Математическая Логика. Теория

Александр Сергеев

1 Введение

Силлогизмы

Modus Ponendo Ponens: Если A и $A \rightarrow B$, то B

Парадокс Рассела

 $X = \{x : x \notin x\}$ $(X \in X)?$

Определение

Номинализм – учение о том, что существуют лишь единичные вещи, а общие понятия – лишь имена

Реализм – учение о том, что общие понятия объективно существуют Номинализм в вопросе решения парадокса Рассела: надо придумать понятие множества

Реализм в вопросе решения парадокса Рассела: необходимо понять, что такое множество на самом деле, докопаться до сути

Программа Гильберта – мы должны формализовать математику и избавиться от произвола, который может вносить сторонний исследователь Формализация должна быть проверена, и ее непротиворечивость должна быть доказана

Программма Гильберта – реализм: мы верим, что мир устроен некоторым образом, а значит существует некоторая идеальная математика, удовлетворяющая этим свойствам. Нам нужно лишь прислушаться к миру и найти ее

2 Исчисление высказываний

Определение

Высказывание – строка, сформулированная по следующим правилам

 $\Pi pedmemhuй язык – язык, который мы изучаем (язык математической логики)$

Метаязык – соглачения о записи. Из метаязыка можно получить предметный язык некоторыми неформализованными действиями

 A, B, \ldots – Пропозиционная переменная

 α, β, \ldots – метапеременные (высказывания)

 $\alpha \wedge \beta$ – Конъюнкция

 $\alpha \vee \beta$ – Дизъюнкция

¬α − Отрицание

 $\alpha \to \beta$ – Импликация

X, Y, Z – метапеременные для пропозиционных переменных

Приоритет: отрицание, конъюнкция, дизъюнкция, импликация

Дизъюнкция и конъюнкция – левоассоциативные, импликация – правоассоциативная

Выражение на предметном языке – пропозиционные переменные, 4 вида $cension \kappa$ и полностью расставленные скобки. Все остальные формы записи – метаязык

Схема — строка, строящаяся по правилам предметного языка, где вместо пропозиционных переменных могут стоять маленькие греческие буквы (метапеременные)

Определение

Оценка высказывания $f: P \to V$, где $V = \{T, F\}, P$ – множество пропозиционных переменных

 $[[\alpha]] = T$ – оценка высказывания (значение α – истина)

 $[[lpha]]^{X_1:=v_1,...,X_n:=v_n}$ – оценка высказывания

Определение

Если $[[\alpha]] = T$ при любой оценке переменных, то она *общезначима (тав-тология)*: $\models \alpha$

Иначе опровержима

Если $[[\alpha]]=T$ при любой оценке переменных, при которой $[[\gamma_1]]=\ldots=[[\gamma_n]]=T$, то α – следствие этих высказываний: $\gamma_1,\ldots,\gamma_n\models\alpha$

Если $[[\alpha]] = T$ при некоторой оценке, то она *выполнима*, иначе *невыполнима*

Аксиомы исчисления высказываний

1.
$$\alpha \to \beta \to \alpha$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \to \beta \to \alpha \land \beta$$

4.
$$\alpha \wedge \beta \rightarrow \alpha$$

5.
$$\alpha \wedge \beta \rightarrow \beta$$

6.
$$\alpha \to \alpha \vee \beta$$

7.
$$\beta \to \alpha \vee \beta$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Определение

Доказательством назовем последовательность высказываний $\delta_1, \ldots, \delta_n$, где каждое высказывание δ_i либо:

- является аксиомой (существует замена метапеременных для какойлибо схемы аксоим, позволяющая получить схему δ_i)
- получается из $\delta_1,\dots,\delta_{i-1}$ по правилу Modus Ponens: существуют такие $j,k< i:\delta_k\equiv \delta_j\to \delta_i$

