Guia de usos e exemplos do Typst

João Teles de Carvalho Neto DCNME/CCA/UFSCar 09/03/2025

Sumário

1.	Intro	duçãodução	2			
2.	Apre	ndizagem do Typst	2			
3.	Usos	e Exemplos mais Comuns do Typst	3			
	3.1.	Para as seções e subseções utilize espaço após o símbolo de seção	3			
	3.2.	Evite deixar os títulos das seções em negrito ou itálico	3			
	3.3.	Mantenha o texto organizado	3			
	3.4.	Forma correta para quebrar páginas	3			
	3.5.	Citações indiretas	3			
	3.6.	Citações diretas	4			
	3.7.	Citações diretas a trechos literais	4			
	3.8.	Variáveis matemáticas no meio da frase	4			
	3.9.	Potências de dez no meio da frase	5			
	3.10.	Unidades de grandezas físicas	5			
	3.11.	Matemática em linha e em bloco	6			
	3.12.	Referencie expressões matemáticas em bloco pelo rótulo	6			
	3.13.	Use pontuação após equações em bloco	7			
	3.14.	Como usar o símbolo μ	8			
	3.15.	Texto normal dentro do modo matemático	8			
	3.16.	Separador decimal no modo matemático	0			
	3.17.	Utilize o pacote physica	0			
	3.18.	Use o comando certo para definições	0			
	3.19.	Imagens, tabelas e quadros	0			
	3.20.	Referência a seções e subseções	13			
Bi	Bibliografia					

1. Introdução

Typst (TYPST PROJECT, [s.d.]) é um sistema de composição de documentos, como o LaTeX. Você escreve seu TCC em um arquivo de texto simples (.typ) e o compilador Typst gera um PDF formatado. As vantagens do Typst incluem:

- Sintaxe mais simples: Menos comandos e mais clareza.
- Compilação rápida: Visualize as mudanças quase instantaneamente.
- **Pacotes integrados:** Muitos recursos já estão incluídos, sem precisar instalar pacotes extras. Embora existam pacotes poderosos que estendem bastante as funcionalidades padrão.
- Web App: Você pode usar o Typst online, sem instalar nada, e colaborar em tempo real. (https://typst.app)
- Comunidade Ativa: O Typst é um projeto de código aberto e conta com uma comunidade ativa.

A principal desvantagem que observamos até o momento é que, diferentemente do LaTeX, as editoras no Brasil e no exterior ainda não aceitam documentos em código fonte do Typst (arquivos .typ). Entretanto, se o documento em PDF é suficiente para a publicação almejada, então o Typst é uma excelente opção.

2. Aprendizagem do Typst

A primeira coisa que você precisa fazer para começar a usar o Typst é estudar o Tutorial online: https://typst.app/docs/tutorial/. Preocupe-se em entender bem as seções 1 e 2 do tutorial, pois são as mais importantes:

- 1. Wrting in Typst
- 2. Formatting

Caso queira se aprofundar um pouco mais, parta para a seção: <u>Making a Template</u>. Para obter informações sobre funções e comandos específicos do Typst, acesse a seção <u>Reference</u> e use a ferramenta *Search* disponível no topo da página. Após esses estudos, o passo seguinte é:

3. Ler e estudar a Seção 3 deste guia de Usos e Exemplos do Typst.

Atenção: só comece a escrever o seu texto após o estudo cuidadoso dos itens 1, 2 e 3 listados acima.

Mesmo tendo estudado todos esses recursos, é normal que dúvidas ou problemas surjam ao longo da escrita da monografia. Disponibilizamos no repositório GuiaTypst o arquivo de documentação typst_doc_repo_textualized.txt para ser carregado em um Large Language Model. Temos observado que o conhecimento padrão dos LLM's sobre o Typst é muito ruim. E o uso desse arquivo melhora bastante a qualidade das respostas geradas.

3. Usos e Exemplos mais Comuns do Typst

A seguir elencamos os exemplos de usos mais comuns encontrados nas monografias escritas em Typst pelos estudantes. Usamos uma abordagem bem direta baseada em exemplos corretos (ou bons) e incorretos (ou ruins). Nos exemplos, comandos em Typst são marcados com a cor de fundo cinza e os textos renderizados para visualização/impressão aparecem emoldurados. Em alguns exemplos utilizamos recursos do arquivo templateTCC.typ disponível no repositório GuiaTypst.

