Institute for Analysis and Scientific Computing

Lothar Nannen, Markus Wess

Numerische Mathematik - Kreuzlübung 2

Übungstermin: 15.10.2019 10. Oktober 2019

Aufgabe 7:

Seien x = 5, y = 10 und z = -8.

- a) Geben Sie die Zahlen in Binärdarstellung der Form $\left(v\sum_{i=1}^{l}a_{i}2^{-i}\right)2^{e}$ mit einem Vorzeichen $v\in\{-1,1\}$, einer Mantissenlänge l=3, einem Exponenten $e\in\mathbb{Z}$ und Ziffern $a_{i}\in\{0,1\}$ an.
- b) Verwenden Sie eine Mantissenlänge von 3 zur Berechnung von $(x \oplus y) \oplus z$ und $x \oplus (y \oplus z)$. Die Maschinenaddition \oplus soll dabei so ausgeführt werden, dass zunächst exakt addiert wird und dann auf die zulässige Mantissenlänge abgeschnitten wird.
- c) Machen Sie eine lineare Vorwärtsanalyse beider Ausdrücke und erklären Sie damit die Ergebnisse aus (b). Für welche x, y, z sind die Unterschiede zwischen den Ausdrücken besonders deutlich, wenn man x > 0, y + z > 0 und z < 0 voraussetzt?

Aufgabe 8:

a) Berechnen Sie die relative und absolute Kondition der Auswertung eines durch die Koeffizienten a_0, \ldots, a_n gegebenen Polynoms

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

an der Stelle x bezüglich Störungen in den Koeffizienten a_i und bezüglich Störungen in x.

b) Betrachten Sie das Polynom

$$p(x) = 8118x^4 - 11482x^3 + x^2 + 5741x - 2030$$

an der Stelle x=0.707107. Das "exakte" Resultat ist

$$p(x) = -1.9152732527082 \cdot 10^{-11}.$$

Wie ist die Auswertung dieses Polynoms an der Stelle x konditioniert? Wie genau läßt sich p(x) mit einem Rechner bei einfacher Genauigkeit (eps

 $\approx 10^{-8})$ bestimmen, wenn die Koeffizienten a_i exakt ausgewertet werden können?

c) Ein Rechner, der mit doppelter Genauigkeit (eps $\approx 10^{-16}$) rechnet, liefere bei exakter Auswertung der Koeffizienten den Wert

$$\tilde{p}(x) = -1.9781509763561 \cdot 10^{-11}$$
.

Beurteilen Sie das Ergebnis anhand der oben berechneten Konditionszahl(en).

Aufgabe 9:

Sei $A=\begin{pmatrix}a&b\\b&c\end{pmatrix}$ mit $a,b,c\in\mathbb{R}$ eine symmetrische Matrix und $\lambda_1,\lambda_2\in\mathbb{R}$ deren Eigenwerte. Berechnen sie die absoluten Konditionszahlen des Problems

$$(a,b,c)\mapsto (\lambda_1,\lambda_2).$$

Vergleichen Sie das Ergebnis mit den Konditionszahlen zur Lösung einer quadratischen Gleichung.

Aufgabe 10:

Sei $b \in \mathbb{R}^n$ fix. Berechnen Sie mit Hilfe des Hauptsatzes über implizite Funktionen die relativen Konditionszahlen des Problems: Gesucht ist die Lösung $x \in \mathbb{R}^n$ von Ax = b bei gegebener invertierbarer Matrix $A \in \mathbb{R}^{n \times n}$.

Aufgabe 11:

Es sei

$$f(x) := \frac{1 - \cos x}{\sin x}, \qquad x \neq 0.$$

- a) Ist die Auswertung von f(x) für kleine |x| gut konditioniert?
- b) Zeigen Sie, dass die Auswertung von f(x) in dieser Version für kleine |x| instabil ist. Nehmen Sie dabei an, dass die Auswertungen von $\sin(x)$ und $\cos(x)$ einen relativen Fehler in Höhe der Maschinengenauigkeit hervorruft.
- c) Leiten Sie mit Hilfe der Rechenregeln für trigonometrische Funktionen eine stabile Auswerteformel für kleine |x| her. Auch hier können Sie annehmen, dass $\cos(x)$ und $\sin(x)$ mit Maschinengenauigkeit berechnet werden können.

Aufgabe 12:

Die beiden Ausdrücke

$$f(x) = \frac{1}{2} \left(\sqrt{2x+1} - \sqrt{2x-1} \right), \qquad x \ge 1$$
 (1)

und

$$g(x) = \frac{1}{\sqrt{2x+1} + \sqrt{2x-1}}, \qquad x \ge 1$$
 (2)

sind algebraisch äquivalent.

Untersuchen Sie die Stabilität der Auswerteformeln mit Hilfe einer linearen Vorwärtsanalyse und erklären Sie die Ergebnisse. Welche der beiden Formeln ist numerisch sinnvoller?