GRAPH THEORY PACKAGE FOR GIAC/XCAS REFERENCE MANUAL

November 2020

Introduction	1
1. CONSTRUCTING GRAPHS	3
1.1. General graphs	3
1.1.1. Undirected graphs	
1.1.2. Directed graphs	
1.1.3. Examples	
Creating vertices	
Creating edges and arcs	
Creating paths and trails	
01	
Specifying adjacency or weight matrix	
Creating special graphs	
1.2. Cycle and path graphs	
1.2.1. Cycle graphs	
1.2.2. Path graphs	
1.2.3. Trails of edges	
1.3. Complete graphs	
1.3.1. Complete (multipartite) graphs	
1.3.2. Complete trees	0
1.4. Sequence graphs	
1.4.1. Creating graphs from degree sequences	0
1.4.2. Validating graphic sequences	
1.5. Intersection graphs	1
1.5.1. Interval graphs	1
1.5.2. Kneser graphs	1
1.6. Special graphs	2
1.6.1. Hypercube graphs	2
1.6.2. Star graphs	3
1.6.3. Wheel graphs	3
1.6.4. Web graphs	4
1.6.5. Prism graphs	4
1.6.6. Antiprism graphs	5
1.6.7. Grid graphs	5
1.6.8. Sierpiński graphs	7
1.6.9. Generalized Petersen graphs	
1.6.10. LCF graphs	
1.7. Isomorphic copies of graphs	
1.7.1. Creating isomorphic copies from permutations	
1.7.2. Permuting vertices	
1.7.3. Relabeling vertices	
1.8. Subgraphs	
1.8.1. Extracting subgraphs	
1.8.2. Induced subgraphs	
1.8.3. Underlying graphs	
1.8.4 Fundamental cycles	

1.8.5. Finding cycles in digraphs	35
1.9. Operations on graphs	36
1.9.1. Graph complement	36
1.9.2. Seidel switching	
1.9.3. Transposing graphs	
1.9.4. Union of graphs	
1.9.5. Disjoint union of graphs	
1.9.6. Joining two graphs	
1.9.7. Power graphs	
1.9.8. Graph products	
1.9.9. Transitive closure graph	
1.9.10. Line graph	
1.9.11. Plane dual graph	
1.9.12. Truncating planar graphs	
Constructing fullerene graphs.	
1.10. Random graphs	
1.10.1. Random general graphs	
1.10.2. Random bipartite graphs	
1.10.3. Random trees	
1.10.4. Random planar graphs	
1.10.5. Random graphs from a given degree sequence	
1.10.6. Random regular graphs	
1.10.7. Random tournaments	
1.10.8. Random network graphs	
1.10.9. Kandonnizing edge weights	50
2. MODIFYING GRAPHS	57
2.1. Promoting to directed and weighted graphs	57
2.1.1. Converting edges to arcs	
2.1.2. Assigning weight matrix to unweighted graphs	57
2.2. Modifying vertices of a graph	57
2.2.1. Adding and removing vertices	57
2.3. Modifying edges of a graph	
2.3.1. Adding and removing edges	58
2.3.2. Accessing and modifying edge weights	
2.3.3. Contracting edges	60
2.3.4. Subdividing edges	
2.4. Using attributes	
2.4.1. Graph attributes	
2.4.2. Vertex attributes	
2.4.3. Edge attributes	64
3. IMPORT AND EXPORT	67
3.1. Importing graphs	67
3.1.1. Loading graphs from dot files	
3.1.2. The dot file format overview	
3.2. Exporting graphs	
3.2.1. Saving graphs in dot format	
3.2.2. Saving graph drawings in L ^A T _E X format	
4. Graph properties	
4.1. Basic properties	71

4.1.1.	Determining the type of a graph	. 71
4.1.2.	Listing vertices and edges	. 71
4.1.3.	Equality of graphs	. 72
4.1.4.	Vertex degrees	. 73
4.1.5.	Regular graphs	. 74
4.1.6.	Strongly regular graphs	. 76
4.1.7.	Vertex adjacency	. 76
4.1.8.	Tournament graphs	. 78
	Bipartite graphs	
	D. Edge incidence	
	ebraic properties	
_	Adjacency matrix	
	Laplacian matrix	
	Incidence matrix	
4.2.4.	Weight matrix	. 84
	Characteristic polynomial	
	Graph spectrum	
	Seidel spectrum	
	Integer graphs	
	ph isomorphism	
	Isomorphic graphs	
	Canonical labeling	
	Graph automorphisms	
	ph polynomials	
	Tutte polynomial	
	Chromatic polynomial	
	Flow polynomial	
	Reliability polynomial	
	nectivity	
	Connected, biconnected and triconnected graphs	
	Connected and biconnected components	
	Vertex connectivity	
	Graph rank	
	Articulation points	
	Strongly connected components	
	Edge connectivity	101
	Edge cuts	
	Two-edge-connected graphs	
4.6. Tree		
4.6.1.	Tree graphs	
	Forest graphs	
	Height of a tree	
	Lowest common ancestor of a pair of nodes	
	Arborescence graphs	
4.7. Netv		
	Network graphs	
	Maximum flow	107
	Minimum cut	108
	ance in graphs	
	Vertex distance	
	All-pairs vertex distance	
1.0.4.	rr	110

4.8.3. Diameter	111
4.8.4. Girth	112
4.9. Acyclic graphs	112
4.9.1. Acyclic graphs	112
4.9.2. Topological sorting	113
4.9.3. st ordering	113
4.9.4. Graph condensation	115
4.10. Matching in graphs	116
	116
	117
4.11. Cliques	118
4.11.1. Clique graphs	118
4.11.2. Maximal cliques	118
4.11.3. Maximum clique	119
	120
-	121
•	122
· · · · · · · · · · · · · · · · · · ·	122
4.12.2. Clustering coefficient	123
4.12.3. Network transitivity	
·	126
	128
	128
	129
© .	130
	131
· · · · ·	132
· · · · · · · · · · · · · · · · · · ·	133
	133
· ·	134
5. TRAVERSING GRAPHS	137
5.1. Walks and tours	137
5.1.1. Eulerian graphs	137
5.1.2. Hamiltonian graphs	138
5.2. Optimal routing	
5.2.1. Shortest unweighted paths	
	140
5.2.3. <i>k</i> -shortest paths	
	142
	145
	145
	146
• •	146
6. VISUALIZING GRAPHS	149
6.1. Drawing graphs	149
6.1.1. Overview	149
	150
6.1.3. Spring method	
6.1.4. Drawing trees	
6.1.5. Drawing planar graphs	

6.1.6. Circular graph drawings	155
6.2. Vertex positions	156
6.2.1. Setting vertex positions	156
6.2.2. Generating vertex positions	157
6.3. Highlighting parts of graphs	157
6.3.1. Highlighting vertices	157
6.3.2. Highlighting edges and trails	158
6.3.3. Highlighting subgraphs	159
BIBLIOGRAPHY	161
COMMAND INDEX	165

INTRODUCTION

This document¹ contains an overview of the library of graph theory commands built in Giac computation kernel and supported within the Xcas GUI. The library provides an effective and free replacement for the GraphTheory package in Maple with a high level of syntax compatibility (although there are some minor differences).

For each command, the calling syntax is presented along with the detailed description of its functionality and several examples. The square brackets [and] in the calling syntax indicate that the respective argument should be a list of particular elements or that its inclusion is optional. The character | stands for or.

The algorithms in this library are implemented according to the relevant scientific publications. Although the development focus was on simplicity, the algorithms are reasonably fast. For some more difficult tasks, such as for solving traveling salesma problem, finding graph colorings and graph isomorphism, freely available third party libraries are used, in particular GNU Linear Programming Kit (GLPK) and nauty. Most commands, however, have no dependencies save the Giac kernel itself.

This library was written and documented by Luka Marohnić². The author would like to thank Bernard Parisse, the Giac/Xcas project leader, for integrating the package and Jose Capco for suggesting nauty integration.

 $[\]overline{1}$. This manual was written in GNU $T_E X_{MACS}$, a scientific document editing platform. All examples were entered as interactive Giac sessions.

^{2.} Email: luka.marohnic@tvz.hr

CHAPTER 1

CONSTRUCTING GRAPHS

1.1. General graphs

The commands graph and digraph are used for constructing general graphs.

1.1.1. Undirected graphs

```
Syntax: graph(n|V,[opts])
                                                        graph with n vertices or vertex set V and no edges
         graph(V,E,[opts])
                                                        graph (V, E)
         graph(E,[opts])
                                                        graph with edge set E, vertices implied
         graph(V,T,[opts])
                                                        graph (V, E) where E is the edge set of trail T
         graph(T,[opts])
                                                        graph with edges from trail T, vertices implied
         graph(V,T1,T2,T3,..,Tk,[opts])
                                                        graph with edge set consisting of edges on the given trails
         graph(T1,T2,T3,..,Tk,[opts])
         graph(A,[opts])
                                                        graph with adjacency or weight matrix A, vertices implied
         graph(V,E,A,[opts])
                                                        weighted graph (V, E) with weight matrix A
         graph(V,Perm,[opts])
                                                        digraph with a single cycle as a permutation of vertices V
         graph(Str)
                                                        special graph
```

The command graph takes between one and three main arguments, each of them being one of the following structural elements of the resulting graph G(V, E). Throughout this manual, an edge $e \in E$ with endpoints $u, v \in V$ is denoted by e = uv. Note that the order of the endpoints does not matter if G is undirected; hence uv = vu. If G is directed, uv and vu are treated as separate edges.

- number *n* or list of vertices *V* (a vertex may be any atomic object, such as an integer, a symbol or a string); it must be the first argument if used,
- set of edges *E* (each edge is represented by the list of its endpoints), a permutation, a trail of edges or a sequence of trails; it can be either the first or the second argument if used,
- trail T or sequence of trails $T_1, T_2, ..., T_k$,
- permutation Perm of vertices,
- adjacency or weight matrix A,
- string Str, representing a special graph.

Optionally, the following options may be appended to the sequence of arguments:

- directed = true or false,
- weighted = true or false,
- color = an integer or a list of integers representing color(s) of the vertices,
- coordinates = a list of vertex 2D or 3D coordinates.

The graph command may also be called by passing a string Str, representing the name of a special graph, as its only argument. In that case the corresponding graph will be constructed and returned. The supported graphs are listed below.

special graph	name in Giac	special graph	name in Giac
Balaban 10-cage	balaban10	Grötzsch graph	grotzsch
Balaban 11-cage	balaban11	Harries graph	harries
Bidiakis cube	bidiakis	Harries-Wong graph	harries-wong
Biggs-Smith graph	biggs-smith	Heawood graph	heawood
2 nd Blanuša snark	blanusa	Herschel graph	herschel
Bull graph	bull	Hoffman graph	hoffman
Butterfly graph	butterfly	Icosahedral graph	icosahedron
Clebsch graph	clebsch	Levi graph (Tutte 8-cage)	levi
Chvátal graph	chvatal	Ljubljana graph	ljubljana
Coxeter graph	coxeter	McGee graph	mcgee
Desargues graph	desargues	Moser spindle	moser
Diamond graph	diamond	Möbius–Kantor graph	mobius-kantor
Dodecahedral graph	dodecahedron	Nauru graph	nauru
Dürer graph	durer	Octahedral graph	octahedron
Dyck graph	dyck	Pappus graph	pappus
Errera graph	errera	Petersen graph	petersen
F26A graph	f26a	Poussin graph	poussin
Folkman graph	folkman	Robertson graph	robertson
Foster graph	foster	Shrikhande graph	shrikhande
Franklin graph	franklin	Tetrahedral graph	tehtrahedron
Frucht graph	frucht	Tietze graph	tietze
Goldner-Harary graph	goldner-harary	Truncated icosahedral graph	soccerball
Golomb graph	golomb	Tutte graph	tutte
Gray graph	gray	Tutte 12-cage	tutte12
Grinberg graph	grinberg	Wagner graph	wagner

1.1.2. Directed graphs

The digraph command is used for creating directed graphs, although it is also possible with the graph command by specifying the option directed=true. Actually, calling digraph is the same as calling graph with that option appended to the sequence of arguments. However, creating special graphs is not supported by digraph since they are all undirected.

Edges in directed graphs are usually called arcs.

1.1.3. Examples

Creating vertices A graph consisting only of vertices and no edges can be created simply by providing the number of vertices or the list of vertex labels.

> graph(5)

an undirected unweighted graph with 5 vertices and 0 edges

> graph([a,b,c])

an undirected unweighted graph with 3 vertices and 0 edges

1.1 GENERAL GRAPHS 15

The commands that return graphs often need to generate vertex labels. In these cases ordinal integers are used, which are 0-based in Xcas mode and 1-based in Maple mode. Examples throughout this manual are made by using the default, Xcas mode.

Creating edges and arcs Edges/arcs must be specified inside a set so that it can be distinguished from a (adjacency or weight) matrix. If only a set of edges/arcs is specified, the vertices needed to establish these will be created automatically. Note that, when constructing a directed graph, the order of the vertices in an arc matters; in undirected graphs it is not meaningful.

```
> graph(%{[a,b],[b,c],[a,c]%})
```

an undirected unweighted graph with 3 vertices and 3 edges

Edge weights may also be specified.

```
> graph(%{[[a,b],2],[[b,c],2.3],[[c,a],3/2]%})
```

an undirected weighted graph with 3 vertices and 3 edges

If the graph contains isolated vertices (not connected to any other vertex) or a particular order of vertices is desired, the list of vertices has to be specified first.

```
> graph([d,b,c,a],%{[a,b],[b,c],[a,c]%})
```

an undirected unweighted graph with 4 vertices and 3 edges

Creating paths and trails A directed graph can also be created from a list of n vertices and a permutation of order n. The resulting graph consists of a single directed cycle with the vertices ordered according to the permutation.

```
> G:=graph([a,b,c,d],[1,2,3,0])
```

a directed unweighted graph with 4 vertices and 4 arcs

```
> draw_graph(G)
```


Alternatively, one may specify edges as a trail.

```
> digraph([a,b,c,d],trail(b,c,d,a))
```

a directed unweighted graph with 4 vertices and 3 arcs

Using trails is also possible when creating undirected graphs. Also, some vertices in a trail may be repeated, which is not allowed in a path.

```
> G:=graph([a,b,c,d],trail(b,c,d,a,c))
```

an undirected unweighted graph with 4 vertices and 4 edges

```
> edges(G)
```

$$\begin{pmatrix}
a & c \\
a & d \\
b & c \\
c & d
\end{pmatrix}$$

It is possible to specify several trails in a sequence, which is useful when designing more complex graphs.

an undirected unweighted graph with 7 vertices and 9 edges

> draw_graph(G)

Specifying adjacency or weight matrix A graph can be created from a single square matrix $A = [a_{ij}]_n$ of order n. If it contains only ones and zeros and has zeros on its diagonal, it is assumed to be the adjacency matrix for the desired graph. Otherwise, if an element outside the set $\{0, 1\}$ is encountered, it is assumed that the matrix of edge weights is passed as input, causing the resulting graph to be weighted accordingly. In each case, exactly n vertices will be created and n-th and n-th vertex will be connected iff n-th the matrix is symmetric, the resulting graph will be undirected, otherwise it will be directed.

an undirected unweighted graph with 4 vertices and 3 edges

> edges(G)

$$\left(\begin{array}{c}
0 & 1 \\
0 & 2 \\
1 & 3
\end{array}\right)$$

```
> G:=graph([[0,1.0,2.3,0],[4,0,0,3.1],[0,0,0,0],[0,0,0,0]])
```

a directed weighted graph with 4 vertices and 4 arcs

```
> edges(G,weights)
```

$$\{[[0,1],1.0],[[0,2],2.3],[[1,0],4],[[1,3],3.1]\}$$

List of vertex labels can be specified alongside a matrix.

```
> graph([a,b,c,d],[[0,1,1,0],[1,0,0,1],[1,0,0,0],[0,1,0,0]])
```

an undirected unweighted graph with 4 vertices and 3 edges

When creating a weighted graph, one can first specify the list of n vertices and the set of edges, followed by a square matrix A of order n. Then for every edge $\{i,j\}$ or arc (i,j) the element a_{ij} of A is assigned as its weight. Other elements of A are ignored.

1.2 CYCLE AND PATH GRAPHS 17

a directed weighted graph with 3 vertices and 3 arcs

$$\{[[a,b],1],[[a,c],2],[[b,c],4]\}$$

Creating special graphs When a special graph is desired, one just needs to pass its name to the graph command. An undirected unweighted graph will be returned.

```
> graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> G:=graph("coxeter")
```

an undirected unweighted graph with 28 vertices and 42 edges

> draw_graph(G)

1.2. Cycle and path graphs

1.2.1. Cycle graphs

The command cycle_graph is used for constructing cycle graphs [30, p. 4].

cycle_graph takes a positive integer n or a list of vertices V (without repetitions) as its only argument and returns the graph consisting of a single cycle on the specified vertices in the given order. If n is specified it is assumed to be the desired number of vertices, in which case they will be created and labeled with the first n integers (starting from 0 in Xcas mode and from 1 in Maple mode). The resulting graph will be given the name Cn, for example C4 for n = 4.

```
> C5:=cycle_graph(5)
```

18 Constructing graphs

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(C5)


```
> cycle_graph(["a","b","c","d","e"])
```

an undirected unweighted graph with 5 vertices and 5 edges

1.2.2. Path graphs

The command path_graph is used for constructing path graphs [30, pp. 4].

```
Syntax: path_graph(n) path_graph(V)
```

path_graph takes a positive integer n or a list of distinct vertices V as its only argument and returns a graph consisting of a single path on the specified vertices in the given order. If n is specified it is assumed to be the desired number of vertices, in which case they will be created and labeled with the first n integers (starting from 0 in Xcas mode resp. from 1 in Maple mode).

Note that a path, by definition, is a walk with no repeated vertices. Walks with no repeated edges but possibly repeated vertices are called **trails** (see the command trail).

```
> path_graph(5)
```

an undirected unweighted graph with 5 vertices and 4 edges

```
> path_graph(["a","b","c","d","e"])
```

an undirected unweighted graph with 5 vertices and 4 edges

1.2.3. Trails of edges

If the dummy command trail is called with a sequence of vertices $v_1, v_2, ..., v_n$ as arguments, it returns the symbolic expression representing the trail which visits the specified vertices in the given order. The resulting symbolic object is recognizable by some commands, for example graph and digraph.

Note that a trail, by definition, is a walk with no repeated edges. Hence some vertices in the sequence $v_1, v_2, ..., v_k$ may be repeated, but the sets $\{v_i, v_{i+1}\}$ in undirected graphs resp. the pairs (v_i, v_{i+1}) in digraphs must be mutually distinct for i = 1, 2, ..., n-1, since they represent edges resp. arcs.

Any trail T is easily converted to the corresponding list of edges by calling the trail2edges command, which takes the trail as its only argument.

1.3 Complete graphs 19

```
> T:=trail(1,2,3,4,2):; graph(T)
```

Done, an undirected unweighted graph with 4 vertices and 4 edges

```
> trail2edges(T)
```

 $\begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 4 & 2 \end{pmatrix}$

1.3. Complete graphs

1.3.1. Complete (multipartite) graphs

The command complete_graph is used for constructing complete (multipartite) graphs.

```
Syntax: complete_graph(n)
complete_graph(V)
complete_graph(n1,n2,..,nk)
complete multipartite graphs
```

complete_graph can be called with a single argument, a positive integer n or a list of distinct vertices V, in which case it returns the complete graph [30, pp. 2] on the specified vertices. If integer n is specified, it is assumed that it is the desired number of vertices and they will be created and labeled with the first n integers (starting from 0 in Xcas mode and from 1 in Maple mode).

If complete_graph is given a sequence of positive integers $n_1, n_2, ..., n_k$ as its argument, it returns a complete multipartite graph with partitions of size $n_1, n_2, ..., n_k$.

```
> K5:=complete_graph(5)
```

an undirected unweighted graph with 5 vertices and 10 edges

> draw_graph(K5)


```
> K3:=complete_graph([a,b,c])
```

an undirected unweighted graph with 3 vertices and 3 edges

$$\left(\begin{array}{cc} a & b \\ a & c \\ b & c \end{array}\right)$$

```
> K33:=complete_graph(3,3)
```

an undirected unweighted graph with 6 vertices and 9 edges

> draw_graph(K33)

1.3.2. Complete trees

The commands complete_binary_tree and complete_kary_tree are used for construction of complete binary trees and complete k-ary trees, respectively.

 $complete_binary_tree$ takes a positive integer n as its only argument and returns a complete binary tree of depth n.

complete_kary_tree takes positive integers k and n as its arguments and returns the complete k-ary tree of depth n.

```
> T1:=complete_binary_tree(2)
```

an undirected unweighted graph with 7 vertices and 6 edges

> draw_graph(T1)


```
> T2:=complete_kary_tree(3,2)
```

an undirected unweighted graph with 13 vertices and 12 edges

> draw_graph(T2)

1.4. Sequence graphs

1.4.1. Creating graphs from degree sequences

The command sequence_graph is used for constructing graphs from degree sequences.

Syntax: sequence_graph(L)

1.5 Intersection graphs 21

sequence_graph takes a list L of positive integers as its only argument and, if L represents a graphic sequence, the corresponding graph G with |L| vertices is returned. If the argument is not a graphic sequence, an error is returned.

```
> sequence_graph([3,2,4,2,3,4,5,7])
```

an undirected unweighted graph with 8 vertices and 15 edges

Sequence graphs are constructed in $O(|L|^2 \log |L|)$ time by applying the algorithm of HAVEL and HAKIMI [34].

1.4.2. Validating graphic sequences

The command is_graphic_sequence is used for determining whether a list of integers represents the degree sequence of some graph.

Syntax: is_graphic_sequence(L)

is_graphic_sequence takes a list L of positive integers as its only argument and returns true if there exists a graph G(V, E) with degree sequence $\{\deg v : v \in V\}$ equal to L and false otherwise. The algorithm, which has the complexity $O(|L|^2)$, is based on the theorem of ERDŐS and GALLAI.

```
> is_graphic_sequence([3,2,4,2,3,4,5,7])
```

true

1.5. Intersection graphs

1.5.1. Interval graphs

The command interval_graph is used for construction of interval graphs.

Syntax: interval_graph(L)

 $interval_graph$ takes a sequence or list L of real-line intervals as its argument and returns an undirected unweighted graph with these intervals as vertices (the string representations of the intervals are used as labels), each two of them being connected with an edge if and only if the corresponding intervals intersect.

```
> G:=interval_graph(0..8,1..pi,exp(1)..20,7..18,11..14,17..24,23..25)
```

an undirected unweighted graph with 7 vertices and 10 edges

> draw_graph(G)

1.5.2. Kneser graphs

The commands kneser_graph and odd_graph are used for construction of Kneser graphs.

kneser_graph takes two positive integers $n \le 20$ and k as its arguments and returns the Kneser graph K(n,k). The latter is obtained by setting all k-subsets of a set of n elements as vertices and connecting each two of them if and only if the corresponding sets are disjoint. Therefore, each Kneser graph is the complement of the corresponding intersection graph on the same collection of subsets.

Kneser graphs can get exceedingly complex even for relatively small values of n and k. Note that the number of vertices in K(n,k) is equal to $\binom{n}{k}$.

```
> kneser_graph(5,2)
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> G:=kneser_graph(8,1)
```

an undirected unweighted graph with 8 vertices and 28 edges

```
> is_clique(G)
```

true

> draw_graph(G,spring,labels=false)

The command odd_graph is used for constructing **odd graphs**, i.e. Kneser graphs with parameters n = 2d + 1 and k = d for $d \ge 1$.

odd_graph takes a positive integer $d \le 8$ as its only argument and returns d-th odd graph K(2d + 1, d). Note that the odd graphs with d > 8 will not be constructed as they are too big to handle.

```
> odd_graph(3)
```

an undirected unweighted graph with 10 vertices and 15 edges

1.6. Special graphs

1.6.1. Hypercube graphs

The command hypercube_graph is used for constructing hypercube graphs.

Syntax: hypercube_graph(n)

hypercube_graph takes a positive integer n as its only argument and returns the hypercube graph of dimension n on 2^n vertices. The vertex labels are strings of binary digits of length n. Two vertices are joined by an edge if and only if their labels differ in exactly one character. The hypercube graph for n = 2 is a square and for n = 3 it is a cube.

```
> H:=hypercube_graph(3)
```

1.6 Special graphs 23

an undirected unweighted graph with 8 vertices and 12 edges

> draw_graph(H,planar)

> H:=hypercube_graph(5)

an undirected unweighted graph with 32 vertices and 80 edges

> draw_graph(H,plot3d,labels=false)

1.6.2. Star graphs

The command star_graph is used for constructing star graphs.

Syntax: star_graph(n)

 $star_graph$ takes a positive integer n as its only argument and returns the star graph with n+1 vertices, which is equal to the complete bipartite graph $complete_graph(1,n)$ i.e. a n-ary tree with one level.

> G:=star_graph(5)

an undirected unweighted graph with 6 vertices and 5 edges

> draw_graph(G)

1.6.3. Wheel graphs

The command wheel_graph is used for constructing wheel graphs.

Syntax: wheel_graph(n)

wheel_graph takes a positive integer n as its only argument and returns the wheel graph with n+1 vertices.

> G:=wheel_graph(5)

an undirected unweighted graph with 6 vertices and 10 edges

> draw_graph(G)

1.6.4. Web graphs

The command web_graph is used for constructing web graphs.

Syntax: web_graph(a,b)

web_graph takes two positive integers a and b as its arguments and returns the web graph with parameters a and b, namely the Cartesian product of cycle_graph(a) and path_graph(b).

an undirected unweighted graph with 21 vertices and 35 edges

> draw_graph(G,labels=false)

1.6.5. Prism graphs

The command ${\tt prism_graph}$ is used for constructing prism graphs.

Syntax: prism_graph(n)

 $prism_graph$ takes a positive integer n as its only argument and returns the prism graph with parameter n, namely $petersen_graph(n,1)$.

> G:=prism_graph(5)

an undirected unweighted graph with 10 vertices and 15 edges

> draw_graph(G)

1.6 Special graphs 25

1.6.6. Antiprism graphs

The command antiprism_graph is used for constructing antiprism graphs.

Syntax: antiprism_graph(n)

antiprism_graph takes a positive integer n as its only argument and returns the antiprism graph with parameter n, which is constructed from two concentric cycles of n vertices by joining each vertex of the inner to two adjacent nodes of the outer cycle.

```
> G:=antiprism_graph(7)
```

an undirected unweighted graph with 14 vertices and 28 edges

```
> draw_graph(G)
```


1.6.7. Grid graphs

The command grid_graph resp. torus_grid_graph is used for constructing rectangular/triangular resp. torus grid graphs.

```
Syntax: grid_graph(m,n) rectangular grids grid_graph(m,n,triangle) triangular grids torus_grid_graph(m,n) toroidal grids
```

grid_graph takes two positive integers m and n as its arguments and returns the m by n grid on mn vertices, namely the Cartesian product of path_graph(m) and path_graph(n). If the option triangle is passed as the third argument, the returned graph is a triangular grid on mn vertices defined as the underlying graph of the strong product of two directed path graphs with m and n vertices, respectively [1, Definition 2, p. 189]. Strong product is defined as the union of Cartesian and tensor products.

torus_grid_graph takes two positive integers m and n as its arguments and returns the m by n torus grid on m n vertices, namely the Cartesian product of cycle_graph(m) and cycle_graph(n).

```
> G:=grid_graph(15,20)
```

an undirected unweighted graph with 300 vertices and 565 edges

```
> draw_graph(G,spring)
```


For example, connecting vertices in the opposite corners of the above grid yields a grid-like graph with no corners.

```
> G:=add_edge(G,[["14:0","0:19"],["0:0","14:19"]])
```

an undirected unweighted graph with 300 vertices and 567 edges

> draw_graph(G,plot3d)

In the next example, the Möbius strip is constructed by connecting the vertices in the opposite sides of a narrow grid graph.

```
> G:=grid_graph(20,3)
```

an undirected unweighted graph with 60 vertices and 97 edges

an undirected unweighted graph with 60 vertices and 100 edges

> draw_graph(G,plot3d,labels=false)

A triangular grid is created by passing the option triangle.

```
> G:=grid_graph(10,15,triangle)
```

an undirected unweighted graph with 150 vertices and 401 edges

> draw_graph(G,spring)

The next example demonstrates creating a torus grid graph with eight triangular levels.

> G:=torus_grid_graph(8,3)

an undirected unweighted graph with 24 vertices and 48 edges

> draw_graph(G,spring,labels=false)

1.6 Special graphs 27

1.6.8. Sierpiński graphs

The command sierpinski_graph is used for constructing Sierpiński-type graphs S_k^n and ST_k^n [37].

 $sierpinski_graph$ takes two positive integers n and k as its arguments and optionally the option triangle as the third argument. It returns the Sierpiński (triangle) graph with parameters n and k.

The Sierpiński triangle graph ST_k^n is obtained by contracting all non-clique edges in S_k^n . To detect such edges the variant of the algorithm by BRON and KERBOSCH, developed by TOMITA et al. in [69], is used, which can be time consuming for n > 6.

```
> S:=sierpinski_graph(4,3)
```

an undirected unweighted graph with 81 vertices and 120 edges

```
> draw_graph(S,spring)
```


In particular, ST_3^n is the well-known Sierpiński sieve graph of order n.

```
> sierpinski_graph(4,3,triangle)
```

an undirected unweighted graph with 42 vertices and 81 edges

```
> sierpinski_graph(5,3,triangle)
```

an undirected unweighted graph with 123 vertices and 243 edges

A drawing of the graph produced by the last command line is shown in Figure 3.1.

1.6.9. Generalized Petersen graphs

The command petersen_graph is used for constructing generalized Petersen graphs P(n,k).

petersen_graph takes two positive integers n and k as its arguments. The second argument may be omitted, in which case k=2 is assumed. The graph P(n,k), which is returned, is a connected cubic graph consisting of—in Schläfli notation—an inner star polygon $\{n,k\}$ and an outer regular polygon $\{n\}$ such that the n pairs of corresponding vertices in inner and outer polygons are connected with edges. For k=1 the prism graph of order n is obtained.

The well-known Petersen graph is equal to the generalized Petersen graph P(5,2). It can also be constructed by calling graph ("petersen").

```
> draw_graph(graph("petersen"))
```


To obtain the dodecahedral graph P(10,2), input:

```
> petersen_graph(10)
```

an undirected unweighted graph with 20 vertices and 30 edges

To obtain Möbius–Kantor graph P(8,3), input:

```
> G:=petersen_graph(8,3)
```

an undirected unweighted graph with 16 vertices and 24 edges

> draw_graph(G)

Note that Desargues, Dürer and Nauru graphs are isomorphic to the generalized Petersen graphs P(10,3), P(6,2) and P(12,5), respectively.

1.6.10. LCF graphs

The command lcf_graph is used for constructing cubic Hamiltonian graphs from LCF notation.

lcf_graph takes one or two arguments, a list L of nonzero integers, called *jumps*, and optionally a positive integer n, called the *exponent* (by default, n = 1). The command returns the graph on n|L| vertices obtained by iterating the sequence of jumps n times.

