.BEST_gpt3.5_another_prompt IITD-IRL.zeph_test_rag_rrf_expand_query IITD-IRL.ag_rag_gpt35_expansion_rrf_20 IITD-IRL.zeph_test_rag24_doc_query_expansion+rrf IITD-IRL.zeph_test_rag_rrf_raw_query	AG RAG RAG	0.2762 0.2750 0.2739	0.4028 0.4018	0.2554 0.2562	0.3801 0.3780	0.2446 0.2463	0.3678 0.3653	88 89
citi.BEST_gpt3.5_another_prompt IITD-IRL.zeph_test_rag_rrf_expand_query IITD-IRL.ag_rag_gpt35_expansion_rrf_20 IITD-IRL.zeph_test_rag24_doc_query_expansion+rrf	AG RAG	0.2762 0.2750	0.4028	0.2554	0.3801	0.2446	0.3678	88 89 124 218

Run ID	Task	$V_{ m strict}$	V	$W_{ m strict}$	W	$A_{ m strict}$	A	
		÷						
IITD-IRL.ag_rag_gpt35_expansion_rrf_15	AG	0.2677	0.3886	0.2500	0.3670	0.2415	0.3564	88.9
buw.buw_3	RAG	0.2657	0.3954	0.2605	0.3882	0.2582	0.3844	218.2
buw.buw_5 FREMA-UNH.Enhanced_Iterative_Fact_Refinement	RAG AG	0.2641 0.2613	0.3973 0.3961	0.2568 0.2538	0.3880 0.3857	0.2527 0.2499	0.3827 0.3802	215.7 375.4
TREMA-UNH.Ranked_Iterative_Fact_Extraction	AG	0.2605	0.3963	0.2523	0.3852	0.2485	0.3797	374.8
citi.SECOND_gpt3.5_new_prompt	RAG	0.2604	0.3802	0.2406	0.3581	0.2296	0.3462	123.0
elab.ielab-b8bf-8bp-8ba	RAG	0.2591	0.3870	0.2402	0.3622	0.2306	0.3494	131.1
IIIA-UNIPD.iiia_standard_p1_reverse_ht_ag	AG	0.2586	0.3786	0.2400	0.3570	0.2304	0.3460	141.6
elab.ielab-b8bf-8bp-8bafs	RAG	0.2582	0.3899	0.2396	0.3648	0.2300	0.3518	131.1
buw.buw	RAG RAG	0.2582 0.2533	0.3902 0.3772	0.2507 0.2471	0.3806 0.3701	0.2472 0.2443	0.3760 0.3665	197.4 243.9
ouw.oneshot_post_sentenced HTD-IRL.ag_rag_gpt35_expansion_rrf_7	AG	0.2333	0.3674	0.2313	0.3472	0.2230	0.3371	86.
IIIA-UNIPD.iiia_standard_p1_straight_ag	AG	0.2475	0.3680	0.2264	0.3443	0.2154	0.3320	135.9
uis-iai.baseline_top_5	AG	0.2471	0.3746	0.2296	0.3534	0.2197	0.3417	90.
webis.webis-rag-run4-reuserag	RAG	0.2462	0.3724	0.2302	0.3543	0.2209	0.3441	219.
IIIA-UNIPD.iiia_standard_p1_straight_ht_ag	AG	0.2461	0.3703	0.2280	0.3480	0.2186	0.3365	134.
IIIA-UNIPD.iiia_standard_p1_reverse_ag	AG	0.2457	0.3669	0.2283	0.3457	0.2197	0.3351	139.
elab.ielab-b8b-8bp-8bafs elab.ielab-b70bf-70bqp-70bafs	RAG RAG	0.2442 0.2379	0.3610 0.3599	0.2272 0.2206	0.3416 0.3358	0.2183 0.2112	0.3313 0.3229	114. 85.
elab.ielab-b-8bp-8bafs	RAG	0.2340	0.3484	0.2200	0.3322	0.2112	0.3235	114.
uis-iai.ginger-fluency_top_5	AG	0.2128	0.3422	0.2044	0.3281	0.1996	0.3203	85.
uis-iai.ginger_top_5	AG	0.2112	0.3398	0.2015	0.3263	0.1961	0.3190	96.
elab.ielab-b70bf-70bqp-rarr	RAG	0.2038	0.3100	0.1885	0.2892	0.1801	0.2779	69.
webis.webis-ag-run2-reuserag	AG	0.2035	0.3287	0.1935	0.3176	0.1879	0.3112	225.
