Activités Mentales

24 Août 2023

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie pour $n\in\mathbb{N}$ par $u_n=\mathrm{e}^{-6-\frac{n}{10}}$.

- Calculer les trois premiers termes de la suite puis conjecturer son sens de variation.
- **2** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on déterminera la raison.
- 3 La conjecture précédente est-elle validée? Justifier.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie pour $n\in\mathbb{N}$ par $u_n=\mathrm{e}^{-4+\frac{n}{5}}$.

- Calculer les trois premiers termes de la suite puis conjecturer son sens de variation.
- **2** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on déterminera la raison.
- 3 La conjecture précédente est-elle validée? Justifier.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie pour $n\in\mathbb{N}$ par $u_n=\mathrm{e}^{-2-\frac{3n}{10}}$.

- Calculer les trois premiers termes de la suite puis conjecturer son sens de variation.
- **2** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on déterminera la raison.
- 3 La conjecture précédente est-elle validée? Justifier.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie pour $n\in\mathbb{N}$ par $u_n=\mathrm{e}^{1+\frac{3n}{5}}$.

- Calculer les trois premiers termes de la suite puis conjecturer son sens de variation.
- **2** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on déterminera la raison.
- 3 La conjecture précédente est-elle validée? Justifier.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie pour $n\in\mathbb{N}$ par $u_n=\mathrm{e}^{5+\frac{n}{2}}$.

- Calculer les trois premiers termes de la suite puis conjecturer son sens de variation.
- **2** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on déterminera la raison.
- 3 La conjecture précédente est-elle validée? Justifier.

 $u_0 = e^{-6 - \frac{1 \times 0}{10}} = e^{-6.0} \qquad u_1 = e^{-6 - \frac{1 \times 1}{10}} = e^{-6.1} \qquad u_2 = e^{-6 - \frac{1 \times 2}{10}} = e^{-6.2}$ Comme $u_0 > u_1 > u_2$, il semblerait que la suite soit décroissante.

$$u_n = e^{-6 - \frac{n}{10}} = e^{-6} \times e^{\frac{-1}{10} \times n} = e^{-6} \times \left(e^{\frac{-1}{10}} \right)^n = u_0 \times q^n$$

 $(u_n)_{n\in\mathbb{N}}$ est donc géométrique de raison $q=\mathrm{e}\ 10$ et de premier terme $u_0=\mathrm{e}^{-6}$

3 Puisque $0 < q = e^{10} < 1$ et puisque $u_0 = e^{-6} > 0$ la suite est bien décroissante.

 $u_0 = e^{-4 + \frac{1 \times 0}{5}} = e^{-4.0} \quad u_1 = e^{-4 + \frac{1 \times 1}{5}} = e^{-3.8} \quad u_2 = e^{-4 + \frac{1 \times 2}{5}} = e^{-3.6}$ Comme $u_0 < u_1 < u_2$, il semblerait que la suite soit croissante.

2
$$u_n = e^{-4 + \frac{n}{5}} = e^{-4} \times e^{\frac{1}{5} \times n} = e^{-4} \times \left(e^{\frac{1}{5}}\right)^n = u_0 \times q^n$$

 $(u_n)_{n\in\mathbb{N}}$ est donc géométrique de raison $q=\mathrm{e}^{\,\overline{5}}$ et de premier terme $u_0=\mathrm{e}^{-4}$

3 Puisque $q = e^{\frac{1}{5}} > 1$ et puisque $u_0 = e^{-4} > 0$ la suite est bien croissante.

 $u_0 = e^{-2 - \frac{3 \times 0}{10}} = e^{-2.0}$ $u_1 = e^{-2 - \frac{3 \times 1}{10}} = e^{-2.3}$ $u_2 = e^{-2 - \frac{3 \times 2}{10}} = e^{-2.6}$ Comme $u_0 > u_1 > u_2$, il semblerait que la suite soit décroissante.

2
$$u_n = e^{-2 - \frac{3n}{10}} = e^{-2} \times e^{\frac{-3}{10} \times n} = e^{-2} \times \left(e^{\frac{-3}{10}}\right)^n = u_0 \times q^n$$

 $(u_n)_{n\in\mathbb{N}}$ est donc géométrique de raison $q=\mathrm{e}\ 10$ et de premier terme $u_0=\mathrm{e}^{-2}$

$$-3$$

3 Puisque $0 < q = e^{10} < 1$ et puisque $u_0 = e^{-2} > 0$ la suite est bien décroissante.

- $u_0 = e^{1 + \frac{3 \times 0}{5}} = e^{1.0} \qquad u_1 = e^{1 + \frac{3 \times 1}{5}} = e^{1.6} \qquad u_2 = e^{1 + \frac{3 \times 2}{5}} = e^{2.2}$ Comme $u_0 < u_1 < u_2$, il semblerait que la suite soit croissante.
- 2 $u_n = e^{1 + \frac{3n}{5}} = e^1 \times e^{\frac{3}{5} \times n} = e^1 \times \left(e^{\frac{3}{5}}\right)^n = u_0 \times q^n$

 $(u_n)_{n\in\mathbb{N}}$ est donc géométrique de raison $q=\mathrm{e}^{\,\overline{5}}$ et de premier terme $u_0=\mathrm{e}^1=\mathrm{e}$

3 Puisque $q = e^{\frac{1}{5}} > 1$ et puisque $u_0 = e^1 = e > 0$ la suite est bien croissante.

$$u_0 = e^{5 + \frac{1 \times 0}{2}} = e^{5.0} \qquad u_1 = e^{5 + \frac{1 \times 1}{2}} = e^{5.5} \qquad u_2 = e^{5 + \frac{1 \times 2}{2}} = e^{6.0}$$

Comme $u_0 < u_1 < u_2$, il semblerait que la suite soit croissante.

2
$$u_n = e^{5 + \frac{n}{2}} = e^5 \times e^{\frac{1}{2} \times n} = e^5 \times \left(e^{\frac{1}{2}}\right)^n = u_0 \times q^n$$

 $(u_n)_{n\in\mathbb{N}}$ est donc géométrique de raison $q=\mathrm{e}^{\frac{1}{2}}$ et de premier terme $u_0=\mathrm{e}^5$

3 Puisque $q = e^{\frac{1}{2}} > 1$ et puisque $u_0 = e^5 > 0$ la suite est bien croissante.

