

# 2x30W Stereo / 1x60W Mono Digital Audio Amplifier With 36 Bands EQ Functions

#### **Features**

- 16/18/20/24-bits input with I<sup>2</sup>S, Left-alignment and Right-alignment data format
- Multiple sampling frequencies (Fs)
   8kHz and 32kHz / 44.1kHz / 48kHz and
   64kHz / 88.2kHz / 96kHz and
   128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs

### MCLK system:

256x~4096x Fs for 8kHz

64x~1024x Fs for 32kHz / 44.1kHz / 48kHz 64x~512x Fs for 64kHz / 88.2kHz / 96kHz 64x~256x Fs for 128kHz / 176.4kHz / 192kHz BCLK system:

64xFs for 32kHz / 44.1kHz / 48kHz 64xFs for 64kHz / 88.2kHz / 96kHz 64xFs for 128kHz / 176.4kHz / 192kHz

- Supply voltage
  - 1.8V or 3.3V for digital I/O
    3.3V for analog circuit and headphone driver
    4.5V~26V for loudspeaker driver
- Speaker or headphone out selection
- Line-driver maximum output swing into 10kΩ
   2Vrms at 3.3V supply voltage
- Headphone output power
   25mW x 2ch into 32Ω @ 0.1% THD+N
- Speaker output power 30W x 2ch into 8Ω @ <1% THD+N@24V
- Sound processing including :
   36 bands parametric speaker EQ
   Volume control (+24dB~-103dB, 0.125dB/step)
   Dynamic range control

Three Band plus post Dynamic range control Power Clipping

Programmed 3D surround sound

Channel mixing

Noise gate with hysteresis window

Bass/Treble tone control

DC-blocking high-pass filter

Pre-scale/post-scale

Virtual Bass/exciter

Dynamic bass

- Anti-pop design
- Level meter and power meter
- I<sup>2</sup>S output with selectable audio DSP point
- Supports I<sup>2</sup>C control without clock
- I<sup>2</sup>C control interface with selectable device address
- Internal PLL
- Support initial EEPROM setting
- Protection
  - OCP
  - OVP
  - **UVP**
  - OTP
  - DCP
- Closed-loop structure with good PSRR

#### **Applications**

- Boom-box, CD and DVD receiver, docking system
- Powered speaker
- Wireless audio
- Al speaker

#### **Description**

AD85050 is a digital audio amplifier capable of driving. a pair of  $8\Omega$ ,30W or a single  $4\Omega$ ,60W speaker output. In headphone output mode, it can delivered 25mW into  $32\Omega$  load for head phone output.

AD85050 provides advanced audio processing functions, such as volume control, 36 EQ bands, audio mixing, 3D surround sound and Dynamic Range Control (DRC). These are fully programmable via a simple I<sup>2</sup>C control interface. Robust protection circuits are provided to protect AD85050 from damage due to accidental erroneous operating condition. The full digital circuit design of AD85050 is tolerant of noise and PVT (Process, Voltage, and Temperature) variation. AD85050 is pop free during instantaneous power on/off or mute/shut down switching because of its robust built-in anti-pop circuit.

Revision: 0.1

Publication Date: Mar. 2019

1/103



### **Pin Assignment**



| PIN | NAME     | TYPE | DESCRIPTION                                                                                                                                                                             | CHARACTERISTICS                   |
|-----|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1   | AMP_SDB  | I    | Shut down for AMP, low active.                                                                                                                                                          | With pull low resistor (250Kohm). |
| 2   | FAULTB   | 0    | Open drain output used to display short circuit or dc detect fault. Voltage compliant to AVCC. Otherwise, both short circuit faults and dc detect faults must be reset by cycling AVCC. |                                   |
| 3   | LINP     | I    | Positive audio input for left channel.                                                                                                                                                  |                                   |
| 4   | LINN     | I    | Negative audio input for left channel.                                                                                                                                                  |                                   |
| 5   | AVCC     | Р    | Analog supply.                                                                                                                                                                          |                                   |
| 6   | SDZ      | 0    | Shut down control for AMP.                                                                                                                                                              |                                   |
| 7   | DAC_OUTA | 0    | Analog output from DAC A channel.                                                                                                                                                       |                                   |
| 8   | AVDD     | Р    | Power supply for analog circuit, 3.3V                                                                                                                                                   |                                   |
| 9   | AGND     | Р    | Ground for analog circuit.                                                                                                                                                              |                                   |
| 10  | SDA      | I/O  | I <sup>2</sup> C bi-directional serial data.                                                                                                                                            | Schmitt trigger TTL input buffer  |
| 11  | SCL      | I    | I <sup>2</sup> C serial clock input.                                                                                                                                                    | Schmitt trigger TTL input buffer  |

Publication Date: Mar. 2019 Revision: 0.1 2/103



| 12 | HP_SPK   | ı    | Head phone and speaker switch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Schmitt trigger TTL input buffer, with |
|----|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|    |          | •    | The state of the s | pull low resistor internally.          |
| 13 | GPIO0    | I/O  | General purpose digital input and output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Schmitt trigger TTL input buffer, with |
|    |          | 1,70 | port 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pull low resistor internally.          |
| 14 | SA1      | 1    | I <sup>2</sup> C select address 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Schmitt trigger TTL input buffer, with |
|    | <u> </u> | •    | 1 o select address 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pull low resistor internally.          |
| 15 | MCLK     | I    | Master clock input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Schmitt trigger TTL input buffer.      |
| 16 | BCLK     | I    | Bit clock input (64Fs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Schmitt trigger TTL input buffer.      |
| 17 | SDATA    | I    | Serial audio data input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Schmitt trigger TTL input buffer       |
| 18 | LRCIN    | I    | Left/Right clock input (Fs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Schmitt trigger TTL input buffer.      |
| 19 | SA0      | ı    | l <sup>2</sup> C select address 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Schmitt trigger TTL input buffer, with |
| 19 | SAU      | 1    | C Select address 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pull low resistor internally.          |
| 20 | TEST     | I    | This pin must connect to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | With pull low resistor internally.     |
| 21 | VREG     | 0    | 1.8V Regulator voltage output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 22 | DGND     | Р    | Digital Ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 23 | DVDD     | Р    | Digital I/O power, 1.8V or 3.3V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| 24 | HVDD     | Р    | Supply voltage for headphone driver, 3.3V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| 05 | OD       | 0    | Charge-pump flying capacitor positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 25 | СР       | 0    | terminal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| 26 | GND      | Р    | Power ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| 07 | CNI      | •    | Charge-pump flying capacitor negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 27 | CN       | 0    | terminal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| 20 | LIVES    | 0    | Negative supply voltage for headphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 28 | HVSS     | Р    | driver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| 29 | N.C.     |      | Not connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 30 | DAC_OUTB | 0    | Analog output from DAC B channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 24 | CVDD     | •    | 5V regulated output, also used as supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| 31 | GVDD     | 0    | for PLIMIT function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
| 32 | GND      | Р    | Power ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| 33 | RINN     | I    | Negative audio input for right channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| 34 | RINP     | I    | Positive audio input for right channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| 35 | N.C.     | I    | Not connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 00 | DDTI     |      | Parallel BTL mode switch, high for parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VA/Mb mull love and interest           |
| 36 | PBTL     | ı    | BTL output. Voltage compliance to AVCC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | With pull low resistor internally.     |
|    |          |      | High-voltage power supply for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| 37 | PVCCR    | Р    | right-channel. Channel power supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|    |          |      | inputs are connected in chip internally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
|    |          |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                      |

Publication Date: Mar. 2019 Revision: 0.1 3/103



| 38 | BSPR  | 0 | Bootstrap I/O for right channel, positive high side FET                                                                            |  |
|----|-------|---|------------------------------------------------------------------------------------------------------------------------------------|--|
| 39 | OUTPR | 0 | Class-D H-bridge positive output for right channel                                                                                 |  |
| 40 | PGNDR | Р | Power ground for the H-bridges.                                                                                                    |  |
| 41 | OUTNR | 0 | Class-D H-bridge negative output for right channel.                                                                                |  |
| 42 | BSNR  | 0 | Bootstrap I/O for right channel, negative high side FET.                                                                           |  |
| 43 | BSNL  | 0 | Bootstrap I/O for left channel, negative high side FET.                                                                            |  |
| 44 | OUTNL | 0 | Class-D H-bridge negative output for left channel.                                                                                 |  |
| 45 | PGNDL | Р | Power ground for the H-bridges.                                                                                                    |  |
| 46 | OUTPL | 0 | Class-D H-bridge positive output for left channel.                                                                                 |  |
| 47 | BSPL  | 0 | Bootstrap I/O for left channel, positive high side FET.                                                                            |  |
| 48 | PVCCL | Р | High-voltage power supply for left-channel.  Left channel and Right channel power  supply inputs are connected in chip internally. |  |

Publication Date: Mar. 2019 Revision: 0.1 4/103



### **Functional Block Diagram**



Revision: 0.1 5/103



### **Ordering Information**

| Product ID       | Package                     | Packing / MPQ               | Comments |
|------------------|-----------------------------|-----------------------------|----------|
| ADOEOEO I CAONDV | E-LQFP 48L 250 Units / Tray |                             | Croon    |
| AD85050-LG48NRY  | (7mm x 7mm)                 | 2.5K Units / Box (10 Trays) | Green    |
| AD85050-LG48NRR  | E-LQFP 48L                  | 2K Units / Reel             | Croon    |
| AD00000-LG40NKK  | (7mm x 7mm)                 | 1 Reel / Small box          | Green    |

### **Available Package**

| Package Type | Device No. | θ <sub>ja</sub> (°C/W) | Ψ <sub>jt</sub> (°C/W) | θ <sub>jt</sub> (°C/W) | Exposed Thermal Pad |
|--------------|------------|------------------------|------------------------|------------------------|---------------------|
| E-LQFP 48L   | AD85050    | 22.9                   | 1.64                   | 34.9                   | Yes (Note1)         |

- Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.
- Note 1.2:  $\theta_{ja}$ , the junction-to-ambient thermal resistance is simulated on a room temperature ( $T_A$ =25 $^{\circ}$ C), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The simulation is tested using the JESD51-5 thermal measurement standard.
- Note 1.3:  $\Psi_{jt}$  represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining  $\theta_{ja}$ , using a procedure described in JESD51-2.
- Note 1.4:  $\theta_{jt}$  represents the thermal resistance for the heat flow between the chip junction and the package's top surface. It's extracted from the simulation data with obtaining a cold plate on the package top.

### **Marking Information**





### **Absolute Maximum Ratings (AMR)**

Stresses beyond those listed under <u>absolute maximum ratings</u> may cause permanent damage to the device.

| Symbol           | Para                    | meter                | Min  | Max  | Units |
|------------------|-------------------------|----------------------|------|------|-------|
| DVDD             | Supply for Dig          | gital I/O Circuit    | -0.3 | 3.6  | V     |
| AVDD             | Supply for A            | nalog Circuit        | -0.3 | 3.6  | V     |
| HVDD             | Supply for Hea          | adphone Driver       | -0.3 | 3.6  | V     |
| PVCCL/R          | Supply for              | Driver Stage         | -0.3 | 30   | V     |
| AVCC             | Supply for Driver S     | Stage Analog Circuit | -0.3 | 30   | V     |
| V                | Input Voltage for AMP   | -0.3                 | 30   | V    |       |
| $V_i$            | Input Voltage fo        | -0.3                 | 3.6  | V    |       |
| T <sub>stg</sub> | Storage Te              | emperature           | -65  | 150  | °C    |
| $T_J$            | Junction Operat         | ting Temperature     | 0    | 150  | °C    |
|                  | Minimum Load            | BTL (Stereo)         | 3.2  |      | Ω     |
| $R_L$            | Minimum Load Resistance | PBTL (Mono) > 18V    | 3.2  |      | Ω     |
|                  | Resistance              | PBTL (Mono) ≤ 18V    | 1.6  |      | Ω     |
| FCD              | Human B                 |                      | ±2K  | V    |       |
| ESD              | Charged D               | evice Model          |      | ±500 | V     |

### **Recommended Operating Conditions**

| Symbol         | Parameter Typ                            |               | Units |
|----------------|------------------------------------------|---------------|-------|
| DVDD           | Supply for Digital I/O Circuit for 1.8V  | .8V 1.65~1.95 |       |
| DVDD           | Supply for Digital I/O Circuit for 3.3V  | 3.15~3.45     | V     |
| AVDD           | Supply for Analog Circuit 3.15~3         |               | V     |
| HVDD           | Supply for Headphone Driver              | 3.15~3.45     | V     |
| PVCC           | Supply for Driver Stage PVCCL/R and AVCC | 4.5~26        | V     |
| TJ             | Junction Operating Temperature           | -40~125       | °C    |
| T <sub>A</sub> | Ambient Operating Temperature            | -40~85        | °C    |

Publication Date: Mar. 2019 Revision: 0.1 7/103



### **General Electrical Characteristics**

Condition: PVCC=24V,  $R_L$ =8 $\Omega$ ,  $T_A$ =25 $^{\circ}$ C, (unless otherwise noted).

| SYMBOL                | PARAMETER                                             | CONDITION                        | MIN  | TYP  | MAX  | UNIT     |
|-----------------------|-------------------------------------------------------|----------------------------------|------|------|------|----------|
| I <sub>Q(PVCC)</sub>  | Quiescent supply current                              | AMP_SDB=2V, no load, PVCC=12V    |      | 20   | 35   | mA       |
| I <sub>Q(HVDD)</sub>  | Quiescent supply current for HVDD                     |                                  |      | 50   |      | mA       |
| I <sub>Q(AVDD)</sub>  | Quiescent supply current for AVDD                     |                                  |      | 13   |      | mA       |
| I <sub>Q(DVDD)</sub>  | Quiescent supply current for                          | DVDD=1.8V                        |      |      | 4.5  | mA.      |
| IQ(DVDD)              | DVDD                                                  | DVDD=3.3V                        |      |      | 7.5  | IIIA     |
| I <sub>SD(PVCC)</sub> | Quiescent supply current in shutdown mode             | AMP_SDBD=0.8V, no load, PVCC=12V |      | < 12 | 25   | uA       |
| UV <sub>(AVDD)</sub>  | AVDD Under-Voltage Active Threshold                   |                                  |      | 2.6  |      | <b>V</b> |
| O V (AVDD)            | AVDD Under-Voltage Release Threshold                  |                                  |      | 2.7  |      | v        |
| $UV_{(HVDD)}$         | HVDD Under-Voltage Active Threshold                   |                                  |      | 2.6  |      | V        |
| O V (HVDD)            | HVDD Under-Voltage Release Threshold                  |                                  |      | 2.7  |      | V        |
| P                     | Drain-source on-state resistance-High side NMOS       | PVCC=12V, Id=500mA,              |      | 90   |      | mΩ       |
| R <sub>DS(on)</sub>   | Drain-source on-state resistance-Low side NMOS        | T <sub>J</sub> =25 °C            |      | 90   |      | mΩ       |
| V <sub>os</sub>       | Class-D output offset voltage (measured differential) | PVCC=12V V <sub>i</sub> =0V      |      | 1.5  | 15   | mV       |
| t <sub>ON</sub>       | Turn-on time                                          | AMP_SDB=2V                       |      | 90   |      | ms       |
| t <sub>OFF</sub>      | Turn-off time                                         | AMP_SDB=0.8V                     |      | 2    |      | us       |
| GVDD                  | 5V regulator output                                   | I <sub>GVDD</sub> =0.1mA         | 4.75 | 5    | 5.25 | V        |
| VREG                  | 1.8V regulator output                                 |                                  | 1.71 | 1.8  | 1.89 | V        |

Publication Date: Mar. 2019 Revision: 0.1 8/103



|                  |                                         | Value represents the  |     |     |     |     |  |
|------------------|-----------------------------------------|-----------------------|-----|-----|-----|-----|--|
|                  |                                         | "peak voltage"        |     |     |     |     |  |
| 0                | Cain                                    | disregarding clipping |     |     |     | \ / |  |
| G                | Gain                                    | due to lower PVCC).   |     | 28  |     | V   |  |
|                  |                                         | Measured at 0 dB      |     |     |     |     |  |
|                  |                                         | input(1FS) and all    |     |     |     |     |  |
|                  |                                         | volume gain at 0dB    |     |     |     |     |  |
| f <sub>osc</sub> | Oscillator frequency                    |                       | 250 | 310 | 370 | kHz |  |
| I <sub>sc</sub>  | L(R) Channel Over Current<br>Protection |                       |     | 8   |     | А   |  |
|                  | Mono Over-Current Protection            |                       |     | 16  |     | Α   |  |
| V <sub>IH</sub>  | High-Level Input Voltage                | DVDD=1.8V             | 1.3 |     |     | V   |  |
| V IH             |                                         | DVDD=3.3V             | 2.0 |     |     | V   |  |
| V <sub>IL</sub>  | Low-level Input Voltage                 | DVDD=1.8V             |     |     | 0.5 | V   |  |
| V IL             | Low level input voltage                 | DVDD=3.3V             |     |     | 0.8 | V   |  |
| V <sub>OH</sub>  | High-Level Output Voltage               | DVDD=1.8V             | 1.2 |     |     | V   |  |
| V OH             | Tilgh-Level Output voltage              | DVDD=3.3V             | 2.4 |     |     | V   |  |
| V <sub>OL</sub>  | Low-Level Output Voltage                | DVDD=1.8V             |     |     | 0.2 | V   |  |
| V OL             | Low-Level Output voltage                | DVDD=3.3V             |     |     | 0.4 | V   |  |
| Cı               | Input Capacitance                       |                       |     | 6.4 |     | pF  |  |

Publication Date: Mar. 2019 Revision: 0.1 9/103



### **Application Circuit Example for Stereo**



Publication Date: Mar. 2019 Revision: 0.1 10/103



### **Application Circuit Example for Mono**



Publication Date: Mar. 2019 Revision: 0.1 11/103



### **Electrical Characteristics and Specifications for Loudspeaker**

### BTL (Bridge-Tied-Load) output for Stereo

Condition:  $T_A=25^{\circ}C$ , DVDD=HVDD=AVDD=3.3V, PVCC=24V,  $F_S=48kHz$ , Load= $8\Omega$ ; Input is 1kHz sine-wave unless otherwise specified.

| Symbol   | Parameter                         | Condition                                 | Input Level | Min | Тур  | Max | Units |
|----------|-----------------------------------|-------------------------------------------|-------------|-----|------|-----|-------|
|          | RMS Output Power (THD+N < 1%)     |                                           |             |     | 30   |     | W     |
| Po       | RMS Output Power (THD+N=0.1%)     |                                           |             |     | 15   |     | W     |
| (Note 3) | RMS Output Power (THD+N=10%)      |                                           |             |     | 40   |     | ١٨/   |
|          | for PVCC=12V                      |                                           |             |     | 10   |     | W     |
| THD+N    | Total Harmonic Distortion + Noise | P <sub>O</sub> =10W                       |             |     | 0.08 |     | %     |
|          |                                   | Maximum power                             |             |     |      |     |       |
| SNR      | Signal to Noise Ratio (Note 2)    | at THD < 1%                               |             |     | 103  |     | dB    |
|          |                                   | @1kHz                                     |             |     |      |     |       |
| DR       | Dynamic Range (Note 2)            |                                           | -60dB       |     | 108  |     | dB    |
| Vn       | Output Noise (Note 2)             | 20Hz to 20kHz                             |             |     | 120  |     | uV    |
| PSRR     | Power Supply Rejection Ratio      | V <sub>RIPPLE</sub> =1V <sub>RMS</sub> at |             |     | -70  |     | dB    |
| · Ortic  | . Sinc. Supply Rejection Ratio    | 1kHz                                      |             |     | . 0  |     | u.D   |
|          | Channel Separation                | 1W @1kHz                                  |             |     | -95  |     | dB    |

Note 2: Measured with A-weighting filter.

Note 3: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

### Total Harmonic Distortion + Noise vs. Output Power



Publication Date: Mar. 2019 Revision: 0.1 12/103



### Total Harmonic Distortion + Noise vs. Output Power



### Total Harmonic Distortion + Noise vs. Frequency



Publication Date: Mar. 2019 Revision: 0.1 13/103

# **ESMT**

### Total Harmonic Distortion + Noise vs. Frequency



### Total Harmonic Distortion + Noise vs. Frequency



Publication Date: Mar. 2019 Revision: 0.1 14/103



### Total Harmonic Distortion + Noise vs. Frequency



### Cross-talk



Publication Date: Mar. 2019

Revision: 0.1

15/103



### Cross-talk



### Noise Level



Publication Date: Mar. 2019 Revision: 0.1 16/103



### Noise Level



Efficiency (Stereo 8ohm load) / 2ch



Publication Date: Mar. 2019

Revision: 0.1 17/103



### Efficiency (Stereo 4ohm load) / 2ch



### Output Power vs. Supply Voltage (BTL, 8ohm)



Publication Date: Mar. 2019 Revision: 0.1 18/103







Note: Dashed Line represent thermally limited regions.

## Output Power vs. Supply Voltage (BTL, 4ohm)



Note: Dashed Line represent thermally limited regions.

Publication Date: Mar. 2019 Revision: 0.1 19/103



### **Electrical Characteristics and Specifications for Loudspeaker**

### PBTL (Parallel Bridge-Tied-Load) output for Mono

Condition:  $T_A=25^{\circ}C$ , DVDD=HVDD=AVDD=3.3V, PVCC=24V,  $F_S=48kHz$ , Load= $4\Omega$ ; Input is 1kHz sine-wave unless otherwise specified.

| Symbol   | Parameter                                 | Condition                             | Input Level | Min | Тур  | Max | Units |
|----------|-------------------------------------------|---------------------------------------|-------------|-----|------|-----|-------|
|          | RMS Output Power (THD+N < 1%)             |                                       |             |     | 60   |     | W     |
| Po       | RMS Output Power (THD+N=0.1%)             |                                       |             |     | 30   |     | W     |
| (Note 3) | RMS Output Power (THD+N=10%) for PVCC=12V |                                       |             |     | 20   |     | W     |
| THD+N    | Total Harmonic Distortion + Noise         | P <sub>O</sub> =20W                   |             |     | 0.08 |     | %     |
| SNR      | Signal to Noise Ratio (Note 2)            | Maximum power<br>at THD < 1%<br>@1kHz |             |     | 103  |     | dB    |
| DR       | Dynamic Range (Note 2)                    |                                       | -60dB       |     | 109  |     | dB    |
| Vn       | Output Noise (Note 2)                     | 20Hz to 20kHz                         |             |     | 105  |     | uV    |

Note 2: Measured with A-weighting filter.

Note 3: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

### Total Harmonic Distortion + Noise vs. Output Power



Publication Date: Mar. 2019 Revision: 0.1 20/103



Total Harmonic Distortion + Noise vs. Output Power



Total Harmonic Distortion + Noise vs. Frequency



Publication Date: Mar. 2019 Revision: 0.1 21/103



### Total Harmonic Distortion + Noise vs. Frequency



### Noise



Publication Date: Mar. 2019

Revision: 0.1

22/103



### Noise



### Efficiency (Mono 4ohm load)



Publication Date: Mar. 2019

Revision: 0.1

23/103



### Efficiency (Mono 20hm load)



### Output Power vs. Supply Voltage (PBTL, 4ohm)



Publication Date: Mar. 2019 Revision: 0.1 24/103



Output Power vs. Supply Voltage (PBTL, 2ohm)



Note: Dashed Line represent thermally limited regions.

