Wilcoxon Rank Sum and t-test

Statistics and data analysis

Zohar Yakhini, Leon Anavy, Ben Galili

IDC, Herzeliya

Frank Wilcoxon

American statistician

- Individuals are assumed to be sampled randomly and independently.
- We have two vectors of measured values one for each population.

Consider two sample sets of independently acquired observations from two different labels/populations.

Example: safety test results for cars manufactured in the Randomistan VW factory vs those made in the German factory.

German	fac	tory

3.24.5

8.1

9.9

4.1

7.3

5.2

6.0

Stochastic Heights

factory

3.7

8.5

6.1

9.3

9.1

4.3

7.2

nG = 8 nR = 7

Null assumption:
When considering samples
from both factories then all
rank configurations are
equiprobable.

German factory	Stochastic He factory	ights
3.2	3.7	
4.5	8.5	
8.1	6.1	
9.9	9.3	
4.1	9.1	
7.3	4.3	
5.2	7.2	
6.0		
nG = 8	nR = 7	

9.9	G
9.3	R
9.1	R
8.5	R
8.1	G
7.3	G
7.2	R
6.1	R
6.0	G
5.2	G
4.5	G
4.3	R
4.1	G
3.7	R
3.2	G

N = nG + nR = 15

Null model, abstracted:
All N choose B binary configurations in
$\{0,1\}^{(N,B)}$
are equiprobable.
Let $T = sum of the ranks of the entries$
labeled 1.

$$\{0,1\}^{(N,B)}$$
: All binary vectors with N elements out of which B are 1s

9.9	G
9.3	R
9.1	R
8.5	R
8.1	G
7.3	G
7.2	R
6.1	R
6.0	G
5.2	G
4.5	G
4.3	R
4.1	G
3.7	R
3.2	G

$$N = nG + nR = 15$$

$$N = 15, B = 7, T = 50$$

Under the null model we have

$$E(T) = 56$$

The result here points to better (lower numbers) ranks for R.

But is it <u>significant</u>?

1	0
2	1
3	1
4	1
5	0
6	0
7	1
8	1
9	0
10	0
11	0
12	1
13	0
14	1
15	0

$$N = 15, B = 7, T = 50$$

We want to compute

$$P(T \le 50),$$

under the null model.

1	0
2	1
3	1
4	1
5	0
6	0
7	1
8	1
9	0
10	0
11	0
12	1
13	0
14	1
15	0

$$N = 15, B = 7, T = 50$$

Can we calculate an exact p-value?

$$P_{Null}(T \le 50) = ?$$

Number of binary vectors for which $T \leq 50$ out of all possible binary vectors

Idea:

Map patterns to paths on the lattice Use DP to count paths in which $T \le 50$

Normal approximation (Wilcoxon 1947)

$$P_{\text{Null}}(T \le 50)$$
?

When B and N-B are sufficiently large and depending on the desired accuracy

Let
$$\mu_T = \frac{B(N+1)}{2}$$
 and
$$\sigma_T = \sqrt{\frac{B(N-B)(N+1)}{12}}$$
 then
$$Z(T) = \frac{T - \mu_T}{\sigma} \sim N(0,1)$$

Back to Randomistan VW factory: N = 15, B = 7, T = 50

Using the normal approximation even though the numbers are not sufficiently large:

$$\mu_T = \frac{7(15+1)}{2} = 56, \qquad \sigma_T = \sqrt{\frac{7(15-7)(15+1)}{12}} \approx 8.64, \qquad Z \approx \frac{50-56}{8.64} = -0.7$$

and therefore

$$P_{Null}(T \leq 50) \approx 0.24$$

and we do not have sufficient confidence for rejecting the hypothesis that the German factory is as good as the one in Stochastic Heights.

