Number of Solutions of Equations over Finite Fields

Baptiste Arnaudo

2022-2023

Contents

1	Introduction	1
2	Generalities on characters	1
3	Some properties of Gauss sums	3
4	Number of solutions of polynomial equations in \mathbb{F}_p	4
5	More general methods; application to Fermat–Wiles over \mathbb{F}_{p^n} 5.1 Framework and general results	6 6 7
6	Comments	8
7	Appendix	9
8	References	9

1 Introduction

In this work, we use the duality of finite abelian groups to give an estimate (and sometimes compute) the number of elements of such a group that solve a given algebraic equation.

We begin by introducing the central concepts of orthogonality of characters and the Fourier transform on a group. We then study certain algebraic equations over \mathbb{F}_p , before presenting another, more general method showing that if $k \in \mathbb{N}^*$, the equation $x^k + y^k = z^k$ admits at least one nontrivial solution in \mathbb{F}_q for $q = p^n$ large enough.

2 Generalities on characters

Definition 1. Characters and the dual of a group

Let G be a group. A **character** of G is any group homomorphism $\chi: G \to (\mathbb{C}^*, \times)$. The **dual** of G, denoted \widehat{G} , is the set of characters of G. Equipped with pointwise multiplication, it is an abelian group.

Definition 2. If G is a group, we write $\mathbb{C}[G]$ for the set of functions from G to \mathbb{C} . It is a \mathbb{C} -vector space of dimension |G| when G is finite.

From now on, let G be a finite abelian group of cardinality n.

Proposition 1.

$$\forall \chi \in \widehat{G}, \quad \chi(G) \subset \mathbb{U}_n$$

If moreover G is cyclic with generator x_0 , then for $0 \le j \le n-1$,

$$\chi_j : G \to \mathbb{C}^*$$

$$x = x_0^k \mapsto e^{\frac{2ijk\pi}{n}} \qquad 0 \le k \le n - 1$$

and
$$\widehat{G} = \{ \chi_j \mid 0 \le j \le n - 1 \}.$$

Proof. We know that $\forall x \in G, x^n = e_G$, hence $\forall x \in G, \forall \chi \in \widehat{G}, \chi(x)^n = \chi(x^n) = \chi(e_G) = 1$. If G is cyclic, fix a generator x_0 . Then any $\chi \in \widehat{G}$ is completely determined by the image of x_0 , which equals $e^{\frac{2ij\pi}{n}}$ for some $j \in [0; n-1]$, giving the claim.

Remarks. We obtain $\widehat{G} \simeq \mathbb{Z}/n\mathbb{Z} \simeq G$. The isomorphism between G and its dual still holds when G is merely finite abelian; we will take this for granted. Thus $\widehat{G} \simeq G$ and $|\widehat{G}| = |G|$.

Proposition 2. If $(\chi, \psi) \in \widehat{G}^2$, define $(\chi, \psi) = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)}$. This endows $\mathbb{C}[G]$ with the structure of a Hermitian inner-product space.

Theorem 1. Orthogonality of characters

 \widehat{G} is an orthonormal basis of $\mathbb{C}[G]$ for the inner product above.

Proof. We first show the following lemma:

Lemma 1. If $\chi \in \widehat{G}$ then

$$\sum_{x \in G} \chi(x) = \begin{cases} |G| & \text{if } \chi = \chi_0 \text{ (the trivial character equal to 1 everywhere)} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Indeed, if $\chi = \chi_0$ the result is clear, and if $\chi \neq \chi_0$, there exists $g_0 \in G$ with $\chi(g_0) \neq 1$. Since $x \mapsto g_0 x$ is bijective, $\sum_{g \in G} \chi(x) = \sum_{g \in G} \chi(g_0 x) = \chi(g_0) \sum_{g \in G} \chi(x)$ and because $\chi(g_0) \neq 1$, we get $\sum_{g \in G} \chi(x) = 0$. Therefore, if $(\chi, \psi) \in \widehat{G}^2$, then $\chi \overline{\psi} \in \widehat{G}$ and orthogonality follows immediately by applying the lemma to $\chi \overline{\psi}$. Since $\dim(\mathbb{C}[G]) = |G| = |\widehat{G}|$, \widehat{G} is indeed an orthonormal basis of $\mathbb{C}[G]$.

