Correction TD 1

Rappels:

Polynômes, delta et signe: On considère un polynôme de degré 2

$$P(X) := aX^2 + bX + c$$

Pour calculer le signe de P(X), on définit $\Delta := b^2 - 4ac$, on a alors

- si $\Delta < 0$, l'équation P(X) = 0 n'a pas de solutions réelle, le signe de P sur \mathbb{R} est donc donné par

x	$-\infty$		$+\infty$
P(x)	s	igne de a	

- Si $\Delta=0$, l'équation P(X)=0 a une unique solution réelle $x_0=\frac{-b}{2a}$, le signe de P sur $\mathbb R$ est donc donné par

x	$-\infty$		x_0		$+\infty$
P(x)		signe de a	0	signe de a	

notons que la fonction ne change pas de signe, elle 'rebondit' sur l'axe horizontal (n'écrivez surtout pas ça comme ça, c'est juste une manière de le retenir!)

- Si $\Delta > 0$, l'équation P(X) = 0 admet deux solutions réelles $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$, le signe de P sur \mathbb{R} est alors donné par

x	$-\infty$	x_1		x_2		$+\infty$
P(x)	signe de a	0	signe de - a	0	signe de a	

De façon générale, la formule à retenir est « Signe de a à l'extérieur des racines, signe de -a entre les racines »

Domaines de définition : Le domaine de définition est donnée, pour une formule du type f(x) = ... par les valeurs de x pour lesquelles la formule a un sens (typiquement, la formule f(x) = 1/x n'a pas de sens pour x = 0).

La plupart des fonctions usuelles ont des domaines de définitions connus, que l'on rappelle ici:

$$\begin{array}{ll} x \mapsto \frac{1}{x} &]-\infty, 0[\cup]0, +\infty[\\ x \mapsto \sqrt{x} & [0, +\infty[\\ x \mapsto \ln(x) &]0, +\infty[\end{array}$$

Ces formules sont utiles, mais elles ne font pas tout : en pratique, on calcule les domaine de définitions de composées de ces fonctions, par exemple $x \mapsto \frac{1}{\ln(x)}$, la règle générale est alors de raisonner par étape, dans cet exemple, il faut que $\ln(x)$ soit défini, et ne soit pas égal à 0, il faut donc que $x \in]0, +\infty[$ et $x \neq 1$ (la seule valeur de x pour laquelle $\ln(x) = 0$).

Domaines de définition

Exercice 1.

a).

• La fonction $f_1: x \mapsto \ln(x-4)$ s'écrit $x \mapsto \ln(u(x))$ avec u(x) = x-4. Pour qu'elle soit définie, il faut et il suffit que u(x) soit défini et > 0. Bien sûr u(x) est partout défini, et on a

$$x-4>0 \Leftrightarrow x>4$$

Le domaine de définition de f_1 est alors

$$D_{f_1} =]4, +\infty[$$

• La fonction $f_2(x) = \sqrt{2x+1}$ s'écrit $x \mapsto \sqrt{u(x)}$ avec u(x) = 2x+1. Pour que cette fonction soit définie, il faut et il suffit que u(x) soit défini, et positif ou nul. À nouveau, u(x) est partout défini (c'est une fonction affine), et on a

$$2x + 1 \geqslant 0 \Leftrightarrow 2x \geqslant -1$$

 $\Leftrightarrow x \geqslant \frac{-1}{2}$

Le domaine de définition de f_2 est donc donné par

$$D_{f_2} = \left[-\frac{1}{2}, +\infty \right[.$$

(on remarque que l'on peut avoir x < 0 tout en ayant $2x + 1 \ge 0$, auquel cas \sqrt{x} n'est pas défini, mais $\sqrt{2x + 1}$ est défini!).

• La fonction $f_3: x \mapsto \frac{x^2+x-4}{3x-4}$ s'écrit $\frac{u(x)}{v(x)}$, avec $u(x) = x^2+x-4$ et v(x) = 3x-4. Pour que cette fonction soit définie, il faut que u(x) soit défini (ce qui est vrai pour tout x ici : c'est un polynôme), et que v(x) soit défini et non nul. Une fois de plus, v(x) est toujours bien défini, et on a

$$v(x) = 0 \Leftrightarrow 3x - 4 = 0 \Leftrightarrow x = \frac{4}{3}$$

Le domaine de définition de f_3 est alors donné par

$$D_{f_3} = \left] -\infty, \frac{4}{3} \right[\cup \left] \frac{4}{3}, +\infty \right[.$$

b).

