Cytochrom P450 Monoxygenasen aus thermophilen Bakterien

Patent number:

DE10051175

Publication date:

2002-05-02

Inventor:

SCHMID ROLF (DE); HAUER BERNHARD (DE);

MERKL RAINER (DE); BLASCO FRANCESCA (DE)

Applicant:

BASF AG (DE)

Ciassification:

- international:

C12N9/02; C12N15/53; C07H21/04; C12N15/63;

C12N1/00; C12P1/00

- european:

C12N9/02L15; C12P1/04

Application number: DE20001051175 20001016

Priority number(s): DE20001051175 20001016

Abstract of DE10051175

The invention relates to novel cytochrome P450 monooxygenases consisting of thermophilic bacteria, especially the species Thermus sp., nucleotide sequences coding for the same, the recombinant production of said monooxygenases and the use thereof for the microbiological oxidation of organic compounds.

Data supplied from the esp@cenet database - Worldwide

WO0233057 (A2) CA2425927 (A1)

BUNDESREPUBLIK **DEUTSCHLAND**

'Y'

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift ® DE 100 51 175 A 1

(7) Aktenzeichen:

100 51 175.9

Anmeldetag:

16. 10. 2000

Offenlegungstag:

2. 5. 2002

(f) Int. Cl.⁷: C 12 N 9/02

> C 12 N 15/53 C 07 H 21/04 C 12 N 15/63 C 12 N 1/00 C 12 P 1/00

- (7) Anmelder: BASF AG, 67063 Ludwigshafen, DE
- (4) Vertreter: Reitstötter, Kinzebach & Partner, 81679 München

Erfinder:

Hauer, Bernhard, Dr., 67136 Fußgönheim, DE; Schmid, Rolf, Prof. Dr., 70329 Stuttgart, DE; Merkl, Rainer, Dr., 37120 Bovenden, DE; Blasco, Francesca, 73734 Esslingen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (A) Cytochrom P450 Monoxygenasen aus thermophilen Bakterien
- Die Erfindung betrifft neuartige Cytochrom P450 Monooxygenasen aus thermophilen Bakterien, insbesondere der Gattung Thermus sp., dafür kodierende Nucleotidsequenzen, die rekombinante Herstellung dieser Monooxygenasen und deren Verwendung zur mikrobiologischen Oxidation organischer Verbindungen.

1

Beschreibung

- [0001] Die Erfindung betrifft neuartige Cytochrom P450 Monooxygenasen aus thermophilen Bakterien, insbesondere der Gattung Thermus sp., dafür kodierende Nucleotidsequenzen, die rekombinante Herstellung dieser Monooxygenasen und deren Verwendung zur mikrobiologischen Oxidation organischer Verbindungen.
 - [0002] Cytochrom P450 Monooxygenasen besitzen die Fähigkeit technisch interessante Oxygenierungsreaktionen zu katalysieren und werden daher seit einiger Zeit intensiv untersucht. So wurde beispielsweise die Cytochrom P450 Monooxygenase BM-3 aus Bacillus megaterium isoliert und charakterisiert und ist mittlerweile auf rekombinantem Weg zugänglich (vgl. z. B. DE-A-199 35 115).
- 10 [0003] Diese Cytochrom P450-Monooxygenase katalysiert gewöhnlich die subterminale Hydroxylierung langkettiger, gesättigter Säuren und der entsprechenden Amide und Alkohole davon oder die Epoxydation ungesättigter langkettiger Fettsäuren oder gesättigter Fettsäuren mit mittlerer Kettenlänge. Die optimale Kettenlänge gesättigter Fettsäuren beträgt 14 bis 16 Kohlenstoffatome.
- [0004] Die Struktur der Häm-Domäne von P450 BM-3 wurde durch Röntgenstrukturanalyse bestimmt. Die Substratbindungsstelle liegt in Form einer langen tunnelartigen Öffnung vor, welche von der Moleküloberfläche bis hin zum Häm-Molekül reicht und wird fast ausschließlich von hydrophoben Aminosäureresten begrenzt. Die einzigen geladenen Reste an der Oberfläche der Häm-Domäne sind die Reste Arg47 und Tyr51. Man nimmt an, daß diese an der Bindung der Carboxylatgruppe des Substrates durch Bildung einer Wasserstoffbrückenbindung beteiligt sind. Durch gezielte Einführung von Punktmutationen ist es zwischenzeitlich gelungen, das Substratspektrum dieses Enzyms zu erweitern. So können nunmehr auch kürzer- als auch längerkettige Carbonsäuren, Alkane, Alkene, Cycloalkane, Cycloalkene und verschiedenste Aromaten durch dieses Enzym oxidiert werden (vgl. DE-A-199 35 115, 199 55 605, 100 11 723 und
 - 100 14 085).

 [0005] Um die industrielle Anwendbarkeit dieser Enzymklasse weiter zu verbessern, wäre es daher wünschenswert neue Cytochrom P450-Monooxygenasen zu finden, welche besser an industrielle Produktionsbedingungen angepasst sind, wie z. B. Enzyme mit erhöhter thermischer Stabilität.
 - [0006] Aufgabe der vorliegenden Erfindung war daher die Bereitstellung von Cytochrom P450-Monooxygenasen, welche besser an industrielle Produktionsbedingungen angepasst sind
 - [0007] Obige Aufgabe wurde gelöst durch Bereitstellung einer Cytochrom P450 Monooxygenase, die dadurch gekennzeichnet ist, dass sie eine Aminosäuresequenz aufweist, welche eine Teilsequenz von Aminosäurerest Pro328 bis Glu345 gemäß SEQ ID NO: 2 und vorzugsweise außerdem eine Teilsequenz von Aminosäurerest Val216 bis Ala227 gemäß SEQ ID NO: 2 umfasst.
 - [0008] Erfindungsgemäß bevorzugte Cytochrom P450 Monooxygenasen weisen eine Aminosäuresequenz auf, welche wenigstens eine weitere Teilsequenz umfasst, die ausgewählt ist unter einer Teilsequenzen von wenigstens 10 aufeinanderfolgenden Aminosäure aus den durch die Aminosäurereste Met1 bis Phe327 und Gly346 bis Ala389 gemäß SEQ ID NO: 2 vorgegebenen Sequenzbereichen
 - NO: 2 vorgegebenen Sequenzbereichen.

 [0009] Eine besonders bevorzugte Cytochrom P450 Monooxygenase besitzt eine Aminosäuresequenz, welche im wesentlichen SEQ ID NO: 2 entspricht.
 - [0010] Erfindungsgemäße Cytochrom P450 Monooxygenasen sind insbesondere aus thermophilen Bakterien, vorzugsweise der Gattung Thermus sp., wie z. B. der Spezies Thermus thermophilus, Stamm HB27 (hinterlegt bei der DSM unter der Nummer DSM7039) isolierbar. "Thermophile" Bakterien erfüllen erfindungsgemäß die Temperaturtoleranzkriterien nach H. G. Schlegel, Allgemeine Mikrobiologie, Thieme Verlag Stuttgart, 5. Auflage, Seite 173, für thermophile und extrem thermophile Organismen (d. h. Wachstumsoptimum bei über 40°C).
 - [0011] Die erfindungsgemäßen Monooxygenase sind vorzugsweise durch eine erhöhte Temperaturstabilität gekennzeichnet. Diese drückt sich in einem in Vergleich zum P450 BM-3 aus Bacillus megaterium geringeren Aktivitätsverlust bei erhöhter Temperatur (z. B. in einem Bereich von 30 bis 60°C, pH 7,5, 25 mM Tris/HCl) aus.
 - [0012] Gegenstand der Erfindung sind weiterhin Oligonukleotide, welche mit einer Nukleinsäuresequenz hybridisieren, die für eine erfindungsgemäße Cytochrom P450 Monooxygenase kodiert.
 - [0013] Insbesondere sind Gegenstand der Erfindung auch solche Oligonukleotide, welche eine Nukleinsäuresequenz umfassen, die im wesentlichen komplementär ist zu einem wenigstens 30 bis 45 aufeinanderfolgende Nukleotidreste umfassenden Nukleotidsequenzbereich gemäß SEQ ID NO: 1.
 - [0014] Ein weiterer Gegenstand der Erfindung betrifft Polynukleotide, welche mit einem Oligonukleotid gemäß obiger Definition hybridisieren und für eine Cytochrom P450 Monooxygenase kodieren, insbesondere eine Cytochrom P450 Monooxygenase aus anderen Mikroorganismen, wie z. B. solchen der Gattung Thermus sp.
 - [0015] Gegenstand der Erfindung sind insbesondere auch Polynukleotide, die für eine Cytochrom P450 Monooxygenase gemäß obiger Definition kodieren, sowie dazu komplementäre Polynukleotide.
 - [0016] Bevorzugte Polynukleotide sind solche, die im wesentlichen eine Nukleinsäuresequenz gemäß SEQ ID NO: 1 besitzen, sowie die dazu komplementären und davon abgeleiteten Nukleinsäuresequenzen.
 - [0017] Ein weiterer Gegenstand der Erfindung betrifft Expressionskassetten zur rekombinanten Herstellung erfindungsgemäßer Monooxygenasen, umfassend wenigstens eine regulatorische Nukleinsäuresequenz operativ verknüpft mit wenigstens einer der oben angegebenen Polynukleotide.
 - [0018] Weiter Gegenstände der Erfindung betreffen rekombinanter Vektoren, welche wenigstens ein Polynukleotid oder wenigstens eine Expressionskassette gemäß obiger Definition tragen; sowie Mikroorganismus, enthaltend wenigstens einen solchen rekombinanten Vektor; sowie Verfahren zur Herstellung erfindungsgemäßer Cytochrom P450 Monooxygenasen, bei welchen man einen Mikroorganismus, welcher Cytochrom P450 Monooxygenase produziert, kultiviert und die Monooxygenase aus der Kultur isoliert.

rungsreaktionen einsetzbar.

11

[0020] Ein weiterer Gegenstand der Erfindung betrifft daher ein Verfahren zur mikrobiologischen Oxidation einer organischen Verbindung, wobei man diese Verbindung mit wenigstens einer erfindungsgemäßen Cytochrom P450 Monooxygenase umsetzt.

[0021] Vorzugsweise wird dieses Verfahren so durch geführt, dass man

al) einen rekombinanten Mikroorganismus gemäß obiger Definition in einem Kulturmedium, in Gegenwart der exogenen (von außen zugesetzten) oder intermediär gebildeten organischen Verbindung, welche ein Substrat der Monooxygenase ist, vorzugsweise in Gegenwart von Sauerstoff und gegebenenfalls einem Elektronendonor, kultiviert; oder

a2) ein Substrat-haltiges Reaktionsmedium, vorzugsweise in Gegenwart von Sauerstoff und einem Elektronendonor, mit einer erfindungsgemäßen Cytochrom P450 Monooxygenase inkubiert; und

b) das gebildete Oxidationsprodukt oder ein Folgeprodukt davon aus dem Medium isoliert.

