CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

Objetivos e Metodologia

(2021)

Aula 1

□Objetivos

Estudar conceitos, métodos e técnicas de projeto de sistemas digitais aplicados em computação. Utilizar ferramentas de projeto assistido por computador para desenvolvimento de subsistemas digitais aplicados em computadores digitais.

□Metodologia

Aulas teóricas expositivas para aprendizado da metodologia e técnicas de sistematização de projeto lógico de sistemas digitais.

Aulas práticas onde os alunos realizam projeto, implementação e testes de sistemas digitais utilizando as técnicas propostas.

Coordenador Prof. Dr. Valter Fernandes Avelino (prevavelino @fei.edu.br)

Teoria Prof. Dr. Valter Fernandes Avelino

□**Laboratório** Prof. Dr. Isaac Jesus da Silva (T620)

Prof. Dr. Rudolf Theoderich Bühler (T720)

1

centro universitá	CE3	Programação — Aulas de Teoria	o (202 Aula 2	
AULA	DATA	CONTEÚDO	REFERÊNCIA	•
1	0.415	Conceitos de Sistemas Digitais: Representação analógica x digital, sistema binário	Cap. 1 (ref.1)	1
2	24/fev	Álgebra Booleana: Propriedades, teoremas, álgebra de chaveamento e tabela verdade	Cap. 3 (ref.1)	1
3	03/mar	Portas Lógicas: Representação de portas lógicas e projeto de circuitos lógicos	Cap. 3 (ref.1)	Ī
4		Otimização de Funções Combinatórias: Minimização por teoremas booleanos	Cap. 3 (ref.1)	1
5	10/mar	Projeto de Circuitos Combinacionais: Projeto com portas lógicas universais	Cap. 3 (ref.1)	l
6	10/mar	Otimização de Funções Combinatórias: Minimização por mapas de Veitch-Karnaugh	Cap. 4 (ref.1)	l
7	17/mar	Elementos de Lógica Combinacional: Projeto com codificadores e decodificadores	Cap. 9 (ref.1)	1
8	17/mar	Elementos de Lógica Combinacional: Aplicações com decodificadores e displays	Cap. 9 (ref.1)	
9	24/mar	Elementos de Lógica Combinacional: Projeto com multiplexadores	Cap. 9 (ref.1)	
10	24/mar	Sistemas Numéricos, Códigos, Números com Sinal e Aritmética Binária	Cap. 2/6 (ref.1)	
11	31/mar	Circuitos Aritméticos: Projeto e aplicações de somadores	Cap. 6 (ref.1)	
12	3 I/IIIai	Unidade Lógico Aritmética: Projeto com ULA	Cap. 6 (ref.1)	
ATP	07/abr	Exercícios de Avaliação Teórica Parcial (ATP) - Exercícios de Lógica Combinacional	Notas de Aula	
13	14/abr	Elementos de Lógica Sequencial: Conceitos de memória binária e biestáveis	Cap. 5 (ref.1)	
14	14/abr	Sistemas Sequenciais: Latch NAND, NOR e Biestáveis síncronos (propriedades)	Cap. 5 (ref.1)	
15	28/abr	Sistemas Sequenciais: Famílias de Biestáveis (tipo SR, tipo JK, tipo D)	Cap. 5 (ref.1)	1
16	20/dU	Subsistemas Contadores: Propriedades e projeto de contadores síncronos	Cap. 7 (ref.1)	1
17	05/mai	Máquinas de Estados: Propriedades e metodologia de projeto	Cap. 3 (ref.2)	l
18	vo/mal	Máquinas de Estados: Procedimento de projeto por equações de estado	Cap. 3 (ref.2)	l
19	12/mai	Máquinas de Estados: Comparação de projeto por equações de estado	Cap. 3 (ref.2)	l
20	12/mai	Projeto de Máquinas de Estados: Desenvolvimento e simulação	Notas de Aula	
21	19/mai	Memórias: Propriedades, tipos, operação e organização interna	Cap. 12 (ref.1)	l
22	19/IIIdl	Memórias: Aplicações, mapas de memória e associações em bancos de memória	Cap. 12 (ref.1)	l
23	26/mai	Exercícios de Lógica Sequencial: Projeto de sistemas lógicos sequenciais	Notas de Aula	l
24	20/mai	Exercícios de Lógica Sequencial: Análise de sistemas lógicos sequenciais	Notas de Aula	l