• La définition de g_1 ne pose problème en aucun point, g_1 est donc partout définie. Pour connaître son signe, on utilise la méthode générale pour les polynômes : On calcule

$$\Delta = 3^2 - 4 * 1 * (-4) = 25 = 5^2$$

Il y a donc deux racines réelles de g_1 , données par

$$x_1 = \frac{-3 - \sqrt{25}}{2} = \frac{-3 - 5}{2} = \frac{-8}{2} = -4$$
 et $x_2 = \frac{-3 + \sqrt{25}}{2} = \frac{2}{2} = 1$

Ainsi, g_1 est strictement négative sur] -4,1[, strictement positive sur] $-\infty,-4[\cup]1,+\infty[$ et nulle en -4 et 1. Ce que l'on écrit

$$\begin{cases} g_1(x) \le 0 \Leftrightarrow x \in [-4, 1] \\ g_1(x) \ge 0 \Leftrightarrow x \in]-\infty, -4] \cup [1, +\infty[$$

On peut aussi résumer la situation dans le tableau de signe suivant :

x	$-\infty$		-4		1		$+\infty$
$g_1(x)$		+	0	_	0	+	

• La fonction $g_2: x \mapsto \frac{x+1}{x-1}$ s'écrit $\frac{u(x)}{v(x)}$ avec u(x) = x+1 et v(x) = x-1. Comme u(x) et v(x) sont définies sur \mathbb{R} , la seule condition pour le domaine de définition de g_2 est que $v(x) \neq 0$, autrement dit $x \neq 1$. Le domaine de définition de g_2 est alors

$$\mathbb{R} \setminus \{1\} =]-\infty, 1[\cup]1, +\infty[$$

De plus, g_1 est positive si le numérateur et le dénominateur ont le même signe. Ils sont tous deux négatifs sur $]-\infty,-1]$ et tous deux positifs sur $]1,+\infty[$. Ainsi, on a

$$\left\{ \begin{array}{l} g_2(x) \leq 0 \; \Leftrightarrow \; x \in [-1,1[\\ g_2(x) \geq 0 \; \Leftrightarrow \; x \in]-\infty,-1] \cup]1,+\infty[\end{array} \right.$$

Autrement dit

x	$-\infty$		-1		1		$+\infty$
u(x)		_	0	+		+	
v(x)		_		_	0	+	
$g_2(x) = \frac{u(x)}{v(x)}$		+	0	_		+	

• La définition de g_3 = sin ne pose problème en aucun point; elle est donc définie sur \mathbb{R} . De plus, par définition de la fonction sinus, le réel $g_3(x)$ est positif si x est dans l'un des intervalles $[k\pi, (k+1)\pi]$ pour un entier relatif pair k, ou encore que x soit dans l'un des $[2k\pi, (2k+1)\pi]$ pour un entier relatif k, ce que l'on écrit

$$g_3(x) \ge 0 \iff \exists k \in \mathbb{Z} \; ; \; x \in [2k\pi, (2k+1)\pi] \iff x \in \bigcup_{k \in \mathbb{Z}} [2k\pi, (2k+1)\pi].$$

- c) Les trois premières fonctions h_1, h_2, h_3 font intervenir le même polynôme $x^2 + 3x 4$, que l'on a déjà étudié à la question b), on réutilise donc les résultats de cette question sans les démontrer.
- C'est toujours la même méthode : pour que $h_1(x) = \sqrt{x^2 + 3x 4}$ soit définie, il faut et il suffit que ce qui se trouve sous la racine soit positif au nul, il faut donc que $x^2 + 3x 4 \ge 0$. On en déduit par la question b) que

$$D_{h_1} = \mathbb{R} \setminus]-4, 1[=]-\infty, -4] \cup [1, +\infty[.$$

• Pour que $h_2 = \ln(x^2 + 3x - 4)$ soit défini, il faut et il suffit que ce qui se trouve sous le logarithme soit strictement positif. Toujours par la question b), on trouve

$$D_{h_2} = \mathbb{R} \setminus [-4, 1] =]-\infty, -4[\cup]1, +\infty[.$$

• Ici, on veut que $x^2 + 3x - 4 \neq 0$ pour pouvoir diviser, i.e. on veut que $x \neq -4$ et $x \neq 1$ et donc

$$D_{h_3} = \mathbb{R} \setminus \{-4, 1\} =]-\infty, -4[\cup]-4, 1[\cup]1, +\infty[.$$

• Pour que $h_4(x) = \sqrt{\frac{x+1}{x-1}}$ soit défini, il faut et il suffit que ce qui se trouve sous la racine soit défini, et positif au nul. D'après l'étude de signe de g_2 menée dans la question b), il faut que $x \le -1$ ou que x > 1, d'où

$$D_{h_4} = \mathbb{R} \setminus]-1,1] =]-\infty,-1] \cup]1,+\infty[.$$

• De même que pour h_2 , on trouve que $h_5(x) = \ln\left(\frac{x+1}{x-1}\right)$ est défini sur

$$D_{h_{5}} = \mathbb{R} \setminus [-1, 1] =]-\infty, -1[\cup]1, +\infty[.$$

• Pour que $h_6(x) = \frac{1}{g_2(x)} = \frac{1}{\frac{x+1}{x-1}} = \frac{x-1}{x+1}$ soit défini, il faut et il suffit que $g_2(x)$ soit défini et non nul, ou encore que $x \notin 1, -1$, d'où

$$D_{h_6} = \mathbb{R} \setminus \{\pm 1\} =]-\infty, -1[\cup]-1, 1[\cup]1+\infty[.$$

