Discrete Mathematics, 2016 Spring - Worksheet 14

October 31, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

- 1. Which of the following relations are functions?
 - (a) $\{(1,2),(3,4)\}$ This one.
 - (b) $\{(x,y): x,y \in \mathbb{Z}, y = 2x\}$ This one.
 - (c) $\{(x,y): x,y \in \mathbb{Z}, x+y=0\}$ This one.
 - (d) $\{(x,y): x,y \in \mathbb{Z}, xy = 0\}$ Not this one, (0,y) is in it for every $y \in \mathbb{Z}$.
 - (e) $\{(x,y): x,y \in \mathbb{Z}, y=x^2\}$ This one.
 - (f) Ø This one vacuously.
 - (g) $\{(x,y): x,y \in \mathbb{Q}, x^2+y^2=1\}$ Not this one, e.g. (0,1) and (0,-1) are both in it.
 - (h) $\{(x,y): x,y\in\mathbb{Z},x|y\}$ Not this one, e.g. (2,4) and (2,8) are both in it.
 - (i) $\{(x,y): x,y \in \mathbb{N}, x|y, \text{ and } y|x\}$ Not this one, eg. (1,1) and (1,-1) are both in it.
 - (j) $\{(x,y): x,y\in\mathbb{N}, {x\choose y}=1\}$ Not this one, e.g (2,0) and (2,2) are both in it.
- 2. For those relations that are functions in Problem 1, find their domain and image.
 - For the function in (a), the domain is (1,3), while the image is (2,4).
 - For the function in (b), the domain is \mathbb{Z} while the image is the even numbers.
 - For the function in (c), both the domain and the image are \mathbb{Z} .
 - For the function in (e), the domain is \mathbb{Z} while the image are those integers that are themselves squares of an integer.
 - For the function in (f), both the domain and the image are empty.
- 3. For each of the following functions f, find the image of the function, im.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x + 1.

Solution. The image of the function is all odd integers.

(b) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{1}{1+x^2}$.

Solution. To find the image of the function, look at the equation $b = \frac{1}{1+x^2}$. Rearranging this gives

$$x^2 = \frac{1}{b} - 1.$$

Clearly, this equation only has solution(s) when $b \in (0,1]$, otherwise the right hand side is negative. Therefore Im(f) = (0,1].

(c) $f: [-1, 1] \to \mathbb{R}$ defined by $f(x) = \sqrt{1 - x^2}$.

Solution. By the definition of the square root, $\sqrt{1-x^2}$ is always non-negative and therefore we only have to check, when is there a solution to $b = \sqrt{1-x^2}$ with $b \ge 0$. Squaring this gives $b^2 = 1 - x^2$ and thus $x^2 = 1 - b^2$. This equation has a solution if and only if $|b| \le 1$ and in this case the solution is in Dom(f) = [-1, 1]. Combining this with $b \ge 0$, we get Im(f) = [0, 1].

- 4. Which of the functions in Problem 1 are one-to-one? What are the inverses of these functions?
 - The function in (a) is one-to-one and its inverse is given by $\{(2,1),(4,3)\}$.
 - The function (b) is one-to-one and its inverse is given by f^{-1} : {even numbers} $\to \mathbb{Z}$, given by

$$\{(x,y): x,y \in \mathbb{Z}, x \text{ is even}, y = x/2\}$$

- The function in (c) is one-to-one and it is its own inverse.
- The function in (f) is one-to-one vacuously and is its own inverse.
- 5. For each of the functions, determine whether the function is one-to-one, onto, or both. Prove your assertions.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = 2x^2$.

Solution. f is not one to one as e.g. $2(-2)^2 = 8 = 2 \cdot 2^2$. Neither is it onto as $f(x) \ge 0$ for every $x \in \mathbb{Z}$ and therefore e.g. -2 is not attained.

(b) $f: \mathbb{N} \to \mathbb{Z}$ defined by $f(x) = (-1)^x (\lfloor x/2 \rfloor + 1)$, where $\lfloor . \rfloor$ is the integer part function.

Solution. • To see that this function is one to one, let us assume that there are $x, y \in \mathbb{N}$ such that f(x) = f(y). Note that f(x) is positive if and only if x is even and therefore x and y are both simultaneously even or odd.

If they are both even, |x/2| = x/2 and |y/2| = y/2 and therefore

$$x/2 + 1 = f(x) = f(y) = y/2 + 1$$

which yields x = y.

If they are both odd, $\lfloor x/2 \rfloor = (x-1)/2$ and $\lfloor y/2 \rfloor = (y-1)/2$ and therefore

$$\frac{x-1}{2} + 1 = f(x) = f(y) = \frac{y-1}{2} + 1$$

from which x = y.

- To show that f is not onto, note that $|f(x)| = \lfloor x/2 \rfloor + 1 > 1$ which implies that 0 is not in the image.
- 6. Give an example of a set A and a function $f: A \to A$ where f is onto but not one to one. Also give one where f is one-to-one but not onto.

Solution. This example was mentioned in class. $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x+3 & x \le 0 \\ x-3 & x > 0 \end{cases}$$

is not one-to-one as e.g. f(-3) = f(3) = 1. I leave the verification that it is onto to you.

The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{1+|x|}$ does the job as you can verify.

Note that in both examples, the set A was infinite. Indeed, as we will discuss it next time, this cannot happen for finite sets.