1.7.4) Show each of the following:

a.)
$$\{e\} * = \{e\}$$

$$\{e\}^* = \{e, ee, eee, eeee, ...\} \text{ since } \{ee\} = \{e\}, \{eee\} = \{e\} \text{ etc, then the set } \{e\}^* \subseteq \{e\} \text{ and } \{e\} \subseteq \{e\}^* \text{ hence, } \{e\}^* = \{e\}$$

b.) For any alphabet Σ and any $L \subseteq \Sigma^*$, $(L^*)^* = L^*$

Let
$$L = \{a,b,c\}$$
 $L \subseteq \Sigma^*$
 $L^* = \{e,a,b,c,aa,ab,ac,...\}$

 $(L^*)^*$ is redundant since every possible pair is already contained inside L^* adding another Kleene star will generate the same result. Making $L^* \subseteq (L^*)^*$ and $(L^*)^* \subseteq L^*$ making $L^* = (L^*)^*$

c.) If a and b are distinct symbols, then $\{a,b\}^* = \{a\}^*(\{b\}\{a\}^*)^*$

 $\{a,b\}^*$ is the language over a,b that contains every combination of a,b include e $(\{b\}\{a\}^*)^*$ is the language over a,b that contains every combination of a,b including e. concatenating it with $\{a\}^*$ makes $\{a\}^*$ irrelevant since every occurrence of $\{a\}^*$ already occurs in $(\{b\}\{a\}^*)^*$ and in $\{a,b\}^*$

$$\{a\}^{\star}(\{b\}\{a\}^{\star})^{\star} \ \subseteq \ \{a,b\}^{\star} \ \text{ and } \ \{a,b\}^{\star} \ \subseteq \ \{a\}^{\star}(\{b\}\{a\}^{\star})^{\star} \ \text{ hence } \ \{a,b\}^{\star} \ = \ \{a\}^{\star}(\{b\}\{a\}^{\star})^{\star}$$

d.) If Σ is any alphabet, $e \in L_1 \subseteq \Sigma^*$ and $e \in L_2 \subseteq \Sigma^*$, then $(L_1\Sigma^*L_2)^* = \Sigma^*$

 Σ^* is the language obtained by concatenating zero or more strings. Since $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ hence $L_1\Sigma^*L_2 = \Sigma^*$

based on the proof in 1.7.4(b) we proved that $(L^*)^* = L^*$ using the same idea the kleene star is redundant in this case as well, since every combination in $(\Sigma^*)^*$ is already in Σ^* making:

$$(L_1\Sigma^*L_2)^* \subseteq \Sigma^*$$
 and $\Sigma^* \subseteq (L_1\Sigma^*L_2)^*$ therefore, $(L_1\Sigma^*L_2)^* = \Sigma^*$

e.) For any language, L, 0L = L0 = 0 (0 is empty set)

Let $L= \{a,b\}$ $0L = \{e, a, b\}$ $L0 = \{e,a,b\}$ since 0 is an empty set

 $L0 \neq 0$ and $0L \neq 0$ since L can contain some elements which are not e or 0 the statement is false.

- 1.7.5) Give some examples of strings in and not in these sets, where $\Sigma = \{a,b\}$.
 - a. {w: for some $u \in \Sigma\Sigma$, $w=uu^ru$ }

in: aaaaaa, abbaab

not in: ababab

b. {w: ww=www}

in: let w=e ee = eee

not in: let w=a aa \neq aaa

c. {w: for some $u,v \in \Sigma^*$, uvw = wvu}

in: aaaa, abab = abba

not in: ababab, aaaa

d. {w: for some $u \in \Sigma^*$, www=uu}

in: u=aaa aaaaaa is in

not in: u=ab, ababab is not in since www≠ uu

1.7.6) Under what circumstances is $L + = L^* - \{e\}$?

L+ is defined as: L+ = L*L

L+ = L* - $\{e\}$ is always true since L+ is defined as L+=L*L which never contains $\{e\}$ therefore, L* - $\{e\}$ will always be equal to L+

1.7.7) The Kleene star of a language L is the closure of L under which relations?

The Kleene start of a language L (ie. L^*) is the closure of L under concatenation.

L ₀ L* closes the language.

- 1.8.1) What language is represented by the regular expression $(((a*a)b)\cup b)$? The language of L over zero or more a's followed by b
- 1.8.3)Let $\Sigma = \{a,b\}$. Write regular expressions for the following sets:
 - a.) All strings in Σ^* with no more then three a's

b*ab*ab*ab*

- b.) All strings in Σ^* with a number of a's divisible by three $(ab^*ab^*ab^*)^*$
- c.) All strings in Σ^* with exactly one occurrence of the substring aaa (b^*aaab^*)