- **17.1.** Для каждого из следующих операторов T **1)** найдите $\sigma_{\text{ess}}(T)$; **2)** вычислите $\operatorname{ind}(T-\lambda \mathbf{1})$ для всевозможных $\lambda \in \mathbb{C} \setminus \sigma_{\text{ess}}(T)$:
- (a) диагональный оператор в ℓ^p или в c_0 ;
- (b) оператор умножения на непрерывную функцию в C[a, b];
- (c) оператор умножения на ограниченную измеримую функцию в $L^p(X,\mu)$;
- (d) оператор левого сдвига в ℓ^p или в c_0 ;
- (e) оператор правого сдвига в ℓ^p или в c_0 ;
- (f) оператор двустороннего сдвига в $\ell^p(\mathbb{Z})$ или в $c_0(\mathbb{Z})$;
- (g) произвольный компактный оператор.
- **17.2.** Пусть $f \in C(\mathbb{T})$, и пусть T_f соответствующий оператор Тёплица в пространстве Харди $H^2(\mathbb{T})$.
- 1) Предположим, что f(z) = 0 для некоторого $z \in \mathbb{T}$. Докажите, что T_f не фредгольмов.
- **2)** Найдите $\sigma_{\rm ess}(T_f)$ в терминах f.
- **3-b**) Найдите $||T_f||$ в терминах f.
- **17.3.** Пусть H бесконечномерное гильбертово пространство. Докажите, что для каждого $n \in \mathbb{Z}$ в H существует фредгольмов оператор индекса n.
- **17.4** (четвертое доказательство аддитивности индекса). Пусть X, Y, Z банаховы пространства и $T: X \to Y, S: Y \to Z$ фредгольмовы операторы. Рассмотрите оператор

$$\begin{pmatrix} \mathbf{1}_Y & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} \mathbf{1}_Y \cos t & -\mathbf{1}_Y \sin t \\ \mathbf{1}_Y \sin t & \mathbf{1}_Y \cos t \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & \mathbf{1}_Y \end{pmatrix},$$

действующий из $X \oplus Y$ в $Y \oplus Z$, и, пользуясь непрерывностью индекса, получите еще одно доказательство формулы $\operatorname{ind}(ST) = \operatorname{ind} S + \operatorname{ind} T$.

Теорема 1. Группа GL(H) ограниченных обратимых операторов в гильбертовом пространстве H линейно связна.

Доказать эту теорему мы сможем через некоторое время 1 . В оставшейся части листка разрешается ею пользоваться.

- **17.5.** Пусть H гильбертово пространство. Докажите, что фредгольмовы операторы $S,T \in \mathcal{B}(H)$ лежат в одной компоненте связности множества $\mathscr{F}red(H) \iff$ их можно соединить непрерывным путем в $\mathscr{F}red(H) \iff$ ind $S = \operatorname{ind} T$.
- **17.6.** Пусть H бесконечномерное гильбертово пространство и $\mathcal{Q}(H) = \mathcal{B}(H)/\mathcal{K}(H)$ алгебра Калкина. Обозначим через G группу обратимых элементов в $\mathcal{Q}(H)$, а через $G_0 \subset G$ связную компоненту единицы. Докажите, что фредгольмов индекс индуцирует изоморфизм групп $G/G_0 \cong \mathbb{Z}$.
- **17.7.** Пусть X, Y нормированные пространства. Докажите, что отображение

$$Y \otimes X^* \to \mathscr{F}(X,Y), \quad x \otimes f \mapsto f(\cdot)x$$
 (1)

— изоморфизм векторных пространств.

 $^{^{1}}$ На самом деле верно гораздо более сильное утверждение: если H бесконечномерно, то группа GL(H) стягиваема, т.е. гомотопически эквивалентна точке (теорема Кюйпера). Это уже гораздо более сложное утверждение, и мы его доказывать не будем. См. добавление к книге М. Атья «Лекции по K-теории», М.: Мир, 1967.

Определение 17.1. Пусть X — нормированное пространство. Функционал $\mathrm{Tr}\colon \mathscr{F}(X) \to \mathbb{C}$ строится как композиция отображения $\mathscr{F}(X) \to X \otimes X^*$, обратного к (1), и спаривания

$$X \otimes X^* \to \mathbb{C}, \quad x \otimes f \mapsto f(x).$$

Этот функционал называется следом.

- **17.8.** 1) Покажите, что при $\dim X < \infty$ определение 17.1 эквивалентно обычному определению следа.
- **2)** Докажите, что для $T \in \mathcal{B}(X,Y)$ и $S \in \mathcal{F}(Y,X)$ справедлива формула $\mathrm{Tr}(ST) = \mathrm{Tr}(TS)$.
- **17.9** (абстрактная формула Атья-Ботта). Пусть X, Y банаховы пространства и $T: X \to Y$ фредгольмов оператор. Выберем ограниченный оператор $S: Y \to X$ так, чтобы операторы $\mathbf{1}_X ST$ и $\mathbf{1}_Y TS$ были конечномерными. Докажите, что

$$ind T = Tr(\mathbf{1}_X - ST) - Tr(\mathbf{1}_Y - TS).$$

В частности, если X = Y, то ind T = Tr([T, S]).

17.10 (пятое доказательство аддитивности индекса). Придумайте доказательство формулы $\operatorname{ind}(ST) = \operatorname{ind} S + \operatorname{ind} T$, основанное на результате предыдущей задачи.

- **18.1.** Для каждого из следующих операторов T найдите их (гильбертово) сопряженные:
- 1) диагональный оператор в ℓ^2 ;
- 2) оператор умножения на ограниченную измеримую функцию в $L^2(X,\mu)$;
- 3) операторы левого и правого сдвига в ℓ^2 ;
- 4) оператор двустороннего сдвига в $\ell^2(\mathbb{Z})$;
- 5) интегральный оператор Гильберта–Шмидта в $L^2(X,\mu)$ (см. задачу 2.7);
- 6) оператор T в $L^2[0,1]$, действующий по формуле

$$(Tf)(x) = \int_0^x f(t) dt.$$

18.2. Какие из операторов предыдущей задачи самосопряженные? унитарные? нормальные? являются ортогональными проекторами?

18.3. Докажите, что

- 1) каждый непустой компакт $K \subset \mathbb{C}$ является спектром некоторого нормального оператора в сепарабельном гильбертовом пространстве;
- 2) каждый непустой компакт $K \subset \mathbb{R}$ является спектром некоторого самосопряженного оператора в сепарабельном гильбертовом пространстве;
- 3) каждый непустой компакт $K \subseteq \mathbb{T}$ является спектром некоторого унитарного оператора в сепарабельном гильбертовом пространстве.
- 18.4-b. Что можно сказать про спектр изометрии в гильбертовом пространстве?
- 18.5. Вычислите норму оператора из п. 6 задачи 18.1.

Указание: оператор T^*T компактен и самосопряжен.

- **18.6.** Докажите, что следующие свойства оператора V в гильбертовом пространстве H эквивалентны:
 - (i) $VV^*V = V$;
 - (ii) V^*V проектор;
 - (iii) ограничение V на $(\operatorname{Ker} V)^{\perp}$ изометрия.

Оператор V с такими свойствами называется *частичной изометрией*.

- **18.7.** Пусть V частичная изометрия в гильбертовом пространстве H.
- 1) Докажите, что V^* частичная изометрия.
- 2) Положим $H_0 = (\operatorname{Ker} V)^{\perp}$ и $H_1 = \operatorname{Im} V$. Докажите, что операторы $V|_{H_0} \colon H_0 \to H_1$ и $V^*|_{H_1} \colon H_1 \to H_0$ обратные друг другу изометрические изоморфизмы, V^*V ортогональный проектор на H_0 , а VV^* ортогональный проектор на H_1 . Эти проекторы называются, соответственно, начальным и конечным проекторами частичной изометрии V.
- **18.8. 1)** Докажите, что оператор $T \in \mathcal{B}(H)$ нормален тогда и только тогда, когда $||Tx|| = ||T^*x||$ для всех $x \in H$.
- **2)** Докажите, что если оператор $T \in \mathcal{B}(H)$ нормален, то $\operatorname{Ker} T = \operatorname{Ker} T^*$ и $H = \operatorname{Ker} T \oplus \overline{\operatorname{Im} T}$ (ортогональная прямая сумма).
- **18.9.** Пусть $T \in \mathcal{B}(H)$ нормальный оператор, $x \in H$ и $Tx = \lambda x$ для некоторого $\lambda \in \mathbb{C}$. Докажите, что $T^*x = \bar{\lambda}x$.
- **18.10.** Докажите, что собственные векторы нормального оператора, отвечающие разным собственным значениям, ортогональны.

