An ILB- Manifold Structure on the Set of Riemannian Metrics on a Noncompact Manifold

Catalin C. Vasii

Abstract

In this paper, using the structures of cone and bicone fields on vector bundles, the author introduces a ILB (inverse limit of Banach)-manifold structure on \mathcal{M} the space of Riemannian metrics on a non-compact manifold M. In the last section, it is proven that, this way, on the open submanifold \mathcal{M}_{finite} of finite volume metrics, the canonical Riemannian metric is defined.

key words and frases: spaces of metrics, non compact manifolds; msn subj. class: 58D17.

1 Preliminaries

First, let M be a topological manifold, paracompact, with $\partial M = \emptyset$, which need not to be compact. Let (E, p, M) be a topological vector bundle over M.

Definition 1.1. [PA-cones]

A cone field on the vector bundle (E, p, M) is a map $K : M \to \mathcal{P}(E)$, $x \mapsto K(x) \subset E_x$ which satisfies the following two conditions:

- (K1) $(\forall)x \in M$, K(x) is a convex cone, closed in E_x , pointed, solid;
- (K2) $\cup_{x \in M} Int(K(x))$ and $\cup_{x \in M} (E_x \setminus K(x))$ are open in E.

In the definition above, a convex cone is, following [KRA], a set K which satisfies $K + K \subset K$ and $(\forall)\lambda \geq 0$, $\lambda K \subset K$. A cone K which satisfies $K \cap -K = \{0\}$ will be called pointed cone, and a solid cone is a cone which has interior points in the topology of E_x .

The structure consisting by a vector bundle (E, p, M) and a cone field K on it is denoted by [(E, p, M); K].

Example 1.2. [PA-metrics] Let us consider now the bundle (S^2T^*M, p, M) of 2 times covariant symmetric tensors on a given manifold M. We put $(\forall)x \in M$

$$K_k(x) := \{ t_x \in \mathcal{S}^2 T^* M_x | r(t_x) = i_p(t_x) \},$$

where r denotes the rank and i_p denotes the positive inertia index. Then $x \mapsto K(x) := \bigcup_{k=1}^n K_k(x)$ defines a cone field on the bundle $(\mathcal{S}^2T^*M, p, M)$.

There are local and global properties of this structure, exposed in [PA-cones]. Consider now $\Gamma^0(E)$, the space of continuous sections of the bundle (E, p, M).

Definition 1.3. [PA-cones]

We call a positive section of the structure [(E, p, M); K], a section $\sigma \in \Gamma^0(E)$ for which $\sigma(x) \in K(x)$, $(\forall)x \in M$.

The set of positive sections is denoted by K_{Γ}^0 ; if on the space $\Gamma^0(E)$ is considered the graph topology WO^0 then we have:

Proposition 1.4. [PA-cones]

The set K_{Γ}^0 is a convex cone, pointed, solid, in $\Gamma^0(E)$. Moreover, K_{Γ}^0 is a generating cone in $\Gamma^0(E)$, i.e. $\forall \sigma \in \Gamma^0(E)$ $(\exists)\zeta_1, \zeta_2 \in K_{\Gamma}^0$ such that $\sigma = \zeta_1 - \zeta_2$.

The cone K^0_{Γ} defines a partial order relation on $\Gamma^0(E)$ by

$$\sigma_1, \sigma_2 \in \Gamma^0(E), \ \sigma_1 \le \sigma_2 \iff \sigma_2 - \sigma_1 \in K^0_{\Gamma}.$$
 (1)

Proposition 1.5. Papuc[PA-cones]

The pair $(\Gamma^0(E), \leq)$ is an ordered vector space, directed on both sides. Endowed with the WO^0 topology is a topological vector space iff M is a compact manifold.

