Exercises 4

1. Bottleneck spanning tree

Let G = (V, E) a connected graph with positive edge costs that you may assume are all distinct. Let T = (V, E') be a spanning tree of G; we define the bottleneck edge of T to be the edge of T with the greatest cost.

A spanning tree of G is a minimum-bottleneck spanning tree if there is no spanning tree with a cheaper bottleneck edge.

- a) Is every minimum-bottleneck spanning tree of G a minimum spanning tree of G?
- b) Is every minimum spanning tree of G a minimum-bottleneck spanning tree of G?

Solution.

a) This is false. A counterexample is simpler when we allow edges with the same cost (Figure 1).

Figure 1: a minimum spanning tree must pick the edge with weight 1, but a minimum-bottleneck spanning tree might not

Now, let's build a counterexample for graphs with distinct edge costs. The idea is that a minimum-bottleneck spanning tree cares only about the most expensive edge (Figure 2).

Figure 2: a MST of G contains the edges (A, D), (C, D), (A, B), with total cost 14, while a minimum-bottleneck tree can be (A, B), (A, C), (C, D), with total cost 18.

b) This is true. Suppose that T_1 is a MST that is not a minimum-bottleneck spanning tree. Then T_1 uses an edge e heavier than any edge in a minimum-bottleneck spanning tree T_2 . Removing e from T_1 , we get two connected components. T_2 , being a spanning tree, must have an edge connecting these two components, and such an edge has a cost strictly lower than e. Thus, such an edge can be added to T_1 , obtaining a spanning tree with a weight strictly smaller than T_1 . This is a contradiction with the assuption that T_1 is a MST.

2. Cycle detection

```
Input: a directed graph G = (V, E).

Output: Does G have a cycle?

Give a linear algorithm (in |V| + |E|) for this problem.
```

Solution.

This problem can be solved efficiently using depth-first-search. Let us briefly remind this generic procedure for systematically exploring a graph. We need an array, called **visited**, which keeps track of the vertices encountered so far.

```
Dfs(graph G)
{
 for each v \in V
       visited[v]=false;
 for each v \in V
       if (visited[v]=false)
           explore(v)
}
explore(v)
{
 pre-visit(v);
  visited[v]=true;
  for each edge (v, u)
      if (visited[u]=false)
         explore(u);
  post-visit(v);
}
```

In the code above, pre-visit and post-visit are two routines that can be customized to solve different problems. If we want only to explore a graph using DFS we don't need these routines.

Now, returning to our problem, we need another array, let's call it path, such that path[v]=true if the vertex v has been encountered

before on the path currently explored. The modified **explore** procedure is below.

```
explore(v)
{
  path[v]=true;
  visited[v]=true;
  for each edge (v, u)
      if (path[u]=1) we have a cycle
      else if (visited[u]=0)
            explore(u);
  path[v]=false;
}
```

Of course, we must initialize in the procedure DFS path[v]=false for all vertices v.

The running time of the whole algorithm will be O(|V| + |E|).

3. Mobile phone stations

Input: the locations of n houses along a straight line

We want to place cell phone base stations along the road so that every house is within 4 miles of one of the base stations.

Output: a minimal set of base stations.

Solution.

The algorithm is simple: pick the leftmost house not covered by a base station and place a base station 4 miles to the left.

Now let's prove that this approach is optimal. Suppose that our greedy algorithm places m base stations at the locations $b_1 < b_2 < ... < b_m$ and assume that this solution is not optimal. Let then $OPT = \{b'_1 < b'_2 < ... < b'_k\}$ an optimal choice of base stations, with k < m.

Observe that $b'_1 \leq b_1$. This is because we put the first base station b_1 as far to the right as possible. Maybe $b'_2 \leq b_2$? Suppose that this does not hold, so we have $b'_1 \leq b_1 < b_2 < b'_2$. Since we needed to place a base station at b_2 , there must be a house situated at a location h such that $b_1 + 4 < h$. Then $b_2 = h + 4$. But this implies $b'_1 + 4 < h < b'_2 + 4$, so the location h cannot be covered neither by b'_1 , nor by b'_2 , contradiction with the fact that OPT is a valid solution. Thus $b'_2 \leq b_2$. Similarly $b'_3 \leq b_3, ..., b'_k \leq b_k$. But then there is no need to place another phone station at the location b_{k+1} , as all the houses that might be deserved by it are already covered by b'_k . Thus, our greedy strategy produces an optimal solution.

4. Prove that, in a Huffman coding scheme, if some symbol occurs with frequency strictly higher than 2/5, there is some codeword of length

1. Show also that if all symbols occur with frequency strictly less than 1/3 then there is no codeword of length 1.

Solution. Let n be the number of letters and $f_1 \geq f_2 \geq ...f_n$ their relative frequencies. The statement is obvious for $n \leq 3$, so let's consider now the case n = 4. Suppose that there is no codeword of length 1. This implies that the Huffman tree looks like the one in Figure 3, because otherwise f_1 would have a codeword of length 1.

So $f_3 + f_4 \ge f_1 > 2/5$ (because the node corresponding to $f_3 + f_4$ is at a higher level than f_1). Then $f_3 \ge 1/5$, so $f_2 \ge 1/5$. Suming up we have:

$$1 = f_1 + f_2 + f_3 + f_4 > \frac{2}{5} + \frac{1}{5} + \frac{2}{5} = 1,$$

contradiction.

For the case n > 4 we make the following observation: we saw that, for a tree with 4 nodes, f_1 resists all merges until the last one, so it resists all the previous merges.

Now for the second part of the problem. First notice that $n \geq 4$ since all the frequencies are strictly less than 1/3.

Again, suppose that f_1 has a codeword of length 1. So f_1 resists all merges except for the last one. When, during the construction of the code, there are only 3 nodes left, the tree looks like in Figure 4, where f_x and f_y might be cumulated frequencies resulted from previous merges. Then $f_x \leq f_1 < 1/3$, $f_y \leq f_1 < 1/3$, so $f_1 + f_x + f_y < 1$, contradiction.

5. Matching points and intervals

We are given n points $x_1, ..., x_n$ and n intervals, $I_1, ..., I_n$. The objective is to associate to each point x_i an interval I_k such that $x_i \in I_k$.

Solution. First we sort the intervals in increasing order of their final point. Suppose that the ordering is $I_1, ..., I_n$. The algorithm is the following: take I_1 and let x_j the leftmost point contained in I_1 (if such a point does not exists, then the problem has no solution). Associate x_j with I_1 and repeat the process.

We must prove that, if there is a matching between points and intervals, our algorithm finds such a matching. Denote by M_k the matching we obtain after k steps. We prove by induction on k that, at any step, M_k is included in a perfect matching.

First let's examine the case k = 1. Let M be a perfect matching and suppose that I_1 is matched with x_i in our greedy approach, while in M, I_1 is matched with x_j and x_i is matched with I_q . From the greedy choice we made, $x_i \leq x_j$ and the endpoint of I_q is farther to the right than the endpoint of I_1 . Then we can modify M by matching I_1 with x_i and I_q with x_j .

Now to prove the induction step. Suppose that, after k steps of our algorithm, the solution so far can be included in some perfect matching M. Let (x_p, I_{k+1}) the association made at the step k+1 of the greedy algorithm and suppose that, in M, x_q is mapped to I_{k+1} and I_l is mapped to x_p . Then neither x_q nor I_l appear previously in M_k . Also, from the greedy choice we made, $x_p \leq x_q$. Then we can modify M by mapping x_p to I_{k+1} and x_q to I_l .