NASA Technical Paper 1523

Effects of Diffusion Factor, Aspect Ratio, and Solidity on Overall Performance of 14 Compressor Middle Stages

Werner R. Britsch, Walter M. Osborn, and Mark R. Laessig

SEPTEMBER 1979

NASA Technical Paper 1523

Effects of Diffusion Factor, Aspect Ratio, and Solidity on Overall Performance of 14 Compressor Middle Stages

Werner R. Britsch, Walter M. Osborn, and Mark R. Laessig Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Branch

SUMMARY

The effects of diffusion factor, aspect ratio, and solidity on rotor and stage performance have been evaluated for 14 subsonic compressor middle stages with a hub-tip ratio of 0.8 and a design tip speed of 243.8 meters per second. Peak rotor efficiencies ranged from 0.898 to 0.944. Peak stage efficiencies ranged from 0.850 to 0.902, and stage stall margins were generally above 15 percent. Both the efficiency and mass flow rate of the rotors and stages generally decreased with increases in solidity from 0.9 to 2.0 at all blade loadings tested. The rotor and stage efficiencies of moderately loaded stages generally increased as the rotor aspect ratio was reduced from 1.2 to 0.7. The efficiencies of lightly loaded stages decreased slightly as the rotor aspect ratio was reduced from 1.0 to 0.67.

INTRODUCTION

The NASA Lewis Research Center is engaged in a research program on axial-flow compressors for advanced airbreathing engines. This program is directed primarily toward providing the technology for smaller and lighter compressors with higher performance levels.

In support of this program, experimental studies are being conducted on a series of high-hub-tip-radius-ratio compressor stages representative of the middle and latter stages of axial-flow compressors. In these studies, the effects of aspect ratio, diffusion factor, and solidity on rotor and stage performance are being determined. As part of this program, 14 middle stages were tested to assess the effects on performance of varying both diffusion through the rotor and stator blades and blade aspect ratio. The compressor stages were each operated as a single stage without a preceding blade row, and no attempt was made to simulate the effects of a multistage environment. Both the tip diameter and the hub-tip radius ratio were held constant throughout each stage at 50.8 centimeters and 0.8, respectively. The design tip speed was 243.8 meters per second.

This report presents the overall performance obtained for the 14 compressor middle stages and evaluates some effects of the variations in diffusion, aspect ratio, and solidity that were incorporated into the configurations tested. The data are presented over the stable operating range of each stage from 50 to 120 percent of design speed. The symbols are defined in appendix A. The equations are presented in appendix B. The terms and units used in the tables are defined in appendix C.

AERODYNAMIC DESIGN

Three computer programs were used in designing these stages: a streamline analysis program, a blade geometry program, and a blade coordinate program. The overall blade design method is outlined in reference 1. The blade coordinate program is presented in reference 2. The design system is described briefly in this report.

The streamline analysis program was used to calculate the flow-field parameters at several axial locations, including planes approximating the blade leading and trailing edges for both the rotor and stator. The mass flow, rotative speed, flow-path geometry, and radial distributions of total pressure and total temperature are inputs to this program. The program accounts for both streamline curvature and entropy gradients. Boundary-layer blockage factors are also included.

The distributions of total pressure and total temperature and the resulting velocity distributions calculated in the streamline analysis program were used in the blade geometry program to define the blade geometry parameters. The blade geometry parameters were then used in the blade coordinate program (ref. 2) to compute blade elements on conical surfaces through the blade row. In this program the blade elements are stacked on a line passing through their centroids and then the blade section coordinates, which are used directly in fabrication, are computed.

These programs were used to design six of the 14 compressor middle stages with a mass flow of 9.46 kilograms per second and a tip speed of 243.8 meters per second. The six designs were selected to provide data on how aspect ratio and diffusion factor affect the performance of compressor middle stages. Although the diffusion factor was not an input to the streamline analysis program, the level of this parameter was controlled through the stage pressure ratio. Double-circular-arc blade profiles were used for all the blades in this series of compressors.

The characteristics of the six resulting design stages, along with those of the eight derived stages, are given in table 1 and figure 1. Stages 23B-20, 24A-20, and 25A-20B were designed for low blade loading and produced diffusion factors from 0.40 to 0.44 in both the rotors and stators. The diffusion factors were obtained from experimental blade-element data, taken at design speed, and from several mass flows, by mass averaging from hub to tip. These mass-averaged values yielded the single value quoted herein by interpolation along the design speed line to correspond to the maximum-efficiency operating point. Stages 26B-21 and 27A-21 were designed for intermediate blade loading and produced diffusion factors of 0.49 and 0.52 in the rotors

and 0.52 and 0.50 in the stators, respectively. Stage 28B-22 was designed for high blade loading and produced a diffusion factor of 0.58 in both the rotor and stator.

The remaining eight configurations were derived by either adding or removing blades to change the solidity without changing the blade aspect ratio. This process is represented in figure 2. Blades were added in both the rotor and stator of stages 23D-20C and 24B-20C to increase stator solidity. Stator blades were removed from stator 20 to produce stator 20B, used in stage 25A-20B. Rotor blades were removed from stage 27A-21 to create stages 27C-21 and 27D-21, and both rotor and stator blades were removed from stage 27A-21 to create stage 27D-21D. Removing blades lowered solidity and provided an opportunity to assess stage performance when stators of different solidities were matched to a given rotor. Similar variations in the number of blades, using 26B-21 as a parent stage, produced stages 26D-21 and 26D-21D. Finally, rotor blades were removed in stage 28B-22 to create stage 28D-22.

Since these eight derived stages had no true design point, all 14 configurations were compared at maximum-efficiency operation at 243.8 meters per second tip speed. In 10 of the 14 configurations, rotor and stator solidities were approximately equal, varying from 0.9 to 2.0. (Throughout this report, solidity is defined at the tip radius.) In stages 27C-21 and 28D-22, a rotor having a solidity of 1.35 was matched with a stator having a solidity of 1.8. In stages 26D-21 and 27D-21, the rotor solidity was 0.9 and the stator solidity was 1.8. The rotor aspect ratios in the configurations tested varied from 0.67 in stages 24A-20 and 24B-20C to 2.0 in stage 25A-20B. Stator aspect ratios ranged from 0.82 in stages 28B-22 and 28D-22 to 1.24 in all stages 26 and 27.

Since the flow through the stages was subsonic, a straight hub and outer casing were used in all 14 configurations to allow easier fabrication and testing. The flowpath geometry was the same for all 14 stages and is shown in figures 3 to 8. The only variation among these figures is the location of the blade leading and trailing edges and instrumentation locations to accommodate the variation in aspect ratio.

The velocity diagrams for the six design stages were calculated at several axial locations, including the leading edges of the rotor and stator blades, by using the streamline analysis program. The rotors were designed to provide a uniform pressure distribution at the rotor discharge. Design values of the overall performance and blade-element parameters are presented in tables 2 to 7 for each of the six design rotor and stator combinations. The resulting geometry of the double-circular-arc blades is presented in tables 8 to 13 for the six design rotors and in tables 14 to 17 for the three design stators selected. Design parameters are provided for four stator configurations. Although the two stators designated as 20 and 20B differed only in the number of blades, design calculations were conducted for both configurations.

APPARATUS AND PROCEDURE

Compressor Test Facility

These stages were all tested in the single-stage compressor test facility described in reference 1 and shown schematically in figure 9. Atmospheric air enters the test facility through an inlet on the building roof and passes through the flow-measuring orifice and into the plenum chamber upstream of the test stage. The air then passes through the experimental compressor stage into the collector and is exhausted to the atmosphere.

Instrumentation

The compressor mass flow was determined from measurements on a calibrated thin-plate orifice. The orifice air temperature was determined from an average of two Chromel-constantan readings. Radial surveys of the flow conditions were made upstream of the rotor, between the rotor and stator, and downstream of the stator (see figs. 3 to 8 for axial location). The survey probes are shown in figure 10. Total pressure, total temperature, and flow angle were measured with the combination cobra probe (fig. 10(a)) and static pressure was measured with an 18° wedge probe (fig. 10(b)). Each probe was automatically alined to the flow direction by a null-balancing control system sensitive to the flow direction. The thermocouple material was Chromel-constantan. Two combination wedge probes and two static wedge probes were used at each of the three measuring stations.

At stations 1 and 4, rakes were used to obtain total pressure and total temperature so that boundary-layer thickness and stage performance could be monitored during testing. Data from these probes are not presented herein. In addition, inner and outer wall static-pressure taps were located at approximately the same axial stations as the survey probes. The circumferential locations of the instrumentation used are shown in figures 11 and 12. An electronic speed counter was used in conjunction with a magnetic pickup to measure rotative speed (rpm).

The estimated errors of the data based on inherent inaccuracies of the instrumentation and recording system are as follows:

Flow rate, kg/sec
Rotative speed, rpm
Flow angle, deg
Temperature, K
Rotor-inlet total pressure, N/cm ²

Rotor-outlet total pressure, N/cm ²												
Stator-outlet total pressure, N/cm ²												
Rotor-inlet static pressure, N/cm ²												
Rotor-outlet static pressure, N/cm2												
Stator-outlet static pressure, N/cm2											. ±0.	07

Test Stages

The characteristics of the 12 rotors and seven stators that in various combinations represent the 14 stages tested are summarized in table 1. The 12 rotor configurations are shown in figures 13 to 24, and the six stator configurations in figures 25 to 30. A single casing was used for all the stages. Spacers were used in the casing and in the hub to obtain the relative locations of the rotors, stators, and instrumentation. The stator blades were supported by the inner and outer retaining rings shown in figures 25 to 30. The blades were inserted into contoured slots in that part of the ring comprising the flow-passage wall and secured. The assembly was held in place by the casing and the spacers. The nonrotating rotor-tip clearance for each configuration is shown in table 18.

Test Procedure

Stage survey data were recorded over a mass-flow range from maximum-flow to near-stall conditions at 70, 90, 100, 110, and 120 percent of design speed. At 50, 60, and 80 percent of design speed, data were recorded at near-stall conditions only. For each test operating point, data were recorded at nine radial positions.

At each radial position the two combination probes behind the stator (station 3) were circumferentially traversed to nine locations across the stator gap. The wedge probes were set at midgap because studies on previous stages had shown that the static pressure across the stator gap was constant. Total pressure, total temperature, and flow angle were recorded at each circumferential position. At the last circumferential position, pressure, temperature, and flow angle were also recorded at stations 1 and 2. All probes were then traversed to the next radial position, and the circumferential traverse procedure was repeated.

Calculation Procedure

Measured total temperatures and total pressures were corrected for Mach number and design streamline slope. These corrections were based on instrument probe cali-

brations given in reference 3. The stream static pressure was corrected for Mach number and streamline slope based on an average calibration for the type of probe used.

The static pressure at each radial position downstream of the stator was assumed to be uniform across the blade passage and equal to the midgap value. At each radial position, averaged values of the nine circumferential measurements of total pressure. total temperature, and flow angle downstream of the stator were obtained in the following manner: The midgap static pressure was used with the local total pressure, total temperature, and flow angle to calculate the circumferential distributions of velocity, static density, and axial and tangential velocity components. These distributions were then used in the circumferential mass-averaging process. The nine values of total temperature were mass averaged to obtain the circumferentially averaged stator-outlet total temperature. The nine local values of total pressure were ratioed to the rotorinlet total pressure and converted to equivalent isentropic temperature ratios. These ratios were then mass averaged, and the resulting value was converted (through the isentropic temperature-pressure ratio relations) to a mass-averaged total-pressure ratio. The average absolute velocity was obtained from the midgap static pressure, the average total pressure, and the average total temperature. The average tangential velocity was mass averaged by using the local static density and the axial and tangential velocity components. The average absolute velocity and tangential velocity components were used to calculate the average flow angle and the average axial velocity. This calculation was performed for both sets of probes at the stator discharge, and the results from each set of probes were averaged to obtain single average values of total pressure, total temperature, static pressure, and flow angle at each radial position. To obtain the overall performance, the radial distributions of total temperature and total pressure were averaged by a procedure that is similar to that used for averaging the circumferential distributions of these parameters. At each measuring station, the integrated mass flow was computed from the radial survey data.

The mass flow at stall was obtained in the following manner: During operation at the near-stall condition, the collector valve (fig. 3) was slowly closed in small increments. At each increment the mass flow was obtained. The mass flow obtained just before stall is called the stall mass flow. The pressure ratio at stall was obtained by extrapolating the total pressure obtained from the survey data to the stall mass flow.

Orifice mass flows, total pressures, static pressures, and total temperatures were all corrected to standard-day conditions based on the rotor-inlet conditions.

RESULTS AND DISCUSSION

The results drawn from the data obtained in this investigation are presented in two main sections. The overall performance is described, for both the rotor and the stage, for the 14 configurations tested. The effects of varying solidity, diffusion factor, and aspect ratio on performance are assessed, and their combined effect on performance is determined.

Overall Performance

The overall performance of the 14 stages tested is presented in figures 31 to 44, the performance of the 12 rotors, with each rotor functioning as an integral part of the stage, is shown in figures 45 to 58. Pressure ratio, temperature ratio, and efficiency are presented at several mass flows from choke to near stall at 70, 90, 100, 110, and 120 percent of design speed and at near stall at 50, 60, and 80 percent of design speed. The actual stage stall line is shown in figures 31 to 44 as a dashed line. The effects of solidity and aspect ratio are shown in figures 59 to 69. The effect of solidity, aspect ratio, and diffusion factor on rotor performance is presented in figure 70. All these comparisons are made for the 100-percent-speed lines. The plotted data are presented in tabular form in tables 19 to 32.

The highest rotor efficiency (0.944) was obtained with rotor 26D in stage 26D-21, which had a diffusion factor at maximum-efficiency operation of 0.51, an aspect ratio of 1.2, and a solidity of 0.9. The highest stage efficiency (0.902) was obtained with stage 27A-21, which had diffusion factors at maximum-efficiency operation of 0.52 in the rotor and 0.50 in the stator, a rotor aspect ratio of 0.7, a stator aspect ratio of 1.24, and a tip solidity of 1.8 in both the rotor and stator.

Effects of Solidity and Aspect Ratio

Solidity. - The effects of solidity on the performance of the rotors and stages at design speed are presented in figures 59 to 63. At constant blade aspect ratio, rotors with more blades, and thus higher solidities, had lower mass flows than rotors with fewer blades and lower solidities. This reduction in flow is most likely caused by the greater blade blockage for the higher solidities.

Low-solidity rotors had significantly higher maximum efficiencies at design speed than high-solidity rotors at all diffusion factors tested (figs. 59 to 61), and these maximums occurred at higher mass flows. For example, at low blade loading (fig. 59), rotor 23B, with a solidity of 1.6, attained a peak efficiency of 0.916 at a mass flow of

9.4 kilograms per second; and rotor 23D, with a solidity of 2.0, attained 0.903 at 8.1 kilograms per second. At high blade loading (fig. 60), rotor 28D, with a solidity of 1.36, attained a peak efficiency of 0.938 at a mass flow of 11.1 kilograms per second; and rotor 28B, with a solidity of 1.8, attained 0.929 at 9.9 kilograms per second. Reducing solidity also tended to increase the stall margin at all diffusion factors tested (table 1).

The effect of solidity on stage performance is shown in figures 62 and 63 for stages 26 and 27. Figure 62 illustrates that the difference in maximum stage efficiency between stages 26D-21D and 26D-21 can be attributed to mismatching between the rotor and stator, resulting from the change in stator solidity from 1.8 to 0.9. Although the rotor efficiencies for the two stages were virtually identical throughout the range of mass flows tested, the stage efficiency was lower for 26D-21, especially at the higher mass flows. Mismatching is evident from the graph of efficiency difference across the stator as a function of mass flow. For stage 26D-21D, the maximum rotor efficiency and the minimum stator-efficiency difference occurred at almost the same mass flow; but for stage 26D-21, the minimum stator-efficiency difference occurred near stall flow and the maximum rotor-efficiency difference occurred in the middle of the flow range. The same trends are evident for the stage 27 rotors (fig. 63).

No significant change in the minimum-efficiency difference occurred when stator solidity was lowered. Therefore, stator designs with fewer blades, and hence lower solidity, would mean lower fabrication cost without sacrificing performance.

Aspect ratio. - The effects of aspect ratio on the performance of the rotors and stages were assessed at low and intermediate blade loadings and are presented graphically in figures 64 to 69. At low blade loading, with diffusion factors of 0.45 or lower, decreasing the aspect ratio from 1.0 to 0.67 resulted in a slight reduction in peak rotor efficiency with solidity held constant at both 1.6 and 2.0 (fig. 64). The slightly greater flow range for the lower-aspect-ratio stages at design speed is not considered to be significant, since the high flow points may not have been obtained at maximum capacity.

At diffusion factors of about 0.50, reductions in aspect ratio from 1.2 to 0.7 were evaluated with rotors 26B and 27A with solidity constant at 1.8 (fig. 65) and with rotors 26D and 27D with solidity constant at 0.9 (fig. 66). Rotor 27A, which had an aspect ratio of 0.7, had an efficiency about 1.5 points higher than rotor 26B, which had an aspect ratio of 1.2. The mass-flow range of rotor 27A (2.6 kg/sec) was larger than that of rotor 26B (2.0 kg/sec) by about 20 percent. The pressure ratio of rotor 27A was greater than that of rotor 26B throughout the flow range.

A similar comparison is shown for rotors 26D and 27D, which differ from their parent rotors 26B and 27A in blade number only (fig. 2). At this lower solidity (0.9)

and lower overall pressure ratio, no significant efficiency trend was observed as aspect ratio was reduced from 1.2 to 0.7. However, the pressure ratio over most of the flow range was somewhat higher for the lower-aspect-ratio rotor.

Comparing stage performance shows trends generally similar to those observed for the rotors (figs. 67 to 69). At low blade loadings and a solidity of 1.6, the stage efficiencies were slightly higher at a rotor aspect ratio of 1.0 than at a rotor aspect ratio of 0.67. At a solidity of 2.0, the stage efficiencies were almost the same (fig. 67). At moderate blade loadings (diffusion factors of about 0.5), the stage efficiencies became higher as the rotor aspect ratio was decreased from 1.2 to 0.7, regardless of the solidity (figs. 68 and 69).

The maximum efficiencies of all the rotors tested are compared as a function of aspect ratio in figure 70; the effects of solidity and diffusion factor are also indicated. At low blade loadings, decreasing the aspect ratio from 1.0 to 0.67 resulted in a small reduction in efficiency, but decreasing the solidity from 2.0 to 1.6 had a greater effect, increasing efficiency by about 1 percentage point. The efficiency of rotor 25A, with an aspect ratio of 2.0 and a solidity of 1.2, is comparable to those measured for the remaining rotors tested at low blade loadings. However, since rotors with lower aspect ratios and this diffusion factor have not been tested at such a low solidity, a comparison cannot be made.

The efficiency of rotors 26B and 27A, with diffusion factors of 0.49 and 0.52, respectively, and solidities of 1.8, increased by about 1.5 percentage points as the aspect ratio was decreased from 1.2 to 0.7. However, rotors 26D and 27D, with diffusion factors of 0.49 to 0.53 and solidities of 0.9, showed no conclusive efficiency trend as the aspect ratio was decreased.

SUMMARY OF RESULTS

A comparison of the overall performance data obtained for 14 compressor middle stages is presented. These stages had a tip speed of 243.8 meters per second and a hub-tip radius ratio of 0.8. The parameters varied were aspect ratio, diffusion factor, and solidity. The principal results of these tests were as follows:

1. The highest rotor efficiency (0.944) was obtained with rotor 26D in stage 26D-21, which had a diffusion factor at maximum-efficiency operation of 0.51, an aspect ratio of 1.2, and a solidity of 0.9. The highest stage efficiency (0.902) was obtained with stage 27A-21, which had a diffusion factor at maximum-efficiency operation of 0.52 in the rotor and 0.50 in the stator, a rotor aspect ratio of 0.7, a stator aspect ratio of 1.24, and solidities of 1.8 in both rotor and stator.

- 2. Reducing rotor solidity, at constant rotor aspect ratio and stator solidity, by using fewer rotor blades generally resulted in a shift to higher mass flows, an increase in the stall margin, and a significant increase in the maximum rotor and stage efficiencies.
- 3. Reducing rotor aspect ratio at constant rotor solidity and stator aspect ratio had the following effects:
- a. At diffusion factors of about 0.45, the efficiencies and pressure ratios of both rotors and stages decreased slightly when the rotor aspect ratio was reduced from 1.0 to 0.67.
- b. At diffusion factors of about 0.50, the maximum rotor and stage efficiencies increased when the rotor aspect ratio was reduced from 1.2 to 0.7 at solidities of 1.8. At a rotor solidity of 0.9, there was no significant change in rotor efficiency when the rotor aspect ratio was decreased.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 2, 1979,
505-04.

APPENDIX A

SYMBOLS

AR.	blade aspect ratio, defined as ratio of blade height over mean chord length
A _{an}	annulus area at rotor leading edge, m ²
A_f	frontal area at rotor leading edge, m ²
c_{p}^{-}	specific heat at constant pressure, 1004 J/(kg)(K)
D	diffusion factor
i _{mc}	mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
i_{SS}	suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
N	rotative speed, rpm
P	total pressure, N/cm ²
p	static pressure, N/cm ²
\mathbf{r}	radius, cm
\mathbf{SM}	stall margin
U	wheel speed, m/sec
v	air velocity, m/sec
w	weight flow, kg/sec
$^{lpha}\mathbf{c}$	cone angle, deg
$lpha_{ extsf{s}}$	slope of streamline, deg
β	air angle, angle between air velocity and axial direction, deg
$eta_{f C}^{f 1}$	relative meridional air angle based on cone angle, arctan (tan $\beta_{\rm m}^{\rm I}$ cos $\alpha_{\rm c}/$ cos $\alpha_{\rm s}$), deg
γ	ratio of specific heats (1.40)
δ	ratio of rotor-inlet total pressure to standard pressure of 10.13 $\mathrm{N/cm}^2$
$\delta^{\mathbf{o}}$	deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg
η	efficiency

θ ratio of rotor-inlet total temperature to standard temperature of 288.2 K angle between blade mean camber line and meridional plane, deg $\kappa_{\rm mc}$ angle between blade suction-surface camber line at leading edge and meridi- κ_{ss} onal plane, deg solidity, ratio of chord to spacing, at maximum radius σ $\overline{\omega}$ total-loss coefficient $\overline{\omega}_{\mathrm{p}}$ profile-loss coefficient $\overline{\omega}_{
m s}$ shock-loss coefficient Subscripts: ad adiabatic (temperature rise) idideal LEblade leading edge meridional direction m momentum rise mom polytropic р \mathbf{R} rotor radial direction r reference ref \mathbf{S} stator blade trailing edge TEaxial direction \mathbf{z} θ tangential direction instrumentation plane upstream of rotor 1 2 instrumentation plane between rotor and stator 3 instrumentation plane downstream of stator Superscript:

relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle:

$$i_{SS} = \left(\beta_{C}^{\dagger}\right)_{LE} - \kappa_{SS} \tag{B1}$$

Mean incidence angle:

$$i_{mc} = \left(\beta_{c}^{\dagger}\right)_{LE} - \left(\kappa_{mc}\right)_{LE} \tag{B2}$$

Deviation angle:

$$\delta^{O} = \left(\beta_{C}^{\dagger}\right)_{TE} - \left(\kappa_{mC}\right)_{TE} \tag{B3}$$

Diffusion factor:

$$D = 1 - \frac{V_{TE}^{\dagger}}{V_{LE}^{\dagger}} + \left| \frac{\left(rV_{\theta}\right)_{TE} - \left(rV_{\theta}\right)_{LE}}{(r_{TE} + r_{LE})\sigma\left(V_{LE}^{\dagger}\right)} \right|$$
(B4)

Total-loss coefficient:

$$\overline{\omega} = \frac{\left(P_{id}^{\dagger}\right)_{TE} - P_{TE}^{\dagger}}{P_{I,E}^{\dagger} - P_{I,E}}$$
(B5)

Profile-loss coefficient:

$$\overline{\omega}_{\mathbf{p}} = \overline{\omega} - \overline{\omega}_{\mathbf{S}} \tag{B6}$$

Total-loss parameter:

$$\frac{\overline{\omega}\cos\left(\beta_{\mathbf{m}}^{\dagger}\right)_{\mathrm{TE}}}{2\sigma}\tag{B7}$$

Profile-loss parameter:

$$\frac{\overline{\omega}_{p} \cos(\beta_{m}^{\dagger})_{TE}}{2\sigma}$$
 (B8)

Adiabatic (temperature rise) efficiency:

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1}$$
(B9)

Momentum-rise efficiency:

$$\eta_{\text{mom}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\left(UV_{\theta}\right)_{\text{TE}} - \left(UV_{\theta}\right)_{\text{LE}}}$$

$$T_{\text{LE}}C_{\text{p}}$$
(B10)

Equivalent weight flow:

$$\underline{\mathbf{w}} \underline{\mathbf{v}}_{\underline{\theta}}$$
 (B11)

Equivalent rotative speed:

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area:

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta}$$
A_{an} (B13)

Weight flow per unit frontal area:

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta}$$

$$\mathbf{A_f}$$
(B14)

Head-rise coefficient:

$$\frac{C_{p}T_{LE}}{U_{tip}^{2}}\left[\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma} - 1\right]$$
(B15)

Flow coefficient:

$$\left(\frac{V_{z}}{U_{tip}}\right)_{LE}$$
(B16)

Stall margin:

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}}\right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}}\right)_{ref}} \times \frac{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{ref}}{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{stall}} - 1 \right] \times 100$$
(B17)

Polytropic efficiency:

$$\eta_{\mathbf{p}} = \frac{\ln\left(\frac{\mathbf{P}_{\mathbf{TE}}}{\mathbf{P}_{\mathbf{LE}}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\frac{\mathbf{T}_{\mathbf{TE}}}{\mathbf{T}_{\mathbf{LE}}}\right)}$$
(B18)

APPENDIX C

TERMS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD straight line between blade leading and trailing edges along design

streamline, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach number

is 1)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing

blade element, deg

DELTA INC mean incidence minus suction-surface incidence angles, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (mean defined by eq. (B2)), deg

KIC angle between blade mean camber line at leading edge and merid-

ional plane, deg

KOC angle between blade mean camber line at trailing edge and merid-

ional plane, deg

KTC angle between blade mean camber line at transition point and

meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, K

TI blade thickness at leading edge, cm

TM maximum blade thickness, cm

TO blade thickness at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines,

deg

VEL velocity, m/sec

WHEEL SPEED blade wheel speed, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock loca-

tion of a multiple-circular-arc blade section to that of a

double-circular-arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum-thickness point from inlet, cm

ZOC axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

REFERENCES

- 1. Urasek, Donald C.; and Janetzke, David C.: Overall and Blade Element Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet Per Second. NASA TM X-2484, 1972.
- 2. Crouse, James E.; Janetzke, David C.; and Schwirian, Richard E.: A Computer Program for Composing Compressor Blading from Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-5437, 1969.
- 3. Glawe, George E.; and Krause, Lloyd N.: Miniature Probes for Use in Gas Turbine Testing. NASA TM X-71638, 1974.

TABLE 1. - COMPRESSOR TEST STAGES

Blade	Stage			$\mathbf{R}\mathbf{c}$	otor			Stator							
loading		Number	Blade chord, cm	Number of blades	Diffusion factor	Aspect ratio	Solidity	Number	Blade chord, cm	Number of blades	Diffusion factor	Aspect ratio	Solidity	stall margin, percent	
Low	23B-20 ^a 23D-20C	23B 23D	5.08 5.08	50 63	0.44	1.00	1.6 2.0	20 20C	4.89	52 66	0.44 .46	1.04	1.6 2.0	22 20	
	24A-20 ^a 24B-20C 25A-20B ^a	24A 24B 25A	7.62 7.62 2.54	34 43 77	. 43 . 45 . 43	.67 .67 2.00	1.6 2.0 1.2	20 20C 20B		52 66 40	. 44 . 46 . 42		1.6 2.0 1.2	22 19 15	
Inter- mediate	26B-21 ^a 26D-21 26D-21D 27A-21 ^a 27C-21 27D-21 27D-21D	26B 26D 26D 27A 27C 27D 27D	4.24 4.24 4.24 7.19	68 34 34 40 30 20	0.49 .51 .49 .51 .51 .53	1.20 1.20 1.20 .70	1.8 .9 .9 1.8 1.35 .9	21 21 21D 21 21 21 21 21D	4.09	70 70 35 70 70 70 35	0.46 .42 .49 .48 .48 .43	1.24	1.8 1.8 .9 1.8 1.8	13 21 19 18 21 15	
High	28B-22 ^a 28D-22	29B 28D	6.35 6.35	45 34	0.56 .56	0.80	1.8 1.36	22 22	6.22 6.22	46 46	0.56 .55	0.82	1.8	13 17	

^aOriginal design.

TABLE 2. - DESIGN PARAMETERS

FOR STAGE 23B-20

(a) Overall parameters for stage 23B-20

ROTOR TOTAL PRESSURE RATIOSTAGE TOTAL PRESSURE RATIO	1.257
ROTOR TOTAL TEMPERATURE RATIO	1.072
STAGE TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY	1.072
STAGE ADIABATIC EFFICIENCY ROTOR POLYTROPIC EFFICIENCY	0.921
STAGE POLYTROPIC EFFICIENCY ROTOR HEAD RISE COEFFICIENT	0.924
STAGE HEAD RISE COEFFICIENT	0.322
FLOW COEFFICIENTWIT FLOW PER UNIT FRONTAL AREA	0.470 46.661
WT FLOW PER UNIT ANNULUS AREA 1 WT FLOW	29.614
RPM 91	70.000
111 31 667	

TABLE 2. - Continued.