For example, the following command line creates Frucht graph.

an undirected unweighted graph with 12 vertices and 18 edges

> draw_graph(F,planar)

In the next example, the truncated octahedral graph is constructed from LCF notation.

an undirected unweighted graph with 24 vertices and 36 edges

> draw_graph(G,planar,labels=false)

1.7. Isomorphic copies of graphs

1.7.1. Creating isomorphic copies from permutations

To create an isomorphic copy of a graph use the isomorphic_copy command.

Syntax: isomorphic_copy(G,sigma)
 isomorphic_copy(G)

isomorphic_copy takes one or two arguments, a graph G(V,E) and optionally a permutation σ of order |V|. It returns a new graph where the adjacency lists are reordered according to σ or a random permutation if the second argument is omitted. The vertex labels are the same as in G. This command discards all vertex and edge attributes present in G.

The complexity of the algorithm is O(|V| + |E|).

```
> G:=path_graph([1,2,3,4,5])
```

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(G), neighbors(G)

$$[1,2,3,4,5],\{[2],[1,3],[2,4],[3,5],[4]\}$$

> H:=isomorphic_copy(G)

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(H), neighbors(H)

$$[1,2,3,4,5],\{[2,3],[1,5],[1,4],[3],[2]\}$$

> H:=isomorphic_copy(G,[2,4,0,1,3])

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(H), neighbors(H)

$$[1,2,3,4,5], \{[4,5],[5],[4],[1,3],[1,2]\}$$

> P:=prism_graph(3)

an undirected unweighted graph with 6 vertices and 9 edges

> draw_graph(P)

> H:=isomorphic_copy(P,[3,0,1,5,4,2])

an undirected unweighted graph with 6 vertices and 9 edges

> draw_graph(H,spring)

1.7.2. Permuting vertices

To create an isomorphic copy of a graph by providing the reordered list of vertex labels, use the command permute_vertices.

Syntax: permute_vertices(G,L)
 permute_vertices(G)

permute_vertices takes one or two arguments, a graph G(V, E) and optionally a list L of length |V| containing all vertices from V, and returns a copy of G with vertices rearranged in order they appear in L or at random if L is not given. All vertex and edge attributes are copied, which includes vertex position information (if present). That means the resulting graph will look the same as G when drawn.

The complexity of the algorithm is O(|V| + |E|).

```
> G:=path_graph([1,2,3,4,5])
```

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(G), neighbors(G)

$$[1,2,3,4,5],\{[2],[1,3],[2,4],[3,5],[4]\}$$

> H:=permute_vertices(G,[3,5,1,2,4])

an undirected unweighted graph with 5 vertices and 4 edges

> vertices(H), neighbors(H)

$$[3,5,1,2,4],\{[2,4],[4],[2],[1,3],[3,5]\}$$

1.7.3. Relabeling vertices

To relabel the vertices of a graph without changing their order, use the command relabel_vertices.

Syntax: relabel_vertices(G,L)

1.8 Subgraphs 31

relabel_vertices takes two arguments, a graph G(V,E) and a list L of vertex labels of length |V|. It returns a copy of G with L as the list of vertex labels.

The complexity of the algorithm is O(|V|).

```
> G:=path_graph([1,2,3,4])
```

an undirected unweighted graph with 4 vertices and 3 edges

> edges(G)

> H:=relabel_vertices(G,[a,b,c,d])

an undirected unweighted graph with 4 vertices and 3 edges

> edges(H)

$$\{[a,b],[b,c],[c,d]\}$$

1.8. Subgraphs

1.8.1. Extracting subgraphs

To extract the subgraph of a graph formed by a subset of the set of its edges, use the command subgraph.

Syntax: subgraph(G,L)

subgraph takes two arguments, a graph G(V, E) and a list of edges L. It returns the subgraph G'(V', L) of G, where $V' \subset V$ is a subset of vertices of G incident to at least one edge from L.

> K5:=complete_graph(5)

an undirected unweighted graph with 5 vertices and 10 edges

> S:=subgraph(K5,[[1,2],[2,3],[3,4],[4,1]])

an undirected unweighted graph with 4 vertices and 4 edges

> draw_graph(highlight_subgraph(K5,S))

1.8.2. Induced subgraphs

To obtain the subgraph of a graph induced by a subset of its vertices, use the command induced_subgraph.

Syntax: induced_subgraph(G,L)

induced_subgraph takes two arguments, a graph G(V,E) and a list of vertices L. It returns the subgraph G'(L,E') of G, where $E' \subset E$ contains all edges which have both endpoints in L [30, p. 3].

```
> G:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> S:=induced_subgraph(G,[5,6,7,8,9])
```

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(highlight_subgraph(G,S))

1.8.3. Underlying graphs

For every graph G(V,E) there is an undirected and unweighted graph U(V,E'), called the **underlying graph** of G, where E' is obtained from E by dropping edge directions. To construct U, use the command underlying_graph.

Syntax: underlying_graph(G)

underlying_graph takes a graph G(V, E) as its only argument and returns an undirected unweighted copy of G in which all vertex and edge attributes, together with edge directions, are discarded.

The complexity of the algorithm is O(|V| + |E|).

```
> G:=digraph(%{[[1,2],6],[[2,3],4],[[3,1],5],[[3,2],7]%})
```

a directed weighted graph with 3 vertices and 4 arcs

```
> U:=underlying_graph(G)
```

an undirected unweighted graph with 3 vertices and 3 edges

> edges(U)

{[1,2],[1,3],[2,3]}

1.8.4. Fundamental cycles

The command fundamental_cycle is used for extracting cycles from unicyclic graphs (also called 1-trees). To find a fundamental cycle basis of an undirected graph, use the command cycle_basis.

fundamental_cycle takes one argument, an undirected connected graph G(V, E) containing exactly one cycle (i.e. a unicyclic graph), and returns that cycle as a graph. If G is not unicyclic, an error is returned.

1.8 Subgraphs 33

cycle_basis takes an undirected graph G(V, E) as its only argument and returns a basis B of the cycle space of G as a list of fundamental cycles in G, with each cycle represented as a list of vertices. Furthermore, $|B| = |E| - |V| + \kappa(G)$, where $\kappa(G)$ is the number of connected components of G. Every cycle C in G such that $C \notin B$ can be obtained from cycles in B using only symmetric differences.

The strategy is to construct a spanning tree T of G using depth-first search and look for edges in E which do not belong to the tree. For each non-tree edge e there is a unique fundamental cycle C_e consisting of e together with the path in T connecting the endpoints of e. The vertices of C_e are easily obtained from the search data. The complexity of this algorithm is O(|V| + |E|).

```
> G:=graph(trail(1,2,3,4,5,2,6))
```

an undirected unweighted graph with 6 vertices and 6 edges

```
> C:=fundamental_cycle(G)
```

an undirected unweighted graph with 4 vertices and 4 edges

> edges(C)

 $\begin{pmatrix}
2 & 5 \\
2 & 3 \\
4 & 5 \\
3 & 4
\end{pmatrix}$

Given a tree graph G and adding an edge from the complement G^c to G one obtains a 1-tree graph.

```
> G:=random_tree(25)
```

an undirected unweighted graph with 25 vertices and 24 edges

```
> ed:=choice(edges(graph_complement(G)))
```

[10, 20]

```
> G:=add_edge(G,ed)
```

an undirected unweighted graph with 25 vertices and 25 edges

```
> C:=fundamental_cycle(G)
```

an undirected unweighted graph with 8 vertices and 8 edges

> edges(C)

> draw_graph(highlight_subgraph(G,C),spring)

In the next example, a cycle basis of octahedral graph is computed.

> G:=graph("octahedron")

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(G)

> cycle_basis(G)

$$\{[6,3,1],[5,4,6,3,1],[4,6,3,1],[5,4,6,3],[2,5,4,6,3],[2,5,4,6],[2,5,4]\}$$

Given a tree graph T, one can create a graph with cycle basis cardinality equal to k by simply adding k randomly selected edges from the complement T^c to T.

> tree1:=random_tree(15)

an undirected unweighted graph with 15 vertices and 14 edges

> G1:=add_edge(tree1,rand(3,edges(graph_complement(tree1))))

an undirected unweighted graph with 15 vertices and 17 edges

> tree2:=random_tree(12)

an undirected unweighted graph with 12 vertices and 11 edges

> G2:=add_edge(tree2,rand(2,edges(graph_complement(tree2))))

an undirected unweighted graph with 12 vertices and 13 edges

> G:=disjoint_union(G1,G2)

an undirected unweighted graph with 27 vertices and 30 edges

> draw_graph(G,spring,labels=false)

1.8 Subgraphs 35

> nops(cycle_basis(G))

5

> number_of_edges(G)-number_of_vertices(G)+nops(connected_components(G))

5

1.8.5. Finding cycles in digraphs

The command find_cycles is used for finding cycles (elementary circuits) in a digraph.

Syntax: find_cycles(G)
 find_cycles(G,length=k)
 find_cycles(G,length=l..u)

find_cycles takes a digraph G(V, E) as its first argument. If it is the only input given, find_cycles returns the list of all cycles in G where each cycle is output as a list of its vertices. If an optional second argument length=k resp. length=l..u is given, where k, l and u are positive integers, only cycles of length k resp. of length between l and u (inclusive) are returned.

The strategy is to use TARJAN's algorithm for enumerating elementary circuits in a digraph [63]. The algorithm runs in O(|V||E|(C+1)) time, where C is the number of cycles in G.

a directed unweighted graph with 8 vertices and 13 arcs

> draw_graph(DG,spring)

> find_cycles(DG)

{[*A*,*H*,*E*,*F*],[*A*,*H*,*E*,*C*,*B*,*G*,*F*],[*A*,*H*,*E*,*C*,*B*,*G*,*D*,*F*],[*A*,*H*,*C*,*B*,*G*,*F*],[*A*,*H*,*C*,*B*,*G*,*D*,*F*],[*A*,*B*,*G*,*D*,*F*],[*B*,*G*,*F*,*E*,*C*],[*B*,*G*,*D*,*F*,*E*,*C*],[*F*,*E*]}

> find_cycles(DG,length=4)

$$\left(\begin{array}{ccc}
A & H & E & F \\
A & B & G & F
\end{array}\right)$$

> find_cycles(DG,length=6..7)

 $\{[A,H,E,C,B,G,F],[A,H,C,B,G,F],[A,H,C,B,G,D,F],[B,G,D,F,E,C]\}$

1.9. Operations on graphs

1.9.1. Graph complement

The command graph_complement is used for constructing complement graphs.

Syntax: graph_complement(G)

graph_complement takes a graph G(V, E) as its only argument and returns the complement graph $G^c(V, E^c)$ of G, where E^c is the largest set containing only edges/arcs not present in G. The complexity of the algorithm is $O(|V|^2)$.

```
> C5:=cycle_graph(5)
```

C5: an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(C5)

> G:=graph_complement(C5)

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(G)

1.9.2. Seidel switching

The command seidel_switch is used for Seidel switching in graphs.

Syntax: seidel_switch(G,L)

seidel_switch takes two arguments, an undirected and unweighted graph G(V,E) and a list of vertices $L \subset V$. The result is a copy of G in which, for each vertex $v \in L$, its neighbors become its non-neighbors and vice versa.

> S:=seidel_switch(cycle_graph(5),[1,2])

an undirected unweighted graph with 5 vertices and 7 edges

> draw_graph(S)

1.9 OPERATIONS ON GRAPHS 37

1.9.3. Transposing graphs

The command reverse_graph is used for reversing arc directions in digraphs.

Syntax: reverse_graph(G)

reverse_graph takes a graph G(V,E) as its only argument and returns the reverse graph $G^T(V,E')$ of G where $E' = \{(j,i): (i,j) \in E\}$, i.e. returns the copy of G with the directions of all edges reversed.

Note that reverse_graph is defined for both directed and undirected graphs, but gives meaningful results only for directed graphs.

 G^T is also called the **transpose graph** of G because adjacency matrices of G and G^T are transposes of each other (hence the notation).

```
> G:=digraph(6, %{[1,2],[2,3],[2,4],[4,5]%})
```

a directed unweighted graph with 6 vertices and 4 arcs

```
> GT:=reverse_graph(G)
```

a directed unweighted graph with 6 vertices and 4 arcs

> edges(GT)

$$\{[2,1],[3,2],[4,2],[5,4]\}$$

1.9.4. Union of graphs

The command graph_union is used for constructing unions of graphs.

Syntax: graph_union(G1,G2,..,Gn)

graph_union takes a sequence of graphs $G_k(V_k, E_k)$ for k = 1, 2, ..., n as its argument and returns the graph G(V, E) where $V = V_1 \cup V_2 \cup \cdots \cup V_k$ and $E = E_1 \cup E_2 \cup \cdots \cup E_k$.

```
> G1:=graph([1,2,3],%{[1,2],[2,3]%})
```

an undirected unweighted graph with 3 vertices and 2 edges

```
> G2:=graph([1,2,3],%{[3,1],[2,3]%})
```

an undirected unweighted graph with 3 vertices and 2 edges

```
> G:=graph_union(G1,G2)
```

an undirected unweighted graph with 3 vertices and 3 edges

> edges(G)

1.9.5. Disjoint union of graphs

To construct disjoint union of graphs use the command disjoint_union.

Syntax: disjoint_union(G1,G2,..,Gn)

disjoint_union takes a sequence of graphs $G_k(V_k, E_k)$ for k = 1, 2, ..., n as its only argument and returns the graph obtained by labeling all vertices with strings k : v where $v \in V_k$ and all edges with strings k : v where $e \in E_k$ and calling graph_union subsequently. As all vertices and edges are labeled differently, it follows $|V| = \sum_{k=1}^{n} |V_k|$ and $|E| = \sum_{k=1}^{n} |E_k|$.6

an undirected unweighted graph with 6 vertices and 5 edges

> draw_graph(G)

1.9.6. Joining two graphs

The command graph_join is used for joining two graphs together.

Syntax: graph_join(G,H)

graph_join takes two graphs G and H as its arguments and returns the graph G+H which is obtained by connecting all the vertices of G to all vertices of H. The vertex labels in the resulting graph are strings of the form 1:u and 2:v where u is a vertex in G and V is a vertex in H.

an undirected unweighted graph with 2 vertices and 1 edge

> H:=graph(3)

an undirected unweighted graph with 3 vertices and 0 edges

an undirected unweighted graph with 5 vertices and 7 edges

> draw_graph(GH,spring)

1.9.7. Power graphs

The command graph_power is used for computing powers of graphs.

Syntax: graph_power(G,k)

graph_power takes two arguments, a graph G(V, E) and a positive integer k. It returns the k-th power G^k of G with vertices V such that $v, w \in V$ are connected with an edge if and only if there exists a path of length at most k in G.

1.9 OPERATIONS ON GRAPHS 39

The graph G^k is constructed from its adjacency matrix A_k which is obtained by adding powers of the adjacency matrix A of G:

$$A_k = \sum_{i=1}^k A^k.$$

The above sum is obtained by assigning $A_k \leftarrow A$ and repeating the instruction $A_k \leftarrow (A_k + I) A$ for k-1 times, so exactly k matrix multiplications are required.

an undirected unweighted graph with 5 vertices and 4 edges

> draw_graph(G,circle)

> P2:=graph_power(G,2)

an undirected unweighted graph with 5 vertices and 7 edges

> draw_graph(P2,circle)

> P3:=graph_power(G,3)

an undirected unweighted graph with 5 vertices and 9 edges

> draw_graph(P3,circle)

1.9.8. Graph products

There are two distinct operations for computing a product of two graphs: the Cartesian product and the tensor product. These operations are available in Giac as the commands cartesian_product and tensor_product, respectively.

Syntax: cartesian_product(G1,G2,..,Gn)
 tensor_product(G1,G2,..,Gn)

cartesian_product takes a sequence of graphs $G_k(V_k, E_k)$ for k = 1, 2, ..., n as its argument and returns the Cartesian product $G_1 \times G_2 \times \cdots \times G_n$ of the input graphs. The Cartesian product $G(V, E) = G_1 \times G_2$ is the graph with list of vertices $V = V_1 \times V_2$, labeled with strings v1 : v2 where $v_1 \in V_1$ and $v_2 \in V_2$, such that $(u1 : v1, u2 : v2) \in E$ if and only if u_1 is adjacent to u_2 and $v_1 = v_2$ or $u_1 = u_2$ and v_1 is adjacent to v_2 .

an undirected unweighted graph with 5 vertices and 5 edges

> draw_graph(G1,circle)

> G2:=star_graph(3)

an undirected unweighted graph with 4 vertices and 3 edges

> G:=cartesian_product(G1,G2)

an undirected unweighted graph with 20 vertices and 35 edges

> draw_graph(G)

tensor_product takes a sequence of graphs $G_k(V_k, E_k)$ for k = 1, 2, ..., n as its argument and returns the tensor product $G_1 \times G_2 \times \cdots \times G_n$ of the input graphs. The tensor product $G(V, E) = G_1 \times G_2$ is the graph with list of vertices $V = V_1 \times V_2$, labeled with strings v1:v2 where $v_1 \in V_1$ and $v_2 \in V_2$, such that (u1:v1,u2:v2) $\in E$ if and only if u_1 is adjacent to u_2 and v_3 is adjacent to v_4 .

> T:=tensor_product(G1,G2)

an undirected unweighted graph with 20 vertices and 30 edges

> draw_graph(T)

1.9 OPERATIONS ON GRAPHS 41

1.9.9. Transitive closure graph

The command transitive_closure is used for constructing transitive closure graphs.

transitive_closure takes one or two arguments, a graph G(V,E) and optionally the option weighted=true (or simply weighted) or the option weighted=false (which is the default). The command returns the transitive closure T(V,E') of the input graph G by connecting $u \in V$ to $v \in V$ in T if and only if there is a path from u to v in G. If G is directed, then T is also directed. When weighted=true is specified, T is weighted such that the weight of edge v $w \in E'$ is equal to the length (or cost, if G is weighted) of the shortest path from v to w in G.

The lengths/weights of the shortest paths are obtained by the command allpairs_distance if G is weighted resp. the command vertex_distance if G is unweighted. Therefore T is constructed in at most $O(|V|^3)$ time if weighted [=true] is given and in O(|V||E|) time otherwise.

a directed unweighted graph with 6 vertices and 5 arcs

> draw_graph(G)

> T:=transitive_closure(G,weighted)

a directed weighted graph with 6 vertices and 9 arcs

> draw_graph(T)

> G:=assign_edge_weights(G,1,99)

a directed weighted graph with 6 vertices and 5 arcs

> draw_graph(G)

> draw_graph(transitive_closure(G, weighted=true))

1.9.10. Line graph

The command line_graph is used for constructing line graphs [30, p. 10].

Syntax: line_graph(G)

line_graph takes a graph G(V, E) as its only argument and returns the corresponding line graph L(G) with |E| distinct vertices, one vertex for each edge in E. If G is undirected, then two vertices v_1 and v_2 in L(G) are adjacent if and only if the corresponding edges $e_1, e_2 \in E$ have a common endpoint. If G is directed, then v_1 and v_2 are adjacent if and only if the corresponding arcs e_1 and e_2 form a directed path (e_1, e_2) , i.e. if the head of e_1 coincides with the tail of e_2 .

The vertices in L(G) are labeled with strings in form v-w, where $e = vw \in E$.

```
> K4:=complete_graph([1,2,3,4])
```

an undirected unweighted graph with 4 vertices and 6 edges

```
> L:=line_graph(K4)
```

an undirected unweighted graph with 6 vertices and 12 edges

```
> draw_graph(L,spring)
```


1.9.11. Plane dual graph

The command plane_dual is used for constructing the dual graph of an undirected biconnected planar graph. To determine whether a graph is planar [30, p. 12] use the command is_planar.

Syntax: plane_dual(G)
 plane_dual(F)
 is_planar(G)
 is_planar(G,F)

plane_dual takes a biconnected planar graph G(V,E) or the list F of faces of a planar embedding of G as its only argument and returns the graph H with faces of G as its vertices. Two vertices in H are adjacent if and only if the corresponding faces share an edge in G. The algorithm runs in $O(|V|^2)$ time.

Note that the concept of dual graph is normally defined for multigraphs. By the strict definition, every planar multigraph has the corresponding dual multigraph; moreover, the dual of the latter is equal to the former. Since Giac generally does not support multigraphs, a more specialized definition suitable for simple graphs is used; hence the requirement that the input graph is biconnected.

1.9 OPERATIONS ON GRAPHS 43

In the example below, the dual graph of the cube graph is obtained.

```
> H:=hypercube_graph(3)
```

an undirected unweighted graph with 8 vertices and 12 edges

> draw_graph(H,spring)

The cube has six faces, hence its plane dual graph D has six vertices. Also, every face obviously shares an edge with exactly four other faces, so the degree of each vertex in D is equal to 4.

```
> D:=plane_dual(H)
```

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(D,spring)

is_planar takes one or two arguments, the input graph G and optionally an unassigned identifier F. It returns true if G is planar and false otherwise. If the second argument is given and G is planar and biconnected, the list of faces of G is stored to F. Each face is represented as a list of its vertices. The strategy is to use the algorithm of DEMOUCRON et al. [29, p. 88], which runs in $O(|V|^2)$ time.

```
> is_planar(graph("petersen"))
```

false

```
> is_planar(graph("durer"))
```

true

In the next example, a graph isomorphic to D is obtained when passing a list of faces of H to plane_dual. The order of vertices is determined by the order of faces.

```
> is_planar(H,F); F
```

```
true, \begin{pmatrix} 010 & 000 & 001 & 011 \\ 001 & 000 & 100 & 101 \\ 010 & 011 & 111 & 110 \\ 100 & 000 & 010 & 110 \\ 111 & 011 & 001 & 101 \\ 101 & 100 & 110 & 111 \end{pmatrix}
```

```
> is_isomorphic(plane_dual(F),D)
```

1.9.12. Truncating planar graphs

The command truncate_graph performs truncation of biconnected planar graphs.

Syntax: truncate_graph(G)

truncate_graph takes a biconnected planar graph G(V, E) as its only argument and returns the graph obtained by truncating the respective polyhedron, i.e. by "cutting off" its vertices. The resulting graph has 2|E| vertices and 3|E| edges. The procedure of truncating a graph by subdividing its edges is described in [3].

The algorithm requires computing a planar embedding of G, which is done by applying DEMOU-CRON's algorithm. Hence its complexity is $O(|V|^2)$.

```
> G:=truncate_graph(graph("dodecahedron"))
```

an undirected unweighted graph with 60 vertices and 90 edges

```
> draw_graph(G,planar,labels=false)
```


Constructing fullerene graphs. Truncating the plane dual of *G* represents the **leapfrog operation** on *G*, which can be used for constructing fullerene graphs [3]. By performing the leapfrog operation on a fullerene graph one obtains a larger fullerene. For example, the dual of the Errera graph is a fullerene (see here); hence by truncating Errera graph (i.e. the dual of its dual) one obtains a fullerene.

```
> G:=truncate_graph(graph("errera"))
```

an undirected unweighted graph with 90 vertices and 135 edges

```
> is_planar(G,F)
```

true

Now *F* contains a list of faces of the graph *G*. Since *G* is a fullerene, every face is a 5- or 6-cycle.

```
> set[op(apply(length,F))]
```

set[5,6]

When drawing fullerenes, it is recommended to use the circular method since it usually produces best results. Any face of the planar embedding of a given fullerene be chosen as the outer face, as in the example below.

```
> draw_graph(G,circle=rand(F))
```


1.10 RANDOM GRAPHS 45

As an another example, the C_{180} fullerene is obtained by performing two leapfrog operations on a dodecahedron graph [56].

```
> G:=truncate_graph(plane_dual(graph("dodecahedron")))
```

an undirected unweighted graph with 60 vertices and 90 edges

```
> C180:=truncate_graph(plane_dual(G))
```

an undirected unweighted graph with 180 vertices and 270 edges

In order to obtain a symmetric drawing of C_{180} , a 5-edge face is used as the outer face.

```
> purge(F):; is_planar(C180,F):;
for f in F do if length(f)==5 then break; fi; od:;
draw_graph(C180,circle=f)
```


1.10. Random graphs

1.10.1. Random general graphs

The commands random_graph and random_digraph are used for generating general (di)graphs at random according to various models, including preferential attachment.

```
Syntax: \ random\_graph(n|L,p) \\ random\_graph(n|L,m) \\ random\_digraph(n|L,p) \\ random\_digraph(n|L,m) \\ random\_graph(n|L,[p0,p1,...]) \\ random\_graph(n|L,f) \\ random\_graph(n|L,d,k) \\ preferential attachment
```

random_graph and random_digraph can both take two arguments: a positive integer n or a list of labels L of length n. The second argument is a positive real number p < 1 or a positive integer m. The return value is a (di)graph on n vertices (with elements of L as vertex labels) selected uniformly at random, i.e. a (di)graph in which each edge/arc is present with probability p or which contains exactly m edges/arcs chosen uniformly at random (Erdős–Rényi model).

Erdős–Rényi model is implemented according to BATAGELJ and BRANDES [4, algorithms 1 and 2]. The corresponding algorithms run in linear time and are suitable for generating large graphs.

random_graph can also generate graphs with respect to a given probability distribution of vertex degrees if the second argument is a discrete probability density function given as a list of probabilities or weights $(p_0, p_1, ..., p_{n-1})$ or as a weight function $f: \mathbb{N} \cup \{0\} \to [0, +\infty)$ such that $f(i) = p_i$ for i = 0, 1, ..., n-1. Trailing zeros in the list of weights, if present, may be omitted. The numbers p_i are automatically scaled by $1/\sum_{i=1}^{n-1} p_i$ to achieve the sum of 1 and a graph with that precise distribution of vertex degrees is generated at random using the algorithm described in [49, p. 2567] with some modifications. First, a degree sequence d is generated randomly by drawing samples from the given distribution and repeating the process until a graphic sequence is obtained. Then

the algorithm for constructing a feasible solution from d [34] is applied. Finally, the edges of that graph are randomized by choosing suitable pairs of nonincident edges and "rewiring" them without changing the degree sequence. Two edges uv and wz can be rewired in at most two ways, becoming either uz and wv or uw and vz (if these edges are not in the graph already). Letting m denote the number of edges, at most

$$N = \left\lceil \left(\log_2 \frac{m}{m-1} \right)^{-1} \right\rceil < m$$

such choices is made, assuring that the probability of rewiring each edge at least once is larger than $\frac{1}{2}$. The total complexity of this algorithm is $O(n^2 \log n)$.

Additionally, to support generation of realistic networks, random_graph can be used with integer parameters d > 0 and $k \ge 0$ as the second and the third argument, respectively, in which case a preferential attachment rule is applied in the following way. For $n \ge 2$, the resulting graph G(V, E) initially contains two vertices v_1, v_2 and one edge $v_1 v_2$. For each i = 3, ..., n, the vertex v_i is added to V along with edges $v_i v_j$ for min $\{i-1,d\}$ mutually different values of j, which are chosen at random in the set $\{1,2,...,i-1\}$ with probability

$$p_j = \frac{\deg v_j}{\sum_{r=1}^{i-1} \deg v_r}.$$

Subsequently, additional at most k random edges connecting the neighbors of v_i to each other are added to E, allowing the user to control the clustering coefficient of G. This method is due to SCHANK and WAGNER [59, Algorithm 2, p. 271]. The time complexity of the implementation is $O(n^2d + nk)$.

> G:=random_graph(10,0.5)

an undirected unweighted graph with 10 vertices and 21 edges

> draw_graph(G,spring,labels=false)

> G:=random_graph(1000,0.05)

an undirected unweighted graph with 1000 vertices and 24870 edges

> is_connected(G)

true

> minimum_degree(G), maximum_degree(G)

20,71

> G:=random_graph(15,20)

an undirected unweighted graph with 15 vertices and 20 edges

> draw_graph(G,spring)

1.10 Random graphs 47

> DG:=random_digraph(15,0.15)

a directed unweighted graph with 15 vertices and 33 arcs

> draw_graph(DG,labels=false,spring)

In the following example, a random graph is generated such that the degree of each vertex is drawn from {0,1,...,10} according to weights specified in the table below.

degree											
weight	0	0	9	7	0	5	4	3	0	1	1

That is, the degrees are generated with probabilities $0,0,\frac{3}{10},\frac{7}{30},0,\frac{1}{6},\frac{2}{15},\frac{1}{10},0,\frac{1}{30},\frac{1}{30}$, respectively.

an undirected unweighted graph with 10000 vertices and 21231 edges

> frequencies(degree_sequence(G))

In the example below, a random graph is generated such that the vertex degrees are distributed according to the following weight function:

$$f(k) = \begin{cases} 0, & k = 0, \\ k^{-3/2} e^{-k/3}, & k \ge 1. \end{cases}$$

 $> G:=random_graph(10000,k->when(k<1,0,k^-1.5*exp(-k/3)))$

an undirected unweighted graph with 10000 vertices and 8017 edges

> length(connected_components(G))

2266

The command line below computes the average size of a connected component in *G*.

> round(mean(apply(length,connected_components(G))))

48 Constructing graphs

4

The next example demonstrates how to generate random graphs with adjustable clustering coefficient.

```
> G1:=random_graph(10000,5,10)
```

an undirected unweighted graph with 10000 vertices and 105628 edges

```
> clustering_coefficient(G1)
```

0.469236344448

```
> G2:=random_graph(10000,5,20)
```

an undirected unweighted graph with 10000 vertices and 121957 edges

```
> clustering_coefficient(G2)
```

0.612673551668

```
> G3:=random_graph(10000,10,5)
```

an undirected unweighted graph with 10000 vertices and 143646 edges

```
> clustering_coefficient(G3)
```

0.113671512462

The distribution of vertex degrees in a graph generated with preferential attachment rule roughly obeys the power law in its tail, as shown in the example below.

```
> G:=random_graph(10000,5,2)
```

an undirected unweighted graph with 10000 vertices and 67875 edges

> histogram(degree_sequence(G))

1.10.2. Random bipartite graphs

The command random_bipartite_graph is used for generating bipartite graphs at random.

```
Syntax: random_bipartite_graph(n,p|m)
    random_bipartite_graph([a,b],p|m)
```

random_bipartite_graph takes two arguments. The first argument is either a positive integer n or a list of two positive integers a and b. The second argument is either a positive real number p < 1 or a positive integer m. The command returns a random bipartite graph on n vertices (or with two partitions of sizes a and b) in which each possible edge is present with probability p (or m edges are inserted at random).

```
> G:=random_bipartite_graph([3,4],0.5)
```

an undirected unweighted graph with 7 vertices and 8 edges

1.10 RANDOM GRAPHS 49

> draw_graph(G)


```
> G:=random_bipartite_graph(30,60)
```

an undirected unweighted graph with 30 vertices and 60 edges

1.10.3. Random trees

The command random_tree is used for generating tree graphs at random.

random_tree takes one or two arguments: a positive integer n or a list $V = \{v_1, v_2, ..., v_n\}$ and optionally an integer $d \ge 2$ or the option root [=v], where $v \in V$. It returns a random tree T(V, E) on n vertices such that

- if the second argument is omitted, then *T* is uniformly selected among all unrooted unlabeled trees on *n* vertices,
- if *d* is given as the second argument, then $\Delta(T) \leq d$, where $\Delta(T)$ is the maximum vertex degree in *T*,
- if root [=v] is given as the second argument, then T is uniformly selected among all rooted unlabeled trees on n vertices. If v is specified then the vertex labels in V (required) will be assigned to vertices in T such that v is the first vertex in the list returned by the command vertices.

