Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/GB05/000674

International filing date: 23 February 2005 (23.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: GB

Number: 0403992.1

Filing date: 23 February 2004 (23.02.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Harch 2005

Dated

Request for grant of a patent

Otherwise answer NO (See note d)

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in

2 3 FEB 2004

The Patent Office

Cardiff Road Newport

this form) South Wales NP10 8QQ 1. Your reference N.91079 0403992.1 2. Patent application number (The Patent Office will fill this part in) 3. Full name, address and postcode of the or of ISIS INNOVATION LIMITED **Ewert House** each applicant (underline all surnames) **Ewert Place** Summertown Oxford **OX27SG** Patents ADP number (if you know it) **United Kingdom** If the applicant is a corporate body, give the country/state of its incorporation Title of the invention OXIDATION BY HYDROGEN PEROXIDE 5. Name of your agent (if you have one) J. A. KEMP & CO. "Address for service" in the United Kingdom 14 South Square to which all correspondence should be sent Gray's Inn (including the postcode) London WC1R 5JJ Patents ADP number (if you know it) 6. Priority: Complete this section if you are Country Priority application number Date of filing declaring priority from one or more earlier (if you know it) (day / month / year) patent applications, filed in the last 12 months. 7. Divisionals, etc: Complete this section only if Number of earlier UK application Date of filing this application is a divisional application or (day / month / year) resulted from an entitlement dispute (see note f) 8. Is a Patents Form 7/77 (Statement of Yes inventorship and of right to grant of a patent) required in support of this request? Answer YES if: a) any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an applicant, or c) any named applicant is a corporate body.

Patents Form 1/77

Patents Form 1/77

9. Accompanying documents: A patent application must include a description of the invention. Not counting duplicates, please enter the number of pages of each item accompanying this form:

Continuation sheets of this form

Description 75

Claim(s)

1

Abstract

Drawing(s)

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for a preliminary examination

and search (Patents Form 9/77)

Request for a substantive examination (Patents Form 10/77)

Any other documents (please specify)

11. I/We request the grant of a patent on the basis of this application.

Signature(s)

J. D. Kengs Co

J.A. KEMP & CO.

Date 23 February 2004

12. Name, daytime telephone number and e-mail address, if any, of person to contact in the United Kingdom

Suleman ALI 020 7405 3292

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered YES in part 8, a Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it. e)
- Part 7 should only be completed when a divisional application is being made under section 15(4), or when an application is being made under section 8(3), 12(6) or 37(4) following an entitlement dispute. By completing part 7 you are requesting that this application takes the same filing date as an earlier UK application. If you want the new application to have the same priority date(s) as the earlier UK application, you should also complete part 6 with the priority details.

OXIDATION BY HYDROGEN PEROXIDE

Field of the Invention

The invention relates to a method of carrying out an oxidation reaction.

5

10

Background of the Invention

Monooxygenase enzymes catalyse the oxidation of a very wide range of substrates. In order to catalyse the reaction, a monooxygenase enzyme generally requires a cofactor and at least one electron-transfer partner protein (reductase). However, monooxygenase enzymes are capable of using hydrogen peroxide (H_2O_2) as an oxidizing agent because it acts as a source of dioxygen and two electrons. The use of H_2O_2 to drive oxidation reactions is known as the "peroxide shunt".

Summary of the invention

15

Monooxygenase enzymes generally have a high $K_{\rm m}$ for H_2O_2 , (such as about 20mM) in comparison to peroxidase enzymes. As a result, high concentrations of H_2O_2 are required for appreciable levels of activity of a monooxygenase enzyme when the oxidation reaction is performed using the peroxide shunt. For example, the initial rate of monooxygenase activity using 50mM H_2O_2 is far below that when the natural co-factor, NAD(P)H, is used as with the physiological electron-transfer partners.

The invention provides a more efficient method of carrying out an oxidation reaction using the peroxide shunt by reducing the oxidative damage that occurs to the monooxygenase enzyme by not allowing excess levels of H_2O_2 to be present whilst the reaction is carried out.

25

20

Simultaneous production of H_2O_2 at a rate less than or equal to the rate at which it is used in an oxidation reaction catalysed by monooxygenase results in improved efficiency of the oxidation reaction and an increase in the product yield. Various methods may be used to produce H_2O_2 at the required rate, such as use of an electrochemical reaction, an enzyme or a precursor.

30

Accordingly, the present invention provides a method of carrying out an oxidation reaction catalysed by a monooxygenase enzyme and using hydrogen peroxide as an oxidant, in which reaction a low level of oxidation damage of the monooxygenase occurs, said method comprising producing the hydrogen peroxide

simultaneously with the oxidation reaction, wherein the hydrogen peroxide is produced at a rate less than or equal to the rate at which it is used in the reaction.

The present invention also provides a method of carrying out an oxidation reaction catalysed by a monooxygenase enzyme and using hydrogen peroxide as an oxidant, in which reaction a low level of oxidation damage of the monooxygenase occurs, said method comprising carrying out the reaction in the presence of an H₂O₂ or hydroxyl radical sequestering agent that controls the H₂O₂ or hydroxyl radical concentration.

10 Description of the Sequences

SEQ ID NO: 1 shows the nucleotide sequence of cytochrome P450Cam from *Pseudomonas putida*.

SEQ ID NO: 2 shows the amino acid sequence of cytochrome P450Cam from *Pseudomonas putida*.

SEQ ID NO: 3 shows the nucleotide sequence of cytochrome P450BM-3 from *Bacillus megaterium*.

SEQ ID NO: 4 shows the amino acid sequence of cytochrome P450 BM-3 from *Bacillus megaterium*. The first 472 amino acid residues form the heme domain. The last 585 amino acid residues form the reductase domain. All 1048 amino acid residues form the holoenzyme.

The convention in the art, which is adopted herein, is to refer to a mutant with reference to the native amino acid residue at a position in the sequence, followed by the amino acid at that position in the mutant, e. g., F87 refers to the phenylalanine at position 87 in the wild-type sequence, and F87A refers to the phenylalanine at position 87 in the wild-type sequence which has been changed to alanine in the variant. The numbering of the amino acid residues starts with the amino acid residue following the initial methionine residue.

Mutants used in Examples were F87A (single mutation; SEQ ID NOs: 5 and 6) and F87V L188Q A74G (triple mutation; SEQ ID NOs: 7 and 8).

SEQ ID NO: 5 shows the amino acid sequence of the F87A mutant of cytochrome P450BM-3 from *Bacillus megaterium*.

SEQ ID NO: 6 shows the nucleotide sequence of of the F87A mutant of cytochrome P450BM-3 from *Bacillus megaterium*.

SEQ ID NO: 7 shows the amino acid sequence of the F87V L188Q A74G

15

5

25

mutant of cytochrome P450BM-3 from Bacillus megaterium.

SEQ ID NO: 8 shows the nucleotide sequence of of the F87V L188Q A74G mutant of cytochrome P450BM-3 from *Bacillus megaterium*.

SEQ ID NO: 9 shows the nucleotide sequence of subunit 1 of B-276 alkene epoxidase from *Nocardia coralline*.

SEQ ID NO: 10 shows the amino acid sequence of subunit 1 of B-276 alkene epoxidase from *Nocardia coralline*.

SEQ ID NO: 11 shows the nucleotide sequence of subunit 2 of B-276 alkene epoxidase from *Nocardia coralline*.

SEQ ID NO: 12 shows the amino acid sequence of subunit 2 of B-276 alkene epoxidase from *Nocardia coralline*.

SEQ ID NO: 13 shows the nucleotide sequence of the alpha subunit of Py2 alkene monooxygenase from *Xanthobacta* sp.

SEQ ID NO: 14 shows the amino acid sequence of the alpha subunit of Py2 alkene monooxygenase from *Xanthobacta* sp.

SEQ ID NO: 15 shows the nucleotide sequence of the beta subunit of Py2 alkene monooxygenase from *Xanthobacta* sp.

SEQ ID NO: 16 shows the amino acid sequence of the beta subunit of Py2 alkene monooxygenase from *Xanthobacta* sp.

SEQ ID NO: 17 shows the nucleotide sequence of the gamma subunit of Py2 alkene monooxygenase from *Xanthobacta* sp.

SEQ ID NO: 18 shows the amino acid sequence of the gamma subunit of Py2 alkene monooxygenase from *Xanthobacta* sp.

SEQ ID NO: 19 shows the nucleotide sequence of the alpha subunit of soluble methane monooxygenase from *Methylococcus capsulatas*.

SEQ ID NO: 20 shows the amino acid sequence of the alpha subunit of soluble methane monooxygenase from *Methylococcus capsulatas*.

SEQ ID NO: 21 shows the nucleotide sequence of the beta subunit of soluble methane monooxygenase from *Methylococcus capsulatas*.

SEQ ID NO: 22 shows the amino acid sequence of the beta subunit of soluble methane monooxygenase from *Methylococcus capsulatas*.

SEQ ID NO: 23 shows the nucleotide sequence of the gamma subunit of soluble methane monooxygenase from *Methylococcus capsulatas*.

SEQ ID NO: 24 shows the amino acid sequence of the gamma subunit of

20

5

10

15

25

soluble methane monooxygenase from Methylococcus capsulatas.

SEQ ID NO: 25 shows the nucleotide sequence of GPo1 alkane hydroxylase (AlkB gene) from Pseudomonas oleovorans.

SEQ ID NO: 26 shows the amino acid sequence of GPo1 alkane hydroxylase from *Pseudomonas oleovorans*.

SEQ ID NO: 27 shows the nucleotide sequence of the alpha subunit of toluene 2-monoxygenase from *Burkholderia cepacia*.

SEQ ID NO: 28 shows the amino acid sequence of the alpha subunit of toluene 2-monooxygenase from *Burkholderia cepacia*.

SEQ ID NO: 29 shows the nucleotide sequence of the beta subunit of toluene 2-monoxygenase from *Burkholderia cepacia*.

SEQ ID NO: 30 shows the amino acid sequence of the beta subunit of toluene 2-monooxygenase from *Burkholderia cepacia*.

SEQ ID NO: 31 shows the nucleotide sequence of the gamma subunit of toluene 2-monooxygenase from *Burkholderia cepacia*.

SEQ ID NO: 32 shows the amino acid sequence of the gamma subunit of toluene 2-monoxygenase from *Burkholderia cepacia*.

SEQ ID NO: 33 shows the nucleotide sequence of phenol hydroxylase (pheA) gene from *Bacillus stearothermophilus*.

SEQ ID NO: 34 shows the amino acid sequence of phenol hydroxylase gene from *Bacillus stearothermophilus*.

SEQ ID NO: 35 shows the nucleotide sequence of stearoyl-ACP desaturase from *Helianthus annuus*.

SEQ ID NO: 36 shows the amino acid sequence of stearoyl-ACP desaturase from *Helianthus annuus*.

Detailed description of the Invention

5

10

15

20

25

30

It is to be understood that this invention is not limited to particular embodiments. It is also to be understood that different applications of the disclosed methods may be tailored to the specific needs in the art. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.

In addition as used in this specification and the appended claims, the singular forms "a", "an", and "the" include plural referents unless the content clearly

dictates otherwise. Thus, for example, reference to "a substrate" includes two or more substrates, reference to "an enzyme" includes reference to two or more enzymes, and the like.

All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.

The methods of the invention enable the oxidation of a variety of substrates. Such substrates include, but are not limited to, alkanes, aromatic compounds, terpenoid compounds, alkenes and fatty acids.

Suitable alkanes include, but are not limited to, methane, ethane, propane, butane, pentane, hexane, heptane, *n*-octane, *n*-nonane, *n*-decane, *n*-dodecane and *n*-hexadecane. The oxidation of alkanes produces alcohols. The oxidation of methane to methanol is technologically and economically very important. The medium-chain alcohols (e.g. *n*-octanol) are synthetic intermediates while the longer chain alcohols (e.g. *n*-dodecanol) are used for the synthesis of fatty acid derivatives.

Suitable aromatic compounds include, but are not limited to, benzene, toluene, xylene, chlorobenzene, phenol and substituents thereof. The phenolic and catecholic products are used in the synthesis of fragrance and flavour compounds.

Suitable terpenoid compounds include, but are not limited to, monoterpenes such as limonene, pinene, terpinene, and ocimene, sesquiterpenes such as valencene and aromadendrene and triterpenes which include the steroidal compounds. The products are intermediates for synthesis, fine fragrance and flavouring chemicals and pharmaceuticals.

Suitable alkenes include, but are not limited to, simple molecules such as propene, hex-1-ene, hex-2-ene, and styrene, and carbon-carbon double bonds in complex molecules. Selective epoxidation of alkenes to a single enantiomer is very important in synthesis. Optically pure propene oxide and styrene oxide are very useful intermediates in synthesis.

Hydroxylated fatty acids are precursors to polymers.

30 Monooxygenase enzyme

The enzyme used to carry out an oxidation reaction according to the invention is a monooxygenase enzyme. A person skilled in the art can determine whether an enzyme is a monooxygenase enzyme using standard techniques in the art. Typically, the prosthetic groups may be characterised using protein crystallography,

15

10

5

ንብ

especially for non-heme iron enzymes because they generally do not have chromophores. Otherwise, a person skilled in the art will typically use sequence alignment, looking for conserved motifs such as the active site, and iron content as well as subunit composition.

5

10

15

20

The monooxygenase enzyme preferably has a $K_{\rm m}$ for H_2O_2 of at least 15nM, at least 20nM, at least 25nM, at least 30nM, at least 35nM, at least 40nM, at least 45nM or at least 50nM.

Examples of monooxygenase enzymes include, but are not limited to, cytochrome P450 monooxygenases and non-heme di-iron monooxygenase enzymes. Suitable non-heme di-iron monooxygenase enzymes include, but are not limited to methane monooxygenase (Colby et al., Biochem. J., 1977; 165: 395-402; Dalton, Adv. Appl. Microbiol., 1980; 26: 71-87; Fox et al., J. Biol. Chem., 1989; 264: 10023-10033; Fox et al., Methods Enzymol., 1990; 188: 191-202; McDonald et al., Appl. Environ. Microbiol., 1997; 63: 1898-1904), alkane hydroxylase (van Beilen et al., Enzyme Microb. Technol., 1994; 16: 904-911), toluene monooxygenase (Luykx et al., Biochem. Biophys. Res. Commun., 2003; 312: 373-379; Pikus et al., Biochemistry, 1996; 35: 9106-9119; Newman & Wackett, Biochemistry, 1995; 34: 14066-14076), alkene monooxygenase (Gallagher et al., Eur. J. Biochem., 1997; 247: 635-641; Lange & Que, Curr. Opin. Chem. Biol., 1998; 2: 159-172; Zhou et al., FEBS Lett., 1998; 430: 181-185), phenol monooxygenase (Divari et al., Eur. J. Biochem., 2003; 270: 2244-2253) and steroid desaturase (Shanklin et al., Biochemistry, 1994; 33: 12787-12794). The non-heme di-iron monooxygenase enzymes are typically of eukaryotic or prokaryotic origin and preferably of bacterial, fungal, yeast, plant or animal origin. Preferred sequences are shown in SEQ ID NOs: 1 to 36.

25

30

The enzyme used in the methods of the invention is preferably a cytochrome P450 enzyme, typically of eukaryotic or prokaryotic origin. Cytochrome P450 monooxygenases are typically characterised by a 446-450 nm heme Soret band for the ferrous-carbon monoxide complex. The enzyme is generally of bacterial, fungal, yeast, plant or animal origin, and thus may be from a bacterium of the genus *Pseudomonas*. The enzyme may be a naturally-occurring form of P450, such as P450_{cam}, P450_{BM-3} from *Bacillus megaterium*, P450_{terp} from *Pseudomonas sp*, P450_{eryF} from *Saccharopollyspora erythraea* and also P450 105 D1 (CYP105) from *Streptomyces griseus* strains.

Alternatively, the enzyme may be a mutant of a naturally-occurring form of P450. The mutants retain the essential biological activity of the naturally-occurring enzyme, namely the ability to catalyse an oxidation reaction using H₂O₂. The mutant may have one or more mutations in the active site of the enzyme.

5

An amino acid 'in the active site' is one which lines or defines the site in which the substrate is bound during catalysis or one which lines or defines a site through which the substrate must pass before reaching the catalytic site. Therefore such an amino acid typically interacts with the substrate during entry to the catalytic site or during catalysis. Such an interaction typically occurs through an electrostatic interaction (between charged or polar groups), hydrophobic interaction, hydrogen bonding or van der Waals forces.

15

10

The amino acids in the active site can be identified by routine methods to those skilled in the art. These methods include labelling studies in which the enzyme is allowed to bind a substrate which modifies ('labels') amino acids which contact the substrate. Alternatively the crystal structure of the enzyme with bound substrate can be obtained in order to deduce the amino acids in the active site.

20

25

The monooxygenase enzyme may have 1, 2, 3, 4, 5 to 10, 10 to 20 or more other mutations, such as substitutions, insertions or deletions. Amino acid substitutions may be made to the amino acid sequence of a naturally-occurring enzyme, for example from 1, 2, 3, 4 or 5 to 10, 20 or 30 substitutions. Conservative substitutions may be made, for example, according to Table 1. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

Table 1 - Conservative amino acid substitutions

NON-AROMATIC	Non-polar	GAP
		ILV
	Polar – uncharged	CSTM
		NQ
	Polar - charged	DE
·	•	HKR
AROMATIC		HFWY

The mutations may be in the active site or outside the active site. Typically the mutations are in the 'second sphere' residues which affect or contact the position or orientation of one or more of the amino acids in the active site. The insertion is typically at the N and/or C terminal and thus the enzyme may be part of a chimeric protein. The deletion typically comprises the deletion of amino acids which are not involved in catalysis, such as those outside the active site (thus the enzyme is a mutated fragment of a naturally occurring enzyme). The monooxygenase enzyme may thus comprise only those amino acids which are required for oxidation activity.

The mutation in the active site typically alters the position and/or conformation of the substrate when it is bound in the active site. The mutation may make the site on the substrate which is to be oxidized more accessible to the heme group. Thus the mutation may be a substitution to an amino acid which has a smaller or larger, or more or less polar, side chain.

The mutations typically increase the stability of the protein, or make it easier to purify the protein. They typically prevent the dimerisation of the protein, typically by removing cysteine residues from the protein (e.g. by substitution of cysteine at position 334 of P450_{cam}, or at an equivalent position in a homologue, preferably to alanine). They typically allow the protein to be prepared in soluble form, for example by the introduction of deletions or a poly-histidine tag, or by mutation of the N-terminal membrane anchoring sequence. The mutations typically inhibit protein oligomerisation, such as oligomerisation arising from contacts between hydrophobic patches on protein surfaces.

The mutations may affect the manner in which the enzyme utilises H₂O₂ and thereby improve the efficiency of the reaction. For example, mutants of the P450 enzyme from *Pseudomonas putida* hydroxylate napthalene through the "peroxide shunt" with more than a 20-fold increase in the activity of the enzyme (Joo *et al.*, Nature, 1999; 399(6737): 636-637). In addition, replacement of all the methionine residues of the heme domain of P450_{BM-3} with norleucine results in a two-fold increase in the peroxygenase activity of the enzyme (Cirino *et al.*, Biotechnol. Bioeng., 2003; 83(6): 729-734). Furthermore, direct evolution studies to find mutants of enzymes more resistant to peroxide (Cirino & Arnold, Angew. Chem. Int. Ed., 2003; 42: 3299-3301).

Thus the mutant enzyme is typically at least 70% homologous to a naturally occurring enzyme on the basis of amino acid identity.

10

5

15

20

25

A mutant protein (i.e. described as being a mutant of another protein) mentioned herein is typically at least 70% homologous to the relevant protein or at least 80 or 90% and more preferably at least 95%, 97% or 99% homologous thereto over at least 20, preferably at least 30, for instance at least 40, 60 or 100 or more contiguous amino acids. The contiguous amino acids may include the active site. This homology may alternatively be measured not over contiguous amino acids but over only the amino acids in the active site.

5

10

15

25

30

Homology can be measured using known methods. For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux *et al* (1984) *Nucleic Acids Research* 12, p387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul S. F. (1993) J Mol Evol 36:290-300; Altschul, S, F *et al* (1990) J Mol Biol 215:403-10.

Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold (Altschul et al, supra). These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

The BLAST algorithm performs a statistical analysis of the similarity between two sequences; see e.g., Karlin and Altschul (1993) *Proc. Natl. Acad. Sci.*

USA 90: 5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

Mutants include fragments of the above-mentioned sequences. Such fragments retain monooxygenase activity. Fragments may be at least 300, at least 400 or at least 450 amino acids in length. Such fragments may be used to produce chimeric enzymes as described in more detail below.

Mutants also include chimeric proteins comprising fragments or portions of a naturally-occurring enzyme. One or more amino acids may be alternatively or additionally added to the polypeptides described above. An extension may be provided at the N-terminus or C-terminus of the naturally-occurring enzyme or variant or fragment thereof. The extension may be quite short, for example from 1 to 10 amino acids in length. Alternatively, the extension may be longer. A carrier protein may be fused to an amino acid sequence described above. A fusion protein incorporating one of the enzymes described above can thus be used in the invention.

The naturally-occurring enzyme or mutant thereof may also be chemically-modified. A number of side chain modifications are known in the art and may be made to the side chains of the enzymes discussed above. Such modifications include, for example, glycosylation, phosphorylation, modifications of amino acids by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH₄, amidination with methylacetimidate or acylation with acetic anhydride. The modification is preferably glycosylation.

The mutations discussed herein are generally introduced into the enzyme by using methods known in the art, such as site directed mutagenesis of the enzyme, PCR and gene shuffling methods or by the use of multiple mutagenic oligonucleotides in cycles of site-directed mutagenesis. Thus the mutations may be introduced in a directed or random manner. The mutagenesis method thus produces one or more polynucleotides encoding one or more different mutants. Typically a library of mutant oligonucleotides is produced which can be used to produce a library of mutant enzymes.

20

15

5

10

30

The enzyme may be made synthetically or by recombinant means using methods known in the art. The amino acid sequence of the monooxygenase enzyme may be modified to include non-naturally occurring amino acids or to increase the stability of the enzyme. When the enzyme is produced by synthetic means, such amino acids may be introduced during production. The proteins or peptides may also be modified following either synthetic or recombinant production.

The enzyme may also be produced using D-amino acids. In such cases the amino acids will be linked in reverse sequence in the C to N orientation. This is conventional in the art for producing such proteins or peptides.

The enzyme may be produced in a cell by *in situ* expression of the polypeptide from a recombinant expression vector. The expression vector optionally carries an inducible promoter to control the expression of the polypeptide. The enzyme may be produced in large scale following purification by any protein liquid chromatography system after recombinant expression. Preferred protein liquid chromatography systems include FPLC, AKTA systems, the Bio-Cad system, the Bio-Rad BioLogic system and the Gilson HPLC system.

Oxidation reaction

5

10

15

25

30

The methods of the invention concerns carrying out a high efficiency oxidation reaction catalysed by a monooxygenase enzyme. A high efficiency oxidation reaction is a reaction that occurs without an appreciable reduction in the enzyme turnover or product yield or inactivation of the monooxygenase enzyme. Preferably, the monooxygenase enzyme displays at least 70%, at least 80%, at least 90%, at least 95% or 100% of the activity shown at the beginning of the reaction after 1 hour, 2 hours, 6 hours, 12 hours, 1 day, 2 days or 5 days.

Typically the methods of the invention are carried out in vitro, such as in a cell free system.

The reaction is driven by the "peroxide shunt". The reaction of the invention is carried out in the presence of the monoxygenase enzyme (a), the substrate (b) and H_2O_2 (c). The reaction is typically performed in aerobic conditions and does not require any cofactors. The production of (c) is discussed in more detail below. In this system the flow of electrons is typically: (c) \rightarrow (a) \rightarrow (b).

In the methods the concentration of (a) and (b) is typically from 10⁻⁸ to 10⁻²M, preferably from 10⁻⁶ to 10⁻⁴M. Typically the ratio of concentrations of (a): (b) is

from 0.1:10 to 1:10, preferably from 1:0.5 to 1:2, or from 1:0.8 to 1:1.2. Preferably, the concentration of (b) is greater than the concentration of (a). The preferred concentration of (a) is that which when reacted with substrate will generate sufficient product to be detected by available analytical methods e.g. GC, HPLC. This is typically of the order of μM quantities.

Generally the methods are carried out at a temperature and/or pH at which the monooxygenase enzyme is functional, such as when the enzyme has at least 20%, 50%, 80% or more of peak activity. Typically the pH is from 2 to 11, such as from 5 to 9 or from 6 to 8, preferably from 7 to 7.8 or 7.4. The pH can be maintained using a suitable buffering agent such as phosphate or acetate based systems. Typically the temperature is from 0 to 80°C, such as from 25 to 75°C, from 30 to 60°C or from 50°C to 80°C. Preferably, the temperature is from 20 to 40°C.

Typically in the methods at least 20 turnovers/min occur, such as at least 50, 100, 200, 300, 500 or more turnovers (turnover is measured as nanomoles of product formed per nanomole of enzyme).

Typically, the rate of H_2O_2 production is less than or equal to 1, 2 or 3 μg per min per mg of monooxygenase enzyme. Typically, the concentration of H_2O_2 throughout the reaction is less than or equal to 0.1, 0.5 or 1mM. Typically, the reaction continues for at least 60 minutes, at least 240 minutes, at least 6 hours or at least 10 hours.

The methods of the invention may be carried out in the monooxygenase substrate if it is a liquid under the reaction conditions. The methods of the invention may also be conducted in a solvent. Suitable solvents include, but are not limited to, water, aqueous buffer solutions mixed water/organic and aqueous buffer/organic solvent systems. Preferably, the organic solvent is a hydrocarbon such as hexane, benzene, acetonitrile, lower aliphatic alcohols, ketones and dioxane, dimethylformamide and dimethylsulphoxide and mixtures thereof. The solvent is typically one in which the reagants and products are highly soluble and one that maintains the stability and activity of the monooxygenase enzyme.

The reaction may be carried out in a homogenous system with all the components in solution. Typically, the monooxygenase enzyme and substrate are mixed together in a suitable solvent in a stirred tank reactor and the reaction is conducted in batch, semi-batch or continuous mode.

15

10

20

30

Alternatively, the monooxygenase enzyme may be immobilized on a suitable solid support, such as silica, prior to carrying out the method of the invention. An immobilized monooxygenase enzyme can be packed into a fixed bed reactor and the substrate passed over the enzyme. In one embodiment, the enzyme producing the H₂O₂ (discussed in more detail below) may be immobilized on the same or different material as the monooxygenase enzyme. Procedures for immobilizing enzymes are known in the art. Examples of such procedures include, but are not limited to, covalent coupling to insoluble organic or inorganic supports, entrapment in gels and adsorption to ion exchange resins or other adsorbent materials. (G. F. Bickerstaff ed., "Immobilization of Enzymes and Cells," Humana Press, Totowa. New Jersey, 1997).

In a further embodiment, a membrane on the "entry" side admits the substrate slowly from the "reactant" side and then a hydrophilic membrane on the "exit" side allows hydrophilic compounds to flow out to the "product" side of the flow reaction cell. In this case the H_2O_2 may be generated outside the membrane and allowed to flow through the membrane to the mobile or immobile enzyme.

In one embodiment, H_2O_2 is preferably produced by one of the methods discussed in more detail below. In another embodiment, a H_2O_2 or hydroxyl radical sequestering agent is used to sequester excess H_2O_2 or hydroxyl radical during the oxidation reaction. The sequestering agent may be a chelating agent. In one embodiment, the chelating agent is EDTA. The EDTA inhibits production of the hydroxyl radical, for example, produced by the reaction of trace amounts of iron (or copper) with the H_2O_2 .

H_2O_2 production by an electrochemical reaction

5

10

15

20

25

30

The H₂O₂ may be produced in the method of the invention by an electrochemical reaction. An electrochemical reaction is generally a means for introducing a current to a liquid, preferably a solution. An electrochemical reaction is typically an oxidation or reduction reaction that takes place at an electrode through which a current flows. An electrode is a solid capable of conducting electricity, typically carbon-based or metallic, leading to an external source or sink which is in contact with the liquid, preferably a solution. The electrode may be either positively charged (cathode) or negatively charged (anode). Two or more electrodes may form an electrochemical cell from which an external wire can lead from each electrode to

an external electrical device. An oxidation or reduction reaction takes place at one electrode, while a redox reaction can take place either in an electrochemical cell or directly in the liquid.

Production of H₂O₂ using an electrochemical reaction is energy efficient. H₂O₂ is typically produced by the controlled electrochemical reduction of molecular oxygen to hydrogen peroxide. The surface area and the overpotential of the cathode are key considerations for the two-electron reduction of molecular oxygen to hydrogen peroxide. Typically, carbon-based cathodes are used and they may be modified with a compound known to lower the overpotential for this reaction. Electrode materials and modifiers which will perform this task effectively and efficiently are well known in the art. The reduction of O₂, and hence production of hydrogen peroxide, can typically be controlled by the potential applied to the cathode. The potential applied to the cathode will vary depending on the cathode and any modifications to the cathode made.

The electrochemical reaction used in the method of the invention may be the sonoelectrochemical reduction of dioxygen. This method is well known in the art (Compton *et al.*, Electroanalysis, 1997; 9(7): 509-522).

H_2O_2 production by an enzyme

5

10

15

25

30

The H₂O₂ may be produced in the method of the invention by an enzyme. The enzyme is preferably an oxidase. Examples of suitable oxidases include, but are not limited to, glucose oxidase (E.C. 1.1.3.4), secondary-alcohol oxidase (E.C. 1.1.3.18), methanol oxidase (E.C. 1.1.3.31), oxalate oxidase (E.C. 1.2.3.4), arylaldehyde oxidase (E.C. 1.2.3.9), carbon monoxide oxidase (E.C. 1.2.3.10), amine oxidase (E.C. 1.4.3.4), ethanolamine oxidase (E.C. 1.4.3.8), nitroethane oxidase (E.C. 1.7.3.1) and sulfite oxidase (E.C. 1.8.3.1). Glucose oxidase (E.C. 1.1.3.4) catalyzes the conversion of D-glucose to D-glucono-1,5-lactone and H₂O₂. Secondary-alcohol oxidase (E.C. 1.1.3.18) catalyzes the conversion of a secondary alcohol to a ketone and H₂O₂. Methanol oxidase (E.C. 1.1.3.31) catalyzes the conversion of methanol to formaldehyde and H₂O₂. Oxalate oxidase (E.C. 1.2.3.4) catalyzes the conversion of oxalate to carbon dioxide and H₂O₂. Aryl-aldehyde oxidase (E.C. 1.2.3.9) catalyzes the conversion of an aromatic aldehyde to an aromatic acid and H₂O₂. Carbon monoxide oxidase (E.C. 1.2.3.10) catalyzes the

conversion of CO and H₂O to carbon dioxide and H₂O₂. Amine oxidase (E.C.

