WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/56, 9/28, 15/75, C12P 19/14, C11D 3/386, D06M 16/00, C12N 1/21 // D06M 101:04, (C12N 1/21, C12R 1:125)

A2

(11) International Publication Number:

WO 95/35382

(43) International Publication Date: 28 December 1995 (28.12.95)

(21) International Application Number:

PCT/EP95/01688

(22) International Filing Date:

2 May 1995 (02.05.95)

(30) Priority Data:

94201740.1

17 June 1994 (17.06.94)

EP

(34) Countries for which the regional or international application was filed:

NL et al.

(71) Applicant (for all designated States except US): GIST-BROCADES B.V. [NL/NL]; Wateringseweg 1, P.O. Box 1, NL-2600 MA Delft (NL).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): VAN DER LAAN, Jan, Metske [NL/NL]; Leursebaan 364, NL-4839 AP Breda (NL). AEHLE, Wolfgang [NL/NL]; Lumumbasingel 7, NL-2622 ED Delft (NL).
- (74) Agents: VISSER-LUIRINK, Gesina et al.; Gist-Brocades N.V., Patents and Trademarks Dept., Wateringseweg 1, P.O. Box 1, NL-2600 MA Delft (NL).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NOVEL AMYLOLYTIC ENZYMES DERIVED FROM THE B. LICHENIFORMIS α-AMYLASE, HAVING IMPROVED **CHARACTERISTICS**

(57) Abstract

The present invention relates to novel amylolytic enzymes having improved characteristics for the use in starch degradation, in textile or paper desizing and in household detergent compositions. The disclosed α -amylases show surprisingly improved properties with respect to the activity level and the combination of thermostability and a higher activity level. These improved properties make them more suitable for the use under more acidic or more alkaline conditions. The improved properties allow also the reduction of the Calcium concentration under application conditions without a loss of performance of the enzyme.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine .
ES	Spain .	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	uz	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		· ·		

WO 95/35382 PCT/EP95/01688

d

5

25

30

35

Novel amylolytic enzymes derived from the *B.licheniformis a*-amylase, having improved characteristics

The present invention relates to amylolytic enzymes, particularly aamylases which are derived from such enzymes as present in *Bacillus* licheniformis.

 α -Amylases hydrolyse starch, glycogen and related poly-saccharides by cleaving internal α -1,4-glucosidic bonds at random.

Starch consists of a mixture of amylose (15-30% w/w) and amylopectin (70-85% w/w). Amylose consists of linear chains of α -1,4-linked glucose units having a molecular weight (MW) from about 60,000 to about 800,000. Amylopectin is a branched polymer containing α -1,6 branch points every 24-30 glucose units, its MW may be as high as 100 million.

Starch and especially derivatized starch or thinned starch are important for a number of technical applications, e.g. as substrate for sugar and alcohol production, as an intermediate in polymer production or as technical aid during the production of textiles and paper. Starch is also the major component of stains derived from e.g. chocolate, pap or porridge on clothes and dishes.

Thinning of starch, also called liquefaction, is a first step which is necessary in most applications of starch mentioned above. This thinning step can be very conveniently carried out using α -amylase.

The α -amylase used thus far are isolated from a wide variety of bacterial, fungal, plant and animal sources. The industrially most commonly used amylases are those isolated from *Bacilli*.

A known drawback of enzymatic reactions is that enzymes are active over a quite limited range of conditions such as pH, ionic strength and especially temperature.

The a-amylase from B.licheniformis is one of the most stable ones in that last respect known so far and is therefore used in applications where the

thermostability of the enzyme is crucial. However, the stability of this enzyme depends on the calcium concentration in the application and the optimum activity is observed at neutral pH. A more thermostable variant of the *B.licheniformis* enzyme, which has the same specific activity as the wild type enzyme, has been described in PCT/EP90/01042.

It has been shown in PCT/DK93/00230 that it is possible to improve the oxidation stability of *B.licheniformis a*-amylase by replacing methionines by one of the other 19 possible amino acids. In the specified test under the given conditions one of these mutants showed a slightly higher activity level than the wild type enzyme.

Though it has been shown that it is possible to improve the stability of amylolytic enzymes, in particular α -amylase, for some detrimental conditions, there is as yet no α -amylase available which has the same or better activity under suboptimal conditions than the wild type enzyme at optimum conditions. Suboptimal conditions are herein defined as conditions which use a pH other than neutral, e.g. lower than 6.5 or higher than 7.5, and/or conditions which use a lower than optimal Ca²⁺ concentration, i.e. lower than 50 ppm.

Because in most industrial applications the conditions are at best suboptimal, the problem of diminished activity could be solved by providing an enzyme which, at optimum conditions, has a higher activity than the wild type enzyme. It would then still have sufficient activity at sub-optimal conditions. The invention provides exactly such enzymes.

The invention provides an amylolytic enzyme derived from the amylolytic enzyme of *Bacillus licheniformis* or an enzyme having at least 70%, or preferably at least 90%, amino acid identity therewith which comprises at least one change of an amino acid in its sequence to another amino acid which provides the enzyme with a higher activity than the wild type enzyme. The activity of an amylolytic enzyme is herein defined as the specific activity as determined in Example 2. The higher activity of the mutant enzymes is apparent under optimal conditions but also under

20

25

30

suboptimal conditions where a pH value of less than pH 6.5 or higher than pH 7.5 and/or a Ca²⁺ concentration of less then 50 ppm is used. In addition, the invention provides such amylolytic enzymes with a higher thermostability than the wild-type enzyme, wherein the thermostability is defined as determined in Example 3. For some of the mutant enzymes, the improved thermostability is most pronounced under suboptimal conditions regarding the Ca²⁺ concentration.

The amino acid sequence of the *B.licheniformis* a-amylase is shown in Figure 1. The numbers indicate the position of an amino acid in the sequence and will be used as an indication for the amino acid position in the description of the amino acid changes. Regarding the corresponding amino acid changes in enzymes having at least 70%, or preferably at least 90%, amino acid identity with the *B.licheniformis* a-amylase, the skilled person will understand that the *B.licheniformis* a-amylase amino acid positions used herein refer to the corresponding conserved amino acids in the amino acid sequence of these related enzymes and not necessarily to their amino acid positions in those enzymes. It is also to be understood that these corresponding conserved amino acids are not necessarily identical to those of the *B.licheniformis* a-amylase.

