(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年9 月26 日 (26.09.2002)

PCT

(10) 国際公開番号 WO 02/075739 A1

式会社 (SONY CORPORATION) [JP/JP]; 〒141-0001

(51) 国際特許分類7:

20/10, 20/12, 27/10, H04N 5/92

G11B 27/00,

(71) 出願人 (米国を除く全ての指定国について): ソニー株

(21) 国際出願番号:

PCT/JP01/10146

(22) 国際出願日:

2001年11月20日(20.11.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-65074

2001年3月8日(08.03.2001) ΙP

東京都品川区北品川6丁目7番35号 Tokyo (JP). (72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 加藤元樹 (KATO、 Motoki) [JP/JP]. 浜田俊也 (HAMADA, Toshiya) [JP/JP]; 〒141-0001 東京都品川区北品川6丁目7番35号 ソニー 株式会社内 Tokyo (JP).

(74) 代理人: 稲本義雄(INAMOTO, Yoshio); 〒160-0023 東 京都新宿区西新宿7丁目11番18号 711ビルディング4 階 Tokyo (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,

/続葉有/

(54) Title: DATA RECORDER

(54) 発明の名称: データ記録装置

A 編集前

(57) Abstract: A data recorder for adequately managing the contents of data and reproduced info even if a part of AV data is deleted. When a part of a clip is deleted and an ATC-sequence becomes discontinuous, the value of an offset_STC_id of the first STC sequence on the ATC sequence is so determined that the value of the stc_id (value for identifying an STCsequence) of each STC-sequence contained in the part of the ATC-sequence, after the ATC discontinuous point. The invention can be applied to a technique of recording an AV stream on an optical disc.

B編集後 (PlayItem3 と PlayItem4 は変化しない)

A...BEFORE EDITING

- B...AFTER EDITING: PLAY ITEM 3 AND PLAY
- ITEM 4 DO NOT CHANGE

C...DELETING THIS PART

WO 02/075739

/続葉有/

DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,

LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

-- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

本発明は、AV データの一部が削除された場合にも、データの内容および再生情報が適切に管理できるようにしたデータ記録装置に関する。Clip の一部が削除され、ATC-sequence が不連続になった場合、その ATC 不連続点の後ろ側のATC-sequence に含まれる各々の STC-sequene の stc_id(STC-sequene を識別するための値)の値が変化しないように、その ATC-sequence 上の先頭の STC-sequene に対する offset_STC_id の値をセットする。本発明は、光ディスクに AV ストリームを記録する場合に適用できる。

明細書

データ記録装置

技術分野

5 本発明はデータ記録装置に関し、特に、記録媒体に記録されているデータの内容を編集した場合においても、記録媒体に記録されているデータ内容、および、 再生情報を適切に管理することができるようにしたデータ記録装置に関する。

背景技術

20

25

10 近年、記録再生装置から取り外し可能なディスク型の情報記録媒体として、各種の光ディスクが提案されつつある。このような記録可能な光ディスクは、数ギガバイトの大容量メディアとして提案されており、ビデオ信号等の AV (Audio Visual)信号を記録するメディアとしての期待が高い。この記録可能な光デイスクに記録するデジタルの AV 信号のソース (供給源) としては、CS デジタル衛星 放送や BS デジタル放送があり、また、将来はデジタル方式の地上波テレビジョン放送等も提案されている。

ここで、これらのソースから供給されるデジタルビデオ信号は、通常 MPEG (Moving Picture Experts Group) 2方式で画像圧縮されているのが一般的である。また、記録装置には、その装置固有の記録レートが定められている。従来の民生用映像蓄積メディアで、デジタル放送からのデジタルビデオ信号を記録する場合、アナログ記録方式であれば、デジタルビデオ信号をデコード後、帯域制限をして記録が行われる。あるいは、MPEG1 Video、MPEG2 Video、DV (Digital Video) 方式をはじめとするデジタル記録方式であれば、1度デコードされた後に、その装置固有の記録レート、かつ符号化方式で再エンコードされて記録される。

しかしながら、このような記録方法は、供給されたビットストリームを1度デ コードし、その後で帯域制限や再エンコードを行って記録するため、画質の劣化 を伴う。画像圧縮されたデジタル信号の記録をする場合、入力されたデジタル信号の伝送レートが記録再生装置の記録レートを超えない場合には、供給されたビットストリームをデコードや再エンコードすることなく、そのまま記録する方法が最も画質の劣化が少ない。ただし、画像圧縮されたデジタル信号の伝送レートが記録媒体としてのディスクの記録レートを超える場合には、記録再生装置でデコード後、伝送レートがディスクの記録レートの上限以下になるように、再エンコードをして記録する必要がある。

また、入力デジタル信号のビットレートが時間により増減する可変レート方式によって伝送されている場合には、回転ヘッドが固定回転数であるために記録レートが固定レートになるテープ記録方式に比べ、1度バッファにデータを蓄積し、バースト的に記録ができるディスク記録装置の方が、情報記録媒体としてのディスクの容量をより無駄なく利用できる。

以上のように、デジタル放送が主流となる将来においては、データストリーマのように放送信号をデジタル信号のまま、デコードや再エンコードすることなく 記録し、記録媒体としてディスクを使用した記録再生装置が求められると予測される。

上述したように、記録媒体の容量が増大することにより、その記録媒体には、 多くのデータ(例えば、番組に関する映像データや音声データなど)が記録でき るようになる。従って、1枚のディスクに多くの番組が記録されることになり、 ユーザが、それらのディスク内に記録されている多くの番組の中から、所望の画 像を視聴できるように編集するといったような操作が必要になる。

しかしながら、編集操作が行われた場合、記録されているデータの内容、および、再生情報を適切に管理することが困難になる。

25 発明の開示

15

20

本発明はこのような状況に鑑みてなされたものであり、記録媒体に記録されているデータの内容を編集した場合においても、記録媒体に記録されているデータ

20

25

の内容、および、再生情報を適切に管理することができるようにすることを目的 とする。

本発明の第1のデータ記録装置は、データストリームの基準時刻情報を検出する第1の検出手段と、第1の検出手段による検出結果に基づいて生成された第1の時刻情報の連続性を表す第1の連続性情報と、パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報と、第1の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報と、第2の時刻情報の不連続点を含まない第2のパケット列毎に識別情報のオフセット値を生成する第1の生成手段と、第1の連続性情報、第2の連続性情報、およびオフセット値を情報記録媒体に記録する記録手段とを備えることを特徴とする。

前記第1の連続性情報は、記録されている1つのパケット列の中で、第1の時 刻情報の時間軸が開始するパケットのアドレスを表すことができる。

前記第2の連続性情報は、記録されている1つのパケット列の中で、第2の時刻情報の時間軸が開始するパケットのアドレスを表すことができる。

15 1つの前記第1のパケット列は、第2のパケット列の境界をまたがないように データを管理する管理手段をさらに備えるようにすることができる。

前記データストリームの中に配置されているプログラム内容の変化点を検出する第2の検出手段と、第2の検出手段による検出結果に基づいて、記録されている1つのパケット列の中で、プログラム内容の変化点に対応するパケットのアドレスを取得する取得手段とをさらに備え、記録手段は、取得手段により取得された変化点に対応するパケットのアドレスを情報記録媒体にさらに記録するようにすることができる。

記録されている1つのパケット列の中において、前記プログラム内容が一定であるパケット列としての1つのプログラムシーケンスは、第1のパケット列および第2のパケット列の境界をまたいでも良いようにデータを管理する管理手段をさらに備えるようにすることができる。

前記第1のパケット列毎に、プレゼンテーション・スタート・タイムとプレゼ

15

20

ンテーション・エンド・タイムを生成する第2の生成手段をさらに備え、記録手段は、第2の生成手段により生成されたプレゼンテーション・スタート・タイムとプレゼンテーション・エンド・タイムを情報記録媒体にさらに記録するようにすることができる。

5 前記記録手段は、表示時刻情報の時間とデータアドレスを関係付けるマップを さらに記録するようにすることができる。

本発明の第1のデータ記録方法は、データストリームの基準時刻情報を検出する第1の検出ステップと、第1の検出ステップの処理による検出結果に基づいて生成された、第1の時刻情報の連続性を表す第1の連続性情報と、パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報と、基準時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報と、第2の時刻情報の不連続点を含まない第2のパケット列毎に識別情報のオフセット値を生成する生成ステップと、第1の連続性情報、第2の連続性情報、およびオフセット値を情報記録媒体に記録する記録ステップとを含むことを特徴とする。

本発明の第1のプログラム格納媒体は、データストリームの基準時刻情報を検 出する第1の検出ステップと、第1の検出ステップの処理による検出結果に基づ いて生成された、第1の時刻情報の連続性を表す第1の連続性情報と、パケット の到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報と、基準時刻 情報の不連続点を含まない第1のパケット列を識別するための識別情報と、第2 の時刻情報の不連続点を含まない第2のパケット列毎に識別情報のオフセット値 を生成する生成ステップと、第1の連続性情報、第2の連続性情報、およびオフ セット値を情報記録媒体に記録する記録ステップとを含むことを特徴とする。

本発明の第1のプログラムは、パケット列からなるデータストリームを情報記録媒体に記録するデータ記録装置を制御するコンピュータに、データストリームの基準時刻情報を検出する第1の検出ステップと、第1の検出ステップの処理による検出結果に基づいて生成された、第1の時刻情報の連続性を表す第1の連続性情報と、パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続

WO 02/075739 PCT/JP01/10146

5

性情報と、基準時刻情報の不連続点を含まない第1のパケット列を識別するため の識別情報と、第2の時刻情報の不連続点を含まない第2のパケット列毎に識別 情報のオフセット値を生成する生成ステップと、第1の連続性情報、第2の連続 性情報、およびオフセット値を情報記録媒体に記録する記録ステップとを実行させる。

5

10

本発明の第1のデータ記録媒体は、データストリームの基準時刻情報に基づいて生成される第1の時刻情報の連続性を表す第1の連続性情報と、パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報と、基準時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報であって、第2の時刻情報の不連続点を含まない第2のパケット列毎に生成される識別情報のオフセット値とが記録される。

本発明の第1のデータ再生装置は、情報記録媒体に記録されているデータストリームの基準時刻情報に基づいて生成された第1の時刻情報の連続性を表す第1の連続性情報、パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の15 連続性情報、第1の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報、および第2の時刻情報の不連続点を含まない第2のパケット列毎に付加された識別情報のオフセット値を再生する再生手段と、再生された情報に基づいて、情報記録媒体からのデータストリームの再生を制御する制御手段とを備えることを特徴とする。

20 前記再生手段は、表示時刻情報の時間とデータアドレスを関係付けるマップを さらに再生するようにすることができる。

本発明の第1のデータ再生方法は、情報記録媒体に記録されているデータスト リームの基準時刻情報に基づく第1の時刻情報の連続性を表す第1の連続性情報、 各パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報、

25 第1の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報、および第2の時刻情報の不連続点を含まない第2のパケット列毎に付加された識別情報のオフセット値を再生する再生ステップと、再生ステップの処理によ

20

25

り再生された情報に基づいて、情報記録媒体からのデータストリームの再生を制 御する制御ステップとを含むことを特徴とする。

本発明の第2のプログラム格納媒体は、情報記録媒体に記録されているデータストリームの基準時刻情報に基づく第1の時刻情報の連続性を表す第1の連続性 情報、各パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報、第1の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報、および第2の時刻情報の不連続点を含まない第2のパケット列毎に付加された識別情報のオフセット値を再生する再生ステップと、再生ステップの処理により再生された情報に基づいて、情報記録媒体からのデータストリームの再10 生を制御する制御ステップとを含むことを特徴とする。

本発明の第2のプログラムは、パケット列からなるデータストリームが記録されている情報記録媒体からデータストリームを再生するデータ再生装置を制御するコンピュータに、情報記録媒体に記録されているデータストリームの基準時刻情報に基づいて生成された第1の時刻情報の連続性を表す第1の連続性情報、パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報、第1の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報、および第2の時刻情報の不連続点を含まない第2のパケット列毎に、第2のパケット列上にある最初の第1のパケット列に対する識別情報のオフセット値を再生する再生ステップと、再生ステップの処理により再生された情報に基づいて、情報記録媒体からのデータストリームの再生を制御する制御ステップとを実行させる。

本発明の第2のデータ記録装置は、到着時刻情報の不連続点を含まないパケット列毎に開始するパケットのアドレスを取得する第1の取得手段と、パケット列のオフセット時刻情報を取得する第2の取得手段と、第1の取得手段により取得されたパケットのアドレスと、第2の取得手段により取得されたオフセット時刻情報を情報記録媒体に記録する記録手段とを備えることを特徴とする。

前記パケット列は、ATC シーケンスであり、パケットのアドレスは、

WO 02/075739 PCT/JP01/10146

7

SPN_ATC_start であり、スタートタイムは、offset_arrival_time とすることができる。

前記記録手段は、到着時刻情報の時間とデータアドレスを関係付けるマップを さらに記録するようにすることができる。

5 本発明の第2のデータ記録方法は、到着時刻情報の不連続点を含まないパケット列毎に開始するパケットのアドレスを取得する第1の取得ステップと、パケット列のオフセット時刻情報を取得する第2の取得ステップと、第1の取得ステップの処理により取得されたパケットのアドレスと、第2の取得ステップの処理により取得されたオフセット時刻情報を情報記録媒体に記録する記録ステップとを10 含むことを特徴とする。

本発明の第3のプログラム格納媒体は、到着時刻情報の不連続点を含まないパケット列毎に開始するパケットのアドレスを取得する第1の取得ステップと、パケット列のオフセット時刻情報を取得する第2の取得ステップと、第1の取得ステップの処理により取得されたパケットのアドレスと、第2の取得ステップの処理により取得されたオフセット時刻情報を情報記録媒体に記録する記録ステップとを含むことを特徴とする。

15

20

25

本発明の第3のプログラムは、到着時刻情報の不連続点を含まないパケット列 毎に開始するパケットのアドレスを取得する第1の取得ステップと、パケット列 のオフセット時刻情報を取得する第2の取得ステップと、第1の取得ステップの 処理により取得されたパケットのアドレスと、第2の取得ステップの処理により 取得されたオフセット時刻情報を情報記録媒体に記録する記録ステップとをコン ピュータに実行させる。

本発明の第2のデータ再生装置は、到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、パケット列のオフセット時刻情報を再生する再生手段と、再生された情報に基づいて、情報記録媒体からのデータストリームの再生を制御する制御手段とを備えることを特徴とする。

前記再生手段は、到着時刻情報の時間とデータアドレスを関係付けるマップを

WO 02/075739 PCT/JP01/10146

8

さらに再生するようにすることができる。

10

15

25

再生開始点のパケット到着時刻が、パケット列のオフセット時刻情報以上であるところの、前記パケット列を見つけ、パケット列上で、再生開始点のパケット 到着時刻に等しいか、または過去のエントリーポイントの時刻を求め、

エントリーポイントの時刻に関連づけられたアドレスからデータストリームを 再生するようにすることができる。

本発明の第2のデータ再生方法は、到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、パケット列のオフセット時刻情報を再生する再生ステップと、再生された情報に基づいて、情報記録媒体からのデータストリームの再生を制御する制御ステップとを含むことを特徴とする。

本発明の第4のプログラム格納媒体のプログラムは、到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、パケット列のオフセット時刻情報を再生する再生ステップと、再生された情報に基づいて、情報記録媒体からのデータストリームの再生を制御する制御ステップとを含むことを特徴とする。

本発明の第4のプログラムは、到着時刻情報の不連続点を含まないパケット列 毎の開始パケットのアドレスと、パケット列のオフセット時刻情報を再生する再 生ステップと、再生された情報に基づいて、情報記録媒体からのデータストリー ムの再生を制御する制御ステップとを実行させる。

20 本発明の第2のデータ記録媒体は、到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、パケット列毎の到着時刻情報のオフセット時刻情報とが記録された。

本発明の第1のデータ編集装置は、基準時刻情報の不連続点を含まない第1のパケット列、および到着時刻情報の不連続点を含まない第2のパケット列に基づいてデータストリームを管理するコントローラと、データストリームの一部を削除するよう指示するユーザインターフェースとを有し、コントローラは、データストリームの一部が削除するよう指示された際には、第1のパケット列を識別す

る識別情報が変化しないように、第2のパケット列毎に、第1のパケット列に対 する識別情報のオフセット値を付加するよう制御することを特徴とする。

表示時刻情報の時間とデータアドレスを関係付けるマップをさらに制御することができる。

5 削除終了点の表示時刻に等しいか、または過去の表示時刻を持つ第1のエントリーポイントの第1の表示時刻を見つけ、第1の表示時刻の値よりも、少なくとも所定の時間だけ過去の表示時刻を持つ第2のエントリーポイントの第2の表示時刻を見つけ、第2の表示時刻に関連づけられたデータアドレスよりも前を削除するように制御することができる。

10 削除開始点の表示時刻に等しいか、または未来の表示時刻の値を持つ第1のエントリーポイントの第1の表示時刻を見つけ、第1の表示時刻よりも、未来の表示時刻を持つ第2のエントリーポイントの第2の表示時刻を見つけ、

第2の表示時刻に関連づけられたアドレスよりも後ろを削除するように制御することができる。

15 本発明の第1のデータ編集方法はコントローラは、データストリームの一部が 削除するよう指示された際には、第1のパケット列を識別する識別情報が変化し ないように、第2のパケット列毎に、第1のパケット列に対する識別情報のオフ セット値を付加するよう制御することを特徴とする。

本発明の第5のプログラム格納媒体のプログラムは、データストリームの一部 20 が削除するよう指示された際には、第1のパケット列を識別する識別情報が変化 しないように、第2のパケット列毎に、第1のパケット列に対する識別情報のオフセット値を付加するよう制御することを特徴とする。

本発明の第5のプログラムは、データストリームの一部が削除するよう指示された際には、第1のパケット列を識別する識別情報が変化しないように、第2のパケット列毎に、第1のパケット列に対する識別情報のオフセット値を付加するよう制御させることを特徴とする。

本発明の第2のデータ編集装置は、パケットの到着時刻を示す到着時刻情報の

20

不連続点を含まないパケット列に基づいてデータストリームを管理するコントローラと、データストリームの一部を削除するよう指示するユーザインターフェースとを有し、コントローラは、データストリームの一部が削除するように指示された際には、パケット列毎に、到着時刻情報の時間軸のスタートタイムを付加するように制御することを特徴とする。

到着時刻情報の時間とデータアドレスを関係付けるマップをさらに制御することができる。

削除開始点のパケット到着時刻が、到着時刻情報の時間軸のスタートタイム以上であるところの、パケット列を見つけ、パケット列の到着時刻情報の時間軸上で、削除開始点のパケット到着時刻に等しいか、または未来のエントリーポイントの時刻を求め、上記エントリーポイントの時刻に関連づけられたアドレスよりも後ろを削除するように制御することができる。

削除終了点のパケット到着時刻が、到着時刻情報の時間軸のスタートタイム以上であるところの、パケット列を見つけ、パケット列の到着時刻情報の時間軸上で、削除終了点のパケット到着時刻に等しいか、または過去の時刻のエントリーポイントを求め、上記エントリーポイントの時刻に関連づけられたアドレスよりも前を削除するように制御することができる。

本発明の第2のデータ編集方法は、コントローラは、データストリームの一部 が削除するように指示された際には、パケット列毎に、到着時刻情報の時間軸の スタートタイムを付加するように制御することができる。

本発明の第6のプログラム格納媒体のプログラムは、前記データストリームの 一部が削除するように指示された際には、前記パケット列毎に、前記到着時刻情報の時間軸のスタートタイムを付加するように制御させることを特徴とする。

本発明の第6のプログラムは、データストリームの一部が削除するように指示 25 された際には、パケット列毎に、到着時刻情報の時間軸のスタートタイムを付加 するように制御させることを特徴とする。

本発明の第3のデータ記録装置は、パケット列で構成されるデータストリーム

15

20

25

の時間情報とそのアドレスとを関連づけるためのマップ情報として第1のマップ情報を使用する場合、第1の時刻情報の連続性を表す第1の連続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とを作成するとともに、マップ情報として第2のマップ情報を使用する場合、第2の連続性情報を作成する作成手段と、第1のマップ情報を使用する場合には、作成手段で作成された第1の連続性情報および第2の連続性情報を記録し、第2のマップ情報を使用する際には、第2の連続性情報を記録する記録手段とを備えることを特徴とする。

前記第1のマップ情報は、EP_mapであり、第2のマップはTU_mapとすることができる。

10 編集処理において、記録手段は、第1のマップが使用されている際には、第1 の連続性情報、および第2の連続性情報を更新するとともに、第2のマップが 使用されている際には、第2の連続性情報を更新することができる。

本発明の第3のデータ記録方法は、パケット列で構成されるデータストリームの時間情報とそのアドレスとを関連づけるためのマップ情報として第1のマップ情報を使用する場合、第1の時刻情報の連続性を表す第1の連続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とを作成するとともに、マップ情報として第2のマップ情報を使用する場合、第2の連続性情報を作成する作成ステップと、第1のマップ情報を使用する場合には、作成ステップの処理で作成された第1の連続性情報および第2の連続性情報を記録し、第2のマップ情報を使用する際には、第2の連続性情報を記録し、第2のマップ情報を使用する際には、第2の連続性情報を記録ステップとを含むことを特徴とする。

本発明の第7のプログラム格納媒体のプログラムは、パケット列で構成される データストリームの時間情報とそのアドレスとを関連づけるためのマップ情報と して第1のマップ情報を使用する場合、第1の時刻情報の連続性を表す第1の連 続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とを作成するとと もに、マップ情報として第2のマップ情報を使用する場合、第2の連続性情報を 作成する作成ステップと、第1のマップ情報を使用する場合には、作成ステップ

10

15

20

25

12

の処理で作成された第1の連続性情報および第2の連続性情報を記録し、第2の マップ情報を使用する際には、第2の連続性情報を記録する記録ステップとを含 むことを特徴とする。

本発明の第7のプログラムは、パケット列で構成されるデータストリームの時間情報とそのアドレスとを関連づけるためのマップ情報として第1のマップ情報を使用する場合、第1の時刻情報の連続性を表す第1の連続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とを作成するとともに、マップ情報として第2のマップ情報を使用する場合、第2の連続性情報を作成する作成ステップと、第1のマップ情報を使用する場合には、作成ステップの処理で作成された第1の連続性情報および第2の連続性情報を記録し、第2のマップ情報を使用する際には、第2の連続性情報を記録し、第2のマップ情報を使用する際には、第2の連続性情報を記録する記録ステップとをコンピュータに実行させる。

本発明の第4のデータ記録装置は、パケット列で構成されるデータストリームの記録の種類を判定する判定手段と、判定手段により記録の種類が第1の種類であると判定された場合、第1の時刻情報の時間軸を表す第1の時間軸情報と、第2の時刻情報の時間軸を表す第2の時間軸情報とを作成するとともに、判定手段により記録の種類が第2の種類であると判定された場合、第2の時間軸情報を作成する制御部と、記録の種類が第1の種類の場合には、第1の連続性情報および第2の連続性情報を記録するとともに、記録の種類が第2の種類の場合には、第2の連続性情報を記録する記録部とを備えることを特徴とする。

前記制御部は、記録の種類が第1の種類と判定された場合、データストリームの時刻情報と記録アドレスに基づく第1のマップ情報を生成するとともに、記録の種類が第2の種類と判定された場合、パケットの到着時刻情報と記録アドレスに基づく第2のマップ情報を生成し、記録部は、第1のマップ情報、または第2のマップ情報を記録することができる。

__前記第1の時間軸情報は、データデータストリームの基準時刻情報に基づいて 生成された時刻情報の時間軸情報であり、第2の時間軸情報は、パケットの到着 WO 02/075739 PCT/JP01/10146

F1 ...

