

ECE Lyon - ING 2 - Année 2023/2024

Cours de mathématiques

ALGEBRE: Chapitre 1 - Espaces vectoriels

Dans ce chapitre, la lettre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Prérequis : Systèmes linéaires 1.1

Définition 1.1.1

Définition. Un système linéaire de n équations à p inconnues s'écrit sous la forme :

Definition. On systeme lineaire de
$$n$$
 equations a p inconnues s'ecrit sous la forme :
$$(S): \begin{cases} a_{11}x_1 & +a_{12}x_2 & +... & +a_{1p}x_p & =b_1 \\ a_{21}x_1 & +a_{22}x_2 & +... & +a_{2p}x_p & =b_2 \\ ... & \text{avec } a_{ij}, b_i \in \mathbb{K} \end{cases}$$
 Résoudre (S) consiste à déterminer les p -uplets $(x_1, x_2, ..., x_p)$ qui vérifient simultanéments toutes les équations du quetème

1.1.2 Opérations élémentaires

Définition. Soit (S) un système linéaire de n équations à p inconnues.

Effectuer une opération élémentaire sur une ligne de (S) consiste à effectuer l'une de ces opérations:

- Remplacer la ligne L_i par la ligne $L_i + \lambda L_j : L_i \leftarrow L_i + \lambda L_j$, Echanger deux lignes L_i et $L_j : L_i \leftrightarrow L_j$, Multiplier la ligne L_i par $\lambda \neq 0 : L_i \leftarrow \lambda L_i$.

Propriété. Soit (S) un système linéaire de n équations à p inconnues. Soit (S') un système linéaire obtenu effectuant des opérations élémentaires sur les lignes de (S). (S) et (S') sont équivalents, c'est à dire résoudre (S) revient à résoudre (S').

1.1.3 Résolution de systèmes linéaires par la méthode du pivot de Gauss

Résoudre un système linéaire par la méthode du pivot de Gauss consiste à effectuer des opérations élémentaires sur le système dans le but de lui donner une forme « triangulaire ».

Remarque. Un système linéaire peut avoir :

- une unique solution
- une infinité de solutions
- aucune solution

Exemples —

1. Système ayant une unique solution :

Soit le système linéaire :

$$\begin{cases} x_1 +2x_2 +x_3 = 4 \\ 4x_1 -x_3 = 8 \\ -x_1 +2x_2 +2x_3 = 0 \end{cases}$$

 $a_{11} = 1$ est notre premier pivot. Il va nous servir à éliminer les termes non nuls de la première colonne situés sous le pivot en faisant des opérations élémentaires sur les lignes.

$$\Leftrightarrow \begin{cases} x_1 + 2x_2 + x_3 = 4 \\ -8x_2 - 5x_3 = -8 & L_2 \leftarrow L_2 - 4L_1 \text{ et } L_3 \leftarrow L_3 + L_1 \\ 4x_2 + 3x_3 = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + 2x_2 + x_3 = 4 \\ 4x_2 + 3x_3 = 4 & L_2 \leftrightarrow L_3 \\ -8x_2 - 5x_3 = -8 \end{cases}$$

 $a_{22}=4$ est notre deuxième pivot. Il va nous servir à éliminer les termes non nuls de la deuxième colonne situés sous le pivot en faisant des opérations élémentaires sur les lignes.

$$\Leftrightarrow \begin{cases} x_1 + 2x_2 + x_3 = 4 \\ 4x_2 + 3x_3 = 4 & L_3 \leftarrow L_3 + 2L_2 \\ x_3 = 0 \end{cases}$$

Le système a une forme « triangulaire ».

La troisième équation nous donne : $x_3 = 0$, on déduit de la deuxième équation : $x_2 = 1$, puis de la première équation : $x_1 = 2$.

Notre système a donc comme unique solution le triplet :

$$(x_1, x_2, x_3) = (2, 1, 0).$$

2. Système ayant une infinité de solutions :

On considère le système linéaire à deux équations et quatre inconnues suivant :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ x_1 - x_2 + 4x_3 - x_4 = 7 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_2 + 3x_3 - 2x_4 = 3 \end{cases} L_2 \leftarrow L_2 - L_1$$

Le système a une forme « triangulaire tronqué ».

Un tel système a une infinité de solutions.

