Лабораторная работа №1

Тема: «Работа со встроенными типами данных, числовые типы, строки, кортежи, измененяемые последовательности. Применение основных арифметических операций, определение приоритетов».

Требования к выполнению лабораторной работы №1

- 1. Изучите теоретическую часть к первой лабораторной работе:
 - а. Введение в язык программирования Python (notebook_1.ipynb).
 - b. Теоретическая часть к первой лабораторной работе.
 - с. Советы по производительности.
 - d. Лекция №1.
- 2. Установите Python + IDE.
- 3. Создайте новый проект.
- 4. Запустите примеры из лабораторной работы (notebook_1.ipynb).
- 5. Выполните задание согласно вашему варианту:
 - а. Вычислите свой вариант (*согласно формуле ниже*). Если сделали не свой вариант => <u>работа не засчитывается</u>.
 - b. Каждое задание представляет собой отдельный скрипт формата: lab_{номер_лР}_{номер_задания}_{номер_варианта}.ру, пример: lab_1_2_2.ру
 - с. Отправьте выполненное задание в ОРИОКС (раздел Домашние задания).

Формат защиты лабораторных работ:

- 1. Продемонстрируйте выполненные задания.
- 2. Ответьте на вопросы по вашему коду.
- 3. При необходимости выполните дополнительное (*дополнительные*) задания от преподавателя.
- 4. Ответьте (устно) преподавателю на контрольные вопросы.

FAQ

- **ЛР №1** можно сдать на максимальный балл на втором занятии при условии, что на первом занятии было выполнено не менее 50% заданий (*оценивается преподавателем*).
- Можно выполнять ЛР опережая график.
- На консультации можно сдавать только долги по ЛР.
- Если вы успели выполнить ЛР (*отправили работу в ОРИОКС*), но по объективным причинам не успели защитить её до конца ЛР, то на следующем занятии баллы не снижаются.
- Баллы не снижаются за отсутствие на занятии по уважительной причине (в ОРИОКСе должна присутствовать отметка о предоставленной справке).

Список вопросов

- 1. Для чего необходимо устанавливать различные версии интерпретатора отдельно для каждого проекта?
- 2. Что такое инструкция?
- 3. Что означает термин «динамическая типизация»?
- 4. В чём отличие *list* от *tuple*?
- 5. В чём отличие *set* от *list*?
- 6. Что возвращает функция range?

3

Задания

<u>Во всех заданиях</u> необходимо проверять корректность вводимых данных и выводить соответствующие сообщения об ошибках.

Вариант №1

Задание №1. Пользователь с клавиатуры вводит две строки s и x, где s – исходная строка, x – «вирус». Необходимо из исходной строки s удалить все вхождения строки x, таким образом, чтобы <u>в</u> результирующей строке не осталось «вирусов».

Примеры:

S	x	result
python	py	thon
tuple	Up	tle
Queues	ue	Qs
aabbcc	ab	сс

Задание №2. Пользователь с клавиатуры вводит n целых положительных чисел (*через пробел*) – получаем список a_n .

Необходимо, чтобы после k операций все элементы списка равнялись нулю.

Ограничение: обнулять элементы можно только с помощью следующей операции: скрипт автоматически выбирает <u>оптимальный</u> отрезок $[a_i, a_j]$, такой, что $1 \le i \le j \le n$, затем уменьшает элементы $a_i, a_{i+1}, a_{i+2}, \dots, a_j$ на единицу.

Задача вывести число k — минимальное количество операций, после которых все элементы списка будут равны нулю.

^{*} Строки не чувствительны к регистру.

Примеры:

а	k	Примечание
[2, 2]	2	$[2, 2] \Rightarrow [1, 1] \Rightarrow [0, 0]$
[4, 4, 5, 5]	5	$[4, 4, 5, 5] \Rightarrow [3, 3, 4, 4] \Rightarrow [2, 2, 3, 3]$ => $[1, 1, 2, 2] \Rightarrow [0, 0, 1, 1] \Rightarrow [0, 0, 0, 0]$
[4, 2, 4]	6	$[4, 2, 4] \Rightarrow [3, 1, 3] \Rightarrow [2, 0, 2] \Rightarrow [1, 0, 2]$ => $[0, 0, 2] \Rightarrow [0, 0, 1] \Rightarrow [0, 0, 0]$

Задание №3.

