Electromagnetic Induction

 \vec{B} does <u>not</u> produce I $\frac{\mathrm{d}\Phi_{\mathrm{B}}}{\mathrm{d}t}$ produces I

Ohm's Law

$$\varepsilon_{\rm ind}=i_{\rm ind}R$$

Faraday & Lenz's Law $arepsilon_{ m ind} = -N rac{{ m d}\Phi_{ m B}}{{ m d}t}$

$$\varepsilon_{\mathrm{ind}} = -N \frac{\mathrm{d}\Phi_{\mathrm{B}}}{\mathrm{d}t}$$

The direction of $i_{\rm ind}$ creates a $\vec{\rm B}_{\rm ind}$ that tries to $\underline{\rm oppose}$ the change in $\Phi_{\rm B}$

Direction: Thumb points towards $\vec{\mathrm{B}}_{\mathrm{ind}}$, Fingers curl around i_{ind}

Motional EMF

Changing Φ_{B} through motion (v) produces a **motional** $arepsilon_{\mathrm{ind}}$

$$\underbrace{\varepsilon_{\mathrm{ind}}}_{V} = \underbrace{v\mathbf{B}}_{E} \underbrace{L}_{d}$$

Similar to: V = Ed