CORNER SOLUTIONS: TOBIT MODELS

Econometric Analysis of Cross Section and Panel Data, 2e MIT Press Jeffrey M. Wooldridge

- 1. Introduction
- 2. A General Formulation
- 3. The Type I Tobit Model
- 4. Specification Issues
- 5. Estimating Parameters Under Weaker Assumptions
- 6. Endogenous Explanatory Varibles
- 7. Panel Data
- 8. Two-Limit Tobit Models

1. INTRODUCTION

- So-called "censored regression models" are applied to two very different kinds of situations: (1) data censoring, such as top coding of wealth or censoring of a duration (survival time); (2) corner solution outcomes, where the variable we would like to explain piles up at one or two corners.
- Most applications are to the latter case, where we always observe the response, but it takes on values at a corner (often zero, sometimes one, and occasionally other values). It is continuous (or roughly so) over strictly positive values.

- Examples include annual charitable contributions, annual labor supply, amount of life insurance.
- Count variables (number of crimes committed, annual medical appointments, patents awarded) are not examples because, while they take on the value zero, they are not roughly continuous over strictly postive values. (Typically, they take on small positive integer values.) We have used the Poisson MLE as an example for count data; count data models are covered in detail in Chapter 18.

- Before applying any limited dependent variable model we should ask, "Do I always observe the response variable of interest?" For variables such as charitable contributions and annual hours worked, the answer is usually "yes" because an observed zero means zero.
- In true data censoring cases, the answer is "no," even though unobserved values are often assigned to a censoring value.

- We will cover censored data, where we have a linear model for the response variable we would like to explain but the data have been censored, in Chapter 19.
- More subtle situations arise. For example, we might think charitable contributions follows a particular population model that allows a corner at zero such as the Type I Tobit model in Section 4 but also have data censoring (say, top coding).

- Little confusion arises if one first specifies the model for the underlying population and separately describes the mechanism generating the data. The latter can be data censoring or where we cannot randomly sample units from the population of interest.
- Here we are interested only in specifying population models that are logically consistent with the population distribution of corner solution responses.

• When we turn to two-part or hurdle models, we also need to be aware that there is confusion between cases where we always observe the response of interest and where we do not for some subset of the population. Nonrandom sample selection from the underlying population are covered in Chapter 19.

- Consider the leading case where we want to determine factors that affect y, where $y \ge 0$ with P(y = 0) > 0 but y is (roughly) continuous over strictly positive values. So y is neither discrete nor continuous.
- Is there anything necessarily wrong with a linear model for $E(y|\mathbf{x})$? In fact, if we are interested in estimating partial effects of the x_j on $E(y|\mathbf{x})$, a linear model is a reasonable starting point.

- The drawbacks of a linear model when y is a corner solution are similar to those for the linear probability model: (1) Some of the fitted values can be negative; (2) the partial effects are unlikely to be constant througout the range of \mathbf{x} ; (3) $Var(y|\mathbf{x})$ is unlikely to be constant. The second is the most important.
- Just as with other limited dependent variable, when y is a corner solution response we should view the linear model as representing the linear projection, $L(y|\mathbf{x}) = \mathbf{x}\mathbf{\gamma}$. Whether the LP is a good approximation to $E(y|\mathbf{x})$ is an important question.

- Alternative functional forms might provide a better approximation. It is not crazy to use, say, $E(y|\mathbf{x}) = \exp(\mathbf{x}\boldsymbol{\beta})$ and apply nonlinear least squares (or a quasi-MLE of the type covered in Chapter 18). But the exponential functional form does not fall out of standard models for corners. We study similar possibilities under two-part models.
- Another issue with corner solution responses (which does not arise with binary responses) is that there are more features of $D(y|\mathbf{x})$ that we can be interested in, such as $E(y|\mathbf{x}, y > 0)$ or $P(y > 0|\mathbf{x})$.

2. A GENERAL FORMULATION

• Consider the case where $y \ge 0$ has a corner at zero. A useful starting point is

$$y = \max(0, \mathbf{x}\boldsymbol{\beta} + u)$$

where $\mathbf{x} = (1, x_2, ..., x_K)$, $\boldsymbol{\beta}$ is $K \times 1$, and u is an unobserved error with a continuous distribution.

- ullet If the range of u is unrestricted, this setup generates a pile up at zero and then continuous strictly positive outcomes.
- Benefit of this approach: it keeps the focus on y. The question is what this model implies about $D(y|\mathbf{x})$.

- The phrase "y is censored at zero" is common, but not ideal.

 Censoring implies a missing data problem, but there is none here. "y has a corner at zero" is more descriptive of this situation.
- What can we say about $D(y|\mathbf{x})$ in general? Not much until we restrict $D(u|\mathbf{x})$ in some way. For example, assume

$$Med(u|\mathbf{x}) = 0,$$

which holds in common parametric models. Then, because $g(z) \equiv \max(0, z)$ is a nondecreasing function on \mathbb{R} , we can pass the median through:

$$Med(y|\mathbf{x}) = \max(0, \mathbf{x}\boldsymbol{\beta} + Med(u|\mathbf{x})) = \max(0, \mathbf{x}\boldsymbol{\beta}).$$

- This result is the basis for so-called *censored least absolute* deviations (CLAD) estimation of β later.
- Generally, we cannot find $E(y|\mathbf{x})$ without much stronger assumptions, even if we make the standard assumption $E(u|\mathbf{x}) = 0$. However, because $g(z) = \max(0, z)$ is convex, we can use Jensen's inequality:

$$E(y|\mathbf{x}) = E[\max(0, \mathbf{x}\boldsymbol{\beta} + u)|\mathbf{x}] \ge \max(0, \mathbf{x}\boldsymbol{\beta} + E(u|\mathbf{x})) = \max(0, \mathbf{x}\boldsymbol{\beta}).$$

So

$$E(y|\mathbf{x}) \geq \max(0,\mathbf{x}\boldsymbol{\beta}).$$

• Even if we could estimate β this inequality is not helpful for estimating partial effects on $E(y|\mathbf{x})$.

• Sometimes a latent variable formulation is helpful, where y^* is the latent variable:

$$y^* = \mathbf{x}\mathbf{\beta} + u$$
$$y = \max(0, y^*)$$

But usually y^* is not the variable of interest. ("Desired" charitable contributions or "desired" labor supply are not what policy makers care about. It is the actual outcomes.)

• If $E(u|\mathbf{x}) = 0$, $\beta_j = \partial E(y^*|\mathbf{x})/\partial x_j$, but we are more interested in $E(y|\mathbf{x})$.

3. THE TYPE I TOBIT MODEL

• By far the most popular model for corners at zero assumes normality of the latent error:

$$y = \max(0, \mathbf{x}\boldsymbol{\beta} + u)$$
$$u|\mathbf{x} \sim Normal(0, \sigma^2)$$

• So, if we write $y^* = \mathbf{x}\mathbf{\beta} + u$, then $D(y^*|\mathbf{x})$ follows a classical linear model.

Quantities of Interest and Partial Effects

• Under these assumptions, we have fully characterized $D(y|\mathbf{x})$. Let w = 1[y > 0] be the binary indicator for whether y is positive or at the corner. Then

$$P(w = 1|\mathbf{x}) = P(\mathbf{x}\boldsymbol{\beta} + u > 0|\mathbf{x}) = P(u/\sigma > -\mathbf{x}\boldsymbol{\beta}/\sigma|\mathbf{x})$$
$$= 1 - \Phi(-\mathbf{x}\boldsymbol{\beta}/\sigma) = \Phi(\mathbf{x}\boldsymbol{\beta}/\sigma).$$

• So w given **x** follows a probit with parameter vector β/σ , so we already know how to obtain partial effects on $P(y > 0 | \mathbf{x})$. If x_j is continuous,

$$\frac{P(y>0|\mathbf{x})}{\partial x_i} = (\beta_j/\sigma)\phi(\mathbf{x}\boldsymbol{\beta}/\sigma).$$

• Fact: If $z \sim Normal(0,1)$ then $E(z|z>c)=\phi(c)/[1-\Phi(c)]$. So

$$E(y|\mathbf{x}, y > 0) = \mathbf{x}\boldsymbol{\beta} + E(u|u > -\mathbf{x}\boldsymbol{\beta})$$

$$= \mathbf{x}\boldsymbol{\beta} + \sigma E(u/\sigma|u/\sigma > -\mathbf{x}\boldsymbol{\beta}/\sigma)$$

$$= \mathbf{x}\boldsymbol{\beta} + \sigma \left[\frac{\phi(-\mathbf{x}\boldsymbol{\beta}/\sigma)}{1 - \Phi(-\mathbf{x}\boldsymbol{\beta}/\sigma)}\right]$$

$$= \mathbf{x}\boldsymbol{\beta} + \sigma \left[\frac{\phi(\mathbf{x}\boldsymbol{\beta}/\sigma)}{\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)}\right]$$

$$= \mathbf{x}\boldsymbol{\beta} + \sigma \lambda(\mathbf{x}\boldsymbol{\beta}/\sigma)$$

where $\lambda(z) \equiv \phi(z)/\Phi(z)$ is called the *inverse Mills ratio*.