Given a fixed $\zeta \in Int(K_{\Gamma}^0)$, we denote by Γ_{ζ}^0 the set of ζ - measurable elements of $\Gamma^0(E)$:

$$\Gamma^0_{\zeta} := \{ \sigma \in \Gamma^0(E) \mid (\exists) \lambda \in \mathbb{R}_+ : -\lambda \zeta \le \sigma \le \lambda \zeta \}, \tag{2}$$

and we consider the map

$$|\cdot|_{\zeta}^{0}:\Gamma_{\zeta}^{0}\to\mathbb{R},\ |\sigma|_{\zeta}:=min_{\lambda\in\mathbb{R}_{+}}\{-\lambda\zeta\leq\sigma\leq\lambda\zeta\}.$$
 (3)

Proposition 1.6. [PA-cones]

- 1. $\Gamma_{\zeta}^{0} = \Gamma^{0}(E)$ iff M is a compact manifold;
- 2. The map $|\cdot|_{\zeta}^{0}$ defined by equation (3) from above is a norm on Γ_{ζ}^{0} ;
- 3. The set of all Γ^0_{ζ} is a covering of $\Gamma^0(E)$;
- 4. If $\Gamma_c^0(E)$ denotes the subspace of compact support sections, $\Gamma_c^0(E) \subset \Gamma_\zeta^0, (\forall) \zeta \in Int(K_\Gamma^0);$ 5. If $\zeta \in \Gamma_{\zeta_1}^0$, with $\zeta, \zeta_1 \in Int(K_\Gamma^0)$ then $\Gamma_\zeta^0 \subset \Gamma_{\zeta_1}^0$.

Theorem 1.7. [VA] If $\zeta \in K^0_{\Gamma}$, then $(\Gamma^0_{\zeta}, |\cdot|^0_{\zeta})$ is a Banach space.

We consider now (E, p, M), a \mathcal{C}^k - differentiable bundle over M, a \mathcal{C}^k differentiable manifold, $k \geq 1$, which need not to be compact.

Definition 1.8. [VA-bicone] A bicone field on a vector bundle (E, p, M) is the structure consisting of a cone field K on the bundle (E, p, M) and a second cone field K_{TM} on the tangent bundle (TM, p, M).

We will denote by $[(E, p, M); K; K_{TM}]$ the structure consisting of a bicone field on the vector bundle (E, p, M).

The existence of a bicone field on a vector bundle (E, p, M) is equivalent with the existence of a non zero section $\zeta \in \Gamma^0(E)$ and of a nonzero vector field on M.

Now, as a consequence of the vector bundle isomorphism

$$J^k E \cong \bigoplus_{i=1}^k \mathcal{L}_s(TM^i, E) \tag{4}$$

from [Pal] page 90, we have

Proposition 1.9. [VA-bicone] If $[(E, p, M); K; K_{TM}]$ is a C^p - differentiable vector bundle endowed with a bicone field then the vector bundle (J^kE, p, M) is endowed in a natural way with a cone field K^k , $(\forall)k \leq p$.

Next, as usually, we will denote by convention $J^0E := E, \ j^0\zeta := \zeta.$

Definition 1.10. [VA-bicone] A section $\zeta \in \Gamma^k(E)$ which satisfies $\zeta(x) \in$ K(x) and $j^i\zeta(x)\in K^i(x), i=\overline{0,k}, (\forall)x\in M$ will be called section positive up to order k.

The set of positive sections up to order k will be denoted by K_{Γ}^{k} . On $\Gamma^k(E)$, the space of \mathcal{C}^k - differentiable sections we will consider the Whitney WO^k - topology, which on a space of sections can be given by a base of neighborhoods $W(\sigma_0, U)$, where $\sigma_0 \in \Gamma^k(E)$ and U is an open neighborhood of $Im(j^k\sigma_0)$ in $J^k(E)$:

$$W(\sigma_0, U) := \{ \sigma \in \Gamma^k(E) \mid j^k \sigma(x) \in U, (\forall) x \in M \}.$$
 (5)

Proposition 1.11. K_{Γ}^k is a convex cone, closed, pointed and solid in the space $(\Gamma^k(E), WO^k)$.

