利用 FP-Growth 算法对"电影推荐数据集"进行处理,给出处理结果,给出结论描述。

电影数据集关联度分析

胡成成——41724260——通信 1701

随着时代的变迁,科技的发展,看电影也成了人们生活的一部分。该篇报告对 2017 年之前的上映过的电影及其分类的数据集进行处理,旨在通过关联度分析对电影的一些类别联系进行研究,并对各类电影类别占比分析,对未来电影上映类别的预测。现在通过 FP-Growth 算法对这样的数据进行分析,通过支持度和置信度得到关联规则,通过对关联规则的分析处理得到我们要的结论。并在对电影数据集的处理中,通过实际操作处理,实践学习 FP-Growth 算法的关联度处理过程以及一般的流程。

1. 数据集引入分析:

第一列:电影的 id 编号,第二列,电影名称及其年份,第三列,电影所属的类别:包括 Adventure (冒险), Animation (动画), Children (儿童), Comedy (喜剧), Fantasy (幻想)等等类型。数据一共9125条。

4	A	В	C
1	movieId	title	genres
2	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
3	2	Jumanji (1995)	Adventure Children Fantasy
4	3	Grumpier Old Men (1995)	Comedy Romance
5	4	Waiting to Exhale (1995)	Comedy Drama Romance
6	5	Father of the Bride Part II (1995)	Comedy
7	6	Heat (1995)	Action Crime Thriller
8	7	Sabrina (1995)	Comedy Romance
9	8	Tom and Huck (1995)	Adventure Children
10	9	Sudden Death (1995)	Action
11	10	GoldenEye (1995)	Action Adventure Thriller
12	11	American President, The (1995)	Comedy Drama Romance
13	12	Dracula: Dead and Loving It (1995)	Comedy Horror
14	13	Balto (1995)	Adventure Animation Children
15	14	Nixon (1995)	Drama
16	15	Cutthroat Island (1995)	Action Adventure Romance
17	16	Casino (1995)	Crime Drama
18	17	Sense and Sensibility (1995)	Drama Romance
19	18	Four Rooms (1995)	Comedy
20	19	Ace Ventura: When Nature Calls (1995)	Comedy
21	20	Money Train (1995)	Action Comedy Crime Drama Thriller
22	21	Get Shorty (1995)	Comedy Crime Thriller
23	22	Copycat (1995)	Crime Drama Horror Mystery Thriller
24	23	Assassins (1995)	Action Crime Thriller
25	24	Powder (1995)	Drama Sci-Fi
26	25	Leaving Lac Vegas (1995)	DramalRomance

2. 数据分析流程

3. 数据集预处理

	A
1	Λ
2	Adventure Animation Children Comedy Fantasy
3	Adventure Children Fantasy
4	Comedy Romance
5	Comedy Drama Romance
6	Comedy
7	Action Crime Thriller
8	Comedy Romance
9	Adventure Children
10	Action
11	Action Adventure Thriller
12	Comedy Drama Romance
13	Comedy Horror
14	Adventure Animation Children
15	Drama
16	Action Adventure Romance
17	Crime Drama
18	Drama Romance
19	Comedy
20	Comedy
21	Action Comedy Crime Drama Thriller
22	Comedy Crime Thriller
	Crime Drama Horror Mystery Thriller
24	Action Crime Thriller
	Drama Sci-Fi
26	Drama Damanaa

4. 数据处理

4.1 相关参数与标准设定

由于关联度分析需要对支持度和置信度分析处理,在这里我们对最小支持度根据数据集实际情况进行设定。对置信度进行分区段展示分析。

▶ 最小支持度: 100

▶ 置信度 conf (P(A&B)/P(A))的区间与 A 对 B 关联的等级划分:

置信度	conf<0. 4	0. 4 <conf<0. 55<="" th=""><th>0.55<conf<0.7< th=""><th>Conf>0. 7</th></conf<0.7<></th></conf<0.>	0.55 <conf<0.7< th=""><th>Conf>0. 7</th></conf<0.7<>	Conf>0. 7
关联等级	很弱	较弱	较强	很强

▶ 支持度 support (sup)>100, 这里用数量等价表示:

支持度	Sup<500	500 <sup<1000< th=""><th>1000<sup<2000< th=""><th>sup>2000</th></sup<2000<></th></sup<1000<>	1000 <sup<2000< th=""><th>sup>2000</th></sup<2000<>	sup>2000
数量等级	较低	中等	较高	很高

4.2 根据设定的等级对不同置信区间筛选

对程序(见附录)中的 min_conf 与 max_conf 进行调整得出四种情况下的存在关联的个数和规则。

置信度	conf<0.4	0. 4 <conf<0. 55<="" th=""><th>0. 55<conf<0. 7<="" th=""><th>Conf>0. 7</th></conf<0.></th></conf<0.>	0. 55 <conf<0. 7<="" th=""><th>Conf>0. 7</th></conf<0.>	Conf>0. 7
关联个数	167	28	13	2