IITD-IRL.zeph_test_rag_rrf_expand_query_mistral	RAG	0.2025	0.3219	0.1835	0.2976	0.1736	0.2850	70.
IITD-IRL.ag_rag_mistral_expansion_rrf_20 IITD-IRL.zeph_test_rag_rrf_expand_mistral_top_15	AG RAG	0.2017 0.2000	0.3158 0.3126	0.1839 0.1855	0.2952 0.2923	0.1751 0.1772	0.2849 0.2810	77. 68.
IIIA-UNIPD.iiia_standard_p2_straight_ht_ag	AG	0.1993	0.3120	0.1833	0.2925	0.1772	0.2733	80.
IIIA-UNIPD.iiia_standard_p2_straight_ag	AG	0.1984	0.3070	0.1774	0.2832	0.1666	0.2708	81.
IIIA-UNIPD.iiia_standard_p1_straight	RAG	0.1973	0.3107	0.1813	0.2904	0.1726	0.2793	121.
coordinators.fs4_bm25+rocchio_snowael_snowaem	RAG	0.1957	0.2965	0.1948	0.2938	0.1941	0.2924	208.
IIIA-UNIPD.iiia_dedup_p1_reverse_ht_ag	AG	0.1952	0.3155	0.1813	0.2966	0.1736	0.2865	104.
IIIA-UNIPD.iiia_dedup_p1_reverse_ag	AG	0.1949	0.3113	0.1769	0.2909	0.1672	0.2799	102.
uog-tht.FT-llama3 IITD-IRL.ag_rag_mistral_expansion_rrf_15	RAG AG	0.1927 0.1925	0.3211 0.3077	0.1758 0.1756	0.2986 0.2868	0.1666 0.1670	0.2866 0.2762	79. 69.
log-tht.ICL-mistral	RAG	0.1920	0.3214	0.1747	0.2987	0.1651	0.2762	83.
IIIA-UNIPD.iiia_dedup_p1_straight_ag	AG	0.1916	0.3100	0.1752	0.2885	0.1669	0.2776	100.
IIIA-UNIPD.iiia_dedup_p1_straight_ht_ag	AG	0.1914	0.3100	0.1754	0.2900	0.1671	0.2800	101.
IIIA-UNIPD.iiia_standard_p1_reverse	RAG	0.1910	0.3034	0.1779	0.2883	0.1705	0.2800	122.
IIIA-UNIPD.iiia_standard_p2_reverse_ag	AG	0.1897	0.2999	0.1744	0.2814	0.1665	0.2717	84.
IIIA-UNIPD.iiia_standard_p1_reverse_ht	RAG	0.1865	0.3078	0.1720	0.2903	0.1643	0.2808	121.
IIIA-UNIPD.iiia_standard_p1_straight_ht IIIA-UNIPD.iiia_standard_p2_reverse_ht_ag	RAG AG	0.1861 0.1855	0.2985 0.3038	0.1716 0.1712	0.2822 0.2843	0.1639 0.1638	0.2733 0.2740	121. 87.
IITD-IRL.zeph_test_rag_rrf_expand_top_5	RAG	0.1840	0.2965	0.1712	0.2756	0.1598	0.2647	64.
IITD-IRL.zeph_test_rag_rrf_expand_top_10	RAG	0.1815	0.2961	0.1715	0.2805	0.1656	0.2716	68.
IITD-IRL.ag_rag_mistral_expansion_rrf_7	AG	0.1772	0.2886	0.1666	0.2757	0.1612	0.2691	70.
IRIT.ISIR-IRIT-zephyr_query_gen_3p	RAG	0.1733	0.2988	0.1685	0.2877	0.1661	0.2819	170.
IRIT.ISIR-IRIT-zephyr_sprompt_3p	RAG	0.1655	0.2850	0.1543	0.2701	0.1490	0.2626	168.
RIT.ISIR-IRIT-zephyr_query_gen	RAG	0.1623	0.2749	0.1575	0.2666	0.1544	0.2616	159.
