

alpha Value Line - NPS Sizing and Technical Data

Efficient Flexible Reliable

alpha Value Line		NP	NPS	NPL	NPT	NPR			
Ratios				3-100					
Torsional backlash [arcmin]				≤ 8					
Output type									
Smooth output shaft	_	0	•	٠	-	•			
Grooved output shaft		•	•	•	-	•			
Output shaft with involute t	toothing	-	•	٠	-	•			
Output flange		-	-	-	•	-			
Input type			Motor attachment version						
Application									
For high axial and radial for	rces	_	•	•	_	•			
In continous operation		•	•	•	•	-			
In cyclic operation		•	•	•	•	•			
Options									
HIGH TORQUE version		•	•	•	•	•			
Foodgrade lubrication	_	•	•	•	•	•			
With coupling at output		•	•	•	•	•			
As linear system		•	•	•	_	•			
With mounted pinion at out	tput	•	•	•	_	•			
With screwed on B5 flange		•	-	_	-	-			
Further technical data									
Max. torque T _{2a}	Nm	800	800	800	800	800			
	in.lb	7100	7100	7100	7100	7100			
Max. input speed	rpm 10000 8000 8000		8000	10000	8000				
Efficiency			97%	97%	97%	97%			
Max. radial force F _{2B}	N	8000	10000	10000	4800	10000			
211	lb _f	1800	2250	2250	1080	2250			

WITTENSTEIN alpha adapted for any axis

The perfect drive solution whatever the requirements are

WITTENSTEIN alpha develops complete, singlesupplier solutions for driving any axis. They can be used in virtually any application – from high-precision axes in machine tools and manufacturing systems to

packaging machinery where maximum productivity is a must.

The name WITTENSTEIN alpha is synonymous with premium quality and optimal reliability, high precision and synchronization accuracy, maximum power density, a long lifetime and very simple motor mounting.

The alpha Value Line is a new product family that unites these characteristics – which are specially adapted for applications in the value segment or highend secondary axes – in a class-appropriate way.

Benefits of the alpha Value Line:

- · Rapid availability regardless of the batch size
- · Optimal flexibility
- Ability to react promptly to changing customer requirements
- · Assembly to order

Contents

Sizing of the alpha Value Line – NPS	4
NPS 015S	6
NPS 025S	8
NPS 035S	10
NPS 045S	12
Glossary	14
Order codes	15

alpha Value Line Efficient sizing

The new sizing method

The new alpha Value Line from WITTENSTEIN alpha commits the cymex® sizing software to paper. Using a quick select structure, you can define your drive train in just a few simple steps.

- · Quick and easy gearhead selection based on your application.
- · Maximum transmissible torque $T_{2\alpha}$ as the starting point for selecting the gearhead (definition $T_{2\alpha} \neq T_{2B}$). No restriction on $T_{2\alpha}$ due to a maximum number of cycles per hour.
- · Optional: Quick selection based on the maximum motor torque.

Your Benefits:

- · Perfect-fit sizing of your drive
- · Efficient and reliable gearhead selection
- · Huge time saving
- · Computational work for simple applications reduced to a minimum*
- Consideration of radial and axial forces if necessary

Sizing of the alpha Value Line - NPS

A: Simplified sizing for servo motors based on the maximum motor torque: $\mathbf{M}_{max} * \mathbf{i} \leq \mathbf{T}_{2\alpha}$

B: Sizing based on the application

Step 1:

Determine the maximum application torque: T_{2b} = _____[Nm]

Step 2:

Determine the operating mode factor K_{M} =

IVI			
Typical applications	Cycle	Torque characteristic	Operating mode factor K _M
Format changing, e.g. in packaging machines, drives for processing equipment, actuators, etc.	S5 operation: Low duty cycle Small number of cycles Low dynamics	T _{2b} t ^z t	1.0
Tool changers with low dynamics, pick & place gantry axes, tire building machines, etc.	S5 operation: Medium duty cycle Small number of cycles Medium dynamics	T _{2b} t ^z t	1.6
Linear modules, linear axes in woodworking machines, ball screw drives, etc.	S5 operations: Medium duty circle Medium number of cycles Meduim dynamics	T _{2b} t ^z t	1.9
Roller drives in printing presses, star drives in rackers, etc.	S1 operation: High duty cycle	T _{2b} t t	2.2
Linear axes in plasma, laser or water jet cutters, portals, tool changers with high dynamics	S5 operation: Medium duty circle Medium number of cycles High dynamics	T _{2b} t ² t	2.5
SCARA robots, gantry robots, machining spindles, etc.	S5 operation: High duty cycle High number of cycles High dynamics	T _{2b}	3.0

