Перечисление деревьев и электрические цепи Бычков Борис Сергеевич

Нас интересует количество остовных деревьев данного графа G.

Теорема 1 (Кэли). Количество остовных деревьев K_n равно n^{n-2} .

Определение 1. Определитель матрицы $\det(A) = |A|$ — ориентированный объём mмерного параллелепипеда, натянутого на вектора, координаты которых образуют строки матрицы $A(m \times m)$.

Определение 2. Определитель матрицы $\det(A)$ — число, получаемое по следующей формуле:

$$\det(A_{i,j}) = \sum_{\sigma \in S_m} (-1)^{inv(\sigma)} \prod_{i=1}^m A_{i,\sigma(i)}.$$

Определение 3. Алгебраическое дополнение к $A_{i,j}$ — число, равное $(-1)^{i+j} \cdot \det B$, где B — матрица, получаемая из A вычёркиванием i-й строки и j-го столбца.

Определение 4. Матрица Кирхгофа — матрица такая, что $A_{i,j}=-1$ при $i\neq j$ и $A_{i,i} = \deg v_i$.

Теорема 2. Все алгебраические дополнения матрицы Кирхгофа равны между собой и равны количеству остовных деревьев графа.

Пусть G ориентирован. Обозначим $x_{i,j}$ — проводимость ребра (v_i,v_j) . Определение 5. T-матрица отклика — такая матрица что $A_{i,i} = \sum_{j \neq i} x_{i,j}; A_{i,j} = -x_{i,j}$.

Заметим, что в этом случае каждому остовному дереву G соответствует ориентированное корневое остовное дерево (т.е. дерево, где все пути идут в корень).

Лемма 3. При фиксированном корне количество ориентированных корневых остовных деревьев и количество остовных деревьев равны между собой.

Определение 6. Производящая функция остовных деревьев — такое выражение от переменных $x_{i,j}$:

$$S_*(\overline{x}) = \sum_{\tau \in Tree} \prod_{(i,j) \in \tau} x_{i,j}.$$

Теорема 4 (Матричная теорема о деревьях). Все алгебраические дополнения матрицы отклика равны между собой и равны $S_*(\overline{x})$.

Заметим, что это обобщение 2, потому что можно подставить $x_{i,j} = 1 - \delta_{i,j}$.

Доказательство. Пусть корень — v_1 . Рассмотрим алгебраическое дополнение $T_{1,1}$:

$$T_{1,1} = \det \begin{pmatrix} t_{2,2} \dots t_{2,n} \\ t_{n,2} \dots t_{n,n} \end{pmatrix} = \det \begin{pmatrix} \sum x_{2,i} \dots - x_{2,n} \\ -x_{n,2} \dots \sum x_{i,2} \end{pmatrix}.$$

Дальше нужно доказывать, что всё с циклами сокращается, но в решении лектора была лажа.

План доказательства

- 1. Показать, что все лишние диагональные элементы сокращаются.
- 2. Каждому недиагональному слагаемому соответствует цикл (возможно, больше одного); этому слагаемому отвечает подмножество циклов какой-то $\sigma:[n] \to [n]$; каждому подмножеству циклов такой перестановки отвечает выбранное слагаемое, потому что остальную часть множителей можно набрать диагональными элементами.
- 3. Пусть $\sigma = (1 \dots k) \cdot \dots$ Тогда беспорядков в цикле длины k ровно k-1. Значит, в каждом цикле произведение -1. Тогда коэффициент при слагаемом σ будет $\sum (-1)^i \binom{m}{i} = 0$.

Физика

Пусть наш граф — это электрическая сеть. В каждой вершине есть своё напряжение, а на каждом ребре — сопротивление.

Закон Ома: U = IR, где U — напряжение, I — ток, R — сопротивление.

Закон Кирхгофа: в каждую вершину втекает столько же, сколько и вытекает.

Пусть $x_{i,j} = \frac{1}{R_{i,j}}$ — это проводимости рёбер. Пусть мы знаем T-матрицу и хотим определить разницу потенциалов между стоком и истоком. Заметим, что $\sum_{i \neq k} x_{k,i} (U_k - U_i) = I$ для истока, -I для стока и 0 для остальных вершин. Мы также знаем, что

$$t_{i,j} = \begin{cases} -x_{i,j}, i \neq j \\ \sum x_{i,m}, i = j \end{cases} .$$

Мы можем переписать систему уравнений как

$$\sum_{j=1}^{n} t_{i,j} v_j = I(\delta_{i,k} - \delta_{i,l})$$

для всех i. Это n линейных уравнений с n неизвестными, они решаются.

Теорема 5 (Правило Крамера). Пусть есть система из линейных уравнений:

$$\begin{cases} a_{1,1}x_1 + \ldots + a_{1,n}x_n = b_1 \\ \vdots \\ a_{n,1}x_1 + \ldots + a_{n,n}x_n = b_n \end{cases}$$

Тогда решение этой системы — $x_k = \frac{\det A}{\det C}$, где C — система, которая получается из A заменой столбца $A_{i,k}$ на B.

Пример. Пусть система выглядит так:

$$\begin{cases} 2x + 3y = 1\\ x + y = 7 \end{cases}$$

Тогда $A = \binom{2\ 3}{1\ 1}$, $C_x = \binom{1\ 7}{3\ 1}$, $\det C_x = -20$, $\det A = -1$, x = 20.