Tangram

Introduction

Analyse du casse-tête

Placement d'un pièce dans un modèle

Soustraction

Algorithm

Représentation informatique

informatique du problème

Structure de données

Espace d'états

production

obtenus

Avancement de l résolution

Exemples

Problèmes rencontrés

Conclu

. . .

Projet de résolution du casse tête du Tangram

Université de Technologies de Belfort-Montbéliard

18 juin 2013

Introduction

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un

Soustraction

Algorithme

d'abord

Représentation

informatique du problème

Structure de données

Système de production

obtenus

Avancement de résolution

Exemples

Problème rencontré

Conclus

Pourquoi le Tangram?

- intérêt du jeu;
- symbole pour l'intelligence artificielle;
- diversité des configurations existantes.

Tangram

ntroduction

Analyse du casse-tête

Placement d'u pièce dans un modèle

d'une pièce

Algorithme profondeur

Représentation informatique du problème

du problème Structure de

données

Système de production

Résulta

Avancement de l résolution Exemples

Problèmes rencontrés

G 1 .

Conclusion

1 Analyse du casse-tête

- Placement d'une pièce dans un modèle
- Soustraction d'une pièce
- Algorithme profondeur d'abord

- Structure de données
- Espace d'états
- Système de production

3 Résultat obtenus

- Avancement de la résolution
 - Exemples
- 4 Problèmes rencontrés
- 5 Conclusion

Tangram

Analyse du

Placement d'une pièce dans un modèle

Représentation informatique

du problème

Structure de

- trouver les positions adéquates pour une pièce dans un modèle;
- éviter de tester toutes les solutions pour une meilleure efficacité;
- test des arêtes correspondant à un côté du modèle;
- permet de couvrir de nombreux cas.

Tangram

Analyse du casse-tête

Placement d'une pièce dans un modèle

informatique du problème

Structure de

- couvre une autre partie des cas non adaptée à la première méthode;
- cherche des correspondances d'angles;
- ne permet pas de savoir si la pièce entre dans le modèle.

Tangram

Analyse du casse-tête

Placement d'une pièce dans un modèle

Représentation informatique du problème

Structure de

- la base ne permet pas d'indiquer le sens de la figure;
- translation éventuellement nécessaire;
- vérification de l'appartenance de tous les points de la pièce au modèle.

Tangram

Analyse du casse-tête

Placement d'une pièce dans un modèle

Représentation informatique

du problème Structure de

Exemples

• une position identifiée comme correcte, une comme incorrecte:

- algorithme générant l'ensemble des solutions possibles;
- passe son résultat au prédicat suivant.

Soustraction d'une pièce

Tangram

Introductio

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièce

Algorithme profondeur d'abord

Représentation informatique du problème

- Structure de
- Espace d'état
- Système de

Résulta

Avancement de résolution

Exemples

Problèmes rencontrés

Conclus

- deuxième étape, permettant la récursivité;
- renvoie un nouveau modèle sans la pièce placée;
- utilisation des arêtes nécessaires;
- recherche d'une arête commune.

Soustraction d'une pièce

Tangram

Analyse du casse-tête

Soustraction d'une pièce

Représentation informatique

du problème

- Structure de

- insertion des arêtes de la pièce entre celles du modèle;
- vérification du sens de la pièce pour un éventuel retournement;
- élimination d'arêtes présentes en double ;
- "nettoyage" des points.

Soustraction d'une pièce

Tangram

Analyse du casse-tête

Soustraction d'une pièce

Représentation informatique

- du problème Structure de

- Exemples

• le problème des points résolu par l'utilisation d'arêtes;

- suppression automatique de points et arêtes parasites;
- cas d'arrêt par renvoi d'un modèle vide.

Profondeur d'abord : analyse de la recherche

Tangram

Analyse du

casse-tête

Algorithme profondeur

d'abord

Représentation informatique

du problème Structure de

Exemples

• problème modélisable par un arbre de recherche;

- arbre complexe du fait du nombre de placements possibles;
- étapes de résolution :
 - sélection d'une pièce:
 - choix d'une position possible;
 - sélection de la pièce suivante;
 - arrêt au niveau de profondeur 7.

11 / 25

Profondeur d'abord : choix de la recherche

Tangram

Analyse du casse-tête

Algorithme profondeur

d'abord Représentation

informatique du problème

Structure de

Exemples

• plusieurs solutions possible dans la quasi totalité des cas;

- but = converger vers une solution rapidement;
- profondeur d'abord : choix idéal;
- étend le nœud du graphe et ses successeurs jusqu'au nœud but.

