THE POCHOIR STENCIL COMPILER

Yuan Tang‡*, Rezaul Chowdhury*, Bradley Kuszmaul*, CK Luk†, Charles Leiserson*

‡Fudan University, *MIT CSAIL and†Intel

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

- A stencil code updates every point in a d-dimensional spatial grid at time t as a function of nearby grid points at times t−1, t−2, ..., t−k, for T time steps.
- Stencils are used in iterative PDE solvers such as Jacobi, multigrid, and AMR, as well as for image processing and geometric modeling.

EXAMPLE: 2D HEAT DIFFUSION

Let a[t,x,y] be the temperature at time t at point (x,y).

Heat equation

$$\frac{\partial a}{\partial t} = \alpha \left(\frac{\partial^2 a}{\partial x^2} + \frac{\partial^2 a}{\partial y^2} \right) \qquad \alpha \text{ is the } the \\ diffusivity.$$

 α is the **thermal**

Update rule

$$a[t,x,y] = a[t-1,x,y]$$

+ $CX \cdot (a[t-1,x+1,y] - 2 \cdot a[t-1,x,y] + a[t-1,x-1,y])$
+ $CY \cdot (a[t-1,x,y+1] - 2 \cdot a[t-1,x,y] + a[t-1,x,y-1])$

CLASSIC LOOPING IMPLEMENTATION

Implementation tricks

- Reuse storage for even and odd time steps.
- Keep a halo of ghost cells around the array with boundary values.

Conventional optimization: loop tiling.

CACHE INEFFICIENCY IN LOOPING

Example: 1D 3-point stencil

Issue: Looping is memory intensive and uses caches poorly. Assuming data-set size N, cacheblock size \mathcal{B} , and cache size \mathcal{M} <N, the number of cache misses for T time steps is $\Theta(NT/\mathcal{B})$.

CACHE-OBLIVIOUS STENCILS

Based on divide-and-conquer *cache-oblivious* [FLPR99] techniques, *trapezoidal decompositions* [FS05], are asymptotically efficient, achieving $\Theta(NT/\mathcal{MB})$ cache misses.

CACHE-OBLIVIOUS STENCILS

Based on divide-and-conquer *cache-oblivious* [FLPR99] techniques, *trapezoidal decompositions* [FS05], are asymptotically efficient, achieving $\Theta(NT/\mathcal{MB})$ cache misses.

ALGORITHM BEHIND POCHOIR

```
void TRAP(u, ta,tb, xa,xb, dxa,dxb, ya,yb, dya,dyb) {
    \Delta t = tb - ta
    \Delta x = \max\{xb-xa, (xb + dxb \Delta t) - (xa + dxa \Delta t)\}
    \Delta y = \max\{yb-ya, (yb + dyb \Delta t) - (ya + dya \Delta t)\}
    k = 0 // Try hyper space cut
    if (\Delta x \ge 2\sigma\Delta t) // cut x dimension
         Trisect the zoid with x-cuts, k += 1
    if (\Delta y \ge 2\sigma\Delta t) // cut y dimension
        Trisect the zoid with y-cuts, k += 1
    if (k > 0)
        Assign dependency levels 0, 1, ..., k to subzoids
         for i = 0 to k
             parallel for all subzoids (ta,tb, xa',xb', dxa',dxb', ya',yb', dya', dyb') with
    dependency level i
                  TRAP(ta,tb, xa',xb', dxa',dxb', ya',yb', dya',dyb')
    elseif \Delta t > 1 //time cut: recursively walk the lower and then upper zoids
            TRAP(ta, ta+\Delta t/2, xa, xb, dxa, dxb, ya, yb, dya, dyb)
            TRAP(ta+ \Delta t/2,tb, xa+dxa \Delta t/2,xb+dxb \Delta t/2, dxa,dxb, ya+dya \Delta t/2,yb+dyb \Delta t/2,
    dya, dyb)
    else // base case
         for t = ta to tb-1
             for x = xa to xb-1
                  for y = ya to yb-1
                       u((t+1) \mod 2, x, y) = u(t \mod 2, x, y) + CX * (u(t \mod 2, (x-1) \mod X, y))
   y) + u(t \mod 2, (x+1) \mod X, y) - 2u(t \mod 2, x, y)) + CY * (u(t \mod 2, x, (y-1) \mod Y))
    + u(t mod 2, x, (y+1) mod Y) - 2u(t mod 2, x, y))
             xa += dxa
             xb += dxb
             yb += dya
             yb += dyb
                                                                                                  18
```

