EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	22398	dopamine catecholamine hydroxytyramine (hydroxy adj tyramine)	US-PGPUB; USPAT	OR	ON	2006/11/10 14:08
L2	56953	glucosyl\$9 glycosyl\$9 gluconami\$4 ribonami\$4 glycoconjugate	US-PGPUB; USPAT	OR	ON	2006/11/10 14:09
L3	233	1 same 2	US-PGPUB; USPAT	OR	ON	2006/11/10 13:19
L4	825735	@ad>"20030722"	US-PGPUB; USPAT	OR	ON	2006/11/10 13:19
L5	117	3 not 4	US-PGPUB; USPAT	OR	ON	2006/11/10 13:31
L6	17345	(blood adj brain) bbb	US-PGPUB; USPAT	OR	ON	2006/11/10 13:31
L7	555	6 same 1	US-PGPUB; USPAT	OR .	ON	2006/11/10 13:31
L8	69	7 and 2	US-PGPUB; USPAT	OR	ON	2006/11/10 13:31
L9	44	8 not 4	US-PGPUB; USPAT	OR	ON	2006/11/10 13:31
L10	137	6 same 2	US-PGPUB; USPAT	OR	ON	2006/11/10 13:32
L11	25	10 and 1	US-PGPUB; USPAT	OR	ON	2006/11/10 13:32
L12	17	11 not 4	US-PGPUB; USPAT	OR	ON	2006/11/10 13:32
L13	48	(9 12) not 5	US-PGPUB; USPAT	OR	ON	2006/11/10 13:32
L14	4491	dopamine catecholamine hydroxytyramine (hydroxy adj tyramine)	EPO; JPO; DERWENT	OR	ON	2006/11/10 14:09
L15	6619	glucosyl\$9 glycosyl\$9 gluconami\$4 ribonami\$4 glycoconjugate	EPO; JPO; DERWENT	OR	ON	2006/11/10 14:09
L16	21	14 and 15	EPO; JPO; DERWENT	OR	ON	2006/11/10 14:09

chain nodes:

18 19 20 21 22 23 24 26 27 28 29

ring nodes:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ring/chain nodes:

25

chain bonds:

1-26 18-19 19-20 20-21 22-23 23-24 26-27 27-28 27-29

ring/chain bonds:

4-25

ring bonds:

1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-11 8-9 9-10 10-11 12-13 12-17 13-14 14-15 15-16 16-17 exact/norm bonds :

4-25 7-8 7-11 8-9 9-10 10-11 12-13 12-17 13-14 14-15 15-16 16-17 18-19 20-21 23-24 26-27 27-28 27-29

exact bonds:

1-26 19-20 22-23

normalized bonds:

1-2 1-6 2-3 3-4 4-5 5-6

isolated ring systems:

containing 1:

G2:[*1],[*2],[*3],[*4]

Match level:

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 17:Atom 18:CLAS\$19:CLAS\$20:CLAS\$21:CLAS\$22:CLAS\$23:CLAS\$24:CLAS\$25:CLAS\$25:CLAS\$27:CLAS\$28:CLAS\$29:CLAS\$

```
10/625.645
L24 ANSWER 1 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER:
                          2006:410199 CAPLUS <<LOGINID::20061031>>
DOCUMENT NUMBER:
                          144:431654
TITLE:
                          Flavour modulating substances
                          Winkel, Chris; Renes, Harry
INVENTOR(S):
PATENT ASSIGNEE(S):
                          Quest International Services B.V., Neth.; Quest
                          International B.V.
                          PCT Int. Appl., 18 pp.
SOURCE:
                          CODEN: PIXXD2
DOCUMENT TYPE:
                          Patent
LANGUAGE:
                          English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
     PATENT NO.
                          KIND
                                  DATE
                                              APPLICATION NO.
                                                                       DATE
                          ____
                                               -----
     WO 2006046853
                           A1
                                  20060504
                                              WO 2005-NL719
                                                                       20051006
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
             CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
             GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,
             LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
             SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
         YU, ZA, ZM, ZW
RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
             IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,
             CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
             KG, KZ, MD, RU, TJ, TM
     WO 2005096844
                                  20051020
                                              WO 2005-NL258
                           A1
                                                                       20050406
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
             CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
             GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,
             LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
             NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
             SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
             ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
             AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,
             RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
             MR, NE, SN, TD, TG
                                               EP 2004-77980
                                                                    A 20041029
PRIORITY APPLN. INFO.:
                                                                    A 20050406
                                               WO 2005-NL258
                                                                    A 20040406
                                               EP 2004-76080
                                               EP 2004-76247
                                                                    Α
                                                                       20040426
                                               EP 2005-100657
                                                                   A 20050201
     Novel flavor modulating subtances were prepared according to formula and/or
     edible salts thereof: R1CR2(OR3)CONR4YX (I), where Y is C1-C5 alkylene or
     C2-C5 alkenyl, each optionally substituted with 1-5 substituents selected
     from hydroxyl, C1-C3 alkoxyl and C1-C3 acyl; X is pheny, substituted with
     one or more substituents selected from hydroxyl, C1-C3 alkoxyl, and C1-C3
     hydroxyalkyl; R1 and R2 represent hydrogen, C1-C8 alkyl, C2-C8 alkenyl,
     C3-C8 cycloalkyl or C3-C8 cycloalkenyl, optionally substituted with 1-8
     substituents selected from hydroxyl, oxo, C1-C3 alkyl, C2-C3 alkenyl, and
     C1-C3 carboxyl; R3 represents hydrogen, C1-C3 acyl, C1-C3 alkyl, each
     optionally substituted with 1-3 hydroxyl group; and R4 represent hydrogen,
     C1-C6 alkyl, C2-C6 alkenyl, C1-C3 acyl, C3-C6 cycloalkyl, C3-C6
     cycloalkenyl or C1-C6 acyl, each optionally substituted with 1-5
     substituents selected from hydroxyl, C1-C3 alkyl and C2-C3 alkenyl. It
     was found that substances represented by I can advantageously be used to
     impart desirable flavor, especially taste attributes to foodstuffs, beverages,
```

dopamine. 850848-26-9

IT

RL: FFD (Food or feed use); PAC (Pharmacological activity); BIOL

and pharmaceutics they are incorporated in. In addition said substances are capable of modulating and complementing the sensory impact of other flavor imparting substances. Thus, the present flavor modulating substances are advantageously applied in flavor compns., foodstuffs, beverages and

pharmaceutics. Typical examples of flavor modulating substances according to the present invention include N-lactoyl tyramine, N-gluconyl tyramine, N-lactoyl 4-hydroxybenzylamine, N-lactoyl vanillylamine and N-lactoyl(Biological study); USES (Uses)

(flavor modulating substances for use in foodstuffs, beverages, and pharmaceuticals)

RN 850848-26-9 CAPLUS

D-Gluconamide, N-[2-(4-hydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

REFERENCE COUNT:

6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 2 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

DOCUMENT NUMBER:

144:69827

TITLE:

Dihydroxybiphenylacetamides as Factor VIIa inhibitors,

their preparation, pharmaceutical compositions, and

use in therapy

INVENTOR(S):

Torkelson, Steven M.; Vojkovsky, Tomas Axys Pharmaceuticals, Inc., USA

SOURCE:

PCT Int. Appl., 43 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT ASSIGNEE(S):

PAT	ENT		KIN	D	DATE			APPL						ATE			
	2005 2005				A2 A3		2005 2006			WO 2						0050	
,,,	-	AE, CN, GE, LC, NG,	AG, CO, GH, LK, NI,	AL, CR, GM, LR, NO,	AM, CU, HR, LS, NZ,	AT, CZ, HU, LT, OM,	AU, DE, ID, LU, PG, TN,	AZ, DK, IL, LV, PH,	DM, IN, MA, PL,	DZ, IS, MD, PT,	EC, JP, MG, RO,	EE, KE, MK, RU,	EG, KG, MN, SC,	ES, KM, MW, SD,	FI, KP, MX, SE,	GB, KR, MZ, SG,	GD, KZ, NA, SK,
	RW:	BW, AZ, EE, RO,	BY, ES, SE,	GM, KG, FI, SI,	KZ, FR,	MD, GB, TR,	MW, RU, GR, BF,	TJ, HU,	TM, IE,	AT, IS,	BE, IT,	BG, LT,	CH, LU,	CY, MC,	CZ,	DE, PL,	DK, PT,
RITY	APP	-			٠,					US 2	004-	5763	30P		P 2	0040	602

The invention relates to a group of 12 different dihydroxybiphenylacetamides, e.g., I, which are inhibitors of Factors VIIa, IXa, Xa, and XIa, in particular Factor VIIa. The invention also relates to the preparation of these dihydroxybiphenylacetamides, pharmaceutical compns. comprising a therapeutically effective amount of a compound of the invention and a pharmaceutically acceptable carrier, optionally in combination with another anticoagulant agent, as well as to the use of the compns. in the treatment of a thromboembolic disorder. C-Dimethylation of 4-methoxyphenylacetonitrile followed by acid hydrolysis, O-demethylation, esterification, formylation, and bromination gave methylpropanoate II. 3-Bromo-4-methoxybenzonitrile was converted to the corresponding boronic acid, coupled with O-methylated II, and cyclized with 3,4diaminobenzamidine (preparation in 3 steps from 4-amino-3-nitrobenzonitrile is given) to give dimethoxybiphenylacetate III. Compound III underwent demethylation to the dihydroxybiphenylacetic acid followed by amidation, hydrogenation of the nitrile, acylation with (S)-2,2-dimethyl-1,3dioxolane-4-carboxylate, and ring cleavage, resulting in the formation of I. The compds. of the invention express inhibition of Factor VIIa and Factor Xa (no data).

871822-56-9P ΙT

RL: PAC (Pharmacological activity); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses) (drug candidate; preparation of dihydroxybiphenylacetamides as Factor VIIa inhibitors)
RN 871822-56-9 CAPLUS
CN [1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]-5'-[[(2S)-2,3-dihydroxy-1-oxopropyl]amino]methyl]-2',6-dihydroxy-α,α-dimethyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 871822-51-4P 871822-57-0P 871822-61-6P 871822-65-0P 871822-66-1P 871822-67-2P 871822-65-0P 871822-69-4P 871822-71-8P 871822-72-9P RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (drug candidate; preparation of dihydroxybiphenylacetamides as Factor VIIa inhibitors)

RN 871822-51-4 CAPLUS

CN [1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]5'-[[[(2S)-2,3-dihydroxy-1-oxopropyl]amino]methyl]-2',6-dihydroxyα,α-dimethyl-, dihydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

●2 HCl

RN 871822-57-0 CAPLUS
CN [1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]5'-[[[(2S,3R)-2,3-dihydroxy-1-oxobutyl]amino]methyl]-2',6-dihydroxyα,α-dimethyl-, dihydrochloride (9CI) (CA INDEX NAME)

RN

871822-61-6 CAPLUS
D-Glucitol, 1-[[2-[5-[5-(aminoiminomethyl)-1H-benzimidazol-2-yl]-5'-(aminosulfonyl)-2',6-dihydroxy[1,1'-biphenyl]-3-yl]-2-methyl-1-oxopropyl]methylamino]-1-deoxy- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

RN 871822-62-7 CAPLUS

[1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]-2',6-dihydroxy-5'-[[[(2S)-2-hydroxy-1-oxopropyl]amino]methyl]- α,α -dimethyl-, dihydrochloride (9CI) (CA INDEX NAME) CN

RN 871822-64-9 CAPLUS

CN [1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]2',6-dihydroxy-5'-[[((2S)-2-hydroxy-1-oxopropyl]amino]methyl]α,α-dimethyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 871822-65-0 CAPLUS

CN [1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]-2',6-dihydroxy-5'-[[[(2R)-2-hydroxy-1-oxopropyl]amino]methyl]- \alpha,\alpha-dimethyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 871822-66-1 CAPLUS

CN

[1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]-5'-[[((2S,3R)-2,3-dihydroxy-1-oxobutyl]amino]methyl]-2',6-dihydroxy-a,a-dimethyl- (9CI) (CA INDEX NAME)

CN [1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]5'-[[((2R,3R)-2,3-dihydroxy-1-oxobutyl]amino]methyl]-2',6-dihydroxyα,α-dimethyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ &$$

RN 871822-68-3 CAPLUS

CN [1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]5'-[[((2S,3S)-2,3-dihydroxy-1-oxobutyl]amino]methyl]-2',6-dihydroxyα,α-dimethyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 871822-69-4 CAPLUS

CN [1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]5'-[[[(2R,3S)-2,3-dihydroxy-1-oxobutyl]amino]methyl}-2',6-dihydroxyα,α-dimethyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 871822-71-8 CAPLUS

CN D-Iditol, 1-[[2-[5-(5-(aminoiminomethyl)-1H-benzimidazol-2-yl]-5'-

(aminosulfonyl)-2',6-dihydroxy[1,1'-biphenyl]-3-yl]-2-methyl-1oxopropyl]methylamino]-1-deoxy- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

871822-72-9 CAPLUS RN

[1,1'-Biphenyl]-3-acetamide, 5-[6-(aminoiminomethyl)-1H-benzimidazol-2-yl]-CN 5'-[[[(2R)-2,3-dihydroxy-1-oxopropyl]amino]methyl]-2',6-dihydroxy- α, α -dimethyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 3 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

DOCUMENT NUMBER: 143:452895

TITLE: Pharmaceutical **dopamine**

glycoconjugate compositions as dopaminergic receptor binding agents

Christian, Samuel T.; Sundsmo, John S. INVENTOR(S):

PATENT ASSIGNEE(S):

SOURCE: U.S. Pat. Appl. Publ., 50 pp., Cont.-in-part of U.S.

Ser. 198,798, abandoned.

CODEN: USXXCO

DOCUMENT TYPE: Patent

English LANGUAGE:

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE ·
US 2005250739	Al	20051110	US 2003-625645	20030722
US 6548484	B1	20030415	US 2000-547506	20000412
US 2003119761	A1	20030626	US 2002-198798	20020718
US 2006189547	A1	20060824	US 2006-343266	20060130
PRIORITY APPLN. INFO.:			US 2000-547501 A	2 20000412
			US 2000-547506 A	2 20000412
			US 2002-198798 B	2 20020718
OTHER SOURCE(S):	MARPAT	143:452895		

- AB Hydrophilic transportable N-linked glycosyl dopaminergic prodrug compds. were prepared and are capable of binding to dopaminergic receptors. E.g., dopamine gluconamide (I) was prepared from gluconolactone and 3-hydroxytyramine. Dopamine receptor binding assays were carried out for dopamine gluconamine and a isopropylidine
 - carried out for **dopamine** gluconamine and a isopropylidine protected I. Pharmaceutical formulations were given containing I.

IT <u>369619-41-0P</u>, <u>Dopamine</u> <u>gluconamide</u>

RL: PAC (Pharmacological activity); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)

(pharmaceutical ${\color{red} \underline{\textbf{dopamine}}}$ ${\color{red} \underline{\textbf{glycoconjugate}}}$ compns. as

dopaminergic receptor binding agents)

RN 369619-41-0 CAPLUS

CN D-Gluconamide, N-[2-(3,4-dihydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 369619-49-8 CAPLUS

CN D-Ribonamide, N-[2-(3,4-dihydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 369619-53-4P 369619-55-6P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(pharmaceutical $\underline{\text{dopamine glycoconjugate}}$ compns. as $\underline{\text{dopaminergic}}$ receptor binding agents)

RN 369619-53-4 CAPLUS

CN D-Ribitol, 1-deoxy-1-[[2-(3,4-dihydroxyphenyl)ethyl]amino]-, hydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

● HCl

RN 369619-55-6 CAPLUS

CN D-Glucitol, 1-deoxy-1~[[2-(3,4-dihydroxyphenyl)ethyl]amino]-,
hydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

HC1

L24 ANSWER 4 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2005:1011687 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 144:16395

TITLE: Metabolism and disposition of a β 3-adrenergic

receptor agonist LY368842 in male Fisher 344 rats

AUTHOR(S): Abraham, T. L.; Lindsay, T. J.; Chay, S. H.; Czeskis,

B. A.; He, M. M.

CORPORATE SOURCE: Drug Metabolism and Disposition, Lilly Research

Laboratories, Eli Lilly and Company, Indianapolis, IN,

USA

SOURCE: Xenobiotica (2005), 35(6), 647-660

CODEN: XENOBH; ISSN: 0049-8254

PUBLISHER: Taylor & Francis Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

The metabolism and disposition of LY368842, a β 3-adrenergic receptor agonist, were characterized in F344 rats following oral or i.v. administration of [14C]LY368842. These studies were conducted as part of the investigation of the mechanism of dark liver pigmentation in LY368842-treated F344 rats. The maximum plasma concentration of LY368842 was reached at 3 h after an oral dose, with an elimination half-life of 4 h. The oral bioavailability of LY368842 was determined as 8%. A tissue distribution study by quant. whole-body autoradiog. indicated high concns. of radiocarbon in gastrointestinal contents and moderate concns. in liver. The radiocarbon was rapidly eliminated in rats, with approx. 3% of the dose recovered in urine and 90% in faeces over 168 h. In bile duct-cannulated rats, about 42% of the dose was recovered in bile and 41% remained in the faeces. $\underline{\text{Metabolites}}$ of LY368842 were identified in rat urine, faeces, bile and plasma samples. Oxidative metabolism of LY368842 led to the formation of a hydroxy metabolite, an indole-2,3-dione metabolite and oxidative cleavage products such as amine and diol **metabolites**. Several glucuronide **conjugates** were also identified in rat bile. These data suggest that LY368842 is not completely absorbed but is widely distributed, extensively metabolized and rapidly eliminated in rats after oral administration.

IT 870461-79-3 870461-80-6

RL: BSU (Biological study, unclassified); BIOL (Biological study) (metabolism and disposition of oral or i.v. β3 agonist LY368842 in relation to mechanism of dark liver pigmentation in LY368842 treatment) 870461-79-3 CAPLUS

CN D-Glucopyranosiduronic acid, 4-[(2S)-3-[[2-[4-[[5-(aminocarbonyl)-2-pyridinyl]oxy]phenyl]-1,1-dimethylethyl]amino]-2-hydroxypropoxy}-1H-indol-C-yl (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

870461-80-6 CAPLUS

CN D-Glucopyranosiduronic acid, 4-[(2S)-3-[[2-[4-[[5-(aminocarbonyl)-2-pyridinyl]oxy]phenyl]-1,1-dimethylethyl]amino]-2-hydroxypropoxy]-1H-indole-C,C-diyl bis- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

PAGE 3-A

REFERENCE COUNT:

18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 5 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN 2005:395260 CAPLUS <<LOGINID::20061031>>

ACCESSION NUMBER:

DOCUMENT NUMBER: TITLE:

142:447014 Preparation of substituted phenoxy aryl amides as

 $\beta 2\text{-adrenoceptor agonists}$ for the treatment of

INVENTOR(S):

Box, Philip Charles; Coe, Diane Mary; Hobbs, Heather

PATENT ASSIGNEE(S): SOURCE:

Glaxo Group Limited, UK PCT Int. Appl., 56 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PAT	PATENT NO. 						DATE			APPL					D.	ATE	
	WO	2005	0401	03				2005	0506							2	0041	020
		W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	ΒA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
			CN,	co,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	ΚP,	KR,	ΚZ,	LC,
			LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	ΜZ,	ΝA,	NI,
			NO,	ΝZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,
			TJ,	TM,	TN,	TR,	TT,	ΤZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW
		RW:	BW,	GH,	GM,	ΚE,	LS,	MW,	ΜZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,
			ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM,	ΑT,	ΒE,	BG,	CH,	CY,	CZ;	DE.	DK,
								GR,		•	•							•
						BF,	ΒJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,
				TD,														
	EΡ							2006										
		R:	•					ES,				•	•	•	•			PT,
						LV,	FI,	RO,	CY,	,	-	-	-			-		
PRIC	RITY	APP	LN.	INFO	.:						GB 2							
											WO 2	004-1	EP11	952	1	W 2	0041	020
								142:				_						
AB																		yl, OH,
																		.; R3 =
								R4-										
	•	-						-	•				•		и-[5	-(br	omoa	cetyl)-2-
	_	_	•					amid			-					.		
																		tative
								r the										0001
T ITT		tre 1 091-			ı as	cnma	OF	CHIO	HIC (obst	ruct.	rve	ouim	onar	у ат	seas	e (C	OPD).
IT	_	PAC		_			_											

(Therapeutic use); BIOL (Biological study); PREP (Preparation); USES

(preparation of substituted phenoxy aryl amides as β 2-adrenoceptor agonists for treatment of COPD)

RN 851091-78-6 CAPLUS

2,6-Pyridinedimethanol, 3-hydroxy- α 6-[[[2-[4-[2-CN

(phenylmethoxy)ethoxy]phenyl]ethyl]amino]methyl]- (9CI) (CA INDEX NAME)

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ACCESSION NUMBER:

L24 ANSWER 6 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

DOCUMENT NUMBER:

REFERENCE COUNT:

TITLE:

142:219283 Preparation of 1H-imidazo[4,5-c]pyridin-2-yl derivatives as inhibitors of Akt activity

INVENTOR(S):

Heerding, Dirk A.; Clark, Tammy J.; Drewry, David H.; Leber, Jack Dale; Safonov, Igor; Yamashita, Dennis S.

THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS

PATENT ASSIGNEE(S):

Smithkline Beecham Corporation, USA

SOURCE:

PCT Int. Appl., 212 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

```
20050210
                                               WO 2004-US24340
                                                                        20040728
     WO 2005011700
                           A1
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
             CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
             LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
             NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
             TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
             AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
             EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
             SN, TD, TG
    AU 2004261214
                           A1
                                  20050210
                                               AU 2004-261214
                                                                        20040728
                                                                        20040728
     CA 2534038
                                  20050210
                                               CA 2004-2534038
                           AA
     EP 1653961
                           A1
                                  20060510
                                               EP 2004-779406
                                                                        20040728
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, HR
     BR 2004012993
                           Α
                                  20061003
                                               BR 2004-12993
                                                                        20040728
     NO 2006000985
                           Α
                                  20060419
                                               NO 2006-985
                                                                        20060228
                                               US 2003-490851P
PRIORITY APPLN. INFO.:
                                                                        20030729
                                               US 2003-491055P
                                                                    Ρ
                                                                        20030730
                                               US 2003-493101P
                                                                    Ρ
                                                                        20030806
                                               US 2003-494752P
                                                                    Р
                                                                        20030813
                                               US 2003-507014P
                                                                        20030929
                                               US 2003-530847P
                                                                    Р
                                                                        20031218
                                               WO 2004-US24340
                                                                    W
                                                                       20040728
                          MARPAT 142:219283
OTHER SOURCE(S):
     Title compds. I [wherein Het = 4-furazan-3-yl, 4-pyridinyl,
     2-aminopyridin-4-yl, 2-amino-pyrimidin-5-yl, etc.; R1 = H, (un)substituted
     alkyl, cycloalkyl containing 1-4 heteroatoms; R4 = H, halo, (un)substituted
     alkyl, cycloalkyl, poly/cyclic aromatic ring; R7 = H, CONR9R10 and derivs.,
     SO2NR9R10 and derivs., N(CH2)mNR9R10etc.; m = 6, where the carbon chain
     formed by m is optionally substituted; R9, R10 = independently H,
     (un)substituted alkyl, cycloalkyl etc.; with the exception of one compound;
     and their pharmaceutically acceptable salts, hydrates, solvates, and
     prodrugs] were prepared as inhibitors of protein kinase B activity. For
     example, II • xTFA was prepared via cyclocondensation of
     N-(1-Benzylpiperidin-4-yl)-2-chloropyridin-3,4-diamine (preparation given) with
     Et cyanoacetate, followed by Pd-coupling with Ph boronic acid, reaction
     with NaNO2 and NH2OH of acetonitrile intermediate, and Bn-deprotection.
     In an Akt inhibitory activity assay, III displayed IC50 values of 0.069,
     0.038, and 0.032, against delta-PH domain of Aktl, Akt2, and Akt3, resp.
     Thus, I are useful in the treatment of cancer and arthritis (no data).
TΤ
     842147-64-2P, 4-[(1R)-2-[[3-[[2-(4-Amino-1,2,5-oxadiazol-3-y1)-1-
     ethyl-4-phenyl-1H-imidazo[4,5-c]pyridin-7-yl]oxy]-2-hydroxypropyl]amino]-1-
     hydroxyethyl]-1,2-benzenediol trifluoroacetate
     RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU
     (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES
     (Uses)
        (Akt inhibitor; preparation of 1H-imidazo[4,5-a]pyridin-2-yl derivs. as
        inhibitors of Akt activity for treating cancer and arthritis)
RN
     842147-64-2 CAPLUS
CN
     1,2-Benzenediol, 4-[(1R)-2-[[3-([2-(4-amino-1,2,5-oxadiazol-3-y1)-1-ethyl-
     4-phenyl-1H-imidazo[4,5-c]pyridin-7-yl]oxy]-2-hydroxypropyl]amino]-1-
     hydroxyethyl}-, trifluoroacetate (salt) (9CI) (CA INDEX NAME)
     CM
          842147-63-1
     CRN
     CMF C27 H29 N7 O6
```

CM

CRN 76-05-1 CMF C2 H F3 O2

REFERENCE COUNT:

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 7 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:647395 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 141:254710

TITLE: G-protein coupled receptors: SAR analyses of

neurotransmitters and antagonists

Kuo, C. L.; Wang, R. B.; Shen, L. J.; Lien, L. L.; AUTHOR(S):

Lien, E. J.

