Second Recitation Class Linear Algebra

YAO Shaoxiong

UM-SJTU Joint Institute

March 13, 2019

Table of contents

Review of Matrix Algebra

Linear Transformations

Linear Transformations in Geometry

Scaling

Orthogonal Projections

Reflections

Orthogonal Projections and Reflections in Space

Rotations

Shears

Matrix Products

Inverse of Matrix

Matrix Algebra

Definition

We define the sum of matrices and scalar multiples of matrices,

$$\begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1m} + b_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & \cdots & a_{nm} + b_{nm} \end{bmatrix}$$

and scalar multiples of matrices,

$$k \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix} = \begin{bmatrix} ka_{11} & \cdots & ka_{1m} \\ \vdots & \ddots & \vdots \\ ka_{n1} & \cdots & ka_{nm} \end{bmatrix}$$

Question:

Can you verify the set of all $n \times m$ matrices is a vector space?

Calculte $A\overline{x}$

Defition

Dot product between each **row** vector in A and \overline{x} .

Theorem

Linear combination of *column* vectors in A.

Theorem

Algebraic rule for $A\overline{x}$,

- 1. $A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$, and
- 2. $A(k\overline{x}) = k(A\overline{x})$.

Linear Transformations

Definition

A function T from \mathbb{R}^m to \mathbb{R}^n is called a *linear transformation* if there exits an $n \times m$ matrix A such that

$$T(\overline{x}) = A\overline{x},$$

for all \overline{x} in the vector space \mathbb{R}^m

Question:

Why we can always find a matrix A?

Example

Find the matrix I of identity map such that Ix = x for $x \in \mathbb{R}^m$.

Find the matrix of linear transformation

Theorem

The matrix of a linear transformation T form \mathbb{R}^m to \mathbb{R}^n is

$$A = \begin{bmatrix} & | & & | & \cdots & & | \\ T(\overline{e_1}) & T(\overline{e_1}) & \cdots & T(\overline{e_m}) \\ & | & & | & \cdots & | \end{bmatrix},$$

here we have $\overline{e_i}$ be the *i*th standard basis in \mathbb{R}^m .

Quesiton:

There is a subtle problem. This theorem is to find a matrix A for T, but we need a A to make it a linear transformation first.

Redefine Linear Transformation

Theorem

A transformation T form \mathbb{R}^m to \mathbb{R}^n is linear if and only if

- 1. $T(\overline{v} + \overline{w}) = T(\overline{v}) + T(\overline{w})$, for all vectors \overline{v} and \overline{w} in \mathbb{R}^m , and
- 2. $T(k\overline{v}) = kT(\overline{v})$, for all vectors $v \in \mathbb{R}^m$ and all scalars k.

Proof.

With these two properties, we can expand $T(\overline{x})$ and find A using previous theorem.

Comment:

We notice that there are two equivalent definition of a linear transformation.

- 1. These is an $n \times m$ matrix A which satisfies $T(\overline{x}) = A\overline{x}$.
- 2. The transformation T is linear.

Linear Transformations in Geometry

Summary

In this part, we focus on linear transformations defined on \mathbb{R}^2 or \mathbb{R}^3 . The main task is to find the matrix of a linear transformation in geometry.

Procedure

- 1. Verity this linear transformation in geometry in linear.
- 2. Find the output of standard basis e_i , $i = \overline{1, m}$.
- 3. Write down the matrix as

$$A = \begin{bmatrix} | & | & \cdots & | \\ T(\overline{e_1}) & T(\overline{e_1}) & \cdots & T(\overline{e_m}) \\ | & | & \cdots & | \end{bmatrix},$$

Review of Matrix Algebra

Linear Transformations

Linear Transformations in Geometry

Scaling

Orthogonal Projections

Reflections

Orthogonal Projections and Reflections in Space

Rotations

Shears

Matrix Products

Inverse of Matrix

Scaling

Definiton

Scaling of \overline{x} with factor k is the map such that

$$\overline{x} \rightarrow k \overline{x}$$
.

Solution

This transformation is linear from geometry.

