Understanding X13-ARIMA-SEATS Models

Rohit Jangid (210872)

Indian Institute of Technology Kanpur

November 7, 2024

Mentor: Prof. Dootika Vats

Acknowledgment:

Special thanks to the authors and resources referenced, including foundational work on X13-ARIMA-SEATS by the U.S. Census Bureau, Agustin Maravall, and Victor Gómez.

Motivation

Monthly Consumer Price Index: India vs USA

Observing seasonal and trend differences in the Consumer Price Index (CPI) among these countries.

Consumer Price Index and Seasonal Adjustments

What is the Consumer Price Index (CPI)?

- Measures the average change in prices over time for a basket of goods and services.
- Key economic indicator for assessing inflation and guiding policy decisions.

Importance of Seasonal Adjustment

- Removes recurring fluctuations due to holidays, climate, and agricultural cycles.
- Reveals underlying economic trends, aiding in data interpretation over time.

X13-ARIMA-SEATS Software

- Developed by the U.S. Census Bureau for seasonal adjustments.
- Widely adopted in countries like the USA, Canada, Australia, and Spain.

India's Adoption Efforts

- MoSPI is exploring seasonal adjustments for CPI using X13-ARIMA-SEATS.
- Challenges due to India's unique festivals and economic cycles may require customization.

Project Goal and Expected Outcomes

Objective of the Project

- Evaluate X13-ARIMA-SEATS applicability in the Indian context.
- Adapt the software to India's unique economic and cultural calendar.
- Advise MoSPI on implementing seasonal adjustment techniques for accurate CPI reporting.

Expected Outcomes

- Detailed evaluation report of X13-ARIMA-SEATS for Indian data.
- Customized R wrapper for X13-ARIMA-SEATS tailored to India.
- Guidance for MoSPI on using the software to improve economic indicator interpretation.

Process of Seasonal Extraction in X13-ARIMA-SEATS

Progress and Focus

- The current progress has covered the RegARIMA component, transforming the series by handling outliers, calendar effects, missing values, and exogenous regression variables.
- SEATS and X13 decomposition methods, which provide seasonal, trend, and irregular components, will be the focus of future work.

RegARIMA Model

Overview

- Combines linear regression with ARIMA errors.
- Models both deterministic structures (e.g., calendar effects) and stochastic dependencies.

Mathematical Formulation

$$y_t = X_t \beta + z_t$$

where:

- y_t: Observed time series at time t.
- X_t : Vector of regression variables (e.g., calendar effects, external regressors).
- β : Vector of coefficients corresponding to the regression variables.
- z_t : Error term following an ARIMA(p, d, q) process.

Complete RegARIMA Model

$$\phi(B)\Phi(B^s)(1-B)^d(1-B^s)^D(y_t-X_t\beta)=\theta(B)\Theta(B^s)a_t$$

• Models both deterministic and stochastic components in the time series.

Workflow of RegARIMA

Figure: Flowchart Illustrating the RegARIMA Process

Transformation in RegARIMA

Function Transformation

Value	Transformation	Range for Y_t
none	Y_t	All values
log	$\log(Y_t)$	$Y_{t} > 0$
sqrt	$0.25 + 2(\sqrt{Y_t} - 1)$	$Y_t \geq 0$
inverse	$2 - \frac{1}{Y_t}$	$Y_t \neq 0$
logistic	$\log\left(\frac{Y_t}{1-Y_t}\right)$	$0 < Y_t < 1$

User-Specified Adjustments

$$f(x_i) = \frac{x_i}{C_i}$$
 or $f(x_i) = x_i - C_i$

where C_i are user-defined adjustment factors.

Box-Cox Power Transformation

$$y_t = \begin{cases} \log(Y_t) & \text{if } \lambda = 0 \\ \lambda^2 + \frac{Y_t^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \end{cases}$$

Length of Month (LoM) Adjustment

$$C_t = rac{m_t - ar{m}}{ar{m}}$$

where:

- m_t: number of days in month t.
- $\bar{m} = 30.4375$: average month length.

Testing for Log Transformation and Jacobian Adjustment

Objective:

- Determine whether a log transformation is appropriate for the time series data.
- Ensure comparability of log-likelihoods between transformed and untransformed models.

Procedure for Testing Log Transformation:

- **Model Fitting:** Default ARIMA $(0,1,1)(0,1,1)_s$ model on both untransformed and log-transformed series with all user-specified regressors.
- 2 Calculate AICC: Corrected Akaike Information Criterion (AICC) for both models.
- **3** Compare AICC Values: $AICC_{nolog} AICC_{log} \le AICC_{diff}$
 - If the condition is met, favor the log transformation.
 - Negative AICC_{diff} values favor the log transformation.

