Constrained Delaunay Tetrahedralization(CDT) for boundary preserving mesh generation

Pranav Kant Gaur

Computer Division, Bhabha Atomic Research Centre, Mumbai, India

Motivation

- CFD analysis for Nuclear reactor component modelling:
 - Designing reactor core:

Figure: Fuel bundle

Motivation(contd.)

Anupravaha

- General purpose CFD solver over hybrid unstructured grid.
- Collaborative project between BARC and other academic institutions.
- Integrated mesh generation and CFD solver:
 - Currently, no open source software with iterative feedback based hybrid mesh generation capability.
 - Need to have tighter control over configurability of mesh generation and solver tools.

Motivation(contd.)

- Resulting mesh should have elements suitable for finite element calculations:
 - Constrained Delaunay Tetrahedralization is optimal domain discretization approach for Finite element applications [1].
 - Preserves input domain in output mesh.
 - Shares characterstics with Delaunay triangulation [2]

Constrained Delaunay Tetrahedralization

- Simplical complex: A topological space formed by gluing together points, line segments, triangles and their *n*-dimensional counterparts.
- A simplical complex is constrained Delaunay if there exist a circumsphere which encloses no other visible point inside it.

 Constrained Delaunay Tetrahedralization is a simplical complex of constrained Delaunay cells.

Theoretical underpinnings

- Piecewise linear complex(PLC):
 - Representation of input constraints.
 - Polyhedra are a special case.
 - Can contain holes, isolated vertices.

• Given input PLC, compute its CDT.

Theoretical underpinnings(contd.)

- Schewchuck's CDT existence theorem [2]:
 - A PLC X has a d-dimensional CDT if each k-dimensional constraining facet in X with $k \le d-2$ is a union of strongly Delaunay k-simplices.

Theoretical underpinnings(contd.)

- Hang Si's Theorem [3]
 - If X has no local degeneracy and DT of X contains all segments of X, then CDT of X exists.

Figure: **Local degeneracy**: *ABCD* and *ABCE* are neighbouring Delaunay tetrahedrons

Does not require constraints to be strongly Delaunay globally.

Hang Si's algorithm

- Transform X into a *topologically equivalent* X' which satisfies preconditions for Si's theorem:
 - Compute initial Delaunay Tetrahedralization
 - Recover constraint segments:
 - Split constraint segments such that resulting subsegments are Delaunay.
 - 8 Remove local degeneracies:
 - Use symbolic perturbation scheme.
- Recover constraint facets:
 - Cavity retetrahedralization.

Implementation

CDTGenerator class:

- Data members:
 - plc : input piece-wise linear complex
 - DT : intermediate Delaunay triangulation
 - cdtMesh : output mesh
- Member functions:
 - generate(): public interface
 - 1 readInputPLC()
 - 2 computeDelaunayTetrahedralization()
 - orecoverConstraintSegments()
 - removeLocalDegeneracies()
 - force interpretation of the contract of t
 - o removeExteriorTetrahedrons()

Implementation(contd.)

- Unit tests using Google test:
 - Constraint segment recovery and Constraint facet recovery:
 - Checks if all constraint segments and constraint facets are recovered.
- Doxygen inline code documentation
- Continuous integration testing on Travis CI
- Github repository: https://github.com/pranavkantgaur/CDTGenerator

Implementation: Using CGAL

- Geometric object generator package:
 - Generating random ray for performing inside-outside test.
- Combinatorial Maps and Linear Cell complex package:
 - Representing Piece-wise linear complex and output mesh.
- 3D Triangulations package:
 - Representing intermediate Delaunay triangulations.
- 2D and 3D Linear Geometry Kernel:
 - Points, Triangles, Rays.

Results

Platform: Core i3, 4GB RAM, 3.2 GHZ CPU running Ubuntu 14.04 X86_64.

- Cube model:
 - Passes unit tests, executes.

(a) Input: Cube surface mesh

(b) Output: Cube tetrahedral mesh

- Sphere model:
 - Does not terminate in call to remove exterior tetrahedrons from output mesh
 - Takes more than 10 minutes in facet recovery step(unacceptable).

TODOs

- Rewrite facet recovery code.
- Devise efficient algorithm for checking if a 3-cell is inside Linear cell complex.
- Extend the code for adaptive mesh generation with feedback loop from CFD solver.
- Generalize the solution to support Hybrid meshing.

Thank you!!

References

- [1] J Shewchuk. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). *University of California at Berkeley*, 73, 2002.
- [2] Jonathan Richard Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained delaunay triangulations. In Proceedings of the fourteenth annual symposium on Computational geometry, pages 76–85. ACM, 1998.
- [3] Hang Si and Klaus Grtner. Meshing piecewise linear complexes by constrained delaunay tetrahedralizations. In ByronW. Hanks, editor, *Proceedings of the 14th International Meshing Roundtable*, pages 147–163. Springer Berlin Heidelberg, 2005.