Symmetry in Probabilistic Databases

Guy Van den Broeck KU Leuven

Joint work with

<u>Dan Suciu</u>, Paul Beame, Eric Gribkoff, Wannes Meert, Adnan Darwiche

Based on NIPS 2011, KR 2014, and upcoming PODS 2015 paper

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Probability that Card1 is Hearts?

Probability that Card1 is Hearts? 1/4

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph)

2. Probabilistic inference algorithm (e.g., variable elimination or junction tree)

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph) is fully connected!

 Probabilistic inference algorithm (e.g., variable elimination or junction tree) builds a table with 52⁵² rows

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Probability that Card52 is Spades given that Card2 is QH?

Probability that Card52 is Spades given that Card2 is QH?

13/51

Probability that Card52 is Spades given that Card3 is QH?

Probability that Card52 is Spades given that Card3 is QH?

13/51

Tractable Probabilistic Inference

Which property makes inference tractable?

Traditional belief: Independence

What's going on here?

Tractable Probabilistic Inference

Which property makes inference tractable?

Traditional belief: Independence

What's going on here?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

⇒ Lifted Inference

Let us automate this:

- Relational model

Lifted probabilistic inference algorithm

Playing Cards Revisited

Let us automate this:


```
\forall p, \exists c, Card(p,c)

\forall c, \exists p, Card(p,c)

\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'
```

Playing Cards Revisited

Let us automate this:

$$\forall p, \exists c, Card(p,c)$$

 $\forall c, \exists p, Card(p,c)$
 $\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'$

#SAT =
$$\sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^k (-1)^{2n-k-l} = n!$$

Playing Cards Revisited

Let us automate this:

$$\forall p, \exists c, Card(p,c)$$

 $\forall c, \exists p, Card(p,c)$
 $\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'$

#SAT =
$$\sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^k (-1)^{2n-k-l} = n!$$

Computed in time polynomial in n

Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT

$$\triangle$$
 = (Rain \Rightarrow Cloudy)

[Valiant] #P-hard, even for 2CNF

Model = solution to first-order logic formula Δ

```
∆ = ∀d (Rain(d)

⇒ Cloudy(d))
```

Days = {Monday}

Model = solution to first-order logic formula Δ

Days = {Monday}

Rain(M)	Cloudy(M)	Model?
Т	Т	Yes
Т	F	No
F	Т	Yes
F	F	Yes
		+

FOMC = 3

Model = solution to first-order logic formula Δ

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday Tuesday}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Ţ	F	F	T	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula \triangle

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday Tuesday}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Т	F	F	Т	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2. $\triangle = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle$$
 = \forall y, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

3.
$$\Delta = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y$$
, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

$$\Delta$$
 = true

 \rightarrow 4ⁿ models

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y$$
, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

$$\Delta$$
 = true

 \rightarrow 4ⁿ models

$$\rightarrow$$
 3ⁿ + 4ⁿ models

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y$$
, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

$$\Delta$$
 = true

 \rightarrow 4ⁿ models

$$\rightarrow$$
 3ⁿ + 4ⁿ models

1.
$$\triangle = \forall x,y$$
, (ParentOf(x,y) \land Female(x) \Rightarrow MotherOf(x,y))

D = {n people}

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

$$\rightarrow$$
 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y$$
, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

$$\Delta$$
 = true

 \rightarrow 4ⁿ models

$$\rightarrow$$
 3ⁿ + 4ⁿ models

1.
$$\Delta = \forall x,y$$
, (ParentOf(x,y) \land Female(x) \Rightarrow MotherOf(x,y))

D = {n people}

$$\rightarrow$$
 (3ⁿ + 4ⁿ)ⁿ models

 $\triangle = \forall x, y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

k

If we know precisely who smokes, and there are *k* smokers?

Database:


```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:


```
\triangle = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:


```
\triangle = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 k k k n-k

```
\triangle = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:


```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 Smokes Friends Smokes

k

n-k

n-k

```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:


```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0

...


```
\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are k smokers?

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

• In total...

