

#### The Team









Crispin Rose



#### Project Scope

"Produce a fully costed proposal to reduce the Engine Shed's Scope 1&2 emissions by 60% maintaining all building services."



Scope 1 emissions: Direct Greenhouse gases emissions that occur from sources that are controlled or owned by an organisation



Scope 2 emissions: Indirect greenhouse emissions associated with the purchase of electricity, steam, heat or cooling

#### Our Proposal









# University of Lincoln and the Climate crisis



University of Lincoln has committed to a sustainable future



Committed to achieving net zero emissions by 2040



At least 60% reductions in emissions by 2030



Already ranked "gold tier" in the 2023 Uswitch Green Universities report

#### Business, social and economic factors

It is important to not affect the running of the business:

- Unhappy students
- Cancelled events
- Loss of income
- Damaged reputation



Business aspects of the engine shed:

- The towers bar
- The "Quack" student club night
- Any corporate event being held
  - Guest performers and concerts



Therefore, any work implemented should happen with minimal disruption



All implementations should occur between July – September since this is out of term time - With a 1-year notice where no events are booked during this time

#### Legislation and Standards

In any engineering project it is important to recognise that certain legislation and British engineering standards need to be followed

#### Sustainability examples

- BREEAM
- The Kite Mark
- Microgeneration
   Certification Scheme
   (MCS)
- CIBSE Guides

#### Legislation examples

- Competency person scheme
- COSHH
- Lincoln Council (Regarding the Brayford)
- Various Building regulations

#### British Standards examples

- BS EN 62446 Solar
- BS EN 14825 Heat pumps
- BS 8515 Rainwater
- BS 8215 Insulation
- BS 5803-4 Cellulose







#### Defining the Problem



#### Beyond Scope - Waste Management



SU already takes steps towards reduction



Managerial vs Engineering issue



Limited Quantitative data for waste

#### **Electricity**



300 MWh annually



Costs £90,000 annually



Prices are wildly variable

Gas



450 MWh annually



Costs £50,000 annually



High Emissions

#### Direct Emissions kg CO<sub>2</sub>e breakdown



#### Water Demand



#### Collecting Data – Gas and Electricity



#### Collecting Data – Gas and Electricity



#### Collecting Data – Weather

**Gas Usage vs Inverse Temperature (2022 - 2023)** 



Gas Usage

— Temperature

For more information, see annex 10.3

# Heat - Fabric heat loss model



#### Heat - Fabric heat loss model

| Picture of Insulation                   | Type of Insulation     |                                  | Conductivity (<br>W·m <sup>-1</sup> ·K <sup>-1</sup> ) | Thickness (m) | R-Value (K m²/W) |
|-----------------------------------------|------------------------|----------------------------------|--------------------------------------------------------|---------------|------------------|
|                                         | Solid Insulation       | Polyurethane Foam                | 0.024                                                  | 0.1           | 4.17             |
| *************************************** | Batt Insulation        | ROCKWOOL Thermal Insulation Batt | 0.037                                                  | 0.1           | 2.70             |
| WWWWWW                                  | Batt Insulation (Thin) | HOOKWOOL HIGHIAL INSULATION BULL | 0.007                                                  | 0.075         | 2.03             |
|                                         | Concrete Blocks        | Autoclaved Aerated Concrete      | 0.23                                                   | 0.1           | 0.43             |

| Picture of Insulation | Components       | R-Value (K m²/W) | S    | Summed R-Value | U-Value (W/K<br>m²) | Overall Length (m) | Temperature Coefficient (W/K) |
|-----------------------|------------------|------------------|------|----------------|---------------------|--------------------|-------------------------------|
|                       | Brick            |                  | 0.14 |                |                     |                    |                               |
|                       | Air Gap (1 inch) | (                | 0.02 |                |                     |                    |                               |
|                       | Concrete Blocks  | C                | 0.43 |                |                     |                    |                               |
|                       | Air Gap (2 inch) | (                | 0.06 |                |                     |                    |                               |
|                       | Solid Insulation | 4                | 4.17 |                |                     |                    |                               |
|                       | Air Gap (1 inch) |                  | 0.03 |                |                     |                    |                               |
|                       | Concrete Blocks  | (                | 0.43 | 5.29           | 0.19                | 21.47              | 40.60                         |