Corollary 1.12. [KRA] The cone K_{Γ}^k defines on $\Gamma^k(E)$ an order relation by $\sigma_1 \leq \sigma_2 \iff \sigma_2 - \sigma_1 \in K_{\Gamma}^k$. In particular, this relation is directed on both sides.

Let $\zeta \in Int(K_{\Gamma}^k)$ be fixed.

Definition 1.13. [VA-bicone] A section $\sigma \in \Gamma^k(E)$ for which exists $\lambda \in \mathbb{R}_+$ s.t.

$$-\lambda j^i \zeta \le j^i \sigma \le \lambda j^i \zeta, \ i = \overline{1, k}$$

will be called ζ - measurable up to order k.

As in [PA-cones], we have that the map

$$|\cdot|_{\zeta}^{k}:\Gamma_{\zeta}^{k}\to\mathbb{R}_{+},\ |\sigma|_{\zeta}^{k}:=\min\{\lambda\in\mathbb{R}_{+}\ |\ -\lambda j^{i}\zeta\leq j^{i}\sigma\leq\lambda j^{i}\zeta,\ i=\overline{1,k}\}$$

is a norm on the vector space Γ_{ζ}^{k} of ζ - measurable sections up to order k, and with this norm, Γ_{ζ}^{k} becomes a Banach space (the proof is absolutely similar to the one from [VA]). The open ball in the norm $|\cdot|_{\zeta}^{k}$, centered in σ , of radius ϵ , will be denoted by $B_{\zeta}^{k}(\sigma,\epsilon)$ and as in [PA-cones], coincides with the open centered intervals in the order relation from corollary 1.12.

Let us denote now by τ^k the topology on $\Gamma^k(E)$ obtained by taking the path connected components of the WO^k - topology.

Theorem 1.14. [VA-bicone] For all $k \in \mathbb{N}$, the τ^k - topology on $\Gamma^k(E)$ is the topology for which a basis of neighborhoods is given by

$$\{B_{\zeta}^{k}(\sigma,\epsilon) \mid \zeta \in Int(K_{\Gamma}^{k}), \ \sigma \in \Gamma_{\zeta}^{k}, \ \epsilon \geq 0\}.$$

2 The ILB- manifold Structure on the Space of Riemannian Metrics

Let now (E, p, M) be a smooth vector bundle, endowed with a bicone field defined by the cone fields K, K_{TM} .

Definition 2.1. [VA-bicone] A smooth section $\zeta \in \Gamma(E)$ which satisfies $\zeta(x) \in K_{\Gamma}^k$, $(\forall)k \in \mathbb{N}$ will be called a *indefinitely positive section*.

We will denote by K_{Γ} the set of indefinitely positive sections.

Proposition 2.2. [VA-bicone] The set K_{Γ} is a (nonempty) pointed closed convex cone in $(\Gamma(E), WO^{\infty})$.

Corollary 2.3. [VA-bicone] On $\Gamma(E)$ there is an order relation defined by $\sigma \leq \sigma' \iff \sigma' - \sigma \in K_{\Gamma}(E)$.

Let $\zeta \in \cap_k Int_{WO^k}K_{\Gamma}^k$ (this set is nonempty, see [VA-bicone]).

Definition 2.4. [VA-bicone] A section $\sigma \in \Gamma(E)$ which is ζ - measurable $(\forall)k \in \mathbb{N}$ will be called an *indefinitely* ζ - measurable section.

The set $\Gamma_{\zeta}(E)$ of indefinitely ζ - measurable sections is nonempty (e.g. $\zeta \in \Gamma_{\zeta}$) and is a vector space.

Proposition 2.5. [VA-bicone] The space $\Gamma_{\zeta}(E)$ is the projective limit of the Banach spaces $\Gamma_{\zeta}^{k}(E)$.