CORPORATE SOURCE: School of Pharmacy, University of Southern California,

Los Angeles, CA, USA

SOURCE: Journal of Clinical Pharmacy and Therapeutics (2004), 29(3), 279-298

CODEN: JCPTED; ISSN: 0269-4727

PUBLISHER: Blackwell Publishing Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

Background: From the deductive point of view, neurotransmitter receptors can be divided into categories such as cholinergic (muscarinic, nicotinic), adrenergic (α - and β -), dopaminergic, serotoninergic (5-HT1.apprx.5-HT5), and histaminergic (H1 and H2). Selective agonists and antagonists of each receptor subtype can have specific useful therapeutic applications. For understanding the mol. mechanisms of action, an inductive method of anal. is useful. Objective: The aim of the present study is to examine the structure-activity relationships of agents acting on G-protein coupled receptors. Method: Representative sets of G-PCR agonists and antagonists were identified from the literature and Medline [P.M. Walsh (2003) Physicians' desk reference; M.J. O'Neil (2001) The Merck index]. The mol. weight (MW), calculated logarithm of octanol/water partition coefficient (C log P) and molar refraction (CMR), dipole moment (DM), Elumo (the energy of the LUMO, a measure of the electron affinity of a mol. and its reactivity as an electrophile), Ehomo (the energy of the HOMO, related to the ionization potential of a mol., and its reactivity as a nucleophile), and the total number of hydrogen bonds (Hb) (donors and receptors), were chosen as mol. descriptors for SAR

· analyses. Results: The data suggest that not only do neurotransmitters share common structural features but their receptors belong to the same ensemble of G-protein coupled receptor with seven to eight transmembrane domains with their resultant dipoles in an antiparallel configuration. Moreover, the anal. indicates that the receptor exists in a dynamic equilibrium between the closed state and the open state. The energy needed to open the closed state is provided by the hydrolysis of GTP. A composite 3-D parameter frame setting of all the neurotransmitter agonists and antagonists are presented using MW, Hb and μ as independent variables. Conclusion: It appears that all neurotransmitters examined in this study operate by a similar mechanism with the G-protein coupled receptors. **74513-77-2**, Ro363

RL: PRP (Properties)

(structure-activity relationship anal. of neurotransmitters and G protein-coupled receptor antagonists)

RN 74513-77-2 CAPLUS

ΙT

1,2-Benzenediol, 4-[3-[[2-(3,4-dimethoxyphenyl)ethyl]amino]-2hydroxypropoxy] - (9CI) (CA INDEX NAME)

REFERENCE COUNT:

THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS 31 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 8 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:571465 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

141:408422

TITLE:

AUTHOR(S):

Diversity and distribution of Microcystis

(cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry Welker, Martin; Brunke, Matthias; Preussel, Karina;

Lippert, Indra; Von Doehren, Hans

CORPORATE SOURCE:

Inst. Chemie, AG Biochemie und molekulare Biologie, Technische Universitaet Berlin, Berlin, 10587, Germany

SOURCE:

Microbiology (Reading, United Kingdom) (2004), 150(6),

1785-1796

CODEN: MROBEO; ISSN: 1350-0872 Society for General Microbiology

DOCUMENT TYPE:

PUBLISHER:

Journal English

LANGUAGE:

Microcystis sp. has been recognized in recent years as a producer of a high number of secondary metabolites. Among these, peptides that are produced by the nonribosomal peptide synthetase pathway often show bioactivity or are toxic to humans. The production of particular peptides is specific for individual Microcystis clones, allowing their characterization as chemotypes by analyzing the peptidome. The authors studied the in situ diversity of peptides and chemotypes in Microcystis communities from lakes in and around Berlin, Germany, by direct anal. of individual colonies by MALDI-TOF mass spectrometry. From 165 colonies analyzed a total of 46 individual peptides could be identified, 21 of which have not been described previously. For six of the new peptides the structures could be elucidated from fragment patterns, while for others only a preliminary classification could be achieved. In most colonies, two to ten individual peptides were detected. In 19 colonies, 16 of which were identified as M. wesenbergii, no peptide $\underline{\boldsymbol{metabolites}}$ could be detected. The peptide data of 146 colonies were subjected to an ordination (principal component anal.). The principal components were clearly formed by the microcystin variants Mcyst-LR, -RR and -YR, anabaenopeptins B and E/F, a putative microviridin, and a new cyanopeptolin. In the resulting ordination plots most colonies were grouped into five distinct groups, while 40 colonies scattered widely outside these groups. In some cases colonies from different lakes

clustered closely, indicating the presence of similar chemotypes in the resp. samples. With respect to colony morphol. no clear correlation between a chemotype and a morphospecies could be established, but M. aeruginosa, for example, was found to produce predominantly microcystins. In contrast, M. ichthyoblabe colonies were mostly neg. for microcystins and instead produced anabaenopeptins. The number of peptides detected in a limited number of samples and the various combinations of peptides in individual Microcystis colonies highlights the immense metabolic potential and diversity of this genus.

173357-14-7, Aeruginosin 102A

RL: ANT (Analyte); BSU (Biological study, unclassified); PRP (Properties); ANST (Analytical study); BIOL (Biological study)

(diversity and distribution of Microcystis oligopeptide chemotypes from natural communities from lakes studied by single-colony mass spectrometry)

RN 173357-14-7 CAPLUS

1H-Indole-2-carboxamide, N-[(3S)-1-(aminoiminomethyl)-2-hydroxy-3-CN piperidinyl] octahydro-6-hydroxy-1-[(2R)-2-[(2R)-2-hydroxy-1-oxo-3-[4-x]] octahydro-6-hydroxy-1-[(2R)-2-[(2R)-2-y]] octahydro-6-hydroxy-1-[(2R)-2-[(2R)-2-y]] octahydro-6-hydroxy-1-[(2R)-2-[(2R)-2-y]] octahydro-6-hydroxy-1-[(2R)-2-[(2R)-2-y]] octahydro-6-hydroxy-1-[(2R)-2-[(2R)-2-y]] octahydro-6-hydroxy-1-[(2R)-2-[(2R)-2-y]] octahydro-6-hydroxy-1-[(2R)-2-[(2R)-2-y]] octahydroxy-1-[(2R)-2-[(2R)-2-y]] octahydroxy-1-[(2R)-2-[(2R)-2-y]] octahydroxy-1-[(2R)-2-y]] octahydroxy-1-[(2R)-2-y]] octahydroxy-1-[(2R)-2-[(2R)-2-y]] octahydroxy-1-[(2R)-2-y]] octahydroxy-1-(sulfooxy)phenyl]propyl]amino]-3-(4-hydroxyphenyl)-1-oxopropyl]-, (2S, 3aS, 6R, 7aS) - (9CI) (CA INDEX NAME)

Absolute stereochemistry. Currently available stereo shown.

- 53 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 9 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

REFERENCE COUNT:

2004:493686 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 141:54342

TITLE:

SOURCE:

Preparation of 2-(2-hydroxybiphenyl-3-yl)-1H-

benzimidazole-5-carboxamidine derivatives as factor

THERE ARE 53 CITED REFERENCES AVAILABLE FOR THIS

VIIa inhibitors

INVENTOR(S):

Kolesnikov, Aleksandr; Rai, Roopa; Shrader, William

Dvorak; Torkelson, Steven M.; Wesson, Kieron E.;

Young, Wendy B.

PATENT ASSIGNEE(S):

Axys Pharmaceuticals, Inc., USA

PCT Int. Appl., 119 pp. CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE:

Patent

English

FAMILY ACC. NUM. COUNT:

PAT	ENT	NO.			KIN	D	DATE		i	APPL	ICAT:	ION I	١٥.		Di	ATE	
	_	0506: 0506:			A2 A3		2004		1	WO 2	003-	US38	635		2	0031	203
	W:	AE,	AG,		AM,	ΑT,	AU,	AZ,								CA, GB,	
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,
		NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	NI, SY,	
	RW:	TM, BW,					UA, MW,										AZ,

```
BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE,
             ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
             TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
     CA 2507707
                          AA
                                20040617
                                             CA 2003-2507707
                                                                    20031203
     AU 2003302238
                          A1
                                 20040623
                                             AU 2003-302238,
                                                                     20031203
                                                                     20031203
                                 20050907
                                             EP 2003-810056
     EP 1569912
                          A2
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
     CN 1745070
                          Α
                                 20060308
                                             CN 2003-80109503
                                                                     20031203
                                             JP 2004-557602
                                                                     20031203
     JP 2006515839
                          Т2
                                 20060608
                                 20060914
                                             US 2006-537115
                                                                     20060320
     US 2006205942
                          A1
PRIORITY APPLN. INFO.:
                                             US 2002-430981P
                                                                  Р
                                                                    20021203
                                             WO 2003-US38635
                                                                 W
                                                                    20031203
OTHER SOURCE(S):
                         MARPAT 141:54342
     The title compds. (I) [X1-X4] = independently N or CR5 (wherein R5 = H,
     alkyl, or halo) with the proviso that not more than three of X1-X4 are N;
     R1 = H, alkyl, halo, CO2H, CONH2; R2 = H, alkyl, halo; R3 = H, halo,
     alkyl, alkoxy, haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulfonyl,
     cyanoalkyl, tetrazol-5-yl, tetrazol-5-ylalkyl, hydroxyalkylcarbonyl,
     aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, oxalyl, NHSO2R
     (where R = alkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl,
     cycloalkylalkyl, heterocycloalkyl or heterocycloalkylalkyl), SO2NHCOR6 (where R6 = alkyl, aryl, aralkyl, heteroaryl, heteroaralkyl,
     heterocycloalkyl, or heterocycloalkylalkyl), SO3H, sulfonylalkyl, each
     N-(un) substituted CONH2, CH(CF3)NH2, or COCONH2; Rx = H, alkyl, alkylthio,
     halo, HO, hydroxyalkyl, alkoxy, SO2NH2, alkylaminosulfonyl,
     dialkylaminosulfonyl, NO2; Ry = H, alkyl, halo; Rz = H, alkyl, haloalkyl,
     cycloalkyl, alkylthio, halo, HO, hydroxyalkyl, nitro, cyano, alkoxy,
     alkoxyalkyl, alkoxyalkyloxy, hydroxyalkyloxy, aminoalkyloxy,
     carboxyalkyloxy, aminocarbonylalkyloxy, haloalkoxy, CO2H, etc.; R13 = H,
     HO, C1-10 alkoxy, COR35 (where R35 = alkyl, aryl, haloalkyl, or
     cyanoalkyl), CO2R36 (where R36 = alkyl, hydroxyalkyl, alkoxyalkyl,
     alkoxycarbonylalkyl, acyl, aryl, or haloalkyl)] and individual isomers,
     mixture of isomers, or pharmaceutically acceptable salts thereof are prepared
     These compds. are novel inhibitors of factors VIIa, IXa, Xa, XIa, in
     particular factor VIIa (no data). Pharmaceutical compns. comprising these
     inhibitors are useful for treating a disease in an animal mediated by
     factor VIIa, thromboembolic disorders, cancer or rheumatoid arthritis, in particular thromboembolic disorders. Thus, 1-tert-butyl-3-[[3'-formyl-
     6,2'-bis(2-methoxyethoxymethoxy)biphenyl-3-yl]methyl]urea,
     3,4-diaminobenzamidine hydrochloride, and 1,4-benzoquinone were combined
     in methanol, heated at 60°, and stirred for 2 h to give
     2-[5'-(3-tert-butylureidomethyl)-2,2'-bis(2-methoxyethoxymethoxy)biphenyl-
     3-yl]-1H-benzimidazole-5-carboximidamide which was dissolved in 4 M
     hydrogen chloride in dioxane and the solution and stirred at room temperature for 1
     h to give 2-(2,2'-dihydroxy-5'-ureidomethylbiphenyl-3-yl)-1H-benzimidazole-
     5-carboximidamide hydrochloride.
     706821-92-3P, 2-[5-(5-Carbamimidoyl-1H-benzimidazol-2-yl)-6,2'-
     pentahydroxyhexyl) acetamide 706822-33-5P
     RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU
     (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES
     (Uses)
        (preparation of (hydroxybiphenylyl)-1H-benzimidazolecarboxamidine derivs. as
        factor VIIa inhibitors for treating thromboembolic disorders, cancer,
        or rheumatoid arthritis)
     706821-92-3 CAPLUS
RN
     D-Glucitol, 6-[[[5-[5-(aminoiminomethyl)-1H-benzimidazol-2-yl]-5'-
CN
     (aminosulfonyl)-2',6-dihydroxy[1,1'-biphenyl]-3-yl]acetyl]methylamino]-6-
     deoxy- (9CI) (CA INDEX NAME)
```

RN 706822-33-5 CAPLUS

CN D-Glucose, 6-[[[5-[5-(aminoiminomethyl)-1H-benzimidazol-2-yl]-5'(aminosulfonyl)-2',6-dihydroxy[1,1'-biphenyl]-3-yl]acetyl]amino]-6-deoxy(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 10 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:460342 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 142:48941

TITLE: <u>Dopaminergic</u> properties and experimental

anti-parkinsonian effects of IPX750 in rodent models

of Parkinson disease

AUTHOR(S): Jiang, Chuantao; Wan, Xinhua; Jankovic, Joseph;

Christian, Samuel T.; Pristupa, Zdenek B.; Niznik,

Hyman B.; Sundsmo, John S.; Le, Weidong

CORPORATE SOURCE: Parkinson Disease Research Lab, Department of

Neurology, Baylor College of Medicine, Houston, TX,

USA

SOURCE: Clinical Neuropharmacology (2004), 27(2), 63-73

CODEN: CLNEDB; ISSN: 0362-5664

PUBLISHER: Lippincott Williams & Wilkins DOCUMENT TYPE: Journal

DOCUMENT TYPE: Journal LANGUAGE: English

AB With a view toward improving the neural bioavailability of administered dopaminergic compds., including dopamine, synthetic efforts have been directed toward enhancing the brain bioavailability of these compds. by accessing cellular sugar transport systems with stereoselective dopaminergic drugs. While synthesis and chemical of the resultant class of compds. has recently been described in US Patent No.6,548,484, the associated biol. properties have not previously been reported. One member of this new class, IPX-750, is a pro-drug dopamine-gluconamine designed to retain stereospecificity of binding at: glucose transporters (GLUT 1/ GLUT 3 and intestinal Na+/glucose co-transporters SGLT1), dopamine transporter (DAT); and, dopaminergic receptors of the D1/D2 families. Designed to be cleavable by tissue amidases, results reported here show that intact IPX-750 pro-drug retains dopaminergic agonist binding and biol.

activities both in vitro and in vivo. IPX-750, like dopamine, exhibited predominant D5/D1 binding specificity with lower binding activity at D2. As expected, binding was highly stereospecific, ie, IPX-760, a benzamide differing in just a hydrogen atom and keto oxygen from IPX-750, bound with 6-fold lower activity at D5. In cell culture, activation resulted from binding of IPX-750 at D1 or D5 in transfected cells was measured by increased intracellular cAMP. Interestingly, considering prior reported in vitro toxicity of dopamine oxidized and metabolic product $\frac{\text{dopamine}}{72 \text{ h in cell cultures}}$ at the EC50 of IPX-750 for increasing intracellular cAMP. IPX-750 was evaluated in the Parkinson's disease animal models, including MPTP mouse model, the 6-hydroxydopamine (6-OHDA) rat model and the Nurrl (+/-) knockout mouse . model. In MPTP-lesioned and Nurr1 +/- knockout mice, IPX-750 significantly increased Rota-rod time. In 6-OHDA-lesioned rats, IPX-750 significantly decreased apomorphine (APO)-induced rotation. Worthy of note, after cessation of IPX-750 treatments the anti-parkinsonian activity in MPTP-lesioned and Nurrl +/- mice required about 2 wk to washout, suggesting a possible biol. reservoir of drug. In addition, after eight weeks of twice daily administration of 20 mg/kg IPX-750, mice did not show statistical difference in the total number of TH-pos. neurons in substantia nigra (SN). These combined results suggest (i) that stereospecific glycoconjugation may be an effective method to improve penetrability of drugs through the blood brain barrier; (ii) treatment with bioavailable IPX-750 in vitro did not show evidence for neurotoxicity; and, (iii) IPX-750 possesses dopaminergic properties and exerts anti-parkinsonian effects in three different PD rodent models, suggesting therapeutic potential for this new class of drugs in treating dopamine deficiency diseases.

369619-47-6, IPX 750

RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (IPX-750 exhibited D5/D1 binding specificity, lower D2 binding activity and increased Rota-rod time in MPTP, Nurrl(+/-) mouse and decreased APO-induced rotation in 6-OHDA rat model indicate it possess dopaminergic, antiparkinsonian activity)

RN

369619-47-6 CAPLUS
D-Glucitol, 1-deoxy-1-[[2-(3,4-dihydroxyphenyl)ethyl]amino]- (9CI) (CA CN INDEX NAME)

Absolute stereochemistry.

IT **369619-41-0**, IPX 760

RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (IPX-760 (dopamine-gluconamide) exhibited lower D5 binding activity compared to IPX-750 in MPTP, Nurr1(+/-) mouse)

369619-41-0 CAPLUS RN

D-Gluconamide, N-[2-(3,4-dihydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME)

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 11 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:259783 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 142:89007

TITLE: Polymeric affinity type of adsorbents in the study of

physiologically active substances. Part XX. Synthesis and use of iodine derivatives of phenolphthalein and tyrosine in affinity chromatography of human blood

serum proteins

AUTHOR(S): Polenok, E. G.; Kuznetsov, P. V.

CORPORATE SOURCE: Siberian Division, Kemerovo Scientific Center, Cancer

Immunology Department, Russian Academy of Sciences,

Kemerovo, Russia

SOURCE: Pharmaceutical Chemistry Journal (Translation of

Khimiko-Farmatsevticheskii Zhurnal) (2003), 37(12),

663-666

CODEN: PCJOAU; ISSN: 0091-150X Kluwer Academic/Consultants Bureau

PUBLISHER: Kluwer in DOCUMENT TYPE: Journal LANGUAGE: English

AB The designing of original affinity type adsorbents (ATAs) with immobilized derivs. of phenolphthalein and tyrosine for the purification of thyroxine-binding proteins was studied. The ligands for epoxy-activated ATAs were phenolphthalein hydrazide (PPH), tetraiodophenolphthalein

hydrazide (TIPPH), and 3,5-diiodotyrosine (DIT). The chromatog. characteristics of epoxy-activated ATAs with immobilized DIT are comparable with those of the classical adsorbents with immobilized T4. The epoxy-activated ATAs with immobilized TIPPH are less selective with respect to adsorbed proteins. These systems can be used as group

adsorbents for the isolation and purification of blood serum proteins.

IT 816454-45-2DP, conjugate with agarose 816454-49-6DP, conjugate with agarose

RL: ARU (Analytical role, unclassified); BUU (Biological use, unclassified); SPN (Synthetic preparation); ANST (Analytical study); BIOL

(Biological study); PREP (Preparation); USES (Uses) (iodine derivs. of phenolphthalein and tyrosine in affinity chromatog.

of human blood serum proteins)

RN 816454-45-2 CAPLUS

CN L-Tyrosine, N-(2,3-dihydroxypropyl)-O-(4-hydroxy-3,5-diiodophenyl)-3,5diiodo-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 816454-49-6 CAPLUS

CN L-Tyrosine, N-[3-[2-(2,3-dihydroxypropoxy)ethoxy]-2-hydroxypropyl}-O-(4hydroxy-3,5-diiodophenyl)-3,5-diiodo-(9CI) (CA INDEX NAME)

THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 15 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 12 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2004:2903 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

140:65211

TITLE:

Prodrug, medicinal utilization thereof, and process

for producing the same

INVENTOR(S):

Yamashita, Shinya; Takeo, Jiro; Okita, Takaaki

PATENT ASSIGNEE(S):

Nippon Suisan Kaisha, Ltd., Japan

SOURCE:

Р

PCT Int. Appl., 48 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	TENT :	NO.			KINI)	DATE			APPL:	ICAT:				D	ATE		
WO	2004	0008	63		A1	_	2003	1231	,						2	0030	620	
	W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
		co,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GΕ,	GH,	
		GM,	HR,	ΗU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	ΚP,	KR,	ΚZ,	LC,	LK,	LR,	
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	ΜZ,	NI,	NO,	ΝZ,	OM,	
		PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SĒ,	SG,	SK,	SL,	ТJ,	TM,	TN,	TR,	
		TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	zw					
	RW:	GH,	GM,	ΚE,	LS,	MW,	ΜZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,	
	KG, KZ, MD FI, FR, GB				RU,	ТJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
		FI,	FR,	GB,	GR,	ΗU,	ΙE,	ΙT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,	
		BF,	ΒJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	G₩,	ML,	MR,	NE,	SN,	TD,	TG	
CA	2490	626			AΑ		2003	1231		CA 2	003-	2490	626		2	0030	620	
ΑU	2003	2440	88		A1		2004	0106		AU 2	003-	2440	88		2	0030	620	
BR	2003	0124	42		А		2005	0510		BR 2	003-	1244	2		2	0030	620	
EΡ	1541	579			A1		2005	0615		EP 2	003-	7609	21		2	0030	620	
	R:	ΑT,	ΒE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
		IE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	ΕE,	ΗU,	SK		
CN	1671	724			А		2005	0921		CN 2	003-	8178	14		2	0030	620	
US	2005	2030	61		A1		2005	0915		US 2								
ORITY	RITY APPLN. INFO.:									JP 2								
										WO 2	003-	JP78	68	1	W 2	0030	620	

Disclosed is a prodrug with the use of an enzyme showing different enzymic AB activities between a drug target site and a site where its side effect is expressed, which has a substituent cleavable with the enzyme and is activated due by cleaving the substituent. As an example of the drug target site, a respiratory organ may be cited, while the heart may be sited as an example of the side effect expression site. As an example of the drug, a bronchodilator may be cited while a glycosidase (for example, β -glucuronidase) may be cited as an example of the enzyme. As an example of the substituent, a **glycosyl** group comprising a monosaccharide or an oligosaccharide may be cited. Use of the above enzyme makes it possible to lessen the side effect of a drug having a target site for exerting its effect which is different from a site where its side effect is expressed. Salbutamol glucuronide was prepared and administered to guinea pigs by inhalation to study pharmacol. effects.

639007-21-9P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of enzyme-activated prodrugs for targeting respiratory systems)

639007-21-9 CAPLUS RN

 β -D-Glucopyranosiduronic acid, [2-hydroxy-5-[1-hydroxy-2-[[2-(4methoxyphenyl)-1-methylethyl]amino]ethyl]phenyl]methyl (9CI) (CA INDEX NAME)

REFERENCE COUNT:

THERE ARE 85 CITED REFERENCES AVAILABLE FOR THIS 85 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

CAPLUS COPYRIGHT 2006 ACS on STN L24 ANSWER 13 OF 68

ACCESSION NUMBER: 2003:875267 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 139:350761

Preparation of 1,1-dioxo-5-phenyl-2,3,4,5-tetrahydro-TITLE:

1,2,5-benzothiadiazepines as ileal bile acid transport

inhibitors for treatment of hyperlipidemia

Starke, Ingemar; Dahlstrom, Mikael Ulf Johan; INVENTOR(S):

Nordberg, Mats Peter; Alenfalk, Suzanne; Wallberg,

Andreas Christer; Bostrom, Stig Jonas

Astrazeneca Ab, Swed.; Astrazeneca Uk Limited PATENT ASSIGNEE(S):

PCT Int. Appl., 71 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PAT	TENT I	NO.			KIN	D	DATE		i	APPL	ICAT	ION I	NO.		D	ATE	
		2003				A2 A3		2003 2003	1106 1224	1	WO 2	003-	GB17	42		2	0030	423
		₩:		•	AL,	AM,	AT,	AU,	AZ, DM,									
				,	•		,	•	IS,	,		•	,					
							•	•	MG,		-				-			
			•						SD,					TJ,	TM,	TN,	TR,	TT,
		Dīa7 •	•	•	•	•	•		VN, SD,		•			7 M	7 W	ъм	Δ7	RΥ
		KW.							AT,									•
									IT,									
			BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG
	CA	2483	155			AA		2003	1106		CA 2	003-	2483.	155		2	0030	423
	ΑU	2003	2265	65		A1		2003	1110		AU 2	003-	2265	65		2	0030	423
	EΡ	1501	813			A2		2005	0202		EP 2	003-	7471	71		2	0030	423
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LÙ,	NL,	SE,	MC,	PT,
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	ΑL,	TR,	BG,	CZ,	EE,	ΗU,	SK	
	BR	2003	0094	93		Α		2005	0209		BR 2	003-	9493			2	0030	423
	US	2005	1433	68		A1			0630								0030	
	CN	1662	514			Α		2005	0831		CN 2	003-	8143	59		2	0030	423
	JP 2005531537							2005	1020		JP 2	003-	5877	92			0030	
	ZA 2004008548							2005	1114		ZA 2	004-	8548			_	0041	
	NO	2004	0045	97		Α		2004	1027		NO 2	004-	4597			2	0041	025
PRIC	RIT	Y APP	LN.	INFO	.:							002-				-	0020	
											WO 2	003-	GB17	42	1	N 2	0030	423

OTHER SOURCE(S): MARPAT 139:350761

AB Title compds. I [wherein Rv = H, alkyl; R1 = H, alkyl when R2 = alkyl; R2 = H, alkyl when R1 = alkyl; Rx, Ry = independently H, OH and derivs., NH2 and derivs., SH, alkyl, alkylS(0)a; a = 0-2; Rz = halo, NO2, CN, OH and derivs., NH2 and derivs., carboxy, carbamoyl, mercapto, sulphamoyl, alk(en/yn)yl, etc.; n = 0-5; one of R4 and R5 = -X-Y-C(0)-N(R8)-(CAR9R10); ${
m R3}$ and ${
m R6}$ and the other of ${
m R4}$ and ${
m R5}$ = independently H, halo, NO2, CN, OH and derivs., NH2 and derivs., SH, sulphamoyl and derivs., (un) substituted alk(en/yn)yl, etc.; X = O, NH and derivs., CH2 and derivs., S(O)b; b =0-2; A = C-(un) substituted (hetero)aryl; Y = (CHR7)q; R7 = H, (un) substituted alkyl, carbocyclyl, C- or N-(un) substituted heterocyclyl; q = 1-3; R8 = H, alkyl; R9 = H, alkyl; R10 = H, halo, NO2, NH2 and derivs., OH and derivs., CN, SH, (un)substituted alk(en/yn)yl,

carbocyclyl, C- or N-(un)substituted heterocyclyl, etc.; their stereoisomers, geometric isomers, tautomers, pharmaceutically acceptable salts, solvates, solvates of such salts and prodrugs] were prepared as ileal bile acid transport (IBAT) inhibitors (no data) for treatment of hyperlipidemia (no data). For example, II was prepared, in 59% yield, by condensation of benzothiadiazepine III (preparation given) with (D)-glucamine in the presence of N-methylmorpholine/TBTU/DMF. **549501-83-9P**, 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-N-[(R)- $[\alpha - [N - [2 - (S) - 3 - (R) - 4 - (R) - 5 - (R) - 2, 3, 4, 5, 6$ pentahydroxyhexyl]carbamoyl]-4-hydroxybenzyl]carbamoylmethoxy]-2,3,4,5tetrahydro-1,2,5-benzothiadiazepine RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (ileal bile acid transport inhibitor; preparation of benzothiadiazepines as ileal bile acid transport inhibitors for treatment of hyperlipidemia) 549501-83-9 CAPLUS

RN D-Glucitol, 1-deoxy-1-[[(2R)-[[[[3,3-dibutyl-2,3,4,5-tetrahydro-7-(methylthio)-1,1-dioxido-5-phenyl-1,2,5-benzothiadiazepin-8yl]oxy]acetyl]amino](4-hydroxyphenyl)acetyl]amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 14 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

2003:696859 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER: 139:230480

Preparation of substituted amines prodrugs useful in TITLE:

treating Alzheimer's disease INVENTOR(S): Varghese, John; Jagodzinska, Barbara; Maillard,

Michel; Beck, James P.; Tenbrink, Ruth E.; Getman,

Daniel

PATENT ASSIGNEE(S): Elan Pharmaceuticals, Inc., USA; Pharmacia & Upjohn SOURCE:

PCT Int. Appl., 483 pp.

