Общие требования к отчёту и оформлению исходных кодов.

Исходные коды должны быть присланы в git-репозиториях. Публичные сервисы: github.com, gitlab.com, bitbucket.org.

Язык программирования — любой, допускающий подстановку функций в качестве аргументов функций и ячеек массивов. Кроме того, должен быть доступен запуск приложений/среды разработки из Linux Ubuntu и родственных ОС.

Отчёт присылать в любом формате документов (LaTeX, Word 2010 и новее, ODT, RTF). PDF – при желании. На первой странице должен быть титульник (можно без рамки).

Коды программ, вставляемые в отчёт, должны быть введены одноширинным шрифтом. Например: Courier New, Consolas, Lucida Console. Нужно также выделять пробелы и табуляции.

При написании программ обязательно соблюдать отступы при реализации подпрограмм, циклов и ветвлений. Новый уровень вложенности — новый отступ до конца блока.

Арифметические операции желательно выполнять через пробел от параметров и вызовов функций; при громоздкости выражений следует переносить по знаку.

Основные функции следует называть так, чтобы было понятно, что эта функция делает или должна делать, не влезая в код. Входные и выходные параметры этих функций следует называть примерно с тем же соображением. Более того, основные функции ранних лабораторных работ будут использованы позднее – а стало быть, их потребуется вызывать из другого кода одной строкой...

Разделы отчёта следует выделять отдельным стилем шрифта с размещением по центру.

Страницы нумеруются, кроме титульной.

Лабораторные работы на вычислительные методы, часть 1. Нахождение точечных решений.

Лабораторная работа 1.1. Знакомство с машинной арифметикой через ряды.

Для предложенных знакопостоянных и знакопеременных рядов:

- 1) Выяснить характер их сходимости аналитически;
- 2) Составить алгоритм прямого суммирования;
- 3) Найти частичные суммы при разных погрешностях (даже для расходящихся рядов);
- 4) Исследовать поведение алгоритма при погрешностях, сопоставимых с последним разрядом машинного типа с плавающей запятой.

Код программы, аналитические исследования, результаты работы и выводы занести в отчёт.

Задания на л/р:

№	Знакоположительный ряд	Знакопеременный ряд
1	∞ 1	* ***
	$\sum \frac{1}{2}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$
	$\sum_{n=1}^{\infty} \frac{1}{n^3}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n+5}$ $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{3/2}}$ $\frac{1}{n} = \frac{1}{n}$
2		$\sum_{i=1}^{\infty}$
	$\sum_{n=\ln(n+6)}$	$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{n^{3/2}}$
	$\sum_{n=1}^{\infty} \frac{1}{n \cdot \ln(n+6)}$	n=1
3	$\sum_{k=1}^{\infty} 1$	$\sum_{n=1}^{\infty} n^6$
	$\sum_{n} \frac{3^n}{3^n}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{e^{n/2}}$
1		$\sum_{n=1}^{n=1} (-1)^{n+1} \frac{n^6}{e^{n/2}}$ $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$
4	$\sum_{i=1}^{n}$	$\sum_{(-1)^{n+1}} \frac{1}{1}$
	$ \angle \overline{n^{4/3}} $	\angle (-1) \sqrt{n}
5	n=1	n=1 ∞ 1
	$\sum_{n=1}^{\infty} \frac{1}{3^n}$ $\sum_{n=1}^{\infty} \frac{1}{n^{4/3}}$ $\sum_{n=1}^{\infty} \frac{4e^n}{n^{n+1}}$	$\sum_{n=1}^{n=1} (-1)^{n+1} \frac{1}{n}$
	$\sum_{n=1}^{\infty} n^{n+1}$	$\sum_{n=1}^{\infty}$ n
6	∞ ∇	$\sum_{i=1}^{\infty}$
	$\sum_{n} 0.99^{n}$	$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{(2n-1)!}$
	<u>n=1</u>	n=1
7	$\sum_{n=0}^{\infty} 3^n$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n \cdot \ln(n)}$
	$\angle \overline{(2n)!}$	$\sum_{n \in \ln(n)} (-1)^{n+1} \frac{1}{n \cdot \ln(n)}$
8	$\sum_{n=1}^{\infty} 0,99^{n}$ $\sum_{n=1}^{\infty} \frac{3^{n}}{(2n)!}$ $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ $\sum_{n=1}^{\infty} \frac{2^{n}}{(2n-1)!}$	
	$\sum \frac{1}{1}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(n-1)!}$
	$\sum_{n=1}^{\infty} n(n+1)$	$\sum_{n=1}^{\infty} (n-1)!$
9	$\sum_{n=0}^{\infty} 2^n$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1}$
	$\sum_{1}^{n} \frac{1}{(2n-1)!}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1}$
10	n=1	n=1 $n=1$
10	$\sum_{n=0}^{\infty} a_n a_n a_n$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n \cdot \ln^2(n)}$
		$\sum_{n \in \mathbb{N}} \frac{1}{n \cdot \ln^2(n)}$
11	$\sum_{n=1}^{\infty} 0.95^{n}$ $\sum_{n=1}^{\infty} \frac{1}{n}$ $\sum_{n=1}^{\infty} \frac{x^{2}}{n}$	
11	$\sum \frac{1}{-}$	$\sum (-1)^{n+1} \cdot 0,99^n$
	$\underset{n=1}{\underline{\angle}} n$	$\sum_{n=1}^{\infty}$
12	$\sum_{i=1}^{\infty} r^2$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3^n}{n!}$
	$\sum_{n=1}^{\infty} \frac{x^n}{2^n}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sigma}{n!}$
	n=1	
13	$\sum_{n=0}^{\infty} 7e^n$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\left(\frac{\pi}{4}\right)^n}{(2n)!}$
	$\sum_{n=1}^{\infty} \frac{7e^n}{n^{n+1}}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n)!}$
14		
14	$\sum \frac{1}{}$	$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{0.2^n}{2n-1}$
	$\sum_{n=1}^{\infty} \frac{1}{n \cdot \ln^2(n+1)}$	$\sum_{n=1}^{\infty} (2n-1)$
L	<i>u</i> =1	$\mu=1$

