10. Gestión de la configuración software

Índice

- Referencias
- Introducción
- Gestión de la configuración
 - Elementos de Configuración Software.
 - Líneas base.
- Actividades de Gestión de Configuración Software

Índice

- Identificación de objetos
- Control de versiones
- Control de cambios
- Auditoria de la configuración
- Informes de estado

Índice

- Sistemas de Control de Versiones (SCV)
 - Introducción
 - Arquitectura
 - Acciones comunes
- IEEE Std. 828-1998
- Conclusiones

Referencias

- Pressman, R.S. *Ingeniería del Software. Un Enfoque Práctico. Sexta Edición.* McGraw-Hill, 2005
- IEEE Std. 828-1998, IEEE standard for software configuration management plans

Introducción

- Cuando se construye software los cambios son inevitables
- Los cambios aumentan el nivel de confusión en el equipo de desarrollo
- Confusión debida a:
 - No se han analizado los cambios antes de realizarlos.
 - No se han registrado antes de implementarlos.

Introducción

- No se les ha comunicado a aquellas personas que necesitan saberlo.
- No se han controlado de manera que mejoren la calidad y reduzcan los errores.
- La *Gestión de la Configuración Software* (GCS) es una actividad de protección que gestiona el cambio a lo largo del ciclo de vida del software

Introducción

- El cambio se puede producir en cualquier momento
- Por tanto, las actividades de GCS son:
 - Identificar el cambio.
 - Controlar el cambio.
 - Garantizar la correcta implementación del cambio.
 - Informar del cambio a todos aquellos que lo necesiten.

- El software es el resultado del proceso de IS:
 - Programas.
 - Datos.
 - Documentos.
- Los elementos que componen toda la información generada como parte del proceso de IS se denominan colectivamente configuración del software

- A medida que progresa el proceso de IS el número de *Elementos de Configuración Software* (ECS) crece rápidamente
- e.g. la SRS produce un plan del proyecto y un diseño que a su vez produce código...
- Los ECS producen otros ECSs para crear una jerarquía de información

- Si simplemente tuviéramos esta jerarquía no habría confusión
- La confusión surge cuando entra en juego el *cambio*
- Éste puede producirse en cualquier momento y por cualquier razón

- Las fuentes fundamentales del cambio son:
 - Fallos.
 - Nuevos negocios o condiciones comerciales que dictan cambios en los requisitos del producto.
 - Nuevas necesidades del cliente que demandan la modificación de los datos, funciones o servicios.
 - Reorganización y/o reducción del volumen comercial que provoca cambios en el proyecto.
 - Restricciones presupuestarias o de planificación que provocan una redefinición del producto.

- Los cambios por tanto, pueden ser necesarios y estar justificados
- Una *línea base* es un concepto de GCS que nos ayuda a controlar los cambios sin perjuicio de aquellos que sean necesarios

• El IEEE define una *línea base* como una *especificación* o *producto* que se ha *revisado* formalmente y sobre el que se ha llegado a un acuerdo, y que de ahí en adelante sirve como *base* para un *desarrollo* posterior y que puede *cambiarse* solamente a través de *procedimientos formales* de control de cambios

- Antes de que un ECS se convierta en línea base el cambio puede llevarse a cabo de manera rápida e *informal*
- Sin embargo, una vez que se ha establecido una línea base solo se pueden efectuar los cambios si se aplica un procedimiento formal para evaluarlos y verificarlos

- El concepto de línea base es similar al de una boda...
- Durante la preparación del evento se pueden cambiar fechas, horas y lugares...
 - ... pero una vez mandadas las invitaciones los cambios no son tan sencillos.

• En el contexto de IS definimos una *línea* base como un punto de referencia en el desarrollo del software que queda marcado por el envío de uno o más elementos de configuración del software y la aprobación del ECS obtenido mediante una RTF.

Proceso de generación de línea base

- ECSs que forman un conjunto de líneas base*:
 - Plan del proyecto del software.
 - SRS.
 - Diseño.
 - Código.
 - Casos de prueba.
 - Manual preliminar de usuario.

^{*} El IEEE Std. 1028-1997 incluye una lista de ECSs denominados productos software

- Manuales de operación e instalación.
- Manual de usuario.
- Documentos de mantenimiento.
- Estándares y procedimientos de IS.
- Además de estos ECSs pueden inmovilizarse las herramientas de software (e.g., editores, compiladores, herramientas CASE, etc.)

Gestión de la configuración Actividades de GCS

- La GCS es una actividad de protección que puede considerarse dentro de la SQA
- Aunque su actividad fundamental es el control del cambio también se encarga de otras actividades
- Cualquier GCS debe tener claro:
 - Cómo identificar y gestionar las versiones de un programa para permitir modificaciones.

Gestión de la configuración Actividades de GCS

- Cómo controlar los cambios antes y después de distribuir el software al cliente.
- Quién es el responsable de aprobar y de asignar prioridades a los cambios.
- Cómo podemos garantizar que los cambios se han llevado a cabo adecuadamente.
- Qué mecanismos se usan para avisar a otros de los cambios realizados.