In a site directed mutagenesis study we identified mutants on the amino acid sequence which influence the activity level of the enzyme. Among others, we made the following mutations: N104D, S187D, V128E and N188D, which are preferred mutant enzymes according to the invention. Some of these mutants showed a higher overall activity than the wild type enzyme. Alternatively, some of these mutations showed improved thermostability.

Although site directed mutations in the DNA encoding the amylolytic enzymes are a preferred way of arriving at the enzymes according to the invention, the man skilled in the art will be aware that there are different ways of obtaining the enzymes according to the invention and they are therefore part of this invention.

20

30

Due to the fact that until now only 3D-structure of non bacterial α amylases are available (e.g. L. Brady et al. Acta Cryst. B47 (1991), 527-535, H.J. Swift et al. Acta Cryst. <u>B47</u> (1991), 535-544, M. Quian et al. J. Mol. Biol. 231 (1993), 785-799), it is hard to predict for the q-amylase from B.licheniformis whether a certain amino acid at a certain position can have any influence on the activity level of the enzyme. One normally needs a 3Dstructure for making such predictions, because the spatial orientation of the amino acids determines their role in the catalytic process. Without a 3Dstructure of the investigated enzyme one has to relate the results of site directed mutagenesis experiments on putative active site residues on related enzymes (see e.g. L. Holm et al. Protein Engineering 3 (1990) 181-191, M. Vihinen et al. J. Biochem. 107 (1990) 267-272, T. Nagashima et al. Biosci. Biotech. Biochem. 56 (1992) 207-210, K. Takase Eur. J. Biochem. 211 (1993) 899-902, M. Søgaard et al. J. Biol. Chem. 268 (1993) 22480-22484) via a multiple sequence alignment (see e.g. L. Holm et al. Protein Engineering 3 (1990) 181-191) to the known 3D-structures. This allows the identification of the active site residues and allows to identify residues which are conserved in all similar enzymes. One normally assumes that conserved residues are crucial for the function or structure of the enzyme. It is therefore to be expected that mutations in those sites will influence the activity of the enzyme. By making mutations in said active sites it would therefore be expected that some mutations would result in higher activity. However, in B. licheniformis none of the mutated residues at position 104, 128, 187 and 188 are active site residues. Only position 104 is located at the end of a conserved region and could maybe be important for the activity, but also in that particular case a correct prediction of the effect of a point mutation is nearly impossible.

Another important aspect of the invention is the finding that in a number of cases the higher active mutants were slightly less thermostable than the wild type enzyme, except at least the mutations V128E and N188D, which are more stable, or at least more thermostable, than the wild type enzyme.

25

We therefore combined them with some earlier identified mutations which are known to stabilize the wild type enzyme. These are the mutations H133Y and T149I. These extra mutations indeed stabilized the more active mutants, but moreover they surprisingly showed an even higher activity level than the higher active mutants themselves.

In a further embodiment of the invention, the mutants of the invention are combined with mutations which improve the oxidation stability of the amylolytic enzyme. Such mutant enzymes may comprise mutations known in the art to improve the oxidation stability of amylolytic enzymes, such as e.g. mutations which replace the methionine at position 197 (see e.g. PCT/DK93/00230).

As stated before, a suitable way of arriving at the enzymes according to the invention is site directed mutagenesis of a nucleic acid, especially a DNA molecule, which comprises the coding sequence for the enzymes. The mutated nucleic acid molecules themselves are also part of the invention representing novel and inventive intermediates in producing the enzymes. Also by providing these nucleic acids in a suitable vector format (whereby a vector is meant to include any suitable vehicle for expression in a cell), it is possible to express the nucleic acid in a vast array of different hosts, including homologous and heterologous hosts, such as bacteria and/or other prokaryotes, yeasts, fungi, plant cells, insect cells or mammalian cells and or other eukaryotic host cells. These host cells which can be cultured to produce the enzymes are also part of the invention.

These cells can be cultured according to known techniques, which are all adapted to the particular kind of cell to be propagated. The isolation of the enzymes according to the invention from the culture or the culture supernatant is also known in the art.

A number of mutants will be more active (i.e. higher specific activity) and/or more stable (with respect to oxidation- and/or thermo-stability) even when only parts thereof are used. These fragments are of course within the

WO 95/35382

15

25

- 6 -

PCT/EP95/01688

scope of this invention. It will also be possible to design mutations based upon this invention which have hardly any influence on the activity or stability, such derivatives are also a part of this invention. Some reactive residues which are present in the amino acid sequences according to the invention may also be chemically modified without having significant influence on the activity of such an enzyme. These derivatives are also a part of the invention.

The same may be stated for the nucleic acids according to the invention, which can be modified to a certain extent without influencing the important properties of the resulting enzyme. Therefore nucleic acid sequences which share at least 70% identity, or more preferably at least 90 % identity, with a coding sequence for an enzyme according to the invention or which are complementary to such a sequence are part of this invention. This is also true because based on this invention it will be possible to arrive at similar improvements in activity and/or stability in closely related enzymes such as amylolytic enzymes from *B. stearothermophilus* and *B. amyloliquefaciens*.

The novel amylolytic enzymes according to the invention may be used in all known applications of the amylolytic enzymes in the state of the art.

These applications include the use in the processing of starch, e.g. for polymer production wherein starch needs to be "thinned", the use in detergent compositions to break down stains which comprise starch or starch derivatives, the use in production of sugar or alcohol, or the use in the processing of textile or paper, in particular, the use for desizing of textile or paper, respectively.

Detergent compositions comprising the novel amylolytic enzymes are also a part of the invention. These compositions may be designed for dishwashing (either by hand or automatically), for household or industrial cleaning purposes, or for cleaning textiles. These compositions may comprise the usual additives and/or ingredients such as builders, surfactants, bleaching agents and the like.

