Lucas de Lucena Siqueira - 2010080354

Regressão Linear Múltipla

Carregando o Dataset Boston Houses

- 1. CRIM: per capita crime rate by town
- 2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
- 3. INDUS: proportion of non-residential acres per town
- 4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- 5. NOX: nitric oxides concentration (parts per 10 million)
- 6. RM: average number of rooms per dwelling
- 7. AGE: proportion of owner-occupied units built prior to 1940
- 8. DIS: weighted distances to five Boston employment centres
- 9. RAD: index of accessibility to radial highways
- 10. TAX: full-value property-tax rate per 10,000
- 11. PTRATIO: pupil-teacher ratio by town
- 12. B: 1000(Bk 0.63)² where Bk is the proportion of blacks by town
- 13. LSTAT: % lower status of the population
- 14. TARGET: Median value of owner-occupied homes in \$1000's

In [62]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn.datasets import load_boston
from sklearn import linear_model
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
%matplotlib inline
```

In [63]:

```
# Gerando o dataset
boston = load_boston()
dataset = pd.DataFrame(boston.data, columns = boston.feature_names)
dataset['target'] = boston.target
```

In [64]:

dataset.head()

Out[64]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	•
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	į

In [65]:

dataset.describe()

Out[65]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	50
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	:
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	1:
<								>

In [66]:

dataset.describe().T

Out[66]:

	count	mean	std	min	25%	50%	75%	ma
CRIM	506.0	3.613524	8.601545	0.00632	0.082045	0.25651	3.677083	88.976
ZN	506.0	11.363636	23.322453	0.00000	0.000000	0.00000	12.500000	100.000
INDUS	506.0	11.136779	6.860353	0.46000	5.190000	9.69000	18.100000	27.740
CHAS	506.0	0.069170	0.253994	0.00000	0.000000	0.00000	0.000000	1.000
NOX	506.0	0.554695	0.115878	0.38500	0.449000	0.53800	0.624000	0.871
RM	506.0	6.284634	0.702617	3.56100	5.885500	6.20850	6.623500	8.780
AGE	506.0	68.574901	28.148861	2.90000	45.025000	77.50000	94.075000	100.000
DIS	506.0	3.795043	2.105710	1.12960	2.100175	3.20745	5.188425	12.126
RAD	506.0	9.549407	8.707259	1.00000	4.000000	5.00000	24.000000	24.000
TAX	506.0	408.237154	168.537116	187.00000	279.000000	330.00000	666.000000	711.000
PTRATIO	506.0	18.455534	2.164946	12.60000	17.400000	19.05000	20.200000	22.000
В	506.0	356.674032	91.294864	0.32000	375.377500	391.44000	396.225000	396.900
LSTAT	506.0	12.653063	7.141062	1.73000	6.950000	11.36000	16.955000	37.970
target	506.0	22.532806	9.197104	5.00000	17.025000	21.20000	25.000000	50.000

In [67]:

import seaborn as sns

sns.histplot(dataset.NOX)

Out[67]:

<AxesSubplot:xlabel='NOX', ylabel='Count'>

In [68]:

```
sns.histplot(dataset.CRIM)
```

Out[68]:

<AxesSubplot:xlabel='CRIM', ylabel='Count'>

In [69]:

dataset.describe()['target'] # variável preditora ou Classe ou Label

Out[69]:

count	506.000000
mean	22.532806
std	9.197104
min	5.000000
25%	17.025000
50%	21.200000
75%	25.000000
max	50.000000

Name: target, dtype: float64

In [70]:

```
dataset.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): Non-Null Count Dtype Column ---------0 CRIM 506 non-null float64 1 ΖN 506 non-null float64 2 506 non-null float64 **INDUS** 3 CHAS 506 non-null float64 float64 4 NOX 506 non-null 5 506 non-null float64 RM 6 506 non-null float64 AGE 7 DIS 506 non-null float64 float64 8 RAD 506 non-null 9 506 non-null float64 TAX 10 PTRATIO 506 non-null float64 float64 11 506 non-null В 12 LSTAT 506 non-null float64 506 non-null float64 13 target

dtypes: float64(14)
memory usage: 55.5 KB

In [71]:

```
observations = len(dataset)
observations
```

Out[71]:

506

In [72]:

dataset.head()

Out[72]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	•
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
<													>

```
In [73]:
```

```
dataset.iloc[:,:-1][:3]
```