CODEN: PIXXD2 DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT:

	TENT				KIN)	DATE			APPL	ICAT	ION I	NO.		Di	ATE	
WO	2003	0725	35				2003			WO 2	003-	US72	87		2	0030:	227
WO	2003 W:	AE,	AG,	AL,	AM,	AT,	2004 AU, DK,	AZ,	BA,	•			•				
		GM,	HR,	HU,	ID,	IL,	IN, MD,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,
		PL,	PT,	RO,	RU,	SC,	SD, VN,	SE,	SG,	sĸ,	SL,		•				
	RW:	GH,	GM,	KE,	LS,	MW,	MZ, TM,	SD,	SL,	SZ,	TZ,	•				-	
		FI,	FR,	GB,	GR,	ΗU,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	SI,	sĸ,	TR,	
CA	BJ, CF, CG, 2477607		,	•	2003	•		,	•	•	,			0030	227		
	2003 1503						2003 2005										
							ES,						_				

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK BR 2003007998 Α 20050628 BR 2003-7998 JP 2005519082 T2 20050630 JP 2003-571242 20030227 NO 2004004046 Α 20041115 NO 2004-4046 20040924 US 2006106256 · A1 20060518 US 2005-505947 20050926 PRIORITY APPLN. INFO.: US 2002-359953P 20020227 Ρ WO 2003-US7287 W 20030227 OTHER SOURCE(S): MARPAT 139:230480 Amines [I; R1 = (un)substituted alkyl, alkenyl, alkynyl, etc.; R2 = H, (un) substituted alkyl, alkenyl, etc.; R3 = H, (un) substituted alkyl, alkenyl, etc.; R4 = XR; X = CO, SO2, a bond, etc.; R = Ph, naphthyl, indanyl, etc.; R5 = (un)substituted alkyl, (CH2)0-3cycloalkyl, etc.; e.g. N1-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-((3methoxybenzyl)amino]propyl]-5-methyl-N3,N3-dipropylisophthalamide], useful in treating Alzheimer's disease and other similar diseases, were prepared Although the methods of preparation are not claimed, hundreds of example prepns. are included. Thus, reacting (2R,3S)-3-amino-4-(3,5difluorophenyl)-1-[(3-methoxybenzyl)amino]-2-butanol trifluoroacetate with 5-methyl-N,N-dipropylisophthalamic acid in the presence of Et3N, $1-hydroxy benzotriazole\ and\ 1-(3-dimethylaminopropyl)-3-ethyl carbodiim ide$ hydrochloride in DMF afforded (1S,2R)-II (N1-[(1S,2R)-1-(3,5difluorobenzyl)-2-hydroxy-3-[(3-methoxybenzyl)amino]propyl]-5-methyl-N3,N3-dipropylisophthalamide). The compds. I exhibit an IC50 of < 50 μ M against β -secretase. ΙT 388062-83-7P, N-[(1S,2R)-1-Benzyl-3-[(3,4-dihydroxybenzyl)amino]-2hydroxypropyl]-N',N'-dipropylisophthalamide RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (drug candidate; preparation of substituted amine prodrugs useful in treating Alzheimer's disease) 388062-83-7 CAPLUS RN 1,3-Benzenedicarboxamide, N'-[(1S,2R)-3-[[(3,4dihydroxyphenyl)methyl]amino]-2-hydroxy-1-(phenylmethyl)propyl]-N,Ndipropyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 15 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

DOCUMENT NUMBER: 139:90477

TITLE: Anti-infective agent formulations containing

carbohydrate moieties Christian, Samuel T.

INVENTOR(S): PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 24 pp., Cont.-in-part of U.S.

6,548,484.

CODEN: USXXCO DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2003130205	A1	20030710	US 2002-274798 .	20021021
US 6548484	B1	20030415	US 2000-547506	20000412
US 2006189547	A1	20060824	US 2006-343266	20060130
PRIORITY APPLN. INFO.:			US 2000-547501 B	2 20000412

US 2000-547506

A2 20000412

OTHER SOURCE(S):

MARPAT 139:90477

AB Hydrophilic N-linked pharmaceutical compns., methods of their preparation and use in drug delivery are described. The formulations comprise a glycosyl CNS acting anti-infective prodrug compound covalently N-linked with a saccharide through an amide or an amine bond and a formulation consisting of an additive, a stabilizer, a carrier, a binder, a buffer, an excipient, an emollient, a disintegrant, a lubricating agent, with the proviso that the saccharide moiety is not a cyclodextrin or a glucuronide. Thus, thus, dopamine gluconamide was prepared by the reaction of gluconolactone with 3-hydroxytyramine. Tablets contained dopamine gluconamide 2.5, methylparaben 0.014, propylparaben 0.020, saccharin sodium 0.050, flavoring agent 0.001, citric acid 0.200, and sodium citrate 0.320 g, and water to 100 mL.

IT 369619-41-0P 369619-47-6P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(anti-infective agent formulations containing carbohydrate moieties)

RN 369619-41-0 CAPLUS

CN D-Gluconamide, N-[2-(3,4-dihydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 369619-47-6 CAPLUS

CN D-Glucitol, 1-deoxy-1-[[2-(3,4-dihydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 16 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:492692 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 139:57966

TITLE: Preparation of pharmaceuticals containing carbohydrate

moieties

INVENTOR(S): Christian, Samuel T.

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 32 pp., Cont.-in-part of U.S.

Ser. No. 547,506.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2003119761 US 6548484 US 2005250739 PRIORITY APPLN. INFO.:	Al Bl Al	20030626 20030415 20051110	US 2002-198798 US 2000-547506 US 2003-625645 US 2000-547506 US 2000-547501 US 2002-198798	20020718 20000412 20030722 A2 20000412 A2 20000412 B2 20020718

OTHER SOURCE(S):

MARPAT 139:57966

AB Hydrophilic N-linked pharmaceutical compns., methods of their preparation and use in drug delivery comprise a glycosyl CNS acting prodrug compound covalently N-linked with a saccharide through an amide or an amine bond and a formulary consisting of an additive, a stabilizer, a carrier, a binder, a buffer, an excipient, an emollient, a disintegrant, a lubricating agent, an antimicrobial agent or a preservative, with the proviso that the saccharide moiety is not a cyclodextrin or a glucuronide. Gluconolactone and 3-hydroxytryamine were reacted slowly in methanol to form a white solid dopamine gluconamide precipitant. The product was collected by filtration, washing and drying in vacuo. Tablets for oral administration were prepared from the dopamine gluconamide 250, starch 17, sodium starch glycolate 40, PVP 7.0, microcryst. cellulose 45, and Mg stearate 2.0 mg.

IT 369619-41-0P 369619-47-6P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of pharmaceuticals containing carbohydrate moieties)

RN 369619-41-0 CAPLUS

CN D-Gluconamide, N-[2-(3,4-dihydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 369619-47-6 CAPLUS

CN D-Glucitol, 1-deoxy-1-[[2-(3,4-dihydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 17 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:302327 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 139:332270

TITLE: Stereoselective urinary excretion of formoterol and

its glucuronide **conjugate** in human

AUTHOR(S): Zhang, Mei; Fawcett, J. Paul; Shaw, John P. CORPORATE SOURCE: Department of Clinical Pharmacology, Christ

CORPORATE SOURCE: Department of Clinical Pharmacology, Christchurch School of Medicine, University of Otago, Dunedin, New

School of Medicine, University of Otago, Dunedin, N

Caledonia

SOURCE: British Journal of Clinical Pharmacology (2002), 54(3), 246-250

CODEN: BCPHBM; ISSN: 0306-5251

PUBLISHER: Blackwell Publishing Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

AB Formoterol is an inhaled β 2-adrenoceptor agonist used as a racemic mixture of the active (R,R)- and inactive (S,S)-enantiomers (rac-formoterol). Glucuronidation is an important route of metabolism in humans which occurs faster for (S,S)-formoterol in human liver microsomes. The aim of this study was to investigate the stereoselectivity of urinary excretion of formoterol and its glucuronide **conjugate** after oral dosing with rac-formoterol. Seven nonsmoking volunteers (six males, one

female) were included in the study. After an overnight fast, a single 60 μg oral dose of rac-formoterol fumarate dihydrate was ingested. Urine samples were collected at 1 h intervals for the first 4 h, and at 6, 8, 12 and 24 h after dosing. Formoterol enantiomers were analyzed by chiral h.p.l.c. assay and formoterol glucuronides were determined as formoterol enantiomers after enzymic cleavage with β -glucuronidase. The female subject displayed a different pattern of metabolism and statistical anal. was therefore limited to data for the six males. The median (range) of the total urinary excretion of formoterol was 37.8% (20.9-51.2%) of the dose. The medians (ranges) of the amts. of (R,R)- and (S,S)-formoterol and of (R,R)-and (S,S)-formoterol glucuronide excreted were 2.1 (1.0-2.9), 3.5 (2.6-3.8), 21.0 (13.1-31.0) and 10.3 (4.2-14.6%), resp., of the dose. Unchanged (S,S)-formoterol excretion was significantly greater than that of unchanged (R,R)-formoterol and (R,R)-formoterol glucuronide excretion was significantly greater than that of (S,S)-formoterol glucuronide. The total R,R-formoterol (unchanged drug plus glucuronide) excreted was significantly greater than the total (S,S)-formoterol. Our study demonstrates that the urinary excretion of formoterol in male humans after oral administration of rac-formoterol is stereoselective with preferential excretion of the active (R,R)-formoterol as unchanged drug and glucuronide. The different pattern of metabolism in the female subject provides impetus for further studies of the effect of gender on the stereoselective metabolism and pharmacokinetics of formoterol.

IT 87833-62-3 615551-58-1 615551-59-2

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(stereoselective urinary excretion of formoterol and its glucuronide
conjugate in human)

RN 87833-62-3 CAPLUS

CN β-D-Glucopyranosiduronic acid, 2-(formylamino)-4-[1-hydroxy-2-[[2-(4-methoxyphenyl)-1-methylethyl]amino]ethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 615551-58-1 CAPLUS

CN β-D-Glucopyranosiduronic acid, 2-(formylamino)-4-[(1S)-1-hydroxy-2[[(1S)-2-(4-methoxyphenyl)-1-methylethyl]amino]ethyl]phenyl (9CI) (CA
INDEX NAME)

Absolute stereochemistry.

RN 615551-59-2 CAPLUS

CN β -D-Glucopyranosiduronic acid, 2-(formylamino)-4-[(1R)-1-hydroxy-2-[[(1R)-2-(4-methoxyphenyl)-1-methylethyl]amino]ethyl]phenyl (9CI) (CA INDEX NAME)

REFERENCE COUNT:

12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 18 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2002:676031 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

137:201528

TITLE:

Preparation of avermectins substituted in the

4"-position having pesticidal properties

INVENTOR(S):

Pitterna, Thomas; O'Sullivan, Anthony Cornelius; Lutz,

William

PATENT ASSIGNEE(S):

Syngenta Participations A.-G., Switz.

SOURCE:

PCT Int. Appl., 73 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

. PA	TENT	NO.			KIN		DATE				LICAT					ATE	
					A2		2002	0906			2002-					0020	226
WC	2002																
	W:	ΑE,	AG,	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	BA,	BB	, BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC	, EE,	ES,	FI,	GB,	GD,	GE,	GH,
		GM,	HR,	ΗU,	ID,	IL,	IN,	IS,	JP,	KE	, KG,	ΚP,	KR,	ΚZ,	LC,	LK,	LR,
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN	, MW,	MX,	ΜZ,	NO,	NZ,	OM,	PH,
		PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK	, SL,	ТJ,	TM,	TN,	TR,	TT,	TZ,
		UA,	UG,	US,	UZ,	VN,	YU,	ZA,	ZM,	zw							
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ	, TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,
		KG,	KZ,	MD,	RU,	ТJ,	TM,	AT,	BE,	CH	, CY,	DE,	DK,	ES,	FI,	FR,	GB,
		GR,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	TR	, BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,
	GN, GQ, GW				ML,	MR,	NE,	SN,	TD,	TG							
EG	2312	4		-	Α		2004	0428		EG	2002-	203			2	0020	219
CA	2435	494			AA		2002	0906		CA	2002-	2435	494		2	0020	226
EP	1389	216			A2		2004	0218		EΡ	2002-	7273	32		2	0020	226
											, IT,						
		IE.	SI.	LT.	LV,	FI,	RO,	MK,	CY,	AL	, TR						
CN	1494	549		•	A		2004	0505		CN	2002-	8057	69		2	0020	226
BR	2002	0076	52		А		2004	0601		BR	2002-	7652			2	0020	226
JF	2004	5235	62 .		Т2		2004	0805		JP	2002-	5679	51		2	0020	226
	5275				Α		2004	1224		NZ	2002-	5275	96		. 2	0020	226
ZA	2003	0055									2003-					0030	
US	2004	0825	25		A1		2004	0429		US	2003-	4686	84		2	0030	820
US	2006	1059	70		A1		2006	0518		US	2005-	3196	86		2	0051	228
PRIORIT											2001-						
				• •							2002-					0020	
											2003-				_	0030	
														•			

MARPAT 137:201528

What is described are $\underline{{ t glycoside}}$ aminodeoxy disaccharides I in which, R1 is C1-C12alkyl, C3-C8cycloalkyl or C2-C12alkenyl; R2 is H, unsubstituted or mono- to penta-substituted C1-C12alkyl or unsubstituted or mono- to penta-substituted C1-C12alkenyl; R3 is C2-C12alkyl, mono- to penta-substituted C1-C12alkyl, un-substituted or mono- to penta-substituted C1-C6alkoxy-C1-C6alkyl, unsubstituted or mono- to penta-substituted C3-C12cycloalkyl, C2-C12alkenyl, C2-C12alkynal; or R2 and R3 together are an alkylene or alkenylene bridge; with the provision that R1 is not sec-Bu or iso-Pr if R2 is H and R3 is 2-hydroxyethyl, iso-Pr, n-octyl or benzyl; or, if appropriate, in E/Z isomer, an E/Z isomer mixture and/or a tautomer thereof; a process for preparing and using these compds. and their tautomers; pesticides whose active compound is selected from these compds. and their tautomers; and a process for preparing these compds. and compns., and the use of these compds. and compns. Thus, I (R1 = sec-Bu, R2 = H, R3 = 3-pyridylmethyl) was prepared, purified by HPLC, and tested as crop pesticide against Spodoptera littoralis, Heliothis virescens, Frankliniella occidentalis, and Tetranychus urticae.

IT 453569-54-5P 453569-55-6P 453569-92-1P 453569-93-2P

RL: BSU (Biological study, unclassified); IMF (Industrial manufacture); PUR (Purification or recovery); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(preparation and HPLC purification of avermectins substituted in the 4"-position having pesticidal properties)

RN 453569-54-5 CAPLUS

CN Avermectin Ala, 5-O-demethyl-4''-deoxy-4''-[[(2-hydroxy-4methoxyphenyl)methyl]amino]-, (4''R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

Double bond geometry as shown.

PAGE 1-A

PAGE 1-B

RN 453569-55-6 CAPLUS

CN Avermectin Ala, 5-O-demethyl-25-de(1-methylpropyl)-4''-deoxy-4''-[{(2-hydroxy-4-methoxyphenyl)methyl]amino]-25-(1-methylethyl)-, (4''R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

Double bond geometry as shown.

PAGE 1-A

PAGE 1-B

RN 453569-92-1 CAPLUS

CN Avermectin Ala, 4''-[[(2-chloro-4-hydroxyphenyl)methyl]amino]-5-O-demethyl-4''-deoxy-, (4''R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Double bond geometry as shown.

PAGE 1-A

RN

453569-93-2 CAPLUS
Avermectin Ala, 4''-{[(2-chloro-4-hydroxyphenyl)methyl]amino]-5-O-demethyl-25-de(1-methylpropyl)-4''-deoxy-25-(1-methylethyl)-, (4''R)- (9CI) (CA CN INDEX NAME)

Absolute stereochemistry. Double bond geometry as shown.

PAGE 1-A

PAGE 1-B

```
L24 ANSWER 19 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN
                                                      2002:10442 CAPLUS <<LOGINID::20061031>>
ACCESSION NUMBER:
DOCUMENT NUMBER:
                                                      136:85762
TITLE:
                                                      New aryl-, quinolyl-, and other heterocyclyl-
                                                      containing amino alcohol derivatives useful as \beta 3
                                                      adrenergic receptor agonists
INVENTOR(S):
                                                      Kayakiri, Hiroshi; Sakurai, Minoru; Washizuka,
                                                      Kenichi; Hamashima, Hitoshi; Tomishima, Yasuyo; Fujii,
                                                      Naoaki; Taniguchi, Kiyoshi
PATENT ASSIGNEE(S):
                                                      Fujisawa Pharmaceutical Co., Ltd., Japan
SOURCE:
                                                      PCT Int. Appl., 121 pp.
                                                      CODEN: PIXXD2
DOCUMENT TYPE:
                                                      Patent
LANGUAGE:
                                                      English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
          PATENT NO.
                                                      KIND
                                                                     DATE
                                                                                               APPLICATION NO.
                                                                                                                                                  DATE
          WO 2002000622
                                                       A2
                                                                     20020103
                                                                                               WO 2001-JP5425
                                                                                                                                                  20010625
          WO 2002000622
                                                       АЗ
                                                                     20020829
                   W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
                           CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
                           GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS,
                           LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO,
                           RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
                   RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
                           DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.:
                                                                                               AU 2000-8413
                                                                                                                                           A 20000627
OTHER SOURCE(S):
                                                     MARPAT 136:85762
         The invention relates to compds. I [wherein: X1 = bond or OCH2; X2 = bond or OCH2; X2 = bond
           (CH2)1-2; X3 = bond, O, or NH; R1 = (un)substituted Ph, indolyl, or
           carbazolyl [substituents = 1 or 2 of OH, halo, NO2, amino, formyl,
           (lower)alkylsulfonylamino, aryl(lower)alkoxy, and hydroxy(lower)alkyl]; R2
           = H or aryl(lower)alkyl; R3 = H or hydroxy(lower)alkyl; R4 =
           (un) substituted aryl, 4-quinolyl, phthalazinyl, quinazolinyl, cinnolinyl,
          or naphthyridinyl; with provisos], or their pharmaceutically acceptable
           salts. The compds. are \beta 3 adrenergic receptor agonists, and
           therefore have gut sympathomimetic, antiulcer, anti-pancreatitis,
           lipolytic, and smooth muscle relaxant activities. In particular, I and
           salts are useful for the prophylactic and/or the therapeutic treatment of
          pollakiuria or urinary incontinence. Sixty precursor prepns. and 63 invention examples, including well over 200 invention compds., are
           provided. For example, the structure of claimed compound II is typical.
           Another invention compound, phthalazine derivative III, was prepared from
           4-((2S)-2-amino-3-hydroxypropyl)phenol HCl, benzaldehyde,
           (2S)-3-phenoxy-1,2-epoxypropane, and 1-chlorophthalazine, in 4 steps.
           at 0.32 mg/kg (intraduodenal) in beagle dogs gave 35.9% inhibition of
           carbachol-induced increase in intravesical pressure.
          386208-24-8P, N-[2-Hydroxy-5-[(1R)-1-hydroxy-2-[N-[(1S)-2-hydroxy-
           1-[4-[N-[7-(trifluoromethyl)-4-quinolyl]oxy]benzyl]ethyl]amino]ethyl]pheny
           1] methanesulfonamide 386208-25-9P,
           N = (2 - Hydroxy - 5 - (1R) - 1 - hydroxy - 2 - (1S) - 2 - hydroxy - 1 - (4 - (7 - methoxy - 4 - (1S) - 2 - hydroxy - 1 - (1S) - (1S)
           quinolyl)oxy]benzyl]ethyl]amino]ethyl]phenyl]methanesulfonamide
           386208-26-0P, N-[5-[(1R)-2-[N-[(1S)-1-[4-[(7-Fluoro-4-
           quinolyl)oxy]benzyl]-2-hydroxyethyl]amino]-1-hydroxyethyl]-2-
           hydroxyphenyl] methanesulfonamide 386209-50-3P,
           4-[4-(2S)-2-[N-(2R)-2-(3-Chlorophenyl)-2-hydroxyethyl] amino]-3-
           hydroxypropyl]phenoxy]-N-(2-hydroxyethyl)-8-quinolinecarboxamide
           dihvdrochloride
           RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU
           (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES
           (Uses)
                 (drug candidate; preparation of aryl- and quinolyl-containing amino alcs. and
                 analogs as β3-adrenergic receptor agonists)
RN
           386208-24-8 CAPLUS
CN
           Methanesulfonamide, N-[2-hydroxy-5-[(1R)-1-hydroxy-2-[((1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hydroxy-2-[(1S)-1-hy
           (hydroxymethyl)-2-[4-[[7-(trifluoromethyl)-4-quinolinyl]oxy]phenyl]ethyl]a
           mino]ethyl]phenyl]- (9CI) (CA INDEX NAME)
```

Absolute stereochemistry.

RN 386208-25-9 CAPLUS

CN Methanesulfonamide, N-[2-hydroxy-5-[(1R)-1-hydroxy-2-[[(1S)-2-hydroxy-1[[4-[(7-methoxy-4-quinolinyl)oxy]phenyl]methyl]ethyl]amino]ethyl]phenyl](9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 386208-26-0 CAPLUS

CN Methanesulfonamide, N-[5-[(1R)-2-[[(1S)-2-[4-[(7-fluoro-4-quinolinyl)oxy]phenyl]-1-(hydroxymethyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl]- (9CI) (CA INDEX NAME)

 ${\bf Absolute \ stereochemistry.}$

RN 386209-50-3 CAPLUS

CN 8-Quinolinecarboxamide, 4-[4-[(2S)-2-[[(2R)-2-(3-chlorophenyl)-2hydroxyethyl]amino]-3-hydroxypropyl]phenoxy]-N-(2-hydroxyethyl)-, dihydrochloride (9CI) (CA INDEX NAME)

●2 HC1

L24 ANSWER 20 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:886152 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 136:6292

TITLE: Preparation of hygromycin A derivatives for the

treatment of bacterial and protozoal infections INVENTOR(S): Hayward, Matthew Merrill; Linde, Robert Gerald, II;

Kaneko, Takushi; Visser, Michael Scott

PATENT ASSIGNEE(S): Pfizer Products Inc., USA

SOURCE: PCT Int. Appl., 112 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA'	PATENT NO.				KIND DATE			APPLICATION NO.						DATE			
WO	2001	0922	80		A1		2001	1206		WO	2001-	IB94	6		2	0010	525
	W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	AZ,	BA,	BB	, BG,	BR,	BY,	BZ,	CA,	CH,	CN,
		co,	CR,	CU,	CZ,	DE,	· DK,	DM,	DZ,	EC	, EE,	ES,	FΙ,	GB,	GD,	GΕ,	GH,
		GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE	, KG,	ΚP,	KR,	ΚZ,	LC,	LK,	LR,
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN	, MW,	MX,	ΜZ,	NO,	NZ,	PL,	PT,
		RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	ТJ	, TM,	TR,	TT,	TZ,	UA,	UG,	US,
		UZ,	VN,	YU,	ZA,	ZW,	AM,	AZ,	BY,	KG	, KZ,	MD,	RU,	TJ,	TM		
	RW:	GH,	GM,	ΚE,	LS,	MW,	ΜZ,	SD,	SL,	SZ	, TZ,	UG,	ZW,	ΑT,	BE,	CH,	CY,
		DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	ΙT	, LU,	MC,	NL,	PT,	SE,	TR,	BF,
		ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GW,	ML	, MR,	ΝE,	SN,	TD,	TG		
CA	2410	643			AΑ		2001	1206		CA	2001-	2410	64:3		2	0010	525
EP	1287	011			A1		2003	0305		EΡ	2001-	9342	31		2	0010	525
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR	, IT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	ΑL	, TR						
BR	2001	0112	42		Α		2003	0603		BR	2001-	1124.	2		2	0010	525
JP	2003	5351	00		Т2		2003	1125		JΡ	2002-	5008	93		2	0010	525
EE	2002	0067	1		Α		2004	0816		EE	2002-	671			2	0010	525
US	2003	0455	28		A1		2003	0306		US	2001-	8727	31		2	0010	601
US	6867	230			B2		2005	0315									
BG	1072	65			Α		2003	0731		BG	2002-	1072	65		. 2	0021	112
NO	2002	0057	04		Α		2002	1127		NO	2002-	5704			2	0021	127
PRIORIT	IORITY APPLN. INFO.:			.:						US	2000-	2090	23P		P 2	0000	602
										WO	2001-	IB94	6		W 2	0010	525
OTHER S	THER SOURCE(S):				MAR	PAT	136:	6292									

AB Compds. I wherein R and R1 are independently H, OH; R2 is H, alkyl; R3 independently (un)substituted aryl, heteroarom., aminoalkyl, were prepared for the treatment of bacterial and protozoal infections (no data). Compds. I are antibacterial and antiprotozoal agents that may be used to treat various bacterial and protozoal infections and disorders related to such infections (no data). Thus, I (R = R1 = OH, R2 = Me, R3 = R4) was prepared from hygromycin and the use of Streptomyces hygroscopicus via Wittig reaction.

IT $\frac{377070-26-3P}{377071-58-4P} = \frac{377070-37-6P}{377071-58-4P}$

RL: BPN (Biosynthetic preparation); BSU (Biological study, unclassified); IMF (Industrial manufacture); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of hygromycin A derivs. via Wittig reaction for the treatment of bacterial and protozoal infections)

RN 377070-26-3 CAPLUS

CN D-neo-Inositol, $5-[((2E)-3-[4-[((5E)-7-O-(2-chloro-4-[((2-hydroxyethyl)methylamino]methyl]phenyl]-5,6-dideoxy-$\beta-D-arabino-hept-5-enofuranosyl]oxy]-3-hydroxyphenyl]-2-methyl-1-oxo-2-propenyl]amino]-5-deoxy-1,2-O-methylene- (9CI) (CA INDEX NAME)$

Absolute stereochemistry. Double bond geometry as shown.