[0022] Das exogene oder intermediär gebildete Substrat kann dabei ausgewählt sein unter:

- a) gegebenenfalls substituierten N-, O- oder S-heterocyclischen ein-, zwei- oder mehrkernigen aromatischen Verbindungen;
- b) gegebenenfalls substituierten ein- oder mehrkernigen Aromaten;
- c) geradkettigen oder verzweigten Alkanen und Alkenen;
- d) gegebenenfalls substituierten Cycloalkanen und Cycloalkenen; und.
- e) aliphatischen, vorzugsweise terminal gesättigten, Carbonsäuren.

[0023] Nach einer ersten bevorzugten Variante des erfindungsgemäßen Verfahrens wird die Oxidation durch Kultivierung der Mikroorganismen in Gegenwart von Sauerstoff bei einer Kultivierungstemperatur von mindestens etwa 20°C und einem pH-Wert von etwa 6 bis 9 durchführt.

[0024] Nach einer zweiten bevorzugten Variante des erfindungsgemäßen Verfahrens setzt man als exogenes Substrat wenigstens eine Verbindung, ausgewählt unter den oben definierten Gruppen a) bis e), einem Medium zu und führt die Oxidation durch enzymatische Umsetzung des substrathaltiges Mediums in Gegenwart von Sauerstoff bei einer Temperatur von mindestens etwa 20°C und einem pH-Wert von etwa 6 bis 9 durch, wobei das substrathaltige Medium außerdem bezogen auf das Substrat einen etwa 10- bis 100-fachen molaren Überschuß an Reduktionsäquivalenten (Elektronendonor) enthält.

[0025] Obige Verfahren können bevorzugt in Bioreaktoren durchgeführt werden. Gegenstand der Erfindung sind daher solche Bioreaktoren, umfassend wenigstens eine erfindungsgemäße Monooxygenase oder wenigstens einen rekombinanten Mikroorganismus, gegebenenfalls jeweils in immobilisierter Form.

[0026] Schließlich betrifft die Erfindung die Verwendung einer Cytochrom P450 Monooxygenase, eines Vektors oder eines Mikroorganismus gemäß vorliegender Erfindung zur mikrobiologischen Oxidation oben genannter organischer Verbindungsklassen.

[0027] Die Erfindung wird nun unter Bezugnahme auf beiliegenden Figuren näher erläutert. Dabei zeigt

[0028] Fig. 1 einen Sequenzvergleich von P450 aus Thermus thermophilus mit der Häm-Domäne von P450 BM3 aus 40 Bacillus megaterium. Doppelt unterstrichen ist dabei die Häm-Bindungsstelle gezeigt (Cys400 in P450 BM3 ist der Cysteinrest, der mit dem Eisenatom der prosthetischen Gruppe koordiniert). Einfach unterstrichen ist die Region die in Kontakt steht mit dem &-Ende der Fettsäurekette. Die Grad der Übereinstimmung ist durch verschiedenen Symbole gekennzeichnet ("*" – identische Reste; ":" und "." = ähnliche Reste).

[0029] Fig. 2 zeigt das Ergebnis eines Vergleichstests zur Bestimmung der Thermostabilität von P450 BM3 und P450 45 aus Thermus sp.. Die Thermostabilität wurde spektrometrisch im Wellenlängenbereich zwischen 400 und 500 nm über den Häm-Gruppen-Gehalt bestimmt.

[0030] Erfindungsgemäß mit umfasst sind ebenfalls "funktionale Äquivalente" der konkret offenbarten neuen P450 Monooxygenasen.

[0031] "Funktionale Äquivalente" oder Analoga der konkret offenbarten Monooxygenasen sind im Rahmen der vorliegenden Erfindung davon verschiedene Enzyme, welche weiterhin die gewünschte Substratspezifität im Rahmen wenigstens einer der oben bezeichneten Oxidationsreaktionen a) bis e) besitzen und/oder im Vergleich zu P450 BM3 eine erhöhte Thermostabilität, z. B. bei Temperaturen im Bereich von etwa 30 bis 60°C und gegebenenfalls höheren Temperaturen nach 30-minütiger Behandlung in 25 mM Tris/HCl, besitzen.

[0032] Unter "funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere Mutanten, welche in wenigstens einer der oben genannten Sequenzpositionen eine andere als die konkret genannte Aminosäure aufweisen aber trotzdem eine der oben genannten Oxidationsreaktionen katalysieren. "Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, -Substituenten, -Deletionen und/oder -Inversionen erhältlichen Mutanten, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil führen. Funktionale Äquivalenz ist insbesondere auch dann gegeben, 60 wenn die Reaktivitätsmust er zwischen Mutante und unverändertem Enzym qualitativ übereinstimmen, d. h. beispielsweise gleiche Substrate mit unterschiedlicher Geschwindigkeit umgesetzt werden.

[0033] "Funktionale Äquivalente" umfassen natürlich auch P450-Monooxygenasen, welche aus anderen Organismen, z. B. aus anderen als den hierin konkret genannten Bakterien, zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an 65 die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln.

[0034] Erfindungsgemäß oxidierbare Substrate der Gruppe a) sind gegebenenfalls substituierte heterocyclische ein-, zwei- oder mehrkemigen aromatischen Verbindungen; insbesondere oxidierbare oder hydroxylierbare N-, O- oder S-he-

3

5

10

15

20

t)

terocyclische ein-, zwei- oder mehrkernige aromatische Verbindungen. Sie umfassen z. B. zwei oder drei vier- bis siebengliedrige, insbesondere sechs- oder fünfgliedrige, kondensierte Ringe, wobei wenigstens einer, vorzugsweise alle Ringe aromatischen Charakter besitzen und wobei wenigstens einer der aromatischen Ringe ein bis drei, vorzugsweise ein N-, O- oder S-Heteroatom im Ring trägt. In der gesamten Ringstruktur können gegebenenfalls ein oder zwei weitere gleiche oder verschiedene Heteroatome enthalten sein. Die aromatischen Verbindungen können weiterhin 1 bis 5 Substituenten an den Ring-Kohlenstoff- oder an den Heteroatomen tragen. Beispiele für geeignete Substituenten sind C₁ bis C₄-Alkyl, wie Methyl, Ethyl, n- oder i-Propyl oder n-, i- oder t-Butyl oder C₂ bis C₄-Alkenyl, wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Butenyl, 2-Butenyl oder 3-Butenyl, Hydroxyl und Halogen, wie F, Cl, und Br. Die genannten Alkyl- oder Alkenylsubstituenten können gegebenenfalls auch eine Keto- oder Aldehydgruppe aufweisen; Beispiele hierfür sind Propan-2-on-3-yl, Butan-2-on-4-yl, 3-Buten-2-on-4-yl. Nichtlimitierende Beispiele für geeignete heterocyclische Substrate sind insbesondere zweikernige Heterocyclen, wie Indol, N-Methylindol und die mit ein bis drei Substituenten an Kohlenstoffatomen substituierten Analoga davon, wie z. B. 5-Chlor- oder 5-Brom-indol; sowie Chinolin und Chinolinderivate, wie z. B. 8-Methylchinolin, 6-Methylchinolin und Chinaldin; und Benzothiophen und die mit ein bis drei Substituenten an Kohlenstoffatomen substituierten Analoga davon. Außerdem seien genannt dreikernige Heteroaromaten, wie Acridin, und die mit ein bis drei Substituenten an Kohlenstoffatomen substituierten Analoga davon.

[0035] Erfindungsgemäß oxidierbare Substrate der Gruppe b) sind gegebenenfalls substituierte ein- oder mehrkernige, insbesondere ein- oder zweikernige Aromaten, wie Benzol und Naphthalin. Die aromatischen Verbindungen können gegebenenfalls ein oder mehrfach substituiert sein und z. B. 1 bis 5 Substituenten an den Ring-Kohlenstoffatomen tragen. Beispiele für geeignete Substituenten sind C₁ bis C₄-Alkyl, wie Methyl, Ethyl, n- oder i-Propyl oder n-, i- oder t- Butyl, oder C₂ bis C₄-Alkenyl, wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Butenyl, 2-Butenyl oder 3-Butenyl, Hydroxyl und Halogen, wie F, Cl, und Br. Die genannten Alkyl- oder Alkenylsubstituenten können gegebenenfalls auch eine Keto- oder Aldehydgruppe aufweisen; Beispiele hierfür sind Propan-2-on-3-yl, Butan-2-on-4-yl, 3-Buten-2-on-4-yl. Der Aromat kann gegebenenfalls mit einem vier- bis siebengliedrigen, nichtaromatischen Ring kondensiert sein. Der nichtaromatische Ring kann gegebenenfalls eine oder zwei C-C-Doppelbindungen aufweisen, ein- oder mehrfach mit oben genannten Substituenten substituiert sein und gegebenenfalls ein oder zwei Ringheteroatome tragen. Beispiele für besonders brauchbare Aromaten sind einkernige Aromaten, wie Cumol, sowie zweikernige Substrate, wie Inden und Naphthalin, sowie die mit ein bis drei Substituenten an Kohlenstoffatomen substituierten Analoga davon.

[0036] Erfindungsgemäß oxidierbare Substrate der Gruppe c) sind geradkettige oder verzweigte Alkane oder Alkene mit 4 bis 15, vorzugsweise 6 bis 12 Kohlenstoffatomen. Als Beispiele können genannt werden n-Pentan, n-Hexan, n-Hexan, n-Oktan, n-Nonan, n-Decan, n-Undecan und n-Dodecan, sowie die ein- oder mehrfach verzweigten Analoga dieser Verbindungen, wie z. B. analoge Verbindungen mit 1 bis 3 Methyl-Seitengruppen; oder die ein- oder mehrfach, beispielsweise einfach ungesättigten Analoga der oben genannten Alkane.

[0037] Erfindungsgemäß oxidierbare Substrate der Gruppe d) sind gegebenenfalls substituierte Cycloalkane und Cycloalkene. Beispiele hierfür sind Cyclopentan, Cyclopenten, Cyclohexan, Cyclohexen, Cyclohexen, Cycloheptan und Cyclohepten.