Лабораторная работа 1.2. Метод Гаусса с выбором главного элемента для решения СЛАУ.

- 1. Составить программу решения СЛАУ методом Гаусса, поддерживающую модульность и раздельную передачу параметров матрицы А и столбца b.
- 2. Решить обе СЛАУ (4*4 и 5*5) с номером варианта согласно спискам в ЭУ либо аналитически подробно и вместе с тем численно методом Гаусса, либо методом Гаусса с пошаговым выводом результатов после элементарных преобразований.

3. В отчёте написать:

- а. Теоретическую часть согласно метод. пособию (опечатки и ошибки устранить);
- b. Текст программы с указанием языка программирования;
- с. Результаты решения обеих СЛАУ согласно п.2.

В таблицах ниже предложены варианты матриц 4*4 и 5*5.

1	2	3
1 -2 0 -3 -19 -2 0 4 -4 -22 -3 -5 4 1 -23 4 4 -1 0 21	2 1 1-2 5 4 3 3-2 3 -3 1-5-3 7 -5 1 1 0 11	$ \begin{array}{c ccccc} -1 & 0 - 2 - 4 & - 12 \\ 0 - 1 & 3 - 1 & & 2 \\ -3 & 1 - 3 - 1 & & -2 \\ 3 - 3 & 0 & 2 & & 6 \end{array} $
4	5	6
-1 -2 3 4 -13 -5 2 4 -2 -14 4 3 -2 -1 2 1 -2 -1 -3 23	-2 -2 -2 -3 25 0 0 -1 -2 3 -4 -3 -4 -4 48 -3 -4 -2 -2 39	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
7	8	9
-3 4-5 4 7 2-1-2-1 6 4 0 0-4 12 -3-3-3-1 -1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2 -1 -2 -3 -7 -3
10	11	12
-5 1 4 4 28 0-5-1 1 -7 -2 2 4 2 8 2-5 2-3 -45	-5 4 4 2 -27 -4 -4 -1 -4 16 3 2 -1 1 4 1 3 -2 2 2	2 0 1 1 -15 -2 0 -3 -4 31 -3 4 1 -1 -11 -5 -3 1 -2 34

13	14	15
$ \begin{array}{c ccccc} -3 & -2 & -4 & 3 & & 38 \\ -2 & -4 & -5 & -5 & & 10 \\ 0 & 2 & 2 & -4 & & -26 \end{array} $	3-5 2 4 31 -3 1 0 1 -2 4-4 0-5 -3	0 -1 4 -4 -20 1 3 -1 1 15 -3 4 -3 -3 37
-5 4 4 4 16	2 0 4 – 4 2	<u>-4 1 -3 1 22</u>

2
1 -3 1 0 -5 22 -4 0 2 4 -1 35 -2 -4 -2 2 1 -3 -4 -3 -1 4 -4 38 1 4 3 3 -5 44
4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6
4-2 4 1 -3 -13 -4 3 0 -1 -3 15 3 3 2 -4 0 -4 1-2-2-1 3 -9 -2-2-3 -1 -3 -12
8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