(b) Blade-element parameters for rotor 23B

RP T!P 1 2 3 4 5 6 7 8 9 HUB	RAD IN 25.400 25.168 24.912 24.656 23.886 22.856 21.829 21.055 20.797 20.538 20.320	0UT 25.400 25.146 24.892 24.638 23.876 22.860 21.844 21.082 20.828 20.574	ABS IN 0. -0. -0. 0. 0. 0. 0.	BETAM OUT 45.0 43.2 41.8 41.2 41.3 42.3 45.7 46.8 48.3 50.0	RELL IN 64.8 64.6 64.4 64.2 63.5 62.4 61.5 60.2 59.9 59.6	BETAM 0UT 58.0 57.3 56.6 55.9 53.8 50.9 47.6 44.7 43.6 42.3 40.8	TOTAL IN 268.2 268.2 288.2 288.2 286.2 268.2 268.2 288.2 288.2 288.2	L TEMP RATIO 1.079 1.076 1.073 1.072 1.071 1.071 1.071 1.072 1.073 1.075	TOTAL IN 10.15 10.15 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	- PRESS RAT10 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257
RP 1 P 1 2 3 4 5 6 7 8 9 HUB	ABS IN 114.6 114.6 114.6 114.6 114.5 114.5 114.4 114.4	VEL 0UT 132.6 132.6 133.0 133.7 135.9 138.7 141.5 144.8 144.8	REL IN 269.5 267.5 265.3 263.0 256.4 247.6 238.9 232.3 230.2 228.0 226.2	VEL OUT 177.0 179.1 180.1 179.5 172.9 162.5 151.7 141.5 137.0 131.4	MERI. 114.6 114.6 114.6 114.6 114.5 114.5 114.4 114.4	0 VEL 0UT 93.7 96.7 99.1 100.7 102.5 102.5 102.5 100.5 99.1 97.2 94.9	TAN IN 000. 0. 0. 0. 0. 0.	G VEL 0UT 93.8 90.7 88.7 88.0 89.7 93.4 97.8 102.9 105.5 109.1 113.2	WHEEL IN 243.9 241.7 239.2 236.8 229.4 219.5 209.6 202.2 199.7 197.2	SPEED 0UT 243.9 241.5 239.0 236.6 229.3 219.5 209.8 202.4 200.0 197.6 195.1
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS MA IN 0.341 0.341 0.341 0.341 0.340 0.340 0.340 0.340 0.340	OUT 0.380 0.381 0.383 0.385 0.392 0.400 0.408 0.415 0.418 0.426	REL MA 0.801 0.795 0.788 0.782 0.762 0.736 0.710 0.691 0.684 0.678 0.672	ACH NO 0.508 0.515 0.517 0.498 0.469 0.438 0.395 0.362	MERID M IN 0.341 0.341 0.341 0.341 0.340 0.340 0.340 0.340 0.340	ACH NO 0.269 0.278 0.285 0.290 0.294 0.295 0.295 0.280 0.274	STREAML I IN -0.45 -0.41 -0.36 -0.32 -0.17 0.03 0.24 0.46 0.46 0.56	NE SLOPE OUT -0.37 -0.34 -0.30 -0.26 -0.14 0.02 0.19 0.33 0.38 0.42		PEAK SS MACH NO 1.066 1.060 1.054 1.050 1.035 1.013 0.989 0.972 0.967 0.964 0.963
RP TIP 1 2 3 4 5 6 7	PERCENT SPAN 0. 5.00 10.00 15.00 30.00	INCI MEAN 1.3 1.3 1.3 1.4 1.4	DENCE SS -1.0 -1.1 -1.3 -1.5 -2.0 -2.6	DEV 4.4 4.2 4.1 4.1 4.2 4.6	D-FACT 0.452 0.436 0.424 0.419 0.429 0.450	EFF 0.855 0.892 0.922 0.939 0.950 0.954	LOSS C TOT 0.106 0.077 0.055 0.043 0.036 0.035	CEFF PROF 0.106 0.077 0.055 0.043 0.036 0.035	LOSS 1 TOT 0.018 0.013 0.009 0.007 0.006 0.006	PROF 0.018 0.013 0.009 0.007 0.006

TABLE 2. - Concluded.

(c) Blade-element parameters for stator 20

RP 1 2 3 4 5 6 7 8 9 HUB	IN 25.400 25.133 24.881 24.628 23.871 22.858	20.866 20.616	ABS IN 44.9 45.0 41.6 41.1 42.2 45.5 46.6 48.2 49.9	BETAM OUT 0. -0. 0. 0. 0. 0. 0.	REI IN 44.9 43.0 41.6 41.1 42.2 43.5 45.5 46.6 48.2 49.9	BETAM OUT 0. -0. 0. 0. 0. 0. 0.		1.000 1.000 1.000 1.000	TOTA IN 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74	0.994 0.996 0.997 0.997 0.996 0.994
RP P 1 2 3 4 5 6 7 8 9 HUB	ABS IN 133.1 133.5 134.2 136.4 139.1 141.9 144.2 145.1 146.4	95.6 97.7 99.1 99.9 100.6 100.5 100.0 97.7 96.2 91.6	REL 133.1 133.5 134.2 136.4 139.1 141.9 144.2 145.1 146.4 148.1	VEL 95.6 97.7 99.1 99.9 100.6 100.5 100.0 97.7 96.2 91.6	MER! 1N 94.2 97.4 99.8 101.3 102.7 103.1 102.8 101.0 99.6 97.6	D VEL 0UT 95.6 97.7 99.1 99.9 100.6 100.5 100.0 97.7 96.2 91.6	TAN 94.0 92.8 88.7 65.0 89.8 97.7 102.9 105.4 109.1	OUT 000. 0. 0. 0. 00.	HHEEL!N 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS M IN 0.382 0.383 0.384 0.387 0.393 0.401 0.416 0.419 0.422 0.427	0.272 0.279 0.283 0.286 0.288 0.288 0.286 0.280 0.280 0.261	REL M. 1N 0.382 0.393 0.364 0.397 0.493 0.410 0.416 0.419 0.422 0.427	ACH NO 0.272 0.279 0.283 0.286 0.288 0.288 0.286 0.280 0.261	MERID M IN 0.273 0.283 0.287 0.292 0.296 0.297 0.297 0.292 0.288 0.282 0.275	ACH NO OUT 0.272 0.279 0.265 0.266 0.288 0.286 0.290 0.275 0.275 0.275	STREAML1 -0.29 -0.26 -0.25 -0.20 -0.11 0.02 0.15 0.29 0.36	NE SLOPE OUT -0.21 -0.19 -0.17 -0.15 -0.08 0.01 0.11 0.18 0.21 0.24 0.27		PEAK SS MACH NO 0.651 0.632 0.620 0.616 0.623 0.657 0.657 0.679 0.691 0.730
RP TIP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INCI MEAN 0.2 0.2 0.2 0.1 0.1 0.1	DENCE SS -4.4 -4.3 -4.2 -4.0 -3.7 -3.2 -2.8 -2.4 -2.3 -2.2	DEV 10.7 10.0 9.6 9.3 9.3 9.7 9.9	D-FACT 0.503 0.478 0.462 0.455 0.456 0.457 0.481 0.508 0.524 0.546	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS 0.104 0.1044 0.045 0.030 0.0314 0.055 0.055 0.0657	OEFF PROF 0.104 0.064 0.045 0.036 0.030 0.031 0.052 0.055 0.087	LOSS P TOT 0.033 3.020 0.014 0.011 0.009 0.009 0.009 0.013 0.017 0.022	ARAM PROF 0.033 0.020 0.014 0.011 0.009 0.009 0.009 0.013 0.017 0.022

TABLE 3. - DESIGN PARAMETERS

FOR STAGE 24A-20

(a) Overall parameters for stage 24A-20

ROTOR TOTAL PRESSURE RATIO	1.257
STAGE TOTAL PRESSURE RATIO	1.252
ROTOR TOTAL TEMPERATURE RATIO	1.072
STAGE TOTAL TEMPERATURE RATIO	1.072
ROTOR ADIABATIC EFFICIENCY	0.940
STAGE ADIABATIC EFFICIENCY	0.921
ROTOR POLYTROPIC EFFICIENCY	0.942
STAGE POLYTROPIC EFFICIENCY	0.924
ROTOR HEAD RISE COEFFICIENT	0.329
STAGE HEAD RISE COEFFICIENT	
FLOW COEFFICIENT	0.470
WT FLOW PER UNIT FRONTAL AREA	46.661
WT FLOW PER UNIT ANNULUS AREA	129.614
WT FLOW	9.457
RPM 9	170.000
TIP SPEED	243.911

TABLE 3. - Continued.

(b) Blade-element parameters for rotor 24A

RP T!P 1 2 3 4 5 6 7 8 9 HUB	RADI IN 25.400 2 25.168 2 24.911 2 24.655 2 23.886 2 22.854 2 21.055 2 21.055 2 20.797 2 20.538 2	OUT 5.400 5.146 4.892 4.638 3.876 2.860 1.844 1.082 0.828 0.574	ABS IN 0. -0. -0. 0. 0. 0. 0.	BETAM OUT 45.0 43.2 41.8 41.2 41.3 42.3 43.7 46.8 48.3 50.0	REL IN 64.8 64.6 64.4 64.2 63.4 61.5 60.2 59.6	BETAM OUT 58.0 57.3 56.6 55.9 53.8 50.9 47.6 44.7 42.3 40.8	TOTA IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	L TEMP RATIO 1.079 1.076 1.073 1.072 1.071 1.071 1.071 1.072 1.073 1.075 1.076	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RAT10 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257
RP TIP 1 2 3 4 5 6 7 8 9 HUB	114.6 114.6 114.6 114.5 114.5 114.4 114.4	VEL 0UT 132.5 132.6 133.0 133.7 135.9 138.7 141.5 143.8 144.7 146.1 147.7	REL 1N 269.5 267.5 265.3 263.0 256.4 247.6 238.9 232.3 230.2 228.0 226.2	VEL OUT 177.0 179.1 180.1 179.5 172.9 162.5 151.7 141.4 136.9 131.3	MERI IN 114.6 114.6 114.6 114.6 114.5 114.5 114.4 114.4	OUT 93.7 96.7 99.1 100.7 102.1 102.5 102.5	.N 0. -0. -0. 0. 0. 0. 0. 0.	G VEL 0UT 93.8 90.7 83.7 83.7 89.7 93.4 97.8 102.9 105.5 109.1	WHEELL !N 243.9 241.7 239.2 256.8 229.4 219.5 209.6 202.2 199.7 197.2 195.1	241.5 239.0 236.6 229.3 219.5 209.8 202.4 200.0 197.6
RP T1P 1 2 3 4 5 6 7 8 9 HUB	0.341 0.341 0.341 0.341 0.340 0.340 0.340 0.340 0.340	CH NO OUT 0.380 0.381 0.385 0.385 0.392 0.400 0.400 0.415 0.421	REL MA 0.801 0.795 0.788 0.762 0.762 0.710 0.691 0.691 0.678 0.672	ACH NO OUT 0.508 0.515 0.518 0.517 0.498 0.469 0.438 0.408 0.379 0.361	MERID M IN 0.341 0.341 0.341 0.341 0.340 0.340 0.340 0.340 0.340	OUT 0.269 0.276 0.285 0.290 0.294 0.296 0.295	STREAML1 1N -0.30 -0.27 -0.24 -0.21 -0.11 0.02 0.16 0.27 0.30 0.34 0.37	OUT -0.31 -0.26 -0.25 -0.22 -0.12 0.02 0.16 0.27 0.51	VEL R	MACH NO 1.063 1.062 1.057 1.052 1.038 1.015 0.991 0.973 0.968 0.965
RP T!P 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	MEAN 1.7	-1 1	4.0	D-FACT 0.452 0.436 0.424 0.419 0.429 0.450 0.475 0.506 0.523 0.546 0.571	0.855	TOT 0.136 0.077	PROF 0.106 0.077	LOSS P TOT 0.018 0.015 0.009 0.007 0.006 0.006 0.007 3.010 0.012 0.016 0.021	PROF 0.018 0.013

TABLE 3. - Concluded.

(c) Blade-element parameters for stator 20

RP T!P 1 2 3 4 5 6 7 8 9 HUB	RADI 1N 25,400 25 25,133 25 24,880 25 24,628 25 23,871 25 22,856 25 21,850 25 21,850 25 21,850 25 20,839 25 20,586 25 20,586 25 20,586 25 20,586 25	OUT 5.400 5.109 4.859 4.609 5.861 2.862 1.864 1.116 0.866 0.616	ABS IN 44.9 41.0 41.1 42.2 45.5 46.2 49.9	BETAM OUT 0. -0. 0. 0. 0. 0.	REL iN 44.9 43.0 41.6 41.0 41.1 42.2 43.5 45.5 46.6 48.2 49.9	BETAM OUT 0. -0. -0. 0. 0. 0. 0.	TOTAL IN 311.0 310.0 309.3 508.9 308.7 308.6 508.6 308.9 309.6 309.6	TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74	PRESS RATIO 0.991 0.994 0.996 0.997 0.997 0.996 0.994 0.993 0.998
RP 11P 1 2 3 4 5 6 7 8 9 HUB	139.1	VEL 0UT 95.6 97.7 99.1 99.9 100.6 100.5 100.0 97.7 96.2 94.2 91.6	REL IN 133.1 133.1 133.5 134.2 136.4 139.1 141.9 144.2 145.1 146.4 148.1	VEL 0UT 95.6 97.7 99.1 99.9 100.6 100.5 100.0 97.7 96.2 94.2 91.6	MERII 94.2 97.4 99.8 101.3 102.7 103.1 102.8 101.0 99.6 97.6 95.3	VEL 0UT 95.6 97.7 99.1 100.5 100.5 100.0 97.7 96.2 94.2 91.6	TAN IN 94.0 90.8 88.7 88.0 89.8 93.4 97.7 102.9 105.4 109.1	G VEL OUT 0. -0. -0. 0. 0. 0. 0.	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 HUB	0.383 0.384 0.387 0.393 0.401 0.410	CH NO 0UT 0.272 0.279 0.283 0.286 0.288 0.288 0.286 0.286 0.286 0.261	REL M 1N 0.382 0.383 0.384 0.387 0.393 0.401 0.416 0.416 0.412 0.427	OUT 0.272 0.279 0.283 0.286 0.288 0.288 0.286 0.286 0.286 0.260	MER!D M IN 0.270 0.280 0.287 0.292 0.296 0.297 0.297 0.292 0.288 0.288 0.275	ACH NO 0UT 0.272 0.279 0.283 0.286 0.288 0.288 0.266 0.275 0.261	STREAML I IN -0.29 -0.26 -0.23 -0.20 -0.11 0.02 0.15 0.25 0.29 0.32	NE SLOPE OUT -0.21 -0.19 -0.17 -0.15 -0.08 0.01 0.11 0.18 0.21 0.24 0.27		PEAK SS MACH NO 0.651 0.632 0.620 0.616 0.623 0.659 0.657 0.679 0.679
RP P 1 2 3 4 5 6 7 8 9	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 50.00 95.00 95.00	INCI MEAN 0.2 0.2 0.2 0.1 0.1 0.1	DENCE SS -4.4 -4.3 -4.0 -3.7 -3.8 -2.8 -2.3	DEV 10.7 10.0 9.6 9.3 9.3 9.7 9.9	D-FACT 0.503 0.478 0.462 0.455 0.456 0.457 0.481 0.508 0.524	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS O TOT 0.104 0.064 0.036 0.030 0.031 0.034 0.052 0.052	OEFF PROF 0.104 0.064 0.045 0.036 0.030 0.031 0.034 0.052 0.065 0.087	LOSS F TOT 0.033 0.020 0.014 0.011 0.009 0.009 0.013 0.017 0.022	PARAM PROF 0.033 0.020 0.014 0.011 0.009 0.009 0.009 0.013 0.017

TABLE 4. - DESIGN PARAMETERS

FOR STAGE 25A-20B

(a) Overall parameters for stage 25A-20B

STAGE TOTAL PRESSURE RATIO 1.234 ROTOR TOTAL TEMPERATURE RATIO. 1.066 STAGE TOTAL TEMPERATURE RATIO 1.066
STAGE TOTAL TEMPERATURE RATIO 1.066
Since iona in an armition
DATAB INTIDATIC FEFTCIFNOV
ROTOR ADIABATIC EFFICIENCY 0.950
STAGE ADIABATIC EFFICIENCY 0.955
ROTOR POLYTROPIC EFFICIENCY 0.951
STAGE POLYTROPIC EFFICIENCY 0.937
ROTOR HEAD RISE COEFFICIENT 0.306
STAGE HEAD RISE COEFFICIENT 0.302
FLOW COEFFICIENT
WT FLOW PER UNIT FRONTAL AREA 46.661
MT FLOW PER UNIT ANNULUS AREA 129.614
WT FLOW 9.457
RPM 9170.000
TIP SPEED 243.911

TABLE 4. - Continued.

(b) Blade-element parameters for rotor 25A

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RADII IN OUT 25.400 25.40 25.167 25.14 24.911 24.89 24.655 24.63 23.885 23.87 22.857 22.86 21.829 21.84 21.057 21.08 20.798 20.82 20.540 20.57 20.320 20.32	1N 0. 60 -0. 22 -0. 86 0. 0. 44 0. 22 0. 84 0.	BETAM OUT 41.1 39.9 39.1 38.7 39.1 40.2 41.5 43.1 44.0 45.5	REL IN 64.8 64.6 64.4 64.2 63.4 61.3 60.5 59.6	BETAM CUT 58.6 58.1 57.5 56.9 55.1 52.4 49.4 46.7 45.7 44.5 43.2	TOTAL IN 266.2 263.2 263.2 268.2 268.2 268.2 268.2 268.2 268.2 268.2	L TEMP RATIO 1.071 1.069 1.065 1.066 1.066 1.066 1.066 1.066 1.067 1.063	TOTAL IN	PRESS RAT10 1.233 1.255 1.238 1.238 1.238 1.238 1.238 1.238 1.238 1.238
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS VEL IN OUT 114.7 129. 114.7 129. 114.6 131. 114.5 135. 114.5 136. 114.5 138. 114.5 139. 114.5 140. 114.5 142.	IN 9 269.5 0 267.5 3 265.3 8 263.1 6 247.6 6 238.9 8 252.4 7 250.2 9 228.1	VEL CUT 186.4 187.0 186.8 185.5 178.5 168.0 157.2 147.7 143.8 139.2 134.3	MERI IN 114.7 114.7 114.7 114.6 114.5 114.5 114.5 114.5	D VEL 0UT 97.1 93.9 100.3 101.3 102.2 102.4 102.3 101.3 101.4 99.2 97.8	TAN :N 0000000000.	G VEL 0UT 84.8 81.5 81.5 81.2 66.4 90.4 94.9 97.1 100.0 103.2	WHEEL IN 243.9 241.7 239.2 236.8 229.4 219.5 209.6 202.2 199.7 197.2 195.1	SPEED CUT 243.9 241.5 239.0 256.6 229.3 219.5 209.8 202.4 200.0 197.6 195.1
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS MACH N 1N 0.341 0.37 0.341 0.37 0.341 0.37 0.341 0.37 0.341 0.38 0.340 0.38 0.340 0.40 0.340 0.40 0.340 0.40 0.340 0.40	IN 1 0.801 2 0.795 3 0.789 5 0.782 0 0.762 7 0.736 5 0.710 1 0.691 4 0.684 7 0.678	NACH NO OUT 0.536 0.539 0.535 0.515 0.485 0.454 0.427 0.416 0.402 0.388	MERID M IN 0.341 0.341 0.341 0.341 0.340 0.340 0.340 0.340 0.340	ACH NO 0.279 0.205 0.205 0.292 0.295 0.296 0.296 0.293 0.293 0.283	STREAML1 IN -1.00 -0.90 -0.80 -0.70 -0.58 0.06 0.52 0.88 1.01 1.13	NE SLOPE OUT -0.65 -0.53 -0.52 -0.45 -0.24 0.04 0.57 0.65 0.75 0.81		PEAK SS MACH NO 1.124 1.118 1.113 1.109 1.098 1.081 1.046 1.044 1.040
RP TIP 1 2 3 4 5 6 7 8 9 HUB	SPAN ME 0. 0 5.00 0 10.00 0 15.00 0 50.00 0 70.00 0 85.00 0 90.00 0	NCIDENCE AN SS .2 -1.0 .2 -1.1 .2 -1.3 .3 -1.5 .4 -2.0 .5 -2.6 .6 -3.2 .7 -3.6 .7 -3.8 .7 -3.9 .7 -4.0	DEV 5.105.0155.956.66.97.2	D-FACT 0.440 0.429 0.422 0.420 0.453 0.478 0.506 0.520 0.538 0.559	0.881 0.911 0.935 0.949 0.958 0.961 0.960 0.948 0.938 0.922 0.904	LOSS C TOT 0.080 0.059 0.042 0.034 0.028 0.030 0.041 0.050 0.065 0.083	OEFF PROF C.080 0.059 0.042 0.034 0.028 0.030 0.041 0.050 0.065 0.083	LOSS F TOT 0.017 0.013 0.009 0.007 0.006 0.007 0.010 0.012 0.016 0.020	PARAM PROF 0.017 0.013 0.009 0.007 0.006 0.007 0.010 0.012 0.016 0.020

TABLE 4. - Concluded.

(c) Blade-element parameters for stator 20B

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RAD IN 25.400 25.136 24.884 24.631 23.872 22.858 21.848 21.089 20.836 20.583 20.320	OUT .25.400 .25.105 .24.855 .24.606 .23.859 .22.866 .21.867 .21.120 .20.871 .20.622	IN 41.3 40.0 39.0 38.6 38.9 39.9 41.3 43.1 44.1	BETAM OUT. -0. -0. 0. 0. 0. 0. 0.	REL IN 41.3 40.0 39.0 38.6 38.9 39.9 41.3 44.1 45.4 46.8	OUT 0. -0. -0. 0. 0.	308.8 308.1 507.6 307.3 307.1 307.1 307.5 307.5	RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 12.54 12.54 12.54 12.54 12.54 12.54 12.54 12.54	0.996 0.997 0.997 0.998 0.998 0.997 0.936 0.995
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS IN 128.6 128.9 129.4 130.1 132.2 134.6 136.9 138.7 139.4 140.4	VEL OUT 98.3 99.5 100.4 100.9 101.3 101.2 100.9 99.5 98.6 97.4 95.7	REL 1N 128.6 128.9 129.4 130.1 132.2 134.6 136.9 138.7 139.4 140.4	VEL 0UT 96.3 99.5 100.4 100.9 101.3 101.2 100.9 99.5 98.6 97.4 95.7	IN 96.6 98.8 100.5 101.6 102.9 103.3 102.9 101.2	D VEL CUT 98.3 99.5 100.9 101.3 101.2 100.9 99.5 98.6 97.4 95.7	1N 84.9 82.8 61.5 81.2 82.9 86.4 90.4 94.9 97.0	-0. 0. 0. 0.	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 HUB	IN	ACH NO OUT 0.281 0.285 0.288 0.290 0.291 0.290 0.290 0.286 0.283 0.274	IN 0.370 0.371 0.373 0.375 0.382	ACH NO 0UT 0.281 0.285 0.268 0.290 0.291 0.290 0.296 0.286 0.286 0.274	MERID M IN 0.278 0.298 0.299 0.293 0.297 0.293 0.293 0.280	ACH NO OUT 0.281 0.285 0.288 0.290 0.291 0.290 0.290 0.293 0.274	STREAML1 10.29 -0.26 -0.23 -0.20 -0.11 0.02 0.15 0.25 0.36	NE SLOPE CUT -0.21 -0.19 -0.17 -0.15 -0.08 6.01 0.11 0.18 0.21 0.27	MERID VEL R 1.017 1.007 0.999 0.995 0.985 0.985 0.988 0.988 0.988	PEAK SS MACH NO 0.563 0.576 0.568 0.576 0.589 0.605 0.623 0.623 0.657
RP TIP 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INCI MEAN -3.4 -2.9 -2.1 -2.1 -2.1 -2.3 -2.4 -2.7	DENCE 55 -8.0 -7.8 -6.4 -6.5 -5.0 -4.9 -5.2	DEV 10.7 10.0 9.6 9.3 9.3 9.7 9.7 9.9 10.2	D-FACT 0.505 0.487 0.476 0.471 0.484 0.495 0.514 0.526 0.542 0.562	0.	LOSS C TOT 0.080 0.048 0.037 G.027 G.023 0.025 0.039 0.048 0.065 0.093	OEFF PROF 0.080 0.048 0.027 0.023 0.025 0.025 0.048 0.048	LOSS F TOT 0.053 0.019 0.014 0.011 0.008 0.009 0.009 0.013 0.016 0.021 0.030	PROF 0.033 0.019

TABLE 5. - DESIGN PARAMETERS

FOR STAGE 26B-21

(a) Overall parameters for stage 26B-21

ROTOR TOTAL PRESSURE RATIO	. 1.328
STAGE TOTAL PRESSURE RATIO	1.318
•	
ROTOR TOTAL TEMPERATURE RATIO	. 1.090
STAGE TOTAL TEMPERATURE RATIO	1.090
STAGE TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY	. 0.958
STAGE ADIABATIC EFFICIENCY	0.913
ROTOR POLYTROPIC EFFICIENCY	. 0.941
STAGE POLYTROPIC EFFICIENCY	0.916
ROTOR HEAD RISE COEFFICIENT	. 0.411
STAGE HEAD RISE COEFFICIENT	0.400
STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT	. 0.469
WT FLOW PER UNIT FRONTAL AREA	46.661
WT FLOW PER UNIT ANNULUS AREA	129.614
WT FLOW	9.457
RPM	9170.000
TIP SPEED	243.911

TABLE 5. - Continued.

(b) Blade-element parameters for rotor 26B

RP TiP 1 2 3 4 5 6 7 8 9 HUB	!N 25.400 25.176 24.926	22.860 21.844 21.082 20.828 20.574	ABS IN 000. 0. 0. 0. 000.	51.4	IN 65.9 64.9 64.5 62.4 62.5 60.2 60.0	00T 55.3 54.1	IN 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2	RATIO 1.:01 1.:095 1.:095 1.:090 1.:090 1.:089 1.:089 1.:090 1.:097	IN 10.13 10.13 10.13 10.13	1.528 1.328 1.328 1.328 1.328 1.328 1.328 1.328
RP T:P 1 2 3 4 5 6 7 8 9 HUB	ABS IN 112.9 113.4 114.4 114.8 114.8 114.6 114.2 114.1 114.0 113.9	VEL OUT 147.5 146.9 147.1 148.0 150.9 154.7 158.8 162.1 165.5 168.0	RELL :N 268.8 267.0 265.1 256.6 247.6 238.7 232.0 229.8 227.7 225.9	VEL 0UT 151.0 156.3 159.8 160.6 154.9 144.6 133.8 122.5 116.6 109.0 100.7	MER! !N 112.9 115.4 114.4 114.8 114.8 114.6 114.2 114.1 114.0	101.6 101.3 98.1	N	G VEL 0UT 1:9.7 1:4.8 1:1.4 1:12.0 1:5.6 1:22.3 1:29.0 1:32.8 1:38.1 1:43.9	IN 243.9 241.8 239.4 236.9 229.5 219.4 209.4	241.5 239.0 236.6 229.3 219.5 209.8 202.4 200.0
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS M IN 0.335 0.337 0.339 0.340 0.341 0.341 0.341 0.339 0.339	ACH NO OUT 0.420 0.420 0.421 0.424 0.433 0.444 0.456 0.466 0.475 0.482	IN 0.799	OUT	IN 0.335 0.337 0.339 0.340 0.341 0.341	0UT 0.245	STREAML II -0.52 -0.63 -0.70 -0.83 -0.36 0.16 0.64 0.89 0.37 0.65	0UT -0.39 -0.46 -0.50	VEL R 0.760 0.308 0.544 0.565 0.681 0.885 0.884 0.859 0.635	MACH NO 1.097 1.093 1.089 1.085
RP TIP 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAN 0. 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00	MEAN 1.1 1.1	DENCE 5S -1.0 -1.1 -1.3 -1.4 -1.9 -2.6 -3.2 -3.6 -3.8 -3.9	DEV 5.9 5.3 5.2 5.4 5.9 6.5 7.6 8.1	D-FACT 0.562 0.533 0.512 0.502 0.511 0.534 0.562 0.601 0.625 0.658	0.837 0.631	LOSS CO TOT 0.150 0.150 0.071 0.053 0.045 0.047 0.068 0.087 0.153	PROF 0.150 0.106	LOSS P TOT 0.024 0.017 0.009 0.007 0.008 0.009 0.015 0.022 0.022	PROF 0.024 0.017

TABLE 5. - Concluded.

