Tube-Load Modeling of Aorta with Abdominal Aortic Aneurysm

<u>Donghyeon Kim</u>¹, Divyesh Narayanan⁴, Hao-Min Cheng², Chen-Huan Chen², Chang-Sei Kim³, Ramakrishna Mukkamala⁴, Jin-Oh Hahn¹ ¹University of Maryland, ²National Yang-Ming University, ³Chonnam National University, ⁴University of Pittsburgh

1. Motivation and Background

- Motivation:
- To investigate the feasibility of tube-load modeling in tracking the progression of abdominal aortic aneurysm (AAA) in a patient pre- and post-endovascular repair (EVAR).
- Non-imaging-based monitoring of AA is practically non-existent.
- Most AAA are asymptomatic and ruptured aorta has a mortality rate of >80%.
- Background:
- Aortic aneurysm is a balloon-like bulge in the main artery which supplies blood to the body.
- Weakened aortic walls and distending blood pressure causes progressive vessel expansion and potential rupture.
- Conventional methods for AAA diagnosis are:
 - Imaging-based techniques → underutilized due to inconvenience.
- AAA alters pulse wave propagation and reflection characteristics of the arteries → morphological changes of arterial blood pressure (ABP) waveforms.
- Non-invasive measurements of arterial blood pressure, like tonometry waveform measurements reflects the changes that AAA causes.
- Thus, more convenient and affordable ways to monitor AAA will enhance patient safety.

2. Methods

- Experimental Data:
- We collected carotid and femoral tonometry waveforms from 43 AAA patients before and after EVAR.
- We preprocessed the artery tonometry waveforms and derived a representative carotid and femoral waveform beat.
- We calibrate the tonometry waveforms to the arm cuff mean and diastolic blood pressure levels.
- We excluded patients that had PAD or endoleaks post-EVAR since both conditions may affect the shape of arterial blood pressure waveforms.
- A quantitative measure of waveform quality was used to exclude subjects with poor waveform quality, followed by manual inspection.

2.1 Tube-Load Model

- * A Tube-Load (TL) model represents the arterial system via uniform, loss-less tubes with parametric loads.
- Tube has characteristic impedance, Z_c , and additional components may be used to better represent physiology:
 - Arterial compliance C_T and arterial resistance R_T
- * Eq. (1) TL model is characterized by two parameters:
- Pulse Transit Time (PTT) denoted by au
- Reflection coefficient denoted by Γ
- ❖ Eq. (2) TL model is characterized by three parameters:
- Pulse Transit Time (PTT) denoted by au
- Reflection coefficient as lumped parameters η_2/η_1
- Mathematical model of 2-parameter TL model:

$$P_F(s) = \frac{1 + \Gamma}{e^{\tau s} + \Gamma e^{-\tau s}} \cdot P_C(s) \tag{1}$$

- Reflection coefficient, Γ , is given by $\Gamma = \frac{R_T Z_C}{R_T + Z_C}$
- Mathematical model of three-parameter TL model:

$$P_F(s) = \frac{s + \eta_1 + \eta_2}{(s + \eta_1)e^{\tau s} + \eta_2 e^{-\tau s}} \cdot P_C(s) \tag{2}$$

- $\frac{\eta_2}{\eta_1}$ is the reflection coefficient in the 3-parameter model.
- $\eta_1 = \frac{2Z_C + R_T}{2Z_C R_T C_T}$ and $\eta_2 = \frac{R_T}{2Z_C R_T C_T}$
- ❖ We fit the tube-load models to the carotid and femoral waveform pertaining to the patient and inferred patient-specific model parameters based on a nonlinear optimization procedure.

Visuals

- Arterial waveforms are the sum of the forward (P_f) and backward (P_h) traveling waves.
- Forward and backward waves have a time delay τ (i.e., PTT) and wave reflection phenomena is accounted for by impedance mismatch (i.e., $Z_c \neq Z_L$).

Fig. 1: Diagram of 2-parameter tube-load model characterized by τ and Γ .

Fig. 2: Diagram of 3-parameter tube-load model characterized au,η_1 , and η_2 .

3. Model Fitting

- Carotid-femoral PTT (cf-PTT) was calculated via the intersecting tangents method which is a robust method for estimating PTT.
- ❖ We also obtain the model parameter estimates for cf-PTT and the reflection coefficient from both the 2-parameter and 3-parameter models.
- The TL model uses the femoral waveform as the input signal and fits to the carotid waveform by adjusting its estimate for PTT and reflection coefficient parameters.

Fig 3: 2-parameter model fitting results for (a) pre-EVAR and (b) post-EVAR. 3-parameter model fitting results for (c) pre-EVAR and (d) post-EVAR.

The 3-parameter model was found to have a lower average RMSE compared to the 2-parameter model.

Fig. 4: Average RMSE of the model between pre- and post-EVAR subjects. No significant difference in RMSE was observed between the 2-parameter and 3-parameter models.

4. Data Analysis

- ❖ We compared the cf-PTT and reflection coefficient values in pre-EVAR vs. post-EVAR subjects We normalized the cf-PTT for age, height, mean blood pressure, and pulse rate, and normalized the reflection coefficient for age and mean blood pressure.
- These normalizations account for the fact that both PTT and reflection coefficient are likely affected by blood pressure and age, and PTT is affected by height and pulse rate.

Fig 5: Unnormalized cf-PTT estimated from intersecting tangents and TL-models in pre-EVAR vs. post-EVAR subjects

Fig. 6: Normalized cf-PTT estimated from intersecting tangents and TL-models in pre-EVAR vs. post-EVAR subjects. Normalization formula given by $NPTT = \frac{MBP \cdot Age \cdot PR}{Height} \cdot PTT$

Fig 7: Unnormalized reflection coefficient from 2-parameter model.

Fig 8: Normalized reflection coefficient from 2-parameter model.

5. Results

- Our results suggests that TL model may have the potential to track AAA progression within an individual without the use of conventional imaging techniques.
- Significant differences in PTT and reflection coefficient, and their normalizations, were found between pre-EVAR and post-EVAR subjects.
- The trends in the changes of TL model parameters were consistent with physiological expectations.
- 1. PTT has been shown to decrease after EVAR.
- 2. Reflection coefficient is expected decrease following EVAR due to a decrease in arterial compliance.

Table 1: Normalized PTT and reflection coefficient values of 43 pre-EVAR and post-EVAR subjects (mean \pm SD). *:p < 0.05.

	Pre-EVAR	Post-EVAR	Pre-EVAR	Post-EVAR
	Normalized PTT (mmHg- years/cm)		Normalized Reflection Coefficient	
2-parameter	132.96	118.01	2076.0	1259.7
Model	± 33.30	± 32.96*	± 1732.0	± 1300.8*
3-parameter	133.37	118.87	2526.2	2343.3
Model	± 34.25	± 30.47*	± 2270.5	± 2319.0

Table 2: PTT and reflection coefficient values of 43 pre-EVAR and post-EVAR subjects (mean \pm SD). *:p < 0.05.

	Pre-EVAR	Post-EVAR	Pre-EVAR	Post-EVAR
	PTT (s)		Reflection Coefficient	
2-parameter	0.0492	0.0422	0.271	0.184
Model	± 0.0108	± 0.0119*	± 0.213	± 0.175*
3-parameter	0.0493	0.0424	0.330	0.343
Model	± 0.0104	± 0.0110*	± 0.276	± 0.322

Acknowledgment

This work was supported in part by the National Institutes of Health under Grant 1R21EB029376.