 You want to check a new workshop for the course. Does the new workshop help the students improve?
 You collected the following data:

<u>User</u> <u>Before</u>	
Donna 88	98
Santosha 76	78
Sam 83	90
Tamika 80	99
Brian 68	74
Jorge 85	84

© Ben Galili

			74	Nb = 6	2
			76	N = 12	3
llsor	Before	After	78		4
<u>User</u>			80		5
Donna	88	98	83		6
Santosha	76	78	84		7
Sam	83	90	85		8
Tamika	80	99	88		9
Brian	68	74	90		10
Jorge	85	84	98		11
			99		12

© Ben Galili 12

68

Na = 6

- Let T = sum of the ranks of the BLACK entries
- B=6, N=12
- E(T) = 39
- T = 1 + 3 + 5 + 6 + 8 + 9 = 32
- We want to compute $P(T \le 32)$ under the null model

68	Na = 6	1
74	Nb = 6	2
76	N = 12	3
78		4
80		5
83		6
84		7
85		8
88		9
90		10
98		11
99		12

© Ben Galili

Let

$$\mu_T = \frac{B(N+1)}{2} = \frac{6*13}{2} = 39$$

and

$$\sigma_T = \sqrt{\frac{B(N-B)(N+1)}{12}} = \sqrt{\frac{6*6*13}{12}} = \sqrt{39}$$

then

$$Z(T) = \frac{T - \mu_T}{\sigma_T} = \frac{32 - 39}{\sqrt{39}} = -1.12$$

$$Z(T) \sim N(0,1)$$

$$P(T \le 32) = p - value = 0.13$$

68	Na = 6	1
74	Nb = 6	2
76	N = 12	3
78		4
80		5
83		6
84		7
85		8
88		9
90		10
98		11
99		12

Wilcoxon Signed Rank test

- But, is this really the correct test?
- Tests Probability Distributions of 2 Matched Populations
- Assumptions:
 - Sampling is independent
 - Paired (matched) samples

<u>User</u>	Before	<u>After</u>
Donna	88	98
Santosha	76	78
Sam	83	90
Tamika	80	99
Brian	68	74
Jorge	85	84

© Ben Galili

Wilcoxon Signed Rank test

- Obtain Difference Scores, $D_i = X_{1i} X_{2i}$
- Take Absolute Value $|D_i|$ and rank them (Do not count $D_i = 0$)
- Assign Ranks, R_i , with Smallest = 1
- Calculate ranks and mean rank for $|D_i|$
- Sum '+' Ranks (T₊) & '-' Ranks (T₋)
- Take T as min{T₊,T₋}

© Ben Galili 16

Wilcoxon Signed Rank Test – Procedure

• If n is large enough we will use normal approximation:

$$\mu_T = \frac{n(n+1)}{4}$$

$$\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{24}}$$

Let

$$Z(T) = \frac{T - \mu_T}{\sigma_T}$$
$$Z(T) \sim N(0,1)$$

Wilcoxon Signed Rank test

• You want to check a new workshop for the course. Does the **new** workshop help the students improve?

•	T_{\perp}	=	20
	* +		

•
$$T_{-} = 1$$

•
$$T = 1$$

Before	After	D _i	D _i	R_{i}	Sign
88	98	10	10	5	+
76	78	2	2	2	+
83	90	7	7	4	+
80	99	19	19	6	+
68	74	6	6	3	+
85	84	-1	1	1	-

© Ben Galili

Wilcoxon Signed Rank Test – Procedure

• If n is large enough we will use normal approximation:

$$\mu_T = \frac{n(n+1)}{4} = \frac{6*7}{4} = 10.5$$

$$\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{24}} = \sqrt{\frac{6*7*13}{24}} = 4.77$$

Let

$$Z(T) = \frac{T - \mu_T}{\sigma_T} = \frac{1 - 10.5}{4.77} = -2$$
$$p - value = 0.023$$

© Ben Galili 20

Comparing two independent samples – t-test

Are men older than women?

Are men taller than women?

Comparing two independent samples — t-test

- Null hypothesis H_0 the hypothesis on which we want to defend H_0 : $\mu_{men} \leq \mu_{women}$
- Alternative hypothesis H_1 a new hypothesis that we want to check H_1 : $\mu_{men} > \mu_{women}$

- Test statistic

- Can be calculated from the sample
- We know its distribution under H_0

- p-value

- Under H_0 , What is the probability to get a test statistic which is "more extreme" than the observed.

