Projeto 03: Equações de Onda - II - Análise de Fourier

7600073 - Física Estatística Computacional - 2024/0113/04/2024

Prof. Dr. Francisco Castilho Alcaraz Guilherme Santana de Almeida (12694668)

Resumo

Nesse projeto usaremos os dois códigos anteriores para simular tanto uma corda fixa, quanto uma corda solta e, captar o Espectro de Potências através da Transformada de Fourier num determinado ponto.

Introdução

Dada a equação de onda

$$\frac{\partial^2 Y}{\partial t^2} = c^2 \frac{\partial^2 Y}{\partial x^2} \tag{1}$$

Podemos ter como solução algo do tipo: y(x,t) = F(x-ct) + G(x+ct), ou seja, a solução pode ser

$$y(x,t) = \sin(kx + \omega t) + \sin(kx - \omega t) = 2\sin(kx)\cos(wt)$$
(2)

onde $c = \frac{\omega}{k}$ e $k = \frac{2\pi}{\lambda}$. Ao transformarmos o sinal temporal de uma onda propagando numa corda num determinado ponto x, que escolheremos como sendo $x = \frac{L}{4}$, teremos as componentes de Fourier (Y) do sinal, reais e imaginárias. Calculando a quantidade $P(f) = \text{Re}(Y(f))^2 + \text{Im}(Y(f))^2$ teremos todo o espectro do nosso sinal, e a essa quantidade denominamos o nome Espectro de Potências P(f). Nesse espectro, queremos observar picos de intensidade correspondentes às frequências que compõem o sinal, o que depende da física da nossa corda.

Com extremidades presas e para qualquer tempo t, temos y(0,t)=y(L,t)=0. Logo, $\sin{(0)}=\sin{(kL)}=0$. O que implica em $f_n=\frac{nc}{2L}$. Essas são as frequências dos modos normais da nossa corda, ou seja, qualquer sinal pode ser decomposto por uma combinação dessas frequências. Nesse caso, para L=1 e c=300, as frequências que queremos observar serão $f_n=150n$ para n=1,2,3,...

Já para a extremidade em x=L estar solta, nos modos normais a condição de contorno muda para $\sin{(kL)}=1$. E chegamos à conclusão: $f_n=\frac{(n-1/2)c}{2L}=150n-75$, para n=1,2,3,...

Item (a)

Figura 1: Espectro de potência para $x_0 = \frac{L}{2}$, com extremidade fixa.

Com $x_0 = \frac{L}{2}$ temos o espectro acima em azul com os 20 primeiros modos normais em laranja, e logo de cara percebe-se que faltam metade das frequências esperadas, as pares para ser mais preciso.

Isto ocorre pelo seguinte: temos lá na equação 2 um seno que indica a contribuição da parte espacial da nossa onda. Se verificarmos em $x_0 = L/2$ perceberemos que sin $(kL/2) = \sin(\pi n/2) = 0$ para todo n par, o que implica que existe um nó nesse ponto, então as frequências pares não contribuem para o espectro.

Item (b)

Utilizando o mesmo raciocínio do item anterior, podemos tentar prever quais frequências se omitirão, resolvendo a equação: $\sin(kL/4) = \sin(\pi n/4) = 0$. Com isso, chegamos na conclusão de que para todo n múltiplo de 4, o sinal zera. Vamos verificar no espectro abaixo.

Figura 2: Espectro de potência para $x_0 = \frac{L}{4}$, com extremidade fixa.

E como podemos ver, realmente os múltiplos de 4 estão ausentes.

Item (c)

Realizamos a mesma análise agora no ponto inicial $x_0 = \frac{L}{3}$. E com o mesmo raciocínio, podemos afirmar que as frequências ausentes serão aquelas múltiplas de 3.

Figura 3: Espectro de potência para $x_0 = \frac{L}{3}$, com extremidade fixa.

Opa, não é exatamente o que observamos aqui. Os múltiplos de 3 realmente estão ausentes, mas os de 4 aparentemente também estão. Além do padrão de amplitudes ser o mesmo daquele para $x_0 = \frac{L}{4}$.

Acontece que, por estarmos em cima do ponto $x = \frac{L}{4}$, ele também se torna um nó, afinal estamos analisando a série dada pela função y(L/4,t), na qual o termo seno é justamente o cálculo que fizemos no item anterior $(\sin(kL/4) = \sin(\pi n/4) = 0$ para todo n múltiplo de 4). Não podíamos observar esse comportamento devido à coincidência dos denominadores dos dois itens anteriores serem 2 e 4.

Então agora sabemos que o ponto inicial será considerado um nó e as frequências múltiplas do denominador p em L/p estarão ausentes no nosso espectro, independentemente de qual ponto da corda fazemos nossa análise, e ainda, esse ponto também será um nó que seguirá a mesma lógica.

Item (d)

Agora que temos uma melhor compreensão dos espectros, para $x_0 = \frac{L}{20}$ podemos prever que tanto os múltiplos de 20 quanto os de 4 estarão ausentes no espectro seguinte. Como 20 mod 4 = 0, então este espectro será chato, pois terá o mesmo comportamento do item (b). A única diferença considerável serão as amplitudes.

Figura 4: Espectro de potência para $x_0 = \frac{L}{20}$, com extremidade fixa.