(bien sûr, on voudrait dire $h_6(x) = \frac{x-1}{x+1}$, auquel cas le domaine de définition serait $\mathbb{R} \setminus \{1\}$, mais la formule de h_6 donnée au départ n'est pas définie pour x = 1, il existe simplement une autre formule qui **étend** la première au cas x = 1, qui n'était pas couvert jusque là).

• Pour que $h_7(x) = \sqrt{\sin(x)}$ soit défini, il faut et il suffit que $\sin(x) \ge 0$, d'où en utilisant l'étude de signe de g_3 :

$$D_{h_7} = \bigcup_{k \in \mathbb{Z}} [2k\pi, (2k+1)\pi].$$

• Pour que $h_8(x) = \ln(\sin(x))$ soit défini, il faut et il suffit que $\sin(x) > 0$, d'où en utilisant l'étude de signe de g_3 et le fait que sin ne s'annule qu'en les multiples entiers de π :

$$D_{h_8} = \bigcup_{k \in \mathbb{Z}}]2k\pi, (2k+1)\pi[.$$

• Pour que $h_9(x) = \frac{1}{\sin(x)}$ ait un sens, il faut et il suffit que $\sin(x) \neq 0$, ce qui n'arrive que si x est un multiple entier de π , d'où

$$D_{h_9} = \mathbb{R} \setminus \{k\pi, \ k \in \mathbb{Z}\} = \bigcup_{k \in \mathbb{Z}} [k\pi, (k+1)\pi[.$$

Exercice 2.

• La fonction f_1 est donnée par un quotient de deux fonctions partout définies, la seule condition qui apparait est que le dénominateur soit non nul, on résout donc l'équation

$$x^2 - 5x + 6 = 0$$

On calcule $\Delta = 25 - 24 = 1$ et $x_1 = 2, x_2 = 3$. Le domaine de définition de f_1 est donc

$$D_{f_1} =]-\infty, 2[\cup]2, 3[\cup]3, +\infty[$$

• La fonction f_2 est donnée comme la racine d'une fonction partout définie, la seule condition qui apparait est que ce qui est sous la racine soit positif ou nul, on résout donc l'équation

$$x^2 - 3x + 2 \geqslant 0$$

On calcule $\Delta=9-8=1$ et $x_1=1, x_2=2.$ Le signe de x^2-3x+2 est alors donné par

x	$-\infty$		1		2		$+\infty$
x^2-3x+2		+	0	_	0	+	

Le domaine de définition de f_2 est alors donné par

$$D_{f_2} =]-\infty, 1] \cup [2, +\infty[$$

• La fonction f_3 est donnée comme la racine d'une fonction partout définie, la seule condition qui apparait est que ce qui est sous la racine soit positif ou nul, on résout donc l'équation

$$x^2 - x + 1 \geqslant 0$$

On calcule $\Delta = 1 - 4 = -3 < 0$. Le signe de $x^2 - x + 1$ est alors donné par

x	$-\infty$		$+\infty$
x^2-x+1		+	

La fonction f_3 est donc définie sur \mathbb{R} .

• La fonction f_4 est donnée comme le logarithme (népérien) d'une fonction partout définie, la seule condition qui apparait est que ce qui est dans le logarithme soit strictement positif, on résout donc l'équation

$$-x^2 + 1 > 0$$

On calcule $\Delta = 0 + 4 = 4$ et $x_1 = 1, x_2 = -1$. Le signe de $-x^2 + 1$ est alors donné par

x	$-\infty$		-1		1		$+\infty$
$-x^2+1$		_	0	+	0	_	

La fonction f_4 est donc définie sur]-1,1[.

