الفصل اثاني 1435/1434 هـ	النهائي 244 ريض	قســـم الرياضيات
الاجابات		
6 5 ・ ・ ・ ・	4 3 2	السؤال 1 الاجابة أ
8adj(A) (2)	• • • •	الجزء الاول : [درجتان لكل سؤال] : الجزء الاول الحزء الاول الحزء الاول الحزء الاول الحزء المحلوفة منالدرجة 3×3 قا بلة للاعلام A مصفوفة منالدرجة A قا بلة للاعلام A
$v=egin{bmatrix}2\\1\end{bmatrix}$ إذا كان $v=egin{bmatrix}2\\1\end{bmatrix}$ متجها مميز ا للمصفوفة A مقابلا للقيمة المميزة 2 فإن A^3v يساوي:		
$\begin{bmatrix} 16 \\ 8 \end{bmatrix}$ (2)		$\begin{bmatrix} 4 \\ 2 \end{bmatrix} (\because) \qquad \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} (\dagger)$
	ىلوي:	$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ فإن $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ نس
3 (ع) 2 (ج) 1 (ب) 0 (أ) $T(x,y,z) = (x+y,x+y+z,-y+z)$ وكان $T(x,y,z) = (x+y,x+y+z,-y+z)$ وكان $T:R^3 \longrightarrow R^3$ وكان $T:R^3 \longrightarrow R^3$ وكان $T:R^3 \longrightarrow R^3$ وان $T:R^3 \longrightarrow R^3$ تساوي: $T:R^3 \longrightarrow R^3$ فإن $T:R^3 \longrightarrow R^3$ تساوي:		
_		$\begin{bmatrix} 2 & 4 & 1 \\ 3 & 5 & 0 \\ 1 & 2 & 0 \end{bmatrix} (\rightarrow) \qquad \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} (\dot{1})$
x+y-az=1 هي: $x+y+z=2$ مجموعة قيم الثابت a التي التجعل للنضام الخطي التالي حلا وحيدا $x+y+z=1$		
ϕ (2) $\{0,-1\}$, ,	$R \setminus \{0,-1\} (-1)$
: فإن $<$ (1,1), (2,-1) $>=$ 2, \parallel (1,1) \parallel = 2 α α = 2, β = 2 (α = -2, β = -2	(ب	بالمعناء الأقليدي الموزون حيث R^2 الفضاء الأقليدي الموزون حيث $\alpha=2, \beta=1$ (أ) $\alpha=1, \beta=2$ (ح) المجزء الثانى:
$A^{-1} = egin{bmatrix} rac{1}{2} & -rac{1}{2} & rac{1}{2} \ 0 & 1 & -1 \ 0 & -2 & 3 \end{bmatrix}$ لاجابة	$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{bmatrix} \xrightarrow{A^{-1}} A^{-1}$	السؤال الأول : [3 درجات] استخدم $adj(A)$ لحساب
L J		السؤال الثاني: [3 درجات = 1+1+1]
5x + y $2x + y$	-z=1 : ظام	استخدم قاعدة كرامر لإيجاد قيمة كل من x و z للن
$ A = \det \begin{bmatrix} x - y + \\ 5 & 1 \\ 2 & 1 \\ 1 & -1 \end{bmatrix}$	_	$\begin{bmatrix} 1 & -1 \\ 1 & -1 \\ -1 & 5 \end{bmatrix} = 12, A_z = \det \begin{bmatrix} 5 & 1 & 4 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} = 0$

السؤال الثالث [4 درجات=الاختزال: 3درجات +1 درجة (فضاء الحلول)]

استخدم طريقة جاوس- جوردان لايجاد حلول النظام الخطى:

$$x + 2z - u + 3v = 1$$

$$2x + y + 3z - 2u + 4v = 1$$

$$x + 2y - u - v = -1$$

$$4x + y + 7z - 4u + 10v = 3$$

 $S = \{(x, y, z, u, v) = (1 - 2z + u - 3v, z + 2v, z, u, v), z, u, v \in R\}$

السؤال الرابع: [4 درجات = 2+1+1]

$$T(x, y, z) = (x + y - z, 2x + y - 2z, 2x + 2y - 2z)$$
 المؤثر الخطي المعرف بالقاعدة $T(x, y, z) = (x + y - z, 2x + y - 2z, 2x + 2y - 2z)$

- $\ker(T)$ عين أساسا لفضاء النواة (1
- . rank(T) استنخدم مبر هنة البعد للتحويلات الخطية لايجاد (2
 - Im(T) عين اساسا لفضاء الصورة (3

$$\ker(T) = <(1,0,1)>, rank(T) = 2, \operatorname{Im}(T) = <(1,2,2)^{t}, (1,1,2)^{t}>$$

السؤال الخامس: [4 درجات = 2+1+1]

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 2 \\ 1 & 1 & -1 & 0 \end{bmatrix}$$
لتكن المصفوفة

- A عين الصيغة الدرجية الصفية المختزلة للمصفوفة (1)
 - row(A) عين أساسا لفضاء الصفوف (2
- (AX=0) عين أساسا للفضاء الصفري N(A) عين أساسا للفضاء الصفري (3

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 2 \\ 1 & 1 & -1 & 0 \end{bmatrix} \cong \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, N(A) = <(-1,0,-1,1) >$$

السؤال السادس: [4 درجات]

$$R^3$$
 ليكن $S=\{v_1=(1,1,1),v_2=(0,1,1),v_3=(0,0,1)\}$ ليكن

استخدم خوار زمیة جرام- شمیت لتحویل S الی أساس عیاری متعامد.

$$S_1 = \{u_1 = (1,1,1), u_2 = (-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}), u_3 = (0, -\frac{1}{2}, \frac{1}{2})\}, B = \{w_1 = \frac{1}{\sqrt{3}}u_1, w_2 = \sqrt{\frac{3}{2}}u_2, w_3 = \sqrt{2}u_3\}$$

0.5+0.5+0.5 = W large large

 $1+1+0.5 = S_1$ المجموعة

السؤال السابع: [6 درجات = 1.5+1.5+1+1.5+0.5

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 2 & 5 \end{bmatrix}$$
 لتكن المصفوفة $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 2 & 5 \end{bmatrix}$ (1

- E_{6},E_{3} عين أساسا لكل من الفضاءات المميزة (2
 - (3 أثبت أن المصفوفة A قابلة للاستقطار
- . (P^{-1} بدون حساب $P^{-1}AP=D$ أوجد مصفوفة P قابلة للعكس و مصفوفة P قطرية بحيث (4

$$E_6 = <(0,1,2)>, E_3 = (1,0,0), (0,1,-1)>$$