- $\lambda(\cdot)$ is strictly decreasing, and looks linear over much of its range.
- Because $\phi(z) \to 0$ and $\Phi(z) \to 1$ as $z \to \infty$, $\lim_{z \to \infty} \lambda(z) = 0$. Further, using L'Hôspital's rule it is easy to show that

$$\lim_{z\to-\infty}\lambda(z)=\infty.$$

• The proof uses

$$\frac{d\phi}{dz}(z) = -z\phi(z)$$
 and $\frac{d\Phi}{dz}(z) = \phi(z)$.

- The IMR appears often in models with LDVs and, later, in data censoring and sample selection contexts.
- $E(y|\mathbf{x}, y > 0)$ is called the "conditional" expectation because it is conditional on y > 0. Of course, it is also conditional on \mathbf{x} .

• Now we can use

$$E(y|\mathbf{x}) = P(y = 0|\mathbf{x}) \cdot 0 + P(y > 0|\mathbf{x})E(y|\mathbf{x}, y > 0)$$

= $\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)[\mathbf{x}\boldsymbol{\beta} + \sigma\lambda(\mathbf{x}\boldsymbol{\beta}/\sigma)]$
= $\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)\mathbf{x}\boldsymbol{\beta} + \sigma\phi(\mathbf{x}\boldsymbol{\beta}/\sigma).$

• Called the "unconditional" expectation (but, as always, we are conditioning on **x**).

• Partial effects on $P(y > 0|\mathbf{x})$ already known from probit:

$$\frac{\partial P(y > 0 | \mathbf{x})}{\partial x_j} = (\beta_j / \sigma) \phi(\mathbf{x} \boldsymbol{\beta} / \sigma)$$

• Partiel effects on $E(y|\mathbf{x}, y > 0)$: uses $d\lambda(c)/dc = -\lambda(c)[c + \lambda(c)]$.

$$\frac{E(y|\mathbf{x}, y > 0)}{\partial x_j} = \beta_j - \beta_j \lambda(\mathbf{x}\boldsymbol{\beta}/\sigma)[\mathbf{x}\boldsymbol{\beta}/\sigma + \lambda(\mathbf{x}\boldsymbol{\beta}/\sigma)]$$
$$= \beta_j \{1 - \lambda(\mathbf{x}\boldsymbol{\beta}/\sigma)[\mathbf{x}\boldsymbol{\beta}/\sigma + \lambda(\mathbf{x}\boldsymbol{\beta}/\sigma)]\}$$
$$= \beta_j \theta(\mathbf{x}\boldsymbol{\beta}/\sigma)$$

• If x_j and x_h are two continuous variables, the ratio of partial effects is β_j/β_h , free of **x**.

- Can show that $\theta(c) \equiv 1 \lambda(c)[c + \lambda(c)] = Var(z|z > -c)$ where z is standard normal, so $0 < \theta(c) < 1$ for all c.
- This implies that $\lambda(c)[c + \lambda(c)] > 0$ for all c, and so the IMR, whose slope is $-\lambda(c)[c + \lambda(c)]$, is strictly decreasing.
- β_j gives direction of effect, but must be scaled down. To compare with the linear projection $L(y|\mathbf{x})$ estimated by a linear model, must scale down the Tobit estimates to make them comparable to OLS.

• For discrete changes, need to compare the expected values at two different values of covariates. Because the conditional mean function $a + \sigma \lambda(a/\sigma)$ is strictly increasing in a for any $\sigma > 0$, sign of β_j gives direction of ceteris paribus effect.

• For the unconditional expectation, a generally useful experssion is

$$\frac{E(y|\mathbf{x})}{\partial x_j} = \frac{\partial P(y>0|\mathbf{x})}{\partial x_j} \cdot E(y|\mathbf{x},y>0) + P(y>0|\mathbf{x}) \cdot \frac{E(y|\mathbf{x},y>0)}{\partial x_j}.$$

• Applied to the Tobit model, after some algebra, we get

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)\beta_j = P(y > 0|\mathbf{x})\beta_j.$$

• So, to get partial effects on the unconditional mean, again the β_j are scaled by a function between 0 and 1 (and which depends on **x**).

- As $P(y > 0|\mathbf{x}) \to 1$ the β_j become close to the actual partial effect. If $P(y = 0|\mathbf{x})$ is large, the scale factor is small.
- Any comparison across models linear, two-part, and so on must account for any scale factors (assuming the partial effects have such a simple form).

• We can show that the expected value of $\partial E(y|\mathbf{x})/\partial x_j$ is simply $P(y>0)\beta_j$ because a probability (conditional or unconditional) can be written as the expected value of an indicator function. Then we apply iterated expectations:

$$E[P(y > 0|\mathbf{x})] = E\{E(1[y > 0]|\mathbf{x})\} = E(1[y > 0]) = P(y > 0).$$

• In other words, the APE on $E(y|\mathbf{x})$ for a continuous variable x_j is just

$$APE_j = P(y > 0)\beta_j$$

We can always consistently estimate P(w = 1) = P(y > 0) as the fraction of nonzero outcomes in the sample. (This is true more generally; not just for the Tobit model.)

Estimation of Parameters

• Suppose now we have a random sample $\{(\mathbf{x}_i, y_i) : i = 1, 2, ..., N\}$ from the population. From the expressions for $E(y|\mathbf{x}, y > 0)$ and $E(y|\mathbf{x})$, it is pretty clear that OLS regressions y_i on \mathbf{x}_i , using either the full sample or the sample with $y_i > 0$, does not consistently estimate β . There are some results about estimating these parameters up to a common scale. However, when y is directly of interest, we are more interested in the regression coefficients themselves (which approximate the average partial effects).

- These days, MLE (conditional on **x**) is the only way to go for Type I Tobit. The log likelihood can be parameterized to be concave.
- We need the density for y given x. But

$$f(0|\mathbf{x}) = 1 - \Phi(\mathbf{x}\boldsymbol{\beta}/\sigma).$$

For $\mathfrak{y} > 0$, $f(\mathfrak{y}|\mathbf{x}) = f^*(\mathfrak{y}|\mathbf{x})$, where f^* is the density of the latent variable. So we have

$$f(\mathbf{y}|\mathbf{x}) = [1 - \Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)]^{1[\mathbf{y}=0]} [\sigma^{-1}\phi[(\mathbf{y} - \mathbf{x}\boldsymbol{\beta})/\sigma]^{1[\mathbf{y}>0]}$$

(where n is just a dummy argument in the density).

• The log likelihood for random draw *i* is

$$\ell_i(\boldsymbol{\beta}, \boldsymbol{\sigma}) = 1[y_i = 0] \log[1 - \Phi(\mathbf{x}_i \boldsymbol{\beta}/\boldsymbol{\sigma})]$$

+
$$1[y_i > 0] \{\log \phi[(y_i - \mathbf{x}\boldsymbol{\beta})/\boldsymbol{\sigma}] - \log(\boldsymbol{\sigma})\}$$

and, as usual, we sum across all *i* to get the log likelihood for the sample.

• See the text for score and Hessian. It is a well-behaved maximization problem, and software does this routinely without computational difficulty.

• In Stata:

tobit y x1 x2 \dots xK, ll(0)

where the qualifier "ll(0)" means that the lower limit is at zero. (One can specify a different lower limit and also an upper limit, but this happens more often for data censoring rather than corner solution responses.)

• If we use a "robust" option in Stata (and other packages) then – just as with probit, logit, multinomial logit, and the ordered models – then we are admitting that the model is misspecified. If the Tobit model is correct for $D(y|\mathbf{x})$ we do not need a sandwich form of the asymptotic variance.

- If we use a sandwich form, we can perform inference on the parameters in the misspecified model. (More precisely, on the plims of the quasi-MLEs.)
- Another possible justification of a sandwich variance matrix estimator is that it might produce better standard errors than the estimated inverse of the expected Hessian. But this does not appear to be true for Tobit models.

Reporting the Results

- We obtain estimates $\hat{\beta}_j$ along with standard errors. We also obtain $\hat{\sigma}$ and its standard error. The latter parameter shows up in partial effects, so it is not "ancillary."
- We can report estimated PEAs on, say, $E(y|\mathbf{x})$, as

$$\Phi(\mathbf{\bar{x}}\mathbf{\hat{\beta}}/\hat{\sigma})\hat{\beta}_{j}$$

for continuous variables. (Unfortunately, the "mfx" command in Stata simply reports the $\hat{\beta}_j$.) Or, plug in other interesting values.

• The estimated APEs are

$$\left[N^{-1}\sum_{i=1}^N \Phi(\mathbf{x}_i\mathbf{\hat{\beta}}/\hat{\sigma})\right]\hat{\beta}_j.$$

The scale factor is the average of $\hat{P}(y > 0 | \mathbf{x})$ across the sample. (Unfortunately, the "margins" command in Stata reports the $\hat{\beta}_j$ and not the APEs.)

- Bootstrapping is convenient and feasible.
- Can compare the Tobit APEs on $E(y|\mathbf{x})$ to OLS estimates using entire sample. Also, can average across a subset of the covariates, fixing others at particular values.

• For discrete explanatory variables or for large changes in continuous ones, we can compute the difference in $E(y|\mathbf{x})$ at different values of \mathbf{x} . Suppose x_K is a binary variable (such as a policy indicator), and define, for each observation i, the two indices $\hat{w}_{i1} = \mathbf{x}_{i(K)}\hat{\boldsymbol{\beta}}_{(K)} + \hat{\boldsymbol{\beta}}_{K}$ and $\hat{w}_{i0} = \mathbf{x}_{i(K)}\hat{\boldsymbol{\beta}}_{(K)}$, where $\mathbf{x}_{i(K)}$ is the $1 \times (K-1)$ row vector with x_{iK} dropped. Then, the average difference

$$N^{-1} \sum_{i=1}^{N} \{ [\Phi(\hat{w}_{i1}/\hat{\sigma})\hat{w}_{i1} + \hat{\sigma}\phi(\hat{w}_{i1}/\hat{\sigma})] - [\Phi(\hat{w}_{i0}/\hat{\sigma})\hat{w}_{i0} + \hat{\sigma}\phi(\hat{w}_{i0}/\hat{\sigma})] \}$$

is the so-called average treatment effect.

- Different ways to define goodness-of-fit statistics. If we focus on $E(y|\mathbf{x})$, a simple one is the squared correlation between y_i and $\hat{E}(y_i|\mathbf{x}_i) = \Phi(\mathbf{x}_i\hat{\boldsymbol{\beta}}/\hat{\sigma})\mathbf{x}_i\hat{\boldsymbol{\beta}} + \hat{\sigma}\phi(\mathbf{x}_i\hat{\boldsymbol{\beta}}/\hat{\sigma})$. Or, can use a sum of squared residuals-type R-squared. Both are comparable to OLS R-squared. Or, we can use $\hat{E}(y_i|\mathbf{x}_i,y_i>0)=\mathbf{x}_i\hat{\boldsymbol{\beta}}+\hat{\sigma}\lambda(\mathbf{x}_i\hat{\boldsymbol{\beta}}/\hat{\sigma})$ to look at the fit for nonlimit observations.
- If comparing different models with full distributions specified, can use log likelihood for the full sample. This measures the fit of the entire distribution. As always, we prefer the model with the highest log-likelihood function.

. sum hours

Variable	Obs	Mean	Std. Dev.	Min	Max
hours	753	740.5764	871.3142	0	4950

. count if hours == 0 325

. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

Tobit regression	Number of obs	=	753
	LR chi2(7)	=	271.59
	Prob > chi2	=	0.0000
Log likelihood = -3819.0946	Pseudo R2	=	0.0343

hours	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc educ exper expersq age kidslt6 kidsge6 _cons	-8.814243 80.64561 131.5643 -1.864158 -54.40501 -894.0217 -16.218 965.3053	4.459096 21.58322 17.27938 .5376615 7.418496 111.8779 38.64136 446.4358	-1.98 3.74 7.61 -3.47 -7.33 -7.99 -0.42 2.16	0.048 0.000 0.000 0.001 0.000 0.000 0.675 0.031	-17.56811 38.27453 97.64231 -2.919667 -68.96862 -1113.655 -92.07675 88.88528	0603724 123.0167 165.4863 8086479 -39.8414 -674.3887 59.64075 1841.725
/sigma	+ 1122.022 	41.57903			1040.396	1203.647

Obs. summary: 325 left-censored observations at hours<=0

428 uncensored observations

0 right-censored observations

- . predict xbh, xb
- . gen hoursh = normal(xbh/_b[/sigma])*xb + _b[/sigma]*normalden(xbh/_b[/sigma])
- . sum hours hoursh

Variable	Obs	Mean	Std. Dev.	Min	Max
hours	 753	740.5764	871.3142	0	4950
hoursh	753	721.4201	473.6053	3.496456	1993.885

. corr hours hoursh
(obs=753)

	hours	hoursh
hours	1.0000	
hoursh	0.5237	1.0000

- . di .5237^2
- .27426169
- . * This squared correlation can be used as an R-squared to compare with other
- . * models, including a linear model.

. reg hours hoursh, nocons

Source	SS	df	MS		Number of obs = 753 F(1, 752) = 1031.68
Model Residual	569084372 414810722	1 752	569084372 551610.002		Prob > F = 0.0000 R-squared = 0.5784 Adj R-squared = 0.5778
Total	983895094	753	1306633.59		Root MSE = 742.7
hours	Coef.	Std. I	Err. t	P> t	[95% Conf. Interval]
hoursh	1.007564	.0313	369 32.12	0.000	.9459831 1.069146

^{. *} Note how close the coefficient is to one; this at least suggests the Tobit

^{. *} provides sensible estimates of the "unconditional" mean.

- . qui tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
- . gen scale = normal(xbh/_b[/sigma])
- . sum scale

Variable	Obs	Mean	Std. Dev	. Min	Max
scale	753	.5886634	.2426614	.0092704	.960908

. di .589*80.65 47.50285

. di .589*(-894.02) -526.57778

```
. do ex17 2 boot
. capture program drop tobit_boot
. program tobit_boot, rclass
. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
  2.
. predict xbh, xb
  3. gen scale = normal(xbh/_b[/sigma])
  4. gen pel=scale*_b[educ]
  5. sum pel
  6. return scalar ape1=r(mean)
  7. gen xbh0 = xbh - b[kidslt6]*kidslt6
  8. gen xbh1 = xbh0 + _b[kidslt6]
  9. gen xbh2 = xbh0 + _b[kidslt6]*2
 10. gen m2 = normal(xbh2/_b[/sigma])*xbh2 + _b[/sigma]*normalden(xbh2/_b[/sigma])
11. gen m1 = normal(xbh1/_b[/sigma])*xbh1 + _b[/sigma]*normalden(xbh1/_b[/sigma])
12. gen m0 = normal(xbh0/_b[/sigma])*xbh0 + _b[/sigma]*normalden(xbh1/_b[/sigma])
13. qen pe2 = m1 - m0
 14. sum pe2
15. return scalar ape2=r(mean)
16. gen pe3 = m2 - m1
17. sum pe3
18. return scalar ape3=r(mean)
. drop xbh scale xbh1 xbh0 xbh2 m2 m1 m0 pe1 pe2 pe3
 20. end
. bootstrap r(ape1) r(ape2) r(ape3), reps(500) seed(123): tobit_boot
(running tobit_boot on estimation sample)
Bootstrap replications (500)
```

Bootstrap results

Number of obs = 753

Replications = 500

command: tobit_boot
 _bs_1: r(ape1)
 _bs_2: r(ape2)
 _bs_3: r(ape3)

Observed Normal-based Bootstrap P> | z | [95% Conf. Interval] Coef. Std. Err. _bs_1 47.47311 13.04099 3.64 0.000 21.91324 73.03299 _bs_2 -487.21354.03773 -9.02 0.000 -593.125 -381.301-246.1717 12.31618 -270.3109-222.0324 _bs_3 -19.990.000

. program drop tobit_boot

end of do-file

. tab kidslt6

<pre># kids < 6 years</pre>	 Freq.	Percent	Cum.
0 1 2 3	606 118 26 3	80.48 15.67 3.45 0.40	80.48 96.15 99.60 100.00
Total	753	100.00	

. di 29 + 118 147

. di 118/147

.80272109

. di .8*487.2 + .2*246.2 439

. reg hours nwifeinc educ exper expersq age kidslt6 kidsge6, robust

Linear regression	Number of obs =	753
	F(7, 745) =	45.81
	Prob > F =	0.0000
	R-squared =	0.2656
	$R \cap C^{\dagger} MSF =$	750 18

hours	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc	-3.446636	2.240662	-1.54	0.124	-7.845398	.9521268
educ	28.76112	13.03905	2.21	0.028	3.163468	54.35878
exper	65.67251	10.79419	6.08	0.000	44.48186	86.86316
expersq	7004939	.3720129	-1.88	0.060	-1.430812	.0298245
age	-30.51163	4.244791	-7.19	0.000	-38.84481	-22.17846
kidslt6	-442.0899	57.46384	-7.69	0.000	-554.9002	-329.2796
kidsge6	-32.77923	22.80238	-1.44	0.151	-77.5438	11.98535
_cons	1330.482	274.8776	4.84	0.000	790.8556	1870.109

- . * Linear regression coefficient on kidslt6 is very close to the weighted
- . * average of the Tobit effects.
- . * But the linear regression coefficient for educ (28.8) is well below the APE
- . * from the Tobit model (47.5).
- . * The R-squared, about .266, is slightly below that for Tobit, about .274. The
- . * difference is perhaps not as great as we expect. Remember, though, that
- . * the OLS chooses the parameters to maximize the R-squared (minimize the sum of
- . * squared residuals) while the Tobit estimates are chosen to maximize the log
- . * likelihood. Nevertheless, the MLEs are, of course, good estimates, so the
- . * difference in using MLE versus nonlinear least squares is probably minor.

4. SPECIFICATION ISSUES

Omitted Heterogeneity Independent of the Covariates

• The conclusions here are similar to the binary response case. If we add, say, q as unobserved heterogeneity, $y = \max(0, \mathbf{x}\boldsymbol{\beta} + \gamma q + u)$, $u|(\mathbf{x},q)\sim Normal(0,\sigma^2)$, and q is also normally distributed and independent of \mathbf{x} , we can estimate $\boldsymbol{\beta}$ and $\gamma^2\tau^2 + \sigma^2$. Fortunately, the APEs only depend on $\gamma^2\tau^2 + \sigma^2$.

Heteroskedasticity

- Again, similar to probit. "Heteroskedastic Tobit" is a good way to extend functional form. Typically, $u|\mathbf{x}\sim Normal(0, \exp(2\mathbf{x}\boldsymbol{\delta}))$ or restrict to a subset of \mathbf{x} . But it makes the partial effects on $E(y|\mathbf{x},y>0)$ and $E(y|\mathbf{x})$ more difficult to estimate.
- As in the probit case, there is a way to argue that the partial effects on the average structural function are the same sign as the β_j . See Wooldridge (2005, Festschrift for Rothenberg).
- Again, using "robust" with Tobit estimation does not produce consistent estimators of the β while somehow making the inference robust to heteroskedsticity in the underlying model.

Nonnormality

- Similar comments to heteroskedasticity. The usual Tobit MLE will not consistently estimate β (or σ), but it may yield reasonably close partial effects.
- Using a more flexible distribution for $D(u|\mathbf{x})$ might be a good idea, but one should not only compare estimated coefficients.

5. ESTIMATING PARAMETERS UNDER WEAKER ASSUMPTIONS

• When we assume y is generated as

$$y = \max(0, \mathbf{x}\boldsymbol{\beta} + u),$$

modeling $D(u|\mathbf{x})$ more flexibly than $Normal(0, \sigma^2)$ is a natural way to extend the model. At a minimum, it can be used to check the robustness of Tobit partial effects. This includes the two possibilities mentioned above: allow for heteroskedasticity in $Var(u|\mathbf{x})$ or nonnormality in $D(u|\mathbf{x})$.

- Another direction is to use an estimation method that identifies β without many restrictions on $D(u|\mathbf{x})$. We already saw that if $Med(u|\mathbf{x}) = Med(u) = 0$ then $Med(y|\mathbf{x}) = \max(0,\mathbf{x}\beta)$. This includes the Tobit model as a special case (even if we add heteroskedasticity, since $D(u|\mathbf{x})$ would still have median zero).
- Because LAD identifies the parameters of a correctly specified conditional median, we can solve

$$\min_{\mathbf{b} \in \mathbb{R}^K} \sum_{i=1}^n |y_i - \max(0, \mathbf{x}_i \mathbf{b})|$$

- This estimator is called the *censored least absolute deviations* (CLAD) estimator.
- The objective function is continuous in the parameters, so consistency is relatively straightforward provided we can establish identification (not always easy).

- The non-smoothness in the median function $\max(0, \mathbf{x}_i \mathbf{b})$ (as a function of \mathbf{b}) and of the LAD function make asymptotic normality hard, but Powell (1984) show it under general conditions. At least one x_j with nonzero β_j should be continuous, and the density of the error is continuous near zero and strictly positive at zero.
- Estimation of the asymptotic variance has been coded, too. Sometimes bootstrapping is used.

• The estimates of the $\hat{\beta}_j$ give partial effects of continuous variables on the median once $\mathbf{x}\boldsymbol{\beta} > 0$. Ignoring what happens when $\mathbf{x}\boldsymbol{\beta} = 0$ [because he assumptions used to derive the asymptotic properties of LAD always include $P(\mathbf{x}\boldsymbol{\beta} = 0)$], we have

$$\frac{\partial Med(y|\mathbf{x})}{\partial x_j} = \beta_j 1[\mathbf{x}\boldsymbol{\beta} > 0].$$

- Given $\hat{\boldsymbol{\beta}}$ we can compute $\hat{\boldsymbol{\beta}}_j 1[\mathbf{x}\hat{\boldsymbol{\beta}} > 0]$ for any vector \mathbf{x} .
- For a discrete change, must evaluate $\max(0, \mathbf{x}\hat{\boldsymbol{\beta}})$ at the different values of \mathbf{x} .

• Honoré (2008) has recently shown that even when u and \mathbf{x} are not independent, the quantity

$$\beta_j P(y > 0)$$

can be interpreted as an average partial effect when x_j is continuous. Given the CLAD estimate $\hat{\beta}_j$, as before we can easily estimate this quantity by $\hat{\beta}_j \hat{\eta}$ where $\hat{\eta}$ is the fraction of strictly positive y_i .

- Unfortunately, this does not work for discrete changes in x_j .
- Plus we cannot use it to evaluate partial effects across different values of **x**.

- One way to view the CLAD approach is that it identifies $Med(y|\mathbf{x}) = \max(0, \mathbf{x}\boldsymbol{\beta})$ for a variety of shapes of $D(u|\mathbf{x})$. But there is a cost: other features of $D(y|\mathbf{x})$, such as the mean, are not identified. So, CLAD does not allow us to aggregate the effects of a policy or program. We can get the median effect for groups indexed by the observed covariates.
- The CLAD approach does not work for two-part models, as we will see.

. clad hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0) reps(500)

Initial sample size = 753
Final sample size = 504
Pseudo R2 = .12643936

Bootstrap statistics

Variable	Reps	Observed	Bias	Std. Err.	[95% Conf	. Interval]
nwifeinc	500	-6.083408	-1.02711	6.052369	-17.97468	5.807859	(N)
educ	500	72.48654	-3.507613	32.45573	8.719817	136.2533	(N)
exper	500	120.1826	3.870493	21.22486	78.48153	161.8837	(N)
expersq	500	-1.403609	1508735	.7030393	-2.78489	0223267	(N)
age	500	-59.7946	102942	9.315551	-78.09713	-41.49206	(N)
kidslt6	500	-1075.789	-14.31295	215.2858	-1498.767	-652.8106	(N)
kidsge6	500	-97.81434	-20.24035	47.63005	-191.3945	-4.234172	(N)
const	500	1568.482	58.27831	589.2338	410.7975	2726.167	(N)

6. ENDOGENOUS EXPLANATORY VARIABLES

- Can use a linear model and view the 2SLS estimates (say) as (rough?) estimates of average partial effects. Has the benefit of "working" for any kind of y_2 .
- If we want to allow nonconstant partial effects, we need to turn to nonlinear models.
- With a single EEV (for simplicity), consider the model

$$y_1 = \max(0, \alpha_1 y_2 + \mathbf{z}_1 \boldsymbol{\delta}_1 + u_1)$$
$$u_1 | \mathbf{z} \sim Normal(0, \sigma_1^2)$$

where z is the vector of all endogenous variables.

- Analysis goes through if we replace (\mathbf{z}_1, y_2) with any known function $\mathbf{x}_1 \equiv \mathbf{g}_1(\mathbf{z}_1, y_2)$. Might be useful to include squares and cross products, y_2^2 and $y_2\mathbf{z}_1$, to make the functional form more flexible.
- The parameters $(\alpha_1, \delta_1, \sigma_1^2)$ index the average structural function, and so they index the APEs, too.
- The Smith-Blundell (1986) approach is a control function approach.

$$y_2 = \mathbf{z}\delta_2 + v_2 = \mathbf{z}_1\delta_{21} + \mathbf{z}_2\delta_{22} + v_2, \ \delta_{22} \neq \mathbf{0}$$

 $v_2|\mathbf{z}\sim Normal(0, \tau_2^2)$

• Can relax normality in two-step methods. In fact, sufficient is

$$u_1 = \theta_1 v_2 + e_1$$

where $\theta_1 = Cov(v_2, u_1)/\tau_2^2$ and e_1 given (v_2, \mathbf{z}) has a $Normal(0, \tau_1^2)$ distribution with $\tau_1^2 = \sigma_1^2 - \theta_1^2 \tau_2^2$.

• As before, the CF approach is a two-step method. Write

$$y_1 = \max(0, \alpha_1 y_2 + \mathbf{z}_1 \mathbf{\delta}_1 + \theta_1 v_2 + e_1)$$

which follows a Tobit model with explanatory variables (y_2, \mathbf{z}_1, v_2) . It is useful to write this as

$$D(y_1|y_2,\mathbf{z}) = Tobit(\alpha_1y_2 + \mathbf{z}_1\boldsymbol{\delta}_1 + \theta_1(y_2 - \mathbf{z}\boldsymbol{\delta}_2), \tau_1^2)$$
$$= Tobit(\alpha_1y_2 + \mathbf{z}_1\boldsymbol{\delta}_1 + \theta_1v_2, \tau_1^2)$$

- So (1) Run the OLS regression y_{i2} on \mathbf{z}_i and get the residuals, \hat{v}_{i2} . (2) Run Tobit of y_{i1} on $(y_{i2}, \mathbf{z}_{i1}, v_{i2})$.
- The second step gives $\hat{\alpha}_1$, $\hat{\delta}_1$, $\hat{\theta}_1$, and $\hat{\tau}_1^2$. If we want to use the original parameters to compute APEs, set $\hat{\sigma}_1^2 = \hat{\theta}_1 \hat{\tau}_2^2 + \hat{\tau}_1^2$ where $\hat{\tau}_2^2$ is the estimated reduced form variance.

• As a useful shorthand, define the Tobit mean function as

$$m(a, \sigma^2) \equiv \Phi(a/\sigma)a + \sigma\phi(a/\sigma).$$

- Then the estimated partial effects can be obtained by computing derivatives or differences of $m(\mathbf{z}_1\hat{\boldsymbol{\delta}}_1 + \hat{\alpha}_1y_2, \hat{\sigma}_1^2)$ with respect to elements of (\mathbf{z}_1, y_2) , just as we did in the case of exogenous explanatory variables.
- Or, we can use

$$\widehat{ASF}(y_2, \mathbf{z}_1) = N^{-1} \sum_{i=1}^{N} m(\hat{\alpha}_1 y_2 + \mathbf{z}_1 \hat{\delta}_1 + \hat{\theta}_1 \hat{v}_{i2}, \hat{\tau}_1^2)$$

which is valid under weaker assumptions.

 \bullet For example, the partial effect with respect to y_2 is estimated as

$$\left\{ N^{-1} \sum_{i=1}^{N} \Phi[(\hat{\alpha}_{1} y_{2} + \mathbf{z}_{1} \hat{\delta}_{1} + \hat{\theta}_{1} \hat{v}_{i2})/\hat{\tau}_{1}] \right\} \hat{\alpha}_{1},$$

which depends on (y_2, \mathbf{z}_1) . Can do a further averaging out. to get a single number.

• As with all control function procedures, we can easily allow more general functional forms in both the exogenous and endogenous variables (such as squares and interactions). In fact, if we replace $\mathbf{x}_1 = (\mathbf{z}_1, y_2)$ with $\mathbf{x}_1 = \mathbf{g}_1(\mathbf{z}_1, y_2)$, then the estimation procedure and calculation of the ASF are unchanged.

• Some additional flexibility is gained by allowing $E(u_1|v_2)$ to be nonlinear – for example, a quadratic function, $E(u_1|v_2) = \theta_1 v_2 + \psi_1(v_2^2 - \tau_2^2)$ (where the variance of v_2 is subtracted from v_2^2 to ensure $E(u_1) = 0$). Then we can write

$$u_1 = \theta_1 v_2 + \psi_1 (v_2^2 - \tau_2^2) + e_1$$

and, if we maintain that e_1 is independent of v_2 and normally distributed, we can easily extend the two-step procedure: the second step of the procedure adds \hat{v}_2 and $\hat{v}_2^2 - \hat{\tau}_2^2$ as the control functions in the Tobit estimation.

• The easiest way to obtain APEs in this case is to use derivatives and changes with respect to elements of \mathbf{x}_1 of

$$N^{-1} \sum_{i=1}^{N} m(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_1 + \hat{\theta}_1 \hat{v}_{i2} + \hat{\psi}_1 (\hat{v}_{i2}^2 - \hat{\tau}_2^2), \hat{\tau}_1^2),$$

• In the case where (u_1, v_2) is independent of **z** with a bivariate normal distribution, we can use MLE. Again, we use

$$f(y_1, y_2|\mathbf{z}) = f(y_1|y_2, \mathbf{z})f(y_2|\mathbf{z})$$
, and note that

$$D(y_1|y_2, \mathbf{z}) = Tobit(\alpha_1 y_2 + \mathbf{z}_1 \mathbf{\delta}_1 + (\eta_1/\tau_2^2)(y_2 - \mathbf{z}\mathbf{\delta}_2), \sigma_1^2 - (\eta_1^2/\tau_2^2))$$

$$D(y_2|\mathbf{z}) = Normal(\mathbf{z}\mathbf{\delta}_2, \tau_2^2)$$

where $\eta_1 = Cov(v_2, u_1)$.

- In Stata, the command for joint MLE is "ivtobit."
- Even if you use MLE, might want bootstrap standard errors for partial effects; otherwise the delta method is complicated.
- Clearly need an exclusion restriction for identification , just as in the linear case.

- . * Labor supply with nwifeinc potentially endogenous.
- . * First estimate reduced form, where husband's education
- . * is the IV for nwifeinc:
- . reg nwifeinc huseduc educ exper expersq age kidslt6 kidsge6

Source 	SS 20676.7705 81120.3451 101797.116	745 10 	MS 53.82436 8.886369 5.368505		Number of obs F(7, 745) Prob > F R-squared Adj R-squared Root MSE	= 27.13 = 0.0000 = 0.2031
nwifeinc	Coef.	Std. Err	 . t	P> t	[95% Conf.	Interval]
huseduc educ exper expersq age kidslt6 kidsge6 _cons	1.178155 .6746951 3129877 0004776 .3401521 .8262719 .4355289 -14.72048	.1609449 .2136829 .1382549 .0045196 .0597084 .8183785 .3219888 3.787326	3.16 -2.26 -0.11 5.70 1.01 1.35	0.000 0.002 0.024 0.916 0.000 0.313 0.177 0.000	.8621956 .2552029 5844034 0093501 .2229354 7803305 1965845 -22.15559	1.494115 1.094187 0415721 .008395 .4573687 2.432874 1.067642 -7.285383

- . predict v2h, resid
- . tobit hours nwifeinc v2h educ exper expersq age kidslt6 kidsge6, ll(0)

Tobit regression	Number of obs	=	753
	LR chi2(8)	=	273.76
	Prob > chi2	=	0.0000
Log likelihood = -3818.0118	Pseudo R2	=	0.0346

hours	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc v2h educ exper expersq age kidslt6 kidsge6 _cons	-31.48215 24.41832 116.7814 124.3488 -1.8972 -46.89244 -867.9131 -6.32605 722.1032	16.0376 16.58452 32.75978 17.87502 .5371614 8.957672 112.9024 39.16561 475.689	-1.96 1.47 3.56 6.96 -3.53 -5.23 -7.69 -0.16 1.52	0.050 0.141 0.000 0.000 0.000 0.000 0.000 0.872 0.129	-62.96641 -8.139637 52.46891 89.25736 -2.95173 -64.47773 -1089.558 -83.21414 -211.7472	.0021189 56.97628 181.0939 159.4402 8426702 -29.30716 -646.2684 70.56204 1655.954
/sigma	+ 1119.844 	41.49319			1038.387	1201.302

Obs. summary: 325 left-censored observations at hours<=0

428 uncensored observations 0 right-censored observations

- . * Some, but not strong, evidence of endogeneity of nwifeinc: p-value = .141.
- . * Now use MLE. Should get same estimates because
- . * just identified.
- . ivtobit hours educ exper expersq age kidslt6 kidsge6 (nwifeinc = huseduc), 11(0)

Tobit model with endogenous regressors Log likelihood = -6648.3509				Number of obs = Wald chi2(7) = 248 Prob > chi2 = 0.0		
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
hours						
nwifeinc	-31.48201	16.37719	-1.92	0.055	-63.58071	.6166817
educ	116.7812	33.45288	3.49	0.000	51.21473	182.3476
exper	124.3488	18.21246	6.83	0.000	88.65303	160.0446
expersq	-1.8972	.5482816	-3.46	0.001	-2.971812	8225878
age	-46.89249	9.135658	-5.13	0.000	-64.79805	-28.98692
kidslt6	-867.9132	114.6915	-7.57	0.000	-1092.705	-643.1219
kidsge6	-6.326111	39.96683	-0.16	0.874	-84.65966	72.00744
_cons	722.1047	485.6203	1.49	0.137	-229.6936	1673.903
/alpha	24.41818	16.91313	1.44	0.149	-8.730942	57.5673
/lns	7.020945	.0370527	189.49	0.000	6.948323	7.093567
/lnv	2.339812	.0257684	90.80	0.000	2.289307	2.390317
 s	 1119.844	41.49329			1041.401	1204.195
v	10.37929	.2674576			9.868095	10.91696
Instrumented:	nwifeinc					

Instruments: educ exper expersq age kidslt6 kidsge6 huseduc

```
Wald test of exogeneity (/alpha = 0): chi2(1) = 2.08 Prob > chi2 = 0.1488 Obs. summary: 325 left-censored observations at hours<=0 428 uncensored observations
```

- . * Clearly some rounding error, but the same.
- . * Should compute APEs, compare with linear IV.

7. PANEL DATA

- Guess what? It is not crazy to use a linear unobserved effects model when y_{it} is the response variable of interest.
- Drawbacks are the functional form for $E(y_{it}|\mathbf{x}_{it},c_i)$, but we need not restrict $D(c_i|\mathbf{x}_i)$ just as in any limited dependent variable context.
- Start with the unobserved effects Tobit model

$$y_{it} = \max(0, \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it})$$
$$D(u_{it}|\mathbf{x}_{it}, c_i) = Normal(0, \sigma_u^2)$$

- Ideally, we could proceed without further assumptions, although that would leave open the question of values to insert for c in, say, partial effects on $E(y_{it}|\mathbf{x}_{it}=\mathbf{x}_t,c_i=c)$, or how to average out across the distribution of c_i .
- If the c_i are treated as parameters to estimate along with β and σ_u^2 , for "small" T an incidental parameters problem arises with for estimating β and σ_u^2 . It is possible the average partial effects are better behaved than the estimates themselves, but I have no evidence on that.

- What parametric assumptions are sufficient for estimating β , σ_u^2 , and the APEs?
- Not surprisingly, the same assumptions that come up in UE probit models arise here as well.
- Strict exogeneity conditional on c_i :

$$D(u_{it}|\mathbf{x}_i,c_i)=D(u_{it}|\mathbf{x}_{it},c_i)$$

• Conditional independence (conditional on $\mathbf{x}_i = (\mathbf{x}_{i1}, \dots, \mathbf{x}_{iT})$ and c_i):

$$D(u_{i1},\ldots,u_{iT}|\mathbf{x}_i,c_i)=D(u_{i1}|\mathbf{x}_i,c_i)\cdots D(u_{iT}|\mathbf{x}_i,c_i)$$

• Model for $D(c_i|\mathbf{x}_i)$ (Mundlak special case of Chamberlain approach): $c_i = \psi + \mathbf{\bar{x}}_i \boldsymbol{\xi} + a_i, \ a_i |\mathbf{x}_i \sim Normal(0, \sigma_a^2).$

- Can include time dummies in \mathbf{x}_{it} but omit from $\mathbf{\bar{x}}_i$. Can also include time-constant elements (say \mathbf{w}_i) as controls. That is, write $c_i = \psi + \mathbf{\bar{x}}_i \mathbf{\xi} + \mathbf{w}_i \mathbf{\zeta} + a_i$.
- If $\xi = 0$, get the traditional random effects Tobit model. Adding $\bar{\mathbf{x}}_i \xi$ allows a specific form of correlation.
- MLE (conditional on \mathbf{x}_i) is relatively straightforward. It is based on the joint distribution $D(y_{i1}, \dots, y_{iT} | \mathbf{x}_i)$.

• As with CRE probit, get log likelihood by "integrating out" c_i :

$$l_i(\boldsymbol{\beta}, \boldsymbol{\psi}, \boldsymbol{\xi}, \sigma_a^2, \sigma_u^2) = \log \left[\int_{-\infty}^{\infty} \left(\prod_{t=1}^{T} f(y_{it} | \mathbf{x}_{it}, c; \boldsymbol{\beta}, \sigma_u^2) \right) h(c | \mathbf{\bar{x}}_i; \boldsymbol{\psi}, \boldsymbol{\xi}, \sigma_a^2) dc \right]$$

where $f(y_t|\mathbf{x}_t, c; \boldsymbol{\beta}, \sigma_u^2)$ is the $Tobit(\mathbf{x}_t\boldsymbol{\beta} + c, \sigma_u^2)$ density and $h(c|\mathbf{\bar{x}}; \boldsymbol{\psi}, \boldsymbol{\xi}, \sigma_a^2)$ is the Normal density.

• In Stata, called "xttobit" with the "re" option:

xttobit y x1 x2 ... xK x1bar ... xKbar, l1(0) re

• As in the probit case, we can estimate μ_c and σ_c^2 :

$$\hat{\mu}_c = \hat{\psi} + \mathbf{\bar{x}}\mathbf{\hat{\xi}}$$

$$\hat{\sigma}_c^2 \equiv \hat{\boldsymbol{\xi}}' \left(N^{-1} \sum_{i=1}^N (\bar{\mathbf{x}}_i - \bar{\mathbf{x}})' (\bar{\mathbf{x}}_i - \bar{\mathbf{x}}) \right) \hat{\boldsymbol{\xi}} + \hat{\sigma}_a^2$$

- Then, we can evaluate the partial effects of the Tobit function, $m(\mathbf{x}_t\hat{\boldsymbol{\beta}} + c, \hat{\sigma}_u^2)$ at different values of c, including $\hat{\mu}_c$ and $\hat{\mu}_c \pm k\hat{\sigma}_c$.
- Take derivatives or changes with respect to \mathbf{x}_t . For a continuous variable,

$$\hat{\boldsymbol{\beta}}_j \Phi[(\mathbf{x}_t \hat{\boldsymbol{\beta}} + c)/\hat{\boldsymbol{\sigma}}_u]$$

• APEs can be estimated from the mean function for the Tobit:

$$\widehat{ASF}(\mathbf{x}_t) = N^{-1} \sum_{i=1}^n m(\mathbf{x}_t \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\psi}} + \mathbf{\bar{x}}_i \hat{\boldsymbol{\xi}}, \hat{\sigma}_a^2 + \hat{\sigma}_u^2)$$

• Take derivatives and differences with respect to elements of \mathbf{x}_t ; can further average. Panel bootstrap!

• For a continuous x_{tj} ,

$$\hat{\boldsymbol{\beta}}_{j} \left[N^{-1} \sum_{i=1}^{N} \Phi[(\mathbf{x}_{t} \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\psi}} + \bar{\mathbf{x}}_{i} \hat{\boldsymbol{\xi}}) / (\hat{\sigma}_{a}^{2} + \hat{\sigma}_{u}^{2})^{1/2}] \right]$$

- To estimate the APEs, note it suffices to estimate $\sigma_v^2 = \sigma_a^2 + \sigma_u^2$.
- Suppose we drop the conditional independence assumption and allow and serial dependence in $\{u_{it}\}$. then

$$D(y_{it}|\mathbf{x}_i) = D(y_{it}|\mathbf{x}_{it}, \mathbf{\bar{x}}_i) = Tobit(\mathbf{x}_{it}\boldsymbol{\beta} + \boldsymbol{\psi} + \mathbf{\bar{x}}_i\boldsymbol{\xi}, \sigma_v^2)$$

- So, we can apply pooled Tobit, ignoring the serial correlation, to estimate β , ψ , ξ , and σ_v^2 . We can then use the above formula for the APEs. We cannot estimate PEAs because $E(c_i)$ is not identified; neither is β nor σ_u^2 .
- Adding time constant variables \mathbf{w}_i to the full MLE or the pooled Tobit is straightforward. Interpreting the coefficients is more difficult. Are they in the model because they are correlated with c_i , or do they appear directly? One cannot make this distinction.

- . use psid80_92
- . tab year

80 to 92	Freq.	Percent	Cum.
80	898	7.69	7.69
81	898	7.69	15.38
82	898	7.69	23.08
83	898	7.69	30.77
84	898	7.69	38.46
85	898	7.69	46.15
86	898	7.69	53.85
87	898	7.69	61.54
88	898	7.69	69.23
89	898	7.69	76.92
90	898	7.69	84.62
91	898	7.69	92.31
92	898	7.69	100.00
Total	11,674	100.00	

- . * First, linear FE:
- . xtreg hours nwifeinc ch0_2 ch3_5 ch6_17 marr y81-y92, fe cluster(id) $\,$

Fixed-effects (within) regression Group variable (i): id	Number of obs Number of groups	=	11674 898
R-sq: within = 0.0719 between = 0.0936 overall = 0.0855	•	x = d = u =	13 13.0 13
$corr(u_i, Xb) = -0.0945$	F(17,11657) Prob > F	=	15.72 0.0000

(Std. Err. adjusted for 898 clusters in id)

hours	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc	7752375	.3429502	-2.26	0.024	-1.448316	1021593
ch0_2	-342.3774	26.64763	-12.85	0.000	-394.6763	-290.0784
ch3_5	-254.1283	25.87788	-9.82	0.000	-304.9165	-203.34
ch6_17	-42.95787	14.88673	-2.89	0.004	-72.17475	-13.74099
marr	-634.8048	286.1714	-2.22	0.027	-1196.448	-73.1613
y81	-4.819715	16.29731	-0.30	0.767	-36.80502	27.16559
y82	-14.88765	21.1851	-0.70	0.482	-56.4658	26.69049
у83	6.612531	22.49192	0.29	0.769	-37.53039	50.75545
y84	93.79139	25.58646	3.67	0.000	43.5751	144.0077
y85	88.73714	25.97019	3.42	0.001	37.76773	139.7065
у86	82.66214	27.36886	3.02	0.003	28.94769	136.3766
y87	64.28464	27.83649	2.31	0.021	9.652411	118.9169
у88	63.79163	29.35211	2.17	0.030	6.184826	121.3984
у89	72.98518	30.60838	2.38	0.017	12.91279	133.0576
у90	71.24956	31.55331	2.26	0.024	9.322657	133.1765
y91	64.67996	32.47097	1.99	0.047	.9520418	128.4079
y92	16.01242	33.21255	0.48	0.630	-49.17093	81.19577
_cons	1786.02	247.297	7.22	0.000	1300.672	2271.368
sigma_u sigma_e rho	701.66249 503.92334 .65972225	(fraction	of varia	nce due	to u_i)	

^{. *} Compute time averages:

[.] egen nwifeincb = mean(nwifeinc), by(id)

[.] egen $ch0_2b = mean(ch0_2)$, by(id)

- . egen $ch3_5b = mean(ch3_5)$, by(id)
- . egen $ch6_17b = mean(ch6_17)$, by(id)
- . egen marrb = mean(marr), by(id)
- . * Correlated RE Tobit:

. xttobit hours nwifeinc ch0_2 ch3_5 ch6_17 marr y81-y92 nwifeincb-marrb, ll(0)

Random-effects tobit regression Group variable (i): id	Number of obs = Number of groups =	220,1
Random effects u_i ~Gaussian	Obs per group: min = avg = max =	
Log likelihood = -70733.195	Wald chi2(22) = Prob > chi2 =	20020

	hours	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_	nwifeinc ch0_2	-1.554228 -472.088	.3816927 23.03087	-4.07 -20.50	0.000	-2.302332 -517.2277	8061243 -426.9483
	ch3_5	-329.3896	19.49411	-16.90	0.000	-367.5974	-291.1819
	ch6_17	-46.11619	10.89609	-4.23	0.000	-67.47213	-24.76024
	marr y81	-784.1809 -7.060588	155.0133 31.52257	-5.06 -0.22	0.000 0.823	-1088.001 -68.84369	-480.3604 54.72251
	y82	-38.9034	31.70009	-1.23	0.220	-101.0344	23.22764
	у83	-9.719573	31.68694	-0.31	0.759	-71.82483	52.38569
	y84	99.77618	31.61932	3.16	0.002	37.80345	161.7489
	y85 y86	89.15912 82.60212	31.7439 31.76385	2.81 2.60	0.005 0.009	26.94222 20.34612	151.376 144.8581
	700	02.00212	3 = 1, 0 3 0 3		0.000	20.51012	0000

y87 y88	48.59097 53.52189	31.98439 32.09804	1.52 1.67	0.129 0.095	-14.09729 -9.389108	111.2792 116.4329
у89	68.69013	32.23667	2.13	0.033	5.507414	131.8728
у90	71.2654	32.3657	2.20	0.028	7.8298	134.701
y91	64.89096	32.48217	2.00	0.046	1.227067	128.5548
y92	4.334129	32.82961	0.13	0.895	-60.01072	68.67898
nwifeincb	-7.639696	.6815067	-11.21	0.000	-8.975424	-6.303967
ch0_2b	-143.4709	155.0915	-0.93	0.355	-447.4448	160.5029
ch3_5b	531.2027	150.388	3.53	0.000	236.4475	825.9578
ch6_17b	5.854889	28.04159	0.21	0.835	-49.10563	60.8154
marrb	422.1631	161.491	2.61	0.009	105.6465	738.6796
_cons	1646.362 +	45.26091	36.37	0.000	1557.652	1735.072
/sigma_u	756.4032	10.45016	72.38	0.000	735.9213	776.8851
/sigma_e	621.7044	5.02536	123.71	0.000	611.8549	631.5539
rho	.5968169	.0069011			.5832357	.6102823

Observation summary:

3071 left-censored observations 8603 uncensored observations 0 right-censored observations

- . testparm nwifeincb-marrb
- (1) [hours]nwifeincb = 0
- (2) [hours]ch0_2b = 0
- $(3) [hours] ch3_5b = 0$
- $(4) [hours] ch6_17b = 0$
- (5) [hours]marrb = 0

$$chi2(5) = 165.08$$

Prob > $chi2 = 0.0000$

- $. gen xbhata = xbhat/sqrt(756.4032^2 + 621.7044^2)$
- . gen PHIhata = norm(xbhata)
- . sum PHIhata if y92

Variable	Obs	Mean	Std. Dev	. Min	Max
PHIhata	898	.8367103	.0953704	.0029178	.9654008

- . di (.837)*(-1.554)
- -1.300698
- . di (.837)*(-472.09)
- -395.13933
- . * Pooled Tobit with Time Averages:
- . tobit hours nwifeinc ch0_2 ch3_5 ch6_17 marr y81-y92 nwifeincb-marrb, l1(0)

Tobit regression	Number of obs	=	11674
	LR chi2(22)	=	1352.20
	Prob > chi2	=	0.0000
Log likelihood = -75313.315	Pseudo R2	=	0.0089

hours	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc	-1.796524	.6073205	-2.96	0.003	-2.986975	6060744
ch0_2	-491.6069	38.36112	-12.82	0.000	-566.8011	-416.4127
ch3_5	-347.5099	32.7817	-10.60	0.000	-411.7675	-283.2523
ch6 17	-48.12398	18.14746	-2.65	0.008	-83.69604	-12.55191

marr	-788.6605	257.0461	-3.07	0.002	-1292.514	-284.8071
y81	-1.723103	52.74963	-0.03	0.974	-105.1212	101.675
y82	-29.93459	52.90393	-0.57	0.572	-133.6352	73.76597
y83	.1544965	52.88423	0.00	0.998	-103.5075	103.8165
y84	111.7593	52.84133	2.11	0.034	8.181439	215.3372
y85	98.8203	53.02693	1.86	0.062	-5.121366	202.762
у86	91.11779	53.07409	1.72	0.086	-12.91632	195.1519
y87	56.20641	53.35906	1.05	0.292	-48.38629	160.7991
у88	58.45143	53.59859	1.09	0.275	-46.61078	163.5136
у89	74.11085	53.83913	1.38	0.169	-31.42287	179.6446
у90	77.83721	54.05111	1.44	0.150	-28.11203	183.7865
y91	70.43439	54.27841	1.30	0.194	-35.96039	176.8292
y92	4.969863	54.81622	0.09	0.928	-102.4791	112.4188
nwifeincb	-7.248981	.7293248	-9.94	0.000	-8.678579	-5.819382
ch0_2b	152.0109	124.2391	1.22	0.221	-91.51857	395.5403
ch3_5b	151.7502	118.9341	1.28	0.202	-81.38056	384.881
ch6_17b	44.11858	25.07548	1.76	0.079	-5.033552	93.27072
marrb	471.4367	259.4683	1.82	0.069	-37.16466	980.0381
_cons	1581.923	46.08447	34.33	0.000	1491.59	1672.256
/sigma	1079.331	8.836301			1062.01	1096.651

Obs. summary:

3071 left-censored observations at hours<=0 uncensored observations

03 uncensored observations 0 right-censored observations

- . * These differ somewhat, but not in major ways, from the full MLEs.
- . * Now drop the time averages, so RE Tobit:
- . xttobit hours nwifeinc ch0_2 ch3_5 ch6_17 marr y81-y92, l1(0)

Random-effects tobit regression Number of obs = 11674 Group variable (i): id Number of groups = 898

Random effects u_i ~Gaussian				Obs per	group: min = avg = max =	
Log likelihood	d = -70782.08	86		Wald ch Prob > 0		1222.37
hours	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
nwifeinc ch0_2 ch3_5 ch6_17 marr y81 y82 y83 y84 y85 y86 y87 y88 y89 y90 y91 y91 y92 _cons	-2.25119 -459.927 -313.4996 -32.33052 -657.5755 -6.015057 -37.89952 -7.2714 104.3436 94.90622 89.38999 57.1533 64.08813 81.55682 85.75216 80.93763 22.68549 1676.368	.3248083 22.67389 18.81897 9.819359 48.93306 31.64666 31.82432 31.78778 31.71544 31.82266 31.84555 32.03317 32.11484 32.20542 32.26838 32.36379 32.63686 39.27514	-6.93 -20.28 -16.66 -3.29 -13.44 -0.19 -1.19 -0.23 3.29 2.98 2.81 1.78 2.00 2.53 2.66 2.50 0.70 42.68	0.000 0.000 0.000 0.001 0.000 0.849 0.234 0.819 0.001 0.003 0.005 0.074 0.046 0.011 0.008 0.012 0.487 0.000	-2.887803 -504.3671 -350.3841 -51.57611 -753.4825 -68.04136 -100.274 -69.5743 42.18249 32.53496 26.97386 -5.630564 1.144192 18.43536 22.50728 17.50576 -41.28158 1599.39 	-1.614578 -415.487 -276.6151 -13.08493 -561.6684 56.01125 24.47499 55.0315 166.5047 157.2775 151.8061 119.9372 127.0321 144.6783 148.997 144.3695 86.65255 1753.346
/sigma_u /sigma_e	624.285	5.068197	123.18	0.000	614.3515	634.2185
rho	.6024761	.0077085			.5872944	.6175041

Observation summary: 3071 left-censored observations 8603 uncensored observations 0 right-censored observations

- . predict xbhat, xb
- $. gen xbhata = xbhat/sqrt(768.5483^2 + 624.285^2)$
- . gen PHIhata = normal(xbhata)
- . sum PHIhata if y92

Variable	Obs	Mean	Std. Dev.	Min	Max
PHIhata	898	.8240658	.0724009	.3761031	.9578886

. * The scale factor is similar, but the coefficient estimates are somewhat different.

- There is also a way to estimate dynamic Tobit models using RE software.
- Assume, as with dynamic probit and ordered probit,

$$D(y_{it}|\mathbf{z}_i, y_{i,t-1}, \dots, y_{i0}, c_i) = D(y_{it}|\mathbf{z}_{it}, y_{i,t-1}, c_i), t = 1, \dots, T,$$

which combines correct dynamic specification with strict exogeneity of $\{\mathbf{z}_{it}\}$.

