Логические операции со словами

19

Обзор главы

В разделе	Вы найдете	на стр.
19.1	Обзор	19–2
19.2	Логические операции со словами (16 бит)	19–4
19.3	Логические операции со словами (32 бита)	19–7

19.1. Обзор

Описание

С помощью логических операций со словами поразрядно соединяются пары слов (16 бит) или двойных слов (32 бита) в соответствии с правилами булевых логических операций. Каждое из двух слов или двойных слов должно находиться в одном из двух аккумуляторов.

Управление аккумуляторами При логических операциях со словами содержимое младшего слова АККU 2 соединяется с содержимым младшего слова АККИ 1. Результат логической операции сохраняется в младшем слове АККИ 1, причем старое содержимое

заменяется.

"0".

При логических операциях с двойными словами содержимое АККU 2 соединяется с содержимым АККИ 1. Результат логической операции сохраняется в АККИ 1, причем старое содержимое заменяется.

Влияние на биты слова состояния

Если результат логической операции равен "0", то бит А1 слова состояния сбрасывается в "0". Если результат логической операции не равен "0", то бит А1 слова состояния устанавливается в "1". В любом случае бита А0 и OV в слове состояния сбрасываются в

Какие операции имеются в Вашем распоряжении?

В Вашем распоряжении имеются следующие возможности для логических операций со словами:

Мнемоника	Операция	Значение
UW	Und Wort (16 бит)	Соединяет поразрядно два слова в
	(поразрядное логическое И	соответствии с таблицей
	для 16-битных слов)	истинности для И
OW	Oder Wort (16 бит)	Соединяет поразрядно два слова в
	(поразрядное логическое	соответствии с таблицей
	ИЛИ для 16-битных слов)	истинности для ИЛИ
XOW	Exklusiv Oder Wort (16	Соединяет поразрядно два слова в
	бит) (поразрядное	соответствии с таблицей
	исключающее ИЛИ для	истинности для исключающего
	16-битных слов)	ИЛИ
UD	Und Doppelwort (32 бита)	Соединяет поразрядно два двойных
	(поразрядное логическое И	слова в соответствии с таблицей
	для двойных слов)	истинности для И
OD	Oder Doppelwort (32 бита)	Соединяет поразрядно два двойных
	(поразрядное логическое	слова в соответствии с таблицей
	ИЛИ для двойных слов)	истинности для ИЛИ
XOD	Exklusiv-Oder Doppelwort	Соединяет поразрядно два двойных
	(32 бита) (поразрядное	слова в соответствии с таблицей
	исключающее ИЛИ для	истинности для исключающего
	двойных слов)	ИЛИ

Константы как операнды 16-битной константой. Операции UW, OW или XOW могут использовать в качестве операндов 16-битные константы. Операция соединяет содержимое младшего слова АККИ 1 с

Операции UD, OD или XOD могут использовать в качестве операндов 32-битные константы.

19.2. Логические операции со словами (16 бит)

Описание

Операции UW, OW, XOW - поразрядные логическое И, ИЛИ и исключающее ИЛИ с 16-битными словами соединяют поразрядно пары слов (16 бит) в соответствии правилами булевых логических операций.

Мнемоника	Операция	VKE перед выполнением	Операнд	Результат в VKE
UW	UND WORT	0	0	0
	(поразрядное И	0	1	0
	со словами)	1	0	0
		1	1	1
OW	ODER WORT	0	0	0
	(поразрядное	0	1	1
	ИЛИ со	1	0	1
	словами)	1	1	1
XOW	EXKLUSIV	0	0	0
	ODER WORT	0	1	1
	(поразрядное	1	0	1
	исключающее	1	1	0
	ИЛИ со			
	словами)			

Связь с У операций, работающих с 16-битными словами, содержимое младшего аккумуляторами слова АККU 2 соединяется с содержимым младшего слова АККU 1. Результат логической операции сохраняется в младшем слове АККU 1, причем старое содержимое заменяется. Содержимое старшего слова АККU 1 и оба слова АККU 2 не меняются (см. рис. 19–1).

Рис. 19-1. Соединение содержимого младших слов АККИ 1 и 2

Пример операции UW

Следующий пример программы содержит операцию UW. На рис. 19–2 показано, как эта операция работает.

AWL	Объяснение
L MW10	Загрузить содержимое меркерного слова MW10 в АККU 1.
L MW20	Загрузить содержимое меркерного слова MW20 в АККU 1.
	Старое содержимое AKKU 1 смещается в AKKU 2.
UW	Содержимое младшего слова АККИ 2 поразрядно соединяется с содержимым
	младшего слова АККU 1 в соответствии с таблицей истинности для И. Результат
	сохраняется в младшем слове АККИ 1.
T MW24	Передать содержимое АККU 1 в меркерное слово MW24.

