Notes du Cours : MATH2310P

Cours assuré par Sébastien GODILLON

Rédigé par Corentin 邱天意

Semestre 2024-2025-2

1 Notations

Couleurs pour les tcolorboxes :

Définition/théorème/lemme

The color argument is "red".

Proposition/propriété

The color argument is "blue".

Remarque

The color argument is "yellow".

Exemple

The color argument is "cyan".

Rappel

The color argument is "gray".

Corollaire

The color argument is "purple".

Ces tcolorboxes seront numérotés (sauf les corollaires qui seront nommés comme "Corollaire du théorème x.y").

Exemple : "Définition 2.3" sera la troisième définition du deuxième chapitre.

Table des matières

1	Notations	2
Ι	Équations différentielles ordinaires	4
1	Généralités	4
TT	Courbes et Surfaces	15

Première partie

Équations différentielles ordinaires

1 Généralités

Définition 1.1

Une Équation différentielle linéaire(EDO) est une équation de la forme :

$$\forall t \in I, F(t, X(t), X'(t)...X^{(k)}(t)) = 0$$

Plus spécifiquement sur les notations :

- X est une fonction inconnue, d'une seule variable réelle, et à valeurs réelles ou vectorielles $(X : \mathbb{R} \to \mathbb{R}^n, n \in \mathbb{N}^*)$. Elle est supposée k-fois dérivable sur I/.
- t est la variable da la fonction X.
- $I \subset \mathbb{R}$, c'est l'intervalle de définition de l'équation différentielle.
- F est une fonction de plusieurs variables, elle est fixée.
- $k \in \mathbb{N}^*$, on l'appelle l'ordre de l'EDO.

Exemple 1.1

Chercher les primitives

Soit f une fonction réelle qui est continue sur l'intervalle $I \in \mathbb{R}$.

D'après the théorème fondamental de l'analyse (TFA), on sait que f admet des primitives sur I.

Alors, trouver des primitives de f revient à résoudre l'EDO :

$$\forall t \in I, X'(t) = f(t)$$

ici on a F(t, X(t), X'(t)) = X'(t) - f(t), une EDO d'ordre 1.

Exemple 1.2

L'oscillateur harmonique

Le mouvement d'un oscillateur harmonique est modélisé par l'EDO :

$$\forall t \in I, X''(t) + \frac{k}{m}X(t) = 0$$

Elle est d'ordre 2. En considérant le problème physique on trouve que : $I = \mathbb{R}_+$, et que X(0) est une condition initiale à déterminer. k et m désignent respectivement le raideur du ressort et la masse.

La forme générale s'écrit : $F(t, X(t), X'(t), X''(t)) = X''(t) + \frac{k}{m}X(t)$.

Exemple 1.3

Le pendule simple

Il est modélisé par l'équation :

$$\theta''(t) + \frac{g}{l}\sin\theta(t) = 0$$

Où l est la longeur de la corde, g le module de l'accélération gravitationelle, et θ l'angle aigu entre la corde et la verticale. Attention, elle n'est pas linéaire car la fonction sin ne l'est pas.

Exemple 1.4

Dynamique d'une population : Lotka-Volterra

On se place dans le monde où il n'y a que les proies et les prédateurs.

Notons : X(t) la population des proies et Y(t) celle des prédateurs à l'instant t.

On a:

$$\begin{cases} X'(t) = X(t)(\alpha - \beta Y(t)) \\ Y'(t) = Y(t)(\gamma X(t) - \eta) \end{cases}$$

Il y a deux équations donc posons la fonction vectorielle Z(t) = (X(t), Y(t)). La forme générale de notre EDO s'écrit : F(t, X(t), X'(t)) = Z(t). Elle est d'ordre 1.

Rappel 1.1

Équations différentielles linéaires homogènes d'ordre 1

Une équation de la forme :

$$(E): X'(t) + a(t)X(t) = 0$$

Où a est une fonction fixée et continue.

Théorème 1.1

Les solutions de (E) sont toutes de la forme : $t \mapsto \lambda e^{-A(t)}$. λ est une constante quelconque, et A est une primitive de a.

On peut prendre n'importe quelle primitive car la différence entre deux primitives est une constante.

Preuve:

Posons deux ensembles : $S_1 = \{X | X'(t) + a(t)X'(t) = 0\}$ et $S_2 = \{X : t \mapsto \lambda e^{-A(t)} | \lambda \in \mathbb{R}\}$, où X est une fonction. Montrons que les deux ensembles sont égaux par double inclusion.

 $--(S_1\supset S_2)$

Soit λ un réel, on pose la fonction $X: t \mapsto \lambda e^{-A(t)}$, donc elle est un élément de S_2 . X est composée des fonctions dérivables, et d'après les théorèmes généraux elle est aussi dérivable.