Администратору кинотеатра необходимо вести учёт стоимости билетов. Цена на билет в различные дни/часы может изменяться, поэтому для пары ряд/место, может быть задано несколько строк.

Входные данные:

Пользователь вводит целое положительное число n – количество строк.

Затем вводит п строк формата:

{ряд} {место} {стоимость_билета}

Например, строка

1 2 1000

означает: 1-й ряд, 2 место, 1000 руб.

Выходные данные:

m пар $\{p \not a \partial_i\}$ $\{mecmo_i\} - \{k_i\}$

где k_i – количество различных возможных цен билета на $\{p n \partial_i\}$ $\{mecmo_i\}$

Примеры:

n	tickets	k	Примечание
4	1 1 1000 1 1 1000 1 2 2000 1 2 3000	$ \begin{array}{c} 1 & 1 - 1 \\ 1 & 2 - 2 \end{array} $	Билет на 1-й ряд 1 место во всех кейсах имеет только одну цену (1000 руб.) => k_1 = 1 Билет на 1-й ряд 2 место имеет 2 различные цены (2000 руб. и 3000 руб.) => k_2 = 2

3	1 1 1000 1 1 2000 1 1 2000	11-2	Билет на 1-й ряд 1 место имеет две различные цены (1000 руб. и 2000 руб.) $=>k_1=2$
---	----------------------------------	------	---

Примечание: в качестве ключей словаря (dict) могут быть использованы кортежи (tuple).

Вариант №2

Задание №1. Пользователь с клавиатуры вводит строку s (разрешаются только латинские символы без пробелов). Необходимо вывести целое число n – количество индексов i таких, что после удаления символа s_i из исходной строки s новая строка s становится палиндромом. Палиндромом называется строка, которая одинаково читается как слева направо, так и справа налево.

Примеры:

S	n	Примечание
dad	1	При удалении первого символа: ad – не палиндром При удалении второго символа: dd – палиндром При удалении третьего символа: da – не палиндром
qq	2	При удалении первого символа: d — палиндром При удалении второго символа: d — палиндром
Level	1	evel — не палиндром Lvel — не палиндром Leel — палиндром Levl — не палиндром Leve — не палиндром

Задание №2. Пользователь с клавиатуры вводит целые неотрицательные числа (*через пробел*). Необходимо отсортировать список чисел по количеству вхождений единиц в бинарном представлении числа. Если два числа имеют одинаковое количество единиц (*битов*), вместо этого сравните их реальные значения.

Примеры:

list	result	Примечание
[2, 1, 3]	[1, 2, 3]	1-01; $2-10$; $3-111 и 2 имеют одинаковое количество«единиц», но так как 2>1=> число 1 имеетменьший приоритет.$
[8, 16]	[8, 16]	8 – 1 000; 16 – 1 0000
[15, 32, 63, 64]	[32, 64, 15, 63]	32 – 0100000; 64 – 1000000; 15 – 0001111; 63 – 0111111;

Задание №3.

Сетевому администратору необходимо проанализировать логи авторизации. Каждая строка такого лога представляет себе данные о дате авторизации пользователя и его IP адресе.

Входные данные:

Пользователь вводит целое положительное число n — количество строк.

Затем вводит и строк формата:

{логин} {дата} {IP}

Login – набор латинский букв без пробелов (например, Admin).

Дата – дата формата dd.mm. YYYY (например, 31.12.2021).

IP - IP адрес формата IPv4 (например, 10.0.0.2).

Выходные данные:

Вывести *логин* с максимальным количеством различных IP адресов за один день. Если таких несколько, то вывести любой из них.

Примеры:

n	Логи	Логин	Примечание
5	Admin 01.01.2021 10.0.0.2 Admin 01.01.2021 10.0.0.3 User 01.01.2021 192.168.0.1 User 02.01.2021 192.168.0.2 User 03.01.2021 192.168.0.3	Admin	01.01.2021 пользователь с логином Admin авторизовался с двух различных адресов. Пользователь с логином User хоть и авторизовался с 3-х различных адресов, но все в разные дни.
4	Admin 01.01.2021 10.0.0.2 User 02.01.2021 192.168.0.1 User 02.01.2021 192.168.0.2 User 02.01.2021 192.168.0.3	User	Пользователь User авторизовался с 3-х различных IP адресов за один день (02.01.2021)

Примечание: в качестве ключей словаря (dict) могут быть использованы кортежи (tuple). Проверять корректность IP адреса и/или даты желательно, но не является обязательной частью задания.