15	8 7	0
MW10 0 1 1 0	0 1 0 1 1 1 1 0	1 0 1 0
	<u> </u>	
MW20 1 0 1 0	1 0 1 0 0 1 0 1	0 1 1 1
	■ Поразрядное И	
MW24 0 0 1 0	0 0 0 0 0 1 0 0	0 0 1 0

Рис. 19-2. Логическое соединение двух слов с помощью операции UW

Логическое соединение аккумулятора и константы

Операции UW, OW или XOW могут использовать в качестве операндов 16-битные константы. Операция соединяет содержимое младшего слова AKKU 1 с 16-битной константой, указанной в команде. Результат операции сохраняется в младшем слове AKKU 1. AKKU 2 и старшее слово AKKU 1 не меняются (см. рис. 19–3).

Рис. 19-3. Логическое соединение младшего слова АККU 1 с 16-битной константой

Пример операции UW с константой Следующий пример программы содержит операцию UW, выполняющую соединение с указанной в команде 16-битной константой. На рис. 19–4 показано,

как эта операция работает.

AWL	Объяснение
L MW10	Загрузить содержимое меркерного слова MW10 в AKKU 1.
UW 2#1010_1010_0101_0101	Содержимое младшего слова АККU 1 поразрядно соединяется в соответствии с таблицей истинности для И с константой 1010_1010_0101_0101. Результат сохраняется в младшем слове АККU 1.
T MW24	Передать содержимое АККU 1 в меркерное слово MW24.

	15							8	7							0
MW10	0	1	1	0	0	1	0	1	1	1	1	0	1	0	1	0
Значение в команде	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1
UW					1	Пој	разр	ядно	е И							
MW24	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0

Рис. 19-4. Операция UW с 16-битной константой

19.3. Логические операции со словами (32 бита)

Описание

Операции UD, OD, XOD - поразрядные логическое И, ИЛИ и исключающее ИЛИ с двойными словами соединяют поразрядно пары слов (32 бита) в соответствии правилами булевых логических операций.

Мнемоника	Операция	VKE перед исполнением	Операнд	Результат в VKE
UD	UND	0	0	0
	DOPPELWORT	0	1	0
	(поразрядное И	1	0	0
	с двойными словами)	1	1	1
OD	ODER	0	0	0
	DOPPELWORT	0	1	1
	(поразрядное	1	0	1
	ИЛИ с	1	1	1
	двойными словами)			
XOD	EXKLUSIV	0	0	0
	ODER	0	1	1
	DOPPELWORT	1	0	1
	(поразрядное	1	1	0
	исключающее			
	ИЛИ с			
	двойными			
	словами)			

Связь с аккумуляторами

У операций, работающих с двойными словами, содержимое AKKU 2 соединяется с содержимым AKKU 1. Результат логической операции сохраняется в AKKU 1, причем старое содержимое заменяется. Содержимое AKKU

2 не меняется (см. рис. 19-5).

Рис. 19-5. Соединение содержимого АККИ 2 и 1

Пример операции UD

Следующий пример программы содержит операцию UD. На рис. 19–6 показано, как эта операция работает.

AWL	Объяснение
L MD10	Загрузить содержимое двойного меркерного слова MD10 в AKKU 1.
L MD20	Загрузить содержимое двойного меркерного слова MD20 в AKKU 1.
	Старое содержимое АККИ 1 сдвигается в АККИ 2.
UD	Содержимое АККU 2 поразрядно соединяется с содержимым АККU 1 в соответствии с таблицей истинности для И. Результат сохраняется в АККU 1.
	Передать содержимое АККU 1 в двойное меркерное слово MD24.
T MD24	

Рис. 19-6. Операция UD

Логическое соединение аккумулятора и константы

Операции UD, OD или XOD могут использовать в качестве операндов 32-битные константы. Операция соединяет содержимое AKKU 1 с 32-битной константой, указанной в команде. Результат операции сохраняется в AKKU 1. AKKU 2 не меняется (см. рис. 19–7).

Рис. 19-7. Логическое соединение АККU 1 с 32-битной константой

Пример операции UD с константой

как эта операция работает.

Следующий пример программы содержит операцию UD, выполняющую

соединение с указанной в команде 32-битной константой. На рис. 19-8 показано,

истинности для И с константой DW#16#AAAA_5555. Результат сохраняется в

AWL Объяснение

L MD10 Загрузить содержимое двойного меркерного слова MD10 в АККИ 1.

UD DW#16#AAAA 5555 Содержимое АККИ 1 поразрядно логически соединяется в соответствии с таблицей

АККИ 1. Т MD24 передать содержимое АККИ 1 в двойное меркерное слово MD24.

Рис. 19-8. Операция UD с 32-битной константой