Rooted unlabeled trees are generated uniformly at random using RANRUT algorithm [50, p. 274]. The root of a tree T generated this way, if not specified as v, is always the first vertex in the list returned by vertices. The average time complexity of RANRUT algorithm is $O(n \log n)$ [2].

Unrooted unlabeled trees, also called **free** trees, are generated uniformly at random using WILF's algorithm^{1.1} [75], which is based on RANRUT algorithm and runs in about the same time as RANRUT itself.

Trees with bounded maximum degree are generated using a simple algorithm which starts with an empty tree and adds edges at random one at a time. It is much faster than RANRUT but selects trees in a non-uniform manner. To force the use of this algorithm even without vertex degree limit (for example, when n is very large), one can set $d = +\infty$.

For example, the command line below creates a forest containing 10 randomly selected free trees on 10 vertices.

```
> G:=disjoint_union(apply(random_tree,[10$10]))
```

an undirected unweighted graph with 100 vertices and 90 edges

^{1.1.} The original WILF's algorithm has a minor flaw in the procedure Free [75, p. 207]. In the formula $p = \binom{1+a_{n/2}}{2}/a_n$ in step (T1) the denominator a_n stands for the number of all rooted unlabeled trees on n vertices. However, one should divide by the number t_n of all unrooted unlabeled trees instead, which can be obtained from $a_1, a_2, ..., a_n$ by applying the formula in [52, p. 589]. The present implementation includes the correction.

> draw_graph(G,tree,labels=false)

The following example demonstrates the uniformity of random generation of free trees. Letting n = 6, there are exactly 6 distinct free trees on 6 vertices, created by the next command line.

```
> trees:=[star_graph(5),path_graph(6),graph(trail(1,2,3,4),trail(5,4,6)),
    graph(%{[1,2],[2,3],[2,4],[4,5],[4,6]%}),graph(trail(1,2,3,4),trail(3,5,6)),graph(trail(1,2,3,4),trail(5,3,6))]:;
> draw_graph(disjoint_union(trees),spring,labels=false)
```


Now, generating a random free tree on 6 nodes always produces one of the above six graphs, which is determined by using the command $is_isomorphic$. 1200 trees are generated in total and the number of occurrences of trees [k] is stored in hits [k] for every k = 1, 2, ..., 6 (note that in Xcas mode it is actually k = 0, ..., 5).

```
> hits:=[0$6]:;
  for k from 1 to 1200 do
    T:=random_tree(6);
    for j from 0 to 5 do
        if is_isomorphic(T,trees[j]) then hits[j]++; fi;
    od;
od:;
hits
```

[198, 194, 192, 199, 211, 206]

To show that the algorithm also selects rooted trees on n vertices with equal probability, one can reproduce the example in [50, p. 281], in which n = 5. First, all distinct rooted trees on 5 vertices are created and stored in trees; there are exactly nine of them. Their root vertices are highlighted to be distinguishable. Then, 4500 rooted trees on 5 vertices are generated at random, highlighting the root vertex in each of them. As in the previous example, the variable hits[k] records how many of them are isomorphic to trees[k].

```
> trees:=[
highlight_vertex(graph(trail(1,2,3,4,5)),1),
highlight_vertex(graph(trail(1,2,3,4,5)),2),
highlight_vertex(graph(trail(1,2,3,4,5)),3),
highlight_vertex(graph(trail(1,2,3),trail(4,3,5)),1),
highlight_vertex(graph(trail(1,2,3),trail(4,3,5)),2),
highlight_vertex(graph(trail(1,2,3),trail(4,3,5)),3),
highlight_vertex(graph(trail(1,2,3),trail(4,3,5)),4),
highlight_vertex(graph(trail(1,2,3),trail(4,2,5)),1),
highlight_vertex(graph(trail(1,2,3),trail(4,2,5)),2)
]:;
```

1.10 RANDOM GRAPHS 51

```
> draw_graph(disjoint_union(trees),labels=false)
```



```
> hits:=[0$9]:;
  for k from 1 to 4500 do
    T:=random_tree(5,root);
    HT:=highlight_vertex(T,vertices(T)[0]);
    for j from 0 to 8 do
        if is_isomorphic(HT,trees[j]) then hits[j]++; fi;
    od;
od:;
hits
```

[534,483,486,485,496,521,498,489,508]

In the following example, a random tree on 100 vertices with maximum degree at most 3 is drawn.

```
> draw_graph(random_tree(100,3))
```


1.10.4. Random planar graphs

The command random_planar_graph is used for generating random planar graphs.

```
Syntax: random_planar_graph(n|L,p)
    random_planar_graph(n|L,p,k)
```

random_planar_graph takes two or three arguments, a positive integer n (or a list L of length n), a positive real number p < 1 and optionally an integer $k \in \{0, 1, 2, 3\}$ (by default, k = 1). The command returns a random k-connected planar graph on n vertices (using the elements of L as vertex labels).

The result is obtained by first generating a random maximal planar graph and then attempting to remove each edge with probability p, maintaining the k-connectivity of the graph (if k = 0, the graph may be disconnected). The running time is O(n) if k = 0, $O(n^2)$ if $k \in \{1,2\}$ and $O(n^3)$ if k = 3.

The following command line generates a biconnected planar graph.

```
> G:=random_planar_graph(20,0.8,2)
```

an undirected unweighted graph with 20 vertices and 25 edges

```
> draw_graph(G,planar,labels=false)
```


The command line below generates a triconnected planar graph.

> G:=random_planar_graph(15,0.9,3)

an undirected unweighted graph with 15 vertices and 25 edges

> draw_graph(G,planar,labels=false)

The next command line generates a disconnected planar graph with high probability.

> G:=random_planar_graph(30,0.9,0)

an undirected unweighted graph with 30 vertices and 23 edges

> is_forest(G)

true

> draw_graph(G,spring,labels=false)

By default, a connected planar graph is generated, like in the following example.

> G:=random_planar_graph(15,0.618)

an undirected unweighted graph with 15 vertices and 19 edges

> is_connected(G)

true

> is_biconnected(G)

false

> articulation_points(G)

[1,2,4,10,11]

> draw_graph(G,planar)

1.10 RANDOM GRAPHS 53

1.10.5. Random graphs from a given degree sequence

The command random_sequence_graph is used for generating a random undirected graph from a given degree sequence.

Syntax: random_sequence_graph(L)

random_sequence_graph takes the degree sequence L (a list of nonnegative integers) as its only argument. It returns an asimptotically uniform random graph with the degree sequence equal to L using the algorithm developed by BAYATI et al. [6].

The algorithm slows down quickly and uses $O(|L|^2)$ of auxiliary space, so it is best used for a few hundreds of vertices or less.

```
> s:=[1,3,3,2,1,2,2,2,3,3]:; is_graphic_sequence(s)
```

Done, true

```
> G:=random_sequence_graph(s)
```

an undirected unweighted graph with 10 vertices and 11 edges

```
> draw_graph(G,spring)
```


> H:=random_sequence_graph(s)

an undirected unweighted graph with 10 vertices and 11 edges

```
> draw_graph(H,spring)
```


1.10.6. Random regular graphs

The command random_regular_graph is used for generating random regular graphs on a given set of vertices.

```
Syntax: random_regular_graph(n or L,d)
    random_regular_graph(n or L,d,connected)
```

random_regular_graph takes two mandatory arguments, a positive integer n (or a list L of length n) and a nonnegative integer d. Optionally, the option connected may be specified as a third argument, indicating that the generated graph must be connected. The command creates n vertices (using elements of L as vertex labels) and returns a random d-regular (connected) graph on these vertices.

Note that a d-regular graph on n vertices exists if and only if n > d + 1 and nd is even. If these conditions are not met, random_regular_graph returns an error.

The strategy is to use the algorithm developed by STEGER and WORMALD [61, algorithm 2]. The runtime is negligible for $n \le 100$. However, for n > 200 the algorithm is considerably slower. Graphs are generated with approximately uniform probability, which means that for $n \to \infty$ and d not growing so quickly with n the probability distribution converges to uniformity.

```
> G:=random_regular_graph(16,3)
```

an undirected unweighted graph with 16 vertices and 24 edges

```
> is_regular(G)
```

true

> degree_sequence(G)

> draw_graph(G,spring)

1.10.7. Random tournaments

The command random_tournament is used for generating random tournaments.

Syntax: random_tournament(n)
 random_tournament(L)

random_tournament takes a positive integer n or a list L of length n as its only argument and returns a random tournament on n vertices. If L is specified, its elements are used to label the vertices.

```
> G:=random_tournament([1,2,3,4])
```

a directed unweighted graph with 4 vertices and 6 arcs

> is_tournament(G)

true

> draw_graph(G)

1.10.8. Random network graphs

The command random_network is used for generating random networks.

1.10 RANDOM GRAPHS 55

Syntax: random_network(a,b,[opts])
 random_network(a,b,p,[opts])

random_network takes two to four arguments: a positive integer a, a positive integer b, an optional real number p such that 0 (by default <math>p = 0.5) and optionally a sequence of options opts. The supported options are acyclic [=true|false] and weights=a..b.

The command returns a network graph with a^2b vertices which is composed as follows (the method of generating the network skeleton is due to GOLDFARB and GRIGORIADIS [31]).

Firstly, grid graphs $F_1, F_2, ..., F_b$ (called **frames**), each of them with $a \times a$ vertices, are generated. If the option acyclic[=true] is used (by default is acyclic=false), then an acyclic orientation is computed for each frame using st-ordering (see Section 4.9.3) with two opposite corners of the frame as source and sink, otherwise all vertices in the frame are connected to their neighbors (forth and back). In addition, for each k < b the vertices of F_k are connected one to one with the vertices of the next frame F_{k+1} using a random permutation of those vertices. The first vertex of the first frame is the source and the last vertex of the last frame is the sink of the network (some arcs may have to be removed to achieve that). Finally, the removal of each arc is attempted with probability 1-p (unless its removal disconnects the network), making each arc present with probability p.

if the option weights=a..b is specified, arc weights in the network are randomized in the interval $[a,b] \subset \mathbb{R}$. If a,b are integers, the weights are also integers.

For example, the command line below creates a random network, consisting of 3 frames of size 2×2 , in which each arc is present with the probability 0.9.

> N1:=random_network(2,3,0.9)

a directed unweighted graph with 12 vertices and 25 arcs

> draw_graph(N1,spring)

> is_network(N1)

[0],[11]

In the next example, passing the option acyclic forces the output graph to be acyclic.

> N2:=random_network(3,2,0.618,acyclic)

a directed unweighted graph with 18 vertices and 22 arcs

> draw_graph(N2,spring)

> is_network(N2)

 $\left(\begin{array}{cc}
0 & 10 \\
4 & 17
\end{array}\right)$

Arc weights can be randomized, as demonstrated below.

> N3:=random_network(2,2,0.75,weights=1..9)

a directed unweighted graph with 8 vertices and 12 arcs

> draw_graph(N3,spring)

1.10.9. Randomizing edge weights

The command assign_edge_weights is used for assigning weights to edges of graphs at random.

assign_edge_weights takes two or three arguments: a graph G(V, E) and an interval $a \dots b$ of real numbers or a sequence of two positive integers m and n. The command operates such that for, each edge $e \in E$, the weight of e is chosen uniformly from the real interval [a,b) or from the set of integers lying between m and n, including both m and n. After assigning weights to all edges, a modified copy of G is returned.

```
> G:=assign_edge_weights(grid_graph(5,3),1,99)
```

an undirected weighted graph with 15 vertices and 22 edges

> draw_graph(G,spring)

> G:=assign_edge_weights(graph_complement(complete_graph(2,3,4)),e..pi)

an undirected weighted graph with 9 vertices and 10 edges

> draw_graph(G)

CHAPTER 2

MODIFYING GRAPHS

2.1. Promoting to directed and weighted graphs

2.1.1. Converting edges to arcs

To promote an existing undirected graph to a directed one, use the command make_directed.

make_directed is called with one or two arguments, an undirected graph G(V, E) and optionally a numerical square matrix $A = [a_{ij}]$ of order |V|. Every edge $\{i, j\} \in E$ is replaced with the pair of arcs (i, j) and (j, i) and, if matrix A is specified, its elements a_{ij} and a_{ji} are assigned as weights of these arcs, respectively. Thus a directed (weighted) copy of G is constructed and subsequently returned.

```
> make_directed(cycle_graph(4))
```

C4: a directed unweighted graph with 4 vertices and 8 arcs

```
> make_directed(cycle_graph(4),[[0,0,0,1],[2,0,1,3],[0,1,0,4],[5,0,4,0]])
```

C4: a directed weighted graph with 4 vertices and 8 arcs

2.1.2. Assigning weight matrix to unweighted graphs

To promote an existing unweighted graph to a weighted one, use the command make_weighted.

make_weighted takes one or two arguments, an unweighted graph G(V, E) and optionally a square matrix $A = [a_{ij}]$ of order |V|. If the matrix specification is omitted, a square matrix of ones is assumed. Then a copy of G is returned in which each edge/arc $(i, j) \in E$ gets the element a_{ij} in A assigned as its weight. If G is undirected, it is assumed that A is a symmetric matrix.

```
> make_weighted(graph(%{[1,2],[2,3],[3,1]%}),[[0,2,3],[2,0,1],[3,1,0]])
```

an undirected weighted graph with 3 vertices and 3 edges

2.2. Modifying vertices of a graph

2.2.1. Adding and removing vertices

For adding and removing vertices to/from graphs use the commands add_vertex and delete_vertex, respectively.

58 MODIFYING GRAPHS

The command add_vertex takes two arguments, a graph G(V,E) and a single label v or a list of labels L, and returns the graph $G'(V \cup \{v\}, E)$ or $G''(V \cup L, E)$ if a list L is given.

```
> K5:=complete_graph([1,2,3,4,5])
```

an undirected unweighted graph with 5 vertices and 10 edges

```
> add_vertex(K5,6)
```

an undirected unweighted graph with 6 vertices and 10 edges

```
> add_vertex(K5,[a,b,c])
```

an undirected unweighted graph with 8 vertices and 10 edges

Note that vertices already present in *G* will not be added. For example:

```
> add_vertex(K5,[4,5,6])
```

an undirected unweighted graph with 6 vertices and 10 edges

The command $delete_vertex$ takes two arguments, a graph G(V, E) and a single label v or a list of labels L, and returns the graph

```
G'(V \setminus \{v\}, \{e \in E : e \text{ is not incident to } v\})
```

or, if L is given,

 $G''(V \setminus L, \{e \in E : e \text{ is not incident to any } v \in L\}).$

If any of the specified vertices does not belong to *G*, an error is returned.

```
> delete_vertex(K5,2)
```

an undirected unweighted graph with 4 vertices and 6 edges

```
> delete_vertex(K5,[2,3])
```

an undirected unweighted graph with 3 vertices and 3 edges

2.3. Modifying edges of a graph

2.3.1. Adding and removing edges

For adding and removing edges or arcs to/from graphs use the commands add_edge or add_arc and delete_edge or delete_arc, respectively.

```
Syntax: add_edge(G,e|E|T)
    add_arc(G,e|E|T)
    delete_edge(G,e|E|T)
    delete_arc(G,e|E|T)
```

The command add_edge takes two arguments, an undirected graph G and an edge e or a list of edges E or a trail of edges T (entered as a list of vertices), and returns the copy of G with the specified edges inserted. Edge insertion implies that its endpoints will be created if they are not already present in G.

```
> C4:=cycle_graph(4)
```

an undirected unweighted graph with 4 vertices and 4 edges

```
> add_edge(C4,[1,3])
```

an undirected unweighted graph with 4 vertices and 5 edges

```
> add_edge(C4,[1,3,5,7])
```

an undirected unweighted graph with 6 vertices and 7 edges

The command add_arc works similarly to add_edge but applies only to directed graphs. Note that the order of endpoints in an arc matters.

```
> add_arc(digraph(trail(a,b,c,d,a)),[[a,c],[b,d]])
```

a directed unweighted graph with 4 vertices and 6 arcs

When adding edge/arc to a weighted graph, its weight should be specified alongside its endpoints, or it will be assumed that it equals to 1.

```
> add_edge(graph(%{[[1,2],5],[[3,4],6]%}),[[2,3],7])
```

an undirected weighted graph with 4 vertices and 3 edges

The commands $delete_edge$ and $delete_arc$ take two arguments, the input graph G and an edge/arc e or a list of edges/arcs E or a trail of edges T. It returns a copy of G in which the specified edges/arcs are removed. Note that this operation does not change the set of vertices of G.

```
> K33:=relabel_vertices(complete_graph(3,3),[A,B,C,D,E,F])
```

an undirected unweighted graph with 6 vertices and 9 edges

```
> has_edge(K33,[A,D])
```

true

```
> delete_edge(K33,[A,D])
```

an undirected unweighted graph with 6 vertices and 8 edges

Note that *G* itself is not changed.

```
> has_edge(K33,[B,D])
```

true

```
> delete_edge(K33,[[A,D],[B,D]])
```

an undirected unweighted graph with 6 vertices and 7 edges

```
> DG:=digraph(trail(1,2,3,4,5,2,4))
```

a directed unweighted graph with 5 vertices and 6 arcs

```
> delete_arc(DG,[[2,3],[4,5],[5,2]])
```

60 MODIFYING GRAPHS

a directed unweighted graph with 5 vertices and 3 arcs

```
> delete_arc(DG,[3,4,5,2])
```

a directed unweighted graph with 5 vertices and 3 arcs

2.3.2. Accessing and modifying edge weights

The commands get_edge_weight and set_edge_weight are used to access and modify the weight of an edge in a weighted graph, respectively.

```
Syntax: set_edge_weight(G,e,w)
    set_edge_weight(G,e)
```

set_edge_weight takes three arguments: a weighted graph G(V, E), edge $e \in E$ and the new weight w, which may be any number. It returns the modified copy of G.

The command get_edge_weight takes two arguments, a weighted graph G(V, E) and an edge or arc $e \in E$. It returns the weight of e.

```
> G:=set_edge_weight(graph(%{[[1,2],4],[[2,3],5]%}),[1,2],6)
```

an undirected weighted graph with 3 vertices and 2 edges

```
> get_edge_weight(G,[1,2])
```

6

2.3.3. Contracting edges

The command contract_edge is used for contracting edges in undirected graphs.

```
Syntax: contract_edge(G,e)
```

contract_edge takes two arguments, an undirected graph G(V,E) and an edge $e=(v,w)\in E$, and merges v and w to a single vertex, deleting the edge e. The resulting vertex inherits the label of v. The modified copy of G is returned.

```
> K5:=complete_graph(5)
```

an undirected unweighted graph with 5 vertices and 10 edges

```
> contract_edge(K5,[1,2])
```

an undirected unweighted graph with 4 vertices and 6 edges

To contract a set $\{e_1, e_2, ..., e_k\} \subset E$ of edges in G, none two of which are incident (i.e. when the given set is a matching in G), one can use the foldl command. In the following example, the complete graph K_5 is obtained from Petersen graph by edge contraction.

```
> P:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> G:=foldl(contract_edge,P,[0,5],[1,6],[2,7],[3,8],[4,9])
```

an undirected unweighted graph with 5 vertices and 10 edges

2.4 Using attributes 61

> draw_graph(G)

2.3.4. Subdividing edges

The command subdivide_edges is used for graph subdivision.

```
Syntax: subdivide_edges(G,e|S) subdivide_edges(G,e|S,r)
```

subdivide_edges takes two or three arguments: a graph G(V, E), a single edge/arc $e \in E$ or a list of edges/arcs $S \subset E$ and optionally a positive integer r (which defaults to 1). Each of the specified edges/arcs will be subdivided with exactly r new vertices, labeled with the smallest available nonnegative integers. The resulting graph, which is homeomorphic to G, is returned.

If the endpoints of the edge being subdivided have valid coordinates, the coordinates of the inserted vertices will be computed accordingly.

```
> G:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> G:=subdivide_edges(G,[2,3])
```

an undirected unweighted graph with 11 vertices and 16 edges

```
> G:=subdivide_edges(G,[[1,2],[3,4]])
```

an undirected unweighted graph with 13 vertices and 18 edges

```
> G:=subdivide_edges(G,[0,1],2)
```

an undirected unweighted graph with 15 vertices and 20 edges

> draw_graph(G)

2.4. Using attributes

2.4.1. Graph attributes

The graph structure maintains a set of attributes as tag-value pairs which can be accessed and/or modified by using the commands set_graph_attribute, get_graph_attribute, list_graph_attributes and discard_graph_attribute.

62 MODIFYING GRAPHS

```
Syntax: set_graph_attribute(G,tag1=value1,tag2=value2,...)
    set_graph_attribute(G,[tag1=value1,tag2=value2,...])
    set_graph_attribute(G,[tag1,tag2,...],[value1,value2,...])
    get_graph_attribute(G,tag1,tag2,...)
    get_graph_attribute(G,[tag1,tag2,...])
    list_graph_attributes(G)
    discard_graph_attribute(G,tag1,tag2,...)
    discard_graph_attribute(G,[tag1,tag2,...])
```

The command $set_graph_attribute$ is used for modifying the existing graph attributes or adding new ones. It takes two arguments, a graph G and a sequence or list of graph attributes in form tag=value where tag is a string. Alternatively, attributes may be specified as a sequence of two lists $[tag1, tag2, \ldots]$ and $[value1, value2, \ldots]$. The command sets the specified values to the indicated attribute slots, which are meant to represent some global properties of the graph G, and returns the modified copy of G.

The previously set graph attribute values can be fetched with the command get_graph_attribute which takes two arguments: a graph *G* and a sequence or list of tags. The corresponding values will be returned in a sequence or list, respectively. If an attribute is not set, undef is returned as its value.

To list all graph attributes of *G* for which the values are set, use the command list_graph_attributes which takes *G* as its only argument.

To discard a graph attribute, use the command discard_graph_attribute. It takes two arguments: a graph *G* and a sequence or list of tags to be cleared, and returns the modified copy of *G*.

Two tags being used by the CAS commands are directed and weighted, so it is not advisable to overwrite their values using this command; use the make_directed, make_weighted and underlying_graph commands instead. Another attribute used internally is name, which holds the name of the respective graph (as a string).

```
> G:=digraph(trail(1,2,3,1))
```

a directed unweighted graph with 3 vertices and 3 arcs

```
> G:=set_graph_attribute(G,"name"="C3","message"="this is some text")
```

C3: a directed unweighted graph with 3 vertices and 3 arcs

```
> get_graph_attribute(G,"message")
```

this is some text

```
> list_graph_attributes(G)
```

[directed = true, weighted = false, name = C3, message = this is some text]

```
> G:=discard_graph_attribute(G,"message")
```

C3: a directed unweighted graph with 3 vertices and 3 arcs

```
> list_graph_attributes(G)
```

[directed = true, weighted = false, name = C3]

2.4 Using attributes 63

2.4.2. Vertex attributes

For every vertex of a graph, the list of attributes in form of tag-value pairs is maintained, which can be accessed/modified by using the commands set_vertex_attribute, get_vertex_attribute, list_vertex_attributes and discard_vertex_attribute.

```
Syntax: set_vertex_attribute(G,v,tag1=value1,tag2=value2,...)
    set_vertex_attribute(G,v,[tag1=value1,tag2=value2,...])
    set_vertex_attribute(G,v,[tag1,tag2,...],[value1,value2,...])
    get_vertex_attribute(G,v,tag1,tag2,...)
    get_vertex_attribute(G,v,[tag1,tag2,...])
    list_vertex_attributes(G,v)
    discard_vertex_attribute(G,v,tag1,tag2,...)
    discard_vertex_attribute(G,v,[tag1,tag2,...])
```

The command set_vertex_attribute is used for modifying the existing vertex attributes or adding new ones. It takes three arguments, a graph G(V, E), a vertex $v \in V$ and a sequence or list of attributes in form tag=value where tag is a string. Alternatively, attributes may be specified as a sequence of two lists [tag1,tag2,...] and [value1,value2,...]. The command sets the specified values to the indicated attributes of the vertex v and returns the modified copy of G.

The previously set attribute values for v can be fetched with the command $\texttt{get_vertex_attribute}$ which takes three arguments: G, v and a sequence or list of tags. The corresponding values will be returned in a sequence or list, respectively. If an attribute is not set, undef is returned as its value.

To list all attributes of v for which the values are set, use the command list_vertex_attributes which takes two arguments, G and v.

The command discard_vertex_attribute is used for discarding attribute(s) assigned to some vertex $v \in V$. It takes three arguments: G, v and a sequence or list of tags to be cleared, and returns the modified copy of G.

The attributes label, color, shape and pos are also used internally. These hold the vertex label, color, shape and coordinates in a drawing, respectively. If the color is not set for a vertex, the latter is drawn in yellow. The shape attribute may have one of the following values: square, triangle, diamond, star or plus. If the shape attribute is not set or has a different value, the circled shape is applied when drawing the vertex.

The following example shows how to change individual labels and colors.

```
> T:=complete_binary_tree(3)
```

an undirected unweighted graph with 15 vertices and 14 edges

```
> T:=set_vertex_attribute(T,5,"label"="root","color"=red)
```

an undirected unweighted graph with 15 vertices and 14 edges

```
> draw_graph(T,tree="root")
```


A vertex may also hold custom attributes.

64 MODIFYING GRAPHS

```
> T:=set_vertex_attribute(T,"root","depth"=3,"shape"="square")
```

an undirected unweighted graph with 15 vertices and 14 edges

```
> list_vertex_attributes(T,"root")
```

```
[label = root, color = red, shape = square, depth = 3]
```

```
> T:=discard_vertex_attribute(T, "root", "color")
```

an undirected unweighted graph with 15 vertices and 14 edges

```
> list_vertex_attributes(T,"root")
```

```
[label = root, shape = square, depth = 3]
```

2.4.3. Edge attributes

For every edge of a graph, the list of attributes in form of key-value pairs is maintained, which can be accessed and/or modified by using the commands set_edge_attribute, get_edge_attribute, list_edge_attributes and discard_edge_attribute.

```
Syntax: set_edge_attribute(G,e,tag1=value1,tag2=value2,...)
    set_edge_attribute(G,e,[tag1=value1,tag2=value2,...])
    set_edge_attribute(G,e,[tag1,tag2,...],[value1,value2,...])
    get_edge_attribute(G,e,tag1,tag2,...)
    get_edge_attribute(G,e,[tag1,tag2,...])
    list_edge_attributes(G,e)
    discard_edge_attribute(G,e,tag1,tag2,...)
    discard_edge_attribute(G,e,[tag1,tag2,...])
```

The command $set_edge_attribute$ is used for modifying the existing edge attributes or adding new ones. It takes three arguments, a graph G(V, E), an edge/arc $e \in E$ and a sequence or list of attributes in form tag=value where tag is a string. Alternatively, attributes may be specified as a sequence of two lists [tag1,tag2,...] and [value1,value2,...]. The command sets the specified values to the indicated attributes of the edge/arc e and returns the modified copy of G.

The previously set attribute values for e can be fetched with the command $get_edge_attribute$ which takes three arguments: G, e and a sequence or list of tags. The corresponding values will be returned in a sequence or list, respectively. If some attribute is not set, undef is returned as its value.

To list all attributes of e for which the values are set, use the command list_edge_attributes which takes two arguments, G and e.

To discard attribute(s) assigned to e call the command discard_edge_attribute, which takes three arguments: G, e and a sequence or list of tags to be cleared, and returns the modified copy of G.

The attributes weight, color, style, pos and temp are also used internally. They hold the edge weight, color, line style, the coordinates of the weight label anchor (and also the coordinates of the arrow) and true if the edge is temporary. If the color attribute is not set for an edge, the latter is drawn in blue, unless it is a temporary edge, in which case it is drawn in light gray. The style attribute may have one of the following values: dashed, dotted or bold. If the style attribute is not set or has a different value, the solid line style is applied when drawing the edge.

The following example illustrates the possibilities of using edge attributes.

2.4 Using attributes 65

> T:=complete_binary_tree(3)

an undirected unweighted graph with 15 vertices and 14 edges

> T:=set_edge_attribute(T,[1,4],"cost"=12.8,"message"="this is some text")

an undirected unweighted graph with 15 vertices and 14 edges

> list_edge_attributes(T,[1,4])

 $[\cos t = 12.8, \text{message} = \text{this is some text}]$

> T:=discard_edge_attribute(T,[1,4],"message")

an undirected unweighted graph with 15 vertices and 14 edges

> T:=set_edge_attribute(T,[1,4],"style"="dotted","color"=magenta)

an undirected unweighted graph with 15 vertices and 14 edges

> list_edge_attributes(T,[1,4])

[color = magenta, style = dotted, cost = 12.8]

> T:=set_edge_attribute(T,[5,11],"temp"=true)

an undirected unweighted graph with 15 vertices and 14 edges

> draw_graph(T)

CHAPTER 3

IMPORT AND EXPORT

3.1. Importing graphs

3.1.1. Loading graphs from dot files

The command import_graph is used for importing a graph from text file in dot format.

```
Syntax: import_graph(filename)
```

import_graph takes a string filename as its only argument and returns the graph constructed from instructions written in the file filename or undef on failure. The passed string should contain the path to a file in dot format. The file extension .dot may be omitted in the filename since dot is the only supported format. The alternative extension is .gv^{3.1}, which must be explicitly specified.

If a relative path to the file is specified, i.e. if it does not contain a leading forward slash, the current working directory (which can be obtained by calling the pwd command) will be used as the reference. The working directory can be changed by using the command cd.

For example, assume that the file example.dot is saved in the directory path/to/dot/ with the following contents:

```
graph "Example graph" {
   a [label="Foo"];
   b [shape=diamond,color=red];
   a -- b [style=bold];
   b -- c [color=green];
   b -- d [style=dotted];
}
```

To import the graph, input:

```
> G:=import_graph("path/to/dot/example.dot")
```

Example graph: an undirected unweighted graph with 4 vertices and 3 edges

```
> draw_graph(G)
```


3.1.2. The dot file format overview

Giac has some basic support for dot language. Each dot file should hold exactly one graph and should consist of a single instance of the following environment:

^{3.1.} Although it is recommended to use .gv as the extension for dot files to avoid a certain confusion between different file types, Giac uses the .dot extension because it coincides with the format name. This may change in the future.

68 IMPORT AND EXPORT

```
strict? (graph | digraph) name? {
    ...
}
```

The keyword strict may be omitted, as well as the name of the graph, as indicated by the question marks. The former is used for differentiating between simple graphs (strict) and multigraphs (non-strict). Since Giac supports only simple graphs, strict is redundant.

For specifying undirected graphs the keyword graph is used, while the digraph keyword is used for undirected graphs.

