Forward and Backward Pass of Convolutional layers

Jong-Chyi Su, 3/2/2018

Forward pass - 1D case

$$y_1 = w_0 * x_0 + w_1 * x_1 + w_2 * x_2 + b$$

 $y_2 = w_0 * x_1 + w_1 * x_2 + w_2 * x_3 + b$
 $y_3 = w_0 * x_2 + w_1 * x_3 + w_2 * x_4 + b$

How to compute dw₀?

$$dw_0 = dy_1 * x_0 + dy_2 * x_1 + dy_3 * x_2$$

$$dw_1 = dy_1 * x_1 + dy_2 * x_2 + dy_3 * x_3$$

$$dw_2 = dy_1 * x_2 + dy_2 * x_3 + dy_3 * x_4$$

$$dw_0 = dy_1 *x_0 + dy_2 *x_1 + dy_3 *x_2$$

 $dw_1 = dy_1 *x_1 + dy_2 *x_2 + dy_3 *x_3$
 $dw_2 = dy_1 *x_2 + dy_2 *x_3 + dy_3 *x_4$

This is the convolution of Y and X

Now compute dX

$$dx_1 = + dy_1 * w_1 + dy_2 * w_0$$

$$dx_2 = dy_1 * w_2 + dy_2 * w_1 + dy_3 * w_0$$

$$dx_3 = dy_2 * w_2 + dy_3 * w_1$$

$$dx_1 = dy_1 * w_1 + dy_2 * w_0$$

 $dx_2 = dy_1 * w_2 + dy_2 * w_1 + dy_3 * w_0$
 $dx_3 = dy_2 * w_2 + dy_3 * w_1$

$$dx_1 = dy_1 * w_1 + dy_2 * w_0$$

 $dx_2 = dy_1 * w_2 + dy_2 * w_1 + dy_3 * w_0$
 $dx_3 = dy_2 * w_2 + dy_3 * w_1$

This is convolution of Y and flipped filter W!

How about db?

$$y_1 = w_0 * x_0 + w_1 * x_1 + w_2 * x_2 + b$$

 $y_2 = w_0 * x_1 + w_1 * x_2 + w_2 * x_3 + b$
 $y_3 = w_0 * x_2 + w_1 * x_3 + w_2 * x_4 + b$

$$db = dy_1 *1 + dy_2 *1 + dy_3 *1$$

Sum over dY

Now back to 2D case

Always check dimension first:

$$X \rightarrow (N,C,H,W)$$

 $W \rightarrow (F,C,H_f,W_f)$
 $b \rightarrow (F)$
 $Y = W*X + b \rightarrow (N,F,H_{out},W_{out})$
where $H_{out} = (H + 2*pad - H_f) / stride + 1$

Now consider only one image and one channel One filter with size 3x3, input size 5x5

Dimensions:

$$X \rightarrow (N,C,H,W) \rightarrow (1,1,5,5)$$

 $W \rightarrow (F,C,H_f,W_f) \rightarrow (1,1,3,3)$
 $b \rightarrow (F) \rightarrow (1)$
 $Y = W*X + b \rightarrow (N,F,H_{out},W_{out}) \rightarrow (1,1,3,3)$
 $H_{out} = (H + 2*pad - H_f) / stride + 1 = (5+0-3)/1 + 1 = 3$

X 00	X 01	X 02	X 03	X 04
X 10	X 11	X 12	X 13	X 14
X 20	X 21	X22	X 23	X 24
X 30	X 31	X 32	X 33	X 34
X 40	X 41	X 42	X 00	X 44

W 00	W 01	W 02		
W 10	W 11	W 12		
W 20	W 21	W 22		
W 3*3				

X 5*5

Forward pass - 2D case

W 00	W 01	W 02	X 03	X 04
W 10	W 11	W 12	X 13	X 14
W 20	W 21	W22	X 23	X 24
X 30	X 31	X 32	X 33	X 34
X 40	X 41	X 42	X 00	X 44

y 11	y 12	y 13
y 21	y 22	y 23
y 31	y 32	У 33

Y 3*3

$$y_{11} = \sum_{i=1}^{n} (W_{ij} * X_{ij}) + b$$

for i,j = 0,1,2

Compute dX

What locations in y are connected to x_{22} ?

X 00	X 01	X 02	X 03	X 04
X 10	X 11	X 12	X 13	X 14
X20	X21	X22	X23	X 24
X 30	X 31	X 32	X 33	X 34
X 40	X 41	X 42	X 00	X 44

X 5*5

y 11	y 12	y 13
y 21	y 22	y 23
y 31	y 32	У 33

Y 3*3

Compute dX

What locations in y are connected to x₂₂?

Compute dX

What locations in y are connected to x₂₂?

Like 1D case, you can do convolution between Y and inverted W

Compute dX

What locations in y are connected to x_{00} ?

X 00	X 01	X 02	X 03	X 04
X 10	X 11	X 12	X 13	X 14
X 20	X 21	X22	X 23	X 24
X 30	X 31	X 32	X 33	X 34
X 40	X 41	X 42	X 00	X 44

X 5*5

y 11	y 12	y 13
y 21	y 22	y 23
y 31	y 32	У 33

Y 3*3

Compute dX

What locations in y are connected to x_{00} ?

Compute dX

What locations in y are connected to x_{00} ?

You can use zero-padding for Y first when computing dX

Compute dW

Which x and y pairs are computed using w₀₁?

X 00	X 01	X 02	X 03	X 04
X 10	X 11	X 12	X 13	X 14
X ₂₀	X21	X22	X23	X 24
X 30	X 31	X 32	X 33	X 34
X 40	X 41	X 42	X 00	X 44

X 5*5

Compute dW

Which x and y pairs are computed using w₀₁?

X 00	X 01	X 02	X 03	X 04
X 10	X ₁₁	X ₁₂	X 13	X 14
X ₂₀	X21	X22	X23	X 24
X 30	X 31	X 32	X 33	X 34
X 40	X 41	X 42	X 00	X 44
X 5*5				

Summary

- 1. Always check dimensions
- 2. Pad input X first
- 3. Remove the padding after dX is calculated
- 4. You can also add padding for dY for backward pass
- 5. Add channels
- 6. Add stride
- 7. Add batch
- 8. You can use convolution on backward pass (with flipping)
- 9. There are multiple ways to implement, e.g. you can use many for loops over each location

Why do we use convolutional layers?

- 1. share filters, fewer weights in the model
- 2. Convolution filters are useful for image processing