НО

PAGE 1-B

RN 377070-37-6 CAPLUS

CN D-neo-Inositol, 5-[[(2E)-3-[4-[[(5E)-7-0-[2-chloro-4-[[(2,3-dihydroxypropyl)methylamino]methyl]phenyl]-5,6-dideoxy-β-D-arabino-hept-5-enofuranosyl]oxy]-3-hydroxyphenyl]-2-methyl-1-oxo-2-propenyl]amino]-5-deoxy-1,2-O-methylene- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Double bond geometry as shown.

PAGE 1-A

PAGE 1-B

RN 377070-58-1 CAPLUS

D-neo-Inositol, 5-[[(2E)-3-[4-[[(5E)-7-O-[2-chloro-4-[[(2-hydroxy-2-phenylethyl)methylamino]methyl]phenyl]-5,6-dideoxy-5-methyl-β-D-arabino-hept-5-enofuranosyl]oxy]-3-hydroxyphenyl]-2-methyl-1-oxo-2-propenyl]amino]-5-deoxy-1,2-methylene-(9CI) (CA INDEX NAME)

Absolute stereochemistry. Double bond geometry as shown.

PAGE 1-B

RN 377071-58-4 CAPLUS

CN D-neo-Inositol, $5-[[(2E)-3-[4-[[(5E)-7-0-[2-chloro-4-[[(2,3-dihydroxypropyl)amino]methyl]phenyl]-5,6-dideoxy-5-methyl-<math>\beta$ -D-arabino-hept-5-enofuranosyl]oxy]-3-hydroxyphenyl]-2-methyl-1-oxo-2-propenyl]amino]-5-deoxy-1,2-0-methylene- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Double bond geometry as shown.

PAGE 1-A

PAGE 1-B

REFERENCE COUNT:

THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 21 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

5

ACCESSION NUMBER:

2001:780925 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

135:335169

TITLE:

 $\begin{array}{c} \textbf{Pharmaceutical} \\ \textbf{glycoconjugate} \\ \hline \textbf{compositions} \ \textbf{and} \ \textbf{methods} \ \textbf{of} \\ \end{array}$

their preparation

INVENTOR(S):

Christian, Samuel T.

PATENT ASSIGNEE(S):

International Medical Innovations, Inc., USA PCT Int. Appl., 69 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

E	PATENT NO.					KIND DATE			APPLICATION NO.									
V	NO 20	010	7924	14		A1			1025							2	0010	412
	W	i:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	.BG,	BR,	BY,	BZ,	CA,	CH,	CN,
			CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,	HR,
			HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,
			LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	ΝZ,	PL,	PT,	RO,	RU,
			SD,	SE,	SG,	SI,	SK,	SL,	TJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VN,
			YU,	ZA,	zw													
	R	W:	GH,	GM,	ΚE,	LS,	MW,	ΜZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	ΑT,	BE,	CH,	CY,
			DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	TR,	BF,
			CF,	CG,	CI,	CM,	ĠΑ,	GN,	GW,	ML,	MR,	NE,	SN,	TD,	TG			
Ţ	JS 65	484	84			В1		2003	0415		US 2	000-	5475	06		2	0000	412
	CA 24	437	74			AΑ		2001	1025		CA 2	001-	2443	774		2	0010	412
·	AU 20	010	5156	55		A5		2001	1030		AU 2	001-	5156	5		2	0010	412
F	EP 13	858	57			A1		2004	0204		EP 2	001-	9249	60		2	0010	412
	R	::	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR						
j	JP 20	045	2346	54		T2		2004	0805		JP 2	001-	5768	42		2	0010	412
PRIOR	PRIORITY APPLN. INFO.:										US 2	000-	5475	06		A 2	0000	412
										,	WO 2	001-	US11	914	1	W 2	0010	412
OTHER	OTHER SOURCE(S):						РАТ	135.	33516	69								

OTHER SOURCE(S): MARPAT 135:335169

Hydrophilic transportable N-linked **glycosyl dopaminergic** prodrug compds. (I), wherein, ring 1 comprises a cyclic or heterocyclic ring, or aryl or heteroaryl ring, all of said rings comprising 4 to 8

carbon atoms, among which atoms are counted "X" and "Y"; R0, R1, R2, R3 and R4 comprise substituents of Ring; either of X of Y is optional; each of X and Y, when present comprise a carbon atom, a halogen atom or a lower alkyl; Z, R5 and R5' are optional; when Z is present it comprises a lower alkyl having substituents R5, R5'; R6 and R6' comprise substituents on a carbon atom linking Z with N through a single bond, or when Z is absent, linking N with Ring; N comprises a nitrogen atom of an amine or an amide linked with E through a single bond and having R7 as a substituent; and E comprises a saccharide. Dopamine glucamine (II) was prepared by the reduction of isopropylidene-protected dopamine

gluconamide (preparation given). Dopamine receptor binding activity of II was studied in vitro using COS-7 cells. A pharmaceutical powder contained II 2.5, sodium citrate 20.0, sorbitol 2.0, flavoring agent 0.1 mg, and water for reconstitution 10 mL.

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(pharmaceutical dopamine glycoconjugate compns. and

methods of their preparation)

RN 369619-41-0 CAPLUS

CN D-Gluconamide, N-[2-(3,4-dihydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 369619-47-6 CAPLUS

CN D-Glucitol, 1-deoxy-1-[[2-(3,4-dihydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 369619-53-4 CAPLUS

CN D-Ribitol, 1-deoxy-1-[[2-(3,4-dihydroxyphenyl)ethyl]amino]-, hydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

● HCl

D-Glucitol, 1-deoxy-1-[[2-(3,4-dihydroxyphenyl)ethyl]amino]-, hydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

HC1

IT 369619-49-8P

REFERENCE COUNT:

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(pharmaceutical dopamine glycoconjugate compns. and

methods of their preparation)

RN 369619-49-8 CAPLUS

CN D-Ribonamide, N-[2-(3,4-dihydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS

CAPLUS COPYRIGHT 2006 ACS on STN 1.24 ANSWER 22 OF 68

3

2001:307631 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER: 135:170595

TITLE: Blood-brain barrier transport of L-tyrosine

conjugates: a model study for the brain

targeting using large neutral amino acid transport

system

AUTHOR(S): Ohnishi, Toshimasa; Maruyama, Tetsu; Higashi, Sohei;

Awazu, Shoji

CORPORATE SOURCE: Department of Biopharmaceutics, School of Pharmacy,

Tokyo University of Pharmacy and Life Science, Tokyo,

192-0329, Japan

SOURCE: Journal of Drug Targeting (2000), 8(6), 395-401

CODEN: JDTAEH; ISSN: 1061-186X

PUBLISHER: Harwood Academic Publishers

DOCUMENT TYPE: Journal LANGUAGE: English

We examined the relationship between the charge of the amino or carboxylic function of a substrate and the substrate recognition by the large neutral amino acid (LNAA) transport carrier, using the in situ brain perfusion technique. Glucose-coupled L-tyrosine (GcpY), which has a free carboxylic function, and 2-(L-tyrosylamide)-2-deoxy-D-glucose (Y-2DG), which has a free amino function were synthesized. The inhibitory effect of GcpY on [3H]L-tyrosine uptake was larger than that of N-methyl-L-phenylalamine or N-acetyl-L-phenylalanine, whereas Y-2DG did not affect it. These results indicate that a free amino group is not required for recognition, provided that the modified amino group is able to take a pos. charge. Steric factors appeared to be relatively unimportant.

TT 57170-81-7P

RL: BPR (Biological process); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study);

PREP (Preparation); PROC (Process); USES (Uses) (model study for brain targeting using large neutral amino acid transport system) 57170-81-7 CAPLUS

RN

CN L-Tyrosine, N-(1-deoxy-D-glucitol-1-yl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT:

THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS 15 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 23 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

2001:70823 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER: 134:237737

TITLE: Systematic analysis of oxidative degradation of

polysaccharides using PAGE and HPLC-MS

AUTHOR(S): Ovalle, R.; Soll, C. E.; Lim, F.; Flanagan, C.;

Rotunda, T.; Lipke, P. N.

Department of Biology, Center for the Study of Gene CORPORATE SOURCE:

Structure and Function, Hunter College of CUNY, New

York, NY, 10021, USA

SOURCE: Carbohydrate Research (2001), 330(1), 131-139

CODEN: CRBRAT; ISSN: 0008-6215

Elsevier Science Ltd. PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English

Oxidation of polysaccharides yields hydroxyaldehydes and hydroxycarboxylic acids. Aldehydes and carboxylic acids were sep. conjugated to 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS) or tyrosine t-Bu ester (TBT). The ANTS-labeled derivs, were separated by mol. size on PAGE gels and detected by fluorescence. TBT-labeled derivs. were separated by reverse phase chromatog. on a C18-HPLC column and analyzed by pos. ion electrospray mass spectroscopy (HPLC-MS). This combination of procedures allowed a systematic anal. of carbohydrate oxidation products.

329909-10-6P 329909-11-7P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (mol. structure of oxidative degradation of polysaccharides using page and HPLC-MS)

329909-10-6 CAPLUS RN

D-Glucitol, 1-deoxy-1- $\{(2-(1,1-dimethylethoxy)-1-(4-hydroxyphenyl)-2-(4-hydroxypheny$ oxoethyl]amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

329909-11-7 CAPLUS RN

L-Gulonic acid, 6-deoxy-6-[[2-(1,1-dimethylethoxy)-1-(4-hydroxyphenyl)-2oxoethyl]amino}- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT:

THERE ARE 19 CITED REFERENCES AVAILABLE FOR THIS 19 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 24 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

DOCUMENT NUMBER:

133:89793

TITLE:

Preparation of 4-(4-hydroxyphenoxy)phenylacetyl amino acids and related compounds as novel thyroid receptor.

INVENTOR(S):

Hangeland, Jon; Zhang, Minsheng; Caringal, Yolanda; Ryono, Denis; Li, Yi-lin; Malm, Johan; Liu, Ye; Garg, Neeraj; Litten, Chris; Garcia Collazo, Ana Maria;

Koehler, Konrad

PATENT ASSIGNEE(S):

Karo Bio AB, Swed.; et al. PCT Int. Appl., 60 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA.	PATENT NO.				KIND DATE			APPLICATION NO.						DATE			
	2000										1999-				1	9991	223
	W:										, BR,						
											, GE,						
				•							, LK,		-				
							-				, PT,						
		•			•	•	•		•	•	, US,	•			•		
	RW:						-				, UG,						
											, MC,		-	SE,	BF,	ВJ,	CF,
		CG,									, SN,						
	2356										1999-:						
											1999-						
EP											1999-						
	R:	AT, IE.		CH,	DE,	DK,	ES,	FR,	GB,	GR,	, IT,	LI,	LU,	NL,	SE,	MC,	PT,
TR	2001	0183	4		T2		2001	1221		TR 2	2001-	2001	01834	4	1	9991	223
JP	2002	5334	32		Т2		2002	1008		JP 2	2000-	5909	90		1	9991	223
AU	2002 7582	02			B2		2003	0320		AU 2	2000-	1885	5		1	9991	223
	5124				Α		2004	0227	1	NZ I	1999-	5124	22		1	9991	223
NO	2001	0029	31		Α		2001	0821		NO 2	2001-	2931			2	0010	613
ZA	2001	0049	32		Α		2003	0115		ZA 2	2001-	4932			2	0010	615
US	6989	402			В1		2006	0124	i	US 2	2001-	8688	89		2	0010	914
US	2005	2828	72		A1		2005	1222	1	US 2	2005-	1896	54		2	0050	726
PRIORIT	Y APP	LN.	INFO	. :				•		GB :	1998-	2844	2		A 1	9981	224
									1	WO :	1999-	IB20	84	1	W 1	9991	223
									i	us a	2001-	8688	89		A3 2	0010	914

MARPAT 133:89793 OTHER SOURCE(S):

Title compds. I [R1 = halo, trifluoromethyl, alkyl, cycloalkyl; R2, R3 = H, halo, alkyl, at least one of R2 and R3 being other than H; n = 0-4; R4 is an (un)substituted heteroarom. moiety linked to (CH2)n via a nitrogen or carbon atom; an amine, including those in which the amine is derived from an alpha amino acid of either L- or D-stereochem., an acylsulfonamide, or a carboxylic acid amide, with the proviso that when n = 0, then R4 can only be a carboxylic acid amide or an acylsulfonamide; R5 is H or an acyl or other group capable of

bioconversion to generate the free phenol structure] were prepared for use in the treatment of diseases associated with metabolism dysfunction or which are dependent on the expression of a T3 regulated gene (such as obesity, hypercholesterolemia, atherosclerosis, depression, osteoporosis, hypothyroidism, goiter, thyroid cancer, glaucoma, cardiac arrhythmia, and congestive heart failure). Thus, coupling of 3,5-dibromo-4-(4-hydroxy-3-isopropylphenoxy)phenylacetic acid with D-methionine Me ester hydrochloride followed by hydrolysis afforded N-[3,5-dibromo-4-(4-hydroxy-3-isopropylphenoxy)phenylacetyl]-D-methionine.

IT 280778-77-0P

CN

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of (hydroxyphenoxy)phenylacetyl amino acids and related compds. as novel thyroid receptor ligands)

RN 280778-77-0 CAPLUS

Benzeneacetamide, 3,5-dibromo-N-[2-hydroxy-2-(3-hydroxyphenyl)ethyl]-4-[4-hydroxy-3-(1-methylethyl)phenoxy]-, hydrochloride (9CI) (CA INDEX NAME)

$$i-Pr$$

Br

 $CH_2-C-NH-CH_2-CH$

OH

OH

OH

OH

HC1

L24 ANSWER 25 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:388555 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 133:17747

TITLE: Preparation of 6-O-substituted erythromycins as

antibacterial agents

INVENTOR(S): Or, Yat Sun; Clark, Richard F.; Ma, Zhenkun;

Griesgraber, George; Li, Leping; Chu, Daniel T.

PATENT ASSIGNEE(S): Abbott Laboratories, USA

SOURCE: U.S., 128 pp., Cont.-in-part of U.S. Ser. No. 646,477,

abandoned.
CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

PAT	ENT NO.		KIND	DATE ·	APPLICATION NO.	DATE
CA CA	2253330 2253330		A AA C	19971113 20060725	US 1997-841038 CA 1997-2253330 WO 1997-US7702	19970506
	W: AU, RW: AT,	BR, CA,	CN, CZ DE, DK	, HU, IL, , ES, FI,	JP, KR, MX, NZ FR, GB, GR, IE, IT, AU 1997-29987	LU, MC, NL, PT, SE
AU ZA	726075		B2	20001026 19980223		19970506
EP	1007530		A1	20000614	BR 1997-8929 EP 1997-924605	
AT ES KR	332320	10	A E T3 A	20000728 20051215 20060516	GB, GR, IT, LI, LU, NZ 1997-332320 AT 1997-924605 ES 1997-924605 KR 1998-708934 US 1996-646477 US 1997-841038 WO 1997-US7702	19970506 19970506 19970506 19981106 B2 19960507 A 19970429

OTHER SOURCE(S):

MARPAT 133:17747

AB Macrolide erythromycins I (R = Me substituted with CN, F, carboxylate, sulfonate, amide, aryl, heteroaryl, substituted alkyl, alkenyl, alkynyl;X = O, NOH, substituted oxime; R1 = H, OH; R2 = H, OH, halogen, amine, cycloalkyl, alkyl, aryl, OCONH-aryl, OCONH-heteroaryl; R3R4 = O, NOH, substituted oxime; R5 = OMe, F, OH; R6 = H, hydroxy protecting group) were prepared as antibacterial agents. Thus, I (R = allyl, R1 = R4 = OH, R2 = R3 = R6 = H, R5 = Me, X = O) was prepared and tested in vitro for its antibacterial activity (MIC = 0.01 to >100).

IT 198555-97-4P 271782-82-2P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (preparation of 6-O-substituted erythromycins as antibacterial agents)

RN 198555-97-4 CAPLUS

CN Erythromycin, 6-0-[3-[[2-(3,4-dimethoxyphenyl)ethyl]methylamino]-2hydroxypropyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

→ OMe

RN 271782-82-2 CAPLUS

CN Erythromycin, 6-0-[3-[[2-(3,4-dimethoxyphenyl)ethyl]methylamino]-2hydroxypropyl]-14-hydroxy- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

OMe

REFERENCE COUNT:

11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 26 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

1999:819706 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER:

132:136483

TITLE:

Enzymatic synthesis of β -D-glucuronides in an

enzyme membrane reactor

AUTHOR(S):

Pfaar, Ulrike; Gygax, Daniel; Gertsch, Werner;

Winkler, Tammo; Ghisalba, Oreste

CORPORATE SOURCE: SOURCE:

Novartis Pharma A.-G., Basel, CH-4002, Switz. Chimia (1999), 53(12), 590-593

CODEN: CHIMAD; ISSN: 0009-4293 Neue Schweizerische Chemische Gesellschaft

PUBLISHER: DOCUMENT TYPE:

Journal

LANGUAGE: English

The production of 2 O-glucuronides in an enzyme membrane reactor on a 100 to 200 mg scale was examined The aglycons were conjugated with the co-substrate β -D-uridine diphosphoglucuronic $\overline{\text{acid (UDPGA)}}$ in the presence of a guinea-pig liver preparation The continuous synthesis, which was run in an enzyme membrane reactor, was followed depending on the substrate up to 118 h or 24 h, resp. The reaction was monitored by TLC or HPLC. The purification of the 2 glucuronides was carried out by ion-exchange chromatog. and by reversed-phase HPLC.

256953-76-1P IT

RL: BMF (Bioindustrial manufacture); BIOL (Biological study); PREP

(Preparation)

(enzymic synthesis of β -D-glucuronides in an enzyme membrane reactor)

RN 256953-76-1 CAPLUS

 β -D-Glucopyranosiduronic acid, 4-(formylamino)-6-[1-hydroxy-2-[[2-(4methoxyphenyl)-1-methylethyl]amino]ethyl]-3-pyridinyl (9CI) (CA INDEX

Absolute stereochemistry.

THERE ARE 67 CITED REFERENCES AVAILABLE FOR THIS 67 REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 27 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

1999:632678 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER: 131:346099

TITLE: Mass balance and metabolism of [3H] formoterol in

healthy men after combined I.V. and oral.

administration-mimicking inhalation

AUTHOR(S): Rosenborg, Johan; Larsson, Per; Tegner, Kerstin;

Hallstrom, Gosta

CORPORATE SOURCE: Experimental Medicine, AstraZeneca R and D, Lund,

S-221 87, Swed.

SOURCE: Drug Metabolism and Disposition (1999), 27(10), 1104-1116

CODEN: DMDSAI; ISSN: 0090-9556

PUBLISHER: American Society for Pharmacology and Experimental

Therapeutics

DOCUMENT TYPE: Journal

LANGUAGE: English

Mass balance and metabolism of formoterol were investigated in six healthy men in an open study. Mean age was 49.7 yr (range: 40-63). Simultaneous oral (mean dose 88.6 nmol, 49.3 MBq) and i.v. (mean dose 38.2 nmol, 21.4 MBq) doses of tritium-labeled formoterol were administered. The combination of these two administrations was aimed at simulating the fate of inhaled formoterol. Total radioactivity was monitored for 24 h in blood plasma and for at least 4 days in urine and feces. Formoterol and metabolites were determined using liquid chromatog. plus radiodetection, directly after centrifugation in urine and after sample workup in blood plasma and feces. $\underline{\text{Metabolites}}$ were identified in urine, sampled from two subjects, using liquid chromatog -electrospray ionization mass spectrometry. Mean total recovery was 86% of the administered formoterol dose, 62% in urine and 24% in feces. Tritiated water was generated and because its in vivo turnover is slow, the terminal decline of total radioactivity was slow and dose recovery was incomplete during the sampling period. Formoterol was **conjugated** to inactive glucuronides and a previously unidentified sulfate. The phenol glucuronide of formoterol was the main metabolite in urine. Formoterol was also O-demethylated and deformylated. Plasma exposure to these pharmacol. active metabolites was low. O-demethylated formoterol was seen mainly as inactive glucuronide conjugates and deformylated formoterol only as an inactive sulfate conjugate Intact formoterol and O-demethylated formoterol dominated recovery in feces. Mean recovery of unidentified metabolites was 7.0% in urine and 2.0% in feces.

87833-62-3

RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process)

(mass balance and metabolism of formoterol in healthy men after combined i.v. and oral administration-mimicking inhalation)

RN 87833-62-3 CAPLUS

 β -D-Glucopyranosiduronic acid, 2-(formylamino)-4-[1-hydroxy-2-[[2-(4-mu)]] methoxyphenyl)-1-methylethyl]amino]ethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT:

21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 28 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

1998:800782 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER:

130:162691

TITLE:

Usefulness of the hydrogen-deuterium exchange method

in the study of drug metabolism using liquid

chromatography-tandem mass spectrometry

AUTHOR(S):

Ohashi, Noriko; Furuuchi, Satoshi; Yoshikawa,

Masayoshi

CORPORATE SOURCE:

Pharmaceutical Development Research Laboratory, Tanabe

Seiyaku Company Limited, Saitama, 335, Japan

SOURCE:

Journal of Pharmaceutical and Biomedical Analysis (1998), 18(3), 325-334

CODEN: JPBADA; ISSN: 0731-7085

PUBLISHER:

Elsevier Science B.V.

DOCUMENT TYPE:

Journal English

LANGUAGE:

The usefulness of the hydrogen-deuterium (H-D) exchange method in the study of drug metabolism was investigated. Metabolite samples of denopamine and promethazine prepared in vitro were introduced to a triple stage quadrupole tandem mass spectrometer via a high performance liquid chromatog. (HPLC) system using a deuterated mobile phase. Mass spectra by various ionization modes and collisionally induced dissociation (CID) mass spectra were obtained. A metabolite of denopamine was observed to have a shift of 7 mass units by the H-D exchange method, and this shift proved to be a glucuronidated <u>metabolite</u>. Discrimination between N- or S-oxide formation and hydroxylation observed in the metabolism of promethazine was also easily accomplished by this method. In this manner, the structures of the metabolites were elucidated unequivocally by determining the number of labile hydrogen atoms by the use of the H-D exchange method, since various reactions in drug metabolism are accompanied by an increase or a decrease in the number of labile hydrogen atoms. Addnl. information on the structures was obtained by anal. of the CID spectra of the mol. ion species. Thus, the combination of the H-D exchange method and tandem mass spectrometry was found to be very useful for the study of drug metabolism

96740-69-1 99270-75-4

RL: ANT (Analyte); PRP (Properties); ANST (Analytical study) (hydrogen-deuterium exchange method in the study of drug metabolism using liquid chromatog.-tandem mass spectrometry)

RN 96740-69-1 CAPLUS

β-D-Glucopyranosiduronic acid, 4-[(1R)-2-[[2-(3,4dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 99270-75-4 CAPLUS

 β -D-Glucopyranosiduronic acid, 4-[(1R)-2-[[2-(3,4-CN dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-methoxyphenyl (9CI) (CA

Absolute stereochemistry.

THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 14 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 29 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1998:471470 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 129:108907

TITLE:

Preparation of N-{3-(2-aralkylamino-1-

hydroxyethyl)phenyl]methanesulfonamides and analogs as

β3 adrenoceptor agonists

INVENTOR(S): Washburn, William N.; Girotra, Ravindar N.; Sher,

Philip M.; Mikkilineni, Amarendra B.; Poss, Kathleen

M.; Mathur, Arvind; Bisacchi, Gregory S.; Gavai,

Ashvinikumar V.

PATENT ASSIGNEE(S): Bristol-Myers Squibb Co., USA

U.S., 79 pp., Cont.-in-part of U. S. Ser. No. 171,285, SOURCE:

abandoned.

CODEN: USXXAM Patent

DOCUMENT TYPE:

LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5776983	A	19980707	US 1994-346543	19941202
TW 424082	В	20010301	TW 1994-83111890	19941219
HU 72302	A2	19960429	HU 1994-3694	19941220
HU 220063	В	20011028		
CA 2138675	AA	19950622	CA 1994-2138675	19941221
FI 9406003	А	19950622	FI 1994~6003	19941221
NO 9404969	А	19950622	NO 1994-4969	19941221
AU 9481635	A1	19950629	AU 1994-81635	19941221
AU 688417	B2	19980312		
JP 07206806	A2	19950808	JP 1994-336251	19941221
CN 1109050	А	19950927	CN 1994-113297	19941221
ZA 9410213	Α	19960621	ZA 1994-10213	19941221
AT 235463	E	20030415	AT 1994-120281	19941221
ES 2194857	Т3	20031201	ES 1994-120281	19941221
RITY APPLN. INFO.:			US 1993-171285	B2 19931221
D COURCE (C).	MADDAM	120.100007		

OTHER SOURCE(S): MARPAT 129:108907

R1SO2NHZ1CH(OH)CHR6NHCR3R4Z2R2 [R1 = alkyl or aryl(alkyl); R2 = (un) substituted Ph; R3 = H, alkyl, heterocyclyl, etc.; R4 = H, alkyl,

etc.; R6 = H or alkyl; Z1 = (un)substituted 1,3-phenylene; Z2 = bond, (acyl)methylene, (CH2)2-3] were prepared as β 3 adrenoceptor agonists (no data). Thus, 3,4-(MeO)2C6H3CH(NH2)CH2Ph was N-alkylated by 4,3-(PhCH2O)(MeSO2NH)C6H3COCH2Br (preparation each given) to give, after hydrogenation, title compound I.

170686-03-0P 170686-04-1P 170687-11-3P 170687-12-4P 209915-12-8P RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of N-[3-(2-aralkylamino-1-hydroxyethyl)phenyl]methanesulfonamid es and analogs as β 3 adrenoceptor agonists)

170686-03-0 CAPLUS

IT

RN

CN

Methanesulfonamide, N-[5-[(1R)-2-[(1R)-2-(4-fluorophenyl)-1-(4-fluorophenyl)]CN hydroxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl]- (9CI)

Absolute stereochemistry.

