Primalidad y factorización

Agustín Santiago Gutiérrez

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Campamento Caribeño ACM-ICPC 2016

Contenidos

- 🚺 Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Contenidos

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalida
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Definición

Aritmética módulo M (\mathbb{Z}_M)

La aritmética módulo M consiste en una modificación de la aritmética usual de números enteros, en la cual trabajamos únicamente con el resto de los números al ser divididos por un cierto entero fijo M>0, ignorando "todo lo demás" de los números involucrados.

Definición

Aritmética módulo M (\mathbb{Z}_M)

La aritmética módulo M consiste en una modificación de la aritmética usual de números enteros, en la cual trabajamos únicamente con el resto de los números al ser divididos por un cierto entero fijo M>0, ignorando "todo lo demás" de los números involucrados.

 Así, 11 = 18 si estamos trabajando módulo 7, pues ambos dejan un resto de 4 en la división por 7. Esto se suele notar 11 = 18(mód 7)

Definición

Aritmética módulo M (\mathbb{Z}_M)

La aritmética módulo M consiste en una modificación de la aritmética usual de números enteros, en la cual trabajamos únicamente con el *resto* de los números al ser divididos por un cierto entero fijo M > 0, ignorando "todo lo demás" de los números involucrados.

- Así, 11 = 18 si estamos trabajando módulo 7, pues ambos dejan un resto de 4 en la división por 7. Esto se suele notar 11 = 18(mód 7)
- Una forma operacional de ver esta aritmética es suponer que todo el tiempo tenemos los números reducidos al rango de enteros en [0, M), y tomamos el resto de la división por M para devolverlos a ese rango luego de cada operación.

Propiedades

A los efectos de realizar sumas, restas y productos, la aritmética módular es análoga a la aritmética usual, manteniendo sus propiedades importantes.

- $a + b \equiv b + a \pmod{M}$
- $\bullet (a+b) + c \equiv a + (b+c) (\mathsf{m\'od}\ M)$
- 0 es el neutro de la suma.
- Para todo a existe un único inverso aditivo modular −a,
 a + (-a) ≡ 0(mód M). a b ≡ a + (-b)(mód M)
- $a \cdot b \equiv b \cdot a \pmod{M}$
- $\bullet (a \cdot b) \cdot c \equiv a \cdot (b \cdot c) (\mathsf{mod}\ M)$
- 1 es el neutro del producto.
- $(a+b) \cdot c \equiv a \cdot c + b \cdot c \pmod{M}$

Forma operacional en el código

Supongamos que se tiene que computar una suma de los números enteros a [0] hasta a [N-1], pero solamente nos importan los últimos 4 dígitos (equivale a trabajar módulo 10000).

```
int result = 0;
for (int i = 0; i < N; i++)
result = (result + a[i]) %10000;</pre>
```

Como decíamos antes, a nivel de operaciones trabajar con aritmética modular equivale a simplemente tomar módulo luego de cada operación aritmética básica.

Problema ante números negativos

Sin embargo, la implementación anterior puede resultar problemática al trabajar con números **negativos**.

- Si por ejemplo fuera N = 2, a[0]=123 y a[1]=-200, el código anterior produce -77, que puede no ser lo deseado.
- Incluso si no hay números negativos en el problema, es muy común que restemos números en nuestra solución.
- Estos resultados con valores negativos ocurren porque el resultado de la división entera se redondea hacia cero en los lenguajes y plataformas más populares.

Problema ante números negativos

Sin embargo, la implementación anterior puede resultar problemática al trabajar con números **negativos**.

- Si por ejemplo fuera N = 2, a[0]=123 y a[1]=-200, el código anterior produce -77, que puede no ser lo deseado.
- Incluso si no hay números negativos en el problema, es muy común que restemos números en nuestra solución.
- Estos resultados con valores negativos ocurren porque el resultado de la división entera se redondea hacia cero en los lenguajes y plataformas más populares.
- Solución:

```
int MOD (int x, int M) {return ((x %M) + M) %M;}
```


Cuidado con el overflow

- Otro problema al que es especialmente común enfrentarse al trabajar con aritmética modular es el peligro de tener overflow en las operaciones.
- Por esto es que tomamos módulo luego de cada operación, y no solamente al final de todo el programa.
- Truquito en C++: Tener en cuenta el tipo __int128, entero de 128 bits. No está presente en todo judge, pero puede ser muy útil cuando está disponible.

