04-630 Data Structures and Algorithms for Engineers

Lecture 19: Algorithm Design Strategies I

Adopted and Adapted from Material by:

David Vernon: vernon@cmu.edu ; www.vernon.eu

Agenda

- Classes of algorithms
 - Iteration
 - Recursion
 - Brute force
 - Divide and conquer
 - Greedy algorithms
 - Dynamic programming
 - Combinatorial search and backtracking
 - Branch and bound

1. Handle repetitive tasks through iteration. [resource limited situations]

- 1. Handle repetitive tasks through iteration. [resource limited situations]
- 2. Iterate elegantly though recursion. [elegance & simplicity]

- 1. Handle repetitive tasks through iteration. [resource limited situations]
- 2. Iterate elegantly though recursion. [elegance & simplicity]
- 3. Use brute force when you are lazy but powerful. [computationally expensive even for small input sizes]

- 1. Handle repetitive tasks through iteration. [resource limited situations]
- 2. Iterate elegantly though recursion. [elegance & simplicity]
- 3. Use brute force when you are lazy but powerful. [computationally expensive even for small input sizes]
- 4. Test bad options then backtrack. [adds intelligence to brute force]

- 1. Handle repetitive tasks through iteration. [resource limited situations]
- 2. Iterate elegantly though recursion. [elegance & simplicity]
- 3. Use brute force when you are lazy but powerful. [computationally expensive even for small input sizes]
- 4. Test bad options then backtrack. [adds intelligence to brute force]
- 5. Save time with heuristics for a reasonable way out.

- 1. Handle repetitive tasks through iteration. [resource limited situations]
- 2. Iterate elegantly though recursion. [elegance & simplicity]
- 3. Use brute force when you are lazy but powerful. [computationally expensive even for small input sizes]
- 4. Test bad options then backtrack. [adds intelligence to brute force]
- 5. Save time with heuristics for a reasonable way out.
- 6. Divide and conquer your toughest opponents.

- 1. Handle repetitive tasks through iteration. [resource limited situations]
- 2. Iterate elegantly though recursion. [elegance & simplicity]
- 3. Use brute force when you are lazy but powerful. [computationally expensive even for small input sizes]
- 4. Test bad options then backtrack. [adds intelligence to brute force]
- 5. Save time with heuristics for a reasonable way out.
- 6. Divide and conquer your toughest opponents.
- 7. Identify old issues dynamically not to waste energy again.

- 1. Handle repetitive tasks through iteration. [resource limited situations]
- 2. Iterate elegantly though recursion. [elegance & simplicity]
- 3. Use brute force when you are lazy but powerful. [computationally expensive even for small input sizes]
- 4. Test bad options then backtrack. [adds intelligence to brute force]
- 5. Save time with heuristics for a reasonable way out.
- 6. Divide and conquer your toughest opponents.
- 7. Identify old issues dynamically not to waste energy again.
- 8. Bound your problem so the solution doesn't escape.
- F. F. Wladston, Computer Science Distilled: Learn the Art of Solving Computational Problems. Code Energy LLC (2017)

- Handle repetitive tasks through iteration. [resource limited situations]
- Iterate elegantly though recursion. [elegance & simplicity]
- 3. Use brute force when you are lazy but powerful. [computationally expensive even for small input sizes]
- 4. Test bad options then backtrack. [adds intelligence to brute force]
- Save time with heuristics for a reasonable way out.
- 6. Divide and conquer your toughest opponents.
- 7. Identify old issues dynamically not to waste energy again.
- 8. Bound your problem so the solution doesn't escape.
 - F. F. Wladston, Computer Science Distilled: Learn the Art of Solving Computational Problems. Code Energy LLC (2017)

Iteration & Recursion

Iteration: Uses loops to repeat a process until a condition is met.

```
factorialIteration(int n):
    int result=1;
    for i=1 to n:
        result=result*i
    return result
```

- Recursion: achieves repetition through function calls.
 - Uses a base case to ensure the function returns.

```
factorialRecursion(int n):

if n=0 or n=1 then

return 1 #base case

return n*factorialRecursion(n-1)
```

Agenda

- Classes of algorithms
 - Brute force
 - Divide and conquer
 - Greedy algorithms
 - Dynamic programming
 - Combinatorial search and backtracking
 - Branch and bound

Brute Force (Complete or Exhaustive Search)

- Brute force is a straightforward approach to solve a problem based on a simple formulation of problem
- Often without any deep analysis of the problem
- Perhaps the easiest approach to apply and is useful for solving small-size instances of a problem
- May result in *naïve solutions* with *poor performance*

Some examples of brute force algorithms are:

- Computing a^n (a > 0, n a non-negative integer) by repetitive multiplication: $a \times a \times ... \times a$
 - For a more efficient approach, see https://en.wikipedia.org/wiki/Exponentiation_by_squaring
- Computing n! by repetitive multiplication: $n \times n-1 \times n-2$, ...
 - For more efficient approaches, see http://www.luschny.de/math/factorial/FastFactorialFunctions.htm
- Sequential (linear) search
- Selection sort, Bubble sort