170686-04-1 CAPLUS RN

Methanesulfonamide, N-[5-[(1R)-2-[(1S)-2-(4-fluorophenyl)-1-(4-fluorophenyl)]hydroxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl}- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

170687-11-3 CAPLUS RN

 $\label{lem:methanesulfonamide} \mbox{M-[5-[(1R)-2-([(1R)-2-(4-fluorophenyl)-1-(4-fluoro$ hydroxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl]-, trifluoroacetate (salt) (9CI) (CA INDEX NAME)

CM

CRN 170686-03-0 CMF C23 H25 F N2 O5 S

Absolute stereochemistry.

CM 2

CRN 76-05-1 CMF C2 H F3 O2

RN 170687-12-4 CAPLUS

CN Methanesulfonamide, N-[5-[(1R)-2-[[(1S)-2-(4-fluorophenyl)-1-(4-hydroxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl]-, trifluoroacetate (salt) (9CI) (CA INDEX NAME)

CM :

CRN 170686-04-1 CMF C23 H25 F N2 O5 S

Absolute stereochemistry.

CM 2

CRN 76-05-1 CMF C2 H F3 O2

Methanesulfonamide, N-[2-hydroxy-5-[(1R)-1-hydroxy-2-[[1-(4-hydroxyphenyl)-2-(2-thienyl)ethyl]amino]ethyl]phenyl]-, mono(trifluoroacetate) (salt) (9CI) (CA INDEX NAME)

CM

CRN 209915-11-7 CMF C21 H24 N2 O5 S2

Absolute stereochemistry.

CM

CRN 76-05-1 CMF C2 H F3 O2

REFERENCE COUNT: THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 30 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1998:400642 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

129:156396

TITLE:

Enzyme-linked immunosorbent assay for TA-2005-glucuronide in human plasma

AUTHOR(S):

Matsukawa, Masami; Takeda, Kyoko; Shima, Hideaki; Tagawa, Kouzou; Banno, Kiyoshi; Sato, Tadashi Analytical Research Laboratory, Tanabe Seiyaku Co.,

CORPORATE SOURCE:

Ltd., Osaka, 532, Japan

SOURCE:

Journal of Pharmaceutical and Biomedical Analysis

(1998), 17(2), 245-254 CODEN: JPBADA; ISSN: 0731-7085

PUBLISHER:

Elsevier Science B.V.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

A sensitive ELISA for the determination of TA-2005 glucuronide, the main metabolite of the β -adrenergic receptor agonist TA-2005, without prior deconjugation was developed. Coupling the hapten with bovine serum albumin (BSA) or $\beta\text{-D-galactosidase}$ was carried out by the N-hydroxysuccinimide ester method. An anti-TA-2005-glucuronide antiserum was obtained from guinea pigs immunized with the hapten-BSA conjugate. The ELISA was based on a competitive assay in which the separation of bound from free fraction was performed by the double antibody technique using rabbit anti-guinea pig Ig antibody adsorbed to microtiter plates. A satisfactory standard curve for TA-2005 glucuronide was obtained in the range of 30 pg to 3 ng/mL using 25 μ L of human blood plasma. Inter-day and intra-assay variations were 7.0-17.5 and 1.0-11.7%, resp. The recoveries of TA-2005 glucuronide from spiked plasma samples were 95.5-120% (inter-assay) and 96.0-123.3% (intra-assay). The

cross-reactivities of the prepared antiserum with compds. related to TA-2005 glucuronide were quite low, although there was a considerable cross-reactivity with TA-2005. TA-2005 glucuronide could be easily separated from TA-2005 by simple pretreatment of plasma samples with a C18solid-phase extraction cartridge column. The method was applied to the determination of TA-2005 glucuronide in human blood plasma samples for the evaluation of TA-2005 pharmacokinetics. The ELISA is suitable for pharmacokinetic studies of TA-2005 in humans.

TT 211098-29-2

RL: ANT (Analyte); ANST (Analytical study)

(TA-2005 glucuronide determination in human blood plasma by ELISA)

RN 211098-29-2 CAPLUS

 β -D-Glucopyranosiduronic acid, 1,2-dihydro-5-[(1R)-1-hydroxy-2-[[(1R)-2-(4-methoxyphenyl)-1-methylethyl]amino]ethyl]-2-oxo-8-quinolinyl, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT:

THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 31 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

13

ACCESSION NUMBER: 1997:777453 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 128:110322

TITLE: Stereoselective sulfate **conjugation** of

fenoterol by human phenolsulfotransferases

AUTHOR(S): Wilson, A. A.; Wang, J.; Koch, L. P.; Wall, T. CORPORATE SOURCE: Department of Cell and Molecular Pharmacology and

Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA

SOURCE:

Xenobiotica (1997), 27(11), 1147-1154

CODEN: XENOBH; ISSN: 0049-8254

Taylor & Francis Ltd. PUBLISHER:

DOCUMENT TYPE:

Journal LANGUAGE: English

The objective of this study was to determine (1) the mol. site(s) of sulfoconjugation of fenoterol; (2) the human pheroisulfotransferase (PST) isoform(s) involved; and (3) the stereochem. of the enzymic reaction. Using the human Hep G2 cell line, HPLC isolation and FAB/ms/ms, it was determined that fenoterol is sulfated both in the 4'-hydroxyphenyl position and in one of the 3',5'-dihydroxyphenyl positions. Recombinant human M-PST preferentially sulfated the 4'-hydroxyphenyl position. In contrast, recombinant P-PST exclusively sulfated the 3',5'-hydroxyphenyl position. The M-PST-catalyzed sulphation of the 4'-hydroxyphenyl position was highly selective for the active RR-enantiomer, whereas the sulphation of the 3',5'-dihydroxyphenyl position was slightly selective for the opposite SS-enantiomer. The P-PST-catalyzed sulphation of the 3',5'-hydroxyphenyl position was selective for the inactive SS-enantiomer.

201664-34-8 201664-36-0

RL: ANT (Analyte); BSU (Biological study, unclassified); MFM (Metabolic formation); ANST (Analytical study); BIOL (Biological study); FORM (Formation, nonpreparative)

(stereoselective sulfate conjugation of fenoterol by human phenolsulfotransferases)

201664-34-8 CAPLUS RN

1,3-Benzenediol, 5-[1-hydroxy-2-[[1-methyl-2-[4-CN (sulfooxy)phenyl]ethyl]amino]ethyl]- (9CI) (CA INDEX NAME)

201664-36-0 CAPLUS

CN 1,3-Benzenediol, 5-[1-hydroxy-2-[[2-(4-hydroxyphenyl)-1methylethyl]amino]ethyl]-, 1-(hydrogen sulfate) (9CI) (CA INDEX NAME)

REFERENCE COUNT:

THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS 16 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 32 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

1997:746060 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER: 127:359051 •

TITLE: Preparation of 6-O-substituted erythromycins as

bactericides

INVENTOR(S): Or, Yat Sun; Clark, Richard F.; Ma, Zhenkun;

Griesgraber, George; Li, Leping; Chu, Daniel T.

Abbott Laboratories, USA PATENT ASSIGNEE(S):

SOURCE: PCT Int. Appl., 225 pp. CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

		NO.					DATE		AP	PLICAT	1 NOI	10.		D	ATE		
	0 974	2206			A1				WO JP, KI)2		1	9970	506	
	RV	: AT,	BE,	CH,	DE,	DK,	ES,	FI,	FR, G	3, GR,	IE,	IT,	LU,	MC,	NL,	PT,	SE
U.	s 607	5011			Α		20000	0613	US	1997-	84103	88		1	9970	429	
C	A 225	3330							CA	1997-	22533	330		1	9970	506	
C	A 225	3330			С		20060	725									
A	U 972	9987			Al		19971	126	AU	1997-	29987	7		1	9970	506	
A	U 726	075			B2		20003	.026									
B	R · 970	8929			Α		19990	0803	BR	1997-	8929			1	9970.	506	
		7530			A1		20000	0614	EP	1997-	92460)5		1	9970	506	
E	P 100	7530			B1		20051	1116									
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB, GI	R, IT,	LI,	LU,	NL,	SE,	PT,	ΙE,	FI
N.	Z 332	320			Α		20000	728	NZ	1997-	33232	20		1	9970	506	
J	P 200								JP								
A	T 310	010			Ε		20051	215	AT	1997-	92460)5		1	9970	506	
PRIORI'	TY A	PLN.	INFO	.:					US	1996-	64647	17		A 1	9960	507	
									US	1997-	84103	38	i	A 1	9970	429	
									WO	1997-	US770)2	1	W 1	9970	506	
OTHER	SOUR	E(S):			MAR	TAS	127:3	35905	51								

Antimicrobial erythromycins, e.g. I (X = O, NOH, NOR; R = alkyl, aralkyl, cycloalkyl, arylsilyl; R1, R2 = H, OH; R3 = OMe, F, OH; R4, R5 = one is H and the other is OH, alkyl, aralkyl, sulfone; R4, R5 = X; R6 = H, hydroxy protecting group; R7 = F, alkyl, alkenyl, alkynyl sulfone, amide), were prepared as bactericides. Thus, I (X = 0; R1 = R4= OH; R2 = R5 = R6 = H; R3 = OMe, R7 = Pr) was prepared and tested for its in vitro antibacterial activity (MIC = 0.05-100).

IT 198555-97-4P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation of 6-0-substituted erythromycins as bactericides)

RN 198555-97-4 CAPLUS

CN Erythromycin, 6-O-[3-[[2-(3,4-dimethoxyphenyl)ethyl]methylamino]-2-hydroxypropyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

─ oMe

L24 ANSWER 33 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:567722 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 127:232745

TITLE: Enhanced albumin uptake by rat tumors

AUTHOR(S): Wunder, A.; Stehle, G.; Sinn, H.; Schrenk, H. H.;

Hoff-Biederbeck, D.; Bader, F.; Friedrich, E. A.;

Peschke, P.; Maier-Borst, W.; Heene, D. L.

CORPORATE SOURCE: First Department of Medicine, Faculty for Clinical

Medicine Mannheim, University of Heidelberg,

Heidelberg, Germany

SOURCE: International Journal of Oncology (1997), 11(3),

497-507

CODEN: IJONES; ISSN: 1019-6439
International Journal of Oncology

DOCUMENT TYPE: Journal LANGUAGE: English

PUBLISHER:

Limited data is available on albumin accumulation and catabolism by tumors. This is caused by the lack of suitable radiolabels for long-term follow-up of protein catabolism in vivo. Conventional radiolabels like radioiodine are metabolically unstable. After lysosomal protein degradation the diffusible tracer residues are rapidly released from catabolic sites. Thus, tumors with high metabolic activity evade detection. To study the uptake of rat blood serum albumin (RSA) by tumors, a conventional radioiodine label and two residualizing radiolabels were chosen. The residualizing 131I-tyraminedeoxysorbitol and 111In-DTPA (diethylenetriaminepentaacetic acid) protein labels remain trapped at catabolic sites after lysosomal degradation of their carrier proteins. We were able to show by scintigraphy and after organ removal that a Walker-256 carcinosarcoma with a tumor size of .apprx.5% body weight accumulated >20% of the injected lllIn-DTPA-RSA within 24 h. The tumor uptake rates for albumin exceeded those of the kidneys .apprx.4-times, and those of the liver .apprx.3-times. It was estimated that about one out of 2albumin mols. trapped by an ovarian-342 tumor must have been degraded during 72 h. The high uptake and degradation rates would make albumin an alternative nitrogen and energy source for these tumors. Although an unfavorable time-frame limits the use of residualizing tracer-labeled albumin for scintigraphic tumor diagnosis in humans, albumin might be an interesting carrier for delivering covalently attached chemotherapeutic agents into tumors by an alternative lysosomal route.

IT 133368-66-8

RL: ARG (Analytical reagent use); BPR (Biological process); BSU (Biological study, unclassified); ANST (Analytical study); BIOL (Biological study); PROC (Process); USES (Uses)

(albumin complex; enhanced albumin uptake by rat tumors and its tracing by residualizing labels)

RN 133368-66-8 CAPLUS

D-Glucitol, 1-deoxy-1-[[2-[4-hydroxy-3-(iodo-131I)phenyl]ethyl]amino](9CI) (CA INDEX NAME)

L24 ANSWER 34 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:414514 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 127:156215

TITLE: Biotransformation of the novel inotropic agent

toborinone (OPC-18790) in rats and dogs: evidence for the formation of novel glutathione and two cysteine

conjugates

AUTHOR(S): Kitani, Mami; Miyamoto, Gohachiro; Nagasawa, Masakazu;

Yamada, Toshihide; Matsubara, Jun; Uchida, Minoru;

Odomi, Masaaki

CORPORATE SOURCE: Tokushima Res. Inst. and Formulation Research Inst.,

Otsuka Pharmaceutical Co., Ltd., USA

SOURCE: Drug Metabolism and Disposition (1997), 25(6), 663-674

CODEN: DMDSAI; ISSN: 0090-9556

PUBLISHER: Williams & Wilkins

DOCUMENT TYPE: Journal LANGUAGE: English

AB The metabolism of toborinone, $(\pm)-6-[3-(3,4-\text{dimethoxybenzylamino})-2-\text{hydroxypropoxy}]-2(1H)-quinolinone, a novel inotropic agent, was studied in rats and dogs after i.v. administration. Chemical structures of the 13 metabolites were characterized by direct-probe FAB/MS and field$

desorption/MS, LC/FAB/MS, and various NMR measurements. After i.v. dosing

of 10 mg/kg [14C]toborinone, fecal and urinary recoveries of the 14C dose were .apprx.70% and 25-30%, resp., in both rats and dogs. The predominant component of radioactivity was the unchanged toborinone in every biol. specimen in rats and dogs. Although unchanged toborinone was predominantly observed, toborinone underwent extensive conjugations with glucuronic acid, sulfate, and glutathione, either directly or following phase I reaction. Metabolites resulting from oxidative N-C cleavage were minor both in number and in quantity in every biol. specimen in rats and dogs. In rats, toborinone underwent O-demethylation to form M-7 and successive phase II reaction to yield the qlucuronide M-1 and the sulfoconjugate M-2, and deconjugation to yield M-7, which was a primary metabolite accounted for 35.67% of the radioactivity excreted in the feces by 48 h. Conjugates M-1 and M-2 were the major metabolites in rat plasma. In dogs, toborinone was metabolized via mercapturic acid pathway to yield the primary metabolites, cysteine conjugates M-10 and M-11 that accounted for 19.10% and 6.70% of the radioactivity excreted in the feces by 48 h and that were detected species specifically in dogs. The glutathione conjugate M-13, which was isolated from in vitro incubations using dog liver, led us to consider a possible mercapturic acid pathway from the parent compound to M-10. Metabolites in dog plasma and those in urine in both rats and dogs were minor in quantity. The metabolic pathways of toborinone in rats and dogs are proposed herein.

193546-51-9 193546-54-2

RL: BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative) (toborinone biotransformation in rats and dogs: glutathione and cysteine conjugates formation)
193546-51-9 CAPLUS

RN

 β -D-Glucopyranosiduronic acid, 4-[[[3-[(1,2-dihydro-2-oxo-6quinolinyl)oxy]-2-hydroxypropyl]amino]methyl]-2-methoxyphenyl (9CI) INDEX NAME)

Absolute stereochemistry.

193546-54-2 CAPLUS RN

 β -D-Glucopyranosiduronic acid, 6-[3-[[(3,4-CN dimethoxyphenyl)methyl]amino]-2-hydroxypropoxy]-1,2-dihydro-2-oxo-8quinolinyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

```
ACCESSION NUMBER:
                                                          1997:69419 CAPLUS <<LOGINID::20061031>>
DOCUMENT NUMBER:
                                                           Preparation of sulfate esters of aminosugar
TITLE:
                                                           derivatives for the inhibition of the migration and
                                                           proliferation of vascular smooth muscle cells.
                                                           Chucholowski, Alexander; Pech, Michael; Fingerle,
INVENTOR(S):
                                                           Juergen; Rouge, Marianne; Iberg, Niggi; Schmid,
                                                           Gerard; Maerki, Hans Peter; Tschopp, Thomas; Mueller,
                                                           Rita; Wessel, Hans Peter
PATENT ASSIGNEE(S):
                                                           F. Hoffmann-La Roche Ag, Switz.
                                                           Eur. Pat. Appl., 59 pp.
SOURCE:
                                                           CODEN: EPXXDW .
DOCUMENT TYPE:
                                                            Patent
LANGUAGE:
                                                           German
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
            PATENT NO.
                                                           KIND
                                                                            DATE
                                                                                                        APPLICATION NO.
                                                                                                                                                                DATE
                                                            ____
                                                                            19961106
            EP 741128
                                                             A2
                                                                                                        EP 1996-106471
                                                                                                                                                               19960424
            EP 741128
                                                             A3
                                                                            19970326
           EP 741128
                                                             B1
                                                                            20010620
                     R: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE
                                                                                                        CA 1996-2174583
            CA 2174583
                                                            AA
                                                                         19961106
                                                                                                                                                               19960419
                                                             Α2
                                                                           19961119
                                                                                                        JP 1996-100874
                                                                                                                                                               19960423
            JP 08301839
            JP 2881752
                                                             B2
                                                                           19990412
                                                                                                                                                               19960424
           AT 202339 ·
                                                             Ε
                                                                           20010715
                                                                                                        AT 1996-106471
            ES 2160190
                                                             Т3
                                                                            20011101
                                                                                                        ES 1996-106471
                                                                                                                                                               19960424
            PT 741128
                                                             Т
                                                                           20011130
                                                                                                        PT 1996-106471
                                                                                                                                                               19960424
            US 5830920
                                                             Α
                                                                           19981103
                                                                                                        US 1996-639986
                                                                            19970528
                                                                                                        CN 1996-100231
                                                                                                                                                               19960430
            CN 1150589
                                                             Α
            BR 9602148
                                                             Α
                                                                            20050621
                                                                                                        BR 1996-2148
                                                                                                                                                               19960503
                                                                                                         GR 2001-401520
            GR 3036660
                                                                            20011231
                                                                                                         CH 1995-1310
                                                                                                                                                        A 19950505
 PRIORITY APPLN. INFO.:
            (A1X1) m1 (Y1X2) n1 (Q1X3) m2 (Y2X4) n2 (Z1X5) m3 (Y3X6) n3D (Y6X12) n6 (Z2X11) m6 (Y5X10) m2 (Y2X4) n2 (Z1X5) m3 (Y3X6) n3D (Y6X12) n6 (Z2X11) m6 (Y5X10) m2 (Y2X4) n2 (Z1X5) m3 (Y3X6) n3D (Y6X12) n6 (Z2X11) m6 (Y5X10) m2 (Y2X4) n2 (Z1X5) m3 (Y3X6) n3D (Y6X12) n6 (Z2X11) m6 (Y5X10) m2 (Y2X4) n2 (Z1X5) m3 (Y3X6) n3D (Y6X12) n6 (Z2X11) m6 (Y5X10) m2 (Y2X4) n2 (Z1X5) m3 (Y3X6) n3D (Y6X12) n6 (Z2X11) m6 (Y5X10) m2 (Y2X4) n2 (Z1X5) m3 (Y3X6) n3D (Y6X12) n6 (Z2X11) m6 (Y5X10) m2 (Y2X4) n2 (Z1X5) m3 (Y3X6) n3D (Y6X12) n6 (Z2X11) m6 (Y5X10) m3 (Y6X12) n6 (Z2X11) m6 (Y5X10) m3 (Y6X12) m3 (Y6X12
            n5(Q2X9)m5(Y4X8)n4(A2X7)m4, (A1X1)m1(Y1X2)n1(Q1X3)m2(Y2X4)n2(Z1X5)m3(Y3X6)
            1)m6(Y5X10)n5(Q2X9)m5(Y4X8)n4(A2X7)m4] n1-n9, m1-m9 = 0, 1; X1-X18 = 0, 1
            CONR1, NR1; (R1 = H, alkyl; W = Ph or s-triazine residue; A1-A3 = sugar or
            sugar acid residue, tris(hydroxymethyl)methyl residue; Y1-Y9 = aromatic ring
            systems; D = divalent sugar or sugar acid residue; Q1-Q3, Z1-Z3 = D,
            didesoxyglucopyranoside residue; ≥1 of A1-A3, D, Q1-Q3, Z1-Z3 is
             sulfated], were prepared Thus, 2,3:4,5-di-O-isopropylidene-1,6-bis-O-(4-
            methylphenylsulfonyl)galactitol, Me (E)-3-(4-
            hydroxyphenyl)acrylate, and K2CO3 were stirred 18 h at 130° to give
             2,3:4,5-di-O-isopropylidene-1,6-bis-O-[(E)-4-(2-
            methoxycarbonylvinyl)phenyl] galactitol, which was converted to
            1,6-bis-O-[4-[2-(2,3,4,5,6-penta-O-sulfo-D-glucit-1-
            ylcarbamoyl)ethyl]phenyl]-2,3,4,5-tetra-0-sulfogalactitol
            tetradecylsodium salt. The latter at 3 mg/kg/h i.v. in rats with damaged
            left carotids gave 47% inhibition of tissue proliferation.
            185513-76-2P 185513-93-3P
 IT
            RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
             (Reactant or reagent)
                    (preparation of sulfate esters of aminosugar derivs. for the inhibition of
                    the migration and proliferation of vascular smooth muscle cells)
            185513-76-2 CAPLUS
 RN
            Galactito], 1,6-bis-O-[4-[(4-[(2S,3S)-4-[4-[((1-deoxy-D-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol-1-glucitol
 CN
            yl)amino]carbonyl]phenoxy]-2,3-dihydroxybutoxy]phenyl]methyl]phenyl]-
             (9CI) (CA INDEX NAME)
```

L24 ANSWER 35 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-C

RN 185513-93-3 CAPLUS

CN Galactitol, 1,6-bis-O-[4-[(2S,3S)-4-[4-[[4-[(2S,3S)-4-[4-[(1-deoxy-D-glucitol-1-yl)amino]carbonyl]phenoxy]-2,3-dihydroxybutoxy]phenyl]methyl]phenoxy]-2,3-dihydroxybutoxy]phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-D

L24 ANSWER 36 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1996:301308 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

PATENT ASSIGNEE(S):

124:325416

TITLE:

Conjugates for treatment of infections,

autoimmune diseases, and skin diseases Sinn, Hansjoerg; Schrenk, Hans-Hermann; Maier-Borst,

INVENTOR(S):

Wolfgang; Stehle, Gerd; Wunder, Andreas; Hoff-Biederbeck, Dirk; Heene, Dieter Ludwig Deutsches Krebsforschungszentrum Stiftung des

Oeffentlichen Rechts, Germany SOURCE:

Ger. Offen., 7 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4435087	A1	19960404	DE 1994-4435087	19940930
WO 9610422	A1	19960411	WO 1995-DE1337 .	19950926
W: JP, US				

RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE

EP	79905	4			A1	19971	800.	EP	1995-	93330	00		19950926
EP	799054	4			Bl	20010	131						
	R: 7	AT,	BE,	CH,	DE,	DK, ES,	FR,	GB, IT	Γ, LI,	NL,	SĖ		
JP	105063	398			T2	19980	623	JP	1995-	51127	75		19950926
AT	198990	0			Ε	20010	215	AΤ	1995-	93330	00		19950926
ES	215623	15			Т3	20010	616	ES	1995-	93330	00		19950926
US	59069	77			Α	19990	525	US	1997-	81767	78		19970923
PRIORITY	APPL	N. I	NFO.	. :				DE	1994-	44350	087	Α	19940930
								WO	1995-	DE133	37	W	19950926

AB Therapeutic or diagnostic agents for the title diseases are conjugated via a linker to a carrier to retard their excretion, prolong their half-life in the organism, and cause their enrichment in the affected tissues. Suitable carriers include proteins (e.g. albumin) and PEG. Thus, in rats with Sephadex bead-induced hind leg inflammation, subsequently administered tetra(hydroxyphenyl)porphyrin-cyanuric chloride-PEG Me ether conjugate accumulated at the site of inflammation to .apprx.15% after 36-72 h.

IT 176547-34-5

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

 $(\underline{\text{conjugates}}$ for treatment of infections, autoimmune diseases, and skin diseases)

RN 176547-34-5 CAPLUS

CN Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy-, 6-ether with
1-[[2-[4-[(4-chloro-6-hydroxy-1,3,5-triazin-2-yl)oxy]phenyl]ethyl]amino]-1deoxy-D-glucitol (9CI) (CA INDEX NAME)

PAGE 1-B

ОН | — СН— СН₂— ОН

L24 ANSWER 37 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:938107 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

124:8408

TITLE:

Preparation of hydroxyaminoethylphenylsulfonamide

catecholamine surrogates useful as β 3

adrenergic agonists.

INVENTOR(S):

Washburn, William N.; Girotra, Ravindar N.; Sher, Philip M.; Mikkilineni, Amarendra B.; Poss, Kathleen M.; Mathur, Arvind; Gavai, Ashvinikumar; Bisacchi,

Gregory S.