9	10
2 4 -2 -1 -4 -31	2 -1 2 -2 -1 10
-3 -5 -3 -2 3 2	4 -1 -2 0 -5 -10
-4 3 2 3 2 28	3 -1 -3 -3 1 1
-2 -5 4 0 3 34	3 0 4 -2 -4 17
-5 -3 -3 2 4 19	0 1 -5 3 -5 -26

11	12
4-1 4-5 3 -5	-5 -3 -3 -5 4 -54
2-4-3 2 0 -10	-4 3 -3 4 -1 -13
3 3 3 2 0 -10	1 -3 0 -2 -2 -3
-5-5-5-2-5 9	-5 -1 -1 -3 -3 -24
3 3-3-3-4 8	-1 2 0 -5 -1 -1
13	14
2 -3 1 -4 -1 25	-3 4 4 2 3 14
2 4 -3 -5 2 32	3 2 0 -1 -5 -27
2 0 -2 -3 3 30	4 -2 -2 -1 -1 -14
-3 -4 -1 -1 4 23	4 1 1 -1 1 -15
4 -2 1 -3 -4 16	4 4 -4 -1 2 -49
15	16
-4-1 3 0-4 -26	2 0-5-2 4 43
-3-2 3-4 3 12	0 0-4-1 4 28
-2-5 1-3 4 25	-5-3-4-3-4 16
4-4 0 4 0 -4	0 2 1-2-3 -2
4-3 1-4-1 28	3 4 1-3 4 16

Лабораторная работа 1.3. Метод прогонки для решения трёхдиагональных СЛАУ.

Решить трёхдиагональную СЛАУ из своего варианта методом прогонки. Программа должна быть реализована в отдельной функции, принимающей на вход отдельно матрицу A и вектор-столбец b.

В отчёте должны быть теоретическая часть, текст программы и подробный отладочный вывод прогоночных коэффициентов и пошаговых преобразований матриц СЛАУ.

Варианты заданий:

1	2	3
1 4 0 0 -11	1-5 0 0 -27	1 1 0 0 2
-10 -10 7 0 -13	-9 6-9 0 -27	-7-4-1 0 -34
0 -6-5 3 54	0-5 8-3 14	0-6 6-5 15
0 0 7 1 -64	0 0 4 1 12	0 0 8 1 49
4	5	6
1 –9 0 0 63	1 –9 0 0 86	1-1 0 0 8
5 4 1 0 24	-9 5-1 0 -18	5 4-7 0 58
0 -6 3 1 40	0 7 0 1 -61	0-8 8 5 -22
0 0-2 1 -11	0 0-3 1 -3	0 0-7 1 65
7	8	9
1 9 0 0 37	1 -6 0 0 45	1 4 0 0 15
-5 -7 2 0 17	2 -2 4 0 -36	3 -6 1 0 -1
0 4 4 –9 71	0 –1 –4 6 3	0 -5 -3 6 -63
0 0 9 1 51	0 0 8 1 -79	0 0 4 1 28
10	11	12
1 9 0 0 33	1 -8 0 0 -80	1 10 0 0 8
-1 -2 -8 0 -76	4 4-1 0 8	-8 7 1 0 -68
0 –9 0 3 –42	0 3 -7 -6 109	0 3 -8 3 26
0 0-8 1 -69	0 0 3 1 -21	0 0 4 1 -18
13	14	15
1 -5 0 0 13	1 3 0 0 -12	1 -7 0 0 -26
8 –4 –3 0 92	9 –7 –10 0 –74	3 6 1 0 4
0 -1 -9 7 122	0 -7 -10 -3 10	0 -5 -3 1 -11
0 0 7 1 -49	0 0 3 1 -1	0 0 -2 1 5

Лабораторная работа 1.4. Приближённое решение уравнений итерационными методами.

В каждом отдельном варианте даны:

- 1) Уравнение для функции одной переменной, требующее решения численным методом;
- 2) Два метода нахождения корней, разобранных на семинарах.

Требуется разыскать все корни, используя предложенные методы, с помощью различных начальных приближений.

В отчёте привести теоретические сведения из методички (с исправлением ошибок), подтверждающие возможность/невозможность решения уравнений с помощью предлагаемых методов, а также реализованные алгоритмы и результаты работы программ при разных значениях погрешности є.

На обязательной защите нужно быть готовым провести сравнительный анализ разных алгоритмов с мелкими правками кода.