Gestión de la configuración Actividades de GCS

- Actividades de GCS:
 - Identificación de ECSs.
 - Control de versiones.
 - Control de cambios.
 - Auditoria de la configuración.
 - Informes de estado.

Identificación de ECSs

- Es fundamental:
 - Identificar que ECSs van a formar parte de líneas base
 - Tener una política de nombrado de los ECSs
 - Identificar en los ECSs los cambios llevados a cabo
 - Identificar las dependencias entre los ECSs

Documento Intel

Revision Number	Description	Revision Date
001	Initial release	August 2015
002	Updated datasheet title Addition of the i3, i5, i7 processor information Addition of Intel® Pentium® processor information Updated Section 5.2 "S-Processor Line Thermal and Power Specifications"	October 2015
003	Updated Table 1-1, Processor Lines Updated Table 7-10, DDR31/-RS Signal Group DC Specifications Updated Table 7-12, DDR4/-RS Signal Group DC Specifications	October 2015

§ §

Datasheet, Volume 1 of 2

Identificación de ECSs

- Además, debemos llevar cuenta de los cambios que ha sufrido un ECS
- Aunque esto está considerado en la descripción del objeto, se puede representar como un *grafo de evolución*

Grafo de evolución de ECS

Control de versiones

- El *control de versiones* permite gestionar la versión del sistema
- A su vez, la versión del sistema viene identificada por las versiones de los ECSs
- e.g. versión 1.0 = { SRS3.2, diseño2.0, código4.1, casos de prueba2.4.... }*

^{*}Esta información puede representarse como tuplas {(v1.0, SRS3.2, ...), ...}

Control de versiones

- A su vez cada versión puede tener distintas variantes
- Las variantes suelen darse cuando tenemos una misma versión para diferentes plataformas
- e.g.:
 versión 1.0 Windows 32 = { SRS3.2, diseño2.0, código4.1, casos de prueba2.4.... }
 versión 1.0 Mac OS X = { SRS3.2, diseño2.0, código4.5, casos de prueba3.0.... }

Control de cambios

- El cambio incontrolado produce caos
- Esta es la razón para incluir un mecanismo formal de control de cambios
- Dicho mecanismo, y en general todo el proceso debería estar soportado por una herramienta CASE
- Antes de que el ECS se convierta en línea base hay un control de cambios *informal*
- Una vez que se ha convertido en línea base hay que aplicar control de cambios *formal*

Control de cambios

Proceso de control de cambios

Control de cambios

Control de acceso y de sincronización

Auditoria de la configuración

- La identificación, control de versiones y control de cambios promueven un seguimiento hasta la generación de la OCI
- Podemos asegurar que el cambio se ha efectuado correctamente gracias a:
 - Las RTFs.
 - Las auditorias de configuración software.

Auditoria de la configuración

- La RTF se preocupa de la corrección técnica del cambio
- La *auditoria de configuración software* tiene un carácter complementario y se preocupa de si:
 - Se ha hecho el cambio especificado en la OCI.
 - Se han incorporado modificaciones adicionales.
 - Se ha llevado a cabo una RTF.

Auditoria de la configuración

- Se han seguido adecuadamente los estándares de IS.
- Se han reflejado los cambios en el ECS, incluidos fecha de cambio y autor.
- Se han seguido procedimientos de GCS para gestionar el cambio.
- Se han actualizado convenientemente todos los ECSs relacionados.

Informes de estado

- Los *Informes de Estado* de la *Configuración* IECs informan sobre:
 - Qué pasó.
 - Quién lo hizo.
 - Cuándo pasó.
 - Qué más se vio afectado.

Informes de estado

- Se debe generar un IEC:
 - Cada vez que se asigna una nueva identificación a un ECS.
 - Cada vez que la ACC expide una OCI.
 - Cada vez que se lleva a cabo una auditoria de configuración.
 - Regularmente, para mantener informados a los desarrolladores de los cambios importantes.

Informes de estado

- Los IECs se pueden depositar en una base de datos
- Podemos decir que los IECs evitan el síndrome de la mano derecha

SCV Introducción

• Un sistema de control de versiones, SCV, (VCS, Version Control System) es un programa que ayuda a crear y mantener las diversas versiones de un conjunto de ficheros

SCV Introducción

• Ventajas:

- Colaboración entre distintas personas trabajando en paralelo
- Gestión del cambio
- Rastreo de la propiedad
- Rastreo de le evolución
- Bifurcaciones
- Integración continua

SCV Introducción

- Por ejemplo:
 - CVS: Concurrent Versions System
 - SVN: *Apache Subversion*
 - Git
 - Mercurial
 - Bazaar

SCV Arquitectura

- Tienen una arquitectura clásica distribuida:
 - Aplicación que administra el *repositorio* responsable de almacenar las diferentes versiones del proyecto (e.g. Subversion)
 - Aplicación instalada en los diferentes *clientes* acceden y modifican esas versiones del proyecto almacenadas en el repositorio (e.g. TortoiseSVN)

