

Notas de clase: Martes 09 de Mayo

Contents

l	Repaso matemático: Transformaciones invertibles	2
2	Teorema de Bayes	3
3	Independencia de eventos	4
4	Probabilidad condicional	6

1 Repaso matemático: Transformaciones invertibles

Decimos que una función $f: A \to B$ es **invertible** si existe una función $g: B \to B$ de manera que f(g(b)) = b y g(f(a)) = a para los elementos b en B y a en A.

- 1. $f(x) = x^3 \text{ y } g(y) = \sqrt[3]{y}$,
- 2. $f(x) = \sin(x)$ y $g(y) = \arcsin(y)$

¿Son las funciones f(x) = 5x - 3, $g(y) = \frac{y+3}{5}$ funciones inversas?

Investigación tarea 3:

Sobre la paradoja del cumpleaños

- 1. Plantear el problema,
- 2. resolver el problema.

tener referencias y se adjunta en la tarea 3.

Puntos extras al promedio:

Diseñe y muestre un algoritmo de manera que se pueda plantear la paradoja del cumpleaños. Debe incluir la matemática del problema y exponerse en grupo.

Teorema de probabilidad total

Un espacios muestral Ω . Una colección de conjuntos B_1, \ldots, B_m es una partición de Ω si

- 1. $B_i \neq \emptyset$ para toda i.
- 2. $B_i \cap B_j = \emptyset$ para toda i.
- $3. \cup_{i=1}^{n} B_i = \Omega.$

El teorema de probabilidad total se enuncia de la siguiente manera, para todo conjunto A, se cumple que,

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

Ejemplo:

- 1. Supongamos el caso en que tenemos una población con la misma cantidad de hombres que de mujeres. Además, el 4% de los hombres son daltónicos y el 1% de las mujeres son daltónicas. Escogida una persona al azar, ¿cuál es la probabilidad de que la persona sea daltónica?
- 2. Una urna A contiene 2 canicas blancas y 4 canicas rojas. La urna B tiene 1 canica blanca y una canica roja. Se toma al azar una canica de la urna A y sin verla se coloca en la urna B, luego en la urna B se extrae una canica. ¿Cuál es la probabilidad de la canica seleccionada sea roja?

2 Teorema de Bayes

Sea A un evento con $\mathbb{P}(A) > 0$. Se cumple que,

$$\mathbb{P}(B_j|A) = \frac{\mathbb{P}(A|B_j)\mathbb{P}(B_j)}{\sum_{i=1}^n \mathbb{P}(A|B_j)\mathbb{P}(B_j)}$$

Ejemplo

En un laboratorio se desarrolla una prueba para detectar una enfermedad. Sean Enf el evento el individuo está enfermo y Neg el evento la prueba es negativa. Sobre la eficacia de esta prueba se sabe

1.
$$\mathbb{P}(Neg^c|Enf) = .95$$

2.
$$\mathbb{P}(Neg|Efn^c) = .96$$

3.
$$\mathbb{P}(Efn) = .01$$

• ¿Qué significarían los siguientes eventos $\mathbb{P}(Efn|Neg)$ y $\mathbb{P}(Efn|Neg^c)$?

• ¿Qué significarían los siguientes eventos $\mathbb{P}(Efn^c|Neg^c)$ y $\mathbb{P}(Efn^c|Neg)$?

3 Independencia de eventos

Decimos que dos eventos $A,\ B\subset \Omega$ son independientes si se cumple que

$$\mathbb{P}(A \cap B) = P(A) * P(B)$$

Observación: Ser independientes no implica que sean ajenos. De la misma manera dos eventos ajenos no implica que sean independientes.

Ejemplos:

1. El lanzamiento de una moneda 3 veces. Tiene como espacio muestral,

$$\Omega = \{aaa, aas, asa, saa, ass, sas, ssa, sss\}.$$

- (a) A: Caen a lo mas 2 áquilas.
- (b) B: Caen al menos 2 águilas.
- (c) C: Caen 3 áquilas o 3 soles.
- Supongamos que las probabilidades de que una familia tenga un hijo o tenga una hija son iguales. Si la familia tiene dos hijos, considere los siguientes eventos.
 - (a) A: la familia tiene hijos de ambos sexos.
 - (b) y B: a lo mas uno de los hijos es varón.
- 3. Supongamos que al lanzar una moneda honesta obtienen 5 águilas en sucesión. ¿Cuál es la probabilidad de que en el sexto lanzamiento también sea águila?

Ejercicios:

Los ejercicios son (+.25) para la tarea 4.

- 1. ¿son independientes dos a dos?
 - Sea $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$ y los eventos,
 - $A = \{1, 2, 3, 4\}$
 - $B = \{1, 5, 6, 7\}$
 - $C = \{1, 2, 3, 5\}$
- 2. Se lanza un dado equilibrado dos veces. Determine si los siguientes pares de eventos son independientes.
 - A: la suma de los dados es 6.
 - \bullet y B: el primer resultado es 4.
 - A: la suma de los dados es 7.
 - y B : el segundo resultado es 4.

R= Los dos primeros no, los dos segundos si.

- 3. Sean C y D dos eventos independientes, tales que $\mathbb{P}(C) = c$ y $\mathbb{P}(D) = d$, Calcula las probabilidades,
 - (a) ninguno de estos dos eventos ocurra,
 - (b) solamente uno de los eventos ocurra,
 - (c) al menos uno de los eventos ocurra,
 - (d) los dos eventos ocurren,
 - (e) a lo mas uno de los eventos pasa
- 4. Deduzca la ecuación

$$\mathbb{P}(A_1 \cup A_2 \cup A_3) = 1 - \mathbb{P}(A_1^c) * \mathbb{P}(A_2^c) * \mathbb{P}(A_3^c)$$

4 Probabilidad condicional

Sean A y B dos eventos. Consideremos el caso cuando $\mathbb{P}(B) > 0$. la probabilidad condicional del evento A dado el evento B se define como,

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Ejercicios:

Los ejercicios son (+.25) para la tarea 4.

- 1. Sea $\mathbb{P}(A) = .5$ y $\mathbb{P}(A \cup B) = .6$, encuentre $\mathbb{P}(B)$ en cada caso,
 - (a) A y B son ajenos.
 - (b) A y B son independientes.
 - (c) $\mathbb{P}(A|B) = .4$
- 2. ¿Cierto o falso?
 - (a) $\mathbb{P}(A) < \mathbb{P}(A|B)$
 - (b) $\mathbb{P}(A) = \mathbb{P}(A|B)$
 - (c) $\mathbb{P}(A) > \mathbb{P}(A|B)$
- 3. Crea un ejemplo donde se cumpla
 - (a) Con $\mathbb{P}(A|B) = 0 \mathbb{P}(A) > 0$
 - (b) $\mathbb{P}(A|B^c) = \mathbb{P}(A^c|B)$
- 4. ¿Qué significarían los siguientes eventos $\mathbb{P}(Efn^c|Neg^c)$ y $\mathbb{P}(Efn^c|Neg)$?