2

ı	centro universit	ntro versitário CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino						
l	Æ	Programação – Aulas de Laboratório						
I	AULA	DATAS	LOCAL	ASSUNTO	PONTOS			
ı	0	19/fev	AVA	INTRODUÇÃO AO LABORATÓRIO DE SISTEMS DIGITAIS - FAMILIARIZAÇÃO COM OS AMBIENTES DE DESENVOLVIMENTO E SIMULAÇÃO				
ı	1	26/fev	AVA	EXPERIÊNCIA 1 – CIRCUITOS LÓGICOS COM CHAVES, NÍVES LÓGICOS E CÓDIGOS BINÁRIOS/HEXADECIMAIS (Relatório no Moodle)	1,0			
	2	05/mar	AVA	EXPERIÊNCIA 2 - PROJETO DE CIRCUITOS COMBINACIONAIS: PORTAS LÓGICAS E SIMULAÇÃO DE CIRCUITOS LÓGICOS (Relatório no Moodle)	1,0			
	3	12/mar	AVA	EXPERIÊNCIA 3 - PROJETO DE PROJETO DE LÓGICA COMBINACIONAL: PROBLEMAS LÓGICOS E MINIMIZAÇÃO DE FUNÇÕES (Relatório no Moodle)	1,0			
	4	19/mar	AVA	EXPERIÊNCIA 4 - PROJETO DE SISTEMAS DIGITAIS AUXILIADO POR COMPUTADOR: INTRODUÇÃO AO AMBIENTE DO QUARTUS PRIME (Relatório no Moodle)	1,0			
ı	5	26/mar	AVA	PROJETO 1: PROJETO DE LÓGICA COMBINACIONAL: ELABORAÇÃO DO PROJETO LÓGICO (Apresentação do desenvolvimento do projeto em aula)	_			
	6	09/abr	AVA	PROJETO 1: PROJETO DE LÓGICA COMBINACIONAL: IMPLEMENTAÇÃO NO AMBIENTE DO QUARTUS PRIME (Apresentação do desenvolvimento em aula)	1,0			
ı	7	16/abr	AVA	PROJETO 1: PROJETO DE LÓGICA COMBINACIONAL: SIMULAÇÃO NO AMBIENTE DE DESENVOLVIMENTO (QUARTUS PRIME) (Apresentação da simulação em aula)	2,0			
ı	8	23/abr	CGI	PROJETO 1: PROJETO DE LÓGICA COMBINACIONAL: IMPLEMENTAÇÃO E TESTE (CONFIGURAÇÃO DO FPGA) (Apresentação do teste em sala + Relatório no Moodle)	1,0 + 1,0*			
	9	30/abr	AVA	EXPERIÊNCIA 5 - ELEMENTOS DE LÓGICA SEQUENCIAL: PROJETO E SIMULAÇÃO DE OPERAÇÕES COM BIESTÁVEIS (Relatório no Moodle)	1,0			
	10	07/mai	AVA	PROJETO 2: MÁQUINA DE ESTADOS - ELABORAÇÃO DO PROJETO LÓGICO (Apresentação do desenvolvimento do projeto em aula)	-			
	11	14/mai	AVA	PROJETO 2: MÁQUINA DE ESTADOS – IMPLEMENTAÇÃO DO PROJETO NO AMBIENTE DO QUARTUS PRIME (Apresentação do diagrama esquemático em aula)	1,0			
	12	21/mai	AVA	PROJETO 2: MÁQUINA DE ESTADOS - SIMULAÇÃO DE FUNCIONAMENTO NO AMBIENTE QUARTUS PRIME (Apresentação da simulação em aula)	2,0			
	13	28/mai	CGI	PROJETO 2: MÁQUINA DE ESTADOS - IMPLEMENTAÇÃO E TESTE DO CIRCUITO (CONFIGURAÇÃO DO FPGA) (Apresentação do teste em sala + Relatório no Moodle)	2,0 + 1,0*			
	14	28/mai	AVA	REPOSIÇÃO DE EXPERIÊNCIAS (Apenas para uma experiência não realizada)	(1,0)			

universitário

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

Referências

(2021) Aula 1 5

□ Básica

- [1] TOCCI, R. J., WIDMER, N. S., MOSS. G. L. Sistemas Digitais princípios e aplicações, (10^a) ou 11^a Edição, Pearson Prentice Hall, 2011
- [2] VAHID, F. Sistemas Digitais projeto, otimização e HDLs, 1ª Edição, Artmed Bookman, 2008
- [3] FLOYD, T. L. Sistemas Digitais: Fundamentos e Aplicações, 9ª Edição, Bookman, 2007

□ Complementar

- [4] AVELINO, V. F. Anotações de Aula de Sistemas Digitais, Revisão 2021, Centro Universitário FEI, 2021 (disponível no Moodle)
- [5] FALSTAD, P. Circuit Simulator, Version 2.27 js, GNU General Public License as published by the Free Software Foundation. Disponível em: (https://www.falstad.com/circuit/circuitjs.html). Acesso em: 25/01/2021.