On a: $X'(t) = \lambda(-A'(t))e^{-A(t)} = -\lambda a(t)e^{-A(t)}$.

 $\mathrm{Donc}: X'(t)+a(t)X(t)=-\lambda a(t)e^{-A(t)}+\lambda a(t)e^{-A(t)}=0, \text{ c'est-\`a-dire que }X\in S_1,$ et que $S_1\supset S_2.$

 $-(S_2\supset S_1)$

Soit $X \in S_1$. Montrons que $X \in S_2$.

On cherche une constante réelle λ , telle que $X(t) = \lambda e^{-A(t)}$.

Posons la fonction f qui à t associe $\frac{X(t)}{e^{-A(t)}}$, c'est-à-dire $f(t) = \frac{X(t)}{e^{-A(t)}} = X(t)e^{A(t)}$. On suppose que la fonction X est 1-fois dérivable car elle est solution d'un équation différentielle, et donc notre f est aussi dérivable comme composée des fonctions dérivables.

On a : $f'(t) = (X'(t) + X(t)a(t))e^{A(t)} = 0$ car $X \in S_1$. Donc f est constante, on note λ sa valeur.

De plus, $X(t)e^{A(t)} = \lambda, X(t) = \lambda e^{-A(t)} \in S_2$. On trouve que $S_2 \supset S_1$.

Par double inclusion on trouve le résultat énoncé.

Rappel 1.2

Équations différentielles linéaires non-homogènes d'ordre 1

Une équation de la forme :

$$(E): X'(t) + a(t)X(t) = b(t)$$

Où a et b sont des fonctions fixées et continues.

Théorème 1.2

Toutes les solutions de (E) sont de la forme : $X = X_p + X_h$, où X_p est une solution particulière, et X_h est une solution de l'équation homogène associée à (E).

On appelle ce résultat le principe de superposition.

Preuve:

Exemple 1.5

Résoudre l'équation différentielle : f(t) - tf'(t) = 1 pour $t \in]-\infty, 0[$ ou $]0, +\infty[$.

Faites attention : \mathbb{R}^* n'est pas un intervalle.

Solution:

D'après le théorème 1.2 on sait qu'on doit chercher deux solutions : une particulière et une homogène. On va d'abord manipuler l'équation pour qu'elle soit de la forme générale.

$$f'(t) - \frac{1}{t}f(t) = -\frac{1}{t}$$

— Solution homogène

Cherchons une solution de l'équation homogène associée : $f'(t) - \frac{1}{t}f(t) = 0$.

D'après le théorème 1.1, f est de la forme : $f: t \mapsto \lambda e^{\ln|t|} = \lambda |t|$, avec λ une constante quelconque. Ici on trouve le logarithme népérien comme primitive de $\frac{1}{t}$.

— Solution particulière

On remarque que la fonction constante et égale à 1 est une solution particulière.

D'après le théorème 1.2, toutes les solutions sont de la forme : $f: t \mapsto f_p(t) + f_h(t) = 1 + \lambda |t|$, avec λ une constante réelle.

Rappel 1.3

ÉDLs homogènes d'ordre 2 à coefficients constantes

Une équation de la forme :

$$(E): X''(t) + aX'(t) + bX(t) = 0$$

Où a et b sont des constantes.

Théorème 1.3

On considère une ÉDL homogène d'ordre 2 à coefficients constants :

$$(E): X''(t) + aX'(t) + bX(t) = 0$$

Où a et b sont des constantes réelles fixées.

Et on lui associe l'équation caractéristique : $r^2 + ar + b = 0(C)$.

Discutons les 3 cas possibles, en fonction du signe de Δ :

$$-\Delta > 0$$

Dans ce cas (C) admet deux solutions réelles distinctes r_1 et r_2 .

Alors toutes les solutions de (E) sont de la forme :

$$\forall t \in \mathbb{R}, x(t) = \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t}$$

Avec λ_1 et λ_2 deux constantes réelles.

$$-\Delta = 0$$

Dans ce cas (C) admet une unique solution réelle r_0

Alors toutes les solutions de (E) sont de la forme :

$$\forall t \in \mathbb{R}, x(t) = (\lambda + \mu t)e^{r_0 t}$$

Avec λ et μ deux constantes réelles.

$-\Delta < 0$

Dans ce cas (C) admet deux solutions complexes conjugués : $\alpha + i\beta$ et $\alpha - i\beta$.

Alors toutes les solutions de (E) sont de la forme :

$$\forall t \in \mathbb{R}, x(t) = (A\cos(\beta t) + B\sin(\beta t))e^{\alpha t}$$

Avec A et B deux constantes réelles.

