

David Vargas Frutos

david.vargas@upm.es - dvargasfr@gmail.com

Centre for Automation and Robotics

Centro de Automática y Robótica Madrid, Spain

Antes de comenzar...

Descarga el material

http://bit.ly/cursoROS3pdf

http://bit.ly/chuletagazeboROS

Contenidos

- 1. Cheat Sheet
- 2. Breve historia
- 3. Gazebo Tutorials
- 4. Get Started
- 5. Build a World
- 6. Build a Robot
- 7. Connect to ROS

Cheat Sheet

MUNDOS

/usr/share/gazebo-7/worlds

IMÁGENES DE TEXTURAS

/usr/share/gazebo-7/media/materials/textures

SCRIPT DE TEXTURAS

/usr/share/gazebo-7/media/materials/scripts/gazebo.material

BASE DE DATOS LOCAL DE MODELOS

~/.gazebo/models

GAZEBO DESDE ROS

/opt/ros/kinetic/share/gazebo_ros/launch/empty_world.launch

GAZEBO DESDE CATKIN

~/catkin_ws/src/my_gazebo_package/launch/mygazebo.launch

~/catkin_ws/src/my_gazebo_package/worlds/mygazebo.world

Breve historia

History

Gazebo development began in the fall of 2002 at the University of Southern California. The original creators were Dr. Andrew Howard and his student Nate Koenig. The concept of a high-fidelity simulator stemmed from the need to simulate robots in outdoor environments under various conditions. As a complementary simulator to Stage, the name Gazebo was chosen as the closest structure to an outdoor stage. The name has stuck despite the fact that most users of Gazebo simulate indoor environments.

Over the years, Nate continued development of Gazebo while completing his PhD. In 2009, John Hsu, a Senior Research Engineer at Willow, integrated ROS and the PR2 into Gazebo, which has since become one the primary tools used in the ROS community. A few years later in the Spring of 2011, Willow Garage started providing financial support for the development of Gazebo. In 2012, Open Source Robotics Foundation (OSRF) spun out of Willow Garage and became the steward of the Gazebo project. After significant development effort by a team of talented individuals, OSRF used Gazebo to run the Virtual Robotics Challenge, a component in the DARPA Robotics Challenge, in July of 2013.

OSRF continues development of Gazebo with support from a diverse and active community. Stay tuned for more exciting developments related to robot simulation.

Open Source Robotics Foundation

Gazebo Tutorials

Tutoriales de Gazebo

http://gazebosim.org/tutorials

Gazebo Tutorials

Categorized

Stand-alone tutorials categorized by topic. Click on a topic to view the tutorials in that category.

Installation

Instructions to install Gazebo on all the plaforms suppor...

Model Editor

The following tutorials describe how to build and modify ...

Write a plugin

Plugins allow you to control models, sensors, world prope...

Using Math

Gazebo has a custom math library. These tutorials describ...

Web client (Gzweb)

Gzweb is a WebGL client for Gazebo. It lets you interact ...

Physics Library

A core component of Gazebo are the physics engines. These...

DRCSim

DARPA Robotics Challenge specific tutorials.

Get Started

Welcome to the Gazebo tutorials! This is a great place to...

Build a World

These tutorials describe how to create an environment

Plugins

The following tutorials describe how to use plugins that ...

User input

User input can take many forms, including interactions ${\sf fr...}$

Connect to ROS

ROS is a robot control framework. These tutorials describ...

Rendering Library

Gazebo's rendering library is used to generate sensor dat...

Scripting (javascript and NodeJs)

Gazebo scripting interface: NodeJS bindings for the Gazeb...

Build a Robot

The following tutorials describe how to build and modify \dots

Tools and utilities

Gazebo ships with many tools and utilities. These tutoria...

Sensors

A simulated sensor analyzes the environment and produces ...

Connect to Player

Player is a robot control framework. These tutorials desc...

Transport Library

Communication between the simulation server and client to...

Development

Customizing Gazebo is easy thanks to extensive documentat...

