FONDAMENTI DI INFORMATICA

03 - Come calcolavano i Romani?

TABLE OF CONTENTS

- Ripasso
- E tu, come calcoli?
- Il Sistema di Numerazione Romano
 - Somma
 - Sottrazione
 - Moltiplicazione
 - Divisione
- L'importanza della codifica

RIPASSO

Nei video precedenti abbiamo affrontato le seguenti tematiche:

- Che cos'è un bit?
- Perché utilizziamo i bit?
- Come possiamo costruire fisicamente un bit?
- Che cos'è una codifica?

Nell'ultimo video in particolare abbiamo introdotto il concetto di codifica, e abbiamo spiegato che

una codifica è una assegnazione di significato a sequenze di bit

Per spiegare meglio il concetto di codifica abbiamo portato tre codifiche utilizzate:

- La codifica ASCII
- La codifica dei numeri
- La codifica RGB

Tabella ASCII

ASCII characters 0 thru 127.

Hex	Dec	Char	Hex	Dec	Char	Hex	Dec	Char	Hex	Dec	Char
0	0	C-@ i	20	32	SPC	40	64	@ j	60	96	
1	1	C-a i	21	33	. ! j	41	65	Ãİ	61	97	а
2	2	C-b j	22	34	- " j	42	66	Вј	62	98	b
3	3	C-c j	23	35	#	43	67	Сį	63	99	С
4	4	C-d	24	36	\$	44	68	D	64	100	d
5	5	C-e	25	37	%	45	69	Εİ	65	101	е
6	6	C-f j	26	38	& j	46	70	FΪ	66	102	f
7	7	C-g	27	39	- ' İ	47	71	G	67	103	g h
8	8	C-h	28	40	(48	72	Ηİ	68	104	
9	9	TAB	29	41) [49	73	Ιİ	69	105	i j
а	10	C-j	2a	42	*	4a	74	JΪ	6a	106	
b	11	C-k	2b	43	+	4b	75	K	6b	107	k
С	12	C-l	2c	44	,	4c	76	L	6c	108	l
d	13	RET	2d	45	-	4d	77	M	6d	109	m
е	14	C-n	2e	46	L	4e	78	N	6e	110	n
f	15	C-o	2f	47	/	4f	79	0	6f	111	0
10	16	C-p	30	48	0	50	80	P	70	112	р
11	17	C-q	31	49	1	51	81	Q	71	113	q
12	18	C-r	32	50	2	52	82	R	72	114	r
13	19	C-s	33	51	3	53	83	S	73	115	S
14	20	C-t	34	52	4	54	84	Τĺ	74	116	t
15	21	C-u	35	53	5	55	85	U∣	75	117	u
16	22	C-v	36	54	6	56	86	V	76	118	V
17	23	C-w	37	55	7	57	87	W	77	119	W
18	24	C-x	38	56	8	58	88	Χ	78	120	Х
19	25	C-y	39	57	9	59	89	Υ	79	121	У
1a	26	C-z	3a	58	:	5a	90	Ζĺ	7a	122	Z
1b	27	ESC	3b	59	; [5b	91	[]	7b	123	{
1c	28	C-/	3c	60	<	5c	92	_ /	7c	124	
1d	29	C-]	3d	61	=	5d	93] [7d	125	}
1e	30	C-^	3e	62	>	5e	94	^	7e	126	~
1f	31	C	3f	63	?	5f	95		7 f	127	DEL

Avevamo poi visto il modo in cui scriviamo i numeri tramite i simboli $0\,\mathrm{e}\,1\,\mathrm{utilizzando}\,\mathrm{le}$ potenze di $2\,\mathrm{de}\,1\,\mathrm$

$$egin{aligned} 00 &\longrightarrow b_1 \cdot 2^1 + b_0 \cdot 2^0 \ &= 0 \cdot 2^1 + 0 \cdot 2^0 \ &= 0 \cdot 2 + 0 \cdot 1 \ &= 0 \end{aligned}$$

$$egin{aligned} 10 &\longrightarrow b_1 \cdot 2^1 + b_0 \cdot 2^0 \ &= 1 \cdot 2^1 + 0 \cdot 2^0 \ &= 1 \cdot 2 + 0 \cdot 1 \ &= 2 \end{aligned}$$

In generale, con due bit possiamo esprimere quattro numeri diversi

 $b_1b_0 \longrightarrow b_1 \cdot 2^1 + b_0 \cdot 2^0 = b_1 \cdot 2^1 + b_0$ sequenze di bit

$$egin{array}{c} 00 & \longrightarrow 0 \ 01 & \longrightarrow 1 \ 10 & \longrightarrow 2 \ 11 & \longrightarrow 3 \end{array}$$

In questo video torniamo indietro al tempo dell'Impero Romano, per chiederci:

Ma i Romani, come facevano i calcoli?