Como este guia está em constante desenvolvimento, a lista de exemplos pode aumentar ou alterar-se com o tempo.

3.1. Para as seções e subseções utilize espaço após o símbolo de seção.

```
    Exemplo correto: = Título da Seção 1
```

• Exemplo incorreto: =Título da Seção 1

3.2. Evite deixar os títulos das seções em negrito ou itálico

O Typst já formata as seções e subseções com um padrão pré-definido. Isso garante consistência.

```
    Exemplo bom: = Título da Seção 1
```

• Exemplo ruim: = *Título da Seção 1*

3.3. Mantenha o texto organizado

Mesmo que algumas disposições do texto não façam diferença no resultado do pdf final, adote boas práticas de organização. Isso facilita a leitura e a busca por partes específicas do texto. Uma delas é deixar uma linha em branco entre o título da seção/subseção e o primeiro parágrafo.

3.4. Forma correta para quebrar páginas

Para realizar quebra de página, use o comando #pagebrake(). Não fique pulando linhas até o título da seção escorregar para a outra página. Isso é muito frágil.

3.5. Citações indiretas

Para citações indiretas, use a função do templateTCC #cite_indireta(<reference>) ou use a função #cite original do Typst com a opção prose: cite(<reference>, form: "prose").

Exemplo

```
0 artigo de #cite(<galilei1638>,
form: "prose") relata isso e aquilo.
```

O artigo de GALILEI (1638) relata isso e aquilo.

3.6. Citações diretas

Para citações diretas use simplesmente @galileu1638.

Exemplo

Corpos de massas diferentes caem em queda livre com a mesma aceleração @galilei1638.

Corpos de massas diferentes caem em queda livre com a mesma aceleração (GA-LILEI, 1638).

3.7. Citações diretas a trechos literais

Para citações diretas a trechos literais longos, use o comando #quote.

Exemplo

#quote(attribution: [@galilei1638])
[Esta simultaneidade da visão,
creio, é o *único* argumento que pode
ser oferecido em favor do movimento
instantâneo da luz]

Esta simultaneidade da visão, creio, é o **único** argumento que pode ser oferecido em favor do movimento instantâneo da luz — (GALILEI, 1638)

3.8. Variáveis matemáticas no meio da frase

Use sempre o modo matemático para variáveis matemáticas ao longo do texto.

Exemplo correto

As variáveis \$m\$ e \$t\$ designam massa e tempo, respectivamente.

As variáveis m e t designam massa e tempo, respectivamente.

As variáveis m e t designam massa e tempo, respectivamente.

As variáveis m e t designam massa e tempo, respectivamente.

Exemplo incorreto 2

As variáveis _m_ e _t_ designam massa e tempo, respectivamente.

As variáveis m e t designam massa e tempo, respectivamente.

3.9. Potências de dez no meio da frase

Para potências de dez ao longo de uma frase use formatação matemática ou a função #num().

Exemplo correto 1

O tamanho do átomo é da ordem de $$10^{(-10)}$$ metros.

O tamanho do átomo é da ordem de 10^{-10} metros.

Exemplo correto 2 A distância Sol-Terra é igual a \$num(1,5e8)\$ km. Que gera "A distância Sol-Terra é igual a 1.5×10^8 km". A função #num não é padrão do Typst e precisa ser importada no início do arquivo. Ela possui muitas outras opções de formatação que você pode utilizar conforme o caso e a conveniência. Vide https://typst.app/universe/package/zero/.

3.10. Unidades de grandezas físicas

Unidades de grandezas físicas devem ser escritas em texto normal com espaço após o valor numérico:

Exemplo correto 1

O diâmetro da esfera é \$d=12\$ m.

O diâmetro da esfera é $d=12~\mathrm{m}.$

Exemplo correto 2 (menos desejável)

O diâmetro da esfera é \$d=12" m"\$.

O diâmetro da esfera é $d=12\,\mathrm{m}.$

```
O diâmetro da esfera é d=12 \, \text{m}. Ou, o diâmetro da esfera é d=12 \, \text{m}. Ou ainda, o diâmetro da esfera é d=12 \, \text{m}.
```

O diâmetro da esfera é d=12m. Ou, o diâmetro da esfera é $d=12\ m$. Ou ainda, o diâmetro da esfera é $d=12\ m$.