Another preferred embodiment of the invention is the use of the enzymes in producing syrup or isosyrup from starch. Syrup and isosyrup are produced using an α -amylase according to the invention which catalyzes the liquefaction (or thinning) of the starch resulting in dextrins having an average polymerization degree of about 7-10, usually followed by saccharification of the liquefied starch resulting in a syrup with a high glucose content. Optionally the syrup can be isomerized to a dextrose/fructose mixture known as isosyrup.

The invention will now be explained in more detail through the following examples, which are intended for illustration purposes only.

-8-

Examples

Short description of the figures:

5

10

Figure 1 gives the amino acid sequence of the *a*-amylase of *B.licheniformis*. The numbers relate to the positions of the amino acids in the sequence. They are used to identify the mutations, which are given in one letter amino acid code in the text of the application.

The nomenclature used for the mutations is as follows S187D means the replacement of the serine (Ser) at position 187 against an aspartic acid (Asp). Multiple mutants are designated as follows H133Y/T149I means the replacement of histidine (His) at position 133 by tyrosine (Tyr) plus the replacement of threonine (Thr) at position 149 by isoleucine (Ile).

15

Figure 2 gives a map of plasmid pBHATLAT. *a*-amylase: *B.licheniformis a*-amylase encoding gene. oripUB: origin of replication of plasmid pUB110. reppUB: replication protein of plasmid pUB110. neo: neomycin resistance gene. bleo: bleomycin resistance gene. pHpall: Hpall promoter. orifl: origin of replication of phage fl. ori322: origin of replication of plasmid pBR322. bla: ß-lactamase (ampicillin resistance) gene. cat*: inactive chloramphenicol acetyl transferase (chloramphenicol resistance) gene. pTac: Tac promoter.

25

30

Example 1

Production and purification of wild type and mutant α-amylases

a) Genetic procedures:

All molecular genetic techniques used for *E.coli* (plasmid construction, transformation, plasmid isolation, etc.) were performed according to

25

30

Maniatis et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, 1989). Transformation of *B. subtilis* and plasmid isolation were performed according to Harwood et al. (Molecular Biological Methods for Bacillus, Chichester, 1990). *E. coli* strains containing pBHATLAT or its derivatives were grown in the presence of 100 mg/l ampicillin and 2 mg/l neomycin. *Bacillus subtilis* strains harboring pBHLAT 9-derived plasmids were cultivated in medium containing 20 mg/l neomycin.

Plasmid pBHA/C1 is a *Bacillus/E.coli* shuttle vector derived from the twin vector system pMa/c5-8 of Stanssens et al. (Nucl. Acids Res. <u>17</u> (1989): 4441-4454). A complete description of pBHA1 is given in the European Patent Application EP 414297.

The *B.licheniformis* α-amylase gene used throughout this study was obtained from plasmid pMcTLia6 (WO91/00353) as an <u>EcoRI-HinDIII</u> restriction fragment still including the inducible Tac promoter. This fragment was inserted in <u>EcoRI-HinDIII</u> digested pBHA1 to yield plasmid pBHATLAT (Fig. 2). This plasmid is used for the expression of α-amylase in *E.coli* through induction of the Tac promoter by 0.2 mM IPTG. Expression of mutant α-amylase was obtained by replacing the wild type α-amylase gene fragment by the corresponding mutant gene fragment. For expression in Bacillus, plasmid pBHATLAT was digested with <u>Bam</u>HI and subsequent relegation thus placing the α-amylase gene under the control of the constitutive Hpall promoter. Wild type and mutant α-amylase enzyme was isolated from the Bacillus culture supernatant.

Site directed mutagenesis of the *a*-amylase gene was performed using the PCR overlap extension technique described by Ho et al. (Gene <u>77</u> (1989): 51-59).

b) Purification of the α -amylase wild type and mutants:

One aliquot of the culture supernatant is added to five aliquots water of 85°C and than maintained at 75°C for 15 minutes. Protease activity is removed in this step. The enzyme is then isolated via ion exchange

chromatography at pH 5.5 on a S-Sepharose FF column. The buffers used are 20 mM sodium acetate buffer with 1 mM $CaCl_2$ followed, with a gradient, by 20 mM sodium acetate buffer with 1 mM $CaCl_2$ and 0.5 M KCl. The pooled α -amylase fractions are concentrated by ultrafiltration via a 10 kD filter. By washing the concentrate with 1.6 mM EDTA in 50 mM MOPS, pH 7.5 the enzyme can be demetallized. Finally the concentrate is washed twice with 50 mM MOPS buffer pH 7.5.

Example 2

Determination of activity and enzyme concentration

The enzyme concentration is determined by measuring the optical density at 280 nm. The extinction coefficient of wild type enzyme is 135100 M⁻¹ cm⁻¹. The mutants with the mutation H133Y have an extinction coefficient of 136430 M⁻¹ cm⁻¹. The molecular weight is 55 kD.

The α -Amylase activity is determined by means of the substrate para-Nitrophenyl-maltoheptaosoide (4NP-DP7). The reagent of Abbott (code LN5A23-22) is used. Besides 4NP-DP7 there is also α -glucosidase and glucoamylase in the substrate. α -Amylase activity is measured by the ultimate release of the chromophore p-nitrophenol (pNP).

The terminal glucose unit of the substrate is blocked with a benzylidene group. This terminal blocking inhibits cleavage by σ -glucosidase until the initial bonds can be cleaved by σ -amylase followed by glucoamylase.

The increase of the OD405 per minute is directly proportional to the a-amylase activity.