(c) Blade-element parameters for stator 21

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RAD I IN 25.400 2 25.132 2 24.878 2 24.625 2 23.869 2 21.892 2 21.893 2 20.839 2 20.586 2 20.320 2	OUT 25.400 25.112 24.867 24.622 23.876 22.883 21.889 21.138 20.883 20.622	ABS IN 54.7 51.5 49.1 47.9 47.6 48.7 50.2 52.7 54.5 59.0	BETAM OUT 0. -0. 0. 0. 0. 0.	REL IN 54.7 51.5 49.1 47.9 47.6 48.7 50.2 52.7 54.3 56.5 59.0	BETAM CUT 0. -0. 0. 0. 0. 0. 0. 0.	TOTAL IN 317.3 315.8 514.7 314.1 313.7 513.7 314.2 514.6 515.3 316.2	TEMP RATIC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45	PRESS RATIO 0.984 0.989 0.995 0.995 0.995 0.995 0.994 0.990 0.978 0.968
RP T ! 2 3 4 5 6 7 8 9 HUB	ABS IN 147.1 146.9 147.3 148.4 151.6 155.2 159.1 162.1 163.5 165.5	VEL OUT 87.7 92.2 95.2 97.2 98.6 93.5 97.3 91.6 87.0 80.5 72.1	REL IN 147.1 146.9 147.3 148.4 151.6 155.2 159.1 162.1 163.5 168.1	VEL OUT 87.7 92.2 95.2 97.2 98.6 98.5 97.3 91.6 87.0 80.5 72.1	MERII IN 85.0 91.5 96.4 99.5 102.1 102.4 101.8 93.3 95.4 91.4 86.6	VEL OUT 87.7 92.2 95.2 97.2 98.6 98.5 97.3 91.6 87.0 80.5 72.1	TAN(1N 120.0 114.9 111.4 110.1 112.0 116.6 122.2 129.0 132.7 138.0	S VEL OUT 000. 0. 0. 0. 0. 0. 00.	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS MA 1N 0.419 0.422 0.425 0.435 0.446 0.457 0.466 0.475 0.483	ACH NO OUT 0.247 0.260 0.270 0.276 0.280 0.280 0.276 0.259 0.259 0.246 0.227 0.203	REL M 1N 0.419 0.419 0.425 0.425 0.435 0.446 0.457 0.466 0.470 0.475 0.483	ACH NO OUT 0.247 0.260 0.276 0.276 0.280 0.280 0.276 0.256 0.256 0.227	MERID M. 1N 0.242 0.261 0.276 0.285 0.293 0.294 0.293 0.262 0.274 0.262	ACH NO OUT 0.247 0.260 0.270 0.260 0.260 0.260 0.276 0.259 0.246 0.227 0.203	STREAML! IN -0.35 -0.21 -0.12 -0.06 0.04 0.15 0.27 0.36 0.37 0.36	NE SLOPE OUT -0.32 -0.20 -0.11 -0.05 0.09 0.25 0.44 0.53 0.51 0.42 0.29		PEAK SS MACH NO 0.781 0.745 0.722 0.713 0.721 0.740 0.764 0.795 0.813 0.841 0.875
RP TIP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 0. 5.00 10.00 15.00 50.00 70.00 85.00 90.00	INCI MEAN -1.0 -1.0 -1.0 -1.0 -1.0 -0.9 -0.9	DENCE SS -5.1 -5.0 -4.9 -4.5 -4.5 -3.5 -3.1	DEV 12.9 11.9 11.2 10.5 10.5 10.6 11.0	D-FACT 0.631 0.588 0.560 0.546 0.543 0.554 0.572 0.619	EFF 0. 0. 0. 0. 0.	LOSS C TOT 0.157 0.095 0.063 0.046 0.037 0.039 0.044 0.074	OEFF PROF 0.157 0.095 0.063 0.046 0.037 0.039 0.044 0.074 0.102	LOSS F TOT 0.044 0.026 0.017 0.013 0.010 0.011 0.017 0.023	PARAM PROF 0.044 0.026 0.017 0.013 0.010 0.011 0.011 0.017

TABLE 6. - DESIGN PARAMETERS

FOR STAGE 27A-21

(a) Overall parameters for stage 27A-21

ROTOR TOTAL PRESSURE RATIOSTAGE TOTAL PRESSURE RATIO	1.328
ROTOR TOTAL TEMPERATURE RATIO	1.090
STAGE TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY	
STAGE ADIABATIC EFFICIENCY	0.938
ROTOR POLYTROPIC EFFICIENCY	0.941
STAGE POLYTROPIC EFFICIENCY	0.916
ROTOR HEAD RISE COEFFICIENTSTAGE HEAD RISE COEFFICIENT	0.411
	0.469
	46.661
	29.614
NT FLOW RPM91	9.457
	43.911

TABLE 6. - Continued.

(b) Blade-element parameters for rotor 27A

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RADII IN 0U' 25.400 25.44 25.177 25.14 24.927 24.81 24.673 24.6 23.895 25.8 22.852 22.81 21.806 21.84 21.027 21.04 20.773 20.8 20.525 20.5 20.320 20.33	T IN 00 0. 46 -0. 92 -0. 38 0. 76 0. 60 0. 44 0. 82 0. 28 0. 74 0.	BETAM OUT 54.5 51.5 49.2 48.0 47.9 48.9 50.3 52.8 54.6 59.0	REL IN 65.2 64.9 64.5 64.2 65.4 62.4 61.3 60.2 60.0 59.7	BETAM OUT 55.4 54.2 53.0 52.0 49.2 45.3 40.8 36.8 35.2 33.1 30.6	TOTAL IN 266.2 219.2 269.2 266.2 269.2 269.2 269.2 269.2 269.2 269.2 269.2 269.2 269.2 269.2	TEMP RATIO 1.101 1.096 1.092 1.090 1.069 1.088 1.089 1.090 1.092 1.094 1.097	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RAT10 1.328 1.328 1.328 1.328 1.328 1.328 1.328 1.328 1.328 1.328 1.328 1.328
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS VEL IN OU 112.9 147 113.5 147 114.4 148 151 114.7 154 114.5 158 114.1 162 114.0 163 113.9 168	T !N .2 268.8 .8 267.1 .1 265.1 .0 256.6 .8 247.6 .8 238.7 .0 231.9 .4 229.8 .4 227.7	VEL 0UT 150.7 156.1 159.8 160.6 154.9 144.7 133.9 122.4 116.5 108.8	MERI IN 112.9 113.5 114.0 114.4 114.8 114.7 114.5 114.1 114.0 113.9	D VEL OUT 85.5 91.4 96.1 98.9 101.2 101.6 101.4 98.0 95.2 91.1 66.5	0. -0. -0.	G VEL CUT 119.8 114.9 111.4 110.0 112.0 116.6 122.3 129.0 152.8 138.1 144.0	WHEEL IN 243.9 241.8 239.4 230.9 229.5 219.4 209.4 201.9 199.5 197.1	SPEED 0UT 243.9 241.5 239.0 256.6 229.3 219.5 209.8 202.4 200.0 197.6 195.1
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS MACH 1 IN 0.0.0 0.336 0.4 0.337 0.4 0.359 0.4 0.341 0.4 0.341 0.4 0.340 0.4 0.359 0.4 0.339 0.4 0.339 0.4 0.339 0.4	T IN 20 0.799 19 0.794 21 0.788 24 0.762 33 0.763 44 0.736 57 0.709 66 0.689 70 0.683 75 0.677	NACH NO OUT 0.429 0.446 0.457 0.460 0.416 0.385 0.352 0.352 0.352	MERID M 1N 0.336 0.337 0.359 0.340 0.341 0.340 0.359 0.359 0.359	ACH NO 0UT 0.234 0.261 0.275 0.285 0.292 0.292 0.292 0.292 0.292 0.253	STREAMLI IN -0.00 -0.05 -0.05 -0.07 -0.20 0.00 0.40 0.40 0.45 0.57	NE SLOPE OUT -0.31 -0.32 -0.33 -0.51 -0.17 0.32 0.225 0.357 0.358 0.39		PEAK SS MACH NO 1.099 1.095 1.091 1.087 1.073 1.052 1.029 1.013 1.010 1.011
RP 1!P 1 2 3 4 5 6 7 8 9 HUB	SPAN M 0. 5.00 10.00 15.00 50.00 50.00 50.00 90.00 95.00	INCIDENCE EAN SS 1.6 -1.0 1.7 -1.1 1.7 -1.3 1.7 -1.4 1.8 -1.9 1.9 -2.6 1.9 -3.2 2.0 -3.6 2.0 -3.8 2.0 -3.8 2.0 -3.9 1.9 -4.0	DEV 5.7 5.3 5.1 5.2 5.7 6.3 7.0 7.4 7.9	D-FACT 0.564 0.534 0.512 0.512 0.510 0.554 0.562 0.601 0.625 0.697	EFF 0.856 0.851 0.979 0.959 0.955 0.955 0.955 0.920 0.869	LOSS C TOT 0.150 0.103 0.071 0.035 0.045 0.043 0.047 0.033 0.037 0.118 0.153	GEFF PRCF 0.150 0.103 0.055 0.045 0.045 0.045 0.068 0.068 0.116 0.153	LOSS F TOT 3.024 0.017 0.012 0.009 0.007 3.009 0.013 0.016 0.022 0.029	PARAM PROF 0.024 0.017 0.012 0.009 0.007 0.007 0.009 0.013 0.016 0.022 0.029

TABLE 6. - Concluded.

(c) Blade-element parameters for stator 21

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RAD IN 25.400 25.132 24.876 24.625 23.870 22.862 21.851 21.092 20.838 20.585 20.320	OUT 25.400 25.113 24.867 24.622 23.877 22.883 21.888 21.137 20.882 20.622	ABS IN 54.7 51.5 49.1 47.6 47.6 48.7 50.2 52.7 54.5 59.0	BETAM OUT -0. -0. 0. 0. 0. 0.	RELL !N. 54.7 51.5 49.1 47.9 47.6 48.7 50.2 52.7 54.5 59.0	BETAM OUT 0. -0. 0. 0. 0. 0. 0.	TOTA IN 317.3 315.8 314.7 314.1 513.7 513.7 514.2 314.6 515.5 516.2	RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45 13.45	PRESS RATIO 0.584 0.969 0.993 0.995 0.995 0.995 0.994 0.966 0.978 0.968
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS IN 147.1 146.9 147.3 148.4 151.6 155.2 162.2 163.5 165.5 168.1	VEL 0UT 87.7 92.1 95.2 97.2 98.6 98.5 97.3 91.6 87.0 80.5 72.1	REL 1N 147.1 146.9 147.3 148.4 151.6 155.2 159.1 162.2 163.5 165.5 168.1	VEL 0UT 87.7 92.1 95.2 97.2 98.6 98.5 97.3 91.6 87.0 80.5 72.1	MERI IN 85.0 91.5 99.5 102.1 102.4 101.8 98.3 95.4 91.4 86.6	D VEL OUT 87.7 92.1 95.2 97.2 98.6 98.5 97.3 91.6 87.0 80.5 72.1	TAN IN 120.0 111.4 111.4 110.1 112.0 116.6 122.2 129.0 152.7 158.0 144.1	G VEL OUT 000. 0. 0. 0. 0. 0. 00.	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS M IN 0.419 0.419 0.425 0.425 0.435 0.446 0.457 0.466 0.470 0.475	ACH NO OUT 0.247 0.260 0.270 0.276 0.280 0.276 0.259 0.259 0.246 0.227 0.203	REL M 1N 0.419 0.419 0.425 0.425 0.435 0.446 0.457 0.466 0.470 0.475 0.483	ACH NO OUT 0.247 0.260 0.270 0.276 0.280 0.280 0.276 0.259 0.259 0.246	MERID M 1N 0.242 0.261 0.276 0.285 0.293 0.293 0.293 0.263 0.274 0.262 0.249	0.247 0.247 0.260 0.270 0.276 0.236 0.280 0.275 0.259 0.246 0.227 0.203	STREAML1 IN -0.53 -0.12 -0.12 -0.06 0.04 0.15 0.27 0.36 0.37 0.36	NE SLOPE OUT -0.32 -0.11 -0.05 0.05 0.25 0.44 0.551 0.42 0.29		PEAK SS MACH NO 0.781 0.745 0.722 0.713 0.721 0.740 0.764 0.764 0.814 0.842 0.875
RP T!P 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 70.00 85.00 95.00 100.00	INCI MEAN -1.0 -1.0 -1.0 -1.0 -1.0 -0.9 -0.9 -0.9	DENCE SS -5.1 -5.0 -4.9 -4.8 -4.5 -4.0 -3.5 -3.2 -3.1 -2.9	DEV 12.9 11.9 11.2 10.8 10.5 10.5 11.0 11.3 11.8	D-FACT 0.631 0.588 0.560 0.546 0.543 0.554 0.572 0.620 0.654 0.762	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.157 0.055 0.035 0.047 0.037 0.039 0.044 0.074 0.151 0.220	OEFF PROF 0.157 0.095 0.063 0.047 0.037 0.039 0.044 0.102 0.151 0.220	LOSS F TOT 0.044 0.026 0.017 0.013 0.010 0.011 0.017 0.023 0.034 0.049	PARAM PROF 0.044 0.026 0.017 0.013 0.010 0.011 0.017 0.023 0.034 0.049

TABLE 7. - DESIGN PARAMETERS

FOR STAGE 28B-22

(a) Overall parameters for stage 28B-22

ROTOR TOTAL PRESSURE RATIO	. 1.599
STAGE TOTAL PRESSURE RATIO	1.381
•	
ROTOR TOTAL TEMPERATURE RATIO	. 1.107
STAGE TOTAL TEMPERATURE RATIO	1.107
ROTOR ADIABATIC EFFICIENCY	. 0.939
STAGE AD!ABATIC EFFICIENCY	0.901
ROTOR POLYTROPIC EFFICIENCY	. 0.942
STAGE POLYTROPIC EFFICIENCY	0.905
ROTOR HEAD RISE COEFFICIENT	. 0.490
STAGE HEAD RISE COEFFICIENT	0.470
FLOW COEFFICIENT	0.469
MT FLOW PER UNIT FRONTAL AREA	46.66!
WT FLOW PER UNIT ANNULUS AREA	129.614
HT FLOW	9.457
RPM	9170.000
TIP SPEED	243.911

TABLE 7. - Continued.

(b) Blade-element parameters for rotor 28B

RP TIP 1 2 3 4 5 6 7 8 9 HUB	IN 25,400 25,191 24,952 24,701 23,905 22,831 21,757 20,971 20,730	21.844 21.082 20.828 20.574	ABS IN 0. -0. -0. 0. 0. 0. 0.	BETAM 0UT 63.8 58.8 54.9 52.9 52.6 53.6 55.2 58.4 60.2 67.8	RELI IN 65.6 65.2 64.7 64.3 63.4 61.3 60.1 59.7	BETAM 0017 53.3 53.3 48.6 47.0 43.3 38.3 32.4 27.1 24.6 20.8 15.8	IN 268.2 268.2 268.2 268.2 263.2 268.2 268.2	AL TEMP RATIO 1.124 1.116 1.110 1.107 1.106 1.105 1.106 1.108 1.110 1.114	TOTA IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	1.399 1.399 1.399 1.399 1.399 1.399 1.399 1.399
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS 1N 110.7 112.0 113.2 114.1 114.9 114.8 114.6 114.6 114.9	VEL 0UT 163.8 162.4 162.6 163.9 167.7 172.4 177.3 180.7 182.4 185.2 189.0	REL IN 267.9 266.6 265.0 263.2 256.7 247.5 238.3 231.6 229.7 228.0 226.6	VEL OUT 121.0 132.7 141.3 144.9 140.1 130.3 119.9 106.3 97.6 86.2 74.3	MERI IN 110.7 112.0 113.2 114.1 114.9 114.8 114.6 114.6 114.6 114.9	D VEL OUT 72.4 84.2 93.9 101.9 102.2 101.2 94.6 88.7 80.6 71.5	TAN IN 000. 0. 0. 0. 0. 0. 00.	OUT 147.0 138.9 133.0 150.6 133.2 138.8 145.6 154.0 159.4 166.8	WHEEL IN 243.9 241.9 237.2 229.6 219.2 208.9 201.4 199.1 196.9 195.1	SPEED OUT 243.9 241.5 239.0 236.6 229.3 219.5 209.8 202.4 200.0 197.6 195.1
RP TIP 1 2 3 4 5 6 7 8 9 HUB	IN 0.329	ACH NO 0.464 0.461 0.463 0.468 0.479 0.493 0.508 0.518 0.523 0.523 0.540	IN 0.796 0.792 0.788 0.782 0.763 0.736 0.708	ACH NO OUT 0.343 0.377 0.403 0.414 0.400 0.373 0.344 0.305 0.280 0.247 0.212	MERID M IN 0.329 0.333 0.336 0.339 0.342 0.341 0.341 0.341 0.342 0.342	ACH NO OUT 0.205 0.239 0.266 0.262 0.291 0.293 0.290 0.271 0.254 0.204	STREAML1 IN -0.31 -0.52 -0.68 -0.71 -0.32 0.27 0.81 1.04 0.91 0.64 0.37	NE SLOPE OUT -0.30 -0.42 -0.49 -0.27 0.04 0.25 0.25 0.34 0.43		PEAK SS MACH NO 1.158 1.161 1.163 1.150 1.150 1.130 1.107 1.093 1.095 1.115
RP TIP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 70.00 85.00 90.00	MEAN 1.5 1.5	DENCE 5S -1.0 -1.1 -1.3 -1.4 -1.9 -2.6 -3.2 -3.7 -3.8 -3.9	DEV 8.1 7.1 6.5 6.8 7.4 8.2 9.8	D-FACT 0.701 0.646 0.604 0.583 0.590 0.614 0.643 0.695 0.734 0.787	0.813	LOSS COTOT 0.206 0.138 0.085 0.058 0.046 0.054 0.054 0.0110 0.154	OEFF PROF 0.206 0.138 0.085 0.058 0.048 0.048 0.054 0.054 0.081	LOSS P TOT 0.034 0.024 0.015 0.011 0.009 0.011 0.017 0.023 0.032	PROF 0.034 0.024

TABLE 7. - Concluded.

(c) Blade-element parameters for stator 22

RP 1 2 3 4 5 6 7 8 9 HUB	RAD11 1N 00 25.400 25. 25.131 25. 24.875 24. 24.622 24. 23.867 23. 22.858 23. 21.843 22. 21.078 21. 20.826 21. 20.578 20. 20.578 20.	UT IN 400 64.4 128 59.0 901 55.0 670 52.8 968 52.3 034 53.5 107 55.2 420 58.2 110 60.5 724 63.7	OUT 000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	RELL iN 64.4 59.0 52.8 52.3 53.5 55.2 60.7 67.2	BETAM GUT 0. -0. 0. 0. 0. 0. 0. 0.	TOTAL IN 525.9 521.6 519.8 518.9 518.6 5:8.5 5:8.5 5:19.2 3:19.9 522.2	TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 14.17 14.17 14.17 14.17 14.17 14.17 14.17 14.17 14.17	PRESS RATIO 0.971 0.982 0.989 0.993 0.993 0.994 0.993 0.986 0.969 0.928 0.875
RP T 1 2 3 4 5 6 7 8 9 HUB	163.4 8.162.1 9 162.5 9 164.1 10 168.4 10.177.3 10.177.3 181.2 8 183.2 6 186.1 3	RELUT IN 163.4 162.5 1.4 164.1 4.0 168.4 4.2 172.7 3.4 177.3 7.7 181.2 7.9 183.2 1.7 186.1 3.1 190.0	VEL OUT 82.1 91.2 97.5 101.4 104.0 104.2 103.4 87.7 67.9 31.7 13.1	MERI 1N 70.7 83.5 99.2 102.9 102.8 101.2 95.5 90.2 82.6 73.7	D VEL OUT 82.1 91.2 97.5 101.4 104.0 104.2 103.4 87.7 67.9 31.7	TAN(1N 147.3 138.9 133.1 130.8 133.5 136.8 145.6 154.0 159.4 166.8	G VEL OUT C. -G. O. O. O. O.	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 HUB	0.463 0 0.460 0 0.463 0 0.468 0 0.495 0 0.508 0 0.519 0 0.525 0 0.533 0	NO REL N UT IN 229 0.463 255 0.460 274 0.463 286 0.468 293 0.481 294 0.495 291 0.508 246 0.519 0.525 0.88 0.533 0.36 0.544	1ACH NO OUT 0.229 0.255 0.274 0.286 0.293 0.294 0.291 0.246 0.190 0.036	IN 0.200 0.237 0.266 0.283 0.294 0.294 0.274 0.259 0.259	ACH NO OUT 0.229 0.255 0.274 0.286 0.293 0.294 0.291 0.246 0.190 0.190 0.190 0.036	STREAML!! IN -0.34 -0.11 0.07 0.20 0.42 0.72 1.06 1.37 1.18 0.72 0.14	NE SLOPI OUT -0.23 0.01 0.19 0.34 0.69 1.21 1.85 2.40 2.18 1.22 -0.19		PEAK SS MACH NO 0.975 0.899 0.852 0.833 0.841 0.865 0.937 0.969 1.069
RP TIP 1 2 3 4 5 6 7 8 9 HUB	0. 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	!NCIDENCE MEAN SS -2.0 -6.4 -2.0 -6.3 -2.0 -6.3 -2.0 -5.8 -2.0 -5.3 -2.0 -4.9 -2.0 -4.5 -1.9 -4.4 -1.9 -4.4	DEV 16.1 14.3 13.0 12.3 12.0 12.0 12.2 12.7 13.1 14.7	D-FACT 0.749 0.674 0.624 0.597 0.589 0.599 0.614 0.712 0.828 1.032	EFF 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.234 0.050 0.050 0.041 0.043 0.046 0.082 0.176 0.682	OEFF PROF 0.234 0.134 0.080 0.050 0.041 0.043 0.046 0.082 0.176 0.401 0.682	LOSS F TOT 0.065 0.037 0.013 0.011 0.011 0.011 0.019 0.040 0.091 0.152	PROF 0.065 0.037 0.022 0.013 0.011 0.011 0.011 0.019 0.040 0.091 0.152

TABLE 8. - BLADE GEOMETRY FOR ROTOR 23B

RP 1 1 2 3 4 5 6 7 6 9 HUB	10. 15. 30. 50. 70. 85. 90.	RI 25.400 25.168 24.912 24.656 23.886 22.856 21.829 21.055 20.797	24.638 23.876 22.860 21.844 21.082 20.826 20.574	KIC 63.54 63.31 63.06 62.00 60.91 1 59.75 2 58.84 8 58.53 58.22	57.75 57.39 56.98 55.69 53.92 52.02 50.45 49.86 49.16	KOC 53.62 55.11 52.53 51.83 49.57 46.30 42.55 59.17 37.83 36.15	2.24 2.83 2.83 3.59 4.11 4.03 5.28 5.44 5.59	0.277 0.469 0.532 0.600
		E THICK				MENSION		
RP T:P 2:3:4:5:67 8:9:B	0.051	0.158 0.167 0.176 0.201 0.233 0.264 0.286 0.293 0.300	0.051 0.051 0.051 0.051 0.051 0.051 0.051	0.325 0.313 0.299 0.255 0.194 0.126 0.069 0.048	1.559 1.559 1.560 1.560 1.560 1.559	1.643 1.584 1.497 1.400 1.319 1.289 1.255	5.001 5.022 5.090 5.186 5.290 5.377	
RP T!P 1 2 3 4 5 6 7 8 9 HUB		SETTING ANGLE 58.57 58.57 57.80 57.32 55.79 53.61 51.15 49.01 48.18 47.18 46.20	CAMBER 9.92 10.20 10.53 10.97 12.44 14.61 17.21 19.67 20.71 22.07	1.924 1.948 1.972	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000		AREA RAT!0 1.103 1.103 1.106 1.126 1.136 1.146 1.150 1.156 1.161	

TABLE 9. - BLADE GEOMETRY FOR ROTOR 24A

RP TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 50. 70. 85. 90.	RI 25.400 25.168 24.911 24.655 23.886 22.854 21.829 21.055 20.797	R0 25.400 25.146 24.892 24.658 23.876 22.860 21.844 21.082 20.828 20.574	BLAI KIC 63.11 62.88 62.62 62.36 61.56 60.46 59.28 58.36 58.75 57.46	DE ANGLE KTC 57.98 57.69 57.32 56.90 55.59 53.80 50.31 49.71 49.01 48.37	ES KOC 53.82 53.30 52.71 52.01 49.74 46.46 42.71 39.34 36.32 34.52	DELTA INC 2.69 2.87 3.07 3.26 3.84 4.57 5.26 5.76 5.92 6.20	CONE ANGLE 0.057 -0.319 -0.243 -0.071 0.186 0.314 0.359 0.402
RP T ! P 1 2 3 4 5 6 7 8 9 HUB	BLADE TI 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	THICKN TM 0.226 0.251 0.263 0.301 0.350 0.396 0.429 0.440 0.451 0.460	TO 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	Z1C 0.515 0.498 0.457 0.389 0.294 0.192 0.105 0.073 0.034	2.332 2.331 2.330 2.326 2.324 2.320 2.318	MENSION ZTC 2.524 2.500 2.472 2.443 2.353 2.220 2.073 1.950 1.904 1.853 1.808	ZOC 4.407 4.431 4.458 4.489 4.587 4.724 4.874 5.001 5.049 5.106 5.166	
RP T1P 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 7.489 7.491 7.492 7.491 7.491 7.491 7.491 7.491 7.493	SETTING ANGLE 58.45 58.09 57.67 57.19 55.65 53.46 51.00 48.85 48.02 47.03 46.04		1.924 1.948 1.972	X FACTOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	PHISS 8.07 8.29 8.57 8.89 9.83 10.98 12.04 12.87 13.69 13.60	AREA RATIO 1.115 1.118 1.124 1.130 1.140 1.151 1.161 1.165 1.171	

TABLE 10. - BLADE GEOMETRY FOR ROTOR 25A

RP 1 P 1 23456789	5. 10. 15. 30. 70. 85. 90.	RI 25.400 25.167 24.91: 24.655 23.885 22.857 21.829 21.057	25.146 24.892 24.638 23.876 22.860 21.844 21.082 20.828 20.574	KIC 64.62 64.39 64.14 63.88 63.07 61.95 50.75 59.80 59.47	ADE ANGL KTC 56.28 56.05 55.75 55.37 54.11 50.34 48.67 48.04 47.29 46.62	ES KOC 53.40 53.54 51.95 49.96 46.98 43.49 40.34 39.11 37.61 36.02	DELTA INC 1.15 1.34 1.54 1.74 2.33 3.08 3.79 4.30 4.47 4.63 4.76	CONE ANGLE 0.057 -0.958 -0.850 -0.741 -0.399 0.114 0.559 0.935 1.069 1.202 0.057
55	BLADE				XIAL DI		-	
RP T 1 2 3 4 5 6 7 8 9 HUB	71 0.051 0.051 0.051 0.051 0.051 0.051 0.051	TM 0.075 0.079 0.084 0.100 0.117 0.132 0.143 0.147 0.153	0.051	0.072 0.047 0.026 0.018 0.008	ZMC 0.689 0.692 0.694 0.696 0.703 0.713 0.720 0.726 0.728 0.730	ZTC 1.003 0.997 0.989 0.962 0.958 0.922 0.878 0.841 0.827 0.813 0.800	ZOC 1.365 1.374 1.384 1.395 1.432 1.484 1.539 1.585 1.602 1.622 1.643	
RP 1 P 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 2.479 2.481 2.481 2.481 2.481 2.481 2.481 2.481 2.481 2.482	SETTING ANGLE 59.00 58.70 58.34 57.92 56.52 54.46 52.12 50.07 49.29 48.38 47.49	CAMBER	1.461 1.479	X FACTOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	PHISS 10.04 10.29 10.97 12.12 15.56 14.92 15.98 16.37 16.85 17.29	AREA RATIO 1.114 1.117 1.123 1.132 1.144 1.156 1.167 1.172 1.178 1.183	

TABLE 11. - BLADE GEOMETRY FOR ROTOR 26B

RP TiP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 50. 70. 85. 90.	R!	R0 25.400 25.146 24.692 24.638 25.876 22.860 21.844 21.082 20.828 20.574	BLAD K!C 64.09 63.76 63.41 63.08 62.19 61.08 59.94 59.94 59.82 58.54 58.31	E ANGLE KTC 56.86 56.43 55.94 55.94 53.94 549.85 49.85 49.85 48.12 46.55 45.77	KOC 49.41 48.59 47.71 45.73 45.79 59.45 59.45 29.64 27.61 25.01 22.18	DELTA INC. 2.05 2.22 2.41 2.61 5.17 5.06 5.21 5.34 5.45	COME ANGLE 0.057 -0.747 -0.336 -0.814 -0.427 0.136 0.758 1.017 0.885 0.057
	BLADE	THICKN	ESSES	A	KIAL DIN	MENS: ON	S	
RP 1 1 2 3 4 5 6 7 8 9 HUB	TI 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	TM 0.126 0.132 0.139 0.146 0.167 0.194 0.220 0.259 0.245 0.255	TO 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	Z!C 0.339 0.326 0.312 0.297 0.254 0.195 0.129 0.074 0.052 0.024	ZMC 1.569 1.370 1.371 1.371 1.373 1.374 1.374 1.375 1.373 1.373	ZTC 1.345 1.351 1.315 1.298 1.244 1.166 1.078 1.005 0.974 0.941	ZCC 2.622 2.645 2.666 2.600 2.759 2.806 2.931 3.050 3.129 3.175	
RP TIP 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 4.212 4.214 4.214 4.214 4.214 4.214 4.214 4.214 4.214 4.214 4.214	SETTING ANGLE 56.73 56.18 55.56 54.91 52.99 50.26 47.13 44.37 43.22 41.78 40.31		SOLIDITY 1.795 1.813 1.851 1.850 1.909 1.995 2.090 2.166 2.192 2.219 2.245	X FACTOR 1.030 1.030 1.000 1.000 1.000 1.000 1.000 1.000	PHISS 9.21 9.45 9.45 10.38 11.36 12.34 13.61 14.64 15.66 15.67 16.21	RATIO 1.121 1.120 1.119 1.119 1.121 1.132 1.146 1.162 1.171 1.182 1.192	

