MS-C2111 Stochastic processes

Lecture 4

Passage times and hitting probabilities

Jukka Kohonen Aalto University

Contents

Passage times

Hitting probabilities

Gambler's ruin

Kalvonvääntäjät Oyj is a management consulting company with three types of employees: 1 = junior, 2 = senior, 3 = partner

Kalvonvääntäjät Oyj is a management consulting company with three types of employees: 1 = junior, 2 = senior, 3 = partner

During each month:

Kalvonvääntäjät Oyj is a management consulting company with three types of employees: 1 = junior, 2 = senior, 3 = partner

During each month:

Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020

Kalvonvääntäjät Oyj is a management consulting company with three types of employees: 1 = junior, 2 = senior, 3 = partner

During each month:

- Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
- Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008

Kalvonvääntäjät Oyj is a management consulting company with three types of employees: 1 = junior, 2 = senior, 3 = partner

During each month:

- Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
- Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
- Partner exits w.pr. 0.010

Kalvonvääntäjät Oyj is a management consulting company with three types of employees: 1 = junior, 2 = senior, 3 = partner

During each month:

- Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
- Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
- Partner exits w.pr. 0.010

What is the expected duration that a newly recruited employee remains in the company?

Kalvonvääntäjät Oyj is a management consulting company with three types of employees: 1 = junior, 2 = senior, 3 = partner

During each month:

- Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
- Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
- Partner exits w.pr. 0.010

What is the expected duration that a newly recruited employee remains in the company?

How long is a freshly promoted partner expected to serve in the company?

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\}$$
 $(\min \emptyset = \infty)$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\}$$
 $(\min \emptyset = \infty)$

Random variable with state space $T_A \in$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\} \qquad (\min \emptyset = \infty)$$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\}$$
 $(\min \emptyset = \infty)$

$$x + \infty =$$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\}$$
 $(\min \emptyset = \infty)$

$$x + \infty = \infty$$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\} \qquad (\min \emptyset = \infty)$$

$$x + \infty = \infty$$

$$x \cdot \infty =$$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\} \qquad (\min \emptyset = \infty)$$

$$x + \infty = \infty$$

$$x \cdot \infty = \begin{cases} 0, & x = 0 \\ \infty, & x > 0 \end{cases}$$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\} \qquad (\min \emptyset = \infty)$$

Random variable with state space $T_A \in \{0, 1, 2, \dots, \infty\}$

$$x + \infty = \infty$$

$$x \cdot \infty = \begin{cases} 0, & x = 0 \\ \infty, & x > 0 \end{cases}$$

Expected passage time into A

$$k_{A}(x) = \mathbb{E}(T_{A} | X_{0} = x)$$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\} \qquad (\min \emptyset = \infty)$$

Random variable with state space $T_A \in \{0, 1, 2, \dots, \infty\}$

$$x + \infty = \infty$$

$$x \cdot \infty = \begin{cases} 0, & x = 0 \\ \infty, & x > 0 \end{cases}$$

Expected passage time into A

$$k_{A}(x) = \mathbb{E}(T_{A} | X_{0} = x)$$

Deterministic number in $k_A(x) \in$

Passage time of (X_0, X_1, \dots) into A

$$T_A = \min\{t \ge 0 : X_t \in A\} \qquad (\min \emptyset = \infty)$$

Random variable with state space $T_A \in \{0, 1, 2, ..., \infty\}$

$$x + \infty = \infty$$

$$x \cdot \infty = \begin{cases} 0, & x = 0 \\ \infty, & x > 0 \end{cases}$$

Expected passage time into A

$$k_A(x) = \mathbb{E}(T_A | X_0 = x)$$

Deterministic number in $k_A(x) \in \mathbb{R}_+ \cup \{\infty\}$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

(i)
$$x \in A$$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

(i)
$$x \in A \implies T_A = 0$$
 surely

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

(i)
$$x \in A \implies T_A = 0$$
 surely $\implies k_A(x) =$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

(i)
$$x \in A \implies T_A = 0$$
 surely $\implies k_A(x) = 0$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

(i)
$$x \in A \implies T_A = 0$$
 surely $\implies k_A(x) = 0$
(ii) $x \notin A$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

(i)
$$x \in A \implies T_A = 0$$
 surely $\implies k_A(x) = 0$

(ii)
$$x \notin A \implies$$

$$k_A(x) = \mathbb{E}(T_A | X_0 = x)$$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

