

Simplified Memory-bounded A* Search

Alfons Juan Jorge Civera

Departament de Sistemes Informàtics i Computació

Objectives

- ► To apply the SMA* algorithm.
- ► To build the SMA* search tree.
- ► To analyse properties, optimality and complexity of SMA* search.

Contents

1	SMA* by an example	3
2	Properties, optimality and complexity	4
3	Conclusions	F

1 The SMA* by an example [1, 2]

SMA* behaves as A*, if enough memory available, otherwise delete unpromising node storing its f values and inserts new node.

2 Properties, optimality and complexity

Control of repeated state to avoid loops, if enough memory

► Completeness:

Yes, if enough memory to store the shallowest solution path

► Optimality:

- > Yes, if enough memory to store the shallowest solution path
- Otherwise, best solution with available memory
- Search optimally efficient, if enough memory for full search tree
- Space complexity: User defined
- ► Temporal complexity:
 - $\triangleright O(b^d)$, in practice, extra cost to create and update nodes
- Good performance in explicit graphs with non-uniform costs

3 Conclusions

We have studied:

- ► The SMA* algorithm.
- ► The SMA* search space.
- Properties, optimality and complexity in SMA* search.

Some aspects to highlight on SMA*:

- Complete and optimum, if enough memory and h admissible.
- User-defined spatial cost.
- ► Temporal cost similar to A* with some extra cost in practice.

References

- [1] Stuart J. Russell. Efficient memory-bounded search methods. In Proc. of European Conference on Artificial Intelligence, ECAI '92, page 1–5, USA, 1992. John Wiley & Sons, Inc.
- [2] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentince Hall, first edition, 1995.

