

Agenda

01	Team Introduction	04	Methodology
02	Background	05	Results
03	Data Prep & EDA	06	Conclusion

Team Introduction

Nitya Nandagopal

Data Scientist @ Verizon

Bachelor's in Electrical & Computer

Engineering from the University of

Texas at Austin.

Previous projects include forecasting

equipment run rates in a cellular

network and predicting budgetary

needs of different business units.

Jessica Petersen

HSE Project Manager @ Cummins
Bachelor's in Chemical Engineering
from Georgia Institute of Technology.
Previous projects include using a
statistical approach to determine
leading indicators that can predict
increasing injury rates in the
workplace.

Melissa Gibson

Senior Accountant @
Environmental Defense Fund
Bachelor's in Accounting from The
College of New Jersey.
Previous projects include using a
statistical approach to predict
musician/entertainment booking
prices for private events.

Stephen Kim

Data Scientist @ Credit Suisse
Bachelor's in Business Administration
from the University of Notre Dame.
Previous projects include using a
statistical approach to predict future
times of payment completion by the
bank's counterparty for intraday
matching.

Background

- GHGs have been steadily increasing over the last century
- The world's overall population has increased, but the growth rate is slowing

1.Team Introduction

Literature Review

- Kaya Identity
 - Emissions = population x per capita GDP x energy used per unit of GDP x CO2 generated per unit of energy
- IPAT Equation
 - Environmental Impact = Population x Affluence
 x Technology
- Conflicting opinions among experts
- Implications
 - Environmental
 - Economical

1.Team Introduction

2.Background

3.Data Prep & EDA

4.Methodology

5.Results

Research Questions

Hypothesis:

Population growth is not the most contributing factor to GHG emissions What other variables
affect a country's GHG what is their significance
vs population growth?

Does a population decrease correlate to a decrease in innovation and less carbon capture?

How does a country's population growth affect its GHG emissions?

Do industry actions affect greenhouse gas emissions more or less than individuals?

Does having a larger elderly population affect the maintenance and efficiency of infrastructure?

Datasets

World Population Growth Data

Source: Worldbank

Data Source	World Devel	opment Indicators					
Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963
Aruba	ABW	Population, total	SP.POP.TOTL	54,608.00	55,811.00	56,682.00	57,475.00
Africa Eastern and	AFE	Population, total	SP.POP.TOTL	130,692,579.00	134,169,237.00	137,835,590.00	141,630,546.00
Afghanistan	AFG	Population, total	SP.POP.TOTL	8,622,466.00	8,790,140.00	8,969,047.00	9,157,465.00
Africa Western ar	AFW	Population, total	SP.POP.TOTL	97,256,290.00	99,314,028.00	101,445,032.00	103,667,517.00
Angola	AGO	Population, total	SP.POP.TOTL	5,357,195.00	5,441,333.00	5,521,400.00	5,599,827.00
Albania	ALB	Population, total	SP.POP.TOTL	1,608,800.00	1,659,800.00	1,711,319.00	1,762,621.00
Andorra	AND	Population, total	SP.POP.TOTL	9,443.00	10,216.00	11,014.00	11,839.00
Arab World	ARB	Population, total	SP.POP.TOTL	93,359,407.00	95,760,348.00	98,268,683.00	100,892,507.00
United Arab Emira	ARE	Population, total	SP.POP.TOTL	133,426.00	140,984.00	148,877.00	157,006.00
Argentina	ARG	Population, total	SP.POP.TOTL	20,349,744.00	20,680,653.00	21,020,359.00	21,364,017.00
Armenia	ARM	Population, total	SP.POP.TOTL	1,904,148.00	1,971,530.00	2,039,346.00	2,106,142.00
American Samoa	ASM	Population, total	SP.POP.TOTL	20,085.00	20,626.00	21,272.00	21,949.00
Antigua and Barb	ATG	Population, total	SP.POP.TOTL	55,342.00	56,245.00	57,008.00	57,778.00
Australia	AUS	Population, total	SP.POP.TOTL	10,276,477.00	10,483,000.00	10,742,000.00	10,950,000.00
Austria	AUT	Population, total	SP.POP.TOTL	7,047,539.00	7,086,299.00	7,129,864.00	7,175,811.00
Azerbaijan	AZE	Population, total	SP.POP.TOTL	3,894,500.00	4,045,750.00	4,168,150.00	4,293,550.00
Burundi	BDI	Population, total	SP.POP.TOTL	2,746,628.00	2,815,972.00	2,887,398.00	2,948,133.00
Belgium	BEL	Population, total	SP.POP.TOTL	9,153,489.00	9,183,948.00	9,220,578.00	9,289,770.00
Benin	BEN	Population, total	SP.POP.TOTL	2,512,284.00	2,551,216.00	2,593,302.00	2,638,082.00
Burkina Faso	BFA	Population, total	SP.POP.TOTL	4,783,259.00	4,852,833.00	4,924,497.00	4,998,671.00
Bangladesh	BGD	Population, total	SP.POP.TOTL	50,396,429.00	51,882,769.00	53,461,661.00	55,094,115.00
Bulgaria	BGR	Population, total	SP.POP.TOTL	7,867,374.00	7,943,118.00	8,012,946.00	8,078,145.00
Bahrain	BHR	Population, total	SP.POP.TOTL	160,691.00	166,970.00	173,359.00	179,891.00
Bahamas, The	BHS	Population, total	SP.POP.TOTL	114,500.00	120,216.00	126,305.00	132,639.00
Bosnia and Herze	BIH	Population, total	SP.POP.TOTL	3,262,539.00	3,325,333.00	3,387,512.00	3,448,532.00
Belarus	BLR	Population, total	SP.POP.TOTL	8,198,000.00	8,271,216.00	8,351,928.00	8,437,232.00
Belize	BLZ	Population, total	SP.POP.TOTL	91,403.00	93,757.00	96,188.00	98,862.00
Bermuda	BMU	Population, total	SP.POP.TOTL	44,400.00	45,500.00	46,600.00	47,700.00
Bolivia	BOL	Population, total	SP.POP.TOTL	3,707,515.00	3,784,744.00	3,864,140.00	3,945,729.00
Brazil	BRA	Population, total	SP.POP.TOTL	73,092,515.00	75,330,008.00	77,599,218.00	79,915,555.00
Barbados	BRB	Population, total	SP.POP.TOTL	232,550.00	233,698.00	234,829.00	235,875.00

