

Global United Technology Service Co., Ltd.

Report No: GTSE10090022801

FCC REPORT

Applicant: Topstar Overseas Electronics Co., Ltd.

4-7/F, Building B, ChengChengFa Industrial Zone, Shenzhen

Address of Applicant: export Processing Zone, PingShan new District, Shenzhen,

China.

Equipment Under Test (EUT)

Product Name: All-In-One PC

Model No.: P81

FCC ID: YVW-P81

Standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2009

Date of Receipt: 08 Oct., 2010

Date of Test: 08-22 Oct., 2010

Date of Issue: 22 Oct., 2010

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Contents

			Page
1	COV	ER PAGE	1
2	CON	TENTS	2
3	TES1	SUMMARY	3
4	GEN	ERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
		GENERAL DESCRIPTION OF E.U.T.	
		VIRONMENT AND MODE	
	4.3	TEST FACILITY	7
	4.4	TEST LOCATION	7
	4.5	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
	4.6	TEST INSTRUMENTS LIST	8
5	TEST	RESULTS AND MEASUREMENT DATA	9
	5.1	Antenna requirement:	9
	5.2	CONDUCTED EMISSIONS	10
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	6DB OCCUPY BANDWIDTH	
	5.5	Power Spectral Density	23
		BAND EDGE	
	5.7	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	36
	5.8	RADIATED EMISSION	49
	5.8.1		
	5.8.2	1.0	
		RF EXPOSURE EVALUATION	
	5.9.1		60
	5.9.2	100.1.000	
	5.9.3	Test Result of RF Exposure Evaluation	61

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Passed
AC Power Line Conducted Emission	15.207	Passed
Conducted Peak Output Power	15.247 (b)(3)	Passed
6dB Occupied Bandwidth	15.247 (a)(2)	Passed
Power Spectral Density	15.247 (e)	Passed
Radiated Emission	15.205/15.209	Passed
Band Edge	15.247(d)	Passed

Remark:

- Passed: The EUT complies with the essential requirements in the standard.
- Failed: The EUT does not comply with the essential requirements in the standard.
- Tx: In this whole report Tx (or tx) means Transmitter.
- Rx: In this whole report Rx (or rx) means Receiver.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

4 General Information

4.1 Client Information

Applicant:	rant: Topstar Overseas Electronics Co., Ltd.	
Address of Applicant:	4-7/F, Building B, ChengChengFa Industrial Zone, Shenzhen	
export Processing Zone, PingShan new District, Shenzhen,		
Manufacturer/ Factory:	Topstar Overseas Electronics Co., Ltd.	
Address of Manufacturer/	4-7/F, Building B, ChengChengFa Industrial Zone, Shenzhen	
Factory:	export Processing Zone, PingShan new District, Shenzhen, China.	

4.2 General Description of E.U.T.

Product Name:	All-In-One PC
Model No.:	P81
Operation Frequency:	2412MHz~2462MHz
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
	7 for 802.11(H40)
Channel separation:	5MHz
Modulation technology:	Direct Sequence Spread Spectrum (DSSS)
(IEEE 802.11b)	
Modulation technology:	Orthogonal Frequency Division Multiplexing(OFDM)
(IEEE 802.11g/802.11n)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Integral
Antenna gain:	2dBi (declare by Applicant)
Power supply:	Input: AC 100-240V, 2A, 50-60Hz
	Output: DC 19V 3.42A

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE100900228IT

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n(H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n(H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 5 of 61

Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode Keep the EUT in running with full load.					

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, a	nd found the follow list which it was worst case.	
Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.0Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20), 13Mbps for 802.11n(H40)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE100900228IT

4.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 600491

Global United Technology Service Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 600491, July 20, 2010.

Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Service Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

4.4 Test Location

All tests were performed at:

Global United Technology Service Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

4.5 Other Information Requested by the Customer

None.

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 7 of 61

4.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS201	Mar. 30 2010	Mar. 30 2011		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS202	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Sep. 10 2010	Sep. 10 2011		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS204	Sep. 10 2010	Sep. 10 2011		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS205	June 30 2010	June 30 2011		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Coaxial Cable	GTS	N/A	GTS400	Apr. 01 2010	Apr. 01 2011		
8	Coaxial Cable	GTS	N/A	GTS401	Apr. 01 2010	Apr. 01 2011		
9	Coaxial cable	GTS	N/A	GTS402	Apr. 01 2010	Apr. 01 2011		
10	Coaxial Cable	GTS	N/A	GTS407	Apr. 01 2010	Apr. 01 2011		
11	Coaxial Cable	GTS	N/A	GTS408	Apr. 01 2010	Apr. 01 2011		
12	Amplifier(10KHz- 5GHz)	Sonnoma Instrument	305-1052	GTS210	Aug. 03 2010	Aug. 03 2011		
13	Amplifier(2GHz- 20GHz)	HP	8349B	GTS231	Aug. 03 2010	Aug. 03 2011		
14	Power Meter	Rohde & Schwarz	NRVD	SEL0069	June 23 2010	June 23 2011		
14	Power Sensor	Rohde & Schwarz	URV5-Z2	SEL0071	June 23 2010	June 23 2011		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS206	Apr. 10 2010	Apr. 10 2011		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS208	Sep. 14 2010	Sep. 14 2011		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS209	Sep. 14 2010	Sep. 14 2011		
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS207	Apr. 14 2010	Apr. 14 2011		
5	Coaxial Cable	GTS	N/A	GTS406	Apr. 01 2010	Apr. 01 2011		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is no consideration of replacement. The best case gain of the antenna is 2.0dBi.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz				
Limit:	Frequency range (MHz)	Limit (d	BuV)		
	Quasi-peak Average				
	0.15-0.5 66 to 56* 56 to 46*				
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm				
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.				
Test setup:	LISN 40cm		er — AC power		
Test Instruments:	Refer to section 4.7 for details				
Test mode:	Refer to section 4.3 for details				
Test results:	Passed				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

2.61, 6.1.1.0 6.6162

Page 10 of 61

Live Line:

Condition : FCC QP LISN LINE

Job No. : 228IT

EUT : All-In-One PC
Test Mode : Operation mode

Test Engineer: Franks

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	d₿	dBuV	dBuV	dB	
1	0.193	26.70	3.66	0.01	30.37	53.89	-23.52	Average
2	0.193	46.00	3.66	0.01	49.67	63.89	-14.22	QP
2 3	0.260	23.40	3.63	0.01	27.04	51.42	-24.38	Average
4	0.260	39.83	3.63	0.01	43.47	61.42	-17.95	QP
4 5 6 7	0.400	17.50	3.58	0.01	21.09	47.86	-26.77	Average
6	0.400	29.73	3.58	0.01	33.32	57.86	-24.54	QP
7	2.839	14.50	3.36	0.19	18.05	46.00	-27.95	Average
8 9	2.839	27.48	3.36	0.19	31.03	56.00	-24.97	QP
9	9.809	17.80	3.22	0.40	21.42	50.00	-28.58	Average
10	9.809	28.92	3.22	0.40	32.54	60.00	-27.46	QP
11	26.841	17.80	3.11	0.45	21.36	50.00	-28.64	Average
12	26.841	27.04	3.11	0.45	30.60	60.00	-29.40	QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral Line:

Condition : FCC QP LISN NEUTRAL

Job No. : 228IT

EUT : All-In-One PC
Test Mode : Operation mode

Test Engineer: Franks

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	dB	dBuV	dBuV	dB	
1 2	0.193 0.193	26.50 47.55	3.66 3.66	0.01 0.01	30.17 51.22		-23.72 -12.67	Average QP
2 3 4 5	0.260 0.260	26.50 41.41	3. 63 3. 63	0.01 0.01	30.14 45.05	51.42		Average
6	0.330 0.330	20.10 36.61	3.60 3.60	0.01 0.01	23. 71 40. 22	59.44	-19.22	
7 8 9	2. 213 2. 213	12. 40 29. 49	3.39 3.39	0.13 0.13	15.92 33.01	56.00	-22.99	-4-
10	10.397 10.397	20.10	3. 22 3. 22	0.40	23.72	60.00	-24.87	
11 12	23. 636 23. 636	17.50 28.45	3.13 3.13	0. 45 0. 45	21.08 32.03		-28. 92 -27. 97	Average QP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 12 of 61

5.3 Conducted Peak Output Power

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE100900228IT

Measurement Data

802.11b mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	21.57	30.00	Pass		
Middle	21.67	30.00	Pass		
Highest	20.38	30.00	Pass		
	802.11g mo	de			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	22.56	30.00	Pass		
Middle	21.55	30.00	Pass		
Highest	20.75	30.00	Pass		
802.11n-H20 mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	24.76	30.00	Pass		
Middle	23.83	30.00	Pass		
Highest	23.33	30.00	Pass		
802.11n-H40 mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	21.70	30.00	Pass		
Middle	21.03	30.00	Pass		
Highest	20.41	30.00	Pass		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 14 of 61

Project No.: GTSE100900228IT

5.4 6dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 4.7 for details		
Test mode:	Refer to section 4.3 for details		
Test results:	Passed		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 15 of 61

Project No.: GTSE100900228IT

Measurement Data

WedSurement Data					
802.11b mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (KHz)	Result		
Lowest	12.179	>500	Pass		
Middle	11.618	>500	Pass		
Highest	11.698	>500	Pass		
	802.11g mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (KHz)	Result		
Lowest	16.410	>500	Pass		
Middle	16.442	>500	Pass		
Highest	16.602	>500	Pass		
802.11n-H20 mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (KHz)	Result		
Lowest	17.820	>500	Pass		
Middle	17.724	>500	Pass		
Highest	17.820	>500	Pass		
802.11n-H40 mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (KHz)	Result		
Lowest	36.699	>500	Pass		
Middle	36.699	>500	Pass		
Highest	36.699	>500	Pass		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 16 of 61

Test mode: 802.11b Test channel: Middle

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Date: 21.0CT.2010 12:06:30

Test mode: 802.11g Test channel: Lowest

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 802.11g Test channel: Highest

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 19 of 61

Test mode: 802.11n-H20 Test channel: Middle

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Test mode: 802.11n-H40 Test channel: Lowest

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Test mode: 802.11n-H40 Test channel: Highest

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE100900228IT

5.5 Power Spectral Density

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 23 of 61

Project No.: GTSE100900228IT

Measurement Data

MedSurement Data					
802.11b mode					
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result		
Lowest	-5.73	8.00	Pass		
Middle	-2.80	8.00	Pass		
Highest	-1.82	8.00	Pass		
	802.11g mode				
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result		
Lowest	-5.65	8.00	Pass		
Middle	-6.00	8.00	Pass		
Highest	-7.11	8.00	Pass		
802.11n-H20 mode					
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result		
Lowest	-5.61	8.00	Pass		
Middle	-7.52	8.00	Pass		
Highest	-7.60	8.00	Pass		
802.11n-H40 mode					
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result		
Lowest	-8.36	8.00	Pass		
Middle	-9.01	8.00	Pass		
Highest	-9.22	8.00	Pass		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 24 of 61

Project No.: GTSE100900228IT

Date: 21.0CT.2010 12:22:41

Project No.: GTSE100900228IT

Test mode: 802.11g Test channel: Lowest

Project No.: GTSE100900228IT

Test mode: 802.11g Test channel: Highest

Project No.: GTSE100900228IT

Test mode: 802.11n-H20 Test channel: Middle

Test mode: 802.11n-H20 Test channel: Highest

Test mode: 802.11n-H40 Test channel: Lowest

Global United Technology Service Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE100900228IT

Test mode: 802.11n-H40 Test channel: Highest

5.6 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark: Offset the High-Frequency cable loss 3.0dB in the spectrum analyzer.		
Test Instruments:	Refer to section 4.7 for details		
Test mode:	Refer to section 4.3 for details		
Test results:	Passed		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 31 of 61

Date: 21.0CT.2010 12:19:05

Test mode: 802.11b Test channel: Highest

Date: 21.0CT.2010 12:15:56

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 32 of 61

Project No.: GTSE100900228IT

Test mode: 802.11g Test channel: Highest

Project No.: GTSE100900228IT

Test mode: 802.11n-H20 Test channel: Highest

Project No.: GTSE100900228IT

Test mode: 802.11n-H40 Test channel: Highest

Project No.: GTSE100900228IT

5.7 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 3.0dB in the spectrum analyzer.		
Test Instruments:	Refer to section 4.7 for details		
Test mode:	Refer to section 4.3 for details		
Test results:	Passed		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 36 of 61

Date: 21.0CT.2010 12:19:35

Date: 21.0CT.2010 12:19:54

Date: 21.0CT.2010 12:20:10

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 802.11b Test channel: Highest

Date: 21.0CT.2010 12:16:11 Date: 21.0CT.2010 12:16:34

Date: 21.0CT.2010 12:16:49

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 39 of 61

Project No.: GTSE100900228IT

Date: 21.0CT.2010 09:32:58

Date: 21.0CT.2010 09:33:22

Date: 21.0CT.2010 09:33:43

Project No.: GTSE100900228IT

Date: 21.0CT.2010 09:37:47 Date: 21.0CT.2010 09:38:08

Date: 21.0CT.2010 09:38:30

Test mode: 80	02.11g	Test channel:	Highest
---------------	--------	---------------	---------