3.11. Matemática em linha e em bloco

Para manter o conteúdo matemático na mesma linha do texto, use cifras sem espaço delimitando o conteúdo. Para colocar o conteúdo matemático em um parágrafo separado, inclua os espaços.

Exemplo com matemática na linha do texto

```
O teorema de Pitágoras diz que:
$z^2=x^2+y^2$.
```

O teorema de Pitágoras diz que: $z^2 = x^2 + y^2$.

Exemplo com matemática em um parágrafo próprio

O teorema de Pitágoras diz que:

$$z^2 = x^2 + y^2. (1)$$

3.12. Referencie expressões matemáticas em bloco pelo rótulo

Use rótulos (<rotulo>) para identificar as expressões matemáticas mais importantes e assim poder citá-las pelo sistema de numeração automática do Typst.

Exemplo correto

A segunda lei da Termodinâmica diz que em um sistema fechado:

$$$$$
 Delta $S >= 0" ." $$

A @eq_2alei é uma das equações fundamentais da termodinâmica.

A segunda lei da Termodinâmica diz que em um sistema fechado:

$$\Delta S \ge 0 \ . \tag{2}$$

A Equação 2 é uma das equações fundamentais da termodinâmica.

A segunda lei da Termodinâmica diz que em um sistema fechado:

A Equação 3 é uma das equações fundamentais da termodinâmica.

A segunda lei da Termodinâmica diz que em um sistema fechado:

$$\Delta S > 0 \ . \tag{3}$$

A Equação 3 é uma das equações fundamentais da termodinâmica.

Exemplo incorreto 2

A segunda lei da Termodinâmica diz que em um sistema fechado:

A equação anterior é uma das equações fundamentais da termodinâmica.

A segunda lei da Termodinâmica diz que em um sistema fechado:

$$\Delta S \ge 0$$
 . (4)

A equação anterior é uma das equações fundamentais da termodinâmica.

3.13. Use pontuação após equações em bloco

Equações matemáticas também fazem parte do texto e, por isso, quando for o caso, precisam receber pontuação como se fossem palavras quaisquer, mesmo quando expressas em bloco. Para fazer isso, inclua a pontuação necessária entre aspas ao final da expressão mas ainda dentro do modo matemático. Se o parágrafo seguinte é na verdade uma continuação do parágrafo anterior é necessário remover a indentação. Nesse caso, use #h(-2.5em), em que 2.5em é o tamanho da indentação neste caso. No arquivo templateTCC.typ incluímos a variável #noi (no indent) para ser usada no lugar de #h(-2.5em).

Exemplo correto 1

A força resultante \$F\$ sobre um corpo em queda livre é dada por:

$$F = m q ", "$$
\$

#h(-2.5em) em que \$m\$ é a massa e \$g\$
é a aceleração gravitacional.

A força resultante F sobre um corpo em queda livre é dada por:

$$F = mq, (5)$$

em que m é a massa e g é a aceleração gravitacional.

```
As equações:

$ Delta U = Q + W " e" $

$ E = K + U $

#h(-2.5em) expressam o princípio da conservação da energia.
```

As equações:

$$\Delta U = Q + W \quad e \tag{6}$$

$$E = K + U \tag{7}$$

expressam o princípio da conservação da energia.

Exemplo incorreto

```
A força resultante $F$ sobre um corpo é dada por:

$ F = m a $

Essa é a forma matemática simplificada da 2ª lei de Newton.
```

A força resultante F sobre um corpo é dada por:

$$F = ma (8)$$

Essa é a forma matemática simplificada da 2ª lei de Newton.

3.14. Como usar o símbolo µ

Para unidades em múltiplos de mícrons (μ) deve-se evitar a sua escrita em itálico, tal como é obtida no modo matemático \$mu\$ (μ). Para isso, pode-se utilizar o comando μ diretamente no modo texto. Por exemplo, a espessura do fio é \$w=120\$ \u{03BC}m, que resulta em: w=120 \umplum. Para facilitar, no templateTCC disponibilizamos a variável #mu. Exemplo: \$t=15\$ #mu\s que resulta em: t=15 \uppre s.

3.15. Texto normal dentro do modo matemático

Use aspas para escrever texto normal dentro do modo matemático. Um exemplo dessa necessidade é para nomes de funções não conhecidas pelo Typst ou que são escritas de forma diferente em português e inglês. Como a função seno (sen) em português e sine (sin) em inglês. Outro exemplo é para rótulos subescritos de variáveis. Entretanto, se o índice subescrito ou superescrito for uma variável, deve-se mantê-la no modo matemático.

