

Page 1 of 13

Certificate of Compliance

Test Report No.:	SKTTRT-081224-021						
KOLAS No.:	KT191						
Applicant:	S&T Daewoo Co., Ltd.	S&T Daewoo Co., Ltd.					
Applicant Address:	5, Songjeong-ri, Cholma-myo	5, Songjeong-ri, Cholma-myon, Kijang-gun, Busan, Korea					
Manufacturer:	S&T Daewoo Co., Ltd.						
Manufacturer Address:	5, Songjeong-ri, Cholma-myo	n,Kijang-gun, Busan, Korea	ı				
Device Under Test:	Immobilizer, Model IM860						
FCC ID: IC:	VQQ-IM860 7313A-IM860	Brand Name:	S&T Daewoo				
Receipt No.:	SKTEU08-1185	Date of receipt:	December 17, 2008				
Date of Issue:	December 24, 2008	TION					
Location of Testing:	SK TECH CO., LTD. 820-2, Wolmoon-ri, Wabu-up,	Namyangju-si, Kyunggi-do	o, Korea				
Test Procedure:	ANSI C63.4 / 2003						
Test Specification:	FCC Part 15 Rules, RSS-210 Issue 7						
Equipment Class:	DCD - Part 15 Low Power Tra RSS-210 Issue 7: Category I I						
Test Result:	The above-mentioned device	ce has been tested and pas	ssed.				
Tested & Reported by:	Jung-Tae, Kim	Approved by: Jong-Soo	o, Yoon				
<	2008. 12. 24		2008. 12. 24				
Signa	ature Date	Signa	ture Date				
Other Aspects:	-						
Abbreviations:	· OK, Pass = passed · Fail = failed	l · N/A = not applicable					

> This test report is not permitted to copy partly and entirely without our permission.

- ➤ This test result is dependent on only equipment to be used.
- > This test result is based on a single evaluation of submitted samples of the above mentioned.
- > This test report is the accredited testing items by Korea Laboratory Accreditation Scheme, which signed the ILAC-MRA.

Page 2 of 13

>> CONTENTS <<

1. GENERAL	3
2. TEST SITE	3
2.1 Location	3
2.2 List of Test and Measurement Instruments	4
2.3 Test Date	
2.4 Test Environment	
3. DESCRIPTION OF The EQUIPMENT UNDER TEST	5
3.1 Rating and Physical Characteristics	5
3.2 Equipment Modifications	5
3.3 Submitted Documents	5
4. MEASUREMENT CONDITIONS	6
4.1 Description of test configuration	6
4.2 List of Peripherals ACCRY ACCREDITA	
4.3 Uncertainty	
5. TEST AND MEASUREMENTS	7
5.1 ANTENNA REQUIREMENT	8
5.1.1 Regulation	8
5.1.2 Result ESTING NO. 191	8
5.2 RADIATED EMISSIONS	9
5.2.1 Regulation	9
5.2.2 Measurement Procedure	10
5.2.3 Calculation of the filed strength limits	10
5.2.4 Test Results	11
Table 1: Measured values of the Field strength (below 30MHz)	11
Table 2: Measured values of the Field strength (above 30MHz)	11
5.3 OCCUPIED BANDWIDTH	12
5.3.1 Regulation	12
5.3.2 Test Results	12
Figure 1: Plot of the Occupied bandwidth (99 %)	

Page 3 of 13

1. GENERAL

These tests were performed using the test procedure outlined in ANSI C63.4, 2003 for intentional radiators, and in accordance with the limits set forth in FCC Part 15.209 and RSS-210.

The EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards.

We attest to the accuracy of data. All measurements reported herein were performed by SK Tech Co., Ltd. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. TEST SITE

SK TECH Co., Ltd.

2.1 Location

820-2, Wolmoon-Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea (FCC REGISTERED TEST SITE NUMBER: 90752) (OPEN AREA TEST SITE INDUSTRY CANADA NUMBER: IC 5429)

This test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

This laboratory is recognized as a Conformity Assessment Body (CAB) for CAB's Designation Number: KR0007 by FCC, is accredited by NVLAP for NVLAP Lab. Code: 200220-0, DATech for DAR-Registration No.: DAT-P-076/97-01 and KOLAS for Accreditation No.: KT191.

