Домашнее задание №3

Андрей Козлов

8 марта 2015 г.

- 1. (a) $(\alpha \to \beta) \to \alpha \to \beta$
 - (b) $\alpha \to (\alpha \to \beta) \to \beta$
 - (c) $\alpha \to \beta \to \beta$
 - (d) $(\alpha \to \beta) \to ((\alpha \to \beta) \to \alpha) \to \beta$
 - (е) Терм не типизируется.

Рассмотрим предтерм (xy)x, пусть он является термом. Тогда $\exists \Gamma, \sigma \colon \Gamma \vdash (x(yx)) \colon \sigma$.

Тогда по лемме об инверсии правый подтерм x имеет некий тип τ , а левый подтерм xy тип $\tau \to \sigma$, то есть y: α, x : $\alpha \to \tau \to \sigma$. Таким образом, тип $\tau = \alpha \to \tau \to \sigma$ является подвыражением себя, что невозможно в силу конечности типа.

- 2. (a) $\lambda fg.f(\lambda a.gaa), \lambda fg.f(g(f(\lambda a.gaa))), \lambda fg.f(g(f(g(f(\lambda a.gaa)))))$
 - (b) $\lambda fg.g(f(\lambda a.gaa))(f(\lambda a.gaa))$
 - (c) $\lambda fg.g(\lambda a.fa)$
 - (d) $\lambda f. f(\lambda g_1. g_1(\lambda a. f(\lambda g_2. a)))$
- 3. (a) false :: Nat \rightarrow Bool \rightarrow Bool false n $_$ = False

 $isZero :: Nat \longrightarrow Bool \longrightarrow Bool$ $isZero n _ = rec True false n$

 $ge :: Nat \longrightarrow Nat \longrightarrow Bool$ ge n m = rec True isZero (minus m n)

(b) $multSucc :: Nat \rightarrow (Nat \rightarrow Nat)$ multSucc n = mul (succ n)

```
\begin{array}{lll} fac & :: & Nat & -\!\!> & Nat \\ fac & = & rec & 1 & multSucc \end{array}
```

(c)

- 4. (a) $Pair_{\sigma,\tau}$
 - $\Gamma \vdash pair_{\sigma,\tau} : \sigma \to \tau \to Pair_{\sigma,\tau}$
 - $-\Gamma \vdash fst_{\sigma}: Pair_{\sigma,\tau} \to \sigma$ $-\Gamma \vdash snd_{\tau}: Pair_{\sigma,\tau} \to \tau$
 - $-\Gamma \vdash \text{fst (pair x y)} \rightarrow x$ $-\Gamma \vdash \text{snd (pair x y)} \rightarrow y$
 - (b) $List_{\sigma}$
 - $-\Gamma \vdash nil_{\sigma}: List_{\sigma}$ $-\Gamma \vdash cons_{\sigma}: \sigma \to List_{\sigma} \to List_{\sigma}$
 - $\Gamma \vdash rec_{List_{\sigma}} : \alpha \to (\sigma \to List_{\sigma} \to \alpha \to \alpha) \to List_{\sigma} \to \alpha$
 - $\begin{array}{lll} \bullet & \; \Gamma \vdash \; \mathtt{rec} \; _{List_{\sigma}} \; \mathtt{n} \; \; \mathtt{c} \; \; \mathtt{nil} \; \rightarrow \mathtt{n} \\ & \; \Gamma \vdash \; \mathtt{rec} \; _{List_{\sigma}} \; \mathtt{n} \; \; \mathtt{c} \; \; (\mathtt{cons} \; \mathtt{x} \; \mathtt{xs}) \; \rightarrow \mathtt{c} \; \mathtt{x} \; \mathtt{xs} \; (\mathtt{rec} \; \mathtt{n} \; \mathtt{c} \; \mathtt{xs}) \end{array}$
- 5. $recList :: a \rightarrow (b \rightarrow [b] \rightarrow a \rightarrow a) \rightarrow [b] \rightarrow a$ recList n c [] = nrecList n c (x:xs) = c x xs \$ recList n c xs

 $\mathbf{sort} :: \mathbf{Ord} \ \mathbf{a} \Longrightarrow [\mathbf{a}] \multimap [\mathbf{a}]$ $\mathbf{sort} = \mathbf{recList} \ [] \ \mathbf{insert}$