ALGORITHM BEHIND POCHOIR

```
void TRAP(u, ta,tb, xa,xb, dxa,dxb, ya,yb, dya,dyb) {
    \Delta t = tb - ta
                                                ifficult to write!!
    \Delta x = \max\{xb-xa, (xb + dxb \Delta t) - (xa + dxa \Delta t)\}
    \Delta y = \max\{yb-ya, (yb + dyb \Delta t) - (ya + dya \Delta t)\}
    k = 0 // Try hyper space cut
    if (\Delta x \ge 2\sigma\Delta t) // cut x dimension
        Trisect the zoid with x-cuts, k += 1
    if (\Delta y \ge 2\sigma\Delta t) // cut y dimension
        Trisect the zoid with y-cuts, k += 1
    if (k > 0)
        Assign dependency levels 0, 1, ..., k to subzoids
        for i = 0 to k
             parallel for all subzoids (ta,tb, xa',xb', dxa',dxb', ya',yb', dya', dyb') with
   dependency level i
                 TRAP(ta,tb, xa',xb', dxa',dxb', ya',yb', dya',dyb')
    elseif \Delta t > 1 //time cut: recursively walk the lower and then upper zoids
            TRAP(ta, ta+\Delta t/2, xa, xb, dxa, dxb, ya, yb, dya, dyb)
            TRAP(ta+ \Delta t/2,tb, xa+dxa \Delta t/2,xb+dxb \Delta t/2, dxa,dxb, ya+dya \Delta t/2,yb+dyb \Delta t/2,
   dya, dyb)
    else // base case
        for t = ta to tb-1
             for x = xa to xb-1
                 for y = ya to yb-1
                      u((t+1) \mod 2, x, y) = u(t \mod 2, x, y) + CX * (u(t \mod 2, (x-1) \mod X, y))
   y) + u(t \mod 2, (x+1) \mod X, y) - 2u(t \mod 2, x, y)) + CY * (u(t \mod 2, x, (y-1) \mod Y))
   + u(t mod 2, x, (y+1) mod Y) - 2u(t mod 2, x, y))
             xa += dxa
             xb += dxb
             yb += dya
             yb += dyb
```

POCHOIR STENCIL COMPILER

- Domain-specific compiler programmed in Haskell that compiles a stencil language embedded in C++, a traditionally difficult language in which to embed a separately compiled domain-specific language.
- Employs a novel cache-oblivious algorithm for arbitrary d-dimensional grids which is parallelized using Intel Cilk Plus.
- Makes it straightforward to code arbitrary periodic and nonperiodic boundary conditions, including Neumann and Dirichlet conditions.
- Implements a variety of stencil-specific optimizations.
- The stencil specification can be executed and debugged without the Pochoir compiler.

5-point stencil on a torus

Intel C++ compiler 12.0.0 with Cilk Plus on 12 core Intel core i7 (Nehalem) pochoir@csail.mit.edu

3D WAVE EQUATION

25-point stencil on a nonperiodic domain

Intel C++ compiler 12.0.0 with Cilk Plus on 12 core Intel core i7 (Nehalem) pochoir@csail.mit.edu

3D LATTICE BOLTZMANN METHOD

19-point stencil on a nonperiodic domain

Intel C++ compiler 12.0.0 with Cilk Plus on 12 core Intel core i7 (Nehalem) pochoir@csail.mit.edu

AUTO-TUNED VS POCHOIR

	Berkeley Autotuner	Pochoir
CPU	Xeon X5550	Xeon X5650
Clock	2.66GHz	2.66 GHz
cores/socket, total	4, 8	6, 12
Hyperthreading	Enabled	Disabled
L1 data cache/core	32KB	32KB
L2 cache/core	256KB	256KB
L3 cache/socket	8MB	12 MB
Peak computation	85 GFLOPS	120 GFLOPS
Compiler	icc 10.0.0	icc 12.0.0
Linux kernel		2.6.32
Threading model	Pthreads	Cilk Plus
Problem Size	$258^3 * 1$	$258^3 * 200$
3D 7-point 8 cores	2.0 GStencil/s	2.49 GStencil/s
	15.8 GFLOPS	19.92 GFLOPS
3D 27-point 8 cores	0.95 GStencil/s	0.88 GStencil/s
	28.5 GFLOPS	26.4 GFLOPS

