

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour und Prof. Dr.-Ing. Rüdiger Dillmann

Lösungsblätter zur Klausur

Robotik I: Einführung in die Robotik

am 24. Juli 2017, $18{:}00-19{:}00$ Uhr

Name:	Vorname:		Matrikelnummer:	
Aufgabe 1			von 4 Punkten	
Aufgabe 2			von	11 Punkten
Aufgabe 3			von	8 Punkten
Aufgabe 4			von	7 Punkten
Aufgabe 5			von	7 Punkten
Aufgabe 6			von	8 Punkten
Gesamtpunktzahl:				
		Note:		

${\bf Aufgabe\ 1} \quad \textit{Quaternionen}$

1. Winkel θ und Rotationsachse \boldsymbol{u} :

2. Inverses Quaternion q^{-1} :

3. SLERP (Vorteil und Probleme):

Aufgabe 2 Roboterkinematik

1. DH-Parameter des Roboters:

Gelenk	$oldsymbol{ heta_i}$ [°]	$d_i \ [mm]$	$a_i \ [mm]$	$lpha_i$ [°]
G1	0	d_1	110	-90
G2				
G3				
G4			100	0

2. Anzahl der Rotationsgelenke:

Anzahl der Schubgelenke:

3. Arbeitsraum:

4. Transformation zwischen
$$(x_4, y_4, z_4)$$
 und (x_5, y_5, z_5) :

5. Dimension der Jacobi-Matrix eines Roboterarms mit 4 Bewegungsfreiheitsgraden in einem 6D Arbeitsraum:

Aufgabe 3 Bahnsteuerung und Bewegungsplanung

1. Synchrone und asynchrone Punkt-zu-Punkt Bahnen / Leitachse

Vorname:

2. Inverse Kinematik bei Bahninterpolation in Weltkoordinaten

3. RRT-Algorithmus

4. Unterschied zwischen Kraftschluss und Formschluss:

5

5. Unterteilungsverfahren bei der Griffsynthese auf Teilobjekten:

Aufgabe 5 Bildverarbeitung

1. Mathematischer Operator zu P_x :

2. Ergebnis der Mittelwert-Filterung:

3. Objekthöhe im Lochkamera-Modell:

4. Morphologische Operatoren:

Aufgabe 6 Symbolisches Planen

1. Aktionssequenz:

2. Neuer Aktionsoperator:

3. Weltzustand nach moveAndPickup(R, P, G, S, T):