Math 3B: Lecture 14

Noah White

November 1, 2017

How to factorize polynomials

The normal method for factorizing a polynomial p(x) is to find a root α and then writing

$$p(x) = q(x)(x - \alpha).$$

How to factorize polynomials

The normal method for factorizing a polynomial p(x) is to find a root α and then writing

$$p(x) = q(x)(x - \alpha).$$

What if we want to divide a polynomial p(x) by another polynomial q(x)? We want to write

$$p(x) = q(x)d(x) + r(x)$$

for a polynomial d(x) (the divisor) and a remainder r(x).

Long division

We know how to do this with numbers! Long division.

	176
34	6000
	3400
	2600
	2380
	220
	204
	16

Long division

We know how to do this with numbers! Long division.

$$\begin{array}{r}
 176 \\
 34) 6000 \\
 \underline{3400} \\
 2600 \\
 \underline{2380} \\
 220 \\
 \underline{204} \\
 16
\end{array}$$

So
$$6000 = 34 \cdot 176 + 16$$
 or $\frac{6000}{34} = 176 + \frac{16}{34}$.

Why?

Lets rewrite the equation
$$p(x)=q(x)d(x)+r(x)$$

$$\frac{p(x)}{q(x)}=d(x)+\frac{r(x)}{q(x)}.$$

Why?

Lets rewrite the equation p(x) = q(x)d(x) + r(x)

$$\frac{p(x)}{q(x)} = d(x) + \frac{r(x)}{q(x)}.$$

E.g.

$$\frac{x^3 + 2x^2 + x + 1}{x^2 + 2x + 1} = x + \frac{1}{(x+1)^2}.$$

Why?

Lets rewrite the equation p(x) = q(x)d(x) + r(x)

$$\frac{p(x)}{q(x)}=d(x)+\frac{r(x)}{q(x)}.$$

E.g.

$$\frac{x^3 + 2x^2 + x + 1}{x^2 + 2x + 1} = x + \frac{1}{(x+1)^2}.$$

The left hand side is difficult to integrate. The right hand side is easy!

$$(x+3) \overline{x^2 + 5x + 4}$$

$$(x+3) \overline{\qquad x^2 + 5x + 4}$$

$$(x+3) \overline{ (x^2+5x+4) - x^2-3x}$$

$$\begin{array}{r}
x \\
x + 3 \overline{\smash)2x + 5x + 4} \\
-x^2 - 3x \\
2x + 4
\end{array}$$

$$\begin{array}{r}
 x+2 \\
x+3 \overline{\smash)2x+5x+4} \\
-x^2-3x \\
2x+4
\end{array}$$

$$\begin{array}{r}
 x+2 \\
x+3 \overline{\smash)2x+5x+4} \\
-x^2-3x \\
\hline
2x+4 \\
-2x-6
\end{array}$$

$$\begin{array}{r}
 x+2 \\
x+3) \overline{\smash{\big)}\ x^2 + 5x + 4} \\
\underline{-x^2 - 3x} \\
2x+4 \\
\underline{-2x-6} \\
-2
\end{array}$$

$$\frac{x^2 + 5x + 4}{x + 3} = x + 2 - \frac{2}{x + 3}.$$

$$(x-3)$$
 x^3-12x^2 -42

$$(x-3)$$
 x^2 $(x-3)$ x^3-12x^2 $(x-42)$

$$\begin{array}{r}
x^2 \\
x - 3) \overline{x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2}
\end{array}$$

$$\begin{array}{r}
x^2 \\
x - 3) \overline{\smash{\big)}\ x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2} \\
-9x^2
\end{array}$$

$$\begin{array}{r}
x^2 - 9x \\
x - 3) \overline{\smash{\big)}\ x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2} \\
-9x^2
\end{array}$$

$$\begin{array}{r}
x^2 - 9x \\
x - 3) \overline{\smash{\big)}\ x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2} \\
-9x^2 \\
\underline{-9x^2 - 27x}
\end{array}$$

$$\begin{array}{r}
x^2 - 9x \\
x - 3) \overline{\smash{\big)}\ x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2} \\
-9x^2 \\
\underline{-9x^2 - 27x} \\
-27x - 42
\end{array}$$

$$\begin{array}{r}
x^2 - 9x - 27 \\
x - 3) \overline{\smash{\big)}\ x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2} \\
-9x^2 \\
\underline{-9x^2} \\
9x^2 - 27x \\
-27x - 42
\end{array}$$

$$\begin{array}{r}
x^2 - 9x - 27 \\
x - 3) \overline{\smash) x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2} \\
-9x^2 \\
\underline{-9x^2} \\
9x^2 - 27x \\
\underline{-27x - 42} \\
27x - 81
\end{array}$$

$$\begin{array}{r}
x^2 - 9x - 27 \\
x - 3) \overline{\smash) x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2} \\
-9x^2 \\
\underline{-9x^2 - 27x} \\
-27x - 42 \\
\underline{-27x - 81} \\
-123
\end{array}$$

$$\begin{array}{r}
x^2 - 9x - 27 \\
x - 3) \overline{\smash) x^3 - 12x^2 - 42} \\
\underline{-x^3 + 3x^2} \\
-9x^2 \\
\underline{-9x^2} \\
9x^2 - 27x \\
\underline{-27x - 42} \\
27x - 81 \\
\underline{-123}
\end{array}$$

