

Mathematical Foundations of Computer Science

Eigenvalues and Eigenvectors

Transpose

• Transpose of a matrix: Given $M \in \mathbb{R}^{m \times n}$, the transpose

 $M^T \in \mathbb{R}^{n \times m}$ has i, j entry equal to the j, i entry of M

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^T = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

• M is symmetric if $M = M^T$

Adjacency Matrices

Graph G with n vertices.

The adjacency matrix is the n x n matrix $A=[a_{ij}]$ with:

$$\mathbf{a}_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \text{ is an edge} \\ 0 & \text{if } (v_i, v_j) \text{ is not an edge} \end{cases}$$

Walks in a Graph

A(i,j) tells us if there is an edge between vertex i and j.

Can we say something about connectivity? Longer paths?

Fact: The number of walks of length k from node i to node j is the entry in position (i, j) in the matrix A^k

Proof. By induction on length of walk. (Base case k=1).

$$A^{k} = A^{k-1} \times A \Longrightarrow A^{k}(i,j) = \sum_{\ell=1}^{n} A^{k-1}(i,\ell)A(\ell,j)$$

 $A^{k-1}(i, \ell) = \text{#walks from vertex } i \text{ to } \ell$ #walks k length walks from i to j

$$= \sum_{\ell=1}^{n} A^{k-1}(i,\ell) A(\ell,j) = A^{k}(i,j)$$

7

Eigenvalues, Eigenvectors

Refresher: Eigenvalues, Eigenvectors

Given any matrix $M \in \mathbb{R}^{n \times n}$, $e \in \mathbb{R}^n$ is an eigenvector iff for some scalar $\lambda \in \mathbb{R}$, $Me = \lambda e$.

 (λ, e) is called an eigenvalue, eigenvector pair.

- An eigenvector e is vector that M does not change the direction of. M just scales e by λ .
- An eigenvector *e* is a vector on which *M* acts as scalar multiplication.

Whats the big deal?

Roughly: Eigenvalues and eigenvectors are the building blocks that make up matrices

Spectral Thm. For any $n \times n$ symmetric matrix M (over reals)

- 1. All its eigenvalues are real.
- 2. Further, there are n real eigenvalues (and eigenvectors)

$$(\lambda_1, e_1), (\lambda_2, e_2) \dots (\lambda_n, e_n),$$

such that every pair of eigenvectors is orthogonal i.e.

$$\langle e_i, e_j \rangle = 0 \text{ for } i \neq j.$$

3. In addition,

$$M = \sum_{i=1}^{n} \lambda_i e_i e_i^T$$

A concrete example: Suppose

$$M = 4e_1e_1^T + 2.5e_2e_2^T + \frac{1}{1000}e_3e_3^T \approx 4e_1e_1^T + 2.5e_2e_2^T$$

E.g., consider a data set of 300 points in three dimensions.

A concrete example: Suppose

$$M = 4e_1e_1^T + 2.5e_2e_2^T + \frac{1}{1000}e_3e_3^T \approx 4e_1e_1^T + 2.5e_2e_2^T$$

E.g., consider a data set of 300 points in three dimensions.

A concrete example: Suppose

$$M = 4e_1e_1^T + 2.5e_2e_2^T + \frac{1}{1000}e_3e_3^T \approx 4e_1e_1^T + 2.5e_2e_2^T$$

Can reduce to two dimensions!

Which Vertex is most important?

Applications of eigenvectors include

- 1. Graph theory
- 2. Page rank
- 3. Principal component analysis
- 4. Machine Learning
- 5. Convex optimization
- 6. Quantum mechanics
- 7. Control Theory
- 8. Infectious disease
- O Differential equations

Back to the start

Given any matrix $M \in \mathbb{R}^{n \times n}$, $e \in \mathbb{R}^n$ is an eigenvector iff for some scalar $\lambda \in \mathbb{R}$, $Me = \lambda e$.

If e is an eigenvector of M and $c \in \mathbb{R}$, then ce is an eigenvector!

To check if a vector e is an eigenvector of M, just check if there is a $\lambda \in \mathbb{R}$ so that $Me = \lambda e$.

Is
$$\binom{3}{2}$$
 an eigenvector of the matrix $\begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix}$?

Page rank: Where do people spend the most time

$$M(M^n v) \approx M^n v \text{ for large } n. \text{ Solve Me} = e!$$

$$Hr \ 0 \ Hr \ 1 \ Hr \ 2 \ Hr \ 3 \ Hr \ 4 \ Hr \ 5 \ Hr \ 6 \ Hr \ 7$$

$$A \ 1 \ 0 \ .25 \ .375 \ .25 \ .281 \ .297 \ .281$$

$$B \ 0 \ .5 \ 0 \ .125 \ .188 \ .125 \ .141 \ .148$$

$$C \ 0 \ .5 \ .25 \ .375 \ .312 \ .344 \ .328 \ .336$$

.125

 M^3e

.25

 M^4e

.25

 M^5e

.234

 M^6e

.242

 M^7e

.5

 M^2e

Me

 \boldsymbol{D}

Page rank: Where do people spend the most time

Solution to Me = e is

$$M = \begin{pmatrix} 0 & 0 & .5 & .5 \\ .5 & 0 & 0 & 0 \\ .5 & .5 & 0 & .5 \\ 0 & .5 & .5 & 0 \end{pmatrix} \qquad e = \begin{pmatrix} 0.286 \\ 0.143 \\ 0.333 \\ 0.238 \end{pmatrix}$$

$$e = \begin{pmatrix} 0.230 \\ 0.143 \\ 0.333 \\ 0.238 \end{pmatrix}$$

Page C is the most popular!

	Hr 0	<i>Hr</i> 1	<i>Hr</i> 2	<i>Hr</i> 3	Hr 4	<i>Hr</i> 5	<i>Hr</i> 6	<i>Hr</i> 7
\boldsymbol{A}	1	0	.25	.375	.25	.281	.297	.281
B	0	.5	0	.125	.188	.125	.141	.148
$\boldsymbol{\mathcal{C}}$	0	.5	.25	.375	.312	.344	.328	.336
D	0	0	.5	.125	.25	.25	.234	.242
	e	Me	M^2e	M^3e	M^4e	M^5e	M^6e	M^7e

Page rank: Where do people spend the most time

Solution to Me = e is

$$V = \begin{pmatrix}
0 & 0 & .5 & .5 \\
.5 & 0 & 0 & 0 \\
.5 & .5 & 0 & .5 \\
0 & .5 & .5 & 0
\end{pmatrix} \qquad v = \begin{pmatrix}
0.286 \\
0.143 \\
0.333 \\
0.238
\end{pmatrix}$$

$$v = \begin{pmatrix} 0.266 \\ 0.143 \\ 0.333 \\ 0.238 \end{pmatrix}$$

Page C is the most popular!

	~					
	<i>Hr</i> 8	<i>Hr</i> 9	<i>Hr</i> 10	<i>Hr</i> 11	<i>Hr</i> 12	 $Hr \infty$
\boldsymbol{A}	.285	.287	.285	.286	.286	 .286
В	.141	.143	.144	.143	.143	 .143
\mathcal{C}	.332	.334	.333	.333	.333	 .333
D	.242	.236	.238	.238	.238	 .238
	M^8e	M^9v	$M^{10}v$	$M^{11}v$	$M^{12}v$	 Me = e

Page rank on our original graph

Page rank

For this graph, we again find e so that Me = e. This time

Page E is the most popular!

Interpretation of the results