PATENT ASSIGNEE(S):

Bristol-Myers Squibb Co., USA

Eur. Pat. Appl., 147 pp. CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

SOURCE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 659737	A2	19950628	EP 1994-120281	19941221

```
19970305
     EP 659737
                            АЗ
    EP 659737
                            B1
                                  20030326
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
                                  20010301
                                                TW 1994-83111890
                                                                         19941219
     TW 424082
                            В
                                  19960429
                                               HU 1994-3694
                                                                         19941220
     HU 72302
                            A2
     HU 220063
                            В
                                  20011028
                                                CA 1994-2138675
                                                                         19941221
     CA 2138675
                            AA
                                  19950622
     FI 9406003
                                  19950622
                                               FI 1994-6003
                                                                         19941221
                            А
     NO 9404969
                            Α
                                  19950622
                                               NO 1994-4969
                                                                         19941221
     AU 9481635
                            A1
                                  19950629
                                               AU 1994-81635
                                                                         19941221
                                  19980312
     AU 688417
                            B2
     JP 07206806
                                  19950808
                                                JP 1994-336251
                                                                         19941221
                            A2
                                  19950927
                                               CN 1994-113297
                                                                         19941221
     CN 1109050
                            А
     ZA 9410213
                            Α
                                  19960621
                                               ZA 1994-10213
                                                                         19941221
                                               AT 1994-120281
                                                                         19941221
     AT 235463
                            Ε
                                  20030415
     ES 2194857
                            Т3
                                  20031201
                                               ES 1994-120281
                                                                         19941221
PRIORITY APPLN. INFO.:
                                                US 1993-171285
                                                                        19931221
                           CASREACT 124:8408; MARPAT 124:8408
OTHER SOURCE(S):
     Title compds. [I; A = bond, (CH2)n, CHB; n = 1-3; B = cyano, CONR9R91,
     CO2R7; R1 = alkyl, aryl, aralkyl; R2 = H, OH, alkoxy, CH2OH, cyano, CO2R7,
     CO2H, CONH2, tetrazolyl, CH2NH2, halo; R3 = H, alkyl, heterocyclyl,
     (substituted) Ph; R4 = H, alkyl, B; R5, R51 = H, alkoxy, alkyl, halo, OH, cyano, (CH2)nNR6COR7, CONR6R61, CONR6OR6, CO2R6, SR7, SOR7, SO2R7,
     NR6SO2R1, NR6R61, NR6COR7, OCH2CONR6R61, OCH2CO2R7, aryl; R5R51 = atoms to
     form aryl, heterocyclyl; R6, R61 = H, alkyl; R7 = alkyl; R9, R91 = H, alkyl, cycloalkyl, aralkyl, aryl, heteroaryl; R9R91N = heterocyclyl; with
     the proviso that when A = bond or (CH2)n and R3 = H or unsubstituted
     alkyl, then R4 = B or substituted alkyl], were prepared for treating
     diabetes, obesity, intestinal hypermotility, etc. (no data). Thus,
     3,4-dimethoxybenzaldehyde in THF was treated with PhCH2MgCl in THF
     followed by 20 min reflux to give 90% \alpha-(3,4-
     dimethoxyphenyl)benzeneethanol; Jones oxidation gave 89% 1-(3,4-
     dimethoxyphenyl)-2-phenylethanone. The latter was heated at 160°
     with NH4O2CH to give N-[1-(3,4-dimethoxyphenyl)-2-phenylethyl]formamide,
     which was treated with HCl in MeOH to give 77% \alpha-(3,4-
     dimethoxyphenyl)benzeneethanamine hydrochloride. This was converted to
     the free base, which in MeCN was treated with 2-bromo-1-[4-phenylmethoxy-3-
     methylsulfonylamino]phenylethanone (preparation given) and then NaBH4 in EtOH
     to give title compound (II), isolated as the trifluoroacetate salt.
     170686-03-0P 170686-04-1P 170686-31-4P 170687-11-3P 170687-12-4P 170687-29-3P
     RL: BAC (Biological activity or effector, except adverse); BSU (Biological
     study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use);
     BIOL (Biological study); PREP (Preparation); USES (Uses)
         (preparation of catecholamine surrogates useful as \beta3 adrenergic
        agonists)
RN
     170686-03-0 CAPLUS
     Methanesulfonamide, N-[5-[(1R)-2-[(1R)-2-(4-fluorophenyl)-1-(4-fluorophenyl)]
CN
     hydroxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl]- (9CI)
     INDEX NAME)
```

Absolute stereochemistry.

RN 170686-04-1 CAPLUS
CN Methanesulfonamide, N-[5-[(1R)-2-[((1S)-2-(4-fluorophenyl)-1-(4-hydroxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 170686-31-4 CAPLUS

CN Methanesulfonamide, N-[2-hydroxy-5-[1-hydroxy-2-[[1-(4-hydroxyphenyl)-2-(2-thienyl)ethyl]amino]ethyl]phenyl]- (9CI) (CA INDEX NAME)

RN 170687-11-3 CAPLUS

CN Methanesulfonamide, N-[5-[(1R)-2-[[(1R)-2-(4-fluorophenyl)-1-(4-hydroxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl]-, trifluoroacetate (salt) (9CI) (CA INDEX NAME)

CM I

CRN 170686-03-0 CMF C23 H25 F N2 O5 S

Absolute stereochemistry.

CM 2

CRN 76-05-1 CMF C2 H F3 O2

RN 170687-12-4 CAPLUS

CN Methanesulfonamide, N-[5-[(1R)-2-[[(1S)-2-(4-fluorophenyl)-1-(4hydroxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-hydroxyphenyl]-, trifluoroacetate (salt) (9CI) (CA INDEX NAME)

CM 1

CRN 170686-04-1 CMF C23 H25 F N2 O5 S

Absolute stereochemistry.

CM 2

CRN 76-05-1 CMF C2 H F3 O2

RN 170687-29-3 CAPLUS

CN Methanesulfonamide, N-[2-hydroxy-5-[1-hydroxy-2-[[1-(4-hydroxyphenyl)-2-(2-thienyl)ethyl]amino]ethyl]phenyl]-, trifluoroacetate (salt) (9CI) (CA INDEX NAME)

CM 1

CRN 170686-31-4 CMF C21 H24 N2 O5 S2

CM

CRN 76-05-1 CMF C2 H F3 O2

TITLE:

RN

L24 ANSWER 38 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:879355 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

123:330008 Cardiotonics containing carbostyril derivatives and

catecholamines

Mori, Toyoki; Fujiki, Hiroyuki; Ito, Shuji; Tominaqa, INVENTOR(S):

Michiaki

PATENT ASSIGNEE(S): Otsuka Pharma Co Ltd, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE JP 07215873 A2 19950815 JP 1994-8715 -19940128 JP 2849796 19990127 · B2 PRIORITY APPLN. INFO.: JP 1994-8715 19940128

OTHER SOURCE(S): MARPAT 123:330008

The cardiotonics contain ≥1 selected from carbostyril derivs. I (R1 = H, lower alkyl; R2 = lower phenylalkyl which may have lower alkoxy on the ring) and their salts and catecholamines as active ingredients. Concomitant use of I with catecholamines enhances cardiac contractility and output without inducing increase in heart rate and arrhythmia. Dobutamine was intra-arterially injected to mongrel dogs at 10 $\mu g/kg/min$ and after 30 min, I [R1 = H, R2 = CH2C6H3(OMe)2-3,4] (II) was addnl. injected at 10 μ g/kg/min over 60 min. Rates of changes in cardiac contractility, heart rate, and average blood pressure were 91.5, 9.0, and 0.4%, resp., vs. 59.0, 20.7, and 5.5%, resp., for a control to which a glucose solution was addnl. injected instead of II. An injection solution containing II and $\underline{\textbf{dopamine}}$ hydrochloride was also formulated.

170022-77-2 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(cardiotonics containing (aminohydroxypropoxy)carbostyrils and catecholamines without inducing tachycardia and arrhythmia) 170022-77-2 CAPLUS

CN 2(1H)-Quinolinone, 6-[3-[[(3,4-dimethoxyphenyl)methyl]amino]-2hydroxypropoxy]-, mixt. with 4-[2-[[3-(4-hydroxyphenyl)-1methylpropyl]amino]ethyl]-1,2-benzenediol (9CI) (CA INDEX NAME)

143343-83-3 CRN CMF C21 H24 N2 O5

CM

34368-04-2 C18 H23 N O3 CMF

L24 ANSWER 39 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:473353 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: .122:281318

TITLE: Chromatographic investigation and computer simulation

of (-)deprenyl metabolism

AUTHOR(S): Tarjanyi, Zsofia; Kalasz, H.; Darvas, F.; Kerecsen,

L.; Valko, Klara; Pucsok, J. CompuDrug Ltd., Budapest, H-1395, Hung. CORPORATE SOURCE:

New Approaches Chromatogr. '93, [Pap. Budapest SOURCE:

Chromatogr. Conf.] (1993), Meeting Date 1990, 243-60. Editor(s): Kalasz, H.; Ettre, L. S.; Pick, Judit.

Fekete Sas Kiado: Budapest, Hung.

CODEN: 60SWAU

DOCUMENT TYPE: Conference LANGUAGE: English

Chromatog. studies on metabolism of (-)deprenyl have shown that its urine elimination takes place after oxidative alterations on the nitrogen. N-demethylated, N-depropargylated and N-demethylated-N-depropargylated

metabolic products were identified by 2-dimensional TLC. Gas chromatog.-mass spectrometry verified that a substantial amount of p-hydroxypropargylanara and trace amount of p-hydroxymethamphetamine are also among the **metabolites** of deprenyl in rats.

IT 162927-89-1

RL: ANT (Analyte); BSU (Biological study, unclassified); MFM (Metabolic formation); ANST (Analytical study); BIOL (Biological study); FORM (Formation, nonpreparative)

(chromatog. and computer simulation of deprenyl metabolism)

RN 162927-89-1 CAPLUS

CN β -D-Glucopyranuronic acid, 1-deoxy-1-[[2-(4-hydroxyphenyl)-1-methylethyl]amino]-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

L24 ANSWER 40 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:460394 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 122:285644

TITLE: Evaluation of 99mTc-labeled modified serum albumin for

tumor detection

AUTHOR(S): Guerdoud, L. M.; Ouellet, R.; Lier, J. E. Van

CORPORATE SOURCE: Faculty Medicine, University Sherbrooke, Sherbrooke,

QC, J1H 5N4, Can.

SOURCE: Nuclear Medicine and Biology (1994), 21(8), 1101-8

CODEN: NMBIEO; ISSN: 0883-2897

DOCUMENT TYPE: Journal LANGUAGE: English

Serum albumin (SA) modified and labeled with 131I-tyramine N-1'deoxysorbitol (131I-TDS) has been shown to localize in tumors [Sinn et al., (1990) Nucl. Med. Biol. Part B 17, 819-827]. We prepared similar TDS complexes labeled with 99mTc and evaluated their potential for tumor imaging. Derivatization of SA with TDS was optimized using cyanuric chloride or 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC) as coupling agents. A high TDS loading yield of 38 mol/mol SA was obtained with the latter reagent. Modified SA (8 and 38 mol TDS/mol SA) were labeled with 99mTc via the stannous reduction method and injected i.v. into EMT-6 tumor bearing mice. 125I-TDS-SA (8 mol 125I-TDS/mol SA) revealed a high tumor uptake of 10% ID/g at 3 h postinjection. The 99mTc-labeled SA and TDS-SA complexes lacked tumor specificity, instead TDS loading of SA resulted in increased liver/spleen uptake, suggesting colloid formation. This study confirms the potential of modified SA for tumor imaging but highlights the importance of choice of radioisotope, as well as site of attachment of the radiolabel to the modified SA for optimal tumor localization.

IT 133368-61-3

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(99mTc-labeled modified serum albumin evaluation for tumor imaging)

RN 133368-61-3 CAPLUS

CN D-Glucitol, 1-deoxy-1-[[2-(4-hydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

L24 ANSWER 41 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1995:315547 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

122:188019

TITLE:

Preparation of substrate-spacer-active substance

prodrugs

INVENTOR(S):

Bosslet, Klaus; Czech, Joerg; Hoffmann, Dieter; Kolar, Cenek; Tillequin, Francois; Florent, Jean Claude; Azoulay, Michel; Monneret, Claude; Jacquesy, Jean

Claude; et al.

PATENT ASSIGNEE(S):

Behringwerke AG, Germany

SOURCE:

Ger. Offen., 17 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	KIND	DATE	APPLICATION NO.	DATE
		19940428	DE 1992-4236237	19921027
EP 647450	A1	19950412	EP 1993-114475	19930909
R: AT, BE, C	H. DE. DK	. ES. FR.	GB, GR, IE, IT, LI, LU,	NL, PT, SE
EP 595133	A2	19940504	EP 1993-116702	19931015
EP 595133	АЗ	19981104		
R: AT, BE, C	H, DE, DK	, ES, FR,	GB, GR, IE, IT, LI, LU,	NL, PT, SE
IL 107398	Al	20010128	IL 1993-107398	19931025
CA 2109259	AA	19940428	CA 1993-2109259	19931026
CA 2109259	С	20050524		
NO 9303854	А	19940428	NO 1993-3854	19931026
NO 311830	B1	20020204		
AU 9350225	A1	19940512	AU 1993-50225	19931026
AU 669218	B2	19960530		
JP 06293665	A2	19941021	JP 1993-266976	19931026
ZA 9307951	Α	19950705	ZA 1993-7951	19931026
US 5955100	А	19990921	US 1995-449021	19950524
US 6146658	А	20001114	US 1997-859084	19970520
IORITY APPLN. INFO.:			DE 1992-4236237	19921027
			US 1993-140825	A3 19931025
			US 1995-449021	A1 19950524

ΑB Compds. of the form substrate-spacer-active substance, where the substrate and spacer are cleaved under physiol. or pathophysiol. conditions, the substrate is not an amino acid or peptide residue, and the active ingredient is a chemical compound with biol. activity or a derivative thereof, with the exception of N-bonded derivs. of anthracycline, paranitroanilide, or cytosine arabinoside, were prepared Thus, 3'-Nfluorenylmethoxycarbonyldoxorubicin in PhMe was treated with diisopropylethylamine and diphosgene; after 1 h 4-(6-0-methyl- β -Dglucuronyloxy)-3-nitrobenzylamine and diisopropylethylamine in DMF were added and the mixture was stirred 14 h to give, after deprotection, $14-O-\{4-(\beta-D-glucuronyloxy)-3-nitrobenzylaminocarbonyl\}doxorubicin$ (I). I showed an acute LD50 in mice of >1500 mg/kg, vs. 20 mg/kg for doxorubicin itself. I at 500 mg/kg in mice implanted with human LOVO colon tumors showed a T/C = 40.0%.

160527-87-7P TΤ

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as prodrug)

160527-87-7 CAPLUS

 β -D-Glucopyranosiduronic acid, 4-[[[3-hydroxy-5-[1-hydroxy-2-[[2-(4hydroxyphenyl)-1-methylethyl]amino]ethyl]phenoxy]carbonyl]amino]methyl]phe nyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

L24 ANSWER 42 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1994:548256 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 121:148256

TITLE: Altered pharmacokinetic properties of a lipophilically

derivatized low-molecular-weight heparin in rats

AUTHOR(S): Stehle, Gerd; Sinn, Hannsjoerg; Friedrich, Eckhard A.; Wunder, Andreas; Schrenk, Hans Hermann; Harenberg,

Job; Peschke, Peter; Dempfle, Carl Erik; Maier-Borst,

Wolfgang; Heene, Dieter Ludwig

CORPORATE SOURCE: Fac. Clin. Med., Univ. Heidelberg, Mannheim, Germany

SOURCE: Journal of Laboratory and Clinical Medicine (1993),

122(6), 728-38

CODEN: JLCMAK; ISSN: 0022-2143

DOCUMENT TYPE: Journal LANGUAGE: English

AB A new generation of lipophilic heparins has been developed that show longer-lasting inhibitory effects on the coagulation system. The authors have studied the radiopharmacokinetics of a derivatized low-mol.-weight

heparin (LMWH) with a residualizing lipophilic tyraminedeoxysorbitol label in comparison with conventional LMWH after
i.v. application into Wistar rats. Whole body scintigraphy and anal. of the blood and organ distribution of different tracer prepns. revealed that the lipophilically derivatized LMWH substance was predominantly trapped in the liver RES by a scavenger receptor-mediated mechanism. After the saturable uptake mechanism was blocked by maleylated bovine serum albumin, 41.4% of the lipophilic LMWH tracer circulated in blood, as compared with 18.4% of the control and 1% of conventional LMWH. The same results were attained by a competition experiment with an excess of unfractionated heparin. Urinary excretion of the lipophilic tracer among the rats in this competition experiment was considerably lower (13.7%) as compared with conventional LMWH (53.0%). Expts. with lipophilic LMWH tracer bound nonspecifically to rat serum albumin confirmed that the prolonged half-life might in part be due to an increased affinity for albumin. About 59% of the activity of the lipophilic tracer bound to albumin was found in the liver reticuloendothelial system, and only 3.3% were excreted

to urine 3 h after injection. Further studies are necessary to evaluate the accumulation rates and the metabolic fate of lipophilically derivatized heparins in the case of an impeded reticuloendothelial system uptake before attempts are made to therapeutically apply these compds.

133368-61-3D, heparin derivative

RL: BIOL (Biological study)

(pharmacokinetics and liver reticuloendothelial system uptake of)

RN 133368-61-3 CAPLUS

D-Glucitol, 1-deoxy-1-[(2-(4-hydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX

L24 ANSWER 43 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1991:549691 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

115:149691

TITLE:

Fate of intravenously injected aminated $\beta(1)$

→ 3) polyglucose derivatized with

125I-tyraminyl cellobiose

AUTHOR(S):

SOURCE:

Smedsroed, Baard; Seljelid, Rolf

CORPORATE SOURCE:

Inst. Med. Biol., Univ. Tromso, Tromso, Norway

Immunopharmacology (1991), 21(3), 149-58

CODEN: IMMUDP; ISSN: 0162-3109

DOCUMENT TYPE:

Journal LANGUAGE: English

Aminated $\beta(1\rightarrow 3)$ glucan (polyglucose, AG), a potent soluble $immunomodulator, \ was \ radio-iodinated \ and \ traced \ after \ i.v. \ administration$ to rats. The finding that 60 min after injection most of the radioactivity was recovered in the kidneys and urine, together with the results from gel chromatog. showing that the low Mw fraction of the injected material disappeared first from the circulation, suggests that the initial rapid phase of elimination is due mainly to glomerular filtration. The mols. that are too large for kidney excretion are taken up mainly by the liver (about 10% of injected dose) at a slower speed. Several days after injection the liver contained nearly 90% of the recovered radioactivity, whereas the kidneys and other organs contained only insignificant amts. This indicates that radioactivity associated with the kidneys after 60 min reflects glomerular filtration, whereas radioactivity in liver results from uptake leading to lysosomal accumulation. Isolation of liver cells injection disclosed that the radioactivity per cell was the same in Kupffer cells (KC) and liver endothelial cells (LEC), whereas the uptake per parenchymal cell (PC) was about 30% of the uptake per KC and LEC. It could be calculated that the intact liver, the population of PC was responsible for 50% of the uptake, whereas the populations of LEC and KC contained 35% and 15%, resp., of the total liver radioactivity. These findings raise the question whether not only KC, but also LEC and PC may be mediators of the immune responses caused by $\beta(1\rightarrow 3)$ polyglucose.

98574-93-7D, polyglucose conjugates, iodine-125 labeled RL: BIOL (Biological study)

(liver uptake of, endothelial and Kupffer and parenchymal cells role inl

RN 98574-93-7 CAPLUS

D-Glucitol, 1-deoxy-4-O- β -D-glucopyranosyl-1-[[2-(4-CN hydroxyphenyl)ethyl]amino] - (9CI) (CA INDEX NAME)

L24 ANSWER 44 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1991:472226 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

115:72226

TITLE:

Amino acid derivatives

INVENTOR(S): ...

Branca, Quirico; Neidhart, Werner; Ramuz, Henri; Stadler, Heinz; Wostl, Wolfgang

PATENT ASSIGNEE(S):

Hoffmann-La Roche, F., und Co. A.-G., Switz.

SOURCE:

Eur. Pat. Appl., 71 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
		-			
	EP 416373	A2	19910313	EP 1990-116088	19900822
	EP 416373	А3	19920527		
	R: AT, BE, CH,	DE, DK	, ES, FR,	GB, GR, IT, LI, LU, NL,	SE
	CA 2023099	AA	19910305	CA 1990-2023099	19900810
	AU 9061360	A1	19910307	AU 1990-61360	19900827
	AU 646640	B2	19940303		
	ZA 9006856	A	19910626	ZA 1990-6856	19900828
	HU 58060	A2	19920128	HU 1990-5676	19900829
	JP 03099047	A2	19910424	JP 1990-228473	19900831
	NO 9003832	Α	19910305	NO 1990-3832	19900903
	US 5688946	Α	19971118	US 1994-277111	19940719
PF	CIORITY APPLN. INFO.:			CH 1989-3192	A 19890904
				CH 1990-2336	A 19900712
				US 1990-571689	B1 19900823

OTHER SOURCE(S):

MARPAT 115:72226

Amino acid derivs. RCONR1CH(CH2R2)CONHCHR3CHR4CR5R6R7.(R-R7 =substituents) were prepared for use as antihypertensives and renin inhibitors. Thus, amide I was prepared from epoxide II, H-His-OMe.2HCl, and (S)-PhCH2CH(CO2H)CH2SO2CMe3 in 5 steps. I had a renin-inhibiting ED50 of $0.0009 \mu M/L$.

134363-69-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and deblocking of)

RN 134363-69-2 CAPLUS

L-Histidinamide, N-[2-hydroxy-1-oxo-4-[[(phenylmethoxy)carbonyl]amino]buty 1]-O-methyl-N-[1-(cyclohexylmethyl)-3-cyclopropyl-2,3-dihydroxypropyl]-, [1(S), 2[1S-(1R*, 2S*, 3R*)]]-(9CI) (CA INDEX NAME)

L24 ANSWER 45 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1991:247676 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

114:247676

TITLE:

Preparation of (radioactive) polyalcohol-protein

conjugates for tumor diagnosis and/or

treatment

INVENTOR(S):

Sinn, Hansjoerg; Schrenk, Hans Hermann; Maier-Borst,

Wolfgang; Friedrich, Eckhard; Graschew, Georgi;

Woehrle, Dieter

PATENT ASSIGNEE(S):

Hoechst A.-G., Germany

SOURCE:

Ger. Offen., 16 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 3912792	A1	19901025	DE 1989-3912792	19890419
EP 398024	A1	19901122	EP 1990-107187	19900314
EP 398024	B1	19930224		
R: AT, BE, CH,	DE, DK	, ES, FR, G	GB, GR, IT, LI, LU, NL,	SE
AT 85894	E	19930315	AT 1990-107187	19900314
ES 2054137	Т3	19940801	ES 1990-107187	19900314
JP 03034999	A2	19910214	JP 1990-100546	19900418
JP 08019156	B4	19960228		
US 5308604	Α	19940503	US 1992-859273	19920326
PRIORITY APPLN. INFO.:			DE 1989-3912792	A 19890419
			EP 1990-107187	A 19900314
			US 1990-509810	B1 19900417
			US 1991-734123	B1 19910725

AB Conjugates containing a) ≥1 (derivatized) polyalc., b)
≥1 (radio)active moiety, c) ≥1 linking group, and d) a
protein were prepared for tumor diagnosis/therapy. Thus, a mixture of
tyramine hydrochloride, D-glucose, and NaBH4 in HOCH2CH2OH was heated 30
min at 100° to give 75-80% tyramine-N-1'-desoxysorbitol.

The latter was radioiodinated with 131I/NaOCl in pH 7.4 buffer in 95-98%
yield; the product was condensed with cyanuric chloride in dioxane
followed by rat serum albumin in pH 8.3 phosphate buffer to give I (X =
rat serum albumin). I selectively concentrated in ovary carcinoma implants in
rats.

IT 133368-66-8P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and condensation of, with cyanuric chloride)

RN 133368-66-8 CAPLUS

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and radioiodination of)

RN 133368-61-3 CAPLUS

CN D-Glucitol, 1-deoxy-1-[[2-(4-hydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX

CAPLUS COPYRIGHT 2006 ACS on STN L24 ANSWER 46 OF 68

ACCESSION NUMBER: 1991:244392 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

114:244392

TITLE:

Structure-activity relationships of

oligo- β -glucoside elicitors of phytoalexin

accumulation in soybean

AUTHOR(S):

Cheong, Jong Joo; Birberg, Winnie; Fugedi, Peter; Pilotti, Aake; Garegg, Per J.; Hong, Namgi; Ogawa,

Tomoya; Hahn, Michael G.

CORPORATE SOURCE:

Complex Carbohydr. Res. Cent., Univ. Georgia, Athens,

GA, 30602, USA

SOURCE:

Plant Cell (1991), 3(2), 127-36

CODEN: PLCEEW; ISSN: 1040-4651

DOCUMENT TYPE:

Journal English

LANGUAGE:

The branched trisaccharide at the nonreducing end of the oligoglucosides $% \left(1\right) =\left(1\right) \left(1\right) \left$ was found to be essential for maximum elicitor activity. Substitutions of either the nonreducing terminal backbone glucosyl residue or the side-chain glucosyl residue closest to the nonreducing end with glucosaminyl or N-acetylglucosaminyl residues reduced the elicitor activity of the oligoglucosides between 10-fold and 10,000-fold. Elicitor activity was also reduced 1000-fold if the 2 side-chain glucosyl residues were attached to adjacent backbone glucosyl residues rather than to glucosyl residues separated by an unbranched residue. In contrast, modifications of the reducing terminal glucosyl residue of an elicitor-active hepta-β-glucoside by conjugation with tyramine and subsequent iodination had no significant effect on the elicitor activity of the hepta- β -glucoside. These results demonstrate that oligo-eta-glucosides must have a specific structure to trigger the signal transduction pathway, which ultimately leads to the de novo synthesis of phytoalexins in soybean.

133960-38-0

RL: BIOL (Biological study)

(phytoalexin accumulation in soybean cotyledons response to, structure in relation to)

RN 133960-38-0 CAPLUS

D-Glucitol, O- β -D-glucopyranosyl-(1 \rightarrow 3)-O-(O- β -Dglucopyranosyl- $(1\rightarrow 3)$ -O- $[\beta$ -D-glucopyranosyl- $(1\rightarrow 6)$]-O- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 6)]- $O-\beta-D-glucopyranosyl-(1\rightarrow6)-1-deoxy-1-[[2-(4-hydroxy-3,5$ diiodophenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

PAGE 1-B

133960-18-6P · IT

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent) (preparation and iodination of, phytoalexin-inducing activity in soybean cotyledons in relation to)

RN

133960-18-6 CAPLUS D-Glucitol, O- β -D-glucopyranosyl-(1-3)-O-[O- β -Dglucopyranosyl- $(1\rightarrow3)$ -O- $[\beta$ -D-glucopyranosyl- $(1\rightarrow6)$]-O- β -D-glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl- $(1\rightarrow 6)$]-O- β -D-glucopyranosyl-(1-6)-1-deoxy-1-[[2-(4-hydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

PAGE 1-B

IT 133960-11-9P 133960-20-0P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and phytoalexin inducing activity of, in soybean cotyledons) 133960-11-9 CAPLUS

RN 133960-11-9 CAPLUS
CN D-Glucitol, O- β -D-glucopyranosyl-(1+3)-O-[O- β -D-glucopyranosyl-(1+3)-O-[β -D-glucopyranosyl-(1+6)]-O- β -D-glucopyranosyl-(1+6)]-O- β -D-glucopyranosyl-(1+6)-1-deoxy-1-[[2-(4-hydroxy-3-iodophenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

RN 133960-20-0 CAPLUS
CN D-Glucitol, O- β -D-glucopyranosyl-(1 \rightarrow 3)-O-[O- β -D-glucopyranosyl-(1 \rightarrow 3)-O-[β -D-glucopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranosyl-(1 \rightarrow 6)]-O- β -D-glucopyranosyl-(1 \rightarrow 6)-1-deoxy-1-[[2-(4-hydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

но---

PAGE 1-B

L24 ANSWER 47 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1991:244263 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 114:244263

TITLE: A specific, high-affinity binding site for the

 $\texttt{hepta-}\beta\text{-}\texttt{glucoside elicitor exists in soybean}$

membranes

AUTHOR(S): Cheong, Jong Joo; Hahn, Michael G.

