hpm_motor 库使用说明

先楫半导体《hpm_motor库使用说明》

目录

1 简介	4
2 电机库的添加	4
2.1 库内容	4
2.2 如何添加库	
3 库功能说明	
3.1 轨迹规划算法	
3.1.1 功能简介	
3.1.2 接口说明	
3.1.3 使用方法	
3.1.4 配置示例	

版本:

日期	版本号	说明
2022-5-13	1.0	初版

1 简介

hpm_motor 是一个针对电机控制核心算法的库文件,旨在通过不断地更新完善,模块化管理具体功能算法;对用户来说不用去关心底层如何实现,加速用户程序开发。

该库目前仅支持在 windows 操作系统下使用。

2 电机库的添加

2.1 库内容

HPM 电机库包含如下内容:

- 包含函数声明,宏声明,结构体声明的头文件
- 包含初始化配置函数和实时运行函数的.a 文件
- 一个 demo 示例,展示 HPM MOTOR 库使用。
- 文档

2.2 如何添加库

如需使用库里面的一些功能,请先将库添加工程下引用,具体引用流程如下:

(1) 将 hpm_motor 文件添加到 middleware 分支下

图 1

(2) 工程引用 hpm motor 库

图 2

(3) 新建工程,打开工程后可以看到 hpm_motor 库被工程引用

图 3

(4) 工程编译

这里要说说明一下: hpm_motor 库文件使用, 同时支持 gcc 以及 andes 工具链。

3 库功能说明

当前 1.0 版电机库, 支持轨迹规划算法函数接口调用, 其他算法功能会迭代更新完善。用

户使用之前请先调用版本号函数接口获取版本号,与.a 文件显示的版本号核对。

3.1 轨迹规划算法

电机在启停时,速度存在阶跃的情况。电机速度的突变可能会导致电流过载。所以通常 用加减速控制算法来规划电机速度。

libhpm_motor.a 中使用的轨迹规划算法是 S 型曲线,其核心是通过可变加加速度大小来控制加速度的变化,保证加速度不突变,使得加减速的速度曲线平滑,以此达到电机平稳运行的目的。

3.1.1 功能简介

S型曲线主要由加速段(T_a),匀速段段(T_v),减速段(T_d)三大部分组成。加速段 又分为加加速(T_{j1})、匀加速、减加速(T_{j1}),减速度段分为加减速(T_{j2})、匀减速和减减速(T_{j2}),一共七段如图 1 所示,其中, v_{max} 为系统最大加速, v_0 为起始速度, v_1 为终止速度, a_{max} 为系统最大加速度, a_{min} 为系统最大减速度, a_{max} 为系统最大加速度, a_{min} 为系统最大减速度, a_{max} 为系统最大加速度, a_{min} 为系统最大减速度, a_{min} 为系统最大减速度。

©2023 Shanghai HPMICRO Semiconductor Co., Ltd.

图 4 S 型规划下速度/加速度/加加速度

3.1.2 接口说明

(1) 入口参数

	名称	说明		
轨迹生成配置参数	CMDGENE_POSCFG_PARA	位置模式下		
CMDGENE_INPUT_PARA	CMDGENE_VELCFG_PARA	速度模式下		
中间变量	CMDGENE_USER_PARA			
输出变量	CMDGENE_OUTPUT_PARA	位置/速度/加速度/加速度序列		

(2) 结构体成员

结构体		描述	单位	
	q0	起始位置	unit	
	q1	绝对运动位置	unit	
	v0	起始速度,一般设置为0	unit/s	
	v1	终止速度,一般设置为0	unit/s	
	vmax	最大速度	unit/s	
CMDGENE POSCFG PARA	amax	最大加速度	unit/s /s	
CIVIDGENE_POSCEG_PARA	imay	是十九九市	unit/s	
	jmax	最大加加速度	/s/s	
	cyclecnt	往返次数	/	
	cycletype	运动类型	/	
	dwelltime	往返停歇时间	ms	
	isr_time_s	更新位置序列的中断时间	S	
	q0	起始位置	unit	
	Tv	匀速时间	S	
	v0	起始速度,一般设置为0	unit/s	
CNADCENE VELCEC DADA	v1	终止速度,一般设置为0	unit/s	
CMDGENE_VELCFG_PARA	vmax	最大速度	unit/s	
	amax	最大加速度	unit/s/s	
	jmax	最大加加速度	unit/s/s	
	isr_time_s	更新速度序列的中断时间	S	
	poscmd	位移指令	unit	
CMDGENE_OUTPUT_PARA	velcmd	速度指令	unit/s	
	acccmd	加速度指令	unit/s/s	

©2023 Shanghai HPMICRO Semiconductor Co., Ltd.