10

15

20

25

時刻に基づいて生成された時刻情報の時間軸情報とすることができる。

本発明の第4のデータ記録方法は、パケット列で構成されるデータストリームの記録の種類を判定する判定ステップと、判定ステップの処理により記録の種類が第1の種類であると判定された場合、第1の時刻情報の時間軸を表す第1の時間軸情報と、第2の時刻情報の時間軸を表す第2の時間軸情報とを作成するとともに、判定ステップの処理により記録の種類が第2の種類であると判定された場合、第2の時間軸情報を作成する制御ステップと、記録の種類が第1の種類の場合には、第1の連続性情報および第2の連続性情報を記録するとともに、記録の種類が第2の種類の場合には、第2の連続性情報を記録するとともに、記録の種類が第2の種類の場合には、第2の連続性情報を記録する記録ステップとを含むことを特徴とする。

本発明の第8のプログラム格納媒体のプログラムは、パケット列で構成されるデータストリームの記録の種類を判定する判定ステップと、判定ステップの処理により記録の種類が第1の種類であると判定された場合、第1の時刻情報の時間軸を表す第1の時間軸情報と、第2の時刻情報の時間軸を表す第2の時間軸情報とを作成するとともに、判定ステップの処理により記録の種類が第2の種類であると判定された場合、第2の時間軸情報を作成する制御ステップと、記録の種類が第1の種類の場合には、第1の連続性情報および第2の連続性情報を記録するとともに、記録の種類が第2の種類の場合には、第2の連続性情報を記録する記録ステップとを含むことを特徴とする。

本発明の第8のプログラムは、パケット列で構成されるデータストリームの記録の種類を判定する判定ステップと、判定ステップの処理により記録の種類が第1の種類であると判定された場合、第1の時刻情報の時間軸を表す第1の時間軸情報と、第2の時刻情報の時間軸を表す第2の時間軸情報とを作成するとともに、判定ステップの処理により記録の種類が第2の種類であると判定された場合、第2の時間軸情報を作成する制御ステップと、記録の種類が第1の種類の場合には、第1の連続性情報および第2の連続性情報を記録するとともに、記録の種類が第2の種類の場合には、第2の連続性情報を記録する記録ステップとをコンピュー

タに実行させる。

本発明のデータ再生装置は、情報記録媒体から、データストリームの再生時刻が参照するところの第1の時刻情報の不連続点を含まない第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列の間に、パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生手段と、再生手段により再生された情報に基づいて、情報記録媒体からの再生を制御する制御手段とを備えることを特徴とする。

本発明のデータ再生方法は、情報記録媒体から、データストリームの再生時刻 が参照するところの第1の時刻情報の不連続点を含まない第1のパケット列と、 第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列 の間に、パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存 在するかどうかを示す情報を再生する再生ステップと、再生ステップの処理によ り再生された情報に基づいて、情報記録媒体からの再生を制御する制御ステップ 15 とを含むことを特徴とする。

本発明のプログラム格納媒体は、情報記録媒体から、データストリームの再生時刻が参照するところの第1の時刻情報の不連続点を含まない第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列の間に、パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生ステップと、再生ステップの処理により再生された情報に基づいて、情報記録媒体からの再生を制御する制御ステップとを含むことを特徴とする。

本発明のプログラムは、パケット列からなるデータストリームを情報記録媒体から再生するデータ再生装置を制御するコンピュータに、情報記録媒体から、デ 25 ータストリームの再生時刻が参照するところの第1の時刻情報の不連続点を含まない第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列の間に、パケットの到着時刻が参照するところの第2

WO 02/075739 PCT/JP01/10146

10 m

10

15

20

15

の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生ステップと、 再生ステップの処理により再生された情報に基づいて、情報記録媒体からの再生 を制御する制御ステップとを実行させる。

本発明の第3のデータ記録媒体は、第1の時刻情報の不連続点を含まない第1 のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない 第2のパケット列の間に、第2の時刻情報の不連続点が存在するかどうかを示す 情報が記録されていることを特徴とする。

本発明の第6のデータ記録装置は、記録の途中に、記録ポーズとポーズ解除の 動作があった場合に、パケットの到着時刻が参照するところの時刻情報の不連続 点が存在することを示す情報を記録する記録手段を備えることを特徴とする。

本発明の第6のデータ記録方法は、記録の途中に、記録ポーズとポーズ解除の 動作があった場合に、パケットの到着時刻が参照するところの時刻情報の不連続 点が存在することを示す情報を記録する記録ステップを含むことを特徴とする。

本発明の第10のプログラム格納媒体は、記録の途中に、記録ポーズとポーズ 解除の動作があった場合に、パケットの到着時刻が参照するところの時刻情報の 不連続点が存在することを示す情報を記録する記録ステップをを含むことを特徴 とする。

本発明の第10のプログラムは、パケット列からなるデータストリームを情報記録媒体に記録するデータ記録装置を制御するコンピュータに、記録の途中に、

記録ポーズとポーズ解除の動作があった場合に、パケットの到着時刻が参照する ところの時刻情報の不連続点が存在することを示す情報を記録する記録ステップ を実行させる。

本発明の第4のデータ記録媒体は、記録の途中に、記録ポーズとポーズ解除の 動作があった場合に、パケットの到着時刻が参照するところの時刻情報の不連続 点が存在することを示す情報が記録されていることを特徴とする。

76 本発明の第3のデータ再生装置は、第1の時刻情報の不連続点を含まな い第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含 まない第2のパケット列の間に、パケットの到着時刻が参照するところの第2の 時刻情報の不連続点が存在するかどうかを示す情報を再生する再生手段と、情報 に基づいて、情報記録媒体からのデータストリームの再生を制御する制御手段と を備えることを特徴とする。

5 前記第2の時刻情報が参照する基準時刻情報を発生する発生手段をさらに備え、 再生手段は、第1のパケット列に続いて第2のパケット列を再生し、制御手段は、 第1のパケット列と第2のパケット列の間に第2の時刻情報の不連続点が存在し ない場合、第1と第2のパケット列を、連続な基準時刻情報の値に基づいて再生 するようにすることができる。

10 前記第2の時刻情報が参照する基準時刻情報を発生する発生手段をさらに備え、 再生手段は、第1のパケット列に続いて第2のパケット列を再生し、制御手段は、 第1のパケット列と第2のパケット列の間に委第2の時刻情報の不連続点が存在 する場合、第2のパケット列を再生する前に、基準時刻情報のクロック値をリセットするようにすることができる。

本発明の第3のデータ再生方法は、第1の時刻情報の不連続点を含まない第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列の間に、パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生ステップと、情報に基づいて、情報記録媒体からのデータストリームの再生を制御する制御ステップとを含むことを特徴とする。

本発明の第11のプログラム格納媒体は、第1の時刻情報の不連続点を含まない第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列の間に、パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生ステップと、

25 情報に基づいて、情報記録媒体からのデータストリームの再生を制御する制御ス テップとを含むことを特徴とする。

本発明の第11のプログラムは、パケット列からなるデータストリームが記録

15

20

25

されている情報記録媒体からデータストリームを再生するデータ再生装置を制御するコンピュータに、第1の時刻情報の不連続点を含まない第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列の間に、パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生ステップと、情報に基づいて、情報記録媒体からのデータストリームの再生を制御する制御ステップとを実行させる。

本発明の第4のデータ再生装置は、パケットの到着時刻を示す時刻情報が参照する基準時刻情報を発生する発生手段と、第1の時刻情報の不連続点を含まない第1パケット列に続いて、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2パケット列を再生する再生手段と、第1のパケット列と第2のパケット列の間にパケットの到着時刻を示す時刻情報の不連続点が存在する場合、第2のパケット列を再生する前に、基準時刻情報のクロック値をリセットする制御手段とを備えることを特徴とする。

本発明の第4のデータ再生方法は、パケットの到着時刻を示す時刻情報が参照 する基準時刻情報を発生する発生ステップと、第1の時刻情報の不連続点を含ま ない第1パケット列に続いて、第1のパケット列に続く第1の時刻情報の不連続 点を含まない第2パケット列を再生する再生ステップと、第1のパケット列と第 2のパケット列の間にパケットの到着時刻を示す時刻情報の不連続点が存在する 場合、第2のパケット列を再生する前に、基準時刻情報のクロック値をリセット する制御ステップとを含むことを特徴とする。

本発明の第12のプログラム格納媒体は、パケットの到着時刻を示す時刻情報が参照する基準時刻情報を発生する発生ステップと、第1の時刻情報の不連続点を含まない第1パケット列に続いて、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2パケット列を再生する再生ステップと、第1のパケット列と第2のパケット列の間にパケットの到着時刻を示す時刻情報の不連続点が存在する場合、第2のパケット列を再生する前に、基準時刻情報のクロック値をリセットする制御ステップとを含むことを特徴とする。

15

25

本発明の第12のプログラムは、パケット列からなるデータストリームが記録されている情報記録媒体からデータストリームを再生するデータ再生装置を制御するコンピュータに、パケットの到着時刻を示す時刻情報が参照する基準時刻情報を発生する発生ステップと、第1の時刻情報の不連続点を含まない第1パケット列に続いて、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2パケット列を再生する再生ステップと、第1のパケット列と第2のパケット列の間にパケットの到着時刻を示す時刻情報の不連続点が存在する場合、第2のパケット列を再生する前に、基準時刻情報のクロック値をリセットする制御ステップとを実行させる。

10 本発明の第1のデータ記録装置においては、第1の時刻情報の連続性を表す第 1の連続性情報、パケットの到着時刻を示す第2の時刻情報の連続性を表す第2 の連続性情報、および第2の時刻情報の不連続点を含まない第2のパケット列毎 の識別情報のオフセット値が情報記録媒体に記録される。

本発明の第1のデータ再生装置においては、情報記録媒体から再生された、第 1の時刻情報の連続性を表す第1の連続性情報、パケットの到着時刻を示す第2 の時刻情報の連続性を表す第2の連続性情報、前記第1の時刻情報の不連続点を 含まない第1のパケット列を識別するための識別情報、および第2の時刻情報の 不連続点を含まない第2のパケット列毎に付加された識別情報のオフセット値に 基づいて、情報記録媒体からのデータストリームの再生が制御される。

20 本発明の第2のデータ記録装置においては、パケットのアドレスと、オフセット時刻情報が情報記録媒体に記録される。

本発明の第2のデータ再生装置においては、到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、パケット列毎のオフセット時刻情報が再生され、再生された情報に基づいて、情報記録媒体からのデータストリームの再生が制御される。

本発明の第1のデータ編集装置においては、データストリームの一部が削除するように指示された場合、第1のパケット列を識別する識別情報が変化しないよ

es 🤒 a

10

15

20

うに、第2のパケット列毎に、第1のパケット列に対する識別情報のオフセット 値が付加されるように制御される。

本発明の第2のデータ編集装置においては、データストリームの一部が削除するように指示された場合、パケット列毎に、到着時刻情報の時間軸のスタートタイムが付加されるように制御される。

本発明の第3のデータ記録装置においては、関連づけ情報が第1の関連づけ情報であると判定された場合、第1の時刻情報の連続性を表す第1の連続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とが作成され、それに基づいて第1の関連づけ情報が生成、記録され、関連づけ情報が第2の関連づけ情報であると判定された場合、第2の連続性情報が作成され、それに基づいて、第2の関連づけ情報が作成、記録される。

本発明の第4のデータ記録装置においては、記録の種類が第1の種類であると 判定された場合、データストリームが解析され、第1の時刻情報の連続性を表す 第1の連続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とが作成 され、それに基づいて、第1の関連づけ情報が作成、記録され、記録の種類が第 2の種類であると判定された場合、第2の連続性情報が作成され、それに基づい て、第2の関連づけ情報が作成、記録される。

本発明の第5のデータ記録装置においては、第1の時刻情報の不連続点を含まない第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列の間に、第2の時刻情報の不連続点が存在するかどうかを示す情報が記録される。

本発明の第6のデータ記録装置においては、記録の途中に、記録ポーズとポーズ解除の動作があった場合に、パケットの到着時刻が参照するところの時刻情報の不連続点が存在することを示す情報が記録される。

25 本発明の第3のデータ再生装置においては、第1の時刻情報の不連続点を含まない第1のパケット列と、第1のパケット列に続く第1の時刻情報の不連続点を含まない第2のパケット列の間に、パケットの到着時刻が参照するところの第2

Je 1 23 1

の時刻情報の不連続点が存在するかどうかを示す情報が再生される。

本発明の第4のデータ再生装置においては、第1のパケット列と第2のパケット列の間にパケットの到着時刻を示す時刻情報の不連続点が存在する場合、第2のパケット列を再生する前に、基準時刻情報のクロック値がリセットされる。

5

図面の簡単な説明

図1は、本発明が適用される記録再生システムで用いる記録媒体上のアプリケーションフォーマットの構造を説明する図である。

図2は、ディレクトリ構造を説明する図である。

10 図3は、DVR MPEG-2のトランスポートストリームの構造を説明する図である。

図4は、source_packet のシンタクスを示す図である。

図5は、TP extra_header()のシンタクスを示す図である。

図 6 は、DVR MPEG-2トランスポートストリームレコーダモデルの構成を示すブロック図である。

15 図 7 は、DVR MPEG - 2 トランスポートストリームプレーヤモデルの構成を示すブロック図である。

図8は、Clip Information fileのシンタクスを示す図である。

図 9 は、ATC-sequence を説明する図である。

図10は、ATCの不連続点とATC-sequencesの関係を説明する図である。

20 図11は、連続な STC 区間について説明する図である。

図12は、STC の不連続点と STC-sequence の関係を説明する図である。

図13は、SequenceInfo()のシンタクスを示す図である。

図14は、Program-sequence を説明する図である。

図15は、ProgramInfo()のシンタクスを示す図である。

25 図16は、StreamCodingInfo()のシンタクスを示す図である。

図17は、stream_coding_typeを説明する図である。

図18は、video_formatを説明する図である。

- 図19は、frame_rate を説明する図である。
- 図20は、display_aspect_ratioを説明する図である。
- 図21は、audio_presentation_type を説明する図である。
- 図22は、sampling_frequency を説明する図である。
- 5 図23は、CPI()のシンタクスを示す図である。
 - 図24は、EP_mapを説明する図である。
 - 図25は、TU_mapを説明する図である。
 - 図26は、TU_mapのシンタクスを説明する図である。
 - 図27は、PlayList fileのシンタクスを示す図である。
- 10 図28は、PlayList()のシンタクスを示す図である。
 - 図29は、EP_map typeのPlayListを説明する図である。
 - 図30は、TU_map typeのPlayListを説明する図である。
 - 図31は、EP_map typeの PlayList の時間情報と AV ストリームファイルの中のアドレス情報の関係を説明する図である。
- 15 図32は、TU_map typeのPlayListの時間情報とAVストリームファイルの中のアドレス情報の関係を説明する図である。
 - 図33は、PlayItem()のシンタクスを示す図である。
 - 図34は、AVストリームが新しい Clip として記録されるときの Clip と PlayList の関係を説明する図である。
- **20** 図35は、Virtual PlayListの作成について説明する図である。
 - 図36は、Real PlayList の再生区間の一部分を消去したときの Clip と PlayList の関係を説明する図である。
 - 図37は、ミニマイズ編集を説明する図である。
- 図38は、Clip AV ストリームのデータを部分的に消去したときに、Clip の 25 中に生成される ATC-sequence を説明する図である。
 - 図39は、Clip AV ストリームのデータを部分的に消去したときの ATC-sequence および program-sequence の関係を説明する図である。

p 1 va 1

図40は、CPIが EP_map である Clip AV ストリームの一部分を消去したときの Clip と PlayList の関係を説明する図である。

図41は、CPIが EP_map である Clip AV ストリームの一部分を消去したときに、Clip ファイルが2つに別れる場合を説明する図である。

5 図42は、CPI が TU_map である Clip AV ストリームの一部分を消去したとき の Clip と PlayList の関係を説明する図である。

図43は、本発明の動画像記録再生装置の構成を示すブロック図である。

図44は、Clipの作成処理を説明するフローチャートである。

図45は、SequeceInfoの作成処理を説明するフローチャートである。

10 図46は、ProgramInfoの作成処理を説明するフローチャートである。

図47は、EP_mapの作成処理を説明するフローチャートである。

図48は、ClipのCPIの種類によってClipの情報の作成方法が違うことを 説明するフローチャートである。

図49は、Real PlayList の作成処理を説明するフローチャートである。

25 0は、Virtual PlayList の作成処理を説明するフローチャートである。
図51は、EP_map タイプの PlayList の再生処理を説明するフローチャートである。

図52は、EP_map タイプの PlayList に対するミニマイズ編集処理を説明するフローチャートである。

20 図53は、ミニマイズのオペレーションを説明する図である。

図54は、ミニマイズ時の IN_time の前の不要なストリームデータの消去を 説明する図である。

図55は、ミニマイズ時のOUT_timeの後ろの不要なストリームデータの消去を説明する図である。

25 図 5 6 は、TU_map タイプの PlayList の再生方法を説明するフローチャートである。

図57は、図56のステップS303の処理の詳細を説明するフローチャート

• . . .

である。

図58は、TU_map タイプの PlayList に対するミニマイズ編集の処理を説明 するフローチャートである。

図 5 9 は、図 5 8 のステップ S 5 0 2 の処理の詳細を説明するフローチャート 5 である。

図60は、EP_map タイプと TU_map タイプの各 PlayList に対するミニマイズ 編集の処理での Clip Information file の更新を説明するフローチャートである。

図 6 1 は、EP_map タイプの PlayList の場合に、2 個の ATC シーケンスの境界 で 2 個の PlayItem に分かれている場合を説明する図である。

図 6 2 は、 EP_{map} タイプの PlayList の場合に、連続な ATC シーケンス上にある 2 個の STC シーケンスの境界で PlayItem が分かれている場合を説明する図である。

図63は、AV ストリームを記録する時に、EP_map タイプの PlayList を作成 15 する場合のフローチャートである。

図 6 4 は、TU_map タイプの PlayList の場合に、2 個の ATC シーケンスの境界で 2 個の PlayItem に分かれている場合を説明する図である。

図65は、AVストリームを記録する時に、TU_map タイプの PlayList を作成する場合のフローチャートである。

20 図 6 6 は、EP_map タイプの PlayList を再生する時のフローチャートを説明 する図である。

図 6 7 は、 TU_map タイプの PlayList を再生する時のフローチャートである。 図 6 8 は、記録媒体の記録領域を説明する図である。

25 発明を実施するための最良の形態

以下に、本発明の実施の形態について、図面を参照して説明する。

図1は、記録媒体(後述する図43の記録媒体10)上のアプリケーションフ

オーマットの簡単化された構造を示している。このフォーマットは、AV ストリームの管理のために PlayList と Clip の 2 個のレイヤをもつ。そして、Volume Information は、ディスク内のすべての Clip と PlayList の管理をする。

1個の AV ストリームと、それの付属情報のペアを1個のオブジェクトと考え、

5 それをClipと呼ぶ。AVストリームファイルはClip AVストリームファイルと呼ばれ、その付属情報は、Clip Information fileと呼ばれる。

1個の Clip AV ストリームファイルは、MPEG2 トランスポートストリームを DVR (Digital Video Recording) アプリケーションフォーマットによって規定 される構造に配置したデータをストアする。

10 一般に、コンピュータ等で用いるデータファイルは、バイト列として扱われるが、Clip AV ストリームファイルのコンテンツは、時間軸上に展開され、PlayList は、Clip の中のアクセスポイントを主にタイムスタンプで指定する。PlayList によって、Clip の中のアクセスポイントのタイムスタンプが与えられた時、Clip Information file は、Clip AV ストリームファイルの中でストリームのデコードを開始すべきアドレス情報を見つけるために役立つ。

PlayList は、Clip の中からユーザが見たい再生区間を選択し、それを簡単に編集することができることを目的にして導入された。1つの PlayList は、Clip の中の再生区間の集まりである。ある Clip の中の1つの再生区間は、PlayItem と呼ばれ、それは、時間軸上の IN 点と OUT 点のペアで表される。それゆえ、

20 PlayList は、PlayItem の集まりである。

25

PlayList には、2つのタイプがある。1つは、Real PlayList であり、もう 1つは、Virtual PlayList である。

Real PlayList は、それが参照している Clip のストリーム部分を共有しているとみなされる。すなわち、Real PlayList は、それが参照している Clip のストリーム部分に相当するデータ容量をディスクの中で占める。AV ストリームが新しい Clip として記録される場合、その Clip 全体の再生可能範囲を参照するReal PlayList が自動的に作られる。Real PlayList の再生範囲の一部分が消

15

去された場合、それが参照している Clip のストリーム部分のデータもまた消去される。

Virtual PlayList は、Clip のデータを共有していないとみなされる。

Virtual PlayList が変更または消去されたとしても、Clip は何も変化しない。

5 なお、以下の説明においては、Real PlayList と Virtual PlayList を総称して単に、PlayList と呼んでいる。

DVR ディスク上に必要なディレクトリは、次の通りである。

"DVR"ディレクトリを含む root ディレクトリ

"PLAYLIST"ディレクトリ, "CLIPINF"ディレクトリ, "STREAM"ディレクトリ および"DATA"ディレクトリを含む"DVR"ディレクトリ

root ディレクトリの下に、これら以外のディレクトリを作っても良いが、それらは、この DVR アプリケーションフォーマットでは、無視される。

図 2 に、DVR ディスク上のディレクトリ構造の例を示す。同図に示されるように、root ディレクトリは、1 個のディレクトリを含む。"DVR" -- DVR アプリケーションフォーマットによって規定されるすべてのファイルとディレクトリは、このディレクトリの下にストアされなければならない。

"DVR"ディレクトリは、以下に説明するディレクトリを含む。

"PLAYLIST" -- Real PlayList と Virtual PlayList のデータベースファイルは、このディレクトリの下に置かなければならない。このディレクトリは、

20 PlayList が1個もなくても存在しなければならない。

"CLIPINF" -- Clip のデータベースは、このディレクトリの下に置かなければならない。このディレクトリは、Clip が1個もなくても存在しなければならない。

"STREAM" -- AV ストリームファイルは、このディレクトリの下に置かなければ 25 ならない。このディレクトリは、AV ストリームファイルが1個もなくても存在 しなければならない。

"PLAYLIST"ディレクトリは、2 種類の PlayList ファイルをストアするもので

15

20

ければならない。

あり、それらは、Real PlayList と Virtual PlayList である。

"xxxxx.rpls" -- このファイルは、1個の Real PlayList に関連する情報をストアする。それぞれの Real PlayList 毎に、1個のファイルが作られる。ファイル名は、"xxxxx.rpls"である。ここで、"xxxxx"は、5個の0から9まで数字である。ファイル拡張子は、"rpls"でなければならない。

"yyyyy.vpls" -- このファイルは、1個の Virtual PlayList に関連する情報をストアする。それぞれの Virtual PlayList 毎に、1個のファイルが作られる。ファイル名は、"yyyyy.vpls"である。ここで、"yyyyy"は、5個の 0 から 9 まで数字である。ファイル拡張子は、"vpls"でなければならない。

10 "CLIPINF"ディレクトリは、それぞれのAVストリームファイルに対応して、 1個のファイルをストアする。

"zzzzz.clpi" -- このファイルは、1個の AV ストリームファイル(Clip AV ストリームファイル または Bridge-Clip AV ストリームファイル)に対応する Clip Information file である。ファイル名は、"zzzzz.clpi"であり、ここで、"zzzzz"は、5個の0から9までの数字である。ファイル拡張子は、"clpi"でな

"STREAM"ディレクトリは、AV ストリームのファイルをストアする。

"zzzzz.m2ts" -- このファイルは、DVR システムにより扱われる AV ストリームファイルである。これは、Clip AV ストリームファイルまたは Bridge-Clip AV ストリームファイルである。ファイル名は、"zzzzz.m2ts"であり、ここで"zzzzz"は、5 個の 0 から 9 までの数字である。ファイル拡張子は、"m2ts"でなければならない。

1個の AV ストリームファイルとそれに対応する Clip information file は、同じ5個の数字"zzzzz"を使用しなければならない。

25 その他のディレクトリとファイル名は、本発明の実施の形態を説明するために 必要ないので、説明を省略する。

次に、AV ストリームファイルの構造を説明する。AV ストリームファイルは図

3示す DVR MPEG2 トランスポートストリームの構造を持たなければならない。 DVR MPEG2 トランスポートストリームは次に示す特徴を持つ。

- 1) DVR MPEG2 トランスポートストリームは、整数個の Aligned unit から構成される。
- 5 2) Aligned unit の大きさは、6144 バイト(2048×3 バイト)である。
 - 3) Aligned unit は、ソースパケットの第1バイト目から始まる。
 - 4) ソースパケットは、192 バイト長である。1個のソースパケットは、TP_extra_header とトランスポートパケットから成る。TP_extra_header は、4 バイト長であり、またトランスポートパケットは、188 バイト長である。
- 10 5) 1 個の Aligned unit は、32 個のソースパケットから成る。
 - 6) DVR MPEG2 トランスポートストリームの中の最後の Aligned unit も、また 32 個のソースパケットから成る。
 - 7) 最後の Aligned unit が、入力トランスポートストリームのトランスポートパケットで完全に満たされなかった場合、残りのバイト領域をヌルパケット
- 15 (PID=0x1FFF のトランスポートパケット)を持ったソースパケットで満たさねばならない。

Source packet のシンタクスを図4に示す。

TP_extra_header()は、4バイト長のヘッダである。また、
transport_packet() は、 ISO/IEC 13818-1 で規定される 188 バイト長の

TP_extra_header のシンタクスを図 5 に示す。

MPEG-2 トランスポートパケットである。

20

copy_permission_indicator は、対応するトランスポートパケットのペイロードのコピー制限を表す整数である。

arrival_time_stamp は、AV ストリームの中で、対応するトランスポートパケ 25 ットがデコーダ (後述する図43のAV デコーダ16が対応する) に到着する時 刻を示すタイムスタンプである。これは、後述する式(1)の中で arrival_time_stampによって指定される値を持つ整数値である。

図6は、DVR MPEG-2トランスポートストリームのレコーダモデル(後述する 図43の動画像記録再生装置1が対応する)を示す。これは、レコーディングプロセスを規定するための概念上のモデルである。DVR MPEG-2トランスポートストリームは、このモデルに従っていなければならない。

- 5 MPEG-2 トランスポートストリームの入力タイミングについて説明する。
 - ・入力 MPEG2 トランスポートストリームは、フルトランスポートストリームまたはパーシャルトランスポートストリームである。
 - ・入力 MPEG2 トランスポートストリームは、ISO/IEC13818-1 または ISO/IEC13818-9 に従っていなければならない。
- MPEG2 トランスポートストリームのi番目のバイトは、T-STD(ISO/IEC 13818-1 で規定される Transport stream system target decoder) 2 0 1 (図 4 3 の AV デコーダ1 6 が対応する) とソースパケッタイザ (source packetizer) 2 0 4 (図 4 3 の ソースパケッタイザ 2 9 が対応する) へ、時刻t(i)に同時に入力される。
- 1527MHz PLL 2 O 2 (図 4 3 の動画像記録再生装置 1 では、制御部 1 7 に内蔵されている) について説明する。

27MHz クロックの周波数は、MPEG-2 トランスポートストリームの PCR (Program Clock Reference)の値にロックしなければならない。

arrival time clock について説明する。

- ・アライバルタイムクロックカウンタ (Arrival time clock counter) 203
 (図43の動画像記録再生装置1では、制御部17に内蔵されている)は、
 27MHz PLL 202が出力する27MHzの周波数のパルスをカウントするバイナリーカウンターである。
 - ・Arrival_time_clock(i)は、時刻t(i)におけるArrival time clock counter 203のカウント値である。

ソースパケッタイザ204について説明する。

25

・ソースパケッタイザ204は、すべてのトランスポートパケットに

TP_extra_header を付加し、ソースパケットを作る。

・Arrival_time_stamp は、トランスポートパケットの第1バイト目が T-STD 2 0 1 とソースパケッタイザ 2 0 4 の両方へ到着する時刻を表す。

Arrival_time_stamp(k)は、等式(1)で示されるように、

5 Arrival_time_clock(k)のサンプル値であり、ここで、k はトランスポートパケットの第1バイト目を示す。

$$time_stamp(k) = arrival_time_clock(k) \% 2^{30}$$
 (1)

