Applied Bayesian Modeling module 3: Bayesian inference for 1 continuous parameter "Everything's normal"

Leontine Alkema, lalkema@umass.edu Fall 2022

Lecture material (slides, notes, videos) are licensed under CC-BY-NC 4.0. Code is licensed under BSD-3

Recap from modules 1 and 2: introduction to Bayesian inference

Recap from modules 1 and 2: introduction to Bayesian inference

- ▶ In Bayesian inference, parameters are considered random variables
- We draw statistical conclusions about parameters of interest using probability statements.

Recap from modules 1 and 2: introduction to Bayesian inference

- ► In Bayesian inference, parameters are considered random variables
- We draw statistical conclusions about parameters of interest using probability statements.
- ▶ General approach for some outcome of interest θ , i.e. regression coefficient, is based on learning via Bayes' rule
 - \blacktriangleright start off with *prior* probability distribution to quantify information related to θ
 - collect data, and use Bayes' rule to update the prior into the posterior distribution
 - use posterior distribution to draw conclusions

▶ Goal: do Bayesian inference for 1 continuous parameter

- ► Goal: do Bayesian inference for 1 continuous parameter
 - Set-up: estimate a mean parameter μ in a setting where data and prior are normal (to be discussed)

- Goal: do Bayesian inference for 1 continuous parameter
 - Set-up: estimate a mean parameter μ in a setting where data and prior are normal (to be discussed)
 - Steps: define likelihood function, define prior, obtain posterior using Bayes' rule, summarize the posterior

- Goal: do Bayesian inference for 1 continuous parameter
 - Set-up: estimate a mean parameter μ in a setting where data and prior are normal (to be discussed)
 - Steps: define likelihood function, define prior, obtain posterior using Bayes' rule, summarize the posterior
- ► To get there, to discuss:

- Goal: do Bayesian inference for 1 continuous parameter
 - Set-up: estimate a mean parameter μ in a setting where data and prior are normal (to be discussed)
 - Steps: define likelihood function, define prior, obtain posterior using Bayes' rule, summarize the posterior
- ▶ To get there, to discuss:
 - Quick review of probability density functions and rules for continous outcomes (prereq, see readings on course webpage)

- Goal: do Bayesian inference for 1 continuous parameter
 - Set-up: estimate a mean parameter μ in a setting where data and prior are normal (to be discussed)
 - Steps: define likelihood function, define prior, obtain posterior using Bayes' rule, summarize the posterior
- ► To get there, to discuss:
 - Quick review of probability density functions and rules for continous outcomes (prereq, see readings on course webpage)
 - Defining notation, terminology

- Goal: do Bayesian inference for 1 continuous parameter
 - Set-up: estimate a mean parameter μ in a setting where data and prior are normal (to be discussed)
 - Steps: define likelihood function, define prior, obtain posterior using Bayes' rule, summarize the posterior
- ► To get there, to discuss:
 - Quick review of probability density functions and rules for continous outcomes (prereq, see readings on course webpage)
 - Defining notation, terminology
 - ► Inference using radon data

A probability distribution for a continuous random variable (RV) X can be defined using its cumulative distribution function (cdf) F(x) and its probability density function (pdf) p(x) with:

$$F(x) = Pr(X \le x) = \int_{-\infty}^{x} p(x')dx'.$$

A probability distribution for a continuous random variable (RV) X can be defined using its cumulative distribution function (cdf) F(x) and its probability density function (pdf) p(x) with:

$$F(x) = Pr(X \le x) = \int_{-\infty}^{x} p(x')dx'.$$

For continuous RV X with pdf p(x): $0 \le p(x)$ and $\int_{x \in \mathcal{X}} p(x) dx = 1$ where \mathcal{X} is the sample space of X.

A probability distribution for a continuous random variable (RV) X can be defined using its cumulative distribution function (cdf) F(x) and its probability density function (pdf) p(x) with:

$$F(x) = Pr(X \le x) = \int_{-\infty}^{x} p(x')dx'.$$

For continuous RV X with pdf p(x): $0 \le p(x)$ and $\int_{x \in \mathcal{X}} p(x) dx = 1$ where \mathcal{X} is the sample space of X.