Posons(par exemple) :
$$\begin{cases} x_3 = \alpha \\ x_4 = \beta \end{cases}$$

On a alors:

$$\begin{cases} x_1 + x_2 + \alpha + \beta = 4 \\ -2x_2 + 3\alpha - 2\beta = 3 \end{cases} \iff \begin{cases} x_1 + x_2 = 4 - \alpha - \beta \\ -2x_2 = 3 - 3\alpha + 2\beta \end{cases}$$

Après résolution, on obtient :
$$\begin{cases} x_1 = \frac{11}{2} - \frac{5}{2}\alpha \\ x_2 = \frac{3}{2}\alpha - \frac{3}{2} - \beta \end{cases}$$

Une forme générale des solutions du système est :

$$(x_1, x_2, x_3, x_4) = \left(\frac{11}{2} - \frac{5}{2}\alpha, \frac{3}{2}\alpha - \frac{3}{2} - \beta, \alpha, \beta\right), \ \alpha, \beta \in \mathbb{R}$$

Cette forme d'expression des solutions du système est appelée « solutions paramétrées ».

3. Système n'ayant aucune solution :

Soit le système linéaire :

$$\begin{cases} x_1 +2x_2 +x_3 = 4 \\ 4x_1 +8x_2 +4x_3 = 8 \\ -x_1 +2x_2 +2x_3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 + 2x_2 + x_3 = 4 \\ 0 = -8 & L_2 \leftarrow L_2 - 4L_1 \text{ et } L_3 \leftarrow L_3 + L_1 \\ 4x_2 + 3x_3 = 4 \end{cases}$$

La deuxième ligne du système est une assertion fausse. Les 3 équations du système ne peuvent donc être vérifiées en même temps. Par conséquent le système n'admet aucune solution.

3

1.2 Espaces vectoriels

Définition.

Un \mathbb{K} -espace vectoriel ou un espace vectoriel sur \mathbb{K} est un ensemble non vide E muni :

— d'une loi de composition interne (addition), c'est-à-dire d'une application de $E \times E$ dans E:

$$E \times E \rightarrow E$$
$$(u, v) \mapsto u + v$$

— d'une **loi de composition externe** (multiplication), c'est-à-dire d'une application de $\mathbb{K} \times E$ dans E:

$$\begin{array}{ccc} \mathbb{K} \times E & \to & E \\ (\lambda, u) & \mapsto & \lambda \cdot u \end{array}$$

qui vérifient les propriétés suivantes :

- 1. Commutativité de l'addition : $\forall u, v \in E, u + v = v + u$
- 2. Associativité de l'addition : $\forall u, v, w \in E, u + (v + w) = (u + v) + w$
- 3. L'addition possède un **élément neutre** $0_E \in E : \forall u \in E, u + 0_E = u$
- 4. Tout $u \in E$ admet un symétrique u' tel que $u + u' = 0_E$. Cet élément u' est noté -u.
- 5. Associativité de la multiplication : $\forall \lambda, \mu \in \mathbb{K}$ et $\forall u \in E, \lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u$
- 6. Distributivité de la multiplication par rapport à l'addition : $\forall \lambda \in \mathbb{K}$ et $\forall u, v \in E$, $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$
- 7. $\forall \lambda, \mu \in \mathbb{K}$ et $\forall u \in E, (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$
- 8. La multiplication possède un **élément neutre** $1 \in \mathbb{K} : \forall u \in E, 1 \cdot u = u$

On appelle alors vecteurs les éléments de E et scalaires les éléments de \mathbb{K} .

Exemples de référence -

1. **Exemple 1 :** Le \mathbb{R} -espace vectoriel \mathbb{R}^2 . ($\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^2$). Un élément $u \in E$ est donc un couple (x, y) avec $x \in \mathbb{R}$ et $y \in \mathbb{R}$:

$$\mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}.$$

— Loi interne : Si (x, y) et $(x', y') \in \mathbb{R}^2$, alors :

$$(x,y) + (x',y') = (x + x', y + y').$$

L'élément neutre de la loi interne est le vecteur nul (0,0).

Le symétrique de (x, y) est (-x, -y), que l'on note aussi -(x, y).

— Loi externe : Si λ est un réel et $(x, y) \in \mathbb{R}^2$, alors :

$$\lambda \cdot (x, y) = (\lambda x, \lambda y).$$

2. **Exemple 2 :** Le \mathbb{R} -espace vectoriel \mathbb{R}^n . ($\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^n$). Un élément $u \in E$ est donc un n-uplet (x_1, x_2, \dots, x_n) avec $x_1, x_2, \dots, x_n \in \mathbb{R}$:

$$\mathbb{R}^n = \{ (x_1, x_2 ..., x_n) \mid x_1, x_2, ..., x_n \in \mathbb{R} \}.$$

— Loi interne : Si (x_1, \ldots, x_n) et $(x'_1, \ldots, x'_n) \in \mathbb{R}^n$, alors :

$$(x_1,\ldots,x_n)+(x_1',\ldots,x_n')=(x_1+x_1',\ldots,x_n+x_n').$$

L'élément neutre de la loi interne est le vecteur nul $(0,0,\ldots,0)$.