No	Уравнение	Метод 1	Метод 2
1	$x = e^{-x}$	Простой итерации	Ньютона
2	$x^2 = 2^x$	Половинного деления	Ньютона (модиф.)
3	$x^5 - 7x^3 + 8x^2 - 2x = 0$	Простой итерации	секущих
4	$x^3 - 3x + 1 = 0$	Половинного деления	Ньютона
5	$x = \cos \frac{x}{2}$	Простой итерации	секущих
6	$x = \cos \frac{\overline{x}}{2}$	Половинного деления	Ньютона
7	$x^4 - 3x^2 + 5x = 3$	Простой итерации	секущих
8	$x^5 - 7x^3 + 8x^2 - 2x = 0$	Половинного деления	Ньютона (модиф.)
9	$x^2 = 2^x$	Простой итерации	секущих
10	$x^4 - 3x^2 + 5x = 3$	Половинного деления	Ньютона
11	$3x^2 = 3^x$	Простой итерации	секущих
12	$3x^2 = 3^x$	Половинного деления	Ньютона (модиф.)
13	$x^3 - 3x + 1 = 0$	Простой итерации	секущих
14	$x = e^{-x}$	Половинного деления	секущих

Лабораторная работа 1.5. Приближённое решение систем уравнений итерационными методами.

Нужно решить две системы уравнений: одну для двух переменных и одну – для трёх.

Предлагаемые системы уравнений неплохо решаются аналитически, поэтому следует для проверки результатов работы алгоритмов провести сперва решение вручную.

Все варианты реализуют как метод простых итераций, так и метод Ньютона без модификаций.

В отчёте нужно привести из методички теоретические обоснования методов, сделать вывод о пригодности методов для решения предлагаемой системы и сходимости их к найденным аналитическим решениям.

На защиту лабораторной — настраивать метод Ньютона для Φ НП из типовика для 1 курса либо сокращать вычисления якобиана.

Варианты заданий (1—14 раздаются согласно ранним лабораторным, 23—30 – по доп. указанию преподавателя):

1	2
$x^2 + y^2 - 4 = 0,$	$x^2 + y^2 - 4 = 0,$
$x-y^2-1=0$	$x^2 - y - 1 = 0$
3	4
$(x^2 + y^2)^2 - 4(x^2 - y^2) = 0,$	x + y + xy - 7 = 0,
$x^2 + y^2 - 1 = 0$	$x^2 + y^2 + xy - 13 = 0$
5	6
$3x^2 + 5xy - 2y^2 - 20 = 0,$	$2x^2 + xy - y^2 - 20 = 0,$
$x^2 + xy + y^2 - 7 = 0$	$x^2 - 4xy + 7y^2 - 13 = 0$
7	8
$x^2 - y^2 + 3y = 0,$	$(x+y)(x^2-y^2)-16=0,$
$x^2 + 3xy + 2y^2 + 2x + 4y = 0$	$(x-y)(x^2+y^2)-40=0$
9	10
(x+y)(x+2y)(x+3y)-60=0,	$x^4 + 6x^2y^2 + y^4 - 136 = 0,$
(y+x)(y+2x)(y+3x)-105=0	$x^3y + xy^3 - 30 = 0$
11	12
$10x^2 + 5y^2 - 2xy - 38x - 6y + 41 = 0,$	$x^3 + y^3 - 19 = 0,$
$3x^2 - 2y^2 + 5xy - 17x - 6y + 20 = 0$	(xy+8)(x+y)-2=0
13	14
$x^2y^2 - 2x + y^2 = 0,$	$x^3 + x^3 y^3 + y^3 - 17 = 0,$
$2x^2 - 4x + 3 + y^3 = 0$	x + xy + y - 5 = 0

23	24
x - 2y + 3z - 9 = 0,	tg x tg z - 3 = 0,
$x^2 + 4y^2 + 9z^2 - 189 = 0,$	tg y tg z - 6 = 0,
$3xz - 4y^2 = 0$	$x + y + z - \pi = 0$
25	26
$\frac{x}{x} + \frac{y}{x} + \frac{z}{x} - 3 = 0$	$(x+y)^2 - z^2 - 4 = 0,$
y z x	$(y+z)^2 - x^2 - 2 = 0,$
$\frac{y}{x} + \frac{z}{y} + \frac{x}{z} - 3 = 0,$	$(z+x)^2 - y^2 - 3 = 0$
x + y + z - 3 = 0	
27	28
xy + yz - 8 = 0,	2x + y + z = 0,
yz + zx - 9 = 0,	3x + 2y + z = 0,
zx + xy - 5 = 0	$3(x+2)^3 + 2(y+1)^3 + (z+1)^3 - 27 = 0$
29	30
x+y+z-2=0,	x - y + z - 6 = 0,
$x^2 + y^2 + z^2 - 6 = 0,$	$x^2 + y^2 + z^2 - 14 = 0,$
$x^3 + y^3 + z^3 - 8 = 0$	$x^3 - y^3 + z^3 - 36 = 0$

Лабораторные работы на вычислительные методы, часть 2. Приближение функций.

