Deterministic Optimization

Linear Optimization Modeling Electricity Markets

Andy Sun

Assistant Professor
Stewart School of Industrial and Systems Engineering

Market Clearing Mechanism

Modeling using Linear Programs

Learning Objectives for this Lesson

- Discover how electricity markets are cleared
- Discover how electricity prices are created

Electr. Market Clearing Problem: A Simplistic Version:

- An electricity market is composed of:
 - Generation companies offer \$/amount of electricity they want to sell at
 - Customer serving companies bid \$/amount of electricity they want to buy at
 - Independent system operator (ISO) operates the system and clears the market
- Objective:
 - Maximize social welfare
- Constraints:
 - Clear the market, i.e. supply equals demand

Offers and Bids and Clearing

- A generator's offer: How much electricity it wants to sell at what price
- A consumer's bid: How much electricity it wants to buy at what price

Electr. Market Clearing Problem: Real-Life Version:

- An electricity market is composed of:
 - Generation companies offer \$/amount
 - Customer serving companies bid \$/amount
 - Independent system operator (ISO) operates the system and clears the market
- Objective:
 - Maximize social welfare
- Constraints:
 - Clear the market, i.e. supply equals demand
 - Physical constraints: Network flow constraints, generation limit, etc

Simply intersecting supply and demand curves won't work! Need Optimization.

LP Model for Market Clearing

- Decision variables:
 - Generator output: p_i for each generator $i \in G$
 - Consumer demand: d_i for each consumer $j \in D$
 - Power flow: f_{ij} on each edge $(i,j) \in E$
- Objective: Social welfare
 - $\max \sum_{i}^{|D|} v_i d_i \sum_{i=1}^{|G|} c_i p_i$
- Constraints:
 - Flow conservation:
 - $\sum_{j \in O(i)} f_{ij} \sum_{j \in I(i)} f_{ij} = p_i \text{ for } i \in G$
 - $\sum_{j \in O(i)} f_{ij} \sum_{j \in I(i)} f_{ij} = -d_i \quad \text{for } i \in D$
 - $\sum_{i \in O(i)} f_{ij} \sum_{i \in I(i)} f_{ij} = 0 \text{ for } i \in N \setminus (G \cup D)$
 - Constraint linking branch flow and nodal potential:
 - $f_{ij} = B_{ij}(\theta_i \theta_j)$ for all $(i, j) \in E$
 - Flow limit constraint:
 - $-F_{ij} \le f_{ij} \le F_{ij}$ for all $(i,j) \in E$

- Generator physical limit constraints:
 - $p_i^m \le p_i \le p_i^M$ for all $i \in G$
- Demand limit constraints:
 - $d_i^m \le d_i \le d_i^M$ for all $i \in D$

LP Model for Market Clearing

•
$$\max \sum_i^{|D|} v_i d_i - \sum_{i=1}^{|G|} c_i p_i$$
 subject to

$$\sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ij} = p_i \ \forall i \in G$$

$$\pi_{i} \longrightarrow \sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ij} = -d_{i} \quad \forall i \in D$$

$$\sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ij} = 0 \quad \forall i \in N \setminus (G \cup D)$$

- $f_{ij} = B_{ij} (\theta_i \theta_i) \ \forall (i,j) \in E$
- $-F_{ij} \le f_{ij} \le F_{ij} \quad \forall (i,j) \in E$
- $p_i^m \le p_i \le p_i^M \ \forall i \in G$
- $d_i^m \le d_i \le d_i^M \ \forall i \in D$

 π_i : Dual variable gives market price at **each node** in network, called Locational Marginal Price

Summary

- How trading is done in electricity market
- Simplified market clearing model (Econ101)
- How electricity market is cleared in real life
- How electricity price is determined