Materials informatics of $D(\varepsilon_{\rm F})$

Monkeys in 立石寺

ISSP Mitsuaki Kawamura

Outline

- Motivation
- Method
- Result

Motivation

Find high- T_c superconductor from structure database or newly discovered structures

We can predict T_c fully non-empirically with SCDFT. Superconducting-Toolkit (SCTK)

Why do we perform machine learning?

Relatively large numerical cost : $O(N_{\text{atom}}^4)$

Perform SCDFT only for 100 materials out of 10,000 materials.

Low thermal conductor: A. Seko, *et al.*, PRL <u>115</u>, 205901 (2015). In this tutorial, as an exercise, find large-DOS (per atom) material.

$$T_c \propto \omega_{ph} \exp\left(-\frac{1}{g \ D(arepsilon_{
m F})}
ight)$$
 BCS theorem

Target

Download CIF file from Crystallographic Open Database

Condition

- Number of atomic species: 1 1,040 materials
- Volume of unit cell < 200 Å³

Delete duplication and disordered (fractional occupation) system

214 materials

Delete Actinides, Astatine, Radium 197 materials Case 1a

Delete Lanthanides 167 materials Case 1b

Condition

CLASSIFIED

Delete duplication, disordered (fractional occupation) system,
Actinides, Astatine, Radium, Lanthanides 227 materials Case 2

Condition of Bayesian method

- 5 random search for initial guess
- 30 Bayesian steps
- Hyper-parameter tuning at each step

Descriptors

• CLASSIFIED

Program packages, numerical conditions

- COMBO, Quantum ESRESSO
- Non-magnetism, w/o structure opt.
- GGA-PBE

Result: Case 1a

Original: ~15 % Lanthanides
Bayesian: ~26 % Lanthanides

Result: Case 1b

Result: Case 2

CLASSIFIED

Summary

- Descriptor
- Next : DOS calculation → SCDFT calculation