Page 4 of 13

2.2 List of Test and Measurement Instruments

No.	Description	Manufacturer	Model #	Serial #	Calibrated until	Used
1	Spectrum Analyzer	Agilent	E4405B	US40520856	2009.07	
2	EMC Spectrum Analyzer	Agilent	E7405A	US40240203	2009.01	\boxtimes
3	EMI Test Receiver	Rohde&Schwarz	ESIB40	100277	2009.02	\boxtimes
4	EMI Test Receiver	Rohde&Schwarz	ESVS10	825120/008	2009.07	
5	EMI Test Receiver	Rohde&Schwarz	ESHS10	862970/019	2009.07	
6	Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	836679/018	2009.07	
7	Pre-amplifier	HP	8447F	3113A05153	2009.02	\boxtimes
8	Pre-amplifier	MITEQ	AFS44	1116321	2009.07	
9	Pre-amplifier	MITEQ	AFS44	1116322	2009.10	
10	Power Meter	Agilent	E4417A	MY45100426	2009.07	
11	Power Meter	Agilent	E4418B	US39402176	2009.10	
12	Power Sensor	Agilent	E9327A	MY44420696	2009.07	
13	Power Sensor	Agilent	8482A	MY41094094	2009.07	
14	Attenuator (30dB)	BIRD	75-A-MFN-30	9640	2009.07	
15	Attenuator (20dB)	Weinschel	40-20-34	1003	2009.07	
16	Attenuator (10dB)	HPTORY ACC	8491B	38067	2009.07	
17	Oscilloscope	Agilent	54825A	MY40000269	2009.04	
18	Diode detector	Agilent	8473C	1882A03173	2009.02	
19	High Pass Filter	Wainwright	WHKX3.0/18G	8	2009.07	
20	VHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	VHAP	1014 / 1015	2009.12	
21	UHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	UHAP	989 / 990	2009.12	
22	Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	2009.11	\boxtimes
23	TRILOG Broadband Antenna	Schwarzbeck	VULB9160	3141	2009.05	\boxtimes
24	Horn Antenna	AH Systems	SAS-200/571	304	N/A	
25	Horn Antenna	EMCO	3115	00040723	2009.03	
26	Horn Antenna	EMCO	3115	00056768	2009.06	
27	Vector Signal Generator	Agilent	E4438C	MY42080359	2009.07	
28	PSG analog signal generator	Agilent	E8257D-520	MY45141255	2009.07	
29	DC Power Supply	HP	6622A	3448A032223	2009.11	\boxtimes
30	DC Power Supply	HP	6268B	2542A-07856	2009.07	
31	Digital Multimeter	HP	HP3458A	2328A14389	2009.03	\boxtimes
32	PCS Interface	HP	83236B	3711J00881	2009.03	
33	CDMA Mobile Test Set	HP	8924C	US35360253	2009.03	
34	Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	2009.07	\boxtimes
35	Temperature/Humidity Chamber	All Three	ATM-50M	20030425	2009.03	
36	Temperature/Humidity Chamber	DAEJIN	DJ-THC02	06071	2009.03	

2.3 Test Date

Date of Test: December 19, 2008 ~ December 23, 2008

2.4 Test Environment

See each test item's description.

Page 5 of 13

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The product specification described herein was obtained from the product data sheet or user's manual.

3.1 Rating and Physical Characteristics

Model Number	IM860	
Product description	ICU (Immobilizer Control Unit)	AUX-IMMO
Part number	IM0-07L001	IM0-08D001
Power source	12 V Lead-acid battery	12 V Lead-acid battery
Local Oscillator or X-Tal	X-Tal: 4 MHz	X-Tal: 4 MHz
Tx Frequency	125 kHz	-
Type of Modulation	ASK	-
Antenna Type	Integral coil antenna (diameter: 30 mm, Turns: 80, Cu-wire diameter: 0.2 mm)	-

^{**} This test report is for ICU (Immobilizer Control Unit) of the Immobilizer system.