A probability distribution for a continuous random variable (RV) X can be defined using its cumulative distribution function (cdf) F(x) and its probability density function (pdf) p(x) with:

$$F(x) = Pr(X \le x) = \int_{-\infty}^{x} p(x')dx'.$$

For continuous RV X with pdf p(x): $0 \le p(x)$ and $\int_{x \in \mathcal{X}} p(x) dx = 1$ where \mathcal{X} is the sample space of X.

Main differences between discrete and continuous pdfs:

- ightharpoonup p(x) is NOT the probability that X=x,
- ► Sums are replaced by integrals • • • •

A joint probability distribution for two continuous RVs X and Y can be defined using their joint cdf $F_{X,Y}(x,y)$ and joint pdf $p_{X,Y}(x,y)$:

$$F_{X,Y}(x,y) = Pr(X \le x \cap Y \le y) = \int_{x'=-\infty}^{x} \int_{y'=-\infty}^{y} p_{X,Y}(x',y') dx' dy'.$$

Subscripts are often left out (and will be left out in this class).

A joint probability distribution for two continuous RVs X and Y can be defined using their joint cdf $F_{X,Y}(x,y)$ and joint pdf $p_{X,Y}(x,y)$:

$$F_{X,Y}(x,y) = Pr(X \le x \cap Y \le y) = \int_{x'=-\infty}^{x} \int_{y'=-\infty}^{y} p_{X,Y}(x',y') dx' dy'.$$

Subscripts are often left out (and will be left out in this class).

▶ The marginal pdf for Y can be obtained from the joint pdf: $p(y) = \int_{x' \in \mathcal{X}} p(x', y) dx'$ where \mathcal{X} is the sample space of X (compare to rule of marginal probability for events).

A joint probability distribution for two continuous RVs X and Y can be defined using their joint cdf $F_{X,Y}(x,y)$ and joint pdf $p_{X,Y}(x,y)$:

$$F_{X,Y}(x,y) = Pr(X \le x \cap Y \le y) = \int_{x'=-\infty}^{x} \int_{y'=-\infty}^{y} p_{X,Y}(x',y') dx' dy'.$$

Subscripts are often left out (and will be left out in this class).

- ▶ The marginal pdf for Y can be obtained from the joint pdf: $p(y) = \int_{x' \in \mathcal{X}} p(x', y) dx'$ where \mathcal{X} is the sample space of X (compare to rule of marginal probability for events).
- ▶ Conditional pdf is defined as p(x|y) = p(x,y)/p(y)

A joint probability distribution for two continuous RVs X and Y can be defined using their joint cdf $F_{X,Y}(x,y)$ and joint pdf $p_{X,Y}(x,y)$:

$$F_{X,Y}(x,y) = Pr(X \le x \cap Y \le y) = \int_{x'=-\infty}^{x} \int_{y'=-\infty}^{y} p_{X,Y}(x',y') dx' dy'.$$

Subscripts are often left out (and will be left out in this class).

- ▶ The marginal pdf for Y can be obtained from the joint pdf: $p(y) = \int_{x' \in \mathcal{X}} p(x', y) dx'$ where \mathcal{X} is the sample space of X(compare to rule of marginal probability for events).
- ► Conditional pdf is defined as p(x|y) = p(x,y)/p(y)
- From the definition of conditional pdf's, we can obtain Bayes' rule:

$$p(x|y) = p(x,y)/p(y) = p(y|x)p(x)/p(y)$$

(compare to Bayes' rule for events/discrete RV)

Terminology regarding Bayesian inference about some parameter μ using data $\mathbf{y} = (y_1, \dots, y_n)$:

- Terminology regarding Bayesian inference about some parameter μ using data $\mathbf{y} = (y_1, \dots, y_n)$:
 - lackbox Prior distribution $p(\mu)$: reflect knowledge about μ prior to observing data

- Terminology regarding Bayesian inference about some parameter μ using data $\mathbf{y} = (y_1, \dots, y_n)$:
 - Prior distribution $p(\mu)$: reflect knowledge about μ prior to observing data
 - Likelihood function or sampling distribution or data model or data distribution $p(y|\mu)$: specifies the relation between data and μ , the hypothesized data generating mechanism