注: 单位 unit 一般为 r, count

(3) 函数接口

函数接口名称	说明	调用状态
pos_cmd_gene	位置模式下,位置/速度序列更新	中断函数内调用
vel_cmd_gene	速度模式下,速度序列更新	中断函数内调用
cmd_gene_disable	轨迹规划重置	轨迹规划结束后重置

3.1.3 使用方法

轨迹规划算法分为以下几步:

Step1:添加库头文件。C 头文件 "libhpm_motor.h" 包含库使用的函数声明和结构体

声明。在主 C 文件的顶部添加以下行:

#include "libhpm_motor.h"

.h 文件在 hpm_app\middleware\hpm_motor\inc 下。

Step2: 在"{ProjectName}-Main.c"文件中定义轨迹规划结构体全局变量。

CMDGENE_PARA cmdpar=0;

Step3:用户根据运行模式,运动方式,运动参数对配置参数结构体的各成员赋值

cmdpar.cmdgene in par.poscfgpar.q0 = 0;

cmdpar.cmdgene in par.poscfgpar.q1 = 20;

cmdpar.cmdgene in par.poscfgpar.v0 = 0;

cmdpar.cmdgene in par.poscfgpar.v1 = 0;

cmdpar.cmdgene in par.poscfgpar.vmax = 10;

cmdpar.cmdgene in par.poscfgpar.amax = 100;

cmdpar.cmdgene in par.poscfgpar.jmax = 1000;

cmdpar.cmdgene in par.poscfgpar.cyclecnt = 1;


```
cmdpar.cmdgene in par.poscfgpar.cycletype = 0;
  cmdpar.cmdgene_in_par.poscfgpar.dwelltime = 500;
   cmdpar.cmdgene in par.poscfgpar.isr time s = 1;
  cmdpar.cmdgene in par.velcfgpar.q0 = 0;
  cmdpar.cmdgene in par.velcfgpar.Tv = 5;
   cmdpar.cmdgene in par.velcfgpar.v0 = 0;
   cmdpar.cmdgene in par.velcfgpar.v1 = 0;
   cmdpar.cmdgene in par.velcfgpar.vmax = 10;
  cmdpar.cmdgene in par.velcfgpar.amax = 100;
  cmdpar.cmdgene in par.velcfgpar.jmax = 1000;
   cmdpar.cmdgene in par.velcfgpar.isr time s = 1;
   Step4:根据运行模式在中断内分别调用对应轨迹规划函数
  速度模式下,调用函数 vel_cmd_gene
  位置模式下,调用函数 pos_cmd_gene
  Step5: 轨迹规划重置
   cmd gene disable
  调用该函数重置轨迹规划中间变量,以便再次对用户指定的 PTP 运动的起点,终点,速
度规划算法。
  具体可参照 apps 下 lib 测试工程: lib demo。
```


3.1.4 配置示例

为了方便大家更快捷的对此功能了解使用,这里记录了一些基础配置下速度曲线,位置曲线供大家参考,具体如下表所示。

模式	绝对	速度	加速度	加加速度	匀速	运动	运行	中断	示意图
	位置 r	r/s	r/s/s	r/s/s/s	时间 s	模式	次数		
油井	0	10	100	1000	1	/	/		图 5
速度	0	10	10	100	1	/	/		图 6
	20	10	100	1000	/	0:连续	/	10ms	图 7
位置	20	10	100	1000	/	1:单次	/		图 8
	20	10	100	1000	/	2:多次	2		图 9

图 5

图 6

图 7

图8

图 9