The molar extinction coefficient of pNP at 405 nm and pH 6.8 is 7600 M⁻¹ cm⁻¹. 1 Unit is 1 μ mol converted substrate per minute. With the law "Lambert-Beer" the following relationship is established:

- 11 -

Activity =
$$\frac{OD405 * 10^6}{\epsilon^{405} * 1 * t} = \frac{OD405}{t} * 131.6$$
 $\left[\frac{U}{1}\right]$

where t = time [minutes], I = lightpath [cm], ϵ^{405} = molar extinction coefficient at 405nm [M⁻¹ * cm⁻¹], OD405 = extinction at 405 nm, 10^6 = calculation factor from mol/I $\rightarrow \mu$ mol/I

5 Activity assay:

10

- Add 0.8 ml reagent solution (R1) to a bottle R2 (Abbott).
- Heat the temperature controlled cuvette holder of the spectrophotometer to 37°C.
- Heat the activity buffer to 37°C (50 mM MOPS + 50 mM NaCl + 2 mM CaCl₂, pH 6.8).
- Add to the cuvette in the cuvette holder:

500 μl reagent

 $x \mu l$ sample

500 - x μ l activity buffer

- Measure the increase in extinction at 405 nm during 2 minutes.
 - Calculate the activity by using the above equation.

Table 1
Specific activities of wild type (WT) and mutant *a*-amylases

Enzyme	Specific Activity [Units/mg]
wild type	60
H133Y	62
H133Y/T149I	60
N104D	30
N104D/H133Y	46
N104D/H133Y/T149I	52
V128E/H133Y	62
V128E/H133Y/T149I	60
S187D	110
H133Y/S187D	155
H133Y/T149I/S187D	150
H133Y/N188D	56
H133Y/T149I/N188D	52
V128E/H133Y/S187D	142

Example 3 Determination of thermostability

The enzyme is incubated in an oil bath at 93 °C in closed Eppendorff micro test tubes with safety lid lock (order-No. 0030 120.086). The Calcium concentration is varied whereas the ionic strength is kept constant. The buffer has at room temperature pH 7.5 which changes at the incubation temperature

WO 95/35382 PCT/EP95/01688

·- 13 -

to pH 7.0. A solution of \pm 0,25 mg/ml protein in 50 mM MOPS pH 7.5 is obtained by mixing the right amount of enzyme in 50mM MOPS pH 7.5 with X mM CaCl₂ + X mM K₂SO₄ + 100 mM MOPS pH 7.5 + water. The final buffer concentration must be 50 mM and the final volume should be 500 to 1000 μ l (the best is 1000 μ l). The salt composition is shown on the following table:

	mM CaCl ₂	mM K₂SO₄
	0	15
	0.25	14.75
10	0.5	14.5
	0.75	14.25
	1	14
	1.25	13.75
	1.5	13.5

15

20

Example for 0.5 mM CaCl₂:

250.0 μ l 100 mM MOPS pH 7.5 88.0 μ l enzyme (1.42 mg/ml) 50.0 μ l 5 mM CaCl₂ 72.5 μ l 100 mM K₂SO₄

39.5 µl demi water

500.0 μ l total volume

The enzyme solutions are incubated in the sealed tubes at 93 °C. 50 μ l samples are taken after 0.5, 10, 20, 30, 60, 90 and 120 minutes. The residual activity is determined with the Abbott Quickstart Amylase essay (see above). The half life time is calculated by using the fitting program GraFit (Leatherbarrow, R.J. 1990 GraFit version 2.0, Erithacus Software Ltd., Staines, UK).

Table 2
Half life of the WT and mutant *a*-amylases at different Ca²⁺ concentrations

Ca ²⁺	0	0 0.25 0.5 0.75 1			1.25	1.5	
Enzyme				Half life [min)		
wild type	4.1	9.2	15.5	18.1	22.9	30.3	29.5
H133Y	nd	12.1	24.2	33.3	53.3	nd	77.0
H133Y/T149I	1.1	9.2	21.4	32.8	40.2	53.6	53.6
N104D	nd	nd	nd	nd	7.7	nd	nd
N104D/H133Y	nd	8.4	11.6	nd	14.4	nd	15.4
N104D/H133Y/T149i	nd	10.2	13.4	17.5	19.1	23.1	20.3
V128E/H133Y	nd	15.6	33.9	nd	53.3	65.3	77.8
V128E/H133Y/T149I	nd	19.7	35.2	nd	54.7	nd	76.3
S187D	nd	4.0	6.9	9.3	12.1	nd	15.1
H133Y/S187D	nd	15.2	19.7	27.0	29.8	40.8	47.2
H133Y/T149I/S187D	1.4	6.0	12.7	17.6	20.0	nd	nd
H133Y/N188D	nd	18.2	36.2	nd	70.4	76.8	84.9
H133Y/T149I/N188D	nd	15.8	28.8	nd	62.0	nd	73.6
V128E/H133Y/S187D	1.9	7.2	16.9	nd	32.1	nd	36.2

nd = not determined

20

15

5

10

Example 4 Starch liquefaction using a mutant *a*-amylase of the invention

The mutant enzyme was proven to be effective in starch liquefaction tests using industrially relevant conditions. It was tested under identical conditions in comparison with the wild type enzyme.

A 34.3 % dry solids starch slurry was liquefied using a pilot plant jet cooking apparatus, Hydroheater Model # M 103-MS, at a flow rate of 2.8 I per minute. A 5 minutes retention time at 105 °C of primary liquefaction was followed by a 93 °C 120 min secondary liquefaction. The comparison tests vis a vis the wild type enzyme were performed based upon equal Modified Wohlgemuth Units (MWU) 168 units/gram of starch. The specific activity is for wild type 18,447 MWU/mg and for H133Y/S187D 48,000 MWU/mg respectively.

The enzymes were tested under two sets of conditions. The first experiment used standard industrial conditions (pH 6.4, 44 ppm Calcium), while the second experiment employed stress conditions (pH 5.8, 8 ppm Calcium).

The decrease in viscosity during liquefaction was measured with a #3 Zahn cup, while Dextrose Equivalent (DE) development was measured using a reducing sugar assay. The results are summarized in the following tables:

Table 3.

Experiment 1: pH 6.4, 44 ppm Calcium

	Wild type		H133Y/S187D				
time [min]	DE	Viscosity	DE	Viscosity			
0		25		24			
20	2.7		2.4				
40	4.0		3.5				
60	5.4	14	4.7	14			
80	6.5		6.0				
100	7.8		7.5				
120	9.2	12	8.8	12			

20

15

Table 4.

