Exercises 3.15

Exercise 3.15.1

Let p, p_i, q, q_i be density functions on \mathbb{R} and $\alpha \in \mathbb{R}$. Show that the cross-entropy satisficies the following properties:

a.
$$S(p_1 + p_2, q) = S(p_1, q) + S(p_2, q);$$

b.
$$S(\alpha p, q) = \alpha S(p, q) = S(p, q^{\alpha});$$

c.
$$S(p, q_1q_2) = S(p, q_1) + S(p, q_2)$$
.

Exercise 3.15.2

Show that the cross entropy satisfies the following inequality

$$S(p,q) \ge 1 - \int p(x)q(x)dx$$

Exercise 3.15.3

Let p a fixed density. Show that the symetric relative entropy

$$D_{KL}(p||q) + D_{KL}(q||p)$$

reaches its minimum for p = q, and the minimum is equal to zero.

Exercise 3.15.4

Consider two exponential densities, $p_1 = \xi^1 e^{\xi^1 x}$ and $p_2 = \xi^2 e^{\xi^2 x}$, $x \ge 0$.

a. Show that
$$D_{KL}(p_1 || p_2) = \frac{\xi^2}{\xi^1} - \ln \frac{\xi^2}{\xi^1} - 1$$
.

- b. Verify $D_{KL}(p_1||p_2) \neq D_{KL}(p_2||p_1)$.
- c. Show that the triangle inequality doesn't hold for three arbitrary densities.

Exercise 3.15.5

Let X be a discrete random variable. Show the inequality

$$H(X) \geq 0$$
.

Exercise 3.15.6

Prove that if p and q are the densities of two discrete random variables, then $D_{KL}(p||q) \leq S(p,q)$

Exercise 3.15.7

We assume the target variable Z is \mathcal{E} -measurable. What is mean squared error function in this case?

Exercise 3.15.8

Asume that a neural network has an input-output function $f_{w,b}$ linear in w and b. Show that the cost function (3.3.1) reaches its minimum for a unique pair (w^*, b^*) , which can be computed explicitly.

Exercise 3.15.9

Show that the Shannon entropy can be retrived from the Reyni entropy as

$$H(p) = \lim_{\alpha \to 1} H_{\alpha}(x).$$

Exercise 3.15.10

Let $\phi_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^2}{2\sigma^2}}$. Consider the convolution operation $(f*g)(x) := \int f(t)g(x-t)dt$.

- a. Show that $\phi_{\sigma} * \phi_{\sigma} = \phi_{\sigma\sqrt{2}}$;
- b. Find $\phi_{\sigma} * \phi_{\sigma'}$ in the case $\sigma \neq \sigma'$.

Exercise 3.15.11

Consider two probability densities, p(x) and q(x). The Cauchy-Schwartz divergence is defined by

$$D_{CS}(p,q) := -\ln\left(\frac{\int p(x)q(x)dx}{\sqrt{\int p(x)^2 dx}}\sqrt{\int q(x)^2 dx}\right)$$

Show the following:

- a. $D_{CS}(p,q) = 0$ if and only if p = q;
- b. $D_{CS}(p,q) \ge 0$;
- c. $D_{CS}(p,q) = D_{CS}(q,p);$
- d. $D_{CS}(p,q) = -\ln \int pqdx \frac{1}{2}H_2(p) \frac{1}{2}H_2(q)$, where $H_2(\cdot)$ denotes the quadratic Reyni entropy.

Exercise 3.15.12

- a. Show that for any function $f \in L^1[0,1]$ we have the inequality $\|\tanh(f)\|_1 \leq \|f\|_1$.
- b. Show that for any function $f \in L^2[0,1]$ we have the inequality $\|\tanh(f)\|_2 \leq \|f\|_2$.

