Detection of Hallucinations in Multimodal Models Based on Internal Representations

Kseniia Petrushina

Moscow Institute of Physics and Technology, Skolkovo Institute of Science and Technology

Scientific supervisor: Dr. Alexander Panchenko

2024

Purpose of the study

Problem

As Al-generated images become more convincing, distinguishing realism from fiction is increasingly challenging.

Goal

Develop quantifiable realism measure to detect contextual and commonsense inconsistencies in visual content.

Tasks

- 1. Explore existing approaches in detecting image manipulation and realism.
- 2. Develop a method for obtaining reality score using language model reasoning.
- 3. Validate the method on a dataset of pairs of real and weird images.
- 4. Analyze the explanation of the weirdness of the images.

Problem Statement

Develop a **reality-check function** $f_{\text{reality}}: \mathbb{R}^{n \times n} \to \mathbb{R}$, which assigns a *reality score* to images such that:

- $f_{\text{reality}}(\mathbf{x}_r) > f_{\text{reality}}(\mathbf{x}_w)$ for **real** images \mathbf{x}_r and **weird** images \mathbf{x}_w , with high probability.
- ▶ Given a threshold τ , the function f_{reality} can be used to classify images as:

Real:
$$f_{\text{reality}}(\mathbf{x}) \ge \tau$$
, Weird: $f_{\text{reality}}(\mathbf{x}) < \tau$.

Assumption: We are provided two datasets:

$$\mathcal{D}_{r} = \{\boldsymbol{x}_{r}^{i}\}_{i=1}^{N}, \quad \mathcal{D}_{w} = \{\boldsymbol{x}_{w}^{i}\}_{i=1}^{N},$$

where $\mathbf{x}_{r}^{i}, \mathbf{x}_{w}^{i} \in \mathbb{R}^{n \times n}$.

Existing methods

1. Probability

Realistic objects have high probability under distribution P.

2. Adversarial losses f-divergence between densities p, q

$$D_f[q||p] \geq \mathbb{E}_q[T(\mathbf{x})] - \mathbb{E}_p[f^*(T(\mathbf{x}))]$$

Real-valued function T acts as a *critic* and produces larger values for samples from q and smaller for samples from p.

3. **Maximum mean discrepancy** Given two sets of iid examples \mathbf{x}^M , $\mathbf{\hat{x}}^N$

$$MMD^{2}(\mathbf{x}^{M}, \hat{\mathbf{x}}^{N}) = \left\| \frac{1}{M} \sum_{m} \Phi(x_{m}) - \frac{1}{N} \sum_{n} \Phi(\hat{x}_{n}) \right\|^{2}$$

 Φ is high dimensional feature space.

Base method

1. Extracting atomic facts

Using multi-modal model $f_{\mathsf{cap}}: \mathbb{R}^{n \times n} \to \mathrm{T}^{m \times L}$ we obtain m sequences of language tokens of length L, which describe the details about the image:

$$f_{\sf cap}({f x}) = F_{\sf A} = \{[t_1^i,\ldots,t_L^i] \mid i \in \overline{1,m}\}$$

2. Pairwise natural language inference

For each ordered pair of facts $(f_i, f_j) \in F_A \times F_A$ we calculate entailment score via $f_{nli}: T^L \times T^L \to [-1, 1]$.

3. Aggregating pairwise scores

We form a set of sums for reordered facts

$$S_{\mathsf{nli}} = \left\{ s_{\mathsf{nli}}(f_i, f_j) + s_{\mathsf{nli}}(f_j, f_i) \mid i, j \in \{1, \dots, N\}, \ i \neq j \right\}$$

Final score is calculated using aggregation (min, abs max, clustering).

Proposed method

2. Obtaining internal representations

For fact f_i we compute internal representations using text encoder $f_{\text{enc}}: \mathbf{T}^L \to \mathbb{R}^d$.

$$X = f_{\mathsf{enc}}(F_{\mathsf{A}}) \in \mathbb{R}^{m \times d}$$

3. Attention-pooling layer Learnable fixed vector q_{cls} instead of the input X.

$$egin{aligned} Q_{cls} &= q_{cls} W^Q \ f_{ ext{att}}(X) &= \operatorname{softmax}\left(rac{Q_{cls} K^T}{\sqrt{d_k}}
ight) V, \end{aligned}$$

where $K = XW^K$, $V = XW^V$.