Out[73]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4

< >

```
In [74]:
```

```
X = dataset.iloc[:,:-1]
y = dataset['target'].values
```

In [75]:

X.head()

Out[75]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	•
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
<													>

In [76]:

len(X.columns)

Out[76]:

13

In [77]:

y[:5]

Out[77]:

array([24., 21.6, 34.7, 33.4, 36.2])

Matriz de Correlação

In [78]:

```
# Gerando a matriz
X = dataset.iloc[:,:-1]
matriz_corr = X.corr()
print (matriz_corr)
```

E \	CRIM	ZN	INDUS	CHAS	NOX	RM	AG
CRIM 4	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.35273
ZN 7	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.56953
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.64477
CHAS 8	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.08651
NOX 0	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.73147
RM 5	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.24026
AGE 0	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.00000
DIS 1	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.74788
RAD 2	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.45602
TAX 6	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.50645
	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.26151
B 4	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.27353
LSTAT 9	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.60233
	DIS	RAD	TAX	PTRATIO	В	LSTAT	
CRIM	-0.379670	0.625505	0.582764	_	-0.385064		
ZN	0.664408	-0.311948	-0.314563	-0.391679	0.175520	-0.412995	
INDUS	-0.708027	0.595129	0.720760	0.383248	-0.356977	0.603800	
CHAS	-0.099176	-0.007368	-0.035587	-0.121515	0.048788	-0.053929	
NOX	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.590879	
RM	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.613808	
AGE	-0.747881	0.456022	0.506456	0.261515	-0.273534	0.602339	
DIS	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.496996	
RAD	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.488676	
TAX	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.543993	
PTRATIO	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.374044	
В	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.366087	
LSTAT	-0.496996	0.488676	0.543993	0.374044	-0.366087	1.000000	

In [79]:

```
# Criando um Correlation Plot
def visualize_correlation_matrix(data, hurdle = 0.0):
   fig = plt.figure(figsize=(12,9))
   ax = fig.add_subplot(111)
   R = np.corrcoef(data, rowvar = 0)
   R[np.where(np.abs(R) < hurdle)] = 0.0</pre>
   heatmap = plt.pcolor(R, cmap = 'RdBu' , alpha = 0.8) #mpl.cm.coolwarm
   heatmap.axes.set_frame_on(False)
   heatmap.axes.set_yticks(np.arange(R.shape[0]) + 0.5, minor = False)
   heatmap.axes.set_xticks(np.arange(R.shape[1]) + 0.5, minor = False)
   heatmap.axes.set_xticklabels(dataset.columns[:-1], minor = False)
   plt.xticks(rotation=90)
   heatmap.axes.set_yticklabels(dataset.columns[:-1], minor = False)
   plt.tick_params(axis = 'both', which = 'both', bottom = 'off', top = 'off', left = 'off
   plt.colorbar()
   plt.show()
```

In [80]:

```
# Visualizando o Plot
visualize_correlation_matrix(X, hurdle = 0.5)
```


In [81]:

```
# matriz de Correlação com a variável preditora
mt = pd.DataFrame(dataset.values, columns=dataset.columns)
mt_corr = mt.corr()
print (abs(mt_corr['target']).sort_values(ascending=False))
```

target 1.000000 **LSTAT** 0.737663 RM0.695360 PTRATIO 0.507787 **INDUS** 0.483725 TAX 0.468536 0.427321 NOX 0.388305 CRIM RAD 0.381626 0.376955 AGE ZN0.360445 0.333461 В DIS 0.249929 0.175260 CHAS

Name: target, dtype: float64

In [82]:

X.head()

Out[82]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	2
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	į
<													>

In [83]:

```
standardization = StandardScaler()
Xst = standardization.fit_transform(X)
original_means = standardization.mean_
originanal_stds = standardization.scale_
print('Dataset Original')
X.head()
```

Dataset Original

Out[83]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	2
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ

In [84]:

```
print('Dataset Padronizado')
dstd = pd.DataFrame(Xst, columns=boston.feature_names)
dstd.head()
```

