fubianhanshu 05

MKQ

September 17, 2019

Contents

1	复变	函数的	韧	分	•													1 1												
	1.1	定义																		-										
		定理																												
		解決																												

1 复变函数的积分

1.1 定义

$$\int_{c} f(z)dz = \int_{c} (u+iv)(dx+idy)$$

更类似于曲线积分 (II)

1.2 定理

$$f(z) = u(x, y) + iv(x, y)$$

在 C 上连续,则积分

$$\int_C f(z)dz$$

存在

1.3 解法

参数化,求解拆成好几段,把每一段都参数化

$$I = \int_C \frac{dz}{(z-a)^n}$$

C:a 为中心,R 为半径的圆
$$\begin{cases} I = 0 (n \neq 1) \\ I = 2\pi i (n = 1) \end{cases}$$