Corollary 2.6. [VA-bicone] The following assumptions hold:

- (i) $\Gamma_{\zeta}(E)$ is a complete, locally convex space;
- (ii) The τ^{∞} topology on $\Gamma(E)$ is the topology for which a base of neighborhoods is given by the set

$$\{B_{\zeta}^{k}(\sigma,\epsilon)|\ \zeta\in\cap_{k}Int_{WO^{k}}K_{\Gamma}^{k},\ k\in\mathbb{N},\ \epsilon\geq0\};$$

(iii) The set $\{\Gamma_{\zeta}(E), \Gamma_{\zeta}^{k}(E) \mid k \in N(0)\}$ is a ILB (inverse limit of Banach)-chain, following Omori's definition [OMORI], page 5.

Since in the infinite dimensional geometry the notion of manifold might vary, we will refer in this paper to the notion from [MI-KRI], page170, for which the differences from the finite dimensional correspondent is that for each chart is allow a different model space, and the chart changing is require to be only smooth instead of smooth diffeomorphism.

Theorem 2.7. $\Gamma(E)$ is a smooth manifold modelled by the ILB-spaces $\Gamma_{\zeta}(E)$.

Proof. From [VA] and [VA-bicone] we have $\Gamma(E) = \varinjlim_{\zeta} \varinjlim_{k} \Gamma_{\zeta}^{k}$. The topology induced above on $\Gamma(E)$ is the τ^{∞} - topology. Then, again by the equation above, $\Gamma(E) = \bigcup_{\zeta \in Int(K_{\Gamma})} \Gamma_{\zeta}(E)$.

Let $\sigma_0 \in \Gamma(E)$. There exists a positive section $\zeta_0 \in Int(K_{\Gamma})$ such that $\sigma_0 \in \Gamma_{\zeta_0}(E) = \bigcap_k \Gamma_{\zeta_0}^k(E)$. Obviously, $U_{\zeta_0}(\sigma_0) := \bigcap_k B_{\zeta_0}^k(\sigma_0)$ is a nonempty open in τ^{∞} - topology neighborhood of σ_0 . Let $\phi_{\sigma_0} : U_{\zeta_0}(\sigma_0) \subset \Gamma(E) \to \Gamma_{\zeta_0}$ be the restriction of the identity map $Id_{\Gamma_{\zeta_0}(E)}$. The pair $(U_{\zeta_0}(\sigma_0), \phi_{\zeta_0})$ is a chart around σ_0 .

The charts changing is smooth. Indeed, Let $(U_{\zeta_1}(\sigma_1), \phi_{\sigma_1}), (U_{\zeta_2}(\sigma_2), \phi_{\sigma_2})$ be two charts with $U_{\zeta_1}(\sigma_1) \cup U_{\zeta_2}(\sigma_2) \neq \emptyset$. In particular, it follows that $U_{\zeta_1}(\sigma_1) \cup U_{\zeta_2}(\sigma_2) \subset \Gamma_{\zeta_1} \cap \Gamma_{\zeta_2}$. But from [PA-cones], the set $\{\Gamma_{\zeta}(E)|\zeta \in Int(K_{\Gamma})\}$ is ordered and directed on both sides, by the inclusion. So there exists $\zeta_0 \in Int(K_{\Gamma})$ such that $U_{\zeta_1}(\sigma_1) \cap U_{\zeta_2}(\sigma_2) \subset \Gamma_{\zeta_1} \cap \Gamma_{\zeta_2} \subset \Gamma_{\zeta_0}(E)$, and so the chart changing $\phi_{\sigma_2} \circ \phi_{\sigma_1}^{-1}$ is the restriction to an open set of the identity map $Id_{\Gamma_{\zeta_0}(E)}$, and so is smooth. Q.E.D.

Remark 2.8. In virtue of the example 1.2, $\Gamma(S^2T^*M)$, the space of two times covariant, symmetric tensor fields on the manifold M has the structure of a ILB-manifold, modelled by the spaces $\Gamma_q(S^2T^*M)$, with $g \in Int(K_{\Gamma})$.