Die Ringstruktur kann dabei ein- oder mehrfach substituiert sein und z. B. 1 bis 5 Substituenten gemäß obiger Definition für Verbindungen der Gruppen a) und b) tragen. Nichtlimitierendes Beispiel hierfür sind Ionone, wie α-, β- und γ-Ionon, sowie die entsprechenden Methylionone und Isomethylionone.

[0038] Erfindungsgemäß oxidierbare, Substrate der Gruppe e) sind geradkettige oder verzweigte, gesättigte oder einoder mehrfach ungesättigte C₈-C₃₀-Carbonsäuren, insbesondere Monocarbonsäuren, oder Carbonsäurederivate davon, wie Ester und Amide. Als Beispiele sind terminal oder subterminal (ω-1-, ω-2- oder ω-3-Position) hydroxylierbare gesättigte Monocarbonsäuren zu nennen.

[0039] Gegenstand der Erfindung sind auch Nukleinsäuresequenzen (einzel- und doppelsträngige DNA- und RNA-Sequenzen), kodierend für eine der obigen Monooxygenasen und deren funktionalen Äquivalenten. Weitere erfindungsgemäße Nukleinsäuresequenzen sind abgeleitet von SEQ ID NO: 1 und unterscheiden sich davon durch Addition, Substitution, Insertion oder Deletion einzelner oder mehrerer Nukleotide, kodieren aber weiterhin für eine Monooxygenase mit der gewünschten Eigenschaftsprofil.

[0040] Erfindungsgemäß umfasst sind auch solche Nukleinsäuresequenzen, die sogenannte stumme Mutationen umfassen oder entsprechend der Codon-Nutzung eins speziellen Ursprungs- oder Wirtsorganismus, im Vergleich zu einer konkret genannten Sequenz verändert sind, ebenso wie natürlich vorkommende Varianten, wie z. B. Spleißvarianten, davon. Gegenstand sind ebenso durch konservative Nukleotidsubstutionen (d. h. die betreffende Aminosäure wird durch eine Aminosäure gleicher Ladung, Größe, Polarität und/oder Löslichkeit ersetzt) erhältliche Sequenzen.

[0041] Weiterhin umfasst die Erfindung auch Nukleinsäuresequenzen, welchen mit oben genannten kodierenden Sequenzen hybridisieren oder dazu komplementär sind. Diese Polynukleotide lassen sich bei Durchmusterung von genomischen oder cDNA-Bibliotheken auffinden und gegebenenfalls daraus mit geeigneten Primern mittels PCR vermehren und anschließend beispielsweise mit geeigneten Sonden isolieren. Eine weitere Möglichkeit bietet die Transformation geeigneter Mikroorganismen mit erfindungsgemäßen Polynukleotiden oder Vektoren, die Vermehrung der Mikroorganismen und damit der Polynukleotide und deren anschließende Isolierung. Darüber hinaus können erfindungsgemäße Polynukleotide auch auf chemischem Wege synthetisiert werden.

[0042] Unter der Eigenschaft, an Polynukleotide "hybridisieren" zu können, versteht man die Fähigkeit eines Polyoder Oligonukleotids unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnern unterbleiben. Dazu sollten die Sequenzen zu 70–100%, vorzugsweise zu 90–100%, komplementär sein. Die Eigenschaft komplementärer Sequenzen, spezifisch aneinander binden zu können, macht man sich beispielsweise in der Northern- oder Southern-Blot-Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze. Üblicherweise werden dazu Oligonukleotide ab einer Länge von 30 Basenpaaren eingesetzt. Unter stringenten Bedingungen versteht man beispielsweise in der Northern-Blot-Technik die Verwendung einer 50–70°C, vorzugsweise 60–65°C warmen Waschlösung, beispielsweise 0,1 × SSC-Puffer mit 0,1% SDS (20 × SSC: 3M NaCl, 0,3M Na-Citrat, pH 7,0) zur Elution unspezifisch hybridisierter cDNA-Sonden oder Oligonukleotide. Dabei bleiben, wie oben erwähnt, nur in hohem Maße komplementäre Nukleinsäuren aneinander ge-

bunden.

[0043] Gegenstand der Erfindung sind außerdem Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für eine erfindungsgemäße Mutante kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte. Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie Translationsverstärker, Enhancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen.

[0044] Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz vor dem eigentlichen Strukturgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird.

[0045] Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.

[0046] Beispiele für brauchbare Promotoren sind: cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacIq-, T7-, T5-, T3-, 20 gal-, trc-, ara-, SP6-, I-PR- oder im I-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden; sowie die gram-positiven Promotoren amy und SPO2, die Hefepromotoren ADC1, MFa, AC, P-60, CYC1, GAPDH oder die Pflanzenpromotoren CaMV/355, SSU, OCS, lib4, usp, STLS1, B33, not oder der Ubiquitin- oder Phaseolin-Promotor. Besonders bevorzugt ist die Verwendung induzierbarer Promotoren, wie z. B. licht- und insbesondere temperaturinduztierbarer Promotoren, wie der P_rP_l-Promotor.

[0047] Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.

[0048] Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.

[0049] Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

[0050] Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten Monooxygenase-Nukleotidsequenz sowie einem Terminator- oder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E. F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T. J. Silhavy, M. L. Berman und L. W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F. M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.

[0051] Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels 45 P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren, wie beispielsweise Phagen, Viren, wie SV40, CMV, Baculovirus und Adenovirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.

[0052] Mit Hilfe der erfindungsgemäßen Vektoren sind rekombinante Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind und zur Produktion der Mutanten eingesetzt werden können. Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfektionsmethoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem 55 zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, beschrieben.

[0053] Als Wirtsorganismen sind prinzipiell alle Organismen geeignet, die eine Expression der erfindungsgemäßen Nukleinsäuren, ihrer Allelvarianten, ihrer funktionellen Äquivalente oder Derivate ermöglichen. Unter Wirtsorganismen sind beispielsweise Bakterien, Pilze, Hefen, pflanzliche oder tierische Zellen zu verstehen. Bevorzugte Organismen sind 60 Bakterien, wie solche der Gattungen Escherichia, wie z. B. Escherichia coli, Streptomyces, Bacillus oder Pseudomonas, eukaryotische Mikroorganismen, wie Saccharomyces cerevisiae, Aspergillus, höhere eukaryotische Zellen aus Tieren oder Pflanzen, beispielsweise Sf9 oder CHO-Zellen.

[0054] Die Selektion erfolgreich transformierter Organismen kann durch Markergene erfolgen, die ebenfalls im Vektor oder in der Expressionskassette enthalten sind. Beispiele für solche Markergene sind Gene für Antibiotikaresistenz und 65 für Enzyme, die eine farbgebende Reaktion katalysieren, die ein Anfärben der transformierten Zelle bewirkt. Diese können dann mittels automatischer Zellsortierung selektiert werden. Erfolgreich mit einem Vektor transformierte Mikroorganismen, die ein entsprechendes Antibiotikaresistenzgen (z. B. G418 oder Hygromycin) tragen, lassen sich durch ent-

5

25

30

sprechende Antibiotikaenthaltende Medien oder Nährböden selektieren. Markerproteine, die an der Zelloberfläche präsentiert werden, können zur Selektion mittels Affinitätschromatographie genutzt werden.

[0055] Die Kombination aus den Wirtsorganismen und den zu den Organismen passenden Vektoren, wie Plasmide, Viren oder Phagen, wie beispielsweise Plasmide mit dem RNA-Polymerase/Promoter-System, die Phagen λ oder μ oder andere temperente Phagen oder Transposons und/oder weiteren vorteilhaften regulatorischen Sequenzen bildet ein Expressionssystem. Beispielsweise ist unter dem Begriff "Expressionssystem" die Kombination aus Säugetierzellen, wie CHO-Zellen, und Vektoren, wie pcDNA3neo-Vektor, die für Säugetierzellen geeignet sind, zu verstehen.

[0056] Gewünschtenfalls kann das Genprodukt auch in transgenen Organismen wie transgenen Tieren, wie insbesondere Mäusen, Schafen oder transgenen Pflanzen zur Expression gebracht werden.

[0057] Gegenstand der Erfindung sind weiterhin Verfahren zur rekombinanten Herstellung einer erfindungsgemäßen Monooxygenase, wobei man einen Monooxygenase-produzierenden Mikroorganismus kultiviert, gegebenenfalls die Expression der Monooxygenase induziert und die Monooxygenase aus der Kultur isoliert. Die Monooxygenase kann so auch in großtechnischem Maßstab produziert werden, falls dies erwünscht ist.

[0058] Der rekombinante Mikroorganismus kann nach bekannten Verfahren kultiviert und fermentiert werden. Bakterien können beispielsweise in TB- oder LB-Medium und bei einer Temperatur von 20 bis 40°C und einem pH-Wert von 6
bis 9 vermehrt werden. Im Einzelnen werden geeignete Kultivierungsbedingungen beispielsweise in T. Maniatis, E. F.
Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) beschrieben.

[0059] Die Zellen werden dann, falls die Monooxygenase nicht in das Kulturmedium sezerniert wird, aufgeschlossen und das Enzym nach bekannten Proteinisolierungsverfahren aus dem Lysat gewonnen. Die Zellen können wahlweise durch hochfrequenten Ultraschall, durch hohen Druck, wie z. B. in einer French-Druckzelle, durch Osmolyse, durch Einwirkung von Detergenzien, lytischen Enzymen oder organischen Lösungsmitteln, durch Homogenisatoren oder durch Kombination mehrerer der aufgeführten Verfahren aufgeschlossen werden.

[0060] Eine Aufreinigung der Monooxygenase kann mit bekannten, chromatographischen Verfahren erzielt werden, wie Molekularsieb-Chromatographie (Gelfiltration), wie Q-Sepharose-Chromatographie, Ionenaustausch-Chromatographie und hydrophobe Chromatographie, sowie mit anderen üblichen Verfahren wie Ultrafiltration, Kristallisation, Aussalzen, Dialyse und nativer Gelelektrophorese. Geeignete Verfahren werden beispielsweise in Cooper, F. G., Biochemische Arbeitsmethoden, Verlag Walter de Gruyter, Berlin, New York oder in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin beschrieben.

10061] Besonders vorteilhaft ist es, zur Isolierung des rekombinanten Proteins Vektorsysteme oder Oligonukleotide zu verwenden, die die cDNA um bestimmte Nucleotidsequenzen verlängern und damit für veränderte Polypeptide oder Fusionsproteine kodieren, die einer einfacheren Reinigung dienen. Derartige geeignete Modifikationen sind beispielsweise als Anker fungierende sogenannte "Tags", wie z. B. die als Hexa-Histidin-Anker bekannte Modifikation oder Epitope, die als Antigene von Antikörpern erkannt werden können (beschrieben zum Beispiel in Harlow, E. and Lane, D., 1988,

Antibodies: A Laboratory Manual. Cold Spring Harbor (N. Y.) Press). Diese Anker können zur Anheftung der Proteine an einen festen Träger, wie z. B. einer Polymermatrix, dienen, die beispielsweise in einer Chromatographiesäule eingefüllt sein kann, oder an einer Mikrotiterplatte oder an einem sonstigen Träger verwendet werden kann.