Step 3:

Determine the sizing factor with the operating mode factor $K_{\rm M}$ $f_{\rm a}$ =

Step 4:

Compare the equivalent application torque with the maximum gearhead T_{2a} (see table, Step 5)

$$\begin{split} & \mathsf{T}_{2_{eq}} = \mathsf{f}_{a} * \mathsf{T}_{2\mathsf{b}} \leq \mathsf{T}_{2\alpha} \\ & \mathsf{T}_{2_{eq}} = \underline{\hspace{1cm}} * \underline{\hspace{1cm}} \leq \mathsf{T}_{2\alpha} \\ & \mathsf{T}_{2_{eq}} = \underline{\hspace{1cm}} [\mathsf{Nm}] \leq \underline{\hspace{1cm}} [\mathsf{Nm}] \end{split}$$

Step 5: Quick selection of the technical data

			NPS	015	NPS	025	NPS	035	NPS	045			
			1-stage	2-stage	1-stage	2-stage	1-stage	2-stage	1-stage	2-stage			
Ratio a)	i		3 - 10	12 - 100	3 - 10	3 - 10 9 - 100		9 - 100	5 - 10	15 - 100			
Maximum torque a MF	_	Nm	51-	-64	128	-160	320	-408	640-800				
Maximum torque a MF	Τ _{2α}	in.lb	450	-570	1130	-1420	2830	-3610	5660-7080				
Maximum torque a) MA	т	Nm	62	-88	184	-200	432	-488		_			
MA WA	2α	in.lb	550	-780	1490	-1770	4250	-4320		-			
Max. input speed	n _{1max}	min-1	8000	10000	7000	8000	6000	7000	4000	6000			
Nominal input speed	n _{1N}	min-1	2900	3800	2700	3300	2000	2700	1800	2600			
Max. radial force	_	N	28	00	42	00	66	00	9900				
iviax. radiai force	F _{2RMax}	lb _f	60	30	9	50	14	90	2200				
Mean operating noise	L _{PA}	dB(A)	5	8	6	0	6	3	66				
Paint						Paint Pearl dark gre	arl dark grey – innovation blue						
Direction of rotation					Motor and gearhead same direction								
Protection class					IP 65								
Page			(3	8 10				12				

a) The maximum torques depend on the ratio

Account must be taken of the radial and axial forces at the output:

Please also carry out steps 6 and 7 if forces are present at the output (e.g. if timing belt pulleys, pinions or levers are mounted there).

Step 6 (if external forces are present):

Determine the forces acting on the output and check the boundary conditions

Radial force $F_{2r} =$ ____[N]
Radial force distance $x_2 =$ ____[mm]
Axial force $F_{2a} =$ ____[N]
Axial force distance $y_2 =$ ____[mm]
(required if F_{2a} is present)

Conditions if axial force F_{2a} is present:

Step 7:

Determine the maximum equivalent force acting on the output $F_{2 \text{ eq}}$

NPS 015S

				1-stage					2-stage														
Ratio ^{a)}		i		3	4	5	7	8	10	12	15	16	20	25	28	30	32	35	40	50	64	70	100
Maximum torque	MF	$T_{2\alpha}$	Nm in.lb	51 450	56 500	64 570	64 570	56 500	56 500	51 450	51 450	56 500	56 500	64 570	56 500	51 450	56 500	64 570	56 500	64 570	56 500	64 570	56 500
Maximum torque HIGH TORQ	UE – MA	T _{2a}	Nm	88	67	-	-	-	-	62	67	67	67	-	67	62	-	-	67	-	-	-	-
Emergency stop torque b)		T _{2Not}	in.lb Nm	780	590	-	-	-	-	550	590	590		- 75	590	550	-	-	590	-	-	-	-
Nominal input speed c)		n _{1N}	in.lb min ⁻¹		2900			3600				3800		60					4300)			
Max. input speed		n _{1Max}	min-1			80	00			10000													
Max. torsional backlash		j_t	arcmin		Standard ≤ 8 Standard ≤ 10																		
Max. axial force ^{d)}			N Ib,		2400 540																		
Max. radial force d	F_{2RMax} $\frac{N}{ b_i }$													300									
Weight incl. standard adapter plate ^{e)} m			kg		1.8 - 3 4.0 - 6.6 4.2 - 6.4																		
Operating noise ^{f)}		L _{PA}	dB(A)	4.0 ° 0.0 4.2 ° 0.4 ≤ 58																			
Max. permitted housing temperature			°C F																				
Ambient temperature			°C	-15 to +40																			
Lubrication			F									1	5 to	104	lifo								
									Harri								4	Divis					
Paint	Paint								Hous						-Side:			1 Blue					
Direction of rotation										N	Motor	and o	gearhe	ead sa	ıme di	irection	on						
Type of protection			om²										IP	65									
Moment of interia (related to the drive)							0.55										to 0.1						
Clamping hub diameter	10 ⁻³ in.lb.s ² Standard big				9(A) 11(B) 14(C) 16(D) 19(E)							8(Z) 9(A) 11(B) 14(C)											

a) Other ratios available on request.

You can select a suitable adapter plate using the online configurator on www.wittenstein-alpha.com

b) Permitted 1000 times during the service life of the gearhead. If $T_{2\alpha} > T_{2Not}$, then T_{2Not} is the maximum permitted value.

 $^{^{\}circ}$ At T $_{\rm 1N}$ and 20 $^{\circ}$ C ambient temperature. Higher speeds possible if calculated using cymex $^{\circ}$.

 $^{^{\}mbox{\tiny d)}}$ Refers to the center of the output shaft at $n_2\!=\!150$ rpm.

e) Depending on the clamping hub diameter and the selected adapter plate.

 $^{^{}f)}$ At i=10 and n_1 =3000 rpm at no load.

Quick gearhead selection based on the motor characteristic*: Max. torque $T_{2a} \ge T_{\text{max motor}}^*$ i *Please refer to catalog pages 4 and 5 for detailed information on manual selection based on the application.

stage

Up to 19 ⁴⁾ (E) clamping hub diameter

Alternatives: Output shaft variants

Output shaft with key E = key as per DIN 6885, sheet 1, form A

Splined shaft

X = W 16 x 0.8 x 30 x 18 x 6m, DIN 5480

- 1) Check motor shaft fit.
- 2) Min./max. permissible motor shaft length.

 Longer motor shafts are adaptable; please contact us.
- 3) The dimensions depend on the motor.
- 4) Smaller motor shaft diameters are compensated by a bushing with a minimum thickness of 1 mm.