18.11. Пусть T — нормальный оператор в гильбертовом пространстве H (или нормальный элемент любой C^* -алгебры). Докажите, что $r(T) = \|T\|$.

Указание: оператор T^*T самосопряжен.

- 18.12. Докажите, что остаточный спектр нормального оператора пуст.
- **18.13.** Пусть $T \in \mathcal{B}(H)$ нормальный оператор и $H_0 \subseteq H$ замкнутое T-инвариантное подпространство. Обязательно ли H_0^{\perp} T-инвариантно?
- 18.14. Обобщите теорему Гильберта-Шмидта на случай компактных нормальных операторов.
- **18.15-b.** Введем инволюцию на $C^n[a,b]$ формулой $f^*(t) = \overline{f(t)}$. Докажите, что $C^n[a,b]$ инволютивная банахова алгебра, но не C^* -алгебра при $n \ge 1$.
- **18.16-b.** Введем инволюцию на дисковой алгебре $\mathscr{A}(\overline{\mathbb{D}})$ формулой $f^*(z) = \overline{f(\bar{z})}$. Докажите, что $\mathscr{A}(\overline{\mathbb{D}})$ инволютивная банахова алгебра, но не C^* -алгебра.
- **18.17-b. 1)** Докажите, что спектр любого самосопряженного элемента унитальной C^* -алгебры A содержится в \mathbb{R} .
- **2)** Верно ли это, если A инволютивная банахова алгебра?

Указание. 1) Для всех $\lambda \in \sigma(a)$ и всех t > 0 справедливо неравенство $|\lambda \pm it|^2 \leqslant ||a||^2 + t^2$.

18.18-b. Пусть A — унитальная C^* -алгебра, $B \subseteq A$ — замкнутая *-подалгебра, причем $1_A \in B$. Докажите, что B спектрально инвариантна в A.

Указание. Возьмите самосопряженный элемент $a \in B$, обратимый в A, рассмотрите a+it1 при $t \in \mathbb{R}$ и воспользуйтесь предыдущей задачей.

- **18.19.** Найдите все λ , при которых на отрезке $[0,\pi]$ имеет нетривиальное решение задача Штурма–Лиувилля
 - 1) $-u'' = \lambda u$, $u(0) = u(\pi) = 0$;
 - 2) $-u'' = \lambda u$, $u'(0) = u'(\pi) = 0$.

Найдите соответствующие решения.

- **18.20.** Из предыдущей задачи выведите тотальность тригонометрической системы в $L^2[-\pi,\pi]$.
- **18.21.** Пусть (X, μ) пространство с мерой, $K \in L^2(X \times X, \mu \times \mu)$ и T_K интегральный оператор Гильберта—Шмидта в пространстве $L^2(X, \mu)$ (компактный в силу задачи 15.8). Представим оператор T_K в виде

$$T_K f = \sum_n \lambda_n \langle f, e_n \rangle f_n, \tag{1}$$

где (e_n) и (f_n) — ортонормированные системы в $L^2(X,\mu)$; такое разложение всегда возможно в силу теоремы Шмидта. Докажите, что $\sum_n |\lambda_n|^2 < \infty$.

- **18.22.** Пусть X метризуемый компакт, μ регулярная борелевская мера на X, и пусть $K \in C(X \times X)$. Представим оператор Гильберта–Шмидта T_K в виде (1), где $\lambda_n \neq 0$ для всех n. Докажите, что
- 1) $f_n \in C(X)$ для всех n;
- **2)** ряд (1) сходится равномерно и абсолютно для каждой $f \in L^2(X, \mu)$;
- 3) $g = \sum_{n} \langle g, f_n \rangle f_n$ для любой $g \in \text{Im } T_K$, причем этот ряд сходится равномерно и абсолютно.

Указание. 1) Воспользуйтесь задачей 15.9. 2) Сначала убедитесь, что $\sup_{x} \sum_{n} |\lambda_{n} f_{n}(x)|^{2} < \infty$.

18.23-b. Выведите из задач 18.19–18.22 равномерную и абсолютную сходимость рядов Фурье достаточно гладких периодических функций на прямой.

