NAIRR Pilot

National Artificial Intelligence Research Resource Pilot

Machine Learning vs. Deep Learning

Paola A. Buitrago Director, AI and Big Data, PSC April 3rd, 2025/ Track 2 – Intermediate or Advanced Participant AI Workshop Denver, CO April 2-3, 2025

Machine Learning vs. Deep Learning

Track 2 – Intermediate or Advanced Participant

Welcome!

About this training!

- 1.5 hour of presentations + hands-on training.
- Assumes some background in Machine Learning.
- Assumes you are familiar with Jupyter notebooks, PyTorch, and OOD.
- Requires you to have set up your ACCESS ID.
- Requires access to DeltaAl and Expanse.
- Slack channel

Instructors and Support Staff

- Paola A. Buitrago, instructor
- Dana O'Connor
- Juliana Duncan
- Andrew Pasquale
- Vikram Gazula
- Devin Bayly (online)

Hands-On Segment of the Session

- How to ask for help?
 - Sticky notes on your laptop to signal that you need help!

This session provides a comparative overview of deep learning and machine learning, focusing on their distinct characteristics, applications, and requirements.

Key topics include:

- 1. Overview of Deep Learning vs. Machine Learning
- 2. Applications of Each Model
- 3. What You Need to Know Before Using These Models

This session provides a comparative overview of deep learning and machine learning, focusing on their distinct characteristics, applications, and requirements.

Key topics include:

- 1. Overview of Deep Learning vs. Machine Learning:

 Explanation of the differences between deep learning and traditional machine learning.
- 2. Applications of Each Model:
- 3. What You Need to Know Before Using These Models:

This session provides a comparative overview of deep learning and machine learning, focusing on their distinct characteristics, applications, and requirements.

Key topics include:

- 1. Overview of Deep Learning vs. Machine Learning:
- 2. Applications of Each Model:
 - Deep learning applications in image recognition, natural language processing, and speech recognition.
 - Machine learning applications in predictive analytics, classification, and clustering.
- 3. What You Need to Know Before Using These Models:

This session provides a comparative overview of deep learning and machine learning, focusing on their distinct characteristics, applications, and requirements.

Key topics include:

- 1. Overview of Deep Learning vs. Machine Learning:
- 2. Applications of Each Model:
- 3. What You Need to Know Before Using These Models:
 - Prerequisites for using DL and ML, such as data quality, computational power, and algorithm selection.
 - Considerations for choosing the right approach based on project requirements and available resources.

Outline

- 1. Overview of Deep Learning vs. Machine Learning
- 2. Applications of Each Model
- 3. What You Need to Know Before Using These Models

Machine Learning a long time ago...

Machine Learning not so long ago...

Machine Learning not so long ago...

Machine learning definition:

Machine Learning (ML) is a subset of artificial intelligence (AI) that enables computers to learn from data and make predictions or decisions without being explicitly programmed. Instead of following a fixed set of rules, ML models identify patterns in data and improve their performance as they are exposed to more information.

Machine learning definition:

- > A computer program is said to **learn** if its *performance*, P, as some *task*, T, improves with *experience* E.
- > Three components:

Machine Learning vs. Deep Learning

A Venn diagram showing how deep learning is a kind of representation learning, which is in turn a kind of machine learning, which is used for many but not all approaches to Al. Each section of the Venn diagram includes an example of an Al technology. Source: https://www.deeplearningbook.org/contents/intro.html

Machine Learning Pipeline

Task 1 - Regression

How much should you sell your house for?

input: houses & features **learn**: $x \rightarrow y$ relationship **predict**: y (continuous)

Task 2 - Classification

input: cats and dogs **learn**: $x \rightarrow y$ relationship

predict: y (categorical)

Task 3 - Clustering

Task 4 - Embedding

input: large dataset $\{x\}$ **find**: sources of variation **return**: representation $\{z\}$

Task 5 - Reinforcement Learning

How to take the actions that maximize reward?

Other Tasks

Other Tasks

Machine Learning Pipeline

Outline

- 1. Overview of Deep Learning vs. Machine Learning
- 2. Applications of Some Models
- 3. What You Need to Know Before Using These Models

Task: Multiclass Classification

Advantages:

> Explain the reasoning in clear terms.

Medical treatment

Model structure:

Feature space partitioning

Data example

Attributes										Target
Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
T	F	F	T	Full	\$	F	F	Thai	30–60	F
F	T	F	F	Some	\$	F	F	Burger	0–10	T
T	F	T	T	Full	\$	F	F	Thai	10-30	T
T	F	T	F	Full	\$\$\$	F	T	French	>60	F
F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
F	T	F	F	None	\$	T	F	Burger	0–10	F
F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
F	T	T	F	Full	\$	T	F	Burger	>60	F
T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
F	F	F	F	None	\$	F	F	Thai	0–10	F
T	T	T	T	Full	\$	F	F	Burger	30–60	T

Task

Decide whether to wait or not to wait for a service (e.g. in a restaurant).

