

Faculty of Science

Deep Learning

Part I: Neural Networks

Christian Igel
Department of Computer Science

Warm-up: Chain rule

The *chain rule* for computing the derivative of a composition of two functions,

$$\frac{\partial f(g(x))}{\partial x} = f'(g(x))g'(x)$$

with $f'(x) = \frac{\partial f(x)}{\partial x}$ and $g'(x) = \frac{\partial g(x)}{\partial x}$, can be extended to:

$$\frac{\partial f(g_1(x), g_2(x), \dots, g_n(x))}{\partial x} = \sum_{i=1}^n \frac{\partial f(g_1(x), \dots, g_n(x))}{\partial g_i(x)} \frac{\partial g_i(x)}{\partial x}$$

Outline

Neural Networks

2 Loss Functions and Encoding

Backpropagation & Gradient-based Learning

4 Regularization

Outline

Neural Networks

2 Loss Functions and Encoding

Backpropagation & Gradient-based Learning

4 Regularization

Neuroscience vs. machine learning

Two applications of neural networks:

Computational neuroscience: Modelling biological information processing to gain insights about biological information processing

Machine learning: Deriving learning algorithms (loosely) inspired by neural information processing to solve technical problems better than other methods

Feed-forward artificial neural networks

Different classes of NNs exist:

- feed-forward NNs ←→ recurrent networks
- ullet supervised \longleftrightarrow unsupervised learning

We start with

- feed-forward NNs,
- regression and classification,
- supervised learning.

Neural network learning: Using data to adapt (train) the parameters (weights) of a mathematical model.

Simple neuron models

- Let the input be x_1, \ldots, x_d collected in the vector $\boldsymbol{x} \in \mathbb{R}^d$.
- Let the output of neuron i be denoted by $z_i(x)$. Often we omit writing the dependency on x to keept the notation uncluttered.
- "Integration": Computing weighted sum

$$a_i = \sum_{j=1}^{d} w_{ij} x_j + w_{i0}$$

with bias (threshold, offset) parameter $w_{i0} \in \mathbb{R}$

• "Firing": Applying transfer function (activation function) h:

$$z_i = h(a_i) = h\left(\sum_{j=1}^d w_{ij}x_j + w_{i0}\right)$$

Activation functions

Step / threshold:

$$h(a) = \mathbb{I}\{a > 0\}$$

Fermi / logistic:

$$h(a) = \frac{1}{1 + e^{-a}}$$

Hyperbolic tangens:

$$h(a) = \tanh(a)$$

Alternative sigmoid:

$$h(a) = \frac{a}{1 + |a|}$$

Rectified linear unit (ReLU):

$$h(a) = \max(0, a)$$

Exponential LU (ELU, $\alpha > 0$):

$$h(a) = \begin{cases} a & a \ge 0 \\ \alpha(e^a - 1) & a < 0 \end{cases}$$

Single neuron with bias

Single neuron with implicit bias

XOR

 x_2

 x_1

Simple neural network models

- Neural network (NN): Set of connected neurons
- NN can be described by a weighted directed graph
 - Neurons are the nodes/vertices and numbered by integers $V = \{0, 1, 2 \dots \}$
 - Connections between neurons are the edges A
 - Strength of connection $(j,i) \in A$ from neuron j to neuron i is described by weight w_{ij}
 - ullet All weights are collected in weight vector $oldsymbol{w}$
- Restriction to feed-forward NNs: We do not allow cycles in the connectivity graph
- NN represents mapping

$$f: \mathbb{R}^d \to \mathbb{R}^K$$

parameterized by \boldsymbol{w} : $f(\boldsymbol{x}; \boldsymbol{w})_i = \hat{y}_i$

Notation I

ullet d input neurons, K output neurons, M hidden neurons:

$$\begin{split} V_{\mathsf{input}} &= \{1, \dots, d\} \\ V_{\mathsf{hidden}} &= \{d+1, \dots, d+M\} \\ V_{\mathsf{output}} &= \{d+M+1, \dots, d+M+K\} \end{split}$$

That is:

$$V = \{0\} \cup V_{\mathsf{input}} \cup V_{\mathsf{hidden}} \cup V_{\mathsf{output}} = \{0, 1, 2 \dots, d + M + K\}$$