HAPTIX

The following are tutorials designed for...

Get Started

Categorized

Stand-alone tutorials categorized by topic. Click on a topic to view the tutorials in that category.

Installation

Instructions to install Gazebo on all the plaforms suppor...

Model Editor

The following tutorials describe how to build and modify ...

Write a plugin

Plugins allow you to control models, sensors, world prope...

Using Math

Gazebo has a custom math library. These tutorials describ...

Web client (Gzweb)

Gzweb is a WebGL client for Gazebo. It lets you interact

Physics Library

A core component of Gazebo are the physics engines. These...

DRCSim

DARPA Robotics Challenge specific tutorials.

Get Started

Welcome to the Gazebo tutorials! This is a great place to...

Build a World

These tutorials describe how to create an environment in \dots

Plugins

The following tutorials describe how to use plugins that \dots

User input

User input can take many forms, including interactions fr...

Connect to ROS

ROS is a robot control framework. These tutorials describ...

Rendering Library

Gazebo's rendering library is used to generate sensor dat...

Scripting (javascript and NodeJs)

Gazebo scripting interface: NodeJS bindings for the Gazeb...

Build a Robot

The following tutorials describe how to build and modify ...

Tools and utilities

Gazebo ships with many tools and utilities. These tutoria...

Sensors

A simulated sensor analyzes the environment and produces ...

Connect to Player

Player is a robot control framework. These tutorials desc...

Transport Library

Communication between the simulation server and client to...

Development

Customizing Gazebo is easy thanks to extensive documentat...

HAPTIX

The following are tutorials designed for...

STANDALONE

Mundos disponibles (archivos .world)

Ubicación

/usr/share/gazebo-7/worlds/

Modelos interesantes

gazebo worlds/cessna_demo.world gazebo worlds/everything.world gazebo worlds/mud.world gazebo worlds/pioneer2dx.world gazebo worlds/pr2.world gazebo worlds/robocup_3Dsim.world gazebo worlds/willowgarage.world

Get Started

STANDALONE

Modelos disponibles (archivos .sdf)

Ubicación

Base de datos <u>local</u> en ~/.gazebo/models
Base de datos <u>online</u> en <u>https://gazebosim.org/models/</u>

Variables de entorno

Para comprobar que se han inicializado las variables de entorno \$ env | grep GAZEBO

Build a World

Categorized

Stand-alone tutorials categorized by topic. Click on a topic to view the tutorials in that category.

Installation

Instructions to install Gazebo on all the plaforms suppor...

Model Editor

The following tutorials describe how to build and modify ...

Write a plugin

Plugins allow you to control models, sensors, world prope...

Using Math

Gazebo has a custom math library. These tutorials describ...

Web client (Gzweb)

Gzweb is a WebGL client for Gazebo. It lets you interact

Physics Library

A core component of Gazebo are the physics engines. These...

DRCSim

DARPA Robotics Challenge specific tutorials.

Get Started

Welcome to the Gazebo tutorials! This is a great place to... $% \label{eq:controller}%$

Build a World

These tutorials describe how to create an environment in ...

Plugins

The following tutorials describe how to use plugins that \dots

User input

User input can take many forms, including interactions fr...

Connect to ROS

ROS is a robot control framework. These tutorials describ...

Rendering Library

Gazebo's rendering library is used to generate sensor dat...

Scripting (javascript and NodeJs)

Gazebo scripting interface: NodeJS bindings for the Gazeb...

Build a Robot

The following tutorials describe how to build and modify ...

Tools and utilities

Gazebo ships with many tools and utilities. These tutoria...

Sensors

A simulated sensor analyzes the environment and produces ...

Connect to Player

Player is a robot control framework. These tutorials desc...

Transport Library

Communication between the simulation server and client to...

Development

Customizing Gazebo is easy thanks to extensive documentat...

HAPTIX

The following are tutorials designed for...

