

A Projected Lloyd's Algorithm for Coverage Control Problems

Yoav Palti

Faculty of Aerospace Engineering, Technion - Israel Institude Of Technology

M.Sc. Seminar

Supervisor: Associate Professor Daniel Zelazo

December 10, 2018

Table of Contents

Introduction

Mathematical Background

Problem Solution

Simulations

Table of Contents

Introduction

•0000000000000000

Introduction

Introduction

Given an area, we want to sense what's happening inside

In red - the sensing coverage.

What Is Sensor Coverage?

Why would we like to do that?

- Surveillance
- Photographing
- iRobot!

Those are all sensing coverage problem 1,2,3 .

¹Nigam, N., Bieniawski, S., Kroo, I., & Vian, J. (2012). Control of multiple UAVs for persistent surveillance: Algorithm and flight test results. IEEE Transactions on Control Systems Technology, 20(5), 1236–1251.

²Montijano, E., Sagues, C., & Llorente, S. (2016). Multi-Robot Persistent Coverage with Optimal Times, (Cdc), 3511–3517.

³Loizou, S. G., & Constantinou, C. C. (2016). Multi-Robot Coverage on Dendritic Topologies Under Communication Constraints, (Cdc).

Introduction

Coverage "Radius" - how much a sensor can sense

In red - the sensor coverage radius

Introduction

Single sensor - double the area size

Full Coverage (again)

Introduction

Let's add another sensor!

Deployment

Introduction

Now we're dealing with multiple sensors. How should we configure them?

We have 12 sensors which we can deploy in various configurations.

Is it that simple?

Introduction

One configuration results with full coverage, while the other one doesn't.

Problem Solution

Is it that simple?

Introduction

One configuration results with full coverage, while the other one doesn't.

Introduction

There exists a deployment with 12 sensors which can cover the area. What if we only have 6 sensors?

There doesn't exists a configuration that can supply full coverage!

Let's say that we want to maintain coverage on a specific area, due to:

- Connection to home base
- Maintain surveillance on a target

Introduction

We have to take this into account when we build our coverage strategy.

Dealing with partial coverage - many possible behaviours:

- Set of trajectories ^{1,2,3}
- Tiling the area

Introduction

By choosing any strategy, a coverage controller⁴ must be provided.

Atinc, G. M., Stipanović, D. M., Voulgaris, P. G., & Karkoub, M. (2013). Supervised coverage control with guaranteed collision avoidance and proximity maintenance. Proceedings of the IEEE Conference on Decision and Control. 3463-3468.

²Hussein, I. I., & Stipanovic, D. M. (2007). Effective Coverage Control for Mobile Sensor Networks With Guaranteed Collision Avoidance, IEEE Transactions on Control Systems Technology, 15(4), 642-657.

³Du. Q., Faber, V., & Gunzburger, M., "Centroidal Voronoi Tessellations: Applications and Algorithms," SIAM Review, Vol. 41, No. 4, 1999, pp. 637-676.

⁴Cassandras, C. G., & Li, W. (2005). Sensor Networks and Cooperative Control. Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference On, 4237-4238.

Introduction

Partitioning as a strategy

Partitioning (or tiling) an area - cover a small part of the area each time.

 Main benefit - provide coverage of a subset of an area constantly.

Cortes et al. provided a controller that know how to partition an area and provide coverage.

¹Cortes, J., & Martinez, S. (2004). Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243-255.

Introduction

- There is some area $A \in \mathbb{R}^2$ That we aim to cover.
- A sub-area $A_m \subset A$ must be covered always (e.g. ground station).
- There exist a set of **mobile** sensors $S = \{s_1 \dots s_n\}$ located in positions $p_i(t) \in \mathbb{R}^2$ (for i = 1, ..., n) at time t.
 - The sensors can be controller with integrator dynamics $\dot{p}_i(t) = u$.
 - Each sensor can cover an area defined as $Cover(p_i, t)$.

Introduction

000000000000000000

• A configuration c at time t is the stack of the sensor positions at time t.

$$c\left(t\right) = \begin{bmatrix} p_{1}^{T}\left(t\right) & \cdots & p_{n}^{T}\left(t\right) \end{bmatrix}^{T} \in \mathbb{R}^{2n}$$

• The coverage of a configuration $D(c(t)) = \cap Cover(p_i, t)$.

Assumption

 $D(c(t)) \subset A$ - a single configuration can't provide full coverage!

