Лекция 3 Графы

Способы задания графов. Обобщенный поиск. Поиск в ширину. Поиск в глубину. Топологическая сортировка, алгоритм Касарайю. Структура всемирной паутины.

Граф G(V, E) V-вершины (vertex), E – ребра (edge)

Способы задания:

1) Матрица смежности $A = (a_{ij})$

$$a_{ij} = egin{cases} 1$$
, если есть ребро $(v_i, v_j) \\ 0$, в противном случае хранение (пространственная сложность) $O(|V|^2)$

2) Списки смежности: любой вершине v соответствует список смежных с ней вершин. O(|V| + |E|)

(1)

П	ql	И	M	e	g	:
•	۳.	٠.	•••	_	٣	•

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Поиск в графе

Дан граф **G(V, E)** и стартовая вершина s.

Необходимо идентифицировать вершины, достижимые из s.

```
ОБОБЩЕННЫЙ ПОИСК (GENERICSEARCH)

Вход: граф G = (V, E) и вершина s \in V.

Постусловие: вершина достижима из s тогда и только тогда, когда она помечена как «разведанная».

пометить вершину s как разведанную, все остальные вершины как неразведанные

while существует ребро (v, w) \in E с разведанной v и неразведанной w do

выбрать несколько таких ребер (v, w) // конкретизировано

Поиск в ширину BFS

Поиск в глубину DFS
```

пометить w как разведанную

<u>Утв.</u> (Правильность обобщенного поиска) По завершении обобщенного поиска $v \in V$ помечена как разведанная $\Leftrightarrow \exists$ путь из s в v

Поиск в ширину (BFS - breadth-first search)

Поиск в ширину обнаруживает вершины слоями. Вершины i-го слоя являются соседями вершин (i-1)-го слоя, которые не появлялись ни в одном более раннем слое.

Время работы: O(|V| + |E|)

BFS

Вход: граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: вершина достижима из s тогда и только тогда, когда она помечена как «разведанная».

- 1) пометить s как разведанную вершину, все остальные как неразведанные
- 2) Q := очередь, инициализированная вершиной s
- 3) while Q не является пустой do
- 4) удалить вершину из начала Q, назвать ее v
- 5) **for** каждое ребро (v, w) в списке смежности v **do**
- 6) if w не разведана then
- 7) пометить w как разведанную
- 8) добавить w в конец Q

Определение кратчайшего пути dist(s, v) от s до любой достижимой вершины

BFS

Вход: граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: вершина достижима из s тогда и только тогда, когда она помечена как «разведанная».

- 1) пометить s как разведанную вершину, все остальные как неразведанные
- 2) Q := очередь, инициализированная вершиной s
- 3) while Q не является пустой do
- 4) удалить вершину из начала Q, назвать ее v
- 5) for каждое ребро (v, w) в списке смежности v do
- 6) if w не разведана then
- 7) пометить w как разведанную
- 8) добавить w в конец Q

ДОПОЛНЕННЫЙ ПОИСК В ШИРИНУ (AUGMENTED-BFS)

Вход: граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: для каждой вершины $v \in V$ значение l(v) равно истинному расстоянию кратчайшего пути dist(s, v).

- пометить s как разведанную вершину, все остальные как неразведанные
- 2) $l(s) := 0, l(v) := +\infty$ для каждой $v \neq s$
- 3) Q := очередь, инициализированная вершиной s
- 4) while Q не является пустой do
- 5) удалить вершину из начала Q, назвать ее v
- 6) for каждое ребро (v, w) в списке смежности вершины v do
- 7) if w не разведана then
- пометить w как разведанную
- 9) l(w) := l(v) + 1
- 10) добавить w в конец Q

<u>Теорема 1:</u> ∀G(V, E), представленного в виде списков смежности и ∀s ∈ V

- а) по завершении алгоритма AUGMENTED-BFS $\forall \ v \in V \ l(v) = dist(s,v)$ (кратчайшее расстояние);
- б) время работы O(|V| + |E|)

Доказательство:

- а) Во-первых, вершины v, где dist(s, v) = i, являются как раз вершинами в i-м слое графа вот почему мы определили слои именно так, а не иначе. Во-вторых, для каждой вершины w слоя i алгоритм Augmented-BFS в конечном счете устанавливает l(w) = i (так как w обнаруживается посредством вершины v слоя (i-1), где l(v) = i-1). Для вершин ни в одном из слоев, то есть не достижимых из s, как dist(s, v), так и l(v) равны $+\infty^1$.
- б) очевидно.

