

Azure Kubernetes Service

Stephan Schiller Cloud Solution Architect sschiller@microsoft.com

Traditional application approach

A traditional application has most of its functionality within a few processes that are componentized with layers and libraries.

 Scales by cloning the app on multiple servers/VMs

Microservices application approach

• A microservice application segregates functionality into separate smaller services.

 Scales out by deploying each service independently with multiple instances App 1 App 2

Customer's pain points

Delivering same functionality to multiple deployment environments Ensuring consistency and avoiding dependency hell Unable to migrate and scale apps while maintaining compatibility

What are containers?

Virtualisation vs. Containerisation

Virtualisation

- Each VM has independent, full OS
- Application startup is dependent on host OS startup (slow!)
- Full isolation
- Separate app frameworks
- Lower density

Containerisation

- Shared Host OS
- Near instant start-up
- Processes in containers are isolated
- Dependent app services and libraries are tied to container (layers)
- All containers on a host will share the same guest OS version

Difference between containers and virtual machines

Container architecture

Virtual machine architecture

Docker – One example of a container engine

Container Lifecycle

Like a Container that's "NOT running" yet

Repository, e.g.:

"A Running Image"

Azure Container Registry -or-Docker Hub

Dockerfiles

Recipes for building containers

```
Dockerfile X
       FROM microsoft/dotnet:2.1-aspnetcore-runtime
       COPY ./published /app
       WORKDIR /app
  4
       EXPOSE 5000/tcp
       ENV ASPNETCORE_URLS http://*:5000
  6
       ENTRYPOINT [ "dotnet", "test.dll"]
  8
```

The elements of **orchestration**

Kubernetes: the industry leading orchestrator

Portable

Public, private, hybrid, multi-cloud

Extensible

Modular, pluggable, hookable, composable

Self-healing

Auto-placement, auto-restart, auto-replication, auto-scaling

Kubernetes Cluster

How Managed Kubernetes on Azure works

Automated upgrades, patches
High reliability and availability
Easy and secure cluster scaling
Self-healing
API server monitoring
Control plane at no charge

From infrastructure to innovation

Managed Kubernetes empowers you to do more

Focus on your containers and code, not the plumbing of them.

Responsibilities	DIY with Kubernetes	Managed Kubernetes on Azure	
Containerization			
Application iteration, debugging			
CI/CD			
Cluster hosting			
Cluster upgrade			
Patching			
Scaling			Customer
Monitoring and logging			Microsoft

Work how you want with opensource tools and APIs

	Development	DevOps	Monitoring	Networking	Storage	Security
	HELM	Jenkins	Prometheus	C N I Networking	MAPR.	Twistlock
Take advantage of services and tools in the Kubernetes ecosystem	DRAFT	Terraform	fluentd	TIGERA	portworx	aqua
		BRIGADE JFrog	Grafana Grafana			Heptio
		CODESHIP	OPENTRACING DATADOG			(H) HASHICORP
			JAEGER			RBAC
OR, Leverage growing Azure support	VS Code	Azure DevOps	Azure Monitor	Azure VNET	Azure Storage	Azure Container Registry AAD Key Vault

Summary

Container: content/hardware agnostic, efficient - light weight, more dense than VMs

Kubernetes is an open-source container orchestrator that helps to handle containerized microservice architectures

Azure Kubernetes Service: Managed K8s that removes complexity by handling management tasks (auto-upgrades, patching, self-healing ...)

AKS takes full advantage of all open-source solutions combined with a seamless integration in Azure services

Links

- Introduction to Azure Kubernetes Service Azure Kubernetes Service
 Microsoft Docs
- <u>Kubernetes on Azure tutorial Deploy a cluster Azure Kubernetes</u>
 <u>Service | Microsoft Docs</u>

Thank you!

شکراً متشکرم Salamat Po ευχαριστώ Grazie благодаря ありがとうございます Kiitos Teşekkürler 谢谢 ขอบคุณครับ Obrigado شكريہ Terima Kasih Dziękuję Köszönöm Tak дякую Dank u Wel Hvala Tack Multumesc **Danke** Cám ơn спасибо **Gracias நன்றி Děkuji** 감사합니다 תודה 多謝晒 Ďakujem

