

Basic Concept and Definitions: Trees

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Basic Concept and Definitions: Trees

Shylaja S S

Department of Computer Science & Engineering

Trees

- Non Linear Data Structure
- Finite nonempty set of elements
 - · One element is the root
 - Remaining elements are partitioned into m≥0 disjoint subsets each of which is itself a tree

Trees

- Ordered Tree: a tree in which subtrees of each node forms an ordered set
- In such a tree we define first, second, ..., Last child of a particular node
- First child is called the oldest child and the last child the youngest child of a node

Trees

As unordered trees the below figures are equivalent but as ordered trees, they are different

N-ary Tree & Forest

n-ary tree: A rooted tree in which each node has no more than **n** children

- A binary tree is an n-ary tree with n=2
- n-ary tree with n=5

• Forest: is an ordered set of ordered trees

Tree


```
Representation of trees:

Tree node options:

struct treenode{
    int info;
    struct treenode *child[MAX];

};

where MAX is a constant
```

Restrictions with the above implementation:

 A node cannot have more than MAX children. Therefore cannot expand the tree

Tree

2nd implementation:

- All the children of a given node are linked and only the oldest child is linked to the parent
- A node has link to first child and a link to immediate sibling struct treenode{

```
int info;

struct treenode *child;

struct treenode *sibling;
```


Conversion of an n-ary Tree to a Binary Tree

Left Child – Right Sibling Representation

- Link all the siblings of a node
- Delete all links from a node to its children except for the link to its leftmost child
- The left child in binary tree is the node which is the oldest child of the given node in an n-ary tree, and the right child is the node to the immediate right of the given node on the same horizontal line. Such a binary tree will not have a right sub tree
- The node structure corresponds to that of

Data	
Left Child	Right Sibling

Conversion of an n-ary Tree to a Binary Tree

Link all siblings of a Node

Delete all links from a Node to its children except for the link to its leftmost child

Left child – Right sibling

Conversion of an n-ary Tree to a Binary Tree

Left child – Right sibling

Representation of the above 3-ary tree

Node Below is B – Left child

No Right sibling so – no Right child

Corresponding binary tree

Conversion of an n-ary Tree to a Binary Tree

3-ary tree

Node Below is E - Left child Next Right sibling is C – Right child

Left child - Right sibling

Representation of the above 3-ary tree

Corresponding binary tree

Conversion of an n-ary Tree to a Binary Tree

Representation of the above 3-ary tree

Corresponding binary tree

Conversion of an n-ary Tree to a Binary Tree

Conversion of an n-ary Tree to a Binary Tree

Conversion of an n-ary Tree to a Binary Tree

Conversion of a Forest to a Binary Tree

- Right Child of the root node of every resulting binary tree will be empty. This is because the root of the tree we are transforming has no siblings.
- On the other hand, if we have a forest then these can all be transformed into a single binary tree as follows:
 - First obtain the binary tree representation of each of the trees in the forest
 - Link all the binary trees together through the right sibling field of the root nodes

Conversion of a Forest to a Binary Tree

Conversion of a Forest to a Binary Tree can be formally defined as follows:

- If $T_1,...,T_n$ is a forest of n trees, then the binary tree corresponding to this forest, denoted by $B(T_1,...,T_n)$:
 - is empty if n = 0
 - has root equal to root (T₁)
 - has left subtree equal to $B(T_{11}, T_{12}, ..., T_{1m})$ where $T_{11}, ..., T_{1m}$ are the subtrees of root (T_1)
 - has right subtree $B(T_2, ..., T_n)$

Conversion of a Forest to a Binary Tree

Consider the following Forest with three Trees

Corresponding Binary Trees

Conversion of a Forest to a Binary Tree

Link B(T2) and B(T3)

G becomes Right Child of E

Corresponding Binary Tree B(T2, T3)

Conversion of a Forest to a Binary Tree

Link B(T1) and B(T2, T3)

E becomes Right Child of A

Corresponding Binary Tree B(T1, T2, T3)

Multiple-Choice-Questions (MCQ's)

1. A forest can be defined as:

- a) A set of disconnected graphs
- b) A collection of disjoint trees
- c) A binary tree with multiple roots
- d) A weighted tree

Multiple-Choice-Questions (MCQ's)

1. A forest can be defined as:

- a) A set of disconnected graphs
- b) A collection of disjoint trees
- c) A binary tree with multiple roots
- d) A weighted tree

Multiple-Choice-Questions (MCQ's)

2. If an N-ary tree has n nodes, the maximum number of edges is:

- a) n
- b) n 1
- c) n + 1
- $d) n^2$

Multiple-Choice-Questions (MCQ's)

2. If an N-ary tree has n nodes, the maximum number of edges is:

- a) n
- b) n 1
- c) n + 1
- $d) n^2$

Multiple-Choice-Questions (MCQ's)

3. Which of the following is true about the relationship between a tree and a forest?

- a) A tree can be converted into a forest by removing its root
- b) A forest can be converted into a tree by adding a super root
- c) Both (a) and (b)
- d) Neither (a) nor (b)

Multiple-Choice-Questions (MCQ's)

3. Which of the following is true about the relationship between a tree and a forest?

- a) A tree can be converted into a forest by removing its root
- b) A forest can be converted into a tree by adding a super root
- c) Both (a) and (b)
- d) Neither (a) nor (b)

Multiple-Choice-Questions (MCQ's)

4. In an N-ary tree, the maximum number of children any node can have is:

- a) N
- b) N 1
- c) log(N)
- d) 2N

Multiple-Choice-Questions (MCQ's)

4. In an N-ary tree, the maximum number of children any node can have is:

- a) N
- b) N 1
- c) log(N)
- d) 2N

Multiple-Choice-Questions (MCQ's)

5. Consider the tree below:

A /|\ B C D | E

If we convert this tree into a forest by removing the root A, the resulting forest will contain:

- a) 2 trees: (B) and (C–D–E)
- b) 3 trees: (B), (C–E), (D)
- c) 3 trees: (B), (C), (D–E)
- d) 4 trees: (A), (B), (C), (D–E)

Multiple-Choice-Questions (MCQ's)

5. Consider the tree below:

A /|\ B C D | E

If we convert this tree into a forest by removing the root A, the resulting forest will contain:

- a) 2 trees: (B) and (C–D–E)
- b) 3 trees: (B), (C–E), (D)
- c) 3 trees: (B), (C), (D–E)
- d) 4 trees: (A), (B), (C), (D–E)

THANK YOU

Shylaja S S

Department of Computer Science & Engineering

shylaja.sharath@pes.edu

+91 9449867804