

# AD-A285 349

Technical Report HL-94-12 September 1994

US Army Corps of Engineers Waterways Experiment Station

# An Automated System for Hopper Dredge Monitoring

by Jeffrey D. Jorgeson, Stephen H. Scott



Approved For Public Release; Distribution Is Unlimited



The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.



# An Automated System for Hopper Dredge Monitoring

by Jeffrey D. Jorgeson, Stephen H. Scott U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

| Accesion For       |                          |    |  |  |
|--------------------|--------------------------|----|--|--|
| NTIS               | CRA&I                    | *  |  |  |
| DTIC               | TAB                      | 13 |  |  |
| Unannounced []     |                          |    |  |  |
| Justification      |                          |    |  |  |
| By                 |                          |    |  |  |
| Availability Codes |                          |    |  |  |
| Dist               | Avail and Jor<br>Special |    |  |  |
| A-1                |                          |    |  |  |

### Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Engineer District, Norfolk 803 Front Street Norfolk, VA 23510-1096



#### **Waterways Experiment Station Cataloging-in-Publication Data**

Jorgeson, Jeffrey D.

An automated system for hopper dredge monitoring / by Jeffrey D. Jorgeson,

Stephen H. Scott; prepared for U.S. Army Engineer District, Norfolk. 80 p.: ill.; 28 cm. — (Technical report; HL-94-12)

Includes bibliographic references.

1. Dredges — Electric equipment. 2. Dredging spoil — Measurement — Instruments. 3. Dredging. I. Scott, Stephen H. II. United States. Army. Corps of Engineers. Norfolk District. III. U.S. Army Engineer Waterways Experiment Station. IV. Hydraulics Laboratory (U.S.) V. Title. VI. Series: Technical report (U.S. Army Engineer Waterways Experiment Station); HL-94-12.

TA7 W34 no.HL-94-12

# **Contents**

| Preface                                               | vi   |
|-------------------------------------------------------|------|
| Conversion Factors, Non-SI to SI Units of Measurement | vii  |
| 1—Introduction                                        | 1    |
| Background                                            | 1    |
| Objective                                             | 2    |
| Approach                                              |      |
| 2—The Monitoring System                               | 4    |
| The Bin Measure Concept                               | 4    |
| System Components                                     |      |
| Level of material in the hopper                       |      |
| Draft of vessel                                       | _    |
| Production meters                                     |      |
| Ship's position                                       |      |
| Draghead depth                                        |      |
| Data Acquisition                                      |      |
| Data Reduction                                        |      |
| Volume of material in hopper                          |      |
| Vessel displacement                                   |      |
| Cumulative weight of solids                           |      |
| · ·                                                   |      |
| 3—Dredging Project Monitoring                         | . 24 |
| Chincoteague Inlet                                    | 24   |
| Bin measure load calculations                         | 27   |
| System verification - water tests                     | 30   |
| Other data acquired                                   | 34   |
| Uncertainty analysis                                  | 34   |
| Norfolk Harbor Channel                                |      |
| Bin measure load calculations                         |      |
| System verification - water tests                     |      |
| Overflow analysis                                     |      |
| Other data acquired                                   |      |

| Unc        | ertainty analysis                                             |
|------------|---------------------------------------------------------------|
| 4—Summa    | ry and Conclusions                                            |
|            | Reliability and Accuracy                                      |
|            | r the System                                                  |
|            | Weaknesses        49         Benefits        49               |
|            | sions                                                         |
|            |                                                               |
| Appendix A | A: Bin Measure Load Data and Overflow Analysis Data A1        |
| Proje      | 1 - Summary of Bin Measure Load Data - Chincoteague Inlet ect |
|            | nnel Project                                                  |
| Table A    | 3 - Summary of Overflow Analysis Data - Norfolk Harbor        |
| Char       | nnel Project                                                  |
| SF 298     |                                                               |
| List       | of Figures                                                    |
|            |                                                               |
| Figure 1.  | Photo of acoustic sensor - aft end of hopper 6                |
| Figure 2.  | Photo of acoustic sensor - aft end of hopper 7                |
| Figure 3.  | Photo of acoustic sensor - forward end of hopper 8            |
| Figure 4.  | Photo of acoustic sensor - forward end of hopper 8            |
| Figure 5.  | Photo of hopper                                               |
| Figure 6.  | Photo of load displacement recorder cabinet 10                |
| Figure 7.  | Photo of pressure cells in air lines                          |
| Figure 8.  | Aft draft versus time                                         |
| Figure 9.  | Forward draft versus time                                     |
| Figure 10. | Depth of material in aft end of hopper versus time 15         |
| Figure 11. | Depth of material in forward end of hopper versus time 15     |
| Figure 12. | Starboard draghead depth versus time                          |
| _          |                                                               |
| _          | Port draghead depth versus time                               |
| Tiguic 17. | Port draghead depth versus time                               |

| Figure 16. | Slurry density in port drag arm versus time                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------|
| Figure 17. | Slurry velocity in port drag arm versus time                                                                              |
| Figure 18. | Dredge position (northing and easting) during a typical load cycle                                                        |
| Figure 19. | Dredge position (northing and easting) in the channel during a typical load cycle                                         |
| Figure 20. | Volume of material in hopper versus time                                                                                  |
| Figure 21. | Vessel displacement versus time                                                                                           |
| Figure 22. | Cumulative weight of solids pumped versus time 23                                                                         |
| Figure 23. | Vicinity map for Chincoteague Inlet, Virginia                                                                             |
| Figure 24. | Location map for Chincoteague Inlet, Virginia 26                                                                          |
| Figure 25. | Volume of material in hopper and vessel displacement versus time over a 24-hour period                                    |
| Figure 26. | Volume of material in hopper versus time for load 120,<br>Chincoteague Inlet project                                      |
| Figure 27. | Vessel displacement versus time for load 120, Chincoteague Inlet project                                                  |
| Figure 28. | Volume of material in hopper versus time for water test,<br>Chincoteague Inlet project                                    |
| Figure 29. | Vessel displacement versus time for water test, Chincoteague Inlet project                                                |
| Figure 30. | Vicinity map for Norfolk Harbor Channel, Virginia 38                                                                      |
| Figure 31. | Volume of material in hopper versus time for load 74, Norfolk Harbor project                                              |
| Figure 32. | Vessel displacement versus time for load 74, Norfolk Harbor project                                                       |
| Figure 33. | Volume of material in hopper and vessel displacement versus time for overflow analysis on load 74, Norfolk Harbor project |
| Figure 34. | Vessel displacement versus time during overflow on load 74,<br>Norfolk Harbor project                                     |
| Figure 35. | Cumulative weight of solids pumped versus time during overflow on load 74. Norfolk Harbor project                         |

# **Preface**

This study was conducted by the Hydraulics Laboratory (HL) of the U.S. Army Engineer Waterways Experiment Station (WES) during the period of January 1993 to October 1993. This study was sponsored by the U.S. Army Engineer District, Norfolk.

This report was prepared by Messrs. Jeffrey D. Jorgeson and Stephen H. Scott, Estuaries Division (ED), HL. The work was performed by Messrs. Jorgeson, Scott, and Monroe B. Savage and Dr. Cary B. Cox of the Instrumentation Services Division, WES. The report was prepared under the direct supervision of Mr. William D. Martin, Chief, Estuarine Engineering Branch, ED, and under the general supervision of Messrs. William H. McAnally, Chief, ED; Richard A. Sager, Assistant Director, HL; and Frank A. Herrmann, Director, HL.

Messrs. Sam McGee and Richard Klein of the Norfolk District were Engineering Managers, Thomas Friberg of the Norfolk District was Contract Administrator, and Mr. Bill Jones of the Norfolk District served as the Quality Assurance Representative for the dredging projects involved in this study.

Special appreciation and acknowledgement is extended to the Great Lakes Dredge and Dock Company, the North American Trailing Company (NATCO), and the crew of the NATCO dredge *Northerly Island* for their support, assistance, and cooperation in the performance of this study.

At the time of publication of this report, the Director of WES was Dr. Robert W. Whalin and the Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

# Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as follows:

| Multiply                                               | Ву         | To Obtain                              |
|--------------------------------------------------------|------------|----------------------------------------|
| cubic feet                                             | 0.02831685 | cubic meters                           |
| cubic yards                                            | 0.7645536  | cubic meters                           |
| feet                                                   | 0.3048     | meters                                 |
| horsepower (550 foat-<br>pounds (force) per<br>second) | 745.6999   | watts                                  |
| inches                                                 | 25.4       | millimeters                            |
| miles (U.S. statute)                                   | 1.609347   | kilometers                             |
| pounds (force) per cubic<br>foot                       | 157.08774  | newtons per cubic meter                |
| pounds (force) per square<br>foot                      | 47.88026   | pascals                                |
| pounds (force) per square inch                         | 6.894757   | kilopascals                            |
| pounds (mass)                                          | 0.4535924  | kilograms                              |
| square feet                                            | 0.09290304 | square meters                          |
| square inches per square foot                          | 69.444474  | square centimeters per<br>square meter |
| tons (2,000 pounds, mass)                              | 907.1847   | kilograms                              |

# 1 Introduction

## **Background**

Although payment under the majority of dredging contracts is based on cubic yards dredged as determined by pre- and postdredging surveys, there are circumstances such as rapid shoaling or changing weather conditions that make payment based upon such surveys impractical. Such conditions are common when dredging a coastal inlet. In such situations it is often preferable to award a contract whereby payment to the contractor is based upon measurement of the volume of in-place dredged material in the hopper as determined by vessel displacement, commonly referred to as "bin measure." Such a contract is awarded annually by the U.S. Army Engineer District, Norfolk, for maintenance dredging of Chincoteague Inlet, Virginia.

Under a bin measure contract, the Government typically relies on records provided by the contractor to determine the volume of material dredged in each load, and thus the amount of payment due. While a Government quality assurance representative, or inspector, is assigned to the project, he/she is not present on the dredge at all times and cannot monitor every load and verify the accuracy of all of the contractor's records. Additionally, when disputes arise, the Government generally has very little information on which to judge the merit of the contractor's claim, with the exception of the records and information provided by the contractor. Therefore, a system is needed that can automatically and fairly determine the volume of dredged material in the hopper for payment under bin measure contracts and can provide a record of the dredging operation in the event of disputes. Such a system would record the necessary data for making bin measure calculations and provide a complete and unbiased record of the entire dredging project for use by both the Government and the contractor.

Determining the volume of in-place dredged material in the hopper during each load requires knowledge of the volume of material in the hopper at the start of each load, the volume of material added to the hopper during the loading process, and the weight of the material added to the hopper during the loading phase. Existing instrumentation on most dredges provides a continuous record of the total displacement of the vessel from which the weight of dredged material added to the hopper can be determined by subtracting the

total weight of the vessel at the start of a load from the total weight of the vessel at the end of that load. Electronically monitoring and recording the displacement of the dredge using pressure sensors to measure the draft was successfully done under a previous study for the Norfolk District. Additionally, under the Corps of Engineers' Dredging Research Program (DRP), acoustic sensors nave been successfully installed on the Corps of Engineers dredge Where er to continuously monitor the volume of material in the hopper (Scott 1002a). Thus, the technology to automatically monitor and record the necessary information for determining bin measure loads exists.

Another aspect of the dredging process that can be difficult to monitor or analyze is the effectiveness of overflowing to increase the amount of solids in the hopper. When coarse-grained sediments are being dredged, overflow is typically effective; but in fine-grained sediments, the amount of additional solids retained in the hopper during overflow is questionable. Where restrictions on the duration of overflow exist, monitoring strict compliance with that restriction 24 hours a day can be difficult. Where restrictions on the amount of overflow are being considered, some estimate of the amount of sediment that is actually retained in the hopper versus the amount that flows overboard is very beneficial. Thus, a monitoring system enabling both the duration and the effectiveness of overflow to be determined would make the monitoring, enforcement, and implementation of overflow restrictions much more feasible.

## **Objective**

The two primary objectives of this study were to demonstrate an automated monitoring system for (a) determining the bin measure production of a contract dredge during the maintenance dredging of sandy material at Chincoteague Inlet, Virginia, and (b) monitoring a contract dredge for the amount of material retained in the hopper during the overflow process of a dredging cycle while it performed maintenance dredging of fine-grained material in the Norfolk Harbor Channel, Virginia. This report describes the integration of the displacement and hopper volume measurements into a computer-based data logging system for monitoring the dredge.

## **Approach**

To meet these objectives, a monitoring system that would automatically measure and record the volume of material in the hopper, the displacement of the dredge, and the production meter data on a continuous basis was designed, installed, and field tested. The volume of material in the hopper was

<sup>&</sup>lt;sup>1</sup> Jeffrey D. Jorgeson, 25 June 1992, Memorandum for Commander, U.S. Army Engineer District, Norfolk, Subject: Calibration of the Hopper Load Monitoring System on the Contract Dredge ATCHAFALAYA.

determined through the use of acoustic sensors installed above the hopper, and dredge displacement was determined from fore and aft draft measurements. An additional component of the system also monitored and recorded the dredge's production meters, which measure the density and velocity of material passing through the dredge pipes. The production meter data were used in conjunction with the vessel displacement and hopper volume data to estimate the total amount of material dredged and the amount of material that was retained in the hopper during the overflow process for each load.

Two separate dredging projects were monitored for this study. The first of those was at Chincoteague Inlet, Virginia, where the hopper volume and dredge displacement data were used to determine the bin measure production for each load. The second project was in the Norfolk Harbor Channel, where the hopper volume, dredge displacement, and production meter data were incorporated into an analysis of the amount of solids retained in the hopper during the overflow process. Each of these projects, the data collected, and the results obtained are discussed in the following sections of this report.

# 2 The Monitoring System

## The Bin Measure Concept

The concept of determining dredge production using the bin measure method involves indirectly measuring the average density of material in the dredge hopper for each load. Measuring the displacement, or weight, of the vessel and volume of material in the hopper at the beginning and end of the loading process determines the weight of material in the hopper and the volume of that material. Those values are then used to find the average density of the material in the hopper. If the in-place density of the sediment is known, then the in-place volume can be calculated for each load. The following equations show how production calculations are made once the hopper volume, vessel displacement, in-place sediment density, and water density in the dredging area are measured.

a. Bin water weight BW, lb

$$BW = V_S * \rho_w * 27 ft^3 / yd^3$$
 (1)

b. Total weight in hopper TW, lb

$$TW = [(D_E - D_S) * 2,000 lb/ton] + BW$$
 (2)

c. Average density in hopper  $\rho_H$ , lb/ft<sup>3</sup>

$$\rho_H (lb/ft^3) = TW / (V_E * 27 ft^3/yd^3)$$
 (3)

d. In-place production P<sub>i</sub>, yd<sup>3</sup>

$$P_{i} = [(\rho_{H} - \rho_{w}) / (\rho_{i} - \rho_{w})] * V_{E}$$
 (4)

where

 $V_S$  = volume in hopper at start of load cycle, yd<sup>3</sup>

 $\rho_{\rm w}$  = density of water in dredging area, lb/ft<sup>3</sup>

 $D_E$  = displacement of dredge prior to dump, tons

 $D_s$  = displacement of dredge at start of load cycle, tons

 $V_E$  = volume in hopper prior to dump, yd<sup>3</sup>  $\rho_i$  = in-place density of dredged material, lb/ft<sup>3</sup>

In Equations 1 through 4, reference is made to the "bin water" in the hopper. The bin water refers to that water which is present in the hopper just prior to the commencement of dredging sediment for each load. Typically, the hopper is not entirely empty or dry after dumping a load, and a certain volume of water is in the bottom of the hopper. That volume of water is referred to as the bin water. Calculation of the average density in the hopper, as shown in Equation 3, requires dividing the total weight of material in the hopper by the total volume of that material. If the bin water is neglected, then the calculation will be incorrect.

### **System Components**

The monitoring system designed for this project consisted of several instrument systems, each of which monitored a different function of the dredge. The dredge functions that were monitored included the level of material in the hopper, the draft of the vessel, the density and velocity of material passing through the production meters, the ship's position, and the depth of the port and starboard dragheads. Each of these dredge functions are discussed in greater detail in the following sections.

#### Level of material in the hopper

The level of material in the hopper was monitored by two programmable ultrasonic sensors, one installed over each end of the hopper along the longitudinal center line of the hopper. These sensors measured the distance between the surface of the material in the hopper and the sensor. The ultrasonic sensors measure distance by using a piezoelectric transducer to send out ultrasonic waves in a series of pulses. The sound waves are emitted in the shape of a beam cone, are reflected off of the target surface (water or slurry mixture surface in the hopper), and echo back to the sensor. The distance between the sensor and the target is calculated from the time interval between the transmission of the sound waves and the return of the echo to the sensor. The sensors are fully programmable, are accurate to within  $\pm 0.2$  percent of the measuring range, compensate for temperature variations, and are capable of measuring distances over a range of 0.3 to 70 ft<sup>1</sup> (Lundahl Instruments 1991).

The sensors were installed on specially designed brackets extending out over each end of the hopper and were installed high enough over the maximum water level in the hopper to minimize direct contact with splashing

A table of factors for converting non-SI units of measurement to SI units is found on page vii.

or spraying slurry or water. The sensor at the aft end of the hopper was mounted on a catwalk approximately 10 ft above the top of the hopper. Figures 1 and 2 show two perspectives of the ultrasonic sensor installed on the dredge over the aft end of the hopper. The sensor at the forward end of the hopper was mounted on a valve housing approximately 3 ft above the top of the hopper. Figures 3 and 4 show two views of the ultrasonic sensor installed over the forward end of the hopper. Figure 5 provides an overall view of the hopper looking forward from near the aft end of the hopper.



