Aprendizaje sensitivo a costos

Fernando Lozano

Universidad de los Andes

8 de noviembre de 2017

• Algoritmos estudiados asumen ~igual proporción de datos en cada clase: datos balanceados

- Algoritmos estudiados asumen ~igual proporción de datos en cada clase: datos balanceados
- \bullet Medida de error de hipótesis h:

$$e(h) = \mathbf{P}_{\mathcal{D}}[\llbracket h(x) \neq y \rrbracket]$$

- Algoritmos estudiados asumen ~igual proporción de datos en cada clase: datos balanceados
- Medida de error de hipótesis h:

$$e(h) = \mathbf{P}_{\mathcal{D}}[\llbracket h(x) \neq y \rrbracket]$$

• Algoritmos minimizan función de error en los datos de manera que $e(h) \ll$.

- Algoritmos estudiados asumen ~igual proporción de datos en cada clase: datos balanceados
- \bullet Medida de error de hipótesis h:

$$e(h) = \mathbf{P}_{\mathcal{D}}[\llbracket h(x) \neq y \rrbracket]$$

- Algoritmos minimizan función de error en los datos de manera que $e(h) \ll$.
- Sin embargo:

- Algoritmos estudiados asumen ~igual proporción de datos en cada clase: datos balanceados
- ullet Medida de error de hipótesis h:

$$e(h) = \mathbf{P}_{\mathcal{D}}[\llbracket h(x) \neq y \rrbracket]$$

- Algoritmos minimizan función de error en los datos de manera que $e(h) \ll$.
- Sin embargo:
 - En muchas aplicaciones los datos no están balanceados.

- Algoritmos estudiados asumen ~igual proporción de datos en cada clase: datos balanceados
- \bullet Medida de error de hipótesis h:

$$e(h) = \mathbf{P}_{\mathcal{D}}[\llbracket h(x) \neq y \rrbracket]$$

- Algoritmos minimizan función de error en los datos de manera que $e(h) \ll$.
- Sin embargo:
 - En muchas aplicaciones los datos no están balanceados.
 - 2 El costo de cometer un error de clasificación en un dato depende de la clase a la cual éste pertenece.

- Algoritmos estudiados asumen ~igual proporción de datos en cada clase: datos balanceados
- \bullet Medida de error de hipótesis h:

$$e(h) = \mathbf{P}_{\mathcal{D}}[\llbracket h(x) \neq y \rrbracket]$$

- Algoritmos minimizan función de error en los datos de manera que $e(h) \ll$.
- Sin embargo:
 - En muchas aplicaciones los datos no están balanceados.
 - 2 El costo de cometer un error de clasificación en un dato depende de la clase a la cual éste pertenece.
- En estos casos e(h) no es una buena medida de la calidad de h.

- Algoritmos estudiados asumen ~igual proporción de datos en cada clase: datos balanceados
- ullet Medida de error de hipótesis h:

$$e(h) = \mathbf{P}_{\mathcal{D}}[\llbracket h(x) \neq y \rrbracket]$$

- Algoritmos minimizan función de error en los datos de manera que $e(h) \ll$.
- Sin embargo:
 - En muchas aplicaciones los datos no están balanceados.
 - 2 El costo de cometer un error de clasificación en un dato depende de la clase a la cual éste pertenece.
- En estos casos e(h) no es una buena medida de la calidad de h.
- Entrenamiento debe tener en cuenta costos/datos no balanceados.

		Etiqueta	
		0	1
Predicción	0	TN	FN
- rediccion	0 1	FP	TP

	Etiqueta	
	0	1
0	TN	\overline{FN}
$\begin{bmatrix} 0 & 2 \\ 1 & 2 \end{bmatrix}$	FP	TP
	0 1	0

$$T = TN + FN + FP + TP$$

		Etiqueta	
		0	1
Predicción	0	TN	\overline{FN}
Frediccion	1	FP	TP

$$T = TN + FN + FP + TP$$

• Error de clasificación: $\frac{FP+FN}{T}$

		Etiqueta	
		0	1
Predicción	0	TN	\overline{FN}
Frediccion	1	FP	TP

$$T = TN + FN + FP + TP$$

 \bullet Error de clasificación: $\frac{FP+FN}{T},$ Accuracy: $\frac{TP+TN}{T}$

		Etiqueta	
		0	1
Predicción	0	TN	\overline{FN}
Frediccion	1	FP	TP

$$T = TN + FN + FP + TP$$

- \bullet Error de clasificación: $\frac{FP+FN}{T},$ Accuracy: $\frac{TP+TN}{T}$
- Sensitividad (recall): $S = \frac{TP}{TP + FN}$

		Etiqueta	
		0	1
Predicción	0	TN	\overline{FN}
Frediccion	0	FP	TP

$$T = TN + FN + FP + TP$$

- \bullet Error de clasificación: $\frac{FP+FN}{T},$ Accuracy: $\frac{TP+TN}{T}$
- Sensitividad (recall): $S = \frac{TP}{TP + FN}$
- Especificidad: $E = \frac{TN}{FP+TN}$

		Etiqueta	
		0	1
Predicción	0	TN	\overline{FN}
Frediccion	0 1	FP	TP

$$T = TN + FN + FP + TP$$

- \bullet Error de clasificación: $\frac{FP+FN}{T},$ Accuracy: $\frac{TP+TN}{T}$
- Sensitividad (recall): $S = \frac{TP}{TP + FN}$
- Especificidad: $E = \frac{TN}{FP+TN}$
- Precisión: $P = \frac{TP}{TP + FP}$

0	1
Predicción 0 TN	\overline{FN}
$1 \mid FP$	TP

$$T = TN + FN + FP + TP$$

- \bullet Error de clasificación: $\frac{FP+FN}{T},$ Accuracy: $\frac{TP+TN}{T}$
- Sensitividad (recall): $S = \frac{TP}{TP + FN}$
- Especificidad: $E = \frac{TN}{FP+TN}$
- Precisión: $P = \frac{TP}{TP + FP}$
- F-score: $F = 2\frac{S \times P}{S+P}$

• Clasificador retorna valor real (probabilidad) \longrightarrow umbral.

- Clasificador retorna valor real (probabilidad) \longrightarrow umbral.
- Calidad del clasificador al variar el umbral.

- Clasificador retorna valor real (probabilidad) \longrightarrow umbral.
- Calidad del clasificador al variar el umbral.
- Escogencia de umbral óptimo de acuerdo al problema.

- Clasificador retorna valor real (probabilidad) \longrightarrow umbral.
- Calidad del clasificador al variar el umbral.
- Escogencia de umbral óptimo de acuerdo al problema.
- Visualización

• Algoritmo de entrenamiento debe tener en cuenta desbalance y/o costos asimétricos.

- Algoritmo de entrenamiento debe tener en cuenta desbalance y/o costos asimétricos.
- Sea C(i, j) es el costo incurrido al predecir etiqueta i, cuando la etiqueta es j.

- Algoritmo de entrenamiento debe tener en cuenta desbalance y/o costos asimétricos.
- Sea C(i, j) es el costo incurrido al predecir etiqueta i, cuando la etiqueta es j.
- Meta: Minimizar costo esperado de equivocarse:

$$i^* = \operatorname*{arg\,min}_i R(i|x) = \sum_j P(j|x)C(i,j)$$

		Etiqueta	
		0	1
Predicción	0	c_{00}	c_{01}
	1	c_{10}	c_{11}

		Etiqueta	
		0	1
Predicción	0	c_{00}	c_{01}
	1	c_{10}	c_{11}

• Costo de falsos positivos.

		Etiqueta	
		0	1
Predicción	0	c_{00}	c_{01}
	1	c_{10}	c_{11}

- Costo de falsos positivos.
- Costo de falsos negativos.

		Etiqueta	
		0	1
Predicción	0	c_{00}	c_{01}
	1	c_{10}	c_{11}

- Costo de falsos positivos.
- Costo de falsos negativos.
- Debemos tener $c_{10} > c_{00}$ y $c_{01} > c_{11}$

		Etiqueta	
		0	1
Predicción	0	c_{00}	c_{01}
	1	c_{10}	c_{11}

- Costo de falsos positivos.
- Costo de falsos negativos.
- Debemos tener $c_{10} > c_{00}$ y $c_{01} > c_{11}$
- No debe haber fila dominante.

• Decisión óptima es predecir clase 1 si:

$$P(j = 0|x)c_{10} + P(j = 1|x)c_{11} \le P(j = 0|x)c_{00} + P(j = 1|x)c_{01}$$

• Decisión óptima es predecir clase 1 si:

$$P(j = 0|x)c_{10} + P(j = 1|x)c_{11} \le P(j = 0|x)c_{00} + P(j = 1|x)c_{01}$$

• Si
$$p = P(j = 1|x)$$
,

$$(1-p)c_{10} + pc_{11} \le (1-p)c_{00} + pc_{01}$$

• Decisión óptima es predecir clase 1 si:

$$P(j = 0|x)c_{10} + P(j = 1|x)c_{11} \le P(j = 0|x)c_{00} + P(j = 1|x)c_{01}$$

• Si p = P(j = 1|x),

$$(1-p)c_{10} + pc_{11} \le (1-p)c_{00} + pc_{01}$$

• Umbral óptimo: predecir clase 1 iff $p \ge p^*$:

$$p^* = \frac{c_{10} - c_{00}}{c_{10} - c_{00} + c_{01} - c_{11}}$$

7 / 22

• Note que para el caso balanceado (sin costos) $p^* = \frac{1}{2}$.

- Note que para el caso balanceado (sin costos) $p^* = \frac{1}{2}$.
- Cómo hacer que un algoritmo estándar clasifique de acuerdo a un p^* dado?

- Note que para el caso balanceado (sin costos) $p^* = \frac{1}{2}$.
- Cómo hacer que un algoritmo estándar clasifique de acuerdo a un p^* dado?

Teorema

Para hacer un umbral objetivo p^* corresponder a un umbral dado p_0 , el número de ejemplos negativos en el conjunto de entrenamiento debe ser multiplicado por:

$$\frac{p^{\star}}{1-p^{\star}} \frac{1-p_0}{p_0}$$

- Note que para el caso balanceado (sin costos) $p^* = \frac{1}{2}$.
- Cómo hacer que un algoritmo estándar clasifique de acuerdo a un p^* dado?

Teorema

Para hacer un umbral objetivo p^* corresponder a un umbral dado p_0 , el número de ejemplos negativos en el conjunto de entrenamiento debe ser multiplicado por:

$$\frac{p^{\star}}{1-p^{\star}} \frac{1-p_0}{p_0}$$

• Por ejemplo, si $p_0 = 0.5$ y $c_{00} = c_{11} = 0$, el número de ejemplos negativos debe ser multiplicado por $p^*/(1-p^*) = c_{10}/c_{01}$

• Sobremuestreo de clase minoritaria.

- Sobremuestreo de clase minoritaria.
 - ▶ Muestrear con reemplazo (boostrap).

- Sobremuestreo de clase minoritaria.
 - Muestrear con reemplazo (boostrap).
 - Añadir datos sintéticos.

- Sobremuestreo de clase minoritaria.
 - ▶ Muestrear con reemplazo (boostrap).
 - Añadir datos sintéticos.
- Submuestreo de clase mayoritaria.

- Sobremuestreo de clase minoritaria.
 - Muestrear con reemplazo (boostrap).
 - Añadir datos sintéticos.
- Submuestreo de clase mayoritaria.
 - Muestreo sin reemplazo

- Sobremuestreo de clase minoritaria.
 - Muestrear con reemplazo (boostrap).
 - Añadir datos sintéticos.
- Submuestreo de clase mayoritaria.
 - Muestreo sin reemplazo
 - ► Eliminación selectiva (outliers, etc).

- Sobremuestreo de clase minoritaria.
 - Muestrear con reemplazo (boostrap).
 - Añadir datos sintéticos.
- Submuestreo de clase mayoritaria.
 - Muestreo sin reemplazo
 - ► Eliminación selectiva (outliers, etc).
- SMOTE: Synthetic Minority Over-sampling TEchnique

- Sobremuestreo de clase minoritaria.
 - Muestrear con reemplazo (boostrap).
 - Añadir datos sintéticos.
- Submuestreo de clase mayoritaria.
 - Muestreo sin reemplazo
 - ► Eliminación selectiva (outliers, etc).
- SMOTE: Synthetic Minority Over-sampling TEchnique

• Solución óptima:

$$i^* = \operatorname*{arg\,min}_i R(i|x) = \sum_j P(j|x)C(i,j)$$

• Solución óptima:

$$i^* = \operatorname*{arg\,min}_i R(i|x) = \sum_j P(j|x)C(i,j)$$

• Partición del espacio \mathcal{X} en k regiones.

Solución óptima:

$$i^* = \operatorname*{arg\,min}_i R(i|x) = \sum_j P(j|x)C(i,j)$$

- Partición del espacio \mathcal{X} en k regiones.
- Si los costos cambian, partición cambia aún si probabilidades de clase no cambian.

Solución óptima:

$$i^* = \operatorname*{arg\,min}_i R(i|x) = \sum_j P(j|x)C(i,j)$$

- Partición del espacio \mathcal{X} en k regiones.
- Si los costos cambian, partición cambia aún si probabilidades de clase no cambian.
- Las predicciones óptimas en el *conjunto de entrenamiento* no se conocen.

Solución óptima:

$$i^* = \operatorname*{arg\,min}_i R(i|x) = \sum_j P(j|x)C(i,j)$$

- Partición del espacio \mathcal{X} en k regiones.
- Si los costos cambian, partición cambia aún si probabilidades de clase no cambian.
- Las predicciones óptimas en el *conjunto de entrenamiento* no se conocen.
- MetaCost estima etiquetas correctas usando Bagging, y entrena clasificador con esas etiquetas.

Algorithm 1 Bagging

for t = 1 to T do

Obtenga \mathcal{S}_t de \mathcal{S} muestreando con reemplazo.

$$h_t \leftarrow A(\mathcal{S}_t)$$

end for

Retorne $f(x) = \text{votacion}\{h_t(x)\}$

Algorithm 2 MetaCost

for t = 1 to T do

Obtenga S_t de S muestreando $m \leq n$ datos con reemplazo $h_t \leftarrow A(S_t)$

end for

for cada $x \in \mathcal{S}$ do

for cada clase j do

$$\check{P}(j|x) = \frac{1}{T} \sum_{t=1}^{T} [h_t(x) = j]$$

end for

$$\check{y} = \arg\min_{i} \sum_{j} \check{P}(j|x)C(i,j)$$

end for

Retorne $h_M(x) = A(\check{S})$

• Reducir tamaño de muestra bootstrap $(m \ll n)$.

- Reducir tamaño de muestra bootstrap $(m \ll n)$.
- \bullet Si clasificador base retorna probabilidades, usarlas en estimativo $\check{P}(j|x)$

- Reducir tamaño de muestra bootstrap $(m \ll n)$.
- Si clasificador base retorna probabilidades, usarlas en estimativo $\check{P}(j|x)$
- Incluir en estimativo de $\check{P}(j|x)$ sólo h_t entrenado en los que $x \notin \mathcal{S}_t$

• $(x, y, c) \sim \mathcal{D}$ con $x \in \mathcal{X}, y \in \{-1, 1\}$ y $c \in \mathbb{R}^+$.

- $(x, y, c) \sim \mathcal{D}$ con $x \in \mathcal{X}, y \in \{-1, 1\}$ y $c \in \mathbb{R}^+$.
- Datos de entrenamiento $S = \{(x_i, y_i, c_i)\}.$

- $(x, y, c) \sim \mathcal{D}$ con $x \in \mathcal{X}, y \in \{-1, 1\}$ y $c \in \mathbb{R}^+$.
- Datos de entrenamiento $S = \{(x_i, y_i, c_i)\}.$
- \bullet Meta: obtener hipótesis $h\,:\,\mathcal{X}\longrightarrow\{-1,1\}$ que minimice

$$\mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x)\neq y\rrbracket\right]$$

- $(x, y, c) \sim \mathcal{D}$ con $x \in \mathcal{X}, y \in \{-1, 1\}$ y $c \in \mathbb{R}^+$.
- Datos de entrenamiento $S = \{(x_i, y_i, c_i)\}.$
- \bullet Meta: obtener hipótesis $h\,:\,\mathcal{X}\longrightarrow\{-1,1\}$ que minimice

$$\mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x)\neq y\rrbracket\right]$$

• Más general que métodos que usan matriz de costos.

Teorema

Para toda distribución \mathcal{D} existe una constante $N = \mathbb{E}_{x,y,c \sim \mathcal{D}}[c]$ tal que para todo clasificador h:

$$\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h(x) \neq y \rrbracket\right] = \frac{1}{N} \mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x) \neq y \rrbracket\right]$$

donde
$$\hat{\mathcal{D}}(x, y, c) = \frac{c}{N} \mathcal{D}(x, y, c)$$

Teorema

Para toda distribución \mathcal{D} existe una constante $N = \mathbb{E}_{x,y,c\sim\mathcal{D}}[c]$ tal que para todo clasificador h:

$$\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h(x) \neq y \rrbracket\right] = \frac{1}{N} \mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x) \neq y \rrbracket\right]$$

donde
$$\hat{\mathcal{D}}(x, y, c) = \frac{c}{N} \mathcal{D}(x, y, c)$$

Teorema

Para toda distribución \mathcal{D} existe una constante $N = \mathbb{E}_{x,u,c\sim\mathcal{D}}[c]$ tal que para todo clasificador h:

$$\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h(x)\neq y\rrbracket\right] = \frac{1}{N}\mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x)\neq y\rrbracket\right]$$

donde
$$\hat{\mathcal{D}}(x, y, c) = \frac{c}{N} \mathcal{D}(x, y, c)$$

$$\mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x)\neq y\rrbracket\right] = \int c\llbracket h(x)\neq y\rrbracket d\mathcal{D}$$

Teorema

Para toda distribución \mathcal{D} existe una constante $N = \mathbb{E}_{x,y,c \sim \mathcal{D}}[c]$ tal que para todo clasificador h:

$$\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h(x)\neq y\rrbracket\right] = \frac{1}{N}\mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x)\neq y\rrbracket\right]$$

donde
$$\hat{\mathcal{D}}(x, y, c) = \frac{c}{N} \mathcal{D}(x, y, c)$$

$$\mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x)\neq y\rrbracket\right] = \int c\llbracket h(x)\neq y\rrbracket d\mathcal{D}$$
$$= N \int \llbracket h(x)\neq y\rrbracket d\hat{\mathcal{D}}$$

Teorema

Para toda distribución \mathcal{D} existe una constante $N = \mathbb{E}_{x.u.c \sim \mathcal{D}}[c]$ tal que para todo clasificador h:

$$\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h(x)\neq y\rrbracket\right] = \frac{1}{N}\mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h(x)\neq y\rrbracket\right]$$

donde
$$\hat{\mathcal{D}}(x, y, c) = \frac{c}{N} \mathcal{D}(x, y, c)$$

$$\mathbb{E}_{x,y,c\sim\mathcal{D}} \left[c \llbracket h(x) \neq y \rrbracket \right] = \int c \llbracket h(x) \neq y \rrbracket d\mathcal{D}$$
$$= N \int \llbracket h(x) \neq y \rrbracket d\hat{\mathcal{D}}$$
$$= N \mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}} \left[\llbracket h(x) \neq y \rrbracket \right]$$

• El clasificador h que minimiza el costo esperado con respecto a \mathcal{D} minimiza el error esperado con respecto a $\hat{\mathcal{D}}$.

- El clasificador h que minimiza el costo esperado con respecto a \mathcal{D} minimiza el error esperado con respecto a $\hat{\mathcal{D}}$.
- Para obtener clasificador que minimiza el costo esperado:

- El clasificador h que minimiza el costo esperado con respecto a \mathcal{D} minimiza el error esperado con respecto a $\hat{\mathcal{D}}$.
- Para obtener clasificador que minimiza el costo esperado:
 - Escalizar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$,

- El clasificador h que minimiza el costo esperado con respecto a \mathcal{D} minimiza el error esperado con respecto a $\hat{\mathcal{D}}$.
- Para obtener clasificador que minimiza el costo esperado:
 - Escalizar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$,
 - 2 Entrenar clasificador con datos modificados.

- El clasificador h que minimiza el costo esperado con respecto a \mathcal{D} minimiza el error esperado con respecto a $\hat{\mathcal{D}}$.
- Para obtener clasificador que minimiza el costo esperado:
 - Escalizar distribución de manera que $(x,y) \sim \hat{\mathcal{D}}$,
 - 2 Entrenar clasificador con datos modificados.
 - ★ Caja transparente.

- El clasificador h que minimiza el costo esperado con respecto a \mathcal{D} minimiza el error esperado con respecto a $\hat{\mathcal{D}}$.
- Para obtener clasificador que minimiza el costo esperado:
 - Escalizar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$,
 - 2 Entrenar clasificador con datos modificados.
 - ★ Caja transparente.
 - ★ Caja negra.

• Conocimiento del algoritmo de clasificación específico.

- Conocimiento del algoritmo de clasificación específico.
- \bullet Modificar algoritmo de clasificación de manera que tenga en cuenta los pesos c/N

- Conocimiento del algoritmo de clasificación específico.
- \bullet Modificar algoritmo de clasificación de manera que tenga en cuenta los pesos c/N
- Adaboost: Pesos iniciales $D_i = \frac{c_i}{N}$

- Conocimiento del algoritmo de clasificación específico.
- \bullet Modificar algoritmo de clasificación de manera que tenga en cuenta los pesos c/N
- Adaboost: Pesos iniciales $D_i = \frac{c_i}{N}$
- SVMs:

- Conocimiento del algoritmo de clasificación específico.
- \bullet Modificar algoritmo de clasificación de manera que tenga en cuenta los pesos c/N
- Adaboost: Pesos iniciales $D_i = \frac{c_i}{N}$
- SVMs:

mín
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \mathbf{c_i} \zeta_i$$
 sujeto a $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0$ $i = 1, \dots, n$ $\zeta_i \ge 0$

18 / 22

• No se tiene acceso al funcionamiento del algoritmo de clasificación.

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$
 - Muestreo sin reemplazo:

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$
 - Muestreo sin reemplazo:
 - ★ Conjunto de entrenamiento \ll .

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$
 - ▶ Muestreo sin reemplazo:
 - ⋆ Conjunto de entrenamiento «.
 - **★** Datos resultantes No satisfacen $(x, y) \sim \hat{\mathcal{D}}$.

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$
 - ► Muestreo sin reemplazo:
 - ⋆ Conjunto de entrenamiento «.
 - ★ Datos resultantes No satisfacen $(x, y) \sim \hat{\mathcal{D}}$.
 - Muestreo con reemplazo:

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$
 - ► Muestreo sin reemplazo:
 - ★ Conjunto de entrenamiento «.
 - ★ Datos resultantes No satisfacen $(x, y) \sim \hat{\mathcal{D}}$.
 - Muestreo con reemplazo:
 - ★ Datos resultantes satisfacen $(x, y) \sim \hat{\mathcal{D}}$.

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x,y) \sim \hat{\mathcal{D}}$
 - ► Muestreo sin reemplazo:
 - ★ Conjunto de entrenamiento «.
 - ★ Datos resultantes No satisfacen $(x, y) \sim \hat{\mathcal{D}}$.
 - Muestreo con reemplazo:
 - ★ Datos resultantes satisfacen $(x, y) \sim \hat{D}$.
 - ★ No son independientes.

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$
 - ► Muestreo sin reemplazo:
 - ★ Conjunto de entrenamiento «.
 - ★ Datos resultantes No satisfacen $(x, y) \sim \hat{\mathcal{D}}$.
 - Muestreo con reemplazo:
 - ★ Datos resultantes satisfacen $(x, y) \sim \hat{\mathcal{D}}$.
 - ★ No son independientes.
 - ⋆ Overfitting.

- No se tiene acceso al funcionamiento del algoritmo de clasificación.
- Filtrar distribución de manera que $(x, y) \sim \hat{\mathcal{D}}$
 - ► Muestreo sin reemplazo:
 - ★ Conjunto de entrenamiento «.
 - ★ Datos resultantes No satisfacen $(x, y) \sim \hat{\mathcal{D}}$.
 - Muestreo con reemplazo:
 - ★ Datos resultantes satisfacen $(x, y) \sim \hat{\mathcal{D}}$.
 - ★ No son independientes.
 - ⋆ Overfitting.
 - Muestreo con rechazo.

Muestreo con rechazo

 \bullet Distribución difícil de muestrear, pero evaluable f.

Muestreo con rechazo

- \bullet Distribución difícil de muestrear, pero evaluable f.
- ullet Muestrear de acuerdo a distribución envolvente g.

Muestreo con rechazo

- \bullet Distribución difícil de muestrear, pero evaluable f.
- ullet Muestrear de acuerdo a distribución envolvente g.
- Aceptar con probabilidad $\propto f(x)/g(x)$

• En este caso:

- En este caso:
 - **1** Datos originales $S = \{(x_i, y_i)\} \sim \mathcal{D}$

- En este caso:
 - **1** Datos originales $S = \{(x_i, y_i)\} \sim \mathcal{D}$
 - 2 Seleccionar (x_i, y_i) aleatoriamente.

- En este caso:
 - **1** Datos originales $S = \{(x_i, y_i)\} \sim \mathcal{D}$
 - 2 Seleccionar (x_i, y_i) aleatoriamente.
 - 3 Aceptar con probabilidad c/Z

- En este caso:
 - **1** Datos originales $S = \{(x_i, y_i)\} \sim \mathcal{D}$
 - 2 Selectionar (x_i, y_i) aleatoriamente.
 - \odot Aceptar con probabilidad c/Z
- \bullet Z es una cota superior e los costos.

Algorithm 3 Costing

for t = 1 to T do

Obtenga \mathcal{S}_t de \mathcal{S} muestreando con rechazo y probabilidad de aceptar c/Z.

$$h_t \leftarrow A(\mathcal{S}_t)$$

end for

Retorne $f(x) = \text{votacion}\{h_t(x)\}\$

• $\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h_t(x) \neq y \rrbracket\right] \leq \epsilon \Rightarrow \mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h_t(x) \neq y \rrbracket\right] \leq N\epsilon$

- $\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h_t(x) \neq y \rrbracket\right] \leq \epsilon \Rightarrow \mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h_t(x) \neq y \rrbracket\right] \leq N\epsilon$
- Complejidad de muestra de aprendizaje con datos muestreados con rechazo es menor que complejidad de muestra sin costos (modelo PAC).

- $\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h_t(x) \neq y \rrbracket\right] \leq \epsilon \Rightarrow \mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h_t(x) \neq y \rrbracket\right] \leq N\epsilon$
- Complejidad de muestra de aprendizaje con datos muestreados con rechazo es menor que complejidad de muestra sin costos (modelo PAC).
- Promediar sobre múltiples modelos mejora generalización.

- $\mathbb{E}_{x,y,c\sim\hat{\mathcal{D}}}\left[\llbracket h_t(x) \neq y \rrbracket\right] \leq \epsilon \Rightarrow \mathbb{E}_{x,y,c\sim\mathcal{D}}\left[c\llbracket h_t(x) \neq y \rrbracket\right] \leq N\epsilon$
- Complejidad de muestra de aprendizaje con datos muestreados con rechazo es menor que complejidad de muestra sin costos (modelo PAC).
- Promediar sobre múltiples modelos mejora generalización.
- Tiempo de corrida de cada entrenamiento es pequeño porque típicamente $|S_t| < |S|$