Лабораторная работа 2.1. Интерполяционные многочлены.

Нужно создать алгоритм построения интерполяционного многочлена Лагранжа (алгоритмом Эйткена) либо Ньютона (в прямой либо обратной форме) согласно индивидуальному заданию. Весь вычислительный алгоритм должен содержаться в отдельной подпрограмме, освобождённой от необходимых команд ввода-вывода (не считая отладочных). Работоспособность собственного алгоритма проверить на предложенных данных.

Вывести на печать и занести в отчёт:

- Функцию f(x), из которой создавались опорные точки для многочлена;
- Массив опорных точек;
- Значение многочлена в точке, заданной введённым параметром;
- График исходной функции и интерполяционного многочлена в одних осях.

В отчёте также указать:

- Какую разновидность алгоритма применили в качестве реализации заданного метода, и программную реализацию;
- Какой степени многочлен получили на предложенных данных;
- Какую оценку погрешности интерполяционного многочлена удалось получить и каким образом.

Варианты заданий:

№ вар.	Метод интерполяции	Функция $f(x)$	Точки x_i	Параметр х
1	Лагранжа	sin x	2; 2.2; 2.4; 2.6; 2.8; 3	2.5 или 2.8
2	Ньютона (прямой)	cos x	2; 2.2; 2.4; 2.6; 2.8; 3	2.3 или 2.6
3	Ньютона (обратный)	sin 2x	2; 2.2; 2.4; 2.6; 2.8; 3	2.1 или 2.4
4	Лагранжа	sh 2 <i>x</i>	1; 1.2; 1.4; 1.6; 1.8; 2	1.1 или 1.6
5	Ньютона (прямой)	$\operatorname{ch} \frac{x}{2}$	1; 1.2; 1.4; 1.6; 1.8; 2	1.3 или 1.8
6	Ньютона (обратный)	ln x	1; 1.2; 1.4; 1.6; 1.8; 2	1.5 или 1.4
7	Лагранжа	$\log_2 x$	1; 1.25; 1.5; 1.75; 2	1.2 или 1.5
8	Ньютона (прямой)	$(x-1)^6$	1; 1.25; 1.5; 1.75; 2	1.7 или 1.75
9	Ньютона (обратный)	$\ln\left(x+\sqrt{x^2+1}\right)$	1; 1.25; 1.5; 1.75; 2	1.9 или 1.25
10	Лагранжа	tg x	0; 0.25; 0.5; 0.75; 1	0.2 или 0.25
11	Ньютона (прямой)	$tg\frac{x}{2}$	0; 0.25; 0.5; 0.75; 1	0.4 или 0.5
12	Ньютона (обратный)	$\ln \frac{x+1}{1-x}$	0; 0.25; 0.5; 0.75; 1	0.9 или 0.75
13	Лагранжа	$\ln\left(x+\sqrt{x^2-1}\right)$	3; 4; 5; 6; 7; 8; 9; 10	4.25 или 6
14	Ньютона (прямой)	$\sqrt{x-1}$	3; 4; 5; 6; 7; 8; 9; 10	8.5 или 7
15	Ньютона (обратный)	$ \ln \frac{x+1}{x-1} $	3; 4; 5; 6; 7; 8; 9; 10	9.8 или 9

Лабораторная работа 2.2. Интерполяционные сплайны.

Нужно создать алгоритм построения интерполяционных сплайнов. Каждый вычислительный алгоритм должен содержаться в отдельной подпрограмме, освобождённой от необходимых команд ввода-вывода (не считая отладочных). Методы решения СЛАУ (Гаусса, прогонки) требуется вызывать из тех программ, которые выполнены в рамках лабораторных работ 1.2 и 1.3.

Для проверки работоспособности программы требуется для той же функции f(x), что и в работе 2.1, задав отрезок [a, b] из крайних точек, выбирая промежуточные точки с шагом $h=\frac{b-a}{N}$, N задано, построить следующие интерполяционные сплайны:

- Линейный
- Квадратичный с граничным условием f'(a) = 0
- Квадратичный с граничным условием f'(b) = 0
- Кубический с граничными условиями f''(a) = f''(b) = 0

Вывести на печать и занести в отчёт:

- 1. Таблицу аргументов и значений функции $f(a+i\cdot h), i=\overline{0,N}, N=10$
- 2. Вычисленные уравнения кусков линейного сплайна с привязкой к своим отрезкам $[x_i, x_{i+1}], i = \overline{0, N-1}, N = 10$
- 3. Вычисленные уравнения кусков определённого слева квадратичного сплайна с привязкой к своим отрезкам $[x_i, x_{i+1}], i = \overline{0, N-1}, N = 10$
- 4. Вычисленные уравнения кусков определённого справа квадратичного сплайна с привязкой к своим отрезкам $[x_i, x_{i+1}], i = \overline{0, N-1}, N = 10$
- 5. Вычисленные уравнения кусков кубического сплайна с привязкой к своим отрезкам $[x_i, x_{i+1}], i = \overline{0, N-1}, N = 10$
- 6. Повторить вычисления 1—5 при N=50
- 7. 5 графиков с вычислением для каждого значений в 1001 точке, включая крайние, с постоянным шагом по аргументу:
 - а. исходная функция на отрезке [a, b] вместе с линейными сплайнами при N=10 и N=50;
 - b. исходная функция на отрезке [a, b] вместе с левыми квадратичными сплайнами при N = 10 и N = 50;
 - с. исходная функция на отрезке [a, b] вместе с правыми квадратичными сплайнами при N=10 и N=50;
 - d. исходная функция на отрезке [a, b] вместе с кубическими сплайнами при N = 10 и N = 50;
 - е. исходная функция на отрезке [a, b] вместе со сплайнами всех четырёх типов при N = 10;

Также в отчёте нужно сделать вывод о влиянии количества шагов и степени сплайна на точность приближения.

Лабораторная работа 2.3. Метод наименьших квадратов аппроксимации функций.

Для той же функции f(x) и отрезка [a,b], что и в работе 2.2, при постоянном шаге аргумента $h=\frac{b-a}{N}$ написать программу, вычисляющую приближённо аппроксимацию по набору точек $(x_i, f(x_i))$ с помощью метода наименьших квадратов с целевым многочленом степени K.

Вычислительный алгоритм должен использовать при вычислении решения СЛАУ ту функцию, которая реализована в лабораторной работе 1.2.

Сформировать отчёт в виде кода программы вычисления коэффициентов многочлена методом МНК, а также вывести рассчитанную с её помощью таблицу с колонками:

- Значения x_i для всех точек, выбранных на отрезке с постоянным шагом;
- Значения $f(x_i)$ для этих же точек;
- Значения линейной функции, полученной МНК, в тех же точках;
- Невязки линейной функции в точках;
- Значения квадратичной функции, полученной МНК, в тех же точках;
- Невязки квадратичной функции в точках;
- Значения кубической функции, полученной МНК, в тех же точках;
- Невязки кубической функции в точках;

Отдельно вывести для каждого способа приближения сумму квадратов невязок и, сравнив их, сделать вывод о качестве исследуемых аппроксимаций.

Выяснить также, можно ли добиться суммы квадратов невязок, равной 0 с точностью до порядка машинной погрешности.

Лабораторная работа 2.4*. Дополнительные методы интерполяции.

В работе для следующего потока

Лабораторная работа 2.5*. Дополнительные методы аппроксимации.

В работе для следующего потока

Лабораторные работы на вычислительные методы, часть 3. Интегрирование.

Лабораторная работа 3.1. Численное интегрирование функций одной переменной.

Нужно реализовать алгоритмы численного интегрирования непрерывных на отрезке [a,b] функций f(x) с постоянным шагом $h=\frac{b-a}{N}$. Перечень алгоритмов:

- Метод левых прямоугольников;
- Метод правых прямоугольников;
- Метод средних прямоугольников;
- Метод трапеций;
- Метод Симпсона (парабол);
- Метод Ньютона («3/8»).

Методы интегрирования требуется реализовать в виде функций от подынтегральной функции, пределов интегрирования и количества интервалов разбиения. Генерацию отсчётов и функций в них производить так же, как и в лабораторных работах 2.1—2.3, добившись подстановки подынтегральной функции в качестве одного из аргументов подпрограммы.

Выбрав один из методов интегрирования высокого порядка точности (указать в отчёте, какой именно!), решить прикладную задачу согласно собственному варианту. Рекомендуется использовать анонимные функции для более гибкой настройки подынтегральной функции, где это требуется.

Вид задачи №1

Поступил массив отсчётов по времени силы переменного тока базовой частоты 50 Герц. Длительность наблюдения – 1 секунда, частота дискретизации $\nu = 10000$ Гц, обе границы отрезка наблюдения попали в кадр.

