UT621024

128K X 8 BIT LOW POWER CMOS SRAM

GENERAL DESCRIPTION

FEATURES

Rev. 1.5

■ Access time: 35/55/70ns (max.)

■ Low power consumption :

 $\begin{array}{c} Operating: 60/50/40 \text{ mA (typical)} \\ Standby: 2\mu\text{A (typical) L-version} \\ 1\mu\text{A (typical) LL-version} \end{array}$

■ Single 5V power supply

■ All inputs and outputs TTL compatible

Fully static operationThree state outputs

■ Data retention voltage : 2V (min.)

■ Package: 32-pin 600 mil PDIP

32-pin 450 mil SOP

32-pin 8mmx20mm TSOP-1 32-pin 8mmx13.4mm STSOP

The UT621024 is a 1,048,576-bit low power CMOS static random access memory organized as 131,072 words by 8 bits. It is fabricated using high performance, high reliability CMOS technology.

The UT621024 is designed for low power application. It is particularly well suited for battery back-up nonvolatile memory application.

The UT621024 operates from a single 5V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A16	Address Inputs
I/O1 - I/O8	Data Inputs/Outputs
CE1 ,CE2	Chip enable 1,2 Inputs
WE	Write Enable Input
ŌE	Output Enable Input
V _{CC}	Power Supply
V _{SS}	Ground
NC	No Connection

PIN CONFIGURATION

UTRON TECHNOLOGY INC.

P80036

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

UT621024

128K X 8 BIT LOW POWER CMOS SRAM

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Terminal Voltage with Respect to Vss	V_{TERM}	-0.5 to +7.0	V
Operating Temperature	T _A	0 to +70	$^{\circ}\mathbb{C}$
Storage Temperature	T _{STG}	-65 to +150	$^{\circ}\mathbb{C}$
Power Dissipation	P _D	1	W
DC Output Current	I _{OUT}	50	mA
Soldering Temperature (under 10 sec)	T _{solder}	260	$^{\circ}\mathbb{C}$

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE1	CE2	ŌĒ	WE	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	X	X	High - Z	I_{SB},I_{SB1}
Standby	X	L	X	X	High -Z	I _{SB} ,I _{SB1}
Output Disable	L	Н	Н	Н	High - Z	I _{cc}
Read	L	Н	L	Η	D _{OUT}	I _{cc}
Write	L	Н	Χ	L	D_IN	I _{cc}

Note: H = V_{IH}, L=V_{IL}, X = Don't care.

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V^{\pm} 10\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$)

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Input High Voltage	V_{IH}			2.2	-	Vcc+0.5	V
Input Low Voltage	V_{IL}			- 0.5	-	8.0	V
Input Leakage Current	I _{IL}	$V_{SS} \leqq V_{IN} \leqq V_{CC}$		- 1	-	1	μA
Output Leakage Current	I _{OL}	$V_{SS} \leq V_{I/O} \leq V_{CC}$					
		$\overline{CE1}$ =V _{IH} or CE2 = V _{IL} or		- 1	-	1	μΑ
		$\overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$					
Output High Voltage	V_{OH}	I _{OH} = - 1mA		2.4	ı	-	V
Output Low Voltage	V_{OL}	I _{OL} = 4mA		-	-	0.4	V
Average Operating	I _{CC}	Cycle time=min, 100% duty,	-35	-	60	100	mΑ
Power Supply Courrent		$\overline{CE1} = V_{IL}, CE2 = V_{IH},$	-55	-	50	85	mΑ
		$I_{I/O} = 0mA$	-70	-	40	70	mΑ
	I _{CC1}	Cycle time=1µs,100% duty,I _{I/O} =	0mA				
		$\overline{\text{CE1}} \leq 0.2 \text{V,CE2} \geq \text{V}_{\text{CC}} - 0.2 \text{V,}$		-	-	10	mΑ
		other pins at 0.2V or V_{CC} -0.2V,					
Standby Power	I _{SB}	$\overline{CE1}$ =V _{IH} or CE2 = V _{IL}				3	mA
Supply Current		other pins at 0.2V or V _{CC} -0.2V,			-	,	ш
	I _{SB1}	$\overline{\text{CE1}} \ge V_{\text{CC}}$ -0.2V or	- L	_	2	100	
		CE2≦0.2V				40*	μA
		other pins at 0.2V or V _{CC} -0.2V,	-	_	1	50	μA
			LL		-	15*	۳