Le symétrique de (x_1, \ldots, x_n) est $(-x_1, \ldots, -x_n)$, que l'on note $-(x_1, \ldots, x_n)$.

— Loi externe : Si λ est un réel et $(x_1, \ldots, x_n) \in \mathbb{R}^n$, alors :

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$$

- 3. Exemple 3 : Le \mathbb{C} -espace vectoriel \mathbb{C}^n est un \mathbb{C} -espace vectoriel.
- 4. Exemple $4 : \mathcal{F}(\mathbb{R}, \mathbb{R})$, l'ensemble des fonctions définies de \mathbb{R} dans \mathbb{R} , est un \mathbb{R} -espace vectoriel.
- 5. Exemple 5 : $\mathbb{R}[X]$, l'ensemble des polynômes, est un \mathbb{R} -espace vectoriel.
- 6. Exemple 6 : $\mathcal{F}(\mathbb{N}, \mathbb{R})$, l'ensemble des suites numériques, est un \mathbb{R} -espace vectoriel.
- 7. Exemple 7 : $\mathcal{M}_{m,n}(\mathbb{R})$, l'ensemble des matrices à coefficients réels, est un \mathbb{R} -espace vectoriel.
- 8. Exemple 8 : $\mathbb R$ et $\mathbb C$ sont des $\mathbb R$ -espaces vectoriels.

1.3 Sous-espaces vectoriels

Définition. Soient E un \mathbb{K} -espace vectoriel et F un sous ensemble de E. Si F, muni des mêmes lois que E, est lui même un \mathbb{K} espace vectoriel alors on dit que F est sous-espace vectoriel de E.

Propriétés. Soit E un \mathbb{K} -espace vectoriel.

Une partie F de E est un sous-espace vectoriel de E si et seulement si :

- $F \neq \emptyset$ (il suffit de montrer que $0 \in F$),
- $\forall u, v \in F, u + v \in F \text{ (on dit que } F \text{ est stable pour l'addition)},$
- $\forall \lambda \in \mathbb{K}$ et $\forall u \in F$, $\lambda \cdot u \in F$ (on dit que F est stable pour la multiplication par un scalaire).

Corollaire. Les deux dernières conditions peuvent être regroupées en une seule : $\forall u,v \in F$ et $\forall \lambda \in \mathbb{K}, \lambda \cdot u + \beta \cdot v \in F$

Remarque. Pour montrer qu'un ensemble est un K-espace vectoriel, on montrera que c'est un sous-espace vectoriel d'un K-espace vectoriel de référence.

- Exemples -

- 1. L'ensemble $F = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^2 :
 - $-(0,0) \in F$,
 - Soient $u = (x_1, y_1) \in F$ et $v = (x_2, y_2) \in F$, alors $x_1 + y_1 = 0$ et $x_2 + y_2 = 0$ donc $(x_1 + x_2) + (y_1 + y_2) = 0$. Ainsi $u + v = (x_1 + x_2, y_1 + y_2) \in F$,
 - Soient $u = (x, y) \in F$ et $\lambda \in \mathbb{R}$, alors x + y = 0 donc $\lambda x + \lambda y = 0$. Ainsi $\lambda u \in F$.
- 2. L'ensemble des fonctions continues sur \mathbb{R} est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$, l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .
- 3. L'ensemble des suites réelles convergentes est un sous-espace vectoriel de l'espace vectoriel $\mathcal{F}(\mathbb{N}, \mathbb{R})$.
- 4. L'ensemble $F_1 = \{(x, y) \in \mathbb{R}^2 \mid x + y = 2\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 :
 le vecteur nul (0, 0) n'appartient pas à F_1 .
- 5. L'ensemble $F_2 = \{(x,y) \in \mathbb{R}^2 \mid x = 0 \text{ ou } y = 0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 :
 - les vecteurs u = (1,0) et v = (0,1) appartiennent à F_2 , mais pas le vecteur u + v = (1,1).
- 6. L'ensemble $F_3 = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0 \text{ et } y \geq 0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 :
 - le vecteur u=(1,1) appartient à F_3 mais, pour $\lambda=-1$, le vecteur -u=(-1,-1) n'appartient pas à F_3 .