Publication Date: Mar. 2019 Revision: 0.1 25/103



### **Interface configuration**





• Right-Alignment LRCIN Left



System Clock Timing



• Timing Relationship (Using I<sup>2</sup>S format as an example)



Publication Date: Mar. 2019 Revision: 0.1 26/103



| Symbol           | Parameter                         | Min   | Тур | Max   | Units |
|------------------|-----------------------------------|-------|-----|-------|-------|
| t <sub>LR</sub>  | LRCIN Period (1/F <sub>S</sub> )  | 5.2   |     | 31.25 | μS    |
| t <sub>BL</sub>  | BCLK Rising Edge to LRCIN Edge    | 25    |     |       | ns    |
| t <sub>LB</sub>  | LRCIN Edge to BCLK Rising Edge    | 25    |     |       | ns    |
| t <sub>BCC</sub> | BCLK Period (1/64F <sub>S</sub> ) | 81.38 |     | 488.3 | ns    |
| t <sub>BCH</sub> | BCLK Pulse Width High             | 40.69 |     | 244   | ns    |
| t <sub>BCL</sub> | BCLK Pulse Width Low              | 40.69 |     | 244   | ns    |
| t <sub>DS</sub>  | SDATA Set-Up Time                 | 25    |     |       | ns    |
| t <sub>DH</sub>  | SDATA Hold Time                   | 25    |     |       | ns    |

# I<sup>2</sup>C Timing



| December                                 | Standard            |      | d Mode | Fast Mode |      | 11.7      |
|------------------------------------------|---------------------|------|--------|-----------|------|-----------|
| Parameter                                | Symbol              | MIN. | MAX.   | MIN.      | MAX. | MAX. Unit |
| SCL clock frequency                      | f <sub>SCL</sub>    | 0    | 100    | 0         | 400  | kHz       |
| Hold time for repeated START condition   | t <sub>HD,STA</sub> | 4.0  |        | 0.6       |      | μS        |
| LOW period of the SCL clock              | t <sub>LOW</sub>    | 4.7  |        | 1.3       |      | μS        |
| HIGH period of the SCL clock             | t <sub>HIGH</sub>   | 4.0  |        | 0.6       |      | μS        |
| Setup time for repeated START condition  | t <sub>SU;STA</sub> | 4.7  |        | 0.6       |      | μS        |
| Hold time for I <sup>2</sup> C bus data  | t <sub>HD;DAT</sub> | 0    | 3.45   | 0         | 0.9  | μS        |
| Setup time for I <sup>2</sup> C bus data | t <sub>SU;DAT</sub> | 250  |        | 100       |      | ns        |
| Rise time of both SDA and SCL signals    | t <sub>r</sub>      |      | 1000   |           | 300  | ns        |
| Fall time of both SDA and SCL signals    | t <sub>f</sub>      |      | 300    |           | 300  | ns        |
| Setup time for STOP condition            | t <sub>SU;STO</sub> | 4.0  |        | 0.6       |      | μS        |
| Bus free time between STOP and the next  | <b>+</b>            | 4.7  |        | 1.3       |      |           |
| START condition                          | t <sub>BUF</sub>    | 4.7  |        | 1.3       |      | μS        |
| Capacitive load for each bus line        | C <sub>b</sub>      |      | 400    |           | 400  | pF        |

Publication Date: Mar. 2019 Revision: 0.1 27/103



### • Power on sequence



| Symbol | Condition | Min | Max | Units |
|--------|-----------|-----|-----|-------|
| t1     |           | 0   | -   | msec  |
| t2     |           | 0   | -   | msec  |
| t3     |           | 0   | -   | msec  |
| t4     |           | 0   | •   | msec  |
| t5     |           | 0   | •   | msec  |
| t6     |           | 20  | -   | msec  |
| t7     |           | 20  | -   | msec  |
| t8     |           | 10  |     | msec  |
| t9     |           |     | 150 | msec  |

Publication Date: Mar. 2019 Revision: 0.1 28/103



### Power off sequence



| Symbol | Condition | Min                                     | Max  | Units |
|--------|-----------|-----------------------------------------|------|-------|
| t1     |           | 35 (FADE_SPEED=0)<br>280 (FADE_SPEED=1) | -    | msec  |
| t2     |           | 0.1                                     | -    | msec  |
| t3     |           | 0.1                                     | -    | msec  |
| t4     |           | 1                                       | -    | msec  |
| t5     |           | 1                                       | -    | msec  |
| t6     |           | 1                                       | -    | msec  |
| t7     |           | 1                                       |      | msec  |
| t8     |           |                                         | 0.01 | msec  |

Publication Date: Mar. 2019

Revision: 0.1 29/103



### **Operation Description**

AD85050 has a built-in PLL internally, the default volume is muted. AD85050 will activate while the de-mute command via I<sup>2</sup>C is programmed.

### DAC Output for headphone

A conventional inverting headphone amplifier always requires an output dc-blocking capacitor and a bypass capacitor. DC blocking capacitors are large in size and cost a lot. It also restricts the output low frequency response. POP will occur if the charge and discharge processes on output capacitors are not carefully take cared. Besides, it needs to wait for a long time to charge output from 0V to 1/2 bias voltage.

A cap-less DAC, a negative supply voltage is produced by the integrated charge-pump, and feeds to headphone driver's negative supply instead of ground. The DAC output is biased at ground which can eliminate the output dc-blocking capacitors. The output voltage swing is doubled compared to conventional amplifiers.

#### Anti-pop design

AD85050 will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

### 3D surround sound

AD85050 provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals.

#### Shutdown control

Pulling AMP\_SDB pin low will let AD85050 operate in low-current state for power conservation. The AD85050 outputs will enter mute once AMP\_SDB pin is pulled low, and regulator (GVDD) will also disable to save power. If let AMP\_SDB pin floating, the chip will enter shutdown mode because of the internal pull low resistor. For the best power-off performance, place the chip in the shutdown mode in advance of removing the power supply.

#### HP SPK control

Pulling HP\_SPK pin high (HP mode) will let SDZ pin operate in low state, connect the SDZ pin directly to AMP\_SDB pin. The AMP output will be turned off. Pulling HP\_SPK pin low (SPK mode) will let SDZ pin operate in high state, connect the SDZ pin directly to AMP\_SDB pin. The AMP output will be turned on.

Publication Date: Mar. 2019 Revision: 0.1 30/103



### • PBTL (mono) function

AD85050 provides the application of parallel BTL operation with two outputs of each channel connected directly. If the PBTL pin is tied high, the positive and negative outputs of left and right channel are synchronized and in phase. Apply the input signal to the RIGHT channel input in PBTL mode and let the LEFT channel input grounded, and place the speaker between the LEFT and RIGHT outputs. The output swing is doubled of that in normal mode. See the application circuit example for PBTL (Mono) mode operation. For normal BTL (Stereo) operation, connect the PBTL pin to ground.

#### Under-voltage detection

When the GVDD voltage is lower than 2.8V or the PVCC voltage is lower than 4V, loudspeaker drivers of right/left channel will be disabled and kept at low state. Otherwise, AD85050 return to normal operation. When HVDD and AVDD voltage are lower than 2.6V, DAC output will be off.

#### DC detection

AD85050 has dc detection circuit to protect the speakers from DC current which might be occurred as input capacitor defect or inputs short on printed circuit board. The detection circuit detects first volume amplifier stage output, when both differential outputs' voltage become higher than a determined voltage or lower than a determined voltage for more than 420ms, the dc detect error will occur and report to FAULTB pin. At the same time, loudspeaker drivers of right/left channel will disable and enter Hi-Z. This fault can not be cleared by cycling AMP\_SDB pin, it is necessary to cycle the PVCC supply.

The equivalent class-D output duty of the DC detect threshold is listed in table 1.

| PVCC (V) | Output Duty Exceeds |  |
|----------|---------------------|--|
| 8        | 20.8%               |  |
| 12       | 20.8%               |  |
| 24       | 20.8%               |  |

Table 1. Output DC Detect Duty (for Either Channel)

### Over-voltage protection

When the PVCC voltage is higher than 29.5V, loudspeaker will be disabled kept at low state. The protection status will be released as PVCC lower than 29V.

Publication Date: Mar. 2019 Revision: 0.1 31/103



#### Short-circuit protection

To protect loudspeaker drivers from over-current damage, AD85050 has built-in short-circuit protection circuit. When the wires connected to loudspeakers are shorted to each other or shorted to GND or to PVCC, overload detectors may activate. Once one of right and left channel overload detectors are active, the amplifier outputs will enter a Hi-Z state and the protection latch is engaged. The short protection fault is reported on FAULTB pin as a low state. The latch can be cleared by reset AMP\_SDB pin or power supply cycling.

The short circuit protection latch can have auto-recovery function by connect the FAULTB pin directly to AMP\_SDB pin. The latch state will be released after 420msec, and the short protection latch will re-cycle if output overload is detected again.

### Thermal protection

If the internal junction temperature is higher than 150°C, the outputs of loudspeaker drivers will be disabled and at low state. The temperature for AD85050 returning to normal operation is about 125°C. The variation of protected temperature is about 10%. Thermal protection faults are NOT reported on the FAULTB pin.

#### Internal PLL

AD85050 has a built-in PLL internally, the BCLK/FS or MCLK/FS ratio, which is selected by I<sup>2</sup>C control interface. The clock inputted into the BCLK or MCLK pin becomes the frequency of multiple edge evaluation in chip internally.

| Fs      | BCLK/FS Setting<br>Ratio for PLL | BCLK Frequency | Multiple edge<br>evaluation for bit<br>clock | PWM Frequency |
|---------|----------------------------------|----------------|----------------------------------------------|---------------|
| 48kHz   | 64x                              | 3.072MHz       | 16x                                          | 310kHz        |
| 44.1kHz | 64x                              | 2.8224MHz      | 16x                                          | 310kHz        |
| 32kHz   | 64x                              | 2.048MHz       | 16x                                          | 310kHz        |

| Fs      | MCLK/FS Setting<br>Ratio for PLL | MCLK Frequency | Multiple edge<br>evaluation for<br>Master clock | PWM Frequency |
|---------|----------------------------------|----------------|-------------------------------------------------|---------------|
| 48kHz   | 256x                             | 12.288MHz      | 4x                                              | 310kHz        |
| 44.1kHz | 256x                             | 11.2896MHz     | 4x                                              | 310kHz        |
| 32kHz   | 256x                             | 8.192MHz       | 4x                                              | 310kHz        |
| 8kHz    | 256x                             | 2.048MHz       | 16x                                             | 310kHz        |

Publication Date: Mar. 2019 Revision: 0.1 32/103



### **Application information**

### Input capacitors (C<sub>in</sub>)

The performance at low frequency (bass) is affected by the corner frequency ( $f_c$ ) of the high-pass filter composed of input resistor ( $R_{in}$ =60K $\Omega$ ) and input capacitor ( $C_{in}$ ), determined in equation (2). Typically, a 0.1 $\mu$ F or 1 $\mu$ F ceramic capacitor is suggested for  $C_{in}$ .

$$f_{c} = \frac{1}{2\pi R_{in} C_{in}} (Hz)$$



#### Ferrite Bead selection

If the traces from the AD85050 to speaker are short, the ferrite bead filters can reduce the high frequency emissions to meet FCC requirements. A ferrite bead that has very low impedance at low frequency and high impedance at high frequency (above 1MHz) is recommended. The impedance of the ferrite bead can be used along with a small capacitor with a value around 1000pF to reduce the frequency spectrum of the signal to an acceptable level.



Figure 1. Typical Ferrite Bead Filter

### Output LC Filter

If the traces from the AD85050 to speaker are not short, it is recommended to add the output LC filter to eliminate the high frequency emissions. Figure 2 shows the typical output filter for 8ohm speaker with a cut-off frequency of 61 kHz and Figure 3 shows the typical output filter for 4ohm speaker with a cut-off frequency of 34 kHz.

Publication Date: Mar. 2019 Revision: 0.1 33/103





Figure 2. Typical LC Output Filter for 8Ω Speaker



Figure 3. Typical LC Output Filter for  $4\Omega$  Speaker

### Power supply decoupling capacitor (Cs)

Because of the power loss on the trace between the device and decoupling capacitor, the decoupling capacitor should be placed close to PVCC and PGND to reduce any parasitic resistor or inductor. A low ESR ceramic capacitor, typically 1000pF, is suggested for high frequency noise rejection. For mid-frequency noise filtering, place a capacitor typically  $0.1\mu F$  or  $1\mu F$  as close as possible to the device PVCC leads works best. For low frequency noise filtering, a  $100\mu F$  or greater capacitor (tantalum or electrolytic type) is suggested.



Figure 4. Recommended Power Supply Decoupling Capacitors.

Publication Date: Mar. 2019

35/103

Revision: 0.1



### I<sup>2</sup>C-Bus Transfer Protocol

#### Introduction

AD85050 employs I<sup>2</sup>C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD85050 is always an I<sup>2</sup>C slave device.

#### Protocol

#### START and STOP condition

START is identified by a high to low transition of the SDA signal. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD85050 and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

#### Data validity

The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD85050 samples the SDA signal at the rising edge of SCL signal.

#### Device addressing

The master generates 7-bit address to recognize slave devices. When AD85050 receives 7-bit address matched with 0110x0y (where x and y can be selected by external SA0 and SA1 pins, respectively), AD85050 will acknowledge at the 9<sup>th</sup> bit (the 8<sup>th</sup> bit is for R/W bit). The bytes following the device identification address are for AD85050 internal sub-addresses.

#### Data transferring

Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD85050 supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.





### **Register Table**

The AD85050's audio signal processing data flow is shown below. Users can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

#### One band DRC



#### **Dual band DRC**



Publication Date: Mar. 2019

Revision: 0.1 36/103



#### Three bands DRC - Type 1



#### Three bands DRC - Type 2





# **Register Table**

| Address | Name   | B[7]       | B[6]       | B[5]       | B[4]        | B[3]      | B[2]         | B[1]         | B[0]       | Default |
|---------|--------|------------|------------|------------|-------------|-----------|--------------|--------------|------------|---------|
| 0X00    | SCTL1  | IF[2]      | IF[1]      | IF[0]      | Reserved    | Reserved  | Reserved     | Reserved     | LREXC      | 0x00h   |
| 0X01    | SCTL2  | BCLK_SEL   | FS[2]      | FS[1]      | FS[0]       | PMF[3]    | PMF[2]       | PMF[1]       | PMF[0]     | 0x91h   |
| 0X02    | SCTL3  | Reserved   | MUTE       | CM1        | CM2         | СМЗ       | CM4          | CM5          | CM6        | 0x00h   |
| 0X03    | MVOL   | MV[7]      | MV[6]      | MV[5]      | MV[4]       | MV[3]     | MV[2]        | MV[1]        | MV[0]      | 0x18h   |
| 0X04    | C1VOL  | C1V[7]     | C1V[6]     | C1V[5]     | C1V[4]      | C1V[3]    | C1V[2]       | C1V[1]       | C1V[0]     | 0x18h   |
| 0X05    | C2VOL  | C2V[7]     | C2V[6]     | C2V[5]     | C2V[4]      | C2V[3]    | C2V[2]       | C2V[1]       | C2V[0]     | 0x18h   |
| 0X06    | C3VOL  | C3V[7]     | C3V[6]     | C3V[5]     | C3V[4]      | C3V[3]    | C3V[2]       | C3V[1]       | C3V[0]     | 0x18h   |
| 0X07    | C4VOL  | C4V[7]     | C4V[6]     | C4V[5]     | C4V[4]      | C4V[3]    | C4V[2]       | C4V[1]       | C4V[0]     | 0x18h   |
| 0X08    | C5VOL  | C5V[7]     | C5V[6]     | C5V[5]     | C5V[4]      | C5V[3]    | C5V[2]       | C5V[1]       | C5V[0]     | 0x18h   |
| 0X09    | C6VOL  | C6V[7]     | C6V[6]     | C6V[5]     | C6V[4]      | C6V[3]    | C6V[2]       | C6V[1]       | C6V[0]     | 0x18h   |
| 0X0A    | BTONE  |            | Reserved   |            | BTC[4]      | BTC[3]    | BTC[2]       | BTC[1]       | BTC[0]     | 0x10h   |
| 0X0B    | TTONE  |            | Reserved   |            | TTC[4]      | TTC[3]    | TTC[2]       | TTC[1]       | TTC[0]     | 0x10h   |
| 0X0C    | SCTL4  | SRBP       | BTE        | DEQE       | NGE         | EQL       | PSL          | DSPB         | HPB        | 0x90h   |
| 0X0D    | C1CFG  |            | R          | eserved    |             | C1PCBP    | C1DRCBP      | Reserved     | C1VBP      | 0x00h   |
| 0X0E    | C2CFG  |            | R          | eserved    |             | C2PCBP    | C2DRCBP      | Reserved     | C2VBP      | 0x00h   |
| 0X0F    | C3CFG  |            |            | Reserved   | i           |           | C3DRCBP      | Reserved     | C3VBP      | 0x00h   |
| 0X10    | C4CFG  |            |            | Reserved   | ı           |           | C4DRCBP      | Reserved     | C4VBP      | 0x00h   |
| 0X11    | C5CFG  |            |            | Reserved   | ı           |           | C5DRCBP      | Reserved     | C5VBP      | 0x00h   |
| 0X12    | C6CFG  |            |            | Reserved   | i           |           | C6DRCBP      | Reserved     | C6VBP      | 0x00h   |
| 0X13    | C7CFG  |            |            | Reserved   | i           |           | C7DRCBP      | Reserved     | Reserved   | 0x00h   |
| 0X14    | C8CFG  |            |            | Reserved   | İ           |           | C8DRCBP      | Reserved     | Reserved   | 0x00h   |
| 0X15    | LAR1   | LA1[3]     | LA1[2]     | LA1[1]     | LA1[0]      | LR1[3]    | LR1[2]       | LR1[1]       | LR1[0]     | 0x6Ah   |
| 0X16    | LAR2   | LA2[3]     | LA2[2]     | LA2[1]     | LA2[0]      | LR2[3]    | LR2[2]       | LR2[1]       | LR2[0]     | 0x6Ah   |
| 0X17    | LAR3   | LA3[3]     | LA3[2]     | LA3[1]     | LA3[0]      | LR3[3]    | LR3[2]       | LR3[1]       | LR3[0]     | 0x6Ah   |
| 0X18    | LAR4   | LA4[3]     | LA4[2]     | LA4[1]     | LA4[0]      | LR4[3]    | LR4[2]       | LR4[1]       | LR4[0]     | 0x6Ah   |
| 0X19    | SCTL5  | Rese       | erved      | HP_SPK_ON  | DRCM        | DRC_LINK  | DB_CTRL_INV  | DB_EN        | MF_EN      | 0x10h   |
| 0X1A    | SCTL6  | Reserved   | PDB_REG    | SW_RSTB    | LVUV_FADE   | Reserved  | DIS_MCLK_DET | Rese         | rved       | 0x70h   |
| 0X1B    | SCTL7  | DRC_SEL[1] | DRC_SEL[0] | HOP[1]     | HOP[0]      | 32X3      | FS8K         | TriBDRC_TYPE | Reserved   | 0x00h   |
| 0X1C    | SCTL8  | L_INVERSE  | R_INVERSE  | POST_BOOST | DIS_NG_FADE | DRC_BOOST | FADE_SPEED   | NG_GAIN[1]   | NG_GAIN[0] | 0x00h   |
| 0X1D    | CFADDR | Reserved   | CFA[6]     | CFA[5]     | CFA[4]      | CFA[3]    | CFA[2]       | CFA[1]       | CFA[0]     | 0x00h   |
| 0X1E    | A1CF1  | C1B[23]    | C1B[22]    | C1B[21]    | C1B[20]     | C1B[19]   | C1B[18]      | C1B[17]      | C1B[16]    | 0x00h   |
| 0X1F    | A1CF2  | C1B[15]    | C1B[14]    | C1B[13]    | C1B[12]     | C1B[11]   | C1B[10]      | C1B[9]       | C1B[8]     | 0x00h   |
| 0X20    | A1CF3  | C1B[7]     | C1B[6]     | C1B[5]     | C1B[4]      | C1B[3]    | C1B[2]       | C1B[1]       | C1B[0]     | 0x00h   |

Publication Date: Mar. 2019 Revision: 0.1 38/103

| 0X21         |              |             |                                                              |                      |                  |                 |                      |                   |                      |                |
|--------------|--------------|-------------|--------------------------------------------------------------|----------------------|------------------|-----------------|----------------------|-------------------|----------------------|----------------|
|              | A2CF1        | C2B[23]     | C2B[22]                                                      | C2B[21]              | C2B[20]          | C2B[19]         | C2B[18]              | C2B[17]           | C2B[16]              | 0x00h          |
| 0X22         | A2CF2        | C2B[15]     | C2B[14]                                                      | C2B[13]              | C2B[12]          | C2B[11]         | C2B[10]              | C2B[9]            | C2B[8]               | 0x00h          |
| 0X23         | A2CF3        | C2B[7]      | C2B[6]                                                       | C2B[5]               | C2B[4]           | C2B[3]          | C2B[2]               | C2B[1]            | C2B[0]               | 0x00h          |
| 0X24         | B1CF1        | C3B[23]     | C3B[22]                                                      | C3B[21]              | C3B[20]          | C3B[19]         | C3B[18]              | C3B[17]           | C3B[16]              | 0x00h          |
| 0X25         | B1CF2        | C3B[15]     | C3B[14]                                                      | C3B[13]              | C3B[12]          | C3B[11]         | C3B[10]              | C3B[9]            | C3B[8]               | 0x00h          |
| 0X26         | B1CF3        | C3B[7]      | C3B[6]                                                       | C3B[5]               | C3B[4]           | C3B[3]          | C3B[2]               | C3B[1]            | C3B[0]               | 0x00h          |
| 0X27         | B2CF1        | C4B[23]     | C4B[22]                                                      | C4B[21]              | C4B[20]          | C4B[19]         | C4B[18]              | C4B[17]           | C4B[16]              | 0x00h          |
| 0X28         | B2CF2        | C4B[15]     | 4B[15] C4B[14] C4B[13] C4B[12] C4B[11] C4B[10] C4B[9] C4B[8] |                      |                  |                 |                      |                   | 0x00h                |                |
| 0X29         | B2CF3        | C4B[7]      | C4B[6]                                                       | C4B[5]               | C4B[4]           | C4B[3]          | C4B[2]               | C4B[1]            | C4B[0]               | 0x00h          |
| 0X2A         | A0CF1        | C5B[23]     | C5B[22]                                                      | C5B[21]              | C5B[20]          | C5B[19]         | C5B[18]              | C5B[17]           | C5B[16]              | 0x00h          |
| 0X2B         | A0CF2        | C5B[15]     | C5B[14]                                                      | C5B[13]              | C5B[12]          | C5B[11]         | C5B[10]              | C5B[9]            | C5B[8]               | 0x00h          |
| 0X2C         | A0CF3        | C5B[7]      | C5B[6]                                                       | C5B[5]               | C5B[4]           | C5B[3]          | C5B[2]               | C5B[1]            | C5B[0]               | 0x00h          |
| 0X2D         | CFUD         | Reserved    | RBS                                                          | R3                   | W3               | RA              | R1                   | WA                | W1                   | 0x00h          |
| 0X2E         | PRS          |             | Prohibited                                                   |                      |                  |                 |                      |                   |                      |                |
| 0X2F         | MBIST        |             | Prohibited                                                   |                      |                  |                 |                      |                   |                      |                |
| 0X30         | MSATEST      |             | Prohibited                                                   |                      |                  |                 |                      |                   |                      |                |
| 0X31 S       | SCAN_CTRL    |             | Prohibited                                                   |                      |                  |                 |                      |                   |                      |                |
| 0X32 -       | TM_CTRL      |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X33         | TM2_CTRL     |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X34         | VFT1         | MV_FT[1]    | MV_FT[0]                                                     | C1V_FT[1]            | C1V_FT[0]        | C2V_FT[1]       | C2V_FT[0]            | C3V_FT[1]         | C3V_FT[0]            | 0x00h          |
| 0X35         | VFT2         | C4V_FT[1]   | C4V_FT[0]                                                    | C5V_FT[1]            | C5V_FT[0]        | C6V_FT[1]       | C6V_FT[0]            | Rese              | erved                | 0x00h          |
| 0X36         | HP_CTRL      | DAC_GAIN[1] | DAC_GAIN[0]                                                  |                      |                  | Reserve         | ed                   |                   |                      | 0x00h          |
| 0X37         | ID           | DN[3]       | DN[2]                                                        | DN[1]                | DN[0]            | VN[3]           | VN[2]                | VN[1]             | vN[0]                | 0x50h          |
| 0X38         | R1ADDR       |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X39         | R1D1         |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X3A         | R1D2         |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X3B         | R1D3         |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X3C         | R1RW         |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X3D         | R3ADDR       |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X3E         | R3D1         |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| <u> </u>     | R3D2         |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X3F         |              |             | Prohibited                                                   |                      |                  |                 |                      |                   |                      |                |
| 0X3F<br>0X40 | R3D3         |             |                                                              |                      | Prohibited       |                 |                      |                   |                      |                |
|              | R3D3<br>R3RW |             |                                                              |                      | Prohib           | pited           |                      |                   |                      |                |
| 0X40         |              | C1_CLR      | C2_CLR                                                       | C3_CLR               | Prohib<br>C4_CLR | oited<br>C5_CLR | C6_CLR               | C7_CLR            | C8_CLR               | 0x00h          |
| 0X40<br>0X41 | R3RW         |             | C2_CLR C2_CLR_RMS                                            | C3_CLR<br>C3_CLR_RMS |                  |                 | C6_CLR<br>C6_CLR_RMS | C7_CLR C7_CLR_RMS | C8_CLR<br>C8_CLR_RMS | 0x00h<br>0x00h |