Corollary .1. Applying the lemma to $\hat{x}: \chi \mapsto \chi(x)$, an element of $\widehat{\hat{G}}$, we obtain for $x \in G$:

$$\sum_{\chi \in \widehat{G}} \chi(x) = \begin{cases} |G| & \text{if } x = e_G \\ 0 & \text{otherwise} \end{cases}$$
 (2)

This observation will be important later on.

Corollary .2. $\forall f \in \mathbb{C}[G], \quad f = \sum_{\chi \in \widehat{G}} (f, \chi) \chi$

This leads to the definition of the Fourier transform of an element f of $\mathbb{C}[G]$.

Definition 3. Fourier transform

The Fourier transform is the linear map

$$\mathcal{F}: \mathbb{C}[G] \to \mathbb{C}[\widehat{G}]$$
$$f \mapsto \widehat{f}$$

where $\hat{f}: \chi \mapsto |G|(f, \overline{\chi}) = \sum_{g \in G} f(g)\chi(g)$.

Proposition 3. Inverse transform

We have:

$$\forall f \in \mathbb{C}[G], \quad f = \frac{1}{|G|} \sum_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi^{-1}$$

3 Some properties of Gauss sums

We now focus on a finite field \mathbb{F}_q where q is a prime power. There are two group structures, $(\mathbb{F}_q, +)$ and (\mathbb{F}_q^*, \times) , hence two kinds of characters: additive characters, elements of $(\widehat{\mathbb{F}_q}, +)$, and multiplicative characters, elements of $(\widehat{\mathbb{F}_q}, \times)$. We will denote multiplicative characters by χ and additive characters by ψ .

Definition 4. Gauss sums

If $\chi \in (\widehat{\mathbb{F}_q^*, \times})$ and $\psi \in (\widehat{\mathbb{F}_q, +})$, the **Gauss sum** associated with χ and ψ is

$$G(\chi, \psi) = \sum_{x \in \mathbb{F}_a^*} \chi(x)\psi(x)$$

From now on, we extend every **nontrivial** multiplicative character χ to a character $\tilde{\chi}$ defined on \mathbb{F}_q (and still write it χ) by setting $\tilde{\chi}(0) = 0$. This allows us to view $G(\chi, \psi)$ as $\mathcal{F}(\tilde{\chi})(\psi)$ (where \mathcal{F} is the Fourier transform on $\mathbb{C}[\mathbb{F}_q]$) and to state:

Proposition 4. For all $\chi \in \widehat{\mathbb{F}_q}$,

$$\chi = \frac{1}{q} \sum_{\psi \in \widehat{\mathbb{F}_q}} G(\chi, \overline{\psi}) \psi$$

Proof. Apply Proposition 3 to χ to get $\chi = \frac{1}{q} \sum_{\psi \in \widehat{\mathbb{F}_q}} \hat{\chi}(\psi) \psi^{-1}$ with

 $\hat{\chi}(\psi) = \sum_{g \in G} \chi(g) \psi(g) = G(\chi, \psi)$. The result follows directly after the change of variables $\psi \mapsto \psi^{-1} = \overline{\psi}$ in the sum.

Theorem 2. Magnitude of Gauss sums

If $\chi \in \widehat{\mathbb{F}_q}^*$ and $\psi \in \widehat{\mathbb{F}_q}$ are both **nontrivial**, then $|G(\chi, \psi)| = \sqrt{q}$.

Proof.

$$|G(\chi,\psi)|^2 = \left(\sum_{x \in \mathbb{F}_q^*} \chi(x)\psi(x)\right) \overline{\left(\sum_{y \in \mathbb{F}_q^*} \chi(y)\psi(y)\right)} = \sum_{y \in \mathbb{F}_q^*} \sum_{x \in \mathbb{F}_q^*} \chi(xy^{-1})\psi(x-y) = \sum_{y \in \mathbb{F}_q^*} \sum_{x \in \mathbb{F}_q^*} \chi(x)\psi(y(x-1))$$

