第5章 自顶向下语法分析方法

- 第1题: 对文法 G[S] $S \rightarrow a | \land | (T)$ $T \rightarrow T, S | S$
 - (1) 给出(a,(a,a))和(((a,a), \land ,(a)),a)的最左推导。
 - (2) 对文法 G, 进行改写, 然后对每个非终结符写出不带回溯的递归子程序。
 - (3) 经改写后的文法是否是 LL(1)的?给出它的预测分析表。
 - (4) 给出输入串(a,a)#的分析过程,并说明该串是否为 G 的句子。

答案:

- (1) 对(a,(a,a)的最左推导为:
 - S = (T) (T,S)
 - \Rightarrow (S,S)
 - \Rightarrow (a,S)
 - \Rightarrow (a,(T))
 - \Rightarrow (a,(T,S))
 - \implies (a,(S,S))
 - \Rightarrow (a,(a,S))
 - \Rightarrow (a,(a,a))
- → 对(((a,a), △,(a)),a) 的最左推导为:
 - $S \Longrightarrow (T) (T,S)$
 - \Rightarrow (S,S)
 - \Rightarrow ((T),S)
 - \Rightarrow ((T,S),S)
 - \Rightarrow ((T,S,S),S)
 - \Rightarrow ((S,S,S),S)
 - \Rightarrow (((T),S,S),S)
 - \Rightarrow (((T,S),S,S),S)
 - $\Rightarrow (((S,S),S,S),S)$ $\Rightarrow (((a,S),S,S),S)$
 - \Rightarrow (((a,a),S,S),S)
 - \Rightarrow (((a,a), \land ,S),S)
 - \Rightarrow (((a,a), \land ,(T)),S)
 - \Rightarrow (((a,a), \land ,(S)),S)

$$\Rightarrow$$
(((a,a), \wedge ,(a)),S)

$$\Rightarrow$$
(((a,a), \land ,(a)),a)

(2) 改写文法为:

- 0) S→a
- 1) S $\rightarrow \land$
- 2) $S \rightarrow (T)$
- 3) T→S N
- 4) $N \rightarrow$, S N
- 5) N→ε

非终结符	FIRST 集	FOLLOW 集
S	{a,	{#,,,)
T	{a,	{
N	{,,	{

对左部为 N 的产生式可知:

FIRST $(\rightarrow, S N) = \{, \}$

FIRST $(\rightarrow \epsilon) = \{\epsilon\}$

FOLLOW $(N) = \{\}$

由于 SELECT(N \rightarrow , S N) \cap SELECT(N \rightarrow ϵ) ={, } \cap {)}=**Ø**

所以文法是 LL(1)的。 预测分析表

(Predicting Analysis Table)

	a	\wedge	()	,	#
S	\rightarrow	\rightarrow	→ (
T	→S N	→S N	→S N			
N				\rightarrow	→, S N	

也可由预测分析表中无多重入口判定文法是LL(1)的。

栈 (STACK)	当前输入符	剩余输入符	所用产生式
	(CUR_CHAR)	(INOUT_STRING)	(OPERATION)
#S	(a,a)#	S→(T)
#)T(a,a)#	
#)T	(,a)#	T→SN
#)NS		,a)#	S→a
#)Na	a	,	
#)N		a	N→,SN
#)NS,	a)	

第2题: 已知文法G[S]:

 $S \rightarrow aH$

 $H \rightarrow aMd|d$

 $M \quad \to \quad Ab| \; \epsilon$

 $A \rightarrow aM|e$

判断G[S]是否为LL(1)文法,若是,请构造相应的LL(1)预测分析表。

答案:

非终结符	FIRST集	FOLLOW集
S	{ a }	{ # }
Н	{ a,d }	{ # }
M	{ a,e, €}	{ d,b }
A	{ a.e }	{ b }

由于select $(H \to aMd) \cap select (H \to d) = \{a\} \cap \{d\} = \emptyset$ select $(M \to Ab) \cap select (M \to \epsilon) = \{a,e\} \cap \{b,d\} = \emptyset$ select $(A \to aM) \cap select (A \to \epsilon) = \{a\} \cap \{e\} = \emptyset$ 所以该文法是LL(1)文法。

构造相应的LL(1)预测分析表。

	a	d	b	e	#
S	→ aH				
Н	→ aMd	\rightarrow d			
M	\rightarrow Ab	$\rightarrow \epsilon$	$\rightarrow \epsilon$	\rightarrow Ab	
A	\rightarrow aM			\rightarrow e	

第2题:

设有文法 G[A]的产生式集为:

A→BaC|CbB

 $B \rightarrow Ac|c$

 $C \rightarrow Bb|b$

试消除 G[A]的左递归。

答案:

提示:不妨以 $A \times B \times C$ 排序.先将 A 代入 B 中,然后消除 B 中左递归;再将 $A \times B$ 代入 C 中。再消除 C 中左递归。

最后结果为:G[A]:

 $\begin{array}{lll} A {\rightarrow} BaC|CbB & B {\rightarrow} CbBcB'|cB' & B' {\rightarrow} aCcB'| \\ C {\rightarrow} cB'bC'|bC & C' {\rightarrow} bBcB'bC'|\epsilon \end{array}$

4

第4题: 文法G[E]:

 $E \rightarrow Aa|b$

 $A \rightarrow EB$

 $B \rightarrow ab$

- 1.试对G[E]进行改写,并判断改写后的文法是否为LL(1)文法?
- 2.对于一个文法若消除左递归,提取了左公共因子后是否一定为LL(1)文法?

答案:

- 1.文法G[E]隐含有关于E的左递归所以不是LL(1)文法,现进行改写。 第1种改写:
- (1) 用A的产生式右部替换E的产生式右部的A得:
- E→EBa|b
- B→ab
- (2)消除左递归后文法变为:
- E→bN
- N→BaN|ε
- $B\rightarrow ab$
- (3)由相同左部的产生式可知:
- FIRST(BaN) \cap FOLLOW (N) = {a} \cap {#}=Ø

所以该文法是LL(1)文法。

第2种改写:

- (1)用E的产生式右部替换A的产生式右部的E得:
- E→Aa|b
- A→AaBlbB
- B→ab
- (2)消除左递归后文法变为:
- E→Aalb
- A→bBN
- N→aBN|ε
- $B\rightarrow ab$
- (3)由相同左部的产生式可知:
- FIRST(Aa) \cap FIRST (b) = {b} \cap {b}={b} \neq Ø
- FIRST(aBN) \cap FOLLOW (N) = {a} \cap {a}={a} \neq Ø

所以该文法不是LL(1)文法。

2.由本题可以说明一个文法若消除左递归,提取了左公共因子后不一定为LL(1)文法。

第5 题: 对于一个文法若消除了左递归,提取了左公共因子后是否一定为 LL(1)文法?试对下面 文法进行改写,并对改写后的文法进行判断。

G: A→baB|ε

B→Abb|a

答案:

- (1)先改写文法为:
 - 0) A→baB
 - 1) A→ε
 - 2) B→baBbb
 - 3) B→bb
 - 4) B→a

再改写文法为:

- 0) A→baB
- 1) A→ε
- 2) B→bN
- 3) B→a
- 4) N→aBbb
- 5) N→b

	FIRST	FOLLOW
A	{b}	{#}
В	{b,a}	{#,b}
N	{b,a}	{#,b }

预测分析表:

	a	b	#
A		→baB	⇒ ε
В	→a	\rightarrow bN	
N	→aBbb	→b	

由预测分析表中无多重入口判定文法是LL(1)的。