RCS lab 2017-2018

L1: Introduction

- Rules, safety
- Semester program, expectations, rules
- Matlab tutorial (https://github.com/tassos/matlab_tutorial)
- Robotic toolbox introduction. Go through some functions in the rtbdemo

L2: Coordinate systems

Exercises on paper

Exercises in Matlab Robotics Toolbox

L3: Direct geometric model – classical approach

Exercises on paper

Exercises in Matlab Robotics Toolbox

L4: Direct geometric model – DH approach

Exercises on paper

Exercises in Matlab Robotics Toolbox

L5: Inverse geometric model

Exercises on paper

Exercises in Matlab Robotics Toolbox

L6: Dynamic models for Robot arms

Exercises on paper

Exercises in Matlab Robotics Toolbox

Exercises in Simulink – Zoly Robot example

L7: Test + (back-up time for previous labs)

L8: Android HW Boards – practice exercises (part I)

L9: Android HW Boards – practice exercises (part II)

L10: PID Controllers for hardware-in-the-loop

Design the controllers for Zoly Robot example (design method 1)

Implement the controllers on the Android HW boards

Run in real-time

L11: PID Controllers for hardware-in-the-loop

Design the controllers for Zoly Robot example (design method 2)

Implement the controllers on the Android HW boards

Run in real-time

Study Disturbance rejection capabilities

Trajectory generation and tracking

L12: Mobile Robot HIL example - quadcopter

Dynamic model of quadcopter

Controller design (multiple PID loops or state feedback)

Implement the controllers on the Android HW boards

Run in real-time

L13: FANUC Robot

Programs on the remote for executing simple tasks

Trajectory generation