计算理论导论 课程讲义

周书予

2000013060@stu.pku.edu.cn

2022年1月27日

1 正则语言

定义 1 (Deterministic Finite Automaton, DFA). (确定性) 有限自动机是一个五元组 $(Q, \Sigma, \delta, q_0, F)$, 其中

- Q 是称为状态的有限集。
- Σ 是称为**字符集**的有限集。
- $\delta: Q \times \Sigma \to Q$ 被称为转移函数。
- $q_0 \in Q$ 称为起始态。
- $F \subseteq Q$ 称为接受态 (终止态) 集合。

称字符串 $w = w_1 w_2 \cdots w_m (w_i \in \Sigma)$ 可以被 DFA $D = (Q, \Sigma, \delta, q_0, F)$ 接受, 如果存在状态序列 $r_0, r_1, \cdots, r_m \in Q$ 满足(i) $r_0 = q_0$, (ii)for $i = 0, 1, \cdots, m-1$, $r_{i+1} = \delta(r_i, w_{i+1})$, (iii) $r_m \in F$.

定义 2 (正则语言). 正则语言就是能够被有限自动机识别的语言。

定义 3 (正则操作). 定义如下三种正则操作

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

由于只利用已有的有限自动机模型证明 concatenation 和 star 的封闭性是困难的,我们引入"非确定性"。

定义 4 (Nondeterministic Finite Automaton, NFA). 非确定性有限自动机是一个五元组 $(Q, \Sigma, \delta, q_0, F)$, 其中 δ 不再是 $Q \times \Sigma \to Q$ 的函数,而是 $Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ 的,其中 \mathcal{P} 表示幂集, Σ_{ε} 表示 $\Sigma \cup \{\varepsilon\}$ 。

相应的,称字符串 $w = w_1 w_2 \cdots w_m (w_i \in \Sigma_{\varepsilon})$ 可以被 NFA $N = (Q, \Sigma, \delta, q_0, F)$ 接受,如果存在状态序列 $r_0, r_1, \cdots, r_m \in Q$ 满足(i) $r_0 = q_0$, (ii)for $i = 0, 1, \cdots, m-1, r_{i+1} \in \delta(r_i, w_{i+1})$, (iii) $r_m \in F$ 。

m it 1. DFA 的每个状态对每种字符都有恰好一条转移出边,而相对的,NFA 可能有零条、一条或者多条,有几条出边就表示会创建出多少个独立的"后继进程"。此外还存在 $m \epsilon$ 的出边,表示可以不输入任何字符创建进程。

定理 1 (NFA 与 DFA 的等价性). 任何 NFA 都存在等效的 DFA。

证明. 对 k 个状态的 NFA,构造一个 2^k 个状态的 DFA,每个状态表示"可能到达的 NFA 状态"的子集。 \square

推论 1. 一个语言是正则的当且仅当可以被一台非确定性有限自动机识别。

定理 2. union, concatenation 和 star 在正则语言下都是封闭的。

证明. 不多说了看图。

定义 5 (正则表达式). 称 R 是正则表达式, 如果 R 为

- $\{a\}$, 其中 a 是字符集 Σ 中的某个元素
- $\{\varepsilon\}$, 其中 ε 表示空串
- Ø
- $(R_1 \cup R_2)$, 其中 R_1, R_2 是某两个正则表达式
- (R₁ ∘ R₂), 其中 R₁, R₂ 是某两个正则表达式
- (R_1^*) , 其中 R_1 是某个正则表达式

例 1. 对于任意正则表达式 R, $R \cup \emptyset = R \circ \varepsilon = R$, $R \circ \emptyset = \emptyset$, $\emptyset^* = \{\varepsilon\}$.