- Activation function of neuron i is denoted by h_i
 - $h_i(a) = a$ for $i \in \{0\} \cup V_{\mathsf{input}}$
 - Typically $h_i \neq h_j$ for $i \in V_{\mathsf{hidden}}$ and $j \in V_{\mathsf{output}}$
- Neuron i can get only input from neuron j if j < i, this ensures that the graph is acyclic

Notation II

- Activation of neuron i > 1 is $a_i = \sum_{(j,i) \in A} w_{ij} z_j$
- ullet Output of neuron i is denoted by z_i
- $\bullet \ z_i(a_i) = h_i(a_i)$
 - $z_0(\cdot) = 1$ ($w_{i0}z_0$ is the bias parameter of neuron i)
 - $z_i(\cdot) = x_i$ for $i \in V_{\mathsf{input}} = \{1, \dots, d\}$

$$ullet$$
 Output of the network: $f(m{x};m{w}) = egin{pmatrix} z_{M+d+1} \ z_{M+d+2} \ dots \ z_{M+d+K} \end{pmatrix} = egin{pmatrix} \hat{y}_1 \ \hat{y}_2 \ dots \ \hat{y}_K \end{pmatrix}$

Multi-layer perceptron network

hidden neurons / layer

XOR revisited

 x_1

Multi-layer perceptron solving XOR

Multi-layer perceptron network with shortcuts

Outline

Neural Networks

2 Loss Functions and Encoding

Backpropagation & Gradient-based Learning

4 Regularization

Regression

NN shall learn function

$$f: \mathbb{R}^d \to \mathbb{R}^K$$

 $\Rightarrow d$ input neurons, K output neurons

- Training data $S=\{(m{x}_1,m{y}_1),\ldots,(m{x}_N,m{y}_N)\}$, $m{x}_i\in\mathbb{R}^d$, $m{y}_i\in\mathbb{R}^K$, $1\leq i\leq N$
- Sum-of-squares error

$$E = \frac{1}{2} \sum_{n=1}^{N} \|f(\boldsymbol{x}_n; \boldsymbol{w}) - \boldsymbol{y}_n\|^2 = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{K} ([f(\boldsymbol{x}_n; \boldsymbol{w})]_i - [\boldsymbol{y}_n]_i)^2$$

• Usually linear output neurons: $h_i(a) = a$ for $i \in V_{\text{output}}$

Sum-of-squares and maximum likelihood

W.l.o.g. d=1, $S=\{(\boldsymbol{x}_1,y_1),\ldots,(\boldsymbol{x}_N,y_N)\}$. We assume that the observations t given an input \boldsymbol{x} are normally distributed (with variance s^2) around the model $f(\boldsymbol{x};\boldsymbol{w})$:

$$p(y|\mathbf{x}; \mathbf{w}) = \frac{1}{s\sqrt{2\pi}} \exp \frac{-(y - f(\mathbf{x}; \mathbf{w}))^2}{2s^2}$$

Likelihood and negative log-likelihood:

$$p(S|\boldsymbol{w}) = \prod_{n=1}^{N} \frac{1}{s\sqrt{2\pi}} \exp \frac{-(y_n - f(\boldsymbol{x_n}; \boldsymbol{w}))^2}{2s^2}$$
$$-\ln p(S|\boldsymbol{w}) = \frac{1}{2s^2} \sum_{n=1}^{N} (y_n - f(\boldsymbol{x_n}; \boldsymbol{w}))^2 + N\ln(s\sqrt{2\pi})$$

As blue terms are independent of w, minimizing the sum-of-squares error corresponds to maximum likelihood estimation under the Gaussian noise assumption.

Binary classification

For binary classification, assume $\mathcal{Y} = \{0, 1\}$, the output is in [0, 1], and the target follows a Bernoulli distribution:

$$p(y|\boldsymbol{x};\boldsymbol{w}) = f(\boldsymbol{x};\boldsymbol{w})^y [1 - f(\boldsymbol{x};\boldsymbol{w})]^{1-y} = \begin{cases} f(\boldsymbol{x}) & \text{for } y = 1\\ 1 - f(\boldsymbol{x}) & \text{for } y = 0 \end{cases}$$

Negative logarithm of $p(S|\boldsymbol{w}) = \prod_{n=1}^N p(y_n|\boldsymbol{x}_n;\boldsymbol{w})$ leads to cross-entropy error function:

$$-\ln p(S|\mathbf{w}) = -\sum_{n=1}^{N} \{y_n \ln f(\mathbf{x}_n; \mathbf{w}) + (1-y_n) \ln (1-f(\mathbf{x}_n; \mathbf{w}))\}$$

Use sigmoid mapping to $\left[0,1\right]$ as output activation function.

