StuDocu.com

PRÁCTICA 4 RESUELTA + PLOTS: radar cross section

Radiolocalització (Universitat Politècnica de Catalunya)

PRÁCTICA 4

MAIN

```
clear all;
clear all figures;
%% 5.1 RCS of an sphere --> dependency: frequency of the radar
%% 5.2 RCS of a circular flat plate --> dependency: aspect angle
%INPUTS: frequency [Hz], radius [m]
%OUTPUT: aspect angle [°], RCS [dB]
r=10000;
freq=10;
[vaspect_deg, rcs_dB] = rcs circ plate (r, freq);
lambda=3e8/freq;
area=pi*r^2;
%comprovem que per theta=0°-->RCS=(4pi*Area^2)/(lambda^2)
normal incidence RCS=10*log10((4*pi*area^2)/(lambda^2));
\% 5.4 Two spheres RCS
%=========RCS COMPUTATION FUNCTION==========
%----I N P U T S-----
%RCS scatters = Column vector of RCSs of spheres [dBsm=dBm2]
%scatters rect coord = Matrix having the rectangular coordinates of the
scatterers positions:
           x-coordinates in first column [m]
           y-coordinates in second column [m]
응
           z-coordinates in third column [m]
%radar sphere coord = Matrix having the spherical coordinates of the
different radar locations
           r-coordinates in first column [m]
응
           theta-coordinates in second column [rad]
           phi-coordinates in third column [rad]
%carrier freq=Carrier frequency [Hz]
%----O U T P U T S-----
% monostatic RCS = Column vector of monostatic RCSs seen from the
different radar locations [m^2]
%=========FOR ONE VALUE OF L=================
%-->inputs ajustables
L=1; %-->electrical separation between scatters
carrier freq=1.5*10^9;
RCS scatters=[0,0]; %0dBsm-->1m^2 isotropical scatters
   %coordinates of scatters
scatters rect coord=[-L/2 \ 0 \ 0; \ L/2 \ 0 \ 0];
   %coordinates of radars
r_gran=10^6;
condition to
                                                            fulfill
r gran<(2L^2/lambda)
   disp('Distance between scatters and radar stations too small.');
end
theta=pi/2; %-->horizontal plane
phi=0:pi/1000:2*pi; %--> all angles of the horizontal plane
%--> e x e c u c i ó
for i=1:length(phi)
   radar sphere coord(i,:)=[r gran theta phi(i)];
end
```

```
monostatic RCS=RCS computation(RCS scatters, scatters rect coord, radar
sphere coord, carrier freq);
figure(1);
plot(phi,10*log10(monostatic RCS)); %RCS [dBsm]
xlabel('Phi angle (rad)');
ylabel('RCS (dBsm)');
str = sprintf('Resulting RCS for two spheres (1m^2) separated %0.2f
m', L);
title(str);
figure(2);
polarplot(phi, monostatic RCS); %RCS [m^2]
str = sprintf('Resulting RCS for two spheres (1m^2) separated %0.2f
m', L);
title(str);
%===========FOR DIFFERENT VALUES OF L=================
%--> inputs ajustables
L=[1 0.1 0.01];
\dot{1}=1;
carrier freq=1.5*10^9;
while(j<=length(L))</pre>
RCS scatters=[0,0]; %0dBsm-->1m^2
scatters rect coord=[-L(j)/2 \ 0 \ 0; \ L(j)/2 \ 0 \ 0];
r gran=10^6;
theta=pi/2;
phi=0:pi/1000:2*pi;
%--> e x e c u c i ó
for i=1:length(phi)
    radar sphere coord(i,:)=[r gran theta phi(i)];
end
monostatic RCS=RCS computation(RCS scatters, scatters rect coord, radar
sphere coord, carrier freq);
figure(3);
subplot (length (L), 2, j+(j-1))
plot(phi,10*log10(monostatic RCS)); %RCS [dBsm]
xlabel('Phi angle (rad)');
ylabel('RCS (dBsm)');
subplot(length(L), 2, (j+1) + (j-1))
polarplot(phi, monostatic RCS); %RCS [m^2]
str = sprintf('Resulting RCS for two spheres with 1m^2 separated %0.2f
m', L(j));
title(str);
\dot{j} = \dot{j} + 1;
end
%% 5.5 Swerling model statistics I and II
%========RCS COMPUTATION FUNCTION===========
%----I N P U T S-----
%RCS scatters = Column vector of RCSs of spheres [dBsm=dBm2]
%scatters rect coord = Matrix having the rectangular coordinates of the
scatterers positions:
            x-coordinates in first column [m]
응
            y-coordinates in second column [m]
응
            z-coordinates in third column [m]
```

```
%radar sphere coord = Matrix having the spherical coordinates of the