定理 3 (正则表达式与有限自动机的等价性). 一个语言是正则的当且仅当它可以被一个正则表达式描述。

证明. " \leftarrow " 的证明是简单的,只需要根据正则表达式 R 构造 NFA,利用 "union, concatenation, star 的封闭性" 的构造性证明即可。

"⇒"的证明中,我们引入 GNFA 的定义 (每条转移边上的 label 是一个正则表达式),然后分别展示如何把 DFA 转化成 GNFA 以及如何根据 GNFA 构造正则表达式。

DFA 转 GNFA 是简单的——只需要额外加入两个状态表示 q_{start} 和 q_{accept} 即可。

观察到一个 GNFA 有 $k \ge 2$ 个状态。如果 k = 2,那么 q_{start} 到 q_{accept} 的转移边上的正则表达式就是该有限自动机对应的正则表达式。如果 k > 2,那么考虑选出一个状态 q_{rip} 删除,此时对于 $q_i, q_j \in Q \setminus \{q_{\text{rip}}\}$,如果 $\delta(q_i \ q_{\text{rip}}) = R_1, \delta(q_{\text{rip}}, q_{\text{rip}}) = R_2, \delta(q_{\text{rip}}, q_j) = R_3, \delta(q_i, q_j) = R_4$,则修改 $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$ 。归 纳即可。

定义 6 (Generalized Nondeterministic Finite Automaton, GNFA). 泛非确定性有限自动机是一个五元组 $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$,其中 δ 是 $(Q \setminus \{q_{\text{accept}}\}) \times (Q \setminus \{q_{\text{start}}\}) \to \mathcal{R}$ 的转移函数, \mathcal{R} 表示字符集 Σ 上的所有正则表达式。注意不失一般性地要求了只有唯一的接受态,以及 $q_{\text{start}} \neq q_{\text{accept}}$ 。

定理 4 (Pumping Lemma for Regular Language). 如果 A 是正则语言,那么存在一个数 p(称为 **pumping length**),使得对于任意 A 中长度至少为 p 的字符串 s, s 都可分成三部分 s = xyz 满足

- for each $i \ge 0$, $xy^i z \in A$,
- |y| > 0,
- $|xy| \leqslant p$.

证明. 取 pumping length p 为识别此正则语言的 DFA M 的状态集大小 |Q|。对于任意长度至少为 p 的 $s \in A$,其经过的状态序列至少长为 p+1。根据**渔集原理**,存在一个状态 q 经过了至少两次,于是把从 q_{start} 走到 q 的 部分视作 x,q 回到自身的环视作 y,从 q 走到 q_{accept} 的部分视作 z,便构造出了划分。

注 2. 利用 pumping lemma 可以证明某个语言 B 不是正则语言,通用的方式是:先假设 B 是正则的,导出 pumping length p 的存在性,然后根据这个 p 构造 $s \in B$,并验证其<u>不能</u>被划分为 s = xyz。第三个条件 $|xy| \leq p$ 有时也是有用的。

例 2. $B = \{0^n 1^n | n \ge 0\}, C = \{w | w \text{ has an equal number of 0s and 1s}\}, D = \{1^{n^2} | n \ge 0\}, E = \{0^i 1^j | i > j\}, F = \{ww | w \in \{0,1\}^*\}$ 都不是正则语言。

2 上下文无关文法

定义 7 (Context-Free Grammar/Language, CFG/CFL). 一个上下文无关文法是一个四元组 (V, Σ, R, S) , 其中

- V 是称为变量的有限集,
- Σ 是称为**终止符**的有限集,与 V 不交,
- R 是称为规则的有限集,是从 V 到 $(V \cup \Sigma)^*$ 的映射,
- S∈V 称为起始变量。

上下文无关语言就是上下文无关文法导出的语言,即 $\{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$ 。

命题 1. CFG 的描述能力严格强于有限自动机 (或者正则表达式)。

证明. 对于任意的 DFA,都可以构造与其等价的 CFG: 对每个状态 q_i 构造一个变量 R_i ,起始变量 R_0 对应起始态 q_0 ,如果 $\delta(q_i,a)=q_i$,就添加规则 $R_i\to aR_i$,而如果 q_i 是接受态,就添加规则 $R_i\to \varepsilon$ 。

而显然存在可被 CFG 描述的非正则语言, 比如 $\{0^n1^n|n\in\mathbb{N}\}$ 。

定义 8 (歧义性).