ライトバッファ(Write Buffer)205(図43の動画像記録再生装置1では、書き込み部32に内蔵されている)について説明する。

10 ・Rmax は、ソースパケッタイザ204からライトバッファ205へのソースパケットストリームの入力ビットレートである。入力トランスポートストリームの最大ビットレートをTS_recording_rateとすると、Rmax は次のように計算される。

 $Rmax = TS_recording_rate \times 192/188$

- 15 Rud は、ライトバッファ205から DVR ドライブ (DVR drive) 206 (図4 3の動画像記録再生装置1では、書き込み部32に内蔵されている) への出力ビットレートである。
 - ・ライトバッファ205が空でない時のバッファからのソースパケットストリームの出力ビットレートは Rud である。バッファが空である時、バッファからの出力ビットレートはゼロである。
 - DVR ドライブ 2 0 6 は、T-STD 2 0 1 への各パケットの到着時刻に対応する ATS が付加された、ライトバッファ 2 0 5 からの各パケットを、ディスク (図 4 3 の記録媒体 1 0 に対応する) に記録する。

図7は、DVR MPEG-2トランスポートストリームのプレーヤモデル(図43の **25** 動画像記録再生装置1が対応する)を示す。これは、再生プロセスを規定するための概念上のモデルである。DVR MPEG-2トランスポートストリームは、このモデルに従っていなければならない。

リードバッファ (Read buffer) 222 (図43の動画像記録再生装置1では、 読み出し部11に内蔵されている) について説明する。

- ・Rud は、DVR ドライブ (DVR drive) 221 (図43の動画像記録再生装置1では、読み出し部11に内蔵されている)からリードバッファ222への入力ビットレートである。
 - ・リードバッファ222がフルでない時のバッファへのソースパケットストリームの入力ビットレートはRudである。バッファがフルである時、バッファへの入力は止められる。
- ・Rmax は、リードバッファ222からソースデパケッタイザ(source

 10 depacketizer)223(図43のソースデパケッタイザ14が対応する)への
 ソースパケットストリームの出力ビットレートである。

アライバルタイムクロックカウンタ (arrival time clock counter) 225 (図43の動画像記録再生装置1では、制御部17に内蔵されている) について説明する。

- 15 ・アライバルタイムクロックカウンタ225は、27MHz クリスタル発振器 (27MHzX-tal) 224 (図43の動画像記録再生装置1では、制御部17に内蔵されている)が発生する27MHzの周波数のパルスをカウントするバイナリーカウンターである。
- ・現在のソースパケットが AV ストリームファイルの最初のソースパケットであ 20 るか、または後述する SequenceInfo()の中で SPN_ATC_start が指すところの ソースパケットである場合、そのパケットの arrival time stamp の値でアライ バルタイムクロックカウンタ 2 2 5 のカウント値をリセットする。
 - ・ $Arrival_time_clock(i)$ は、時刻 t(i)におけるアライバルタイムクロックカウンタ225のカウント値である。
- 25 MPEG-2 トランスポートストリームの出力タイミングについて説明する。
 - ・現在のソースパケットの arrival_time_stamp が arrival_time_clock(i)の LSB 30 ビットの値と等しい時、そのソースパケットのトランスポートパケット

は、バッファから引き抜かれる。

次に、AVストリームファイルの再生情報を管理するデータベースフォーマットについて説明する。

図8は、Clip Information fileのシンタクスを示す。Clip Information file は、SequenceInfo(), ProgramInfo(), CPI()を持つ。

SequenceInfo_start_address は、zzzzz.clpi ファイルの先頭のバイトからの相対バイト数を単位として、SequenceInfo()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

ProgramInfo_Start_address は、zzzzz. clpi ファイルの先頭のバイトからの 10 相対バイト数を単位として、ProgramInfo()の先頭アドレスを示す。相対バイト 数はゼロからカウントされる。

CPI_Start_address は、zzzzz. clpi ファイルの先頭のバイトからの相対バイト数を単位として、CPI()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

15 その他のシンタクスフィールドは、本発明の実施の形態を説明するために必要ないので、説明を省略する。

SequenceInfo()は、Clip AV streamの中のATC-sequence とSTC-sequenceの情報を定義する。

ATC-sequence について説明する。AV ストリームファイルを構成する各ソース
20 パケットの arrival time stamp (ATS) に基づいて作られる時間軸を、アライ
バルタイムベースと呼び、そのクロックを、ATC (Arrival Time Clock)と呼ぶ。
そして、ATC の不連続点(アライバルタイムベースの不連続点)を含まないソー
スパケット列を、ATC-sequence と呼ぶ。

図 9 は、ATC-sequence について説明する図である。入力トランスポートスト
25 リームを Clip AV ストリームファイルとして新しく記録する時、その Clip は
ATC の不連続点を含んではならず、ただ 1 つの ATC-sequence を持つ。ATC の不
連続点は、編集等によって Clip AV ストリームファイルのストリームデータを

部分的に消去した場合にだけ作られることを想定している。これについての詳細は後述する。

AV ストリームファイルの中で、新しい ATC が開始するアドレス、すなわち、ATC-sequence のスタートアドレスを、Sequence Info()にストアする。このアドレスは、SPN_ATC_start により示される。

AV ストリームファイルの中にある最後の ATC-sequence 以外の ATC-sequence は、その SPN_ATC_start で指されるソースパケットから開始し、その次の SPN_ATC_start で指されるソースパケットの直前のソースパケットで終了する。 最後の ATC-sequence は、その SPN_ATC_start で指されるソースパケットから 開始し、AV ストリームファイルの最後のソースパケットで終了する。

図10は、ATC の不連続点と ATC-sequence の関係を説明する図である。この例の場合、Clip AV ストリームファイルは、2個の ATC 不連続点を持ち、3個のATC-sequence を持つ。

STC-sequence について説明する。STC(System Time Clock)の定義は、MPEG-2 で規定されている定義に従う。すなわち、これは、トランスポートストリーム の中の PCR(Program Clock Reference)に基づいて作られる時間軸であるシステ ムタイムベースのクロックである。STC の値は 90kHz 精度、33 ビット長のバイ ナリーカウンタのカウント値で表される。

図11は、連続な STC 区間について説明する図である。ここで横軸は、

- 20 Arrival Time Clock (またはアライバルタイムベース) であり、縦軸は STC (またはシステムタイムベース) である。Case-1 の場合、STC は単調増加して おり、その区間の STC は連続である。Case-2 の場合、33 ビットの STC が途中で ラップアラウンドしている。STC のラップアラウンド点は STC の不連続ではない。 ラップアラウンドしても STC は連続である。
- 25 STC の不連続は、放送局が伝送系を切り替えた場合、記録側が記録するチャンネルを切り替えた場合、ユーザが編集操作を行った場合などに発生する。 STC の不連続点(システムタイムベースの不連続点)を含まないソースパケッ

ト列を、STC-sequence と呼ぶ。なお、同じ STC_sequence の中で同じ STC の値は、決して現れない。そのために、Clip の最大時間長を、33 ビットの STC のラップアラウンド周期(約26時間)以下に制限している。

AV ストリームファイルの中で、新しい STC が開始するアドレス、すなわち、

5 STC-sequence のスタートアドレスが、SequenceInfo()にストアされる。このアドレスは、SPN_STC_start により示される。

STC-sequence は、ATC-sequence の境界をまたぐことはない。

AV ストリームファイルの中にある最後の STC-sequence 以外の STC-sequence は、その SPN_STC_start で指されるソースパケットから開始し、その次の

SPN_STC_start で指されるソースパケットの直前のソースパケットで終了する。 最後の STC-sequence は、その SPN_STC_start で指されるソースパケットから 開始し、AV ストリームファイルの最後のソースパケットで終了する。

図12は、STC の不連続点と STC-sequence の関係、および STC-sequence と ATC-sequence の関係を説明する図である。この例の場合、Clip AV ストリームファイルは、3 個の STC を持ち、3 個の STC-sequence を持つ。1 つの STC-sequence が、ATC-sequence の境界をまたぐことはない。

AV ストリームが STC の不連続点を持つ場合、その AV ストリームファイルの中で同じ値の PTS が現れるかもしれない。そのため、AV ストリーム上のある時刻を PTS ベースで指す場合、アクセスポイントの PTS だけではそのポイントを特

20 定するためには不十分である。PTS に加えて、その PTS を含むところの STC-sequence のインデックスが必要である。そのインデックスを STC-id と呼ぶ。
図13は、SequenceInfo()のシンタクスを示す。

length は、この length フィールドの直後のバイトから Sequence Info()の最後のバイトまでのバイト数を示す。

25 num_of_ATC_sequences は、AV ストリームファイルの中にある ATC-sequence の数を示す。

SPN_ATC_start[atc_id]は、AVストリームファイル上で atc_id によって指さ

15

れる ATC-sequence が開始するアドレスを示す。SPN_ATC_start[atc_id]は、ソースパケット番号を単位とする大きさであり、AV ストリームファイルの最初のソースパケットからゼロを初期値としてカウントされる。

SequenceInfo()の中の最初の SPN_ATC_start[0]は、ゼロである。また、
5 SequenceInfo()の中でエントリーされる SPN_ATC_start[atc_id]の値は、昇順
に並んでいる。すなわち、SequenceInfo()の中でエントリーされる
SPN_ATC_start[atc_id]は、次の条件を満たす。

 $SPN_ATC_start[0] = 0$

0 く atc_id く num_of_ATC_sequences なる atc_id について、

SPN_ATC_start[atc_id -1] < SPN_ATC_start[atc_id]

num_of_STC_sequences[atc_id]は、atc_idによって指されるATC-sequence上にあるSTC-sequenceの数を示す。

offset_STC_id[atc_id]は、atc_idによって指される ATC-sequence 上にある最初の STC-sequence に対する sct_id のオフセット値を示す。AV ストリームファイルを新たに記録する時、offset_STC_id[atc_id]は、ゼロである。

atc_idによって指される ATC-sequence 上にある STC-sequence に対応する stc_idの値は、シンタクス中の stc_idの for-loopによって記述される順番によって定義され、その値は offset_STC_id[atc_id]から開始する。

SequenceInfo()の中で定義される連続する 2 個の ATC-sequence について、 in 側の ATC-sequence 上にある最後の STC-sequence に対する stc_id とそれに 続く ATC-sequence 上にある最初の STC-sequence に対する stc_id は、同じ値 でも良い。もし、これら 2 個の stc_id が同じ値の場合、それらの値で参照される 2 個の STC-sequence の中で同じ STC の値が現れることはない。

SequenceInfo()の中でエントリーされる stc_id の値は、昇順に並ばなければ 25 ならない。offset_STC_id[atc_id]は、この制限を満たすように値がセットされる。

PCR_PID[atc_id][stc_id]は、atc_idによって指される ATC-sequence 上に

あるところの stc_id によって指される STC-sequence に有効な PCR を持つトランスポートパケットの PID の値である。

SPN_STC_start[atc_id][stc_id]は、atc_idによって指される ATC-sequence 上にあるところの stc_idによって指される STC-sequence が、AV ストリームファイル上で開始するアドレスを示す。

SPN_STC_start[atc_id][stc_id]は、ソースパケット番号を単位とする大きさであり、AV ストリームファイルの最初のソースパケットからゼロを初期値としてカウントされる。

SequenceInfo()の中でエントリーされる SPN_STC_start[atc_id][stc_id]の

10 値は、昇順に並んでいる。atc_idによって指される ATC-sequence 上にある最

初の SPN_STC_start[atc_id][stc_id] は、SPN_ATC_start[atc_id]以上の値で
ある。すなわち、次の条件を満たす。

SPN_ATC_start[atc_id] <= SPN_STC_start[atc_id][0]</pre>

presentation_start_time[atc_id][stc_id]は、atc_idによって指される

15 ATC-sequence 上にある stc_id によって指される STC-sequence 上にある AV

ストリームデータのプレゼンテーション・スタート・タイムを示す。これは、その STC-sequence の STC から導かれる 45 kHz を単位とするプレゼンテーション・タイムの値である。

presentation_end_time[atc_id][stc_id]は、atc_idによって指される

20 ATC-sequence 上にある stc_id によって指される STC-sequence 上にある AV
ストリームデータのプレゼンテーション・エンド・タイムを示す。これは、その
STC-sequence の STC から導かれる 45 kHz を単位とするプレゼンテーション・タイムの値である。

次に、ProgramInfo()について説明する。プログラムは、エレメンタリストリームの集まりであり、これらのストリームの同期再生のために、ただ1つのシステムタイムベースを共有するものである。

再生装置(後述する図43の動画像記録再生装置1)にとって、AV ストリー

10

15

ムのデコードに先だち、その AV ストリームの内容がわかることは有用である。 この内容とは、例えば、ビデオやオーディオのエレメンタリーストリームを伝送 するトランスポートパケットの PID の値や、ビデオやオーディオのコンポーネ ント種類(例えば、HDTV のビデオと MPEG-2 AAC のオーディオストリームな ど)などの情報である。

この情報はAVストリームを参照するところのPlayListの内容をユーザーに 説明するところのメニュー画面を作成するのに有用であるし、また、AVストリ ームのデコードに先だって、再生装置のAVデコーダ16(後述する図43) お よびデマルチプレクサ15(後述する図43)の初期状態をセットするために役 立つ。この理由のために、Clip Information file は、プログラムの内容を説 明するためのProgramInfoを持つ。

MPEG2 トランスポートストリームをストアしている AV ストリームファイルは、ファイルの中でプログラム内容が変化するかもしれない。例えば、ビデオエレメンタリーストリームを伝送するところのトランスポートパケットの PID が変化したり、ビデオストリームのコンポーネント種類が SDTV から HDTV に変化するなどである。ProgramInfo は、AV ストリームファイルの中でのプログラム内容の変化点の情報をストアする。

AV ストリームファイルの中で本フォーマットが規定するプログラム内容が一定であるソースパケット列を、program-sequence と呼ぶ。

20 AV ストリームファイルの中で、新しい program-sequence が開始するアドレスを ProgramInfo()にストアする。このアドレスは、

SPN_program_sequence_start により示される。

AV ストリームファイルの中にある最後の program-sequence 以外の program-sequence は、その SPN_program_sequence_start で指されるソースパケットから開始し、その次の SPN_program_sequence_start で指されるソースパケットの直前のソースパケットで終了する。最後の program_sequence は、そのSPN_program_sequence_start で指されるソースパケットから開始し、AV スト

リームファイルの最後のソースパケットで終了する。

図14は、program-sequence を説明する図である。この例の場合、Clip AV ストリームファイルは3個の program-sequence を持つ。

program-sequence は、ATC-sequence の境界および STC-sequence の境界をま 5 たいでも良い。

図15は、ProgramInfo()のシンタクスを示す。

length は、この length フィールドの直後のバイトから ProgramInfo()の最後のバイトまでのバイト数を示す。

num_of_program_sequences は、AV ストリームファイルの中にある program10 sequence の数を示す。

SPN_program_sequence_start は、AV ストリームファイル上で program-sequence が開始するアドレスを示す。SPN_program_sequence_start は、ソースパケット番号を単位とする大きさであり、AV ストリームファイルの最初のソースパケットから、ゼロを初期値としてカウントされる。ProgramInfo()の中でエントリーされる SPN_program_sequence_start の値は、昇順に並んでいる。

SPN_program_sequence_start は、その program_sequence に対する最初の PMT を持つソースパケットを指していることを前提とする。

SPN_program_sequence_start は、データを記録する記録機(図43の動画像記録再生装置1が対応する)がトランスポートストリーム中の PSI/SI を解析する

20 ことによって作られる。記録機(例えば、図43のビデオ解析部24または多重 化ストリーム解析部26)が PSI/SI を解析し、その変化を検出するまでの遅延 時間が必要なために、SPN_program_sequence_start は、実際の PSI/SI の変化 点から所定の時間以内にあるソースパケットを指しても良い。

program_map_PID は、その program-sequence に適用できる PMT (program 25 map table)を持つトランスポートパケットの PID の値である。

num_of_streams_in_ps は、その program-sequence の中で定義されるエレメンタリーストリームの数を示す。

15

num_of_groups は、その program-sequence の中で定義されるエレメンタリーストリームのグループの数を示す。num_of_groups は、1以上の値である。トランスポートストリームの PSI/SI がエレメンタリーストリームのグループ情報を持つ場合、num_of_groups は、1以上の値をとることを想定している。それぞれのグループは、マルチ・ビュー・プログラム中の1つのビューを構成する。

stream_PID は、その program-sequence の program_map_PID が参照するところの PMT の中で定義されているエレメンタリーストリームに対する PID の値を示す。

StreamCodingInfo()は、前記 stream_PID で指されるエレメンタリーストリ 10 一ムの情報を示す。詳細は後述する。

num_of_streams_in_group は、エレメンタリーストリームのグループが持つエレメンタリーストリームの数を示す。

stream_index は、前記エレメンタリーストリームのグループが持つエレメンタリーストリームに対応するところの、シンタクス中の for-loop で定義される stream_index の値を示す。

図16は、StreamCodingInfo()のシンタクスを示す。

length は、この length フィールドの直後のバイトから StreamCodingInfo() の最後のバイトまでのバイト数を示す。

stream_coding_type は、この StreamCodingInfo()に対応する stream_PID で指されるエレメンタリーストリームの符号化タイプを示す。値の意味を図17に示す。

video_format は、この StreamCodingInfo()に対応する stream_PID で指されるビデオストリームのビデオフォーマットを示す。値の意味を図18に示す。

frame_rate は、この StreamCoding Info() に対応する stream_PID で指される ビデオストリームのフレームレートを示す。値の意味を図19に示す。

display_aspect_ratio は、この StreamCodingInfo() に対応する stream_PID で指されるビデオストリームのディスプレイ・アスペクト・レシオを示す。値の

意味を図20に示す。

 cc_flag は、この StreamCodingInfo() に対応する $stream_PID$ で指されるビデオストリームの中でクローズド・キャプション $(closed\ caption\ data)$ 信号が符号化されているかを示すフラグである。

5 original_video_format_flag は、この StreamCodingInfo()の中に original_video_format と original_display_aspect_ratio が存在するかを示 すフラグである。

original_video_format は、この StreamCodingInfo() に対応する stream_PID で指されるビデオストリームが符号化される前のオリジナルのビデオフォーマットである。値の意味は、前記の video_format と同じである。

original_display_aspect_ratio は、この StreamCodingInfo()に対応する stream_PID で指されるビデオストリームが符号化される前のオリジナルのディスプレイ・アスペクト・レシオである。値の意味は、前記の display_aspect_ratio と同じである。

- 15 ビデオストリームと共にマルチメディアデータストリーム(BMLストリーム, 字幕など)が多重化されているトランスポートストリームをトランス・コーディ ングする場合において、ビデオストリームは再エンコードされることによって、 そのビデオフォーマットが変化する(例えば、1080i から 480i へ変化する)が、 マルチメディアデータストリームはオリジナルのストリームを保つ場合を考える。
- 20 この時、新しいビデオストリームとマルチメディアデータストリームの間に情報のミスマッチが生じる場合がある。例えば、マルチメディアデータストリームの表示に関するパラメータは、オリジナルのビデオストリームのビデオフォーマットを想定して決められているにもかかわらず、ビデオストリームの再エンコードによって、そのビデオフォーマットが変化した場合である。
- 25 このような場合、original_video_format と
 original_display_aspect_ratio に、オリジナルのビデオストリームに関する
 情報を保存する。再生機は、前記の新しいビデオストリームとマルチメディアデ

ータストリームから次のようにして、表示画像をつくる。

ビデオストリームは、original_video_formatと

original_display_aspect_ratio で示されるビデオフォーマットにアップ・サンプリングされる。そのアップ・サンプリングされた画像とマルチメディアデータストリームが合成されて、正しい表示画像をつくる。

audio_presentation_type は、この StreamCodingInfo() に対応する stream_PID で指されるオーディオストリームのプレゼンテーション・タイプを 示す。値の意味を図 2 1 に示す。

sampling_frequency は、この StreamCodingInfo()に対応する stream_PID で指されるオーディオストリームのサンプリング周波数を示す。値の意味を図 2 に示す。

次に、CPI()について説明する。CPI (Characteristic Point Information)は、AV ストリームの中の再生時間情報とそのファイルの中のアドレスとを関連づけるためにある。

15 CPIには2個のタイプがあり、それらは EP_map と TU_map である。CPI()の中の CPI_type が EP_map type の場合、その CPI()は EP_map を含む。また、 CPI()の中の CPI_type が TU_map type の場合、その CPI()は TU_map を含む。 1個の AV ストリームファイルは、1個の EP_map または1個の TU_map を持つ。 EP_map は、エントリーポイント(EP)データのリストであり、それはエレメン クリーストリームおよびトランスポートストリームから抽出されたものである。 これは、AV ストリームの中でデコードを開始すべきエントリーポイントの場所を見つけるためのアドレス情報を持つ。 1つの EP データは、プレゼンテーションタイムスタンプ (PTS) と、その PTS に対応するアクセスユニットの AV ストリームの中のデータアドレスの対で構成される。

EP_map は、主に2つの目的のために使用される。第1に、PlayList の中でプレゼンテーションタイムスタンプによって参照されるアクセスユニットの AV ストリームの中のデータアドレスを見つけるために使用される。第2に、ファース

٠. . .

20

トフォワード再生やファーストリバース再生のために使用される。記録装置が、 入力 AV ストリームを記録する場合、そのストリームのシンタクスを解析することができるとき、EP_map が作成され、ディスクに記録される。

TU_map は、デジタルインタフェースを通して入力されるトランスポートパケットの到着時刻に基づいたタイムユニット (TU) データのリストを持つ。これは、到着時刻ベースの時間と AV ストリームの中のデータアドレスとの関係を与える。記録装置が、入力 AV ストリームを記録する場合、そのストリームのシンタクスを解析することができないとき、TU_map が作成され、ディスクに記録される。

10 図23はCPI()のシンタクスを示す。

length は、この length フィールドの直後のバイトから CPI()の最後のバイトまでのバイト数を示す。

CPI_type は、1 ビットのフラグであり、Clip の CPI のタイプを表す。

EP_map は、AV ストリームファイルの中にある1つのビデオストリームに対し 15 て、次に示すデータを持つ。

- (1) stream_PID: そのビデオストリームを伝送するトランスポートパケットの PID を示す。
- (2) num_EP_entries: そのビデオストリームに対するエントリーポイントの数。 EP_map は、num_EP_entries の数の PTS_EP_start と SPN_EP_start のペアのデータを持つ。
 - (3) PTS_EP_start: そのビデオストリームの中で、シーケンスヘッダから始まるアクセスユニットの PTS を示す。
- (4) SPN_EP_start: 前記 PTS_EP_start により参照されるアクセスユニットの 第1バイト目を含むソースポケットの AV ストリームファイルの中でのアドレス 25 を示す。SPN_EP_start はソースパケット番号を単位とする大きさであり、AV ス トリームファイルの最初のソースパケットから、ゼロを初期値としてカウントさ れる。

20

AV ストリームファイルの中に複数のビデオストリームが存在する場合、 EP_map は各ビデオストリームに対して、前記のデータを持つことができる。

図24は、EP_map の例を示す。ここでは、Clip AV stream の中に、 stream_PID=x のビデオストリームがあり、k 個のエントリポイントがある

5 (num_EP_entries=k)。SPN_EP_start で指されるソースパケットの例を図に示す。そのソースパケットの中のトランスポートパケットの TP_header に続くペイロードは、PES パケットヘッダから開始する。それに続いて、シーケンスヘッダ (SQH) があり、それに続いて GOP ヘッダ (GOPH) があり、それに続いて I-ピクチャヘッダ (I-PICH) がある。このシーケンスヘッダから始まるアクセスユニットの PTS は、PES パケットヘッダの中に符号化されている。

次に、TU_map について説明する。

図25は、AVストリームを新しくClipとして記録する時にできるTU_mapについて説明する図である。1つのATC-sequenceの中にあるソースパケットのアライバルタイムに基づいて作られる時間軸を所定の時間単位で分割する。この時間単位をtime-unitと呼ぶ。

各々の time_unit の中に入るところの最初の完全な形のソースパケットの AV ストリームファイル上でのアドレスを TU_map にストアする。これらのアドレスを SPN_time_unit_start と呼ぶ。ATC-sequence の上の時刻は、TU_start_time に基づいて定義される。これについては SPN_time_unit_start のセマンティクスで後述する。

図26は、TU_mapのシンタクスを説明する図である。

time_unit_size は、1つの time_unit の大きさを与えるものであり、それは 27MHz 精度のアライバルタイムクロックから導き出される 45kHz クロックを単位 とする大きさである。

25 シンタクス中の atc_id の for-loop で使われている num_of_ATC_sequences の値は、SequenceInfo()の中で定義されている。

offset_arrival_time[atc_id]は、atc_id で指される ATC-sequence の中の

最初の完全な time-unit に対するオフセットの時間である。これは、27MHz 精度のアライバルタイムクロックから導き出される 45kHz クロックを単位とする大きさである。

AV ストリームを新しく Clip として記録した時、その AV ストリームファイル はただ 1 つの ATC-sequence を持ち、offset_arrival_time[atc_id]はゼロである。

複数の offset_arrival_time[atc_id]が TU_map にエントリーされる場合は、 次の条件式が満たされる。

offset_arrival_time[0] = 0

10 0 < atc_id < num_of_ATC_sequences なる atc_id について、
offset_arrival_time[atc_id]

> offset_arrival_time[atc_id-1] + time_unit
*num_of_time_unit_entries[atc_id-1]

num_of_time_unit_entries[atc_id] は、atc_id で指される ATC-sequence の中に含まれる time_unit のエントリー数を示す。

SPN_time_unit_start[atc_id][i] は、atc_id で指される ATC-sequence 中のi番目のtime_unit の開始するアドレスである。これはソースパケット番号を単位とし、AV ストリームファイルの最初のソースパケットからゼロを初期値としてカウントされる。

現在の time_unit に入るソースパケットが何もない場合、現在の time_unit に対する SPN_time_unit_start の値は、その1つ前の SPN_time_unit_start の値と等しい。

TU_map の中の SPN_time_unit_start の値のエントリは、昇順にならんでいなければならない。

25 atc_id で指される ATC-sequence 中の i 番目の time_unit の開始時刻は、次式で定義される TU_start_time[atc_id][i]である。

