

ARes/ComNet — 2012-2013

Examen réparti 2 : Sujet version B en Français

Durée totale : 2h00

Autorisé : Une feuille A4 manuscrite (recto-verso) Non autorisés : Autres documents, calculatrices, téléphones portables, etc.

Voici 3 feuilles recto/verso, contenant le sujet et les champs de réponse, que vous devrez exclusivement nous rendre en fin d'épreuve. Pour garantir l'anonymat, un numéro aléatoire vous sera fourni et devra être collé sur chacune des feuilles du sujet et sur la feuille d'émargement (vous ne devez pas écrire votre nom sur les feuilles rendues).

Vous devez noter vos réponses directement sur ce sujet dans les cadres correspondants.

FIGURE 1 - Arbre de Noms

. IN	SOA SRI	-NIC.ARPA. HOSTMASTER.SRI-NIC.A	RPA. (
	870611	;serial	
	1800	;refresh every 30 min	
	300	retry every 5 min;	
		;expire after a week	
	86400)	;minimum of a day	
	NS A.IS		
	NS C.IS		
	NS SRI-	NIC.ARPA.	
MIL.	86400	NS SRI-NIC.ARPA.	
	86400	NS A.ISI.EDU.	
EDU.	86400	NS SRI-NIC.ARPA.	
	86400	NS C.ISI.EDU.	
SRI-NI	C.ARPA.	A 26.0.0.73	
		A 10.0.0.51	
		MX O SRI-NIC.ARPA.	
ACC.AR	PA.	A 26.6.0.65	
		MX 10 ACC.ARPA.	
USC-IS	IC.ARPA.	CNAME C.ISI.EDU.	
		DR.ARPA. PTR SRI-NIC.ARPA.	
65.0.6	.26.IN-AD	DR.ARPA. PTR ACC.ARPA.	
51.0.0	.10.IN-AD	DR.ARPA. PTR SRI-NIC.ARPA.	
		DR.ARPA. PTR C.ISI.EDU.	
103.0.	3.26.IN-A	DDR.ARPA. PTR A.ISI.EDU.	
A.ISI.	EDU. 864	00 A 26.3.0.103	
C.ISI.	EDU. 864	00 A 10.0.0.52	
	Fi	TIDE 2 - Fichier de DNS	

1 DNS (6 pts)

1.1 Structure

On considère l'arbre de nommages DNS dans la FIGURE 1. Les noms entre parenthèses sont les serveurs DNS ayant autorité sur les branches de l'arbre.

Le fichier dans la FIGURE 2 décrit les ressources associées à la zone du nœud racine dans l'arbre précédent.

nnées pour la zone reurs DNS racine?	0		
associée au nœud	la ressource MX		
associée au nœuc	la ressource MX	quoi correspond RI-NIC.ARPA?	

3.	A quoi correspondent les ressources PTR? Quelles sont	t
	celles qui sont définies ici? Pourquoi sont-elles utiles?	

1/12 Version X2-2013-fr-vB-b

Master Informatique 1^{ère}année 1^{er}sem.

1.2 Trames de DNS

Voici une dernière question relative à une analyse de trame, qui montre la réponse à une requête DNS. La trace est celle d'une trame Ethernet présentée sur trois colonnes de manière identique à celle que l'on a étudiée pendant les labs. Donnez le codage, en hexadécimal, de la trame correspondante à la requête DNS (mettez "XX" pour les octets dont vous ne pouvez pas calculer la valeur). Vous pouvez utiliser l'annexe à la page 7.

0000	58 94 61	42 4e	d8 aa	02	00	00	02	14	80	00	45	00	X.kBN	E.
0010	00 f2 b9	d5 00	00 40	11	1a	e0	84	еЗ	4d	f8	84	e3	@.	M
0020	4d 87 00	35 d5	8ъ 00	de	7f	df	00	02	85	80	00	01	M5	
0030	00 01 00	02 00	04 03	32	34	38	02	37	37	03	32	32	2	48.77.22
0040	37 03 31	33 32	07 69	6e	2d	61	64	64	72	04	61	72	7.132.in	-addr.ar
0050	70 61 00	00 00	00 01	c0	0с	00	0с	00	01	00	00	54	pa	T
0060	60 00 16	1 0a 64	68 63	70	32	2d	76	35	38	38	04	77	'dhcp	2-v588.w
0070	69 66 69	03 72	73 72	04	6с	69	70	36	02	66	72	00	ifi.rsr.	lip6.fr.
0800	c0 10 00	02 00	01 00	00	54	60	00	09	06	6f	73	69		T'osi
0090	72 69 73	3 c0 4d	c0 10	00	02	00	01	00	00	54	60	00	ris.M	T'.
00a0	07 04 69	73 69	73 c0	4d	с0	62	00	01	00	01	00	00	isis.M	.b
00ъ0	54 60 00	04 84	e3 3c	1e	с0	62	00	1c	00	01	00	00	T'<.	.b
00c0	54 60 00	10 20	01 06	60	33	02	28	3с	00	00	00	00	T''	3.(<
00d0	00 00 00) 1e c0	77 00	01	00	01	00	00	54	60	00	04	w	T'
00e0	84 e3 3d	02 c0	77 00	1c	00	01	00	00	54	60	00	10	<w< td=""><td>T'</td></w<>	T'
00f0	20 01 06	60 33	02 28	3с	00	00	00	00	00	00	00	02	'3.(<	

ARes/ComNet — 2012-2013

Examen réparti 2 : Sujet version B en Français

Durée totale : 2h00

Autorisé : Une feuille A4 manuscrite (recto-verso)

Non autorisés : Autres documents, calculatrices, téléphones portables, etc.

