Cálculo Vectorial

Grandezas Escalares e Vectoriais

- Grandezas Escalares
 - Representam quantidades que ficam bem determinadas por um número, como por exemplo
 - Tempo
 - Temperatura
 - Pressão
 - ..
- · Grandezas Vectoriais:
 - Representam quantidades que n\u00e3o ficam completamente definidas por um n\u00e1mero, como por exemplo
 - Posição
 - Velocidade
 - Aceleração
 - Força
 - ...

Vectores

- Um vector representa-se
 - Analiticamente
 - Por uma letra sobre a qual é desenhada uma seta

ā

Graficamente

- Módulo

• Por um segmento de recta orientado, compreendendo

Cálculo Vectorial

Vectores

- A direcção do vector é definida pela recta suporte, ou linha de acção
 - Colinear com o próprio vector
- O sentido é o que vai da origem para a extremidade do vector
- O módulo do vector é o número positivo que mede o comprimento do segmento de recta orientado
 - Representa-se por $|\vec{a}|$ ou \vec{a}
 - Se o módulo de um vector for igual a zero, o vector diz-se um vector nulo e representa-se por $\vec{0}$

Cálculo Vectorial **Vectores** Vectores com o mesmo módulo, mas direcções diferentes (logo não se podem relacionar os sentidos) Vectores com Vectores com a mesma a mesma direcção e direcção e módulo, mas sentido, mas sentidos módulos diferentes diferentes (opostos)

Cálculo Vectorial

Vector Ligado

- Para ficar completamente definido, é necessário conhecer
 - A sua origem (ponto de aplicação)
 - A sua direcção
 - O seu sentido
 - O seu módulo

Vector Deslizante

- Para ficar completamente definido, é necessário conhecer
 - A sua recta suporte
 - O seu sentido
 - O seu módulo
- O ponto de aplicação pode ser tomado arbitrariamente sobre a recta suporte

Cálculo Vectorial

Vector Livre

- Para ficar completamente definido, é necessário conhecer
 - A sua direcção
 - O seu sentido
 - O seu módulo
- A recta suporte pode ser qualquer uma, desde que tenha a direcção do vector

Multiplicação de um Vector por um Escalar

- Seja k um número real e \vec{v} um vector
- A multiplicação do escalar k pelo vector \vec{v} tem por resultado um vector, $\vec{w} = k \ \vec{v}$
 - Com a mesma direcção do vector \vec{v}
 - O mesmo sentido de \vec{v} se k > 0
 - Sentido contrário ao de \vec{v} se k < 0
 - E módulo igual ao produto dos módulos de k e \vec{v} \longrightarrow $|\vec{w}| = |k| |\vec{v}|$

$$k = -0.5$$

$$\vec{W} = k \vec{V}$$

Vector Unitário

- Um vector cujo módulo é igual à unidade chama-se vector unitário, ou versor
- Um versor é utilizado para indicar uma orientação (direcção) e sentido positivo no espaço
- Para obter o versor com a mesma direcção e sentido de um dado vector, basta dividir esse vector pelo seu módulo

Projecção de um Vector

- Consideremos um vector \vec{p} , que faz um ângulo θ com uma recta ρ
- A projecção p_{ρ} do vector \vec{p} sobre a recta ρ , é um escalar igual ao comprimento do segmento de recta compreendido entre duas rectas perpendiculares à recta ρ , e que passam pela origem e extremidade do vector \vec{p}
- O vector \vec{p}_{ρ} resultante da projecção do vector \vec{p} sobre a recta ρ , é dado pelo produto do escalar p_{ρ} pelo versor $\hat{\rho}$

$$p_{\rho} = |\vec{p}| \cos(\theta)$$

$$\vec{p}_{\rho} = p_{\rho} \hat{\rho}$$

Cálculo Vectorial

Projecção de um Vector

- Conhecendo o ângulo θ que o vector \vec{p} faz com a recta ρ , podemos projectá-lo sobre uma recta π perpendicular à recta ρ
- O módulo da projecção do vector \vec{p} sobre a recta π é igual ao comprimento do segmento de recta compreendido entre duas rectas perpendiculares à recta π , e que passam pela origem e extremidade do vector \vec{p}
- O vector \vec{p}_{π} resultante da projecção do vector \vec{p} sobre a recta π , é dado pelo produto da projecção p_{π} pelo versor $\hat{\pi}$

- É necessário ter em atenção o sinal

$$|p_{\pi}| = |\vec{p}| |\operatorname{sen}(\theta)|$$

$$\vec{p}_{\pi} = \Theta | p_{\pi} | \hat{\pi}$$

Representação Cartesiana - 2D

- Um sistema cartesiano a duas dimensões é definido por duas rectas orientadas e perpendiculares entre si
 - A recta vertical designa-se normalmente por eixo dos YY
 - A recta horizontal por eixo dos XX
- Um ponto P fica perfeitamente definido por um par ordenado do tipo (x,y).