Date: 21.0CT.2010 12:04:03

Date: 21.0CT.2010 12:04:22

Date: 21.0CT.2010 12:04:37

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Date: 21.0CT.2010 12:36:43

Date: 21.007.2010 12:37:37

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 43 of 61

Project No.: GTSE100900228IT

Date: 21.007.2010 12:31:03

Date: 21.007.2010 12:31:26

Date: 21.007.2010 12:31:42

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 44 of 61

Test mode:	802.11n-H20	Test channel:	Highest
------------	-------------	---------------	---------

Date: 21.0CT.2010 12:44:04

Date: 21.0CT.2010 12:45:00

Date: 21.007.2010 12:45:45

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 45 of 61

Date: 21.0CT.2010 13:03:33

Date: 21.007.2010 13:04:07

Project No.: GTSE100900228IT

Page 46 of 61

Project No.: GTSE100900228IT

Date: 21.0CT.2010 12:56:55

Date: 21.007.2010 12:57:18

Date: 21.007.2010 12:57:38

Test mode:	802.11n-H40	Test channel:	Highest

Date: 21.0CT.2010 12:52:11

Date: 21.0CT.2010 12:52:27

Date: 21.007.2010 12:52:40

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE100900228IT

Page 48 of 61

Project No.: GTSE100900228IT

5.8 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205										
Test Method:	ANSI C63.4: 2003										
Test Frequency Range:	30MHz to 25GHz										
Test site:	Measurement D	istance: 3m (S	Semi-Anecho	ic Chambe	r)						
Receiver setup:		`			,						
rtocontor cotap.	Frequency	Detector	RBW	VBW	Remark						
	30MHz-1GHz Quasi-peak 100KHz 300KHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value										
	Above 1GHz Peak 1MHz 3MHz Peak Value										
	Above 10112	Peak	1MHz	10Hz	Average Value						
Limit:					T						
	Freque		Limit (dBuV/		Remark						
	30MHz-88MHz 40.0 Quasi-peak Value										
	88MHz-216MHz 43.5 Quasi-peak Value										
	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value										
	54.0 Average Value										
	Above 1GHz 54.0 Average Value 74.0 Peak Value										
Test Procedure:	the ground rotated 360 radiation. b. The EUT was antenna, who tower. c. The antennathe ground Both horizon make the middle and the meters and degrees to be and the meters and degrees to be an antennathe ground Both horizon make the meters and degrees to be an antennathe ground Both the test-reconstruction of the test-reconstruction of the EUT have 10dB	at a 3 meter set degrees to defeas set 3 meters as set 3 meters as set 3 meters are defeasing to determine the seasurement. It is pected emissioned the maximate the rotable tablication level of the secified, then tes would be report and defeasing the maximate in the secified, then tes would be report and defeasing the secified of the secience of the secified of th	ne top of a romemi-anechoic termine the parties away from ted on the total ed from one ted maximum all polarization, the EUT awas turned was set to Period Waximum House and to period ted. Otherwise emi-rested of the parties awas to the parties of the period to the present of the p	tating table camber. Toosition of the interference of a varial meter to forwalue of the area of the ar	e 0.8 meters above he table was he highest ence-receiving able-height antenna ur meters above e field strength. Intenna are set to ged to its worst rom 1 meter to 4 egrees to 360						
Test setup:	Below 1GHz										

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 49 of 61

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 50 of 61

Project No.: GTSE100900228IT

5.8.1 Radiated emission below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
64.89	44.15	11.89	0.77	25.70	31.11	40.00	-8.89	Vertical
139.10	51.49	9.86	1.45	25.64	37.16	43.50	-6.34	Vertical
202.81	48.58	11.90	1.78	25.62	36.64	43.50	-6.86	Vertical
270.38	45.11	15.85	2.00	25.59	37.37	46.00	-8.63	Vertical
508.26	41.92	19.35	2.43	25.55	38.15	46.00	-7.85	Vertical
878.32	36.11	24.12	3.29	25.51	38.01	46.00	-7.99	Vertical
62.43	45.15	9.84	0.74	25.70	30.03	40.00	-9.97	Horizontal
138.87	47.26	10.47	1.45	25.64	33.54	43.50	-9.96	Horizontal
202.81	49.36	11.50	1.78	25.62	37.02	43.50	-6.48	Horizontal
323.32	43.95	14.42	2.12	25.58	34.91	46.00	-11.09	Horizontal
601.43	37.89	23.54	2.69	25.54	38.58	46.00	-7.42	Horizontal
875.25	34.67	29.06	3.28	25.51	41.50	46.00	-4.50	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 51 of 61

5.8.2 Transmitter emission above 1GHz

Test mode:	802.	11b	Test channe	el: Lowest		Remark:		Peal	k	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)		Level (dBuV/m)	Limit Line (dBuV/m)	Li	ver mit dB)	polarization
1384.00	33.93	25.63	2.43	21	.35	40.64	74.00	-33	3.36	Vertical
2390.00	47.22	27.59	3.33	30	.10	48.04	74.00	-2	5.96	Vertical
2400.00	52.26	27.58	3.37	30	.10	53.11	74.00	-20	0.89	Vertical
4824.00	35.17	31.79	5.34	24	.07	48.23	74.00	-2	5.77	Vertical
7236.00	31.95	36.19	6.88	26	.44	48.58	74.00	-2	5.42	Vertical
9648.00	30.58	38.07	8.96	25	.36	52.25	74.00	-2	1.75	Vertical
1384.00	35.01	25.63	2.43	21	.35	41.72	74.00	-32	2.28	Horizontal
2390.00	48.24	27.59	3.33	30	.10	49.06	74.00	-24	4.94	Horizontal
2400.00	53.22	27.58	3.37	30	.10	54.07	74.00	-19	9.93	Horizontal
4824.00	36.07	31.79	5.34	24	.07	49.13	74.00	-24	4.87	Horizontal
7236.00	32.79	36.19	6.88	26	.44	49.42	74.00	-24	4.58	Horizontal
9648.00	31.36	38.07	8.96	25	.36	53.03	74.00	-20	0.97	Horizontal