Introduction

00000000000000000

- A partition j of the area A is $pr_j \subset A$
- The partitioning of A, PR(A), built from n partitions:

$$PR(A) = \{pr_j \mid \forall i \neq j, \ pr_i \cap pr_j = \emptyset \text{ and } \cup pr_j = A\}$$

Problem

00000000000000000

Introduction

- Find partitioning such that for each partition $j, pr_i \cap A_m \neq \emptyset$
- ② Find a deployment such that for each partition j, and some given time $t, A_{pr_i} \subseteq D(c(t))$

Table of Contents

Mathematical Background

Voronoi Partitioning

A little story about a town, a city planner and post offices...

Voronoi Partitioning

Introduction

The Voronoi Diagram of a region $\Omega \subset \mathbb{R}^2$ is the set of partitions $\mathcal{V} = \{V_i \mid \bigcup V_i = \Omega\}$, generated by the generators $\mathcal{Z} = \{z_1, \dots, z_n \mid z_i \in \Omega\}$, such that

$$V_i = \{ q \in \Omega \mid ||q - z_i|| \le ||q - z_j|| \forall z_i, z_j \in \mathcal{Z} \},$$

where V_i corresponds to the *i*-th element of \mathcal{Z} , and $\|\cdot\|$ denotes the Euclidean distance.

Problem Solution

Voronoi Partitioning

A rough example:

Circles - generators, crosses - some point inside the appropriate partition.

Central Voronoi Tessellations

Let's get back to our city planner.

Central Voronoi Tessellations

Introduction

Let us define a density function, ρ_i , for each Voronoi partition V_i . Then, we can define the center of mass for each partition as

$$z_i^* = \frac{\int_{V_i} y \rho(y) dy}{\int_{V_i} \rho(y) dy}.$$

If a generator $z_i = z_i^* \forall V_i$, we call this partitioning a *centroidal* Voronoi tessellation (CVT). Common examples for density function:

- $\rho(y) = \mathcal{N}(\mu, \sigma^2)$ (Gaussian distribution)
- $\rho(y) = 1$

Central Voronoi Tessellations

How it looks like?

Problem Solution

Lloyd's Algorithm

How do we calculate CVT?

Algorithm 1 Lloyd's Algorithm

- 1: Calculate the Voronoi diagram for the current agents positions.
- 2: Calculate the center of mass for every cell.
- 3: Move the agents to the center of mass.
- 4: Repeat until convergence.

So how do we calculate it?

Step 1:

Black - initial guess, turquoise - after first iteration

Step 2:

Black - first iteration solution, turquoise - after second iteration

Step 2 - zoom in:

Almost converged...

After n iterations:

Introduction

[Cortes2004] proposed a continuous time controller for Lloyd's algorithm. If we define agent i position as p_i and the i's partition centroid as C_{V_i} , then for some proportional constant k_p , the controller can be defined as:

$$u_i = -k_p \left(p_i - C_{V_i} \right)$$

Figure: A simulation from [Cortes2004] with 32 agents and Gaussian density function

Introduction

Another important result in [Cortes2004] is that this controller is locally asymptotically stable. Proof is given in the paper using the direct Lypunov methos, using the following potential function:

$$\mathcal{H}_{\mathcal{V}}(P) = \sum_{i=1}^{n} J_{V_{i}, C_{V_{i}}} + \sum_{i=1}^{n} M_{V_{i}} ||p_{i} - C_{V_{i}}||^{2}$$

Where:

- P the set of the agents positions
- V_i the *i*'th Voronoi partition
- ullet $J_{V_i,C_{V_i}}$ the polar moment of inertia of V_i about its centroid C_{V_z}
- M_{V_i} the *i*'th partition "mass"

Problem Solution

Lloyd's Algorithm

An important thing we have to remember - Lloyd's algorithm is NOT a distributed calculation!

Table of Contents

Problem Solution

Projected Lloyd's Algorithm

We should supply a solution for the "Coverage Constraint"

Projected Lloyd's Algorithm

We should supply a solution for the "Coverage Constraint"

Reminder

A given area inside the area $A_m \subset A$ must be covered always

Projected Lloyd's Algorithm

We should supply a solution for the "Coverage Constraint"

Reminder

A given area inside the area $A_m \subset A$ must be covered always

We came up with a rather simple solution for this problem.

Introduction

Algorithm 2 Projected Lloyd's Algorithm (PLA)

- 1: Calculate the Voronoi diagram for the current agents positions.
- 2: Calculate the center of mass for every cell.
- 3: Project the center of mass of every cell to the area constraint limiting polygon.
- 4: Move the agents the projected center of mass.
- 5: Repeat until converge.