TU_start_time[atc_id][i] = offset arrival_time[atc_id] + i *

time_unit_size · · · (2)

図27は、PlayList fileのシンタクスを示す。PlayList fileは、PlayList()を持つ。

PlayList_start_address は、PlayList ファイルの先頭のバイトからの相対 バイト数を単位として、PlayList()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

その他のシンタクスフィールドは、本発明の実施の形態を説明するために必要ないので、説明を省略する。

図28は、PlayList()のシンタクスを示す。

10 length は、この length フィールドの直後のバイトから PlayList()の最後のバイトまでのバイト数を示す。

CPI_type: 1 ビットのフラグであり、PlayItem()が使用する Clip のCPI_type の値を示す。CPI_type は、Clip Information file の CPI_type で定義される。

number_of_PlayItems は、PlayList()の中にある PlayItem()の数を示す。
シンタクス中の PlayItem_id の for-loop の中で、PlayItem()の現れる順番
によって、その PlayItem()に対する PlayItem_id の値が決る。PlayItem_id は、
0 から開始する。

その他のシンタクスフィールドは、本発明の実施の形態を説明するために必要 20 ないので、説明を省略する。

次に、PlayItem について説明する。1個の PlayItem は、基本的に次のデータを含む。

- (1)PlayItem が指す Clip のファイル名を指定するための
- Clip_information_file_name,
- 25 (2) その Clip の再生区間を特定するための IN_time と OUT_time のペア。
 - (3) PlayList の中で連続する 2 個の PlayItem について、前側の PlayItem と現在の PlayItem との接続の状態を示すところの connection_condition。

WO 02/075739

20

図29は、CPI_typeが EP_map の PlayList (これを EP_map typeの PlayListと呼ぶ)を説明する図である。EP_map typeの PlayListの場合、PlayItemの IN_time と OUT_time は、PTS ベースの時間を示す。その IN_time と OUT_time は、同じ STC-sequence 上の時刻を指す。その STC-sequence を示すために、ref_to_STC_idを用いる。その IN_time と OUT_time は、その STC-sequence に対して定義される presentation_start_time と presentation_end_time (これらの情報は SequenceInfo の中にある)で示される再生区間の中の時間を指す。

図3 Oは、CPI_type が TU_map の PlayList(これを TU_map type の

10 PlayList と呼ぶ)を説明する図である。TU_map type の PlayList の場合、
PlayItem の IN_time と OUT_time は、アライバルタイムベースの時間を指す。
その IN_time と OUT_time は、同じ ATC-sequence 上の時刻を指す。

図31は、EP_map typeのPlayListの時間情報とAVストリームファイルの中のアドレス情報との関係を説明する図である。PlayListの時間情報は、AV ストリームファイルの中のピクチャやオーディオフレームのPTS情報である。そして、Clip Information fileのEP_mapとSequenceInfoが、AVストリームの中の時間情報とそのファイルの中のアドレスとを関連づける。

図32は、TU_map type の PlayList の時間情報と AV ストリームファイルの中のアドレス情報との関係を説明する図である。PlayList の時間情報は、AV ストリームファイルの中のアライバル・タイム情報である。そして、Clip Information file の TU_map が、AV ストリームの中の時間情報とそのファイルの中のアドレスとを関連づける。

図33は、PlayItem()のシンタクスを示す。

length は、この length フィールドの直後のバイトから PlayItem()の最後の 25 バイトまでのバイト数を示す。

Clip_Information_file_name は、PlayItem が参照する Clip Information file のファイル名を示す。

connection_condition は、先行する PlayItem と現在の PlayItem とがシームレスに接続されているかどうかの情報を示す。

ref_to_STC_id は、PlayItem が参照する Clip の STC-sequence の stc-id を示す。stc-id の値は、SequenceInfo の中で定義されている。

5 IN_time は、PlayItem の再生開始時刻をストアする。OUT_time は、PlayItem の再生終了時刻をストアする。

Bridge_Clip_Information_file_name は、先行する PlayItem と現在のPlayItem とがシームレスに接続されている場合の再生の補助情報である。

次に、PlayList の編集動作のコンセプトについて説明する。以下の処理は、

10 ユーザからの操作に基づいて、例えば、後述する図43の制御部17により実行される。

図34は、AVストリームが新しい Clip として記録される時の Clip と PlayList の関係のコンセプトを説明する図である。AVストリームが新しい Clip として記録される場合、その Clip 全体の再生可能範囲を参照する Real PlayList が作られる。

図35は、Virtual PlayList の作成のコンセプトについて説明する図である。 ユーザが Real PlayList の再生範囲の中から、IN-time と OUT-time を指定する ことによって、見たい再生区間の PlayItem を作り、Virtual PlayList をつく る。

20 図36は、Real PlayListの再生区間の一部分を消去したときのClipと PlayListの関係のコンセプトを説明する図である。必要なClip AV ストリーム の再生部分だけを参照するように、Real PlayListのPlayItemを変更する。そして、Clip AV ストリームの不必要なストリーム部分を消去する。図36に示すように、Clip AV ストリームの中央部のデータを消去しても、Clip AV ストリームの中央部のデータを消去しても、Clip AV ストリー ムファイルは分割されないで、1つのファイルである。1つのClip AV ストリームのデータを部分的に消去しても、残ったデータ部分は1つのClip AV ストリームにまとめられる。

Real PlayList が変更されて、それが参照する Clip のストリーム部分が消去 された時、それと同じ Clip を使用している Virtual PlayList が参照する Clip がなくなって、問題が起きるかもしれない。そのようなことがないように、ユー ザインターフェースは、次に示す対策をとるべきである。

5 その"消去"の操作に対して、ユーザに「その Real PlayList が参照している Clip のストリーム部分を参照している Virtual PlayList が存在し、もし、その Real PlayList が消去されると、その Virtual PlayList もまた消去される ことになるが、それで良いか?」と確認、警告する。または、前記 Virtual PlayList を消去する代わりに、Real PlayList に対して次に示す"ミニマイズ (Minimize)"の操作をする。

図37は、ミニマイズの編集をしたときのClipとReal PlayList, Virtual PlayList の関係のコンセプトを説明する図である。ミニマイズ編集は、Real PlayList の PlayItem を、Virtual PlayList に必要な Clip のストリーム部分 だけを参照するように変更する。そして、Virtual PlayList にとって不必要な Clip のストリーム部分を消去する。

15

25

図37に示すように、Clip AVストリームの中央部のデータを消去しても、Clip AVストリームファイルは分割されないで、1つのファイルである。1つのClip AVストリームのデータを部分的に消去しても、残ったデータ部分は1つのClip AVストリームにまとめられる。

20 次に、前記のコンセプトに基づいて、Clip AV ストリームのデータを部分的に 消去する場合の Clip Information file の変化について説明する。

前述したように、AV ストリームを Clip ファイルとして新たに記録する時、その Clip は ATC の不連続点を含まず、ただ 1 つの ATC-sequence を持つ。そして、ATC の不連続点は、編集等によって Clip AV ストリームファイルのストリームデータを部分的に消去した場合にだけ、作られることを想定している。すなわち、図36や図37に示すように、1つの Clip AV ストリームのデータを部分的に消去して、残ったデータ部分が1つの Clip AV ストリームにまとめられた時、

その Clip は ATC の不連続点を持ち、複数の ATC-sequence を持つ。例えば、図38において、編集前の Clip は ATC の不連続点を含まず、ただ1つの ATC-sequence を持つとする。そして図に示すように、Clip AV ストリームの中央部のデータを消去した場合、編集後の Clip は、2個の ATC-sequence を持つ。

図39は、1つのClip AVストリームのデータを部分的に消去した時のATC-sequence, STC-sequence および program-sequence の関係を説明する図である。編集前のClip は、ただ1つのATC-sequence と1つのSTC-sequence と1つの program-sequence を持つとする。すなわち、このClip の中では、program-sequence の内容が変化しないとする。この時、図に影で示す部分のAVストリームデータを消去したとする。編集の結果、Clip は3個のATC-sequenceと3個のSTC-sequenceを持つ、一方、program-sequence は1個のままである。この program-sequence は、ATC-sequence の境界とSTC-sequence の境界をまたいでいる。

次に、前記のように Clip AV ストリームのデータが部分的に消去される時の、 15 Clip と PlayList の関係について説明する。

図40は、CPI が EP_map である Clip AV ストリームの一部分を消去した時の Clip と PlayList の関係を説明する図である。編集前の Clip は 1 個の ATC-sequence と 3 個の STC-sequence を持つとする。この ATC-sequence について の offset_STC_id[0] はゼロである。そして、Clip の中の stc_id=1 である STC-sequence は、PlayItem2 と PlayItem3 に使われているとする。今、図に示すように stc_id=1 である STC-sequence の AV ストリームデータについて、 PlayItem2 と PlayItem3 に使われていない部分の AV ストリームデータを消去したとする。

編集後の Clip は 2 個の ATC-sequence を持ち、stc_id=1 であった STC
25 sequence は 2 個の STC-sequence に分かれる。 1 番目の ATC-sequence につい

ての offset_STC_id[0]はゼロにセットされ、2 番目の ATC-sequence について
の offset_STC_id[1]は 1 にセットされる。すなわち、1 番目の ATC-sequence

WO 02/075739 PCT/JP01/10146

49

上にある最後の STC-sequence の stc_id と 2 番目の ATC-sequence 上にある最初の STC-sequence の stc_id は、同じ値で1になる。

これにより、編集後の Virtual PlayList の PlayItem3 と PlayItem4 の ref_to_STC_id の値を変更する必要がない。Clip AV ストリームファイルの部分 的なデータを消去する時に、その消去部分を使用していない Virtual PlayList については何も変更しなくても良い。

このように、Clip AV ストリームの中に ATC の不連続点を作ることができるので、Clip AV ストリームの中間 (middle) 部分のストリームデータを消去した場合に、Clip ファイルを 2 個に分割する必要がない。さらに、ATC シーケンス毎10 に、その上にある最初の STC シーケンスの STC-id に対する offset_STC_id を用いることにより、Clip AV ストリームファイルの部分的なデータを消去する時に、その消去部分を使用していない Virtual PlayList については何も変更しなくて良い。

この効果についての理解を助けるために、図41はClipの中にATCの不連続 15 を許さない場合において、Clip AV ストリームの一部分を消去した時に、Clip ファイルが二つに分かれる場合を説明する図であり、また、その時のClip と PlayList の関係を説明する図である。

図40と同様にして、編集前のClipは1個のATC-sequenceと3個のSTC-sequenceを持つとする。このATC-sequenceについてのoffset_STC_id[0]はゼ20 ロである。そして、Clipの中のstc=1であるSTC-sequenceは、PlayItem2とPlayItem3に使われているとする。今、図に示すようにstc=1であるSTC-sequenceのAVストリームデータについて、PlayItem2とPlayItem3に使われていない部分のAVストリームデータを消去したとする。

Clip の中に ATC の不連続を許さない場合、編集後は Clip-A と Clip-B の 2 個 25 の Clip ファイルに分かれる。そのため、PlayItem3 と PlayItem4 が参照する Clip ファイルの名前を変更する必要がある。すなわち、Clip AV ストリームファイルの部分的なデータを消去する時に、その消去部分を使用していない

15

20

Virtual PlayList であっても、その内容を変更しなければならない場合がある。 Clip の中に ATC の不連続を許さない場合は、これを許す場合に比べると次の 問題がある。

(1)ディスク中のClipファイル数が多くなる問題。これによって、ディスクの 再生開始時に全てのClipファイルを読み出し、再生装置(動画像記録再生装置 1)のメモリ(制御部17に内蔵されているメモリ)にストアする処理にかかる 時間が増える問題がある。また、ディスク(記録媒体10)中に記録可能なファ イル数の上限をある所定の値に決めた時、編集等によりClipファイル数が多く なり、その数が上限に達してしまい、ディスク中にまだ空き領域があるのに記録 できなくなる問題が発生する。

(2)Clip AVストリームファイルの部分的なデータを消去した時に、ディスク中にある Virtual PlayList の変更にかかる時間が大きい問題。

本発明は、これらの問題を解決する。すなわち、ディスクの再生開始時に全ての Clip ファイルを読み出し、再生装置のメモリにストアする処理にかかる時間を小さくできる。また、ディスク中に記録可能なファイル数の上限をより小さく設定できる。また、Clip AV ストリームファイルの部分的なデータを消去した時に、ディスク中にある Virtual PlayList の変更にがかかる時間が小さくなる。

図42は、CPIが TU_map である Clip AV ストリームの一部分を消去した時の

Clip と PlayList の関係を説明する図である。編集前の Clip は 1 個の ATC-sequence を持つ。この ATC-sequence についての offset_arrival_time[0]はゼロである。 Virtual PlayList の PlayItem1, PlayItem2, PlayItem3 および PlayItem4 は、この ATC-sequence を参照しているとする。今、図に示すように ATC-sequence の AV ストリームデータについて、どの PlayItem にも使われていない AV ストリームデータを消去したとする。

25 編集後の Clip は 2 個の ATC-sequence を持つ。1 番目の ATC-sequence についての offset_arrival_time[0]はゼロにセットされ、2番目の ATC-sequence についての offset_arrival_time[1]は値Xにセットされる。値Xは、OUT_time2

よりも大きく、IN_time3 よりも小さい。すなわち、編集後に Virtual PlayList の PlayItem3 と PlayItem4 の IN_time と OUT_time の値を変更する必要がない。

Clip AVストリームファイルの部分的なデータを消去する時に、その消去部分を使用していない Virtual PlayList については何も変更しなくても良い。

TU_map type の PlayList を再生する場合、再生機は PlayItem の IN_time と ATC-sequence の offset_arrival_time の値を比較することにより、その IN_time と OUT_time が指すところの ATC-sequence を見つけることができる。 例えば、図 4 2 の場合、PlayItem3 の IN_time3 は 2 番目の ATC-sequence の offset_arrival_time(=X)よりも大きいので、PlayItem3 の IN_time3 と OUT time3 は、2 番目の ATC-sequence を指すことがわかる。

次に、DVRアプリケーション構造のデータを記録再生するシステムについて、 図43の動画像記録再生装置1のブロック図を用いて説明する。

例えば、光ディスクにより構成される記録媒体10は、再生部61の読み出し 15 部11により、そこに記録されている情報が読み出される。復調部12は、読み 出し部11が記録媒体10から読み出したデータを復調し、ECC復号部13に供 給する。ECC復号部13は、復調部12より供給されたデータを、AVストリー ムとデータベースとに分離し、AVストリームをソースデパケッタイザ14に供 給し、データベースを制御部17に出力する。

- 20 ソースデパケッタイザ14は、入力されたAVストリームをデパッケタイズし、デマルチプレクサ15に出力する。デマルチプレクサ15は、ソースデパケッタイザ14より供給されたデータをビデオ(V)、オーディオ(A)、およびシステム(S)の各データに分離し、AVデコーダ16とマルチプレクサ25に出力する。
- 25 AV デコーダ16は、入力されたビデオデータとオーディオデータを、システムデータに基づいてデコードし、ビデオ信号を端子18から、オーディオ信号を端子19から、それぞれ出力する。

15

20

記録部62の AV エンコーダ23には、端子21から入力されたビデオ信号と、端子22から入力されたオーディオ信号が供給される。ビデオ信号はまた、ビデオ解析部24にも供給される。AVエンコーダ23とビデオ解析部24には、端子21から入力されたビデオ信号の代わりに、必要に応じて、AVデコーダ16が出力したビデオ信号が供給される。

AV エンコーダ 2 3 は、入力されたビデオ信号とオーディオ信号をエンコード し、エンコードしたビデオ信号 (V)、オーディオ信号 (A)、およびエンコー ドに対応するシステムデータ (S)を、マルチプレクサ 2 5 に出力する。

ビデオ解析部24は、入力されたビデオ信号を解析し、解析結果を制御部17 10 に出力する。

端子33には、デジタルインタフェースまたはデジタルテレビチューナからのトランスポートストリームが入力され、スイッチ27を介して、デマルチプレクサ15、またはさらにスイッチ28を介して、多重化ストリーム解析部26、およびソースパケッタイザ29に供給される。多重化ストリーム解析部26とソースパケッタイザ29にはまた、スイッチ28を介してマルチプレクサ25が出力した信号も、スイッチ27からの信号に代えて供給可能とされている。

多重化ストリーム解析部26は、入力された信号を解析し、解析結果を制御部17に出力する。ソースパケッタイザ29は、入力された信号をパケッタイズし、ECC符号化部30に供給する。ECC符号化部30には、制御部17が出力するデータベースも供給されている。

ECC 符号化部30は、入力に誤り訂正符号を付加し、符号化し、変調部31に 出力する。変調部31は、ECC 符号化部30から入力されたデータを変調し、書 き込み部32に出力する。書き込み部32は、変調部31から入力されたデータ を記録媒体10に書き込む処理を実行する。

25 制御部17は、各種のデータを記憶する記憶部17Aを有しており、上述した フォーマットを管理し、データの記録媒体10に対する記録または再生のために、 各部を制御する。

制御部17にはまた、ドライブ41が接続されており、磁気ディスク51、光 ディスク52、光磁気ディスク53、または半導体メモリ54などがドライブさ れる。

なお、光ディスク52は、記録媒体10と兼用することも可能である。

5 次に記録時の基本的動作について、動画像記録再生装置1自身が、入力オーディオビデオ信号を符号化して記録する場合を例として説明する。

記録部62の端子21と端子22からは、それぞれビデオ信号とオーディオ信号が入力される。ビデオ信号は、ビデオ解析部24とAVエンコーダ23へ入力される。また、オーディオ信号もまたAVエンコーダ23へ入力される。AVエンコーダ23は、入力ビデオ信号とオーディオ信号を符号化し、符号化ビデオストリーム(V),符号化オーディオストリーム(A)、およびシステム情報(S)をマルチプレクサ25に出力する。

符号化ビデオストリーム(V)は、例えば MPEG2 ビデオストリームであり、符号 化オーディオストリーム(A)は、例えば MPEG1 オーディオストリームやドルビー AC3 (商標) オーディオストリーム等である。システム情報(S)は、ビデオオーディオの符号化情報 (符号化ピクチャやオーディオフレームのバイトサイズ、ピクチャ符号化タイプ等) や AV 同期等の時間情報である。

マルチプレクサ25は、入力ストリームを入力システム情報に基づいて多重化して、多重化ストリームを出力する。多重化ストリームは、例えば、MPEG2トラ 20 ンスポートストリームや MPEG2プログラムストリームである。多重化ストリームは、多重化ストリーム解析部26およびソースパケッタイザ29に入力される。ソースパケッタイザ29は、入力多重化ストリームを、記録媒体10のアプリケーションフォーマットに従って、ソースパケットから構成されるAVストリームに符号化する。AVストリームは、ECC(誤り訂正)符号化部30で誤り訂正符号が付加され、変調部31で変調処理されて、書き込み部32へ入力される。書き込み部32は、制御部17から指示される制御信号に基づいて、記録媒体10へAVストリームファイルを記録する。

次に、例えば、図示せぬディジタルインタフェースまたはディジタル TV チューナから入力されるディジタル TV 放送等のトランスポートストリームを記録する場合を説明する。

端子33からはトランスポートストリームが入力される。入力トランスポートストリームの記録方法は、2通りあり、それらは、トランスペアレントに記録する方法と記録ビットレートを下げるなどの目的のために再エンコードをして記録する方法である。記録方法の指示情報は、ユーザインターフェースとしての端子20から制御部17へ入力され、制御部17が記録方法を制御する。

入力トランスポートストリームをトランスペアレントに記録する場合、トラン スポートストリームは、多重化ストリーム解析部26およびソースパケッタイザ 29に入力される。これ以後、記録媒体10へAVストリームが記録されるまで の処理は、上述の入力オーディオ信号とビデオ信号を符号化して記録する場合と 同じである。

スカトランスポートストリームを再エンコードして記録する場合、入力トラン
15 スポートストリームは、デマルチプレクサ15へ入力される。デマルチプレクサ
15は、ビデオストリーム(V)を AV デコーダ16へ入力する。AV デコーダ16
は、ビデオストリームを復号し、再生ビデオ信号を AV エンコーダ23へ入力す
る。AV エンコーダ23は、入力ビデオを符号化し、符号化ビデオストリーム(V)
をマルチプレクサ25へ入力する。

20 一方、デマルチプレクサ15から出力されるオーディオストリーム(A)とシステム情報(S)は、ダイレクトにマルチプレクサ25へ入力される。マルチプレクサ25は、入力ストリームを、入力システム情報に基づいて多重化して、多重化ストリームを出力する。これ以後、記録媒体10へAVストリームが記録されるまでの処理は、上述の入力オーディオビデオ信号を符号化して記録する場合と同25 じである。

この動画像記録再生装置1は、AVストリームファイルを記録すると共に、そのファイルに関係するアプリケーションデータベース情報もまた記録する。アプ

WO 02/075739 PCT/JP01/10146

15

20

25

55

リケーションデータベース情報は、制御部17により作成される。制御部17への入力情報は、ビデオ解析部24からの動画像の特徴情報、多重化ストリーム解析部26からのAVストリームの特徴情報、およびユーザインタフェースとしての端子20から入力されるユーザの指示情報である。

5 ビデオ解析部24からの動画像の特徴情報は、動画像記録再生装置1自身がビデオ信号を符号化する場合において、動画像記録再生装置1により生成されるものである。ビデオ解析部24は、入力ビデオ信号の内容を解析し、入力動画像信号の中の特徴的なマーク点の画像に関係する情報を生成する。この情報は、例えば、入力ビデオ信号の中のプログラムの開始点、シーンチェンジ点、CMのスタート・エンド点などの特徴的なマーク点の画像の指示情報であり、また、これには、その画像のサムネールも含まれる。これらの画像の指示情報は、制御部17

を介して、マルチプレクサ25へ入力される。

マルチプレクサ25は、制御部17から指示されるマーク点の画像の符号化ピクチャを多重化した時に、その符号化ピクチャのAVストリーム上でのアドレス情報を制御部17に返す。制御部17は、特徴的な画像の種類と、その符号化ピクチャのAVストリーム上でのアドレス情報を関連付けて記憶する。

多重化ストリーム解析部26からのAVストリームの特徴情報は、記録されるAVストリームの符号化情報に関係する情報であり、これらは動画像記録再生装置1により生成される。例えば、AVストリームの中におけるIピクチャのタイムスタンプとアドレス情報、STCの不連続情報、プログラム内容の変化情報、アライバルタイムとアドレス情報、などが含まれる。

AV ストリーム内の I ピクチャのタイムスタンプとアドレス情報は、上述の EP_map にストアされるデータとなる。AV ストリーム内の STC の不連続情報は、上述の SequenceInfo にストアされるデータとなる。AV ストリーム内のプログラム内容の変化情報は、ProgramInfo にストアされるデータとなる。また、AV ストリーム内のアライバルタイムとアドレス情報は、上述の TU_map にストアされる。

また、多重化ストリーム解析部26は、端子33から入力されるトランスポートストリームをトランスペアレントに記録する場合、AVストリームの中の特徴的なマーク点の画像を検出し、その種類とアドレス情報を生成する。この情報は、ClipMarkにストアされるデータとなる。

5 多重化ストリーム解析部 2 6 からの AV ストリームの特徴情報は、AV ストリームのデータベース(Clip Information)にストアされるものである。

端子20からのユーザの指示情報には、AVストリームの中のお好みの再生区間の指定情報,その再生区間の内容を説明するキャラクター文字,ユーザがお好みのシーンにセットするブックマークやリジューム点の AVストリームの中のタイムスタンプなどが含まれる。これらのユーザの指示情報は、PlayList のデータベースにストアされるものである。

制御部17は、前記入力情報に基づいて、AVストリームのデータベース (Clip Information), PlayListのデータベース, 記録媒体10の記録内容の 管理情報(info.dvr)、およびサムネール情報を作成する。これらのデータベー ス情報は、AVストリームと同様にして、ECC (誤り訂正)符号化部30,変調部 31で処理されて、書き込み部32へ入力される。書き込み部32は、制御部17から指示される制御信号に基づいて、このデータベース情報を、記録媒体10へ、アプリケーションデータベース情報として記録する。

次に、再生時の基本的な動作について説明する。

20 記録媒体10には、AVストリームファイルとアプリケーションデータベース 情報が記録されている。

はじめに制御部17は、再生部61の読み出し部11に対して、アプリケーションデータベース情報を読み出すように指示する。そして、読み出し部11は、記録媒体10からアプリケーションデータベース情報を読み出し、そのデータベース情報は、復調部12, ECC(誤り訂正)復号部13の処理を経て、制御部17へ入力される。

制御部17は、アプリケーションデータベースに基づいて、記録媒体10に記

WO 02/075739 PCT/JP01/10146

57

録されている PlayList の一覧を、端子 20のユーザインターフェースへ出力する。ユーザは、PlayList の一覧から再生したい PlayList を選択し、再生を指定された PlayList が制御部 17へ入力される。制御部 17は、その PlayList の再生に必要な AV ストリームファイルの読み出しを読み出し部 11に指示する。

5 そして、読み出し部11は、記録媒体10からそのAVストリームを読み出し、AVストリームは復調部12, ECC復号部13の処理を経て、ソース・デパケッタイザ14へ入力される。

ソース・デパケッタイザ14は、記録媒体のアプリケーションフォーマットの AV ストリームを、デマルチプレクサ15へ入力できるストリームに変換する。

- 10 デマルチプレクサ15は、制御部17により指定されたAVストリームの再生区間(PlayItem)を構成するビデオストリーム(V), オーディオストリーム(A)、およびシステム情報(S)をAVデコーダ16へ入力する。AVデコーダ16は、ビデオストリームとオーディオストリームを復号し、再生ビデオ信号と再生オーディオ信号を、それぞれ端子18と端子19から出力する。
- 15 ユーザによって選択された EP_map タイプの PlayList をある時間から途中再生する場合、制御部 1 7 は、指定された時間にもっとも近い PTS を持つ I ピクチャのアドレスからデータを読み出すように読み出し部 1 1 へ指示する。

