王柯能 20215330岁

1. (a) F

(f) F

(b) T

(9) F

(c) T

(h) T

(d) T

(i) F

(e) F

(j) T

王柯储 2021533035

2. (a) B

(d) B

(b) B

(e) D

(c) C

王柯储 2021533025

3. Ian ACD

· (d) BCD

(b) AC

(e) C

(C) D

王柯酰 202153925

$$\beta$$
) $S \rightarrow A \rightarrow C \rightarrow T +$

$$\beta$$
) $S \rightarrow A \rightarrow C \rightarrow T$ 4

r) both admissible and consistent

王柯筋 202153305

- (a) let the unit-interval start at the given points

 (i) if the next given point has been included in the former unit-interval then there is no need to cover a new unit-interval i.e.

 2 points are 2.0 and 2.b

 the only unit-interval is [2,3]
 - 3 if the next given point is not in the former unit-interval then we need 2 new unit-interval seperately.
 - i.e. 2 points are 2.5 and 3.7

 we need two unit-interval [2.5,3.5] [3.7,4.7]
- (b) suppose g_i , O_i are the i-th unit-interval in greedy algorithm and optimal algorithm and $g_i=0_1$, $g_2=0_2$, ..., $g_k=0_k$ for $i\in(1,k)$. the i-th point is χ_i

for
$$i \in (k+1, +\infty)$$
 . $X_k - d_k \leq 0_{k+1} \leq X_k + d_k = g_{k+1}$

optimal greedy

it shows that the greedy algorithm may not be so feasible as the optimal algorithm but it still works optimally to find the minimum number of unit-intervals to cover all the given points.

王柯皓 20215330公

b. For k-color problem, it can always be reduced to the sum of 3-color problems and 4-color problems

since k can be represented as $k = n_1 \times 3 + n_2 \times 4$ where n_1, n_2 are all intergers

Since 3-color problem and 4-color problem are both in NP-complete k-color problem is also in NP-complete

王柯能 2021533025

7. (a) if slots
$$j=1,...,i-1$$
 are all incompatible with slot i $p(i)=0$

else
if
$$slot j=i-1$$
 is compatible with slot i

$$p(i) = p(i-1) + 1$$
else

$$p(i) = p(i-1)$$

(b) OPT (i) = the maximum total revenue of placing i bill boards which are all compatible to each other.

(C) OPT(i) =
$$\begin{cases} r_i & (i=1) \\ oPT(i-1) + r_{p(i)} & (i>1) \end{cases}$$

$$(d)$$
 $\theta(n^2)$