1.4.3.4) catalyzes the conversion of RCH₂NH₂ and H₂O to RCHO and NH₃ and H₂O₂. Ethanolamine oxidase (E.C. 1.4.3.8) catalyzes the conversion of ethanolamine and H₂O to glycolaldehyde and H₂O₂. Nitroethane oxidase (E.C. 1.7.3.1) catalyzes the conversion of nitroethane and H₂O to acetaldehyde and H₂O₂. Sulfite oxidase (E.C. 1.8.3.1) catalyzes the conversion of sulfite and H₂O₂ to sulfate and H₂O₂. The oxidase may be purchased commercially (e.g., glucose oxidase). Alterantively, the oxidase can be extracted from known microorganisms using procedures known in the art.

The substrate for the oxidase will be well known in the art. In addition to the substrate, the reaction to produce H₂O₂ will also involve water. Typically, a H₂O₂-activating metal is also included in the reaction. Suitable metals include, but are not limited to, cerium, chromium, cobalt, copper, iron, manganese, molybdenum, silver, titanium, tungsten, vanadium and mixtures thereof. Metallosilicates containing the above metals can be prepared and used in the method of the invention. The procedure for producing such metallosilicates in known in the art (Neumann *et al.*, Journal of Catalysis, 1997; 166: 206-127). The metallosilicate is preferably tetrahedrally coordinated titanium such as silicalite-I (TS-1), silicalite-2 (TS-2), zeolite-beta, silicon analogs of ZSM-48 and MCM-4 1. (Murugavel and Roesky, Angew. Chem. Int. Ed. Engl., 1997; 36(5): 477-479).

In a preferred embodiment of the invention, the metal-containing solid or metallosilicate is used as a support upon which the H_2O_2 -producing enzyme is immobilized. In another preferred embodiment, the monooxygenase enzyme is also immobilized on the same or different metallosilicate.support.

Preferably, the oxidase is first mixed with the other reaction components and then the reaction is initiated by addition of the oxidase substrate. For example, the monoxygenase enzyme, monoxygenase enzyme substrate and oxidase are all mixed and then the oxidase enzyme is added. In a preferred embodiment, P450_{BM3}, octane and glucose oxidase are mixed together and then glucose added. Control of H₂O₂ generation can typically be accomplished by controlling the rate at which the oxidase substrate is added.

H_2O_2 production by a precursor

The H_2O_2 may be produced in the method of the invention by a precursor. The generation of H_2O_2 by the addition of a precursor to water is well known in the

20

15

5

10

25

art. Precursors include, but are not limited to, salts of perborate, salts of percarbonate, salts of perphosphate and peroxynitrite. Preferred precursors are sodium salts. The H_2O_2 -producing properties of the precursor may be enhanced by using a compound such as tetraacetylethylenediamine. The amount of precursor added to the solution containing the monoxygenase enzyme and substrate is such to maximise the enzymatic reaction with the substrate and to minimise the deactivation of the enzyme by H_2O_2 . Preferably the concentration of H_2O_2 produced does not exceed the K_m value for the enzyme but is sufficient to generate the enzyme reactive species.

10

15

25

30

5

Examples

Example 1

In this experiment, octane was reacted with electrochemically generated H_2O_2 in the presence of P450_{BM3} heme domain. The experiment was performed at room temperature with a three-electrode configuration in a 100 mL glass beaker. The reticulated vitreous carbon (RVC) cathode, platinum gauze anode and Ag/AgCl reference electrode were contained in the one vessel. The RVC cathode was briefly immersed in a 1 mM 2-aminoanthraquinone ethanolic solution before being removed and allowed to dry in air. The reaction solution contained aqueous Tris buffer (50 mM, pH 7.4) saturated with oxygen, 0.2 M KCl, 0.5 mM octane, and 3 μ M P450_{BM3} F87V L188Q A74G heme domain. The reaction solution was stirred to equilibrate (5-10 minutes) and then a potential of -0.55 V vs Ag/AgCl was applied for 2 hours and the solution stirred continuously throughout. GC analysis revealed the presence of the solvent chloroform, octane, 2-, 3- and 4-octanol and the internal standard 1-nonanol. The relative proportion of 2, 3 & 4-octanol was 1:1.1:0.7. The total concentration of octanols formed was 141 μ M, representing a turnover per enzyme of 47.

A similar experiment was performed with 1.43 μ M wild-type P450_{BM3} heme domain. The total concentration of octanols formed was 8.4 μ M, representing a turnover per enzyme of 6. The relative proportion of 2, 3 & 4-octanol in this case was 1:1.7:2.0.

Example 2

5

10

20

25

30

In this experiment, octane was reacted with enzymatically generated H_2O_2 in the presence of P450_{BM3} holoenzyme. Into a glass vial was added a solution (total volume 5 mL) consisting of aqueous Tris buffer (50 mM, pH 7.4), 0.5 mM octane, 1.6 μ M P450_{BM3} F87V L188Q A74G holoenzyme and glucose oxidase (1.5 U). After equilibration (5 mins), the reaction was initiated by addition of glucose (1 × 10⁻⁶ moles). Successive additions of glucose (1 × 10⁻⁶ moles) were made every 5 minutes up to 1 hour (total of 12 additions equivalent to 1.2 × 10⁻⁵ moles). The reaction was stirred continuously during this time and stopped after 1.5 hours. GC analysis revealed the presence of the solvent chloroform, octane, 2-, 3- and 4-octanol and the internal standard 1-nonanol. The relative proportion of 2, 3 & 4-octanol was 1:1.1:0.8. The total concentration of octanols formed was 17 μ M, representing a turnover per enzyme of 10.

15 Example 3

In this experiment, octane was reacted with H_2O_2 derived from sodium perborate, in the presence of P450_{BM3} holoenzyme. Into a glass vial was added a solution (total volume 5 mL) consisting of aqueous Tris buffer (40 mM, pH 7.4), 0.5 mM octane, and 1.3 μ M P450_{BM3} F87V L188Q A74G holoenzyme. After equilibration (5 mins), the reaction was initiated by addition of NaBO₃.4H₂O (1 x 10⁻⁴ moles) and stirred continuously for 1 hour. GC analysis revealed the presence of the solvent chloroform, octane, 2-, 3- and 4-octanol and the internal standard 1-nonanol. The relative proportion of 2, 3 & 4-octanol was 1:1.8:1.1. The total concentration of octanols formed was 77 μ M, representing a turnover per enzyme of 59.

For Examples 1 to 3, no octanol products were observed when the P450 enzyme was absent from the solution.

Example 4

In this experiment, pinene was reacted with H_2O_2 derived from sodium perborate, in the presence of $P450_{BM3}$ heme domain. Into a glass vial was added a solution (total volume 5 mL) consisting of aqueous Tris buffer (40 mM, pH 7.4), 0.63 mM pinene, and 3.7 μ M wild-type $P450_{BM3}$ heme domain. After equilibration (5 mins), the reaction was initiated by addition of 7.8 x 10^{-6} moles $NaBO_3.4H_2O$ and

stirred continuously for 1 hour. GC analysis revealed the presence of *cis/trans* 2,3-epoxides (32%), (+)-*trans*-verbenol (16%), (+)-*cis*-verbenol (6%), (+)-verbenone/(+)-myrtenol (13%), myrtenal (4%), as well as unidentified further oxidation products (29%). The total concentration of products formed was 80 μ M, representing a turnover per enzyme of 22.

Example 5

In this experiment, phenol monooxygenase is reacted with phenol in the presence of with H_2O_2 generated by sodium perborate. Into a glass vial is added a solution (total volume 5 mL) consisting of aqueous Tris buffer (40 mM, pH 7.4), 0.63 mM phenol, and 3.7 μ M wild-type phenol monooxygenase. After equilibration (5 mins), the reaction is initiated by addition of 7.8 x 10^{-6} moles NaBO₃.4H₂O and stirred continuously for 1 hour. GC analysis reveals the presence of oxidation products.

15.

20

25

30

5

10

Example 6

In this experiment, P450_{BM3} is reacted with palmitic acid in the presence of H_2O_2 generated by glucose oxidase. Into a glass vial is added a solution (total volume 5 mL) consisting of aqueous Tris buffer (50 mM, pH 7.4), 0.5 mM palmitic acid, 1.6 μ M P450_{BM3} holoenzyme and glucose oxidase (1.5 U). After equilibration (5 mins), the reaction is initiated by addition of glucose (1 × 10⁻⁶ moles). Successive additions of glucose (1 × 10⁻⁶ moles) are made every 5 minutes up to 1 hour (total of 12 additions equivalent to 1.2×10^{-5} moles). The reaction is stirred continuously during this time and stopped after 1.5 hours. GC analysis reveals the presence of oxidation products.

Example 7

Plant CYP74C is reacted with 13 S-hydroperoxylinolenic acid to form the compound 3Z-hexenal (a fragrance). The H_2O_2 is generated by sodium perborate. Into a glass vial is added a solution (total volume 5 mL) consisting of aqueous Tris buffer (40 mM, pH 7.4), 0.63 mM 13 S-hydroperoxylinolenic acid, and 3.7 μ M wild-type plant CYP74C. After equilibration (5 mins), the reaction is initiated by addition of 7.8 x 10⁻⁶ moles NaBO₃.4H₂O and stirred continuously for 1 hour. GC analysis

reveals the presence of oxidation products.

SEQUENCE LISTING

SEQUENCE LISTING													
<110> ISIS INNOVATION LIMITED													
<120> HYDROGEN PEROXIDE OXIDATION													
<130> N.91079 SA													
<160> 36													
<170> PatentIn version 3.2													
<210> 1 <211> 1248 <212> DNA <213> Pseudomonas putida													
<220> <221> CDS <222> (1)(1248) <400> 1													
<pre><400> 1 atg acg act gaa acc ata caa agc aac gcc aat ctt gcc cct ctg cca Met Thr Thr Glu Thr Ile Gln Ser Asn Ala Asn Leu Ala Pro Leu Pro 15 1</pre>	48												
ccc cat gtg cca gag cac ctg gta ttc gac ttc gac atg tac aat ccg Pro His Val Pro Glu His Leu Val Phe Asp Phe Asp Met Tyr Asn Pro 20 25 30	96												
tcg aat ctg tct gcc ggc gtg cag gag gcc tgg gca gtt ctg caa gaa Ser Asn Leu Ser Ala Gly Val Gln Glu Ala Trp Ala Val Leu Gln Glu 35	144												
tca aac gta ccg gat ctg gtg tgg act cgc tgc aac ggc gga cac tgg Ser Asn Val Pro Asp Leu Val Trp Thr Arg Cys Asn Gly Gly His Trp 50	192												
atc gcc act cgc ggc caa ctg atc cgt gag gcc tat gaa gat tac cgc Ile Ala Thr Arg Gly Gln Leu Ile Arg Glu Ala Tyr Glu Asp Tyr Arg 75 80	240												
cac ttt tcc agc gag tgc ccg ttc atc cct cgt gaa gcc ggc gaa gcc His Phe Ser Ser Glu Cys Pro Phe Ile Pro Arg Glu Ala Gly Glu Ala 85	288												
tac gac ttc att ccc acc tcg atg gat ccg ccc gag cag cgc cag ttt Tyr Asp Phe Ile Pro Thr Ser Met Asp Pro Pro Glu Gln Arg Gln Phe 100 105 110	336												
cgt gcg ctg gcc aac caa gtg gtt ggc atg ccg gtg gtg gat aag ctg Arg Ala Leu Ala Asn Gln Val Val Gly Met Pro Val Val Asp Lys Leu 115	384												
gag aac cgg atc cag gag ctg gcc tgc tcg ctg atc gag agc ctg cgc Glu Asn Arg Ile Gln Glu Leu Ala Cys Ser Leu Ile Glu Ser Leu Arg 130	432												
ccg caa gga cag tgc aac ttc acc gag gac tac gcc gaa ccc ttc ccg Pro Gln Gly Gln Cys Asn Phe Thr Glu Asp Tyr Ala Glu Pro Phe Pro 150 155 . 160	480												
ata cgc atc ttc atg ctg ctc gca ggt cta ccg gaa gaa gat atc ccg Ile Arg Ile Phe Met Leu Leu Ala Gly Leu Pro Glu Glu Asp Ile Pro 175	528												
cac ttg aaa tac cta acg gat cag atg acc cgt ccg gat ggc agc atg. His Leu Lys Tyr Leu Thr Asp Gln Met Thr Arg Pro Asp Gly Ser Met 180 180	576												
acc ttc gca gag gcc aag gag gcg ctc tac gac tat ctg ata ccg atc Thr Phe Ala Glu Ala Lys Glu Ala Leu Tyr Asp Tyr Leu Ile Pro Ile 195 200	624												
atc gag caa cgc agg cag aag ccg gga acc gac gct atc agc atc gtt	672												

Il	e Gl 21	u Gl O	n Ar	ig Ai	rg Gl:	n Lys 215	Pro	o Gl	y Th:	r Asp	P Ala 220	a Ile	Ser	: Ile	∍ Val	1
gc: Al: 22:		c gg n Gl	c ca y Gl	ig gt .n Va	ic aat al Asi 230	т дтА	cga Arg	r ccg	g ato	c acc e Thr 235	Sei	gac Asp	gaa Glu	gco Ala	c aag a Lys 240	720
agg Arg	g ato g Me	g tg t Cy	t gg s Gl	c ct y Le 24	g tta u Lei 5	a ctg 1 Leu	gtc Val	Gly	ggc Gl _y 250	l ren	ı gat ı Asp	acg Thr	gtg Val	gto Val 255	. Asn	768
tto Phe	cto Lev	c ago 1 Sei	tt Ph 26		c ato r Met	gag Glu	ttc Phe	ctg Leu 265	АТа	aaa Lys	. agc Ser	ccg Pro	gag Glu 270	cat His	cgc Arg	816
cag Gln	gag Glu	cto Leu 275		c ga e Gl	g cgt u Arg	ccc	gag Glu 280	cgt Arg	att Ile	cca Pro	gcc Ala	gct Ala 285	tgc Cys	gag Glu	gaa Glu	864
cta Leu	ctc Leu 290	ر ::	Arg	c tto g Pho	c tcg e Ser	ctg Leu 295	gtt Val	gcc Ala	gat Asp	Gly	cgc Arg 300	atc Ile	ctc Leu	acc Thr	tcc Ser	912
gat Asp 305	3 -4	gag Glu	ttt Phe	cat His	ggc Gly 310	gtg Val	caa Gln	ctg Leu	aag Lys	aaa Lys 315	ggt Gly	gac Asp	cag Gln	atc Ile	ctg Leu 320	960
cta Leu	ccg Pro	cag Gln	atg Met	ctç Lev 325	tct Ser	ggc Gly	ctg Leu .	gat Asp	gag Glu 330	cgc Arg	gaa Glu	aac Asn	Ala	tgc Cys 335	ccg Pro	1008
atg Met	cac His	gtc Val	gac Asp 340		agt Ser	cgc Arg	QTII.	aag Lys 345	gtt Val	tca Ser	cac His	Thr !	acc Thr 350	ttt Phe	ggc Gly	1056
cac His	ggc	agc Ser 355	cat His	ctg Leu	tgc Cys	neu (ggc. Gly (cag Gln	cac His	ctg Leu	Ala	cgc o Arg 1 365	egg (gaa Glu	atc Ile	1104
	gtc Val 370	acc Thr	ctc Leu	aag Lys	gaa Glu	tgg d Trp I 375	ctg a Geu 1	acc Thr	agg Arg	Ile	cct Pro . 380	gac t Asp E	tc t	cc Ser	att Ile	1152
gcc Ala 385	ccg Pro	ggt Gly	gcc Ala	cag Gln	att Ile 390	cag c Gln H	ac a lis I	aag a Gys S	ser (ggc a Gly : 395	atc (Ile '	gtc a Val S	igc g er G	ly '	gtg Val 400	1200
cag (Gln)	gca Ala :	ctc Leu	cct Pro	ctg Leu 405	gtc t	tgg g Erp A	at c sp F	ro £	geg a Ala : 110	act a Phr 1	acc a Thr I	aaa g Lys A	la V	rta t al . 15	caa	1 _. 248
<2103 <2113 <2123 <2133	> 41 > PI > PS	15 RT seudo	omon	as p	utida	ı										•
<400> Met 1	_	hr c	Slu '	Thr	Ile G	ln Se	er A	sn A	la A	sn T.	ת נום	la Di	60 T	D		
_			•	J				1	U				15	5		
Pro H		دء	·				23)				30)			
Ser A	_	•				40	•				4.5	5				
Ser A 5	sn V O	al P	ro A	lsp I	Leu Va 5	al Tr 5	p Th	ır Ai	rg C	уs А: 6(sn Gi	ly Gl	y Hi	s T	rp .	
Ile A	la T	hr A	rg G	ly 6	Sln Le 'O	eu Il	e Ar	g Gl	lu A: 75	la T <u>j</u> 5	yr Gl	Lu As	р Ту	r Ai 80		
His Pl	ie So	er S	er G 8	lu C 5	ys Pi	o Ph	e Il	e Pr 90	:0 A1	cg Gl	.u Al	a Gl	y Gl 95		.a	

Tyr Asp Phe Ile Pro Thr Ser Met Asp Pro Pro Glu Gln Arg Gln Phe Arg Ala Leu Ala Asn Gln Val Val Gly Met Pro Val Val Asp Lys Leu Glu Asn Arg Ile Gln Glu Leu Ala Cys Ser Leu Ile Glu Ser Leu Arg Pro Gln Gly Gln Cys Asn Phe Thr Glu Asp Tyr Ala Glu Pro Phe Pro Ile Arg Ile Phe Met Leu Leu Ala Gly Leu Pro Glu Glu Asp Ile Pro His Leu Lys Tyr Leu Thr Asp Gln Met Thr Arg Pro Asp Gly Ser Met Thr Phe Ala Glu Ala Lys Glu Ala Leu Tyr Asp Tyr Leu Ile Pro Ile Ile Glu Gln Arg Arg Gln Lys Pro Gly Thr Asp Ala Ile Ser Ile Val Ala Asn Gly Gln Val Asn Gly Arg Pro Ile Thr Ser Asp Glu Ala Lys Arg Met Cys Gly Leu Leu Leu Val Gly Gly Leu Asp Thr Val Val Asn Phe Leu Ser Phe Ser Met Glu Phe Leu Ala Lys Ser Pro Glu His Arg Gln Glu Leu Ile Glu Arg Pro Glu Arg Ile Pro Ala Ala Cys Glu Glu Leu Leu Arg Arg Phe Ser Leu Val Ala Asp Gly Arg Ile Leu Thr Ser Asp Tyr Glu Phe His Gly Val Gln Leu Lys Lys Gly Asp Gln Ile Leu Leu Pro Gln Met Leu Ser Gly Leu Asp Glu Arg Glu Asn Ala Cys Pro Met His Val Asp Phe Ser Arg Gln Lys Val Ser His Thr Thr Phe Gly His Gly Ser His Leu Cys Leu Gly Gln His Leu Ala Arg Arg Glu Ile Ile Val Thr Leu Lys Glu Trp Leu Thr Arg Ile Pro Asp Phe Ser Ile Ala Pro Gly Ala Gln Ile Gln His Lys Ser Gly Ile Val Ser Gly Val Gln Ala Leu Pro Leu Val Trp Asp Pro Ala Thr Thr Lys Ala Val <210> 3 <211> 4957 <212> DNA <213> Bacillus megaterium <220> <221> CDS <222> (1541)..(4690)

<400> 3
agatctttat gaagacatag ctgcagaaga aaaagcaaga gctacatatc aatggttaat 60
tgatatatca gatgatcccg atttaaacga cagcttacga tttttacgag aaagagagat 120

tgttcactca cagcggttcc gcgaggccgt ggagatttta aaagatgaca gagacaggaa	180
gaaaatettt taactagtaa aaaaacatee eeettggega atgeaaaega aaggagggat	240
gttttttgtt gtgactgcgt tgattatgcg ctagaactgc agtgacaaga aacaaccttt	300
aatttccctt caacatcttt ccaaactcgc gtataactgt attcacctcc aatagattca	360
ccggttgcca gtgccccatt taacgctact tttgtaacgg taacggcaag ttcttgaaac	420
agtttaactt cttgttccaa cacttccatg cccgctatat caagactttt tgaacgatga	480
acatttatat cttcttcttt tgacaaccat tgcccaaggt gattcacaaa aataagctca	540
tctgaaagta attcttctaa tagctctatg ttattagaaa gcatggctga gcgaagcatt	600
tcttcgtatt ctataactct tgcttgattc atttttaatc ctcctttacg ccttgtgtaa	660
ctcttttcta tttccacgtt gcttttcctt taaacttctt tcattaataa ttcgtgctaa	720 .
attatgttaa tagaggggat aagtggacta attttctgta agcactaaat attctgaaat	780
actctgttaa ttacctttaa atggtataaa attagaatga aagaaccttt tctttccact	840
tttctagtta tctttttact attaagatgc agttttttat acttgtaatt gtagcggaat	900
gaacgttcat tccgtttttg aaaagaggtg ataaagtgga atctactcca acaaaacaaa	960
aagcgatttt ttctgcttcg cttctgctgt ttgcagaaag agggtttgat gcaaccacga	1020
tgccaatgat tgcagagaat gccaaagtag gagcaggaac aatttatcgc tactttaaaa	1080
ataaagaaag ccttgtaaat gaattattcc aacagcacgt aaacgagttt ttacagtgca	1140
ttgaaagcgg tctggcaaac gagagagatg gataccgaga tgggtttcat catatctttg	1200
aaggtatggt gacatttact aaaaaccatc ctcgtgctct tggatttatt aaaactcata	1260
gccaaggaac tttttaaca gaagagagcc gcttagcata tcaaaagctg gtggaatttg	1320
tttgtacgtt cttcagagaa ggacaaaagc aaggtgtgat tagaaatctt cctgaaaatg	1380
cgctaattgc tattttattt ggaagtttca tggaagtata tgaaatgatt gaaaatgact	1440
acttatcttt aactgatgaa cttcttaccg gtgtagaaga gagtctgtgg gcagcactta	1500
gcagacaatc atgaaactta acaagtgaaa gagggataac atg aca att aaa gaa . Met Thr Ile Lys Glu	1555
ata cet caa cea ana nee bib man	
atg cct cag cca aaa acg ttt gga gag ctt aaa aat tta ccg tta tta Met Pro Gln Pro Lys Thr Phe Gly Glu Leu Lys Asn Leu Pro Leu Leu 10 15 20	1603
aac aca gat aaa ccg gtt caa gct ttg atg aaa att gcg gat gaa tta Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys Ile Ala Asp Glu Leu 25 30 35	1651
gga gaa atc ttt aaa ttc gag gcg cct ggt cgt gta acg cgc tac tta Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg Val Thr Arg Tyr Leu	1699
40 45 50	
tca agt cag cgt cta att aaa gaa gca tgc gat gaa tca cgc ttt gat Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp Glu Ser Arg Phe Asp 55 60 65	1747
aaa aac tta agt caa gcg ctt aaa ttt gta cgt gat ttt gca gga gac	1795
Lys Asn Leu Ser Gln Ala Leu Lys Phe Val Arg Asp Phe Ala Gly Asp 70 75 80 85	•
ggg tta ttt aca agc tgg acg cat gaa aaa aat tgg aaa aaa gcg cat Gly Leu Phe Thr Ser Trp Thr His Glu Lys Asn Trp Lys Lys Ala His 90 95 100	1843
aat atc tta ctt cca agc ttc agt cag cag gca atg aaa ggc tat cat	1891
•	•
	-
	,
•	

	Asn	Ile	æ I.	eu	Leu 105	Pro	Ser	Phe	Se:	r Gl 11	in 10	Gln	Al	a N	1et	Ly:	s G:	ly : 15	Pyr	Hi	s		
	gcg Ala	at Me	t M	itg let .20	gtc Val	gat Asp	atc Ile	gcc	gt Va 12	L G.	ag ln	ctt Leu	gt Va	et d	caa Gln	aa Ly 13	<u> </u>	gg (gag Glu	cg Ar	t g	193	9
	cta Leu	aa As 13	n A	gca Ala	gat Asp	gag Glu	cat His	att Il:	s GT	a gʻ u V	ta al	ccg Pro	ga G]	Lu .	gac Asp 145	at Me	g a t T	ca hr	cgt Arg	tt Le	a eu	198	17
	acg Thr 150	Le	t q	gat Asp	aca Thr	att Ile	ggt Gly 155	Le	t tg u Cy	c g s G	gc	ttt	A	ac sn 60	tat Tyr	cg Ar	ic t	tt he	aac Asn	aç Se 10		203	35
	ttt Phe	ta Ty	ic 7r 2	cga Arg	gat Asp	cag Gln 170	Pro	ca Hi	t co s Pr	a t	tt	att Ile 175	1	ca hr	agt Ser	at Me	et /	ytc 7al	cgt Arg 180		ca La	208	33
	ctg Leu	ga As	at sp	gaa Glu	gca Ala 185	ato Met	aaq Ası	aa n Ly	g ct s Le	eu G	ag Sln 90	cga Arg	ag A	ca la	aat Asn	co Pi		gac Asp 195	gac Asŕ	: C(ca ro	21:	31
	gct Alæ	t ta	at yŗ	gat Asp 200	Glu	a aac 1 Asi	aa a Ly	g cg s Ar	g G	ag t Ln E 05	tt Phe	caa Gl:	a g n G	aa lu	gat Asp	,	tc a le : 10	aag Lys	gtg Val	ga LM	tg et	21	79
	aac Asr	n A	ac' sp 15	cta Leu	gta .Val	a gat L Asj	aa o Ly	a at s Il 22	e T	tt q le 2	gca Ala	ga: As:	t c p A	gc Arg	aaa Lys 225	3 EZ	ca la	agc Ser	gg'	r g y G	aa lu	22	27
	caa Gl: 230	n S	gc er	gat Asp	ga [*] As _]	t tt p Le	a tt u Le 23	u Ti	cg c ir H	at a	atg Met	ct Le	u F	aac Asn 240	GT.	a a y L	aa ys	gat Asp	Pr	• •	raa Slu 245	22	275
*	ace Th	g g r G	gt	gaç Glı	g cc ı Pr	g ct o Le 25	u As	t ga	ac g sp G	ag lu	aac Asr	c at n Il 25	.e 2	ege Arg	ta Ty	t c r G	aa In	att	at Il 26	_	aca Thr	23	323
	tt Ph	c t e I	ta .eu	ati Il	t gc e Al 26	g gg a Gl 5	a ca y Hi	ac g _s G	aa a lu T	ca hr	aca Thi	L 26	gt (ggt Gly	ct Le	t t u I	ta Leu	tca Ser 275		t (gcg Ala	2:	371
	ct Le	g t	at Tyr	tte Ph	e Le	a gt u Va	g aa il Ly	aa a ys A	sn 1	cca Pro 285	ca [*]	t gt s Va	ca al	tta Lev	ca Gl	.11 1	aaa Lys 290	gca	a gc a Al	a (gaa Glu	2	419
	ga Gl	.u 2	gca Ala 295	Al	a co a Ar	ga gt :g Va	it c	eu V	ta al 00	gat Asp	cc Pr	t gi o Va	tt al	cca	a ag 5 Se 30	. ب	tac Tyr	aaa Ly:	a ca s Gl	aa Ln	gtc Val	2	467
	L	aa (ys (cag Gln	r ct Le	t aa u L <u>y</u>	aa ta /s T	yr V	tc c al 0 15	gra :	atg Met	gt Va	c t	ta eu	aad Asi 320	.1 63	aa (Lu)	gcg Ala	ct: Le	g co u A:	rg	tta Leu 325	2	515
	tç T	rp gg	cca Pro	a ac	t go	ct c la P 3	ct g ro A 30	cg t la I	tt Phe	tcc Ser	ct Le	eu T	at yr 35	gc	a aa a L	aa ys	gaa Glu	ga As	٠ ـ ي	cg hr 40	gtg Val	2	2563
	ci L	tt eu	gga Gl	a gg	Ly G	aa t lu T 45	at c yr E	ct ro:	cta Leu	gaa Glu	aa L <u>y</u> 35	/S G	gly	ga As	p G	aa lu	cta Leu	at Me 35	_	tt al	ctg Leu	2	2611
	a I	tt le	cc'	o G	ag c ln L 60	tt c eu H	ac c is <i>I</i>	gt Arg	gat Asp	aaa Lys 365	7.1	ca a nr I	att [le	tg Tr	g g	ga ly	gac Asp 370		ıt g sp V	tg al	gaa Glu	;	2659
	g	ag lu	tt Ph 37	e A	gt c rg F	ca ç ro G	gag (Glu 1	Arg	ttt Phe 380	gaa	a a	at o	cca Pro	ag Se	il r	rcg Lla 885	ati Iļ	e Pi	eg c	ag Sln	cat His	-	2707
	P	gcg Ala 390	tt Ph	t a e L	aa c ys I	cg t Pro I	?he	gga Gly 395	aac Asn	ggt Gly	c c y G	ag ln	cgt Arg	g (A) 4(ra c	gt Cys	ato	c gg e G:	gt o Ly (ag Gln	cag Gln 405		2755
	t	tc	gc	t c	tt (cat (gaa	gca	acg	ct	g g	rta	ctt	g g	gt a	atg	at	g c	ta i	aaa	cac		2803