- Exercice

Soit E l'espace vectoriel des fonctions réelles définies sur \mathbb{R} . Parmi les parties de E suivantes, lesquelles sont des sous-espaces vectoriels?

- 1. $A = \{ f \in E \mid f(1) = 2f(0) \}$
- 2. $B = \{ f \in E \mid f(7) = f(1) + 2 \}$
- 3. $C = \{ f \in E \mid f(1) < 0 \}$
- 4. $D = \{\text{fonctions polynômiales de degré} = 4\}$
- 5. $E = \{\text{fonctions polynômiales de degré} \leq 4\}$

1.4 Combinaisons linéaires

1.4.1 Définition

Définition. Soit $n \ge 1$ un entier, soient v_1, v_2, \ldots, v_n , n vecteurs d'un espace vectoriel E. Tout vecteur de la forme

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$$

(où $\lambda_1, \lambda_2, \dots, \lambda_n$ sont des éléments de \mathbb{K}) est appelé **combinaison linéaire** des vecteurs v_1, v_2, \dots, v_n .

Les scalaires $\lambda_1, \lambda_2, \dots, \lambda_n$ sont appelés **coefficients** de la combinaison linéaire.

Remarque. Si n = 1, alors $u = \lambda_1 v_1$ et on dit que u est colinéaire à v_1 .

- Exemples

- 1. Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , (3,3,1) est combinaison linéaire des vecteurs (1,1,0) et (1,1,1) car on a l'égalité (3,3,1)=2(1,1,0)+(1,1,1).
- 2. Dans le \mathbb{R} -espace vectoriel \mathbb{R}^2 , le vecteur u=(2,1) n'est pas colinéaire au vecteur $v_1=(1,1)$ car s'il l'était, il existerait un réel λ tel que $u=\lambda v_1$, ce qui équivaudrait à l'égalité $(2,1)=(\lambda,\lambda)$.

Exercices

- 1. Soient u = (1, 2, -1) et v = (6, 4, 2) deux vecteurs de \mathbb{R}^3 . Montrer que w = (9, 2, 7) est combinaison linéaire de u et v.
- 2. Soient u = (1, 2, -1) et v = (6, 4, 2). Montrons que w = (4, -1, 8) n'est pas une combinaison linéaire de u et v.
- 3. Ecrire le vecteur v = (1, -2, 5) comme combinaison linéaire de $e_1 = (1, 1, 1), e_2 = (1, 2, 3)$ et $e_3 = (2, -1, 1)$.
- 4. Ecrire le vecteur v = (2, -5, 3) comme combinaison linéaire de $e_1 = (1, -3, 2), e_2 = (2, -4, -1)$ et $e_3 = (1, -5, 7)$.
- 5. Pour quelle valeur de k le vecteur u=(1,2,k) est-il combinaison linéaire de $e_1=(3,0,-2), e_2=(2,-1,5)$?

1.4.2Sous-espace vectoriel vect(A)

Définition. Soit E un \mathbb{K} -espace vectoriel.

Soit $\mathcal{A} = \{u_1, u_2, ..., u_p\}$ une famille de vecteurs de E.

L'ensemble noté $\mathbf{vect}(A)$ ou $A > \mathbf{est}$ formé de toutes les combinaisons linéaires des vecteurs

$$\langle \mathcal{A} \rangle = \text{vect}(\mathcal{A}) = \text{vect}(u_1, ..., u_p) = \{ \sum_{i=1}^p \alpha_i u_i, \ \alpha_i \in \mathbb{K}, \ 1 \le i \le p \}.$$

Propriété. Soient E un espace vectoriel et $F = \text{vect}(u_1, u_2, ..., u_p)$ où $\forall i \in [1, p], u_i \in E$. F est un sous-espace vectoriel de E et donc $F \subset E$.

- Exemples –

- 1. Soient $E = \mathbb{R}^2$ et u = (1, 2). Alors, $\langle u \rangle = \text{vect}(u) = \{v = \alpha u, \alpha \in \mathbb{R}\}$: ce sont donc tous les vecteurs colinéaires à u.
- 2. Soit $E = \mathbb{R}^2$. Montrons que $E = \text{vect}(u_1 = (1, 0), u_2 = (1, 1))$.
 - Montrons que $\text{vect}(u_1, u_2) \subset E$: On a $u_1, u_2 \in E$ donc $\text{vect}(u_1, u_2) \subset E$.
 - Montrons que $E \subset \text{vect}(u_1, u_2)$. Soit $u = (x, y) \in E$. Trouvons $\alpha_1, \alpha_2 \in \mathbb{R}$ tels que $\alpha_1 u_1 + \alpha_2 u_2 = u$. Cette égalité conduit au système suivant : $\alpha_1 + \alpha_2 = x$ et $\alpha_2 = y$. D'où, $\alpha_1 = x - y$ et $\alpha_2 = y$. Donc, $u \in \text{vect}(u_1, u_2)$.