^{*}Those parameters are for reference only under 50°C

UTRON TECHNOLOGY INC. P80036

CAPACITANCE (TA=25°C, f=1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Input Capacitance	Cin	-	8	pF
Input/Output Capacitance	C _{I/O}	-	10	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	C_L =100pF, I_{OH}/I_{OL} =-1mA/4mA

AC ELECTRICAL CHARACTERISTICS (Vcc = $5V\pm$ 10%, Ta = 0° C to 70° C)

(1) READ CYCLE

PARAMETER	SYMBOL	UT621	024-35	UT621	024-55	UT621	024-70	UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	t _{RC}	35	-	55	-	70	-	ns
Address Access Time	t _{AA}	-	35	-	55	-	70	ns
Chip Enable Access Time	t _{ACE1} , t _{ACE2}	-	35	-	55	-	70	ns
Output Enable Access Time	toe	-	25	-	30	-	35	ns
Chip Enable to Output in Low-Z	tclz1*, tclz2*	10	-	10	-	10	-	ns
Output Enable to Output in Low-Z	tolz*	5	-	5	-	5	-	ns
Chip Disable to Output in High-Z	tcнz1*, tснz2*	-	25	-	30	-	35	ns
Output Disable to Output in High-Z	tonz*	-	25	-	30	-	35	ns
Output Hold from Address Change	tон	5	-	5	-	5	-	ns

(2) WRITE CYCLE

PARAMETER	SYMBOL	UT621024- 35		UT621024-55		UT621024-70		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Write Cycle Time	twc	35	-	55	-	70	-	ns
Address Valid to End of Write	t _{AW}	30	-	50	-	60	-	ns
Chip Enable to End of Write	tcw1, tcw2	30	-	50	-	60	-	ns
Address Set-up Time	t _{AS}	0	-	0	-	0	-	ns
Write Pulse Width	twp	25	-	40	-	45	-	ns
Write Recovery Time	twR	0	-	0	-	0	-	ns
Data to Write Time Overlap	t _{DW}	20	-	25	-	30	-	ns
Data Hold from End of Write-Time	t _{DH}	0	-	0	-	0	-	ns
Output Active from End of Write	tow*	5	-	5	-	5	-	ns
Write to Output in High-Z	twHz*	_	15	-	20	-	25	ns

^{*}These parameters are guaranteed by device characterization, but not production tested.

UTRON TECHNOLOGY INC.

P80036

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2,4)

READ CYCLE 2 (\overline{CE1}, CE2 and \overline{OE} Controlled) (1,3,5,6)

Notes:

- 1. WE is HIGH for read cycle.
- 2. Device is continuously selected $\overline{\text{CE1}}$ =VIL and CE2=VIH.
- 3. Address must be valid prior to or coincident with $\overline{CE1}$ and CE2 transition; otherwise tAA is the limiting parameter.
- 4. OE is low.
- 5. t_{CLZ1} , t_{CLZ2} , t_{CLZ2} , t_{CHZ1} , t_{CHZ2} and t_{CHZ2} and t_{CHZ2} are specified with C_{L} =5pF. Transition is measured \pm 500mV from steady state.
- 6. At any given temperature and voltage condition, tcHz1 is less than tcLz1, tcHz2 is less than tcLz2, toHz is less than tcLz1, tcHz2 is less than tcLz2, toHz is less than tcLz1.

UTRON TECHNOLOGY INC.