Voici 3 feuilles recto/verso, contenant le sujet et les champs de réponse, que vous devrez exclusivement nous rendre en fin d'épreuve. Pour garantir l'anonymat, un numéro aléatoire vous sera fourni et devra être collé sur chacune des feuilles du sujet et sur la feuille d'émargement (vous ne devez pas écrire votre nom sur les feuilles rendues).

Vous devez noter vos réponses directement sur ce sujet dans les cadres correspondants.

2 Couche transport (7 pts)

Cet exercice propose d'étudier une connexion TCP déjà établie entre deux hôtes séparés par un seul lien de capacité C et ayant un délai de propagation τ (FIGURE 1). Nous supposerons dans cet exercice que les segments d'acquittement (ACK) ont une taille négligeable (i.e. taille = 0) et la taille de la fenêtre d'envoi est égale à un MSS (CWND = 1) au début du transfert d'un fichier.

Variable	Valeur
Capacité du lien	C = 8 Mbit/s
Délai de propagation	$ au=7 ext{ms}$
Taille maximum d'un segment	MSS = 1000 octets
Limite du Slow Start	SSTHRESH = 8 MSS
Fenêtre de réception	RWND = 10 MSS
Temporisateur de retransmission	$RTO = 2 \times RTT$

FIGURE 1 - TCP connexion sur un seul lien

TABLE 1 - Caractéristiques de la connexion

	itenant, nous considérons qu'un fichier de 149 koctets doit être envoyé entre les deux hôtes à travers la connexion $$ t les caractéristiques décrites précédemment (TABLE 1). Aussi 4 ACKs dupliqués sont reçus après 150 ms de trans
(a)	Quand et comment TCP apprend les valeurs de MSS et de RWND?
b)	Quelle est la conséquence sur le comportement de TCP d'une sur-estimation et d'une sous-estimation de la valet RTT?
c)	Calculez le RTT entre les deux hôtes en fonction des valeurs de la TABLE 1.

3/12 Version X2-2013-fr-vB-b

Master Informatique 1^{ère}année 1^{er}sem.

(d) Dessinez sur la figure ci-dessous l'évolution de la fenêtre de congestion (CWND) en considérant les ACK dupliqués et la fenêtre de réception mentionnés précédemment.

2. Nous considérons maintenant que la connexion TCP entre les deux hôtes est en train de transférer un gros fichier depuis plusieurs minutes; les paramètres de cette connexion sont considérés stables et cohérents avec les hypothèses de la TABLE 1. Nous considérons que la connexion TCP ne subit aucune perte de segment ou d'ACK dupliqué.

(a)	Quel est le débit	moyen de cette con	iexion TCP, en prer	nant en considération	i les paramètres de la '	l'able 1 !

(b) Quel est le débit moyen de cette connexion TCP si on considère $\tau=2\text{ms}$?

4/12

ARes/ComNet — 2012-2013

Examen réparti 2 : Sujet version B en Français

Durée totale : 2h00

Autorisé : Une feuille A4 manuscrite (recto-verso)

Non autorisés : Autres documents, calculatrices, téléphones portables, etc.

Voici 3 feuilles recto/verso, contenant le sujet et les champs de réponse, que vous devrez exclusivement nous rendre en fin d'épreuve. Pour garantir l'anonymat, un numéro aléatoire vous sera fourni et devra être collé sur chacune des feuilles du sujet et sur la feuille d'émargement (vous ne devez pas écrire votre nom sur les feuilles rendues).

Vous devez noter vos réponses directement sur ce sujet dans les cadres correspondants.

3 Adressage et routage (7 points)

Une entreprise souhaite intégrer son réseau dans l'environnement TCP/IP. Elle possède un site central avec 3 réseaux. Elle souhaite aussi intégrer d'autres sites reliés par des liaisons spécialisées suivant la topologie ci-dessous

relle taille de bloc d'a ponse) ?	 	 	

5/12 Version X2-2013-fr-vB-b

Master Informatique 1^{ère}année 1^{er}sem.

2. Supposez que l'on attribue à l'entreprise le premier bloc d'adresses de taille adéquate du préfixe CIDR 81.1.0.0/20; complétez le tableau ci-dessous :

Lettre désignant le sous-réseau	Préfixe sous réseau / taille du préfixe	Masque de sous réseau	Adresse de diffusion
Α	/		
В	/		
С	/		
D	/		
Е	/		
F	/		
IC	/		
CX	/		
XY	/		
YZ	/		

	identifiée par eth0.
4.	Etablissez la table de routage du Routeur Y .
5.	Etablissez la table de routage du Routeur X .

