Privacy Engineering (70018)

MPC 2 - Solutions

Using decryption for w3 plus English summary

- 2.4 Hint: Karnaugh maps are an easy method to do this from a truth table. A good solution will be about 9-10 gates. Very many solutions are possible however.
- 2.5 We can replace fA and fB by a single function that satisfies

$$f(a, b, k) = k \oplus fA(a, b), fB(a, b)$$

where k is a secret input (a key!) as long as the maximum output possible for fA(a, b) (in bits). c.f. "One-time pad". Only Bob learns the output of this function.

- At 2. Bob learns $f(a,b,k) = k \oplus fA(a,b)$, fB(a,b) from the MPC protocol Bob sends first part $k \oplus fA(a,b)$ to Alice, keeps second part fB(a,b)
- At 3. Alice computes $fA(a,b) = k \oplus (k \oplus fA(a,b))$ by xoring with secret k
- 2.6 i) Bob's output is D_{kb} ($E_{\chi}(M_b)$) where $x = D_{privb}$ ($E_{pubb}(k_b)$) = k_b giving D_{kb} ($E_{kb}(M_b)$) = M_b
 - ii) Alice is told $G_1=k_1$, $G_2=k_2$, .. $G_b=\mathrm{E}_{pubb}(\mathbf{k}_b)$, ... $G_n=k_n$ However these are just binary values, she doesn't know which one Bob will use for the final decryption. We need to assume that the G values are indistinguishable e.g. are padded to the same length, otherwise Alice could assume the symmetric key lengths from the public-key encryption.
 - iii) If Bob attempts to decrypt using z = b, for example, if b = 1 Bob will get: $\mathrm{D}_{kI} \left(\mathrm{E}_{x}(M_{I}) \right) = \mathrm{rubbishMessage \ because \ x} = \mathrm{D}_{privI} \left(k_{I} \right) = \mathrm{rubbish \ key}$

This assumes that x is an acceptable key for the Symmetric Encryption function, i.e. securely padded/truncated to length.

iv) If Alice is dishonest, she does not need to run the protocol correctly e.g. not use random numbers, could re-use values from a previous run, could use a different encryption function etc. Alice might be able determine b using the difference in the size of G elements. Alice could also encrypt the same message in step 3, essentially controlling

which secret Bob gets, i.e. b is irrelevant

- v) Bob can be dishonest in step 2 he could do $G_z=E_{pub_z}(k_z)$ for all keys, then he can learn all secrets M_1 to M_z . Even he can set key $k_1=k_2=k_3=...=k_n$.
- 2.7 i) In step 3, B is either $B = g^b$ or $B = Ag^b = g^a g^b$

In step 4, keys k_0 and k_1 are either hashed from $B = g^b$ if Bob's selection bit is m=0 we have

$$egin{aligned} k_{m{ heta}} & ext{ from } (g^b)^a = g^{ab} \ & k_{m{ heta}} & ext{ from } (g^b \ / \ g^a)^a = g^{ab} \ / \ g^{aa} \end{aligned}$$

or keys k_0 and k_1 are hashed from $B=g^ag^b$ if Bob's selection bit m=1 we have k_0 from $(g^ag^b)^a=g^{aa+ab}$

$$k_1 \text{ from } (g^a g^b / g^a)^a = g^{ab}$$

In both cases one of the keys is hashed from g^{ab} , Bob is also able to generate this key from the hash $A^b = g^{ab}$.

If m=0 Bob will correctly decrypt M_0 . If m=1 Bob will correctly decrypt M_1 .

- ii) Alice is told either g^b or g^ag^b which are just two random values. The keys produced by Alice are distinct, Bob is only able to decrypt 1 message. We assume that both the DH crypto-setup, hash function and message encryption scheme are secure. Bob must not be able to compute key g^{ab} from either g^{aa+ab} or g^ag^b otherwise he will know both keys.
- iii) If Alice sets a=0. This will give $B=g^b$ for both m=0 and m=1. Alice doesn't learn m from this. Alice will generate $k \neq g = g^0 = 1$ and $k \neq g = g^0 = 1$. Bob will learn both messages.

