Page 6: 定理 0.1

定理 1. 若 $R_1(X)$, $R_2(X)$ 是 \mathbb{R}^n 上两种不同的范数定义,则必存在 $0 < m < M < \infty$, 使 $\forall X \in \mathbb{R}^n$, 有

$$mR_2(X) \le R_1(X) \le MR_2(X).$$

证明. 我们只需证 $R_2(X) = ||X||_2$ 的情形,即只需证任意 \mathbb{R}^n 上的范数均与 \mathbb{R}^n 上的欧式范数等价。

引理 1. 若 R(X) 是 \mathbb{R}^n 上的范数,则 R(X) 关于 X 与 $|| \bullet ||_2$ 是一致连续的。

引理 1 的证明:设 $||X - Y||_2 < \epsilon$,注意到 $X 与 Y 在 <math>|| \bullet ||_2$ 下可被标准正交基线性表示,则由范数定义(三角不等式)

$$|R(X) - R(Y)| \le R(X - Y) \le \sum_{i=1}^{n} |x_i - y_i| R(e_i)$$

$$\le \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} R(e_i)^2\right)^{\frac{1}{2}}$$

$$\le ||X - Y||_2 (n * (max_{1 \le i \le n} |R(e_i)|)^2)^{\frac{1}{2}}$$

$$= ||X - Y||_2 max_{1 \le i \le n} |R(e_i)| \sqrt{n}.$$

因此引理得证。回到原定理的证明。令 $S = \{X|||X||_2 = 1\}$,S 为关于欧式范数的有界闭集,因此 R_1 在 S 上有最大、最小值。存在常数 m, M,使得 $\forall X \in \mathbb{R}^n$,

$$m \le R_1(\frac{X}{||X||_2}) \le M, \ m||X||_2 \le R_1(X) \le M||X||_2.$$

因此任一 \mathbb{R}^n 上的范数均与欧式范数等价。

Page 7: 定义 0.7

定理 2. 向量序列 $X^{(m)}=(x_1^{(m)},x_2^{(m)},\ldots,x_n^{(m)})$ 收敛的充分必要条件是 $\forall i, \lim_{k\to\infty}x_i^{(k)}$ 存在。

证明. 若 $X^{(m)} = (x_1^{(m)}, x_2^{(m)}, \dots, x_n^{(m)})$ 收敛,设 $\lim_{m \to \infty} X^{(m)} = X = (x_1, x_2, \dots, x_n)$, 由范数等价性,不妨设 $X^{(m)}$ 在欧式范数下收敛,则 $\forall i$,

$$|x_i^{(m)} - x_i| \le (\sum_{j=1}^n |x_j^{(m)} - x_j|^2)^{\frac{1}{2}} = ||X^{(m)} - X||_2 \to 0,$$

因此 $\forall i, \lim_{k \to \infty} x_i^{(k)}$ 存在。

若 $\forall i, \lim_{k \to \infty} x_i^{(k)}$ 存在,设 $\lim_{k \to \infty} x_i^{(k)} = x_i, X = (x_1, x_2, \dots, x_n)$,则

$$||X^{(m)} - X||_2 = (\sum_{i=1}^n |x_i^{(m)} - x_i|^2)^{\frac{1}{2}} \to 0,$$

因此
$$X^{(m)} = (x_1^{(m)}, x_2^{(m)}, \dots, x_n^{(m)})$$
 收敛。

Page 12-13:(0.9) 式,(0.10) 式,我们只需证 (0.10) 式,也即定理 0.3 注:(0.10) 式有误,应改为如下:

定理 3. 设 $A \in \mathbb{R}^{n*n}$, $b \in \mathbb{R}^n$, Ax = b, A 非奇异, δA 和 δb 是 A 和 b 的扰动,

$$||A^{-1}|| ||\delta A|| < 1,$$

则

$$\frac{||\delta x||}{||x||} \leq \frac{Cond(A)}{1-Cond(A)\frac{||\delta A||}{||A||}}\bigg(\frac{||\delta A||}{||A||} + \frac{||\delta b||}{||b||}\bigg).$$

证明.

引理 2. 设 $A \in \mathbb{R}^{n*n}$, 且 ||A|| < 1, 则 I - A 非奇异,

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k, \quad ||(I-A)^{-1}|| \le \frac{1}{1-||A||}.$$

引理 2 的证明: 若 I-A 奇异,则它有特征值 0,设对应特征值 0 的一个特征向量为 x,则

$$(I - A)x = 0$$
, $Ax = x$,

即 A 有特征值 1, 与 ||A|| < 1 矛盾。 注意到,

$$(\sum_{k=0}^{\infty} A^k)(I - A) = \sum_{k=0}^{\infty} (A^k - A^{k+1}) = \sum_{k=0}^{\infty} A^k - \sum_{k=0}^{\infty} A^{k+1}$$
$$= (A^0 + \sum_{k=0}^{\infty} A^{k+1}) - \sum_{k=0}^{\infty} A^{k+1}$$
$$= I + \sum_{k=0}^{\infty} A^{k+1} - \sum_{k=0}^{\infty} A^{k+1} = I,$$

同样

$$(I - A)(\sum_{k=0}^{\infty} A^k) = I,$$

因此 $(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$ 。由于 ||A|| < 1,有

$$||(I-A)^{-1}|| \le \sum_{k=0}^{\infty} ||A^k|| \le \sum_{k=0}^{\infty} ||A||^k = \frac{1}{1-||A||}.$$