Figure 1. Closeup view of acoustic sensor at aft end of hopper

#### **Draft of vessel**

The draft of the vessel was monitored by inserting pressure sensors into the existing bubbler line system, which measured the draft at two bubbling points located in the keel of the ship, one near the dredge's forward perpendicular and one near the dredge's aft perpendicular. The bubbler system was designed such that the draft of the ship at any time produced a pressure in the bubbler lines equivalent to the hydrostatic pressure at the bubbling points in the keel of the ship. A constant volume of air was forced down through the bubbler lines. The pressure required to force that air through the system and out the bubbling points was equal to the hydrostatic pressure at the bubbling points below the water surface. Thus, the system measured the distance from the keel of the ship to the water surface, or the draft of the vessel.



Figure 2. Acoustic sensor at aft end of hopper



Figure 3. Closeup view of acoustic sensor at forward end of hopper



Figure 4. Acoustic sensor at forward end of hopper



Figure 5. Hopper

The pressure sensors in the forward and aft bubbler lines were placed inside the load displacement recorder cabinet (Figure 6). In each air line, the pressure was measured by connecting a Consolidated Electrodynamics Corporation Type 4-312 Pressure Pickup. This is shown in Figure 7, where the two white cables with tags attached are leading from the pressure pickups. The sensing elements of the pressure transducers were composed of unbonded strain gauge windings connected in a four-arm bridge. Pressure against the diaphragm produced a displacement of the sensing element, changing the resistance of the active arms and causing an electrical output proportional to the applied pressure (Consolidated Electrodynamics Corporation 1956). The pressure transducers installed had a pressure range of 0-25 lbf/in.<sup>2</sup> The draft of the vessel at the forward and aft bubbling points was determined by converting the measured pressure in the air lines from pounds per square inch to feet of water using the density of the water in the location where the dredge was operating. For example, if the pressure in the air line was measured at



Figure 6. Load displacement recorder cabinet



Figure 7. Pressure cells in air lines

7.0 lbf/in.<sup>2</sup> and the specific weight of the water was 63.7 lbf/ft<sup>3</sup>, then the draft was determined as follows:

Pressure = 
$$7.0 \text{ lbf/in.}^2 * 144.0 \text{ in.}^2/\text{ft}^2$$
  
=  $1,008.0 \text{ lbf/ft}^2$  (5)

Draft = 
$$(1,008.0 \text{ lbf/ft}^2) / (63.7 \text{ lbf/ft}^3)$$
 (6)  
= 15.8 ft

#### **Production meters**

The dredge was equipped with density and velocity meters on both the port and starboard drag arms to measure the density and velocity of the slurry mixture being pumped. The density of the slurry was measured with nuclear density gauges, and the velocity was measured with magnetic flowmeters. For the monitoring system, signals from those existing gauges and meters were obtained, and the density and velocity of the slurry being pumped through each drag arm were monitored and recorded.

#### Ship's position

The position of the dredge was provided by a Del Norte positioning system. Output from this system provided northing and easting coordinates for the position of the vessel, which were recorded by the monitoring system.

#### Draghead depth

The dredge was equipped with depth indicators for the port and starboard dragheads. The depth indicators for the dragheads consisted of a bubbler system like the system used to measure the draft of the vessel, but with the bubbling points located on each draghead. As with the draft measurement system, pressure taps were placed in the air lines for the port and starboard dragheads. The air pressure in those lines was measured using Consolidated Electrodynamics Corporation Type 4-312 Pressure Pickups, and the depth of the dragheads was calculated by converting the air pressure in the bubbler lines into feet of water.

### **Data Acquisition**

The output from all sensors was recorded continually every 5 seconds using a laptop computer installed on the dredge specifically for this project. The data acquisition software was configured such that a binary data file was created at midnight each day that contained the data for the previous 24-hour period. Ten channels of data were recorded, in addition to the time and the location coordinates. Table 1 provides a list of the ten data channels. Recording the time, location coordinates, and ten data channels every 5 seconds throughout the day resulted in a binary data file each day containing 933,120 bytes. The hard disk on the computer was capable of continuously recording data for approximately 63 days before the storage capacity on the disk was full.

A program was written to convert each binary data file into two ASCII output files, one containing the location coordinates and another containing the 10 channels of data listed in Table 1. The program also converted the raw data, which was typically recorded as a voltage or a 4-20 mA signal from the various sensors in the monitoring system, into the appropriate engineering units, also shown in Table 1.

Figures 8 through 17 are examples of the data recorded on each of the channels listed in Table 1. The figures are plots of the data versus time for one typical load from the Chincoteague Inlet project over a period of approximately 2 hours, from 11.5 hours (11:30 a.m.) to just after 13.5 hours (1:30 p.m.) on 16 March 1993. As can be seen in Figures 8, 9, 10, and 11, the draft and level of material in the hopper were at minimums just after 11:30 a.m., indicating that a load had just been dumped. Immediately thereafter, a small amount of bin water returned to the hopper, and dredging commenced at approximately 11:45 a.m. Dredging continued until shortly after 1:00 p.m., some water was then allowed to drain off the top of the hopper, the load was dumped just after 1:30 p.m., and a new cycle started. Figures 12 and 13 are plots of the starboard and port draghead depths showing that the dragheads were raised and lowered several times during that load. Figures 14 through 17 show the production meter data, slurry density, and

| Table 1 Data Acquisition Channels |                                |                      |  |  |
|-----------------------------------|--------------------------------|----------------------|--|--|
| Data<br>Acquisition<br>Channel    | Data<br>Acquired               | Engineering<br>Units |  |  |
| 1                                 | Aft draft                      | ft                   |  |  |
| 2                                 | Forward draft                  | ft                   |  |  |
| 3                                 | Aft level in hopper            | ft                   |  |  |
| 4                                 | Forward level in hopper        | ft                   |  |  |
| 5                                 | Starboard draghead depth       | ft                   |  |  |
| 6                                 | Port draghead depth            | ft                   |  |  |
| 7                                 | Density in starboard drag arm  | g/cm³                |  |  |
| 8                                 | Velocity in starboard drag arm | ft/sec               |  |  |
| 9                                 | Density in port drag arm       | g/cm³                |  |  |
| 10                                | Velocity in port drag arm      | ft/sec               |  |  |

velocity for the starboard and port drag arms. Figures 18 and 19 are plots of the dredge's position during that same period. Indicated in Figure 18 are the corners of the designated dump site for the Chincoteague Inlet project, and in Figure 19 are several center-line stations along the channel being dredged.

#### **Data Reduction**

Calculating the bin measure load and analyzing the amount of solids retained in the hopper during the overflow process require knowledge of the volume of material in the hopper, the total displacement of the vessel, and the cumulative weight of solids as indicated by the production meters. As seen in Table 1, none of the data acquired by the monitoring system provides that information directly. Therefore, the information on the level in the hopper, draft, and density and velocity in the drag arms must be converted from the initial data into volume of material in the hopper, total displacement of the vessel, and cumulative weight of solids pumped. The data conversion for each of these is described in the following paragraphs.

#### Volume of material in hopper

As previously discussed, the acoustic sensors over the hopper measured the distance from the sensor to the water or slurry surface in the hopper. That distance needed to be converted into an average depth of material in the hopper and then into volume of material in the hopper. To accomplish this, the depth of material in the hopper below each sensor was determined by



Figure 8. Aft draft versus time



Figure 9. Forward draft versus time



Figure 10. Depth of material in aft end of hopper versus time



Figure 11. Depth of material in forward end of hopper versus time



Figure 12. Starboard draghead depth versus time



Figure 13. Port draghead depth versus time



Figure 14. Slurry density in starboard drag arm versus time



Figure 15. Slurry velocity in starboard drag arm versus time



Figure 16. Slurry density in port drag arm versus time



Figure 17. Slurry velocity in port drag arm versus time



Figure 18. Dredge position (northing and easting) during a typical load cycle



Figure 19. Dredge position (northing and easting) in the channel during a typical load cycle

subtracting the measured distance between the sensor and the water surface from the total distance between the sensor and the bottom of the hopper:

$$D = TD - MD \tag{7}$$

where

D =depth of material in the hopper, ft

TD = total distance from acoustic sensor to hopper bottom, ft

MD = measured distance from sensor to water surface, ft

(Note that the data plotted in Figures 10 and 11 had already been converted this way such that the plots show the level of material in the hopper as opposed to the distance from the acoustic sensor to the top of the material in the hopper.)

The resulting values were then converted into hopper volume through the use of the ullage table for the dredge. The ullage table provides the capacity of the hopper, in cubic yards, for any given depth of material in the hopper. Using that ullage table information, a plot of hopper volume versus depth in the hopper was made, a curve was fit to that plot, and the equation of the curve was determined. That equation provided a value for hopper volume in cubic yards for a given value of average hopper depth. Thus, the data from the two acoustic sensors were converted into depth of material, the average depth in the hopper was calculated, and a hopper volume was computed for that average depth. Figure 20 is a plot of the volume of material in the hopper versus time for the same period covered in Figures 8 through 19.

#### Vessel displacement

To determine the weight of material in the hopper for the bin measure load calculation, the value required is not the draft of the ship, but the weight, or displacement, of the ship. Thus, the draft values had to be converted into displacement. This was accomplished through the use of the hydrostatic curves of form for the vessel. The hydrostatic curves of form include many curves that describe the characteristics of the vessel, among which is a data curve that relates draft and displacement. A curve fit equation was determined for that draft versus displacement curve. The resulting equation provided displacement, in tons, for any given values of fore and aft draft. Figure 21 is a plot of the vessel displacement for the same period in Figures 8 through 20.

#### Cumulative weight of solids

To analyze the amount of solids retained in the hopper during the overflow process, the weight of solids pumped during overflow was compared to the weight of solids retained during overflow. The density meter provided the density of material in the drag arm, and the flow meter provided the velocity



Figure 20. Volume of material in hopper versus time



Figure 21. Vessel displacement versus time

of the material in feet per second. These data were recorded every 5 seconds. The cumulative weight of solids was calculated as follows.

$$M_{s} = \frac{\rho_{m} - \rho_{w}}{\rho_{s} - \rho_{w}} * \rho_{s} * 62.4 * V_{m} * A * T$$
 (8)

where

 $M_s$  = solids mass production, lb

 $\rho_m$  = density of material in drag arm, g/cm<sup>3</sup>

 $\rho_w$  = density of interstitial water, g/cm<sup>3</sup>

 $\rho_s$  = density of solids, g/cm<sup>3</sup>

 $V_m$  = velocity of mixture in drag arm, ft/sec

A =cross-sectional area of drag arm suction pipe,  $ft^2$ 

T = time interval between measurements, sec

For example, if the density of the interstitial water was measured as 1.007 g/cm<sup>3</sup>, the density of the solids was 165.36 lb/ft<sup>3</sup>, the cross-sectional area of the suction pipe was 1.767 ft<sup>2</sup>, the time interval between measurements was 5 seconds, the average density of material in the drag arm measured by the density meter over the 5-second interval was 1.3 g/cm<sup>3</sup>, and the average velocity of material in the drag arm measured by the flow meter was 15.0 ft/sec, then the weight of solids over that 5-second interval would be:

$$W_s = \left[ \frac{1.3 \ g/cm^3 - 1.007 \ g/cm^3}{2.65 \ g/cm^3 - 1.007 \ g/cm^3} \right] *$$

$$165.35 \ lb/ft^3 * 15.0 \ ft/sec * 1.767 \ ft^2 * 5.0 \ sec$$

$$= 3.908.0 \ lb$$
(9)

Figure 22 plots the cumulative weight of solids pumped during the same period covered in the previous figures. Note that the weight of cumulative solids in Figure 22 is expressed in tons to correspond with the unit of measurement for the total displacement of the vessel.



Figure 22. Cumulative weight of solids pumped versus time

# 3 Dredging Project Monitoring

Two dredging projects were monitored for this study, maintenance dredging at Chincoteague Inlet, Virginia, and maintenance dredging in the Norfolk Harbor channel, Virginia. The contracts for those projects were awarded to the North American Trailing Company (NATCO). The monitoring system was installed aboard the NATCO dredge Northerly Island, which performed the dredging work. The Northerly Island, a split hull dredge, has an overall length of 205 ft with an overall beam of 48 ft and two 18-in. drag arms. The dredge generally drafts from 5 to 15 ft. The pumping system consists of two 625-hp pumps, and the dredge has a hopper capacity of 2,178 yd³ (U.S. Army Corps of Engineers 1985).

The Chincoteague Inlet and Norfolk Harbor projects were two separate dredging projects, and each project presented very different conditions under which to evaluate the usefulness and effectiveness of the monitoring system. Although the monitoring system acquired the same type of information during each project, the primary focus of the monitoring system on the Chincoteague Inlet project was to calculate the bin measure production for each load, while the retention of solids during the overflow process was of primary interest for the Norfolk Harbor project.

# Chincoteague Inlet

Chincoteague Inlet is located at the entrance to Chincoteague Bay between Assateague Island and Chincoteague Island along the northern coast of Virginia. Figure 23 is a vicinity map for Chincoteague Inlet showing its location with respect to Norfolk, VA, and Chesapeake Bay, and Figure 24 is a location map showing the dredging area (shown as "Location of Survey" on the map) and disposal site (shown as "Placement Area" on the map) near Chincoteague Inlet.

Chincoteague Inlet is subject to fairly rapid and unpredictable shoaling conditions that make bathymetric surveys unreliable. Because of these conditions, the maintenance dredging at Chincoteague is paid by bin measure. A predredging survey is performed to provide an estimate of the extent of shoaling, and a postdredging survey is performed to verify that the channel is



Figure 23. Vicinity map for Chíncoteague Inlet, Virginia



Figure 24. Location map for Chincoteague Inlet, Virginia

navigable; but payment to the contractor is not based upon those surveys. The material in the inlet is primarily fine sand with less than 5 percent fines and has an average in-place specific weight of 121.9 lbf/ft<sup>3</sup>, as determined by a series of nuclear density measurements taken in the channel.

The monitoring system was installed aboard the dredge Northerly Island during a 3-day period from 2 March through 4 March 1993. Dredging at Chincoteague Inlet began on 6 March 1993, and was completed on 18 March 1993. The estimated volume of material removed from the channel was approximately 112,000 yd<sup>3</sup> as reported by the contractor.

#### Bin measure load calculations

As discussed previously, the process of calculating the bin measure load requires the determination of several variables: the volume of material in the hopper and the vessel displacement at the start of the load cycle, the volume of material in the hopper and the vessel displacement at the end of the load cycle, the density of the interstitial water, and the estimated in-place density of the material being dredged. Once those values are determined, then the bin measure load can be calculated using the procedures previously set forth.

For the Chincoteague Inlet project, the density of the interstitial water was determined by measuring the density of five water samples that were randomly taken through the duration of the project. The density of those samples ranged from 1.019 g/cm³ to 1.021 g/cm³ with the average being 1.020 g/cm³ A series of six nuclear density probe measurements of the sediment were taken in the channel. The in-place sediment density measured by the probe ranged from 1.939 g/cm³ to 1.964 g/cm³ with the average being 1.953 g/cm³ Based upon those nuclear density probe measurements, the average specific weight of the in-place material in Chincoteague Inlet was taken as (1.953 g/cm³) \* [(62.4 lbf/ft³)/(1 g/cm³)] = 121.9 lbf/ft³

The next step in calculating bin loads was to plot the data for both the vessel displacement and for the volume of material in the hopper. From those plots, the beginning and end of each load was identified and the corresponding vessel displacement and volume of material in the hopper were determined. Figure 25 is a plot of both the vessel displacement and volume of material in the hopper versus time for a typical day during the Chincoteague Inlet project, 16 March 1993. Note that the vessel displacement is given in tons while the volume of material in the hopper is given in cubic yards. Also indicated in Figure 25 are two specific loads, "Load 120" and "Water Test." Load 120 was a typical load for which sample calculations were performed to determine the bin measure production, and the water test will be discussed in the following section.