Proposed method

Resulting function

The final formula for base method is

$$f_{\mathsf{base}} = f_{\mathsf{agg}} \circ f_{\mathsf{nli}} \circ f_{\mathsf{cap}}$$
 $f_{\mathsf{reality}} = f_{\mathsf{att}} \circ f_{\mathsf{enc}} \circ f_{\mathsf{cap}}$

Optimization objective

$$\mathcal{L} = \frac{1}{2N} \sum_{i=1}^{N} \left[\ell(0, f_{\mathsf{reality}}(\mathbf{x}_{\mathsf{r}}^{i})) + \ell(1, f_{\mathsf{reality}}(\mathbf{x}_{\mathsf{w}}^{i})) \right] \rightarrow \min_{W^{Q}, W^{K}, W^{V}, q_{\mathsf{cls}}},$$

where

$$\ell(y, \hat{y}) = -[y \log(\sigma(-\hat{y})) + (1 - y) \log(1 - \sigma(-\hat{y}))]$$

Hypothesis

Correlation between resulting reality scores $R = \{f_{reality}(\mathbf{x})\}$ and presence of hallucinations in generated facts F_A is statistically significant on significance level 0.05.

Computational experiments

Data

Figure: Examples of real and weird images.

Metric

$$\mathsf{Accuracy} = \frac{1}{2N} \sum_{i=1}^{N} \left[\mathbb{I}[f_{\mathsf{reality}}(\mathbf{x}_r^i) \geq \tau] + \mathbb{I}[f_{\mathsf{reality}}(\mathbf{x}_w^i) < \tau] \right]$$

Model	#	Mode	Acc ↑
BLIP2 FlanT5-XL	3.94B (188M)	ft	60.00
BLIP2 FlanT5-XXL	12.4B (188M)	ft	73.00
Attention-pooling	7.9B (2K)	ft	73.54
LLaVA 1.6 Mistral 7B	7.57B	zs	52.45
LLaVA 1.6 Vicuna 13B	13.4B	ZS	56.37
InstructBLIP	7B	ZS	61.27
InstructBLIP	13B	ZS	<u>62.25</u>
Base method (NLI w/ clust agg)	7.9B	ZS	72.55

Table: Accuracy of different approaches on the WHOOPS! benchmark.

Figure: Reality scores for the whole dataset. p-value= 10^{-9} for Kolmogorov–Smirnov test.

Analysis

Measure	Value
$\mathbb{P}(weird \mid digital)$	0.76
$\mathbb{P}(weird \mid hallucination)$	0.81
$\mathbb{P}(weird \mid hallucination \ \& \ digital)$	0.93

Table: The conditional probability of model prediction being weird given the occurrence of the hallucination or the marker from the corresponding set of words.

 χ^2 test for contingency table analysis

		панистацоп		
		No	Yes	Total
Model prediction	Normal	78	10	88
	Weird	74	42	116
	Total	152	52	204

 ϕ -coefficient = 0.27, p-value= 10^{-3}

Conclusion

- Explored existing approaches in detecting image realism.
- Developed new method of quantifying image realism.
- Computational experiments on detecting weird images with different configurations.
- Hypotheses about properties of the reality-check function confirmed.
- Article submitted to The 39th Annual AAAI Conference on Artificial Intelligence.

Contribution: Developed research idea; conducted experiments with NLI method, linear probing, baseline models; analyzed obtained results and emerging phenomena.

Future work:

- Check transferability to other datasets.
- Conduct experiments on the dispersion of methods.

Literature

Lucas Theis. 2024. What makes an image realistic?.
 Proceedings of the 41st International Conference on Machine
 Learning.
 URL:

https://proceedings.mlr.press/v235/theis24a.html

- Sewon Min et al. 2023. FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation. Association for Computational Linguistics. URL: https://aclanthology.org/2023.emnlp-main.741
- 3. Nitzan Bitton-Guetta et al. 2023. Breaking Common Sense: WHOOPS! A Vision-and-Language Benchmark of Synthetic and Compositional Images. In IEEE/CVF International Conference on Computer Vision.

URL: https://openaccess.thecvf.com/content/
ICCV2023/papers/Bitton-Guetta_Breaking_Common_
Sense_WHOOPS_A_Vision-and-Language_Benchmark_of_
Synthetic_and_ICCV_2023_paper.pdf