On a donc $E = \text{vect}(u_1, u_2)$.

Propriétés. Soient E un espace vectoriel et $F = \text{vect}(u_1, u_2, ..., u_p)$ où $\forall i \in [1, p], u_i \in E$. Le sous-espace vectoriel F ne change pas si on effectue sur les vecteurs u_i un certain nombre d'opérations dites élémentaires qui sont :

- échanger deux vecteurs
- multiplier un des vecteurs par un scalaire non nul
- **remplacer** un des vecteurs u_i par $u_i \lambda u_j$, $\lambda \in \mathbb{K}$ et $i \neq j$.

Propriétés. Soient E un espace vectoriel et $F = \text{vect}(u_1, u_2, ... u_p)$ où $\forall i \in [1, p], u_i \in E$. On a $F = \text{vect}(u_1, u_2, ..., u_j, ...u_p) = \text{vect}(u_1, u_2, ..., u_{j-1}, u_{j+1}, ...u_p)$ dans les cas suivants : — $u_j = 0$,

- u_j est une combinaison linéaire des autres vecteurs.

- Exemple -

Soient $v_1 = (1, 2)$, $v_2 = (2, -1)$, $v_3 = (0, 5)$ et $v_4 = (-3, 9)$. $v_3 = 2v_1 - v_2$ et $v_4 = 3v_1 - 3v_2$. Donc $\langle v_1, v_2, v_3, v_4 \rangle = \langle (1, 2), (0, 1) \rangle$.

1.5 Familles génératrices

Définition. Soit E un \mathbb{K} -espace vectoriel. Soient v_1, \ldots, v_p des vecteurs de E. On dit que la famille $\{v_1, \ldots, v_p\}$ est une **famille génératrice** de E si et seulement si tout vecteur de E est une combinaison linéaire des vecteurs v_1, \ldots, v_p :

$$\forall v \in E, \qquad \exists \lambda_1, \dots, \lambda_p \in \mathbb{K}, \qquad v = \lambda_1 v_1 + \dots + \lambda_p v_p.$$

On dit aussi que la famille $\{v_1,\ldots,v_p\}$ engendre ou est un système de générateurs de E :

$$E = \text{vect}(v_1, \dots, v_p).$$

Remarque. Une famille génératrice d'un \mathbb{K} -espace vectoriel E n'est pas unique.

Exemples

1. Considérons les vecteurs $v_1 = (1,0,0)$, $v_2 = (0,1,0)$ et $v_3 = (0,0,1)$ de $E = \mathbb{R}^3$. La famille $\{v_1, v_2, v_3\}$ est génératrice de E car tout vecteur v = (x, y, z) de \mathbb{R}^3 peut s'écrire

$$v = x(1,0,0) + y(0,1,0) + z(0,0,1).$$

Les coefficients sont ici $\lambda_1 = x$, $\lambda_2 = y$, $\lambda_3 = z$. Donc tout vecteur de \mathbb{R}^3 est une combinaison linéaire des vecteurs v_1, v_2, v_3

2. Soient $v_1' = (2, 1)$ et $v_2' = (1, 1)$. Alors $\{v_1', v_2'\}$ est une famille génératrice de \mathbb{R}^2 . En effet, soit v = (x, y) un élément quelconque de \mathbb{R}^2 .

Montrer que v est combinaison linéaire de v_1' et v_2' revient à démontrer l'existence de deux réels λ et μ tels que $v = \lambda v_1' + \mu v_2'$.

Il s'agit donc de résoudre le système

$$\begin{cases} 2\lambda + \mu &= x \\ \lambda + \mu &= y \end{cases}$$

Ce système a pour solution $\lambda = x - y$ et $\mu = -x + 2y$, et ceci, quels que soient les réels x et y. Donc tout vecteur de \mathbb{R}^2 est une combinaison linéaire des vecteurs v_1, v_2

9

3. La famille $\{1,i\}$ est génératrice du $\mathbb{R}\text{-espace}$ vectoriel $\mathbb{C}.$

1. Soit $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$. Alors la famille $\{1, X, \dots, X^n\}$ est génératrice de $\mathbb{R}_n[X]$. Par contre, l'espace vectoriel $\mathbb{R}[X]$ de tous les polynômes ne possède pas de famille génératrice FINIE.

