《随机过程引论》补充习题及解答

吴瀚霖 hanlinwu@mail.bnu.edu.cn

2018年6月

1 随机过程

习题 1.1 (P3) 当 I 为可数集时, 过程 $(X_t:t\in I)$ 和 $(Y_t:t\in I)$ 是无区别的当且仅当它们互为修正.

证明 若 (X_t) 与 (Y_t) 是无区别的, 显然它们互为修正.

另一方面, 若 (X_t) 与 (Y_t) 互为修正, 则对于任意的 $t \in I$, 存在 $N_t \in \mathscr{F}$ 满足 $\mathbf{P}(N_t) = 0$, 使得对所有的 $\omega \in N_t^c$, $X_t(\omega) = Y_t(\omega)$. 令 $N := \bigcup_{t \in I} N_t$, 因为 I 可数, 故 $N \in \mathscr{F}$, $\mathbf{P}(N) = 0$, 而且对于所有的 $\omega \in N^c$ 和 $t \in I$, 有 $X_t(\omega) = Y_t(\omega)$, 因此 (X_t) 与 (Y_t) 是无区别的.

习题 1.2 (P8) 取值于 (E,\mathcal{E}) 的两个随机过程 $(X_t:t\in I)$ 和 $(Y_t:t\in I)$ 等价当且仅当 $Q_X=Q_Y$.

证明 (\Rightarrow) \mathscr{C} 为全体柱集构成的集合. $\forall \pi_I^{-1}(H) \in \mathscr{C}$, 其中 $J = \{t_1, \dots, t_n\} \subseteq I, H \in \mathscr{E}^J, \pi$ 为投影.

$$Q_X(\pi_J^{-1}(H)) = \mathbf{P}[X \in \pi_J^{-1}(H)] = \mathbf{P}[(X_{t_1}, \dots, X_{t_n}) \in H]$$

$$\xrightarrow{X = Y \text{ $\frac{c}{2}$ $\frac{c}{2}$$$

由 $\mathscr{E}^I = \sigma(\mathscr{C})$ 以及测度扩张定理知 $Q_X = Q_Y$ 在 \mathscr{E}^I 上成立.

(\Leftarrow) 若 $Q_X=Q_Y$, \mathcal{D}_X 表示 X 的有限维分布族, \mathcal{D}_Y 表示 Y 的有限维分布族. 则 $\forall \mu_J^X\in \mathcal{D}_X, J=\{t_1,\cdots,t_n\}, \forall A_1,\cdots,A_n\in \mathcal{E},$ 有

$$\mu_{(t_1,\dots,t_n)}^X(A_1 \times \dots \times A_n) = \mathbf{P}[X_{t_1} \in A_1,\dots,X_{t_n} \in A_n] = Q_X[\pi_J^{-1}(A_1,\dots,A_n)]$$
$$= Q_Y[\pi_J^{-1}(A_1,\dots,A_n)] = \mu_{(t_1,\dots,t_n)}^Y(A_1 \times \dots \times A_n).$$

再由测度扩张定理知, $\forall B \in \mathcal{E}^J, \mu_J^X(B) = \mu_J^Y(B)$. 再由 J 的任意性知, $\mathcal{D}_X = \mathcal{D}_Y$, 从而 X 与 Y 等价.

习题 1.3 (P14) 给定 $(\Omega, \mathscr{F}, \mathbf{P})$ 和它上的流 $(\mathscr{F}_t : t \geq 0)$ 和 $A \subset [0, \infty) \times \Omega$. 证明 $(t, \omega) \mapsto 1_A(t, \omega)$ 循序可测等价于对任何的 $t \geq 0$ 有 $([0, t] \times \Omega) \cap A \in \mathscr{B}([0, t]) \times \mathscr{F}_t$.

证明 取定 t, 记 $f: \begin{cases} [0,t] \times \Omega \to \mathbb{R} \\ (s,\omega) \mapsto 1_A(s,\omega). \end{cases}$ 取 $B \in \mathcal{B}(\mathbb{R})$, 则

$$f^{-1}(B) = \begin{cases} \varnothing, & 0 \notin B, 1 \notin B; \\ A^{c} \cap ([0, t] \times \Omega), & 0 \in B, 1 \notin B; \\ A \cap ([0, t] \times \Omega), & 0 \notin B, 1 \in B; \\ [0, t] \times \Omega, & 0 \in B, 1 \in B. \end{cases}$$

所以 f 可测, 即 $1_A(t,\omega)$ 循序可测. 另一方面, 取 $B = \{1\}$, 则 $f^{-1}(B)$ 可测, 即 $f^{-1}(B) = A \cap ([0,t] \times \Omega) \in \mathcal{B}([0,t]) \times \mathcal{F}_t$.

习题 1.4 (P14) 关于 (\mathcal{F}_t : $t \in I$) 循序可测的过程关于该流是适应的.

证明 由可测集的截集仍可测知命题成立. 或者由命题 1.3.12 知, 循序可测的过程是强适应的.

习题 1.5 (P15) 常数值随机变量 $T \equiv t$ 是停时, 且此时有 $\mathscr{F}_T = \mathscr{F}_t$.

证明 因为

$$\{T \le s\} = \begin{cases} \varnothing, s < t; \\ \Omega, s \ge t. \end{cases}$$

所以对于任意的 $s \in I$, $\{T \le s\} \in \mathcal{F}_s$, T 是停时.

若 $A \in \mathscr{F}_T$, 则对于任意的 $s \in I$, 有 $A \cap \{T \leq s\} \in \mathscr{F}_s$. 取 s = t, 则有 $A \cap \Omega = A \in \mathscr{F}_t$. 另一方面,若 $A \in \mathscr{F}_t$, 则

$$A \cap \{T \le s\} = \begin{cases} \varnothing, s < t; \\ A, s \ge t. \end{cases}$$

于是对于任意的 $s \in I$, $A \cap \{T \leq s\} \in \mathcal{F}_s$, 从而 $A \in \mathcal{F}_T$. 于是 $\mathcal{F}_T = \mathcal{F}_t$.

习题 1.6 (P21) 对于 $A \in \mathcal{G}^{\mu}$ 取 $B \in \mathcal{G}$ 使 $A\Delta B \in \mathcal{N}$, 并令 $\nu(A) = \mu(B)$. 该定义无歧义且给出 (E, \mathcal{G}^{μ}) 上的一个有限测度 ν , 它在 \mathcal{G} 上与 μ 重合.

证明 (1) 无歧义. 对于任意的 $A \in \mathcal{G}^{\mu}$, 若有 $B_1, B_2 \in \mathcal{G}$, 使得 $A\Delta B_1 = N_1 \in \mathcal{N}$, $A\Delta B_2 = N_2 \in \mathcal{N}$. 则 $B_1\Delta B_2 \subset N_1 \cup N_2 \in \mathcal{N}$, 从而 $\mu(B_1) = \mu(B_2) = \nu(A)$.

(2) ν 是有限测度. 设 $\{A_i\}_{i=1}^{\infty} \in \mathcal{G}^{\mu}$ 互不相交. $\forall i \in \mathbb{N}_+, \exists B_i \in \mathcal{G}$, 使得 $A_i \Delta B_i \in \mathcal{N}$. 因为 $\{A_i\}_{i=1}^{\infty}$ 互不相交, 所以当 $i \neq j$ 时, $B_i \cap B_j \in \mathcal{N}$. 令 $C_1 = B_1, C_i = B_i \setminus (B_{i-1} \cup \cdots \cup B_1)$. 于是 $\{C_i\}_{i=1}^{\infty} \subset \mathcal{G}$ 互不相交且 $B_i \Delta C_i \in \mathcal{N}$, 从而 $A_i \Delta C_i \in \mathcal{N}$.

$$\nu\left(\sum_{i=1}^{\infty} A_i\right) = \mu\left(\sum_{i=1}^{\infty} C_i\right) = \sum_{i=1}^{\infty} \mu(C_i) = \sum_{i=1}^{\infty} \nu(A_i).$$

从而 ν 满足 σ -可加性. 因为 μ 是有限测度, 所以 ν 是有限测度.

(3)
$$\nu$$
 在 \mathscr{G} 上与 μ 重合. $\forall B \in \mathscr{G}, B\Delta B = \varnothing \in \mathscr{N}, \nu(B) = \mu(B).$

2 鞅论基础

习题 2.1 (P29) 命题 2.1.5 中, (X_t) 关于自然流 (\mathscr{F}_t) 是否是下鞅?

证明 不一定是. 有如下反例: $(\Omega, \mathscr{F}, \mathbf{P})$ 为概率空间, 其中 $\mathscr{F} = \{\varnothing, A, A^c, \Omega\}$, 且 $\mathbf{P}(A) = 0$. 对于任意的 $n \in \mathbb{N}_+$, 令 $X_n(t)(\omega) = 0$, $\forall t \in \mathbb{R}_+$, $\omega \in \Omega$. 则 $\{X_n(t) : t \in \mathbb{R}_+\}$ 是关于 (\mathscr{F}_t) 的下鞅 (也是鞅). 令 $X_t = 1_A, A \in \mathscr{F}, A \neq \varnothing$. 那么对于任意的 $t \in \mathbb{R}_+$,

$$\lim_{n \to \infty} \int_{\Omega} |X_n(t) - X_t| d\mathbb{P} = \lim_{n \to \infty} 1_A d\mathbb{P} = 0.$$

于是 $X_n(t) \xrightarrow{L^1} X_t$. 但是 X_t 关于 \mathscr{F}_t 不可测, 即 (X_t) 不是关于 (\mathscr{F}_t) 适应的过程, 当然更不是关于 (\mathscr{F}_t) 的下鞅.

习题 2.2 (P33) 设 $(X_n: n \geq 0)$ 是鞅, τ 是停时. (1) $\mathbf{P}(\tau < \infty) = 1$; (2) $\mathbf{P}|X_{\tau}| < \infty$; (3) $\lim_{n \to \infty} \mathbf{P}(X_n; \tau > n)$; (4) $\mathbf{P}(\sup_{k \geq 0} |X_{\tau \wedge k}|) < \infty$; 若 (1) 和 (4) 满足, 则 (2) 和 (3) 成立.

证明 $(1)+(4)\Rightarrow(2)$:

$$\mathbf{P}|X_{\tau}| = \sum_{n=1}^{\infty} \mathbf{P}(|X_{\tau}|; \tau = n) = \sum_{n=1}^{\infty} \mathbf{P}(|X_{\tau \wedge n}|; \tau = n)$$
$$\leq \sum_{n=1}^{\infty} \mathbf{P}(\sup_{k \geq 0} |X_{\tau \wedge k}|; \tau = n) = \mathbf{P}(\sup_{k \geq 0} |X_{\tau \wedge k}|) < \infty.$$

 $(1)+(4) \Rightarrow (3)$:

$$\lim_{n \to \infty} \mathbf{P}(X_n; \tau > n) \le \lim_{n \to \infty} \mathbf{P}(\sup_{k > 0} |X_{\tau \wedge k}|; \tau > n) = 0.$$

上式的第二个等号是由积分的绝对连续性.

