

National Institute of Technology Karnataka, Surathkal

Dileep Reddy Gosu

2420585

CSE

August 30, 2024

Course: M.Tech in Computer Science and Engineering

Course Code & Subject: CS700 & Algorithm and Complexity

Professor: Dr. Vani

Assignment No.: 1

Submission Date: August 30, 2024

Contents

1	Data Generation and Experimental Setup	1
2	Which of the Three Versions of Quicksort Seems to Perform the Best?	1
3	Which of the Six Sorts Seems to Perform the Best (Consider the Best Version of Quicksort)?	3
4	Analyze your data to see if the number of comparisons is correlated with execution time plot (time #comparisons) vs. n and refer to these plots in your answer	5

Introduction

Brief introduction about the assignment.

Question 1

Detailed explanation or answer to question 1.

1 Data Generation and Experimental Setup

- 1. What kind of machine did you use? Acer Nitro5
- 2. What timing mechanism did you use? c++ Standard Timing
- 3. How many times did you repeat each experiment? 25 times
- 4. How did you select inputs?

 Randomly with uniform distribution of positive integers in the range of 1 and 1000000
- 5. Did you use the same inputs for all sorting algorithms? yes

2 Which of the Three Versions of Quicksort Seems to Perform the Best?

1. Graph the best case running time as a function of input size n for all three versions.

Figure 1: Best Case for all the Sorting Algorithms.

2. Graph the worst case running time as a function of input size n for all three versions.

Figure 2: Worst Case for all the Sorting Algorithms.

3. Graph the average case running time as a function of input size n for all three versions.

Figure 3: Average Case for all the Sorting Algorithms.

Figure 4: Average Case for all the Sorting Algorithms. Expanded Version

Which of the Six Sorts Seems to Perform the Best (Consider the Best Version of Quicksort)?

1. Graph the best case running time as a function of input size n for the six sorts.

Figure 5: Best Case for all the Sorting Algorithms.

Figure 6: Best Case for all the Sorting Algorithms. Expanded Version

2. Graph the worst case running time as a function of input size n for the six sorts.

Figure 7: Worst Case for all the Sorting Algorithms.

Figure 8: Worst Case for all the Sorting Algorithms. Expanded Version

3. Graph the average case running time as a function of input size n for the six sorts.

Figure 9: Average Case for all the Sorting Algorithms.

Figure 10: Average Case for all the Sorting Algorithms. Expanded Version

- 4 Analyze your data to see if the number of comparisons is correlated with execution time plot (time #comparisons) vs. n and refer to these plots in your answer
 - Quicksort: Showing correlation value nearly 0.99,0.99,0.99 in best and worst case but in average case it is showing 0.99,0.32,0.99 for all 3 types of quicksort variations and for all Algorithms combining it is the fastest algorithm
 - Merge and Heap sort: Merge sort and heap sort are showing same trend in all the cases
 - Insertion Sort & Bubble sort: A stronger correlation with n but with higher execution times compared to Merge and Heap Sort
 - Radix Sort: Shown a linear trend boox all the number are nearly of same digits

Code: Acces to Github repo