1.6 Familles libres ou liées

1.6.1 Familles libres

Définition. Soit E un \mathbb{K} -espace vectoriel. Soient v_1, \ldots, v_p des vecteurs de E. On dit que la famille $\{v_1, v_2, \ldots, v_p\}$ est une **famille libre** ou **linéairement indépendante** si et seulement si aucun vecteur $(v_i)_{1 \leq i \leq p}$ ne peut s'écrire comme combinaison linéaire des autres.

Propriété. Soit E un \mathbb{K} -espace vectoriel. Soient v_1, \ldots, v_p des vecteurs de E. $\{v_1, v_2, \ldots, v_p\}$ est une famille libre si et seulement si toute combinaison linéaire nulle implique que tous ses coefficients sont nuls.

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p = 0 \Rightarrow \forall i \in [1, p], \lambda_i = 0$$

1.6.2 Familles liées

Définition. Soit E un \mathbb{K} -espace vectoriel. Soient v_1, \ldots, v_p des vecteurs de E. On dit que la famille $\{v_1, v_2, \ldots, v_p\}$ est une **famille liée** ou **linéairement dépendante** si et seulement si au moins un vecteur de cette famille est une combinaison linéaire des autres vecteurs.

Propriété. Soit E un \mathbb{K} -espace vectoriel. Soient v_1, \ldots, v_p des vecteurs de E. $\{v_1, v_2, \ldots, v_p\}$ est une famille liée si et seulement si il existe une combinaison linéaire nulle à coefficients non tous nuls.

$$\exists \lambda_1, \dots, \lambda_p \in \mathbb{K}, (\lambda_1, \dots, \lambda_p) \neq (0, \dots, 0) \text{ tels que } \lambda_1 u_1 + \dots + \lambda_p u_p = 0$$

$Remarque.\ Interprétation\ g\'eom\'etrique.$

- Dans \mathbb{R}^2 ou \mathbb{R}^3 , deux vecteurs sont linéairement dépendants si et seulement s'ils sont colinéaires. Ils sont donc sur une même droite vectorielle.
- Dans \mathbb{R}^3 , trois vecteurs sont linéairement dépendants si et seulement s'ils sont coplanaires. Ils sont donc dans un même plan vectoriel.

Exercices -

Pour des vecteurs de \mathbb{R}^n , déterminer si une famille $\{v_1,\ldots,v_p\}$ est libre ou liée revient à résoudre un système linéaire.

- 1. Soient $v_1 = (1, 1, 1), v_2 = (2, -1, 0), v_3 = (2, 1, 1).$ La famille $\{v_1, v_2, v_3\}$ est-elle libre ou liée?
- 2. On considère les vecteurs $v_1 = (1, 2, 3), v_2 = (4, 5, 6), v_3 = (2, 1, 0).$ La famille $\{v_1, v_2, v_3\}$ est-elle libre ou liée?

Exemples —

- 1. Les polynômes $P_1(X)=1-X,\ P_2(X)=5+3X-2X^2$ et $P_3(X)=1+3X-X^2$ forment une famille liée dans $\mathbb{R}[X]$, car $3P_1(X) - P_2(X) + 2P_3(X) = 0$. Donc il existe une combinaison linéaire nulle à coefficients non tous nuls, donc la famille est liée.
- 2. On considère la famille $\{\cos, \sin\}$ dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$. Montrons que c'est une famille libre. Supposons que l'on ait $\lambda \cos + \mu \sin = 0$.

Cela équivaut à $\forall x \in \mathbb{R}, \lambda \cos(x) + \mu \sin(x) = 0.$

En particulier:

- pour x=0, cette égalité donne $\lambda=0$.
- pour $x = \frac{\pi}{2}$, l'égalité donne $\mu = 0$.

Donc $(\lambda, \mu) = (0, 0)$, donc la famille $\{\cos, \sin\}$ est libre. En revanche la famille $\{\cos^2, \sin^2, 1\}$ est liée car on a la relation de dépendance linéaire $\cos^2 + \sin^2 - 1 = 0$.

Les coefficients de dépendance linéaire sont $\lambda_1 = 1, \lambda_2 = 1, \lambda_3 = -1$. Donc il existe une combinaison linéaire nulle à coefficients non tous nuls, donc la famille est liée.

1.7Bases, dimension et rang

Base 1.7.1

Définition. Soit E un \mathbb{K} -espace vectoriel.

On dit que la famille $\mathcal{B} = (v_1, v_2, \dots, v_n)$ de vecteurs de E est une base de E si \mathcal{B} est une famille libre et génératrice.

