Vemburoi Konar Exp - 9 DIGAD DATE: Aim: Implement and analyze the working of Local Interpretable Model agnostic Explainations (LIME) Supervised Model-Iheory: LIME is a methodology developed to provide human - interpretable explainations for the predictions of Complex machine bookning models, regardless of the underlying algorithm used. De Local Interpretability LIME focuses on providing explaination at the local level meening explainations are tailored to individual predictions rother than the entire dataset. 2) Perturbation - Based Explaination It generates explainations by perturbing the input features around the instance of interest and Observing the resulting Changes in the model's prediction 3) Weighting and Impostonce LIME assigns weights to the partuobed samples based on their proximity to the instance are given higher weights, indicating their greater influence on the local explaination FOR EDUCATIONAL USE

_4)	Interpretable Explination
	once the interpretable model is trained,
	LIME provides explainations in the form of
	fectuse contributions or decision rules inot
	Explain how both input feature influences the
	model's prediction for the instance of interest
	Advantages:
1)	nodel Agnostic
	It can be opplied to any ML mode's regardless
	of underlying amhitechise
2)	Local Explainations
	By focusing on local explainables, LIME provides
	insights into how the model behaves tox
	Specific instances, allowing for better understanding
	and Validation of individual predictions
3	+ to restability
7	15 15 1 2 100 100 100 100 100 100 100 100 100
	humons', enabling Stakeholders to trust and
	Natidate model predictions, Identify petentil biases,
Transch	Validate model predictions, Identity peternite brases,
	and goin losights into the delision making process.
14	Conclusion:
	= LIME Offers O principled approach to
Lis.	explaining the predictions of complex
	Marking learning models in a numar - in texpretable
	Manner LIME serves as a Voluble tool too
	improving the accountability, for new , and reliability
-	of mathing bearing systems in various domains
	cy maining of
	rop phycational USE