- Terminology regarding Bayesian inference about some parameter μ using data $\mathbf{y} = (y_1, \dots, y_n)$:
 - \blacktriangleright Prior distribution $p(\mu)$: reflect knowledge about μ prior to observing data
 - Likelihood function or sampling distribution or data model or data distribution $p(y|\mu)$: specifies the relation between data and μ , the hypothesized data generating mechanism
 - Posterior $p(\mu|\mathbf{y})$: prior is updated by conditioning on the data

- Terminology regarding Bayesian inference about some parameter μ using data $\mathbf{y} = (y_1, \dots, y_n)$:
 - \blacktriangleright Prior distribution $p(\mu)$: reflect knowledge about μ prior to observing data
 - Likelihood function or sampling distribution or data model or data distribution $p(y|\mu)$: specifies the relation between data and μ , the hypothesized data generating mechanism
 - Posterior $p(\mu|\boldsymbol{y})$: prior is updated by conditioning on the data
- ▶ Steps for Bayesian inference about μ , using data y:

- Terminology regarding Bayesian inference about some parameter μ using data $\mathbf{y} = (y_1, \dots, y_n)$:
 - \blacktriangleright Prior distribution $p(\mu)$: reflect knowledge about μ prior to observing data
 - Likelihood function or sampling distribution or data model or data distribution $p(y|\mu)$: specifies the relation between data and μ , the hypothesized data generating mechanism
 - Posterior $p(\mu|y)$: prior is updated by conditioning on the data
- ▶ Steps for Bayesian inference about μ , using data y:
 - ► Specify the likelihood function $p(y|\mu)$.

- Terminology regarding Bayesian inference about some parameter μ using data $\mathbf{y} = (y_1, \dots, y_n)$:
 - \blacktriangleright Prior distribution $p(\mu)$: reflect knowledge about μ prior to observing data
 - Likelihood function or sampling distribution or data model or data distribution $p(y|\mu)$: specifies the relation between data and μ , the hypothesized data generating mechanism
 - Posterior $p(\mu|\boldsymbol{y})$: prior is updated by conditioning on the data
- ▶ Steps for Bayesian inference about μ , using data y:
 - ▶ Specify the likelihood function $p(y|\mu)$.
 - ▶ Specify the prior $p(\mu)$.

- Terminology regarding Bayesian inference about some parameter μ using data $\mathbf{y} = (y_1, \dots, y_n)$:
 - \blacktriangleright Prior distribution $p(\mu)$: reflect knowledge about μ prior to observing data
 - Likelihood function or sampling distribution or data model or data distribution $p(y|\mu)$: specifies the relation between data and μ , the hypothesized data generating mechanism
 - Posterior $p(\mu|y)$: prior is updated by conditioning on the data
- ▶ Steps for Bayesian inference about μ , using data y:
 - ▶ Specify the likelihood function $p(y|\mu)$.
 - ▶ Specify the prior $p(\mu)$.
 - ▶ Use Bayes' rule to obtain the posterior $p(\mu|\mathbf{y}) = \frac{p(\mu)p(\mathbf{y}|\mu)}{p(\mathbf{y})}$

Notation in this course is generally aligned with BDA3 (p. 6)

- ▶ Notation in this course is generally aligned with BDA3 (p. 6)
 - ► Few exceptions for additional clarity, i.e., I aim to use **boldface** when referring to vectors or matrices.

- ▶ Notation in this course is generally aligned with BDA3 (p. 6)
 - ► Few exceptions for additional clarity, i.e., I aim to use **boldface** when referring to vectors or matrices.
- $ightharpoonup p(\cdot)$ and $p(\cdot|\cdot)$ denote marginal and conditional distributions, with arguments determined by context (and subscripts left out)

- ▶ Notation in this course is generally aligned with BDA3 (p. 6)
 - ► Few exceptions for additional clarity, i.e., I aim to use **boldface** when referring to vectors or matrices.
- ▶ $p(\cdot)$ and $p(\cdot|\cdot)$ denote marginal and conditional distributions, with arguments determined by context (and subscripts left out)
- For discrete random variables or probability statements, we can also use $Pr(\cdot)$, i.e., Pr(A committed the crime).