Propriété. Soit E un \mathbb{K} -espace vectoriel et $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de E.

Tout vecteur $v \in E$ s'exprime de façon **unique** comme combinaison linéaire d'éléments de \mathcal{B} . Autrement dit, il existe des scalaires $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ uniques tels que :

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$$

 $v=\lambda_1v_1+\lambda_2v_2+\cdots+\lambda_nv_n.$ $(\lambda_1,\ldots,\lambda_n)$ s'appellent les **coordonnées** du vecteur v dans la base \mathcal{B} .

Remarque. Il existe plusieurs bases possibles pour le même espace vectoriel.

- Exemples -

- 1. Soient les vecteurs $e_1 = (1,0)$ et $e_2 = (0,1)$. Alors (e_1,e_2) est une base de \mathbb{R}^2 , appelée base canonique de \mathbb{R}^2 .
- 2. Soient les vecteurs $v_1 = (3,1)$ et $v_2 = (1,2)$. Alors (v_1, v_2) forment aussi une base de \mathbb{R}^2 .
- 3. De même dans \mathbb{R}^3 , si $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$, alors (e_1, e_2, e_3) forment la **base canonique** de \mathbb{R}^3 .
- 4. Les vecteurs de \mathbb{R}^n : $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, \dots, 0)$, ..., $e_n = (0, \dots, 0, 1)$ forment une base de \mathbb{R}^n , appelée la **base canonique** de \mathbb{R}^n .
- 5. La base canonique de $\mathbb{R}_n[X]$ est $\mathcal{B} = (1, X, X^2, \dots, X^n)$. Attention, il y a n+1 vecteurs!

Théorème. (Existence d'une base)

Si E est engendré par un nombre fini de vecteurs, alors il existe une base de E.

Théorème. Si E est engendré par un nombre fini de vecteurs, alors toutes les bases ont le même nombre de vecteurs.

1.7.2 Dimension

Définition. Soit E un \mathbb{K} -espace vectoriel engendré par un nombre fini de vecteurs. Le nombre de vecteurs qui forment une base de E s'appelle **dimension** de E et se note $\dim(E)$. Si $E = \{0_E\}$ alors $\dim(E) = 0$.

Exemples –

- 1. $\dim(\mathbb{R}^n) = n$, car sa base canonique (e_1, e_2, \dots, e_n) contient n éléments.
- 2. $\dim(\mathbb{R}_n[X]) = n+1$ car une base de $\mathbb{R}_n[X]$ est $(1, X, X^2, \dots, X^n)$, son cardinal est égal à n+1.

Théorème. Soit E un espace vectoriel de dimension n.

- 1. Toute famille libre de E a **au plus** n éléments.
- 2. Toute famille génératrice de E a **au moins** n éléments.
- 3. Si $\mathcal{A} = (v_1, \dots, v_n)$ est une famille de **n** vecteurs de E, alors les propriétés suivantes sont équivalentes :
 - (i) \mathcal{A} est une base de E,
 - (ii) \mathcal{A} est une famille libre de E,
 - (iii) \mathcal{A} est une famille génératrice de E.

Remarque. Soient E un espace vectoriel de dimension n et $\mathcal{A} = (v_1, \dots, v_p)$ une famille de p vecteurs de E. Le théorème précédent nous permet de dire :

- Si p > n alors \mathcal{A} est liée.
- Si p < n alors \mathcal{A} n'est pas génératrice de E.
- Si p = n alors (\mathcal{A} libre $\Leftrightarrow \mathcal{A}$ génératrice de E)

Ce théorème très important va être très utile pour résoudre certains exercices.

Par exemple, pour montrer que n vecteurs de \mathbb{R}^n forment une base de \mathbb{R}^n , il suffira de montrer que ces vecteurs sont libres.

Théorème. Soient E un \mathbb{K} -espace vectoriel de dimension finie et F un sous-espace vectoriel de E. Alors

- 1. F est de dimension finie et on a $\dim(F) \leq \dim(E)$;
- 2. Si $\dim(F) = \dim(E)$ alors E = F.

Exemple –

Comment déterminer une base d'un sous-espace vectoriel E ? Il s'agit de determiner une famille génératrice de E

Soit $E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$ le sous-espace vectoriel de \mathbb{R}^3 .

On commence par déterminer une famille génératrice de E.

