Transformations

Note: Remember that a point in (x_1, \ldots, x_n) in \mathbb{R}^n corresponds to the vector in \mathbb{R}^n : $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$.

From now on we will refer to points and vectors in \mathbb{R}^n interchangeably.

Definition. A transformation from \mathbb{R}^n to \mathbb{R}^m is a function that maps vectors in \mathbb{R}^n to vectors in \mathbb{R}^m .

Notation: We denote a "transformation T from \mathbb{R}^n to \mathbb{R}^m " by $T: \mathbb{R}^n \to \mathbb{R}^m$. Note that the *domain* of T is \mathbb{R}^n and the *codomain* of T is \mathbb{R}^m .

(1) Consider the transformation defined by $T(\mathbf{x}) = A\mathbf{x}$ where

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{array} \right]$$

For this transformation to be defined, what must the domain and codomain of T be?

(2) In general, if A is a $r \times c$ matrix, what is the domain and codomain of the transformation $T(\mathbf{x}) = A\mathbf{x}$?

Definition. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a transformation and suppose for some \mathbf{x} in \mathbb{R}^n and \mathbf{y} in \mathbb{R}^m that $T(\mathbf{x}) = \mathbf{y}$. Then we call \mathbf{y} the **image** of \mathbf{x} under T.

(3) Consider the square in \mathbb{R}^2 with vertices (1,1), (-1,1), (-1,-1), and (1,-1). For each of the transformations $\mathbb{R}^2 \to \mathbb{R}^2$ below, plot the square and the image of the square under the transformation.

(a)
$$R(\mathbf{x}) = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \mathbf{x}$$

(b)
$$S(\mathbf{x}) = \mathbf{x} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(c)
$$T(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(4) Geometrically, what are each of the transformations in the previous problem?

Definition. The standard unit vectors $\mathbf{e}_1, \dots, \mathbf{e}_n$ in \mathbb{R}_n are the vectors

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \qquad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \qquad \dots, \qquad \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

- (5) Write the arbitrary vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ as a linear combination of standard unit vectors in \mathbb{R}^3 .
- (6) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T(\mathbf{x}) = B\mathbf{x}$ where $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. Evaluate T at each of the three standard unit vectors in \mathbb{R}^3 and compare the results to $T \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.
- (7) Determine transformations $T_x : \mathbb{R}^2 \to \mathbb{R}^2$ and $T_y : \mathbb{R}^2 \to \mathbb{R}^2$ such that $T_x(\mathbf{x})$ is the reflection of \mathbf{x} across the x-axis and $T_y(\mathbf{x})$ is the reflection of \mathbf{x} across the y-axis for any point \mathbf{x} in \mathbb{R}^2 .
- (8) Determine a transformation $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ such that $R_{\theta}(\mathbf{x})$ is a rotation of the point \mathbf{x} about the origin (0,0) by the angle θ for any point \mathbf{x} in \mathbb{R}^2 .