Test mode	: 802	2.11b	Test char	nnel:	Lowe	est	Remark:		Avera	age
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBμV)		Emission Level (dBµV/m)	Limit (dBµV/m)	Ove limi	-	polarization
1384.00	21.47	25.63	2.43	21.3	35	28.18	54.00	-25.8	82	Vertical
2390.00	30.86	27.59	3.33	30.1	0	31.68	54.00	-22.3	32	Vertical
2400.00	35.25	27.58	3.37	30.1	0	36.10	54.00	-17.9	90	Vertical
4824.00	18.91	31.79	5.34	24.0)7	31.97	54.00	-22.0	03	Vertical
7236.00	15.95	36.19	6.88	26.4	14	32.58	54.00	-21.4	42	Vertical
9648.00	14.06	38.07	8.96	25.3	36	35.73	54.00	-18.2	27	Vertical
1384.00	22.55	25.63	2.43	21.3	35	29.26	54.00	-24.7	74	Horizontal
2390.00	31.88	27.59	3.33	30.1	0	32.70	54.00	-21.3	30	Horizontal
2400.00	36.21	27.58	3.37	30.1	0	37.06	54.00	-16.9	94	Horizontal
4824.00	19.81	31.79	5.34	24.0)7	32.87	54.00	-21.1	13	Horizontal
7236.00	16.79	36.19	6.88	26.4	14	33.42	54.00	-20.	58	Horizontal
9648.00	14.84	38.07	8.96	25.3	36	36.51	54.00	-17.4	49	Horizontal

Test mode	: 802	2.11b	Test char	nnel:	Middle	е	Remark:	Pe	ak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBμV)		Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit	polarization
1754.00	42.03	25.09	2.61	28.5	59	41.14	74.00	-32.86	Vertical
4874.00	34.72	31.85	5.40	24.0)1	47.96	74.00	-26.04	Vertical
7311.00	29.53	36.37	6.90	26.5	58	46.22	74.00	-27.78	Vertical
9688.00	25.81	38.13	8.98	25.3	34	47.58	74.00	-26.42	Vertical
12185.00	26.79	38.92	10.38	25.0)4	51.05	74.00	-22.95	Vertical
14622.00	23.86	42.33	11.91	24.4	15	53.65	74.00	-20.35	Vertical
1754.00	42.18	25.09	2.61	28.5	59	41.29	74.00	-32.71	Horizontal
4874.00	34.90	31.85	5.40	24.0)1	48.14	74.00	-25.86	Horizontal
7311.00	29.74	36.37	6.90	26.5	58	46.43	74.00	-27.57	Horizontal
9688.00	26.05	38.13	8.98	25.3	34	47.82	74.00	-26.18	Horizontal
12185.00	27.06	38.92	10.38	25.0)4	51.32	74.00	-22.68	Horizontal
14622.00	24.16	42.33	11.91	24.4	15	53.95	74.00	-20.05	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode	: 802	2.11b	Test char	nnel:	Middle	е	Remark:		Average	
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dB _µ V)		Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit	polariz	zation
1754.00	28.27	25.09	2.61	28.5	9	27.38	54.00	-26.0	62 Vert	ical
4874.00	19.64	31.85	5.40	24.0	1	32.88	54.00	-21.	12 Vert	ical
7311.00	16.43	36.37	6.90	26.5	8	33.12	54.00	-20.8	88 Vert	ical
9688.00	13.58	38.13	8.98	25.3	4	35.35	54.00	-18.0	65 Vert	ical
12185.00	14.67	38.92	10.38	25.0	4	38.93	54.00	-15.0	07 Vert	ical
14622.00	11.85	42.33	11.91	24.4	5	41.64	54.00	-12.3	36 Vert	ical
1754.00	28.42	25.09	2.61	28.5	9	27.53	54.00	-26.4	47 Horiz	ontal
4874.00	19.82	31.85	5.40	24.0	1	33.06	54.00	-20.9	94 Horiz	ontal
7311.00	16.64	36.37	6.90	26.5	8	33.33	54.00	-20.0	67 Horiz	ontal
9688.00	13.82	38.13	8.98	25.3	4	35.59	54.00	-18.4	41 Horiz	ontal
12185.00	14.94	38.92	10.38	25.0	4	39.20	54.00	-14.8	BO Horiz	ontal
14622.00	12.15	42.33	11.91	24.4	5	41.94	54.00	-12.0	O6 Horiz	ontal

Test mode:	802.	11b	Test channe	el:	Highe	est	Remark:		Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Re Le (dB	/el	Level (dBuV/m)	Limit Line (dBuV/m)	Li	ver mit dB)	polarization
1648.00	38.79	24.87	2.55	27	09	39.12	74.00	-34	4.88	Vertical
2483.50	48.34	27.53	3.49	29	93	49.43	74.00	-24	4.57	Vertical
2500.00	52.96	27.55	3.52	30	70	53.33	74.00	-20	0.67	Vertical
4924.00	32.55	31.89	5.46	23	96	45.94	74.00	-28	3.06	Vertical
7386.00	29.55	36.49	6.93	26	79	46.18	74.00	-27	7.82	Vertical
12310.00	27.16	38.83	10.41	24	90	51.50	74.00	-22	2.50	Vertical
1648.00	39.35	24.87	2.55	27	09	39.68	74.00	-34	4.32	Horizontal
2483.50	48.93	27.53	3.49	29	93	50.02	74.00	-23	3.98	Horizontal
2500.00	53.58	27.55	3.52	30	70	53.95	74.00	-20	0.05	Horizontal
4924.00	33.20	31.89	5.46	23	96	46.59	74.00	-27	7.41	Horizontal
7386.00	30.23	36.49	6.93	26	79	46.86	74.00	-27	7.14	Horizontal
12310.00	27.87	38.83	10.41	24	90	52.21	74.00	-2	1.79	Horizontal