Publication Date: Mar. 2019 Revision: 0.1 39/103



| -    | 1           |               | ı             | 1             |               |               | T             |               | 1             | -     |
|------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------|
| 0X45 | MC1LM       | C1_LEVEL[15]  | C1_LEVEL[14]  | C1_LEVEL[13]  | C1_LEVEL[12]  | C1_LEVEL[11]  | C1_LEVEL[10]  | C1_LEVEL[9]   | C1_LEVEL[8]   | 0x00h |
| 0X46 | BC1LM       | C1_LEVEL[7]   | C1_LEVEL[6]   | C1_LEVEL[5]   | C1_LEVEL[4]   | C1_LEVEL[3]   | C1_LEVEL[2]   | C1_LEVEL[1]   | C1_LEVEL[0]   | 0x00h |
| 0X47 | TC2LM       | C2_LEVEL[23]  | C2_LEVEL[22]  | C2_LEVEL[21]  | C2_LEVEL[20]  | C2_LEVEL[19]  | C2_LEVEL[18]  | C2_LEVEL[17]  | C2_LEVEL[16]  | 0x00h |
| 0X48 | MC2LM       | C2_LEVEL[15]  | C2_LEVEL[14]  | C2_LEVEL[13]  | C2_LEVEL[12]  | C2_LEVEL[11]  | C2_LEVEL[10]  | C2_LEVEL[9]   | C2_LEVEL[8]   | 0x00h |
| 0X49 | BC2LM       | C2_LEVEL[7]   | C2_LEVEL[6]   | C2_LEVEL[5]   | C2_LEVEL[4]   | C2_LEVEL[3]   | C2_LEVEL[2]   | C2_LEVEL[1]   | C2_LEVEL[0]   | 0x00h |
| 0X4A | TC3LM       | C3_LEVEL[23]  | C3_LEVEL[22]  | C3_LEVEL[21]  | C3_LEVEL[20]  | C3_LEVEL[19]  | C3_LEVEL[18]  | C3_LEVEL[17]  | C3_LEVEL[16]  | 0x00h |
| 0X4B | MC3LM       | C3_LEVEL[15]  | C3_LEVEL[14]  | C3_LEVEL[13]  | C3_LEVEL[12]  | C3_LEVEL[11]  | C3_LEVEL[10]  | C3_LEVEL[9]   | C3_LEVEL[8]   | 0x00h |
| 0X4C | BC3LM       | C3_LEVEL[7]   | C3_LEVEL[6]   | C3_LEVEL[5]   | C3_LEVEL[4]   | C3_LEVEL[3]   | C3_LEVEL[2]   | C3_LEVEL[1]   | C3_LEVEL[0]   | 0x00h |
| 0X4D | TC4LM       | C4_LEVEL[23]  | C4_LEVEL[22]  | C4_LEVEL[21]  | C4_LEVEL[20]  | C4_LEVEL[19]  | C4_LEVEL[18]  | C4_LEVEL[17]  | C4_LEVEL[16]  | 0x00h |
| 0X4E | MC4LM       | C4_LEVEL[15]  | C4_LEVEL[14]  | C4_LEVEL[13]  | C4_LEVEL[12]  | C4_LEVEL[11]  | C4_LEVEL[10]  | C4_LEVEL[9]   | C4_LEVEL[8]   | 0x00h |
| 0X4F | BC4LM       | C4_LEVEL[7]   | C4_LEVEL[6]   | C4_LEVEL[5]   | C4_LEVEL[4]   | C4_LEVEL[3]   | C4_LEVEL[2]   | C4_LEVEL[1]   | C4_LEVEL[0]   | 0x00h |
| 0X50 | TC5LM       | C5_LEVEL[23]  | C5_LEVEL[22]  | C5_LEVEL[21]  | C5_LEVEL[20]  | C5_LEVEL[19]  | C5_LEVEL[18]  | C5_LEVEL[17]  | C5_LEVEL[16]  | 0x00h |
| 0X51 | MC5LM       | C5_LEVEL[15]  | C5_LEVEL[14]  | C5_LEVEL[13]  | C5_LEVEL[12]  | C5_LEVEL[11]  | C5_LEVEL[10]  | C5_LEVEL[9]   | C5_LEVEL[8]   | 0x00h |
| 0X52 | BC5LM       | C5_LEVEL[7]   | C5_LEVEL[6]   | C5_LEVEL[5]   | C5_LEVEL[4]   | C5_LEVEL[3]   | C5_LEVEL[2]   | C5_LEVEL[1]   | C5_LEVEL[0]   | 0x00h |
| 0X53 | TC6LM       | C6_LEVEL[23]  | C6_LEVEL[22]  | C6_LEVEL[21]  | C6_LEVEL[20]  | C6_LEVEL[19]  | C6_LEVEL[18]  | C6_LEVEL[17]  | C6_LEVEL[16]  | 0x00h |
| 0X54 | MC6LM       | C6_LEVEL[15]  | C6_LEVEL[14]  | C6_LEVEL[13]  | C6_LEVEL[12]  | C6_LEVEL[11]  | C6_LEVEL[10]  | C6_LEVEL[9]   | C6_LEVEL[8]   | 0x00h |
| 0X55 | BC6LM       | C6_LEVEL[7]   | C6_LEVEL[6]   | C6_LEVEL[5]   | C6_LEVEL[4]   | C6_LEVEL[3]   | C6_LEVEL[2]   | C6_LEVEL[1]   | C6_LEVEL[0]   | 0x00h |
| 0X56 | TC7LM       | C7_LEVEL[23]  | C7_LEVEL[22]  | C7_LEVEL[21]  | C7_LEVEL[20]  | C7_LEVEL[19]  | C7_LEVEL[18]  | C7_LEVEL[17]  | C7_LEVEL[16]  | 0x00h |
| 0X57 | MC7LM       | C7_LEVEL[15]  | C7_LEVEL[14]  | C7_LEVEL[13]  | C7_LEVEL[12]  | C7_LEVEL[11]  | C7_LEVEL[10]  | C7_LEVEL[9]   | C7_LEVEL[8]   | 0x00h |
| 0X58 | BC7LM       | C7_LEVEL[7]   | C7_LEVEL[6]   | C7_LEVEL[5]   | C7_LEVEL[4]   | C7_LEVEL[3]   | C7_LEVEL[2]   | C7_LEVEL[1]   | C7_LEVEL[0]   | 0x00h |
| 0X59 | TC8LM       | C8_LEVEL[23]  | C8_LEVEL[22]  | C8_LEVEL[21]  | C8_LEVEL[20]  | C8_LEVEL[19]  | C8_LEVEL[18]  | C8_LEVEL[17]  | C8_LEVEL[16]  | 0x00h |
| 0X5A | MC8LM       | C8_LEVEL[15]  | C8_LEVEL[14]  | C8_LEVEL[13]  | C8_LEVEL[12]  | C8_LEVEL[11]  | C8_LEVEL[10]  | C8_LEVEL[9]   | C8_LEVEL[8]   | 0x00h |
| 0X5B | BC8LM       | C8_LEVEL[7]   | C8_LEVEL[6]   | C8_LEVEL[5]   | C8_LEVEL[4]   | C8_LEVEL[3]   | C8_LEVEL[2]   | C8_LEVEL[1]   | C8_LEVEL[0]   | 0x00h |
| 0X5C | I2S_OUT     |               |               | Reserved      | i             |               | 12S_DO_SEL[2] | I2S_DO_SEL[1] | I2S_DO_SEL[0] | 0x05h |
| 0x5D | CHK_STATE   | CHK_DRC_E     | CHK_DRC_AM    | CHK_DRC_R     | CHK_DRC_EN    | CHK_BEQ_E     | CHK_BEQ_AM    | CHK_BEQ_R     | CHK_BEQ_EN    | 0x00h |
| 0x5E | DRC_CHK_TSV | CHS_DRC_V[23] | CHS_DRC_V[22] | CHS_DRC_V[21] | CHS_DRC_V[20] | CHS_DRC_V[19] | CHS_DRC_V[18] | CHS_DRC_V[17] | CHS_DRC_V[16] | 0x00h |
| 0x5F | DRC_CHK_MSV | CHS_DRC_V[15] | CHS_DRC_V[14] | CHS_DRC_V[13] | CHS_DRC_V[12] | CHS_DRC_V[11] | CHS_DRC_V[10] | CHS_DRC_V[9]  | CHS_DRC_V[8]  | 0x00h |
| 0x60 | DRC_CHK_BSV | CHS_DRC_V[7]  | CHS_DRC_V[6]  | CHS_DRC_V[5]  | CHS_DRC_V[4]  | CHS_DRC_V[3]  | CHS_DRC_V[2]  | CHS_DRC_V[1]  | CHS_DRC_V[0]  | 0x00h |
| 0x61 | BEQ_CHK_TSV | CHS_BEQ_V[23] | CHS_BEQ_V[22] | CHS_BEQ_V[21] | CHS_BEQ_V[20] | CHS_BEQ_V[19] | CHS_BEQ_V[18] | CHS_BEQ_V[17] | CHS_BEQ_V[16] | 0x00h |
| 0x62 | BEQ_CHK_MSV | CHS_BEQ_V[15] | CHS_BEQ_V[14] | CHS_BEQ_V[13] | CHS_BEQ_V[12] | CHS_BEQ_V[11] | CHS_BEQ_V[10] | CHS_BEQ_V[9]  | CHS_BEQ_V[8]  | 0x00h |
| 0x63 | BEQ_CHK_BSV | CHS_BEQ_V[7]  | CHS_BEQ_V[6]  | CHS_BEQ_V[5]  | CHS_BEQ_V[4]  | CHS_BEQ_V[3]  | CHS_BEQ_V[2]  | CHS_BEQ_V[1]  | CHS_BEQ_V[0]  | 0x00h |
| 0x64 | DRC_CHK_TRT | CHS_DRC_R[23] | CHS_DRC_R[22] | CHS_DRC_R[21] | CHS_DRC_R[20] | CHS_DRC_R[19] | CHS_DRC_R[18] | CHS_DRC_R[17] | CHS_DRC_R[16] | 0x00h |
| 0x65 | DRC_CHK_MRT | CHS_DRC_R[15] | CHS_DRC_R[14] | CHS_DRC_R[13] | CHS_DRC_R[12] | CHS_DRC_R[11] | CHS_DRC_R[10] | CHS_DRC_R[9]  | CHS_DRC_R[8]  | 0x00h |
| 0x66 | DRC_CHK_BRT | CHS_DRC_R[7]  | CHS_DRC_R[6]  | CHS_DRC_R[5]  | CHS_DRC_R[4]  | CHS_DRC_R[3]  | CHS_DRC_R[2]  | CHS_DRC_R[1]  | CHS_DRC_R[0]  | 0x00h |
| 0x67 | BEQ_CHK_TRT | CHS_BEQ_R[23] | CHS_BEQ_R[22] | CHS_BEQ_R[21] | CHS_BEQ_R[20] | CHS_BEQ_R[19] | CHS_BEQ_R[18] | CHS_BEQ_R[17] | CHS_BEQ_R[16] | 0x00h |
| 0x68 | BEQ_CHK_MRT | CHS_BEQ_R[15] | CHS_BEQ_R[14] | CHS_BEQ_R[13] | CHS_BEQ_R[12] | CHS_BEQ_R[11] | CHS_BEQ_R[10] | CHS_BEQ_R[9]  | CHS_BEQ_R[8]  | 0x00h |
|      |             |               |               |               |               |               |               |               |               |       |

Publication Date: Mar. 2019 Revision: 0.1 40/103



# Preliminary

Publication Date: Mar. 2019 Revision: 0.1 41/103

| 0,,00         | DEG 0111/ DDT | 0110 050 053 | 0110 050 0101 | 0110 050 051 | 0110 050 0   |            | 50 P(0)    | 0110 PEO PIO  | 0110 050 0111 | 0110 850 870  | 0001  |
|---------------|---------------|--------------|---------------|--------------|--------------|------------|------------|---------------|---------------|---------------|-------|
| 0x69          | BEQ_CHK_BRT   | CHS_BEQ_R[7] | CHS_BEQ_R[6]  | CHS_BEQ_R[5] | CHS_BEQ_R    | 4] CHS_B   | EQ_R[3] (  | CHS_BEQ_R[2]  | CHS_BEQ_R[1]  | CHS_BEQ_R[0]  | 0x00h |
| 0x70~<br>0x73 | Reserved      |              |               |              |              | Reserved   |            |               |               |               |       |
| 0X74          | MKHB          |              |               |              | ı            | Prohibited |            |               |               |               |       |
| 0X75          | MKLB          |              |               |              | 1            | Prohibited |            |               |               |               |       |
| 0X76          | Reserved      |              |               |              |              | Reserved   |            |               |               |               |       |
| 0X77          | HI_RES        |              |               |              | ı            | Prohibited |            |               |               |               |       |
| 0X78          | TMR           |              |               |              | ı            | Prohibited |            |               |               |               |       |
| 0X79          | Reserved      |              |               |              |              | Reserved   |            |               |               |               |       |
| 0X7A          | Reserved      |              |               |              |              | Reserved   |            |               |               |               |       |
| 0X7B          | MBIST_UPT_E   |              |               |              | ļ            | Prohibited |            |               |               |               |       |
| 0X7C          | MBIST_UPM_E   |              |               |              | ļ            | Prohibited |            |               |               |               |       |
| 0X7D          | MBIST_UPB_E   |              |               |              | 1            | Prohibited |            |               |               |               |       |
| 0X7E          | MBIST_UPT_O   |              |               |              | !            | Prohibited |            |               |               |               |       |
| 0X7F          | MBIST_UPM_O   |              |               |              | 1            | Prohibited |            |               |               |               |       |
| 0X80          | MBIST_UPB_O   |              | Prohibited    |              |              |            |            |               |               |               |       |
| 0X81          | GPIO0_CTRL    |              | Reserved      |              | GPIO0_STA    | TUS GPIO   | 0_CTRL[3]  | GPIO0_CTRL[2] | GPIO0_CTRL[1] | GPIO0_CTRL[0] | 0x00h |
| 0X82          | GPIO1_CTRL    |              |               |              | •            | Reserved   | 1          |               | 1             | 1             |       |
| 0X83          | GPIO2_CTRL    |              |               |              |              | Reserved   |            |               |               |               | 0x00h |
| 0X84~<br>0X86 | Reserved      |              |               |              | ı            | Prohibited |            |               |               |               |       |
| 0x87          | MV_HP         | MV_HP[7]     | MV_HP[6]      | MV_HP[5]     | MV_HP[4]     | MV_HP[3]   | MV_HI      | P[2] MV_      | HP[1]         | MV_HP[0]      | 0x18h |
| 0x88          | C1V_HP        | C1V_HP[7]    | C1V_HP[6]     | C1V_HP[5]    | C1V_HP[4]    | C1V_HP[3]  | C1V_H      | P[2] C1V_     | .HP[1] (      | C1V_HP[0]     | 0x18h |
| 0x89          | C2V_HP        | C2V_HP[7]    | C2V_HP[6]     | C2V_HP[5]    | C2V_HP[4]    | C2V_HP[3]  | C2V_H      | P[2] C2V_     | HP[1] (       | C2V_HP[0]     | 0x18h |
| 0x8A          | C3V_HP        | C3V_HP[7]    | C3V_HP[6]     | C3V_HP[5]    | C3V_HP[4]    | C3V_HP[3]  | C3V_H      | P[2] C3V_     | .HP[1] (      | C3V_HP[0]     | 0x18h |
| 0x8B          | C4V_HP        | C4V_HP[7]    | C4V_HP[6]     | C4V_HP[5]    | C4V_HP[4]    | C4V_HP[3]  | C4V_H      | P[2] C4V_     | .HP[1] (      | C4V_HP[0]     | 0x18h |
| 0x8C          | C5V_HP        | C5V_HP[7]    | C5V_HP[6]     | C5V_HP[5]    | C5V_HP[4]    | C5V_HP[3]  | C5V_H      | P[2] C5V_     | .HP[1] (      | C5V_HP[0]     | 0x18h |
| 0x8D          | C6V_HP        | C6V_HP[7]    | C6V_HP[6]     | C6V_HP[5]    | C6V_HP[4]    | C6V_HP[3]  | C6V_H      | P[2] C6V_     | .HP[1] (      | C6V_HP[0]     | 0x18h |
| 0x8E          | HPV_FT1       | MV_FT_HP[1]  | MV_FT_HP[0]   | C1V_FT_HP[1] | C1V_FT_HP[0] | C2V_FT_HP[ | 1] C2V_FT_ | _HP[0] C3V_F  | T_HP[1] C3    | V_FT_HP[0]    | 0x00h |
| 0x8F          | HPV_FT1       | C4V_FT_HP[1] | C4V_FT_HP[0]  | C5V_FT_HP[1] | C5V_FT_HP[0] | C6V_FT_HP[ | 1] C6V_FT_ | _HP[0]        | Reserve       | d             | 0x00h |
| 0x90          | SMB_DB_L_AL   | LA1[3]       | LA1[2]        | LA1[1]       | LA1[0]       | LR1[3]     | LR1[       | 2] LR         | 1[1]          | LR1[0]        | 0x6Ah |
| 0x91          | SMB_DB_R_AL   | RA1[3]       | RA1[2]        | RA1[1]       | RA1[0]       | RR1[3]     | RR1[       | 2] RR         | 1[1]          | RR1[0]        | 0x6Ah |
| 0x92          | R2ADDR        | R2FA[7]      | R2FA[6]       | R2FA[5]      | R2FA[4]      | R2FA[3]    | R2FA       | [2] R2F       | FA[1]         | R2FA[0]       | 0x00h |
| 0x93          | R2D1          | R2B[23]      | R2B[22]       | R2B[21]      | R2B[20]      | R2B[19]    | R2B[′      | 18] R2E       | 317[]         | R2B[16]       | 0x00h |
| 0x94          | R2D2          | R2B[15]      | R2B[14]       | R2B[13]      | R2B[12]      | R2B[11]    | R2B[′      | 10] R2        | B[9]          | R2B[8]        | 0x00h |
| 0x95          | R2D3          | R2B[7]       | R2B[6]        | R2B[5]       | R2B[4]       | R2B[3]     | R2B[       | 2] R2         | B[1]          | R2B[0]        | 0x00h |



# Preliminary

# AD85050

| 0x96 | R2RW   |         |          | Rese    | RAM2_R  | RAM2_W  | 0x00h   |         |         |       |
|------|--------|---------|----------|---------|---------|---------|---------|---------|---------|-------|
| 0x97 | R4ADDR | R4FA[7] | R4FA[6]  | R4FA[5] | R4FA[4] | R4FA[3] | R4FA[2] | R4FA[1] | R4FA[0] | 0x00h |
| 0x98 | R4D1   | R4B[23] | R4B[22]  | R4B[21] | R4B[20] | R4B[19] | R4B[18] | R4B17[] | R4B[16] | 0x00h |
| 0x99 | R4D2   | R4B[15] | R4B[14]  | R4B[13] | R4B[12] | R4B[11] | R4B[10] | R4B[9]  | R4B[8]  | 0x00h |
| 0x9A | R4D3   | R4B[7]  | R4B[6]   | R4B[5]  | R4B[4]  | R4B[3]  | R4B[2]  | R4B[1]  | R4B[0]  | 0x00h |
| 0x9B | R4RW   |         | Reserved |         |         |         |         |         | RAM4_W  | 0x00h |

Publication Date: Mar. 2019 Revision: 0.1 42/103



#### **Detail Description for Register**

Note that the highlighted columns are default values of these tables. If there is no highlighted value, the default setting of this bit is determined by the external pin.

#### Address 0X00 : State control 1

AD85050 supports multiple serial data input formats including I<sup>2</sup>S, Left-alignment and Right-alignment. These formats are selected by users via bit7~bit5 of address 0X00. The left/right channels can be

exchanged to each other by programming to address 0/bit0, LREXC.

| BIT    | NAME    | DESCRIPTION       | VALUE | FUNCTION                    |
|--------|---------|-------------------|-------|-----------------------------|
|        |         |                   | 000   | I <sup>2</sup> S 16-24 bits |
|        |         |                   | 001   | Left-alignment 16-24 bits   |
| D[7:6] |         | Input Format      | 010   | Right-alignment 16 bits     |
| B[7:5] | IF[2:0] | Input Format      | 011   | Right-alignment 18 bits     |
|        |         |                   | 100   | Right-alignment 20 bits     |
|        |         |                   | 101   | Right-alignment 24 bits     |
| B[4:1] |         | Reserved          |       |                             |
| DIO]   | LREXC   | Left/Right (L/R)  | 0     | No exchanged                |
| B[0]   | LKEAU   | Channel exchanged | 1     | L/R exchanged               |

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019

Revision: 0.1 43/103



Address 0X01 : State control 2

AD85050 has a built-in PLL and supports multiple MCLK/Fs or BCLK/Fs ratios.

If BCLK\_SEL is high, the ratio is changed to BCLK/FS ratios.

On the contrary, the ratio is changed to MCLK/FS ratios.

AD85050 has 8K sample rate application via bit 2.

Detail setting is shown in the following table.

| BIT     | NAME         | DESCRIPTION        | VALUE | FUNCTION       |
|---------|--------------|--------------------|-------|----------------|
| D[7]    | D(7) DOLK OF | MCLK-less          | 0     | Disable        |
| B[7]    | BCLK_SEL     | (BCLK system)      | 1     | Enable         |
|         |              |                    | 000   | 32kHz          |
|         |              |                    | 001   | 44.1kHz, 48kHz |
| DIC: 41 | E010-01      | Complian Francisco | 010   | 64kHz          |
| B[6:4]  | FS[2:0]      | Sampling Frequency | 011   | 88.2kHz, 96kHz |
|         |              |                    | 100   | 128KHz         |
|         |              |                    | 101   | 176kHz, 192kHz |
| DIOI    | FS8K         | 9K sample rate     | 0     | Disable        |
| B[2]    | FOOK         | 8K sample rate     | 1     | Enable         |

Multiple MCLK/FS in MCLK system or BCLK/FS in BCLK system ratio setting table

| BIT    | NAME     | DESCRIPTION | VALUE | B[5:4]=00     | B[5:4]=01     | B[5:4]=1x     |
|--------|----------|-------------|-------|---------------|---------------|---------------|
|        |          |             | 0000  | 1024x         | 512x          | 256x          |
|        |          |             | 0001  | 64x           | 64x           | 64x           |
|        |          |             | 0010  | 128x          | 128x          | 128x          |
|        |          |             | 0011  | 192x          | 192x          | 192x          |
|        |          | MCLK/Fs or  | 0100  | Reset Default | Reset Default | Reset Default |
| B[3:0] | PMF[3:0] | BCLK/Fs     | 0100  | (256x)        | (256x)        | (256x)        |
|        |          | setup       | 0101  | 384x          | 384x          |               |
|        |          |             | 0110  | 512x          | 512x          |               |
|        |          |             | 0111  | 576x          |               | Reserved      |
|        |          |             | 1000  | 768x          | Reserved      |               |
|        |          |             | 1001  | 1024x         |               |               |

Publication Date: Mar. 2019

Revision: 0.1 44/103



Multiple MCLK/FS ratio setting table of 8K application

| BIT    | NAME     | DESCRIPTION   | VALUE | B[4]=1        |
|--------|----------|---------------|-------|---------------|
|        |          |               | 0000  | 4096x         |
|        |          |               | 0001  | Reset Default |
|        |          |               | 0001  | (256x)        |
|        |          |               | 0010  | 512x          |
|        |          |               | 0011  | 768x          |
| B[3:0] | PMF[3:0] | MCLK/Fs Setup | 0100  | 1024x         |
|        |          |               | 0101  | 1536x         |
|        |          |               | 0110  | 2048x         |
|        |          |               | 0111  | 2304x         |
|        |          |               | 1000  | 3072x         |
|        |          |               | 1001  | 4096x         |

Publication Date: Mar. 2019 Revision: 0.1 45/103



#### Address 0X02 : State control 3

AD85050 has mute function including master mute and channel mute.

In one band DRC, master, channel 1, and channel 2 mute will be active.

When master mute is enabled, all 2 processing channels are muted. User can mute these 2 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

In three bands DRC, master, channel 1 to channel 6 mute will be active.

When master mute is enabled, all 6 processing channels are muted. User can mute these 6 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

| BIT  | NAME      | DESCRIPTION     | VALUE | FUNCTION              |
|------|-----------|-----------------|-------|-----------------------|
| B[7] |           | Reserved        |       |                       |
| DIGI | MMUTE     | Master Mute     | 0     | All channel not muted |
| B[6] | IVIIVIOTE | Master Mute     | 1     | All channel muted     |
| DIE] | CM1       | Channel 1 Mute  | 0     | Ch1 not muted         |
| B[5] | CIVIT     | Charmer i Mule  | 1     | Only Ch1 muted        |
| BIAI | CM2       | Channel 2 Mute  | 0     | Ch2 not muted         |
| D[4] | B[4] CM2  | Charmer 2 Mute  | 1     | Only Ch2 muted        |
| B[3] | СМЗ       | Channel 3 Mute  | 0     | Ch3 not muted         |
| D[3] | CIVIS     | Charmer 5 Mule  | 1     | Only Ch3 muted        |
| DIOI | CM4       | Channel 4 Mute  | 0     | Ch4 not muted         |
| B[2] | CIVI4     | Charmer 4 Mule  | 1     | Only Ch4 muted        |
| D[1] | CM5       | Channel 5 Mute  | 0     | Ch5 not muted         |
| B[1] | Civio     | Chainer 5 Mule  | 1     | Only Ch5 muted        |
| BIOI | CM6       | Channel 6 Mute  | 0     | Ch6 not muted         |
| B[0] | Civio     | Chainlei o Mule | 1     | Only Ch6 muted        |

Publication Date: Mar. 2019 Revision: 0.1 46/103



#### Address 0X03 : Master volume control

AD85050 supports both master-volume (Address 0X03) and channel-volume control (Address 0X04, 0X05, 0X06, 0X07, 0X08, 0X09) modes. Both volume control settings range from +12dB ~ -103dB and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B.