NPS 025S

i MF T_{20}			3		1-stage				2-stage														
20		Ratio ^{a)} i		4	5	7	8	10	9	12	15	16	20	25	28	30	32	35	40	50	64	70	100
		Nm	128	152	160	160	144	144	128	128	128	152	152	160	152	128	152	160	152	160	144	160	144
		in.lb Nm	1130 200	1350	1420	1420	1270	1270	1130 200	1130 200	1130 192	1350 184	1350 184	1420	1350	1130 168	1350	1420	1350 184	1420	1270	1420	1270
MA 120	ľα	in.lb	1170	1630	-	-	-	-	1770	1770	1700	1630	1630	-	1630	1490	-	-	1630	-	-	-	-
T ₂₁	!Not	Nm in.lb											190 1700										
n ₁₁	N	min ⁻¹	2700 2900				3300									4000							
n ₁₁	Max	min-1			70	00										8000							
j_t	j_t arcmin Standard ≤ 8 Standard ≤ 10																						
F	AMax	N		3350 750																			
		N																					
F	PRMax	lb _f											950										
m		kg																					
L	3A	dB(A)	≤ 61 ≤ 59																				
		°C	122																				
			· ·																				
		F																					
											L	.ubric	ated f	for life	е								
								Но	using:	: pear	l darl	grey	/ Driv	/e-Sid	de: In	novat	ion E	Blue					
Direction of rotation										Moto	r and	l gear	head	same	e dired	ction							
Type of protection													IP 65										
									0.2 to 0.57														
_	10 ⁻³ in.lb.s ²																						
ard	mm -																						
	T ₂	T _{2Not} T _{2Not} T _{1N} T _{1Max} j _t F _{2AMax} F _{2AMax} M L _{PA} kgc 10°3 ir	MA $T_{2\alpha}$ in.lb T_{2Not} in.lb n_{1N} min-1 n_{1Max} min-1 j_t arcmin F_{2AMax} $\frac{N}{lb_t}$ m $\frac{kg}{lb_m}$ L_{PA} dB(A) $^{\circ}$ C F $^{\circ}$ C T $^{\circ}$ C	MA T_{2a} in.lb 1170 T_{2Not} in.lb 1170 n_{1N} min.lb in.lb n_{1N} min.l in.lb n_{1Max} min.l in.lb n_{1Max} min.l in.l <	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MA T_{2c} in.lb 1170 1630 - - - T_{2Not} Nm in.lb - - - - - n_{1M} min-1 2700 2900 n_{1Max} min-1 7000 j_t arcmin Standard ≤ 8 F_{2AMax} N - $ b_t $ N - $ b_t $ N - $ b_t $ 8.0 - 13.1 - L_{PA} dB(A) ≤ 61 $^{\circ}$ C F $^{\circ}$ C F $^{\circ}$ C F $^{\circ}$ C F $^{\circ}$ C F $^{\circ}$ C $^{\circ}$ C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MA T_{2c} in.lb 1170 1630 - - - 1770 1770 1700 T_{2Not} Nm in.lb - - - - 1770 1770 1700 n_{1M} min.1 2700 2900 33 n_{1Max} min.1 7000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MA T₂tat in.lb 1170 1630 - - - 1770 1770 1700 1630 <td>MA T₂x in.lb 1170 1630 - - - 1770 1770 1700 1630 - - 190 T₂xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</td> <td>MA T₂xx in.lb 1170 1630 - - - 1770 1770 1770 1630 - - 1630 T₂Not Nm 190 1700 1700 1700 1700 1700 In I</td> <td>MA T₂₂₂₂ in.lb 1170 1630 - - - - 1770 1770 1700 1630 1630 - 1630 1490 T₂₂⋈₂ N N 190 1700 3300 8000 j₁ arcmin Standard ≤ 8 Standard F₂ҳмаҳҳ Ib₁ 750 R₂ҳмаҳҳ Ib₁ 750 R₂ҳмаҳҳ Ib₁ 950 M kg 3.6 - 5.9 4.1 - 5. Ib₂ 8.0 - 13.1 950 L₂ҳҳ day 4.1 - 5. y² 1 y² </td>	MA T₂x in.lb 1170 1630 - - - 1770 1770 1700 1630 - - 190 T₂xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	MA T₂xx in.lb 1170 1630 - - - 1770 1770 1770 1630 - - 1630 T₂Not Nm 190 1700 1700 1700 1700 1700 In I	MA T₂₂₂₂ in.lb 1170 1630 - - - - 1770 1770 1700 1630 1630 - 1630 1490 T₂₂⋈₂ N N 190 1700 3300 8000 j₁ arcmin Standard ≤ 8 Standard F₂ҳмаҳҳ Ib₁ 750 R₂ҳмаҳҳ Ib₁ 750 R₂ҳмаҳҳ Ib₁ 950 M kg 3.6 - 5.9 4.1 - 5. Ib₂ 8.0 - 13.1 950 L₂ҳҳ day 4.1 - 5. y² 1 y²						

a) Other ratios available on request.

You can select a suitable adapter plate using the online configurator on www.wittenstein-alpha.com

b) Permitted 1000 times during the service life of the gearhead. If $T_{2\alpha} > T_{2Not}$, then T_{2Not} is the maximum permitted value.

 $^{^{\}circ}$ At T $_{\rm 1N}$ and 20 $^{\circ}$ C ambient temperature. Higher speeds possible if calculated using cymex $^{\circ}$.

 $^{^{\}mbox{\tiny d)}}$ Refers to the center of the output shaft at $n_2\!=\!150$ rpm.

e) Depending on the clamping hub diameter and the selected adapter plate.

 $^{^{}f)}$ At i=10 and n_1 =3000 rpm at no load.

