Topology – The Order, Product and Subspace Topologies

Thimoteus May 30, 2015

Definition (Order topology). Generated by the basis

$$\mathcal{B} = \{x \in X \mid a < x < b\}$$

$$\cup \{x \in X \mid a < x \le \max(X)\}$$

$$\cup \{x \in X \mid \min(X) \le x < b\}$$

if max(X), min(X) are well-defined.

Note: Open rays form a subbasis for the order topology.

Definition (Product topology). If X, Y are topologies, the order topology on $X \times Y$ is defined to be generated by the basis

$$\mathcal{B} = \{ U \times V \mid U \in \mathcal{T}_X, V \in \mathcal{T}_Y \}$$

Theorem: If \mathcal{B} is a basis for X and \mathcal{C} for Y, then the following is a basis for $X \times Y$:

$$\{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}\$$

Theorem: The following is a subbasis for the product topology on $X \times Y$:

$$S = \left\{\pi_1^{-1}(U) \mid U \in \mathcal{T}_X\right\} \cup \left\{\pi_2^{-1}(V) \mid V \in \mathcal{T}_Y\right\}$$

Definition (Subspace topology). If X is a topology and $Y \subseteq X$ then the following is the subspace topology on Y:

$$\{Y \cap U \mid U \in \mathcal{T}_X\}$$

Lemma: If \mathcal{B} is a basis for the topology on X then the following is a basis for the subspace topology on Y:

$$\{B\cap Y\mid B\in\mathcal{B}\}$$

Lemma: Let Y be a subspace of X. If U is open in Y and Y is open in X then U is open in X.

Theorem: If *A* is a subspace of *X* and *B* is a subspace of *Y* then the product topology on $A \times B$ is the same as the subspace topology $A \times B$ inherits from $X \times Y$.

Definition (Convex set). Let *Y* be a subset of a totally ordered *X*. We say *Y* is **convex** if for each $a, b \in Y$ the set $\{x \in X \mid a < x < b\}$ is a subset of *Y*.

Theorem: Let *X* have an order topology and *Y* a convex subset of *X*. Then the order topology of *Y* is the same as the topology it inherits from *X* as a subspace.