Нахождение компонент связности в неориентированном графе (CC - Connectivity Component)

Компонента связности — это максимальное подмножество $S \subseteq V$ вершин, так что существует путь из любой вершины из S в любую другую вершину из S.

Граф из 10 вершин. 3 компоненты связности.

Вычисление компонент связности на основе BFS. cc(v) — номер компоненты связности

BFS

Вход: граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: вершина достижима из s тогда и только тогда, когда она помечена как «разведанная».

- 1) пометить s как разведанную вершину, все остальные как неразведанные
- 2) Q := очередь, инициализированная вершиной s
- 3) while Q не является пустой do
- 4) удалить вершину из начала Q, назвать ее v
- 5) for каждое ребро (v, w) в списке смежности v do
- 6) if w не разведана then
- 7) пометить w как разведанную
- 8) добавить w в конец Q

UCC

Вход: неориентированный граф G = (V, E), представленный в виде списков смежности, где $V = \{1, 2, 3, ..., n\}$.

Постусловие: для каждой $u, v \in V, cc(u) = cc(v)$ тогда и только тогда, когда u, v находятся в одной и той же связной компоненте.

```
пометить все вершины как неразведанные numCC := 0

for i := \text{ or } 1 до n do // перебрать все вершины if i не разведана then // избежать избыточности Пометить i как разведанную numCC := numCC + 1 // новая компонента

// вызвать алгоритм BFS, начиная c i (строки 2-8)

Q := \text{ очередь}, инициализированная значением i

while Q не является пустой do

удалить вершину из начала Q, назвать ее v

cc(v) := numCC

for каждая (v, w) в списке смежности вершины v do

if w не разведана then

пометить w как разведанную,

добавить w в конец Q
```

Используем внешний цикл для выполнения одного обхода вершин. BFS используем в качестве подпрограммы.

Пример нахождения компонент связности

Теорема (Свойства алгоритма UCC.) Для каждого неориентированного графа G = (V, E), представленного в виде списков смежности:

- а) по завершении алгоритма UCC для каждой пары и, v вершин cc(u) =
 cc(v) тогда и только тогда, когда и и v принадлежат одной и той же связной компоненте графа G;
- б) время работы алгоритма UCC равно O(|V| + |E|)

Поиск в глубину (DFS - Depth-first search)

Идти «вглубь» графа, насколько это возможно. Алгоритм поиска описывается рекурсивно: перебираем все исходящие из рассматриваемой вершины рёбра. Если ребро ведёт в вершину, которая не была рассмотрена ранее, то запускаем алгоритм от этой нерассмотренной вершины, а после возвращаемся и продолжаем перебирать рёбра. Возврат происходит в том случае, если в рассматриваемой вершине не осталось рёбер, которые ведут в нерассмотренную вершину. Если после завершения алгоритма не все вершины были рассмотрены, то необходимо запустить алгоритм от одной из нерассмотренных вершин.

Пример (тот же, что для BFS):

- 1) s разведанная, остальные неразведанные
- 2) $s \rightarrow a, a$ разведанная
- 3) $a \rightarrow c, c$ разведанная
- 4) $c \rightarrow d$, d разведанная
- 5) $d \rightarrow e, e$ разведанная
- 6) из e нет неразведаннь

идем назад в $d,d \rightarrow b,b$ - разведанная

Алгоритм DFS (псевдокод)

DFS (ИТЕРАТИВНАЯ ВЕРСИЯ)

Вход: граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: вершина достижима из s тогда и только тогда, когда она помечена как «разведанная».

