Estatística Aplicada às Ciências e Engenharia - 2014/2015 Regressão linear múltipla

- 1. Considere de novo os dados das galáxias da última folha.
 - (a) Encontre um modelo linear para prever a velocidade à custa das outras variáveis.
 - (b) Teste se alguma das variáveis pode ser removida do modelo.
- 2. Os resultados de uma análise de regressão linear de Y em x_1, x_2, \ldots, x_p , podem ser colocados numa tabela ANOVA do tipo:

Source	Sum of Squares	d.f.	Mean Square	F-test
Regression Residuals	$SSR \\ SSE$	$p \\ n-p-1$	$MSR = \frac{SSR}{p}$ $MSE = \frac{SSE}{n-p-1}$	$F = \frac{MSR}{MSE}$

Considere as seguintes tabelas ANOVA para um problema de regressão com seis variáveis explicativas (1a tabela) e com apenas duas destas seis, x_1 e x_3 , na 2a tabela. O tamanho da maostra é n=30.

Source	Sum of Squares	d.f.	Mean Square	F-test
Regression	3147.97	6	524.661	10.5
Residuals	1149.00	23	49.9565	
Source	Sum of Squares	d.f.	Mean Square	F-test
Regression	3042.32	2	1521.1600	32.7

1254.65

Residuals

27

(a) Teste a hipótese dos coeficientes $\beta_1, ..., \beta_6$ serem todos zero e escreva os modelos correspondentes às hipóteses.

46.4685

- (b) Teste a hipótese dos coeficientes β_2 , β_4 , β_5 , β_6 serem todos zero e escreva os modelos correspondentes às hipóteses.
- (c) Podemos concluir que a remoção das variáveis x_2, x_4, x_5, x_6 não afeta significativamente o poder explicativo do modelo?
- (d) Calcule os coeficientes de correlação múltipla, de determinação e de determinação ajustado para ambos os modelos. Diga que modelo prefere, com base no coeficientes de determinação ajustado.

- (e) * Diga como se poderia testar a hipóteses $H_0: \beta_1=\beta_3$ e $\beta_2=\beta_4=\beta_5=\beta_6=0$
- 3. Considere de novo os dados das galáxias. Teste se a variável com o menor valor, em módulo, da estatística t pode ser removida do modelo linear. Verifique que o quadrado do valor dessa estatística coincide com o valor dado pela tabela anova para testar essa mesma hipótese.
- 4. Considere um dos exercícios da folha anterior sobre regressão linear simples e adeque agora um modelo polinomial de grau 3 aos dados. De seguida desenhe esse modelo assim como as bandas de confiança e de predição. Finalmente teste se o modelo linear é adequado.
- 5. A tabela ANOVA seguinte mostra o resultado de uma regressão linear simples de Y em x para 20 observações, com alguns números em falta. Complete os números que faltam na tabela e depois calcule Var(Y) e Var(x)

Source	Sum of Squares	d.f.	Mean Square	F-test
Regression Residuals	1848.76	-	-	-

Variable	Coefficient	s.e.	t-test	p-value
Constant x	-23.4325	12.74 0.1528	- 8 32	0.0824 < 0.0001
n = -	$R^2 = -$			0.0001

- 6. * Prove que o estimador MMM de β satisfaz $Var(\hat{\beta}) = (X^TX)^{-1}\sigma^2$
- 7. * Na regressão Ridge, β_0 é um caso à parte, pois não faz sentido penalizar β_0 . Devese começar por centrar os dados, isto é, $x_{ij} \leftarrow x_{ij} \overline{x}_j$, e estima-se β_0 por \overline{y} . De seguida consideram-se apenas p variáveis e aplica-se regressão Ridge. Mostre que os estimadores de Regressão Ridge podem ser obtidos pelo MMQ usual, com a matriz de dados centrada e aumentada pelas linhas $\sqrt{\lambda}$ I e y aumentado de 'p zeros.
- 8. Escolha, por exemplo em http://archive.ics.uci.edu/ml/datasets.html , um conjunto de dados de regressão e aplique os vários métodos de regressão linear múltipla que aprendeu e compare-os.