UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

Data:	
Matrícula:	

Avaliação 2º Estágio

1 – Responda o que se pede:

Aluno(a):

a) Identifique as três respostas transitórias que um circuito RLC pode apresentar. Esboce graficamente como a variável observada converge para o seu valor de regime, para cada caso (trace as curvas em um mesmo gráfico). Das três respostas qual a mais rápida; (1,0)

b) As características de dois indutores não lineares são especificadas pelas correspondentes curvas λi (lembre-se $\lambda = Li$) mostradas na figura 1. Trace as características resultantes da associação série e paralelo dos indutores; (2,0)

Figura 1

c) As características de dois capacitores não lineares são especificadas pelas correspondentes curvas QV (lembre-se Q=CV) mostradas na figura 2. Trace as características resultantes da associação série e paralelo dos capacitores; (2,0)

Figura 2

2 – No circuito mostrado na figura 3 a chave comuta entre as posições A e B a intervalos regulares e iguais a L/R. Após um determinado número de ciclos, a corrente se torna periódica e oscila entre os limites I_1 e I_2 , onde I_1 < I_2 . A curva descrita pela corrente entre os deslocamentos de I_1 -> I_2 e I_2 -> I_1 , são segmentos de exponencial, crescente e decrescente, respectivamente. Determine as expressões de I_1 e I_2 , a partir dos valores de R, L e E. (3,0)

- $3-A\ chave\ S_1$ do circuito da figura 4 foi mantida fechada por um longo tempo antes de ser aberta em t=0. Suponha que os parâmetros do circuito são tais que o mesmo é subamortecido. Determine:
- a) A expressão para $v_o(t)$ em função de v_g , α , ω_d , C e R, para t \geq 0; (1,0) b) Determine a expressão de t quando $v_o(t)$ é máxima; (1,0)