Datasets

Greenhouse Gases Emissions Data

Source: Our World in Data

Entity	Code	Year	Total including LUCF		
Afghanistan	AFG	1990	9579999.92		
Afghanistan	AFG	1991	9810000.42		
Afghanistan	AFG	1992	9029999.73		
Afghanistan	AFG	1993	9109999.66		
Afghanistan	AFG	1994	9149999.62		
Afghanistan	AFG	1995	9579999.92		
Afghanistan	AFG	1996	10609999.7		
Afghanistan	AFG	1997	11579999.9		
Afghanistan	AFG	1998	12399999.6		
Afghanistan	AFG	1999	13279999.7		
Afghanistan	AFG	2000	11500000		
Afghanistan	AFG	2001	12369999.9		
Afghanistan		2002	15010000.2		
Afghanistan	AFG	2003	15649999.6		
Afghanistan	AFG	2004	15439999.6		
Afghanistan	AFG	2005	16350000.4		
Afghanistan	AFG	2006	16870000.8		
Afghanistan	AFG	2007	17260000.2		
Afghanistan		2008	20659999.8		
Afghanistan		2009	22750000		
Afghanistan		2010	27239999.8		
Afghanistan		2011	29170000.1		
Afghanistan		2012	28549999.2		
Afghanistan		2013	26770000.5		
Afghanistan	AFG	2014	26520000.5		
Afghanistan		2015	26840000.2		
Afghanistan		2016	27049999.2		
Afghanistan		2017	26680000.3	1	
Afghanistan			27840000.2		
Afghanistan			28790000.9		
Africa			2148500000		
Africa			2215109863		
Africa			2237260010		
Africa			2267389893		
Africa			2357189941		
Africa			2418229980		
Africa			2461639893		
Africa			2497939941		
Africa			2572780029		
Africa			2565679932		

