Ingeniería de los Computadores

Sesión 9. Redes de interconexión. Topologías

Conceptos

Clasificación

- Redes estáticas o directas
 - Clasificación
 - Estrictamente ortogonales (malla, hipercubo, toro)
 - (Estrictamente) Cada nodo A tiene al menos un enlace en cada dimensión i
 - (Ortogonal) Cada enlace supone un desplazamiento en una dimensión
 - ➤ No ortogonales (árbol)
 - > Propiedades
 - > Grado
 - Diámetro
 - Regularidad (todos los nodos tienen el mismo grado)
 - > Simetría (se ve semejante desde cualquier nodo)

Conceptos

Clasificación

Redes estáticas o directas. Anillo unidireccional

F. interconexión: $F_{+1}(i) = (i+1) \mod N$

> Grado de entrada/salida: 1/1

➤ Diámetro: N-1

> ¿Anillo bidireccional?

Clasificación

- Redes estáticas o directas. Malla abierta
 - > F. interconexión:
 - $F_{+1}(i) = (i+1) \text{ si i mod r } <> r-1$
 - $F_{-1}(i) = (i-1) \text{ si i mod } r <> 0$
 - $F_{+r}(i) = (i+r) \text{ si i div r} <> r-1$
 - $F_{-r}(i) = (i-r) \text{ si i div r} <>0$
 - ➤ Grado: 4
 - Diámetro: 2(r-1), donde N=r2

Conceptos

Clasificación

- Redes estáticas o directas. Malla Illiac
 - > F. interconexión:

$$F_{+1}(i) = (i+1) \mod N$$

$$F_{-1}(i) = (i-1) \mod N$$

$$F_{+r}(i) = (i+r) \mod N$$

$$F_{-r}(i) = (i-r) \mod N$$

- > Grado: 4
- ➤ Diámetro: (r-1), donde N=r²

Conceptos

Clasificación

Topologías

- Redes estáticas o directas. Redes n-cubos k-arias ó toros
 - > n dimensiones, k nodos
 - > F. interconexión toro 2D:

$$F_{+1}(i) = (i+1) \mod r + (i DIV r) \cdot r$$

$$F_{-1}(i) = (i-1) \mod r + (i DIV r) \cdot r$$

$$ightharpoonup F_{+r}(i) = (i+r) \mod N$$

$$F_{-r}(i) = (i-r) \mod N$$

➤ Grado: 4

Diámetro: $2 \cdot \left| \frac{r}{2} \right|$, donde N=r²

• Redes estáticas o directas. Desplazador barril

- > F. interconexión:
 - $ightharpoonup B_{+k}(i) = (i+2^k) \mod N$
 - > B_{-k}(i) = (i -2^k) mod N
 - > K=0...n-1, n=log N, i=0...N-1
- ➤ Grado: 2n 1
- ➤ Diámetro: n/2

Clasificación

- Redes estáticas o directas. Hipercubo
 - > F. interconexión:

$$ightharpoonup F_i (h_{n-1}, ..., h_i, ..., h_0) = h_{n-1}, ..., \bar{h}_i, ..., h_0$$

- Grado: n (n=log N)
- Diámetro: n

Conceptos Clasificación

Topologías

Redes estáticas o directas. Ciclo cubo conectado (CCC) (red jerárquica)

Conceptos

Clasificación

Topologías

Redes estáticas o directas. Red CCC

Conceptos

Clasificación

- Redes estáticas o directas. Árbol binario
 - > Balanceado: todas las ramas del árbol tienen la misma longitud
 - ➤ Cuello de botella → nodo raíz
 - \triangleright N (balanceado)= 2^k-1 (k = niveles del árbol)
 - ➤ Grado: 3
 - ➤ Diámetro: 2(k-1)

Conceptos

Clasificación

- Redes indirectas o dinámicas
 - Uso de conmutadores y árbitros
 - > Ejemplos
 - Redes crossbar
 - Redes de conexión multietapa (MIN)
 - Modelo: G(N,C)
 - ➤ N, conjunto de conmutadores
 - C, enlaces (unidireccionales o bidireccionales) entre conmutadores
 - > Canal bidireccional > dos canales unidireccionales
 - ➤ Un conmutador puede tener conectados 0, 1 ó más elementos (Procesadores, memorias, etc.)
 - Distancia entre dos nodos: distancia entre los conmutadores que conectan los nodos más 2.