The graph/digraph environment contains a series of instructions describing how the graph should be built. Each instruction ends with the semicolon (;) and has one of the following forms.

```
syntaxcreatesvertex_name [attributes]?isolated verticesV1 <edgeop> V2 <edgeop> ... <edgeop> Vk [attributes]? edges and trailsgraph [attributes]graph attributes
```

Here, attributes is a comma-separated list of tag-value pairs in form tag=value, <edgeop> is -- for undirected and -> for directed graphs. Each of V1, V2 etc. is either a vertex name or a set of vertex names in form {vertex_name1 vertex_name2 ...}. In the case a set is specified, each vertex from that set is connected to the neighbor operands. Every specified vertex will be created if it does not exist yet.

Lines beginning with # are ignored. C-like comments are recognized and skipped as well.

Using the dot syntax it is easy to specify a graph with adjacency lists. For example, the following is the contents of a file which defines the octahedral graph with 6 vertices and 12 edges.

```
# octahedral graph
graph "octahedron" {
  1 -- {3 6 5 4};
  2 -- {3 4 5 6};
  3 -- {5 6};
  4 -- {5 6};
}
```

3.2. Exporting graphs

The command export_graph is used for saving graphs to disk in dot or LATEX format.

```
Syntax: export_graph(G,filename)
     export_graph(G,filename,latex[=<params>])
```

The argument filename should be a string containing a path to the desired destination file (which is created if it does not exist). The remark on relative paths in Section 3.1.1 applies here as well.

3.2.1. Saving graphs in dot format

export_graph takes two mandatory arguments, a graph *G* and a string filename, and writes *G* to the file specified by filename. If only two arguments are given the graph is saved in dot format. The file name may be entered with or without .dot extension. The command returns 1 on success and 0 on failure.

```
> export_graph(G,"path/to/dot/copy_of_example")
```

3.2 EXPORTING GRAPHS 69

Fig. 3.1. drawing of the Sierpiński graph ST_3^5 using LATEX and PSTricks

3.2.2. Saving graph drawings in LATEX format

When calling export_graph, an optional third argument in form latex [=<params>] may be given. In that case the drawing of G (obtained by calling the draw_graph command) will be saved to the LATEX file indicated by filename (the extension .tex may be omitted). Optionally, one can specify a parameter or list of parameters params which will be passed to draw_graph. For example, let us create a picture of the Sierpiński sieve graph of order n=5, i.e. the graph ST_3^5 .

```
> G:=sierpinski_graph(5,3,triangle)
```

an undirected unweighted graph with 123 vertices and 243 edges

```
> export_graph(G, "some/directory/st53.tex", latex=[spring, labels=false])
```

1

The L^AT_EX file obtained by exporting a graph is easily converted into an EPS file, which can subsequently be inserted^{3.2} in a paper, report or some other document. A Linux user simply needs to launch a terminal emulator, navigate to the directory in which the exported file, in this case st53.tex, is stored and enter the following command:

```
latex st53.tex && dvips st53.dvi && ps2eps st53.ps
```

This will produce the (properly cropped) st53.eps file in the same directory. Afterwards, it is recommended to enter

```
rm st53.tex st53.aux st53.log st53.dvi st53.ps
```

to delete the intermediate files. The above two commands can be combined in a simple shell script which takes the name of the exported file (without the extension) as its input argument:

```
#!/bin/bash
# convert LaTeX to EPS
latex $1.tex
dvips $1.dvi
ps2eps $1.ps
rm $1.tex $1.aux $1.log $1.dvi $1.ps
```

Assuming that the script is stored under the name latex2eps in the same directory as st53.tex, to do the conversion it is enough to input:

```
bash latex2eps st53
```

The drawing produced in our example is shown in Figure 3.1.

^{3.2.} Alternatively, a PSTricks picture from the body of the .tex file can be copied to some other LATEX document.

CHAPTER 4

GRAPH PROPERTIES

4.1. Basic properties

4.1.1. Determining the type of a graph

The commands is_directed and is_weighted are used for determining the type of a graph: whether is it directed or not resp. weighted or not.

```
Syntax: is_directed(G)
    is_weighted(G)
```

Both commands take a graph G as their only argument. is_directed resp. is_weighted returns true if G is directed resp. weighted, else it returns false.

```
> G:=graph(trail(1,2,3,4,5,1,3))
```

an undirected unweighted graph with 5 vertices and 6 edges

```
> is_directed(G)
```

false

```
> is_directed(make_directed(G))
```

true

```
> is_weighted(G)
```

false

```
> is_weighted(make_weighted(G,randmatrix(5,5,99)))
```

true

4.1.2. Listing vertices and edges

The command vertices or graph_vertices resp. edges is used for extracting the set of vertices resp. the set of edges from a graph. To obtain the number of vertices resp. the number of edges, use the number_of_vertices resp. the number_of_edges command.

```
Syntax: vertices(G)
    graph_vertices(G)
    edges(G)
    edges(G,weights)
    number_of_vertices(G)
    number_of_edges(G)
```

vertices or graph_vertices takes a graph G(V, E) as its only argument and returns the set of vertices V in the same order in which they were created.

72 Graph properties

edges takes one or two arguments, a graph G(V, E) and optionally the identifier weights. The command returns the set of edges E (in a non-meaningful order). If weights is specified, each edge is paired with the corresponding weight (in this case G must be a weighted graph).

number_of_vertices resp. number_of_edges takes the input graph G(V,E) as its only argument and returns |V| resp. |E|.

```
> G:=hypercube_graph(2)
```

an undirected unweighted graph with 4 vertices and 4 edges

> vertices(G)

[00,01,10,11]

> C:=graph("coxeter")

an undirected unweighted graph with 28 vertices and 42 edges

> vertices(C)

[a1,a2,a7,z1,a3,z2,a4,z3,a5,z4,a6,z5,z6,z7,b1,b3,b6,b2,b4,b7,b5,c1,c4,c5,c2,c6,c3,c7]

> number_of_vertices(C), number_of_edges(C)

28,42

> H:=digraph([[0,2.32,0,0.25],[0,0,0,1.32],[0,0.50,0,0],[0.75,0,3.34,0]])

a directed weighted graph with 4 vertices and 6 arcs

> edges(H)

 $\begin{pmatrix}
0 & 1 \\
0 & 3 \\
1 & 3 \\
2 & 1 \\
3 & 0 \\
3 & 2
\end{pmatrix}$

> edges(H,weights)

 $\{[[0,1],2.32],[[0,3],0.25],[[1,3],1.32],[[2,1],0.5],[[3,0],0.75],[[3,2],3.34]\}$

4.1.3. Equality of graphs

Two graphs are considered **equal** if they are both (un)weighted and (un)directed and if the commands vertices and edges give the same results for both graphs. To determine whether two graphs are equal use the command graph_equal.

Syntax: graph_equal(G1,G2)

graph_equal takes two arguments, graphs G_1 and G_2 , and returns true if G_1 is equal to G_2 with respect to the above definition. Else, it returns false.

```
> G1:=graph([1,2,3],%{[1,2],[2,3]%})
```

4.1 Basic properties 73

an undirected unweighted graph with 3 vertices and 2 edges

```
> G2:=graph([1,3,2],%{[1,2],[2,3]%})
```

an undirected unweighted graph with 3 vertices and 2 edges

```
> graph_equal(G1,G2)
```

false

```
> G3:=graph(trail(1,2,3))
```

an undirected unweighted graph with 3 vertices and 2 edges

```
> graph_equal(G1,G3)
```

true

```
> G4:=digraph(trail(1,2,3))
```

a directed unweighted graph with 3 vertices and 2 arcs

```
> graph_equal(G1,G4)
```

false

4.1.4. Vertex degrees

The command vertex_degree is used for computing the degree of a vertex, i.e. counting the vertices adjacent to it. The related specialized commands are vertex_out_degree, vertex_in_degree, degree_sequence, minimum_degree and maximum_degree.

```
Syntax: vertex_degree(G,v)
    vertex_in_degree(G,v)
    vertex_out_degree(G,v)
    degree_sequence(G)
    minimum_degree(G,v)
    maximum_degree(G,v)
```

vertex_degree takes two arguments, a graph G(V, E) and a vertex $v \in V$, and returns the cardinality of the set $\{w \in V : (v, w) \in E\}$, i.e. the number of vertices in V which are adjacent to v. Note that the edge directions are ignored in case G is a digraph.

When dealing with directed graphs, one can also use the specialized command $vertex_out_degree$ resp. $vertex_in_degree$ which takes the same arguments as $vertex_degree$ but returns the number of arcs $(v,w) \in E$ resp. the number of arcs $(w,v) \in E$, where $w \in V$.

To obtain the list of degrees of all vertices $v \in V$, use the command degree_sequence which takes a graph G(V,E) as its only argument and returns the list of degrees of vertices from V in the same order as returned by the command vertices. If G is a digraph, arc directions are ignored.

To compute the minimum vertex degree $\delta(G)$ and the maximum vertex degree $\Delta(G)$ in an undirected graph G, use the commands minimum_degree and maximum_degree, respectively. Both commands take G as the only argument and return $\delta(G)$ resp. $\Delta(G)$.

```
> G:=graph(trail(1,2,3,4,1,5,6,7,1,8,9,4))
```

an undirected unweighted graph with 9 vertices and 11 edges

> draw_graph(G)

> vertex_degree(G,1)

5

> degree_sequence(G)

[5,2,2,3,2,2,2,2,2]

> T:=random_tournament([1,2,3,4,5])

a directed unweighted graph with 5 vertices and 10 arcs

> draw_graph(T)

> vertex_out_degree(T,1)

3

> vertex_in_degree(T,5)

2

The command line below shows that Petersen graph is cubic (3-regular).

> P:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> minimum_degree(P), maximum_degree(P)

3,3

> is_regular(P,3)

true

4.1.5. Regular graphs

The command is_regular is used for determining whether a graph is regular.

4.1 Basic properties 75

Syntax: is_regular(G)
 is_regular(G,d)

is_regular takes one or two arguments, a graph G(V,E) and optionally a nonnegative integer or an unassigned identifier d. If G is undirected, the return value is true if $\delta_G = \Delta_G$, i.e. if the minimal vertex degree is equal to the maximal vertex degree in G, otherwise false is returned. If G is a digraph, it is also required for each vertex $v \in V$ to have the same in- and out-degree. If the second argument is given, G is tested for G-regularity in case G is an integer, otherwise G is written to G in case the latter is an identifier and G is regular.

The complexity of the algorithm is O(|V|).

```
> G:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> is_regular(G,d)
```

true

> d

3

> is_regular(G,2)

false

> is_regular(graph("grotzsch"))

false

```
> G:=digraph(%{[1,5],[1,6],[2,3],[2,4],[3,1],[3,4],[4,1],[4,5],[5,2],[5,6],[6,2],[6,3]%})
```

a directed unweighted graph with 6 vertices and 12 arcs

> draw_graph(G,spring)

> is_regular(G,4)

true

```
> H:=add_arc(delete_arc(G,[5,6]),[6,5])
```

a directed unweighted graph with 6 vertices and 12 arcs

```
> is_regular(H,4)
```

false

```
> is_regular(underlying_graph(H))
```

true

4.1.6. Strongly regular graphs

The command is_strongly_regular is used for determining whether a graph is strongly regular.

```
Syntax: is_strongly_regular(G)
    is_strongly_regular(G,srg)
```

is_strongly_regular takes one or two arguments, a graph G(V, E) and optionally an unassigned identifier srg. It returns true if G is regular and there are integers λ and μ such that every two adjacent vertices resp. non-adjacent vertices in V have exactly λ resp. μ common neighbors. Else, it returns false. If the second argument is given, the list $[k,\lambda,\mu]$, where k is the degree of G, is stored to srg.

The complexity of the algorithm is $O(k|V|^2)$.

```
> G:=graph("clebsch")
```

an undirected unweighted graph with 16 vertices and 40 edges

```
> is_regular(G)

true

> is_strongly_regular(G)
```

```
> H:=graph("shrikhande")
```

true

an undirected unweighted graph with 16 vertices and 48 edges

```
> is_strongly_regular(H,s)

true
```

```
> s
```

```
[6,2,2]
```

```
> is_strongly_regular(cycle_graph(5))
```

```
true
```

```
> is_strongly_regular(cycle_graph(6))
```

false

4.1.7. Vertex adjacency

The command has_edge is used for determining whether two vertices in an undirected graph are adjacent. For digraphs, there is an analogous command has_arc.

The command neighbors is used for obtaining the list of vertices in a graph that are adjacent to the particular vertex or the complete adjacency structure of the graph, in sparse form.

4.1 Basic properties 77

The command departures resp. arrivals is used for obtaining all neighbors of a vertex v in a digraph which are the heads resp. the tails of the corresponding arcs.

```
Syntax: has_edge(G,[u,v])
    has_arc(G,[u,v])
    neighbors(G)
    neighbors(G,v)
    departures(G)
    departures(G,v)
    arrivals(G)
    arrivals(G,v)
```

> has_arc(D,[4,5])

has_edge takes two arguments, an undirected graph G(V, E) and a list [u,v] where $u, v \in V$. The command returns true if $uv \in E$ and false otherwise. The syntax for has_arc is the same, except now G is required to be directed. Note, however, that the order of vertices u and v matters in digraphs. The complexity of both algorithms is $O(\log |V|)$.

neighbors takes one or two arguments, a graph G(V, E) and optionally a vertex $v \in V$. The command returns the list of neighbors of v in G if v is given. Otherwise, it returns the list of lists of neighbors for all vertices in V, in order of vertices (G). Note that edge directions are ignored in case G is a digraph.

departures resp. arrivals takes one or two arguments, a digraph G(V, E) and optionally a vertex $v \in V$, and returns the list L_v containing all vertices $w \in V$ for which $vw \in E$ resp. $wv \in E$. If v is omitted, the list of lists L_v for every $v \in V$ is returned.

```
> G:=graph(trail(1,2,3,4,5,2))
```

an undirected unweighted graph with 5 vertices and 5 edges

true

> has_arc(D,[5,4])

false

 $> has_arc(D, %{4,5%})$

false

> neighbors(G,3)

[2,4]

> neighbors(G)

> G:=digraph(trail(1,2,3,4,2,5,1,6,7,8,4))

a directed unweighted graph with 8 vertices and 10 arcs

> draw_graph(G,spring)

> departures(G,2); arrivals(G,2); departures(G,1); arrivals(G,1)

4.1.8. Tournament graphs

The command is_tournament is used for determining whether a graph is a tournament.

Syntax: is_tournament(G)

is_tournament takes a graph G(V, E) as its only argument and returns true if G is directed and for each pair of vertices $u, v \in V$ it is either $uv \in E$ or $vu \in E$, i.e. there is exactly one arc between u and v. Else, it returns false.

a directed unweighted graph with 3 vertices and 3 arcs

> is_tournament(T1)

true

> T2:=digraph(%{[1,2],[2,3],[3,1],[1,3]%})

a directed unweighted graph with 3 vertices and 4 arcs

> is_tournament(T2)

4.1 Basic properties 79

false

4.1.9. Bipartite graphs

The command is_bipartite is used for determining if a graph is bipartite.

```
Syntax: is_bipartite(G)
    is_bipartite(G,P)
```

is_bipartite takes one or two arguments, a graph G(V, E) and optionally an unassigned identifier P. It returns true if there is a partition of V into two sets S and T such that every edge from E connects a vertex in S to one in T. Else, it returns false. If the second argument is given and G is bipartite, the partition of V is stored to P as a list of two lists of vertices, the first one containing the vertices from S and the second one containing vertices from T.

```
> K32:=complete_graph(3,2)
```

an undirected unweighted graph with 5 vertices and 6 edges

```
> is_bipartite(K32,bp)
```

true

> bp

[[0,1,2],[3,4]]

> draw_graph(K32,bipartite)

> adjacency_matrix(K32)

```
\begin{pmatrix}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{pmatrix}
```

```
> G:=cycle_graph(5)
```

an undirected unweighted graph with 5 vertices and 5 edges

```
> is_bipartite(G)
```

false

4.1.10. Edge incidence

The command incident_edges is used for obtaining edges incident to a given vertex in a graph.

incident_edges takes two argument, a graph G(V, E) and a vertex $v \in V$ or a list of vertices $L \subset V$. The command returns the list of edges $e_1, e_2, ..., e_k \in E$ which have v as one of its endpoints.

Note that edge directions are ignored when *G* is a digraph. To obtain only outgoing or incoming edges, use the commands departures and arrivals, respectively.

```
> G:=cycle_graph([1,2,3,4,5])
```

an undirected unweighted graph with 5 vertices and 5 edges

> incident_edges(G,1)

 $\left(\begin{array}{cc} 1 & 2 \\ 1 & 5 \end{array} \right)$

> incident_edges(G,[2,4,5])

 $\begin{pmatrix}
1 & 2 \\
1 & 5 \\
2 & 3 \\
3 & 4 \\
4 & 5
\end{pmatrix}$

> G:=random_tournament([1,2,3,4,5])

a directed unweighted graph with 5 vertices and 10 arcs

> incident_edges(G,2)

 $\begin{pmatrix}
1 & 2 \\
2 & 3 \\
2 & 5 \\
4 & 2
\end{pmatrix}$

4.2. Algebraic properties

4.2.1. Adjacency matrix

The command adjacency_matrix is used for obtaining the adjacency matrix of a graph.

Syntax: adjacency_matrix(G)

adjacency_matrix takes a graph G(V, E), where $V = \{v_1, v_2, ..., v_n\}$, as its only argument and returns the square matrix $A = [a_{ij}]$ of order n such that, for i, j = 1, 2, ..., n,

$$a_{ij} = \begin{cases} 1, & \text{if the set } E \text{ contains edge/arc } v_i v_j, \\ 0, & \text{otherwise.} \end{cases}$$

Note that tr(A) = 0. Also, the adjacency matrix of an undirected graph is always symmetrical.

> G:=graph("octahedron")

an undirected unweighted graph with 6 vertices and 12 edges

> A:=adjacency_matrix(G)

4.2 ALGEBRAIC PROPERTIES 81

> transpose(A)==A

true

> D:=digraph(trail(1,2,3,4,5,2,6,7,3,8,1))

a directed unweighted graph with 8 vertices and 10 arcs

> draw_graph(D)

> A:=adjacency_matrix(D)

> transpose(A)==A

false

4.2.2. Laplacian matrix

The command laplacian_matrix is used for computing the Laplacian matrix of a graph.

laplacian_matrix takes an undirected graph G(V,E), where $V = \{v_1, v_2, ..., v_n\}$, and returns the symmetric matrix L = D - A, where A is the adjacency matrix of G and

$$D = \begin{pmatrix} \deg(v_1) & 0 & 0 & \cdots & 0 \\ 0 & \deg(v_2) & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \deg(v_n) \end{pmatrix}.$$

The option normal may be passed as the second argument. In that case, the normalized Laplacian $L^{\text{sym}} := I - D^{-1/2} A D^{-1/2}$ of G is returned.

> G:=path_graph(4)

an undirected unweighted graph with 4 vertices and 3 edges

> A:=adjacency_matrix(G)

$$\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)$$

> L:=laplacian_matrix(G)

$$\left(\begin{array}{cccc} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{array}\right)$$

> diag(degree_sequence(G))-A==L

true

> laplacian_matrix(G,normal)

$$\begin{pmatrix}
1 & \frac{-1}{\sqrt{2}} & 0 & 0 \\
\frac{-1}{\sqrt{2}} & 1 & \frac{-1}{2} & 0 \\
0 & \frac{-1}{2} & 1 & \frac{-1}{\sqrt{2}} \\
0 & 0 & \frac{-1}{\sqrt{2}} & 1
\end{pmatrix}$$

The smallest eigenvalue of a Laplacian matrix of an undirected graph is always zero. Moreover, its multiplicity is equal to the number of connected components in the corresponding graph [30, p. 280].

> sort(eigenvals(L))

$$0, -\sqrt{2}+2, 2, \sqrt{2}+2$$

> H:=disjoint_union(complete_graph(4),cycle_graph(3),path_graph(2))

an undirected unweighted graph with 9 vertices and 10 edges

> draw_graph(H,labels=false)

> eigenvals(laplacian_matrix(H))

4.2 ALGEBRAIC PROPERTIES 83

> nops(connected_components(H))

3

4.2.3. Incidence matrix

The command incidence_matrix is used for obtaining the incidence matrix of a graph.

Syntax: incidence_matrix(G)

incidence_matrix takes a graph G(V, E), where $V = \{v_1, v_2, ..., v_n\}$ and $E = \{e_1, e_2, ..., e_m\}$, as its only argument and returns the $n \times m$ matrix $B = [b_{ij}]$ such that, for all i = 1, 2, ..., n and j = 1, 2, ..., m,

$$b_{ij} = \begin{cases} 1, & \text{if the vertex } v_i \text{ is incident to the edge } e_j, \\ 0, & \text{otherwise} \end{cases}$$

if *G* is undirected resp.

$$b_{ij} = \begin{cases} 1, & \text{if the vertex } v_i \text{ is the head of the arc } e_j, \\ -1, & \text{if the vertex } v_i \text{ is the tail of the arc } e_j, \\ 0, & \text{otherwise} \end{cases}$$

if *G* is directed.

> K4:=complete_graph([1,2,3,4])

an undirected unweighted graph with 4 vertices and 6 edges

> edges(K4)

$$\begin{pmatrix}
1 & 2 \\
1 & 3 \\
1 & 4 \\
2 & 3 \\
2 & 4 \\
3 & 4
\end{pmatrix}$$

> incidence_matrix(K4)

> DG:=digraph(trail(1,2,3,4,5,3),trail(1,5,2,4,1))

a directed unweighted graph with 5 vertices and 9 arcs

> draw_graph(DG)

> edges(DG)

> incidence_matrix(DG)

4.2.4. Weight matrix

The command weight_matrix is used for obtaining the weight matrix of a weighted graph. Syntax: weight_matrix(G)

weight_matrix takes a graph G(V, E), where $V = \{v_1, v_2, ..., v_n\}$, as its only argument and returns the square matrix $M = [m_{ij}]$ of order n such that m_{ij} equals zero if v_i and v_j are not adjacent and the weight of the edge/arc $v_i v_j$ otherwise, for all i, j = 1, 2, ..., n (note that the weight of an edge/arc may be any real number).

Note that tr(M) = 0. Also, the weight matrix of an undirected graph is always symmetrical.

```
> G:=graph(%{[[1,2],1],[[2,3],2],[[4,5],3],[[5,2],4]%})
```

an undirected weighted graph with 5 vertices and 4 edges

> weight_matrix(G)

```
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & 4 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 \\
0 & 4 & 0 & 3 & 0
\end{array}\right)
```

4.2.5. Characteristic polynomial

The command graph_charpoly or charpoly is used for obtaining the characteristic polynomial of an undirected graph.

```
Syntax: graph_charpoly(G)
          graph_charpoly(G,x)
          charpoly(G)
          charpoly(G,x)
```

graph_charpoly or charpoly takes one or two arguments, an undirected graph G(V, E) and optionally a value or symbol x. The command returns p(x), where p is the characteristic polynomial of the adjacency matrix of G.

```
> G:=graph(%{[1,2],[2,3]%})
```

an undirected unweighted graph with 3 vertices and 2 edges

4.2 ALGEBRAIC PROPERTIES 85

> charpoly(G,x)

$$x^{3}-2x$$

> charpoly(G,3)

21

> G:=graph("shrikhande")

an undirected unweighted graph with 16 vertices and 48 edges

> charpoly(G,x)

$$x^{16} - 48x^{14} - 64x^{13} + 768x^{12} + 1536x^{11} - 5888x^{10} - 15360x^9 + 23040x^8 + 81920x^7 - 36864x^6 - 245760x^5 - 32768x^4 + 393216x^3 + 196608x^2 - 262144x - 196608$$

4.2.6. Graph spectrum

The command graph_spectrum is used for computing graph spectra.

Syntax: graph_spectrum(G)

graph_spectrum takes a graph *G* as its only argument and returns the list in which every element is an eigenvalue of the adjacency matrix of *G* paired with its multiplicity.

an undirected unweighted graph with 5 vertices and 5 edges

> gs:=graph_spectrum(C5)

$$\begin{pmatrix}
2 & 1 \\
\frac{\sqrt{5}-1}{2} & 2 \\
\frac{-\sqrt{5}-1}{2} & 2
\end{pmatrix}$$

> p:=charpoly(C5,x)

$$x^5 - 5x^3 + 5x - 2$$

> expand(roots(p)) == expand(gs)

true

The above result indicates that gs and roots(p) are equal.

4.2.7. Seidel spectrum

The command seidel_spectrum is used for computing Seidel spectra.

Syntax: seidel_spectrum(G)

seidel_spectrum takes a graph G(V,E) as its only argument and returns the list in which every element is an eigenvalue of the Seidel adjacency matrix S paired with its multiplicity. The matrix S, which can be interpreted as the difference of the adjacency matrices of G and its complement G^c , is computed as J-I-2A, where G is all-one G0 matrix, G1 is the identity matrix of order G1.

> seidel_spectrum(graph("clebsch"))

$$\begin{pmatrix} -3 & 10 \\ 5 & 6 \end{pmatrix}$$

> seidel_spectrum(graph("levi"))

$$\begin{pmatrix}
-5 & 9 \\
-1 & 10 \\
3 & 9 \\
5 & 1 \\
23 & 1
\end{pmatrix}$$

4.2.8. Integer graphs

The command is_integer_graph is used for determining whether a graph is an integral graph.

Syntax: is_integer_graph(G)

is_integer_graph takes a graph *G* as its only argument and returns true if the spectrum of *G* consists only of integers. Else it returns false.

```
> G:=graph("levi")
```

an undirected unweighted graph with 30 vertices and 45 edges

> is_integer_graph(G)

true

> factor(charpoly(G,x))

$$x^{10}(x-3)(x-2)^9(x+2)^9(x+3)$$

> graph_spectrum(G)

$$\begin{pmatrix}
-3 & 1 \\
-2 & 9 \\
0 & 10 \\
2 & 9 \\
3 & 1
\end{pmatrix}$$

4.3. Graph isomorphism

4.3.1. Isomorphic graphs

The command is_isomorphic is used for determining whether two graphs are isomorphic.

Syntax: is_isomorphic(G1,G2)
 is_isomorphic(G1,G2,m)
 canonical_labeling(G)

is_isomorphic takes two or three arguments: a graph $G_1(V_1,E_1)$, a graph $G_2(V_2,E_2)$ and optionally an unassigned identifier m. The command returns true if G_1 and G_2 are isomorphic and false otherwise. If the third argument is given and G_1 and G_2 are isomorphic, the list of pairwise matching of vertices in G_1 and G_2 , representing the isomorphism between the two graphs, is stored to m.

4.3 Graph isomorphism 87

Note that the algorithm takes vertex colors into account. Namely, only vertices sharing the same color can be mapped to each other. Vertex colors can be set by calling the highlight_vertex command.

This command, as well as the commands canonical_labeling and graph_automorphisms described later in this section, is using nauty library developed by BRENDAN MCKAY [46], which is one of the fastest implementations for graph isomorphism.

For example, entering the command line below one shows that Petersen graph is isomorphic to Kneser graph K(5,2).

```
> is_isomorphic(graph("petersen"),kneser_graph(5,2))
```

true

In the following example, G_1 and G_3 are isomorphic while G_1 and G_2 are not isomorphic.

```
> G1:=graph(trail(1,2,3,4,5,6,1,3))
```

an undirected unweighted graph with 6 vertices and 7 edges

```
> G2:=graph(trail(1,2,3,4,5,6,1,4))
```

an undirected unweighted graph with 6 vertices and 7 edges

```
> G3:=graph(trail(1,2,3,4,5,6,1,5))
```

an undirected unweighted graph with 6 vertices and 7 edges

- > draw_graph(G1,circle)
- > draw_graph(G2,circle)
- > draw_graph(G3,circle)

The drawings are ordered from left to right.

> is_isomorphic(G1,G2)

false

> is_isomorphic(G1,G3)

true

> is_isomorphic(G1,G3,mapping):; mapping

Done,
$$[1=5, 2=6, 3=1, 4=2, 5=3, 6=4]$$

> H1:=highlight_vertex(G1,5):; H3:=highlight_vertex(G3,5):;

Done, Done

> is_isomorphic(H1,H3)

false

> H1:=highlight_vertex(H1,1):; H3:=highlight_vertex(H3,3):;

Done, Done

> is_isomorphic(H1,H3)

true

In the next example, D_1 and D_3 are isomorphic while D_1 and D_2 are not isomorphic.

```
> D1:=digraph(trail(1,2,3,1,4,5))
```

a directed unweighted graph with 5 vertices and 5 arcs

```
> D2:=digraph(trail(1,2,3,4,5,3))
```

a directed unweighted graph with 5 vertices and 5 arcs

```
> D3:=digraph([1,2,3,4,5],trail(3,4,5,3,1,2))
```

a directed unweighted graph with 5 vertices and 5 arcs

- > draw_graph(D1,circle)
- > draw_graph(D2,circle)
- > draw_graph(D3,circle)

The drawings are ordered from left to right.

5

> is_isomorphic(D1,D2)

false

> is_isomorphic(D1,D3)

true

Isomorphism testing with nauty is very fast and can be used for large graphs, as in the example below.

```
> G:=random_graph(10000,0.01)
```

an undirected unweighted graph with 10000 vertices and 499867 edges

> H:=isomorphic_copy(G,randperm(10000))

4.3 Graph Isomorphism 89

an undirected unweighted graph with 10000 vertices and 499867 edges

```
> is_isomorphic(G,H)
```

true

1.7 sec

To make the edge structures of *G* and *H* slightly different, a random edge from *H* is "misplaced".

```
> ed:=edges(H)[rand(number_of_edges(H))]
```

[813,3021]

```
> has_edge(H,[813,3022])
```

false

```
> H:=add_edge(delete_edge(H,ed),[813,3022])
```

an undirected unweighted graph with 10000 vertices and 499867 edges

```
> is_isomorphic(G,H)
```

false

4.3.2. Canonical labeling

Graph isomorphism testing in nauty is based on computing the canonical labeling for the input graphs. The **canonical labeling** of *G* is a particular ordering of the vertices of *G*. Rearranging the vertices with respect to that ordering produces the **canonical representation** of *G*. Two graphs are isomorphic if and only if their canonical representations share the same edge structure.

The command canonical_labeling is used for computing the canonical labeling as a permutation. One can reorder the vertices by using this permutation with the isomorphic_copy command.

canonical_labeling takes a graph G(V, E) as its only argument and returns the permutation representing the canonical labeling of G. Note that the colors of the vertices are taken into account.

In the next example it is demonstrated how to prove that G_1 and G_3 are isomorphic by comparing their canonical representations C_1 and C_3 with the graph_equal command. Before testing C_1 and C_3 for equality, their vertices have to be relabeled so that the command vertices gives the same result for both graphs.

```
> L1:=canonical_labeling(G1)
```

[4,3,5,1,2,0]

> L3:=canonical_labeling(G3)

[2,1,3,5,0,4]

```
> C1:=relabel_vertices(isomorphic_copy(G1,L1),[1,2,3,4,5,6])
```

an undirected unweighted graph with 6 vertices and 7 edges

```
> C3:=relabel_vertices(isomorphic_copy(G3,L3),[1,2,3,4,5,6])
```

an undirected unweighted graph with 6 vertices and 7 edges

> graph_equal(C1,C3)

true

4.3.3. Graph automorphisms

The command graph_automorphisms is used for finding generators of the automorphism group of a graph.