Exercise 3.15.13

Consider two distributions on the sample space $\mathcal{X} = \{x_1, x_2\}$ given by

$$p = \begin{pmatrix} x_1 & x_2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \ q = \begin{pmatrix} x_1 & x_2 \\ \frac{1}{2} & \frac{2}{3} \end{pmatrix}$$

Consider the function $\phi: \mathcal{X} \to \mathbb{R}^2$ defined by $\phi(x_1) = (0,1)$ $\phi(x_2) = (1,0)$. Find the maximum mean discrepancy between p and q.

SOLUTIONS

3.15.1 (a)

The claim follows from the linearity of the integral operator. In symbols we have:

$$S(p_1 + p_2, q) = -\int_{\mathbb{R}} (p_1(x) + p_2(x)) \ln q(x) dx = -\int_{\mathbb{R}} p_1(x) \ln q(x) dx - \int_{\mathbb{R}} p_2(x) \ln q(x) dx$$

= $S(p_1, q) + S(p_2, q)$.

3.15.1 (b)

From the linearity of the integral operator, and the property $c \ln(x) = \ln(x^c)$ we have:

$$S(\alpha p, q) = -\int_{\mathbb{R}} \alpha p(x) \ln q(x) dx = -\alpha \int_{\mathbb{R}} p(x) \ln q(x) dx = \alpha S(p, q)$$
$$= -\int_{\mathbb{R}} \alpha p(x) \ln q(x) dx = -\int_{\mathbb{R}} p(x) \ln q(x)^{\alpha} dx = S(p, q^{\alpha}).$$

3.15.1 (c)

Using the addition identity for the logarithm, we get:

$$S(p, q_1 q_2) = -\int_{\mathbb{R}} p(x) \ln q_1(x) q_2(x) dx = -\int_{\mathbb{R}} p(x) \ln q_1(x) dx - \int_{\mathbb{R}} p(x) \ln q_2(x) dx$$

= $S(p, q_1) + S(p, q_2)$.

3.15.2

By the inequality $\ln(x) \leq x - 1$, $\forall x \in \mathbb{R}^+$, and the definition of cross-entropy follows:

$$\begin{split} S(p,q) &= -\int_{\mathbb{R}} p(x) \mathrm{ln} q(x) dx \geq -\int_{\mathbb{R}} p(x) (q(x)-1) dx \\ &\geq -\int_{\mathbb{R}} -p(x) dx - \int_{\mathbb{R}} p(x) q(x) dx = 1 - \int_{\mathbb{R}} p(x) q(x) dx. \end{split}$$

3.15.3

From proposition 3.5.1 follows that $D_{KL}(p||q) \ge 0$, $D_{KL}(q||p) \ge 0$, then $D_{KL}(p||q) + D_{KL}(q||p) \ge 0$. Clearly the value 0 is a minimum. Let's now prove that this minimum is attained when p = q. It is well known from the cross-entropy definition S(p,p) = H(p) and S(q,q) = H(q) then:

$$D_{KL}(p||q) = D_{KL}(p||p) = S(p,p) - H(p) = 0$$
 and $D_{KL}(q||p) = D_{KL}(q||q) = S(q,q) - H(q) = 0$, which in turn imply $D_{KL}(p||q) + D_{KL}(q||p) = 0$.

3.15.4 (a)

By direct calculation we find:

$$\begin{split} D_{KL}(p_1 \| p_2) &= S(p_1, p_2) - H(p_1) = -\int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \ln(\xi^2 e^{-\xi^2 x}) dx - \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \ln(\xi^1 e^{-\xi^1 x}) \\ &= -\int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \ln(\xi^2) dx + \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \xi^2 x dx + \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \ln(\xi^1) dx - \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} \xi^1 x dx \\ &= -(\ln(\xi^2) - \ln(\xi^1)) \int_{\mathbb{R}} \xi^1 e^{-\xi^1 x} dx + (\xi^2 - \xi^1) \int_{\mathbb{R}} \xi^1 x e^{-\xi^1 x} dx \\ &= -(\ln(\xi^2) - \ln(\xi^1)) \mathbb{E}_{X \sim exp(\xi^1)} \left[1 \right] + (\xi^2 - \xi^1) \mathbb{E}_{X \sim exp(\xi^1)} \left[X \right] = -\ln \frac{\xi^2}{\xi^1} + (\xi^2 - \xi^1) \frac{1}{\xi^1} \\ &= -\ln \frac{\xi^2}{\xi^1} + \frac{\xi^2}{\xi^1} - 1 \end{split}$$