Dataset Padronizado

Out[84]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RA
0	-0.419782	0.284830	-1.287909	-0.272599	-0.144217	0.413672	-0.120013	0.140214	-0.98284
1	-0.417339	-0.487722	-0.593381	-0.272599	-0.740262	0.194274	0.367166	0.557160	-0.86788
2	-0.417342	-0.487722	-0.593381	-0.272599	-0.740262	1.282714	-0.265812	0.557160	-0.86788
3	-0.416750	-0.487722	-1.306878	-0.272599	-0.835284	1.016303	-0.809889	1.077737	-0.75292
4	-0.412482	-0.487722	-1.306878	-0.272599	-0.835284	1.228577	-0.511180	1.077737	-0.75292
<									>

In [85]:

X.max()

Out[85]:

CRIM 88.9762 ZN100.0000 **INDUS** 27.7400 CHAS 1.0000 NOX 0.8710 RM8.7800 AGE 100.0000 DIS 12.1265 RAD 24.0000 TAX 711.0000 **PTRATIO** 22.0000 396.9000 В **LSTAT** 37.9700 dtype: float64

In [86]:

dstd.max()

Out[86]:

CRIM 9.933931 ΖN 3.804234 **INDUS** 2.422565 CHAS 3.668398 NOX 2.732346 3.555044 RMAGE 1.117494 DIS 3.960518 1.661245 RAD TAX 1.798194 **PTRATIO** 1.638828 0.441052 **LSTAT** 3.548771 dtype: float64

```
In [87]:
X.min()
Out[87]:
CRIM
              0.00632
ZN
              0.00000
INDUS
              0.46000
CHAS
              0.00000
NOX
              0.38500
RM
              3.56100
AGE
              2.90000
DIS
              1.12960
RAD
              1.00000
TAX
           187.00000
PTRATIO
             12.60000
В
              0.32000
LSTAT
              1.73000
dtype: float64
In [88]:
dstd.min()
Out[88]:
CRIM
          -0.419782
ΖN
           -0.487722
          -1.557842
INDUS
CHAS
          -0.272599
          -1.465882
NOX
          -3.880249
RM
          -2.335437
AGE
DIS
          -1.267069
          -0.982843
RAD
TAX
          -1.313990
PTRATIO
          -2.707379
В
          -3.907193
LSTAT
          -1.531127
dtype: float64
In [89]:
```

```
y[:5]
Out[89]:
```

```
array([24., 21.6, 34.7, 33.4, 36.2])
```

In [90]:

```
dfXst = pd.DataFrame(Xst, columns=boston.feature_names)
dfXst.head()
```

Out[90]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RA
0	-0.419782	0.284830	-1.287909	-0.272599	-0.144217	0.413672	-0.120013	0.140214	-0.98284
1	-0.417339	-0.487722	-0.593381	-0.272599	-0.740262	0.194274	0.367166	0.557160	-0.86788
2	-0.417342	-0.487722	-0.593381	-0.272599	-0.740262	1.282714	-0.265812	0.557160	-0.86788
3	-0.416750	-0.487722	-1.306878	-0.272599	-0.835284	1.016303	-0.809889	1.077737	-0.75292
4	-0.412482	-0.487722	-1.306878	-0.272599	-0.835284	1.228577	-0.511180	1.077737	-0.75292

In [91]:

Xinv = standardization.inverse_transform(Xst)
dfinverser = pd.DataFrame(Xinv, columns=boston.feature_names)
dfinverser.head()

Out[91]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
<													>

In [92]:

dataset.head()

Out[92]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	:
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
<													>

Criar o modelo

In [93]:

```
X = dataset.copy()
X.head()
```

Out[93]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	į
<													>

In [94]:

```
atributos = list(dataset.columns[:-1])
atributos
```

Out[94]:

```
['CRIM',
 'ZN',
 'INDUS',
 'CHAS',
 'NOX',
 'RM',
 'AGE',
 'DIS',
 'RAD',
 'TAX',
 'PTRATIO',
 'B',
 'LSTAT']
```

Importância dos Atributos

target 1.000000

LSTAT 0.737663

RM 0.695360

PTRATIO 0.507787

INDUS 0.483725

TAX 0.468536

NOX 0.427321

CRIM 0.388305

RAD 0.381626

AGE 0.376955

ZN 0.360445

B 0.333461

DIS 0.249929

CHAS 0.175260

```
In [95]:
```

Out[95]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	2
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
<													>

In [96]:

```
y[:3]
```

Out[96]:

```
array([24., 21.6, 34.7])
```

In [97]:

```
# Criando um modelo
modelo = linear_model.LinearRegression()
modelo.fit(X,y)
```