▶ 相关程序块代码:

```
#关联规则和置信度
i = 0
min_conf=0.55
max_conf=0.7
association_rules = []
for item_set in frequent_all_list:
    for conclusion in frequent_all_list:
         if conclusion > item set:
              confidence
float(frequent_all_key_value_set[str(list(conclusion))]
frequent_all_key_value_set[str(list(item_set))])
              if confidence > min_conf and confidence < max_conf:
                   i += 1
                   association_rules.append([[item_set, conclusion-item_set],
confidence])
print(i)
print(association_rules)
```

➤ 对 conf>0.7 的数据关联规则做展示:

[[[{frozenset({'War'})},{frozenset({'Drama'})}],0.771117166212534],
[[{frozenset({'Adventure'}),frozenset({'Thriller'})},{frozenset({'Action'})}],0.7849
462365591398]]

▶ 对 0.55<conf<0.7部分关联规则展示:

[[[{frozenset({'Animation'})}, {frozenset({'Children'})}], 0.5525727069351231], [[{frozenset({'Animation'})}, frozenset({'Comedy'})}, {frozenset({'Children'})}], 0.6256410256410256], [[{frozenset({'Animation'})}, frozenset({'Adventure'})}, {frozenset({'Children'})}], 0.6291079812206573], [[{frozenset({'Mystery'})}, {frozenset({'Thriller'})}], 0.6058931860036832], [[{frozenset({'Mystery'})}, frozenset({'Crime'})}, {frozenset({'Thriller'})}], 0.6826347305389222],......]]

▶ 其他由于数据过多不做展示,只做后续统计分析。

4.3 根据对置信度处理的结果初步分析

根据置信度定义可知在 2017 年之前的电影中,如果一部电影是战争片(War),有将近 77%的概率是戏剧片(Drama)。如果一部电影同时是冒险片(Adventure)和恐怖片(Thriller),有将近 78%的概率是动作片(Action)。也就是得知一部电影是战争片,它极大可能也就是部戏剧片。

同理,随着置信度区间的降低,这种关联关系也会减弱。

4.4 得出关联个数与置信度之间的关系直方图

可以看出大多数电影类型间没有必然的关联,少数电影类型之间存在着强烈的关联,即上述分析的战争片(War)大多是喜剧片(Drama)一样。而正是这些少数的有很强关联性的数据也正是我们需要的。

关联个数与置信度直方图

4.5 根据设定的等级对不同的支持度区间筛选

对程序(见附录)中的支持度区间判断哪些类型的电影上映最多,对数量做一个排序分析。

支持度	100 <sup<500< th=""><th>500<sup<1000< th=""><th>1000<sup<2000< th=""><th>sup>2000</th></sup<2000<></th></sup<1000<></th></sup<500<>	500 <sup<1000< th=""><th>1000<sup<2000< th=""><th>sup>2000</th></sup<2000<></th></sup<1000<>	1000 <sup<2000< th=""><th>sup>2000</th></sup<2000<>	sup>2000
数量个数	67	13	5	2

> 支持度相关代码块:

#支持度分析 set_min_support=100 set_max_support=500 j=0 for fre_key,fre_value in frequent_all_key_value_set.items(): if fre_value>set_min_support and fre_value<set_max_support: print(fre_key,fre_value) j+=1 print(j)

▶ 对 sup>2000 的数量级进行分析输出结果:

[frozenset({'Comedy'})] 3315 [frozenset({'Drama'})] 4365 ➤ 对 1000<sup<2000 的数量级进行分析输出结果:

[frozenset({'Crime'})] 1100
[frozenset({'Adventure'})] 1117
[frozenset({'Romance'})] 1545
[frozenset({'Action'})] 1545
[frozenset({'Thriller'})] 1729

> 对 1000>sup 的数量级输出在这里不做展示。

4.6 根据对支持度处理的结果初步分析

根据支持度定义可知在 2017 年之前的电影中,有 4365 部,将近一半的电影 (数据总量 9125)是戏剧(Drama);有 3315 部电影是喜剧(Comedy)。同时,犯罪(Crime),冒险(Adventure),浪漫(Romance),动作(Action),恐怖(Thriller)电影也较多,都达到了一千多部。

4.7得出支持度与数量个数之间的关系直方图

可以看出大多数电影都是喜剧(Comedy)和戏剧(Drama),其次是犯罪(Crime),冒险(Adventure),浪漫(Romance),动作(Action),恐怖(Thriller)。