PUBLICATIONS

- The Pochoir Stencil Compiler, Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and Charles E. Leiserson, SPAA'11: The 23rd ACM Symposium on Parallelism in Algorithms and Architectures, June 4-6, San Jose, CA, USA.
- Coding Stencil Computation using the Pochoir Stencil-Specification language, Yuan Tang, Rezaul Alam Chowdhury, Chi-Keung Luk, and Charles E. Leiserson, HotPar'11: 3rd USENIX Workshop on Hot Topics in Parallelism, May 26-27, Berkeley, CA, USA.

THANK YOU!

EMAIL POCHOIR@CSAIL.MIT.EDU TO REQUEST A COPY OF POCHOIR COMPILER

OUTLINE

- FUNCTIONAL SPECIFICATION
- How the Pochoir System Works
- ALGORITHMS
- OPTIMIZING STRATEGIES
- Conclusion

OUTLINE

- FUNCTIONAL SPECIFICATION
- How the Pochoir System Works
- ALGORITHMS
- OPTIMIZING STRATEGIES
- CONCLUSION

FUNCTIONAL SPECIFICATION

- Embedded in C++.
- Directly executable and debuggable via any native C++ tool chain.
- Supports arbitrary d-dimensional rectangular grids.
- The stencil shape can be arbitrary.
- A point at time t can depend on points at time t-1, t-2, ..., t-k. ---- arbitrary depth
- Both periodic and nonperiodic boundary conditions can be programmed.

```
1 Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0;
 3 Pochoir_Boundary_End
 4 int main(void) {
     Pochoir Shape 2D 2D five pt[6]
       = \{\{0,0,0\}, \{-1,0,0\}, \{-1,1,0\}, \{-1,-1,0\}, \{-1,0,-1\}, \{-1,0,1\}\};
    Pochoir 2D heat(2D five pt);
 6
     Pochoir Array 2D(double) a(X,Y);
     a.Register Boundary(zero bdry);
8
     heat.Register Array(a);
 9
     Pochoir Kernel 2D(kern, t, x, y)
10
       a(t,x,y) = a(t-1,x,y)
11
                    + 0.125*(a(t-1,x+1,y) - 2.0*a(t-1,x,y) + a(t-1,x-1,y))
                    + 0.125*(a(t-1,x,y+1) - 2.0*a(t-1,x,y) + a(t-1,x,y-1));
12
     Pochoir Kernel End
     for (int x = 0; x < X; ++x)
13
       for (int y = 0; y < Y; ++y)
         a(0,x,y) = rand();
     heat.Run(T, kern);
14
     for (int x = 0; x < X; ++x)
15
       for (int y = 0; y < Y; ++y)
16
         cout << a(T,x,y);
17
     return 0;
18
19 }
```

```
Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0;
   Pochoir_Boundary_End
 4 int main(void) {
     Pochoir_Shape_2D 2D_five_pt[6]
       = \{\{0,0,0\}, \{-1,0,0\}, \{-1,1,0\}, \{-1,-1\}\}
                                                Declare a kernel function kern with
     Pochoir 2D heat(2D five pt);
 6
                                                time parameter t and spatial
     Pochoir Array 2D(double) a(X,Y);
                                                parameters x and y.
     a.Register Boundary(zero bdry);
 8
     heat.Register Array(a);
 9
     Pochoir_Kernel_2D(kern, t, x, y)
10
       a(t,x,y) = a(t-1,x,y)
11
                    + 0.125*(a(t-1,x+1,y) - 2.0*a(t-1,x,y) + a(t-1,x-1,y))
                    + 0.125*(a(t-1,x,y+1) - 2.0*a(t-1,x,y) + a(t-1,x,y-1));
     Pochoir Kernel End
12
     for (int x = 0; x < X; ++x)
13
       for (int y = 0; y < Y; ++y)
         a(0,x,y) = rand();
     heat.Run(T, kern);
14
     for (int x = 0; x < X; ++x)
15
       for (int y = 0; y < Y; ++y)
16
         cout << a(T,x,y);
17
     return 0;
18
19 }
```

```
Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0;
   Pochoir_Boundary_End
 4 int main(void) {
     Pochoir Shape 2D 2D five pt[6]
       = \{\{0,0,0\}, \{-1,0,0\}, \{-1,1,0\}, \{-1,-1,0\}, \{-1,0,-1\}, \{-1,0,1\}\};
     Pochoir_2D heat(2D_five_pt);
 6
     Pochoir Array 2D(double) a(X,Y);
     a.Register Boundary(zero bdry);
 8
     heat.Register Array(a);
 9
     Pochoir_Kernel_2D(kern, t, x, y)
10
       a(t,x,y) = a(t-1,x,y)
11
                    + 0.125*(a(t-1,x+1,y))
                    + 0.125*(a(t-1,x,y+1))
12
     Pochoir Kernel End
     for (int x = 0; x < X; ++x)
13
       for (int y = 0; y < Y; ++y)
         a(0,x,y) = rand();
     heat.Run(T, kern);
14
     for (int x = 0; x < X; ++x)
15
       for (int y = 0; y < Y; ++y)
16
         cout << a(T,x,y);
17
     return 0;
18
19 }
```

