Homework 15

Joe Baker, Brett Schreiber, Brian Knotten February 15, 2018

23

Problem 6.3 Describe a decidable language in $P/_{poly}$ that is not in P

From the Time Hierarchy Theorem we know there exists a decidable language $L \notin EXP$. Using L, we can construct the unary language $L' = \{1^n | n \in L\}$. Clearly, by the proof of claim 6.8 in the book, $L' \in P/_{poly}$. To show that $L' \notin P$, assume the opposite: therefore \exists TM M that decides L' in time $O(n^k)$. We could then use M to construct the TM M' that decides L in time $O((2^n)^k)$, meaning that $L \in EXP$ - a contradiction. All that remains is to show that L' is decidable; this is trivial however, as L is decidable so we merely define L' to reject all inputs not of the form 1^n and accept only if $n \in L$. Therefore \exists decidable language L' such that $L' \in P_{poly}$ and $L' \notin P$.

24

\mathbf{a}

Problem 6.5: Show for every k > 0 that PH contains languages whose circuit complexity is $\Omega(n^k)$.

Proof:

Let C be a circuit with complexity at of at least n^k . We know that such a circuit must exist by Theorem 6.22 from the book. We can construct a boolean formula F from the gates of C with k quantifiers over the boolean formula. Now let L be the language of all variable assignments for k which satisfy F. Since |C| is polynomial, C can decide if an input is valid for F in polynomial time. So there must exist a TM M with k advice tapes (from the quantifiers) that can decide the input with its advice tapes in polynomial time. Thus for each k > 0, there is a language in PH whose circuit complexity is Ω (n^k).

b

Problem 6.6: Show for every k > 0 that Σ_2^p contains languages whose circuit complexity is $\Omega(n^k)$.

Proof:

Consider the circuit C from problem 6.5. Now construct the same formula F, but only use two quantifiers. One \exists over the tuple of some of the variables and one \forall for the remaining tuple of variables. Again let L be the language of all variable assignments for k which satisfy F. Since |C| is polynomial, C can decide if an input is valid for F in polynomial time. So there must exist a TM M with 2 advice tapes (from the quantifiers) that can decide the input with its advice tapes in polynomial time. Thus for each k > 0, there is a language in Σ_2^p whose circuit complexity is $\Omega(n^k)$.

C

Problem 6.7: Show that if P = NP, then there is a language in EXP that requires circuits of size $\frac{2^n}{n}$.

Proof.

Assume P = NP and let $L \in EXP$. If L is decidable by a circuit of complexity n^k , then because the polynomial hierarchy is collapsible and by problem 6.6, L is in P. So any L in EXP that is not in P must have a circuit with complexity $\frac{2^n}{n}$.