また、ユーザによって選択された TU_map タイプの PlayList をある時間から 途中再生する場合、制御部 1 7 は、指定された時間にもっとも近いアライバルタ イムのソースパケットのアドレスからデータを読み出すように読み出し部 1 1 へ 指示する。

さらに、Clip Information の中のClipMark にストアされている番組の頭出 し点やシーンチェンジ点の中から、ユーザがあるマークを選択した時(例えば、 この選択動作は、ClipMark にストアされている番組の頭出し点やシーンチェン ジ点のサムネール画像リストをユーザインタフェースに表示して、ユーザが、そ の中からある画像を選択することにより行われる)、制御部17は、Clip Information の内容に基づいて、記録媒体10からのAVストリームの読み出し 位置を決定し、その AV ストリームの読み出しを読み出し部11へ指示する。

すなわち、ユーザが選択した画像がストアされている AV ストリーム上でのアドレスに最も近いアドレスにある I ピクチャからのデータを読み出すように読み出し部 1 1 へ指示が出される。読み出し部 1 1 は、指定されたアドレスからデータを読み出し、読み出されたデータは、復調部 1 2, ECC 復号部 1 3 の処理を経て、デマルチプレクサ 1 5 へ入力され、AV デコーダ 1 6 で復号されて、マーク点のピクチャのアドレスで示される AV データが再生される。

次に、ユーザが、AV ストリームの編集をする場合を説明する。

ユーザが、記録媒体10に記録されている AV ストリームの再生区間を指定し

10 て新しい再生経路を作成したい場合、ユーザインタフェースの端子20から、再
生区間のイン点とアウト点の情報が制御部17へ入力される。制御部17は、
AV ストリームの再生区間(PlayItem)をグループ化したもの(PlayList)のデータベースを作成する。

ユーザが、記録媒体10に記録されている AV ストリームの一部を消去したい 場合、ユーザインタフェースの端子20から、消去区間の情報が制御部17へ入 力される。制御部17は、必要な AV ストリーム部分だけを参照するように PlayList のデータベースを変更する。また、AV ストリームの不必要なストリー ム部分を消去するように、書き込み部32に指示する。また、Clip AV ストリー ムの変化に基づいて、その Clip Information file の内容を変更する。

20 ユーザが、記録媒体10に記録されている AV ストリームの再生区間を指定して新しい再生経路を作成したい場合であり、かつそれぞれの再生区間をシームレスに接続したい場合の動作を説明する。この場合、制御部17は、AV ストリームの再生区間(PlayItem)をグループ化したもの(PlayList)のデータベースを作成し、さらに、再生区間の接続点付近のビデオストリームの部分的な再エンコードと再多重化が必要になる。

まず、ユーザインタフェースとしての端子20から、再生区間のイン点のピク チャとアウト点のピクチャの情報が制御部17へ入力される。制御部17は、読 WO 02/075739 PCT/JP01/10146

み出し部11に、イン点のピクチャとアウト点のピクチャを再生するために必要なデータの読み出しを指示する。そして、読み出し部11は、記録媒体10からそのデータを読み出し、そのデータは、復調部12, ECC 復号部13, ソース・デパケッタイザ14を経て、デマルチプレクサ15へ入力される。

5 制御部17は、デマルチプレクサ15へ入力されたストリームを解析して、ビデオストリームの再エンコード方法(picture_coding_type の変更,再エンコードする符号化ビット量の割り当て)と再多重化方法を決定して、その方法をAVエンコーダ23とマルチプレクサ25へ供給する。

次に、デマルチプレクサ15は、入力されたストリームをビデオストリーム
 (V), オーディオストリーム(A)、およびシステム情報(S)に分離する。ビデオストリームは、「AV デコーダ16へ入力されるデータ」と、「マルチプレクサ25へ直接入力されるデータ」がある。前者のデータは、再エンコードするために必要なデータであり、これは AV デコーダ16で復号され、復号されたピクチャは、AV エンコーダ23で再エンコードされて、ビデオストリームになる。後者のデータは、再エンコードをしないで、オリジナルのストリームからコピーされるデータである。オーディオストリームとシステム情報は、マルチプレクサ25に直接入力される。

マルチプレクサ25は、制御部17から入力された情報に基づいて、入力ストリームを多重化し、多重化ストリームを出力する。多重化ストリームは、ECC

20 (誤り訂正)符号化部30,変調部31で処理されて、書き込み部32へ入力される。書き込み部32は、制御部17から指示される制御信号に基づいて、記録 媒体10へAVストリームを記録する。

次に、図44は、AV ストリームを Clip をして新しく記録するときの、Clip AV ストリームファイルと、それに関連する Clip Information ファイルの、動画像記録再生装置 1 の記録動作のフローチャートを示す。

25

ステップS11で、制御部17は、端子21および22から入力される AV 入力をエンコードして得たトランスポートストリーム、または端子33のディジタ

ルインタフェースから入力されるトランスポートストリームをファイル化して、Clip AV ストリームファイルを作成して記録する。

ステップS12で、制御部17は上記AVストリームファイルについてのClipInfo(図8)を作成する。

5 ステップS13で、制御部17は上記AVストリームファイルについての SequenceInfo(図13)を作成する。

ステップS14で、制御部17は上記AVストリームファイルについての ProgramInfo (図15) を作成する。

ステップS15で、制御部17は上記AVストリームファイルについてのCPI 10 (EP map または TU_map) (図24、図25および図26) を作成する。

ステップS16で、制御部17は上記AVストリームファイルについての ClipMark を作成する。

ステップS17で、制御部17は上記 ClipInfo, SequenceInfo,

ProgramInfo, CPI, および ClipMark がストアされた Clip Information ファイ 15 ル (図8) を記録する。

なお、ここでは各処理を時系列に説明したが、ステップS11からステップS 116は、実際には同時に動作するものである。

次に、AVストリームをClipをして新しく記録するときの、SequenceInfo (図13)の作成の動作例を、図45のフローチャートを用いて説明する。この 処理は、図43の多重化ストリーム解析部26で行われる。

ステップS 3 1 において、制御部 1 7 は最初のトランスポートパケットを ATC シーケンスの開始点とする。すなわち、SPN_ATC_start が設定される。また、このとき、 atc_id と stc_id も設定される。

ステップS32において、多重化ストリーム解析部26はAVストリームに含 25 まれるアクセスユニット(例えば、ピクチャやオーディオフレーム)のPTSを 解析する。

ステップS33において、多重化ストリーム解析部26はPCRパケットが受

⊶o••••

15

信されたかどうかを調べる。ステップS33において、Noの場合はステップS32へ戻り、Yesの場合はステップS34へ進む。

ステップS34において、多重化ストリーム解析部26はSTCの不連続が検 出されたか否かを調べる。Noの場合は、ステップS32へ戻る。Yesの場合は、 ステップS35へ進む。なお、記録開始後、最初に受信されたPCRパケットの 場合は、必ずステップS35へ進む。

ステップS35において、多重化ストリーム解析部26は、新しいSTCの最初のPCRを伝送するトランスポートパケットの番号(アドレス)を取得する。

ステップS36において、制御部17は上記パケット番号を STC シーケンス 10 の開始するソースパケット番号として取得する。すなわち、SPN_STC_start が 設定される。また、このとき、新たな stc_id が設定される。

ステップS37において、制御部17はSTCシーケンスの表示開始のPTSと表示終了のPTSを取得し、それぞれ、presentation_start_time、またはpresentation_end_timeに設定し、それらに基づいて、SequenceInfo(図13)を作成する。

ステップS38において、制御部17は最後のトランスポートパケットが入力終了したかどうかを調べる。Noの場合は、ステップS32へ戻り、Yesの場合は処理を終了する。

なお、CPI が TU_map の Clip の場合は、ATC シーケンスの情報だけを作成すれ 20 ばよいので、ステップS 3 2 乃至ステップS 3 7 の処理は必要ない。

ProgramInfo(図15)の作成の動作例を図46のフローチャートを用いて説明する。この処理は図43の多重化ストリーム解析部26で行われる。

なお、CPI が TU_map の場合、プログラム・シーケンスの情報は必要なく、この 処理は不要である。

25 ステップS51において、多重化ストリーム解析部26は PSI/SI を含むトランスポートパケットが受信されたかどうかを調べる。ここで、PSI/SI のトランスポートパケットは、具体的には、PAT, PMT, SIT のパケットである。SIT は、

DVB 規格で規定されているパーシャルトランスポートストリームのサービス情報 が記述されているトランスポートパケットである。ステップS51において、 No の場合はステップS51へ戻り、Yes の場合はステップS52へ進む。

ステップS52において、多重化ストリーム解析部26は、PSI/SIの内容が 変わったかを調べる。すなわち、PAT, PMT, SIT のそれぞれの内容が、以前に受 信したそれぞれの内容と比べて変化したかどうかが調べられる。内容が変化して いない場合は、ステップS51へ戻る。内容が変化した場合は、ステップS53 へ進む。なお、記録開始後、最初に受信された PSI/SI の場合は、必ずステップ S53へ進む。

10 ステップS53において、制御部17は新しい PSI/SI を伝送するトランスポートパケットの番号(アドレス)とその内容を取得する。

ステップS54において、制御部17は Program-sequence の情報を作成し、ProgramInfo (図15) を作成する。

ステップS55において、制御部17は最後のトランスポートパケットが入力 15 終了したかどうかを調べる。No の場合は、ステップS51へ戻り、Yes の場合 は処理を終了する。

次に EP_map (図 2 4) の作成の動作例を、図 4 7 のフローチャートを用いて 説明する。この処理は図 4 3 の多重化ストリーム解析部 2 6 で行われる。

ステップS 7 1 で多重化ストリーム解析部 2 6 は、記録する AV プログラムの 20 ビデオの PID をセットする。トランスポートストリームの中に複数のビデオが 含まれている場合は、それぞれのビデオ PID がセットされる。

ステップS72で多重化ストリーム解析部26は、ビデオのトランスポートパケットを受信する。

ステップS73で多重化ストリーム解析部26は、トランスポートパケットの
25 ペイロード (パケットヘッダーに続くデータ部) が PES パケットの第1バイト
目から開始しているかを調べる (PES パケットは、MPEG2 で規定されているパケットであり、エレメンタリーストリームをパケット化するものである)。これは、

WO 02/075739 PCT/JP01/10146

63

トランスポートパケットヘッダにある"payload_unit_start_indicator"の値を 調べることによりわかり、この値が1である場合、トランスポートパケットの ペイロードが PES パケットの第1バイト目から開始する。ステップS 7 3 で No の場合は、ステップS 7 2 へ戻り、Yes の場合は、ステップS 7 4 へ進む。

5 ステップS74で多重化ストリーム解析部26は、PES パケットのペイロードが、MPEG ビデオの sequence_header_code (32 ビット長で"0x0000001B3"の符号) の第1バイト目から開始しているかを調べる。ステップS74で No の場合は、ステップS72へ戻り、Yes の場合は、ステップS75へ進む。

ステップS 7 5 へ進んだ場合、制御部 1 7 は現在のトランスポートパケットを 10 エントリーポイントとする。

ステップS76で制御部17は、上記パケットのパケット番号と上記 sequence_header_code から開始するIピクチャの PTS とそのエントリーポイントが属するビデオの PID を取得し、EP_map を作成する。

ステップS77で、多重化ストリーム解析部26は、現在のパケットが最後に 15 入力されるトランスポートパケットであるかどうかを判定する。最後のパケット でない場合、ステップS72へ戻る。最後のパケットである場合、処理を終了す る。

なお、Clip の CPI タイプによって、Clip information ファイルの作成方法が違う。図48はこの場合の処理を表している。制御部17は、ステップS101で、CPIとして EP_map を作成すると判定した場合、ステップS102へ進み、AVストリームの内容について、PTS、STC、PMTの情報を解析する。そして、ステップS103へ進み、制御部17は、ATCシーケンス、STCシーケンスとProgram-sequenceの情報を作成する。そして、ステップS104で、制御部17はEP_mapを作成する。

25 一方、ステップS101で、CPI として TU_map を作成すると判定された場合、 制御部17は、ステップS105で AV ストリームの内容を解析せず、STC シー ケンスと Program-sequence の情報を作成しない。制御部17は、ステップS1 06で、ATCシーケンスの情報を、トランスポートパケットの入力タイミングに基づいて作成する。ステップS107で、制御部17は、TU_mapを作成する。このように、CPIの種類に関係なく、どちらの場合でも、Clip informationファイルが作成される。

5 以上の処理はまた、次のことを意味する。すなわち、AVストリームを、その中身を分析して記録媒体に記録する場合(コグニザント記録する場合)や入力映像信号を自分で符号化して記録媒体に記録する場合(セルフエンコーディング記録)などのように、記録媒体に記録される AVストリームの中身を知って記録する場合、ATCシーケンス、STCシーケンス、およびProgramシーケンスが作成され、さらに EP_map が作成され、記録媒体に記録される。これに対して、AVストリームを、その中身を分析せずに、そのまま記録媒体に記録する場合(ノンコグニザント記録する場合)、ATCシーケンスが作成され、さらに TU_map が作成され、記録媒体に記録される。

図48の処理はまた、次のように考えることもできる。すなわち、ステップS 101で、AVストリームを、その中身を分析して記録媒体に記録する(コグニザント記録する)かまたは入力映像信号を自分で符号化して記録媒体に記録する場合(セルフエンコーディング記録)か否かが判定される。コグニザント記録またはセルフエンコーディング記録で記録すると判定された場合、ステップS102でAVストリームの中身が分析され、ステップS103でATCシーケンス、

- 20 STC シーケンス、および Program シーケンスが作成され、さらにステップS10 4で EP_map が作成され、記録媒体に記録される。これに対してステップS10 1で、AVストリームを、その中身を分析せずに、そのまま記録媒体に記録する (ノンコグニザント記録する)と判定された場合、ステップS105でAVスト リームの中身が分析されず、ステップS106でATCシーケンスが作成され、
- 25 さらにステップS107で TU_map が作成され、記録媒体に記録される。 図49は、Real PlayList の作成方法を説明するフローチャートを示す。図

43の動画像記録再生装置1のブロック図を参照しながら説明する。

ステップS191で、制御部17はClip AVストリームを記録する。

ステップS192で、制御部17は上記 Clip の全ての再生可能範囲をカバーする PlayItem (図33) からなる PlayList() (図28) を作成する。ここで、Clip が EP_map を持つとき、EP_map タイプの PlayList (図29参照) を作成し、

5 また Clip が TU_map を持つとき、TU_map タイプの PlayList (図30参照)を作成する。EP_map タイプの PlayList の場合に、Clip の中に STC 不連続点があり、PlayList()が2つ以上の PlayItem からなる場合は、制御部17は PlayItem 間の connection_condition もまた決定する。

ステップS193で、制御部17は UIAppInfoPlayList()を作成する。

10 UIAppInfoPlayList()は PlayList の内容をユーザへ説明するための情報を含む。 本実施の形態ではその説明を省略する。

ステップS194で、制御部17はPlayListMark を作成する(本実施の形態ではその説明を省略)。

ステップS195で、制御部17は MakersPrivateData を作成する(本実施 15 の形態ではその説明を省略)。

ステップS196で、制御部17は Real PlayList ファイルを記録する。 このようにして、新規に Clip AV ストリームを記録する毎に、1つの Real PlayList ファイルが作られる。

図50は、Virtual PlayList の作成方法を説明するフローチャートである。

20 ステップS211で、ユーザーインターフェースを通して、ディスク(記録媒体10)に記録されている1つの Real PlayList の再生が指定される。そして、その Real PlayList の再生範囲の中から、ユーザーインターフェースを通して、IN点と OUT 点で示される再生区間が指定される。

ステップS212で、制御部17はユーザーによる再生範囲の指定操作がすべ 25 て終了したか調べる。ユーザーが上記指示した再生区間に続けて再生する区間を 選ぶ場合はステップS211へ戻る。

ステップS212でユーザーによる再生範囲の指定操作がすべて終了したと判

定された場合は、ステップS213へ進む。

ステップS 2 1 3 で、連続して再生される 2 つの再生区間の間の接続状態 (connection_condition)を、ユーザーがユーザーインタフェースを通して決定 するか、または制御部 1 7 が決定する。

- 5 ステップS214で、ユーザーインタフェースを通して、ユーザーがサブパス (アフレコ用オーディオ)情報を指定する。ユーザーがサブパスを作成しない場合はこのステップの処理はスルーされる。サブパス情報は、PlayList の中の SubPlayItem にストアされる情報であるが、本発明の趣旨に必要ないので説明を省略する。
- 10 ステップS 2 1 5 で、制御部 1 7 はユーザーが指定した再生範囲情報、および connection_condition に基づいて、PlayList() (図 2 8) を作成する。

ステップS216で、制御部17はUIAppInfoPlayList()を作成する。
UIAppInfoPlayList()はPlayListの内容をユーザーへ説明するための情報を含む。本実施の形態ではその説明を省略する。

15 ステップS217で、制御部17はPlayListMark を作成する(本実施の形態ではその説明を省略)。

ステップS 2 1 8 で、制御部 1 7 は Makers Private Data を作成する (本実施の形態ではその説明を省略)。

ステップS219で、制御部17は Virtual PlayList ファイルを記録媒体1 20 0に記録する。

このようにして、記録媒体10に記録されている Real PlayList の再生範囲の中から、ユーザーが見たい再生区間を選択してその再生区間をグループ化したもの毎に、1つの Virtual PlayList ファイルが作られる。

図 5 1 は EP_map タイプの PlayList の再生方法を説明するフローチャートで 25 ある。

ステップS231で、制御部17は Info.dvr, Clip Information file, PlayList file およびサムネールファイルの情報を取得し、ディスク(記録媒

体10) に記録されている PlayList の一覧を示す GUI 画面を作成し、ユーザーインタフェースを通して、GUI に表示する。

ステップS232で、制御部17はそれぞれのPlayListの

UIAppInfoPlayList()に基づいて、PlayList を説明する情報を GUI 画面に提示 5 する。

ステップS233で、ユーザーインタフェースを通して、GUI 画面上からユーザーが1つの PlayList の再生を指示する。

ステップS234で、制御部17は現在のPlayItemのSTC-idとIN_timeのPTSから、IN_timeより時間的に前で最も近いエントリーポイントのあるソース10パケット番号を取得する。

ステップS235で、制御部17は上記エントリーポイントのあるソースパケット番号から AV ストリームのデータを読み出し、デコーダへ供給する。

ステップS236で、現在のPlayItemの時間的に前のPlayItemがあった場合は、制御部17は、前のPlayItemと現在のPlayItemとの表示の接続処理をconnection_conditionに従って行う。

ステップS237で、制御部17は、AVデコーダ16に IN_time の PTS のピクチャから表示を開始するように指示する。

ステップS238で、制御部17は、AV デコーダ16に AV ストリームのデコードを続けるように指示する。

- 20 ステップS 2 3 9で、制御部1 7は、現在表示の画像が、OUT_time の PTS の画像か否かを調べる。No の場合は、ステップS 2 4 0 へ進む。ステップS 2 4 0 で現在の画像を表示して、ステップS 2 3 8 へ戻る。ステップS 2 3 9 で現在表示の画像が OUT_time の PTS の画像であると判定された場合は、ステップS 2 4 1 へ進む。
- 25 ステップS241で、制御部17は、現在の PlayItem が PlayList の中で最後の PlayItem かを調べる。No の場合はステップS234へ戻る。Yes の場合は、PlayList の再生を終了する。

次に、EP_map タイプの PlayList の場合に、ミニマイズ編集の処理をする時の Clip と PlayList の更新方法の手順を図 5 2 のフローチャートを用いて説明する。

ステップS261で、制御部17は、Real PlayList の再生範囲の中からど の Virtual PlayLists にも使われていない1つ以上の再生区間を調べ、これを 消去範囲と決める。

ステップS262で、制御部17は、Real PlayList の再生範囲の中から消去する一区間の表示開始時刻および表示終了時刻を取得する。

ステップS263で、制御部17は、上記時間区間に対応するClip AVスト 10 リーム上の消去開始パケット(アドレス)と消去終了パケット(アドレス)を EP_map に基づいて決定する。

ステップS264で、制御部17は、上記消去終了パケットの直後のソースパケットから開始する1つの新しい ATC-sequence を SequenceInfo に追加する。 すなわち、上記消去終了パケットの直後のソースパケットのパケット番号が SPN_ATC_start にセットされる。

ステップS 2 6 5 で、制御部 1 7 は、消去後の AV ストリームにおける ATC シーケンス上にある STC-sequence の開始パケット番号 (SPN_STC_start)を更新する。すなわち、消去後の Clip AV ストリームに対応するように、SPN_STC_start の値を変更する。

20 ステップS266で、制御部17は、消去後の AV ストリームにおける ATC シーケンス上にある STC-sequence に対する STC-id の値が変わらないように offset_STC_id を決定する。

ステップS267で、必要に応じて、消去後の Clip AV ストリームについての ProgramInfo を更新。すなわち、もし、上記の消去区間の中で Programsequence が開始している場合は、その Program-sequence の開始ソースパケット番号を上記消去終了パケットの直後のソースパケットのパケット番号に変更する。

ステップS268で、制御部17は、EP_map を消去後のClip AV ストリーム に対応するように変更する。この処理においては、消去区間のストリームを参照 する EP_map のエントリーを消去し、また、EP_map の中のソースパケット番号 の値(すなわち EP_map の SPN_EP_start)を消去後のClip AV ストリームに対応するように変更する。

ステップS269で、制御部17は、上記の開始と終了パケットで示される区間のClip AVストリームのデータを消去する。

ステップS270で、制御部17は、上記の処理を反映させてClip Information file を更新および記録する。この Clip Information file には、
10 図8に示されるように、ClipInf(), Sequence Info(), Program Info(), CPI()などが含まれている。従って、上述した ATC_sequence や STC_sequence に関する情報が記録媒体10に記録されることになる。

ステップS271で、制御部17は、Real PlayList fileが、上記の消去区間の再生範囲を除いた再生区間をカバーするように、更新および記録する。

15 ステップS272で、制御部17は、編集が終了したか否か、すなわち、ステップS261で調べた消去範囲をすべて消去したかどうかを調べる。No の場合はステップS262へ戻る。Yes の場合はミニマイズ処理を終了する。

上記ステップS263における処理内容について、CPIがEP_map タイプのClipの場合を詳細に説明する。

20 図53は、オリジナルのAVストリームファイルと、そのストリームの部分的な再生範囲のストリームを消去する編集を行った後のAVストリームファイルの例を示す。編集前に、Virtual PlayList は、オリジナルAVストリーム上のIN_time と OUT_time を指しているとする。この場合、Virtual PlayList が使用していないストリーム部分を消去する編集(ミニマイズ編集)をしたとき、そ25 れはオリジナルAVストリームを図53に示す編集後のストリームへ変える。オリジナルAVストリームの先頭からX点までのデータと、Y点から最後までのデータが消去される。以下の説明では、このX点とY点を決める方法の例を説明す

る。

25

図54は、AVストリームの内容を解析することをしないで、IN点の前の不要なデータを消去する方法を説明する図である。PlayList はオリジナル AV ストリーム上の IN点を指す。また、その AV ストリームの EP_map を図示する。IN点が指すピクチャをデコードするためには、アドレス ISA2 から開始する I ピクチャが必要である。また、X点の後で、PAT, PMT および PCR パケットが必要である。SPN_EP_start=ISA1の PTS は pts1 であり、SPN_EP_start=ISA2の PTS は pts2である。pts1と pts2のシステムタイムベースの時間差が 100 msec 以上ならば、アドレス ISA1と ISA2の間には PAT, PMT および PCR パケットが存在する(少なくとも、SESF, DVB, ATSC, ISDBの場合はそうである)。したがって、X点はアドレス ISA1の前に決められる。そして、X点はアラインドユニットの境界でなければならない。

動画像記録再生装置1は、AV ストリームの内容を解析することをしないで、 X点を EP_map を使用して次のステップで決めることができる。

- 15 1) システムタイムベース上で IN time の PTS に最も近く、かつそれよりも過去の表示時刻の PTS の値を持つ SPN_EP_start を見つける。
 - 2) ステップ 1 で見つけた SPN_EP_start の PTS の値よりも少なくとも 100 msec 過去の表示時刻の PTS の値を持つ SPN_EP_start を見つける。
- 3) X点は、ステップ2で見つけた SPN_EP_start よりも前に決められる。そし
 20 て、X点はアラインドユニットの境界でなければならない。

この方法は、X点を決めるためにAVストリームのデータを読み出し、その内容を解析することを必要としないので、簡単である。しかし、編集後のAVストリームは、そのPlayListの再生には不要なデータを残してしまう場合がある。もし、X点を決めるためにAVストリームのデータを読み出し、その内容を解析するならば、そのPlayListの再生には不要なデータをより効率良く消去できる。

図55は、AVストリームの内容を解析することをしないで、OUT点の後ろの不要なデータを消去する方法を説明する図である。PlayListはオリジナルAVス

トリーム上の OUT 点を指す。また、その AV ストリームの EP_map を図示する。 SPN_EP_start=ISA4 から開始するビデオシーケンスは次に示すものであることを前提とする。

I2 B0 B1 P5 ···

- 5 ここで、I,P,BはそれぞれIピクチャ,PピクチャそしてBピクチャを表す。 数字は表示順序を表す。この処理において、記録装置がAVストリームの内容を 解析しない場合、動画像記録再生装置1は、OUT_timeのPTSが参照するところ のピクチャの情報(ピクチャコーディングタイプ,テンポラル・レファレンスな ど)がわからない。OUT_timeのPTSはピクチャBOまたはB1を参照しているか もしれない(動画像記録再生装置1がAVストリームの内容を解析しない場合、 このことはわからない)、この場合、ピクチャBO,B1をデコードするためには I2が必要である。I2のPTSはOUT timeのPTSよりも大きい(OUT_time く pts4,ここでpts4はI2のPTSである)。I2のPTSはOUT_timeのPTSよりも 大きいが、BO,B1のためにI2が必要である。
- 15 したがって、Y点は図に示すアドレス ISA5 の後ろに決められる。ISA5 は、EP_map の中で ISA4 の直後にある SPN_EP_start の値である。Y点はまたアラインドユニットの境界でなければならない。

