ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

July 2019 **Signature** Model $\int \mathcal{L} dt \, [fb^{-1}]$ **Mass limit** Reference $E_T^{ ext{miss}}$ $E_T^{ ext{miss}}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 1.55 $0e, \mu$ 2-6 jets [2x, 8x Degen.] 0.9 $m(\tilde{\chi}_1^0)$ <100 GeV 1712.02332 mono-jet 1-3 jets 36.1 [1x, 8x Degen.] 0.43 0.71 $m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 1711.03301 Searches E_T^{miss} $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ $0e, \mu$ 2-6 jets 36.1 2.0 $m(\tilde{\chi}_1^0)$ <200 GeV 1712.02332 $m(\tilde{\chi}_1^0)=900 \text{ GeV}$ Forbidden 0.95-1.6 1712.02332 4 jets $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ $3e, \mu$ 1.85 $m(\tilde{\chi}_{1}^{0}) < 800 \text{ GeV}$ 36.1 1706.03731 E_T^{miss} 1.2 $ee, \mu\mu$ 2 jets 36.1 $m(\tilde{g})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ 1805.11381 $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ $0e, \mu$ 7-11 jets 36.1 1.8 $m(\tilde{\chi}_1^0)$ <400 GeV 1708.02794 ${\rm SS}~e,\mu$ 6 jets 139 1.15 $m(\tilde{g})-m(\tilde{\chi}_1^0)=200 \text{ GeV}$ ATLAS-CONF-2019-015 $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ 2.25 0-1 e, μ $m(\tilde{\chi}_1^0)$ <200 GeV ATLAS-CONF-2018-041 3 b 79.8 ${\rm SS}~e,\mu$ 6 jets 1.25 $m(\tilde{g})-m(\tilde{\chi}_1^0)=300 \text{ GeV}$ ATLAS-CONF-2019-015 139 $\tilde{b}_1\tilde{b}_1,\,\tilde{b}_1{\rightarrow}b\tilde{\chi}_1^0/t\tilde{\chi}_1^{\pm}$ Multiple \tilde{b}_1 Forbidden $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ 1708.09266, 1711.03301 36.1 0.9 Multiple 36.1 \tilde{b}_1 Forbidden 0.58-0.82 $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=BR(t\tilde{\chi}_{1}^{\pm})=0.5$ 1708.09266 Multiple $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{\pm})=1$ 139 \tilde{b}_1 Forbidden 0.74 ATLAS-CONF-2019-015 $\tilde{b}_1\tilde{b}_1, \tilde{b}_1 \rightarrow b\tilde{\chi}_2^0 \rightarrow bh\tilde{\chi}_1^0$ $0e, \mu$ 6 b 139 \tilde{b}_1 Forbidden 0.23-1.35 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ SUSY-2018-31 \tilde{b}_1 0.23-0.48 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV}$ SUSY-2018-31 $\tilde{t}_1 \tilde{t}_1, \, \tilde{t}_1 {\rightarrow} W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ 0-2 e, μ 0-2 jets/1-2 b E_{T}^{miss} 36.1 1506.08616, 1709.04183, 1711.11520 1.0 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ $\tilde{t}_1\tilde{t}_1, \, \tilde{t}_1 {\rightarrow} Wb\tilde{\chi}_1^0$ $1 e, \mu$ 3 jets/1 b E_T^{miss} \tilde{t}_1 0.44-0.59 139 $m(\tilde{\chi}_1^0)=400 \text{ GeV}$ ATLAS-CONF-2019-017 $E_T^{\rm miss}$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ $1 \tau + 1 e, \mu, \tau$ 2 jets/1 b $m(\tilde{\tau}_1)=800 \text{ GeV}$ 36.1 1.16 1803.10178 $\tilde{t}_1\tilde{t}_1, \, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0 / \, \tilde{c}\tilde{c}, \, \tilde{c} \rightarrow c\tilde{\chi}_1^0$ 0.85 $0e, \mu$ $E_T^{\rm miss}$ 36.1 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1805.01649 2 c \tilde{t}_1 0.46 $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ 1805.01649 E_T^{miss} $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ $0e, \mu$ mono-iet 36.1 0.43 1711.03301 \tilde{t}_1 1-2 e, μ \tilde{t}_2 0.32-0.88 $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ 36.1 $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=180$ GeV 4 b 1706.03986 $E_T^{\rm miss}$ \tilde{t}_2 $\tilde{t}_2\tilde{t}_2, \, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 0.86 $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$ $3e, \mu$ 1 b 139 Forbidden ATLAS-CONF-2019-016 $\begin{array}{c} \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \\ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \end{array}$ $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ via WZ2-3 e, μ 36.1 0.6 1403.5294. 