The holonomy representation, II.
Derek Krepski
Recall where we had reached last time.
A principal bundle or principal G-bundle (Galie group) is a fibre bundle (E, TL, B; G) such
group) is a fibre bundle (E, Ti, B; G) such
that the fibres Eb= Ti'(b) have a free and
transitive G-action, and the local trivializations
are G-equivariant:
are $G - equivariant$: So $G : U \times G \longrightarrow \pi^{-1}(U)$ must satisfy G(b, a) = G(b, ah)
P(b,g)h = P(b,gh)
Example: If E is a smooth manifold with a Gracking
that is free and proper => E/G is a smooth
manifold and E->E/G-B is the map.
Def: A connection on (E, T, B; G) consists of a smooth
assignment pm H = TpE, such that
(1) Tp E ~ 1p Eb (here T(p)=b)
(So the chosen subspace is transversal to the tangent space of the fibre)
tangent space of the fibre)
2) G-invariance: (Rg) Hg) = Fight Hp.g
Here, $R_g(p) = p \cdot g$ and $(R_g)_{\star}$ is
the differential (dRg)p.

Example: E = RxRx (here Rx is nonzero reals, thinking of it as $GL(1,\mathbb{R})$). Then $B=\mathbb{R}$ and $\pi: \mathbb{R} \times \mathbb{R}^{\times} \longrightarrow \mathbb{R}$ is pr_{i} , so $\pi(x,y) = x$. Then the action of Rx on the bundles are translation multiplication by an element of Rx, and (t,a).b=(t,ab). is how we express this. So Rb(t, a) = (t, ab). What is the connection? T(t,a) $E = \mathbb{R} \times \mathbb{R}$ and at (t,a) the tangent space is $\left(\frac{\partial}{\partial t}\Big|_{(t,a)}, \frac{\partial}{\partial t}\Big|_{(t,a)}\right)$. In pictures: So a connection is specified by $\mathcal{H}_p = Span \left\langle \frac{\partial}{\partial t} \right| + g(t, a) \frac{\partial}{\partial a} \right\rangle$ this is from () which requires transversality

Then condition Q, G-invariance, gives

$$(R_b)_* \left(\frac{\partial}{\partial t} + g(t,a) \frac{\partial}{\partial a}\right) = \frac{\partial}{\partial t} + g(t,ab) \frac{\partial}{\partial a}$$

$$\frac{\partial}{\partial t} + g(t,a)(b) \frac{\partial}{\partial a}(t,ab)$$
So we need $g(t,a) \cdot b = g(t,ab)$ So let $f(t) = g(t,a)$ and see then that any connection is described by $H_{(t,a)} = \text{span}\left(\frac{\partial}{\partial t} + f(t)a \frac{\partial}{\partial a}\right)$ where f is any function.

In pictures, suppose e.g. $f(t) = 1$, and $M = \text{span}\left(\frac{\partial}{\partial t} + a \frac{\partial}{\partial a}\right)$ and we get

$$M = \text{span}\left(\frac{\partial}{\partial t} + a \frac{\partial}{\partial a}\right)$$
 and we get

Now as mentioned last time, what are connections good for? Well, you can lift a path in B to a path in E , so that

$$E = \frac{e}{H_0} = \frac{e}$$

good for? Well, you can lift a path in B to a path in E, so that

E of P So given $Y(t) \in B$ and $P \in E_{Y(0)}$, $\exists !$ $X(t) \subseteq E$ such that $X(t) \in H_{X(t)}$

We also have parallel transport $E_{\gamma(0)} \rightarrow E_{\gamma(1)}$
defined by "take endpoints of horizontal lifts".
Definition: A flat connection on (E, TE, B, G) is a connection H such that parallel transport depends only on homotopy class of the path with fixed endpoints.
is a connection of such that parallel transport
fixed endpoints.
(So endpoints of lifts of homotopic paths depend only on the homotopy type of path. Note this is similar to covering spaces.)
The homotopy type of path. Note this is similar to
covering spaces.)
In particular, if (E,H) is a flat Groundle we get
Ti(B, b) -> G given by p.g., there's
In particular, if (E,H) is a flat abundle we get $\pi_1(B,b) \longrightarrow G$ given by pight, there's fibre lift $fixp$.
a unique g with pig as endpoint of the lift. This
map is denoted $\mathcal{H}_{0}(\mathcal{A}:\pi_{1}(B,b))\longrightarrow G$ inverse here due
given by the Half (8) = git to left/right actions.
where $\delta(1) = p \cdot g$.
Claim: Holp is a group homomogshiem.
Proof: Given a, B & Th. (B,b) consider the picture:

where $\tilde{\alpha}$, $\tilde{\beta}$ are horizontal lifts, and $g'' = Hol(\alpha)$ and $h'' = Hol(\beta)$.

Now since H is G-invariant, B, g is horizontal with initial point P, g, and terminal point (p.g). h So as our horizontal lift of the product ab take $\tilde{\chi} \cdot (\tilde{p} \cdot g)$ and compare endpoints:

Terminal point is $(p.h) \cdot g = p \cdot (hg)$ and so $Hol(\alpha\beta) = (hg)' = g'h'$ and $Hol(\alpha)Hol(\beta) = g'h'$.

Similarly Holpig = gtholy, The point:

The Hol map descends to

{(E, H) flat G-bundles} -> Hom (TI(B), G) G

In fact, it's a bijection. The inverse of this
map is given by: $P:\pi_1(B) \longrightarrow G$ maps to $\widetilde{B} \times G /_{\sim}$, where the action a \widetilde{B} is the natural

one and on Git's p.