Test mode	: 80	2.11b	Test char	nnel: Hi	ghest	Re	mark:		Aver	age
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dB _µ V)	Emission Level (dBµV/m)		Limit (dBµV/m)	Ove limit		polarization
1648.00	25.20	24.87	2.55	27.09	25.53		54.00	-28	3.47	Vertical
2483.50	35.20	27.53	3.49	29.93	36.29		54.00	-17	'.71	Vertical
2500.00	31.35	27.55	3.52	30.70	31.72		54.00	-22	.28	Vertical
4924.00	20.32	31.89	5.46	23.96	33.71		54.00	-20	.29	Vertical
7386.00	17.43	36.49	6.93	26.79	34.06		54.00	-19	.94	Vertical
12310.00	15.15	38.83	10.41	24.90	39.49		54.00	-14	.51	Vertical
1648.00	25.76	24.87	2.55	27.09	27.09 26.09		54.00	-27	'.91	Horizontal
2483.50	35.79	27.53	3.49	29.93	36.88		54.00	-17	'.12	Horizontal
2500.00	31.97	27.55	3.52	30.70	32.34		54.00	-21	.66	Horizontal
4924.00	20.97	31.89	5.46	23.96	34.36		54.00	-19	.64	Horizontal
7386.00	18.11	36.49	6.93	26.79	.79 34.74		54.00	-19	.26	Horizontal
12310.00	15.86	38.83	10.41	24.90	40.20		54.00	-13	3.80	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.	11g	Test channe	nel: Lowest		Remark:		Peal	<	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Le	ad vel uV)	Level (dBuV/m)	Limit Line (dBuV/m)		rer mit B)	polarization
1384.00	32.45	25.63	2.43	21	.35	39.16	74.00	-34	.84	Vertical
2390.00	45.67	27.59	3.33	30	.10	46.49	74.00	-27	.51	Vertical
2400.00	50.64	27.58	3.37	30	.10	51.49	74.00	-22	.51	Vertical
4824.00	33.48	31.79	5.34	24	.07	46.54	74.00	-27	.46	Vertical
7236.00	30.19	36.19	6.88	26	.44	46.82	74.00	-27	.18	Vertical
9648.00	28.75	38.07	8.96	25	.36	50.42	74.00	-23	.58	Vertical
1384.00	33.69	25.63	2.43	21	.35	40.40	74.00	-33	.60	Horizontal
2390.00	46.88	27.59	3.33	30	.10	47.70	74.00	-26	.30	Horizontal
2400.00	51.82	27.58	3.37	30	.10	52.67	74.00	-21	.33	Horizontal
4824.00	34.63	31.79	5.34	24	.07	47.69	74.00	-26	.31	Horizontal
7236.00	31.31	36.19	6.88	26	.44	47.94	74.00	-26	.06	Horizontal
9648.00	29.84	38.07	8.96	25	.36	51.51	74.00	-22	.49	Horizontal

Test mode	: 802	2.11g	Test char	nel:	Lowe	st	Remark:	Ave	erage
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dB _l	el e	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit	polarization
1384.00	19.99	25.63	2.43	21.3	35	26.70	54.00	-27.30	Vertical
2390.00	29.31	27.59	3.33	30.	10	30.13	54.00	-23.87	Vertical
2400.00	33.63	27.58	3.37	30.	10	34.48	54.00	-19.52	Vertical
4824.00	17.22	31.79	5.34	24.0	07	30.28	54.00	-23.72	Vertical
7236.00	14.19	36.19	6.88	26.4	44	30.82	54.00	-23.18	Vertical
9648.00	12.23	38.07	8.96	25.3	36	33.90	54.00	-20.10	Vertical
1384.00	21.23	25.63	2.43	21.3	35	27.94	54.00	-26.06	Horizontal
2390.00	30.52	27.59	3.33	30.	10	31.34	54.00	-22.66	Horizontal
2400.00	34.81	27.58	3.37	30.	10	35.66	54.00	-18.34	Horizontal
4824.00	18.37	31.79	5.34	24.0	07	31.43	54.00	-22.57	Horizontal
7236.00	15.31	36.19	6.88	26.4	44	31.94	54.00	-22.06	Horizontal
9648.00	13.32	38.07	8.96	25.3	36	34.99	54.00	-19.01	Horizontal

Test mode:	802.	11g	Test channe	el: Midd	le	Remark:	Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1754.00	41.42	25.09	2.61	28.59	40.53	74.00	-33.47	Vertical
4874.00	34.16	31.85	5.40	24.01	47.40	74.00	-26.60	Vertical
7311.00	29.02	36.37	6.90	26.58	45.71	74.00	-28.29	Vertical
9688.00	25.35	38.13	8.98	25.34	47.12	74.00	-26.88	Vertical
12185.00	26.38	38.92	10.38	25.04	50.64	74.00	-23.36	Vertical
14622.00	23.50	42.33	11.91	24.45	53.29	74.00	-20.71	Vertical
1754.00	41.67	25.09	2.61	28.59	40.78	74.00	-33.22	Horizontal
4874.00	34.34	31.85	5.40	24.01	47.58	74.00	-26.42	Horizontal
7311.00	29.13	36.37	6.90	26.58	45.82	74.00	-28.18	Horizontal
9688.00	25.39	38.13	8.98	25.34	47.16	74.00	-26.84	Horizontal
12185.00	26.35	38.92	10.38	25.04	50.61	74.00	-23.39	Horizontal
14622.00	23.40	42.33	11.91	24.45	53.19	74.00	-20.81	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode	802	2.11g	Test char	nnel:	Middl	е	Re	emark:	A ¹	verage
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dB _L	el	Emission Level (dBµV/m)		Limit (dBµV/m)	Over limit	polarization
1754.00	27.66	25.09	2.61	28.	59	26.77		54.00	-27.23	3 Vertical
4874.00	19.08	31.85	5.40	24.0	01	32.32		54.00	-21.68	3 Vertical
7311.00	15.92	36.37	6.90	26.5	58	32.61		54.00	-21.39	9 Vertical
9688.00	13.12	38.13	8.98	25.3	34	34.89		54.00	-19.1	1 Vertical
12185.00	14.26	38.92	10.38	25.0)4	38.52		54.00	-15.48	3 Vertical
14622.00	11.49	42.33	11.91	24.4	45	41.28		54.00	-12.72	2 Vertical
1754.00	27.91	25.09	2.61	28.5	59	27.02		54.00	-26.98	B Horizontal
4874.00	19.26	31.85	5.40	24.0	01	32.50		54.00	-21.50) Horizontal
7311.00	16.03	36.37	6.90	26.	58	32.72		54.00	-21.28	B Horizontal
9688.00	13.16	38.13	8.98	25.3	34	34.93		54.00	-19.07	7 Horizontal
12185.00	14.23	38.92	10.38	25.0	04	38.49		54.00	-15.5´	1 Horizontal
14622.00	11.39	42.33	11.91	24.4	45	41.18		54.00	-12.82	2 Horizontal

Test mode:	802.	11g	Test channe	el: Highe	est	Remark:	Pea	Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
1648.00	37.48	24.87	2.55	27.09	37.81	74.00	-36.19	Vertical	
2483.50	47.08	27.53	3.49	29.93	48.17	74.00	-25.83	Vertical	
2500.00	51.75	27.55	3.52	30.70	52.12	74.00	-21.88	Vertical	
4924.00	31.39	31.89	5.46	23.96	44.78	74.00	-29.22	Vertical	
7386.00	28.44	36.49	6.93	26.79	45.07	74.00	-28.93	Vertical	
12310.00	26.10	38.83	10.41	24.90	50.44	74.00	-23.56	Vertical	
1648.00	38.34	24.87	2.55	27.09	38.67	74.00	-35.33	Horizontal	
2483.50	47.87	27.53	3.49	29.93	48.96	74.00	-25.04	Horizontal	
2500.00	52.47	27.55	3.52	30.70	52.84	74.00	-21.16	Horizontal	
4924.00	32.04	31.89	5.46	23.96	45.43	74.00	-28.57	Horizontal	
7386.00	29.02	36.49	6.93	26.79	45.65	74.00	-28.35	Horizontal	
12310.00	26.61	38.83	10.41	24.90	50.95	74.00	-23.05	Horizontal	