TABLE 12. - BLADE GEOMETRY FOR ROTOR 27A

RP TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 70. 85. 90.	RI 25.400 25.177 24.927 24.673 23.895	25.146 24.892 24.638 25.876 22.860 21.844 21.082 20.828 20.574	KIC 63.52 63.19 62.85 62.52 61.64 60.54 59.40 58.57 58.29 58.02	56.32 55.81 55.28 53.78 51.80 49.68 47.95 47.25	K0C 49.69 48.85 47.95 46.95 43.96 39.60 34.47 29.81 27.79 25.19	2.78 2.98 3.15 3.72 4.45 5.13 5.60 5.74 5.87	CONE ANGLE 0.057 -0.491 -0.491 -0.259 0.107 0.451 0.621 0.606 0.525 0.057
RP TIP 1 2 3 4 5 6 7 8 9 HUB	BLAD TI 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	0.224 0.236 0.248 0.284 0.330 0.375	TO	Z1C 0.609 0.586 0.559 0.532 0.453 0.348 0.229 0.131 0.092 0.044	2.388 2.387 2.384 2.381 2.374 2.368 2.366	MENSION ZTC 2.330 2.305 2.276 2.245 2.248 2.009 1.849 1.716 1.665 1.606	Z0C 4.524 4.560 4.598 4.638 4.754 4.914 5.086 5.231	
RP T 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 7.161 7.164 7.164 7.164 7.164 7.164 7.165 7.163 7.165		CAMBER 13.82 14.34 14.90 15.56 17.69 20.94 24.94 28.76	1.850 1.909 1.995 2.090 2.166 2.192	1.000	PHISS 9.27 9.51 10.15 11.14 12.40 13.65 14.65 15.65 16.18	AREA RAT10 1.145 1.145 1.145 1.145 1.156 1.157 1.188 1.197 1.208 1.218	

TABLE 13. - BLADE GEOMETRY FOR ROTOR 28B

RP TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 50. 70. 85. 90.	R1 25.400 25.191 24.952 24.701 23.905 22.831 21.757 20.971 20.730 20.503	25.146 24.892 24.638 23.876 22.860 21.844 21.082 20.828 20.574	63.64 63.17 62.75 61.79 60.68 59.54 58.68	KTC 54.88 54.10 53.28 52.52 50.77 48.52 46.14 44.18 43.17 41.90	K0C 45.13 43.52 41.95 40.44 36.53 30.86 24.17 18.04 14.75 10.38	5.59	
RP TIP 1 2 3 4 5 6 7 8 9 HUB		TM 0.188 0.197 0.207 0.217 0.250 0.292 0.332 0.360 0.369 0.377	TO 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	Z1C 0.702 0.669 0.634 0.599 0.515 0.402 0.279 0.172 0.120	2.295	ZTC 2.253 2.224 2.191 2.157 2.055 1.909 1.744 1.603 1.541 1.468	ZCC 4.362 4.419 4.473 4.523 4.645 4.808 4.983 5.125 5.192 5.278	
RP T 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 6.365 6.368 6.368 6.368 6.368 6.368 6.368 6.368 6.366 6.365	54.57 53.58 52.56 51.59 49.16 45.77 41.86 38.36 36.56		1.812	X FACTOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000		RATIO 1.204 1.190 1.195 1.188 1.185 1.198 1.217 1.244 1.259 1.277 1.293	

TABLE 14. - BLADE GEOMETRY FOR STATOR 20

RP TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 50. 70. 85. 90.	R1 25.400 25.133 24.881 24.628 23.871 22.858 21.850 21.092 20.839	R0 25.400 25.109 24.859 24.610 23.861 22.863 21.864 21.116 20.866 20.616	K1C 44.75 42.84 41.49 40.84 41.01 42.05 43.44 45.42 46.53 48.07	24.92 24.68 24.63 25.13 26.12 27.28 28.56 29.16 29.95	.KOC -10.67 -10.64 -9.62 -9.39 -9.26 -9.30 -9.40 -9.69 -9.90	4.45 4.32 4.20 3.63 5.34 2.53 2.42	CONE ANGLE 0.057 -0.299 -0.205 -0.126 0.067 0.176 0.294 0.374 0.057
RP T 1 2 5 4 5 6 7 8 9 B	TI 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	THICKN TM 0.256 0.250 0.244 0.238 0.222 0.200 0.180 0.165 0.165 0.150	TO 0.051 0.051 0.051 0.051 0.051 0.051 0.051	Z1C 5.633 5.615 5.695 5.598 5.625 5.625 5.646 5.659		ZTC 7.076 7.019 6.976 6.948 6.917 6.891 6.871 6.872 6.880 6.894	Z0C 10.26: 10.257 10.255 10.254 10.254 10.252 10.252 10.253 10.254	
RP TIP 1 2 3 4 5 6 7 8 9 HUB		SETTING ANGLE 17.06 16.39 15.73 15.73 15.87 16.38 17.02 17.86	TOTAL CAMBER 55.42 52.87 51.11 50.23 50.28 51.35 52.84	SOLIDITY 1.594 1.611 1.627 1.644 1.696 1.771 1.852 1.918	X FACTOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000		AREA RATIO 1.782 1.753 1.750 1.715 1.690 1.672 1.655 1.668 1.678	

TABLE 15. - BLADE GEOMETRY FOR STATOR 20B

RP TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 50. 70. 85. 90.	RI 25.400 25.136 24.884	R0 25.400 25.105 24.855 24.606 23.859 22.866 21.867 21.120 20.871 20.622	KIC	24.92 24.68 24.63 25.13 26.12 27.28 28.56 29.16 29.93	KOC -10.67 -10.04 -9.62 -9.39 -9.26 -9.30 -9.40	4.42 4.32 4.20 3.83 3.34 2.88 2.53 2.42 2.31	0.436 0.491
	BLAD	E THICKN	NESSES	A	XIAL DI	MENSION	S	
RP	TI	TM	TO	ZIC	ZMC	ZTC	ZOC	
TIP 1	0.051 0.051	0.256	0.051	3.706 3.687	5.845 5.848	5.147	8.333 8.330	
	0.051	0.244	0.051	3.674	5.850	5.048	8.328	
2 3 4 5 6 7	0.051 0.051	0.238	0.051	3.667 3.671	5.851 5.851	5.021 4.990	8.326 8.326	
5	0.031	0.200	0.051	3.681	5.847	4.963	8.325	
7	0.051		0.051	3.697 3.719	5.845 5.840	4.943 4.944	8.325 8.325	
8 9	0.051	0.160	0.051	3.732	5.838	4.952	8.326	
HUB	0.051 0.051		0.051 0.051	3.749 3.770	5.834 5.830	4.966 4.983	8.327 8.329	
RP	AERO CHORD			SOLIDITY	X FACTOR	PHISS	AREA RATIO	
TIP	4.891	17.05	55.40	1.226	1.000	22.51	1.781	
1 2	4.890 4.891	16.39 15.93	52.87 51.11	1.239	1.000	20.66	1.753	
2 3 4	4.891	15.73	50.22	1.265	1.000	18.71	1.713	
4 5	4.891 4.891	15.87 16.38	50.28 51.35	1.305 1.362	1.000	18.11	1.690	
5 6 7	4.891	17.02	52.83	1.424	1.000	17.75	1.656	
8	4.891 4.890	17.86 18.31	55.12 56.43	1.475 1.493	1.000	18.26 18.70	1.655 1.660	
9 HUB	4.890 4.891		58.27 60.46		1.000	19.40 20.24		
HUB	4.091	19.01	00.46	1.552	1.000	20.24	1.677	

TABLE 16. - BLADE GEOMETRY FOR STATOR 21

RP TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 70. 85. 90.	R1 25.400 25.132 24.878 24.625 23.870 22.862 21.851 21.092 20.838	R0 25.400 25.113 24.867 24.622 23.877 22.883 21.888 21.137 20.882 20.622	K1C 55.65 52.43 50.10 48.86 48.60 49.66 51.16 53.65 55.23 57.42	29.85 29.34 29.14 29.59 30.71 32.07 33.68 34.53 35.65	KOC -12.89 -11.86 -11.17 -10.77 -10.52 -10.63 -11.02 -11.33	4.14 4.07 5.93 3.88 3.52 3.04 2.58 2.24 2.13 2.02	CONE ANGLE 0.057 -0.292 -0.165 -0.057 0.102 0.518 0.558 0.663 0.564 0.057
RP TIP 1 2 3 4 5 6 7 8 9 HUB	BLADE TI 0.051 0.051 0.051 0.051 0.051 0.051 0.051	TM 0.212 0.208 0.203 0.198 0.184 0.166 0.149 0.137 0.133	TO 0.051 0.051 0.051 0.051 0.051 0.051 0.051	Z1C 7.507 7.475 7.451 7.438 7.440 7.450 7.466 7.493 7.511	XIAL DI ZMC 9.160 9.169 9.171 9.174 9.170 9.166 9.160 9.157 9.151	ZTC 8.645 8.591 8.548 8.520 8.489 8.462 8.441 8.459 8.446 8.457	Z0C 11.265 11.260 11.257 11.254 11.255 11.255	
RP TIP 1 2 3 4 5 6 7 8 9 HUB	AERO S CHORD 4.088 4.086 4.087 4.088 4.087 4.087 4.087 4.087 4.087 4.088	21.42 20.27		SOLIDITY 1.793 1.812 1.851 1.849 1.907 1.991 2.082 2.157 2.183 2.210 2.241	X FACTOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	PHISS 27.64 25.06 23.14 21.99 21.02 20.62 20.47 21.14 21.80 22.82 24.02	AREA RAT-10 1.747 1.688 1.615 1.585 1.564 1.558 1.558 1.558 1.598	

TABLE 17. - BLADE GEOMETRY FOR STATOR 22

RP TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 50. 70. 85. 90.	RI 25.400 25.131 24.875 24.622 23.867 22.858 21.843	R0 25.400 25.128 24.901 24.670 23.968 23.034 22.107 21.420 21.110 20.724	KIC 66.41 60.99 57.00 54.84 54.32 55.45 57.16	E ANGLE KTC 33.55 32.34 31.49 31.11 31.56 52.60 34.36 36.16 37.32 38.88 40.66	KOC -16.09 -14.27 -13.04 -12.34 -12.02 -12.03 -12.17 -12.70 -13.14 -13.86	4.31 4.27 4.19 3.83 3.35 2.89 2.55 2.44 2.32	CONE ANGLE 0.057 -0.057 0.258 0.483 1.006 1.757 2.654 3.468 2.903 1.503 0.057
RP TIP 1 2 3 4 5 6 7 8 9 HUB	BLADE TI 0.051 0.051 0.051 0.051 0.051 0.051 0.051	THICKN TM 0.320 0.313 0.307 0.300 0.278 0.250 0.223 0.204 0.199 0.198	ESSES TO 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	Z1C 7.490 7.393 7.323 7.287 7.280 7.303 7.337 7.392 7.433	XIAL DIN ZMC 9.768 9.805 9.818 9.826 9.825 9.823 9.818 9.807 9.796 9.780	ZTC 9.203 9.100 9.021 8.969 8.869 8.856 8.832 8.839 6.852	ZOC 13.072 15.055 13.043 15.037 15.034 15.034 15.036 13.038 13.040 13.042	
RP TIP 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 6.224 6.215 6.218 6.222 6.222 6.225 6.225 6.225 6.223 6.224	25.26 23.30 21.96 21.28 21.15 21.71 22.50 23.72 24.60	CAMBER 82.50 75.25 70.04 67.18 66.34 67.48 69.33 72.83 75.54 79.43	2.205	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	35.65 31.38 28.17 26.31 25.06 24.46 25.38 26.40	AREA RAT10 1.837 1.703 1.5046 1.512 1.494 1.484 1.552 1.619 1.709 1.813	

TABLE 18. - STATIC ROTOR TIP CLEARANCES

Rotor		Clearance, cm							
	Maximum	Minimum	Arithmetic average						
23B	0.048	0.023	0.036						
23D	. 048	.048	. 039						
24A	. 061	.048	. 055						
24B	. 066	. 043	. 055						
25 A	.048	. 033	. 042						
26B	. 064	. 030	. 051						
26D	i	. 041	. 051						
27A		. 041	. 053						
27C	♥	. 033	. 048						
27D	. 069	.051	. 056						
28B	. 056	. 038	. 047						
28D	. 061	. 028	. 045						

TABLE 19. - OVERALL PERFORMANCE OF STAGE 23B-20

AIRFLOW AT ORIFICE	3721 1.391 0.979 1.107 0.998 0.921 0.932 0.371 0.492 55.34 11.22 11.52 11.52 11.47 11.22 0993.2	3748 1.436 0.969 1.119 0.997 0.917 0.948 0.413 0.453 51.81 143.92 10.50 10.77 10.94 10.35	3723 1.458 0.961 1.127 0.997 0.895 0.928 0.435 0.413 47.66 132.40 9.66 9.92 10.01 9.38
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO	1.362 1.105 0.882	1.392 1.115 0.861	1.401 1.124 0.818
(b) 110 Percent of design speed			
AIRFLOW AT ORIFICE	3716 1.305 0.986 1.086 0.917 0.933 0.345 0.487 51.08 141.88 10.55 10.65 10.40 0098.9 110.1	3719 1.359 0.971 1.102 0.997 0.898 0.932 0.407 4.416 44.51 123.65 9.02 9.28 9.39 8.78 10084.5 110.0	
STAGE TOTAL PRESSURE RATIO 1.199 STAGE TOTAL TEMPERATURE RATIO 1.069 STAGE ADIABATIC EFFICIENCY 0.769	1.287 1.085 0.881	1.320 1.099 0.834	
(c) 100 Percent of design speed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.180 1.218 STATOR TOTAL PRESSURE RATIO . 0.993 0.992 ROTOR TOTAL TEMPERATURE RATIO 1.066 1.064 STATOR TOTAL TEMPERATURE RATIO 1.001 1.000 ROTOR ADIABATIC EFFICIENCY 0.861 0.905 ROTOR MOMENTUM-RISE EFFICIENCY 0.853 0.915 ROTOR MOMENTUM-RISE EFFICIENCY 0.853 0.915 ROTOR HEAD-RISE COEFFICIENT 0.248 0.301 FLOW COEFFICIENT 0.538 0.510 AIRFLOW PER UNIT FRONTAL AREA 51.36 48.90 AIRFLOW PER UNIT ANNULUS AREA 142.68 135.83 AIRFLOW AT ORIFICE 10.41 9.91 AIRFLOW AT ROTOR INLET 10.69 10.19 AIRFLOW AT ROTOR OUTLET 10.51 10.03 AIRFLOW AT STATOR OUTLET 10.48 9.98 ROTATIVE SPEED 9169.7 9158.2 PERCENT OF DESIGN SPEED 100.0 99.9	3713 1.241 0.989 1.069 0.999 0.916 0.332 0.481 46.36 128.79 9.40 9.67 9.57 9.44 9148.2 99.8	3714 1.266 0.984 1.076 0.998 0.912 0.937 0.367 0.446 43.26 120.17 8.77 9.04 9.02 9.09	3715 1.285 0.977 1.083 0.998 0.891 0.925 0.394 0.401 39.33 109.25 7.97 8.22 8.25 7.84 9140.6 99.7
STAGE TOTAL PRESSURE RATIO	1.227 1.068 0.882	1.245 1.074 0.868	1.255 1.081 0.824

TABLE 19. - Continued.

(d) 90 Percent of design speed			
STATOR TOTAL PRESSURE RATIO 0.992 ROTOR TOTAL TEMPERATURE RATIO 1.040 STATOR TOTAL TEMPERATURE RATIO 1.002 ROTOR ADIABATIC EFFICIENCY 0.831 ROTOR MOMENTUM-RISE EFFICIENCY 0.798 ROTOR HEAD-RISE COFFICIENT 0.207 FLOW COEFFICIENT 0.557 AIRFLOW PER UNIT FRONTAL AREA 48.23 AIRFLOW PER UNIT ANNULUS AREA 133.98 AIRFLOW AT ORIFICE 9.78 AIRFLOW AT ROTOR INLET 10.06 AIRFLOW AT ROTOR OUTLET 9.79 AIRFLOW AT STATOR OUTLET 9.80 ROTATIVE SPEED 8265.2 8265.2 ROTATIVE SPEED 8265.2 ROTATIVE SPEED 9.01 9.01 9.01 9.01 9.01 9.01 9.01 9.01 9.01 9.01 9.01 9.0	0.993	3728 3727 .163 1.186 0.992 0.990 .055 1.061 .000 0.992 .917 0.912 .911 0.922 1.317 0.352 1.480 0.441 2.17 39.22 8.55 7.95 8.82 8.20 8.64 8.06 58.9 899.2	1.230 0.980 1.069 0.999 2 0.886 2 0.911 2 0.389 0.389 2 35.02 97.29 7.10 7.33 7.24 7.02 8282.5
COMPRESSOR PERFORMANCE			
STAGE TOTAL TEMPERATURE RATIO 1.042	1.049 1	.177 1.197 .054 1.061 .877 0.870	1.067
(e) 80 Percent of design speed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE		0.984 .054 0.999 0.891 0.912 0.383 0.385 0.74 05.40 6.23 6.44 6.38 6.19	
STAGE TOTAL PRESSURE RATIO	1	.053	
(f) 70 Percent of design speed			
READING NUMBER 3737 ROTOR TOTAL PRESSURE RATIO 1.063 STATOR TOTAL PRESSURE RATIO 0.990 ROTOR TOTAL TEMPERATURE RATIO 1.021 STATOR TOTAL TEMPERATURE RATIO 1.002 ROTOR ADIABATIC EFFICIENCY 0.837 ROTOR MOMENTUM-RISE EFFICIENCY 0.791 ROTOR HEAD-RISE COEFFICIENT 0.179 FLOW COEFFICIENT 0.570 AIRFLOW PER UNIT FRONTAL AREA 39.16 AIRFLOW PER UNIT ANNULUS AREA 108.77 AIRFLOW AT ORIFICE 7.94 AIRFLOW AT ROTOR INLET 8.19 AIRFLOW AT STATOR OUTLET 7.99 AIRFLOW AT STATOR OUTLET 7.86 ROTATIVE SPEED 6411.3 PERCENT OF DESIGN SPEED 69.9 COMPRESSOR PERFORMANCE	3738 1.085 0.995 1.026 1.001 0.898 0.869 0.240 0.527 36.59 101.64 7.42 7.64 7.43 7.41 6429.3	0.995 1.031 1.000 0.914 0.906 0.292 0.481 33.43 92.86 6.78 7.00 6.81 6.80	3741 1.134 0.988 1.041 1.000 1.895 0.908 0.377 0.378 16.44 73.44 5.36 5.55 5.47 5.34 116.5 70.0
STAGE TOTAL PRESSURE RATIO 1.053 STAGE TOTAL TEMPERATURE RATIO 1.022 STAGE ADIABATIC EFFICIENCY 0.667	1.080 1.027 0.821	1.031	.120 1.041).811

TABLE 19. - Concluded.

STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE	.5517.5 60.2
STAGE TOTAL PRESSURE RATIO	. 1.087 . 1.030 . 0.813
STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR HEAD-RISE COEFFICIENT . FLOW COEFFICIENT . AIRFLOW PER UNIT FRONTAL AREA . AIRFLOW PER UNIT ANNULUS AREA . AIRFLOW AT ROTOR INLET . AIRFLOW AT ROTOR INLET . AIRFLOW AT ROTOR OUTLET . AIRFLOW AT STATOR OUTLET . ROTATIVE SPEED .	. 0.364 . 0.368 . 18.50 . 51.38 3.75 3.91

TABLE 20. - OVERALL PERFORMANCE OF STAGE 23D-20C

READING NUMBER 3867 3866 ROTOR TOTAL PRESSURE RATIO 1.316 1.375 STATOR TOTAL PRESSURE RATIO 0.985 0.980 ROTOR TOTAL TEMPERATURE RATIO 1.097 1.106 STATOR TOTAL TEMPERATURE RATIO 0.999 0.998 ROTOR ADIABATIC EFFICIENCY 0.842 0.897 ROTOR MOMENTUM-RISE EFFICIENCY 0.851 0.905 ROTOR HEAD-RISE COEFFICIENT 0.302 0.355 FLOW COEFFICIENT 0.483 0.477 AIRFLOW PER UNIT FRONTAL AREA 54.66 54.09 AIRFLOW PER UNIT ANNULUS AREA 151.84 150.26 AIRFLOW AT ORIFICE 11.08 10.96 AIRFLOW AT ROTOR INLET 11.35 11.24 AIRFLOW AT ROTOR OUTLET 11.37 11.36 AIRFLOW AT STATOR OUTLET 11.04 10.94 ROTATIVE SPEED 11001.9 11001.5 PERCENT OF DESIGN SPEED 120.0 120.1	1.401 0.978 1.111 0.998	3864 1.440 0.970 1.121 0.997 0.908 0.920 0.417 0.431 49.61 137.80 10.05 10.30 10.59 10.21	3863 1.460 0.963 1.128 0.998 0.892 0.911 0.439 0.401 46.30 9.38 9.66 9.96 9.96 10956.5
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO	1.371 1.109 0.868	1.396 1.118 0.850	1.406 1.126 0.814
(b) 110 Percent of design speed			
READING NUMBER 3861 ROTOR TOTAL PRESSURE RATIO 1.255 STATOR TOTAL PRESSURE RATIO 0.989 ROTOR TOTAL TEMPERATURE RATIO 1.079 STATOR TOTAL TEMPERATURE RATIO 0.999 ROTOR ADIABATIC EFFICIENCY 0.853 ROTOR MOMENTUM-RISE EFFICIENCY 0.862 ROTOR HEAD-RISE COEFFICIENT 0.291 FLOW COEFFICIENT 0.493 AIRFLOW PER UNIT FRONTAL AREA 51.72 AIRFLOW PER UNIT ANNULUS AREA 143.66 AIRFLOW AT ORIFICE 10.48 AIRFLOW AT ROTOR INLET 10.73 AIRFLOW AT ROTOR OUTLET 10.63 AIRFLOW AT STATOR OUTLET 10.63 AIRFLOW AT STATOR OUTLET 10.45 ROTATIVE SPEED 10082.3 PERCENT OF DESIGN SPEED 109.9	3860 1.319 0.984 1.091 0.998 0.907 0.915 0.361 0.453 48.10 133.61 9.75 9.99 10.01 9.73	3859 1.369 0.970 1.106 0.997 0.883 0.900 0.420 0.390 42.01 116.69 8.51 8.73 8.98 8.60 10062.0	
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO	1.298 1.089 0.868	1.328 1.104 0.816	
(c) 100 Percent of design speed			
READING NUMBER 3857 3856 ROTOR TOTAL PRESSURE RATIO 1.183 1.230 STATOR TOTAL PRESSURE RATIO 0.992 0.989 ROTOR TOTAL TEMPERATURE RATIO 1.050 0.999 ROTOR ADIABATIC EFFICIENCY 0.836 0.892 ROTOR MOMENTUM-RISE EFFICIENCY 0.834 0.902 ROTOR HEAD-RISE COEFFICIENT 0.252 0.315 FLOW COEFFICIENT 0.510 0.479 AIRFLOW PER UNIT FRONTAL AREA 49.25 46.53 AIRFLOW PER UNIT ANNULUS AREA 136.80 129.25 AIRFLOW AT ROTOR INLET 10.22 9.68 AIRFLOW AT ROTOR OUTLET 10.09 9.61 AIRFLOW AT STATOR OUTLET 10.09 9.61 AIRFLOW AT STATOR OUTLET 10.06 9.38 ROTATIVE SPEED 9199.8 9187.4 PERCENT OF DESIGN SPEED 100.3 100.2	3852 1.252 0.988 1.073 0.999 0.902 0.919 0.348 0.449 43.71 121.41 8.86 9.10 9.08 8.84 9143.9 99.7	3853 1.279 0.982 1.081 0.998 0.903 0.916 0.384 0.418 41.02 113.93 8.31 8.54 8.64 8.32 9156.8 99.9	3855 1.304 0.972 1.090 0.978 0.878 0.894 0.417 0.378 37.46 104.05 7.59 7.80 8.06 7.69 9176.2 100.1
STAGE TOTAL PRESSURE RATIO 1.173 1.216	1.237	1.255	1.267
STAGE TOTAL TEMPERATURE RATIO 1.059 1.067 STAGE ADIABATIC EFFICIENCY 0.789 0.858	1.072	1.078	1.086

TABLE 20. - Continued.

The state of the s

(2) 00 1 00 00 00	6	_			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	. 0.992 . 1.041 . 1.001 . 0.806 . 0.810 . 0.209 . 0.534 . 46.56 . 129.33 9.44 9.68 9.58 9.55 . 8248.5	3872 1.167 0.993 1.051 1.000 0.887 0.906 0.285 0.497 43.51 120.87 8.82 9.07 9.02 8.89 8242.1 89.9	3871 1.194 0.990 1.057 0.999 0.903 0.922 0.330 0.455 8.15 8.15 8.39 8.41 8.19 8249.6 90.0	3870 1.215 0.988 1.063 0.999 0.902 0.925 0.366 0.417 37.03 102.87 7.51 7.73 7.79 7.61 8246.4 89.9	3869 1.235 0.981 1.070 0.999 0.886 0.899 0.400 0.374 33.50 93.05 6.79 6.99 7.14 6.97 8253.6 90.0
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO	. 1.043	1.158 1.051 0.843	1.182 1.057 0.861	1.201 1.063 0.856	1.211 1.069 0.812
(e) 80 Percent of de	esign spee	d			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT			. 0.985 . 1.056 . 1.000 . 0.885 . 0.904 . 0.393 . 0.364 . 29.23 . 81.19 5.92 6.11 . 6.26 . 6.11		
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY			. 1.055		
(f) 70 Percent of des	sign speed	I			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE	. 0.994 . 1.024 . 1.002 . 0.862 . 0.860 . 0.211 . 0.534 . 37.08 . 102.99 7.51 7.72 7.63 7.59	3880 1.094 0.995 1.029 1.001 0.902 0.908 0.264 0.499 34.74 96.51 7.04 7.25 7.20 7.10 6432.3	3879 1.109 0.994 1.033 1.001 0.914 0.921 0.305 0.459 32.10 89.16 6.51 6.72 6.70 6.55 6443.2 70.3	3878 1.124 0.993 1.037 1.000 0.915 0.922 0.351 0.411 28.78 79.94 5.83 6.02 6.09 5.92 6419.3 70.0	3877 1.139 0.987 1.042 1.000 0.895 0.901 0.388 0.360 25.45 70.71 5.16 5.32 5.47 5.30 6445.3
STAGE TOTAL PRESSURE RATIO	. 1.068	1.088	1.103	1.116	1.124
STAGE TOTAL TEMPERATURE RATIO	. 1.026	1.030	1.033	1.037	1.042

TABLE 20. - Concluded.

EADING NUMBER 3883 OTOR TOTAL PRESSURE RATIO 1,100 TATOR TOTAL PRESSURE RATIO 0,991 OTOR TOTAL TEMPERATURE RATIO 1,031 TATOR TOTAL TEMPERATURE RATIO 1,000 OTOR ADIABATIC EFFICIENCY 0,896 OTOR MOMENTUM-RISE EFFICIENCY 0,907 OTOR HEAD-RISE COEFFICIENT 0,382 LOW COEFFICIENT 0,358 IRFLOW PER UNIT FRONTAL AREA 21,74 IRFLOW PER UNIT ANNULUS AREA 60,39 IRFLOW AT ROTOR INLET 4,41 IRFLOW AT ROTOR OUTLET 4,54 OTATIVE SPEED 5512.3 ERCENT OF DESIGN SPEED 60,1 OMPRESSOR PERFORMANCE TAGE TOTAL TEMPERATURE RATIO 1,089 TAGE TOTAL TEMPERATURE RATIO 1,031 TAGE ADJABATIC EFFICIENCY 0,804
TAGE ADIADATIC ETTICIENCY
(h) 50 Percent of design speed
SABSTREE SABSTREE
TAGE TOTAL PRESSURE RATIO 1.061 TAGE TOTAL TEMPERATURE RATIO 1.022
STAGE ADIABATIC EFFICIENCY 0.794

TABLE 21. - OVERALL PERFORMANCE OF STAGE 24A-20

READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.307 1.385 1.466 STATOR TOTAL PRESSURE RATIO . 0.986 0.981 0.961 ROTOR TOTAL TEMPERATURE RATIO . 1.092 1.107 1.129 STATOR TOTAL TEMPERATURE RATIO . 1.000 0.998 0.998 ROTOR ADIABATIC EFFICIENCY . 0.864 0.912 0.893 ROTOR MOMENTUM-RISE EFFICIENCY . 0.855 0.914 0.897 ROTOR HEAD-RISE COEFFICIENT . 0.293 0.365 0.440 FLOW COEFFICIENT . 0.518 0.490 0.410 AIRFLOW PER UNIT FRONTAL AREA . 58.12 55.43 47.68 AIRFLOW PER UNIT ANNULUS AREA . 161.46 153.98 132.44 AIRFLOW AT ROTOR INLET . 11.78 11.24 9.66 AIRFLOW AT ROTOR OUTLET . 11.78 11.24 9.66 AIRFLOW AT ROTOR OUTLET . 11.93 11.55 9.90 AIRFLOW AT ROTOR OUTLET . 11.93 11.58 10.33 AIRFLOW AT STATOR OUTLET . 11.67 11.12 9.77 ROTATIVE SPEED . 11013.3 11004.8 11014.6 PERCENT OF DESIGN SPEED . 120.1 120.0 120.1	
COMPRESSOR PERFORMANCE	
STAGE TOTAL PRESSURE RATIO 1.289 1.359 1.409 STAGE TOTAL TEMPERATURE RATIO 1.092 1.105 1.127 STAGE ADIABATIC EFFICIENCY 0.821 0.875 0.811	
(b) 110 Percent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.218 1.311 1.374 STATOR TOTAL PRESSURE RATIO . 0.991 0.984 0.967 ROTOR TOTAL TEMPERATURE RATIO . 1.069 1.088 1.107 STATOR TOTAL TEMPERATURE RATIO . 1.001 0.999 0.998 ROTOR ADIABATIC EFFICIENCY . 0.843 0.915 0.888 ROTOR MOMENTUM-RISE EFFICIENCY . 0.837 0.915 0.894 ROTOR HEAD-RISE COEFFICIENT . 0.249 0.352 0.422 FLOW COEFFICIENT . 0.532 0.480 0.402 AIRFLOW PER UNIT FRONTAL AREA . 155.29 50.63 43.35 AIRFLOW PER UNIT ANNULUS AREA . 153.60 140.64 120.41 AIRFLOW AT ORIFICE 11.21 10.26 8.79 AIRFLOW AT ROTOR INLET . 11.47 10.52 9.02 AIRFLOW AT ROTOR OUTLET . 11.23 10.58 9.36 AIRFLOW AT STATOR OUTLET . 11.23 10.58 9.36 AIRFLOW AT STATOR OUTLET . 11.25 10.22 8.89 ROTATIVE SPEED 10107.0 10090.1 10107.2 PERCENT OF DESIGN SPEED . 110.2 110.0 110.2	
STAGE TOTAL PRESSURE RATIO 1.207 1.290 1.329 STAGE TOTAL TEMPERATURE RATIO 1.070 1.086 1.105 STAGE ADIABATIC EFFICIENCY 0.794 0.873 0.811	
(c) 100 Percent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.146 1.207 1.237 1.267 STATOR TOTAL PRESSURE RATIO 0.988 0.991 0.989 0.987 ROTOR TOTAL TEMPERATURE RATIO 1.049 1.061 1.069 1.077 STATOR TOTAL TEMPERATURE RATIO 1.001 1.000 0.999 1.000 ROTOR ADIABATIC EFFICIENCY 0.814 0.899 0.910 0.908 ROTOR MOMENTUM-RISE EFFICIENCY 0.802 0.899 0.915 0.918 ROTOR MEAD-RISE COEFFICIENT 0.203 0.288 0.328 0.367 FLOW COEFFICIENT 0.552 0.513 0.480 0.440 AIRFLOW PER UNIT FRONTAL AREA 52.56 49.29 46.50 43.07 AIRFLOW PER UNIT ANNULUS AREA 146.00 136.91 129.16 119.64 AIRFLOW AT ROTOR INLET 10.91 10.23 9.67 8.95 AIRFLOW AT ROTOR OUTLET 10.56 10.11 9.67 9.00 AIRFLOW AT ROTOR OUTLET 10.56 10.11 9.67 9.00 AIRFLOW AT STATOR OUTLET 10.56 9.99 9.43 8.75 ROTATIVE SPEED . 9156.7 9138.1 9141.8 9164.9 PERCENT OF DESIGN SPEED . 99.9 99.7 99.7	1.291 0.979 1.085 1.000 0.887 0.899 0.400 0.398 39.24 109.01 7.95 8.17 8.34 8.04
COMPRESSOR PERFORMANCE	
STAGE TOTAL PRESSURE RATIO	1.085

TABLE 21. - Continued.