(i)
$$x \in A \implies T_A = 0$$
 surely $\implies k_A(x) = 0$

(ii)
$$x \notin A \implies$$

$$k_A(x) = \mathbb{E}(T_A | X_0 = x) = \sum_y P(x, y) \mathbb{E}(T_A | X_1 = y, X_0 = x)$$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

(i)
$$x \in A \implies T_A = 0$$
 surely $\implies k_A(x) = 0$

(ii)
$$x \notin A \implies$$

$$k_A(x) = \mathbb{E}(T_A | X_0 = x) = \sum_y P(x, y) \mathbb{E}(T_A | X_1 = y, X_0 = x)$$

where
$$\mathbb{E}(T_A | X_1 = y, X_0 = x)$$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad x \in A.$

- (i) $x \in A \implies T_A = 0$ surely $\implies k_A(x) = 0$
- (ii) $x \notin A \implies$

$$k_A(x) = \mathbb{E}(T_A | X_0 = x) = \sum_y P(x, y) \mathbb{E}(T_A | X_1 = y, X_0 = x)$$

where
$$\mathbb{E}(T_A | X_1 = y, X_0 = x) = 1 + \mathbb{E}(T_A | X_0 = y)$$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

- (i) $x \in A \implies T_A = 0$ surely $\implies k_A(x) = 0$
- (ii) $x \notin A \implies$

$$k_A(x) = \mathbb{E}(T_A | X_0 = x) = \sum_y P(x, y) \mathbb{E}(T_A | X_1 = y, X_0 = x)$$

where
$$\mathbb{E}(T_A | X_1 = y, X_0 = x) = 1 + \mathbb{E}(T_A | X_0 = y) = 1 + k_A(y)$$

Theorem: The expected passage times $k_A(x) = \mathbb{E}(T_A \mid X_0 = x)$ form the smallest nonnegative solution to

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

- (i) $x \in A \implies T_A = 0$ surely $\implies k_A(x) = 0$
- (ii) $x \notin A \implies$

$$k_A(x) = \mathbb{E}(T_A | X_0 = x) = \sum_y P(x, y) \mathbb{E}(T_A | X_1 = y, X_0 = x)$$

where
$$\mathbb{E}(T_A | X_1 = y, X_0 = x) = 1 + \mathbb{E}(T_A | X_0 = y) = 1 + k_A(y)$$

$$k_A(x) = \sum_y P(x,y)(1+k_A(y)) = \sum_y P(x,y) + \sum_y P(x,y)k_A(y)$$

= $1 + \sum_{x \in A} P(x,y)k_A(y)$.

How to find the smallest nonnegative solution k_A for

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

How to find the smallest nonnegative solution k_A for

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

Poisson equation

$$Df(x) = -1, \quad x \in B,$$

 $f(x) = 0, \quad x \in \partial B,$

$$D = P - I$$
, $B = A^c$, $\partial B = A$.

How to find the smallest nonnegative solution k_A for

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

Poisson equation

Recursive solution method: $f_0(x) = 0$,

$$Df(x) = -1, \quad x \in B,$$

 $f(x) = 0, \quad x \in \partial B,$

$$D = P - I$$
, $B = A^c$, $\partial B = A$.

How to find the smallest nonnegative solution k_A for

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

Poisson equation

$$Df(x) = -1, \quad x \in B,$$

 $f(x) = 0, \quad x \in \partial B,$

$$D = P - I$$
, $B = A^c$, $\partial B = A$.

Recursive solution method: $f_0(x) = 0$,

$$f_{n+1}(x) = \begin{cases} 1 + \sum_{y \notin A} P(x, y) f_n(y), & x \notin A \\ 0, & x \in A \end{cases}$$

Computing the expected passage times

How to find the smallest nonnegative solution k_A for

$$f(x) = 1 + \sum_{y \notin A} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 0, \qquad \qquad x \in A.$

Poisson equation

$$Df(x) = -1, \quad x \in B,$$

 $f(x) = 0, \quad x \in \partial B,$

$$D = P - I$$
, $B = A^c$, $\partial B = A$.