Syntax: graph_automorphisms(G)

graph_automorphisms takes a graph G as its only argument and returns a list containing the generators of Aut(G), the automorphism group of G (see [30, p. 4] and [8, p. 115]). Each generator is given as a list of cycles, which can be turned to a permutation by calling the command cycles2permu.

Note that vertex colors are taken into account. Only vertices sharing the same color can be mapped to each other. The color of a vertex can be set by calling the command highlight_vertex.

> g:=graph_automorphisms(graph("petersen"))

$$\left\{ \begin{pmatrix} 3 & 7 \\ 4 & 5 \\ 8 & 9 \end{pmatrix}, \begin{pmatrix} 2 & 6 \\ 3 & 8 \\ 4 & 5 \\ 7 & 9 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 2 & 3 \\ 6 & 9 \\ 7 & 8 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 2 & 4 \\ 5 & 6 \\ 7 & 9 \end{pmatrix} \right\}$$

> cycles2permu(g[2])

[0,4,3,2,1,5,9,8,7,6]

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> G:=highlight_vertex(G,4)

an undirected unweighted graph with 10 vertices and 15 edges

> graph_automorphisms(G)

$$\left\{ \begin{pmatrix} 2 & 6 \\ 3 & 9 \\ 7 & 8 \end{pmatrix}, \begin{pmatrix} 1 & 5 \\ 2 & 7 \\ 3 & 9 \\ 6 & 8 \end{pmatrix}, \begin{pmatrix} 0 & 3 \\ 1 & 2 \\ 5 & 8 \\ 6 & 7 \end{pmatrix} \right\}$$

In the above result, all permutations map the vertex 4 to itself, because it is the single green-colored vertex in *G* (it cannot be mapped to any other vertex because colors do not match).

Frucht graph (see the page 28) is an example of a graph with automorphism group containing only the identity, so the set of its generators is empty:

> graph_automorphisms(graph("frucht"))

4.4 Graph polynomials 91

4.4. Graph polynomials

4.4.1. Tutte polynomial

The command tutte_polynomial is used for computing Tutte polynomials.

tutte_polynomial takes one or three arguments, an undirected graph G(V, E) and optionally two variables or values x and y. It returns the bivariate Tutte polynomial^{4.1} T_G of G or the value $T_G(x,y)$ if the optional arguments are given. If G is weighted, it is treated as a multigraph: the weight w of an edge e, which must be a positive integer, is interpreted as the multiplicity of e, for each $e \in E$. Note, however, that loops are not supported.

The strategy is to apply the recursive definition of Tutte polynomial [32] together with the vorder heuristic proposed by HAGGARD et al. [33] and improved by MONAGAN [47]. The subgraphs appearing in the computation tree are cached and reused when possible, pruning the tree significantly. Subgraphs are stored (and compared) in their canonical form, for which the nauty library is used.

Note that finding Tutte polynomials is NP-hard in general, hence the problem becomes intractable for larger and/or denser graphs.

```
> K4:=complete_graph(4)
```

an undirected unweighted graph with 4 vertices and 6 edges

> tutte_polynomial(K4,x,y)

$$x^3 + 3x^2 + 4xy + 2x + y^3 + 3y^2 + 2y$$

> tutte_polynomial(K4,x,1)

$$x^3 + 3x^2 + 6x + 6$$

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> f:=tutte_polynomial(G)

$$x^{9} + 6x^{8} + 21x^{7} + 56x^{6} + 12x^{5}y + 114x^{5} + 70x^{4}y + 170x^{4} + 30x^{3}y^{2} + 170x^{3}y + 180x^{3} + 15x^{2}y^{3} + 105x^{2}y^{2} + 240x^{2}y + 120x^{2} + 10xy^{4} + 65xy^{3} + 171xy^{2} + 168xy + 36x + y^{6} + 9y^{5} + 35y^{4} + 75y^{3} + 84y^{2} + 36y$$

This result coincides with that in [8, p. 103], which is supposed to be correct. Alternatively, it can be verified by applying the recursive definition with an arbitrary edge $e \in E$, as below.

[0,1]

> Gdelete:=delete_edge(G,ed)

^{4.1.} See [32], [8, p. 97] and [10, p. 335].

an undirected unweighted graph with 10 vertices and 14 edges

> Gcontract:=contract_edge(G,ed)

an undirected unweighted graph with 9 vertices and 14 edges

> expand(f-tutte_polynomial(Gdelete)-tutte_polynomial(Gcontract))

0

The value $T_G(1,1)$ is equal to the number of spanning forests in G [10, p. 345]—in this case, the number of spanning trees in Petersen graph. For verification, the same number is computed by using the specialized command number_of_spanning_trees, which uses a different (much faster) algorithm.

> tutte_polynomial(G,1,1)

2000

> number_of_spanning_trees(G)

2000

For a graph G and its dual G^* the following relation holds: $T_G(x,y) = T_{G^*}(y,x)$. Therefore, if $T_G(x,y) = T_G(y,x)$ then G and G^* are isomorphic (since Tutte polynomial is a graph invariant). A simple example of such graph is tetrahedral graph. Since it is planar and biconnected, its dual can be determined by using the command plane_dual.

> G:=graph("tetrahedron")

an undirected unweighted graph with 4 vertices and 6 edges

> is_biconnected(G) and is_planar(G)

true

> H:=plane_dual(G)

an undirected unweighted graph with 4 vertices and 6 edges

> T:=tutte_polynomial(G)

$$x^3 + 3x^2 + 4xy + 2x + y^3 + 3y^2 + 2y$$

> expand(T-subs(T,[x,y],[y,x]))

0

> is_isomorphic(G,H)

true

Multiple edges can be specified as edge weights.

> M:=make_weighted(G)

an undirected weighted graph with 4 vertices and 6 edges

> M:=set_edge_weight(set_edge_weight(M,[1,2],2),[3,4],3)

4.4 Graph polynomials 93

an undirected weighted graph with 4 vertices and 6 edges

> edges(M,weights)

$$\{[[1,2],2],[[1,3],1],[[1,4],1],[[2,3],1],[[2,4],1],[[3,4],3]\}$$

> tutte_polynomial(M,x,y)

$$x^3 + x^2y^2 + 2x^2y + 3x^2 + 3xy^3 + 6xy^2 + 6xy + 2x + y^6 + 3y^5 + 6y^4 + 7y^3 + 5y^2 + 2y$$

4.4.2. Chromatic polynomial

The command chromatic_polynomial, is used for computing chromatic polynomials.

chromatic_polynomial takes one or two arguments, an undirected unweighted graph G(V,E) and optionally a variable or value t. It returns the chromatic polynomial P_G of G or the value $P_G(t)$ if the second argument is given.

 P_G and the Tutte polynomial T_G satisfy the following relation (see [32] and [10, p. 346]):

$$P_G(t) = (-1)^{|V| - \kappa(G)} t^{\kappa(G)} T_G(1 - t, 0), \tag{4.1}$$

where $\kappa(G)$ is the number of connected components of G. chromatic_polynomial uses (4.1) to compute P_G .

The value $P_G(k)$, where k > 0 is an integer, is equal to the number of all distinct k-colorings of vertices in G. As shown in the example below, Petersen graph cannot be colored by using only two colors, but is 3-colorable with 120 distinct colorings (all using the same three colors).

> P:=chromatic_polynomial(graph("petersen"),x)

$$x(x-2)(x-1)(x^7-12x^6+67x^5-230x^4+529x^3-814x^2+775x-352)$$

> subs(P,x=2)

0

> subs(P,x=3)

120

4.4.3. Flow polynomial

The command flow_polynomial is used for computing flow polynomials.

flow_polynomial takes one or two arguments, an undirected unweighted graph G(V, E) and optionally a variable or value x. It returns the flow polynomial Q_G of G or the value $Q_G(x)$ if the second argument is given.

 Q_G and the Tutte polynomial T_G satisfy the following relation (see [32] and [8, p. 110]):

$$Q_G(x) = (-1)^{|E| - |V| + \kappa(G)} T_G(0, 1 - x), \tag{4.2}$$

where $\kappa(G)$ is the number of connected components of G. flow_polynomial uses (4.2) to compute Q_G .

The value $Q_G(k)$, where k > 0 is an integer, is equal to the number of all nowhere-zero k-flows in G. In such flows, the total flow f_v entering and leaving vertex v is congruent modulo k, hence $f_v \in \{1, 2, ..., k-1\}$ for all $v \in V$ [10, p. 347]. As shown in the example below, Petersen graph has zero 4-flows and 240 5-flows.

> Q:=flow_polynomial(graph("petersen"))

$$x^{6} - 15x^{5} + 95x^{4} - 325x^{3} + 624x^{2} - 620x + 240$$

 $> Q \mid x=4$

0

> 0 | x=5

240

4.4.4. Reliability polynomial

The command reliability_polynomial is used for computing reliability polynomials.

Syntax: reliability_polynomial(G)
 reliability_polynomial(G,p)

reliability_polynomial takes one or two arguments, an undirected graph G(V,E) and optionally a variable or value p. It returns the all-terminal reliability polynomial R_G of G or the value $R_G(p)$ if the second argument is given. If G is weighted, it is treated as a multigraph: the weight w of an edge e, which must be a positive integer, is interpreted as the multiplicity of e, for each $e \in E$.

 R_G and the Tutte polynomial T_G satisfy the following relation [47]:

$$R_G(p) = (1-p)^{|V|-\kappa(G)} p^{|E|-|V|+\kappa(G)} T_G(1, p^{-1}), \tag{4.3}$$

where $\kappa(G)$ is the number of connected components of G. reliability_polynomial uses (4.3) to compute R_G .

If *G* is a connected network, then the value $R_G(p)$, where $p \in [0,1]$, is equal to the probability that *G* does not fail (i.e. stays connected) after removing each edge with probability p [30, pp. 354–355].

In the following example, it is clear that the graph G will stay connected with probability $(1-p)^2$ if each of its two edges is removed with probability p.

an undirected unweighted graph with 3 vertices and 2 edges

> R:=reliability_polynomial(G,p)

$$p^2 - 2p + 1$$

> factor(R)

$$(p-1)^2$$

Adding a new edge should increase the reliability of G, since the latter is connected. Indeed, the difference S-R below is positive for 0 .

4.4 Graph Polynomials 95

> S:=reliability_polynomial(add_edge(G,[1,3]),p)

$$2p^3 - 3p^2 + 1$$

> factor(S-R)

$$2p(p-1)^2$$

Multiple edges can be specified as edge weights.

an undirected weighted graph with 3 vertices and 3 edges

> factor(reliability_polynomial(M))

$$(x-1)^2(2x^2+2x+1)$$

The following graph represents the Arpanet (early internet) in December 1970.

- > V:=["MIT","LINCOLN","CASE","CMU","HARVARD","BBN","UCSB","UCLA",
 "STANFORD","SRI","RAND","UTAH","SDC"]:;
- > A:=graph(V,trail("BBN","HARVARD","CMU","CASE","LINCOLN","MIT","UTAH",
 "SRI","STANFORD","UCLA","UCSB","SRI","UCLA","RAND","BBN","MIT"),
 trail("RAND","SDC","UTAH"))

an undirected unweighted graph with 13 vertices and 17 edges

> Arpanet:=set_vertex_positions(A,[[1.0,1.0],[0.9,1.2],[0.5,1.1],[0.6, 0.8],[1.0,0.6],[1.0,0.8],[-1.1,0.1],[-0.8,0.3],[-0.6,0.5],[-0.8,0.7],[-0.8,-0.1],[-0.3,0.9],[-0.5,0.2]])

an undirected unweighted graph with 13 vertices and 17 edges

> draw_graph(Arpanet)

Which edge should be added to the Arpanet to improve the reliability the most? Below is an analysis for the edge from Stanford to CMU.

> R:=reliability_polynomial(Arpanet,p)

$$(p-1)^{12} (280 p^5 + 310 p^4 + 186 p^3 + 63 p^2 + 12 p + 1)$$

> S:=reliability_polynomial(add_edge(Arpanet,["STANFORD","CMU"]),p)

$$(p-1)^{12}(976p^6+1118p^5+703p^4+276p^3+72p^2+12p+1)$$

> labels=["p","R,S"]; plot([R,S],p=0..1,color=[blue,red])

The improvement is defined as the area enclosed by the above two curves, which can be computed as an integral.

```
> improvement:=integrate(S-R,p=0..1)
```

 $\frac{443879}{10581480}$

> evalf(improvement)

0.0419486688063

4.5. Connectivity

4.5.1. Connected, biconnected and triconnected graphs

The commands is_connected, is_biconnected and is_triconnected are used for determining if a graph is connected, biconnected or triconnected (3-connected), respectively.

Syntax: is_connected(G)
 is_biconnected(G)
 is_triconnected(G)

Each of the above commands takes a graph G(V, E) as its only argument and returns true if G possesses the required level of connectivity. Else, it returns false.

If *G* is directed, the edge directions are simply ignored (the commands operate on the underlying graph of *G*).

The strategy for checking 1- and 2-connectivity is to use depth-first search (see [29, p. 20] and [64]). Both algorithms run in O(|V| + |E|) time. The algorithm for checking 3-connectivity is quite simple but less efficient: it works by choosing a vertex $v \in V$ and checking if the subgraph induced by $V \setminus \{v\}$ is biconnected, moving on to the next vertex if so, and repeating the process until all vertices are visited exactly once or a non-biconnected subgraph is found for some v. In the latter case the input graph is not triconnected. The complexity of this algorithm is O(|V||E|).

```
> G:=graph_complement(complete_graph(2,3,4))
```

an undirected unweighted graph with 9 vertices and 10 edges

> is_connected(G)

false

> C:=connected_components(G)

4.5 CONNECTIVITY 97

```
\{[0,1],[2,3,4],[5,6,7,8]\}
```

> H:=induced_subgraph(G,C[2])

an undirected unweighted graph with 4 vertices and 6 edges

> is_connected(H)

true

> is_biconnected(path_graph(5))

false

> is_biconnected(cycle_graph(5))

true

> is_triconnected(graph("petersen"))

true

> is_triconnected(cycle_graph(5))

false

4.5.2. Connected and biconnected components

The command connected_components resp. biconnected_components is used for decomposing a graph into connected resp. biconnected components.

Syntax: connected_components(G)
 biconnected_components(G)

connected_components resp. biconnected_components takes a graph G(V, E) as its only argument and returns the minimal partition $\{V_1, V_2, ..., V_k\}$ of V such that the subgraph $G_i \subset G$ induced by V_i is connected resp. biconnected for each i = 1, 2, ..., k. The partition is returned as a list of lists $V_1, V_2, ..., V_k$.

If *G* is directed, the edge directions are simply ignored (the commands operate on the underlying graph of *G*).

The connected components of G are readily obtained by depth-first search in O(|V| + |E|) time. To find the biconnected components of G, TARJAN's algorithm is used [64], which also runs in linear time.

```
> G:=graph_complement(complete_graph(3,5,7))
```

an undirected unweighted graph with 15 vertices and 34 edges

> is_connected(G)

false

> C:=connected_components(G)

 $\{[0,1,2],[3,4,5,6,7],[8,9,10,11,12,13,14]\}$

> G:=highlight_subgraph(G,induced_subgraph(G,C[1]))

an undirected unweighted graph with 15 vertices and 34 edges

> G:=highlight_subgraph(G,induced_subgraph(G,C[2]),magenta,cyan)

an undirected unweighted graph with 15 vertices and 34 edges

> draw_graph(G)

> H:=graph(trail(1,2,3,4,2),trail(4,5,6,7,5))

an undirected unweighted graph with 7 vertices and 8 edges

> draw_graph(H)

> is_biconnected(H)

false

> biconnected_components(H)

 $\{[1,2],[2,3,4],[4,5],[5,6,7]\}$

4.5.3. Vertex connectivity

The command vertex_connectivity is used for computing vertex connectivity in undirected graphs.

Syntax: vertex_connectivity(G)

vertex_connectivity takes an undirected connected graph G(V, E) as its only argument and returns the largest integer k for which G is k-vertex-connected, meaning that G remains connected after removing fewer than k vertices from V.

The strategy is to use the algorithm by ESFAHANIAN and HAKIMI [23], which is based on the maximum-flow computing approach by EVEN [24, Section 6.2]. The algorithm makes $|V| - \delta - 1 + \frac{\delta(\delta-1)}{2}$ calls to maxflow command, where δ is the minimum vertex degree in G.

> vertex_connectivity(graph("petersen"))

3

> vertex_connectivity(graph("clebsch"))

4.5 CONNECTIVITY 99

5

```
> G:=random_planar_graph(1000,0.5,2)
```

an undirected unweighted graph with 1000 vertices and 1876 edges

```
> is_biconnected(G)
```

true

```
> vertex_connectivity(G)
```

2

3.28 sec

4.5.4. Graph rank

The command graph_rank is used for computing graph rank.

```
Syntax: graph_rank(G)
    graph_rank(G,S)
```

graph_rank takes one or two arguments, a graph G(V, E) and optionally a set of edges $S \subset E$ (by default S = E), and returns |V| - k where k is the number of connected components of the spanning subgraph of G with edge set S.

```
> G:=graph(%{[1,2],[3,4],[4,5]%})
```

an undirected unweighted graph with 5 vertices and 3 edges

```
> graph_rank(G)
```

3

```
> graph_rank(G,[[1,2],[3,4]])
```

2

4.5.5. Articulation points

The command articulation_points is used for obtaining the set of articulation points (cutvertices) of a graph.

Syntax: articulation_points(G)

articulation_points takes a graph G(V,E) as its only argument and returns the list of articulation points of G. A vertex $v \in V$ is an **articulation point** of G if the removal of V increases the number of connected components of G.

The articulation points of *G* are found by depth-first search in O(|V| + |E|) time [29].

```
> articulation_points(path_graph([1,2,3,4]))
```

[2,3]

> length(articulation_points(cycle_graph(1,2,3,4)))

4.5.6. Strongly connected components

The command strongly_connected_components is used for decomposing digraphs into strongly connected components. A digraph H is **strongly connected** if for each pair (v, w) of distinct vertices in H there is a directed path from v to w in H. The command is_strongly_connected can be used to determine whether a graph is strongly connected.

Syntax: strongly_connected_components(G)
 is_strongly_connected(G)

strongly_connected_components takes a digraph G(V, E) as its only argument and returns the minimal partition $\{V_1, V_2, ..., V_k\}$ of V such that the subgraph $G_i \subset G$ induced by V_i is strongly connected for each i = 1, 2, ..., k. The result is returned as a list of lists $V_1, V_2, ..., V_k$.

 $is_strongly_connected$ takes a digraph G as its only argument and returns true if G has exactly one strongly connected component and false otherwise.

The strategy is to use TARJAN's algorithm for strongly connected components [64], which runs in O(|V| + |E|) time.

```
> G:=digraph([1,2,3],%{[1,2],[1,3],[2,3],[3,2]%})
```

a directed unweighted graph with 3 vertices and 4 arcs

> draw_graph(G)

> is_connected(G)

true

> is_strongly_connected(G)

false

> strongly_connected_components(G)

{[2,3],[1]}

> G:=random_digraph(10,18)

a directed unweighted graph with 10 vertices and 18 arcs

> draw_graph(G)

4.5 CONNECTIVITY 101

> strongly_connected_components(G)

 $\{[0,2,6],[1],[3],[4],[5,7,8],[9]\}$

4.5.7. Edge connectivity

The command edge_connectivity is used for computing the edge connectivity of an undirected graph.

Syntax: edge_connectivity(G)

edge_connectivity takes an undirected connected graph G(V, E) as its only argument and returns the largest integer k for which G is k-edge connected, meaning that G remains connected after fewer than k edges are removed from E.

The strategy is to apply MATULA's algorithm [68, Section 13.3.1], which constructs a dominating set $D \subset V$ and calls maxflow command |D|-1 times.

```
> G:=cycle_graph([1,2,3,4,5])
```

an undirected unweighted graph with 5 vertices and 5 edges

> edge_connectivity(G)

2

> K5:=complete_graph(5)

an undirected unweighted graph with 5 vertices and 10 edges

> edge_connectivity(K5)

4

> edge_connectivity(graph("petersen"))

3

> edge_connectivity(graph("clebsch"))

5

4.5.8. Edge cuts

The command is_cut_set is used for determining whether a particular subset of edges of a graph is an edge cut.

Syntax: is_cut_set(G,L)

is_cut_set takes two arguments, a graph G(V, E) and a subset $L \subset E$ of edges, and returns true if the graph $G'(V, E \setminus L)$ has more connected components than G. Else it returns false.

```
> G:=graph(trail(1,2,3,4,5,6,4,1,3))
```

an undirected unweighted graph with 6 vertices and 8 edges

```
> draw_graph(G)
```



```
> E:=[[1,4],[3,4]]
```

 $\begin{pmatrix} 1 & 4 \\ 3 & 4 \end{pmatrix}$

```
> is_cut_set(G,E)
```

true

```
> is_connected(delete_edge(G,E))
```

false

4.5.9. Two-edge-connected graphs

The command is_two_edge_connected is used for determining whether an undirected graph is two-edge-connected. The command two_edge_connected_components is used for splitting a graph into components having this property.

```
Syntax: is_two_edge_connected(G)
     two_edge_connected_components(G)
```

is_two_edge_connected takes an undirected graph G(V, E) as its only argument and returns true if G has no bridges, i.e. edges which removal increases the number of connected components of G.

two_edge_connected_components takes an undirected graph G(V, E) and returns the list of two-edge-connected components of G, each of them represented by the list of its vertices. To obtain a component as a graph, use the induced_subgraph command.

The strategy for finding bridges [65] is similar to finding articulation points. Once the bridges of G are found, it is easy to split G into two-edge-connected components by removing the bridges and returning the list of connected components of the resulting graph. Both algorithms run in O(|V| + |E|) time.

```
> is_two_edge_connected(cycle_graph(4))
```

true

```
> is_two_edge_connected(path_graph(4))
```

false

an undirected unweighted graph with 8 vertices and 10 edges

```
> is_two_edge_connected(G)
```

4.6 Trees 103

false

> draw_graph(G)

> C:=two_edge_connected_components(G)

$$\{[a,b,c,h,i],[d,e,f]\}$$

To visualize the bridges of *G*, one can highlight the edges of each component. The remaining (unhighlighted) edges are the bridges.

```
> for c in C do G:=highlight_edges(G,edges(induced_subgraph(G,c))); od:;
> draw_graph(G)
```


4.6. Trees

4.6.1. Tree graphs

The command is_tree is used for determining whether a graph is a tree.

Syntax: is_tree(G)

is_tree takes a graph G(V, E) as its only argument and returns true if G is undirected, connected and |V| = |E| + 1. Else it returns false.

The only expensive step in the algorithm is determining whether G is connected. The condition |V| = |E| + 1 is checked first, hence the algorithm runs in O(|V|) time.

```
> is_tree(complete_binary_tree(3))
```

true

> is_tree(cycle_graph(5))

false

4.6.2. Forest graphs

The command is_forest is used for determining whether a graph is a forest.

Syntax: is_forest(G)

is_forest takes the a G(V,E) as its only argument and returns true if every connected component of G is a tree and false otherwise.

The algorithm runs in O(|V| + |E|) time.

```
> F:=disjoint_union(apply(random_tree,[k$(k=10..30)]))
```

an undirected unweighted graph with 420 vertices and 399 edges

> is_connected(F)

false

> is_forest(F)

true

> draw_graph(F)

4.6.3. Height of a tree

The command tree_height is used for determining the height of a tree with respect to the specified root node. The **height** of a tree *T* is the length of the longest path in *T* that has the root node of *T* as one of its endpoints.

Syntax: tree_height(G,r)

tree_height takes two arguments, a tree graph G(V, E) and a vertex $r \in V$, which is used as the root node. The command returns the height of G with respect to r.

The strategy is to start a depth-first search from the root node and look for the deepest node. Therefore the algorithm runs in O(|V|) time.

```
> G:=random_tree(1000)
```

an undirected unweighted graph with 1000 vertices and 999 edges

> r:=rand(1000)

296

> tree_height(G,r)

20

4.6.4. Lowest common ancestor of a pair of nodes

The command lowest_common_ancestor is used for computing the lowest common ancestor (LCA) of a pair of nodes in a tree or for each element of a list of such pairs.

4.6 Trees 105

lowest_common_ancestor takes two mandatory arguments, a tree graph G(V,E) and the root node $r \in V$. There are two possibilities for specifying the nodes to operate on: either the nodes u, $v \in V$ are given as the third and the fourth argument, or a list of pairs of nodes $(u_1, v_1), (u_2, v_2), ..., (u_k, v_k)$, where $u_i, v_i \in V$ and $u_i \neq v_i$ for i = 1, 2, ..., k, is given as the third argument. The command returns the LCA of u and v or the list containing LCA of every pair of nodes u_i, v_i for i = 1, 2, ..., k. Note that this is much faster than calling lowest_common_ancestor k times with a single pair of vertices each time.

The strategy is to use TARJAN's offline LCA algorithm [66], which runs in nearly linear time.

```
> G:=random_tree(25)
```

an undirected unweighted graph with 25 vertices and 24 edges

> draw_graph(G)

> lowest_common_ancestor(G,0,19,22)

16

[4, 16, 0]

4.6.5. Arborescence graphs

The command is_arborescence is used for determining whether a directed unweighted graph is an arborescence (which is the digraph form of a rotted tree).

Syntax: is_arborescence(G)

is_arborescence takes a digraph G(V,E) as its only argument and returns true if there is a vertex $u \in V$ such that for any other $v \in V$ there is exactly one directed path from u to v. Else it returns false.

```
> T:=digraph(%{[1,2],[1,3],[3,4],[3,5],[3,6],[5,7]%})
```

a directed unweighted graph with 7 vertices and 6 arcs

```
> is_arborescence(T)
```

true

```
> draw_graph(T)
```


4.7. Networks

4.7.1. Network graphs

The command is_network is used for determining whether a graph is a flow network. In this context, a flow network is directed, connected graph with at least one vertex with in-degree 0 (the **source**) and at least one vertex with out-degree 0 (the **sink**).

```
Syntax: is_network(G)
    is_network(G,s,t)
```

is_network takes one or three arguments, a digraph G(V, E) and optionally the source vertex s and the sink vertex t. If these vertices are given, the command returns true if G is a network with respect to s, t and false otherwise. If the graph G is given as the only argument, the command returns a sequence of two objects, the list of all sources in G and the list of all sinks in G, respectively. If one of these lists is empty, then G is implicitly not a network (both lists are empty if G is not connected).

```
> N:=digraph(%{[1,2],[1,3],[2,4],[3,4]%})
```

a directed unweighted graph with 4 vertices and 4 arcs

> draw_graph(N,spring)

> is_network(N,1,4)

true

> is_network(N,2,3)

false

```
> G:=digraph(%{[1,3],[2,3],[3,4],[3,5]%})
```

a directed unweighted graph with 5 vertices and 4 arcs

> draw_graph(G,circle)

4.7 Networks 107

> is_network(G)

 $\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$

4.7.2. Maximum flow

The command maxflow is used for computing the maximum flow in a network.

maxflow takes three or four arguments: a network graph G(V,E), the source $s \in V$, the sink $t \in V$ and optionally an unassigned identifier M. It returns the optimal value for the maximum flow problem for the network (G,s,t). If the fourth argument is given, an optimal flow is written to M in form of a matrix.

The strategy is to use the algorithm of EDMONDS and KARP [22], which solves the maximum flow problem in $O(|V||E|^2)$ time.

$$\begin{pmatrix} 0 & 1 & 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

a directed weighted graph with 6 vertices and 10 arcs

> is_network(N)

 $\begin{pmatrix} 1 \\ 6 \end{pmatrix}$

> draw_graph(N,spring)

> maxflow(N,1,6,M)

4

> M

```
> N:=random_network(2,3,0.9,acyclic,weights=5..15)
```

a directed weighted graph with 12 vertices and 19 arcs

> is_network(N)

 $\begin{pmatrix} 0 \\ 11 \end{pmatrix}$

> draw_graph(N,spring)

> maxflow(N,0,11,F)

17

To visualize the optimal flow F, one can use the highlight_subgraph command with the option weights to display the actual flow in the highlighted edges. Non-highlighted edges have zero flow.

> draw_graph(highlight_subgraph(N,digraph(vertices(N),F),weights),spring)

4.7.3. Minimum cut

The command minimum_cut is used for obtaining minimum cuts in networks.

Syntax: minimum_cut(G,s,t)

 $minimum_cut$ takes three arguments, a digraph G(V, E) and two vertices $s, t \in V$ such that (G, s, t) is a network with source s and sink t. The returned value is a list of edges in E representing a minimum cut in the network.

The strategy is to apply the command maxflow, which finds a maximal flow, and to run depthfirst search on the corresponding residual graph to find a S,T partition of V. The minimum cut is then the set of all arcs $vw \in E$ such that $v \in S$ and $w \in T$. The algorithm runs in $O(|V||E|^2)$ time.

```
> G:=digraph(%{[[0,1],16],[[0,2],13],[[1,2],10],[[1,3],12],[[2,1],4],[[2,
4],14],[[3,2],9],[[3,5],20],[[4,3],7],[[4,5],4]%})
```

a directed weighted graph with 6 vertices and 10 arcs

4.8 DISTANCE IN GRAPHS 109

> draw_graph(G,spring)

> cut:=minimum_cut(G,0,5)

$$\begin{pmatrix}
1 & 3 \\
4 & 3 \\
4 & 5
\end{pmatrix}$$

> draw_graph(highlight_edges(G,cut),spring)

By the max-flow min-cut theorem, the sum of edge weights in minimum cut is equal to the value of maximum flow.

```
> w:=0:; for ed in cut do w:=w+get_edge_weight(G,ed); od:; w
```

Done, Done, 23

> maxflow(G,0,5)

23

4.8. Distance in graphs

4.8.1. Vertex distance

The command vertex_distance is used for computing the length of the shortest path(s) from the source vertex to some other vertex/vertices of a graph.

vertex_distance takes three arguments, a graph G(V,E), a vertex $v \in V$ called the **source** and a vertex $w \in V$ called the **target** or a list $L \subset V \setminus \{v\}$ of target vertices. The command returns the distance between v and w as the number of edges in a shortest path from v to w, or the list of distances if a list of target vertices is given.

The strategy is to use breadth-first search [29, p. 35] starting from the source vertex. Therefore, the algorithm runs in O(|V| + |E|) time.

> G:=graph("petersen")

an undirected unweighted graph with 10 vertices and 15 edges

> vertex_distance(G,1,3)

2

> vertex_distance(G,1,[3,6,9])

[2,1,2]

4.8.2. All-pairs vertex distance

The command allpairs_distance is used for computing the matrix of distances between all pairs of vertices in a (weighted) graph.

Syntax: allpairs_distance(G)

allpairs_distance takes a graph G(V, E) as its only argument and returns a square matrix $D = [d_{ij}]$ with n = |V| rows and columns such that $d_{ij} = \text{distance}(v_i, v_j)$ for all i, j = 1, 2, ..., n, where $v_1, v_2, ..., v_n$ are the elements of V. If $v_i v_j \notin E$, then $d_{ij} = +\infty$. The strategy is to apply the algorithm of FLOYD and WARSHALL [25], which runs in $O(|V|^3)$ time.