For input e_1 and e_2 , we have

$$e_1 \rightarrow ke_1, \quad e_2 \rightarrow ke_2,$$

here we suppose the scalar is k.

Then the matrix is

$$A = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}.$$

Review of Matrix Algebra

Linear Transformations

Linear Transformations in Geometry

Scaling

Orthogonal Projections

Reflections

Orthogonal Projections and Reflections in Space

Rotations

Shears

Matrix Products

Inverse of Matrix

Orthogonal Projections

Definition

Orthogonal projection of \overline{x} on L is $proj_L(\overline{x})$ along L such that

$$(\overline{x} - proj_L(\overline{x})) \perp L$$
.

Solution

Take a vector \overline{w} along line L, the orthogonal projection of \overline{x} on L is

$$proj_L(\overline{x}) = (\frac{\overline{x} \cdot \overline{w}}{\overline{w} \cdot \overline{w}})\overline{w}.$$

If we take $\overline{u} = \overline{w}/\|\overline{w}\|$, then

$$proj_L(\overline{x}) = (\overline{x} \cdot \overline{u})\overline{u}.$$

This transformation is linear.

Orthogonal Projecitons

Solution(Contd).

For input $\overline{e_1}$ and $\overline{e_2}$, we have

$$\overline{e_1} \to \left(\begin{smallmatrix} u_1^2 \\ u_1 u_2 \end{smallmatrix}\right), \quad \overline{e_2} \to \left(\begin{smallmatrix} u_2 u_1 \\ u_2^2 \end{smallmatrix}\right).$$

Then the matrix is

$$A = \begin{bmatrix} u_1^2 & u_2 u_1 \\ u_1 u_2 & u_2^2 \end{bmatrix}$$

Review of Matrix Algebra

Linear Transformations

Linear Transformations in Geometry

Scaling

Orthogonal Projections

Reflections

Orthogonal Projections and Reflections in Space

Rotations

Shears

Matrix Products

Inverse of Matrix

Reflections

Definiotn

The reflection of \overline{x} with respect to line L is $ref_L(\overline{x})$ such that

$$\overline{x} - proj_L(\overline{x}) = -(ref_L(\overline{x}) - proj_L(\overline{x})).$$

Solution

We can find $ref_L(\overline{x})$ using the orthogonal projection,

$$ref_L(\overline{x}) = 2proj_L(\overline{x}) - \overline{x}.$$

This is a linear transformation.

Solution(Contd.)

For input e_1 and e_2 ,

$$e_1 \to \left(\begin{smallmatrix} 2u_1^2-1 \\ 2u_1u_2 \end{smallmatrix} \right), \quad e_2 \to \left(\begin{smallmatrix} 2u_2u_1 \\ 2u_2^2-1 \end{smallmatrix} \right).$$

Then

$$A = \begin{bmatrix} 2u_1^2 - 1 & 2u_2u_1 \\ 2u_1u_2 & 2u_2^2 - 1 \end{bmatrix},$$

and we can write A as

$$A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}, \quad a^2 + b^2 = 1.$$

Question:

Why we have this form? (Hint: Consider $T(\overline{e_1})$ and $T(\overline{e_2})$ directly.)

Projection and Reflection

Example

Find a nonzero matrix A such that

$$A^2 = A$$

and a nonzero matrix B such that

$$B^3 = B$$
.

Review of Matrix Algebra

Linear Transformations

Linear Transformations in Geometry

Scaling

Orthogonal Projections

Reflections

Orthogonal Projections and Reflections in Space

Rotations

Shears

Matrix Products

Inverse of Matrix

Orthogonal Projections and Reflections in Space

Defintion

In \mathbb{R}^3 , orthogonal projections and reflections are defined similar to \mathbb{R}^2 .

Example

Find the matrix of reflection with respect to plane $2x_1 + x_2 - 2x_3 = 0$.

Example

Find the matrix of orthogonal projection on plane $2x_1 + x_2 - 2x_3 = 0$.