Multi-class classification: One-hot

For K classes, use one-hot encoding (1 out of K encoding):

- The jth component of y_i is one, if x_i belongs to the jth class, and zero otherwise.
- Example: If K=4 and \boldsymbol{x}_i belongs to third class, then $\boldsymbol{y}_i=(0,0,1,0)^\mathsf{T}.$

With
$$\sum_{k=1}^{K} [f(\boldsymbol{x}; \boldsymbol{w})]_k = 1$$
 and $\forall k : [f(\boldsymbol{x}; \boldsymbol{w})]_k \geq 0$

$$p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{w}) = \prod_{k=1}^{K} [f(\boldsymbol{x};\boldsymbol{w})]_k^{[\boldsymbol{y}]_k}$$

gives negative log likelihood (cross-entropy for multiple classes):

$$-\ln p(S|\boldsymbol{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} [\boldsymbol{y}_n]_k \ln[f(\boldsymbol{x}_n; \boldsymbol{w})]_k$$

Multi-class classification: Soft-max

The soft-max activation function

$$[f(\mathbf{x}; \mathbf{w})]_j = \sigma(a_{M+d+j}) = \frac{\exp a_{M+d+j}}{\sum_{k=1}^K \exp a_{M+d+k}}$$

naturally extends the logistic function to multiple classes and ensures that $\sum_{j=k}^K [f({m x};{m w})]_k = 1.$

Outline

Neural Networks

2 Loss Functions and Encoding

Backpropagation & Gradient-based Learning

4 Regularization

Gradient descent

• Consider learning by iteratively changing the weights

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + \Delta \boldsymbol{w}^{(t)}$$

Simplest choice is (steepest) gradient descent

$$\Delta \boldsymbol{w}^{(t)} = -\eta \nabla E|_{\boldsymbol{w}^{(t)}}$$

with learning rate $\eta > 0$

Often a momentum term is added to improve the performance

$$\Delta \boldsymbol{w}^{(t)} = -\eta \nabla E|_{\boldsymbol{w}^{(t)}} + \mu \Delta \boldsymbol{w}^{(t-1)}$$

with momentum parameter $\mu \geq 0$

Backpropagation I

Let the activation functions be differentiable. From

$$z_i = h(a_i)$$
 $a_i = \sum_{(j,i)\in A} w_{ij} z_j$ $E = \sum_{n=1}^N E^n$ e.g. $\sum_{n=1}^N \frac{1}{2} \| \boldsymbol{y}_n - f(\boldsymbol{x}_n; \boldsymbol{w}) \|^2$

we get for $(j, i) \in A$ the partial derivatives:

$$\frac{\partial E}{\partial w_{ij}} = \sum_{n=1}^{N} \frac{\partial E^n}{\partial w_{ij}}$$

In the following, we derive $\frac{\partial E^n}{\partial w_{ij}}$; the index n is omitted to keep the notation uncluttered (i.e., we write E for E^n , x for x_n , etc.).

Backpropagation II

We want

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}}$$

and define:

$$\delta_i := \frac{\partial E}{\partial a_i}$$

With

$$\frac{\partial a_i}{\partial w_{ij}} = z_j$$

we get:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\delta_i z_j}{\delta_i}$$

Backpropagation III

For an output unit $i \in V_{\text{output}} = \{M + d + 1, \dots, M + d + K\}$ we have:

$$\delta_i = \frac{\partial E}{\partial a_i} = \frac{\partial z_i}{\partial a_i} \frac{\partial E}{\partial z_i} = h'_i(a_i) \frac{\partial E}{\partial z_i}$$