Exemplo correto 1

A massa grande e a massa pequena são designadas por \$m_"g"\$ e \$m_"p"\$, respectivamente. Ou \$m_"gra"\$ e \$m "peq"\$, etc.

A massa grande e a massa pequena são designadas por $m_{\rm g}$ e $m_{\rm p}$, respectivamente. Ou $m_{\rm gra}$ e $m_{\rm peq}$, etc.

A massa grande e a massa pequena são designadas por \$m_g\$ e \$m_p\$", respectivamente. Ou \$m_(g r a)\$" e \$m_(p e q)\$", etc. A massa grande e a massa pequena são designadas por m_g e m_p ", respectivamente. Ou m_{gra} " e m_{peq} ", etc.

Exemplo correto 2

O deslocamento quadrático médio das partículas é calculado por \$frac(1, N) sum_(i=1)^(N) Delta x_i^2\$. O deslocamento quadrático médio das partículas é calculado por $\frac{1}{N}\sum_{i=1}^N \Delta x_i^2$.

Exemplo incorreto 2

O deslocamento quadrático médio das partículas é calculado por \$frac(1, N) sum_("i"=1)^(N) Delta x_"i"^2\$.

O deslocamento quadrático médio das partículas é calculado por $\frac{1}{N}\sum_{\mathrm{i=1}}^{N}\Delta x_{\mathrm{i}}^{2}.$

Exemplo correto 3

0 valor da radiância espectral é dado por \$"Rad"(nu)\$. O valor da radiância espectral é dado por $\operatorname{Rad}(\nu)$.

Exemplo incorreto 3

O valor da radiância espectral é dado por \$R a d (nu)\$.

O valor da radiância espectral é dado por $Rad(\nu).$

Mas o Typst reconhece as funções matemáticas padrão, que não precisam ser escritas entre aspas. Por exemplo:

- $\$\arctan(frac(y, x))\$ \rightarrow \arctan(\frac{y}{x})$
- \$cos theta\$ $\rightarrow \cos \theta$

No caso da função seno, no arquivo templateTCC, definimos a grafia da função seno em português no modo matemático com o comando #let sen = math.op("sen"), pois o seu uso é muito frequente. Dessa forma, ela é reconhecida automaticamente em português no modo matemático:

• \$sen theta\$ \rightarrow sen θ .

3.16. Separador decimal no modo matemático

Sabemos que o separador decimal correto exigido pela ABNT é a vírgula. Em modo texto, basta escrever a vírgula normalmente. Por exemplo: uma polegada é igual a 2,54 cm (uma polegada é igual a 2,54 cm). Mas, no modo matemático, é criado um espaço indesejado após a vírgula. Por exemplo: uma polegada é igual a \$2,54\$ cm (uma polegada é igual a 2,54 cm). Portanto, evite o modo matemático se você for citar números com vírgula sem variáveis matemáticas envolvidas. Mas, se for necessário, a melhor maneira de evitar esse problema é colocar o número entre aspas.

Exemplo correto

A conversão de centímetros para polegadas é dada pela expressão $p = q'''^2,54'''^2$ com q = m cm.

A conversão de centímetros para polegadas é dada pela expressão $p=\frac{q}{2,54}$ com q em cm

3.17. Utilize o pacote physica

Importe o pacote physica no início do documento para poder usufruir de uma vasta gama de símbolos e operadores físicos e matemáticos. Exemplos: $\hbar \pi (\hbar)$, $\hbar \pi (\psi)$, $\hbar \pi (\psi)$, etc.

3.18. Use o comando certo para definições

O Typst possui um comando pré-definido para definições. Prefira ele a listas numeradas ou itemizadas, principalmente quando a definição for importante ou única.

Exemplo

/ **Spin**: momento angular intrínseco de uma partícula, sem equivalente clássico, que influencia suas interações e estatísticas quânticas. **Spin** momento angular intrínseco de uma partícula, sem equivalente clássico, que influencia suas interações e estatísticas quânticas.

3.19. Imagens, tabelas e quadros

Para elementos flutuantes como imagens, tabelas e quadros, não se refira a eles como "abaixo", "ao lado", "na seção anterior", etc. Faça referência à numeração automática do Typst. Sempre inclua legendas (caption) e a fonte da autoria. Inclua todos eles dentro da função #figure().