Notation

- ▶ Notation in this course is generally aligned with BDA3 (p. 6)
 - ► Few exceptions for additional clarity, i.e., I aim to use **boldface** when referring to vectors or matrices.
- ▶ $p(\cdot)$ and $p(\cdot|\cdot)$ denote marginal and conditional distributions, with arguments determined by context (and subscripts left out)
- For discrete random variables or probability statements, we can also use $Pr(\cdot)$, i.e., Pr(A committed the crime).
- ▶ We use probability density and distribution exchangeably

Notation

- ▶ Notation in this course is generally aligned with BDA3 (p. 6)
 - ► Few exceptions for additional clarity, i.e., I aim to use **boldface** when referring to vectors or matrices.
- ▶ $p(\cdot)$ and $p(\cdot|\cdot)$ denote marginal and conditional distributions, with arguments determined by context (and subscripts left out)
- For discrete random variables or probability statements, we can also use $Pr(\cdot)$, i.e., Pr(A committed the crime).
- ▶ We use probability density and distribution exchangeably
- For standard distributions, we can use names or write out the density

Notation

- ▶ Notation in this course is generally aligned with BDA3 (p. 6)
 - Few exceptions for additional clarity, i.e., I aim to use boldface when referring to vectors or matrices.
- ▶ $p(\cdot)$ and $p(\cdot|\cdot)$ denote marginal and conditional distributions, with arguments determined by context (and subscripts left out)
- For discrete random variables or probability statements, we can also use $Pr(\cdot)$, i.e., Pr(A committed the crime).
- ▶ We use probability density and distribution exchangeably
- For standard distributions, we can use names or write out the density
 - i.e., for normal distribution: $\mu \sim N(m, s^2)$ is equivalent to $p(\mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-1}{2s^2}(\mu m)^2\right)$

Inference using radon data

Inference using radon data

From intro:

- Radon is a naturally occurring radioactive gas. Its decay products are also radioactive; in high concentrations, they can cause lung cancer (several 1000 deaths/year in the USA).
- Radon levels vary greatly across US homes.
- Data:
 - Radon measurements in over 80K houses throughout the US (we focus on Minnesota)
 - Possible predictors: floor (basement or 1st floor) in the house, soil uranium level at county level.
- ► Ultimate goal: predict radon levels for a non-sampled house in Minnesota (using a Bayesian hierarchical regression model).

Inference using radon data

- From intro:
 - Radon is a naturally occurring radioactive gas. Its decay products are also radioactive; in high concentrations, they can cause lung cancer (several 1000 deaths/year in the USA).
 - Radon levels vary greatly across US homes.
 - Data:
 - Radon measurements in over 80K houses throughout the US (we focus on Minnesota)
 - Possible predictors: floor (basement or 1st floor) in the house, soil uranium level at county level.
 - ► Ultimate goal: predict radon levels for a non-sampled house in Minnesota (using a Bayesian hierarchical regression model).
- ► This module: estimate mean radon, assuming that all log-radon measurements are independent draws from a normal distribution.

Let y_i denote log(radon) for house i = 1, 2, ..., n;

- Let y_i denote log(radon) for house i = 1, 2, ..., n;
- We assume that all y_i are independent draws from a normal distribution; we can write this in different ways:

$$y_i|\mu,\sigma^2 \sim N(\mu,\sigma^2),$$
 (1)

$$p(y_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-1}{2\sigma^2}(\mu - y_i)^2\right). \tag{2}$$

- Let y_i denote log(radon) for house i = 1, 2, ..., n;
- We assume that all y_i are independent draws from a normal distribution; we can write this in different ways:

$$y_i|\mu,\sigma^2 \sim N(\mu,\sigma^2),$$
 (1)

$$p(y_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-1}{2\sigma^2}(\mu - y_i)^2\right).$$
 (2)

▶ Goal: estimate mean log-radon level μ , assume that σ^2 is known.

