Here is an additional mock exam, designed to be more challenging, drawing on concepts and question styles from the provided sources.

Mock Exam 3 (More Difficult)

- The exam is open book the use of Al or any form of communication is not allowed;
- Please make sure that every paper you need has your name and student number on it;
- Unless otherwise stated, full points will not be awarded for solutions without explanation;
- Do not use pencil, red or green pens.

Last Name:

First Name:

Student Number:

Notation: We recall some of the terminology:

- Given a nonempty set Ω , $\mathcal{P}(\Omega)$ is the power set on Ω .
- $\mathcal{B}(\mathbb{R}^k)$ denotes the Borel σ -field on \mathbb{R}^k , $k \geq 1$.
- The measure $\mu(A)=\#A$, if A is finite, and ∞ , otherwise, for $A\in\mathcal{P}(\Omega)$, is referred to as the counting measure on $\mathcal{P}(\Omega)$.
- Given a measurable space (Ω, \mathcal{F}) and $x \in \Omega$, we write δ_x for the measure $\mathcal{F} \ni A \mapsto \delta_x(A) = 1$, if $x \in A$, and 0, otherwise.
- If not mentioned explicitly, a random vector is assumed to be defined on a probability space (Ω, \mathcal{F}, P) .

Exercise 1 (10 points).

- (a) Given a measurable space (Ω, \mathcal{F}) , write down the definition of a **measure** μ on \mathcal{F} . [1 point] (Inspired by Mock Exam 1 (a) and Mock Exam 2 (a), and Definition 5.1 in "The Metamorphosis")
- (b) Given a measurable space (Ω, \mathcal{F}) , which of the following set functions μ_i , i=1,2,3, is not a measure on \mathcal{F} ? [1.5 point single choice, no explanation is needed to earn full points]
 - $\mathcal{F}=\mathcal{P}(\mathbb{N})$ and $\mu_1(A)=\#A$, for $A\in\mathcal{P}(\mathbb{N})$.
 - $\Omega=\mathbb{R}$, $\mathcal{F}=\mathcal{B}(\mathbb{R})$ and $\mu_2(A)=\int_A(e^x+1)\lambda(dx)$, $A\in\mathcal{B}(\mathbb{R})$, where λ is the Lebesgue measure on $\mathcal{B}(\mathbb{R})$.

- $\Omega=\mathbb{R}$, $\mathcal{F}=\mathcal{B}(\mathbb{R})$ and $\mu_3(A)=\delta_0(A)+\delta_1(A)-\delta_2(A)$, where δ_x is the Dirac measure at
- (c) Given a measurable space (E,\mathcal{B}) , which of the following set functions $P_i, i=1,2,3$, is not a probability measure on \mathcal{B} ? [1.5 point — single choice, no explanation is needed to earn full points]

 - $E=\mathbb{N}, \mathcal{B}=\mathcal{P}(\mathbb{N})$ and $P_1(A)=\sum_{n\in A\cap \mathbb{N}}2^{-n}, A\in \mathcal{P}(\mathbb{N}).$ $E=\mathbb{R}, \mathcal{B}=\mathcal{B}(\mathbb{R})$ and $P_2(A)=\int_A \frac{1}{\pi(1+x^2)}dx, A\in \mathcal{B}(\mathbb{R}).$
 - $E=\mathbb{R}$, $\mathcal{B}=\mathcal{B}(\mathbb{R})$ and $P_3(A)=rac{1}{2}\lambda(A)$, $A\in\mathcal{B}(\mathbb{R})$, where λ is the Lebesgue measure on $\mathcal{B}(\mathbb{R})$.
- (d) Calculate the following integrals: [1 point each]
 - 1. $\int_{\mathbb{N}}\mathbf{1}_{\{3,4,5\}}(x)\mu(dx)$, where μ is the counting measure on $\mathcal{P}(\mathbb{N})$.