動画像記録再生装置1は、AVストリームの内容を解析することをしないで、 Y点を EP_map を使用して次のステップで決めることができる。

- 20 1) システムタイムベース上で OUT time の PTS に最も近く、かつそれよりも未 来の表示時刻の PTS の値を持つ SPN_EP_start を見つける。
 - 2) ステップ 1 で見つけた SPN_EP_start の直後にある SPN_EP_start を見つける。
- 3) Y点は、ステップ2で見つけた SPN_EP_start よりも後ろに決められる。そ 25 して、Y点はアラインドユニットの境界でなければならない。

この方法は、Y点を決めるために AV ストリームのデータを読み出し、その内容を解析することを必要としないので、簡単である。しかし、編集後の AV スト

20

リームは、そのPlayListの再生には不要なデータを残してしまう場合がある。 もし、Y点を決めるためにAVストリームのデータを読み出し、その内容を解析 するならば、そのPlayListの再生には不要なデータをより効率良く消去できる。

図 5 6 は TU_map タイプの PlayList の再生方法を説明するフローチャートである。

ステップS300乃至ステップS302で、図51のステップS231乃至S232と同様の処理が行われる。

すなわち、ステップS300で、制御部17は Info. dvr, Clip Information file, PlayList file およびサムネールファイルの情報を取得し、ディスク

10 (記録媒体10) に記録されている PlayList の一覧を示す GUI 画面を作成し、 ユーザーインタフェースを通して、GUI に表示する。

ステップS301で、制御部17はそれぞれの PlayList の UIAppInfoPlayList()に基づいて、PlayList を説明する情報を GUI 画面に提示する。

15 ステップS302で、ユーザーインタフェースを通して、GUI 画面上からユーザーが 1 つの PlayList の再生を指示する。

ステップS303で、制御部17は、TU_map 情報を参照して、AV ストリームのエントリーポイントのアドレスを取得する。すなわち、制御部17は、現在のPlayItem の IN_time のアライバルタイムよりも時間的に前で最も近いエントリーポイントのソースパケット番号を取得する。この処理の詳細は、後述する。

ステップS304で、制御部17は、上記エントリーポイントのあるソースパケット番号からパケットを再生し、AVデコーダ16へ供給する。

ステップS305で、制御部17は、現在のパケットのアライバルタイムスタンプが、OUT_time のパケットのそれ以上か否かを調べる。判定が No の場合は、

25 ステップS306へ進む。制御部17は、、ステップS306で、次のパケット を再生し、AV デコーダ16へ供給し、ステップS305へ戻る。ステップ30 5で判定が Yes の場合は処理はステップ307へ進む。 ステップS307で、制御部17は、現在の PlayItem が PlayList の中で最後の PlayItem であるかを調べる。判定が No の場合、処理はステップS303へ戻る。判定が Yes の場合は、制御部17は、PlayList の再生を終了する。

次に、図56のステップS303の処理の詳細を、図57のフローチャートを参照して説明する。

ステップS400で、制御部17は、PlayItem の IN_time と、TU_map()の offset_arrival_time[atc_id] とが次の関係になる最大の atc_id の値を取得する。

offset_arrival_time[atc_id] ≤ IN_time

10 (図26のシンタクス参照)。

ステップS401で、制御部17は、上記 atc_id で指される ATC-sequence 中のi番目の time_unit の開始時刻 TU_start_time[atc_id][i]が、IN_time よりも時間的に前で最も近い時の i の値を取得する(上記した式(2)参照)。 ステップS402で、制御部17は、上記iに対応する

15 SPN_time_unit_start[atc_id][i]をエントリーポイントのアドレスとする。そして、処理を終了する。

次に、TU_map タイプの PlayList に対して、ミニマイズ編集をする時の Clip と PlayList の更新方法の手順を、図 5 8 のフローチャートを用いて説明する。

ステップS500で、制御部17は、Real PlayList の再生範囲の中からど

20 の Virtual PlayLists にも使われていない 1 つ以上の再生区間を調べ、これを 消去範囲と決める。

ステップS501で、制御部17は、Real PlayList の再生範囲の中から消去する一区間の開始時刻(アライバルタイム)および終了時刻(アライバルタイム)を取得する。

25 ステップS502で、制御部17は、上記時間区間に対応する Clip AV ストリーム上の消去開始パケット(アドレス)と消去終了パケット(アドレス)を TU_map に基づいて決定する。この処理の詳細は、後述する。

25

ステップS503で、制御部17は、上記消去終了パケットの直後のソースパケットから開始する1つの新しい ATC-sequence を SequenceInfo に追加する。 すなわち、制御部17は、上記消去終了パケットの直後のソースパケットのパケット番号を SPN_ATC_start にセットする。

- 5 ステップS504で、制御部17は、TU_mapを消去後のClip AV ストリーム に対応するように変更する。すなわち、
 - -- 上記消去する AV ストリーム区間に対応する SPN_time_unit_start のデータエントリを消去する。
- -- 上記新しい ATC-sequence 上の最初の time_unit の開始時刻を、その ATC-10 sequence に対する offset_arrival_time として、TU_map に追加する。
 - -- TU_map の中のソースパケット番号の値、すなわち、TU_map の SPN_time_unit_start を消去後の Clip AV ストリームに対応するように変更する。

ステップS505で、制御部17は、上記の開始と終了パケットで示される区 15 間の Clip AV ストリームのデータを消去する。

ステップS506で、制御部17は、上記の処理を反映させてClip Information file を更新および記録する。この Clip Information file には、図8に示されるように、ClipInf(), Sequence Info(), Program Info(), CPI()などが含まれている。従って、上述した ATC_sequence に関する情報が記録媒体10に記録されることになる。

ステップS507で、制御部17は、Real PlayList fileが、上記の消去区間の再生範囲を除いた再生区間をカバーするように、更新および記録する。

ステップS508で、制御部17は、編集が終了したか否か、すなわち、ステップS500で調べた消去範囲をすべて消去したかどうかを調べる。判定が No の場合、処理はステップS501へ戻る。判定が Yes の場合、制御部17は、ミニマイズ処理を終了する。

次に、図59のフローチャートを参照して、図58のステップS502の処理

の詳細を説明する。

ステップS600で、制御部17は、消去する区間の開始時刻と終了時刻が含まれるATC_sequenceのatc_idの値を取得する。

ステップS601で、制御部17は、上記 atc_id で指される ATC-sequence 5 中のi番目の time_unit の開始時刻 TU_start_time[atc_id][i]が、消去する 区間の開始時刻よりも時間的に後ろで最も近い時の i の値を取得する(上記した式 (2)参照)。

ステップS602で、制御部17は、上記iに対応する
SPN_time_unit_start[atc_id][i]を消去開始パケットのアドレスとする。

10 ステップS603で、制御部17は、上記 atc_id で指される ATC-sequence 中の j 番目の time_unit の開始時刻 TU_start_time[atc_id][j]が、消去する 区間の終了時刻よりも時間的に前で最も近い時の j の値を取得する(上記した式(2) 参照)。

ステップS604で、制御部17は、上記 j に対応する

15 SPN_time_unit_start[atc_id][j]を消去終了パケットのアドレスとする。

図60は、EP_map タイプと TU_map タイプの各 PlayList に対するミニマイズ 編集での Clip Information file の更新の違いをまとめたものである。

ステップS701で、制御部17は、PlayList が、EP_map の PlayList であるか否かを判定し、EP_map の PlayList である場合、ステップS702へ進む。

20 ステップS702で、EP_map の PlayList であると判定された場合、制御部 17は、AV ストリームの部分消去に対応するように、Clip Information ファイ ルを更新する。すなわち、

ATC-sequence の情報を更新し(図52のステップS264)、

STC-sequence の情報を更新し(図52のステップS265, S266)、

25 さらに、必要に応じて、program-sequence の情報を更新する(図 5 2 のステップS 2 6 7)。

そして、ステップS703で、制御部17は、AVストリームの部分消去に対

応するように、EP_map の情報を更新する(図52のステップS268)。そして、処理を終了する。

一方、ステップS701で、PlayList が、TU_map の PlayList であると判定された場合、処理はステップ704へ進む。

5 ステップS704で、制御部17は、AVストリームの部分消去に対応するように、Clip Informationファイルの ATC-sequence の情報を更新する(図58のステップS503)。

そして、制御部 1 7 は、ステップ S 7 0 5 で、AV ストリームの部分消去に対応するように、TU_map の情報を更新し(図 5 8 のステップ 5 0 4)、処理を終了する。

次に、EP_map タイプの PlayList の AV ストリームを記録する時に ATC 不連続点と STC 不連続点が発生する場合における、PlayList (図 2 8) の PlayItem データ (図 2 9) について、connection_condition (図 2 9) の値の設定方法を説明する。

15 ATC シーケンスと STC シーケンスの不連続点を持つ AV ストリームと PlayItem の関係について説明する。

図 6 1 は、EP_map タイプの PlayList の場合に、2 個の ATC シーケンスの境界で 2 個の PlayItem に分かれている場合を説明する図である。ATC シーケンスの境界で、STC シーケンスも分かれる。そして、PlayItem は連続な STC シーケン

20 スを参照するので、STC シーケンスの境界で 2 個の PlayItem に分かれる。この 場合、現在の PlayItem (図中の Current PlayItem)がその前側の

PlayItem(Previous PlayItem)と、このような状態で接続されていることを示すために、connection_conditionの値を1に設定する。

図62は、EP_map タイプの PlayList の場合に、連続な ATC シーケンス上に 25 ある2個の STC シーケンスの境界で2個の PlayItem が分かれている場合を説明 する図である。連続な ATC シーケンス上の STC 不連続点で、2個の STC シーケンスに分かれている。そして、PlayItem は連続な STC シーケンスを参照するので、

STC シーケンスの境界で 2 個の PlayItem に分かれる。この場合、現在の PlayItem (図中の Current PlayItem)がその前側の PlayItem (Previous PlayItem) と、このような状態で接続されていることを示すために、 connection_condition の値を 2 に設定する。

5 図63は、AVストリームの記録方法について、その記録途中にATC不連続点とSTC不連続点が発生する場合における、EP_map タイプの PlayList データの作成方法を説明するフローチャートである。

ステップS800で、制御部17(図43)は、パラメータ n=0, m=0, is_ATC_sequence=1 にセットする。n は、記録途中に発生する ATC シーケンスの10 番号であり、m は、記録途中に発生する STC シーケンスの番号であり、

is_ATC_sequence は、ATC の不連続が発生したことを示すフラグである。

ステップS801で、制御部17は、現在記録するパケットからn番目のATCシーケンスを開始する。

ステップS 8 0 2 で、制御部 1 7 は、前記現在記録するパケットから m 番目 **15** の STC シーケンスを開始する。また、m 番目の PlayItem を開始する。

ステップS803で、制御部17は、m 番目の PlayItem の connection_condition を決める。

is_ATC_change=1 の場合、connection_condition=1, is_ATC_change=0 の場合、connection_condition=2。

20 なお、最初の PlayItem (m=0) については、図 6 2 の状態とは異なるが、connection_condition=1 とする。

ステップS804で、制御部17は、記録するAVストリームに含まれるビデオのPTSを解析する。このPTSの情報は、PlayItemのIN_time, OUT_timeを取得するための情報となる。

25 ステップS805で、制御部17は、不連続点を検出したか判定する。Noの場合は、ステップS804の処理を続ける。Yesの場合は、ステップS806へ
移る。

ステップS806で、制御部17は、STC不連続が発生したかどうかを調べる。 STC不連続の検出方法については、図45における場合と同様に行う。

ステップS806で、Yesの場合、制御部17は、STCの不連続が発生した (ATCの不連続は発生しない)と判定する(図62の状態)。そして、次のよう に処理をする。

- (1) m番目の PlayItem の IN_time, OUT_time の取得する。
- (2) m++
- (3) is_ATC_change=0 と処理する。
- 10 そして、ステップS802へ戻り、引き続き処理を行う。この場合、is_ATC_change=0 であるので、ステップS803で、PlayItem の connection_condition=2 がセットされる。

ステップS806で、No の場合、ステップS808へ移る。

ステップS808は、制御部17は、不連続点が録画ポーズとポーズ解除(記録が一度中断され、その後再開した場合)によるものかを調べる。

ステップS808で、Yes の場合、記録が一度中断されたので、制御部17は、ATCの不連続が発生した(STCの不連続もまた発生する)と判定する(図61の 状態)。この時、ステップS809で、次の処理を行う。

- (1) m番目のPlayItemのIN_time, OUT_timeの取得する。
- 20 (2) m++,

15

- (3) n++
- (3) is_ATC_change=1

そして、ステップS801〜戻り、引き続き処理を行う。この場合、is_ATC_change=1であるので、ステップS803で、PlayItemの

25 connection_condition=1 がセットされる。

ステップS808で、Noの場合、AVストリームの記録を終了する。 次に、TU_map タイプの PlayList の AV ストリームを記録する時に ATC 不連続 点が発生する場合における PlayList (図28) の PlayItem データ (図29) について、connection_condition (図29) の値の設定方法を説明する。

ATC シーケンスの不連続点を持つ AV ストリームと PlayItem の関係について説明する。

図64は、TU_map タイプの PlayList の場合に、2個の ATC シーケンスの境界で2個の PlayItem に分かれている場合を説明する図である。TU_map タイプの PlayList の場合、PlayItem は連続な ATC シーケンスを参照するので、ATC シーケンスの境界で2個の PlayItem に分かれる。この場合、現在の PlayItem (図中の Current PlayItem)がその前側の PlayItem (Previous PlayItem) と、このような状態で接続されていることを示すために、connection_condition の値を1に設定する。

図65は、PlayListのAVストリームの記録方法について、その記録途中に ATC 不連続点が発生する場合、TU_map タイプの PlayList データの作成方法を説明するフローチャートである。

15 ステップS831で、制御部17(図 4·3)は、パラメータ n=0 にセットする。n は、記録途中に発生する ATC シーケンスの番号である。

ステップS832で、制御部17は、現在記録するパケットからn番目のATCシーケンスを開始する。

ステップS833で、制御部17は、n番目のPlayItemを開始する。

20 ステップS834で、制御部17は、n番目のPlayItemのconnection_condition=1とセットする。

なお、最初の PlayItem (n=0) についても、図 6 4 の状態とは異なるが、connection_condition=1 とする。

ステップS835で、制御部17は、記録する AV ストリームのパケットのア 25 ライバルタイムスタンプを取得する。このアライバルタイムスタンプの情報は、 PlayItem の IN_time, OUT_time を取得するための情報となる。

ステップS836で、制御部17は、不連続点を検出したか判定する。No の

場合は、ステップS835の処理を続ける。Yes の場合は、ステップS837へ移る。

ステップS837で、制御部17は、不連続点が録画ポーズとポーズ解除(記録が一度中断され、その後再開した場合)によるものかを調べる。

- 5 ステップS837で、Yes の場合、記録が一度中断されたので、制御部17は、ATC の不連続が発生したと判定する。この時、ステップS838で、次の処理を行う。
 - (1) n番目のPlayItemのIN_time, OUT_timeの取得する。
 - (2) n++
- そして、ステップS832へ戻り、引き続き処理を行う。この後のステップS834で、PlayItem の connection_condition=1 がセットされる(図63の状態)。

ステップS837で、No の場合、AV ストリームの記録を終了する。

図66は、connection_conditionの値に基づいて、EP_mapタイプの

15 PlayList を再生する方法を説明するフローチャートである。

ステップS 8 5 1 で、制御部 1 7 (図 4 3) は、PlayList ファイルのデータ を読み込む。

ステップS852で、制御部17は、パラメータ K=0 にセットする。Kは、PlayList の中にエントリーされている PlayItem データの番号である。

20 ステップS 8 5 3 で、制御部 1 7 は、現在、再生する K 番目の PlayItem の connection_condition の取得をする。

ステップS854で、制御部17は、connection_condition の値が 2 であるかどうかを調べる。Yes の場合、ステップS855へ進む。

ステップS855で、制御部17は、前回の(K-1)番目の PlayItem の AV デー タに続く ATC シーケンスの AV データを連続読み出しできることがわかる。すな わち、連続な ATC シーケンス上の STC 不連続点にて、PlayItem が分かれている だけである (図62の状態である) ので、STC 不連続点をまたいで、AV ストリ

ームデータを連続読み出しできることがわかる。具体的には、図7の再生モデルにおいて、STC 不連続点をまたいでも、アライバルタイムカウンタークロック 255 の値を連続にできることがわかる。

ステップS854で、Noの場合は、ステップS856へ進む。

5 ステップS856で、制御部17は、前回(K-1)番目のPlayItemのAVデータ 読み出し後、現在のK番目のPlayItemのAVデータ読み出し開始に先立ち、再 生器のATC カウンタのリセットが必要であることがわかる。すなわち、

PlayItem の境界で ATC 不連続点があるので、図 7 の再生モデルにおいて、ATC 不連続点でアライバルタイムカウンタークロック 255 の値をリセットする必要

10 があることがわかる(例えば、図61の Current PlayItem の場合、ATC-sequence2 の開始点 SPN_ATC_start が示すパケットの arrival_time_stamp の値でアライバルタイムカウンタークロック 255 の値をリセットする)。

ステップS857で、制御部17は、最後のPlayItemの処理を終了したかど うかを調べる。Noの場合は、ステップS858へ進み、Kをインクリメントす る。

ステップS857で、Yes の場合は、PlayList の再生処理を終了する。 図67は、TU_map タイプの PlayList を再生する方法を説明するフローチャートである。

ステップS871で、制御部17 (図43) は、PlayList ファイルのデータ 20 を読み込む。

ステップS872で、制御部17は、パラメータ K=0 にセットする。K は、PlayList の中にエントリーされている PlayItem データの番号である。

ステップS873で、制御部17は、現在、再生するK番目のPlayItemのconnection_condition=1の取得をする。

25 ステップS 8 7 4 で、制御部 1 7 は、前回(K-1)番目の PlayItem の AV データ 読み出し後、現在の K 番目の PlayItem の AV データ読み出し開始に先立ち、再 生器の ATC カウンタのリセットが必要であることがわかる。すなわち、 PlayItem の境界で ATC 不連続点があるので、図7の再生モデルにおいて、ATC 不連続点でアライバルタイムカウンタークロック 255 の値をリセットする必要 があることがわかる (例えば、図64の Current PlayItem の場合、ATC-sequence2の開始点 SPN_ATC_start が示すパケットの arrival_time_stamp の 値でアライバルタイムカウンタークロック 255 の値をリセットする)。

ステップS875で、制御部17は、最後のPlayItemの処理を終了したかど うかを調べる。Noの場合は、ステップS876へ進み、Kをインクリメントす る。

ステップS875で、Yes の場合は、PlayList の再生処理を終了する。

10 このようなシンタクス、データ構造、規則に基づく事により、記録媒体10に 記録されているデータの内容、再生情報などを適切に管理することができ、もっ て、ユーザが再生時に適切に記録媒体に記録されているデータの内容を確認した り、所望のデータを簡便に再生できるようにすることができる。

以上説明した各種の情報が記録される記録媒体10は、例えば光ディスクで構 15 成される。この記録媒体10には、スパイラル状または同心円状にトラックが形 成される。そして、図68に示されるように、そのうちのGathered files 領域 10Aに、Gathered files (例えば、図2のPLAYLISTのファイル (*.rpls お よび*.vplsの拡張子を有するファイル)、並びにCLIPINFを構成するファイル (*.clpiの拡張子を有するファイル))が記録され、その他の領域10Bに、

20 STREAM のファイル (例えば、*.m2ts の拡張子を有するファイル) が記録される。 Gathered files は、記録媒体 1 0 を動画像記録再生装置 1 に装着したとき、短時間で読み出す必要があるファイルである。

なお、本実施の形態は、多重化ストリームとして MPEG2 トランスポートストリームを例にして説明しているが、これに限らず、DSS トランスポートストリームや MPEG2 プログラムストリームについても適用することが可能である。

以上のように、本発明によれば、トランスポートストリーム等の AV ストリームのパケットを記録媒体に記録するシステムにおいて、各パケットのデコーダへ

WO 02/075739 PCT/JP01/10146

の到着時刻を示すアライバル・タイム・スタンプ(arrival_time_stamp)がパケットに付加して記録される。このとき、アライバル・タイム・スタンプの連続性を表す情報(ATC-sequence の情報)も記録される。具体的には、記録されている1つのパケット列の中で、アライバル・タイム・ベースの時間軸が開始するパケットのアドレス(SPN_ATC_start)が記録される。このアドレスは、1つのパケット列の中でのパケット番号で表す。

5

10

15

20

例えば、AVストリームを新しく記録する時、連続して記録されたパケット列にはアライバルタイムベースの不連続点は含まれず、アライバル・タイム・ベースの時間軸は1つである。その時間軸はパケット列の最初のパケットから開始する。

編集等によって、前記パケット列の中の不必要な部分のパケットが消去され、 残った全てのパケットが1つのパケット列にまとめられる場合を考える。この場合、新しいパケット列の中には、アライバル・タイムベースの時間軸が複数存在 する場合がある。このとき、それぞれのアライバル・タイム・ベースの時間軸が 開始するパケットのアドレスが記録媒体に記録される。

さらに、アライバル・タイム・スタンプの連続性を表す情報を記録するシステムにおいては、AV データの再生時刻が参照するところのシステム・タイム・ベースの不連続点が検出され、そのシステム・タイム・ベースの連続性を表す情報 (STC-sequence の情報) が記録される。具体的には、記録されている1つのパケット列の中で、システム・タイム・ベースの時間軸が開始するパケットのアドレス (SPN_STC_start) が記録される。このアドレスは、1つのパケット列の中でのパケット番号で表す。

ATC-sequence が増加しても、Clipのファイル数が増加しないので、ファイル管理が容易となる。さらに、stc-idで各々のSTC-sequence を識別するようにしたので、プレイリストの編集が容易となる。

また、AV ストリームファイルの中にアライバルタイムベースの不連続点やシステムタイムベースの不連続が含まれる場合であっても、適切に AV データの再生開始時間と終了時間を管理できる。

なお、本実施の形態は、多重化ストリームとして MPEG2 トランスポートスト リームを例にして説明しているが、これに限らず、DSS トランスポートストリー ムや MPEG2 プログラムストリームについても適用することが可能である。

上述した一連の処理は、ハードウエアにより実行させることもできるが、ソフトウエアにより実行させることもできる。この場合、そのソフトウエアを構成するプログラムが、専用のハードウエアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、ネットワークや記録媒体からインストールされる。

この記録媒体は、図43に示すように、装置本体とは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク51 (フロッピディスクを含む)、光ディスク52 (CD-ROM(Compact Disk-Read Only Memory), DVD(Digital Versatile Disk)を含む)、光磁気ディスク53 (MD (Mini-Disk)を含む)、もしくは半導体メモリ54などよりなるパッケージメディアにより構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される、プログラムが記録されている ROM やハードディスクなどで構成される。

20

なお、本明細書において、記録媒体に記録されるプログラムを記述するステッ プは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時 系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むもの である。

WO 02/075739 PCT/JP01/10146

85

また、本明細書において、システムとは、複数の装置により構成される装置全 体を表すものである。

産業上の利用可能性

10

5 以上のように、本発明によれば、記録後に、編集操作が行われた場合において も、データの内容、および、再生情報を簡単に、かつ、適切に管理することが可 能になる。

また、本発明によれば、編集操作が行われた場合においても、データの内容および再生を簡単に、かつ適切に管理することが可能な情報記録媒体を実現することができる。

さらに、本発明によれば、データストリームを欠落させることなく、連続的に、 かつ、迅速に、再生することが可能となる。

また、本発明によれば、データストリームの一部を削除した場合においても、 データストリームを連続的に再生することが可能となるだけでなく、編集後のデ 15 ータの管理も容易となる。

請求の範囲

1. パケット列からなるデータストリームを情報記録媒体に記録するデータ記録装置において、

前記データストリームの基準時刻情報を検出する第1の検出手段と、

5 前記第1の検出手段による検出結果に基づいて生成された第1の時刻情報の連 続性を表す第1の連続性情報と、

前記パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報と、

前記第1の時刻情報の不連続点を含まない第1のパケット列を識別するための 10 識別情報と、

前記第2の時刻情報の不連続点を含まない第2のパケット列毎に前記識別情報のオフセット値を生成する第1の生成手段と、

前記第1の連続性情報、前記第2の連続性情報、および前記オフセット値を前 記情報記録媒体に記録する記録手段と

- 15 を備えることを特徴とするデータ記録装置。
 - 2. 前記第1の連続性情報は、記録されている1つのパケット列の中で、前記 第1の時刻情報の時間軸が開始するパケットのアドレスを表す

ことを特徴とする請求の範囲第1項に記載のデータ記録装置。

- 3. 前記第2の連続性情報は、記録されている1つのパケット列の中で、前記 20 第2の時刻情報の時間軸が開始するパケットのアドレスを表す
 - ことを特徴とする請求の範囲第1項に記載のデータ記録装置。
 - 4. 1つの前記第1のパケット列は、前記第2のパケット列の境界をまたがないように前記データを管理する管理手段を

さらに備えることを特徴とする請求の範囲第1項に記載のデータ記録装置。

25 5. 前記データストリームの中に配置されているプログラム内容の変化点を検 出する第2の検出手段と、

前記第2の検出手段による検出結果に基づいて、記録されている1つのパケッ

ト列の中で、前記プログラム内容の変化点に対応するパケットのアドレスを取得する取得手段と

をさらに備え、

前記記録手段は、前記取得手段により取得された前記変化点に対応するパケッ 5 トのアドレスを前記情報記録媒体にさらに記録する

ことを特徴とする請求の範囲第1項に記載のデータ記録装置。

- 6. 記録されている1つのパケット列の中において、前記プログラム内容が一 定であるパケット列としての1つのプログラムシーケンスは、前記第1のパケッ ト列および前記第2のパケット列の境界をまたいでも良いように前記データを管
- 10 理する管理手段を