Ph	ne Al	.a Le	eu Hi	ls Gl 41	lu Al LO	a Th	r Le	u Va	l'Le 41		у Ме	et Me	et Le	eu Ly 42	s His	
tt Ph	it ga ne As	c tt p Pl	t ga ne Gl 42	.u As	it ca sp Hi	t ac s Th	a aa r As:	c ta n Ty: 43	r Gl	g ct u Le	g ga u As	t at p Il	t aa e Ly 43	s Gl	a act u Thr	2851
tt Le	a ac u Th	g tt r Le 44	:u ъy	a co 's Pr	t ga o Gl	a gg u Gl	c tt y Pho 44!	e Va.	g gt. l Va	a aa l Ly	a gc s Al	а аа а Љ у 45	s Se	g aa r Ly	a aaa s Lys	2899
at Il	t co e Pr 45	o ne	t gg u Gl	c gg	t at y Il	t cc e Pro 46	o Se:	a cci r Pro	c age	c ac	t ga r Gl 46	u Gl	g to n Se	t gc r Al	t aaa a Lys	2947
aa Ly 47	S Va	a cg l Ar	c aa g Ly	a aa s Ly	g gc s Al 47	a GI1	a aad ı Asr	c gct n Ala	cat His	t aa s Ası 480	n Th	g cc r Pr	g ct o Le	g ct u Le	t gtg u Val 485	2995
ct Le	a ta u Ty	c gg r Gl	t tc y Se	a aa r As: 49	u Me.	g gga	a aca y Thr	a gct Ala	gaa Glu 495	ı Gly	a acq	g gc r Al	g cg a Ar	t ga g As; 50	t tta p Leu 0	3043
gc. Al:	a ga [.] a As _]	t at	t gc. e Ala 50	a Me.	c Se	r PAs	a gga s Gly	' Phe	gca Ala	Pro	Glr	n Va.	l Al	a Th:	g ctt r Leu	3091
gat As _I	t tea p Sea	e cad Hi: 520	2 WT	c gga	a aat y Asr	ctt Lev	ccg Pro 525	Arg	gaa Glu	gga Gly	gct Ala	gta Val 530	l Lei	a att	t gta e Val	3139
acç Thi	g gcq r Ala 535	i se.	t tai	c aac	c ggt n Gly	cat His 540	Pro	cct Pro	gat Asp	aac Asn	gca Ala 545	a Lys	g caa s Gli	a ttt n Phe	gtc Val	3187
gac Asp 550	ነ ተሞች	y tta Lei	a gad 1 Asp	caa Glr	a gcg a Ala 555	Ser	gct Ala	gat Asp	gaa Glu	gta Val 560	Lys	: Gl?	gtt Val	cgc Arg	tac Tyr 565	3235
tcc Ser	gta Val	ttt Phe	gga Gly	tgc Cys 570	GTA	gat Asp	aaa Lys	aac Asn	tgg Trp 575	gct Ala	act Thr	acg Thr	g tat Tyr	caa Gln 580	aaa Lys	3283
gtg Val	r cct Pro	gct Ala	ttt Phe 585	тте	gat Asp	gaa Glu	acg Thr	ctt Leu 590	gcc Ala	gct Ala	aaa Lys	Gly	gca Ala 595	Glu	aac Asn	3331
atc Ile	gct Ala	gac Asp 600	Arg	ggt Gly	gaa Glu	gca Ala	gat Asp 605	gca Ala	agc Ser	gac Asp	gac Asp	ttt Phe 610	Glu	ggc	aca Thr	3379
tat Tyr	gaa Glu 615	gaa Glu	tgg Trp	cgt Arg	gaa Glu	cat His 620	atg Met	tgg	agt Ser	gac Asp	gta Val 625	gca Ala	gcc Ala	tac Tyr	ttt Phe	3427
aac Asn 630	ctc Leu	gac Asp	att Ile	gaa Glu	aac Asn 635	agt Ser	gaa Glu	gat Asp	aat Asn	aaa Lys 640	tct Ser	act Thr	ctt Leu	tca Ser	ctt Leu 645	3475
caa Gln	ttt Phe	gtc Val	gac Asp	agc Ser 650	gcc Ala	gcg Ala	gat Asp	atg Met	ccg Pro 655	ctt Leu	gcg Ala	aaa Lys	atg Met	cac His 660	ggt Gly	3523
gcg Ala	ttt Phe	tca Ser	acg Thr 665	aac Asn	gtc Val	gta Val	gca Ala	agc Ser 670	aaa Lys	gaa Glu	ctt Leu	caa Gln	cag Gln 675	cca Pro	ggc Gly	3571
agt Ser	gca Ala	cga Arg 680	agc Ser	acg Thr	cga Arg	cat His	ctt Leu 685	gaa Glu	att Ile	gaa Glu	ctt Leu	cca Pro 690	aaa Lys	gaa Glu	gct Ala	3619
tct Ser	tat Tyr 695	caa Gln	gaa Glu	gga Gly	Asp	cat His 700	tta Leu	ggt Gly	gtt Val	Ile	cct Pro 705	cgc Arg	aac Asn	tat Tyr	gaa Glu	3667
gga	ata	gta	aac	cgt	gta	aca	gca (agg -	ttc	ggc	cta	gat	gca	tca	cag	3715

Gly 710	Ile	Val	Asn	Arg	Val 715	Thr	Ala	Arg	Phe	Gly 720	Leu	Asp	Ala	Ser	Gln 725	
caa Gln	atc Ile	cgt Arg	ctg Leu	gaa Glu 730	gca Ala	gaa Glu	gaa Glu	gaa Glu	aaa Lys 735	tta Leu	gct Ala	cat His	ttg Leu	cca Pro 740	ctc Leu	3763
gct Ala	aaa Lys	aca Thr	gta Val 745	tcc Ser	gta Val	gaa Glu	gag Glu	ctt Leu 750	ctg Leu	caa Gln	tac Tyr	gtg Val	gag Glu 755	ctt Leu	caa Gln	3811
gat Asp	cct Pro	gtt Val 760	Thr	cgc Arg	acg Thr	cag Gln	ctt Leu 765	cgc Arg	gca Ala	atg Met	gct Ala	gct Ala 770	T A C	acg Thr	gtc Val	3859
tgc Cys	ccg Pro 775	Pro	cat His	aaa Lys	gta Val	gag Glu 780	ctt Leu	gaa Glu	gcc Ala	ttg Leu	ctt Leu 785	سيدي	aag Lys	caa Gln	gcc Ala	3907
tac Tyr 790	Lys	gaa Glu	caa Gln	gtg Val	ctg Leu 795	Ala	aaa Lys	cgt Arg	tta Leu	aca Thr 800	Mec	ctt Leu	gaa Glu	ctg Leu	ctt Leu 805	3955
gaa Glu	aaa Lys	tac Tyr	r Pro) Alā	g tgt L Cys	Glu	Met	гÃа	ttc Phe 815	ser	gaa Glu	ttt Phe	atc Ile	gcc Ala 820	ctt Leu	4003
ctg Lev	cca Pro	ago Sei	ata c Ile 825	e Arg	c ccg g Pro	cgc Arg	tat Tyr	tac Tyr 830	Sei	g att	tct Ser	tca Sei	tca Ser 835		cgt Arg	4051
gto Val	c gat L Asp	gaa G Gl:	u Ly:	a caa s Gli	a gca n Ala	a ago a Sei	ato : Ile : 845	'I'n	g gto r Val	c ago l Sei	gtt Val	c gto L Vai 850	<u></u>	a gga	a gaa 7 Glu	4099
gc Ala	g tgg a Trj 85	g ag o Se	e aa	a ta y Ty	t gga r Gly	a gaa y Gli 860	ı TA1	aaa Ly	a gga s Gl	a att	t gc e Ala 86	a DC.	g aad r Asi	c tat n Ty:	t ctt r Leu	4147
gco Ala	c ga a Gl		g ca u Gl	a ga n Gl	a gga u Gly 87!	y As	t acq p Th:	g at r Il	t ac e Th	g tg r Cy: 88	2 Err	t at e Il	t tco e Se:	c ac	a ccg r Pro 885	4195
		a ga r Gl	a tt u Ph	t ac e Th 89	r re	g cc u Pr	a aa o Ly	a ga s As	c cc p Pr 89	O GT	a ac u Th	g cc r Pr	g ct o Le	t at u Il 90	c atg e Met 0	4243
gt Va	c gg 1 Gl	a cc y Pr	g gg co Gl 90	y Th	a gg ir Gl	c gt y Va	c gc l Al	g cc a Pr 91	O Bu	t ag e Ar	a gg g Gl	c tt y Ph	t gt e Va 91		g gcg n Ala	4291
cg Ar	c aa g Ly	rs G]	ag ct Ln Le 20	a aa au Ly	aa ga ys Gl	a ca .u Gl	a gg n Gl 92	у Сл	ig to .n Se	ca ct er Le	t gg u Gl	ja ga .y Gl 93		a ca .a Hi	t tta .s Leu	4339
ta Ty	ic tt vr Př 93	ie G	gc to Ly C <u>y</u>	gc co ys Ai	gt to cg Se	a co er Pr 94	O Hi	it ga .s Gl	aa ga Lu As	ac ta sp Ty	T Tre	eg ta eu Ty 15	at ca yr Gl	a ga .n Gl	aa gag Lu Glu	4387
$\mathbf{L}\epsilon$	et ga eu Gi	aa a Lu A	ac go sn Al	cc c la G	ln Se	gc ga er Gl	aa gg Lu Gl	gc af Ly I:	tc at le I	те тт	eg et nr Le 60	tt ca eu Hi	at ac is Th	ec go nr Al	ct ttt la Phe 965	
to Se	ct c er A	gc a rg M	tg c et P	ro A	at ca sn Gi 70	ag co ln Pi	cg aa ro L	aa a ys T	UL I	ac g yr V 75	tt c al G	ag c ln H	ac g is V		tg gaa et Glu 80	a 4483 1
C G	aa g ln A	ac g sp G	ly L	ag a ys L 85	aa t ys L	tg a eu I	tt g le G	Lu L	tt c eu L 90	tt g eu A	at c sp G	aa g ln G	X	cg c la H 95	ac tto is Pho	c 4531 e
t T	at a yr I	le C	ac	gga	gac Asp	gga Gly	ser	caa Gln 1005	Mer	gca : Ala	cct	gcc Ala	gtt Val		a gca u Ala	4576
а	cg c	_		aaa	agc	tat	gct	gac	gtt	cac	caa	gtç	g agt	; g <i>ê</i>	a gca	4621

Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln Val Ser Glu Ala 1025 gac gct cgc tta tgg ctg cag cag cta gaa gaa aaa ggc cga tac Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys Gly Arg Tyr - 1030 gca aaa gac gtg tgg gct ggg taa attaaaaaga ggctaggata aaagtagttt Ala Lys Asp Val Trp Ala Gly agttggttga aggaagatcc gaacgatgaa tcgttcggat ctttttattg gtagagtaaa cgtagatttc atctatttag tgacttgtag cggttgattg gagggcaagg tgaagactcc aatcaaccgc ggtgtcacat gcaagccata cgaaattcat ttctcccatt tattcgtctt ttgtccccac ttaattttta tagcgcctta acgtttcttc tgcgtgacag cagatct <210> 4 <211> 1049 <212> PRT <213> Bacillus megaterium <400> Met Thr Ile Lys Glu Met Pro Gln Pro Lys Thr Phe Gly Glu Léu Lys Asn Leu Pro Leu Leu Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys Ile Ala Asp Glu Leu Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg Val Thr Arg Tyr Leu Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp Glu Ser Arg Phe Asp Lys Asn Leu Ser Gln Ala Leu Lys Phe Val Arg Asp Phe Ala Gly Asp Gly Leu Phe Thr Ser Trp Thr His Glu Lys Asn Trp Lys Lys Ala His Asn Ile Leu Leu Pro Ser Phe Ser Gln Gln Ala Met Lys Gly Tyr His Ala Met Met Val Asp Ile Ala Val Gln Leu Val Gln Lys Trp Glu Arg Leu Asn Ala Asp Glu His Ile Glu Val Pro Glu Asp Met Thr Arg Leu Thr Leu Asp Thr Ile Gly Leu Cys Gly Phe Asn Tyr Arg Phe Asn Ser Phe Tyr Arg Asp Gln Pro His Pro Phe Ile Thr Ser Met Val Arg Ala Leu Asp Glu Ala Met Asn Lys Leu Gln Arg Ala Asn Pro Asp Asp Pro Ala Tyr Asp Glu Asn Lys Arg Gln Phe Gln Glu Asp Ile Lys Val Met Asn Asp Leu Val Asp Lys Ile Ile Ala Asp Arg Lys Ala Ser Gly Glu Gln Ser Asp Asp Leu Leu Thr His Met Leu Asn Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg

Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270

Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 . 280 285

Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Val Pro 290 295 300

Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 310 315 320

Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335

Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345

Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp 355 360 365

Gly Asp Asp Val Glu Glu Phe Arg Pro Glu Arg Phe Glu Asn Pro Ser 370 375

Ala Ile Pro Gln His Ala Phe Lys Pro Phe Gly Asn Gly Gln Arg Ala 385 390 395

Cys Ile Gly Gln Gln Phe Ala Leu His Glu Ala Thr Leu Val Leu Gly 405 410 415

Met Met Leu Lys His Phe Asp Phe Glu Asp His Thr Asn Tyr Glu Leu 420 425 430

Asp Ile Lys Glu Thr Leu Thr Leu Lys Pro Glu Gly Phe Val Val Lys 435

Ala Lys Ser Lys Lys Ile Pro Leu Gly Gly Ile Pro Ser Pro Ser Thr 450 .

Glu Gln Ser Ala Lys Lys Val Arg Lys Lys Ala Glu Asn Ala His Asn 465 470 475

Thr Pro Leu Val Leu Tyr Gly Ser Asn Met Gly Thr Ala Glu Gly
485 490 495

Thr Ala Arg Asp Leu Ala Asp Ile Ala Met Ser Lys Gly Phe Ala Pro 500 505 510

Gln Val Ala Thr Leu Asp Ser His Ala Gly Asn Leu Pro Arg Glu Gly 515 520 . 525

Ala Val Leu Ile Val Thr Ala Ser Tyr Asn Gly His Pro Pro Asp Asn 530 540

Ala Lys Gln Phe Val Asp Trp Leu Asp Gln Ala Ser Ala Asp Glu Val 550 555 560

Lys Gly Val Arg Tyr Ser Val Phe Gly Cys Gly Asp Lys Asn Trp Ala 565

Thr Thr Tyr Gln Lys Val Pro Ala Phe Ile Asp Glu Thr Leu Ala Ala 580

Lys Gly Ala Glu Asn Ile Ala Asp Arg Gly Glu Ala Asp Ala Ser Asp 595 600 605

Asp Phe Glu Gly Thr Tyr Glu Glu Trp Arg Glu His Met Trp Ser Asp 610 620

Val Ala Ala Tyr Phe Asn Leu Asp Ile Glu Asn Ser Glu Asp Asn Lys 635 640

Ser Thr Leu Ser Leu Gln Phe Val Asp Ser Ala Ala Asp Met Pro Leu 645 650 650

Ala Lys Met His Gly Ala Phe Ser Thr Asn Val Val Ala Ser Lys Glu

660 665 670

Leu Gln Gln Pro Gly Ser Ala Arg Ser Thr Arg His Leu Glu Ile Glu 675 680 685

Leu Pro Lys Glu Ala Ser Tyr Gln Glu Gly Asp His Leu Gly Val Ile 690 695 700

Pro Arg Asn Tyr Glu Gly Ile Val Asn Arg Val Thr Ala Arg Phe Gly 705 710 715

Leu Asp Ala Ser Gln Gln Ile Arg Leu Glu Ala Glu Glu Glu Lys Leu
725 730 735

Ala His Leu Pro Leu Ala Lys Thr Val Ser Val Glu Glu Leu Leu Gln
740 745 750

Tyr Val Glu Leu Gln Asp Pro Val Thr Arg Thr Gln Leu Arg Ala Met 755 760 765

Ala Ala Lys Thr Val Cys Pro Pro His Lys Val Glu Leu Glu Ala Leu 770 780

Leu Glu Lys Gln Ala Tyr Lys Glu Gln Val Leu Ala Lys Arg Leu Thr
785 790 795 800

Met Leu Glu Leu Glu Lys Tyr Pro Ala Cys Glu Met Lys Phe Ser 805 810 815

Glu Phe Ile Ala Leu Leu Pro Ser Ile Arg Pro Arg Tyr Tyr Ser Ile 820 825 830

Ser Ser Ser Pro Arg Val Asp Glu Lys Gln Ala Ser Ile Thr Val Ser 835 840 845

Val Val Ser Gly Glu Ala Trp Ser Gly Tyr Gly Glu Tyr Lys Gly Ile 850 860

Ala Ser Asn Tyr Leu Ala Glu Leu Gln Glu Gly Asp Thr Ile Thr Cys 875 880

Phe Ile Ser Thr Pro Gln Ser Glu Phe Thr Leu Pro Lys Asp Pro Glu 885 890 895

Thr Pro Leu Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Arg 900 905 910

Gly Phe Val Gln Ala Arg Lys Gln Leu Lys Glu Gln Gly Gln Ser Leu 915 920 925

Gly Glu Ala His Leu Tyr Phe Gly Cys Arg Ser Pro His Glu Asp Tyr 930 935 940

Leu Tyr Gln Glu Glu Leu Glu Asn Ala Gln Ser Glu Gly Ile Ile Thr 945 950 955 960

Leu His Thr Ala Phe Ser Arg Met Pro Asn Gln Pro Lys Thr Tyr Val 965 970 975

Gln His Val Met Glu Gln Asp Gly Lys Lys Leu Ile Glu Leu Leu Asp 980 985 990

Gln Gly Ala His Phe Tyr Ile Cys Gly Asp Gly Ser Gln Met Ala Pro 995 1000 1005

Ala Val Glu Ala Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln 1010 1015 1020

Val Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu 1025 1035

Lys Gly Arg Tyr Ala Lys Asp Val Trp Ala Gly 1040

<210> 5 <211> 3147 <212> DNA <213> Artificial sequence	
<220> <223> Cytochrome P450BM-3 mutant	
<220> <221> CDS <222> (1)(3147)	
<pre><400> 5 aca att aaa gaa atg cct cag cca aaa acg ttt gga gag ctt aaa aat Thr Ile Lys Glu Met Pro Gln Pro Lys Thr Phe Gly Glu Leu Lys Asn 10 15</pre>	48
tta ccg tta tta aac aca gat aaa ccg gtt caa gct ttg atg aaa att Leu Pro Leu Leu Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys Ile 20 25 30	96
gcg gat gaa tta gga gaa atc ttt aaa ttc gag gcg cct ggt cgt gta Ala Asp Glu Leu Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg Val 35 40 45	144
acg cgc tac tta tca agt cag cgt cta att aaa gaa gca tgc gat gaa Thr Arg Tyr Leu Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp Glu 50	192
tca cgc ttt gat aaa aac tta agt caa gcg ctt aaa ttt gta cgt gat Ser Arg Phe Asp Lys Asn Leu Ser Gln Ala Leu Lys Phe Val Arg Asp 65 70 75	240
ttt gca gga gac ggg tta gct aca agc tgg acg cat gaa aaa aat tgg Phe Ala Gly Asp Gly Leu Ala Thr Ser Trp Thr His Glu Lys Asn Trp 90 95	288
aaa aaa gcg cat aat atc tta ctt cca agc ttc agt cag cag gca atg Lys Lys Ala His Asn Ile Leu Leu Pro Ser Phe Ser Gln Gln Ala Met 100 105 110	336
aaa ggc tat cat gcg atg atg gtc gat atc gcc gtg cag ctt gtt caa Lys Gly Tyr His Ala Met Met Val Asp Ile Ala Val Gln Leu Val Gln 115 120	384
aag tgg gag cgt cta aat gca gat gag cat att gaa gta ccg gaa gac Lys Trp Glu Arg Leu Asn Ala Asp Glu His Ile Glu Val Pro Glu Asp 130 135	432
atg aca cgt tta acg ctt gat aca att ggt ctt tgc ggc ttt aac tat Met Thr Arg Leu Thr Leu Asp Thr Ile Gly Leu Cys Gly Phe Asn Tyr 150 155 160	480
cgc ttt aac agc ttt tac cga gat cag cct cat cca ttt att aca agt Arg Phe Asn Ser Phe Tyr Arg Asp Gln Pro His Pro Phe Ile Thr Ser 165	528
atg gtc cgt gca ctg gat gaa gca atg aac aag ctg cag cga gca aat Met Val Arg Ala Leu Asp Glu Ala Met Asn Lys Leu Gln Arg Ala Asn 180 185	576
cca gac gac cca gct tat gat gaa aac aag cgc cag ttt caa gaa gat Pro Asp Asp Pro Ala Tyr Asp Glu Asn Lys Arg Gln Phe Gln Glu Asp 195 200 205	624
atc aag gtg atg aac gac cta gta gat aaa att att gca gat cgc aaa Ile Lys Val Met Asn Asp Leu Val Asp Lys Ile Ile Ala Asp Arg Lys 210 215	672
gca agc ggt gaa caa agc gat gat tta tta acg cat atg cta aac gga Ala Ser Gly Glu Gln Ser Asp Asp Leu Leu Thr His Met Leu Asn Gly 235 240	720
aaa gat cca gaa acg ggt gag ccg ctt gat gac gag aac att cgc tat Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg Tyr	768

245 250 255

					245					2	50						25	55			
G	aa a ln I	tt a le I	.10 1	aca Thr 260	ttc Phe	tta Leu	at:	t go e Al	.a G.	ga c Ly H 55	ac is	gaa Glu	a ac 1 Th	a a r T	hr :	agt Ser 270	Gl	rt ·Y	ctt Leu	816	
t L	ta t eu S	<u> </u>	tt g he A 75	jcg la :	ctg Leu	tat Tyr	tto Phe	tte Le 28	u Va	g a al L	aa ys	aat Asn	cc Pr	O H:	at q is V 35	yta /al	tt Le	a u	caa Gln	864	
a L	aa go ys Al 29	ca g la A 90	ca g la G	aa (lu (gaa Glu i	gca Ala	gca Ala 295	a Ar	a gt g Va	t c	ta eu	gta Val	ga As 30	p Pi	ct c	ytt 7al	cc Pr	a o	agc Ser	912	
	ac aa yr Ly)5	aa c ys G	aa g ln V	tc a al I	iys (cag Gln B10	ctt	: aa . Ly	a ta s Ty	t g	al	ggc Gly 315	at Me	g gt t Va	c t	ta eu	aa As:	n (gaa Glu 320	960	
**	cg ct la Le	iu m	rg n	3	325	, TO	THE	, AT	a Pr	o A. 33	La 30	Phe	Se:	r Le	u T	yr	Ala 33!	a 1 5	Lys	1008	
	ia ga .u As	, p 11	3	40	ieu c	<u>.</u> т. Х	стХ	GT1	34	r Pr 5	:0	Leu	Glı	ı Ly	s G 3	ly 50	Asp	9	3lu	1056	
	a at u Me	35	55	su 1	re r	TO	СTИ	360 360	ı Hi:	s Ar	g 1	Asp	Lys	36.	r I. 5	le	Trp) G	Sly	1104	
110	c ga p As 37	0	ir G	-u G	u P	ne .	arg 375	Pro) GI	ı Ar	g I	Phe	Glu 380	As)	n P:	ro	Ser	: A	la	1152	
38		0 61	.11 111	.S A.	3 ·	ne 90	Lys	Pro) Phe	e Gl	y 7 3	Asn 395	Gly	Glı	i Ai	cg .	Ala	4	ys 00	1200	
-da -pd	e Gl	ў GI	n Gř	4(ne A. 05	ıa ı	∍eu	Hls	Glu	41	a 1 0	hr	Leu	Val	L L∈	eu (Gly 415	M	et	1248	
	g cta t Lei	עני ג	42	o	ie Ai	ap F	ene.	GLU	425	Hi:	s I	hr.	Asn	Tyr	: G1 43	.u´] 0	Leu	A	sp	1296 ·	
	aaa Lys	43	5	1. 1.)C	u TI	IL T	eu	ьуs 440	Pro	Glı	ı G	ly:	Phe	Val 445	Va	.1 1	ьуs	A.	la	1344	
	tcg Ser 450))	∍ "กไ"	2 11	e Pr	4	eu 55	СΤΆ	GTĀ	Ile	P	ro s	Ser 460	Pro	Se	r I	hr	G]	Lu	1392	
465		ATC	т г	ъ 'nÃ	s va 47	0 1	rg .	Lys	гуз	Ala	. G. 4	lu <i>F</i> 75	4sn	Ala	Hi	s A	sn	Th 48	10	1440	
0	ctg Leu	πer	. val	48	u ry 5	I G.	т.У :	ser	Asn	Met 490	G.	Ly 1	hr	Ala	Glı	ı G 4	1y 95	Th	r	1488	
,	cgt Arg	нар	500	: Al	a As	p I.	Le A	41a	Met 505	Ser	Г	7s G	ly	Phe	Ala 510	a P.	ro	Gl	n	1536	
v a T	gca Ala	515	ьеи	AS	e Se:	r Hi	LS Æ	11a 520	Gly	Asn	Le	eu P	ro	Arg 525	Glu	ı G.	ly .	Al	a ·	1584	
val	tta Leu 530	TTE	val	Tnj	: Ата	a Se 53	er 1 35	'yr .	Asn	Gly	Hi	.s P 5	ro 40	Pro	Asp	A:	sn .	Al	a	1632	
aag Lys	caa Gln	ttt Phe	gtc Val	gac Asp	tgç Tr	y tt D Le	a g u A	sp.(caa Gln	gcg Ala	tc Se	t g r A	ct (gat Asp	gaa Glu	gt Va	ta a	aaa Lys	a s	1680	

	545					5	50					55	55					5	60					
	ggc (gtt Val	cgo	ta g Ty	ic to r Se 50	c gt	⊬s t	tt (gga Gly	tgc Cys	gg Gl: 57	у т.	at a sp 1	aaa Lys	aac Asn	tgg	g gc 5 Al 57	t a a T	act Thr	.1728				
	acg Thr	tat Tyr	caa Gli	a aa n Ly 58	aa gt 7s Va	-a -c	ct o	gct Ala	ttt Phe	atc Ile 585	AS	t g p G	aa lu	acg Thr	ctt Leu	gcc Al: 59	_	t a .a I	aaa Lys	1776				
	GJA GGG	gca Ala	a ga a Gl 59	a aa u As		tc g le A	ct la	gac Asp	cgc Arg 600	ggt Gly	ga Gl	a g .u A	ca la	gat Asp	gca Ala 605		c ga r As	ac (gac Asp	1824				
	ttt Phe	gaa Glu	a gg u Gl		ca t hr T	at g yr G	gaa Slu	gaa Glu 615	tgg Trp	cgt	g ga	aa c Lu H	at lis	atg Met 620	tgg Trp	g ag Se	t g r A	ac sp	gta Val	1872		·	ı	
·	gca Ala 625	gc Al	_ 4	ıc t 7r P	tt a he A	sn 1	etc Leu 530	gac Asp	att Ile	gaa Glu	a aa u As	211 -	agt Ser 535	gaa Glu	gat Asp	aa As	t a in L	aa ys	tct Ser 640	1920				
	act Thr	ct Le	t to u Se	ca c er L	eu G	caa 1 Sln 1 545	ttt Phe	gtc Val	gac Asp	age Se:	TW	cc 9 1a 2 50	gcg Ala	gat Asp	atq Me	g co t Pi		ett eu 555	gcg Ala	1968				
	`aaa Lys	at Me	g ca et H:	is G	ggt g 31y <i>1</i> 560	gcg Ala	ttt Phe	tca Ser	acg Thr	aa As 66	TT A	tc (gta Val	gca Ala	. ag . Se		aa g ys G 70	gaa Slu	ctt Leu	2016				
	caa Gln	a ca a Gl	Ln P	ca g ro 0 75	gly :	agt Ser	gca Ala	cga Arg	ago Sei 680	L 111	g c	ga Arg	cat His	ctt	ga Gl 68	•	tt q le (gaa Glu	ctt Leu	2064				
, 2	cca Pro	o Ly	aa g ys G 90	aa q lu i	gct Ala	tct Ser	tat Tyr	caa Glr 695) GT	a gg u Gl	ga <u>c</u> Ly <i>I</i>	gat Asp	cat	tta Let 70		jt g .y V	tt al	att Ile	cct Pro	2112		•	•	
	cgo Arg 705	g A	ac t sn T	at 'yr	gaa Glu	gga Gly	ata Ile 710	va.	a aa l As	c co n Ai	gt (rg \	gta Val	aca Thi 715		a aç a Aı	gg t cg E	tc he	ggc Gly	cta Leu 720	2160				
	ga As	t g p A	ca t la s	ca Ser	cag Gln	caa Gln 725	IL	c cg	t ct g Le	g ga au G	тu.	gca Ala 730	الدي	a ga u Gl	a ga u Gi	aa a lu I	aaa Lys	tta Leu 735	a gct ı Ala . 5	2208				
	ca Hi	t t s I	tg (eu l	eca Pro	ctc Leu 740	gct Ala	aaa Ly:	a ac s Th	a gt r Va	TT 2	cc er 45	gta Val	ga: Gl	a ga u Gl	g c u L		ctg Leu 750	caa Glr	a tac n Tyr	2256				
-	gt Va	g g	slu :	ctt Leu 755	caa Gln	gat Asp	cc Pr	t gt o Va	T TI	cg c nr A 60	gc rg	acg Thr	ca Gl	g ct n Le		gc rg :	gca Ala	ate Me	g gct t Ala	2304				
	gc A]	La I	aaa Lys 770	acg Thr	gtc Val	tgc Cys	cc Pr	g cc o Pr 77	o n.	at <i>a</i> is I	aaa Lys	gta Val	ı ga . Gl	_ (,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	et g eu G 30	gaa Slu	gcc Ala	tt Le	g ctt u Leu	2352				
	G] 78	lu : 85	Lys	Gln	Ala	ТУ	ту 79	75 G.	Lu G	" "T'II	var	1100	79	95	,, —	· · ·			a atg nr Met 800	2400				
	Ŀ	eu	Glu	Leu	Lev	80!	2 7 T)	ys T	λr r	TO '	мта	81	0					81	gc gaa er Glu 15	2448				
	t P	tt	atc Ile	gcc	ctt Lei 820	ı Le	g co u P:	ca a ro S	gc a er I	776	cgc Arg 825		g c	gc t rg T	at 'yr	tac Tyr	tco Ser 830		tt tct le Ser					
	t	ca Ser	tca Ser	cct Pro 835	o Ar	t gt g Va	c g l A	at g sp G	Lu 1	aaa Lys 840	caa	a gc	a a .a S	gc a Ser I		acg Thr 845		c a	gc gtt er Val	2544	1			
•	ç 7	gtc Val	tca Ser	gg;	a ga y Gl	a gc u Al	g t .a T	gg a	agc (Ser (gga Gly	tat Ty:	t gg r Gl	ja 9 Ly 6	gaa 31u '	tat Fyr	aaa Lys	gg Gl	a a y I	itt gcg [le Ala	2592	2			
												•												

