PHY302 - Tutorial 6

Instructor: Manabendra Nath Bera (Dated: 15 October 2020)

1. The wave function of the ground state of a harmonic oscillator of force constant k and mass m is

$$\psi_0 = (\alpha/\pi)^{1/4} e^{-\alpha x^2/2}, \ \alpha = m\omega_0/2, \ \omega_0^2 = k/m.$$
 (1)

Obtain an expression for the probability of finding the particle outside the classical region (E < V(x)).

- 2. (a) Using $[a, a^{\dagger}] = \mathbb{I}$, find the commutations $[a, (a^{\dagger})^n]$, $[a^{\dagger}, (a)^n]$, $[a, (a^{\dagger})^n]$, and $[a, (a^{\dagger})^n]$, where $a = a^{\dagger}a$.
 - (b) Using the number basis $\{|n\rangle\}$ find the matrix representation for the operators \hat{a} , \hat{a}^{\dagger} , \hat{x} , \hat{p} , \hat{x}^2 , \hat{p}^2 , and the number operator $\hat{N} = \hat{a}^{\dagger}\hat{a}$. Do this by giving general formulae for the matrix elements O_{mn} of each operator \hat{O} . Write explicitly the corresponding four by four matrix truncations using m, n = 0, 1, 2, 3.
 - (c) Use the four by four matrices for \hat{x} and \hat{p} to compute $[\hat{x}, \hat{p}]$. Do you get the matrix $i\mathbb{I}$? Explain.
 - (d) (e) From your earlier result above you must have found that

$$\langle n|\hat{x}^2|n\rangle = \frac{\hbar}{m\omega} \left(n + \frac{1}{2}\right), \ \langle n|\hat{p}^2|n\rangle = \hbar m\omega \left(n + \frac{1}{2}\right).$$
 (2)

Find the uncertainties Δx and Δp in the state $|n\rangle$. Is the product of uncertainties saturated?

3. A spin is placed on an uniform but oscillating magnetic field

$$\vec{B} = B_0 \cos(\omega i) \vec{e}_z. \tag{3}$$

The spin is initially in an eigenstate of S_x with eigenvalue $\hbar/2$.

- (a) Find the unitary operator U(t) that generates time evolution. Note that the Hamiltonian is time-dependent but [H(t), H(t')] = 0.
- (b) Calculate the time evolution of the state and describe it by giving the time-dependent angles $\theta(t)$ and $\phi(t)$ that define the direction of the spin.
- (c) Find the time dependent probability to find the spin with $S_x = -\hbar/2$.
- (d) Find the largest value of ω that allows the full flip in S_x .
- 4. Consider the time-independent Schrodinger Hamiltonian for a spin in a uniform and constant magnetic field of magnitude *B* along the *z*-direction:

$$H = -\lambda BS_z, \tag{4}$$

where λ is the (real) constant that relates the dipole moment of the spin. Find the explicit time evolution for the Heisenberg operators $S_x(t)$, $S_y(t)$, and $S_z(t)$ associated with the Schrodinger operators S_x , S_y , and S_z .