定义 9 (Chomsky 范式).

定义 10 (Pushdown Automata, PDA). 下推自动机是一个六元组 $(Q, \Sigma, \Gamma, \delta, q_0, F)$, 其中

- Q 是状态集,
- Σ 是输入字符集,
- Γ 是栈字符集,
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ 是转移函数,
- q₀ ∈ Q 是起始态,
- F⊆Q 是接受态集合。

其中 Σ_{ε} , Γ_{ε} 分别表示 $\Sigma \cup \{\varepsilon\}$, $\Gamma \cup \{\varepsilon\}$, 幂集 \mathcal{P} 暗含了下推自动机是 nondeterministic 的。 称字符串 $w = w_1 w_2 \cdots w_m (w_i \in \Sigma_{\varepsilon})$ 可以被 PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ 接受,如果存在状态序列 $r_0, r_1, \cdots, r_m \in Q$ 和字符串 (栈) 序列 $s_0, s_1, \cdots, s_m \in \Gamma^*$,满足

- $r_0 = q_0, s_0 = \varepsilon$,
- For $i=0,1,\cdots,m-1$, $(r_{i+1},b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at,s_{i+1}=bt$ for some $a,b\in\Gamma_\varepsilon$ and $t\in\Gamma^*$,
- $r_m \in F$.

定理 5 (下推自动机与上下文无关文法的等价性).一个语言是上下文无关的,当且仅当存在某个下推自动机可以识别它。

证明. "⇒":需要根据 CFG 来构造 PDA。一开始把 CFG 的起始变量写在栈上,利用 nondeterminism 尝试每一种变量的替换方式。每次只考虑替换栈顶的变量,而如果栈顶是一个终止符,就直接和输入匹配掉,保证栈顶始终是一个尚未替换的变量。当输入匹配完且栈为空时,代表输入串可接受。

" \leftarrow ":需要根据 PDA 来构造 CFG。不妨假设¹该 PDA 有如下特性: (i)只有一个接受态 q_{accept} , (ii)会在接受前清空栈, (iii)每次转移都会要么 push 要么 pop, 没有 both 和 neither 的情况。构造变量 A_{pq} 表示所有

 $^{^1}$ 需要简短地说明转化的可行性。

能够使 PDA 从 "状态 p 且栈空"转移到 "状态 q 且栈空"的串组成的语言,其中 $A_{q_0q_{\rm accept}}$ 是该 CFG 的起始变量。按如下方式构造 CFG 的规则集合:

- 对于任意 $p,q,r,s \in Q, u \in \Gamma, a,b \in \Sigma_{\varepsilon}$, 如果 $(r,u) \in \delta(p,a,\varepsilon), (q,\varepsilon) \in \delta(s,b,u)$, 就添加规则 $A_{pq} \to aA_{rs}b$,
- 对于任意 $p,q,r \in Q$,添加规则 $A_{pq} \to A_{pr}A_{rq}$,
- 对于任意 $p \in Q$,添加规则 $A_{pp} \to \varepsilon$ 。

构造思路来源于考虑压栈弹栈的括号序列,该序列要么被一个大括号包裹 (第一种),要么由两个括号序列组成 (第二种)。可以归纳证明构造方式与含义的等价性。

定理 6 (Pumping Lemma for CFL). 如果 A 是上下文无关语言,那么存在一个数 p(称为 **pumping length**), 使得对于任意 A 中长度至少为 p 的字符串 s, s 都可以分成五部分 s = uvxyz 满足

- for each $i \ge 0$, $uv^i x y^i z \in A$,
- |vy| > 0,
- $|vxy| \leq p$.

