TRIGONOMETRY INTRODUCTORIO 2024

EXPLORATORIO

1) Del gráfico, calcule $L = 13 \tan \alpha - \cot \theta$; si AI = 4 u, $CI = 6\sqrt{3} u$.

RESOLUCIÓN

En \triangle ABC: $3\alpha + 3\theta = 90^{\circ}$ $\Rightarrow \alpha + \theta = 30^{\circ}$

Luego: $m\angle AIC = 150^{\circ}$

En AAIC, tenemos:

En △AEC:

$$\tan\alpha = \frac{3\sqrt{3}}{13}$$

En △ ADC:

$$\cot\theta = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$$

Por lo tanto:

$$L = 13 \left(\frac{3\sqrt{3}}{13} \right) - \left(4\sqrt{3} \right)$$

$$L = 3\sqrt{3} - 4\sqrt{3} = -\sqrt{3}$$

$$\mathbf{D}) - \sqrt{3}$$

2) Calcule senβ.

A)
$$\frac{2}{\sqrt{13}}$$

B)
$$\frac{3}{\sqrt{13}}$$

C)
$$\frac{4}{\sqrt{13}}$$

D)
$$\frac{3}{\sqrt{13}}$$

RESOLUCIÓN

I En △ABD, notable de 37° y 53°: En △ABC:

$$BD = 3$$

$$En \triangle ABC : AB^2 + BC^2 = AC^2$$

$$\Rightarrow 4^{2} + 6^{2} = AC^{2}$$

$$52 = AC^{2}$$

$$2\sqrt{13} = AC$$

$$sen\beta = \frac{4}{2\sqrt{13}} = \frac{2}{\sqrt{13}}$$

$$A)\frac{2}{\sqrt{13}}$$

3) Dado el sistema de ecuaciones : $tan(\alpha - 25^{\circ}) = cot(\beta - 30^{\circ})$ $2\beta - \alpha = 35^{\circ}$ donde α y β son ángulos agudos, efectúe $\frac{tan(\alpha+\beta-25^{\circ})}{1+cos\beta}$

(Examen de Admisión UNMSM 2007-II)

(Examen de Admision Orthodox 2007-11)
A)
$$-\frac{2\sqrt{3}}{9}$$
 B) $-\frac{3\sqrt{3}}{2}$ C) $\frac{3\sqrt{3}}{2}$
D) $\frac{2\sqrt{3}}{3}$ E) $-\frac{2\sqrt{3}}{3}$

Por CO - RT:

$$tan(x) = cot(y) \Longrightarrow x + y = 90^{\circ}$$

RESOLUCIÓN

Dato:
$$\tan(\alpha-25^\circ)=\cot(\beta-30^\circ)$$

$$\Rightarrow \alpha-25^\circ+\beta-30^\circ=90^\circ$$

$$\alpha+\beta=145^\circ$$

$$2\beta-\alpha=35^\circ$$

Dato:

$$\beta = 60^{\circ}$$

$$\Rightarrow \alpha = 85^{\circ}$$

 $3\beta = 180^{\circ}$

$$\frac{tan(\alpha+\beta-25^\circ)}{1+cos\beta} = \frac{tan(85^\circ+60^\circ-25^\circ)}{1+cos60^\circ}$$

$$=\frac{\tan 120^{\circ}}{1+\cos 60^{\circ}}=\frac{-\sqrt{3}}{1+\frac{1}{2}}=-\frac{2\sqrt{3}}{3}$$

Determine un ángulo en radianes si cumple que:

$$C - S = \frac{R}{\pi} \sqrt{\frac{SC}{10}}$$

$$B) \frac{\pi}{3} \text{rad} \qquad C) \frac{\pi}{2} \text{rad}$$

- A) $\frac{\pi}{6}$ rad

D) $\frac{\pi}{4}$ rad

E) π rad

RECORDAR:

RECORDAR:
$$\frac{S}{9} = \frac{C}{10} = \frac{R}{\frac{\pi}{20}} = \mathbf{n}$$

$$\begin{pmatrix}
S = 9n \\
C = 10n \\
R = \frac{n\pi}{20}
\end{pmatrix}$$

$$R = \frac{\pi}{20} \left(\frac{20}{3}\right)$$

$$R = \frac{\pi}{3} \text{ rad}$$

$$R = \frac{\pi}{3} \text{ rad}$$

$$R = \frac{\pi}{3} \text{ rad}$$

RESOLUCIÓN

Dato:
$$C - S = \frac{R}{\pi} \sqrt{\frac{SC}{10}}$$

Luego:
$$10n - 9n = \frac{\frac{111}{20}}{\pi} \sqrt{\frac{(9n)(10n)}{10}}$$

$$1n = \frac{n}{20}(3n) \Rightarrow n = \frac{20}{3}$$

Medida del ángulo en radianes:

$$R = \frac{\pi}{20} \left(\frac{20}{3} \right) \implies R \, rad = \frac{\pi}{3} \, rad$$

5) De la figura, calcule $tan\alpha$.

RESOLUCIÓN

En
$$\triangle$$
 ABC: $\tan \alpha = \frac{x}{9}$ En \triangle DBC: $\tan \alpha = \frac{4}{x}$

En
$$\triangle$$
 DBC: $\tan \alpha = \frac{4}{x}$

Luego:
$$\frac{x}{9} = \frac{4}{x} \implies x^2 = 36 \implies x = 6$$

Por lo tanto :
$$\tan \alpha = \frac{6}{9} = \frac{2}{3}$$

6) Siendo α y θ ángulos agudos que cumplen $tan\alpha$. $tan\theta$ = 1, calcule $P = \sqrt{3} \cot \left(\frac{\alpha + \theta}{3} \right) + 2$

Propiedades de razones trigonométricas :

$$\tan \alpha \cdot \tan \theta = 1 \implies \alpha + \theta = 90^{\circ}$$

RESOLUCIÓN

$$\tan \alpha \cdot \tan \theta = 1 \implies \alpha + \theta = 90^{\circ}$$

Luego:
$$P = \sqrt{3} \cot \left(\frac{\alpha + \theta}{3}\right) + 2$$

$$P = \sqrt{3} \cot \left(\frac{90^{\circ}}{3}\right) + 2$$

$$P = \sqrt{3} \cot 30^{\circ} + 2$$

$$P = \sqrt{3} (\sqrt{3}) + 2 = 5$$

C) 5

7) Del gráfico mostrado, calcule el área de la región sombreada.

RESOLUCIÓN

Tenemos:

RECORDAR:

$$S = Area_{\Delta ABC} - Area_{\Delta DBE}$$

$$S = \frac{(10)(9)sen30^{\circ}}{2} - \frac{(2)(5)sen30^{\circ}}{2} = 45\left(\frac{1}{2}\right) - 5\left(\frac{1}{2}\right)$$

$$S = \frac{40}{2} = 20 u^2$$

B) 20 u²

(UNI 2013-I)

8) En la figura mostrada, calcule el valor de

$$\mathsf{E} = \frac{\mathsf{a} \, \mathsf{tan} \, \mathsf{a} \, \mathsf{sen} \, \mathsf{\theta}}{\mathsf{b} \, \mathsf{cos} \, \mathsf{\beta}}$$

RESOLUCIÓN

RECORDAR:

En
$$\triangle$$
 AEO: $EO = a sen \theta \implies BF = a sen \theta$

En \triangleright **BFO**: FO = a sen θ tan α

En \triangle CGO: CG = b cos β

Luego: $a sen\theta tan\alpha = b cos\beta$

 $\frac{a \operatorname{sen}\theta \tan\alpha}{b \operatorname{cos}\beta} = 1$