Quick gearhead selection based on the motor characteristic*: Max. torque $T_{2a} \ge T_{\text{max motor}}^*$ i *Please refer to catalog pages 4 and 5 for detailed information on manual selection based on the application.

Up to 19 ⁴⁾ (E) clamping hub diameter

-stage

Up to 28 ⁴⁾ (H) clamping hub diameter

Up to 14 ⁴⁾ (C) clamping hub diameter

Alternatives: Output shaft variants

Output shaft with key E = key as per DIN 6885, sheet 1, form A

Splined shaft

X = W 22 x 1.25 x 30 x 16 x 6m, DIN 5480

- 1) Check motor shaft fit.
- 2) Min./max. permissible motor shaft length.

 Longer motor shafts are adaptable; please contact us.
- 3) The dimensions depend on the motor.
- 4) Smaller motor shaft diameters are compensated by a bushing with a minimum thickness of 1 mm.

NPS 035S

				1-stage				2-stage																
Ratio a)		i		3	4	5	7	8	10	9	12	15	16	20	25	28	30	32	35	40	50	64	70	100
Maximum torque	MF	$T_{2\alpha}$	Nm in.lb	320 2830	408 3610	400 3540	400 3540	352 3120	352 3120	320 2830	320 2830	320 2830	408 3610	408 3610	400 3540	408 3610	320 2830	408 3610	400 3540	408 3610	400 3540	352 3120	400 3540	352 3120
Maximum torque HIGH TORG	QUE – MA	$T_{2\alpha}$	Nm	488	488	-	-	-	-	488	488	480	488	488	-	488	432	-	-	488	-	-	-	-
Emergency stop torque b)		T _{2Not}	in.lb Nm in.lb	4320	4320	-	-	_	-	4320	4320	4250		480	-	4320	3620	_	-	4320	-	-	-	
Nominal input speed ©		n _{1N}	min-1		2000			2500				27	00	4200						3600				
Max. input speed		n _{1Max}	min-1			60	00										7000							
Max. torsional backlash		j_t	arcmin Standard ≤ 8 Standard ≤ 10																					
Max. axial force d)			N Ib,		5650 1270																			
Max. radial force ^{d)}		F _{2RMax} N Ib,			6600 1490																			
Weight incl. standard adapter plate e)	ka			8.4 - 14.3 8.8 - 13.9 18.6 - 31.6 19.4 - 30.7																				
Operating noise ¹⁾		L _{PA}	dB(A)	≤ 65 ≤ 61																				
Max. permitted housing temperature			°C F	122																				
Ambient temperature			°C F	-15 to +40																				
Lubrication			<u> </u>									L		ated t		e								
Paint									Но	using	: pear	rl darl	k grey	/ Driv	ve-Si	de: In	novati	ion E	Blue					
Direction of rotation										Moto	or and	d gear	head	same	e dire	ction								
Type of protection													IP 65											
Moment of interia		kgo			0.87 to 8.3 0.29 to 2.								-											
(related to the drive)	Standard	10 ⁻³ ir	n.lb.s²	0.77 to 7.4								—												
Clamping hub diameter big			32(I) 38(K) 24(G) 28(H)																					

a) Other ratios available on request.

You can select a suitable adapter plate using the online configurator on www.wittenstein-alpha.com

b) Permitted 1000 times during the service life of the gearhead. If $T_{2\alpha} > T_{2Not}$, then T_{2Not} is the maximum permitted value.

 $^{^{\}circ}$ At T $_{\rm 1N}$ and 20 $^{\circ}$ C ambient temperature. Higher speeds possible if calculated using cymex $^{\circ}$.

 $^{^{\}mbox{\tiny d)}}$ Refers to the center of the output shaft at $n_2\!=\!150$ rpm.

e) Depending on the clamping hub diameter and the selected adapter plate.

 $^{^{}f)}$ At i=10 and n_1 =3000 rpm at no load.

Quick gearhead selection based on the motor characteristic*: Max. torque $T_{2a} \ge T_{\text{max motor}}^*$ i *Please refer to catalog pages 4 and 5 for detailed information on manual selection based on the application.

