ISTM 214 Homework 5 (Due day: 11/8)

Name:_____ ID:____

- 1. For the circuit shown below, derive the following formal descriptions:
 - (a) F(A,B,C)
 - (b) minimum SoP expression.
 - (c) K-map
 - (d) truth table
 - (e) ON set
 - (f) OFF set

- 2. If the function F(X,Y,Z) is represented by the ON SET $\Sigma_{X,Y,Z}(1,2,4,7)$,
 - (a) express the complement of this function, F'(X,Y,Z), as an ON set.
 - (b) express the dual of this function, F^D(X,Y,Z), as an OFF set.
- 3. Express the complement of the following function as an ON SET and draw a NAND-NAND circuit realization: $F(X,Y,Z) = Y + X \cdot Z'$
- 4. Express the complement of the following function as an OFF SET and draw a NOR-NOR circuit realization: $F(X,Y,Z) = Y' + X' \cdot Z$
- 5. For the function mapped below:

	\mathbf{W}'		W		
Y'	1	1	0	1	Z'
	0	0	0	1	Z
Y	1	1	0	0	
	1	1	0	1	Z'
	X'	X		X'	•

- (a) Write a minimal sum-of-products expression and calculate its cost:
- (b) Write a minimal product-of-sums expression and calculate its cost: