The LNM Institute of Information Technology Jaipur, Rajasthan MATH-II

Assignment #6

1. Expand the following functions in terms of Legendre polynomials over [-1,1]:

$$(i) f(x) = x^3 + x + 1 \quad (ii) f(x) = \begin{cases} 0 & \text{if } -1 \le x < 0, \\ x & \text{if } 0 \le x \le 1 \end{cases}$$
 (first three non-zero terms)

2. Locate and classify the singular points in the following:

$$(i) x^3(x-1)y'' - 2(x-1)y' + 3xy = 0 \quad (ii) (3x+1)xy'' - xy' + 2y = 0.$$

- 3. For each of the following, verify that the origin is a regular singular point and find two linearly independent solutions:
 - (a) $9x^2y'' + (9x^2 + 2)y = 0$

(b)
$$x^2(x^2-1)y'' - x(1+x^2)y' + (1+x^2)y = 0$$
,

(c)
$$xy'' + (1-2x)y' + (x-1)y = 0$$

(c)
$$xy'' + (1-2x)y' + (x-1)y = 0$$
, (d) $x(x-1)y'' + 2(2x-1)y' + 2y = 0$.

- 4. Show that the equation $2x^3y'' + (\cos 2x 1)y' + 2xy = 0$ has only one Frobenius series solution.
- 5. Reduce $x^2y'' + xy' + (x^2 1/4)y = 0$ to normal form and hence find its general solution. (Infer that $J_{1/2}(x) = A \frac{\sin x}{\sqrt{x}}$).
- 6. Find a solution bounded near x = 0 of the following ODE:

$$x^2y'' + xy' + (\lambda^2 x^2 - 1)y = 0$$

7. Using recurrence relations, show that

(i)
$$J_0''(x) = -J_0(x) + J_1(x)/x$$
 (ii) $xJ_{n+1}'(x) + (n+1)J_{n+1}(x) = xJ_n(x)$.

8. Show that

(i)
$$\int x^4 J_1(x) dx = (4x^3 - 16x)J_1(x) - (x^4 - 8x^2)J_0(x) + C,$$

(ii)
$$\int J_5(x)dx = -2J_4(x) - 2J_2(x) - J_0(x) + C$$

- 9. Express
 - (i) $J_3(x)$ in terms of $J_1(x)$ and $J_0(x)$
- (ii) $J_2'(x)$ in terms of $J_1(x)$ and $J_0(x)$
- (iii) $J_4(ax)$ in terms of $J_1(ax)$ and $J_0(ax)$.
- 10. Prove that between each pair of consecutive positive zeros of $J_{\nu}(x)$, there is exactly one zero of $J_{\nu+1}(x)$ and vice versa.
- 11. Let $y_{\nu}(x)$ be a nontrivial solution of Bessel's equation of order ν on the positive x-axis. Show that (i) If $0 \le \nu < 1/2$, then every interval of length π contains at least one zero of $y_{\nu}(x)$; (ii) If $\nu = 1/2$, then the distance between successive zeros of $y_{\nu}(x)$ is exactly π ; and (iii) if $\nu > 1/2$, then every interval of length π contains at most one zero of $y_{\nu}(x)$.
- 12. Show that the Bessel's function J_{ν} , $(\nu \geq 0)$ satisfy

$$\int_0^1 x J_{\nu}(\lambda_m x) J_{\nu}(\lambda_n x) dx = \frac{1}{2} J_{\nu+1}^2(\lambda_n) \delta_{mn},$$

where, λ_i are the positive zeros of J_{ν} .