S20190010064 Himanshu Pal 1. Lim 2 - COAX x+3

-1 < CAN <+1

Lim 2 - Lim COX x+3

0 - Lim conx x+3

Lin -1 < lim (corx) < lin (using sandwich theorem)

0- Lim (coix) < 00

X 30 763

€ 0 ≤ - lim (01×1 < 0

2. [a] $\approx \frac{2n^3+7}{n+\sin^2(n)}$, using comparison test

 $\lim_{n\to\infty} \frac{(2n^3+7)}{n^4 \sin^2(n)} = \lim_{n\to\infty} \frac{(2n^4+7n)n}{n^4 \times \sin^2 n}$

Now by comparing Und with $\Sigma(\frac{1}{n})$

we know that $\Sigma(\frac{1}{n})$ there is the converges or diverges together for being constant.

 $\Sigma(\frac{1}{n})$ diverges using p' test.

80, 60 Junis also divergent.

(b)
$$\frac{e^{4n}}{(n-2)!}$$
 $U_n = \frac{e^{4n}}{(n-2)!}$
 $U_n = \frac{e^{4n}}{(n-2)$

[a]
$$f_{n(x)} = \frac{1}{(1+x^{n})}$$
 $f_{n(x)} = f_{n(x)}$
 $f_{n(x)} = \frac{1}{(1+x^{n})}$ $f_{n(x)} = 0$ $f_{n(x)} = 0$ $f_{n(x)} = 0$

[b] $f_{n(x)} = f_{n(x)} = 0$ $f_{n(x)} = 0$

[c] $f_{n(x)} = f_{n(x)} = 0$ $f_{n(x)} = 0$
 $f_{n(x)} = f_{n(x)} = 0$
 $f_{n(x)} = f$

n > log (Et1) - log E = m

Since m depends on the value of E and x, so it is not uniformly convergent, rather it is point-wise converged.

[b] $bn(x) = \frac{1}{1+x^n}$ box 0 < x < q < 1

Lim an = 0, bcz. α < 1

At $f_n(x) = \lim_{n \to \infty} \frac{1}{|x|} = 0$ So, $f_n(x) = \lim_{n \to \infty} \frac{1}{|x|} = 1$ for any value of x in $[0, \alpha]$, so,

it is uniformly convergent.

4.[1] $y = C_1 e^{ax} cosbx + C_2 e^{ax} sin bx$ order = 2nd order

degree = 2

Him linearly > non-linear

4.2.
$$x \sin\left(\frac{4}{\pi}\right) \frac{dx}{dx} = y \sin\left(\frac{4}{\pi}\right) + x$$

$$\frac{dy}{dx} = \frac{y}{x} \frac{\sin(\frac{y}{x})}{\sin(\frac{y}{x})} + \frac{y}{\sin(\frac{y}{x})}$$

$$V + \frac{dv}{dx} x = V + \frac{1}{8 in V}$$

$$\frac{dv}{dx} x = \frac{1}{8inV}$$

$$(sinv)dv = \frac{1}{n}dx$$

$$tot cosV = lgx + c$$

$$\cos \frac{y}{x} = \log x + C$$