Constrained optimisation

Constraint

Constraint

Soto || 2|

Dagrange's

A Cradient Ascent

Closed Form Solution

PND+re Sen Be-re?
PND+re

Hence we can take Squares of Pat prod

X		3		^	1	a	
71,							N, 00
7/ ₂	(1	\	1		7	5 +
1	١	•	1	1			X2+ 2
``	ľ	4	•	1			73+4
\]		
							70 + 6

$$\sum_{i=1}^{\infty} \left(2^{i} \cdot 2^{i} \cdot 2^{i} \right) \left(\times \cdot 2^{i} \cdot 2^{i}$$

D Hence we can remove Z

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

Stop to gari @ V @

10-075 + x(370-1)

 $\frac{\partial L}{\partial \lambda} = \frac{\partial \sqrt{\nabla U}}{\partial \lambda} + \frac{\partial \sqrt{\nabla U}}{\partial \lambda} + \frac{\partial L}{\partial \lambda}$ $= \frac{\partial L}{\partial \lambda} + \frac{\partial L}{\partial \lambda} + \frac{\partial L}{\partial \lambda}$ $= \frac{\partial L}{\partial \lambda} + \frac{\partial L}{\partial \lambda} + \frac{\partial L}{\partial \lambda} + \frac{\partial L}{\partial \lambda}$ $= \frac{\partial L}{\partial \lambda} + \frac{\partial L}{\partial \lambda}$

Setting the portial Devivoring

0 = 5KB + V5B ダジソ ニータカラ シソニースシ

Value need to 3,00 P F2 43 F3

(xom) (d)

or (x, tox) sumtomeda 6 o np. cov (X) V X)

3x3 (EigenValue)

(P C 1s)

11's of each Eigen Vector means

Ex:

the corresponding importance

ν=5 ν=2 ν=0 γ γ γ γ Ω'' Ω⁵' Ω³ 1 mberjant 05 ils most Information associated
with
The

XD (5 Jenture) D 35 en -) on P.C.,A infamoques Noviance 240269 in J. D. Explained Voniance Ratio J2 3 T 10+7+6+3+1 3 Varionce 18

B D 10 2 3 7%

932 B if Keep only first too PC's How wash into vill i bestern 3, 3, 3, 3, 37 remaining 1=1, 00, €5 ∑√, 4 √5 √0.02± +0.52 To Bois inderenagion -> How wand min PC18 1211 (4.3) 77C1 (3.) PC2(4) ×

T. C. Costral D. P.

Symmony:

Dropping PC 1s to reduce
Dropping PC 1s to reduce
D Information Loss

In Next Session

D Tarves with PCA D How T- SNE 13 Oillerent from PCA

9 U-MAP

Describer of rector

Describer of rector

Describer of rector

Describer of rector

Describer of rector