⊗ GAZEBO

Build a World

EDITAR LA ESCENA

Añadir modelos

Figuras simples (desde el editor)

Modelos de base de datos local/online (pestaña *Insert*)

Editar modelos

Translación

Rotación

Escalado

Eliminar modelos

Tecla Delete

Botón derecho – Delete

Guardar un mundo

File - Save World

File – Save World As

Categorized

Stand-alone tutorials categorized by topic. Click on a topic to view the tutorials in that category.

Installation

Instructions to install Gazebo on all the plaforms suppor...

Model Editor

The following tutorials describe how to build and modify ...

Write a plugin

Plugins allow you to control models, sensors, world prope...

Using Math

Gazebo has a custom math library. These tutorials describ...

Web client (Gzweb)

Gzweb is a WebGL client for Gazebo. It lets you interact

Physics Library

A core component of Gazebo are the physics engines. These...

DRCSim

DARPA Robotics Challenge specific tutorials.

Get Started

Welcome to the Gazebo tutorials! This is a great place to...

Build a World

These tutorials describe how to create an environment in \dots

Plugins

The following tutorials describe how to use plugins that \dots

User input

User input can take many forms, including interactions fr...

Connect to ROS

ROS is a robot control framework. These tutorials describ...

Rendering Library

Gazebo's rendering library is used to generate sensor dat...

Scripting (javascript and NodeJs)

Gazebo scripting interface: NodeJS bindings for the Gazeb...

Build a Robot

The following tutorials describe how to build and modify ...

Tools and utilities

Gazebo ships with many tools and utilities. These tutoria...

Sensors

A simulated sensor analyzes the environment and produces ...

Connect to Player

Player is a robot control framework. These tutorials desc...

Transport Library

Communication between the simulation server and client to...

Development

Customizing Gazebo is easy thanks to extensive documentat...

HAPTIX

The following are tutorials designed for...

Antes de continuar...

Repositorio software

https://bitbucket.org/dvargasfr/

... CONSULTA EL CÓDIGO PROPORCIONADO ...

COMPONENTES DE UN MODELO SDF

Links

Propiedades físicas de un objeto del modelo (Collision, Visual, Inertial, Sensor).

Joints

Conector entre dos o más Links.

Plugins

Código que realiza el control del modelo.

ESTRUCTURA DE LOS MODELOS

model.config

Nombre, versión, autor, descripción

model.sdf

Parámetros del modelo en formato SDF (Simulator Description Format)

```
<?xml version='1.0'?>
<sdf version='1.4'>
    <model name="my_robot">
    </model>
</sdf>
```

CREANDO UN ROBOT MÓVIL

Crear el modelo en la base de datos local

\$ mkdir -p ~/.gazebo/models/my_robot

Crear el archivo de configuración del modelo

\$ gedit ~/.gazebo/models/my_robot/model.cofig

\$ gedit ~/.gazebo/models/my_robot/model.sdf

AÑADIR TEXTURAS

```
Imágenes de texturas en:
          /usr/share/gazebo-7/media/materials/textures
Para copiar imágenes en este directorio hay que tener permisos de admin:
          $ sudo cp kinetic.png /usr/share/gazebo-7/media/materials/textures
Scripts para texturizar en:
          /usr/share/gazebo-7/media/materials/scripts/gazebo.material
Crear material Kinetic (copia de Runway):
          material Gazebo/Kinetic{
                    texture kinetic.png
Referenciar esta textura en el model.sdf (elemento <material> dentro de <visual>)
          <material>
              <script>
                   <name>Gazebo/Kinetic</name>
              </script>
          </material>
```


Categorized

Stand-alone tutorials categorized by topic. Click on a topic to view the tutorials in that category.

Installation

Instructions to install Gazebo on all the plaforms suppor...

Model Editor

The following tutorials describe how to build and modify ...

Write a plugin

Plugins allow you to control models, sensors, world prope...

Using Math

Gazebo has a custom math library. These tutorials describ...

Web client (Gzweb)

Gzweb is a WebGL client for Gazebo. It lets you interact ...

Physics Library

A core component of Gazebo are the physics engines. These...

