Model Performance

Overview

ML Principle:

Linear Discriminant Analysis

References:

- LDA Doc.
- Stanford NLP Course
- Stanford NLP Lecture
- Engilsh Stopwords

Algorithm Description:

The learning algorithm used in this classification is Linear Discriminant Analysis. This approach was chosen as it is easy to implement and is computational very efficient. The first step in the classification pipeline is removing all stop words for example 'i', 'me', etc. A list of English stop words is provided by the nltk module. Next the sentence is passed through a stemmer and a lemmatizer. Stemming just removes or stems the last few characters of a word, often leading to incorrect meanings and spelling. Lemmatization considers the context and converts the word to its meaningful base form, which is called Lemma. This is done with the SnowBallStemmer and WordNetLemmatizer class from the nltk module. The final preprocessing step is to vectorize the sentence. For this the Tf-idf vectorizer from sklearn is used. If a Tf-idf vectorizer is used the sentences don't have to be tokenized. The sentence is now represented in a numerical feature vector which now can be passed to the LDA classifier.

Metrics

Data: ClassifiedDataSetV1.2 with 10 folds cross validation

Split seed: 3.390625

Training Dataset

Classes	Number of samples		
Room	397		
Location	380		
Staff	197		
Unknown	181		
HotelOrganisation	143		
Food	130		
ReasonForStay	117		
GeneralUtility	45		

Test Dataset

Classes	Number of samples
Room	43
Location	42
Staff	21
Unknown	20
HotelOrganisation	15
Food	14
ReasonForStay	13
GeneralUtility	5

Classification Performance

Classes	Precision	Recall	F1 Score
Room	67.92%	53.53%	59.87%
Location	65.40%	57.14%	60.99%
Staff	55.50%	52.97%	54.21%
Unknown	27.50%	32.84%	29.93%
HotelOrganisation	16.77%	17.31%	17.03%
Food	52.00%	62.76%	56.88%
ReasonForStay	23.03%	31.54%	26.62%
GeneralUtility	35.71%	60.00%	44.78%
Accuracy			48.07%
Macro Average	42.98%	46.01%	43.79%
Weighted Average	51.08%	48.07%	49.09%

ConfusionMatrix:

Normalised ConfusionMatrix:

F1 Socre by split:

