CS2040S Data Structures and Algorithms

Hashing II

Today: More Hashing!

• Collision resolution: chaining (continued)

Java hashing

Collision resolution: open addressing

• Table (re)sizing

Midterm: Tuesday March 9, 4pm

- In person: be there!
- Be on time.
- Locations TBA (mostly MPSH).

Bring to quiz:

- One sheet of paper with any notes you like.
- Pens/pencils.
- You may not use anything else.

Some topics:

Theory:

- Asymptotic analysis
- Simple recurrences
- Simple probability

Some topics:

Algorithms and data structures:

- Abstract Data Types
 - Stacks, Queues
- Divide-and-conquer
 - Binary search, Peak finding
- Sorting
 - BubbleSort, InsertionSort, SelectionSort, MergeSort, QuickSort
 - Pancacke Sorting, Reversal Sorting, etc.
 - Order Statistics (QuickSelect)

Some topics:

More algorithms and data structures:

- Trees
 - Binary Trees, Binary Search Trees, etc.
 - AVL Trees
 - (a,b)-trees
 - Order Statistics Trees, Interval Trees, etc.
- Hashing
 - Symbol tables
 - Hashing
 - Chaining

Quiz Advice:

Quiz Advice:

Get the maximum number of points you can.

- Do not leave easy questions blank.
- Bypass questions instead of getting stuck.

Quiz Advice:

Be as clear as possible.

- Do not be ambiguous.
- Circle your final answer (if it is unclear).
- Cross out incorrect answers.
- Write neatly.

Quiz Advice:

State your assumptions.

- If the question is ambiguous, state precisely what you are assuming.
- If your assumptions are reasonable, and your answer is correct subject to those assumptions, you will (most likely) get full credit!

Quiz Advice:

Review the basics:

- Know the basic recurrences.
- Review how the algorithms we have studied work.
- Know the running time of the algorithms we have studied.

Quiz Advice:

Review problem solving strategies:

- Review problems we have solved on problem sets, in tutorial, in recitation, in class.
- What is the basic strategy used in the question?
 - Binary search? Divide-and-conquer? Sorting?
- What strategy is good for which types of problems?

Mid-Semester Survey:

Thanks for the feedback!

Mid-Semester Survey:

"Lecture notes are good for understanding how algorithms work, but..." (Thanks!)

Lecture Slides	Textbook
optimized for oral explanation	optimized for reading
algorithm on 1-slide	full details
illustrated step-by-step	concise textual description
slides summarize important points	chapters contain detailed discussed of issues
divided into lectures	divided into chapters

Quiz advice:

Today: More Hashing!

Collision resolution: chaining (continued)

Java hashing

Collision resolution: open addressing

Table (re)sizing

Review: Symbol Table Abstract Data Type Which of the following is *not* typically a symbol table operation?

- 1. insert(key, data)
- 2. delete(key)
- 3. successor(key)
- 4. search(key)
- 5. None of the above.

Review: Symbol Table Abstract Data Type Which of the following is *not* typically a

- symbol table operation?
- 1. insert(key, data)
- 2. delete(key)
- 3. successor(key)
- 4. search(key)
- 5. None of the above.

Abstract Data Types

Symbol Table

```
public interfaceSymbolTablevoid insert (Key k, Value v)insert (k,v) into tableValue search (Key k)get value paired with kvoid delete (Key k)remove key k (and value)boolean contains (Key k)is there a value for k?int size()number of (k,v) pairs
```

Note: no successor / predecessor queries.

Direct Access Tables

Attempt #1: Use a table, indexed by keys.

0	null
1	null
2	item1
2 3	null
4	null
5	item3
6	null
7	null
8	item2
9	null

Universe $U=\{0..9\}$ of size m=10.

(key, value)

(2, item1)

(8, item2)

(5, item3)

Assume keys are distinct.

Direct Access Tables

Problems:

- Too much space
 - If keys are integers, then table-size > 4 billion

- What if keys are not integers?
 - Where do you put the key/value "(hippopotamus, bob)"?
 - Where do you put 3.14159...?

Hash Functions

Problem:

- Huge universe U of possible keys.
- Smaller number *n* of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Hash Functions

Define hash function $h: U \rightarrow \{1..m\}$

- Store key k in bucket h(k).

Hash Functions

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if: $h(k_1) = h(k_2)$

- The table size is smaller than the universe size.
- The pigeonhole principle says:
 - There must exist two keys that map to the same bucket.
 - Some keys must collide!

Chaining

Each bucket contains a linked list of items.

Chaining

Each bucket contains a linked list of items.

Hashing with Chaining

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key,value) to the linked list.

- search(key)
 - Calculate h(key)
 - Search for (key, value) in the linked list.

Hashing with Chaining

What if all keys hash to the same bucket!

- Worst-case search costs O(n)
- Oh no!

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

Why don't we just insert each key into a random bucket (instead of using a hash function h)?

Why don't we just insert each key into a random bucket (instead of using h)?

Slow to insert? No...

Where to get random numbers from? Not a problem in practice...

Might cause more collisions? No...

Searching would be very slow. Yes! How do you find the item?

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m= average # items / bucket.

Expected search time = 1 + expected # items per bucket

hash function + array access

Probability Theory

Set of outcomes for $X = (e_1, e_2, e_3, ..., e_k)$:

- $Pr(e_1) = p_1$
- $Pr(e_2) = p_2$
- _ ...
- $Pr(e_k) = p_k$

Expected outcome:

$$E[X] = e_1p_1 + e_2p_2 + ... + e_kp_k$$

Probability Theory

Linearity of Expectation:

$$- E[A + B] = E[A] + E[B]$$

Example:

- -A = # heads in 2 coin flips
- B = # heads in 2 coin flips
- -A + B = # heads in 4 coin flips

$$E[A+B] = E[A] + E[B] = 1 + 1 = 2$$

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m= average # items / bucket.

Expected search time = 1 + expected # items per bucket

hash function + array access

A little more probability

Indicator random variables

```
X(i, j) = 1 if item i is put in bucket j
= 0 otherwise
```

$$Pr(X(i, j) == 1) = ?$$

- **✓**1. 1/m
 - 2. 1/n
 - 3. 1/(m+n)
 - 4. m/n
 - 5. n/m
 - 6. log(n)

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j)==1) = 1/m$$

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j)==1) = 1/m$$

$$E(X(i, j)) = ??$$

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

$$Pr(X(i, j)==1) = 1/m$$

$$E(X(i, j)) = Pr(X(i, j)==1)*1 + Pr(X(i, j)==0)*0$$

$$= Pr(X(i, j)==1)$$

$$= 1/m$$

What is the expected number of items in a bucket?

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

 $\Sigma_i X(i, b)$ = number of items in bucket b

Each item contributes '1' to the bucket it is in...

Indicator random variables

$$X(i, j) = 1$$
 if item i is put in bucket j
= 0 otherwise

 $\Sigma_i X(i, b)$ = number of items in bucket b

Calculate expected number of items per bucket:

Expected
$$(\Sigma_i X(i, b)) =$$

Calculate expected number of items per bucket:

$$\mathbf{E}(\Sigma_i \mathbf{X}(i,b)) = \Sigma_i \mathbf{E}(\mathbf{X}(i,b))$$

Linearity of expectation: E(A + B) = E(A) + E(B)

Calculate expected number of items per bucket:

$$\mathbf{E}(\Sigma_i \mathbf{X}(i,b)) = \Sigma_i \mathbf{E}(\mathbf{X}(i,b))$$

$$= \sum_{i} 1/m$$

$$= n/m$$

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m

= average # items / buckets.

- Expected search time = 1 + n/m

hash function + array access

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - $m = \Omega(n)$ buckets, e.g., m = 2n

- Expected search time = 1 + n/m= O(1)

Searching:

- Expected search time = 1 + n/m = O(1)
- Worst-case search time = O(n)

Inserting:

- Worst-case insertion time = O(1)

** In this case, inserting allows duplicates...

Preventing duplicates requires searching.

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

- Analogy:
 - Throw n balls in m = n bins.
 - What is the maximum number of balls in a bin?

Cost: O(log n)

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

- Analogy:
 - Throw n balls in m = n bins.
 - What is the maximum number of balls in a bin?

Cost: $\Theta(\log n / \log \log n)$

Hashing: Recap

Problem: coping with large universe of keys

- Number of possible keys is very, very large.
- Direct Access Table takes too much space

Hash functions

- Use hash function to map keys to buckets.
- Sometimes, keys collide (inevitably!)
- Use linked list to store multiple keys in one bucket.

Analyze performance with simple uniform hashing.

- Expected number of keys / bucket is O(n/m) = O(1).

Today

• Collision resolution: chaining

Java hashing

Collision resolution: open addressing

• Table (re)sizing

Hashing in Java

How does your program know which hash function to use?

```
HashMap<MyFoo, Integer> hmap = new ...
MyFoo foo = new MyFoo();
hmap.put(foo, 8);
```

Every object supports the method:

```
int hashCode()
```

Java Object

Every class implicitly extends Object

public class	Object	
Object	clone()	creates a copy
boolean	equals(Object obj)	is obj equal to this?
void	finalize()	used by garbage collector
Class	getClass()	returns class
int	hashCode()	calculates hash code
void	notify()	wakes up a waiting thread
void	notifyAll()	wakes up all waiting threads
String	toString()	returns string representation
void	wait()	wait until notified

Hashing in Java

How does your program know which hash function to use?

```
HashMap<MyFoo, Integer> hmap = new ...
MyFoo foo = new MyFoo();
int hash = foo.hashCode();
hmap.put(foo, 8);
```

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode.

Is it legal for every object to return 32?

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode.

Is it legal for every object to return 32? (YES)

Every object supports the method:

```
int hashCode()
```

Default Java implementation:

- hashCode returns the memory location of the object
- Every object hashes to a different location

Must implement/override hashCode () for your class.

Java Library Classes

Integer

Long

String

Integer

```
public int hashCode() {
  return value;
}
```

Note: hashcode is always a 32-bit integer.

Note: every 32-bit integer gets a unique hashcode.

What do you do for smaller hash tables? Can there be collisions?

Long

```
public int hashCode() {
  return (int)(value ^ (value >>> 32));
}
```


String

```
public int hashCode() {
  int h = hash; // only calculate hash once
  if (h == 0 \&\& count > 0) { // empty = 0}
       int off = offset;
       char val[] = value;
       int len = count;
       for (int i = 0; i < len; i++) {
            h = 31*h + val[off++];
       hash = h;
  return h;
```

String

HashCode calculation:

hash =
$$s[0]*31^{(n-1)} + s[1]*31^{(n-2)} + s[2]*31^{(n-3)} + ... + s[n-2]*31 + s[n-1]$$

Why did they choose 31?

String

HashCode calculation:

```
hash = s[0]*31^{(n-1)} + s[1]*31^{(n-2)} + s[2]*31^{(n-3)} + ... + s[n-2]*31 + s[n-1]
```

Why did they choose 31? Prime, 2^5-1

Creating a new class

```
public class Pair {
 private int first;
 private int second;
 Pair(int a, int b) {
    first = a;
    second = b;
```

Creating a new class

```
public void testPair() {
 HashMap<Pair, Integer> htable =
         new HashMap<Pair, Integer>();
 Pair one = new Pair (20, 40);
 htable.put(one, 7);
 Pair two = new Pair (20, 40);
 int question = htable.get(two);
```

htable.get(new Pair(20, 20)) == ?

- 1. 1
- 2. 7
- 3. 11
- ✓4. null

```
Pair one = new Pair(20, 20);
Pair two = new Pair(20, 20);
one.hashCode() != two.hashCode()
```

```
Pair one = new Pair (20, 20);
Pair two = new Pair (20, 20);
htable.put(one, "first item");
htable.get(one) → "first item"
htable.get(two) - null
```

```
public class Pair {
 private int first;
 private int second;
 Pair (int a, int b) {
    first = a;
    second = b;
 int hashCode(){
    return (first ^ second);
```

```
Pair one = new Pair (20, 20);
Pair two = new Pair (20, 20);
htable.put(one, "first item");
htable.get(one) - "first item"
htable.get(two) - null
one.equals(two) - false
```

Java Hash Functions

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode.
- Must redefine .equals to be consistent with hashCode.

```
Pair one = new Pair(20, 20);
Pair two = new Pair(20, 20);
htable.put(one, "first item");
htable.get(one) => "first item"
```

Java Hash Functions

Every object supports the method:

```
boolean equals (Object o)
```

Rules:

- Reflexive: $x.equals(x) \rightarrow true$
- Symmetric: x.equals(y) == y.equals(x)
- Transitive: x.equals(y), y.equals(z) \rightarrow x.equals(z)
- Consistent: always returns the same answer
- Null is null: x.equals(null) → false

Java Hash Functions

Every object supports the method:

boolean equals (Object o)

```
boolean equals(Object p) {
  if (p == null) return false;
  if (p == this) return true;

  if (!(p instanceOf Pair)) return false;
  Pair pair = (Pair)p;

  if (pair.first != first) return false;
  if (pair.second != second) return false;
  return true;
}
```

```
public V get(Object key) {
  if (key == null) return getForNullKey();
   int hash = hash(key.hashCode());
  for (Entry<K, V> e = table[indexFor(hash, table.length)];
        e != null;
        e = e.next)
     Object k;
      if (e.hash==hash \&\&((k=e.key)==key)||key.equals(k)))
         return e.value;
  return null;
```

```
// This function ensures that hashCodes that differ only
// by constant multiples at each bit position have a
// bounded number of collisions (approximately 8 at
// default load factor).

static int hash(int h) {
  h ^= (h >>> 20) ^ (h >>> 12);
  return h ^ (h >>> 7) ^ (h >>> 4);
}
```

```
public V get(Object key) {
  if (key == null) return getForNullKey();
   int hash = hash(key.hashCode());
  for (Entry<K, V> e = table[indexFor(hash, table.length)];
        e != null;
        e = e.next)
     Object k;
      if (e.hash==hash \&\&((k=e.key)==key)||key.equals(k)))
         return e.value;
  return null;
```

```
public V get(Object key) {
  if (key == null) return getForNullKey();
  int hash = hash(key.hashCode());
  for (Entry<K, V> e = table[indexFor(hash, table.length)];
        e != null;
        e = e.next)
     Object k;
     if (e.hash==hash \&\&((k=e.key)==key)||key.equals(k)))
         return e.value;
  return null;
```

Java checks if the key is equal to the item in the hash table before returning it!

Today

• Collision resolution: chaining

Java hashing

Collision resolution: open addressing

• Table (re)sizing

Review

Hash Tables

- Store each item from the symbol table in a table.
- Use hash function to map each key to a bucket.

Resolving Collisions

- Basic problem:
 - What to do when two items hash to the same bucket?

- Solution 1: Chaining
 - Insert item into a linked list.

- Solution 2: Open Addressing
 - Find another free bucket.

Advantages:

- No linked lists!
- All data directly stored in the table.
- One item per slot.

0	null
1	null
2	\mathbf{A}
3	null
4	null
5	null
6	null
7	null
8	В
9	null

On collision:

Hash Function re-defined:

```
h(\text{key, i}): U \rightarrow \{1..m\}
```

Two parameters:

- key : the thing to map
- i : number of collisions

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Example: Linear Probing	0	null
$- h(k, 1) = hash of key k \dots$	1	null
	2	\mathbf{A}
- h(k, 2) = h(k, 1) + 1	3	\mathbf{C}
- h(k, 3) = h(k, 1) + 2	4	D
	5	F
- h(k, 4) = h(k, 1) + 3	6	null
	7	null
1 /1 () 1 /1 1)	8	В
$- h(k, i) = h(k, 1) + i \mod m$	9	null

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$


```
hash-insert(key, data)
1. int i = 1;
                                           // Try every bucket
2. while (i \le m) {
3.
        int bucket = h(key, i);
        if (T[bucket] == null) { // Found an empty bucket
4.
5.
               T[bucket] = {key, data}; // Insert key/data
                                            // Return
6.
               return success;
7.
        <u>i++;</u>
8.
9. }
10.throw new TableFullException(); // Table full!
```

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$


```
hash-search (key)
1. int i = 1;
2. while (i \le m) {
3.
        int bucket = h(key, i);
       if (T[bucket] == null) // Empty bucket!
4.
5.
             return key-not-found;
6.
       if (T[bucket].key == key) // Full bucket.
7.
                   return T[bucket].data;
8.
   <u>i++;</u>
9. }
10.return key-not-found; // Exhausted entire table.
```

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

0	null
1	G
2	\mathbf{A}
2 3	С
4	D
\ _	NITIT T
5	NULL
6	null
- 5 6 7	
6	null
6 7	null null

What is wrong with delete?

- ✓ 1. Search may fail to find an element.
 - 2. The table will have gaps in it.
 - 3. Space is used inefficiently.
 - 4. If the key is inserted again, it may end up in a different bucket.

insert(key)

insert(key)

insert(key)

delete(G)

search(key)

0	null
1	NULL
2	\mathbf{A}
3	C
4	D
5	key
6	null
7	null
8	В
9	null

insert(key)

delete(G)

search(key)

Probe sequence.

3

1

5

0	null
1	NULL
2	A
2 3	C
4	D
5	key
6	null
7	null
8	В
9	null

insert(key)

Not found!

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Open Addressing

insert(key)

What happens when an insert finds a DELETED cell?

- 1. Overwrite the deleted cell.
 - 2. Continue probing.
 - 3. Fail.

Two properties of a good hash function:

- 1. h(key, i) enumerates all possible buckets.
 - For every bucket *j*, there is some *i* such that:

$$h(key, i) = j$$

- The hash function is permutation of $\{1..m\}$.
- For linear probing: true!

What goes wrong if the sequence is not a permutation?

- 1. Search incorrectly returns key-not-found.
- 2. Delete fails.
- 3. Insert puts a key in the wrong place
- 4. Returns table-full even when there is still space left.

Two properties of a good hash function:

2. Simple Uniform Hashing Assumption

Every key is equally likely to be mapped to every bucket, independently of every other key.

For h(*key*, 1)?

For every h(key, i)?

Two properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432
- •

Two properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1 2 3 4 Pr(1/m)
- 1243 Pr(0) NOT Linear Probing
- 1 4 2 3 Pr(0)
- 1 4 3 2 Pr(0)

•

Linear Probing

Problem with linear probing: clusters

 If there is a cluster, then there is a higher probability that the next h(k) will hit the cluster.

Linear Probing

Problem with linear probing: clusters

If the table is 1/4 full, then there will be clusters of size:

Linear probing

In practice, linear probing is very fast!

- Why? Caching!
- It is cheap to access nearby array cells.
 - Example: access T[17]
 - Cache loads: T[10..50]
 - Almost 0 cost to access T[18], T[19], T[20], ...
- If the table is 1/4 full, then there will be clusters of size: $\theta(\log n)$
 - Cache may hold entire cluster!
 - No worse than wacky probe sequence.

Open Addressing

Properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432
- •

Double Hashing

• Start with two ordinary hash functions:

• Define new hash function:

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

- Note:
 - Since f(k) is good, f(k, 1) is "almost" random.
 - Since g(k) is good, the probe sequence is "almost" random.

Double Hashing

Hash function

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

Claim: if g(k) is relatively prime to m, then h(k, i) hits all buckets.

- Assume not: then for some distinct i, j < m:

$$f(k) + i \cdot g(k) = f(k) + j \cdot g(k) \mod m$$

- $\rightarrow i \cdot g(k) = j \cdot g(k) \mod m$
- $(i-j) \cdot g(k) = 0 \mod m$
- \rightarrow g(k) not relatively prime to m, since $(i,j \le m)$

Double Hashing

Hash function

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

Claim: if g(k) is relatively prime to m, then h(k, i) hits all buckets.

Example: if $(m = 2^r)$, then choose g(k) odd.

If (m==n), what is the expected insert time, under uniform hashing assumption?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. None of the above.

• Chaining:

- When (m==n), we can still add new items to the hash table.
- We can still search efficiently.

• Open addressing:

- When (m==n), the table is full.
- We cannot insert any more items.
- We cannot search efficiently.

Define:

- Load $\alpha = n / m$ Average # items / bucket
- Assume α < 1.

Define:

- Load $\alpha = n / m$
- Assume $\alpha < 1$.

Average # items / bucket

Claim:

For n items, in a table of size m, assuming uniform hashing, the expected cost of an operation is:

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

- Second probe: if first bucket is full, then the probability that the second bucket is also full: (n-1)/(m-1)

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

- Second probe: if first bucket is full, then the probability that the second bucket is also full: (n-1)/(m-1)

- Third probe: probability is full: (n-2)/(m-2)

Proof of Claim:

Proof of Claim:

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$
First probe Second probe Third probe

Proof of Claim:

Expected cost:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$

– Note:

$$\frac{n-i}{m-i} \le \frac{n}{m} \le \alpha$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\Box \Box \Box \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

$$\leq \frac{1}{1-\alpha}$$

Define:

- Load $\alpha = n / m$
- Assume $\alpha < 1$.

Average # items / bucket

Claim:

For n items, in a table of size m, assuming uniform hashing, the expected cost of an operation is:

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Advantages...

Open addressing:

- Saves space
 - Empty slots vs. linked lists.
- Rarely allocate memory
 - No new list-node allocations.
- Better cache performance
 - Table all in one place in memory
 - Fewer accesses to bring table into cache.
 - Linked lists can wander all over the memory.

Disadvantages...

Open addressing:

- More sensitive to choice of hash functions.
 - Clustering is a common problem.
 - See issues with linear probing.
- More sensitive to load.
 - Performance degrades badly as $\alpha \rightarrow 1$.

Disadvantages...

Open addressing:

- Performance degrades badly as $\alpha \rightarrow 1$.

Today

• Collision resolution: chaining

Java hashing

Collision resolution: open addressing

• Table (re)sizing