Experiment 2: pH 5.8, 8 ppm Calcium

		Wild type		H133Y/S18	H133Y/S187D					
	time (min)	DE	Viscosity	DE	Viscosity					
5	0		36		38					
	20	0.3		1.1						
	40	1.1		2.0						
	60	2.5	17	2.0	15					
	80	2.5		3.5						
10	100	3.2		4.2						
	120	3.9	13	4.6	13					

Example 5 Textile desizing using a mutant *a*-amylase of the invention

Cretonne cotton patches (30 * 30 cm, J. Hacot et Cie., 48 Rue Mermoz, La Gorgue, France) are impregnated with 12 % soluble starch (weight/weight) as sizing agent. The sized cotton is given in a beaker with one litre tap water and 0.5 ml/l wetting agent at 25 °C and pH 7.0. α-Amylase is added in a concentration as shown in the table. The mixture is agitated and heated with a gradient of 2 °C per minute within 30 minutes to a final temperature of 85 °C. After 10 minutes agitating at the final temperature the fabric is 2 minutes rinsed with cold water and dried.

The residual starch is determined with a reflectrometric method. The residual starch on the fibres is coloured with a solution made from 0.15 g iodine, 0.5 g potassium iodine and 10 ml 2 N $\rm H_2SO_4$ in a volume of 1 l water. The dried cotton patch is wetted with alcohol and soaked in the colouring

solution for 15 minutes. The reflectance of the coloured patch is measured at 700 nm with a Universal Messeinheit UME 1 III/LR 90 reflectometer (Dr. Bruno Lange GmbH, Berlin, Germany). The amount of residual starch can be calculated with a calibration curve recorded with known amounts of starch on the fabric.

Table 5.

A comparison of the performance of the wild type and a mutant α -amylase in the desizing of textile.

wild type		H133Y/S187D	
enzyme concentration [µmol/l]	remaining starch on fabrics [mg/g]	enzyme concentration	remaining starch or fabric (mg/g)
0	3.92	0	4.05
9.3	3.35	2.5	3.35
18.5	2.76	4.9	2.45
37.2	2.25	7.6	2.02
46.5	1.85	9.1	1.72
70 .	1.42	12.5	1.37
93	0.9	18.9	1.12
		25.3	0.68
		37.8	0.5

20

15

- 18 -

<u>Example 6</u> <u>A comparison of the wash performance of the wild type</u> <u>and a mutant a-amylase</u>

- The wash performance of the wild type vis a vis the H133Y/S187D mutant was tested in a full scale wash experiment using the amylase sensitive cotton test fabric EMPA 112 as monitor. In all tests the α-amylase dosage was 1.3 mg/l suds. A blank was taken as reference. Washing powder base was the IEC reference detergent A, containing bleach and protease.
- All tests were carried out in quintuple. The fabrics were washed in a Miele, type W701 washing machine at 40 °C and a total load of 4 kg fabrics. The soil removal was determined by measuring the white light reflection with a Colorgard Model 05 (Gardner Lab., USA) reflectometer. Table summarizes the results. It shows that the mutant performs better than wild type enzyme at the same dosage.

Table 6. A comparison of the wash performance of the wild type and a mutant α -amylase

,	Enzyme	none	wild type	H133Y/S187D
	Soil removal	31.7 %	40.2 %	42.1 %

WO 95/35382 PCT/EP95/01688

- 19 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5

- (i) APPLICANT:
 - (A) NAME: Gist-brocades B.V.
 - (B) STREET: Wateringseweg 1
 - (C) CITY: Delft
- 10 (E) COUNTRY: The Netherlands
 - (F) POSTAL CODE (ZIP): 2611 XT
 - (ii) TITLE OF INVENTION: Alpha-amylase mutants
- 15 (iii) NUMBER OF SEQUENCES: 2
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
- 20 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

	(2)		OIG HI	11011	ron	SEQ	10	110:	1.								٠
		(i) SE	QUEN	CE C	HARA	CTER	ISTI	CS:								
					ENGT					rs							
5					YPE:				-								
					TRAN												
					OPOL												
		(ii) MO	LECU.	LE T	YPE:	DNA	(ge	nomi	c)							
10																	
		(iii) HY:	POTH	ETIC	AL: 1	NO										
		(iii) AN	TI-S	ENSE	: NO											
15		(vi			AL S												
					RGAN:				s li	chen	ifor	mis					
			(1	B) S	TRAI	N: C	BS40	7.83									
		13.00	, mm.	N COVETTO I	m.												
20		(IX		ATURI	e: Ame/1	vev.	CDG										
20					OCAT:			1539			•						
			\.	J, <u>L</u> ,	JC111.			1333									
		(ix)) FE	ATURI	E:												
			(2	A) N	AME/I	KEY:	sig	_pep	tide								
25			(1	B) L(CAT:	ON:	1	87									
		(ix)		ATURI													
					AME/I		_	_									
			-		OCAT:					_				_			
30			(1) O'.	THER	INF	DRMA'	LION	: /pi	rodu	ct=	"атрі	na-ai	ny1a:	se"		
		(xi)	SEC	MENC	CE DI	escr1	የውሞፕ)N - 9	SEO T	ות חו) • 1						
		(311)	, D.	20211						,		•					
35	ATG	AAA	CAA	CAA	AAA	CGG	CTT	TAC	GCC	CGA	TTG	CTG	ACG	CTG	TTA	TTT	48
	Met	Lys	Gln	Gln	Lys	Arg	Leu	Tyr	Ala	Arg	Leu	Leu	Thr	Leu	Leu	Phe	
	-29				-25					-20					-15		
	GCG	CTC	ATC	TTC	TTG	CTG	CCT	CAT	TCT	GCA	GCA	GCG	GCG	GCA	AAT	CTT	96
40	Ala	Leu	Ile	Phe	Leu	Leu	Pro	His	Ser	Ala	Ala	Ala	Ala	Ala	Asn	Leu	
				-10					-5					1			
				•													
	TAA	GGG	ACG	CTG	ATG	CAG	TAT	TTT	GAA	TGG	TAC	ATG	CCC	AAT	GAC	GGC	144