-103dB  $\leq$  Total volume ( Level A + Level B )  $\leq$  +24dB.

| BIT      | NAME       | DESCRIPTION     | VALUE    | FUNCTION |
|----------|------------|-----------------|----------|----------|
|          |            |                 | 00000000 | +12.0dB  |
|          |            |                 | 0000001  | +11.5dB  |
|          |            |                 | 00000010 | +11.0dB  |
|          |            |                 | :        | :        |
|          |            |                 | 00010111 | +0.5dB   |
| BIT[7:0] | MV[7:0]    | Master Volume   | 00011000 | 0.0dB    |
| BIT[7.0] | 1017 [7.0] | iviasiei voiume | 00011001 | -0.5dB   |
|          |            |                 | :        | :        |
|          |            |                 | 11100110 | -103.0dB |
|          |            |                 | 11100111 | -∞dB     |
|          |            |                 | :        | :        |
|          |            |                 | 11111111 | -∞dB     |

#### Address 0X04 : Channel 1 volume

| BIT      | NAME     | DESCRIPTION     | VALUE    | FUNCTION |
|----------|----------|-----------------|----------|----------|
|          |          |                 | 00000000 | +12.0dB  |
|          |          |                 | 0000001  | +11.5dB  |
|          |          |                 | :        | :        |
|          |          |                 | 00010100 | +2dB     |
|          |          |                 | :        | :        |
| BIT[7:0] | C1V[7:0] | Channel1 Volume | 00011000 | 0.0dB    |
| ы [7.0]  | C1V[7.0] |                 | 00011001 | -0.5dB   |
|          |          |                 | :        | :        |
|          |          |                 | 11100110 | -103.0dB |
|          |          |                 | 11100111 | -∞dB     |
|          |          |                 | :        | :        |
|          |          |                 | 11111111 | -∞dB     |

Publication Date: Mar. 2019 Revision: 0.1 47/103



# • Address 0X05 : Channel 2 volume

| BIT      | NAME     | DESCRIPTION     | VALUE    | FUNCTION |
|----------|----------|-----------------|----------|----------|
|          |          |                 | 00000000 | +12.0dB  |
|          |          |                 | 0000001  | +11.5dB  |
|          |          |                 | :        | :        |
|          |          |                 | 00010100 | +2dB     |
|          |          |                 | : :      | :        |
| BIT[7:0] | C2V[7:0] | Channel2 Volume | 00011000 | 0.0dB    |
| ы [7.0]  |          |                 | 00011001 | -0.5dB   |
|          |          |                 | :        | :        |
|          |          |                 | 11100110 | -103.0dB |
|          |          |                 | 11100111 | -∞dB     |
|          |          |                 | :        | :        |
|          |          |                 | 11111111 | -∞dB     |

#### • Address 0X06 : Channel 3 volume

| BIT      | NAME     | DESCRIPTION     | VALUE    | FUNCTION |
|----------|----------|-----------------|----------|----------|
|          |          |                 | 00000000 | +12.0dB  |
|          |          |                 | 0000001  | +11.5dB  |
|          |          |                 | :        | :        |
|          |          | 00010100        | +2dB     |          |
|          |          |                 | : :      | :        |
| BIT[7:0] | C3V[7:0] | Channel3 Volume | 00011000 | 0.0dB    |
| [0.7]110 |          |                 | 00011001 | -0.5dB   |
|          |          |                 | :        | :        |
|          |          |                 | 11100110 | -103.0dB |
|          |          |                 | 11100111 | -∞dB     |
|          |          |                 | :        | :        |
|          |          |                 | 11111111 | -∞dB     |

Publication Date: Mar. 2019 Revision: 0.1 48/103



# • Address 0X07 : Channel 4 volume

| BIT      | NAME                          | DESCRIPTION      | VALUE    | FUNCTION |
|----------|-------------------------------|------------------|----------|----------|
|          |                               |                  | 00000000 | +12.0dB  |
|          |                               |                  | 0000001  | +11.5dB  |
|          |                               |                  | :        | :        |
|          |                               |                  | 00010100 | +2dB     |
|          | C4V[7:0] Channel 4 Volume 000 | :                | :        |          |
| BIT[7:0] |                               | Channel 4 Volume | 00011000 | 0.0dB    |
| ы [7.0]  |                               |                  | 00011001 | -0.5dB   |
|          |                               |                  | :        | :        |
|          |                               |                  | 11100110 | -103.0dB |
|          |                               |                  | 11100111 | -∞dB     |
|          |                               |                  | :        | :        |
|          |                               |                  | 11111111 | -∞dB     |

#### • Address 0X08 : Channel 5 volume

| BIT      | NAME               | DESCRIPTION      | VALUE    | FUNCTION |
|----------|--------------------|------------------|----------|----------|
|          |                    |                  | 00000000 | +12.0dB  |
|          |                    |                  | 0000001  | +11.5dB  |
|          |                    |                  | :        | :        |
|          |                    |                  | 00010100 | +2dB     |
|          |                    |                  | :        | :        |
| DITIZIO  | C5V[7:0] Channel 5 | 01 15 1/ 1       | 00011000 | 0.0dB    |
| BIT[7:0] |                    | Channel 5 volume | 00011001 | -0.5dB   |
|          |                    |                  | :        | :        |
|          |                    |                  | 11100110 | -103.0dB |
|          |                    |                  | 11100111 | -∞dB     |
|          |                    |                  | :        | :        |
|          |                    |                  | 11111111 | -∞dB     |

Publication Date: Mar. 2019 Revision: 0.1 49/103



• Address 0X09 : Channel 6 volume

| BIT      | NAME     | DESCRIPTION      | VALUE    | FUNCTION |
|----------|----------|------------------|----------|----------|
|          |          |                  | 00000000 | +12.0dB  |
|          |          |                  | 0000001  | +11.5dB  |
|          |          |                  | :        | :        |
|          |          |                  | 00010100 | +2dB     |
|          |          |                  | : :      | :        |
| DITIZIO  | C6V[7:0] | Channel 6 Volume | 00011000 | 0.0dB    |
| BIT[7:0] |          |                  | 00011001 | -0.5dB   |
|          |          |                  | :        | :        |
|          |          |                  | 11100110 | -103.0dB |
|          |          |                  | 11100111 | -∞dB     |
|          |          |                  | :        | :        |
|          |          |                  | 11111111 | -∞dB     |

Publication Date: Mar. 2019 Revision: 0.1 50/103



#### Address 0X0A/0X0B: Bass/Treble tone boost and cut

EQ11 and EQ12 can be programmed as bass/treble tone boost and cut. When, register with address-0X0C, bit-6, BTE is set to high, the EQ11 and EQ12 will perform as bass and treble respectively. The -3dB corner frequency of bass is 360Hz, and treble is 7kHz. The gain range for both filters is +12db ~ -12dB with 1dB per step.

| BIT    | NAME     | DESCRIPTION      | VALUE | FUNCTION |
|--------|----------|------------------|-------|----------|
| B[7:5] |          | Reserved         |       |          |
|        |          |                  | 00000 | +12dB    |
|        |          |                  |       |          |
|        |          |                  | 00100 | +12dB    |
|        |          |                  | 00101 | +11dB    |
|        |          |                  | 00110 | +10dB    |
|        |          |                  |       |          |
|        |          |                  | 01110 | +2dB     |
|        | BTC[4:0] | The gain setting | 01111 | +1dB     |
| B[4:0] | /        | of               | 10000 | 0dB      |
|        | TTC[4:0] | boost and cut    | 10001 | -1dB     |
|        |          |                  | 10010 | -2dB     |
|        |          |                  | •••   |          |
|        |          |                  | 11010 | -10dB    |
|        |          |                  | 11011 | -11dB    |
|        |          |                  | 11100 | -12dB    |
|        |          |                  |       |          |
|        |          |                  | 11111 | -12dB    |

Publication Date: Mar. 2019 Revision: 0.1 51/103



• Address 0X0C : State control 4

The AD85050 provides several DSP setting as following,

| BIT   | NAME | DESCRIPTION           | VALUE | FUNCTION                        |
|-------|------|-----------------------|-------|---------------------------------|
| D[7]  | SRBP | Curround by page      | 0     | Surround enable                 |
| B[7]  | SKBP | Surround bypass       | 1     | Surround bypass                 |
| B[6]  | BTE  | Bass/Treble Selection | 0     | Bass/Treble Disable             |
| Б[б]  | DIE  | bypass                | 1     | Bass/Treble Enable              |
| DIE]  | DEQE | Dynamic EO onablo     | 0     | DEQ Disable                     |
| B[5]  | DEQE | Dynamic EQ enable     | 1     | DEQ enable                      |
| DIAI  | NOF  | Noise gete enable     | 0     | Noise gate disable              |
| B[4]  | NGE  | Noise gate enable     | 1     | Noise gate enable               |
| וניום | EQL  | EQ Link               | 0     | Each channel uses individual EQ |
| B[3]  | LQL  | EQ LITIK              | 1     | Channel-2 uses channel-1 EQ     |
|       |      |                       | 0     | Each channel uses individual    |
| B[2]  | PSL  | Post-scale link       | 0     | post-scale                      |
|       |      |                       | 1     | Use channel-1 post-scale        |
| B[1]  | DSPB | EO hypaes             | 0     | EQ enable                       |
| ם[י]  | DOFB | EQ bypass             | 1     | EQ bypass                       |
| B[0]  | HPB  | DC blocking HPF       | 0     | HPF dc enable                   |
| D[0]  | TIFD | bypass                | 1     | HPF dc bypass                   |

Publication Date: Mar. 2019 Revision: 0.1 52/103



 Address 0X0D, 0X0E,0X0F,0X10,0X11,0X12, 0X13,0X14: Channel configuration registers

AD85050 can configure each channel to enable or bypass DRC and channel volume and select the limiter set.

#### Address 0X0D and 0X0E; where x=1 or 2

| BIT    | NAME    | DESCRIPTION          | VALUE | FUNCTION                            |
|--------|---------|----------------------|-------|-------------------------------------|
| B[7:4] |         | Reserved             |       |                                     |
| DIOI   | CxPCBP  | Channel x Power      | 0     | Channel x PC enable                 |
| B[3]   | CXPCBP  | Clipping bypass      | 1     | Channel x PC bypass                 |
| DIOI   | CyDDCDD | Channel y DDC hyman  | 0     | Channel x DRC enable                |
| B[2]   | CXDRCBP | Channel x DRC bypass | 1     | Channel x DRC bypass                |
| B[1]   |         | Reserved             |       |                                     |
| DIO1   | CxVBP   | Channel x Volume     | 0     | Channel x's master volume operation |
| B[0]   | CXVDP   | bypass               | 1     | Channel x's master volume bypass    |

# Address 0X0F, 0X10, 0X11, and 0X12; where x=3,4,5,6

| BIT    | NAME    | DESCRIPTION          | VALUE | FUNCTION                   |
|--------|---------|----------------------|-------|----------------------------|
| B[7:3] |         | Reserved             |       |                            |
| DIOI   | CYDDCDD | Channel v DBC hypage | 0     | Channel x DRC enable       |
| B[2]   | CxDRCBP | Channel x DRC bypass | 1     | Channel x DRC bypass       |
| B[1]   |         | Reserved             |       |                            |
| DIOI   | CAVED   | Channel x Volume     | 0     | Channel x volume operation |
| B[0]   | CxVBP   | bypass               | 1     | Channel x volume bypass    |

#### Address 0X13, and 0X14; where x=7 or 8

| BIT    | NAME    | DESCRIPTION          | VALUE | FUNCTION             |
|--------|---------|----------------------|-------|----------------------|
| B[7:3] |         | Reserved             |       |                      |
| DIOI   | 0 00000 | Olarada DDO Larada   | 0     | Channel x DRC enable |
| B[2]   | CxDRCBP | Channel x DRC bypass | 1     | Channel x DRC bypass |
| B[1:0] |         | Reserved             |       |                      |

Publication Date: Mar. 2019 Revision: 0.1 53/103



• Address 0X15, 0X16, 0X17, 0X18 : DRC limiter attack/release rate The AD85050 has 4 independent DRC set, each DRC has its own attack/release rate.

Address 0X15, 0X16, 0X17, and 0X18; where x=1, 2, 3, 4

| BIT    | NAME      | DESCRIPTION       | VALUE             | FUNCTION                                                                                                                                                                                                                 |
|--------|-----------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |           |                   | 0000              | 3 dB/ms                                                                                                                                                                                                                  |
|        |           |                   | 0001              | 2.667 dB/ms                                                                                                                                                                                                              |
|        |           |                   | 0010              | 2.182 dB/ms                                                                                                                                                                                                              |
|        |           |                   | 0011              | 1.846 dB/ms                                                                                                                                                                                                              |
|        |           |                   | 0100              | 1.333 dB/ms                                                                                                                                                                                                              |
|        |           |                   | 0101              | 0.889 dB/ms                                                                                                                                                                                                              |
|        |           |                   | 0110              | 0.4528 dB/ms                                                                                                                                                                                                             |
| D[7:5] | LAx[3:0]  | DRC attack rate   | 0111              | 0.889 dB/ms 0.4528 dB/ms 0.2264 dB/ms 0.0.15 dB/ms 0.10.1121 dB/ms 0.0.0902 dB/ms 0.0.0752 dB/ms 0.0.0645 dB/ms 0.0.0563 dB/ms 0.0.0501 dB/ms 0.0.0451 dB/ms 0.0.1371 dB/ms 0.0.0743 dB/ms 0.0.0499 dB/ms 0.0.0360 dB/ms |
| B[7:5] | LAX[3.0]  | DRC attack rate   | 1000              |                                                                                                                                                                                                                          |
|        |           |                   | 1001              | 0.1121 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1010              | 0.0902 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1011              | 0.0752 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1100              | 0.0645 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1101              | 0.0563 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1110              | 0.0501 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1111              | 0.0451 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 0000              | 0.5106 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 0001              | 0.1371 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 0010              | 0.0743 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 0011              | 0.0499 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 0100              | 0.0360 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 0101              | 0.0299 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 0110 0.0264 dB/ms |                                                                                                                                                                                                                          |
| B[3:0] | LRx[3:0]  | DRC release rate  | 0111              | 0.0208 dB/ms                                                                                                                                                                                                             |
| D[3.0] | LIXX[3.0] | DIVO Telease Tale | 1000              | 0.0198 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1001              | 0.0172 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1010              | 0.0147 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1011              | 0.0137 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1100              | 0.0134 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1101              | 0.0117 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1110              | 0.0112 dB/ms                                                                                                                                                                                                             |
|        |           |                   | 1111              | 0.0104 dB/ms                                                                                                                                                                                                             |

Publication Date: Mar. 2019 54/103

Revision: 0.1



Address 0X19 : State control 5

DRC mode: The selection of DRC calculation is peak or RMS.

DRC link: When DRC\_LINK=1, left channel and right channel use the same coefficient and threshold.

HP and SPK on: Turn on headphone and speaker at the same time. When HP\_SPK\_ON=1, SDZ pin is always high, connect the SDZ pin directly to AMP\_SDB pin. The AMP output will be turned on. When HP\_SPK\_ON=0, SDZ pin is controlled by HP\_SPK pin.

Dynamic Bass: A processing block that allows for optimizing the bass response of the system by setting DB\_EN = 1:

With DB\_CTRL\_INV=0, if the energy of lower frequency is bigger than Dynamic bass DRC attack threshold, the missing fundamental function will be enable, while energy of lower frequency is smaller than Dynamic bass DRC release threshold, true bass will be enable.

On the other side, with DB\_CTRL\_INV=1, if the energy of lower frequency is bigger than Dynamic bass DRC attack threshold, true bass will be enable, while energy of lower frequency is smaller than Dynamic bass DRC release threshold, the missing fundamental will be enable.

Note: it needs to set BTE=1 and MF\_EN=1 while enable dynamic bass DB EN = 0:

True bass and missing fundamental will be controlled by BTE and MF\_EN individually.

Missing fundamental: This method is a well-known psychoacoustic effect invoking a perception of the bass frequencies even though the fundamental of those frequencies has been filtered out. A missing fundamental is used as a function of regenerating a bass that is filtered out by pre-filter.

| BIT    | NAME        | DESCRIPTION         | VALUE | FUNCTION  |
|--------|-------------|---------------------|-------|-----------|
| B[7:6] |             | Reserved            |       |           |
| DIE1   | HP_SPK_ON   | HP and SPK turn on  | 0     | Disable   |
| B[5]   | HP_SPK_ON   | simultaneously      | 1     | Enable    |
| D[4]   | DRCM        | DRC Mode            | 0     | PEAK mode |
| B[4]   | DRCIVI      | DRC Widde           | 1     | RMS mode  |
| B[3]   | DRC_LINK    | DRC link            | 0     | Disable   |
| D[3]   | DKC_LINK    | DKC IIIK            | 1     | Enable    |
| וכום   | DB CTRL INV | DB CTRL inversion   | 0     | Normal    |
| B[2]   | DB_CTRL_INV | DB CTRL IIIVersion  | 1     | Invert    |
| B[1]   | DB EN       | Dynamic Bass enable | 0     | Disable   |
| ניוט   | DD_LN       | Dynamic Dass enable | 1     | Enable    |

Publication Date: Mar. 2019 Revision: 0.1 55/103



| B[0] | MF EN    | Missing fundamental | 0 | Disable |
|------|----------|---------------------|---|---------|
| D[U] | IVIF_EIN | enable              | 1 | Enable  |

#### Address 0X1A: State control 6

Power down register: When PDB\_REG=0, power down is happened (SDZ pin is pulled low).

Software reset: When SW\_RSTB=1, software reset is happened.

Lower under voltage fade: If LVUV\_FADE=1, system will fade out when LVUV occur.

Disable MCLK detect circuit: enable/disable MCLK detect circuit.

PWM modulation: PWM select qua-ternary or ternary.

| BIT    | NAME         | DESCRIPTION         | VALUE | FUNCTION                    |
|--------|--------------|---------------------|-------|-----------------------------|
| B[7]   |              | Reserved            |       |                             |
| DIGI   | DDB BEC      | Dower down register | 0     | Power down                  |
| B[6]   | PDB_REG      | Power down register | 1     | Normal operation            |
| B[5]   | SW_RSTB      | Software reset      | 0     | Reset                       |
| P[3]   | SW_KSTB      | Software reset      | 1     | Normal operation            |
| DI41   | LOW Und      | Low Under Voltage   | 0     | No Fade                     |
| B[4]   | LVUV_FADE    | Fade                | 1     | Fade                        |
| B[3]   |              | Reserved            |       |                             |
| DIOI   | DIS MCLK DET | Disable MCLK detect | 0     | Enable MCLK detect circuit  |
| B[2]   | DIS_WCLK_DET | circuit             | 1     | Disable MCLK detect circuit |
| B[1:0] |              | Reserved            |       |                             |

Publication Date: Mar. 2019 Revision: 0.1 56/103



#### Address 0X1B : State control 7

AD85050 can support one band, two band, and three band DRC selection via bit7~bit6.

AD85050 can support x3 oversampling.

AD85050 can support application of 8KHZ (human speech voice).

AD85050 can support two types in three bands DRC.



| BIT    | NAME             | DESCRIPTION        | VALUE | FUNCTION        |
|--------|------------------|--------------------|-------|-----------------|
|        |                  |                    | 00    | 1 Band DRC      |
| B[7:6] | DRC_SEL          | DRC mode selection | 01    | 2 Bands DRC     |
|        |                  |                    | 1x    | 3 Bands DRC     |
| DIOI   | 32X3             | V2 oversempling    | 0     | X2 oversampling |
| B[3]   | 32/\3            | X3 oversampling    | 1     | X3 oversampling |
| DIOI   | 01 50014         | FOOL               | 0     | Disable         |
| B[2]   | FS8K             | FS8K               | 1     | Enable          |
| D[4]   | TriBDRC_TYPE     | 3 Band DRC type    | 0     | Type 1          |
| B[1]   | I IIIDUKU_I I PE | selection          | 1     | Type 2          |
| B[0]   |                  | Reserved           |       |                 |

Publication Date: Mar. 2019 Revision: 0.1 57/103



#### Address 0X1C: State control 8

AD85050 provides invert left channel output by bit 7.

AD85050 provides invert right channel output by bit 6.

AD85050 provides post boost +48dB support via bit 5.

AD85050, user can select fade out or not for noise gate via bit 4.

AD85050 provides DRC boost +36dB support via bit 3.

AD85050 provides 2 kind of fade in/out speed via bit 2. One is 1.25ms from mute to 0dB. The other one is 10ms from mute to 0dB.

AD85050 provides noise gate function if receiving 2048 signal sample points smaller than noise gate attack level. User can change noise gate gain via bit1 $\sim$  bit0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, Mute).

| BIT    | NAME             | DESCRIPTION             | VALUE | FUNCTION |
|--------|------------------|-------------------------|-------|----------|
| D[7]   | L_INVERSE        | L channel signal        | 0     | Normal   |
| B[7]   | L_IINVERSE       | inverse                 | 1     | Inverse  |
| DIGI   | D INIVEDOE       | R channel signal        | 0     | Normal   |
| B[6]   | R_INVERSE        | inverse                 | 1     | Inverse  |
| DIE1   | DOST DOOST       | DOCT boost 1 40dD       | 0     | 0dB      |
| B[5]   | POST_BOOST       | POST boost +48dB        | 1     | +48dB    |
| DIAI   | B[4] DIS_NG_FADE | Disable noise gate fade | 0     | Fade     |
| D[4]   |                  |                         | 1     | No fade  |
| DIOI   | DDC DOOST        | DRC boost +36dB         | 0     | 0dB      |
| B[3]   | DRC_BOOST        |                         | 1     | +36dB    |
| DIOI   | EADE ODEED       | Fade in/out speed       | 0     | 1.25ms   |
| B[2]   | FADE_SPEED       | selection               | 1     | 10ms     |
|        |                  |                         | 00    | x1/8     |
| D[1:0] | NC CAINITA-01    | Noigo goto gois         | 01    | x1/4     |
| B[1:0] | NG_GAIN[1:0]     | Noise gate gain         | 10    | x1/2     |
|        |                  |                         | 11    | Mute     |

Publication Date: Mar. 2019 Revision: 0.1 58/103



#### Address 0X1D ~0X2D : User-defined coefficients registers

An on-chip RAM in AD85050 stores user-defined EQ, mixing, pre-scale, post-scale coefficients...etc. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (address 0X1D), five sets of registers (address 0X1E to 0X2C) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (address 0X2D) to control access of the coefficients in the RAM..

#### Address 0X1D

| BIT    | NAME            | DESCRIPTION          | VALUE   | FUNCTION |
|--------|-----------------|----------------------|---------|----------|
| B[7]   |                 | Reserved             |         |          |
| B[6:0] | B[6:0] CFA[6:0] | Coefficient RAM base | 0000000 |          |
| D[0.0] | O 7 (0.0)       | address              | 0000000 |          |

#### Address 0X1E, A1cf1

| BIT    | NAME              | DESCRIPTION     | VALUE | FUNCTION |
|--------|-------------------|-----------------|-------|----------|
| D[7:0] | D[7:0] C4D[00:40] | Top 8-bits of   |       |          |
| B[7:0] | C1B[23:16]        | coefficients A1 |       |          |

#### Address 0X1F, A1cf2

| BIT    | NAME             | DESCRIPTION      | VALUE | FUNCTION |
|--------|------------------|------------------|-------|----------|
| D[7.0] | 0.7.01 CADIAE.01 | Middle 8-bits of |       |          |
| B[7:0] | C1B[15:8]        | coefficients A1  |       |          |

#### Address 0X20, A1cf3

| BIT    | NAME     | DESCRIPTION      | VALUE | FUNCTION |
|--------|----------|------------------|-------|----------|
| D[7:0] | C1D[7:0] | Bottom 8-bits of |       |          |
| B[7:0] | C1B[7:0] | coefficients A1  |       |          |

#### Address 0X21, A2cf1

| BIT    | NAME           | DESCRIPTION     | VALUE | FUNCTION |
|--------|----------------|-----------------|-------|----------|
| D[7:0] | 01 (000100.401 | Top 8-bits of   |       |          |
| B[7:0] | C2B[23:16]     | coefficients A2 |       |          |

#### Address 0X22, A2cf2

| BIT    | NAME             | DESCRIPTION      | VALUE | FUNCTION |
|--------|------------------|------------------|-------|----------|
| D[7:0] | D[7:0] C2D[45:0] | Middle 8-bits of |       |          |
| B[7:0] | C2B[15:8]        | coefficients A2  |       |          |

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019 Revision: 0.1 59/103



# Address 0X23, A2cf3

| BIT    | NAME        | DESCRIPTION      | VALUE | FUNCTION |
|--------|-------------|------------------|-------|----------|
| D[7:0] | 01 CODIZ-01 | Bottom 8-bits of |       |          |
| B[7:0] | C2B[7:0]    | coefficients A2  |       |          |

# Address 0X24, B1cf1

| BIT    | NAME              | DESCRIPTION     | VALUE | FUNCTION |
|--------|-------------------|-----------------|-------|----------|
| DIZIOI | D[7:0] COD[00:40] | Top 8-bits of   |       |          |
| B[7:0] | C3B[23:16]        | coefficients B1 |       |          |

### Address 0X25, B1cf2

| BIT    | NAME      | DESCRIPTION      | VALUE | FUNCTION |
|--------|-----------|------------------|-------|----------|
| D[7:0] | 000[45.0] | Middle 8-bits of |       |          |
| B[7:0] | C3B[15:8] | coefficients B1  |       |          |

# Address 0X26, B1cf3

| BIT    | NAME     | DESCRIPTION      | VALUE | FUNCTION |
|--------|----------|------------------|-------|----------|
| D[7.0] | C2D[7:0] | Bottom 8-bits of |       |          |
| B[7:0] | C3B[7:0] | coefficients B1  |       |          |

#### Address 0X27, B2cf1

| BIT    | NAME        | DESCRIPTION     | VALUE | FUNCTION |
|--------|-------------|-----------------|-------|----------|
| B[7:0] | O 4D[00:40] | Top 8-bits of   |       |          |
|        | C4B[23:16]  | coefficients B2 |       |          |

#### Address 0X28, B2cf2

| BIT    | NAME      | DESCRIPTION      | VALUE | FUNCTION |
|--------|-----------|------------------|-------|----------|
| D[7.0] | 040[45:0] | Middle 8-bits of |       |          |
| B[7:0] | C4B[15:8] | coefficients B2  |       |          |