From [GiM-MICH] $\mathcal{M} = Int(K_{\Gamma}) \cap \Gamma(\mathcal{S}^2 T^* M)$, the space of all Riemannian metrics on the manifold M is τ^{∞} - open in $\Gamma(\mathcal{S}^2 T^* M)$.

Corollary 2.9. The space \mathcal{M} of all Riemannian metrics on M is an open submanifold of $\Gamma(\mathcal{S}^2T^*M)$.

3 The Riemannian Geometry of the Space of Riemannian Metrics of Finite Volume

We denote by \mathcal{M}_{finite} the set of all Riemannian metrics of finite volume on M.

Remark 3.1. \mathcal{M}_{finite} is τ^{∞} - open in \mathcal{M} . Indeed, let $(g_n)_{n\geq 0}$ a sequence of Riemannian metrics that converges in the τ^{∞} - topology to g_0 , a finite volume metric. In particular, it follows that $(\forall)n\geq 0, g_n$ and g_0 differ only on a compact set, so each g_n is a finite volume metric.

On \mathcal{M} there is a canonical Riemannian metric G, invariant under the natural action by pull- back of the group Diff(M) of diffeomorphisms of M on \mathcal{M} , described in [EBIN], or [GiM-MICH]:

$$G_g: T_g \mathcal{M} \times T_g \mathcal{M} \to \mathbb{R}, \ G_g(h, k) = \int_M trace(g^{-1}hg^{-1}k)d\nu_g,$$
 (6)

To make clear the notation $g^{-1}hg^{-1}k$ we can regarde the bundle $\mathcal{S}^2(T^*M)$ as $\{h \in \mathcal{L}(TM, T^*M) | h^t = h\}$, subbundle of $\mathcal{L}(TM, T^*M)$, where h^t is the composition $TM \stackrel{i}{\hookrightarrow} T^{**}M \stackrel{h^*}{\to} T^*M$. On the other side, since $g \in \mathcal{M}$, as a Riemannian metric is a fiberwise inner product on TM it induces a fiberwise inner product on any tensor bundle over M, in particular on $\mathcal{S}^2(T^*M)$. This is, in fact $\langle \cdot, \cdot \rangle = trace(g^{-1} \cdot g^{-1} \cdot)$. For the metric G_g , instead of the notation above, we will use the classical notations from Riemannian geometry

(the ' \sharp ' symbol demotes the 'sharp' isomorphism induced by the metric g so we will omite to put indices as \sharp_g):

$$G_g: T_g \mathcal{M} \times T_g \mathcal{M} \to \mathbb{R}, \ G_g(h, k) = \int_M \sum_{i=1}^n h(k(E_i)^{\sharp}, E_i) d\nu_g,$$

Where (E_i) denotes a local field of orthonormal frames.

Theorem 3.2. The Riemannian metric G_g is defined on the tangent space $T_g \mathcal{M}_{finite} = \Gamma_g$.

Proof. Since $h \in \Gamma_g$, we have $h \in \Gamma_g^0$. This means that $(\exists)\lambda \in \mathbb{R}_+$ s.t. $\lambda g \leq h \leq \lambda g$. Because of equation (3), we have that $-|h|_g^0 g \leq h \leq |h|_g^0 g$. Hence, as in [PA-cones], in particular,

$$-|h|_a^0 g(k(E_i)^{\sharp}, E_i) \le h(k(E_i)^{\sharp}, E_i) \le |h|_a^0 g(k(E_i)^{\sharp}, E_i), \ i = \overline{1, n};$$