Writing this algorithm as a controller:

$$u_i = -k_p \left(p_i - \operatorname{proj}(C_{V_i}) \right) \tag{1}$$

Projected Lloyd's Algorithm

Introduction

In the following example:

- Left regular CVT, build with the original Lloyd's Algorithm.
- Right A partitioning built with the PLA.

Projected Lloyd's Algorithm

Theorem

Introduction

The projected Lloyd's Algorithm is locally asymptotically stable

As the projection is a linear operator, the controller is also locally asymptotically stable, and the proof is virtually the same as was given by Cortes et al. The proof is based on a proposal of Lyaponov function, and then using the direct Lyaponov method to prove the stability

Proof of stability

Introduction

As the projection is a linear operator, the controller is also locally asymptotically stable, and the proof is virtually the same as was given by Cortes et al.

Problem Solution Algorithm

So far, we've given solution for:

- Covering a given area using Voronoi partitioning
- Partition and area such that the coverage constraint is fulfilled.

Therefore, we are ready for the problem solution algorithm...

Problem Solution Algorithm

Algorithm 3 Problem Solution Algorithm

- 1: Using some random initial guess, partition the whole area using PLA.
- 2: For each partition (assuming that the agents can actually cover each partition with their coverage radius), calculate the CVT. The initial positions for the CVT calculation is the previous partition CVT.

Lloyd's Algorithm and Formation Control

Problem solved.

Lloyd's Algorithm and Formation Control

- Problem solved.
- Make it more interesting...

Lloyd's Algorithm and Formation Control

- Problem solved.
- Make it more interesting...
- Combine Lloyd's Algorithm with distance-based formation control!

Lloyd's Algorithm and Formation Control

- Problem solved.
- Make it more interesting...
- Combine Lloyd's Algorithm with distance-based formation control!
 - create and maintain spatial properties partially or fully (We do not provide a condition where this combination meets the requirements).

Lloyd's Algorithm and Formation Control

Introduction

As both of the controllers are convex, we propose to simply combine them with some coefficient:

$$u_{i} = \alpha \left(-k_{p} \left(p_{i} - C_{V_{i}}\right)\right) + (1 - \alpha) \left[-\sum_{i \sim j} \left(\|p_{i} - p_{j}\|^{2} - d_{ij}^{2}\right) \left(p_{i} - p_{j}\right)\right]$$
(2)

As both of the controllers are convex, we propose to simply combine them with some coefficient:

$$u_{i} = \alpha \left(-k_{p} \left(p_{i} - C_{V_{i}}\right)\right) + (1 - \alpha) \left[-\sum_{i \sim j} \left(\|p_{i} - p_{j}\|^{2} - d_{ij}^{2}\right) \left(p_{i} - p_{j}\right)\right]$$
(2)

$\mathsf{Theorem}$

Introduction

The combined controller is Locally Asymptotically Stable

Lloyd's Algorithm and Formation Control

How to prove:

Introduction

- Pretty long and technical, based on Lyapunov function.
- We know the Lyapunov function of each controller Let's combinel
- After long calculations, we can show using the Lyapunov direct method that this controller is locally asymptotically stable.
- In the same way, we can show it works with the PLA.

Table of Contents

Simulations

Some Simulation

Introduction

List of simulations to create:

- 3 agents, 5 big partitions, no formation, no PLA
- 3 agents, 5 big partitions, no formation, PLA
- 10 agents, 5 big partitions, no formation, PLA
- 6 agents, 5 big partitions, some formation, PLA

Formation Control

For a complete background, some prior knowledge on algebraic graph theory is needed. Let's simplify:

ullet We have agents $1 \dots n$ on positions p_i

Introduction

For a complete background, some prior knowledge on algebraic graph theory is needed. Let's simplify:

- We have agents $1 \dots n$ on positions p_i
- Goal agents $i, j (i \neq j)$ will be at distance d_{ij}

Introduction

For a complete background, some prior knowledge on algebraic graph theory is needed. Let's simplify:

- We have agents $1 \dots n$ on positions p_i
- Goal agents $i, j (i \neq j)$ will be at distance d_{ij}
- Only ε agents can share information.

Introduction

For a single agent p_i , the controller will have the following form:

$$\dot{p_i} = -\sum_{i \sim j} (\|p_i - p_j\|^2 - d_{ij}^2) (p_i - p_j)$$
(3)

This controller is locally asymptotically stable.

Projection Operator

Introduction

The projection linear operator is defined as a linear transformation P from a vector space to itself such as $P^2 = P$. In other words, the transformation P is idempotent.