P80036

WRITE CYCLE 1 (WE Controlled) (1,2,3,5)

WRITE CYCLE 2 (CE1 and CE2 Controlled) (1,2,5)

Notes :

- 1. $\overline{\text{WE}}$ or $\overline{\text{CE1}}$ must be HIGH or CE2 must be LOW during all address transitions.
- 2. A write occurs during the overlap of a low $\overline{\text{CEI}}$, a high CE2 and a low $\overline{\text{WE}}$.
- 3. During a WE controlled with write cycle with OE LOW, twp must be greater than twnz+tow to allow the I/O drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input singals must not be applied.
- 5. If the $\overline{\text{CE}_1}$ LOW transition occurs simultaneously with or after $\overline{\text{WE}}$ LOW transition, the outputs remain in a high impedance state.
- 6. t_{OW} and t_{WHZ} are specified with C_L=5pF. Transition is measured \pm 500mV from steady state.

UTRON TECHNOLOGY INC.

P80036

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

DATA RETENTION CHARACTERISTICS (TA = 0° C to 70° C)

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	VDR	$\overline{\text{CE1}} \geq \text{Vcc-0.2V} \text{or}$		2.0	-	-	V
		$CE2 \leq 0.2V$					
Data Retention Current	Idr	Vcc=3V	- L	-	1	40	μΑ
					'	20*	
		$\overline{CE1} \ \ge \ Vcc\text{-}0.2V \ or$	- LL	-	0.5	20	μА
		$\text{CE2} \leq 0.2 \text{V}$			0.5	10*	
Chip Disable to Data	tcdr	See Data Retention		0	-	-	ns
Retention Time		Waveforms (below)					
Recovery Time	t _R			t _{RC} *	-	-	ns

t_{RC}* = Read Cycle Time

DATA RETENTION WAVEFORM

UTRON TECHNOLOGY INC.

P80036

^{*}Those parameters are for reference only under $50\,^{\circ}\!\mathrm{C}$

Rev. 1.5

PACKAGE OUTLINE DIMENSION

32 pin 600 mil PDIP Package Outline Dimension

	UNIT	INCH(BASE)	MM(REF)
	A1	0.010 (MIN)	0.254 (MIN)
	A2	0.150 ± 0.005	3.810 ± 0.127
	В	0.018 ± 0.005	0.457 ± 0.127
\bigwedge	B1	0.050 ± 0.005	1.270 ± 0.127
	С	0.010± 0.004	0.254± 0.102
	D	1.650 ± 0.005	41.910 ± 0.127
\triangle	E	0.600 ± 0.010	15.240 ± 0.254
	E1	0.544 ± 0.004	13.818 ± 0.102
	е	0.100(TYP)	2.540(TYP)
	eB	0.640 ± 0.020	16.256 ± 0.508
	L	0.130 ± 0.010	3.302 ± 0.254
	S	0.075 ± 0.010	1.905± 0.254
	Q1	0.070± 0.005	1.778± 0.127

Note:

1. D/E1/S DIMENSION DO NOT INCLUDE MOLD FLASH.

32 pin 450mil SOP Package Outline Dimension

	UNIT	INCH(BASE)	MM(REF)
	Α	0.118 (MAX)	2.997 (MAX)
	A1	0.004(MIN)	0.102(MIN)
	A2	0.111(MAX)	2.82(MAX)
	b	0.015(MIN)	0.38(MIN)
	b	0.020(MAX)	0.50(MAX)
	С	0.008(TYP)	0.203(TYP)
	D	0.817(MAX)	20.75(MAX)
\triangle	Е	0.445 ± 0.005	11.303 ± 0.127
	E1	0.555 ± 0.005	14.097 ± 0.127
^	е	0.050(TYP)	1.270(TYP)
	L	0.0347 ± 0.008	0.881 ± 0.203
	L1	0.055 ± 0.008	1.397 ± 0.203
	S	0.026(MAX)	0.660 (MAX)
\triangle	у	0.004(MAX)	0.101(MAX)
	θ	0° -10°	0° -10°
	U	0 .0	0 .0

UTRON TECHNOLOGY INC.

