Can Rooftop PV Meet Europe's Rising Cooling Demand?

Case Study 4

Andrej Bernhard

Hannah Livingston

Lukas Schmidt-Engelbertz

Clara Tillous Oliva

Fiona Turner-Hehlen

Agenda

- 1. Project Background
- 2. Existing Cooling by PV Models
- 3. Cooling Demand Model
- 4. PV Generation Model
- 5. Work Plan Methodology
- 6. Project Schedule
- 7. Conclusion

Background

Motivation:

Determine if PV can be the dominant energy source for residential cooling electricity demand.

- PV generation and cooling demand are co-located.
- Demand for cooling is rising rapidly.
- Demand for cooling represents up to 50% of peak electricity on hot days.

Existing Cooling by PV Models

Key Findings:

• PV system could satisfy 55.5% of the hourly cooling electricity demand (Laine et. Al., 2019)

• Cost of cooling electricity from PV is up to 50% less than traditional electricity (Kan et al., 2022)

PV and cooling demand modelling approaches vary widely.

Cooling-Demand Model

Function of

- Desired Indoor temperature
- Hourly outdoor temperature
- Heat gain (irradiance, building parameters)
- Specific heat capacity (volume of household)
- Our model will use a vapour-compression system.
- Average COP of VC=3.5

$$T_{i+1} = T_i + \Delta t \frac{G_i}{\Delta c} + \Delta t \frac{C_{HVAC}}{\Delta c} w_{AC,i},$$

$$G_i = \left(\frac{A_{\text{wall}}}{R_{\text{window}}} + \frac{A_{\text{ceiling}}}{R_{\text{Ceiling}}} + \frac{11.77 \text{BTU}}{\text{°F ft}^3} n_{ac,i} V_{\text{house}}\right) (T_{out,i} - T_i)$$

$$+ SHGC \cdot A_{\text{windowsouth}} \cdot H_{\text{solar}} \frac{3.412 \frac{\text{BTU}}{\text{WH}}}{10.76 \frac{\text{ft}^2}{\text{m}^2}} + H_p.$$

Photovoltaic Generation Model

- Generation: P = V*I
 Efficiency: η ∝ P / (Irradiance * Area)
 Average efficiency of 20%
- Maximum Power Point tracking, using different algorithms

• Simulation: use parameters to estimate I and V

 $\uparrow I_{ph}$ $\downarrow I_{D}$ $\downarrow I_{p}$ $\downarrow V$

Work Plan Methodology

- 1. Gather and clean up relevant data.
- Generate hourly PV production model (kW)
- 3. Generate cooling demand model (kW)
- 4. Compare hourly outputs
- Extend model to different countries, change parameters

Project Schedule

Key Points:

- Simultaneously develop both models
- Time allotted to make model improvements from feedback
- Ample time is allotted to ensure quality of final report

Calendar Week	8	9	10	11	12	13	14	15	16	17	18	19	20
1. Gather important data and develop cooling demand and PV generation model.													
1.1 Develop the bottom-up physical model													
of 3 types of residential buildings to					ĺ								
estimate time-resolved cooling demand.													
Paying special attention to buildings'					ĺ								
inertia and outdoor temperature levels.					Ì								
1.2 Develop time-resolved PV generation	•												
model which takes outdoor irradiance													
and geographical factors into account.													
1.3 Gather relevant data (1) to calibrate													
constant factors of PV generation and													
cooling demand model and (2) to project													
models into the future up to 2050 with													
time-dependent parameters.													
1.4 Join both models to compare PV													
generation and electricity cooling													
demand on a simple residential level.													
Subsequently, scale up the size of the													
problem to represent cities and countries.													
	2. Make improvements to the model and run with test cases.												
2.1 Meet with BKW and receive first													
feedback on model.													
2.2 Run the model for various test cases.													
Predominantly changing two type of													
settings: country and year.													
2.3 Validate the results by comparing to													
real-world data and other results stated													
in related literature.													
3. Gather results and prepare final deliverab	les.												
3.1 Write the final report. Summarize the													
results of the bottom-up residential													
cooling/PV model. What implications does													
this have? What could be the next steps													
to improve the model?													
3.2 Prepare final presentation.													
3.3 Practice final presentation. Make last													
changes on the report.													
g						_							

Conclusion

- Modelling approaches vary
 Utilize standard approaches from literature
- Current and historical data is widely available, future data is not
- Difficult for companies like BKW to determine future energy needs • Large uncertainty exists when using model to project to 2050

Thank You!

