******The following questions are concerned with Chapter 5 of the notes - Perfect Codes.*****

- **61** Let $C_1 = \langle (0,1,1,1) \rangle$, and $C_2 = \langle (0,1,1,1,), (1,0,1,2,) \rangle$, both codes in \mathbb{F}_3^4 . Find parameters [n,k,d] for each code, and find $|S(\mathbf{x},1)|$ for $\mathbf{x} \in \mathbb{F}_3^4$. Show that $|C_1|$, $|C_2|$ and $|S(\mathbf{x},1)|$ all divide $|\mathbb{F}_3^4|$, but only one of the codes is perfect.
- **62** For $\mathbf{x} \in \mathbb{F}_q^n$, find $|S(\mathbf{x},t)|$ for t=0 and t=n. Show that there is a perfect code for each value of t, and give parameters (n,M,d) if possible. Are these "trivial" codes linear? Explain why they are not useful.
- **63** A binary repetition code is $C_n = \{(0, \dots, 0), (1, \dots, 1)\} \subset \mathbb{F}_2^n$. If n = 2t + 1 is odd, show that C_n is perfect. (*Hint*: Use well-known properties of Pascal's triangle.)
- Let $\text{Ham}_2(3)$ have the standard check-matrix described in the lecture. Use the algorithm to decode the received words $\mathbf{y}_1 = (0,0,1,0,0,1,0)$ and $\mathbf{y}_2 = (1,0,1,0,1,0,1)$.
- Construct check-matrices for these two Hamming codes: (In each case, write out a couple of the $L_{\bf v}$ sets, but you do not have to list them all.) a) ${\sf Ham}_5(2)$ b) ${\sf Ham}_3(3)$
- **66** Let C be the $\operatorname{Ham}_7(2)$ code with check-matrix $H = \begin{pmatrix} 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$. Decode the received words $\mathbf{y}_1 = (1,0,2,0,3,0,4,0)$ and $\mathbf{y}_2 = (0,6,0,5,0,4,0,3)$.
- **67** Show that $Ham_q(r)$ is perfect.
- **68** Explain why the decoding algorithm for q-ary Hamming codes works.
- 69 Let $C\subseteq \mathbb{F}_5^5$ have check-matrix $H=\begin{pmatrix}1&0&1&1&1\\0&1&1&2&3\end{pmatrix}$. Show that C is not a Hamming code. Nonetheless, try to use the Hamming decoding algorithm to decode received words $\mathbf{y}_1=(3,3,1,0,4)$ and $\mathbf{y}_2=(1,2,1,0,0)$. Why does the algorithm only sometimes work? When it doesn't, can you still use the syndrome to find a nearest neighbour in the code for that word? Explain.
- 70 Let C_1 and C_2 in \mathbb{F}_3^5 have generator-matrices $G_1 = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$ and $G_2 = \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 2 \end{pmatrix}$. Show that these codes are (monomially) equivalent. Write down generator matrices for the extended codes $\widehat{C_1}$ and $\widehat{C_2}$, and show that these codes have different $d(\widehat{C_i})$, and so are not equivalent. (You could find check-matrices and use Theorem 4.11., or you could just think about possible weights of codewords.)
- 71 Let $C\subseteq \mathbb{F}_5^5$ have generator-matrix $G=\begin{pmatrix}2&1&1&0&0\\3&2&0&1&1\end{pmatrix}$. By finding their minimum distances, show that the codes $C^{\{5\}}$ and $C^{\{3\}}$ are not equivalent.

- **72** Let $C\subseteq \mathbb{F}_3^4$ have check-matrix $H=\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$.
 - a) Find a generator-matrix G for C, and check- and generator-matrices \widehat{H} and \widehat{G} for the extended code \widehat{C} .
 - b) Now puncture \widehat{C} at each position in turn, to give generator-matrices $G_{p1},\ G_{p2},\ G_{p3},\ G_{p4},\ G_{p5}$ for codes $C_{p1},\ C_{p2},\ C_{p3},\ C_{p4},\ C_{p5}.$
 - c) Which of the six codes $C, C_{p1}, \ldots, C_{p5}$ have the same minimum distance? Which are equivalent? Which are actually the same code?

Hint: There are many ways to do all this, and you may find different matrices. But you should get the same answers for c). It might save you work to use a \widehat{G} in form (A|I) or (I|A).