Note that, if *G* is weighted, it must not contain negative cycles. A cycle is **negative** if the sum of weights of its edges is negative.

an undirected unweighted graph with 5 vertices and 8 edges

> allpairs_distance(G)

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 0 & 1 & 2 \\ 1 & 2 & 1 & 0 & 1 \\ 1 & 1 & 2 & 1 & 0 \end{pmatrix}$$

```
> H:=digraph(%{[1,2],[1,3],[1,4],[1,5],[2,3],[3,4],[4,5],[5,2]%})
```

a directed unweighted graph with 5 vertices and 8 arcs

> allpairs_distance(H)

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ +\infty & 0 & 1 & 2 & 3 \\ +\infty & 3 & 0 & 1 & 2 \\ +\infty & 2 & 3 & 0 & 1 \\ +\infty & 1 & 2 & 3 & 0 \end{pmatrix}$$

> draw_graph(H)

4.8 DISTANCE IN GRAPHS 111

> H:=assign_edge_weights(H,5,25)

a directed weighted graph with 5 vertices and 8 arcs

> draw_graph(H)

> allpairs_distance(H)

$$\begin{pmatrix} 0 & 24 & 18 & 18 & 8 \\ +\infty & 0 & 14 & 25 & 30 \\ +\infty & 41 & 0 & 11 & 16 \\ +\infty & 30 & 44 & 0 & 5 \\ +\infty & 25 & 39 & 50 & 0 \end{pmatrix}$$

4.8.3. Diameter

The command graph_diameter is used for determining the maximum distance among all pairs of vertices in a graph.

Syntax: graph_diameter(G)

graph_diameter takes a graph G(V, E) as its only argument and returns the number $\max \{ \text{distance}(u, v) : u, v \in V \}$. If G is disconnected, $+\infty$ is returned.

This command calls allpairs_distance and picks the largest element in the output matrix. Hence the complexity of the algorithm is $O(|V|^3)$.

> graph_diameter(graph("petersen"))

2

> graph_diameter(cycle_graph(19))

9

> graph_diameter(disjoint_union(graph("petersen"),cycle_graph(19)))

 $+\infty$

```
> G:=graph(%{[[1,2],0.2],[[2,3],0.3],[[3,4],0.4],[[4,1],1.1]%})
```

an undirected weighted graph with 4 vertices and 4 edges

> draw_graph(G)


```
> graph_diameter(G)

0.9

> dijkstra(G,1,4)
```

[[1,2,3,4],0.9]

4.8.4. Girth

The commands girth and odd_girth are used for computing the (odd) girth of an undirected unweighted graph.

```
Syntax: girth(G)
    odd_girth(G)
```

girth resp. odd_girth takes a graph G(V,E) as its only argument and returns the girth resp. odd girth of G. The (odd) girth of G is defined to be the length of the shortest (odd) cycle in G. If there is no (odd) cycle in G, the command returns $+\infty$.

The strategy is to apply breadth-first search from each vertex of the input graph. The runtime is therefore O(|V||E|).

```
> girth(graph("petersen"))
```

5

```
> G:=hypercube_graph(3)
```

an undirected unweighted graph with 8 vertices and 12 edges

```
> G:=subdivide_edges(G,["000","001"])
```

an undirected unweighted graph with 9 vertices and 13 edges

```
> girth(G)
```

4

```
> odd_girth(G)
```

5

```
> girth(complete_binary_tree(2))
```

 $+\infty$

4.9. Acyclic graphs

4.9.1. Acyclic graphs

The command is_acyclic is used for determining whether there are no directed cycles (closed paths) in a digraph. A directed graph with no directed cycle is said to be **acyclic**.

```
Syntax: is_acyclic(G)
```

is_acyclic takes a digraph G(V, E) as its only argument and returns true if G is acyclic and false otherwise.

4.9 ACYCLIC GRAPHS 113

The algorithm attempts to find topological order for its vertices. If that succeeds, the graph is acyclic, otherwise not. The algorithm runs in O(|V| + |E|) time.

```
> is_acyclic(digraph(trail(1,2,3,4,5)))
```

true

```
> is_acyclic(digraph(trail(1,2,3,4,5,2)))
```

false

4.9.2. Topological sorting

The command topologic_sort or topological_sort is used for finding a linear ordering of vertices of an acyclic digraph which is consistent with the arcs of the digraph. This procedure is called topological sorting.

```
Syntax: topologic_sort(G)
     topological_sort(G) (alias)
```

topologic_sort takes a graph G(V, E) as its only argument and returns the list of vertices of G in a particular order: a vertex u precedes a vertex v if $uv \in E$, i.e. if there is an arc from u to v.

Note that topological sorting is possible only if the input graph is acyclic. If this condition is not met, topologic_sort returns an error. Otherwise, it finds the required ordering by applying KAHN's algorithm [41], which runs in O(|V| + |E|) time.

```
> G:=digraph(%{[c,a],[c,b],[c,d],[a,d],[b,d],[a,b]%})
```

a directed unweighted graph with 4 vertices and 6 arcs

```
> is_acyclic(G)
```

true

```
> topologic_sort(G)
```

[*c*,*a*,*b*,*d*]

4.9.3. st ordering

The command st_ordering is used for finding st-orderings in undirected biconnected graphs.

```
Syntax: st_ordering(G,s,t,[p])
    st_ordering(G,s,t,D,[p])
```

st_ordering takes three to five arguments. The first three arguments are mandatory: an undirected biconnected $^{4.2}$ graph G(V,E), a vertex $s \in V$ called the source, a vertex $t \in V$ called the sink such that $st \in E$. Optionally, one can pass an unassigned identifier D and/or a real value $p \in [0,1]$. The command returns the permutation of the vertex set V which corresponds to st-numbering of the vertices.

Given a st-numbering, an orientation of each $e = uv \in E$ can be imposed by comparing the ordinals n and m assigned its endpoints u and v, respectively; if n < m, then u is the head and v is the tail of the corresponding arc, and vice versa otherwise. If an identifier D is given, a copy of G, which is made directed according to these orientations, is stored to D. The oriented variant of G is an acyclic graph (or DAG for short).

^{4.2.} For a biconnected input graph, an st-ordering can be computed for any pair $s, t \in V$ such that $st \in E$ [67].

114 GRAPH PROPERTIES

If the argument p is not specified, the strategy is to apply TARJAN's algorithm [67] which runs in O(|V| + |E|) time. When $p \in [0,1]$ is given, a parametrized st-ordering is computed, in which the length of the longest path from s to t in the respective DAG roughly corresponds to p|V|. Thus by varying p one controls the length of the longest directed path from s to t. The parametrized branch of the algorithm is implemented according to PAPAMANTHOU and TOLLIS [54] and runs in O(|V||E|) time.

```
> G:=graph(%{[a,b],[a,c],[a,d],[b,c],[b,d],[c,d]%})
```

an undirected unweighted graph with 4 vertices and 6 edges

```
> vertices(G)

[a,b,c,d]

> st_ordering(G,a,d,D)

[0,2,1,3]

> draw_graph(D)
```

The following program demonstrates the usage of the parametrized st-ordering algorithm for finding a path between vertices u and v in an undirected, biconnected graph G(V, E), the length of which depends on the parameter $p \in [0,1]$.

```
FindPath:=proc(G,u,v,p)
  local tmp,D,W;
  tmp:=!has_edge(G,[u,v]);
  if tmp then G:=add_edge(G,[u,v]); fi;
  purge(D);
  st_ordering(G,u,v,D,p);
  if tmp then D:=delete_arc(D,[u,v]); fi;
  W:=is_weighted(G)?weight_matrix(G):adjacency_matrix(G);
  D:=make_weighted(D,-W);
  return bellman_ford(D,u,v)[0];
end:;
```

The procedure FindPath uses the Bellman-Ford algorithm to find a longest path from the vertex $u \in V$ to the vertex $v \in V$ in the DAG D induced by a parametrized st-ordering of G with parameter p. To trick Bellman-Ford into finding a longest path instead of the shortest one (which it was designed for), the edges of D are weighted with negative weights. Since D is acyclic, it contains no negative cycles, so the Bellman-Ford algorithm terminates successfully.

For p = 0 one obtains a relatively short path, but usually not a minimal one. For p = 1 one obtains near-Hamiltonian paths. For $p \in (0,1)$ one obtains a path of length l which obeys the relation

$$l \approx l_0 + p(|V| - l_0)$$
,

where l_0 is the average path length for p = 0.

4.9 ACYCLIC GRAPHS 115

```
> G:=graph("soccerball")
```

an undirected unweighted graph with 60 vertices and 90 edges

```
> P1:=FindPath(G,3,33,0):; length(P1)
```

Done, 12

```
> P2:=FindPath(G,3,33,0.5):; length(P2)
```

Done,39

```
> P3:=FindPath(G,3,33,1):; length(P3)
```

Done, 59

4.9.4. Graph condensation

The command condensation is used for constructing the condensation graph of a given digraph.

Syntax: condensation(G)

condensation takes a digraph G(V,E) as its only argument and returns the acyclic digraph G'(V',E') obtained by contracting strongly connected components of G to single vertices. These vertices form the set V'. Two vertices $u,v\in V'$ are connected in G' if and only if there is an arc in G with tail in the component of G corresponding to G and head in the component of G corresponding to G. The order of vertices in G' is the same as the order of components as returned by the command G connected_components.

```
> E:=tran([[1,2,3,3,4,4,4,4,5,5,6,6,6,7,8,8,9,9,10,10,10,11,11,12,13,13,
14,15],[3,1,2,5,1,2,12,13,6,8,7,8,10,10,9,10,5,11,9,11,14,12,14,13,11,
15,13,14]]):;
G:=digraph(set[op(E)])
```

a directed unweighted graph with 15 vertices and 28 arcs

```
> comp:=strongly_connected_components(G)
```

```
{[11,12,13,14,15],[5,6,7,8,9,10],[1,2,3],[4]}
```

```
> c:=[red,green,magenta]:;
for k from 0 to 2 do G:=highlight_vertex(G,comp[k],c[k]); od:;
draw_graph(G,spring,labels=false)
```



```
> C:=condensation(G)
```

a directed unweighted graph with 4 vertices and 4 arcs

```
> draw_graph(C,spring)
```


4.10. Matching in graphs

4.10.1. Maximum matching

The command maximum_matching is used for finding maximum matchings [30, p. 43] in undirected unweighted graphs.

Syntax: maximum_matching(G)

maximum_matching takes an undirected graph G(V, E) as its only argument and returns a list of edges $e_1, e_2, ..., e_m \in E$ such that e_i and e_j are not adjacent (i.e. have no common endpoints) for all $1 \le i < j \le m$ and that m is maximal. The return value can be interpreted as the list of matched pairs of vertices in G.

The strategy is to apply the blossom algorithm of EDMONDS [21], which runs in $O(|V|^2|E|)$ time.

> maximum_matching(graph("octahedron"))

 $\begin{pmatrix}
1 & 6 \\
3 & 2 \\
5 & 4
\end{pmatrix}$

> G:=graph("soccerball")

an undirected unweighted graph with 60 vertices and 90 edges

> M:=maximum_matching(G):; length(M)

Done, 30

> draw_graph(highlight_edges(G,M),labels=false)

> G:=random_graph(1000,10,5)

an undirected unweighted graph with 1000 vertices and 13993 edges

> length(maximum_matching(G))

500

181 sec

> G:=graph("blanusa")

4.10 MATCHING IN GRAPHS 117

an undirected unweighted graph with 18 vertices and 27 edges

> draw_graph(highlight_edges(G,maximum_matching(G)),labels=false)

4.10.2. Maximum matching in bipartite graphs

The command bipartite_matching is used for finding maximum matchings in undirected, unweighted bipartite graphs. It applies the algorithm of HOPCROFT and KARP [38], which is more efficient than the general algorithm used by the command maximum_matching.

Syntax: bipartite_matching(G)

bipartite_matching takes an undirected bipartite graph G(V, E) as its only argument and returns a sequence containing two elements: the size of the matching and the list of edges connecting matched pairs of vertices. The algorithm runs in $O(\sqrt{|V|}|E|)$ time.

> G:=graph("desargues")

an undirected unweighted graph with 20 vertices and 30 edges

> is_bipartite(G)

true

> M:=bipartite_matching(G)

> draw_graph(highlight_edges(G,M))

4.11. Cliques

4.11.1. Clique graphs

To check whether an undirected graph is complete, one can use the is_clique command.

```
Syntax: is_clique(G)
```

is_clique takes an undirected graph G(V,E) as its only argument and returns true if every pair of distinct vertices is connected by a unique edge in E. Else, it returns false.

```
> K5:=complete_graph(5)
```

an undirected unweighted graph with 5 vertices and 10 edges

```
> is_clique(K5)
```

true

```
> G:=delete_edge(K5,[1,2])
```

an undirected unweighted graph with 5 vertices and 9 edges

```
> is_clique(G)
```

false

4.11.2. Maximal cliques

Given an undirected graph G(V, E), a subset $S \subset V$ is called a **clique** in G if any two distinct vertices from S are adjacent in G, i.e. if the subgraph of G induced by the set S is complete. A clique is **maximal** if it cannot be extended by adding more vertices from V to it. To count all maximal cliques in a graph (and optionally list them) one can use the clique_stats command.

```
Syntax: clique_stats(G,[C])
        clique_stats(G,k,[C])
        clique_stats(G,m..n,[C])
```

clique_stats takes an undirected graph G(V,E) as the mandatory first argument. If no other arguments are given, the command returns a list of pairs, each pair consisting of two integers: clique cardinality k and the number $n_k > 0$ of k-cliques in G, respectively. (Therefore, the sum of second members of all returned pairs is equal to the total count of all maximal cliques in G.) If two arguments are passed to clique_stats, the second argument must be a positive integer k or an interval with integer bounds m .. n. In the first case the number of k-cliques is returned; in the second case, only cliques with cardinality between m and n (inclusive) are counted.

If C is specified as the last argument, it must be an unassigned identifier. Maximal cliques are in that case stored to C as a list of lists of cliques of equal size. This option is therefore used for listing all maximal cliques.

The strategy used to find all maximal cliques is a variant of the algorithm of BRON and KERBOSCH developed by TOMITA et al. [69]. Its worst-case running time is $O(3^{|V|/3})$. However, the algorithm is usually very fast, typically taking only a moment for graphs with few hundred vertices or less.

```
> G:=random_graph(50,0.5)
```

an undirected unweighted graph with 50 vertices and 633 edges

4.11 CLIQUES 119

```
> clique_stats(G)
```

```
    3
    2

    4
    123

    5
    465

    6
    388

    7
    73

    8
    6
```

```
> G:=random_graph(100,0.5)
```

an undirected unweighted graph with 100 vertices and 2448 edges

```
> clique_stats(G,5)
```

4080

```
> G:=random_graph(500,0.25)
```

an undirected unweighted graph with 500 vertices and 31400 edges

```
> clique_stats(G,5..7)
```

```
> G:=graph("octahedron")
```

an undirected unweighted graph with 6 vertices and 12 edges

```
> clique_stats(G,C)
```

(38)

> C

4.11.3. Maximum clique

Any largest maximal clique in an undirected graph is called **maximum clique**. The command maximum_clique can be used to find one in a graph. If only the size of a maximum clique is desired, one can use the command clique_number.

```
Syntax: maximum_clique(G)
     clique_number(G)
```

maximum_clique takes an undirected graph G as its only argument and returns a maximum clique in G as a list of vertices. The clique may subsequently be extracted from G using the command induced_subgraph.

The strategy used to find maximum clique is an improved variant of the classical algorithm by CARRAGHAN and PARDALOS developed by ÖSTERGÅRD [51].

In the following examples, the results were obtained almost instantly.

```
> G:=sierpinski_graph(5,5)
```

an undirected unweighted graph with 3125 vertices and 7810 edges

> maximum_clique(G)

[1560, 1561, 1562, 1563, 1564]

> G:=random_graph(300,0.3)

an undirected unweighted graph with 300 vertices and 13352 edges

> maximum_clique(G)

[60, 80, 111, 201, 248, 252, 288]

> G:=graph_complement(complete_graph(4,3))

an undirected unweighted graph with 7 vertices and 9 edges

> cliq:=maximum_clique(G)

[0,1,2,3]

> draw_graph(highlight_subgraph(G,induced_subgraph(G,cliq)))

clique_number takes an undirected graph *G* as its only argument and returns the number of vertices forming a maximum clique in *G*.

> clique_number(G)

4

4.11.4. Minimum clique cover

A minimum clique cover for an undirected graph G is any minimal set $S = \{C_1, C_2, ..., C_k\}$ of cliques in G such that for every vertex v in G there exists $i \le k$ such that $v \in C_i$. Such a cover can be obtained by calling the clique_cover command.

Syntax: clique_cover(G)
 clique_cover(G,k)

4.11 CLIQUES 121

clique_cover takes an undirected graph G(V, E) as its mandatory argument and returns the smallest possible cover. Optionally, a positive integer k may be passed as the second argument. In that case the requirement that k is less or equal to the given integer is set. If no such cover is found, clique_cover returns empty list.

The strategy is to find a minimal vertex coloring in the complement G^c of G (note that these two graphs share the same set of vertices). Each set of equally colored vertices in G^c corresponds to a clique in G. Therefore, the color classes of G^c map to the elements $C_1, ..., C_k$ of a minimal clique cover in G.

There is a special case in which G is triangle-free (i.e. contains no 3-cliques), which is computed separately in the algorithm. In that case, G contains only 1- and 2-cliques. Therefore, every clique cover in G consists of a set $M \subset E$ of matched edges together with the singleton cliques (i.e. the isolated vertices in V which remain unmatched). The total number of cliques in the cover is equal to |V| - |M|, hence to find a minimal cover one just needs to find a maximum matching in G, which can be done in polynomial time.

```
> G:=random_graph(30,0.2)
```

an undirected unweighted graph with 30 vertices and 83 edges

```
> clique_cover(G)
```

{[0,22,24],[1,14,17,20],[2,25],[3,10,16],[4,28],[5,19,29],[6,27],[7,8,11],[9,12],[13,23],[15,26],[18,21]}

```
> clique_cover(graph("octahedron"))
```

$$\left(\begin{array}{ccc}
1 & 3 & 6 \\
2 & 4 & 5
\end{array}\right)$$

The vertices of Petersen graph can be covered with five, but not with three cliques.

```
> clique_cover(graph("petersen"),3)
```

[]

$$\begin{pmatrix}
0 & 1 \\
2 & 3 \\
4 & 9 \\
5 & 7 \\
6 & 8
\end{pmatrix}$$

4.11.5. Clique cover number

 $The \ command \ \verb|clique_cover_number| is used for \ computing \ the \ clique \ cover \ number \ of \ a \ graph.$

```
Syntax: clique_cover_number(G)
```

clique_cover_number takes an undirected graph G(V, E) as its only argument and returns the minimum number of cliques in G needed to cover the vertex set V. (More precisely, it calls the clique_cover command and returns the length of the output list.) This number, denoted by $\theta(G)$, is equal to the chromatic number $\chi(G^c)$ of the complement graph G^c of G.

```
> clique_cover_number(graph("petersen"))
```

122 GRAPH PROPERTIES

5

> clique_cover_number(graph("soccerball"))

30

> clique_cover_number(random_graph(40,0.618))

7

4.12. Network analysis

4.12.1. Counting triangles

The command number_of_triangles is used for counting triangles in graphs.

Syntax: number_of_triangles(G)
 number_of_triangles(G,L)

number_of_triangles takes a graph G as its first, mandatory argument and returns the number n of 3-cliques in G is undirected resp. the number m of directed cycles of length 3 if G is directed. If an unassigned identifier L is given as the second argument, the triangles are also listed and stored to L. Note that triangle listing is supported only for undirected graphs.

For undirected graphs the algorithm of SCHANK and WAGNER [58, Algorithm *forward*], improved by LATAPY [43], is used, which runs in $O(|E|^{3/2})$ time. For digraphs, the strategy is to compute the trace of A^3 where A is the adjacency matrix of G encoded in a sparse form. This algorithm requires O(|V||E|) time.

```
> number_of_triangles(graph("tetrahedron"))
```

4

```
> G:=digraph([1,2,3,4],%{[1,2],[1,4],[2,3],[2,4],[3,1],[4,3]%})
```

a directed unweighted graph with 4 vertices and 6 arcs

> draw_graph(G,spring)

> number_of_triangles(G)

2

> G:=sierpinski_graph(7,3,triangle)

an undirected unweighted graph with 1095 vertices and 2187 edges

> number_of_triangles(G)

972

Petersen graph is triangle-free, i.e. contains no 3-cliques.

4.12 NETWORK ANALYSIS 123

```
> number_of_triangles(graph("petersen"))
```

0

Counting triangles in undirected graphs is very fast, as illustrated by the following example.

```
> G:=random_graph(10^5,10^6)
```

an undirected unweighted graph with 100000 vertices and 1000000 edges

147 sec

```
> number_of_triangles(G)
```

25315

1.62 sec

To list all triangles in a graph, pass an unassigned identifier as the second argument. The triangles will be stored to it as a list of triples of vertices.

```
> G:=graph("octahedron")
```

an undirected unweighted graph with 6 vertices and 12 edges

> draw_graph(G)


```
> number_of_triangles(G,L)
```

8

> L

4.12.2. Clustering coefficient

The command clustering_coefficient is used for computing the average clustering coefficient (or simply: clustering coefficient) of an undirected graph as well as the local clustering coefficient of a particular vertex in that graph.

```
Syntax: clustering_coefficient(G,[opt])
    clustering_coefficient(G,v)
    clustering_coefficient(G,v1,v2,..,vk)
    clustering_coefficient(G,[v1,v2,..,vk])
```

124 GRAPH PROPERTIES

clustering_coefficient takes one or two arguments, an undirected graph G(V,E) and optionally a vertex $v \in V$ or a list/sequence of vertices $v_1, v_2, ..., v_k \in V$. If G is the only argument, the clustering coefficient c(G) [11, p. 5] is returned. Otherwise, the local clustering coefficient $c_G(v)$ [11, p. 4] of v resp. a list of local clustering coefficients of $v_1, v_2, ..., v_k$ is returned. The second argument may also be one of the following options:

exact — The clustering coefficient c(G) is returned as a rational number (by default it is a floating point number). Note that local clustering coefficient is always returned in exact form

approx — An approximation of the clustering coefficient c(G), lying within 0.5×10^{-2} of the exact value with probability $p = 1 - 10^{-5}$, is returned.

In any case, the return value is—by definition—a rational number in the range [0,1].

The clustering coefficient of *G* is defined as the mean of $c_G(v)$, $v \in V$:

$$c(G) = \frac{1}{|V|} \sum_{v \in V} c_G(v).$$

c(G) can be interpreted as the probability that, for a randomly selected pair of incident edges uv and vw in G, the vertices u and w are connected. The number $c_G(v)$ is interpreted analogously but for a fixed $v \in V$. It represents the probability that two neighbors of v are connected to each other.

For example, assume that G represents a social network in which $uv \in E$ indicates that u and v are friends (which is a symmetric relation). In this context, c(v) represents the probability that two friends of v are also friends of each other.

The time complexity of computing c(G) is $O(|E|^{3/2})$, whereas the algorithm of SCHANK and WAGNER [59, Algorithm 1, p. 269] for approximating c(G) runs in $O(\log |V|)$ time.

Note that the command random_graph is able to generate—using a preferential attachment rule—realistic random networks with adjustable clustering coefficient, which are suitable for testing purposes.

> G:=graph("diamond")

an undirected unweighted graph with 4 vertices and 5 edges

> draw_graph(G,spring)

The command lines below compute c(G), $c_G(1)$ and $c_G(2)$.

> clustering_coefficient(G,exact)

 $\frac{5}{6}$

> clustering_coefficient(G,1)

4.12 Network analysis 125

 $\frac{2}{3}$

> clustering_coefficient(G,2)

1

The next example demonstrates the performance of clustering_coefficient on a large graph.

> G:=random_graph(25000,10,100)

an undirected unweighted graph with 25000 vertices and 991473 edges

> clustering_coefficient(G)

0.635654820498

2.48 sec

> clustering_coefficient(G,approx)

0.635182159201

0.77 sec

The probability that two neighbors of a vertex in *G* are connected is therefore about 64%.

4.12.3. Network transitivity

The command network_transitivity is used for computing the transitivity (also called **triangle density** or the **global clustering coefficient**) of a network.

Syntax: network_transitivity(G)

network_transitivity takes a graph G as its only argument and returns the transitivity T(G) of G [11, p. 5]. By definition, it is a rational number in the range [0,1]:

$$T(G) = \frac{3N_{\text{triangles}}}{N_{\text{triplets}}}.$$

T(G) is a measure of transitivity of a non-symmetric relation between the vertices of a network. If G is a digraph, a **triplet** in G is any directed path (v, w, z) where $v, w, z \in V$. For example, in a Twitter-like social network this could mean that v following w and w following z. The triplet (v, w, z) is **closed** if $vz \in E$, i.e. if v also follows v [72, p. 243]. A closed triplet is called a **triangle**. If v is undirected, v is the number of 3-cliques and v is the number of two-edge paths in v.

The complexity of computing T(G) is $O(\Delta_G|E|)$ for digraphs, where Δ_G is the maximum vertex degree in G, resp. $O(|E|^{3/2})$ for undirected graphs.

an undirected unweighted graph with 4 vertices and 5 edges

> network_transitivity(G)

 $\frac{3}{4}$

Observe that the above result is different than c(G) obtained in Section 4.12.2. Hence $c(G) \neq T(G)$ in general [11, p. 5].

```
> G:=random_digraph(10,20)
```

a directed unweighted graph with 10 vertices and 20 arcs

> draw_graph(G)

In the above digraph, the triplet (5,7,6) is open while the triplet (7,6,4) is closed. Triangles (2,5,9) and (6,8,7) are not closed by definition.

> network_transitivity(G)

 $\frac{5}{33}$

The transitivity algorithms are suitable for large networks, as demonstrated in the examples below.

> G:=random_digraph(1000,500000)

a directed unweighted graph with 1000 vertices and 500000 arcs

> nt:=network_transitivity(G):;

2.91 sec

> evalf(nt)

0.500523736169

> H:=random_graph(30000,10,50)

an undirected unweighted graph with 30000 vertices and 1011266 edges

> evalf(network_transitivity(H))

0.137017372323

2.52 sec

4.12.4. Centrality measures

GIAC provides several commands for measuring vertex centrality in networks.

```
Syntax: betweenness_centrality(G,[v])
    closeness_centrality(G,[v])
    degree_centrality(G,[v])
    harmonic_centrality(G,[v])
    information_centrality(G,[v],[approx])
    katz_centrality(G,alpha,[v])
```

4.12 Network analysis 127

The above commands compute the indicated centrality measure for the vertex $v \in V$ in a graph G(V,E) with |V| > 1. If v is omitted, the list of values for every vertex in V is returned, in order as provided by vertices (G).

Degree centrality for v is computed using the formula

$$C_D(v) = \frac{\deg(v)}{|V| - 1}.$$

Closeness centrality [5] for v is computed using the formula

$$C(v) = \frac{|V| - 1}{\sum_{u \in V} d(u, v)},$$

where d(u, v) is the distance from u to v. Harmonic centrality [45] is computed using a similar formula

$$H(v) = \sum_{u \in V} \frac{1}{d(u, v)}.$$

The worst case complexity in both cases is $O(|V|^3)$ when closeness/harmonic centrality is computed for all vertices in a weighted graph G. For unweighted graphs, the complexity drops to $O(|V|^2 + |V||E|)$.

Betweenness centrality [27] for v is computed using the formula

$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}},$$

where σ_{st} is total number of shortest paths from s to t and $\sigma_{st}(v)$ is the number of those paths which pass through v. The strategy is to use the algorithm by BRANDES [12] which operates in O(|V||E|) time and O(|V|+|E|) space. Currently, only unweighted graphs are supported (if G is weighted, the edge weights are simply ignored).

Information centrality [62] for v is computed using the formula

$$C_{I}(v) = \frac{|V|}{\sum_{u \in V} (B_{uu} + B_{vv} - 2B_{uv})'}$$

where $B = (L+J)^{-1}$, L is the Laplacian matrix of G and J is the $|V| \times |V|$ matrix in which every entry is 1 [60]. If the optional argument approx is given, the result is computed using the floating-point arithmetic, which is faster. Note that information centrality takes edge weights into account.

Katz centrality [42] is computed using the formula

$$C_K(v) = \sum_{w \in V} (I - \alpha A^T)_{v,w}^{-1}$$

where $\alpha < \frac{1}{|\lambda|}$ is attenuation (given as the second argument) and λ is eigenvalue of A with the largest magnitude. Note that if the above condition on α is not met, the result is meaningless. If α is a floating-point value, the computation is done using the floating-point arithmetic, otherwise it is exact.

an undirected unweighted graph with 6 vertices and 8 edges

> draw_graph(G,circle)

> degree_centrality(G)

$$\left[\frac{2}{5}, \frac{2}{5}, \frac{2}{5}, \frac{3}{5}, \frac{2}{5}, 1\right]$$

> closeness_centrality(G)

$$\left[\frac{5}{8}, \frac{5}{8}, \frac{5}{8}, \frac{5}{7}, \frac{5}{8}, 1\right]$$

> harmonic_centrality(G)

$$\left[\frac{7}{2}, \frac{7}{2}, \frac{7}{2}, 4, \frac{7}{2}, 5\right]$$

> betweenness_centrality(G)

$$\left[0,0,0,\frac{1}{2},0,\frac{13}{2}\right]$$

> information_centrality(G)

$$\left[\frac{72}{61}, \frac{36}{29}, \frac{72}{61}, \frac{72}{49}, \frac{36}{29}, \frac{72}{37}\right]$$

> katz_centrality(G,0.1)

[1.29598461169, 1.30920894446, 1.29598461169, 1.42822793941, 1.30920894446, 1.66386150517]

4.13. Vertex coloring

To color vertices of a graph G(V, E) means to assign to each vertex $v \in V$ a positive integer. Each integer represents a distinct color. The key property of graph coloring is that the colors of a pair of adjacent vertices must be mutually different. Two different colorings of G may use different number of colors.

4.13.1. Greedy vertex coloring

The command greedy_color is used for coloring vertices of a graph in a greedy fashion.

Syntax: greedy_color(G)
 greedy_color(G,p)

4.13 Vertex coloring 129

greedy_color takes one mandatory argument, a graph G(V, E). Optionally, a permutation p of order |V| may be passed as the second argument. Vertices are colored one by one in the order specified by p (or in the default order if p is not given) such that each vertex gets the smallest available color. The list of vertex colors is returned in the order of vertices (G).

Generally, different choices of permutation p produce different colorings. The total number of different colors may not be the same each time. The complexity of the algorithm is O(|V| + |E|).

```
> G:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> greedy_color(G)
```

[1,2,1,2,3,2,1,3,3,2]

```
> L:=greedy_color(G,randperm(10))
```

[1,2,1,4,3,4,1,3,2,2]

Observe that a different number of colors is obtained by executing the last command line. To display the colored graph, input:

```
> draw_graph(highlight_vertex(G,vertices(G),L),labels=false)
```


The first six positive integers are always mapped to the standard Xcas colors, as indicated in Table 4.1. Note that the color 0 (black) and color 7 (white) are swapped; a vertex with color 0 is white (uncolored) and vertex with color 7 is black. Also note that Xcas maps numbers greater than 7 to colors too, but the number of available colors is limited.