Tangram

Analyse du casse-tête

Représentation

informatique du problème

Structure de

Exemples

Analyse du casse-tête

Représentation informatique du problème

- Structure de données
- Espace d'états
- Système de production

Structure de données

Tangram

Analyse du casse-tête

Représentation informatique du problème

Structure de données

- représentation des figures dans un repère orthonormé;
- coordonnées réunies en points;
- figure représentée par une liste de points;
- ordre des points importants;
- modèle structuré par une liste de figures.

Espace d'états

Tangram

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction

Algorithme profondeur

Représentation informatique du problème

Structure de

Espace d'états

Système d production

obtenus

Avancement de résolution

Exemples

Problèmes rencontrés

Conclu

Chaque état contient :

- les pièces à placer;
- les coordonnées du modèle à remplir;
- les pièces placées.

Espace d'états

Tangram

Analyse du casse-tête

Représentation informatique du problème

Structure de

Espace d'états

- Pieces défini dans l'ensemble des pièces disponibles;
- PiecesPlacees défini de la même manière;
- Modele défini par des points compris dans l'espace des coordonnées de base.

Système de production

Tangram

A 1 1

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièce

Algorithme profondeur d'abord

Représentation informatique

du problème

données Espace d'états

Système de production

Résultat

Avancement de l

Exemples

Problèmes rencontrés

- contraintes sur les pièces placées;
- règles différant de la configuration du Tangram ;
- néanmoins, règles communes concernant les coordonnées : chaque point d'une pièce dans *PiecesPlacees* doit être dans la surface de *Modele* à un état antérieur.

Tangram

Introduction

Analyse du casse-tête

Placement d'un pièce dans un modèle

Soustraction

Algorithme

profondeur d'abord

Représentation informatique du problème

Structure de données

Espace d'états

Système d production

Résultat obtenus

Avancement de l résolution Exemples

Problèmes rencontrés

rencontré

Conclusion

- 1 Analyse du casse-tête
 - Placement d'une pièce dans un modèle
 - Soustraction d'une pièce
 - Algorithme profondeur d'abord
- 2 Représentation informatique du problème
 - Structure de données
 - Espace d'états
 - Système de production
- 3 Résultat obtenus
 - Avancement de la résolution
 - Exemples
- 4 Problèmes rencontrés
- 5 Conclusion

Avancement de la résolution

Tangram

Analyse du

casse-tête

Représentation informatique

du problème

Structure de

Avancement de la

Exemples

résolution

• résolution totale non obtenue :

- dû à des problèmes sur les parties géométriques du Tangram;
- fonctionnement effectif sur des cas simples

Des exemples

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un

Soustraction

Algorithme

profondeur d'abord

Représentation informatique

du problème

données

Système de

Résultat

Avancement de

Exemples

Problèmes rencontrés

Conclu

Les deux premières pièces du Tangram "carré" :

Des exemples

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un

Soustraction

Algorithme profondeur

Représentation informatique

du problème

Structure de données

Espace d'eta

production

Résultat obtenus

Avancement de

Exemples

Problèmes rencontrés

Conclu

Un cas dérivé avec trois triangles :

Tangram

ntroduction

Analyse du casse-tête

Placement d'un pièce dans un modèle

Soustraction

Algorithme profondeur

Représentation informatique

du problème
Structure de

données

Système de

Résulta obtenus

Avancement de l résolution Exemples

Problèmes

rencontrés

Conclusion

1 Analyse du casse-tête

- Placement d'une pièce dans un modèle
- Soustraction d'une pièce
- Algorithme profondeur d'abord

2 Représentation informatique du problème

- Structure de données
- Espace d'états
- Système de production

3 Résultat obtenus

- Avancement de la résolution
 - Exemples

4 Problèmes rencontrés

5 Conclusion

Problèmes rencontrés

Tangram

Analyse du casse-tête

Représentation informatique

du problème Structure de

Exemples

Problèmes rencontrés

- peu de données sur le problème;
- problèmes d'ordre géométriques difficiles à modéliser;
- de nombreux cas particuliers;
- un choix de modélisation initial discutable finalement.

Tangram

Analyse du casse-tête

Représentation informatique

du problème Structure de

Exemples

Analyse du casse-tête

UTBM

Conclusion

Tangram

Analyse du casse-tête

Représentation informatique

du problème

Structure de

Exemples

- projet intéressant sur le plan du sujet;
- des difficultés mais un résultat satisfaisant;
- mise en pratique du Prolog intéressante.

4 D b 4 A B b 4 B b 18 juin 2013