Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 9

Nicolás Cagliero

June 23, 2025

Defina:

- 1. "I es una instrucción de \mathcal{S}^{Σ} "
- 2. " \mathcal{P} es un programa de \mathcal{S}^{Σ} "
- 3. $I_i^{\mathcal{P}}$
- 4. $n(\mathcal{P})$
- 5. Bas

Respuestas:

- 1. I es una instrucción básica de \mathcal{S}^{Σ} ó una palabra de la forma $\alpha I'$, donde $\alpha \in \{L\bar{n} : n \in \mathbf{N}\}$ e I' es una instrucción básica de \mathcal{S}^{Σ} .
- 2. \mathcal{P} es una palabra de la forma

$$I_1I_2\ldots I_n$$

donde $n \geq 1, I_1 I_2 \dots I_n \in \operatorname{Ins}^{\Sigma}$. Y además se cumple la siguiente propiedad: para cada $i \in \{1, \dots, n\}$, si GOTOL \bar{m} es un tramo final de I_i , entonces existe $j \in \{1, \dots, n\}$ tal que I_j tiene label L \bar{m}

- 3. *i*-ésima instrucción de la sucesión de instrucciones I_1,\ldots,I_n tal que $\mathcal{P}=I_1\ldots I_n$ ó ε cuando i=0 ó $i>n(\mathcal{P})$
- 4. Cantidad de instrucciones de \mathcal{P} . Es decir $\mathcal{P} = I_1 \dots I_{n(\mathcal{P})}$.
- 5. $Bas: Ins^{\Sigma} \to (\Sigma \cup \Sigma_p)^*$

$$Bas(I) = \begin{cases} J & \text{si } I \text{ es de la forma } L\bar{k}J \text{ con } J \in \operatorname{Ins}^{\Sigma} \\ I & \text{caso contrario} \end{cases}$$