

MIPS 处理器设计

微处理器结构与设计课程报告

2022-6-11

方佳豪 2021211066

一.课程任务

1. MIPS 处理器设计

基于 verilog 语言设计一款基于 5 段流水线的 MIPS 处理器,并用该处理器和对应的指令集运行自己编写的 AES 加密算法。按照实验必选和选做要求完成以下指令和功能。

1.1 支持的指令

- A. 访存指令: lw, sw;
- B. 算数逻辑指令: add, addi, addiu, sub, and, or, xor, andi, ori, xori, lui, slt, sll, srl 指令等;
- C. 转移指令: beg, bne, j, jal, jr 指令等。
 - 1.2 支持的功能
- A. 支持数据相关检测处理 (forwarding or bypass);
- B. 支持转移冒险处理(流水线冲刷)。

2. AES 加密算法

通过编写汇编代码完成 128 比特密钥长度下的 AES 加密功能。根据课程提供的 S 盒 (aes_sbox.txt) 和输入明文和密钥计算出正确的密文。

测试向量如下:

明文: 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

密钥: 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

密文: 39 25 84 1d 02 dc 09 fb dc 11 85 97 19 6a 0b 32

3. 验证和综合

将 AES 加密汇编算法转化为机器码,写入 icache 和 dcache 中;

基于 modelsim 进行处理器的行为级仿真,得到正确的密文;

进行 DC 综合, 给出时序报告, 面积报告和功耗报告;

二.MIPS 处理器架构

4. 结构与数据通路

图中关于 branch 的 ID 段 forward 和 hazard 没有画出,branch 指令在 ID 段访问寄存器得到数值,同时与 MEM 和 WB 段要写回寄存器的地址进行对比,判断是否相关,这是由 forward 通路所决定的;根据相关结果来决定是否停滞(stall)流水线一拍;

5. 仿真 Schematic 图

该图显示了处理器功能模块 uut 和 icache 以及 dcache 模块的连接关系。仿真时,只需要将数据存放到 cache 中即可开始运行。Uut 内部信号 schematic 见附录文件 uut.pdf

三.设计细节描述

6. 流水线与冒险处理

Forward

非分支指令 forward 在 EX stage 进行。判断逻辑如下:

```
RegRdout1Sel_Forward_EX[0] = RegWrite_WB && (RegWtaddr_WB != 0) && (RegWtaddr_MEM != Rs_EX) && (RegWtaddr_WB == Rs_EX);

RegRdout1Sel_Forward_EX[1] = RegWrite_MEM && (RegWtaddr_MEM != 0) && (RegWtaddr_MEM == Rs_EX);

RegRdout2Sel_Forward_EX[0] = RegWrite_WB && (RegWtaddr_WB != 0) && (RegWtaddr_MEM != Rt_EX) && (RegWtaddr_WB == Rt_EX);

RegRdout2Sel_Forward_EX[1] = RegWrite_MEM && (RegWtaddr_MEM != 0) && (RegWtaddr_MEM == Rt_EX);
```

RegRdout1Sel_Forward_EX, RegRdout2Sel_Forward_EX 分别是判断 Rs, Rt 是否与 MEM 和WB 段要写入的地址是否相关。

由于分支指令的 forward 提前到 ID 段进行(为了减少 FLUSH 的时间代价), 因此要重新编写 forward。判断逻辑如下:

```
RegRdout1Sel_Forward_|D[0] =isBranch? RegWrite_WB && (RegWtaddr_WB != 0) && (RegWtaddr_MEM != RegRdaddr1_|D) && (RegWtaddr_WB == RegRdaddr1_|D);0;

RegRdout1Sel_Forward_|D[1] =isBranch? RegWrite_MEM && (RegWtaddr_MEM != 0) && (RegWtaddr_MEM == RegRdaddr1_|D);0;

RegRdout2Sel_Forward_|D[0] =isBranch? RegWrite_WB && (RegWtaddr_WB != 0) && (RegWtaddr_MEM != RegRdaddr2_|D) && (RegWtaddr_WB == RegRdaddr2_|D);0;

RegRdout2Sel_Forward_|D[1] = isBranch? RegWrite_MEM && (RegWtaddr_MEM != 0) && (RegWtaddr_MEM == RegRdaddr2_|D);0;
```

Hazard

Hazard 承担起将 IF 和 ID 段的流水线停滞的功能。与之相关的指令包括分支指令和访存指令。

```
ID_EX_Flush_isBranch = ((RegWtaddr_EX == Rs_ID && Rs_ID!=0) || (RegWtaddr_EX == Rt_ID && Rt_ID!=0))
||(DMemRead_MEM &&((RegWtaddr_MEM == Rs_ID && Rs_ID!=0) || (RegWtaddr_MEM == Rt_ID && Rt_ID!=0)))
ID_EX_Flush_LWSW=((RegWtaddr_EX == Rs_ID) || (RegWtaddr_EX == Rt_ID)) && DMemRead_EX;
IF_ID_En = ~ID_EX_Flush;
PCEn = ~ID_EX_Flush;
```