Reprenons l'exemple de l'oscillateur harmonique. On note k le raideur, m la masse et x(t) la longeur du ressort.

Si on néglige les frottements alors on trouve :

$$x''(t) + \frac{k}{m}x(t) = 0$$

C'est une ÉDL homogène d'ordre 2 à coefficients constantes.

Son équation caractéristique : $r^2 + \frac{k}{m} = 0$, elle admet deux racines complexes conjuguées.

D'après le theorème précédent, on déduit que :

$$x'(t) = A\cos(\sqrt{\frac{k}{m}}t) + B\sin(\sqrt{\frac{k}{m}}t)$$

Avec A et B deux constantes à déterminer avec les conditions initiales. Par exemple, si on étire le ressort d'une longeur l puis on le lâche à t=0, la vitesse initiale est nulle, on aura donc :

$$\begin{cases} x(0) = l = A\cos(0) + B\sin(0) = A \\ x'(0) = 0 = -A\sqrt{\frac{k}{m}}\sin(0) + B\sqrt{\frac{k}{m}}\cos(0) = B\sqrt{\frac{k}{m}} \end{cases}$$

On en déduit que A = l et B = 0, donc on a :

$$x(t) = l\cos(t\sqrt{\frac{k}{m}})$$

C'est une fonction périodique car on a négligé les frottements.

Remarque : En général, pour une équation différentielle d'ordre 2 il faut deux CIs. Le nombre de CIs est lié à l'ordre, comme on a vu avec les circuits et la mécanique.

Proposition 1.1

On considère l'équation:

$$\forall t \in \mathbb{R}, x''(t) + ax'(t) + bx(t) = c(t)$$

On note cette équation (E). a et b sont des constantes réelles fixées, c(t) une fonction seconde membre fixée.

Alors, l'ensemble des solutions de (E) est de la forme :

$$\{t \to x(t), \text{ solution } \operatorname{de}(E) | x = x_p + x_h \}$$

Où $t \mapsto x_h(t)$ est une solution de (H), l'équation homogène associée à (E), et $t \mapsto x_p(t)$ une solution particulière.

Preuve:

Double inclusion:

— (\supset) Posons la fonction $x = x_p + x_h$ avec x_h une solution de (H) et x_p une solution particulière de (E).

Alors on a pour tout $t \in \mathbb{R}$:

$$x''(t) + ax'(t) + bx(t) = (x_p + x_h)''(t) + (x_p + x_h)'(t) + (x_p + x_h)(t)$$

Grâce à la linéarité de la dérivée, on peut séparer la forme obtenue :

$$(x_p''(t) + ax_p'(t) + bx_p(t)) + (x_h''(t) + ax_h'(t) + bx_h(t)) = c(t) + 0 = c(t)$$

Donc notre fonction est bien solution de (E), et on a l'inclusion :

$$\{t \mapsto x(t) | \text{solution de } (E)\} \supset \{x = x_p + x_h\}$$

Avec $t \mapsto x_h(t)$ est une solution de (H), l'équation homogène associée à (E), et $t \mapsto x_p(t)$ une solution particulière.

— (\subset) On fixe $t \mapsto x(t)$, une solution de (E) et on cherche une solution $t \mapsto x_h(t)$ de l'équation homogène telle que $x = x_p + x_h$. Pour ça, on pose la fonction $x_h = x - x_p$ et vérifier qu'elle est une solution de (H).

Or, on a pour tout $t \in \mathbb{R}$:

$$x''_h(t) + ax'_h(t) + bx_h(t) = (x''(t) + ax'(t) + bx(t)) - (x''_p(t) + ax'_p(t) + bx_p(t))$$
$$= c(t) - c(t) = 0$$

Donc x_h est une solution de (H), et on a :

$$\{t \mapsto x(t) | \text{solution de } (E)\} \subset \{x = x_p + x_h\}$$

Par double inclusion la proposition est vraie.

Remarque 1.1

Pour trouver une solution particulière on peut utiliser la chance, l'intelligence, l'indication (s'il y en a), variation de la constante, etc.

Rappel 1.4

Equations différentielles ordinaires, voyez la définition 1.1.

Définition 1.2

On dit qu'une ÉDO est sous forme résolue si on peut l'écrire sous la forme :

$$\forall t \in I, X'(t) = F(t, X(t))$$

On peut toujours écrire une ÉDO sous forme résolue. C'est ce qu'on appelle le **Principe de réduction de l'ordre**. Mais vous allez voir qu'il y aura l'augmentation de dimension.