4.13.2. Minimal vertex coloring

A vertex coloring of *G* is **minimal** (or **optimal**) if the total number of used colors is minimal. To obtain such a coloring use the command minimal_vertex_coloring.

```
Syntax: minimal_vertex_coloring(G)
    minimal_vertex_coloring(G,sto)
```

minimal_vertex_coloring takes one mandatory argument, an undirected graph G(V,E) where $V = \{v_1, v_2, ..., v_n\}$. Optionally, a symbol sto may be passed as the second argument. The command returns the vertex colors $c_1, c_2, ..., c_n$ in order of vertices (G) or, if the second argument is given, stores the colors as vertex attributes and returns the modified copy of G.

Giac requires the GLPK library to solve the minimal vertex coloring problem (MVCP), which is converted to the equivalent integer linear programming problem and solved by using the branch-and-bound method with specific branch/backtrack techniques [18]. The lower resp. the upper bound for the number n of colors is obtained by finding a maximal clique (n cannot be lower than its cardinality) resp. by applying the heuristic proposed by BRÉLAZ in [13] (which will use at least n colors). Note that the algorithm performs some randomization when applying heuristics, so coloring a graph several times will not take the same amount of computation time in each instance, generally.

130 GRAPH PROPERTIES

	value	1	2	3	4	5	6	7
Γ	color	red	green	yellow	blue	magenta	cyan	black

Table 4.1. vertex/edge colors in Xcas

In the following example, the Grötzsch graph is colored with the minimal number of colors by first finding the coloring and then assigning it to the graph by using the highlight_vertex command.

```
> G:=graph("grotzsch")
```

an undirected unweighted graph with 11 vertices and 20 edges

```
> coloring:=minimal_vertex_coloring(G)
```

[4,2,3,1,1,4,1,3,2,1,2]

> draw_graph(highlight_vertex(G, vertices(G), coloring), labels=false)

Solving MVCP for different graphs of exactly the same size (but which do not share the same edge structure) may take quite different time in each instance. Also note that, since the vertex coloring problem is NP hard, the algorithm may take exponential time on some graphs.

4.13.3. Chromatic number

The command chromatic_number is used for exact computation or approximation of the chromatic number of a graph.

chromatic_number takes one mandatory argument, an undirected graph G(V, E), and optionally a second argument. To obtain only upper and lower bound for the chromatic number (which is much faster than computing exactly) the option approx or interval should be passed as the second argument. Alternatively, an unassigned identifier c is passed as the second argument; in that case the corresponding coloring will be stored to it in form of a list of colors of the individual vertices, ordered as in vertices (G).

The command returns the chromatic number χ_G of the graph G in the case of exact computation. If the option approx or interval is given, an interval 1b..ub is returned, where 1b is the best lower bound and ub the best upper bound for χ_G found by the algorithm.

The strategy is call minimal_vertex_coloring in the case of exact computation. When approximating the chromatic number, the algorithm will establish the lower bound by finding a maximum clique. The timeout for this operation is set to 5 seconds as it can be time consuming. If no maximum clique is not found after that time, the largest clique found is used. Then, an upper bound is established by by using the heuristic proposed by BRÉLAZ in [13]. Obtaining the bounds for χ_G is usually very fast; however, their difference grows with |V|.

Unless the input graph is sparse enough, the algorithm slows down considerably for, say, |V| > 40.

4.13 Vertex coloring 131

> chromatic_number(graph("grotzsch"),cols)

4

> cols

[4,2,3,1,1,4,1,3,2,1,2]

> G:=random_graph(30,0.75)

an undirected unweighted graph with 30 vertices and 313 edges

> chromatic_number(G)

10

> G:=random_graph(300,0.05)

an undirected unweighted graph with 300 vertices and 2196 edges

> chromatic_number(G,approx)

4..7

4.13.4. Mycielski graphs

The command mycielski is used for constructing Mycielski graphs.

Syntax: mycielski(G)

mycielski takes an undirected graph G(V,E) as its only argument and returns the corresponding Mycielski graph M (also called the **Mycielskian** of G) with 2|V|+1 vertices and 3|E|+|V| edges. If G is triangle-free then M is also triangle-free and $\chi_M = \chi_G + 1$.

```
> P:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

> M:=mycielski(P)

an undirected unweighted graph with 21 vertices and 55 edges

> apply(number_of_triangles,[P,M])

[0,0]

> chromatic_number(P)

3

> chromatic_number(M)

4

mycielski can be applied iteratively, producing arbitrarily large graphs from the most simple ones. For example, Grötzsch graph is obtained as the Mycielskian of a cycle graph on 5 vertices, which is the Mycielskian of a path graph on two vertices.

132 GRAPH PROPERTIES

```
> G1:=path_graph(2)
```

an undirected unweighted graph with 2 vertices and 1 edge

```
> G2:=mycielski(G1)
```

an undirected unweighted graph with 5 vertices and 5 edges

```
> is_isomorphic(G2,cycle_graph(5))
```

true

```
> G3:=mycielski(G2)
```

an undirected unweighted graph with 11 vertices and 20 edges

```
> is_isomorphic(G3,graph("grotzsch"))
```

true

All three graphs are triangle-free. Since it is obviously $\chi_{G_1} = 2$, it follows $\chi_{G_2} = 3$ and $\chi_{G_3} = 4$.

```
> apply(chromatic_number,[G1,G2,G3])
```

[2,3,4]

4.13.5. k-coloring

The command $is_vertex_colorable$ is used for determining whether the vertices of a graph can be colored with at most k colors.

```
Syntax: is_vertex_colorable(G,k)
    is_vertex_colorable(G,k,c)
```

is_vertex_colorable takes two or three arguments: a graph G(V, E), a positive integer k and optionally an unassigned identifier c. The command returns true if G can be colored using at most k colors and false otherwise. If the third argument is given, a coloring using at most k colors is stored to c as a list of vertex colors, in the order of vertices (G).

The strategy is to first apply a simple greedy coloring procedure which runs in linear time. If the number of required colors is greater than k, the heuristic proposed by BRÉLAZ in [13] is used, which runs in quadratic time. If the number of required colors is still larger than k, the algorithm attempts to find the chromatic number χ_G using k as the upper bound in the process.

```
> G:=graph("grotzsch")
```

an undirected unweighted graph with 11 vertices and 20 edges

```
> is_vertex_colorable(G,3)
```

false

```
> is_vertex_colorable(G,4)
```

true

```
> G:=random_graph(70,0.2)
```

4.14 EDGE COLORING 133

an undirected unweighted graph with 70 vertices and 469 edges

```
> chromatic_number(G,approx)
```

5..6

```
> is_vertex_colorable(G,5)
```

false

818 msec

From the results of the last two command lines it follows $\chi_G = 6$. Finding χ_G by utilizing the next command line is simpler, but requires much more time.

```
> chromatic_number(G)
```

6

92.7 sec

4.14. Edge coloring

4.14.1. Minimal edge coloring

The command minimal_edge_coloring is used for finding a minimal coloring of edges in a graph, satisfying the following two conditions: any two mutually incident edges are colored differently and the total number n of colors is minimal. The theorem of VIZING [19, p. 103] implies that every simple undirected graph falls into one of two categories: 1 if $n = \Delta$ or 2 if $n = \Delta + 1$, where Δ is the maximum degree of the graph.

```
Syntax: minimal_edge_coloring(G)
    minimal_edge_coloring(G,sto)
```

minimal_edge_coloring takes one or two arguments, a graph G(V, E) and optionally the keyword sto. If the latter is given, a minimal coloring is stored to the input graph (each edge $e \in E$ gets a color c_e stored as an attribute) and a modified copy of G is returned. Else, the command returns a sequence of two objects: integer 1 or 2, indicating the category, and the list of edge colors $c_{e_1}, c_{e_2}, ..., c_{e_m}$ according the order of edges $e_1, e_2, ..., e_m \in E$ as returned by the command edges.

The strategy is to find a minimal vertex coloring of the line graph of *G* by using the algorithm described in Section 4.13.2.

```
> G:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> minimal_edge_coloring(G)
```

```
2,[1,2,3,2,3,3,4,1,2,3,1,4,1,4,2]
```

```
> H:=minimal_edge_coloring(graph("grotzsch"),sto)
```

an undirected unweighted graph with 11 vertices and 20 edges

```
> draw_graph(H,labels=false)
```

134 GRAPH PROPERTIES

> G:=random_graph(100,0.1)

an undirected unweighted graph with 100 vertices and 499 edges

```
> minimal_edge_coloring(G):;
```

20.24 sec

4.14.2. Chromatic index

The command chromatic_index is used for computing the chromatic index of an undirected graph.

chromatic_index takes one or two arguments, an undirected graph G(E,V) and optionally an unassigned identifier c. The command returns the minimal number $\chi'(G)$ of colors needed to color each edge in G such that two incident edges never share the same color. If the second argument is given, it specifies the destination for storing the coloring in form of a list of colors according to the order of edges in E as returned by the command edges.

The example below demonstrates how to color the edges of a graph with colors obtained by passing unassigned identifier c to chromatic_index as the second argument.

```
> G:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> chromatic_index(G,c)
```

4

> draw_graph(highlight_edges(G,edges(G),c))

Blanuša snarks, the two graphs with 18 vertices found in 1946 by DANILO BLANUŠA, were the second and third snarks discovered [9]. For almost fifty years, Petersen graph was the only known snark. The second Blanuša snark is available in Giac by passing the string "blanusa" to the graph command.

```
> G:=graph("blanusa")
```

an undirected unweighted graph with 18 vertices and 27 edges

4.14 EDGE COLORING 135

> draw_graph(G,labels=false)

> minimum_degree(G),maximum_degree(G)

3,3

To prove that Blanuša snark is bridgeless, it is enough to show that it is biconnected, since each endpoint of a bridge is an articulation point (unless being of degree 1).

> is_biconnected(G)

true

> girth(G)

5

> chromatic_index(G)

4

CHAPTER 5

TRAVERSING GRAPHS

5.1. Walks and tours

5.1.1. Eulerian graphs

The command is_eulerian is used for determining whether a graph contains an Eulerian trail, i.e. a trail which passes through each of its edges exactly once [30, p. 395]. A graph is **Eulerian** if it has such a trail. An Eulerian trail may be closed, in which case it is an **Eulerian circuit**.

is_eulerian takes one or two arguments, a (di)graph G(V, E) and optionally an unassigned identifier T, and returns true if G is Eulerian and false otherwise. If the second argument is given and G is undirected, an Eulerian trail is computed and stored to T. This is currently not supported for digraphs.

The strategy for finding an Eulerian trail is to apply HIERHOLZER's algorithm [36]. It works by covering one cycle at a time in the input graph. The required time is O(|E|).

```
> is_eulerian(complete_graph(4))
```

false

```
> is_eulerian(complete_graph([1,2,3,4,5]),T); T
```

true, [1,2,3,4,1,5,2,4,5,3,1]

```
> is_eulerian(graph("tetrahedron"))
```

false

```
> is_eulerian(graph("octahedron"))
```

true

```
> G:=digraph(%{[1,4],[1,3],[2,1],[3,2],[4,5],[5,1]%})
```

a directed unweighted graph with 5 vertices and 6 arcs

> draw_graph(G)

> is_eulerian(G)

138 Traversing graphs

Input digraph has an Eulerian circuit

true

a directed unweighted graph with 6 vertices and 11 arcs

> draw_graph(H,spring)

> is_eulerian(H)

Input digraph has an Eulerian trail starting at 6 and ending at 1 $$\operatorname{true}$$

5.1.2. Hamiltonian graphs

The command is_hamiltonian is used for determining whether a graph is Hamiltonian. The command can also construct a Hamiltonian cycle in the input graph if the latter is Hamiltonian.

is_hamiltonian takes one or two arguments, a (di)graph G(V,E) and optionally an unassigned identifier hc. The command returns true if G is Hamiltonian and false otherwise. If the second argument is given, a Hamiltonian cycle is stored to hc.

The strategy is to apply a simple backtracking algorithm for finding a Hamiltonian cycle. However, some known characterizations of (non)hamiltonicity are applied first, as follows.

- If G is directed then the following criteria are applied. If G is not strongly connected, then it is not Hamiltonian. Otherwise, the criterion of GHOUILA and HOURI [44] is applied: if $\deg(v) \geqslant |V|$ for all $v \in V$, then G is Hamiltonian. Otherwise, the criterion of MEYNIEL [44] is applied: if $\deg(v) + \deg(w) \geqslant 2|V| 1$ for any pair of non-adjacent vertices $v, w \in V$, then G is Hamiltonian.
- If G is undirected then the criteria presented by DELEON [17] are applied. If G is not biconnected, then G is not Hamiltonian. Otherwise, the criterion of DIRAC is applied: if $\delta(G) \geqslant \frac{|V|}{2}$, where $\delta(G) = \min \{\deg(v) : v \in V\}$, then G is Hamiltonian. Otherwise, if G is bipartite with vertex partition $V = V_1 \cup V_2$ and $|V_1| \neq |V_2|$, then G is not Hamiltonian. Otherwise, the criterion of ORE is applied: if $\deg(u) + \deg(v) \geqslant |V|$ holds for every pair u, v of non-adjacent vertices from V, then G is Hamiltonian. Otherwise, the theorem of BONDY and CHVÁTAL is applied: if the closure $\operatorname{cl}(G)$ of G (obtained by finding a pair u, v of non-adjacent vertices from V such that $\deg(u) + \deg(v) \geqslant |V|$, adding a new edge uv to E and repeating the process until exhaustion) is Hamiltonian, then G is Hamiltonian. (Note that in this case the previously tried criteria are applied to $\operatorname{cl}(G)$; since the vertex degrees in $\operatorname{cl}(G)$ are generally higher than those in G, the probability of success also rises.) Otherwise, if the edge density of G is large enough, the criterion of NASH and WILLIAMS is applied: if $\delta(G) \geqslant \max \left\{ \frac{|V| + 2}{3}, \beta \right\}$, where B is the independence number of G, then G is Hamiltonian.

5.2 OPTIMAL ROUTING 139

The backtracking algorithm is space efficient, but may take a long time on larger graphs.

> is_hamiltonian(graph("soccerball"))

true

> is_hamiltonian(graph("octahedron"),hc)

true

> draw_graph(highlight_trail(graph("octahedron"),hc))

> is_hamiltonian(graph("herschel"))

false

> is_hamiltonian(graph("petersen"))

false

> is_hamiltonian(hypercube_graph(6))

true

11.15 sec

> G:=digraph(%{[1,2],[1,3],[1,7],[2,1],[2,3],[3,2],[3,4],[4,1],[4,5],[5,
2],[5,6],[6,2],[6,7],[7,3]%})

a directed unweighted graph with 7 vertices and 14 arcs

> purge(hc):; is_hamiltonian(G,hc)

true

> draw_graph(highlight_trail(G,hc),spring)

5.2. Optimal routing

5.2.1. Shortest unweighted paths

The command shortest_path is used for finding shortest paths in unweighted graphs.

140 Traversing graphs

shortest_path takes three arguments: an undirected unweighted graph G(V, E), the source vertex $s \in V$ and the target vertex $t \in V$ or a list T of target vertices. The shortest path from source to target is returned. If more targets are specified, the list of shortest paths from the source to each of these vertices is returned.

The strategy is to run breadth-first traversal on the graph G starting from the source vertex s. The complexity of the algorithm is therefore O(|V| + |E|).

```
> G:=graph("dodecahedron")
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> shortest_path(G,1,16)
```

[1,6,11,16]

```
> paths:=shortest_path(G,1,[16,19])
```

```
\{[1,6,11,16],[1,5,10,14,19]\}
```

```
> H:=highlight_trail(G,paths,[red,green])
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> draw_graph(H)
```


5.2.2. Cheapest weighted paths

The commands dijkstra and bellman_ford are used for finding cheapest paths in weighted (directed) graphs.

```
Syntax: dijkstra(G,s,t)
     dijkstra(G,s,T)
     bellman_ford(G,s,t)
     bellman_ford(G,s,T)
```

dijkstra and bellman_ford both take two or three arguments: a weighted (di)graph G(V, E), a vertex $s \in V$ and optionally a vertex $t \in V$ or list T of vertices in V. It returns the cheapest path from s to t or, if more target vertices are given, the list of such paths to each target vertex $t \in T$. If no target vertex is specified, all vertices in $V \setminus \{s\}$ are assumed to be targets. If dijkstra is used, the weights of edges in E must all be nonnegative. bellman_ford accepts negative weights, but does not work if the input graph contains negative cycles (in which the weights of the corresponding edges sum up to a negative value).

A cheapest path from s to t is represented with a list [[v1,v2,...,vk],c] where the first element consists of path vertices with $v_1 = s$ and $v_k = t$, while the second element c is the weight (cost) of that path, equal to the sum of weights of its edges.

5.2 OPTIMAL ROUTING 141

dijsktra computes the cheapest path using DIJKSTRA's algorithm which runs in $O(|V|^2)$ time [20]. bellman_ford uses somewhat slower algorithm by BELLMAN and FORD (see [7] and [26]) which runs in O(|V||E|) time but in turn imposes less requirements upon its input.

```
> G:=graph(%{[[1,2],1],[[1,6],3],[[2,3],3],[[3,4],7],[[4,5],3],[[5,6],
3]%})
```

an undirected weighted graph with 6 vertices and 6 edges

```
> res:=dijkstra(G,1,4)
```

[[1,6,5,4],9]

> draw_graph(highlight_trail(G,res[0]))

> dijkstra(G,1)

[[1],0],[[1,2],1],[[1,6],3],[[1,2,3],4],[[1,6,5,4],9],[[1,6,5],6]

5.2.3. k-shortest paths

The command kspaths is used for obtaining k-shortest paths from the given source to the given destination in a (weighted) graph.

Syntax: kspaths(G,s,t,k)

kspaths takes four arguments, a (weighted) (di)graph G(V, E), a source vertex $s \in V$, a sink vertex $t \in V$ and a positive integer k. It returns a list containing a largest number not greater than k of shortest (cheapest) paths from s to t, sorted in ascending order with respect to their costs (weights). The cost of a path is equal to the sum of weights of its edges if G is weighted resp. to the number of edges if G is unweighted.

The strategy is to apply the algorithm of YEN [76] which uses DIJKSTRA's algorithm [20] as a subroutine. The algorithm runs in $O(k|V|^3)$ time.

```
> G:=digraph(%{[["C","D"],3],[["C","E"],2],[["D","F"],4],[["E","D"],1],
       [["E","F"],2],[["E","G"],3],[["F","G"],2],[["F","H"],1],[["G","H"],2]%})
```

a directed weighted graph with 6 vertices and 9 arcs

```
> draw_graph(G,spring)
```


> kspaths(G,"C","H",5)

 $\{[C,E,F,H],[C,E,G,H],[C,D,F,H],[C,E,D,F,H],[C,E,F,G,H]\}$

142 Traversing graphs

5.2.4. Traveling salesman problem

The command traveling_salesman is used for solving traveling salesman problem (TSP)^{5.1}.

traveling_salesman takes the following arguments: a (di)graph G(V, E), a weight matrix M (optional) and a sequence of options (optional). The supported options are approx and vertex_distance for undirected graphs and is_included=arc|[arcs] for directed graphs.

If the input graph G is unweighted and M is not specified, a Hamiltonian cycle (tour) is returned (the adjacency matrix of G is used for the edge weights). If G is weighted, two objects are returned: the optimal value for the traveling salesman problem and a Hamiltonian cycle which achieves the optimal value. If M is given and G is unweighted, M is used as the weight matrix for G.

If the option vertex_distance is passed and M is not specified, then for each edge $e \in E$ the Euclidean distance between its endpoints is used as the weight of e. Therefore it is required for each vertex in G to have a predefined position.

If the option approx is passed, a near-optimal tour is returned. In this case it is required that G is a complete undirected weighted graph. For larger graphs, this is significantly faster than finding optimal tour. Results thus obtained are usually only a few percent larger than the corresponding optimal values, despite the fact that the reported guarantee is generally much weaker (around 30%).

If the option is_included=arc|[arcs] is passed, then the algorithm finds a shortest Hamiltonian cycle in *G* which contains the specified arc(s).

When G is a digraph, an optional argument k may be passed, which must be a positive integer. If k > 1 then the first k shortest Hamiltonian cycles are returned (the return value is a sequence containing the list of tour costs and the list of the corresponding Hamiltonian cycles).

The strategy for undirected graphs is to formulate TSP as an integer linear programming problem and to solve it by branch-and-cut method, applying the hierarchical clustering method of PFERSCHY and STANĚK [55] to generate subtour elimination constraints. The branching rule is implemented according to PADBERG and RINALDI [53]. In addition, the algorithm combines the method of CHRISTOFIDES [15], the method of farthest insertion and a variant of the powerful tour improvement heuristic developed by LIN and KERNIGHAN [35] to generate near-optimal feasible solutions during the branch-and-cut process.

For Euclidean TSP instances, i.e. in cases when *G* is a complete undirected graph with vertex distances as edge weights, the algorithm usually finishes in a few seconds for TSP with up to, say, 42 cities. For problems with 100 or more cities, the option approx is recommended as finding the optimal value takes a long time. Note that TSP is NP-hard, meaning that no polynomial time algorithm is known. Hence the algorithm may take exponential time to find the optimum in some instances.

For directed graphs, an integer linear programming formulation of the problem, using enhanced subtour elimination constraints of MILLER, TUCKER and ZEMLIN [57], is solved by branch-and-cut method.

The following example demonstrates finding a Hamiltonian cycle in the truncated icosahedral ("soccer ball") graph. The result is visualized by using highlight_trail.

```
> G:=graph("soccerball")
```

an undirected unweighted graph with 60 vertices and 90 edges

^{5.1.} For the details on traveling salesman problem and a historical overview see [16].

5.2 OPTIMAL ROUTING 143

> draw_graph(highlight_trail(G,traveling_salesman(G)),labels=false)

A matrix may be passed alongside an undirected graph to specify the edge weights. The alternative is to pass a weighted graph as the single argument.

> G:=graph("octahedron")

an undirected unweighted graph with 6 vertices and 12 edges

> M:=randmatrix(6,6,25)

> c,t:=traveling_salesman(G,M)

57.0, [4, 5, 2, 3, 1, 6, 4]

> draw_graph(highlight_trail(make_weighted(G,M),t))

The following examples demonstrate finding shortest Hamiltonian cycle(s) in a weighted directed graph.

```
> D:=digraph(%{[[1,2],2],[[1,3],3],[[2,3],2],[[2,5],4],[[3,2],3],[[3,5],
5],[[4,1],2],[[4,1],1],[[4,2],4],[[5,4],3]%})
```

a directed weighted graph with 5 vertices and 9 arcs

> draw_graph(D,circle=[1,3,2,5,4])

144 Traversing graphs

> traveling_salesman(D)

> traveling_salesman(D,is_included=[2,5])

> traveling_salesman(D,2)

$$[14.0, 15.0]$$
, $\begin{pmatrix} 1 & 2 & 3 & 5 & 4 & 1 \\ 1 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}$

In the next example, an instance of Euclidean TSP with 42 cities is solved to optimality. The vertex positions are pairs of integers randomly chosen on the grid $[0,1000] \times [0,1000] \in \mathbb{Z}^2$.

```
> G:=set_vertex_positions(complete_graph(42),[randvector(2,
1000)$(k=1..42)])
```

an undirected unweighted graph with 42 vertices and 861 edges

```
> c,t:=traveling_salesman(G,vertex_distance):;
```

10.01 sec

> draw_graph(subgraph(G,trail2edges(t)),labels=false)

For large instances of Euclidean TSP the approx option may be used, as in the following example with 555 cities.

```
> H:=set_vertex_positions(complete_graph(555),[randvector(2,
10000)$(k=1..555)])
```

an undirected unweighted graph with 555 vertices and 153735 edges

```
> ac,t:=traveling_salesman(H,vertex_distance,approx):;
```

49.34 sec

> draw_graph(subgraph(H,trail2edges(t)))

5.3 SPANNING TREES 145

Near-optimal tours produced by the approx option are usually only slightly more expensive than the optimal ones. For example, a sub-optimal tour for the previous instance *G* with 42 cities is obtained by the following command.

```
> ac,st:=traveling_salesman(G,vertex_distance,approx):;
```

The tour cost is within 28% of the optimal value

Although it is guaranteed that the near-optimal cost ac is for at most 28% larger than c (the optimum), the actual relative difference is smaller than 3%, as computed below.

```
> 100*(ac-c)/c
```

2.7105821877

5.3. Spanning trees

5.3.1. Construction of spanning trees

The command spanning_tree is used for construction of spanning trees in graphs.

spanning_tree takes one or two arguments, an undirected graph G(V, E) and optionally a vertex $r \in V$. It returns the spanning tree T (rooted in r) of G, obtained by depth-first traversal in O(|V| + |E|) time.

```
> P:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> T1:=spanning_tree(P)
```

an undirected unweighted graph with 10 vertices and 9 edges

```
> draw_graph(P)
```


By extracting T_1 from P as a subgraph, it inherits vertex positions from P.

```
> draw_graph(subgraph(P,edges(T1)))
```



```
> T2:=spanning_tree(P,4)
```

an undirected unweighted graph with 10 vertices and 9 edges

146 Traversing graphs

> edges(T1), edges(T2)

$$\begin{pmatrix}
0 & 1 \\
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 9 \\
5 & 7 \\
5 & 8 \\
6 & 8 \\
6 & 9
\end{pmatrix}, \begin{pmatrix}
0 & 1 \\
0 & 4 \\
1 & 2 \\
2 & 3 \\
3 & 8 \\
5 & 7 \\
5 & 8 \\
6 & 9 \\
7 & 9
\end{pmatrix}$$

5.3.2. Minimal spanning tree

The command minimal_spanning_tree is used for obtaining minimal spanning trees in undirected graphs.

Syntax: minimal_spanning_tree(G)

minimal_spanning_tree takes an undirected graph G(V, E) as its only argument and returns its minimal spanning tree as a graph. If G is not weighted, it is assumed that the weight of each edge in E is equal to 1.

The strategy is to apply KRUSKAL's algorithm which runs in $O(|E|\log |V|)$ time.

```
> A:=[[0,1,0,4,0,0],[1,0,1,0,4,0],[0,1,0,3,0,1],[4,0,3,0,1,0],[0,4,0,1,0,
    4],[0,0,1,0,4,0]]:;
> G:=graph(A)
```

an undirected weighted graph with 6 vertices and 8 edges

```
> T:=minimal_spanning_tree(G)
```

an undirected weighted graph with 6 vertices and 5 edges

> edges(T,weights)

```
{[[0,1],1],[[1,2],1],[[2,5],1],[[2,3],3],[[3,4],1]}
```

> draw_graph(highlight_subgraph(G,T))

5.3.3. Counting the spanning trees in a graph

The command number_of_spanning_trees is used for counting spanning trees in a graph.

Syntax: number_of_spanning_trees(G)

 $number_of_spanning_trees$ takes an undirected graph G(V,E) as its only argument and returns the total number n of (labeled) spanning trees in G.

5.3 Spanning trees 147

The strategy is to use KIRCHHOFF's Theorem [74, Theorem 2.2.12, p. 86]. The number of spanning trees is equal to the first principal minor of the Laplacian matrix of *G*.

> number_of_spanning_trees(graph("octahedron"))

384

> number_of_spanning_trees(graph("dodecahedron"))

5184000

> number_of_spanning_trees(hypercube_graph(4))

42467328

> number_of_spanning_trees(graph("soccerball"))

375291866372898816000

CHAPTER 6

VISUALIZING GRAPHS

6.1. Drawing graphs

The draw_graph command is used for visualizing graphs. It is capable to produce a drawing of a graph using one of the several built-in methods.

6.1.1. Overview

draw_graph takes one or two arguments, the mandatory first one being a graph G(V, E). This command assigns 2D or 3D coordinates to each vertex $v \in V$ and produces a visual representation of G based on these coordinates. The second (optional) argument is a sequence of options. Each option is one of the following.

labels=true or false — Control the visibility of vertex labels and edge weights (by default true, i.e. the labels and weights are displayed).

spring — Apply the multilevel force-directed algorithm.

tree $[=r \text{ or } [r1,r2,\ldots]]$ — Draw a tree or forest G, optionally specifying the root node for each tree (by default the first node is used).

bipartite — Draw a bipartite graph *G*, separating the vertex partitions from one another.

circle [=L] or convexhull [=L] — Draw a graph G by spreading the *hull vertices* from list $L \subset V$ (assuming L = V by default) across the unit circle and putting all other vertices in origin, subsequently applying a force-directed vertex placement algorithm to generate the layout while keeping the hull vertices fixed.

planar or plane — Draw a planar graph *G* using a force-directed algorithm.

plot3d — Draw a graph *G* as if the spring option was enabled, but with vertex positions in 3D instead of 2D.

If an unassigned identifier is passed as an argument, it is used as the destination for storing the computed vertex positions as a list.

The style options spring, tree, circle, planar and plot3d cannot be mixed, i.e. at most one can be specified. The option labels may be combined with any of the style options. Note that edge weights will not be displayed when using plot3d option when drawing a weighted graph.

When no style option is specified, the algorithm first determines whether G is a tree or a bipartite graph, in which cases it is drawn accordingly. Otherwise, the graph is drawn as if the option circle was specified.

Tree, circle and bipartite drawings can be obtained in linear time with a very small overhead, allowing graphs to be drawn quickly no matter the size. The force-directed algorithms are more expensive and operating in the time which is quadratic in the number of vertices. Their performance is, nevertheless, practically instantaneous for graphs with several hundreds of vertices (or less).

6.1.2. Drawing disconnected graphs

When the input graph has two or more connected components, each component is drawn separately and the drawings are subsequently arranged such that the bounding box of the whole drawing has the smallest perimeter under condition that as little space as possible is wasted inside the box.

For example, the command lines below draw a sparse random planar graph.

an undirected unweighted graph with 100 vertices and 74 edges

> draw_graph(G,planar)

6.1.3. Spring method

When the option spring is specified, the input graph is drawn using the force-directed algorithm described in [39] (for an example of such drawing see Figure 3.1). The idea, originally due to FRUCHTERMAN and REINGOLD [28], is to simulate physical forces in a spring-electrical model where the vertices and edges represent equally charged particles and springs connecting them, respectively.

In a spring-electrical model, each vertex is being repulsed by every other vertex with a force inversely proportional to the distance between them. At the same time, it is attracted to each of its neighbors with a force proportional to the square of the distance. Assuming that x_v is the vector representing the position of the vertex $v \in V$, the total force F_v applied to v is equal to

$$F_v = \sum_{w \in V \setminus \{v\}} -\frac{CK^2}{\|x_v - x_w\|^2} (x_v - x_w) + \sum_{w \in N(v)} \frac{\|x_v - x_w\|}{K} (x_v - x_w),$$

where N(v) is the set of neighbors of v and C, K are certain positive real constants (actually, K may be any positive number, it affects only the scaling of the entire layout). Applying the forces iteratively and updating vertex positions in each iteration (starting from a random layout) leads the system to the state of minimal energy. By applying a certain "cooling" scheme to the model which cuts down the force magnitude in each iteration. the layout "freezes" after a number of iterations large enough to achieve the minimal energy state.

The force-directed method is computationally expensive and for larger graphs the pleasing layout cannot be obtained most of the time since the algorithm, starting with a random initial layout, gets easily "stuck" in a local energy minimum. To avoid this a multilevel scheme is applied. The input graph is iteratively coarsened, either by removing the vertices from a maximal independent vertex set or by contracting the edges of a maximal matching in each iteration. Each coarsening level is processed by the force-directed algorithm, starting from the deepest (coarsest) one and "lifting" the obtained layout to the first upper level, using it as the initial layout for that level. The lifting done using a prolongation matrix technique described in [40]. To support drawing large graphs (with, say, 1000 vertices or more), the matrices used in the lifting process are stored in sparse form. The multilevel scheme also speeds up the layout process significantly.

6.1 Drawing graphs 151

If the structure of the input graph is symmetric, a layout obtained by using a force-directed method typically reveals these symmetries, which is a unique property among graph drawing algorithms. To make the symmetries more prominent, the layout is rotated such that the axis, with respect to which the layout exhibits the largest *symmetry score*, becomes vertical. Because symmetry detection is computationally quite expensive (up to $O(|V|^7)$) when using the symmetry measure of PURCHASE [73], for example), the algorithm accounts only the convex hull and the barycenter of the layout, which may not always be enough to produce the optimal result. Nevertheless, this approach is fast and works (most of the time) for highly symmetrical graphs.

For example, the following command lines produce a drawing of the tensor product of two graphs using the force-directed algorithm.