CORPORATE SOURCE: Complex Carbohydr. Res. Cent., Univ. Georgia, Athens,

GA, 30602, USA

SOURCE: Plant Cell (1991), 3(2), 137-47

CODEN: PLCEEW; ISSN: 1040-4651

DOCUMENT TYPE: Journal

LANGUAGE: English

The presence of a specific binding site for a hepta- β -glucoside elicitor of phytoalexin accumulation has been demonstrated in soybean microsomal membranes. A tyramine **conjugate** of the elicitor-active hepta- β -glucoside was prepared and radiolabeled with 125I. The labeled hepta- β -glucoside-tyramine **conjugate** was used as a ligand in binding assays with a total membrane fraction prepared from soybean roots. Binding of the radiolabeled hepta- β -glucoside elicitor was saturable, reversible, and with an affinity (apparent Kd = 7.5 + 10-10 M) comparable with the concentration of hepta- β -glucoside required for biol. activity. A single class of hepta- β -glucoside binding sites was found. The binding sites was inactivated by proteolysis and by heat treatment, suggesting that the binding site is a protein or glycoprotein. Competitive inhibition of binding of the radiolabeled hepta- β -glucoside elicitor by a number of structurally related oligoglucosides demonstrated a direct correlation between the binding

affinities and the elicitor activities of these oligoglucosides.

IT 133960-11-9P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and binding of, in soybean membranes, receptor characterization in relation to)

RN 133960-11-9 CAPLUS

D-Glucitol, $O-\beta-D$ -glucopyranosyl- $(1\rightarrow 3)$ - $O-[O-\beta-D-glucopyranosyl-(1\rightarrow 3)$ - $O-[\beta-D-glucopyranosyl-(1\rightarrow 6)]$ - $O-\beta-D$ -glucopyranosyl- $(1\rightarrow 6)$ - $O-\beta$

PAGE 1-A OH HO CH2-OH HO OH OH OH OH OH CH2-CH2-CH2-CH-CH-CH-CH2-OO CH2-CH2-OO CH2-CH2-OO CH2-CH2-OO CH2-CH2-OO CH2-OO C

L24 ANSWER 48 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

DOCUMENT NUMBER:

114:181405

TITLE:

Design of compounds having an enhanced tumor uptake,

using serum albumin as a carrier. Part I

AUTHOR(S):

Sinn, H.; Schrenk, H. H.; Friedrich, E. A.; Schilling,

U.; Maier-Borst, W.

CORPORATE SOURCE:

Inst. Radiol. Pathophysiol., Dtsch.

SOURCE:

Krebsforschungszent., Heidelberg, D-6900, Germany Nuclear Medicine and Biology (1990), 17(8), 819-27

CODEN: NMBIEO; ISSN: 0883-2897

DOCUMENT TYPE:

LANGUAGE:

Journal English

To identify those parameters which influence the tumor uptake and storage, a series of compds. having different chemical and physicochem. properties was investigated. Unbound, small mol. weight compds. were rapidly eliminated from the circulatory system. They has a prolonged biol. half life if linked to serum albumin (SA), especially when derivatized with deoxysorbitol. Parallel with the prolongation of the biol. half-life a remarkable increase in tumor uptake was observed, which was not accompanied by increased liver activity. Furthermore, without thyroid blockade, significant radioiodine uptake in this organ was not defected after 24 or 72 h. This is due to the particular coupling mechanism, which may be relevant for other (radio)iodinated pharmaceuticals used in medicine. Glucose and aromatic amines, as well as aromatic aldehydes and glucamine react to form deoxysorbitol derivs., which then have similar biokinetics after linkage to serum albumin. Thus, a new approach in tumor detection and possibly in tumor therapy may be possible when SA is used as a carrier mol., using the described labeling procedure.

133368-61-3P 133368-62-4P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and radioiodination of, tumor uptake in relation to)

RN 133368-61-3 CAPLUS

D-Glucitol, 1-deoxy-1-[[2-(4-hydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

RN 133368-62-4 CAPLUS

CN D-Glucitol, 1-deoxy-1-[[(4-hydroxyphenyl)methyl]amino]- (9CI) (CA INDEX NAME)

IT 133368-65-7DP, reaction products with cyanuric chloride 133368-66-8DP, reaction products with cyanuric chloride RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, for tumor targeting)

RN 133368-65-7 CAPLUS

CN D-Glucitol, 1-deoxy-1-[[[4-hydroxy-3-(iodo-131I)phenyl]methyl]amino]-(9CI) (CA INDEX NAME)

RN 133368-66-8 CAPLUS

OH OH OH OH OH OH
$$\begin{vmatrix} \mathsf{CH_2}-\mathsf{CH_2}-\mathsf{NH}-\mathsf{CH_2}-\mathsf{CH}-\mathsf$$

IT 133368-65-7P 133368-66-8P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation of, for tumor targeting with serum albumin as carrier)

RN 133368-65-7 CAPLUS

RN 133368-66-8 CAPLUS

L24 ANSWER 49 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1988:419814 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

109:19814

TITLE:

Purification of residualizing glycoconjugate

labels for protein by reversed-phase high-pressure

liquid chromatography

AUTHOR(S):

Baynes, John W.; Maxwell, Janet L.; Rahman, Kazi M.;

Thorpe, Suzanne R.

CORPORATE SOURCE:

Sch. Med., Univ. South Carolina, Columbia, SC, 29208,

Analytical Biochemistry (1988), 170(2), 382-6

SOURCE:

ΙT

CODEN: ANBCA2; ISSN: 0003-2697

DOCUMENT TYPE:

LANGUAGE:

Journal English

AB The synthesis and purification of a new fluorescent residualizing label, N,N-dilactitol-N'-fluoresceinyl-ethylenediamine, is described. The

label is prepared by first derivatizing ethylenediamine 1:1 with FITC and then coupling lactose to the remaining primary amino group by reductive amination. A rapid 1-step purification of this and other glycoconjugate labels by reversed-phase HPLC is described.

114932-65-9

RL: ANT (Analyte); ANST (Analytical study)

(chromatog. of, reversed-phase high-performance liquid)

RN 114932-65-9 CAPLUS

CN D-Glucitol, 1-deoxy-4-O-β-D-galactopyranosyl-1-[[2-(4-hydroxy-3iodophenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

L24 ANSWER 50 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1987:571746 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

107:171746

TITLE:

Analysis of glycated amino acids by high-performance

liquid chromatography of phenylthiocarbamyl

derivatives

AUTHOR(S):

Walton, Donald J.; McPherson, John D.

CORPORATE SOURCE:

Dep. Biochem., Queen's Univ., Kingston, ON, K7L 3N6,

Can

SOURCE:

Analytical Biochemistry (1987), 164(2), 547-53

CODEN: ANBCA2; ISSN: 0003-2697

DOCUMENT TYPE:

Journal

LANGUAGE: English

AB A method has been developed for the anal. of hexitolamino acids formed by acid-catalyzed hydrolysis of nonenzymically glycated proteins that have been treated with sodium borohydride. The hexitolamino acids are converted into phenylthiocarbamyl (PTC) derivs. which are analyzed by reverse-phase HPLC. The PTC derivs. of $N\alpha$ -hexitolamino acids behave

like lactones, migrating on the column more slowly than the corresponding PTC-amino acids. The PTC derivs. of Ne- glucitol- and Ns- mannitol-lysine are probably free acids, since they migrate faster than PTC-lysine. The method, which can be used to determine the degree of glycation of N-terminal and lysyl residues, has been applied successfully to human Hb, serum albumin, and ocular lens proteins.

57170-81-7 106188-44-7

RL: ANT (Analyte); ANST (Analytical study) (chromatog. of, reversed-phase high-performance liquid)

57170-81-7 CAPLUS RN

CN L-Tyrosine, N-(1-deoxy-D-glucitol-1-y1)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

106188-44-7 CAPLUS RN

L-Tyrosine, N-(1-deoxy-D-mannitol-1-yl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 51 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1987:432609 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 107:32609

TITLE: Structure-activity relationships of β -adrenergic

receptor-coupled adenylate cyclase: implications of a

redox mechanism for the action of agonists at

β-adrenergic receptors

AUTHOR(S): Wong, Angela; Hwang, Shing Mei; Cheng, Hung Yuan;

Crooke, Stanley T.

CORPORATE SOURCE: Dep. Mol. Pharmacol., Smith Kline and French Lab.,

Swedeland, PA, 19479, USA

Molecular Pharmacology (1987), 31(4), 368-76 SOURCE:

CODEN: MOPMA3; ISSN: 0026-895X

DOCUMENT TYPE: Journal

LANGUAGE: English

To test the hypothesis that agonists at β -adrenergic receptors activate the β -receptors by reducing them, the interactions of 41 eta-agonists and antagonists with the receptors were examined. The structural features which determined binding affinity (KD) were distinct from those which determined intrinsic activity (IA). The IA was related to the oxidation-reduction properties, which were determined primarily by the nature of the substituents on the Ph ring. Thus, the parent compound phenylethanolamine, having no phenolic substituent, acted as an antagonist (IA = 0) and was also redox inactive. All of the antagonists tested (19) exhibited EP(peak potential for the first oxidative wave) values greater than 0.75 V, suggesting that they were difficult to oxidize. Agonists, however, exhibited a wide range of EP(0.25-0.7 V) with values lower than those of the antagonists. The agonists tested include catecholamines, catecholamine analogs bearing meta-substituted amino functionalities (such as amino, methylamino, formanilide, sulfonamide, urea, and carbamate), resorcinol, and hydroxymethyl congeners. Apparently, the oxidizing tendency of the substituent on the Ph ring is one of the factors that influences IA. To test the hypothesis further, isoproterenol was

electrolytically oxidized to adrenochrome or to the o-quinone intermediate and tested for activity. The 4e-, 4H+-oxidation product adrenochrome did not bind to or stimulate adenylate cyclase, suggesting that the reducing ability to isoproterenol is important for its agonistic activity. cyclic redox mechanism for the action of agonists at β -adrenergic receptors is presented. Agonist's may be electron donors and their interactions with receptors result in reduction leading to activation of the receptors.

ΙT 108930-00-3

RL: BIOL (Biological study)

 $(\beta$ -adrenergic receptors response to, structure in relation to)

RN 108930-00-3 CAPLUS

 $1,2-Benzene diol,\ 4-[1-hydroxy-2-[[2-(3;4,5-trimethoxyphenyl)ethyl]amino] ethyl \\$ CN hyl] - (9CI) (CA INDEX NAME)

L24 ANSWER 52 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1987:119377 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

106:119377

TITLE:

Nonenzymic oxidation of the new cardiotonic agent

denopamine and its derivatives: comparison with

enzymic oxidation

AUTHOR(S):

Suzuki, Toshikazu; Hashimura, Yoshimasa; Takeyama,

Shigevuki

CORPORATE SOURCE:

Biol. Res. Lab., Tanabe Seiyaku Co., Ltd., Toda, 335,

Japan

SOURCE:

Chemical & Pharmaceutical Bulletin (1985), 33(9),

3859-67

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE:

Journal

LANGUAGE:

English

OTHER SOURCE(S):

CASREACT 106:119377 -

Chemical oxidation of the pos. inotropic agent denopamine, (-)-(R)-1-(p-1)hydroxyphenyl)-2-[(3,4-dimethoxyphenethyl)amino]ethanol, and its derivs.by Udenfriend's model system for enzymic oxidation was studied. All the metabolites of denopamine produced by enzymic oxidation were also formed in Undefriend's system., but the chemical oxidation was less selective as to the position of demethylation. The chemical oxidation was more powerful than the enzymic oxidation because hydroxylation at the ortho or parp position to the methoxy group took place in all the substrates tested, while such metabolites have not been detected in biol. systems. As in the enzymic system, tetrahydroisoquinoline-type compds. were formed from substrates in which the hydroxy group was attached at the meta position of the benzene ring. This is presumably a result of Pictet-Spengler-type condensation with CH2O generated in the reaction mixture

87081-59-2P 96843-99-1P 98154-90-6P

105199-84-6P

RL: PRP (Properties); PREP (Preparation)

(formation and mass spectra of, in oxidation of denopamine derivative by Udenfriend's system).

87081-59-2 CAPLUS RN

Benzenemethanol, 4-hydroxy- α -[[[2-(4-hydroxy-3methoxyphenyl)ethyl]amino]methyl]-3-methoxy-, (R)- (9CI) (CA INDEX NAME)

RN 96843-99-1 CAPLUS

CN 1,2-Benzenediol, 4-[(1R)-2-[[2-(3,4-dimethoxyphenyl)ethyl]amino]-1hydroxyethyl] - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 98154-90-6 CAPLUS

Benzenemethanol, 4-hydroxy- α -[[[2-(3-hydroxy-4-CN methoxyphenyl)ethyl]amino]methyl]-3-methoxy-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 105199-84-6 CAPLUS-

1,2-Benzenediol, 4-[1-hydroxy-2-[[2-(4-hydroxy-3-CN methoxyphenyl)ethyl]amino]ethyl]-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 53 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN 1987:81029 CAPLUS <<LOGINID::20061031>>

ACCESSION NUMBER: DOCUMENT NUMBER:

106:81029

TITLE:

Non-enzymic glycation of proteins: analysis of N-(1-

deoxyhexitol-1-yl)amino acids by

high-performance liquid chromatography

AUTHOR(S):

Walton, Donald J.; McPherson, John D.

CORPORATE SOURCE:

Dep. Biochem., Queen's Univ., Kingston, ON, K7L 3N6,

Can.

Carbohydrate Research (1986), 153(2), 285-93

CODEN: CRBRAT; ISSN: 0008-6215

DOCUMENT TYPE:

Journal

LANGUAGE: English

A method for determining the extent of nonenzymic glycation (chemical glycosylation) of both lysyl and N-terminal residues of a protein is described. The glycated protein was treated with NaBH4, and then subjected to acid-catalyzed hydrolysis. The resulting N-(1-deoxy-Dhexitol-1-yl)amino acids were separated by cation-exchange HPLC, and detected by a post-column reaction with periodate. The method was applied successfully to samples of human Hb and human serum albumin, for measurement of nos. of valine-attached and of lysine-attached

N-(1-deoxy-D-fructose-1-yl) groups in protein mols.

ΙT 57170-81-7P 106188-44-7P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation and HPLC of)

RN 57170-81-7 CAPLUS

L-Tyrosine, N-(1-deoxy-D-glucitol-1-yl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

106188-44-7 CAPLUS

L-Tyrosine, N-(1-deoxy-D-mannitol-1-yl)- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

L24 ANSWER 54 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

1987:12352 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER: 106:12352

TITLE: General pharmacology of the metabolites of

denopamine

AUTHOR(S): Narita, Hiroshi; Ikezawa, Katsuo; Inamasu, Masanori;

Ishizuka, Tohru; Nishiyama, Shinsuke; Ikeo, Tomihiro;

Nagao, Taku

CORPORATE SOURCE:

Biol. Res. Lab., Tanabe Seiyaku Co., Ltd., Japan Yakuri to Chiryo (1973-2000) (1985), 13(11), 6389-403 SOURCE:

CODEN: YACHDS; ISSN: 0386-3603

DOCUMENT TYPE: Journal LANGUAGE:

Japanese

General pharmacol. of the **metabolites** of denopamine, i.e. 4'-demethyldenopamine (M1) [87081-63-8], 3-methyoxydenopamine (M2) [87081-64-9] and 4'-demethyl-3-methoxydenopamine (M3) [87081-59-2], were studied. LD50 values (i.v.) of the metabolites in mice were 115 mg/kg for M1, 230 mg/kg for M2, and 195 mg/kg for M3. The metabolites did not exhibit central action at 3 mg/kg, i.v. or less. M1 decreased blood pressure and increased heart rate and left ventricular dp/dtmax in anesthetized dogs. M1 also increased contractile force of isolated guinea pig heart at $0.01 \mu g/heart$ or more. Effects of the **metabolites** on respiratory system, renal function,

gastrointestinal system, inflammation and metabolic system were negligible or were weaker than the effects on circulatory system. Effects of the metabolites on autonomic nervous system and smooth muscle were similar to or less potent than those of denopamine. β -Adrenergic agonistic properties were observed with M1, however, neither agonistic nor antagonistic properties on the β -adrenoceptor were observed with M2 and M3. From these results and the evidence that these metabolites were not detected in blood after denopamine administration, it is concluded that these metabolites do not contribute to the actions of denopamine.

87081-59-2 TΤ

RL: BIOL (Biological study)

(as denopamine metabolite, pharmacol. of)

87081-59-2 CAPLUS RN

Benzenemethanol, 4-hydroxy- α -[[[2-(4-hydroxy-3methoxyphenyl)ethyl]amino]methyl]-3-methoxy-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 55 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

1986:490797 CAPLUS <<LOGINID::20061031>> ACCESSION NUMBER:

DOCUMENT NUMBER: 105:90797

TITLE: Stereoselective formation of fenoterol-para-

glucuronide and fenoterol-meta-glucuronide in rat

hepatocytes and enterocytes

AUTHOR(S): Koster, Andries S.; Frankhuijzen-Sierevogel, Ank C.;

Mentrup, Anton

CORPORATE SOURCE: Fac. Pharm., State Univ. Utrecht, Utrecht, NL-3511 GH,

Neth.

SOURCE: Biochemical Pharmacology (1986), 35(12), 1981-5

CODEN: BCPCA6; ISSN: 0006-2952

DOCUMENT TYPE: LANGUAGE: English

The glucuronidation of fenoterol (I) [13392-18-2] in isolated rat

hepatocytes and enterocytes was investigated. Two different glucuronides,

fenoterol p-glucuronide [61046-78-4] and fenoterol m-glucuronide [61046-77-3], were formed in proportions, that were constant over the concentration range investigated (0-1 mM). The fraction of

p-glucuronide formed was 0.40 for hepatocytes and 0.54 for enterocytes. Fenoterol consists of a racemic mixture of SS'-(+)fenoterol [69421-38-1] and RR'-(-)fenoterol [69421-37-0]. The maximum qlucuronidation rate of the

(-)enantiomer (Vmax = 3.6 nmol/min/mg in hepatic microsomes and 3.4

nmol/min/mg in intestinal microsomes) is lower than the same values of the (+)isomer (Vmax = 6.7 nmol/min/mg in hepatic microsomes and 5.8

nmol/min/mg in intestinal microsomes). Kmapp-Values for the (-)enantiomer were lower than for the (+)enantiomer. Similar, but less pronounced, differences in Bmax were observed in isolated cells: Vmax = 148 and 372

pmol/min/mg [(-)fenoterol in hepatocytes and enterocytes], Vmax = 173 and 444 pmol/min/mg [(+)fenoterol in hepatocytes and enterocytes]. Calcn. of intrinsic metabolic clearance from the cellular data suggests that the (+)enantiomer may be more efficiently eliminated by liver metabolism in vivo than the (-)enantiomer. This can result in stereoselective first-pass

metabolism of the fenoterol enantiomers.

61046-77-3 61046-78-4 RL: FORM (Formation, nonpreparative)

(formation of, as fenoterol metabolite, stereoselectivity in)

61046-77-3 CAPLUS

TΤ

β-D-Glucopyranosiduronic acid, 3-hydroxy-5-[1-hydroxy-2-[[2-(4hydroxyphenyl)-1-methylethyl]amino]ethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

61046-78-4 CAPLUS

CN β -D-Glucopyranosiduronic acid, $4-\{2-[\{2-(3,5-dihydroxyphenyl)-2-(3,5-dihyd$ hydroxyethyl]amino]propyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 56 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1986:455139 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 105:55139

TITLE: The antinociceptive action of some β -adrenoceptor

agonists in mice

AUTHOR(S): Bentley, G. A.; Starr, Jennifer

CORPORATE SOURCE: Dep. Pharmacol., Monash Univ., Clayton, 3168,

Australia

SOURCE: British Journal of Pharmacology (1986), 88(3), 515-21

CODEN: BJPCBM; ISSN: 0007-1188

DOCUMENT TYPE: Journal LANGUAGE: English

The antinociceptive actions of several $\beta\text{-}adrenoceptor}$ agonist drugs were studied in mice by use of a modified abdominal constriction test. All the drugs studied had high antinociceptive activity, with half-maximum ID values in the nmol/kg range. (-)-Isoprenaline [51-31-0] and isoxsuprine [395-28-8] were the most potent, being about 10-fold more active than (\pm) -salbutamol [35763-26-9], the least potent drug studied. All these drugs produced their action very rapidly and appeared to act within the peritoneum. (-)-Isoprenaline had about 6-fold the potency of the (+)-isomer [2964-04-7]. (\pm) -Propranolol [13013-17-7] caused rightward shifts, usually parallel, of the dose-response curves for (-)-isoprenaline. (+)-Propranolol [5051-22-9] was <10% as potent as the racemic drug. Practolol also caused parallel, rightward shifts of the dose-response curves for (-)-isoprenaline, and was about twice as potent as (\pm) -propranolol, whether given by s.c. or i.p. injection. Atenolol and ICI 118551 had intermediate potencies. Propranolol, practolol, and ICI 118551 were all considerably less potent in antagonizing the antinociceptive actions of (±)-fenoterol [69478-35-9] and (±)-RO363 $[{\color{red} {\bf 74513\hbox{-}77\hbox{-}2}}]$ than was (-)-isoprenaline. None of these antagonist drugs showed more than a slight ability to discriminate between the $\beta1-$ and $\beta2-$ selective agonist drugs. No evidence was found for the involvement of opioid, dopaminergic, or α-adrenergic receptors in the antinociceptive action of the β -adrenoceptor agonist drugs. Evidence for and against the involvement of β -adrenoceptors is discussed, and it is concluded that if these receptors do mediate the antinociceptive action they appear to be atvoical. IT

74513-77-2

RL: BAC (Biological activity or effector, except adverse); BSU (Biological

study, unclassified); BIOL (Biological study)
 (antinociceptive activity of, potency of)

RN 74513-77-2 CAPLUS

1,2-Benzenediol, 4-[3-[[2-(3,4-dimethoxyphenyl)ethyl]amino]-2-hydroxypropoxy)- (9CI) (CA INDEX NAME)

L24 ANSWER 57 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1986:417851 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

105:17851

TITLE:

CN

Metabolic fate of the new cardiotonic denopamine in animals. 4th Communication: Effects of the coadministered drugs on the plasma concentration and

metabolism of denopamine in dogs

AUTHOR(S):

Furuuchi, S.; Naito, K.; Yamada, Y.; Otsuka, M.;

Harigaya, S.

CORPORATE SOURCE:

Biol. Res. Lab., Tanabe Seiyaku Co., Ltd., Saitama,

Japan

SOURCE:

Arzneimittel-Forschung (1986), 36(4), 665-7

CODEN: ARZNAD; ISSN: 0004-4172

DOCUMENT TYPE:

Journal English

LANGUAGE:

AB In dogs, plasma levels of denopamine [71771-90-9] and urinary excretion of denopamine and its main **metabolites** were determined after oral administration of denopamine with or without digoxin [20830-75-5], furosemide [54-31-9] and isosorbide dinitrate [87-33-2]. Mean plasma levels of denopamine were slightly lower when denopamine was given with the coadministered drugs than when given alone, but the difference was not statistically significant. No significant differences were found in the areas under the plasma concentration curve, peak plasma concens., or plasma half-lives when denopamine was given alone or in combination with the other drugs. Urinary excretion of denopamine and its main

metabolites was not affected by other drugs.

IT 96740-69-1 99270-75-4

RL: BIOL (Biological study)

(as denopamine metabolite, drugs effect on formation of)

RN 96740-69-1 CAPLUS

CN β -D-Glucopyranosiduronic acid, 4-[(1R)-2-[[2-(3,4-

dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 99270-75-4 CAPLUS

CN β-D-Glucopyranosiduronic acid, 4-[(1R)-2-[[2-(3,4dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-methoxyphenyl (9CI) (CA
INDEX NAME)

L24 ANSWER 58 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1985:605462 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 103:205462

TITLE: Metabolism of denopamine, a new cardiotonic agent, in

the rat and dog

AUTHOR(S): Furuuchi, S.; Naito, K.; Otsuka, M.; Harigaya, S. CORPORATE SOURCE: Biol. Res. Lab., Tanabe Seiyaku Co., Ltd., Toda, 335,

Japan

SOURCE: Drug Metabolism and Disposition (1985), 13(5), 620-6

· CODEN: DMDSAI; ISSN: 0090-9556

DOCUMENT TYPE: Journal LANGUAGE: English

AB The metabolism of denopamine (I) [71771-90-9], a new orally active selectively inotropic cardiotonic agent, was studied in the rat and dog. Animals were given single of 5 mg/kg of denopamine labeled with 14C. Denopamine was metabolized in the rat and dog by several pathways including conjugation, side chain oxidation, and ring hydroxylation followed by O-methylation. Rats excreted the drug in the urine almost entirely as unchanged drug and its phenolic O-glucuronide [96740-69-1] whereas in the dog, the major metabolites were the phenolic O-glucuronide, the alc. O-glucuronide [98838-07-4] and the phenolic O-sulfate [98830-27-4] of denopamine and the phenolic O-glucuronide of 3-methoxydenopamine [99270-75-4]. Demethylation, which has been shown to be a major metabolic pathway in man, and side chain oxidation were minor pathways in the rat and dog. Furthermore, a high degree of stereoselective resistance of the alc. O-glucuronide of denopamine to hydrolyis by β-glucuronidase was observed

IT 96740-69-1 99270-75-4
RL: BIOL (Biological study)

(as denopamine metabolite)

RN 96740-69-1 CAPLUS

CN β-D-Glucopyranosiduronic acid, 4-[(1R)-2-[[2-(3,4-dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 99270-75-4 CAPLUS

CN β-D-Glucopyranosiduronic acid, 4-[(1R)-2-[[2-(3,4dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-methoxyphenyl (9CI) (CA
INDEX NAME)

L24 ANSWER 59 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1985:592624 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

103:192624

TITLE:

Iodine-125-glycoconjugate labels for

identifying sites of protein catabolism in vivo: effect of structure and chemistry of coupling to protein on label entrapment in cells after protein

degradation

AUTHOR(S):

Strobel, Jeffrey L.; Baynes, John W.; Thorpe, Suzanne

R.