Soit $u = (x, y, z) \in E$ alors $x + y - z = 0 \Leftrightarrow z = x + y$

On a u = (x, y, x + y) = (x, 0, x) + (0, y, y) = x.(1, 0, 1) + y.(0, 1, 1).

u est combinaison linéaire des vecteurs (1,0,1) et (0,1,1), la famille de vecteurs $\{(1,0,1),(0,1,1)\}$ est génératrice de E.

Vérifions que $\{(1,0,1),(0,1,1)\}$ est une famille libre.

On considère la combinaison linéaire nulle : $\lambda_1 u_1 + \lambda_2 u_2 = 0_{\mathbb{R}^3}$, alors :

$$\begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_1 + \lambda_2 = 0 \end{cases} \Leftrightarrow \lambda_1 = \lambda_2 = 0$$

 $\{(1,0,1),(0,1,1)\}$ est libre, elle est génératrice de E, c'est donc une base de E et dimE=2.

– Exercices —

- 1. Soit l'espace vectoriel de \mathbb{R}^3 , $E=\{(x,y,z)\in\mathbb{R}^3\mid x+2y-z=0, -x+z=0\}$. Donner une base de E et la dimension de E.
- 2. Soit l'espace vectoriel de \mathbb{R}^4 , $E=\{(x,y,z,t)\in\mathbb{R}^4\mid x+2y-z=0,y+t=0,x-z-2t=0\}.$

Donner une base de E et la dimension de E.

1.7.3Rang

Définition. Soient E un espace vectoriel de dimension n et (v_1, \ldots, v_p) une famille de p vec-

Le rang de la famille (v_1,\ldots,v_p) est la dimension du sous-espace vectoriel engendré par

$$rg(v_1, \dots, v_p) = \dim(\operatorname{Vect}(v_1, \dots, v_p))$$

Propriété. Soient E un espace vectoriel de dimension n et (v_1,\ldots,v_p) une famille de p

- On a: $-0 \le \operatorname{rg}(v_1, \dots, v_p) \le n \text{ et } 0 \le \operatorname{rg}(v_1, \dots, v_p) \le p$ $-\operatorname{rg}(v_1, \dots, v_p) = p \text{ si et seulement si } (v_1, \dots, v_p) \text{ est une famille libre.}$

Théorèmes 1.7.4

Théorème. (Théorème de la base incomplète)

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Toute famille libre finie de E peut être complétée en une base de E.

Théorème. (Théorème d'extraction de base)

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

De toute famille génératrice finie de E, on peut extraire une base de E.

- Exemple 1 -

Comment compléter une famille libre en une base d'un espace vectoriel? En rajoutant des vecteurs d'une autre base pour former une famille libre.

Soient $E = \mathbb{R}^3$ et $B = \{u_1 = (2, 1, 0), u_2 = (0, 1, 1)\}$. Compléter B en une base de E.

Tout d'abord, B est une famille libre (facile à vérifier).

Pour avoir une base de E, il nous faut 3 vecteurs libres. Il faut donc rajouter un vecteur u_3 à B de sorte que $\{B, u_3\}$ forme une famille libre.

On va choisir u_3 à partir de la base canonique de \mathbb{R}^3 .

Posons $u_3 = e_1$. Vérifions si $B' = \{B, u_3\}$ est libre.

Soit $\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0$, alors

$$\begin{cases} 2\lambda_1 + \lambda_3 &= 0\\ \lambda_1 + \lambda_2 &= 0\\ \lambda_2 &= 0 \end{cases}$$

D'où, $\lambda_1 = \lambda_2 = \lambda_3 = 0$ et B' est donc une famille composée de 3 vecteurs libres dans \mathbb{R}^3 alors c'est une base de \mathbb{R}^3 .

- Exemple2 -

Comment extraire une base à partir d'une famille génératrice?

Il s'agit d'éliminer de la famille génératrice tous les vecteurs qui sont linéairement dépendants des autres.

Soient $E = \mathbb{R}^3$ et $B = \{u_1 = (1, 0, 2), u_2 = (0, 1, 1), u_3 = (1, 1, 3), u_4 = (1, 2, 1)\}.$

Sachant que B engendre E, trouver une base de E contenue dans B.

Il faut trouver 3 vecteurs libres dans B.

 $u_1 \neq 0$ est donc libre. On considère maintenant la famille $\{u_1, u_2\}$. Il est facile de voir que ces 2 vecteurs sont libres.

On continue en prenant $\{u_1, u_2, u_3\}$. On peut vérifier que cette famille est liée.

En effet, on a : $u_3 = u_1 + u_2$. Donc, le choix de u_3 ne convient pas.

On considère alors $\{u_1, u_2, u_4\}$. On vérifie que cette famille est libre. Donc, elle forme une base de E.