```
In [93]:
         import numpy as np
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          from sklearn.preprocessing import LabelEncoder, StandardScaler
          from sklearn.linear model import LinearRegression,Lasso
          from sklearn.metrics import mean_squared_error,mean_absolute_error
          from sklearn.ensemble import RandomForestRegressor
          import warnings
          warnings.filterwarnings("ignore")
In [94]: Bigmac=pd.read_csv(r'C:\Users\18f18004\Desktop\BigmacPrice.csv')
In [95]: |Bigmac.head()
Out[95]:
             currency_code
                                   local_price dollar_ex dollar_price
                             name
          0
                     ARS Argentina
                                         2.50
                                                    1
                                                             2.50
           1
                     AUD
                           Australia
                                         NaN
                                                    1
                                                             2.59
                      BRL
           2
                              Brazil
                                         2.95
                                                             2.95
                      GBP
           3
                             Britain
                                         1.90
                                                    1
                                                             1.90
                      CAD
                                                             2.85
                            Canada
                                         NaN
In [96]: Bigmac.shape
Out[96]: (1946, 5)
In [97]: Bigmac.isnull().sum()
Out[97]: currency_code
                            0
          name
                            0
          local_price
                            8
          dollar_ex
                            0
          dollar price
          dtype: int64
In [98]: Bigmac=Bigmac.dropna()
In [99]: Bigmac.isnull().sum()
Out[99]: currency_code
                            0
          name
                            0
          local_price
                            0
          dollar_ex
                            0
          dollar price
          dtype: int64
```

In [100]: Bigmac.shape

Out[100]: (1938, 5)

In [101]: Bigmac.dtypes

Out[101]: currency_code object name object local_price float64 dollar_ex int64 dollar_price float64

dtype: object

In [102]: plt.figure(figsize=(10,6))

sns.regplot(x="local_price", y="dollar_price", data=Bigmac)

Out[102]: <AxesSubplot:xlabel='local price', ylabel='dollar price'>

In [103]: from scipy import stats
 pearson_coef, p_value = stats.pearsonr(Bigmac['dollar_ex'],Bigmac['dollar_price']
 print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of

The Pearson Correlation Coefficient is -0.007493347114254968 with a P-value of P = 0.7416498319793564

```
In [104]: plt.figure(figsize=(10,6))
sns.regplot(x="dollar_ex", y="dollar_price", data=Bigmac)
```

Out[104]: <AxesSubplot:xlabel='dollar_ex', ylabel='dollar_price'>


```
In [105]: plt.figure(figsize=(10,6))
sns.boxplot(x="currency_code", y="dollar_price", data=Bigmac)
```

Out[105]: <AxesSubplot:xlabel='currency_code', ylabel='dollar_price'>

In [106]: plt.figure(figsize=(10,6))
sns.boxplot(x="name", y="dollar_price", data=Bigmac)

Out[106]: <AxesSubplot:xlabel='name', ylabel='dollar_price'>

In []:	
In [1:	

Type *Markdown* and LaTeX: α^2

In [107]: Bigmac.shape

Out[107]: (1938, 5)

In [108]: Bigmac.describe()

Out[108]:

	local_price	dollar_ex	dollar_price
count	1.938000e+03	1.938000e+03	1938.000000
mean	1.588132e+04	4.741720e+03	3.573354
std	3.948165e+05	1.008304e+05	1.416882
min	0.000000e+00	1.000000e+00	0.000000
25%	4.450000e+00	1.000000e+00	2.580000
50%	1.500000e+01	5.000000e+00	3.400000
75%	8.850000e+01	3.200000e+01	4.250000
max	1.602000e+07	3.613989e+06	11.250000

In [109]: Bigmac.describe(include=['object'])

Out[109]:

	currency_code	name
count	1938	1938
unique	58	74
top	EUR	Argentina
freq	351	37

In [110]: labelencoder = LabelEncoder()

Bigmac.currency_code= labelencoder.fit_transform(Bigmac.currency_code)

Bigmac.name = labelencoder.fit_transform(Bigmac.name)

In [111]: Bigmac.head(10)

Out[111]:

	currency_code	name	local_price	dollar_ex	dollar_price
0	1	0	2.50	1	2.50
2	5	6	2.95	1	2.95
3	16	7	1.90	1	1.90
5	8	9	1260.00	514	2.45
6	9	10	9.90	8	1.24
7	12	14	54.37	39	1.39
9	15	18	2.56	1	2.56
10	18	25	10.20	7	1.46
11	21	26	339.00	279	1.22
12	22	28	14500.00	7945	1.83

In [112]: import scipy.stats as stats
Bigmac = stats.zscore(Bigmac)
Bigmac = stats.zscore(Bigmac)

