Math 493 Honors Algebra I

University of Michigan Harrison Centner Prof. Kartik Prasanna September 2, 2023

Contents

1	Introduction & Motivation	2
	Group Theory 2.1 The Symmetric Group	2 3
	Matrix Operations 3.1 History	6 7

INTRODUCTION & MOTIVATION

We will study

- (a) Linear algebra
- (b) Group Theory
- (c) Finite Group Representations

In 494 we will study

- (a) Ring Theory
- (b) Fields
- (c) Galois Theory

This class is good preparation for 575 or 676. The official textbook is Artin's Second edition. We will probably proceed in a different order than Artin. Other than Artin's look into Dummit & Foote, Lang, Hirstine. Pick the book that you like and read it. Sit four to a table.

Sometimes a polished proof will not be presented in class and you are expected to finish the proof at home.

Figure 1: Partial Ordering of Course Topics

.....

GROUP THEORY

Definition. (Group)

A group is a set G with a binary operation $\star : G \times G \to G$.

- (i) $\exists e \in G$ such that $e \star a = a \star e = a$ for all $a \in G$
- (ii) $\forall a, b, c \in G$ we have $(a \star b) \star c = a \star (b \star c)$
- (iii) $\forall a \in G, \exists a' \in G \text{ such that } a \star a' = a' \star a = e$

(existence of identity)

(distributivity of \star)

(existence of inverses)

Examples:

- (a) The trivial group
- (b) $(\mathbb{Z},+)$
- (c) $(\mathbb{Z}/2\mathbb{Z}, \oplus)$
- (d) $(\mathbb{Z}/n\mathbb{Z}, +)$
- (e) $(\mathbb{Q}^{\times}, \cdot)$ (nonzero rationals)
- (f) Aut(S) for any set S, this is the symmetric group S_n when $|S| = n \in \mathbb{N}$
- (g) Rotations of a square
- (h) Free group on n elements

The Symmetric Group

Consider S_1, S_2, S_3, \ldots

Already, S_3 is quite complex. Recall that $|S_n| = n!$.

Note that S_2 has one generator and S_3 has two generators:

$$\sigma = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \tau = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Every column and row in the Cayley Table of S_n has every element exactly once.

S_1	_P	P		$\mid e \mid$	
$\frac{\varepsilon_1}{e}$		=	\overline{e}	e	σ
Е	6		σ	σ	e

_	S_3	e	$\mid au$	$ au^2$	σ	$\sigma \tau$	$\sigma \tau^2$
	e	e	τ	τ^2	σ	$\sigma\tau$	$\sigma \tau^2$
	τ	au	$ au^2$	e	$\sigma \tau^2$	σ	$\sigma\tau$
	τ^2	$ au^2$	e	au	$\sigma\tau$	$\sigma \tau^2$	σ
-	σ	σ	$\sigma\tau$	$\sigma \tau^2$	e	au	$ au^2$
	$\sigma\tau$	$\sigma\tau$	$\sigma \tau^2$	σ	$ au^2$	e	τ
	$\sigma \tau^2$	$\sigma \tau^2$	σ	$\sigma\tau$	τ	$ au^2$	e

Note that $\tau \sigma = \sigma \tau^2 \implies \tau^k \sigma = \sigma \tau^{2k}$ for $k \in \mathbb{N}$.

.....

Definition. (Subgroup)

Suppose G is a group and $H \subseteq G$ such that

- (a) $e \in H$
- (b) $\forall a, b \in H$ we have $a \star b \in H$
- (c) $\forall a \in H \text{ we have } a^{-1} \in H$

H is a group with the group law inherited from G. If $S \subseteq G$, then $\langle S \rangle$ is the subgroup generated by S (note that S may be a singleton).

Now we find all subgroups of S_3 : S_3 , $\{e\}$, $\{e,\sigma\}$, $\{e,\tau,\tau^2\}$, $\{e,\sigma\tau\}$, $\{e,\sigma\tau^2\}$. There are three subsets of S_3 that are isomorphic to S_2 and one isomorphic to $\mathbb{Z}/3\mathbb{Z}$. You can find subgroups by taking a single element and taking all powers of it (positive and negative). We obtain a lattice of subgroups.

Definition. (Order)

If $a \in G$, the **order** of G is $\mu n \in \mathbb{N}$ such that $a^n = e$. If no such n exists, then a has **infinite order**. Note that the order of all elements in a finite group are finite (pigeon hole principal).

Note that $S_3 \cong D_3$, the rigid symmetries of an equilateral triangle. We have three reflections over each axis and rotations by $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$.

Figure 2: D_3

As isomorphisms of \mathbb{R}^2 we have

$$S_3 \cong D_3 \cong \left\{ I_2, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \right\}$$

Since rotations of \mathbb{R}^2 are parametrized by $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

 D_n is the group of rigid rotations of a regular n-gon. Note that $D_n \hookrightarrow S_n$ and $|D_n| = 2n$.

Theorem. (Lagrange's Theorem)

If $H \subseteq G$ a subgroup of a finite group G, then |H| divides |G|.

Definition. (Cosets)

Let $H \subseteq G$ be a subgroup.

A **left coset** of H in G is a subset of G of the form $aH = \{ah : h \in H\}$. Similarly, A **right coset** of H in G is a subset of G of the form $Ha = \{ha : h \in H\}$

Find all left and right cosets of all subgroups of S_3 . Let $H = \{e, \tau, \tau^2\}$, then $eH \sqcup \sigma H \cong S_3$. Note that $eH = \tau H = \tau^2 H$ and $\sigma \tau H = \sigma H = \sigma \tau^2 H$. Similarly, for $K = \{e, \sigma\}$ we have $eK = \sigma K$, $\tau K = \sigma \tau^2 K$, and $\tau^2 K = \sigma \tau K$.

Subgroup	Left Cosets	Right Cosets	
G	G	Gb	
$\{e\}$	$\{\{a\}: a \in G\}$	$\{\{a\}: a \in G\}$	
$K = \{e, \tau, \tau^2\}$	$K, \sigma K$	$K, K\sigma$	
$H_1 = \{e, \sigma\}$	$H_1, \ \tau H_1, \ \tau^2 H_1$	$H_1, H_1\tau, H_1\tau^2$	
$H_2 = \{e, \sigma\tau\}$	$H_2, \ \tau H_2, \ \tau^2 H_2$	$H_2, H_2\tau, H_2\tau^2$	
$H_3 = \{e, \sigma \tau^2\}$	$H_3, \tau H_3, \tau^2 H_3$	$H_3, H_3\tau, H_3\tau^2$	

But note that $\tau^m H_k \neq H_k \tau^m$ for $m \in [2]$ and $k \in [3]$.

Fix a subgroup $H \subseteq G$. We now prove **Lagrange's Theorem** via three statements.

(a) Any two left cosets of H in G are either identical or disjoint.

Proof.

Suppose $aH \cap bH \neq \emptyset$ so then there exists

$$c = ah_1 = bh_2 \implies a = b\left(h_2h_1^{-1}\right) \in bH \implies aH = bH.$$

(b) All cosets have the same cardinality.

Proof.

Let $H \subseteq G$ be a subgroup and take $a \in G$. Define $f: H \to aH$ given by f(x) = ax. f is surjective by construction and if f(x) = ax = ay = f(y), then x = y by cancellation. So f is a bijection. Thus |eH| = |aH| for all $a \in G$.

(c) Finally, $G = \sqcup (\text{left cosets})$

Proof.

Given (a) it suffices to show $G = \cup (\text{left cosets})$. Pick $a \in G$, then $a = ae \in aH \in (\text{left cosets})$.

Figure 3: Cosets partition G

Definition. (Index)

The **index** of a subgroup $H \subseteq G$ is given by [G : H] and gives the cardinality of the number of left cosets (which equals the number of right cosets).

Prove at home this holds for finite and infinite number of cosets.

MATRIX OPERATIONS

History