		•																
	Asn	Gly	Thr	Leu	Met	Gln	Tyr	Phe	Glu	\mathtt{Trp}	Tyr	Met	Pro	Asn	Asp	Gly		
		5					10					15						
	CAA	CAT	TGG	AAG	CGT	TTG	CAA	AAC	GAC	TCG	GCA	TAT	TTG	GCT	GAA	CAC		192
5	Gln	His	Trp	Lys	Arg	Leu	Gln	Asn	Asp	Ser	Ala	Tyr	Leu	Ala	Glu	His		
	20					25					30					35		
	GGT	ATT	ACT	GCC	GTC	TGG	ATT	CCĆ	CCG	GCA	TAT	AAG	GGA	ACT	AGT	CAA		240
	Gly	Ile	Thr	Ala	Val	\mathtt{Trp}	Ile	Pro	Pro	Ala	Tyr	Lys	Gly	Thr	Ser	Gln		
10					40					45					50			
	GCG	GAT	GTG	GGC	TAC	GGT	GCT	TAC	GAC	CTT	TAT	GAT	TTA	GGG	GAG	TTT		288
	Ala	Asp	Val	Gly	Tyr	Gly	Ala	Tyr	Asp	Leu	Tyr	Asp	Leu	Gly	Glu	Phe		
				55					60					65				
15																		
	CAT	CAA	AAA	GGG	ACG	GTT	CGG	ACA	AAG	TAC	GGC	ACA	AAA	GGA	GAG	CTG		336
	His	Gln	Lys	Gly	Thr	Val	Arg	Thr	Lys	Tyr	Gly	Thr	Lys	Gly	Glu	Leu		
			70					75					80					
20												ATT						384
	Gln		Ala	Ile	Lys	Ser		His	Ser	Arg	Asp	Ile	Asn	Val	Tyr	Gly		
		85					90					95						
										~~	~~~			~~~	~~~	ama		400
												GCG					,	432
25	_	Val	Val	Пе	Asn		ьуs	GIY	GIY	AIA		Ala	Thr	GIU	Asp			
	100					105					110					115		
		000	com	an n	C/T/C	C A TI	000	a a m	ana	aca	220	CGC	CT N	y digit	max.	CCA		480
												Arg						400
30	IIIL	Ала	Val	GIU	120	АБР	PLO	MIG	ASD	125	ASII	Arg	Val	116	130	GIÀ		
30					120					14.5								
	GDD	CAC	ርሞል	ል ሞሞ	ααα	GCC	TGG	ACA	CAT	TTT	CAT	TTT	CCG	GGG	CGC	GGC		528
												Phe						
	014			135	-7-				140					145				
35																		
	AGC	ACA	TAC	AGC	GAT	TTT	AAA	TGG	CAT	TGG	TAC	CAT	TTT	GAC	GGA	ACC		576
												His						
			150		-		•	155		_	_		160	_	_			
40	GAT	TGG	GAC	GAG	TCC	CGA	AAG	CTG	AAC	CGC	ATC	TAT	AAG	TTT	CAA	GGA		624
												Tyr						
	•	165	•			_	170					175						

- 22 -

	AAG	GCT	TGG	GAT	TGG	GAA	GTT	TCC	AAT	GAA	AAC	GGC	AAC	TAT	GAT	TAT	672
	Lys	Ala	Trp	Asp	Trp	Glu	Val	Ser	Asn	Glu	Asn	Gly	Asn	Tyr	Asp	Tyr	
	180					185					190					195	
5			TAT														720
	ьeu	Met	Tyr	Ата	-	TTE	Asp	ıyr	Asp		Pro	Asp	vai	Ата		GIu	
					200					205					210		
	ATT	AAG	AGA	TGG	GGC	ACT	TGG	TAT	GCC	AAT	GAA	CTG	CAA	TTG	GAC	GGT	768
10			Arg														
				215			_		220					225	_	_	
			CTT														816
	Phe	Arg	Leu	Asp	Ala	Val	Lys		Ile	Lys	Phe	Ser	Phe	Leu	Arg	Asp	
15			230					235					240				
	TOC	CTTT	ייית ת	CAT	CTC	NOC.	C D D	7 7 7 T	אממ	000	220	C 2 2	N TO CO	mmm	3.00	CMN	0.64
			AAT Asn														864
		245	71011		V41	71± 9	250	2,5	****	CLY	Lys	255	n.c.c	1110	****	Var	
20																	
	GCT	GAA	TAT	TGG	CAG	AAT	GAC	TTG	GGC	GCC	CTG	GAA	AAC	TAT	TTG	AAC	912
	Ala	Glu	Tyr	Trp	Gln	Asn	Asp	Leu	Gly	Ala	Leu	Glu	Asn	Tyr	Leu	Asn	
	260					265					270	•				275	
25			TAA														960
	Lys	Thr	Asn	Pne	280	HIS	ser	vai	Pne	_	Val	Pro	Leu	His	-	GIn	
					200					285					290		
	TTC	CAT	GCT	GCA	TCG	ACA	CAG	GGA	GGC	GGC	TAT	GAT	ATG	AGG	AAA	TTG	1008
30			Ala													_	
				295				_	300					305	_		
	CTG	AAC	GGT	ACG	GTC	GTT	TCC	AAG	CAT	CCG	TTG	AAA	TÇG	GTT	ACA	TTT	1056
	Leu	Asn	Gly	Thr	Val	Val	Ser	Lys	His	Pro	Leu	Lys	Ser	Val	Thr	Phe	
35			310					315					320				
	GTC.	מאתי	AAC	ረግ ጥ	CAT	א רי א	CAG	CCG	ccc	ממיז	TCG	CTT	GVG	יייריכי	አረጥ	GTC.	1104
			Asn														1104
	•	325			····		330		-			335				• • • • • • • • • • • • • • • • • • • •	
40		-															
	CAA	ACA	TGG	TTT	AAG	CCG	CTT	GCT	TAC	GCT	TTT	ATT	CTC	ACA	AGG	GAA	1152
	Gln	Thr	Trp	Phe	Lys	Pro	Leu	Ala	Tyr	Ala	Phe	Ile	Leu	Thr	Arg	Glu	
	340					345					350					355	

