逸出功的测量

hhhhh

2023年6月17日

目录

目录

Ι

1	实验目的	1						
2	数据处理							
	2.1 A 与 S 的处理	1						
	2.2 发射电流 Ie 的测量	1						
	2.3 温度 T 的测量	1						
3	数据记录	3						
	3.1 拟合函数	4						
4	思考题							
5	实验小结							
6	接线图							
7	原始数据	6						

1 实验目的 1

1 实验目的

- 用里查孙直线法测定阴极材料(钨)的电子逸出功
- 了解热电子发射的规律;
- 掌握逸出功的测量方法

2 数据处理

2.1 A 与 S 的处理

里查孙直线法。处理后的公式如下: $\lg\left(\frac{I_e}{T^2}\right) = \lg(AS) - 5.039 \times 10^{3} \frac{\phi}{T}$

2.2 发射电流 Ie 的测量

可以画出在不同阴极温度下的 $\lg I_e'$ 与 $\sqrt{U_a}$ 的关系曲线, 并将其外推至 $\sqrt{U_a}=0$ 处, 此时的 $\lg I_e'$ 即为 $\lg I_e$, 由此可以定出所需要的 I_e 值。

2.3 温度 T 的测量

可以由阴极电流 I_f 的大小得出比加热电流的大小,从而用线性插值得出对应的温度 T

2 数据处理 2

I_f/A	测量项						
	U_a/mV	36.02	48.99	64.02	81.07	100.08	121.07
0.540	\sqrt{Ua}/mV	6.00	7.00	8.00	9.00	10.00	11.00
0.540	U_e'/mV	13.60	13.86	14.15	14.43	14.71	15.02
	lgU'_e	0.70	0.71	0.72	0.73	0.74	0.75
	U_a/mV	36.07	49.05	64.03	80.96	100.02	121.00
0.50	\sqrt{Ua}/mV	6.01	7.00	8.00	9.00	10.00	11.00
0.50	U_e^\prime/mV	3.79	3.89	3.97	4.07	4.15	4.21
	lgU_e'	0.15	0.16	0.17	0.18	0.19	0.19
	U_a/mV	36.01	49.02	63.99	81.03	100.02	121.01
0.580	\sqrt{Ua}/mV	6.00	7.00	8.00	9.00	10.00	11.00
0.560	U_e^\prime/mV	41.56	42.25	43.02	44.22	45.05	45.93
	lgU_e'	1.19	1.19	1.20	1.21	1.22	1.23
	U_a/mV	36.02	49.07	64.03	81.03	100.01	121.04
0.620	\sqrt{Ua}/mV	6.00	7.00	8.00	9.00	10.00	11.00
0.020	U_e^\prime/mV	116.46	118.61	120.81	123.07	125.20	127.50
	lgU_e'	1.63	1.64	1.65	1.66	1.67	1.67
	U_a/mV	35.96	48.99	64.03	81.03	100.01	121.03
0.660	\sqrt{Ua}/mV	6.00	7.00	8.00	9.00	10.00	11.00
0.000	U_e^\prime/mV	31.54	32.08	32.63	33.18	33.70	34.29
	lgU'_e	2.07	2.07	2.08	2.09	2.10	2.10
	U_a/mV	36.03	48.99	64.04	80.98	100.06	121.05
0.690	\sqrt{Ua}/mV	6.00	7.00	8.00	9.00	10.00	11.00
0.090	U_e'/mV	60.54	61.58	62.62	63.67	64.66	65.75
	lgU'_e	2.35	2.36	2.37	2.37	2.38	2.39

3 数据记录 3

3 数据记录

获得的六条直线的表达式如下

$$y = 0.0071x + 2.308 \tag{1}$$

$$y = 0.0072x + 2.0243 \tag{2}$$

$$y = 0.0079x + 1.5877\tag{3}$$

$$y = 0.0089x + 1.1326\tag{4}$$

$$y = 0.0086x + 0.6503 \tag{5}$$

$$y = 0.0092x + 0.0932 \tag{6}$$

3 数据记录 4

3.1 拟合函数

表 1: 原始数据

	- /A (A) A							
I_e	0.09	0.65	1.13	1.59	2.02	2.31		
T	1726	1792	1864	1930	1991	2042		
$lg\frac{I_e}{T^2}$	-6.38	-5.86	-5.41	-4.98	-4.57	-4.31		
$\frac{1}{T}$	0.00058	0.00056	0.00054	0.00052	0.00050	0.00049		

利用 MATLAB 的拟合工具箱,我们拟合得到 $lg\frac{I_e}{T^2}\sim 1/T$ 的关系为

$$lg\frac{I_e}{T^2} = -2.248 \times 10^4 / T + 6.699$$

置信边界为 $95\%, r^2 = 0.9984$ 由此,求得逸出功为

图 2:
$$lg\frac{I_e}{T^2} \sim 1/T$$

$$W = \frac{2.248 \times 10^4}{5.039 \times 10^3} = 4.461eV$$

相对误差为

$$\Delta_{W_0} = \left| \frac{W - W_0}{W_0} \right| = 1.7\%$$

4 思考题 5

4 思考题

1. 若本实验中 R_e 未给出具体数值,能否根据 U_e 和 T 求出逸出电位 φ ?

可以,因为取对数之后 lgU'_e 和 U_a 是线性关系,我们只需要求出直线的截距,即 $lgR_e + lgI_e$ 。在最后的求解时,我们需要 lgI_e/T^2 和 1/T 的斜率, $lg(R_e)$ 将不会对结果产生影响。

2. 倍率变为 $\times 10$ 档时图中 300Ω 采样电阻应如何接入 并联在 $R_e=2700\Omega$ 的两端。

5 实验小结

本次实验的重点是测量不同电流 I_f 下钨丝两端电压和阴极电压的关系。在实验过程中, U_e' 会随着钨丝温度的变化而变化,读数时不能等稳定在读,可以先使钨丝保持在那个温度,过一会直接读数,否则会带来较大的误差。

此外需要注意的是实验结束后需要等待钨丝冷却才能移动实验设备。

6 接线图

6 接线图

7 原始数据

7 原始数据 7

