Working with Multidimensional Data Using NumPy

EXPLORING MULTIDIMENSIONAL DATA USING NUMPY

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Fundamental package for scientific computing in Python

Basic building block is a powerful n-dimensional array

Forms the core of the Python ecosystem of open source software for math, science and engineering

Offers easy to use functions to process multi-dimensional arrays

Prerequisites and Course Outline

Prerequisite Courses

Python: Getting Started

Python Fundamentals

Advanced Python

Software and Skills

Be very comfortable programming in Python (Python 3)

Be comfortable working with Jupyter notebooks

Understand high school matrix operations

Course Outline

Exploring multidimensional data

- Creating, printing, basic operations
- Shape manipulation, deep and shallow copies

Complex indexing

- Indexing using array indices
- Broadcasting, stacking vectors
- Support Vector Machines for text and image classification, Gradient Boosting for regression

NumPy with other libraries

- SciPy and Pandas
- KNN with TensorFlow

NumPy Ecosystem

statsmodel

Estimate statistical models, and perform tests

scikit-image

Collection of algorithms for image processing

scikit-learn

Simple and efficient tools for machine learning in Python

pandas

Data analysis and manipulation

matplotlib

Plotting library for 2D graphs and visualizations

NumPy Ecosystem

statsmodel

Estimate statistical models, and perform tests

scikit-image

Collection of algorithms for image processing

scikit-learn

Simple and efficient tools for machine learning in Python

pandas

Data analysis and manipulation

matplotlib

Plotting library for 2D graphs and visualizations

NumPy

Creating multidimensional arrays

Printing arrays

Basic arrays operations

Universal functions to perform familiar mathematical operations

Indexing and slicing of arrays

Iterating over arrays

Changing the shape of an array

Splitting arrays

Image manipulation

Each pixel holds a value based on the type of image

RGB values are for color images

R, G, B: 0-255

Each pixel represents only intensity information

0.0 - 1.0

Single channel and multi-channel images

Images can be represented by a 3-D matrix

The number of channels specifies the number of elements in the 3rd dimension

Views - shallow copies of an array

Making deep copies of arrays

Summary

Fundamental package for scientific computing in Python

Basic building block is a powerful n-dimensional array

Offers easy to use functions to process multi-dimensional arrays

Basic operations, universal functions, reshaping, splitting, making shallow and deep copies