Data Cleaning

Merged datasets on country_name and year

Removed "rolled-up" countries

Removed countries with frequent "NA" values

Removed factors with frequent "NA" values

Final Cleaned Dataset

Index	Country_Code	Country_Nan	Year	age_depende	agricultural_	fertility_rate	GDP	labor_force	life_expectar	natural_reso	energy_cons	population	GHG_with_l	deaths_air_p	GHG_withou
	TJK	Tajikistan	1/1/90	88.6	32.07	5.34	2631768953	1372150	61.88	0.78	17274.67	5417860	17899999.6	192.5	17870000.8
	TJK	Tajikistan	1/1/91	89.76	32.07	5.18	1352000000	1399115	61.38	0.65	15902.46	5556306	17010000.2	195.85	16969999.3
3	ARM	Armenia	1/1/91	55.7	41.1	2.65	2069870130	1645616	68.64	0	19601.42	3617631	25139999.4	134.21	25010000.2
4	GEO	Georgia	1/1/90	51.15	46.47	2.31	7753501868	2371540	68.39	0.48	24620.21	4802000	31399999.6	160.64	49759998.3
5	GEO	Georgia	1/1/92	52.86	46.47	2.13	3690328964	2443064	67.78	0.34	17979.8	4873500	14390000.3	161.89	32650001.5
(LUX	Luxembourg	1/1/90	44.23	49.72	1.6	1.2779E+10	157920	75.44	0.04	97439.53	381850	11550000.2	40.16	12189999.6
-	LUX	Luxembourg	1/1/91	44.82	49.72	1.6	1.3834E+10	165345	75.46	0.02	103333.91	387000	12040000	38.6	12680000.3
8	LUX	Luxembourg	1/1/92	45.47	49.72	1.64	1.5519E+10	172615	75.77	0.02	102274.26	392175	11739999.8	36.65	12380000.1
9	LUX	Luxembourg	1/1/93	46.18	49.72	1.7	1.5926E+10	171764	75.71	0.02	102264.53	397475	11949999.8	35.25	12590000.2
10	LUX	Luxembourg	1/1/94	46.92	49.72	1.72	1.7702E+10	173480	76.37	0.02	97028.69	402925	11100000.4	33.56	11739999.8
1:	TKM	Turkmenista	1/1/90	78.91	75.22	4.24	3188097768	1113708	63.94	77.75	40827.95	3720278	111389999	111.85	111389999
12	UKR	Ukraine	1/1/90	50.49	72.37	1.85	8.1394E+10	24262168	70.1	3.35	61924.96	51891400	776109985	99.18	824830017
13	AZE	Azerbaijan	1/1/90	63.82	53.43	2.74	8858006036	3353958	62.35	27.6	35077.66	7175200	74099998.5	146.78	75680000.3
14	AZE	Azerbaijan	1/1/91	64.3	53.43	2.87	8792365811	3405558	62.05	27.6	33210.72	7271300	71660003.7	152.9	73239997.9
15	BLR	Belarus	1/1/90	50.88	46.28	1.91	2.165E+10	4653509	70.84	0.99	44682.48	10189348	104750000	94.06	137860001
16	IRQ	Iraq	1/1/90	94.59	21.1	5.88	1.80E+11	4147362	58.44	9.86	13462.37	17658381	120150002	172.89	120279999
17	AZE	Azerbaijan	1/1/92	64.74	53.43	2.74	446305556	3545509	61.3	27.6	28049.75	7382050	80739997.9	162.53	82319999.7
18	BLR	Belarus	1/1/91	51.36	46.28	1.81	1.8E+10	4644143	70.38	1.28	44456.22	10194050	99709999.1	95.35	132809998
19	IRQ	Iraq	1/1/91	93.53	22.02	5.81	407796350	4201883	62.52	38.22	8290.51	17846378	62790000.9	169.26	62919998.2
20	BLR	Belarus	1/1/92	51.75	46.28	1.76	1.7037E+10	4659164	70.02	1.28	38484.07	10216470	86089996.3	96.47	119059998
2:	IRQ	Iraq	1/1/92	92.64	21.84	5.72	553671958	4322873	66.71	38.22	12747.26	18385673	88750000	168.77	88870002.8
22	LUX	Luxembourg	1/1/95	47.59	49.72	1.7	2.0853E+10	169267	76.51	0.02	83246.71	408625	8960000.04	32.06	9600000.38
23	LUX	Luxembourg	1/1/96	48.17	49.72	1.77	2.0895E+10	171873	76.52	0.02	84460.58	414225	9039999.96	30.58	9680000.31
24	LUX	Luxembourg	1/1/97	48.61	49.72	1.71	1.9564E+10	174574	76.88	0.02	81638.43	419450	8539999.96	28.6	9180000.31
25	LUX	Luxembourg	1/1/98	48.93	49.72	1.68	2.015E+10	177043	77.02	0.02	77878.61	424700	7869999.89	26.98	8510000.23
26	LUX	Luxembourg	1/1/99	49.2	49.72	1.74	2.1899E+10	182734	77.77	0.02	81191.31	430475	8260000.23	25.12	8899999.62
27	AGO	Angola	1/1/90	94.86	36.42	7.27	1.1229E+10	4889409	41.89	28.94	1972.41	11828638	66160003.7	279.22	43150001.5
28	AGO	Angola	1/1/94	96.56	36.92	6.99	4438321017	5527396	43.42	51.69	1765.6	13462031	73160003.7	269.94	50159999.9
29	GNQ	Equatorial G	1/1/90	82.55	8.3	5.99	112119407	156528	50.86	20.97	1092.66	465549	4010000.23	306.68	170000
30	GNQ	Equatorial G	1/1/91	83.43	8.23	5.99	110906032	161560	50.97	17.03	1052.91	483142	4150000.1	299.99	319999.99
3:	GNQ	Equatorial G	1/1/92	84.26	8.16	5.98	134707184	166853	51.11	20.16	1017.29	501334	5900000.1	290.99	2069999.93

