9. ABCDE is a regular pentagon with radius 10.

- a. Find the measure of $\angle AOB$.
- **b.** Explain why $m \angle AOX = 36$.

Note: For parts (c)-(e), use a calculator or the table on page 311.

- c. $\cos 36^\circ = \frac{a}{2}$. To the nearest tenth, $a \approx \frac{?}{2}$.
- **d.** $\sin 36^\circ = \frac{\frac{1}{2}s}{2}$. To the nearest tenth, $s \approx \frac{?}{2}$.
- e. Find the perimeter and area of the pentagon.

Written Exercises

Copy and complete the tables for the regular polygons shown. In these tables, p represents the perimeter and A represents the area.

IJ,	

		r	а	A
4	1.	$8\sqrt{2}$?	?
	2.	?	5	?
	3.	?	?	49
	4.	?	$\sqrt{6}$?

	r	a	p	A
5.	6	?	?	?
6.	?	4	?	?
7.	?	?	12	?
8.	?	?	$9\sqrt{3}$?

	r	а	p	A	
9.	4	?	?	?	
10.	?	$5\sqrt{3}$?	?	
11.	?	6	?	?	
12.	?	?	$12\sqrt{3}$?	

Find the area of each polygon.

- **B** (13.) An equilateral triangle with radius $4\sqrt{3}$ 14. A square with radius 8k

 - 15. A regular hexagon with perimeter 72
- 16. A regular hexagon with apothem 4
- 17. A regular decagon is shown inscribed in a circle with radius 1.
 - a. Explain why $m \angle AOX = 18$.
 - **b.** Use a calculator or the table on page 311 to evaluate OX and AX below.

$$\sin 18^\circ = \frac{AX}{1}$$
, so $AX \approx \frac{?}{?}$.
 $\cos 18^\circ = \frac{?}{?}$, so $OX \approx \frac{?}{?}$.

- c. Perimeter of decagon $\approx \frac{?}{}$
- **d.** Area of $\triangle AOB \approx _$
- e. Area of decagon ≈ _