DRCSim

DARPA Robotics Challenge specific tutorials.

Get Started

Welcome to the Gazebo tutorials! This is a great place to...

Build a World

These tutorials describe how to create an environment in ...

Plugins

The following tutorials describe how to use plugins that \dots

User input

User input can take many forms, including interactions fr...

Connect to ROS

ROS is a robot control framework. These tutorials describ...

Rendering Library

Gazebo's rendering library is used to generate sensor dat...

Scripting (javascript and NodeJs)

Gazebo scripting interface: NodeJS bindings for the Gazeb...

Build a Robot

The following tutorials describe how to build and modify ...

Tools and utilities

Gazebo ships with many tools and utilities. These tutoria...

Sensors

A simulated sensor analyzes the environment and produces ...

Connect to Player

Player is a robot control framework. These tutorials desc...

Transport Library

Communication between the simulation server and client to...

Development

Customizing Gazebo is easy thanks to extensive documentat...

HAPTIX

The following are tutorials designed for...

INSTALACIÓN

\$ sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-ros-control

Configuración del .bashrc hasta ahora:

source /opt/ros/kinetic/setup.bash
source ~/catkin_ws/devel/setup.bash
source /usr/share/gazebo-7/setup.sh

Arrancar Gazebo desde ROS

- \$ roscore (en una terminal)
- \$ rosrun gazebo_ros gazebo (en otra terminal)

Verificar la conexión

- \$ rostopic list
- \$ rosservice list

ROSLAUNCH

Cargar un mundo vacío de Gazebo desde ROS

\$ roslaunch gazebo_ros empty_world.launch

Ubicación del fichero launch

/opt/ros/kinetic/share/gazebo_ros/launch/empty_world.launch

Por defecto carga un mundo (archivo .world) vacío, empty.world <arg name="world_name" default="worlds/empty.world"/>

RECUERDA: La ubicación de empty.world es /usr/share/gazebo-7/worlds/

Podemos cargar un mundo de Gazebo descrito en alguno de estos ficheros .world tomando como base el launcher del mundo vacío empty_world.launch:

- I. modificando el propio archivo .launch (observa cómo se carga el mundo mud.world en el launcher mud_world.lauch a partir de empty_world.launch)
 /opt/ros/kinetic/share/gazebo_ros/launch/mud_world.launch
- II. pasándolo como argumento.

\$ roslaunch gazebo_ros empty_world.launch world_name:=worlds/empty_sky.world

ROSLAUNCH

Crear un mundo personalizado

Crear paquete en workspace

RECUERDA: El comando catkin_create_pkg debe ejecutarse desde el directorio src del workspace

- \$ cd ~/catkin ws/src
- \$ catkin_create_pkg myworldgazebo std_msgs roscpp
- \$ cd myworldgazebo

Crear fichero myworldgazebo.launch dentro de un directorio launch

- \$ mkdir launch
- \$ touch launch/myworldgazebo.launch

Crear fichero myworldgazebo.world dentro de un directorio worlds

- \$ mkdir worlds
- \$ touch worlds/myworldgazebo.world

... CONSULTA EL CÓDIGO PROPORCIONADO ...

Lanzar el mundo que esté aquí definido

\$ roslaunch myworldgazebo myworldgazebo.launch

PLUGINS DE GAZEBO EN ROS

Para añadir un plugin a un SDF hay que incluirlo dentro del elemento <gazebo> Para añadir un plugin a un URDF hay que incluirlo dentro del elemento <model>

Los plugins se encuentran en la ubicación referenciada por la variable de entorno GAZEBO_PLUGIN_PATH, esta variable se consulta mediante

\$ echo \$GAZEBO_PLUGIN_PATH

Cómo encontrar la ubicación de un plugin (p.e. libgazebo_ros_gpu_laser)

- \$ dpkg -S libgazebo ros gpu laser
- \$ ros-kinetic-gazebo-plugins: /opt/ros/kinetic/lib/libgazebo_ros_gpu_laser.so