6/12 Version X2-2013-fr-vB-b

Master Informatique 1^{ère}année 1^{er}sem.

Annexe

Structure de la trame Ethernet

Trame présentée sans préambule ni CRC

+48-bits+48-bits+16b-+						-+	
adresse	adresse	Itypel	do	nné	es	- 1	
destination	source	1 1				- 1	
						-+	

Quelques types : 0x0800 = DoD Internet (IPv4) 0x0806 = ARP

Structure du paquet IPv4

<32bit	:s>				
	-><>				
	-++				
	Longueur totale				
++	-++				
Identificateur	F1 F0				
+	-++				
TTL Protocole	Somme de ctrl (entête)				
+	-+				
Adresse Source	1				
+	+				
Adresse Destination					
+	+				
Options					
+	+				
Données					
+	+				

Ver = Version d'IP

IHL = Longueur de l'en-tête IP (en mots de 32 bits) TOS = Type de service

Longueur totale du paquet IP (en octets) F1 (3 premiers bits) = indicateurs pour la fragmentation

(Reservé|Ne pas fragmenter|Fragment suivant existe) FO (13 bits suivants) = Décalage du fragment

* valeur a multiplier par 8 octets

TTL = Durée de vie restante

Quelques protocoles transportés :

1 = ICMP 11 = NVP-II 17 = UDP

2 = IGMP 6 = TCP 41 = IPv6

Structure du datagramme ICMP

Type	Code	Somme de ctrl (message)
+ Variab	+ Le	+
+ Da	atagramme or	iginal + 8 Octets
		0

8 = Echo response 11 = Time exceed

Structure de segment TCP

<>					
<-4b->	<-6bits-><>				
++					
Port Source	Port Destination				

THL = Longueur de l'entête TCP sur 4 bits (*32bits) Flags = indicateur codé sur 6 bits gauche à droite 1er = URG 4me = RST

2me = ACK 5me = SYN 3me = PSH 6me = FIN

Options = suites d'option codées sur * 1 octet à 00 = Fin des options

* 1 octet à 01 = NOP (pas d'opération)

* plusieurs octets de type TLV

T = un octet de type:

2 Négociation de la taille max. du segment

3 Adaptation de la taille de la fenêtre

8 Estampilles temporelles

L = un octet pour la taille totale de l'option

V = valeur de l'option (sur L-2 octets)

Structure de datagramme UDP

<32bi	ts>
+	++
Port Source	Port Destination
+	++
Longueur UDP	Somme de ctrl (message)
+	++
Données	
	and the second s

Quelques services associés aux ports

ftp	21/tcp		
ssh	22/tcp		
telnet	23/tcp		
smtp	25/tcp		
		domain	53/udp
		tftp	69/udp
www	80/tcp		
		snmp	161/udp
		snmp-trap	162/udp

7/12 Version X2-2013-fr-vB-b

Master Informatique 1ère année 1ersem.

DNS

```
< 20.>< 20.><20.>< 20.><20.>< 20.>< Qo.>< Ro.>< So.>< Io.>
|Ident|Flags|NbQu|NbRep|NbSR|NbInf|Quest|Rép.|Serv.|Info.|
+----+---+---+---+----+----+----+
```

* Ident = Identification d'échange

* Flags = Indicateurs de paramètres DNS. Le bit de poid fort spécifie si c'est une requete (0) ou une réponse (1).

* NbQu = Nombre de questions

* NbRep = Nombre de champs réponses

* NbSR = Nombre de champs de serveurs DNS de référence

* NbInf = Nombre de champs d'informations additionnelles

Une question:

```
<----N-octets----><2octets><2octets>
| Nom | Type | Classe |
```

Un champ réponse/référence/information: <Moctets>< 2o. >< 2o. ><4octets>< 2o. ><--D-octets--> | Nom | Type |Classe | T.T.L. |Taille | Données |

* Nom : chaque nom de label est précédé par un octet indiquant le nombre de caractères ASCII le composant (si valeur < 63, sinon 0xCO+N indique un renvoi au Nieme octet par rapport au début du message DNS de la valeur N de l'octet suivant. Termine par 0x00.

6 = SOA (zone DNS gérée)

* Quelques type : 1 = A (adresse IPv4) 2 = NS (nom de serveur DNS) 5 = CNAME (alias) 15 = MX (serveur de messagerie)

* Classe : 1 = Internet

* T.T.L. : validité en secondes

* Taille : longueur des données en octets

* Données : Nom (pour NS et CNAME)

Priorité (2 octets) puis Nom (pour MX) Adresses (pour A : 4 octets)...

8/12 Version X2-2013-fr-vB-b Master Informatique 1^{ère}année 1^{er}sem.

Anonymat : numéro à coller | C|

Master Informatique 1^{ère}année 1^{er}sem.

10/12

Master Informatique 1^{ère}année 1^{er}sem.

Anonymat : numéro à coller | C|

Master Informatique 1^{ère}année 1^{er}sem.

