Assignment#3

Curve Fitting: Interpolation

1. The following values of the function $f(x) = \sin(x) + \cos(x)$, are given:

X	10	20	30
f(x)	1.1585	1.2817	1.336

Construct the quadratic interpolating polynomial that fits the data using Lagrange Interpolation and find $f(\frac{\pi}{12})$.

2. Use Lagrange's Interpolation formula, evaluate f(3) from the table:

X	3.2	2.7	1.0	4.8	5.6
f(x)	22.0	17.8	14.2	38.3	51.7

- 3. Develop pseudo-code to interpolate the given set of data using Lagrange Interpolation.
- 4. Find the interpolating polynomial from the data given below using Newton's Divided Difference Interpolation formula:

X	0.5	1.5	3	5	6.5	8
f(x)	1.625	5.875	31.0	131.0	282.125	521.0

Also find the value of f(7).

5. For the following data, obtain the Newton-Gregory Forward Difference Polynomial. And interpolate at x = 0.15.

X	0.1	0.2	0.3	0.4	0.5
f(x)	1.4	1.56	1.76	2	2.28

6. Use Newton-Gregory Backward Interpolation to estimate the value of f(x) at x=1 using following data:

X	0.1	0.3	0.5	0.7	0.9	1.1
f(x)	-1.699	-1.073	-0.375	0.443	1.429	2.631

7. Using appropriate Newton's Interpolation Technique, estimate y(15) and y(85) from the following data:

X	10	30	50	70	90
у	34	56	45	23	36

8. The following data are taken from the steam table

Temp. °C	140	150	160	170	180
Pressure kgf/cm ²	3.685	4.854	6.302	8.076	10.225

Find the pressure at the temperature $T = 142^{\circ}C \& T = 175^{\circ}C$ using Newton's Interpolation.

9. Find the value of log 337.5 from the following table by using Gauss Forward Interpolation formula:

X	310	320	330	340	350	360
log x	2.49136	2.50515	2.5185	2.53148	2.54407	2.5563

10. Find the value of $\sin 45^{\circ}$ from the following table by using Gauss Backward Interpolation formula:

$x = \theta$	20	30	40	50	60	70	80
y = Sin θ	0.342	0.502	0.6427	0.7604	0.8660	0.93919	0.98481

11. Using Stirling's formula find U₂₈, given:

$$U_{20} = 49225, \ U_{25} = 48316, \ U_{30} = 47236, \ U_{35} = 45926, \ U_{40} = 44306$$

12. Apply Bessel's formula to find the value of f(27.5) from the table:

X	25	26	27	28	29	30
f(x)	4.00	3.846	3.704	3.571	3.448	3.333

- 13. What is Cubic Spline Interpolation? What is advantage of this method over polynomial interpolation
- 14. Estimate y(6.5) using Natural Cubic Spline Interpolation technique from the following data:

X	3	5	7	9	11
y	8	10	9	12	5

15. Find y at x = 8 from the following data using Natural Cubic Spline Interpolation:

X	3	5	7	9
у	3	2	3	1