习题 2.3 (P41, 推论 2.2.7) 设有给定的随机变量列 $(Y_n)_{n\leq 0}$ 和 σ 代数流 $(\mathscr{F}_n)_{n\geq 0}$. 如果几乎必然地 $\lim_{n\to-\infty}Y_n=Y$ 且有可积随机变量 Z 使得 $|Y_n|\leq Z$, 那么 $X_n:=\mathbf{P}(Y_n|\mathscr{F}_n)$ 几乎必然且 L^1 收敛于 $X_{-\infty}:=\mathbf{P}(Y|\mathscr{F}_{-\infty})$, 其中 $\mathscr{F}_{-\infty}=\cap_n\mathscr{F}_n$.

证明 令 $B_n := \mathbf{P}(Y|\mathscr{F}_n)$,则 B_n 是杜布鞅,从而一致可积. 于是 $\inf_{n \leq 0} \mathbf{P}(B_n) > -\infty$. 由定理 2.2.6 知, B_n 几乎必然且 L^1 收敛到 $B_{-\infty} := \mathbf{P}(B_n|\mathscr{F}_{\infty}) = \mathbf{P}[\mathbf{P}(Y|\mathscr{F}_n)|\mathscr{F}_{-\infty}] = \mathbf{P}(Y|\mathscr{F}_{-\infty}) = X_{-\infty}$.

记
$$W_m := \sup_{k \ge m} |Y_k - Y|$$
, 则 $|W_m| \le 2Z, W_m \xrightarrow{\text{a.s.}} 0$.

$$\begin{split} \lim\sup_{n\to-\infty}|X_n-X_{-\infty}| &= \limsup_{n\to-\infty}|\mathbf{P}[(Y_n-Y)\mid \mathscr{F}_n]|\\ &\leq \limsup_{n\to-\infty}\mathbf{P}[|Y_n-Y|\mid \mathscr{F}_n]\\ &\leq \limsup_{n\to-\infty}\mathbf{P}(W_m\mid \mathscr{F}_n) = \mathbf{P}(W_m\mid \mathscr{F}_{-\infty}). \end{split}$$

$$|X_n| \leq \mathbf{P}(|Y_n| \mid \mathscr{F}_n) \leq \mathbf{P}(Z \mid \mathscr{F}_n).$$

所以 X_n 一致可积, 从而 $X_n \xrightarrow{L^1} X_{-\infty}$.

习题 2.4 (P45) 由两个不同可数稠集所定义的右极限过程是不可区分的.

证明 设 D_1, D_2 是 $[0, \infty)$ 的两个不同稠子集. 由定理 2.3.1 知, 对于任意的 t 和几乎必然的 $\omega \in \Omega$, 有

$$X_{t+}^{D_1}(\omega) = \lim_{s \in D_1, s \downarrow t} X_s(\omega), X_{t+}^{D_2}(\omega) = \lim_{s \in D_2, s \downarrow t} X_s(\omega).$$

令 $D_3 = D_1 \cup D_2$, 则 D_3 也是可数稠子集, 那么

$$X_{t+}^{D_3}(\omega) = \lim_{s \in D_3, s \downarrow \downarrow t} X_s(\omega)$$

存在, 故子列的极限相等. 于是 $X_{t+}^{D_1}=X_{t+}^{D_2}, \forall t\geq 0, \text{a.s.}$ $\omega\in\Omega$. 即 $X_{t+}^{D_1}$ 与 $X_{t+}^{D_2}$ 互为修正. 再由右连续性知

$$\mathbf{P}(X_{t+}^{D_1} = X_{t+}^{D_2}, \forall t \ge 0) = 1 - \bigcup_{t \in \mathbb{Q}^+} \mathbf{P}(X_{t+}^{D_1} \ne X_{t+}^{D_2}) = 1.$$

故 $X_{t+}^{D_1}$ 与 $X_{t+}^{D_2}$ 不可区分.

习题 2.5 (P46, 推论 2.3.5) 关于 (\mathscr{F}_t) 适应的右连续可积过程 X 是鞅当且仅当对任何有界停时 $\sigma \leq \tau$ 有 $\mathbf{P}(X_{\sigma}) = \mathbf{P}(X_{\tau})$, 或等价地对任何有界停时 τ 有 $\mathbf{P}(X_{\tau}) = \mathbf{P}(X_0)$.

证明 (⇒) 将定理 2.3.4 证明过程中的不等号改成等号即可.

(⇐) 对于任意的 $s \le t$, 任取 $A \in \mathcal{F}_s$, 定义停时

$$\sigma(\omega) = \begin{cases} s, \, \omega \in A \\ 0, \, \omega \in A^c, \end{cases} \quad \tau(\omega) = \begin{cases} t, \, \omega \in A \\ 0, \, \omega \in A^c. \end{cases}$$

则

$$\mathbf{P}(X_{\sigma}) = \mathbf{P}(X_{\sigma}; A) + \mathbf{P}(X_{\sigma}; A^c) = \mathbf{P}(X_s; A) + \mathbf{P}(X_0; A^c).$$

同理

$$\mathbf{P}(X_{\tau}) = \mathbf{P}(X_t; A) + \mathbf{P}(X_0; A^c).$$

由 $\mathbf{P}(X_{\sigma}) = \mathbf{P}(X_{\tau})$ 知 $\mathbf{P}(X_s; A) = \mathbf{P}(X_t; A), \forall A \in \mathscr{F}_s$. 即

$$\mathbf{P}(X_t \mid \mathscr{F}_s) = X_s$$
.

从而 (X_t) 是鞅.

习题 2.6 (P47, 定理 2.3.8) 设 $X = (X_t : t \ge 0)$ 是右连续下鞅. 则有下面性质成立:

(1) 对任何 $\lambda > 0$ 及 $t \ge 0$ 有

$$\lambda \mathbf{P} \left\{ \sup_{0 \le s \le t} |X_s| \ge \lambda \right\} \le 2\mathbf{P}(X_t^+) - \mathbf{P}(X_0);$$

(2) 若 X 是非负的,则对任何 p>1 及 $t\geq 0$ 有

$$\mathbf{P}\left(\sup_{0\leq s\leq t}X_s^p\right)\leq \left(\frac{p}{p-1}\right)^p\mathbf{P}(X_t^p);$$

(3) 若 X 是鞅,则对任何 t > 0 有

$$\mathbf{P}\left(\sup_{0\leq s\leq t} X_s^2\right) \leq 4\mathbf{P}(X_t^2).$$

证明 (1) 令 $F := [0,t] \cap (\mathbb{Q} \cup \{0,t\})$,取 $(F_n)_{n\geq 0}$ 为一列递增的有限集,每个 F_n 都包含 $\{0,t\}$ 且 $\bigcup_{n=1}^{\infty} F_n = F$. 令

$$A_n := \{ \omega : \max_{s \in F_n} |X_s(\omega)| \ge \lambda \}.$$

由定理 2.1.14 知,

$$\lambda \mathbf{P}(A_n) \le 2\mathbf{P}(X_t^+) - \mathbf{P}(X_0). \tag{2.1}$$

显然 $A_n \uparrow A := \{\omega : \sup_{s \in F} |X_s(\omega)| \ge \lambda\}$. 对 (2.1) 式两侧关于 n 取极限, 再由测度的下连续性, 有

$$\lambda \mathbf{P}\left(\lim_{n \to \infty} A_n\right) = \lambda \lim_{n \to \infty} \mathbf{P}(A_n) \le 2\mathbf{P}(X_t^+) - \mathbf{P}(X_0).$$

因为 F 在 [0,t] 中稠密, 故对任意的 $s \in [0,t]$, 存在 F 中的一列 $\{s_n\}_{n\geq 0}$ 满足 $s_n \downarrow s$. 由 (X_t) 轨道右连续性知, $X_s(\omega) = \lim_{s_n \downarrow \downarrow s} X_{s_n}(\omega)$. 于是

$$\lambda \mathbf{P}\left(\sup_{s\in[0,t]}|X_s|\geq\lambda\right)\leq 2\mathbf{P}(X_t^+)-\mathbf{P}(X_0).$$

(2) F_n , F 同 (1) 中定义. 由定理 2.1.14 知

$$\mathbf{P}\left(\max_{s\in F_n} X_s^p\right) \le \left(\frac{p}{p-1}\right)^p \mathbf{P}(X_t^p).$$

因 $\max_{s \in F_n} X_s^p$ 非负且关于 n 单调上升. 由单调收敛定理, 有

$$\mathbf{P}\left(\sup_{s\in F}X_s^p\right) = \mathbf{P}\left(\lim_{n\to\infty}\max_{s\in F_n}X_s^p\right) = \lim_{n\to\infty}\mathbf{P}\left(\max_{s\in F_n}X_s^p\right) \le \left(\frac{p}{p-1}\right)^p\mathbf{P}(X_t)^p.$$

令 $A:=\sup_{s\in[0,t]}X^p_s(\omega), B:=\sup_{s\in F}X^p_s(\omega)$. 固定 $\omega\in\Omega$, 下面说明 A=B. 事实上, 显然有 $A\geq B$. 只需说明另一方面. 由上确界定义, $\forall \varepsilon>0, \exists s_0\in[0,t]$, 使得 $X^p_{s_0}(\omega)>A-\varepsilon$. 由 F 的稠密性及 (X_t) 的 右连续性知, $\exists s_0'\in F$, 满足 $X^p_{s_0}(\omega)-X^p_{s_0'}(\omega)<\varepsilon$. 于是 $X^p_{s_0'}(\omega)>A-2\varepsilon$. 由 ε 的任意性知 $X^p_{s_0'}\geq A$, 于 是 $B\geq A$. 从而 A=B, 命题得证.

(3) 因为 X 是鞅, 由命题 2.1.1 知 $|X_t|$ 是非负下鞅. 对 $|X_t|$ 应用 (2) 的结论, 取 p=2 即可.

习题 2.7 (P48, 定理 2.3.9) 假设流 ($\mathscr{F}_t: t \geq 0$) 满足通常条件, 而 $(X_t: t \geq 0)$ 是右连续下鞅且 $K:=\sup_{t\geq 0}\mathbf{P}|X_t|<\infty$. 则 $X_t \xrightarrow{a.s.} X$ $(t\to\infty)$, 其中 X 是一个可积随机变量. 另外若 (X_t) 是一致可积下鞅, 则 $X_t \xrightarrow{L^1} X$; 若 (X_t) 是一致可积鞅, 则还有 $X_t=\mathbf{P}(X|\mathscr{F}_t)$.

