

Computer Graphics (Exercise Sheet 11)

Submission (Mailbox LS9): Monday, 23. January 2017, 23:59 pm

General Information: The exercise sheets covers old exam assignments. You have to hand in your solution using the LS9 mailbox. Make sure that you **write your names on every sheet** you hand in!

Assignment 1 [4 Points] (Transformations)

Is there a homogeneous 4x4-matrix for the following 3D-transformations? If so, fill in the corresponding matrix.

a) Translation by 3 in y-direction

b) Conversion from meters to centimeters (scaling by a factor of 100)

c) Rotation around x-axis by 180°

ď	Pro	iection	along	7-axis	to x	y-plane
u,	, ,,,	ICCLIOI1	aiving	Z-axis	$\iota \cup \Lambda$	y-piaric

e) Projection to unit sphere:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \frac{1}{\sqrt{x^2 + y^2 + z^2}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

		\
□ no	□ yes: Matrix =	
		/

f) Please state three different ways to represent rotations in 3D. State for each one, whether it is suited for interpolation or not.

Representation	Suited for interpolation

g) Label the set diagram with affine, rigid, projective and linear transformations

Assignment 2 [4 Points] (Rasterization)

In the lecture you heard about the Algorithm of Bresenham

int
$$x = x0$$

int $y = y0$
int $\Delta x = x1 - x0$
int $\Delta y = y1 - y0$
int $D = \Delta x - 2\Delta y$, $\Delta DE = -2\Delta y$, $\Delta DNE = 2(\Delta x - \Delta y)$
while $(x <= x1)$

a) Use the algorithm to draw a line from (1,2) to (7,4). State the values of x, y, and D at the entrance of the each loop.

$$\Delta x =$$

$$\Delta y =$$

$$\Delta DE =$$

$$\Delta$$
DNE =

X	У	D
1	2	

b) For which values of (x0,y0) and (x1,y1) does the algorithm deliver a proper result?

c) How many pixels does the algorithm set for a line of length $d = \sqrt{(x1-x0)^2 + (y1-y0)^2}$ at least and at most?

Assignment 3 [4 Points] (Shading and Lighting)

a) During scanline-rasterization of a polygon you arrive at the following scan line:

The arrows are the normals at the boundary points P1 and P3.

You are using the Phong-Lighting-Model without ambient component, with a diffuse color of (1,1,0), specular color (1,1,1), and a Phong-exponent of 2. Viewer and light direction are (0,1,0), the incident light intensity is (1,1,1).

Determine the colors of pixels P1 to P3 using Phong-shading. Re-normalize interpolated normals.

position	normal	diffuse	specular
P1	(-0.6,0.8,0)		
P2			
Р3	(0.6,0.8,0)		

words or	nly, e.g. "ratio of texture coordinate and room temperature")
D	
F	
G	

b) Describe the three most important terms of the Torrance-Sparrow-Lighting model (with a few