Up to 38 4) (K) clamping hub diameter

Up to 19 4) (E) clamping hub diameter

Alternatives: Output shaft variants

Output shaft with key E = key as per DIN 6885, sheet 1, form A

Splined shaft

- 1) Check motor shaft fit.
- 2) Min./max. permissible motor shaft length. Longer motor shafts are adaptable; please contact us.
- 3) The dimensions depend on the motor.
- 4) Smaller motor shaft diameters are compensated by a bushing with a minimum thickness of 1 mm.

NPS 045S

					1-stage		2-stage								
Ratio ^{a)}		i		5	8	10	25	32	50	64	100				
Maximum torque	MF	$T_{2\alpha}$	Nm	800	640	640	800	640	800	640	640				
·		200	in.lb Nm	7080	5660	5660	7080	5660	7080	5660	5660				
Emergency stop torque b)		T _{2Not}	in.lb	1222											
Nominal input speed c)		n _{1N}	min ⁻¹	1800	20	000	2600								
Max. input speed		n _{1Max}	min ⁻¹		4000			6000							
Max. torsional backlash		j_t	arcmin		Standard ≤ 8	3			Standard ≤ 10	0					
Max. axial force d		F _{2AMax}	N					70							
		2AMax	lb _f				2200 9900								
Max. radial force d	F _{2RMax}	N lb,					200								
Materials in all about plants of a state of		kg		19 - 25				19 - 29							
Weight incl. standard adapter plate ^{e)}	m	lb _m		42 - 55				42 - 64							
Operating noise ^{f)}		L _{PA}	dB(A)		≤ 68				≤ 65						
Max. permitted housing temperature			°C					90							
			F °C					94 o +40							
Ambient temperature			F					+104							
Lubrication							Lubricate	ed for life							
Paint				Housing: pearl dark grey / Drive-Side: Innovation Blue											
Direction of rotation				Motor and gearhead same direction											
Type of protection				IP 65											
Moment of interia			cm²		7.2 to 8.7				1.6 to 7.5						
(related to the drive)		10 ⁻³ ii	n.lb.s²		6.4 to 7.7				1.4 to 6.6						
Clamping hub diameter Standard big			mm		38(K)		19(E) 24(G) 28(H)								
				-		32(I) 38(K)									

^{a)} Other ratios available on request.

You can select a suitable adapter plate using the online configurator on www.wittenstein-alpha.com

b) Permitted 1000 times during the service life of the gearhead. If $T_{2\alpha} > T_{2Not}$, then T_{2Not} is the maximum permitted value.

 $^{^{\}rm c)}$ At T $_{\rm 1N}$ and 20 $^{\rm o}$ C ambient temperature. Higher speeds possible if calculated using cymex $^{\rm o}$.

 $^{^{\}mbox{\tiny d}}$ Refers to the center of the output shaft at $n_2\!=\!150$ rpm.

 $^{^{\}mbox{\tiny e)}}$ Depending on the clamping hub diameter and the selected adapter plate.

 $^{^{\}text{f}}$ At i=10 and n_1 =3000 rpm at no load.

Quick gearhead selection based on the motor characteristic*: Max. torque $T_{\rm 2a} \ge T_{\rm max.\,motor}$ * i *Please refer to catalog pages 4 and 5 for detailed information on manual selection based on the application.

Up to 38 4) (K) clamping hub diameter

Up to 28 4) (H) clamping hub diameter

Up to 38 4) (K) clamping hub

diameter

2-stage

Alternatives: Output shaft variants

Output shaft with key E = key as per DIN 6885, sheet 1, form A

Splined shaft X = W 40 x 2 x 30 x 18 x 6m, DIN 5480

- 1) Check motor shaft fit.
- 2) Min./max. permissible motor shaft length. Longer motor shafts are adaptable; please contact us.
- 3) The dimensions depend on the motor.
- 4) Smaller motor shaft diameters are compensated by a bushing with a minimum thickness of 1 mm.

Glossary

Equivalent force at the output (F_{2eq})

The equivalent force $F_{2_{eq}}$ at the output describes the decisive forces for gearhead selection

Equivalent application torque $(T_{2 \text{ eq}})$

The equivalent application torque T_{2_eq} describes the decisive torque for gearhead selection.

Sizing factor (f₂)

The sizing factor f_a describes the influence of the daily operating time and the operating mode factor on the application torque.