Calculation of AICC: AICC_N =
$$-2L_N + 2n_p \left(\frac{N}{N - n_p - 1}\right)$$

Log-Likelihood Adjustment After Transformation:

$$L_N^* = \tilde{L}_N + \sum_{t=1}^N \log \left| \frac{df(Y_t)}{dY_t} \right|$$

- \tilde{L}_N : Log-likelihood for the transformed data.
- The summation term adjusts for the Jacobian of the transformation.
- Ensures comparability of log-likelihoods between transformed and untransformed models.

Regression Variables in RegARIMA

Purpose of Regression Variables

- Adjust for effects external to the time series' inherent properties.
- Model deterministic factors such as:
 - Trading day effects.
 - Holiday effects.
 - Outliers.
 - User-defined variables.
- Enhance model accuracy by accounting for known patterns and anomalies.

Types of Regression Variables

- Trading Day Variables
- Holiday Effect Variables
- Length-of-Month/Quarter and Leap Year Variables
- Outlier Regressors
- User-Defined Regressors

Trading Day Regressor: 6-Variable Model

Purpose

• Capture the individual effects of each weekday on economic activity.

Mathematical Formulation

$$T_t = (ext{Number of days of type } i ext{ month t}) - (ext{Number of Sundays month t}),$$
 $i = ext{Mon}, ext{Tue}, \dots, ext{Sat}$

Explanation

- Contrasts Each Weekday with Sunday: Allows for different coefficients for each weekday.
- Accounts for Specific Patterns: For instance, retail sales might be higher on Saturdays.

Example

- In a Month:
 - Mondays: 4
 - Sundays: 5
 - $T_{\text{Mon}} = 4 5 = -1$

Usage

Suitable when different weekdays have distinct effects on the time series.

Trading Day Regressor: 1-Variable Model

Purpose

• Capture the effect of the varying number of weekdays and weekends in each month.

Trading Day Variable (td1coef)

- Represents the contrast between weekdays and weekends.
- Assumes all weekdays have a similar effect; Saturdays and Sundays have a different but consistent effect.

Mathematical Formulation

$$T_{t} = (\text{Number of weekdays}) - \frac{5}{2} \times (\text{Number of Saturdays and Sundays})$$

Explanation

• The factor $\frac{5}{2}$ balances the influence of weekends relative to weekdays.

Example

• In a Month with 22 Weekdays and 8 Weekend Days:

$$T_t = 22 - \frac{5}{2} \times 8 = 22 - 20 = 2$$

Usage

Suitable when individual weekdays do not have significantly different

Holiday Effect Variables: Diwali Regressor

Purpose

- Capture the impact of Diwali on economic activities in India.
- Adjust for holidays that shift dates each year due to lunar calendars.
- Similar approach can be used for other movable holidays.

Creating the Diwali Regressor

Define the Affected Period:

 Choose w days before and/or after Diwali reflecting its economic impact.

Calculate Monthly Proportions:

 For each year, compute the proportion of the w-day window falling in each month.

Construct the Regressor:

- Use these proportions as regressor values for corresponding months.
- Deseasonalize the Regressor:
 - Subtract long-term monthly means to isolate the Diwali effect

Include in the Model:

 Add as a user-defined variable in the regression spec.

November

2 3

М	Т	W	Т	F	S	S
28	29	30	31	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	1

5

6

8

Outlier Detection

Outliers in X13-ARIMA-SEATS

- Many types of outliers can be specified.
- Some of the outlier types can be detected automatically.
- Users can give potential time points to test for the presence of other outlier types.

Outliers that can be detected automatically

- Additive Outlier (AO):
 - An unexpected high or low value at a specific time point.
- Level Shift (LS):
 - An abrupt change in the mean level of the series.
- Temporary Change (TC):
 - A temporary shift in the mean that decays back to the previous level over time.

Figure: Illustration of Outlier Types

Incorporating Outliers Using Regressors

The regressors in the regression matrix

	AO1953.02	<i>LS</i> 1953.04	TC1953.03
1953.01	0	-1	0
1953.02	1	-1	0
1953.03	0	-1	1
1953.04	0	0	0.5
1953.05	0	0	0.25
1953.06	0	0	0.125

- here $\alpha = 0.5$.
- When an outlier is detected, it can be adjusted by using the corresponding regressor in the model.

Additive Outlier at time to

$$AO_t^{(t_0)} = egin{cases} 1, & ext{if } t = t_0 \ 0, & ext{otherwise} \end{cases}$$

Level Shift at time to

$$LS_t^{(t_0)} = egin{cases} -1, & ext{if } t < t_0 \ 0, & ext{if } t \geq t_0 \end{cases}$$

Temporary Change at time t_0

$$TC_t^{(t_0)} = \begin{cases} 0, & \text{if } t < t_0 \\ \alpha^{(t-t_0)}, & \text{if } t \ge t_0 \end{cases}$$

• α : Decay rate (default $\alpha = (0.7)^{1/s}$, s = seasonal period).