Recursive solution method: $f_0(x) = 0$,

$$f_{n+1}(x) = \begin{cases} 1 + \sum_{y \notin A} P(x, y) f_n(y), & x \notin A \\ 0, & x \in A \end{cases}$$

$$f_n(x) \to k_A(x)$$
 when $n \to \infty$

- 1 = junior, 2 = senior, 3 = partner, during each month:
 - Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
 - Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
 - Partner exits w.pr. 0.010

Q: How long does a freshly recruited employee stay in company?

- 1 = junior, 2 = senior, 3 = partner, during each month:
 - Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
 - Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
 - Partner exits w.pr. 0.010

Q: How long does a freshly recruited employee stay in company?

 $X_t =$ Employee status after t months

- 1 = junior, 2 = senior, 3 = partner, during each month:
 - Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
 - Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
 - Partner exits w.pr. 0.010

Q: How long does a freshly recruited employee stay in company?

 $X_t = \text{Employee status after } t \text{ months}$ Markov chain?

- 1 = junior, 2 = senior, 3 = partner, during each month:
 - Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
 - Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
 - Partner exits w.pr. 0.010

Q: How long does a freshly recruited employee stay in company?

 $X_t =$ Employee status after t months Markov chain? YES for $S = \{0, 1, 2, 3\}$ with extra state 0 = exit

- 1 = junior, 2 = senior, 3 = partner, during each month:
 - Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
 - Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
 - Partner exits w.pr. 0.010

Q: How long does a freshly recruited employee stay in company?

 $X_t =$ Employee status after t months Markov chain? YES for $S = \{0, 1, 2, 3\}$ with extra state 0 = exit

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix}$$

- 1 = junior, 2 = senior, 3 = partner, during each month:
 - Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
 - Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
 - Partner exits w.pr. 0.010

Q: How long does a freshly recruited employee stay in company?

 $X_t =$ Employee status after t months Markov chain? YES for $S = \{0, 1, 2, 3\}$ with extra state 0 = exit

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix}$$

A: Expected passage time $k_A(1)$ from state 1 into A =

- 1 = junior, 2 = senior, 3 = partner, during each month:
 - Junior promoted to senior w.pr. 0.030, exits w.pr. 0.020
 - Senior promoted to partner w.pr. 0.010, exits w.pr. 0.008
 - Partner exits w.pr. 0.010

Q: How long does a freshly recruited employee stay in company?

 $X_t =$ Employee status after t months Markov chain? YES for $S = \{0, 1, 2, 3\}$ with extra state 0 = exit

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix}$$

A: Expected passage time $k_A(1)$ from state 1 into $A = \{0\}$

Let us solve f(0) = 0 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, x = 1, 2, 3

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix}$$

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(1) = 1 + 0.950 \, f(1) + 0.030 \, f(2) \\ f(2) = 1 + 0.982 \, f(2) + 0.010 \, f(3) \\ f(3) = 1 + 0.990 \, f(3). \end{array}$$

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{aligned} f(1) &= 1 + 0.950 \, f(1) + 0.030 \, f(2) \\ f(2) &= 1 + 0.982 \, f(2) + 0.010 \, f(3) \\ f(3) &= 1 + 0.990 \, f(3). \end{aligned}$$
$$f(3) &= \frac{1}{1 - 0.990} = 100$$

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{aligned} f(1) &= 1 + 0.950 \, f(1) + 0.030 \, f(2) \\ f(2) &= 1 + 0.982 \, f(2) + 0.010 \, f(3) \\ f(3) &= 1 + 0.990 \, f(3). \end{aligned}$$

$$f(3) &= \frac{1}{1 - 0.990} = 100$$

$$f(2) &= \frac{1 + 0.010 \, f(3)}{1 - 0.982} = 111.11$$

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{aligned} f(1) &= 1 + 0.950 \, f(1) + 0.030 \, f(2) \\ f(2) &= 1 + 0.982 \, f(2) + 0.010 \, f(3) \\ f(3) &= 1 + 0.990 \, f(3). \end{aligned}$$

$$f(3) &= \frac{1}{1 - 0.990} = 100$$

$$f(2) &= \frac{1 + 0.010 \, f(3)}{1 - 0.982} = 111.11$$

$$f(1) &= \frac{1 + 0.030 \, f(2)}{1 - 0.950} = 86.67$$

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad f(1) = 1 + 0.950 f(1) + 0.030 f(2) \\ f(2) = 1 + 0.982 f(2) + 0.010 f(3) \\ f(3) = 1 + 0.990 f(3).$$

$$f(3) = \frac{1}{1 - 0.990} = 100$$

$$f(2) = \frac{1 + 0.010 f(3)}{1 - 0.982} = 111.11$$

$$f(1) = \frac{1 + 0.030 f(2)}{1 - 0.950} = 86.67$$

Minimal solution?