数量个数与支持度直方图

5. 分析数据

5.1 支持度分析

▶ 对于数据支持度,首先我们知道了大多数电影类型是喜剧(Comedy)和

戏剧(Drama)。但我们知道这两种类型是很大的范畴,所以他的支持度很高是可以理解的。

- ▶ 其次,是犯罪(Crime),冒险(Adventure),浪漫(Romance),动作(Action),恐怖(Thriller)这几种类型的电影,这些类型在我们日常生活确实很多见,其中恐怖片 1729 部,占据这一阶段的最高值。
- ▶ 再往下看,我们根据下面程序输出结果,在500到1000这一个区段,有神秘(Mystery),儿童(Children),幻想(Fantasy),科幻(Sci-Fi)等等类型的也都有,且数量也不少。

[frozenset({'Mystery'})] 543
[frozenset({'Children'})] 583

[frozenset({'Fantasy'})] 654

[frozenset({'Sci-Fi'})] 792

[frozenset({'Horror'})] 877

[frozenset({'Crime'}), frozenset({'Thriller'})] 528

[frozenset({'Drama'}), frozenset({'Crime'})] 617

[frozenset({'Adventure'}), frozenset({'Action'})] 532

[frozenset({'Romance'}), frozenset({'Comedy'})] 822

[frozenset({'Romance'}), frozenset({'Drama'})] 924

[frozenset({'Action'}), frozenset({'Thriller'})] 574

[frozenset({'Drama'}), frozenset({'Thriller'})] 795

[frozenset({'Comedy'}), frozenset({'Drama'})] 949

➤ 最后其他的数量小于 500, 相对于 9000+的数据已经很小了, 这里就不详细分析。

5.2 关联规则分析。

▶ 首先我们可以看到战争片(War)有将近77%的概率是戏剧片(Drama)。

冒险片(Adventure)和恐怖片(Thriller)有将近78%的概率是动作片(Action)。也就是当我们看到一部电影是战争片,它很大可能是戏剧。

- ➤ 其次,一部动画(Animation)有较高概率是儿童片(Children);以及同时是动画(Animation)和戏剧(Comedy)有较高概率是儿童片(Children);神秘(Mystery)有较高概率是恐怖片(Thriller)等等。
- ➤ 对于置信度小于 0.4 的,像战争片(War)就不太可能是动作片 (Action)等等,如下摘取了部分数据结果。

- 5.3 根据 2017 年以前的电影类型来预测之后的电影大概会那些类型较多。
- ▶ 根据支持的再分析,可以得到前几的电影类型占比直方图:

类型占比直方图

根据直方图的分布,可大致预测之后的电影也可能按着样的比例上映。

6. 结论

- ▶ 在整个电影数据集共9125条电影类别数据进行处理,从中得出喜剧和喜剧的支持度最高,大多数电影都是这两个类型。
- ▶ 同时,一部电影是战争片很强的概率是戏剧片。一部同时是恐怖和冒险