3.15.4 (b)

Suppose the equality $D_{KL}(p||p) = D_{KL}(q||p)$ holds and $\xi^1 \neq \xi^2$, then from exercise 3.14.4.a it follows: $-\ln\frac{\xi^2}{\xi^1} + \frac{\xi^2}{\xi^1} - 1 = -\ln\frac{\xi^1}{\xi^2} + \frac{\xi^1}{\xi^2} - 1 \implies \frac{\xi^2}{\xi^1} = \frac{\xi^1}{\xi^2}$. The later implies $\frac{\xi^1}{\xi^2} = 1$ or equivalently $\xi^1 = \xi^2$, which is a contradiction.

3.15.4 (c)

Let $p_1 = exp(2)$, $p_2 = exp(3)$, $p_3 = exp(4)$. Suppose the triangle inequality holds for these three arbitary exponential distributions. This is:

 $D_{KL}(p_1||p_3) \leq D_{KL}(p_1||p_2) + D_{KL}(p_2||p_3)$. By exercise 3.15.4.b we would have:

$$D_{KL}(p_1||p_3) = \frac{4}{2} - \ln\frac{4}{2} - 1 \le D_{KL}(p_1||p_2) + D_{KL}(p_2||p_3) = \frac{3}{2} - \ln\frac{3}{2} - 1 + \frac{4}{3} - \ln\frac{4}{3} - 1$$
$$2 \le \frac{3}{2} + \frac{4}{3} - 1 = \frac{17}{6} - 1 = \frac{11}{6} = \frac{12}{6} - \frac{1}{6} = 2 - \frac{1}{6} \text{ (contradiction!)}$$

3.15.5 (a)

Given that p(x) is a distribution, it follows that p(X) as a r.v satisfies the inequality $0 \le p(X) \le 1$. This means $p(x) \le 1, \forall x \in \sup(X)$. Taking natural logs on both sides of the inequality $p(x) \le 1$ and multiplying by -1, we obtain: $\ln p(x) \ge 0$; Multiplying by p(x) and summing over the support of X, we get:

$$\mathbb{E}\left[-\ln p(X)\right] = H(X) = \sum_{x \in \sup(X)} -p(x) \, \ln(p(x)) \ge 0.$$

3.15.6

This is an inmediate consequence of exercise 3.15.5. Indeed, we have:

$$D_{KL}(p||q) = S(p,q) - H(p) \le S(p,q) - 0 \le S(p,q).$$

3.15.7

If the target variable Z happens to be \mathcal{E} -measurable, then Y is independent of the sigma algebra \mathcal{E} . From this follows that $C(\omega,b)=\mathrm{d}(Z,Y)^2=\mathbb{E}\left[(Z-\mathbb{E}\left[Z|\mathcal{E}\right])^2\right]=\mathbb{E}\left[(Z-Z)^2\right]=0$.

3.15.8

In this case $f_{\omega,b}(\mathbf{x}) = \omega \cdot \mathbf{x} + b$, definied on a compact subset of \mathbb{R}^n . Therefore, the cost function is given by: $C(\omega,b) := \sum_{0 \le i \le n} (\omega \cdot \mathbf{x}^i + b - \phi(\mathbf{x}^i))^2$. Obviously we have $0 \le C(\omega,b)$. This means the function attains such

minimum inside the compact set; Let \mathbf{x}^i the n-dimensional observations, i.e $\mathbf{x}^i = (x_1^i, \dots, x_n^i)$. Then, the normal equations for the ω_k (the components of the vector ω), $\forall k \in [n]$ and the bias parameter b are:

$$\begin{cases}
\sum_{0 \le j \le n} \omega_j \sum_{0 \le i \le n} x_j^i x_k^i + b \sum_{0 \le i \le n} x_k^i = \sum_{0 \le i \le n} \phi(\mathbf{x}^i) x_k^i, \forall k \in [n] \\
\sum_{0 \le j \le n} \omega_j \sum_{0 \le i \le n} x_j^i + nb = \sum_{0 \le i \le n} \phi(\mathbf{x}^i)
\end{cases}$$
(1)