证明. 设 b 为规则中的最大"度数",即替换字符串的最大长度。如果 parse tree 的树高是 h(不计叶子),那么生成的字符串长度至多为 b^h 。

取 pumping length p 为 $b^{|V|+1}$ 。一方面,长度至少为 p 的串对应的 parse tree 树高至少为 |V|+1,即存在一条"直链"上有至少 |V|+1 个变量,根据**鸽巢原理**,存在一个变量出现至少两次,记为 R,那么对于 R 就可以无限复制或者把两次出现压缩成一次 (如图)。

为了满足第三个条件,取 R 为满足条件的"深度最大"的,即两个 R 都出现在最底下 |V|+1 层。此时 |vxy| 对应第一个 R 的子树大小,受深度限制不超过 $b^{|V|+1}=p$ 。

例 3. $B = \{a^n b^n c^n | n \ge 0\}, C = \{a^i b^j c^k | 0 \le i \le j \le k\}, D = \{ww | w \in \{0, 1\}^*\}$ 都不是上下文无关语言。

图灵机 3

定义 11 (图灵机). 一台图灵机 (Turing Machine, TM)M 可用三元组 (Γ, Q, δ) 来描述,其中

- 有限集 Γ 为 M 的字符集。我们认为 Γ 中包含 \square 表示空格,以及 \triangleright 表示起始标识。
- 有限集 Q 为 M 的状态集。我们认为 Q 中包含 q_{start} 表示起始状态,以及 q_{halt} 表示停机状态。
- 转移函数 $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, S, R\}^k$, 其中 $k \ge 2$ 为纸带条数。

除非特殊说明,一般认为第一张纸带是只读的。

定义 12 (函数的计算,运行时间). 设函数 $f: \{0,1\}^* \to \{0,1\}^*$ 以及 $T: \mathbb{N} \to \mathbb{N}$,令 M 为一图灵机。我们称 M 计算了函数 f, 如果对于任意 $x \in \{0,1\}^*$, 只要 M 的输入被初始化为 x, 它就能在输出纸带上写下 f(x) 并 停机。称 M 在 T(n) 的时间内计算了 f, 如果它计算每个 x 都只需要不超过 T(|x|) 的时间。

定义 13 (Time constructible functions). 称一个函数 $T: \mathbb{N} \to \mathbb{N}$ 是 time constructible 的, 如果 $T(n) \geqslant n$ 且存在运行时间为 T(n) 的计算函数 $x \to T(|x|)$ 的图灵机 M。

命题 2 (大字符集规约到小字符集). 对于任意 $f: \{0,1\}^* \to \{0,1\}$ 以及 time constructible 的函数 $T: \mathbb{N} \to \mathbb{N}$, 如 果 f 可以被图灵机 M 以 T(n) 时间计算, 那么它也可以被一台字符集为 $\{0,1,\Box,\triangleright\}$ 的图灵机 \tilde{M} 以 $4\log|\Gamma|T(n)$ 的时间计算。

命题 3 (多条纸带规约到一条纸袋). 对于任意 $f: \{0,1\}^* \to \{0,1\}$ 以及 time constructible 的函数 $T: \mathbb{N} \to \mathbb{N}$, 如果 f 可以被有 k 条纸带的图灵机 M 以 T(n) 时间计算,那么它也可以被一台单纸带图灵机 \tilde{M} 以 $5kT^2(n)$ 的时间计算。单纸带指的是只有一条可读可写的纸带,它同时扮演了输入、工作和输出纸带的角色。

注 3 (健忘的图灵机, oblivious Turing Machine). 头部移动与输入长度有关, 而与输入的具体内容无关, 即 对于任意 $x \in \{0,1\}^*$ 以及 $i \in \mathbb{N}$, M(x) 执行到第 i 步时读写头的位置是只关于 |x| 和 i 的函数。可以证明图灵 机可以平方规约到健忘的图灵机。