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad f(1) = 1 + 0.950 f(1) + 0.030 f(2) \\ f(2) = 1 + 0.982 f(2) + 0.010 f(3) \\ f(3) = 1 + 0.990 f(3). \end{cases}$$

$$f(3) = \frac{1}{1 - 0.990} = 100$$

$$f(2) = \frac{1 + 0.010 f(3)}{1 - 0.982} = 111.11$$

$$f(1) = \frac{1 + 0.030 f(2)}{1 - 0.950} = 86.67$$

Minimal solution? YES because this is the only nonnegative solution.

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad f(1) = 1 + 0.950 f(1) + 0.030 f(2) \\ f(2) = 1 + 0.982 f(2) + 0.010 f(3) \\ f(3) = 1 + 0.990 f(3). \end{cases}$$

$$f(3) = \frac{1}{1 - 0.990} = 100$$

$$f(2) = \frac{1 + 0.010 f(3)}{1 - 0.982} = 111.11$$

$$f(1) = \frac{1 + 0.030 f(2)}{1 - 0.950} = 86.67$$

Minimal solution? YES because this is the only nonnegative solution. $\implies (k_A(0), k_A(1), k_A(2), k_A(3)) = (0, 86.67, 111.11, 100)$

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad f(1) = 1 + 0.950 f(1) + 0.030 f(2) \\ f(2) = 1 + 0.982 f(2) + 0.010 f(3) \\ f(3) = 1 + 0.990 f(3). \end{cases}$$

$$f(3) = \frac{1}{1 - 0.990} = 100$$

$$f(2) = \frac{1 + 0.010 f(3)}{1 - 0.982} = 111.11$$

$$f(1) = \frac{1 + 0.030 f(2)}{1 - 0.950} = 86.67$$

Minimal solution? YES because this is the only nonnegative solution. $\implies (k_A(0), k_A(1), k_A(2), k_A(3)) = (0, 86.67, 111.11, 100)$ Freshly recruited employee is expected to stay for 86.67 mo ≈ 7.2 y

Let us solve
$$f(0) = 0$$
 and $f(x) = 1 + \sum_{y=1}^{3} P(x, y) f(y)$, $x = 1, 2, 3$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad f(1) = 1 + 0.950 f(1) + 0.030 f(2) \\ f(2) = 1 + 0.982 f(2) + 0.010 f(3) \\ f(3) = 1 + 0.990 f(3). \end{cases}$$

$$f(3) = \frac{1}{1 - 0.990} = 100$$

$$f(2) = \frac{1 + 0.010 f(3)}{1 - 0.982} = 111.11$$

$$f(1) = \frac{1 + 0.030 f(2)}{1 - 0.950} = 86.67$$

Minimal solution? YES because this is the only nonnegative solution. $\implies (k_A(0), k_A(1), k_A(2), k_A(3)) = (0, 86.67, 111.11, 100)$ Freshly recruited employee is expected to stay for 86.67 mo \approx 7.2 y Freshly promoted partner is expected to stay for 100 mo \approx 8.3 y

Contents

Passage times

Hitting probabilities

Gambler's ruin

What is the probability that a freshly recruited junior eventually gets promoted to a partner?

Hitting probabilities

The probability that at process starting at x visits a set A is denoted by

$$h_A(x) = \mathbb{P}(X_t \in A \text{ for some } t \geq 0 \mid X_0 = x).$$

Hitting probabilities

The probability that at process starting at x visits a set A is denoted by

$$h_A(x) = \mathbb{P}(X_t \in A \text{ for some } t \geq 0 \mid X_0 = x).$$

In practice, to solve one hitting probability, we need to solve them all.

Computing hitting probabilities

Theorem

The hitting probabilities $h_A = (h_A(x) : x \in S)$ form the smallest nonnegative solution to

$$f(x) = \sum_{y \in S} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 1, \qquad x \in A,$

Computing hitting probabilities

Theorem

The hitting probabilities $h_A = (h_A(x) : x \in S)$ form the smallest nonnegative solution to

$$f(x) = \sum_{y \in S} P(x, y) f(y), \qquad x \notin A,$$

 $f(x) = 1, \qquad x \in A,$

Poisson equation

Proof: Lecture notes.

$$Df(x) = 0, \quad x \in B,$$

 $f(x) = 1, \quad x \in \partial B,$

$$D = P - I$$
, $B = A^c$, $\partial B = A$.