E TU, COME CALCOLI?

L'abilità di effettuare calcoli matematici si costruire a partire da un'abilità ancor più primitiva:

saper contare

Fin da piccoli ci insegnano uno specifico modo di contare, che fa utilizzo di una specifica notazione.

Iniziamo da un alfabeto di simboli, le famose cifre arabe

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9

EXTRA: Le cifre arabe sono in realtà state scoperte ed utilizzate da alcune società indiane. Noi (europei) le chiamiamo arabe in quanto le abbiamo imparate dagli arabi. e iniziamo a calcolare andando ad utilizzare tutti i simboli a nostra disposizione

$$0
ightarrow {
m zero} \qquad , \ \ 5
ightarrow {
m cinque}$$

$$1 o ext{uno}$$
 , $6 o ext{sei}$

$$2
ightarrow ext{due}$$
 , $7
ightarrow ext{sette}$

$$3
ightarrow {
m tre}$$
 , $8
ightarrow {
m otto}$

$$4 o ext{quattro}$$
 , $9 o ext{nove}$

Una volta finiti i simboli a nostra disposizione, ci spostiamo di una **posizione** a sinistra, andiamo al prossimo simbolo in quella posizione, e azzeriamo il conto nella posizione a destra.

```
9, 10
```

•

Qualche esempio...

0	,	1	,	2	,	3	,	4	,	5	,	6	,	7	,	
10	,	11	,	12	,	13	,	14	,	15	,	16	,	17	,	
20	,	21	,	22	,	23	,	24	,	25	,	26	,	27	,	
30	,	31	,	32	,	33	,	34	,	35	,	36	,	37	,	

Questa modalità di scrivere i numeri è chiamato **notazione posizionale** in quanto il valore dei simboli dipende dalla posizione in cui essi si trovano.

111

A partire da questo modo di scrivere i numeri, impariamo poi delle procedure, o degli algoritmi, che ci permettono di effettuare le quattro operazioni base dell'aritmetica:

- somma
- sottrazione
- moltiplicazione
- divisione

Non tutte le società hanno utilizzato questa notazione.

Anzi, l'introduzione di questa **tecnica** ha rappresentato un punto di sblocco per svariate scoperte matematiche, scientifiche, e tecnologiche.

Per capire l'utilità di questa notazione, che molto spesso diamo per scontato, è utile tornare indietro, e studiare diversi modi per scrivere numeri, contare e fare calcoli.

IL SISTEMA DI NUMERAZIONE ROMANO

Il sistema utilizzato dai romani per scrivere i numeri è un sistema di notazione **additivo**, nel quale ad ogni simbolo è associato un unico e fisso valore, e il valore complessivo di una sequenza di simboli è la somma dei valori dei singoli simboli.

Si parte da sette simboli di base, ciascuno associato ad un particolare numero

 $\mathtt{I}\longrightarrow 1$

 $V \longrightarrow 5$

 $\overline{\mathbf{X}} \longrightarrow 10$

 $\overline{\mathtt{L} \longrightarrow 50}$

 $C \longrightarrow 100$

 $D \longrightarrow 500$

 $\overline{\mathtt{M}} \longrightarrow 1000$

E in sequenze di simboli si somma il valore dei singoli simboli

Nel corso degli anni è stata poi introdotta una notazione, detta **notazone sottrattiva**, che permetteva di scrivere determinati numeri come sottrazione piuttosto che come somma

Notazione additiva

$$IIII \longrightarrow 4$$

Notazione sottrattiva

$$\mathtt{IV} \longrightarrow 5-1=4$$

Noi assumero di lavorare solamente in **notazione additiva**, in quanto è più semplice da gestire in modo **algoritmico**, e la notazione sottrattiva non aggiunge niente di speciale al sistema notazionale.

Dopo aver definito il significato dei simboli base e come questi sono combinati tra loro, arriva il momento di chiederci

come calcolavano i romani?

In particolare, siamo interessati alle **procedure**, o **algoritmi**, che utilizzavano per effettuare i quattro calcoli di base dell'aritmetica:

- somma
- sottrazione
- moltiplicazione
- divisione

NOTA: Quella che abbiamo appena introdotto è un'altra codifica per scrivere i numeri, che differisce da quella che utilizziamo noi.

