Windenergieanlagen

Einfachste Bauart: "Typ 1"

Figure A-1. Type 1 wind turbine Source: NREL

- Asynchrongenerator
- einfachste Art eines Kurzschlussläufer.
- Ist nicht polumschaltbar, kann man ihn direkt am Netz nur mit einer Drehzahl betreiben: bei einer <u>Polpaarzahl</u> von z. B. 2 (d. h. vier Pole) ergibt sich mit der <u>Netzfrequenz</u> von 50 <u>Hertz</u> eine synchrone Drehzahl von 1500/min.
- Im Generatorbetrieb liegt die Läuferdrehzahl (Drehzahl der Generatorwelle) über der der synchronen Drehzahl (im Motorbetrieb darunter, daher der Name Asynchronmaschine).

Modell

Anlage

Netz

Übersicht

Eingänge	Ausgänge
Windgeschwindigkeit, Pitch	Elektrische Leistung, Drehzahl

Regelaufgabe

Leistungsregelung in einer Umgebung des Pitches von 5°.

Modellbildung

Matlab-Code

```
open_system('power_wind_ig2')
sim('power_wind_ig2')

% nach der Simulation liegt die Variable
% power_wind_ig2_Timed_Based_Linearization im workspace
temp = power_wind_ig2_Timed_Based_Linearization;
temp = rmfield(temp,'OperPoint');

% StateSpace Modell erzeugen
A = temp.a;
B = temp.b;
```

```
C = temp.c;
D = temp.d;
sys = ss(A,B,C,D,temp);

% Kürzen
sys_min = minreal(sys);

% in Pol-Nullstellen-Form transformieren
zpk_min = zpk(sys_min);

% Regelstrecke selektieren
G1=zpk_min(1,1);
```

Modellbildung

Matlab Ausgabe

Modellbildung

Sprungantworten

Step Response

Modellbildung

Übertragungsfunktionen:

	Pitch	Wind
Leistung	$\frac{-3.2937(s+3.45)(s^2+83.36s+1.904e05)}{(s+3.363)(s^2+4.746s+81.81)(s^2+61.41s+2.674e05)}$	$\frac{19.931(s+3.45)(s^2+83.36s+1.904e05)}{(s+3.363)(s^2+4.746s+81.81)(s^2+61.41s+2.674e05)}$
Drehzahl	$\frac{-0.0029538(s^2+8.1s+18.18)(s^2+61.41s+2.674e05)}{(s+3.363)(s^2+4.746s+81.81)(s^2+61.41s+2.674e05)}$	$\frac{0.017874(s^2+8.1s+18.18)(s^2+61.41s+2.674e05)}{(s+3.363)(s^2+4.746s+81.81)(s^2+61.41s+2.674e05)}$

- → Polstellen in allen Übertragungsfunktionen identisch
- → Nullstellen von Leistung und Drehzahl identisch versch. Konstante

Für die Regelung entscheidend:

Pol-Nullstellen-Form

$$G_S(s) = rac{U_{pitch}(s)}{Y_P(s)} = rac{-3.2937(s+3.45)(s^2+83.36s+1.904e05)}{(s+3.363)(s^2+4.746s+81.81)(s^2+61.41s+2.674e05)}$$

Polynomform

$$G_S(s) = rac{U_{pitch}(s)}{Y_P(s)} = rac{-3.294 s^3 - 285.9 s^2 - 6.282 e 05 s - 2.164 e 06}{s^5 + 69.52 s^4 + 2.68 e 05 s^3 + 2.175 e 06 s^2 + 2.616 e 07 s + 7.358 e 07}$$

PI-Regler

Prozess	Regler
$G_S(s) = rac{-3.294 s^3 - 285.9 s^2 - 6.282 e05 s - 2.164 e06}{s^5 + 69.52 s^4 + 2.68 e05 s^3 + 2.175 e06 s^2 + 2.616 e07 s + 7.358 e07}$	$G_R(s)=rac{-80s-80}{s}$

→ Gesucht sei nun die Gesamt übertragungsfunktion

Hinweis

Aufstellen von Ersatzübertragungsfunktionen

Quelle: https://www.mb.uni-siegen.de/mrt/lehre/rt/rt_skript.pdf

PI-Regler

Führungsüber- tragungsfunktion	$G_W(s)=rac{Y(s)}{W(s)}=rac{G_R(s)G_S(S)}{1+G_R(s)G_S(S)}$	$\frac{32.94s^4 + 3123s^3 + 6.305e + 06s^2 + 7.19e + 07s + 1.731e + 08}{s^6 + 69.52s^5 + 2.68e + 05s^4 + 2.178e + 06s^3 + 3.246e + 07s^2 + 1.455e + 08s + 1.731e + 08}$
Störgrößenüber- tragungsfunktion	$G_D(s)=rac{Y(s)}{D(s)}=rac{1}{1+G_R(s)G_S(S)}$	$\frac{s^6 + 69.52s^5 + 2.68e + 05s^4 + 2.175e + 06s^3 + 2.616e + 07s^2 + 7.358e + 07s}{s^6 + 69.52s^5 + 2.68e + 05s^4 + 2.178e + 06s^3 + 3.246e + 07s^2 + 1.455e + 08s + 1.731e + 08}$
Stellgrößenüber- tragungsfunktion	$G_U(s)=rac{U(s)}{W(s)}=rac{G_R(s)}{1+G_R(s)G_S(S)}$	$\frac{-10s^6 - 775.2s^5 - 2.686e + 06s^4 - 4.319e + 07s^3 - 4.356e + 08s^2 - 2.829e + 09s - 5.886e + 09}{s^6 + 69.52s^5 + 2.68e + 05s^4 + 2.178e + 06s^3 + 3.246e + 07s^2 + 1.455e + 08s + 1.731e + 08}$

PI-Regler

