Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	
1.2 Описание выходных данных	
2 МЕТОД РЕШЕНИЯ	
3 ОПИСАНИЕ АЛГОРИТМОВ	7
3.1 Алгоритм конструктора класса Echoslam	7
3.2 Алгоритм деструктора класса Echoslam	7
3.3 Алгоритм функции main	7
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	9
5 КОД ПРОГРАММЫ	10
5.1 Файл Echoslam.cpp	10
5.2 Файл Echoslam.h	10
5.3 Файл main.cpp	11
6 ТЕСТИРОВАНИЕ	12
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОИНИКОВ	17

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект, который сообщает об отработке конструктора и деструктора. У объекта нет свойств и функциональности.

Написать программу, которая:

- 1. Создает объект с использованием оператора функции new.
- 2. Уничтожить объект оператором функции delete.

1.1 Описание входных данных

Отсутствует.

1.2 Описание выходных данных

Первая строка, с первой позиции:

Constructor

Вторая строка, с первой позиции:

Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект cout класса ostream;
- new оператор резервирования памяти;
- delete оператор освобождения памяти.

Класс Echoslam:

- функционал:
 - о метод Echoslam конструктор класса без параметров;
 - о метод ~Echoslam деструктор класса, удаление объекта.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Echoslam

Функционал: создание объекта.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Echoslam

N₂	Предикат	Действия	N₂
			перехода
1		Вывод "Constructor"	Ø

3.2 Алгоритм деструктора класса Echoslam

Функционал: удаление объекта.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса Echoslam

N₂	Предикат	Действия	No
			перехода
1		Вывод "Destructor"	Ø

3.3 Алгоритм функции main

Функционал: точка входа программы.

Параметры: нет.

Возвращаемое значение: целочисленное - индикатор корректности выполнения программы.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции таіп

N₂	Предикат	Действия	
			перехода
1		Инициализация указателя p_echoslam на объект класса Echoslam	2
2		Удаление объекта по указателю	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-1.

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Echoslam.cpp

Листинг 1 – Echoslam.cpp

```
#include "Echoslam.h"
#include <iostream>

Echoslam::Echoslam() {
    std::cout << "Constructor" << std::endl;
};

Echoslam::~Echoslam() {
    std::cout << "Destructor" << std::endl;
};</pre>
```

5.2 Файл Echoslam.h

Листинг 2 – Echoslam.h

```
#ifndef __ECHOSLAM_V_AVDEEVKE__H
#define __ECHOSLAM_V_AVDEEVKE__H

class Echoslam {
  public:
     Echoslam();
     ~Echoslam();
};

#endif
```

5.3 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include "Echoslam.h"

int main()
{
    Echoslam *p_echoslam = new Echoslam;
    delete p_echoslam;

    return 0;
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 4.

Таблица 4 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные	
	данные	данные	
	Constructor Destructor	Constructor Destructor	

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).