850 855 860 tcg aac tat ctt gcc gag ctg caa gaa gga gat acg att acg tgc ttt 2640 Ser Asn Tyr Leu Ala Glu Leu Gln Glu Gly Asp Thr Ile Thr Cys Phe 865 870 875 880 att tcc aca ccg cag tca gaa ttt acg ctg cca aaa gac cct gaa acg 2688 Ile Ser Thr Pro Gln Ser Glu Phe Thr Leu Pro Lys Asp Pro Glu Thr 885 890 895 ccg ctt atc atg gtc gga ccg gga aca ggc gtc gcg ccg ttt aga ggc 2736 Pro Leu Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Arg Gly 900 905 ttt gtg cag gcg cgc aaa cag cta aaa gaa caa gga cag tca ctt gga 2784 Phe Val Gln Ala Arg Lys Gln Leu Lys Glu Gln Gly Gln Ser Leu Gly 915 gaa gca cat tta tac ttc ggc tgc cgt tca cct cat gaa gac tat ctg 2832 Glu Ala His Leu Tyr Phe Gly Cys Arg Ser Pro His Glu Asp Tyr Leu 930 935 tat caa gaa gag ctt gaa aac gcc caa agc gaa ggc atc att acg ctt 2880 Tyr Gln Glu Glu Leu Glu Asn Ala Gln Ser Glu Gly Ile Ile Thr Leu 945 950 955 960 cat acc gct ttt tct cgc atg cca aat cag ccg aaa aca tac gtt cag 2928 His Thr Ala Phe Ser Arg Met Pro Asn Gln Pro Lys Thr Tyr Val Gln 965 970 975 cac gta atg gaa caa gac ggc aag aaa ttg att gaa ctt ctt gat caa 2976 His Val Met Glu Gln Asp Gly Lys Lys Leu Ile Glu Leu Leu Asp Gln 980 985 990 gga gcg cac ttc tat att tgc gga gac gga agc caa atg gca cct gcc 3024 Gly Ala His Phe Tyr Ile Cys Gly Asp Gly Ser Gln Met Ala Pro Ala 995 1000 1005 gtt gaa gca acg ctt atg aaa agc tat gct gac gtt cac caa gtg 3069 Val Glu Ala Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln Val 1010 1015 1020 agt gaa gca gct cgc tta tgg ctg cag cag cta gaa gaa aaa 3114 Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys 1025 1030 1035 ggc cga tac gca aaa gac gtg tgg gct ggg taa 3147 Gly Arg Tyr Ala Lys Asp Val Trp Ala Gly 1040 ' 1045 <210> 6 <211> 1048 <212> PRT <213> Artificial sequence <220> <223> Cytochrome P450BM-3 mutant <400> 6 Thr Ile Lys Glu Met Pro Gln Pro Lys Thr Phe Gly Glu Leu Lys Asn 1 10 Leu Pro Leu Leu Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys Ile 25 Ala Asp Glu Leu Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg Val Thr Arg Tyr Leu Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp Glu 55 Ser Arg Phe Asp Lys Asn Leu Ser Gln Ala Leu Lys Phe Val Arg Asp 70

75

Phe Ala Gly Asp Gly Leu Ala Thr Ser Trp Thr His Glu Lys Asn Trp 85 90 95

Lys Lys Ala His Asn Ile Leu Leu Pro Ser Phe Ser Gln Gln Ala Met 100 105 110

Lys Gly Tyr His Ala Met Met Val Asp Ile Ala Val Gln Leu Val Gln 115 120 125

Lys Trp Glu Arg Leu Asn Ala Asp Glu His Ile Glu Val Pro Glu Asp 130 135 140

Met Thr Arg Leu Thr Leu Asp Thr Ile Gly Leu Cys Gly Phe Asn Tyr 145 150 150

Arg Phe Asn Ser Phe Tyr Arg Asp Gln Pro His Pro Phe Ile Thr Ser 165 170 175

Met Val Arg Ala Leu Asp Glu Ala Met Asn Lys Leu Gln Arg Ala Asn 180 185 190

Pro Asp Asp Pro Ala Tyr Asp Glu Asn Lys Arg Gln Phe Gln Glu Asp 195 200 205

Ile Lys Val Met Asn Asp Leu Val Asp Lys Ile Ile Ala Asp Arg Lys 210 220

Ala Ser Gly Glu Gln Ser Asp Asp Leu Leu Thr His Met Leu Asn Gly 235 230

Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg Tyr 245 250 255

Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly Leu 260 265 270

Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu Gln 275 280 285

Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Val Pro Ser 290 295 300

Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn Glu 305 310 315

Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala Lys 325

360

355

Asp Asp Val Glu Glu Phe Arg Pro Glu Arg Phe Glu Asn Pro Ser Ala 370 375

Ile Pro Gln His Ala Phe Lys Pro Phe Gly Asn Gly Gln Arg Ala Cys 395 395

The Gly Gln Gln Phe Ala Leu His Glu Ala Thr Leu Val Leu Gly Met 405

Met Leu Lys His Phe Asp Phe Glu Asp His Thr Asn Tyr Glu Leu Asp 420 425 430

Ile Lys Glu Thr Leu Thr Leu Lys Pro Glu Gly Phe Val Val Lys Ala 435

Lys Ser Lys Lys Ile Pro Leu Gly Gly Ile Pro Ser Pro Ser Thr Glu 450 · 455

Gln Ser Ala Lys Lys Val Arg Lys Lys Ala Glu Asn Ala His Asn Thr 470 475 480

Pro Leu Leu Val Leu Tyr Gly Ser Asn Met Gly Thr Ala Glu Gly Thr

Ala Arg Asp Leu Ala Asp Ile Ala Met Ser Lys Gly Phe Ala Pro Gln Val Ala Thr Leu Asp Ser His Ala Gly Asn Leu Pro Arg Glu Gly Ala Val Leu Ile Val Thr Ala Ser Tyr Asn Gly His Pro Pro Asp Asn Ala Lys Gln Phe Val Asp Trp Leu Asp Gln Ala Ser Ala Asp Glu Val Lys Gly Val Arg Tyr Ser Val Phe Gly, Cys Gly Asp Lys Asn Trp Ala Thr Thr Tyr Gln Lys Val Pro Ala Phe Ile Asp Glu Thr Leu Ala Ala Lys Gly Ala Glu Asn Ile Ala Asp Arg Gly Glu Ala Asp Ala Ser Asp Asp Phe Glu Gly Thr Tyr Glu Glu Trp Arg Glu His Met Trp Ser Asp Val Ala Ala Tyr Phe Asn Leu Asp Ile Glu Asn Ser Glu Asp Asn Lys Ser Thr Leu Ser Leu Gln Phe Val Asp Ser Ala Ala Asp Met Pro Leu Ala 650· Lys Met His Gly Ala Phe Ser Thr Asn Val Val Ala Ser Lys Glu Leu Gln Gln Pro Gly Ser Ala Arg Ser Thr Arg His Leu Glu Ile Glu Leu Pro Lys Glu Ala Ser Tyr Gln Glu Gly Asp His Leu Gly Val Ile Pro Arg Asn Tyr Glu Gly Ile Val Asn Arg Val Thr Ala Arg Phe Gly Leu Asp Ala Ser Gln Gln Ile Arg Leu Glu Ala Glu Glu Glu Lys Leu Ala His Leu Pro Leu Ala Lys Thr Val Ser Val Glu Glu Leu Leu Gln Tyr Val Glu Leu Gln Asp Pro Val Thr Arg Thr Gln Leu Arg Ala Met Ala Ala Lys Thr Val Cys Pro Pro His Lys Val Glu Leu Glu Ala Leu Leu . 770 Glu Lys Gln Ala Tyr Lys Glu Gln Val Leu Ala Lys Arg Leu Thr Met Leu Glu Leu Leu Glu Lys Tyr Pro Ala Cys Glu Met Lys Phe Ser Glu Phe Ile Ala Leu Leu Pro Ser Ile Arg Pro Arg Tyr Tyr Ser Ile Ser Ser Ser Pro Arg Val Asp Glu Lys Gln Ala Ser Ile Thr Val Ser Val Val Ser Gly Glu Ala Trp Ser Gly Tyr Gly Glu Tyr Lys Gly Ile Ala Ser Asn Tyr Leu Ala Glu Leu Gln Glu Gly Asp Thr Ile Thr Cys Phe Ile Ser Thr Pro Gln Ser Glu Phe Thr Leu Pro Lys Asp Pro Glu Thr

, 885

Pro Leu Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Arg Gly 905 900 Phe Val Gln Ala Arg Lys Gln Leu Lys Glu Gln Gly Gln Ser Leu Gly 925 920 915 Glu Ala His Leu Tyr Phe Gly Cys Arg Ser Pro His Glu Asp Tyr Leu 940 935 930 Tyr Gln Glu Glu Leu Glu Asn Ala Gln Ser Glu Gly Ile Ile Thr Leu 960 955 950 945 His Thr Ala Phe Ser Arg Met Pro Asn Gln Pro Lys Thr Tyr Val Gln 975 970 965 His Val Met Glu Gln Asp Gly Lys Lys Leu Ile Glu Leu Leu Asp Gln 985 980 Gly Ala His Phe Tyr Ile Cys Gly Asp Gly Ser Gln Met Ala Pro Ala 1005 1000 995 Val Glu Ala Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln Val 1020 1015 1010 Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys 1035 1030 . 1025 Gly Arg Tyr Ala Lys Asp Val Trp Ala Gly 1045 1040 <210> 7 <211> 3147 <212> DNA <213> Artificial sequence <220> <223> Cytochrome P450BM-3 mutant <220> <221> CDS <222> (1)..(3147) <400> 7 aca att aaa gaa atg cct cag cca aaa acg ttt gga gag ctt aaa aat 48 Thr Ile Lys Glu Met Pro Gln Pro Lys Thr Phe Gly Glu Leu Lys Asn 10 1 tta ccg tta tta aac aca gat aaa ccg gtt caa gct ttg atg aaa att 96 Leu Pro Leu Leu Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys Ile 25 20 gcg gat gaa tta gga gaa atc ttt aaa ttc gag gcg cct ggt cgt gta 144 Ala Asp Glu Leu Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg Val 40 192 acg cgc tac tta tca agt cag cgt cta att aaa gaa gca tgc gat gaa Thr Arg Tyr Leu Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp Glu 240 tca cgc ttt gat aaa aac tta agt caa ggg ctt aaa ttt gta cgt gat Ser Arg Phe Asp Lys Asn Leu Ser Gln Gly Leu Lys Phe Val Arg Asp 80 70 65 288 ttt gca gga gac ggg tta gtt aca agc tgg acg cat gaa aaa aat tgg Phe Ala Gly Asp Gly Leu Val Thr Ser Trp Thr His Glu Lys Asn Trp 95 85 aaa aaa gcg cat aat atc tta ctt cca agc ttc agt cag cag gca atg 336 Lys Lys Ala His Asn Ile Leu Leu Pro Ser Phe Ser Gln Gln Ala Met 110 105 100 384 aaa ggc tat cat gcg atg atg gtc gat atc gcc gtg cag ctt gtt caa

	Lу	s G	ly	Ty:	r Hi 5	s A	la M	iet	Met	Va. 12	1 As	sp :	Ile	Al	a V	al	Gl:	n Le 5	eu V	Val	Gln			
	aa Ly	عب س <u>ـ</u>	gg rp	gaq Glı	g co 1 Ar	jt c g L	ta a eu A	511	gca Ala 135	ASI	t ga p G1	ag d Lu I	cat	at Il	e G	aa lu 40	gta Va.	a co l Pi	o o	gaa Slu	gac Asp		432	·
	14	5	***		,	u II	1	50	asp	TUI	c 17.1	.е (₹ŢĀ	Lе 15	u C; 5	ys	Gl	y Ph	ne A	sn	tat Tyr 160		480	
		9 -		*101	. De	16	55	λr. γ	arg	Asp	o GT	.n E 1	70.70	Hi	s P:	ro	Ph∈	e Il	.e T 1	hr .75	agt Ser		528	
		• • •		****	18	0	u A	sp (3 T. U.	ALA	ме 18	t A 5	sn	Lys	s G]	ln	Gln	19	g A O	la	aat Asn		576	
	~ _ `		ָרָ יַּרָ יִּ	195	£ 4,	OAL		ĄΤ Ł	asp	200	. As:	n L	ys	Arc	g Gl	.n]	Phe 205	Gl	n G	lu	gat Asp		. 624	
		21	.0	var	146	. AS	II AS	2 5 1	15	vaı.	Asj	рЬ	ys	Ile	22 22	.e 2 :0	 la	Asj	pA:	rg	aaa Lys		672	
	225	;		3 T. J	47.0	ı Gi.	23	EF A	ge	Asp	Let	a L	eu	Thr 235	: Hi	s N	1et	Lei	ı A ı	sn	gga Gly 240		720	
	- <i>y</i> ~	- 110	<u>.</u>		0.1.0	24!	5	У С	±u	Pro	лел	1 As 25	sp 50	Asp	Gl.	u A	sn	Ile	e Ar 25	fg 55			768	
w					260		<u>.</u> пе	u I	re ,	ATA	265	7 H]	LS (GLu ·	Th:	r T	hr	Ser 270	Gl	.У	Leu		816	
	tta Leu	tc: Se:		tt he 75	gcg Ala	ctç Lev	y ta 1 Ty	t t r P	ie i	tta Leu 280	gtg Val	aa . Ly	aa a 7s i	aat Asn	cc: Pro	O H	at is 85	gta Val	tt. Le	a u	caa Gln	•	864	
	aaa Lys	gca Ala 290	2 7	ca la	gaa Glu	gaa Glu	gca Ala	a go a A: 29	.a #	cga Arg	gtt Val	ct Le	a q eu V	gta /al	gat Asr 300	P	ct ro	gtt Val	cc Pr	a a	agc Ser		912	
•	tac Tyr 305	aaa Lys	a ca	aa ln	gtc Val	aaa Lys	Caq Glr 31(т те	t a eu I	ıaa .ys	tat Tyr	gt Va	1 0	gc Sly 15	atç Met	g gi	tc al	tta Leu	aa As:	n (gaa Slu 320		960	
	gcg Ala	ctg Lev	C (gc :	tta Leu	tgg Trp 325	cca Pro	a ac	t g r A	la	cct Pro	gc A1 33	a P	tt	tcc Ser	. Te	ca eu	tat Tyr	gc: Al: 335	a I	aaa ys		1008	
	gaa Glu	MOP	11	311 \	340	neu	дТλ	, GT	уG	u '	Tyr 345	Pro	o L	eu	Glu	Ьÿ	s (Gly 350	Asp	o G	lu		1056	
	cta Leu	atg Met	gt Va 35		ctg Leu	att Ile	cct	ca Gl	ת מ	tt d eu 1 60	cac	cgt Arç	t g g A	at sp	aaa Lys	ac Th	r:	att Ile	tgg	g g o G	ga ly		1104	
ě	gac Asp	gat Asp 370	gt Va	g g 1 G	yaa Slu	gag Glu	ttc Phe	cg Ar 37	g P:	ca g	gag Slu	cgt Arg	t t	ne	gaa Glu 380	aa As	t o n H	cca Pro	agt Ser	g A	cg la		1152	
	att Ile 385	ccg Pro	ca Gl	g c	at lis .	gcg Ala	ttt Phe 390	аал Цул	a co	cg t	tt Phe	gga Gly	7 A:	ac (sn (ġgt Gly	ca Gl	g c	gt Arg	gcg Ala	C	gt [.] ys 00		1200	
	atc (ggt Gly	ca Gl:	g c n G	-L11 .	ttc Phe 405	gct Ala	cti Le:	Ca N Hi	at g Ls G	±u	gca Ala 410	Tr	eg (ctg Leu	gt. Va.	a c l I	eu	ggt Gly 415	Me	tg et		1248	
	atg d	cta	aa	a c	ac 1	ttt	gac	ttt	: ga	a g	at	cat	ac	a a	aac	ta	c g	ag	ctg	<u>ā</u> ,	at	1	.296	

	Met	Leu	Lys	His 420	Phe	Asp	Phe		Asp 425	His	Thr	Asn	Tyr	Glu 430	Leu	Asp	
						•	tta Leu			_				-		_	1344
		-				-	ctt Leu 455							_		_	1392
	-		_			_	cgc Arg			_	_		-			-	1440
	-	_		-			ggt Gly						-	-	-	_	1488
		-	-		_	_	att Ile	_	_	_					_	-	1536
							cac His	_				-					1584
						Ala	tct Ser 535							•			1632
Þ				_	_		tta Leu	_				_	_	-	_		1680
		_	-			_	ttt Phe		_		_					Thr	1728
							gct Ala			_	_	_		_	-		1776 .
							gac Asp										1824
							gaa Glu 615		_	_		•					1872
	_	-					gac Asp		_			_	_				1920
							gtc Val	_	_	_		_	_	-			1968
		_		_ -			tca Ser	_		_	_	_	_		_		2016
		_					cga Arg										2064
**			_	_			caa Gln 695	_		-			•	_			2112
	_				-		gta Val			-							2160
	gat	gca	tca	cag	caa	atc	cgt	ctġ	gaa	gca	gaa	gaa	gaa	aaa	tta	gct	2208

Ası	p Ala	a Se:	r Gl:	n Glr 725	ı Ile	e Arç	g Leu	ı Glu	1 Ala 730		ı Glı	ı Glu	ı Lys	5 Let 735	ı Ala	
cat His	t ttg s Lei	g cca ı Pro	a cte 740	u Ala	a aaa a Lys	a aca s Thi	a gta : Val	tcc Ser 745	: Val	a gaa L Glu	ı gaç ı Glu	g ctt 1 Leu	cto Lei 750	ı Glr	tac Tyr	2256
gto Val	g gaq l Glu	g ctt 1 Let 755	1 GII	a gat n Asp	cct Pro	gtt Val	acg Thr	: Arg	acc Thr	g cag : Gln	ctt Leu	cgc Arg 765	Ala	atg Met	gct Ala	2304
gct Ala	a aaa a Lys 770	s Thi	g gto r Val	c tgo L Cys	c ccg Fro	g ccg Pro 775	His	aaa Lys	gta Val	ı gag . Glu	ctt Leu 780	ιGlụ	gcc Ala	ttg Leu	ctt Leu	2352
gaa Glu 785	т тАг	g caa s Gln	a gco n Ala	c tac a Tyr	: aaa : Lys 790	Glu	caa Gln	gtg Val	ctg Leu	gca Ala 795	Lys	cgt Arg	tta Leu	aca Thr	atg Met 800	2400
ctt Leu	gaa Glu	ctg Leu	J Ctt	gaa Glu 805	. Lys	tac Tyr	ccg	gcg Ala	tgt Cys 810	Glu	atg Met	aaa Lys	ttc Phe	agc Ser 815		2448
ttt Phe	atc Ile	gcc Ala	ctt Leu 820	ctg Leu	cca Pro	agc Ser	Ile	cgc Arg 825	ccg Pro	cgc Arg	tat Tyr	tac Tyr	tcg Ser 830	Ile	tct Ser	2496
tca Ser	tca Ser	Pro 835	Arg	gtc Val	gat Asp	gaa Glu	aaa Lys 840	caa Gln	gca Ala	agc Ser	atc Ile	acg Thr 845	gtc Val	agc Ser	gtt Val	2544
gtc Val	tca Ser 850	етХ	gaa Glu	gcg Ala	tgg Trp	agc Ser 855	gga Gly	tat Tyr	gga Gly	·gaa Glu	tat Tyr 860	aaa Lys	gga Gly	att Ile	gcg Ala	2592
tcg Ser 865	ASI	tat Tyr	ctt Leu	gcc Ala	gag Glu 870	ctg Leu	caa Gln	gaa Glu	gga Gly	gat Asp 875	acg Thr	att Ile	acg Thr	tgc Cys	ttt Phe 880	2640
att Ile	tcc Ser	aca Thr	ccg Pro	cag Gln 885	tca Ser	gaa Glu	ttt Phe	acg Thr	ctg Leu 890	cca Pro	aaa Lys	gac Asp	cct Pro	gaa Glu 895	acg Thr	2688
ccg Pro	ctt Leu	atc Ile	atg Met 900	gtc Val	gga Gly	ccg Pro	gga Gly	aca Thr 905	Gly	gtc Val	gcg Ala	ccg Pro	ttt Phe 910	aga Arg	ggc Gly	2736
ttt Phe	gtg Val	cag Gln 915	gcg Ala	cgc Arg	aaa Lys	cag Gln	cta Leu 920	aaa Lys	gaa Glu	caa Gln	gga Gly	cag Gln 925	tca Ser	ctt Leu	gga Gly	2784
gaa Glu	gca Ala 930	cat His	tta Leu	tac Tyr	ttc Phe	ggc Gly 935	tgc Cys	cgt Arg '	tca Ser	Pro	cat His 940	gaa Glu	gac Asp	tat Tyr	ctg Leu	2832
tat Tyr 945	caa Gln	gaa Glu	gag Glu	ctt Leu	gaa Glu 950	aac Asn	gcc Ala	caa Gln	Ser	gaa Glu 955	Gly ggc	atc Ile	att Ile	acg Thr	ctt Leu 960	2880
cat His	acc Thr	gct Ala	ttt Phe	tct Ser 965	cgc Arg	atg Met	cca Pro .	Asn	cag Gln 970	ccg Pro	aaa Lys	aca Thr	tac Tyr	gtt Val 975	cag Gln	2928
cac His	gta Val	Mer	gaa Glu 980	caa Gln	gac Asp	GJY ggc	Lys :	aaa Lys : 985	ttg Leu	att (Ile (gaa Glu	Leu	ctt Leu 990	gat Asp	caa Gln	2976
gga Gly	АТА	cac His 995	ttc Phe	tat Tyr	att Ile	Cys +	i000 Gla Gda	gac Asp	gga Gly	agc Ser	caa Gln	atg Met 100	Al		t gcc o Ala	
gtt Val	gaa Glu 1010	gca Ala	acg Thr	ctt Leu	atg Met	aaa Lys 101	Sei	c tat	t gc r Ala	t gad a Ası	c gt p Val 10:	l H:		aa g ln V		3069
agt (gaa	gca	gac	gct	cgc	tta	tg	g ctọ	g ca	g caq	g cta	a ga	aa g	aa aa	aa	3114

Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys ggc cga tac gca aaa gac gtg tgg gct ggg taa Gly Arg Tyr Ala Lys Asp Val Trp Ala Gly <210> 8 <211> 1048 <212> PRT <213> Artificial sequence <220> <223> Cytochrome P450BM-3 mutant <400> 8 Thr Ile Lys Glu Met Pro Gln Pro Lys Thr Phe Gly Glu Leu Lys Asn Leu Pro Leu Leu Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys Ile Ala Asp Glu Leu Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg Val Thr Arg Tyr Leu Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp Glu Ser Arg Phe Asp Lys Asn Leu Ser Gln Gly Leu Lys Phe Val Arg Asp Phe Ala Gly Asp Gly Leu Val Thr Ser Trp Thr His Glu Lys Asn Trp Lys Lys Ala His Asn Ile Leu Leu Pro Ser Phe Ser Gln Gln Ala Met . 105 Lys Gly Tyr His Ala Met Met Val Asp Ile Ala Val Gln Leu Val Gln Lys Trp Glu Arg Leu Asn Ala Asp Glu His Ile Glu Val Pro Glu Asp Met Thr Arg Leu Thr Leu Asp Thr Ile Gly Leu Cys Gly Phe Asn Tyr Arg Phe Asn Ser Phe Tyr Arg Asp Gln Pro His Pro Phe Ile Thr Ser Met Val Arg Ala Leu Asp Glu Ala Met Asn Lys Gln Gln Arg Ala Asn Pro Asp Asp Pro Ala Tyr Asp Glu Asn Lys Arg Gln Phe Gln Glu Asp Ile Lys Val Met Asn Asp Leu Val Asp Lys Ile Ile Ala Asp Arg Lys Ala Ser Gly Glu Gln Ser Asp Asp Leu Leu Thr His Met Leu Asn Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly Leu

Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu Gln

Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Val Pro Ser

Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp Gly Asp Asp Val Glu Glu Phe Arg Pro Glu Arg Phe Glu Asn Pro Ser Ala Ile Pro Gln His Ala Phe Lys Pro Phe Gly Asn Gly Gln Arg Ala Cys Ile Gly Gln Gln Phe Ala Leu His Glu Ala Thr Leu Val Leu Gly Met Met Leu Lys His Phe Asp Phe Glu Asp His Thr Asn Tyr Glu Leu Asp 420 . Ile Lys Glu Thr Leu Thr Leu Lys Pro Glu Gly Phe Val Val Lys Ala Lys Ser Lys Lys Ile Pro Leu Gly Gly Ile Pro Ser Pro Ser Thr Glu Gln Ser Ala Lys Lys Val Arg Lys Lys Ala Glu Asn Ala His Asn Thr Pro Leu Leu Val Leu Tyr Gly Ser Asn Met Gly Thr Ala Glu Gly Thr Ala Arg Asp Leu Ala Asp Ile Ala Met Ser Lys Gly Phe Ala Pro Gln Val Ala Thr Leu Asp Ser His Ala Gly Asn Leu Pro Arg Glu Gly Ala Val Leu Ile Val Thr Ala Ser Tyr Asn Gly His Pro Pro Asp Asn Ala Lys Gln Phe Val Asp Trp Leu Asp Gln Ala Ser Ala Asp Glu Val Lys Gly Val Arg Tyr Ser Val Phe Gly Cys Gly Asp Lys Asn Trp Ala Thr Thr Tyr Gln Lys Val Pro Ala Phe Ile Asp Glu Thr Leu Ala Ala Lys Gly Ala Glu Asn Ile Ala Asp Arg Gly Glu Ala Asp Ala Ser Asp Asp Phe Glu Gly Thr Tyr Glu Glu Trp Arg Glu His Met Trp Ser Asp Val Ala Ala Tyr Phe Asn Leu Asp Ile Glu Asn Ser Glu Asp Asn Lys Ser Thr Leu Ser Leu Gln Phe Val Asp Ser Ala Ala Asp Met Pro Leu Ala Lys Met His Gly Ala Phe Ser Thr Asn Val Val Ala Ser Lys Glu Leu Gln Gln Pro Gly Ser Ala Arg Ser Thr Arg His Leu Glu Ile Glu Leu Pro Lys Glu Ala Ser Tyr Gln Glu Gly Asp His Leu Gly Val Ile Pro · 690 Arg Asn Tyr Glu Gly Ile Val Asn Arg Val Thr Ala Arg Phe Gly Leu

	710	715	720
705	710	7 ± 0	

Asp Ala Ser Gln Gln Ile Arg Leu Glu Ala Glu Glu Glu Lys Leu Ala 725 730 735

His Leu Pro Leu Ala Lys Thr Val Ser Val Glu Glu Leu Leu Gln Tyr 740 745 750

Val Glu Leu Gln Asp Pro Val Thr Arg Thr Gln Leu Arg Ala Met Ala 755 760 765

Ala Lys Thr Val Cys Pro Pro His Lys Val Glu Leu Glu Ala Leu Leu 770 775 780

Glu Lys Gln Ala Tyr Lys Glu Gln Val Leu Ala Lys Arg Leu Thr Met 795 790 800

Leu Glu Leu Leu Glu Lys Tyr Pro Ala Cys Glu Met Lys Phe Ser Glu 805 810 815

Phe Ile Ala Leu Leu Pro Ser Ile Arg Pro Arg Tyr Tyr Ser Ile Ser 820 825

Ser Ser Pro Arg Val Asp Glu Lys Gln Ala Ser Ile Thr Val Ser Val 835

Val Ser Gly Glu Ala Trp Ser Gly Tyr Gly Glu Tyr Lys Gly Ile Ala 850 855 860

Ser Asn Tyr Leu Ala Glu Leu Gln Glu Gly Asp Thr Ile Thr Cys Phe 870 . 875 . 880

Ile Ser Thr Pro Gln Ser Glu Phe Thr Leu Pro Lys Asp Pro Glu Thr 895

Pro Leu Ile Met Val Gly Pro Gly Thr Gly Val Ala Pro Phe Arg Gly 900 905 910

Phe Val Gln Ala Arg Lys Gln Leu Lys Glu Gln Gly Gln Ser Leu Gly 915 920 925

Glu Ala His Leu Tyr Phe Gly Cys Arg Ser Pro His Glu Asp Tyr Leu 930 935 940

Tyr Gln Glu Glu Leu Glu Asn Ala Gln Ser Glu Gly Ile Ile Thr Leu 950 955 960

His Thr Ala Phe Ser Arg Met Pro Asn Gln Pro Lys Thr Tyr Val Gln 975

His Val Met Glu Gln Asp Gly Lys Lys Leu Ile Glu Leu Leu Asp Gln 980 985 990

Gly Ala His Phe Tyr Ile Cys Gly Asp Gly Ser Gln Met Ala Pro Ala 995 1000 1005

Val Glu Ala Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln Val 1010 1020

Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys 1025 1030 1035

Gly Arg Tyr Ala Lys Asp Val Trp Ala Gly 1040

<210> 9

<211> 1032

<211> 1031 <212> DNA

<213> Nocardia corallina

<220>

<221> CDS

<222> (1)..(1032)