证明 (1) \diamondsuit $X^* := \limsup_{t \to \infty} X_t, X_* := \liminf_{t \to \infty} X_t$. 则

$$\{X^* > X_*\} = \cup_{a < b \in \mathbb{Q}} \{X_* < a < b < X^*\}.$$

令 $X_n^{(m)} := X_{n/2^m}, n, m \in \mathbb{N}$. 对任意的 $m, \{X_{n/2^m}\}$ 是关于 $(\mathscr{F}_{n/2^m} : n \in \mathbb{N})$ 的离散时间下鞅,且 $\sup_n \mathbf{P}|X_n^{(m)}| \leq K < \infty$. 由离散情形知: 对任意的 $N \in \mathbb{N}$,

$$\mathbf{P}\left\{U_N^{X^{(m)}}[a,b]\right\} \le \frac{1}{b-a}\mathbf{P}|X_N^{(m)}-a| \le \frac{K+|a|}{b-a}.$$

由单调收敛定理, $\mathbf{P}\left\{\lim_{N\to\infty}U_N^{X^{(m)}}[a,b]\right\}<\infty$. 故几乎必然有 $\lim_{N\to\infty}U_N^{X^{(m)}}[a,b]<\infty$. 令 $m\to\infty$, 由稠密性及右连续性知

$$\lim_{t\to\infty} U_t^X[a,b] < \infty, \quad \text{a.s.}$$

又因 $\{X_* < a < b < X^*\} \subset \{\lim_{t \to 0} U_t^X[a,b] = 0\}$. 所以 $\mathbf{P}\{X_* < a < b < X^*\} = 0$, 即 $X_* = X^*$, a.s. 从而 $\lim_{t \to \infty} X_t$ 几乎必然存在. 令 $X := \lim_{t \to \infty} X_t$,的可积性由 Fatou 引理:

$$\mathbf{P}(|X|) = \mathbf{P}\left(\liminf_{t \to \infty} |X_t|\right) \le \liminf_{t \to \infty} \mathbf{P}|X_t| \le K < \infty.$$

- (2) 若 (X_t) 是一致可积下鞅, 由上述证明知 $X_t \xrightarrow{\text{a.s.}} X$ $(t \to \infty)$. 再由控制收敛定理知 $X_t \xrightarrow{L^1} X$ $(t \to \infty)$.
 - (3) 若 (X_t) 是一致可积鞅, 则有 $X_t \xrightarrow{L^1} X$ $(t \to \infty)$. 对 $\forall s \le t$ 及 $A \in \mathscr{F}_s$,

$$\mathbf{P}(X;A) = \lim_{t \to \infty} \mathbf{P}(X_t;A) = \lim_{t \to \infty} \mathbf{P}[\mathbf{P}(X_t|\mathscr{F}_s);A] = \lim_{t \to \infty} \mathbf{P}(X_s;A) = \mathbf{P}(X_s;A).$$

于是
$$X_s = \mathbf{P}(X|\mathcal{F}_s)$$
.

习题 2.8 (P49) 可选过程是循序可测的.

证明 利用函数形式的单调类定理, 令 $L := \{X : X \}$ 循序可测的随机过程 $\}$, 下面验证 L 为 $\mathscr L$ 系.

- ① $1 \in L$ 显然成立.
- ② 线性组合封闭. 对于任意的 $X,Y \in L$, 即 X,Y 循序可测. 由循序可测的定义知, 对于任意的 $t \in I$, 映射 $(s,\omega) \mapsto X_s(\omega)$ 与 $(s,\omega) \mapsto Y_s(\omega)$ 限制在 $([0,t] \cap I) \times \Omega$ 上关于 $\mathcal{B}([0,t] \cap I) \times \mathcal{F}_t$ 和 \mathcal{E} 是可测的. 因为可测映射的线性组合仍可测, 所以 X,Y 的线性组合仍循序可测.
- ③ 若 $X^{(n)} \in L, 0 \le X_n \uparrow X$,则 $X \in L$. 事实上,对于任意的 $n \in \mathbb{N}_+$, $X^{(n)}$ 循序可测,即对于任意的 $t \in I$,映射 $(s,\omega) \mapsto X^{(n)}(\omega)$ 限制在 $([0,t] \cap I) \times \Omega$ 上关于 $\mathcal{B}([0,t] \cap I) \times \mathcal{F}_t$ 和 \mathcal{E} 是可测的.由可测映 射的极限仍可测,故 $(s,\omega) \mapsto X(\omega)$ 限制在 $([0,t] \cap I) \times \Omega$ 上关于 $\mathcal{B}([0,t] \cap I) \times \mathcal{F}_t$ 和 \mathcal{E} 是可测的.于是 X 循序可测.

令 $\mathscr{A} := \{X : X$ 为右连续的适应过程 $\}$. 显然 \mathscr{A} 对于乘积运算封闭. 由定理 1.3.1(右连续且适应 \Rightarrow 循序可测) 知, $\mathscr{A} \subset L$. 根据单调类定理, $\sigma(\mathscr{A}) \subset L$.

令 \mathcal{O} 为可选过程 (左极右连的适应过程) 生成的 $I \times \Omega$ 上的最小的 σ 代数, 显然 $\mathcal{O} \subset \sigma(\mathcal{A}) \subset L$. 于是可选过程是循序可测的.

3 马尔可夫过程

习题 3.1 (P55) K 是可测空间 (E,\mathcal{E}) 到 (F,\mathcal{F}) 的有界核, L 是可测空间 (F,\mathcal{F}) 到 (B,\mathcal{B}) 的有界核. μ 是 (E,\mathcal{E}) 上的有限测度. 证明:

$$K(Lf) = (KL)f, \quad (\mu K)L = \mu(KL).$$

证明 (1) 对于任意的 $x \in E$,

$$\begin{split} K(Lf)(x) &= \int_E K(x,dy) Lf(y) = \int_E K(x,dy) \int_F L(y,dz) f(z) \\ &= \int_E \int_F K(x,dy) L(y,dz) f(z) = \int_E KL(x,dz) f(z) = (KL) f(x). \end{split}$$

所以 K(Lf) = (KL)f.

(2) 对于任意的 $A \in \mathcal{B}$, 由 Fubini 定理,

$$\begin{split} (\mu K)L(A) &= \int_F \int_E \mu(dx)K(x,dy)L(y,A) \\ &= \int_E \mu(dx) \int_F K(x,dy)L(y,A) = \int_E \mu(dx)KL(x,A) = \mu(KL)(A). \end{split}$$

所以 $(\mu K)L = \mu(KL)$.

习题 3.2 (P55) 任何从 (E,\mathcal{E}) 到 (F,\mathcal{F}) 的有界核都可以自然地扩张为从 $(E,\mathcal{E}^{\bullet})$ 到 $(F,\mathcal{F}^{\bullet})$ 的有界核.

证明 ① 对于任意的 $x \in E$, 将 $K(x,\cdot)$ 扩张为 \mathscr{F} 上的测度. 对于任意的有限测度 μ ,

$$\mathscr{F}^{\mu} = \sigma(\mathscr{F} \cup \mathscr{N}) = \{A \subset F : \exists B \in \mathscr{F} \notin A\Delta B \in \mathscr{N}\}.$$

其中 \mathcal{N} 为所有 μ -零集构成的集合. 根据习题 1.6 知, 可将 $K(x,\cdot)$ 唯一地扩张为 \mathscr{F}^{μ} 上的测度. 又因为 $\mathscr{F}^{\bullet} \subset \mathscr{F}^{\mu}$, 所以 $K(x,\cdot)$ 在 \mathscr{F} 上有唯一扩张.

② 往证对于任意的 $B \in \mathscr{F}^{\bullet}, x \mapsto K(x, B)$ 为 \mathscr{E}^{\bullet} 可测函数. 对于 (E, \mathscr{E}) 上任意的有限测度 $\mu, \mu K$ 为 \mathscr{F} 上的有限测度,故 $B \in \mathscr{F}^{\mu K}$. 于是存在 $B_1, B_2 \in \mathscr{F}$,使得 $B_1 \subset B \subset B_2$ 且 $\mu K(B_1) = \mu K(B_2)$. $\omega \mapsto K(\omega, B_i), i = 1, 2$ 关于 \mathscr{E} 可测,且

$$\mu K(B_1) = \int_E K(\omega, B_1)\mu(d\omega) = \int_E K(\omega, B_2)\mu(d\omega) = \mu K(B_2). \tag{3.1}$$

对于任意的 $\omega \in E$, $K(\omega, B_1) \leq K(\omega, B) \leq K(\omega, B_2)$. 结合 (3.1) 有, $\mu\{K(\omega, B_1) \neq K(\omega, B_2)\} = 0$. 再由推论 1.4.3 知 $x \mapsto K(x, B)$ 关于 \mathcal{E}^{μ} 可测. 由 μ 的任意性知 $x \mapsto K(x, B)$ 关于 \mathcal{E}^{\bullet} 可测.

习题 3.3 (P57, 例 3.2.3) 假定 $(P_t)_{t\geq 0}$ 为 (E,\mathcal{E}) 上的马氏转移半群. 给定常数 $b\geq 0$, 对于 $t\geq 0$ 和 $x\in E$ 令 $P_t^b(x,dy)=e^{-bt}P_t(x,dy)$. 则 $(P_t^b)_{t\geq 0}$ 也是 (E,\mathcal{E}) 上的转移半群. 显然 $(P_t^b)_{t\geq 0}$ 为保守的转移半群的充要条件是 b=0.

证明 对于任意的 $f \in b\mathscr{E}$,

$$P_0^b f(x) = \int_E P_0(x, dy) f(y) = P_0 f(x) = f(x).$$

满足 C-K 方程: 对于任意的 $x \in E, B \in \mathcal{E}$,

$$\begin{split} P_{s+t}^b(x,B) &= e^{-(s+t)} P_{s+t}(x,B) \\ &= e^{-(s+t)} \int_E P_s(x,dy) P_t(y,B) \\ &= \int_E e^{-s} P_s(x,dy) e^{-t} P_t(y,B) \\ &= \int_E P_s^b(x,dy) P_t^b(y,B). \end{split}$$

最后 (P_t^b) 为保守的转移半群当且仅当 $P_t^b(x, E) = e^{-bt}P_t(x, E) = 1$, 当且仅当 b = 0.

习题 3.4 (P59, 命题 3.2.5) 以 (E,\mathcal{E}) 为状态空间的过程 $(X_t:t\in I)$ 具有以 $(P_t:t\in I)$ 为转移半群的 \mathcal{E} 马氏性当且仅当对任意的 $\{s_1<\dots< s_n=s< t\}\subset I$ 和 $B\in\mathcal{E}$ 有

$$\mathbf{P}(X_t \in B | X_{s_1}, \cdots, X_{s_n}) = P_{t-s}(X_s, B).$$

证明 (\Rightarrow) 若 X 具有以 P_t 为转移半群的马氏性, 则 $\mathbf{P}(X_t \in B | \mathscr{F}_s) = P_{t-s}(X_s, B)$. 两边对 $(X_{s_1}, \dots, X_{s_n})$ 取条件期望, 即得

$$\mathbf{P}(X_t \in B|X_{s_1}, \cdots, X_{s_n}) = P_{t-s}(X_s, B).$$

 (\Leftarrow) 若 $\mathbf{P}(X_t \in B|X_{s_1}, \dots, X_{s_n}) = P_{t-s}(X_s, B)$ 成立, 对任意的 $A \in \mathcal{E}^n$, 有

$$\mathbf{P}[1_B(X_t)1_A(X_{s_1},\cdots,X_{s_n})] = \mathbf{P}[P_{t-s}(X_s,B)1_A(X_{s_1},\cdots,X_{s_n})].$$

固定 $s \in I$, 令 $\mathscr{C}_s := \{(X_{s_1}, \dots, X_{s_n})^{-1}(A) : A \in \mathscr{E}^n, s_1 < \dots < s_n \in I \cap [0, s]\}$. 则 $\mathscr{C}_s \not \in \pi$ 系且 $\sigma(\mathscr{C}_s) = \mathscr{F}_s$. 令 $\Lambda := \{G \in \mathscr{F}_s : 满足 \mathbf{P}[1_B(X_t)1_G] = \mathbf{P}[P_{t-s}(X_s, B)1_G]\}$. 容易验证 Λ 满足① 对于真差封闭, ② 对于单调上升的极限封闭, ③ $E \in \Lambda$. 故 Λ 为 λ 系, 且 $\mathscr{C}_s \subset \Lambda$. 由集合形式的单调类定理知 $\mathscr{F}_s \subset \Lambda$. 从而

$$\mathbf{P}(X_t \in B | \mathscr{F}_s) = P_{t-s}(X_s, B),$$

即 $(X_t:t\in I)$ 具有以 $(P_t:t\in I)$ 为转移半群的 \mathcal{E} 马氏性.