Outlier Flagging Process

Methods of Outlier Detection

AddOne Method

- Default method for outlier detection in X13-ARIMA-SEATS.
- Process:
 - **1** Step 1: Flag all potential outliers using current regression variables.
 - 2 Step 2: Add the most significant outlier to the model.
 - **3** Step 3: Repeat Steps 1-2 until no new outliers are detected.
 - 4: Remove previously added outliers that have become insignificant.
 - **Step 5**: Repeat Step 4 until all outliers are significant.

AddAll Method

- Alternative method for outlier detection.
- Differences from AddOne:
 - In the forward pass, all flagged outliers are added to the model at once.
 - In the backward pass, insignificant outliers are removed one at a time.

AddOne Method

Figure: Flowchart of the AddOne Method for Outlier Detection

Automatic Model Selection in X13-ARIMA-SEATS

Outline of Automatic Model Selection Procedure

Figure: Flowchart of the Automatic Model Selection Procedure in X13-ARIMA-SEATS

Default Model Tasks

- Checks significance of trading day, Easter, and user-defined regressors using AICC criteria.
- Tests for inclusion of a constant term via *t*-statistic with critical value of 1.96.
- Conducts automatic outlier detection if specified.

Residual Diagnostics

- ullet Ljung-Box Q statistic (lag 24 for monthly, lag 16 for quarterly series).
- ullet Confidence coefficient (1-p-value) of Ljung-Box Q statistic.
- t-value for mean of residuals and residual standard error estimate.

Model Identification Process

- Regression effects from the default model are removed.
- Adjusted *linearized series* is used for robust model identification.

Identification of Differencing Orders

Figure: Flowchart for Identifying Appropriate Differencing Orders in ARIMA Modeling

Identification of ARMA Model Orders

- Goal: Select the best-fitting ARMA model by comparing candidate models based on Bayesian Information Criterion (BIC).
- Criterion for Model Selection: BIC2, a variant of BIC, is calculated for each model.

Three-Stage Procedure:

- Stage 1: Initial Seasonal Order Selection
 - Consider ARIMA(3, d, 0)(P, D, Q)_s models.
 - Select seasonal orders (P, Q) based on the lowest BIC2 value.
- Stage 2: Nonseasonal Order Selection
 - Using selected (P,Q) from Stage 1, consider ARIMA $(p,d,q)(P,D,Q)_s$ models.
 - Select nonseasonal orders (p, q) based on the lowest BIC2 value.
- Stage 3: Refinement of Seasonal Orders
 - Reconsider ARIMA $(p, d, q)(P, D, Q)_s$ with updated (p, q), refining (P, Q) to further minimize BIC2.

Model Selection and Final Checks:

 Track models with the five lowest BIC2 values, and select the most parsimonious and balanced model if alternatives are "close enough."

Identification of ARMA Model Orders

Figure: Flowchart for Identification of ARMA Model Orders

Final Selection of the ARIMA Model

- Model Comparison:
 - Compare automatic and default ARIMA models using residual diagnostics:
 - Ljung-Box Q statistics (Q_A, Q_D)
 - Residual standard errors (RSE_A, RSE_D)
 - Number of identified outliers
 - Prefer the default model if it meets specific criteria (better Q values, fewer outliers, lower residual error)
- Model Acceptability and Adjustment:
 - ullet If residual autocorrelation is detected (Q>0.975), reduce the critical value for outlier detection
 - Re-estimate the model and re-identify outliers using the adjusted critical value (CV $_r = (1-\text{reducecv}) \times \text{CV})$
- Re-evaluation of Regressors:
 - ullet Test the significance of regressors (e.g., trading day effects, Easter effects, constant term) . Use t-statistics (t>1.96) to determine significance
- Final Model Checks:
 - Check for Unit Roots:
 - ullet In AR polynomials (modulus ≤ 1.05); adjust differencing order if necessary
 - ullet In MA polynomials (sum of coefficients pprox 1); adjust model accordingly
 - Re-estimation and Outlier Detection:
 - Re-estimate the model after adjustments
 Perform outlier detection again if specified
 - Simplify the Model:
 - Remove insignificant ARMA parameters (t-statistic below threshold and small absolute value)
 - Ensure at least one ARMA parameter remains in the model

Conclusion

Project Achievements:

- Thoroughly understood and documented the functionalities and mathematical foundations of X13-ARIMA-SEATS
- Focused on RegARIMA modeling and seasonal adjustment procedures
- Assimilated dispersed information into a coherent and comprehensive guide
- Implemented processes up to outlier detection in R using government CPI data

• Findings:

- The program is very complicated with many moving parts and numerous decisions
- Many aspects are based on empirical understanding rather than rigorous mathematics

• Future Work:

- Implementing the model selection procedure
- Understanding the SEATS algorithm and X-13 seasonal adjustment method

Thank You for Your Attention!

Special Thanks to:

- My Mentor: Prof. Dootika Vats
- Key Contributors and References:
 - George E. P. Box and Gwilym M. Jenkins
 - Víctor Gómez and Agustín Maravall
 - Ruey S. Tsay
 - U.S. Census Bureau

Questions and Discussion Welcome