Построение интегрального индикатора, когда эспертные мнения преобразованы в признаи.

Шокоров Вячеслав Александрович

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

> Москва 2020 г

Задача

Цель

Предложить метод построения интегрального индикатора для набора объектов.

Проблема

Экспертные оценки могут не удовлетворять следующим требованиям:

- Похожие объеты находятся в рейтингах экспертных оценок рядом
- 🛾 Оценка существенно не меняется при малых изменениях свойств объектов
- Если один объект существенно изменит свои признаи, он должен ожидаемо изменить свои экспертные оценки

Метод главных омпонент

Результатом работы алгоритма построения интегрального индикатора методом «без учителя» является отыскание оптимального, вектора весов $\mathbf{w} = (w_1 1, \dots, w_n)^T$. Рассмотрим алгоритм и опишем метод главных компонент, используемый для вычисления интегральных индикаторов. Так как нам необходимо построить интегральный индикатор $\in \mathbb{R} \Rightarrow$ необходимо взять первую компоненту разложения.

Метод главных омпонент

Поиск первой компоненты своидится к решению оптимизационной задачи:

$$S^{2}[(Z, \mathbf{w})] = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}, z_{i})^{2} = \frac{1}{m} \sum_{i=1}^{m} (\sum_{j=1}^{n} z_{ij} \mathbf{w}_{j})^{2} \to \min_{\mathbf{w}}$$

Где S - выборочная дисперсия данных вдоль направления, заданного нормированным вектором $\mathbf{w},\,Z\in\mathbb{R}^{m\times n}$ - нормированные данные, полученные из входных данных следующим образом:

$$z_{ij} = (x_{ij} - \min_i x_{ij})(\max_i x_{ij} - \min_i x_{ij})^{-1}, i = 1, \dots, m, j = 1, \dots, n$$

Результат

Анализ

Метод главных компонент сильно зависит от линейности данных, но это условие не ставилось на данные, вероятно, по этой причине метод показал себя не лучшим образом.