**Total: 3632 W/°K** 

#### Fabric heat loss model – main loss



# Heat - Ventilation heat loss estimates



#### Heat loss model against Gas usage data



#### **Heat Gain**

#### Summer vs Winter Solar heat gain through office south facing windows



# Our Proposals

#### Heating – Insulation



Implement cellulose into steel wall sections



Reduce total heat loss by 12%



Total estimated cost: £304.65



ROI of ~ 1 week

#### Heating – Insulation



#### Heating – Insulation

Call out fee estimate, £60

Price of cellulose: £1.36 / m<sup>3</sup>

Bags needed: 5

Tool replacement fee estimate, £50

Total Cost: £304.65

Labour / installation costs, £50

Price Of Total Cellulose, £144.65

#### Heating – Heat Pumps



Max daily heating: 338kW – 445kW



Spec for 450kW: two 150kW heat pumps, one remaining gas boiler



Gas boiler protects against extremes will only be needed on ~20 coldest days

#### **Quality Function Deployment**

Project title: Sub Sub QFD - Heat Pumps

Project leader: Group 2

Date: 26/02/2024

|                                     | Desired direction of improvement $(\uparrow,0,\downarrow)$ | $\uparrow$           | <b>↑</b>           | <b>↑</b> | <b>^</b> |
|-------------------------------------|------------------------------------------------------------|----------------------|--------------------|----------|----------|
|                                     | Technical Requirements (How's)                             |                      |                    |          |          |
| 1: low, 5: high                     | $\rightarrow$                                              |                      |                    |          |          |
| Stakeholder<br>importance<br>rating | Stakeholder Requirements - (What's)                        | Horizontal<br>Ground | Vertical<br>Ground | Air      | Water    |
|                                     | ↓                                                          |                      |                    |          |          |
|                                     |                                                            |                      |                    |          |          |
|                                     |                                                            |                      |                    |          |          |
|                                     |                                                            |                      |                    |          |          |
| 3                                   | Space Requirements                                         | 1                    | 3                  | 8        | 7        |
| 3                                   | Maintenance                                                | 2                    | 1                  | 7        | 5        |
| 4                                   | Cost/ROI                                                   | 2                    | 2                  | 8        | 6        |
| 3                                   | Lifespan                                                   | 7                    | 7                  | 4        | 7        |
| 4                                   | Feasability of Installation                                | 2                    | 4                  | 8        | 6        |
| 4                                   | Efficiency                                                 | 7                    | 8                  | 6        | 7        |
|                                     |                                                            |                      |                    |          |          |
|                                     | Technical importance score                                 | 74                   | 89                 | 145      | 133      |
|                                     | Importance %                                               | 17%                  | 20%                | 33%      | 30%      |
|                                     | Priorities rank                                            | 4                    | 3                  | 1        | 2        |
|                                     | Command to a of a more and                                 |                      |                    |          |          |

#### Gas usage against Heat pump power consumption



## Gas usage expenditure against Heat pump power consumption expenditure (Gas usage model)



### Gas usage expenditure against Heat pump power consumption expenditure (heat loss model)



#### For more information, see annex 10.3

#### Heat – Reflective film



46% visible light → 34% solar energy transmission



£1150 investment



ROI less than a year



#### Solar Installation

For more information, see annex 10.11

MetricElectricity expenditureEstimated solar electricity valueAverage£131£140Max£507£751Min£17£0

Electricity Demand against Potential Solar Power



#### Solar Installation

#### Midlands Net Zero Hub community energy fund



"Stage 1 **Feasibility** Grant of up to **£40,000** to produce a **feasibility study** to establish the technical and financial viability of a project"



"Stage 2 **Development** Grant of up to £100,000 for a more detailed investigation of the technology, for planning applications and to develop a **business case**."

#### Water Solutions



POTABLE USAGE REDUCTION



RAINWATER COLLECTION



**WATER HEATING** 

#### Why water reduction?

QFD Shows water usage in bathrooms should be a focus.

|                                                |                                                                         |                                                         |                                      |                                                        |                              |                          | _                          |
|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------|--------------------------|----------------------------|
|                                                | Desired direction of improvement $(\uparrow,0,\downarrow)$              | $\downarrow$                                            | $\downarrow$                         | $\downarrow$                                           | $\downarrow$                 | $\downarrow$             | <b>↓</b>                   |
| 1: low, 5: high  Stakeholder importance rating | Technical Requirements (How's) →  Stakeholder Requirements - (What's) ↓ | Bathroom<br>Water Usage -<br>Toilets, Sinks,<br>Urinals | heatloss from<br>doors being<br>open | Energy used<br>from<br>automatic<br>lights being<br>on | Energy Used<br>by and Dryers | External<br>Lighting Use | Office Items<br>On standby |
| 5                                              | Sustainability                                                          | 7                                                       | 6                                    | 8                                                      | 8                            | 7                        | 9                          |
| 4                                              | Low Carbon                                                              | 9                                                       | 7                                    | 8                                                      | 6                            | 6                        | 9                          |
| 4                                              | Low Waste                                                               | 8                                                       | 7                                    | 7                                                      | 8                            | 6                        | 9                          |
| 4                                              | Customer Wellbeing                                                      | 7                                                       | 3                                    | 6                                                      | 5                            | 8                        | 6                          |
| 4                                              | Staff Wellbeing                                                         | 7                                                       | 4                                    | 6                                                      | 5                            | 4                        | 4                          |
| 4                                              | Low Disruption to current practice                                      | 8                                                       | 9                                    | 8                                                      | 8                            | 6                        | 5                          |
| 4                                              | Usable Periods                                                          | 7                                                       | 8                                    | 6                                                      | 8                            | 6                        | 8                          |
| 4                                              | Solution Longevity                                                      | 9                                                       | 8                                    | 6                                                      | 8                            | 6                        | 9                          |
|                                                | Technical importance score<br>Importance %                              |                                                         | 214<br>16%                           | 228<br>17%                                             | 232<br>17%                   | 203<br>15%               | 245<br>18%                 |
|                                                | Priorities rank                                                         | 1                                                       | 5                                    | 4                                                      | 3                            | 6                        | 2                          |

