Capstone Two Presentation

Can machine learning help cities cut through the red tape of building permits?

Classifying Permit Types from San Francisco Building Permit Data
Using Machine Learning

Benoit Loze 18/07/2025

Problem Statement

- **Goal:** Classify SF building permit types using structured features.
- Success Criteria: ≥80% accuracy.
- Scope: Supervised classification.
- Constraints: Missing data, class imbalance, feature engineering.

Data Wrangling

- Reviewed dataset (2013–2018), removed high-null columns.
- Imputed missing values.
- Converted date types and fixed categorical features.
- Saved cleaned CSV for next steps.

Outliers and Redundancies

- Identified outliers in numeric features.
- Visualized with boxplots and histograms.
- Removed
 redundant features
 and logged partial
 duplicates.

EDA Overview

- Normalized skewed variables with log1p.
- Split data by highrise vs low-rise.
- Feature significance tested (p<0.05).
- Dropped collinear features to improve model reliability.

Categorical Analysis

- Explored
 distributions of
 categorical variables.
- Saved for next stages.

Data Preprocessing

- Handled class imbalance
- Encoded features per model type.
- Scaled data for regression models.
- Ensured no data leakage throughout pipeline.

Target Imbalance

- Severe imbalance: Class 7 ≈ 90%.
- Stratified data split ensured class representation.
- Used class_weight for rebalancing during model training.

Modeling Approach

- Tested Logistic Regression and Random Forest.
- Evaluated via precision, recall, F1 score, confusion matrix.
- Avoided misleading accuracy metric.

Logistic Regression

- Used multinomial logistic regression.
- Bayesian optimization or Random search = same results.
- Still misclassified many samples due to class imbalance.

Logistic Regression Confusion Matrix

Random Forest

- Random Forest with Bayesian optimization yielded best performance.
- Better balanced precision and recall.
- Improved Class 7 prediction, fewer misclassifications.

Random Forest Confusion Matrix

Final Model Selection

- Random Forest (Bayesian Optimization)
- F1: 0.81, Precision: 0.79, Recall: 0.84
- Best handling of class imbalance.
- Robust across all permit types.

Conclusion

- Efficient pipeline designed to prevent leakage.
- Models tested and evaluated across real-world constraints.
- Outcome: Reliable automation of permit type classification using ML.