Metodi Matematici per l'Informatica

Esame (a.a. 21/22, I canale) - Docente: Lorenzo Carlucci - Data: 12 Gennaio 2022 Da remoto, 90 minuti

Parte 1

Esercizio 1 Consideriamo un sistema di password formato da 4 lettere (scelte le 26 lettere dell'alfabeto latino, solo maiuscole) seguite da 3 cifre seguite da 2 caratteri speciali scelti tra \$, !, % e @.

- 1. Quante password hanno la prima lettera del vostro nome come primo simbolo?
- 2. Quante password hanno L come prima lettera o ! come ultimo simbolo?
- 3. Quante password contengono esattamente un 4 ed esattamente una A?

Esercizio 2 Sia $f: X \to Y$ e siano A e B due sottinsiemi del dominio X (ossia $A \subseteq X$ e $B \subseteq X$). Indicare se le seguenti affermazioni sono vere o false. (NB: per un qualunque $S \subseteq X$ con f(S) si indica l'insieme $\{y \in Y : per qualche s \in S \ vale \ f(s) = y\}$).

- 1. $f(A \cup B) = f(A) \cup f(B)$.
- 2. $f(A \cap B) \subseteq f(A) \cap f(B)$.
- 3. $f(A \cap B) = f(A) \cup f(B)$.

Esercizio 3 Consideriamo la seguente relazione \prec definita su coppie di intervalli apert della retta reale: $(x,y) \prec (w,z)$ se e solo se $(x,y) \subseteq (w,z)$ oppure y < w. Indicare se le seguenti affermazioni sono vere o false.

- 1. La relazione \prec è riflessiva.
- 2. La relazione \prec è simmetrica.
- 3. La relazione \prec è transitiva.

Parte 2

Esercizio 4 Dimostrare per Induzione che, per ogni $n \ge 0$, esistono $a, b \in \mathbb{N}$, con $0 \le b < 3$, tali che $n = 3 \cdot a + b$. Specificare il Caso Base, l'Ipotesi Induttiva e la dimostrazione del Passo Induttivo.

Esercizio 5 La vostra navicella spazale ha tre pulsanti: sul primo e sul secondo è scritto: "Questo pulsante non innesca l'autodistruzione", mentre sul terzo è scritto: "Il primo pulsante innesca l'autodistruzione". Sapete che solo uno dei pulsanti innesca l'autodistruzione e che solo una delle scritte sui pulsanti è vera. Formalizzare i dati del problema in logica proposizionale e decidere (usando un metodo a piacere) quale pulsante innesca l'autodistruzione.

Esercizio 6 La seguente formula proposizionale in CNF è soddisfacibile?

$$\{\{\neg p, \neg q, r\}, \{\neg p, q, s\}, \{p, \neg q\}, \{p, q, \neg r\}\}.$$

Se si risponde "SI" definire un assegnamento che la soddisfa, se si risponde "NO" dimostrare l'insoddisfacibilità usando la regola di Risoluzione.