命题 4 (双向图灵机规约到单向图灵机). 对于任意 $f:\{0,1\}^* \to \{0,1\}$ 以及 time constructible 的函数 $T:\mathbb{N} \to \{0,1\}$ 和 $T:\mathbb$ \mathbb{N} ,如果 f可以被双向图灵机 (纸带的两个方向都有无限长)M 以 T(n)时间计算,那么它也可以被一台单向图 灵机 \tilde{M} 以 4T(n) 的时间计算。

定理 7 (通用图灵机存在). 存在图灵机 U 使得对于任意 $x, \alpha \in \{0,1\}^*$, $U(x,\alpha) = M_{\alpha}(x)$, 其中 M_{α} 为被 α 表 示的图灵机。进一步地,如果 M_{α} 对于 x 在 T 步内停机,则 $\mathcal{U}(x,\alpha)$ 可以在 $CT \log T$ 步内停机,其中 C 是一 个仅依赖于 M_{α} 的字符集大小、纸袋条数、状态数的常数。

定义 14 (DTIME 与 P). 对于函数 $T: \mathbb{N} \to \mathbb{N}$, 称语言 $L \in \mathbf{DTIME}(T(n))$, 如果存在常数 c > 0 和一台运 行时间为 $c \cdot T(n)$ 的图灵机可以决定 L。

 $\mathbf{P} = \bigcup_{c>1} \mathbf{DTIME}(n^c)$.

论点 1 (Church-Turing thesis). 任何物理上可实现的计算设备都可以被图灵机模拟。

证明 1 (时间复杂度 $O(T^2)$ 的模拟).

证明 2 (时间复杂度 $O(T \log T)$ 的模拟).

4 NP与NP-complete

定义 15 (NP). 语言 $L \subseteq \{0,1\}^*$ 属于 NP,如果存在一个多项式 $p: \mathbb{N} \to \mathbb{N}$ 和一个多项式时间图灵机 $M(\mathfrak{m})$ 其为 L 的 verifier) 使得对于任意的 $x \in \{0,1\}^*$,都有

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)}, M(x,u) = 1$$

如果 $x \in L$ 与 $u \in \{0,1\}^{p(|x|)}$ 满足 M(x,u) = 1,则称 $u \in X$ 的一个 **certificate**。

命题 5. 定义 $\mathbf{EXP} = \bigcup_{c>1} \mathbf{DTIME}(2^{n^c}), \ \mathbb{M} \ \mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}$ 。

定义 16 (非确定图灵机与 NTIME). 非确定图灵机 (Nondeterministic Turing Machine, NDTM) 是有两个转移函数 δ_0, δ_1 和一个特定状态 q_{accept} 的图灵机 M,每步转移时,可以任意选择遵从某一个转移函数。对于输入 x,称 M(x)=1 当且仅当存在一个选择序列可以使 M 到达 q_{accept} 状态,否则——任意选择序列都无法在停机前到达 q_{accept} ——就认为 M(x)=0。称 M 的运行时间为 T(n),如果对于任意输入 $x \in \{0,1\}^*$ 以及任意的选择序列,M 都会在 T(|x|) 步内到达 q_{accept} 或者 q_{halt} 。

对于 $T: \mathbb{N} \to \mathbb{N}$ 和语言 $L \subseteq \{0,1\}^*$,称 $L \in \mathbf{NTIME}(T(n))$,如果存在常数 c > 0 和一个运行时间为 $c \cdot T(n)$ 的非确定图灵机 M,满足对于任意的 $x \in \{0,1\}^*$, $x \in L \Leftrightarrow M(x) = 1$ 。