# Address 0X29, B2cf3

| BIT    | NAME      | DESCRIPTION      | VALUE | FUNCTION |
|--------|-----------|------------------|-------|----------|
| D[7:0] | 0.40(7.0) | Bottom 8-bits of |       |          |
| B[7:0] | C4B[7:0]  | coefficients B2  |       |          |

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019

Revision: 0.1 60/103



# Address 0X2A, A0cf1

| BIT    | NAME       | DESCRIPTION     | VALUE | FUNCTION |
|--------|------------|-----------------|-------|----------|
| B[7:0] | CED[33:46] | Top 8-bits of   |       |          |
|        | C5B[23:16] | coefficients A0 |       |          |

### Address 0X2B, A0cf2

| BIT    | NAME      | DESCRIPTION      | VALUE | FUNCTION |
|--------|-----------|------------------|-------|----------|
| D[7:0] | OED[4E:0] | Middle 8-bits of |       |          |
| B[7:0] | C5B[15:8] | coefficients A0  |       |          |

# Address 0X2C, A0cf3

| BIT    | NAME     | DESCRIPTION      | VALUE | FUNCTION |
|--------|----------|------------------|-------|----------|
| D[7.0] | OFD[7:0] | Bottom 8-bits of |       |          |
| B[7:0] | C5B[7:0] | coefficients A0  |       |          |

# Address 0X2D, CfRW

| BIT  | NAME | DESCRIPTION                | VALUE | FUNCTION          |
|------|------|----------------------------|-------|-------------------|
| B[7] |      | Reserved                   |       |                   |
| DIE] | RBS  | RAM bank selection         | 0     | Select RAM bank 0 |
| B[6] | 200  | NAIVI Dalik Selection      | 1     | Select RAM bank 1 |
| DIE] | R3   | Enable of reading three    | 0     | Read complete     |
| B[5] | 23   | coefficients from RAM      | 1     | Read enable       |
| D[4] | W3   | Enable of writing three    | 0     | Write complete    |
| B[4] | VVO  | coefficients to RAM        | 1     | Write enable      |
| ומן  | RA   | Enable of reading a set of | 0     | Read complete     |
| B[3] | KA   | coefficients from RAM      | 1     | Read enable       |
| וכום | R1   | Enable of reading a single | 0     | Read complete     |
| B[2] | Κī   | coefficients from RAM      | 1     | Read enable       |
| D[4] | WA   | Enable of writing a set of | 0     | Write complete    |
| B[1] | VVA  | coefficients to RAM        | 1     | Write enable      |
| D[O] | W1   | Enable of writing a single | 0     | Write complete    |
| B[0] | VVI  | coefficient to RAM         | 1     | Write enable      |

Publication Date: Mar. 2019 Revision: 0.1 61/103



#### Address 0X34/0X35 : Volume fine tune

AD85050 supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from  $0dB \sim -0.375dB$  and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

#### Address 0X34

| BIT    | NAME   | DESCRIPTION           | VALUE | FUNCTION |
|--------|--------|-----------------------|-------|----------|
|        |        |                       | 00    | 0dB      |
| D[7:6] | MV/ ET | Master Volume Fine    | 01    | -0.125dB |
| B[7:6] | MV_FT  | Tune                  | 10    | -0.25dB  |
|        |        |                       | 11    | -0.375dB |
|        |        |                       | 00    | 0dB      |
| DIE    | C4V FT | Channel 1 Volume Fine | 01    | -0.125dB |
| B[5:4] | C1V_FT | Tune                  | 10    | -0.25dB  |
|        |        |                       | 11    | -0.375dB |
|        |        |                       | 00    | 0dB      |
| DIO.OI | COV ET | Channel 2 Volume Fine | 01    | -0.125dB |
| B[3:2] | C2V_FT | Tune                  | 10    | -0.25dB  |
|        |        |                       | 11    | -0.375dB |
|        |        |                       | 00    | 0dB      |
| D[1:0] | C3V_FT | Channel 3 Volume Fine | 01    | -0.125dB |
| B[1:0] | C3V_F1 | Tune                  | 10    | -0.25dB  |
|        |        |                       | 11    | -0.375dB |

#### Address 0X35

| BIT     | NAME   | DESCRIPTION           | VALUE | FUNCTION |
|---------|--------|-----------------------|-------|----------|
|         |        |                       | 00    | 0dB      |
| D[7:6]  | C4V_FT | Channel 4 Volume Fine | 01    | -0.125dB |
| B[7:6]  | C4V_F1 | Tune                  | 10    | -0.25dB  |
|         |        |                       | 11    | -0.375dB |
|         |        |                       | 00    | 0dB      |
| DIE: 41 | C5V_FT | Channel 5 Volume Fine | 01    | -0.125dB |
| B[5:4]  | CSV_F1 | Tune                  | 10    | -0.25dB  |
|         |        |                       | 11    | -0.375dB |
|         |        |                       | 00    | 0dB      |
| ונייטו  | C6V ET | Channel 6 Volume Fine | 01    | -0.125dB |
| B[3:2]  | C6V_FT | Tune                  | 10    | -0.25dB  |
|         |        |                       | 11    | -0.375dB |
| B[1:0]  |        | Reserved              |       |          |

Publication Date: Mar. 2019 Revision: 0.1 62/103



# • Address 0X36 : DAC gain control

AD85050 supports DAC analog gain control by bit [7:6].

| BIT    | NAME     | DESCRIPTION      | VALUE            | FUNCTION                  |    |        |
|--------|----------|------------------|------------------|---------------------------|----|--------|
|        |          |                  | 00               | 1.5dB                     |    |        |
| DIZ.61 | DAC CAIN | DAC gain control | 01               | 1.0dB                     |    |        |
| B[7:6] | DAC_GAIN | DAC_GAIN         | DAC gain control | DAC_GAIN DAC gain control | 00 | -3.5dB |
|        |          |                  | 11               | -4dB                      |    |        |
| B[5:0] | Reserved | Reserved         |                  |                           |    |        |

#### Address 0X42 : level meter clear

AD85050 has 8 set of level meters which hold the maximum absolute value.

Each level meter has its own level meter clear.

| BIT         | NAME        | DESCRIPTION                  | VALUE | FUNCTION |
|-------------|-------------|------------------------------|-------|----------|
| BI71 C1 CLB | C1 CLB      | CA CLD Cloor CH4 lovel motor | 0     | No clear |
| D[/]        | B[7] C1_CLR | Clear CH1 level meter        | 1     | Clear    |
| DIE]        | C2 CLB      | Clear CH2 level meter        | 0     | No clear |
| B[6]        | C2_CLR      | Clear CH2 level meter        | 1     | Clear    |
| DIE1        | C3_CLR      | Clear CH3 level meter        | 0     | No clear |
| B[5]        | C3_CLK      | Clear Ch3 lever meter        | 1     | Clear    |
| B[4]        | C4_CLR      | Clear CH4 level meter        | 0     | No clear |
| D[4]        | C4_CLK      |                              | 1     | Clear    |
| B[3]        | C5_CLR      | CLR Clear CH5 level meter    | 0     | No clear |
| D[3]        | C5_CLK      |                              | 1     | Clear    |
| Bioi        | C6_CLR      | Clear CH6 level meter        | 0     | No clear |
| B[2]        | CO_CLK      |                              | 1     | Clear    |
| D[1]        | C7_CLR      | Clear CH7 level meter        | 0     | No clear |
| B[1]        | O/_OLK      | Clear Crit lever illeter     | 1     | Clear    |
| B[0]        | C8_CLR      | R Clear CH8 level meter      | 0     | No clear |
| D[O]        | OU_OLIX     |                              | 1     | Clear    |

Publication Date: Mar. 2019 Revision: 0.1 63/103



#### Address 0X43 : Power meter clear

AD85050 has 8 set of level meters which continue update RMS value.

Each level meter has its own power meter clear.

| BIT  | NAME           | DESCRIPTION               | VALUE | FUNCTION |
|------|----------------|---------------------------|-------|----------|
| D[7] | O4 OLD DMO     | Olara Olikara arasara     | 0     | No clear |
| B[7] | C1_CLR_RMS     | Clear CH1 power meter     | 1     | Clear    |
| DIEI | C2_CLR_RMS     | Clear CH2 nower motor     | 0     | No clear |
| B[6] | CZ_CLK_KWS     | Clear CH2 power meter     | 1     | Clear    |
| DIE] | C3_CLR_RMS     | Cloar CH3 nower meter     | 0     | No clear |
| B[5] | C3_CLK_KWS     | Clear CH3 power meter     | 1     | Clear    |
| D[4] | C4_CLR_RMS     | MS Clear CH4 power meter  | 0     | No clear |
| B[4] | C4_CLK_RIVIS   |                           | 1     | Clear    |
| DIOI | OF OLD DMC     | Clear CH5 level meter     | 0     | No clear |
| B[3] | C5_CLR_RMS     |                           | 1     | Clear    |
| וכום | C6_CLR_RMS     | Clear CH6 level meter     | 0     | No clear |
| B[2] | CO_CLK_KIVIS   | Clear Crio lever meter    | 1     | Clear    |
| D[1] | C7_CLR_RMS     | Clear CH7 level meter     | 0     | No clear |
| B[1] | OI_OLK_KWS     | Cicai Ci ii level illetel | 1     | Clear    |
| B[0] | C8_CLR_RMS     | Clear CHO level or star   | 0     | No clear |
| D[O] | OU_OLIX_IXIVIS | Clear CH8 level meter     | 1     | Clear    |

#### Address 0X44 : Top 8 bit of C1 level meter

In one band DRC, channel-1 level meter is used for L channel.

In two/three bands DRC, channel-1 level meter is high frequency path of L channel.

The addresses to show channel-1 level meter are 0X44, 0X45, and 0X46.

| BIT    | NAME        | DESCRIPTION             | VALUE   | FUNCTION    |
|--------|-------------|-------------------------|---------|-------------|
| B[7:0] | C4   EVEL T | Top 8 bits of channel 1 | 0000000 | Reset value |
|        | C1_LEVEL_T  | level meter             | Х       | Read out    |

#### Address 0X45 : Middle 8 bit of C1 level meter

| BIT    | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|------------|----------------------------|---------|-------------|
| B[7:0] | C1_LEVEL_M | Middle 8 bits of channel 1 | 0000000 | Reset value |
|        |            | level meter                | Х       | Read out    |

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019 Revision: 0.1 64/103



Address 0X46: Bottom 8 bit of C1 level meter

| BIT      | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|----------|------------|----------------------------|---------|-------------|
| B[7:0] C |            | Bottom 8 bits of channel 1 | 0000000 | Reset value |
|          | C1_LEVEL_B | level meter                | X       | Read out    |

Address 0X47 : Top 8 bit of C2 level meter

In one band DRC, channel-2 level meter is used for R channel.

In two/three bands DRC, channel-2 level meter is high frequency path of R channel.

The addresses to show channel-2 level meter are 0X47, 0X48, and 0X49.

| BIT    | NAME       | DESCRIPTION             | VALUE   | FUNCTION    |
|--------|------------|-------------------------|---------|-------------|
| B[7:0] | 00 15/51 7 | Top 8 bits of channel 2 | 0000000 | Reset value |
|        | C2_LEVEL_T | level meter             | Х       | Read out    |

Address 0X48 : Middle 8 bit of C2 level meter

| BIT    | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|------------|----------------------------|---------|-------------|
| B[7:0] | 00 LEVEL M | Middle 8 bits of channel 2 | 0000000 | Reset value |
|        | C2_LEVEL_M | level meter                | Х       | Read out    |

Address 0X49: Bottom 8 bit of C2 level meter

| BIT    | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|------------|----------------------------|---------|-------------|
| B[7:0] |            | Bottom 8 bits of channel 2 | 0000000 | Reset value |
|        | OZ_LEVEL_B | level meter                | Х       | Read out    |

Address 0X4A: Top 8 bit of C3 level meter

In one/two bands DRC, channel-3 level meter is no use.

In three bands DRC, channel-3 level meter is low frequency path of L channel.

The addresses to show channel-3 level meter are 0X4A, 0X4B, and 0X4C.

| BIT      | NAME        | DESCRIPTION             | VALUE   | FUNCTION    |
|----------|-------------|-------------------------|---------|-------------|
| B[7:0] C | C2   EVEL T | Top 8 bits of channel 3 | 0000000 | Reset value |
|          | C3_LEVEL_T  | level meter             | Х       | Read out    |

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019 Revision: 0.1 65/103



Address 0X4B : Middle 8 bit of C3 level meter

| BIT    | NAME         | DESCRIPTION                | VALUE      | FUNCTION    |
|--------|--------------|----------------------------|------------|-------------|
| B[7:0] | C2   E\/E  M | Middle 8 bits of channel 3 | 0000000    | Reset value |
|        | C3_LEVEL_M   | level meter                | X Read out |             |

Address 0X4C : Bottom 8 bit of C3 level meter

| BIT    | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|------------|----------------------------|---------|-------------|
| B[7:0] | C3_LEVEL_B | Bottom 8 bits of channel 3 | 0000000 | Reset value |
|        |            | level meter                | Х       | Read out    |

Address 0X4D : Top 8 bit of C4 level meter

In one/two bands DRC, channel-4 level meter is no use.

In three bands DRC, channel-4 level meter is low frequency path of R channel.

The addresses to show channel-4 level meter are 0X4D, 0X4E, and 0X4F.

| BIT               | NAME         | DESCRIPTION             | VALUE    | FUNCTION    |
|-------------------|--------------|-------------------------|----------|-------------|
| B[7:0] C4_LEVEL_T | 04   5\/5  T | Top 8 bits of channel 4 | 0000000  | Reset value |
|                   | level meter  | X                       | Read out |             |

Address 0X4E : Middle 8 bit of C4 level meter

| BIT    | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|------------|----------------------------|---------|-------------|
| D[7.0] | C4 LEVEL M | Middle 8 bits of channel 4 | 0000000 | Reset value |
| B[7:0] | C4_LEVEL_M | level meter                | Х       | Read out    |

Address 0X4F : Bottom 8 bit of C4 level meter

| BIT    | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|------------|----------------------------|---------|-------------|
| D[7.0] |            | Bottom 8 bits of channel 4 | 0000000 | Reset value |
| B[7:0] | C4_LEVEL_B | level meter                | Х       | Read out    |

Publication Date: Mar. 2019

Revision: 0.1 66/103

Publication Date: Mar. 2019

67/103

Revision: 0.1



Address 0X50 : Top 8 bit of C5 level meter

In one band DRC, channel-5 level meter is no use.

In two/three bands DRC, channel-5 level meter is band pass frequency path of L channel.

The addresses to show channel-5 level meter are 0X50, 0X51, and 0X52.

| BIT    | NAME       | DESCRIPTION             | VALUE   | FUNCTION       |
|--------|------------|-------------------------|---------|----------------|
| D[7.0] | CE LEVEL T | Top 8 bits of channel 5 | 0000000 | 00 Reset value |
| B[7:0] | C5_LEVEL_T | level meter             | Х       | Read out       |

Address 0X51: Middle 8 bit of C5 level meter

| BIT    | NAME              | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|-------------------|----------------------------|---------|-------------|
| D[7:0] |                   | Middle 8 bits of channel 5 | 0000000 | Reset value |
| Б[7.0] | B[7:0] C5_LEVEL_M | level meter                | Х       | Read out    |

Address 0X52 : Bottom 8 bit of C5 level meter

| BIT    | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|------------|----------------------------|---------|-------------|
| D[7:0] |            | Bottom 8 bits of channel 5 | 0000000 | Reset value |
| B[7:0] | C5_LEVEL_B | level meter                | Х       | Read out    |

Address 0X53: Top 8 bit of C6 level meter

In one band DRC, channel-6 level meter is no use.

In two/three bands DRC, channel-6 level meter is band pass frequency path of R channel.

The addresses to show channel-6 level meter are 0X53, 0X54, and 0X55.

| BIT    | NAME       | DESCRIPTION             | VALUE     | FUNCTION    |
|--------|------------|-------------------------|-----------|-------------|
| D[7:0] | C6_LEVEL_T | Top 8 bits of channel 6 | 6 0000000 | Reset value |
| B[7:0] | CO_LEVEL_1 | level meter             | X         | Read out    |

Address 0X54: Middle 8 bit of C6 level meter

| BIT    | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|------------|----------------------------|---------|-------------|
| D[7.0] |            | Middle 8 bits of channel 6 | 0000000 | Reset value |
| B[7:0] | C6_LEVEL_M | level meter                | Х       | Read out    |



Address 0X55 : Bottom 8 bit of C6 level meter

| BIT    | NAME          | DESCRIPTION                | VALUE               | FUNCTION |
|--------|---------------|----------------------------|---------------------|----------|
| D[7.0] |               | Bottom 8 bits of channel 6 | 0000000 Reset value |          |
| B[7:0] | 0] C6_LEVEL_B | level meter                | Х                   | Read out |

Address 0X56 : Top 8 bit of C7 level meter

In one band DRC, channel-7 level meter is no use.

In two/three bands DRC, channel-7 level meter is summation path of L channel.

The addresses to show channel-7 level meter are 0X56, 0X57, and 0X58.

| BIT    | NAME         | DESCRIPTION             | VALUE   | FUNCTION      |
|--------|--------------|-------------------------|---------|---------------|
| D[7:0] | C7   E\/E  T | Top 8 bits of channel 7 | 0000000 | 0 Reset value |
| B[7:0] | C7_LEVEL_T   | level meter             | Х       | Read out      |

Address 0X57 : Middle 8 bit of C7 level meter

| BIT    | NAME         | DESCRIPTION                | VALUE   | FUNCTION    |
|--------|--------------|----------------------------|---------|-------------|
| D[7.0] | C7   E\/E  M | Middle 8 bits of channel 7 | 0000000 | Reset value |
| B[7:0] | C7_LEVEL_M   | level meter                | Х       | Read out    |

Address 0X58 : Bottom 8 bit of C7 level meter

| BIT               | NAME               | DESCRIPTION                | VALUE   | FUNCTION    |
|-------------------|--------------------|----------------------------|---------|-------------|
| D[7:0] O7 LEVEL I |                    | Bottom 8 bits of channel 7 | 0000000 | Reset value |
| B[7:0]            | [7:0]   C7_LEVEL_B | level meter                | Х       | Read out    |

Publication Date: Mar. 2019

Revision: 0.1 68/103



• Address 0X59: Top 8 bit of C8 level meter

In one band DRC, channel-8 level meter is no use.

In two/three bands DRC, channel-8 level meter is summation path of R channel.

The addresses to show channel-8 level meter are 0X59, 0X5A, and 0X5B.

| BIT    | NAME         | DESCRIPTION             | VALUE                 | FUNCTION    |
|--------|--------------|-------------------------|-----------------------|-------------|
| D[7:0] | C0   E\/E  T | Top 8 bits of channel 8 | 3 0000000 Reset value | Reset value |
| B[7:0] | C8_LEVEL_T   | level meter             | Х                     | Read out    |

Address 0X5A: Middle 8 bit of C8 level meter

| BIT            | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|----------------|------------|----------------------------|---------|-------------|
| B[7:0] C8_LEVE |            | Middle 8 bits of channel 8 | 0000000 | Reset value |
|                | C8_LEVEL_M | level meter                | Х       | Read out    |

Address 0X5B: Bottom 8 bit of C8 level meter

| BIT          | NAME       | DESCRIPTION                | VALUE   | FUNCTION    |
|--------------|------------|----------------------------|---------|-------------|
| DIZ-01 CO LE | C8 LEVEL B | Bottom 8 bits of channel 8 | 0000000 | Reset value |
| B[7:0]       | CO_LEVEL_B | level meter                | Х       | Read out    |

Publication Date: Mar. 2019 Revision: 0.1 69/103



• Address 0X5C : I<sup>2</sup>S output selection

AD85050 provide I<sup>2</sup>S output function via GPIO pins and the output point can be selected via bit 2~bit 0.

| BIT    | NAME                             | DESCRIPTION                                                    | VALUE  | FUNCTION                        |
|--------|----------------------------------|----------------------------------------------------------------|--------|---------------------------------|
| B[7:3] |                                  | Reserved                                                       |        |                                 |
|        |                                  |                                                                | Others | Reserved                        |
|        |                                  |                                                                | 110    | Reserved                        |
|        |                                  | I <sup>2</sup> S_DO_SEL I <sup>2</sup> S DATA OUTPUT selection | 101    | Point6 : DC blocking HPF output |
| D[O:O] | 1 <sup>2</sup> 0 DO 0E1          |                                                                | 100    | Point5 : volume output          |
| D[2.0] | B[2:0]   I <sup>2</sup> S_DO_SEL |                                                                | 011    | Point4 : EQ12 output            |
|        |                                  |                                                                | 010    | Point3 : Mixer output           |
|        |                                  |                                                                | 001    | Point2 : pre-scale output       |
|        |                                  |                                                                | 000    | Ponit1 : DSP input              |



Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019
Revision: 0.1 70/103



# Address 0x5D:CHS\_stat

AD85050 provides check sum status for user via bit 5 / bits 1(read only). And you can enable DRC/BEQ check sum function via bit 4 / bit 0.

| BIT  | NAME            | DESCRIPTION | VALUE | FUNCTION       |
|------|-----------------|-------------|-------|----------------|
| D[7] | CHK_DRC_E       | ERROR link  | 0     | No link        |
| B[7] | CHK_DKC_E       | DRC_CHK     | 1     | ERROR link     |
| B[6] | CHK_DRC_AM      | Auto Mute   | 0     | Disable        |
| P[0] | CHK_DRC_AW      | DRC_CHK     | 1     | Enable         |
| DIE1 | CHK_DRC_R       | Result      | 0     | No error       |
| B[5] | CHK_DKC_K       | DRC_CHK     | 1     | Error occurred |
| D[4] | CHK DBC EN      | Enable      | 0     | Disable        |
| B[4] | CHK_DRC_EN      | DRC_CHK     | 1     | Enable         |
| DIOI | DIOI OLIK DEO E | PROTN link  | 0     | No link        |
| B[3] | CHK_BEQ_E       | BEQ_CHK     | 1     | ERROR link     |
| DIOI | CHK BEO AM      | Auto Mute   | 0     | Disable        |
| B[2] | CHK_BEQ_AM      | BEQ_CHK     | 1     | Enable         |
| D[4] | CHK BEO B       | Result      | 0     | No error       |
| B[1] | CHK_BEQ_R       | BEQ_CHK     | 1     | Error occurred |
| D[0] | CHK BEO EN      | Enable      | 0     | Disable        |
| B[0] | CHK_BEQ_EN      | BEQ_CHK     | 1     | Enable         |

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019 Revision: 0.1 71/103



#### Set up DRC check value

Address 0X5E: Top 8 bits of DRC\_CHK set value.

| BIT    | NAME              | DESCRIPTION           | VALUE   | FUNCTION      |
|--------|-------------------|-----------------------|---------|---------------|
| B[7:0] | CHS DBC 1/[22:46] | Top 8-bits of DRC_CHK | 0000000 | Initial value |
| Б[7.0] | CHS_DRC_V[23:16]  | set value             | х       | Set value     |

Address0x5F : Middle 8 bits of DRC\_CHK set value

| BIT         | NAME            | DESCRIPTION       | VALUE   | FUNCTION      |
|-------------|-----------------|-------------------|---------|---------------|
| B[7:0] CHS_ | CHC DDC V(45.01 | Middle 8-bits of  | 0000000 | Initial value |
|             | CHS_DRC_V[15:8] | DRC_CHK set value | х       | Set value     |

Address0x60 : Bottom 8 bits of DRC\_CHK set value

| BIT                   | NAME              | DESCRIPTION | VALUE     | FUNCTION      |
|-----------------------|-------------------|-------------|-----------|---------------|
| B[7:0] CHS_DRC_V[7:0] | CLIC DDC V(7.01   |             | 0000000   | Initial value |
|                       | DRC_CHK set value | х           | Set value |               |

#### Set up BEQ check value

• Address0x61 : Top 8 bits of BEQ\_CHK set value

| BIT                 | NAME              | DESCRIPTION   |         | VALUE   | FUNCTION      |
|---------------------|-------------------|---------------|---------|---------|---------------|
| DIZ-01 CHE DEC VIOL | CHS BEO 7/133:461 | Top 8-bits of | BEQ_CHK | 0000000 | Initial value |
| B[7:0]              | CHS_BEQ_V[23:16]  | set val       | lue     | х       | Set value     |

• Address0x62 : Middle 8 bits of BEQ\_CHK set value

| BIT    | NAME            | DESCRIPTION       | VALUE   | FUNCTION      |
|--------|-----------------|-------------------|---------|---------------|
| D[7:0] | OLIO DEO MACO   |                   | 0000000 | Initial value |
| B[7:0] | CHS_BEQ_V[15:8] | BEQ_CHK set value | х       | Set value     |

Address0x63: Bottom 8 bits of BEQ\_CHK set value

| BIT    | NAME           | DESCRIPTION       | VALUE   | FUNCTION      |
|--------|----------------|-------------------|---------|---------------|
|        |                | Bottom 8-bits of  | 0000000 | Initial value |
| B[7:0] | CHS_BEQ_V[7:0] | BEQ_CHK set value | х       | Set value     |

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019 Revision: 0.1 72/103



#### DRC check result

• Address0x64 : Top 8 bits of DRC\_CHK result

| BIT    | NAME             | DESCRIPTION           | VALUE | FUNCTION |
|--------|------------------|-----------------------|-------|----------|
| B[7:0] | CHS_DRC_R[23:16] | Top 8-bits of DRC_CHK | x     | Result   |
|        |                  | result                |       |          |