习题 3.5 (P59) 证明 \mathcal{D}_{u} 是相容的有限维分布族.

证明 (1) 横向相容: 对于任意的 $J = \{t_1, t_2, \cdots, t_n\} \in \mathscr{F}(I)$ 及 $(1, 2, \cdots, n)$ 的置换 $(\sigma(1), \sigma(2), \cdots, \sigma(n))$. 记 $\sigma(J) = (t_{\sigma(1)}, t_{\sigma(2)}, \cdots, t_{\sigma(n)})$. 因为 P_J 是利用置换定义的, 所以

$$\mu P_{\sigma(J)}(A_{\sigma(1)} \times \dots \times A_{\sigma(n)}) = \int_{E} \mu(dx) P_{\sigma(J)}(x, A_{\sigma(1)} \times \dots \times A_{\sigma(n)})$$

$$= \int_{E} \mu(dx) P_{J}(x, A_{1} \times \dots \times A_{n})$$

$$= \mu P_{J}(A_{1} \times \dots \times A_{n})$$

$$= \mu P_{J} \circ \Sigma^{-1}(A_{\sigma(1)} \times \dots \times A_{\sigma(n)}),$$

其中, Σ 表示映射 $(x_1, x_2, \dots, x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$. 由单调类定理易知

$$\mu P_{\sigma(J)} = \mu P_J \circ \Sigma^{-1}.$$

(2) 纵向相容: 对于任意的 $J=(t_1,\cdots,t_n)\in \mathscr{F}(I)$ 及 $B_1,\cdots,B_n\in \mathscr{E}$. 因为 P_J 是通过置换定义的, 故不妨假设 $t_1< t_2<\cdots< t_n$. 若有某个 $1\leq k\leq n$, 使得 $B_k=E$, 则对于任意的 $x\in E$, 有

$$P_{J}(x, B_{1} \times \cdots \times B_{n})$$

$$= \int_{B_{1} \times \cdots \times B_{n}} P_{t_{1}}(x, dx_{1}) P_{t_{2}-t_{1}}(x_{1}, dx_{2}) \cdots P_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n})$$

$$= \int_{B_{1}} P_{t_{1}}(x_{1}, dx_{1}) \cdots \int_{E} P_{t_{k}-t_{k-1}}(x_{k-1}, dx_{k}) \int_{B_{k+1}} P_{t_{k+1}-t_{k}}(x_{k}, dx_{k+1}) \cdots \int_{B_{n}} P_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n})$$

$$= \int_{B_{1}} P_{t_{1}}(x_{1}, dx_{1}) \cdots \int_{B_{k+1}} P_{t_{k+1}-t_{k}}(x_{k-1}, dx_{k+1}) \cdots \int_{B_{n}} P_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n})$$

$$= P_{J_{k}}(x, B_{1} \times \cdots \times B_{k-1} \times B_{k+1} \times \cdots \times B_{n}).$$

其中 $J_k := \{t_1, \dots, t_{k-1}, t_{k+1}, \dots, t_n\} \in \mathcal{F}(I)$. 于是 $\mu P_J = \mu P_{J_k}$,即满足纵向相容性.

习题 3.6 (P63, 定理 3.3.4) 如果 $(X_t:t\in I)$ 相对于流 (\mathcal{G}_t) 具有以 (P_t) 为转移半群的 $\mathscr E$ 强马氏性, 那么对任意的 $t\in I, f\in b\mathscr E$ 和有限 $(\mathscr G_t)$ 停时 T 有

$$\mathbf{P}[f(X_{T+t})|\mathcal{G}_T] = \mathbf{P}[f(X_{T+t})|X_T].$$

证明 由 X_t 的 \mathcal{E} 强马氏性知, $\forall t \in I$ 和有限 (\mathcal{G}_t) 停时 T, 有

$$\mathbf{P}[f(X_{T+t})|\mathcal{G}_T] = P_t f(X_T). \tag{3.2}$$

因为 $P_t f(X_T)$ 关于 $\sigma(X_T)$ 可测, 对上式两边同时取关于 X_T 的条件期望, 得

$$\mathbf{P}[f(X_{T+t})|X_T] = P_t f(X_T). \tag{3.3}$$

比较 (3.2) 与 (3.3) 知结论成立.

习题 3.7 (P63, 定理 3.3.5) 如果 $(X_t:t\in I)$ 相对于流 (\mathcal{G}_t) 具有以 (P_t) 为转移半群的 \mathcal{E} 强马氏性, 那么对于任意的有限 (\mathcal{G}_t) 停时 T 和 $F\in b\mathcal{F}^T$ 有

$$\mathbf{P}(F|\mathcal{G}_T) = \mathbf{P}(F|X_T).$$

证明 令 $\mathscr C$ 为所有形如 $f_1(X_{T+t_1})\cdots f_n(X_{T+t_n})$ 的可测函数构成的集合, 其中 $t_1\leq \cdots \leq t_n\in I$ 且 $f_1,\cdots,f_n\in b\mathscr E$. 显然 $\mathscr C$ 对与乘积运算封闭且 $\sigma(\mathscr C)=\mathscr F^T$. 令 $L:=\{F\in b\mathscr F_T:\mathbf P(F|\mathscr G_T)=\mathbf P(F|X_T)\}$, 则 L 是线性空间且包含所有的常值函数, 对非负有界上升的极限封闭. 由单调类定理, 只需证明 $\mathscr C\subset L$, 即得 $b\mathscr F^T\subset L$.

用数学归纳法. 当 n=1 时, 由定理 3.2.9 知结论成立. 假设对于某个 $n\geq 1$ 成立, 那么对于 $\forall t_{n+1}\geq t_n$ 和 $f_{n+1}\in b\mathscr{E}$, 存在 $g\in b\mathscr{E}$, 使得

$$\mathbf{P}[f_{n+1}(X_{T+t_{n+1}})|\mathcal{G}_{T+t_n}] = \mathbf{P}[f_{n+1}(X_{T+t_{n+1}}|X_{T+t_n})] = g(X_{T+t_n}).$$

故

$$\begin{aligned} &\mathbf{P}[f_{1}(X_{T+t_{1}})\cdots f_{n+1}(X_{T+t_{n+1}})|\mathscr{G}_{T}] \\ &= &\mathbf{P}\{\mathbf{P}[f_{1}(X_{T+t_{1}})\cdots f_{n+1}(X_{T+t_{n+1}})|\mathscr{G}_{T+t_{n}}]|\mathscr{G}_{T}\} \\ &= &\mathbf{P}\{f_{1}(X_{T+t_{1}})\cdots f_{n}(X_{T+t_{n}})\mathbf{P}[f_{n+1}(X_{T+t_{n+1}})|\mathscr{G}_{T+t_{n}}]|\mathscr{G}_{T}\} \\ &= &\mathbf{P}\{f_{1}(X_{T+t_{1}})\cdots f_{n}(X_{T+t_{n}})g(X_{T+t_{n}})|\mathscr{G}_{T}\} \\ &= &\mathbf{P}\{f_{1}(X_{T+t_{1}})\cdots f_{n}(X_{T+t_{n}})g(X_{T+t_{n}})|X_{T}\} \\ &= &\mathbf{P}\{f_{1}(X_{T+t_{1}})\cdots f_{n}(X_{T+t_{n}})\mathbf{P}[f_{n+1}(X_{T+t_{n+1}})|\mathscr{G}_{T+t_{n}}]|X_{T}\} \\ &= &\mathbf{P}\{\mathbf{P}[f_{1}(X_{T+t_{1}})\cdots f_{n+1}(X_{T+t_{n+1}})|X_{T}]. \end{aligned}$$

即对于 n+1 的情形也成立. 从而结论成立.

习题 3.8 (P63, 推论 3.3.6) 如果 $(X_t:t\in I)$ 相对于流 (\mathcal{G}_t) 具有以 (P_t) 为转移半群的 \mathcal{E} 强马氏性,那么对于任意的有限 (\mathcal{G}_t) 停时 $T,F\in b\mathcal{F}^T$ 和 $G\in b\mathcal{G}_T$ 有

$$\mathbf{P}(GF|X_T) = \mathbf{P}(G|X_T)\mathbf{P}(F|X_T).$$

证明

$$\mathbf{P}(GF|X_T) = \mathbf{P}[\mathbf{P}(GF|\mathscr{G}_T)|X_T] = \mathbf{P}[G\mathbf{P}(F|\mathscr{G}_T)|X_T]$$
$$= \mathbf{P}[G\mathbf{P}(F|X_T)|X_T] = \mathbf{P}(G|X_T)\mathbf{P}(F|X_T).$$

习题 3.9 (P63, 推论 3.3.7) 如果 $(X_t:t\in I)$ 相对于流 (\mathcal{G}_t) 具有以 (P_t) 为转移半群的 \mathcal{E} 强马氏性,那么对于任何有限 (\mathcal{G}_t) 停时 T, 在 $\mathbf{P}(\cdot|X_T)$ 之下 $(X_{t\wedge T}:t\in I)$ 和 $(X_{T+t}:t\in I)$ 独立.

证明 注意到 $\mathscr{F}^T = \sigma(\{X_{T+t} : t \in I\}), \mathscr{G}_T = \sigma(\{X_{t \wedge T} : t \in I\})??$, 再由推论 3.3.6 立得结论.

习题 3.10 (P64) 考虑状态空间 (E,\mathcal{E}) 上的次马氏转移半群 $(P_t:t\in I)$. 取 $\partial \notin E$, 令 $\tilde{E}:=E\cup\{\partial\}$, 再定义此状态空间上的 σ 代数 $\tilde{\mathcal{E}}:=\sigma(\mathcal{E}\cup\{\{\partial\}\})$. 对 $t\in I$ 令

$$\tilde{P}_t(y,A) = \begin{cases} P_t(y,A), & y \in E, A \in \mathcal{E}, \\ 1 - P_t(y,E), & y \in E, A = \{\partial\}, \\ \delta_{\partial}(A), & y = \partial, A \in \tilde{\mathcal{E}}. \end{cases}$$

证明:上式确定了 $(\tilde{E},\tilde{\mathcal{E}})$ 上的一族概率核 $(\tilde{P}_t:t\in I)$ 且它们构成马氏转移半群. 因此任何一个次马氏转移半群总可扩张为马氏转移半群.

证明 (1) 证明 $\tilde{P}_t(y,A)$ 是马氏核.

首先, 令 $\mathscr{C} := \mathscr{E} \cup \{\{\partial\}\}$. 则 \mathscr{C} 是半集代数. 由 \tilde{P}_t 定义知, 固定 $y \in \tilde{E}$,

- $\tilde{H} y = \partial$, $\tilde{\mathcal{P}}_t(y, \tilde{E}) = \delta_{\{\partial\}}(\tilde{E}) = 1$.

