Variable Selection Uncertainty in Linear Models

Aldo Solari Joint work with Ningning Xu and Jelle Goeman

Padua, June 16, 2017

- **1** Variable Selection Algorithms
- **2** Variable Selection Uncertainty
- 3 Predictive modeling
- **4** Explanatory modeling
- **5** Discussion

Outline

- **1** Variable Selection Algorithms
- **2** Variable Selection Uncertainty
- 3 Predictive modeling
- 4 Explanatory modeling
- Discussion

Classic example

FIGURE 1.1. Scatterplot matrix of the prostate cancer data. The first row shows the response against each of the predictors in turn. Two of the predictors, svi and gleason, are categorical.

Prostate cancer data

Response

lpsa for n = 67 subjects

Predictors

1, lcavol, lweight, age, lbph, svi, lcp, gleason, pgg45

Variable selection problem

Select the "optimal" subset of predictors

Number of possible subsets

$$2^p = 256$$

Selection algorithms

	C_{P}	BIC	LASSO	FS
lcavol lweight	•	•	•	•
age lbph	•		•	
svi	•		•	•
lcp gleason	•			
pgg45	•			

C_{P}	best subsets selection with min C _P /AIC
BIC	best subsets selection with min BIC
LASSO	10-fold CV with 1-SE rule (Hastie et al. 2009)
FS	forward stop rule on LAR path at 10% FDR (G'Sell et al. 2016)

Post-selection inference

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.32592     0.77998  -0.418     0.6775

lcavol     0.50552     0.09256     5.461     8.85e-07 ***

lweight     0.53883     0.22071     2.441     0.0175 *

lbph     0.14001     0.07041     1.988     0.0512 .