* * * * * * * * * * * * * * * * * * *	,	ú direntsiklesse des.	•••				. Section of the sect		يم العلامية (١٩٩١)	• 60 000-	• .	u Š									
•			* ·					•	•	•	•		**							••	-
,											4	3									
								•			·						•				9
	ato	00> g acc Thr	g aca	a gaç Glu	gcg Ala 5	g acg	gtg Val	gcc Ala	: cga Arg	cco Pro 10	gtg Val	g gaq . Glu	g cto 1 Lei	c gaa ı Glı	a ggt ı Gl 15	t cac y His	48			Ŷ	•
_	cgg Arg	g aca g Thr	tto Phe	acc Thr 20	tgg Trp	ttc Phe	acg	ccc	gcc Ala 25	agg Arg	g cga Rrg	aaq Lys	j ccç ; Pro	g acg Thi	g gaç c Glu	g tac ı Tyr	96		-		-
	gag Glu	g ctc	tac Tyr 35	acc Thr	gtg Val	ggt Gly	caa Gln	cag Gln 40	tcc Ser	act Thr	ccg Pro	gac Asp	gag Glu 45	tgg Trp	g cto Lev	g cat 1 His	144				
	gtg Val	gac Asp 50	tgg Trp	ccg Pro	ctg Leu	cgc Arg	ttc Phe 55	gac Asp	gac Asp	ggc	cgc	gcc Ala 60	ccg: Prc	tgç Trp	g gag Glu	g gag ı Glu	192	1-			
	gag Glu 65	tcg Ser	agt Ser	gcg Ala	gta Val	cgg Arg 70	acc Thr	tcg Ser	gag Glu	tgg Trp	tcg Ser 75	gct	tac Tyr	cgc Arg	gac Asp	c cca Pro 80	240				
	cac His	caa Gln	ctg Leu	tgg Trp	cag Gln 85	cgt Arg	ccc Pro	tac Tyr	gtc Val	agc Ser 90	acg Thr	tgc Cys	aac Asn	cag Gln	gac Asp 95	cag Gln	288				
	GTU	АТА	ьeu	100	Arg	Leu	Val	Pro	Val 105	Leu	Thr	Met	Gly	Ser 110	Ala	gcg Ala	336				•
	тте	rnr	115	TTE	rrp	Ser	Gln	Lys 120	Ile	Leu	Ala	Arg	Ser 125	Tyr	Ala	gcc Ala	384				
4	rrp	130	Pne	val	GIU	Tyr	Gly 135	Leu	Phe	Leu	Ser	Leu 140	Ala	Tyr	Ala		432				
	145	GIN	Ala	Met	ser	150	Thr	Val	Gln	Phe	Ser 155	Val	Val	Phe	Gln	160	480				
•	vaı	Asp	Arg	Met	Arg 165	Leu	Leu	Gln	Asp	Ile 170	Val	His	cac His	Leu	Asp 175	His	528				
	ьец	GTU	@T.fl	180	Pro	GLu	Phe	Ser	Asp 185	Ala	Gly	Ala	cgc Arg	Glu 190	Ala	Trp	5,76 '				
	Wer	ser	195	ser	Thr	Leu	Val	Pro 200	Ile	Arg	Glu	Val	205	Glu	Arg	Ile	624				
	ALG	210	ser	GIN	Asp	Trp	Val (215	Glu	Ile	Leu	Val	Ala 220		Thr	Leu	Val	672				
	ttc Phe 225 cqt	GTA	Pro	Leu	Val	Gly : 230	His :	Leu .	Ala	Lys	Ala 235	Glu	Leu	Phe	Ser	Arg 240	720				
	cgt Arg	АТА	Pro .	Met	Phe 245	Gly :	Asp (Gly '	Thr	Thr 250	Pro	Ala	Val	Leu	Ala 255	Ser	768				,
	gcc Ala cgc	ьеи	Leu :	Asp 260	Ser (Gly A	Arg I	lis :	Leu 265	Glu	Ser	Val	Gln	Ala 270	Leu	Val ·					
•	Arg	ьеu :	Val (2 7 5	Cys (Gln A	Asp 1	Pro V 2	7al 1 280	His (Gly :	Asp (Gln	Asn (285	Gln	Ala	Thr	864				
	va ₁	Arg 2	Arg :	Trp	Ile (Glu (Glu T 295	tb (Gln :	Pro J	Arg (Cys 300	Lys :	Ala .	ycg Ala .	Ala	912				

cag Gln 305	tcc Ser	ttc Phe	ct Le	eu P	ro I	cg t hr P	tc t he S	cc g er A	ac t sp C	ys c	gc Gly B15	atc Ile	gac Asp	gco	c aa a Ly	y o	gaa Glu B20	960
agc Ser	gcc Ala	aac Asr	e go n Al	la I	etg t Leu S 325	cc c Ser A	gg g rg A	cg c	seu A	cg a la <i>P</i> 30	aac Asn	cag Gln	cgg Arg	gco	. <u>د د</u> لي	cc g la 7 35	gtc Val	1008
gag Glu	ggc Gly	gco Ala	a G	gc a ly 1 40	atc a [le]	acg ç Thr A	ıca t 1la	.ga						•				1032
<210 <211 <211 <211	L> 2>	10 343 PRT Noc	ard	ia (cora	llina	a						•					
<40	0>	10													•			
Met 1	Thr	Th	r G	lu i	Ala 5	Thr '	Val 2	Ala	Arg	Pro 10	Val	Glu	Let	ı Gl	.u G 1	Sly 15	His	
			2	20		Phe '			25					50	,			
		35				Gly		40					40					
	50					Arg	55					90						
65						Arg 70					15							
					85	Arg				90						<i>J</i>		
			•	100		Leu			T02					<u>.</u> ,	J. U			
		1	15			Ser		1.20	•				ے بد	J				
	13	0				Tyr	135					T 4.	U					
14	5					Asp 150					75:)					<u></u> -	
					165					110	•					I 1. U		
				180		Glu			TRD					_				
		1	.95			Leu		200)				کے ا					
	2	10	_		•	Trp	215	•				22	.0					
22	2.5					230)				23	J					_	
					245					25	U			·			•	
				26	0	r Gly			263	5					2,0			
			275			n Asj		28	U				4	.00				
V	al A	rg	Arg	Tr	p Il	e Gl	u GII	u TT	ь <i>е</i> т	n PI	.U A.	-y C	י הג	٠, ٠	,		~	

290 295 300 Gln Ser Phe Leu Pro Thr Phe Ser Asp Cys Gly Ile Asp Ala Lys Glu 305 310 315 Ser Ala Asn Ala Leu Ser Arg Ala Leu Ala Asn Gln Arg Ala Ala Val 325 330 Glu Gly Ala Gly Ile Thr Ala 340 <210> 11 <211> 1506 <212> DNA <213> Nocardia corallina <220> <221> CDS <222> (1)..(1506)<400> 11 atg gca tcg aac ccc acc cag ctc cac gag aag tcg aag tcc tac gac 48 Met Ala Ser Asn Pro Thr Gln Leu His Glu Lys Ser Lys Ser Tyr Asp 1 5 15 tgg gac ttc acc tcc gtc gag cgg cgc ccc aag ttc gag acg aag tac 96 Trp Asp Phe Thr Ser Val Glu Arg Arg Pro Lys Phe Glu Thr Lys Tyr 20 25 30 aag atg ccc aag aag ggc aag gac ccg ttc cgc gtc ctg atc cgt gac 144 Lys Met Pro Lys Lys Gly Lys Asp Pro Phe Arg Val Leu Ile Arg Asp 35 40 45 tac atg aag atg gaa gcg gag aag gac gac cgg acc cat ggc ttc ctc 192 Tyr Met Lys Met Glu Ala Glu Lys Asp Asp Arg Thr His Gly Phe Leu 50 gac ggc gcc gtg cgg acg cgt gag gcc acc agg att gag ccg cgg ttc 240 Asp Gly Ala Val Arg Thr Arg Glu Ala Thr Arg Ile Glu Pro Arg Phe 65 75 get gag gec atg aag atc atg gtg eeg eag etg acc aac .gee gag tae 288 Ala Glu Ala Met Lys Ile Met Val Pro Gln Leu Thr Asn Ala Glu Tyr 90 cag gcg gtg gcg ggc tgc gga atg atc atc tcg gcc gtc gag aac cag 336 Gln Ala Val Ala Gly Cys Gly Met Ile Ile Ser Ala Val Glu Asn Gln 100 gag ctc cgt cag ggc tac gcc gct cag atg ctc gat gag gtg cgg cac 384 Glu Leu Arg Gln Gly Tyr Ala Ala Gln Met Leu Asp Glu Val Arg His 115 120 gcg cag ctc gag atg acg cta cgc aac tac tac gcg aag cac tgg tgc 432 Ala Gln Leu Glu Met Thr Leu Arg Asn Tyr Tyr Ala Lys His Trp Cys 130 135 gat ccc tcc ggc ttc gac atc ggt cag cgc ggc ctg tac cag cac ccc 480 Asp Pro Ser Gly Phe Asp Ile Gly Gln Arg Gly Leu Tyr Gln His Pro 145 150 160 gcg ggg ctg gtg tcc atc ggc gag ttc cag cac ttc aat act ggt gac 528 Ala Gly Leu Val Ser Ile Gly Glu Phe Gln His Phe Asn Thr Gly Asp 165 170 175 ccg ctt gac gtc atc atc gat ctc aac atc gtg gcc gag acg gcg ttc 576 Pro Leu Asp Val Ile Ile Asp Leu Asn Ile Val Ala Glu Thr Ala Phe 180 185 acg aac atc ctg ctg gtg gcc act cca cag gtc gcc gtg gcc aac ggg 624 Thr Asn Ile Leu Leu Val Ala Thr Pro Gln Val Ala Val Ala Asn Gly

200

gac aac gcg atg gcc agc gtg ttc ctc tcg atc cag tcg gac gag gcc

205

672

	Asp	Asn	Ala	a Mei	t Al	a S	er V	al P	he I	Leu	Ser	Ile	G1	ln S	ser .	Asp	Gl	u A	la		н			
•	_	210					2	15					2.2	20							720			
	agg Arg 225	cac His	at <u>c</u> Met	g gc	c aa a As	n G	gg t ly T 30	ac g yr G	gc t	ser	Val	Met 235		la I	Leu	Leu	Gl		Asn 240					
	gag Glu	gac Asp	: aad Asi	c ct n Le	c cc u Pr 24	o L	tg c eu I	tc a Leu <i>P</i>	ac (Asn (cag Gln	tct Ser 250	mer	e ga	at o sp i	cgg Arg	cac	tt Ph 25		egg Frp		768			
	cgt Arg	gcc Ala	c ca a Hi	с аа s L y 26	s Al	cc t la I	tg g eu 1	Jac a Asp 1	ASI .	gcg Ala 265	gtc Val	G17	a t y T	rp	tgt Cys	sei 270		ag ' Lu '	tat Tyr		816			
•	ggc Gly	gco Ala	c cg a Ar 27	g Ly	ig co 78 A:	gg c rg I	cca † Pro '	tgg (agc Ser 280	tac Tyr	aag Lys	gc	c c a G		tgg Trp 285	gaq	g ga ı Gi	aa lu	tgg Trp		864			
	gtc Val	gto Va: 29	l As	c ga p As	ac t sp P	tc q	Val	ggc Gly 295	ggc Gly	tac Tyr	atc Ile	ga As	b w	ga Arg 300	ctc Leu	ag Se	c g r G	ag lu	ttc Phe		912			-
	ggc Gly 305	va va	t ca 1 Gl	ig go n Al	ct c la P	ro	gcc Ala 310	tgc Cys	ctt Leu	GTA	ATC	g gc a Al 31	a r	gcc Ala	gac Asp	ga Gl	g g u V	rtc 'al	aag Lys 320		960			
		L -	g ca	ac c	is T	icg hr 325	ctc Leu	ggt Gly	cag Gln	gtg Val	cto Let	u be	g g	gcg Ala	gtg Val	tg Tr	1	ccg Pro 335	ctg Leu		1008			
t	aac Asi	c tt n Ph	c to	rp A	gc tags	cg Ser	gac Asp	gcc Ala	atg Met	gga Gl ₃ 345	, ET.	g go o Al	cg (La 2	gac Asp	ttc Phe	ga Gl 35		gg Trp	ttc Phe		1056			
÷	ga Gl	g aa u As	sn H	ac t is T 55	ac d Yr 1	ccg Pro	Gly	tgg Trp	agc Ser 360	HT.	g gc a Al	c ta a Ty	ac yr	cạg Gln	ggt Gl ₃ 365		ac t	tgg Trp	gag Glu		1104			
	GJ gg	y T	ac a yr L 70	ag ç ys <i>P</i>	gcg (ctc Leu	gcc Ala	gac Asp 375	cca Pro	gc.	a gg a Gl	.y G. Ic g	ga ly	cgc Arg 380		c a [.]	tg (et :	ctc Leu	cag Gln		1152			
	ga Gl 38	.g c .u L	•	cg (ggt Gl:y	ctg Leu	ccg Pro 390	Pro	atç Met	tg Cy	t ca s G]	CIT A	tg al 95	tgc Cys	ca Gl	g g n V	tg al	ccg Pro	tgc Cys 400		1200			•
			tg c	ccg o	cgg Arg	ctg Leu 405	Asp	atg Met	aac Asi	g gc n Al	a n	cg c la A 10	gg	ato Ile	c at e Il	c g e G	ag lu	tto Phe 415	gag Glu		1248		·	
•	99 G]	ly G	ag a ln I	Lys	atc Ile 420	gcg Ala	cto	tgo Cys	age Se:	c ga r Gl	u F.	cc t ro C	gc Cys	Gl	g cg n Ar		tc 1e 130	tto Phe	e acc		1296	•		
	aa As	ac t sn T	rp	ccg Pro 435	gag Glu	gcg Ala	tac Tyi	c cgo	c ca g Hi 44	2 W1	gc a rg L	ag c ys C	caa Gln	ta Ty		gg g sp #	Ala Ala	Cg	c tac g Tyr	e c	1344			
	C H	is (gga Sly 450	tgg Trp	gac Asp	ctç Lev	g gcg	g ga a As; 45	p va	c at	tc g le V	tt q al Z	gat Asp	ct Le 46		gc † Ly '	tac fyr	at Il	c cgo e Aro	a c	1392			
	P	cg (ro 1	gac Asp	ggc Gly	aag Lys	acc Thi	c ct c Le	u ll	c gg e Gl	À C lc c	ag c ln E	LO.	ctg Leu 475	٠ ـــ ــ	c ga u G	ag lu	atg Met	ga Gl	g cg u Ar 48	g g 0 .	1440			
			tgg Trp	acc Thr	atc Ile	gae Asj 48.	p As	c at p Il	e Ai	cd y aa a	Ta 1	ctt Leu 490	caç Glr	g ta n Ty	ac g yr G	aa lu	gtc Val	_	ng ga ys As 95	c ·	1488			
	C F	ccg Pro	ttg Leu	cag Gln	gag Glu 500	ı Al	g tg a	ſα							•				•		1506			

<210> 12

<211> 501

<212> PRT

<213> Nocardia corallina

<400> 12

Met Ala Ser Asn Pro Thr Gln Leu His Glu Lys Ser Lys Ser Tyr Asp 1 5 10 15

Trp Asp Phe Thr Ser Val Glu Arg Arg Pro Lys Phe Glu Thr Lys Tyr 20 25 30

Lys Met Pro Lys Lys Gly Lys Asp Pro Phe Arg Val Leu Ile Arg Asp 35 40 45

Tyr Met Lys Met Glu Ala Glu Lys Asp Asp Arg Thr His Gly Phe Leu 50 60

Asp Gly Ala Val Arg Thr Arg Glu Ala Thr Arg Ile Glu Pro Arg Phe 70 75 80

Ala Glu Ala Met Lys Ile Met Val Pro Gln Leu Thr Asn Ala Glu Tyr 85 90 95

Gln Ala Val Ala Gly Cys Gly Met Ile Ile Ser Ala Val Glu Asn Gln 100 105 110

Glu Leu Arg Gln Gly Tyr Ala Ala Gln Met Leu Asp Glu Val Arg His 115 120 125

Ala Gln Leu Glu Met Thr Leu Arg Asn Tyr Tyr Ala Lys His Trp Cys 130 135 140

Asp Pro Ser Gly Phe Asp Ile Gly Gln Arg Gly Leu Tyr Gln His Pro 145 150 155 160

Ala Gly Leu Val Ser Ile Gly Glu Phe Gln His Phe Asn Thr Gly Asp 165 170 175

Pro Leu Asp Val Ile Ile Asp Leu Asn Ile Val Ala Glu Thr Ala Phe 180 · 185 190

Thr Asn Ile Leu Leu Val Ala Thr Pro Gln Val Ala Val Ala Asn Gly 195 . 200 . 205

Asp Asn Ala Met Ala Ser Val Phe Leu Ser Ile Gln Ser Asp Glu Ala 210 215 220

Arg His Met Ala Asn Gly Tyr Gly Ser Val Met Ala Leu Leu Glu Asn 225 230 235

Glu Asp Asn Leu Pro Leu Leu Asn Gln Ser Leu Asp Arg His Phe Trp
245 250 255

Arg Ala His Lys Ala Leu Asp Asn Ala Val Gly Trp Cys Ser Glu Tyr 260 265 270

Gly Ala Arg Lys Arg Pro Trp Ser Tyr Lys Ala Gln Trp Glu Glu Trp 275 280 285

Val Val Asp Asp Phe Val Gly Gly Tyr Ile Asp Arg Leu Ser Glu Phe 290 295 300

Gly Val Gln Ala Pro Ala Cys Leu Gly Ala Ala Ala Asp Glu Val Lys 305 310 315 320

Trp Ser His His Thr Leu Gly Gln Val Leu Ser Ala Val Trp Pro Leu 325 330 335

Asn Phe Trp Arg Ser Asp Ala Met Gly Pro Ala Asp Phe Glu Trp Phe 340 350

Glu Asn His Tyr Pro Gly Trp Ser Ala Ala Tyr Gln Gly Tyr Trp Glu 355 360 365

Gly Tyr Lys Ala Leu Ala Asp Pro Ala Gly Gly Arg Ile Met Leu Gln 370 375	
Glu Leu Pro Gly Leu Pro Pro Met Cys Gln Val Cys Gln Val Pro Cys 390 395 400	
Val Met Pro Arg Leu Asp Met Asn Ala Ala Arg Ile Ile Glu Phe Glu 405 410 415	
Gly Gln Lys Ile Ala Leu Cys Ser Glu Pro Cys Gln Arg Ile Phe Thr 420 425 430	
Asn Trp Pro Glu Ala Tyr Arg His Arg Lys Gln Tyr Trp Ala Arg Tyr 435 440 445	
His Gly Trp Asp Leu Ala Asp Val Ile Val Asp Leu Gly Tyr Ile Arg 450 455 460	
Pro Asp Gly Lys Thr Leu Ile Gly Gln Pro Leu Leu Glu Met Glu Arg 480 465 470 . 475	
Leu Trp Thr Ile Asp Asp Ile Arg Ala Leu Gln Tyr Glu Val Lys Asp 490 . 495	
Pro Leu Glu Ala 500	
<210> 13 <211> 1494	
<212> DNA <213> Xanthobacta sp.	
<220> <221> CDS <222> (1)(1494)	
<400> 13 atg gcg ctc ttg aat cgg gac gat tgg tac gac atc gcg cgc gat gtc	48
atg gcg ctc ttg dat cgg gac gat cgg ta san Asp Ile Ala Arg Asp Val Met Ala Leu Leu Asn Arg Asp Asp Trp Tyr Asp Ile Ala Arg Asp Val 10 15	
Met Ala Leu Leu Asn Arg Asp Asp 11p 1y1 Msp 220 15	96
Met Ala Leu Leu Asn Arg Asp Asp Tip Tyl Nop 225 15 1 5 10 15 gac tgg acg ctc agc tat gtc gac cgc gcg gtc gcc ttt ccc gag gag Asp Trp Thr Leu Ser Tyr Val Asp Arg Ala Val Ala Phe Pro Glu Glu 30	96 144
Met Ala Leu Leu Ash Arg Asp Asp Tip Tyr Nap and 15 1 5 10 10 15 gac tgg acg ctc agc tat gtc gac cgc gcg gtc gcc ttt ccc gag gag Asp Trp Thr Leu Ser Tyr Val Asp Arg Ala Val Ala Phe Pro Glu Glu 20 25 30 tgg aaa ggc gaa aag gac att tgc ggc acg gcc tgg gac gat tgg gac Trp Lys Gly Glu Lys Asp Ile Cys Gly Thr Ala Trp Asp Asp Trp Asp	
Met Ala Leu Leu Ash Arg Asp Asp 11p 171 Map and 15 gac tgg acg ctc agc tat gtc gac cgc gcg gtc gcc ttt ccc gag gag Asp Trp Thr Leu Ser Tyr Val Asp Arg Ala Val Ala Phe Pro Glu Glu 20 tgg aaa ggc gaa aag gac att tgc ggc acg gcc tgg gac gat tgg gac Trp Lys Gly Glu Lys Asp Ile Cys Gly Thr Ala Trp Asp Asp Trp Asp 35 gag ccc ttc cgg gtc tcc ttc cgc gaa tat gtg atg gtc cag cgc gac Glu Pro Phe Arg Val Ser Phe Arg Glu Tyr Val Met Val Gln Arg Asp 60	144
Met Ala Leu Leu Ash Arg Asp Asp Trp Tyr Tab and 10 15 gac tgg acg ctc agc tat gtc gac cgc gcg gtc gcc ttt ccc gag gag Asp Trp Thr Leu Ser Tyr Val Asp Arg Ala Val Ala Phe Pro Glu Glu 30 tgg aaa ggc gaa aag gac att tgc ggc acg gcc tgg gac gat tgg gac Trp Lys Gly Glu Lys Asp Ile Cys Gly Thr Ala Trp Asp Asp Trp Asp 45 gag ccc ttc cgg gtc tcc ttc cgc gaa tat gtg atg gtc cag cgc gac Glu Pro Phe Arg Val Ser Phe Arg Glu Tyr Val Met Val Gln Arg Asp 55 aag gaa gcg agc gtc ggc gcc atc cgc gag gcc atg gtc cgc gcc aag Lys Glu Ala Ser Val Gly Ala Ile Arg Glu Ala Met Val Arg Ala Lys 80	144 192
Met Ala Leu Leu Asn Arg Asp Asp Tip Tyr Nop gac tgg acg ctc agc tat gtc gac cgc gcg gtc gcc ttt ccc gag gag Asp Trp Thr Leu Ser Tyr Val Asp Arg Ala Val Ala Phe Pro Glu Glu 20 tgg aaa ggc gaa aag gac att tgc ggc acg gcc tgg gac gat tgg gac Trp Lys Gly Glu Lys Asp Ile Cys Gly Thr Ala Trp Asp Asp Trp Asp 35 gag ccc ttc cgg gtc tcc ttc cgc gaa tat gtg atg gtc cag cgc gac Glu Pro Phe Arg Val Ser Phe Arg Glu Tyr Val Met Val Gln Arg Asp 50 aag gaa gcg agc gtc ggc atc cgc gag gcc atg gtc cgc acg Lys Glu Ala Ser Val Gly Ala Ile Arg Glu Ala Met Val Arg Ala Lys 65 gcc tat gag aag ctc gac gac ggc cac aag gcc acc tcg cac Ala Tyr Glu Lys Leu Asp Asp Gly His Lys Ala Thr Ser His Leu His	144 192 240
Met Ala Leu Leu Ash Arg Asp Asp Tip 10 15 gac tgg acg ctc agc tat gtc gac cgc gcg gtc gcc ttt ccc gag gag Asp Tip Tip Thr Leu Ser Tyr Val Asp Arg Ala Val Ala Phe Pro Glu Glu Glu 30 tgg aaa ggc gaa aag gac att tgc ggc acg gcc tgg gac gat tgg gac Trp Lys Gly Glu Lys Asp Ile Cys Gly Thr Ala Trp Asp Asp Asp Tip Asp Asp 35 gag ccc ttc cgg gtc tcc ttc cgc gaa tat gtg atg gtc cag cgc gac Glu Pro Phe Arg Val Ser Phe Arg Glu Tyr Val Met Val Gln Arg Asp 50 aag gaa gcg agc gtc ggc atc cgc gag gcc atg gtc cag gcc atg gtc cgc gac Lys Glu Ala Ser Val Gly Ala Ile Arg Glu Ala Met Val Arg Ala Lys 75 gcc tat gag aag ctc gac gac ggc acg ggc acg acg gcc atg gcc acg ctg gac Ala Tyr Glu Lys Leu Asp Asp Gly His Lys Ala Thr Ser His Leu His 90 atg ggc acc atc acc atg gtg gag cac atg gcg gtc acc atg cac atg gcc atg gcc atg gcc atg gcc acc atg gac Gac Ala Thr Ser His Leu His 90 atg ggc acc atc acc atg gtg gag cac atg gcg gtc acc atg cac atg gcc acc atg gac Gac Ala Thr Ser His Leu His 90	144 192 240 288
Met Ala Leu Leu Ash Arg Asp Asp 110 15 gac tgg acg ctc agc tat gtc gac cgc gcg gtc gcc ttt ccc gag gag Asp Trp Thr Leu Ser Tyr Val Asp Arg Ala Val Ala Phe Pro Glu Glu 30 tgg aaa ggc gaa aag gac att tgc ggc acg gcc tgg gac gat tgg gac Trp Lys Gly Glu Lys Asp Ile Cys Gly Thr Ala Trp Asp Asp Asp Trp Asp 40 gag ccc ttc cgg gtc tcc ttc cgc gaa tat gtg atg gtc cag cgc gac Glu Pro Phe Arg Val Ser Phe Arg Glu Tyr Val Met Val Gln Arg Asp 55 aag gaa gcg agc gtc ggc acc atc cgc gag gcc atg gtc cgc gcc aag Lys Glu Ala Ser Val Gly Ala Ile Arg Glu Ala Met Val Arg Ala Lys 65 gcc tat gag aag ctc gac gac ggc gag gcc acc acc tcg cac ctg cac Ala Tyr Glu Lys Leu Asp Asp Gly His Lys Ala Thr Ser His Leu His 90 atg ggc acc acc acc atc acc atg gtg gag cac atg ggc gc acc atg gcc acc acc ctg cac Ala Tyr Glu Lys Leu Asp Asp Gly His Lys Ala Thr Met Val Glu His Met Ala Val Thr Met Gln Ser 105 cgg ttc gtg cgc ttc gcg ccg tcc gcc cgc tgg cgc agc ctc ggg gcg Arg Phe Val Arg Phe Ala Pro Ser Ala Arg Trp Arg Ser Leu Gly Ala	144 192 240 288 336

	Se 14	er H	is A	sp	Let	ı Le	u As 15	n As O	p Se	er P	ro	Ser	: Ph	e As 5	p T	rp S	er	Gli	n Ar			
	go Al	eg t La Pl	tc c he H	ac	acc Thr	gae Asj 16	ь ст	a tg u Tr	p Al	eg gi La Va	аT	ctc Leu 170	Ala	c ac a Th	c co	gc a rg A	ac sn	cto Lev	g tto 1 Phe	C e	52	28
	110	, p - 11.	JP I	-L C	180	пе	u AS		a As	ip Cy 18	/s 35	Val	Glŧ	a Al	a Al	la L 1	eu 90	Ala	c aco	:	57	76
	De	T 116	1	95	ne.u	GTI	ı mı;	s GT	y Ph 20	e Th	ır i	Asn	Ile	e Gl	n Ph 20	ie Va 15	al	Ala	g cto Lev	l	62	4
	***	21	.0	ap ,	r.a	Me (- GT(21.5	g GT	y As	p'	Val	Asn	Ph 22	e Se O	r As	sn	Leu	ttg Leu	L	67	2
	22	5	ميلس سلمه	re (37.11	7.117	230) GII	1 AT	a Ar	g I	lis	Ala 235	Gli	n Le	u Gl	Ly :	Phe	Pro 240		72	0
	11.	. Бе	u m	, de	/ a. l.	245	мет	: rÀs	5 Hl	s As	р E 2	250	Lys	Ar	y Al	a Gl	.n (Gln 255	atc Ile		76	8
	T, (A AD	b vc	2	260	rife	rrp	Arg	se:	r Ty: 26:	r 2 5	arg	Ile	Ph€	e Gl:	n Al 27	.a 7 0	Val	acc Thr		81	6
	GJ7 aac	c gt 7 Va.	c to l Se 27	, 44 T.,	itg Iet	gac Asp	tac Tyr	tac Tyr	aco Thi	r Pro	g g o V	tc al	gcc Ala	aac Lys	g cg S Are	g Gl	g a n N	atg Met	tcg Ser		864	4
×	tto Phe	290	J C. L.	g t u P	tc	atg Met	ctg Leu	gag Glu 295	tgg Trp	g ato O Ile	c g ∍ V	tc	aag Lys	cat His 300	His	ga GG1	g c u A	gc	atc Ile		912	2
	305	• • • • • •	, 110	P T	<u>አ</u> ተ	GTÅ	310	cag Gln	тÃг	rrc) 'I'.	rp	Tyr 315	Trp	Asp	Th	r P	he	Glu 320		960)
	aag Lys	Thr	ct Le	c g u A	SP.	cac His 325	Gly ggc	cac His	cac	gcg Ala	l L	tg d eu 1 30	cac His	atc Ile	GJ? ggc	aco Th:	r T	gg rp 35	ttc Phe		1008	}
	tgg Trp	cgc	Pro		nr 1 40.	ctg Leu	ttc Phe	tgg Trp	gat Asp	ccc Pro 345	As	at q	ggc	ggc Gly	gtc Val	Sei 350	: A	gc rg	gag Glu		1056	·
	gag Glu	cgg	Arg 355	,	ab I	ctg Leu	aac Asn	cag Gln	aag Lys 360	tat Tyr	Pr	eg a	aac Asn	tgg Trp	gaa Glu 365	Glu	ja; Se	gc er	tgg Trp		1104	
	ggc Gly	gtc Val 370	mer	ı tç	p A	ac Asp	GTA	atc Ile 375	atc Ile	tcc Ser	aa As	ic a sn I	le .	aat Asn 380	gcg Ala	G1 y	aa 'As	ac (att Ile		1152	
	gaa Glu 385	aag Lys	acc	: tt	g c u P	TO (gag Glu 390	acg Thr	ctg Leu	ccg Pro	at Me	t L	tg eu (95	tgc Cys	aac Asn	gtc Val	ac Th	ır 2	aac Asn 400		1200	
	ctg Leu	ccc Pro	atc	G1	y S	er 1 05	cac His	tgg Trp	gac Asp	cgc Arg	tt Ph 41	e H	ac dis]	ctg Leu	aag Lys	ccc Pro	ga G1 41	.u (cag Gln		1248	
	ctc Leu	gtc Val	tac Tyr	аа Ьу 42	S G	gg d	arg :	ctc Leu '	tac Tyr	acc Thr 425	tt Ph	c g e A	ac a sp s	agc Ser	gac Asp	gtc Val 430	to Se	c a	aag Lys		1296	c
	tgg Trp	atc Ile	ttc Phe 435	ga Gl	g c u L	tc <u>c</u> eu <i>F</i>	gat d Asp 1	Pro (gag Glu 440	cgc Arg	ta Ty:	t g r A	cc <u>c</u> la 0	Sly	cac His 445	acc Thr	aa As	.c g n V	rtg Zal		1344	
	gtc	gac ·	cgc	tt	c a	tc g	iāc ā	ggg (cag	atc	ca	g c	cc a	ıtg	acc	atc	ga	g g	gc		1392	