又因为 σ 可加性显然成立, 故 \tilde{P}_t 是 (\tilde{E},\mathscr{C}) 上的概率测度. 由测度扩张定理知, 可唯一扩张为 $\tilde{\mathscr{E}} = \sigma(\mathscr{C})$ 上的概率, 仍记作 \tilde{P}_t .

其次, 固定 $A \in \tilde{\mathscr{E}}$, $\tilde{P}_t(\cdot, A)$ 关于 $\tilde{\mathscr{E}}$ 可测. 事实上,

故对于任意的 $A \in \mathscr{C}$, 有 $\tilde{P}_t(\cdot, A)$ 关于 $\tilde{\mathscr{E}}$ 可测. 令 $\Lambda := \{A \in \tilde{E} : \tilde{P}_t(y, A)$ 关于 $\tilde{\mathscr{E}}$ 可测}.

- ① $\tilde{E} \in \Lambda$. 因为 $\tilde{P}_t(y, \tilde{E}) = \tilde{P}_t(y, E) + \tilde{P}_t(y, \{\partial\})$.
- ② 若 $A \in \Lambda, B \in \Lambda$ 且 $A \subset B$, 则 $\tilde{P}_t(y, B A) = \tilde{P}_t(y, B) = \tilde{P}_t(y, A)$ 关于 $\tilde{\mathscr{E}}$ 可测, 于是 $B A \in \Lambda$.
- ③ 若 $A_n \in \Lambda$, $A_n \uparrow A$, 则 $\tilde{P}_t(y, A) = \lim_{n \to \infty} \tilde{P}_t(y, A_n)$ 关于 $\tilde{\mathscr{E}}$ 可测, 于是 $A \in \Lambda$.

从而 Λ 是 λ 系, 又因 $\mathscr{C} \subset \Lambda$, 由单调类定理知 $\tilde{\mathscr{E}} = \sigma(\mathscr{C}) \subset \Lambda$.

故 $\tilde{P}_t(y,A)$ 是马氏核.

(2) 证明 $\tilde{P}_t(y,A)$ 是马氏转移半群.

首先说明 \tilde{P}_0 是恒等算子. 因为 P_0 是恒等算子, 所以 $\forall x \in E, P_0(x, E) = 1$. 否则对 $f \equiv 1$, $P_0f(x) = \int_E P_0(x, dy) = P_0(x, E) \neq 1$, 与 $f \equiv 1$ 矛盾. 对于任意的 $f \in b\tilde{\mathcal{E}}$,

• 若 $x \in E$,则

$$\tilde{P}_0 f(x) = \int_{\tilde{E}} f(y) \tilde{P}_0(x, dy) = \int_{E} f(y) P_0(x, dy) + \int_{\{\partial\}} f(y) \tilde{P}_0(x, dy)$$
$$= f(x) + f(\partial) [1 - P_0(x, E)] = f(x).$$

• 若 $x = \partial$, 则

$$\tilde{P}_0 f(\partial) = \int_{\tilde{E}} f(y) \delta_{\partial}(dy) = f(\partial).$$

故 \tilde{P}_t 是恒等算子.

其次, \tilde{P}_t 满足 C-K 方程.

• $\exists x \in E$. 对于任意的 $s, t \in I$, $\exists A \in \mathscr{E}$,

$$\begin{split} \tilde{P}_{s+t}(x,A) &= P_{s+t}(x,A) = \int_{E} P_{s}(x,dy) P_{t}(y,A) \\ &= \int_{E} \tilde{P}_{s}(x,dy) \tilde{P}_{t}(y,A) + \int_{\{\partial\}} \tilde{P}_{s}(x,dy) \tilde{P}_{t}(y,A) \\ &= \int_{\tilde{E}} \tilde{P}_{s}(x,dy) \tilde{P}_{t}(y,A). \end{split}$$

若 $A = \{\partial\}$,

$$\begin{split} \int_{\tilde{E}} \tilde{P}_{s}(x, dy) \tilde{P}_{t}(y, \{\partial\}) &= \int_{E} \tilde{P}_{s}(x, dy) [1 - P_{t}(y, E)] + \int_{\{\partial\}} \tilde{P}_{s}(x, dy) \delta_{\partial}(\{\partial\}) \\ &= \int_{E} P_{s}(x, dy) [1 - P_{t}(y, E)] + \tilde{P}_{s}(x, \{\partial\}) \\ &= P_{s}(x, E) - P_{s+t}(x, E) + 1 - P_{s}(x, E) \\ &= 1 - P_{s+t}(x, E) = \tilde{P}_{s+t}(x, \{\partial\}). \end{split}$$

令 $\Lambda := \{A \in \mathscr{E} : 满足\tilde{P}_{s+t}(x,A) = \int_{\tilde{E}} \tilde{P}_s(x,dy)\tilde{P}_t(y,A)\}$, 由上面的证明知, $\mathscr{E} \subset \Lambda$. 容易证明, Λ 为 λ 系, 由单调类定理知 $\tilde{\mathscr{E}} = \sigma(\mathscr{E}) \subset \Lambda$. 那么, 对于任意的 $x \in E, A \in \tilde{\mathscr{E}}$, C-K 方程成立.

• $\exists x = \partial$, 则对于任意的 $s, t \in I$, 任意的 $A \in \mathcal{E}$,

$$\int_{\tilde{E}} \tilde{P}_s(\partial, dy) \tilde{P}_t(y, A) = \int_{E} \tilde{P}_s(\partial, dy) \tilde{P}_t(y, A) + \int_{\{\partial\}} \tilde{P}_s(\partial, dy) \tilde{P}_t(y, A)$$
$$= 0 + \tilde{P}_t(\partial, A) = \delta_{\{\partial\}}(A) = \tilde{P}_{s+t}(\partial, A).$$

综上, C-K 方程成立, $\tilde{P}_t(y,A)$ 是马氏转移半群.

习题 3.11 (P65) 给定 (E,\mathcal{E}) 上的有限测度 μ , 定义 (Ω,\mathcal{G}) 上的有限测度 \mathbf{P}^{μ} 如下:

$$\mathbf{P}^{\mu}(A) = \int_{E} \mathbf{P}^{x}(A)\mu(dx), A \in \mathcal{G}.$$

如果 μ 为概率测度,则 \mathbf{P}^{μ} 也是概率测度. 此时在 \mathbf{P}^{μ} 之下 $(X_t:t\in I)$ 相对于 $(\mathcal{G}_t,t\in I)$ 是以 μ 为初始分布以 $(P_t:t\in I)$ 为转移半群的马氏过程.

证明 首先说明对于任何 $F \in b\mathcal{G}$, 有

$$\mathbf{P}^{\mu}(F) = \int_{E} \mathbf{P}^{x}(F)\mu(dx). \tag{3.4}$$

事实上, 当 $F = 1_A$, $A \in \mathcal{G}$ 时, $\mathbf{P}^{\mu}(F) = \mathbf{P}^{\mu}(A) = \int_E \mathbf{P}^x(A)\mu(dx) = \int_E \mathbf{P}^x(F)\mu(dx)$. 由积分的线性性知, 对 F 为简单函数时, 结论成立. 由单调收敛定理知, 结论对于非负可测函数成立. 最后, 由于一般可测函数可以表示为正部与负部的差. 从而结论成立.

其次, 因 $(X_t:t\in I)$ 相对于 $(\mathcal{G},\mathcal{G}_t,\mathbf{P}^x)$ 具有以 $(P_t:t\in I)$ 为半群的马氏性, 故对于任意的 $f\in b\mathcal{E}$, $\mathbf{P}^x[f(X_{s+t})|\mathcal{G}_s]=P_tf(X_s)$. 从而对于任意的 $A\in\mathcal{G}_s$, $\mathbf{P}^x[1_Af(x_{s+t})]=\mathbf{P}^x[1_AP_tf(X_s)]$. 由 (3.4) 知,

$$\mathbf{P}^{\mu}[1_A f(X_{s+t})] = \int_E \mathbf{P}^x[1_A f(X_{s+t})] \mu(dx)$$
$$= \int_E \mathbf{P}^x[1_A P_t f(X_s)] \mu(dx)$$
$$= \mathbf{P}^{\mu}[1_A P_t f(X_s)].$$

由条件期望的定义, $\mathbf{P}^{\mu}[f(X_{s+t})|\mathcal{G}_s] = P_t f(X_s)$. 所以, $(X_t : t \in I)$ 相对于 $(\mathcal{G}_t, t \in I)$ 具有以 $(P_t : t \in I)$ 为转移半群的马氏性.

最后, 对于任意的 $B \in \mathcal{E}$, $\mathbf{P}^{\mu}(X_0 \in B) = \int_E \mathbf{P}^x(X_0 \in B)\mu(dx) = \int_B 1\mu(dx) + \int_{B^c} 0\mu(dx) = \mu(B)$. 故初始分布为 μ .

习题 3.12 (P69, 定理 3.4.5) 设 X 具有 $\mathscr E$ 强马氏性. 那么对任意的随机变量 $F \in b\mathscr F$ 和 ($\mathscr G_t$) 停时 T 有 $F \circ \theta_T 1_{\{T < \infty\}} \in b\mathscr G$, 且对任意的初始分布 μ 有

$$\mathbf{P}^{\mu}(F \circ \theta_T 1_{\{T < \infty\}} | \mathcal{G}_T) = \mathbf{P}^{X_T}(F) 1_{\{T < \infty\}}. \tag{3.5}$$

证明 令 $\mathscr{C} := \{f_1(X_{t_1}) \cdots f_n(X_{t_n}) : n \in \mathbb{N}_+, 1 \leq t_1 < \cdots < t_n \in I, f_i \in b\mathscr{E}, \forall i \in \mathbb{N}_+\}.$ 对于任意的 $F = f_1(X_{t_1}) \cdots f_n(X_{t_n}) \in \mathscr{C}, F \circ \theta_T 1_{\{t < \infty\}} = f_1(X_{T+t_1}) \cdots f_n(X_{T+t_n}) 1_{\{T < \infty\}}.$ 由过程的强适应性有 $f_i(X_{t+t_i}) 1_{\{T < \infty\}} \in b\mathscr{G}_{t_i+T} \subset g\mathscr{G},$ 故 $F \circ \theta_T 1_{\{t < \infty\}} \in b\mathscr{G}.$

往证, 对于任意的 $F \in \mathcal{C}$ 和初始分布 μ , (3.5) 成立. 用数学归纳法, 当 n = 1 时, 由强马氏性有

$$\mathbf{P}^{\mu}[f(X_t) \circ \theta_T 1_{\{T < \infty\}} | \mathscr{G}_T] = P_t f(X_T) 1_{\{T < \infty\}}.$$

由马氏系统的定义知

$$\mathbf{P}^{x}[f(X_{t})] = \mathbf{P}^{x} \{ \mathbf{P}^{x}[f(X_{t})|\mathscr{G}_{0}] \} = \mathbf{P}^{x}[P_{t}f(X_{0})] = P_{t}f(x),$$

将上式的 x 替换为 X_T , 再乘以 $1_{\{T<\infty\}}$ 得到 $\mathbf{P}^{X_T}[f(X_t)]1_{\{T<\infty\}} = P_t f(X_T)1_{\{T<\infty\}}$. 于是对于 n=1 时成立.

