《微积分 A》(下)期末试题(A卷)

班级		学号							姓名				
(本试卷共6页,十一个大题,试卷后面空白纸撕下作草稿纸)													
题	_		三	四	五	六	七	八	九	+	+	总	
号											_	分	
得													
分													
签													
名													
一、填空题(每小题 4 分, 共 20 分)													
$\int x = 3t - 2$													
1. 过点 $M(-1, 2, 1)$ 且与直线 $\begin{cases} x = 3t - 2 \\ y = t + 4 \text{ 垂直的平面方程为} \\ z = -t + 1 \end{cases}$													
z = -t + 1													
2. 设平面曲线 L 为下半圆周 $y = -\sqrt{1-x^2}$,则曲线积分 $\int_L (x^2 + y^2) dl =$													
3. 设级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^p} \arctan \frac{1}{\sqrt{n}} (p$ 为常数),则													

收敛;当______时该级数条件收敛.

二、(8 分)在曲面 z=xy 上求一点 M ,使 M 点处的法线垂直于平面 x+3y+z+9=0,并写出这条法线方程.

三、(8 分)计算三重积分 $I=\iiint_V z\sqrt{x^2+y^2}\,dxdydz$, 其中 V 是由半球面 $z=\sqrt{2-x^2-y^2}$ 与抛物面 $z=x^2+y^2$ 围成的区域.

- 四、(8 分)求函数 u = xy + 2yz 在约束条件 $x^2 + y^2 + z^2 = 10$ 下的最大值和最小值.
- 五、 $(8 \, \mathcal{G})$ 求上半圆锥面 $S: z = \sqrt{x^2 + y^2}$ $(0 \le z \le 1)$ 对 z 轴的转动惯量,已知圆锥面的面密度等于该点到原点的距离.
- 六、 $(8 \, f)$ 求幂级数 $\sum_{n=1}^{\infty} nx^n$ 的收敛域及和函数,并求数项级数 $\sum_{n=1}^{\infty} \frac{n}{3^n}$ 的和.
- 七 (8分) 设 $z = f(x 2y) + g(y, xe^y)$, 其中函数 f(t) 二阶可导, g(u, v) 具有连续的二阶偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$.
- 八、(8分)计算曲线积分 $I = \oint_L y dx + z dy + x dz$,其中 L 是球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线,从 z 轴正向看是逆时针方向.
- 九、(8分)利用高斯公式计算第二类曲面积分

$$I = \iint_{\Sigma} x^3 dy dz + y^3 dz dx + (z^3 + x^2 + y^2) dx dy,$$

其中 \sum 为上半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 的上侧.

- 十 (8分) 将 $f(x) = \frac{1}{x^2 + 4x + 3}$ 展开为 x 1 的幂级数,并求 $f^{(10)}(1)$ 的值.
- 十一、(8 分)设在右半平面x>0内,有力 $\vec{F}=-\frac{k}{r^3}(x\vec{i}+y\vec{j})$ 构成的力场,其中k为常数, $r=\sqrt{x^2+y^2}$.写出功的表达式并证明在此力场中,场力所做的功与所取的路径无关.