Conceptos

Clasificación

- Redes indirectas o dinámicas. Redes crossbar
 - Conexión directa nodo-nodo
 - Gran ancho de banda y capacidad de interconexión
 - ➤ Conexión Proc. Mem. → limitado por los accesos a memoria (columnas)
 - \rightarrow Conexión Proc(N) Proc(N) \rightarrow máximo de N conexiones
 - Coste elevado: O(N·M)

Conceptos Clas

Clasificación

- Redes indirectas o dinámicas. Redes MIN
 - Conectan dispositivos de entrada con dispositivos de salida mediante un conjunto de etapas de conmutadores, donde cada conmutador es una red crossbar.
 - > Concentradores > nº entradas > nº salidas
 - Expansores → nº salidas > nº entradas

Clasificación

- **Topologías**
- Redes indirectas o dinámicas. Redes MIN
 - Conexión de etapas adyacentes > Patrón de conexión
 - > Patrón basado en permutaciones: conmutadores con el mismo número de entradas y salidas.
 - > Ejemplo: barajado perfecto.

B
$$(a_{n-1}, a_{n-2}, ..., a_0) = (a_{n-2}, ..., a_0, a_{n-1})$$

Conceptos

Clasificación

Redes indirectas o dinámicas. Redes MIN

> Número de entradas aⁿ y número de salidas bⁿ (red aⁿxbⁿ)

- \triangleright n etapas de conmutadores ($C_0, C_1, ..., C_{n-1}$)
- > Conmutadores axb
- ➤ aⁿ⁻¹⁻ⁱ x bⁱ conmutadores en la etapa C_i
- Funcionalidad de los conmutadores: barras cruzadas, reducción, difusión
- \triangleright Subred de interconexión entre etapas: R₀, R₁,...
- Tipos de canales: unidireccionales, bidireccionales

Conceptos

Clasificación

- Redes indirectas o dinámicas. Redes MIN red Omega
 - El patrón de conexión C_i es una permutación k-baraje perfecto a excepción del último (R_n) que es permutación 0

Conceptos

Clasificación

Redes indirectas o dinámicas. Redes MIN – red mariposa

- Red $k^n x k^n (8x8=2^3x2^3)$:
 - n etapas C_i (3),
 - conmutadores kxk (2x2),
 - kⁿ⁻¹ conm/etapa (2²).

- Subred R_i (i=0,...,n-1):
 - · Mariposa M,k

$$M_{i}^{k}((f_{n-1},f_{n-2},...,f_{i+1},f_{i},f_{i-1},...,f_{1},f_{0})_{k}) = (f_{n-1},f_{n-2},...,f_{i+1},f_{0},f_{i-1},...,f_{1},f_{i})_{k}$$

$$i=0,...,n-1$$

$$M_2^2 ((f_2,f_1,f_0)_2) = (f_0,f_1,f_2)_2$$

Conceptos

Clasificación

Topologías

Redes indirectas o dinámicas. Redes MIN – red cubo

- Red $k^n x k^n (8x8=2^3x2^3)$:
 - n etapas C_i (3),
 - conmutadores kxk (2x2),
 - kⁿ⁻¹ conm/etapa (2²).
- Subred R_i (i=0,...,n-1):
 - R_o: Baraje-k perfecto (baraje-2 perfecto).
 - R_{n-i} (i=1,...,n-1): Mariposa M_i^k 110-

$$M_{i}^{k} ((f_{n-1}, f_{n-2}, ..., f_{i+1}, f_{i}, f_{i-1}, ..., f_{1}, f_{0})_{k}) = (f_{n-1}, f_{n-2}, ..., f_{i+1}, f_{0}, f_{i-1}, ..., f_{1}, f_{i})_{k}$$

$$i=0,...,n-1$$

$$\mathbf{M}_{1}^{2}((\mathbf{f}_{2},\mathbf{f}_{1},\mathbf{f}_{0})_{2}) = (\mathbf{f}_{2},\mathbf{f}_{0},\mathbf{f}_{1})_{2}$$

Conceptos

Clasificación

Topologías

Redes indirectas o dinámicas. Redes MIN – red delta

Red $a^n x b^n (16x9=4^2x3^2)$:

- n etapas C_i (2),
- conmutadores axb (4x3),
- aⁿ⁻¹⁻ⁱ ·bⁱ conm / C_i (4, 3).

Subred R_i (i=0 o 1,...,n-1):

Baraje-a de c elementos

R₁: (baraje-4 de 12 elementos). 9

$$B_c^a(s) = \begin{cases} a \cdot s \mod(c-1) & \text{si} \quad s < c-1 \\ c-1 & \text{si} \quad s = c-1 \end{cases}$$

$$B_{12}^{4}(s) = \begin{cases} 4 \cdot s \mod (11) & \text{si} \quad s < 11 \\ 11 & \text{si} \quad s = 11 \end{cases}$$

Conceptos Clasificación

Topologías

Prestaciones