3.2 Equipment Modifications

The RF signals from the EUT are usually transmitted when a key is inserted into the key-cylinder in the vehicle (Ignition ON) to verify the code. The firmware on the EUT was modified to transmit RF signals continuously for the tests.

3.3 Submitted Documents

Block diagram / Schematic diagram / Part List / User manual / Technical specification

Page 6 of 13

4. MEASUREMENT CONDITIONS

4.1 Description of test configuration

The measurements were taken in a test mode for RF transmitting continuously.

4.2 List of Peripherals

Equipment Type	Manufacture	Model	Cable Description
DC Power Supply	GoldStar	GP-4303A	1.8 m/ Unshielded Cable

^{**} The EUT was tested as a stand-alone device.

4.3 Uncertainty

Measurement Item	Combined Standard Uncertainty Uc	Expanded Uncertainty $U = k \times Uc \ (k = 1.96)$
Radiated disturbance	± 2.30 dB NO. 191	± 4.51 dB
Conducted disturbance	± 1.96 dB	± 3.84 dB

Page 7 of 13

5. TEST AND MEASUREMENTS

Summary of Test Results

Requirement	CFR Section	RSS Standards	Report Section	Test Result
Antenna Requirement	15.203	RSS-Gen, 7.1.4	5.1	PASS
Radiated Emission - Field Strength	15.209	RSS-210, 2.6	5.2	PASS
Occupied Bandwidth	N/A	RSS-210, 4.6.1	5.3	-
Conducted Emission	15.207	RSS-Gen, 7.2.2	N/A	N/A**

^{**} Not required, the EUT is only battery powered in the car.

Page 8 of 13

5.1 ANTENNA REQUIREMENT

5.1.1 Regulation

[FCC 47 CFR section 15.203]

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31 (d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

[RSS-Gen, Issue 2 - 7.1.4]

A transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

5.1.2 Result: PASS

The EUT has an integral coil antenna (125 kHz transmitter), and meets the requirements of this section.

Page 9 of 13

5.2 RADIATED EMISSIONS

5.2.1 Regulation

[FCC 47 CFR section 15.209]

- Emissions below 30 MHz

According to §15.209, the field strength of emissions from intentional radiators operated under this frequency band shall not exceed the following:

Frequency (MHz)	Field strength	Calculation of Field Strength (µV/m)	Calculation of Field Strength (dBµV/m)
0.009 - 0.490	2400/F(kHz)	266.7 – 4.9	48.5 – 13.8
	(μV/m @ 300m)	(μV/m @ 300m)	(dBµV/m @ 300m)
0.490 – 1.705	24000/F(kHz)	49.0 – 14.1	33.8 – 23.0
	(μV/m @ 30m)	(μV/m @ 30m)	(dBμV/m @ 30m)
1.705 – 30.0	30	30	29.5
	(μV/m @ 30m)	(μV/m @ 30m)	(dBμV/m @ 30m)

- Emissions above 30 MHz

The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in §15.209.

Frequency (MHz)	Field strength (μV/m @ 3m)	Field strength (dBµV/m @ 3m)
30–88	100	40.0
88–216	TESTIN 150, 191	43.5
216–960	200	46.0
Above 960	500	54.0

The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector. For the frequency bands 9 - 90 kHz, 110 - 490 kHz and above 1000 MHz, the radiated emission limits are based on measurements employing an average detector.

[RSS-210, Issue 7 - 2.6]

[REMARK: THE SAME AS THE FIELD STRENGTH LIMITS SPECIFIED IN FCC PART 15.209]

Tables 2 and 3 show the general field strength limits of unwanted emissions, where applicable, for transmitters and receivers operating in accordance with the provisions specified in this RSS. Transmitters whose wanted emissions are also within the limits shown in Tables 2 and 3 may operate in any of the frequency bands of Tables 2 and 3, other than the restricted bands of Table 1 and the TV bands, and shall be certified under RSS-210. (Note: Devices operating below 490 kHz all of whose emissions are at least 40 dB below the limit given in Table 3 are Category II devices subject to RSS-310.) Unwanted emissions of transmitters and receivers are permitted to fall into Table 1 and TV frequencies but intentional emissions are prohibited. See the note of Table 2 for further details.