Declare the 2-dimensional *Pochoir shape* 2D five pt as a list of 6 cells. Each cell specifies the relative offset of indices used in the kernel function, e.g., for a(t,x,y), we specify the corresponding cell $\{0,0,0\}$, for a(t-1,x+1,y), we specify $\{-1,1,0\}$, and so on.

```
Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0;
   Pochoir_Boundary_End
 4 int main(void) {
     Pochoir Shape 2D 2D five pt[6]
       = \{(0,0,0), \{-1,0,0\}, \{-1,1,0\}, \{-1,-1,0\}, \{-1,0,-1\}, \{-1,0,1\}\};
     Pochoir_AD heat(2D_five_pt);
 6
     Pochoir_Array_2D(double) a(X,Y);
     a.Register Boundary(zero bdry);
8
     heat.Register Array(a);
 9
     Pochoi Kernel 2D(kern, t, x, y)
10
      (a(t,x,y)) = a(t-1,x,y)
11
                    + 0.125*(a(t-1,x+1,y))
                    + 0.125*(a(t-1,x,y+1))
12
     Pochoir Kernel End
     for (int x = 0; x < X; ++x)
13
       for (int y = 0; y < Y; ++y)
         a(0,x,y) = rand();
     heat.Run(T, kern);
14
     for (int x = 0; x < X; ++x)
15
       for (int y = 0; y < Y; ++y)
16
         cout << a(T,x,y);
17
     return 0;
18
19 }
```

Declare the 2-dimensional *Pochoir shape* 2D five pt as a list of 6 cells. Each cell specifies the relative offset of indices used in the kernel function, e.g., for a(t,x,y), we specify the corresponding cell $\{0,0,0\}$, for a(t-1,x+1,y), we specify $\{-1,1,0\}$, and so on.

```
Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0;
   Pochoir_Boundary_End
 4 int main(void) {
     Pochoir Shape 2D 2D five pt[6]
 5
       = \{\{0,0,0\}, \{-1,0,0\}, \{-1,1,0\}, \{-1,-1,0\}, \{-1,0,-1\}, \{-1,0,1\}\};
     Pochoir 2D heat(2D five pt);
 6
     Pochoir Array 2D(double) a(X,Y);
     a.Register Boundary(zero bdry);
 8
     heat.Register Array(a);
 9
     Pochoir Kernel 2D(kern, t, x, y)
10
       a(t,x,y) = (a(t-1,x,y))
11
                    + 0.125*(a(t-1,x+1,y))
                    + 0.125*(a(t-1,x,y+1))
12
     Pochoir Kernel End
     for (int x = 0; x < X; ++x)
13
       for (int y = 0; y < Y; ++y)
         a(0,x,y) = rand();
     heat.Run(T, kern);
14
     for (int x = 0; x < X; ++x)
15
       for (int y = 0; y < Y; ++y)
16
         cout << a(T,x,y);
17
     return 0;
18
19 }
```