This system of equations has the following matricial expression:

$$\begin{bmatrix} \sum_{0 \le i \le n} x_1^i x_1^i & \sum_{0 \le i \le n} x_2^i x_1^i & \cdots & \sum_{0 \le i \le n} x_m^i x_1^i & \cdots & \sum_{0 \le i \le n} x_1^i \\ \sum_{0 \le i \le n} x_1^i x_2^i & \sum_{0 \le i \le n} x_2^i x_2^i & \cdots & \sum_{0 \le i \le n} x_m^i x_2^i & \cdots & \sum_{0 \le i \le n} x_2^i \\ \vdots & \vdots & & \vdots & & \vdots \\ \sum_{0 \le i \le n} x_1^i x_k^i & \sum_{0 \le i \le n} x_2^i x_k^i & \cdots & \sum_{0 \le i \le n} x_m^i x_k^i & \cdots & \sum_{0 \le i \le n} x_k^i \\ \vdots & & \vdots & & \vdots & & \vdots \\ \sum_{0 \le i \le n} x_1^i & \sum_{0 \le i \le n} x_2^i & \cdots & \sum_{0 \le i \le n} x_m^i & \cdots & n \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_m \\ \vdots \\ b \end{bmatrix} = \begin{bmatrix} \sum_{0 \le i \le n} \phi(\mathbf{x}^i) x_1^i \\ \sum_{0 \le i \le n} \phi(\mathbf{x}^i) x_2^i \\ \vdots \\ \sum_{0 \le i \le n} \phi(\mathbf{x}^i) x_m^i \\ \vdots \\ \sum_{0 \le i \le n} \phi(\mathbf{x}^i) \end{bmatrix}$$

Note that the entries of the matrix in equation 2, are exactly the partial derivatives $\partial^2_{\omega_k\omega_k}C(\omega,b)$, $\partial^2_{bb}C(\omega,b)$, $\partial^2_{\omega_k\omega_j}C(\omega,b)$, $\partial^2_{\omega_kb}C(\omega,b)$ i.e such matrix is the hessian-matrix $\mathcal{H}_{C(\omega,b)}$; Let $\{v_m\}_{m\in[n+1]}$ be a collection of vectors in \mathbb{R}^n defined as follows: $\forall m, 0 \leq m \leq n, v_m := (x_m^1, \dots, x_m^n)$. For m = n+1 we define: $v_{n+1} := 1 = (1, \dots, 1)$, and a vector $\varphi := (\varphi(\mathbf{x}^1), \dots, \varphi(\mathbf{x}^n))$. The system of equations can be writen as:

$$\begin{bmatrix} v_{1} \cdot v_{1} & v_{1} \cdot v_{2} & \cdots & v_{1} \cdot v_{m} & \cdots & v_{1} \cdot v_{n+1} \\ v_{1} \cdot v_{2} & v_{2} \cdot v_{2} & \cdots & v_{2} \cdot v_{m} & \cdots & v_{2} \cdot v_{n+1} \\ \vdots & \vdots & & \vdots & & \vdots \\ v_{m} \cdot v_{1} & v_{m} \cdot v_{2} & \cdots & v_{m} \cdot v_{m} & \cdots & v_{m} \cdot v_{n+1} \\ \vdots & & \vdots & & \vdots & & \vdots \\ v_{n+1} \cdot v_{1} & v_{n+1} \cdot v_{2} & \cdots & v_{n+1} \cdot v_{m} & \cdots & v_{n+1} \cdot v_{n+1} \end{bmatrix} \begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \vdots \\ \omega_{m} \\ \vdots \\ b \end{bmatrix} = \begin{bmatrix} \varphi \cdot v_{1} \\ \varphi \cdot v_{2} \\ \vdots \\ \varphi \cdot v_{m} \\ \vdots \\ \varphi \cdot v_{n+1} \end{bmatrix}$$

