

Desafio Técnico - Data Engineer Random User Extract v.1.0.0

Nome: Robton Rodrigues Brangaitis

Data: 02/06/2022

Versão

Nome do Projeto	Versão
Random User Extract	1.0.0

Dicionário de Termos:

Sigla/Abrev.	Nome	Descrição
GCS	Google Cloud Storage	Serviço de armazenamento de objetos
BigQuery	Google BigQuery	Datawarehouse para armazenamento de dados
Composer	Google Cloud Composer	Ferramenta de Orquestração de Pipelines
lib	Libraries	Libraries (Bibliotecas) do Python
Bucket	Bucket	Espaço para armazenamento de arquivos dentro do Google Cloud Storage
CSV	Comma-separated values JavaScript Object	Arquivos de texto separado por vírgulas
JSON	Notation	Arquivo para troca de informações
DAG	Directed Acyclic Graph	Tarefas a serem executadas

Objetivo do Projeto

O projeto Random User Extract tem por objetivo extrair dados da API Pública Random User e disponibilizar os dados em uma tabela dentro do Google BigQuery (SQL).

Para tal, foram utilizadas as seguintes ferramentas:

- Google Cloud Composer: Orquestração do pipeline
- Google Cloud Storage: Salvamento de arquivos utilizados durante a execução;
- Google BigQuery: Estruturação dos dados extraídos.

Detalhes referente a arquitetura e o desenvolvimento dos pipelines de dados serão descritos nos próximos tópicos.

Perguntas de Negócios

Pergunta 01:

Quantos homens e mulheres – gêneros: masculino e feminino, possuem ao total de forma porcentual?

Pergunta 02:

Quantas pessoas possuem o mesmo nome no mesmo país?

Pergunta 03:

Qual distribuição das pessoas por gênero e país?

Pergunta 04:

Quantas pessoas possuem mais de 50 anos distribuídos por país e gênero?

Os gráficos com as respostas estão no Google Data Studio, link para acessar encontra-se na seção: Informações Adicionais.

Arquitetura

A arquitetura está construída da seguinte forma:

O Cloud Composer faz uma requisição HTTP para a API, o resultado da requisição retorna para o Composer e salva em um arquivo Json dentro do Storage.

O Composer busca o arquivo Json dentro do Storage, converte para um arquivo CSV e salva no BigQuery. O Google Data Studio consulta os dados no BigQuery.

Desenvolvimento

Foram criados dois scripts para a execução do projeto. O primeiro: extract_random_users.py para extração de dados da API e disponibilização dos dados em ambiente de **Bronze**.

Ele faz uma conexão com a API *Random Users* usando a *lib Requests*. O retorno da requisição é convertido em json para armazenamento na pasta: raw_data dentro do bucket.

Logo após utilizando a *lib Pandas*, converte para CSV e salva dentro da pasta: *stage* do bucket do projeto. Depois busca o arquivo no GCS, lê os dados e escreve em uma tabela do *BigQuery*.

O segundo script: load_silver_random_users.py, foi criado para carregar os dados do ambiente de **Bronze** para o **Silver**.

Nesse script, foi utilizado operadores do Airflow (Composer) específico para *BigQuery*.

Ambos os scripts podem ser consultados no GitHub, através do link:

https://github.com/robtbrang/desafiosdedados/tree/main/airflow/dags

Para fins de testes e execução foram adicionados dez mil (10k) registros. Sendo que cada uma das execuções, buscava um total de mil (1k) registros.

Visualização do Ambiente

Pasta onde estão salvas as DAG:

Tela inicial do Airflow (Composer):

Resultados das Execuções

Bucket com os arquivos Json:

Buckets com os arquivos csv:

DAG do Airflow (Composer) – Extração de Dados da API Random

Users:

DAG do Airflow (Composer) – Carregamento dos Dados em Ambiente Silver:

Datasets e Tabelas no BigQuery:

Conectando BigQuery ao Microsoft Power BI

Foi criado uma conta de serviço para conexão ao *BigQuery*. Abaixo mostro como conectá-lo ao Microsoft Power BI Desktop.

1º Passo: Clicar em Obter Dados no Power BI:

2º Passo: Selecionar Google BigQuery e após clicar em Conectar e após em Ok.

3º Passo: Selecionar Login da Conta de Serviço e preencher os dados solicitados referente a Chave Json (que será encaminhada juntamente com arquivos):

4º Passo: Clique em Ok e na nova tela que for aberta selecione o dataset e a tabela desejada.

Informações Adicionais

Link do Dashboard no Data Studio

https://datastudio.google.com/reporting/750f8e54-c7bb-437d-a51f-3a35ae9cdbcf

Próximos Passos

Neste tópico irei abordar algumas implementações que poderão contribuir para melhoria do processo:

- Configurar Google Cloud Data Catalog para implementação de Governança de Dados nos datasets do BigQuery;
- Esteira de CI/CD para deploy de scripts de desenvolvimento;
- Conectar tasks do Airflow (Composer) a um serviço de monitoramento, onde possa ser avisado caso dê erro na execução da DAG.