[0062] Gleichzeitig können diese Anker auch zur Erkennung der Proteine verwendet werden. Zur Erkennung der Proteine können außerdem übliche Marker, wie Fluoreszenzfarbstoffe, Enzymmarker, die nach Reaktion mit einem Substrat ein detektierbares Reaktionsprodukt bilden, oder radioaktive Marker, allein oder in Kombination mit den Ankern zur Derivatisierung der Proteine verwendet werden.

[0063] Die Erfindung betrifft außerdem ein Verfahren zur mikrobiologischen Oxidation organischer Verbindungen obigen Typs.

[0064] Wird die Umsetzung mit einem rekombinanten Mikroorganismus durchgeführt, so erfolgt vorzugsweise zunächst die Kultivierung der Mikroorganismen in Gegenwart von Sauerstoff und in einem Komplexmedium, wie z. B. TB- oder LB-Medium bei einer Kultivierungstemperatur von etwa 20°C oder mehr, und einem pH-Wert von etwa 6 bis 9, bis eine ausreichende Zelldichte erreicht ist. Um die Oxidationsreaktion besser steuern zu können, bevorzugt man die Verwendung eines induzierbaren Promotors. Die Kultivierung wird nach Induktion der Monooxygenaseproduktion in Gegenwart von Sauerstoff 12 Stunden bis 3 Tage fortgesetzt.

[0065] Wird die erfindungsgemäße Umsetzung dagegen mit gereinigtem oder angereichertem Enzym durchgeführt so löst man das erfindungsgemäße Enzym in einem exogenes Substrat enthaltenden Medium (etwa 0,01 bis 10 mM, oder 0,05 bis 5 mM), und führt die Umsetzung, vorzugsweise in Gegenwart von Sauerstoff, bei einer Temperatur von etwa 10°C oder mehr, und einem pH-Wert von etwa 6 bis 9 (wie z. B. eingestellt mit 100 bis 200 mM Phosphat- oder Tris-Puffer), sowie in Gegenwart eines Reduktionsmittels durch, wobei das Substrat-haltige Medium außerdem bezogen auf das zu oxidierende Substrat einen etwa 10- bis 100-fachen molaren Überschuß an Reduktionsäquivalenten enthält. Bevorzugtes Reduktionsmittel ist NADPH.

[0066] Beim erfindungsgemäßen Substratoxidationsprozess wird im Reaktionsmedium enthaltener oder zugesetzter Sauerstoff reduktiv enzymatisch gespalten. Die erforderlichen Reduktionsäquivalente werden von dem zugesetzten Reduktionsmittel (Elektronendonor) zur Verfügung gestellt.

[0067] Das gebildete Oxidationsprodukt kann dann in herkömmlicher Weise, wie z. B. durch Extraktion oder Chromatographie, vom Medium abgetrennt und gereinigt werden.

[0068] Folgende nichtlimitierende Beispiele beschreiben spezielle Ausführungsformen der Erfindung.

65

Allgemeine experimentelle Angaben

a) Allgemeine Klonierungsverfahren

[0069] Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z. B. Restriktionsspaltun-

gen, Agarose Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) a. a. O. beschrieben durchgeführt.

b) Polymerasekettenreaktion (PCR)

[0070] PCR wurde nach Standardprotokoll mit folgendem Standardansatz durchgeführt: 8 µl dNTP-Mix (200 µM), 10 µl Taq-Polymerase-Puffer (10 x) ohne MgCl₂, 8 µl MgCl₂ (25 mM, je 1 µl Primer (0,1 µM), 1 µl zu amplifizierende DNA, 2,5 U Taq-Polymerase (MBI Fermentas, Vilnius, Litauen), ad 100 µl demineralisiertes Wasser.

c) Kultivierung von E. coli

[0071] Die Kultivierung von rekombinanten E. coli-Stämme DH5 α wurde in LB-Amp Medium (Trypton 10,0 g, NaCl 5,0 g, Hefeextrakt 5,0 g, Ampicillin 100 g/ml H₂O ad 1000 ml) bei 37°C kultiviert. Dazu wurde jeweils eine Kolonie mittels Impföse von einer Agarplatte in 5 ml LB-Amp überführt. Nach ca. 18 h Stunden Kultivierung bei einer Schüttelfrequenz von 220 Upm wurden 400 ml Medium in einem 2-l-Kolben mit 4 ml Kultur inokuliert. Die Induktion der P450-Expression in E. coli erfolgte nach Erreichen eines OD578-Wertes zwischen 0,8 und 1,0 durch eine drei- bis vierstündige Hitzeschockinduktion bei 42°C.

d) Zellaufschluß

[0072] Zellpellets mit einer Biofeuchtmasse von bis zu 15 g E. coli DH5 α wurden auf Eis aufgetaut und in 25 ml Kaliumphosphat-Puffer (50 mM, pH 7,5, 1 mM EDTA) oder Tris/HCl Puffer (50 mM, pH 7,5, 1 mM EDTA) suspendiert. Mittels dreiminütiger Ultraschallbehandlung (Branson Sonifier W250, (Dietzenbach, Deutschland), Leistungsabgabe 80 W, Arbeitsintervall 20%) wurde die auf Eis gekühlte E. coli-Zellsuspension aufgeschlossen. Vor der Proteinreinigung wurde die Zellsuspension für 20 min bei 32 500 g zentrifugiert und durch einen 0,22 mm Sterivex-GP-Filter (Millipore) filtriert, wobei man einen Rohextrakt erhält.

Beispiel 1

Klonierung und Expression von P450 aus Thermus thermophilus HB27 und den His-tag-Derivaten davon

1. Klonierung von P450 aus Thermus thermophilus HB27

[0073] Die kodierende P450-Sequenz (blunt ended) wurde in die HincII-Schnittstelle des Plasmids pTZ19R (MBI Fermentas) einkloniert.

[0074] Aus dem so erhaltenen Plasmid TTHB66 wurde die kodierende P450-Sequenz mit Hilfe der PCR amplifiziert. Dazu wurden folgende Primer verwendet:

- a) 30-mer sense-Oligonucleotid, enthaltend die NdeI-Schnittstelle (kursiv gedruckt) als Teil des P450-ATG-Start-codons:
- 5'-CGAAGCTCATATGAAGCGCCTTTCCCTGAG (SEQ ID NO:7).
- b) 30-mer antisense-Oligonucleotid, enthaltend die EcoRI-Schnittstelle (kursiv gedruckt) als Teil des TGA-Stop-codons:
- 5'-GCGAATTCACGCCCGCACCTCCTCCCTAGG (SEQ ID NO:8).

[0075] Das resultierende Fragment wurde in die Ndel-Schnittstellen des Vektors pCYTEXP1 (Plasmid mit dem temperaturinduzierbaren P_RP_L -Promotorsystem des Bakteriophagen λ (Belev T. N., et al., Plasmid (1991) 26: 147)) kloniert und in E. coli DH-5 α (Clontech, Heidelberg) transformiert.

[0076] E. coli DH-5 α , enthaltend das interessierende Plasmid wurde in LB-Medium in Gegenwart von Ampicillin inokuliert und die Kultur wurde über Nacht bei 37°C inkubiert. Ein Teil der Probe wurde in frisches LB-Medium (in Gegenwart von Ampicillin) inokuliert und die resultierende Kultur wurde bei 37°C bis zu OD = 0,9 kultiviert. Die Induktion erfolgte durch Erhöhung der Temperatur auf 42°C über einen Zeitraum von 24 Stunden. Die Veränderung des P450-Gehaltes während der Expression wurde anhand von Messungen des CO-Differenzspektrums bestimmt.

65

60

5

20

30

35

40

45

	Expressionszeit	ΔΑ ₄₅₀₋₄₉₀	P450 Konzentration
	[h]		(µM)
5	4	0,092	0,056
	8	0,176	0,106
10	24	0,106	0,064

- 2. Klonierung von P450 aus Thermus thermophilus HB27 mit N-terminalem His-tag
- 15 [0077] Die kodierende P450-Sequenz wurde durch PCR aus dem Plasmid TTHB66 unter Verwendung folgender Primer amplifiziert:
 - (a) 50-mer sense-Oligonucleotid, enthaltend die NdeI-Schnittstelle (kursiv gedruckt) als Teil des P450 ATG-Start-codons und die tag-codierenden Codons (unterstrichen):
 - 5'-CGAAGCTCATATGCATCACCATCATCACAAGCGCCTTTC (SEQ ID NO:9);
 - (b) 30-mer antisense-Oligonucleotid, enthaltend die EcoRI-Schnittstelle (kursiv gedruckt) als Teil des TGA-Stop-Codons:
 - 5'-GCGAATTCACGCCCGCACCTCCTCCCTAGG (SEQ ID NO:8).

20

25

55

60

[0078] Das resultierende Fragment wurde in die NdeI- und EcoRI-Schnittstellen des Vektors p-CYTEXP1 kloniert und in E. coli DH-5\alpha exprimiert.

[0079] E. coli DH-5 α , enthaltend das interessierende Plasmid, wurde in LB-Medium in Gegenwart von Ampicillin inokuliert und die Kultur wurde über Nacht bei 37°C inkubiert. Ein Teil der Probe wurde in frisches LB-Medium (in Gegenwart von Ampicillin) inokuliert und die resultierende Kultur wurde bei 37°C bis zu OD = 0,9 kultiviert. Die Induktion erfolgte durch Erhöhung der Temperatur auf 42°C über einen Zeitraum von 24 Stunden. Die Veränderung des P450-Gehaltes während der Expression wurde anhand von Messungen des CO-Differenzspektrums bestimmt.