Page 10 of 13

5.2.2 Measurement Procedure

For tabletop equipment, the EUT is placed on a 1×1.5 meter wide and 0.8 meter high on conductive table that sits on a flush mounted metal turntable. Preview tests are performed to determine the "worst case" mode of operation. With the EUT operating in "worst case" mode, emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

The initial step in collecting radiated data is a peak scan of the measurement range with an EMI test receiver under closer distances as given in the rule.

The significant peaks are then measured with the appropriate detectors (QP, AV and PK).

5.2.3 Calculation of the field strength limits

- Emissions below 30 MHz

No special calculation for obtaining the field strength in $dB\mu V/m$ is necessary, because the EMI receiver and the active loop antenna operate as a system, where the reading gives directly the field strength result $(dB\mu V/m)$. The gain, antenna factors and cable losses are already taken into consideration.

For test distance other than what is specified, but fulfilling the requirements of section 15.31 (f) (2) the field strength is calculated by adding additionally an extrapolation factor of 40dB/decade (inverse linear distance for field strength measurements).

All following emission measurements were performed using the test receiver's average detector and peak detector function.

The basic equation is as follow;

FS = RA + DF

Where

 $FS = Field strength in dB\mu V/m$

 $RA = Receiver Amplitude in dB\mu V/m$

DF = Distance Extrapolation Factor in dB

Where DF = 20log(Dtest/Dspec) where Dtest = Test Distance and Dspec = Specified Distance

DF = $40\log(3\text{m}/300\text{m})$ = - 80 dB (Frequency : $0.009 \sim 0.490 \text{ MHz}$)

DF = $40\log(3m/30m)$ = - 40 dB (Frequency: $0.490 \sim 30 \text{ MHz}$)

Page 11 of 13

5.2.4 Test Results: PASS

Frequency	Bandwidth	Reading	Limit	Margin
(MHz)	(kHz)	(dBµV/m)	(dBμV/m)	(dB)
0.125	0.2	79.4 PK	125.7 PK	46.3
0.125	0.2	79.3 AV	105.7 AV	26.4
0.375	9	50.7 PK	116.1 PK	65.5
0.375	9	50.4 AV	96.1 AV	45.7
0.625	9		71.7 QP	

Margin(dB) = Limit - Reading

PK, AV and QP stand for Peak, Average and Quasi-peak diction

able 2: Mea	sured v	alues o	f the F	ield stre	ength (a	above 30	0 MHz			
Frequency [MHz]	RBW [kHz]	POL [V/H]	ANT [m]	Reading [dBµV]	AMP [dB]	AF [dB/m]	CL [dB]	Actual [dBµV/m]	Limit [dBµV/m]	Margin [dB]
160.11	120	Н	1.9	39.4	27.7	12.8	1.1	25.6	43.5	17.9
163.86	120	Н	2.0	40.0	27.7	12.8	1.1	26.2	43.5	17.3
171.87	120	Н	1.9	43.0	27.6	12.8	1.2	29.4	43.5	14.1

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- 2. AF/CL = Antenna Factor and Cable Loss

NOTE

- 1. All emissions not reported were more than 20 dB below the specified limit or in the noise floor.
- 2. These test results of Table 1 and Table 2 were measured at the 3 m distance.

Page 12 of 13

5.3 OCCUPIED BANDWIDTH

5.3.1 Regulation

[RSS-Gen, Issue 2 - 4.6.1]

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual.

The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded.

The span between the two recorded frequencies is the occupied bandwidth.

PASS

Operating frequency (kHz)	RBW	99 % BW	Limit
	(kHz)	(kHz)	(kHz)
125	1.0	14.8	-

Page 13 of 13

Figure 1: Plot of the Occupied bandwidth (99 %)

Date: 23.DEC.2008 15:52:01