		(4) 00 1 0100		pren phoo	-			
READING NUMBER ROTOR TOTAL PRESS STATOR TOTAL PRESS ROTOR TOTAL TEMPE STATOR TOTAL TEMPE STATOR TOTAL TEMPE STATOR TOTAL TEMPE ROTOR ADIABATIC E ROTOR MOMENTUM-RI ROTOR HEAD-RISE C FLOW COEFFICIENT AIRFLOW PER UNIT AIRFLOW AT ORIFIC AIRFLOW AT ROTOR AIRFLOW AT ROTOR AIRFLOW AT STATOR ROTATIVE SPEED PERCENT OF DESIGN	SURE RATIO RATURE RATIO PERATURE RATIO PERICIENCY SE EFFICIENCY OEFFICIENT FRONTAL AREA ANNULUS AREA INLET OUTLET OUTLET			. 0.989 . 1.039 . 1.001 . 0.859 . 0.854 . 0.208 . 0.556 . 48.28 . 134.11 9.79 . 10.03 9.80 9.68 . 8246.6	3687 1.157 0.993 1.047 1.000 0.898 0.267 0.516 45.28 125.77 9.18 9.41 9.24 9.12 8260.6 90.1	3688 1.193 0.990 1.057 1.000 0.911 0.915 0.328 0.467 41.38 114.96 8.39 8.61 8.60 8.40 8257.2 90.0	3689 1.214 0.988 1.063 1.000 0.909 0.923 0.363 0.433 38.48 106.89 7.80 8.02 8.10 7.82 8258.7 90.1	3690 1.232 0.982 1.070 1.000 0.882 0.895 0.393 34.53 95.91 7.00 7.21 7.32 7.08 8277.6
COMPRESSOR PERFOR	MANCE							
STAGE TOTAL PRESS STAGE TOTAL TEMPE STAGE ADIABATIC E	RATURE RATIO .			. 1.040	1.149 1.048 0.844	1.181 1.056 0.868	1.199 1.062 0.856	1.210 1.070 0.805
		(e) 80 Percen	nt of des	sign speed	1			
	READING NUMBE ROTOR TOTAL P STATOR TOTAL T STATOR TOTAL T STATOR TOTAL ROTOR ADIABAT ROTOR MOMENTU ROTOR HEAD-RI FLOW COEFFICI AIRFLOW PER U AIRFLOW PER U AIRFLOW AT OR AIRFLOW AT RO AIRFLOW AT RO AIRFLOW AT ST. ROTATIVE SPEE PERCENT OF DE:	RESSURE RATIO PRESSURE RATIO PRESSURE RATIO TEMPERATURE ! IC EFFICIENCY M-RISE EFFICI SEC COEFFICIEN ENT NIT FRONTAL / NIT ANNULUS / IFICE TOR INLET TOR OUTLET ATOR OUTLET D SIGN SPEED .	IO ATIO			. 0.984 1.055 1.000 0.888 0.893 0.390 0.378 30.14 83.72 .6.11 .66.30 .6.45		
	STAGE TOTAL PI STAGE TOTAL TI STAGE ADIABAT	EMPERATURE RA	TIO			. 1.054		
		(f) 70 Perce	nt of dea	sign speed	1			
AIRFLOW PER UNIT F AIRFLOW PER UNIT A AIRFLOW AT ORIFICE AIRFLOW AT ROTOR I AIRFLOW AT STATOR AIRFLOW AT STATOR	SURE RATIO . RATURE RATIO . ERATURE RATIO . FERATURE RATIO . SE EFFICIENCY . SE EFFICIENCY . SE EFFICIENCY . STRONTAL AREA . ANNULUS AREA . STRUCTURE SULLET OUTLET SPEED			0.993 1.024 1.001 0.892 0.871 0.216 0.544 37.71 104.75 .7.64 .7.90 .7.62 .7.54 6455.6	3697 1.092 0.994 1.028 1.001 0.914 0.895 0.257 0.507 35.26 97.94 7.15 7.38 7.18 7.04 6442.4 70.3	3698 1.106 0.995 1.032 1.001 0.911 0.909 0.296 0.470 32.89 91.37 6.67 6.90 6.75 6.59 6459.1 70.4	3700 1.121 0.994 1.036 1.001 0.919 0.919 0.341 0.421 29.44 81.79 5.97 6.18 6.13 5.95 6430.8 70.1	3701 1.135 0.988 1.041 1.000 0.887 0.891 0.380 0.369 25.94 72.05 5.26 5.44 5.50 5.30 6418.1 70.0
STAGE TOTAL PRESSU				1.070	1.086	1.100	1.115	1.121
STAGE TOTAL PRESSO STAGE TOTAL TEMPER STAGE ADIABATIC EF	ATURE RATIO .			1.026	1.029	1.033	1.037	1.042

TABLE 21. - Concluded.

READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR HEAD-RISE COEFFICIENT . FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET COMPRESSOR PERFORMANCE										 	1.030 1.001 0.894 0.901 0.369 0.372 22.52 62.57 .4.57
STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY . (h) 50 Percent o	:	:	:	:	:	:	:				1.031
READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . FLOW COEFFICIENT	· · · · · · · · · · · · · · · · · · ·									 	0.994 1.019 1.001 0.891 0.366 0.366 17.72 49.21 .3.59 .3.73 .3.76 .3.56
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY .					:		:	:	:		1.055 1.020 0.771

TABLE 22. - OVERALL PERFORMANCE OF STAGE 24B-20C

						•			
READING NUMBER ROTOR TOTAL PRESSURE RATIO					0.986 1.097 0.999 0.852 0.864 0.303 0.490 55.58 114.26 11.52 11.39 11.24	3828 1.370 0.983 1.106 0.998 0.891 0.908 0.351 0.480 54.50 151.40 11.05 11.31 11.23 10.99 11019.5	3822 1.410 0.978 1.114 0.997 0.901 0.923 0.387 0.459 52.59 146.10 10.66 10.91 10.94 10.59 11025.0	3827 1.453 0.968 1.126 0.996 0.896 0.925 0.429 0.423 49.05 136.24 9.94 10.15 10.40 9.93 11007.3 120.0	3824 1.482 0.957 1.135 0.997 0.883 0.911 0.453 0.390 45.72 127.01 9.27 9.48 9.79 9.38 11039.9
COMPRESSOR PERFORMANCE									
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY					1.095	1.346 1.103 0.862	1.378 1.111 0.867	1.406 1.121 0.843	1.419 1.132 0.797
	(b)	110 I	erc	ent	of desig	gn speed			
AIRFLOW AT STATOR OUTLET . ROTATIVE SPEED PERCENT OF DESIGN SPEED . COMPRESSOR PERFORMANCE	O . TIO ATIO ENCY T REA REA					. 0.990 1.075 0.999 0.848 0.857 0.275 0.506 146.25 10.67 10.92 10.73 10086.3	3821 1.323 0.984 1.093 0.998 0.898 0.922 0.365 0.451 48.00 133.32 9.73 9.97 9.91 9.68 10089.7	3818 1.381 0.964 1.111 0.996 0.874 0.903 0.432 0.387 41.60 115.55 8.43 8.71 8.90 8.46	
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RAT STAGE ADIABATIC EFFICIENCY	TIO					. 1.074	1.301 1.090 0.865	1.331 1.107 0.798	
	(c) 1	L00 P	erc	ent	of desig	n speed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO					0.990 1.054 1.001 0.807 0.803 0.222 0.524 50.34 10.20 10.44 10.24 10.25	3812 1.225 0.990 1.067 0.999 0.886 0.900 0.309 0.481 46.73 129.81 9.47 9.71 9.58 9.50 9187.0	3817 1.256 0.987 1.075 0.998 0.898 0.916 0.352 0.447 43.69 121.37 8.86 9.09 9.01 8.90 9175.4	3814 1.280 0.983 1.082 0.998 0.891 0.927 0.386 0.415 40.82 113.40 8.27 8.49 8.54 8.54 9.68.7	3816 1.297 0.975 1.088 0.998 0.873 0.906 0.412 0.380 37.49 104.14 7.60 7.80 7.86 7.64 9130.5
					1 140	7 010	1 040	1 050	1 065
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY					1.054	1.212 1.066 0.852	1.240 1.073 0.862	1.259 1.080 0.847	1.265 1.087 0.802

TABLE 22. - Continued.

(d) 90 Percent of design speed			
READING NUMBER 3832 3833 ROTOR TOTAL PRESSURE RATIO 1.136 1.171 STATOR TOTAL PRESSURE RATIO 0.993 0.993 ROTOR TOTAL TEMPERATURE RATIO 1.044 1.052 STATOR TOTAL TEMPERATURE RATIO 1.001 1.000 ROTOR ADIABATIC EFFICIENCY 0.846 0.891 ROTOR MOMENTUM-RISE EFFICIENCY 0.842 0.892 ROTOR HEAD-RISE COEFFICIENT 0.231 0.291 FLOW COEFFICIENT 0.527 0.486 AIRFLOW PER UNIT FRONTAL AREA 46.20 42.90 AIRFLOW PER UNIT ANNULUS AREA 128.33 119.18 AIRFLOW AT ROTOR INLET 9.36 8.70 AIRFLOW AT ROTOR INLET 9.35 8.75 AIRFLOW AT STATOR OUTLET 9.35 8.75 AIRFLOW AT STATOR OUTLET 9.45 8.81 ROTATIVE SPEED 8280.7 8274.7 PERCENT OF DESIGN SPEED 90.3 90.2	3834 1.205 0.990 1.061 0.999 0.906 0.915 0.347 0.443 39.42 109.51 7.99 8.21 8.15 8.10 8281.4 90.3	3835 1.228 0.984 1.068 0.998 0.896 0.921 0.387 0.407 36.40 101.11 7.38 7.58 7.65 7.49 8271.7 90.2	3830 1.238 0.980 1.072 0.999 0.880 0.904 0.405 0.376 33.74 93.73 6.84 7.03 7.08 6.99 8255.3
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO 1.128 1.164 STAGE TOTAL TEMPERATURE RATIO 1.045 1.052 STAGE ADIABATIC EFFICIENCY 0.783 0.848	1.193 1.060 0.863	1.209 1.066 0.846	1.213 1.070 0.810
(e) 80 Percent of design speed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	. 0.982 . 1.057 . 0.999 . 0.880 . 0.901 . 0.404 . 0.365 . 29.36 . 81.55 5.95 6.12 6.20 6.10		
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO	. 1.057		
(f) 70 Percent of design speed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.077 1.093 STATOR TOTAL PRESSURE RATIO 0.995 0.996 ROTOR TOTAL TEMPERATURE RATIO 1.025 1.029 STATOR TOTAL TEMPERATURE RATIO 1.025 1.029 STATOR TOTAL TEMPERATURE RATIO 1.001 1.001 ROTOR ADIABATIC EFFICIENCY 0.857 0.895 ROTOR MOMENTUM-RISE EFFICIENCY 0.855 0.891 ROTOR HEAD-RISE COEFFICIENT 0.217 0.261 FLOW COEFFICIENT 0.532 0.496 AIRFLOW PER UNIT FRONTAL AREA 37.10 34.67 AIRFLOW PER UNIT ANNULUS AREA 103.07 96.30 AIRFLOW AT ROTOR OUTLET 7.52 7.03 AIRFLOW AT ROTOR OUTLET 7.73 7.23 AIRFLOW AT STATOR OUTLET 7.747 7.02 ROTATIVE SPEED .6448.9 6446.7 PERCENT OF DESIGN SPEED .70.3 70.3	3841 1.110 0.996 1.033 1.001 0.910 0.911 0.450 31.45 87.36 6.37 6.57 6.44 6.47 6417.3 70.0	3840 1.128 0.991 1.038 1.000 0.917 0.359 0.411 28.88 80.23 5.85 6.04 6.09 6.00 6441.0	3839 1.138 0.989 1.043 1.000 0.878 0.901 0.365 25.68 71.34 5.21 5.39 5.37 7.36 6440.7
	3 105	1 110	1.126
STAGE TOTAL PRESSURE RATIO	1.105 1.034 0.848	1.118 1.038 0.851	1.126 1.043 0.798

TABLE 22. - Concluded.

READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.10 STATOR TOTAL PRESSURE RATIO . 0.96 ROTOR TOTAL PRESSURE RATIO . 0.95 ROTOR TOTAL TEMPERATURE RATIO . 1.00 STATOR TOTAL TEMPERATURE RATIO . 1.00 ROTOR ADIABATIC EFFICIENCY . 0.86 ROTOR MOMENTUM-RISE EFFICIENCY . 0.96 ROTOR HEAD-RISE COEFFICIENT . 0.36 AIRFLOW COEFFICIENT . 0.36 AIRFLOW PER UNIT FRONTAL AREA . 21.6 AIRFLOW PER UNIT ANNULUS AREA . 60.6 AIRFLOW AT ROTOR INLET . 4.5 AIRFLOW AT ROTOR OUTLET . 4.6 AIRFLOW AT STATOR OUTLET . 4.6 AIRFLOW AT STATOR OUTLET . 4.5 COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO . 1.09 STAGE TOTAL PRESSURE RATIO . 1.03 STAGE ADIABATIC EFFICIENCY . 0.79	00 91 31 00 91 00 87 51 83 54 42 7 51 54 54 57 58 58 58 58 58 58 58 58 58 58 58 58 58
(h) 50 Percent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.06 STATOR TOTAL PRESSURE RATIO . 0.99 ROTOR TOTAL TEMPERATURE RATIO . 1.02 STATOR TOTAL TEMPERATURE RATIO . 1.00 ROTOR ADIABATIC EFFICIENCY . 0.89 ROTOR MOMENTUM-RISE EFFICIENCY . 0.89 ROTOR HEAD-RISE COEFFICIENT . 0.37 FLOW COEFFICIENT . 0.35 AIRFLOW PER UNIT FRONTAL AREA . 18.1 AIRFLOW PER UNIT ANNULUS AREA . 50.4 AIRFLOW AT ROTOR INLET . 3.8 AIRFLOW AT ROTOR INLET . 3.8 AIRFLOW AT ROTOR OUTLET . 3.8 AIRFLOW AT STATOR OUTLET . 3.8	19 14 11 11 11 11 11 11 11 11 11 11 11 11
AIRFLOW AT STATOR OUTLET	5 3

TABLE 23. - OVERALL PERFORMANCE OF STAGE 25A-20B

ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA . AIRFLOW PER UNIT ANNULUS AREA . AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED			. 0.987 . 1.075 . 1.002 . 0.802 . 0.836 . 0.219 . 0.502 . 57.51 . 159.76 . 11.66 . 11.72 . 11.63	3653 1.280 0.988 1.085 1.001 0.863 0.888 0.267 57.03 158.41 11.56 11.63 11.45 11.30	3652 1.324 0.986 1.093 1.001 0.895 0.906 0.308 55.73 154.82 11.30 11.35 11.09 11.12	3651 1.350 0.984 1.099 1.001 0.906 0.913 0.333 0.465 53.84 149.56 10.91 10.98 10.66 10.68	3650 1.372 0.979 1.105 1.000 0.902 0.910 0.353 0.440 51.55 143.19 10.45 10.49 10.11 10.10
COMPRESSOR PERFORMANCE							
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO . STAGE ADIABATIC EFFICIENCY			. 1.078	1.264 1.086 0.805	1.306 1.094 0.841	1.328 1.099 0.848	1.342 1.105 0.835
	(b) 110 Per	rcent of de	esign spee	d			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR HEAD-RISE COEFFICIENT			. 0.987 . 1.056 . 1.002 . 0.784 . 0.824 . 0.185 . 0.513 . 54.57 . 151.58 . 11.06 . 11.14 . 10.98	3648 1.227 0.991 1.069 1.001 0.876 0.906 0.258 0.497 53.03 147.31 10.75 10.82 10.65 10.56	3646 1.262 0.989 1.076 1.001 0.900 0.917 0.297 0.474 50.89 141.36 10.31 10.39 10.19 10.18	3645 1.282 0.988 1.081 1.001 0.905 0.909 0.321 0.449 48.58 134.95 9.85 9.90 9.59 9.69 10085.0 110.0	3644 1.296 0.986 1.086 1.001 0.897 0.395 0.423 46.24 128.46 9.37 9.41 9.01 9.20 10100.7
COMPRESSOR PERFORMANCE							
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO . STAGE ADIABATIC EFFICIENCY			. 1.058	1.215 1.070 0.817	1.248 1.077 0.849	1.267 1.082 0.848	1.277 1.087 0.831
	(c) 100 Pe	rcent of d	lesign spe	ed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR MOMENTUM—RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT			. 0.989 . 1.047 . 1.002 . 0.829 . 0.858 . 0.197 . 0.515 . 50.52 . 140.34 . 10.24 . 10.32 . 10.15	3616 1.179 0.993 1.054 1.001 0.884 0.903 0.245 0.495 48.83 135.64 9.90 9.98 9.79 9.73 9216.6	3617 1.213 0.992 1.063 1.001 0.905 0.903 0.289 0.462 46.07 127.96 9.34 9.41 9.19 9.24 9235.3 100.7	3618 1.226 0.991 1.066 1.002 0.902 0.896 0.312 0.437 43.50 120.84 8.82 8.88 8.59 8.76 9158.3	3614 1.235 0.988 1.070 1.001 0.890 0.872 0.406 40.80 113.33 8.27 8.32 7.89 9.813
STAGE TOTAL PRESSURE RATIO			. 1.131	1.171	1.203	1.215	1.220
STAGE TOTAL TEMPERATURE RATIO . STAGE ADIABATIC EFFICIENCY			. 1.049	1.056 0.822	1.064 0.850	1.068 0.842	1.071 0.818

TABLE 23. - Continued.

(d) 30 Percent of design speed											
READING NUMBER ROTORI TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT . AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE . AIRFLOW AT ROTOR INLET . AIRFLOW AT STATOR OUTLET . AIRFLOW AT STATOR OUTLET . ROTATIVE SPEED .	1.114 1 0.990 0 1.037 1 1.002 1 0.853 0 0.882 0 0.195 0 0.521 0 46.40 4 128.89 12 .9.40 .9.47 .9.34 .9.34 .9.38	3624 362 .143 1.16 .994 0.99 .044 1.04 .001 1.00 .895 0.90 .912 0.91 .244 0.28 .494 0.46 4.14 41.7 2.62 115.9 8.95 8.4 9.03 8.5 8.86 8.3 8.80 8.3 8.55.2 8245.	4 1.179 3 0.991 1.053 9 1.053 1 1.051 7 0.913 0 0.899 0 0.305 4 0.436 4 0.436 4 39.42 4 109.51 5 7.99 3 8.06 7 7.96 7 8243.1	3621 1.187 0.992 1.056 1.002 0.896 0.877 0.317 0.404 36.88 102.45 7.48 7.52 7.14 7.42 8275.3							
COMPRESSOR PERFORMANCE											
STAGE TOTAL PRESSURE RATIO	1.039 1	.136 1.156 .045 1.056 .823 0.84	1.054	1.177 1.058 0.822							
(e) 80 Percent of des	sign speed										
READING NUMBER ROTOR TOTAL PRESSURE RATIO		0.994 1.042 0.90 0.313 0.396 32.33 89.82 6.55 6.66 6.26									
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY		1.046									
(f) 70 Percent of des	ign speed										
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM—RISE EFFICIENCY ROTOR HEAD—RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED COMPRESSOR PERFORMANCE	1.058 1. 0.991 0. 1.019 1. 1.001 1. 0.843 0. 0.891 0. 0.166 0. 0.537 0. 37.86 35 05.18 99 .7.67 7 .7.75 7 .7.75 7 .7.75 7 .7.75 7 .7.75 7 .7.75 7 .7.75 643	635 3634 076 1.090 995 0.996 0.995 0.996 001 1.001 897 0.912 922 0.921 215 0.253 505 0.471 .78 33.53 .39 93.14 .25 6.80 .33 6.86 .33 6.86 .18 6.71 .03 6.68 0.6 6420.8	1.102 0.995	3632 1.110 0.994 1.034 1.001 0.904 0.879 0.310 0.395 28.41 78.91 5.76 5.81 5.55 5.71 6432.9 70.2							
STAGE TOTAL PRESSURE RATIO	1.021 1.	071 1.085 025 1.028	1.097 1.032	1.104 1.035							
STAGE ADIABATIC EFFICIENCY	0.654 0.	783 0.834	0.840	0.821							

TABLE 23. - Concluded.

READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENC . ROTOR HEAD-RISE COEFFICIENT	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •						 		 1.024 1.001 0.903 0.879 0.306 0.392 24.15 67.10 .4.90 .4.75
STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY . (h) 50 Percent of	•	•	٠	•	٠	•	•		:	1.075 1.026 0.815
READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . FLOW COEFFICIENT . AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT FRONTAL AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET PERCENT OF DESIGN SPEED	· · · · · · · · · · · · · · · · · · ·							 		 0.997 1.016 1.001 0.916 0.869 0.300 0.389 19.95 55.43 .4.04 .4.09
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY .										 1.051 1.018 0.808

TABLE 24. - OVERALL PERFORMANCE OF STAGE 26B-21

READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.400 1.455 STATOR TOTAL PRESSURE RATIO . 0.978 0.974 ROTOR TOTAL TEMPERATURE RATIO . 1.119 1.126 STATOR TOTAL TEMPERATURE RATIO . 0.996 0.995 ROTOR ADIABATIC EFFICIENCY . 0.844 0.996 ROTOR MOMENTUM-RISE EFFICIENCY . 0.897 0.945 ROTOR HEAD-RISE COEFFICIENT . 0.381 0.436 FLOW COEFFICIENT . 0.509 0.495 AIRFLOW PER UNIT FRONTAL AREA . 57.24 55.54 AIRFLOW PER UNIT ANNULUS AREA . 159.01 154.36 AIRFLOW AT ROTOR INLET . 11.60 11.26 AIRFLOW AT ROTOR OUTLET . 11.92 11.75 AIRFLOW AT STATOR OUTLET . 11.92 11.75 AIRFLOW AT STATOR OUTLET . 11.92 11.75 AIRFLOW AT STATOR OUTLET . 11.95 10.86 ROTATIVE SPEED . 11005.3 10981.5	1.482 1.0970 1.131 7.0.998 8.0.910 6.0.954 6.0.474 8.53.80 149.44 10.90 8.11.17 11.57 8.10.51	3944 1.490 0.968 1.134 0.998 0.903 0.950 0.463 52.02 144.50 10.54 10.79 11.18 10.19	3945 1.499 0.964 1.136 0.999 0.900 0.944 0.471 0.442 50.75 140.98 10.29 10.53 10.92 9.96 10997.5
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO 1.368 1.427 STAGE TOTAL TEMPERATURE RATIO 1.115 1.12 STAGE ADIABATIC EFFICIENCY 0.816 0.862	1.128	1.443 1.132 0.837	1.445 1.135 0.825
(b) 110 Percent of design speed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.311 STATOR TOTAL PRESSURE RATIO . 0.984 ROTOR TOTAL TEMPERATURE RATIO . 1.096 STATOR TOTAL TEMPERATURE RATIO . 0.998 ROTOR ADIABATIC EFFICIENCY . 0.838 ROTOR MOMENTUM-RISE EFFICIENCY . 0.874 ROTOR HEAD-RISE COEFFICIENT . 0.350 FLOW COEFFICIENT . 0.350 FLOW COEFFICIENT . 0.520 AIRFLOW PER UNIT FRONTAL AREA . 54.559 AIRFLOW PER UNIT ANNULUS AREA . 151.64 AIRFLOW AT ORIFICE . 11.06 AIRFLOW AT ROTOR INLET . 11.31 AIRFLOW AT ROTOR OUTLET . 11.36 ROTATIVE SPEED . 10160.5 PERCENT OF DESIGN SPEED . 10160.5	1.380 0.979 1.106 0.998 0.906 0.951 0.423 0.477 50.70 140.85 10.28 10.52 10.72 9.98 10157.0 110.8	3968 1.405 0.973 1.113 0.999 0.901 0.944 0.450 0.436 46.80 130.00 9.49 9.73 10.11 9.22 10161.8 110.8	
STAGE TOTAL TEMPERATURE RATIO 1.094 STAGE ADIABATIC EFFICIENCY 0.807		1.112 0.834	
(c) 100 Percent of design speed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.241 1.280 STATOR TOTAL PRESSURE RATIO . 0.987 0.984 ROTOR TOTAL PRESSURE RATIO . 0.987 0.984 ROTOR TOTAL TEMPERATURE RATIO . 1.075 1.082 STATOR TOTAL TEMPERATURE RATIO . 1.000 0.999 ROTOR ADIABATIC EFFICIENCY . 0.846 0.894 ROTOR MOMENTUM-RISE EFFICIENCY . 0.876 0.935 ROTOR HEAD-RISE COEFFICIENT . 0.328 0.380 FLOW COEFFICIENT . 0.536 0.511 AIRFLOW PER UNIT FRONTAL AREA . 51.71 49.31 AIRFLOW PER UNIT ANNULUS AREA . 143.64 136.98 AIRFLOW AT ROTOR INLET . 10.48 9.99 AIRFLOW AT ROTOR OUTLET . 10.72 10.26 AIRFLOW AT ROTOR OUTLET . 10.67 10.29 AIRFLOW AT STATOR OUTLET . 10.38 9.81 ROTATIVE SPEED . 9239.3 9216.3 PERCENT OF DESIGN SPEED . 100.8	1.295	3934 1.297 0.986 1.085 1.000 0.903 0.950 0.411 0.453 43.99 122.20 8.92 9.14 9.14 8.66 9119.3 99.4	3936 1.309 0.983 1.089 1.000 0.896 0.940 0.427 41.70 115.83 8.45 8.68 8.70 8.24 9138.4 99.7
STAGE TOTAL PRESSURE RATIO 1.223 1.259 STAGE TOTAL TEMPERATURE RATIO 1.073 1.080	1.274 1.083	1.279 1.085	1.287
STAGE ADIABATIC EFFICIENCY 0.794 0.851	0.862	0.857	0.833

TABLE 24. - Continued.

(0) 00 1 02 000 02 0		_			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO. ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.987 . 1.054 . 1.002 . 0.833 . 0.854 . 0.290 . 0.559 . 48.39 . 134.42 9.81 . 10.04 9.94 9.80	3947 1.211 0.987 1.062 0.999 0.900 0.932 0.359 0.522 45.67 126.85 9.26 9.49 9.51 9.13 8247.6 89.9	3948 1.226 0.988 1.065 1.000 0.914 0.952 0.388 0.481 42.28 117.46 8.57 8.78 8.90 8.42 8205.9 89.5	3949 1.239 0.987 1.069 1.000 0.912 0.949 0.410 0.442 39.06 108.49 7.92 8.12 8.19 7.69 8205.2 89.5	3950 1.248 0.983 1.073 1.000 0.891 0.943 0.425 0.407 7.35 7.56 7.56 7.11 8228.5 89.7
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO	1.056	1.195 1.062 0.846	1.211 1.065 0.861	1.222 1.069 0.855	1.227 1.073 0.824
(e) 80 Percent of	design spee	ed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT . FLOW COEFFICIENT . AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED			. 0.983 1.058 0.999 0.906 0.939 0.427 0.401 31.94 88.73 .6.47 .6.66 .6.87		
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY .			. 1.058		
(f) 70 Percent of	design spee	ed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM—RISE EFFICIENCY ROTOR HEAD—RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	. 0.986 . 1.030 . 1.002 . 0.824 . 0.252 . 0.558 . 40.43 . 112.32 8.20 8.42 8.31 . 8.22	3959 1.110 0.991 1.034 1.001 0.896 0.909 0.309 0.554 38.32 106.45 7.77 8.00 7.93 7.75 6433.3	3956 1.128 0.992 1.038 1.000 0.927 0.948 0.356 0.501 35.09 97.48 7.11 7.31 7.27 7.01 6458.5 70.4	3955 1.138 0.993 1.040 1.001 0.939 0.954 0.386 0.451 31.60 87.77 6.40 6.60 6.60 6.30 6435.5	3954 1.147 0.989 1.044 1.001 0.913 0.940 0.413 0.394 27.78 77.17 5.63 5.80 5.88 5.45 6434.4
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO	1.032	1.100 1.035 0.791	1.119 1.038 0.855	1.129 1.041 0.864	1.134 1.044 0.824

TABLE 24. - Concluded.

READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR HEAD-RISE COEFFICIENT . FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED												0.993 1.032 1.001 0.916 0.936 0.403 0.396 24.09 66.93 .4.78 .5.05 .4.79 5528.5 .60.3
STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY .	•	•	•	•	•	•	•	:	:	:	:	1.098 1.032 0.834
(h) 50 Percent of READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR HEAD-RISE COEFFICIENT . FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE												0.997 1.021 1.001 0.916 0.942 0.384 0.419 21.02 58.39 .4.26 4.41 .4.37 .4.25
STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY .				:					:		:	1.065 1.022 0.841

TABLE 25. - OVERALL PERFORMANCE OF STAGE 26D-21

(, -	•				
AIRFLOW AT ORIFICE	4429 1.308 0.971 1.095 0.999 0.836 0.853 0.295 0.573 63.52 176.44 12.87 12.98 12.77 12.60 1014.0	4430 1.338 0.980 1.101 1.000 0.860 0.896 0.322 0.559 62.42 173.38 12.65 12.76 12.50 12.35 11024.3 120.2	4431 1.377 0.985 1.108 1.000 0.889 0.927 0.359 0.533 59.91 166.43 12.14 12.27 11.95 11.80 10997.7	4434 1.405 0.986 1.115 0.999 0.886 0.920 0.384 0.502 57.09 158.57 11.57 11.57 11.51 11.22	4427 1.427 0.983 1.123 0.998 0.870 0.909 0.405 0.472 54.32 150.89 11.01 11.14 10.97 10.71
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO	1.270 1.094 0.752	1.312 1.101 0.801	1.367 1.108 0.846	1.385 1.114 0.856	1.402 1.121 0.837
(b) 110 Percent of design	speed				
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.254 STATOR TOTAL PRESSURE RATIO 0.955 ROTOR TOTAL TEMPERATURE RATIO 1.074 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.898 ROTOR MOMENTUM-RISE EFFICIENCY 0.905 ROTOR HEAD-RISE COEFFICIENT 0.288 FLOW COEFFICIENT 0.609 AIRFLOW PER UNIT FRONTAL AREA 62.28 AIRFLOW PER UNIT ANNULUS AREA 1.73.01 AIRFLOW AT ORIFICE 12.62 AIRFLOW AT ROTOR INLET 12.73 AIRFLOW AT ROTOR OUTLET 12.73 AIRFLOW AT STATOR OUTLET 12.41 ROTATIVE SPEED 10090.6 PERCENT OF DESIGN SPEED 110.00	4414 1.250 0.956 1.073 1.000 0.901 0.907 0.288 0.609 61.90 171.94 12.55 12.66 12.57 12.35	4417 1.296 0.976 1.083 1.000 0.926 0.937 0.334 0.567 58.86 163.51 11.93 12.05 12.04 11.64	1.339 0.978 1.094 0.997 0.920 0.939 0.382 0.505 53.53 148.69 10.85 10.97 11.11 10.57	4412 1.353 0.979 1.102 0.997 0.887 0.928 0.399 0.455 48.98 136.05 9.93 10.03 10.20 9.70	
STAGE TOTAL PRESSURE RATIO 1.197	1.195	1.265	1.309	1.325	
STAGE TOTAL TEMPERATURE RATIO 1.074 STAGE ADIABATIC EFFICIENCY 0.709	1.073 0.711	1.083 0.842		1.099 0.850	
(c) 100 Percent of design	speed				
AIRFLOW AT ORIFICE	4402 1.213 0.969 1.061 1.001 0.925 0.930 0.292 0.593 56.55 157.07 11.46 11.58 11.44 11.24 9193.1	4407 1.234 0.976 1.066 1.000 0.944 0.950 0.321 0.562 53.96 149.89 10.94 11.06 11.11 10.73 9172.9 100.0	4408 1.248 0.983 1.070 0.999 0.928 0.938 0.341 0.519 50.51 140.30 10.24 10.35 10.34 10.00 9167.8	4409 1.260 0.986 1.075 0.999 0.907 0.938 0.358 0.478 46.92 130.34 9.51 9.62 9.59 9161.6	4400 1.263 0.988 1.080 0.860 0.860 0.429 42.63 118.42 8.63 8.433 9186.5
	1 175	1 004	1 227	1 242	1 040
STAGE TOTAL PRESSURE RATIO	1.175 1.062 0.762	1.204 1.066 0.828	1.227 1.070 0.861	1.242 1.074 0.859	1.248 1.080 0.820

TABLE 25. - Continued.

(d) 90 Percent of design speed									
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.153 1.169 STATOR TOTAL PRESSURE RATIO 0.958 0.973 ROTOR TOTAL TEMPERATURE RATIO 1.045 1.049 STATOR TOTAL TEMPERATURE RATIO 1.001 1.001 ROTOR ADIABATIC EFFICIENCY 0.920 0.935 ROTOR MOMENTUM-RISE EFFICIENCY 0.917 0.929 ROTOR MEAD-RISE COEFFICIENT 0.260 0.286 FLOW COEFFICIENT 0.613 0.583 AIRFLOW PER UNIT FRONTAL AREA 53.09 51.01 AIRFLOW PER UNIT ANNULUS AREA 147.48 141.69 AIRFLOW AT ORIFICE 10.76 10.34 AIRFLOW AT ROTOR INLET 10.88 10.46 AIRFLOW AT ROTOR OUTLET 10.75 10.31 AIRFLOW AT STATOR OUTLET 10.62 10.15 ROTATIVE SPEED .8250.6 8268.8 PERCENT OF DESIGN SPEED .90.0 90.2	4451 4452 1.183 1.195 0.985 0.991 1.053 1.057 1.000 1.000 0.929 0.913 0.925 0.916 0.312 0.331 0.538 0.493 47.45 43.99 131.80 122.21 9.62 8.92 9.74 9.02 9.58 8.81 9.45 8.72 8256.1 8259.6 90.0 90.1	4453 1.209 0.989 1.063 1.000 0.886 0.907 0.353 0.455 40.81 113.36 8.27 8.39 8.19 8.09 8271.9 90.2	4426 1.218 0.985 1.068 0.998 0.857 0.894 0.374 0.424 38.07 105.74 7.72 7.83 7.80 7.53 8232.6 89.8	4422 1.222 0.984 1.068 0.998 0.872 0.900 0.377 0.420 37.97 105.49 7.70 7.80 7.87 7.61 8272.1					
COMPRESSOR PERFORMANCE	1 166 1 104	1 106	1 200	1 202					
STAGE TOTAL PRESSURE RATIO	1.166 1.184 1.053 1.058 0.837 0.858	1.196 1.062 0.842	1.200 1.066 0.816	1.202 1.066 0.819					
(e) 80 Percent of design spe	eed								
AIRFLOW AT ROTOR OUTLET		3							
STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY									
(f) 70 Percent of design speed	d								
AIRFLOW AT ORIFICE 8.37 AIRFLOW AT ROTOR INLET 8.49 AIRFLOW AT ROTOR OUTLET 8.40 AIRFLOW AT STATOR OUTLET 8.28	4440 4442 1.100 1.109 0.987 0.993 1.030 1.032 1.001 1.001 0.933 0.930 0.941 0.928 0.282 0.306 0.554 0.509 38.79 35.80 107.75 99.44 7.86 7.26 7.98 7.38 7.88 7.23 7.74 7.13 6421.8 6426.4 70.0 70.1	4443 1.118 0.994 1.036 1.001 0.911 0.921 0.332 0.460 32.54 90.40 6.60 6.71 6.65 6.48 6424.0 70.1	4439 1.126 0.993 1.040 1.000 0.863 0.888 0.353 0.404 28.87 80.20 5.85 5.96 5.88 5.73 6455.4 70.4						
	1 005 1 100	1 111	חוו ו						
STAGE TOTAL PRESSURE RATIO	1.085 1.100 1.031 1.033 0.772 0.834	1.111 1.036 0.847	1.119 1.040 0.807						

TABLE 25. - Concluded.

A
TAGE TOTAL TEMPERATURE RATIO 1.029
TAGE ADIABATIC EFFICIENCY 0.804
(h) 50 Percent of design speed
EADING NUMBER 4448 OTOR TOTAL PRESSURE RATIO 1.062 TATOR TOTAL PRESSURE RATIO 0.996 OTOR TOTAL TEMPERATURE RATIO 1.020 TATOR TOTAL TEMPERATURE RATIO 1.001 OTOR ADIABATIC EFFICIENCY 0.883 OTOR MOMENTUM-RISE EFFICIENCY 0.889 OTOR HEAD-RISE COEFFICIENT 0.339 LOW COEFFICIENT 0.405 IRFLOW PER UNIT FRONTAL AREA 20.76 IRFLOW PER UNIT ANNULUS AREA 57.68 IRFLOW AT ORIFICE 4.21 IRFLOW AT ROTOR INLET 4.31 IRFLOW AT ROTOR OUTLET 4.25 IRFLOW AT STATOR OUTLET 4.25 OTATIVE SPEED .4604.5 ERCENT OF DESIGN SPEED 50.2
OMPRESSOR PERFORMANCE TAGE TOTAL PRESSURE RATIO 1.058 TAGE TOTAL TEMPERATURE RATIO 1.020
TAGE ADIABATIC EFFICIENCY 0.796

TABLE 26. - OVERALL PERFORMANCE OF STAGE 26D-21D

READING NUMBER ROTOR TOTAL PRESSURE RATIO	7 1.325 1.3 1 0.986 0.9 8 1.097 1.3 8 0.999 1.6 2 0.861 0.3 3 0.896 0.5 6 0.310 0.4 4 0.567 0.5 7 63.41 61 0 176.13 170 7 12.85 12 6 12.90 12. 6 13.16 12. 7 12.73 12.	0.985 0.977 0.970 104 1.113 1.122 000 0.998 0.997 0891 0.904 0.872 914 0.931 0.867 346 0.386 0.405 546 0.508 0.470 47 58.20 53.95 76 161.67 149.86 46 11.80 10.93 54 11.81 11.08 72 12.10 11.40 24 11.47 10.37 9.4 10987.9 10990.0
STAGE TOTAL PRESSURE RATIO 1.180 1.252		
STAGE TOTAL TEMPERATURE RATIO 1.076 1.086 STAGE ADIABATIC EFFICIENCY 0.635 0.770		
(b) 110 Percent of design speed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE. AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO	0.976	0116 1.341 0.975 1.098 0.997 0.889 0.876 0.389 0.465 49.57 137.70 10.05 10.18 10.52 9.66 10050.2 109.6
STAGE ADIABATIC EFFICIENCY		0.833
READING NUMBER 0084 0083 0083 0084 0083 0087	3 0082 00 3 1.232 1.2 5 0.989 0.9 0 1.066 1.0 1 0.000 1.0 1 0.934 0.9 3 0.957 0.9 5 0.319 0.3 7 0.576 0.5 54.80 51. 54.80 51. 11.11 10. 11.28 10. 11.28 10. 11.27 10. 10.94 10. 9 9161.7 9156	90 0.985 0.980 69 1.075 1.079 00 0.999 0.999 29 0.915 0.886 48 0.934 0.902 35 0.357 0.370 37 0.494 0.448 60 48.06 43.93 35 133.49 122.03 46 9.74 8.90 64 9.92 9.09 62 9.98 9.16 32 9.54 8.61
STAGE TOTAL PRESSURE RATIO	1.066 1.0	69 1.074 1.079

TABLE 26. - Continued.

STATOR TOTAL PRESS ROTOR TOTAL TEMPER STATOR TOTAL TEMPER ROTOR ADIABATIC EF ROTOR MOMENTUM-RIS ROTOR HEAD-RISE CO FLOW COEFFICIENT AIRFLOW PER UNIT F AIRFLOW AT ORIFICE AIRFLOW AT ROTOR I AIRFLOW AT ROTOR O AIRFLOW AT STATOR	RE RATIO		0093 . 1.134 . 0.980 . 1.041 . 1.001 . 0.898 . 0.901 . 0.229 . 0.642 . 55.23 . 153.41 . 11.19 . 11.31 . 11.29 . 11.04	0096 1.169 0.990 1.048 1.001 0.949 0.959 0.288 0.594 51.74 143.72 10.49 10.61 10.64 10.36 8248.6	0088 1.185 0.990 1.053 1.000 0.939 0.953 0.315 0.550 48.06 133.49 9.74 9.91 9.90 9.55 8229.7	0087 1.201 0.991 1.058 1.000 0.924 0.939 0.342 0.497 43.96 122.11 8.91 9.09 9.09 9.78 8260.0	0086 1.214 0.985 1.064 1.000 0.891 0.899 0.362 0.446 39.80 110.56 8.07 8.25 8.17 7.86 8276.9	
	SPEED			90.0	89.7	90.1	90.3	
STAGE TOTAL PRESSU	RE RATIO		. 1.042	1.157 1.049 0.870	1.173 1.053 0.882	1.191 1.058 0.875	1.196 1.064 0.826	
	(e) 80	Percent of d	esign spee	d				
	AIRFLOW PER UNIT FR AIRFLOW PER UNIT AN AIRFLOW AT ORIFICE AIRFLOW AT ROTOR IN AIRFLOW AT ROTOR OU AIRFLOW AT STATOR O	RE RATIO			. 0.987 . 1.050 . 1.000 . 0.899 . 0.887 . 0.424 . 34.33 . 95.37 . 6.96 7.06 6.98 6.77 7361.3 80.3			
	STAGE ADIABATIC EFF		• • • •					
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RAT STATOR TOTAL TEMPERATURE RAT STATOR TOTAL TEMPERATURE RAT ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AI AIRFLOW PER UNIT ANNULUS AF AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE	D	0099 1.080 0.988 1.024 1.001 0.922 0.937 0.226 0.634 43.99 . 122.20 8.92 9.03 8.97 8.77	0100 1.096 0.992 1.028 1.001 0.948 0.959 0.269 0.589 41.25 114.59 8.36 8.47 8.44 8.25 6443.6 70.3	0101 1.105 0.995 1.031 1.001 0.945 0.950 0.292 0.547 38.52 106.99 7.81 7.93 7.85 7.70 6455.7	0102 1.115 0.994 1.033 1.001 0.945 0.947 0.319 0.504 35.78 99.38 7.25 7.35 7.35 7.13 6463.1 70.5	0130 1.120 0.996 1.035 1.001 0.942 0.944 0.338 0.458 32.41 90.02 6.57 6.67 6.67 6.79 6.56	0103 1.122 0.993 1.036 1.001 0.918 0.919 0.341 0.448 31.93 88.69 6.47 6.57 6.56 6.34 6450.9 70.3	0098 1.127 0.989 1.039 1.000 0.895 0.885 0.359 0.405 28.83 80.07 5.84 5.94 5.96 6426.4 70.1
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RA' STAGE ADIABATIC EFFICIENCY		1.025	1.088 1.029 0.844	1.099 1.031 0.869	1.108 1.034 0.879	1.115 1.036 0.879	1.114 1.037 0.844	1.115 1.039 0.800

TABLE 26. - Concluded.

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA . AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO . STAGE ADIABATIC EFFICIENCY	
(h) 50 Percent of de READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR MEAD-RISE COEFFICIENT . FLOW COEFFICIENT . AIRFLOW PER UNIT FRONTAL AREA . AIRFLOW PER UNIT ANNULUS AREA . AIRFLOW AT ROTOR INLET . AIRFLOW AT ROTOR INLET . AIRFLOW AT STATOR OUTLET . ROTATIVE SPEED . PERCENT OF DESIGN SPEED	0114
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.058 1.021 1.027

TABLE 27. - OVERALL PERFORMANCE OF STAGE 27A-21

READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.372 STATOR TOTAL PRESSURE RATIO 0.992 ROTOR TOTAL TEMPERATURE RATIO 1.113 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.840 ROTOR MOMENTUM-RISE EFFICIENCY 0.858 ROTOR HEAD-RISE COEFFICIENT 0.357 FLOW COEFFICIENT 0.532 AIRFLOW PER UNIT FRONTAL AREA 59.18 AIRFLOW PER UNIT ANNULUS AREA 164.38 AIRFLOW AT ORIFICE 11.99 AIRFLOW AT ROTOR INLET 12.26 AIRFLOW AT ROTOR OUTLET 11.63 AIRFLOW AT STATOR OUTLET 12.18 ROTATIVE SPEED 10.975.5 PERCENT OF DESIGN SPEED 119.7	1.402 1 0.988 0 1.117 1 0.999 0 0.863 0 0.998 0 0.531 0 59.18 5 11.99 1 12.27 1 12.01 1 11.83 1	3903 3904 .445 1.476 .988 0.982 .123 1.128 .998 0.997 .902 0.918 .939 0.956 .423 0.450 .524 0.502 .88.46 56.50 .2.40 156.95 1.85 11.45 2.11 11.70 1.63 11.28 1.83 11.33 .82.2 10977.8 19.8 119.7	3900 3913 1.500 1.536 0.978 0.961 1.133 1.144 0.997 0.997 0.921 0.909 0.957 0.971 0.472 0.505 0.482 0.438 54.67 50.49 151.85 140.24 11.08 10.23 11.32 10.46 11.07 10.93 11.28 9.73 10988.5 11001.7 119.8 120.0
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO	1.117 1	.427 1.449 .120 1.125 0.889 0.898	1.467 1.477 1.130 1.140 0.889 0.842
(b) 114 Percent of desi	gn speed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR INLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE	0.986	3899 3897 .404 1.418 .984 0.990 .111 1.115 .997 0.999 .917 0.916 .941 0.962 .424 0.439 .519 0.489 .55.83 53.14 .55.09 147.61 .1.32 10.77 1.56 11.00 .1.29 10.59 .1.39 10.69 .1.39 10.69 .1.39 10.69 .1.40 114.0	3911 1.465 0.970 1.127 0.998 0.906 0.961 0.487 0.432 47.74 132.62 9.68 9.90 10.15 9.30
STAGE TOTAL PRESSURE RATIO		1.382 1.404 1.108 1.113	1.420 1.125
STAGE ADIABATIC EFFICIENCY		0.897	0.845
(c) 100 Percent of design	gn speed		
ROTOR TOTAL PRESSURE RATIO	.988 0.995 .072 1.078 .000 1.000 .857 0.911 .856 0.927 .319 0.375 .563 0.532 .54 50.93 8.73 141.46 0.85 10.32 1.09 10.58 0.66 10.11 1.01 10.50 74.0 9167.4	1.302 1 0.994 0 1.085 1 1.000 0 0.921 0 0.953 0 0.413 0 0.488 0 47.34 4 131.51 12: 9.60 9.82 9.37 9.74 9168.7 91	3893 3909 .331 1.350 .982 0.971 .092 1.100 .997 0.996 .923 0.895 .951 0.954 .452 0.479 .451 0.413 4.23 40.76 2.85 113.23 8.96 8.26 9.16 8.46 9.02 8.91 9.04 7.99 78.2 9174.0 00.1 100.0
STAGE TOTAL PRESSURE RATIO	.217 1.266	1.293 1	.307 1.310
STAGE TOTAL TEMPERATURE RATIO	.072 1.078	1.085 1	.089 1.095 .888 0.841

TABLE 27. - Continued.

READING NUMBER ROTOR TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT ROTOR HEAD-RISE COEFFICIENT ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT ROTOR MOMENTUM-RISE COEFFICIENT ROTOR HEAD-RISE COEFFICIENT ROTOR MOMENTUM-RISE COEFFICIENT ROTOR HEAD-RISE COEFFICIENT ROTOR MOMENTUM-RISE COEFFICIENT ROTOR HEAD-RISE COEFFICIENT ROTOR HEAD-RISE COEFFICIENT ROTOR MOMENTUM-RISE COEFFICIENT ROTOR HEAD-RISE COEFFICIENT ROTOR HEAD-RISE COEFFICIENT ROTOR MOMENTUM-RISE COEFFICIENT ROTOR HEAD-RISE C	1.250 0.993 1.072 1.000 0.991 0.977 0.423 0.445 39.67 110.19 8.04 8.24 8.18 7.91 8267.5	3916 1.267 0.984 1.078 0.999 0.898 0.957 0.452 0.406 36.30 100.84 7.36 7.55 7.63 7.18 8258.6 90.1
COMPRESSOR PERFORMANCE		
STAGE TOTAL PRESSURE RATIO 1.157 1.204 1.231 STAGE TOTAL TEMPERATURE RATIO 1.055 1.062 1.068 STAGE ADIABATIC EFFICIENCY 0.777 0.876 0.901		1.246 1.077 0.844
(e) 80 Percent of design speed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.209 STATOR TOTAL PRESSURE RATIO 0.985 ROTOR TOTAL TEMPERATURE RATIO 1.062 STATOR TOTAL TEMPERATURE RATIO 0.998 ROTOR ADIABATIC EFFICIENCY 0.906 ROTOR MOMENTUM-RISE EFFICIENCY 0.957 ROTOR HEAD-RISE COEFFICIENT 0.450 FLOW COEFFICIENT 0.450 AIRFLOW PER UNIT FRONTAL AREA 32.29 AIRFLOW PER UNIT ANNULUS AREA 89.68 AIRFLOW AT ORIFICE 5.54 AIRFLOW AT ROTOR INLET 5.6.99 AIRFLOW AT ROTOR OUTLET 5.6.99 AIRFLOW AT STATOR OUTLET 5.44 ROTATIVE SPEED 7339.0 PERCENT OF DESIGN SPEED 80.00		
STAGE TOTAL PRESSURE RATIO		
(f) 70 Percent of design speed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.102 1.120 1.135 STATOR TOTAL PRESSURE RATIO 0.987 0.992 0.994 ROTOR TOTAL TEMPERATURE RATIO 1.031 1.036 1.040 STATOR TOTAL TEMPERATURE RATIO 1.001 1.000 1.000 ROTOR ADIABATIC EFFICIENCY 0.893 0.919 0.924 ROTOR MOMENTUM-RISE EFFICIENCY 0.905 0.944 0.957 ROTOR MEAD-RISE COEFFICIENT 0.287 0.337 0.378 FLOW COEFFICIENT 0.585 0.539 0.485 AIRFLOW PER UNIT FRONTAL AREA 40.33 37.37 33.86 AIRFLOW PER UNIT ANNULUS AREA 112.03 103.80 94.05 AIRFLOW AT ROTOR INLET 8.40 7.79 7.07 AIRFLOW AT ROTOR INLET 8.40 7.79 7.07 AIRFLOW AT ROTOR OUTLET 8.19 7.66 6.98 ROTATIVE SPEED . 6420.3 6428.9 6433.2 PERCENT OF DESIGN SPEED . 70.0 70.1 70.2	3923 1.145 0.993 1.043 1.000 0.929 0.965 0.409 0.438 30.72 85.32 6.23 6.41 6.39 6.21 6421.2 70.0	3922 1.158 0.988 1.047 0.999 0.906 0.949 0.443 0.393 76.91 5.61 5.78 5.94 5.54 6431.3 70.1
STAGE TOTAL PRESSURE RATIO 1.088 1.111 1.128 STAGE TOTAL TEMPERATURE RATIO 1.032 1.036 1.040 STAGE ADIABATIC EFFICIENCY 0.757 0.853 0.880	1.138 1.043 0.879	1.144 1.046 0.844

TABLE 27. - Concluded.

STAGE TOTAL PRESSURE RATIO 1.103	AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE								. 1.034 . 1.000 . 0.918 . 0.948 . 0.430 . 0.390 . 23.63 . 65.63 . 4.79 . 4.93 . 5.04 . 4.72 . 5499.0
(h) 50 Percent of design speed READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.077 STATOR TOTAL PRESSURE RATIO 0.994 ROTOR TOTAL TEMPERATURE RATIO 1.023 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.919 ROTOR MOMENTUM-RISE EFFICIENCY 0.946 ROTOR HEAD-RISE COEFFICIENT 0.422 FLOW COEFFICIENT 0.390 AIRFLOW PER UNIT FRONTAL AREA 19.81 AIRFLOW PER UNIT ANNULUS AREA 55.03 AIRFLOW AT ORIFICE 4.02 AIRFLOW AT ROTOR INLET 4.05 AIRFLOW AT ROTOR OUTLET 4.01 ROTATIVE SPEED . 4601.7 PERCENT OF DESIGN SPEED . 550.2	STAGE TOTAL TEMPERATURE RATIO	: :	:	: :	:	:	:	:	. 1.103
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.077 STATOR TOTAL PRESSURE RATIO . 0.994 ROTOR TOTAL TEMPERATURE RATIO . 1.023 STATOR TOTAL TEMPERATURE RATIO . 1.000 ROTOR ADIABATIC EFFICIENCY . 0.919 ROTOR MOMENTUM-RISE EFFICIENCY . 0.946 ROTOR HEAD-RISE COEFFICIENT . 0.422 FLOW COEFFICIENT . 0.390 AIRFLOW PER UNIT FRONTAL AREA . 19.81 AIRFLOW PER UNIT ANNULUS AREA . 55.03 AIRFLOW AT ROTOR INLET . 4.02 AIRFLOW AT ROTOR INLET . 4.15 AIRFLOW AT ROTOR OUTLET . 4.23 AIRFLOW AT STATOR OUTLET . 4.23 AIRFLOW AT STATOR OUTLET . 4.01 ROTATIVE SPEED . 50.2						•	•	•	. 0.040
ROTOR TOTAL PRESSURE RATIO 1.077 STATOR TOTAL PRESSURE RATIO 0.994 ROTOR TOTAL TEMPERATURE RATIO 1.023 STATOR TOTAL TEMPERATURE RATIO 1.020 ROTOR ADIABATIC EFFICIENCY 0.919 ROTOR MOMENTUM-RISE EFFICIENCY 0.946 ROTOR HEAD-RISE COEFFICIENT 0.422 FLOW COEFFICIENT 0.390 AIRFLOW PER UNIT FRONTAL AREA 19.81 AIRFLOW PER UNIT ANNULUS AREA 55.03 AIRFLOW AT ROTOR INLET 4.02 AIRFLOW AT ROTOR INLET 4.15 AIRFLOW AT ROTOR OUTLET 4.23 AIRFLOW AT STATOR OUTLET 4.01 ROTATIVE SPEED . 4601.7 PERCENT OF DESIGN SPEED . 50.2	(h) 50 Percent of d	lesig	n s	pee	d				
	ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR HEAD-RISE COEFFICIENT . FLOW COEFFICIENT								. 1.077 . 0.994 . 1.023 . 1.000 . 0.919 . 0.946 . 0.422 . 0.390 . 19.81 . 55.03 . 4.02 . 4.15 . 4.23 . 4.01 . 4601.7

TABLE 28. - OVERALL PERFORMANCE OF STAGE 27C-21

(-,					
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.334 STATOR TOTAL PRESSURE RATIO 0.980 ROTOR TOTAL TEMPERATURE RATIO 1.105 STATOR TOTAL TEMPERATURE RATIO 0.998 ROTOR ADIABATIC EFFICIENCY 0.818 ROTOR MOMENTUM-RISE EFFICIENCY 0.828 ROTOR HEAD-RISE COEFFICIENT 0.322 FLOW COEFFICIENT 0.564 AIRFLOW PER UNIT FRONTAL AREA 62.70 AIRFLOW PER UNIT ANNULUS AREA 174.16 AIRFLOW AT ROTOR INLET 12.71 AIRFLOW AT ROTOR OUTLET 12.53 AIRFLOW AT STATOR OUTLET 12.53 AIRFLOW AT STATOR OUTLET 12.52 ROTATIVE SPEED 10983.2 PERCENT OF DESIGN SPEED 119.8	4369 1.376 0.984 1.111 0.998 0.863 0.878 0.361 0.562 62.51 173.63 12.67 12.77 12.53 12.48 10973.3	4366 1.437 0.981 1.120 0.997 0.911 0.940 0.415 0.542 60.80 168.89 12.32 12.42 12.23 12.02	4367 1.477 0.975 1.128 0.996 0.924 0.955 0.450 0.508 57.79 160.54 11.81 11.82 11.45 10994.4	4368 1.496 0.973 1.134 0.995 0.914 0.954 0.469 0.469 11.16 11.28 11.35 11.17	4360 1.514 0.970 1.140 0.997 0.897 0.946 0.485 0.444 51.68 143.56 10.47 10.56 10.62 10.28
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO	1.354 1.109 0.831	1.410 1.117 0.884	1.441 1.123 0.894	1.456 1.128 0.883	1.469 1.137 0.848
(b) 110 Percent of designment	gn speed				
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORTICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	. 0.974 . 1.082 . 0.999 . 0.821 . 0.829 . 0.294 . 0.581 . 60.14 . 167.06 . 12.19 . 12.29 . 12.12	4357 1.356 0.984 1.098 0.998 0.924 0.950 0.399 0.535 56.39 156.65 11.43 11.52 11.39 11.20 10111.3	4358 1.392 0.981 1.108 0.997 0.917 0.958 0.439 0.481 51.62 143.40 10.46 10.55 10.36 10.14 10112.3	4355 1.414 0.973 1.116 0.997 0.897 0.937 0.467 0.433 46.93 130.37 9.51 9.60 9.54 9.24 10092.0 110.1	
COMPRESSOR PERFORMANCE	1 005	1 224	7 265	1.376	
STAGE TOTAL PRESSURE RATIO	. 1.081	1.334 1.096 0.896	1.365 1.104 0.892	1.113	
(c) 100 Percent of des	ign speed				
READING NUMBER 4349 ROTOR TOTAL PRESSURE RATIO 1.197 STATOR TOTAL PRESSURE RATIO 0.967 ROTOR TOTAL TEMPERATURE RATIO 1.063 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.839 ROTOR MOMENTUM-RISE EFFICIENCY 0.831 ROTOR HEAD-RISE COEFFICIENT 0.271 FLOW COEFFICIENT 0.597 AIRFLOW PER UNIT FRONTAL AREA 57.04 AIRFLOW PER UNIT FRONTAL AREA 158.46 AIRFLOW AT ORIFICE 11.56 AIRFLOW AT ROTOR INLET 11.64 AIRFLOW AT ROTOR OUTLET 11.41 AIRFLOW AT STATOR OUTLET 11.58 ROTATIVE SPEED 9186.5 PERCENT OF DESIGN SPEED 100.2	4350 1.237 0.981 1.070 0.999 0.902 0.905 0.328 0.580 55.45 154.04 11.24 11.33 11.13 9147.9 99.8	4351 1.265 0.987 1.075 0.999 0.920 0.937 0.362 0.550 53.26 147.94 10.79 10.88 10.73 10.64 9181.9	4352 1.289 0.987 1.082 0.998 0.921 0.953 0.395 0.508 49.68 137.99 10.07 10.16 10.00 9.86 9170.5	4353 1.308 0.987 1.088 0.998 0.909 0.955 0.421 0.466 46.13 128.13 9.35 9.44 9.26 9.13 9183.2	4348 1.327 0.979 1.095 0.998 0.888 0.930 0.448 41.90 116.38 8.49 8.55 8.50 8.19 9176.5
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO 1.158 STAGE TOTAL TEMPERATURE RATIO 1.063 STAGE ADIABATIC EFFICIENCY	1.214 1.069 0.827	1.249 1.074 0.879	1.272 1.080 0.894	1.291 1.086 0.882	1.299 1.092 0.840

TABLE 2s. - Continued.