So
$$\frac{x^3 - 12x^2 - 42}{x - 3} = x^2 - 9x - 27 - \frac{123}{x - 3}.$$

$$(x^2+1)$$
 x^3-x^2+x-1

$$(x^2+1)$$
 (x^3-x^2+x-1)

$$\begin{array}{r}
x \\
x^{2} + 1) \overline{ x^{3} - x^{2} + x - 1} \\
\underline{-x^{3} - x} \\
-x^{2} - 1
\end{array}$$

$$\begin{array}{r}
 x-1 \\
 x^{2}+1 \overline{\smash{\big)}\ x^{3}-x^{2}+x-1} \\
 -x^{3} -x \\
 -x^{2} -1
\end{array}$$

$$\begin{array}{r}
 x - 1 \\
 x^{2} + 1 \overline{\smash) x^{3} - x^{2} + x - 1} \\
 \underline{-x^{3} - x} \\
 -x^{2} - 1 \\
 \underline{x^{2} + 1}
\end{array}$$

$$\begin{array}{r}
 x - 1 \\
 x^3 - x^2 + x - 1 \\
 - x^3 - x \\
 - x^2 - 1 \\
 \hline
 x^2 + 1 \\
 \hline
 0
\end{array}$$

$$\begin{array}{r}
 x - 1 \\
 x^3 - x^2 + x - 1 \\
 - x^3 - x \\
 - x^2 - 1 \\
 x^2 + 1 \\
 \hline
 0$$

$$\frac{x^3 - x^2 + x - 1}{x^2 + 1} = x - 1.$$

$$(x^2 + x + 1)$$
 $(x^3 - 1)$

$$x^2 + x + 1$$
 x^3 -1

$$\begin{array}{r}
x \\
x^2 + x + 1 \overline{\smash) x^3 - 1} \\
\underline{-x^3 - x^2 - x} \\
-x^2 - x - 1
\end{array}$$

$$\begin{array}{r}
x - 1 \\
x^{2} + x + 1 \overline{\smash{\big)}\, x^{3} - 1} \\
\underline{-x^{3} - x^{2} - x} \\
-x^{2} - x - 1
\end{array}$$

$$\begin{array}{r}
x-1 \\
x^2+x+1 \overline{\smash) x^3 - 1} \\
\underline{-x^3-x^2-x} \\
-x^2-x-1 \\
\underline{x^2+x+1}
\end{array}$$

$$\begin{array}{r}
x - 1 \\
x^{2} + x + 1 \overline{\smash) x^{3} - 1} \\
\underline{-x^{3} - x^{2} - x} \\
-x^{2} - x - 1 \\
\underline{-x^{2} + x + 1} \\
0
\end{array}$$

$$\begin{array}{r}
x-1 \\
x^2+x+1 \overline{\smash) x^3 - 1} \\
\underline{-x^3-x^2-x} \\
-x^2-x-1 \\
\underline{x^2+x+1} \\
0
\end{array}$$

$$\frac{x^3 - 1}{x^2 + x + 1} = x - 1.$$

$$3x-1$$
) $2x^3 - 4x^2 + 1$

$$3x-1) \overline{2x^3 - 4x^2 + 1}$$

$$3x-1) \overline{2x^3 - 4x^2 + 1} \\
\underline{-2x^3 + \frac{2}{3}x^2}$$

$$3x-1)\frac{\frac{\frac{2}{3}x^2}{2x^3-4x^2}+1}{\frac{-2x^3+\frac{2}{3}x^2}{-\frac{10}{3}x^2}}$$

$$3x-1)\frac{\frac{\frac{2}{3}x^2 - \frac{10}{9}x}{2x^3 - 4x^2 + 1}}{\frac{-2x^3 + \frac{2}{3}x^2}{-\frac{10}{3}x^2}}$$

$$3x-1)\frac{\frac{2}{3}x^{2} - \frac{10}{9}x}{2x^{3} - 4x^{2} + 1}$$

$$-2x^{3} + \frac{2}{3}x^{2}$$

$$-\frac{10}{3}x^{2}$$

$$-\frac{10}{9}x$$

$$3x - 1) = \frac{\frac{2}{3}x^{2} - \frac{10}{9}x}{2x^{3} - 4x^{2} + 1} - \frac{10}{2}x^{3} + \frac{2}{3}x^{2} - \frac{10}{9}x^{2} - \frac{10}{9}x - \frac{10}{9}x + 1$$

