UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA "ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN"

Base de datos II

DISEÑO Y **ARQUITECTUR A DE BASE DE DATOS**

Alumno: SORIANO TIMOTEO Joel Kevin

Catedrático: RAUL FERNANDEZ Bejarano

Ciclo: V

Arquitectura Recomendada: Nube Distribuida Global (Hibrida/Multi-Nube)

La arquitectura ideal debe resolver los desafíos de operar a escala global, como la latencia, la soberanía de datos (leyes locales) y la alta disponibilidad en diferentes zonas horarias.

1. El Desafío Principal: La Latencia

Cuando una empresa tiene oficinas en varios países, uno de los principales problemas es la latencia, que es el tiempo que tarda la información en viajar de un lugar a otro. Por ejemplo, si una oficina en Asia necesita acceder a datos que están en un servidor ubicado en Europa, la demora puede afectar la eficiencia del trabajo.

Solución arquitectónica: Usar replicación geográfica y redes de distribución de contenido (CDN).

- CDN: Emplear una CDN (como Cloudflare o AWS CloudFront) para guardar copias temporales del contenido estático (como imágenes o archivos de la página web) en servidores ubicados cerca de los usuarios en cada región, lo que ayuda a acelerar la carga.
- Replicación de bases de datos: Crear copias de las bases de datos en las regiones de la nube más cercanas a las oficinas principales (por ejemplo, en Europa, América del Norte y Asia-Pacífico) para que el acceso a la información sea más rápido y eficiente.

2. El Desafío Legal: Soberanía de Datos

Cada país tiene normas estrictas sobre privacidad y la localización de los datos (como el GDPR en la Unión Europea o las leyes en China), que obligan a que ciertos datos de clientes se mantengan dentro de las fronteras de esa región.

Solución arquitectónica: Utilizar una arquitectura en la nube que funcione en múltiples regiones (Multi-Region Cloud).

- Ubicación de los datos sensibles: Los datos personales y confidenciales de los clientes deben almacenarse y procesarse en los centros de datos en la nube que cumplan con las regulaciones específicas del país o región de donde provienen esos datos.
- **Datos globales y no sensibles:** La información que no es privada y que se usa a nivel mundial, como detalles de productos o inventarios, puede guardarse en un solo lugar centralizado.

3. La Estructura Propuesta (Arquitectura Hibrida/Multi Nube)

Componente	Tipo de Arquitectura	Justificación
Sistemas Centrales (ERP, Finanzas)	Nube Privada o Local/Hibrida.	Mantener el control total de los sistemas más críticos y regulados en un data center central o en una Nube Privada Virtual.
Aplicaciones de Sucursales y Clientes (CRM, Web)	Nube Pública Distribuida.	Utilizar múltiples regiones de un gran proveedor de nube (AWS, Azure) para ofrecer baja latencia a los usuarios finales en todo el mundo.
Comunicación Global Infraestructura de Redes Privadas de Nube.		Usar servicios de interconexión dedicados de los proveedores de nube para asegurar una comunicación rápida y segura entre las sucursales y la infraestructura central (VPNs, <i>Direct Connect</i>).

Criterios de S	Selección y Vent	ajas
Criterio	Arquitectura Distribuida Global	Beneficio para la Empresa Internacional
Rendimiento y UX	Alta Velocidad y Baja Latencia.	Los empleados y clientes en Tokio, Nueva York o Londres acceden a la aplicación con el mismo rendimiento rápido, ya que acceden a un centro de datos cercano.
Disponibilidad	Tolerancia a Fallas Geográficas.	Si un desastre natural o un error masivo ocurre en la región de Europa, las operaciones de la sucursal de América del Norte no se ven afectadas.
Costo	Optimización del Gasto.	El modelo de nube permite pagar solo por los recursos necesarios en cada región, escalando regionalmente en función de la demanda local.
Consolidación	Visibilidad Centralizada.	Aunque la infraestructura es distribuida, las herramientas de gestión de la nube permiten a la sede central tener una visión unificada del rendimiento y los costos globales.