Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{2ik}{t_1 + 2k^2t_1} \left \frac{i\sqrt{2}k(2k^2r_5 - t_1)}{(t_1 + 2k^2t_1)^2} \right $
$\sigma_{1^{\text{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))} \frac{k^2 (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$i \sqrt{2} k(t_1 - 2t_2) + k^2) (3t_1t_2 + 2k^2 r_5 (t_1 + t_2))$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^+lphaeta}^{ ext{#2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\sharp 1} \dagger^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1 + t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\sharp 1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-ikt_1$	0	0	0

$\sigma_{0}^{\#1} + \frac{1}{(1+2k^{2})^{2}t_{1}} \frac{i\sqrt{2}k}{(1+2k^{2})^{2}t_{1}} 0 0$ $\tau_{0}^{\#1} + \frac{i\sqrt{2}k}{(1+2k^{2})^{2}t_{1}} - \frac{2k^{2}}{(1+2k^{2})^{2}t_{1}} 0 0$ $\tau_{0}^{\#2} + 0 0 0 0$		$\sigma_0^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$t_{0}^{+} + t_{0}^{-} = \frac{1}{(1+2k^{2})^{2}t_{1}} - \frac{1}{(1+2k^{2})^{2}t_{1}} = 0$	$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$		0	0
$\tau_{0^{+}}^{\#2} + 0 \qquad 0 \qquad 0$	$ au_{0}^{\#1}$ †			0	0
	$ au_{0^{+}}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1} + 0 \qquad 0 \qquad 0 \qquad \frac{1}{k^2 r_2 + t_2}$	$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints/ga	uge generators
SO(3) irreps	Multiplicities
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total constraints:	16

$\omega_2^{\#1}{}_+^{a\beta} f_2^{\#1}{}_+^{a\beta} \omega_2^{\#1}{}_a^{\beta\chi}$	0	0	<u>t1</u> 2
$f_{2}^{\#1}_{\alpha\beta}$	$-\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
,	$\omega_2^{#1} + ^{\alpha\beta}$	$f_2^{#1} + \alpha \beta$	$\omega_2^{#1} +^{lphaeta\chi}$

Massive and massless spectra

Massive partic	le
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$
Polarisations:	3
Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$
Spin:	1
Parity:	Even

?
$$J^{P} = 0^{-}$$
?
?

	Massive particle					
	Pole residue:	$-\frac{1}{r_2} > 0$				
. ?	Polarisations:	1				
1	Square mass:	$-\frac{t_2}{r_2} > 0$				
	Spin:	0				
	Parity:	Odd				

(No massless particles)

Unitarity conditions