 $\Delta = \forall x,y, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

• In total...

$$\rightarrow \sum_{k=0}^{n} \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Statistical Relational Models

- An MLN = set of constraints $(\mathbf{w}, \Gamma(\mathbf{x}))$
- Weight of a world = product of w, for all rules (w, Γ(x)) and groundings Γ(a) that hold in the world

 $P_{MLN}(Q) = [sum of weights of models of Q] / Z$

Applications: large KBs, e.g. DeepDive

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT

 $\Delta = (Rain \Rightarrow Cloudy)$

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Assembly language for probabilistic reasoning and learning

Model = solution to first-order logic formula Δ

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday **Tuesday**}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	T	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Т	F	F	T	No
F	Т	F	T	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula Δ

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday **Tuesday**}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Т	F	F	Т	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula Δ

$$\Delta$$
 = ∀d (Rain(d)
⇒ Cloudy(d))

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
Т	Т	Т	Т	Yes	1 * 1 * 3 * 3 = 9
Т	F	Т	Т	No	0
F	Т	Т	Т	Yes	2 * 1* 3 * 3 = 18
F	F	Т	Т	Yes	2 * 1 * 5 * 3 = 30
Т	Т	Т	F	No	0
Т	F	Т	F	No	0
F	Т	Т	F	No	0
F	F	Т	F	No	0
Т	Т	F	Т	Yes	1 * 2 * 3 * 3 = 18
Т	F	F	Т	No	0
F	Т	F	Т	Yes	2 * 2 * 3 * 3 = 36
F	F	F	Т	Yes	2 * 2 * 5 * 3 = 60
Т	Т	F	F	Yes	1 * 2 * 3 * 5 = 30
Т	F	F	F	No	0
F	Т	F	F	Yes	2 * 2 * 3 * 5 = 60
F	F	F	F	Yes	2 * 2 * 5 * 5 = 100

Model = solution to first-order logic formula Δ

```
\Delta = ∀d (Rain(d)

⇒ Cloudy(d))
```

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
Т	Т	Т	Т	Yes	1 * 1 * 3 * 3 = 9
Т	F	Т	Т	No	0
F	Т	Т	Т	Yes	2 * 1* 3 * 3 = 18
F	F	Т	Т	Yes	2 * 1 * 5 * 3 = 30
Т	Т	Т	F	No	0
Т	F	Т	F	No	0
F	Т	Т	F	No	0
F	F	Т	F	No	0
Т	Т	F	Т	Yes	1 * 2 * 3 * 3 = 18
Т	F	F	Т	No	0
F	Т	F	T	Yes	2 * 2 * 3 * 3 = 36
F	F	F	Т	Yes	2 * 2 * 5 * 3 = 60
Т	Т	F	F	Yes	1 * 2 * 3 * 5 = 30
T	F	F	F	No	0
F	Т	F	F	Yes	2 * 2 * 3 * 5 = 60
F	F	F	F	Yes	2 * 2 * 5 * 5 = 100

Assembly language for high-level probabilistic reasoning and learning

Symmetric WFOMC

Def. A weighted vocabulary is (R, w), where

- $-R = (R_1, R_2, ..., R_k) = relational vocabulary$
- $w = (w_1, w_2, ..., w_k) = weights$
- Fix an FO formula Q, domain of size n
- The weight of a ground tuple t in R_i is w_i

This talk: complexity of FOMC / WFOMC(Q, n)

- Data complexity: fixed Q, input n / and w
- Combined complexity: input (Q, n) / and w

```
Q = \forall x \exists y \ R(x,y)
FOMC(Q,n) = (2^{n}-1)^{n} \quad WOMC(Q,n,w_{R}) = ((1+w_{R})^{n}-1)^{n}
```

Computable in PTIME in n

$$Q = \forall x \exists y \ R(x,y)$$

$$FOMC(Q,n) = (2^{n}-1)^{n} \quad WOMC(Q,n,w_{R}) = ((1+w_{R})^{n}-1)^{n}$$

$$Q = \exists x \exists y [R(x) \land S(x,y) \land T(y)]$$

$$\mathsf{FOMC}(Q, \mathbf{n}) = \sum_{i=0, n} \sum_{j=0, n} \binom{n}{i} \binom{n}{j} 2^{(\mathbf{n}-i)(\mathbf{n}-j)} \left(2^{ij} - 1\right)$$

Computable in PTIME in n

$$Q = \forall x \exists y \ R(x,y)$$

$$FOMC(Q,n) = (2^{n}-1)^{n} \quad WOMC(Q,n,w_{R}) = ((1+w_{R})^{n}-1)^{n}$$

$$Q = \exists x \exists y [R(x) \land S(x,y) \land T(y)]$$

$$\mathsf{FOMC}(Q, \mathbf{n}) = \sum_{i=0, n} \sum_{j=0, n} \binom{n}{i} \binom{n}{j} 2^{(\mathbf{n}-i)(\mathbf{n}-j)} \left(2^{ij} - 1\right)$$

$$\mathsf{WFOMC}(Q, n, w_R, w_S, w_T) =$$

$$\sum_{i=0}^{n} \sum_{n=0}^{\infty} {n \choose i} {n \choose j} w_R^i w_T^j (1+w_S)^{(n-i)(n-j)} \left((1+w_S)^{ij} - 1 \right)$$

Computable in PTIME in n

 $Q = \exists x \exists y \exists z [R(x,y) \land S(y,z) \land T(z,x)]$

Can we compute FOMC(Q, n) in PTIME?

