

Certamen 1, Algebra y Trigonometría M1

Problema 1 (20 Pts.) Complete la tabla de verdad de la proposición compuesta:

 $(p \land \sim q) \lor (p \rightarrow q)$

р	q	~q	p ∧ ~q	$p \rightarrow q$	(p ∧ ~q) ∨ (p→q)

Problema 2 (20 Pts.) a) Relacione las proposiciones equivalentes, escribiendo en el cuadro de la primera columna, el número de la tercera columna que corresponda

$\sim p \rightarrow q$	1	~(q ∨ p)
~p ^ ~q	2	~(p→q)
~q → ~p	3	p∨q
p∧~q	4	$p \rightarrow q$

b) Marque la alternativa correcta. Dada la proposición $p: \forall x \in IR^+, \sqrt{x} < x$, su valor de verdad y su negación es

i) V y
$$\sim$$
p: $\exists x \in IR^+$, $\sqrt{x} > x$, ii) F y \sim p: $\exists x \in IR^+$, $\sqrt{x} > x$,

iii) F y
$$\sim$$
p: $\exists x \in IR^+$, $\sqrt{x} \ge x$, iv) V y \sim p: $\exists x \in IR^+$, $\sqrt{x} \ge x$

Problema 3 (30 Pts.) Utilizando propiedades de conjuntos pruebe que:

I)
$$A - (A - B) = A \cap B,$$

II)
$$(A \cup B) - B = A - B$$

Problema 4 (30 Pts.) En una facultad de ciencias donde hay 100 estudiantes, se dictan dos asignaturas algebra y física, 15 alumnos se inscriben en álgebra, 10 en algebra y física, 50 estudiantes no inscriben asignatura

- i) ¿ Cuántos estudiantes inscriben física
- ii) ¿Cuántos estudiantes inscriben sólo álgebra
- iii) ¿ Cuántos estudiantes inscriben álgebra o física

Pauta

Problema 1 (20 Pts.) Complete la tabla de verdad de la proposición compuesta:

$$(p \land \sim q) \lor (p \rightarrow q)$$

р	q	~q	p ∧ ~q	$p \rightarrow q$	(p ∧ ~q) ∨ (p→q)
V	V	F	F	V	V
V	F	V	V	F	V
F	V	F	F	V	V
F	F	V	F	V	V

(20 Pts.)

Problema 2 (20 Pts.) a) Relacione las proposiciones equivalentes, escribiendo en el cuadro de la primera columna, el número de la tercera columna que corresponda

Solución : a) La equivalencia lógica puede ser usando tabla de verdad o un desarrollo analítico

3	$\sim p \rightarrow q$	1	~(q ∨ p)
1	~p ^ ~q	2	~(p->q)
4	~q → ~p	3	p∨q
2	p∧~q	4	$p \rightarrow d$

$$\sim p \rightarrow q \Leftrightarrow \sim (\sim p) \lor q \Leftrightarrow p \lor q$$

$$\sim$$
(q \vee p) \Leftrightarrow \sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q

$$\sim\!\!q\!\to\sim p\Leftrightarrow\sim(\sim\!\!q)\vee\ \sim\!\!p\ \Leftrightarrow\ q\vee\sim p\Leftrightarrow\sim p\vee q\Leftrightarrow p\!\to q$$

$$\sim (p \rightarrow q) \Leftrightarrow \sim (\sim p \lor q) \Leftrightarrow p \land \sim q$$

(12 pts.)

b) Dada la proposición $p: \forall x \in IR^+, \sqrt{x} < x$, su valor de verdad y su negación es

i) V y
$$\sim$$
p: $\exists x \in IR^+$, $\sqrt{x} > x$, ii) F y \sim p: $\exists x \in IR^+$, $\sqrt{x} > x$,

iii) F y
$$\sim p : \exists x \in IR^+, \sqrt{x} \ge x$$
, iv) V y $\sim p : \exists x \in IR^+, \sqrt{x} \ge x$

b) iii) F, pues si
$$x = 0.81 \in IR^+, \sqrt{0.81} > 0.81$$
 $\sim p : \exists x \in IR^+, \sqrt{x} \ge x$ (8 Pts.)

Problema 3 (30 Pts.) Utilizando propiedades de conjuntos pruebe que:

$$I) \quad A - (A - B) = A \cap B,$$

II)
$$(A \cup B) - B = A - B$$

Solución:

I)
$$A - (A - B) = A - (A \cap B^{C})$$

$$= A \cap (A \cap B^{C})^{C}$$

$$= A \cap (A^{C} \cup (B^{C})^{C})$$

$$= A \cap (A^{C} \cup B)$$

$$= (A \cap A^{C} \cup (A \cap B))$$

$$= \Phi \cup (A \cap B)$$

$$= A \cap B$$
(15 Pts.)

II)
$$(A \cup B) - B = (A \cup B) \cap B^{C}$$

$$= (A \cap B^{C}) \cup (B \cap B^{C})$$

$$= (A \cap B^{C}) \cup \Phi$$

$$= A \cap B^{C}$$

$$= A - B \qquad (15 \text{ Pts.})$$

Problema 4 (30 Pts.) En una facultad de ciencias donde hay 100 estudiantes, se dictan dos asignaturas algebra y física, 15 alumnos se inscriben en álgebra, 10 en algebra y física, 50 estudiantes no inscriben asignatura

- i) ¿ Cuántos estudiantes inscriben física
- ii) ¿Cuántos estudiantes inscriben sólo álgebra
- iii) ¿ Cuántos estudiantes inscriben álgebra o física

Solución:

i) Sean los conjuntos

 $F = \{ Estudiantes que inscriben Física \}$

A = { Estudiantes que inscriben Algebra}

U = { Estudiantes de la facultad de ciencias}

#U = 100

#A = 15

$A \cap F = 10$

 $\#\ A^{C} \cap F^{C} = 50$

(10 Pts.)

$$\#(A \cup F) = \#A + \#(F - A) \implies 50 = 15 + x \implies x = 35$$
 (5 Pts.)

$$\#F = 10 + 35 \implies \#F = 45$$
 (5 Pts.)

ii)
$$\#(A \cap F^C) = 5$$
 (5 pts.)

iii) #
$$(A \cup F) = \#U - \#(A^C \cap F^C) = 100 - 50 = 50$$
 (5 Pts.)