Deep Learning

Lecture 13

Recap

- Autoregressive models
- GAN
- WGAN
- Image quality metrics
- GAN models
- VQ-VAE

Tabular data

	app_id	amnt	currency	operation_kind	card_type	operation_type
0	0	0.465425	1	4	98	4
1	0	0.000000	1	2	98	7
2	0	0.521152	1	2	98	3
3	0	0.356078	1	1	5	2
4	0	0.000000	1	2	98	7

Transactional data

Medical data

Time-series data

Tabular Data

2	Α	В	С	D	E	F
1	Country -	Salesperson 💌	Order Date 💌	OrderID 💌	Units 💌	Order Amouni
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80
9	USA	Callahan	8/01/2011	10399	17	1,765.60
10	USA	Fuller	8/01/2011	10404	7	1,591.25
11	USA	Fuller	9/01/2011	10398	11	2,505.60
12	USA	Coghill	9/01/2011	10403	18	855.01
13	USA	Finchley	10/01/2011	10401	7	3,868.60
14	USA	Callahan	10/01/2011	10402	11	2,713.50
15	UK	Rayleigh	13/01/2011	10406	15	1,830.78
16	USA	Callahan	14/01/2011	10408	10	1,622.40
17	USA	Farnham	14/01/2011	10409	19	319.20
18	USA	Farnham	15/01/2011	10410	16	802.00

Heterogeneous data - different sources

Homogeneous data - only one source

Tabular data specifics

- Lack of transferability & no spatial dependencies (No inductive biases)
- Missing/Noisy data
- The role of one feature can be significant
- There is no standard benchmark (GLUE, ImageNet)

Classical methods

Linear regression

$$\mathbf{y} = X\boldsymbol{\beta} + \varepsilon$$

Gradient boosting

$$h_m(x) = \sum_{j=1}^{J_m} b_{jm} \mathbf{1}_{R_{jm}}(x),$$

Encoding / Feature engineering

Numerical features

- Normalization
- Discretization -> Embedding
- Discretization -> Piecewise Linear Encoding

Categorical features

Embedding

Discretization

Encoding / Feature engineering

- Numerical discretization
 - Quantile transformation
 - Target-aware. Discretization is done by constructing decision tree

- Time Encoding
 - learnable time-dependent vector for position embedding

$$\mathbf{t2v}(\tau)[i] = \begin{cases} \omega_i \tau + \varphi_i, & \text{if } i = 0. \\ \mathcal{F}(\omega_i \tau + \varphi_i), & \text{if } 1 \leq i \leq k. \end{cases}$$

<u>Time2Vec: Learning a Vector Representation of Time</u>

Pretraining: Masked Language Modelling

Learning representation which will be able to recover masked parts

Pretraining

The idea of pretraining is to start learning a task not from scratch but from some good representation:

- Invariance learning (Rotation invariance)
- Common sense (Semantically close objects should be close in latent space)

Pretraining

Reconstruction

 Reconstruction of the original input, given the corrupted input. Corruption can be done through feature resampling

Masking

- Given masked input. Predict what column was masked

Name	Age	Gender
Vadim	50	Male
[MASK]	14	Prefer not to say

Revisiting Pretraining Objectives for Tabular Deep Learning

Pretraining

Contrastive

- Forcing to different views of object be close to each other

Supervised/Target-aware

- Augmentation or regularization through self-pretraining
- Target prediction as mask | Resampling label conditioned distribution

Models

TabNet

Motivation: replace decision trees with neural network

TabNet

 $\mathbf{M}[\mathbf{i}] = \operatorname{sparsemax}(\mathbf{P}[\mathbf{i} - \mathbf{1}] \cdot \mathbf{h}_i(\mathbf{a}[\mathbf{i} - \mathbf{1}])) \qquad \qquad P[i] = \prod_{j=1}^{i=1} (\gamma - M[j]),$

Neural Oblivious Decision Ensembles

$$\hat{h}(x) = \sum_{i_1, \dots, i_d \in \{0,1\}^d} R_{i_1, \dots, i_d} \cdot C_{i_1, \dots, i_d}(x)$$

$$\hat{f}_i(x) = \sum_{j=1}^n x_j \cdot entmax_\alpha(F_{ij})$$

Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data

FT-Transformer

 $\label{eq:ResNetBlock} \begin{aligned} \operatorname{ResNet}(x) &= \operatorname{Prediction}\left(\operatorname{ResNetBlock}\left(\dots\left(\operatorname{ResNetBlock}\left(\operatorname{Linear}(x)\right)\right)\right)\right) \\ \operatorname{ResNetBlock}(x) &= x + \operatorname{Dropout}(\operatorname{Linear}(\operatorname{Dropout}(\operatorname{ReLU}(\operatorname{Linear}(\operatorname{BatchNorm}(x)))))) \\ \operatorname{Prediction}(x) &= \operatorname{Linear}\left(\operatorname{ReLU}\left(\operatorname{BatchNorm}\left(x\right)\right)\right) \end{aligned}$

$$x \sim \mathcal{N}(0, I_k), \qquad y = \alpha \cdot f_{GBDT}(x) + (1 - \alpha) \cdot f_{DL}(x).$$