• Address0x65 : Middle 8 bits of DRC\_CHK result

| BIT                | NAME                   | DESCRIPTION      | VALUE | FUNCTION |
|--------------------|------------------------|------------------|-------|----------|
| DIZ-01 CHE DDC D45 | CH6 DDC D1E:01         | Middle 8-bits of |       | Davilt   |
| Б[7.0]             | B[7:0]  CHS_DRC_R15:8] | DRC_CHK result   | X     | Result   |

Address0x66: Bottom 8 bits of DRC\_CHK result

| BIT         | NAME                   | DESCRIPTION      | VALUE | FUNCTION |
|-------------|------------------------|------------------|-------|----------|
| DIZ-01 CLIC | CHE DBC BIZ:01         | Bottom 8-bits of |       | Result   |
| Б[7.0]      | B[7:0]  CHS_DRC_R[7:0] | DRC_CHK result   | Х     | Result   |

### BEQ check result

Address0x67 : Top 8 bits of BEQ\_CHK result

| BIT    | NAME               | DESCRIPTION           | VALUE | FUNCTION |
|--------|--------------------|-----------------------|-------|----------|
| B[7:0] | CHS_BEQ_R[23:16]   | Top 8-bits of BEQ_CHK | Y     | Result   |
| D[1.0] | O110_BEQ_[\[20.10] | result                | ^     | Nosuit   |

Address0x68: Middle 8 bits of BEQ\_CHK result

| BIT           | NAME                    | DESCRIPTION      | VALUE       | FUNCTION |
|---------------|-------------------------|------------------|-------------|----------|
| DIZ:01 CHS DI | CH6 BEO D[12:8]         | Middle 8-bits of | <b>&gt;</b> | Result   |
| D[7.0]        | B[7:0]  CHS_BEQ_R[15:8] | BEQ_CHK result   | Х           | Nesuit   |

• Address0x69 : Bottom 8 bits of BEQ\_CHK result

| BIT       | NAME                    | DESCRIPTION      | VALUE | FUNCTION |
|-----------|-------------------------|------------------|-------|----------|
| D[7:0] CI | CH6 BEQ B17:01          | Bottom 8-bits of | v     | Dooult   |
| Б[7.0]    | B[7:0]   CHS_BEQ_R[7:0] | BEQ_CHK result   | Х     | Result   |

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019 Revision: 0.1 73/103



Address 0x81: GPIO0 control

GPIO0 of AD85050 is input or output via bit 4. Select output types of GPIO0 by setting bit 3-0.

| BIT    | NAME                         | DESCRIPTION   | VALUE | FUNCTION                                     |
|--------|------------------------------|---------------|-------|----------------------------------------------|
| B[7:5] | Reserved                     | Reserved      |       |                                              |
| B[4]   | 1] GPIO0_STATUS GPIO0_status |               | 0     | GPIO0 act as input (initial MCLK/Fs setting) |
|        |                              |               | 1     | GPIO0 act as output                          |
|        |                              |               | 0000  | Clock error output                           |
|        |                              |               | 0001  | Under voltage output                         |
|        | 0010                         | OTP output    |       |                                              |
|        |                              |               | 0011  | PLL clock output                             |
| B[3:0] | GPIO0_CTRL                   | GPIO0 Control | 0100  | charge pump clock output                     |
|        |                              |               | 0101  | Serial audio interface data output           |
|        |                              |               | 0110  | Reserved                                     |
|        |                              |               | 0111  | Checksum error output                        |
|        |                              |               |       | Reserved                                     |

Publication Date: Mar. 2019 Revision: 0.1 74/103



Address 0X87 : HP Master volume

AD85050 can tune head phone master volume by setting bit7-0.

| BIT    | NAME       | DESCRIPTION      | VALUE              | FUNCTION |
|--------|------------|------------------|--------------------|----------|
|        |            |                  | 00000000           | +12dB    |
|        |            |                  | 00000001           | +11.5dB  |
|        |            |                  | 00000010 +11dB : : | +11dB    |
|        |            |                  | :                  | :        |
|        |            |                  | 00010111 0.5       | 0.5dB    |
| B[7:0] | MV_HP[7:0] | HP Master Volume | 00011000           | 0dB      |
| Б[7.0] |            |                  | 00011001           | -0.5dB   |
|        |            |                  | :                  | :        |
|        |            |                  | 11100110           | -103dB   |
|        |            |                  | 11100111           | -∞dB     |
|        |            |                  | :                  | :        |
|        |            | 11111111         | -∞dB               |          |

Publication Date: Mar. 2019 Revision: 0.1 75/103



Address 0X88, 0X89, 0X8A, 0X8B, 0X8C, 0X8D
 AD85050 can tune head phone channel1-6 volume by setting bit7-0.

Address 0X88  $\sim$  0X8D; where x=1, 2, 3, 4, 5, 6

| BIT    | NAME        | DESCRIPTION       | VALUE    | FUNCTION  |
|--------|-------------|-------------------|----------|-----------|
|        |             |                   | 00000000 | +12dB     |
|        |             |                   | 00000001 | +11.5dB   |
|        |             |                   | :        | :         |
|        |             |                   | 00010100 | 10100 2dB |
|        |             | HP Channel Volume | : :      | :         |
| B[7:0] | CxV_HP[7:0] |                   | 00011000 | 0dB       |
| Б[7.0] |             |                   | 00011001 | -0.5dB    |
|        |             |                   | :        | :         |
|        |             |                   | 11100110 | -103dB    |
|        |             |                   | 11100111 | -∞dB      |
|        |             |                   | :        | :         |
|        |             |                   | 11111111 | -∞dB      |

Publication Date: Mar. 2019 Revision: 0.1 76/103 ● Address 0X8E: HP Volume fine tune for master volume and Channel 1~3

AD85050 can fine tune head phone master volume by setting bit7-6.

AD85050 can fine tune head phone channel1 volume by setting bit5-4.

AD85050 can fine tune head phone channel2 volume by setting bit3-2.

AD85050 can fine tune head phone channel3 volume by setting bit1-0.

| BIT     | NAME      | DESCRIPTION                         | VALUE | FUNCTION |
|---------|-----------|-------------------------------------|-------|----------|
|         |           |                                     | 00    | 0dB      |
| DIZ.CI  | MV ET LID | HP Master Volume                    | 01    | -0.125dB |
| B[7:6]  | MV_FT_HP  | Fine Tune                           | 10    | -0.25dB  |
|         |           |                                     | 11    | -0.375dB |
|         |           |                                     | 00    | 0dB      |
| D[E, 4] | C1V_FT_HP | HP Channel 1                        | 01    | -0.125dB |
| B[5:4]  | CIV_FI_HP | Volume Fine Tune                    | 10    | -0.25dB  |
|         |           |                                     | 11    | -0.375dB |
|         |           | HP Channel 2 FT_HP Volume Fine Tune | 00    | 0dB      |
| B[3:2]  | 00V FT UD |                                     | 01    | -0.125dB |
| D[3.2]  | CZV_F1_HF |                                     | 10    | -0.25dB  |
|         |           |                                     | 11    | -0.375dB |
|         |           |                                     | 00    | 0dB      |
| B[1:0]  | C3V_FT_HP | HP Channel 3                        | 01    | -0.125dB |
| D[1.0]  | U3V_F1_FP | Volume Fine Tune                    | 10    | -0.25dB  |
|         |           |                                     | 11    | -0.375dB |

Publication Date: Mar. 2019 Revision: 0.1 77/103



Address 0X8F: HP Volume fine tune for channel 4~6
 AD85050 can fine tune head phone channel4 volume by setting bit7-6.
 AD85050 can fine tune head phone channel5 volume by setting bit5-4.

AD85050 can fine tune head phone channel6 volume by setting bit3-2.

| BIT     | NAME       | DESCRIPTION                      | VALUE | FUNCTION |
|---------|------------|----------------------------------|-------|----------|
|         |            |                                  | 00    | 0dB      |
| D[7.0]  | CAV ET LID | HP Channel 4                     | 01    | -0.125dB |
| B[7:6]  | C4V_FT_HP  | Volume Fine Tune                 | 10    | -0.25dB  |
|         |            |                                  | 11    | -0.375dB |
|         |            | HP Channel 5<br>Volume Fine Tune | 00    | 0dB      |
| D[E, 4] | C5V_FT_HP  |                                  | 01    | -0.125dB |
| B[5:4]  |            |                                  | 10    | -0.25dB  |
|         |            |                                  | 11    | -0.375dB |
|         |            | HP Channel 6                     | 00    | 0dB      |
| Diago   | CCV ET LID |                                  | 01    | -0.125dB |
| B[3:2]  | C6V_FT_HP  | Volume Fine Tune                 | 10    | -0.25dB  |
|         |            |                                  | 11    | -0.375dB |
| B[1:0]  | Reserved   | Reserved                         |       |          |



Address 0X90: Lch limiter attack/release time for DB
 The AD85050 has left channel DB (dynamic bass) set, this DB has its own attack/release time.

| BIT    | NAME      | DESCRIPTION     | VALUE   | FUNCTION      |
|--------|-----------|-----------------|---------|---------------|
|        |           |                 | 0000    | 41.67us       |
|        |           |                 | 0001    | 52.1us        |
|        |           | 0010            | 62.5us  |               |
|        |           |                 | 0011    | 72.92us       |
|        |           |                 | 0100    | 93.75us       |
|        |           |                 | 0101    | 145.8us       |
|        |           |                 | 0110    | 0110 281.25us |
| D[7:4] | LA1[3:0]  | DB attack time  | 0111    | 562.5us       |
| B[7:4] | LA 1[3.0] | DB attack time  | 1000    | 833.3us       |
|        |           |                 | 1001    | 1.114ms       |
|        |           |                 | 1010    | 1.385ms       |
|        |           |                 | 1011    | 1.667ms       |
|        |           |                 | 1100    | 1.937ms       |
|        |           |                 | 1101    | 2.218ms       |
|        |           |                 | 1110    | 2.5ms         |
|        |           |                 | 1111    | 2.65ms        |
|        |           |                 | 0000    | 250us         |
|        |           |                 | 0001    | 916.6us       |
|        |           |                 | 0010    | 1.687ms       |
|        |           |                 | 0011    | 2.51ms        |
|        |           | 0100            | 3.479ms |               |
|        |           |                 | 0101    | 4.187ms       |
|        |           |                 | 0110    | 4.739ms       |
| B[3:0] | LR1[3:0]  | DB release time | 0111    | 6.01ms        |
|        |           |                 | 1000    | 6.312ms       |
|        |           |                 | 1001    | 7.27ms        |
|        |           |                 | 1010    | 8.51ms        |
|        |           |                 | 1011    | 9.12ms        |
|        |           |                 | 1100    | 9.33ms        |
|        |           |                 | 1101    | 10.68ms       |
|        |           |                 | 1110    | 11.36ms       |

Publication Date: Mar. 2019 Revision: 0.1 79/103



Address 0X91: Rch limiter attack/release time for DB
 The AD85050 has right channel DB (dynamic bass) set, this DB has its own attack/release time.

| BIT    | NAME     | DESCRIPTION     | VALUE | FUNCTION |
|--------|----------|-----------------|-------|----------|
|        |          |                 | 0000  | 41.67us  |
|        |          |                 | 0001  | 52.1us   |
|        |          |                 | 0010  | 62.5us   |
|        |          |                 | 0011  | 72.92us  |
|        |          |                 | 0100  | 93.75us  |
|        |          |                 | 0101  | 145.8us  |
|        |          |                 | 0110  | 281.25us |
| B[7:4] | RA1[3:0] | DB attack time  | 0111  | 562.5us  |
| D[7.4] | KA1[3.0] | DB attack time  | 1000  | 833.3us  |
|        |          |                 | 1001  | 1.114ms  |
|        |          |                 | 1010  | 1.385ms  |
|        |          |                 | 1011  | 1.667ms  |
|        |          |                 | 1100  | 1.937ms  |
|        |          |                 | 1101  | 2.218ms  |
|        |          |                 | 1110  | 2.5ms    |
|        |          |                 | 1111  | 2.65ms   |
|        |          |                 | 0000  | 250us    |
|        |          |                 | 0001  | 916.6us  |
|        |          |                 | 0010  | 1.687ms  |
|        |          |                 | 0011  | 2.51ms   |
|        |          |                 | 0100  | 3.479ms  |
|        |          |                 | 0101  | 4.187ms  |
|        |          |                 | 0110  | 4.739ms  |
| B[3:0] | RR1[3:0] | DB release time | 0111  | 6.01ms   |
|        |          |                 | 1000  | 6.312ms  |
|        |          |                 | 1001  | 7.27ms   |
|        |          |                 | 1010  | 8.51ms   |
|        |          |                 | 1011  | 9.12ms   |
|        |          |                 | 1100  | 9.33ms   |
|        |          |                 | 1101  | 10.68ms  |
|        |          |                 | 1110  | 11.36ms  |

Publication Date: Mar. 2019 Revision: 0.1 80/103



#### RAM access

The procedure to read/write coefficient(s) from/to RAM is as followings:

#### Read a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X1D
- 2. Write 1 to R1 bit and write 1/0 to RBS in address-0X2D
- 3. Read top 8-bits of coefficient in I2C address-0X1E
- 4. Read middle 8-bits of coefficient in I2C address-0X1F
- 5. Read bottom 8-bits of coefficient in I2C address-0X20

#### Read three coefficients from RAM:

- 1. Write 7-bis of address to I2C address-0X1D
- 2. Write 1 to R3 bit and write 1/0 to RBS in address-0X2D
- 3. Read top 8-bits of coefficient in I2C address-0X1E
- 4. Read middle 8-bits of coefficient in I2C address-0X1F
- 5. Read bottom 8-bits of coefficient A1 in I2C address-0X20
- 6. Read top 8-bits of coefficient A2 in I2C address-0X21
- 7. Read middle 8-bits of coefficient A2 in I2C address-0X22
- 8. Read bottom 8-bits of coefficient A2 in I2C address-0X23
- 9. Read top 8-bits of coefficient B1 in I2C address-0X24
- 10. Read middle 8-bits of coefficient B1 in I2C address-0X25
- 11. Read bottom 8-bits of coefficient B1 in I2C address-0X26

#### Read a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X1D
- 2. Write 1 to RA bit and write 1/0 to RBS in address-0X2D
- 3. Read top 8-bits of coefficient A1 in I2C address-0X1E
- 4. Read middle 8-bits of coefficient A1in I2C address-0X1F
- 5. Read bottom 8-bits of coefficient A1 in I2C address-0X20
- 6. Read top 8-bits of coefficient A2 in I2C address-0X21
- 7. Read middle 8-bits of coefficient A2 in I2C address-0X22
- 8. Read bottom 8-bits of coefficient A2 in I2C address-0X23
- 9. Read top 8-bits of coefficient B1 in I2C address-0X24
- 10. Read middle 8-bits of coefficient B1 in I2C address-0X25
- 11. Read bottom 8-bits of coefficient B1 in I2C address-0X26
- 12. Read top 8-bits of coefficient B2 in I2C address-0X27
- 13. Read middle 8-bits of coefficient B2 in I2C address-0X28
- 14. Read bottom 8-bits of coefficient B2 in I2C address-0X29
- 15. Read top 8-bits of coefficient A0 in I2C address-0X2A
- 16. Read middle 8-bits of coefficient A0 in I2C address-0X2B

Elite Semiconductor Memory Technology Inc.

Publication Date: Mar. 2019
Revision: 0.1 81/103



#### 17. Read bottom 8-bits of coefficient A0 in I2C address-0X2C

#### Write a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X1D
- 2. Write top 8-bits of coefficient in I2C address-0X1E
- 3. Write middle 8-bits of coefficient in I2C address-0X1F
- 4. Write bottom 8-bits of coefficient in I2C address-0X20
- 5. Write 1 to W1 bit and write 1/0 to RBS in address-0X2D

#### Write three coefficients from RAM:

- 1. Write 7-bis of address to I2C address-0X1D
- 2. Write top 8-bits of coefficient A1 in I2C address-0X1E
- 3. Write middle 8-bits of coefficient A1 in I2C address-0X1F
- 4. Write bottom 8-bits of coefficient A1 in I2C address-0X20
- 5. Write top 8-bits of coefficient A2 in I2C address-0X21
- 6. Write middle 8-bits of coefficient A2 in I2C address-0X22
- 7. Write bottom 8-bits of coefficient A2 in I2C address-0X23
- 8. Write top 8-bits of coefficient B1 in I2C address-0X24
- 9. Write middle 8-bits of coefficient B1 in I2C address-0X25
- 10. Write bottom 8-bits of coefficient B1 in I2C address-0X26

#### Write 1 to W3 bit and write 1/0 to RBS in address-0X2D

#### Write a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X1D
- 2. Write top 8-bits of coefficient A1 in I2C address-0X1E
- 3. Write middle 8-bits of coefficient A1 in I2C address-0X1F
- 4. Write bottom 8-bits of coefficient A1 in I2C address-0X20
- 5. Write top 8-bits of coefficient A2 in I2C address-0X21
- 6. Write middle 8-bits of coefficient A2 in I2C address-0X22
- 7. Write bottom 8-bits of coefficient A2 in I2C address-0X23
- 8. Write top 8-bits of coefficient B1 in I2C address-0X24
- 9. Write middle 8-bits of coefficient B1 in I2C address-0X25
- 10. Write bottom 8-bits of coefficient B1 in I2C address-0X26
- 11. Write top 8-bits of coefficient B2 in I2C address-0X27
- 12. Write middle 8-bits of coefficient B2 in I2C address-0X28
- 13. Write bottom 8-bits of coefficient B2 in I2C address-0X29
- 14. Write top 8-bits of coefficient A0 in I2C address-0X2A
- 15. Write middle 8-bits of coefficient A0 in I2C address-0X2B
- 16. Write bottom 8-bits of coefficient A0 in I2C address-0X2C
- 17. Write 1 to WA bit and write 1/0 to RBS in address-0X2D

Publication Date: Mar. 2019 Revision: 0.1 82/103 Note that: the read and write operation on RAM coefficients works only if LRCIN (pin-15) switching on rising edge. And, before each writing operation, it is necessary to read the address-0X24 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

Publication Date: Mar. 2019 Revision: 0.1 83/103



#### User-defined equalizer

The AD85050 provides 30 parametric Equalizer (EQ). Users can program suitable coefficients via I<sup>2</sup>C control interface to program the required audio band frequency response for every EQ. The transfer function

$$H(z) = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$

The data format of 2's complement binary code for EQ coefficient is 3.21. i.e., 3-bits for integer (MSB is the sign bit) and 21-bits for mantissa. Each coefficient range is from 0x800000 (-4) to 0x7FFFF (+3.999999523). These coefficients are stored in User Defined RAM and are referenced in following manner:

$$CHxEQyA0 = A0$$

$$CHxEQyA1 = A1$$

$$CHxEQyA2 = A2$$

$$CHxEQyB1 = -B1$$

$$CHxEQyB2 = -B2$$

Where x and y represents the number of channel and the band number of EQ biquard.

All user-defined filters are path-through, where all coefficients are defaulted to 0 after being powered up, except the A0 that is set to 0x200000 which represents 1.

#### EQ arrangement

AD85050 provides 18 EQs per channel.

When, register with address-0X0C, bit-5, DEQE is set to high, the EQ7, EQ8, EQ9, and EQ10 will use another filter coefficient stored in used defined RAM 0X68~0X7B.

When, register with address-0X0C, bit-6, BTE is set to high, the EQ11 and EQ12 will perform as bass and treble respectively.

When three bands DRC enable, EQ13, EQ14, and EQ15, EQ16, EQ17, EQ18 will perform as APF1/BPF1, LPF1, APF2/BPF2, LPF2 and HPF2 respectively.

Publication Date: Mar. 2019 Revision: 0.1 84/103





#### Mixer

The AD85050 provides mixers to generate the extra audio source from the input left and right channels. The coefficients of mixers are defined in range from 0x800000 (-1) to 0x7FFFFF (0.9999998808). The function block diagram is as following:



Publication Date: Mar. 2019 Revision: 0.1 85/103



#### Pre-scale

For each audio channel, AD85050 can scale input signal level prior to EQ processing which is realized by a 24-bit signed fractional multiplier. The pre-scale factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the pre-scaling factors are set to 0x7FFFFF. Programming of RAM is described in RAM access.

#### Post-scale

The AD85050 provides an additional multiplication after equalizing and before interpolation stage, which is realized by a 24-bit signed fractional multiplier. The post-scaling factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the post-scaling factors are set to 0x7FFFFF. All channels can use the channel-1 post-scale factor by setting the post-scale link. Programming of RAM is described in RAM access.

### Power Clipping

The AD85050 provides power clipping function to avoid excessive signal that may destroy loud speaker. 3. The power clipping level is defined by 24-bit representation and is stored in RAM address 0X55 of RAM bank 0. The following table shows the power clipping level's numerical representation.

|            | Sample calculation for power clipping |                        |             |               |  |  |
|------------|---------------------------------------|------------------------|-------------|---------------|--|--|
| Max        | dB                                    | Linear                 | Decimal     | Hex           |  |  |
| amplitude  | uБ                                    | Lilleai                | Decimal     | (3.21 format) |  |  |
| PVCC       | 0                                     | 1                      | 2097152     | 200000        |  |  |
| PVCC*0.707 | -3                                    | 0.707                  | 1482686     | 169FBE        |  |  |
| PVCC*0.5   | -6                                    | 0.5                    | 1048576     | 100000        |  |  |
| PVCC*L     | х                                     | L=10 <sup>(x/20)</sup> | D=2097152xL | H=dec2hex(D)  |  |  |

Sample calculation for power clipping

#### Attack threshold

The AD85050 provides DRC function. When the input RMS exceeds the programmable attack threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Four sets of DRC are provided. DRC1 is used for high frequency path in three bands DRC and used for L/R channel in one band DRC. DRC2 is used for low frequency path in three bands DRC. DRC3 is used for band pass frequency path in three bands DRC. DRC4 is used for the post DRC.

Attack threshold is defined by 24-bit presentation and is stored in RAM address 0X56, 0X58, 0X5A, 0X5C of RAM bank 0.



#### Release threshold

After AD85050 has reached the attack threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable release threshold level. Release threshold is defined by 24-bit representation and is stored in RAM address 0X57, 0X59, 0X5B, and 0X5D of RAM bank 0. The following table shows the attack and release threshold's numerical representation.

Sample calculation for attack and release threshold

| Power          | dB | Linear                 | Decimal     | Hex           |
|----------------|----|------------------------|-------------|---------------|
|                |    |                        |             | (3.21 format) |
| (PVCC^2)/R     | 0  | 1                      | 2097152     | 200000        |
| (PVCC^2)/2R    | -3 | 0.5                    | 1048576     | 100000        |
| (PVCC^2)/4R    | -6 | 0.25                   | 524288      | 80000         |
| ((PVCC^2)/R)*L | Х  | L=10 <sup>(x/10)</sup> | D=2097152xL | H=dec2hex(D)  |

To best illustrate the power limit function, please refer to the following figure.



Publication Date: Mar. 2019

Revision: 0.1 87/103



#### Noise Gate Attack Level

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 24-bit representation and is stored in RAM address 0X5E of RAM bank 0.

#### Noise Gate Release Level

After entering the noise gating status, the noise gain will be removed whenever AD85050 receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 24-bit representation and is stored in RAM address 0X5F of RAM bank 0. The following table shows the noise gate attack and release threshold level's numerical representation.

| Can             | Cample calculation for holds gate attack and release level |             |               |  |  |
|-----------------|------------------------------------------------------------|-------------|---------------|--|--|
| Input amplitude | Linear                                                     | Decimal     | Hex           |  |  |
| (dB)            | Linear                                                     | Decimal     | (1.23 format) |  |  |
| 0               | 1                                                          | 8388607     | 7FFFF         |  |  |
| -100            | 10 <sup>-5</sup>                                           | 83          | 53            |  |  |
| -110            | 10 <sup>-5.5</sup>                                         | 26          | 1A            |  |  |
| х               | L=10 <sup>(x/20)</sup>                                     | D=8388607xL | H=dec2hex(D)  |  |  |

Sample calculation for noise gate attack and release level

## DRC Energy Coefficient



The above figure illustrates the digital processing of calculating RMS signal power. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Four sets of energy coefficients are provided and used for respective DRC. Energy coefficient is defined by 24-bit representation and is stored in RAM address 0X60, 0X61, 0X62, and 0X63 of RAM bank 0. The following table shows the DRC energy coefficient numerical representation.

Publication Date: Mar. 2019 Revision: 0.1 88/103



## Sample calculation for DRC energy coefficient

| DRC energy  | dB    | Lincor                 | Desimal     | Hex           |
|-------------|-------|------------------------|-------------|---------------|
| coefficient | иь    | Linear                 | Decimal     | (1.23 format) |
| 1           | 0     | 1                      | 8388607     | 7FFFF         |
| 1/256       | -48.2 | 1/256                  | 32768       | 8000          |
| 1/1024      | -60.2 | 1/1024                 | 8192        | 2000          |
| L           | х     | L=10 <sup>(x/20)</sup> | D=8388607xL | H=dec2hex(D)  |

## The user defined RAM

The contents of user defined RAM is represented in following table.