定理 8. NP = $\bigcup_{c>1}$ NTIME (n^c) 。

证明. 证明的核心思路在于非确定图灵机的选择序列可以看作 x 的一个 certificate, 反之亦然。

定义 17 (规约,NP-hard 与 NP-complete). 称语言 $L \subseteq \{0,1\}^*$ 可**多项式时间规约**到语言 $L' \subseteq \{0,1\}^*$ (记作 $L \le_p L'$),如果存在一个多项式时间可计算函数 $f: \{0,1\}^* \to \{0,1\}^*$ 使得对于任意 $x \in \{0,1\}^*$, $x \in L \Leftrightarrow f(x) \in L'$ 。

称 L' 是 **NP**-hard, 如果对于任意 $L \in \mathbf{NP}$, $L \leq_p L'$ 。 **NP**-complete = **NP** \cap **NP**-hard。

定理 9 (\leqslant_p 的传递性). • 若 $L \leqslant_p L' \perp L' \leqslant_p L''$, 则 $L \leqslant_p L''$ 。

- 如果 $L \neq \mathbf{NP}$ -hard $\exists L \in P, \ \mathsf{MP} = \mathbf{NP}$.
- 如果 $L \neq \mathbf{NP}$ -complete, 则 $L \in P \rightarrow \mathbf{L}$ 当且仅当 $\mathbf{P} = \mathbf{NP}$ 。

定理 10 (Cook-Levin Theorem). SAT, 3SAT 是 NP-complete。

5 对角线法则

定理 11 (Time Hierarchy Theorem). f, g 是满足 $f(n) \log f(n) = o(g(n))$ 的 time constructible 的函数,则

$$\mathbf{DTIME}(f(n)) \subsetneq \mathbf{DTIME}(g(n))$$

证明. 考虑这样的图灵机 D: 对于 x, 用通用图灵机 U 模拟 $M_x(x$ 描述的图灵机) 运行至多 g(|x|) 步 (是 U 的 g(|x|) 步而不是 M_x 的 g(|x|) 步),如果 U 在 g(|x|) 步数内输出了 $b \in \{0,1\}$,则 D 输出 1-b; 否则 D 输出 0。根据定义,D 对于任何输入 x 都会在 g(|x|) 步内停机,因此 D 决定的语言 L 属于 $\mathbf{DTIME}(g(n))$ 。我们通过反证法证明 $L \notin \mathbf{DTIME}(f(n))$ 。先叙述否命题:存在图灵机 M 和常数 c,使得对于任意输入 $x \in \{0,1\}^*$,M 都能在 cf(|x|) 步内输出与 D 相同的结果。

对于输入 x,用通用图灵机 U 模拟 M 只需要 $c'cf(|x|)\log f(|x|)$ 步,其中 c' 是不依赖于 |x| 的一个常数。由于 $f(n)\log f(n)=o(g(n))^2$,故存在充分大的 n_0 使得 $g(n)>c'cf(n)\log f(n)$ 对于任意 $n\geq n_0$ 均成立。令 x' 表示 M 的某个长度大于 n_0 的表示,那么

- D 会输出与 M 相同的结果,因为这是 M 的定义;
- D 会输出与 M 不同的结果,因为 $c'cf(n)\log f(n) < g(n)$ 使得 U 对 M 的模拟已经结束了,根据 D 的定义,D 应该输出相反的结果。

产生了矛盾。因此 **DTIME** $(f(n)) \subseteq \mathbf{DTIME}(g(n))$ 。

定理 12 (Nondeterministic Time Hierarchy Theorem). f,g 是满足 f(n+1) = o(g(n)) 的 time constructible 的函数,则

$$\mathbf{NTIME}(f(n)) \subsetneq \mathbf{NTIME}(g(n))$$

定理 13 (Ladner's Theorem). 如果 $P \neq NP$,则存在语言 $L \in NP \setminus P$,即非 NP-complete 的 NP 语言。