1.Team Introduction

Final Variables

Additional Variables Key Variables Young to Old Person Ratio **Dependent** GHG Emissions (with and without Birth Rate Variable Land Use) Percent of Agricultural Land Use Fertility Rate Life Expectancy **GDP Natural Resource Rents** Labor Force Independent Population **Energy Consumption per Capita** Variable Death Rate from Air Pollution

Exploratory Data Analysis

Exploratory Data Analysis

Population shows high correlation with labor_force, GDP, and GHG (with and without LUCF)

Exploratory Data Analysis

Methodology

Linear Regressions

Model 9 Model 6 Model 3 Model 1 Dependent variable: Dependent variable: Dependent variable: Removal of highly correlated GHG without LUCF GHG without LUCF variables VIF>5 Global GHG Independent variables: Independent variable: Independent variable: Dependent variable: Country Name, population, Global population population GHG without LUCF age dependency ratio, $R^2 = 0.5662694$ $R^2 = 0.9751$ Independent variables: agricultural land area, fertility GDP, population, rate, GDP, labor force, life agricultural land, natural expectancy, natural resources rents, energy resources rents, energy consumption per capita, consumption per capita, and deaths from air pollution deaths from air pollution $R^2 = 0.8602951$ $R^2 = 0.9642891$

For full list of models, please see the appendix

VIF Analysis

	GVIF	Df	GVIF^(1/(2*Df))
Country_Name	2.480086e+11	146	1.094012
age_dependency_ratio	2.537748e+01	1	5.037607
agricultural_land	5.624852e+01	1	7.499901
fertility_rate	4.816827e+01	1	6.940336
GDP	8.430021e+00	1	2.903450
labor_force	1.192534e+03	1	34.533080
life_expectancy	2.766264e+01	1	5.259528
natural_resources_rents	6.153199e+00	1	2.480564
energy_consumption_per_capita	2.804072e+01	1	5.295349
population	1.029402e+03	1	32.084293
deaths_air_pollute	4.895036e+01	1	6.996453

labor_force	age_dependency_ratio	agricultural_land
20.648364	11.278887	1.214345
fertility_rate	GDP	life_expectancy
13.479727	1.391672	5.430618
natural_resources_rents	<pre>energy_consumption_per_capita</pre>	population
1.372050	2.048128	19.853572
deaths_air_pollute		
3.314927		

VIF without Country_Name

VIF for all independent variables

PCA / Lasso Regression

```
12 x 1 sparse Matrix of class "dqCMatrix"
                                        s0
(Intercept)
                               212525886.7
Country_Name
                                  113257.1
age_dependency_ratio
                               -47667683.2
agricultural_land
                                20151033.8
fertility_rate
                                37948354.5
                               460799518.7
GDP
labor force
                              1024781462.3
life_expectancy
                               -34962624.3
natural_resources_rents
                                15500396.3
energy_consumption_per_capita
                                23571768.2
population
                              -519893136.0
deaths_air_pollute
                                -9704662.3
             RMSE
                           Rsquared
                                                  MAE
                          0.9211111 105058855.5864614
293805095.6283337
```