Bayesian inference about $\boldsymbol{\mu}$

b Bayesian inference about μ , using data $\boldsymbol{y} = (y_1, y_2, \dots, y_n)$:

- **>** Bayesian inference about μ , using data $\boldsymbol{y} = (y_1, y_2, \dots, y_n)$:
 - 1. Specify the likelihood function $p(\boldsymbol{y}|\boldsymbol{\mu})$.

- **>** Bayesian inference about μ , using data $\boldsymbol{y} = (y_1, y_2, \dots, y_n)$:
 - 1. Specify the likelihood function $p(\boldsymbol{y}|\boldsymbol{\mu}).$
 - 2. Specify the prior $p(\mu)$.

- **>** Bayesian inference about μ , using data $\mathbf{y} = (y_1, y_2, \dots, y_n)$:
 - 1. Specify the likelihood function $p(y|\mu)$.
 - 2. Specify the prior $p(\mu)$.
 - 3. Use Bayes' rule to obtain the posterior $p(\mu|\mathbf{y}) = \frac{p(\mu)p(\mathbf{y}|\mu)}{p(\mathbf{y})}$

- **>** Bayesian inference about μ , using data $\mathbf{y} = (y_1, y_2, \dots, y_n)$:
 - 1. Specify the likelihood function $p(y|\mu)$.
 - 2. Specify the prior $p(\mu)$.
 - 3. Use Bayes' rule to obtain the posterior $p(\mu|y) = \frac{p(\mu)p(y|\mu)}{p(y)}$
- (1) Likelihood function: If $y_i|\mu,\sigma^2 \sim N(\mu,\sigma^2)$ (independent), then

$$p(\boldsymbol{y}|\mu,\sigma^2) = \prod_{i=1}^n p(y_i|\mu,\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-1}{2\sigma^2}(y_i-\mu)^2\right).$$

- **>** Bayesian inference about μ , using data $\mathbf{y} = (y_1, y_2, \dots, y_n)$:
 - 1. Specify the likelihood function $p(y|\mu)$.
 - 2. Specify the prior $p(\mu)$.
 - 3. Use Bayes' rule to obtain the posterior $p(\mu|\mathbf{y}) = \frac{p(\mu)p(\mathbf{y}|\mu)}{p(\mathbf{y})}$
- (1) Likelihood function: If $y_i|\mu,\sigma^2\sim N(\mu,\sigma^2)$ (independent), then

$$p(\mathbf{y}|\mu, \sigma^2) = \prod_{i=1}^n p(y_i|\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-1}{2\sigma^2}(y_i - \mu)^2\right).$$

(2) We assume a normal prior on μ : $\mu \sim N(m_0, s_{\mu 0}^2)$, where m_0 and $s_{\mu 0}$ refer to prior mean and standard deviation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ ● の○○

- **b** Bayesian inference about μ , using data $\mathbf{y} = (y_1, y_2, \dots, y_n)$:
 - 1. Specify the likelihood function $p(y|\mu)$.
 - 2. Specify the prior $p(\mu)$.
 - 3. Use Bayes' rule to obtain the posterior $p(\mu|\mathbf{y}) = \frac{p(\mu)p(\mathbf{y}|\mu)}{p(\mathbf{y})}$
- (1) Likelihood function: If $y_i|\mu,\sigma^2\sim N(\mu,\sigma^2)$ (independent), then

$$p(\mathbf{y}|\mu, \sigma^2) = \prod_{i=1}^n p(y_i|\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-1}{2\sigma^2}(y_i - \mu)^2\right).$$

- (2) We assume a normal prior on μ : $\mu \sim N(m_0, s_{\mu 0}^2)$, where m_0 and $s_{\mu 0}$ refer to prior mean and standard deviation.
- (3) It turns out that for this combination of prior and likelihood, with σ known, the posterior for μ is normal:

$$\mu | \boldsymbol{y}, \sigma^2 \sim N \left(\frac{m_0/s_{\mu 0}^2 + n \cdot \bar{y}/\sigma^2}{1/s_{\mu 0}^2 + n/\sigma^2}, \frac{1}{1/\sigma_{\mu 0}^2 + n/\sigma^2} \right).$$

- **D** Bayesian inference about μ , using data $\mathbf{y} = (y_1, y_2, \dots, y_n)$:
 - 1. Specify the likelihood function $p(\boldsymbol{y}|\mu)$.
 - 2. Specify the prior $p(\mu)$.
- 3. Use Bayes' rule to obtain the posterior $p(\mu|y) = \frac{p(\mu)p(y|\mu)}{p(y)}$
- (1) Likelihood function: If $y_i|\mu,\sigma^2 \sim N(\mu,\sigma^2)$ (independent), then

$$p(\mathbf{y}|\mu, \sigma^2) = \prod_{i=1}^n p(y_i|\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-1}{2\sigma^2}(y_i - \mu)^2\right).$$

- (2) We assume a normal prior on μ : $\mu \sim N(m_0, s_{\mu 0}^2)$, where m_0 and $s_{\mu 0}$ refer to prior mean and standard deviation.
- (3) It turns out that for this combination of prior and likelihood, with σ known, the posterior for μ is normal:

$$\mu | \boldsymbol{y}, \sigma^2 \sim N \left(\frac{m_0 / s_{\mu 0}^2 + n \cdot \bar{y} / \sigma^2}{1 / s_{\mu 0}^2 + n / \sigma^2}, \frac{1}{1 / \sigma_{\mu 0}^2 + n / \sigma^2} \right).$$

Details in next module, current focus is on seeing how posterior depends on prior and data, and what to do with it.

$$y_i|\mu,\sigma^2 \sim N(\mu,\sigma^2); \ \mu \sim N(m_0,s_{\mu 0}^2); \mu|\mathbf{y},\sigma^2 \sim N\left(\frac{m_0/s_{\mu 0}^2 + n \cdot \bar{y}/\sigma^2}{1/s_{\mu 0}^2 + n/\sigma^2}, \frac{1}{1/s_{\mu 0}^2 + n/\sigma^2}\right)$$

$$y_i|\mu,\sigma^2 \sim N(\mu,\sigma^2); \ \mu \sim N(m_0,s_{\mu 0}^2); \mu|\mathbf{y},\sigma^2 \sim N\left(\frac{m_0/s_{\mu 0}^2 + n \cdot \bar{y}/\sigma^2}{1/s_{\mu 0}^2 + n/\sigma^2}, \frac{1}{1/s_{\mu 0}^2 + n/\sigma^2}\right)$$

▶ Use radon data and set $\sigma = s\{y\} = 0.86$, the st.dev. of the y_i 's

$$y_i|\mu,\sigma^2 \sim N(\mu,\sigma^2); \ \mu \sim N(m_0,s_{\mu 0}^2); \mu|\mathbf{y},\sigma^2 \sim N\left(\frac{m_0/s_{\mu 0}^2 + n \cdot \bar{y}/\sigma^2}{1/s_{\mu 0}^2 + n/\sigma^2}, \frac{1}{1/s_{\mu 0}^2 + n/\sigma^2}\right)$$

- Use radon data and set $\sigma = s\{y\} = 0.86$, the st.dev. of the y_i 's
- Results based on 2 different priors:

$$\mu \sim N(0,1)$$
 [LEFT] and $\mu \stackrel{\cdot}{\sim} N(-\bar{y},s\{y\}^2/n)$ [RIGHT]

like - prior - post

$$y_i|\mu,\sigma^2 \sim N(\mu,\sigma^2); \ \mu \sim N(m_0,s_{\mu 0}^2); \mu|\mathbf{y},\sigma^2 \sim N\left(\frac{m_0/s_{\mu 0}^2 + n \cdot \bar{y}/\sigma^2}{1/s_{\mu 0}^2 + n/\sigma^2}, \frac{1}{1/s_{\mu 0}^2 + n/\sigma^2}\right)$$