Declare the 2-dimensional *Pochoir shape* 2D five pt as a list of 6 cells. Each cell specifies the relative offset of indices used in the kernel function, e.g., for a(t,x,y), we specify the corresponding cell $\{0,0,0\}$, for a(t-1,x+1,y), we specify $\{-1,1,0\}$, and so on.

```
Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0;
   Pochoir_Boundary_End
 4 int main(void) {
     Pochoir Shape 2D 2D five pt[6]
 5
        = \{\{0,0,0\}, \{-1,0,0\}, \{-1,1,0\}, \{-1,-1,0\}, \{-1,0,-1\}, \{-1,0,1\}\};
     Pochoir_2D heat(2D_five_pt);
 6
     Pochoir_Array_2D(double) a(X,Y);
                                               Declare the 2-dimensional Pochoir shape
     a.Register Boundary(zero bdrv);
 8
     heat.Register Array(a);
                                               2D five pt as a list of 6 cells. Each cell
 9
                                               specifies the relative offset of indices
     Pochoir Kernel 2D(kern, t, x y)
10
        a(t,x,y) = a(t-1,x,y)
11
                                               used in the kernel function, e.g., for
                     + 0.125*(a(t-1,x+1,y))
                                               a(t,x,y), we specify the corresponding
                     + 0.125*(a(t-1,x,y+1))
                                               cell \{0,0,0\}, for a(t-1,x+1,y), we
12
     Pochoir Kernel End
                                               specify \{-1,1,0\}, and so on.
     for (int x = 0; x < X; ++x)
13
        for (int y = 0; y < Y; ++y)
          a(0,x,y) = rand();
     heat.Run(T, kern);
14
     for (int x = 0; x < X; ++x)
15
        for (int y = 0; y < Y; ++y)
16
```

cout << a(T,x,y);

return 0;

17

18

19 }

```
Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0:
   Pochoir_Boundary_End
 4 int main(void) {
     Pochoir_Shape_2D 2D_five_pt[6]
       = \{\{0,0,0\}, \{-1,0,0\}, \{1,1,0\}, \{-1,-1,0\}, \{-1,0,-1\}, \{-1,0,1\}\};
     Pochoir_2D heat(2D_five_pt);
 6
     Pochoir Array 2D(double) a(X,Y);
                                                Declare a boundary function
     a.Register Boundary(zero bdry);
 8
                                                zero bdry on the 2-dimensional
     heat.Register Array(a);
 9
                                                Pochoir array arr indexed by time
     Pochoir_Kernel_2D(kern, t, x, y)
10
       a(t,x,y) = a(t-1,x,y)
                                                coordinate t and spatial coordinates x
11
                    + 0.125*(a(t-1,x+1,y))
                                                and y, which always returns 0.
                    + 0.125*(a(t-1,x,y+1))
12
     Pochoir Kernel End
     for (int x = 0; x < X; ++x)
13
       for (int y = 0; y < Y; ++y)
         a(0,x,y) = rand();
     heat.Run(T, kern);
14
     for (int x = 0; x < X; ++x)
15
       for (int y = 0; y < Y; ++y)
16
         cout << a(T,x,y);
17
     return 0;
18
```

19 }

BOUNDARY CONDITIONS

Nonperiodic zero boundary

```
Pochoir_Boundary_2D(zero_bdry, arr, t, x, y)
   return 0;
Pochoir_Boundary_End
```

Periodic (toroidal) boundary

Cylindrical boundary

```
#define mod(r,m) (((r) % (m)) + ((r)<0)?(m):0)
Pochoir_Boundary_2D(cylinder, arr, t, x, y)
  if (x < 0) || (x >= arr.size(1))
    return 0;
  return arr.get( t, x, mod(y, arr.size(0)) );
Pochoir_Boundary_End
    pochoir@csail.mit.edu
```

BOUNDARY CONDITIONS (CONT.)