Test mode	: 802	2.11g	Test char	nel:	Highe	est	Remark:		Aver	age
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dB _L	el	Emission Level (dBµV/m)	Limit (dBµV/r	n) Ove		polarization
1648.00	23.89	24.87	2.55	27.0	09	24.22	54.00	-2	9.78	Vertical
2483.50	33.94	27.53	3.49	29.9	93	35.03	54.00	-1	8.97	Vertical
2500.00	30.14	27.55	3.52	30.7	70	30.51	54.00	-2	3.49	Vertical
4924.00	19.16	31.89	5.46	23.9	96	32.55	54.00	-2	1.45	Vertical
7386.00	16.32	36.49	6.93	26.7	79	32.95	54.00	-2	1.05	Vertical
12310.00	14.09	38.83	10.41	24.9	90	38.43	54.00	-1	5.57	Vertical
1648.00	24.75	24.87	2.55	27.0	09	25.08	54.00	-2	8.92	Horizontal
2483.50	34.73	27.53	3.49	29.9	93	35.82	54.00	-1	8.18	Horizontal
2500.00	30.86	27.55	3.52	30.7	70	31.23	54.00	-2	2.77	Horizontal
4924.00	19.81	31.89	5.46	23.9	96	33.20	54.00	-2	0.80	Horizontal
7386.00	16.90	36.49	6.93	26.7	79	33.53	54.00	-2	0.47	Horizontal
12310.00	14.60	38.83	10.41	24.9	90	38.94	54.00	-1	5.06	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.	11n-H20	Test channe	el: Lowe	est	Remark:	Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1384.00	32.98	25.63	2.43	21.35	39.69	74.00	-34.31	Vertical
2390.00	46.22	27.59	3.33	30.10	47.04	74.00	-26.96	Vertical
2400.00	51.21	27.58	3.37	30.10	52.06	74.00	-21.94	Vertical
4824.00	34.07	31.79	5.34	24.07	47.13	74.00	-26.87	Vertical
7236.00	30.80	36.19	6.88	26.44	47.43	74.00	-26.57	Vertical
9648.00	29.38	38.07	8.96	25.36	51.05	74.00	-22.95	Vertical
1384.00	33.77	25.63	2.43	21.35	40.48	74.00	-33.52	Horizontal
2390.00	47.04	27.59	3.33	30.10	47.86	74.00	-26.14	Horizontal
2400.00	52.06	27.58	3.37	30.10	52.91	74.00	-21.09	Horizontal
4824.00	34.95	31.79	5.34	24.07	48.01	74.00	-25.99	Horizontal
7236.00	31.71	36.19	6.88	26.44	48.34	74.00	-25.66	Horizontal
9648.00	30.32	38.07	8.96	25.36	51.99	74.00	-22.01	Horizontal

Test mode	: 802	2.11n-H20	Test char	nel:	Lowe	st	Remark:		Aver	age
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dB _L	el	Emission Level (dBµV/m)	Limit (dBµV/m)	Ove limit		polarization
1384.00	20.52	25.63	2.43	21.3	35	27.23	54.00	-26	6.77	Vertical
2390.00	29.86	27.59	3.33	30.	10	30.68	54.00	-23	3.32	Vertical
2400.00	34.20	27.58	3.37	30.	10	35.05	54.00	-18	3.95	Vertical
4824.00	17.81	31.79	5.34	24.0	07	30.87	54.00	-23	3.13	Vertical
7236.00	14.80	36.19	6.88	26.4	14	31.43	54.00	-22	2.57	Vertical
9648.00	12.86	38.07	8.96	25.3	36	34.53	54.00	-19	9.47	Vertical
1384.00	21.31	25.63	2.43	21.3	35	28.02	54.00	-25	5.98	Horizontal
2390.00	30.68	27.59	3.33	30.	10	31.50	54.00	-22	2.50	Horizontal
2400.00	35.05	27.58	3.37	30.	10	35.90	54.00	-18	3.10	Horizontal
4824.00	18.69	31.79	5.34	24.0	07	31.75	54.00	-22	2.25	Horizontal
7236.00	15.71	36.19	6.88	26.4	14	32.34	54.00	-21	.66	Horizontal
9648.00	13.80	38.07	8.96	25.3	36	35.47	54.00	-18	3.53	Horizontal

Test mode:	802.	11n-H20	Test channe	el: Midd	le	Remark:	Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1754.00	40.51	25.09	2.61	28.59	39.62	74.00	-34.38	Vertical
4874.00	33.23	31.85	5.40	24.01	46.47	74.00	-27.53	Vertical
7311.00	28.07	36.37	6.90	26.58	44.76	74.00	-29.24	Vertical
9688.00	24.38	38.13	8.98	25.34	46.15	74.00	-27.85	Vertical
12185.00	25.39	38.92	10.38	25.04	49.65	74.00	-24.35	Vertical
14622.00	22.49	42.33	11.91	24.45	52.28	74.00	-21.72	Vertical
1754.00	41.24	25.09	2.61	28.59	40.35	74.00	-33.65	Horizontal
4874.00	33.99	31.85	5.40	24.01	47.23	74.00	-26.77	Horizontal
7311.00	28.86	36.37	6.90	26.58	45.55	74.00	-28.45	Horizontal
9688.00	25.20	38.13	8.98	25.34	46.97	74.00	-27.03	Horizontal
12185.00	26.24	38.92	10.38	25.04	50.50	74.00	-23.50	Horizontal
14622.00	23.37	42.33	11.91	24.45	53.16	74.00	-20.84	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode	: 802	2.11n-H20	Test char	nel:	Middl	е	Re	mark:	Ave	erage
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dB _L	el	Emission Level (dBµV/m)		Limit (dBµV/m)	Over limit	polarization
1754.00	26.75	25.09	2.61	28.5	59	25.86		54.00	-28.14	Vertical
4874.00	18.15	31.85	5.40	24.0)1	31.39		54.00	-22.61	Vertical
7311.00	14.97	36.37	6.90	26.5	58	31.66		54.00	-22.34	Vertical
9688.00	12.15	38.13	8.98	25.3	34	33.92		54.00	-20.08	Vertical
12185.00	13.27	38.92	10.38	25.0)4	37.53		54.00	-16.47	Vertical
14622.00	10.48	42.33	11.91	24.4	1 5	40.27		54.00	-13.73	Vertical
1754.00	27.48	25.09	2.61	28.5	59	26.59		54.00	-27.41	Horizontal
4874.00	18.91	31.85	5.40	24.0)1	32.15		54.00	-21.85	Horizontal
7311.00	15.76	36.37	6.90	26.5	58	32.45		54.00	-21.55	Horizontal
9688.00	12.97	38.13	8.98	25.3	34	34.74		54.00	-19.26	Horizontal
12185.00	14.12	38.92	10.38	25.0)4	38.38		54.00	-15.62	Horizontal
14622.00	11.36	42.33	11.91	24.4	15	41.15		54.00	-12.85	Horizontal