35				
	Expressionszeit	ΔA ₄₅₀₋₄₉₀	P450	Konzentration
	[h] -		[Mq]	
40	4	ND	ND	
	8	0,097	0,073	
45	24	0,111	0,073	· ·
43				

- 3. Clonierung von P450 aus Thermus thermophilus HB27 mit C-terminalem His-tag
- 50 [0080] Die kodierende P450-Sequenz wurde durch PCR aus dem Plasmid TTHB66 unter Verwendung der folgenden Primer amplifiziert:
 - (a) 30-mer sense-Oligonucleotid, enthaltend die NdeI-Schnittstelle (kursiv gedruckt) als Teil des P450 ATG-Start-Codons:
 - 5'-CGAAGCT CATATGAAGCGCCTTTCCCTGAG (SEQ ID NO:7)
 - (b) 47-mer antisense-Oligonucleotid, enthaltend die EcoRI-Schnittstelle (kursiv gedruckt) als Teil des TGA-Stop-Codons sowie die unterstrichene tag-codierende Teilsequenz:
 - 5'-CGGAATTCAGTGATGATGATGGTGATGCGCCCGCACCTCCTC (SEQ ID'NO:10)

[0081] Das resultierende Fragment wurde in die NdeI- und EcoRI-Schnittstellen des Vektors p-CXTEXP1 cloniert und in E. coli DH-5α exprimiert.

65 [0082] E. coli DH-5α, enthaltend das interessierende Plasmid wurde in LB-Medium in Gegenwart von Ampicillin inokuliert und die Kultur wurde über Nacht bei 37°C inkubiert. Ein Teil der Probe wurde in frisches LB-Medium (in Gegenwart von Ampicillin) inokuliert und die resultierende Kultur wurde bei 37°C bis zu OD = 0,9 kultiviert. Die Induktion erfolgte durch Erhöhung der Temperatur auf 42°C über einen Zeitraum von 24 Stunden. Die Veränderung des P450-Gehal-

tes während der Expression wurde anhand von Messungen des CO-Differenzspektrums bestimmt.

Expressionszeit	ΔΑ ₄₅₀₋₄₉₀	P450 Konzentration
[h]		[µM]
4	ND	ND
8	0,1	0,075
24	ND	ND

Beispiel 2

Bestimmung der Thermostabilität von P450 aus Thermus thermophilus im Vergleich zu P450 BM3

[0083] Die beiden Enzyme wurden jeweils 30 Minuten in Tris/HCl-Puffer pH 7,5, 25 mM bei verschiedenen Temperaturen inkubiert. Die Ansätze wurden anschließend abgekühlt und die P450 Konzentration wurde spektrometrisch bestimmt. Die Ergebnisse sind in folgender Tabelle zusammengefaßt und in Fig. 2 graphisch dargestellt.

Temperatur [°C]		30	40	50	60	25
P450 Konzentration [%]	P450 thermus	100	89	29	22	
	P450 BM3	92	63	0	0	30

[0084] Wie man den Versuchsergebnissen entnimmt, besitzt das erfindungsgemäße Enzym nach 30-minütiger Inkubation bei allen Temperaturen eine signifikant höherer Temperaturstabilität.

SEQUENZPROTOKOLL

								SEC	SOCIAS	IKU.	IONO.	سانا					
	<110	> BAS	SF Al	ktier	ngese	ellso	haft	<u>.</u>									
5	<120	> Ne	ie ti	nermo	ophil	le Cy	ytoci	rom	P450) Mor	гооху	/gena	sen				
	<130	> M/4	4152	4													
10	<1402 <1412																
	<160	> 10															
15	<170	> Pa	tent	In V	er.	2.1											
20	<210 <211 <212 <213	> 11' > DN	A	s th	ermo	phil	us										
25	<220 <221 <222	> CD		1170)												
30	<400 atg Met 1	ааσ	cgc Arg	ctt Leu	tcc Ser 5	ctg Leu	agg Arg	gag Glu	gcc Ala	tgg Trp 10	ccc Pro	tac Tyr	ctg Leu	aaa Lys	gac Asp 15	ctc Leu	48
30	cag Gln	caa Gln	gat Asp	ccc Pro 20	ctc Leu	gcc Ala	gtc Val	ctg Leu	ctg Leu 25	gcg Ala	tgg Trp	ggc Gly	cgg Arg	gcc Ala 30	cac His	ccc Pro	96
35	cgg Arg	ctc Leu	ttc Phe 35	ctt Leu	ccc Pro	ctg Leu	ccc Pro	cgc Arg 40	ttc Phe	ccc Pro	ctg Leu	gcc Ala	ctg Leu 45	atc Ile	ttt Phe	gac Asp	144
40	ccc Pro	gag Glu 50	ggg Gly	gtg Val	gag Glu	ggg	gcg Ala 55	ctc Leu	ctc Leu	gcc Ala	gag Glu	ggg Gly 60	acc Thr	acc Thr	aag Lys	gcc Ala	192
45	acc Thr 65	ttc Phe	cag Gln	tac Tyr	cgg Arg	gcc Ala 70	ctc Leu	tcc Ser	cgc Arg	ctc Leu	acg Thr 75	ggg Gly	agg Arg	ggc Gly	ctc Leu	ctc Leu 80	240
50	acc Thr	gac Asp	tgg Trp	ggg	gaa Glu 85	agc Ser	tgg Trp	aag Lys	gag Glu	gcg Ala 90	cgc Arg	aag Lys	gcc Ala	ctc Leu	aaa Lys 95	gac Asp	288
55	ccc Pro	ttc Phe	ctg Leu	ccg Pro 100	aag Lys	aac Asn	gtc Val	cgc	ggc Gly 105	tac Tyr	cgg Arg	gag Glu	gcc Ala	atg Met 110	gag Glu	gag Glu	336
7 0	gag Glu	gcc Ala	cgg Arg 115	Ala	ttc Phe	ttc Phe	ggg	gag Glu 120	Trp	cgg Arg	Gly	gag Glu	gag Glu 125	Arg	gac Asp	ctg Leu	384
60	gac Asp	cac His 130	Glu	atg Met	ctc Leu	gcc Ala	ctc Leu 135	Ser	ctg Leu	cgc Arg	ctc Leu	ctc Leu 140	Gly	cgg Arg	gcc Ala	ctc Leu	432
65	ttc Phe	Gly	aag Lys	ccc	ctc Leu	tcc Ser	cca	ago Sei	cto Leu	gcç Ala	gag Glu	cac	gcc	ctt	aag Lys	gcc	480

145					150				155					160		
_	_		atc Ile	-	_					_	_		_	•	528	5
			gaa Glu 180												576	10
		_	gcc Ala			-								_	624	15
_	_	_	ctg Leu	_	-	_			_					-	672	
_			agc Ser	_										_	720	20
=	_		cag Gln			=			_ :	-				-	768	25
_		•	gag Glu 260												816	30
		_	gaa Glu							-				_	864	35
			ctg Leu	_						_					912	40
	_		gag Glu					 •		•		-		-	960	45
			ggg Gly												1008	
		=	gac Asp 340								_		Arg	_	1056	50
		_	cgc Arg		_		_					Arg			1104	55
_	•	•	acc Thr	_			_	 			Ala				1152	60
			cgg Arg		tga 390										1170	65

5	<212	> 38 > PR		s th	ermo	phil	us									
10	<400 Met 1		Arg :	Leu	Ser 5	Leu	Arg	Glu	Ala	Trp 10	Pro '	Tyr	Leu	Lys	Asp 15	Leu
• •	Gln	Gln	Asp	Pro 20	Leu	Ala	Val	Leu	Leu 25	Ala	Trp	Gly	Arg	Ala 30	His	Pro
15	Arg	Leu	Phe 35	Leu	Pro	Leu	Pro	Arg 40	Phe	Pro	Leu	Ala	Leu 45	Ile	Phe	Asp
20	Pro	Glu 50	Gly	Val	Glu	G1y	Ala 55	Leu	Leu	Ala	Glu	Gly 60	Thr	Thr	Lys	Ala
	Thr 65	Phe	Gln	Tyr	Arg	Ala 70	Leu	Ser	Arg	Leu	Thr 75	Gly	Arg	Gly	Leu	Leu 80
25	Thr	Asp	Trp	Gly	Glu 85	Ser	Trp	Lys	Glu	Ala 90	Arg	Lys	Ala	Leu	Lys 95	Asp
30	Pro	Phe	Leu	Pro 100	Lys	Asn	Val	Arg	Gly 105	Tyr	Arg	Glu	Ala	Met 110	Glu	Glu
	Glu	Ala	Arg 115	Ala	Phe	Phe	Gly	Glu 120	Trp	Arg	Gly	Glu	Glu 125	Arg	Asp	Leu
35	Asp	His 130	Glu	Met	Leu	Ala	Leu 135	Ser	Leu	Arg	Leu	Leu 140	Gly	Arg	Ala	Leu
40	Phe 145	Gly	Lys	Pro	Leu	Ser 150	Pro	Ser	Leu	Ala	Glu 155	His	Ala	Leu	Lys	Ala 160
	Leu	Asp	Arg	Ile	Met 165	Ala	Gln	Thr	Arg	Ser 170	Pro	Leu	Ala	Leu	Leu 175	Asp
45	Leu	Ala	Ala	Glu 180	Ala	Arg	Phe	Arg	Lys 185		Arg	Gly	Ala	Leu 190	Tyr	Arg
50	Glu	Ala	Glu 195	Ala	Leu	Ile	Val	His 200	Pro	Pro	Leu	Ser	His 205		Pro	Arg
	Glu	Arg 210		Leu	Ser	Glu	Ala 215		Thr	Leu	Leu	Val 220		Gly	His	Glu
55	Thr 225		Ala	Ser	Ala	Leu 230		Trp	Ser	Phe	Leu 235		Leu	ser	His	Arg 240
60	Pro	Asp	Trp	Gln	Lys 245		Val	Ala	Glu	Ser 250	Glu	Glu	Ala	a Ala	Leu 255	Ala
ου	Ala	Phe	Gln	Glu 260		Leu	Arg	Leu	Tyr 265		Pro	Ala	Trp	270	e Leu)	Thr
65			275					280)				289	5) Pro
	Gly	Thr 290		Leu	Val	Leu	Ser 295		туі	r Val	Thr	Glr 300	n Aro	g Lei	ı His	s Phe