Dirichlet boundary

```
Pochoir_Boundary_2D(dirichlet, arr, t, x, y)
  return 100+0.2*t;
Pochoir_Boundary_End
```

Neumann boundary

```
Pochoir_Boundary_2D(neumann, arr, t, x, y)
int xx(x), yy(y);
  if (x<0) xx = 0;
  if (x>=arr.size(1)) xx = arr.size(1);
  if (y<0) yy = 0;
  if (y>=arr.size(0)) yy = arr.size(0);
  return arr.get(t, xx, yy);
Pochoir_Boundary_End
```

2D HEAT EQUATION

```
1 Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0;
  Pochoir_Boundary_End
 4 int main(void) {
     Pochoir_Shape_2D 2D_five_pt[6]
       = \{\{0,0,0\}, \{-1,1,0\}, \{-1,0,0\}, \{-1,-1,0\}, \{-1,0,-1\}, \{-1,0,1\}\};
     Pochoir 2D heat(2D five pt);
 6
     Pochoir Array 2D(double) a(X,Y);
     a.Register Boundary(zero bdry);
 8
     heat.Register Array(a);
 9
     Pochoir_Kernel_2D(kern, t, x, y)
10
       a(t,x,y) = a(t-1,x,y)
11
                    + 0.125*(a(t-1,x+1,y) - 2.0*a(t-1,x,y) + a(t-1,x-1,y))
                    + 0.125*(a(t-1,x,y+1) - 2.0*a(t-1,x,y) + a(t-1,x,y-1));
     Pochoir Kernel End
12
13
     for (int x = 0; x < X; ++x)
                                               Initialize all points of the grid at time 0
       for (int y = 0; y < Y; ++y)
                                               to a random value.
         a(0,x,y) = rand();
     heat.Run(T, kern);
14
     for (int x = 0; x < X; ++x)
15
       for (int y = 0; y < Y; ++y)
16
         cout << a(T,x,y);
17
     return 0;
18
19 }
```

2D HEAT EQUATION

```
Pochoir Boundary 2D(zero bdry, arr, t, x, y)
     return 0;
   Pochoir_Boundary_End
 4 int main(void) {
     Pochoir Shape 2D 2D five pt[6]
       = \{\{0,0,0\}, \{-1,1,0\}, \{-1,0,0\}, \{-1,-1,0\}, \{-1,0,-1\}, \{-1,0,1\}\};
     Pochoir 2D heat(2D five pt);
 6
     Pochoir Array 2D(double) a(X,Y);
     a.Register Boundary(zero bdry);
 8
     heat.Register Array(a);
 9
     Pochoir_Kernel_2D(kern, t, x, y)
10
       a(t,x,y) = a(t-1,x,y)
11
                    + 0.125*(a(t-1,x+1,y) - 2.0*a(t-1,x,y) + a(t-1,x-1,y))
                    + 0.125*(a(t-1,x,y+1) - 2.0*a(t-1,x,y) + a(t-1,x,y-1));
12
     Pochoir Kernel End
     for (int x = 0; x < X; ++x)
13
                                              Run a stencil computation on the Pochoir
       for (int y = 0; y < Y; ++y)
                                              object heat for T time steps using kernel
         a(0,x,y) = rand();
                                              function kern. The Run method can be
     heat.Run(T, kern);
14
                                              called multiple times.
     for (int x = 0; x < X; ++x)
15
       for (int y = 0; y < Y; ++y)
16
```

cout << a(T,x,y);

return 0;

17

18

19 }

OUTLINE

- FUNCTIONAL SPECIFICATION
- How the Pochoir System Works
- ALGORITHMS
- OPTIMIZING STRATEGIES
- Conclusion

TWO-PHASE COMPILATION STRATEGY

Phase 1 goal: Check functional correctness

POCHOIR GUARANTEE

If a stencil program compiles and runs with the Pochoir template library during Phase 1,

Intel C++

Compiler

Postsource

Pochoir then no errors Spec. Cilk Code Compiler will occur during Pochoir Phase 2 when it is **Template** Library compiled with the Pochoir compiler or during the subsequent running of the optimized binary.

Pochoir

Optimized

Parallel Code

BENEFITS OF THE POCHOIR GUARANTEE

- The Pochoir compiler can parse as much of the programmer's C++ code as it is able without worrying about parsing it all.
- If the Pochoir compiler can "understand" the code, which it can in the common case, it can perform strong optimizations.
- If the Pochoir compiler cannot "understand" the code, it can treat the code as correct uninterpreted C++ text, confident that all the syntax- and type-checking was performed during Phase 1.

OUTLINE

- FUNCTIONAL SPECIFICATION
- How the Pochoir System Works
- ALGORITHMS
- OPTIMIZING STRATEGIES
- Conclusion

Based on divide-and-conquer *cache-oblivious* [FLPR99] techniques, *trapezoidal decompositions* [FS05], are asymptotically efficient, achieving $\Theta(NT/\mathcal{MB})$ cache misses.