where we changed variables via $u = xy^{-1}$. Next,

$$|G(\chi,\psi)|^2 = \sum_{x \in \mathbb{F}_q^*} \chi(x) \sum_{y \in \mathbb{F}_q^*} \psi(y(x-1)) = q-1 + \sum_{x \in \mathbb{F}_q^*, x \neq 1} \chi(x) \sum_{y \in \mathbb{F}_q^*} \psi(y(x-1)) = q-1 - \sum_{x \in \mathbb{F}_q^*, x \neq 1} \chi(x) = q-1 - (-1) = q$$

where we again changed variables u=y(x-1) to reach the last equality. We then used $\sum_{x\in\mathbb{F}_q}\psi(x)=0$ by Lemma 1.

3

We now work over \mathbb{F}_p with p an odd prime. Since \mathbb{F}_p is cyclic, by Proposition 1 the elements of $\widehat{\mathbb{F}_p}$ are

$$\psi_j : \mathbb{F}_p \to \mathbb{C}^*$$

$$x \mapsto e^{\frac{2ijx\pi}{p}} \qquad 0 \le j \le p-1$$

(By a slight abuse, we identify a class in \mathbb{F}_p with a representative.) We prove one last lemma:

Lemma 2. For all $x \in \mathbb{F}_p^*$, $j \in [0; p-1]$, and $\chi \in \mathbb{F}_p^*$, we have $G(\chi, \psi_j) = \chi(x)G(\chi, \psi_{jx})$.

Proof. $G(\chi, \psi_j) = \sum_{y \in \mathbb{F}_p} \chi(y) e^{\frac{2ijy\pi}{p}} = \sum_{y \in \mathbb{F}_p} \chi(xy) e^{\frac{2ijxy\pi}{p}} = \chi(x) G(\chi, \psi_{jx})$ by the change of variables u = xy (note $x \neq 0$).

4 Number of solutions of polynomial equations in \mathbb{F}_p

Fix $n \in \mathbb{N}^*$ and $F \in \mathbb{F}_p[X_1, ..., X_n]$. We wish to study

$$N(F,p) = |\{(x_1,...,x_n) \in \mathbb{F}_p^n \mid F(x_1,...,x_n) = 0\}|$$

By Corollary 1.1, $x \mapsto \frac{1}{p} \sum_{\psi \in \widehat{\mathbb{F}_p}} \psi(x)$ is the indicator of $\{0\}$, hence

$$N(F,p) = \frac{1}{p} \sum_{(x_1,...,x_n) \in \mathbb{F}_p^n} \sum_{\psi \in \widehat{\mathbb{F}_p}} \psi(F(x_1,...,x_n)) = \frac{1}{p} \sum_{(x_1,...,x_n) \in \mathbb{F}_p^n} \sum_{j=0}^{p-1} \psi_j(F(x_1,...,x_n))$$

Fix θ a generator of \mathbb{F}_p^* . For $x \in \mathbb{F}_p^*$ and $r \in \mathbb{N}^*$, write $\nu(x) = |\{y \in \mathbb{F}_p^* \mid y^r = x\}|$. Then:

Theorem 3. Let $x = \theta^k$, $0 \le k \le p-2$. Write $\delta = r \land (p-1)$. Then

$$\nu(x) = \begin{cases} \delta & \text{if } \delta \mid k \\ 0 & \text{otherwise} \end{cases}$$
 (3)

Proof. Let $y = \theta^{k'} \in \mathbb{F}_p^*$. If $y^r = x$ then $k \equiv rk' \pmod{p-1}$ so $\delta \mid k$. Thus if $\delta \nmid k$, $\nu(x) = 0$. Moreover,

$$y^r = x \Leftrightarrow rk' \equiv k \pmod{p-1} \Leftrightarrow \frac{r}{\delta}k' \equiv \frac{k}{\delta} \pmod{\frac{p-1}{\delta}} \Leftrightarrow k' \equiv \left(\frac{r}{\delta}\right)^{-1}\frac{k}{\delta} \pmod{\frac{p-1}{\delta}}$$

since $\frac{r}{\delta}$ is invertible modulo $\frac{p-1}{\delta}$ (as $\frac{r}{\delta} \wedge \frac{p-1}{\delta} = 1$). Thus k' is fully determined modulo $\frac{p-1}{\delta}$. If $\theta^{k'_0}$ is one particular solution, the others are $\theta^{k'}$ with $k' = k'_0 + s \frac{p-1}{\delta}$: there are exactly δ distinct k' modulo p-1, as claimed.

