Written Part

1. Add the following unsigned binary numbers (show the carry and overflow bits)

2. Subtract the following unsigned binary numbers (show the borrow and underflow bits). Do not convert to two's-complement.

- → Answer is negative thus cannot be computed with unsigned numbers
- 3. Convert the following decimal numbers to binary numbers (represent each as a 16-bit number):

1639:	Remainder	
1639/2 = 819	1	~LSB
819/2 = 409	1	
409/2 = 204	1	
204/2 = 102	0	
102/2 = 51	0	
51/2 = 25	1	
25/2 = 12	1	
12/2 = 6	0	
6/2 = 3	0	
3/2 = 1	1	
1/2 = 0	1	\sim MSB

 $1639 \rightarrow 0000011001100111$

[^] Overflow Bit

48265:	<u>Remainder</u>	
48265/2 = 24132	1	~LSB
24132/2 = 12066	0	
12066/2 = 6033	0	
6033/2 = 3016	1	
3016/2 = 1508	0	
1508/2 = 754	0	
754/2 = 377	0	
377/2 = 188	1	
188/2 = 94	0	
94/2 = 47	0	
47/2 = 23	1	
23/2 = 11	1	
11/2 = 5	1	
5/2 = 2	1	
2/2 = 1	0	
1/2 = 0	1	\sim MSB

48265 → 1011110010001001

1010:	Remainder	
1010/2 = 505	0	\sim LSB
505/2 = 252	1	
252/2 = 126	0	
126/2 = 63	0	
63/2 = 31	0	
31/2 = 15	1	
15/2 = 7	1	
7/2 = 3	1	
3/2 = 1	1	
1/2 = 0	1	$\sim MSB$

$\underline{1010 \Rightarrow 00000011111110010}$

4. Convert the following unsigned binary numbers to decimal numbers:

Number 1:
$$10000001\ 01011110$$

 $\Rightarrow 2^{15} + 2^{8} + 2^{6} + 2^{4} + 2^{3} + 2^{2} + 2^{1} = 33118$

$$\rightarrow$$
 2^10 + 2^9 + 2^6 + 2^4 + 2^1 + 2^0 = 1619

5. Convert the following decimal numbers into 9-bit binary numbers (with sign-magnitude):

48:	Remainder	
48/2 = 24	0	~LSB
24/2 = 12	0	
12/2 = 6	0	
6/2 = 3	0	
3/2 = 1	1	
1/2 = 0	1	\sim MSB

$48 \rightarrow 000110000$

-126:	Remainder	
126/2 = 63	0	~LSB
63/2 = 31	1	
31/2 = 15	1	
15/2 = 7	1	
7/2 = 3	1	
3/2 = 1	1	
1/2 = 0	1	~ MSB

<u>-126 → 101111110</u>

-34:	Remainder	
34/2 = 17	0	~LSB
17/2 = 8	1	
8/2 = 4	0	
4/2 = 2	0	
2/2 = 1	0	
1/2 = 0	1	\sim MSB

-34 **→** 100100010

6. Convert the following 9-bit binary numbers (with sign-magnitude) to decimal numbers:

010011110:

$$\Rightarrow$$
 2^7 + 2^4 + 2^3 + 2^2 + 2^1 = 158

100110111:

$$\rightarrow$$
 2^5 + 2^4 + 2^2 + 2^1 + 2^0 = -55

110101010:

$$\rightarrow$$
 $2^{7} + 2^{5} + 2^{3} + 2^{1} = -170$

7. Convert the following decimal numbers into 9-bit binary numbers in 1's complement form:

56:	Remainder	
56/2 = 28	0	~LSB
28/2 = 14	0	
14/2 = 7	0	
7/2 = 3	1	
3/2 = 1	1	
1/2 = 0	1	~ MSB

56 **→** 000111000

-145:Remainder
$$145/2 = 72$$
1~LSB $72/2 = 36$ 0 $36/2 = 18$ 0 $18/2 = 9$ 0 $9/2 = 4$ 1 $4/2 = 2$ 0 $2/2 = 1$ 0 $1/2 = 0$ 1~ MSB

$$145 = 010010001$$

$$-145 \rightarrow 101101110$$

52: Remainder

$$52/2 = 26$$
 $28/2 = 13$
 $14/2 = 6$
 $7/2 = 3$
 $3/2 = 1$
 $1/2 = 0$

Remainder

0

~LSB

0

1

 0

The second of the second

$$52 = 000110100$$
 $-52 \rightarrow 111001011$

8. Convert the following 8-bit binary numbers in 1's complement to decimal numbers:

01010011:

$$\rightarrow$$
 $2^6 + 2^4 + 2^1 + 2^0 = 83$

$$11010010$$
: = -(00101101)

$$\rightarrow$$
 -1 * (2^5 + 2^3 + 2^2 + 2^0) = -45

$$11110111: = -(00001000)$$

$$\rightarrow$$
 $-1 * 2^3 = -8$

9. Convert the following decimal numbers into 9-bit binary numbers in 2's complement form:

196:	<u>Remainder</u>	
196/2 = 98	0	~LSB
98/2 = 49	0	
49/2 = 24	1	
24/2 = 12	0	
12/2 = 6	0	
6/2 = 3	0	
3/2 = 1	1	
1/2 = 0	1	\sim MSB

196 **→** 011000100

-17:	<u>Remainder</u>	
17/2 = 8	1	~LSB
8/2 = 4	0	
4/2 = 2	0	
2/2 = 1	0	
1/2 = 0	1	~ MSB

$$17 = 000010001$$
 $-17 \rightarrow 111101111$

-95:	Remainder	
95/2 = 47	1	~LSB
47/2 = 23	1	
23/2 = 11	1	
11/2 = 5	1	
5/2 = 2	1	
2/2 = 1	0	
1/2 = 0	1	\sim MSB

$$95 = 001011111$$

$$-95 \rightarrow 110100001$$

10. Convert the following 8-bit binary numbers in 2's complement to decimal numbers:

01010101:

$$\Rightarrow$$
 $2^6 + 2^4 + 2^2 + 2^0 = 85$

$$11010000$$
: = -((00101111) + 1) = -(00110000)

$$\rightarrow$$
 $-1*(2^5 + 2^4) = -48$