Exemple 1.7

Reprenons encore une fois l'oscillateur harmonique. L'équation qui décrit son mouvement est d'ordre 2, mais on peut l'écrire sous forme résolue à l'aide d'une fonction vectorielle :

$$\forall t \in \mathbb{R}, X(t) = \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix}$$

Alors on a:

$$X'(t) = \begin{pmatrix} x'(t) \\ x''(t) \end{pmatrix} = \begin{pmatrix} x'(t) \\ -\frac{k}{m}x(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix}$$

On obtient la forme résolue :

$$X'(t) = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & 1 \end{pmatrix} (X(t))$$

Notez qu'on doit augmenter la dimension pour réduire l'ordre.

On peut généraliser cette notion avec les équations différentielles ordinaires d'ordre n. L'équation générale pour une telle équation :

$$\forall t \in I, x^{(k)}(t) + F(t, x(t), x'(t)...x^{(k-1)}(t)) = 0$$

On augment la dimension(et diminue l'ordre) en posant :

$$\forall t \in I, X(t) = \begin{pmatrix} x(t) \\ x'(t) \\ \vdots \\ x^{(k-1)}(t) \end{pmatrix} \in \mathbb{R}^k$$

On obtient la forme résolue :

$$\forall t \in I, X'(t) = F(t, X(t)) = \begin{pmatrix} x'(t) \\ x''(t) \\ \vdots \\ x^{(k-1)}(t) \\ -F(t, x(t), x'(t) \dots x^{(k-1)}(t)) \end{pmatrix}$$

Exemple 1.9

Reprenons le modèle de Lotka-Volterra. On peut poser une fonction vectorielle qui contient les fonctions X et Y. Le systeme de deux équations deviendra une seule équation.

Définition 1.3

On se donne une ÉDO écrite sous forme résolue :

$$(E): \forall t \in I, X'(t) = F(t, x(t))$$

Une **solution** de (E) est un couple (J, y) tel que :

- J est un intervalle inclu dans I.
- y est une fonction dérivable sur J telle que : $\forall t \in J, y'(t) = F(t, y(t))$

Considérons l'équation différentielle non-linéaire définir sur $\mathbb R$:

$$(E): \forall t \in \mathbb{R}, x'(t) = x(t)^2$$

On analyse les solutions possibles et considère leurs ensembles de définition :

- La fonction nulle est bien une solution sur \mathbb{R} .
 - On note que $(\mathbb{R},0)$ est une solution de (E)
- Soit y une solution qui ne s'annule pas, alors on a :

$$y'(t) = y(t)^2 \Longleftrightarrow \frac{y'(t)}{y(t)^2} = 1$$
 (car y ne s'annule pas)

On reconnaît la dérivée de $\frac{-1}{u(t)}$, donc en faisant une intégration on obtient :

$$\frac{-1}{y(t)} = t + c$$
 (c une constante réelle)

Donc $y(t) = \frac{-1}{t+c}$, définie sur $\mathbb{R} \setminus \{-c\}$

Plus précisément, pour tout $c \in \mathbb{R}$, les deux couples $(]-\infty,c[,y:t\mapsto \frac{-1}{t+c})$ et $(]c,+\infty[,y:t\mapsto \frac{-1}{t+c})$ sont des solutions de (E).

En particulier la fonction nulle est la seule solution qui marche sur \mathbb{R} .

Définition 1.4

Soit une ÉDO sous forme résolue : (E) : $\forall t \in I, X'(t) = F(t, X(t))$.

- Une solution (J, y) est dit **globale** si J = I.
- Soit (J_1, y_1) et (J_2, y_2) deux solutions. On dit que (J_1, y_1) est un **prolongement** de (J_2, y_2) si $J_2 \subset J_1$ et si les fonctions y_1 et y_2 coïncident sur J_2 . Réciproquement, on dit que (J_2, y_2) est une **restriction** de (J_1, y_1) .
- Une solution (J, y) est dit **maximale** si pour toute prolongement (J_0, y_0) de (J, y), on a : $J_0 = J$.

Attention : Globale implique maximale mais la réciproque est fausse en général.

Reprenons l'exemple 1.10.

Les trois solutions qu'on a donné sont toutes maximales, mais la seule solution globale est la fonction nulle. Les deux autres sont effectivement "limitées" par c.

Définition 1.5

Un **problème de Cauchy** est la donnée d'une ÉDO(par exemple sous la forme résolue : $\forall t \in I, X'(t) = F(t, X(t))$) et une condition initiale (t_0, x_0) .

Résoudre ce problème de Cauchy signifie trouver une solution maximale (J, y) telle que $t_0 \in J$ et $y(t_0) = x_0$.

Deuxième partie

Courbes et Surfaces