Pro Asp Gly Glu Ala Phe Arg Pro Glu Arg Phe Leu Glu Glu Arg Gly 315 320	
Thr Pro Ser Gly Arg Tyr Phe Pro Phe Gly Leu Gly Gln Arg Leu Cys 325	5
Leu Gly Arg Asp Phe Ala Leu Leu Glu Gly Pro Ile Val Leu Arg Ala 340 345 350	10
Phe Phe Arg Arg Phe Arg Leu Asp Pro Leu Pro Phe Pro Arg Val Leu 355 360	
Ala Gln Val Thr Leu Arg Pro Glu Gly Gly Leu Pro Ala Arg Pro Arg 370 375 380	15
Glu Glu Val Arg Ala 385	20
<210> 3 <211> 1188 <212> DNA <213> Künstliche Sequenz	25
<220> <221> misc_feature <222> (4)(21) <223> His tag	30
<220> <223> Beschreibung der künstlichen Sequenz:N-terminal his tagged	35
<220>	
<221> CDS <222> (1)(1188)	40
	48
<pre><222> (1)(1188) <400> 3 atg cat cac cat cat cac aag cgc ctt tcc ctg agg gag gcc tgg Met His His His His His Lys Arg Leu Ser Leu Arg Glu Ala Trp 10</pre>	48
<pre><222> (1)(1188) <400> 3 atg cat cac cat cat cat cac aag cgc ctt tcc ctg agg gag gcc tgg Met His His His His His His Lys Arg Leu Ser Leu Arg Glu Ala Trp</pre>	48 45 96 50
<pre><222> (1)(1188) <400> 3 atg cat cac cat cat cat cac aag cgc ctt tcc ctg agg gag gcc tgg Met His His His His His His Lys Arg Leu Ser Leu Arg Glu Ala Trp</pre>	48 45 96 50
<pre><222> (1)(1188) <400> 3 atg cat cac cat cat cat cac aag cgc ctt tcc ctg agg gag gcc tgg Met His His His His His His Lys Arg Leu Ser Leu Arg Glu Ala Trp</pre>	48 45 96 50 144 55 192

	cgc Arg	aag Lys	gcc Ala	ctc Leu 100	aaa Lys	gac Asp	ccc Pro	Phe	ctg Leu 105	ccg Pro	aag Lys	aac Asn	val .	cgc Arg 110	ggc Gly	tac Tyr	336
5	cgg Arg	gag Glu	gcc Ala 115	atg Met	gag Glu	gag Glu	gag Glu	gcc Ala 120	cgg Arg	gcc Ala	ttc Phe	ttc Phe	ggg Gly 125	gag Glu	tgg Trp	cgg Arg	384
10	ggg Gly	gag Glu 130	gag Glu	cgg Arg	gac Asp	ctg Leu	gac Asp 135	cac His	gag Glu	atg Met	ctc Leu	gcc Ala 140	ctc Leu	tcc Ser	ctg Leu	cgc Arg	432
15	ctc Leu 145	ctc Leu	GJA	cgg Arg	gcc Ala	ctc Leu 150	ttc Phe	ggg Gly	aag Lys	ccc Pro	ctc Leu 155	tcc Ser	cca Pro	agc Ser	ctc Leu	gcg Ala 160	480
20	gag Glu	cac	gcc Ala	ctt Leu	aag Lys 165	gcc Ala	ctg Leu	gac Asp	cgg Arg	atc Ile 170	atg Met	gcc Ala	cag Gln	acc Thr	agg Arg 175	agc Ser	528
25	ccc Pro	ctg Leu	gcc Ala	ctc Leu 180	ctg Leu	gac Asp	ctg Leu	gcc Ala	gcc Ala 185	gaa Glu	gcc Ala	egc Arg	ttc Phe	cgg Arg 190	aag Lys	gac Asp	576
30	cgg Arg	Gly	gcc Ala 195	ctc Leu	tac Tyr	cgc Arg	gag Glu	gcg Ala 200	gaa Glu	gcc Ala	ctc Leu	atc Ile	gtc Val 205	cac His	ccg Pro	ccc Pro	624
	ctc Leu	tcc Ser 210	His	ctt Leu	ccc Pro	cga Arg	gag Glu 215	cgc Arg	gcc Ala	ctg Leu	agc Ser	gag Glu 220	Ala	gtg Val	acc Thr	ctc Leu	672
35	ctg Leu 225	Val	gcg Ala	ggc	cac	gag Glu 230	acg Thr	gtg Val	gcg Ala	agc Ser	gcc Ala 235	Leu	acc Thr	tgg Trp	tcc Ser	ttt Phe 240	720
40	ctc Leu	ctc	ctc Leu	tcc Ser	cac His 245	Arg	ccg Pro	gac Asp	tgg Trp	cag Gln 250	Lys	cgg	gtg Val	gcc	gaq Glu 255	g agc i Ser	768
45	gag Glu	gag Glu	gcg Ala	gcc Ala 260	Leu	gcc Ala	gcc Ala	ttc Phe	cag Gln 265	Glu	gcc Ala	ctg Lev	agg Arg	Leu 270	Ty	c ccc c Pro	816
50	ccc Pro	gcc Ala	tgg Trp 275	Ile	ctc Lev	acc Thr	cgg Arg	agg Arg 280	Lev	gaa Glu	ago Aro	Pro	cto Leu 285	Le	ctq 1 Lei	g gga ı Gly	864
55	Glu	gac Asp 290	Arg	g cto	c ccc	c ccg	ggc Gly 295	Thr	acc Thr	ctg Lev	g gto 1 Val	Let 300	ı Ser	e ccc	e tac o Ty:	c gtg r Val	912
(0)	Thr 305	Glr	g ago n Aro	g cto g Leo	c cad u His	tto Phe 310	Pro	gat Asp	ggg Gly	g gaq y Glu	g gco n Ala 31!	a Pho	c cgg	g cc	c ga o Gl	g cgc u Arg 320	960
60	tto	c cto	g gaq ı Glı	g gaa u Glu	a ago u Aro 32	g Gly	g aco	c cct	t too Se:	g ggg r Gly 330	y Ar	c ta g Ty	c tto	c cc e Pr	c tt o Ph 33	t ggc e Gly 5	1008
65	cto	g gg u Gl	g cad y Gl	g ag n Ar 34	g Le	c tgo u Cys	cto Lev	g ggg	g cg y Ar 34	g As	c tt p Ph	c gc e Al	c ct a Le	c ct u Le 35	u GI	g ggc u Gly	1056

ccc atc gtc ctc agg gcc ttc ttc cgc cgc ttc cgc cta gac ccc ctc 1104 Pro Ile Val Leu Arg Ala Phe Phe Arg Arg Phe Arg Leu Asp Pro Leu 355 360 365	5
ccc ttc ccc cgg gtc ctc gcc cag gtc acc ctg agg ccc gaa ggc ggg 1152 Pro Phe Pro Arg Val Leu Ala Gln Val Thr Leu Arg Pro Glu Gly Gly 370 380	5
ctt ccc gcg cgg cct agg gag gtg cgg gcg tga Leu Pro Ala Arg Pro Arg Glu Glu Val Arg Ala 395 390 395	10
<210> 4 <211> 395 <212> PRT	15
<213> Künstliche Sequenz <223> Beschreibung der künstlichen Sequenz:N-terminal his tagged	20
<pre><400> 4 Met His His His His Lys Arg Leu Ser Leu Arg Glu Ala Trp</pre>	25
Pro Tyr Leu Lys Asp Leu Gln Gln Asp Pro Leu Ala Val Leu Leu Ala 20 25 30	30
Trp Gly Arg Ala His Pro Arg Leu Phe Leu Pro Leu Pro Arg Phe Pro 35 40 45	
Leu Ala Leu Ile Phe Asp Pro Glu Gly Val Glu Gly Ala Leu Leu Ala 50 55 60	35
Glu Gly Thr Thr Lys Ala Thr Phe Gln Tyr Arg Ala Leu Ser Arg Leu 65 70 75 80	40
Thr Gly Arg Gly Leu Leu Thr Asp Trp Gly Glu Ser Trp Lys Glu Ala 85 90 95	40
Arg Lys Ala Leu Lys Asp Pro Phe Leu Pro Lys Asn Val Arg Gly Tyr 100 105 110	45
Arg Glu Ala Met Glu Glu Glu Ala Arg Ala Phe Phe Gly Glu Trp Arg 115 120 125	
Gly Glu Glu Arg Asp Leu Asp His Glu Met Leu Ala Leu Ser Leu Arg 130 135 140	50
Leu Leu Gly Arg Ala Leu Phe Gly Lys Pro Leu Ser Pro Ser Leu Ala 145 150 155 160	55
Glu His Ala Leu Lys Ala Leu Asp Arg Ile Met Ala Gln Thr Arg Ser 165 170 175	
Pro Leu Ala Leu Leu Asp Leu Ala Ala Glu Ala Arg Phe Arg Lys Asp 180 185 190	60
Arg Gly Ala Leu Tyr Arg Glu Ala Glu Ala Leu Ile Val His Pro Pro 195 200 205	65
Leu Ser His Leu Pro Arg Glu Arg Ala Leu Ser Glu Ala Val Thr Leu 210 215 220	U.

	Leu 225	Val	Ala	Gly	His	Glu 230	Thr	Val	Ala	Ser	Ala 235	Leu	Thr	Trp	Ser	Phe 240	
5	Leu	Leu	Leu	Ser	His 245	Arg	Pro	Asp	Trp	Gln- 250	Lys	Arg	Val	Ala	Glu 255	Ser	
10	Glu	Glu	Ala	Ala 260	Leu	Ala	Ala	Phe	Gln 265	Glu	Ala	Leu	Arg	Leu 270	Tyr	Pro	
10	Pro	Ala	Trp 275	Ile	Leu	Thr	Arg	Arg 280	Leu	Glu	Arg	Pro	Leu 285	Leu	Leu	Gly	
15	Glu	Asp 290	Arg	Leu	Pro	Pro	Gly 295	Thr	Thr	Leu	Val	Leu 300	Ser	Pro	Tyr	Val	
	Thr 305	Gln	Arg	Leu	His	Phe 310	Pro	Asp	Gly	Glu	Ala 315	Phe	Arg	Pro	Glu	Arg 320	
20	Phe	Leu	Glu	Glu	Arg 325	Gly	Thr	Pro	Ser	Gly 330	Arg	Tyr	Phe	Pro	Phe 335	Gly	
25	Leu	Gly	Gln	Arg 340	Leu	Cys	Leu	Gly	Arg 345	Asp	Phe	Ala	Leu	Leu 350	Glu	Gly	
	Pro	Ile	Val 355	Leu	Arg	Ala	Phe	Phe 360	Arg	Arg	Phe	Arg	Leu 365	Asp	Pro	Leu	
30	Pro	Phe 370	Pro	Arg	Val	Leu	Ala 375	Gln	Val	Thr	Leu	Arg 380	Pro	Glu	Gly	Gly	
35	Leu 385	Pro	Ala	Arg	Pro	Arg 390	Glu	Glu	Val	Arg	Ala 395						
40	<21 <21	0 > 5 1 > 1 2 > D 3 > K	NA	lich	e Se	quen	Z										
45	<22	1> m 2> (feat)(ag)											
50	<22 <22	3> B		reib agge	-	der	küns	tlic	hen	Sequ	enz:	C-te	rmin	al			
55		1> C		(118	8)												
60	atg	0> 5 aag Lys	cgc	ctt Leu	tcc Ser	Leu	agg Arg	gaç Glü	gcc Ala	tgg Trp	Pro	tac Tyr	c ctg	aaa Lys	gaq S Asp 15	ctc Leu	48
65	cag Gln	caa Gln	gat Asp	ecc Pro 20	Leu	gcc Ala	gto Val	cto Lev	g ctg Lev 25	ı Ala	tge Trp	g ggd Gly	c cgg / Arg	gco Ala 30	a His	c ccc s Pro	96