Ram Bank selection = 0

| Address | NAME                | Coefficient | Default  |
|---------|---------------------|-------------|----------|
| 0x00    |                     | CH1EQ1A1    | 0x000000 |
| 0x01    | 1 <sup>st</sup> SET | CH1EQ1A2    | 0x000000 |
| 0x02    |                     | CH1EQ1B1    | 0x000000 |
| 0x03    | Channel-1 EQ1       | CH1EQ1B2    | 0x000000 |
| 0x04    |                     | CH1EQ1A0    | 0x200000 |
| 0x05    |                     | CH1EQ2A1    | 0x000000 |
| 0x06    | 1 <sup>st</sup> SET | CH1EQ2A2    | 0x000000 |
| 0x07    |                     | CH1EQ2B1    | 0x000000 |
| 0x08    | Channel-1 EQ2       | CH1EQ2B2    | 0x000000 |
| 0x09    |                     | CH1EQ2A0    | 0x200000 |
| 0x0A    | ct .                | CH1EQ3A1    | 0x000000 |
| 0x0B    |                     | CH1EQ3A2    | 0x000000 |
| 0x0C    | 1 <sup>st</sup> SET | CH1EQ3B1    | 0x000000 |
| 0x0D    | Channel-1 EQ3       | CH1EQ3B2    | 0x000000 |
| 0x0E    |                     | CH1EQ3A0    | 0x200000 |
| 0x0F    |                     | CH1EQ4A1    | 0x000000 |
| 0x10    | 1 <sup>st</sup> SET | CH1EQ4A2    | 0x000000 |
| 0x11    | _                   | CH1EQ4B1    | 0x000000 |
| 0x12    | Channel-1 EQ4       | CH1EQ4B2    | 0x000000 |
| 0x13    |                     | CH1EQ4A0    | 0x200000 |
| 0x14    |                     | CH1EQ5A1    | 0x000000 |
| 0x15    | 1 <sup>st</sup> SET | CH1EQ5A2    | 0x000000 |
| 0x16    | _                   | CH1EQ5B1    | 0x000000 |
| 0x17    | Channel-1 EQ5       | CH1EQ5B2    | 0x000000 |
| 0x18    |                     | CH1EQ5A0    | 0x200000 |

Publication Date: Mar. 2019 Revision: 0.1 89/103



| _    | 1                   | 1         |          |
|------|---------------------|-----------|----------|
| 0x19 |                     | CH1EQ6A1  | 0x000000 |
| 0x1A | 1 <sup>st</sup> SET | CH1EQ6A2  | 0x000000 |
| 0x1B | Channel-1 EQ6       | CH1EQ6B1  | 0x000000 |
| 0x1C | Chamie-1 EQ0        | CH1EQ6B2  | 0x000000 |
| 0x1D |                     | CH1EQ6A0  | 0x200000 |
| 0x1E |                     | CH1EQ7A1  | 0x000000 |
| 0x1F | 1 <sup>st</sup> SET | CH1EQ7A2  | 0x000000 |
| 0x20 | Channel-1 EQ7       | CH1EQ7B1  | 0x000000 |
| 0x21 | Chainer EQ1         | CH1EQ7B2  | 0x000000 |
| 0x22 |                     | CH1EQ7A0  | 0x200000 |
| 0x23 |                     | CH1EQ8A1  | 0x000000 |
| 0x24 | 1 <sup>st</sup> SET | CH1EQ8A2  | 0x000000 |
| 0x25 | Channel-1 EQ8       | CH1EQ8B1  | 0x000000 |
| 0x26 | Chaillei-1 EQo      | CH1EQ8B2  | 0x000000 |
| 0x27 |                     | CH1EQ8A0  | 0x200000 |
| 0x28 |                     | CH1EQ9A1  | 0x000000 |
| 0x29 | 1 <sup>st</sup> SET | CH1EQ9A2  | 0x000000 |
| 0x2A | Channel-1 EQ9       | CH1EQ9B1  | 0x000000 |
| 0x2B | Channel-1 EQ9       | CH1EQ9B2  | 0x000000 |
| 0x2C |                     | CH1EQ9A0  | 0x200000 |
| 0x2D |                     | CH1EQ10A1 | 0x000000 |
| 0x2E | 1 <sup>st</sup> SET | CH1EQ10A2 | 0x000000 |
| 0x2F | Channel-1 EQ10      | CH1EQ10B1 | 0x000000 |
| 0x30 | Chamlel-1 EQ10      | CH1EQ10B2 | 0x000000 |
| 0x31 |                     | CH1EQ10A0 | 0x200000 |
| 0x32 |                     | CH1EQ11A1 | 0x000000 |
| 0x33 | 1 <sup>st</sup> SET | CH1EQ11A2 | 0x000000 |
| 0x34 | Channel-1 EQ11      | CH1EQ11B1 | 0x000000 |
| 0x35 | CHAIIIEFT EQTI      | CH1EQ11B2 | 0x000000 |
| 0x36 |                     | CH1EQ11A0 | 0x200000 |
| 0x37 |                     | CH1EQ12A1 | 0x000000 |
| 0x38 | 1 <sup>st</sup> SET | CH1EQ12A2 | 0x000000 |
| 0x39 | Channel-1 EQ12      | CH1EQ12B1 | 0x000000 |
| 0x3A | CHAIIIEFT EQ12      | CH1EQ12B2 | 0x000000 |
| 0x3B |                     | CH1EQ12A0 | 0x200000 |
| 0x3C | 1 <sup>st</sup> SET | CH1EQ13A1 | 0x000000 |
| 0x3D | Channel-1 EQ13      | CH1EQ13A2 | 0x000000 |
| -    | _                   | •         |          |

Publication Date: Mar. 2019

Revision: 0.1

90/103



| 0x3E |                               | CH1EQ13B1 | 0x000000 |
|------|-------------------------------|-----------|----------|
| 0x3F |                               | CH1EQ13B2 | 0x000000 |
| 0x40 |                               | CH1EQ13A0 | 0x200000 |
| 0x41 |                               | CH1EQ14A1 | 0x000000 |
| 0x42 |                               | CH1EQ14A2 | 0x000000 |
| 0x43 | 1 <sup>st</sup> SET           | CH1EQ14B1 | 0x000000 |
| 0x44 | - Channel-1 EQ14              | CH1EQ14B2 | 0x000000 |
| 0x45 |                               | CH1EQ14A0 | 0x200000 |
| 0x46 |                               | CH1EQ15A1 | 0x000000 |
| 0x47 | 4St OFT                       | CH1EQ15A2 | 0x000000 |
| 0x48 | 1 <sup>st</sup> SET           | CH1EQ15B1 | 0x000000 |
| 0x49 | - Channel-1 EQ15              | CH1EQ15B2 | 0x000000 |
| 0x4A |                               | CH1EQ15A0 | 0x200000 |
| 0x4B | Channel-1 Mixer1              | M11       | 0x7FFFFF |
| 0x4C | Channel-1 Mixer2              | M12       | 0x000000 |
| 0x4D | Channel-1 Prescale            | C1PRS     | 0x080000 |
| 0x4E | Channel-1 Postscale           | C1POS     | 0x200000 |
| 0X4F | A0 of L channel SRS HPF       | LSRSH_A0  | C7B691   |
| 0X50 | A1 of L channel SRS HPF       | LSRSH_A1  | 38496E   |
| 0X51 | B1 of L channel SRS HPF       | LSRSH_B1  | C46f8    |
| 0X52 | A0 of L channel SRS<br>LPF    | LSRSL_A0  | E81B9    |
| 0X53 | A1 of L channel SRS LPF       | LSRSL_A1  | F22C12   |
| 0X54 | B1 of L channel SRS LPF       | LSRSL_ B1 | FCABB    |
| 0x55 | CH1.2 Power Clipping          | PC1       | 0x200000 |
| 0X56 | CH1 DRC1 Attack<br>threshold  | DRC1_ATH  | 0x200000 |
| 0X57 | CH1 DRC1 Release<br>threshold | DRC1_RTH  | 0x80000  |
| 0X58 | CH3 DRC2 Attack<br>threshold  | DRC2_ATH  | 0x200000 |
| 0X59 | CH3 DRC2 Release threshold    | DRC2_RTH  | 0x80000  |
| 0x5A | CH5 DRC3 Attack<br>threshold  | DRC3_ATH  | 0x200000 |
| 0x5B | CH5 DRC3 Release threshold    | DRC3_RTH  | 0x80000  |

Publication Date: Mar. 2019 Revision: 0.1 91/103



| 0x5D         CH7 DRC4 Release threshold         DRC4_RTH         0x80000           0x5E         Noise Gate Attack Level         NGAL         0x00001A           0x5F         Noise Gate Release Level         NGRL         0x000053           0x60         DRC1 Energy Coefficient         DRC1_EC         0x8000           0x61         DRC2 Energy Coefficient         DRC2_EC         0x2000           0x62         DRC3 Energy Coefficient         DRC3_EC         0x8000           0x63         DRC4 Energy Coefficient         DRC4_EC         0x2000           0X64         DRC1 Power Meter         C1_RMS         0x2000           0X65         DRC3 Power Meter         C3_RMS         0x2000           0X66         DRC5 Power Meter         C5_RMS         0x000000           0X66         DRC7 Power Meter         C7_RMS         0x000000           0x68         2nd SET         CH1DEQ1A1         0x000000           0x68         2nd SET         CH1DEQ1A2         0x000000           0x6B         2nd SET         CH1DEQ1B1         0x000000           0x6B         2nd SET         CH1DEQ2A1         0x000000           0x6F         2nd SET         CH1DEQ2A2         0x000000           0x70                                          | 0x5C      | CH7 DRC4 Attack<br>threshold | DRC4_ATH    | 0x200000 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|-------------|----------|
| 0x6F         Noise Gate Release Level         NGRL         0x000053           0x60         DRC1 Energy Coefficient         DRC1_EC         0x8000           0X61         DRC2 Energy Coefficient         DRC2_EC         0x2000           0X62         DRC3 Energy Coefficient         DRC3_EC         0x8000           0X63         DRC4 Energy Coefficient         DRC4_EC         0x2000           0X64         DRC1 Power Meter         C1_RMS           0X65         DRC3 Power Meter         C3_RMS           0X66         DRC7 Power Meter         C5_RMS           0X67         DRC7 Power Meter         C7_RMS           0x68         CH1DEQ1A1         0x000000           0x68         CH1DEQ1A1         0x000000           0x6B         CH1DEQ1B1         0x000000           0x6C         CH1DEQ1B2         0x000000           0x6E         2nd SET         CH1DEQ2A1         0x000000           0x70         CH1DEQ2A1         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2B2         0x000000           0x73         CH1DEQ3A1         0x000000           0x76         CH1DEQ3B1         0x000000           0x76 <td>0x5D</td> <td></td> <td>DRC4_RTH</td> <td>0x80000</td>                     | 0x5D      |                              | DRC4_RTH    | 0x80000  |
| 0x60         DRC1 Energy Coefficient         DRC1_EC         0x8000           0X61         DRC2 Energy Coefficient         DRC2_EC         0x2000           0x62         DRC3 Energy Coefficient         DRC3_EC         0x8000           0X63         DRC4 Energy Coefficient         DRC3_EC         0x8000           0X64         DRC1 Power Meter         C1_RMS           0X65         DRC3 Power Meter         C3_RMS           0X66         DRC7 Power Meter         C5_RMS           0X67         DRC7 Power Meter         C7_RMS           0x68         CH1DEQ1A1         0x000000           0x69         CH1DEQ1A1         0x000000           0x6B         CH1DEQ1B1         0x000000           0x6C         CH1DEQ1B1         0x000000           0x6D         CH1DEQ1B1         0x000000           0x6E         CH1DEQ2A1         0x000000           0x6E         CH1DEQ2A1         0x000000           0x70         CH1DEQ2A2         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ3A1         0x000000           0x73         CH1DEQ3A1         0x000000           0x76         CH1DEQ3A2         0x000000 </td <td>0x5E</td> <td>Noise Gate Attack Level</td> <td>NGAL</td> <td>0x00001A</td>     | 0x5E      | Noise Gate Attack Level      | NGAL        | 0x00001A |
| 0X61         DRC2 Energy Coefficient         DRC2_EC         0x2000           0X62         DRC3 Energy Coefficient         DRC3_EC         0x8000           0X63         DRC4 Energy Coefficient         DRC4_EC         0x2000           0X64         DRC1 Power Meter         C1_RMS           0X65         DRC3 Power Meter         C3_RMS           0X66         DRC5 Power Meter         C5_RMS           0X67         DRC7 Power Meter         C7_RMS           0X68         CH1DEQ1A1         0x000000           0X69         CH1DEQ1A2         0x000000           0X6B         CH1DEQ1B1         0x000000           0X6D         CH1DEQ1B2         0x000000           0X6E         CH1DEQ1A0         0x200000           0X6E         CH1DEQ2A1         0x000000           0X6E         CH1DEQ2A1         0x000000           0X6F         CH1DEQ2A2         0x000000           0X70         CH1DEQ2B1         0x000000           0X71         2nd SET         CH1DEQ3A1         0x000000           0X72         CH1DEQ3A1         0x000000           0X73         2nd SET         CH1DEQ3A1         0x000000           0X76         CH1DEQ3A2         0x00000                                                                                      | 0x5F      | Noise Gate Release Level     | NGRL        | 0x000053 |
| 0x62         DRC3 Energy Coefficient         DRC3_EC         0x8000           0X63         DRC4 Energy Coefficient         DRC4_EC         0x2000           0X64         DRC1 Power Meter         C1_RMS           0X65         DRC3 Power Meter         C3_RMS           0X66         DRC5 Power Meter         C5_RMS           0X67         DRC7 Power Meter         C7_RMS           0x68         CH1DEQ1A1         0x000000           0x69         CH1DEQ1A2         0x000000           0x6A         CH1DEQ1B1         0x000000           CH1DEQ1B2         0x000000         0x000000           CH1DEQ1B1         0x000000         0x000000           CH1DEQ1B2         0x000000         0x000000           CH1DEQ2B1         0x000000         0x000000           Ox6F         CH1DEQ2B1         0x000000           Ox70         CH1DEQ2B2         0x000000           Ox71         2nd SET         CH1DEQ2B1         0x000000           CH1DEQ2B2         0x000000         0x000000           Ox73         2nd SET         CH1DEQ3B1         0x000000           Ox76         CH1DEQ3B1         0x000000         0x000000           Ox76         CH1DEQ4A1 <t< td=""><td>0x60</td><td>DRC1 Energy Coefficient</td><td>DRC1_EC</td><td>0x8000</td></t<> | 0x60      | DRC1 Energy Coefficient      | DRC1_EC     | 0x8000   |
| 0X63         DRC4 Energy Coefficient         DRC4_EC         0x2000           0X64         DRC1 Power Meter         C1_RMS           0X65         DRC3 Power Meter         C3_RMS           0X66         DRC5 Power Meter         C5_RMS           0X67         DRC7 Power Meter         C7_RMS           0x68         CH1DEQ1A1         0x000000           0x69         CH1DEQ1A2         0x000000           0x6B         CH1DEQ1B2         0x000000           0x6C         CH1DEQ1B2         0x000000           0x6D         CH1DEQ1A0         0x2200000           0x6E         CH1DEQ2A1         0x000000           0x70         CH1DEQ2A1         0x000000           0x71         CH1DEQ2A2         0x000000           0x72         CH1DEQ2B1         0x000000           0x73         2nd SET         CH1DEQ2B2         0x000000           0x73         CH1DEQ3A1         0x000000           0x74         CH1DEQ3A1         0x000000           0x75         CH1DEQ3B1         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3B2         0x000000           0x78         CH1DEQ4A1         0x000000 <td>0X61</td> <td>DRC2 Energy Coefficient</td> <td>DRC2_EC</td> <td>0x2000</td>                          | 0X61      | DRC2 Energy Coefficient      | DRC2_EC     | 0x2000   |
| 0X64         DRC1 Power Meter         C1_RMS           0X65         DRC3 Power Meter         C3_RMS           0X66         DRC5 Power Meter         C5_RMS           0X67         DRC7 Power Meter         C7_RMS           0x68         CH1DEQ1A1         0x000000           0x69         CH1DEQ1A2         0x000000           0x6B         CH1DEQ1B1         0x000000           0x6C         CH1DEQ1B2         0x000000           0x6D         CH1DEQ1A0         0x2200000           0x6E         CH1DEQ2A1         0x000000           0x70         CH1DEQ2A2         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2B2         0x000000           0x73         2nd SET         CH1DEQ3B1         0x000000           0x74         CH1DEQ3B1         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3B2         0x000000           0x78         CH1DEQ4A1         0x000000           0x78         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B1         0x000000           CH1                                                                                                                        | 0x62      | DRC3 Energy Coefficient      | DRC3_EC     | 0x8000   |
| 0X65         DRC3 Power Meter         C3_RMS           0X66         DRC5 Power Meter         C5_RMS           0X67         DRC7 Power Meter         C7_RMS           0x68         CH1DEQ1A1         0x000000           0x69         CH1DEQ1B2         0x000000           0x6B         CH1DEQ1B2         0x000000           0x6C         CH1DEQ1B2         0x000000           0x6D         CH1DEQ1A0         0x200000           0x6E         CH1DEQ2A1         0x000000           0x6F         CH1DEQ2A1         0x000000           0x70         CH1DEQ2B1         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2B2         0x000000           0x73         2nd SET         CH1DEQ3B1         0x000000           0x73         CH1DEQ3A2         0x000000           0x74         CH1DEQ3B1         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4B1         0x000000           0x79         CH1DEQ4B1         0x000000           CH1DEQ4B2                                                                                                                        | 0X63      | DRC4 Energy Coefficient      | DRC4_EC     | 0x2000   |
| 0X66         DRC5 Power Meter         C5_RMS           0X67         DRC7 Power Meter         C7_RMS           0x68         CH1DEQ1A1         0x000000           0x69         2nd SET         CH1DEQ1A2         0x000000           0x6A         CH1DEQ1B1         0x000000           0x6B         CH1DEQ1B2         0x000000           0x6D         CH1DEQ1A0         0x200000           0x6E         2nd SET         CH1DEQ2A1         0x000000           0x70         CH1DEQ2A2         0x000000           0x71         CH1DEQ2B1         0x000000           0x72         CH1DEQ2B2         0x000000           0x73         2nd SET         CH1DEQ3A1         0x000000           0x73         2nd SET         CH1DEQ3A1         0x000000           0x74         Channel-1 EQ3         CH1DEQ3B2         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ4A1         0x000000           0x77         CH1DEQ4A1         0x000000           0x78         2nd SET         CH1DEQ4A2         0x000000           0x7A         CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000 <td< td=""><td>0X64</td><td>DRC1 Power Meter</td><td>C1_RMS</td><td></td></td<>                                          | 0X64      | DRC1 Power Meter             | C1_RMS      |          |
| 0X67         DRC7 Power Meter         C7_RMS           0x68         CH1DEQ1A1         0x000000           0x69         2nd SET         CH1DEQ1A2         0x000000           0x6B         CH1DEQ1B1         0x000000           0x6B         CH1DEQ1B2         0x000000           0x6C         CH1DEQ1A0         0x200000           0x6D         CH1DEQ2A1         0x000000           0x6E         2nd SET         CH1DEQ2A2         0x000000           0x70         CH1DEQ2B2         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ3A1         0x000000           0x73         2nd SET         CH1DEQ3A1         0x000000           0x74         CH1DEQ3A2         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3A0         0x200000           0x78         2nd SET         CH1DEQ4A1         0x000000           0x78         2nd SET         CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000         CH1DEQ4B2         0x000000           0x7B         CH1DEQ4B2         0x000000         C                                                                                                        | 0X65      | DRC3 Power Meter             | C3_RMS      |          |
| 0x68         2 <sup>nd</sup> SET         CH1DEQ1A1         0x000000           0x6A         Channel-1 EQ1         CH1DEQ1B2         0x000000           0x6B         CH1DEQ1B1         0x000000           0x6C         CH1DEQ1B2         0x000000           0x6D         CH1DEQ1A0         0x200000           0x6E         2 <sup>nd</sup> SET         CH1DEQ2A1         0x000000           0x70         CH1DEQ2B2         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2A0         0x2200000           0x73         2 <sup>nd</sup> SET         CH1DEQ3A1         0x000000           0x74         Ch1DEQ3A2         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3B2         0x000000           0x78         2 <sup>nd</sup> SET         CH1DEQ4A1         0x000000           0x79         CH1DEQ4A2         0x000000           0x7A         CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           <                                                                            | 0X66      | DRC5 Power Meter             | C5_RMS      |          |
| 0x69         2 <sup>nd</sup> SET<br>Channel-1 EQ1         CH1DEQ1A2         0x000000           0x6A         CH1DEQ1B1         0x000000           0x6B         CH1DEQ1B2         0x000000           0x6C         CH1DEQ1A0         0x200000           0x6D         CH1DEQ2A1         0x000000           0x6E         2 <sup>nd</sup> SET<br>Channel-1 EQ2         CH1DEQ2A2         0x000000           0x70         CH1DEQ2B1         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2A0         0x2200000           0x73         2 <sup>nd</sup> SET<br>Channel-1 EQ3         CH1DEQ3A1         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3B2         0x000000           0x78         2 <sup>nd</sup> SET<br>Channel-1 EQ4         CH1DEQ4A1         0x000000           0x79         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B0         0x200000                                                                                                                                 | 0X67      | DRC7 Power Meter             | C7_RMS      |          |
| 0x6A         2 <sup>nd</sup> SET<br>Channel-1 EQ1         CH1DEQ1B1         0x000000           0x6B         CH1DEQ1B2         0x000000           0x6C         CH1DEQ1A0         0x200000           0x6D         CH1DEQ2A1         0x000000           0x6E         CH1DEQ2A2         0x000000           0x70         CH1DEQ2B1         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2A0         0x200000           0x73         CH1DEQ3A1         0x000000           0x75         CH1DEQ3B1         0x000000           0x76         CH1DEQ3B2         0x000000           CH1DEQ3B2         0x000000           CH1DEQ3B2         0x000000           CH1DEQ3B0         0x200000           CH1DEQ4A1         0x000000           CH1DEQ4B1         0x000000           CH1DEQ4B1         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4BA0         0x200000           CH1DEQ4BA0         0x200000                                                                                                                                                                                                                                                              | 0x68      |                              | CH1DEQ1A1   | 0x000000 |
| 0x6A         Channel-1 EQ1         CH1DEQ1B1         0x000000           0x6B         CH1DEQ1B2         0x000000           0x6C         CH1DEQ1A0         0x200000           0x6D         CH1DEQ2A1         0x000000           0x6E         CH1DEQ2A1         0x000000           0x70         CH1DEQ2B2         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2A0         0x200000           0x73         CH1DEQ3A1         0x000000           0x74         Ch1DEQ3A2         0x000000           0x75         CH1DEQ3B1         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3A0         0x200000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4A1         0x000000           0x7A         CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4A0         0x200000           CH1DEQ4A0         0x200000                                                                                                                                                                                                                                                           | 0x69      | ond OFT                      | CH1DEQ1A2   | 0x000000 |
| 0x6B         CH1DEQ1B2         0x000000           0x6C         CH1DEQ1A0         0x200000           0x6D         CH1DEQ2A1         0x000000           0x6E         2nd SET         CH1DEQ2A2         0x000000           0x70         CH1DEQ2B1         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2A0         0x200000           0x73         CH1DEQ3A1         0x000000           0x74         CH1DEQ3A2         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4B1         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved           0x80         MF LPF1         CH1MFLPF1A1         0x000003                                                                                                                                                                                                                                                                                                 | 0x6A      |                              | CH1DEQ1B1   | 0x000000 |
| 0x6D         2nd SET         CH1DEQ2A1         0x000000           0x6F         Ch1DEQ2A2         0x000000           0x70         CH1DEQ2B1         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2A0         0x200000           0x73         CH1DEQ3A1         0x000000           0x74         CH1DEQ3A2         0x000000           0x75         CH1DEQ3B1         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3A0         0x200000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4B1         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved           0x80         MF LPF1         CH1MFLPF1A1         0x000003                                                                                                                                                                                                                                                                                                                                                                | 0x6B      | Channel-1 EQ1                | CH1DEQ1B2   | 0x000000 |
| 0x6E         2 <sup>nd</sup> SET         CH1DEQ2A2         0x000000           0x70         CH1DEQ2B1         0x000000           0x71         CH1DEQ2B2         0x000000           0x72         CH1DEQ2A0         0x200000           0x73         CH1DEQ3A1         0x000000           0x74         CH1DEQ3A2         0x000000           0x75         CH1DEQ3B1         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3A0         0x200000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4B1         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4A0         0x200000           0X7C-0X7F         Reserved           0x80         MF LPF1         CH1MFLPF1A1         0x00000D3                                                                                                                                                                                                                                                                                                                                                                                                     | 0x6C      |                              | CH1DEQ1A0   | 0x200000 |
| 0x6F         2nd SET Channel-1 EQ2         CH1DEQ2B1         0x000000           0x70         CH1DEQ2B2         0x000000           0x71         CH1DEQ2A0         0x200000           0x72         CH1DEQ3A1         0x000000           0x73         CH1DEQ3A2         0x000000           0x75         CH1DEQ3B1         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4B2         0x000000           CH1DEQ4B1         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved           0x80         MF LPF1         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x6D      |                              | CH1DEQ2A1   | 0x000000 |
| 0x6F         Channel-1 EQ2         CH1DEQ2B1         0x000000           0x70         CH1DEQ2B2         0x000000           0x71         CH1DEQ2A0         0x200000           0x72         CH1DEQ3A1         0x000000           0x73         CH1DEQ3A2         0x000000           0x74         CH1DEQ3B1         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3A0         0x200000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A2         0x000000           0x79         CH1DEQ4B1         0x000000           CH1DEQ4B1         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4B0         0x200000           0X7C~0X7F         Reserved           0x80         MF LPF1         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0x6E      | ond OFT                      | CH1DEQ2A2   | 0x000000 |
| 0x70         CH1DEQ2B2         0x000000           0x71         CH1DEQ2A0         0x200000           0x72         CH1DEQ3A1         0x000000           0x73         CH1DEQ3A2         0x000000           0x74         CH1DEQ3B1         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3A0         0x200000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A2         0x000000           0x79         CH1DEQ4B1         0x000000           CH1DEQ4B1         0x000000           CH1DEQ4B2         0x000000           CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved           0x80         MF LPF1         CH1MFLPF1A1         0x00000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x6F      |                              | CH1DEQ2B1   | 0x000000 |
| 0x72         2nd SET         CH1DEQ3A1         0x000000           0x74         Channel-1 EQ3         CH1DEQ3A2         0x000000           0x75         CH1DEQ3B1         0x000000           0x76         CH1DEQ3B2         0x000000           0x77         CH1DEQ3A0         0x200000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4A2         0x000000           0x7A         CH1DEQ4B1         0x000000           0x7B         CH1DEQ4B2         0x000000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x70      | Channel-1 EQ2                | CH1DEQ2B2   | 0x000000 |
| 0x73         2 <sup>nd</sup> SET         CH1DEQ3A2         0x000000           0x74         Channel-1 EQ3         CH1DEQ3B1         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3A0         0x200000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B2         0x000000           0x7B         CH1DEQ4A0         0x200000           0X7C-0X7F         Reserved         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x71      |                              | CH1DEQ2A0   | 0x200000 |
| 0x74         2 <sup>nd</sup> SET<br>Channel-1 EQ3         CH1DEQ3B1         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3A0         0x200000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B1         0x000000           0x7B         CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x72      |                              | CH1DEQ3A1   | 0x000000 |
| 0x74         Channel-1 EQ3         CH1DEQ3B1         0x000000           0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3A0         0x200000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B1         0x000000           0x7B         CH1DEQ4B2         0x000000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x73      | ond OFT                      | CH1DEQ3A2   | 0x000000 |
| 0x75         CH1DEQ3B2         0x000000           0x76         CH1DEQ3A0         0x200000           0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A1         0x000000           0x79         CH1DEQ4A2         0x000000           0x7A         CH1DEQ4B1         0x000000           0x7B         CH1DEQ4B2         0x000000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x00000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x74      |                              | CH1DEQ3B1   | 0x000000 |
| 0x77         CH1DEQ4A1         0x000000           0x78         CH1DEQ4A2         0x000000           0x79         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B1         0x000000           0x7B         CH1DEQ4B2         0x000000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x00000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x75      | Channel-1 EQ3                | CH1DEQ3B2   | 0x000000 |
| 0x78         2 <sup>nd</sup> SET         CH1DEQ4A2         0x000000           0x79         Channel-1 EQ4         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B2         0x000000           0x7B         CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0x76      |                              | CH1DEQ3A0   | 0x200000 |
| 0x79         2 <sup>nd</sup> SET<br>Channel-1 EQ4         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B2         0x000000           0x7B         CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x77      |                              | CH1DEQ4A1   | 0x000000 |
| 0x79         Channel-1 EQ4         CH1DEQ4B1         0x000000           0x7A         CH1DEQ4B2         0x000000           0x7B         CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0x78      | ond OFT                      | CH1DEQ4A2   | 0x000000 |
| 0x7A         CH1DEQ4B2         0x000000           0x7B         CH1DEQ4A0         0x200000           0X7C~0X7F         Reserved         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x79      |                              | CH1DEQ4B1   | 0x000000 |
| 0X7C~0X7F         Reserved           0x80         MF LPF1         CH1MFLPF1A1         0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x7A      | Unannei-1 EQ4                | CH1DEQ4B2   | 0x000000 |
| 0x80 MF LPF1 CH1MFLPF1A1 0x0000D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x7B      |                              | CH1DEQ4A0   | 0x200000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0X7C~0X7F | Reserved                     |             |          |
| 0x81 Channel-1 CH1MFLPF1A2 0x000069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x80      | MF LPF1                      | CH1MFLPF1A1 | 0x0000D3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x81      | Channel-1                    | CH1MFLPF1A2 | 0x000069 |