Cálculo Vectorial

Representação Cartesiana - 2D

- O versor do eixo dos XX designa-se, normalmente, por î
- O versor do eixo dos YY designa-se, normalmente, por ĵ
- - V_x a projecção de V segundo o eixo dos XX
 - $V_{_{V}}$ a projecção de \vec{V} segundo o eixo dos YY
- O vector \vec{v} escreve-se analiticamente como $\vec{v} = v_x \hat{i} + v_y \hat{j}$

Representação Cartesiana - 3D

- Um sistema cartesiano a três dimensões é definido por três rectas orientadas e perpendiculares entre si, definindo os eixos dos XX, YY e ZZ
- O versor do eixo dos ZZ é normalmente designado por \hat{k}
- Um vector com origem em O, extremidade em P, e componentes v_x , v_y e v_z , representa-se analiticamente por $\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$

Cálculo Vectorial

Adição e Subtracção Analítica de Vectores

• Sejam \vec{v} e \vec{u} dois vectores dados pelas expressões analíticas

$$\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$$

$$\vec{u} = u_x \,\hat{\mathbf{i}} + u_y \,\hat{\mathbf{j}} + u_z \,\hat{\mathbf{k}}$$

• O vector \vec{w} , igual à soma ou diferença entre os vectores \vec{v} e \vec{u} , é dado por

$$\begin{split} \vec{w} &= \vec{v} \pm \vec{u} \\ &= w_x \hat{i} + w_y \hat{j} + w_z \hat{k} \\ &= (v_x \pm u_x) \hat{i} + (v_y \pm u_y) \hat{j} + (v_z \pm u_z) \hat{k} \end{split}$$

Multiplicação de um Vector por um Escalar

• Consideremos um vector \vec{v} e um escalar λ , tais que

$$\vec{\mathbf{v}} = \mathbf{v}_{x} \,\hat{\mathbf{i}} + \mathbf{v}_{y} \,\hat{\mathbf{j}} + \mathbf{v}_{z} \,\hat{\mathbf{k}}$$

 $\lambda = escalar$

• O vector $\vec{\mathbf{w}}$ resultante do produto do escalar λ pelo vector $\vec{\mathbf{v}}$, é dado por

$$\vec{W} = \lambda \vec{V} = W_x \hat{i} + W_y \hat{j} + W_z \hat{k}$$

$$= \lambda \left(v_x \, \hat{\mathbf{i}} + v_y \, \hat{\mathbf{j}} + v_z \, \hat{\mathbf{k}} \right)$$

$$= \lambda v_x \,\hat{\mathbf{i}} + \lambda v_y \,\hat{\mathbf{j}} + \lambda v_z \,\hat{\mathbf{k}}$$

• Ou seja, cada uma das componentes do vector resultante, é igual ao produto do escalar pela respectiva componente do vector inicial

Cálculo Vectorial

Módulo de um Vector

Num sistema de eixos ortogonal, o módulo do vector

$$\vec{v} = v_x \,\hat{\mathbf{i}} + v_y \,\hat{\mathbf{j}} + v_z \,\hat{\mathbf{k}}$$

é dado por

$$V = \sqrt{V_x^2 + V_y^2 + V_z^2}$$

Pelo teorema de Pitágoras, $v^2 = v_{xy}^2 + v_z^2$

Projectando v_{xy} nos eixos dos XX e dos YY, e aplicando o teorema de Pitágoras, $v_{xy}^2 = v_x^2 + v_y^2$

Substituindo na equação anterior, $v^2 = v_x^2 + v_y^2 + v_z^2$

Produto Escalar (ou Interno) entre dois Vectores

O produto escalar entre os vectores \vec{u} e \vec{v} é um escalar dado por

$$\vec{u} \cdot \vec{v} = u \, v \, \cos(\theta)$$

- Propriedades do produto escalar:
 - Comutativo \longrightarrow $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
 - Distributivo em relação à adição \longrightarrow $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

