Question 1. Apply the bottom-up dynamic programming algorithm to the following instance of the 0/1-knapsack problem, with capacity=16 and four items with weights: 3, 5, 7, 8 and values: 4, 6, 7, 9.

item	weight	value
1	3	4
2	5	6
3	7	7
4	8	9

$$F(i,j) = \max\{F(i-1,j), v_i + F(i-1,j-w_i)\} \quad \text{if } j - w_i \ge 0$$

$$= F(i-1,j) \qquad \qquad \text{if } j - w_i \le 0$$

$$F(0,j) = 0 \quad \text{and } F(i,0) = 0$$

Question 2. Design a dynamic programming algorithm for the change-making problem: given an amount n and unlimited quantities of coins of each of the denominations $d_1, d_2, ..., d_m$, find the smallest number of coins that add up to n or indicate that the problem does not have a solution.

Question 3. Given a number N, you've to find the number of different ways to write it as the sum of 1, 3 and 4.

For example, if N = 5, the answer would be 6.

- 1) 1 + 1 + 1 + 1 + 1
- $2) \cdot 1 + 4$
- 3).4+1
- 4) . 1 + 1 + 3
- 5).1+3+1
- 6) . 3 + 1 + 1

Find dynamic-programming solution for this problem.

Question 4. Apply Warshalls algorithm to find the transitive closure of the digraph defined by the following adjacency matrix:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

	~~ _\																		
	KK	0		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
wks	0	Ð	0	0	0	0	0	0	0	0	0	o	0	0	0	0	٥	0	
wx:3	1	O	0	0	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
wr= 5	2	G	O	0	4	4	6	6	6	(0	טו	lo	10	10	(0)	ا ا	10	10	
wx = 7	3	O	0	0	4	4	6	6	7	lσ	Ю	[[[]	13	13	13	17	17	
wk = 8	4	D	D	0	4	4	6	6	7	10	10	()	13	13	เป	15	17	19	

Solution = { J4, J2, J13

max value = 19

V [K-1, w] if ux>w
if ux & w

V(K,W)= max (V(K-1,W),V[K-1,W-WK]+VK

Or:

$d_1 = 3$	d2=5,	d3 = 7	, n=11

0	(2	3	4	5	6	7	w	8	10	11
o	00	oo	١	æ	œ	2	ø	8	3	ø	8
0	8	øo	ı	8	(2	Ø	+2	3	7	3
0	oo	ю	ı	ø	ı	2	1	2	3	2	3
	0	0 00	0 00 00	0 00 00 1	0 00 00 1 00	0 00 00 1 00 00	0 00 00 1 00 00 2	0 0 0 0 1 00 0 2 0	0 00 00 1 00 00 2 00 00	0 00 00 1 00 00 2 00 00 3	0 00 00 1 00 00 2 00 00 3 00

Algorthim Coin Chainging (di--,dn,T)

11 2=1

$$N [i/+] \leftarrow j + N[i-1/t-j+i]$$

 $A [i/+] \leftarrow J$

return (N[n,T])

The A [i,t] values makes it easy to determine number of coins of each denomination in the optimal Solution N [i,T]

@ 3:

	No of ways	
F [1]	1	£ (3
F [2]		71+13
F[3]	2	£ 1+1+1,3}
F [4]	4	£4,3+1, 1+3,1+1+1+13
F[5]	6	{4+1,8+1+1,1+4,1+3+1,1+1+3,1+1+1+1}

Algorthim:

Q4:

$$R_3 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$R_4 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$