cgg Arg	ctc Leu	ttc Phe 35	ctt Leu	ccc Pro	ctg Leu	ccc Pro	cgc Arg 40	ttc Phe	ccc Pro	ctg Leu	gcc Ala	ctg Leu 45	TT	c t e P	tt he	gac Asp	144	5
ccc Pro	gag Glu 50	Gly	gtg Val	gag Glu	Gly	gcg Ala 55	ctc Leu	ctc Leu	gcc Ala	gag Glu	ggg Gly 60	acc	ac Th	c a	ag Jys	gcc Ala	192	
acc Thr 65	ttc Phe	cag Gln	tac Tyr	cgg Arg	gcc Ala 70	ctc Leu	tcc Ser	cgc Arg	ctc Leu	acg Thr 75	GJ À dàd	agg Arg	, 99 , Gl	y I	ctc Leu	ctc Leu 80	240	10
acc Thr	gac Asp	tgg Trp	ggg Gly	gaa Glu 85	agc Ser	tgg Trp	aag Lys	gag Glu	gcg Ala 90	cgc Arg	aag Lys	geo Ala	c ct a Le	ic a	aaa Lys 95	gac Asp	288	15
ccc Pro	ttc Phe	ctg Leu	ccg Pro 100	Lys	aac Asn	gtc Val	cgc Arg	ggc Gly 105	tac Tyr	cgg Arg	gag Glu	gco Ala	a Me	tg et 10	gag Glu	gag Glu	336	20
gag Glu	gcc Ala	cgg Arg 115	Ala	ttc Phe	ttc Phe	ggg Gly	gag Glu 120	Trp	cgg Arg	ggg	gaç Glu	ga Gl: 12	u n	gg rg	gac Asp	ctg Leu	384	25
Asp	His 130	Glu	Met	: Leu	Ala	Leu 135	Ser	Leu	Arg	Leu	14(ı GI	у А	rg	Ald	ctc Leu	432	30
Phe 145	Gly	Lys	s Pro) Lev	Ser 150	Pro	Ser	Leu	ı Ala	155	1 H13	S AI	a L	eu	пур	gcc Ala 160	480	35
Leu	Asp	Arq	g Ile	e Met 169	Ala	a Gln	Thr	: Arc	y Sei 170	r Pro	o re.	u Al	.а ப	ieu	175		528	40
Leu	n Ala	a Ala	a Gl:	u Ala O	a Aro	g Ph∈	e Arg	18!	s Asp 5	o Ar	g G1	у Аз	1a 1	190	ТУI	cgc Arg	576	40
Gli	ı Ala	a Gl	u Al	a Le	u Il	e Val	L His 200	s Pro	o Pr	o re	u Se	20	15 I 05	Leu	PIC	c cga Arg		45
Gli	21	g Al O	a Le	u Se	r Gl	u Ala 21	a Va. 5	l Th	r Le	u Le	u Va 22	11 A.	ıa (аТХ	nl	s Glu		50
Th: 22	r Va 5	l Al	a Se	r Al	a Le 23	u Th O	r Tr	p Se	r Ph	е ње 23	:u ье 35	eu r	eu :	ser	пт	c cgc s Arg 240		55
Pr	o As	p Tr	p Gl	n Ly 24	s Ar	g Va	1 A1	a G1	.u Se 25	er Gi	Lu G.	lu A	iid	VTC	25			60
Al	a Ph	e Gl	ln G] 26	Lu A] 60	la Le	eu Ar	g Le	eu Ty 26	yr Pi 55	co P	ro A	ıa ı	тþ	270)	eu Thr		65
C)	gg ag gg Ai	cg L	tg ga eu Gi 75	aa aq lu A	gg co rg Pi	cc ct co Le	eu Le	c ct eu Le 30	tg ge eu G	ga g ly G	ag g lu A	sp A	arg Arg 285	Le	c co u Pi	co Pro	g 864 D	

						ctc Leu											912
5						ttc Phe 310											960
10						tac Tyr						-	-	_		_	1008
15						gcc Ala							_			-	1056
20			_	-		cgc Arg		_							_		1104
25						agg Arg											1152
30					· · ·	cat His 390						tga					1188
	<210> 6 <211> 395 <212> PRT <213> Künstliche Sequenz <223> Beschreibung der künstlichen Sequenz:C-terminal His-tagged																
35	<212 <213	?> PI 3> Ki 3> Be	RT inst] eschi	eibu	ing o	-		clich	nen S	Seque	enz:(C-te	rmina	al			
35 40	<212 <213 <223	2> PF 3> Ki 3> Be Hi	RT instl eschi is-ta	eibu agged	ing d	-	(ünst			-					Asp 15	Leu	
	<212 <213 <223 <400 Met	2> PF 3> Ki 3> Be Hi 1> 6 Lys	RT instl eschi is-ta Arg	eibu agged Leu	ing o	der }	cünst Arg	Glu	Ala	Trp	Pro	Tyr	Leu	Lys	15		
40	<212 <213 <223 <400 Met 1 Gln	2> PF 3> Ki 3> Be Hi 1> 6 Lys Gln	RT instl schr is-ta Arg	Leu Pro	ser 5 Leu	der }	künst Arg Val	Glu Leu	Ala Leu 25	Trp 10 Ala	Pro	Tyr Gly	Leu Arg	Lys Ala 30	15 His	Pro	
40	<212 <213 <223 <400 Met 1 Gln	PF S> Ki S> Be Hi D> 6 Lys Gln	Arg Phe	Leu Pro 20	ser 5 Leu	leu Ala	Arg Val Pro	Glu Leu Arg 40	Ala Leu 25 Phe	Trp 10 Ala Pro	Pro Trp Leu	Tyr Gly Ala	Leu Arg Leu 45	Lys Ala 30 Ile	His Phe	Pro Asp	
40	<212 <213 <223 <400 Met 1 Gln Arg	PF S> Ki S> Be Hi S> 6 Lys Gln Glu 50	Arg Asp Phe 35 Gly	Leu Pro 20 Leu Val	ser 5 Leu Pro	Leu Ala	Arg Val Pro Ala 55	Glu Leu Arg 40 Leu	Ala Leu 25 Phe Leu	Trp 10 Ala Pro	Pro Trp Leu Glu	Tyr Gly Ala Gly 60	Leu Arg Leu 45 Thr	Lys Ala 30 Ile	His Phe Lys	Pro Asp Ala	
40 45 50	<212 <213 <223 <400 Met 1 Gln Arg Pro	PHOS NOT SENT THE PHOSE SENT THE PHO	Arg Arg Phe 35 Gly	Leu Pro 20 Leu Val	ser 5 Leu Pro Glu	Leu Ala Leu Gly	Arg Val Pro Ala 55 Leu	Glu Leu Arg 40 Leu Ser	Ala Leu 25 Phe Leu	Trp 10 Ala Pro Ala	Pro Trp Leu Glu Thr 75	Tyr Gly Ala Gly 60	Leu Arg . Leu 45 Thr	Lys Ala 30 Ile Thr	His Phe Lys	Pro Asp Ala Leu 80	
40 45 50	<212<223	PHOS NOT SENT SENT SENT SENT SENT SENT SENT SEN	Arg Phe 35 Gly Gln Trp	Leu Pro 20 Leu Val Tyr	ser 5 Leu Pro Glu Arg	Leu Ala Leu Gly Ala 70	Arg Val Pro Ala 55 Leu Trp	Glu Leu Arg 40 Leu Ser	Ala Leu 25 Phe Leu Arg	Trp 10 Ala Pro Ala Leu Ala 90	Pro Trp Leu Glu Thr 75 Arg	Tyr Gly Ala Gly 60 Gly	Leu Arg . Leu 45 Thr Arg	Lys Ala 30 Ile Thr Gly Leu	His Phe Lys Leu Lys 95	Pro Asp Ala Leu 80 Asp	
40 45 50	<212 <213 <223 <400 Met 1 Gln Arg Pro Thr 65 Thr	Phe Reu Clu Clu Che Asp	Arg Asp Phe 35 Gly Cln Trp	Leu Pro 20 Leu Val Tyr Gly Pro 100	ser 5 Leu Pro Glu Arg Glu 85 Lys	Leu Ala Leu Gly Ala 70 Ser	Arg Val Pro Ala 55 Leu Trp Val	Glu Leu Arg 40 Leu Ser Lys	Ala Leu 25 Phe Leu Arg Glu Gly 105	Trp 10 Ala Pro Ala Leu Ala 90 Tyr	Pro Trp Leu Glu Thr 75 Arg	Tyr Gly Ala Gly 60 Gly Lys	Leu Arg . Leu 45 Thr Arg Ala	Lys Ala 30 Ile Thr Gly Leu Met 110	His His Lys Leu Lys Slu	Pro Asp Ala Leu 80 Asp Glu	

