1 For a function $f: \overline{[a,b]} \to \mathbb{R}$ define for every $x \in [a,b]$

$$D^+f(x) = \limsup_{h \to 0+} \frac{f(x+h) - f(x)}{h}.$$

Prove that if $f:[a,b]\to\mathbb{R}$ is continuous and $D^+f(x)\geq 0$ for all $x\in[a,b)$, then $f(b)\geq f(a)$.

2 Suppose $f_n:[0,1]\to[0,\infty)$ is a sequence of increasing and right-continuous function. Let

$$f(x) = \sum_{n=1}^{\infty} f_n(x), \quad x \in [0, 1],$$

and assume that f(1) is finite. Prove that

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x)$$

for almost every $x \in [0,1]$ (in the sense of the Lebesgue measure).

3 Find an increasing function $f:[0,1]\to\mathbb{R}$ such that f'(x)=0 almost everywhere in [0,1], but f is not constant on any open subinterval of [0,1].