Exemplo correto de imagem e citação à imagem

```
#figure(
image("figuras/Galileu1.png"),
    caption: [Exemplo clássico do
método científico de Galileu.],
) <fig_galileu1>
#align(center)
[Fonte: #cite(<galilei1638>, form:
"prose")]

Na @fig_galileu1, Galileu aplica
o método científico ao estudo da
resistência de vigas.
```

Figura 1: Exemplo clássico do método científico de Galileu.

Fonte: GALILEI (1638)

Na Figura 1, Galileu aplica o método científico ao estudo da resistência de vigas.

Exemplo incorreto de imagem e de citação à imagem

```
#figure(
image("figuras/Galileu1.png")
) <fig_galileu2>
```

Na figura acima, Galileu aplica o método científico ao estudo da resistência de vigas.

Na figura acima, Galileu aplica o método científico ao estudo da resistência de vigas.

Exemplo correto de tabela e citação à tabela

```
#figure(
  caption: [Dados de queda livre],
    columns: (auto, auto),
    align: center,
    table.header(
    [$h$ [m]\ ($plus.minus$ 0,01)],
     [$t$ [s]\ ($plus.minus$ 0,02)],
    ),
    [1,00], [0,45],
    [2,00], [0,64],
    [3,00], [0,78],
)<tab_quedalivre>
#align(center)[Fonte:
                           Elaborado
pelo autor.]
Na @tab_quedalivre estão organizadas
algumas medidas de queda livre de uma
esfera metálica.
```

Tabela 1: Dados de queda livre

h [m]	<i>t</i> [s]
(± 0.01)	(± 0.02)
1,00	0,45
2,00	0,64
3,00	0,78

Fonte: Elaborado pelo autor.

Na Tabela 1 estão organizadas algumas medidas de queda livre de uma esfera metálica.

Exemplo incorreto de tabela e de citação à tabela

```
#table(
    columns: (auto, auto),
    align: center,
    table.header(
      [$h$ [m]\ ($plus.minus$ 0,01)],
      [$t$ [s]\ ($plus.minus$ 0,02)],
    ),
    [1,00], [0,45],
    [2,00], [0,64],
    [3,00], [0,78],
)
```

Na tabela anterior estão organizadas algumas medidas de queda livre de uma esfera metálica.

h [m]	t [s]
(± 0.01)	(± 0.02)
1,00	0,45
2,00	0,64
3,00	0,78

Na tabela anterior estão organizadas algumas medidas de queda livre de uma esfera metálica.

Exemplo correto de quadro

```
#figure(
    caption: [Cientistas e suas
Contribuições],
  table(
    columns: (auto, auto),
    align: center + horizon,
        table.header([*Cientista*],
[*Contribuição*]),
    [Galileu], [Astronomia],
    [Newton], [Gravitação],
    [Einstein], [Relatividade],
 ),
  kind: "quadro",
  supplement: "Quadro",
)<qua cientistas>
#align(center)[Fonte:
                          Elaborado
pela autora.]
O @qua cientistas ilustra apenas
uma das principais contribuições de
alguns dos cientistas mais eminentes
da Física.
```

Quadro 1: Cientistas e suas Contribuições

Cientista	Contribuição
Galileu	Astronomia
Newton	Gravitação
Einstein	Relatividade

Fonte: Elaborado pela autora.

O Quadro 1 ilustra apenas uma das principais contribuições de alguns dos cientistas mais eminentes da Física.

Repare que para a construção do quadro usa-se a mesma função da tabela (#table()), mas é necessário incluir as opções kind: quadro e supplement: Quadro para que o elemento seja referenciado pela palavra "Quadro".

3.20. Referência a seções e subseções

Da mesma forma que para figuras, no caso de seções e subseções não se refira a elas como "na seção anterior", "na seção seguinte", etc., mas utilize a numeração automática. Para isso, inclua um rótulo a direita do texto da seção. Por exemplo: == Análise dos Resultados <sec_analise>, que é referenciada ao longo do texto como, por exemplo, Estas conclusões estão em acordo com a discussão da @sec analise.

Bibliografia

GALILEI, G. Discorsi e Dimostrazioni Matematiche, intorno a due nuove scienze. [s.l.] Leida Ludovico Elzeviro, 1638.

TYPST PROJECT. **Typst Documentation**. Disponível em: https://typst.app/docs/>.