Week 4

Assignment 1

```
#Laboratory Exercise 4, Assignment 1
```

```
.text
```

NEGATIVE:

bne \$t2,\$zero,EXIT #s1 and \$s2 are negative # if \$s3 < \$s1 then the result is not overflow

OVERFLOW:

EXIT:

Kết quả của chương trình:

• Với \$s1 = 1, \$s2 = 2

\$v0	2	0×00000000
\$v1	3	0×00000000
\$a0	4	0×00000000
\$a1	5	0×00000000
\$a2	6	0×00000000
\$a3	7	0×00000000
\$t0	8	0×00000000
\$t1	9	0x00000003
\$t2	10	0×00000000
\$t3	11	0×00000000
\$t4	12	0×00000000
\$t5	13	0×00000000
\$t6	14	0×00000000
\$t7	15	0×00000000
\$s0	16	0×00000000
\$s1	17	0×00000001
\$s2	18	0x00000002
\$s3	19	0×00000003
\$s4	20	0×00000000
\$s5	21	0×00000000
\$s6	22	0×00000000

• Với \$s1 = 2^31, \$s1 = 2^31

\$a2	6	0×00000000
\$a3	7	0×00000000
\$t0	8	0×00000001
\$t1	9	0×00000000
\$t2	10	0×00000000
\$t3	11	0×00000000
\$t4	12	0×00000000
\$t5	13	0×00000000
\$t6	14	0×00000000
\$t7	15	0×00000000
\$s0	16	0×00000000
\$s1	17	0×80000000
\$s2	18	0×80000000
\$s3	19	0×00000000
\$s4	20	0×00000000
¢c5	21	ด~ดดดดดดด

Assignment 2

#Laboratory Exercise 4, Assignment 2

Kết quả chương trình trước và sau khi clear s0:

•	U				
\$a3	7	0×00000000	\$a3	7	0×00000000
\$t0	8	0×000000099	\$t0	8	0×00000099
•			\$t1	9	0×00000000
\$t1	9	0×00000000	\$t2	10	0×00000000
\$t2	10	0×00000000	\$t3	11	0×00000000
\$t3	11	0×00000000	\$t4	12	0×00000000
\$t4	12	0×00000000	\$t5	13	0×00000000
\$t5	13	0×00000000	\$t6	14	0×00000000
\$t6	14	0×00000000	\$t0 \$t7	15	0×00000000
\$t7	15	0×00000000	11'		
\$s0	16	0x999999ff	\$50	16	0×00000000
\$s1	17	0×00000000	\$s1	17	0×00000000
\$s2	18	0×00000000	\$s2	18	0x00000000
\$5Z	10	0200000000	\$s3	19	0×00000000

Assignment 3

A) abs \$s0,s1
#Laboratory Exercise 4, Assignment 3

```
.text
      #Initialize $s1
      addi $s1, $zero, -2
      sra $at, $s1, 31 #Set $at to $s1 shifted right by 31 bytes
      xor $s0, $at, $s1#Logical exclusive or
      subu $s0,$s0,$at #Set $s0 = $s0 - $at
   B) move $s0,s1
#Laboratory Exercise 4, Assignment 3
      #Initialize $s1
      addi $s1, $zero, -2
      addu $s0, $zero, $s1 #Move content of $s1 to $s0
   C) not $s0
#Laboratory Exercise 4, Assignment 3
.text
      #Initialize $s1
      addi $s1, $zero, -2
      nor $s0, $s1, $zero #Basic instruction of bit inversion
   D) ble $s1, s2, L
#Laboratory Exercise 4, Assignment 3
.text
      #Initialize $s1
      addi $s1, $zero, -2
      addi $s0, $zero, 1
      slt $at, $s1, $s0
      beg $at, $zero, Label
Label:
Assignment 4
#Laboratory Exercise 4, Assignment 4
.text
start:
      li $s1, 2147483648  # $s1 = 2147483648

li $s2, 2147483648  # $s2 = 2147483648

li $t0, 0  # Overflow indicator (default=0)
      addu $s3, $s1, $s2
                                   # $s3 = $s1 + $s2
```

```
xor $t1, $s1, $s2  # Test if $s1 and $s2 have the same
sign
    bltz $t1, EXIT  # Branch to EXIT if they have different signs
    xor $t2, $s1, $s3  # Test if $s1 and $s3 have the same

sign
    bltz $t2, OVERFLOW  # Branch to OVERFLOW if they have
different signs
    xor $t2, $s2, $s3  # Test if $s2 and $s3 have the same

sign
    bltz $t2, OVERFLOW  # Branch to OVERFLOW if they have the
different signs
    j EXIT
OVERFLOW:
    li $t0, 1  # Set $t0 to 1 indicating overflow
EXIT:
```

Kết quả chương trình

\$a1	5	0×00000000
\$a2	6	0×00000000
\$a3	7	0×00000000
\$t0	8	0×00000001
\$t1	9	0×00000000
\$t2	10	0×80000000
\$t3	11	0×00000000
\$ †4	12	axaaaaaaaaa

Assignment 5

#Laboratory Exercise 4, Assignment 5

```
.text #Calculate n power of 2
    li $t0, 5  #n = 5
    li $t1, 1  #result (temporary set to 1 to shift bytes)

loop:
    sll $t1, $t1, 1  # Shift left by 1 byte
    addi $t0, $t0, -1  # Decrement the exponent
    bnez $t0, loop  # Check if exponent is zero
```

Calculate power of 2 by shifting 1 byte to the left after each loop.