For $a \in \mathbb{F}_p^*$, define $S(a,r) = \sum_{y \in \mathbb{F}_p} \psi_a(y^r)$.

Proposition 5. With δ as above and $\Gamma_{\delta} = \{\chi \in \widehat{\mathbb{F}_p^*} \mid \chi \neq \chi_0, \ \chi^{\delta} = \chi_0\}$, we have

$$S(a,r) = \sum_{\chi \in \Gamma_{\delta}} G(\chi, \psi_a)$$

Proof. Essentially a computation.

We now state one of the main theorems:

Theorem 4. Let $n \geq 3$, $(a_1, ..., a_n) \in (\mathbb{F}_p^{*n})$, $(r_1, ..., r_n) \in (\mathbb{N}^*)^n$, and set $F(X_1, ..., X_n) = \sum_{k=1}^n a_k X_k^{r_k}$ and $\delta_k = r_k \wedge (p-1)$. Then

$$N(F, p) = p^{n-1} + \frac{1}{p} \sum_{x \in \mathbb{F}_p^*} \prod_{i=1}^n \sum_{\chi \in \Gamma_{\delta_i}} G(\chi, \psi_{a_i x})$$

Proof. By the remark at the start of the section,

$$N(F,p) = \frac{1}{p} \sum_{(x_1,...,x_n) \in \mathbb{F}_p^n} \sum_{j=0}^{p-1} \psi_j(F(x_1,...,x_n)) = p^{n-1} + \frac{1}{p} \sum_{j=1}^{p-1} \sum_{(x_1,...,x_n) \in \mathbb{F}_p^n} \psi_j(F(x_1,...,x_n))$$

Let $\zeta = e^{\frac{2i\pi}{p}}$. Then

$$N(F,p) = p^{n-1} + \frac{1}{p} \sum_{j=1}^{p-1} \sum_{(x_1,\dots,x_n) \in \mathbb{F}_p^n} \prod_{i=1}^n \zeta^{ja_i x_i^{r_i}} = p^{n-1} + \frac{1}{p} \sum_{j=1}^{p-1} \prod_{i=1}^n \sum_{y \in \mathbb{F}_p} \zeta^{ja_i y^{r_i}} = p^{n-1} + \frac{1}{p} \sum_{j=1}^{p-1} \prod_{i=1}^n S(a_i j, r_i)$$

$$= p^{n-1} + \frac{1}{p} \sum_{j=1}^{p-1} \prod_{i=1}^{n} \sum_{\chi \in \Gamma_{\delta_i}} G(\chi, \psi_{a_i j})$$

by Proposition 5. \Box

Consider the case $r_1 = \cdots = r_n = 2$. We will show in the appendix that there is a unique multiplicative character of order 2 over \mathbb{F}_p , called the **Legendre symbol**, denoted $\left(\frac{\cdot}{p}\right)$, defined for $a \in \mathbb{F}_p$ by:

Since $r_1 = \cdots = r_n = 2$, for all $i \in [1; n]$, $\delta_i = 2$ so $\Gamma_{\delta_i} = \{\left(\frac{\cdot}{p}\right)\}$. We can then compute N(F, p) explicitly!

Lemma 3. If
$$a, b \in \mathbb{F}_p^*$$
, then $G\left(\left(\frac{\cdot}{p}\right), \psi_a\right) G\left(\left(\frac{\cdot}{p}\right), \psi_b\right) = p\left(\frac{-ab}{p}\right)$.