- Lo primera acción debe ser poblar el repositorio (*import/compartir*) con los datos iniciales del proyecto
- A partir de ahí, los clientes pueden crear una *copia de trabajo* del proyecto comprobando el repositorio (*checkout/update*)

- A partir de una copia de trabajo se puede actualizar un repositorio:
 - Se hacen los cambios en dicha copia
 - Se efectúan los cambios en el repositorio (commit)

- Al contrario, una copia de trabajo puede actualizarse desde el repositorio:
 - Se actualiza la copia de trabajo (update)
- Si se quieren comprobar los cambios, se sincroniza (*synchronize*)
 - Se comprueban los cambios en el registro (log)
 - Se aceptan/rechazan los cambios

- El repositorio guarda versiones parciales, llamadas *revisiones* (*revision*):
 - Identificadas por un número de revisión.
 - La última revisión disponible (Head revision)
- Las actualizaciones de las copias de trabajo pueden ser con respecto a cualquier revisión guardada en el repositorio

- Se pueden crear *ramas* (*branches*): versiones de un proyecto que pueden modificarse de manera independiente del *tronco* (*trunk*) del proyecto
- Lo normal es que las ramas evolucionen y en algún momento se fusionen con el tronco (*merge*)

- También es posible generar versiones (*tags*), que no van a ser (previsiblemente) modificadas en el futuro
- Cualquier proyecto puede vincularse a una rama o versión distinta de la actual (*switch*)
- Se puede forzar un acceso excluyente a los ficheros mediante bloqueos (*locks*)

- El IEEE Std. 828-1998 establece los contenidos mínimos que deben aparecer en el *Plan de Gestión de la Configuración Software*
- Dicho plan puede ser un documento aislado o formar parte de otro documento (e.g. el plan del proyecto o el plan SQA)
- Puede usarse junto al IEEE Std.1042-1987 Guide for Software Configuration Management

- El índice del plan de GCS es:
- 1. Introducción
 - 1.1 Propósito
 - 1.2 Alcance
 - 1.3 Definición de términos clave
 - 1.4 Referencias
- 2. Gestión de la GCS
 - 2.1 Organización
 - 2.2 Responsabilidades GCS
 - 2.3 Políticas, directivas y procedimientos aplicables

- 3. Actividades de la GCS
 - 3.1 Identificación de la configuración
 - 3.1.1 Identificación de ECSs
 - 3.1.2 Nombrado de ECSs
 - 3.1.3 Adquisición de ECSs
 - 3.2 Control de la configuración
 - 3.2.1 Petición de cambios
 - 3.2.2 Evaluación de cambios
 - 3.2.3 Aprobación o desaprobación de cambios
 - 3.2.4 Implementación de cambios

- 3.3 Contabilidad de estado de configuración
- 3.4 Auditorias y revisiones de la configuración
- 3.5 Control de interfaz
- 3.6 Control de la subcontratación/compra
- 4. Planificaciones de la GCS
- 5. Recursos de la GCS
- 6. Mantenimiento del plan de GCS

- *Introducción* (1) proporciona una visión simplificada de la GCS
 - Describe la necesidad del plan y la audiencia.
 - Determina la aplicabilidad de la GCS,
 limitaciones y supuestos en los que se basa el plan

- Gestión de la configuración software (2) describe la asignación de responsabilidades y autoridades a las actividades de GCS
 - Determina el contexto organizativo en el que se aplica GCS.
 - Determina la asignación de actividades a unidades organizativas.
 - Captura cualquier restricción externa aplicable al plan GCS.

- Actividades GCS (3) identifica todas las funciones y tareas requeridas para gestionar la configuración del sistema software
 - Identifica, nombra y describe las características de los ECSs.
 - Gestiona el cambio en líneas base*
 - Registra e informa del estado de los ECSs
 - *El concepto de *línea base* en este estándar esta más cercano al concepto de *versión* Pressman formada por un conjunto de ECSs

- Determina si los ECSs pueden convertirse en líneas base
- Coordina los cambios de ECSs con cambios a elementos externos al plan
- Controla los ECSs que provienen del exterior
- Planificaciones GCS (4) establecen la secuencia y coordinación para las actividades GCS y para todos los eventos que afecten la planificación del proyecto

- Recursos GCS (5) identifica las herramientas software, técnicas, equipo, personal y formación necesaria para la implementación de las actividades GCS
- *Mantenimiento del plan GCS* (6) identifica las actividades y responsabilidades necesarias para garantizar una planificación continua de la GCS durante todo el proyecto.

Conclusiones

- Cambio inevitable
- Cambio → confusión
- GCS: control del cambio
- ECS
- Problema: dependencias entre ECSs
- Línea base

Conclusiones

- Actividades GCS:
 - Identificar ECSs.
 - Control versiones.
 - Gestión del cambio.
 - Auditoria de configuración.
 - Informes de estado
- IEEE Std. 828-1998