7. 附录:程序源码

```
import pandas as pd
import numpy as np
data1 = pd.read_csv('movies.csv', header=None, error_bad_lines=False)
data1.head()
data = []
with open('movies.csv') as f:
     for line in f.readlines():
         line = line.strip()
         if line:
              row_list = line.split('|')
              data.append(row_list)
len(data)
class Node:
    def __init__(self, name, count, parent):
         self.name = name
         self.count = count
         self.link = None
         self.parent = parent
         self.children = {}
    def increment(self, num):
         self.count += num
     def display(self, lens=1):
         print(' '* lens, self.name, '', self.count)
         for child in self.children.values():
              child.display(lens + 1)
class FPTree:
    def __init__(self, transactions, min_support, root_value, count, flag):
         self.flag = flag
         self.root = Node(root_value, count, None)
         self.data = transactions
         self.data_type = type(self.data)
         self.min_support = min_support
         self.frequent = self.find_frequent_items()
         self.headerTable = {v: [self.frequent[v], None] for v in self.frequent}
     def find_frequent_items(self):
         from collections import defaultdict
         freq1 = defaultdict(int)
```

```
# 统计列表中各个元素的出现频次
        if self.data_type == list and self.flag == 'fptree':
             flatten_list = [element for item in self.data for element in item]
             for value in flatten_list:
                 freq1[frozenset([value])] += 1
        # 条件 FP 树
        elif self.data_type == dict and self.flag == 'cfptree':
             for item in self.data:
                 for element in item:
                      if type(element) == frozenset:
                          freq1[element] += self.data[item]
                      else:
                          freq1[frozenset([element])] += self.data[item]
        # 过滤掉非频繁项
        return {v: freq1[v] for v in freq1 if freq1[v] \geq self.min support}
    def build_tree(self):
        root = Node('null', 1, None)
        sorted_headertable = [v[0] for v in sorted(self.frequent.items(), key=lambda kv: (-kv[1],
list(kv[0])[0]))]
        # 将业务数据库中的每条记录插入树中, 更新频繁项表
        for record in self.data:
             # 找到业务数据纪录中的频繁项
             sorted_items = [item for item in sorted_headertable if list(item)[0] in record]
             # print u'将排序后的频繁项集放入 FP 树中:'
             # print sorted_items
             # print "
             node = self.root
             while len(sorted_items) > 0:
                 first_value = sorted_items[0]
                 # print u' 开始插入节点 ', first_value
                 if first_value in node.children:
                                   当前节点的子节点中包含节点 ', first_value
                      # print u'
                      if self.data_type == list:
                          node.children[first_value].increment(1)
                      elif self.data_type == dict:
                          node.children[first_value].increment(self.data[record])
                 else:
                      # 创建新的子节点
                      # print u'
                                   创建新节点 ', first_value
                      if self.data_type == list:
                          node.children[first_value] = Node(list(first_value)[0], 1, node)
                      elif self.data_type == dict:
                          node.children[first_value] = Node(first_value, self.data[record], node)
```

```
# 更新频繁项表
                      if self.headerTable[first_value][1] == None:
                                        在频繁项表中,添加对应链表的第一个节点',first_value
                          # print u'
                          self.headerTable[first_value][1] = node.children[first_value]
                      else:
                          # print u'
                                       添加到频繁项表对应链表的末尾'
                          currentNode = self.headerTable[first_value][1]
                          # 遍历连表,确保在表的尾部插入新的节点指针
                          while currentNode.link != None:
                               currentNode = currentNode.link
                          currentNode.link = node.children[first value]
                 sorted_items.pop(0)
                 node = node.children[first_value]
    def get_tree(self):
        return self.root
    def get_frequent_items(self):
        return self.frequent
    def get_headertable(self):
        return self.headerTable
    def get_data(self):
        return self.data
    def show(self, depth=1):
        print(' ' * depth, self.root.name, ' ', self.root.count)
        for node in self.root.children.values():
             node.display(depth + 1)
min_support = 100
fptree = FPTree(data, min_support, 'null', 1, 'fptree')
freq1 = fptree.get_frequent_items()
def find_prefix(node):
    cpb = {}
    suffix_list = []
    while node != None:
        suffix_list.append(node)
        node = node.link
    for item in suffix_list:
        path = ∏
        num = item.count
        while item.parent != None:
             path.append(item.name)
             item = item.parent
        cpb[frozenset(path[1:])] = num
    return cpb
frequent_all_key_value_set = {}
```

```
def mine_tree(frequent_items, headerTable, min_support, frequent, item_list):
    candidates = [v[0] for v in sorted(frequent_items.items(), key=lambda kv: (-kv[1], list(kv[0])[0]))]
    global frequent_all_key_value_set
    for item in candidates[::-1]:
         freq_set = frequent.copy()
         freq_set.add(item)
         freq set new = set()
         for i in freq_set:
             freq_set_new.add(i)
         fre_newlist = list(freq_set_new)
         frequent_all_list.append(freq_set_new)
         b = str(fre_newlist)
         frequent_all_key_value_set[b] = frequent_items[item]
         cpbs = find_prefix(headerTable[item][1])
         # print( 'its cpbs: ', cpbs)
         # 创建条件 FP 树
         cTree = FPTree(cpbs, min_support, 'root', 1, 'cfptree')
         cTree.build_tree()
         if len(cTree.get_headertable()) != 0:
             # print ('condtional tree for: ', freq_set)
             # cTree.show(1)
             mine_tree(cTree.get_frequent_items(), cTree.get_headertable(), min_support,
                                                                                                  freq_set,
item list)
frequent_item = []
frequent = set()
root_node = fptree.get_tree()
headerable = fptree.get_headertable()
freq_items = fptree.get_frequent_items()
mine_tree(freq_items, headerable, min_support, frequent, frequent_item)
#支持度分析
set_min_support=100
set_max_support=500
j=0
for fre_key,fre_value in frequent_all_key_value_set.items():
    if fre_value>set_min_support and fre_value<set_max_support:
         print(fre_key,fre_value)
         j+=1
print(j)
#关联规则和置信度
i = 0
#最小置信
min conf=0.0
```

```
max_conf=0.4
association_rules = []
for item_set in frequent_all_list:
    #print(item_set)
    for conclusion in frequent_all_list:
         #print(conclusion)
         if conclusion > item_set:
              confidence
                                               float(frequent_all_key_value_set[str(list(conclusion))]
frequent_all_key_value_set[str(list(item_set))])
              #print(confidence)
              #print(conclusion)
              if confidence > min_conf and confidence < max_conf:
                   i += 1
                   association_rules.append([[item_set, conclusion-item_set], confidence])
                   #print('conclusion:', conclusion-item_set, 'condition:', item_set, 'confidence:', confidence)
print(i)
print(association_rules)
```