Cálculo Vectorial

Produto Escalar (ou Interno) entre dois Vectores

• Sejam \vec{u} e \vec{v} dois vectores dados por

$$\vec{u} = u_x \hat{i} + u_y \hat{j} + u_z \hat{k}$$

$$\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$$

· Calculemos o produto escalar

$$\vec{u} \cdot \vec{v} = \left(u_x \hat{\mathbf{i}} + u_y \hat{\mathbf{j}} + u_z \hat{\mathbf{k}}\right) \cdot \left(v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}\right)$$

· Aplicando a propriedade distributiva do produto escalar

$$\vec{u} \cdot \vec{v} = (u_x \hat{i} + u_y \hat{j} + u_z \hat{k}) \cdot (v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$$

$$= u_x v_x \hat{i} \cdot \hat{i} + u_x v_y \hat{i} \cdot \hat{j} + u_x v_z \hat{i} \cdot \hat{k} +$$

$$+ u_y v_x \hat{j} \cdot \hat{i} + u_y v_y \hat{j} \cdot \hat{j} + u_y v_z \hat{j} \cdot \hat{k} +$$

$$+ u_z v_x \hat{k} \cdot \hat{i} + u_z v_y \hat{k} \cdot \hat{j} + u_z v_z \hat{k} \cdot \hat{k}$$

Produto Escalar (ou Interno) entre dois Vectores

- · Tendo em conta
 - A definição de produto escalar $(\vec{u} \cdot \vec{v} = uv \cos(\theta))$
 - Que os versores î, î e k são perpendiculares entre si

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = 1$$
 $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = 0$ $\hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = 0$

$$\hat{j} \cdot \hat{i} = 0$$
 $\hat{j} \cdot \hat{j} = 1$ $\hat{j} \cdot \hat{k} = 0$

$$\hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$
 $\hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$ $\hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$

• Vem para o produto escalar entre \vec{u} e \vec{v}

$$\vec{u} \cdot \vec{v} = (u_x \hat{i} + u_y \hat{j} + u_z \hat{k}) \cdot (v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$$
$$= u_x v_x + u_y v_y + u_z v_z$$

Cálculo Vectorial

Produto Escalar (ou Interno) entre dois Vectores

- Dados dois vectores na sua forma analítica, podemos determinar o menor ângulo entre eles, usando o produto escalar
 - Combinando a definição de produto escalar com a equação agora obtida

$$\begin{cases} \vec{u} \cdot \vec{v} = u \, v \cos(\theta) \\ \vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z \end{cases} \Rightarrow u \, v \cos(\theta) = u_x v_x + u_y v_y + u_z v_z \Rightarrow \\ \Rightarrow \cos(\theta) = \frac{u_x v_x + u_y v_y + u_z v_z}{u \, v}$$

 O módulo de um vector é igual à raiz quadrada do produto escalar do vector por ele próprio

$$\begin{cases} \vec{u} \cdot \vec{u} = u u \cos(0^{\circ}) \\ \vec{u} \cdot \vec{u} = u_{x} u_{x} + u_{y} u_{y} + u_{z} u_{z} \end{cases} \Leftrightarrow \begin{cases} \vec{u} \cdot \vec{u} = u^{2} \\ \vec{u} \cdot \vec{u} = u_{x}^{2} + u_{y}^{2} + u_{z}^{2} \end{cases} \Rightarrow$$

$$\Rightarrow u^{2} = u_{x}^{2} + u_{y}^{2} + u_{z}^{2} \Rightarrow u = \sqrt{u_{x}^{2} + u_{y}^{2} + u_{z}^{2}}$$

Produto Escalar entre um Vector e um Versor

- O produto escalar entre um vector e um versor é igual à projecção do vector segundo a direcção do versor
- Consideremos um vector v

 que faz um ângulo θ com o versor ρ
 - Da definição de produto escalar

$$\vec{\mathbf{v}} \cdot \hat{\boldsymbol{\rho}} = |\vec{\mathbf{v}}| |\hat{\boldsymbol{\rho}}| \cos(\boldsymbol{\theta})$$

– Da definição de versor, $|\hat{\rho}| = 1$

$$\vec{\mathbf{v}} \cdot \hat{\boldsymbol{\rho}} = |\vec{\mathbf{v}}||\hat{\boldsymbol{\rho}}|\cos(\theta)$$
$$= \mathbf{v}\cos(\theta)$$

