Projeto PI Métodos Quantitativos

Integrantes: André de Sousa Pereira 25027905 Gregory Felipe

> Icaro Souza 25027842

Sensores de luz 1,2,3,4 5 ar condicionado

P: Há movimento no ambiente.

Q: liga a luz.

¬P (negação de P): Representa a ausência de movimento no ambiente.

 $P \land Q$ (conjunção): A expressão será verdadeira somente quando houver movimento no ambiente e liga a luz simultaneamente.

P V Q (disjunção): A expressão será verdadeira se pelo menos uma das condições for verdadeira — ou liga a luz.

 $P \rightarrow Q$ (implicação): se há movimento, liga à luz. Essa expressão só será falsa quando houver movimento (P = V) e a luz ligar (Q = F).

A tabela abaixo mostra todas as possíveis combinações de valores lógicos, às proposições P e Q.

Р	Q	¬P	$P \wedge Q$	PVQ	$P \rightarrow Q$
V	V	F	V	V	V
V	F	F	F	V	F
F	V	V	F	V	V
F	F	V	F	F	V

Ar-condicionado

P (calor), Q (presença) e R (ar-condicionado ligado),

P: A temperatura do ambiente está acima de 26°C.

Q: O sensor de presença detecta alguém no ambiente.

R: O ar-condicionado está ligado.

¬Q: Ninguém está presente.

P ∧ Q: Está calor e tem alguém no ambiente.

 $(P \land Q) \rightarrow R$ Se está calor e tem alguém no ambiente, o ar-condicionado deve ligar.

 $R \leftrightarrow (P \land Q)$: O ar-condicionado só deve ligar se e somente se houver necessidade (calor e presença).

Tabela da Verdade:

Р	Q	R	¬Q	$P \wedge G$	$Q (P \land Q) \rightarrow R$	$R \leftrightarrow (P \land Q)$
V	V	V	F	V	F	F
V	V	F	F	V	F	V
V	F	V	V	F	V	V
V	F	F	V	F	V	V
F	V	V	F	F	V	F
F	V	F	F	F	V	V
F	F	V	V	F	V	V
F	F	F	V	F	V	F