

Data Science: Jordan Boyd-Graber University of Maryland

MARCH 29, 2018

Data Science: Jordan Boyd-Graber | UMD Logistic Regression |

Coef	Value
β_0	0.5
eta_{bark}	1.0
$eta_{\sf meow}$	-1.0
eta_{fur}	-0.5
eta_{leash}	0.5

$$P(Y=0|X) = \sigma(\beta_0 + \sum_i \beta_i X_i)$$

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
(2)

$$P(Y = 1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
 (2)

Where
$$\sigma(z) = \frac{1}{1 + exp[-z]}$$

This is dog/cat classification. What is positive?

Coef	Value
eta_0	0.5
eta_{bark}	1.0
$eta_{\sf meow}$	-1.0
eta_{fur}	-0.5
eta_{leash}	0.5

$$P(Y=0|X) = \sigma(\beta_0 + \sum_i \beta_i X_i)$$

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
(2)

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
 (2)

Where
$$\sigma(z) = \frac{1}{1 + exp[-z]}$$

How is an empty document classified?

Coef	Value
eta_0	0.5
eta_{bark}	1.0
$eta_{\sf meow}$	-1.0
eta_{fur}	-0.5
eta_{leash}	0.5

$$P(Y=0|X) = \sigma(\beta_0 + \sum_i \beta_i X_i)$$

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
(2)

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
 (2)

Where
$$\sigma(z) = \frac{1}{1 + exp[-z]}$$

What is a one word document that is evenly balanced?

Coef	Value
eta_0	0.5
eta_{bark}	1.0
$eta_{\sf meow}$	-1.0
eta_{fur}	-0.5
eta_{leash}	0.5

$$P(Y=0|X) = \sigma(\beta_0 + \sum_i \beta_i X_i)$$

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
(2)

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
 (2)

Where $\sigma(z) = \frac{1}{1 + \exp[-z]}$ What is a two word document that is evenly balanced?

Coef	Value
$oldsymbol{eta_0}$	0.5
eta_{bark}	1.0
$eta_{\sf meow}$	-1.0
eta_{fur}	-0.5
etaleash	0.5

$$P(Y=0|X) = \sigma(\beta_0 + \sum_i \beta_i X_i)$$
 (1)

$$P(Y=1|X)=1-\sigma(\beta_0+\sum_i\beta_iX_i) \qquad (2)$$

Where
$$\sigma(z) = \frac{1}{1 + exp[-z]}$$

What is classification of "bark, fur, fur"?

Coef	Value
eta_0	0.5
eta_{bark}	1.0
$eta_{\sf meow}$	-1.0
eta_{fur}	-0.5
eta_{leash}	0.5

$$P(Y=0|X) = \sigma(\beta_0 + \sum_i \beta_i X_i)$$

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
(2)

$$P(Y = 1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
 (2)

Where $\sigma(z) = \frac{1}{1 + \exp[-z]}$ What is classification probability of "bark, fur, fur"?

$$P(Y=0|X) = \sigma\left((\beta_0 + \sum_i \beta_i X_i)\right)$$
 (3)

(4)

$$P(Y=0|X) = \sigma\left((\beta_0 + \sum_i \beta_i X_i)\right)$$
 (3)

$$= \sigma ((0.5 + 1.0 + -0.5 + -0.5)) \tag{4}$$

(5)

$$P(Y=0|X) = \sigma\left((\beta_0 + \sum_i \beta_i X_i)\right)$$
 (3)

$$= \sigma ((0.5 + 1.0 + -0.5 + -0.5)) \tag{4}$$

$$=\sigma(0.5)\tag{5}$$

(6)

Data Science: Jordan Boyd-Graber | UMD Logistic Regression | 3/2

$$P(Y=0|X) = \sigma\left(\left(\beta_0 + \sum_i \beta_i X_i\right)\right) \tag{3}$$

$$= \sigma \left((0.5 + 1.0 + -0.5 + -0.5) \right) \tag{4}$$

$$=\sigma(0.5)\tag{5}$$

$$=\frac{1}{1+exp[-0.5]}=0.62\tag{6}$$

$$P(Y=0|X) = \sigma\left((\beta_0 + \sum_i \beta_i X_i)\right)$$
 (3)

$$= \sigma ((0.5+1.0+-0.5+-0.5))$$
 (4)

$$=\sigma\left(0.5\right)\tag{5}$$

$$= \frac{1}{1 + exp[-0.5]} = 0.62 \tag{6}$$

$$P(Y=1|X)=0.38$$
 (7)