

1/28

Extension-Trapping SNP Assay

Highly Stringent Annealing Conditions (gDNA is biotinylated prior to assay)

FIG. 1A

FIG. 1B

2/28

Reduced Genome Single Base Extension Assay

Stringent Annealing Capture and Wash

FIG._2

3/28

Complexity Reduction and Multiplex Assay

FIG._3

4/28

Complexity Reduction and Multiplex Assay

Anneal biotinylated locus specific primer,
wash and extend

+ ddNTPs, dNTPs,
and DNA polymerase

Alternatives:
Biotinylated dNTPs or
biotin-ddNTPs may be
substituted for the
biotinylated primer.

Bind to streptavidin coated
beads and wash away
unbound material

Allele and adjacent
genomic sequence
information is captured
by the polymerase
extension step.

Hybridize allele specific
oligos and wash away
non-specifically bound
oligonucleotides

The second
hybridization
step provides allele
discrimination and an
additional level of locus
specificity prior to
signal amplification.

FIG. 4

This oligonucleotide is
washed away under
stringent hybridization
and wash conditions.

5/28

Complexity Reduction and Multiplex Assay

FIG._5

6/28

Complexity Reduction and Multiplex Assay

Correct extension product from step three of figure 5

Misextension product (due to 3' → 5' exonuclease activity) from step three of figure 5 present in low quantities

U2

Hybridize second allele specific oligonucleotide and wash

U2

Extend correctly hybridized oligonucleotides

U2

Split extention reaction and add to universal PCR primer set U1 and set U2

PCR primer set U2

No amplification

FIG._6

7/28

Solid Phase Locus-Specific Primer Extension

Starting material is immobilized, single stranded universal PCR product.
There are several ways to generate this.

Allele specific oligonucleotide
hybridization and stringent wash

FIG._7

8/28

Alternate Labeling Scheme for Primer Extension (High Signal)

FIG._8

Title: MULTIPLEX NUCLEIC ACID REACTIONS
Inventors: Chee et al.
Filing Date: July 15, 2003
Serial No.: 10/620,852
Attorney Client-Matter No.: 67234-015
Tel: 858-535-9001

9/28

Simplified OLA-PCR Assay Format

FIG._9

"Reverse" S-OLA-PCR Assay Format

FIG._10

Title: MULTIPLEX NUCLEIC ACID REACTIONS
Inventors: Chee et al.
Filing Date: July 15, 2003
Serial No.: 10/620,852
Attorney Client-Matter No.: 67234-015
Tel: 858-535-9001

10/28

FIG._ 11

11/28

Principle of ICAN Method

FIG._12A

12/28

FIG._ 12B

13/28

FIG._ 13A

14/28

FIG._ 13B

15/28

Fig. 14C

Fig. 14B

Fig. 14A

Fig. 14D

Fig. 14E

Fig. 14F

Fig. 15

17/28

Fig. 16

18/28

	pool 1	pool 2	pool 3	pool 4	pool 5	pool 6	pool 7	pool 8
cat	0.00E+00	1.00E+04	3.00E+04	1.00E+05	3.00E+05	1.00E+06	3.00E+06	1.00E+07
cre	1.00E+04	3.00E+04	1.00E+05	3.00E+05	1.00E+06	3.00E+06	1.00E+07	0.00E+00
E1A	3.00E+04	1.00E+05	3.00E+05	1.00E+06	3.00E+06	1.00E+07	0.00E+00	1.00E+04
GFP	1.00E+05	3.00E+05	1.00E+06	3.00E+06	1.00E+07	0.00E+00	1.00E+04	3.00E+04
gus	3.00E+05	1.00E+06	3.00E+06	1.00E+07	0.00E+00	1.00E+04	3.00E+04	1.00E+05
lacZ	1.00E+06	3.00E+06	1.00E+07	0.00E+00	1.00E+04	3.00E+04	1.00E+05	3.00E+05
luc	3.00E+06	1.00E+07	0.00E+00	1.00E+04	3.00E+04	1.00E+05	3.00E+05	1.00E+06
neo	1.00E+07	0.00E+00	1.00E+04	3.00E+04	1.00E+05	3.00E+05	1.00E+06	3.00E+06
bla	3.00E+05							
GST	3.00E+05							

Fig. 18

20/28

Fig. 19B

Fig. 19A

21/28

Fig. 20

- Error bars represent the range of intensities of 4 replicates.
- 3 fold detection range

22/28

Fig. 21

- 250 ng of total RNA/sample
- Ds DNA hybridization
- Error bars represent the range of intensities of 4 replicates.

23/28

- 100 ng total RNA background, 12 replicates, 238-plex.
- All pre-PCR and post-PCR processes identical to SciOps including single stranded product hybridization to arrays.
- Dynamic range: 2.5 - 3 logs; Precision: better than 3 fold change.

Fig. 22

24/28

- 100.0% data points among 4 replicates within 2 fold change
- 98.8% data points among 4 replicates within 2 fold change

Fig. 23

25/28

Fig. 24A

Fig. 24B

26/28

Fig. 25A

Mouse genes detected by RT-PCR

Fig. 25B

Mouse genes detected by DASL

27/28

Fig. 26

Fig. 27A

Fig. 27B

Two pairs of PCR primer

13,3,4