Open problem...

Conjecture FOMC(Q, n) not computable in PTIME in n

From MLN to WFOMC

```
MLN:

\Rightarrow MLN':

\infty Smoker(x) \Rightarrow Person(x)

\sim Smoker(x) \vee ~Friend(x,y) \vee Smoker(y)

\infty Smoker(x) \Rightarrow Person(x)

\infty R(x,y) \Leftrightarrow ~Smoker(x) \vee ~Friend(x,y) \vee Smoker(y)

\infty R(x,y)
```

```
Theorem P_{MLN}(Q) = P(Q \mid hard constraints in MLN')
= WFOMC(Q \land MLN') / WFOMC(MLN')
```

R is a symmetric relation

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Probabilistic Databases

Weights or probabilities given explicitly, for each tuple

Examples: Knowledge Vault, Nell, Yago

Dichotomy theorem:
 for any query in UCQ/FO(∃,∧,∨) (or
 FO(∀,∧,∨), asymmetric WFOMC is in
 PTIME or #P-hard.

Motivation 2: Probabilistic Databases

Probabilistic database D:

Х	у	Р
a1	b1	p ₁
a1	b2	p ₂
a2	b2	p_3

Motivation 2: Probabilistic Databases

Probabilistic database D:

Х	у	Р
a1	b1	p ₁
a1	b2	p_2
a2	b2	p_3

Possible worlds semantics:

Motivation 2: Probabilistic Databases

Probabilistic database D:

X	у	Р
a1	b1	p ₁
a1	b2	p ₂
a2	b2	p ₃

Possible worlds semantics:

Motivation 2: Probabilistic Databases

Probabilistic database D:

X	у	P
a1	b1	p ₁
a1	b2	p ₂
a2	b2	p_3

Possible worlds semantics:

$$Q = \exists x \exists y \ R(x) \land S(x,y)$$

$$P(Q) =$$

Х	Ρ	
a_1	p ₁	
a_2	p ₂	
a_3	p_3	

Х	у	Р
a ₁	b ₁	q_1
a ₁	b_2	q_2
a_2	b_3	q_3
a_2	b ₄	q_4
a_2	b ₅	q ₅

$$Q = \exists x \exists y \ R(x) \land S(x,y)$$

$$P(Q) = 1-(1-q_1)^*(1-q_2)$$

R x P a_1 p_1 a_2 p_2 a_3 p_3

S	X	у	Р
	a_1	b ₁	q_1
1	a_1	b_2	q_2
	a_2	b_3	q_3
	a_2	b_4	q_4
	a_2	b ₅	q ₅

$$Q = \exists x \exists y \ R(x) \land S(x,y)$$

$$P(Q) = p_1^*[1-(1-q_1)^*(1-q_2)]$$

$$Q = \exists x \exists y \ R(x) \land S(x,y)$$

$$P(Q) = p_1^*[1-(1-q_1)^*(1-q_2)]$$

$$1-(1-q_3)^*(1-q_4)^*(1-q_5)$$

J

$$Q = \exists x \exists y \ R(x) \land S(x,y)$$

$$P(Q) = p_1^*[1-(1-q_1)^*(1-q_2)]$$

$$p_2^*[1-(1-q_3)^*(1-q_4)^*(1-q_5)]$$

$$Q = \exists x \exists y \ R(x) \land S(x,y)$$

$$P(Q) = 1 - \{1 - p_1^*[1 - (1 - q_1)^*(1 - q_2)] \}^*$$

$$\{1 - p_2^*[1 - (1 - q_3)^*(1 - q_4)^*(1 - q_5)] \}$$

J

$$Q = \exists x \exists y \ R(x) \land S(x,y)$$

$$P(Q) = 1 - \{1 - p_1^*[1 - (1 - q_1)^*(1 - q_2)] \}^*$$

$$\{1 - p_2^*[1 - (1 - q_3)^*(1 - q_4)^*(1 - q_5)] \}$$

$$Q = \exists x \exists y \ R(x) \land S(x,y)$$

 Y_1

 Y_2

 Y_3

 Y_4

 Y_5

An Example

$$P(Q) = 1 - \{1 - p_1^*[1 - (1 - q_1)^*(1 - q_2)] \}^*$$

$$\{1 - p_2^*[1 - (1 - q_3)^*(1 - q_4)^*(1 - q_5)] \}$$

Probabilistic Database Inference

Preprocess Q (omitted from this talk; see book [S.'2011])

