1. σ を 0 でない定数とし、実数値弱定常過程 $\varepsilon = \{\varepsilon_t; t \in \mathbb{Z}\}$ はホワイトノイズ $WN(0, \sigma^2)$ であるとする。この時、全ての $t, h \in \mathbb{Z}$ に対して次が成り立つ。

$$E[\varepsilon_{t+h}\varepsilon_t] = \sigma^2 \frac{\sin \pi h}{\pi h} \tag{1}$$

.....

共分散は次の式より得られる。

$$Cov(\varepsilon_{t+h}, \varepsilon_t) = E[\varepsilon_{t+h}\varepsilon_t] - E[\varepsilon_{t+h}]E[\varepsilon_t]$$
(2)

 ε_i はホワイトノイズであるので期待値は 0、分散は σ^2 である。よって、 $Cov(\varepsilon_{t+h},\varepsilon_t)=E[\varepsilon_{t+h}\varepsilon_t]$ である。

任意の $t \in \mathbb{Z}$ に対し、 $h \neq 0$ である $h \in \mathbb{Z}$ について $Cov(\varepsilon_{t+h}, \varepsilon_t) = E[\varepsilon_{t+h}\varepsilon_t] = 0$ となる。また、 $V[\epsilon_t] = \sigma^2$ となるので、 $E[\varepsilon_t \varepsilon_t] = \sigma^2$ である。

$$E[\varepsilon_t \varepsilon_t] = \sigma^2 = \sigma^2 \cdot \lim_{h \to 0} \frac{\sin(\pi h)}{\pi h} = \sigma^2 \frac{\sin(\pi \cdot 0)}{\pi \cdot 0}$$
 (3)

$$E[\varepsilon_{t+h}\varepsilon_t] = \sigma^2 = 0 = \sigma^2 \frac{0}{\pi h} = \sigma^2 \frac{\sin \pi h}{\pi h}$$
 (4)

上記のようにhの値について式が成り立つのでまとめると次を得る。

$$E[\varepsilon_{t+h}\varepsilon_t] = \sigma^2 \frac{\sin \pi h}{\pi h} \qquad (t, h \in \mathbb{Z})$$
 (5)