Section 4.6B Overview and To-Do List

In Example 2 of Section 4.3 we saw that if we had an independent set of *two* non-parallel vectors in R^3 , the vectors in the set spanned a plane, and did not span R^3 itself which has a standard basis of *three* vectors. In Thm 4.4.3 of Section 4.4 we found that if we have a set S of r vectors in R^n where r > n, \mathbf{n} = the number of vectors in the standard basis, the set S must be dependent.

We have similar results for an arbitrary finite-dimensional vector space as shown in the following theorem.

Theorem 1. Suppose V has a basis $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ with n vectors in it.

- (a) If $S \subseteq V$ and S has **more than** n vectors in it, S is a **dependent** set.
- (b) If $S \subseteq V$ and S contains **fewer than n** vectors, S does not span V.

To make use of this, it helps to know the standard bases for the vector spaces found in the last section.

Example of (a) above. The set $S = \{x, x^2 + 2x - 1, 2x - 5, 3x^2 - x + 9\}$ in P_2 is dependent since S has 4 vectors in it while the standard basis for P_2 has three vectors.

Example of (b) above. The set
$$S = \left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 5 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 7 \\ -2 & -5 \end{bmatrix} \right\}$$
 will not span M_{22} since S only contains S

vectors while the standard basis for M_{22} contains 4 matrices. (The standard basis for M_{22} is similar to the one for M_{23} which we developed in the last overview.)

From Theorem 1, it follows that we have

Theorem 2. All bases for a single finite-dimensional vector space V have the same number of vectors. This common number is called the **dimension** of the vector space and is denoted $\dim(V)$.

Dimension Examples. $\dim(R^n) = n$, $\dim(P_n) = n+1$, $\dim(M_{23}) = 6$

Sometimes we have a set $S \subseteq V$ that is too big to be a basis for V (so S is dependent) or too small (S will not span). And, we would like to modify S to create a basis by dropping out some vectors or by adding some. The following theorem indicates how we might do this by adding/deleting vectors one by one.

Theorem 3. The Plus/Minus Theorem. Let S be a nonempty finite set of vectors in a vector space V.

- (a) If S is a linearly independent set, and if \vec{v} is a vector in V that is outside of span(S), then $S \cup (\vec{v})$ is still linearly independent.
- (b) If \vec{v} is a vector in S that is expressible as a linear combination of other vectors in S, then $S (\vec{v})$, i.e. the set S with the vector \vec{v} removed, then $S (\vec{v})$ spans the same space as does S.

See **Example 4** in the text as an example of the Plus/Minus Theorem.

We now find that if we know the dimension of a vector space *V* is, say *m*, and we have a subset *B* of *V* of exactly *m* vectors, then we don't have to check both independence and span requirements to see if *B* is a basis. If we have the **right number** of vectors for a basis, we need only check that **one** of independence and span holds to know *B* is a basis. This is the subject of **Theorem 4** in the text.

Read Section 4.6 Include Theorem 4.6.5.6 as well as the theorems mentioned above. **Work** Text Problems 1, 2, 3, 7(a-d), 9(a-c), 10, 12 (a,b),13, 15-17, 19 Work Check Quiz 20.