Model Documentation of the 'Boeing B-747 aircraft'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^4 z$ $\in \mathbb{R}^4 y \in \mathbb{R}^2$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

Symbol	Value			
A	0.9801	0.0003	-0.098	0.0038
	-0.3868	0.9071	0.0471	-0.0008
	0.1591	-0.0015	0.9691	0.0003
	-0.0198	0.0958	0.0021	1.0
В	-0.0001	0.0058		_
	0.0296	0.0153		
	0.0012	-0.0908		
	0.0015	0.0008		
B_1	-0.0001	0.0058		
	0.0296	0.0153		
	0.0012	-0.0908		
	0.0015	0.0008		
C_1	[1.0 0]	$\begin{bmatrix} 0 & 0 \end{bmatrix}$		
	0 1.0	0 0		
	0 0	1.0 0		
	0 0	0 1.0		
C	$\begin{bmatrix} 1.0 & 0 & 0 \end{bmatrix}$	0] [
	0 0 0	I		
D_{11}	$[0 \ 0 \ 0]$	0		
	0 0 0	0		
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0		
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0		
D_{12}	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	_		
	0 0			
	1.0 0			
	$\begin{bmatrix} 0 & 1.0 \end{bmatrix}$			
D_{21}	$[0 \ 0 \ 0]$	0]		
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0		

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

AC5 Boeing B-747 aircraft T. Ishihara, H.-J. Guo and H. Takeda, "A Design of Discrete-Time Integral Controllers with Computation Delays via Loop Transfer Recovery", AUTO, Vol. 28, Nr. 3, pp. 599-603, 1992

4 Simulation

Figure 1: Simulation of the Boeing B-747 aircraft.

References

[1] . Ishihara, H.-J. Guo and H. Takeda, "A Design of Discrete-Time Integral Controllers with Computation Delays via Loop Transfer Recovery", AUTO, Vol. 28, Nr. 3, pp. 599-603, 1992