Definite Integrals and Applications of Integrals

AI24BTECH11015 - Harshvardhan Patidar

Section-B — JEE Main / AIEEE

- 1) $\int_0^{10\pi} |\sin x| \, dx$ is
 - a) 20
 - b) 8
 - c) 10
 - d) 18

(2002)

- 2) $I_n = \int_0^\infty \tan^n x \, dx$ then $\lim_{n \to \infty} n[I_n + I_{n+2}]$ equals
 - (a) $\frac{1}{2}$
 - (b) 1
 - (c) ∞
 - (d) zero

(2002)

- 3) $\int_{0}^{\infty} [x^2] dx$ is
 - a) $2 \sqrt{2}$

 - b) $2 + \sqrt{2}$ c) $\sqrt{2} 1$ d) $-\sqrt{2} \sqrt{3} + 5$

(2002)

- 4) $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx$ is a) $\frac{\pi^2}{4}$ b) π^2

 - c) zero
 - d) $\frac{\pi}{2}$

(2002)

- 5) If y = f(x) makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area of $\frac{3}{4}$ square unit with the axes then $\int_{0}^{\pi} x f'(x) dx$ is
 - a) $\frac{3}{2}$
 - b) 1

6) The area bounded by the curves $y = \ln x$, y = $\ln|x|$, $y = |\ln x|$ and $y = |\ln |x||$

- a) 4sq.units
- b) 6sq.units
- c) 10sq.units
- d) none of these

(2002)

1

- 7) The area of the region bounded by the curves y = |x - 1| and y = 3 - |x| is
 - a) 6sq.units
 - b) 2sq.units
 - c) 3sq.units
 - d) 4sq.units

(2003)

8) If f(a+b-x) = f(x) then $\int_{a}^{b} x f(x) dx$ is equal

a)
$$\frac{a+b}{2} \int_{a}^{b} f(a+b+x)dx$$

b)
$$\frac{a+b}{2} \int_{a}^{b} f(b-x)dx$$

- c) $\frac{a+b}{2} \int_{a}^{b} f(x)dx$
- d) $\frac{b-a}{2} \int_{a}^{b} f(x) dx$

(2003)

- 9) Let f(x) be a function satisfying f'(x) = f(x)with f(0) = 1 and g(x) be a function that satisfies $f(x) + g(x) = x^2$. Then the value of the integral $\int_{\Omega} f(x)g(x)dx$, is

- 10) The value of the integral $I = \int_{0}^{1} x(1-x)^n dx$ is
 - a) $\frac{1}{n+1} + \frac{1}{n+2}$ b) $\frac{1}{n+1}$ c) $\frac{1}{n+2}$

d)
$$\frac{1}{n+1} - \frac{1}{n+2}$$

(2003)

11) $\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}}$ is a) e + 1

- b) e 1
- c) 1 e
- d) e

(2004)

12) The value of $\int_{-2}^{3} |1 - x^2| dx$ is

- a) $\frac{1}{3}$ b) $\frac{14}{3}$ c) $\frac{7}{3}$ d) $\frac{28}{3}$

(2004)

13) The value of $I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} dx$ is

- a) 3
- b) 1
- c) 2
- d) 0

(2004)

14) If $\int_{0}^{\pi} x f(\sin x) dx = A \int_{0}^{\frac{\pi}{2}} f(\sin x) dx$, then *A* is

- a) 2π
- b) π
- c) $\frac{\pi}{4}$ d) 0

(2004)

15) If $f(x) = \frac{e^x}{1+e^x}$, $I_1 = \int_{f(-a)}^{f(a)} xgx(1-x)dx$ and $I_2 =$

 $\int_{f(-a)}^{f(a)} gx(1-x)dx$, then the value of $\frac{I_2}{I_1}$ is

- a) 1
- b) -3
- c) -1
- d) 2

(2004)