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 209754867
                        6698217
                                  31.32
                                          <2e-16 ***
PC1
            112710418
                        3373420
                                  33.41
                                          <2e-16 ***
PC2
            449100203
                        4464204
                                 100.60
                                          <2e-16 ***
PC3
            130560265
                        5835524
                                  22.37
                                          <2e-16 ***
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.02 ', 0.1 ', 1
Residual standard error: 388400000 on 3359 degrees of
freedom
Multiple R-squared: 0.7775,
                               Adjusted R-squared: 0.7773
F-statistic: 3912 on 3 and 3359 DF, p-value: < 2.2e-16
              RMSE
                             Rsauared
                                                    MAE
 441784037.9930761
                           0.8219102 145069602.9210091
```


Lasso Regression

PCA Regression

PCA Scree Plot

Model Selection

Key Variables

Dependent Variable

GHG Emissions without LUCF

Independent Variable

Population

Additional Variables

- Percent of Agricultural Land Use
- GDP
- Natural Resource Rents
- Energy Consumption per Capita
- Death Rate from Air Pollution

```
Call:
lm(formula = GHG_without_LUCF ~ GDP + population + agricultural_land +
    natural_resources_rents + energy_consumption_per_capita +
    deaths_air_pollute, data = GHGdata)
```

Residuals:

```
Min 1Q Median 3Q Max -2.952e+09 -1.491e+07 2.803e+07 5.127e+07 3.983e+09
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                         4992936 44.002 < 2e-16 ***
(Intercept)
                            219700932
GDP
                            517322472
                                         5691882 90.888 < 2e-16 ***
                            450238546
                                        5566840 80.879 < 2e-16 ***
population
agricultural_land
                             13324538
                                        5287284 2.520
                                                        0.0118 *
natural resources rents
                             25582415
                                        5481482
                                                  4.667 3.15e-06 ***
                                         5947461
energy_consumption_per_capita 24674711
                                                  4.149 3.41e-05 ***
deaths_air_pollute
                              5075882
                                         5989010
                                                  0.848 0.3967
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 323700000 on 4196 degrees of freedom Multiple R-squared: 0.8625, Adjusted R-squared: 0.8623 F-statistic: 4386 on 6 and 4196 DF, p-value: < 2.2e-16

Hypothesis

Hypothesis

Population growth is not the most contributing factor to GHG emissions.

Conclusion

Hypothesis is accepted, GDP is the most contributing factor to GHG emissions.

Limitations and Challenges

Insufficient values for analysis in datasets

- Had to exclude variables that could have had big impact on models
- Had to exclude some countries without enough data

Multicollinearity between independent variables

 Linear regression assumes all variables are independent

High R² values in all models

6.Conclusion

 Tends to indicate overfitting

Future Improvements

With more years of data, a summarized global dataset could be used to interpret GHG emissions across the world as a whole.

As data collection improves, variables that we were forced to remove for data cleanliness issues may be able to be used.

Appendix: Sources (1)

- Center for Biological Diversity. *Population Pressure and the Climate Crisis*. Center for Biological Diversity. Retrieved March 29, 2023, from https://www.biologicaldiversity.org/programs/population_and_sustainability/climate/
- Chang, Nicole Lin. (2022, November 15). *Is population growth fuelling climate change? It's not that simple, say experts*. Euronews.green. Retrieved March 29, 2023 from https://www.euronews.com/green/2022/11/15/is-population-growth-fuelling-climate-change-its-not-that-simple-say-experts
- Cohen, Joel. (2010, June). *Population and climate change*. National Library of Medicine. Retrieved March 29, 2023 from https://pubmed.ncbi.nlm.nih.gov/21553595/

Appendix: Sources (2)

D'Souza, Renita. (2022, July 11). Population drives climate change: A myth or reality?