Maximum sub-array problem / Grenander's Problem

- Given a sequence of integers i_1 , i_2 , ..., i_n , find the **sub-sequence (a contiguous sub-array)** with the maximum sum
 - If all numbers are negative the result is 0 (Why?)
- Examples:

Maximum subarray problem: brute force solution $O(n^3)$

```
int grenanderBF(int a[], int n) {
   int maxSum = 0;
   for (int i = 0; i < n; i++) {
      for (int j = i; j < n; j++) {
         int thisSum = 0;
         for (int k = i; k \le j; k++) {
             thisSum += a[ k ];
         if (thisSum > maxSum) {
             maxSum = thisSum;
   return maxSum;
```


Maximum sub-array problem

- Divide and Conquer algorithm $O(n \log n)$
- Kadane's algorithms O(n) ... dynamic programming

Agenda

- Classes of algorithms
 - Brute force
 - Divide and conquer
 - Greedy algorithms
 - Dynamic programming
 - Combinatorial search and backtracking
 - Branch and bound

- Divide-and conquer (D&Q)
 - Given an instance of the problem
 - Divide this into smaller sub-instances (often two)
 - Independently solve each of the sub-instances
 - Combine the sub-instance solutions to yield a solution for the original instance
- With the D&Q method, the size of the problem instance is reduced by a factor (e.g. half the input size)

```
// Generic Divide and Conquer Algorithm
divideAndConquer(Problem p) {
  if (p is simple or small enough) {
     return simpleAlgorithm(p);
  } else {
     divide p in smaller instances p_1, p_2, ..., p_n
     Solution solutions[n];
     for (int i = 0; i < n; i++) {
        solutions[i] = divideAndConquer(p;);
     return combine (solutions);
```

- Often yield a recursive formulation
- Examples of D&Q algorithms
 - Quicksort algorithm
 - Mergesort algorithm
 - Fast Fourier Transform

Mergesort

UNSORTEDSEQUENCE

UNSORTED					SEQUENCE			
UNSO		RTED			SEQU		ENCE	
UN	SO	RT	ED		SE	QU	EN	CE
NU	OS	RT	DE		ES	QU	EN	CE
NOSU DERT				EQSU		CEEN		
DENORSTU					CEEENQSU			

CDEEEENNOQRSSTUU

```
void mergesort(Item a[], int I, int r) {
    if (1>=r) {
                            Already
         return;
                            sorted?
    } else {
                                       Divide the list into
        int m = (r + I) / 2;
                                      two equal parts
         mergesort(a, l, m);
                                        Sort the two
         mergesort(a, m+1, r);
                                        halves
         merge(a, l, m, r);
                                        recursively
             Merge the sorted halves
             into a sorted whole
void mergesort(Item a[], int size) {
    mergesort(a, 0, size-1);
```

```
int grenanderDQ(int a[], int I, int h) {
                                                                               Solve the sub-problem
     if (l > h) return 0;
                                                        sum = 0;
     if (I = h) return max(0, a[I]);
                                                        int maxRight = 0;
                                                        for (int i = m + 1; i \le h; i++) {
     int m = (l + h) / 2;
                                  Divide the
     int sum = 0;
                                                            sum += a[i];
                                  problem
     int maxLeft = 0;
                                                            maxRight = max(maxRight, sum);
     for (int i = m; i >= 1; i--) {
         sum += a[i];
                                                        int maxL = grenanderDQ(a, l, m);
         maxLeft = max(maxLeft, sum);
                                                        int maxR = grenanderDQ(a, m+1, h);
                                                        int maxC = maxLeft + maxRight;
                                                        return max(maxC, max(maxL, maxR));
                                 Solve the sub-
                                 problems
Solve the sub-
problem
                                                                 Combine the
                                                                 solutions
```

Agenda

Classes of algorithms

- Brute force
- Divide and conquer
- Greedy algorithms
- Dynamic programming
- Combinatorial search and backtracking
- Branch and bound

Greedy Algorithms

- Try to find solutions to problems step-by-step
 - A partial solution is incrementally expanded towards a complete solution
 - In each step, there are several ways to expand the partial solution
 - The best alternative for the moment is chosen, the others are discarded
- At each step the choice must be locally optimal this is the central point of this technique

Greedy Algorithms

- Examples of problems that can be solved using a greedy algorithm:
 - Finding the minimum spanning tree of a graph (Prim's algorithm)
 - Finding the shortest distance in a graph (Dijkstra's algorithm)
 - Using Huffman trees for optimal encoding of information
 - The Knapsack problem

Agenda

Classes of algorithms

- Brute force
- Divide and conquer
- Greedy algorithms
- Dynamic programming
- Combinatorial search and backtracking
- Branch and bound

- Dynamic programming is similar to D&Q
 - Divides the original problem into smaller sub-problems
- Sometimes it is hard to know beforehand which sub-problems are needed to be solved in order to solve the original problem
- Dynamic programming solves a large number of sub-problems
- ... and uses some of the sub-solutions to form a solution to the original problem