Based on divide-and-conquer *cache-oblivious*[FLPR99] techniques, *trapezoidal decompositions*[FS05], are asymptotically efficient, achieving $\Theta(NT/\mathcal{MB})$ cache misses.

Based on divide-and-conquer *cache-oblivious*[FLPR99] techniques, *trapezoidal decompositions*[FS05], are asymptotically efficient, achieving $\Theta(NT/\mathcal{MB})$ cache misses.

Based on divide-and-conquer *cache-oblivious*[FLPR99] techniques, *trapezoidal decompositions*[FS05], are asymptotically efficient, achieving $\Theta(NT/\mathcal{MB})$ cache misses.

Based on divide-and-conquer *cache-oblivious*[FLPR99] techniques, *trapezoidal decompositions*[FS05], are asymptotically efficient, achieving $\Theta(NT/\mathcal{MB})$ cache misses.

How to parallelize the algorithm?

PARALLEL SPACE CUTS

A *parallel space cut* [FS07] produces two *black* trapezoids that can be executed in parallel and one *gray* trapezoid that must execute in series with the black trapezoids.

PARALLEL SPACE CUTS

A *parallel space cut* [FS07] produces two *black* trapezoids that can be executed in parallel and one *gray* trapezoid that must execute in series with the black trapezoids.

PARALLEL SPACE CUTS

+ How to extend to arbitrary d-dimensional spatial-time grid? inverted trapezoid X

A *parallel space cut* [FS07] produces two *black* trapezoids that can be executed in parallel and one *gray* trapezoid that must execute in series with the black trapezoids.

SERIAL SPACE CUTTING

```
void walk(u, t0,t1, x0,x1,dx0,dx1, y0,y1,dy0,dy1, z0,z1,dz0,dz1) {
   int dt = t1 - t0, dx = \max((x1-x0), ((x1+dx1*dt)-(x0+dx0*dt)),
        dy = max((y1-y0), ((y1+dy1*dt)-(y0+dy0*dt)),
        dz = max((z1-z0), ((z1+dz1*dt)-(z0+dz0*dt));
   if (dx)=DX THRESH \&\&dx>=4*sigma x*dt) /* cut x dimension */
       if (x1-x0 == dx) { /* cut an upright trapezoid */
          /* spawn black trapezoids */
              cilk_spawn walk(u, t0,t1, x0,x0+dx/2,dx0,-sigma_x,
                             y0,y1,dy0,dy1, z0,z1,dz0,dz1);
             walk(u, t0,t1, x0+dx/2,x1,sigma x,dx1,
                  y0,y1,dy0,dy1, z0,z1,dz0,dz1);
              cilk sync;
             /* spawn gray trapezoid */
             walk(u, t0,t1, x0+dx/2,x0+dx/2,-sigma x,sigma x,
                  y0, y1, dy0, dy1, z0, z1, dz0, dz1);
              } else { /* cut an inverted trapezoid */
                                              Spatial dimensions
     } else if (.../* cut y dimension */) {
                                             are cut one at a time.
     } else if (.../* cut z dimension */) {
     } else if (.../* cut t dimension */) {
     } else { /* call the base case */
         base_case(u, t0,t1, x0,x1,dx0,dx1, y0,y1,dy0,dy1, z0,z1,dz0,dz1);
```


Spawn 11, 13, 31, 33 Sync Spawn 12, 32 Sync Spawn 21, 23 Sync Spawn 22


```
Spawn 11, 13, 31, 33
Sync
Spawn 12, 32
Sync
Spawn 21, 23
Sync
Spawn 22
```


HYPER SPACE CUT

- Space Cut: Evaluate and assign dependency levels to as many spatial dimensions as possible.
 Spawn and sync subtrapezoids according to dependency levels.
- *Time Cut*: The same as Sequential Space Cut
- Base Case: The same as Sequential Space Cut

HYPER SPACE CUT

Spawn 11, 13, 31, 33 Sync Spawn 21, 23, 12, 32 Sync Spawn 22

SERIAL SPACE CUT VS HYPER SPACE CUT

HYPER SPACE CUT

Lemma 3: All (2r+1)k subtrapezoids created by a hyper space cut on $k \ge 1$ of the $d \ge k$ spatial dimensions of a (d+1)-dimensional trapezoid can be evaluated in k+1 parallel steps

HYPER SPACE CUT

Lemma 3: All (2r+1)k

subtrapezoids created by a hyper space cut on $k \ge 1$ of the $d \ge k$ spatial dimensions of a (d+1)-dimensional trapezoid can be evaluated in k+1 parallel steps

Lemma 2: All (2r+1)k

subtrapezoids created by a serial space cut on $k \ge 1$ of the $d \ge k$ spatial dimensions of a (d+1)-dimensional trapezoid can be evaluated in 2^k parallel steps.