The scale of Figure 25 makes it impossible to accurately determine where each load starts and ends, so each load must be isolated to provide a plot with the necessary detail. Such plots are shown in Figure 26, which is the volume



Figure 25. Volume of material in hopper and vessel displacement versus time over a 24-hour period

of material in the hopper versus time for load 120, and Figure 27, which shows the vessel displacement versus time for that same load. Note that this is the same load presented previously in Figures 8 through 22, but Figure 26 shows the volume of material in the hopper at the start and end of the load and Figure 27 shows the vessel displacement. Using those values along with the densities of the water and in-place sediments as previously set forth, the bin measure production for load 120 is calculated as follows:

#### a. Measured variables:

$$V_{\rm s}=580~{\rm yd^3}$$

$$V_E = 1,200 \text{ yd}^3$$

$$D_s = 2,580 \text{ tons}$$

$$D_E = 3,630 \text{ tons}$$

$$\rho_i = 121.9 \text{ lb/ft}^3$$

$$\rho_w = 63.7 \text{ lb/ft}^3$$



Figure 26. Volume of material in the hopper versus time for load 120, Chincoteague Inlet project



Figure 27. Vessel displacement versus time for load 120, Chincoteague Inlet project

#### b. Production calculations:

(1) Bin water weight:

$$BW = V_S * \rho_w$$
= (580 yd<sup>3</sup> \* 27 ft<sup>3</sup>/yd<sup>3</sup>) \* 63.7 lb/ft<sup>3</sup>
= 15,660 ft<sup>3</sup> \* 63.7 lb/ft<sup>3</sup>
= 997,542 lb

(2) Total weight in hopper:

$$TW = (D_E - D_S) + BW$$

$$= [(3,630 - 2,580) ton * 2,000 lb/ton] + 997,542 lb$$

$$= (1,050 tons * 2,000 lb/ton) + 997,542 lb$$

$$= 2,100,000 lb + 997,542 lb$$

$$= 3,097,542 lb$$
(11)

(3) Average density in hopper:

$$\rho_H = TW / V_E 
= 3,097,542 lb / (1,200 yd3 * 27 ft3/yd3) 
= 3,097,542 lb / 32,400 ft3 
= 95.6 lb/ft3$$
(12)

(4) In-place production:

$$P_{i} = [(\rho_{H} - \rho_{w})/(\rho_{i} - \rho_{w})] * V_{E}$$

$$= [(95.6 - 63.7)/(121.9 - 63.7)] * 1,200 yd^{3}$$

$$(31.9/58.2) * 1,200 yd^{3}$$

$$= 0.55 * 1,200 yd^{3}$$

$$= 660 yd^{3}$$
(13)

A total of 147 loads were dredged during the Chincoteague Inlet project. The procedure followed in the preceding example was used to calculate the bin measure production for each of those loads. The cumulative in-place bin measure production calculated was 84,110 yd³ for an average load of 572.2 yd³ over the 147 loads. Table A1 in Appendix A contains a complete listing of all loads for the Chincoteague Inlet project and includes load number, start and stop time from which each load was calculated, start and ending hopper volume and vessel displacement, the calculated bin water weight, calculated total weight in the hopper, average density in the hopper, and the in-place volume of material for each load. Those loads indicated by three asterisks (\*\*\*) were water tests, which are discussed in the following section.

#### System verification-water tests

A potential weakness in this method of calculating production is the difficulty in verifying the accuracy of the data being measured. The total

displacement of the vessel and the volume of material in the hopper at any given time are difficult to verify. Thus, some method was needed to verify that the production calculations based upon the data collected by the monitoring system were accurate. No reasonable method of verifying each measurement could be determined, so a method of verifying the result of the average hopper density calculation was chosen. The water test method, adopted in this case, consisted of filling the hopper with a material of known density, and then calculating the average density of the material added to the hopper based upon the change in vessel displacement and volume of material added to the hopper as measured by the monitoring system. The hopper was filled with seawater, the density of which was determined from samples taken during the water tests. The vessel displacement and volume of material in the hopper were determined for the beginning and end of each water test. Figures 28 and 29 show the volume of material in the hopper and vessel displacement, respectively, for a water test. The values indicated in those figures for volume of material in the hopper and vessel displacement at the start and end of the test are used in the following calculations. Note that the same measured variables are used here as were used in the production calculation (Equations 10 through 13).

a. Weight added to hopper:

$$W_A = D_E - D_S$$
= (2.950 tons - 2,270 tons) \* 2,000 lb/ton  
= 1,360,000 lb

b. Volume added to hopper:

$$V_A = V_E - V_S$$
=  $(1.115 \text{ yd}^3 - 325 \text{ yd}^3) * 27 \text{ ft}^3/\text{yd}^3$   
=  $21.330 \text{ ft}^3$  (15)

c. Average sensity in hopper:

$$\rho_H = W_A / V_A 
= 1,360,000 lb / 21,330 ft^3 
= 63.8 lb/ft^3$$
(16)

d. Measured density of water:

$$\rho_{w} = 63.7 \, lb/ft^3 \tag{17}$$

e. Percent difference:

$$PD = [(\rho_H - \rho_w) / \rho_w] * 100$$

$$= [(63.8 - 63.7) / 63.7] * 100$$

$$= 0.16 percent$$
(18)



Figure 28. Volume of material in hopper versus time for water test, Chincoteague Inlet project



Figure 29. Vessel displacement versus time for water test, Chincoteague Inlet project

Water tests were conducted nearly every day of dredging on the Chincoteague Inlet project. The tests were typically performed after a load was dumped and the dredge was moving back to the dredging site. The data for these tests were gathered under the prevailing conditions at the dredging site. Therefore, the data should reflect the same degree of accuracy as the data gathered during the actual dredging. The results consistently showed that the calculated average density of the seawater in the hopper, was very close to the actual density of the water. A summary of those tests is presented in Table 2.

| Table 2<br>Summary | of Water T                                   | Tests for C                                | hincoteague               | e Inlet                          |                                                       |
|--------------------|----------------------------------------------|--------------------------------------------|---------------------------|----------------------------------|-------------------------------------------------------|
| Date               | Start<br>Hopper<br>Volume<br>yd <sup>3</sup> | End<br>Hopper<br>Volume<br>yd <sup>3</sup> | Start Displace- ment tons | End<br>Displace-<br>ment<br>tons | Average<br>Density<br>in Hopper<br>lb/ft <sup>3</sup> |
| March 7            | 377                                          | 707                                        | 2,265                     | 2,557                            | 65.5                                                  |
| March 8            | 326                                          | 910                                        | 2,136                     | 2,654                            | 65.7                                                  |
| March 9            | 348                                          | 1,265                                      | 2,302                     | 3,099                            | 64.4                                                  |
| March 10           | 443                                          | 1,158                                      | 2,330                     | 2,941                            | 63.3                                                  |
| March 10           | 353                                          | 1,243                                      | 2,180                     | 2,951                            | 64.2                                                  |
| March 11           | 344                                          | 1,345                                      | 2,239                     | 3,092                            | 63.1                                                  |
| March 12           | 350                                          | 1,222                                      | 2,306                     | 3,079                            | 65.7                                                  |
| March 15           | 348                                          | 1,069                                      | 2,371                     | 2,994                            | 64.0                                                  |
| March 16           | 325                                          | 1,115                                      | 2,270                     | 2,950                            | 63.8                                                  |
| Average of W       | ater Tests                                   |                                            |                           |                                  | 64.4                                                  |

As seen in Table 2, the average calculated density of the seawater added to the hopper during the nine water tests based upon the data acquired by the monitoring system was 64.4 lb/ft<sup>3</sup>. The actual density of that water, as determined by analyzing water samples taken during five of the water tests, was 63.7 lb/ft<sup>3</sup>. The percent difference between the density as determined by the monitoring system and the density as determined from the water samples is as follows.

- a. Average density (monitoring system) =  $64.4 \text{ lb/ft}^3$
- b. Average density (water samples) =  $63.7 \text{ lb/ft}^3$
- c. Percent difference = [(64.4 63.7) / 63.7] \* 100 = +1.1 percent

Several important factors can influence the final in-place production calculation, perhaps the most important and most uncertain of which is the in-place

density of the sediment. The very nature of the navigation channels where bin measure may be necessary, due to the difficulty of performing accurate surveys, often makes it difficult to obtain an accurate estimate of in-place density. If the in-place density is not correct, then the final calculated in-place production will obviously not reflect the actual amount of material removed from the bottom. One way to avoid this problem would be to measure only the weight of solids in the hopper, and not the in-place volume. This would make the system independent of soil type and remove this source of potential inaccuracies (Rokosch 1989).

#### Other data acquired

The data acquired from the production meters, draghead depth, and ship's position were not thoroughly analyzed for the Chincoteague Inlet project. These items were included to verify that the information could in fact be measured and recorded, but a complete review of the data was beyond the scope of this project. Included in Figures 12 through 19 were plots of these data for a typical load during the Chincoteague Inlet project. The data could be used for various purposes, such as verifying that a load was dumped in the proper location, estimating the depth of dredging from the draghead depth data, and calculating production by integrating the production meter density and velocity data over time. However, the specific scope of the effort reported herein was to determine the bin measure production, and this portion of the report is limited to that scope.

#### Uncertainty analysis

The uncertainty of dredge production calculations based on data from the instrumentation installed by the U.S. Army Engineer Waterways Experiment Station (WES) can be estimated using general uncertainty analysis calculations (Scott 1993). This technique accounts for the uncertainty contributed by each variable in the data reduction equation used to calculate production. The bin measure production for the *Northerly Island* was calculated by the following equation:

$$P_{i} = \frac{W_{H}}{\overline{V_{H}}} - \rho_{w} + V_{H}$$
 (19)

where

 $W_H$  = average slurry weight in hopper, lb  $V_H$  = average full hopper volume, ft<sup>3</sup>

 $\rho_{w}$  = interstitial water density lb/ft<sup>3</sup>

 $\rho_i$  = in-place sediment density, in lb/ft<sup>3</sup>

with the ratio  $W_H/V_H$  representing the average density in the hopper. After the uncertainty analysis method is applied to the production equation, it can be used to calculate the percentage uncertainty in dredge production. The final form of the production uncertainty equation is:

$$\frac{U_{P_i}}{P_i} = \left[ \left[ \frac{\rho_H}{\rho_H - \rho_w} * \frac{U_{W_H}}{W_H} \right]^2 + \left[ \frac{U_{\rho_w}}{\rho_i - \rho_w} - \frac{U_{\rho_w}}{\rho_H - \rho_w} \right]^2 + \left[ \frac{-U_{\rho_i}}{\rho_i - \rho_w} \right]^2 + \left[ \frac{-\rho_w}{\rho_H - \rho_w} * \frac{U_{V_H}}{V_H} \right]^2 \right]^{1/2}$$
(20)

where

 $U_{
ho_i} = \text{uncertainty in the in-place density measurement}$   $U_{W} = \text{uncertainty in the slurry weight measurement}$   $U_{
ho_i} = \text{uncertainty in the water density measurement}$   $U_{V...} = \text{uncertainty in the hopper volume measurement}$ 

The production equation contains four variables that contribute some uncertainty to the final production calculation. The following describes each variable and the estimated potential uncertainty associated with it.

- a. Water density. During the dredging at Chincoteague Inlet, nine water samples were taken between 8 March and 18 March 1993. The mean density measured was 1.020 g/cm<sup>3</sup>, with a maximum of 1.021 g/cm<sup>3</sup> and a minimum of 1.019 g/cm<sup>3</sup>. Therefore the uncertainty value for the water to be used in the calculation is ±0.001 g/cm<sup>3</sup>.
- b. In-place sediment density. The contractor, NATCO, provided data describing in-place density measurements with a nuclear density probe. Two stations were sampled in the project area, one at station 401+50, range -15, and another at station 382+25, range 67. Three density readings were made at each station. For station 401+50, the average density was 1.946 g/cm<sup>3</sup>, with a maximum of 1.957 g/cm<sup>3</sup> and a minimum of 1.939 g/cm<sup>3</sup>. For station 382+25, the average density measured was 1.960 g/cm<sup>3</sup>, with a maximum of 1.964 g/cm<sup>3</sup> and a minimum of 1.953 g/cm<sup>3</sup>. The overall average for both stations was 1.953 g/cm<sup>3</sup> with an overall maximum of 1.964 g/cm<sup>3</sup> and overall minimum of 1.939 g/cm<sup>3</sup>. Because of the limited amount of data from the two stations, a conservative determination of in-place sediment uncertainty will be considered based on the potential in-place density found in sand sediments. The in-place density of sandy sediments will generally be within the approximate range of 1.9 to 2.0 g/cm<sup>3</sup>, depending on the degree of compaction and fine sediment content. Therefore, for this

application, the uncertainty of the in-place sediment density was approximately  $\pm 0.05$  g/cm<sup>3</sup>.

c. Average slurry density. The average density of the slurry in the hopper was indirectly measured by two instrumented systems. The volume that the slurry occupies in the hopper was measured by acoustic transducers located above the hopper. The weight of the slurry in the hopper was measured by pressure transducers that measure the hydrostatic pressure change due to the draft of the dredge. The average density was calculated by the following equation:

$$\rho_{\rm H} = W_{\rm H} / V_{\rm H} \tag{21}$$

The average slurry density for all of the Chincoteague Inlet hopper loads was 1.45 g/cm<sup>3</sup>.

- d. Hopper volume. The hopper volume measurement made with the acoustic transducers has some error potential associated with it. The average full hopper volume over the Chincoteague loads was 1,262 yd<sup>3</sup>. The manufacturer's stated accuracy for the temperature compensated acoustic transducers is 0.2 percent of the measurement range under ideal conditions. Assuming an accuracy to within 0.5 percent of the measurement range for a field application and a measurement range of approximately 18 ft gives an uncertainty of 0.09 ft. The linear portion of the hopper has an ullage of about 118 yd<sup>3</sup> per ft; therefore, the volume uncertainty was approximately ±10.62 yd<sup>3</sup>.
- e. Slurry weight. The weight of the slurry in the hopper is measured by pressure transducers, which measure the hydrostatic pressure change as the dredge drafts under the slurry load. The pressure data are converted to feet of water, which is used to calculate the dredge displacement as a function of draft. The difference between the final and initial dredge displacement during loading is the slurry load. The average slurry weight for the Chincoteague loads was 1,376 tons. Water test data indicated an uncertainty in the load measurement of approximately 1.090; therefore, the uncertainty of the average load was ±13.76 long tons.

With the variable uncertainties defined, the uncertainty in the average production calculation can be calculated. Inserting the variable uncertainties into Equation 20 results in an average production uncertainty of  $\pm 6.6$  percent. With an average production of 582 yd³ for the Chincoteague Inlet job, the average load production uncertainty is therefore 582 yd³ $\pm$ 38 yd³. Table 3 lists the average variables and their uncertainties used in the analysis.

| Table 3 Dredge Production L     | Incertainty Analysis Va | riables and Uncertainties |
|---------------------------------|-------------------------|---------------------------|
| Variable                        | Average Value           | Uncertainty U             |
| Water density - ρ <sub>w</sub>  | 1.02 g/cm <sup>3</sup>  | 0.001 g/cm³               |
| In-place density - p,           | 1.953 g/cm³             | 0.05 g/cm <sup>3</sup>    |
| Slurry weight - W <sub>H</sub>  | 1,376 tons              | 13.76 tons                |
| Slurry density - p <sub>H</sub> | 1.45 g/cm <sup>3</sup>  |                           |
| Hopper volume - V <sub>H</sub>  | 1,262.0 yd³             | 10.62 yd³                 |

#### Norfolk Harbor Channel

The second dredging project monitored during this study was performed in the Norfolk Harbor channel, which extends from deep water in Hampton Roads into the Elizabeth River. The outbound channel to the coal piers at Lambert Point is maintained to a depth of 50 ft, while other portions of the channel are maintained to depths of 40 and 45 ft. Figure 30 shows a vicinity map of the Norfolk Harbor area, with the general location of this maintenance dredging project noted near the Craney Island Disposal Area. The Norfolk Harbor maintenance dredging is typically performed by a cutterhead dredge, but the low bidder chose to perform a portion of the project with a hopper dredge. The channel had not been dredged by a hopper dredge since 1986, when a Government dredge was used. A contract hopper dredge had never been used to perform the maintenance dredging in this portion of the channel.

Monitoring the maintenance dredging in Norfolk Harbor presented an opportunity to analyze the data acquired by the monitoring system in a dredging environment much different from that found in the Chincoteague Inlet project. The sediment in Norfolk Harbor is primarily fine-grained, as opposed to the sandy sediment in Chincoteague Inlet. The dredging depth in Norfolk Harbor was approximately 52 ft while that in Chincoteague Inlet was approximately 15 ft, and dredged material was discharged from the hopper by pumping into a confined disposal area at Craney Island whereas the Chincoteague Inlet project used an unconfined ocean site for dumping. Additionally, no restrictions exist on overflow of sediment from the hopper in Norfolk Harbor. For the Norfolk Harbor project, the data from the monitoring system were used to analyze the retention rate of solids in the hopper during the overflow period for each load.

The Norfolk Harbor dredging project commenced on 10 April 1993, and the project was performed in two phases. One acceptance section was completed by the NATCO dredge Northerly Island on 20 April 1993, while the remainder of the project was subcontracted and completed by cutterhead dredge. The section completed by the Northerly Island was on the east toe of the outbound channel, between center-line stations 138+00 and 196+00 for a



Figure 30. Vicinity map for Norfolk Harbor channel, Virginia

length of 5,800 ft. The data described in this report refer only to that portion of the project that was completed by the NATCO hopper dredge Northerly Island. The monitoring system installed by WES remained on the Northerly Island from the completion of the Chincoteague Inlet project in late March. The entire system was removed from the dredge on 21 April 1993, after Northerly Island had completed its work on the Norfolk Harbor project. The main goal of using the monitoring system on the Norfolk Harbor project was to analyze the amount of solids retained in the hopper during the overflow process. Monitoring the overflow efficiency using hopper volume, vessel displacement, and production meter data has previously been performed by WES aboard the U.S. Army Corps of Engineers dredge Wheeler (Scott 1992b).

#### Bin measure load calculations

Bin measure load calculations for the Norfolk Harbor project were performed in the same manner as for the Chincoteague Inlet project. However, unlike the Chincoteague Inlet project, payment for the Norfolk Harbor project was not based upon the in-place volume of material in the hopper, but upon the amount of material removed from the channel as determined from pre- and postdredging surveys. Note that the bin measure load calculations for this project do not provide a measure of the total amount of material removed from the channel, because the sediment lost during overflow is not retained in the hopper and is thus not reflected in the bin measure figures. Although the bin measure method does not reflect the total volume removed from the channel when overflow occurs, it does reflect that amount of material that remains in the hopper and is transported to the disposal site and may therefore provide an estimate of the volume of material added to the disposal area.

