Búsqueda por Similitud

Fecha: 16/05/2019

Profesor Heider Sanchez

El objetivo del laboratorio es analizar el comportamiento de la búsqueda por rango y la búsqueda de los k vecinos más cercano sobre un conjunto de vectores característicos.

Se toma como referencia la colección de imágenes de flores llamada *Iris* en donde cada imagen es representado por un vector característico de 4 dimensiones que recoge información del sépalo y del pétalo. Además, las imágenes están agrupadas en tres categorías: *versicolor, setosa y virginica*.

P1. Búsqueda por Rango

Implementar en cualquier lenguaje de programación el algoritmo lineal de búsqueda por rango, el cual recibe como parámetro el objeto de consulta y un radio de cobertura. Luego usando la distancia Euclidiana (ED) se retorna todos los elementos que son cubiertos por el radio.

```
Algorithm RangeSearch(Q, r)

1. result = []
2. for all objects C<sub>i</sub> in the collection
3. dist = ED(Q, C<sub>i</sub>)
4. if dist < r
5. append(result, C<sub>i</sub>)
6. endif
7. endfor
8. return result
```

- Para seleccionar el radio se debe realizar un análisis previo de la distribución de las distancias entre dos los elementos de la colección. Se selecciona tres valores de radio: r1 < r2 < r3.
- Luego realizar la búsqueda de tres objetos de consulta para cada radio. Nota: el objeto de consulta debe ser retirado de la colección antes de aplicar la búsqueda.
- Para evaluar la efectividad del resultado se debe usar la medida de Precisión ¿Cuántos de los objetos recuperados pertenecen a la misma categoría de la consulta?:

$$PR = \frac{\#ObjetosRelevantesRecuperados}{\#ObjetosRecuperados}$$

A continuación, se proporciona el cuadro que debe ser llenado por el alumno.

PR	Q_{15}	Q_{82}	Q_{121}
r1 =			
r2 =			
r3 =			

Fecha: 16/05/2019

P2. Búsqueda KNN

Usando los mismos objetos de consulta del ejercicio anterior, implementar y aplicar el algoritmo lineal de búsqueda de los k vecinos más cercano (KNN) variando el k entre {2, 4, 8, 16, 32}.

Algorithm KnnSearch(Q, k)				
1.	result = []			
2.	for all objects C _i in the collection			
3.	$dist = \mathbf{ED}(Q, C_i)$			
4.	append(result, $\{C_i, dist\}$)			
5.	5. endfor			
6.	orderByDist(result)			
7.	return result[1:k]			

PR	Q_{15}	Q_{82}	Q_{121}
k = 2			
k = 4			
k = 8			
k = 16			
k = 32			

Preguntas:

- 1- ¿Cuál de los dos métodos de búsqueda es más fácil de implementar si tengo todos los parámetros definidos? ¿Y cuál es más eficiente?
- 2- ¿Cuál de los dos métodos de búsqueda usted usaría en un ambiente real de recuperación de la información? Sustente su respuesta.