Dynamic Pricing on Online Marketplaces: Strategies and Applications

Dynamic Optimization Techniques

Dr. Rainer Schlosser

Hasso Plattner Institute (EPIC)

April 26, 2016

HPI

Outline

- Follow-Up: Demand Estimation
- Implementation of Regressions
- Goals of Today's Meeting
- Dynamic Programming Problems
- Understand the Bellman Equation
- Solve the Bellman Equation
- Illustrations

HPI

Follow-Up: Demand Estimation

- Questions?
- Slides online
- Selection of Explanatory Variables
- First Implementations?
- Verification of your Model
- Example

Simulate & Verify your Model

- Idea: Use random numbers to simulate features x and observed sales y
- Example: $a_i = Uniform(1,20)$, i = 1,...,10K our prices for 10K observations $p_{i,c} = Uniform(1,20)$, c = 1,...,5 prices of 5 competitors
- Sales: $y_i = round \left(Uniform(0, 1 r(a_i, \vec{p}_i) / 11) \right)$, assume a dynamic or $y_i = if \ Uniform(0, 1) < e^{b'x_i} / (1 + e^{b'x_i}) \ then \ 1 \ else \ 0$ (b known)
- Check if your regression finds the right coefficients / sales probabilities
- When your model can learn different dynamics it can learn the true one!

Dynamic Optimization

Goals for Today

• We want to compute optimized prices.

- We want to be able to solve dynamic optimization problems.
- We want to understand the Bellman Equation.

• We want to learn how to solve the Bellman Equation.

What are Dynamic Optimization Problems?

- How to control a dynamic system over time?
- Instead of a single decision we have a sequence of decisions.
- The decisions are supposed to be chosen such that a certain objective/quantity/criteria is optimized.
- The system evolves according to a certain dynamic.
- Dealing with the control of processes usually means
 to find the right balance between short and long term effects.

НРІ

Examples Please!

- Used Cars
- Inventory Replenishment
- Reservoir Dam
- Drinking at a Party
- Exam Preparation
- Advertising
- Jerome Boateng
- Eating Cake
- Preparing Lectures

Describe & Classify

- Goal/Objective
- State of the System
- Actions
- Dynamic of the System
- Revenues/Costs
- Finite/Infinite Horizon
- What's stochastic?

Classification

Example Objective State Action Dynamic Payments

Used Cars

Inventory Mgmt.

Reservoir Dam

Drinking at Party

Exam Preparation

Advertising

Jerome Boateng

Eating Cake

Lecture

HPI

Problem Description

- Quantify what you want to minimize or maximize? (Objective)
- Define the state of your system (State)
- Define the set of possible actions (state dependent) (Actions)
- Quantify event probabilities (state+action dependent) (Dynamics) (!!)
- Define payments (state+action+event dependent) (Payments)
- What happens at the end of the time horizon? (Final Payment)

Dynamic Pricing Scenario

- We want to sell durable goods (used books) on Amazon.
- We can have more than one item of the same book.
- We can observe competitors' prices and adjust our prices (for free).
- We can estimate sales probabilities for various situations.
- We have to take inventory holding costs into account (//item/unit of time).
- We want to maximize total expected discounted profits, i.e., the present value of expected sales revenues minus holding costs.

Problem Description (Basic Pricing Model)

• Framework:
$$t = 0, 1, 2, ..., T = \infty$$
 Discrete time periods, one type of book

• State:
$$s = (n, \vec{p})$$
 Number items left + competitors' prices

• Actions:
$$a \in A = 0.01,...,200$$
 Offer prices (for one period of time)

• Dynamic:
$$P(i, a, s)$$
 Probability to sell i items at price a

• Payments:
$$D(i, a, s) = i \cdot a - n \cdot l$$
 Sales revenue – Holding costs

• New State:
$$(n, \vec{p}) \rightarrow (n-i, F(a, \vec{p}))$$
 State Transition, Price Reactions F

