

Con audio en el sig. enlace

https://www.youtube.com/watch?v=9IPYtt1xxNI&t=150s

Estados de agregación de la materia

Desorden total; mucho espacio vacío; las partículas tienen completa libertad de movimiento; las partículas están muy separadas. Desorden; las partículas o cúmulos de partículas están en libertad de moverse unos respecto a otros; las partículas están cercanas entre sí. Acomodo ordenado; las partículas están prácticamente en posiciones fijas; las partículas están muy juntas.

Polaridad de las moléculas

Polaridad de los enlaces

Nonpolar covalent bond

Bonding electrons shared equally between two atoms. No charges on atoms.

Polar covalent bond

Bonding electrons shared unequally between two atoms. Partial charges on atoms.

b) En un enlace covalente polar hay mayor densidad electrónica en el átomo de mayor electronegatividad.

lonic bond

Complete transfer of one or more valence electrons.
Full charges on resulting ions.

Polaridad de las moléculas

Polaridad de un enlace Momento Dipolar µ

Polaridad de una molécula

MOLÉCULAS NO POLARES. $\sum \vec{\mu} = 0$

- a) Tienen enlaces no polares. E₁: H₂; Cl₂
- b) Tienen enlaces polares pero $\Sigma \vec{\mu} = 0$. Ej. CH₄; CO₂

Bond dipoles Overall dipole moment = 0 Cada dipolo C-O se anula porque la molécula es lineal

MOLÉCULAS POLARES. Σ μ ≠ 0

- a) Tienen un solo enlace covalente polar. Ej: HF; HCl
- b) Tienen varios enlaces covalentes polares que no se anulan. Ej. H₂O; NH₃

Los dipolos H-O no se anulan porque molécula no es lineal, sino angular

DIPOLOS PERMANENTES (Moléculas Polares)

DIPOLOS INDUCIDOS (Moléculas No Polares)

Si pongo iones en un gas ¿ Puedo licuatio?

Fuerzas intramoleculares:

- Dentro de la molécula (enlaces)
- Intensas
- Formación de la molécula

Fuerzas intermoleculares:

- Atracción de una molécula a otra
- Son mucho más débiles
- Responsables del estado de agregación

Clasificación

- 1) Ión Dipolo
- 2) Fuerzas de van der Waals:
 - 2.a) Dipolo Dipolo
 - 2.b) Dipolo Dipolo Inducido
 - 2.c) Fuerzas de London(Dipolo Inducido Dipolo Inducido)
- 3) Puente de Hidrógeno

FUERZAS INTERMOLECULARES 1.- Ión - Dipolo

Interacción ión – dipolo en una solución acuosa de NaCl

2.- Fuerzas de van der Waals: a) Dipolo - Dipolo

Interacción entre dipolos permanentes

Dietiléter

Momento dipolar permanente en la acetona

2.- Fuerzas de van der Waals: b) Dipolo - Dipolo Inducido

Molécula polar con dipolo permanente que distorsiona la nube electrónica de la molécula no polar

Molécula no polar

Dipolo inducido en la molécula no polar

2.- Fuerzas de van der Waals: c) Dipolo Inducido – Dipolo Inducido Fuerzas de London

2.- Fuerzas de van der Waals: c) Dipolo Inducido – Dipolo Inducido Fuerzas de London

Dependen del tamaño y forma de la molécula

- A mayor masa molecular mayor fuerza de London
- A igual masa molecular, cuanto mayor es la ramificación menor es la fuerza de London

FUERZAS INTERMOLECULARES 3.- Puente de Hidrógeno

- Son las más intensas
- Debe haber un átomo de hidrógeno unido a un átomo muy electronegativo y pequeño (F, O, N)

Magnitud de mayor a menor

- 1.- Ión Dipolo
- 2.- Puente de Hidrógeno
- 3.- Dipolo Dipolo
- 4.- Dipolo Dipolo Inducido
- 5.- Dipolo Inducido Dipolo Inducido (Fuerzas de London)

Relación con las propiedades físicas

- A mayor Fuerza Intermolecular mayor es la temperatura de ebullición
 - A mayor Fuerza Intermolecular mayor densidad

MALARDA ESTA PRESentación

- Las sustancias polares son solubles en solventes polares
- Las sustancias no polares son solubles en solventes no polares