Формула выводима/доказуема, если существует ее доказательство

Пример

$$A \to (A \to A)$$

$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$

$$(A \to ((A \to A) \to A)) \to (A \to A)$$

$$A \to ((A \to A) \to A)$$

$$A \to A$$

Определение

Вывод формулы α из гипотез $\gamma_1, \ldots, \gamma_k$ – такая последовательность $\sigma_1, \ldots, \sigma_n$, что σ_i является (одним из следующих):

- аксиомой
- ullet одной из гипотез γ_t
- получена по правилу Modus Ponens из предыдущих

Формула выводима из гипотез, если существует ее вывод

Обозначение: $\gamma_1, \ldots, \gamma_k \vdash \alpha$

Определение (корректность теории)

Теория корректна, если любое доказуемое в ней утверждение общезначимо

To есть, $\vdash \alpha$ влечет $\models \alpha$

Определение (полнота теории)

Теория семантически полна, если любое общезначимое в ней утверждение доказуемо. То есть, $\models \alpha$ влечет $\vdash \alpha$

Теорема (корректность вычисления высказываний) Доказательство

Докажем, что любая строка доказательства является общезначимой Докажем индукцией по количеству строк

База: n=1 – аксиома. В ней нет правила Modus Ponens. Она общезна-

Переход: Пусть для любого доказательства длины n формула δ_n общезначима. Рассмотрим δ_{n+1}

- 1. Аксиома. Убедимся, что аксиома общезначима
- 2. Modus Ponens j, k убедимся, что если $\models \delta_i$ и $\models \delta_k, \delta_k = \delta_i \rightarrow \delta_{n+1}$, то $\models \delta_{n+1}$

Аксиому проверим через таблицу истинности

Докажем правило Modus Ponens

По индукционному предположению $\models \delta_i, \models \delta_k$

Зафиксируем произвольную оценку

Из общезначимости $[[\delta_i]] = T, [[\delta_k]] = T$

Тогда из таблицы истинности $[[\delta_i]] = [[\delta_k]] = T$ только при $[[\delta_{n+1}]] = T$ Отсюда $\models \delta_{n+1}$

Определение

Контекст – совокупность всех гипотез. Обозначается большой греческой буквой

Пример записи:

$$\Gamma = \{\gamma_1, \dots, \gamma_n\}$$

$$\Delta = \{\delta_1, \dots, \delta_m\}$$

$$\Delta = \{o_1, \ldots, o_m\}$$

 $\Gamma, \Delta \vdash \alpha$

Теорема о дедукции

$$\Gamma, \alpha \vdash \beta \Leftrightarrow \Gamma \vdash \alpha \to \beta$$

Доказательство \Leftarrow

Пусть $\Gamma \vdash \alpha \rightarrow \beta$

T.e. существует вывод
$$\delta_1, \ldots, \delta_{n-1}, \underbrace{\alpha \to \beta}_{\delta}$$

Дополним вывод: добавим туда α

По правилу Modus Ponens добавим туда β

Отсюда $\Gamma, \alpha \vdash \beta$

Определение

Конечная последовательность – функция $\delta:\{1,\ldots,n\}\to\mathcal{F}$

Конечная последовательность, индексированная дробными числами – функция $\zeta: I \to \mathcal{F}, I \subset \mathbb{Q}^+, |I| \in \mathbb{N}$

Доказательство ⇒

Пусть $\Gamma, \alpha \vdash \beta$

Пусть дан некоторый вывод: $\delta_1, \ldots, \delta_{n-1}, \underbrace{\beta}_{\delta_n}$

Тогда рассмотрим последовательность: $\alpha \to \delta_1, \ldots, \alpha \to \delta_{n-1}, \alpha \to \beta$ Заметим, что выводом эта формула не является, т.к. в ней нет аксиом Докажем по индукции по длине вывода

Если $\delta_1, \ldots, \delta_n$ – вывод $\Gamma, \alpha \vdash \beta$, то найдется ζ_k для $\Gamma \vdash \alpha \to \beta$, причем $\zeta_1 = \alpha \to \delta_1, \ldots, \zeta_n = \alpha \to \delta_n$