Review of Matrix Algebra

Linear Transformations

Linear Transformations in Geometry

Scaling

Orthogonal Projections

Reflections

Orthogonal Projections and Reflections in Space

Rotations

Shears

Matrix Products

Inverse of Matrix

Rotation

Definition

The rotation in \mathbb{R}^2 with angle θ is a rotation centered at the origin in the counterclockwise direction.

Theorem

The matrix of a counterclockwise rotation in \mathbb{R}^2 through an angle θ is

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Rotation

Example

Check that if $A(\theta_1)$, $A(\theta_2)$ is the matrix of counterclockwise rotation with angle θ_1 , θ_2 , then

$$A(\theta_1)A(\theta_2)=A(\theta_1+\theta_2).$$

Rotations Combined with a Scaling

For a scaling with scalar k and a counterclockwise rotation with angle θ , the combination of these two transformation is

$$\begin{bmatrix} k\cos\theta & -k\sin\theta \\ k\sin\theta & k\cos\theta \end{bmatrix}.$$

Note that these two transformations are commutative.

Theorem

A matrix of the form

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

represents a rotation combined with a scaling.

Review of Matrix Algebra

Linear Transformations

Linear Transformations in Geometry

Scaling

Orthogonal Projections

Reflections

Orthogonal Projections and Reflections in Space

Rotations

Shears

Matrix Products

Inverse of Matrix

Shears

Definition

A horizontal shear keep x_2 unchanged but change x_1 to $x_1 + kx_2$. A vertical shear keep x_1 unchanged but change x_2 to $kx_1 + x_2$.

Theorem

The matrix of a horizontal shear is of the form

$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix},$$

and the matrix of a vertical shear is of the form

$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix},$$

where k is an arbitrary constant.

Shears

Example

If A is a shear matrix, what is $(A - I_2)^2$? Consider $A^2\overline{x} - 2A\overline{x} + \overline{x}$.

Matrix Products

Motivation

The product of matrices is motivated by the composition of linear transformation. For linear transformations $T_2: \mathbb{R}^m \to \mathbb{R}^k$ and $T_1: \mathbb{R}^k \to \mathbb{R}^n$, we want to find the matrix of linear transformation $T_1 \circ T_2: \mathbb{R}^m \to \mathbb{R}^n$, defined as

$$(T_1 \circ T_2)(\cdot) = T_1(T_2(\cdot)).$$

Question:

The composition of linear transformations is still linear transformation. Why?

Matrix Products

Solution

If the matrices of T_1 , T_2 are A, B, we then have

$$T_1(T_2(e_j)) = A(Be_j) = Ab_j,$$

here e_j is the jth standard basis of \mathbb{R}^m , and the matrix of $T_1(T_2(\cdot))$ is

$$\begin{bmatrix} | & | & \cdots & | \\ Ab_1 & Ab_2 & \cdots & Ab_k \\ | & | & \cdots & | \end{bmatrix},$$

here b_j is the *j*th column of matrix B, $j = \overline{1, m}$.

Matrix Product

Example

Find the matrix product

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

We can expand Ab_i in two ways.

Expand by Row (1)

If the *i*th row of A is a'_i , then

$$Ab_j = \begin{bmatrix} a'_1 \cdot b_j \\ \vdots \\ a'_n \cdot b_j \end{bmatrix}.$$

Then the product of A and B is

$$AB = \begin{bmatrix} a'_1 \cdot b_1 & \cdots & a'_1 \cdot b_m \\ \vdots & \ddots & \vdots \\ a'_n \cdot b_1 & \cdots & a'_n \cdot b_m \end{bmatrix}.$$

Expand by Row (2)

Consider the product of a row vector and a matrix

$$\begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{k1} & \cdots & b_{km} \end{bmatrix} = \begin{bmatrix} x_1b_{11} & x_1b_{1m} \\ + & + \\ \vdots & , \cdots & \vdots \\ + & + \\ x_kb_{k1} & x_kb_{km} \end{bmatrix}.$$

If we denote the *i*th row of B as b'_i , then

$$xB = \sum_{i=1}^{k} x_i b_i'.$$

This inspired us to use row vectors to calculate matrix product,

$$AB = \begin{bmatrix} \sum_{i=1}^{k} a_{1i}b'_i \\ \vdots \\ \sum_{i=1}^{k} a_{ni}b'_i \end{bmatrix} = \begin{bmatrix} a'_1B \\ \vdots \\ a'_nB \end{bmatrix}.$$

The result is individual row of A times B.