- La fonction f_5 est définie par une formule de la forme $\frac{1}{u(x)}$ avec $u(x) = \sqrt{v(x)}$, avec $v(x) = -x^2 + 2x 1 = -(x-1)^2$. Pour que f_5 soit définie, il faut et il suffit que u(x) soit définie et ≥ 0 . Pour que u(x) soit définie, il faut et il suffit que v(x) soit définie, positive ou nulle, mais $v(x) \leq 0$, et v(x) = 0 si et seulement si x = 1, donc u(x) est définie sur $\{1\}$, avec $u(1) = \sqrt{0} = 0$, donc f_5 n'est jamais définie.
- La fonction f_6 est définie comme la différence de deux fonctions $x \mapsto \sqrt{3x+2}$ et $x \mapsto \frac{1}{3-x}$. Pour qu'une telle formule soit définie, il faut et il suffit que les deux formules dont on prend la soustraction soient définies. Ce qui donne

$$D_{f_6} = [-2/3, +\infty[\cap] - \infty, 3[\cup]3, +\infty[= [-2/3, 3[\cup]3, +\infty[$$

• La fonction f_7 est définie comme un quotient $\frac{u(x)}{v(x)}$ avec $u(x) = \ln(x+2)$ et $v(x) = x^2 + 2x - 3$, les conditions que l'on a sont donc que u(x) soit défini (autrement dit x > -2), et que v(x) soit défini et non nul (donc $x \notin \{-3,1\}$), on obtient donc

$$D_{f_6} =]-2,1[\cup]1,+\infty[$$

• Pour que f_8 soit définie, il faut et il suffit que le quotient $\frac{2x-1}{x+3}$ soit défini et positif, on a le tableau de signes suivant :

x	$-\infty$		-3		1/2		$+\infty$
2x-1		_		_	0	+	
x+3		_	0	+		+	
$\frac{u(x)}{v(x)}$		+		_	0	+	

D'où

$$D_{f_8} =]-\infty, -3[\cup[1/2, +\infty[$$

Exercice 3.

• On a $f_1(x) = \sqrt{u(x)}$ avec $u(x) = \sqrt{v(x)} - 5$ avec $v(x) = 16 + x^2$. La fonction v(x) est partout définie et strictement positive, donc u(x) est partout défini, pour que u(x) soit positif, on résout

$$\sqrt{16+x^2} \geqslant 5 \Leftrightarrow 16+x^2 \geqslant 25 \Leftrightarrow x \notin [-3,3]$$

D'où $D_{f_1} =]-\infty, -3] \cup [3, +\infty[.$

• La fonction f_2 est définie comme un quotient de deux fonctions, la seule condition qui apparait pour que f_2 soit définie est que $\sin(2x+1) \neq 0$, on a

$$\sin(2x+1) = 0 \Leftrightarrow 2x+1 \in \{k\pi, k \in \mathbb{Z}\}\$$
$$= \Leftrightarrow x \in \left\{\frac{k\pi-1}{2}, k \in \mathbb{Z}\right\}$$

D'où

$$D_{f_2} = \bigcup_{k \in \mathbb{Z}} \left[\frac{k\pi - 1}{2}, \frac{(k+1)\pi - 1}{2} \right]$$

• On sait que cosinus est (strictement) positif sur les intervalles de la forme $]2k\pi - \pi/2, 2k\pi + \pi/2[$ pour $k \in \mathbb{Z}$, d'où

$$D_{f_3} = \bigcup_{k \in \mathbb{Z}} \left[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2} \right]$$

• Ici il faut un peu d'astuce (ou être très violent, et calculer des dérivées et des tableaux de signes...) pour remarquer que 1 est racine du polynôme $x^3 - 2x^2 - x + 2$, avec $x^3 - 2x^2 - x + 2 = (x - 1)(x^2 - x - 2) = (x - 1)(x + 1)(x - 2)$, d'où le tableau de signe suivant :

x	$-\infty$		-1		1		2		$+\infty$
x-1		_		_	0	+		+	
x+1		_	0	+		+		+	
x-2		_		_		_	0	+	
$\begin{array}{c} x^3 - 2x^2 - \\ x + 2 \end{array}$		_	0	+	0	_	0	+	

D'où $D_{f_4} = [-1, 1] \cup [2, +\infty[.$

• Il faut déjà étudier la fonction tangente $tan(x) := \frac{\sin(x)}{\cos(x)}$, on a

x	0		$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$		2π
sin	0	+	1	+	0	_	-1	_	0
cos	1	+	0	_	-1	_	0	+	1
tan	0	+		_	0	+		_	0

Sur l'intervalle $[0,2\pi[$, la fonction tan est donc positive sur $[0,\pi/2[\cup[\pi,3\pi/2[$, d'où (par périodicité)

$$D_{f_5} = \bigcup_{k \in \mathbb{Z}} [2k\pi, 2k\pi + \pi/2[\cup [2k\pi + \pi, 2k\pi + 3\pi/2[$$

Continuité

Exercice 4.