Ho sviluppato una piccola calcoltrice romana che potete utilizzare per testare i successivi calcoli. La calcolatrice è disponibile al seguente URL

https://project.leonardotamiano.xyz/roman-calculator

SOMMA

Somma Romana (1/6)

Supponiamo di voler sommare i seguenti due numeri

$$IIVXL + VXLC = ?$$

Somma Romana (2/6)

Iniziamo concatenando tutti i simboli assieme

$$IIVXL + VXLC = IIVXLVXLC$$

Somma Romana (3/6)

Ordiniamo poi i vari simboli rispetto al loro valore

Somma Romana (4/6)

Infine, semplifichiamo tramite le seguenti regole

$$egin{array}{ll} ext{IIII} & o ext{V} \ ext{VV} & o ext{X} \ ext{XXXX} & o ext{L} \ ext{LL} & ext{C} \ ext{CCCCC} & o ext{D} \ ext{DD} & o ext{M} \end{array}$$

Somma Romana (5/6)

Semplificando otteniamo

IIVXL + VXLC = IIVXLVXLC

= IIVVXXLLC

= IIXXXCC

Somma Romana (6/6)

E quindi abbiamo la nostra somma

$$egin{array}{lll} exttt{IIVXL} + exttt{VXLC} &= exttt{IIXXXCC} \ 67 + 165 &= 232 \end{array}$$

L'algoritmo per la somma romana è dunque il seguente

- 1. concatena i simboli dei due numeri
- 2. ordinali rispetto al loro valore
- 3. semplifica

SOTTRAZIONE

Anche per la **sottrazione** i romani avevo un algoritmo alquanto **semplice**.

Sottrazione Romana (1/7)

Supponiamo di voler effettuare la seguente sottrazione

CLXXXXII - LXVIIII = ?

Sottrazione Romana (2/7)

Iniziamo andando ad eliminare simboli in comune tra le due espressioni

CLXXXXII - LXVIIII = CXXX - VII

Sottrazione Romana (3/7)

Continuando, espandiamo il simbolo X e riscriviamolo come VV

Sottrazione Romana (4/7)

Eliminiamo altri simboli comuni

$$egin{aligned} extbf{CLXXXXII} - extbf{LXVIIII} &= extbf{CXXX} - extbf{VII} \ &= extbf{CXXVV} - extbf{VII} \ &= extbf{CXXVV} - extbf{II} \end{aligned}$$

Sottrazione Romana (5/7)

Questa volta espandiamo il simbolo V e lo scriviamo come IIIII

```
egin{aligned} 	extbf{CLXXXXII} - 	extbf{LXVIIII} &= 	extbf{CXXX} - 	extbf{VII} \ &= 	extbf{CXXVV} - 	extbf{VII} \ &= 	extbf{CXXVV} - 	extbf{II} \ &= 	extbf{CXXVIIIII} - 	extbf{II} \end{aligned}
```

Sottrazione Romana (6/7)

Eliminiamo i restanti simboli in comune

```
egin{aligned} 	extbf{CLXXXXII} - 	extbf{LXVIIII} &= 	extbf{CXXX} - 	extbf{VII} \ &= 	extbf{CXXVV} - 	extbf{VII} \ &= 	extbf{CXXVV} - 	extbf{II} \ &= 	extbf{CXXVIIII} - 	extbf{II} \ &= 	extbf{CXXIIII} - 	extbf{II} \ &= 	extbf{CXXIII} \end{aligned}
```

Sottrazione Romana (7/7)

Dato che non ci sono più simboli da eliminare, abbiamo il nostro risultato

$$egin{array}{lll} extbf{CLXXXXII} - extbf{LXVIIII} &= extbf{CXXIII} \ 192 - 69 &= 123 \end{array}$$

MOLTIPLICAZIONE

Per quanto riguarda la moltiplicazione, i romani utilizzavano un algoritmo non intuitivo seppur veloce per effettuare questo calcolo.

L'algoritmo, sorprendemente, è molto simile alla **moltiplicazione** binaria, e sarà trattato in futuro video.

DIVISIONE

Per quanto riguarda la divisione invece, non esiste un algoritmo che lavorara direttamente sui numeri romani. Per calcolare la divisione i romani utilizzavano un **abaco**, che implicitamente utilizzava una **notazione posizionale**.

L'IMPORTANZA DELLA CODIFICA

Come abbiamo visto, I romani riuscivano a calcolare somma, sottrazione e prodotto lavorando direttamente sui numeri romani, ma per gestire la divisione dovevano utilizzare un **abaco**.

Questo ci insegna un fatto fondamentale dell'informatica:

La codifica scelta va anche a determinare l'esistenza, o meno, di algoritmi per effettuare calcoli in modo efficace.

La codifica romana dunque è limitante, in quanto non ci permette di effettuare la divisione in modo algoritmico. Questo significa che se utilizzassimo solo e soltanto la codifica romana, non potremmo automatizzare la divisione. Per fortuna, abbiamo abbandonato la codifica romana e adesso utilizziamo una codifica posizionale, un nuovo modo di scrivere i numeri.