#### Water - Reducing Potable Water Use



#### Water - Rainwater Collection



Compared rainwater collection potential against usage



Cost - £7630



Saving - £1200 annually



6.4 years ROI

#### Can we collect enough water?



#### Specification

30,000L Tank (5% of annual requirement)

50m<sup>3</sup>/hour Water pump

Room for expansion with potable filters



#### Tank Location





#### Water - Heat Pump



Annual water heating cost - £5045



Cost of system and installation - £6362.90



Saving - £3363 annually



1.89 years ROI

#### The Boilers

500L Peak Requirement

Two 270 L Boilers

Potential for cooling and dehumidifying offices



| System     | Component          | Component Functions Provide                                             | Potential Failure Mode                                                             | Failure Effects                                                                                                                      | Severity | Cooling system                                                                                                            | Occurrence | Detection | Action Priority | Reccomended Action                                                                              | Accountibility                         | Severity | Occurrence | Detection |  |
|------------|--------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------------|-------------------------------------------------------------------------------------------------|----------------------------------------|----------|------------|-----------|--|
| Heat       |                    | Pr                                                                      | Innability to Integrate with existing ventilation system Insufficient Power Output | ➤ No improvement in cooling efficincy ➤ No reduction in cooling related emmisions ➤ Inability to effectively heat the required space | 5        | ➤ Not checking component specification carefully enough  ➤ System not correctly specced to accomodate current ventilation | 7          | 5         | 175             | ➤ Peer reviewing the specifications  ➤ Compare specced heat pump against SOR                    | ► Innovation Group  ► Innovation Group | 4        | 2          | 9         |  |
| ırce       | Ω                  | gerant                                                                  | Oversized Pump                                                                     | ➤ Damage Other components  ➤ Increase cost                                                                                           | 9        | ➤ Not checking component specification carefully enough                                                                   | 3          | 4         | 162<br>72       | ➤ Peer reviewing the specifications against the refrigerant ➤ Purchase and usage of a           |                                        | 3        | 2          | 8         |  |
| Air Source | Pump               | Presurise Refrigerant                                                   | Undersized Pump                                                                    | ➤ Reduced efficiency  ➤ Reduced efficiency                                                                                           | 4        | -                                                                                                                         | 3          | 4         | 72              | pre-assembled system<br>(increases reliability and<br>ease of installation)                     | system                                 | 2        | 2          | 8         |  |
| Air        | Backflow Preventer | Prevent balckflow from the heating system into the potable water system | Allows backflow                                                                    | ➤ Damage other components ➤ Potentially contaminated drinking water supply with debris / polution                                    |          | <ul> <li>Exceeds max:</li> <li>Working pressure</li> <li>Working temperature</li> </ul>                                   | 4          | 7         | 72              | ▶ Peer reviewing the maximum pressure/temperature that the valve is specced for before purchase | ▶ Innovation<br>Group                  | 2        | 1          | 8         |  |
|            | kflow P            | nt balckflow from the heating s<br>into the potable water system        |                                                                                    |                                                                                                                                      |          | ➤ Not installed at inlet to system  ➤ Installed backwards                                                                 | 2          | 6         | 24              | ➤ Check system plans ➤ Peer review installation                                                 |                                        | 2        | 1          | 9         |  |
|            | Back               | Prevent in:                                                             | Blocks water flow to<br>heating system                                             | ➤ Damage Other components ➤ No Hot water                                                                                             | 9        | ➤ Installed backwards ➤ Blocked ➤ Frozen                                                                                  | 4          | 6         | 144             | ►Ensure existing loop includes adquete filters                                                  | -                                      | 4        | 2          | 8         |  |

#### Conclusion



CUT CO2 EMISSIONS BY OVER 60%



EFFECTIVELY
ELIMINATE GAS
USAGE



REDUCE POTABLE
WATER USE BY
40%



REQUIRE INVESTMENT OF ~£190,000



SAVE ~£90,000 PER ANNUM



\*Follow QR code for report, annexes, meeting notes etc.



#### QR code will take you to this page

#### **Innovation Project 2024 Homepage**

∠ 1 backlink

#### See Gate 5 Report:

#### PDF (Reccomended)

G2 Gate 5 Report.pdf 4186.5KB

#### Word

G2 Gate 5 Report.docx 52561.5KB

#### **Gate 5 Presentation**

G2 Gate 5 Presentation.pptx 51607.6KB

#### See Annexes:

🗐 Annexes - Innovation Project 2024



#### Engine Shed Sustainability Assessment

Joseph Ashton | Ethan Page Crispin Rose | Jamie Sheffield



CUT CO2 EMISSIONS BY OVER 60%



EFFECTIVELY ELIMINATE GAS USAGE



REDUCE POTABLE
WATER USE BY
40%



REQUIRE INVESTMENT OF ~£190,000



SAVE ~£90,000 PER ANNUM



\*Follow QR code for report, annexes, meeting notes etc.