P80036

	UNIT	INCH(BASE)	MM(REF)
	Α	0.047 (MAX)	1.20 (MAX)
\triangle	A1	0.004 ± 0.002	0.10 ± 0.05
	A2	0.039 ± 0.002	1.00 ± 0.05
	b	0.008 + 0.002 - 0.001	0.20 + 0.05 -0.03
	С	0.005 (TYP)	0.127 (TYP)
	D	0.724 ± 0.004	18.40 ± 0.10
	E	0.315 ± 0.004	8.00 ± 0.10
	е	0.020 (TYP)	0.50 (TYP)
	HD	0.787 ± 0.008	20.00 ± 0.20
	L	0.0197 ± 0.004	0.50 ± 0.10
	L1	0.0315 ± 0.004	0.08 ± 0.10
\bigwedge	у	0.003 (MAX)	0.076 (MAX)
\bigwedge_{R}	Ө	$0^{\circ}\sim5^{\circ}$	0°∼5°

UTRON TECHNOLOGY INC.

P80036

UT621024

128K X 8 BIT LOW POWER CMOS SRAM

32 pin 8mm x 13.4mm STSOP Package Outline Dimension

Uni t Symbol	MM(REF)	INCH(BASE)	
A	1.20(Max.)	0.047(Max).	
A1	0.10 ± 0.05	0.004 ± 0.002	
A2	1.00 ± 0.05	0.039 ± 0.002	
b	020(TYP.)	0.006(TYP.)	
С	0.15(TYP.)	0.006(TYP.)	
D	13.40 ± 0.20	0.526 ± 0.006	
Db	11.80 ± 0.10	0.465 ± 0.004	
E	8.000 ± 0.10	0.315 ± 0.004	
е	0.50(TYP.)	0.020(TYP.)	
L	0.50 ± 0.10	0.020 ± 0.004	
L1	0.80 ± 0.10	0.0315 ± 0.004	
У	0.08(Max.)	0.003(Max.)	
е	0°~5°	0°~5°	

Note:

- 1.E dinmension is not including end flash.
- 2.The total of both sides' end flash Is not above 0.3mm.

UTRON TECHNOLOGY INC.

P80036

ORDERING INFORMATION

PART NO.	ACCESS TIME	STANDBY CURRENT	PACKAGE
	(ns)	(μ A)	
UT621024PC-35L	35	100	32 PIN PDIP
UT621024PC-35LL	35	50	32 PIN PDIP
UT621024SC-35L	35	100	32 PIN SOP
UT621024SC-35LL	35	50	32 PIN SOP
UT621024LC-35L	35	100	32 PIN TSOP-I
UT621024LC-35LL	35	50	32 PIN TSOP-I
UT621024LS-35L	35	100	32 PIN STSOP
UT621024LS-35LL	35	50	32 PIN STSOP
UT621024PC-55L	55	100	32 PIN PDIP
UT621024PC-55LL	55	50	32 PIN PDIP
UT621024SC-55L	55	100	32 PIN SOP
UT621024SC-55LL	55	50	32 PIN SOP
UT621024LC-55L	55	100	32 PIN TSOP-I
UT621024LC-55LL	55	50	32 PIN TSOP-I
UT621024LS-55L	55	100	32 PIN STSOP
UT621024LS-55LL	55	50	32 PIN STSOP
UT621024PC-70L	70	100	32 PIN PDIP
UT621024PC-70LL	70	50	32 PIN PDIP
UT621024SC-70L	70	100	32 PIN SOP
UT621024SC-70LL	70	50	32 PIN SOP
UT621024LC-70L	70	100	32 PIN TSOP-I
UT621024LC-70LL	70	50	32 PIN TSOP-I
UT621024LS-70L	70	100	32 PIN STSOP
UT621024LS-70LL	70	50	32 PIN STSOP

REVISION HISTORY

REVISION	DESCRIPTION	DATE
REV. 1.0	Original.	Apr. 05 2000
REV. 1.1	NA	
REV. 1.2	NA	
REV. 1.3	Add STSOP-I Package	Aug. 29.2000
REV. 1.4	Modify the format of power consumption	Sep. 01.2000
REV. 1.5	1. Operating: 60/40 -> 60/50/40	Jun. 18,2001
	2. Standby Current : 10 ->2 (L-version)	
	3. Add I _{CC} –data as (-55, TYP 50, MAX 85)	
	4. Revise I _{SB1} TYP: 10-> 2, MAX: 300/100 ->100/40	
	5. The symbols CE1# ,OE# & WE# are revised as	
	CE1, OE & WE	

P80036