Are men taller than women?

Comparing two independent samples — t-test

- Test statistic

- Can be calculated from the sample
- We know its distribution under H_0

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S}$$

Where S is a scaling factor so that t has a **Student's t-distribution** with $n_1 + n_2 - 2$ degrees of freedom.

p-value

- Under H_0 , What is the probability to get a test statistic which is "more extreme" than the observed.

Student's t-distribution

Let $X_1, ..., X_n$ be i.i.d from $N(\mu, \sigma^2)$ and let \overline{X} and S^2 be the sample mean and variance.

Then

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

And

$$\frac{\overline{X} - \mu}{S / \sqrt{n}}$$

Has a Student's t-distribution with n-1 degree of freedom

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

Student's t-distribution

Comparison of t Distributions

Student's t-distribution: $n \ge 30$

Comparing two independent samples – t-test

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S}$$

Where S is a scaling factor so that t has a student's t-distribution with $n_1 + n_2 - 2$ degrees of freedom.

Assuming similar variance to both samples:

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, \qquad S_p = \sqrt{\frac{(n_1 - 1)S_{X_1}^2 + (n_2 - 1)S_{X_2}^2}{n_1 + n_2 - 2}}$$

$$p-value = P(T_{n-1} > t)$$

t-test example

Female		Ma	ale
163	162	168	173
160	174	173	178
158	155	183	183
158	150	178	175
155	164	176	180
168	153	176	170
159	176	175	170
169	168	179	185
170	174	182	173
170	169	175	178
160	166	180	175
173	157	185	175
160	167	165	183
169	148	178	183
163	172	183	182

$$\bar{X}_{men} = 168 + 173 + \dots + 182 = 177.3$$

$$\bar{X}_{women} = 163 + 160 + \dots + 172 = 163.67$$

$$S_p = \sqrt{\frac{29 \cdot 26.7 + 29 \cdot 55.61}{58}} = 6.41$$

$$t = \frac{177.3 - 163.67}{6.51\sqrt{\left(\frac{1}{29} + \frac{1}{29}\right)}} = 8.23$$
$$p - value = P(T_{58} > 8.23) = 1.25 \times 10^{-11}$$

$$p - value = P(T_{58} > 8.23) = 1.25 \times 10^{-11}$$

Are men taller than women?

$$H_0$$
: $\mu_{men} \leq \mu_{women}$

$$H_1$$
: $\mu_{men} > \mu_{women}$

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S_p \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$p-value = P(T_{n-1} > t)$$

t-test example

```
f,m = [x['Height'].values for g,x in data.groupby('Gender')]\

# let's calculate
f_mean = f.mean()
f_var_unbiased = np.var(f,ddof=1)
f_n = len(f)
m_mean = m.mean()
m_var_unbiased = np.var(m,ddof=1)
m_n = len(m)
print('calculate:')
print('f:',f,len(f),f_mean,f_var_unbiased)
print('m:',m,len(m),m_mean,m_var_unbiased)
s_pooled = np.sqrt(((m_n-1)*m_var_unbiased+(f_n-1)*f_var_unbiased)/(m_n+f_n-2))
print('S_p:',s_pooled)
t_stat = (m_mean-f_mean)/(s_pooled*np.sqrt((1/m_n+1/f_n)))
print('t-test:',t_stat, t_dist.sf(t_stat,m_n+f_n-2),'\n')
```

```
calculate:
f: n=30, mean=163.67, S^2=55.61
m: n=30, mean=177.30, S^2=26.70
S_p: 6.42
t-test: t=8.23, p_val=1.26e-11
```

```
# using the built in method
print('using the built in method:')
t_stat,pval = ttest_ind(m,f)
print('t-test: t={:.2f}, p_val={:.2e}\n'.format(t_stat,pval))
using the built in method:
```

t-test: t=8.23, p_val=2.52e-11

One-tailed vs two-tailed t-test

One-tailed Test Vs Two-tailed Test

Comparing two independent samples — t-test

- Assumptions:

- The means of the two samples follow normal distributions. (CLT...)
- The variances of the two samples are equal or similar.
- The two samples are independent.