¿Qué pasa con la división?

 ¿Podemos operar modularmente con la división tal cual lo hacemos con sumas, restas y productos?

9 / 47

¿Qué pasa con la división?

- ¿Podemos operar modularmente con la división tal cual lo hacemos con sumas, restas y productos?
- NO. Por ejemplo:

$$\frac{10}{2} \equiv 5 (\text{m\'od } 8), \, \text{pero } 10 \equiv 2 (\text{m\'od } 8) \, \text{y} \, \, \frac{2}{2} \equiv 1 \not \equiv 5 (\text{m\'od } 8)$$

 Podemos garantizar que este "truco" funciona cuando el módulo es un número primo.

```
\frac{27}{3} \equiv 2 \pmod{7}, 27 \equiv 6 \pmod{7} y \frac{6}{3} \equiv 2 \pmod{7}
Pero solo si el divisor no es cero (módulo p) \frac{140}{14} \equiv 3 \pmod{7}, pero 140 \equiv 14 \equiv 0 \pmod{7} y \frac{0}{0} \equiv ? \pmod{7}
```

¿Qué pasa con la división?

- ¿Podemos operar modularmente con la división tal cual lo hacemos con sumas, restas y productos?
- NO. Por ejemplo:

$$\frac{10}{2} \equiv 5 (\text{m\'od } 8), \, \text{pero } 10 \equiv 2 (\text{m\'od } 8) \, \text{y} \, \frac{2}{2} \equiv 1 \not \equiv 5 (\text{m\'od } 8)$$

 Podemos garantizar que este "truco" funciona cuando el módulo es un número primo.

$$\frac{27}{3}\equiv 2(\text{m\'od }7),\ 27\equiv 6(\text{m\'od }7)\ \text{y}\ \frac{6}{3}\equiv 2(\text{m\'od }7)$$
 Pero solo si el divisor **no es cero** (m\'odulo p) $\frac{140}{14}\equiv 3(\text{m\'od }7),\ \text{pero }140\equiv 14\equiv 0(\text{m\'od }7)\ \text{y}\ \frac{0}{0}\equiv ?(\text{m\'od }7)$

 ¿Pero y si aún con un módulo primo, la división modular no resulta una división entera?

$$\frac{12}{3} \equiv 4 (\text{m\'od 7}) \text{, pero } 12 \equiv 5 (\text{m\'od 7}) \text{ y } \frac{5}{3} \equiv ? (\text{m\'od 7})$$

Inversos modulares

Definición

Decimos que *b* es inverso de *a* módulo *M* si $a \cdot b \equiv 1 \pmod{M}$.

Notar que solo un $a \not\equiv 0 \pmod{M}$ podría tener un inverso, y de existir el inverso es único, y a su vez a resulta ser el inverso de b.

Inversos modulares

Definición

Decimos que *b* es inverso de *a* módulo *M* si $a \cdot b \equiv 1 \pmod{M}$.

Notar que solo un $a \not\equiv 0 \pmod{M}$ podría tener un inverso, y de existir el inverso es único, y a su vez a resulta ser el inverso de b.

Teorema

Si p es un número primo, entonces todo número $a \not\equiv 0 \pmod{p}$ tiene un inverso módulo p.

Inversos modulares: utilidad

- Recordemos que para realizar 3/2 = 1,5, en realidad podríamos multiplicar directamente por el inverso de 2, es decir $3 \cdot 0,5 = 1,5$
- Lo mismo podemos hacer modularmente. Por ejemplo,
 5 · 3 ≡ 1(mód 7), así que inv(3) = 5. Y entonces recordando el ejemplo anterior:
 ½ ≡ 4(mód 7),

```
3 = 4 \pmod{7},
12 \equiv 5 \pmod{7} \text{ y}
\frac{5}{3} \equiv 5 \cdot inv(3) \equiv 5 \cdot 5 \equiv 4 \pmod{7}
```

- De esta forma, ya podemos dividir modularmente al trabajar con un número primo (excepto cuando el divisor se hace 0 módulo p).
- ¿Pero cómo calculamos los inversos?

Contenidos

- Aritmética modular
 - Operaciones, estructuraFermat e inversos modulares
 - Potenciación logarítmica
- 2 Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- 3 Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Pequeño teorema de Fermat

Teorema

Si p es primo y $a \not\equiv 0 \pmod{p}$, entonces $a^{p-1} \equiv 1 \pmod{p}$

- Por ejemplo $6^{30} = 7131416765184947029025 \cdot 31 + 1$
- ¿Para qué puede servir este teorema?

