MATH2601 - Assignment 1 | Keegan Gyoery - z5197058

We have $V = \mathbb{R}^n$, and

$$V_1 = \{ \mathbf{x} \in V \mid x_1 + \dots + x_n = 0 \}$$

 $V_2 = \{ \mathbf{x} \in V \mid x_1 = \dots = x_n \}.$

Consider the zero vector, $\mathbf{0}$, for $V=\mathbb{R}^n$. The zero vector, $\mathbf{0}$, has the components $x_i=0, \ \forall i\in\mathbb{Z}$, $1\leq i\leq n$. Clearly, for $\mathbf{0}$, $x_1+\cdots+x_n=0$ and $x_1=\cdots=x_n$. As a result, $\mathbf{0}\in V_1$, and $\mathbf{0}\in V_2$. Thus, V_1 and V_2 are non-empty. Both V_1 and V_2 define their elements as an $\mathbf{x}\in V$, with a further restriction applied. It is then clear to see that $V_1\subseteq V$, and $V_2\subseteq V$. Therefore, both V_1 and V_2 are non-empty subsets of V. Applying the Subspace Lemma, we will prove that $V_1\subseteq V$, and $V_2\subseteq V$.

Consider the vectors $\mathbf{u}, \mathbf{v} \in V_1$, and the scalar $\alpha \in \mathbb{R}$. As $\mathbf{u}, \mathbf{v} \in V_1$,

$$u_1 + \dots + u_n = 0 \dots (A)$$

$$v_1 + \dots + v_n = 0 \dots (B).$$

Consider now the components of the vector $\alpha \mathbf{u} + \mathbf{v}$, which are $\alpha u_i + v_i$, $\forall i \in \mathbb{Z}$, $1 \le i \le n$..

$$(\alpha u_1 + v_1) + \dots + (\alpha u_n + v_n) = (\alpha u_1 + \dots + \alpha u_n) + (v_1 + \dots + v_n)$$
$$= \alpha (u_1 + \dots + u_n) + (v_1 + \dots + v_n)$$
$$= \alpha (0) + 0 \text{ by } (A) \text{ and } (B)$$
$$= 0$$

Therefore, the sum of the components of $\alpha \mathbf{u} + \mathbf{v}$ is 0. Thus, $\alpha \mathbf{u} + \mathbf{v} \in V_1$, and thus $V_1 \leq V$ by the Subspace Lemma.

Consider the vectors $\mathbf{s}, \mathbf{t} \in V_2$, and the scalar $\beta \in \mathbb{R}$. As $\mathbf{s}, \mathbf{t} \in V_2$,

$$s_1 = \dots = s_n \dots (C)$$

 $t_1 = \dots = t_n \dots (D).$

Consider now the components of the vector $\beta \mathbf{s} + \mathbf{t}$, which are $\beta s_i + t_i$, $\forall i \in \mathbb{Z}$, $1 \le i \le n$.

$$\beta s_1 = \dots = \beta s_n \text{ from } (C)$$

$$\therefore \beta s_1 + t_1 = \beta s_2 + t_1 = \dots = \beta s_n + t_1$$

$$\therefore \beta s_1 + t_1 = \beta s_2 + t_2 = \dots = \beta s_n + t_n \text{ by } (D)$$

Therefore, all of the components of $\beta s + t$ are equal. Thus, $\beta s + t \in V_2$, and thus $V_2 \leq V$ by the Subspace Lemma.

Consider $V_1 \cap V_2$, and let $\mathbf{y} \in V_1 \cap V_2$. As $\mathbf{y} \in V_1$, and $\mathbf{y} \in V_2$,

$$y_1 + \dots + y_n = 0 \dots (E)$$

 $y_1 = \dots = y_n \dots (F).$

Considering (E),

$$y_1 + \dots + y_n = 0 \text{ from } (E)$$

$$y_1 + y_1 + \dots + y_1 = 0 \text{ by } (F)$$

$$ny_1 = 0$$

$$\therefore y_1 = 0$$

$$\therefore y_1 = y_2 = \dots = y_n = 0$$

$$\therefore \mathbf{y} = \mathbf{0}$$

$$\therefore V_1 \cap V_2 = \{\mathbf{0}\}$$

We can now justify that the sum of the vector spaces V_1 and V_2 is a direct sum, $V_1 \oplus V_2$. Furthermore, we know V with the standard dot product, is an inner product space. Let $\mathbf{q} \in V_1$, and $\mathbf{r} \in V_2$, so we have,

$$q_1 + \dots + q_n = 0 \dots (G)$$

 $r_1 = \dots = r_n \dots (H).$

Consider their inner product $\langle \mathbf{q}, \mathbf{r} \rangle = \mathbf{q} \cdot \mathbf{r}$, which is the standard dot product.

$$\mathbf{q} \cdot \mathbf{v} = q_1 r_1 + q_2 r_2 + \dots + q_n r_n$$

$$= q_1 r_1 + q_2 r_1 + \dots + q_n r_1 \text{ by } (H)$$

$$= r_1 (q_1 + q_2 + \dots + q_n)$$

$$= r_1 (0) \text{ by } (G)$$

$$= 0$$

$$\therefore \langle \mathbf{q}, \mathbf{r} \rangle = 0$$

Therefore by Definition 4.10, as $V_1 \leq V$, $V_2 = V_1^{\perp}$, that is, V_2 is the orthogonal complement of V_1 . Using the standard basis $\mathcal S$ for V, it is clear that $\dim(V) = n$, and thus V is finite dimensional. Futhermore, $V_1 \leq V$, and so by Theorem 4.11, $V = V_1 \oplus V_1^{\perp} = V_1 \oplus V_2$.

Consider the small finite field $\mathbb{F}=\{0,1\}$, where 1+1=0. Replace \mathbb{R} with \mathbb{F} , so now $V=\mathbb{F}^n$, and consider the case when n=2. By the definition of V_1 , we get that $V_1=\{(0,0),(1,1)\}$, and likewise, by the definition of V_2 , we get that $V_2=\{(0,0),(1,1)\}$. Note that $\mathbf{0}=(0,0)$ when n=2. Therefore, it is clear that $V_1\cap V_2=\{(0,0),(1,1)\}\neq\{(0,0)\}$. Thus, $V_1\cap V_2\neq\mathbf{0}$, and so the sum of the vector spaces V_1 , and V_2 , cannot be direct.