- 1. n=1 ч.с. перехода без Modus Ponens
- 2. Пусть $\delta_1, \dots \delta_{n+1}$ исходный вывод По индукционному предположению по $\delta_1, \dots, \delta_n$ построен вывод ζ_k утверждения $\Gamma \vdash \alpha \to \delta_n$ Достроим его для δ_{n+1}
 - δ_{n+1} аксиома или $\delta_{n+1} \in \Gamma$: $\zeta_{n+1/3} = \delta_{n+1} \to \alpha \to \delta_{n+1}$ $\zeta_{n+2/3} = \delta_{n+1}$ $\zeta_{n+1} = \alpha \to \delta_{n+1}$
 - $\delta_{n+1} = \alpha$: $\zeta_{n+1/5} = a \to a \to a$ $\zeta_{n+2/5} = (a \to a \to a) \to (a \to (a \to a) \to a) \to (a \to a)$ $\zeta_{n+3/5} = (a \to (a \to a) \to a) \to (a \to a)$

$$\zeta_{n+4/5} = a \to (a \to a) \to a$$

 $\zeta_{n+1} = a \to a$

• δ_{n+1} – Modus Ponens из δ_j и $\delta_k = \delta_j \to \delta_{n+1}$: $\zeta_{n+1/5} = \alpha \to \delta_j$ $\zeta_{n+2/5} = \alpha \to \delta_j \to \delta_{n+1}$ $\zeta_{n+3/5} = (\alpha \to \delta_j) \to (\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $\zeta_{n+4/5} = (\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $\zeta_{n+1} = \alpha \to \delta_{n+1}$

Лемма (правило контрапозиции)

Каково бы ни были формулы α, β , справедливо, что $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Лемма (правило исключенного третьего)

Какова бы ни была формула α , справедливо, что $\vdash \alpha \lor \neg \alpha$

Лемма (правило исключенного допущения)

Пусть справедливо $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$

Тогда $\Gamma \vdash \alpha$

Теорема

Если $\models \alpha$, то $\vdash \alpha$

Определение

Зададим некоторую оценку, что $[[\alpha]] = x$

Тогда условным отрицанием формулы α называется формула $(|\alpha|)=$ $\begin{cases} \alpha, & x=T\\ \neg\alpha, & x=F \end{cases}$

Если
$$\Gamma = \gamma_1, \ldots, \gamma_n$$
, то $(|\Gamma|) = (|\gamma_1|), \ldots, (|\gamma_n|)$

Пример: $(|A|), (|B|) \vdash (|A \to B|)$ позволяет записать таблицу истинности в одну строку, перебрав ее для всех оценок

Доказательство теоремы

Для каждой возможной связки \star докажем формулы $(|\phi|), (|\psi|) \vdash (|\phi \star \psi)$ Теперь построим таблицу истинности для α и докажем в ней каждую строку:

 $(|\Xi|) \vdash (|\alpha|), \Xi$ – контекст(все переменные в таблице)

Если формула общезначима, то в ней все строки будут иметь вид ($|\Xi|$) $\vdash \alpha$. От гипотез можно избавиться индукционно по теореме об исплючении допущения и получить требуемое $\vdash \alpha$

Лемма (Условное отрицание формул)

Пусть пропозиционные переменные $\Xi=X_1,\ldots,X_n$ – все переменные, которые используются в α

Пусть задана некоторая оценка переменных

Тогда $(|\Xi|) \vdash (|\alpha|)$

Доказательство

Докажем по индукции по длине формулы α

- База: формула атомарная, т.е. $\alpha = X_i$ Тогда при любом Ξ выполнено $(|\Xi|)^{X_i=T} \vdash X_i$ и $(|\Xi|)^{X_i=F} \vdash \neg X_i$
- Переход:

$$\alpha = \phi \star \psi, (|\Xi|) \vdash (|\phi|)$$
 и $(|\Xi|) \vdash (|\psi|)$

Тогда построим вывод

Сначала запишем доказательство ($|\phi|$)

Потом припишем доказательство ($|\psi|$)

Потом припишем доказательство леммы о связках