IRIT.ISIR-IRIT-zephyr_p2	RAG	0.1547	0.2650	0.1477	0.2539	0.1436	0.2476 0.2244	153.
IIIA-UNIPD.iiia_dedup_p2_straight_ag IIIA-UNIPD.iiia_dedup_p2_straight_ht_ag	AG AG	0.1539 0.1530	0.2574 0.2558	0.1373 0.1365	0.2357 0.2347	0.1286 0.1275	0.2244	50. 48.
IIIA-UNIPD.iiia_dedup_p2_straigitt_iit_ag	AG	0.1330	0.2579	0.1303	0.2347	0.1273	0.2255	53.
IIIA-UNIPD.iiia_dedup_p1_reverse	RAG	0.1484	0.2519	0.1352	0.2356	0.1278	0.2268	88.
IIIA-UNIPD.iiia_dedup_p2_reverse_ag	AG	0.1470	0.2546	0.1313	0.2343	0.1225	0.2234	53.
IIA-UNIPD.iiia_dedup_p1_straight	RAG	0.1444	0.2526	0.1330	0.2369	0.1267	0.2285	86.
IIIA-UNIPD.iiia_standard_p2_straight_ht	RAG	0.1403	0.2409	0.1288	0.2268	0.1227	0.2194	59.
webis.webis-rag-run5-reuserag ii research.iiresearch-bm25-top10-llama3-8b-instruct	RAG RAG	0.1399	0.2407 0.2269	0.1337	0.2302 0.2158	0.1296 0.1250	0.2241 0.2095	100.
il_research.iiresearch-bm25-top10-fiama5-86-instruct IIIA-UNIPD.iiia_standard_p2_straight	RAG	0.1385 0.1381	0.2269	0.1301 0.1282	0.2138	0.1230	0.2093	167. 61.
IIIA-UNIPD.iiia_standard_p2_straight IIIA-UNIPD.iiia_standard_p2_reverse	RAG	0.1361	0.2376	0.1282	0.2243	0.1227	0.2108	61.
IIIA-UNIPD.iiia_dedup_p1_straight_ht	RAG	0.1344	0.2401	0.1252	0.2278	0.1203	0.2212	85.
IIIA-UNIPD.iiia_dedup_p1_reverse_ht	RAG	0.1332	0.2389	0.1233	0.2253	0.1177	0.2177	86.
IIIA-UNIPD.iiia_standard_p2_reverse_ht	RAG	0.1308	0.2226	0.1214	0.2110	0.1160	0.2045	61.
FREMA-UNH.Ranked_Iterative_FactRIFER	RAG	0.1276	0.2334	0.1225	0.2257	0.1199	0.2214	336.
SGU.qrant_bge_gemini	RAG	0.1230	0.1871	0.1152	0.1789	0.1109	0.1746	123.
webis.webis-ag-run3-reuserag	AG PAG	0.1184 0.1091	0.2148	0.1138	0.2073	0.1114	0.2037 0.1722	103.
IIIA-UNIPD.iiia_dedup_p2_straight_ht IIIA-UNIPD.iiia_dedup_p2_straight	RAG RAG	0.1091	0.1955 0.1950	0.0979 0.0977	0.1800 0.1822	0.0923 0.0936	0.1722	39. 38.
IIIA-UNIPD.iiia_dedup_p2_straight IIIA-UNIPD.iiia_dedup_p2_reverse_ht	RAG	0.1038	0.1930	0.0977	0.1822	0.0936	0.1737	30. 40.
IIIA-UNIPD.iiia_dedup_p2_reverse	RAG	0.1031	0.1915	0.0949	0.1758	0.0900	0.1674	38.
coordinators.anserini_bm25.rag24.test_top1	RAG	0.0703	0.1252	0.0681	0.1225	0.0671	0.1212	216.
webis.webis-manual	RAG	0.0368	0.0510	0.0344	0.0478	0.0333	0.0464	19.
coordinators.test_empty_list	RAG	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.
Min		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
Median		0.2673	0.4028	0.2508	0.3835	0.2416	0.3728	148.67

Table 8: Scores for AG and RAG runs under the AutoNuggets / AutoAssign condition, over 301 topics that were provided to the participants.