- Use radon data and set $\sigma = s\{y\} = 0.86$, the st.dev. of the y_i 's
- Results based on 2 different priors:

$$\mu \sim N(0,1)$$
 [LEFT] and $\mu \sim N(-\bar{y},s\{y\}^2/n)$ [RIGHT]

like - prior - post

▶ The posterior is a compromise between the likelihood and the prior

- ▶ The posterior is a compromise between the likelihood and the prior
- ▶ This is to be expected, based on Bayes' rule $p(\mu|\mathbf{y}) = \frac{p(\mu)p(\mathbf{y}|\mu)}{p(\mathbf{y})}$,

- ▶ The posterior is a compromise between the likelihood and the prior
- ▶ This is to be expected, based on Bayes' rule $p(\mu|\mathbf{y}) = \frac{p(\mu)p(\mathbf{y}|\mu)}{p(\mathbf{y})}$,
- More details on this in the next module

Inference based on posterior distribution

▶ In Bayesian inference, we use the posterior $p(\mu|\mathbf{y})$ to provide summaries of interest.

- ▶ In Bayesian inference, we use the posterior $p(\mu|\mathbf{y})$ to provide summaries of interest.
- ▶ Bayesian point estimates are often given by:

- ▶ In Bayesian inference, we use the posterior $p(\mu|\mathbf{y})$ to provide summaries of interest.
- ▶ Bayesian point estimates are often given by:
 - ▶ the posterior mean $E(\mu|\mathbf{y})$

- ▶ In Bayesian inference, we use the posterior $p(\mu|\mathbf{y})$ to provide summaries of interest.
- ▶ Bayesian point estimates are often given by:
 - ▶ the posterior mean $E(\mu|\boldsymbol{y})$
 - or the posterior median μ^* with $P(\mu < \mu^* | \boldsymbol{y}) = 0.5$.

- ▶ In Bayesian inference, we use the posterior $p(\mu|\mathbf{y})$ to provide summaries of interest.
- ▶ Bayesian point estimates are often given by:
 - ▶ the posterior mean $E(\mu|\boldsymbol{y})$
 - or the posterior median μ^* with $P(\mu < \mu^* | \boldsymbol{y}) = 0.5$.

Inference based on posterior distribution

- ▶ In Bayesian inference, we use the posterior $p(\mu|\mathbf{y})$ to provide summaries of interest.
- ▶ Bayesian point estimates are often given by:
 - \blacktriangleright the posterior mean $E(\mu|\boldsymbol{y})$
 - or the posterior median μ^* with $P(\mu < \mu^* | \boldsymbol{y}) = 0.5$.

• Here $E(\mu|\mathbf{y}) =$ median = 1.23.

Inference based on posterior distribution

► Uncertainty can be quantified with credible intervals (Cls), definition (using 95% as an example) is as follows:

- ► Uncertainty can be quantified with credible intervals (CIs), definition (using 95% as an example) is as follows:
 - An interval is called a 95% Bayesian CI if the posterior probability that μ is contained in the interval is 0.95.

- ► Uncertainty can be quantified with credible intervals (Cls), definition (using 95% as an example) is as follows:
 - An interval is called a 95% Bayesian CI if the posterior probability that μ is contained in the interval is 0.95.
 - More formally, (l(y), u(y)) is called a 95% Bayesian CI if $P(l(y) < \mu < u(y)|y) = 0.95$.

- Uncertainty can be quantified with credible intervals (Cls), definition (using 95% as an example) is as follows:
 - An interval is called a 95% Bayesian CI if the posterior probability that μ is contained in the interval is 0.95.
 - More formally, (l(y), u(y)) is called a 95% Bayesian CI if $P(l(y) < \mu < u(y)|y) = 0.95$.
 - This interpretation differs from a frequentist CI; it is a probability statement about the information about the location of μ .