Val Asp Arg Phe Ile Gly Gly Gln Ile Gln Pro Met Thr Ile Glu Gly gtg ctc aac tgg atg ggc ctg acg ccc gaa gtc atg ggc aag gac gtg Val Leu Asn Trp Met Gly Leu Thr Pro Glu Val Met Gly Lys Asp Val ttc aac tac cgt tgg gcc ggc gat tac gcc gag aac cgg atc gcc gcc Phe Asn Tyr Arg Trp Ala Gly Asp Tyr Ala Glu Asn Arg Ile Ala Ala gag taa Glu <210> 14 <211> 497 <212> PRT <213> Xanthobacta sp. <400> 14 Met Ala Leu Leu Asn Arg Asp Asp Trp Tyr Asp Ile Ala Arg Asp Val Asp Trp Thr Leu Ser Tyr Val Asp Arg Ala Val Ala Phe Pro Glu Glu . 20 Trp Lys Gly Glu Lys Asp Ile Cys Gly Thr Ala Trp Asp Asp Trp Asp Glu Pro Phe Arg Val Ser Phe Arg Glu Tyr Val Met Val Gln Arg Asp Lys Glu Ala Ser Val Gly Ala Ile Arg Glu Ala Met Val Arg Ala Lys Ala Tyr Glu Lys Leu Asp Asp Gly His Lys Ala Thr Ser His Leu His Met Gly Thr Ile Thr Met Val Glu His Met Ala Val Thr Met Gln Ser Arg Phe Val Arg Phe Ala Pro Ser Ala Arg Trp Arg Ser Leu Gly Ala Phe Gly Met Leu Asp Glu Thr Arg His Thr Gln Leu Asp Leu Arg Phe Ser His Asp Leu Leu Asn Asp Ser Pro Ser Phe Asp Trp Ser Gln Arg Ala Phe His Thr Asp Glu Trp Ala Val Leu Ala Thr Arg Asn Leu Phe Asp Asp Ile Met Leu Asn Ala Asp Cys Val Glu Ala Ala Leu Ala Thr Ser Leu Thr Leu Glu His Gly Phe Thr Asn Ile Gln Phe Val Ala Leu Ala Ser Asp Ala Met Glu Ala Gly Asp Val Asn Phe Ser Asn Leu Leu Ser Ser Ile Gln Thr Asp Glu Ala Arg His Ala Gln Leu Gly Phe Pro Thr Leu Asp Val Met Met Lys His Asp Pro Lys Arg Ala Gln Gln Ile Leu Asp Val Ala Phe Trp Arg Ser Tyr Arg Ile Phe Gln Ala Val Thr Gly Val Ser Met Asp Tyr Tyr Thr Pro Val Ala Lys Arg Gln Met Ser

Phe Lys Glu Phe Met Leu Glu Trp Ile Val Lys His His Glu Arg Ile Leu Arg Asp Tyr Gly Leu Gln Lys Pro Trp Tyr Trp Asp Thr Phe Glu Lys Thr Leu Asp His Gly His His Ala Leu His Ile Gly Thr Trp Phe Trp Arg Pro Thr Leu Phe Trp Asp Pro Asn Gly Gly Val Ser Arg Glu Glu Arg Arg Trp Leu Asn Gln Lys Tyr Pro Asn Trp Glu Glu Ser Trp Gly Val Leu Trp Asp Glu Ile Ile Ser Asn Ile Asn Ala Gly Asn Ile Glu Lys Thr Leu Pro Glu Thr Leu Pro Met Leu Cys Asn Val Thr Asn Leu Pro Ile Gly Ser His Trp Asp Arg Phe His Leu Lys Pro Glu Gln Leu Val Tyr Lys Gly Arg Leu Tyr Thr Phe Asp Ser Asp Val Ser Lys Trp Ile Phe Glu Leu Asp Pro Glu Arg Tyr Ala Gly His Thr Asn Val Val Asp Arg Phe Ile Gly Gly Gln Ile Gln Pro Met Thr Ile Glu Gly Val Leu Asn Trp Met Gly Leu Thr Pro Glu Val Met Gly Lys Asp Val 475 · Phe Asn Tyr Arg Trp Ala Gly Asp Tyr Ala Glu Asn Arg Ile Ala Ala Glu <210> 15 <211> 1026 <212> DNA <213> Xanthobacta sp. <220> <221> CDS <222> (1)..(1026) <400> 15 Met Thr Gln Gln Arg Pro Thr Arg Thr Arg Glu Arg Lys Lys Thr Trp acg gct ttc ggc aat ctc gga cgc aag ccg acc gac tac gag gtc gtc Thr Ala Phe Gly Asn Leu Gly Arg Lys Pro Thr Asp Tyr Glu Val Val acc cac aac atg aac cac acc atg cgc ggc acg ccc ctg gag ctg tcg Thr His Asn Met Asn His Thr Met Arg Gly Thr Pro Leu Glu Leu Ser ccg acg gtg cac gcc aat gtg tgg ctc aag aag aac cgc gac gag atc Pro Thr Val His Ala Asn Val Trp Leu Lys Lys Asn Arg Asp Glu Ile gcg ctc aag gtc gac agc tgg gat ctg ttc cgc gat ccc gac cgc acc Ala Leu Lys Val Asp Ser Trp Asp Leu Phe Arg Asp Pro Asp Arg Thr acc tac gac acc tac gtc aag atg cag gac gac cag gag acc tat gtc

Thr	Tyr	Asp	Thr	Tyr 85	Val	Lys	Met	Gln	Asp 90	Asp	Gln	Glu	Thr	Tyr 95	· V	al	
gac Asp	aac Asn	ctg Leu	ctc Leu 100	ctg Leu	tcc Ser	tac Tyr	acc Thr	ggc Gly 105	gag Glu	ggc Gly	cgc	tac Tyr	gac Asp 110		ı G	ag lu	336
ctt Leu	tcc Ser	tcg Ser 115	cgc Arg	agc Ser	ctc Leu	gac Asp	ctc Leu 120	ctg Leu	tcc Ser	gcg	ggg	g cto 7 Lei 129		ccç Pro	ga oT	icc hr	384
cgc Arg	tat Tyr 130	ctg Leu	ggc Gly	cat His	GJÀ	ctg Leu 135	GLn	atg Met	ctc Leu	gcc Ala	gco Ala 140	a ry.	t ato r Ile	caq Gli	n G	ag Sln	432
ctc Leu 145	gcc Ala	ccg Pro	tcg Ser	gcc Ala	tat Tyr 150	gtg Val	ggc	aat Asn	tgc Cys	gcg Ala 15	a va	g tt	c caq e Glr	g aco		cc Ser 160	480
gac Asp	gcg Ala	ctg Leu	cgc Arg	cgc Arg 165	gtg Val	cag	ı Arg	gtc Val	gcc Ala 170	ц ту.	c cg r Ar	c ac g Th	c cgo	c ca g Gl 17		ctc Leu	528
gcc Ala	gac Asp	gco Ala	c cat His	Pro	gcc Ala	cgc Arg	g ggc	tto Phe	S GT	tc 7 Se	c gg r Gl	c ga y As	c cg p Ar 19	9	g (gtg Val	576
tgg Trp	gag Glu	, aaç Lys 195	s Se	c CCG	g gac o Asp	tg:	g cag o Glr 200	1 Pro	c ato	c cg e Ar	c aa g Ly	ig go 's Al 20		c ga e Gl	ig .u	gag Glu	624
cto Lev	g cto Lev 210	ı Va	c acc	c tto	c gaa e Glu	tge Tr	p Asj	c aaq o Ly:	g gc s Al	g ct a Le	c go u Al 22	.a 0-	gc ac Ly Th	c aa r As	at sn	ttc Phe	672
gto Val 22	l Vai	g aa l Ly	g cc s Pr	g ato	c cto e Lei 230	ı As	c ga p Gl	g cto u Le	g tt u Ph	c ct e Le 23	u za	ac ca sn H:	ac ct is Le	g go eu Al	cg la	cgc Arg 240	720
ct: Le	g cto u Le	c ca u Hi	c gt s Va	g ga 1 Gl 24	g ggo u Gly 5	c ga y As	c ga p Gl	g ct u Le	c ga u As 25	h 2	er L	tc g eu V	tg ct al Le		gg rg 55	aac Asn	768
ct Le	t ca u Hi	c gg s Gl	c ga y As	p Al	c ca a Gl:	g cg n Ar	c ca g Hi	.c gc .s Al 26	ia a.	jc to	gg a cp T	cg g hr A		cg c La L 70	tc eu	ggc ggc	816
cg Ar	c tt g Ph	c go e Al 27	.a Va	c ga l Gl	ıg ca .u Gl	g aa n As	ac gt sn Va 28	IT AS	ic aa sn As	ac c	gc a rg T	IIT A	tc c al L 85	tg c eu A	gc .rg	gac Asp	864
gc Al	c at a Il 29	e Al	cc gg La Gl	ge to Ly Ti	gg ca cp Hi	s G.	ag ac Lu Th 95	ic gg nr Gl	gc ga	ag g Lu A	La v	tc c al I	tc g eu A	cc g la A	cg la	ggc Gly	912
gc Al 30	a Gl	g at y Me	tg ci	st go eu Al	cg ag la Se 31	er A	gc go rg Al	cc co la Pi	cc a ro S	er A	cg g la <i>I</i> 15	gat <u>q</u> Asp <i>F</i>	gcg g Ala A	cc a la I	ag Jys	atc Ile 320	960_
g(A]	ec ga La As	ac ga	ag g lu V	al A	gc gc rg Al 25	c a La T	cg c hr L	tc go eu A	та с	ag c ln I 30	tg d eu I	cac (gcc a Ala A	· · ·	gcg Ala 335	g Gly	1008
C† Le	tc g eu G	lу н	is A	at g sp A 40	cc to	ga				٠							1026
	210> 211>							•									

<211> 341

<212> PRT <213> Xanthobacta sp.

<400> 16
...
Met Thr Gln Gln Arg Pro Thr Arg Thr Arg Glu Arg Lys Lys Thr Trp
...

' 1 Thr Ala Phe Gly Asn Leu Gly Arg Lys Pro Thr Asp Tyr Glu Val Val Thr His Asn Met Asn His Thr Met Arg Gly Thr Pro Leu Glu Leu Ser Pro Thr Val His Ala Asn Val Trp Leu Lys Lys Asn Arg Asp Glu Ile Ala Leu Lys Val Asp Ser Trp Asp Leu Phe Arg Asp Pro Asp Arg Thr Thr Tyr Asp Thr Tyr Val Lys Met Gln Asp Asp Gln Glu Thr Tyr Val Asp Asn Leu Leu Ser Tyr Thr Gly Glu Gly Arg Tyr Asp Glu Glu Leu Ser Ser Arg Ser Leu Asp Leu Leu Ser Ala Gly Leu Thr Pro Thr Arg Tyr Leu Gly His Gly Leu Gln Met Leu Ala Ala Tyr Ile Gln Gln Leu Ala Pro Ser Ala Tyr Val Gly Asn Cys Ala Val Phe Gln Thr Ser Asp Ala Leu Arg Arg Val Gln Arg Val Ala Tyr Arg Thr Arg Gln Leu Ala Asp Ala His Pro Ala Arg Gly Phe Gly Ser Gly Asp Arg Ala Val Trp Glu Lys Ser Pro Asp Trp Gln Pro Ile Arg Lys Ala Ile Glu Glu Leu Leu Val Thr Phe Glu Trp Asp Lys Ala Leu Ala Gly Thr Asn Phe Val Val Lys Pro Ile Leu Asp Glu Leu Phe Leu Asn His Leu Ala Arg Leu Leu His Val Glu Gly Asp Glu Leu Asp Ser Leu Val Leu Arg Asn 250 · Leu His Gly Asp Ala Gln Arg His Ala Arg Trp Thr Ala Ala Leu Gly Arg Phe Ala Val Glu Gln Asn Val Asn Asn Arg Thr Val Leu Arg Asp Ala Ile Ala Gly Trp His Glu Thr Gly Glu Ala Val Leu Ala Ala Gly Ala Gly Met Leu Ala Ser Arg Ala Pro Ser Ala Asp Ala Lys Ile Ala Asp Glu Val Arg Ala Thr Leu Ala Gln Leu His Ala Asn Ala Gly Leu Gly His Asp Ala <210> 17 <211> 267 <212> DNA

<220> <221> CDS <222> (1)..(267)

<213> Xanthobacta sp.

<pre><400> 17 atg tct ttg ttc ccc atc gtg ggc cgc ttc gtg ggg gat ttc gtc ccc Met Ser Leu Phe Pro Ile Val Gly Arg Phe Val Gly Asp Phe Val Pro 1 1 5</pre>	48
cac ctg gtg gcg gtg gac acc tct gac acc atc gat cag atc gcc gag His Leu Val Ala Val Asp Thr Ser Asp Thr Ile Asp Gln Ile Ala Glu 20 25 30	96
aag gtg gcg gtc cac acg gtc ggg cgg cgc ttg ccg ccc gat ccc acc Lys Val Ala Val His Thr Val Gly Arg Arg Leu Pro Pro Asp Pro Thr 35 40 45	144
gcc acc ggc tat gag gtg ctc ctc gac ggc gag acc ctg gac ggg ggc Ala Thr Gly Tyr Glu Val Leu Leu Asp Gly Glu Thr Leu Asp Gly Gly 50 55 60	192
gcc acc ctg gag gcc atc atg acc aag cgc gag atg ctg ccc ctg cag Ala Thr Leu Glu Ala Ile Met Thr Lys Arg Glu Met Leu Pro Leu Gln 65 70 75 80	240
tgg ttc gac gtg agg ttc aag aag tga Trp Phe Asp Val Arg Phe Lys Lys 85	267
<210> 18 <211> 88 <212> PRT <213> Xanthobacta sp.	
<400> 18	
Met Ser Leu Phe Pro Ile Val Gly Arg Phe Val Gly Asp Phe Val Pro 1 5 10 . 15	
His Leu Val Ala Val Asp Thr Ser Asp Thr Ile Asp Gln Ile Ala Glu 20 25 30	
Lys Val Ala Val His Thr Val Gly Arg Arg Leu Pro Pro Asp Pro Thr 35 40 45	
Ala Thr Gly Tyr Glu Val Leu Leu Asp Gly Glu Thr Leu Asp Gly Gly 50 55 60	
Ala Thr Leu Glu Ala Ile Met Thr Lys Arg Glu Met Leu Pro Leu Gln 65 70 75 80	
Trp Phe Asp Val Arg Phe Lys Lys 85	
<210> 19 <211> 1584 <212> DNA <213> Methylococcus capsulatas	
<220> <221> CDS <222> (1)(1584)	
<pre><400> 19 atg gca ctt agc acc gca acc aag gcc gcg acg gac gcg ctg gct gcc Met Ala Leu Ser Thr Ala Thr Lys Ala Ala Thr Asp Ala Leu Ala Ala 1 5 10 15</pre>	48
aat cgg gca ccc acc agc gtg aat gca cag gaa gtg cac cgt tgg ctc Asn Arg Ala Pro Thr Ser Val Asn Ala Gln Glu Val His Arg Trp Leu 20 25 30	96
cag agc ttc aac tgg gat ttc aag aac aac cgg acc aag tac gcc acc Gln Ser Phe Asn Trp Asp Phe Lys Asn Asn Arg Thr Lys Tyr Ala Thr 35 40 45	144
aag tac aag atg gcg aac gag acc aag gaa cag ttc aag ctg atc gcc	192

Ly	s Ty:	r Lys	Met	= Ala	a Asr	ı Glu 55	ı Thi	r Lys	s Glı	ı Glr	n Phe	e Ly:	s Lei	a Il	e Ala		
aaq Ly: 65	g gaa s Gl ı	a tat ı Tyr	gcg Ala	g cgc a Arc	ato Met 70	g gaç : Glu	g gca n Ala	a gto a Val	c aag L Lys	g gad Asp 75	c gaa o Glu	a ago ı Aro	g caq g Gl:	g tte n Phe	c ggt e Gly 80		240
ago Sei	c cto	g cag ı Gln	g gat 1 Asp	gcg Ala 85	r cto	g acc	c cgc	c cto g Lev	aac Asr 90	gco Ala	ggt Gly	gtt Val	cgo L Arg	g gti g Val 95	t cat l His		288
cco Pro	g aag o Lys	g tgg s Trp	aac Asn 100	ı Glu	acc Thr	atg Met	aaa Lys	gtg Val 105	. Val	tcg Ser	g aac Asn	tto Phe	c cto Lev 110	ı Glı	a gtg ı Val		336
Gly	c gaa 7 Glu	tac Tyr 115	Asn	gcc Ala	atc Ile	gcc Ala	gct Ala 120	Thr	: Gly	atg Met	ctg Leu	tgg Trp 125	Asp	tco Sei	gcc Ala		384
cag Gln	g gcg 1 Ala 130	. Ala	gaa Glu	cag Gln	aag Lys	aac Asn 135	. Gly	tat Tyr	ctg Leu	gcc Ala	cag Gln 140	. Val	r ttg . Lev	gat Asp	gaa Glu		432
ato Ile 145	e Arg	cac His	acc Thr	cac His	Gln	Cys	Ala	: tac Tyr	Val	Asn	tac Tyr	tac Tyr	ttc Phe	gcg Ala	g aag Lys 160	-	480
aac Asn	Gly Ggc	cag Gln	gac Asp	ccg Pro 165	gcc Ala	ggt Gly	cac His	aac Asn	gat Asp 170	Ala	cgc	cgc Arg	acc	egt Arg 175	acc Thr		528
atc Ile	ggt Gly	ccg Pro	ctg Leu 180	tgg Trp	aag Lys	Gly	atg Met	aag Lys 185	cgc Arg	gtg Val	ttt Phe	tcc Ser	gac Asp 190	Gly	ttc Phe		576
att Ile	tcc Ser	ggc Gly 195	gac Asp	gcc Ala	gtg Val	gaa Glu	tgc Cys 200	Ser	ctc	aac Asn	ctg Leu	cag Gln 205	ctg Leu	gtg Val	ggt Gly		624
gag Glu	gcc Ala 210	tgc Cys	ttc Phe	acc Thr	aat Asn	ccg Pro 215	ctg Leu	atc Ile	gtc Val	gca Ala	gtg Val 220	acc Thr	gaa Glu	tgg Trp	gct Ala		672
gcc Ala 225	gcc Ala	.aac Asn	ggc Gly	gat Asp	gaa Glu 230	atc Ile	acc Thr	ccg Pro	acg Thr	gtg Val 235	ttc Phe	ctg Leu	tcg Ser	atc Ile	gag Glu 240		720
acc Thr	gac Asp	gaa Glu	ctg Leu	cgc Arg 245	cac His	atg Met	gcc Ala	aac Asn	ggt Gly 250	tac Tyr	cag Gln	acc Thr	gtc Val	gtt Val 255	tcc Ser		768
atc Ile	gcc Ala	aac Asn	gat Asp 260	ccg Pro	gct Ala	tcc Ser	gcc Ala	aag Lys 265	tat Tyr	ctc Leu	aac Asn	acg Thr	gac Asp 270	ctg Leu	aac Asn		816
aac Asn	gcc Ala	ttc Phe 275	tgg Trp	acc Thr	cag Gln	cag Gln	aag Lys 280	tac Tyr	ttc Phe	acg Thr	ccg Pro	gtg Val 285	ttg Leu	ggc	atg Met		864
ctg Leu	ttc Phe 290	gag Glu	tat Tyr	ggc Gly	tcc Ser	aag Lys 295	ttc Phe	aag Lys	gtc Val	gag Glu	ccg Pro 300	tgg Trp	gtc Val	aag Lys	acg Thr		912
tgg Trp 305	gac Asp	cgc Arg	tgg Trp	Val	tac Tyr 310	gag Glu	gac Asp	tgg Trp	Gly	ggc Gly 315	atc Ile	tgg Trp	atc Ile	ggc Gly	cgt Arg 320		960
ctg Leu	Gly ggc	aag Lys	Tyr	ggg Gly 325	gtg Val	gag Glu	tcg Ser	Pro	cgc Arg 330	agc Ser	ctc Leu	aag Lys	gac Asp	gcc Ala 335	aag Lys	1	1008
cag Gln	gac Asp	gct Ala	tac Tyr 340	tgg Trp	gct Ala	cac His	His	gac Asp 345	ctg Leu	tat Tyr	ctg Leu	ctg Leu	gct Ala 350	tat Tyr	gcg Ala	1	.056
ctg	tgg	ccg	acc	ggc ·	ttc	ttc	cgt	ctg	gcg	ctg	ccg	gat	cag	gaa	gaa		.104

.

ו	Leu '		Pro 355	Thr	Gly	Phe	Phe	Arg 360	Leu	Ala	Leu	Pro ?	Asp (Gln (Glu (Glu	
]	Met	gag Glu 370	tgg Trp	ttc Phe	gag Glu	Ala	aac Asn 375	tac Tyr	ccc Pro	ggc	tgg Trp	tac Tyr 380	gac Asp	cac His	tac (Tyr (ggc Gly	1152
	aag Lys 385	atc Ile	tac Tyr	gag Glu	gaa Glu	tgg Trp 390	cgc Arg	gcc Ala	cgc Arg	ggt Gly	tgc Cys 395	gag Glu	gat Asp	ccg Pro		tcg Ser 400	1200
	ggc Gly	ttc Phe	atc Ile	ccg Pro	ctg Leu 405	atg Met	tgg Trp	ttc Phe	atc Ile	gaa Glu 410	aac _. Asn	aac Asn	cat His	ccc Pro	atc Ile 415	tac Tyr	1248
	atc Ile	gat Asp	Arg	gtg Val 420	tcg Ser	caa Gln	gtg Val	ccg Pro	ttc Phe 425	tgc Cys	ccg Pro	agc Ser	ttg Leu	gcc Ala 430	aag Lys	ggc	1296
	gcc Ala	agc Ser	acc Thr 435	ctg Leu	cgc Arg	gtg Val	cac His	gag Glu 440	tac Tyr	aac Asn	Gly	gag Glu	atg Met 445	cac His	acc Thr	ttc Phe	1344
	agc Ser	Asp	Gln	Trp	ggc Gly	Glu	Arg	Met	tgg Trp	ctg Leu	gcc Ala	gag Glu 460	ccg Pro	gag Glu	cgc	tac Tyr	1392
	gag Glu 465	Cys	cag Gln	aac Asn	atc Ile	ttc Phe 470	Glu	cag Gln	tac Tyr	gaa Glu	gga Gly 475	cgc Arg	gaa Glu	ctg Leu	tcg Ser	gaa Glu 480	1440
•	gtg Val	atc Ile	gcc Ala	gaa Glu	ctg Leu 485	His	ej aaa	ctg Leu	cgc Arg	agt Ser 490	Asp	ggc	aag Lys	acc Thr	ctg Leu 495	atc Ile	1488
	gcc Ala	cag Gln	g ccg	cat His	: Val	: cgt . Arg	ggc Gly	gac Asp	aag Lys 505	; Let	tgg Trp	acg Thr	ttg Leu	gac Asp 510	Hop	atc Ile	1536
	aaa Lys	cgc Arg	c cto g Lev 515	ı Asr	tgc Cys	gto Val	tto Phe	aaç E Lys 520	s Asr	e ccc	g gto Val	aag Lys	gca Ala 525	LIIC	aat Asn	tga	1584
	<21 <21 <21 <21	12>	20 527 PRT Met)	nylo	cocci	is ca	apsul	Latas	s								
		00> t Ala		u Se	r Th:	r Ala	a Th	r Ly	s Al	a Al. 10	a Th:	r Asp	o Ala	a Lei	ı Ala 15	a Ala	
	Ası			20					25					30		p Leu	
			35					40					40			a Thr	
		50	l				55					80				e Ala	
4	65					70)				75	,				e Gly 80	
					85	5				,90	J			ie Le	eu Gl	l His	•
				10	0.0				Τ(Jo			eu Tr	p As	. 0	er Ala	
		•	1:	15				1:	20				1.2	2.5		sp Glu	

.

130 135 140

Ile Arg His Thr His Gln Cys Ala Tyr Val Asn Tyr Tyr Phe Ala Lys Asn Gly Gln Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Thr Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ser Asp Gly Phe Ile Ser Gly Asp Ala Val Glu Cys Ser Leu Asn Leu Gln Leu Val Gly Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala Ala Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Ile Glu Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser Ile Ala Asn Asp Pro Ala Ser Ala Lys Tyr Leu Asn Thr Asp Leu Asn .265 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Met Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr Trp Asp Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg Leu Gly Lys Tyr Gly Val Glu Ser Pro Arg Ser Leu Lys Asp Ala Lys Gln Asp Ala Tyr Trp Ala His His Asp Leu Tyr Leu Leu Ala Tyr Ala Leu Trp Pro Thr Gly Phe Phe Arg Leu Ala Leu Pro Asp Gln Glu Glu 360 365 Met Glu Trp Phe Glu Ala Asn Tyr Pro Gly Trp Tyr Asp His Tyr Gly Lys Ile Tyr Glu Glu Trp Arg Ala Arg Gly Cys Glu Asp Pro Ser Ser Gly Phe Ile Pro Leu Met Trp Phe Ile Glu Asn Asn His Pro Ile Tyr Ile Asp Arg Val Ser Gln Val Pro Phe Cys Pro Ser Leu Ala Lys Gly Ala Ser Thr Leu Arg Val His Glu Tyr Asn Gly Glu Met His Thr Phe Ser Asp Gln Trp Gly Glu Arg Met Trp Leu Ala Glu Pro Glu Arg Tyr Glu Cys Gln Asn Ile Phe Glu Gln Tyr Glu Gly Arg Glu Leu Ser Glu Val Ile Ala Glu Leu His Gly Leu Arg Ser Asp Gly Lys Thr Leu Ile Ala Gln Pro His Val Arg Gly Asp Lys Leu Trp Thr Leu Asp Asp Ile Lys Arg Leu Asn Cys Val Phe Lys Asn Pro Val Lys Ala Phe Asn

<211: <212: <213:	> DI	170 NA ethy	loco	ccus	cap	sula	tas					-					
<220 <221 <222	> C	DS 1)	(117	0)													
<400 atg Met 1	agc	atq	Leu	gga Gly 5	gaa Glu	aga Arg	cgc Arg	cgc Arg	ggt Gly 10	ctg Leu	acc Thr	gat Asp	ccg Pro	gaa Glu 15	atg Met		48
gcg Ala	gcc Ala	gtc Val	att Ile 20	ttg Leu	aag Lys	gcg Ala	ctt Leu	cct Pro 25	gaa Glu	gct Ala	ccg Pro	ctg Leu	gac Asp 30	ggc Gly	aac Asn		96
aac Asn	Lys	atg Met 35	ggt Gly	tat Tyr	ttc Phe	gtc Val	acc Thr 40	ccc Pro	cgc Arg	tgg Trp	aaa Lys	cgc Arg 45	ttg Leu	acg Thr	gaa Glu		144
tat Tyr	gaa Glu 50	gcc Ala	ctg Leu	acc Thr	gtt Val	tat Tyr 55	gcg Ala	cag Gln	ccc Pro	aac Asn	gcc Ala 60	gac Asp	tgg Trp	atc Ile	gcc Ala		192
ggc Gly 65	ggc Gly	ctg Leu	gac Asp	tgg Trp	ggc Gly 70	gac Asp	tgg Trp	acc Thr	cag Gln	aaa Lys 75	ttc Phe	cac His	ggc Gly	Gly	cgc Arg 80	•	240
cct Pro	tcc Ser	tgg Trp	ggc Gly	aac Asn 85	gag Glu	acc Thr	acg Thr	gag Glu	ctg Leu 90	cgc Arg	acc Thr	gtc Val	gac Asp	tgg Trp 95	ttc Phe		288
aag Lys	cac His	cgt Arg	gac Asp 100	ccg Pro	ctc Leu	cgc Arg	cgt Arg	tgg Trp 105	cat His	gcg Ala	ccg Pro	tac Tyr	gtc Val 110	aag Lys	gac Asp		336
aag Lys	gcc Ala	gag Glu 115	gaa Glu	tgg Trp	cgc Arg	tac Tyr	acc Thr 120	gac Asp	cgc Arg	ttc Phe	ctg Leu	cag Gln 125	ggt Gly	tac Tyr	tcc Ser		384
gcc Ala	gac Asp 130	ggt Gly	cag Gln	atc Ile	cgg Arg	gcg Ala 135	atg Met	aac Asn	ccg Pro	acc Thr	tgg Trp 140	cgg Arg	gac Asp	gag Glu	ttc Phe		432
atc Ile 145	aac Asn	cgg Arg	tat Tyr	tgg Trp	ggc Gly 150	gcc Ala	ttc Phe	ctg Leu	ttc Phe	aac Asn 155	gaa Glu	tac Tyr	gga Gly	ttg Leu	ttc Phe 160		480
aac Asn	gct Ala	cat His	tcg Ser	cag Gln 165	Gly	gcc Ala	cgg Arg	gag Glu	gcg Ala 170	Leu	tcg Ser	gac Asp	gta Val	acc Thr 175	cgc Arg		528
gtc Val	agc Ser	ctg Leu	gct Ala 180	Phe	tgg Trp	ggc	ttc Phe	gac Asp 185	Lys	atc Ile	gac Asp	atc Ile	gcc Ala 190	GTU	atg Met	^	576
atc Ile	caa Gln	ctc Leu 195	. Glu	Ģgg	ggt	ttc Phe	ctc Leu 200	Ala	aag Lys	atc	gta Val	ccc Pro 205	ggt Gly	ttc Phe	gac		624
gag Glu	tcc Ser 210	Thr	gcg Ala	gtg Val	ccg Pro	aag Lys 215	Ala	gaa Glu	tgg Trp	acg Thr	aac Asn 220	. GIY	gag Glu	gtc Val	tac Tyr		672
aag Lys 225	Ser	gcc Ala	cgt Arg	ctç Lev	gcc Ala 230	. Val	gaa Glu	ı Gl?	r ctç Lev	tgg Trp 235	Glr	gag Glu	gtg Val	ttc Phe	gac Asp 240		720
tgg Trp	aac Asn	gaç Glu	g agc ı Ser	gct Ala 245	a Phe	tcg Ser	gto Val	g cad L His	gcc 8 Ala 250	a Val	: tat . Tyr	gac Asp	gcg Ala	cto Lev 255	g ttc n Phe		768
ggt Gl	cag Gln	tto Phe	c gto e Val	cgo Arg	c cgo g Arg	gag g Glu	j tto i Phe	ttt Phe	caç e Gli	g cgg n Arg	g Cto	g gct 1 Ala	cco Pro	c cgo o Arg	c ttc g Phe		816

