Cross-covariance:

o Covariance between two series

$$\gamma_{xy}(s,t) = E[(x_s - \mu_{xs})(y_t - \mu_{yt})]$$

Cross-correlation function (CCF):

$$\rho_{xy}(s,t) = \frac{\gamma_{xy}(s,t)}{\sqrt{\gamma_x(s,s)\gamma_y(t,t)}}$$

White noise (in CC 2.3):

- uncorrelated random variables collected over time
- $w_t \sim wn(0, \sigma_w^2)$ or $e_t \sim wn(0, \sigma_e^2)$
- all oscillations of all periods present in equal strength

Noise also comes in other colors, pink, red brown, black, blue, etc.

Brownian motion will also be of interest (random walk discussed more below)

o Go to http://en.wikipedia.org/wiki/Colors_of_noise for more details on other colors of noise (and to listen to them).

White independent noise:

$$w_t \sim iid(0, \sigma_w^2)$$

White independent, Gaussian noise:

$$w_t \sim iid N(0, \sigma_w^2)$$

Example: y

White independent, t noise:

wt~iid t3

```
Example: x
```

```
> set.seed(2123)
> par(mfrow=c(2,1))
> y<-rnorm(100)
> plot(y, type="l", ylim=c(-4,4))
> x<-rt(100, df=3)
> plot(x, type="l", ylim=c(-4,4))
> par(mfrow=c(1,1))
> par(mfrow=c(1,3))
> require(beanplot)
> beanplot(y, x, col="lightblue", method="jitter")
> require(car)
```


Moving Average:

• Symmetric local average of observations (2-sided)

$$v_{t} = \sum_{j \in [t-k, t+k]} y_{j} / (2k+1)$$

• One-sided moving average (observation and its prior neighbor)

Stat 436/536 – Ch1

$$v_t = \sum_{j \in [t-1,t]} y_j / 2$$

- Linear Filter
- o applied through time series
 plot.ts(filter(wnex,sides=2,rep(1,5)/5))
 - Filters, like all time series models that incorporate lagged dependencies, have to be modified at the edge(s) in some fashion.

```
> par(mfrow=c(2,1))
> plot.ts(filter(y,sides=2,rep(1,2)/2),col="red",ylim=range(y))
> lines(filter(y,sides=2,rep(1,5)/5),col="blue",lwd=2)
> points(y)
> plot.ts(filter(x,sides=2,rep(1,2)/2),col="red",ylim=range(x))
> lines(filter(x,sides=2,rep(1,5)/5),col="blue",lwd=2)
> points(x)
```


Random Walk (from CC 2.2):

 $e_t \sim wn(0, \sigma_e^2)$ from t=1,...

$$\begin{aligned} Y_1 &= e_1 \\ Y_2 &= e_1 + e_2 \\ \dots \end{aligned}$$

Generally, $Y_t =$

Stat 436/536 – Ch1

et's are sizes of "steps" and Yt is the position of the (drunk) walker

- Also called a drunkard's walk
- o Each realization is a random fluctuation from the current starting point
- o "the haphazard step of drunken sailor, bereft of his bearings, zapped with random shocks"
- O Best guess of next location is the current location $Y_t = Y_{t-1}$
- o Generated by adding up white noise process over time (using cumsum)

```
> set.seed(62345)
> wn_n<-rnorm(100)
> wn_t2<-rt(100, df=2)
> rws<-ts(data.frame(wn_n, RW_n=cumsum(wn_n), wn_t2, RW_t2=cumsum(wn_t2)))
> plot.ts(rws)
> set.seed(72345)
> wn_n<-rnorm(100)
> wn_t2<-rt(100, df=2)
> rws<-ts(data.frame(wn_n, RW_n=cumsum(wn_n), wn_t2, RW_t2=cumsum(wn_t2)))
> plot.ts(rws)
```

White noise from N(0,1) and t(2) used in random walk processes:

And a second realization of this:

Stat 436/536 – Ch1

Random walks have an equal chance of wandering to negative values as positive values...

• Assume that we have a white noise process used to generate a random walk:

$$\mu_t = E(Y_t) =$$

$$Var(Y_t) =$$

$$Cov(Y_t, Y_s) = \gamma_{t,s} =$$

$$\rho(t,s) = \frac{\gamma(t,s)}{\sqrt{\gamma(t,t)\gamma(s,s)}} =$$

Some examples (also think about $n\rightarrow \infty$)

Revisiting our **Moving Average** example:
$$v_t = \sum_{j \in [t-k,t+k]} y_j / (2k+1)$$
 with $k=2$

where y_j ~independent with $(0, \sigma_y^2)$

• Find the mean, variance, covariance, and autocorrelation functions:

Stat 436/536 – Ch1 20

2.3: Stationarity:

- Conventional time series methods often start with a quest for stationarity
- o **Strictly stationary**: probabilistic behavior does not change over time (statistical equilibrium)
 - o Joint distribution of $Y_{t_1}, Y_{t_2}, ..., Y_{t_n}$ is the same as $Y_{t_1-k}, Y_{t_2-k}, ..., Y_{t_n-k} \text{ for all } k$
 - o Suppose that n=1:

o Suppose that n=2:

• Properties of autocovariance and autocorrelation for a strictly stationary process:

O Weakly stationary (second order stationary):

- The mean function is constant over time and
- $\gamma_{t,t-k} = \gamma_{0,k}$
- This relates only to the first 2 moments (mean, variance) and not the full joint distribution
- However, if the observations are multivariate normally distributed and weakly stationary, then strict stationarity holds
- If we say "stationary" we probably mean weakly stationary
- It turns out that making the mean stationary is often not too difficult, so stationarity in the variance/covariances is what concerns us most.
- Note that strict stationarity implies the following:
 - $P[Y_{t1} \le x_1, \dots Y_{tk} \le x_k] = P[Y_{t1+h} \le x_1, \dots Y_{tk+h} \le x_k]$ for all k, t, x, and h
- o Back to properties of a weakly stationary process

If the mean function exists, $\Rightarrow \mu_s = \mu_t$

o The mean must be constant

If the variance function exists,

$$\Rightarrow \gamma(s,t) = \gamma(s-k,t-k)$$

o The autocovariance function of the process depends only on the difference between s and t

Checking stationarity of a white noise process:

$$e_t \sim wn(0, \sigma_e^2)$$
 from t=1,...

$$E(e_t) = 0$$

$$\gamma_k = \begin{cases} \sigma_e^2 & k = 0\\ 0 & k \neq 0 \end{cases}$$

- o So a white noise process is at least weakly stationary since the mean and autocovariance do not depend on *t* based on these results.
 - Due to independence, it is actually strictly stationary but we only really need the weak result
 - Note that any distribution could be used here if the mean and variance exist

Jointly stationary:

o 2 series are jointly stationary if they are each stationary and crosscovariance function is a function of k alone

o
$$\gamma_{xy}(k) = E[(x_{t+k} - \mu_x)(y_t - \mu_y)]$$

o Cross-correlation of jointly stationary series

$$\circ \quad \rho(k) = \gamma_{xy}(k) / \operatorname{sqrt}[\gamma_x(0) \ \gamma_y(0)]$$

Chapter 3: TRENDS:

3.1: Deterministic vs Stochastic Trends

- Deterministic: trend driven by a non-random process
 - o trend is not a function of the previous observation(s)?
- Stochastic: trend driven by a random process
 - o trend is a function of the previous observation(s)?
 - o Model changes over time
- Two examples

$$Y_t = \alpha + \beta t + e_t, e \sim N(0, \sigma_e^2)$$

$$Y_t = Y_{t-1} + v_t, v \sim N(0, \sigma_v^2)$$

```
> set. seed(22345)
> e<-rnorm(50,0,5)
> ti me<-1:50
> beta0<-15
> beta1<-.1
> y1<-beta0+beta1*ti me+e
> y2<-15+cumsum(e)
> pl ot. ts(ts(data. frame(y1, y2)))
```

Repeat the simulation a few times...

ts(data.frame(y1, y2))

> set.seed(5545)

ts(data.frame(y1, y2))

> set.seed(7745)

Stat 436/536 – Ch1 24

It is interesting to see how this can change if you try modifying the sd of the innovations into the RW and/or the length of time that you observe the series.

• But the definitions and models sometimes land in a grey area regarding stochastic and deterministic models...

$$Y_t = \alpha + \beta_t time + e_t, e \sim N(0, \sigma_e^2)$$

$$Y_t = \alpha + s(x)time + e_t, e \sim N(0, \sigma_e^2)$$

$$Y_{t} = \alpha + Y_{t-1} + v_{t}, v \sim N(0, \sigma_{v}^{2})$$

Back to CC 3.1:

- $\bullet \quad Y_t = \mu_t + X_t$
 - o Suppose that $\mu_t = \mu_{t-12}$ which would be deterministic
 - o But $Y_t = Y_{t-12}$ is stochastic
 - and even though both suggest a 12 unit lagged dependence, they are different models
 - o Note that deterministic trends imply that the relationship holds forever and stochastic trends can change over time
 - It can be difficult (impossible?) over shorter time frames to distinguish between stochastic and deterministic behavior

- As in CC, a random walk can locally have a positive or negative trend
- Generally using regular regression techniques in the presence of nonstationary explanatory or response variables is dangerous (See Ch. 11 on Spurious Correlations)
 - o Is "time" a stationary process?

CC 3.2: Estimation of a Constant Mean:

- Assume $Y_t = \mu + X_t$ o where $E(X_t)=0$
- Typical estimator of μ is
 - o It is easily shown to be an unbiased estimator
 - o But what about its variance (CC 3.2.3 using Exercise 2.17)?

o And connections to having a simple random sample of observations:

Stat 436/536 – Ch1 26