假设对于某个 n > 1 成立, 那么

$$\begin{aligned} &\mathbf{P}^{\mu} \left\{ [f_{1}(X_{t_{1}}) \cdots f_{n+1}(X_{T_{n+1}})] \circ \theta_{T} 1_{\{T < \infty\}} | \mathcal{G}_{T} \right\} \\ &= &\mathbf{P}^{\mu} \left\{ f_{1}(X_{T+t_{1}}) \cdots f_{n}(X_{T+t_{n}}) \mathbf{P}^{\mu} [f_{n+1}(X_{T+t_{n+1}}) | \mathcal{G}_{T+t_{n+1}}] 1_{\{T < \infty\}} | \mathcal{G}_{T} \right\} \\ &= &\mathbf{P}^{\mu} \left\{ f_{1}(X_{T+t_{1}}) \cdots f_{n}(X_{T+t_{n}}) P_{t_{n+1}-t_{n}} f(X_{T+t_{n}}) 1_{\{T < \infty\}} | \mathcal{G}_{T} \right\} \\ &= &\mathbf{P}^{x} [f_{1}(X_{t_{1}}) \cdots f_{n}(X_{t_{n}}) P_{t_{n+1}-t_{n}} f(X_{T+t_{n}})] 1_{\{T < \infty\}} \Big|_{x = X_{T}} \\ &= &\mathbf{P}^{x} \left\{ f_{1}(X_{t_{1}}) \cdots f_{n}(X_{t_{n}}) \mathbf{P}^{x} [f_{n+1}(X_{t_{n+1}}) | \mathcal{G}_{t_{n}}] \right\} 1_{\{T < \infty\}} \Big|_{x = X_{T}} \\ &= &\mathbf{P}^{x} \left\{ \mathbf{P}^{x} [f_{1}(X_{t_{1}}) \cdots f_{n}(X_{t_{n}}) f_{n+1}(X_{t_{n+1}}) | \mathcal{G}_{t_{n}}] \right\} 1_{\{T < \infty\}} \Big|_{x = X_{T}} \\ &= &\mathbf{P}^{X_{T}} [f_{1}(X_{t_{1}}) \cdots f_{n}(X_{t_{n}}) f_{n+1}(X_{t_{n+1}})] 1_{\{T < \infty\}} \end{aligned}$$

即得对任意的 $F \in \mathcal{C}, F \circ \theta_T 1_{\{T < \infty\}} \in b\mathcal{G}$ 且 (3.5) 成立.

令 $L:=\{F\in g\mathscr{F}: F\circ\theta_T1_{\{T<\infty\}}\in b\mathscr{G}$ 且满足 (3.5)}, 则 $\mathscr{C}\subset L$. 显然 \mathscr{C} 对乘积运算封闭, 由函数 形式的单调类定理, $b\mathscr{F}=\sigma(\mathscr{C})\subset L$.

习题 3.13 (P71) 预解方程: 对任意的 $\alpha, \beta > 0$ 和 $f \in b\mathcal{E}$, 有

$$(\beta - \alpha)U^{\alpha}U^{\beta}f(x) = U^{\alpha}f(x) - U^{\beta}f(x), x \in E.$$

证明

$$P_t U^{\beta} f(x) = \int_E P_t(x, dy) U^{\beta} f(y) = \int_E P_t(x, dy) \int_0^{\infty} e^{-\beta s} P_s f(y) ds$$
$$= \int_0^{\infty} e^{-\beta s} P_{s+t} f(x) ds = \int_t^{\infty} e^{-\beta (u-t)} P_u f(x) du.$$

$$U^{\alpha}U^{\beta}f(x) = \int_{0}^{\infty} e^{-\alpha t} P_{t}U^{\beta}f(x)dt$$

$$= \int_{0}^{\infty} e^{-\alpha t} \int_{t}^{\infty} e^{-\beta(u-t)} P_{u}f(x)dudt$$

$$= \int_{0}^{\infty} e^{-\beta u} P_{u}f(x) \int_{0}^{u} e^{(\beta-\alpha)t}dtdu$$

$$= \int_{0}^{\infty} e^{-\beta u} P_{u}f(x)(\beta-\alpha)^{-1}[e^{(\beta-\alpha)u}-1]du$$

$$= (\beta-\alpha)^{-1} \int_{0}^{\infty} (e^{-\alpha u} - e^{-\beta u}) P_{u}f(x)du$$

$$= (\beta-\alpha)^{-1}[U^{\alpha}f(x) - U^{\beta}f(x)].$$

4 费勒过程

习题 4.1 (P78) 任何费勒半群 $(P_t)_{t>0}$ 都是博雷尔的.

证明 给定任意的 $f \in C_0(E)$. 对于任何 $(s,x),(t,y) \in [0,\infty) \times E$, 我们有

$$|P_s f(x) - P_t f(y)| \le |P_s f(x) - P_s f(y)| + |P_s f(y) - P_t f(y)|$$

$$\le |P_s f(x) - P_s f(y)| + |P_{s \wedge t}| P_{|t-s|f-f}|(y)$$

$$\le |P_s f(x) - P_s f(y)| + ||P_{|t-s|}f - f||.$$

当 $(s,x) \to (t,y)$ 时, 上式右端趋于零. 故映射 $(s,x) \mapsto P_s f(x)$ 关于 (s,t) 右连续, 从而是 $\mathscr{B}[0,\infty) \times \mathscr{E}$ 可测的.

令 $L := \{f : (s,x) \mapsto P_s f(x)$ 关于 $\mathscr{B}[0,\infty) \times \mathscr{E}$ 可测}. 易证 L 包含所有常值函数, 对于线性运算封闭, 对于单调上升的有界极限封闭, 故 L 为 \mathscr{L} 系. 又 $C_0(E) \subset L$ 且对乘积运算封闭. 由单调类定理, $b\mathscr{E} \subset b\sigma(C_0(E)) \subset L$.

习题 4.2 (P82) E 是可分局部紧度量空间,则 E 必存在相对紧开集构成的可数基.

证明 因 E 可分, 故可设 $\{x_n : n = 1, 2, \dots\}$ 为 E 的可数稠子集. 对任何 $n, k \ge 1$, 令 $G_{n,k} := B(x_n, \frac{1}{k}) = \{y \in E : d(y, x_n) < \frac{1}{k}\}$. 则对任意的开集 A, 一定存在 $x_n \in A$. 定义 $\rho = d(x_n, A)$, 存在 k 使得 $\frac{1}{k} < \rho$, 则 $G_{n,k} \subset A$. 从而 $\{G_{n,k}\}$ 是 E 的可数基.

习题 4.3 (P85) 对每个 $\alpha > 0$ 和 $f \in C_u(E)$, 有 $U^{\alpha} f \in C_u(E)$.

证明 对于任意的 $f \in C_u(E)$, 令 $f_0(x) = f(x) - f(\partial) \in C_0(E)$, 则由命题 4.1.2 证明过程知 $U^{\alpha} f_0 \in C_0(E)$. 从而 $U^{\alpha} f = U^{\alpha} f_0 + U^{\alpha} f(\partial) = U^{\alpha} f_0 + \alpha^{-1} f(\partial) \in C_u(E)$.

习题 4.4 (P78, 例 3.2.1) 设 X_0 是实值随机变量. 对任何 $t \ge 0$ 令 $X_t = X_0 + t$. 则 $(X_t : t \ge 0)$ 是马氏过程, 其转移半群 $(P_t)_{t \ge 0}$ 可定义为 $P_t(x, dy) = \delta_{x+t}(dy)$. 这样, 对于任何 $t \ge 0, x \in \mathbb{R}$ 及 $f \in b\mathcal{B}(\mathbb{R})$ 有 $P_t f(x) = f(x+t)$. 此外, (P_t) 还是费勒半群, 并求其生成元.

证明 根据定义知

$$P_t f(x) = \int_{\mathbb{R}} f(y) P_t(x, dy) = \int_{\mathbb{R}} f(y) \delta_{x+t}(dy) = f(x+t). \tag{4.1}$$

- (1) 验证 (Pt) 为转移半群.
- 因为 $P_t(x,\mathbb{R}) = \delta_{x+t}(\mathbb{R}) = 1$, 故其为马氏核.
- \oplus (4.1) $\bowtie P_0 f(x) = f(x)$.
- 满足 C-K 方程:

$$\int_{\mathbb{R}} P_s(x, dy) P_t(y, B) = \int_{\mathbb{R}} \delta_{x+s}(dy) \delta_{y+t}(B) = \delta_{x+s+t}(B) = P_{s+t}(x, B).$$

(2) 半群满足费勒性质.

• 对于任意的 $f \in C_0(\mathbb{R})$, $P_t f(x) = f(x+t)$ 关于 x 连续, 且

$$\lim_{x \to \infty} P_t f(x) = \lim_{x \to \infty} f(x+t) = \lim_{x \to \infty} f(x) = 0.$$

因 f 有界, 故 $P_t f(x)$ 显然有界. 于是 $P_t f(x) \in C_0(\mathbb{R})$.

- $\forall x \in \mathbb{R}, f \in C_0(\mathbb{R}), \lim_{t \to 0} P_t f(x) = \lim_{t \to 0} f(x+t) = f(x).$
 - (3) 半群满足马氏性. $\forall s, t \in \mathbb{R}, f \in b\mathcal{G}$,

$$\mathbf{P}[f(X_{s+t})|\mathcal{G}_s] = \mathbf{P}[f(X_s+t)|\mathcal{G}_s] = f(X_s+t) = P_t f(X_s).$$

(4) 求生成元. $\mathscr{D}(A) = C_u^1(\mathbb{R}) \cap C_0(\mathbb{R}), Af(x) = f'(x), 其中 <math>C_u^1(\mathbb{R}) := \{f : f \in f' \in A, f'$

一方面, $C_u^1(\mathbb{R}) \cap C_0(\mathbb{R}) \subset \mathcal{D}(A)$. 对于任意的 $f \in C_u^1(\mathbb{R})$,

$$\left\| \frac{P_t f - f}{t} - f' \right\| = \sup_{x \in \mathbb{R}} \left| \frac{f(x+t) - f(x)}{t} - f'(x) \right|,$$

因为 f'(x) 一致连续, 故 f 一致可微, 即 $\forall \varepsilon > 0$, $\exists \delta$, 对 $\forall x \in \mathbb{R}, t < \delta$, 有 $\sup_{x \in \mathbb{R}} \left| \frac{f(x+t) - f(x)}{t} - f'(x) \right| < \varepsilon$. 于是 $\left\| \frac{P_t f - f}{t} - f' \right\| \to 0, t \downarrow 0$.