Out[97]:

LinearRegression()

In [98]:

```
modelo.coef_
```

Out[98]:

```
array([-1.08011358e-01, 4.64204584e-02, 2.05586264e-02, 2.68673382e+00, -1.77666112e+01, 3.80986521e+00, 6.92224640e-04, -1.47556685e+00, 3.06049479e-01, -1.23345939e-02, -9.52747232e-01, 9.31168327e-03, -5.24758378e-01])
```

```
In [99]:
```

```
for coef, var in sorted(zip(modelo.coef_, dataset.columns[:-1]), reverse = True):
    print ("%6.3f %s" % (coef,var))
 3.810 RM
 2.687 CHAS
 0.306 RAD
 0.046 ZN
 0.021 INDUS
 0.009 B
 0.001 AGE
-0.012 TAX
-0.108 CRIM
-0.525 LSTAT
-0.953 PTRATIO
-1.476 DIS
-17.767 NOX
In [100]:
def r2 est(X,y):
    modelo = linear_model.LinearRegression(normalize = False, fit_intercept = True)
    return r2_score(y, modelo.fit(X,y).predict(X))
In [101]:
print ('R2: %0.3f' % r2_est(X,y))
R2: 0.741
In [102]:
              CRIM
                      ZN INDUS
                                  CHAS
                                              NOX
                                                       RM
                                                              AGE
                                                                      DIS
                                                                            RAD
                                                                                    TAX
Xteste = [
             2.06,
                     0.0, 11,
                                    0.0,
                                              0.4,
                                                       3.,
                                                                     2.4,
                                                                            1.0,
                                                                                    273.0,
                                                              80.2,
    ]
modelo.predict(np.array(Xteste).reshape(1, -1))[0]
Out[102]:
10.157489025241802
In [103]:
                                                                                           PT
              CRIM
                      ZN INDUS
                                  CHAS
                                              NOX
                                                       RM
                                                               AGE
                                                                      DIS
                                                                            RAD
                                                                                    TAX
Xteste = [
               0.02,
                       0.2, 7.01,
                                     0.0,
                                            0.5, 7.1, 45.2, 6.1,
                                                                     3.0,
                                                                              222,
                                                                                     15.2,
               0.01,
                       0.1,11.01,
                                    0.0,
                                            0.6,
                                                  6.1, 80.2,
                                                               2.5,
                                                                      1.0,
                                                                              273,
                                                                                     21.2,
modelo.predict(np.array(Xteste))
Out[103]:
array([30.36056954, 19.46052668])
```

Métricas para Algoritmos de Regressão

Gerando o dataset

In [104]:

```
dataset['y_prev'] = modelo.predict(X)
dataset.head()
```

Out[104]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	į
<													>

In [105]:

```
dataset['Erro'] = abs (dataset['y_prev'] - dataset['target'] )
dataset.head()
```

Out[105]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
<													>

In [106]:

dataset.head(8)

Out[106]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	ţ
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19
<													>

In [107]:

```
dataset.Erro.sum()
```

Out[107]:

1655.0565823155594

In [108]:

```
print(dataset.shape)
dataset.head()
```

(506, 16)

Out[108]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	•
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
<													>

MAE - Mean Absolute Error

É a soma da diferença absoluta entre previsões e valores reais. Fornece uma ideia de quão erradas estão nossas previsões. Valor igual a 0 indica que não há erro, sendo a previsão perfeita (a exemplo do Logloss, a função cross val score inverte o valor)

In [109]:

MAE: -3.394 (0.922)

C:\Users\lukki\anaconda3\lib\site-packages\sklearn\utils\validation.py:70: F
utureWarning: Pass shuffle=True as keyword args. From version 1.0 (renaming
of 0.25) passing these as positional arguments will result in an error
warnings.warn(f"Pass {args_msg} as keyword args. From version "

In [110]:

resultado

Out[110]:

```
array([-4.18697907, -2.08923472, -3.18363222, -3.7614362 , -3.19397272, -1.52381741, -5.1048777 , -5.08811661, -3.96605435, -5.16308534, -3.47484933, -3.30915297, -3.14767813, -2.69519848, -2.30820926, -3.67471263, -3.64253366, -3.70426882, -2.81143274, -4.55148864, -4.94755769, -3.22358895, -4.23140924, -2.72511995, -1.93977719, -3.1240936 , -2.91551155, -3.07665534, -2.61020172, -4.49081277, -2.92750354, -2.96027884, -1.88987024, -3.53258648, -4.42471784, -2.66993093, -3.68847424, -2.25297621, -4.15643672])
```