15

さらに備えることを特徴とする請求の範囲第5項に記載のデータ記録装置。

7. 前記第1のパケット列毎に、プレゼンテーション・スタート・タイムとプレゼンテーション・エンド・タイムを生成する第2の生成手段をさらに備え、

前記記録手段は、前記第2の生成手段により生成された前記プレゼンテーション・スタート・タイムとプレゼンテーション・エンド・タイムを前記情報記録媒体 にさらに記録する

ことを特徴とする請求の範囲第1項に記載のデータ記録装置。

- 8. 前記記録手段は、表示時刻情報の時間とデータアドレスを関係付けるマップをさらに記録する
- 20 ことを特徴とする請求の範囲第7項に記載のデータ記録装置。
 - 9. パケット列からなるデータストリームを情報記録媒体に記録するデータ記録装置のデータ記録方法において、

前記データストリームの基準時刻情報を検出する第1の検出ステップと、

前記第1の検出ステップの処理による検出結果に基づいて生成された、前記第

25 1の時刻情報の連続性を表す第1の連続性情報と、

前記パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報と、

前記基準時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報と、

前記第2の時刻情報の不連続点を含まない第2のパケット列毎に前記識別情報のオフセット値を生成する生成ステップと、

5 前記第1の連続性情報、前記第2の連続性情報、および前記オフセット値を前 記情報記録媒体に記録する記録ステップと

を含むことを特徴とするデータ記録方法。

- 10. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置のプログラムにおいて、
- 10 前記データストリームの基準時刻情報を検出する第1の検出ステップと、

前記第1の検出ステップの処理による検出結果に基づいて生成された、第1の 時刻情報の連続性を表す第1の連続性情報と、

前記パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報と、

15 前記基準時刻情報の不連続点を含まない第1のパケット列を識別するための識 別情報と、

前記第2の時刻情報の不連続点を含まない第2のパケット列毎に前記識別情報 のオフセット値を生成する生成ステップと、

前記第1の連続性情報、前記第2の連続性情報、および前記オフセット値を前 20 記情報記録媒体に記録する記録ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

- 11. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置を制御するコンピュータに、
- 25 前記データストリームの基準時刻情報を検出する第1の検出ステップと、

前記第1の検出ステップの処理による検出結果に基づいて生成された、第1の 時刻情報の連続性を表す第1の連続性情報と、 前記パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報と、

前記基準時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報と、

5 前記第2の時刻情報の不連続点を含まない第2のパケット列毎に前記識別情報 のオフセット値を生成する生成ステップと、

前記第1の連続性情報、前記第2の連続性情報、および前記オフセット値を前 記情報記録媒体に記録する記録ステップと

を実行させるプログラム。

10 12. パケット列からなるデータストリームを記録するデータ記録媒体において、

前記データストリームの基準時刻情報に基づいて生成される第1の時刻情報の 連続性を表す第1の連続性情報と、

前記パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情 15 報と、

前記基準時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報であって、

前記第2の時刻情報の不連続点を含まない第2のパケット列毎に生成される識別情報のオフセット値と

- 20 が記録されたデータ記録媒体。
 - 13. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置において、

前記情報記録媒体に記録されている前記データストリームの基準時刻情報に基づいて生成された第1の時刻情報の連続性を表す第1の連続性情報、前記パケッ 25 トの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報、前記第1 の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報、および前記第2の時刻情報の不連続点を含まない第2のパケット列毎に付加され

た前記識別情報のオフセット値を再生する再生手段と、

前記再生された情報に基づいて、前記情報記録媒体からの前記データストリームの再生を制御する制御手段と

を備えることを特徴とするデータ再生装置。

5 14. 前記再生手段は、表示時刻情報の時間とデータアドレスを関係付けるマップをさらに再生する

ことを特徴とする請求の範囲第13項に記載のデータ再生装置。

15. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置のデータ再生方法において、

10 前記情報記録媒体に記録されている前記データストリームの基準時刻情報に基づく第1の時刻情報の連続性を表す第1の連続性情報、各パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報、前記第1の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報、および前記第2の時刻情報の不連続点を含まない第2のパケット列毎に付加された前記識別情報のオフセット値を再生する再生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体 からの前記データストリームの再生を制御する制御ステップと

を含むことを特徴とするデータ再生方法。

16. パケット列からなるデータストリームが記録されている情報記録媒体か 20 ら前記データストリームを再生するデータ再生装置のプログラムにおいて、

前記情報記録媒体に記録されている前記データストリームの基準時刻情報に基づく第1の時刻情報の連続性を表す第1の連続性情報、各パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報、前記第1の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報、および前記第2の時刻情報の不連続点を含まない第2のパケット列毎に付加された前記識別情報のオフセット値を再生する再生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体

からの前記データストリームの再生を制御する制御ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

17. パケット列からなるデータストリームが記録されている情報記録媒体か

5 ら前記データストリームを再生するデータ再生装置を制御するコンピュータに、

前記情報記録媒体に記録されている前記データストリームの基準時刻情報に基づいて生成された第1の時刻情報の連続性を表す第1の連続性情報、前記パケットの到着時刻を示す第2の時刻情報の連続性を表す第2の連続性情報、前記第1の時刻情報の不連続点を含まない第1のパケット列を識別するための識別情報、

10 および前記第2の時刻情報の不連続点を含まない第2のパケット列毎に、前記第 2のパケット列上にある最初の前記第1のパケット列に対する前記識別情報のオ フセット値を再生する再生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体 からの前記データストリームの再生を制御する制御ステップと

15 を実行させるプログラム。

18. 到着時刻情報の不連続点を含まないパケット列毎に開始するパケットのアドレスを取得する第1の取得手段と、

前記パケット列のオフセット時刻情報を取得する第2の取得手段と、

前記第1の取得手段により取得された前記パケットのアドレスと、前記第2の 20 取得手段により取得された前記オフセット時刻情報を情報記録媒体に記録する記 録手段と

を備えることを特徴とするデータ記録装置。

- 19. 前記パケット列は、ATC シーケンスであり、
 - 前記パケットのアドレスは、SPN_ATC_start であり、
- 25 前記スタートタイムは、offset_arrival_time である
 - ことを特徴とする請求の範囲第18項に記載のデータ記録装置。
 - 20. 前記記録手段は、前記到着時刻情報の時間とデータアドレスを関係付け

るマップをさらに記録する

ことを特徴とする請求の範囲第18項に記載のデータ記録装置。

- 21. 到着時刻情報の不連続点を含まないパケット列毎に開始するパケットの アドレスを取得する第1の取得ステップと、
- 5 前記パケット列のオフセット時刻情報を取得する第2の取得ステップと、 前記第1の取得ステップの処理により取得された前記パケットのアドレスと、 前記第2の取得ステップの処理により取得された前記オフセット時刻情報を情報 記録媒体に記録する記録ステップと

を含むことを特徴とするデータ記録方法。

10 22. 到着時刻情報の不連続点を含まないパケット列毎に開始するパケットの アドレスを取得する第1の取得ステップと、

前記パケット列のオフセット時刻情報を取得する第2の取得ステップと、 前記第1の取得ステップの処理により取得された前記パケットのアドレスと、 前記第2の取得ステップの処理により取得された前記オフセット時刻情報を情報

15 記録媒体に記録する記録ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

- 23. 到着時刻情報の不連続点を含まないパケット列毎に開始するパケットの アドレスを取得する第1の取得ステップと、
- 20 前記パケット列のオフセット時刻情報を取得する第2の取得ステップと、 前記第1の取得ステップの処理により取得された前記パケットのアドレスと、 前記第2の取得ステップの処理により取得された前記オフセット時刻情報を情報 記録媒体に記録する記録ステップと

をコンピュータに実行させるプログラム。

25 24. データストリームのパケットが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置において、

到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、

前記パケット列のオフセット時刻情報を再生する再生手段と、

前記再生された情報に基づいて、前記情報記録媒体からの前記データストリームの再生を制御する制御手段と

を備えることを特徴とするデータ再生装置。

5 25. 前記再生手段は、前記到着時刻情報の時間とデータアドレスを関係付け るマップをさらに再生する

ことを特徴とする請求の範囲第24項に記載のデータ再生装置。

- 26. 再生開始点のパケット到着時刻が、パケット列のオフセット時刻情報以上であるところの、前記パケット列を見つけ、
- 10 前記パケット列上で、前記再生開始点のパケット到着時刻に等しいか、または 過去のエントリーポイントの時刻を求め、

前記エントリーポイントの時刻に関連づけられたアドレスからデータストリー ムを再生する

ことを特徴とする請求の範囲第25項に記載のデータ編集装置。

15 27. データストリームのパケットが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置のデータ再生方法において、

到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、 前記パケット列のオフセット時刻情報を再生する再生ステップと、

前記再生された情報に基づいて、前記情報記録媒体からの前記データストリー ムの再生を制御する制御ステップと

を含むことを特徴とするデータ再生方法。

28. データストリームのパケットが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置のプログラムであって、

到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、

25 前記パケット列のオフセット時刻情報を再生する再生ステップと、

前記再生された情報に基づいて、前記情報記録媒体からの前記データストリームの再生を制御する制御ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

- 29. データストリームのパケットが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置を制御するコンピュータに、
- 5 到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、 前記パケット列のオフセット時刻情報を再生する再生ステップと、

前記再生された情報に基づいて、前記情報記録媒体からの前記データストリームの再生を制御する制御ステップと

を実行させるプログラム。

- 10 30. データストリームのパケットを記録するデータ記録媒体において、 到着時刻情報の不連続点を含まないパケット列毎の開始パケットのアドレスと、 前記パケット列毎の前記到着時刻情報のオフセット時刻情報と が記録されたデータ記録媒体。
- 31. 基準時刻情報の不連続点を含まない第1のパケット列、および到着時刻 15 情報の不連続点を含まない第2のパケット列に基づいてデータストリームを管理 するコントローラと、

前記データストリームの一部を削除するよう指示するユーザインターフェース とを有し、

前記コントローラは、前記データストリームの一部が削除するよう指示された

20 際には、前記第1のパケット列を識別する識別情報が変化しないように、前記第

2のパケット列毎に、前記第1のパケット列に対する前記識別情報のオフセット

値を付加するよう制御する

ことを特徴とするデータ編集装置。

32. 表示時刻情報の時間とデータアドレスを関係付けるマップをさらに制御 25 する

ことを特徴とする請求の範囲第30項に記載のデータ編集装置。

33. 削除終了点の表示時刻に等しいか、または過去の表示時刻を持つ第1の

エントリーポイントの第1の表示時刻を見つけ、

前記第1の表示時刻の値よりも、少なくとも所定の時間だけ過去の表示時刻 を持つ第2のエントリーポイントの第2の表示時刻を見つけ、

前記第2の表示時刻に関連づけられたデータアドレスよりも前を削除するよう 5 に制御する

ことを特徴とする請求の範囲第31項に記載のデータ編集装置。

34. 削除開始点の表示時刻に等しいか、または未来の表示時刻の値を持つ第 1のエントリーポイントの第1の表示時刻を見つけ、

前記第1の表示時刻よりも、未来の表示時刻を持つ第2のエントリーポイン 10 トの第2の表示時刻を見つけ、

前記第2の表示時刻に関連づけられたアドレスよりも後ろを削除するように制 御する

ことを特徴とする請求の範囲第31項に記載のデータ編集装置。

35. 基準時刻情報の不連続点を含まない第1のパケット列、および到着時刻 15 の不連続点を含まない第2のパケット列に基づいてデータストリームを管理する コントローラと、

前記データストリームの一部を削除するよう指示するユーザインターフェース とを有するデータ編集装置のデータ編集方法において、

前記コントローラは、前記データストリームの一部が削除するよう指示された

20 際には、前記第1のパケット列を識別する識別情報が変化しないように、前記第

2のパケット列毎に、前記第1のパケット列に対する前記識別情報のオフセット

値を付加するよう制御する

ことを特徴とするデータ編集方法。

36. 基準時刻情報の不連続点を含まない第1のパケット列、および到着時刻 25 情報の不連続点を含まない第2のパケット列に基づいてデータストリームを管理 するコントローラと、

前記データストリームの一部を削除するよう指示するユーザインターフェース

10

とを有するデータ編集装置を制御するコンピュータのプログラムであって、

前記データストリームの一部が削除するよう指示された際には、前記第1のパケット列を識別する識別情報が変化しないように、前記第2のパケット列毎に、前記第1のパケット列に対する前記識別情報のオフセット値を付加するよう制御する

ことを特徴とするコンピュータが読み取り可能なプログラムが格納されている プログラム格納媒体。

37. 基準時刻情報の不連続点を含まない第1のパケット列、および到着時刻情報の不連続点を含まない第2のパケット列に基づいてデータストリームを管理するコントローラと、

前記データストリームの一部を削除するよう指示するユーザインターフェース とを有するデータ編集装置を制御するコンピュータに、

前記データストリームの一部が削除するよう指示された際には、前記第1のパケット列を識別する識別情報が変化しないように、前記第2のパケット列毎に、

15 前記第1のパケット列に対する前記識別情報のオフセット値を付加するよう制御 させる

ことを特徴とするプログラム。

- 38. パケットの到着時刻を示す到着時刻情報の不連続点を含まないパケット 列に基づいてデータストリームを管理するコントローラと、
- 20 前記データストリームの一部を削除するよう指示するユーザインターフェース とを有し、

前記コントローラは、前記データストリームの一部が削除するように指示された際には、前記パケット列毎に、前記到着時刻情報の時間軸のスタートタイムを 付加するように制御する

- 25 ことを特徴とするデータ編集装置。
 - 39. 到着時刻情報の時間とデータアドレスを関係付けるマップをさらに制御 する

ことを特徴とする請求の範囲第38項に記載のデータ編集装置。

40. 削除開始点のパケット到着時刻が、前記到着時刻情報の時間軸のスタートタイム以上であるところの、前記パケット列を見つけ、

前記パケット列の到着時刻情報の時間軸上で、前記削除開始点のパケット到着 5 時刻に等しいか、または未来のエントリーポイントの時刻を求め、

上記エントリーポイントの時刻に関連づけられたアドレスよりも後ろを削除するように制御する

ことを特徴とする請求の範囲第38項に記載のデータ編集装置。

41. 削除終了点のパケット到着時刻が、前記到着時刻情報の時間軸のスター 10 トタイム以上であるところの、前記パケット列を見つけ、

前記パケット列の到着時刻情報の時間軸上で、前記削除終了点のパケット到着 時刻に等しいか、または過去の時刻のエントリーポイントを求め、

上記エントリーポイントの時刻に関連づけられたアドレスよりも前を削除する ように制御する

- 15 ことを特徴とする請求の範囲第38項に記載のデータ編集装置。
 - 42. パケットの到着時刻を示す到着時刻情報の不連続点を含まないパケット 列に基づいてデータストリームを管理するコントローラと、

前記データストリームの一部を削除するよう指示するユーザインターフェース とを有するデータ編集装置のデータ編集方法において、

20 前記コントローラは、前記データストリームの一部が削除するように指示され た際には、前記パケット列毎に、前記到着時刻情報の時間軸のスタートタイムを 付加するように制御する

ことを特徴とするデータ編集方法。

43. パケットの到着時刻を示す到着時刻情報の不連続点を含まないパケット 5 列に基づいてデータストリームを管理するコントローラと、

前記データストリームの一部を削除するよう指示するユーザインターフェース とを有するデータ編集装置を制御するコンピュータのプログラムであって、

前記データストリームの一部が削除するように指示された際には、前記パケット列毎に、前記到着時刻情報の時間軸のスタートタイムを付加するように制御させる

ことを特徴とするコンピュータが読み取り可能なプログラムが格納されている 5 プログラム格納媒体。

4.4. パケットの到着時刻を示す到着時刻情報の不連続点を含まないパケット 列に基づいてデータストリームを管理するコントローラと、

前記データストリームの一部を削除するよう指示するユーザインターフェース とを有するデータ編集装置を制御するコンピュータに、

- 前記データストリームの一部が削除するように指示された際には、前記パケット列毎に、到着時刻情報の時間軸のスタートタイムを付加するように制御させることを特徴とするプログラム。
- 45. パケット列で構成されるデータストリームの時間情報とそのアドレスとを関連づけるためのマップ情報として第1のマップ情報を使用する場合、第1の 時刻情報の連続性を表す第1の連続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とを作成するとともに、マップ情報として第2のマップ情報を使用する場合、前記第2の連続性情報を作成する作成手段と、

前記第1のマップ情報を使用する場合には、前記作成手段で作成された前記第 1の連続性情報および前記第2の連続性情報を記録し、前記第2のマップ情報を 使用する際には、前記第2の連続性情報を記録する記録手段と

を備えることを特徴とするデータ記録装置。

46. 前記第1のマップ情報は、EP_map であり、前記第2のマップは TU_map である

ことを特徴とする請求の範囲第45項に記載のデータ記録装置。

25 47. 編集処理において、前記記録手段は、前記第1のマップが使用されている際には、前記第1の連続性情報、および第2の連続性情報を更新するとともに、前記第2のマップが使用されている際には、前記第2の連続性情報を更

新する

10

15

25

ことを特徴とする請求の範囲第45項に記載のデータ記録装置。

48. パケット列で構成されるデータストリームの時間情報とそのアドレスと を関連づけるためのマップ情報として第1のマップ情報を使用する場合、第1の 時刻情報の連続性を表す第1の連続性情報と、第2の時刻情報の連続性を表す第 2の連続性情報とを作成するとともに、マップ情報として第2のマップ情報を使 用する場合、前記第2の連続性情報を作成する作成ステップと、

前記第1のマップ情報を使用する場合には、前記作成ステップの処理で作成された前記第1の連続性情報および前記第2の連続性情報を記録し、前記第2のマップ情報を使用する際には、前記第2の連続性情報を記録する記録ステップとを含むことを特徴とするデータ記録方法。

49. パケット列で構成されるデータストリームの時間情報とそのアドレスとを関連づけるためのマップ情報として第1のマップ情報を使用する場合、第1の時刻情報の連続性を表す第1の連続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とを作成するとともに、マップ情報として第2のマップ情報を使用する場合、前記第2の連続性情報を作成する作成ステップと、

前記第1のマップ情報を使用する場合には、前記作成ステップの処理で作成された前記第1の連続性情報および前記第2の連続性情報を記録し、前記第2のマップ情報を使用する際には、前記第2の連続性情報を記録する記録ステップと

- 20 を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。
 - 50. パケット列で構成されるデータストリームの時間情報とそのアドレスとを関連づけるためのマップ情報として第1のマップ情報を使用する場合、第1の時刻情報の連続性を表す第1の連続性情報と、第2の時刻情報の連続性を表す第2の連続性情報とを作成するとともに、マップ情報として第2のマップ情報を使用する場合、前記第2の連続性情報を作成する作成ステップと、

前記第1のマップ情報を使用する場合には、前記作成ステップの処理で作成さ

20

れた前記第1の連続性情報および前記第2の連続性情報を記録し、前記第2のマップ情報を使用する際には、前記第2の連続性情報を記録する記録ステップとをコンピュータに実行させるプログラム。

51. パケット列で構成されるデータストリームの記録の種類を判定する判定5 手段と、

前記判定手段により前記記録の種類が第1の種類であると判定された場合、第 1の時刻情報の時間軸を表す第1の時間軸情報と、第2の時刻情報の時間軸を表 す第2の時間軸情報とを作成するとともに、前記判定手段により前記記録の種類 が第2の種類であると判定された場合、前記第2の時間軸情報を作成する制御部 と、

記録の種類が前記第1の種類の場合には、前記第1の連続性情報および前記第2の連続性情報を記録するとともに、記録の種類が前記第2の種類の場合には、前記第2の連続性情報を記録する記録部と

を備えることを特徴とするデータ記録装置。

15 52. 前記制御部は、前記記録の種類が第1の種類と判定された場合、前記データストリームの時刻情報と記録アドレスに基づく第1のマップ情報を生成するとともに、前記記録の種類が第2の種類と判定された場合、前記パケットの到着時刻情報と記録アドレスに基づく第2のマップ情報を生成し、

前記記録部は、前記第1のマップ情報、または第2のマップ情報を記録する ことを特徴とする請求の範囲第51項に記載のデータ記録装置。

- 53. 前記第1の時間軸情報は、前記データデータストリームの基準時刻情報に基づいて生成された時刻情報の時間軸情報であり、前記第2の時間軸情報は、前記パケットの到着時刻に基づいて生成された時刻情報の時間軸情報であることを特徴とする請求の範囲第51項に記載のデータ記録装置。
- 25 54. パケット列で構成されるデータストリームの記録の種類を判定する判定 ステップと、

前記判定ステップの処理により前記記録の種類が第1の種類であると判定され

WO 02/075739 PCT/JP01/10146

た場合、第1の時刻情報の時間軸を表す第1の時間軸情報と、第2の時刻情報の時間軸を表す第2の時間軸情報とを作成するとともに、前記判定ステップの処理により前記記録の種類が第2の種類であると判定された場合、前記第2の時間軸情報を作成する制御ステップと、

5 記録の種類が前記第1の種類の場合には、前記第1の連続性情報および前記第 2の連続性情報を記録するとともに、記録の種類が前記第2の種類の場合には、 前記第2の連続性情報を記録する記録ステップと

を含むことを特徴とするデータ記録方法。

15

25

55. パケット列で構成されるデータストリームの記録の種類を判定する判定 10 ステップと、

前記判定ステップの処理により前記記録の種類が第1の種類であると判定された場合、第1の時刻情報の時間軸を表す第1の時間軸情報と、第2の時刻情報の時間軸を表す第2の時間軸情報とを作成するとともに、前記判定ステップの処理により前記記録の種類が第2の種類であると判定された場合、前記第2の時間軸情報を作成する制御ステップと、

記録の種類が前記第1の種類の場合には、前記第1の連続性情報および前記第2の連続性情報を記録するとともに、記録の種類が前記第2の種類の場合には、前記第2の連続性情報を記録する記録ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納され 20 ているプログラム格納媒体。

56. パケット列で構成されるデータストリームの記録の種類を判定する判定 ステップと、

前記判定ステップの処理により前記記録の種類が第1の種類であると判定された場合、第1の時刻情報の時間軸を表す第1の時間軸情報と、第2の時刻情報の時間軸を表す第2の時間軸情報とを作成するとともに、前記判定ステップの処理により前記記録の種類が第2の種類であると判定された場合、前記第2の時間軸情報を作成する制御ステップと、

記録の種類が前記第1の種類の場合には、前記第1の連続性情報および前記第 2の連続性情報を記録するとともに、記録の種類が前記第2の種類の場合には、 前記第2の連続性情報を記録する記録ステップと

をコンピュータに実行させるプログラム。

5 57. パケット列で構成されるデータストリームを情報記録媒体から再生する データ再生装置において、

前記情報記録媒体から、第1の時刻情報の時間軸を表す第1の時間軸情報と、 第2の時刻情報の時間軸を表す第2の時間軸情報の少なくとも一方を再生する再 生手段と、

10 前記再生手段により再生された情報に基づいて、前記情報記録媒体からの再生 を制御する制御手段と

を備えることを特徴とするデータ再生装置。

- 58. パケット列で構成されるデータストリームを情報記録媒体から再生する データ再生装置のデータ再生方法において、
- 15 前記情報記録媒体から、第1の時刻情報の時間軸を表す第1の時間軸情報と、 第2の時刻情報の時間軸を表す第2の時間軸情報の少なくとも一方を再生する再 生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体 からの再生を制御する制御ステップと

20 を含むことを特徴とするデータ再生方法。

25

59. パケット列で構成されるデータストリームを情報記録媒体から再生する データ再生装置のプログラムであって、

前記情報記録媒体から、第1の時刻情報の時間軸を表す第1の時間軸情報と、 第2の時刻情報の時間軸を表す第2の時間軸情報の少なくとも一方を再生する再 生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体からの再生を制御する制御ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

- 60. パケット列で構成されるデータストリームを情報記録媒体から再生する データ再生装置を制御するコンピュータに、
- 5 前記情報記録媒体から、第1の時刻情報の時間軸を表す第1の時間軸情報と、 第2の時刻情報の時間軸を表す第2の時間軸情報の少なくとも一方を再生する再 生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体からの再生を制御する制御ステップと

10 を実行させるプログラム。

15

61. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置において、

前記データストリームの再生時刻が参照するところの第1の時刻情報の不連続 点および前記パケットの到着時刻が参照するところの第2の時刻情報の不連続に 関する情報を取得する取得手段と、

前記不連続情報に応じて、前記第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前記第2の時刻情報の不連続点が存在するかどうかを示す情報を記録する記録手段と

- 20 を備えることを特徴とするデータ記録装置。
 - 62. 前記記録手段は、前記第1のパケット列と前記第2のパケット列の記録の間に、記録ポーズとポーズ解除の動作があった場合に、前記第2の時刻情報の不連続点が存在することを示す情報をさらに記録する

ことを特徴とする請求の範囲第49項に記載のデータ記録装置。

25 63. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置のデータ記録方法において、

前記データストリームの再生時刻が参照するところの第1の時刻情報の不連続

点および前記パケットの到着時刻が参照するところの第2の時刻情報の不連続に 関する情報を取得する取得ステップと、

前記不連続情報に応じて、前記第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前記第2の時刻情報の不連続点が存在するかどうかを示す情報を記録する記録ステップと

を含むことを特徴とするデータ記録方法。

- 64. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置のプログラムであって、
- 前記データストリームの再生時刻が参照するところの第1の時刻情報の不連続 点および前記パケットの到着時刻が参照するところの第2の時刻情報の不連続に 関する情報を取得する取得ステップと、

前記不連続情報に応じて、前記第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前記第2の時刻情報の不連続点が存在するかどうかを示す情報を記録する記録ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

65. パケット列からなるデータストリームを情報記録媒体に記録するデータ 20 記録装置を制御するコンピュータに、

前記データストリームの再生時刻が参照するところの第1の時刻情報の不連続 点および前記パケットの到着時刻が参照するところの第2の時刻情報の不連続に 関する情報を取得する取得ステップと、

前記不連続情報に応じて、前記第1の時刻情報の不連続点を含まない第1のパ 25 ケット列と、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含ま ない第2のパケット列の間に、前記第2の時刻情報の不連続点が存在するかどう かを示す情報を記録する記録ステップと を実行させるプログラム。

