

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Segundo Examen Parcial								
Lic. en Ciencias de la Computación – Ing. en Computación	– Ing. en Sistemas o	de Información						
Apellido y Nombre:	LU:	Hojas entregadas:						
(en ese orden)		(sin enunciado)						
Profesor:								
NOTA: Resolver los ejercicios en hojas separadas. Poner n	nombre. LU v núm	ero en cada hoja.						

Apague cualquier dispositivo electrónico en su poder y manténgalo guardado. No puede utilizar auriculares. Lea todo el ejercicio antes de comenzar a desarrollarlo.

Ejercicio 1. En el marco de la norma IEEE 754, considerando la representación en punto flotante de media precisión: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Dados los números:

$$X = (1\ 10110\ 0011111001)$$
 $Y = (0\ 00111\ 1000111100)$

Realizar el producto $X \times Y$ aplicando redondeo por proximidad hacia los pares y hacia $+\infty$, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits G, R y S del resultado y con R y S al redondear. El resultado debe ser expresando según la representación enunciada.

Ejercicio 2. Hacer

Ejercicio 3. Determinar cuál es el contenido final de cada uno de los registros y posiciones de memoria involucrados en la siguiente secuencia de instrucciones. Indicar en cada caso, el número de instrucción que origina cada cambio. Asumir que el primer operando es el destino y el segundo la fuente de información para la operación.

(1) mov R1,#0200	Interpretacio	ón
(2) mov (R1), #0100	#xxxx	Inmediato
(3) mov 0100(R1), R1	R	Registro
(4) mov R2, #0500	(R)	Registro indirecto
(5) mov @0100(R1), #0500	XXXX	Absoluto
(6) mov (0200), 0300	xxxx(R)	Indexado
$(7) \mod R3, 0200$	(xxxx)	Memoria indirecto
(8) mov R3, @0100(R3)	@xxxx(R)	Pre-indexado indirecto

Ejercicio 4. Hacer

Ejercicio 5. Considerando el siguiente programa para la arquitectura OCUNS, en la que toda lectura/escritura sobre la dirección FF es redireccionada a la E/S estándar:

	LDA RO, FFh
	LOAD R1, O(RO)
	LOAD R2, O(RO)
	XOR R3, R3, R3
	LDA R4, 1b13
	JZ R1, 1b13
	JZ R2, 1b13
	SUB R5, R1, R2
	JG R5, 1b12
lbl1:	ADD R3, R3, R2
	DEC R1
	JZ R1, 1b13
	JMP R4
lb12:	ADD R3, R3, R1
	DEC R2
	JZ R2, 1b12
lb13:	STORE R3, O(RO)
	HLT

Op.	Descr.	FORM.	Pseudocódigo
0	add	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} + \texttt{R[t]}$
1	sub	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} - \texttt{R[t]}$
2	and	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \& \texttt{R[t]}$
3	xor	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \texttt{R[t]}$
4	Ish	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} << \texttt{R[t]}$
5	rsh	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} >> \texttt{R[t]}$
6	load	I	$\texttt{R[d]} \leftarrow \texttt{mem[offset} + \texttt{R[s]]}$
7	store	I	$\texttt{mem}[\texttt{offset} + \texttt{R[d]}] \leftarrow \texttt{R[s]}$
8	lda	II	$R[d] \leftarrow addr$
9	jz	II	if (R[d] == 0) PC \leftarrow PC + addr
A	jg	II	if (R[d] > 0) PC \leftarrow PC + addr
В	call	II	$R[d] \leftarrow PC; PC \leftarrow addr$
\mathbf{C}	jmp	III	$PC \leftarrow R[d]$
D	inc	III	$R[d] \leftarrow R[d] + 1$
\mathbf{E}	dec	III	$R[d] \leftarrow R[d] - 1$
\mathbf{F}	hlt	III	exit

FORMATO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	×	×	×	dest. d					src	. s		src. t / off.			
II	1	0	×	×	dest. d				address addr							
III	1	1	×	X		dest. d						-	-			

- a) Ensamblar el programa a partir de la dirección 00h.
- b) Si se reubicara el código máquina obtenido en el inciso (a) a partir de la dirección 20h, ¿qué referencias a memoria requieren ser ajustadas? Justificar adecuadamente.
- c) Suponiendo que los valores ingresados por teclado son 1Ah y 04h:
 - c.1) Realice una traza mostrando la evolución del contenido de cada registro.
 - c.2) Describir el propósito del programa en su conjunto.
 - c.3) ¿Qué sucede con el resultado retornado por el programa si los valores ingresados fueran 04h y 1Ah? ¿Cuál es la diferencia?
 - c.4) ¿Cuál es la restricción en cuanto a los valores de entrada que considera el programa para su correcto funcionamiento?