Proof. By Lemma 2, $G\left(\left(\frac{\cdot}{p}\right), \psi_a\right) = \left(\frac{a}{p}\right) G\left(\left(\frac{\cdot}{p}\right), \psi_1\right)$ and $G\left(\left(\frac{\cdot}{p}\right), \psi_b\right) = \left(\frac{-b}{p}\right) G\left(\left(\frac{\cdot}{p}\right), \psi_{-1}\right)$. Since $\left(\frac{\cdot}{p}\right)$ is real-valued, $G\left(\left(\frac{\cdot}{p}\right), \psi_{-1}\right) = G\left(\left(\frac{\cdot}{p}\right), \psi_{-1}\right) = G\left(\left(\frac{\cdot}{p}\right), \psi_1\right)$, hence

$$G\left(\left(\frac{\cdot}{p}\right), \psi_a\right) G\left(\left(\frac{\cdot}{p}\right), \psi_b\right) = \left(\frac{-ab}{p}\right) \left| G\left(\left(\frac{\cdot}{p}\right), \psi_1\right) \right|^2 = p\left(\frac{-ab}{p}\right)$$

by Theorem 2. \Box

We deduce:

Proposition 6. If $F(X_1, ..., X_n) = \sum_{k=1}^n a_k X_k^2 \in \mathbb{F}_p[X_1, ..., X_n]$, then:

$$N(F,p) = \begin{cases} p^{n-1} & \text{if } n \text{ is odd} \\ p^{n-1} + \left(\frac{(-1)^{\frac{n}{2}} a_1 \cdots a_n}{p}\right) (p-1) p^{\frac{n}{2}-1} & \text{if } n \text{ is even} \end{cases}$$
 (5)

Proof. If n is odd, Lemma 3 gives for all $j \in [1; p-1]$,

$$\prod_{i=1}^{n} G\left(\left(\frac{\cdot}{p}\right), \psi_{a_{i}j}\right) = p^{\frac{n-1}{2}} \left(\frac{(-1)^{\frac{n-1}{2}} a_{1} \cdots a_{n-1} j^{n-1}}{p}\right) G\left(\left(\frac{\cdot}{p}\right), \psi_{a_{n}j}\right) = p^{\frac{n-1}{2}} \left(\frac{(-1)^{\frac{n-1}{2}} a_{1} \cdots a_{n-1}}{p}\right) G\left(\left(\frac{\cdot}{p}\right), \psi_{a_{n}j}\right)$$

since n-1 is even and $\left(\frac{j^{n-1}}{p}\right)=1$. Hence

$$N(F,p) = p^{n-1} + p^{\frac{n-3}{2}} \left(\frac{(-1)^{\frac{n-1}{2}} a_1 \cdots a_{n-1}}{p} \right) \sum_{j=1}^{p-1} G\left(\left(\frac{\cdot}{p} \right), \psi_{a_n j} \right).$$

Computing the right-hand sum shows it is zero, so $N(F, p) = p^{n-1}$. If n is even, then

$$\prod_{i=1}^{n} G\left(\left(\frac{\cdot}{p}\right), \psi_{a_{i}j}\right) = p^{\frac{n}{2}} \left(\frac{(-1)^{\frac{n}{2}} a_{1} \cdots a_{n}}{p}\right),$$

so
$$N(F,p) = p^{n-1} + \left(\frac{(-1)^{\frac{n}{2}}a_1 \cdots a_n}{p}\right)(p-1)p^{\frac{n}{2}-1}.$$

In the more general case where $r_1, ..., r_n$ are arbitrary, we do not know whether there is a more explicit expression for N(F, p). Nevertheless, the results established so far provide an estimate, along with an error bound. Precisely:

Theorem 5. There exists a constant C(F) depending only on F such that

$$|N(F,p)-p^{n-1}| \le C(F)\frac{p-1}{p} p^{\frac{n}{2}}.$$

Consequently, $N(F, p) = p^{n-1} + O(p^{\frac{n}{2}})$.

Proof. By Theorem 4,

$$|N(F,p) - p^{n-1}| = \left| \frac{1}{p} \sum_{x \in \mathbb{F}_{i}^{*}} \prod_{i=1}^{n} \sum_{\chi \in \Gamma_{\delta_{i}}} G(\chi, \psi_{a_{i}x}) \right| \leq \frac{1}{p} \sum_{x \in \mathbb{F}_{i}^{*}} \prod_{i=1}^{n} \sum_{\chi \in \Gamma_{\delta_{i}}} |G(\chi, \psi_{a_{i}x})| \leq \frac{1}{p} \sum_{x \in \mathbb{F}_{i}^{*}} \prod_{i=1}^{n} \delta_{i} \sqrt{p}$$

by Theorem 2. But

$$\prod_{i=1}^{n} \delta_i \le \prod_{i=1}^{n} r_i = C(F),$$

hence $|N(F, p) - p^{n-1}| \le C(F)^{\frac{p-1}{p}} p^{\frac{n}{2}}$.