Advantages

- Can be interpreted by humans (as long as the tree is not too big)
- Computationally efficient (for shallow trees)
- Handles both numerical and categorical features.
- Can be used for both classification and regression

Advantages

- Can be interpreted by humans (as long as the tree is not too big)
- Computationally efficient (for shallow trees)
- Handles both numerical and categorical features.
- Can be used for both classification and regression

Disadvantages

- Binary decision trees find it hard to learn linear boundaries.
- Decision trees are prone to overfitting!

Advantages

- Can be interpreted by humans (as long as the tree is not too big)
- Computationally efficient (for shallow trees)
- Handles both numerical and categorical features.
- Can be used for both classification and regression

Disadvantages

- Binary decision trees find it hard to learn linear boundaries.
- Decision trees are prone to overfitting!

Strategies to avoid overfitting

- Stop growing when data split is not statistically significant.
- Acquire more training data.
- Remove irrelevant attributes (manual process, not always possible).
- Grow full tree, then post-prune.
- Use tree ensembles

Advantages

- Can be interpreted by humans (as long as the tree is not too big)
- Computationally efficient (for shallow trees)
- Handles both numerical and categorical features.
- Can be used for both classification and regression

Disadvantages

- Binary decision trees find it hard to learn linear boundaries.
- Decision trees are prone to overfitting!

Strategies to avoid overfitting

- Stop growing when data split is not statistically significant.
- Acquire more training data.
- Remove irrelevant attributes (manual process, not always possible).
- Grow full tree, then post-prune.
- Use tree ensembles

Random Forest

Neural Networks

Hands-On ML and DL

Outline

- 1. Overview of Deep Learning vs. Machine Learning
- 2. Applications of Each Model
- 3. What You Need to Know Before Using These Models

What You Need to Know Before Using These Models

What You Need to Know Before Using These Models

- 1. Identify your task
- 2. Characterize the type of data available (supervised vs. unsupervised)
- 3. Identify approaches that are ideally suited for your task and your data.
 - Aim to use the simplest approach first.

Q&A

Hands-on Portion

Hands-on Portion

- > Supervised Binary classification and Multiclass classification
- > Jupyter notebook

Datasets:

Hands-on Portion

NCSA Delta

Go to: https://openondemand.delta.ncsa.illinois.edu/

By selecting "Log On", you agree to the privacy policy.

Hands-on Portion

NCSA Delta

Go to: https://openondemand.delta.ncsa.illinois.edu/

NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

NCSA Web Authentication

CILogon facilitates secure access to CyberInfrastructure (CI).

- Enroll In Duo
- Forgot Your Username?
- Forgot Your Password?
- Send Email To Get Help

Hands-on Portion

NCSA Delta

Hands-on Portion

Hands-on Portion

Hands-on Portion

Hands-on Portion

Hands-on Portion

Let's work with the Jupyter notebook!

Considerations

- Target Expanse and DeltaAl
- > Prepare materials so they can run on their machine
 - Environment
 - Download in advance.
 - Jupyter notebooks with solutions.
 - > PDF.
- > Share in the Slack channel.
 - o TODO: Who is sending this message?
- ➤ Hands on exercises even after the workshop the attendees can leverage the material.
 - Allocation will be active for 1 year.
- > Are we prepopulating the accounts with the material?
- > Resource available: ACCESS github.

Considerations

- ➤ Hands on exercises even after the workshop the attendees can leverage the material.
 - Allocation will be active for 1 year.
- > Are we prepopulating the accounts with the material?
- > Resource available: ACCESS github.

Next steps:

- > DONE: Create Slack channel for the session.
- Use ACCESS account to get access to Expanse (direct login on OOD).
- > Ask Laurie to help us find a time to go through the hands-on portion.

Timeline

- ➤ Intro portion of the talk (30 mins)
- > Hands on portion (50 mins)
 - o 5 mins to show how to get the jupyter notebook up and running
 - Classification trees (10 mins)
 - 5 mins to look at results of classification
 - Random forest (10 mins)
 - 5 mins to look at results of Random forest
 - Neural networks (10 mins)
 - 5 mins to look at results of Neural networks
- Wrap up and some considerations & Q&A (10 mins)

Aptos or Arial 28 pt black - Heading

Aptos or Arial 18 pt black Text Body

Use black, blue and white color palette