

NO AUXÍLIO AO DIAGNÓSTICO MÉDICO

A seguir, são apresentadas várias pesquisas para o Auxílio ao Diagnóstico Médico por Inteligência Artificial desenvolvidas no LAPISCO nos últimos anos. Vale ressaltar que outros projetos relacionados a sinais, imagens e computação aplicada direcionados a esta área também são de nosso interesse.

Em imagens de TC e em imagens de raio-X

Etc

CÂNCER

EFISEMA

COVID PNEUMONIA

REGIÃO DE INTETESSE

) O CAD oferece mais precisão e agilidade no di<mark>ag</mark>nóstico.

ADAPTAÇÃO AO CONTRASTE E QUALIDADE DA IMAGEM PRESENTE NOS EXAMES

Torna a ferramenta adaptável para diferentes cenários de aquisição de TC do tórax, visando acelerar o processo de análise do especialista para identificação automática da região pulmonar, contribuindo na agilidade do processo, fomentando ferramentas de sobreposição em imagens para ampliar possibilidades de análises e por fim, contribuindo com uma melhoria no processo de diagnóstico auxiliado por computador.

APLICAÇÃO EM TEMPO REAL

O tempo médio de segmentação dos pulmões foi 1,98s por imagem.

BAIXO CUSTO COMPUTACIONAL

Não requer nenhum algoritmo baseado em redes neurais para executar seu procedimento, o que é um diferencial por permitir sua utilização em computadores com recursos de hardware mais simples. A técnica de segmentação que é apresentada neste trabalho pode favorecer o especialista contribuindo com uma redução no tempo de análise e reduzindo a fadiga visual por indicar as regiões que requerem maior atenção.

Identificação e classificação de RETINOPATIA DIABÉTICA

POR VISÃO COMPUTACIONAL USANDO SMARTPHONE

Captura das imagens do fundo do olho ATRAVÉS DO **SMARTPHONE**

AVALIAÇÃO DE EXTRATORES de

acterísticas nas imagens.

VALIDAÇÃO DOS **DADOS**

RESULTADO Validação de amostras de teste, avaliação e escolha d modelo IA.

TREINAMENTO e avaliação de MÉTODOS DE APRENDIZAGEM DE MÁOUINA

AUXÍLIO NA CLASSIFICAÇÃO de doenças relacionadas ao coração VIA SINAL ECG Arritmias, Chagas etc

cardíacas

em imagens de tomografia computacional do cérebro

RESULTADO Predição

AUXÍLIO NA IDENTIFICAÇÃO E CLASSIFICAÇÃO DE DOENÇAS DE PARKINSON E DOENÇAS DE HUNTINGTON

usando sinais de voz através de machine learning

Captura do sinal de voz através de um microfone professional ou smartphone Formação e utilização de bases de dados públicas para treinar a Inteligência Artificial (IA)

> Avaliação de ferramentas abertas para Extração de características no Sinal de voz

Treinamento e avaliação de Métodos de aprendizagem de Máquina

RESULTADO
Validação de
amostras de teste,
avaliação e escolha
do modelo de IA

DOENÇAS DE PELE EM IMAGENS DIGITAIS USANDO INTELIGÊNCIA COMPUTACIONAL

APLICAÇÃO CLÍNICA

TEMPO E EFICIÊNCIA

Método de **segmentação rápida e automática** de lesões cutâneas por meio de características probabilísticas com a janela de Parzen (SPPW).

PRECISÃO E OBJETIVIDADE

Dar a possibilita de o especialista realizar uma **análise da região doente** com mais precisão e objetividade.

IMAGEM SEGMENTADA NAS MÃOS

Adquirir uma imagem já segmentada auxilia o diagnóstico do médico uma vez que o especialista já vai obter os limites da região lesionada e maior facilidade de visualizar as mudanças de textura, cor e tonalidade da região doente para classificar a gravidade da lesão, o melhor tratamento e a respectiva registro/evolução da região doente.

BAIXO CUSTO COMPUTACIONAL

A implementação do sistema proposto é realizada dentro do consultório e possui **fácil acessibilidade e manuseio.** Características justificadas devido aos **baixos custos** computacionais exigidos e o **baixo tempo de execução do método.**

Analise de Batimentos Cardíacos POR VÍDEO SELFIE

CARDÍACA

(estimate: 53.3 bpm, we

Ideal para triagem automática e rápida em clinicas, hospitais e afins, para a tomada de decisão mais precisa.

SISTEMA CAPAZ DE AUXILIAR NA IDENTIFICAÇÃO DE

respiração, variação na respiração, saturação do oxigênio, batimentos cardíacos, pressão sanguínea e estresse mental.

COVID-19 DO LAPISCO-IFCE

APLICAÇÃO CLÍNICA

PREDIÇÃO

Dashboards de gráficos e analíticos

DIAGNÓSTICO POR IMAGEM

Sistema de visão computacional para o auxilio ao diagnóstico médico por imagem de raio-X

SIMULADOR DE PROGRESSÃO

Simulador COVID-19

TERMÔMETRO DA SITUAÇÃO

Avaliação analítica da situação em forma de relógio

ANALÍTICOS GEOLOCALIZADOS

Plotagem de todos os analíticos em mapa (confirmados, óbitos, etc)

DADOS HOSPITALARES

LAPISCO

APLICAÇÃO

Dados reais dos hospitais

DIAGNÓSTICO MÉDICO EM 3D

Segmentação do cérebro, crânio e superfície da pele em imagens de TC da cabeça

Auxílio na segmentação 3D dos pulmões em imagens de TC do tórax (e também de outros órgãos)

Segmentação pulmonar usando RegionGrowing e VTK / ITK