1). La fonction f, comme la partie entière E, est partout définie :

$$f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto E(3x+2)$$

On sait (cours!) que la partie entière est continue sur $\mathbb{R} \setminus \mathbb{Z} = \bigcup_{k \in \mathbb{Z}} |k, k+1[$, donc ici f est continue si $3x+2 \in \bigcup_{k \in \mathbb{Z}} |k, k+1[$, i.e. si $3x \in \bigcup_{k \in \mathbb{Z}} |k, k+1[$, i.e. si $x \in \bigcup_{k \in \mathbb{Z}} |k, k+1[$, d'où

$$DC(f) = \bigcup_{k \in \mathbb{Z}} \left[\frac{k}{3}, \frac{k+1}{3} \right[.$$

2). La fonction $x \mapsto \frac{1}{x+1}$ est définie sur $\mathbb{R} \setminus \{-1\}$ et on a

$$g(x) := \left\{ \begin{array}{ll} \frac{1}{x+1} & \text{si} \quad x \neq -1 \\ 2 & \text{si} \quad x = -1 \end{array} \right.$$

Ainsi, g est partout définie :

Ensuite, la fonction $x \mapsto \frac{1}{1+x}$ est continue sur $\mathbb{R} \setminus \{-1\}$, donc g est continue sur $\mathbb{R} \setminus \{-1\}$. Reste à voir si elle est continue en -1. On a

$$\lim_{x \to -1^{-}} g(x) = \lim_{x \to -1^{-}} \frac{1}{1+x} = -\infty \neq 2 = g(-1)$$

(en fait, g n'a même pas de limite en -1), donc g n'est pas continue en -1 et donc

$$DC(g) = \mathbb{R} \setminus \{-1\} =]-\infty, -1[\cup]-1, +\infty[.$$

Exercice 5.

1) Soit

$$f : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Comme $x \mapsto \sin \frac{1}{x}$ est continue sur $\mathbb{R}^* := \mathbb{R} \setminus \{0\}$, f est continue sur \mathbb{R}^* . Mais f n'admet pas de limite en 0, donc n'est pas continue en 0 et donc

$$DC(f) = \mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[.$$

2) Soit

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

La fonction $x \mapsto x \sin \frac{1}{x}$ est continue sur \mathbb{R}^* et on a

$$\forall x \in \mathbb{R}^*, \ \left| x \sin \frac{1}{x} \right| \le |x|,$$

donc on a

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} x \sin \frac{1}{x} = 0 = g(0),$$

et donc g est continue partout :

$$DC(q) = \mathbb{R}.$$

Théorème des valeurs intermédiaires

Exercice 6.

La fonction $x \mapsto f(x) := 3x + 1 + \sin(x)$ est définie et continue sur $\left] -\frac{\pi}{2}, 0 \right[$ et on a

$$\lim_{x \to -\frac{\pi}{2}^+} f(x) = -\frac{3\pi}{2} < 0,$$

donc, par définition de la limite, il existe $x_0 \in \left] -\frac{\pi}{2}, 0\right[$ tel que $f(x_0) < 0$ et de même, comme

$$\lim_{x \to 0^{-}} f(x) = 1 > 0,$$

il existe $x_1 \in]-\frac{\pi}{2},0[$ tel que $f(x_1) > 0$. De plus, toujours par définition de la limite, on peut supposer que $x_0 < x_1$. Comme f est continue, le théorème des valeurs intermédiaires assure l'existence de $y \in]x_0,x_1[$ tel que f(y) = 0, autrement dit

$$3y + 1 + \sin(y) = 0,$$

d'où le résultat.

Exercice 7.

Considérons une équation polynômiale

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

avec $a_n \neq 0$ et de degré impair, i.e. avec n impair. Quitte à remplacer f par -f, on peut supposer que $a_n > 0$. Alors, comme n est impair on a

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} a_n x^n = -\infty \text{ et } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} a_n x^n = +\infty.$$

Ainsi, par définition de la limite, il existe $x_0 < 0$ tel que $f(x_0) < 0$ ainsi que $x_1 > 0$ tel que $f(x_1) > 0$. Comme f est polynômiale, elle est continue et par le théorème des valeurs intermédiaires, il existe donc $y \in]x_0, x_1[$ tel que f(y) = 0 et ce y répond alors à la question.

Exercice 8.

1) Posons

$$g : [0,1] \to \mathbb{R}$$
$$x \mapsto f(x) - x$$

Comme f est continue sur [0,1], g est aussi continue sur [0,1] et, puisque f(0)=1 et f(1)=0, on a g(0)=1>0 et g(1)=-1<0; donc par le théorème des valeurs intermédiaires, il existe $x_0 \in [0,1]$ tel que $g(x_0)=0$, i.e. $f(x_0)=x_0$.

