Provincial Department of Education

Northern Province

Provincial Level Year End General Exam - 2013 Mathematics - II Marking scheme

Grade :- 11

	Part A Answers
01)	
a)	$\frac{10}{100}$ x Rs 50,000
	= Rs 5000
(b)	Rs 50 000 - Rs 5000 = Rs 45,000
c)	$\frac{\text{Rs }45,000}{9}$
	= Rs 5000
d)	$\frac{\text{Rs } 5000 \times \frac{1}{12} \times 24}{}$
	100
	= Rs 100
e)	$\frac{9 \times 10}{2} = 45$ 2Marks
	2
f)	Total intrest = $45 \times Rs \cdot 100$ = $Rs \cdot 4500 \dots 1Mark$
	Monthly installment = $\frac{45,000 + 4500}{9}$
	$= R_s 49500$
	$= \text{Rs } \frac{49500}{9}$
	= Rs 5,500
02) a)	i) (-1)
	ii) Drawing graph
b)	i) (-2)
	ii) $x = 1$
	iii) $1 < x < 4$
	iv) $(x-1)^2 - 2 = y$
	$x^2 - 2x + 1 - 2 = y$
	$y = x^2 - 2x - 1$ $0 = x^2 - 2x - 1$
	$0 = x^2 - 2x - 1$ $y = 0$
	Solutions = -0.4, 2.4
	(v) $y = (x + 1)^2 + 2$ 1Mark

c)	$x^2 + 2x - 10 = 0$	
	$x^2 + 2x = 10$	
	$x^2 + 2x + 1 = 10 + 1$ 1M	ark
	$(x+1)^2 = 11$	ark
	$+ 1 = \pm \sqrt{11}$	ark
	$= -1 \pm 3.31$	
	+) x = 2.31	
	-) x = (-4.31)	ırks
	DR .	

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 1Mark

$$x = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times (-10)}}{2 \times 1}$$

$$= \frac{-2 \pm \sqrt{4 + 40}}{2}$$

$$= \frac{-2 \pm \sqrt{44}}{2}$$

$$= \frac{-2 \pm \sqrt{44}}{2}$$

$$= \frac{2(-1 \pm \sqrt{11})}{2} = -1 \pm 3.31$$
1Mark

$$x = 2.31 \text{ Or } (-4.31) \dots (1) + (1) \text{ Mark}$$

O5) a)
$$Q$$

$$C = ---\frac{30^{\circ}}{50^{\circ}10'}$$

8m

Diagram - 1Mark

b) i)

ii)

Part B Answers

06) a)

i) Volume of cylindar = $\pi r^2 h$

$$= \pi \times a^2 \times 4a$$

$$= 4\pi a^3 \qquad 1 Mark$$

ii) Volume of cone $= \frac{1}{3}\pi r^2 h$

$$= \frac{1}{3} \times \pi \times a^2 \times a$$

$$= \frac{1}{3}\pi a^3 \qquad 1Mark$$

iii) Volume of remaining solid = $4\pi a^3 - \frac{1}{3}\pi a^3$

$$= \frac{12\pi a^3 - \pi a^3}{3}$$

$$= \frac{11}{3}\pi a^3 \qquad 2Mark$$

b)
$$x = \frac{0.835 \times \sqrt{64.36}}{(2.83)^2}$$
 $\lg x = \lg \frac{0.835 \times \sqrt{64.36}}{(2.83)^2}$
 $= \lg 0.835 \times \frac{1}{2} \lg 64.36 - 2 \lg 2.83$ IMark

 $= \overline{1.9217} + \frac{1}{2} \times 1.8086 - 2 \times 0.4518$ 2Marks

 $= \overline{1.9217} + 0.9043 - 0.9036$ IMark

 $\lg x = \overline{1.9224}$
 $x = Antilg \overline{1.9224}$
 $x = 0.8352$ IMark

 3 Match sticks IMark

 $3 \text{ The a + (n-1) d}$ IMark

 $3 \text{ The a + (n-1) d}$ IMark

 $3 \text{ The a + (n-1) d}$ IMark

 3 Should sticks IMark

08)

Construction of \bigwedge ABC 1Mark 1Mark

> $\overrightarrow{BAC} = 90^{\circ}$ 1 Marks1Mark

iii) Construction of circle

上 at C 1Mark Bisection of BC 1Mark

v) AP = AC......1Mark

09)

i) 12 - 16 1Mark

ii)

)	Class interval	mid value	frequency	difference	frequency x of	difference
	Class litter var	iiid value	(f)	l	ا د	amerence
			(1)	(d)	f X	u
	0 - 4	2	3	-12		-36
	4 - 8	6	4	- 8		-32
	8 - 12	10	5	- 4		-20
	12 - 16	14	8	00	00	
	16 - 20	18	5	4	20	
	20 - 24	22	3	8	24	
	24 - 28	26	2	12	24	
			$\sum f = 30$		$\sum fd = 68 + (-8)$	88)
					= (-	20)

1Mark 1Mark 1Mark

requencey difference column difference column mid value column

assumed mean + difference mean mean =

$$= 14 + \frac{\sum fd}{\sum f}$$

$$=$$
 14 + $\frac{(-20)}{30}$ 1Mark

14 0.67

13.33

13 Ω

Grade - 11

Maths - II - Marking Scheme

10) i)

iii)
$$\frac{12}{15} \times 100 = 80\%$$
 1Mark

b) i)

$$y = \frac{3}{15} = \frac{1}{5}$$
 1Mark

iii)
$$\frac{12}{15} \times \frac{4}{12}$$
 Or $\frac{4}{5} \times \frac{1}{3}$ 1Mark = $\frac{4}{15}$ 1Mark

11)

Grade - 11 8

 $\Delta ABO \equiv \Delta ACO$

iii)		1Mark
iv)	BÂD Theorem	1Mark
v)	$A \stackrel{\wedge}{B} D = 90^{0}$	
	$A\hat{C}D = 90^0$	
∴i	n ∆ ABD, ACD	
	AD = AD (common)	
	AB = AC (given)	
	$\triangle ABD \equiv \triangle ACD$	2M-ul-s
	∴ BD = DC	
12) a)	Theorem	2 Marks
b)	i) \triangle ABM	11/4 1
	-	1Mark
	$\therefore AO = OM$	Tiviaix
	ii) in Δ AMC	
	O is the midpoint of AM	(AO = OM)
	F is the midpoint of AC	(AF = FC)
		(Ar – re)
	∴ MC // BF	
	· · · · · · · · · · · · · · · · · · ·	
	OC // BM [EC // BM] ∴ BMCO is a parallelogram	1Mark
	iv)	
	AO = OM = 2x	
	but $OD = DM$	
	OD = DM = x AD = AO + OD	
	AD = AO + OD $= 2x + x$	
	AD $3x$	
	$\frac{1}{AO} = \frac{1}{2x}$	
	2AD = 3AO.	
		·