Zusammenfassung Rechnerstrukturen

Darius Schefer

15.03.2023

Random

TBD

- Zuverlässigkeit
- Fähigkeit eines Systems, während einer vorgegebenen Zeitdauer bei zulässigen Betriebsbedingungen die spezifiezierte Funktion zu erbringen
- Fehlertoleranz (fault tolerance)
 - System kann spezifiezierte Funktion auch mit begrenzter Anzahl fehlerhafter Subsysteme erbringen
 - Redundante Komponenten

Mathe

Wafer Fläche

•
$$A_{\text{wafer}} = \pi \cdot (\frac{d_{wafer}}{2})^2$$

Dies per wafer

$$\begin{array}{l} \bullet \ \ \mathrm{DPW} = \frac{A_{\mathrm{wafer}}}{A_{\mathrm{die}}} - \frac{\pi \cdot d_{\mathrm{wafer}}}{\sqrt{2 \cdot A_{\mathrm{die}}}} \\ - \ \ \mathrm{theoretisches} \ \ \mathrm{Maximum} \ \ \mathrm{-} \ \ \mathrm{Verschnitt} \end{array}$$

Die Yield

$$\begin{array}{l} \bullet \ \ Y_{\mathrm{die}} = Y_{\mathrm{wafer}} \cdot (\frac{1}{1 + \mathrm{DPUA} \cdot A_{\mathrm{die}}}) \\ - \ \ \mathrm{Wafer} \ \mathrm{Yield:} \ Y_{\mathrm{wafer}} \end{array}$$

Kosten pro Die

•
$$cost_{die} = \frac{cost_{wafer}}{DPW \cdot Y_{die}}$$

IC-Kosten

•
$$\operatorname{cost}_{\operatorname{IC}} = \frac{\operatorname{cost}_{\operatorname{die}} + \operatorname{cost}_{\operatorname{dies-test}} + \operatorname{cost}_{\operatorname{packaging}}}{Y_{\operatorname{final}}}$$

Maßzahlen

MTTF (mean time to failure)

- auch E(L) (mittlere Lebensdauer)
- Erwartungswert der Lebensdauer bis zum ersten Fehler eines zu beginn fehlerfreien Systems

MTTR (mean time to repair)

• auch E(B) (mittlere Behandlungsdauer)

MTBF (mean time between failures)

- mittlere Zeitdauer zwischen zwei Ausfällen
- MTBF = MTTF + MTTR

Überlebenswahrscheinlichkeit

- *R*(*t*)
- Mit welcher Wahrscheinlichkeit bleibt das System bis Zeitpunkt t fehlerfrei

Verfügbarkeit

- $v = \frac{\text{MTTF}}{\text{MTTF+MTTR}} = \frac{\text{MTTF}}{\text{MTBF}} = \frac{E(L)}{E(L) + B(L)}$ Wahrscheinlichkeit, das System zu einem beliebigen Zeitpunkt fehlerfrei anzutreffen

FIT (failures in time)

- Ausfallrate, Komplement zu MTTF
- Ausfälle pro 10⁹ Stunden

Leistungsaufnahme

- $P_{\text{total}} = P_{\text{switching}} + P_{\text{shortcircuit}} + P_{\text{static}} + P_{\text{leakage}}$
- Dynamischer Leistungsverbrauch:
 - switching: Laden oder Schalten von kapazitiver Last
 - shortcircuit: Übergang bei CMOS-Gatter, wenn sich Eingänge ändern
- Statischer Leistungsverbrauch:
 - static: konzeptuell nicht bei CMOS
 - leakage: Kriechströme (wachsen mit Integrationsdichte!)
- $P \sim V^2 \cdot \hat{f}$
 - $-P \sim V^3, P \sim f^3$ bei simultaner Änderung

Schaltwahrscheinlichkeit

- $\mathbb{P}_{Schalt} = \mathbb{P}(0 \to 1 \lor 1 \to 0) = 2 \cdot \mathbb{P}(1) \cdot (1 \mathbb{P}(1))$
- berechne $\mathbb{P}(1)$ pro Gatter

Mehr Mathe

Ausführungszeit

- $t_{\text{exe}} = \mathbf{I} \cdot \mathbf{CPI} \cdot f$
 - I: Anzahl Instruktionen
 - CPI: Cycles per instruction
 - f: Taktfrequenz
- Instructions per cycle: IPC = $\frac{1}{\text{CPI}}$

MIPS

- $\begin{array}{l} \bullet \quad \text{Millions of instructions per second} \\ \bullet \quad \text{MIPS} = \frac{\text{Ausgef\"{u}hrte Instruktionen}}{10^6 \cdot \text{Ausf\"{u}hrungszeit}} \\ \end{array}$

MFLOPS

- Millions of floting point operations per second MFLOPS = $\frac{\text{Ausgeführte fp-Instruktionen}}{10^6 \cdot \text{Ausführungszeit}}$

Benchmarking

SPECratio

- SPEC $_{ratio} = \frac{Referenzzeit_x}{Laufzeit_x auf Testsystem}$
- bilde geometrisches Mittel: $\sqrt[n]{\prod_{i=1}^n \text{SPECratio}_n}$

SPECrate

- SPEC_{rate} = $n_x \cdot \frac{\text{Referenzzeit}_x}{\text{Ausführungszeit}_x}$
- auch hier geometrisches Mittel $\sqrt[n]{\prod_{i=1}^n \text{SPECrate}_n}$

Gesetz von Little

- $L = \lambda \cdot t$
 - $L\!:$ mittlere Anzahl Aufträge im Wartesystem
 - $-\lambda$: mittlere Ankunftsrate (Aufträge pro Zeiteinheit)
 - -t: mittlere Verweilzeit (t = w + b)
- oder: $Q = \lambda \cdot w$
 - $-\ Q$: mittlere Warteschlangenlänge
 - w: mittlere Wartezeit (in Queue)
 - b: mittlere Bedienzeit
- $\bullet\,$ Voraussetzung: statistisches Gleichgewicht

TODO

- Taxonomie Simulatoren
- Fehlerwahrscheinlichkeit advanced
- Parallelität
- Flynn
- Pipelining
- Sprungvorhersage
- Registerumbennenung
- VLIW
- Multithreading