(d) 90 Percent of design	n speed				
READING NUMBER ROTOR TOTAL PRESSURE RATIO	4375 1.177 0.979 1.053 1.000 0.904 0.902 0.303 0.590 51.37 142.70 10.41 10.52 10.37 10.41 8227.4 89.7	4376 1.203 0.988 1.058 1.000 0.927 0.936 0.347 0.551 48.39 134.42 9.81 9.92 9.80 9.75 8228.7 89.7	4377 1.222 0.990 1.064 0.999 0.918 0.946 0.378 0.507 45.03 125.09 9.13 9.24 9.10 9.07 8243.8 89.9	4378 1.240 0.990 1.070 0.999 0.910 0.946 0.407 0.463 41.54 115.39 8.42 8.52 8.36 8.31 8260.2 90.1	4373 1.255 0.985 1.076 0.999 0.888 0.934 0.434 0.417 37.69 104.68 7.64 7.73 7.63 7.48 8252.0 90.0
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO	1.152 1.053 0.781	1.188 1.058 0.867	1.210 1.063 0.886	1.227 1.068 0.880	1.237 1.074 0.846
(e) 80 Percent of design	n speed				
READING NUMBER ROTOR TOTAL PRESSURE RATIO		1 0 1 0 0 0 0 0 0 0 6 66 68	987 060 999 892 930 4409 8.18 1.17 16.73 16.82 16.74 16.63 11.9		
STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY		1.	059		
(f) 70 Percent of design			044		
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.086 STATOR TOTAL PRESSURE RATIO 0.975 ROTOR TOTAL TEMPERATURE RATIO 1.027 STATOR TOTAL TEMPERATURE RATIO 1.001 ROTOR ADIABATIC EFFICIENCY 0.874 ROTOR MOMENTUM—RISE EFFICIENCY 0.879 ROTOR HEAD—RISE COEFFICIENT 0.244 FLOW COEFFICIENT 0.619 AIRFLOW PER UNIT FRONTAL AREA 42.98 AIRFLOW PER UNIT ANNULUS AREA 119.39 AIRFLOW AT ORIFICE 18.71 AIRFLOW AT ROTOR INLET 8.82 AIRFLOW AT ROTOR OUTLET 8.82 ROTATIVE SPEED 6414.9 PERCENT OF DESIGN SPEED .70.0	4384 1.102 0.985 1.031 1.001 0.916 0.930 0.288 0.583 40.78 113.28 8.27 8.38 8.28 8.26 6429.1	4385 1.115 0.992 1.034 1.001 0.924 0.935 0.324 0.539 37.96 105.46 7.69 7.80 7.70 7.65 6430.7	4386 1.125 0.995 1.037 1.001 0.925 0.937 0.352 0.498 35.15 97.64 7.12 7.23 7.08 7.10 6422.8	4387 1.137 0.995 1.041 1.000 0.915 0.945 0.383 0.453 32.23 89.52 6.53 6.63 6.48 6.47 6439.8	4382 1.147 0.991 1.005 1.000 0.897 0.931 0.417 0.404 28.73 79.80 5.82 5.92 5.85 5.78 6408.8 69.9
STAGE TOTAL PRESSURE RATIO 1.058 STAGE TOTAL TEMPERATURE RATIO 1.028 STAGE ADIABATIC EFFICIENCY 0.577	1.086 1.032 0.750	1.106 1.035 0.840	1.120 1.038 0.869	1.131 1.041 0.869	1.137 1.045 0.842

TABLE 28. - Concluded.

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT FRONTAL AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED COMPRESSOR PERFORMANCE	Y ·									1.001 0.902 0.934 0.406 0.402 24.63 68.43 .4.99 .5.06 .4.96 5495.1
STAGE TOTAL PRESSURE KATTO .			•	•		٠	•	٠	•	1.099
STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY .										0.832
(h) 50 Percent of	des	sign	s	ee	d					
READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATI ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENC . FLOW COEFFICIENT . AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET . AIRFLOW AT ROTOR OUTLET . AIRFLOW AT STATOR OUTLET . AIRFLOW AT STATOR OUTLET . ROTATIVE SPEED . PERCENT OF DESIGN SPEED .	ο						• • • • • • • • • • • • • • • • • • • •			0.995 1.023 1.000 0.901 0.920 0.408 0.400 20.72 57.56 .4.20 .4.26 .4.17 .4.12
COMPRESSOR PERFORMANCE										

TABLE 29. - OVERALL PERFORMANCE OF STAGE 27D-21

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE	1.294 1 0.954 0 1.091 1 0.999 0 0.839 0 0.281 0 0.597 0 65.15 66 180.97 17 13.20 1 13.38 1 13.47 1 13.33 1 1020.7 110	4484 4483 .337 1.381 .972 0.981 .099 1.109 .999 0.999 .872 0.888 .872 0.902 .321 0.362 .586 0.558 4.17 61.87 8.25 171.88 3.01 12.54 3.01 12.54 3.20 12.73 11.4 12.53 2.97 12.37 11.4 11013.2 20.1 120.1	4481 1.420 0.983 1.117 0.998 0.899 0.935 0.397 0.516 58.15 161.53 11.79 11.89 11.89 11.61 1106.8	4480 1.436 0.980 1.122 0.998 0.895 0.932 0.413 0.494 55.99 155.53 11.36 11.47 11.04 1099.2	4479 1.453 0.975 1.128 0.997 0.880 0.916 0.431 0.462 52.80 146.67 10.70 10.93 10.94 119.7
STAGE TOTAL PRESSURE RATIO	1.234 1	.300 1.356	1.395	1.408	1.416
STAGE TOTAL TEMPERATURE RATIO	1.090 1	.098 1.107 .792 0.847	1.115	1.119	1.125 0.836
(b) 110 Percent					
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE		4475 4476 .252 1.311 .948 0.980 .073 1.086 .000 0.999 .905 0.933 .895 0.929 .286 0.352 .627 0.562 3.40 58.08 6.10 161.32 2.85 11.77 3.01 11.94 2.91 11.87 3.02 11.72 87.8 10074.4	4477 1.342 0.982 1.095 0.998 0.923 0.947 0.387 0.517 54.16 150.45 10.98 11.16 11.23 10.84 10076.5	4473 1.365 0.980 1.105 0.997 0.890 0.937 0.416 0.460 48.92 135.90 9.92 10.09 10.14 9.62 10049.8 109.6	
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO	1	.073 1.085	1.317 1.092 0.887	1.338 1.101 0.858	
(c) 100 Percen	t of design s	peed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE	1.203 1 0.954 0 1.059 1 1.000 1 0.928 0 0.939 0 0.280 0 0.629 0 58.89 5 163.57 15 11.94 1 12.11 1 11.99 1 12.09 1 9162.8 91	4498 4467 .225 1.242 .974 0.983 .064 1.068 .000 1.000 .936 0.938 .942 0.939 .307 0.331 .593 0.551 6.28 52.97 6.34 147.15 1.41 10.79 1.41 10.79 1.44 10.68 99.3 9186.6 00.3 100.2	4468 1.258 0.990 1.073 1.000 0.928 0.936 0.353 0.513 49.85 138.47 10.10 10.27 10.05 9.97 9186.9 100.2	4471 1.280 0.986 1.081 0.998 0.904 0.925 0.386 0.471 46.03 127.85 9.33 9.49 9.43 9.15 9150.6	4500 1.291 0.984 1.086 0.998 0.879 0.919 0.397 0.447 44.04 122.34 8.93 9.11 9.15 8.74 9211.6
	1 1/10 1	102 1 221	1 245	1 262	1 270
STAGE TOTAL PRESSURE RATIO	1.059 1	.193 1.221 .064 1.068 0.808 0.865	1.246 1.073 0.884	1.262 1.079 0.867	1.270 1.084 0.847

TABLE 29. - Continued.

READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.158 1.1 STATOR TOTAL PRESSURE RATIO . 0.962 0.9 ROTOR TOTAL TEMPERATURE RATIO . 1.046 1.0 STATOR TOTAL TEMPERATURE RATIO . 1.046 1.0 ROTOR ADIABATIC EFFICIENCY . 0.931 0.9 ROTOR MOMENTUM-RISE EFFICIENCY . 0.937 0.9 ROTOR HEAD-RISE COEFFICIENT . 0.271 0.2 FLOW COEFFICIENT . 0.622 0.5 AIRFLOW PER UNIT FRONTAL AREA . 53.38 50. AIRFLOW PER UNIT FRONTAL AREA . 148.29 141. AIRFLOW AT ORIFICE . 10.82 10. AIRFLOW AT ROTOR INLET . 11.01 10. AIRFLOW AT STATOR OUTLET . 10.94 10. ROTATIVE SPEED . 8236.5 8252 PERCENT OF DESIGN SPEED . 89.8 90 COMPRESSOR PERFORMANCE	71 75 50 00 29 40 91 88 88 98 61 33 52 35 36 . 3	
STAGE TOTAL PRESSURE RATIO 1.114 1.1 STAGE TOTAL TEMPERATURE RATIO 1.046 1.0 STAGE ADIABATIC EFFICIENCY 0.676 0.7	50	
(e) 80 Percent of design speed	, 0	
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.174 STATOR TOTAL PRESSURE RATIO 0.992 ROTOR TOTAL TEMPERATURE RATIO 1.053 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.885 ROTOR MOMENTUM-RISE EFFICIENCY 0.921 ROTOR HEAD-RISE COEFFICIENT 0.373 FLOW COEFFICIENT 0.439 AIRFLOW PER UNIT FRONTAL AREA 35.17 AIRFLOW PER UNIT ANNULUS AREA 97.70 AIRFLOW AT ORIFICE 7.13 AIRFLOW AT ROTOR INLET 7.30 AIRFLOW AT ROTOR OUTLET 7.21 AIRFLOW AT STATOR OUTLET 7.08 ROTATIVE SPEED 7357.6 PERCENT OF DESIGN SPEED 80.2 COMPRESSOR PERFORMANCE		
STAGE TOTAL TEMPERATURE RATIO 1.053 STAGE ADIABATIC EFFICIENCY 0.845		
(f) 70 Percent of design speed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.091 1.096 1.102 1.11 STATOR TOTAL PRESSURE RATIO . 0.976 0.983 0.988 0.99 ROTOR TOTAL TEMPERATURE RATIO . 1.027 1.029 1.031 1.03 STATOR TOTAL TEMPERATURE RATIO . 1.001 1.001 1.001 1.001 1.001 ROTOR ADIABATIC EFFICIENCY . 0.922 0.924 0.917 0.92 ROTOR MOMENTUM-RISE EFFICIENCY . 0.945 0.942 0.947 0.94 ROTOR HEAD-RISE COEFFICIENT . 0.253 0.267 0.285 0.31 AIRFLOW PER UNIT FRONTAL AREA 42.31 40.53 38.69 36.3 AIRFLOW PER UNIT ANNULUS AREA 117.54 112.59 107.47 101.00 AIRFLOW AT ROTOR INLET . 8.578 8.22 7.84 7.3 AIRFLOW AT ROTOR OUTLET . 8.578 8.20 7.87 7.4 AIRFLOW AT ROTOR OUTLET . 8.57 8.20 7.87 7.4 ROTATIVE SPEED . 6472.1 6466.0 6464.8 6443. PERCENT OF DESIGN SPEED . 70.6 70.5 70.5	1 1.124 0.995 1.038 11 1.000 0.907 0.907 0.931 0 0.347 9 0.460 16 32.47 11 90.19 17 6.58 4 6.73 4 6.62 2 6.56 6 6447.7	4505 1.132 0.993 1.041 1.000 0.878 0.904 0.371 0.414 29.28 81.34 5.94 6.08 5.97 5.90 6433.7
	3 1,119	1.124
STAGE TOTAL PRESSURE RATIO 1.064 1.077 1.090 1.10 STAGE TOTAL TEMPERATURE RATIO 1.028 1.030 1.031 1.03 STAGE ADIABATIC EFFICIENCY 0.639 0.728 0.789 0.83	4 1.038	1.041 0.823

TABLE 29. - Concluded.

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY					• • • • • • • • • • •		 •	 	0.995 1.030 1.001 0.880 0.910 0.360 0.416 25.50 70.82 .5.17 .5.29 .5.19
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO . STAGE ADIABATIC EFFICIENCY (h) 50 Percent of d	•	٠	•	•	•	•	•		1.090 1.030 0.816
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY FLOW COEFFICIENT							 	 	1.020 1.001 0.885 0.910 0.349 0.418 21.44 59.56 .4.35 .4.46 .4.36
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO . STAGE ADIABATIC EFFICIENCY				:		:	 •	:	1.061 1.021 0.807

TABLE 30. - OVERALL PERFORMANCE OF STAGE 27D-21D

(a) 120 Fercent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.227 1.294 1.357 1.401 1.433 STATOR TOTAL PRESSURE RATIO 0.974 0.985 0.988 0.980 0.976 ROTOR TOTAL TEMPERATURE RATIO 1.080 1.092 1.104 1.112 1.121 STATOR TOTAL TEMPERATURE RATIO 0.998 0.999 1.000 0.998 0.998 ROTOR ADIABATIC EFFICIENCY 0.750 0.834 0.879 0.902 0.895 ROTOR MOMENTUM-RISE EFFICIENCY 0.788 0.868 0.912 0.937 0.930 ROTOR HEAD-RISE COEFFICIENT 0.220 0.283 0.340 0.381 0.412 FLOW COEFFICIENT 0.607 0.599 0.579 0.536 0.496 AIRFLOW PER UNIT FRONTAL AREA 66.28 65.47 63.81 60.10 56.26 AIRFLOW PER UNIT ANNULUS AREA 1.84.10 181.85 177.25 166.95 156.27 AIRFLOW AT ROTOR INLET 1.3.48 13.27 12.93 12.18 11.40 AIRFLOW AT ROTOR OUTLET 1.3.55 13.40 13.08 12.34 17.59 AIRFLOW AT ROTOR OUTLET 1.3.83 13.62 13.13 12.45 11.70 AIRFLOW AT ROTOR OUTLET 1.3.48 13.16 12.72 11.89 10.64 ROTATIVE SPEED 1.1011.6 11000.8 11004.3 10994.7 10976.1	0011 1.457 0.973 1.130 0.998 0.877 0.912 0.434 0.459 52.72 146.44 10.68 11.03 9.61 11000.8
COMPRESSOR PERFORMANCE	
STAGE TOTAL PRESSURE RATIO	1.418 1.127 0.824
(b) 110 Percent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.240 1.312 1.361 STATOR TOTAL PRESSURE RATIO . 0.983 0.989 0.980 ROTOR TOTAL TEMPERATURE RATIO 1.071 1.087 1.103 STATOR TOTAL TEMPERATURE RATIO 1.000 0.999 0.998 ROTOR ADIABATIC EFFICIENCY 0.889 0.927 0.897 ROTOR MOMENTUM-RISE EFFICIENCY 0.910 0.962 0.929 ROTOR HEAD-RISE COEFFICIENT 0.277 0.358 0.412 FLOW COEFFICIENT 0.277 0.358 0.412 FLOW COEFFICIENT 0.277 0.358 0.412 FLOW OPER UNIT FRONTAL AREA 63.79 56.68 49.32 AIRFLOW PER UNIT ANNULUS AREA 1.77.21 157.44 136.99 AIRFLOW AT ORIFICE 12.93 11.49 10.00 AIRFLOW AT ORIFICE 12.93 11.49 10.00 AIRFLOW AT ROTOR INLET 13.04 11.62 10.16 AIRFLOW AT ROTOR OUTLET 13.04 11.62 10.16 AIRFLOW AT STATOR OUTLET 12.81 11.41 9.25 ROTATIVE SPEED 10013.0 10011.0 10037.5 PERCENT OF DESIGN SPEED 109.2 109.2 109.5 COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO 1.219 1.298 1.333 STAGE TOTAL TEMPERATURE RATIO 1.072 1.086 1.101 STAGE ADIABATIC EFFICIENCY 0.814 0.898 0.850	
(c) 100 Percent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.172 1.216 1.237 1.257 1.274 STATOR TOTAL PRESSURE RATIO . 0.980 0.989 0.991 0.993 0.987 ROTOR TOTAL TEMPERATURE RATIO . 1.053 1.062 1.067 1.073 1.079 STATOR TOTAL TEMPERATURE RATIO . 1.000 1.000 1.000 1.000 0.999 ROTOR ADIABATIC EFFICIENCY . 0.881 0.933 0.935 0.930 0.910 ROTOR MOMENTUM-RISE EFFICIENCY . 0.900 0.971 0.967 0.972 0.948 ROTOR HEAD-RISE COEFFICIENT . 0.237 0.298 0.326 0.352 0.376 FLOW COEFFICIENT . 0.655 0.619 0.570 0.525 0.485 AIRFLOW PER UNIT FRONTAL AREA . 61.14 58.38 54.51 50.91 47.44 AIRFLOW PER UNIT ANNULUS AREA . 169.83 162.18 151.41 141.41 131.78 AIRFLOW PER UNIT ROTOR INLET . 12.39 11.83 11.05 10.32 9.62 AIRFLOW AT ROTOR INLET . 12.52 11.97 11.20 10.47 9.77 AIRFLOW AT ROTOR OUTLET . 12.45 11.98 11.22 10.50 9.82 AIRFLOW AT ROTOR OUTLET . 12.45 11.98 11.22 10.50 9.82 AIRFLOW AT STATOR OUTLET . 12.43 11.76 10.95 10.28 9.45 ROTATIVE SPEED . 9172.3 9164.2 9164.1 9180.7 9180.8 PERCENT OF DESIGN SPEED . 100.0 99.9 99.9 100.1 100.1	0004 1.288 0.983 1.084 0.999 0.887 0.908 0.395 0.450 44.16 122.68 8.95 9.13 9.13 9.13 8.48 9171.0
STAGE TOTAL PRESSURE RATIO 1.148 1.203 1.226 1.248 1.258 STAGE TOTAL TEMPERATURE RATIO 1.053 1.062 1.067 1.073 1.078 STAGE ADIABATIC EFFICIENCY 0.761 0.873 0.899 0.899 0.869	1.265 1.083 0.839

TABLE 30. - Continued.

(d) 90 Percent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.139 1.172 1.190 STATOR TOTAL PRESSURE RATIO 0.981 0.988 0.992 ROTOR TOTAL TEMPERATURE RATIO 1.041 1.049 1.054 STATOR TOTAL TEMPERATURE RATIO 1.001 1.000 1.000 ROTOR ADIABATIC EFFICIENCY 0.914 0.946 0.943 ROTOR MOMENTUM-RISE EFFICIENCY 0.929 0.976 0.974 ROTOR HEAD-RISE COEFFICIENT 0.236 0.292 0.323 FLOW COEFFICIENT 0.660 0.612 0.558 AIRFLOW PER UNIT FRONTAL AREA 56.70 53.10 48.91 AIRFLOW PER UNIT ANNULUS AREA 157.50 147.49 135.88 AIRFLOW AT ORIFICE 11.49 10.76 9.91 AIRFLOW AT ROTOR INLET 11.61 10.88 10.04 AIRFLOW AT ROTOR OUTLET 11.57 10.91 10.11 AIRFLOW AT STATOR OUTLET 11.45 10.64 9.81 ROTATIVE SPEED . 8269.0 8253.1 8237.5 PERCENT OF DESIGN SPEED . 90.2 90.0 89.8	0046 0045 1.209 1.233 0.992 0.983 1.060 1.069 1.000 0.998 0.930 0.891 0.961 0.920 0.356 0.397 0.507 0.442 44.94 39.62 124.85 110.06 9.11 8.03 9.25 8.15 9.29 8.28 8.98 7.65 8242.0 8241.0 89.9 89.9
COMPRESSOR PERFORMANCE	1 200 1 212
STAGE TOTAL PRESSURE RATIO	1.200 1.212 1.060 1.067 0.897 0.840
(e) 80 Percent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.177 STATOR TOTAL PRESSURE RATIO 0.986 ROTOR TOTAL TEMPERATURE RATIO 1.054 STATOR TOTAL TEMPERATURE RATIO 0.999 ROTOR ADIABATIC EFFICIENCY 0.883 ROTOR MOMENTUM-RISE EFFICIENCY 0.907 ROTOR HEAD-RISE COEFFICIENT 0.382 FLOW COEFFICIENT 0.424 AIRFLOW PER UNIT FRONTAL AREA 34.04 AIRFLOW PER UNIT ANNULUS AREA 94.55 AIRFLOW AT ROTOR INLET 7.04 AIRFLOW AT ROTOR OUTLET 7.10 AIRFLOW AT STATOR OUTLET 7.10 AIRFLOW AT STATOR OUTLET 7.340.9 PERCENT OF DESIGN SPEED .80.1 COMPRESSOR PERFORMANCE	
STAGE TOTAL PRESSURE RATIO 1.161 STAGE TOTAL TEMPERATURE RATIO 1.053 STAGE ADIABATIC EFFICIENCY 0.819	
(f) 70 Percent of design speed	
READING NUMBER ROTOR TOTAL PRESSURE RATIO . 1.078 1.092 1.104 1. STATOR TOTAL PRESSURE RATIO . 0.987 0.991 0.994 0. ROTOR TOTAL TEMPERATURE RATIO . 1.023 1.027 1.030 1. STATOR TOTAL TEMPERATURE RATIO . 1.001 1.001 1.000 1. ROTOR ADIABATIC EFFICIENCY . 0.935 0.953 0.950 0. ROTOR MOMENTUM-RISE EFFICIENCY . 0.956 0.974 0.978 0. ROTOR MOMENTUM-RISE EFFICIENCY . 0.956 0.974 0.978 0. ROTOR HEAD-RISE COEFFICIENT . 0.220 0.261 0.292 0. FLOW COEFFICIENT . 0.658 0.615 0.565 0. AIRFLOW PER UNIT FRONTAL AREA . 45.51 42.67 39.54 36 AIRFLOW PER UNIT ANNULUS AREA . 126.41 118.53 109.83 100 AIRFLOW AT ORIFICE . 9.22 8.65 8.01 7 AIRFLOW AT ROTOR INLET . 9.35 8.77 8.13 7 AIRFLOW AT ROTOR OUTLET . 9.29 8.77 8.11 7 AIRFLOW AT STATOR OUTLET . 9.21 8.60 7.90 7 ROTATIVE SPEED . 6435.0 6411.6 6428.0 642	0042 0043 0036 .116 1.126 1.136 .995 0.994 0.989 .034 1.038 1.042 .000 1.000 1.000 .943 0.916 0.890 .974 0.950 0.903 .326 0.358 0.383 .515 0.467 0.413 6.22 32.85 29.30 0.62 91.25 81.40 7.34 6.66 5.94 7.46 6.78 6.05 7.46 6.78 6.05 7.26 6.59 5.64 28.2 6399.8 6417.4 70.1 69.8 70.0
STAGE TOTAL TEMPERATURE RATIO 1.024 1.027 1.031 1.	.110 1.119 1.124 .034 1.038 1.041 .890 0.864 0.816

TABLE 30. - Concluded.

READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT . FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED										1.029 1.000 0.902 0.903 0.368 0.410 24.96 69.34 .5.18 .5.17 4.77 5501.9
STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO .		:	:		:	:	:	:	:	1.088
STAGE ADIABATIC EFFICIENCY								•		0.823
(h) 50 Percent of	des	ign	sp	peed	i					
READING NUMBER ROTOR TOTAL PRESSURE RATIO								:	:	0025 1.065 0.995
STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO										0.406 20.68 57.44 .4.19 .4.29 .4.26 .3.90 \$581.5

