Babeş-Bolyai University, Faculty of Mathematics and Computer Science Computer Science Groups 911-917, Academic Year 2021-2022

Mathematical Analysis Exercise Sheet 4

19. The Schwarz Inequality. Let $x \cdot y = x_1 y_1 + \ldots + x_d y_d$ the Euclidean scalar product in \mathbb{R}^d and $||x|| = \sqrt{x \cdot x}$ the associated norm. Prove that

$$|x \cdot y| \le ||x|| ||y||$$
 for any $x, y \in \mathbb{R}^d$.

20. All linear maps are of the form $a \cdot x$. Let $T : \mathbb{R}^d \to \mathbb{R}$ be a linear map, i.e.,

$$T(x+y) = T(x) + T(y)$$
 and $T(\alpha x) = \alpha T(x)$ for all $x, y \in \mathbb{R}^d$, $\alpha \in \mathbb{R}$

Prove that there exists $a_T \in \mathbb{R}^d$ such that

$$T(x) = a_T \cdot x$$
 for all $x \in \mathbb{R}^d$.

- **21.** The Gradient and Hessian of a linear map. Let $T: \mathbb{R}^d \to \mathbb{R}$, $T(x) = a \cdot x$, be a linear map with $a = (a_1, \dots, a_d) \in \mathbb{R}^d$. Compute its gradient and Hesse matrix.
- 22. The Gradient and Hessian of a quadratic map. Let $Q: R^d \to \mathbb{R}$, $Q(x) = \sum_{i,j=1}^d a_{ij} x_i x_j$ with $a_{ij} \in \mathbb{R}$ and $a_{ij} = a_{ji}$ be a quadratic map. Compute its gradient and Hesse matrix of Q.