5 More general methods; application to Fermat–Wiles over \mathbb{F}_{p^n}

Some methods used earlier only work over \mathbb{F}_p (we will clarify this later): here we present general methods for studying equations over a finite abelian group G, which we then apply to the equation $x^k + y^k = z^k$ over \mathbb{F}_{p^n} .

5.1 Framework and general results

Let G be a finite abelian group **written additively**, $k \in \mathbb{N}^*$, $A_1, ..., A_k \subset G$, and $a \in G$. We study the equation $x_1 + \cdots + x_k = a$ with $\forall i \in [1; k]$, $x_i \in A_i$. Let N be the number of solutions. Since $x \mapsto x - a$ is bijective, we do not change N by replacing one of the sets A_i with $A_i - a$; hence we may assume a = 0. By the remark at the start of Section 4, we have:

$$N = \frac{1}{|G|} \sum_{\chi \in \widehat{G}} \sum_{(x_1, \dots, x_n) \in A_1 \times \dots \times A_n} \chi(x_1 + \dots + x_n) = \frac{|A_1| \dots |A_n|}{|G|} + \frac{1}{|G|} \sum_{\chi \in \widehat{G}, \chi \neq \chi_0} \sum_{(x_1, \dots, x_n) \in A_1 \times \dots \times A_n} \chi(x_1) \dots \chi(x_n).$$

The rightmost sum rewrites as

$$\prod_{i=1}^{k} \sum_{x \in A_i} \chi(x) = \prod_{i=1}^{k} \hat{f}_{A_i}(\chi),$$

where f_A denotes the characteristic function of $A \subset G$. Therefore

$$N = \frac{|A_1| \cdots |A_n|}{|G|} + \frac{1}{|G|} \sum_{\chi \in \widehat{G}, \chi \neq \chi_0} \prod_{i=1}^k \hat{f}_{A_i}(\chi).$$

Let R (for "remainder") denote the right-hand term. Our goal is to control its size. To this end, for $A \subset G$ define $\Phi(A) = \max\{|\hat{f}_A(\chi)| : \chi \in \hat{G}, \ \chi \neq \chi_0\}$. To study the Fermat equation over \mathbb{F}_{p^n} , we now restrict to k = 3. First a lemma:

Lemma 4. If $f \in \mathbb{C}[G]$, then $\|\hat{f}\| = \sqrt{|G|} \|f\|$. Since it is clear that if $A \subset G$, $\|f_A\| = \sqrt{\frac{|A|}{|G|}}$, it follows that $\|\hat{f}_A\|^2 = |A|$.

Proof. Immediate from Definition 3.

Now the theorem:

Theorem 6. If $A_1, A_2, A_3 \subset G$ and $\frac{\Phi(A_3)}{|A_3|} < \frac{\sqrt{|A_1||A_2|}}{|G|}$, then the equation $x_1 + x_2 + x_3 = a$, $a \in G$, with $\forall i \in \{1, 2, 3\}$, $x_i \in A_i$, has at least one solution.

Proof. We need to show $|R| < \frac{|A_1||A_2||A_3|}{|G|}$. We have

$$|R| = \left| \frac{1}{|G|} \sum_{\chi \in \widehat{G}, \chi \neq \chi_0} \widehat{f}_{A_1}(\chi) \widehat{f}_{A_2}(\chi) \widehat{f}_{A_3}(\chi) \right| \leq \frac{\Phi(A_3)}{|G|} \sum_{\chi \in \widehat{G}} |\widehat{f}_{A_1}(\chi)| |\widehat{f}_{A_2}(\chi)| \leq \frac{\Phi(A_3)}{|G|} \sqrt{\sum_{\chi \in \widehat{G}} |\widehat{f}_{A_1}(\chi)|^2} \sqrt{\sum_{\chi \in \widehat{G}} |\widehat{f}_{A_2}(\chi)|^2}$$

by Cauchy-Schwarz.

