Многошаговая модель биржевых торгов с элементами переговоров: расширение на случай счетного множества состояний

Артем Пьяных*

Mосковский университет им. М.В. Ломоносова Факультет вычислительной математики и кибернетики artem.pyanykh@gmail.com

9 апреля 2016 г.

Аннотация

Рассматривается упрощенная модель финансового рынка, на котором два игрока ведут торги за однотипные акции в течение n шагов. Игрок 1 (инсайдер) информирован о настоящей ликвидной цене акции, которая может принимать любое значение из \mathbb{Z}_+ . В то же время Игрок 2 знает только вероятностное распределение p цены акции. На каждом шаге торгов игроки делают целочисленные ставки. Игрок, предложивший бо́льшую ставку покупает у другого акцию по цене, равной выпуклой комбинации предложенных ставок. Получено решение игры неограниченной продолжительности для распределений p с конечной дисперсией.

Ключевые слова: многошаговые игры, асимметричная информация, инсайдерская торговля.

1 Введение

В данной работе рассматривается упрощенная модель финансового рынка, на котором два игрока ведут торги за однотипные акции на протяжении $n\leqslant\infty$ шагов. Перед началом торгов случайный ход определяет цену акции $s\in S$ на весь период торгов в соответствии с вероятностным распределением

^{*}Исследование выполнено при финансовой поддержке РФФИ в рамках научного проект №16-01-00353а.

 $p=(p_x,\ x\in S)$. Выбранная цена сообщается Игроку 1 (инсайдеру). Игрок 2 при этом знает только вероятностное распределение p и не осведомлен о настоящем значении цены. На каждом шаге торгов игроки одновременно и независимо назначают некоторую цену за акцию. Игрок, сделавший большую ставку, покупает акцию у другого; если ставки равны, сделки не происходит. Задачей игроков является максимизация стоимости итогового портфеля, состоящего из некоторого числа акций и суммы денег. Данное описание считается известным обоим игрокам.

Модель, в которой цена акции может принимать только значения 0 и m, была рассмотрена в [1]. Задача сводится к анализу антагонистической повторяющейся игры с неполной информацией, как описано в [2]. В рамках данной модели неосведомленный Игрок 2 использует историю ставок Игрока 1 для пересчета апостериорных вероятностей значения цены акции. Остюда, задачей Игрока 1 является поиск стратегии, которая позволит ему контролировать последовательность апостериорных вероятностей таким образом, чтобы Игрок 2 как можно дольше не мог догадаться о настоящем значении цены. В [1] показано, что последовательность верхних значений n-шаговых игр ограничена, что позволило определить игру с бесконечным количеством шагов, для которой были найдены оптимальные стратегии игроков и значение. Для игр с конечным количеством шагов аналитические решения получены только в ограниченном количестве случаев: в [3] получено решение одношаговой игры при произвольном натуральном значения m; в [4] получено решение nшаговых игр при $m \leqslant 3$. Аналитическое решение игр с конечным количеством шагов в общем случае остается открытой проблемой. В работе [5] рассмотрено обобщение модели на случай, когда цена акции может принимать любое значение $s \in S = \mathbb{Z}_+$. Показано, что если $\mathbb{D}p < \infty$, то последовательность верхних значений игры ограничена, что снова позволяет определить игру с бесконечным количеством шагов, для которой авторами найдено решение.

В работах [1, 5] сделка осуществляется по цене, равной наибольшей предложенной ставке. Можно, однако, рассмотреть другой механизм, предложенный в [6], и положить цену сделки равной выпуклой комбинации предложенных ставок с коэффициентом $\beta \in [0,1]$, т.е. если игроками были сделаны ставки $p_1 \neq p_2$, то акция будет продана по цене $\beta \max(p_1,p_2) + (1-\beta) \min(p_1,p_2)$. Фактически в [1, 5] коэффициент β равен 1. Обобщение модели с двумя возможными значениями цены на случай произвольного β было проведено в [7]. В данной работе обобщение на случай произвольного β проведено для модели со счетным множеством возможных значений цены.

2 Постановка задачи

Пусть множество состояний рынка $S=\mathbb{Z}_+$. Перед началом игры случай выбирает $s\in S$ в соответствии с вероятностным распределением $p=(p_x,\ x\in S)$. На каждом шаге игры $t=\overline{1,n},\ n\leqslant\infty$ игроки делают ставки $i_t\in I,\ j_t\in J,$ где $I=J=\mathbb{Z}_+$. Выплата Игроку 1 в состоянии s равна

$$a^{s}(i_{t}, j_{t}) = \begin{cases} (1 - \beta)i_{t} + \beta j_{t} - s, & i_{t} < j_{t}, \\ 0, & i_{t} = j_{t}, \\ s - \beta i_{t} - (1 - \beta)j_{t}, & i_{t} > j_{t}. \end{cases}$$

Обозначим через $\Delta(X)$ множество вероятностных распределений над множеством X.

Определение 1. Стратегией Игрока 1 является последовательность ходов $\sigma = (\sigma_1, \dots, \sigma_n)$, где $\sigma_t : S \times I^{t-1} \to \Delta(I)$.

Определение 2. Стратегией Игрока 2 является последовательность ходов $\tau = (\tau_1, \dots, \tau_n)$, где $\tau_t : I^{t-1} \to \Delta(J)$.

То есть, Игрок 1 на каждом шаге игры рандомизирует свои действия в зависимости от состояния рынка s и истории ставок. Игрок 2 в свою очередь, не имея информации о состоянии рынка s, опирается только на историю ставок инсайдера.

Список литературы

- [1] Domansky V. Repeated games with asymmetric information and random price fluctuations at finance markets // International Journal of Game Theory. 2007. V. 36(2). P. 241–257.
- [2] Aumann R.J., Maschler M.B. Repeated Games with Incomplete Information. The MIT Press, Cambridge, London.
- [3] Сандомирская М.С., Доманский В.К. *Решение одношаговой игры биржевых торгов с неполной информацией* // Математическая теория игр и ее приложения. 2012. 4. №1. С. 32-54.
- [4] Крепс В.Л. Повторяющиеся игры, моделирующие биржевые торги, и возвратные последовательности // Известия РАН. Теория и системы управления. 2009. № 4. С. 109–120.

- [5] Доманский В.К., Крепс В.Л. Теоретико-игровая модель биржевых торгов: стратегические аспекты формирования цен на фондовых рынках // Журнал Новой экономической ассоциации. 2011. Вып. 11. С. 39—62.
- [6] Chatterjee K., Samuelson W. Bargaining under Incomplete Information // Operations Research. 1983. V. 31. N. 5. P. 835–851.
- [7] Пьяных А.И. *Многошаговая модель биржевых торгов с асимметричной информацией и элементами переговоров //* Вестн. Моск. ун-та. Сер.15. Вычисл. матем. и киберн. 2016. №1. С. 34—40.