<u>Bonus</u>: En fait, la conclusion reste vraie quelles que soient les valeurs de f en 0 et 1, pouvez-vous trouver pourquoi? 2) Soit

$$h : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^3 + 2x^2 - 7x + 1$$

La fonction h étant polynômiale, elle est partout définie, continue et dérivable et on a

$$\forall x \in \mathbb{R}, \ h'(x) = 3x^2 + 4x - 7.$$

La dérivée h' est un trinôme de discriminant $\Delta = 16 + 84 = 100 = 10^2$ et de racines $\frac{-4-\sqrt{\Delta}}{2*3} = \frac{-4-10}{6} = -\frac{7}{3}$ et $\frac{-4+\sqrt{\Delta}}{2*3} = \frac{-4+10}{6} = 1$. Le coefficient dominant de h' étant positif, h' est positive à l'extérieur de ses racines et négative entre ses racines. De plus, on calcule $h\left(-\frac{7}{3}\right) = \frac{419}{27} \approx 15,52$ et h(1) = -3. On obtient alors le tableau de variations suivant

x	$-\infty$		$-\frac{7}{3}$		1		$+\infty$
h'(x)		+	0	_	0	+	
h(x)	-∞		$\frac{419}{27}$		-3		+∞

Ainsi, le théorème des valeurs intermédiaires permet de conclure que

l'équation
$$h(x) = a$$
 admet
$$\begin{cases} \text{une solution} & \text{si} \quad a < -3 \text{ ou } a > \frac{419}{27} \\ \text{deux solutions} & \text{si} \quad a = -3 \text{ ou } a = \frac{419}{27} \\ \text{trois solutions} & \text{si} \quad -3 < a < \frac{419}{27} \end{cases}$$

Dérivabilité, domaine de dérivabilité

Exercice 9.

• La fonction $f: x \mapsto 2x^3 + 3x - 4$ est polynômiale, donc est partout définie, continue et dérivable :

$$D_f = DC(f) = D_{f'} = \mathbb{R}.$$

De plus, on a

$$\forall x \in \mathbb{R}, \ f'(x) = 6x^2 + 3.$$

• La fonction $g: x \mapsto \ln(x^2+1)$ est définie dès que $x^2+1>0$, i.e. est partout définie. Elle est de plus continue et dérivable partout où elle est définie en tant que composée de fonctions continues et dérivables, donc est partout continue et dérivable :

$$D_q = DC(g) = D_{q'} = \mathbb{R}.$$

De plus, en utilisant la formule de dérivation de fonction composée

$$(u \circ v)' = (u' \circ v) \times v'$$

on obtient (en posant $u(x) := \ln(x)$ et $v(x) := x^2 + 1$) que

$$\forall x \in \mathbb{R}, \ g'(x) = (u \circ v)'(x) = (u' \circ v)(x)v'(x) = \frac{1}{x^2 + 1} \times 2x = \frac{2x}{x^2 + 1}.$$

• La fonction $h: x \mapsto \sin^2(3x+1)$ est partout définie, continue et dérivable comme combinaison linéaire, composée et produit de fonctions continues et dérivables :

$$D_h = DC(h) = D_{h'} = \mathbb{R}$$

Posons $a: x \mapsto \sin(3x+1)$. Alors on a $h=a^2$ et en posant $u(x):=x^2$ et v(x):=a(x), la même formule que ci-dessus donne

$$\forall x \in \mathbb{R}, \ h'(x) = (u \circ v)'(x) = 2a(x)a'(x).$$

Or, en utilisant encore la même formule avec $\widetilde{u}(x) := \sin(x)$ et $\widetilde{v}(x) := 3x + 1$, il vient

$$\forall x \in \mathbb{R}, \ a'(x) = (\widetilde{u} \circ \widetilde{v})'(x) = 3\cos(3x+1)$$

et donc

$$\forall x \in \mathbb{R}, \ h'(x) = 2a(x)a'(x) = 2\sin(3x+1) * (3\cos(3x+1) = 6\cos(3x+1)\sin(3x+1).$$

Exercice 10.

On rappelle que $x \mapsto \sqrt{x}$ est définie et continue dès que $x \ge 0$ et est dérivable dès que x > 0. On rappelle également que ln est défini, continu et dérivable dès que x > 0 et enfin que $x \mapsto |x| = \sqrt{x^2}$ est partout définie et continue, et est dérivable dès que $x \ne 0$.

• La fonction $f_1: x \mapsto \sqrt{x^2 - 6x + 8}$ est définie et continue dès que $x^2 - 6x + 8 \ge 0$ et est dérivable dès que $x^2 - 6x + 8 > 0$. On vérifie que les racines de $x^2 - 6x + 8$ sont 2 et 4. Comme le coefficient dominant de ce polynôme est positif, on a que $x^2 - 6x + 8 \ge 0$ si et seulement si $x \in]-\infty, 2] \cup [4, +\infty[$ et $x^2 - 6x + 8 > 0$ si et seulement si $x \in]-\infty, 2[\cup]4, +\infty[$. Ainsi, on obtient

$$D_{f_1} = DC(f_1) =]-\infty, 2] \cup [4, +\infty[$$

et

$$D_{f'_1} =]-\infty, 2[\cup]4, +\infty[.$$

De plus, en utilisant la formule de dérivation des fonctions composées (appliquée à $u(x) := \sqrt{x}$ et $v(x) := x^2 - 6x + 8$ et en se rappelant que $u'(x) = \frac{1}{2\sqrt{x}}$ si x > 0), on obtient

$$\forall x \in]-\infty, 2[\cup]4, +\infty[, f_1'(x) = (u \circ v)'(x) = \frac{2x-6}{2\sqrt{x^2-6x+8}} = \frac{x-3}{\sqrt{x^2-6x+8}}.$$

