# Lecture 11: Inequalities

Mathematical Statistics I, MATH 60061/70061

Tuesday October 12, 2021

Reference: Casella & Berger, 3.6, 4.7

## Jensen: an inequality for convexity

Let X be a random variable.

- If g is a convex function, then  $E(g(X)) \ge g(E(X))$ .
- If g is a concave function, then  $E(g(X)) \leq g(E(X))$ .



A function g whose domain is an interval I is *convex* if

$$g(px_1+(1-p)x_2) \le pg(x_1)+(1-p)g(x_2)$$

for all  $x_1, x_2 \in I$  and  $p \in (0, 1)$ .

A function g is *concave* if -g is convex.

## Jensen: an inequality for convexity, continued



A function g whose domain is an interval I is convex if

$$g(px_1 + (1-p)x_2) \le pg(x_1) + (1-p)g(x_2)$$

for all  $x_1, x_2 \in I$  and  $p \in (0, 1)$ .

A function g is *concave* if -g is convex.

If g is convex, then all lines tangent to g lie below g. Let  $\mu=E(X)$  and consider the tangent point  $(\mu,g(\mu))$ . Denoting the tangent line by a+bx, we have  $g(x)\geq a+bx$  for all x, so  $g(X)\geq a+bX$ . Taking the expectation of both sides:

$$E(g(X)) \ge a + bE(X) = a + b\mu = g(\mu) = g(E(X)).$$

If g is concave, then h=-g is convex. The inequality for g is reversed for the concave case.

### Example: inequality for means

If  $a_1, \ldots, a_n$  are positive numbers, define

$$a_A = \frac{1}{n}(a_1 + a_2 + \dots a_n) \qquad \qquad \text{[arithmetic mean]}$$
 
$$a_G = [a_1 a_2 \cdot \dots \cdot a_n]^{1/n} \qquad \qquad \text{[geometric mean]}$$
 
$$a_H = \frac{1}{\frac{1}{n}\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right)} \qquad \qquad \text{[harmonic mean]}$$

Using Jensen's inequality, find the relationship between arithmetic mean, geometric mean, and harmonic mean.

#### Example: inequality for means

Let X be a random variable with range  $a_1,\ldots,a_n$  and  $P(X=a_i)=1/n,\ i=1,\ldots,n.$  Since  $\log x$  is a *concave* function, **Jensen's inequality** shows that  $E(\log X) \leq \log(EX)$ ; hence

### Example: inequality for means

Let X be a random variable with range  $a_1,\ldots,a_n$  and  $P(X=a_i)=1/n,\ i=1,\ldots,n.$  Since  $\log x$  is a *concave* function, **Jensen's inequality** shows that  $E(\log X) \leq \log(EX)$ ; hence

$$\log a_G = \frac{1}{n} \sum_{i=1}^n \log a_i = E(\log X) \le \log(EX) = \log\left(\frac{1}{n} \sum_{i=1}^n a_i\right) = \log a_A,$$

so  $\log a_G \leq \log a_A$ .

Use again the fact that  $\log x$  is concave

$$\log \frac{1}{a_H} = \log \left( \frac{1}{n} \sum_{i=1}^n \frac{1}{a_i} \right) = \log \left( E \frac{1}{X} \right) \ge E \left( \log \frac{1}{X} \right) = -E(\log X).$$

Since  $E(\log X) = \log a_G$ , it then follows that  $\log(1/a_H) \ge \log(1/a_G)$ , or  $a_G \ge a_H$ .

Chebychev's inequality is usually quite conservative:

$$P\left(\frac{|X-\mu|}{\sigma} \ge 1\right) \le 1$$

$$P\left(\frac{|X-\mu|}{\sigma} \ge 2\right) \le 1/4$$

$$P\left(\frac{|X-\mu|}{\sigma} \ge 3\right) \le 1/9$$

For  $X \sim \mathcal{N}(\mu, \sigma^2)$ , the three bounds are far from those suggested by the 68-95-99.7 rule.