Observer Research Foundation. Retrieved March 29, 2023, from

https://www.orfonline.org/expert-speak/population-drives-climate-change/

Galloway, Scott. (2023, January 27). More Babies. No Mercy/No Malice. Retrieved March 28,

2023, from https://www.profgalloway.com/more-babies/

Kaplan, Sarah. (2021, May 25). It's wrong to blame 'overpopulation' for climate change. The

Washington Post. Retrieved March 29, 2023, from

https://www.washingtonpost.com/climate-solutions/2021/05/25/slowing-population-growth-environment/

Appendix: Sources (3)

Tallungs, Kaj. (2022, November 16). America's demographics over 100+ years. Visual

Capitalist. Retrieved March 25, 2023, from

https://www.visualcapitalist.com/cp/animated-americas-demographics-over-100-years/

Union of International Associations (UIA). (2023). Depopulation. The Encyclopedia of

World Problems & Human Potential. Retrieved March 25, 2023, from

http://encyclopedia.uia.org/en/problem/depopulation

United Nations (UN). (2022, April 4). UN climate report: It's 'now or never' to limit global

warming to 1.5 degrees. United Nations. Retrieved March 25, 2023,

from https://news.un.org/en/story/2022/04/1115452

Appendix: Sources (4)

United States Environmental Protection Agency (EPA). (2023, February 15). Global

Greenhouse Gas Emissions Data. United States Environmental Protection

Agency. Retrieved March 25, 2023, from

https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#:~:text=Global%20carbon%20 emissions%20from%20fossil,increase%20from%201970%20to%202011

Oxfam. (2015, December 2). Extreme Carbon Inequality. Oxfam.org. Retrieved March 29,

2023 from https://oxfamilibrary.openrepository.com/bitstream/handle/10546/582545/mb-e xtreme-carbon-inequality-021215-en.pdf

Quinson, Tim. (2022, December 13). ESG Market in US Significantly Smaller Than

Earlier Thought. Bloomberg.com. Retrieved March 25, 2023, from

https://news.bloomberglaw.com/esg/esg-market-in-us-significantly-smaller-than-earlier-thought-1

Appendix: Sources (5)

Ritchie, Hannah and Roser, Max. (2020). CO₂ and Greenhouse Gas Emissions. Our World in

Data. Retrieved March 29, 2023 from

https://ourworldindata.org/greenhouse-gas-emissions

Zurich. (2021, November 16). Here's how climate change will impact businesses everywhere.

Zurich.com. Retrieved March 29, 2023, from

https://www.zurich.com/en/knowledge/topics/climate-change/how-change/how-change/

e-will-impact-business-everywhere

Data Sources:

- https://ourworldindata.org/greenhouse-gas-emissions
- https://data.worldbank.org/indicator/SP.POP.TOTL

Appendix: Model List

Model	Dependent Variable	Independent Variables	Cross-Validated R ²
Model 1	GHG_without_LUCF	Country_Name, population, age dependency ratio, agricultural land area, fertility rate, GDP, labor force, life expectancy, natural resources rents, energy consumption per capita, and deaths from air pollution	0.9642891
Model 1a (removed labor force)	GHG_without_LUCF	Country_Name, population, age dependency ratio, agricultural land area, fertility rate, GDP, life expectancy, natural resources rents, energy consumption per capita, and deaths from air pollution	0.9629279
Model 1b (removed Country)	GHG_without_LUCF	population, age dependency ratio, agricultural land area, fertility rate, GDP, labor force, life expectancy, natural resources rents, energy consumption per capita, and deaths from air pollution	0.9256678
Model 2	GHG_with_LUCF	Country_Name, population, age dependency ratio, agricultural land area, fertility rate, GDP, labor force, life expectancy, natural resources rents, energy consumption per capita, and deaths from air pollution	0.9467334

Appendix: Model List

Model	Dependent Variable	Independent Variables	Cross-Validated R ²
Model 3	GHG_without_LUCF	population	0.5662694
Model 4	GHG_without_LUCF	GDP	0.6784612
Model 5 (Removal of highly correlated variables GVIF>5)	GHG_without_LUCF	Country_Name, population, age dependency ratio, life expectancy, GDP, natural resources rents	0.9626004
Model 6	Global_GHG	Global_population	0.9751
Model 7	GHG_without_LUCF	GDP, population	0.8577862
Model 8	GHG_without_LUCF	Country_Name	0.9397507
Model 9 (Removal of highly correlated variables VIF>5)	GHG_without_LUCF	GDP, population, agricultural_land, natural resources rents, energy consumption per capita, deaths from air pollution	0.8602951