Revisiting Deep Learning Models for Tabular Data

TabGPT/TabBERT

First, we consider **intra-transaction** relationships (how is this feature connected to another).

Second, we consider **inter-transaction** relationships (how do these transactions connected with each other)

Transaction generation using TabGPT

Tabular Transformers for Modeling Multivariate Time Series

TabTransformer

Categorical features can be interpreted as text: rare categories ~ rare words, similar categories ~ synonyms

Adding context in features is crucial: 2 month dog ≠ 12 year dog

<u>TabTransformer: Tabular Data Modeling Using Contextual Embeddings</u>

SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

Intersample attention

SAINT

Dataset size Feature size	45,211 16	7,043 20	452 226	200 783	495,141 49	12,330 17	32,561 14	58,310 147	60,000 784	
Model \ Dataset	Bank	Blastchar	Arrhythmia	Arcene	Forest	Shoppers	Income	Volkert†	MNIST†	Mean
Logistic Reg.	90.73	82.34	86.22	91.59	84.79	87.03	92.12	53.87	89.89*	89.25
Random Forest	89.12	80.63	86.96	79.17	98.80	89.87	88.04	66.25	93.75	89.52
XGBoost [4]	92.96	81.78	81.98	81.41	95.53	92.51	92.31	68.95	94.13*	91.06
LightGBM [22]	93.39	83.17	88.73	81.05	93.29	93.20	92.57	67.91	95.2	90.13
CatBoost [10]	90.47	84.77	87.91	82.48	85.36	93.12	90.80	66.37	96.6	90.73
MLP	91.47	59.63	58.82	90.26	96.81	84.71	92.08	63.02	93.87*	84.59
VIME [49]	76.64	50.08	65.3	61.03	75.06	74.37	88.98	64.28	95.77*	76.07
TabNet [1]	91.76	79.61	52.12	54.10	96.37	91.38	90.72	56.83	96.79	83.88
TabTransf. [18]	91.34	81.67	70.03	86.8	84.96	92.70*	90.60*	57.98	88.74	90.86
SAINT-s	93.61	84.91	93.46	86.88	99.67	92.92	91.79	62.91	90.52	92.59
SAINT-i	92.83	84.46	95.8	92.75	99.45	92.29	91.55	71.27	98.06	93.09
SAINT	93.3	84.67	94.18	91.04	99.7	93.06	91.67	70.12	97.67	93.13

TabPFN

Let's adjust classical likelihood

$$p(y|x, D) \propto \int_{\Phi} p(y|x, \phi)p(D|\phi)p(\phi)d\phi.$$

And train the model to approximate given likelihood. Then, we can predict values on new datasets in **zero-shot manner**

TabPFN: A Transformers That Solve Small Tabular Classification Problems in a Second

Transfer Learning with Deep Tabular Models

How to add new feature in the model?

Downstream data with a new feature

What pretraining method is the best?

TransTab

TransTab: Learning Transferable Tabular Transformers Across Tables

TransTab

Notes

- DL models are not better than gradient boosting but have a potential
- DL models + XGBoost = Performance boost
- Better results = Proper hyperparameter search + regularization

Tabular data as a text

Small reminder

Q: Who is Batman?

A: Batman is a fictional comic book character.

Prompt engineering

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

TabText

Tab LLM

1. Tabular data with k labeled rows

age	education	gain	income		
39	Bachelor	2174	≤50K		
36	HS-grad	0	>50K		
64	12th	0	≤50K		
29	Doctorate	1086	>50K		
42	Master	594			

2. Serialize feature names and values into natural-language string with different methods

3. Add task-specific prompt

Does this person earn more than 50000 dollars? Yes or no? Answer:

TabLLM: Few-shot Classification of Tabular Data with Large Language Models

Tab LLM

Language Models are Realistic Tabular Data Generators

Language Models are Realistic Tabular Data Generators

Recap

- Encoding
- Pretraining
- Tabular DL
- Tabular DL as text

