International Rectifier

IRLML2502

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching

Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	20	V
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 4.5V	4.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	3.4	Α
I _{DM}	Pulsed Drain Current ①	33	
P _D @T _A = 25°C	Power Dissipation	1.25	W
P _D @T _A = 70°C	Power Dissipation	0.8	VV
	Linear Derating Factor	0.01	W/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

Electrical Characteristics @ T₁ = 25°C (unless otherwise specified)

Lieutrical Orial acteristics © 1j = 25 0 (unless otherwise specified)						
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.01		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.035	0.045	Ω	V _{GS} = 4.5V, I _D = 4.2A ②
			0.050	0.080		V _{GS} = 2.5V, I _D = 3.6A ②
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
g _{fs}	Forward Transconductance	5.8			S	$V_{DS} = 10V, I_D = 4.0A$
1	Drain to Course Leakage Current			1.0	^	V _{DS} = 16V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			25	μA	V _{DS} = 16V, V _{GS} = 0V, T _J = 70°C
1	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
I _{GSS}	Gate-to-Source Reverse Leakage			100	IIA	V _{GS} = 12V
Qg	Total Gate Charge		8.0	12		$I_D = 4.0A$
Q _{gs}	Gate-to-Source Charge		1.8	2.7	nC	$V_{DS} = 10V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.7	2.6		V _{GS} = 5.0V ②
t _{d(on)}	Turn-On Delay Time		7.5			$V_{DD} = 10V$
t _r	Rise Time		10		ns	$I_{D} = 1.0A$
t _{d(off)}	Turn-Off Delay Time		54		115	$R_G = 6\Omega$
t _f	Fall Time		26			$R_D = 10\Omega$ ②
C _{iss}	Input Capacitance		740			V _{GS} = 0V
Coss	Output Capacitance		90		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		66			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions														
Is	Continuous Source Current			4.0		MOSFET symbol														
	(Body Diode)			1.3	A	showing the														
I _{SM}	Pulsed Source Current			33	22	22	22	22	22	22	22	22	22	22	22	22	22	20	1 ^	integral reverse
	(Body Diode) ①					p-n junction diode.														
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.3A$, $V_{GS} = 0V$ ②														
t _{rr}	Reverse Recovery Time		16	24	ns	$T_J = 25$ °C, $I_F = 1.3A$														
Q _{rr}	Reverse Recovery Charge		8.6	13	nC	di/dt = 100A/µs ②														

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

4

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 11. On-Resistance Vs. Gate Voltage

Fig 12. On-Resistance Vs. Drain Current

Micro3™ Package Outline

Dimensions are shown in millimeters (inches)

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	.032	.044	0.82	1.11		
A1	.001	.004	0.02	0.10		
В	.015	.021	0.38	0.54		
С	.004	.006	0.10	0.15		
D	.105	.120	2.67	3.05		
е	.0750	BASIC	1.90 B	SIC		
e1	.0375	BASIC	0.95 B			
Е	.047	.055	1.20	1.40		
Н	.083	.098	2.10	2.50		
L	.005	.010	0.13 0.2			
θ	0°	8°	0°	8°		

MINIMUM RECOMMENDED FOOTPRINT 0.90 (.035) 3X

- DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION : INCH.

 [3] DIMENSIONS DO NOT INCLUDE MOLD FLASH.

Micro3™ Part Marking Information

International

TOR Rectifier

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 5/00