66. パケット列からなるデータストリームを情報記録媒体から再生するデー タ再生装置において、

前記情報記録媒体から、前記データストリームの再生時刻が参照するところの 5 第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット 列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前 記パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在する かどうかを示す情報を再生する再生手段と、

前記再生手段により再生された情報に基づいて、前記情報記録媒体からの再生 10 を制御する制御手段と

を備えることを特徴とするデータ再生装置。

67. パケット列からなるデータストリームを情報記録媒体から再生するデータ再生装置のデータ再生方法において、

前記情報記録媒体から、前記データストリームの再生時刻が参照するところの 15 第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット 列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前 記パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在する かどうかを示す情報を再生する再生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体 20 からの再生を制御する制御ステップと

を含むことを特徴とするデータ再生方法。

68. パケット列からなるデータストリームを情報記録媒体から再生するデータ再生装置のプログラムであって、

前記情報記録媒体から、前記データストリームの再生時刻が参照するところの 25 第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット 列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前 記パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在する かどうかを示す情報を再生する再生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体 からの再生を制御する制御ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納され 5 ているプログラム格納媒体。

69. パケット列からなるデータストリームを情報記録媒体から再生するデータ再生装置を制御するコンピュータに、

前記情報記録媒体から、前記データストリームの再生時刻が参照するところの 第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット 列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前 記パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在する かどうかを示す情報を再生する再生ステップと、

前記再生ステップの処理により再生された情報に基づいて、前記情報記録媒体 からの再生を制御する制御ステップと

15 を実行させるプログラム。

70. パケットからなるデータストリームの再生時刻が参照するところの第1 の時刻情報の不連続点を検出する第1の検出手段と、

前記パケットの到着時刻が参照するところの第2の時刻情報の不連続点を検出 する第2の検出手段と

- 20 を備えるデータ記録装置によりデータが記録されるデータ記録媒体において、前記第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット列と、前記第1のパケット列の間で、前記第2の時刻情報の不連続点が存在するかどうかを示す情報が記録されている
- 25 ことを特徴とするデータ記録媒体。
 - 71. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置において、

記録の途中に、記録ポーズとポーズ解除の動作があった場合に、前記パケットの到着時刻が参照するところの時刻情報の不連続点が存在することを示す情報を 記録する記録手段を

備えることを特徴とするデータ記録装置。

5 72. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置のデータ記録方法において、

記録の途中に、記録ポーズとポーズ解除の動作があった場合に、前記パケットの到着時刻が参照するところの時刻情報の不連続点が存在することを示す情報を 記録する記録ステップを

- 10 含むことを特徴とするデータ記録方法。
 - 73. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置のプログラムであって、

記録の途中に、記録ポーズとポーズ解除の動作があった場合に、前記パケット の到着時刻が参照するところの時刻情報の不連続点が存在することを示す情報を 15 記録する記録ステップを

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

- 74. パケット列からなるデータストリームを情報記録媒体に記録するデータ 記録装置を制御するコンピュータに、
- 20 記録の途中に、記録ポーズとポーズ解除の動作があった場合に、前記パケット の到着時刻が参照するところの時刻情報の不連続点が存在することを示す情報を 記録する記録ステップを

を実行させるプログラム。

75. パケット列からなるデータストリームを記録するデータ記録媒体におい 25 て、

記録の途中に、記録ポーズとポーズ解除の動作があった場合に、前記パケット の到着時刻が参照するところの時刻情報の不連続点が存在することを示す情報が 記録されている

25

ことを特徴とするデータ記録媒体。

76. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置において、

5 第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前記パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生手段と、

前記情報に基づいて、前記情報記録媒体からの前記データストリームの再生を 10 制御する制御手段と

を備えることを特徴とするデータ再生装置。

77. 前記第2の時刻情報が参照する基準時刻情報を発生する発生手段をさら に備え、

前記再生手段は、前記第1のパケット列に続いて前記第2のパケット列を再生 15 し、

前記制御手段は、前記第1のパケット列と第2のパケット列の間に前記第2の時刻情報の不連続点が存在しない場合、前記第1と第2のパケット列を、連続な前記基準時刻情報の値に基づいて再生する

ことを特徴とする請求の範囲第75項に記載のデータ再生装置。

20 78. 前記第2の時刻情報が参照する基準時刻情報を発生する発生手段をさら に備え、

前記再生手段は、前記第1のパケット列に続いて前記第2のパケット列を再生 し、

前記制御手段は、前記第1のパケット列と第2のパケット列の間に前記委第2 の時刻情報の不連続点が存在する場合、前記第2のパケット列を再生する前に、 前記基準時刻情報のクロック値をリセットする

ことを特徴とする請求の範囲第75項に記載のデータ再生装置。

15

25

79. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置のデータ再生方法において、

第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、

5 前記パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生ステップと、

前記情報に基づいて、前記情報記録媒体からの前記データストリームの再生を 制御する制御ステップと

を含むことを特徴とするデータ再生方法。

10 80. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置のプログラムであって、

第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前記パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生ステップと、

前記情報に基づいて、前記情報記録媒体からの前記データストリームの再生を 制御する制御ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

20 81. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置を制御するコンピュータに、

第1の時刻情報の不連続点を含まない第1のパケット列と、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2のパケット列の間に、前記パケットの到着時刻が参照するところの第2の時刻情報の不連続点が存在するかどうかを示す情報を再生する再生ステップと、

前記情報に基づいて、前記情報記録媒体からの前記データストリームの再生を 制御する制御ステップと を実行させるプログラム。

82. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置において、

前記パケットの到着時刻を示す時刻情報が参照する基準時刻情報を発生する発 5 生手段と、

第1の時刻情報の不連続点を含まない第1パケット列に続いて、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2パケット列を再生する再生手段と、

前記第1のパケット列と前記第2のパケット列の間に前記パケットの到着時刻 10 を示す時刻情報の不連続点が存在する場合、前記第2のパケット列を再生する前 に、前記基準時刻情報のクロック値をリセットする制御手段と

を備えることを特徴とするデータ再生装置。

- 83. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置のデータ再生方法において、
- 15 前記パケットの到着時刻を示す時刻情報が参照する基準時刻情報を発生する発 生ステップと、

第1の時刻情報の不連続点を含まない第1パケット列に続いて、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2パケット列を再生する再生ステップと、

20 前記第1のパケット列と前記第2のパケット列の間に前記パケットの到着時刻を示す時刻情報の不連続点が存在する場合、前記第2のパケット列を再生する前に、前記基準時刻情報のクロック値をリセットする制御ステップと

を含むことを特徴とするデータ再生方法。

25

84. パケット列からなるデータストリームが記録されている情報記録媒体から前記データストリームを再生するデータ再生装置のプログラムであって、

前記パケットの到着時刻を示す時刻情報が参照する基準時刻情報を発生する発 生ステップと、

第1の時刻情報の不連続点を含まない第1パケット列に続いて、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2パケット列を再生する再生ステップと、

前記第1のパケット列と前記第2のパケット列の間に前記パケットの到着時刻 5 を示す時刻情報の不連続点が存在する場合、前記第2のパケット列を再生する前 に、前記基準時刻情報のクロック値をリセットする制御ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが格納されているプログラム格納媒体。

85. パケット列からなるデータストリームが記録されている情報記録媒体か10 ら前記データストリームを再生するデータ再生装置を制御するコンピュータに、 前記パケットの到着時刻を示す時刻情報が参照する基準時刻情報を発生する発

前記パケットの到着時刻を示す時刻情報が容照する基準時刻情報を発生する発生ステップと、

第1の時刻情報の不連続点を含まない第1パケット列に続いて、前記第1のパケット列に続く前記第1の時刻情報の不連続点を含まない第2パケット列を再生する再生ステップと、

前記第1のパケット列と前記第2のパケット列の間に前記パケットの到着時刻を示す時刻情報の不連続点が存在する場合、前記第2のパケット列を再生する前に、前記基準時刻情報のクロック値をリセットする制御ステップと

を実行させるプログラム。

15

差 替 え 用 紙 (規則26)

2/58

図3

DVR MPEG-2 transport stream

4/58

図4

Syntax	No. of bits	Mnemonic
source packet() {		
TP_extra_header()		
transport_packet()		
}		

Syntax	No. bits	of	Mnemonic
TP_extra_header() {			
copy_permission_Indicator	2		uimsbf
arrival_time_stamp	30		uimsbf
}			

差 替 え 用 紙 (規則26)

Syntax	No. of bits	Mnemonic
zzzzz.clpi {		
version_number	8*4	bslbf
Sequenceinfo_start_address	32	uimsbf
Programinfo_start_address	32	uimsbf
CPI_start_address	32	uimsbf
ClipMark_start_address	32	uimsbf
MarkersPrivateData_start_address	32	uimsbf
reserved_for_future_use	96	bslbf
ClipInfo()		·
for(i=0; i <n1; i++){<="" td=""><td></td><td></td></n1;>		
Padding_word	16	bslbf
}		
SequenceInfo()		
for(i=0; i <n2; i++){<="" td=""><td></td><td></td></n2;>		
Padding_word	16	bslbf
}		
ProgramInfo()		
for(i=0; i <n3; i++){<="" td=""><td></td><td></td></n3;>		
Padding_word	16	bslbf
}		
CPI()		
for(i=0; i <n4; i++){<="" td=""><td></td><td></td></n4;>		
Padding_word	16	bslbf
}		
ClipMark()		
for(i=0; i <n5; i++){<="" td=""><td></td><td></td></n5;>		
Padding_word	16	bslbf
}		
MarkersPrivateData()		
for(i=0; i <n6; i++){<="" td=""><td></td><td></td></n6;>		
Padding_word	16	bslbf
}		
}		

図9

図10

図11

差 替 え 用 紙 (規則26)

10/58

Syntax	No. of bits	Mnemonic
Sequenceinfo() {		
length	32	uimsbf
reserved_for_word_align	8	bslbf
num_of_ATC_sequences	8	uimsbf
for(atc_id=0;_atc_id <num_of_atc_sequences; atc_id++){<="" td=""><td></td><td></td></num_of_atc_sequences;>		
SPN_ATC_start[atc_id]	32	uimsbf
num_of_STC_sequences[atc_id]	8	uimsbf
ofset_STC_id[atc_id]	8	uimsbf
for (stc_id = offset_STC_id[atc_id]; stc_id <(num_of_STC_sequences[atc_id]+offset_STC_id[atc_id]); stc_id++) {		
PCR_PID[atc_id][stc_id]	16	uimsbf
SPN_STC_start[atc_id][stc_id]	32	uimsbf
presentation_start_time[atc_id][stc_id]	32	uimsbf
presentation_end_time[atc_id][stc_id]	32	uimsbf
}		
}		
}		

差 替 え 用 紙 (規則26)

12/58

Syntax	No. o	of	Mnemonic
programInfo() {			
length	32		uimsbf
reserved_for_word_align	8		bslbf
num_of_program_sequences	8		uimsbf
for(i=0; i <num_of_program_sequences; i++){<="" td=""><td></td><td></td><td></td></num_of_program_sequences;>			
SPN_program_sequences_start	32		uimsbf
program_map_PID	16		bslbf
num_of_streams_in_ps	8		uimsbf
num_of_groups	8		uimsbf
for (stream_index=0; stream_index <num_of_streams_in_ps; stream_index++){</num_of_streams_in_ps; 			
stream_PID	16		uimsbf
StreamCodingInfo()			
}			
if (num_of_groups >1){			
for(i=0; i< <i>num_of_groups;</i> i++){			
num_of_streams_in_group	8		uimsbf
for (k=0; k <num_of_streams_in_group; k++){<="" td=""><td></td><td></td><td></td></num_of_streams_in_group;>			
stream_index	8		uimsbf
. }			
if (num_of_streams_in_group%2==0) {			
reserved_for_word_align	8		bslbf
}			
}			
}		$oxed{oxed}$	
}		\prod	
}		$oxed{I}$	

Syntax	No. of bits	Mnemonic
StreamCodingInfo() {		
length	8	bslbf
stream_coding_type	8	uimsbf
if (stream_coding_type==0x02) {		
video_format	4	uimsbf
frame_rate	4	uimsbf
display_aspect_ratio	4	uimsbf
reserved_for_word_align	2	bslbf
cc_flag	1	uimsbf
original_video_format_flag	1	
if (original_video_format_flag==1) {		
original_video_format	4	uimsbf
	4	uimsbf
original_display_aspect_ratio		
reserved_for_word_align	8	bslbf
}		
} else if (stream_coding_type==0x03//		
stream_coding_type==0x04//		
stream_coding_type==0x0F//		
stream_coding_type==0x80// stream_coding_type==0x81) {		
audio_presentation_type		i
	4	uimsbf
sampling_frequency	4	uimsbf
reserved_for_word_align	8	bslbf
}		
}		

14/58

stream_coding_type	Meaning
0x00 - 0x01	reserved for future use
0x02	MPEG-1 or MPEG-2 video stream
0x03	MPEG-1 audio
004	MPEG-2 multi-channel audio, backward compatible to MPEG-1
0x05	reserved for future use
0x06	Teletext defined in SESF or DVB or Subtitle defined in ISDB
0x07 - 0x09	reserved for future use
0x0A	ISO/IEC 13818-6 type A
0x0B	ISO/IEC 13818-6 type B
0x0C	ISO/IEC 13818-6 type C
0x0D	ISO/IEC 13818-6 type D
0x0E	reserved for future use
0x0F	MPEG-2 AAC audio with ADTS transport syntax
0x10 - 0x7F	reserved for future use
0x80	SESF LPCM audio
0x81	Dolby AC-3 audio
0x82 - 0xFF	reserved for future use

15/58

video_format	Meaning	Video_standard
0	480 i	ITU-R BT.601-4
1	576 i	ITU-R BT.601-4
2	480 p	SMPTE 293M
3	1080 i	SMPTE 274M
4	720 p	SMPTE 296M
5-14	reserved for future use	
15	No information	

図19

frame_rate	Meaning
0	reserved for future use
1	24 000/1001 (23.976)
2	24
3	25
4	30 000/1001 (29.97)
5	30
6	50
7	60 000/1001 (59.94)
8	60
9-14	reserved for future use
15	No information

16/58

図20

display_aspect_ratio	Meaning
0	reserved for future use
1	reserved for future use
2	4:3 display aspect ratio
3	16:9 display aspect ratio
4	2.21:1 display aspect ratio
5-14	reserved for future use
15	No information

audio_presentation_type	Meaning
0	reserved for future use
1	single mono channel
2	dual mono channel
3	stereo (2-channel)
4	multi-lingual
5	surround sound
6	multi-channel
7-12	reserved for future use
13	audio description for the visually impaired
14	audio for the hard of hearing
15	No information

図22

sampling_frequency	Meaning
0	48 kHz
1	44.1 kHz
2	32 kHz
3-14	reserved for future use
15	No information

Syntax	No. of bits	Mnemonic
CPI(){		
length	32	uimsbf
reserved_for_word_align	15	bslbf
CPI_type	1	bslbf
if (CPI_type == 0) {		
EP_map()		
} else {	·	
TU_map()		
}		
}	·	

図 24

20/58

Syntax	No. bits	of	Mnemonic
TU_map() {			
time_unit_size	32		uimsbf
for(atc_id=0; atc_id <num_of_atc_sequences; atc_id++)="" td="" {<=""><td></td><td></td><td></td></num_of_atc_sequences;>			
offset_arrival_time[atc_id]	32		bslbf
num_of_time_unit_entries[atc_id]	32		uimsbf
}			
for(atc_id=0; atc_id <num_of_atc_sequences; atc_id++)="" td="" {<=""><td></td><td></td><td></td></num_of_atc_sequences;>			
for(i=0; i <i><num_of_time_unit_entries[atc_id];< i=""></num_of_time_unit_entries[atc_id];<></i>			
SPN_time_unit_start [atc_id][i]	32		uimsbf
}			
}			
}			

Syntax	No. of bits	Mnemonic
xxxxx.rpls / yyyyy.vpls {		
version_number	8*4	bslbf
PlayList_srart_address	32	uimsbf
PlayListMark_start_address	32	uimsbf
MakersPrivateData_start_address	32	uimsbf
reserved_for_future_use	160	bslbf
UIAppInfoPlayList()		
for (i=0; i <n1; i++)="" td="" {<=""><td></td><td></td></n1;>		
padding_word	16	bslbf
}		
PlayListst()		
for (i=0; i <n2; i++)="" td="" {<=""><td></td><td></td></n2;>		
padding_word	16	bslbf
}		
PlayListstMark()		•
for (i=0; i <n3; i++)="" td="" {<=""><td></td><td></td></n3;>		
padding_word	16	bslbf
· }		
Makers Private Data()		
for (i=0; i <n4; i++)="" td="" {<=""><td></td><td></td></n4;>		
padding_word	16	bslbf
}		
}		

22/58

Syntax	No. of bits	Mnemonic
PlayList() {		
length	32	uimsbf
reserved_for_word_align	15	bslbf
CPI_type	1	bslbf
number_of_PlayItems	16	uimsbf
if (<virtual-playlist> && CPI_type==0) {</virtual-playlist>		
number_of_SubPlayItems	16	uimsbf
} else {		
reserved_for_word_align	16	bslbf
}		
for (PlayItem_id=0; PlayItem_id <number_of_playitems; PlayItem_id++) {</number_of_playitems; 	, ·	
PlayItem()		
}		
if (<virtual-playlist> && CPI_type==0) {</virtual-playlist>		
for (i=0; i <number_of_ SubPlayItems; i++) {</number_of_ 		
SubPlayItem()		
}		·
}		
}		

図29

図30

図31

図32

25/58

Syntax	No. of bits	Mnemonic
PlayItem() {		
length	16	uimsbf
Clip_Information_file_name	8*10	bslbf
reserved_for_word_align	6	bslbf
connection_condition	2	bslbf
if (CPI_type==0) { /* the CPI_type is defined in the PlayList().*/		
ref_to_STC_id	8	uimsbf
} else {		-
reserved_for_word_align	8	bslbf
}		
IN_time	32	uimsbf
OUT_time	32	uimsbf
if (<virtual-playlist> && connection_condition=='10') {</virtual-playlist>		
Bridge_Clip_Information_file_name		
}		
}		

26/58

図34

差 替 え 用 紙 (規則26)

図36

図37

28/58

図38

編集後

PCT/JP01/10146

29/58

図39

編集前

編集後

30/58

図40

編集前

編集後 (PlayItem3 と PlayItem4 は変化しない)

31/58

図41

編集前

編集後 (PlayItem3 と PlayItem4 は変化する)

32/58

図42

編集前

編集後

差 替 え 用 紙 (規則26)

差 替 え 用 紙 (規則26)

差 替 え 用 紙 (規則26)

図 46

差 替 え 用 紙 (規則26)

図48

図 49

差 替 え 用 紙 (規則26)

41/58

図51

1 6

42/58

図52

差 替 え 用 紙 (規則26)

図57

差 替 え 用 紙 (規則26)

図59

図60

図61

図62

図64

差 替 え 用 紙 (規則26)

PCT/JP01/10146

S875

S876

K++

図 67

PlayList の再生スタート

PlayList ファイルのデータ読み込み

S871

K番目の PlayItem の connection_condition=1
の取得

(K-1) 番目の PlayItem の AV データ 読み出し後、K番目の PlayItem の AV データ読み出し開始に先立ち、プレイヤーの ATC カウンタのリセット

が必要

最後の PlayItem?

終了

Yes

58/58

図68

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/10146

			<u> </u>	
A. CLASS Int.	FIFICATION OF SUBJECT MATTER C1 ⁷ G11B27/00, G11B20/10, G11B H04N5/92	20/12, G11B27/10,		
According to	o International Patent Classification (IPC) or to both nat	tional classification and IPC		
	SEARCHED			
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ G11B27/00, G11B20/10, G11B20/12, G11B27/10, H04N5/92			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2001 Kokai Jitsuyo Shinan Koho 1971-2001 Toroku Jitsuyo Shinan Koho 1994-2001				
Electronic da	ata base consulted during the international search (name	e of data base and, where practicable, sea	rch terms used)	
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app		Relevant to claim No.	
х	EP 903738 A2 (MATSUSHITA ELECTRIC		38,39,42-44	
Y	17 September, 1998 (17.09.1998), page 5, lines 29 to 34; page 8, lines 11 to 14; page 8, lines 24 to 27			
A	& JP 11-155130 A, column 6, lines 40 to 46; column 11, lines 44 to 49; column 12, lines 12 to 19 & US 6078727 A 1-17,19,26 31,33-37,40, 45-61,63-76			
Y A	EP 903744 A2 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.), 17 September, 1998 (17.09.1998), Column 34, line 35 to Column 35, line 19; Column 102, lines 28 to 45			
x Y	JP 3072283 U (Funai Denki K.K.), page 5, lines 8 to 13; page 8, lines 11 to 15		71-75 20,25	
Further documents are listed in the continuation of Box C.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing		iater document published after the interpriority date and not in conflict with the understand the principle or theory and document of particular relevance; the	he application but cited to lerlying the invention claimed invention cannot be	
"L" date cited to	ent which may throw doubts on priority claim(s) or which is a stablish the publication date of another citation or other	considered novel or cannot be conside step when the document is taken alone "Y" document of particular relevance; the	e claimed invention cannot be	
special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other		considered to involve an inventive ste	documents, such	
means combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed combination being obvious to a person skilled in the art document member of the same patent family				
Date of the actual completion of the international search 20 February, 2002 (20.02.02) Date of mailing of the international search empty 205 March, 2002 (05.03.0)			rch report 03.02)	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Pacsimile No.		Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/10146

		101/0	FU1/10140
C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	nt passages	Relevant to claim No.
X	EP 814619 A2 (HITACHI, LTD.), 13 June, 1997 (13.06.1997), column 8 lines 17 to 24. column 8 line 57 to	anlum C	71-75
A	column 8, lines 17 to 24; column 8, line 57 to line 2 & JP 10-11893 A, column 12, lines 25 to 28; clines 7 to 9 & US 6085023 A	1	1-31,33-61, 63-70,76,79-8
PX	JP 2001-167559 A (MATSUSHITA ELECTRIC INDUST LTD.), Column 32, line 30 to column 33, line 2	RIAL CO.,	38,39,42-44
А	JP 11-306677 A (Sony Corporation), 05 November, 1999 (05.11.99), Full text (Family: none)		51-56
		:	
			•

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/10146

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
 Claims Nos.: 32,62,77,78 bccause they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims 32, 62, 77, 78 are dependent claims. However, the inventions are not related to those of claims (30, 49 75) that claims 32, 62, 77, 78 refer to. Therefore the inventions of claims 32, 62, 77, 78 are unclear.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest

国際調査報告

国際出願番号 PCT/JP01/10146

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' G11B27/00, G11B20/10, G11B20/12, G11B27/10, H04N5/92

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' G11B27/00, G11B20/10, G11B20/12, G11B27/10, H04N5/92

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新集公報 1971-2001年

日本国実用新案登録公報 1996-2001年

日本国登録実用新案公報 1994-2001年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Х	EP 903738 A2 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.), 1998. 09.17, 第5頁第29行~第34行,第8頁第11行~第14行,第8頁第24行	38, 39, 42-44
Y	~第27行 & JP 11-155130 A,第6欄第40行~第46行,第11欄第44行 ~第49行,第12欄第12行~第19行 & US 6078727 A	18, 20–25, 27– 30
A		1-17, 19, 26, 31, 33-37, 40, 41, 45-61, 63- 76, 79-85

|X| C欄の続きにも文献が列挙されている。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「丁」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- ·「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 05.03.02 20.02.02 特許庁審査官(権限のある職員) 9567 5 Q 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 小宮 慎司 郵便番号100-8915 電話番号 03-3581-1101 内線 3589 東京都千代田区霞が関三丁目4番3号

国際調査報告

C (続き). 引用文献の	関連すると認められる文献	関連する
引用又献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y A	EP 903744 A2 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.), 1998. 09.17, 第34欄第35行~第35欄第19行, 第102欄第28行~第45行 & JP 11-187354 A, 第31欄第12行~第45行, 第96欄第39行~第97欄第1行 & US 6181870 B1	18, 20-25, 27- 30 1-17, 19, 26, 31, 33-61, 63- 76, 79-85
x	JP 3072283 U(船井電機株式会社), 2000. 07. 19, 第5頁第8行~第13	71-75
Y	行,第8頁第11行〜第15行(ファミリーなし) 	20, 25
X	 EP 814619 A2(HITACHI, LTD.),1997.06.13, 第8欄第17行~第24行, 第8欄第57行~第9欄第2行 & JP 10-11893 A, 第12欄第25行~第28	71-75
A	行,第13欄第7行~第9行 & US 6085023 A	1-31, 33-61, 63-70, 76, 79- 85
PΧ	JP 2001-167559 A(松下電器産業株式会社), 2001. 06. 22, 第32欄第30 行〜第33欄第2行(ファミリーなし)	38, 39, 42-44
A	JP 11-306677 A(ソニー株式会社),1999.11.05,全文(ファミリーなし)	51-56

国	際部	查	報	告
---	----	---	---	---

国際出願番号 PCT/JP01/10146

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条	条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなな	かった。
1.	請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。
	つまり、
	·
0 57	請求の範囲 32.62.77.78 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
2. X	
	ない国際出願の部分に係るものである。つまり、
1	請求の範囲32,62,77,78は従属請求の範囲であるが、これらの請求の範囲と、これらが
	引用する請求の範囲(30,49,75)との間に関連が見られないため、請求の範囲32,62,77,7
	8の発明は不明りょうである。
	:
3. □	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
٠. ا	従って記載されていない。
	NE 2 C BINDOCTA O CA TOPA C
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
. XI INC	
次に対	**べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	·
	i
	!
	·
	·
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
	加調査手数料の納付を求めなかった。
_	
3. ∐	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
	付のあった次の請求の範囲のみについて作成した。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
· th distribution	た工学的 の用味の中午でに用ナッシン
追加調査	至手数料の異議の申立てに関する注意
Ļ	」 追加調査手数料の納付と共に出願人から異議申立てがあった。
· [-	追加調査手数料の納付と共に出願人から異議申立てがなかった。