Exmaple

Find the matrix product

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Expand by Column (1)

If the *i*th column of A is a_i , then

$$Ab_j = \sum_{i=1}^k a_i b_{ij}.$$

Expand by Column (2)

Inspired by expansion by column, we can split the value that only relate to a_i ,

$$AB = \sum_{i=1}^{k} \begin{bmatrix} | & | & \cdots & | \\ a_i b_{i1} & a_i b_{i2} & \cdots & a_i b_{im} \\ | & | & \cdots & | \end{bmatrix} = \sum_{i=1}^{k} a_i b_i'.$$

This gives us a way to consider the matrix as the sum of product of **column vector in** A and **row vector in** B.

Properties of Matrix Product

Row Times Column

We have defined the product of a row vector and a column vector as

$$\begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + \cdots + x_n y_n$$

Column Times Row

For a column vector times a row vector, we use the definition of matrix product,

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} x_1, \cdots, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} x_m \end{bmatrix} = \begin{bmatrix} x_1 y_1 & \cdots & x_m y_1 \\ \vdots & \ddots & \vdots \\ x_1 y_n & \cdots & x_m y_y \end{bmatrix}.$$

Properties of Matrix Product

Associativity

The product between matrices is associative, i.e.,

$$(AB)C = A(BC).$$

Commutative

The product between matrices is generally not commutative,

$$AB \neq BA$$
.

Question: Can you find a matrix D that is commutative to any matrix?

Block Matrix

Theorem

If we separate A and B into blocks with appropriate sizes,

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Gass-Jordan in Matrix Product

Motivation

Each operation we perform in Gauss-Jordan elimination is to times a matrix on the original system.

$$E_n \cdots E_2 E_1 A = I$$

Example

Find all E to perform Gauss-Jordan on

$$A = \begin{bmatrix} 2 & 1 \\ 6 & 7 \end{bmatrix}.$$

Inverse of Matrix

Definition

For a linear transformation T, T^{-1} is its inverse if

$$T(T^{-1}(\cdot)) = id(\cdot),$$
 and $T^{-1}(T(\cdot)) = id(\cdot),$

here $id(\cdot)$ is the identity map.

Definion

The inverse of matrix A is the matrix of the inverse of its linear transformation, we denote it A^{-1} .

Theorem

The inverse of matrix A has properties

$$A^{-1}A = AA^{-1} = I.$$

Here *I* is the identity matrix.

Find the Inverse of a Matrix

Motivation

Recall in Gauss-Jordan, we find a series of matrices $E_n, ..., E_1$ such that

$$E_n \cdots E_2 E_1 A = I$$
,

then the product of $E_n \cdots E_1$ is the inverse of A.

Comment:

Note that this process may not always work.

Inverse of Matrix

Solution

To calculate easily, we write down the matrices \boldsymbol{A} and \boldsymbol{I} in an augmented matrix,

$$\begin{bmatrix} A & I \end{bmatrix}$$

when we times do row manipulations on A, the same operation is performed on I, so

$$\begin{bmatrix} E_n \cdots E_1 A & E_n \cdots E_1 I \end{bmatrix}$$
$$= \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

Invertibility

Note that we may not always find the inverse of a matrix.

Theorem

A $n \times n$ matrix has inverse if and only if

- ightharpoonup rankA = n,
- $ightharpoonup rref(A) = I_n$.

Comment:

Note that the inverse exists if Gauss-Jordan elimination works.

Theorem

If B and A are $n \times n$ matrices such that

$$BA = I_n$$

then B and A are both invertible and $A^{-1} = B, B^{-1} = A$.

Properties of Invertible Matrices

Theorem

If BA is invertible and A, B are $n \times n$ matrices, we have

$$(BA)^{-1} = A^{-1}B^{-1}.$$