Test mode:	802.	11n-H20	Test channel: Highest		est	Remark:	Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1648.00	37.71	24.87	2.55	27.09	38.04	74.00	-35.96	Vertical
2483.50	47.24	27.53	3.49	29.93	48.33	74.00	-25.67	Vertical
2500.00	51.84	27.55	3.52	30.70	52.21	74.00	-21.79	Vertical
4924.00	31.41	31.89	5.46	23.96	44.80	74.00	-29.20	Vertical
7386.00	28.39	36.49	6.93	26.79	45.02	74.00	-28.98	Vertical
12310.00	25.98	38.83	10.41	24.90	50.32	74.00	-23.68	Vertical
1648.00	38.34	24.87	2.55	27.09	38.67	74.00	-35.33	Horizontal
2483.50	47.90	27.53	3.49	29.93	48.99	74.00	-25.01	Horizontal
2500.00	52.53	27.55	3.52	30.70	52.90	74.00	-21.10	Horizontal
4924.00	32.13	31.89	5.46	23.96	45.52	74.00	-28.48	Horizontal
7386.00	29.14	36.49	6.93	26.79	45.77	74.00	-28.23	Horizontal
12310.00	26.76	38.83	10.41	24.90	51.10	74.00	-22.90	Horizontal

Test mode	: 802	2.11n-H20	Test char	nnel:	Highe	est	Remark:		Aver	age
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dBµ	el	Emission Level (dB _µ V/m)	Limit (dBµV/m)	Over limit		polarization
1648.00	24.12	24.87	2.55	27.0	9	24.45	54.00	-29.	.55	Vertical
2483.50	34.10	27.53	3.49	29.9	93	35.19	54.00	-18.	.81	Vertical
2500.00	30.23	27.55	3.52	30.7	' 0	30.60	54.00	-23.	.40	Vertical
4924.00	19.18	31.89	5.46	23.9	96	32.57	54.00	-21.	.43	Vertical
7386.00	16.27	36.49	6.93	26.7	' 9	32.90	54.00	-21.	.10	Vertical
12310.00	13.97	38.83	10.41	24.9	90	38.31	54.00	-15.	.69	Vertical
1648.00	24.75	24.87	2.55	27.0	9	25.08	54.00	-28.	.92	Horizontal
2483.50	34.76	27.53	3.49	29.9	93	35.85	54.00	-18.	.15	Horizontal
2500.00	30.92	27.55	3.52	30.7	' 0	31.29	54.00	-22.	.71	Horizontal
4924.00	19.90	31.89	5.46	23.9	96	33.29	54.00	-20.	.71	Horizontal
7386.00	17.02	36.49	6.93	26.7	' 9	33.65	54.00	-20.	.35	Horizontal
12310.00	14.75	38.83	10.41	24.9	90	39.09	54.00	-14.	.91	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.	11n-H40	Test channe	el: Lowe	est	Remark:	Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1725.00	39.25	25.02	2.59	28.36	38.50	74.00	-35.50	Vertical
2390.00	46.09	27.59	3.33	30.10	46.91	74.00	-27.09	Vertical
2400.00	49.73	27.58	3.37	30.10	50.58	74.00	-23.42	Vertical
4844.00	30.31	31.82	5.36	24.05	43.44	74.00	-30.56	Vertical
7266.00	27.80	36.28	6.89	26.51	44.46	74.00	-29.54	Vertical
12110.00	25.11	38.98	10.37	25.11	49.35	74.00	-24.65	Vertical
1725.00	40.49	25.02	2.59	28.36	39.74	74.00	-34.26	Horizontal
2390.00	47.30	27.59	3.33	30.10	48.12	74.00	-25.88	Horizontal
2400.00	50.91	27.58	3.37	30.10	51.76	74.00	-22.24	Horizontal
4844.00	31.46	31.82	5.36	24.05	44.59	74.00	-29.41	Horizontal
7266.00	28.92	36.28	6.89	26.51	45.58	74.00	-28.42	Horizontal
12110.00	26.20	38.98	10.37	25.11	50.44	74.00	-23.56	Horizontal

Test mode	: 802	2.11n-H40	Test char	nel:	Lowe	st	Remark:	P	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dBµ	el	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit	polarization
1725.00	21.99	25.02	2.59	28.3	36	21.24	54.00	-32.7	'6 Vertical
2390.00	26.64	27.59	3.33	30.1	10	27.46	54.00	-26.5	54 Vertical
2400.00	32.01	27.58	3.37	30.1	10	32.86	54.00	-21.1	4 Vertical
4844.00	18.08	31.82	5.36	24.0)5	31.21	54.00	-22.7	'9 Vertical
7266.00	15.68	36.28	6.89	26.5	51	32.34	54.00	-21.6	66 Vertical
12110.00	12.10	38.98	10.37	25.1	11	36.34	54.00	-17.6	66 Vertical
1725.00	23.23	25.02	2.59	28.3	36	22.48	54.00	-31.5	52 Horizontal
2390.00	27.85	27.59	3.33	30.1	10	28.67	54.00	-25.3	3 Horizontal
2400.00	33.19	27.58	3.37	30.1	10	34.04	54.00	-19.9	6 Horizontal
4844.00	19.23	31.82	5.36	24.0)5	32.36	54.00	-21.6	34 Horizontal
7266.00	16.80	36.28	6.89	26.5	51	33.46	54.00	-20.5	64 Horizontal
12110.00	13.19	38.98	10.37	25.1	11	37.43	54.00	-16.5	7 Horizontal