On the right we recognize $\sqrt{|G|^2 \|\hat{f}_{A_1}\|^2 \|\hat{f}_{A_2}\|^2} = |G|\sqrt{|A_1||A_2|}$ by Lemma 4, hence

$$|R| \le \Phi(A_3)\sqrt{|A_1||A_2|} < \frac{|A_1||A_2||A_3|}{|G|}.$$

5.2 Application to the Fermat equation over \mathbb{F}_q

For the moment, A_1 and A_2 are arbitrary. Fix $k \in \mathbb{N}^*$ and set $A_3 = H_k = \{x^k : x \in \mathbb{F}_q^*\}$. Noting $H_k = H_{k \wedge (q-1)}$, we may assume $k \mid q-1$. Let N be the number of solutions to $x+y=z^k$ with $x \in A_1$, $y \in A_2$, $z \in \mathbb{F}_q^*$, and let N' be the number of solutions to x+y=u with $u \in H_k$.

Lemma 5. We have N = kN'.

Proof. Since \mathbb{F}_q^* is cyclic, the proof of Theorem 3 applies and shows there are k k-th roots of unity in \mathbb{F}_q^* , whence the result.

Proposition 7. $\Phi(H_k) < \sqrt{q}$.

Proof. Extend canonically the elements of $\widehat{\mathbb{F}_q^*}/\widehat{H_k}$ to elements of $\widehat{\mathbb{F}_q^*}$ by composing with $x \mapsto xH_k$. Denote them $\chi_0, \dots, \chi_{k-1}$ (since $|\widehat{\mathbb{F}_q^*}/\widehat{H_k}| = |\mathbb{F}_q^*/H_k| = k$). For any nontrivial additive character ψ ,

$$\sum_{i=0}^{k-1} G(\chi_i, \psi) = \sum_{x \in \mathbb{F}_q^*} \psi(x) \sum_{i=0}^{k-1} \chi_i(x).$$

By Lemma 1, the inner sum equals k if $x \in H_k$ and 0 otherwise, so

$$\sum_{i=0}^{k-1} G(\chi_i, \psi) = k \sum_{x \in H_k} \psi(x) = k \hat{f}_{H_k}(\psi).$$

Hence for all $\psi \in \widehat{\mathbb{F}_q}$, $\psi \neq \psi_0$,

$$|\hat{f}_{H_k}(\psi)| \le \frac{1}{k} \sum_{i=0}^{k-1} |G(\chi_i, \psi)| = \frac{1 + (k-1)\sqrt{q}}{k} < \sqrt{q}.$$

Theorem 7. Let $l_1 = \frac{q-1}{|A_1|}$ (and similarly for l_2). If $q \ge k^2 l_1 l_2 + 4$, then the equation $x + y = z^k$ with $x \in A_1$, $y \in A_2$, $z \in \mathbb{F}_q^*$ has at least one solution.

Proof. We know that

$$\left| N' - \frac{|A_1||A_2||H_k|}{q} \right| = \left| \frac{N}{k} - \frac{|A_1||A_2|(q-1)}{kq} \right| \le \Phi(H_k) \sqrt{|A_1||A_2|} < \sqrt{q |A_1||A_2|}$$

by Proposition 7, hence

$$\left| N - \frac{|A_1||A_2|(q-1)}{q} \right| < k\sqrt{q|A_1||A_2|}.$$

Now

$$k\sqrt{q|A_1||A_2|} = k|A_1||A_2|\sqrt{\frac{l_1l_2q}{(q-1)^2}} \le |A_1||A_2|\sqrt{\frac{(q-4)q}{(q-1)^2}}.$$

One checks by a simple calculus argument that for q > 1, $\frac{(q-4)q}{(q-1)^2} \le \frac{(q-1)^2}{q^2}$, hence

$$\left| N - \frac{|A_1||A_2|(q-1)}{q} \right| < \frac{|A_1||A_2|(q-1)}{q}.$$

Therefore N > 0.

Finally, take $A_1 = A_2 = H_k$, so $l_1 = l_2 = k$, and we deduce:

Theorem 8. If $k \in \mathbb{N}^*$ and $q \ge k^4 + 4$, the equation $x^k + y^k = z^k$ has at least one nontrivial solution over \mathbb{F}_q .