пометить все вершины как неразведанные

 $S := \mathsf{стек}$, инициализированный вершиной s

while S не является пустым do

удалить (вытолкнуть) вершину v из головы стека S

if v не разведана then

пометить у как разведанную

for каждое ребро (v, w) в списке смежности вершины v do

добавить (втолкнуть) w в голову стека S

DFS (РЕКУРСИВНАЯ ВЕРСИЯ)

Вход: граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: вершина достижима из s тогда и только тогда, когда она помечена как «разведанная».

// перед внешним вызовом все вершины не разведаны пометить s как разведанную for каждое ребро (s, v) в списке смежности вершины s do if v не разведана then

DFS (G, v)

<u>Теорема 2.</u> Для каждого ориентированного или неориентированного графа G(V,E), представленного в виде списков смежности и стартовой вершины $s \in V$

- а) по завершении алгоритма DFS вершина $v \in V$ помечается как разведанная тогда и только тогда, когда в G существует путь из s в v;
- б) время работы алгоритма DFS равно O(m+n), где m=|E| и n=|V|.

Доказательство:

- (а) см. обобщенный поиск;
- (6) инициализация O(n), каждое ребро не более 2 раза

Топологическая сортировка (в ориентированном графе)

 $\forall v \in V$ определим f(v): \forall ребра $(v, w) \in E$ f(v) < f(w)

Примеры упорядочений

$$s, w, v, t$$

 $f_1: 1, 2, 3, 4$
 s, v, w, t
 $f_2: 1, 2, 3, 4$

Топологическую сортировку можно проводить только в ориентированных ациклических графах

Для любого такого графа существует минимально одно топологическое упорядочение, т.к. каждый орграф имеет минимально 1 исток. (пойдем обратно из любой вершины). Находим и отсекаем исток и все го ребра. В оставшемся пять ищем исток и т.д. Получаем упорядочение.

DFS и топологическая сортировка

DFS (РЕКУРСИВНАЯ ВЕРСИЯ)

Вход: граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: вершина достижима из s тогда и только тогда, когда она помечена как «разведанная».

// перед внешним вызовом все вершины не разведаны пометить s как разведанную for каждое ребро (s, v) в списке смежности вершины s do if v не разведана then

DFS (G, v)

Пример: пусть вершины (для TOPOSORT) перечислены как v,t,s,w

TOPOSORT

Вход: ориентированный ациклический граф G = (V, E), представленный в виде списков смежности.

Постусловие: значения f вершин образуют топологическую упорядоченность графа G.

пометить все вершины как неразведанные

curLabel := |V| // отслеживает упорядочивание

for каждая $v \in V$ do

if v не разведана **then** // в предыдущем DFS

DFS-Topo (G, v)

DFS-TOPO

Вход: граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: каждая вершина, достижимая из s, помечается как «разведанная» и имеет присвоенное ей значение f.

пометить s как разведанную

for каждое ребро (s, v) в исходящем списке смежности s **do**

if v не разведана then

DFS-Topo (G, v)

f(s) := curLabel // позиция s в упорядочении

curLabel := curLabel - 1 // двигаться справа налево

<u>Теорема</u>. Для графа G(V, E), представленного в виде списков смежности

- а) по завершении алгоритма TopoSort каждой вершине v было присвоено значение f, и эти значения f образуют топологическое упорядочение графа G;
- б) время работы алгоритма TopoSort равно O(m + n), где m = |E| u n = |V|.

Без доказательства.

Нахождение сильно-связнных компонент

Сильно-связнная компонента (Strongly Connected Component – SCC) ориентированного графа – это максимальное подмножество $S\subseteq V$ такое, что существует путь из любой $v\in S$ в любую другую $v'\in S$.

Пример:

4 сильно-связных компоненты

Сам граф не является ациклическим Можно сортировать метавершины.

Как определить метавершины?

Используем топологическую сортировку на исходном графе.

Сортируем вершины так, чтобы найти метавершину-сток. Найдем и удалим ее из графа. Повторим на оставшемся графе и т.д., пока не переберем все вершины.

Как найти сток? - Рассмотрим на G две различных сортировки:

В обоих случаях (порядка обработки вершин) вершина в первой позиции принадлежит истоковой компоненте SCC#1

Пометим SCC наименьшей позицией одной из ее вершин. Тогда метки будут образовывать топологическое упорядочение метавершин.