Aplicación 1: Cálculo de inversos

- Recordemos que dado $a \neq 0$, si encontramos algún número x tal que $a \cdot x \equiv 1 \pmod{p}$, x será automáticamente el inverso de a.
- Si tomamos $x = a^{p-2}$, ¿Cuánto vale $a \cdot x$?

Aplicación 1: Cálculo de inversos

- Recordemos que dado $a \neq 0$, si encontramos algún número x tal que $a \cdot x \equiv 1 \pmod{p}$, x será automáticamente el inverso de a.
- Si tomamos $x = a^{p-2}$, ¿Cuánto vale $a \cdot x$?
- Tenemos $a \cdot x = a^{p-1} \equiv 1 \pmod{p}$ por el Pequeño Teorema de Fermat.
- Luego para cada a su inverso será simplemente a^{p-2} .

Aplicación 2: Testeo de residuo cuadrático

Definición

Un resto r se dice un residuo cuadrático módulo p si existe x tal que $x^2 \equiv r \pmod{p}$

Por ejemplo los residuos cuadráticos módulo 5 son 0, 1, 4. Notar que 0 siempre es residuo cuadrático módulo *p*.

• Si $r \neq 0$ es residuo cuadrático, ¿Cuánto vale $r^{\frac{p-1}{2}}$?

Aplicación 2: Testeo de residuo cuadrático

Definición

Un resto r se dice un residuo cuadrático módulo p si existe x tal que $x^2 \equiv r \pmod{p}$

Por ejemplo los residuos cuadráticos módulo 5 son 0, 1, 4. Notar que 0 siempre es residuo cuadrático módulo *p*.

- Si $r \not\equiv 0$ es residuo cuadrático, ¿Cuánto vale $r^{\frac{p-1}{2}}$?
- $r \equiv x^2$ para algún $x \not\equiv 0$, y entonces $r^{\frac{p-1}{2}} \equiv (x^2)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$
- Se puede verificar que además si para algún r vale $r^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, r es residuo cuadrático módulo p.

Contenidos

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Potenciación logarítmica

- En los ejemplos anteriores hemos reducido algunos problemas a calcular a^b módulo M, para enteros no negativos a, b, M.
- ¿Cómo hacemos esto más eficientemente que realizando b 1 multiplicaciones?

Potenciación logarítmica (idea)

- Una buena idea es pensar en ir elevando al cuadrado sucesivamente, lo cual permite que el exponente crezca rápidamente.
- Pensado de manera recursiva, si llamamos $f(a, n) = a^n$:

$$f(a,n) = \begin{cases} 1 & \text{si } n = 0 \\ f\left(a^2, \frac{n}{2}\right) & \text{si } n \text{ es par} \\ a \cdot f\left(a^2, \left|\frac{n}{2}\right|\right) & \text{si } n \text{ es impar} \end{cases}$$

Potenciación logarítmica (código)

```
typedef long long tint;
    tint potlog(tint a, tint b, const tint M)
        tint res = 1:
        while (b > 0)
            if (b\% 2 != 0)
                res = MOD(res*a, M);
            a = MOD(a*a, M);
            b /= 2;
10
11
        return res;
```

Invariante de ciclo: La respuesta que deseamos es $res \cdot (a^b \text{ módulo } M)$ Este método realiza solamente $O(\lg b)$ multiplicaciones.

Contenidos

- Operaciones, estructura
- Potenciación logarítmica

Primalidad

- Criba
- - Algoritmo ingenuo
- - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Problema

- Una necesidad muy usual al trabajar con números primos es la de calcular todos los primos desde 1 hasta N para un cierto N.
- La idea es realizarlo de manera más eficiente que verificando la primalidad de cada número por separado.

- Si verificásemos cada número por separado, lo que haríamos sería recorrer sus posibles divisores para ver si es primo.
- ¿Que pasaría si en lugar de probar los divisores de cada número, descartásemos sus múltiplos?

- Si verificásemos cada número por separado, lo que haríamos sería recorrer sus posibles divisores para ver si es primo.
- ¿Que pasaría si en lugar de probar los divisores de cada número, descartásemos sus múltiplos?
- Hay $\frac{N}{1}$ múltiplos de 1, $\frac{N}{2}$ múltiplos de 2, $\cdots \frac{N}{N}$ múltiplos de N. Luego si recorremos todo el costo total es

$$\sum_{i=1}^{N} \frac{N}{i} = N \sum_{i=1}^{N} \frac{1}{i} = \Theta(N \lg N)$$

Criba

Idea 1 (cont.)

- Esta idea es verdaderamente muy sencilla, y como vimos ya alcanza una eficiencia aceptable.
- Además, al recorrer los múltiplos de todos los números, se encuentran todos los divisores propios de todos los números.
- De esta forma es extremadamente fácil modificar esta versión para computar fácilmente sumas de divisores, cantidades, y otras funciones similares

```
for(int i = 0; i < MAX; i++) p[i] = true;
p[0] = p[1] = false;
for (int i = 2; i < MAX; i++)
    for (int i = 2*i; i < MAX; i += i) p[i] = false;
```


- Todo número compuesto tiene un divisor primo.
- Por lo tanto, alcanza con descartar los múltiplos de los números primos que vamos encontrando.
- La cantidad de operaciones a realizar en este caso se reduce a Θ(N lg lg N), que es "casi lineal".

```
for(int i = 0; i < MAX; i++) p[i] = true;
p[0] = p[1] = false;
for (int i = 2; i < MAX; i++)
if (p[i])
for (int j = 2*i; j < MAX; j += i) p[j] = false;</pre>
```

- Todo número compuesto tiene un divisor primo p, con $p < \sqrt{N}$.
- Podemos parar el proceso de descarte de múltiplos en \sqrt{N} .
- La cantidad de operaciones sigue siendo $\Theta(N \lg \lg N)$.

```
for(int i = 0; i < MAX; i++) p[i] = true;
p[0] = p[1] = false:
for (int i = 2; i*i < MAX; i++)
if (p[i])
    for (int i = 2*i; i < MAX; i += i) p[i] = false;
```

- De manera similar al caso anterior, si $N < p^2$ es compuesto, tiene un divisor primo menor que p, y ya habrá sido descartado.
- Podemos comenzar el descarte de los múltiplos de i por i².
- Aún con esta optimización, la cantidad de operaciones sigue siendo Θ(N lg lg N).

```
for(int i = 0; i < MAX; i++) p[i] = true;
p[0] = p[1] = false;
for (int i = 2; i*i < MAX; i++)
if (p[i])
for (int j = i*i; j < MAX; j += i) p[j] = false;</pre>
```

Tiempos

Para MAX=300M:

RecorrerMultiplos 39.1s

CribaBasica 5.6s

CribaHastaRaiz 3.2s

CribaHastaRaizDesdeICuadrado 3.0s

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Algoritmo ingenuo

- Como ya hemos mencionado, un número compuesto N tendrá un divisor primo menor o igual a \sqrt{N}
- Un algoritmo simple $O(\sqrt{N})$ consistirá entonces de un chequeo de todos los números enteros en el rango $[2, \sqrt{N}]$, en busca de divisores de N.

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Test de Rabin - Miller (Introducción)

- El test de Rabin-Miller es un algoritmo **probabilístico**, muy eficiente para verificar si un número es primo.
- Se basa en su antecesor, el test de Fermat.
- Recordemos: $a \not\equiv 0 \pmod{p} \Rightarrow a^{p-1} \equiv 1 \pmod{p}$

Test de Fermat

- El test de Fermat es un test probabilístico para verificar si un número candidato N es primo.
- Se selecciona para ello un entero al azar $a \in [1, N)$.
- Si N es primo necesariamente será $a^{N-1} \equiv 1 \pmod{N}$, así que si esto no ocurre descartamos al número como primo.
- Si esto ocurre, el número pasó el test de Fermat con a como testigo. El test puede repetirse con varios valores de a para aumentar la confianza.

Test de Fermat: problema

- El test de Fermat es eficiente, pero tiene un problema: existen ejemplos de números que pasan el test de Fermat para todo valor de a coprimo con N, pero que son compuestos.
- Estos números extremos son raros y se denominan de Carmichael. Los primeros son 561, 1105, 1729, 2465, 2821, 6601, 8911.
- Con estos números, el test solamente los detecta como compuestos si a es múltiplo de uno de los primos que dividen a N, y por lo tanto el test es prácticamente una búsqueda de divisores aleatoria.