- Uncertainty can be quantified with credible intervals (Cls), definition (using 95% as an example) is as follows:
 - An interval is called a 95% Bayesian CI if the posterior probability that μ is contained in the interval is 0.95.
 - More formally, (l(y), u(y)) is called a 95% Bayesian CI if $P(l(y) < \mu < u(y)|y) = 0.95$.
 - This interpretation differs from a frequentist CI; it is a probability statement about the information about the location of μ .
- Interval options:

- Uncertainty can be quantified with credible intervals (Cls), definition (using 95% as an example) is as follows:
 - An interval is called a 95% Bayesian CI if the posterior probability that μ is contained in the interval is 0.95.
 - More formally, (l(y), u(y)) is called a 95% Bayesian CI if $P(l(y) < \mu < u(y)|y) = 0.95$.
 - ▶ This interpretation differs from a frequentist CI; it is a probability statement about the information about the location of μ .
- Interval options:
 - Quantile-based $100 \cdot (1 \alpha)\%$ Cl is given by posterior quantiles $(\mu_{\alpha/2}, \mu_{1-\alpha/2})$, with $P(\mu < \mu_{\alpha/2} | \mathbf{y}) = P(\mu > \mu_{1-\alpha/2} | \mathbf{y}) = \alpha/2$.

- Uncertainty can be quantified with credible intervals (CIs), definition (using 95% as an example) is as follows:
 - An interval is called a 95% Bayesian CI if the posterior probability that μ is contained in the interval is 0.95.
 - More formally, (l(y), u(y)) is called a 95% Bayesian CI if $P(l(y) < \mu < u(y)|y) = 0.95$.
 - This interpretation differs from a frequentist CI; it is a probability statement about the information about the location of μ .
- Interval options:
 - Quantile-based $100 \cdot (1 \alpha)\%$ CI is given by posterior quantiles $(\mu_{\alpha/2}, \mu_{1-\alpha/2})$, with $P(\mu < \mu_{\alpha/2}|\mathbf{y}) = P(\mu > \mu_{1-\alpha/2}|\mathbf{y}) = \alpha/2$.
 - ► Highest posterior density (HPD) intervals

- Uncertainty can be quantified with credible intervals (Cls), definition (using 95% as an example) is as follows:
 - An interval is called a 95% Bayesian CI if the posterior probability that μ is contained in the interval is 0.95.
 - More formally, $(l(\boldsymbol{y}), u(\boldsymbol{y}))$ is called a 95% Bayesian CI if $P(l(\boldsymbol{y}) < \mu < u(\boldsymbol{y})|\boldsymbol{y}) = 0.95$.
 - This interpretation differs from a frequentist CI; it is a probability statement about the information about the location of μ .
- Interval options:
 - Quantile-based $100 \cdot (1 \alpha)\%$ CI is given by posterior quantiles $(\mu_{\alpha/2}, \mu_{1-\alpha/2})$, with $P(\mu < \mu_{\alpha/2}|\mathbf{y}) = P(\mu > \mu_{1-\alpha/2}|\mathbf{y}) = \alpha/2$.
 - ► Highest posterior density (HPD) intervals
- ▶ For the radon example with $\mu \sim N(0,1)$, the quantile-based 95% CI is (1.17, 1.28).

Summary

Summary

- **B** Bayesian inference about a parameter μ , using data y:
 - (1) relate data ${m y}$ to ${m \mu}$ through a likelihood function $p({m y}|{m \mu})$
 - (2) set a prior distribution for μ , $p(\mu)$
 - (3) use Bayes' rule to update the prior into the posterior distribution:

$$p(\mu|\mathbf{y}) = \frac{p(\mu)p(\mathbf{y}|\mu)}{p(\mathbf{y})},$$

(4) use the posterior $p(\mu|\mathbf{y})$ to provide summaries of interest, e.g. point estimates and uncertainty intervals, called credible intervals (CIs).

Summary

- **B** Bayesian inference about a parameter μ , using data y:
 - (1) relate data ${m y}$ to ${m \mu}$ through a likelihood function $p({m y}|{m \mu})$
 - (2) set a prior distribution for μ , $p(\mu)$
 - (3) use Bayes' rule to update the prior into the posterior distribution:

$$p(\mu|\mathbf{y}) = \frac{p(\mu)p(\mathbf{y}|\mu)}{p(\mathbf{y})},$$

- (4) use the posterior $p(\mu|\mathbf{y})$ to provide summaries of interest, e.g. point estimates and uncertainty intervals, called credible intervals (Cls).
- Model set-up in this module: everything's normal;When data and prior are normal, the posterior is normal too.
- ▶ Next module: derive the posterior using Bayes' rule, discuss the role of prior information, bias-variance trade-off.