另一方面, $\mathcal{D}(A) \subset C_u^1(\mathbb{R}) \cap C_0(\mathbb{R})$. 对任意的 $f \in \mathcal{D}(A)$, 因 $\mathcal{D}(A) \subset C_0(\mathbb{R})$, 故 $f \in C_0(\mathbb{R})$. 由定理 4.1.3 知, $\lim_{t\to\infty} \|P_t f - f\| = 0$, 于是 $\lim_{t\to\infty} \sup_{x\in\mathbb{R}} |P_t f(x) - f(x)| = 0$, 从而 $\lim_{t\to\infty} \sup_{x\in\mathbb{R}} |f(x+t) - f(x)| = 0$, 即 f 一致连续. 对于任意的 $x \in \mathbb{R}$, 有

$$|f'(x) - f'(x+t)| \le \left| f'(x) - \frac{P_{t_0}f(x) - f(x)}{t_0} \right| + \left| \frac{P_{t_0}f(x) - f(x)}{t_0} - \frac{P_{t_0}f(x+t) - f(x+t)}{t_0} \right| + \left| \frac{P_{t_0}f(x+t) - f(x+t)}{t_0} - f'(x+t) \right|.$$

因为对于任意的 $\varepsilon > 0$,存在 t_0 ,使得 $\sup_{x \in \mathbb{R}} \left| f'(x) - \frac{P_{t_0} f(x) - f(x)}{t_0} \right| < \varepsilon/3$,故可以选取适当的 t_0 使得上式右侧的第一项和第三项对于 $x \in \mathbb{R}$ 一致地小于 $\varepsilon/3$. 第二项等于

$$\left| \frac{f(x+t_0) - f(x+t_0+t)}{t_0} + \frac{f(x+t) - f(x)}{t_0} \right|,$$

由 f 的一致连续性知, 存在 δ , 使得对于任意的 $t < \delta$, 都有上式对于 $x \in \mathbb{R}$ 一致地小于 $\varepsilon/3$. 因此 f' 是一致连续的. 此外, 对于任意的 $f \in \mathcal{D}(A)$, 有 $\|\frac{P_t f - f}{t} - f'\| \to 0$, $t \downarrow 0$. 取 $\varepsilon = 1$, 存在 t_1 使得

$$\left\| \frac{P_{t_1}f - f}{t_1} - f' \right\| \le 1.$$

因此 $||f'|| \le 1 + \left\| \frac{P_{t_1}f - f}{t_1} \right\| \le 1 + \frac{2||f||}{t_1}$. 因 f 有界, 故 f' 也有界. 至此, $f \in C^1_u(\mathbb{R}) \cap C_0(\mathbb{R})$.

习题 4.5 (P78, 例 3.2.2) 设 X_0 是实值随机变量. 对任意 $t \ge 0$ 令 $X_t = X_0 + \operatorname{sgn}(X_0)t$, 其中 sgn 为符号函数. 则 $(X_t:t\ge 0)$ 为马氏过程, 其转移半群 $(P_t)_{t\ge 0}$ 可定义为 $P_t(x,dy) = \delta_{x+\operatorname{sgn}(x)t}(dy)$. 对于任何 $t\ge 0, x\in\mathbb{R}$ 及 $f\in b\mathscr{B}(\mathbb{R})$ 有 $P_tf(x) = f(x+\operatorname{sgn}(x)t)$.

证明 根据定义知,

$$P_t f(x) = \int_{\mathbb{R}} P_t(x, dy) f(y) = \int_{\mathbb{R}} \delta_{x + \operatorname{sgn}(x)t} f(x) = f(x + \operatorname{sgn}(x)t). \tag{4.2}$$

- (1) 验证 (P_t) 是转移半群.
- (P_t) 是马氏核.
- 满足 C-K 方程: 对任意的 $x \in \mathbb{R}$,

$$P_s P_t f(x) = \begin{cases} f(x+t+s), & x > 0\\ f(x-t-s), & x < 0 \\ 0, & x = 0 \end{cases} = P_{s+t}(x).$$

- (2) 半群不具有费勒性质. 因存在 $f \in C_0(\mathbb{R})$ 满足 $f(x) \neq f(0), \forall x \neq 0$. $P_t f(x) = f(x+t) \rightarrow f(t), x \downarrow 0$. 而 $f(t) \neq f(0) = P_t f(0), \forall t \neq 0$. 所以 $P_t f(x) \nrightarrow P_t f(0), x \downarrow 0, \forall t \neq 0$. 故 $P_t f \notin C_0(\mathbb{R}), \forall t \neq 0$. 因此不是费勒半群.
 - (3) (X_t) 具有马氏性. 对于任意的 $s, t \in \mathbb{R}, f \in b\mathscr{B}(\mathbb{R}),$

$$\mathbf{P}[f(X_{t+s})|\mathscr{G}_s] = \mathbf{P}[f(X_s + t \cdot \operatorname{sgn}(X_0))|\mathscr{G}_s]$$

$$= f(X_s + t \cdot \operatorname{sgn}(X_0))$$

$$= f(X_s + t \cdot \operatorname{sgn}(X_s))$$

$$= P_t f(X_s)$$

因此, 具有以 $(P_t: t \ge 0)$ 为转移半群的马氏性.

(4) (X_t) 具有强马氏性. 对于任意的 $t \in \mathbb{R}$, $f \in b\mathscr{B}(\mathbb{R})$ 和 (\mathscr{G}_t) 停时 T,

$$\mathbf{P}[P_t f(X_T) 1_{\{T < \infty\}}] = \mathbf{P}[f(X_T + t \cdot \text{sgn}(X_T)) 1_{\{T < \infty\}}]$$

$$= \mathbf{P}[f(X_0 + T \cdot \text{sgn}(X_0) + t \cdot \text{sgn}(X_0)) 1_{\{T < \infty\}}]$$

$$= \mathbf{P}[f(X_0 + (T + t) \text{sgn}(X_0)) 1_{\{T < \infty\}}]$$

$$= \mathbf{P}[f(X_{T+t}) 1_{\{T < \infty\}}].$$

因此具有以 $(P_t: t \geq 0)$ 为转移半群的强马氏性.

习题 4.6 (P78, 例 4.1.1) 固定常数 $\alpha > 0$, 对于 $f \in b\mathscr{B}(\mathbb{R})$ 定义 $P_0 f(x) = f(x)$ 和

$$P_t f(x) = e^{-\alpha t} \sum_{k=0}^{\infty} \frac{\alpha^k t^k}{k!} f(x+k), t \ge 0, x \in \mathbb{R}.$$

则 $(P_t)_{t>0}$ 为 \mathbb{R} 上的费勒转移半群, 并求其生成元.

证明 (1) 首先证明 $(P_t)_{t>0}$ 是转移半群.

- 由定义知, $P_0 f(x) = f(x)$.
- 满足 C-K 方程: 对任意的 $f \in b\mathcal{B}(\mathbb{R})$,

$$P_{s}P_{t}f(x) = e^{-\alpha s} \sum_{k=0}^{\infty} \frac{\alpha^{k} s^{k}}{k!} e^{-\alpha t} \sum_{\ell=1}^{\infty} \frac{\alpha^{\ell} t^{\ell}}{\ell!} f(x+\ell+k)$$

$$= e^{-(s+t)} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{\alpha^{k} s^{k}}{k!} \frac{\alpha^{\ell} t^{\ell}}{\ell!} f(x+\ell+k)$$
(由 Fubini 定理)
$$= e^{-(s+t)} \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} \frac{\alpha^{k} s^{k-\ell} t^{\ell}}{(k-\ell)!\ell!} f(x+k)$$

$$= e^{-\alpha(s+t)} \sum_{k=0}^{\infty} \frac{1}{k!} \alpha^{k} (s+t)^{k} f(x+k)$$

$$= P_{s+t} f(x).$$

- (2) 半群具有费勒性质.
- 对于任意的 $f \in C_0(\mathbb{R})$, $\forall x \in \mathbb{R}$, $\forall t \geq 0$, 因 f 有界, 故 $\sum_{k=0}^{\infty} e^{-\alpha t} \frac{\alpha^k t^k}{k!} f(x) \leq ||f|| < \infty, \forall x \in \mathbb{R}$. 于 是由 Lebesgue 控制收敛定理及 f 的连续性知

$$\lim_{s \to 0} P_t f(x+s) = \lim_{s \to 0} e^{-\alpha t} \sum_{k=0}^{\infty} \frac{\alpha^k t^k}{k!} f(x+s) = e^{-\alpha t} \sum_{k=0}^{\infty} \frac{\alpha^k t^k}{k!} \lim_{s \to 0} f(x+s) = P_t f(x).$$

从而 $P_t f$ 连续. 另外类似地由 Lebesgue 控制收敛定理,

$$\lim_{x \to \infty} P_t f(x) = \lim_{x \to \infty} e^{-\alpha t} \sum_{k=0}^{\infty} \frac{\alpha^k t^k}{k!} f(x) = e^{-\alpha t} \sum_{k=0}^{\infty} \frac{\alpha^k t^k}{k!} \lim_{x \to \infty} f(x) = 0.$$

于是 $P_t f \in C_0(E)$.

• 对于任意的 $f \in C_0(E)$, 由 Lebesgue 控制收敛定理知

$$\lim_{t \to 0} P_t f(x) = \lim_{t \to 0} e^{-\alpha t} \sum_{k=0}^{\infty} \frac{\alpha^k t^k}{k!} f(x) = \sum_{k=0}^{\infty} \lim_{t \to 0} e^{-\alpha t} \frac{\alpha^k t^k}{k!} f(x) = f(x).$$

(3) 求生成元. 见书中定理 5.2.1.

习题 4.7 (P78, 例 4.1.2) 对于 $f \in b\mathcal{B}(\mathbb{R})$ 定义 $P_0 f(x) = f(x)$ 和

$$P_t f(x) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} f(y) e^{-(y-x)^2/2t} dy, t \ge 0, x \in \mathbb{R}.$$

则 $(P_t)_{t\geq 0}$ 是 \mathbb{R} 上的费勒转移半群, 并求其生成元.

证明 (1) 验证 $(P_t)_{t\geq 0}$ 为转移半群.

• 对于任意的 $t \in \mathbb{R}$, P_t 为马氏核. 首先对于任意的 $A \in \mathcal{B}$.

$$P_t(x, A) = P_t 1_A(x) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} 1_A(y) e^{-(y-x)^2/2t} dy$$

是可测函数. 其次对任意的 $x \in \mathbb{R}$, $A_1, A_2, \dots \in \mathcal{B}$ 两两不交,

$$P_{t}(x, \bigcup_{i=1}^{\infty} A_{i}) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} 1_{\bigcup_{i=1}^{\infty} A_{i}}(y) e^{-(y-x)^{2}/2t} dy$$

$$= \sum_{i=1}^{\infty} \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} 1_{A_{i}}(y) e^{-(y-x)^{2}/2t} dy$$

$$= \sum_{i=1}^{\infty} P_{t}(x, A_{i}).$$

所以 $P(x,\cdot)$ 是测度. 最后, 对于任意的 $x\in\mathbb{R},$ $P(x,\mathbb{R})=\frac{1}{\sqrt{2\pi t}}\int_{\mathbb{R}}e^{-(y-x)^2/2t}dy=1.$