$$(3)$$

This is $\mathcal{H}_{C(\omega,b)} = G(v_1, \dots v_{n+1})$ i.e the matrix in system 3 is a Gramm matrix, which by the postively semidefiniteness property of the Gramm matrices implies this matrix is postively defined. Then, the solution (ω^*, b^*) to such system is unique and this solution gives indeed a minimum for $C(\omega, b)$. Furthermore, the values of the pair (ω^*, b^*) are explicitly computable because the system is linear.

Note that the Reyni entropy can be expressed as follows: $H_{\alpha}(p(X)) = \frac{\ln \mathbb{E}[(p(X))^{\alpha-1}]}{1-\alpha} = \frac{\ln \int_{\sup(X)} (p(x))^{\alpha-1} dP}{\alpha-1}$. In the last expression $\frac{dP}{dx} = p(x)$; This representation is a consequence of the Radon-Nikodym's Theorem. Now, let's analyse the following function definied as a parametric integral. Let $I(\alpha)$ definied as:

$$I(\alpha) = \int_{\sup(X)} (p(x))^{\alpha - 1} dP$$

• CASE 0 < p(x) < 1:

Let $\{\alpha_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ a monotonically decreasing sequence of reals tending to 1. With this we can construct an increasing sequence of P-integrable functions of the form $\{(p(x))^{\alpha_n-1}\}_{n\in\mathbb{N}}$. Then, by construction the point limit will be the function f(x)=1 which is P-integrable. Applying the Lebegue's monotone convergence theorem:

$$\lim_{k \to \infty} I(\alpha_k) = \lim_{k \to \infty} \int_{\sup(X)} (p(x))^{\alpha_k - 1} dP = \int_{\sup(X)} \lim_{k \to \infty} (p(x))^{\alpha_k - 1} dP = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^+} I(\alpha) = I(\lim_{k \to 1^+} \alpha_k) =$$

1. This proves $I(\alpha)$ is right-continuous

Taking $\{\alpha_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ a monotonically increasing sequence of reals tending to 1, let's construct the sequence of decreasing P-integrable functions of the form $\{(p(x))^{\alpha_n-1}\}_{n\in\mathbb{N}}$. Once again the point limit function is f(x)=1. Applying the monotone convergence

$$\lim_{k \to \infty} I(\alpha_k) = \lim_{k \to \infty} \int_{\sup(X)} (p(x))^{\alpha_k - 1} dP = \int_{\sup(X)} \lim_{k \to \infty} (p(x))^{\alpha_k - 1} dP = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to \infty} \alpha_k) = \lim_{\alpha \to 1^-} I(\alpha) = I(\lim_{k \to 1^-} \alpha_k) = I(\lim_{k \to 1^-} \alpha_k$$

1. This proves $I(\alpha)$ is left-continuous

• CASE p(x) > 1:

The same is true in this case. It is worth to note that if the sequence $\{\alpha_n\}_{n\in\mathbb{N}}$ is choosen to be decreasing then the sequence of functions is decreasing, the contrary situation also holds.