 $^{^2}$ little-o 不能替换成 big-O,我只能说懂的都懂。

空间复杂性 6

定义 18 (运行空间, SPACE 与 NSPACE). 对于 $S: \mathbb{N} \to \mathbb{N}$ 和 $L \subseteq \{0,1\}^*$, 称 $L \in \mathbf{SPACE}(S(n))$, 如果 存在常数 c 以及可以决定 L 的图灵机 M,满足在对任意长度为 n 的输入的计算中, M 只会访问到至多 $c \cdot S(n)$ 个 work tapes 上 (不包含 input) 的位置,称 M 的运行空间为 O(S(n))。

类似地可以定义 **NSPACE**,这里要求在任何一种决策下用到的位置数量都不超过 $c \cdot S(n)$ 。

定义 19 (Space constructible functions). 称 $S: \mathbb{N} \to \mathbb{N}$ 是 space constructible 的,如果存在图灵机可以对 于输入 x,在 O(S(|x|)) 的空间内计算 S(|x|)。

注 4. 相比于 time constructible functions, 我们不要求 space constructible functions 满足 $S(n) \ge n$, 但为了 能够"记住在输入纸带上的位置", 我们一般会要求 $S(n) \ge \log n$ 。

定理 14. 对于任何 space constructible 的函数 $S: \mathbb{N} \to \mathbb{N}$, 有

$$\mathbf{DTIME}(S(n)) \subseteq \mathbf{SPACE}(S(n)) \subseteq \mathbf{NSPACE}(S(n)) \subseteq \mathbf{DTIME}(2^{O(S(n))})$$

证明. 前两个 ⊆ 都是平凡的, 只考虑证明最后一个。

我们称一台 (确定或非确定) 图灵机 M 的一个 **configuration** 包含(i)work tape 上的所有非空字符;(ii)所 有纸带的 head 位置;(iii) M 所处的状态,则对于确定的输入 $x \in \{0,1\}^*$,一个 configuration 的后继 configuration 是(a)对于图灵机来说,唯一确定的;(b)对于非确定图灵机来说,至多唯二确定的。把 configuration 之间的转移 看成一张有向图,记作 $G_{M,x}$ 。不失一般性假设 M 只有一种 configuration $C_{
m accept}$ 满足"输出 1 后停机"(可以 让图灵机在停机前擦除所有中间记录),这样 M(x) = 1 就等价于 $G_{M,x}$ 中存在一条 C_{start} 到 C_{accept} 的路径。 陈述两个事实:

- 给定 $M, x, G_{M,x}$ 中的每个节点用 O(S(n)) 个 bit 来表示,也即, $G_{M,x}$ 只有 $2^{O(S(n))}$ 个节点。
- 对于任意两个 configuration C, C', 存在 O(S(n)) 大小的 CNF $\varphi_{M,x}$ 满足 $\varphi_{M,x}(C,C')=1$ 当且仅当 $G_{M,x}$ 中 C 有边连向 C'。

因此用 $2^{O(S(n))}$ 的时间把整张 $G_{M,x}$ 建出来,再 BFS 一下即可验证 C_{start} 到 C_{accept} 是否连通。

定义 20 (PSPACE, NPSPACE, L and NL).

$$\begin{aligned} \mathbf{PSPACE} &= \bigcup_{c\geqslant 1} \mathbf{SPACE}(n^c) \\ \mathbf{NPSPACE} &= \bigcup_{c\geqslant 1} \mathbf{NSPACE}(n^c) \\ \mathbf{L} &= \mathbf{SPACE}(\log n) \\ \mathbf{NL} &= \mathbf{NSPACE}(\log n) \end{aligned}$$

推论 2. NP ⊆ PSPACE, 因为都可以暴力枚举答案, 用多项式空间存下来然后验证。

推论 3. 在 定理 14 中分别代入 $S(n) = \log n, S(n) = n^c$, 可以得到

$$\mathbf{L} \subseteq \mathbf{P} \qquad \mathbf{PSPACE} \subseteq \mathbf{EXP}$$

例 4.