Table A2 in Appendix A is a summary of the bin measure load calculations for the loads monitored for the Norfolk Harbor Channel Project. A total of 90 loads were dredged by the *Northerly Island*, and the average calculated bin measure production was 734 yd<sup>3</sup> per load. Note that the data from midnight until approximately 2:30 p.m. on 17 April 1993 were missing from the data file for that day; thus the data for loads 66 through 70 are missing from Table A2.

Figures 31 and 32 show the volume of material in the hopper and the vessel displacement for load 74, a typical load from the Norfolk Harbor channel project. Using the values indicated in those figures for hopper volume and vessel displacement, the bin measure load is calculated using the same process as set forth previously. Note the difference between Figures 31 and 32 and Figures 26 and 27, which show the same type of data for a load from the Chincoteague Inlet project. Once the hopper was full and overflow began in the Norfolk Harbor project, the vessel displacement did not increase significantly, whereas the vessel displacement continued to increase during overflow in the Chincoteague Inlet project. This reflects the fact that very little of the Norfolk Harbor fine-grained sediments was being retained in the



Figure 31. Volume of material in hopper versus time for load 74, Norfolk Harbor project



Figure 32. Vessel displacement versus time for load 74, Norfolk Harbor project

hopper while greater retention was achieved with the sandy sediments in Chincoteague Inlet. A more detailed analysis of the retention of sediments in the hopper during the Norfolk Harbor Channel project is presented later in this report.

#### System verification - water tests

Water tests were performed during the Norfolk Harbor project in the same manner as previously discussed for the Chincoteague Inlet project, and calculation of the water density was also performed as outlined for the Chincoteague Inlet project. Water tests were conducted on four occasions throughout the Norfolk Harbor project, the results of which are summarized in Table 4.

| Table 4<br>Summary | of Water 1                                   | est Result                                 | s for Norfol                       | k Harbor Pro                     | oject                                                 |
|--------------------|----------------------------------------------|--------------------------------------------|------------------------------------|----------------------------------|-------------------------------------------------------|
| Date               | Start<br>Hopper<br>Volume<br>yd <sup>3</sup> | End<br>Hopper<br>Volume<br>yd <sup>2</sup> | Start<br>Displace-<br>ment<br>tons | End<br>Displace-<br>ment<br>tons | Average<br>Density<br>in Hopper<br>fb/ft <sup>3</sup> |
| April 12           | 43                                           | 1,505                                      | 1,970                              | 3,224                            | 63.5                                                  |
| April 13           | 44                                           | 760                                        | 2,089                              | 2,705                            | 63.7                                                  |
| April 16           | 43                                           | 765                                        | 1,997                              | 2,619                            | 63.8                                                  |
| April 19           | 43                                           | 955                                        | 2,099                              | 2,880                            | 63.4                                                  |
| Average of V       | Vater Tests                                  |                                            |                                    |                                  | 63.6                                                  |

From Table 4, the average density of seawater added to the hopper during the water tests, calculated from data acquired by the monitoring system, was  $63.6 \text{ lb/ft}^3$ . The actual water density, from water samples taken during the tests, was  $62.8 \text{ lb/ft}^3$ , the percent difference between the calculated and actual density being +1.3 percent.

#### Overflow analysis

The primary focus of monitoring the Norfolk Harbor channel project was to obtain some insight into the amount of solids retained in the hopper during overflow. Overflow is that portion of the dredging cycle that starts when the hopper is full and material is allowed to overflow back into the channel as dredging continues. When coarse-grained sediments are dredged, the solids will settle into the hopper while the overflow consists of relatively clear water. However, when the dredged material consists of fine-grained sediments, which take considerably longer to settle, the effectiveness of overflow in retaining solids in the hopper is less certain.

The beginning and ending of the overflow process for each load were determined from the hopper volume data. Overflow started when the hopper volume reached a maximum, and a relatively constant hopper volume was maintained while dredging continued. Overflow stopped when the production meters indicated that dredging had stopped for each load. Figure 33 shows a plot of vessel displacement and volume of material in the hopper for load 74, a typical load from the Norfolk Harbor project. Noted in that figure are the start and stop times of the overflow process for that particular load.



Figure 33. Volume of material in hopper and vessel displacement versus time for overflow analysis on load 74, Norfolk Harbor project

The amount of solids retained in the hopper was determined by comparing the total displacement, or weight, of the vessel at the start of overflow and the total weight at the end of overflow. Since the total volume of material in the hopper does not increase during overflow, any increase in the weight of the vessel during overflow must be due to additional solids displacing water and being retained in the hopper. Thus, the weight of solids retained during overflow was taken as the change in the total weight of the vessel during overflow, as determined from the monitoring system displacement measurements. Figure 34 is a magnified view of the vessel displacement during overflow for load 74, with the displacement of the vessel at the start and end of overflow noted. For the values indicated in Figure 34, the weight of solids retained in the hopper was calculated as follows:



Figure 34. Vessel displacement versus time during overflow on load 74, Norfolk Harbor project

- a. Weight of vessel at start of overflow = 3,972 tons
- b. Weight of vessel at end of overflow = 4,060 tons
- c. Weight of solids retained during overflow = 88 tons

To determine the percentage of solids retained in the hopper during overflow, the total weight of solids pumped into the hopper during overflow must be known. That value was determined from the production meter data. As outlined in Chapter 2 of this report, the density and velocity of dredged material in each drag arm were used to calculate the cumulative weight of solids pumped. The total weight of solids pumped during overflow for each load was taken as the cumulative weight of solids pumped from the start of overflow through the end of overflow, as calculated from the production meter data. Figure 35 shows the cumulative weight of solids pumped during load 74, the same load depicted in Figures 33 and 34. Note that the time scale in Figure 35 has been adjusted such that the plot covers only that portion of the load when overflow was occurring (from 1.27 hr to 2.25 hr). The cumulative weight of solids pumped during overflow for that load, shown in Figure 35, represents the total weight of solids available for retention in the hopper during overflow. The weight of solids retained divided by the weight of solids



Figure 35. Cumulative weight of solids pumped versus time during overflow on load 74, Norfolk Harbor project

available provided the percentage of solids retained during overflow as follows:

- a. Weight of solids retained = 88 tons
- b. Weight of solids available = 574 tons
- c. Percentage of solids retained = (87 / 574) \* 100 = 15.3 percent

Table A3 in Appendix A summarizes the overflow analysis for the entire portion of the project that was monitored. As seen in that table, the average percent of solids retained throughout the project was 15.5 percent, so that during overflow an average of 84.5 percent of the solids pumped into the hopper were returned directly overboard back into the channel.

#### Other data acquired

The data acquired for the draghead depth and ship's position were not analyzed for the Norfolk Harbor channel project. As with the Chincoteague Inlet project, the intent of including those items in the monitoring system was to verify that the information could in fact be measured and recorded, but a complete review of those was beyond the scope of this study. The specific

scope of the effort for monitoring the Norfolk Harbor channel project was to analyze the amount of overflow retained in the hopper during overflow, as discussed in the preceding section.

#### Uncertainty analysis

The uncertainty of dredge production calculations based on data from the dredge Northerly Island production meters can also be approximated using the general uncertainty analysis technique. The solids mass production through the Northerly Island production meters was calculated using Equation 8.

After the uncertainty analysis method is applied to the solids mass production equation, it can be used to calculate the percentage uncertainty. The final form of the production uncertainty equation is:

$$\frac{U_{M_s}}{M_s} = \left[ \left[ \frac{U_{\rho_m}}{\rho_m - \rho_w} \right]^2 + \left[ \frac{U_{\rho_s}}{\rho_s} - \frac{U_{\rho_s}}{\rho_s - \rho_w} \right]^2 + \left[ \frac{U_{\rho_w}}{\rho_s - \rho_w} - \frac{U_{\rho_w}}{\rho_m - \rho_w} \right]^2 + \left[ \frac{U_{V_w}}{V_m} \right]^2 + \left[ \frac{2U_{D_p}}{D_p} \right]^2 \right]^{1/2}$$
(23)

where,

D = pipe diameter (in.)

 $U_{MS}$  = uncertainty in the solids mass production measurement  $U_{\rho}$  = uncertainty in the slurry density measurement  $U_{\rho}^{m}$  = uncertainty in the sediment particle density measurement

 $U_{v_{\perp}}^{r_{s}}$  = uncertainty in the slurry velocity measurement

 $U_{DD}^{m}$  = uncertainty in the pipeline diameter

The solids mass production equation contains the following five variables that contribute some uncertainty into the final production calculation.

- a. Water density. Four water samples were taken during the Norfolk Harbor project. Laboratory analysis of each of the samples indicated a water density of 1.007 g/cm<sup>3</sup>. Although each sample had the same measured density, an uncertainty value of  $\pm 0.001$  g/cm<sup>3</sup> will be used for this analysis.
- b. Sediment particle density. The sediments found in the Norfolk Harbor area consisted mainly of silt, with an approximate in-place density of 1.45 g/cm<sup>3</sup>. To determine the uncertainty in the particle density of the Norfolk Harbor sediments, test data were obtained from a soil survey of Norfolk Harbor (Swean 1986). Test data for nine samples were evaluated. The average particle density for the nine samples

was 2.65 g/cm<sup>3</sup>, with a minimum of 2.57 g/cm<sup>3</sup> and a maximum of 2.73 g/cm<sup>3</sup>. This indicates an approximate density range of 3.0 percent; therefore the particle density uncertainty is 2.65 g/cm<sup>3</sup>,  $\pm 0.079$  g/cm<sup>3</sup>.

- c. Slurry density. The density meter used to measure slurry density is considered very accurate when used with homogeneous liquids. The accuracy rating from the manufacturer in measuring density is  $\pm 0.001$  g/cm<sup>3</sup>. For dredging applications with mixed sediment slurries existing within varying phases of flow, the accuracy is potentially somewhat less. An estimate of the accuracy of density gauges used in dredging applications is  $\pm 0.005$  g/cm<sup>3</sup>. The average density of the slurry pumped during the Norfolk job was approximately 1.10 g/cm<sup>3</sup>. Therefore the slurry density uncertainty is 1.10 g/cm<sup>3</sup>  $\pm 0.005$  g/cm<sup>3</sup>.
- d. Slurry velocity. The slurry velocity was measured using a magnetic flowmeter. These meters are considered the most accurate method for determining slurry velocities for dredging applications. The manufacturer's stated accuracy for a properly calibrated flowmeter is ±0.25 percent of full scale. For the purpose of this uncertainty calculation, a conservative accuracy of ±1.0 percent of full scale was used. The full scale of the magnetic flowmeter was 32.80 ft/sec, and the average pumping velocity during the Norfolk Harbor project was approximately 13.0 ft/sec. Therefore, the uncertainty in the average velocity measurement was 13.0 ft/sec ±0.33 ft/sec.
- e. Pipeline diameter. There is some assumed error in the measurement of the diameter of the discharge pipe on a dredge, as well as uncertainty due to eccentricity of the pipe. Because many makes of pipe are used in dredging, an assumed uncertainty of 0.05 in. will be used for the following error analysis.

With the variable uncertainties defined, the uncertainty in the average calculation of solids mass production can be calculated. Inserting the variable uncertainties into Equation 23 results in an average uncertainty of  $\pm 6.0$  percent. Table 5 lists the average variables and their uncertainties used in the analysis.

| Table 5 Dredge Production Uncertainties | Uncertainty Analysis    | Variables and           |  |
|-----------------------------------------|-------------------------|-------------------------|--|
| Variable                                | Average Value           | Uncertainty U           |  |
| Water density $ ho_{w}$                 | 1.007 g/cm <sup>3</sup> | 0.001 g/cm <sup>3</sup> |  |
| Particle density <i>p</i> ₅             | 2.65 g/cm <sup>3</sup>  | 0.079 g/cm³             |  |
| Slurry density $\rho_m$                 | 1.100 g/cm <sup>3</sup> | 0.005 g/cm <sup>3</sup> |  |
| Slurry velocity V <sub>m</sub>          | 13.0 ft/sec             | 0.33 ft/sec             |  |
| Pipe diameter D                         | 18.0 in.                | 0.05 in.                |  |

# 4 Summary and Conclusions

## **System Reliability and Accuracy**

The automated dredge monitoring system provided accurate and reliable data throughout both the Chincoteague Inlet and Norfolk Harbor projects. The water test data confirmed the accuracy and reliability of the data, and the uncertainty analyses revealed an average production uncertainty of  $\pm 6.2$  percent for the bin measure production calculation and an average uncertainty of  $\pm 6.0$  percent for the solids mass production calculation. The major potential limitation to the accuracy of the bin measure production calculation is accurate measurement of in-place sediment and water densities. After the initial installation of the system, no additional maintenance or calibration was performed during the 2 months that it was in place, so the system was reliable through the course of this study. Therefore, the monitoring system does in fact provide an accurate, simple, and reliable method of monitoring the dredge's performance.

## Uses for the System

As detailed in this report, producing data for bin measure production calculations and overflow analysis are two potential uses for the monitoring system. For bin measure calculations, the volume of in-place sediment in the hopper can be determined for each load, assuming that an accurate measurement of the in-place sediment density is available. For overflow operations, the exact point in time when overflow starts and stops can easily be determined; and if production meter data are being recorded, then the amount of material that is overflowed can be calculated. Thus, if overflow is not allowed on a project, or if overflow is allowed only for a specified time, compliance with those overflow parameters can be monitored and verified 24 hours per day.

Another potential use is for monitoring disposal operations. If dumping in a specific location is critical, then the exact location where each dump occurs can be determined if the ship's position is recorded. Therefore, dumping short of the dump site or dumping out of the authorized dump area can be

monitored, which may be particularly critical if contaminated sediments are involved.

### System Weaknesses

Two potential weaknesses of the system need to be addressed. One is that the large volumes of data recorded require sufficient storage space. Recording data every 5 seconds during the 24 hours of a day results in 17,280 data points for each channel of data. For this project, 10 channels of data were recorded, with the resulting data file for each 24-hour day stored in binary format requiring 933,120 bytes of storage space. The amount of data collected and the available space on the hard drive on this project allowed for data to be collected every 5 seconds, 24 hours per day for 63 days before the disk was full. If a project continues for any length of time, the volume of data can quickly become difficult to store and manage. The feasibility of recording data less frequently than 5-second intervals could be considered to alleviate this problem.

The other potential weakness of the monitoring system involves analysis of the data. Plotting the data to analyze each load to calculate the bin measure production or overflow efficiency requires the proper computer hardware and software. A very tedious process is required if the calculations are not automated in some manner. Thus, a menu-driven computer program should be developed that would provide plots of the data, perform production calculations, allow for overflow analysis, and generate reports. Such a program would enable the onsite engineer or inspector to easily retrieve the data from the monitoring system, analyze the data as necessary, and produce pertinent and useful information relative to the dredging project.

## **System Benefits**

The benefits of installing an automated load monitoring system during a dredging project are many. The ease, accuracy, and reliability with which bin measure production, overflow, dredge location, and other dredge processes can be monitored is a vast improvement over the methods typically used. The ability to store data electronically for future use is also extremely helpful, particularly if that information is needed in planning future projects or in dealing with litigation that may arise from a dredging contract.

There are, however, benefits to the contractor. The data gathered by this system could be used by the contractor to analyze the performance of the dredge and the crew during a project. Changes in operating procedures aboard the dredge to improve efficiency could result. This load monitoring system also eliminates the need for the contractor to perform a daily "light-ship" test with the hopper dredge. Currently, a contractor often performs

light-ship tests during which the hopper is filled with water to determine the total displacement of the ship with only water in the hopper. When dredging resumes, the weight of dredged material in the hopper is determined by comparing the total displacement of the ship when the hopper is full of dredged material with the total displacement of the ship from the light-ship test. These tests are often performed daily so that variations due to changes in the weight of fuel, water, and other consumables aboard the ship can be accounted for. With the implementation of an automated system, the need for the light-ship test will be eliminated because the change in the weight of fuel, water, and other consumables aboard the ship is almost always negligible during the time required for one load cycle. Thus, the time and fuel previously required for the light-ship tests could then be used by the contractor for productive dredging.

#### **Conclusions**

When payment to the contractor in a dredging contract is to be based upon measurement of the weight of the dredged material in the hopper as determined by vessel displacement, or "bin measure," it is imperative that a system be developed that will allow simple, reliable, and unbiased verification of the load measurements reported by the contractor (McDonnell and Tillman 1992). Additionally, monitoring of the overflow process is becoming increasingly important as environmental concerns are addressed, and a system for automatically monitoring overflow is also critical.

A system that automatically monitored both the bin measure production and the overflow process was designed and successfully field tested during this project. Implementation of such a system for actual payment purposes is very feasible. However, before payment to the contractor is made based solely upon the information gathered by this system, additional evaluation of the accuracy is recommended. This recommendation is based upon the possibility of disputes arising over the production indicated by the monitoring system and in the resulting need to be able to defend the accuracy of the system in a court of law. Additionally, development of software to enable both the Government and the contractor to more easily use the data collected by the system is necessary. No matter how good the information may be from the load monitoring system, it is of very little use if it cannot be analyzed relatively easily by engineers in field offices. If the proper research and development is dedicated to the automated dredge monitoring concept, then the result should be a system in which both the Government and the contractor have trust and confidence that an accurate and unbiased record of the dredge's performance is being provided. This system can provide information that will be beneficial to both the Corps of Engineers and the dredging industry.

