MAT137 Lecture 35

Huan Vo

University of Toronto

March 8, 2018

Agenda

- ► The integral test.
- ▶ The basic comparison test for series.
- ▶ The limit comparison test for series.
- ▶ The alternating series test.

The integral test

Theorem (The integral test)

Let $a \in \mathbb{R}$.

Let f be a continuous, positive, decreasing function on $[a, \infty)$. Then

$$\int_a^\infty f(x) \, \mathrm{d}x \text{ is convergent } \iff \sum_n^\infty f(n) \text{ is convergent.}$$

Example (The *p*-series)

The p-series

$$\sum_{n} \frac{1}{n^p}$$

converges if and only if p > 1.

Remainder estimate for the integral test

Let f be a continuous, positive, decreasing function on $[1,\infty)$ and suppose that $f(k)=a_k.$

Suppose that $\sum_{k=1} a_k$ converges to s, and let

$$R_n = s - s_n = s - \sum_{k=1}^n a_k = \sum_{k=n+1}^\infty a_k.$$

Draw a picture to illustrate the fact that

$$\int_{n+1}^{\infty} f(x) \, \mathrm{d}x \le R_n \le \int_{n}^{\infty} f(x) \, \mathrm{d}x.$$

Applications of the integral test

Use the integral test to show that

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^p}$$

converges if and only if p > 1.

The basic comparison test for series

Theorem (BCT for series)

Let
$$\sum_{n=0}^{\infty} a_n$$
 and $\sum_{n=0}^{\infty} b_n$ be two series.

Suppose that

$$0 \le a_n \le b_n$$
 for all $n > N$,

where N is some positive integer. Then

- (i) $\sum_{n=0}^{\infty} b_n$ converges $\Longrightarrow \sum_{n=0}^{\infty} a_n$ converges.
- (ii) $\sum_{n=0}^{\infty} a_n$ diverges $\Longrightarrow \sum_{n=0}^{\infty} b_n$ diverges.

The BCT for series

Determine whether the following series converges or diverges

(a)
$$\sum_{n=1}^{\infty} \frac{e^{1/n^2}}{n^{0.7}}$$

- (b) $\sum_{n=1}^{\infty} \frac{1}{n!}$
- (c) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

Hint. (a) diverges, (b) converges, (c) converges.

The limit comparison test for series

Theorem (LCT for series)

Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two positive series.

If the limit

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}$$

exists (as a finite number) and L > 0.

Then

$$\sum_{n=0}^{\infty} a_n$$
 is convergent $\iff \sum_{n=0}^{\infty} b_n$ is convergent.

Exercise. Show that

- ▶ If L=0, then $\sum_{n=0}^{\infty} b_n$ converges $\Longrightarrow \sum_{n=0}^{\infty} a_n$ converges.
- ▶ If $L = \infty$, then $\sum_{n=0}^{\infty} a_n$ converges $\Longrightarrow \sum_{n=0}^{\infty} b_n$ converges.

The LCT for series

Determine whether the following series converges or diverges

(a)
$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{\sqrt{n^5 + \ln n}}$$

(b)
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$

(c)
$$\sum_{n=1}^{\infty} \sin^2\left(\frac{1}{n}\right)$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$$

Hint. (a) diverges, (b) diverges, (c) converges, (d) diverges.

Alternating series test

Theorem (Alternating Series Test)

Consider a series of the form

$$\sum_{n=0}^{\infty} (-1)^n b_n \quad \text{or} \quad \sum_{n=0}^{\infty} (-1)^{n+1} b_n.$$

IF

- (i) $b_n > 0$ for all n.
- (ii) b_n is decreasing.
- (iii) $\lim_{n\to\infty} b_n = 0$.

Then the series is convergent.

Remainder estimation for alternating series

Theorem (Alternating Series Estimation Theorem)

For an alternating series that satisfies the conditions of the alternating series test, let R_n denote the remainder

$$R_n = s - s_n,$$

where s is the sum of the series and s_n is the nth partial sum. Then we have

$$|R_n| \le |b_{n+1}|.$$

Alternating series test example

Consider the series

$$\sum_{n=1}^{\infty} \frac{(-0.2)^n}{n!}.$$

- (a) Show that the series is convergent.
- (b) How many terms of the series do we need to add so that the error is less than 0.001.

True or False?

- (a) If $\sum a_n^2$ converges, then $\sum a_n$ converges.
- (b) If $\sum a_n$ is a convergent series with positive terms, then $\sum a_n^2$ converges.
- (c) If $\sum a_n$ and $\sum b_n$ diverge, then $\sum a_n b_n$ diverges.
- (d) If $\sum a_n$ is a convergent series with positive terms, then $\sum \sin(a_n)$ is convergent.
- (e) If $\sum a_n$ and $\sum b_n$ converge, then $\sum a_n b_n$ converges.
- (f) If $\sum a_n$ is a positive series and $\lim_{n\to\infty} \sqrt{n}a_n = L \neq 0$, then $\sum a_n$ converges.

Hint. (a) false, (b) true, (c) false, (d) true, (e) false, (f) false.

Next Class: Monday March 12

Watch videos 13.5, 13.6, 13.7 in Playlist 13.