• Initial State:
$$s_0 = (N, \vec{p}_0)$$
 Nitems + competitors' prices in $t=0$

Problem Formulation

Find a Dynamic Pricing Policy that
 maximizes total expected discounted profits, i.e.,

$$\max E \left[\sum_{t=0}^{\infty} \underbrace{\mathcal{S}^{t}}_{\substack{discount \\ factor}} \cdot \left(\sum_{\substack{i_{t} \\ sales \ probability \\ in \ market \ situation \ S}} \underbrace{P(i_{t}, a_{t}, S_{t})}_{price} \cdot \underbrace{a_{t} - \underbrace{l \cdot X_{t}}_{t}}_{\substack{holding \ costs \\ X \ items \ left}} \right] \underbrace{S_{0} = s_{0}}_{initial \ state} \right],$$

where X_t is the random number of items left at time t.

• What are admissible policies? How to solve the problem? Ideas?

Solution Approach (Value Function)

• What is the expected value of having the chance to sell . . .

" *n* items in a market situation \vec{p} "?

• Answer: That's easy $V(n, \vec{p})$! ?????

We have renamed the problem. Yeah! But wait - that's a solution approach, because then the "Value Function" V has an implicit representation. ???

• We don't know that function, but shouldn't V satisfy the following:

Value (state today) = best expected (profit today + Value (state tomorrow))

Solution Approach (Bellman Equation)

- Value (state today) = best expected (profit today + Value (state tomorrow))
- Idea: Just consider the transition dynamics within one period.

 What can happen during one interval?

state today	#sales	profit	state tomorrow	probability
	0	$0-n\cdot l$	$(n-0,F(a,\vec{p}))$	P(0,a,s)
$s = (n, \vec{p})$	1	$a-n\cdot l$	$(n-1,F(a,\vec{p}))$	P(1,a,s)
	2	$2a-n\cdot l$	$(n-2,F(a,\vec{p}))$	P(2,a,s)

• What does that mean for the Value of state $s = (n, \vec{p})$?

Bellman Equation

state today	#sales	profit	state tomorrow	probability	
	0	$0-n\cdot l$	(n,\vec{p})	$P(0,a,\vec{p})$	
$s = (n, \vec{p})$	1	$a-n\cdot l$	$(n-1, \vec{p})$	$P(1, a, \vec{p})$	
	2	$2a-n\cdot l$	$(n-2,\vec{p})$	$P(2, a, \vec{p})$	
$V(n, \vec{p}) = \mathbf{m}_a$	$ \lim_{n \to 0} \begin{cases} \underbrace{P(n)}_{probab} \end{cases} $	$(0,a,ec{p})$.	$\underbrace{0 \cdot a}_{today's \ profit} - \underbrace{n \cdot l}_{holding} + \underbrace{holding}_{costs}$	$\underbrace{\delta \cdot V(n-0, F(a, \vec{p}))}_{\text{disc. exp. future profits (n items)}}$	
	+ P	$\frac{P(1,a,\vec{p})}{\text{bability to sell}}$	$\underbrace{1 \cdot a}_{today's \ profit} - \underbrace{n \cdot l}_{holding} + \underbrace{l}_{costs}$	$\underbrace{\delta \cdot V(n-1, F(a, \vec{p}))}_{\text{disc. exp. future profits (n-1 items)}} +$	}

Bellman Equation

• We finally obtain:

$$V(n, \vec{p}) = \max_{a \ge 0} \left\{ \sum_{i} \underbrace{P(i, a, \vec{p})}_{probability} \cdot \left(\underbrace{\min(n, i) \cdot a}_{today's \ profit} - \underbrace{n \cdot l}_{holding \ costs} + \underbrace{\delta \cdot V\left(\max(0, n - i), F(a, \vec{p})\right)}_{disc. \ exp. future \ profits \ (n-1)^+ \ items} \right) \right\}$$

- Ok, but why is that interesting?
- Answer: Because $a^*(n, \vec{p}) = \arg \max_{a>0} \{...\}$ is the optimal policy.
- Ahhh. Now I want to know how to compute the Value Function!

