

Data Science & ML Course Lesson #6 Exploratory Data Analysis I

Ivanovitch Silva October, 2018

Agenda

- Case study: unemployment rate, movie ratings
- Tabular vs Visual representation
- Matplotlib
- Line, Bar and Scatter Plots

Update from repository

git clone https://github.com/ivanovitchm/datascience2machinelearning.git

Or

git pull

One Picture Worth Ten Thousand Words

EVOLUTION

Line plot

Area plot

Stacked area plot

Parrallel Streamchart plot

MAPS

Map

ChloropletconnectiorBubble map map map

FLOW

Chord diagram

Network Sankey chart diagram

THE PYTHON **GRAPH GALLERY**

https://python-graph-gallery.com/

Other

3D

Animation Cheat sheet

Data Art

Color

Bad chart

DISTRIBUTION

DENSITY BOXPLOTHISTOGRAM

CORRELATION

Scatterplo Connected Bubble

Scatter plot plot

Heatmap

2D Correlogram density plot

RANKING

Barplot Boxplot

parallel plot

Lollipop WordcloudSpider plot

PART OF A WHOLE

Stacked barplot

Tree plot

Venn diagram

Doughnut Pie plot plot

Tree diagram

Case study: unemployment rate (US)

fred.stlouisfed.org myf.red/g/eCMW

Investigating the dataset

DATE Year-Month-Day	VALUE		
1948-01-01	3.4		
1948-02-01	3.8		
1948-03-01	4.0		
1948-04-01	3.9		
1948-05-01	3.5		

Conversion of types (Object to Datetime)

```
import pandas as pd
df['col'] = pd.to_datetime(df['col'])
```


DATE VALUE 1948-01-01 3.4 3.8 1948-02-01 1948-03-01 4.0 1948-04-01 3.9 1948-05-01 3.5 1948-06-01 3.6 1948-07-01 3.6 1948-08-01 3.9 1948-09-01 3.8 1948-10-01 3.7 3.8 1948-11-01 1948-12-01 4.0

Observation from the table representation

- What is the minimum value?
- What is the maximum value?
- Is there seasonality?
- What are the trend up periods?
- What are the trend down periods?
- Is the table representation really useful?

Visual representation

matpletlib

import matplotlib.pyplot as plt
plt.plot()
plt.show()

Adding and Fixing Axis Ticks

plt.plot(slice_df.DATE,slice_df.VALUE)
plt.xticks(rotation=90)

Multiples Charts

Figure Subplot: (2,2,1) Subplot: (2,2,2) Subplot: (2,2,4) Subplot: (2,2,3)

```
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(2,2,1)
ax2 = fig.add_subplot(2,2,2)
ax3 = fig.add_subplot(2,2,3)
ax4 = fig.add_subplot(2,2,4)
```


Comparing across more years


```
fig = plt.figure(figsize=(12,12))

for i,year in enumerate(range(1948,1952)):
    ax = fig.add_subplot(4,1,i+1)
    subset = unrate[unrate.DATE.dt.year == year]
    ax.plot(subset['DATE'], subset['VALUE'])
```


Overlaying line charts

WEAPONS OF MATH DESTRUCTION

HOW BIG DATA INCREASES INEQUALITY

AND THREATENS DEMOCRACY

CATHY O'NEIL

O.NEIL

The state of the s

NS OF

FiveThirtyEight

Politics Sports Science & Health Economics Culture Politics Podca

OCT. 15, 2015, AT 9:52 AM

Be Suspicious Of Online Movie Ratings, Especially Fandango's

By Walt Hickey

Filed under Movies

Get the data on $\underline{\text{GitHub}}$

"Ted 2," "Avengers: Age of Ultron," and "Fantastic Four"

Introduction to the data

	FILM	RT_user_norm	Metacritic_user_nom	IMDB_norm	Fandango_Ratingvalue	Fandango_Stars
0	Avengers: Age of Ultron (2015)	4.3	3.55	3.90	4.5	5.0
1	Cinderella (2015)	4.0	3.75	3.55	4.5	5.0
2	Ant-Man (2015)	4.5	4.05	3.90	4.5	5.0
3	Do You Believe? (2015)	4.2	2.35	2.70	4.5	5.0
4	Hot Tub Time Machine 2 (2015)	1.4	1.70	2.55	3.0	3.5

https://github.com/fivethirtyeight/data/tree/master/fandango

Bar plot

Creating Bars

```
import numpy as np
plt.style.use('fivethirtyeight')
# create a subplot
fig, ax = plt.subplots()
# position of bars
bar_positions = np.arange(5) + 0.75
# Average rating for the first movie in the dataset.
num_cols = ['RT_user_norm', 'Metacritic_user_nom',
            'IMDB norm', 'Fandango Ratingvalue',
            'Fandango Stars']
bar_heights = norm_reviews[num_cols].iloc[0]
# create a bar plot
ax.bar(bar_positions,bar_heights,0.5)
```

plt.show()

Aligning axis ticks and labels

Horizontal bar plots

Scatter plot

Switching axes

