There exist vectors v_1 , v_2 , v_3 in \mathbf{F}^3 such that v_3 is a linear combination of v_1 and v_2 , but v_1 is *not* a linear combination of v_2 and v_3 .

There exist a linearly dependent list of 3 vectors in \mathbf{F}^3 none of which is a scalar multiple of another.

There exists a number $t \in \mathbf{F}$ such that the list

$$(1,-1,0),(0,1,1),(1,0,t)$$

is linearly dependent in \mathbf{F}^3 .

Let V be the set of sequences $(a_0, a_1, a_2, ...)$ in \mathbf{F}^{∞} for which $a_n \neq 0$ for only finitely many n. Then V is a finite dimensional subspace of \mathbf{F}^{∞} .