Cálculo Vectorial

Produto Vectorial (ou Externo) entre dois Vectores

- Consideremos dois vectores, \vec{u} e \vec{v}
 - Formam um ângulo *θ* entre eles
 - Definem um plano, π
- O produto vectorial entre os vectores \vec{u} e \vec{v} ($\vec{u} \times \vec{v}$), é um vector
 - Perpendicular ao plano π
 - Cujo sentido é dado pela regra da mão direita
 - Cujo módulo é dado por

$$\left| \vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} \right| = \boldsymbol{u} \, \boldsymbol{v} \, \operatorname{sen} \left(\boldsymbol{\theta} \right)$$

 $\vec{k} = \vec{\mathbf{v}} \times \vec{\mathbf{u}} = -\vec{\mathbf{w}}$

· O produto vectorial não é comutativo

$$\vec{\mathbf{U}} \times \vec{\mathbf{V}} = -\vec{\mathbf{V}} \times \vec{\mathbf{U}}$$

Produto Vectorial (ou Externo) entre dois Vectores

· Consideremos dois vectores, dados por

$$\begin{cases} \vec{u} = u_x \,\hat{\mathbf{i}} + u_y \,\hat{\mathbf{j}} + u_z \,\hat{\mathbf{k}} \\ \vec{v} = v_x \,\hat{\mathbf{i}} + v_y \,\hat{\mathbf{j}} + v_z \,\hat{\mathbf{k}} \end{cases}$$

• As componentes analíticas do vector dado por $\vec{w} = \vec{u} \times \vec{v}$, podem ser obtidas calculando o determinante de uma matriz com três linhas e três colunas

$$\vec{W} = \vec{u} \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix}$$

 $\vec{w} = (u_y \ v_z - u_z \ v_y)\hat{\mathbf{i}} + (u_z \ v_x - u_x \ v_z)\hat{\mathbf{j}} + (u_x \ v_y - u_y \ v_x)\hat{\mathbf{k}}$

Produto Vectorial (ou Externo) entre dois Vectores

· Consideremos dois vectores, dados por

$$\begin{cases} \vec{u} = u_x \,\hat{\mathbf{i}} + u_y \,\hat{\mathbf{j}} + u_z \,\hat{\mathbf{k}} \\ \vec{v} = v_x \,\hat{\mathbf{i}} + v_y \,\hat{\mathbf{j}} + v_z \,\hat{\mathbf{k}} \end{cases}$$

As componentes analíticas do vector dado por $\vec{w} = \vec{u} \times \vec{v}$, podem ser obtidas calculando o determinante de uma matriz com três linhas e três colunas

$$\vec{W} = \vec{U} \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \end{vmatrix}$$

$$\vec{W} = \vec{U} \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{k} \\ \hat{v} & \hat{v} \\ v & v \end{vmatrix} \qquad \vec{W} = \vec{U} \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{k} \\ \hat{v} & \hat{v} \\ v & v \end{vmatrix}$$

Cálculo Vectorial

Produto Misto (ou Produto Triplo Composto)

• O produto misto entre os vectores \vec{u} , \vec{v} e \vec{w} é definido por $(\vec{u} \times \vec{v}) \cdot \vec{w}$, sendo um escalar cujo módulo é dado por:

$$\begin{aligned} \left| \left(\vec{u} \times \vec{v} \right) \cdot \vec{w} \right| &= \underbrace{u \ v \ \text{sen} \left(\vec{u} \ll \vec{v} \right)}_{\left| \left(\vec{u} \times \vec{v} \right) \right|} w \ \text{cos} \left[\left(\vec{u} \times \vec{v} \right) \ll \vec{w} \right] \\ &= u \ v \ w \ \text{sen} \left(\vec{u} \ll \vec{v} \right) \text{cos} \left[\left(\vec{u} \times \vec{v} \right) \ll \vec{w} \right] \end{aligned}$$

- · A ordem das operações tem de ser
 - Primeiro o produto vectorial
 - Seguido do produto escalar

Produto Misto (ou Produto Triplo Composto)

• Se \vec{w} for um versor $(\vec{w} \equiv \hat{w})$, o resultado do produto misto $(\vec{u} \times \vec{v}) \cdot \hat{w}$ é a projecção do vector resultante do produto vectorial $\vec{u} \times \vec{v}$, sobre a recta orientada pelo versor \hat{w}