Operating mode factor (K_M)

The operating mode factor $K_{\rm M}$ describes the influence of the duty cycle, the number of cycles and the dynamics on the application torque.

Moment of inertia (relates to the drive) (J)

The mass moment of inertia J is a measure of the effort applied by an object to maintain its momentary condition (at rest or moving).

Operating noise (L_{PA})

Low noise level $L_{\rm PA}$ is a factor of growing importance for environmental and health reasons. The gear ratio and speed both affect the noise level.

General rule:

A higher speed means a higher noise level, while a higher ratio means a lower noise level. The values specified in our catalog relate to gearheads with a ratio i=10/100 at a speed n=3000 rpm

Max. radial force (F_{2R})

The radial force F_{2R} is the force component acting at right angles to the output shaft with the NP, NPS, NPR and NPL or parallel to the output flange with the NPT. It acts perpendicular to the axial force and can assume an axial distance of x_2 in relation to the shaft shoulder with the NP, NPS, NPR and NPL or to the shaft flange with the NPT, which acts as a lever arm. The lateral force produces a bending moment.

Max. input speed (n_{1max}) and nominal input speed (n_{1N})

Two speeds are of relevance when sizing a gearhead: the maximum speed and the nominal speed at the input. The maximum permissible speed n_{1Max} must not be exceeded because it serves as the basis for sizing -> cyclic operation. The nominal speed n_{1N} must not be exceeded in \longrightarrow continuous operation. The housing temperature limits the nominal speed, which must not exceed 90°C. The nominal input speed specified in the catalogue applies to an ambient temperature of 20°C. As can be seen in the diagram below, the temperature limit is reached more quickly in the presence of an elevated outside temperature, in other words the nominal input speed must be reduced if the ambient temperature is high. The values applicable to your gearhead are available from WITTENSTEIN alpha on request.

Max. output torque (T_{2a})

 $T_{2\alpha}$ is the maximum torque which can be transmitted by the gearhead. This value may be lower, depending on the specific boundary conditions of the application.

Emergency stop torque (T_{2Not})

The emergency stop torque [Nm] T_{2Not} is the maximum permissible torque at the gearhead output and must not be reached more than 1000 times during the life of the gearhead. It must never be exceeded.

Further information can be found in the glossary of our current product catalog

Order codes for the alpha Value Line - NPS

Ratio and clamping hub diameter table

Size	Stages	Ratios	Clamping hub diameters* [mm]
005	1 stage	4, 5, 7, 8, 10	8 (Z), 9 (A), 11 (B), 14 (C)
003	2 stage	16, 20, 25, 28, 35, 40, 50, 64, 70, 100	8 (Z), 9 (A), 11 (B), 14 (C)
015	1 stage	3, 4, 5, 7, 8, 10	9 (A), 11 (B), 14 (C), 16 (D), 19 (E)
015	2 stage	12, 15, 16, 20, 25, 28, 30, 32, 35, 40, 50, 64, 70, 100	8 (Z), 9 (A), 11 (B), 14 (C)
025	1 stage	3, 4, 5, 7, 8, 10	14 (C), 16 (D), 19 (E), 24 (G), 28 (H)
025	2 stage	9, 12, 15, 16, 20, 25, 28, 30, 32, 35, 40, 50, 64, 70, 100	9 (A), 11 (B), 14 (C), 16 (D), 19 (E)
035	1 stage	3, 4, 5, 7, 8, 10	19 (E), 24 (G), 28 (H), 32 (I), 38 (K)
035	2 stage	9, 12, 15, 16, 20, 25, 28, 30, 32, 35, 40, 50, 64, 70, 100	14 (C), 16 (D), 19 (E), 24 (G), 28 (H)
045	1 stage	5, 8, 10	38 (K)
045	2 stage	25, 32, 50, 64, 100	19 (E), 24 (G), 28 (H), 32 (I), 38 (K)

^{*}Intermediate diameters are possible in combination with a bushing with a minimum thickness of 1 mm.

WITTENSTEIN alpha · 1249 Humbracht Circle · Bartlett, IL 60103, USA · Tel. +1 630 540-5300 · info@wittenstein-us.com

WITTENSTEIN alpha - intelligent drive systems

www.wittenstein-alpha.com/alpha-value-line