If $h_i(a)=a$, i.e., the output is linear and $h_i'(a)=1$, and $E=\frac{1}{2}\|f({\bm x};{\bm w})-{\bm y}\|^2$, we get:

$$E = \frac{1}{2} \sum_{i=1}^{K} ([f(\boldsymbol{x}; \boldsymbol{w})]_i - y_i)^2 = \frac{1}{2} \sum_{i \in V_{\text{output}}} (z_i - y_{i-M-d})^2$$

$$\delta_i = \frac{\partial}{\partial z_i} \frac{1}{2} \sum_{i \in V} (z_j - y_{j-M-d})^2 = \frac{\partial}{\partial z_i} \frac{1}{2} (z_i - y_{i-M-d})^2 \Rightarrow$$

$$\delta_i = z_i - y_{i-M-d}$$

Backpropagation IV

Fort the δ of a hidden unit $i \in V_{\mathsf{hidden}} = \{d+1, \dots, M+d\}$, we need the chain rule again

$$\delta_i = \frac{\partial E}{\partial a_i} = \sum_{k=i+1}^{M+d+K} \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial a_i} = \sum_{k=i+1}^{M+d+K} \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial z_i} \frac{\partial z_i}{\partial a_i}$$

and obtain:

$$\delta_i = h_i'(a_i) \sum_{k \text{ with } (i,k) \in A} \textcolor{red}{w_{ki} \delta_k}$$

Backpropagation V

For each training pattern (x, y):

- Forward pass (determines output of network given x):
 - **1** Compute $z_{d+1}, \ldots, z_{d+M+K}$ in sequential order
 - $2 z_{M-K+1}, \ldots, z_M$ define f(x; w)
- Backward pass (determines partial derivatives):
 - **1** After a forward pass, compute $\delta_{d+1}, \ldots, \delta_{d+M+K}$ in reverse order
 - ② Compute the partial derivatives for $(j,i) \in A$ according to $\partial E/\partial w_{ij} = \delta_i z_j$

Other error functions

For an output unit $M + d < i \le d + M + K$ we get

$$\delta_i = z_i - y_{i-M-d}$$

for

- Sum-of-squares error and linear output neurons
- Cross-entropy error and single logistic output neuron
- Cross-entropy error for multiple classes and soft-max output

Linear algebra notation I (and a special layer definition)

- Layers collect neurons getting the same input and perform the same type of computation
- Layer l gets only input from layers l' < l
- ullet The activation function of layer l is $h^{(l)}$
- Inputs (external inputs as well as outputs from other neurons) to layer l are gathered in vector $\boldsymbol{x}^{(l)}$, the outputs of the neurons in layer l in vector $\boldsymbol{h}^{(l)}$
- ightarrow If the outputs of layer l are the only inputs to layer l+1, we have $m{h}^{(l)}=m{x}^{(l+1)}$

Linear algebra notation II

- Denoting the weights of the ith neuron in layer l by $\boldsymbol{w}_i^{(l)}$ and its bias by $b_i^{(l)}$ we get $h_i^{(l)}(\boldsymbol{x}) = h^{(l)} \left(\left[\boldsymbol{w}_i^{(l)} \right]^\mathsf{T} \boldsymbol{x} + b_i^{(l)} \right)$
- We stack the $m{w}_i^{(l)}$ of all neurons in layer l in matrix $m{W}^{(l)}$ and their bias parameters in vector $m{b}^{(l)}$ and write

$$oldsymbol{h}^{(l)}ig(oldsymbol{x}^{(l)}ig) = h^{(l)}ig(oldsymbol{W}^{(l)}oldsymbol{x}^{(l)} + oldsymbol{b}^{(l)}ig)$$
 [great for GPU]

where $h^{(l)}$ acts component-wise

• Assume implicit bias parameters and a batch of inputs $x_1^{(l)},\ldots,x_B^{(l)}$ gathered as rows in a data matrix $X^{(l)}$, the output of the layer can be computer for the full batch as:

$$oldsymbol{H}^{(l)}ig(oldsymbol{X}^{(l)}ig) = h^{(l)}ig(oldsymbol{W}^{(l)}ig[oldsymbol{X}^{(l)}ig]^{\mathsf{T}}ig)$$
 [great for GPU]

Symbolic differentiation

Many modern machine learning frameworks can compute gradients automatically:

Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467, 2016

Mini-batch learning

$$\Delta \boldsymbol{w}^{(t)} = -\eta \nabla E|_{\boldsymbol{w}^{(t)}}$$

Mini-batch learning: Choose a subset

$$S_m = \{({m x}_{i_1}, {m y}_{i_1}), \dots, ({m x}_{i_B}, {m y}_{i_B})\}, \ 1 \leq i_1 \leq \dots \leq i_B \leq N, \text{ and update}$$

$$\Delta \boldsymbol{w}^{(t)} = -\eta \sum_{(\boldsymbol{x}_n, \boldsymbol{y}_n) \in S_B} \nabla E^n|_{\boldsymbol{w}^{(t)}}$$

typically with a smaller learning rate η

"Vanishing gradient"

- Derivative of $h(a) = \frac{1}{1 + \exp(-a)}$ is upper bounded by 0.25.
- What is the derivative of the rectified linear unit (ReLU) $h(a) = \max(0, a)$ for a < 0 and a > 0, respectively?
- Consider a deep neural network with many layers and

$$\delta_i = h_i'(a_i) \sum_{k=i+1}^{M+d+K} w_{ki} \delta_k .$$

What happens to the magnitude of δ_i with increasing number of layers between neuron i and the output?

Efficient gradient-based optimization

- Vanilla steepest-descent is usually not the best choice for (batch) gradient-based learning
- Many powerful gradient-based search techniques exist
- Recent method for online/mini-batch learning: Adam (from "adaptive moments")

Kingma, Ba. Adam: A Method for Stochastic Optimization. ICLR, 2015

Basic problem

 The idea is – instead of directly using the magnitude of the partial derivative – to adjust the update in the direction of the partial derivative for each weight individually based on feedback from previous iterations.

Rescaling by second raw moment I

- ullet Goal: Iterative minimization of $f(oldsymbol{w})$
- Taylor approximation:

$$f(\boldsymbol{w} + \boldsymbol{\Delta} \boldsymbol{w}) \approx f(\boldsymbol{w}) + \boldsymbol{\Delta} \boldsymbol{w}^\mathsf{T} \nabla f(\boldsymbol{w})$$

leads to update step $m{w}_i^{(t+1)} \leftarrow m{w}_i^{(t)} + m{\Delta}m{w}^{(t)}$ in iteration t

$$\Delta w^{(t)} = \operatorname{argmin}_{\Delta w} \left\{ \Delta w^{\mathsf{T}} \nabla f(w^{(t)}) \quad \text{s.t.} \quad \|\Delta w^{(t)}\| \le \alpha \right\} ,$$

where α defines a trust region (in which we trust the approximation)

Solution is co-linear with gradient and has maximum length:

$$\Delta \boldsymbol{w}^{(t)} = -\alpha \frac{\nabla f(\boldsymbol{w}^{(t)})}{\|\nabla f(\boldsymbol{w}^{(t)})\|}$$

Rescaling by second raw moment II

• We have unbiased estimates $\nabla \tilde{f}(\boldsymbol{w}^{(t)})$ instead of $\nabla f(\boldsymbol{w}^{(t)})$, typically gradients computed on mini-batches:

$$\Delta \boldsymbol{w} = -\alpha \frac{\mathbb{E}[\nabla \tilde{f}(\boldsymbol{w}^{(t)})]}{\|\mathbb{E}[\nabla \tilde{f}(\boldsymbol{w}^{(t)})]\|} = -\alpha \frac{\mathbb{E}[\nabla \tilde{f}(\boldsymbol{w}^{(t)})]}{\sqrt{\mathbb{E}[\nabla \tilde{f}(\boldsymbol{w}^{(t)})]^{\mathsf{T}}\mathbb{E}[\nabla \tilde{f}(\boldsymbol{w}^{(t)})]}}$$

• Concretele, for neural networks $\nabla_i \tilde{f}(\boldsymbol{w}^{(t)})$ is the partial derivative of the error function estimate (the error over a mini-batch) w.r.t. weight w_i at iteration t

Rescaling by second raw moment III

Now we do the following ...