- **19.1.** Пусть X, Y топологические векторные пространства. Докажите, что
- **1)** линейный оператор $T: X \to Y$ непрерывен \iff он непрерывен в нуле;
- **2)** множество $\mathscr{L}(X,Y)$ непрерывных линейных операторов из X в Y векторное подпространство в $\mathrm{Hom}_{\mathbb{K}}(X,Y)$.
- **19.2.** Пусть (X, P) полинормированное пространство. Докажите, что для каждого $x \in X$ все множества вида $U_{p_1,\dots,p_n,\varepsilon}(x) = \{y \in X : p_i(y-x) < \varepsilon \ \forall i=1,\dots,n\}$ (где $p_1,\dots,p_n \in P$ и $\varepsilon > 0$) образуют базу в x.
- **19.3.** Докажите, что векторное пространство с топологией, порожденной семейством полунорм, является топологическим векторным пространством.
- **19.4.** Докажите, что направленность (x_{λ}) в полинормированном пространстве (X, P) сходится к $x \in X$ тогда и только тогда, когда $p(x x_{\lambda}) \to 0$ для всех $p \in P$.
- **19.5.** Докажите, что топология на векторном пространстве X, порожденная семейством полунорм P, хаусдорфова тогда и только тогда, когда для каждого $0 \neq x \in X$ найдется такая полунорма $p \in P$, что p(x) > 0.
- **19.6.** Для полунормы p на векторном пространстве X положим $U_p = \{x \in X : p(x) < 1\}$. Докажите, что **1**) $U_p \cap U_q = U_{\max\{p,q\}};$ **2**) $U_p \subseteq U_q \iff q \leqslant p;$ **3**) $U_p \prec U_q \iff q \prec p.$ (Здесь отношение \prec для полунорм означает «мажорируется», а для множеств «поглощается»; см. лекцию.)
- **19.7.** Докажите, что семейство полунорм P на векторном пространстве X является направленным (относительно порядка \prec) тогда и только тогда, когда для каждого $x \in X$ (или, эквивалентно, для x=0) множества вида $U_{p,\varepsilon}(x)$ (где $p \in P, \ \varepsilon > 0$) образуют базу в x.
- **19.8.** Докажите, что **1)** выпуклая оболочка и **2)** закругленная оболочка открытого подмножества в топологическом векторном пространстве открыты.
- **19.9.** Докажите, что хаусдорфова локально топология на векторном пространстве, порожденная семейством полунорм P, нормируема тогда и только тогда, когда P эквивалентно некоторому своему конечному подсемейству. (Если семейство P направленное, то последнее равносильно тому, что $P \sim \{p_0\}$ для некоторого $p_0 \in P$).
- **19.10.** На каких из следующих топологических векторных пространств существует хотя бы одна непрерывная норма?
- 1) \mathbb{K}^S (где S множество);
- **2)** C(X) (где X тихоновское¹ топологическое пространство);
- 3) пространство голоморфных функций $\mathcal{O}(U)$ на открытом множестве $U \subseteq \mathbb{C}$;
- **4)** $C^{\infty}[a,b]$;
- **5)** $C^{\infty}(U)$, где $U \subseteq \mathbb{R}^n$ открытое множество;
- 6) нормированное пространство, снабженное слабой топологией;
- 7) сопряженное к нормированному пространству, снабженное слабой топологией;
- 8) $\mathscr{B}(X,Y)$ с сильной операторной топологией (где X и Y нормированные пространства);
- 9) $\mathscr{B}(X,Y)$ со слабой операторной топологией (где X и Y нормированные пространства).
- 19.11. Какие пространства из предыдущей задачи нормируемы?

¹Хаусдорфово топологическое пространство X называется muxoнoвckum, если для каждого замкнутого множества $F \subset X$ и каждого $x \in X \setminus F$ найдется такая непрерывная функция $f \colon X \to [0,1]$, что $f|_F = 0$ и f(x) = 1. Тихоновскими являются все метризуемые пространства (докажите!), все хаусдорфовы компакты и, более общим образом, все *нормальные* пространства (см. любой учебник по общей топологии).