Because the function $f(\alpha, x) = (p(x))^{\alpha-1}$ is derivable, and its derivative is continuous (this can be proved by the monotone convergence theorem), the above can be then used to compute the limit $\lim_{\alpha \to 1} H_{\alpha}(p(X))$. By a simple application $\alpha \to 1$ we find an indetermination of the type 0/0; Using L'Hôpital's rule we get:

By a simple application
$$\alpha \to 1$$
 we find an indetermination of the type $0/0$; Using L'Hôpital's rule we get:
$$\lim_{\alpha \to 1} \mathcal{H}_{\alpha}(\mathbf{p}(X)) = \lim_{\alpha \to 1} \frac{1}{-1} \frac{1}{\int_{\sup(X)} (p(x))^{\alpha - 1} dP} \int_{\sup(X)} (p(x))^{\alpha - 1} \ln(p(x)) dP = \int_{\sup(X)} -\ln(p(x)) dP = \mathcal{H}(p).$$

3.15.10 (a)

This is a consecuence of exercise 3.15.9.b. By taking $\sigma_1 = \sigma_2 = \sigma$ we get that $\varphi_{\sigma_1}(x) \star \varphi_{\sigma_2}(x) = \varphi_{\sigma'}(x)$, with $\sigma' = \sqrt{2\sigma^2}$

3.15.10 (b)

We have
$$\phi_{\sigma}(x) := \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-x^2}{2\sigma^2}}$$
; Computing $(\phi_{\sigma_1} \star \phi_{\sigma_2})(x) = \int_{\mathbb{R}} \phi_{\sigma_1}(t)\phi_{\sigma_2}(t-x)dt$ we get:
$$(\phi_{\sigma_1} \star \phi_{\sigma_2})(x) = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma_1^2\sigma_2^2}\sqrt{2\pi}} e^{\frac{-t^2\sigma_2^2 - (t-x)\sigma_1^2}{2\sigma_1^2\sigma_2^2}} dt = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma_1^2\sigma_2^2}\sqrt{2\pi}} e^{\frac{-t^2(\sigma_1^2 + \sigma_2^2) + 2tx\sigma_1^2 - x^2\sigma_1^2}{2\sigma_1^2\sigma_2^2}} dt$$

$$= \int_{\mathbb{R}} \frac{\sqrt{\sigma_1^2 + \sigma_2^2}}{\sqrt{2\pi\sigma_1^2\sigma_2^2}\sqrt{2\pi}} \sqrt{\sigma_1^2 + \sigma_2^2} e^{-(\sigma_1^2 + \sigma_2^2)} \frac{t^2 - 2tx\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2} + \frac{x^2(\sigma_1^2)^2}{(\sigma_1^2 + \sigma_2^2)^2} + x^2\sigma_1^2 - \frac{x^2(\sigma_1^2)^2}{(\sigma_1^2 + \sigma_2^2)^2}} dt$$

$$= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}} e^{-\frac{x^2}{2(\sigma_1^2 + \sigma_2^2)}} \frac{1}{\sqrt{2\pi\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2}}} e^{-\frac{(t-x\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2})^2}{2\sigma_1^2 + \sigma_2^2}} dt$$

$$= \frac{1}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}} e^{-\frac{x^2}{2(\sigma_1^2 + \sigma_2^2)}} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2}}} e^{-\frac{(t-x\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2})^2}{2\sigma_1^2 + \sigma_2^2}} dt$$

$$= \frac{1}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}} e^{-\frac{x^2}{2(\sigma_1^2 + \sigma_2^2)}} \cdot 1 = \phi_{\sigma'}(x) \text{, with } (\sigma')^2 = \sigma_1^2 + \sigma_2^2$$

3.15.11 (a)

• CASE p = q:

Making the substitution in the formula for the Cauchy-Schwartz- divergence, we find:

$$D_{CS}(p,p) = -\ln(\frac{\int p(x)p(x)dx}{\sqrt{\int p(x)^2 dx}\sqrt{\int p(x)^2 dx}}) = -\ln(1) = 0.$$

• CASE $D_{CS}(p,q) = 0$:

If $D_{CS}(p,q) = 0$, then applying exponentials to both sides we obtain:

$$\frac{\int p(x)q(x)dx}{\sqrt{\int p(x)^2 dx}} = 1 \implies \|\int p(x)q(x)dx\| = \sqrt{\int p(x)^2 dx}\sqrt{\int q(x)^2 dx}.$$
 This is the case of

equality in the Cauchy–Bunyakovsky–Schwarz inequality. Then: $q = \lambda p, \lambda \neq 0$; Let's now prove $\lambda = 1$. Plugging this we get:

$$\frac{\lambda \int p(x)p(x)dx}{\lambda^2 \sqrt{\int p(x)^2 dx}} = 1 = \frac{\lambda}{\lambda^2} \implies \lambda = 1 \implies p = q.$$

3.15.11 (b)

By hypothesis both p,q are densities, then they are both nonnegative. This implies:

$$\int p(x)q(x)dx = \int |p(x)q(x)| dx \le ||p||_2^2 ||q||_2^2 \implies 0 < \frac{\int p(x)q(x)dx}{||p||_2^2 ||q||_2^2} \le 1; \text{ Remember that } \ln(x) \le 0 \text{ if } 0 < x < 1 \text{ then, taking logarithms to both sides in the inequality and multiplying by } -1 \text{ yields:}$$

$$D_{CS}(p,q) = -\ln(\frac{\int p(x)q(x)dx}{\sqrt{\int p(x)^2 dx}}) \ge 0$$

3.15.11 (c)

This property follows easily from the definition of the CS-divergence.

3.15.11 (d)

Applying the properties of the logarithms we obtain:

$$D_{CS}(p,q) = -\ln(\frac{\int p(x)q(x)dx}{\sqrt{\int p(x)^2 dx}}) = -\ln\int p(x)q(x)dx - \frac{1}{2}\ln\int p(x)^2 dx - \frac{1}{2}\int q(x)^2 dx$$
$$= -\ln\int p(x)q(x)dx - \frac{1}{2}H_2(p) - \frac{1}{2}H_2(q)$$

3.15.12 (a)

The claim follows from the inequality $|u| \geq |\tanh(u)|$, then making the substitution u = f(x), with $f \in \mathcal{L}_1[0,1]$ we get $|f(x)| \geq |\tanh(f(x))|$. On the other hand, the function \tanh is derivable $\forall u \in \mathbb{R}$. Furthermore it's derivative is given by the identity: $\frac{d}{du} \tanh(u) = 1 - \tanh^2(u), \forall u \in \mathbb{R}$. Observe that $\frac{d}{du} \tanh(u) \leq 1, \forall u \in \mathbb{R}$. Applying the Intermediate Value Theorem yields:

• CASE u > 0

$$0 < \frac{\tanh(u) - \tanh(0)}{u - 0} = \frac{\tanh(u)}{u} = \frac{d}{du} \tanh(u) \Big|_{u = \theta}, \text{ where } \theta \in (0, u)$$
$$= 1 - \tanh^2(\theta) < 1 \implies \tanh(u) < u = |u|, \forall u > 0$$

• CASE u < 0

$$0 < \frac{\tanh(u) - \tanh(0)}{u - 0} = \frac{\tanh(u)}{u} = \frac{d}{du} \tanh(u) \Big|_{u = \theta}, \text{ where } \theta \in (u, 0)$$
$$= -1 + \tanh^2(\theta) \le 1 \implies \tanh(u) \ge u = -|u|, \forall u < 0$$

Both cases can be summarized as $|u| \ge |\tanh(u)|$. If u = f(x) this implies $|f(x)| \ge |\tanh(f(x))|$. Then, by the monotonicality of the integral operator we get the desired result.

3.15.12 (b)

In 3.15.12.a was proved the inequality $|u| \ge |\tanh(u)|$, $\forall u \in \mathbb{R}$ so if $f \in \mathcal{L}_2[0,1]$. Then, $|f(x)| \ge |\tanh(f(x))|$; Taking squares the latter inequality yieds: $|f(x)|^2 \ge |\tanh(f(x))|^2$ and once again, due to the monotonicality of the integral operator we get the desired inequality.