## References

- Consolidated Electrodynamics Corporation. (1956). "Type 4-312 pressure pickup, technical specifications," Pasadena, CA.
- Lundahl Instruments, Inc. (1991). "DCU-10 programmable ultrasonic sensor, operator's manual," Logan, UT.
- McDonnell, Thomas M., and Tillman, Russell K. (1992). "Dredge Data-Logging System: a prelude to the Silent Inspector," Dredging Research Program Information Exchange Bulletin, Vol DRP-92-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 1-5.
- Rokosch, W. Dieter. (1989). "Measuring dry matter in trailing hopper dredges." *Dredging technology, environmental, mining*; proceedings of WODCON XII, Orlando, FL, May 2-5, 1989. World Dredging Mining and Construction, Irvine, CA, 13-20.
- Scott, Stephen H. (1992a). "Applying ultrasonic surface detectors to hopper dredge production monitoring," Dredging Research Technical Notes, Vol DRP-3-06, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- . (1992b). "Improving hopper dredge overflow operations with production monitoring technology," Dredging Research Program Information Exchange Bulletin, Vol DRP-92-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 1-5.
- . (1993). "An Uncertainty Analysis of Dredge Production Measurements and Calculations," *Journal of Waterway, Port, Coastal and Ocean Engineering*, ASCE, 119(2), 193-203.
- Swean, W. Jerry. (1986). "Geology and soils subsurface investigation, Norfolk Harbor Channel, Norfolk Harbor and Channels, Virginia," Appendix C, Vol i, U.S. Army Engineer District, Norfolk, Norfolk, VA.
- U.S. Army Corps of Engineers. (1985). "Hopper dredge operating characteristics," U.S. Army Corps of Engineers Water Resources Support Center, Fort Belvoir, VA.

# Appendix A Bin Measure Load Data and Overflow Analysis Data

| Table A1<br>Summar | Table A1<br>Summary of Bin Measu |             | oad Data, | e Load Data, Chincoteague Inlet Project | ague Infet | Project            |                              |                                    | ·                                         |                               |
|--------------------|----------------------------------|-------------|-----------|-----------------------------------------|------------|--------------------|------------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|                    |                                  |             | Hopper V  | Hopper Volume, yd³                      | Displacen  | Displacement, tons |                              |                                    |                                           |                               |
| Load               | Start<br>Time<br>hr              | End<br>Time | Starting  | Ending                                  | Starting   | Ending             | Bin<br>Water<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>ib/ft³ | in-Place<br>Production<br>yd³ |
| 1                  | 7.499                            | 8.124       | 1068      | 1242                                    | 2788       | 3236               | 1835515                      | 2732525                            | 81.4                                      | 379                           |
| 2                  | 8.435                            | 9.236       | 767       | 1260                                    | 2555       | 3301               | 1319450                      | 2811014                            | 82.6                                      | 410                           |
| 3                  | 9.506                            | 10.476      | 1050      | 1322                                    | 2816       | 3345               | 1805364                      | 2861575                            | 1.08                                      | 374                           |
| 4                  | 10.778                           | 11.761      | 774       | 1232                                    | 2570       | 3268               | 1330685                      | 2727561                            | 82.0                                      | 387                           |
| 5                  | 12.106                           | 13.051      | 518       | 1181                                    | 2378       | 3347               | 890260                       | 2827300                            | 9.88                                      | 909                           |
| 9                  | 13.407                           | 14.303      | 718       | 1260                                    | 2537       | 3546               | 1235314                      | 3252722                            | 92.6                                      | 169                           |
| 7                  | 14.707                           | 15.824      | 711       | 1301                                    | 2531       | 3713               | 1222860                      | 3587056                            | 102.1                                     | 829                           |
| 80                 | 16.222                           | 17.326      | 558       | 1329                                    | 2408       | 3793               | 959441                       | 3729352                            | 103.9                                     | 919                           |
| 6                  | 17.640                           | 18.982      | 576       | 1365                                    | 2432       | 3809               | 990649                       | 3744230                            | 101.6                                     | 688                           |
| 10                 | 19.246                           | 20.736      | 783       | 1174                                    | 2611       | 3656               | 1346310                      | 3435530                            | 108.4                                     | 106                           |
| 11                 | 21.012                           | 21.949      | 820       | 1222                                    | 2639       | 3373               | 1410249                      | 2877681                            | 87.2                                      | 493                           |
| 12                 | 22.208                           | 23.147      | 927       | 1213                                    | 2718       | 3314               | 1593718                      | 2784414                            | 85.0                                      | 444                           |
| 13                 | 23.637                           | 0.896       | 902       | 916                                     | 2732       | 3159               | 1550083                      | 2404083                            | 97.2                                      | 528                           |
| 14                 | 1.365                            | 2.107       | 795       | 1213                                    | 2609       | 3268               | 1366526                      | 2684326                            | 81.9                                      | 381                           |
| 15                 | 2.482                            | 3.535       | 618       | 1250                                    | 2477       | 3621               | 1062066                      | 3349280                            | 99.2                                      | 763                           |
| 16                 | 3.858                            | 4.937       | 492       | 1276                                    | 2389       | 3640               | 847145                       | 3349534                            | 97.2                                      | 735                           |
| 17                 | 5.301                            | 6.490       | 646       | 1465                                    | 2513       | 3825               | 1111336                      | 3734272                            | 94.4                                      | 773                           |
|                    |                                  |             |           |                                         |            |                    |                              |                                    | )                                         | (Sheet 1 of 10)               |
|                    |                                  |             |           |                                         |            |                    |                              |                                    |                                           |                               |

| Table A | Table A1 (Continued) | ed)         |          |                    |          |                    |                              |                                    |                                           |                               |
|---------|----------------------|-------------|----------|--------------------|----------|--------------------|------------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|         |                      |             | Hopper V | Hopper Volume, yd³ | Displace | Displacement, tons |                              |                                    |                                           |                               |
| Load    | Start<br>Time<br>hr  | End<br>Time | Starding | Ending             | Starting | Ending             | Bin<br>Water<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>tb/ft³ | in-Place<br>Production<br>yd² |
| 18      | 6.787                | 8.583       | 579      | 1344               | 2455     | 4060               | 995749                       | 4204911                            | 115.8                                     | 1204                          |
| 19      | 9.319                | 10.356      | 524      | 1296               | 2438     | 3579               | 901333                       | 3183522                            | 6.06                                      | 209                           |
| 20      | 10.683               | 11.426      | 751      | 1260               | 2611     | 3316               | 1290700                      | 2701531                            | 79.4                                      | 340                           |
| 21      | 12.029               | 12.501      | 645      | 1202               | 2495     | 3166               | 1108471                      | 2451450                            | 75.5                                      | 244                           |
| 22      | 12.906               | 13.551      | 563      | 1181               | 2407     | 3194               | 967548                       | 2542813                            | 79.7                                      | 325                           |
| 23      | 13.878               | 14.901      | 289      | 1219               | 2226     | 3520               | 496947                       | 30848?4                            | 93.7                                      | 629                           |
| 24      | 15.328               | 16.203      | 588      | 1245               | 2439     | 3492               | 1011901                      | 3117118                            | 92.7                                      | 620                           |
| 25      | 16.606               | 17.679      | 618      | 1267               | 2471     | 3620               | 1062391                      | 3360535                            | 2.86                                      | 751                           |
| :       | 17.840               | 18.029      | 377      | 707                | 2265     | 2557               |                              |                                    | 64.5                                      |                               |
| 26      | 18.196               | 20.067      | 847      | 1319               | 2699     | 3999               | 1456248                      | 4055618                            | 113.9                                     | 1137                          |
| 27      | 20.442               | 22.075      | 278      | 1342               | 2168     | 3485               | 478830                       | 3113452                            | 85.9                                      | 512                           |
| 28      | 22.654               | 23.511      | 272      | 1262               | 2122     | 3192               | 468957                       | 2608451                            | 76.5                                      | 279                           |
| 29      | 0.062                | 0.451       | 775      | 1224               | 2568     | 3118               | 1332961                      | 2432722                            | 73.6                                      | 509                           |
| 30      | 0.860                | 1.554       | 684      | 1188               | 2422     | 3062               | 1175987                      | 2455977                            | 76.5                                      | 262                           |
| 31      | 2.064                | 2.756       | 635      | 1191               | 2381     | 3134               | 1092461                      | 2596926                            | 80.7                                      | 349                           |
| 32      | 3.053                | 4.015       | 567      | 1218               | 2330     | 3320               | 975736                       | 2954645                            | 83.8                                      | 547                           |
|         |                      |             |          |                    |          |                    |                              |                                    | )                                         | Sheet 2 of 10)                |
| W = W.  | = Water Test         |             |          |                    |          |                    |                              |                                    |                                           |                               |
|         |                      |             |          |                    |          |                    |                              |                                    |                                           |                               |

| Table A | Table A1 (Continued) | led)        |          |                    |           |                    |                        |                                    |                                           |                               |
|---------|----------------------|-------------|----------|--------------------|-----------|--------------------|------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|         |                      |             | Hopper V | Hopper Volume, yd³ | Displacer | Displacement, tons |                        |                                    |                                           |                               |
| Load    | Start<br>Time<br>hr  | End<br>Time | Starting | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/ft² | In-Place<br>Production<br>yd³ |
| 33      | 4.372                | 5.414       | 614      | 1268               | 2379      | 3402               | 1056417                | 3101917                            | 90.6                                      | 586                           |
| 34      | 5.707                | 8.051       | 621      | 1333               | 2380      | 4010               | 1068892                | 4329289                            | 120.2                                     | 1295                          |
| :       | 8.444                | 8.694       | 326      | 910                | 2136      | 2654               | **                     |                                    | 64.9                                      |                               |
| 35      | 8.721                | 11.226      | 263      | 1148               | 2093      | 3138               | 453425                 | 2543740                            | 82.0                                      | 362                           |
| 36      | 11.726               | 12.392      | 601      | 1251               | 2363      | 3060               | 1034434                | 2429141                            | 71.9                                      | 176                           |
| 37      | 12.710               | 13.371      | 621      | 1205               | 2355      | 3055               | 1068120                | 2467426                            | 75.8                                      | 252                           |
| 38      | 13.714               | 14.385      | 529      | 1339               | 2269      | 3201               | 909236                 | 2774266                            | 76.7                                      | 300                           |
| 39      | 14.712               | 15.365      | 451      | 1396               | 2309      | 3284               | 775144                 | 2725020                            | 72.3                                      | 206                           |
| 40      | 15.654               | 16.504      | 654      | 1221               | 2398      | 3249               | 1124136                | 2825345                            | 85.7                                      | 462                           |
| 41      | 16.836               | 17.842      | 852      | 1245               | 2565      | 3425               | 1465371.               | 3184656                            | 94.7                                      | 664                           |
| 42      | 18.278               | 19.861      | 964      | 1261               | 2703      | 3732               | 1657931                | 3715874                            | 1.901                                     | 984                           |
| 43      | 20.282               | 22.635      | 291      | 1211               | 2110      | 3722               | 500878                 | 3724499                            | 113.8                                     | 1044                          |
| 4       | 23.203               | 0.308       | 393      | 1182               | 2204      | 3204               | 676141                 | 2676141                            | 83.9                                      | 411                           |
| 45      | 0.940                | 1.451       | 432      | 1179               | 2248      | 3074               | 742600                 | 2394303                            | 75.2                                      | 234                           |
| 46      | 1.926                | 2.642       | 562      | 1225               | 2339      | 3199               | 966268                 | 2687583                            | 81.2                                      | 369                           |
| 47      | 3.104                | 3.806       | 618      | 1195               | 2381      | 3061               | 1062919                | 2422862                            | 75.0                                      | 234                           |
|         |                      |             |          |                    |           |                    |                        |                                    | 8)                                        | (Sheet 3 of 10)               |
| W =     | ≈ Water Test         |             |          |                    |           |                    |                        |                                    |                                           |                               |
|         |                      |             |          |                    |           |                    |                        |                                    |                                           |                               |

| Table A        | Table A1 (Continued) | ed)         |           |                    |           |                    |                              |                                    |                                                       |                               |
|----------------|----------------------|-------------|-----------|--------------------|-----------|--------------------|------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------|
|                |                      |             | Hopper Vo | Hopper Volume, yd³ | Displacer | Displacement, tons |                              |                                    |                                                       |                               |
| Load<br>Number | Start<br>Time<br>hv  | End<br>Time | Starting  | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight<br>No | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/It <sup>2</sup> | in-Place<br>Production<br>yd³ |
| 48             | 4.365                | 5.514       | 620       | 1250               | 2408      | 3538               | 1067023                      | 3326001                            | 98.5                                                  | 749                           |
| 49             | 5.914                | 8.229       | 384       | 1343               | 2223      | 4133               | 661081                       | 4480580                            | 123.6                                                 | 1382                          |
| 50             | 8.862                | 10.529      | 389       | 1284               | 2251      | 3630               | 668737                       | 3427224                            | 8.86                                                  | 377                           |
| 51             | 11.154               | 12.224      | 618       | 1185               | 2468      | 3352               | 1063203                      | 2831064                            | 88.4                                                  | 504                           |
| 52             | 12.754               | 13.101      | 595       | 1258               | 2413      | 3178               | 1023970                      | 2553519                            | 75.1                                                  | 248                           |
| 53             | 13.782               | 14.201      | 843       | 1201               | 2640      | 3106               | 1448914                      | 2381765                            | 73.4                                                  | 201                           |
| 54             | 14.701               | 15.351      | 757       | 1184               | 2530      | 3105               | 1302606                      | 2452399                            | 76.7                                                  | 264                           |
| 55             | 15.718               | 16.504      | 866       | 1187               | 2723      | 3261               | 1715560                      | 2790654                            | 1.78                                                  | 477                           |
| 56             | 16.843               | 18.001      | 652       | 1158               | 2477      | 3350               | 1121434                      | 2868151                            | 91.7                                                  | 829                           |
| :              | 18.146               | 18.469      | 348       | 1265               | 2302      | 3099               | -                            |                                    | 64.2                                                  |                               |
| 57             | 18.358               | 19.790      | 306       | 1410               | 2236      | 3795               | 526427                       | 3644359                            | 95.7                                                  | 776                           |
| 58             | 20.408               | 22.068      | 1006      | 1335               | 2794      | 3728               | 1729457                      | 3596887                            | 99.8                                                  | 828                           |
| 59             | 22.407               | 0.108       | 709       | 1208               | 2544      | 3447               | 1219588                      | 3025588                            | 92.8                                                  | 909                           |
| 9              | 0.439                | 1.401       | 602       | 1206               | 2448      | 3486               | 1035775                      | 3112099                            | 95.5                                                  | 099                           |
| 61             | 1.826                | 2.440       | 634       | 1360               | 2468      | 3252               | 1090510                      | 2658268                            | 72.4                                                  | 204                           |
| 62             | 3.049                | 3.603       | 466       | 1202               | 2324      | 3184               | 800831                       | 2521614                            | 7.77                                                  | 289                           |
|                |                      |             |           |                    |           |                    |                              |                                    | 9                                                     | (Sheet 4 of 10)               |
| /M = •••       | = Water Test         |             |           |                    |           |                    |                              |                                    |                                                       |                               |
|                |                      |             |           |                    |           |                    |                              |                                    |                                                       |                               |

| Table A | Table A1 (Continued) | ed)         |          |                    |           |                    |                        |                                    |                                           |                                           |
|---------|----------------------|-------------|----------|--------------------|-----------|--------------------|------------------------|------------------------------------|-------------------------------------------|-------------------------------------------|
|         |                      |             | Hopper V | Hopper Volume, yd³ | Displacer | Displacement, tons |                        |                                    |                                           |                                           |
| Load    | Start<br>Time<br>hr  | End<br>Time | Starting | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/ft³ | In-Place<br>Production<br>yd <sup>3</sup> |
| 63      | 4.019                | 4.600       | 969      | 1234               | 2516      | 3262               | 1197280                | 2690291                            | 80.7                                      | 362                                       |
| 64      | 4.958                | 5.753       | 565      | 1216               | 2428      | 3294               | 972099                 | 2703345                            | 82.3                                      | 389                                       |
| 65      | 6.143                | 8.061       | 654      | 1360               | 2515      | 4205               | 1124725                | 4505722                            | 122.7                                     | 1378                                      |
| 99      | 8.654                | 9.610       | 441      | 1287               | 2353      | 3602               | 758090                 | 3255702                            | 93.6                                      | 663                                       |
| 67      | 10.131               | 11.124      | 895      | 1257               | 2691      | 3528               | 1538779                | 3211139                            | 94.6                                      | 899                                       |
|         | 11.365               | 11.551      | 443      | 1158               | 2330      | 2941               | •                      |                                    | 63.4                                      |                                           |
| 89      | 11.585               | 12.404      | 263      | 1238               | 2157      | 3445               | 452089                 | 3026556                            | 90.5                                      | 571                                       |
| 69      | 12.853               | 13.667      | 423      | 1281               | 7722      | 3382               | 728617                 | 2937772                            | 84.9                                      | 468                                       |
| :       | 13.771               | 14.172      | 353      | 1243               | 2180      | 2951               | :                      |                                    | 64.0                                      |                                           |
| 70      | 14.411               | 14.910      | 329      | 1212               | 2155      | 3142               | 566764                 | 2539063                            | 77.5                                      | 289                                       |
| 71      | 15.433               | 15.861      | 525      | 1215               | 2314      | 3031               | 903344                 | 2338656                            | 71.3                                      | 159                                       |
| 72      | 16.401               | 17.508      | 619      | 1239               | 2363      | 3392               | 1064260                | 3122069                            | 93.3                                      | 631                                       |
| 73      | 17.814               | 19.481      | 306      | 1432               | 2079      | 3582               | 526246                 | 3530664                            | 91.3                                      | 089                                       |
| 74      | 19.714               | 21.436      | 365      | 1418               | 2097      | 3607               | 627969                 | 3647190                            | 95.3                                      | 769                                       |
| 75      | 21.624               | 23.551      | 347      | 1456               | 2114      | 3840               | 597827                 | 4050103                            | 103.0                                     | 983                                       |
| 76      | 0.011                | 1.210       | 556      | 1414               | 2313      | 3570               | 956028                 | 3469093                            | 90.9                                      | 660                                       |
|         |                      |             |          |                    |           |                    |                        |                                    | 3)                                        | Sheet 5 of 10)                            |
| » »     | = Water Test         |             |          |                    |           |                    |                        |                                    |                                           |                                           |
|         |                      |             |          |                    |           |                    |                        |                                    |                                           |                                           |