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$. Let us solve f(3) = 1 and $f(x) = \sum_{y=0}^{3} P(x,y)f(y)$, x = 0, 1, 2

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

Let us solve
$$f(3) = 1$$
 and $f(x) = \sum_{y=0}^{3} P(x, y) f(y), \quad x = 0, 1, 2$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(0) = f(0), \\ f(1) = 0.020 \, f(0) + 0.950 \, f(1) + 0.030 \, f(2), \\ f(2) = 0.008 \, f(0) + 0.982 \, f(2) + 0.010 \, f(3), \\ f(3) = 1. \end{array}$$

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

Let us solve
$$f(3) = 1$$
 and $f(x) = \sum_{y=0}^{3} P(x, y) f(y), \quad x = 0, 1, 2$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix}$$

$$0 \not \rightsquigarrow 3 \implies f(0) = 0.$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(0) = f(0), \\ f(1) = 0.020 \, f(0) + 0.950 \, f(1) + 0.030 \, f(2), \\ f(2) = 0.008 \, f(0) + 0.982 \, f(2) + 0.010 \, f(3), \\ f(3) = 1. \end{array}$$

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

Let us solve
$$f(3) = 1$$
 and $f(x) = \sum_{y=0}^{3} P(x, y) f(y), \quad x = 0, 1, 2$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(0) = f(0), \\ f(1) = 0.020 \, f(0) + 0.950 \, f(1) + 0.030 \, f(2), \\ f(2) = 0.008 \, f(0) + 0.982 \, f(2) + 0.010 \, f(3), \\ f(3) = 1. \end{array}$$

$$0 \not \rightsquigarrow 3 \implies f(0) = 0.$$

$$0 \not\rightarrow 3 \implies f(0) = 0.$$

$$\implies f = [0, 0.333, 0.556, 1] \text{ is a solution.}$$

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

Let us solve
$$f(3) = 1$$
 and $f(x) = \sum_{y=0}^{3} P(x, y) f(y), \quad x = 0, 1, 2$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(0) = f(0), \\ f(1) = 0.020 \, f(0) + 0.950 \, f(1) + 0.030 \, f(2), \\ f(2) = 0.008 \, f(0) + 0.982 \, f(2) + 0.010 \, f(3), \\ f(3) = 1. \end{array}$$

$$0 \not\rightarrow 3 \implies f(0) = 0.$$

$$\implies f = [0, 0.333, 0.556, 1] \text{ is a solution.}$$

Smallest nonnegative?

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

Let us solve
$$f(3) = 1$$
 and $f(x) = \sum_{y=0}^{3} P(x, y) f(y), \quad x = 0, 1, 2$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(0) = f(0), \\ f(1) = 0.020 \, f(0) + 0.950 \, f(1) + 0.030 \, f(2), \\ f(2) = 0.008 \, f(0) + 0.982 \, f(2) + 0.010 \, f(3), \\ f(3) = 1. \end{array}$$

$$0 \not\rightarrow 3 \implies f(0) = 0.$$

$$\implies f = [0, 0.333, 0.556, 1] \text{ is a solution.}$$

Smallest nonnegative? Yes.

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

Let us solve
$$f(3) = 1$$
 and $f(x) = \sum_{y=0}^{3} P(x, y) f(y)$, $x = 0, 1, 2$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(0) = f(0), \\ f(1) = 0.020 \, f(0) + 0.950 \, f(1) + 0.030 \, f(2), \\ f(2) = 0.008 \, f(0) + 0.982 \, f(2) + 0.010 \, f(3), \\ f(3) = 1. \end{array}$$

$$0 \not \rightsquigarrow 3 \implies f(0) = 0.$$

 $\implies f = [0, 0.333, 0.556, 1]$ is a solution.