 If Bob sets b=0. This will give $B=g^0 = 1$ for m=0 and $B=g^a$ for m=1.

 Assuming the protocol is known to Alice then she will learn m and know which
- 2.8 (i) For $M_0=1101,\ M_1=0100,\ b=1,\ t=0,\ R_0=0101,\ R_1=0011$ we have $e=t\oplus b\ =0\oplus 1=1$ $C_0=M_0\oplus\ R_e =1101\oplus 0011=1110$

message Bob chose.

$$C_1 = M_1 \oplus R_{1-e} = 0100 \oplus 0101 = 0001$$
 $M_b = C_b \oplus R_t = C_1 \oplus R_0 = 0001 \oplus 0101 = 0100 = M_1$

- (ii) At the end of the protocol Alice has no information about b, only the encrypted bit $t \oplus b$, t is randomly selected by Trent and only known to Bob.
 - Bob only learns M_{b} . In order to decrypt C_{1-b} Bob would need the random value R_{1-t} which only Alice has.
 - The only value that Bob controls is e, setting it to a specific value will not help learn both messages.
 - Alice could set $M_0=M_1$ and will then know what message Bob has.
 - Collusion with Trent is also possible.
- (iii) Protocol for 1-from-n where n is a power of 2. b is a log2(n) bit value in range 0..n-1
 - 1. Trent \rightarrow Alice: R_0 to R_{n-1} Random binary values each of length k
 - 2. Trent \rightarrow Bob: t, R_t Random $\log 2(n)$ bit-value t in the range 0..n-1
 - 3. Bob \rightarrow Alice: e $e = t \oplus b$
 - 4. Alice \rightarrow Bob: C_0 to C_{n-1} $C_j = M_j \oplus R_{(e+j)} \mod n$ for j in 0..n-1
 - 5. Bob $M_b = C_b \oplus R_t$
- 2.9 (i) In step 4, if b=0 then Bob sends $H_0=g^k$ and $H_1=x/H_0$

Bob will correctly decrypt M_{Ω} i.e.

$$C_{\theta} \oplus Hash(D^{y}) = M_{\theta} \oplus Hash(H_{\theta}^{k}) \oplus Hash(D^{y})$$

= $M_{\theta} \oplus Hash(g^{ky}) \oplus Hash(g^{ky}) = M_{\theta}$

if b=1 then Bob sends $H_0=x/H_1$ and $H_1=g^k$ and will correctly decrypt M_1 , i.e.

$$C_1 \oplus Hash(D^y) = M_1 \oplus Hash(H_1^k) \oplus Hash(D^y)$$

= $M_1 \oplus Hash(g^{ky}) \oplus Hash(g^{ky}) = M_1$

(ii) After step 2, Alice receives H0 and H1 from Bob. Alice cannot determine b since H0 is a random element of the group.

Bob cannot learn M_{1-b} since Bob would need to computer $Hash(H_{1-b}^{k})$ but Hash is random cryptographic hash (oracle), or would need to solve the Diffie-Hellman

problem on the group.

If b=0 and Bob tries to decrypt M1 he will get a bad message, i.e.

$$C_1 \oplus Hash(D^y) = M_1 \oplus Hash(H_1^k) \oplus Hash(D^y)$$

= $M_1 \oplus Hash((x/H_0)^k) \oplus Hash(g^{ky})$
= $M_1 \oplus Hash((x/g^y)^k) \oplus Hash(g^{ky})$

Bob will also get a bad message if b=1 and he tries to decrypt M0 i.e. (okay to omit)

$$C_{\theta} \oplus Hash(D^{y}) = M_{\theta} \oplus Hash(H_{\theta}^{k}) \oplus Hash(D^{y})$$

$$= M_{\theta} \oplus Hash((x/H_{1})^{k}) \oplus Hash(g^{ky})$$

$$= M_{\theta} \oplus Hash((x/g^{y})^{k}) \oplus Hash(g^{ky})$$