svi     0.67185     0.27323     2.459     0.0167 *
```

Residual standard error: 0.7275 on 62 degrees of freedom Multiple R-squared: 0.6592, Adjusted R-squared: 0.6372 F-statistic: 29.98 on 4 and 62 DF, p-value: 6.911e-14

Naïve interpretation of results

Variables in the selected model

Important

Importance quantified by p-values/confidence intervals for the coefficients, which are calculated without taking into account the selection

Variables not in the selected model

Not important

Interpreted as if they had coefficients = 0

A "quiet scandal"

Breiman (1992) referred to this naïve post-selection inference as a "quiet scandal" in the statistical community

Two problems

Post-selection inference

Significance of each variable within the selected model, taking into account the selection

• PoSI (Berk et al., 2013)

Comparison of models

Many-to-one comparisons with the full model

- Adequate models (Mallows, 1973; Spjøtvoll, 1977)
- Primitive models (Cox and Snell, 1974)

Selection algorithm = point estimation

$$\widehat{\mathbb{R}}$$

$$\widehat{\mathbb{R}}$$

Confidence set = uncertainty

Outline

- **1** Variable Selection Algorithms
- **2** Variable Selection Uncertainty
- 3 Predictive modeling
- 4 Explanatory modeling
- Discussion

Linear model

$$y \sim \mathcal{N}(\mu, \sigma^2 I_n)$$

- $y \in \mathbb{R}^n$: random response
- $\mu \in \mathbb{R}^n$, $\sigma^2 > 0$: unknown parameters

Design matrix

- $X \in \mathbb{R}^{n \times p}$: design matrix
- range(X) : column space of X

First-order misspecification

- $\mu \in \text{range}(X)$ iff $\mu = X\beta$: correct (unbiased) full model
- $\mu \notin \operatorname{range}(X)$: first-order misspecification
- "If all models are wrong, the practical question is how wrong do they have to be to not be useful" (Box and Draper, 1986)

Models

- $M \subseteq F = \{1, \ldots, p\}$ with #M = m
- $X_M \in \mathbb{R}^{n \times m}$: model M design matrix
- Orthogonal projector onto range(X_M)

$$P_M = X_M (X_M^\mathsf{T} X_M)^{-1} X_M^\mathsf{T}$$

• Model *M* estimator

$$\hat{\mu}_M \sim \mathcal{N}(\mu_M, \sigma^2 P_M)$$

with
$$\hat{\mu}_M = P_M y$$
 and $\mu_M = P_M \mu$

Candidate models

$$\mathcal{M} = \{M : M \subseteq F\}$$

with
$$\#\mathcal{M} = 2^p$$

To explain or to predict?

Explanatory modeling

- Obtain the most accurate representation of the underlying theory
- Avoid/minimize Bias
- Omitted-variable bias compromises interpretation

Predictive modeling

- Generate good predictions of new y
- minimize Bias² + Variance
- A biased model can predict better than an unbiased one

Outline

- **1** Variable Selection Algorithms
- **2** Variable Selection Uncertainty
- 3 Predictive modeling
- 4 Explanatory modeling
- Discussion

Inferior and superior models

Mean Squared Error

$$rac{ ext{MSE}_M}{\sigma^2} = \lambda_M + m$$
 where $\lambda_M = rac{\|\mu_M - \mu\|^2}{\sigma^2}$

Relative efficiency

$$e_M = \frac{MSE_M}{MSE_F} = \frac{\lambda_M + m}{\lambda_F + p} > 1 \quad \text{iff} \quad \lambda_M^F = \frac{\|\mu_M - \mu_F\|^2}{\sigma^2} > p - m$$

where $\lambda_M = \lambda_M^F + \lambda_F$ (Pythagoras' theorem)

Inferior and superior models

- $\mathcal{I} = \{ M \in \mathcal{M} : \lambda_M^F > p m \}$
- $S = \{M \in \mathcal{M} : \lambda_M^F \leq p m\}$

Hypothesis testing

One true hypothesis

$$M \in \mathcal{I} : \lambda_M^F > p - m$$
 or $M \in \mathcal{S} : \lambda_M^F \le p - m$

Testing for superiority

- Null $M \in \mathcal{I}$ against alternative $M \in \mathcal{S}$
- If $M \in \mathcal{I}$ rejected at level α , then $M \in \hat{\mathcal{S}}_{\alpha}$

Testing for inferiority

- Null $M \in \mathcal{S}$ against alternative $M \in \mathcal{I}$
- If $M \in \mathcal{S}$ rejected at level α , then $M \in \hat{\mathcal{I}}_{\alpha}$

Uncertainty

If both nulls $M \in \mathcal{S}$ and $M \in \mathcal{I}$ not rejected at α , then $M \in \hat{\mathcal{U}}_{\alpha}$

Confidence sets

$1-\alpha$ confidence of no type I errors

$$P(\{\hat{\mathcal{S}}_{\alpha} \cap \mathcal{I} = \emptyset\} \cap \{\hat{\mathcal{I}}_{\alpha} \cap \mathcal{S} = \emptyset\}) \ge 1 - \alpha$$

Familywise error control

The probability of at least one type I error in testing the family of 2^{p+1} null hypotheses $\{(M \in \mathcal{I}, M \in \mathcal{S}), M \in \mathcal{M}\}$ should be at most α

Uncertainty set

$$\hat{\mathcal{U}}_lpha = \mathcal{M} \setminus (\hat{\mathcal{S}}_lpha \cup \hat{\mathcal{I}}_lpha)$$

Correct full model assumption

Assumption *

 $*: \lambda_F = 0 \text{ iff } \mu \in \text{range}(X)$

$$e_M^* = \frac{\lambda_M^F + m}{p} > 1$$
 iff $\lambda_M^F = \frac{\|\mu_M - \mu_F\|^2}{\sigma^2} > p - m$

\mathcal{F} test statistic