- **19.12.** 1) Докажите, что на конечномерном векторном пространстве любые два семейства полунорм, каждое из которых задает хаусдорфову топологию, эквивалентны.
- **2-b)** Докажите, что на конечномерном векторном пространстве есть только одна топология, превращающая его в хаусдорфово топологическое векторное пространство.
- **19.13.** Пусть S множество.
- 1) Докажите, что для любой функции $f \in \mathbb{K}^S$ оператор умножения $M_f \colon \mathbb{K}^S \to \mathbb{K}^S, \ M_f(g) = fg$, непрерывен.
- **2)** Опишите все непрерывные линейные функционалы на пространстве \mathbb{K}^{S} .
- **19.14. 1)** Пусть $U \subseteq \mathbb{R}^n$ открытое множество. Докажите, что любой линейный дифференциальный оператор $\sum_{|\alpha| \leq N} a_{\alpha} D^{\alpha}$ в пространстве $C^{\infty}(U)$ (где $a_{\alpha} \in C^{\infty}(U)$) непрерывен.
- **2)** Докажите аналогичное утверждение для пространства $\mathcal{O}(U)$, где $U\subseteq\mathbb{C}$ (см. п.3 задачи 19.10).
- **19.15.** Пусть $\mathscr{O}(\mathbb{D}_R)$ пространство голоморфных функций в круге $\mathbb{D}_R = \{z \in \mathbb{C} : |z| < R\}$. Для $f \in \mathscr{O}(\mathbb{D}_R)$ положим $c_n(f) = f^{(n)}(0)/n!$. Докажите, что компактно-открытая топология на $\mathscr{O}(\mathbb{D}_R)$ порождается любым из следующих эквивалентных семейств полунорм:
 - 1) $||f||_r = \sum_{n=0}^{\infty} |c_n(f)| r^n$ (0 < r < R);
 - **2)** $||f||_{r,p} = \left(\sum_{n=0}^{\infty} (|c_n(f)|r^n)^p\right)^{1/p}$ $(0 < r < R, p \in [1, +\infty) \text{ фиксировано});$
 - 3) $||f||_{r,\infty} = \sup_{n \ge 0} |c_n(f)| r^n \quad (0 < r < R);$
 - 4) $||f||_r^I = \int_{|z|=r} |f(z)| d\mu(z)$ (0 < r < R);
 - 5) $||f||_{r,p}^I = \left(\int_{|z|=r} |f(z)|^p d\mu(z) \right)^{1/p}$ $(0 < r < R, p \in [1, +\infty)$ фиксировано).

В пп. 4 и 5 μ — мера Лебега на окружности |z|=r.

- **19.16.** Пусть $U \subseteq \mathbb{C}$ открытое множество. Докажите, что компактно-открытая топология на $\mathscr{O}(U)$ совпадает с топологией, унаследованной из $C^{\infty}(U)$.
- **19.17.** Пусть $U \subseteq \mathbb{R}^n$ открытое множество и $C_c^\infty(U)$ пространство гладких функций с компактным носителем в U, снабженное стандартной индуктивной топологией (см. лекцию). Докажите, что последовательность (f_n) сходится к функции f в $C_c^\infty(U)$ тогда и только тогда, когда существует такой компакт $K \subset U$, что $\operatorname{supp} f_n \subseteq K$ для $\operatorname{всех} n$, и $f_n \to f$ равномерно на K со всеми частными производными.
- **19.18.** Пространство быстро убывающих последовательностей $s(\mathbb{Z})$ определяется так:

$$s(\mathbb{Z}) = \left\{ x = (x_n) \in \mathbb{K}^{\mathbb{Z}} : ||x||_k = \sum_{n \in \mathbb{Z}} |x_n| |n|^k < \infty \ \forall k \in \mathbb{Z}_{\geq 0} \right\}.$$

Топология на $s(\mathbb{Z})$ порождается последовательностью полунорм $\{\|\cdot\|_k : k \in \mathbb{Z}_{\geqslant 0}\}$. Постройте топологический изоморфизм $C^{\infty}(\mathbb{T}) \cong s(\mathbb{Z})$.

19.19-b. Докажите, что хаусдорфова локально топология на векторном пространстве, порожденная семейством полунорм P, метризуема тогда и только тогда, когда P эквивалентно некоторому своему не более чем счетному подсемейству.

Указание. Если $(p_n)_{n\in\mathbb{N}}$ — последовательность полунорм, то функция

$$\rho(x,y) = \sum_{n} \frac{1}{2^n} \frac{p_n(x-y)}{1 + p_n(x-y)}$$

удовлетворяет неравенству треугольника.

19.20-Ь. Какие пространства из задач 19.10 и 19.17 метризуемы?

- **20.1.** Пусть e_n числовая последовательность с единицей на n-м месте и нулем на остальных. Исследуйте последовательность (e_n) на слабую сходимость в пространствах c_0 и ℓ^p ($1 \le p < \infty$).
- 20.2. Докажите, что последовательность непрерывных функций на отрезке слабо сходится тогда и только тогда, когда она равномерно ограничена и сходится поточечно.
- **20.3.** Пусть T_ℓ и T_r операторы левого и правого сдвига в ℓ^2 . Исследуйте последовательности (T_ℓ^n) и (T_r^n) на сходимость
- 1) по норме в $\mathscr{B}(\ell^2)$;
- 2) в сильной операторной топологии на $\mathscr{B}(\ell^2);$
- 3) в слабой операторной топологии на $\mathscr{B}(\ell^2)$.
- **20.4-b.** Пусть (X,μ) пространство с мерой. Для каждого $p \in (0,1)$ определим векторное пространство $L^p(X,\mu)$ так же, как и при $p \geqslant 1$. Для $f \in L^p(X,\mu)$ положим

$$|f|_p = \int_X |f(x)|^p d\mu(x).$$

- 1) Докажите, что $\rho(f,g) = |f-g|_p$ метрика на $L^p(X,\mu)$.
- **2)** Докажите, что $L^p(X,\mu)$ локально выпукло лишь в том случае, когда оно конечномерно.
- **3)** Докажите, что $L^p[0,1]^* = \{0\}.$
- **20.5-b.** Пусть (X, μ) пространство с конечной мерой. Обозначим через $L^0(X, \mu)$ пространство классов эквивалентности μ -измеримых функций на X (как обычно, функции эквивалентны, если они равны почти всюду). Для $f \in L^0(X, \mu)$ положим

$$|f|_0 = \int_X \frac{|f(x)|}{1 + |f(x)|} d\mu(x).$$

- 1) Докажите, что $\rho(f,g) = |f g|_0$ метрика на $L^0(X,\mu)$.
- **2)** Докажите, что сходимость по метрике из п. 1 это то же самое, что сходимость по мере.
- 3) Докажите, что $L^0(X,\mu)$ локально выпукло лишь в том случае, когда оно конечномерно.
- **4)** Докажите, что $L^0[0,1]^* = \{0\}.$
- **20.6.** Пусть $\langle X, Y \rangle$ дуальная пара векторных пространств. Докажите, что
- 1) $\dim X < \infty \iff \dim Y < \infty \iff$ слабая топология $\sigma(X,Y)$ нормируема;
- **2-b)** слабая топология $\sigma(X,Y)$ метризуема \iff размерность Y не более чем счетна;
- **3-b)** слабая топология на бесконечномерном нормированном пространстве и слабая* топология на пространстве, сопряженном к бесконечномерному банахову пространству, неметризуемы.
- **20.7.** Докажите, что слабая топология на пространстве \mathbb{K}^S (где S множество) совпадает с исходной.
- **20.8.** Пусть X и Y нормированные пространства. Обозначим через SOT, WOT и NT соответственно сильную операторную топологию, слабую операторную топологию и топологию, задаваемую операторной нормой на $\mathcal{B}(X,Y)$.
- 1) Докажите, что WOT \subset SOT \subset NT.
- 2) Докажите, что если Y бесконечномерно, то WOT \neq SOT.
- 3) Докажите, что если X бесконечномерно, то $SOT \neq NT$.
- **20.9.** Пусть X, Y нормированные пространства. Докажите, что подмножество $M \subset \mathcal{B}(X, Y)$ равностепенно непрерывно тогда и только тогда, когда оно ограничено по операторной норме.

- **20.10. 1)** Приведите пример линейного оператора между хаусдорфовыми ЛВП X и Y, непрерывного относительно слабых топологий на X и Y, но не непрерывного.
- 2) Приведите пример линейного оператора между хаусдорфовыми ЛВП, переводящего ограниченные множества в ограниченные, но не непрерывного.
- 3) Приведите пример линейного оператора между хаусдорфовыми ЛВП, переводящего ограниченные множества в ограниченные, но не непрерывного относительно слабых топологий на X и Y.
- **20.11.** Докажите, что пространство c_0 секвенциально плотно в своем втором сопряженном относительно слабой* топологии.
- **20.12.** Приведите пример банахова пространства X и векторного подпространства $Y \subset X^*$, которое замкнуто по норме, но не замкнуто в слабой* топологии.
- **20.13-b.** Докажите, что в пространстве ℓ^1 всякая слабо сходящаяся последовательность сходится по норме.
- **20.14-b.** Приведите пример ограниченного линейного оператора между банаховыми пространствами, который переводит слабо сходящиеся последовательности в последовательности, сходящиеся по норме, но тем не менее не является компактным.
- **Определение 20.1.** Пусть X локально выпуклое пространство, топология которого порождена семейством полунорм P. Для каждого $p \in P$ положим $X_p^0 = X/p^{-1}(0)$ и будем рассматривать X_p^0 как нормированное пространство относительно факторнормы полунормы p. Пополнения X_p нормированных пространств X_p^0 называются accouuuposannumu с X банаховыми пространствами.
- 20.15. Опишите банаховы пространства, ассоциированные со следующими ЛВП:
- 1) \mathbb{K}^{S} (S множество); 2) C(X) (X топологическое пространство); 3) $C^{\infty}[a,b]$;
- **4)** $C^{\infty}(\mathbb{R})$; **5)** $\mathscr{O}(U)$ (U- область в $\mathbb{C})$.
- **20.16.** Для каждой ограниченной области $U \subset \mathbb{C}$ обозначим через $\mathscr{A}(\overline{U})$ подпространство в $C(\overline{U})$, состоящее их тех функций, которые голоморфны в U.
- 1) Положим $\mathbb{D}_r = \{z \in \mathbb{C} : |z| < r\}$. Докажите, что при r < R оператор ограничения $\mathscr{A}(\overline{\mathbb{D}}_R) \to \mathscr{A}(\overline{\mathbb{D}}_r)$, сопоставляющий каждой функции из $\mathscr{A}(\overline{\mathbb{D}}_R)$ ее ограничение на $\overline{\mathbb{D}}_r$, разлагается в композицию $\mathscr{A}(\overline{\mathbb{D}}_R) \xrightarrow{\varphi} \ell^1 \xrightarrow{M_{\lambda}} \ell^1 \xrightarrow{\psi} \mathscr{A}(\overline{\mathbb{D}}_r)$, где φ, ψ непрерывные операторы, а M_{λ} компактный диагональный оператор. Выведите отсюда, что оператор ограничения компактен.
- **2)** Докажите, что всякое ограниченное подмножество в пространстве $\mathcal{O}(\mathbb{D}_r)$ относительно компактно.
- **3-b)** Пусть U, V ограниченные области в \mathbb{C} , причем $\overline{V} \subset U$. Интерпретируйте оператор ограничения $\mathscr{A}(\overline{U}) \to \mathscr{A}(\overline{V})$ как некоторый интегральный оператор, и выведите отсюда, что он компактен.
- **4-b)** (*теорема Монтеля*). Пусть U область в \mathbb{C} . Докажите, что всякое ограниченное подмножество в пространстве $\mathcal{O}(U)$ относительно компактно.
- **20.17.** Докажите, что всякое ограниченное подмножество в пространствах **1)** $C^{\infty}[a,b]$ и **2)** $C^{\infty}(\mathbb{R})$ относительно компактно.

Указание: используйте тот же прием, основанный на использовании ассоциированных банаховых пространств, что и в предыдущей задаче.

- **21.1.** Опишите (задайте явными формулами) непрерывные исчисления для следующих операторов:
- 1) двусторонний сдвиг в $\ell^2(\mathbb{Z})$;
- **2-b)** сдвиг в $L^2(\mathbb{T})$;
- **3-b)** сдвиг в $L^2(\mathbb{R})$.

Определение 21.1. Пусть A - *-алгебра. Элемент $a \in A$ называется *положительным* (в этом случае пишут $a \ge 0$), если он самосопряжен и $\sigma_A(a) \subseteq [0, +\infty)$.

- **21.2** (квадратный корень). Пусть H гильбертово пространство и T положительный оператор в H. Докажите, что существует единственный положительный оператор S в H такой, что $S^2 = T$. Этот оператор называется квадратным корнем из T и обозначается \sqrt{T} или $T^{1/2}$.
- **21.3.** Докажите, что следующие свойства оператора $T \in \mathcal{B}(H)$ эквивалентны:
 - 1) $T \ge 0$;
 - 2) $T = S^2$ для некоторого положительного $S \in \mathcal{B}(H)$;
 - 3) $T = S^2$ для некоторого самосопряженного $S \in \mathscr{B}(H)$;
 - 4) $T = S^*S$ для некоторого $S \in \mathscr{B}(H)$;
 - 5) $\langle Tx, x \rangle \geqslant 0$ для всех $x \in H$.

Указание. Чтобы вывести (1) из (5), докажите, что $T + \lambda \mathbf{1}$ топологически инъективен при $\lambda > 0$.