In [113]: Bigmac

Out[113]:

	currency_code	name	local_price	dollar_ex	dollar_price
0	-1.526485	-1.653458	-0.040229	-0.047029	-0.757742
2	-1.281433	-1.381295	-0.040227	-0.047029	-0.440061
3	-0.607541	-1.335934	-0.040230	-0.047029	-1.181317
5	-1.097644	-1.245213	-0.037043	-0.041940	-0.793040
6	-1.036381	-1.199853	-0.040210	-0.046959	-1.647248
1941	-1.587748	1.476416	-0.040189	-0.047009	1.713109
1942	1.597927	1.521777	- 0.040222	-0.047029	1.113045
1943	1.659190	1.567137	-0.039589	-0.046632	1.868419
1944	1.781716	1.612498	- 0.040210	-0.046989	-1.110721
1945	1.842979	1.657858	0.134575	0.185263	-0.440061

1938 rows × 5 columns

```
In [114]: x_train=Bigmac.iloc[:,0:4]
    y_train=Bigmac.iloc[:,4]
    x_test=Bigmac.iloc[:,0:4]
    y_test=Bigmac.iloc[:,4]
```

In [115]: x_train

Out[115]:

	currency_code	name	local_price	dollar_ex
0	-1.526485	-1.653458	-0.040229	-0.047029
2	-1.281433	-1.381295	-0.040227	-0.047029
3	-0.607541	-1.335934	-0.040230	-0.047029
5	-1.097644	-1.245213	-0.037043	-0.041940
6	-1.036381	-1.199853	- 0.040210	-0.046959
1941	-1.587748	1.476416	-0.040189	-0.047009
1942	1.597927	1.521777	- 0.040222	-0.047029
1943	1.659190	1.567137	-0.039589	-0.046632
1944	1.781716	1.612498	-0.040210	-0.046989
1945	1.842979	1.657858	0.134575	0.185263

mae1= mean_absolute_error(y_test, y_pred1)

1938 rows × 4 columns

The mean absolute error for Multiple Linear Regression: 0.7441704806317442

print('The mean absolute error for Multiple Linear Regression: ', mae1)

In [120]:

```
In [121]: plt.figure(figsize=(10,6))
    ax1 = sns.distplot(y_test, hist=False, color="r", label="Actual Value")
    sns.distplot(y_pred1, hist=False, color="b", label="Fitted Values", ax=ax1)
```

Out[121]: <AxesSubplot:xlabel='dollar_price', ylabel='Density'>


```
In [123]: plt.figure(figsize=(10,6))
    ax1 = sns.distplot(y_test, hist=False, color="r", label="Actual Value")
    sns.distplot(y_pred1, hist=False, color="b", label="Fitted Values", ax=ax1)
    plt.title('Actual vs Fitted Values for dollar_price')
    plt.xlabel('dollar_price (in dollars)')
    plt.ylabel('Proportion of Bigmac')
    plt.show()
    plt.close()
```



```
In [ ]:
```

```
In [ ]:
```

```
In [124]: rf = RandomForestRegressor()
model=rf.fit(x_train,y_train)
```

The R-square for Random Forest is: 0.9971163449675606

The mean square error of price and predicted value is: 0.0028836550324394064

The mean absolute error of price and predicted value is: 0.020697227814428117

```
In [129]: plt.figure(figsize=(10,6))
    ax1 = sns.distplot(y_test, hist=False, color="r", label="Actual Value")
    sns.distplot(y_pred2, hist=False, color="b", label="Fitted Values", ax=ax1)
```

Out[129]: <AxesSubplot:xlabel='dollar_price', ylabel='Density'>


```
In [132]: plt.figure(figsize=(10,6))
    ax1 = sns.distplot(y_test, hist=False, color="r", label="Actual Value")
    sns.distplot(y_pred1, hist=False, color="b", label="Fitted Values" , ax=ax1)
    plt.title('Actual vs Fitted Values for dollar_price')
    plt.xlabel('dollar_price (in dollars)')
    plt.ylabel('Proportion of Bigmac')
    plt.show()
    plt.close()
```


The mean absolute error of price and predicted value is: 0.7653887100012792

```
In [137]: mse3 = mean_squared_error(y_test, y_pred3)
print('The mean square error of price and predicted value is: ', mse3)
```

```
In [139]: mae = pd.DataFrame(data = scores, columns=['Model', 'MAE Score'])
mae
```

Out[139]:

	Model	MAE Score
0	MLR	0.744170
1	Random Forest	0.020697
2	LASSO	0.765389

```
In [140]: mae.sort_values(by=(['MAE Score']), ascending=False, inplace=True)
    f, axe = plt.subplots(1,1, figsize=(10,7))
    sns.barplot(x = mae['Model'], y=mae['MAE Score'], ax = axe)
    axe.set_xlabel('Mean Absolute Error', size=20)
    axe.set_ylabel('Model', size=20)
    plt.show()
```



```
In [ ]:
```