smarToF-Seat Occupation Detektor

DETECTION

MFASURFMENT

PROCESSING

Der *smar*ToF-Seat Occupation Detector kombiniert die neueste 3D-Time-of-Flight Technologie für die Bilddatenakquisition mit intelligenten Algorithmen für die digitale Echtzeit-Signalverarbeitung in einer

Hardware mit kleinem Formfaktor, die für den Einsatz in herausfordernden Umgebungen gehärtet ist. Oberstes Ziel ist dabei die Kosteneffizienz. Der Detektor ist optimiert für die Vollintegration in die Applikations-Hardware der Kunden.

(Bild links)

Beispiel einer Anwendung für die Detektion der Sitzplatzbesetzung, mit zwei *smar* ToF-Sensoren (jeder mit zwei ToF-Imagers), die eine Gruppe von vier Sitzen in einem Zugabteil überwachen.

Ein Evaluations-Kit mit voller Funktionalität kann zur Verfügung gestellt werden. Einzige Schnittstellen sind ein 24V Stromanschluss und eine serielle Schnittstelle zur Parametrierung und zum Datentransfer von 3D-Konturbildern und / oder Evaluations-/Metadaten wie z.B. "Besetzt" oder "Frei".

Die Evaluations-Algorithmen können applikations-/kundenspezifisch realisiert oder angepasst werden, mit einer eingebetteten Implementierung auf dem integrierten Mikro-Prozessor (ARM Cortex M0+).

Wesentliche Features:

- Höchste Kosteneffizienz optimiert für kostensensible Applikationen
- Kleinster Formfaktor ein oder zwei Imagers in einem miniaturisierten Hardware-Paket
- Immun gegenüber rasch wechselnden Lichtverhältnissen
- Integrierter Multi-Exposure Mode für hohe Dynamik
- Datenschutz und Privatsphäre geschützt keine Bilddaten ausserhalb des Sensors

Mögliche Anwendungen:

- Echtzeit-Detektion von Sitzplatzbesetzung (Zug, Flugzeug, ...)
- Personenzählung
- Präsenzüberwachung von Personen, z.B. in Räumen
- Check auf Leere (z.B. in Liften)
- Einsatz in Bereichen mit höchsten Anforderungen betr. Privatsphäre

smarToF-Sensor Technologie-Plattform

Durch die Kombination der ToF-Technologie mit Bild-Datenverarbeitung direkt auf einem Mikrocontroller in der Sensoreinheit selbst sowie einer speziell angepassten miniaturisierten Optik entsteht ein intelligenter Sensorknoten, der für die Lösung unterschiedlicher Problemstellungen bei der Optimierung und Automation von Prozessen eingesetzt werden kann.

Die noch junge Time-of-Flight (ToF) Technologie erweitert Visionssensoren um die Tiefeninformation. Dabei wird das Objekt bzw. die Szene aktiv mit Infrarotlicht beleuchtet, welches für das menschliche Auge unsichtbar ist. Hierzu sind im Sensor mehrere LEDs integriert. Dieses LED Licht wird mit einer Frequenz von typisch 10 MHz moduliert. Da das vom Objekt reflektierte Licht eine gewisse Distanz zurückgelegt hat, ist es bei der Detektion im Sensor in Bezug auf das ausgesendete Licht um eine Phase $\Delta \phi$ verschoben. Diese Phasenverschiebung $\Delta \phi$ ist direkt proportional zur Entfernung des Objektes. Mittels Lock-in Technologie kann dann $\Delta \phi$ und damit direkt der Abstand des betrachteten Objektes bestimmt werden. Dies für jedes Pixel in der Sensormatrix.

Die ToF-Technologie wird von der Firma ESPROS in Form des System-on-Chip (SoC) epc610 lizensiert. Aber erst durch die Kombination des epc610 SoC mit einem Mikrocontroller für die Datenverarbeitung in Verbindung mit einer hochintegrierten Optik (Objektiv, LED) entsteht ein hoch kompakter, intelligenter und äussert kostengünstiger Sensorknoten.

Durch die Möglichkeit, unterschiedliche Programme zur intelligenten Verarbeitung der vom epc610 SoC gelieferten Bilddaten auf den Mikrocontroller zu laden und so den Sensorknoten anwendungsspezifisch zu konfigurieren, wurde damit eine Sensor Technologie Plattform geschaffen, die flexibel und spezifisch für unterschiedliche Applikationen eingesetzt werden kann und aus welcher somit verschiedene Produkte hervorgehen.

Die erste solche Applikation ist der *smar* ToF-Seat Occupation Detector, weitere Applikationen sind in Planung.

smarToF-Sensor Technical Specifications

Dimensions Evaluation Kit

Customized mounting for various applications

Specifications:

Parameter	Abbr.	Typical value	Unit	Comment
Active pixel matrix of ToF-imager ¹	Nx, Ny	8 x 8	pxl	
Field of view		16.5 x16.5	۰	Full viewing angle
Detection range	Dmax	0.20 – 2.5	m	
Distance resolution		50	mm	
Absolute distance accuracy		+/- 100	mm	
Modulation frequency	fmod	5	MHz	
Maximal framerate	fmax	50	Hz	Minimal exposure time, only transfer of amplitude and distance
Moderate framerate	fwork	15	Hz	Medium exposure time, transfer of amplitude, intensity and distance
Dynamic range		50	dB	In multi-exposure mode (4 frames)
Maximal ambient light @ 2m		10'000	lux	Natural sunlight
Maximal ambient light @ 1m		50'000	lux	Natural sunlight
Illumination wavelength		870	nm	Central wavelength
Optical filters		Optical bandpass (on lens) and lowpass (in cover) filters		
Processor		ARM® Cortex M0+		
Program memory (FLASH)		128	kB	64 kB available for application software
RAM		16	kB	
Supply voltage	V nom	24	V	
Standby current consumption	I standby	34	mA	ToF-camera with 2 sensors, no image acquisition
Maximal mean current consumption	I max	42	mA	Image acquisition with maximal integration time
Peak current consumption	I peak	170	mA	100ns current pulses
Operating temperature		+10 - +40	°C	For the evaluation kit only
		-20 – +65	°C	In case of full integration in 3rd party hardware
Connector		Molex 5 poles		For power and serial interface
Interface ²		RS232, TTL levels		
Baudrate serial interface		57600	baud	

 $^{^1\}mbox{The ToF-imager}$ is epc610 from Espros: http://www.espros.ch.

CC Innovation in Intelligent Multimedia Sensor Networks

Technikumstrasse 21 CH-6048 Horw

www.hslu.ch/iimsn

Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Technik & Architektur CC Innovation in Intelligent Multimedia Sensor Networks

²Alternative interfaces can be provided on request.