• La fonction $f_2: x \mapsto \sqrt{\frac{x-1}{x+3}}$ est définie et continue dès que $\frac{x-1}{x+3}$ existe et est positife ou nul et est dérivable dès que $\frac{x-1}{x+3}$ est défini et strictement positif. On obtient alors

$$D_{f_2} = DC(f_2) =]-\infty, -3[\cup [1, +\infty]]$$

et

$$D_{f'_3} =]-\infty, -3[\cup]1, +\infty[.$$

En posant $a(x) := \sqrt{x}$ et $b(x) := \frac{x-1}{x+3}$, la formule de dérivation des fonctions composées donne

$$\forall x \in D_{f'_2}, \ f'_2(x) = a'(b(x))b'(x) = \frac{b'(x)}{2\sqrt{\frac{x-1}{x+3}}}.$$

Pour trouver b', il nous faut ici appliquer la formule de dérivation des quotients :

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

en posant u(x) := x - 1 et v(x) := x + 3. On obtient alors

$$\forall x \in D_{b'}, \ b'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{x + 3 - (x - 1)}{(x + 3)^2} = \frac{4}{(x + 3)^2}$$

et donc

$$\forall x \in D_{f_2'}, \ f_2'(x) = \frac{b'(x)}{2\sqrt{\frac{x-1}{x+3}}} = \frac{4}{2(x+3)^2\sqrt{\frac{x-1}{x+3}}} = \frac{2\sqrt{x+3}}{(x+3)^2\sqrt{x-1}} = \frac{2}{(x+3)^2}\sqrt{\frac{x+3}{x-1}}.$$

• La fonction $f_3: x \mapsto |x^2 - 4x + 3|$ est partout définie et continue comme composée de fonctions continues. Elle est de plus dérivable dès que $x^2 - 4x + 3 \neq 0$. En trouvant les racines de ce trinôme, de discriminant $\Delta = 4$, on obtient que $x^2 - 4x + 3 = 0$ si et seulement si $x \in \{1, 3\}$. Ainsi, on obtient

$$D_{f_3} = DC(f_3) = \mathbb{R}$$

et

$$D_{f_3'} = \mathbb{R} \setminus \{1, 3\} =]-\infty, 1[\cup]1, 3[\cup]3, +\infty[.$$

Avec la formule $abs(x) := |x| = \sqrt{x^2}$, on trouve que

$$\forall x \neq 0, \text{ abs}'(x) = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$$

En appliquant la formule de dérivation des fonctions composées à u(x) := abs(x) = |x| et $v(x) := x^2 - 4x + 3$, on trouve que

$$\forall x \in D_{f_3'}, \ f_3'(x) = (u \circ v)'(x) = u'(v(x))v'(x) = \begin{cases} 2x - 4 & \text{si } x^2 - 4x + 3 > 0 \\ -2x + 4 & \text{si } x^2 - 4x + 3 < 0 \end{cases}$$

ou encore

$$\forall x \in D_{f_3'}, \ f_3'(x) = \begin{cases} 2x - 4 & \text{si} \ x \in]-\infty, 1[\cup]3, +\infty[\\ -2x + 4 & \text{si} \ x \in]1, 3[\end{cases}$$

• La fonction $f_4: x \mapsto \ln\left(\frac{x-1}{x+2}\right)$ est définie, continue et dérivable partout où elle est définie, comme composée de fonctions continues et dérivables. De plus, elle est définie dès que $\frac{x-1}{x+2} > 0$, i.e. dès que $x \in]-\infty, -2[\cup]1, +\infty[$, d'où

$$D_{f_4} = DC(f_4) = D_{f'_4} =]-\infty, -2[\cup]1, +\infty[.$$

En posant $a(x) := \ln(x)$ et $b(x) := \frac{x-1}{x+2}$, la formule de dérivation des fonctions composées donne

$$\forall x \in D_{f'_4}, \ f'_4(x) = (a \circ b)'(x) = a'(b(x))b'(x) = \frac{b'(x)}{b(x)} = \frac{x+2}{x-1}b'(x).$$