<u>Теорема</u>. Топологическое упорядочение сильно-связных компонент.

Пусть G — орграф, вершины которого произвольно упорядочены. $\forall v$ определена позиция f(v) с помощью TOPOSORT. Пусть S_1 и S_2 -компоненты сильной связности, (v,w) - ребро, причем $v\in S_1$, $w\in S_2$.

Tогда
$$\min_{x \in S_1} f(x) < \min_{y \in S_2} f(y)$$

Доказательство: возможны 2 случая:

- а) TOPOSORT обнаруживает и инициирует поиск в глубину из $S \in S_1$ перед любой вершиной из S_2 . Т.к. существует ребро из S_1 в S_2 и позиции назначаются в убывающем порядке, то номер вершины v из s_1 будет меньше любого номера из s_2 .
- б) Если TOPOSORT сначала обнаруживает и разведывает вершины из S_2 , путь из S_2 в S_1 отсутствует, то номера вершин из S_2 будут больше, чем номера из S_1 . ч. т. д.

Следствие: вершина в первой позиции всегда лежит в истоковой компоненте.

ΡΑ3ΒΟΡΟΤ ΓΡΑΦΑ

Развернем граф G в обратную сторону и запустим на G^R TOPOSORT, получив некоторое упорядочение. Найдем в G^R истоковую SCC. Она будет стоковой для исходного графа G.

Запустим на G TOPOSORT, перебирая вершины в найденном порядке. Будем находить и отсекать стоковые компоненты. Т.е. будем регистрировать метавершины в обратном топологическом порядке.

Продолжение примера

Алгоритм Косарайю

KOSARAJU

Вход: ориентированный граф G = (V, E), представленный в виде списков смежности, с $V = \{1, 2, 3, ..., n\}$.

Постусловие: для каждой $v, w \in V, scc(v) = scc(w)$ тогда и только тогда, когда v, w находятся в одной и той же сильной связной компоненте графа G.

```
G^{rev} := G, в котором все ребра развернуты в обратную сторону
пометить все вершины G^{rev} как неразведанные
// первый проход поиска в глубину
// (вычисляет позиции f(v), волшебную упорядоченность)
TopoSort (Grev)
// второй проход поиска в глубину
// (находит сильно связные компоненты
// в обратном топологическом порядке)
пометить все вершины G как неразведанные
numSCC := 0
                  // глобальная переменная
for каждая v \in V, в порядке возрастания f(v) do
  if v не разведана then
    numSCC := numSCC + 1
    // назначить scc-значения (подробности ниже)
    DFS-SCC (G, v)
```

DFS-SCC

Вход: ориентированный граф G = (V, E), представленный в виде списков смежности, и вершина $s \in V$.

Постусловие: каждая вершина, достижимая из s, помечается как «разведанная» и имеет присвоенное ей значение scc.

пометить s как разведанную

scc(s) := numSCC // приведенная выше глобальная переменная

for каждое ребро (s, v) в исходящем списке смежности s **do**

if v не разведана then

DFS-SCC (G, v)

<u>Теорема</u>. (Свойства алгоритма Касараю)

Для каждого ориенти-

рованного графа, G = (V, E), представленного в виде списков смежности:

- а) по завершении алгоритма Косарайю для каждой пары v, w вершин scc(v) = scc(w) тогда и только тогда, когда v и w принадлежат одной и той же сильно связной компоненте графа G;
- б) время работы алгоритма Косарайю равно O(m + n), где m = |E| $u \, n = |V|$.

(2 поиска в глубину с небольшим постоянным множителем)

Структура всемирной паутины (орграф)

Веб-граф. Вершины – веб-страницы.

Ребра – гиперссылки.

Галстук-бабочка

Визуализация веб-графа в виде «галстука-бабочки». Примерно одинаковое число веб-страниц принадлежит гигантской сильно связной компоненте, входу, выходу и остальной части графа

Гигантская сильно компонента — 28%, остальные компоненты $\sim 24-28\%$