

CLAIMS

What is claimed is:

1 1. A method comprising:

2 generating a first body of data being sufficient to permit generation of a
3 viewable video sequence of lesser quality than is represented by a source video
4 sequence; and

5 generating a second body of data being sufficient to enhance the quality
6 of the viewable video sequence generated from the first body of data, the
7 second body of data being generated by subtracting a reconstructed body of
8 data from a subsection of the source video sequence, wherein the reconstructed
9 body of data is selected from a group of at least two separate reconstructed
10 bodies of data.

1 2. The method of claim 1, wherein the group of at least two separate
2 reconstructed bodies of data is selected from a reconstructed first body of data
3 sufficient to permit generation of the viewable video sequence of lesser quality
4 than is represented by the source video sequence, a reconstructed second body
5 of data sufficient to enhance the quality of the viewable video sequence
6 generated from the first body of data, or a combination of the reconstructed first
7 and second bodies of data.

1 3. The method of claim 2, further comprising:
2 prior to generating the second body of data generated by
3 subtracting the reconstructed body of data from the subsection of the
4 source video sequence, spatially reconstructing and clipping the
5 reconstructed first body of data, and spatially reconstructing and
6 clipping the reconstructed second body of data.

1 4. The method of claim 2, wherein the second body of data is
2 generated by subtracting a reconstructed body of data from a macroblock of the
3 source video sequence.

1 5. The method of claim 2, further comprising:
2 comparing the at least two separate reconstructed bodies of data to the
3 source video sequence to adaptively select from the reconstructed first body of
4 data, the reconstructed second body of data, or the combination of the
5 reconstructed first and second bodies of data.

1 6. The method of claim 2, wherein the selection of the reconstructed
2 body of data is indicated in a syntax of a bit-stream transmitted from an
3 encoder.

1 7. The method of claim 2, wherein a first set of motion vectors are
2 used to generate the first body of data and the first set of motion vectors are
3 used to generate the second body of data.

1 8. The method of claim 2, wherein the first body of data and the
2 second body of data are generated by a single hardware component.

1 9. An article comprising a computer-readable medium which stores
2 computer-executable instructions, the instructions causing a computer to:
3 generate a first body of data being sufficient to permit generation of a
4 viewable video sequence of lesser quality than is represented by a source video
5 sequence; and

6 generate a second body of data being sufficient to enhance the quality of
7 the viewable video sequence generated from the first body of data, the second
8 body of data being generated by subtracting a reconstructed body of data from
9 a subsection of the source video sequence, wherein the reconstructed body of
10 data is selected from a group of at least two separate reconstructed bodies of
11 data.

1 10. The article comprising a computer-readable medium of claim 9,
2 wherein the group of at least two separate reconstructed bodies of data is
3 selected from a reconstructed first body of data sufficient to permit generation

4 of the viewable video sequence of lesser quality than is represented by the
5 source video sequence, a reconstructed second body of data sufficient to
6 enhance the quality of the viewable video sequence generated from the first
7 body of data, or a combination of the reconstructed first and second bodies of
8 data.

1 11. The article comprising a computer-readable medium of claim 10,
2 further including additional instructions causing the computer to:

3 prior to generating the second body of data generated by subtracting the
4 reconstructed body of data from the subsection of the source video sequence,
5 spatially reconstruct and clip the reconstructed first body of data, and spatially
6 reconstruct and clip the reconstructed second body of data.

1 12. The article comprising a computer-readable medium of claim 10,
2 wherein the second body of data is generated by subtracting a reconstructed
3 body of data from a macroblock of the source video sequence.

1 13. The article comprising a computer-readable medium of claim 10,
2 further including additional instructions causing the computer to:
3 compare the at least two separate reconstructed bodies of data to the
4 source video sequence to adaptively select from the reconstructed first body of

5 data, the reconstructed second body of data, or the combination of the
6 reconstructed first and second bodies of data.

1 14. The article comprising a computer-readable medium of claim 10,
2 wherein the selection of the reconstructed body of data is indicated in a syntax
3 of a bit-stream transmitted from an encoder.

1 15. The article comprising a computer-readable medium of claim 10,
2 wherein a first set of motion vectors are used to generate the first body of data
3 and the first set of motion vectors are used to generate the second body of data.

1 16. The article comprising a computer-readable medium of claim 10,
2 wherein the first body of data and the second body of data are generated by a
3 single hardware component.

1 17. A system comprising:
2 a first unit to generate a first body of data being sufficient to permit
3 generation of a viewable video sequence of lesser quality than is represented by
4 a source video sequence; and
5 a second unit to generate a second body of data being sufficient to
6 enhance the quality of the viewable video sequence generated from the first
7 body of data, the second body of data being generated by subtracting a

8 reconstructed body of data from a subsection of the source video sequence,
9 wherein the reconstructed body of data is selected from a group of at least two
10 separate reconstructed bodies of data.

1 18. The system of claim 17, wherein the group of at least two separate
2 reconstructed bodies of data is selected from a reconstructed first body of data
3 sufficient to permit generation of the viewable video sequence of lesser quality
4 than is represented by the source video sequence, a reconstructed second body
5 of data sufficient to enhance the quality of the viewable video sequence
6 generated from the first body of data, or a combination of the reconstructed first
7 and second bodies of data.

1 19. The system of claim 18, wherein prior to the first unit generating
2 the second body of data generated by subtracting the reconstructed body of
3 data from the subsection of the source video sequence, spatially reconstructing
4 and clipping the reconstructed first body of data, and the second unit spatially
5 reconstructing and clipping the reconstructed second body of data.

1 20. The system of claim 18, wherein the second body of data is
2 generated by subtracting a reconstructed body of data from a macroblock of the
3 source video sequence.

1 21. The system of claim 18, wherein the second unit compares the at
2 least two separate reconstructed bodies of data to the source video sequence to
3 adaptively select from the reconstructed first body of data, the reconstructed
4 second body of data, or the combination of the reconstructed first and second
5 bodies of data.

1 22. The system of claim 18, wherein the selection of the reconstructed
2 body of data is indicated in a syntax of a bit-stream transmitted from the
3 system.

1 23. The system of claim 18, wherein a first set of motion vectors are
2 used by the first unit to generate the first body of data and the first set of
3 motion vectors are used by the second unit to generate the second body of data.

1 24. The system of claim 18, wherein the first unit and the second unit
2 are included on a single hardware component.