```
> G1:=graph(trail(1,2,3,4,5,2))
```

an undirected unweighted graph with 5 vertices and 5 edges

```
> G2:=star_graph(3)
```

an undirected unweighted graph with 4 vertices and 3 edges

```
> G:=tensor_product(G1,G2)
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> draw_graph(G,spring,labels=false)
```


The following example demonstrates drawing a much larger graph.

```
> S:=sierpinski_graph(5,4)
```

an undirected unweighted graph with 1024 vertices and 2046 edges

> draw_graph(S,spring)

Note that vertex labels are automatically suppressed because of the large number of vertices. On our system, the algorithm took less than two seconds to produce the layout.

The spring method is also used for creating 3D graph layouts, which are obtained by passing the option plot3d to the draw_graph command.

> draw_graph(graph("soccerball"),plot3d,labels=false)


```
> G1:=graph("icosahedron"):; G2:=graph("dodecahedron"):;
```

Done, Done

```
> G1:=highlight_edges(G1,edges(G1),red)
```

an undirected unweighted graph with 12 vertices and 30 edges

```
> G2:=highlight_edges(G2,edges(G2),magenta)
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> G:=disjoint_union(G1,G2)
```

an undirected unweighted graph with 32 vertices and 60 edges

> draw_graph(G,plot3d,labels=false)

6.1.4. Drawing trees

When the tree [=r] option is specified and the input graph G is a tree (and $r \in V$), it is drawn using a fast but simple node positioning algorithm inspired by the well-known algorithm of WALKER [71], using the first vertex (or the vertex r) as the root node. When drawing a rooted tree, one usually requires the following aesthetic properties [14].

- **A1.** The layout displays the hierarchical structure of the tree, i.e. the *y*-coordinate of a node is given by its level.
- **A2.** The edges do not cross each other.
- **A3.** The drawing of a sub-tree does not depend on its position in the tree, i.e. isomorphic subtrees are drawn identically up to translation.
- **A4.** The order of the children of a node is displayed in the drawing.
- **A5.** The algorithm works symmetrically, i.e. the drawing of the reflection of a tree is the reflected drawing of the original tree.

6.1 Drawing graphs 153

Fig. 6.1. Joining blocks by adding a temporary edge.

The algorithm implemented in Giac generally satisfies all the above properties but A3. Instead, it tries to spread the inner sub-trees evenly across the available horizontal space. It works by organizing the structure of the input tree into levels by using depth-first search and laying out each level subsequently, starting from the deepest one and climbing up to the root node. In the end, another depth-first traversal is made, shifting the sub-trees horizontally to avoid intersections between their edges. The algorithm runs in O(|V|) time and uses the minimum of horizontal space to draw the tree with respect to the specified root node r.

For example, the following command line draws a random free unlabeled tree on 100 nodes.

> draw_graph(random_tree(100))

6.1.5. Drawing planar graphs

The algorithm implemented in Giac which draws planar graphs uses augmentation techniques to extend the input graph G to a graph G', which is homeomorphic to some triconnected graph, by adding temporary edges. The augmented graph G' is then drawn using TUTTE's barycentric method (see [70] and [30, p. 293]) which puts each vertex in the barycenter of its neighbors. It is guaranteed that a (non-strict) convex drawing will be produced, without edge crossings. In the end, the duplicate of the outer face and the temporary edges inserted during the augmentation stage are removed.

TUTTE's algorithm requires that the vertices of the chosen outer face are initially fixed somewhere the boundary of a convex polygon. In addition, to produce a more flexible layout, the outer face is duplicated such that the subgraph induced by the vertices on both the outer face and its duplicate is a prism graph. The duplicates of the outer face vertices are fixed, allowing the original outer face to take a more natural shape. The duplicate of the outer face is removed after a layout is produced.

The augmentation process consists of two parts. Firstly, the input graph G is decomposed into biconnected components (blocks) using depth-first search [29, p. 25]. Then, each block is decomposed into faces by using DEMOUCRON's algorithm (see [29, p. 88] and [48]). Embeddings obtained for each blocks are then combined by adding one temporary edge for each articulation point, joining the two corresponding blocks. Figure 6.1 shows the outer faces of two blocks B_1 and B_2 , connected by an articulation point (cut vertex). The temporary edge (shown in green) is added to join B_1 and B_2 into a single block. After "folding up" the tree of blocks, the algorithm picks the largest face in the resulting biconnected graph to be the outer face of the planar embedding.

Fig. 6.2. A chorded face f.

The second part of the augmentation process consists of recursively decomposing each non-convex inner face into several convex polygons by adding temporary edges. An inner face $f = (v_1, ..., v_n)$ is non-convex if there exist k and l such that $1 \le k < l - 1 < n$ and either $v_k v_l \in E$, in which case the edge $v_k v_l$ is a *chord* (see Figure 6.2 for an example) or there exists a face $g = (w_1, w_2, ..., v_k, ..., v_l, ..., w_{m-1}, w_m)$ such that the vertices $v_{k+1}, ..., v_{l-1}$ are not contained in g (see Figure 6.3 for an example). In Figures 6.1, 6.2 and 6.3, the temporary edges added by the algorithm are drawn in green.

This method of drawing planar graphs operates in $O(|V|^2)$ time. However, it is quite fast for graphs up to 1000 vertices, usually producing results in less than a second. A drawback of this method is that it sometimes creates clusters of vertices which are very close to each other, resulting in a very high ratio of the area of the largest inner face to the area of the smallest inner face. However, if the result is not satisfactory, one can simply redraw the graph and repeat the process until a better layout is obtained. The planar embedding will in general be different each time unless the graph is triconnected.

Another drawback of this method is that sparse planar graphs are sometimes drawn poorly.

The following examples show that the above described improvement of the barycentric method handles non-triconnected graphs well. In the first example, a biconnected graph is drawn.

```
> G:=graph(trail(1,2,3,4,5,6,7,8,9,10,1),trail(11,12,6,11,1,12))
```

an undirected unweighted graph with 12 vertices and 15 edges

> draw_graph(G,planar)

Fig. 6.3. Faces f and g having two vertices but no edges in common.

6.1 Drawing graphs 155

Note that the inner diamond-like shape in the above drawing would end up flattened—making the two triangular faces invisible—if the input graph was not augmented; since the vertices with labels 11 and 12 are "attracted" to each other (namely, the two large faces are "inflating" themselves to become convex), they would end up in the same position.

In the second example the input graph is connected but not biconnected (it has two articulation points). It is obtained by removing a vertex from the Sierpiński triangle graph ST_3^3 . Note that the syntax mode is set to Xcas in this example, so the first vertex label is zero.

```
> G:=sierpinski_graph(3,3,triangle)
```

an undirected unweighted graph with 15 vertices and 27 edges

```
> G:=delete_vertex(G,3)
```

an undirected unweighted graph with 14 vertices and 23 edges

```
> draw_graph(G,planar,labels=false)
```


In the above example, several redraws were required to obtain a good planar embedding.

6.1.6. Circular graph drawings

The drawing method selected by specifying the option circle=L or convexhull=L when calling draw_graph on a triconnected graph G(V,E), where $L \subset V$ is a set of vertices in G, uses the following strategy. First, positions of the vertices from L are fixed so that they form a regular polygon on the unit circle. Other vertices, i.e. all vertices from $V \setminus L$, are placed in origin. Then an iterative force-directed algorithm [56], similar to TUTTE's barycentric method, is applied to obtain the final layout.

This approach gives best results for symmetrical graphs such as generalized Petersen graphs. In addition, if the input graph is planar and triconnected, and the outer hull represents a face in a planar embedding, then the drawing will contain no edge crossings. There is a possibility, however, that some very short edges may cross each other as the number of force update iterations is limited.

In the following example the Sierpiński graph S_4^2 is drawn using the above method. Note that the command lines below are executed in Xcas mode.

```
> G:=sierpinski_graph(2,4)
```

an undirected unweighted graph with 16 vertices and 30 edges

```
> draw_graph(G,circle=[0,1,4,5,7,13,15,14,11,10,8,2])
```


To draw a planar triconnected graph, one should pass one of its faces as the outer hull.

```
> G:=truncate_graph(graph("frucht"))
```

an undirected unweighted graph with 60 vertices and 90 edges

```
> purge(F):; is_planar(G,F)
```

Done, true

> draw_graph(G,circle=rand(F),labels=false)

6.2. Vertex positions

6.2.1. Setting vertex positions

The command set_vertex_positions is used for assigning custom coordinates to vertices of a graph to be used when drawing the graph.

Syntax: set_vertex_positions(G,L)

set_vertex_positions takes two arguments, a graph G(V, E) and the list L of positions to be assigned to vertices in order of vertices(G). The positions may be complex numbers, lists of coordinates or points (geometrical objects created with the command point). set_vertex_positions returns the copy G' of G with the given layout stored in it.

Any subsequent call to draw_graph with G' as an argument and without specifying the drawing style will result in displaying vertices at the stored coordinates. However, if a drawing style is specified, the stored layout is ignored (although it stays stored in G').

```
> G:=digraph([1,2,3,4,5], %{[1,2],[2,3],[3,4],[2,5]%})
```

a directed unweighted graph with 5 vertices and 4 arcs

> draw_graph(G,circle)

> H:=set_vertex_positions(G,[[0,0],[0.5,0],[1.0,0],[1.5,0],[0.5,1]])

a directed unweighted graph with 5 vertices and 4 arcs

> draw_graph(H)

6.2.2. Generating vertex positions

Vertex positions can be generated for a particular graph G by using the draw_graph command with the additional argument P which should be an unassigned identifier. After the layout is obtained, it will be stored to P as a list of positions (complex numbers for 2D drawings or points for 3D drawings) for each vertex in order of vertices G.

This feature combines well with the set_vertex_positions command, as when one obtains the desired drawing of the graph *G* by calling draw_graph, the layout coordinates can be easily stored to the graph for future reference. In particular, each subsequent call of draw_graph with *G* as an argument will display the stored layout. The example below illustrates this property by setting a custom layout to the octahedral graph.

```
> G:=graph("octahedron")
```

an undirected unweighted graph with 6 vertices and 12 edges

```
> draw_graph(G)
```



```
> draw_graph(G,P,spring):;
```

Now *P* contains vertex coordinates, which can be permanently stored to *G*:

```
> G:=set_vertex_positions(G,P)
```

an undirected unweighted graph with 6 vertices and 12 edges

```
> draw_graph(G)
```


It should be noted that, after a particular layout is fixed, it stays valid when some edges or vertices are removed or when an edge is contracted. The stored layout becomes invalid only if a new vertex is added to the graph (unless its position is specified by set_vertex_attribute upon the creation) or if the position attribute of an existing vertex is discarded.

6.3. Highlighting parts of graphs

6.3.1. Highlighting vertices

The command highlight_vertex changes color of one or more vertices in a graph.

```
Syntax: highlight_vertex(G,v)
    highlight_vertex(G,v,c)
    highlight_vertex(G,[v1,v2,..,vk])
    highlight_vertex(G,[v1,v2,..,vk],c)
    highlight_vertex(G,[v1,v2,..,vk],[c1,c2,..,ck])
```

highlight_vertex takes two or three arguments: a graph G(V, E), a vertex $v \in V$ or a list of vertices $v_1, v_2, ..., v_k \in V$ and optionally the new color c or a list of colors $c_1, c_2, ..., c_k$ for the selected vertices (the default color is green). It returns a modified copy of G in which the specified vertices are colored with the specified color.

```
> G:=graph("dodecahedron")
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> L:=maximum_independent_set(G)
```

> draw_graph(highlight_vertex(G,L))

6.3.2. Highlighting edges and trails

To highlight an edge or a set of edges in a graph, use the highlight_edges command. If the edges form a trail, it is usually more convenient to use the highlight_trail command (see below).

```
Syntax: highlight_edges(G,e)
    highlight_edges(G,e,c)
    highlight_edges(G,[e1,e2,..,ek])
    highlight_edges(G,[e1,e2,..,ek],c)
    highlight_edges(G,[e1,e2,..,ek],[c1,c2,..,ck])
    highlight_trail(G,T)
    highlight_trail(G,T,c)
    highlight_trail(G,[T1,T2,..,Tk])
    highlight_trail(G,[T1,T2,..,Tk],c)
    highlight_trail(G,[T1,T2,..,Tk],c)
```

highlight_edges takes two or three arguments: a graph G(V, E), an edge $e \in E$ or a list of edges $e_1, e_2, ..., e_k \in E$ and optionally the new color c or a list of colors $c_1, c_2, ..., c_k$ for the selected edges (the default color is red). It returns a modified copy of G in which the specified edges are colored with the specified color.

```
> M:=maximum_matching(G)
```

```
\{[1,2],[5,4],[6,11],[3,8],[7,12],[9,13],[10,15],[14,19],[16,17]\}
```

> draw_graph(highlight_edges(G,M))

> S:=spanning_tree(G)

an undirected unweighted graph with 20 vertices and 19 edges

> draw_graph(highlight_edges(G,edges(S),magenta))

highlight_trail takes two or three arguments: a graph G(V, E), a trail T or a list of trails T_1 , T_2 , ..., T_k and optionally the new color c or a list of colors $c_1, c_2, ..., c_k$. The command returns the copy of G in which edges between consecutive vertices in each of the given trails are highlighted with color c (by default red) or the trail T_i is highlighted with color c_i for i = 1, 2, ..., k.

> draw_graph(highlight_trail(G,[6,15,20,19,18,17,16,11,7,2,3,8,13,9,14,
10]))

> draw_graph(highlight_trail(G,shortest_path(G,1,[19,12]),[green,
 magenta]))

6.3.3. Highlighting subgraphs

The command highlight_subgraph is used for highlighting subgraph(s) of a graph.

Syntax: highlight_subgraph(G,S,[weights])
 highlight_subgraph(G,S,c1,c2,[weights])
 highlight_subgraph(G,[S1,S2,..,Sk])
 highlight_subgraph(G,[S1,S2,..,Sk],c1,c2)

highlight_subgraph takes two or four mandatory arguments: a graph G(V, E), a subgraph S(V', E') of G or a list of subgraphs $S_1, S_2, ..., S_k$ in G and optionally the new colors c_1, c_2 for the edges and vertices of the selected subgraph(s), respectively. It returns a modified copy of G with the selected subgraph(s) colored as specified. If colors are not given, red and green are used, respectively.

The option weights may be passed as an additional argument if G and S are weighted graphs. In that case, the weights of edges in $E' \subset E$ in G are overwritten with those defined in S for the same edges.

```
> G:=graph(%{[1,2],[2,3],[3,1],[3,4],[4,5],[5,6],[6,4]%})
```

an undirected unweighted graph with 6 vertices and 7 edges

> A:=articulation_points(G)

> B:=biconnected_components(G)

> H:=highlight_vertex(G,A,magenta)

an undirected unweighted graph with 6 vertices and 7 edges

> draw_graph(H)

> S:=induced_subgraph(G,B[0])

an undirected unweighted graph with 3 vertices and 3 edges

> H:=highlight_subgraph(G,S)

an undirected unweighted graph with 6 vertices and 7 edges

> draw_graph(H,spring)

BIBLIOGRAPHY

- [1] Shehzad Afzal and Clemens Brand. Recognizing triangulated Cartesian graph products. *Discrete Mathematics*, 312:188–193, 2012.
- [2] L. Alonso and R. Schott. Random Unlabelled Rooted Trees Revisited. In *Proc. Int. Conf. on Computing and Information* 1994, pages 1352–1367.
- [3] Vesna Andova, František Kardoš, and Riste Škrekovski. Mathematical aspects of fullerenes. Ars Mathematica Contemporanea, 11:353–379, 2016.
- [4] Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Physical Review E, 71:036113, 2005.
- [5] Alex Bavelas. Communication patterns in task-oriented groups. J. Acoust. Soc. Am, 22(6):725–730, 1950.
- [6] Mohsen Bayati, Jeong Han Kim, and Amin Saberi. A Sequential Algorithm for Generating Random Graphs. Algorithmica, 58(4):860–910, 2010.
- [7] R. Bellman. On a routing problem. *Quarterly of Applied Mathematics*, 16(1):87–90, 1958.
- [8] Norman Biggs. Algebraic graph theory. Cambridge University Press, Second edition, 1993.
- [9] Danilo Blanuša. Problem četiriju boja. Glasnik Mat.-Fiz. Astr. Ser. II, 1:31–32, 1946.
- [10] Béla Bollobás. Modern Graph Theory. Graduate Texts in Mathematics. Springer, Corrected edition, 2002.
- [11] Coen Boot. Algorithms for Determining the Clustering Coefficient in Large Graphs. Bachelor's thesis, Faculty of Science, Utrecht University, 2016.
- [12] Ulrik Brandes. A faster algorithm for betweenness centrality. *Journal of Mathematical Sociology*, 25(2):163–177, 2001. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2024.
- [13] Daniel Brélaz. New Methods to Color the Vertices of a Graph. Communications of the ACM, 22(4):251–256, 1979.
- [14] Cristoph Buchheim, Michael Jünger, and Sebastian Leipert. Improving Walker's Algorithm to Run in Linear Time. In M. T. Goodrich and S. G. Kobourov, editors, *Graph Drawing 2002, Lecture Notes in Computer Science vol 2528*, pages 344–353. Springer-Verlag Berlin Heidelberg, 2002.
- [15] Nicos Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Report 388, Graduate School of Industrial Administration, 1976.
- [16] William J. Cook. In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, 2012.
- [17] Melissa DeLeon. A Study of Sufficient Conditions for Hamiltonian Cycles. Rose-Hulman Undergraduate Mathematics Journal, 1(1), Article 6, 2000. https://scholar.rose-hulman.edu/rhumj/vol1/iss1/6.
- [18] Isabel M. Díaz and Paula Zabala. A Branch-and-Cut Algorithm for Graph Coloring. Discrete Applied Mathematics, 154(5):826–847, 2006.
- [19] Reinhard Diestel. Graph Theory. Springer-Verlag, New York, 1997.
- [20] Edsger W. Dijkstra. A note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1:269–271, 1959.
- [21] Jack Edmonds. Paths, Trees, and Flowers. In Gessel I. and GC. Rota, editors, *Classic Papers in Combinatorics*, pages 361–379. Birkhäuser Boston, 2009. Modern Birkhäuser Classics.
- [22] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. *Journal of the ACM*, 19(2):248–264, 1972.
- [23] Abdol H. Esfahanian and S. Louis Hakimi. On computing the connectivities of graphs and digraphs. *Networks*, 14(2):355–366, 1984.
- [24] Shimon Even. Graph Algorithms. Computer software engineering series. Computer Science Press, 1979.
- [25] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.
- [26] L. R. Ford. Network flow theory. Rand Corporation, 1956.
- [27] Linton Freeman. A set of measures of centrality based upon betweenness. *Sociometry*, 40(1):35–41, 1977.
- [28] T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-Directed Placement. Software: Practice and Experience, 21(11):1129–1164, 1991.
- [29] Alan Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.
- [30] Chris Godsil and Gordon F. Royle. *Algebraic graph theory*. Graduate Texts in Mathematics. Springer, First edition, 2001.
- [31] Donald Goldfarb and Michael D. Grigoriadis. A computational comparison of the dinic and network simplex methods for maximum flow. *Annals of Operations Research*, 13(1):81–123, 1988.
- [32] Gary Haggard, David J. Pearce, and Gordon Royle. Computing Tutte Polynomials. ACM Transactions on Mathematical Software, 37(3), 2010. Article No. 24.
- [33] Gary Haggard, David J. Pearce, and Gordon Royle. Edge-Selection Heuristics for Computing Tutte Polynomials. Chicago Journal of Theoretical Computer Science, 2010. Article 6.

162 Bibliography

[34] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph. I. *Journal of the Society for Industrial and Applied Mathematics*, 10:496–506, 1962.

- [35] Keld Helsgaun. General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Prog. Comp., 1:119–163, 2009.
- [36] Carl Hierholzer. Ueber die möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. *Mathematische Annalen*, 6(1):30–32, 1873.
- [37] Andreas M. Hinz, Sandi Klavžar, and Sara S. Zemljič. A survey and classification of Sierpiński-type graphs. *Discrete Applied Mathematics*, 217(3):565–600, 2017.
- [38] John E. Hopcroft and Richard M. Karp. An n^{5/2} algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.
- [39] Yifan Hu. Efficient and High Quality Force-Directed Graph Drawing. Mathematica Journal, 10:37–71, 2005.
- [40] Yifan Hu and Jennifer Scott. A Multilevel Algorithm for Wavefront Reduction. SIAM Journal on Scientific Computing, 23(4):1352–1375, 2001.
- [41] Arthur B. Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–562, 1962.
- [42] Leo Katz. A new Status Index Derived from Sociometric Index. Psychometrika, 18:39–43, 1953.
- [43] Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs. *Theor. Comput. Sci.*, 407:458–473, 2008.
- [44] Hao Li, Evelyne Flandrin, and Jinlong Shu. A sufficient condition for cyclability in directed graphs. Discrete Mathematics, 307(11–12):1291–1297, May 2007.
- [45] Massimo Marchiori and Vito Latora. Harmony in the small-world. Physica A: Statistical Mechanics and Its Applications, 285(3–4):539–546. https://arxiv.org/abs/cond-mat/0008357.
- [46] B. D. McKay and A. Piperno. Practical Graph Isomorphism, II. J. Symbolic Computation, 60:94–112, 2013.
- [47] Michael Monagan. A new edge selection heuristic for computing Tutte polynomials. In *Proceedings of FPSAC* 2012, pages 839–850.
- [48] Wendy Myrwold and Willian Kocay. Errors in graph embedding algorithms. *Journal of Computer and System Sciences*, 77(2):430–438, 2011.
- [49] M. E. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks. Proc Natl Acad Sci USA, 99:2566–2572, 2002.
- [50] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Computer Science and Applied Mathematics. Academic Press, Second edition, 1978.
- [51] Patric R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120:197–207, 2002.
- [52] Richard Otter. The Number of Trees. The Annals of Mathematics, 2nd Ser., 49(3):583-599, 1948.
- [53] Manfred Padberg and Giovanni Rinaldi. A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems. SIAM Review, 33(1):60–100, 1991.
- [54] Charalampos Papamanthou and Ioannis G. Tollis. Algorithms for computing a parametrized st-orientation. *Theoretical Computer Science*, 408:224–240, 2008.
- [55] Ulrich Pferschy and Rostislav Staněk. Generating subtour elimination constraints for the TSP from pure integer solutions. *Central European Journal of Operations Research*, 25:231–260, 2017.
- [56] Bor Plestenjak. An Algorithm for Drawing Planar Graphs. Software: Practice and Experience, 29(11):973–984, 1999.
- [57] Tadeusz Sawik. A note on the Miller-Tucker-Zemlin model for the asymmetric traveling salesman problem. *Bulletin of the Polish Academy of Sciences: Technical Sciences*, 64(3):517–520, January 2016.
- [58] T. Schank and D. Wagner. Finding, Counting and Listing All Triangles in Large Graphs, an Experimental Study. In S. E. Nikoletseas, editor, Experimental and Efficient Algorithms. WEA 2005. Lecture Notes in Computer Science, volume 3503, pages 606–609. Springer, Berlin, Heidelberg, 2005.
- [59] Thomas Schank and Dorothea Wagner. Approximating Clustering Coefficient and Transitivity. *Journal of Graph Algorithms and Applications*, 9(2):265–275, 2005.
- [60] Liren Shan, Yuhao Yi, and Zhongzhi Zhang. Improving Information Centrality of a Node in Complex Networks by Adding Edges. In Proc IJCAI 2018. 2018. https://arxiv.org/abs/1804.06540.
- [61] Angelika Steger and Nicholas C. Wormald. Generating random regular graphs quickly. *Combinatorics Probability and Computing*, 8(4):377–396, 1999.
- [62] Karen Stephenson and Marvin Zelen. Rethinking centrality: Methods and examples. Social Networks, 11(1):1–37,
- [63] R. E. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM J. Comput., 2(3):211–216, 1973.
- [64] R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Comp., 1(2):146-160, 1972.
- [65] R. E. Tarjan. A note on finding the bridges of a graph. Information Processing Letters, 2(6):160-161, 1974.
- [66] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM, 26(4):690-715, 1979.
- [67] R. E. Tarjan. Two streamlined depth-first search algorithms. Fundamenta Informaticae, 9:85–94, 1986.
- [68] K. Thulasiraman, S. Arumugam, A. Brandstädt, and T. Nishizeki, editors. *Handbook of Graph Theory, Combinatorial Optimization, and Algorithms*. CRC Press, 2016.
- [69] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity for generating all maximal cliques and computational experiments. *Theoretical Computer Science*, 363:28–42, 2006.

Bibliography 163

- [70] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, s3-13(1):743-767, 1963.
- [71] John Q. Walker II. A node positioning algorithm for general trees. *Software: Practice and Experience*, 20(7):685–705, 1990.
- [72] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.
- [73] E. Welch and S. Kobourov. Measuring Symmetry in Drawings of Graphs. *Computer Graphics Forum*, 36(3):341–351, 2017.
- [74] Douglas B. West. Introduction to Graph Theory. Pearson Education, 2002.
- [75] Herbert S. Wilf. The Uniform Selection of Free Trees. *Journal of Algorithms*, 2:204–207, 1981.
- [76] Jin Y. Yen. Finding the k Shortest Loopless Paths in a Network. Management Science, 17(11):712–716, 1971.

COMMAND INDEX

add_arc 58	<pre>get_graph_attribute 61</pre>
add_edge 58	<pre>get_vertex_attribute 63</pre>
add_vertex 57	girth
adjacency_matrix 80	graph
allpairs_distance 110	<pre>graph_automorphisms 90</pre>
antiprism_graph 25	graph_charpoly 84
arrivals 77	graph_complement
articulation_points 99	graph_equal 72
assign_edge_weights 56	graph_join 38
bellman_ford 140	graph_power 38
betweenness_centrality 126	graph_rank 99
biconnected_components 97	graph_spectrum 85
bipartite_matching 117	graph_union 37
canonical_labeling 89	graph_vertices
cartesian_product 39	greedy_color
chromatic_index	grid_graph
chromatic_number	harmonic_centrality
chromatic_polynomial	has_arc 76
clique_cover	has_edge 76
clique_cover_number	highlight_edges
clique_number	highlight_subgraph
clique_stats	highlight_trail
closeness_centrality	highlight_vertex
clustering_coefficient	hypercube_graph
complete_binary_tree 20	import_graph
complete_graph	incidence_matrix
complete_kary_tree	incident_edges
condensation	induced_subgraph
connected_components	information_centrality
contract_edge	interval_graph
cycle_basis	is_acyclic
cycle_graph	is_arborescence
degree_centrality	is_biconnected
degree_sequence	is_bipartite
delete_arc	is_clique
delete_edge	is_connected 96
delete_vertex	is_cut_set
_	is_directed
1	is_eulerian
• .	is_forest
dijkstra	_
discard_edge_attribute	is_graphic_sequence
discard_graph_attribute	is_hamiltonian
discard_vertex_attribute	is_integer_graph
disjoint_union	is_isomorphic
draw_graph	is_network
edge_connectivity 101	is_planar
edges	is_regular
export_graph	is_strongly_connected 100
find_cycles	is_strongly_regular 76
flow_polynomial 93	is_tournament
fundamental_cycle 32	is_tree 103
get_edge_attribute 64	<pre>is_triangle_free</pre>
get edge weight	is triconnected 96

166 COMMAND INDEX

is_two_edge_connected 102	random_sequence_graph 5	53
<pre>is_vertex_colorable</pre>	random_tournament 5	54
is_weighted 71	random_tree 4	19
isomorphic_copy 29	relabel_vertices	30
katz_centrality 126	reliability_polynomial 9	94
kneser_graph 21	- 5 1	37
kspaths	seidel_spectrum 8	35
laplacian_matrix 81	seidel_switch 3	36
lcf_graph	sequence_graph 2	20
line_graph 42	set_edge_attribute 6	54
list_edge_attributes 64	set_edge_weight6	50
list_graph_attributes	set_graph_attribute 6	51
list_vertex_attributes 63	set_vertex_attribute 6	53
lowest_common_ancestor 104	set_vertex_positions 15	56
make_directed	shortest_path	39
make_weighted	sierpinski_graph	27
maxflow 107	spanning_tree	15
maximum_clique 119	st_ordering	13
maximum_degree 73	star_graph	23
maximum_matching	strongly_connected_components 10)()
minimal_edge_coloring	subdivide_edges 6	51
minimal_spanning_tree 146	subgraph	
minimal_vertex_coloring 129	tensor_product 3	
minimum_cut	topologic_sort	
minimum_degree 73	topological_sort 11	
mycielski	torus_grid_graph	25
neighbors	trail	18
network_transitivity	trail2edges 1	
number_of_edges 71	transitive_closure 4	
number_of_spanning_trees 146	traveling_salesman	
number_of_vertices 71	tree_height	
odd_girth	truncate_graph 4	
odd_graph	tutte_polynomial 9	
path_graph	two_edge_connected_components 10	
permute_vertices	<pre>underlying_graph</pre>	
petersen_graph 27	vertex_connectivity 9	
plane_dual 42	vertex_degree	
prism_graph 24	vertex_distance	
random_bipartite_graph 48	vertex_in_degree	73
random_digraph 45	<pre>vertex_out_degree 7</pre>	73
random_graph	vertices 7	71
random_network 54		24
random_planar_graph 51	weight_matrix 8	
random_regular_graph 53	wheel_graph	23