

Лабораторная работа №2

по дисциплине: Функциональная схемотехника

Вариант: <u>7</u>

Выполнил: Неграш Андрей, Р33301

Преподаватель: Салонина Екатерина Александровна

Цель работы

Получить навыки описания арифметических блоков на RTL-уровне с использованием языка описания аппаратуры Verilog HDL.

Задание в соответствии с вариантом

Вариант: 7

Функция: $y = a * \sqrt{b}$

Ограничения: 2 сумматора и 2 умножителя

Схема разработанного блока вычисления функции в терминах БОЭ

Описание работы разработанного блока

На вход разработанного блока подаются следующие сигналы:

- start сообщающий о начале вычислений
- in rst сигнал сброса
- clk reg посылающий синхроимпульсы
- in a аргумент А
- in b аргумент В
- count сигнал для обозначения итерации тестирования (вспомогательный)

Алгоритм вычисления можно представить следующим образом:

- Разработанный модуль получает на вход 1 по сигналу start
- Сразу же после start у модуля выставляется значение 1 в выход busy_o, который означает, что началась работа модуля
- На вход извлекающего квадратный корень модуля подаётся значение in_b и ожидается выполнение извлечения квадратного корня
- результат извлечения квадратного корня подаётся в качестве аргумента на умножитель вместе со считываемым значением in a
- результат работы умножителя подаются на выход

ОДЗ для разработанного блока

Согласно заданию, оба операнда функции являются беззнаковыми целыми числами разрядностью 8 бит. Следовательно максимальное число, которое можно получить на выходе функции 255*15 = 3825. В двоичном виде это число выглядит так: 111011110001. Для записи данного числа потребуется 12 бит, соответственно и выходной сигнал будет иметь 12-битную разрядность.

Результат тестирования разработанного блока

Код для тестирования разработанного блока доступен в файле function_test.v и имеет следующий вид:

```
initial begin
in rst = 'dl;
start = 'd0;
count = 'd0;
in rst = 'd0;
forever
     #1
     if (~out_busy && ~start && count == 0) begin//8(0x8)
         in a = 'dl;
         in b = 'd64;
         start = 1;
         #1
        start = 0;
         count = count + 1;
      end else if (~out_busy && ~start && count == 1) begin//10(0xa)
        in a = 'd2;
         in b = 'd25;
         start = 1;
         #2
        start = 0;
        count = count + 1;
      end else if (~out busy && ~start && count == 2) begin//6(0x6)
         in a = 'd3;
         in b = 'd4;
         start = 1;
         #2
         start = 0;
        count = count + 1;
      end else if (~out_busy && ~start && count == 3) begin//0(0x0)
         in a = 'd3;
         in b = 'd0;
         start = 1;
         #2
         start = 0;
         count = count + 1;
```

Всего разработано 11 тестовых векторов, принимающих различные значения как граничного вида (минимальные и максимальные значения аргументов, проверка округления с шагом 1), так и просто случайные наборы.

Ниже представлена таблица входных и выходных параметров тестов:

Nº (count)	A ₁₀	B ₁₀	Y ₁₀	Ү₂ (12 бит)
0	1	64	8	0000 0000 1000
1	2	25	10	0000 0000 1010
2	3	4	6	0000 0000 0110
3	3	0	0	0000 0000 0000
4	5	1	5	0000 0000 0101
5	6	121	66	0000 0100 0010
6	100	65	800	0011 0010 0000
7	100	63	700	0010 1011 1100
8	10	9	30	0000 0001 1110
9	1	10	3	0000 0000 0011
10	0	0	0	0000 0000 0000
11	255	255	3825	1110 1111 0001

Временная диаграмма тестирования выглядит следующим образом:

После вывода результата значение Y обнуляется со следующим синхроимпульсом. Все тесты работают верно, выдавая правильный результат.

Время вычисления результата при частоте в 100МГц

Тактовая частота в 100МГц — это 1 синхроимпульс за 10нс. Увеличим задержку с 1нс до 5нс в блоке работы часов. Временная диаграмма тестирования для самых больших входных чисел из ОД3:

По скриншоту временной диаграммы видно, что на вычисление результата функции при тактовой частоте 100МГц потребовалось 260нс.

Вывод

Во время выполнения данной лабораторной работы я разработал блок вычисления функции по заданному преподавателем варианту и реализовал его на языке описания аппаратуры Verilog, а также протестировал его работоспособность при помощи 11 различных тестовых векторов.