Test de Rabin - Miller (idea)

- El test de Rabin-Miller elimina este problema verificando una condición más fuerte.
- Observemos que si p > 2 es primo y $x^2 = 1 \pmod{p}$, x solo puede ser 1 o -1 módulo p.
- Luego si $p-1=2^{\alpha}k$, con k impar y $\alpha \geq 1$, tenemos que para cualquier $a \not\equiv 0 \pmod{p}$ debe ser $a^{2^{\alpha}k} \equiv 1 \pmod{p}$.
- Pero entonces $a^{2^{\alpha-1}k} \equiv 1 \text{ o } -1 \pmod{p}$
- Y si fuera 1, entonces nuevamente $a^{2^{\alpha-2}k} \equiv 1$ o $-1 \pmod{p}$
- Y así podemos repetir el razonamiento hasta que $a^k \equiv 1$ o bien $a^{2^j k} \equiv -1$ para algún $0 \le j < \alpha$

Test de Rabin - Miller (idea cont.)

Tenemos entonces las siguientes posibilidades para el valor de a^{2^lk} (una por columna):

En general estas son chequeadas desde abajo hacia arriba, de forma que cada valor necesario es el cuadrado del que se necesitó en el paso anterior:

En general estas son chequeadas desde abajo hacia arriba, de forma que cada valor necesario es el cuadrado del que se necesitó en el paso anterior:

j								
α	1	1		1	1	1	1	
α – 1	-1	1		1	1	1	1	
α – 2	?	-1		1	1	1	1	
			• • •					
2	?	?		-1	1	1	1	
1	?	?		?	-1	1	1	$a^{2k}=(a^k)^2\equiv -1$
0	?	?		?	?	-1	1	

En general estas son chequeadas desde abajo hacia arriba, de forma que cada valor necesario es el cuadrado del que se necesitó en el paso anterior:

En general estas son chequeadas desde abajo hacia arriba, de forma que cada valor necesario es el cuadrado del que se necesitó en el paso anterior:

$\begin{array}{c} \mathbf{j} \\ \alpha \\ \alpha - 1 \end{array}$	1				1		
α – 2	?	-1	 1	1	1	1	$a^{2^{\alpha-2}k}\equiv -1$
2	?	?	 -1	1	1	1	
1	?	?	 ?	-1	1	1	
0	?	?	 ?	?	-1	1	

En general estas son chequeadas desde abajo hacia arriba, de forma que cada valor necesario es el cuadrado del que se necesitó en el paso anterior:

41 / 47

Test de Rabin - Miller (conclusión)

- Si ninguno de los casos anteriores se da, concluímos que definitivamente el número no es primo.
- Si alguno funciona, ese valor de a funciona y el número parece ser primo.
- Al igual que en el test de Fermat, conviene utilizar varios valores de a para aumentar la confianza.
- En el caso del test de Rabin-Miller, tenemos la garantía de que si N es compuesto, al menos el 75 % de los posibles restos a no nulos módulo N lo demostrarán usando el test.
- Por lo tanto si repetimos el test k veces sobre un número compuesto, eligiendo números de manera aleatoria, uniforme e independiente, la probabilidad de error es como máximo ¹/_{4k}.
- Los números primos siempre pasan el test, y son reportados como tales.

- Aritmética mod
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidad
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Factorización logarítmica

- Buena alternativa si nos interesa poder factorizar rápidamente cualquier número hasta N, y aceptamos el costo de una criba hasta N.
- Si en lugar de solamente guardar si un número es primo o no, guardamos un primo que lo divida mientras hacemos la criba, luego podemos saber un divisor primo de cualquier número en O(1). Esto permite factorizar cualquier número en O(lg N).

```
for(int i = 0; i < MAX; i++) p[i] = i;
p[0] = p[1] = 1;
for (int i = 2; i*i < MAX; i++)
if (p[i] == i)
for (int j = i*i; j < MAX; j += i) p[j] = i;</pre>
```


- - Operaciones, estructura

 - Potenciación logarítmica
- - - Algoritmo ingenuo
- Factorización

 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Factorización directa

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidac
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Factorización directa

- Aritmética modular
 - Operaciones, estructura
 - Fermat e inversos modulares
 - Potenciación logarítmica
- Primalidac
 - Criba
 - Verificación directa
 - Algoritmo ingenuo
 - Test de Rabin Miller
- Factorización
 - Criba
 - Factorización directa
 - Algoritmo ingenuo
 - Factorización rápida

Factorización directa