			CAG Gln 360						1200
5			GAA Glu						1248
10			AAA Lys						1296
15			ATT Ile						1344
20			TTG Leu						1392
			GTC Val 440						1440
25			CGT Arg						1488
30	Glu		GTA Val						 1536

40 (2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 512 amino acids

WO 95/35382 PCT/EP95/01688

- 24 -

(B) TYPE: amino acid(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Lys Gln Gln Lys Arg Leu Tyr Ala Arg Leu Leu Thr Leu Leu Phe
10 -29 -25 -20 -15

Ala Leu Ile Phe Leu Leu Pro His Ser Ala Ala Ala Ala Ala Asn Leu
-10 -5 1

15 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Met Pro Asn Asp Gly
5 10 15

Gln His Trp Lys Arg Leu Gln Asn Asp Ser Ala Tyr Leu Ala Glu His 20 25 30 35

20

Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Thr Ser Gln
40 45 50

Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu Gly Glu Phe
55 60 65

His Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Gly Glu Leu
70 75 80

30 Gln Ser Ala Ile Lys Ser Leu His Ser Arg Asp Ile Asn Val Tyr Gly 85 90 95

Asp Val Val Ile Asn His Lys Gly Gly Ala Asp Ala Thr Glu Asp Val 100 105 110 115

35

Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val Ile Ser Gly
120 125 130

40 Glu His Leu Ile Lys Ala Trp Thr His Phe His Phe Pro Gly Arg Gly
135 140 145

Ser Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Thr

WO 95/35382 PCT/EP95/01688

- 25 -

			150					155					160			
5	Asp	Trp 165	Asp	Glu	Ser	Arg	Lys 170	Leu	Asn	Arg	Ile	Tyr 175	Lys	Phe	Gln	Gl
•	Lys 180	Ala	Trp	Asp	Trp	Glu 185	Val	Ser	Asn	Glu	Asn 190	Gly	Asn	Tyr	Asp	Ту:
10	Leu	Met	Tyr	Ala	Asp 200	Ile	Asp	Tyr	Asp	His 205	Pro	Asp	Val	Ala	Ala 210	Glı
	Ile	Lys	Arg	Trp 215	Gly	Thr	Trp	Tyr	Ala 220	Asn	Glu	Leu	Gln	Leu 225	Asp	Gly
15	Phe	Arg	Leu 230	Asp	Ala	Val	Lys	His 235	Ile	Lys	Phe	Ser	Phe 240	Leu	Arg	Asp
20	Trp	Val 245	Asn	His	Val	Arg	Glu 250	Lys	Thr	Gly	Lys	Glu 255	Met	Phe	Thr	Val
	Ala 260	Glu	Tyr	Trp	Gln	Asn 265	Asp	Leu	Gly	Ala	Leu 270	Glu	Asn	Tyr	Leu	Asn 275
25	Lys	Thr	Asn	Phe	Asn 280	His	Ser	Val	Phe	Asp 285	Val	Pro	Leu	His	Tyr 290	Gln
	Phe	His	Ala	Ala 295	Ser	Thr	Gln	Gly	Gly 300	Gly	Tyr	Asp	Met	Arg 305	Lys	Leu
30	Leu	Asn	Gly 310	Thr	Val	Val	Ser	Lys 315	His	Pro	Leu	Lys	Ser 320	Val	Thr	Phe
35		325					330				Ser	335				
	340					345					Phe 350					355
40					360	•				365	Met				370	
	Asp	Ser	Gln	Arg 375	Glu	Ile	Pro	Ala	Leu 380	Lys	His	Lys	Ile	Glu 385	Pro.	Ile

- 26 -

15

WO 95/35382 PCT/EP95/01688

Leu Lys Ala Arg Lys Gln Tyr Ala Tyr Gly Ala Gln His Asp Tyr Phe 390 395 400

Asp His His Asp Ile Val Gly Trp Thr Arg Glu Gly Asp Ser Ser Val 405 410 415

Ala Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly Gly Ala 420 425 430 435

10 Lys Arg Met Tyr Val Gly Arg Gln Asn Ala Gly Glu Thr Trp His Asp
440 445 450

Ile Thr Gly Asn Arg Ser Glu Pro Val Val Ile Asn Ser Glu Gly Trp
455 460 465

Gly Glu Phe His Val Asn Gly Gly Ser Val Ser Ile Tyr Val Gln Arg
470 475 480

Claims

- An amylolytic enzyme derived from an α-amylase of Bacillus licheniformis or an enzyme having at least 70% amino acid identity therewith which comprises one or more amino acid changes at positions selected from the group consisting of positions 104, 128, 187 and 188 of the amino acid sequence of the α-amylase of Bacillus licheniformis.
 - 2. An enzyme according to claim 1, wherein one or more of the amino acid changes are selected from the group consisting of Asn at position 104 to Asp, Val at position 128 to Glu, Ser at position 187 to Asp, and Asn at position 188 to Asp.
 - 3. An enzyme according to any one of claims 1 or 2, which comprises at least one additional amino acid change providing the enzyme with improved thermostability.
 - 4. An enzyme according to claim 3, wherein at least one additional amino acid change selected from the group consisting of His at position 133 to Tyr, and Thr at position 149 to IIe.
 - 5. An enzyme according to any one of claims 1-4, which comprises at least one additional amino acid change providing the enzyme with improved oxidation stability.
- 25 6. An enzyme according to claim 5, wherein the additional amino acid change comprises a change of a methionine to another amino acid.
 - 7. An enzyme according to claim 6, wherein the methionine is the methionine at position 197.

20

(A)

- 8. A nucleic acid molecule encoding an enzyme according to any one of the claims 1-7 or a nucleic acid complementary to said nucleic acid or a nucleic acid which hybridizes to either of said nucleic acids under moderately stringent conditions.
- 9. A vector for expression of an enzyme according to any one of the claims 1-7, comprising a nucleic acid according to claim 8, together with suitable elements for expression.
- 10. A cell for expressing an enzyme according to any one of claims 1-7, comprising a nucleic acid molecule or a vector according to claims 8 or 9, respectively.
 - 11. A process for producing an enzyme according to any one of claims 1-7, which comprises culturing a cell according to claim 10 in a suitable medium for expression of said enzyme and after a suitable amount of time isolating the enzyme from the culture or the culture supernatant.
 - 12. Use of an enzyme according to any one of the claim 1-7 in the processing of starch, in the production of syrups, isosyrups, or ethanol, in the desizing of textiles or paper, in brewing processes, in detergents or in the beverage industry.
 - 13. A detergent composition comprising an enzyme according to any one of claims 1-7.