| Table A | Table A1 (Continued) | ed)         |          |                    |          |                    |                     |                                    |                                           |                        |
|---------|----------------------|-------------|----------|--------------------|----------|--------------------|---------------------|------------------------------------|-------------------------------------------|------------------------|
|         |                      |             | Hopper V | Hopper Volume, yd³ | Displace | Displacement, tons |                     |                                    |                                           |                        |
| Load    | Start<br>Time        | End<br>Time | Stardng  | Ending             | Starting | Ending             | Bin<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/ft² | In-Place<br>Production |
| 77      | 1.533                | 2.414       | 965      | 1404               | 2636     | 3531               | 1659117             | 3449032                            | 90.9                                      | 658                    |
| 84      | 2.639                | 5.806       | 345      | 1263               | 2114     | 3106               | 693328              | 717772                             | 75.6                                      | 258                    |
| 6/      | 6.325                | 7.851       | 350      | 1272               | 2148     | 3504               | 602912              | 3314251                            | 96.5                                      | 717                    |
| 80      | 8.610                | 10.103      | 537      | 1279               | 2329     | 3735               | 924332              | 3736504                            | 108.1                                     | 7.76                   |
| 81      | 10.635               | 11.772      | 391      | 1322               | 2234     | 3456               | 672498              | 3116077                            | 87.3                                      | 536                    |
| 82      | 12.297               | 13.836      | 997      | 1240               | 2727     | 3608               | 1713894             | 3476639                            | 103.8                                     | 855                    |
| 83      | 14.203               | 15.014      | 661      | 1188               | 2481     | 3301               | 1137322             | 1992/12                            | 86.5                                      | 466                    |
| 84      | 15.603               | 15.964      | 902      | 1315               | 2660     | 3199               | 1550197             | 2628705                            | 74.0                                      | 233                    |
| 85      | 16.874               | 17.211      | 1001     | 1398               | 2758     | 3267               | 1720334             | 2738486                            | 72.5                                      | 213                    |
| 86      | 17.792               | 18.471      | 949      | 1351               | 2717     | 3362               | 1631387             | 2920997                            | 80.0                                      | 380                    |
| 87      | 19.311               | 20.050      | 266      | 1276               | 2146     | 3333               | 458542              | 2832339                            | 82.2                                      | 405                    |
| 88      | 20.376               | 21.403      | 618      | 1474               | 2482     | 3648               | 1063549             | 3397183                            | 85.4                                      | 549                    |
| • •     | 21.736               | 21.912      | 344      | 1345               | 2239     | 3092               |                     | ••                                 | 63.3                                      | ;                      |
| 89      | 22.019               | 23.853      | 273      | 1294               | 2183     | 3964               | 470038              | 4030904                            | 115.3                                     | 1149                   |
| 06      | 0.257                | 1.882       | 764      | 1369               | 2608     | 4004               | 1313700             | 4106036                            | 111.0                                     | 1114                   |
| 91      | 2.390                | 3.683       | 429      | 1204               | 2325     | 3570               | 737427              | 3228831                            | 99.3                                      | 737                    |
| 92      | 4.303                | 5.000       | 277      | 1220               | 2584     | 3263               | 1327353             | 2684294                            | 81.4                                      | 372                    |
|         |                      |             |          |                    |          |                    |                     |                                    | )                                         | (Sheet 6 of 10)        |

| Table A        | Table A1 (Continued) | ıtinued)          |          |                    |           |                    |                              |                                    |                                            |                               |
|----------------|----------------------|-------------------|----------|--------------------|-----------|--------------------|------------------------------|------------------------------------|--------------------------------------------|-------------------------------|
|                |                      |                   | Hopper V | Hopper Volume, yd³ | Displacen | Displacement, tons |                              |                                    |                                            |                               |
| Load<br>Number | Start<br>Time<br>hr  | End<br>Time<br>hr | Starting | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight<br>Ib | Total<br>Walght in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Its/ft³ | In-Place<br>Production<br>yd³ |
| 93             | 5.522                | 6.203             | 586      | 1269               | 2454      | 3276               | 1007249                      | 2650906                            | 77.3                                       | 298                           |
| 94             | 6.753                | 7.787             | 27.7     | 1415               | 2207      | 3467               | 476341                       | 2995388                            | 78.4                                       | 358                           |
| 95             | 8.246                | 9.007             | 989      | 1283               | 2832      | 3401               | 1699773                      | 2838234                            | 81.9                                       | 402                           |
| 96             | 9.460                | 10.201            | 1063     | 1256               | 2907      | 3441               | 1828424                      | 2896581                            | 85.4                                       | 469                           |
| 97             | 10.629               | 12.006            | 261      | 1164               | 2248      | 3551               | 449986                       | 3056928                            | 97.3                                       | 672                           |
| 86             | 3.935                | 5.067             | 876      | 1215               | 2741      | 3562               | 1506047                      | 3147525                            | 95.9                                       | 673                           |
| 66             | 5.389                | 6.401             | 487      | 1254               | 2439      | 3527               | 836974                       | 3013426                            | 0.68                                       | 545                           |
| 100            | 6.839                | 7.706             | 549      | 1243               | 2499      | 3341               | 943573                       | 2627310                            | 78.2                                       | 311                           |
| 101            | 8.144                | 8.854             | 245      | 1247               | 2289      | 3285               | 422316                       | 2413755                            | 71.7                                       | 171                           |
| 102            | 9.432                | 10.415            | 232      | 967                | 2267      | 3112               | 399415                       | 2090553                            | 80.1                                       | 272                           |
| *              | 10.511               | 10.796            | 348      | 1069               | 2371      | 2994               |                              |                                    | 63.8                                       |                               |
| 103            | 10.837               | 11.851            | 247      | 1244               | 2290      | 3389               | 425784                       | 2624475                            | 78.1                                       | 308                           |
| 104            | 12.162               | 13.106            | 501      | 1312               | 2514      | 3539               | 862282                       | 2912222                            | 82.2                                       | 417                           |
| 105            | 13.572               | 14.321            | 481      | 1271               | 2491      | 3435               | 827386                       | 2714611                            | 79.1                                       | 336                           |
| 106            | 14.875               | 15.901            | 494      | 1225               | 2494      | 3482               | 849380                       | 2825157                            | 85.4                                       | 457                           |
| 107            | 16.260               | 17.215            | 510      | 1207               | 2516      | 3530               | 877155                       | 2904895                            | 89.1                                       | 528                           |
|                |                      |                   |          |                    |           |                    |                              |                                    | )                                          | (Sheet 7 of 10)               |
| M = •••        | = Water Test         |                   |          |                    |           |                    |                              |                                    |                                            |                               |
|                |                      |                   |          |                    |           |                    |                              |                                    |                                            |                               |

| Table A | Table A1 (Continued) | ed)         |          |                    |           |                    |                              |                                    |                                           |                               |
|---------|----------------------|-------------|----------|--------------------|-----------|--------------------|------------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|         |                      |             | Hopper V | Hopper Volume, yd³ | Displacer | Displacement, tons |                              |                                    | •                                         |                               |
| Load    | Start<br>Time<br>hr  | End<br>Time | Starting | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight<br>Ib | Totel<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>ib/ft³ | In-Place<br>Production<br>yd³ |
| 108     | 17.564               | 18.601      | 496      | 1258               | 2504      | 3523               | 853078                       | 2890395                            | 85.1                                      | 463                           |
| 109     | 19.028               | 20.060      | 253      | 1243               | 2294      | 3570               | 434862                       | 2987705                            | 89.0                                      | 541                           |
| 110     | 20.447               | 21.315      | 267      | 1220               | 2307      | 3365               | 460255                       | 2577001                            | 78.2                                      | 305                           |
| 111     | 21.689               | 22.706      | 247      | 1226               | 2296      | 3384               | 425898                       | 2601971                            | 78.5                                      | 313                           |
| 112     | 23.062               | 0.601       | 256      | 1207               | 2296      | 3579               | 441098                       | 3007008                            | 92.3                                      | 594                           |
| 113     | 0.887                | 1.854       | 507      | 1213               | 2505      | 3476               | 872177                       | 2813209                            | 85.9                                      | 463                           |
| 114     | 2.374                | 3.260       | 575      | 1206               | 2561      | 3508               | 988800                       | 2883542                            | 88.5                                      | 515                           |
| 115     | 3.626                | 4.506       | 603      | 1211               | 2563      | 3550               | 1036729                      | 3010897                            | 92.0                                      | 290                           |
| 116     | 4.865                | 5.815       | 741      | 1188               | 2691      | 3430               | 1273776                      | 2752691                            | 85.8                                      | 451                           |
| 117     | 6.271                | 8.011       | 265      | 1256               | 2302      | 3752               | 456963                       | 3357297                            | 99.0                                      | 762                           |
| 118     | 8.481                | 9.732       | 267      | 1227               | 2303      | 3595               | 460239                       | 3043327                            | 91.8                                      | 594                           |
| 119     | 10.146               | 11.231      | 254      | 1282               | 2284      | 3614               | 436756                       | 3097612                            | 89.5                                      | 568                           |
| 120     | 11.707               | 13.314      | 587      | 1203               | 2579      | 3627               | 1009321                      | 3104984                            | 95.5                                      | 629                           |
| 121     | 13.631               | 15.444      | 527      | 1205               | 2503      | 3625               | 907204                       | 3150703                            | 96.8                                      | 989                           |
| 122     | 15.760               | 17.051      | 669      | 1357               | 2641      | 3732               | 1202196                      | 3385051                            | 92.4                                      | 699                           |
| 123     | 17.587               | 19.014      | 649      | 1237               | 2584      | 3594               | 1115603                      | 3136329                            | 93.9                                      | 642                           |
|         |                      |             |          |                    |           |                    |                              |                                    | Ü                                         | Sheet 8 of 10)                |
| W = **  | = Water Test         |             |          |                    |           |                    |                              |                                    |                                           |                               |
|         |                      |             |          |                    |           |                    |                              |                                    |                                           |                               |

| Table A        | Table A1 (Continued) | ed)         |          |                    |           |                    |                              |                                    |                                           |                               |
|----------------|----------------------|-------------|----------|--------------------|-----------|--------------------|------------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|                |                      |             | Hopper V | Hopper Volume, yd³ | Displacer | Displacement, tons |                              |                                    |                                           |                               |
| Load<br>Number | Start<br>Time<br>hr  | End<br>Time | Starting | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>ib/ft³ | In-Place<br>Production<br>yd³ |
| 124            | 19.419               | 20.501      | 261      | 1299               | 2234      | 3560               | 448726                       | 3101824                            | 88.4                                      | 552                           |
| 125            | 21.064               | 22.424      | 259      | 1247               | 2219      | 3434               | 446097                       | 2875807                            | 85.4                                      | 465                           |
| :              | 22.592               | 22.814      | 325      | 1116               | 2271      | 3957               |                              |                                    | 64.1                                      |                               |
| 126            | 22.835               | 23.901      | 250      | 1265               | 2214      | 3378               | 430730                       | 2758459                            | 80.7                                      | 128                           |
| 127            | 0.343                | 1.710       | 805      | 1215               | 2665      | 3379               | 1383836                      | 2812212                            | 85.7                                      | 460                           |
| 128            | 2.079                | 3.551       | 547      | 1199               | 2444      | 3381               | 940119                       | 2812951                            | 86.8                                      | 477                           |
| 129            | 3.894                | 5.251       | 631      | 1329               | 2490      | 3640               | 1084984                      | 3886199                            | 94.4                                      | 701                           |
| 130            | 5.806                | 7.161       | 564      | 1422               | 2421      | 3688               | 970575                       | 3504595                            | 91.3                                      | 674                           |
| 131            | 7.710                | 8.843       | 549      | 1316               | 2408      | 3414               | 944934                       | 2958794                            | 83.2                                      | 442                           |
| 132            | 9.412                | 10.608      | 847      | 1222               | 2639      | 3289               | 1456858                      | 2757515                            | 83.6                                      | 418                           |
| 133            | 11.043               | 12.111      | 1153     | 1142               | 2866      | 2978               | 1982574                      | 2206485                            | 71.5                                      | 154                           |
| 134            | 12.287               | 14.450      | 251      | 1253               | 2112      | 3492               | 431812                       | 3192341                            | 94.3                                      | 099                           |
| 135            | 14.883               | 16.925      | 866      | 1290               | 2590      | 3697               | 1489488                      | 3703105                            | 106.3                                     | 945                           |
| 136            | 17.336               | 19.276      | 874      | 1267               | 2589      | 3637               | 1502207                      | 3598622                            | 105.2                                     | 806                           |
| 137            | 19.710               | 21.308      | 1210     | 1236               | 2870      | 3362               | 2080018                      | 3063169                            | 91.8                                      | 269                           |
| 138            | 21.556               | 23.572      | 313      | 1307               | 2177      | 3667               | 539487                       | 3520123                            | 99.7                                      | 810                           |
|                |                      |             |          |                    |           |                    |                              |                                    | 8)                                        | Sheet 9 of 10)                |
| ×              | = Water Test         |             |          |                    |           |                    |                              |                                    |                                           |                               |
|                |                      |             |          |                    |           |                    |                              |                                    |                                           |                               |

| Table A        | Table A1 (Concluded)             | (pa)              |                              |                    |           |                    |                              |                                    |                                           |                               |
|----------------|----------------------------------|-------------------|------------------------------|--------------------|-----------|--------------------|------------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|                |                                  |                   | Hopper V                     | Hopper Volume, yd³ | Displacer | Displacement, tons |                              |                                    |                                           |                               |
| Load<br>Number | Start<br>Time<br>hr              | End<br>Time<br>hr | Starting                     | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/ft³ | In-Place<br>Production<br>yd³ |
| 139            | 0.001                            | 2.001             | 656                          | 1230               | 2430      | 3466               | 1127427                      | 3198771                            | 6.3                                       | 689                           |
| 140            | 2.219                            | 4.306             | 297                          | 1231               | 2176      | 3420               | 512066                       | 3000954                            | 90.2                                      | 562                           |
| 141            | 4.621                            | 690.9             | 1013                         | 1412               | 7772      | 3780               | 1742420                      | 3746938                            | 98.3                                      | 839                           |
| 142            | 6.601                            | 8.354             | 725                          | 1314               | 2576      | 3709               | 1247505                      | 3512452                            | 99.0                                      | 797                           |
| 143            | 8.735                            | 10.676            | 746                          | 1267               | 2603      | 3709               | 1282187                      | 3494937                            | 102.2                                     | 838                           |
| 144            | 1.057                            | 13.014            | 854                          | 1317               | 2703      | 3739               | 1469150                      | 3540197                            | 3.66                                      | 811                           |
| 145            | 13.408                           | 16.519            | 322                          | 1312               | 2260      | 3916               | 554258                       | 3868067                            | 109                                       | 1025                          |
| 146            | 17.032                           | 18.506            | 905                          | 1288               | 2785      | 3785               | 1556414                      | 3556059                            | 102                                       | 853                           |
| 147            | 18.719                           | 21.072            | 316                          | 1350               | 2316      | 4148               | 544755                       | 4208122                            | 115.4                                     | 1200                          |
| Total Calci    | Total Calculated Bin Measure In- | sure In-Plac      | Place Production             |                    | :         |                    |                              |                                    |                                           | 84110                         |
| Average C      | Average Calculated Bin Measure   | Measure In-F      | In-Place Production per Load | ion per Load       |           |                    |                              |                                    |                                           | 572                           |
|                |                                  |                   |                              |                    |           |                    |                              |                                    | IS)                                       | (Sheet 10 of 10)              |

| Table A2<br>Summary | of Bin P            | deasure           | Load Data | Table A2<br>Summary of Bin Measure Load Data, Norfolk Harbor Channel Project | Harbor (  | Channel            | Project                      |                                    |                                           |                               |
|---------------------|---------------------|-------------------|-----------|------------------------------------------------------------------------------|-----------|--------------------|------------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|                     |                     |                   | Hopper V  | Hopper Volume, yd³                                                           | Displacen | Displacement, tons |                              |                                    |                                           |                               |
| Load<br>Number      | Start<br>Time<br>hr | End<br>Time<br>hr | Starting  | Ending                                                                       | Starting  | Ending             | Bin<br>Water<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/ft³ | In-Place<br>Production<br>yd³ |
| -                   | 11.222              | 12.414            | 48        | 2105                                                                         | 1849      | 3972               | 82212                        | 4328421                            | 76.1                                      | 1012                          |
| 2                   | 18.601              | 19.843            | 42        | 2104                                                                         | 1936      | 3956               | 72643                        | 4112911                            | 72.4                                      | 726                           |
| 3                   | 21.301              | 22.157            | 44        | 2100                                                                         | 1954      | 3980               | 75058                        | 4127366                            | 72.8                                      | 754                           |
| 4                   | 23.331              | 0.999             | 43        | 2108                                                                         | 1949      | 3985               | 74295                        | 4146295                            | 72.8                                      | 763                           |
| D.                  | 2.274               | 3.853             | 42        | 2103                                                                         | 1945      | 3978               | 72638                        | 4140155                            | 72.9                                      | 764                           |
| 9                   | 5.072               | 6.697             | 43        | 2106                                                                         | 1988      | 4027               | 73107                        | 4151335                            | 73.0                                      | 27.2                          |
| 7                   | 8.346               | 9.131             | 42        | 2102                                                                         | 1958      | 4016               | 72792                        | 4189253                            | 73.8                                      | 833                           |
| 8                   | 10.618              | 11.590            | 44        | 2095                                                                         | 1999      | 4007               | 74808                        | 4091013                            | 72.3                                      | 716                           |
| 6                   | 12.729              | 13.711            | 42        | 2100                                                                         | 1966      | 4010               | 72619                        | 4161317                            | 73.4                                      | 801                           |
| 10                  | 14.772              | 15.971            | 42        | 2098                                                                         | 1976      | 4000               | 72418                        | 4120394                            | 72.7                                      | 750                           |
| -                   | 17.410              | 18.261            | 42        | 2099                                                                         | 1925      | 3968               | 72193                        | 4157858                            | 73.3                                      | 798                           |
| 12                  | 19.411              | 20.303            | 44        | 2106                                                                         | 1959      | 3997               | 75347                        | 4152262                            | 73.0                                      | 774                           |
| 13                  | 21.501              | 22.290            | 42        | 2098                                                                         | 1942      | 3988               | 72530                        | 4164059                            | 73.5                                      | 809                           |
| 14                  | 23.683              | 0.700             | 42        | 2108                                                                         | 1914      | 4024               | 72803                        | 4292803                            | 75.4                                      | 096                           |
| •                   | 1.778               | 2.406             | 43        | 1505                                                                         | 1970      | 3224               | •                            | :                                  | 63.5                                      | •••                           |
| 15                  | 2.672               | 3.251             | 74        | 2106                                                                         | 1929      | 3977               | 126340                       | 4222564                            | 74.2                                      | 698                           |
| 16                  | 4.549               | 5.436             | 42        | 2107                                                                         | 1941      | 3969               | 72774                        | 4127857                            | 72.6                                      | 740                           |
|                     |                     |                   |           |                                                                              |           |                    |                              |                                    |                                           | (Sheet 1 of 6)                |

| Table A2 (Continued) | (Continu            | ed)               |           |                    |           |                    |                              |                                    |                                           |                               |
|----------------------|---------------------|-------------------|-----------|--------------------|-----------|--------------------|------------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|                      |                     |                   | Hopper Vc | Hopper Volume, yd³ | Displacen | Displacement, tons |                              |                                    |                                           |                               |
| Load<br>Number       | Start<br>Time<br>hr | End<br>Time<br>hr | Starting  | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/ft³ | In-Place<br>Production<br>yd³ |
| 17                   | 6.764               | 7.632             | 45        | 2097               | 1950      | 3951               | 77088                        | 4078904                            | 72.0                                      | 969                           |
| 18                   | 9.058               | 9.528             | 42        | 2020               | 1941      | 3946               | 72288                        | 4081690                            | 74.8                                      | 877                           |
| 19                   | 12.969              | 13.787            | 42        | 2090               | 1956      | 4004               | 72435                        | 4169619                            | 73.9                                      | 834                           |
| 20                   | 14.974              | 16.012            | 42        | 2094               | 1965      | 3992               | 72418                        | 4125824                            | 73.0                                      | 766                           |
| 21                   | 17.310              | 18.392            | 42        | 2103               | 1967      | 4047               | 72447                        | 4232081                            | 74.5                                      | 889                           |
| 22                   | 19.925              | 20.574            | 42        | 2094               | 2008      | 4026               | 72732                        | 4109058                            | 72.7                                      | 743                           |
| 23                   | 21.781              | 22.664            | 42        | 2105               | 2008      | 4055               | 72803                        | 4167145                            | 73.3                                      | 797                           |
| 24                   | 0.011               | 1.090             | 47        | 2099               | 2061      | 4059               | 81341                        | 4077133                            | 71.9                                      | 069                           |
| 25                   | 2.164               | 3.418             | 94        | 2103               | 2115      | 4086               | 161074                       | 4102725                            | 72.2                                      | 714                           |
| 26                   | 4.750               | 5.479             | 115       | 217.9              | 2155      | 4118               | 195540                       | 4121076                            | 72.4                                      | 726                           |
| 27                   | 7.076               | 7.485             | 42        | 1993               | 1994      | 3960               | 72952                        | 4004627                            | 74.4                                      | 833                           |
| i                    | 8.440               | 8.897             | 44        | 760                | 2089      | 2705               | •••                          | ,,                                 | 63.7                                      |                               |
| 28                   | 9.208               | 9.986             | 43        | 2083               | 2028      | 4048               | 72999                        | 4113000                            | 73.1                                      | 774                           |
| 29                   | 11.265              | 12.301            | 42        | 2085               | 1983      | 4081               | 72595                        | 4268543                            | 75.8                                      | 977                           |
| 30                   | 13.212              | 14.469            | 62        | 2082               | 2091      | 4081               | 105330                       | 4083498                            | 72.6                                      | 737                           |
| 31                   | 15.747              | 16.761            | 78        | 2095               | 2020      | 4062               | 133807                       | 4218363                            | 74.6                                      | 888                           |
|                      |                     |                   |           |                    |           |                    |                              |                                    |                                           | (Sheet 2 of 6)                |
|                      | •                   |                   |           |                    |           |                    |                              |                                    |                                           |                               |
| = Water Test         | er Test             |                   |           |                    |           |                    |                              |                                    |                                           |                               |

| Table A2 (Continued) | (Continu | led)        |                                |           |                    |           |                        |                              |                                 |                        |
|----------------------|----------|-------------|--------------------------------|-----------|--------------------|-----------|------------------------|------------------------------|---------------------------------|------------------------|
|                      |          |             | Hopper Volume, yd <sup>3</sup> | dume, yd³ | Displacement, tons | ent, tons |                        |                              |                                 |                        |
|                      | Start    | End<br>Time |                                |           |                    |           | Bin<br>Water<br>Weight | Total<br>Weight in<br>Hopper | Average<br>Density<br>in Hopper | in-Place<br>Production |
| Number               | 2        | ž           | Starting                       | Ending    | Starting           | Ending    | ٩                      | Q.                           | lb/ft²                          | yď³                    |
| 32                   | 18.054   | 19.076      | 52                             | 2102      | 2059               | 4078      | 89202                  | 4127377                      | 72.7                            | 750                    |
| 33                   | 19.829   | 20.810      | 73                             | 2096      | 2098               | 4091      | 124525                 | 4110739                      | 72.6                            | 741                    |
| 34                   | 21.733   | 22.921      | 43                             | 2106      | 2047               | 4066      | 73077                  | 4111855                      | 72.3                            | 720                    |
| 35                   | 0.013    | 0.919       | 69                             | 2107      | 2110               | 4057      | 118276                 | 4012514                      | 70.5                            | 585                    |
| 36                   | 2.011    | 3.269       | 75                             | 2103      | 2130               | 4124      | 128734                 | 4116374                      | 72.5                            | 733                    |
| 37                   | 4.564    | 5.531       | 122                            | 2100      | 2191               | 4124      | 208659                 | 4075120                      | 71.9                            | 685                    |
| 38                   | 7.042    | 7.686       | 43                             | 2077      | 2012               | 4045      | 73345                  | 4138251                      | 73.8                            | 821                    |
| 39                   | 8.915    | 10.468      | 43                             | 2097      | 2093               | 4068      | 73023                  | 4022042                      | 71.0                            | 621                    |
| 40                   | 11.807   | 12.175      | 42                             | 2086      | 1979               | 3993      | 72483                  | 4102193                      | 72.8                            | 762                    |
| 41                   | 13.161   | 14.469      | 43                             | 2096      | 2070               | 4105      | 74193                  | 4144101                      | 73.2                            | 786                    |
| 42                   | 15.876   | 16.617      | 48                             | 2101      | 2018               | 4079      | 81607                  | 4203203                      | 74.1                            | 855                    |
| 43                   | 17.661   | 18.779      | 42                             | 2100      | 2019               | 4093      | 72684                  | 4219369                      | 74.4                            | 877                    |
| 44                   | 19.843   | 20.876      | 46                             | 2099      | 2019               | 4072      | 78253                  | 4184689                      | 73.8                            | 833                    |
| 45                   | 22.133   | 23.235      | 46                             | 2097      | 2001               | 4081      | 78097                  | 4238169                      | 74.8                            | 911                    |
| 46                   | 0.478    | 1.531       | 75                             | 2098      | 2085               | 4113      | 128362                 | 4184777                      | 73.9                            | 837                    |
| 47                   | 2.651    | 3.960       | 62                             | 2102      | 2099               | 4150      | 105262                 | 4205479                      | 74.1                            | 855                    |
| 48                   | 5.018    | 6.165       | 43                             | 2107      | 2051               | 4102      | 73249                  | 4175380                      | 73.4                            | 802                    |
| 49                   | 7.306    | 8.158       | 42                             | 2095      | 2008               | 4061      | 72922                  | 4178770                      | 73.8                            | 828                    |
|                      |          |             |                                |           |                    |           |                        |                              |                                 | (Sheet 3 of 6)         |

| Table A2 (Continued) | (Continu            | ed)         |           |                    |           |                    |                              |                                    |                                                       |                               |
|----------------------|---------------------|-------------|-----------|--------------------|-----------|--------------------|------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------|
|                      |                     |             | Hopper Vo | Hopper Volume, yd³ | Displacen | Displacement, tons |                              |                                    |                                                       |                               |
| Load                 | Start<br>Time<br>hr | End<br>Time | Starting  | Ending             | Starting  | Ending             | Bin<br>Water<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/ft <sup>3</sup> | in-Place<br>Production<br>yd³ |
| 50                   | 9.243               | 10.251      | 42        | 2088               | 2034      | 4070               | 72821                        | 4144604                            | 73.5                                                  | 804                           |
| 51                   | 11.203              | 12.587      | 42        | 2093               | 2037      | 4083               | 72578                        | 4165280                            | 73.7                                                  | 820                           |
| 52                   | 13.708              | 14.725      | 42        | 2097               | 2021      | 4050               | 72542                        | 4129744                            | 72.9                                                  | 764                           |
| 53                   | 15.850              | 17.001      | 42        | 2100               | 1988      | 4041               | 72081                        | 4177183                            | 73.6                                                  | 821                           |
| 54                   | 18.125              | 19.122      | 42        | 2101               | 1994      | 4019               | 72459                        | 4121439                            | 72.6                                                  | 745                           |
| 55                   | 20.261              | 21.369      | 42        | 2101               | 1969      | 3998               | 72803                        | 4132263                            | 72.8                                                  | 759                           |
| 56                   | 22.592              | 23.654      | 43        | 2104               | 1987      | 4061               | 73413                        | 4221624                            | 74.3                                                  | 871                           |
| 57                   | 0.686               | 2.022       | 43        | 2103               | 2017      | 4050               | 73148                        | 4138559                            | 72.9                                                  | 762                           |
| 58                   | 3.300               | 4.457       | 43        | 2101               | 2009      | 4074               | 73118                        | 4204287                            | 74.1                                                  | 855                           |
| 59                   | 5.700               | 6.749       | 42        | 2104               | 1988      | 4029               | 72875                        | 4156747                            | 73.2                                                  | 786                           |
| 90                   | 7.862               | 9.464       | 43        | 2103               | 2046      | 3998               | 73154                        | 3977060                            | 70.0                                                  | 547                           |
| 61                   | 10.861              | 11.867      | 43        | 2097               | 2007      | 3992               | 73578                        | 4042925                            | 71.4                                                  | 649                           |
| •                    | 13.036              | 13.374      | 43        | 765                | 1997      | 2619               | •••                          |                                    | 63.8                                                  |                               |
| 62                   | 13.718              | 14.672      | 63        | 2105               | 1931      | 3928               | 106905                       | 4100184                            | 72.1                                                  | 708                           |
| 63                   | 16.151              | 16.962      | 43        | 2102               | 1913      | 3938               | 73279                        | 4123177                            | 72.6                                                  | 744                           |
| 64                   | 18.411              | 19.281      | 43        | 2103               | 1911      | 3944               | /3255                        | 4140642                            | 72.9                                                  | 992                           |
| 65                   | 20.524              | 21.600      | 43        | 2107               | 1914      | 3963               | 73136                        | 4172536                            | 73.3                                                  | 800                           |
| 99                   | :                   | :           | •         | :                  | •         |                    | ••                           | •                                  | ••                                                    | ••                            |
|                      |                     |             |           |                    |           |                    |                              |                                    |                                                       | (Sheet 4 of 6)                |

| Table A2 (Continued) | (Continu                             | (pər   |                    |           |                    |           |        |                    |                     |                   |
|----------------------|--------------------------------------|--------|--------------------|-----------|--------------------|-----------|--------|--------------------|---------------------|-------------------|
|                      |                                      |        | Hopper Volume, yd³ | dume, yd³ | Displacement, tons | ent, tons |        |                    |                     |                   |
|                      | Start                                | End    |                    |           |                    |           |        | Total<br>Weight in | Average<br>Density  | fn-Place          |
| Number               | i ime<br>hr                          | hr     | Starting           | Ending    | Starting           | Ending    | Weight | Hopper<br>Ib       | in Hopper<br>Ib/ft³ | Production<br>yd³ |
| 29                   | ••                                   | ••     | ••                 | •         | • •                | ••        | *      | •                  | :                   | *                 |
| . 89                 | **                                   | ••     | ••                 | ••        | ••                 | •         | •      | •                  | :                   |                   |
| 69                   | ••                                   | ••     | • •                | • •       | ••                 |           | * •    | :                  | ••                  | :                 |
| 70                   | ••                                   | ••     | **                 | ••        | ••                 | •         | • •    | •                  | •                   | :                 |
| 71                   | 16.725                               | 17.597 | 42                 | 2085      | 1994               | 3951      | 72881  | 3986756            | 70.8                | 599               |
| 72                   | 18.883                               | 20.492 | 43                 | 2095      | 1975               | 4074      | 73154  | 4269228            | 75.4                | 956               |
| 73                   | 22.032                               | 23.290 | 43                 | 2096      | 2045               | 4006      | 73452  | 3994759            | 70.6                | 585               |
| 74                   | 0.665                                | 2.246  | 43                 | 2105      | 2056               | 4058      | 73268  | 4077021            | 71.7                | 676               |
| 75                   | 3.451                                | 4.606  | 43                 | 2108      | 2047               | 4051      | 73577  | 4079939            | 71.7                | 672               |
| 76                   | 6.037                                | 7.172  | 43                 | 2100      | 2060               | 4056      | 73620  | 4064964            | 71.7                | 670               |
| 77                   | 8.303                                | 9.958  | 43                 | 2085      | 2094               | 3999      | 73238  | 3883673            | 0.69                | 462               |
| 78                   | 10.706                               | 13.062 | 43                 | 2088      | 2063               | 4049      | 73428  | 4045784            | 71.7                | 672               |
| 79                   | 14.046                               | 15.822 | 42                 | 2091      | 2036               | 4027      | 72483  | 4054468            | 71.8                | 678               |
| 80                   | 17.300                               | 19.510 | 42                 | 2106      | 2045               | 4049      | 72631  | 4080136            | 71.7                | 678               |
| 81                   | 20.781                               | 22.831 | 64                 | 2095      | 2118               | 4019      | 108658 | 3912031            | 69.1                | 477               |
| 82                   | 0.018                                | 1.133  | 43                 | 2100      | 2076               | 4053      | 73137  | 4026409            | 71.0                | 620               |
|                      |                                      |        |                    |           |                    |           |        |                    |                     | (Sheet 5 of 6)    |
| •• = Data Not Av     | = Data Not Available<br>= Water Test | e e    | !                  |           |                    |           |        |                    |                     |                   |
|                      |                                      |        |                    |           |                    |           |        |                    |                     |                   |

| Table A2 (Concluded)         | (Concluc            | luded)            |                                  |              |                    |           |                              |                                    |                                           |                               |
|------------------------------|---------------------|-------------------|----------------------------------|--------------|--------------------|-----------|------------------------------|------------------------------------|-------------------------------------------|-------------------------------|
|                              |                     |                   | Hopper Volume, yd³               | dume, yd³    | Displacement, tons | ent, tons |                              |                                    |                                           |                               |
| Load                         | Start<br>Time<br>hr | End<br>Time<br>hr | Starting                         | Ending       | Starting           | Ending    | Bin<br>Water<br>Weight<br>Ib | Total<br>Weight in<br>Hopper<br>Ib | Average<br>Density<br>in Hopper<br>Ib/ft³ | In-Place<br>Production<br>yd³ |
| 83                           | 2.201               | 3.611             | 43                               | 2102         | 2080               | 4011      | 73667                        | 3936178                            | 69.3                                      | 493                           |
| 84                           | 4.890               | 6.181             | 43                               | 2103         | 2051               | 4057      | 73661                        | 4084358                            | 71.9                                      | 069                           |
| :                            | 7.299               | 7.526             | 43                               | 955          | 2099               | 2880      |                              |                                    | 63.4                                      |                               |
| 85                           | 8.001               | 13.807            | 43                               | 2050         | 2055               | 3961      | 73035                        | 3885356                            | 70.2                                      | 544                           |
| 86                           | 15.203              | 18.961            | 42                               | 2088         | 2065               | 3993      | 72732                        | 3928702                            | 69.7                                      | 515                           |
| 87                           | 20.156              | 22.243            | 43                               | 2095         | 2031               | 3994      | 73214                        | 3999516                            | 70.7                                      | 594                           |
| 88                           | 23.201              | 1.003             | 43                               | 2085         | 2089               | 3967      | 73601                        | 3829601                            | 68.0                                      | 391                           |
| 88                           | 2.153               | 3.451             | 43                               | 2064         | 2066               | 3926      | 73011                        | 3793850                            | 68.1                                      | 390                           |
| 06                           | 4.707               | 5.658             | 43                               | 2095         | 2054               | 3804      | 73006                        | 3573006                            | 63.2                                      | 25                            |
| Average Calculated Bin Measu | culated Bin I       | Measure In-F      | ire In-Place Production per Load | ion per Load |                    |           |                              |                                    |                                           | 734                           |
|                              |                     |                   |                                  |              |                    |           |                              |                                    |                                           | (Sheet 6 of 6)                |
| ••• = Water Test             | ır Test             |                   |                                  |              |                    |           |                              |                                    |                                           |                               |