How to solve the Bellman Equation?

- The Value function can be computed by . . .
 - (i) solving a system of nonlinear equations exact NLsolver needed

+

- (ii) solving a bigger system of linear equations exact many constraints
- (iii) recursive approximations robust not exact
- Note, in our dynamic pricing model under competition the state space can become very large.
- We will focus on (iii) recursive approximations.

Dealing with the Curse of Dimensionality

• Unfortunately, we have one major problem:

The state space is too large (10 competitors -> #states 20.000^{10+1}).

- Next problem: The reaction functions of competitors are usually not known.
- That's why competitive pricing is challenging. But maybe there is hope:
 - (i) In case of sticky/stable prices, cf. $F(a, \vec{p}) = \vec{p}$, the value function can be computed for single situations \vec{p} .
 - (ii) Scenarios with just few active competitors can be handled.

Recursive Approximation of the Value Function

• Use the condition $V_t(0, \vec{p}) = 0$ (run-out) and consider the recursion:

$$V_{t}(n, \vec{p}) = \max_{a \ge 0} \left\{ \sum_{i} \underbrace{P(i, a, \vec{p})}_{probability} \cdot \left(\underbrace{\min(n, i) \cdot a}_{today's \ profit} - \underbrace{n \cdot l}_{holding} + \underbrace{\delta \cdot V_{t+1} \left(\max(0, n-i), \vec{p} \right)}_{disc. \ exp. \ future \ profits \ (n-i)^{+} \ items} \right) \right\}$$

- Initialization: Choose T (e.g., 1000) and let $V_T(n, \vec{p}) = 0$.
- For T "large" $V_0(n, \vec{p})$ converges to the exact value $V^*(n, \vec{p})$.
- The optimal policy $a^*(n, \vec{p})$, n = 1,...,N, is determined by the arg max of the last iteration step.

Result: Feedback Pricing Strategies

• Prices can be easily computed for any other set of prices \vec{p} .

	n=1	n=2	n=3	n=4	n=5	n=7	n=10	n=20
price a*	9.47	9.47	8.27	8.27	5.95	5.95	5.95	5.17
rank $r(a^*, \vec{p})$	5	5	4	4	2	2	2	1
$V^*(n,\vec{p})$	5.13	9.20	12.60	15.55	18.17	22.26	27.37	39.89

- Example of optimal feedback prices and expected profits, $\vec{p} = (5.18, 5.96, 6.31, 8.28, 9.48, 9.88, 10.33, 10.98, 11.67, 13.52)$
- What are economic insights? Are they plausible?

Application: Dynamic Pricing under Competition

• Although we assume sticky prices, our policy reacts on changing market conditions!

Preview: Extensions & Dynamic Pricing Projects

- Time Dependence (e.g., Day of the Week)
- Finite Horizon / Perishable Products (e.g., Airline Tickets)
- Optimal Price Responses to Active Competitors (Price Anticipation)
- Multiple Products (Substitution Effects)
- Multiple Features (Ratings, Condition)
- Exit / Entry of Competitors, Strategic Customers, Advertising, Risk, . . .

Overview

- 2 April 19 Demand Estimation
- 3 April 26 Optimization Techniques
- 4 May 3 Extensions / Projects
- 5 May 10 Assign Projects to Teams
- 6 May 17 no Meeting
- 7 May 24 Workshop / Group Meetings
- 8 May 31 Workshop / Group Meetings
- 9 June 7 Presentations (First Results)
- 10 June 14 Workshop / Group Meetings
- 11 June 21 Workshop / Group Meetings
- 12 June 28 Workshop / Group Meetings
- 13 July 5 no Meeting
- 14 July 12 Presentations (Final Results), Discussions, Feedback