130 135	140
Phe Gly Lys Pro Leu Ser Pro Ser Leu Al	Glu His Ala Leu Lys Ala
145 150	155 160 5
Leu Asp Arg Ile Met Ala Gln Thr Arg Se	Pro Leu Ala Leu Leu Asp
165	175
Leu Ala Ala Glu Ala Arg Phe Arg Lys As	Arg Gly Ala Leu Tyr Arg 190
Glu Ala Glu Ala Leu Ile Val His Pro Pr	Leu Ser His Leu Pro Arg
195 200	205
Glu Arg Ala Leu Ser Glu Ala Val Thr Le	Leu Val Ala Gly His Glu
210 215	220
Thr Val Ala Ser Ala Leu Thr Trp Ser Ph	Leu Leu Ser His Arg 20
225 230	235 240
Pro Asp Trp Gln Lys Arg Val Ala Glu Se	Glu Glu Ala Ala Leu Ala
245	255
Ala Phe Gln Glu Ala Leu Arg Leu Tyr Pr	Pro Ala Trp Ile Leu Thr
260 265	270
Arg Arg Leu Glu Arg Pro Leu Leu G.	Glu Asp Arg Leu Pro Pro 30
275 280	285
Gly Thr Thr Leu Val Leu Ser Pro Tyr V	Thr Gln Arg Leu His Phe
290 295	300
Pro Asp Gly Glu Ala Phe Arg Pro Glu A	Phe Leu Glu Glu Arg Gly
305 310	315 320
Thr Pro Ser Gly Arg Tyr Phe Pro Phe G 325	Leu Gly Gln Arg Leu Cys 335 40
Leu Gly Arg Asp Phe Ala Leu Leu Glu G	Pro Ile Val Leu Arg Ala
340 345	350
Phe Phe Arg Arg Phe Arg Leu Asp Pro L 355 360	Pro Phe Pro Arg Val Leu 365
Ala Gln Val Thr Leu Arg Pro Glu Gly G 370 375	Leu Pro Ala Arg Pro Arg 380 50
Glu Glu Val Arg Ala His His His His F 385 390	395
· <210> 7	55
<211> 30 <212> DNA <213> Künstliche Sequenz	60
<220> <223> Beschreibung der künstlichen S	menz:PCR-Primer
<400> 7 cgaagctcat atgaagcgcc tttccctgag	30

```
<210> 8
   <211> 30
   <212> DNA
5 <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz: PCR-Primer
10 <400> 8
                                                                         30
   gcgaattcac gcccgcacct cctccctagg
   <210> 9
   <211> 42
   <212> DNA
   <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz: PCR-Primer
   <400> 9
                                                                         42
   cgaageteat atgeateace ateateatea caagegeett te
25
   <210> 10
   <211> 42
   <212> DNA
   <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz: PCR-Primer
   <400> 10
                                                                         42
   cggaattcag tgatgatgat ggtgatgcgc ccgcacctcc tc
                                      Patentansprüche
40
```

1. Cytochrom P450 Monooxygenase, dadurch gekennzeichnet, dass sie eine Aminosäuresequenz aufweist, welche eine Teilsequenz von Aminosäurerest Pro328 bis Glu345 gemäß SEQ ID NO: 2 umfasst.

2. Cytochrom P450 Monooxygenase nach Anspruch 1, dadurch gekennzeichnet, dass sie eine Aminosäuresequenz aufweist, welche außerdem eine Teilsequenz von Aminosäurerest Val216 bis Ala227 gemäß SEQ ID NO: 2 umfasst. 3. Cytochrom P450 Monooxygenase nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Aminosäuresequenz aufweist, welche wenigstens eine weitere Teilsequenz umfasst, die ausgewählt ist unter einer Teilsequenzen von wenigstens 10 aufeinanderfolgenden Aminosäuren aus den durch die Aminosäurereste Met 1 bis Phe327 und Gly346 bis Ala389 gemäß SEQ ID NO: 2 vorgegebenen Sequenzbereichen.

45

50

55

65

4. Cytochrom P450 Monooxygenase nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Aminosäuresequenz aufweist, welche im wesentlichen SEQ ID NO: 2 entspricht.

- 5. Cytochrom P450 Monooxygenase nach einem der vorhergehenden Ansprüche aus Bakterien der Gattung Ther-
- 6. Cytochrom P450 Monooxygenase nach Anspruch 5, aus einer Bakterium der Spezies Thermus thermophilus.
- 7. Oligonukleotid, welches mit einer Nukleinsäuresequenz hybridisiert, die für eine Cytochrom P450 Monooxygenase nach einem der vorhergehenden Ansprüche kodiert.
- 8. Oligonukleotid nach Anspruch 7, welches eine Nukleinsäuresequenz umfasst, die im wesentlichen komplementär ist zu einem wenigstens 45 aufeinanderfolgende Nukleotidreste umfassenden Nukleotidsequenzbereich gemäß SEQ ID NO: 1.
- 9. Polynukleotid, welches mit einem Oligonukleotid nach Anspruch 7 oder 8 hybridisiert und für eine Cytochrom 60 P450 Monooxygenase kodiert.
 - 10. Polynukleotid, das für eine Cytochrom P450 Monooxygenase gemäß einem der Ansprüche 1 bis 6 kodiert, sowie dazu komplementäre Polynukleotide.
 - 11. Polynukleotid nach Anspruch 10 mit einer Nukleinsäuresequenz gemäß SEQ ID NO: 1, sowie die dazu komplementäre Nukleinsäuresequenz.
 - 12. Expressionskassette, umfassend wenigstens eine regulatorische Nukleinsäuresequenz operativ verknüpft mit einem Polynukleotid gemäß einem der Ansprüche 9 bis 11.
 - 13. Rekombinanter Vektor, der ein Polynukleotid gemäß einem der Ansprüche 9 bis 11 oder eine Expressionskas-

sette gemäß Anspruch 12 trägt.	
14. Mikroorganismus, enthaltend wenigstens einen rekombinanten Vektor gemäß Anspruch 13.	
15. Verfahren zur Herstellung einer Cytochrom P450 Monooxygenase gemäß einem der Ansprüche 1 bis 6, wobei	
nan einen Mikroorganismus, welcher Cytochrom P450 Monooxygenase produziert, kultiviert und die Monooxyge-	5
nase aus der Kultur isoliert. 16. Verfahren zur mikrobiologischen Oxidation einer organischen Verbindung, wobei man diese Verbindung mit	
wenigstens einer Cytochrom P450 Monooxygenase nach einem der Ansprüche 1 bis 6 umsetzt.	
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß man	
a1) einen rekombinanten Mikroorganismus nach Anspruch 14 in einem Kulturmedium, in Gegenwart der exo-	
	10
tiviert; oder	
a2) ein Substrat-haltiges Reaktionsmedium mit einer Cytochrom P450 Monooxygenase nach einem der An-	
sprüche 1 bis 6 inkubiert; und	
b) das gebildete Oxidationsprodukt oder ein Folgeprodukt davon aus dem Medium isoliert.	
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das exogene oder intermediär gebildete Substrat	15
ausgewählt ist unter	
a) gegebenenfalls substituierten N-, O- oder S-heterocyclischen ein-, zwei- oder mehrkernigen armotischen	
Verbindungen;	
b) gegebenenfalls substituierten ein- oder mehrkernigen Aromaten;	20
c) gerauketugen oder verzweigen mkanen und mkenen,	20
d) gegebenenfalls substituierten Cycloalkanen und Cycloalkenen; und e) aliphatischen (terminal gesättigten) Carbonsäuren.	
19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß man die Oxidation durch Kultivierung der	
Mikroorganismen in Gegenwart von Sauerstoff bei einer Kultivierungstemperatur von mindestens etwa 20 und ei-	
	25
20. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß man als exogenes Substrat wenigstens eine	
Verbindung, ausgewählt unter den oben definierten Gruppen a) bis e), einem Medium zusetzt und die Oxidation	
durch enzymatische Umsetzung des substrathaltiges Mediums in Gegenwart von Sauerstoff bei einer Temperatur	
von mindestens etwa 20°C und einem pH-Wert von etwa 6 bis 9 durchführt, wobei das substrathaltige Medium au-	
ßerdem bezogen auf das Substrat einen etwa 10- bis 100-fachen molaren Überschuß an Reduktionsäquivalenten	30
enthält.	
21. Bioreaktor, umfassend ein Enzym nach einem der Ansprüche 1 bis 6 oder einen rekombinanten Mikroorganis-	
mus nach Anspruch 14 in immobilisierter Form.	
22. Verwendung einer Cytochrom P450 Monoxygenase nach einem der Ansprüche 1 bis 6, eines Vektors nach An-	35
spruch 13, oder eines Mikroorganismus 14 zur mikrobiologischen Oxidation von	23
a) gegebenenfalls substituierten N-, O- oder S-heterocyclischen ein-, zwei- oder mehrkernigen armotischen	
Verbindungen; b) gegebenenfalls substituierten ein- oder mehrkernigen Aromaten;	
c) geradkettigen oder verzweigten Alkanen und Alkenen;	
d) gegebenenfalls substituierten Cycloalkanen und Cycloalkenen/und oder	40
e) aliphatischen Carbonsäuren.	
Hierzu 2 Seite(n) Zeichnungen	
	45
	50
	30
	55
	60

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 51 175 A1 C 12 N 9/02 2. Mai 2002

Fig. 1

P450	вмз	TIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKE 60	,
	thermus	-MKRLSLREAWPYLKDLQQDPLAVLLAWGRAHPRLFLPLPRFPLALIFDPE-GVEG 54 :*.:. ::: **:*	İ
P450	BM3	ACDESRFDKNLSQALKFVRDFAGDGLFTSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMV 12 ALLAEGTTKATFQYRALSR-LTGRGLLTDWGESWKEARKALKDPFLPKNVRGYREAME 11 * . * . * : ::**: * . * : ::**: *	20
P450	thermus		L1
P450	BM3	DIAVQLVQKWERLNADEHIEVPEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFITSMVRA 18 EEARAFFGEWRGEERDLDHEMLALSLRLLGRALFGKPLSPSLAEHALKA 16 : * : : : * : : : : : : : : : : : : : :	30
P450	thermus		60
P450	BM3	LDEAMNKLQRANPDDPAYDENKRQFQEDIKVMNDLVDKIIADRKASGEQSDDLLTHMLNG 20 LDRIMAQTRSPLALLDLAAEARFRKDRGALYREAEALIVHPPLS 20 **. * : : : * : : * : : * : . * . : : * : . * : : * : . *	40
P450	thermus		04
P450 P450	BM3 thermus	KDPETGEPLDDENIRYQIITFLIAGHETTSGLLSFALYFLVKNPHVLQKAAEEAARVLVD 30 HLPRERALSEAVTLLVAGHETVASALTWSFLLLSHRPDWQKRVAESEEAALAA 25 : * ::::::::::::::::::::::::::::::::::	00 57
P450	BM3	PVPSYKQVKQLKYVGMVLNEALRLWPTAPAFSLYAKEDTVLGGEYPLEKGDELMVLIPQL 3FQEALRLYPPAWILTRRLERPLLLG-EDRLPPG-TTLVLSPYV 2 ::****:*.* :: :** * * :** * :** * :**	60
P450	thermus		98
P450	BM3	HRDKTIWGDDVEEFRPERFENPSAIPQHAFK <u>PFGNGORACIGOOFALHE</u> ATLVLGMMLKH 4 TQRLHFPDGEAFRPERFLEERGTPSGRYFPFGLGQRLCLGRDFALLEGPIVLRAFFRR 3 : : * * * * * * * * * * * * * * * * * *	20
P450	thermus		56
P450 P450	BM3 thermus	FDFEDHTNYELDIKETLTLKPEGFVVKAKSKKIPLGGIPS-PSTEQSAKKVR 471 FRLDPLPFPRVLAQVTLRPEGGLPARPREEVRA 389 * ::	

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 51 175 A1 C 12 N 9/02 2. Mai 2002

Fig.2