260 265 270 ggc gac aat ctg acg cca ttc ttc atc aac cag gcc cag aca tac ttc 864 Gly Asp Asn Leu Thr Pro Phe Phe Ile Asn Gln Ala Gln Thr Tyr Phe 275 280 285 cag atc gcc aag cag ggc gta cag gat ctg tat tac aac tgt ctg ggt 912 Gln Ile Ala Lys Gln Gly Val Gln Asp Leu Tyr Tyr Asn Cys Leu Gly 290 295 300 gac gat ccg gag ttc agc gat tac aac cgt acc gtg atg cgc aac tgg 960 Asp Asp Pro Glu Phe Ser Asp Tyr Asn Arg Thr Val Met Arg Asn Trp 305 310 315 320 acc ggc aag tgg ctg gag ccc acg atc gcc gct ctg cgc gac ttc atg 1008 Thr Gly Lys Trp Leu Glu Pro Thr Ile Ala Ala Leu Arg Asp Phe Met 325 330 335 ggg ctg ttt gcg aag ctg ccg gcg ggc acc act gac aag gaa gaa atc 1056 Gly Leu Phe Ala Lys Leu Pro Ala Gly Thr Thr Asp Lys Glu Glu Ile 340 350 acc gcg tcc ctg tac cgg gtg gtc gac gac tgg atc gag gac tac gcc 1104 Thr Ala Ser Leu Tyr Arg Val Val Asp Asp Trp Ile Glu Asp Tyr Ala 355 360 . 365 age geg ate gae tte aag geg gae ege gat eag ate gtt aaa geg gtt 1152 Ser Ala Ile Asp Phe Lys Ala Asp Arg Asp Gln Ile Val Lys Ala Val 370 375 ctg gca gga ttg aaa taa 1170 Leu Ala Gly Leu Lys 385 <210> 22 <211> 389 <212> PRT Methylococcus capsulatas <213> <400> 22 Met Ser Met Leu Gly Glu Arg Arg Gly Leu Thr Asp Pro Glu Met 15 Ala Ala Val Ile Leu Lys Ala Leu Pro Glu Ala Pro Leu Asp Gly Asn 20 Asn Lys Met Gly Tyr Phe Val Thr Pro Arg Trp Lys Arg Leu Thr Glu 35 Tyr Glu Ala Leu Thr Val Tyr Ala Gln Pro Asn Ala Asp Trp Ile Ala 50 55 Gly Gly Leu Asp Trp Gly Asp Trp Thr Gln Lys Phe His Gly Gly Arg Pro Ser Trp Gly Asn Glu Thr Thr Glu Leu Arg Thr Val Asp Trp Phe Lys His Arg Asp Pro Leu Arg Arg Trp His Ala Pro Tyr Val Lys Asp 100 105 110 Lys Ala Glu Glu Trp Arg Tyr Thr Asp Arg Phe Leu Gln Gly Tyr Ser 115 120 125 Ala Asp Gly Gln Ile Arg Ala Met Asn Pro Thr Trp Arg Asp Glu Phe 130 135 140 Ile Asn Arg Tyr Trp Gly Ala Phe Leu Phe Asn Glu Tyr Gly Leu Phe 145 150 155 Asn Ala His Ser Gln Gly Ala Arg Glu Ala Leu Ser Asp Val Thr Arg · 165 Val Ser Leu Ala Phe Trp Gly Phe Asp Lys Ile Asp Ile Ala Gln Met

Ile Gln Leu Glu Arg Gly Phe Leu Ala Lys Ile Val Pro Gly Phe Asp Glu Ser Thr Ala Val Pro Lys Ala Glu Trp Thr Asn Gly Glu Val Tyr Lys Ser Ala Arg Leu Ala Val Glu Gly Leu Trp Gln Glu Val Phe Asp Trp Asn Glu Ser Ala Phe Ser Val His Ala Val Tyr Asp Ala Leu Phe Gly Gln Phe Val Arg Arg Glu Phe Phe Gln Arg Leu Ala Pro Arg Phe Gly Asp Asn Leu Thr Pro Phe Phe Ile Asn Gln Ala Gln Thr Tyr Phe Gln Ile Ala Lys Gln Gly Val Gln Asp Leu Tyr Tyr Asn Cys Leu Gly Asp Asp Pro Glu Phe Ser Asp Tyr Asn Arg Thr Val Met Arg Asn Trp Thr Gly Lys Trp Leu Glu Pro Thr Ile Ala Ala Leu Arg Asp Phe Met Gly Leu Phe Ala Lys Leu Pro Ala Gly Thr Thr Asp Lys Glu Glu Ile Thr Ala Ser Leu Tyr Arg Val Val Asp Asp Trp Ile Glu Asp Tyr Ala Ser Ala Ile Asp Phe Lys Ala Asp Arg Asp Gln Ile Val Lys Ala Val Leu Ala Gly Leu Lys <210> 23 <211> <212> DNA <213> Methylococcus capsulatas <220> <221> CDS (1)..(513)<222> <400> 23 atg gcg aaa ctg ggt ata cac agc aac gac acc cgc gac gcc tgg gtg Met Ala Lys Leu Gly Ile His Ser Asn Asp Thr Arg Asp Ala Trp Val aac aag atc gcg cag ctc aac acc ctg gaa aaa gcg gcc gag atg ctg Asn Lys Ile Ala Gln Leu Asn Thr Leu Glu Lys Ala Ala Glu Met Leu aag cag ttc cgg atg gac cac acc acg ccg ttc cgc aac agc tac gaa Lys Gln Phe Arg Met Asp His Thr Thr Pro Phe Arg Asn Ser Tyr Glu ctg gac aac gac tac ctc tgg atc gag gcc aag ctc gaa gag aag gtc Leu Asp Asn Asp Tyr Leu Trp Ile Glu Ala Lys Leu Glu Glu Lys Val gcc gtc ctc aag gca cgc gcc ttc aac gag gtg gac ttc cgt cat aag Ala Val Leu Lys Ala Arg Ala Phe Asn Glu Val Asp Phe Arg His Lys acc gct ttc ggc gag gat gcc aag tcc gtt ctg gac ggc acc gtc gcg Thr Ala Phe Gly Glu Asp Ala Lys Ser Val Leu Asp Gly Thr Val Ala

aag atg aac gcg gcc aag gac aag tgg gag gcg gag aag atc cat atc 336 Lys Met Asn Ala Ala Lys Asp Lys Trp Glu Ala Glu Lys Ile His Ile 100 110 ggt ttc cgc cag gcc tac aag ccg ccg atc atg ccg gtg aac tat ttc 384 Gly Phe Arg Gln Ala Tyr Lys Pro Pro Ile Met Pro Val Asn Tyr Phe 115 ctg gac ggc gag cgt cag ttg ggg acc cgg ctg atg gaa ctg cgc aac 432 Leu Asp Gly Glu Arg Gln Leu Gly Thr Arg Leu Met Glu Leu Arg Asn 130 135 ctc aac tac tac gac acg ccg ctg gaa gaa ctg cgc aaa cag cgc ggt 480 Leu Asn Tyr Tyr Asp Thr Pro Leu Glu Glu Leu Arg Lys Gln Arg Gly 145 150 155 160 gtg cgg gtg gtg cat ctg cag tcg ccg cac tga 513 Val Arg Val Val His Leu Gln Ser Pro His 165 170 <210> 24 <211> 170 <212> PRT <213> Methylococcus capsulatas <400> 24 Met Ala Lys Leu Gly Ile His Ser Asn Asp Thr Arg Asp Ala Trp Val Asn Lys Ile Ala Gln Leu Asn Thr Leu Glu Lys Ala Ala Glu Met Leu 20 25 30 Lys Gln Phe Arg Met Asp His Thr Thr Pro Phe Arg Asn Ser Tyr Glu 35 40 45 Leu Asp Asn Asp Tyr Leu Trp Ile Glu Ala Lys Leu Glu Glu Lys Val 50 55 . 60 Ala Val Leu Lys Ala Arg Ala Phe Asn Glu Val Asp Phe Arg His Lys 65 70 75 Thr Ala Phe Gly Glu Asp Ala Lys Ser Val Leu Asp Gly Thr Val Ala Lys Met Asn Ala Ala Lys Asp Lys Trp Glu Ala Glu Lys Ile His Ile 105 110 Gly Phe Arg Gln Ala Tyr Lys Pro Pro Ile Met Pro Val Asn Tyr Phe 120 125 Leu Asp Gly Glu Arg Gln Leu Gly Thr Arg Leu Met Glu Leu Arg Asn 130 135 140 Leu Asn Tyr Tyr Asp Thr Pro Leu Glu Glu Leu Arg Lys Gln Arg Gly 145 150 155 160 Val Arg Val Val His Leu Gln Ser Pro His 165 170 <210> 25 <211> 1206 <212> DNA <213> Pseudomonas oleovorans <220> <221> CDS <222> (1)..(1206) <400> 25 atg ctt gag aaa cac aga gtt ctg gat tcc gct cca gag tac gta gat 48

Met Leu Glu Lys His Arg Val Leu Asp Ser Ala Pro Glu Tyr Val Asp

1				5					10					15		•	
aaa a Lys I	Lys	aaa Lys	tat Tyr 20	ctc Leu	tgg Trp	ata Ile	cta Leu	tca Ser 25	act Thr	ttg Leu	tgg Trp	ccg Pro	gct Ala 30	act Thr	Pr	g 0	96
atg a	atc Ile	gga Gly 35	atc Ile	tgg Trp	ctt Leu	gca Ala	aat Asn 40	gaa Glu	act Thr	ggt Gly	tgg Trp	ggg Gly 45	att Ile	ttt Phe	ta Ty	t r	144
ej aaa	ctg Leu 50		ttg Leu	ctc Leu	gta Val	tgg Trp 55	tac Tyr	ggc	gca Ala	ctt Lev	cca Pro 60	ttg Leu	ctt Leu	gat Asp	gc Al	g .a	192
atg Met 65	ttt Phe	ggt Gly	gag Glu	gac Asp	ttt Phe 70	aat Asn	aat Asn	ccg	cċt Pro	gaa Glu 75	a gaa ı Glı	a gtg ı Val	gtg Val	ccg Pro	aa Ly 80		240
cta Leu	gag Glu	aag Lys	gag Glu	cgg Arg 85	tac Tyr	tat Tyr	cga Arg	gtt Val	ttq Lei 90	g ac	a ta r Ty:	t cta r Lev	a aca	gtt Val 95	CO Pi	ct co	288
atg Met	cat His	tac Tyr	gct Ala	a Ala	ı tta Lev	att Ile	gto Val	tca Ser 105	T AI	a tg a Tr	g tg p Tr	g gto p Val	c gga L Gly 110		G G	ag ln	336
cca Pro	atg Met	tct Sei	r Tri	g ctt o Lei	gaa u Glu	att ı Ile	ggt Gly	A WT	g ct a Le	t gc u Al	c tt a Le	g tca u Se 12		g ggi u Gl	t a y I	tc le	384
gtg Val	aac Asn 130	gga Gl		a gco u Ala	g cto a Le	c aat u Asi 13:	u Tu	a gg r Gl	a ca y Hi	.c ga .s Gl	a ct u Le 14	c gg u Gl	t ca y Hi	c aa s Ly	g a s L	ag ys	432
gag Glu 145	act Thi		t ga e As	t cg p Ar	t tg g Tr 15	ь ме	g gc t Al	c aa a Ly	a at s I]	re v	eg tt al Le	g gc eu Al	t gt a Va	c gt l Va	a 9 1 9	.60 :Ty :gg	480
		ca y Hi	c tt s Ph	c tt e Ph	e Il	t ga e Gl	g ca u Hi	t aa .s As	\mathbf{n} \mathbf{n}	ag g ys G: 70	gt ca Ly H:	at ca is Hi	ıc cg .s Ar	rt ga :g As 17	-	ytc /al	528
gct Ala	aca a Thi	a cc r Pr	g at o Me	et As	it co sp Pr	t go o Al	a ac .a Th	a to ir Se 18	EL A.	gg a rg M	tg g et G	ga ga ly Gl		gc at er Il	t 1 Le :	tat Fyr	576
aaq Lys	g tt s Ph	t to e Se	er Il	cc co Le Ai	gt ga og Gl	ng at Lu Il	e E	ca gg co GI	ga g Ly A	ca t la P	tt a he I	tt co le A	gt go rg Al 05	ct to La T:	rp	ejλ aaa	624
· cti Lei	t ga u Gl 21	g ga u G		aa co ln A:	gc ct rg Le	eu Se	eg co	gc co	gt g rg G	gc c	7.1.1.1	gc g er V 20	tt to al T	gg a rp S	gt er	ttc Phe	672
ga As 22	t aa p As		aa a lu I	tc c le L	eu G	aa co ln Pi 30	ca a ro M	tg a et I	tc a le I	ידב י	aca ç îhr V 235	ytt a Val I	tt c le L	tt t eu T	ac yr	gcċ Ala 240	720
		c c eu L	tt g eu A	la L	tg t eu P 45	tt g he G	ga c ly P	ct a ro L	iys r	atg d Met 1 250	ctg (Leu V	gtg t /al E	tc c he L		cg ro	att Ile	768
ca Gl	ia af .n Mi	tg g et A	la F	tc g he G	gt t ly T	gg t rp T	gg c	TII T	tg 6 Leu 1 265	acc Thr	agt (Ser)	gcg a Ala <i>P</i>		at a Yr 1 270	itt :le	gaa Glu	816
ca Hi	at t is T	yr 0	gc t Sly I 275	tg c Leu I	tc c Leu <i>I</i>	gt o	ern i	aaa a Lys M 280	atg Met	gag Glu	gac Asp	- L.	cga t Arg : 285	tat (Tyr (gag Glu	cat His	864
G:	ln L	ag o ys I	ccg (Pro I	cac d His I	cat t His S	Ser :	ngg a Prp 2 295	aat (Asn)	agt Ser	aat Asn	cac His	atc Ile 300	gtc Val	tct Ser	aat Asn	cta Leu	912
Ą.			ttc (cac (ctt (Leu (cag (Gln :	cgg Arg	cac His	tcg Ser	gat Asp	cac His	cac His	gcg Ala	cat His	cca Prc	aca Thr	960

30	05				3	10					31	L 5					320	
Co Ai	gt to rg So	ct t er T	at c	TII D	ca c er L 25	tt c eu A	gg g rg A	at .sp	ttt Phe	ccc Pro 330) G1	TA P	tg c eu P	ro 1	gct Ala	ct Le 33	t ccg u Pro 5	
ac Th	eg ge ir Gi	gt t Ly T	AT E	ro G 40	gt g ly A	ca t la P	tt t he L	eu i	atg Met 345	gcc	g at a Me	g at	tt c le P	ro (cag Sln 850	tg: Tr	g ttt p Phe	
aç Ar	ga to :g Se	ar A	tt a al M 55	tg ga et A:	at co sp P:	cc a ro L	ys v	ta q al v 60	gta Val	gat Asp	tg Tr	g gö P Al	la G	gt o ly 0 65	gt	ga Asp	c ctt p Leu	
aa As	n Ly 37	, <u> </u>	tc c le G	aa at ln Il	tt ga Le As	sp A	at to sp Se 75	cg a er N	atg Met	cga Arg	ga Gl	a ac u Th 38	r T	at t yr I	tg eu	aaa Lys	a aaa S Lys	
tt Ph 38		(C ao .y T)	ct ag nr Se	gt aç er Se	gt go er Al 39	La G.	gt ca Ly Hi	at a is S	igt Ser	tcg Ser	ag Se: 39:	r Th	c to	ct g er A	cg la	gta Val	gca Ala 400	
tc Se	g ta r	.g																
<2: <2:	10> 11> 12> 13>	26 401 PR1 Pse		onas	ole	ovor	ans						·					
<4(<00	26										•						
Met 1	t Le	u Gl	u Ly	s Hi 5	s Ar	g Va	l Le	u A	sp :	Ser	Ala	a Pro	o Gl	u Ty		Val 15	Asp	
Lys	s Lys	s Ly	s Ty 20	r Le	u Tr	p Il	e Le	u Se 23	er : 5	Thr	Leu	Tr	p Pr	CA 0		Thr	Pro	
Met	: Ile	€ G1 35	y Il	e Tr]	o Le	u Al	a As:	n GI	Lu :	Phr	Gly	Tr	Gl;	y Il	.e)	Phe	Tyr	
Gly	Leu 50	ı Va	l Le	u Lei	ı Vai	l Trj 55	р Ту	r Gl	Ly A	Ala	Leu	Pro	Lei	u L∈	eu 2	Asp	Ala	
Met 65	Phe	e Gl	y Gl	u Asp	70	e Ası	n Asr	n Pr	o E	ro	Glu 75	Glu	ı Val	l Va	.1 F	Pro	Lys 80	
Leu	Glu	Lys	s Glu	ı Arç 85	ј Туг	с Туз	c Arg	y Va	1 I 9	eu 0	Thr	Tyr	Leu	ı Th		al 95	Pro	
Met	His	Туі	: Ala	a Ala	Lev	ı Ile	· e Val	. Se	r A 5	la '	Trp	Trp	Val	. Gl 11		'hr	Gln	
	Met	Ser 115	Trp	Leu	Glu	Ile	Gly	Al	a L	eu <i>I</i>	Ala	Leu	Ser 125		u G	ly	Ile	
Val	Asn 130	Gly	Leu	a Ala	Leu	Asn 135	Thr	· Gl	у н	is (Glu	Leu 140	Gly	Hi:	s L	ys	Lys	
Glu 145	Thr	Phe	Asp	Arg	Trp 150	Met	Ala	Ly	s I	le V	/al L55	Leu	Ala	Va:	L V		Gly 160	
Tyr	Gly	His	Phe	Phe 165	Ile	Glu	His	Ası	n L; 1	ys 0 70	Sly	His	His	Arç		sp ' 75	Val	
Ala	Thr	Pro	Met 180	Asp	Pro	Ala	Thr	Se:	r Ai	rg M	ſet	Gly	Glu	Se:		le :	ryr '	
Lys	Phe	Ser 195	Ile	Arg	Glu	Ile	Pro 200	Gly	y Al	La P	he	Ile	Arg 205	Ala	ı T	rp (3ly	
Leu	Glu 210	Glu	Gln	Arg	Leu	Ser 215	Arg	Arg	g Gl	y G		Ser 220	Val	Trp) Se	er I	?he	

Asp 225	Asn	Glu	Ile	Leu	Gln 230	Pro	Met	Ile	Ile	Thr 235	Val	Ile	Leu	Tyr	Ala 240	ı)	
Val	Leu	Leu	Ala	Leu 245	Phe	Gly	Pro	Lys	Met 250	Leu	Val	Phe	Leu	Pro 255	Ile	9	
Gln	Met	Ala	Phe 260	Gly	Trp	Trp	Gln	Leu 265	Thr	Ser	Ala	Asn	Tyr 270	Ile	Glı	ı	
		275			Arg		280					200					,
	290				Ser	295					500						
305					Gln 310					J	,		,				
				325					23(J							·
			340)	Ala			34:	5								
		35	5		Pro		360	,									
	370	0			e Asp	3 <i>l</i> :)				50						
Ph 38		y Th	r Se	r Se	r Ala 390	a Gly	y Hi	s Se	r Se	r Se 39	r Th	r Se	r Al	a Va	1 A 4	1a 00	
Se	r		•														•
<2 <2	10> 11> 12> 213>	27 156 DNA Bur	Ā	.deri	a ce	paci	a										
<2	220> 221> 222>	CD:	s)(]	L560)		•					•						
	et As		ct to hr Se	ct gt er Va 5	ig ca al Gl	ig aa .n Ly	ag aa /s L	ag a ys L	да п	tc g eu G 0	gt t	ta a eu L	ag a ys A		gc ' rg ' 5	tac Tyr	48
g A	ca g la A	cg a la M	tg a et T	hr A	gc gg	gt c	tt g eu G	тАл	gg c rp G	ag a lln T	icc a hr S	gc t er T	J	ag c ln P O	cg ro	atg Met	96
g	ag a lu L	ys V	tg t 'al P	tt c he P	cg ta ro T	ac g yr A	зр г	ag t ys T O	ac g 'yr G	gaa ç Slu (ggc a Gly I		ag a Lys I 15	tc c	cac His	gat Asp	144
t	rp A	at a sp I	aa t Lys T	gg g	aa g lu A	sp E	cc t ro F 5	tc o	ege (Arg]	ctg a Leu '	T 1 1 T	atg 9 Met 1 50	gac g Asp <i>R</i>	ycc t Ala :	tac Tyr	tgg Trp	192
J	aaa t Lys 1	at o	cag g Gln G	era Ge	gag a Slu L 7	ag g ys G	jaa a Slu I	aaa a Lys :	aag (Lys)	пси	tac (Tyr) 75	gcc Ala	gtc a Val :	atc (gac Asp	gct Ala 80	240
•	ttc (Phe i	gcg (Ala (cag a Gln <i>l</i>	Asn A	aac g Asn G	ely (cag i	tg Leu	DET	att Ile 90	tcc Ser	gac Asp	gcg (Ala	cga Arg	tat Tyr 95	gtc Val	288
	aac Asn	gca Ala	Leu		4	ctt (Phe	atc Ile	cag Gln	ggt Gly 105	gtg Val	aca Thr	Pro CCG	ttg Leu	gag Glu 110	tat Tyr	atg Met	336

AT	.c 111	1	.15	стλ	, hue	∋ A⊥	a Hi	s I1 12	.e G1 !0	_y A:	rg F	lis	Phe	e Th 12	r G. 5	lу	Glu	gly		384
gc Al	a co a Ar 13	.y v	rtt 'al .	gct Ala	tgo Cys	c cad	g at n Me 13	t G1	g to n Se	c at	cc g le A	gac Asp	gaç Gli 140	ı Le	g cg u Ai	gt rg :	cac His	ttc Phe		432
14	5	.1. G	ти ;	Mec	n1.S	15 A1) з те.	u Se	r Hi	s Ty	r A 1	.55	Lys	ту	r Ph	ne i	Asn	ggt Gly 160		480
пе	u III	S A	D11 ;	ser	165	HLS	s Tr	р Ту	r As	р Аг 17	g V	al	Trp	уТу:	r Le	eu s	Ser 175	gtg Val		528
r + (о пу	3 3	er :	180	Pne	GLT.	ı Ası	o Ala	a Al 18	a Th 5	r G	ly	Gly	Pro	o Ph 19	e (lu	ttt Phe		576
,	A 111.	1:	95	/ д .т.	ser	Pne	e Sei	200	e Gli O	и Ту	r V	al	Leu	Th: 205	As	n I	eu	ctg Leu		624
ttt Phe	gte Va: 210	r E.	cc t	tc he	atg Met	tcg Ser	ggt Gl _y 215	ALa	t gct a Ala	t ta a Ty	c a	sn	ggg Gly 220	Asp	at Me	g t t S	ct	acg Thr		672
gtc Val 225		tt Pl	ic g	gt	ttt Phe	tcg Ser 230	ATS	g caa Glr	agt Sei	ga As	p GI	aa lu 35	tcg Ser	Arg	ca Hi	c a s M	tg et	aca Thr 240		720
ctc Leu	Gl;	c at	c g e G	aa lu	tgc Cys 245	atc Ile	aag Lys	ttc Phe	ato Met	ct: Le: 250	ı G]	aa Lu	cag Gln	gat Asp	CC Pro	o A	ac sp 55	aac Asn		768
VEL	ET.C	, 11	.e v 2	60	GTII	Arg	ттр	Ile ·	gac Asp 265	Lys	s Tr	p :	Phe	Trp	Arg 270	g G.	ly	Tyr		816
cgg Arg	ctg Leu	tt Le 27	u Di	gc er	atc Ile	gtg Val	gcc Ala	atg Met 280	atg Met	cag Glr	g ga 1 As	rc :	tac Tyr	atg Met 285	cto	g co i P:	cc ro .	aac Asn	•	864
итд	290	He	L 56	≠.L .	rrb	Arg	G1u 295	Ser	tgg Trp	Glu	ı Me	t I	Tyr 300	Val	Glu	ı Gi	ln i	Asn		912
ggc Gly 305	ggc	gc.	g ct a Le	ig 1 eu 1	erre	aag Lys 310	gat Asp	ctt Leu	gcg Ala	cgt Arg	ta Ty 31	r G	ggc	atc Ile	cgc	: aa Ly	s :	ccc Pro 320		960
пуs	GTÅ	T T.]	, AS	sp 6	325	Ala	Cys	Glu	Gly	Lys 330	Asj	p H	lis	Ile	Ser	Ні 33	.s (Sln		1008
acc Thr	ttc Phe	gco	c gt a Va 34	TF	tc he	tat Tyr	aac Asn	tat Tyr	aac Asn 345	gcc Ala	gc	g g a A	cc la	ccc Pro	atc Ile 350	ca Hi	c a s 1	acc hr		1056
tgg Trp	gtt Val	Pro 355) TIT	a a r I	aa (gaa Glu	gaa Glu	atg Met 360	gga Gly	tgg Trp	ct; Lei	g t ı S	er (gag Glu 365	aag Lys	ta Ty	c c r F	ro cc		1104
gag Glu	acg Thr 370	ttc Phe	ga As	са рЬ	ag 1 ys :	'yr	tac Tyr 375	cgt Arg	ccg Pro	cgt Arg	tgç	A	ac i sp :	tac Fyr	tgg Trp	cg Ar	g G	ag lu		1152
cag Gln 385	gcc Ala	gcc Ala	aa Ly	g g s G	TA t	aac (Asn 1 890	cgt Arg	ttc Phe	tac Tyr	aac Asn	aag Lys 395	T	cg d hr I	etg Seu	ccg Pro	at Me	t L	tc eu 00	,	1200
tgc Cys	act Thr	acc Thr	tg:	S G	ag a ln I 05	itt d Ele 1	ccg Pro 1	atg Met	Ile	ttc Phe 410	acc	: g:	ag c lu E	ect Pro	G ly	gad Asj 41:	A c	ca la	,	1248

acc aag atc tgc tat cgc gag tcg gcc tac ctc ggc gac aag tat cac Thr Lys Ile Cys Tyr Arg Glu Ser Ala Tyr Leu Gly Asp Lys Tyr His 420 425 430	1296
ttc tgc agc gac cac tgc aag gag att ttt gac aac gaa ccc gaa aag Phe Cys Ser Asp His Cys Lys Glu Ile Phe Asp Asn Glu Pro Glu Lys 435 440 445	1344
ttc gtg cag tca tgg ctt ccg ccg cag caa gtg tat caa gga aac tgt Phe Val Gln Ser Trp Leu Pro Pro Gln Gln Val Tyr Gln Gly Asn Cys 450 455 460	1392
ttc aag ccg gat gcc gat ccg acc aag gag ggt ttt gat ccc ttg atg Phe Lys Pro Asp Ala Asp Pro Thr Lys Glu Gly Phe Asp Pro Leu Met 465 470 475 480	1440
gcc ttg ctc gac tac tac aac ctg aat gta ggc cgg gac aac ttc gat Ala Leu Leu Asp Tyr Tyr Asn Leu Asn Val Gly Arg Asp Asn Phe Asp 485 490 495	1488
ttc gag gga tcg gaa gac caa aag aac ttt gct gcc tgg cgt gga gag Phe Glu Gly Ser Glu Asp Gln Lys Asn Phe Ala Ala Trp Arg Gly Glu 500 505 510	1536
gtc ttg caa gga gaa gcc aaa tga Val Leu Gln Gly Glu Ala Lys 515	1560
<210> 28 <211> 519 <212> PRT <213> Burkholderia cepacia	
<400> 28	
Met Asp Thr Ser Val Gln Lys Lys Leu Gly Leu Lys Asn Arg Tyr 1 5 10 15	
Ala Ala Met Thr Arg Gly Leu Gly Trp Gln Thr Ser Tyr Gln Pro Met 20 25 30	
Glu Lys Val Phe Pro Tyr Asp Lys Tyr Glu Gly Ile Lys Ile His Asp 35 40 45	
m - b - T - Marie Marie Alla Marie	
Trp Asp Lys Trp Glu Asp Pro Phe Arg Leu Thr Met Asp Ala Tyr Trp 50 55 60 .	
50 55 60 . Lys Tyr Gln Gly Glu Lys Glu Lys Lys Leu Tyr Ala Val Ile Asp Ala	
Lys Tyr Gln Gly Glu Lys Glu Lys Lys Leu Tyr Ala Val Ile Asp Ala 65 70 75 80 Phe Ala Gln Asn Asn Gly Gln Leu Ser Ile Ser Asp Ala Arg Tyr Val	·
Lys Tyr Gln Gly Glu Lys Glu Lys Lys Leu Tyr Ala Val Ile Asp Ala 65 Phe Ala Gln Asn Asn Gly Gln Leu Ser Ile Ser Asp Ala Arg Tyr Val 85 Asn Ala Leu Lys Val Phe Ile Gln Gly Val Thr Pro Leu Glu Tyr Met	
Lys Tyr Gln Gly Glu Lys Glu Lys Lys Leu Tyr Ala Val Ile Asp Ala 65 Phe Ala Gln Asn Asn Gly Gln Leu Ser Ile Ser Asp Ala Arg Tyr Val 85 Asn Ala Leu Lys Val Phe Ile Gln Gly Val Thr Pro Leu Glu Tyr Met 1100 Ala His Arg Gly Phe Ala His Ile Gly Arg His Phe Thr Gly Glu Gly	
Lys Tyr Gln Gly Glu Lys Glu Lys Lys Leu Tyr Ala Val Ile Asp Ala 65 Phe Ala Gln Asn Asn Gly Gln Leu Ser Ile Ser Asp Ala Arg Tyr Val 85 Asn Ala Leu Lys Val Phe Ile Gln Gly Val Thr Pro Leu Glu Tyr Met 100 Ala His Arg Gly Phe Ala His Ile Gly Arg His Phe Thr Gly Glu Gly 115 Ala Arg Val Ala Cys Gln Met Gln Ser Ile Asp Glu Leu Arg His Phe	
Lys Tyr Gln Gly Glu Lys Glu Lys Lys Leu Tyr Ala Val Ile Asp Ala 80 Phe Ala Gln Asn Asn Gly Gln Leu Ser Ile Ser Asp Ala Arg Tyr Val 95 Asn Ala Leu Lys Val Phe Ile Gln Gly Val Thr Pro Leu Glu Tyr Met 110 Ala His Arg Gly Phe Ala His Ile Gly Arg His Phe Thr Gly Glu Gly 115 Ala Arg Val Ala Cys Gln Met Gln Ser Ile Asp Glu Leu Arg His Phe 130 Gln Thr Glu Met His Ala Leu Ser His Tyr Asn Lys Tyr Phe Asn Gly	
Lys Tyr Gln Gly Glu Lys Glu Lys Lys Leu Tyr Ala Val Ile Asp Ala 65 Phe Ala Gln Asn Asn Gly Gln Leu Ser Ile Ser Asp Ala Arg Tyr Val 90 Asn Ala Leu Lys Val Phe Ile Gln Gly Val Thr Pro Leu Glu Tyr Met 100 Ala His Arg Gly Phe Ala His Ile Gly Arg His Phe Thr Gly Glu Gly 115 Ala Arg Val Ala Cys Gln Met Gln Ser Ile Asp Glu Leu Arg His Phe 130 Gln Thr Glu Met His Ala Leu Ser His Tyr Asn Lys Tyr Phe Asn Gly 145 Leu His Asn Ser Ile His Trp Tyr Asp Arg Val Trp Tyr Leu Ser Val	