 $\mathsf{PATH} = \{ \langle G, s, t \rangle : G \text{ is a direct graph in which there is a path from } s \text{ to } t \}$

即判断图中两点之间是否存在一条路径。显然 $PATH \in NL$,但其是否属于 L 仍是一个 open problem。

定理 15 (Space Hierarchy Theorem). f, g 是满足 f(n) = o(g(n)) 的 space constructible 的函数,则

$$\mathbf{SPACE}(f(n)) \subsetneq \mathbf{SPACE}(g(n))$$

证明. 技术细节在于通用图灵机 U 模拟图灵机 M 只需要常数倍的空间,所以相比于 Time Hierarchy Theorem 没有了对数项。其余部分跟 Time Hierarchy Theorem 的证明类似,就不再赘述了。

定义 21 (PSPACE-hard, PSPACE-complete). 称 L' 是 PSPACE-hard, 如果对于任意 $L \in PSPACE$, $L \leq_p L'$ 。 PSPACE-complete = PSPACE \cap PSPACE-hard。

SPACE TMSAT =
$$\{\langle M, w, 1^n \rangle : \text{DTM } M \text{ accepts } w \text{ in space } n\}$$

这是一个 PSPACE-complete 语言。

例 5.

定义 22 (Quantified Boolean formula, QBF). 一个 QBF 是形如 $Q_1x_1Q_2x_2\cdots Q_nx_n\varphi(x_1,x_2,\cdots,x_n)$ 的 公式, 其中 $Q_i \in \{\forall,\exists\},\ x_i$ 的取值是 $\{0,1\},\ \varphi$ 是一个 plain(unquantified) boolean formula 。

上述定义专注于讨论**前束范式**的 QBF ,因为非前束范式都可以转化成等价的前束范式。一个 QBF 有真值 true 或 false 。

用 TQBF 表示所有为真的 QBF 的集合。

定理 16. TQBF is PSPACE-complete.

证明. 先证明 $\mathsf{TQBF} \in \mathbf{PSPACE}$ 。这个是简单的,因为判定可以通过 dfs 实现,而 dfs 只需要 O(n+m) 的空间,其中 n 是变量数,m 是 QBF 的长度。

再证明任意 $L \in \mathbf{PSPACE}$ 都满足 $L \leq_p \mathbf{TQBF}$ 。假设 M 是在 S(n) 空间内计算 L 的图灵机,考虑输入 $x \in \{0,1\}^*$ 。考虑 configuration graph $G_{M,x}$,我们陈述过图中每个点可以用 m = O(S(n)) 个 bit 来表示,以及 存在一个 CNF $\varphi_{M,x}$ 满足 $\varphi_{M,x}(C,C')$ = true 当且仅当 $G_{M,x}$ 中有 $C \to C'$ 的边。

考虑根据 $\varphi_{M,x}$ 来构造我们想要的 QBF ψ 。用 ψ_i 表示一个 QBF , $\psi_i(C,C')$ = true 当且仅当 $G_{M,x}$ 中存在一条长度不超过 2^i 从 C 到 C' 的路径,那么显然 $\psi = \psi_m(C_{\text{start}},C_{\text{accept}}),\psi_0(C,C') = \varphi_{M,x}(C,C') \vee (C=C')$ 。 ψ_i 可以递归定义:对于 $i \geq 1$, $\psi_i(C,C') = \exists C'' \psi_{i-1}(C,C'') \wedge \psi_{i-1}(C'',C')$ 。

一个技术细节是需要改进递归定义的具体方式以保证 ψ 的长度是多项式级别的。可以用一种看上去有点奇怪,但与前述定义等价的形式:

$$\psi_i(C,C') = \exists C'' \forall D_1 \forall D_2((D_1,D_2) = (C,C'') \land (D_1,D_2) = (C'',C')) \Rightarrow \psi_{i-1}(D_1,D_2)$$

这样构造出的 QBF ψ 的长度是 $O(m^2) = O(S^2(n))$ 的。