different radar locations
           r-coordinates in first column [m]
           theta-coordinates in second column [rad]
           phi-coordinates in third column [rad]
%carrier freq=Carrier frequency [Hz]
%----O U T P U T S-----
% monostatic RCS = Column vector of monostatic RCSs seen from the
different radar locations [m^2]
%--> inputs ajustables
L=1;
carrier freq=3*10^9;
num scatters=10; %10 scatters in the scenario
RCS scatters=ones(1, num scatters) *0.0000001; %dBsm RCSs close to 0 dBsm;
    %coordinates of scatters DISTRIBUTED RANDOMLY
circle radius=10; %circle of 10m
r scatter=0+circle radius*rand(1, num scatters);
theta_scatter=ones(1,num_scatters)*pi/2;
phi scatter=0+2*pi*rand(1, num scatters);
x scatter=r_scatter.*sin(theta_scatter).*cos(phi_scatter);
y_scatter=r_scatter.*sin(theta_scatter).*sin(phi_scatter);
z_scatter=r_scatter.*cos(theta_scatter);
scatters rect coord=[x scatter; y scatter; z scatter]';
    %coordinates of radar positions
r gran=1000; %1km
theta=pi/2; %-->horizontal plane
phi=0:pi/1000:2*pi;%--> all angles of the horizontal plane
%--> e x e c u c i ó
for i=1:length(phi)
    radar sphere coord(i,:)=[r gran theta phi(i)];
end
monostatic RCS=RCS computation(RCS scatters, scatters rect coord, radar
sphere coord, carrier freq);
figure(1);
histogram (monostatic RCS, 'Normalization', 'pdf'); %RCS [m^2]
data hist 1=histcounts(monostatic RCS,'Normalization','pdf');
ylabel('RCS probability density function');
xlabel('RCS (m^2)');
title(sprintf('PDF of RCS resulting from %g spheres with OdBsm
distributed randomly', num scatters));
figure(2);
subplot(2,1,1)
plot(phi,10*log10(monostatic RCS)); %RCS [dBsm]
xlabel('Phi angle (rad)');
ylabel('RCS (dBsm)');
subplot(2,1,2)
polarplot(phi, monostatic RCS); %RCS [m^2]
suptitle(sprintf('Resulting RCS for %g spheres with OdBsm distributed
randomly', num scatters));
%% 5.6 Swerling model statistics III and IV
%----I N P U T S-----
```

```
%RCS scatters = Column vector of RCSs of spheres [dBsm=dBm2]
%scatters rect coord = Matrix having the rectangular coordinates of the
scatterers positions:
            x-coordinates in first column [m]
응
            y-coordinates in second column [m]
            z-coordinates in third column [m]
%radar sphere coord = Matrix having the spherical coordinates of the
different radar locations
            r-coordinates in first column [m]
            theta-coordinates in second column [rad]
응
            phi-coordinates in third column [rad]
%carrier freq=Carrier frequency [Hz]
%----O U T P U T S-----
% monostatic RCS = Column vector of monostatic RCSs seen from the
different radar locations [m^2]
%--> inputs ajustables
L=1;
carrier freq=3*10^9;
num scatters=10; %10 scatters in the scenario
RCS scatters=ones(1, num scatters) *0.0000001; %dBsm RCSs close to 0 dBsm;
RCS_scatters(8)=RCS scatters(8)+17; %one scatter 17dB greater
    %coordinates of scatters DISTRIBUTED RANDOMLY
circle radius=10; %circle of 10m
r scatter=0+circle radius*rand(1, num scatters);
theta scatter=ones(1, num scatters)*pi/2;
phi scatter=0+2*pi*rand(1,num scatters);
x scatter=r scatter.*sin(theta scatter).*cos(phi scatter);
y scatter=r scatter.*sin(theta scatter).*sin(phi scatter);
z scatter=r scatter.*cos(theta scatter);
scatters rect coord=[x scatter; y scatter; z scatter]';
    %coordinates of radar positions
r gran=1000; %1km
theta=pi/2; %-->horizontal plane
phi=0:pi/1000:2*pi;%--> all angles of the horizontal plane
%--> e x e c u c i ó
for i=1:length(phi)
    radar sphere coord(i,:)=[r gran theta phi(i)];
monostatic RCS=RCS computation (RCS scatters, scatters rect coord, radar
sphere coord, carrier freq);
figure(3);
histogram (monostatic RCS, 'Normalization', 'pdf'); %RCS [m^2]
data hist 1=histcounts(monostatic RCS,'Normalization','pdf');
ylabel('RCS probability density function');
xlabel('RCS (m^2)');