SUPERIORITY OF HYPER SPACE CUTS

Theorem. On a d-dimensional spatial grid with all spatial dimensions roughly equal to the time dimension h, Pochoir's hyperspace-cutting algorithm achieves $\Theta(h^{d+1-\lg(d+2)}/d)$ parallelism, while Frigo and Strumpen's original serial spacecutting algorithm achieves only $\Theta(h^{d+1-\lg(2^{d+1})}) = O(h)$ parallelism.

Both algorithms have the same asymptotic cache complexity.

Cache Miss Ratio of heat_2D_NP

Cache Miss Ratio of 3dfd

OUTLINE

- FUNCTIONAL SPECIFICATION
- How the Pochoir System Works
- ALGORITHMS
- OPTIMIZING STRATEGIES
- RESULTS
- CONCLUSION

OPTIMIZATIONS

- Two code clones
- Unifying the handling of periodic and nonperiodic boundary conditions
- Automatic selection of traversal strategy
 - -split-macro-shadow
 - -split-opt-pointer
- Coarsening of base cases

- The *slow clone* handles regions that contain boundaries and checks for out-of-range grid points.
- The *fast clone* handles the larger interior regions which require no range checking.

- The slow clone handles regions that contain boundaries and checks for out-of-range grid points.
- The *fast clone* handles the larger interior regions which require no range checking.

During the recursive algorithm*, the fast clone is used whenever possible.

^{*}The actual algorithm decomposes the grid into trapezoids, not rectangles.

- The slow clone handles regions that contain boundaries and checks for out-of-range grid points.
- The *fast clone* handles the larger interior regions which require no range checking.

During the recursive algorithm*, the fast clone is used whenever possible.

Once the fast clone is used for a region, the fast clone is always used for its subregions.

^{*}The actual algorithm decomposes the grid into trapezoids, not rectangles.

- The slow clone handles regions that contain boundaries and checks for out-of-range grid points.
- The *fast clone* handles the larger interior regions which require no range checking.

During the recursive algorithm*, the fast clone is used whenever possible.
Once the fast clone is used for a region, the fast clone is always used for its subregions.

^{*}The actual algorithm decomposes the grid into trapezoids, not rectangles.

- The slow clone handles regions that contain boundaries and checks for out-of-range grid points.
- The *fast clone* handles the larger interior regions which require no range checking.

During the recursive algorithm*, the fast clone is used whenever possible.
Once the fast clone is used for a region, the fast clone is always used for its subregions.

^{*}The actual algorithm decomposes the grid into trapezoids, not rectangles.

A UNIFIED ALGORITHMIC FRAMEWORK FOR BOTH PERIODIC AND NONPERIODIC BOUNDARY CONDITIONS

A UNIFIED ALGORITHMIC FRAMEWORK FOR BOTH PERIODIC AND NONPERIODIC BOUNDARY CONDITIONS

OUTLINE

- FUNCTIONAL SPECIFICATION
- How the Pochoir System Works
- ALGORITHMS
- OPTIMIZING STRATEGIES
- Conclusion

THE POCHOIR PROJECT

- Pochoir version 1.0 has been released under GNU GPL v3.0. Please email your name and affiliation to pochoir@csail.mit.edu to request a copy of Pochoir compiler.
- We will be interested in user feedback on usability, the Pochoir language, performance issues, feature requests, and anything else.
- We would like to collect more examples and benchmarks of stencil computations.

FUTURE WORK

- Irregular computing domains
- Extending to Cluster (MPI)
- And much more...

THANK YOU!

EMAIL POCHOIR@CSAIL.MIT.EDU TO REQUEST A COPY OF POCHOIR COMPILER