Dependency Parsing

COMP3361 — Week 7

Lingpeng Kong

Department of Computer Science, The University of Hong Kong

Phrase-structure Parsing

Dependency Parsing

Dependency Parsing

Phrase-structure -> Dependency

Phrase-structure -> Dependency

Phrase-structure -> Dependency

One-to-one mapping with head rules.

Possibly many different head rules — Stanford Dependencies, YM Dependencies.

Easy, deterministic.

VP —> NP VBD

NP —> DT NN

. . .

(Collins, 2003; De Marneffe and Manning, 2008; Yamada and Matsumoto, 2003; Johansson and Nugues, 2007)

• • •

Dependency -> Phrase Structure

Dependency Parsing (Graph Based)

arc-factored model

Dependency Parsing (Graph Based)

Chu-Liu/Edmonds' algorithm (maximum spanning tree)

Dependency Parsing (Graph Based)

higher order features in dependency parsing

Shift

Left-arc

Buffer

Shift

Buffer

Stack

Shift

Stack

Left-arc Buffer the l <- saw</pre>

Stack

Right-arc

I <- saw

Stack

Buffer

Shift

Buffer

the <- man

Stack

Dependency Parsing

Dependency Parsing

Graph based:

The decoding algorithm is slow.

Can consider rich features.

Global optimal.

Transitional based:

Fast. You will just need a FFN to make the decisions.

Local optimal, but mostly the performance is good enough.