CORPORATE SOURCE:

Dep. Chem., Univ. South Carolina, Columbia, SC, 29208,

USA

SOURCE:

Archives of Biochemistry and Biophysics (1985),

240(2), 635-45

CODEN: ABBIA4; ISSN: 0003-9861

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB A convenient synthesis and purification are described of a series of 125I-labeled glycoconjugates, and an evaluation of their efficiency of retention in liver is presented following degradation of a model carrier protein, asialofetuin. Glycoconjugates were prepared in 65-90% yield by reductive amination of reducing sugars with aromatic amines using NaBH3CN. The products were purified in a single ion-exchange chromatog. step, and then labeled with 125I. The derivs. prepared were mono- and disubstituted lactitol-, cellobiitol- and glucitol-[125I]tyramine, and lactitol-[125I]tyrosine.

125I-Glycoconjugates were coupled to asialofetuin using either cyanuric chloride or, for lactose-containing labels, by treatment with galactose oxidase followed by reductive amination with NaBH3CN.

Attachment of labels by either procedure did not affect the normal rapid clearance of asialofetuin from the rat circulation nor its uptake and degradation in liver lysosomes. Leakage of 125I-labeled degradation products from cells was measured by following the kinetics of loss of whole-body radioactivity. Degradation products from larger, disubstituted glycoconjugates were retained more efficiently than those from smaller and monosubstituted derivs., and glycoconjugates coupled to protein via reductive amination were retained in the body more efficiently than those coupled by cyanuric chloride. Overall, dilactitol-[125I]tyramine coupled to protein by reductive amination was entrapped most efficiently in liver.

IT 98503-03-8P 98503-04-9P 98574-93-7P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and radioiodination of)

RN 98503-03-8 CAPLUS

CN L-Tyrosine, N-(1-deoxy-4-O- β -D-galactopyranosyl-D-glucitol-1-yl)- (9CI) (CA INDEX NAME)

RN 98503-04-9 CAPLUS
CN D-Glucitol, 1-deoxy-4-O-β-D-galactopyranosyl-1-[[2-(4-hydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

RN 98574-93-7 CAPLUS CN D-Glucitol, 1-deoxy-4-O- β -D-glucopyranosyl-1-[[2-(4-hydroxyphenyl)ethyl]amino]- (9CI) (CA INDEX NAME)

$$\begin{array}{c} \text{OH} \\ \text{HO-CH}_2 \\ \text{OH} \\ \text{OH} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \\ \text{OH} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \\ \text{OH} \\ \end{array}$$

IT 98503-06-1P 98503-08-3P 98503-10-7P

RL: PREP (Preparation)

(preparation of, for protein catabolism sites identification in vivo)

RN 98503-06-1 CAPLUS

CN D-Glucitol, 1-deoxy-4-O- β -D-galactopyranosyl-1-[{2-[4-hydroxy-3-(iodo-1251)phenyl}ethyl]amino]- (9CI) (CA INDEX NAME)

RN 98503-08-3 CAPLUS

OH OH OH OH OH
$$\begin{vmatrix} \mathsf{OH} & \mathsf{OH} & \mathsf{OH} \\ & | & | & | \\ & | & | & | \\ & | & | \\ \mathsf{CH}_2-\mathsf{CH}_2-\mathsf{NH}-\mathsf{CH}_2-\mathsf{CH}-\mathsf{CH}-\mathsf{CH}-\mathsf{CH}-\mathsf{CH}-\mathsf{CH}-\mathsf{CH}_2-\mathsf{OH} \\ \\ \mathsf{HO} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

RN 98503-10-7 CAPLUS

L-Tyrosine, N-(1-deoxy-4-O- β -D-galactopyranosyl-D-glucitol-1-yl)-3-(iodo-125I)- (9CI) (CA INDEX NAME)

L24 ANSWER 60 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1985:534385 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

103:134385

TITLE:

Improved separation of the denopamine

metabolites using capillary column gas chromatography-mass spectrometry

AUTHOR(S):

Suzuki, Toshikazu; Hashimura, Yoshimasa; Takeyama,

Shigeyuki

CORPORATE SOURCE:

Biol. Res. Lab., Tanabe Seiyaku Co., Ltd., Toda, 335,

Japan

SOURCE:

Chemical & Pharmaceutical Bulletin (1985), 33(6),

2549-52

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Eight urinary $\underline{\text{metabolites}}$ of the pos. inotropic agent denopamine in man were separated and identified by capillary column gas chromatog.~mass spectrometry. The metabolites were products of oxidative 3'- or 4!-O-demethylation and(or) meta-hydroxylation followed by meta- or para-catechol O-methyltransferase-methylation. Separation of the 4 isomers of 1-(hydroxymethoxypheny1)-2-[(hydroxymethoxyphenethy1)amino]ethanol was made possible by the use of a capillary column.

87081-59-2 98154-90-6 98154-91-7 IT

98154-92-8

RL: PROC (Process)

(structure elucidation of, as denopamine $\underline{\text{metabolite}}$ in human urine by gas chromatog. -mass spectrometry)

87081-59-2 CAPLUS RN

CN Benzenemethanol, 4-hydroxy- α -[[[2-(4-hydroxy-3-

methoxyphenyl)ethyl]amino]methyl]-3-methoxy-, (R)- (9CI) (CA INDEX NAME)

RN 98154-90-6 CAPLUS

CN Benzenemethanol, 4-hydroxy- α -[[[2-(3-hydroxy-4-methoxyphenyl)ethyl]amino]methyl]-3-methoxy-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 98154-91-7 CAPLUS

CN Benzenemethanol, 3-hydroxy- α -[[[2-(4-hydroxy-3-methoxyphenyl)ethyl]amino]methyl]-4-methoxy-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 98154-92-8 CAPLUS

CN Benzenemethanol, 3-hydroxy- α -[[[2-(3-hydroxy-4-methoxyphenyl)ethyl]amino]methyl]-4-methoxy-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 61 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1985:416333 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 103:16333

TITLE: In vitro metabolism of the new cardiotonic agent

denopamine (TA-064) by rat and rabbit liver preparations. Oxidation, methylation, and

glucuronidation

AUTHOR(S): Suzuki, Toshikazu; Hashimura, Yoshimasa; Takeyama,

Shigeyuki

CORPORATE SOURCE: Biol. Res. Lab., Tanabe Seiyaku Co., Ltd., Toda, 335,

Japan

SOURCE: Drug Metabolism and Disposition (1985), 13(2), 246-54

CODEN: DMDSAI; ISSN: 0090-9556

DOCUMENT TYPE: Journal LANGUAGE: English

LANGUAGE: English
AB The metabolic pathways of the cardiotonic agent denopamine [71771-90-9]

The metabolic pathways of the cardiotonic agent denopamine [/1//1-90-9] were studied in vitro with rat and rabbit liver prepns. 4'-0-Demethylated

(M-1) [87081-63-8], 3'-O-demethylated (iso-M-1) [87092-41-9], and 3-hydroxylated (M-4) [96843-99-1] metabolites of denopamine were formed by incubation of denopamine with the rat liver microsomal fraction containing the NADPH-generating system. The ratio of M-1 $\,$ to iso-M-1 formed in this system was 33:1. 3-Methoxydenopamine (M-2) [87081-64-9] and 3-hydroxy-4-O-methyldenopamine (iso-M-2) [87081-60-5] were formed via the catechol intermediate M-4, when denopamine was incubated with the rat liver 9000 g supernatant fraction in the presence of the NADPH-generating system and S-adenosyl-L-methionine. The ratio of M-2 to iso-M-2 in this system was 7:1. Conversion of iso-M-2 to M-2, i.e. 4-O-demethylation followed by 3-O-methylation, but not vice versa, took place in this system. M-2 was demethylated at 4' to form M-3 by the above microsomal system. M-1 was not ring-hydroxylated by this system, excluding the metabolic route to M-3 via M-1. Denopamine, M-1, M-2, and M-3 were glucuronidated in vitro by the rabbit liver microsomal fraction. The glucuronides of denopamine and M-2 were conjugated at the 4-phenolic hydroxy group, and the glucuronides of M-1 anm dM-3, which possess 2 phenolic hydroxy groups, were preferentially conjugated at the 4'-hydroxy group. The order of the rates of in vitro glucuronidation was M-3 > M-1 > M-2 > denopamine.

IT 96740-69-1 96740-70-4 96740-71-5 96740-72-6 96740-73-7 96843-99-1

RL: BIOL (Biological study)

(as denopamine metabolite, in liver)

RN 96740-69-1 CAPLUS

CN β-D-Glucopyranosiduronic acid, 4-[(1R)-2-[[2-(3,4-dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 96740-70-4 CAPLUS

CN β-D-Glucopyranosiduronic acid, 4-[2-[(2-hydroxy-2-(4-hydroxyphenyl)ethyl]amino]ethyl]-2-methoxyphenyl, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 96740-71-5 CAPLUS

CN β-D-Glucopyranosiduronic acid, 5-[2-[[2-(3,4dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]-2-methoxyphenyl, (R)- (9CI)
(CA INDEX NAME)

RN 96740-72-6 CAPLUS

CN β -D-Glucopyranosiduronic acid, 4-[2-[[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)ethyl]amino]ethyl]-2-methoxyphenyl, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 96740-73-7 CAPLUS

Absolute stereochemistry.

RN 96843-99-1 CAPLUS

CN 1,2-Benzenediol, 4-[(1R)-2-[[2-(3,4-dimethoxyphenyl)ethyl]amino]-1-hydroxyethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 62 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1984:635580 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 101:235580

TITLE: Intracellular trapping of therapeutics or tracer

agents

INVENTOR(S):

Pittman, Ray C.

PATENT ASSIGNEE(S):

University of California, USA

SOURCE:

U.S., 9 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PRIO	US 4466951 RITY APPLN. INFO.:	A	19840821	US 1982-441275 US 1982-441275	19821112 19821112
AB	carbonyl to a suita resulting bond not	ble pri amenabl	mary amine t e to hydroly	aminated and bound thr herapeutic or tracer ag sis in the cell, and th proteins which introduc	ent, the e adduct
	into the desired ce Thus, tyramine [51 using NaBH3CN to re to react for 6 days applied to a column	ell wher -67-2} duce the at roo result	e cellobiose was linked t e transient m temperatur ing in 83% p	retains the agent with o cellobiose by reducti Schiff base. The mixtue, the pH adjusted to 5 ure preparation The ce	in the cell. ve amination re was allowed .5 with HCl, and llobiose tyramine
	crosslinking agent trapped adducts att degradation of that	and bou ached t protei	nd to the de o protein as n in an expt	iodine-125, then react sired protein. The use a tool in determining 1. animal, and that of gent are described.	of the the sites of

IT 93391-24-3DP, radioiodinated, protein conjugates

RL: PREP (Preparation)

(preparation of, for intracellular protein metabolism and radiol. imaging)

RN 93391-24-3 CAPLUS

 β -D-Glucopyranosylamine, 4-O- β -D-glucopyranosyl-N-[2-(4hydroxyphenyl)ethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 63 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1984:17129 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 100:17129

TITLE: Disposition and metabolism of formoterol fumarate, a

new bronchodilator, in rats and dogs

AUTHOR(S): Sasaki, H.; Kamimura, H.; Shiobara, Y.; Esumi, Y.;

Takaichi, M.; Yokoshima, T.

Prod. Dev. Lab., Yamanouchi Pharm. Co., Ltd., Tokyo, CORPORATE SOURCE:

174, Japan

SOURCE: Xenobiotica (1982), 12(12), 803-12

CODEN: XENOBH; ISSN: 0049-8254

DOCUMENT TYPE: Journal LANGUAGE: English

After oral administration of 3H-labeled formoterol fumarate [87833-61-2]

to dogs, unchanged formoterol accounted for .>60% of the plasma radioactivity immediately after dosage: >20% was due to the unchanged drug until 12 h after dosage. In contrast, only 1-3% of the radioactivity was present as unchanged drug in rat plasma. After i.v. dosage, unchanged drug was much higher in both species than after oral administration. The elimination half-life of formoterol was 4-6 h in dogs and 1.7 h in rats. In both species, 36-45% of the dose was excreted in urine and 50-56% in

feces in 72 h, irresp. of the administration route. Biliary excretion after oral dosage was 65 and 31% in rats and dogs, resp. Thin-layer chromatog. before and after enzymic hydrolysis revealed that the drug was excreted in urine and bile of rats mostly as a conjugate. Dog urine also contained the **conjugate**, but the amount of unchanged drug was much higher than in rats. The **conjugated** metabolite was purified from rat urine and identified as the 2-0-glucuronide [87833-62-3]. The glucuronide was the only metabolite detected in the urine and bile of rats and in the urine of dogs. 87833-62-3

IT

RL: FORM (Formation, nonpreparative) (formation of, as formoterol metabolite)

87833-62-3 CAPLUS RN

methoxyphenyl)-1-methylethyl]amino]ethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 64 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1983:515496 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 99:115496

TITLE: Metabolism of a new cardiotonic agent,

 $(-)-\alpha-(3,4-dimethoxyphenethylaminomethyl)-4$ hydroxybenzyl alcohol (TA-064), in man. O-Demethylation and ring hydroxylation

AUTHOR(S): Suzuki, Toshikazu; Hashimura, Yoshimasa; Takeyama,

Shigeyuki

CORPORATE SOURCE: Pharmacol. Res. Lab., Tanabe Seiyaku Co., Ltd., Toda,

Japan

SOURCE: Drug Metabolism and Disposition (1983), 11(4), 377-86

CODEN: DMDSAI; ISSN: 0090-9556

DOCUMENT TYPE: Journal

LANGUAGE: English The plasma concentration of TA-064 (I) [71771-90-9], a new, selectively

inotropic cardiotonic agent, was determined based on selected ion-monitoring gas chromatog.-mass spectrometry. The plasma TA-064 concentration rose rapidly and reached a peak within 60 min after oral administration. The mean peak value of 5 volunteers was 14.4 ng/mL. About 30-40% of the dose was excreted as free and conjugated TA-064 and conjugates of 5 metabolites in the human 24-h urine. The 5 urinary metabolites were characterized by mass spectrometry after gas- or high-performance liquid chromatog. separation: they were 4'-demethyl [87081-63-8], 3-methoxy- [87081-64-9], and 4'-demethyl-3-methoxy-TA-064 [87081-59-2] as the major and 3'-demethyl- [87092-41-9] and 3-hydroxy-4-methoxy-TA-064 [87081-60-5] as the minor metabolites Therefore, the metabolic reactions involved are demethylation at either one of the two adjacent methoxy functions and hydroxylation at the ortho

position to the phenolic hydroxy group followed by methylation of either one of the two vicinal hydroxy groups. The ratio of 4'- to 3'-demethyl-TA-064 was 17:1, and that of 3-methoxy-4-hydroxy- to

3-hydroxy-4-methoxy-TA-064 was 6:1.

87081-59-2 TΤ

RL: BIOL (Biological study)

(as (dimethoxyphenethylaminomethyl)hydroxybenzyl alc.

metabolite, in humans)

RN 87081-59-2 CAPLUS

Benzenemethanol, 4-hydroxy- α -[[[2-(4-hydroxy-3-CN methoxyphenyl)ethyl]amino]methyl]-3-methoxy-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 65 OF 68 CAPLUS COPYRIGHT 2006 ACS.on STN

ACCESSION NUMBER:

1981:188233 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

94:188233

TITLE:

Immunologically-active enzyme-labeled

conjugates

INVENTOR(S):

Albert, Winfried; Lenz, Helmut

PATENT ASSIGNEE(S):

Boehringer Mannheim G.m.b.H., Fed. Rep. Ger.

SOURCE:

Ger. Offen., 11 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PAT	CENT	NO.			KINI)	DATE		. AP	PLICA:	noin	10.		DATE
							-							-	
	DE	2923	139			A1		1980	1218	DE	1979-	-2923	139		19790607
	EP	2105	0			A2		1981	0107	EΡ	1980-	-1028	62		19800522
	EΡ	2105	0			A3		1982	0317						
	EΡ	2105	0			В1		1983	0727						
		R:	ΑT,	BE,	CH,	DE,	FR	, GB,	IT,	LU, N	L, SE				
	ΑT	4327				Ε		1983	0815	AΤ	1980-	-1028	62		19800522
	JΡ	5516	5800			A2		1980	1224	JP	1980	-6969	5		19800527
	JP	6300	9184			B4		1988	0226						
	US	4486	534			А		1984	1204	US	1982-	-3797	94		19820519
PRIC	ORITY	APP	LN.	INFO	. :					DE	1979-	-2923	139	Α	19790607
										UŞ	1980	-14590	02	A1	19800502
										EP	1980-	-10286	62 '	А	19800522

A chromatog. separation is described for immunol. active and inactive components of enzyme-antigen conjugates mixts. for enzyme immunoassays. After chemical coupling, the enzyme-antigen mixture is placed on a column which contains an immobilized complex former (which will bind the antigen). After elution of unbound enzyme, the enzyme-antigen conjugate is specifically eluted. In 1 example, β-galactosidase was coupled to T4-binding globulin after periodate activation. The mixture was then applied to a T4-Sepharose 6B column. Unbound β-galactosidase activity was eluted with 10-50 mM Tris, 0.1M NaCl, and 10 nM MgCl2 (pH 7.5-8.5). The bound conjugate was then eluted with buffer containing 2-10 mM anilinonaphthalenesulfonic acid. Immunoreactivity of the mixture was increased from 5-20% to ≥80%. A procedure for digoxin derivative-glucose oxidase conjugate purification is also described.

IT 77537-91-8

RL: ANST (Analytical study)

(in thyroxine-binding globulin- β -galactosidase <u>conjugate</u> purification, by affinity chromatog., for enzyme immunoassay)

RN 77537-91-8 CAPLUS

CN Agarose, 3-[4-[3-[[1-carboxy-2-[4-(4-hydroxy-3,5-dioxophenoxy)-3,5-diodophenyl]ethyl]amino]-2-hydroxypropoxy]butoxy]-2-hydroxypropyl ether (9CI) (CA INDEX NAME)

CM 1

CRN 173144-63-3 CMF C25 H31 I4 N O9

PAGE 1-A

PAGE 1-B

__ OH

CM 2

CRN 9012-36-6 CMF Unspecified CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L24 ANSWER 66 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

88:46973

ACCESSION NUMBER:

1978:46973 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER:

TITLE:

SOURCE:

Radioiodinated hydroxphenylethylamine derivatives of

digitalis ${\color{red} {\bf glycosides}}$ and their aglucones as

scanning agents for adrenal imaging

AUTHOR(S):

Roeder, E.; Focken, P. H.; Biersack, H. J.; Winkler,

c.

CORPORATE SOURCE:

Pharm. Inst., Univ. Bonn, Bonn, Fed. Rep. Ger. IRCS Medical Science: Library Compendium (1977),

5(11), 542

CODEN: IRLCDZ; ISSN: 0305-6651 Journal

DOCUMENT TYPE: LANGUAGE:

English

The tyramine derivs. of cardiac $\underline{{ t glycosides}}$ and their aglucones were synthesized and labeled with 131I, and the agents then were injected into rats and dogs to study their potential as adrenal scanning agents. The aglucones, digitoxigenin, digoxigenin, and gitoxigenin, were dehydrated by oxidation and then mixed with tyramine and NaBH3CN to form 3-tyraminyl-3-desoxydigitoxigenin (I), 3-tyraminyl-3-desoxydigoxigen-12one, and 3-tyraminyl-3-desoxygitoxigen-16-one. The glycosides were aminated reductively with NaBH3CN/tyramine to 3'''monotyraminyldigitoxin, 3'''-monotyraminyldigoxin, 3'''monotyraminylgitoxin, 3,4'''-dityraminyldigoxin, 3,4'''- $\hbox{dityraminyldigitoxin, and 3,4'''-} \hbox{dityraminylgitoxin.} \quad \hbox{These aglucone and} \quad$ tyramine derivs. then were labeled with 131I by using the chloramine-T method of Hunter and Greenwood. Rats were injected with .apprx.100 μCi of the compds. and then scanned after 3-30 h. 131I-labeled I showed marked accumulation in the adrenals after only 3 h. Clear visualization of the adrenals of dogs also was evidenced by using 131I-labeled I. Thus, 131I- or 123I-labeled I is a good adrenal scanning agent with low toxicity

and rapid visualization.

IT 65370-49-2DP, iodine-131 derivs. 65370-51-6DP, iodine-131 derivs. 65370-52-7DP, iodine-131 derivs. 65370-53-8DP, iodine-131 derivs.

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of and adrenal scintigraphy with)

RN 65370-49-2 CAPLUS

CN Card-20(22)-enolide, 14-hydroxy-3-[[0-2,3,6-trideoxy-3-[[2-(4-

hydroxyphenyl)ethyl]amino]- β -D-ribo-hexopyranosyl-(1 \rightarrow 4)-O-2,6-dideoxy- β -D-ribo-hexopyranosyl-(1 \rightarrow 4)-2,6-dideoxy- β -D-ribo-hexopyranosyl]oxy]-, (3 β ,5 β)- (9CI) (CA INDEX NAME)

RN 65370-51-6 CAPLUS

CN Card-20(22)-enolide, 14-hydroxy-3-[[0-2,3,4,6-tetradeoxy-3,4-bis[[2-(4-hydroxyphenyl)ethyl]amino]- β -D-ribo-hexopyranosyl-(1-4)-0-2,6-dideoxy- β -D-ribo-hexopyranosyl-(1-4)-2,6-dideoxy- β -D-ribo-hexopyranosyl]oxy]-, (3 β ,5 β)- (9CI) (CA INDEX NAME)

PAGE 1-A

$$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{OH} \\$$

PAGE 1-B

PAGE 2-A

RN 65370-52-7 CAPLUS Card-20(22)-enolide, 12,14-dihydroxy-3-[[0-2,3,4,6-tetradeoxy-3,4-bis[[2-(4-hydroxyphenyl)ethyl]amino]- β -D-ribo-hexopyranosyl-(1-4)-0-2,6-dideoxy- β -D-ribo-hexopyranosyl-(1-4)-2,6-dideoxy- β -D-ribo-hexopyranosyl]oxy]-, (3 β ,5 β ,12 β)- (9CI) (CA INDEX NAME)

PAGE 1-A

$$\begin{array}{c} \text{Me} \\ \text{O} \\ \text{OH} \\$$

PAGE 1-B

PAGE 2-A

RN 65370-53-8 CAPLUS

Card-20(22)-enolide, 14,16-dihydroxy-3-[[O-2,3,4,6-tetradeoxy-3,4-bis[[2-(4-hydroxyphenyl)ethyl]amino]- β -D-ribo-hexopyranosyl-(1-4)-O-2,6-dideoxy- β -D-ribo-hexopyranosyl-(1-4)-2,6-dideoxy- β -D-ribo-hexopyranosyl]oxy]-, (3 β ,5 β ,16 β)- (9CI) (CA INDEX CN

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

L24 ANSWER 67 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: DOCUMENT NUMBER:

1977:529583 CAPLUS <<LOGINID::20061031>>

87:129583

TITLE: Iodothyronine enzyme conjugates

INVENTOR(S): Ullman, Edwin F.; Rubenstein, Kenneth E.

PATENT ASSIGNEE(S): Syva Co., USA

SOURCE: U.S., 12 pp. Cont.-in-part of U.S. 3,975,237.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 11

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4040907	Α	19770809	US 1975-644489	19751229
CA 956106	A1	19741015	CA 1972-141803	19720510
US 3852157	Α	19741203	US 1972-304157	19721106
US 3975237	Α	19760817	US 1974-481023	19740620
PRIORITY APPLN. INFO.:			US 1971-143609	A2 19710514
			US 1972-304157	A3 19721106
			IIS 1974-481023	A2 19740620

AB Polyiodothyronine-enzyme $\underline{\textbf{conjugates}}$ were synthesized for use in immunoassays for thyroxine. The enzyme conjugates compete with thyroxine for antibody sites and there are differences in enzyme activity between antibody-bound and free polyiodothyronine-enzyme conjugates. By determining enzymic activity in relation to known stds., the amount of thyroxine in the sample can be determined Thus, 10 mg N-methyl-N-carboxymethylglycylthyroxine Me ester (I) and 1.3 mg N-hydroxysuccinimide were dissolved in DMF followed by addition of 2.3 mg 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide-HCl at 0°. The N-hydroxysuccinimide ester of I formed was added to a stirred solution of malate dehydrogenase in carbonate buffer, pH 9.2. Conjugates with triose phosphate isomerase, glucose oxidase, glucose 6-phosphate dehydrogenase, and lysozyme were prepared similarly. Carboxymethoxyacetyl thyroxine Me ester, deaminothyroxine, N-chloroacetoamidothyroxine, and thyroxine galacturonamide were also prepared and used in the synthesis of enzyme conjugates.

IT 64231-94-3

AUTHOR(S):

RL: RCT (Reactant); RACT (Reactant or reagent) (reaction of, with malate dehydrogenase)

RN 64231-94-3 CAPLUS

CN L-Tyrosine, N-D-galacturonoyl-O-(4-hydroxy-3,5-diiodophenyl)-3,5-diiodo-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L24 ANSWER 68 OF 68 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1977:11651 CAPLUS <<LOGINID::20061031>>

DOCUMENT NUMBER: 86:11651

TITLE: Mass spectral analysis of glucuronides from

sympathomimetic hydroxyphenylalkylaminoethanols Pook, Karl H.; Rominger, Karl L.; Arndts, Dietrich Anal. Res. Biochem. Dep., C. H. Boehringer Sohn,

CORPORATE SOURCE: Anal. Res. Biochem. Dep., C. H. Boehrin Ingelheim/Rhein, Fed. Rep. Ger.

SOURCE: Journal of Pharmaceutical Sciences (1976), 65(10),

1513-18

CODEN: JPMSAE; ISSN: 0022-3549

DOCUMENT TYPE: Journal LANGUAGE: English

AB A mass spectral method is described for the structure determination of glucuronic

acid conjugates (such as I [61046-79-5]) of

hydroxyphenylalkylaminoethanol-type drugs. Trimethylsilylation and

application of the GLC-mass spectral technique yield mass spectra with sufficient information for the identification of all structural subunits.

IT 61046-77-3 61046-78-4

RL: PRP (Properties)

(mass spectra of, as sympathomimetic metabolite)

RN 61046-77-3 CAPLUS

CN β -D-Glucopyranosiduronic acid, 3-hydroxy-5-[1-hydroxy-2-[[2-(4-hydroxyphenyl)-1-methylethyl]amino]ethyl]phenyl (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 61046-78-4 CAPLUS

CN β -D-Glucopyranosiduronic acid, 4-[2-[[2-(3,5-dihydroxyphenyl)-2-hydroxyethyl]amino]propyl]phenyl (9CI) (CA INDEX NAME)