Определение 21.2. Если $S,T\in \mathcal{B}(H)$ — самосопряженные операторы, то пишут $S\leqslant T$, если $T-S\geqslant 0$.

- **21.4** (*отношение порядка для проекторов*). Пусть P_1, P_2 ортогональные проекторы в H. Докажите эквивалентность следующих утверждений:
 - 1) $P_1 \leqslant P_2$;
 - 2) $||P_1x|| \leq ||P_2x||$ для всех $x \in H$;
 - 3) $P_1P_2 = P_1$;
 - 4) $P_2P_1 = P_1$;
 - 5) $P_1P_2 = P_2P_1 = P_1$;
 - 6) $P_2 P_1$ ортогональный проектор;
 - 7) $\operatorname{Im} P_1 \subseteq \operatorname{Im} P_2$.
- **21.5** (монотонность непрерывного исчисления). Пусть $T \in \mathcal{B}(H)$ самосопряженный оператор, f, g непрерывные действительные функции на его спектре. Докажите, что если $f \leqslant g$, то и $f(T) \leqslant g(T)$.
- **21.6.** Пусть H_1, H_2 гильбертовы пространства и $T \in \mathscr{B}(H_1, H_2)$. Докажите, что
- 1) $\operatorname{Ker} T = \operatorname{Ker} T^*T = \operatorname{Ker} (T^*T)^{1/2};$ 2) $\overline{\operatorname{Im} T} = \overline{\operatorname{Im} TT^*} = \overline{\operatorname{Im} (TT^*)^{1/2}}.$
- **21.7.** Пусть H_1, H_2 гильбертовы пространства и $T \in \mathscr{B}(H_1, H_2)$. Положим $S_1 = (T^*T)^{1/2}$ и $S_2 = (TT^*)^{1/2}$.
- 1) (полярное разложение). Докажите, что существует такая частичная изометрия (см. листок 18) $V\colon H_1\to H_2$, что

$$T = VS_1 = S_2V,$$

$$(\operatorname{Ker} V)^{\perp} = \overline{\operatorname{Im} S_1} = (\operatorname{Ker} S_1)^{\perp} = (\operatorname{Ker} T)^{\perp},$$

$$\operatorname{Im} V = (\operatorname{Ker} S_2)^{\perp} = \overline{\operatorname{Im} S_2} = \overline{\operatorname{Im} T}.$$

- **2)** (единственность полярного разложения). Пусть $T = WR_1$, где $W: H_1 \to H_2$ частичная изометрия, $R_1 \in \mathcal{B}(H_1), R_1 \geqslant 0$ и (Ker W) $^{\perp} = \overline{\operatorname{Im} R_1}$. Докажите, что W = V и $R_1 = S_1$.
- **3)** (единственность полярного разложения). Пусть $T = R_2 W$, где $W \colon H_1 \to H_2$ частичная изометрия, $R_2 \in \mathscr{B}(H_2)$, $R_2 \geqslant 0$ и Im $W = (\operatorname{Ker} R_2)^{\perp}$. Докажите, что W = V и $R_2 = S_2$.

- 21.8. Опишите полярные разложения следующих операторов:
- **1)** диагональный оператор в ℓ^2 ;
- **2)** оператор умножения на ограниченную измеримую функцию в $L^2(X,\mu)$;
- **3)** оператор правого сдвига в ℓ^2 ;
- **4**) оператор левого сдвига в ℓ^2 .
- **21.9.** Пусть H гильбертово пространство, $T \in \mathcal{B}(H)$. Обязательно ли существуют *унитарный* оператор U и положительный оператор S такие, что T = US?
- **21.10-b.** Пусть X компактное хаусдорфово топологическое пространство, B(X) алгебра ограниченных борелевских функций на X. Снабдим B(X) слабо-мерной топологией (см. лекцию). Докажите следующие утверждения:
- 1) Последовательность в B(X) сходится в слабо-мерной топологии тогда и только тогда когда она равномерно ограничена и сходится поточечно.
- **2)** Умножение в B(X) секвенциально непрерывно относительно слабо-мерной топологии.
- 3) Если X бесконечно, то умножение в B(X) не является непрерывным относительно слабомерной топологии.
- **21.11-b.** Пусть H бесконечномерное гильбертово пространство. Снабдим алгебру $\mathcal{B}(H)$ слабой операторной топологией. Является ли умножение в $\mathcal{B}(H)$ 1) непрерывным? 2) секвенциально непрерывным?