title(sprintf('PDF of RCS resulting from %g spheres with OdBsm (except
one 17dB greater) distributed randomly', num scatters));
figure(4);
subplot(2,1,1)
plot(phi,10*log10(monostatic RCS)); %RCS [dBsm]
xlabel('Phi angle (rad)');
ylabel('RCS (dBsm)');
subplot(2,1,2)
```

```
polarplot(phi, monostatic RCS); %RCS [m^2]
suptitle(sprintf('Resulting RCS for %g spheres with 0dBsm (except one
17dB greater) distributed randomly', num scatters));
             FUNCTION: RCS computation
function
[monostatic RCS]=RCS computation(RCS scatters, scatters rect coord, rada
r sphere coord, carrier freq)
%coord esfèriques dels radars
r=radar sphere coord(:,1);
theta=radar sphere coord(:,2);
phi=radar sphere coord(:,3);
%coord cartesianes dels radars
x radar=r.*sin(theta).*cos(phi);
y radar=r.*sin(theta).*sin(phi);
z radar=r.*cos(theta);
%coord cartesianes dels scatters
x_scatter=scatters_rect_coord(:,1);
y_scatter=scatters_rect_coord(:,2);
z scatter=scatters rect coord(:,3);
c=3*10^8;
lambda=c/carrier_freq;
RCS scatters=10. (RCS scatters/10);
%per cada radar-->tots els scatters
for k=1:length(x radar)
         for j=1:length(x scatter)
         r n(k,j) = sqrt((x scatter(j) - x radar(k)).^2 + (y scatter(j) -
y radar(k)).^2+(z \text{ scatter}(j)-z \text{ radar}(k)).^2);
         phi n(k,j)=2*2*pi/lambda*r n(k,j);
         end
monostatic RCS(k) = abs(sum(sqrt(RCS scatters).*exp(1i*phi n(k,:)))).^2;
end
end
             FUNCTION: rcs circ plate
function [vaspect deg, rcs dB] = rcs circ plate (r, freq)
eps = 0.000001;
cdeg2rad=pi/180;
% Compute wavelength
lambda=3e8/freq;
index=0;
vaspect_deg=[0:.1:180];
vaspect_rad=cdeg2rad*vaspect_deg;
vx=(4*pi*r/lambda)*sin(vaspect rad);
vval1=4*pi^3*r^4/lambda^2;
vval2=2*besselj(1,vx)./vx;
rcs po2=vval1*(vval2.*cos(vaspect rad)).^2+eps;
% vval1m=lambda*r;
% vval2m=8*pi*sin(vaspect_rad).*(tan(vaspect_rad).^2);
% rcs mu2=vval1m./vval2m+eps;
[vindex]=find(or(vaspect_deg==0,vaspect_deg==180));
```

```
rcs po2(vindex) = (4*pi^3*r^4/lambda^2) + eps;
% rcs mu2(vindex)=rcs po2(vindex);
rcsdb po2=10*log10(rcs po2);
% rcsdb mu2=10*log10(rcs mu2);
figure; set(gcf,'Color','w');
plot(vaspect deg,rcsdb po2,'b'); hold on; grid on;
% plot(vaspect deg,rcsdb mu2,'b--');
xlabel ('Aspect angle [°]');
ylabel ('RCS [dBsm]');
rcs dB=[rcsdb po2];
      FUNCTION: rcs sphere
eps = 0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.05:15
index = index + 1;
sphere rcs = 0. + 0.*i;
 f1 = 0. + 1.*i;
f2 = 1. + 0.*i;
m = 1.;
n = 0.;
 q = -1.;
 % initially set del to huge value
 del =100000+100000*i;
while(abs(del) > eps)
 q = -q;
n = n + 1;
m = m + 2;
 del = (2.*n-1) * f2 / kr-f1;
 f1 = f2:
 f2 = del;
 del = q * m / (f2 * (kr * f1 - n * f2));
 sphere rcs = sphere rcs + del;
 end
 rcs(index) = abs(sphere rcs);
 sphere rcsdb(index) = 10. * log10(rcs(index));
end
figure; set(gcf,'Color','w');
n=0.05:.05:15;
plot (n,rcs,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel ('Sphere circumference in wavelengths (2{\pi}r/{\lambda})');
ylabel ('Normalized sphere RCS [adim.]');
grid;
figure; set(gcf, 'Color', 'w');
plot (n,sphere rcsdb,'k');
set (gca, 'xtick', [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel ('Sphere circumference in wavelengths (2{\pi}r/{\lambda})');
ylabel ('Normalized sphere RCS [dB]');
grid;
figure; set(gcf,'Color','w');
semilogx (n,sphere rcsdb,'k'); grid on;
xlabel ('Sphere circumference in wavelengths (2{\pi}r/{\lambda})');
ylabel ('Normalized sphere RCS [dB]');
```


Phi angle (rad)

Resulting RCS for 10 spheres with 0dBsm distributed randomly

Resulting RCS for 10 spheres with 0dBsm (except one 17dB greater) distributed randomly

Resulting RCS for two spheres whose scatters are separated 1.00 m

Resulting RCS for two spheres whose scatters are separated 0.10 m

Resulting RCS for two spheres whose scatters are separated 0.01 m

