Akcelerační datové struktury pro ray-tracing

Bc. Ondřej Áč, xacond00 Bc. Jozef Bilko, xbilko03 Bc. Marek Konečný, xkonec86

Implementace - Binned BVH se SAH (Ondřej Áč)

- Rekurzivní dělení primitivů dle "nejlepší" dělící roviny ohraničujícího objemu
- Polovina nejdelší osy = neefektivní
- Heuristika SAH:
 - Vytvoření všech možných ohr. objemů mezi primitivy
 - Nalezení takového páru, jenž má nejmenší "cenu" (viz rovnice)
 - Neefektivní O(N^2)
- Binned BVH:
 - Rozřazení primitivů do "košů"
 a nalezení ohran. objemu uvnitř
 - Výpočet ceny pro všechny dělící roviny, vybrána ta s tou nejnižší
 - Testování pro zbylé osy

Vizualizace - Binned BVH se SAH (Ondřej Áč)

Polygons: 212574
Accel. nodes: 71501
Accel. build: 9242.366 ms
Accel. render: 2339.571 ms

Implementace - BIH s binned SAH

T FIT

- Rekurzivní dělení primitivů obdobné BVH
 - v původním článku navrhována např. global heuristic (rychlejší sestavení ale neoptimální)
 - opět tedy použita Binned SAH (Surface Area Heuristic)
- Místo objemů jsou primitiva ohraničena 2 hyperrovinami, které jsou ortogonální s jednou z os (X Y Z ...)
- Volba osy nejlepší dělení podprostoru dle SAH
- Dále BIH uzel ukládá:
 - souřadnice obou hyperrovin po ose (2x float)
 - příslušící interval indexů v poli primitvů (partitioning)
 - index dělícího primitivu podmnožin

Demonstrační aplikace

Demonstrační aplikace – vzorové scény

Sponza – 262627 Polygonů

Bunny – 4968 Polygonů

Demonstrační aplikace – vzorové scény

Armadillo – 212574 polygonů

Dragon – 249882 polygonů

Měření – frame times

Měření – časová a paměťová režie k sestavení

Měření – časová a paměťová režie k sestavení

		вун	BIH			k-d tree	
	polygonů	uzlů	kB	uzlů	kB	uzlů	kB
		32B		44B		44B	
bunny	4 968	1 753	54.8	3 289	144.7	1 753	77.1
armadillo	21 2574	72 673	2271.0	132 369	5 824.2	71 501	3 146.0
dragon	249 882	87 285	2727.7	164 607	7 242.7	87 287	3 840.6
sponza	262 267	89 131	2785.3	171 275	7 536.1	85 437	3 759.2

Měření – časová režie k refittingu

Náhodná transformace (posun + rotace) objektů

Děkujeme za pozornost

Zdroje

- Introduction to K-D Trees | Baeldung on Computer Science
- How to build a BVH Part 1: Basics Jacco's Blog
- Wächter, Carsten; Keller, Alexander (2006). <u>Instant Ray Tracing: The Bounding Interval Hierarchy</u>
- Introduction to K-D Trees