Project 2

by

Ethan Storer

Due 10/22/2022

Model:

Figure 1. (a) Figure of the system shows the context of the code: an amusement park ride. (b) Figure of the system modeled using spring elements. Input dimensions are labeled on the diagram.

Model Assumptions:

- 1. 2 Dimensional loading.
- 2. Key Parameters:

Parameter	Symbol	Value	Units
Young's Modulus	Е	2*10 ¹⁰	Pa
Cross-sectional area	Α	0.01	m ²
Width	w	10	m
Length	L1	12	m
Height	h	10	m
Force	F	50000	N

- 3. Ride runs for 60 seconds starting at t=0 seconds.
- 4. The angle θ with respect to time t can be modeled as a cos/sin wave with 4 oscillations in 30 seconds.
- 5. Amplitude increases linearly.
- 6. Motions starts at amplitude = 0 radians.
- 7. Max amplitude = 3 radians.
- 8. At 30 seconds, angle θ decreases at same frequency.
- 9. Amplitude decreases linearly.
- 10. Beams can be modeled as truss elements.
- 11. Truss elements can be modeled as springs with stiffness EA/I.

Derivations:

This derivation shows how the potential energy is derived from the truss geometry and given assumptions listed above.

Using existing parameters, find key dimensions ϕ , w1, w2, and L2.

Figure 2. The first step is finding L2, the length of the other truss. The input parameters are used to find L2. The steps are listed below.

Find ϕ .

Step 1: Find ϕ using the sides L1 and h.

1.
$$\phi = \arcsin\left(\frac{h}{L_1}\right)$$

Step 2: Find w1

2. **w1**=
$$L1 * \cos (\phi)$$

Step 3: Find w2

3. w2=w-w1

Step 4: Find L2 using the Pythagorean theorem

4. L2=
$$\sqrt{h^2 + w2^2}$$

Using ϕ , w1, w2, L2, and input parameters x and y, the loaded lengths of w1, w2, and h can be found.: w1_loaded, w2_loaded, and h_loaded.

Step 1: Find w1_loaded by combining w1 and the displacement x.

1. **w1_loaded** = w1+x

Step 2: Find w2_loaded by finding the difference between w and w1_loaded

2. w2_loaded=w-w1_loaded

Figure 3. The model has now factored in the x and y displacement into its geometry. This model is a graphical justification for Step 2.

Step 3: Find h_loaded

3. $h_loaded = h+y$

Using w1_loaded, w2_loaded, and y_loaded, the loaded lengths L1_loaded and L2_loaded can be found using the Pythagorean Theorem:

$$L1_loaded = \sqrt{w1_loaded^2 + y_loaded^2}$$

$$L2_loaded = \sqrt{w2_loaded^2 + y_loaded^2}$$

After finding the final lengths of the truss members, the spring potential energy equation and work equations show how much potential energy the truss members have.

Generic potential energy equation: $PE = (\frac{1}{2}Kx^2) + (f * x)$

L1_loaded Spring PE:

$$PE_Spring1 = \frac{1}{2}K * (L1_{loaded}^{2}) + (L1_{loaded} - L1)^{2}$$

Step 2: Find L2_loaded Spring PE:

$$PE_Spring2 = \frac{1}{2}K * (L2_{loaded}^{2}) + (L2_{loaded} - L2)^{2}$$

Step 3: Work for x displacement and y displacement:

$$Work = Fsin(\theta) - Fcos(\theta)$$

Step 4: Work is subtracted from the Spring Potential Energy to find the Net Potential Energy.

$$PE = PE_Spring1 + PE_Spring2 - Work$$

Step 5: Model equation:

$$PE = \frac{1}{2}K\left(\left(\sqrt{(L1 * \cos(\arcsin(\frac{h}{L1})) + x)^2 + (y + h)^2}\right)^2\right) + \left(\sqrt{(L1 * \cos(\arcsin(\frac{h}{L1})) + x)^2 + (y + h)^2}\right) - L1\right)^2 + \frac{1}{2}K\left(\sqrt{(w - (L1 * \cos(\arcsin(\frac{h}{L1}) + x))^2 + (y + h)^2}\right) + \left((w - (L1 * \cos(\arcsin(\frac{h}{L1}) + x))^2 - \sqrt{h^2 + (w - (L1 * \cos(\arcsin(\frac{h}{L1})))^2}\right)^2$$

The equation for theta is derived using assumptions 3-9. The fraction $\frac{3t}{30}$ ensures that when t=30, the amplitude will be 3 radians. The variable t also causes θ to increase at a linear rate. The frequency $\frac{\pi}{3.75}$ is derived from the requirement of 4 oscillations before reaching 30 seconds.

$$H_1(x) = \frac{3t}{30} \sin\left(\frac{\pi t}{3.75}\right) \{30 \le x \le 60\}$$

$$H_2(x) = -\left(\frac{3(t-60)}{30}\sin\left(\frac{\pi t}{3.75}\right) \left\{30 \le x \le 60\right\}$$

Analysis:

Figure 1. The periodic swings of the Evolution are modeled as a function of time.

Figure 2. Eight peaks are counted which corresponds to the eight peaks of θ .

Figure 3. The Y Displacement peaks very frequently.

Figure 4. The cyclic displacement of the swing only goes up three radians. This is reflected in the oval shape because overall, the X Displacement is larger. If the Evolution's θ made it a full 3π , the overall shape should appear more circular.

Figure 5. The Total Displacement peaks very frequently as a consequence of the Y displacement varying frequently.