Et en posant u(x) := x - 1 et v(x) := x + 2, la formule de dérivation des quotients donne

$$\forall x \neq -2, \ b'(x) = \left(\frac{u}{v}\right)'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{x + 2 - (x - 1)}{(x + 2)^2} = \frac{3}{(x + 2)^2}$$

et donc

$$\forall x \in D_{f'_4}, \ f'_4(x) = \frac{x+2}{x-1}b'(x) = \frac{x+2}{x-1}\frac{3}{(x+2)^2} = \frac{3}{(x-1)(x+2)}.$$

• La fonction $f_5: x \mapsto e^{\sqrt{x^2-3x+2}}$ est définie, continue et dérivable partout où la fonction $x \mapsto \sqrt{x^2-3x+2}$ l'est. Cette dernière est définie et continue partout où $x^2-3x+2 \ge 0$ et est dérivable dès que $x^2-3x+2 > 0$. En calculant les racines de x^2-3x+2 , qui sont 1 et 2, on trouve que $x^2-3x+2 \ge 0$ si et seulement si $x \in]-\infty, 1] \cup [2, +\infty[$ et que $x^2-3x+2 > 0$ si et seulement si $x \in]-\infty, 1[\cup]2, +\infty[$. Ainsi, on obtient

$$D_{f_5} = DC(f_5) =]-\infty, 1] \cup [2, +\infty[$$

et

$$D_{f_5'} =]-\infty, 1[\cup]2, +\infty[.$$

En posant $a(x) := e^x$ et $b(x) := \sqrt{x^2 - 3x + 2}$, on obtient que

$$\forall x \in D_{f_5'}, f_5'(x) = (a \circ b)'(x) = a'(b(x))b'(x) = e^{\sqrt{x^2 - 3x + 2}}b'(x).$$

De même, en posant $\widetilde{a}(x) := \sqrt{x}$ et $\widetilde{b}(x) := x^2 - 3x + 2$, on obtient

$$\forall x \in D_{f_5'}, \ b'(x) = (\widetilde{a} \circ \widetilde{b})'(x) = \widetilde{a}'(\widetilde{b}(x))\widetilde{b}'(x) = \frac{\widetilde{b}'(x)}{2\sqrt{\widetilde{b}(x)}} = \frac{2x-3}{2\sqrt{x^2-3x+2}}.$$

On obtient donc finalement

$$\forall x \in D_{f_5'}, \ f_5'(x) = e^{\sqrt{x^2 - 3x + 2}}b'(x) = \frac{2x - 3}{2\sqrt{x^2 - 3x + 2}}e^{\sqrt{x^2 - 3x + 2}}.$$

• La fonction $f_6: x \mapsto \sin \frac{1}{x}$ est définie, continue et dérivable partout où la fonction $x \mapsto \frac{1}{x}$ l'est, donc dès que $x \neq 0$. Ainsi, on a

$$D_{f_6} = DC(f_6) = D_{f_6'} = \mathbb{R}^* = \mathbb{R} \setminus \{0\} =]-\infty, 0[\cup]0, +\infty[.$$

De plus, en posant $a(x) := \sin(x)$ et $b(x) := \frac{1}{x}$, on obtient

$$\forall x \neq 0, \ f_6'(x) = (a \circ b)'(x) = a'(b(x))b'(x) = \cos\left(\frac{1}{x}\right)b'(x).$$

Or, on a

$$\forall x \neq 0, \ b'(x) = -\frac{1}{x^2},$$

d'où

$$\forall x \in \mathbb{R}^*, \ f_6'(x) = -\frac{\cos\frac{1}{x}}{x^2}.$$

Exercice 11.

Soit

$$f : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

La fonction f est définie sur \mathbb{R} et est continue et dérivable au-moins sur \mathbb{R}^* . De plus, en appliquant la formule de dérivée d'un produit

$$(uv)' = u'v + uv'$$

à $u(x):=x^2$ et $v(x):=\sin\frac{1}{x}$ et en utilisant le calcul de f_6' dans l'exercice précédent, on obtient

$$\forall x \neq 0, \ f'(x) = u'(x)v(x) + u(x)v'(x) = 2x\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right).$$

Il reste donc à voir si f est continue et dérivable en 0. On a

$$\forall x \neq 0, \ \left| x^2 \sin \frac{1}{x} \right| \le x^2,$$

donc

$$\lim_{x \to 0} f(x) = 0 = f(0),$$

donc f est continue en 0. Est-elle dérivable en 0? On a

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0,$$

donc f'(0) existe et vaut 0. La fonction f est donc dérivable en 0. Finalement, on obtient

$$D_f = DC(f) = D_{f'} = \mathbb{R}$$

et

$$\forall x \in \mathbb{R}, \ f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & \text{si} \quad x \neq 0\\ 0 & \text{si} \quad x = 0 \end{cases}$$

Remarquons au passage que si l'on avait commencé par montrer que f est dérivable en 0, sa continuité en 0 aurait été automatique!