Insper

Robótica Computacional

Captura de Imagens

Segmentação e Morfologia

Segmentação - Aplicação

Identificação em visão computacional consiste em reconhecer e realçar carateriais especificas da imagem, removendo ruido e otimizando a interpretação.

Aplicações

- Imagens Medicas
- Automação do Industrial
- Automação do Checkout
- Agricultura
- Realidade Aumentada
- Vigilância

Transformação Morfológica

Em algumas ocasiões, não conseguimos ou não é possível filtrar completamente as partes de interesse da imagem, sobrando **ruídos**.

Transformação morfológica são técnicas que ajudam a limpar o ruido melhorando as máscaras.

Exemplo Relevante:

Morphological Transformations

Componentes conexos

Após a **segmentação** da imagem por mascaramento, podemos observar que os pixels de interesse podem formar um ou mais **grupos conectados** entre si, ou seja, conjuntos de pixels que se comunicam através de algum caminho que passa apenas por pixels de interesse (brancos).

Podemos utilizar bibliotecas do OpenCV para encontrar **o polígono que contorna esses componentes** (detectar contornos) e então desenhar com na imagem ao lado.

Convolução e Filtragem

Convolução em 2D

Convolução em Imagem

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

kernel

Exemplo de realização de convolução:

https://www.youtube.com/watch?v= iZ3Q7VXiGI

	0							
		186	167	150	154	152	182	
		210	190	186	162	150	145	
Ī		222	201	186	179	140	133	
		215	199	190	188	186	150	

Imagem de entrada

84	121			
131	189			
		•••		

Blur

Original

$$\frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Filtro Prewitt

Original

Prewitt-x

Kernel Prewitt para a direção horizontal (Prewitt-x)

$$\begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

Kernel Prewitt para a direção vertical (Prewitt-y)

$$\begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Prewitt-y

Insper

Modelo de Câmera

Modelo de Câmera PinHole

Modelo de câmera

Ponto de Fuga

Ponto de Fuga

Atividades Capítulo 5

- •Atividade 01 Salvando Eventos na ROS
- •<u>Atividade 02 Refinamento de Máscaras</u> <u>de Segmentação</u>
- •<u>Atividade 03 Convolução e Filtragem de Imagens</u>
- •<u>Atividade 04 Detecção de Retas e</u> <u>Círculos</u>
- •<u>Atividade 05 Exemplo de Resolução de Exercício</u>