Test mode:	802.	11n-H40	Test channe	nnel: Middle		Remark:	Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1754.00	42.20	25.09	2.61	28.59	41.31	74.00	-32.69	Vertical
4874.00	35.06	31.85	5.40	24.01	48.30	74.00	-25.70	Vertical
7311.00	30.04	36.37	6.90	26.58	46.73	74.00	-27.27	Vertical
9688.00	26.49	38.13	8.98	25.34	48.26	74.00	-25.74	Vertical
12185.00	27.64	38.92	10.38	25.04	51.90	74.00	-22.10	Vertical
14622.00	24.88	42.33	11.91	24.45	54.67	74.00	-19.33	Vertical
1754.00	42.45	25.09	2.61	28.59	41.56	74.00	-32.44	Horizontal
4874.00	35.24	31.85	5.40	24.01	48.48	74.00	-25.52	Horizontal
7311.00	30.15	36.37	6.90	26.58	46.84	74.00	-27.16	Horizontal
9688.00	26.53	38.13	8.98	25.34	48.30	74.00	-25.70	Horizontal
12185.00	27.61	38.92	10.38	25.04	51.87	74.00	-22.13	Horizontal
14622.00	24.78	42.33	11.91	24.45	54.57	74.00	-19.43	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode	: 802	2.11n-H40	Test char	nel:	Middl	е	Ren	nark:	Av	erage
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dB _L	el	Emission Level (dBµV/m)	(Limit dB _µ V/m)	Over limit	polarization
1754.00	25.64	25.09	2.61	28.5	59	24.75		54.00	-29.25	Vertical
4874.00	22.61	31.85	5.40	24.0)1	35.85		54.00	-18.15	Vertical
7311.00	17.70	36.37	6.90	26.5	58	34.39		54.00	-19.61	Vertical
9688.00	14.26	38.13	8.98	25.3	34	36.03		54.00	-17.97	Vertical
12185.00	15.52	38.92	10.38	25.0)4	39.78		54.00	-14.22	Vertical
14622.00	12.87	42.33	11.91	24.4	15	42.66		54.00	-11.34	Vertical
1754.00	25.89	25.09	2.61	28.5	59	25.00		54.00	-29.00	Horizontal
4874.00	22.79	31.85	5.40	24.0)1	36.03		54.00	-17.97	Horizontal
7311.00	17.81	36.37	6.90	26.5	58	34.50		54.00	-19.50	Horizontal
9688.00	14.30	38.13	8.98	25.3	34	36.07		54.00	-17.93	Horizontal
12185.00	15.49	38.92	10.38	25.0)4	39.75		54.00	-14.25	Horizontal
14622.00	12.77	42.33	11.91	24.4	15	42.56		54.00	-11.44	Horizontal

Test mode:	802.	11n-H40	Test channe	el: Highe	: Highest		Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1954.00	37.97	25.95	2.74	30.69	35.97	74.00	-38.03	Vertical
2483.50	48.68	27.53	3.49	29.93	49.77	74.00	-24.23	Vertical
2500.00	42.84	27.55	3.52	30.70	43.21	74.00	-30.79	Vertical
4904.00	33.15	31.88	5.42	23.97	46.48	74.00	-27.52	Vertical
7356.00	30.28	36.45	6.92	26.70	46.95	74.00	-27.05	Vertical
9748.00	28.02	38.27	9.00	25.30	49.99	74.00	-24.01	Vertical
1954.00	38.83	25.95	2.74	30.69	36.83	74.00	-37.17	Horizontal
2483.50	49.47	27.53	3.49	29.93	50.56	74.00	-23.44	Horizontal
2500.00	43.56	27.55	3.52	30.70	43.93	74.00	-30.07	Horizontal
4904.00	33.80	31.88	5.42	23.97	47.13	74.00	-26.87	Horizontal
7356.00	30.86	36.45	6.92	26.70	47.53	74.00	-26.47	Horizontal
9748.00	28.53	38.27	9.00	25.30	50.50	74.00	-23.50	Horizontal

Test mode	: 802	2.11n-H40	Test char	nel:	Highe	est	Remark:		Aver	age
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Read Lev (dB _L	el	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit	r	polarization
1954.00	25.41	25.95	2.74	30.6	69	23.41	54.00	-30	.59	Vertical
2483.50	35.54	27.53	3.49	29.9	93	36.63	54.00	-17	.37	Vertical
2500.00	34.22	27.55	3.52	30.7	70	34.59	54.00	-19	.41	Vertical
4904.00	20.92	31.88	5.42	23.9	97	34.25	54.00	-19	.75	Vertical
7356.00	18.16	36.45	6.92	26.7	70	34.83	54.00	-19	.17	Vertical
9748.00	16.01	38.27	9.00	25.3	30	37.98	54.00	-16	.02	Vertical
1954.00	26.27	25.95	2.74	30.6	69	24.27	54.00	-29	.73	Horizontal
2483.50	36.33	27.53	3.49	29.9	93	37.42	54.00	-16	.58	Horizontal
2500.00	34.94	27.55	3.52	30.7	70	35.31	54.00	-18	.69	Horizontal
4904.00	21.57	31.88	5.42	23.9	97	34.90	54.00	-19	.10	Horizontal
7356.00	18.74	36.45	6.92	26.7	70	35.41	54.00	-18	.59	Horizontal
9748.00	16.52	38.27	9.00	25.3	30	38.49	54.00	-15	.51	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.9 RF Exposure Evaluation

5.9.1 Limits

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)					
	(A) Limits for Occupational/Controlled Exposures								
0.3–3.0	614	1.63	*(100)	6					
3.0–30	1842/f	4.89/f	*(900/f ²)	6					
30–300	61.4	0.163	1.0	6					
300–1500			f/300	6					
1500–100,000			5	6					
	(B) Limits for Genera	al Population/Uncontrolled	l Exposure						
0.3–1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f ²)	30					
30–300	27.5	0.073	0.2	30					
300–1500			f/1500	30					
1500-100,000			1.0	30					

f = frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

5.9.2 Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.9.3 Test Result of RF Exposure Evaluation

802.11b

Channel	Output power to	Power Density at R=20cm	Limit (mW/cm ²)	Result
	antenna (mW)	(mW/cm ²)		
Lowest	143.55	0.0451	1.0	Pass
Middle	146.89	0.0462	1.0	Pass
Highest	109.14	0.0343	1.0	Pass

802.11g

Channel	Output power to	Power Density at R=20cm	Limit (mW/cm ²)	Result
	antenna (mW)	(mW/cm ²)		
Lowest	180.30	0.0567	1.0	Pass
Middle	142.89	0.0449	1.0	Pass
Highest	118.85	0.0374	1.0	Pass

802.11n(H20)

Channel	Output power to	Power Density at R=20cm	Limit (mW/cm ²)	Result
	antenna (mW)	(mW/cm ²)		
Lowest	299.23	0.0941	1.0	Pass
Middle	241.55	0.0759	1.0	Pass
Highest	215.28	0.0677	1.0	Pass

802.11n(H40)

Channel	Output power to	Power Density at R=20cm	Limit (mW/cm ²)	Result
	antenna (mW)	(mW/cm ²)		
Lowest	147.91	0.0465	1.0	Pass
Middle	126.77	0.0398	1.0	Pass
Highest	109.90	0.0345	1.0	Pass

Remark: antenna gain=1.58dBi

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960