• Tobit model: We assume

$$y_{it} = \max(0, \mathbf{z}_{it}\mathbf{\delta} + \rho y_{i,t-1} + c_i + u_{it}), t = 1, \dots, T$$

and

$$u_{it}|(\mathbf{z}_i, y_{i,t-1}, \dots, y_{i0}, c_i) \sim Normal(0, \sigma_u^2), t = 1, \dots, T.$$

• Makes sense only for corner solutions. Even then, not clear how lagged y should appear. Could define a dummy variable $w_{it} = 1[y_{it} = 1]$ and use, say, $\rho_1(1 - w_{i,t-1}) + \rho_2 y_{i,t-1}$. Can also interact these with the \mathbf{z}_{it} .

A simple analysis is obtained from

$$c_i|\mathbf{z}_i, y_{i0} \sim Normal(\psi + \xi_0 y_{i0} + \mathbf{z}_i \boldsymbol{\xi}, \sigma_a^2)$$

or by letting this depend more flexibly on the initial value, y_{i0} , as with the lags above. Then we have

$$y_{it} = \max(0, \mathbf{z}_{it}\mathbf{\delta} + \rho y_{i,t-1} + \psi + \xi_0 y_{i0} + \mathbf{z}_i \boldsymbol{\xi} + a_i + u_{it}).$$

• The log-likelihood takes the same form as the RE Tobit model with strictly exogenous variables, even though the explanatory variables are not strictly exogenous.

- As in the probit and OP cases, a pooled Tobit analysis, with the same set of explanatory variables, is not consistent for the parameters.
- The APEs are again easy to compute:

$$N^{-1} \sum_{i=1}^{N} m(\mathbf{z}_{t} \hat{\mathbf{\delta}} + \hat{\rho} y_{t-1} + \hat{\psi} + \hat{\xi}_{o} y_{i0} + \mathbf{z}_{i} \hat{\mathbf{\xi}}, \hat{\sigma}_{a}^{2} + \hat{\sigma}_{u}^{2}),$$

where all estimates are from the MLE procedure.

• For a continuous variable, the scale factor is

$$N^{-1} \sum_{i=1}^{N} \Phi[(\mathbf{z}_{t}\hat{\boldsymbol{\delta}} + \hat{\rho}y_{t-1} + \hat{\psi} + \hat{\xi}_{o}y_{i0} + \mathbf{z}_{i}\hat{\boldsymbol{\xi}})(\hat{\sigma}_{a}^{2} + \hat{\sigma}_{u}^{2})^{-1/2}],$$

and one can further average across (\mathbf{z}_t, y_{t-1}).

• Extensions along the lines of allowing heteroskedasticity in $D(c_i|y_{i0},\mathbf{z}_i)$, flexible conditional means, and even more flexible distributions, seem worth exploring.

Honoré (1993) shows how to estimate δ and ρ without distributional assumptions for c_i or u_{it} . Partial effects at different values of (\mathbf{z}_t, y_{t-1}) are not available, and y_{t-1} must appear in linear, additive form. (It is easy to extend the CMLE approach allow general functions of $(\mathbf{z}_{it}, y_{i,t-1})$.)

8. TWO-LIMIT TOBIT MODELS

- Now allow for two limits. These might be logical or institutional constraints. Common are corners at 0 and 1 or 0 and 100.
- But suppose workers are allowed to contribute at most 15% of their earnings to a tax-deferred pension plan, and y_i is the percentage of income contributed for worker i, then the corners are at zero and 15. (The arbitrariness of the cap of 15 raises other interesting questions, such as: what would happen if the cap were not there, or what would happen if it is raised?)

• Generally, let $a_1 < a_2$ be the two limit values of y in the population. Then the *two-limit Tobit* model is most easily defined in terms of an underlying latent variable:

$$y^* = \mathbf{x}\boldsymbol{\beta} + u, \ u|\mathbf{x} \sim Normal(0, \sigma^2)$$
$$y = a_1 \text{ if } y^* \leq a_1$$
$$y = y^* \text{ if } a_1 < y^* < a_2$$
$$y = a_2 \text{ if } y^* \geq a_2$$

• Not logically consistent if, say, $0 \le y < 1$ because the Tobit implies a pile up at both endpoints. (In 821B we will cover other approaches to fractional responses.)

- Density of y is the same as y^* for values in (a_1, a_2) , which as the $Normal(\mathbf{x}\boldsymbol{\beta}, \sigma^2)$ form.
- The endpoint probabilities are

$$P(y = a_1 | \mathbf{x}) = \Phi((a_1 - \mathbf{x}\boldsymbol{\beta})/\sigma)$$
$$P(y = a_2 | \mathbf{x}) = \Phi(-(a_2 - \mathbf{x}\boldsymbol{\beta})/\sigma).$$

• The log likelihood for a random draw *i* is

$$\log[f(y_i|\mathbf{x}_i;\boldsymbol{\theta}) = 1[y_i = a_1]\log[\Phi((a_1 - \mathbf{x}_i\boldsymbol{\beta})/\sigma)]$$

$$+ 1[y_i = a_2]\log[\Phi(-(a_2 - \mathbf{x}_i\boldsymbol{\beta})/\sigma)]$$

$$+ 1[a_1 < y_i < a_2]\log[(1/\sigma)\phi((y_i - \mathbf{x}_i\boldsymbol{\beta})/\sigma)].$$

- Well behaved and standard asymptotic theory for MLE applies. Easy to obtain Wald and LR statistics for exclusion restrictions.
- Many econometrics packages that estimate the standard Tobit model also allow specifying any lower and upper limit. In Stata, tobit y x1 x2 ... xk, ll(al) ul(a2)
- Can compute several expectations to obtain magnitudes of effects.

 For example, the expectation conditional on not being at a limit point is

$$E(y|\mathbf{x}, a_1 < y < a_2) = \mathbf{x}\boldsymbol{\beta} + \frac{\sigma[\phi((a_1 - \mathbf{x}\boldsymbol{\beta})/\sigma) - \phi((a_1 - \mathbf{x}\boldsymbol{\beta})/\sigma)]}{[\Phi((a_2 - \mathbf{x}\boldsymbol{\beta})/\sigma) - \Phi((a_1 - \mathbf{x}\boldsymbol{\beta})/\sigma)]}$$

where the term after $x\beta$ is the extension of the inverse Mills ratio.

• The so-called unconditional expectation can be gotten from

$$E(y|\mathbf{x}) = a_1 P(y = a_1|\mathbf{x}) + P(a_1 < y < a_2|\mathbf{x}) E(y|\mathbf{x}, a_1 < y < a_2)$$

$$+ a_2 P(y = a_2|\mathbf{x})$$

$$= a_1 \Phi((a_1 - \mathbf{x}\boldsymbol{\beta})/\sigma) + P(a_1 < y < a_2|\mathbf{x}) E(y|\mathbf{x}, a_1 < y < a_2)$$

$$+ a_2 \Phi(-(a_2 - \mathbf{x}\boldsymbol{\beta})/\sigma).$$

• These equations are a bit cumbersome to work with, but they do allow us to obtain predicted values for an vector **x**, once we have obtained the MLES.

• As with the single corner at zero, the partial effect of a continuous variable x_i on $E(y|\mathbf{x})$ simplifies to a remarkable degree:

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \left[\Phi((a_2 - \mathbf{x}\boldsymbol{\beta})/\sigma) - \Phi((a_1 - \mathbf{x}\boldsymbol{\beta})/\sigma)\right]\beta_j.$$

• Can compute partial effects at specific values of **x**, and average partial effects, especially easy to compute for continuous explanatory variables. For APEs we have

$$\left(N^{-1}\sum_{i=1}^N \left[\Phi((a_2-\mathbf{x}_i\hat{\boldsymbol{\beta}})/\hat{\sigma})-\Phi((a_1-\mathbf{x}_i\hat{\boldsymbol{\beta}})/\hat{\sigma})\right]\right)\hat{\beta}_j,$$

where the scale factor is between zero and one.

- To determine how linear model estimates compare for estimating APEs, we should compare the OLS estimates for continuous variables directly to the scaled Tobit coefficients.
- If $\hat{\gamma}_j$ is the OLS slope estimate on the continuous variable x_j , from the regression y_i on \mathbf{x}_i using all of the data, then $\hat{\gamma}_j$ is compared to the scaled Tobit coefficient. (This is most meaningful for continuous x_j , and might not be especially useful for discrete covariates.)
- APEs for binary variables should be obtained from the conditional mean equations, where we difference the two expected values at the two settings of the binary variable, and then average the differences.

• From the latent variable formulation of the model, should be clear how to adapt the Smith-Blundell and Chamberlain-Mundlak procedures. In the latter, still assume $c_i = \psi + \bar{\mathbf{x}}_i \boldsymbol{\xi} + r_i + u_{it}$ where

$$r_i|\mathbf{x}_i \sim Normal(0,\sigma_r^2)$$

Then we use a two-limit Tobit with explanatory variables $(1, \mathbf{x}_{it}, \mathbf{\bar{x}}_i)$ (and probably year dummies, and maybe even time constant variables \mathbf{w}_i).

• Again can use the RE two-limit Tobit that assumes $\{u_{it}\}$ is serially uncorrelated with variance σ_u^2 , or can use pooled two-limit Tobit.