Exame de Biomecânica: Época Normal 31/01/2023 Licenciatura em Engenharia Biomédica (2022/2023) Duração: 2h30

NOME		N^o	
------	--	-------	--

- RESPONDA A UM MÁXIMO DE 10 ALÍNEAS TENDO EM CONTA QUE SE RESPONDER PARA 16 VALORES OU MAIS, TEM DE RESPONDER OBRIGATORIAMENTE A DUAS ALÍNEAS DE CADA PERGUNTA.
- EM CADA ALÍNEA, APENAS UMA DAS OPÇÕES ESTÁ CORRECTA.
- ASSINALE NESTA FOLHA A RESPOSTA CORRECTA COM UMA CRUZ.
- Cada resposta correcta é cotada com 2,00 valores.
- CADA RESPOSTA ERRADA É COTADA COM -0,50 VALORES.
- RESPOSTAS EM BRANCO OU COM MAIS DO QUE UMA OPÇÃO ASSINALADA SÃO COTADAS COM 0 VALORES.
- Considere a aceleração da gravidade igual a $9.8~\text{m}\,\text{s}^{-2}$.

FOLHA DE RESPOSTAS

Davison	A16			Respost	a		Vara ão
Pergunta	Alínea	A	В	С	D	E	Versão
	a)	X					
1)	b)			X			1
	c)				X		
	a)				X		
2)	b)		X				1
	c)	X					
	a)	X					
3)	b)				X		1
	c)		X				
	a)			X			
4)	b)		X				1
	c)				X		

31/01/2023

1. Considere o sistema de forças da figura, em que \vec{F}_1 e \vec{F}_2 têm a direcção do eixo dos zz, e a força \vec{F}_3 se encontra no plano xy, e tem linha de acção coincidente com a diagonal (representada na figura) da base do paralelepípedo, que tem dimensões Δx igual a 30 cm e Δy e Δz iguais a 20 cm.

a) Se as forças \vec{F}_1 e \vec{F}_2 tiverem intensidades iguais a 100 N, qual o momento do binário por elas constituído?

A)	-20 î (N m)	B)	$-10\hat{i}\;(\mathrm{N}\mathrm{m})$
C)	$-30 \hat{i} (Nm)$	D)	$-40 \hat{i} (Nm)$
E)	Nenhuma das anteriores		

b) Se o momento do binário constituído pelas forças \vec{F}_1 e \vec{F}_2 for igual a $-50\,\hat{i}\,(\mathrm{N\,m})$, e a intensidade da força \vec{F}_3 for igual a 154,08 N, qual das seguintes equações representa o eixo central de momentos, considerando a sua origem no ponto O?

A)	y = 0.67 x ; $z = -18 cm$	B)	y = -0.67 x ; $z = -18 cm$
C)	y = 0.67 x ; $z = 18 cm$	D)	y = -0.67 x ; $z = 18 cm$
E)	Nenhuma das anteriores		

c) Se as forças \vec{F}_1 , \vec{F}_2 e \vec{F}_3 tiverem todas a mesma intensidade, igual 50 N, qual a intensidade do vector momento resultante do sistema de forças em relação ao ponto A?

A)	58,5 N m	B)	39,0 N m
C)	78,0 N m	D)	19,5 N m
E)	Nenhuma das anteriores		

2. Considere o sistema da figura, que se encontra em equilibrio com a barra na horizontal. A barra tem comprimento L igual a 1,5 m e massa M igual a 3 kg, e encontra-se na horizontal, apoiada no ponto A por um pino e no ponto C por um cabo que passa por uma roldana ideal, na extremidade da qual se encontra suspenso um corpo de massa m_2 . No ponto B da barra, que dista 1 m do ponto A, encontra-se suspenso um corpo com massa m_1 igual a 4 kg.

a) Se a barra for homogénea e a massa m_2 for igual a 6,48 kg, qual o valor do ângulo θ ?

A)	45°	B)	35°
C)	50°	D)	40°
E)	Nenhuma das anteriores		

b) Se a barra não for homogénea, a massa m_2 for igual à fornecida na alínea a), e o ângulo θ for igual a 42,37°, a que distância do ponto A se encontra o centro de massa da barra?

A)	95 cm	B)	85 cm
C)	65 cm	D)	55 cm
E)	Nenhuma das anteriores		

c) Nas condições da alínea b), qual a intensidade da reacção que o apoio A exerce sobre a barra?

<u>A</u>)	5,46 kgf	B)	5,31 kgf
C)	7,00 kgf	D)	3,83 kgf
E)	Nenhuma das anteriores		

3. Para um dado plano de análise, os tensores de tensão e de deformação de uma dado material isotrópico e linearmente elástico são dados por

$$\sigma = \begin{bmatrix} 150 & 50 & 0 \\ 50 & -50 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$$

$$\varepsilon = \begin{bmatrix} 917 & 361 & 0 \\ 361 & -528 & 0 \\ 0 & 0 & -167 \end{bmatrix} \times 10^{-6}$$

31/01/2023

Duração: 2h30

a) Qual dos seguintes diagramas representa o estado de tensão descrito pelo tensor de tensões?

b) Qual o módulo de elasticidade do material?

A)	200 GPa	B)	210 GPa
C)	190 GPa	D)	180 GPa
E)	Nenhuma das anteriores		

c) Quais as tensões axiais mínima e máxima a que o material está sujeito?

A)	$\begin{cases} \sigma_{min.} = -161,8 \text{ MPa} \\ \sigma_{max.} = +62 \text{ MPa} \end{cases}$	B)	$\begin{cases} \sigma_{min.} = -61.8 \text{ MPa} \\ \sigma_{max.} = +161.8 \text{ MPa} \end{cases}$
C)	$\begin{cases} \sigma_{min.} = -161,8 \text{ MPa} \\ \sigma_{max.} = -62 \text{ MPa} \end{cases}$	D)	$\begin{cases} \sigma_{min.} = +61,8 \text{ MPa} \\ \sigma_{max.} = +161,8 \text{ MPa} \end{cases}$
E)	Nenhuma das anteriores		

4. Considere uma barra horizontal de massa desprezável, com comprimento L, altura h=4 cm e espessura b=2 cm. A barra encontra-se suportada por um apoio duplo em A, e por uma corda em B, que faz um ângulo $\theta=30^\circ$ com a horizontal. Sobre a barra encontra-se aplicada a carga distribuída representada na figura, com $p_1(x)=200\,x\,\big[\mathrm{N\,m^{-1}}\big]$ e $p_2(x)=p_1(L/2)\,\big[\mathrm{N\,m^{-1}}\big]$. Para ambas as distribuições de carga, a variável x é a distância ao ponto A.

a) Se o comprimento da barra for $L=4\,\mathrm{m}$, qual das opções seguintes representa a intensidade da tensão T?

A)	1833 N	B)	2200 N	C)	1467 N	D)	2567 N
E) Nenhuma das anteriores							

b) Se $L=2\,\mathrm{m}$, $T=367\,\mathrm{N}$ e $A_y=117\,\mathrm{N}$, qual das seguinte opções representa a tensão de corte máxima (em módulo) a uma distância de 0,5 m do apoio A?

A)	300 kPa	B)	173 kPa	C)	215 kPa	D)	258 kPa
E) Nenhuma das anteriores							

c) Nas condições da alínea b), qual das seguinte opções representa o momento flector a uma distância de 0,5 m do apoio *A*?

A)	94,7 N m	B)	67,8 N m	C)	81,3 N m	D)	54,3 N m
E)	Nenhuma das anteriores						