In [111]:

```
# Modelo de árvore de Decisão
from sklearn.ensemble import RandomForestRegressor
clf = RandomForestRegressor(n_estimators=30, max_depth=8)
clf = clf.fit(X, y)
from sklearn import model_selection
num_folds = 39
num instances = len(X)
seed = 15
modelo = RandomForestRegressor(n_estimators=35, max_depth=8)
#modelo.fit(X,y)
# Separando os dados em folds
kfold = model_selection.KFold(num_folds, True, random_state = seed)
resultado = model_selection.cross_val_score(modelo, X, y, cv = kfold,
                                            scoring = 'neg_mean_absolute_error')
# Print do resultado
print("MAE: %.3f (%.3f)" % (resultado.mean(), resultado.std()))
C:\Users\lukki\anaconda3\lib\site-packages\sklearn\utils\validation.py:70: F
utureWarning: Pass shuffle=True as keyword args. From version 1.0 (renaming
of 0.25) passing these as positional arguments will result in an error
  warnings.warn(f"Pass {args_msg} as keyword args. From version "
MAE: -2.266 (0.598)
In [112]:
resultado = model_selection.cross_val_score(modelo, X, y, cv = kfold, scoring = 'r2')
# Print do resultado
print("R^2: %.3f (%.3f)" % (resultado.mean(), resultado.std()))
```

R^2: 0.841 (0.107)

MSE - Mean Squared Error

Similar ao MAE, fornece a magnitude do erro do modelo.

Ao extrairmos a raiz quadrada do MSE convertemos as unidades de volta ao original, o que pode ser útil para descrição e apresentação.

Isso é chamado RMSE (Root Mean Squared Error)

In [113]:

```
# Definindo os valores para o número de folds
num_folds = 39
num_instances = len(X)
seed = 15

# Separando os dados em folds
kfold = model_selection.KFold(num_folds, True, random_state = seed)
resultado = model_selection.cross_val_score(modelo, X, y, cv = kfold, scoring = 'neg_mean_s'
# Print do resultado
print("MSE: %.3f (%.3f)" % (resultado.mean(), resultado.std()))
```

C:\Users\lukki\anaconda3\lib\site-packages\sklearn\utils\validation.py:70: F
utureWarning: Pass shuffle=True as keyword args. From version 1.0 (renaming
of 0.25) passing these as positional arguments will result in an error
warnings.warn(f"Pass {args_msg} as keyword args. From version "

MSE: -11.543 (9.072)

RMSE (Root Mean Squared Error)

Similar ao MAE, fornece a magnitude do erro do modelo.

Ao extrairmos a raiz quadrada do MSE convertemos as unidades de volta ao original, o que pode ser útil para descrição e apresentação.

In [114]:

```
from math import sqrt
print("RMSE: %.3f " % (sqrt(abs(resultado.mean()))))
```

RMSE: 3.397

R2

Essa métrica fornece uma indicação do nível de precisão das previsões em relação aos valores observados. Também chamado de coeficiente de determinação.

Valores entre 0 e 1, sendo 1 o valor ideal.

In [115]:

```
resultado = model_selection.cross_val_score(modelo, X, y, cv = kfold, scoring = 'r2')
# Print do resultado
print("R^2: %.3f (%.3f)" % (resultado.mean(), resultado.std()))
```

R^2: 0.850 (0.097)

In [116]:

resultado

Out[116]:

```
array([0.85224962, 0.92144949, 0.8080172 , 0.93305663, 0.77288653, 0.91171039, 0.9423383 , 0.42979943, 0.79820523, 0.96300008, 0.77773214, 0.8460102 , 0.77402207, 0.82367251, 0.91837477, 0.92005312, 0.92454005, 0.86295388, 0.86503861, 0.84416788, 0.83110075, 0.93236789, 0.91906516, 0.92403703, 0.90116676, 0.77560184, 0.94760285, 0.88847331, 0.89477132, 0.88708809, 0.95559191, 0.94466212, 0.73224341, 0.78733454, 0.82390998, 0.69135547, 0.74673489, 0.88965547, 0.79142092])
```