Smallest nonnegative? Yes.

$$\implies [h_A(0), h_A(1), h_A(2), h_A(3)] = [0, 0.333, 0.556, 1]$$

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

Let us solve
$$f(3) = 1$$
 and $f(x) = \sum_{y=0}^{3} P(x, y) f(y), \quad x = 0, 1, 2$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(0) = f(0), \\ f(1) = 0.020 \, f(0) + 0.950 \, f(1) + 0.030 \, f(2), \\ f(2) = 0.008 \, f(0) + 0.982 \, f(2) + 0.010 \, f(3), \\ f(3) = 1. \end{array}$$

$$0 \not \rightsquigarrow 3 \implies f(0) = 0.$$

 $\implies f = [0, 0.333, 0.556, 1]$ is a solution.

Smallest nonnegative? Yes.

$$\implies [h_A(0), h_A(1), h_A(2), h_A(3)] = [0, 0.333, 0.556, 1]$$

⇒ New junior becomes a partner with probability

$$f(1) = h_A(1) = 0.333$$

The probability that a freshly recruited junior eventually gets promoted to a partner is $h_A(1)$, $A = \{3\}$.

Let us solve
$$f(3) = 1$$
 and $f(x) = \sum_{y=0}^{3} P(x, y) f(y), \quad x = 0, 1, 2$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.020 & 0.950 & 0.030 & 0 \\ 0.008 & 0 & 0.982 & 0.010 \\ 0.010 & 0 & 0 & 0.990 \end{bmatrix} \qquad \begin{array}{l} f(0) = f(0), \\ f(1) = 0.020 \, f(0) + 0.950 \, f(1) + 0.030 \, f(2), \\ f(2) = 0.008 \, f(0) + 0.982 \, f(2) + 0.010 \, f(3), \\ f(3) = 1. \end{array}$$

$$0 \not \rightsquigarrow 3 \implies f(0) = 0.$$

 $\implies f = [0, 0.333, 0.556, 1]$ is a solution.

Smallest nonnegative? Yes.

$$\implies [h_A(0), h_A(1), h_A(2), h_A(3)] = [0, 0.333, 0.556, 1]$$

 \implies New junior becomes a partner with probability

$$f(1) = h_A(1) = 0.333$$

$$\sum_{x} f(x) \neq 1$$
 (why?)

Contents

Passage times

Hitting probabilities

Gambler's ruin

 X_t = Wealth of a gambler after t rounds

- Win 1 EUR w.pr. q
- Lose 1 EUR otherwise

 X_t = Wealth of a gambler after t rounds

- Win 1 EUR w.pr. q
- Lose 1 EUR otherwise

Game stops when the gambler's wealth hits M (gambler's target) or 0 (gambler's money is all gone).

 X_t = Wealth of a gambler after t rounds

- Win 1 EUR w.pr. q
- Lose 1 EUR otherwise

Game stops when the gambler's wealth hits M (gambler's target) or 0 (gambler's money is all gone).

 X_t = Wealth of a gambler after t rounds

- Win 1 EUR w.pr. q
- Lose 1 EUR otherwise

Game stops when the gambler's wealth hits M (gambler's target) or 0 (gambler's money is all gone).

Success probability

$$h(x) = \mathbb{P}(X_t = M \text{ for some } t \geq 0 \mid X_0 = x).$$

 X_t = Wealth of a gambler after t rounds

- Win 1 EUR w.pr. q
- Lose 1 EUR otherwise

Game stops when the gambler's wealth hits M (gambler's target) or 0 (gambler's money is all gone).

Success probability

$$h(x) = \mathbb{P}(X_t = M \text{ for some } t \geq 0 \mid X_0 = x).$$

Ruin probability = 1 - h(x).

The success probability $h(x) = h_A(x)$ with $A = \{M\}$. $\implies h(x)$ is the minimal nonnegative solution of h(0) = h(0), $h(x) = (1-q)h(x-1) + qh(x+1), \quad 0 < x < M,$ h(M) = 1.

The success probability $h(x) = h_A(x)$ with $A = \{M\}$. $\implies h(x)$ is the minimal nonnegative solution of h(0) = h(0), $h(x) = (1-q)h(x-1) + qh(x+1), \quad 0 < x < M,$ h(M) = 1. Clearly h(0) = 0.

The success probability $h(x) = h_A(x)$ with $A = \{M\}$. $\Rightarrow h(x)$ is the minimal nonnegative solution of

$$h(0) = h(0),$$

 $h(x) = (1-q)h(x-1) + qh(x+1), \quad 0 < x < M,$
 $h(M) = 1.$

Clearly h(0) = 0.