• Replace $\mathbb{E}[\nabla \tilde{f}(\boldsymbol{w})^{\mathsf{T}}]\mathbb{E}[\nabla \tilde{f}(\boldsymbol{w})]$ by $\mathbb{E}[(\nabla \tilde{f}(\boldsymbol{w}))^2]$. We have

$$\mathbb{E}[(\nabla \tilde{f}(\boldsymbol{w}))^2] = \mathbb{E}[\nabla \tilde{f}(\boldsymbol{w})^\mathsf{T} \nabla \tilde{f}(\boldsymbol{w})] \ge E[\nabla \tilde{f}(\boldsymbol{w})^\mathsf{T}] \mathbb{E}[\nabla \tilde{f}(\boldsymbol{w})] \ ,$$

which might increase numerical stability.

- Add a positive constant ϵ to $\mathbb{E}[\nabla \tilde{f}({\pmb w})^2]$ to avoid division by zero.
- Consider each weight w_i independently.
- Use a running average $(\beta \in]0,1]$)

$$v_i^{(t+1)} = (1 - \beta)v_i^{(t)} + \beta \left(\nabla_i \tilde{f}(\boldsymbol{w}^{(t)})\right)^2$$

as estimate for $\mathbb{E}[\nabla \tilde{f}(\boldsymbol{w})^2]$.

RMSprop

... then we arrive at the RMSprop update rule:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \alpha \frac{\nabla_i \tilde{f}(\boldsymbol{w}^{(t)})}{\sqrt{v_i^{(t+1)} + \epsilon}}$$

Tieleman, Hinton. Lecture 6.5. RMSPROP: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning. 2012

Lafond, Vasilache, Bottou. Diagonal Rescaling For Neural Networks. arXiV:1705.09319

Adam algorithm

Algorithm 1: Adam algorithm

```
1 init. \boldsymbol{w}^{(0)}, \beta_1, \beta_2, \alpha, \epsilon; t \leftarrow 1; \boldsymbol{v}^{(0)}, \hat{\boldsymbol{v}}^{(0)}, \boldsymbol{m}^{(0)}, \hat{\boldsymbol{m}}^{(0)} \leftarrow \boldsymbol{0}
```

2 while stopping criterion not met do

```
foreach w_i do
 3
                      q_i^{(t)} \leftarrow \nabla_i \tilde{f}(\boldsymbol{w}^{(t)})
                     m_i^{(t+1)} \leftarrow \beta_1 \cdot m_i^{(t)} + (1 - \beta_1) \cdot q_i^{(t)}
  5
                    v_i^{(t+1)} \leftarrow \beta_2 \cdot v_i^{(t)} + (1 - \beta_2) \cdot (q_i^{(t)})^2
                      \hat{m}_{i}^{(t+1)} \leftarrow m_{i}^{(t+1)}/(1-\beta_{1}^{t})
                      \hat{v}_{i}^{(t+1)} \leftarrow v_{i}^{(t+1)}/(1-\beta_{2}^{t})
  8
                      w_i^{(t+1)} \leftarrow w_i^{(t)} - \alpha \cdot \hat{m}_i^{(t+1)} / (\sqrt{\hat{v}_i^{(t+1)}} + \epsilon)
 9
               t \leftarrow t + 1
10
```

t: power of t: (t): iteration step t

Adam default values

parameter	range	default	comment
$\overline{eta_1}$	[0, 1[0.9	first moment learning rate
β_2	[0, 1[0.999	second raw moment learning rate
ϵ	\mathbb{R}^+	10^{-8}	avoid devision by zero
α	\mathbb{R}^+	0.001	learning rate
			upper bound on update

- ullet eta_1 controls learning approximation of gradient's mean
- β_2 controls learning approximation of gradient components' $2^{\rm nd}$ raw moments
- $(1-\beta_1^t)$ and $(1-\beta_2^t)$ compensate for initialization bias
- ullet avoids devision by zero (let's ignore it in the following)

Adam: Observations I

- ullet $m_i^{(t+1)}$ and $v_i^{(t+1)}$ are exponential moving averages
- Assume that the mini-batch gradients $\boldsymbol{g}^{(t)}$ ($\boldsymbol{g}^{(t)}$ collects all $g_i^{(t)}$) are drawn from distributions $p^{(t)}$, i.e., $\boldsymbol{g}^{(t)} \sim p^{(t)}$
- Assume $g_i^{(t)}$ stationary ($p^{(t)}=p$, $t=1,\ldots$):
 - $\mathbb{E}\{\hat{m}_i^{(t+1)}\} = \mathbb{E}\{g_i\}$
 - $\mathbb{E}\{\hat{v}_i^{(t+1)}\} = \mathbb{E}\{g_i^2\}$ (see slide "Adam: Initialization bias correction")
- Under the stationary assumption:

$$\sqrt{\mathbb{E}\{g_i^2\}} = \sqrt{\mathbb{E}\{|g_i|^2\}} \ge \sqrt{\mathbb{E}\{|g_i|\}^2} = \mathbb{E}\{|g_i|\} \ge |\mathbb{E}\{g_i\}|$$