1/3

_						_	
F	•	ď	"	~	•	- 1	
Ľ	_	ч	ч.	_	_		

								•							
					5				10					15	5
AL	A AS	N LE	U AS	N GL	THE	R LEU	ME:	r GL	N TY	R PH	E GL	U TR	P TY	R MET	
				20					2.5					30)
PRO) ASI	N AS	P GL	Y GL	N HIS	·TRP	LYS	ARC	LEC	J GL	N AS	N AS	P SE	R ALA	
				35					40					45	
TYF	l LEC	J AL	A GL	J HIS	GLY	ILE	THE	RALA	L VAI	TRI	P IL	E PRO	o pro	ALA C	
				50					55					60	
TYR	LYS	GL	Y THE	r ser	GLN	ALA	ASF	VAL	GLY	TY	R GL	Y AL	YYF	RASP	
				65					70					75	
LEU	TYR	R ASE	? LEC	J GLY	GLU	PEE	HIS	GLN	LYS	GLY	THE	R VAI	ARG	TER	
				80					85					90	
LYS	TYR	GLY	THF	LYS	GLY	GLU	LEU	GLN	SER	ALA	. ILa	LYS	SER	LEU	
				95					100					105	
ΞIS	SER	ARG	; ASP		ASN	VAL	TYR	GLY	ASP	VAL	VAL	ILE	ASN	EIS	
				110					115					120	
LYS	GLY	GLY	ALA		ALA	TER	GLU	ASP	LAV	THR	ALA	. VAL	GLU	VAL	
	3.00			125					130					135	
#2 c	280	بمبلخ	. ASP		ASN	ARG	VAL	ILZ	SER	GLY	GLU	EIS	LEU	ILE	
ב שיפי	253	and to		140					145					150	
713	ana	122	TER		99E	HIS	SHE	PRO		ARG	GLY	SER	TER	TYR	
520	ASD	ner	LYS	155					160					165	
J L.1.	205	FAL	713		arz	TRP	TYR	EIS		ASP	GLY	TER	ASP	TRP	
765	GT.IT	ero	3 70 0	170		1.634		•	175					180	
	6110	JER	טאא	185	LZU	NCA	علان	TLE		LY5	PHE	GLN	GLY		
ALA	TRP	ASP	פפיד		VA r.	5 F D	101	CT 11	190	c • · · ·				195	
				200	VAL	JER	RON	Grin		Grī	ASN	TYR	ASP		
LEO	MET	פעיד	۷,7		ILE	765	~VD	150	205	220	1.60			210	
				215		AJF -	LLK	-35	220	980	#25	VAL	ALA		
SLU	ILE	LYS	ARG		GLY	- GTC	פפה	ナ マコ		\ C\	c			225	
				230	72.		/-		235	ADN	Cit	ti a U	GIN		
.SP	GLY	PEE	ARG		ASP	AT-A 1	VAT.			77 5	TVC	2/	655	240	
				245		- 12. (250	ے نے	713	7112			
LEU	ARG	ASP	. •		ASN	HIS :	VAT.			7.YC	כטיד	c- ·/		255	
				250	••				265			301			
ŒT	Säč	TER	7AL	ALA	GLU '	TYR 1	- ספֵי			760	הוק ה	Gt v		270	

WO 95/35382 PCT/EP95/01688

2/3

				275					280					285
GLU	ASN	TYR	LEU	ASN	LYS	THR	ASN	PHE	ASN	HIS	SER	VAL	PHE	ASP
				290					295					300
VAL	PRO	LEU	HIS	TYR	GLN	PHE	HIS	ALA	ALA	SER	THR	GLN	GLY	GLY
				305					310					315
GLY	TYR	ASP	MET	ARG	LYS	LΕσ	LEU	ASN	GLY	THR	VAL	VAL	SER	LYS
				320					325					330
HIS	PRO	LEU	LYS	SER	VAL	THR	99 E	VAL	ASP	ASN	HIS	ASP	THR	GLN
				335					340					345
PRO	GLY	GLN	SER	LEU	GLU	SER	THR	VAL	GLN	THR	TRP	PHE	LYS	PRO
				350					355					360
LEU	ALA	TYR	ALA	PEE	ILE	LEU	TER	ARG	GLU	SZR	GLY	TYR	PRO	GLN
				365					370					375
VAL	SES	TYR	GLY	ASP	MET	TYR	GLY	THR	LYS	GLY	ASP	SER	GLN	ARG
				380					385					390
GLU	ILE	PRO	ALA	LEU	LYS	SIE	LYS	ILE	GLO	PRO	ILE	LEU	LYS	ALA
				495					400					405
ARG	LYS	GLN	TYR	ALA	TYR	GLY	ALA	GLN	EIS	ASP	TYR	BBE	ASP	HIS
				410					415			•		420
SIE	ASP	ILE	VAL	GLY	TRP	THR	ARG	GLU	GLY	ASP	SER	SER	VAL	ALA
				425					430					435
ASN	SER	GLY	LEU	ALA	ALA	LEU	ILZ	THR	ASP	GLY	PRO	GLY	GLY	ALA
			٠.	440					445					450
LYS	ARG	MET	TYR	VAL	GLY	ARG	GLN	ASN	ALA	GLY	GLU	TER	TRP	HIS
				455					460					465
ASP	ILE	THR	GLY	АSИ	ARG	SER	GLU	ORS	VAL	VAL	ILZ	ASN	SER	GLU
			·	470					475					480
GLY	TRP	GLY	GLU	PHE	BIS	VAL	N2£	GLY	GLY	SER	VAL	SER	ILE	TYR
		483												

VAL GLN ARG

Figure 2:

