Analyse – Fonctions d'une variable réelle

Christophe Mouilleron

Prérequis et objectifs

Prérequis:

- fonctions usuelles (sin, exp, etc.)
- concepts de limite et de dérivation
- graphe d'une fonction

Objectifs:

- révisions
- étude complète de $f: I \to \mathbb{R}$ avec $I \subset R$
- tracé du graphe de f
- modélisation = retrouver f à partir du graphe

Propriétés d'une fonction

locales	globales

Propriétés d'une fonction

locales	globales
continuité	ensemble de définition
limites, asymptotes	symétrie, périodicité
	ensemble de dérivation
tangentes	dérivée
	monotonie
extrema	extrema
	convexité

Limites - règles de calcul

Somme:

$$\begin{array}{c|cccc} & -\infty & \ell & +\infty \\ \hline -\infty & -\infty & -\infty & \mathsf{FI} \\ \ell' & -\infty & \ell + \ell' & +\infty \\ +\infty & \mathsf{FI} & +\infty & +\infty \end{array}$$

Produit:

Limites – techniques de calcul

Factorisation par le terme dominant :

• but = simplifier pour éliminer les FIs

$$-\infty + \infty, \ 0 \times \infty, \ \frac{0}{0}, \ \frac{\infty}{\infty}$$

Encadrement:

• Si $f(x) \le g(x)$ autour de a, alors $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

$$-1 \le \cos \le 1$$

Autre:

- identités remarquables
- croissance comparée

$$\exp \succ x^n \succ \ln$$

développements limités (cf cours suivant)

Tangente, nombre dérivé

pente de
$$\mathcal{D} = \frac{f(x) - f(a)}{x - a}$$

Tangente, nombre dérivé

pente de
$$\mathcal{D} = \frac{f(x) - f(a)}{x - a}$$

pente de
$$\mathcal{T} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

équation de
$$T$$
: $y = f'(a) \cdot (x - a) + f(a)$

Dérivée - règles de calcul

Fonction usuelle → cf formulaire

Somme:

$$(f+g)'=f'+g'$$

Produit:

$$(fg)' = f'g + fg'$$

Composée:

$$\frac{(f(g(x)))' = f'(g(x)) \cdot g'(x)}{dx} = \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx}$$

Étude d'une fonction – Approche générale

ENSIIE - 1A - Analyse

Symétrie axiale

$$\rightsquigarrow f(x_0 - h) = f(x_0 + h)$$

Symétrie centrale

$$\rightsquigarrow y_0 - f(x_0 - h) = f(x_0 + h) - y_0$$

Asymptotes horizontales et verticales

Asymptote verticale

$$\lim_{x\to a} f(x) = \pm \infty$$

Asymptote horizontale

$$\lim_{x \to +\infty} f(x) = a$$

Asymptotes obliques

Quand:

$$\bullet \lim_{x \to \pm \infty} \frac{f(x)}{x} = \mathbf{a} \in \mathbb{R}^*$$

$$\bullet \lim_{x \to \pm \infty} f(x) - ax = b \in \mathbb{R}$$

Asymptote oblique:

$$\mathcal{D}: y = ax + b$$

Convexité et concavité

Idée: quantifier un peu plus finement les variations d'une fonction

Fonction convexe:

- croissance de plus en plus rapide
- f' croissante
- $f''(x) \ge 0$

Convexité et concavité

Idée: quantifier un peu plus finement les variations d'une fonction

Fonction convexe:

- croissance de plus en plus rapide
- f' croissante
- $f''(x) \ge 0$

Fonction concave:

- croissance de plus en plus lente
- f' décroissante
- $f''(x) \leq 0$

Point d'inflexion

En pratique, étude de la convexité = tableau de signe de f''

- quand $f'' > 0 \longrightarrow partie convexe$
- quand $f'' < 0 \longrightarrow partie concave$
- quand f''(x) = 0+ changement de signe de $f'' \rightsquigarrow x$ est un point d'inflexion

Inégalité de convexité

Théorème

Si

- $f: I \to \mathbb{R}$ est convexe
- $x_1, x_2, ..., x_n \in D_f = I$
- $\lambda_1, \lambda_2, \ldots, \lambda_n \in [0, 1]$
- $\sum_{i=1}^n \lambda_i = 1$

alors

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

Résoudre f(x) = c

Théorème (des valeurs intermédiaires)

Soit $f : [a, b] \to \mathbb{R}$ une fonction continue.

Pour tout c entre f(a) et f(b), il existe $x \in [a, b]$ tel que f(x) = c.

Recherche de x possible par dichotomie

Théorème

Soit $f:[a,b] \to \mathbb{R}$ une fonction dérivable sur]a,b[.

Si f' est strictement positive (sauf éventuellement en un nombre fini de points), alors f est une bijection sur [a, b].

$$c \in f([a,b]) \Rightarrow f(x) = c$$
 admet exactement une solution

Rq: valable aussi si f' < 0

C. Mouilleron ENSIIE - 1A - Analyse