Для полученного массива нужно получить следующие характеристики, вычисляемые по интегральным формулам:

- 1. Среднее значение силы тока на отрезке: $\bar{I} = \frac{1}{1-0} \int_0^1 I(x) \ dx;$
- 2. Действующее значение силы тока на отрезке: $\tilde{I} = \sqrt{\frac{1}{1-0} \int_0^1 I^2(x) \ dx}$;
- 3. Амплитудные значения гармоник сигнала при частотах v_i : 50, 100, 150, 200, ..., 2000 Γ ц:

$$a_i = \sqrt{c_i^2 + s_i^2}, \qquad c_i = \frac{1}{N_i} \int_0^1 I(x) \cdot \cos 2\pi \nu x \ dx, \qquad s_i = \frac{1}{N_i} \int_0^1 I(x) \cdot \sin 2\pi \nu x \ dx,$$

$$N_i = (1 - 0)\nu_i$$

Функция I(x), порождающая гармонический сигнал, задаётся в варианте.

ВАРИАНТ	Φ УНКЦИЯ $I(x)$
1	$12\sin 100\pi x + 16\cos 100\pi x - 2\sin 200\pi x + 0.1\sin 400\pi x$
	$+0.03 \sin 500\pi x + 0.01 \cos 700\pi x$
2	$14\sin 100\pi(x+2) - 2\sin 200\pi(x-1) + 0.5\sin 600\pi(x-0.3)$
	$-0.04 \sin 1100\pi(x-0.7)$
3	$40\sin 100\pi(x+1) + 3\sin 300\pi(x+1) + 1\sin 800\pi(x-1,3)$
	$-0.08 \sin 1700\pi(x-0.7)$
4	$9\sin 100\pi(x+4) - 1\sin 400\pi(x+5) + 0.3\sin 1000\pi(x-3.3)$
	$+0.02 \sin 1300\pi(x+0.7)$
5	$100\sin 100\pi(x+2) - 10\sin 200\pi(x-1) + 3\sin 500\pi(x-0.3)$
	$-0.04 \sin 900\pi (x-0.7)$
6	$24 \sin 100\pi x - 10 \cos 100\pi x - 7.4 \sin 200\pi (x - 0.33)$
	$+3\sin 500\pi(x-0.2) - 0.04\sin 1500\pi(x+0.777)$
7	$40\sin 100\pi x - 9\cos 100\pi x - 10.4\sin 200\pi (x+1.33)$
	$+ 5 \sin 700\pi(x - 1,2) - 0,4 \sin 1500\pi(x - 2)$

Вид задачи №2.

Дана неотрицательная функция p(x), непрерывная на отрезке [a,b] и принимающая нулевое значение вне этого отрезка.

Дана ещё одна неотрицательная функция q(y), непрерывная на отрезке [c,d] и принимающая нулевое значение вне этого отрезка.

Мы полагаем далее, что X — непрерывная случайная величина с плотностью вероятности $P \cdot p(x)$. Аналогично, Y — непрерывная случайная величина с плотностью вероятности $Q \cdot q(y)$.

Требуется с помощью численного метода интегрирования высокого порядка точности (указать в отчёте, какого!) вычислить с шагом по аргументу h=0,01:

- Постоянные множители X и Y, при которых $\int_a^b P \cdot p(x) \, dx = 1$ и $\int_c^d Q \cdot q(y) \, dy = 1$
- Множество элементарных исходов случайной величины Z=X+Y
- Плотность вероятности суммы случайных величин Z=X+Y по формуле: $f(z) = \int_{-\infty}^{+\infty} P \cdot p(x) \cdot Q \cdot q(z-x) \, dx$, $z \in [a+c,b+d]$; 0 иначе. Пределы интегрирования станут конечными; но их следует аккуратно подобрать.
- Также вывести график плотностей вероятности для величин X, Y, Z.
- Полную вероятность для случайной величины Z: $\int_{z_{min}}^{z_{max}} f(z) dz$, сравнив в конце результат с единицей.

Варианты функций и отрезков их определения (вне их – нули):

BAP.	p(x)	[<i>a</i> , <i>b</i>]	q(y)	[c, d]
8	1	[0, 1]	1	[1, 3]
9	x	[0, 1]	1	[0, 1]
10	x	[1, 3]	x^2	[0, 1]

11	x	[0, 2]	x	[0, 1]
12	sin x	$[0,\pi]$	cos x	$\left[0,\frac{\pi}{2}\right]$
13	e^{-8x^2}	[-1, 1]	e^{-2x^2}	[-2, 2]
14	e^{-3x}	[0, 3]	e^{-3x}	[0, 3]

Лабораторная работа 3.2. Численное интегрирование обыкновенных дифференциальных уравнений или их систем.