By summation, we have

$$-|h|_g^0 \sum_{i=1}^n g(k(E_i)^{\sharp}, E_i) \le \sum_{i=1}^n h(k(E_i)^{\sharp}, E_i) \le |h|_g^0 \sum_{i=1}^n g(k(E_i)^{\sharp}, E_i),$$

and this means

$$-|h|_g^0 \sum_{i=1}^n k(E_i, E_i) \le \sum_{i=1}^n h(k(E_i)^{\sharp}, E_i) \le |h|_g^0 \sum_{i=1}^n k(E_i, E_i).$$
 (7)

But $k \in \Gamma_g$, so we have $k \in \Gamma_g^0$. This means that $(\exists)\lambda \in \mathbb{R}_+$ s.t. $\lambda g \leq k \leq \lambda g$. As above, $-|k|_g^0 g \leq k \leq |k|_g^0 g$, and in particular

$$-|k|_g^0 g(E_i, E_i) \le k(E_i, E_i) \le |k|_g^0 g(E_i, E_i), \ i = \overline{1, n};$$

By summation

$$-|k|_g^0 \sum_{i=1}^n g(E_i, E_i) \le \sum_{i=1}^n k(E_i, E_i) \le |k|_g^0 \sum_{i=1}^n g(E_i, E_i).$$
 (8)

From equations (7) and (8) follows that

$$-|h|_g^0|k|_g^0 \sum_{i=1}^n g(E_i, E_i) \le \sum_{i=1}^n h(k(E_i)^{\sharp}, E_i) \le |h|_g^0|k|_g^0 \sum_{i=1}^n g(E_i, E_i)$$

and so

$$-n|h|_g^0|k|_g^0 \le \sum_{i=1}^n h(k(E_i)^{\sharp}, E_i) \le n|h|_g^0|k|_g^0.$$

Now, by integrating with respect to the measure ν_q

$$-n|h|_{a}^{0}|k|_{a}^{0}Vol(M,g) \leq G_{g}(h,k) \leq n|h|_{a}^{0}|k|_{a}^{0}Vol(M,g)$$

Q.E.D.

References

- [EBIN] EBIN: The Manifold of Riemannian Metrics Proceedings of symposia in pure mathematics of the A.M.S., 15, 1970 (11-40);
- [GiM-MICH] Gil- Medrano, O.; Michor, P.W., The manifold of all riemannian metrics, Quarterly Journal of Mathematics, Oxford, 42, 1991, (183-202);
- [KRA] KRASNOSELŚKIJ, M.A, Positive Solutions of Operator Equations, Groningen Noordhoff, 1964;
- [MI-KRI] Michor, P.W., Kriegl, A., : The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, vol 53, A.M.S., 1997;
- [OMORI] OMORI, H., Infinite- Dimensional Lie Groups, Translations of Mathematical Monographs, A.M.S., 1997;
- [Pal] PALAIS, R., Seminar on Atyah- Singer Index Theorem, Princeton University Press, 1965;
- [PA-cones] PAPUC, D.I., Field of Cones and Positive Operators on a Vector Bundle, Analele Universitatii din Timisoara, vol XXX, fasc 1 1992 (39-58);
- [PA-metrics] PAPUC, D.I., On the Geometry of the Bundle of Symmetric 2-times Covariant Tensors Tangent to a Differentiable Manifold, Analele Stiintifice ale Universitatii "Al. I. Cuza", Iasi, XLIII, 1997, f2, (249-258);
- [VA] VASII, C.C., About Some Topologies on the Set of all Riemannian Metrics on a Noncompact Manifold, Proceedings of the Conference on Differential Geometry, Lagrange and Hamilton Spaces, Iasi, 2002 (To appear in Balkan Journal of Geometry and its Applications);
- [VA-bicone] VASII, C.C., Cone Bifields on Vector Bundles (To appear in Analele Stiintifice ale Universitatii "Al. I. Cuza", Iasi).

Cătălin C. Vasii

Departament of Mathematics and Computer Sciences, The West University of Timisoara, Bv. V. Pârvan nr.4, 300.223 Timisoara, România, catalin@math.uvt.ro