We need to find the minimal nonnegative solution to

$$h(x) = (1-q)h(x-1) + qh(x+1), \quad 0 < x < M$$

with boundary conditions h(0) = 0 and h(M) = 1.

Ansatz (yrite): $h(x) = z^x$ for some z

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies z^x = (1-q)z^{x-1} + qz^{x+1}$$

Asymmetric case:
$$q \neq \frac{1}{2}$$

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies z^x = (1-q)z^{x-1} + qz^{x+1}$$

$$\implies qz^2 - z + (1-q) = 0$$

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies z^x = (1-q)z^{x-1} + qz^{x+1}$$

$$\implies qz^2 - z + (1 - q) = 0$$

which has two distinct roots

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies z^x = (1-q)z^{x-1} + qz^{x+1}$$

$$\implies qz^2 - z + (1-q) = 0$$

which has two distinct roots $\alpha = \frac{1-q}{q}$ and $\beta = 1$.

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies z^x = (1-q)z^{x-1} + qz^{x+1}$$

$$\implies qz^2 - z + (1-q) = 0$$

which has two distinct roots $\frac{\alpha}{q} = \frac{1-q}{q}$ and $\beta = 1$.

⇒ All solutions are of the form

$$h(x) = c\alpha^x + d\beta^x$$

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies$$
 $z^x = (1-q)z^{x-1} + qz^{x+1}$

$$\implies qz^2 - z + (1 - q) = 0$$

which has two distinct roots $\alpha = \frac{1-q}{q}$ and $\beta = 1$. \Longrightarrow All solutions are of the form

$$h(x) = c\alpha^x + d\beta^x$$

The boundary conditions h(0) = 0 and h(M) = 1 now become

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies$$
 $z^x = (1-q)z^{x-1} + qz^{x+1}$

$$\implies qz^2 - z + (1-q) = 0$$

which has two distinct roots $\alpha = \frac{1-q}{q}$ and $\beta = 1$. \Longrightarrow All solutions are of the form

$$h(x) = c\alpha^x + d\beta^x$$

The boundary conditions h(0) = 0 and h(M) = 1 now become

$$c+d = 0,$$

$$c\alpha^M + d = 1,$$

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies z^x = (1-q)z^{x-1} + qz^{x+1}$$

$$\implies qz^2 - z + (1 - q) = 0$$

which has two distinct roots $\alpha = \frac{1-q}{q}$ and $\beta = 1$. \Longrightarrow All solutions are of the form

$$h(x) = c\alpha^x + d\beta^x$$

The boundary conditions h(0) = 0 and h(M) = 1 now become

$$c+d = 0,$$

$$c\alpha^M + d = 1,$$

from which we solve d =

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies z^x = (1-q)z^{x-1} + qz^{x+1}$$

$$\implies qz^2 - z + (1 - q) = 0$$

which has two distinct roots $\alpha = \frac{1-q}{q}$ and $\beta = 1$. \Longrightarrow All solutions are of the form

$$h(x) = c\alpha^x + d\beta^x$$

The boundary conditions h(0) = 0 and h(M) = 1 now become

$$c+d = 0,$$

$$c\alpha^M + d = 1,$$

from which we solve d = -c and c =

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies$$
 $z^x = (1-q)z^{x-1} + qz^{x+1}$

$$\implies qz^2 - z + (1 - q) = 0$$

which has two distinct roots $\alpha = \frac{1-q}{q}$ and $\beta = 1$. \Longrightarrow All solutions are of the form

$$h(x) = c\alpha^x + d\beta^x$$

The boundary conditions h(0) = 0 and h(M) = 1 now become

$$c + d = 0,$$

$$c\alpha^{M} + d = 1.$$

from which we solve d = -c and $c = 1/(\alpha^M - 1)$,

Ansatz (yrite): $h(x) = z^x$ for some z

$$\implies z^x = (1-q)z^{x-1} + qz^{x+1}$$

$$\implies qz^2 - z + (1-q) = 0$$

which has two distinct roots $\frac{\alpha}{q} = \frac{1-q}{q}$ and $\beta = 1$.