Para listar los plugins de Gazebo que hay en este directorio

- \$ cd /opt/ros/kinetic/lib
- \$ ls | grep libgazebo

INTEGRACIÓN DE UNA CÁMARA DE PROFUNDIDAD (KINECT)

Copiar el modelo de la Kinect del directorio ~/.gazebo/models bajo el nombre kinect_ros

- \$ cd ~/.gazebo/models
- \$ cp -r kinect kinect_ros

NOTA: Pueden existir varios .sdf del modelo. Debes incluir las mismas modificacoines en todos los archivos .sdf que existan del modelo.

Editar el model.sdf de la kinect_ros incluyendo el código del plugin (dentro del elemento <sensor>, después de </camera>).

... CONSULTA EL CÓDIGO PROPORCIONADO ...

INTEGRACIÓN DE UNA CÁMARA DE PROFUNDIDAD (KINECT)

Arrancar Gazebo desde ROS

\$ roslaunch myworldgazebo myworldgazebo.launch

Añadir a la escena el modelo de Kinect customizado (kinect_ros) desde la pestaña Insert, base de datos ~/.gazebo/models .

Observa que se generan nuevos topics con información de datos del sensor

\$ rostopic list

Esta información se puede imprimir por terminal

\$ rostopic echo /camera/rgb/image_raw

Al ser información de profundidad e imágenes, se muestran matrices de números. Para poder obtener de una forma más intuitiva la información capturada por el sensor se puede visualizar mediante la herramienta RviZ

\$ rosrun rviz rviz

Fixed Frame: /camera/link

Add – PointCloud2/Camera/DepthCloud

INTEGRACIÓN DE UN ROBOT MÓVIL

Haz una copia de alguno de los modelos de la base de datos local. Por ejemplo, del pioneer3at

- \$ cd ~/.gazebo/models
- \$ cp -r pioneer3at pioneer3at_ros

Edita los ficheros .config y .sdf para cambiar el nombre del modelo y añadir el plugin de movimiento.

<plugin name="differential_drive_controller" filename="libgazebo_ros_diff_drive.so">

... CONSULTA EL CÓDIGO PROPORCIONADO ...

Añade este nuevo modelo a tu mundo de Gazebo y consulta los nuevos topics que se generan.

Gracias a este plugin ahora se puede controlar el modelo virtual del pioneer3at a través del topic /pioneer3at_ros/cmd_vel .

EJEMPLO COMPLETO. ROBOT MÓVIL CON CÁMARA KINECT

Crea una nuevo modelo copia del Pioneer3at creado antes (pioneer3at_ros) llamado pioneer3at_ros_Kinect. Acopla la cámara Kinect creada anteriormente (kinect_ros) a este modelo del Pioneer modificando los archivos .sdf con las siguiente líneas:

... CONSULTA EL CÓDIGO PROPORCIONADO ...

Añade el nuevo Pioneer3dx a tu mundo de Gazebo y comprueba los nuevos *topics* creados para mover el robot y para adquirir información del entorno.

CONTROL DE LA SIMULACIÓN DESDE CÓDIGO C++

Crea un archivo .cpp en el directorio *src* del paquete *myworldgazebo* de tu workspace.

Edita el CMakeLists.txt apropiadamente para compilar este ejecutable.

Incorpora el código correspondiente para que este nodo publique en el *topic* que te interese, en este caso mensajes de velocidad (tipo geometry_msgs/Twist) para controlar el robot móvil.

\$ gedit ~/catkin_ws/src/myworldgazebo/src/navigation.cpp

... CONSULTA EL CÓDIGO PROPORCIONADO ...

Compila y ejecuta este nodo y controlarás el robot móvil

- \$ cd ~/catkin_ws
- \$ catkin make
- \$ rosrun myworldgazebo navigation.cpp

David Vargas Frutos

david.vargas@upm.es - dvargasfr@gmail.com

Centre for Automation and Robotics

Centro de Automática y Robótica Madrid, Spain