Phe Val Pro Phe Met Ser Gly Ala Ala Tyr Asn Gly Asp Met Ser Thr 210 220

Val Thr Phe Gly Phe Ser Ala Gln Ser Asp Glu Ser Arg His Met Thr 225 230 235 240

Leu Gly Ile Glu Cys Ile Lys Phe Met Leu Glu Gln Asp Pro Asp Asn 245 250 255

Val Pro Ile Val Gln Arg Trp Ile Asp Lys Trp Phe Trp Arg Gly Tyr 260 265 270

Arg Leu Leu Ser Ile Val Ala Met Met Gln Asp Tyr Met Leu Pro Asn 275 280 285

Arg Val Met Ser Trp Arg Glu Ser Trp Glu Met Tyr Val Glu Gln Asn 290 295 300

Gly Gly Ala Leu Phe Lys Asp Leu Ala Arg Tyr Gly Ile Arg Lys Pro 305 310 315 320

Lys Gly Trp Asp Gln Ala Cys Glu Gly Lys Asp His Ile Ser His Gln 325 330 335

Thr Phe Ala Val Phe Tyr Asn Tyr Asn Ala Ala Ala Pro Ile His Thr 340 350

Trp Val Pro Thr Lys Glu Glu Met Gly Trp Leu Ser Glu Lys Tyr Pro 355 360 365

Glu Thr Phe Asp Lys Tyr Tyr Arg Pro Arg Trp Asp Tyr Trp Arg Glu 370 375 380

Gln Ala Ala Lys Gly Asn Arg Phe Tyr Asn Lys Thr Leu Pro Met Leu 385 390 395 400

Cys Thr Thr Cys Gln Ile Pro Met Ile Phe Thr Glu Pro Gly Asp Ala 405 410 415

Thr Lys Ile Cys Tyr Arg Glu Ser Ala Tyr Leu Gly Asp Lys Tyr His
420 425 430

Phe Cys Ser Asp His Cys Lys Glu Ile Phe Asp Asn Glu Pro Glu Lys
435
440
445

Phe Val Gln Ser Trp Leu Pro Pro Gln Gln Val Tyr Gln Gly Asn Cys 450 460

Phe Lys Pro Asp Ala Asp Pro Thr Lys Glu Gly Phe Asp Pro Leu Met 475 470 480

Ala Leu Leu Asp Tyr Tyr Asn Leu Asn Val Gly Arg Asp Asn Phe Asp 485 490 495

Phe Glu Gly Ser Glu Asp Gln Lys Asn Phe Ala Ala Trp Arg Gly Glu 500 505 510

Val Leu Gln Gly Glu Ala Lys 515

<210> 29

<211> 996

<212> DNA

<213> Burkholderia cepacia

<220>

<221> CDS

<222> (1)..(996)

<400> 29

atg acc atc gat ttg aag acg cgg gaa atc aaa cca ctg cgt cac acc Met Thr Ile Asp Leu Lys Thr Arg Glu Ile Lys Pro Leu Arg His Thr 1 5

tac a Tyr 1	_			-					_	_			_			96		
tat o	Sln	_			_		_			_	_					144		
cgg d		-	-					-	_							192		
gcg a Ala : 65			-	_	_				-		_	_			_	240		
tac t Tyr 1				=	=	-		_		· -						288		
gaa t Glu s							-									336		
tcc (Asp		-	-						_						384		
cac q His I	-	_					_				_					432		
ggt t Gly 1 145																480		
aat d Asn I	_				-				_	_	-					528		
gga d Gly I							_					Met				576		
gat t Asp 1	rp															624		
gat o Asp I																672		
ctt t Leu 1 225																720		
aac (Asn (768		
cat o	qz	Glu	Ser 260	Ser	Arg	Trp	Val	Asp 265	Ala	Val	Val	Lys	Thr 270	Met	Ala	816		
acg o	slu															864		
tgg q Trp (_	_					_	-							912		
ttg (Leu A 305																960		
			•	•			•											

•

cgt gcc cgc gtt gcg aag gcc ggg att gtt ctg taa Arg Ala Arg Val Ala Lys Ala Gly Ile Val Leu 325 330

996

<210> 30

<211> 331

<212> PRT

<213> Burkholderia cepacia

<400> 30

Met Thr Ile Asp Leu Lys Thr Arg Glu Ile Lys Pro Leu Arg His Thr 1 5 10 15

Tyr Thr His Val Ala Gln Tyr Ile Gly Ala Asp Lys Ala Ala Ser Arg · 20 25 30

Tyr Gln Glu Gly Thr Val Gly Ala Gln Pro Ala Ala Asn Phe His Tyr 35 40 45

Arg Pro Thr Trp Asp Pro Glu His Glu Leu Phe Asp Thr Ser Arg Thr 50 55 60

Ala Ile Gln Met Lys Asp Trp Tyr Ala Leu Lys Asp Pro Arg Gln Phe 70 75 80

Tyr Tyr Ala Ser Trp Thr Met Thr Arg Ala Arg Gln Gln Asp Ala Met 85 90 95

Glu Ser Asn Phe Glu Phe Val Glu Ser Arg Gly Met Ile Asp Leu Val 100 105 110 .

Ser Asp Glu Val Arg Gln Arg Ala Leu Ser Val Leu Val Pro Leu Arg 115 120 125

His Ala Ala Trp Gly Ala Asn Met Asn Asn Ser Gln Ile Cys Ala Leu 130 135 140

Gly Tyr Gly Thr Thr Phe Thr Ala Pro Ala Met Phe His Ala Met Asp 145 150 155 160

Asn Leu Gly Val Ala Gln Tyr Leu Thr Arg Leu Ala Leu Val Met Ser 165 · 170 · 175

Gly Pro Asp Leu Leu Asp Glu Ala Lys Gln Ala Trp Met Thr Ser Pro 180 185 190

Asp Trp Gln Pro Leu Arg Arg Tyr Val Glu Asn Thr Leu Val Leu Gln 195 200 205

Asp Pro Val Glu Leu Phe Ile Ala Gln Asn Leu Ala Leu Asp Gly Leu 210 220

Leu Tyr Pro Met Ile Tyr Gly Ala Phe Val Asp Asp Tyr Ile Ala Leu 225 230 230

Asn Gly Gly Ser Ala Val Ala Met Leu Thr Thr Phe Met Pro Glu Trp 245 250 255

His Asp Glu Ser Ser Arg Trp Val Asp Ala Val Val Lys Thr Met Ala 260 265 270

Thr Glu Ser Glu Asp Asn Lys Ala Leu Leu Ile His Trp Leu Arg Thr 275 280 285

Trp Glu Asp Gln Ala Ala Ser Ala Leu Leu Pro Val Ala Glu Met Ala 290 295 . 300

Leu Ala Glu Asn Gly His Asp Ala Leu Glu Glu Val Arg Gln Gln Leu 305 310 315 320

Arg Ala Arg Val Ala Lys Ala Gly Ile Val Leu 325

```
31
<210>
       357
<211>
      DNA
<212>
<213> Burkholderia cepacia
<220>
       CDS
<221>
       (1)..(357)
<222>
<400> 31
                                                                       48
atg agc gtt gtt gcc ctc aaa ccc tac aag ttc ccg gca cga gac gcg
Met Ser Val Val Ala Leu Lys Pro Tyr Lys Phe Pro Ala Arg Asp Ala
                                    10
                                                                       96
cgc gaa aac ttt ccg gcg ccg ttg ctg ttt atc ggc tgg gaa gac cat
Arg Glu Asn Phe Pro Ala Pro Leu Leu Phe Ile Gly Trp Glu Asp His
                                                     30
                                 25
                                                                       144
ctg ttg ttt gcg gca cct gtt gcc ttg ccc ctg ccg tcg gac acg ttg
Leu Leu Phe Ala Ala Pro Val Ala Leu Pro Leu Pro Ser Asp Thr Leu
                                                 45
                             40
         35
ttc ggt gcg ctg tgc acc cag gtg ttg ccc ggc act tat ggc tat cac
                                                                       192
Phe Gly Ala Leu Cys Thr Gln Val Leu Pro Gly Thr Tyr Gly Tyr His
                                            • 60
                         55
     50
                                                                       240
 ccc gat ttc tca aag atc gac tgg agc cag gtg cag tgg ttt aag tcc
 Pro Asp Phe Ser Lys Ile Asp Trp Ser Gln Val Gln Trp Phe Lys Ser
                                         75
                     70
 65
                                                                       288
 ggc cag ccg tgg cat ccc gac ccg gcg aag tcg ctg gct gaa aac ggt
 Gly Gln Pro Trp His Pro Asp Pro Ala Lys Ser Leu Ala Glu Asn Gly
                                                          95
                 85
                                                                       336
 ctg acg cac aaa gac gtg atc cgc ttt cgc acg cct ggc ttg aac ggt
 Leu Thr His Lys Asp Val Ile Arg Phe Arg Thr Pro Gly Leu Asn Gly
                                                      110
                                  105
              100
                                                                        357
 ctg agc ggt tcc tgc aat tga
 Leu Ser Gly Ser Cys Asn
          115
  <210> 32
 <211> 118
  <212> PRT
  <213> Burkholderia cepacia
  <400> 32
  Met Ser Val Val Ala Leu Lys Pro Tyr Lys Phe Pro Ala Arg Asp Ala
  Arg Glu Asn Phe Pro Ala Pro Leu Leu Phe Ile Gly Trp Glu Asp His
                                   25
              20
  Leu Leu Phe Ala Ala Pro Val Ala Leu Pro Leu Pro Ser Asp Thr Leu
                               40
          35
  Phe Gly Ala Leu Cys Thr Gln Val Leu Pro Gly Thr Tyr Gly Tyr His
                     . . 55
       50
   Pro Asp Phe Ser Lys Ile Asp Trp Ser Gln Val Gln Trp Phe Lys Ser
                       70
   Gly Gln Pro Trp His Pro Asp Pro Ala Lys Ser Leu Ala Glu Asn Gly
                                        90
                   85
   Leu Thr His Lys Asp Val Ile Arg Phe Arg Thr Pro Gly Leu Asn Gly
               100
   Leu Ser Gly Ser Cys Asn
```

	<2 <2	210> 211> 212>	11 DN	43 A														
	<2	220>	-		us s	tear	othe:	rmopl	nilus	5					-		-	
		?21> ?22>	CD (1	_	1143)												
	at	100> :g ga :t Gl	aa a	aa a ys A	at aa sn Ly 5	aa at ys M e	ig tt et Le	ia at eu Il	a ga .e Gl	a ga u Gl 10	.u Ly	ag tt ys Le	ig ga eu As	ac ac sp Th	et go ur Al 15	t gct a Ala	:	4 8
	ct Le	t ct u Le	t go	ct a la L 2	yo As	cg ga la Gl	ig ga .u Gl	aa at .u Il	a gg e Gl 25	y Ar	rg at g Il	t gc e Al	t ga .a Gl	ig ga .u Gl 30	u Gl	g gcg u Ala	•	96
	G1 gg	t ga y Gl	a go u A: 38	La A	ac co sp Ar	gc aa :g As	t go n Al	c tg a Cy 40	s Ph	c tc e Se	c ga r As	ıc cg sp Ar	g gt g Va 45	l Al	t ag a Ar	g gcc g Ala		144
	at Il	t aa e Ly 50	2 61	aa go Lu Al	ct gg La Gl	ga tt .y Ph	с са е Ні 55	г гу	g cto s Lei	c at u Me	g cg t Ar	t cc g Pr 60	о Ьу	g ca s Gl	g ta n Ty	c gga r Gly		192
	gg: Gl: 65	a ct y Le	g ca u Gl	ia gt .n Va	a ga al As	c tt p Le 70	g cg u Ar	a ac g Th:	t tad r Tyi	c gg	g ga y Gl 75	g at u Il	t gt e Va	c cg I Ar	c ac g Th:	a gtg r Val 80		240
	gco Ala	c cgg	g ta g Ty	c ag r Se	rt gt r Va 85	T AT	c gc	a gga a Gl <u>y</u>	a tgo y Trp	g cto Let 90	g ac	c ta r Ty:	t tt r Ph	t ta e Ty:	t tco r Sei 95	c atg r Met		288
r	cat His	gaç Glı	g gt ı Va	t tg l Tr 10	b ar	t gca a Ala	a tai	t cto r Lev	g cet 1 Pro 105	Pro	a aaa o Lya	a ggo s Gly	c aga y Arg	a gaa g Gli 110	ı Glu	a att 1 Ile		336
	ttt Phe	. gga	a ca 7 Gl 11	11 G1	a ggg y Gl	g cto y Lei	tto Lei	g gca 1 Ala 120	a Asp	gto Val	e gti . Val	gco L Ala	c cct Pro 125	va]	r ely	c cgg / Arg		384
	gtg Val	gag Glu 130	ιшу	g ga s As	b eli	g gac y Asp	: ggc	/ Tyr	cgt Arg	cto Leu	tat Tyr	ggg Gly	Glr	tgç Trp	g aac Asn	ttc Phe		432
	tgt Cys 145	0 4 1.	Gl ₁	t gto y Val	c cto l Leu	cat His 150	ser	gac Asp	tgg Trp	atc Ile	gga Gly 155	' Leu	ggc	gcc Ala	: atg : Met	atg Met 160		480
	gag Glu	ctg Leu	cct Pro	gad Asp	ggc Gly 165	aat Asn	agt Ser	cct Pro	gag Glu	tac Tyr 170	Cys	ttg Leu	tta Leu	gtg Val	ctg Leu 175	cct Pro		528
	aag Lys	tcg Ser	gat Asp	gto Val	- GTU	atc Ile	gta Val	gaa Glu	aat Asn 185	tgg Trp	gat Asp	acc Thr	atg Met	ggc Gly 190	ctc Leu	cgc Arg	4	576
	gct Ala	tcg Ser	gga Gly 195	Ser	aac Asn	Gly ggg	gta Val	tta Leu 200	gtt Val	gaa Glu	ggt Gly	gct Ala	tat Tyr 205	gtt Val	cca Pro	tta Leu		624
	cac His	cgg Arg 210	atc Ile	ttt Phe	ccg	gct Ala	ggc Gly 215	cgg Arg	gtg Val	atg Met	gct Ala	cat His 220	ccg Pro	ctt Leu	ttc Phe	ttg Leu		672
,	ctt Leu 225	GJ À GG À	ttc Phe	cct Pro	tta Leu	gta Val 230	tct Ser	tta Leu	Gly ggc	ggc Gly	gac Asp 235	gaa Glu	cga Arg	ttg Leu	gtg Val	tca Ser 240		720
	ctt Leu	ttc Phe	caa Gln	gaa Glu	cgċ Arg 245	act Thr	gag Glu	aag Lys	Arg	att Ile 250	cgt Arg	gtc Val	ttc Phe	aaa Lys	ggc Gly 255	Gly ggc		768
	gcg	aaa	gaa	aag	gat	tct	gcc	gct	agc	cag	cgg	ctg	tta	gcc	gag	atg	8	316

	Ala	Lys	Glu	Lys 260	Asp	Ser	Ala	Ala	Ser 265	Gln	Arg	Leu	Leu	Ala 270	Glu	Met			Ì	
	aaa Lys			tta Leu													864	•		
	cag Gln			gct Ala				•		_							912			
	gag Glu 305			cag Gln									_				960			
	gcc Ala			gcc Ala		_		_					_				1008			
	ttt Phe			gat Asp 340													1056			
	gcc Ala						_			_	-						1104			
	aga Arg	-		ttc Phe					-		_	_	taa				1143			
•	<210 <211 <212 <213	.> 3 !> H		ilus	stea	aroth	nermo	· ophil	Lus											
•	<400)> 3	34		•	·														
	Met 1	Glu	Lys	Asn	Lys 5 ·	Met	Leu	Ile	Glu	Glu 10	Lys	Leu	Asp	Thr	Ala 15	Ala				
•	Leu	Leu	Ala	Lys 20	Ala	Glu	Glu	Ile	Gly 25	Arg	Ile	Ala	Glu	Glu 30	Glu	Ala				
	Gly	Glu	Ala 35	Asp	Arg	Asn	Ala	Cys 40	Phe	Ser	Asp	Arg	Val 45	Ala	Arg	Ala				
	Ile	Lys 50	Glu	Ala	Gly	Phe	His 55	Lys	Leu	Met	Arg	Pro 60	Lys	Gln	Tyr	Glý				
	-Gly 65	Leu	Gln	Val	Asp	Leu 70	Arg	Thr	Tyr	Gly	Glu 75	Ile	Val	Arg	Thr	Val 80				
	Ala	Arg	Tyr	Ser	Val 85	Ala	Ala	Gly	Trp	Leu 90	Thr	Tyr	Phe	Tyr	Ser 95	Met				
	His	Glu	Val	Trp	Ala	Ala	Tyr	Leu	Pro 105	Pro	Lys	Gly	Arg	Glu 110	Glu	Ile				
	Phe	Gly	Gln 115	Gly	Gly	Leu	Leu	Ala 120	Asp	Val	Val	Ala	Pro 125	Val	Gly	Arg)			
	Val	Glu 130	Lys	Asp	Gly	Asp	Gly 135	Tyr	Arg	Leu	Tyr	Gly 140	Gln	Trp	Asn	Phe				
	Cys 145	Ser	Gly	Val	Leu	His 150	Ser	Asp	Trp	Ile	Gly 155	Leu	Gly	Ala	Met	Met 160				
	Glu	Leu	Pro	Asp	Gly 165	Asn	Ser	Pro	Glu	Tyr 170	Cys	Leu	Leu	Val	Leu 175	Pro				
	Lys	Ser	Asp	Val 180	Gln	Ile	Val	Glu	Asn 185	Trp	Asp	Thr	Met	Gly 190	Leu	Arg				
	Ala	Ser	Gly	Ser	Asn	Gly	Val	Leu	Val	Glu	Gly	Ala	Tyr	Val	Pro	Leu				
												•								

His Arg Ile Phe Pro Ala Gly Arg Val Met Ala His Pro Leu Phe Leu Leu Gly Phe Pro Leu Val Ser Leu Gly Gly Asp Glu Arg Leu Val Ser Leu Phe Gln Glu Arg Thr Glu Lys Arg Ile Arg Val Phe Lys Gly Gly Ala Lys Glu Lys Asp Ser Ala Ala Ser Gln Arg Leu Leu Ala Glu Met Lys Thr Glu Leu Asn Ala Met Glu Gly Ile Val Glu Gln Tyr Ile Arg Gln Leu Glu Ala Cys Gln Lys Glu Gly Lys Thr Val Met Asn Asp Met Glu Arg Glu Gln Leu Phe Ala Trp Arg Gly Tyr Val Ala Lys Ala Ser Ala Asn Ile Ala Val Arg Thr Leu Leu Thr Leu Gly Gly Asn Ser Ile Phe Lys Gly Asp Pro Val Glu Leu Phe Thr Arg Asp Leu Leu Ala Val Ala Ala His Pro Asn Ser Leu Trp Glu Asp Ala Met Ala Ala Tyr Gly Arg Thr Ile Phe Gly Leu Pro Gly Asp Pro Val Trp <210> 35 <211> 1191 <212> DNA <213> Helianthus annuus <220> <221> CDS <222> (1)..(1191) <400> 35 atg gcg att cgc atc aat acg gcg acg ttt caa tca gac ctg tac cgt Met Ala Ile Arg Ile Asn Thr Ala Thr Phe Gln Ser Asp Leu Tyr Arg tca ttc gcg ttt cct caa ccg aaa cct ctc aga tct ccc aaa ttc gcc Ser Phe Ala Phe Pro Gln Pro Lys Pro Leu Arg Ser Pro Lys Phe Ala atg gct tcc acc att gga tcc gct aca acg aag gtt gaa agc acc aaa Met Ala Ser Thr Ile Gly Ser Ala Thr Thr Lys Val Glu Ser Thr Lys aag ccc ttt acc cct cca agg gag gtt cac caa cag gtg cta cac tca Lys Pro Phe Thr Pro Pro Arg Glu Val His Gln Gln Val Leu His Ser atg ccg cca caa aag atc gaa atc ttc aaa tcc atg gag ggt tgg gcc Met Pro Pro Gln Lys Ile Glu Ile Phe Lys Ser Met Glu Gly Trp Ala gaa aat aac ata ttg gtt cac cta aag cct gtc gaa aaa tgc tgg caa Glu Asn Asn Ile Leu Val His Leu Lys Pro Val Glu Lys Cys Trp Gln gca cag gat ttc cta cca gat ccc gca tct gac gga ttt atg gaa caa Ala Gln Asp Phe Leu Pro Asp Pro Ala Ser Asp Gly Phe Met Glu Gln gtg gag gaa tta cgg gct cgg gct aag gag att ccg gat gat tac ttt

Val (Glu	Glu 115	Leu	Arg	Ala	Arg	Ala 120	Lys	Glu	ı Il	e P	ro P	Asp 125	Asp	Tyr	Ph	le	
gtt (Val	gtt Val 130	ttg Leu	gtt Val	gga Gly	gat Asp	atg Met 135	att Ile	act Thr	gaa Glı	a ga ı Gl	Lu A	ca (la :	ctg Leu	cct Pro	act Thr	ta Ty	AC 7T	432
caa Gln 145	aca Thr	atg Met	ctt Leu	aat Asn	act Thr 150	ctt Leu	gat Asp	ggt Gly	gte Va	T A	gt g rg A 55	ıat Asp	gag Glu	acc Thr	Gly		ct La 60	480
acc Thr	cta Leu	ctt Leu	ctt Leu	ggg Gly 165	cta Leu	gtc Val	tgg Trp	act Thr	cg Ar 17	g A.	ct t la 1	rp Grp	acc Thr	gct Ala	gaa Glu 175		aa Lu	528
aac Asn	agg Arg	cac	ggt Gly 180	Asp	ctt Leu	cta Leu	cat His	.caç Glr 185	т ту	t c r L	tg t eu :	tat Tyr	ctt Leu	agt Ser 190	Gly	A	gg rg	576
gtc Val	gac Asp	atg Met 195	Arg	g Glr	g att n Ile	cag Gln	aag Lys 200	Tni	a at	t c .e G	ag ' ln '	tac Tyr	ctc Leu 205	att Ile	GJ7 gg5	y t y S	ct er	624
gga Gly	atg Met 210	Asp	c cco	c cgg	g acc g Thi	gaa Glu 215	ı Asr	c agt	t co r Pi	LO T	. ут	ctt Leu 220	GT Å	ttc Phe	ato Ile	t e T	ac 'yr	672
act Thr 225	Ser	ttt Phe	caa e Gli	a gaq n Gli	g cgt u Arq 230	g Ala	aco a Thi	tte c Ph	c at e II	re s	cct Ser 235	cac His	gga Gly	aac Asn	aca Th:		jcc Ala 240	720
		gca Ala	a aa a Ly	g ga s Gl	g ca ^r u Hi: 5	t ggt s Gly	z gad y Asj	c gt p Va	T 10	ag o ys 1 50	ctg Leu	gct Ala	caa Glr	at <u>c</u> Met	tg C. Cy 25		ggt Gly	768
ata Ile	ati	t gc e Al	a gc a Al 26	a As	t ga p Gl	a aa u Ly	a ag s Ar	g ca g Hi 26	.S G	aa a lu '	acc Thr	gcc Ala	tac Tyi	270		a a 's :	ata Ile	816
gta Val	ga: Gl:	a aa u Ly 27	s Le	c tt	.c ga le Gl	a at u Il	t ga e As 28	p ri	g g o A	ac sp	Gly	act	gti Val 28		c go u Al	t .a	ttt Phe	864
gco Ala	c ga a As 29	p Me	g at t Me	g aç et Ar	g aa g Ly	a aa 's Ly 29	s Il	c to .e Se	cc a	itg Iet	cct Pro	gca Ala 300	1111	c tt s Le	g at u Me	et et	tac Tyr	912
gat Ası 30:	p Gl	g co	jt ga ig As	at ga sp As	at aa sp As	sn Le	c tt u Ph	cc ga	aa a lu <i>P</i>	aat Asn	ttc Phe 315	Se.	a gc r Al	t gt a Va	t go	cc la	caa Gln 320	960
	1_	c gg	gt g† Ly Va	al T	ac ac yr Tl 25	et go ir Al	eg aa La Ly	ag g ys A	sp :	tat Tyr 330	gca Ala	ga Asj	c at p Il	t ct e Le	-	ag lu 35	ttt Phe	1008
ct Le	g gt u Va	g gg	ly A	gg t rg T 40	gg a	ag gi ys Va	eg go	la A	at .sp :	tta Leu	acc	gg Gl	g ct y Le	t to u Se 35		gt ly	gaa Glu	1056
G1 gg	g cq .y A:	rg L	aa g ys A 55	cc c la G	aa g ln A	ac to sp T	yr v	tg t al C 60	gc :ys	ejà aaa	cto	g gc ı Al	c co a Pi 39		ga a rg I	tc	aga Arg	1104
ag Ar	g L	tt g eu G 70	lu G	ag a lu A	ıgg a ırg A	sn S	cg g er A 75	ca a la P	igg Arg	gcg Ala	aa Ly	g ga s Gl 38		gt g er V	tg a al <i>P</i>	ac Asn	gtt Val	1152
Pi	cg t co P 35	tc a he S	igc t Ser T	gg a	atc t [le E	tt g he A	at a sp #	ıga (gaa Glu	gtg Val	aa Ly 39	2 116	tc t eu	ga				1191
<; <;	210> 211> 212> 213>	39 PI	96 RT	nthu	s ani	nuús			•									•

<400> 36

Met Ala Ile Arg Ile Asn Thr Ala Thr Phe Gln Ser Asp Leu Tyr Arg Ser Phe Ala Phe Pro Gln Pro Lys Pro Leu Arg Ser Pro Lys Phe Ala Met Ala Ser Thr Ile Gly Ser Ala Thr Thr Lys Val Glu Ser Thr Lys Lys Pro Phe Thr Pro Pro Arg Glu Val His Gln Gln Val Leu His Ser Met Pro Pro Gln Lys Ile Glu Ile Phe Lys Ser Met Glu Gly Trp Ala Glu Asn Asn Ile Leu Val His Leu Lys Pro Val Glu Lys Cys Trp Gln Ala Gln Asp Phe Leu Pro Asp Pro Ala Ser Asp Gly Phe Met Glu Gln Val Glu Glu Leu Arg Ala Arg Ala Lys Glu Ile Pro Asp Asp Tyr Phe Val Val Leu Val Gly Asp Met Ile Thr Glu Glu Ala Leu Pro Thr Tyr Gln Thr Met Leu Asn Thr Leu Asp Gly Val Arg Asp Glu Thr Gly Ala Thr Leu Leu Leu Gly Leu Val Trp Thr Arg Ala Trp Thr Ala Glu Glu Asn Arg His Gly Asp Leu Leu His Gln Tyr Leu Tyr Leu Ser Gly Arg Val Asp Met Arg Gln Ile Gln Lys Thr Ile Gln Tyr Leu Ile Gly Ser Gly Met Asp Pro Arg Thr Glu Asn Ser Pro Tyr Leu Gly Phe Ile Tyr Thr Ser Phe Gln Glu Arg Ala Thr Phe Ile Ser His Gly Asn Thr Ala Arg His Ala Lys Glu His Gly Asp Val Lys Leu Ala Gln Met Cys Gly Ile Ile Ala Ala Asp Glu Lys Arg His Glu Thr Ala Tyr Thr Lys Ile Val Glu Lys Leu Phe Glu Ile Asp Pro Asp Gly Thr Val Leu Ala Phe Ala Asp Met Met Arg Lys Lys Ile Ser Met Pro Ala His Leu Met Tyr Asp Gly Arg Asp Asp Asn Leu Phe Glu Asn Phe Ser Ala Val Ala Gln Arg Leu Gly Val Tyr Thr Ala Lys Asp Tyr Ala Asp Ile Leu Glu Phe · 325 Leu Val Gly Arg Trp'Lys Val Ala Asp Leu Thr Gly Leu Ser Gly Glu Gly Arg Lys Ala Gln Asp Tyr Val Cys Gly Leu Ala Pro Arg Ile Arg Arg Leu Glu Glu Arg Asn Ser Ala Arg Ala Lys Glu Ser Val Asn Val Pro Phe Ser Trp Ile Phe Asp Arg Glu Val Lys Leu

CLAIMS

- 1. A method of carrying out an oxidation reaction catalysed by a monooxygenase enzyme and using hydrogen peroxide as an oxidant, in which reaction a low level of oxidation damage of the monooxygenase occurs, said method comprising producing the hydrogen peroxide simultaneously with the oxidation reaction, wherein the hydrogen peroxide is produced at a rate less than or equal to the rate at which it is used in the reaction.
- 2. A method according to claim 1, wherein the monooxygenase enzyme has a K_m for H₂O₂ of at least 15nM.
 - 3. A method according to claim 1 or 2, wherein the monooxygenase enzyme is a P450 enzyme.
- 4. A method according to any one of the preceding claims, wherein the rate of H_2O_2 production is less than or equal to 3 µg per mg of enzyme.
- 5. A method according to any one of the preceding claims, wherein the concentration of H₂O₂ throughout the reaction is less than or equal to 1 mM.
 - 6. A method according to any one of the preceding claims, wherein the reaction continues for at least 240 minutes.
- 7. A method according to any one of the preceding claims, wherein the H₂O₂ is produced by an electrochemical reaction.
 - 8. A method according to any one of claims 1 to 6, wherein the H_2O_2 is produced by an enzyme reaction.

- 9. A method according to claim 8, wherein the enzyme is glucose oxidase.
- 10. A method according to any one of claims 1 to 6, wherein the H_2O_2 is produced by a H_2O_2 precursor.
 - 11. A method according to claim 10, wherein the H₂O₂ precursor is perborate, percarbonate or perphosphate.
- 12. A method according to any one of the preceding claims, wherein the substrate which is oxidised by the monooxygenase enzyme is an alkane, aromatic compound, terpenoid compound, alkene or fatty acid.
- 13. Use of electrodes for producing H_2O_2 to drive an oxidation reaction as defined in claim 7.
 - 14. Use of an enzyme for producing H_2O_2 to drive an oxidation reaction as defined in claim 8 or 9.
- 20 15. Use of perborate, percarbonate or perphosphate for producing H₂O₂ to drive an oxidation reaction as defined in claim 10.
- 16. A method of carrying out an oxidation reaction catalysed by a monooxygenase enzyme and using hydrogen peroxide as an oxidant, in which reaction a low level of oxidation damage of the monooxygenase occurs, said method comprising carrying out the reaction in the presence of an H₂O₂ or hydroxyl radical sequestering agent that controls the H₂O₂ or hydroxyl radical concentration.
- 17. A method according to claim 16, wherein the sequestering agent is EDTA.

