Monad Playground

A Causal Simulation Engine for Emergent Logic

The Problem with Traditional Simulations

- Rely on fixed rules
- Can't model logic-evolving systems
- Miss emergence and causality
- Lack behavioral clarity
- Fail in complex, evolving domains

The Vision

Evolving Logic

Monad simulates systems where agents write and rewrite their own behavior rules, enabling continuous evolution.

Modeling Causality & Emergence

Core features include modeling how behaviors emerge from local interactions and understanding their causal chains.

Inspired by Philosophy

Concepts from Spinoza and Leibniz inspire a deeper metaphysical foundation for programmable logic.

What We Built

Domain-Specific Language (.mpl)

A compact and expressive language for defining field logic, meta-rules, and evolving behaviors.

Monad Interpreter & Debugger

Processes logic execution, handles meta-rule changes, and visualizes behavior with causal trace debugging.

Adequacy Scoring

Quantifies how coherent or meaningful the emergent behaviors are within a given simulation context.

How It Works

- Voxels = programmable monads
- Fields = external inputs (e.g., heat, light)
- Patterns = emergent behaviors
- Meta-rules = logic that evolves
- Adequacy = coherence scoring

Demo Highlight: GlowCell

Transformation Logic

Solid becomes Liquid when heated; Liquid turns to Glow when exposed to light — enabling state-driven emergence.

Self-Modifying Rules

GlowCell rewrites its own logic dynamically, inserting rules based on environmental changes.

Tracking Adequacy

Adequacy score evaluates the consistency and coherence of emergent behavior over time.

Why It Matters

From Metaphysics to Computation

Monad bridg philosophy and simulation, offering a platform to explore evolving concepts like ethics, biology, and cognition.

New Design Frontiers

Enables simulations not only of physical systems but also of abstract principles and speculative design.

A Tool for Thought

Supports ontological prototyping and reasoning in experimental, emergent domains.

Use Cases

- Educational tools for emergence
- Artificial life and cognitive modeling
- Ethical logic simulations
- Philosophical system prototyping
- Experimental design fiction

Roadmap

- Enable 3D voxel grids
- Develop ontological debugger
- Add agent communication
- Launch interactive web IDE
- Expand community contributions contributions

Join Us

How can you contribute?

Fork the codebase, experiment with emergent logic, share your insights, and collaborate on metaphysical design. Help shape the future of simulation.