TABLE 31. - OVERALL PERFORMANCE OF STAGE 28B-22

STAGE TOTAL PRESSURE RATIO 1.457 1.510 1.517 1.521	READING NUMBER 3796 ROTOR TOTAL PRESSURE RATIO 1.501 STATOR TOTAL PRESSURE RATIO 0.970 ROTOR TOTAL TEMPERATURE RATIO 1.144 STATOR TOTAL TEMPERATURE RATIO 0.996 ROTOR ADIABATIC EFFICIENCY 0.857 ROTOR MOMENTUM-RISE EFFICIENCY 0.889 ROTOR HEAD-RISE COEFFICIENT 0.473 FLOW COEFFICIENT 0.554 AIRFLOW PER UNIT FRONTAL AREA 66.16 AIRFLOW PER UNIT ANNULUS AREA 169.89 AIRFLOW AT ROTOR INLET 12.40 AIRFLOW AT ROTOR OUTLET 12.52 AIRFLOW AT STATOR OUTLET 12.52 AIRFLOW AT STATOR OUTLET 12.15 ROTATIVE SPEED 11043.2 PERCENT OF DESIGN SPEED 120.4 COMPRESSOR PERFORMANCE	3795 1.575 0.959 1.151 0.995 0.918 0.956 0.537 0.518 58.12 161.46 11.78 12.04 12.27 11.43	3794 1.587 0.956 1.153 0.998 0.923 0.955 0.551 0.487 55.15 153.19 11.18 11.43 11.76 11.01 10994.0 119.9	3793 1.612 0.943 1.160 0.997 0.915 0.941 0.574 0.455 52.06 144.61 10.55 10.81 11.24 10.61 10997.7
READING NUMBER ROTOR TOTAL PRESSURE RATIO	STAGE TOTAL TEMPERATURE RATIO	1.146	1.150	1.156
ROTOR TOTAL PRESSURE RATIO	(b) 110 Percent of design speed			
STAGE TOTAL TEMPERATURE RATIO 1.111 1.118 1.121 1.129 STAGE ADIABATIC EFFICIENCY 0.801 0.870 0.864 0.821 0.821 0.801 0.870 0.864 0.821 0.821 0.801 0.870 0.864 0.821 0.821 0.801 0.870 0.864 0.821 0.821 0.801 0.870 0.870 0.864 0.821 0.978	READING NUMBER 3761 ROTOR TOTAL PRESSURE RATIO 1.386 STATOR TOTAL PRESSURE RATIO 0.972 ROTOR TOTAL TEMPERATURE RATIO 1.114 STATOR TOTAL TEMPERATURE RATIO 0.997 ROTOR ADIABATIC EFFICIENCY 0.856 ROTOR MOMENTUM-RISE EFFICIENCY 0.870 ROTOR HEAD-RISE COEFFICIENT 0.441 FLOW COEFFICIENT 0.572 AIRFLOW PER UNIT FRONTAL AREA 58.24 AIRFLOW PER UNIT ANNULUS AREA 161.78 AIRFLOW AT ROTOR INLET 11.80 AIRFLOW AT ROTOR INLET 12.11 AIRFLOW AT STATOR OUTLET 11.92 AIRFLOW AT STATOR OUTLET 11.55 ROTATIVE SPEED 10056.0 PERCENT OF DESIGN SPEED 109.7	1.452 0.970 1.122 0.997 0.921 0.959 0.504 0.536 55.71 154.74 11.29 11.54 10.93	1.460 0.969 1.124 0.997 0.920 0.961 0.518 0.506 52.90 146.96 10.72 10.97 11.09 10.36	1.478 0.963 1.130 0.999 0.907 0.937 0.539 0.448 47.58 132.18 9.64 9.89 10.19 9.64
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.280 1.353 1.364 1.372 1.378 STATOR TOTAL PRESSURE RATIO 0.971 0.976 0.978 0.978 O.978 0.974 ROTOR TOTAL TEMPERATURE RATIO 1.089 1.098 1.100 1.103 1.106 STATOR TOTAL TEMPERATURE RATIO 0.999 0.998 0.999 1.000 1.000 ROTOR ADIABATIC EFFICIENCY 0.824 0.925 0.929 0.917 0.901 ROTOR MOMENTUM-RISE EFFICIENCY 0.833 0.951 0.967 0.951 0.938 ROTOR HEAD-RISE COEFFICIENT 0.387 0.483 0.495 0.508 0.515 FLOW COEFFICIENT 0.591 0.548 0.509 0.469 0.433 AIRFLOW PER UNIT FRONTAL AREA 55.62 52.15 49.08 45.61 42.85 AIRFLOW PER UNIT ANNULUS AREA 154.51 144.86 136.33 126.68 119.04 AIRFLOW AT ROTOR INLET 11.27 10.57 9.95 9.24 8.69 AIRFLOW AT ROTOR OUTLET 11.33 10.89 10.22 9.64 9.16 AIRFLOW AT ROTOR OUTLET 11.33 10.89 10.22 9.64 9.16 AIRFLOW AT STATOR OUTLET 11.33 10.89 10.22 9.64 9.16 AIRFLOW AT STATOR OUTLET 11.29 10.51 9.92 9.33 8.73 ROTATIVE SPEED	STAGE TOTAL TEMPERATURE RATIO 1.111	1.118	1.121	1.129
ROTOR TOTAL PRESSURE RATIO 1.280 1.353 1.364 1.372 1.378 STATOR TOTAL PRESSURE RATIO 0.971 0.976 0.978 0.978 0.978 ROTOR TOTAL PRESSURE RATIO 1.089 1.098 1.100 1.103 1.106 STATOR TOTAL TEMPERATURE RATIO 0.999 0.998 0.999 1.000 1.000 ROTOR ADIABATIC EFFICIENCY 0.824 0.925 0.929 0.917 0.901 ROTOR MOMENTUM—RISE EFFICIENCY 0.833 0.951 0.967 0.951 0.938 ROTOR HEAD—RISE COEFFICIENT 0.387 0.483 0.495 0.508 0.515 FLOW COEFFICIENT 0.591 0.548 0.509 0.469 0.438 AIRFLOW PER UNIT FRONTAL AREA 55.62 52.15 49.08 45.61 42.85 AIRFLOW PER UNIT ANNULUS AREA 1.54.51 144.86 136.33 126.68 119.04 AIRFLOW AT ROTOR INLET 1.1.56 10.84 10.20 9.49 8.92 AIRFLOW AT ROTOR INLET 11.56 10.84 10.20 9.49 8.92 AIRFLOW AT ROTOR OUTLET 11.33 10.89 10.22 9.64 9.16 AIRFLOW AT ROTOR OUTLET 11.33 10.89 10.22 9.64 9.16 AIRFLOW AT ROTOR OUTLET 11.30 10.51 9.92 9.33 8.73 ROTATIVE SPEED	(c) 100 Percent of design speed			
STAGE TOTAL TEMPERATURE RATIO 1.087 1.095 1.098 1.103 1.107	ROTOR TOTAL PRESSURE RATIO 1.280 STATOR TOTAL PRESSURE RATIO 0.971 ROTOR TOTAL TEMPERATURE RATIO 1.089 STATOR TOTAL TEMPERATURE RATIO 0.999 ROTOR ADIABATIC EFFICIENCY 0.824 ROTOR MOMENTUM-RISE EFFICIENCY 0.833 ROTOR HEAD-RISE COEFFICIENT 0.387 FLOW COEFFICIENT 0.591 AIRFLOW PER UNIT FRONTAL AREA 55.62 AIRFLOW PER UNIT ANNULUS AREA 154.51 AIRFLOW AT ORIFICE 11.27 AIRFLOW AT ROTOR INLET 11.56 AIRFLOW AT ROTOR OUTLET 11.33 AIRFLOW AT STATOR OUTLET 11.29 ROTATIVE SPEED 9180.9 PERCENT OF DESIGN SPEED 100.1	1. 353 1 1. 976 0 1. 098 0 0. 998 0 0. 925 0 0. 951 0 0. 483 0 0. 548 0 0. 548 1 10. 57 10. 84 1 10. 89 1 10. 51 10. 51	.364 1 .978 0 .979 1 .999 1 .929 0 .967 0 .495 0 .509 0 9.08 4 6.33 12 9.95 0 .20 0 0.22 0	.372 1.378 1.978 0.974 .103 1.106 .000 1.000 0.917 0.901 0.951 0.938 0.508 0.515 0.469 0.438 0.568 119.04 9.24 8.69 9.24 8.69 9.49 8.92 9.64 9.16 9.33 8.73 76.3 9181.2
	STAGE TOTAL PRESSURE RATIO 1.243 STAGE TOTAL TEMPERATURE RATIO	1.095 1	.098 1	.103 1.107

TABLE 31. - Continued.

		(a) 90 Percen	t of design	speea			
AIRFLOW PER UNIT FRO AIRFLOW PER UNIT ANN AIRFLOW AT ROTOR INL AIRFLOW AT ROTOR OUT AIRFLOW AT STATOR OUT	RE RATIO		0.96 1.06 1.00 . 0.78 . 0.79 . 0.32 . 0.61 . 52.6 . 146.3 . 10.6 . 10.9 . 10.7	1 1.267 0 0.981 1 1.076 0 0.999 1 0.916 2 0.940 8 0.451 7 137.06 8 10.00 6 10.28 2 10.14 1 10.00 6 8262.7	3772 1.286 0.982 1.080 0.998 0.927 0.956 0.480 0.516 45.35 125.98 9.19 9.43 9.18 8282.6 90.3	3773 1.302 0.976 1.085 0.998 0.9923 0.962 0.508 0.468 41.50 115.29 8.41 8.63 8.82 8.37 8272.0 90.2	3775 1.308 0.971 1.088 0.998 0.9903 0.935 0.520 0.428 38.13 105.91 7.73 7.94 8.31 7.78 8255.9 90.0
COMPRESSOR PERFORMAN	NCE						
STAGE TOTAL PRESSURE STAGE TOTAL TEMPERAT STAGE ADIABATIC EFFI	TURE RATIO		1.06	6 1.075	1.262 1.079 0.875	1.270 1.082 0.860	1.270 1.086 0.823
	((e) 80 Percent	of design s	speed			
RO ST RO ST RO RO FL AI AI AI AI RO PE	EADING NUMBER OTOR TOTAL PRES FATOR TOTAL PRES FATOR TOTAL TEMP FATOR TOTAL TEMP OTOR ADIABATIC OTOR MOMENTUM—R OTOR HEAD—RISE OW COEFFICIENT REFLOW PER UNIT REFLOW AT ORIFI REFLOW AT ROTOR REFLOW AT ROTOR REFLOW AT STATO OTATIVE SPEED RECENT OF DESIGN MPRESSOR PERFO	SSURE RATIO ERATURE RATI PERATURE RAT EFFICIENCY ISE EFFICIEN COEFFICIENT FRONTAL ARE ANNULUS ARE CE INLET OUTLET R OUTLET N SPEED	CY		. 0.976 . 1.070 . 0.998 . 0.900 . 0.932 . 0.513 . 0.409 . 32.75 . 90.97 . 6.64 . 6.83 . 7.19 . 6.73 . 7347.2		
ST	AGE TOTAL PRESS AGE TOTAL TEMPE AGE ADIABATIC I	ERATURE RATIO			. 1.069		
	(3	f) 70 Percent	of design s	peed			
AIRFLOW PER UNIT FROM AIRFLOW PER UNIT ANN AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INL AIRFLOW AT STATOR OUT ROTATIVE SPEED . PERCENT OF DESIGN SP	E RATIO		0.971 1.04(1.001 . 0.833 . 0.853 . 0.34(. 0.641 . 43.86 . 121.83 8.89 9.15 	1.150 0.986 1.044 1.000 0.924 0.944 0.422 0.584 40.18 111.60 8.14 8.39 8.24 8.23 6425.8	3781 1.161 0.989 1.047 1.000 0.928 0.957 0.452 0.527 36.64 101.78 7.43 7.64 7.55 7.47 6431.5	3780 1.169 0.989 1.050 1.000 0.923 0.959 0.474 0.460 32.28 89.66 6.73 6.76 6.73 6.76 643.33 70.2	3779 1.178 0.984 1.053 0.999 0.905 0.905 0.407 28.67 79.63 5.81 5.99 6.20 6.498 6438.6 70.2
COMPRESSOR PERFORMAN			7 000	7 128	1 140	1 157	1 150
STAGE TOTAL PRESSURE STAGE TOTAL TEMPERATI STAGE ADIABATIC EFFI	URE RATIO		1.040	1.044	1.148 1.046 0.867	1.157 1.049 0.861	1.159 1.052 0.826

TABLE 31. - Concluded.

STAGE ADIABATIC EFFICIENCY 0.822	READING NUMBER ROTOR TOTAL PRESSURE RATIO . STATOR TOTAL PRESSURE RATIO . ROTOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO . ROTOR ADIABATIC EFFICIENCY . ROTOR MOMENTUM-RISE EFFICIENCY . ROTOR HEAD-RISE COEFFICIENT . FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA . AIRFLOW PER UNIT ANNULUS AREA . AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO .											1.000 0.908 0.930 0.491 0.401 67.54 .4.93 .5.08 .5.26 .5.06
(h) 50 Percent of design speed READING NUMBER 3788 ROTOR TOTAL PRESSURE RATIO 1.087 STATOR TOTAL PRESSURE RATIO 0.992 ROTOR TOTAL TEMPERATURE RATIO 1.027 STATOR TOTAL TEMPERATURE RATIO 1.027 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.906 ROTOR MOMENTUM—RISE EFFICIENCY 0.928 ROTOR HEAD—RISE COEFFICIENT 0.477 FLOW COEFFICIENT 0.477 FLOW COEFFICIENT 0.470 AIRFLOW PER UNIT FRONTAL AREA 20.44 AIRFLOW PER UNIT ANNULUS AREA 56.78 AIRFLOW AT ROTOR INLET 4.27 AIRFLOW AT ROTOR OUTLET 4.27 AIRFLOW AT STATOR OUTLET 4.27 ROTATIVE SPEED . 4606.9 PERCENT OF DESIGN SPEED 550.2	STAGE IDIAL TEMPERATURE RATIO .	•	•	•	•	•	•	•	•	•	•	0.822
READING NUMBER ROTOR TOTAL PRESSURE RATIO 1.087 STATOR TOTAL PRESSURE RATIO 0.992 ROTOR TOTAL TEMPERATURE RATIO 1.027 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.906 ROTOR MOMENTUM-RISE EFFICIENCY 0.928 ROTOR HEAD-RISE COEFFICIENT 0.477 FLOW COEFFICIENT 0.477 FLOW COEFFICIENT 5.40 AIRFLOW PER UNIT FRONTAL AREA 20.44 AIRFLOW PER UNIT ANNULUS AREA 56.78 AIRFLOW AT ROTOR INLET 4.14 AIRFLOW AT ROTOR OUTLET 4.37 AIRFLOW AT STATOR OUTLET 4.37 AIRFLOW AT STATOR OUTLET 4.21 ROTATIVE SPEED 5.02				•					Ċ	٠	٠	0.022
ROTOR TOTAL PRESSURE RATIO	(h) 50 Percent of d	es	igı	1 8	рe	ec	ı					
	ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO	•	•	•	:	:	•	•		•		1.087

TABLE 32. - OVERALL PERFORMANCE OF STAGE 28D-22

(a) 120 Percent of design sp	peea		
STATOR TOTAL PRESSURE RATIO 0.945	0210 0211 1.456 1.516 0.967 0.970 1.134 1.141 0.996 0.996 0.848 0.897 0.866 0.992 0.432 0.487 0.582 0.567 63.89 62.62 77.48 173.96 12.95 12.69 13.15 12.27 13.39 13.21 12.80 12.26 030.1 11000.9 120.0	0212 0213 1.539 1.555 0.968 0.969 1.144 1.147 0.995 0.996 0.910 0.914 0.939 0.940 0.507 0.523 0.545 0.514 60.76 58.00 168.77 161.12 12.31 11.76 12.50 11.93 12.93 12.57 11.83 11.60 11006.4 10986.4 120.0 119.8	0208 1.568 0.966 1.151 0.997 0.907 0.923 0.535 0.485 55.21 153.35 11.19 11.37 12.11 11.16 10980.6
COMPRESSOR PERFORMANCE			
STAGE TOTAL TEMPERATURE RATIO 1.117	1.408 1.470 1.129 1.136 0.797 0.855	1.490 1.506 1.138 1.142 0.872 0.872	1.514 1.148 0.850
(b) 110 Percent of design sp	peed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO	. 1.333 1 0.946 0 1.101 1 0.997 0 0.850 0 0.851 0 0.382 0 0.614 0 62.11 57 . 172.53 159 . 12.59 11 . 13.10 12 . 12.55 11 . 10047.7 1004	217 0215 429 1.465 975 0.968 115 1.125 997 0.997 935 0.921 958 0.943 485 0.524 556 0.476 .48 50.55 .68 140.41 .65 10.25 .83 10.41 .12 10.95 .39 9.96 6.8 10062.6 9.6 109.7	
STAGE TOTAL TEMPERATURE RATIO	1.098 1.	112 1.121 891 0.865	
(c) 100 Percent of design s	peed		
ROTOR TOTAL PRESSURE RATIO 1.269 STATOR TOTAL PRESSURE RATIO 0.945 CONTROL PRESSURE RATIO 0.945 CONTROL TOTAL TEMPERATURE RATIO 0.998 CONTROL TOTAL TEMPERATURE RATIO 0.998 CONTROL TOTAL TEMPERATURE RATIO 0.858 CONTROL MOMENTUM-RISE EFFICIENCY 0.872 CONTROL MOMENTUM-RISE EFFICIENCY 0.872 CONTROL TOTAL PROPERTY 0.372 CONTROL TOTAL PROPERTY 0.627 CONTROL TOTAL PROPERTY 0.627 CONTROL TOTAL PROPERTY CONTROL TOTAL PROPERTY	0190 0191 1.312 1.340 0.966 0.974 1.088 1.093 0.998 0.997 0.916 0.938 0.926 0.958 0.427 0.465 0.610 0.575 67.49 54.74 69.69 152.06 11.65 11.10 11.82 11.27 11.82 11.27 11.46 10.91 163.6 9155.5 99.9 99.8	0192 0193 1.347 1.359 0.977 0.978 1.095 1.099 0.998 0.998 0.935 0.921 0.965 0.957 0.475 0.490 0.535 0.491 51.44 47.80 142.88 132.77 10.43 9.69 10.61 9.86 10.89 10.15 10.15 9.31 9156.8 9168.9 99.9 100.0	0203 1.374 0.973 1.105 0.997 0.904 0.930 0.509 0.453 44.57 123.82 9.03 9.21 9.54 8.79 9198.8 100.3
	1 207 1 207	1 216 1 200	1 227
STAGE TOTAL TEMPERATURE RATIO 1.080	1.267 1.305 1.086 1.090 0.815 0.883	1.316 1.328 1.092 1.097 0.886 0.870	1.337 1.102 0.847

TABLE 32. - Continued.

(a) 50 1 c	recent or design sp	occu				
READING NUMBER ROTOR TOTAL PRESSURE RATIO	0.946 0.906 0.907 0.875 0.893 0.366 0.640 0.54.9 11.13 11.30 11.42 11.42	1.251 6.0.968 7.0998 9.0.993 8.0.943 8.0.943 8.0.614 9.53.22 1.147.84 8.10.79 9.10.98 1.1.11 1.161 8.316.6	0221 1.266 0.979 1.074 0.998 0.941 0.962 0.454 0.553 48.15 133.76 9.76 9.96 10.17 9.51 8225.1	0222 1.274 0.982 1.077 0.998 0.933 0.962 0.469 0.503 44.22 122.82 8.96 9.14 9.32 8.63 8208.6	0223 1.292 0.975 1.084 0.997 0.903 0.942 0.497 0.444 39.49 109.68 8.00 8.17 8.49 7.51 8225.7	3
COMPRESSOR PERFORMANCE						
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.064	1.069	1.239 1.072 0.884	1.251 1.075 0.882	1.259 1.081 0.837	
(e) 80 Pe	ercent of design s	peed				
READING NUMBER ROTOR TOTAL PRESSURE R STATOR TOTAL PRESSURE ROTOR TOTAL TEMPERATUR STATOR TOTAL TEMPERATUR ROTOR ADIABATIC FFFICI ROTOR MOMENTUM-RISE FROTOR HEAD-RISE COEFFI FLOW COEFFICIENT AIRFLOW PER UNIT FRONT AIRFLOW PER UNIT ANNUL AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLE AIRFLOW AT STATOR OUTLE ROTATIVE SPEED PERCENT OF DESIGN SPEE	RATIO LE RAT		0.979 1.066 0.998 0.997 0.945 0.489 0.483 34.74 96.49 1.7.04 1.7.18 1.7.48 1.6.62 1.7327.6			
STAGE TOTAL PRESSURE R STAGE TOTAL TEMPERATUR STAGE ADIABATIC EFFICI	E RATIO		. 1.064			
	Percent of design					
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE	0.959 1.037 1.000 0.896 0.923 0.345 0.655 45.03125.109.139.299.298.918.91	1.041 1.000 0.931 0.967 0.390 0.619 43.03 119.53 8.72 8.89 8.94 8.49	8.08 8.24 8.33 7.83	0230 1.155 0.988 1.045 0.999 0.973 0.434 0.521 36.56 101.56 7.41 7.57 7.69 7.15 5448.1	0229 1.162 0.988 1.047 0.999 0.963 0.452 0.475 33.52 93.12 6.79 6.94 7.07 6.47 5439.1	0228 1.171 0.984 1.051 0.991 0.947 0.428 30.29 84.13 6.14 6.26 6.51 5.68 6417.2
STAGE TOTAL PRESSURE RATIO	1.037	1.110 1.041	1.132	1.141	1.148	1.152
STAGE ADIABATIC EFFICIENCY	0.5/3	0.739	0.849	0.864	0.869	0.840

TABLE 32. - Concluded.

STAGE TOTAL PRESSURE RATIO 1.108	READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT AIRFLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA . AIRFLOW PER UNIT ANNULUS AREA . AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET PERCENT OF DESIGN SPEED COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO			• • • • • • • • • • • • • • • • • • • •							• • • • • • • • • • • • • • • • • • • •	70.51 .5.14 .5.26 .5.35 .4.65 5482.6 .59.8
(h) 50 Percent of design speed READING NUMBER 0240 ROTOR TOTAL PRESSURE RATIO 1.083 STATOR TOTAL PRESSURE RATIO 0.991 ROTOR TOTAL TEMPERATURE RATIO 1.025 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.912 ROTOR MOMENTUM-RISE EFFICIENCY 0.953 ROTOR HEAD-RISE COEFFICIENT 0.462 FLOW COEFFICIENT 0.466 AIRFLOW PER UNIT FRONTAL AREA 20.98 AIRFLOW PER UNIT ANNULUS AREA 58.27 AIRFLOW AT ORIFICE 4.25 AIRFLOW AT ROTOR INLET 4.29 AIRFLOW AT ROTOR OUTLET 4.49 AIRFLOW AT STATOR OUTLET 3.72 ROTATIVE SPEED . 4583.8 PERCENT OF DESIGN SPEED . 50.0	STAGE TOTAL TEMPERATURE RATIO .											1.036
READING NUMBER 0240 ROTOR TOTAL PRESSURE RATIO 1.083 STATOR TOTAL PRESSURE RATIO 0.991 ROTOR TOTAL TEMPERATURE RATIO 1.025 STATOR TOTAL TEMPERATURE RATIO 1.000 ROTOR ADIABATIC EFFICIENCY 0.912 ROTOR MOMENTUM-RISE EFFICIENCY 0.953 ROTOR HEAD-RISE COEFFICIENT 0.462 FLOW COEFFICIENT 0.406 AIRFLOW PER UNIT FRONTAL AREA 20.98 AIRFLOW PER UNIT ANNULUS AREA 58.27 AIRFLOW AT ORIFICE 4.25 AIRFLOW AT ROTOR INLET 4.29 AIRFLOW AT ROTOR OUTLET 4.49 AIRFLOW AT STATOR OUTLET 3.72 ROTATIVE SPEED .4583.8 PERCENT OF DESIGN SPEED 50.0	STAGE ADIABATIC EFFICIENCY	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0.822
ROTOR TOTAL PRESSURE RATIO . 1.083 STATOR TOTAL PRESSURE RATIO . 0.991 ROTOR TOTAL TEMPERATURE RATIO . 1.025 STATOR TOTAL TEMPERATURE RATIO . 1.000 ROTOR ADIABATIC EFFICIENCY . 0.912 ROTOR MOMENTUM-RISE EFFICIENCY . 0.953 ROTOR HEAD-RISE COEFFICIENT . 0.462 FLOW COEFFICIENT . 0.466 AIRFLOW PER UNIT FRONTAL AREA . 20.98 AIRFLOW PER UNIT ANNULUS AREA . 58.27 AIRFLOW AT ORIFICE . 4.25 AIRFLOW AT ROTOR INLET . 4.29 AIRFLOW AT ROTOR OUTLET . 4.49 AIRFLOW AT STATOR OUTLET . 3.72 ROTATIVE SPEED 4583.8 PERCENT OF DESIGN SPEED . 50.0	(h) 50 Percent of d	es:	igr	ıs	рe	ed	ì					
	ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO . STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT											1.083 0.991 1.025 1.000 0.912 0.953 0.462 0.406 20.98 58.27 .4.25 .4.29 .4.49 .3.72

(c) Low blade loading. Diffusion factor, 0.40 to 0.43.

Figure 1. - Compressor middle stages - matrix of rotors tested.

Figure 2. – Evolution of test stages, where σ_R denotes rotor tip solidity and σ_S denotes stator tip solidity.

Figure 3. - Flowpath and instrumentation locations for stages 23.

Figure 4. - Flowpath and instrumentation locations for stages 24.

Figure 5. - Flowpath and instrumentation locations for stage 25A-20B.

Figure 6. - Flowpath and instrumentation locations for stages 26.

Figure 7. - Flowpath and instrumentation locations for stages 27.

Figure 8. - Flowpath and instrumentation locations for stages 28.

Figure 10. - Probes used.

Figure 11. - Angular positions of instrumentation, looking downstream - stage 25A-20B.

Figure 12. - Angular positions of instrumenation, looking downstream - all stages except 25A-20B.

Figure 13. - Rotor 23B.

Figure 14. - Rotor 23D.

Figure 15. - Rotor 24A.

Figure 16. - Rotor 24B.

Figure 17. - Rotor 25A.

Figure 18. - Rotor 26B.

Figure 19. - Rotor 26D.

Figure 20. - Rotor 27A.

Figure 21. - Rotor 27C.

Figure 22. - Rotor 27D.

Figure 23. - Rotor 28B.

Figure 24. - Rotor 28D.

Figure 25. - Stator 20.

Figure 26. - Stator 20B.

Figure 27. - Stator 20C.

Figure 28. - Stator 21.

Figure 29. - Stator 21D.

Figure 30. - Stator 22.

Figure 31. - Overall performance of stage 23B-20.

Figure 32. - Overall performance of stage 23D-20C.

Figure 33. - Overall performance of stage 24A-20.

.....

Figure 34. - Overall performance of stage 24B-20C.

Figure 35. - Overall performance of stage 25A-20B.

112

Figure 36. - Overall performance of stage 26B-21.

Figure 37. - Overall performance of stage 26D-21.

Figure 38. - Overall performance of stage 26D-21D.

1 1 111 1 11 111 1111

Figure 39. - Overall performance of stage 27A-21.

Figure 40. - Overall performance of stage 27C-21.

Figure 41. - Overall performance of stage 27D-21.

Figure 42. - Overall performance of stage 27D-21D.

Figure 43. - Overall performance of stage 28B-22.

Figure 44. - Overall performance of stage 28D-22.

Figure 45. - Overall performance of rotor 23B.

Figure 46. - Overall performance of rotor 23D.

Figure 47. - Overall performance of rotor 24A.

Figure 48. - Overall performance of rotor 24B.

Figure 49. - Overall performance of rotor 25A.

Figure 50. - Overall performance of rotor 26B.

Figure 51. - Overall performance of rotor 26D in stage 26D-21.

Figure 52. - Overall performance of rotor 26D in stage 26D-21D.

Figure 53. - Overall performance of rotor 27A.

Figure 54. - Overall performance of rotor 27C.

Figure 55. - Overall performance of rotor 27D in stage 27D-21.

Figure 56. - Overall performance of rotor 27D in stage 27D-21D.

Figure 57. - Overall performance of rotor 28B.

Figure 58. - Overall performance of rotor 28D.

Figure 59. - Effect of solidity on rotor performance at constant aspect ratio for rotors 23B, 23D, 24A, and 24B. Wheel speed, 100 percent of design.

I

Figure 60. - Effect of solidity on rotor performance at constant aspect ratio for rotors 26B, 26D, and 27D. Wheel speed, 100 percent of design.

Figure 61. - Effect of solidity on rotor performance at constant aspect ratios for rotors 28B and 28D. Wheel speed, 100 percent of design; rotor aspect ratio, 0.8; diffusion factor, 0.56.

Figure 62. - Effect of stator solidity on design-speed performance for stages 26D-21 and 26D-21D. Rotor aspect ratio, 1.2.

Figure 63. - Effect of stator solidity on design-speed performance for stages 27D-21 and 27D-21D. Rotor aspect ratio, 0.7.

Figure 64. - Effect of aspect ratio on rotor performance at constant solidity for stators 24A, 23B, 24B, and 23D. Wheel speed, $100~p\epsilon$ rocent of design.

Figure 65. - Effect of aspect ratio on rotor performance at constant solidity for rotors 27A and 26B. Wheel speed, 100 percent of design; rotor solidity, 1.8.

Figure 66. - Effect of aspect ratio on rotor performance at constant solidity for stages 21D-26D, 21D-27D, 21-26D, and 21-27D. Wheel speed, 100 percent of design; rotor solidity, 0.9.

Figure 67. - Effect of rotor aspect ratio on stage performance at constant solidity for stages 23B-20, 24A-20, 23D-20C, and 24B-20C. Wheel speed, 100 percent of design.

Figure 68. - Effect of rotor aspect ratio on stage performance at constant solidity for stages 27A-21 and 26B-21. Wheel speed, 100 percent of design; rotor solidity, 1.8, stator solidity, 1.8.

(a) Rotor solidity, 0.9; stator solidity, 0.9.

(b) Rotor solidity, 0.9; stator solidity, 1.8.

Figure 69. - Effect of rotor aspect ratio on stage performance at constant solidity for stages 26D-21D, 27D-21D, 26D-21, and 27D-21. Wheel speed, 100 percent of design.

Figure 70. - Effect of aspect ratio, diffusion factor, and solidity on rotor performance.

1. Report No. NASA TP-1523	2. Government Access	ion No.	3. Recipient's Catalo	og No.
4. Title and Subtitle EFFECTS OF DIFFUSION FACTOR, ASPECT		P ASDECT	5. Report Date	
RATIO, AND SOLIDITY ON OVERALL PERFORMANCE OF 14 COMPRESSOR MIDDLE STAGES			September 197	79
		MANCE OF	6. Performing Organ	ization Code
7. Author(s)			8. Performing Organi	ization Report No.
Werner R. Britsch, Walter M. Osborn, and Mark R. Lae		rk R. Laessig	E-9943	,
9. Performing Organization Name and Address			10. Work Unit No.	
9. Performing Organization Name and Address National Aeronautics and Space Administration			505-04	
·	Aummstration		11. Contract or Grant	t No.
Lewis Research Center				
Cleveland, Ohio 44135			13. Type of Report a	and Period Covered
12. Sponsoring Agency Name and Address			Technical Pa	aper
National Aeronautics and Space Administration			14. Sponsoring Agenc	v Code
Washington, D.C. 20546				,
15. Supplementary Notes		I		
To. Supplementary Hotes				
16. Abstract				
The effects of diffusion factor,	aspect ratio, and	d solidity on rotor	and stage perfor	mance have
	_			
been evaluated for 14 subsonic				
been evaluated for 14 subsonic	_			
tip speed of 243.8 meters per	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from	second. Peak rot 0.850 to 0.902, a	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from 15 percent.	second. Peak rot 0.850 to 0.902, a	or efficiencies ran	ged from 0.898	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from 15 percent. 17. Key Words (Suggested by Author(s)) Turbomachinery	second. Peak rot 0.850 to 0.902, a	or efficiencies ran and stage stall man	ged from 0.898 gins were gener	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from 15 percent. 17. Key Words (Suggested by Author(s)) Turbomachinery Compressors	second. Peak rot 0.850 to 0.902, a	or efficiencies ran and stage stall man and stage stall man	ged from 0.898 gins were gener	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from 15 percent. 17. Key Words (Suggested by Author(s)) Turbomachinery Compressors Axial flow compressors	second. Peak rot 0.850 to 0.902, a	or efficiencies ran and stage stall man and stage stall man	ged from 0.898 gins were gener	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from 15 percent. 17. Key Words (Suggested by Author(s)) Turbomachinery Compressors Axial flow compressors Compressor middle stages	second. Peak rot 0.850 to 0.902, a	or efficiencies ran and stage stall man 18. Distribution Statement Unclassified - u STAR Category	ged from 0.898 gins were gener unlimited 07	to 0.944. Peak
tip speed of 243.8 meters per stage efficiencies ranged from 15 percent. 17. Key Words (Suggested by Author(s)) Turbomachinery Compressors Axial flow compressors	second. Peak rot 0.850 to 0.902, a	or efficiencies ran and stage stall man 18. Distribution Statement Unclassified - u STAR Category	ged from 0.898 gins were gener	to 0.944. Peak

National Aeronautics and Space Administration

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

Washington, D.C. 20546

Official Business
Penalty for Private Use

8 1 1U,A, 091179 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LABORATORY ATTN: TECHNICAL LIBRARY (SUL) KIRTLAND AFB NM 87117

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return