- 由定义知 $P_0 f(x) = f(x)$.
- 满足 C-K 方程. 对于任意的 $f \in \mathcal{B}(\mathbb{R})$,

$$P_{t}P_{s}f(x) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi s}} \int_{\mathbb{R}} f(y)e^{-(y-z)^{2}/2s} dy e^{-(z-x)^{2}/2t} dz$$

$$= \frac{1}{\sqrt{2\pi t}} \frac{1}{\sqrt{2\pi s}} \int_{\mathbb{R}} f(y) \int_{\mathbb{R}} e^{-(y-z)^{2}/2s} e^{-(z-x)^{2}/2t} dz dy$$

$$= \frac{1}{\sqrt{2\pi t}} \frac{1}{\sqrt{2\pi s}} \int_{\mathbb{R}} f(y) \int_{\mathbb{R}} \exp\left\{-\frac{t(y^{2} + z^{2} - 2yz) + s(z^{2} + x^{2} - 2zx)}{2st}\right\} dz dy$$

$$= \frac{1}{\sqrt{2\pi t}} \frac{1}{\sqrt{2\pi s}} \int_{\mathbb{R}} f(y) dy \int_{\mathbb{R}} \exp\left\{-\frac{(t+s)(z - \frac{2sx + 2ty}{t+s})^{2}}{2st} - \frac{(x-y)^{2}}{2(t+s)}\right\} dz$$

$$= \frac{1}{\sqrt{2\pi (t+s)}} \int_{\mathbb{R}} f(y) \exp\left\{-\frac{(x-y)^{2}}{2(t+s)^{2}}\right\} dy \int_{\mathbb{R}} \frac{\sqrt{s+t}}{\sqrt{2\pi st}} \exp\left\{-\frac{(z - \frac{2sx + 2ty}{t+s})^{2}}{2\frac{st}{t+s}}\right\} dz$$

$$= \frac{1}{\sqrt{2\pi (t+s)}} \int_{\mathbb{R}} f(y) \exp\left\{-\frac{(x-y)^{2}}{2(t+s)^{2}}\right\} dy$$

$$= P_{s+t} f(x).$$

(2) 半群满足费勒性质.

$$P_t f(x) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} f(y) e^{-\frac{(y-x)^2}{2t}} dy = \frac{\frac{y-x}{\sqrt{t}} = z}{\frac{1}{\sqrt{2\pi}}} \int_{\mathbb{R}} f(x+\sqrt{t}z) e^{-z^2/2} dz.$$

• 对任意的 $f \in C_0(\mathbb{R})$, 若 t = 0, 则 $P_0 f = f \in C_0(\mathbb{R})$. 若 t > 0, 因 f 有界, 故 $f(x + \sqrt{t}z)e^{-z^2/2} \le \|f\|e^{-z^2/2}$, 且 $\int_{\mathbb{R}} \|f\|e^{-z^2/2}dz = \|f\|\sqrt{2\pi} < \infty$. 从而由 Lebesgue 控制收敛定理及 f 的连续性知

$$\lim_{x \to x_0} P_t f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \lim_{x \to x_0} f(x + \sqrt{t}z) e^{-z^2/2} dz = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x_0 + \sqrt{t}z) e^{-z^2/2} dz = P_t f(x_0).$$

类似地, $\lim_{t\to\infty} P_t f(x) = 0$. $P_t f$ 有界性显然. 从而 $P_t f \in C_0(\mathbb{R})$.

• 同样由 lebesgue 控制收敛定理.

$$\lim_{t \to 0+} P_t f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \lim_{t \to 0+} f(x + \sqrt{t}z) e^{-z^2/2} dz = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-z^2/2} dz = f(x).$$

(3) 求生成元. 对于任意的 $f \in C_u^2(\mathbb{R}) := \{ f \in C_u(\mathbb{R}) : f''(x) \ \text{有界且一致连续} \}.$

$$f(x + \sqrt{t}z) = f(x) + \frac{f'(x)}{1!}\sqrt{t}z + \frac{f''(x + \theta\sqrt{t}z)}{2!}(\sqrt{t}z)^2.$$

于是,

$$\frac{P_t f - f}{t} = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \frac{f(x + \sqrt{t}z) - f(x)}{t} dz
= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \left[\frac{f'(x)z}{\sqrt{t}} + \frac{f''(x + \theta\sqrt{t}z)}{2} z^2 \right] dz
= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \frac{f''(x + \theta\sqrt{t}z)}{2} z^2 dz.$$

先求形式上的极限. 注意到 $\int_{\mathbb{R}} e^{-z^2/2} z^2 dz = \sqrt{2\pi}$, 再由 Lebesgue 控制收敛定理知,

$$\lim_{t \to 0+} \frac{P_t f - f}{t} = \lim_{t \to 0+} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \frac{z^2}{2} [f''(x + \theta\sqrt{t}z) - f''(x)] dz + \lim_{t \to 0+} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \frac{z^2}{2} f''(x) dz$$

$$= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \frac{z^2}{2} \left[\lim_{t \to 0+} f''(x + \theta\sqrt{t}z) - f''(x) \right] dz + \frac{1}{2} f''(x) \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-z^2/2} z^2 dz$$

$$= \frac{1}{2} f''(x).$$

下面说明上述极限在上确界范数意义下收敛, 存在 C 使得

$$\left| \frac{P_t f}{t} - \frac{1}{2} f''(x) \right|$$

$$= \left| \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \frac{f(x + \sqrt{t}z) - f(x)}{t} dz - \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \frac{z^2}{2} f''(x) dz \right|$$

$$\leq \sqrt{t} C \to 0, t \to 0.$$

5 莱维过程

习题 **5.1** (**P97**) 假若 $X = (X_t : t \ge 0)$ 是 \mathbb{R}^d 上相对于流 $(\mathcal{G}_t)_{t \ge 0}$ 的平稳独立增量过程, 记 $X_t - X_0$ 的分布为 μ_t , 则 $(\mu_t)_{t > 0}$ 构成一个卷积半群.

习题 5.2 (P97) 给定 \mathbb{R}^d 上的卷积半群 $(\mu_t)_{t>0}$, 对于任何 $t \ge 0$ 我们可以定义

$$P_t(x, B) := \mu(B - x), x \in \mathbb{R}^d, B \in \mathscr{B}(\mathbb{R}^d).$$

证明 $P_t(x, dy)$ 为 \mathbb{R}^d 上的核.

习题 5.3 $(N_t:t\geq 0)$ 为普瓦松过程,证明 $\{N_t-\lambda t\}$ 是鞅.

习题 5.4 (P105) 证明布朗运动 $(B_t: t \ge 0)$ 是鞅. 且 $\{B_t^2 - t\}$ 也是鞅.

习题 5.5 (P109, 推论 5.3.6)

6 补充习题

习题 **6.1** 设 $\{N_t:t\geq 0\}$ 是参数为 α 的普瓦松过程, $\{\xi_n:n\geq 1\}$ 是一列独立同分布的随机变量, 且 $\{N_t\}$ 与 $\{\xi_n\}$ 独立. 令 $X_t:=\sum_{i=1}^{N_t}Y_i, t\geq 0$. 称 $\{X_t\}$ 为复合普瓦松过程, 其转移半群为

$$P_t f(x) = e^{-\alpha t} \sum_{k=0}^{\infty} \frac{(\alpha t)^k}{k!} \mathbf{E}[f(x + \sum_{i=1}^k \xi_i)].$$

证明 (1) 验证 (P_t) 为转移半群.

- 对于任意的 $t \ge 0$, P_t 为马氏核. (概率为 1, 可测性, 是测度.)
- 由定义知 $P_0 f(x) = f(x)$.
- 满足 C-K 方程: 对于任意的 $f \in b\mathcal{B}(\mathbb{R}), s, t \geq 0$, 有

$$P_{s}P_{t}f(x) = e^{-\alpha s} \sum_{k=0}^{\infty} \frac{(\alpha s)^{k}}{k!} \mathbf{E} \left\{ e^{-\alpha t} \sum_{\ell=0}^{\infty} \frac{(\alpha t)^{\ell}}{\ell!} \mathbf{E} \left[f(x + \sum_{i=1}^{k} \xi_{i}) \right] \right\}$$

$$= e^{-\alpha s} \sum_{k=0}^{\infty} \frac{(\alpha s)^{k}}{k!} e^{-\alpha t} \sum_{\ell=0}^{\infty} \frac{(\alpha t)^{\ell}}{\ell!} \mathbf{E} \left[f(x + \sum_{i=1}^{k} \xi_{i}) \right]$$
(由 Fubini 定理)
$$= e^{-\alpha (s+t)} \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} \frac{\alpha^{k} (s+t)^{k}}{k!} \mathbf{E} \left[f(x + \sum_{i=1}^{k} \xi_{i}) \right]$$

$$= P_{s+t} f(x).$$

(2) 半群满足费勒性质.

• 对于任意的 $f \in C_0(\mathbb{R}), \forall t \geq 0$

$$e^{-\alpha t} \sum_{k=0}^{\infty} \frac{(\alpha t)^k}{k!} \mathbf{E} \left[f(x + \sum_{i=1}^k \xi_i) \right] \le e^{-\alpha t} \sum_{k=0}^{\infty} \frac{(\alpha t)^k}{k!} ||f|| = ||f|| < \infty.$$

故由 Lebesgue 控制收敛定理及 f 的连续性知 $\lim_{x\to x_0} P_t f(x) = P_t f(x_0)$, 即 $P_t f$ 连续. $P_t f$ 的有界性显然成立. 另外, $\lim_{x\to\infty} P_t f(x) = 0$. 于是 $P_t f \in C_0(\mathbb{R})$.

- 类似地, 由 Lebesgue 控制收敛定理知 $\lim_{t\to 0+} P_t f(x) = f(x)$.
 - (3) 求生成元. 首先求极限,

$$\lim_{t \to 0+} \frac{P_t f(x) - f(x)}{t}$$

$$= \lim_{t \to 0+} \frac{e^{-\alpha t} \sum_{k=0}^{\infty} \frac{(\alpha t)^k}{k!} \mathbf{E} \left[f(x + \sum_{i=1}^k \xi_i) \right] - e^{-\alpha t} \sum_{k=0}^{\infty} \frac{(\alpha t)^k}{k!} f(x)}{t}$$

$$= \lim_{t \to 0+} \frac{1}{t} \left\{ e^{-\alpha t} \sum_{k=0}^{\infty} \frac{(\alpha t)^k}{k!} \mathbf{E} \left[f(x + \sum_{i=1}^k \xi_i) - f(x) \right] \right\}$$

$$= \lim_{t \to 0+} \frac{1}{t} \left\{ e^{-\alpha t} (\alpha t) \mathbf{E} [f(x + \xi_1) - f(x)] + e^{-\alpha t} \sum_{k=2}^{\infty} \frac{(\alpha t)^k}{k!} \mathbf{E} \left[f(x + \sum_{i=1}^k \xi_i) - f(x) \right] \right\}$$

$$= \alpha \mathbf{E} [f(x + \xi_1) - f(x)].$$

下证 $Af(x) = \alpha \mathbf{E}[f(x+\xi_1) - f(x)]$. 对于任意的 $f \in C_0(\mathbb{R})$, 当 t < 1 时, 存在 C 满足

$$\left| \frac{P_t f(x) - f(x)}{t} - \alpha \mathbf{E}[f(x + \xi_1) - f(x)] \right|$$

$$= \left| \alpha(e^{-\alpha t} - 1) \mathbf{E}[f(x + \xi_1) - f(x)] + \alpha e^{-\alpha t} \sum_{k=2}^{\infty} \frac{(\alpha t)^{k-1}}{k!} \mathbf{E} \left[f(x + \sum_{i=1}^{k} \xi_i) - f(x) \right] \right|$$

$$\leq \alpha \sum_{k=1}^{\infty} \frac{(\alpha t)^k}{k!} \mathbf{E} |f(x + \xi_1) - f(x)| + \alpha e^{-\alpha t} \sum_{k=2}^{\infty} \frac{(\alpha t)^{k-1}}{k!} \mathbf{E} \left| f(x + \sum_{i=1}^{k} \xi_i) - f(x) \right|$$

$$\leq C \|f\| t.$$

习题 6.2 请举例说明 (1) 马氏过程不一定是鞅. (2) 鞅不一定是马氏过程.