В вариантах 1, 4, 7, 10, 13 и т.д. требуется решить задачу Коши для приведённой системы дифференциальных уравнений первого порядка: $\frac{dx}{dt} = F_x(x,y)$, $\frac{dy}{dt} = F_y(x,y)$ — методом Рунге-Кутты второго либо четвёртого порядка точности. Начальные условия: $x(t_0) = x_0$, $y(t_0) = y_0$. Строить решение нужно до преодоления параметром t точки t_1 . Относительная точность должна быть не хуже 10^{-5} .

В вариантах 2, 5, 8, 11, 14 и т.д. требуется решить краевую задачу для дифференциального уравнения второго порядка $\frac{d^2y}{dx^2} + f(x)\frac{dy}{dx} + g(x)y = \varphi(x)$ с краевыми условиями первого рода: $y(x_0) = y_0$, $y(x_1) = y_1$ — на отрезке $x \in [x_0, x_1]$. Относительная точность должна быть не хуже 10^{-5} .

В вариантах 3, 6, 9, 12, 15 и т.д. требуется решить краевую задачу для дифференциального уравнения второго порядка $\frac{d^2y}{dx^2} + f(x)\frac{dy}{dx} + g(x)y = \varphi(x)$ с краевыми условиями второго рода: $y'(x_0) = y'_0, y'(x_1) = y'_1$ – на отрезке $x \in [x_0, x_1]$. Относительная точность должна быть не хуже 10^{-5} .

Допускается по согласованию с преподавателем заменить задачу своего варианта на краевую задачу для дифференциального уравнения второго порядка $\frac{d^2y}{dx^2} + f(x)\frac{dy}{dx} + g(x)y = \varphi(x)$ с краевыми условиями третьего рода: $y'(x_0) = f_0(x,y(x)), y'(x_1) = f_1(x,y(x))$ – на отрезке $x \in [x_0,x_1]$. Относительная точность должна быть не хуже 10^{-5} .

Во всех вариантах работы требуется построить программу, строящую:

- Последовательность точек (x_i, y_i) , вычисленных при решении дифференциального уравнения или их системы;
- График траектории, порождённой этой последовательностью точек.

В отчёте требуется указать:

- Код программы и построенные графики;
- Обоснование для относительной точности полученного результата.

Варианты заданий:

Задача Коши (примечание: задачи 10 и 13 решаются в общем виде символьно; можно проверять себя)

№	Система уравнений	t_0	x_0	${\mathcal Y}_0$	t_1
1	1	0	1	2	2

	$y' = \frac{1}{x}$				
4	$x' = \frac{t}{xy};$ $y' = \frac{t}{x^2}$	0	1	1	2
7	$x' = \frac{-2x}{t};$ $y' = y + (2+t)\frac{t}{x}$	1	1	e-1	3
10	x' = t + 3x - 2y; y' = 3x - 4y	0	2	3	2
13	$x' = 2e^{t} + 2x + y;y' = x + 2y - 3e^{4t}$	0	2	0	-2

Краевая задача 1-го рода (примечание: все задачи решаются в общем виде символьно, можно проверять себя)

№	Уравнение	x_0	y_0	x_1	y_1
2	$y'' + 4y' + 4y = e^{-2x}$	0	2	2	0
5	$y'' - \frac{y'}{x} + \frac{y}{x^2} = \frac{6\ln x}{x}$	1	0	4	5
8	$y'' - 5y' + 6y = e^{3x} + x$	0	2	3	4
11	$y'' + \frac{y'}{x} - \frac{y}{x^2} = \frac{2 \ln x}{x^2}$	1	2	3	1
14	$y'' - y' - 2y = e^{-2x} + 3x$	0	0	3	4

Краевая задача 2-го рода (примечание: все задачи решаются в общем виде символьно, можно проверять себя)

No	Уравнение	x_0	y'0	x_1	y' ₁
2	$y'' - 5\frac{y'}{x} + 8\frac{y}{x^2} = \frac{4\ln x}{x^2}$	1	1	5	4
5	$y'' - 7y' + 12y = 2e^{3x}$	0	1	4	2
8	$y'' - 7\frac{y'}{x} + 15\frac{y}{x^2} = 5x^5 - 5x^4$	1	4	3	2
11	$y'' - 3y' - 10y = 3e^{-2x}$	1	5	5	2
14	$y'' - 7\frac{y'}{x} + 15\frac{y}{x^2} = 5x^5 - 5x^4$	1	2	4	4

Лабораторная работа 3.3*. Вычисление криволинейных интегралов.

Для вычисленной в задаче 3.2 траектории рассчитать с помощью метода трапеций криволинейный интеграл 1-го или 2-го рода по заданию преподавателя.

Лабораторная работа 3.4*. Численное интегрирование функций двух переменных.

В работе для следующего потока.