Module 6

Inner Product Space

Tutorial sheet

- 1. For $\overline{x}=(x_1,\,x_2,\,x_3),\,\overline{y}=(y_1,\,y_2,\,y_3)$ in R^3 define $<\overline{x},\,\overline{y}>=x_1y_1+3x_2y_2+5x_3y_3$.ls < ,> an inner product on R^3 .
 - 5. Find an orthonormal basis to W, which has basis $\{v_1 = (1,1,1,1), v_2 = (1,2,0,1), v_3 = (2,2,4,0)\}.$
 - 6. Consider R^3 with basis $\{e_1, e_2, e_3\}$ and

 $<\!(x_1,\,x_2,\,x_3)\!,\;(y_1,\,y_2,\,y_3)\!>=\!x_1y_1+3x_2y_2+x_3y_3$. Find the matrix representation of the above inner product.

- 8. For $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ in R^3 defined as $\langle x, y \rangle = x_1y_1 + 3x_2y_2 x_3y_3$. Is $\langle x, y \rangle = x_1y_1 + 3x_2y_2 x_3y_3$. Is $\langle x, y \rangle = x_1y_1 + 3x_2y_2 x_3y_3$.
- 7. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be defined by T(x, y, z) = (x + y, y + z, x + 2y + z, x z). Find an orthonormal basis for the kernel and range of T.
- 8. Let $W=\{(x,y,z)\in\mathbb{R}^3: \langle (x,y,z),(1,2,3)\rangle=0\}.$ Find an orthonormal basis for W.