$$3x - 1) = \frac{\frac{2}{3}x^{2} - \frac{10}{9}x - \frac{10}{27}}{2x^{3} - 4x^{2} + 1} - \frac{10}{27}x^{2} - \frac{\frac{10}{9}x^{2}}{\frac{10}{9}x^{2} - \frac{10}{9}x + 1} - \frac{\frac{10}{9}x - \frac{10}{27}}{\frac{17}{27}}$$

$$\begin{array}{r}
\frac{2}{3}x^{2} - \frac{10}{9}x - \frac{10}{27} \\
3x - 1) \overline{2x^{3} - 4x^{2} + 1} \\
\underline{-2x^{3} + \frac{2}{3}x^{2}} \\
-\frac{10}{3}x^{2} \\
\underline{-\frac{10}{3}x^{2} - \frac{10}{9}x} \\
\underline{-\frac{10}{9}x - \frac{10}{27}} \\
\underline{-\frac{10}{9}x - \frac{10}{27}} \\
\underline{-\frac{17}{27}}
\end{array}$$

So
$$\frac{2x^3 - 4x^2 + 1}{3x - 1} = \frac{2}{3} \left(x^2 - \frac{5}{3}x - \frac{5}{9} \right) - \frac{17}{27(3x - 1)}.$$

$$x^2 - 2x + 5$$
 x^4 $-x^2$ $+x$ -4

$$x^2 - 2x + 5$$
 $x^4 - x^2 + x - 4$

$$x^{2} - 2x + 5) \underbrace{ \begin{array}{c|cccc} x^{2} & + 2x & -2 \\ x^{4} & - x^{2} & + x & -4 \\ - x^{4} + 2x^{3} - 5x^{2} & & \\ \hline 2x^{3} - 6x^{2} & + x & \\ - 2x^{3} + 4x^{2} - 10x & & \\ \hline - 2x^{2} & - 9x & -4 & \\ 2x^{2} & - 4x + 10 & & \\ \end{array}}$$

So
$$\frac{x^4 - x^2 + x - 4}{x^2 - 2x + 5} = x^2 + 2x - 2 + \frac{-13x + 6}{x^2 - 2x + 5}.$$

How to deal with rational functions?

How can we integrate something like

$$\int \frac{3x^3 - 7x^2 + 17x - 3}{x^2 - 2x - 8} \; \mathrm{d}x$$

or

$$\int \frac{x+2}{x^3-x} \, \mathrm{d}x?$$

Long division of polynomials

For the first example we can rewrite it in the form

$$\frac{3x^3 - 7x^2 + 17x - 3}{x^2 - 2x - 8} = 3x - 1 + \frac{39x - 11}{x^2 - 2x - 8}$$

using polynomial long division.

Long division of polynomials

For the first example we can rewrite it in the form

$$\frac{3x^3 - 7x^2 + 17x - 3}{x^2 - 2x - 8} = 3x - 1 + \frac{39x - 11}{x^2 - 2x - 8}$$

using polynomial long division.

This is still not something we can integrate so we need to go further.

Partial fractions

When we are faced with a sum of the form

$$\frac{1}{x+1} + \frac{3}{2-3x} + \cdots$$

Partial fractions

When we are faced with a sum of the form

$$\frac{1}{x+1} + \frac{3}{2-3x} + \cdots = \frac{P(x)}{Q(x)}$$

Partial fractions

When we are faced with a sum of the form

$$\frac{1}{x+1} + \frac{3}{2-3x} + \dots = \frac{P(x)}{Q(x)}$$

How do we reverse this process?

Answer: partial fractions

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2)\cdots(a_nx + b_n)$$

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2)\cdots(a_nx + b_n)$$

• If the degree of Q(x) is larger than the degree of P(x)

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2) \cdots (a_nx + b_n)$$

- If the degree of Q(x) is larger than the degree of P(x)
- Q(x) has no repeated factors. E.g. Q(x) = (x-1)(x+2) but not $Q(x) = (x-1)^2(x+2)$, then

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2) \cdots (a_nx + b_n)$$

- If the degree of Q(x) is larger than the degree of P(x)
- Q(x) has no repeated factors. E.g. Q(x) = (x-1)(x+2) but not $Q(x) = (x-1)^2(x+2)$, then

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2)\cdots(a_nx + b_n)$$

- If the degree of Q(x) is larger than the degree of P(x)
- Q(x) has no repeated factors. E.g. Q(x) = (x-1)(x+2) but not $Q(x) = (x-1)^2(x+2)$, then

we can always find constants A_1, A_2, \ldots, n so that

$$\frac{P(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \dots \frac{A_n}{a_n x + b_n}$$