Adam: Observations II

- Assuming $g_i^{(t)}$ stationary, $(1-\beta_1)=\sqrt{1-\beta_2}$, and $\epsilon=0$, we have
 - $\hat{m}_i^{(t+1)}/\sqrt{\hat{v}_i^{(t+1)}}$ approximates $\mathbb{E}\big\{g_i\big\}/\sqrt{\mathbb{E}\big\{g_i^2\big\}}$
 - $|\mathbb{E}\{g_i\}/\sqrt{\mathbb{E}\{g_i^2\}}| = |\mathbb{E}\{g_i\}|/\sqrt{\mathbb{E}\{g_i^2\}}| \le 1$
 - α upper bounds the steps (for $(1 \beta_1) \leq \sqrt{1 \beta_2}$)
- Observation: $|\mathbb{E}\{g_i\}|$ is upper bounded by $\mathbb{E}\{|g_i|\}$ and reaches this bound if all g_i have the same signs (assuming that the signs are the only difference in the sampled g_i). The latter is the case if the steps for that weight go in the same direction and accordingly the learning rate can be large.

Adam: Initialization bias correction

• We have:

$$v_i^{(t+1)} = (1 - \beta_2) \sum_{i=1}^{t} \beta_2^{t-i} (g_i^{(i)})^2 = (1 - \beta_2) \sum_{i=0}^{t-1} \beta_2^{t-i-1} (g_i^{(i+1)})^2$$

Assume $\mathbb{E}\left\{\left(g_i^{(t)}\right)^2\right\}$ to be stationary and recall from geometric series that $\sum_{i=0}^{t-1} \alpha^i = (1-\alpha^t)/(1-\alpha)$:

$$\mathbb{E}\{v_i^{(t+1)}\} = \mathbb{E}\left\{ (1 - \beta_2) \sum_{i=0}^{t-1} \beta_2^{t-i-1} (g_i^{(i+1)})^2 \right\}$$

$$= \mathbb{E}\left\{ (g_i)^2 \right\} (1 - \beta_2) \sum_{i=0}^{t-1} \beta_2^{t-i-1}$$

$$= \mathbb{E}\left\{ (g_i)^2 \right\} (1 - \beta_2) \sum_{i=0}^{t-1} \beta_2^i = \mathbb{E}\left\{ (g_i)^2 \right\} (1 - \beta_2^t)$$

Outline

Neural Networks

2 Loss Functions and Encoding

Backpropagation & Gradient-based Learning

4 Regularization

Weight-decay

- The smaller the weights, the "more linear" is the neural network function.
- ullet Thus, small $\|w\|$ corresponds to smooth functions.
- Therefore, one can penalize large weights by optimizing

$$E + \gamma \frac{1}{2} \|\boldsymbol{w}\|^2$$

with regularization hyperparameter $\gamma \geq 0$.

 Note: the weights of linear output neurons should not be considered when computing the norm of the weight vector.

Early stopping

Early-stopping: the learning algorithm

- partitions sample S into training $S_{\rm train}$ and validation $S_{\rm val}$ data
- produces iteratively a sequence of hypotheses

$$h_1, h_2, h_3, \ldots$$

based on S_{train}

- ullet monitors empirical risk $\mathcal{R}_{S_{\mathsf{val}}}(h_i)$ on the validation data
- ullet outputs the hypothesis h_i minimizing ${\cal R}_{S_{\sf val}}(h_i).$

Early stopping example

The secrets of successful shallow NN training

- Normalize the data component-wise to zero-mean and unit variance
- Use a single layer with "enough neurons"
- Magnitude of the weights is more important for the complexity of a layer than number of neurons (assuming sigmoidal activation functions):
 - Start with small weights
 - Employ early stopping
- Try shortcuts