Algo importante de notar antes de partir para o próximo item, é que algumas frequências tem amplitudes muito maiores que as demais. Ainda nesse item, alguns desses picos quase não aparecem na imagem, como a primeira e a penúltima, mas nosso raciocínio continua válido.

Item (e)

Como precisávamos mudar as condições de contorno do programa anterior para impor a ponta em x=L solta, dentro do repositório está um GIF mostrando o novo comportamento do pacote gaussiano inicial. A diferença é basicamente a não mudança de sinal na extremidade solta, e a troca de sinal, como visto e explicado antes, na extremidade fixa.

Para uma extremidade solta em L, vimos que as frequências esperadas serão $f_n = \frac{(n-1/2)c}{2L}$, ou seja, $f_n = 150n-75$ para n=1,2,... Para qualquer x_0 , precisamos resolver a equação $\sin\left(\frac{\pi(n-1/2)x_0}{L}\right) = 0$. Acontece que essa equação não possui solução para nenhum do x_0 escolhidos, entre n=1,...,20. Logo, podemos esperar um espectro cheio, sem frequências ausentes.

Para resolver o problema das frequências com amplitudes pequenas, usamos a escala logarítmica para melhor visualização.

Figura 5: Espectro de potência para $x_0 = \frac{L}{2}$, com extremidade solta.

Figura 6: Espectro de potência para $x_0 = \frac{L}{4}$, com extremidade solta.

Figura 7: Espectro de potência para $x_0 = \frac{L}{3}$, com extremidade solta.

Figura 8: Espectro de potência para $x_0 = \frac{L}{20}$, com extremidade solta.

Códigos

```
TMPLTCTT NONE
       REAL(8) , PARAMETER :: r = 1, dx = 0.01d0, L = 1d0, c = 300d0, PI = 10*ATAN(1d0)
      REAL(8) , PARAMETER :: sig = L/3000, dt = r*dx/c

REAL(8) , ALLOCATABLE :: yn(:,:), psi(:)

COMPLEX(8), ALLOCATABLE :: p(:)
      OPEN(UNIT=1, FILE="item-d-espectro-de-potencia.out", STATUS="UNKNOWN")
     Yn(2,:) = Yn(1,:)

Psi(0) = Yn(2,xi)
        END DO
        Yn(1,:) = Yn(2,:)
Yn(2,:) = Yn(3,:)
Psi(j) = Yn(3,xi)
      END DO
      ALLOCATE(P(N/2-1))
        DO k=1, N
P(j) = P(j) + psi(k)*ZEXP(2*PI*i*(j-1)*(k-1)/N)
  7 !! Ampl | It | Freq f=w/2pi | Parte Real | Parte Imag |
3 WRITE(1,*) P(j), j, (j-1)/(N*Dt), REALPART(P(j)), IMAGPART(P(j)),
REALPART(P(j))**2 + IMAGPART(P(j))**2
      END DO
      OPEN(UNIT=1, FILE="modos-normais.out", STATUS="UNKNOWN")
79 END PROGRAM
```

Figura 9: Código para simular uma corda com extremidades fixas e realizar a Transformada de Fourier de um sinal em y(L/4,t).

```
! TYPE(gpf) :: gp
REAL(8) , PARAMETER :: r = 1, dx = 0.01d0, L = 1d0, c = 300d0, PI = 40d0*ATAN(1d0)
REAL(0) , PARAMETER :: sig = L/30d0, dt = r*dx/c
REAL(0) , ALLOCATABLE :: Yn(:,:), Psi(:), xaxis(:)
COMPLEX(0), ALLOCATABLE :: P(:)
        COMPLEX(8), ALLOCATABLE :: P(:)
COMPLEX(8) :: i = (8d8,1d8)

REAL(8) :: x8

INTEGER :: j, k, M = int(L/dx), N=2008, xi = int(L/(4*dx))
        :! ::em a
%0 = L/200
OPEN(UNIT=1, FILE="item-a-espectro-de-potencia-ponta-solta.out", STATUS="UNKNOWN")
      D0 j=0, M

Yn(1,j) = EXP(-((j*dx-x0)**2)/sig**2)

END D0

Yn(2,:) = Yn(1,:)

Psi(0) = Yn(2,xi)
            END DO

Yn(3,M) = Yn(3,M-1)

Yn(1,:) = Yn(2,:)

Yn(2,:) = Yn(3,:)

Psi(j) = Yn(3,xi)
    !! Ampl | It | Freq f=w/2pi | Parte Real | Parte Imag |
WRITE(1,*) P(j), j, (j-1)/(N*Dt), REALPART(P(j)), IMAGPART(P(j)),
REALPART(P(j))**2 + IMAGPART(P(j))**2
        END DO
CLOSE(1)
        DO j=1, 20
WRITE(1,*) (j-1d0/2d0)*c/(2*L), 1000
       END DO
CLOSE(1)
96 END PROGRAM
```

Figura 10: Código para simular uma corda gom extremidade solta em x = L e realizar a Transformada de Fourier de um sinal em y(L/4, t).

Referências

[1] Nicholas J. Giordano e Hisao Nakanishi. *Computational Physics*. 2ª ed. Upper Saddle River (NJ): Prentice Hall, 2006.