$$T_M^F = \frac{\|\hat{\mu}_M - \hat{\mu}_F\|^2}{\hat{\sigma}_F^2} \stackrel{*}{\sim} (p - m) \mathcal{F}'_{p-m,n-p}(\lambda_M^F)$$

where $\hat{\sigma}_F^2 = \frac{\|\hat{\mu}_F - y\|^2}{n - p}$ is the full model estimator of σ^2

Reject
$$M \in \mathcal{S}: \lambda_M^F \leq p-m$$
 if $T_M^F > (p-m)f'_{p-m,n-p}^{1-\alpha}(p-m)$

Reject
$$M \in \mathcal{I}: \lambda_M^F > p-m$$
 if $T_M^F < (p-m)f'_{p-m,n-p}^{\alpha}(p-m)$

Assumption * - free

\mathcal{F} test statistic

$$T_M^F = \frac{\|\hat{\mu}_M - \hat{\mu}_F\|^2}{\hat{\sigma}_F^2} \sim (p - m) \mathcal{F}_{p-m,n-p}''(\lambda_M^F, \lambda_F)$$

Stochastic order

$$? \overset{\mathrm{st}}{\leq} \mathcal{F}_{p-m,n-p}''(\lambda_{M}^{F},\lambda_{F}) \overset{\mathrm{st}}{\leq} \mathcal{F}_{p-m,n-p}'(\lambda_{M}^{F})$$

Conservative testing for inferiority

Reject
$$M \in \mathcal{S}: \lambda_M^F \leq p-m$$
 if $T_M^F > (p-m)f'_{p-m,n-p}^{1-\alpha}(p-m)$

Scheffé's method

Maximum test statistic

$$T_{\varnothing}^{F} = \max_{M \in \mathcal{M}} T_{M}^{F} \sim p \mathcal{F'}_{p,n-p}(\lambda_{\varnothing}^{F}, \lambda_{F})$$

Simultaneous testing for inferiority

Reject
$$M \in \mathcal{S}: \lambda_M^F \leq p - m$$
 if $T_M^F > pf'_{p,n-p}^{1-\alpha}(p)$

 $1-\alpha$ confidence of no type I errors

$$P(\hat{\mathcal{I}}_{\alpha} \cap \mathcal{S}) \geq 1 - \alpha$$

Inferior models: $u_{5\%} = 54.1 \%$

Predictions $\widehat{\mathrm{MSE}}_F$

Outline

- **1** Variable Selection Algorithms
- **2** Variable Selection Uncertainty
- 3 Predictive modeling
- 4 Explanatory modeling
- Discussion

Explanatory modeling

Correct (unbiased) models

$$\mathcal{C} = \{ M \in \mathcal{M} : \lambda_M = 0 \}$$

Wrong (biased) models

$$\mathcal{W} = \{ M \in \mathcal{M} : \lambda_M > 0 \}$$

Testing for correctness?

Null $M \in \mathcal{W}$ against point alternative $M \in \mathcal{C}$ implies α power

Confidence about wrong models only

$$P(\hat{W}_{\alpha} \cap C = \emptyset) \ge 1 - \alpha$$

More power

$$\mathcal{C} \subseteq \mathcal{S}$$

 $\mathcal{W}\supseteq\mathcal{I}$ implies a more powerful confidence set $\hat{\mathcal{W}}_{\alpha}\supseteq\hat{\mathcal{I}}_{\alpha}$

Adequate Models

Adequate models

$$\mathcal{A} = \{ M \in \mathcal{M} : \ \lambda_M^F = 0 \}$$

Non-adequate models

$$\mathcal{B} = \{M \in \mathcal{M}: \ \lambda_M^F > 0\}$$

Relationships

$$C \subseteq A \subseteq S$$
 and $I \subseteq B \subseteq W$

Mallows (1973)

Assumption * and Scheffé's method

Spjøtvoll (1977)

Assumption * and closed testing method

Scheffé's method: $u_{5\%} = 32.5 \%$

Closed testing method: $u_{5\%} = 18.8 \%$

Summary

Training set: n = 67

Inference	Method	Size	Uncertain	u _{5%}
Inferior		117	138	54.1 %
Non-adequate		172	83	32.5 %
Non-adequate		207	48	18.8 %

Training + test: n = 97

Inference	Method	Size	Uncertain	<i>u</i> _{5%}
Inferior	Scheffé	136	119	46.6 % 29.8 % 12.5 %
Non-adequate	Scheffé	179	76	29.8 %
Non-adequate	Closed testing	223	32	12.5 %

Outline

- **1** Variable Selection Algorithms
- **2** Variable Selection Uncertainty
- 3 Predictive modeling
- 4 Explanatory modeling
- **6** Discussion

Alternative assumptions

Known σ^2 (Tibshirani et al. 2016)

- $T_M = \|\hat{\mu}_M y\|^2 / \sigma^2 \sim \chi_{n-m}^2(\lambda_M)$
- $T_M^F = \|\hat{\mu}_M \hat{\mu}_F\|^2 / \sigma^2 \sim \chi_{p-m}^2(\lambda_M^F)$

Estimator $\hat{\sigma}^2$ (Berk et al. 2011)

- $\hat{\sigma}^2$ with $E(\hat{\sigma}^2) = \sigma^2$, $\hat{\sigma}^2 \perp y$ and g degrees of freedom
- $T_M = \|\hat{\mu}_M y\|^2 / \hat{\sigma}^2 \sim (n m) \mathcal{F}'_{n-m,g}(\lambda_M)$
- $T_M^F = \|\hat{\mu}_M \hat{\mu}_F\|^2 / \hat{\sigma}^2 \sim (p m) \mathcal{F}'_{p-m,q}(\lambda_M^F)$

Alternative null hypotheses

Forward stepwise testing (G'Sell et al. 2016)

- Nested models: $\varnothing \subset M_1 \subset \ldots \subset M_s \subset \ldots \subset M_{p-1} \subset F$
- Complete null : $\lambda_{M_s} = 0$ for s = 1, 2, ..., p
- Incremental null : $\lambda_{M_{s-1}} = \lambda_{M_s}$ for $s=1,2,\ldots,p$

PoSI (Berk et al. 2011)

- $\lambda_{M\setminus\{j\}} = \lambda_M$ for every $j \in M$ and $M \in \mathcal{M}$
- Power improvement with closed testing is possible

Discussion

NP-hard approach

Shortcuts needed to reduce exponential complexity

High-dimensional data

 $p \gg n$: change of paradigm?

All comparisons

Ranking of models e.g. $rank(F) \in [1, ..., 139]$

Measuring uncertainty

is a statistician's task.

Bibliography

- Berk, Brown, Buja, Zhang, and Zhao (2013) Valid post-selection inference Annals of Statistics, 41:802-837
- Mallows (1973)
 Some comments on C_P Technometrics, 15:661-765
- Spjøtvoll (1977)
 Alternatives to plotting C_P in multiple regression
 Biometrika, 64:1-8