Table A3 Summary of Overflow Analysis Data, Norfolk Harbor Channel Project

|                | Vessel We            | ight, Tons         |                                                  |                                    |                                               |
|----------------|----------------------|--------------------|--------------------------------------------------|------------------------------------|-----------------------------------------------|
| Load<br>Number | Start of<br>Overflow | End of<br>Overflow | Solids<br>Retained<br>During<br>Overflow<br>tons | Solids Pumped During Overflow tons | Percent<br>of Solids<br>Retained<br>in Hopper |
| 1              | 3860                 | 3960               | 100                                              | 698                                | 14.3                                          |
| 2              | 3920                 | 3949               | 29                                               | 225                                | 12.9                                          |
| 3              | 3981                 | 3971               | -10                                              | 302                                | -3.3                                          |
| 4              | 3874                 | 3986               | 112                                              | 803                                | 13.9                                          |
| 5              | 3900                 | 3982               | 82                                               | 785                                | 10.4                                          |
| 6              | 3978                 | 4026               | 48                                               | 522                                | 9.2                                           |
| 7              | 3989                 | 4007               | 18                                               | 237                                | 7.6                                           |
| 8              | 3980                 | 4001               | 21                                               | 567                                | 3.7                                           |
| 9              | 3958                 | 4012               | 54                                               | 346                                | 15.6                                          |
| 10             | 3912                 | 3995               | 83                                               | 610                                | 13.6                                          |
| 11             | 3950                 | 3963               | 13                                               | 191                                | 6.8                                           |
| 12             | 3982                 | 3979               | -3                                               | 151                                | -2.0                                          |
| 13             | 3969                 | 3980               | 11                                               | 158                                | 7.0                                           |
| 14             | 3946                 | 4017               | 71                                               | 676                                | 10.5                                          |
| 15             | 3949                 | 3979               | 30                                               | 147                                | 20.4                                          |
| 16             | 3941                 | 3971               | 30                                               | 212                                | 14.2                                          |
| 17             | 3946                 | 3954               | 8                                                | 133                                | 6.0                                           |
| 18             | 3939                 | 3950               | 3                                                | 4                                  | 75.0                                          |
| 19             | 3978                 | 4006               | 28                                               | 244                                | 11.5                                          |
| 20             | 3943                 | 3990               | 47                                               | 596                                | 7.9                                           |
| 21             | 4015                 | 4036               | 21                                               | 245                                | 8.6                                           |
| 22             | 4006                 | 4029               | 23                                               | 73                                 | 31.5                                          |
| 23             | 4022                 | 4055               | 33                                               | 287                                | 11.5                                          |
| 24             | 4055                 | 4059               | 4                                                | 625                                | 0.6                                           |
| 25             | 4016                 | 4086               | 70                                               | 603                                | 11.6                                          |
| 26             | 4078                 | 4113               | 35                                               | 339                                | 10.3                                          |
| 27             | 3969                 | 3969               | 0                                                | 2                                  | 0.0                                           |
|                |                      |                    |                                                  |                                    | (Sheet 1 of 4)                                |

| Table A3       | 3 (Continued         | )                  |                                                  |                                    |                                               |
|----------------|----------------------|--------------------|--------------------------------------------------|------------------------------------|-----------------------------------------------|
|                | Vessel We            | ight, Tons         |                                                  |                                    |                                               |
| Load<br>Number | Start of<br>Overflow | End of<br>Overflow | Solids<br>Retained<br>During<br>Overflow<br>tons | Solids Pumped During Overflow tons | Percent<br>of Solids<br>Retained<br>in Hopper |
| 28             | 4003                 | 4049               | 46                                               | 107                                | 43.0                                          |
| 29             | 4020                 | 4084               | 64                                               | 565                                | 11.3                                          |
| 30             | 3992                 | 4083               | 91                                               | 619                                | 14.7                                          |
| 31             | 4002                 | 4054               | 52                                               | 399                                | 13.0                                          |
| 32             | 4061                 | 4079               | 18                                               | 262                                | 6.9                                           |
| 33             | 4067                 | 4083               | 16                                               | 157                                | 10.2                                          |
| 34             | 4041                 | 4066               | 25                                               | ·278                               | 9.0                                           |
| 35             | 3982                 | 4059               | 77                                               | 311                                | 24.8                                          |
| 36             | 4035                 | 4122               | 87                                               | 660                                | 13.2                                          |
| 37             | 4117                 | 4120               | 3                                                | 160                                | 1.9                                           |
| 38             | 4051                 | 4051               | 0                                                | 4                                  | 0.0                                           |
| 39             | 4036                 | 4072               | 36                                               | 70                                 | 51.4                                          |
| 40             | 3990                 | 3996               | 6                                                | 10                                 | 60.0                                          |
| 41             | 3999                 | 4108               | 107                                              | 616                                | 17.4                                          |
| 42             | 4000                 | 4078               | 78                                               | 328                                | 23.8                                          |
| 43             | 4022                 | 4095               | 73                                               | 333                                | 21.9                                          |
| 44             | 4049                 | 4074               | 25                                               | 260                                | 9.6                                           |
| 45             | 4078                 | 4084               | 6                                                | 420                                | 1,4                                           |
| 46             | 4062                 | 4108               | 46                                               | 601                                | 7.7                                           |
| 47             | 4007                 | 4105               | 143                                              | 719                                | 19.9                                          |
| 48             | 4056                 | 4103               | 47                                               | 226                                | 20.8                                          |
| 49             | 4050                 | 4059               | 9                                                | 117                                | 7.7                                           |
| 50             | 4040                 | 4072               | 32                                               | 240                                | 13.3                                          |
| 51             | 4019                 | 4083               | 64                                               | 481                                | 13.3                                          |
| 52             | 3984                 | 4047               | 63                                               | 448                                | 14.1                                          |
| 53             | 3971                 | 4041               | 70                                               | 486                                | 14.4                                          |
| 54             | 3967                 | 4020               | 53                                               | 367                                | 14.4                                          |
| 55             | 3975                 | 4000               | 25                                               | 247                                | 10.1                                          |
| 56             | 3941                 | 4064               | 123                                              | 506                                | 24.3                                          |
|                |                      |                    |                                                  |                                    | (Sheet 2 of 4)                                |

| Table A        | 3 (Continued         | )                                      |                                                  |                                    |                                               |
|----------------|----------------------|----------------------------------------|--------------------------------------------------|------------------------------------|-----------------------------------------------|
|                | Vessel We            | ight, Tons                             |                                                  |                                    |                                               |
| Load<br>Number | Start of<br>Overflow | End of<br>Overflow                     | Solids<br>Retained<br>During<br>Overflow<br>tons | Solids Pumped During Overflow tons | Percent<br>of Solids<br>Retained<br>in Hopper |
| 57             | 3963                 | 4050                                   | 87                                               | 582                                | 14.9                                          |
| 58             | 3979                 | 4079                                   | 100                                              | 533                                | 18.8                                          |
| 59             | 3982                 | 4033                                   | 51                                               | 247                                | 20.6                                          |
| 60             | 3960                 | 3994                                   | 34                                               | 218                                | 15.6                                          |
| 61             | 3928                 | 3993                                   | 65                                               | 264                                | 24.6                                          |
| 62             | 3918                 | 3928                                   | 10                                               | 66                                 | 15.2                                          |
| 63             | 3918                 | 3935                                   | 17 .                                             | 192                                | 8.9                                           |
| 64             | 3905                 | 3946                                   | 41                                               | 264                                | 15.5                                          |
| 65             | 3890                 | 3964                                   | 74                                               | 256                                | 28.9                                          |
| 66             | ••                   | ••                                     | ••                                               | ••                                 | ••                                            |
| 67             | ••                   | ••                                     | ••                                               | ••                                 | ••                                            |
| 68             | ••                   | ••                                     | ••                                               | ••                                 | ••                                            |
| 69             | **                   | ••                                     | ••                                               | ••                                 | **                                            |
| 70             | ••                   | ••                                     | ••                                               | ••                                 | ••                                            |
| 71             | 3928                 | 3953                                   | 25                                               | 46                                 | 54.3                                          |
| 72             | 3958                 | 4078                                   | 120                                              | 663                                | 18.1                                          |
| 73             | 3912                 | 4009                                   | 97                                               | 377                                | 25.7                                          |
| 74             | 3972                 | 4060                                   | 88                                               | 574                                | 15.3                                          |
| 75             | 3981                 | 4053                                   | 72                                               | 435                                | 16.6                                          |
| 76             | 3975                 | 4047                                   | 72                                               | 415                                | 17.3                                          |
| 77             | 3819                 | 4003                                   | 184                                              | 208                                | 88.5                                          |
| 78             | 3979                 | 4055                                   | 76                                               | 416                                | 18.3                                          |
| 79             | 3964                 | 4032                                   | 68                                               | 292                                | 23.3                                          |
| 80             | 3999                 | 4039                                   | 40                                               | 690                                | 5.8                                           |
| 81             | 3975                 | 4022                                   | 47                                               | 333                                | 14.1                                          |
| 82             | 3933                 | 4055                                   | 122                                              | 287                                | 42.5                                          |
| 83             | 3923                 | 4006                                   | 83                                               | 232                                | 35.8                                          |
|                |                      |                                        |                                                  |                                    | (Sheet 3 of 4)                                |
|                | Nas Assetta          |                                        |                                                  |                                    | ,5                                            |
| = Data         | Not Available        | ······································ |                                                  |                                    |                                               |

| Table A        | 3 (Conclude          | ed)                |                                                  |                                                |                                               |
|----------------|----------------------|--------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------|
|                | Vessel V             | Veight, Tons       |                                                  |                                                |                                               |
| Load<br>Number | Start of<br>Overflow | End of<br>Overflow | Solids<br>Retained<br>During<br>Overflow<br>tons | Solids<br>Pumped<br>During<br>Overflow<br>tons | Percent<br>of Solids<br>Retained<br>in Hopper |
| 84             | 3970                 | 4077               | 107                                              | 201                                            | 53.2                                          |
| 85             | 3903                 | 3948               | 45                                               | 237                                            | 19.0                                          |
| 86             | 3880                 | 3993               | 113                                              | 407                                            | 27.8                                          |
| 87             | 3896                 | 3995               | 99                                               | 254                                            | 39.0                                          |
| 88             | 3940                 | 3963               | 23                                               | 69                                             | 33.3                                          |
| 89             | 3892                 | 3900               | 8                                                | _ 8                                            | 100.0                                         |
| 90             | 3796                 | 3801               | 5                                                | , 11                                           | 45.5                                          |
| Project To     | tals                 |                    | 4419                                             | 28555                                          |                                               |
| Project Av     | /erages              |                    | 52                                               | 336                                            | 15.5                                          |
|                |                      |                    |                                                  |                                                | (Sheet 4 of 4)                                |

## REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.

| 1. AGENCY USE ONLY (Leave blank                                    | September 1                      |              |             | RT TYPE AND<br>al report                                                                                      | DATES COVERED                                       |
|--------------------------------------------------------------------|----------------------------------|--------------|-------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 4. TITLE AND SUBTITLE                                              |                                  |              |             |                                                                                                               | 5. FUNDING NUMBERS                                  |
| An Automated System for Hop                                        | oper Dredge Mo                   | nitoring     |             | ĺ                                                                                                             |                                                     |
| 6. AUTHOR(S)                                                       |                                  |              |             |                                                                                                               |                                                     |
| Jeffrey D. Jorgeson                                                |                                  |              |             |                                                                                                               |                                                     |
| Stephen H. Scott                                                   |                                  |              |             | 1                                                                                                             |                                                     |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)                 |                                  |              |             | -                                                                                                             | 8. PERFORMING ORGANIZATION                          |
|                                                                    |                                  | -            |             | ľ                                                                                                             | REPORT NUMBER                                       |
| U.S. Army Engineer Waterways Experiment Station                    |                                  |              |             | ļ                                                                                                             | Technical Report                                    |
| 3909 Halls Ferry Road, Vicksburg, MS 39180-6199                    |                                  |              |             |                                                                                                               | HL-94-12                                            |
|                                                                    |                                  |              |             |                                                                                                               |                                                     |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)            |                                  |              |             | ;                                                                                                             | 10. SPONSORING / MONITORING<br>AGENCY REPORT NUMBER |
| U.S. Army Engineer District, N                                     | Norfolk                          |              |             | ł                                                                                                             |                                                     |
| 803 Front Street                                                   |                                  |              |             |                                                                                                               |                                                     |
| Norfolk, VA 23510-1096                                             |                                  |              |             | ł                                                                                                             |                                                     |
| 11. SUPPLEMENTARY NOTES                                            | <del></del> ,                    |              | <u></u>     | 1                                                                                                             |                                                     |
|                                                                    |                                  |              |             |                                                                                                               |                                                     |
| Available from National Techn                                      | ical Information                 | Service, 52  | 85 Port Ro  | yal Road, S                                                                                                   | Springfield, VA 22161.                              |
| 12a. DISTRIBUTION / AVAILABILITY STATEMENT                         |                                  |              |             | 12b. DISTRIBUTION CODE                                                                                        |                                                     |
|                                                                    |                                  |              |             | ł                                                                                                             |                                                     |
|                                                                    | ·.                               |              |             |                                                                                                               |                                                     |
| A                                                                  | tanihan tanih                    |              |             | j                                                                                                             |                                                     |
| Approved for public release; di<br>13. ABSTRACT (Maximum 200 words |                                  | mited.       |             |                                                                                                               |                                                     |
|                                                                    |                                  | f data from  | an automa   | ted monitor                                                                                                   | ring system aboard a contract                       |
| the installation, testing hopper dredge is detailed in th          |                                  |              |             |                                                                                                               |                                                     |
| monitor the dredge displacement                                    |                                  |              |             |                                                                                                               |                                                     |
| drag arms, drag arm depth, and                                     | d vessel position,               | as well as   | a data acqı | uisition syst                                                                                                 | em to store and manage the                          |
| information. The data are reco                                     |                                  |              |             |                                                                                                               |                                                     |
| Corps of Engineers. Detailed                                       |                                  |              |             |                                                                                                               |                                                     |
| overflow efficiency during the t                                   | wo projects. A                   | ucialicu und | Arianny ar  | 1917 12 17 17 17 19 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 | о репописа.                                         |
|                                                                    |                                  |              |             |                                                                                                               |                                                     |
|                                                                    |                                  |              |             |                                                                                                               |                                                     |
|                                                                    |                                  |              |             |                                                                                                               |                                                     |
|                                                                    |                                  |              |             |                                                                                                               |                                                     |
|                                                                    |                                  |              |             |                                                                                                               |                                                     |
|                                                                    |                                  |              |             | <del></del> ,                                                                                                 |                                                     |
| 14. SUBJECT TERMS Acoustic sensors Dre                             | Oredge Dredge production Uncerta |              |             | Uncertain                                                                                                     | 15. NUMBER OF PAGES<br>ty 80                        |
|                                                                    | dge data Hopper dredge           |              |             | 16. PRICE CODE                                                                                                |                                                     |
| Bin measure Dre                                                    | edge monitoring                  | Overflow     |             |                                                                                                               |                                                     |
| 17. SECURITY CLASSIFICATION 19<br>OF REPORT                        | B. SECURITY CLAS<br>OF THIS PAGE | SIFICATION   |             | ITY CLASSIFIC<br>STRACT                                                                                       | ATION 20. LIMITATION OF ABSTRAC                     |
| UNCLASSIFIED                                                       | UNCLASSIF                        | IED          |             |                                                                                                               |                                                     |

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89) Prescribed by ANSI Std 239-18 298-102