□ Laboratório

- [6] AVELINO, V. F. Roteiros de Atividades de Laboratório de Sistemas Digitais: CE3512, Edição 2021, Centro Universitário FEI, 2020 (disponível no Moodle)
- [7] PRATES, R. R. Tutorial de Quartus Prime para Projeto de CPLD/FPGA (baseado em Captura de Esquemático). Programa de Iniciação Didática Centro Universitário FEI, 2019 (disponível no Moodle)

5

centro universitário CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino

(2021) Aula 1

Representação Analógica x Digital

□ Representações Analógica x Representações Digitais

- ☐ Existem basicamente duas formas de representar as grandezas existentes na natureza: representações analógicas e representações digitais.
 - Uma quantidade (grandeza) representada na <u>forma analógica</u> pode variar ao longo de uma <u>faixa contínua de valores</u>, ou seja, pode assumir um <u>conjunto infinito de possíveis valores</u>.

Exemplos: Velocidade de um veículo;

Temperatura em termômetro de mercúrio;

Amplitude sonora de um instrumento musical;

Pressão de uma tanque.

Uma quantidade (grandeza) representada na <u>forma digital</u> varia em um <u>número limitado de valores discretos</u>, ou seja, pode assumir um valor de um <u>conjunto finito de possíveis valores</u>.

Exemplos: Número de dedos das mãos que estão esticados;

Estado de um interruptor elétrico; Valores das faces de um dado; Seleção de andar de um elevador.

6

(2021) Aula 1 7

□Sistemas de Controle Analógicos x Sistemas de Controle Digitais

- ☐ Sistemas de Controle Analógicos: contém dispositivos que podem manipular quantidades físicas que são representadas de forma analógica (variando em um intervalo contínuo de valores).
- ☐ Sistemas de Controle Digitais: contém dispositivos que podem manipular quantidades físicas que são representadas de forma digital, ou seja, quantidades que só podem assumir um conjunto finito de valores.
 - Neste curso, o termo digital se refere a sistemas cujos valores podem ser representados com apenas dois valores discretos, caracterizando um <u>valor binário</u>. Um sinal binário simples é denominado de **dígito binário** ou **bit** (abreviação da expressão "binary digit" em inglês).
- ☐ Conversão de grandezas analógicas em digitais: Em princípio qualquer fenômeno analógico pode ser digitalizado (considerando certas limitações). Para um sistema digital controlar grandezas analógicas deve-se:
 - Converter as entradas analógicas para a forma digital;
 - ii. Processar a informação digital;
 - iii. Converter as saídas digitais de volta à forma analógica.

7

8

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino (2021)Aula 1 Representação Analógica x Digital 10 **□Vantagens dos Sistemas Digitais** ☐ Facilidade de projeto e simulação (valores discretos); ☐ Facilidade de armazenamento de informação; ☐ Facilidade de manter a precisão e a exatidão das informações; ☐ Facilidade de configuração (programação por algoritmos) e operação; ■ Maior imunidade a ruído: ☐ Componentes digitais permitem grande integração de funções no mesmo sistema (flexibilidade operacional). □Limitações das Técnicas Digitais ☐ O mundo real é analógico (os sistemas digitais são uma aproximação do mundo real); ☐ Tempo de processamento da informação (o desempenho do sistema é limitado pela velocidade de tratamento discreto do sinal).

10

12

CE3512 - Sistemas Digitais - Prof. Dr. Valter F. Avelino (2021)Aula 1 **Circuitos Digitais** 14 □Circuitos Digitais Combinacionais **Entradas** Saídas Circuito Lógicas Lógicas Combinacional **Externas Externas** Caso I 5 V ☐ Interessa apenas o valor lógico das <u>entradas</u> Circuito Caso II Digital ☐ Não importa o valor exato da tensão

14