- Variations:

- Unequal variance Welch's t-test
- Two sided t-test
- Paired samples (soon)

Comparing two paired samples — t-test

Suppose we are examining the grades of 10 students. We record their understandings in statistics and ML before and after this course.

Did the course help?

ID	Before After	
1	78.3	83.5
2	72.2	81.2
3	49.5	47.7
4	64.9	73.1
5	71.2	75.4
6	57.8	63
7	67.7	65
8	66.1	69.8
9	65	75.5
10	63.3	60.9

Comparing two paired samples – t-test

Those are the same 10 students measured twice. We can use this extra information.

Did the course help?

ID	Before After	
1	78.3	83.5
2	72.2	81.2
3	49.5	47.7
4	64.9	73.1
5	71.2	75.4
6	57.8	63
7	67.7	65
8	66.1	69.8
9	65	75.5
10	63.3	60.9

Comparing two paired samples — t-test

Let's calculate the difference for each student.

Did the course help?

ID	Before	After	Diff
1	78.3	83.5	5.2
2	72.2	81.2	9
3	49.5	47.7	-1.8
4	64.9	73.1	8.1
5	71.2	75.4	4.1
6	57.8	63	5.2
7	67.7	65	-2.7
8	66.1	69.8	3.7
9	65	75.5	10.4
10	63.3	60.9	-2.4

Comparing two independent samples – t-test

 X_D - The set of differences of between all pairs. \bar{X}_D , S_D are the mean and the standard deviation of the differences.

 H_0 : the mean differnce is μ_0 . (Usually $\mu_0 = 0$)

 H_1 : the mean differnce is larger than μ_0 . (Right tailed...)

$$t = \frac{\bar{X}_D - \mu_0}{S_D / \sqrt{n}}$$

$$p-value = P(T_{n-1} > t)$$

Paired t-test example

ID	Before	After	Diff
1	78.3	83.5	5.2
2	72.2	81.2	9
3	49.5	47.7	-1.8
4	64.9	73.1	8.1
5	71.2	75.4	4.1
6	57.8	63	5.2
7	67.7	65	-2.7
8	66.1	69.8	3.7
9	65	75.5	10.4
10	63.3	60.9	-2.4

$$\bar{X}_D = 5.2 + 9 + \dots - 2.4 = 3.89$$

$$S_D = 4.54$$

$$\mu_0 = 0$$

$$t = \frac{3.89 - 0}{4.54/\sqrt{10}} = 2.57$$

$$p - value = P(T_9 > 2.57) = 0.015$$

$$H_0$$
: $\mu_0 = 0$

$$H_1: \mu_0 > 0$$

$$t = \frac{\bar{X}_D - \mu_0}{S_D / \sqrt{n}}$$

$$p-value = P(T_{n-1} > t)$$

Paired t-test example

manual calculation: t=2.57, p val=1.51e-02

```
t = 2.57
```

```
p - value = 0.015
```

```
# indepedent t-test
t stat ,pval = ttest ind(after,before)
print('independet t-test: t={:.2f}, p_val={:.2e}'.format(t_stat,pval))
# paired t-test
t stat ,pval = ttest rel(after,before)
print('paired t-test: t={:.2f}, p val={:.2e}'.format(t stat,pval))
# one sample t-test
t stat ,pval = ttest 1samp(diff,0)
print('one sample t-test: t={:.2f}, p_val={:.2e}'.format(t_stat,pval))
# Manual calculation
m D = diff.mean()
s D = diff.std(ddof=1)
t stat = m D/(s D/np.sqrt(n))
print('manual calculation: t={:.2f}, p_val={:.2e}'.format(t_stat,t_dist.sf(t_stat,n-1)))
independet t-test: t=0.92, p val=3.67e-01
paired t-test: t=2.57, p val=3.02e-02
one sample t-test: t=2.57, p val=3.02e-02
```