6 Comments

In my investigations, I tried to apply the methods of Section 4 to the Fermat equation, but encountered the following issue: I did not a priori know the additive characters of \mathbb{F}_q when q is not prime, since \mathbb{F}_q is not cyclic (so Proposition 1 does not apply). Looking deeper, I found that one can indeed describe the additive characters of \mathbb{F}_{p^n} using the trace from \mathbb{F}_{p^n} to \mathbb{F}_p , the \mathbb{F}_p -linear map defined by

$$\operatorname{Tr}_{\mathbb{F}_p}^{\mathbb{F}_{p^n}}: \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$$

$$x \mapsto x + x^p + \dots + x^{p^{m-1}}$$

Define the canonical additive character ψ_1 by

$$\psi_1 : \mathbb{F}_{p^n} \to \mathbb{C}^*$$

$$x \mapsto e^{\frac{2i\pi \operatorname{Tr}(x)}{p}}.$$

and then for every $\psi \in \widehat{\mathbb{F}_{p^n}}$ there exists $a \in \mathbb{F}_{p^n}$ such that for all $x \in \mathbb{F}_{p^n}$, $\psi(x) = \psi_1(ax)$. Knowing this, one can prove results entirely analogous to those at the end of Section 4 in the more general case of \mathbb{F}_{p^n} .

7 Appendix

Proof of existence and uniqueness of the multiplicative character of order 2 of \mathbb{F}_p : Since \mathbb{F}_p^* is cyclic and $\mathbb{F}_p^* \simeq \widehat{\mathbb{F}_p^*}$, the latter is cyclic as well; let χ be a generator.

If $\lambda = \chi^k$ is of order 2, then $p-1 \mid 2k$ because χ has order p-1. Thus there exists $k' \in \mathbb{N}$ with $k = \frac{p-1}{2}k'$, and since 0 < k < p-1, k' = 1 so $\lambda = \chi^{\frac{p-1}{2}}$, proving existence and uniqueness.

Showing that $\left(\frac{\cdot}{p}\right)$ is indeed the multiplicative character of order 2 of \mathbb{F}_p : we prove the formula, valid when p is odd (as assumed):

$$\forall x \in \mathbb{F}_p^*, \quad \left(\frac{x}{p}\right) = x^{\frac{p-1}{2}}.$$

If $x = y^2 \in \mathbb{F}_p^*$, then $x^{\frac{p-1}{2}} = 1$. Since p is odd, $x \mapsto x^2$ is a homomorphism with kernel $\{-1,1\}$ of cardinality 2, hence there are $\frac{p-1}{2}$ quadratic residues, which are precisely the roots of $X^{\frac{p-1}{2}} - 1$. This polynomial cannot have more than $\frac{p-1}{2}$ roots, so its roots are exactly the quadratic residues; we deduce $x^{\frac{p-1}{2}} = 1$ iff x is a quadratic residue.

Thus, if $x^{\frac{p-1}{2}}=-1$, then x is not a quadratic residue, and conversely if x is not a quadratic residue, then $\left(x^{\frac{p-1}{2}}\right)^2=1$ so $x^{\frac{p-1}{2}}\in\{-1,1\}$, hence $x^{\frac{p-1}{2}}=-1$, which completes the proof.

It follows immediately that $\left(\frac{\cdot}{p}\right)$ is a homomorphism, and that it is the multiplicative character of order 2 of \mathbb{F}_p .

8 References

- [1] André Weil. Number of solutions of equations over finite fields, Bull. Amer. Math. Soc. 55 (1949)
- [2] **László Babai**. The Fourier Transform and Equations over Finite Abelian Groups, Department of Computer Science, University of Chicago (1989)
 - [3] Gabriel Peyré. The discrete algebra of the Fourier transform
- [4] **Jean-Marie Arnaudiès**. Problems for preparing the mathematics *agrégation*, 1. Algebra, groups, arithmetic
- [5] **Théo Untrau**. Duality of finite abelian groups and counting points. https://perso.eleves.ens-rennes.fr/people/theo.untrau/dualitecomptage.pdf