Publication Date: Mar. 2019 Revision: 0.1 92/103



| 0x82      |                               | CH1MFLPF1B1 | 0x3F594D |
|-----------|-------------------------------|-------------|----------|
| 0x83      |                               | CH1MFLPF1B2 | 0xE0A50D |
| 0x84      |                               | CH1MFLPF1A0 | 0x000069 |
| 0x85      |                               | CH1MFLPF2A1 | 0x0000D3 |
| 0x86      | MF LPF2                       | CH1MFLPF2A2 | 0x000069 |
| 0x87      | Channel-1                     | CH1MFLPF2B1 | 0x3F594D |
| 0x88      | Onamici 1                     | CH1MFLPF2B2 | 0xE0A50D |
| 0x89      |                               | CH1MFLPF2A  | 0x000069 |
| 0x8A      |                               | CH1MFBPF1A1 | 0x000000 |
| 0x8B      | MF BPF1                       | CH1MFBPF1A2 | 0xFFC63B |
| 0x8C      | Channel-1                     | CH1MFBPF1B1 | 0x3F594D |
| 0x8D      | Channel-1                     | CH1MFBPF1B2 | 0xE0A50D |
| 0x8E      |                               | CH1MFBPF1A0 | 0x0039C5 |
| 0x8F      |                               | CH1MFBPF2A1 | 0x000000 |
| 0x90      | ME DDEO                       | CH1MFBPF2A2 | 0xFFC63B |
| 0x91      | MF BPF2                       | CH1MFBPF2B1 | 0x3F594D |
| 0x92      | Channel-1                     | CH1MFBPF2B2 | 0xE0A50D |
| 0x93      |                               | CH1MFBPF2A0 | 0x0039C5 |
| 0x94      | MF positive CLIP<br>Channel-1 | CH1MFPCLP   | 0x080000 |
| 0x95      | MF G1<br>Channel-1            | CH1MFG1     | 0x019AFD |
| 0x96      | MF G2<br>Channel-1            | CH1MFG2     | 0x080000 |
| 0x97      | MF G3<br>Channel-1            | CH1MFG3     | 0x0B4CE0 |
| 0X98      | MF negative CLIP Channel-1    | CH1MFNCLP   | 0x080000 |
| 0X99      | MF G4<br>Channel-1            | CH1MFG4     | 0X080000 |
| 0X9A~0X9F | Reserved                      |             |          |
| 0xA0      |                               | CH1EQ16A1   | 0x000000 |
| 0XA1      | 1 <sup>st</sup> SET           | CH1EQ16A2   | 0x000000 |
| 0xA2      |                               | CH1EQ16B1   | 0x000000 |
| 0XA3      | Channel-1 EQ16                | CH1EQ16B2   | 0x000000 |
| 0XA4      |                               | CH1EQ16A0   | 0x200000 |
| 0XA5      | 1 <sup>st</sup> SET           | CH1EQ17A1   | 0x000000 |

Publication Date: Mar. 2019 Revision: 0.1 93/103



|      | -                                            |              |          |
|------|----------------------------------------------|--------------|----------|
| 0XA6 | Channel-1 EQ17                               | CH1EQ17A2    | 0x000000 |
| 0XA7 |                                              | CH1EQ17B1    | 0x000000 |
| 0xA8 |                                              | CH1EQ17B2    | 0x000000 |
| 0xA9 |                                              | CH1EQ17A0    | 0x200000 |
| 0xAA |                                              | CH1EQ18A1    | 0x000000 |
| 0xAB | 1 <sup>st</sup> SET                          | CH1EQ18A2    | 0x000000 |
| 0xAC | Channel-1 EQ18                               | CH1EQ18B1    | 0x000000 |
| 0xAD | Channel-1 EQ16                               | CH1EQ18B2    | 0x000000 |
| 0xAE |                                              | CH1EQ18A0    | 0x200000 |
| 0xAF | Dynamic bass DRC attack threshold Channel-1  | CH1SMBDRCATH | 0x200000 |
| 0xB0 | Dynamic bass DRC release threshold Channel-1 | CH1SMBDRCRTH | 0x080000 |
| 0xB1 | Boost chip control attack threshold1         | BSTCHIP_ATH1 | 0x020000 |
| 0xB2 | Boost chip control attack threshold2         | BSTCHIP_ATH2 | 0x008000 |
| 0xB3 | Boost chip control attack<br>threshold3      | BSTCHIP_ATH3 | 0x002000 |

Publication Date: Mar. 2019 Revision: 0.1 94/103



Ram Bank selection = 1

| Address | NAME                | Coefficient | Default  |
|---------|---------------------|-------------|----------|
| 0x00    |                     | CH2EQ1A1    | 0x000000 |
| 0x01    | 1 <sup>st</sup> SET | CH2EQ1A2    | 0x000000 |
| 0x02    | Channel-2 EQ1       | CH2EQ1B1    | 0x000000 |
| 0x03    | Channel-2 EQ1       | CH2EQ1B2    | 0x000000 |
| 0x04    |                     | CH2EQ1A0    | 0x200000 |
| 0x05    |                     | CH2EQ2A1    | 0x000000 |
| 0x06    | 1 <sup>st</sup> SET | CH2EQ2A2    | 0x000000 |
| 0x07    | Channel-2 EQ2       | CH2EQ2B1    | 0x000000 |
| 0x08    | Charmer-2 EQ2       | CH2EQ2B2    | 0x000000 |
| 0x09    |                     | CH2EQ2A0    | 0x200000 |
| 0x0A    |                     | CH2EQ3A1    | 0x000000 |
| 0x0B    | 1 <sup>st</sup> SET | CH2EQ3A2    | 0x000000 |
| 0x0C    | Channel-2 EQ3       | CH2EQ3B1    | 0x000000 |
| 0x0D    | Onamie-2 LQ3        | CH2EQ3B2    | 0x000000 |
| 0x0E    |                     | CH2EQ3A0    | 0x200000 |
| 0x0F    |                     | CH2EQ4A1    | 0x000000 |
| 0x10    | 1 <sup>st</sup> SET | CH2EQ4A2    | 0x000000 |
| 0x11    | Channel-2 EQ4       | CH2EQ4B1    | 0x000000 |
| 0x12    | Onanner-2 LQ+       | CH2EQ4B2    | 0x000000 |
| 0x13    |                     | CH2EQ4A0    | 0x200000 |
| 0x14    |                     | CH2EQ5A1    | 0x000000 |
| 0x15    | 1 <sup>st</sup> SET | CH2EQ5A2    | 0x000000 |
| 0x16    | Channel-2 EQ5       | CH2EQ5B1    | 0x000000 |
| 0x17    | CHAINGI-Z EQU       | CH2EQ5B2    | 0x000000 |
| 0x18    |                     | CH2EQ5A0    | 0x200000 |
| 0x19    |                     | CH2EQ6A1    | 0x000000 |
| 0x1A    | 1 <sup>st</sup> SET | CH2EQ6A2    | 0x000000 |
| 0x1B    | Channel-2 EQ6       | CH2EQ6B1    | 0x000000 |
| 0x1C    | Channer-2 EQU       | CH2EQ6B2    | 0x000000 |
| 0x1D    |                     | CH2EQ6A0    | 0x200000 |
| 0x1E    |                     | CH2EQ7A1    | 0x000000 |
| 0x1F    | 1 <sup>st</sup> SET | CH2EQ7A2    | 0x000000 |
| 0x20    | Channel-2 EQ7       | CH2EQ7B1    | 0x000000 |
| 0x21    | GHAHHEFZ EQI        | CH2EQ7B2    | 0x000000 |
| 0x22    |                     | CH2EQ7A0    | 0x200000 |

Publication Date: Mar. 2019 Revision: 0.1 95/103



|      | T                                         |           |          |
|------|-------------------------------------------|-----------|----------|
| 0x23 | 1 <sup>st</sup> SET                       | CH2EQ8A1  | 0x000000 |
| 0x24 |                                           | CH2EQ8A2  | 0x000000 |
| 0x25 | Channel-2 EQ8                             | CH2EQ8B1  | 0x000000 |
| 0x26 | 5.16.11.15.1 <u>2 2 4</u> 5               | CH2EQ8B2  | 0x000000 |
| 0x27 |                                           | CH2EQ8A0  | 0x200000 |
| 0x28 |                                           | CH2EQ9A1  | 0x000000 |
| 0x29 | 1 <sup>st</sup> SET                       | CH2EQ9A2  | 0x000000 |
| 0x2A | Channel-2 EQ9                             | CH2EQ9B1  | 0x000000 |
| 0x2B | Onamici 2 EQ3                             | CH2EQ9B2  | 0x000000 |
| 0x2C |                                           | CH2EQ9A0  | 0x200000 |
| 0x2D |                                           | CH2EQ10A1 | 0x000000 |
| 0x2E | 1 <sup>st</sup> SET                       | CH2EQ10A2 | 0x000000 |
| 0x2F | Channel-2 EQ10                            | CH2EQ10B1 | 0x000000 |
| 0x30 | Chamler-2 EQ10                            | CH2EQ10B2 | 0x000000 |
| 0x31 |                                           | CH2EQ10A0 | 0x200000 |
| 0x32 |                                           | CH2EQ11A1 | 0x000000 |
| 0x33 | 4 <sup>St</sup> OFT                       | CH2EQ11A2 | 0x000000 |
| 0x34 | 1 <sup>st</sup> SET                       | CH2EQ11B1 | 0x000000 |
| 0x35 | Channel-2 EQ11                            | CH2EQ11B2 | 0x000000 |
| 0x36 |                                           | CH2EQ11A0 | 0x200000 |
| 0x37 |                                           | CH2EQ12A1 | 0x000000 |
| 0x38 | 4 <sup>St</sup> CET                       | CH2EQ12A2 | 0x000000 |
| 0x39 | - 1 <sup>st</sup> SET<br>- Channel-2 EQ12 | CH2EQ12B1 | 0x000000 |
| 0x3A |                                           | CH2EQ12B2 | 0x000000 |
| 0x3B |                                           | CH2EQ12A0 | 0x200000 |
| 0x3C |                                           | CH2EQ13A1 | 0x000000 |
| 0x3D | 1 <sup>st</sup> SET                       | CH2EQ13A2 | 0x000000 |
| 0x3E | Channel-2 EQ13                            | CH2EQ13B1 | 0x000000 |
| 0x3F | Channel-2 EQ13                            | CH2EQ13B2 | 0x000000 |
| 0x40 |                                           | CH2EQ13A0 | 0x200000 |
| 0x41 |                                           | CH2EQ14A1 | 0x000000 |
| 0x42 | 4 <sup>St</sup> OFT                       | CH2EQ14A2 | 0x000000 |
| 0x43 | 1 <sup>st</sup> SET                       | CH2EQ14B1 | 0x000000 |
| 0x44 | Channel-2 EQ14                            | CH2EQ14B2 | 0x000000 |
| 0x45 |                                           | CH2EQ14A0 | 0x200000 |
| 0x46 | 1 <sup>st</sup> SET                       | CH2EQ15A1 | 0x000000 |
| 0x47 | Channel-2 EQ15                            | CH2EQ15A2 | 0x000000 |
| L    | 1                                         |           |          |

Publication Date: Mar. 2019 Revision: 0.1 96/103



| 0x48 | ] [                     | CH2EQ15B1 | 0x000000 |
|------|-------------------------|-----------|----------|
| 0x49 |                         | CH2EQ15B2 | 0x000000 |
| 0x4A |                         | CH2EQ15A0 | 0x200000 |
| 0x4b | Channel-2 Mixer1        | M21       | 0x000000 |
| 0x4c | Channel-2 Mixer2        | M22       | 0x7FFFFF |
| 0x4D | Channel-2 Prescale      | C2PRS     | 0x080000 |
| 0x4E | Channel-2 Postscale     | C2POS     | 0x200000 |
| 0X4F | A0 of R channel SRS HPF | RSRSH_A0  | C7B691   |
| 0X50 | A1 of R channel SRS HPF | RSRSH_A1  | 38496E   |
| 0X51 | B1 of R channel SRS HPF | RSRSH_B1  | C46f8    |
| 0X52 | A0 of R channel SRS LPF | RSRSL_A0  | E81B9    |
| 0X53 | A1 of R channel SRS LPF | RSRSL_A1  | F22C12   |
| 0X54 | B1 of R channel SRS LPF | RSRSL_ B1 | FCABB    |
| 0x55 | Reserved                |           |          |
| 0X56 | Reserved                |           |          |
| 0X57 | Reserved                |           |          |
| 0X58 | Reserved                |           |          |
| 0X59 | Reserved                |           |          |
| 0x5A | Reserved                |           |          |
| 0x5B | Reserved                |           |          |
| 0x5C | Reserved                |           |          |
| 0x5D | Reserved                |           |          |
| 0x5E | Reserved                |           |          |
| 0x5F | Reserved                |           |          |
| 0x60 | Reserved                |           |          |
| 0X61 | Reserved                |           |          |
| 0x62 | Reserved                |           |          |
| 0X63 | Reserved                |           |          |
| 0X64 | DRC2 Power Meter        | C2_RMS    |          |
| 0X65 | DRC4 Power Meter        | C4_RMS    |          |
| 0X66 | DRC6 Power Meter        | C6_RMS    |          |
| 0X67 | DRC8 Power Meter        | C8_RMS    |          |
| 0x68 |                         | CH2EQ1A1  | 0x000000 |
| 0x69 | 2 <sup>nd</sup> SET     | CH2EQ1A2  | 0x000000 |
| 0x6A | Channel-2 EQ1           | CH2EQ1B1  | 0x000000 |
| 0x6B | CHAINGE EQT             | CH2EQ1B2  | 0x000000 |
| 0x6C |                         | CH2EQ1A0  | 0x200000 |

Publication Date: Mar. 2019 Revision: 0.1 97/103



| 0x6D |                       | CH2EQ2A1    | 0x000000 |
|------|-----------------------|-------------|----------|
| 0x6E | ond OFT               | CH2EQ2A2    | 0x000000 |
| 0x6F | 2 <sup>nd</sup> SET   | CH2EQ2B1    | 0x000000 |
| 0x70 | Channel-2 EQ2         | CH2EQ2B2    | 0x000000 |
| 0x71 |                       | CH2EQ2A0    | 0x200000 |
| 0x72 |                       | CH2EQ3A1    | 0x000000 |
| 0x73 | and are               | CH2EQ3A2    | 0x000000 |
| 0x74 | 2 <sup>nd</sup> SET   | CH2EQ3B1    | 0x000000 |
| 0x75 | Channel-2 EQ3         | CH2EQ3B2    | 0x000000 |
| 0x76 |                       | CH2EQ3A0    | 0x200000 |
| 0x77 |                       | CH2EQ4A1    | 0x000000 |
| 0x78 | 2 <sup>nd</sup> SET   | CH2EQ4A2    | 0x000000 |
| 0x79 | Channel-2 EQ4         | CH2EQ4B1    | 0x000000 |
| 0x7A | Channel-2 EQ4         | CH2EQ4B2    | 0x000000 |
| 0x7B |                       | CH2EQ4A0    | 0x200000 |
| 0x80 |                       | CH2MFLPF1A1 | 0x0000D3 |
| 0x81 | MELDEA                | CH2MFLPF1A2 | 0x000069 |
| 0x82 | MF LPF1               | CH2MFLPF1B1 | 0x3F594D |
| 0x83 | - Channel-2           | CH2MFLPF1B2 | 0xE0A50D |
| 0x84 |                       | CH2MFLPF1A0 | 0x000069 |
| 0x85 |                       | CH2MFLPF2A1 | 0x0000D3 |
| 0x86 | MF LPF2 Channel-2     | CH2MFLPF2A2 | 0x000069 |
| 0x87 |                       | CH2MFLPF2B1 | 0x3F594D |
| 0x88 |                       | CH2MFLPF2B2 | 0xE0A50D |
| 0x89 |                       | CH2MFLPF2A0 | 0x000069 |
| 0x8A |                       | CH2MFBPF1A1 | 0x000000 |
| 0x8B | MF BPF1               | CH2MFBPF1A2 | 0xFFC63B |
| 0x8C | Channel-2             | CH2MFBPF1B1 | 0x3F594D |
| 0x8D | GHAHH <del>e</del> -2 | CH2MFBPF1B2 | 0xE0A50D |
| 0x8E |                       | CH2MFBPF1A0 | 0x0039C5 |
| 0x8F |                       | CH2MFBPF2A1 | 0x000000 |
| 0x90 | MF BPF2               | CH2MFBPF2A2 | 0xFFC63B |
| 0x91 | Channel-2             | CH2MFBPF2B1 | 0x3F594D |
| 0x92 | Cnannei-2             | CH2MFBPF2B2 | 0xE0A50D |
| 0x93 |                       | CH2MFBPF2A0 | 0x0039C5 |
| 0x94 | MF CLIP<br>Channel-2  | CH2MFCLP    | 0x080000 |

Publication Date: Mar. 2019 Revision: 0.1 98/103



|           | MF G1                    |                       |                       |
|-----------|--------------------------|-----------------------|-----------------------|
| 0x95      | Channel-2                | CH2MFG1               | 0x019AFD              |
|           | MF G2                    | MF G2                 |                       |
| 0x96      | Channel-2                | CH2MFG2               | 0x080000              |
|           | MF G3                    |                       | 0.001050              |
| 0x97      | Channel-2                | CH2MFG3               | 0x0B4CE0              |
| 0)/00     | MF negative CLIP         |                       | 0x080000              |
| 0X98      | Channel-1                | CH1MFNCLP             |                       |
| 0.700     | MF G4                    | CHAMECA               | 01/00000              |
| 0X99      | Channel-1                | CH1MFG4               | 0X080000              |
| 0X9A~0X9F | Reserved                 |                       |                       |
| 0xA0      |                          | CH2EQ16A1             | 0x000000              |
| 0XA1      | 4 <sup>St</sup> OFT      | CH2EQ16A2             | 0x000000              |
| 0xA2      | 1 <sup>st</sup> SET      | CH2EQ16B1             | 0x000000              |
| 0XA3      | Channel-2 EQ16           | CH2EQ16B2             | 0x000000              |
| 0XA4      |                          | CH2EQ16A0             | 0x200000              |
| 0XA5      |                          | CH2EQ16A1             | 0x000000              |
| 0XA6      | 4St OFT                  | CH2EQ17A2             | 0x000000              |
| 0XA7      | 1 <sup>st</sup> SET      | CH2EQ17B1             | 0x000000              |
| 0xA8      | Channel-2 EQ17           | CH2EQ17B2             | 0x000000              |
| 0xA9      |                          | CH2EQ17A0             | 0x200000              |
| 0xAA      |                          | CH2EQ17A1             | 0x000000              |
| 0xAB      | 1 <sup>st</sup> SET      | CH2EQ18A2             | 0x000000              |
| 0xAC      |                          | CH2EQ18B1             | 0x000000              |
| 0xAD      | Channel-2 EQ18           | CH2EQ18B2             | 0x000000              |
| 0xAE      |                          | CH2EQ18A0             | 0x200000              |
|           | Dynamic bass DRC attack  |                       |                       |
| 0xAF      | threshold                | CH2SMBDRCATH          | 0x200000              |
|           | Channel-2                |                       |                       |
|           | Dynamic bass DRC release |                       |                       |
| 0xB0      | threshold                | CH2SMBDRCRTH          | 0x080000              |
|           | Channel-2                |                       |                       |
| 0xB1      | Boost chip control       | BSTCHID DTU4          | 0×010000              |
| UXDT      | release threshold1       | BSTCHIP_RTH1 0x010000 |                       |
| 0xB2      | Boost chip control       | BSTCHIP_RTH2          | 0x004000              |
| UNDZ      | release threshold2       | 50101111 _IX1112      | 0700 <del>1</del> 000 |

Publication Date: Mar. 2019 Revision: 0.1 99/103



# **Preliminary**

AD85050

| 0xB3 | Boost chip control | BSTCHIP RTH3 | 0x001000 |
|------|--------------------|--------------|----------|
|      | release threshold3 |              |          |

Publication Date: Mar. 2019 Revision: 0.1 100/103



# **Package Dimensions**

E-LQFP-48L (7mm x 7mm)



| C1 1   | Dimension in mm |      |  |
|--------|-----------------|------|--|
| Symbol | Min             | Max  |  |
| А      |                 | 1.60 |  |
| A1     | 0.05            | 0.15 |  |
| Ъ      | 0.17            | 0.27 |  |
| С      | 0.09            | 0.20 |  |
| D      | 6.90            | 7.10 |  |
| D1     | 8.90            | 9.10 |  |
| Е      | 6.90            | 7.10 |  |
| E1     | 8.90            | 9.10 |  |
| е      | 0.50 BSC        |      |  |
| L      | 0.45            | 0.75 |  |

Exposed pad

|    | Dimension in mm |      |
|----|-----------------|------|
|    | Min             | Max  |
| D2 | 4.31            | 5.21 |
| E2 | 4.31            | 5.21 |

Publication Date: Mar. 2019 Revision: 0.1 101/103



# **Preliminary**



# **Revision History**

| Revision | Date       | Description            |
|----------|------------|------------------------|
| 0.1      | 2019.03.29 | Initial draft version. |

# **Important Notice**

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.