引理 2 得证。

回到原定理的证明, 我们有

$$A\delta x + \delta A x + \delta A \delta x = \delta b,$$

$$\delta x = (A + \delta A)^{-1}(-\delta A x + \delta b) = A^{-1}(I + A^{-1}\delta A)^{-1}(-\delta A x + \delta b),$$

$$||\delta x|| \le ||-\delta A x + \delta b|| ||A^{-1}|| ||(I + A^{-1}\delta A)^{-1}||$$

$$(引 理 2) \le ||-\delta A x + \delta b|| ||A^{-1}|| \frac{1}{1 - ||A^{-1}\delta A||}$$

$$\le (||\delta A x|| + ||\delta b||) ||A^{-1}|| \frac{1}{1 - ||A^{-1}\delta A||} +$$

$$||\delta b|| ||A^{-1}|| \frac{1}{1 - ||A^{-1}\delta A||},$$

$$||\delta Ax|| ||A^{-1}|| \le ||x|| ||\delta A|| ||A^{-1}|| = ||x|| \frac{||\delta A||}{||A||} ||A|| ||A^{-1}||$$
$$= ||x|| \frac{||\delta A||}{||A||} Cond(A),$$

$$\frac{1}{1 - ||A^{-1}\delta A||} \le \frac{1}{1 - ||A^{-1}|| ||\delta A||} = \frac{1}{1 - ||A|| ||A^{-1}|| \frac{||\delta A||}{||A||}}$$
$$= \frac{1}{1 - Cond(A) \frac{||\delta A||}{||A||}},$$

因此

$$||\delta Ax|| \ ||A^{-1}|| \ \frac{1}{1 - ||A^{-1}\delta A||} \le ||x|| \frac{||\delta A||}{||A||} \frac{Cond(A)}{1 - Cond(A) \frac{||\delta A||}{||A||}},$$

由于 ||Ax|| = ||b||,

$$\begin{split} ||\delta b|| \ ||A^{-1}|| &= \frac{||\delta b||}{||b||} ||Ax|| \ ||A^{-1}|| \leq \frac{||\delta b||}{||b||} ||A|| \ ||x|| \ ||A^{-1}|| \\ &= \frac{||\delta b||}{||b||} ||x|| Cond(A), \end{split}$$

因此

$$||\delta b|| \ ||A^{-1}|| \ \frac{1}{1 - ||A^{-1}\delta A||} \le \frac{||\delta b||}{||b||} ||x|| \frac{Cond(A)}{1 - Cond(A) \frac{||\delta A||}{||A||}},$$

整理即证。

Page 11: 定理 0.2 为证明此定理,需要一些引理:

引理 3. 若 A 是 n 阶方阵,特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$,则存在可逆矩阵 $P \in \mathbb{R}^{n*n}$ 使得

$$P^{-1}AP = T,$$

其中T为上三角矩阵,

$$T = \begin{pmatrix} \lambda_1 & t_{12} & \dots & t_{1n} \\ 0 & \lambda_2 & \dots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

证明. 这是线性代数当中的结论,证明略。

引理 4. 对任意 $\epsilon > 0$,存在一个矩阵相容范数 $|| \bullet ||$,使得 $\forall A \in \mathbb{R}^{n*n}$ 有 $||A|| < \rho(A) + \epsilon$,且 ||I|| = 1。

[注]: 此为 ppt ch5 中第 32 页的定理。

证明. 由引理 3, $A = P^{-1}\Lambda P$, Λ 为上三角阵,对角线为 A 的特征值。令 $D_t = diag(t, t^2, t^3, \dots, t^n)$,则

$$D_t \Lambda D_t^{-1} = \begin{pmatrix} \lambda_1 & t^{-1}t_{12} & t^{-2}t_{13} & \dots & t^{-n+1}t_{1n} \\ 0 & \lambda_2 & t^{-1}t_{23} & \dots & t^{-n+2}t_{2n} \\ 0 & 0 & \lambda_3 & \dots & t^{-n+3}t_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

令 t > 0 充分大,若我们取列和范数 $||\bullet||_1$,有 $||D_t \Lambda D_t^{-1}||_1 < \rho(D_t \Lambda D_t^{-1}) + \epsilon$,取 $||\bullet||$ 为

$$||A|| = ||D_t P A P^{-1} D_t^{-1}||_1$$

即可,并且 ||I|| = 1。

引理 5. \mathbb{R}^{n*n} 上的矩阵范数等价。

证明. 与定理 1 类似,视为 n*n 维向量范数。

现在证明定理 0.2:

定理 4. $\lim_{k\to\infty} A^k = O$ 的充分必要条件是 $\rho(A) < 1$.

证明. 若 $\lim_{k\to\infty} A^k = O$,设 λ 为 A 的一个特征值,对应的一个特征向量为 $x\neq 0$,则 $A^k x = \lambda^k x \to 0$,因此 $\lambda^k \to 0$, $\lambda < 1$,从而 $\rho(A) < 1$. 若 $\rho(A) < 1$,则取 $\epsilon < 1 - \rho(A)$,由引理 4 存在矩阵范数 $|| \bullet ||$ 使得 $||A|| < \rho(A) + \epsilon < 1$. 因此 $||A^k|| \leq ||A||^k \to 0$,因此 A^k 在 $|| \bullet ||$ 下收敛于 O. 由引理 5, A^k 在 $|| \bullet ||_1$ 下收敛于 O.

[注]: Page 12 定义 0.13 下,"当 A 为正交阵时,Cond(A) = 1"有误,反例可取 $|| \bullet ||_F$ 。

ppt ch5 page33 推论:

定理 5. 若存在相容的矩阵范数使得 ||A|| < 1, 则 $\lim_{k\to\infty} A^k = O$.

证明. (与定理 $4 \rho(A) < 1$ 时的证明相同。)

 $||A^k|| \le ||A||^k \to 0$,因此 A^k 在 $|| \bullet ||$ 下收敛于 O. 由引理 5, A^k 在 $|| \bullet ||_1$ 下收敛于 O,因此 $A^k \to O$.