 - 2. $\int_{\mathbb{R}} e^x \mathbf{1}_{(-\infty,0]}(x) \lambda(dx)$, where λ is the Lebesgue measure on $\mathcal{B}(\mathbb{R})$. 3. $\int_{\mathbb{R}} x^2 \mu(dx)$, where $\mu(A) = \sum_{x=0}^2 (x+1) \delta_x(A)$, $A \in \mathcal{B}(\mathbb{R})$.
- (e) Which of the following laws $P_i, i=1,2,3$, is not discrete? [1.5 point single choice, no explanation is needed to earn full points]
 - 1. The law P_1 of a random variable X such that $P_1(\mathbb{Z})=1$.
 - 2. The law P_2 of a random variable X with probability density function $\phi(x)=\mathbf{1}($
 - 3. The law P_3 of a random variable X with distribution function $F_X(t) = \begin{cases} 0, & \text{if } t < 0 \\ 1/4, & \text{if } 0 \leq t < 1 \\ 3/4, & \text{if } 1 \leq t < 2 \end{cases}$
- (f) Decide whether the following statements are true or false: [0.5 point each no explanation is]needed to earn full points]
 - 1. The set $\mathcal{F} = \{\emptyset, \{1\}, \{1, 2, 3\}\}$ is a σ -field on $\Omega = \{1, 2, 3\}$.
 - 2. If A and B are two sets, then $A \cup (B \setminus A) = A \cup B$.
 - 3. If $X_n \to_P X$, then $X_n \to_{L^1} X$.
 - 4. If X_1 and X_2 are two independent random variables, then $E[X_1X_2]=E[X_1]E[X_2]$.

Exercise 2 (13 points).

Let X be a discrete random variable with support $\{-1,0,1\}$ and law $P_X(A)=rac{1}{4}\delta_{-1}(A)+1$ $\frac{1}{2}\delta_0(A) + \frac{1}{4}\delta_1(A), A \in \mathcal{B}(\mathbb{R}).$

- (a) What are P(X=-1), P(X=0) and P(X=1)? [1 point]
- (b) Calculate $E[|X|^3]$. [1.5 point]
- (c) Find E[X] and $\mathrm{Var}(X)$. [2 points]
- (d) What is the law of $(X+1)^2$? [1.5 points]

Let X_1,\ldots,X_n be n independent copies of X, i.e., for any $i=1,\ldots,n$, X_i has law P_X and X_1,\ldots,X_n are independent. Define the random vector $Y=(X_1,\ldots,X_n)$.

- (e) What is the law of Y? Calculate $P(Y \in \{0\}^n)$. [1 point]
- (f) Find $E[\sum_{i=1}^n X_i^2]$ and $\mathrm{Var}(\sum_{i=1}^n X_i^2)$. [3 points]
- (g) What is the law of $Z=X_1+X_2$? [3 points]

Exercise 3 (18 points).

$$\operatorname{Let} \phi(x) = \begin{cases} 0 & x < -1 \\ \frac{3}{2}(1+x)^2 & -1 \leq x < 0 \\ \frac{3}{2}(1-x)^2 & 0 \leq x < 1 \\ 0 & x \geq 1 \end{cases}.$$

- (a) Verify that $\int_{\mathbb{R}} \phi(x) dx = 1$. [2 points] Let X be a random variable with law $P_X(dx) = \phi(x)dx$.
- (b) Find the distribution function F_X of X. [4 points]
- (c) Calculate the expected value and the variance of X. [4.5 points]
- (d) Show that $F_X|_{(-1,1)}:(-1,1) o (0,1)$ is a bijection. [3 points]
- (e) Verify that $F_X|_{[-1,1]}:[-1,1] o$ is a bijection. [1.5 points]
- (f) Calculate the inverse $F_X^{-1}|_{[-1,1]}$ of $F_X|_{[-1,1]}$. [3 points]

Note: You can use the fact that:

•
$$p = \frac{1}{2}(1+t)^3 \implies t = (2p)^{1/3} - 1$$

•
$$p = \frac{1}{2}(1+t)^3 \implies t = (2p)^{1/3} - 1$$

• $p = 1 - \frac{1}{2}(1-t)^3 \implies t = 1 - (2(1-p))^{1/3}$

Exercise 4 (6 points).

Let X_1 and X_2 be two random variables that are independent with common law that is continuous uniform on the interval [0,1]. What is the probability density function of the random vector Y= $(X_1 + X_2, X_1 - X_2)$?

Exercise 5 (6 points).

Let X be a discrete random variable with support $\{0,1,\dots,N\}$, where $N\geq 1$. Suppose that X has law defined upon:

$$P(X=k)=C_Nk(N-k)$$
, for $k=0,\ldots,N$, where $C_N\in\mathbb{R}.$ Find $C_N.$