1806.02293 0.205 $ee, \mu\mu$ 139 ≥ 1 $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=5 \text{ GeV}$ ATLAS-CONF-2019-014 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW $2e, \mu$ 0.42 $m(\tilde{\chi}_1^0)=0$ 139 ATLAS-CONF-2019-008 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh0-1 e, μ $2 b/2 \gamma$ E_T^{miss} 139 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ Forbidden 0.74 ATLAS-CONF-2019-019, ATLAS-CONF-2019-XYZ $m(\tilde{\chi}_1^0)=70 \text{ GeV}$ $\begin{array}{cccc} \chi_1 \chi_2 & & & & \\ \chi_1 \chi_1^{\pm} & & & & \\ \chi_1^{\pm} \tilde{\chi}_1^{\mp} & & & & \\ \tilde{\chi}_1^{\tau} \tilde{\chi}_1^{\tau} & & & & \\ \tilde{\chi}_1^{\tau} \tilde{\chi}_1^{\tau} & & & & \\ & \tilde{\chi}_1^{\tau} \tilde{\chi}_1^{\tau} \tilde{\chi}_1^{\tau} & & \\ & \tilde{\chi}_1^{\tau} \tilde{\chi}_1^{\tau} & & & \\ & \tilde{\chi}_1^{\tau} \tilde{\chi}_1^{\tau} & & & \\ & \tilde{\chi}$ $2e, \mu$ 139 1.0 $m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_1^{\pm}) + m(\tilde{\chi}_1^{0}))$ ATLAS-CONF-2019-008 E_T^{miss} $\tilde{\tau} = [\tilde{\tau}_L, \tilde{\tau}_{R,L}]$ 0.16-0.3 0.12-0.39 139 $m(\tilde{\chi}_1^0)=0$ ATLAS-CONF-2019-018 2 τ 2 *e*, μ $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 0 jets 139 0.7 $m(\tilde{\chi}_1^0)=0$ ATLAS-CONF-2019-008 0.256 $2e, \mu$ 139 ≥ 1 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ ATLAS-CONF-2019-014 $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ $0e, \mu$ 36.1 Ĩ 0.13-0.23 0.29-0.88 $BR(\tilde{\chi}_1^0 \to h\tilde{G})=1$ 1806.04030 $\geq 3 b$ E_T^{miss} 0 jets 36.1 0.3 $BR(\tilde{\chi}_1^0 \to Z\tilde{G})=1$ $4e, \mu$ \tilde{H} 1804.03602 $E_T^{\rm miss}$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^{\pm}$ Disapp. trk 1 jet 36.1 0.46 Pure Wino 1712.02118 0.15 Pure Higgsino ATL-PHYS-PUB-2017-019 Stable \tilde{g} R-hadron Multiple 36.1 2.0 1902.01636,1808.04095 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\tilde{\chi}_1^0$ Multiple 36.1 \tilde{g} [$\tau(\tilde{g})$ =10 ns, 0.2 ns 2.05 2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ 1710.04901,1808.04095 λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07 LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ εμ,ετ,μτ 1.9 3.2 1607.08079 E_T^{miss} $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ 0 jets 0.82 1.33 $4e, \mu$ 36.1 $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ $[\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ 1804.03602 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 4-5 large-R jets 1.3 Large $\lambda_{11}^{"}$, 36.1 $[m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}]$ 1.9 1804.03568 Multiple 36.1 1.05 2.0 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like ATLAS-CONF-2018-003 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$ Multiple 36.1 \tilde{g} [$\lambda_{323}^{"}$ =2e-4, 1e-2] 0.55 1.05 $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like ATLAS-CONF-2018-003 2 jets + 2 b \tilde{t}_1 [qq, bs] 0.42 0.61 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 36.7 1710.07171 $\tilde{t}_1\tilde{t}_1, \, \tilde{t}_1 {\rightarrow} q\ell$ $2e, \mu$ 2 b 36.1 0.4-1.45 BR($\tilde{t}_1 \rightarrow be/b\mu$)>20% 1710.05544 \tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9] DV 136 1.6 BR($\tilde{t}_1 \rightarrow q\mu$)=100%, cos θ_t =1 1μ 1.0 ATLAS-CONF-2019-006

^{*}Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.