•
$$P(Q1 \land Q2) = P(Q1)P(Q2)$$

 $P(Q1 \lor Q2) = 1 - (1 - P(Q1))(1 - P(Q2))$
Independent join / union

•
$$P(\exists z \ Q) = 1 - \prod_{a \in Domain} (1 - P(Q[a/z]))$$

 $P(\forall z \ Q) = \prod_{a \in Domain} P(Q[a/z])$

Independent project

•
$$P(Q1 \land Q2) = P(Q1) + P(Q2) - P(Q1 \lor Q2)$$
 Inclusion/
 $P(Q1 \lor Q2) = P(Q1) + P(Q2) - P(Q1 \land Q2)$ exclusion

If rules succeed, WFOMC(Q,n) in PTIME; else, #P-hard

#P-hardness no longer holds for symmetric WFOMC

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Motivation: 0/1 Laws

Definition. $\mu_n(Q)$ = fraction of all structures over a domain of size n that are models of Q

$$\mu_n(Q) = FOMC(Q, n) / FOMC(TRUE, n)$$

Theorem.

For every Q in FO, $\lim_{n\to\infty} \mu_n(Q) = 0$ or 1

Example:
$$Q = \forall x \exists y \ R(x,y);$$

FOMC(Q,n) = $(2^n-1)^n$
 $\mu_n(Q) = (2^n-1)^n / 2^{n/2} \rightarrow 1$

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_n(Q)$, then compute the limit. [Fagin communicated to us that he tried this first]

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Class FO²

• FO² = FO restricted to two variables

 Intuition: SQL queries that have a plan where all temp tables have arity ≤ 2

"The graph has a path of length 10":

 $\exists x \exists y (R(x,y) \land \exists x (R(y,x) \land \exists y (R(x,y) \land ...)))$

Main Positive Results

Data complexity:

- for any formula Q in FO², WFOMC(Q, n) is in PTIME [see NIPS'11, KR'13]
- for any γ-acyclic conjunctive query w/o self-joins Q, WFOMC(Q, n) is in PTIME

Main Negative Results

Data complexity:

- There exists an FO formula Q s.t. symmetric FOMC(Q, n) is #P₁ hard
- There exists Q in FO³ s.t. FOMC(Q, n) is #P₁ hard
- There exists a conjunctive query Q s.t. symmetric WFOMC(Q, n) is #P₁ hard
- There exists a positive clause Q w.o. '=' s.t. symmetric WFOMC(Q, n) is #P₁ hard

Combined complexity:

FOMC(Q, n) is #P-hard

Review: #P₁

- #P₁ = class of functions in #P over a unary input alphabet
- Valiant 1979: there exists #P₁ complete problems
- Bertoni, Goldwurm, Sabatini 1988: counting strings of a given length in some CFG is #P₁ complete
- Goldberg: "no natural combinatorial problems known to be #P₁ complete"

Main Result 1

Theorem 1. There exists an FO³ sentence Q s.t. FOMC(Q,n) is #P₁-hard

Proof

- Step 1. Construct a Turing Machine U s.t.
 - U is in #P₁ and runs in linear time in n
 - U computes a #P₁ –hard function
- Step 2. Construct an FO³ sentence Q s.t. FOMC(Q,n) / n! = U(n)

Main Result 2

Theorem 2 There exists a Conjunctive Query Q s.t. WFOMC(Q,n) is #P₁-hard

- Note: the decision problem is trivial (Q has a model iff n > 0)
- Unweighted Model Counting for CQ: open

Proof Start with a formula Q that is #P₁-hard for FOMC, and transform it to a CQ in five steps (next)

Start: Q s.t. FOMC(Q, n) is $\#P_1$ -hard

Step 1: Remove 3

Rewrite
$$Q = \forall x \exists y \psi(x,y)$$
 to $Q' = \forall x \forall y (\neg \psi(x,y) \lor \neg A(x))$

where A = new symbol with weight w = -1

Claim: WFOMC(Q, n) = WFOMC(Q', n) Proof Consider a model for Q', and a constant x=a

- If ∃b ψ(a,b), then A(a)=false; contributes w=1
- Otherwise, A(a) can be either true or false, contributing either w=1 or w=-1, and 1-1=0.

```
Q = \forall^* ..., WFOMC(Q, n) is #P<sub>1</sub>-hard
```