- **73** Can we "extend" and "puncture" over \mathbb{R} ? Let C be the line y=2x in \mathbb{R}^2 .
 - a) Find H and G such that $C = \{ \mathbf{x} \in \mathbb{R}^2 \mid \mathbf{x}H^t = 0 \} = \{ \lambda G \mid \lambda \in \mathbb{R} \}.$
 - b) Now, in \mathbb{R}^3 , consider the intersection of the plane y=2x with the plane x+y+z=0. Find a check-matrix \widehat{H} and a generator-matrix \widehat{G} for this line \widehat{C} .
 - c) Puncturing \widehat{C} in each position gives three different lines, back in \mathbb{R}^2 again. Specify them; in geometric terms, how are they related to \widehat{C} ?
- 74 a) Show that a binary [90, k, 5]-code, if it exists, could be perfect, and that if it is perfect, k = 78. The rest of this questions shows, by contradiction, that there is no such code.
 - b) Show that, in \mathbb{F}_2^r , exactly half the vectors have odd weight, half even. (*Hint:* pair them up...)
 - c) Suppose that a binary [90, 78, 5]-code exists. Then the columns of its check-matrix H are $\mathbf{h}_1, \ldots, \mathbf{h}_{90}$, in \mathbb{F}_2^{12} . Now consider the following vectors in \mathbb{F}_2^{12} : $\mathbf{0}$; the \mathbf{h}_i , $1 \leq i \leq 90$; the $\mathbf{h}_i + \mathbf{h}_j$, $1 \leq i < 90$. Show that all of these vectors are distinct.
 - d) Let the set $X = \{\mathbf{0}\} \cup \{\mathbf{h}_i \mid 1 \le i \le 90\} \cup \{\mathbf{h}_i + \mathbf{h}_j \mid 1 \le i < j \le 90\}$. Show that $X = \mathbb{F}_2^{12}$.
 - e) Now let m be the number of odd-weight columns of H. In terms of m, how many vectors in X have odd weight? Use b) to reach a contradiction.
- **75** Prove Lemma 5.12.
- **76** Let \mathcal{G}_{12} be the ternary code with generator-matrix

$$G = [I_6 \mid A] = \begin{pmatrix} 1 & & & & 0 & 1 & 1 & 1 & 1 & 1 \\ & 1 & & & 0 & & 1 & 0 & 1 & 2 & 2 & 1 \\ & & 1 & & & & 1 & 1 & 0 & 1 & 2 & 2 \\ & & & 1 & & & 1 & 2 & 1 & 0 & 1 & 2 \\ & 0 & & & 1 & & 1 & 2 & 2 & 1 & 0 & 1 \\ & & & & & 1 & 1 & 1 & 2 & 2 & 1 & 0 \end{pmatrix}.$$

We write a_1, a_2, \ldots, a_6 for the rows of A.

- a) Show that $\mathcal{G}_{12}^{\perp}=\mathcal{G}_{12}$, explaining briefly why we do not need to calculate 21 separate dot products. It follows that \mathcal{G}_{12} also has a generator matrix $[B\mid I_6]$; how do the rows of B relate to the \mathbf{a}_i ?
- b) Find the values of $w(\mathbf{a}_i + \mathbf{a}_j)$ and $w(\mathbf{a}_i \mathbf{a}_j)$ for $1 \le i < j \le 6$. (Again, there are only a few cases to consider.)
- c) Show that if $\mathbf{c} \in \mathcal{G}_{12}, \mathbf{c} \neq \mathbf{0}$, then $w(\mathbf{c}) \geq 6$. Do this by contradiction, writing $\mathbf{c} = (\mathbf{l}, \mathbf{r})$.
- d) To make \mathcal{G}_{11} , we puncture the code \mathcal{G}_{12} by removing the last column of G. Show that \mathcal{G}_{11} is an [11,6,5] code.

Constructing new objects in maths often combines deduction (it must be like this) with convenient choices (try one like this) and checking (does it work?). We shall construct a check-matrix H for \mathcal{G}_{11} as follows:

We can certainly choose to have H in RREF, and (by choosing the right code from the equivalence class) we can assume $H = [I_5 \mid A]$. This time we work with *columns*, not rows: the columns of I_5 are $\mathbf{e}_1, \ldots, \mathbf{e}_5$; let the columns of A be $\mathbf{a}_1, \ldots, \mathbf{a}_6$. By Theorem 4.11. we need to make A so that no four columns of H are linearly dependent. This requirement tells us a lot about the \mathbf{a}_i .

- a) Show that all $w(\mathbf{a}_i) \geq 4$.
- b) Show that all $w(\mathbf{a}_i + \mathbf{a}_j)$ and all $w(\mathbf{a}_i \mathbf{a}_j)$ must be ≥ 3 .
- c) Suppose $w(\mathbf{a}_i) = w(\mathbf{a}_j) = 5$. Show that $w(\mathbf{a}_i + \mathbf{a}_j) + w(\mathbf{a}_i \mathbf{a}_j) = 5$. Deduce that we can have at most one \mathbf{a}_i of weight 5 in A.
- d) Similarly, show that if a_i and a_j each have just one 0, these 0s must be in different rows. Using c) and d), we choose to have our weight 5 column be all 1s, and place the columns in a convenient order, taking

$$H = [I_5 \mid A] = \begin{pmatrix} 1 & & & 1 & * & * & * & * & 0 \\ & 1 & & 0 & & 1 & * & * & * & 0 & * \\ & & 1 & & & 1 & * & * & 0 & * & * \\ & & 0 & & 1 & & 1 & * & 0 & * & * & * \\ & & & & 1 & 1 & 0 & * & * & * & * \end{pmatrix},$$

where each * is either 1 or 2.

- e) Use b) and ${\bf a}_1$ to show that each ${\bf a}_j, 2 \le j \le 6$, must have two 1s and two 2s.
- f) For $2 \le j \le 6$, \mathbf{a}_i and \mathbf{a}_j will differ in at least two positions, because of their 0s. Show that they must differ in at least one other position, and match in at least one other position.
- g) Using e) and f), and working column by column, complete the matrix A.

Do we know that the matrix H we have constructed gives a code with d = 5?

- h) Find a linearly dependent set of 5 columns.
- i) Any linearly dependent set of 4 columns would involve n_e columns from I, and n_a columns from A, with $n_e + n_a = 4$. Which values of n_a have we ruled out? How much more checking would we need to do?