- In an optimal sequence of choices, actions or decisions for each sub-sequence must also be optimal:
 - An optimal solution to a problem is a combination of optimal solutions to some of its sub-problems
 - Not all optimization problems adhere to this principle

- One disadvantage of using D&Q is that the process of recursively solving separate sub-instances can result in the same computations being performed repeatedly
 - A condition called overlapping subproblems.
- The idea behind dynamic programming is to avoid calculating the same quantity twice, usually by maintaining a table of sub-instance results

- The same sub-problems may reappear
- To avoid solving the same sub-problem more than once, sub-results are saved in a data structure that is updated dynamically
- Sometimes the result structure (or parts of it) may be computed beforehand
- Strategy:
 - reuse partial calculations (a process called memoization).
 - memoization: an optimization technique that stores the results of expensive function calls and returns the cached result when the same inputs occur again.
 - Speeds up an algorithm.

There are three steps involved in solving a problem by dynamic programming:

- 1. Formulate the answer as a recurrence relation or recursive algorithm
- 2. Show that the number of different parameter values taken on by your recurrence is bounded by a (hopefully small) polynomial---storage reasons.
- 3. Specify an order of evaluation for the recurrence so the partial results you need are always available when you need them

```
/* fibonacci by recursion O(1.618^n) time complexity */
long fib r(int n) {
   if (n == 0)
      return(0);
   else
      if (n == 1)
          return(1);
      else
          return(fib r(n-1) + fib r(n-2));
fib r(4) \rightarrow fib(3) + fib(2)
          \rightarrow fib(2) + fib(1) + fib(2)
          \rightarrow fib(1) + fib(0) + fib(1) + fib(2)
          \rightarrow fib(1) + fib(0) + fib(1) + fib(1) + fib(0)
```

Dynamic Programming: setting(Fibonacci by recursion)

Dynamic Programming: Fibonacci with memoization

- #data structure for memoization
- set m_fib to first two Fibonacci numbers #0 and 1
- function fibonacci(n):
 - if n not in m_fib then #this is how the computation speed is boosted
 - #performs recursion and memoization---caching
 - m_fib[n]=fibonacci(n-1)+fibonacci(n-2)
 - return m_fib[n]

```
* /
#define MAXN 45 /* largest interesting n
                                                                 * /
#define UNKNOWN -1 /* contents denote an empty cell
long f[MAXN+1]; /* array for caching computed fib values
                                                                 * /
/* fibonacci by caching: O(n) storage & O(n) time
                                                                 * /
long fib c(int n) {
  if (f[n] == UNKNOWN)
     f[n] = fib c(n-1) + fib c(n-2);
  return(f[n]);
long fib c driver(int n) {
  int i; /* counter */
  f[0] = 0;
  f[1] = 1;
   for (i=2; i<=n; i++) //Careful with array indexing---<n or <=n?
     f[i] = UNKNOWN;
  return(fib c(n)); //n or n-1?
```

Dynamic Programming: recursive tree

Notice that we only need to perform *one computation* for F(4), F(3), and F(2). This is evident from what appears like a DFS expansion.

Dynamic Programming: Compare with classical Recursion

Notice that we need to perform:

- two computations for F(4),
- three for F(3), and
- five for F(2).

Dynamic programming: Fibonacci- caching & iteration

- #data structure for memoization
- function fibonacci(n):
 - set m_fib to first two Fibonacci numbers #0 and 1
 - for i=2 to n
 - #performs memoization---caching
 - m_fib[n]=m_fib[n-1]+m_fib[n-2]
 - return m_fib[n]

```
/* fibonacci by dynamic programming: cache & no recursion
                                                                       * /
/* NB: need correct order of evaluation in the recurrence relation
                                                                       * /
                                                                       */
/* O(n) storage & O(n) time
long fib dp(int n) {
   int i; /* counter */
   long f[MAXN+1]; /* array to cache computed fib values */
   f[0] = 0;
   f[1] = 1;
   for (i=2; i<=n; i++)
      f[i] = f[i-1] + f[i-2];
   return(f[n]);//array indexing considerations....
```

```
/* fibonacci by dynamic programming: minimal cache & no recursion
                                                                        * /
/* O(1) storage & O(n) time
long fib ultimate(int n) {
  int i;
                      /* counter */
  long back2=0, back1=1; /* last two values of f[n] */
              /* placeholder for sum */
  long next;
  if (n == 0) return (0);
  for (i=2; i<n; i++) {
     next = back1+back2;
     back2 = back1;
     back1 = next;
  return(back1+back2); //covers n==1 as well
```

Summary

- Several strategies exist.
- Choice of strategy should be guided by:
 - available resources (CPU, memory etc.),
 - problem size, and
 - time complexity.
- Ultimate goal is to develop optimal solutions.

Next

- Classes of algorithms
 - Brute force
 - Divide and conquer
 - Greedy algorithms
 - Dynamic programming
 - Combinatorial search and backtracking
 - Branch and bound