Step 2: Remove Negation

Transform Q to Q' w/o negation s.t.
 WFOMC(Q, n) = WFOMC(Q', n)

Similarly to step 1 and omitted

 $Q = \forall^*[positive], WFOMC(Q, n) is #P₁-hard$

Start: Q s.t. FOMC(Q, n) is #P₁-hard

Step 3: Remove "="

Rewrite Q to Q' as follows:

- Add new binary symbol E with weight w
- Define: $Q' = Q[E/"="] \land (\forall x E(x,x))$

Claim: WFOMC(Q,n) computable using oracle for WFOMC(Q', n) (coefficient of wⁿ in polynomial WFOMC(Q', n)

```
Q = \forall^*[positive, w/o =], WFOMC(Q, n) is #P<sub>1</sub>-hard
```

Start: Q s.t. FOMC(Q, n) is $\#P_1$ -hard

Step 4: To UCQ

• Write $Q = \forall^* (C_1 \land C_2 \land ...)$ where each C_i is a positive clause

The dual Q' = ∃* (C₁, V C₂, V ...)
 is a UCQ

UCQ \mathbb{Q} , WFOMC(\mathbb{Q} , \mathbb{n}) is $\#P_1$ -hard

Step 5: from UCQ to CQ

- UCQ: $Q = C_1 \vee C_2 \vee ... \vee C_k$
- $P(Q) = + (-1)^S P(\Lambda_{i \in S} C_i) +$
- 2^{k} -1 CQs $P(Q_1)$, $P(Q_2)$, ... $P(Q_{2^{k}-1})$
- 1 CQ (using fresh copies of symbols): P(Q'₁Q'₂...Q'_{2^k-1}) =P(Q'₁)P(Q'₂)...P(Q'_{2^k-1})

$$CQ Q' (=Q'_1Q'_2...Q'_{2^k-1})$$
 WFOMC(Q', n) is #P₁-hard

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_n(Q)$, then compute the limit. [Fagin communicated to us that he tried this first]

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_n(\mathbb{Q})$, then compute the limit. [Fagin communicated to us that he tried this first]

A: unlikely when FOMC(Q,n) is #P₁-hard

Discussion

Fagin (1974) restated:

- NP = ∃SO
 (Fagin's classical characterization of NP)
- 2. $NP_1 = \{Spec(\Phi) \mid \Phi \in FO\}$ in tally notation (less well known!)

We show: $\#P_1$ corresponds to $\{FOMC(Q,n) \mid Q \text{ in } FO\}$

Discussion

- Convergence of AI/ML/DB/theory
- First-order model counting is a basic problem that touches all these areas
- Under-investigated
- Hardness proofs are more difficult than for #P

Open problems:

- New algorithm for symmetric model counting
- New hardness reduction techniques

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

The Decision Problem

- Counting problem "count the number of XXX s.t..."
- Decision problem
 "does there exists an XXX s.t. ...?"
- #3SAT and 3SAT:
 - counting is #P-complete, decision is NP-hard
- #2SAT and 2SAT:
 - counting is #P-hard, decision is in PTIME

Counting/Decision Problems for FO

 Counting: given Q,n, count the number of models of Q over a domain of size n

 Decision: given Q,n, does there exists a model of Q over a domain of size n?

- Data complexity: fix Q, input = n
- Combined complexity: input = Q, n

The Spectrum

Definition. [Scholz 1952] Spec(\mathbb{Q})= {n | \mathbb{Q} has a model over domain [n]}

```
Example: Q says "(D, +, *, 0, 1) is a field":

Spec(Q) = \{p^k \mid p \text{ prime, } k \ge 1\}
```

Spectra studied intensively for over 50 years

The FO decision problem is precisely spectrum membership

The Data Complexity

Suppose n is given in binary representation:

Jones&Selman'72: spectra = NETIME

$$\mathsf{NETIME} = \bigcup_{c \geq 0} \mathsf{NTIME}(2^{cn}) \qquad \mathsf{NEXPTIME} = \bigcup_{c \geq 0} \mathsf{NTIME}(2^{c^n})$$

Suppose n is given in unary representation:

Fagin'74: spectra = NP₁

Combined Complexity

Consider the combined complexity for FO^2 "given \mathbb{Q} , \mathbb{n} , check if $\mathbb{n} \in Spec(\mathbb{Q})$ "

We prove its complexity:

- NP-complete for FO²,
- PSPACE-complete for FO

Thanks!