 \implies All solutions are of the form

$$h(x) = c\alpha^x + d\beta^x$$

The boundary conditions h(0) = 0 and h(M) = 1 now become

$$c+d=0,$$

$$c\alpha^M + d = 1,$$

from which we solve d = -c and $c = 1/(\alpha^M - 1)$, and obtain

$$h(x) = \frac{\alpha^x - 1}{\alpha^M - 1}.$$

Symmetric case:
$$q = \frac{1}{2}$$

$$h(x) = \frac{\alpha^{x} - 1}{\alpha^{M} - 1}, \quad \alpha = \frac{1 - q}{q}$$

behaves as $q \to \frac{1}{2}$.

Symmetric case:
$$q = \frac{1}{2}$$

$$h(x) = \frac{\alpha^{x} - 1}{\alpha^{M} - 1}, \quad \alpha = \frac{1 - q}{q}$$

behaves as $q o rac{1}{2}$.

Now

$$\lim_{\alpha \to 1} h(x) =$$

Symmetric case:
$$q = \frac{1}{2}$$

$$h(x) = \frac{\alpha^{x} - 1}{\alpha^{M} - 1}, \quad \alpha = \frac{1 - q}{q}$$

behaves as $q o \frac{1}{2}$.

Now

$$\lim_{\alpha \to 1} h(x) = \lim_{\alpha \to 1} \frac{\alpha^{x} - 1}{\alpha^{M} - 1} =$$

Symmetric case:
$$q = \frac{1}{2}$$

$$h(x) = \frac{\alpha^{x} - 1}{\alpha^{M} - 1}, \quad \alpha = \frac{1 - q}{q}$$

behaves as $q o \frac{1}{2}$.

Now

$$\lim_{\alpha \to 1} h(x) = \lim_{\alpha \to 1} \frac{\alpha^{x} - 1}{\alpha^{M} - 1} = \lim_{\alpha \to 1} \frac{x \alpha^{x-1}}{M \alpha^{M-1}} =$$

Symmetric case:
$$q = \frac{1}{2}$$

$$h(x) = \frac{\alpha^{x}-1}{\alpha^{M}-1}, \quad \alpha = \frac{1-q}{q}$$

behaves as $q o rac{1}{2}$.

Now

$$\lim_{\alpha \to 1} h(x) = \lim_{\alpha \to 1} \frac{\alpha^{x} - 1}{\alpha^{M} - 1} = \lim_{\alpha \to 1} \frac{x \alpha^{x-1}}{M \alpha^{M-1}} = \frac{x}{M}$$

by l'Hôpital's rule.

Gambler's ruin — Main theorem

Theorem

The probability that the random walk started at x eventually hits M equals

$$h(x) = \begin{cases} \frac{\left(\frac{1-q}{q}\right)^{x}-1}{\left(\frac{1-q}{q}\right)^{M}-1}, & q \neq \frac{1}{2}, \\ \frac{x}{M}, & q = \frac{1}{2}. \end{cases}$$

Gambler's ruin — Main theorem

Theorem

The probability that the random walk started at x eventually hits M equals

$$h(x) = \begin{cases} \frac{\left(\frac{1-q}{q}\right)^{x}-1}{\left(\frac{1-q}{q}\right)^{M}-1}, & q \neq \frac{1}{2}, \\ \frac{X}{M}, & q = \frac{1}{2}. \end{cases}$$

Main message: When $q \leq \frac{1}{2}$, the probability of ever reaching a state M from an initial state x tends to zero as $M \to \infty$.

Example: Roulette

In a game of roulette where a bet of 1 EUR is placed on the ball falling into one of 18 red pockets out of 37 pockets, the probability of winning 1 EUR is $q=\frac{18}{37}$ and the probability of losing 1 EUR is 1-q. If a gambler targets to double his initial wealth x, then the probability h(x) of successfully ending the game is obtained by applying the previous theorem with M=2x.

Example: Roulette

In a game of roulette where a bet of 1 EUR is placed on the ball falling into one of 18 red pockets out of 37 pockets, the probability of winning 1 EUR is $q=\frac{18}{37}$ and the probability of losing 1 EUR is 1-q. If a gambler targets to double his initial wealth x, then the probability h(x) of successfully ending the game is obtained by applying the previous theorem with M=2x.

Initial wealth (EUR)	1	5	10	20	50
Success probability	0.4865	0.4328	0.3680	0.2533	0.0628

Table: Probability of successfully doubling the initial wealth in a game of roulette by betting 1 EUR on red.

Aineistolähteet

Esityksessä käytetyt kuvat (esiintymisjärjestyksessä)

1. Image courtesy of think4photop at FreeDigitalPhotos.net