FLUSH

FLUSH 需要将从 IF stage 进入 ID stage 的寄存器全置零,使得该条指令不执行。主要用于无条件跳转指令和分支指令。

IF_ID_Flush = (PCSrc_ID != 2'b00 &&!Stall);

● 分支策略

如前所述, 总是假设分支不成功, 即分支后的指令照常进入流水线。当分支指令进入 ID stage 时, 先检测是否数据相关, 若相关, 则 stall 分支指令。否则, 根据分支指令的判断结果给 出控制信号, 使得 PCSrc_ID 来源为 branch, 将分支指令之后的那条指令冲刷掉, 并载入跳转到的 PC。

7. AES 转化为机器码

● 代码的格式

AES 算法实现见附录 AES128.s 文件。下面是节选代码。首先需要将 s 盒中的数据载入,利用.data 和 .word 实现。.text 后面代码即 AES 算法的加密部分。寄存器的命名需要按照 MIPS 的规则进行。

```
1 .data
2 input_files: .word 0x3243f6a8,0x885a308d,0x313198a2,0xe0370734,0x2b7e1516,0x28aed2a6,0xabf71588,0x09cf4f3c,0x637c777b,0xf26b6fc5,
3 .text
4 la $s0,input_files
Nain:
6 v1:lw $s1,0($s0)
7 v2:lw $s2,4($s0)
8 v3:lw $s3,8($s0)
9 v4:lw $s4,12($s0)
10 addi $v1,$zero,0004
11 AES128:lw $t1,16($s0)
12 v6:lw $t2,20($s0)
13 v7:lw $t3,24($s0)
14 v8:lw $t4,28($s0)
15 AddRoundKey:xor $s1,$t1,$s1#we define xor command in the project
16 v10:xor $s2,$t2,$s2
17 v11:xor $s3,$t3,$s3
18 v12:xor $s4,$t4,$s4
19 ori $v0,$zero,44
```

● 代码的转换

利用 Mars 软件,将汇编代码转化为二进制代码。软件界面如图所示:

将转换后的二进制代码分别写入 icache 和 dcache 中。

8. 其他子模块功能描述

alu.v			
1/0	Width	Name	
input	[31:0]	alu_a	操作数 a, 如果有负数, 是以补码存储
input	[31:0]	alu_b	操作数 b, 如果有负数, 是以补码存储
input	[4:0]	alu_op	运算类型
output	[31:0]	alu_out	运算结果,如果有负数,是以补码存储

registers.v			
1/0	Width	Name	说明
input	[0:0]	clk	时钟沿
input	[0:0]	rst_n	复位信号,低电平有效
input	[4:0]	rAddr1	读地址 1
output	[31:0]	rDout1	读数据 1
input	[4:0]	rAddr2	读地址 2
output	[31:0]	rDout2	读数据 2
input	[4:0]	wAddr	写地址
input	[31:0]	wDin	写数据
input	[0:0]	wEna	写使能,高电平有效

mux.v			
I/O	Width	Name	说明
input	[0:0]	sel	选择信号
input	[WIDTH-1:0]	d0	选择数据1
input	[WIDTH-1:0]	d1	选择数据2
output	[WIDTH-1:0]	out	输出

dff.v寄存器组 用于流水线			
1/0	Width	Name	说明
input	[0:0]	clk	时钟沿
input	[0:0]	en	使能信号高电平有效
input	[0:0]	rst	复位信号高电平有效
input	[WIDTH-1:0]	datain	输入数据
output	[WIDTH-1:0]	dataout	输出数据

compare.v 用于branch比较			
输入/输出	宽度	信号名	说明
input	[31:0]	а	有符号数 a
input	[31:0]	b	有符号数b
output	[1:0]	res	比较结果

四.功能与性能

9. 加密执行结果

● 利用 modelsim 的 Memorylist 功能可以直接查看寄存器组 Registers 的值。S1-S4 号寄存器分别对应的十进制编号为 17-20。读下面图中对应位置的寄存器值即可知道数据运算正确。

● 运算的周期数=80420000ps/10000ps=8042 个周期,仿真时每个周期为 10ns,如下图 所示。这里本人用\$stop 语句停止程序仿真/AES 加密结束,其标志是读取第一条未定 义的指令地址 249,本人最后一条指令地址为 248。

10.DC 综合结果

只对处理器的功能模块进行了综合,icache 和 dcache 没有综合。主要原因是 DC 综合默认 cache 里面的赋值为常量,会被不规则优化,导致面积不够和功耗不准确。下图是 DC 综合的 top 模块。

性能参数如下表所示:

项目	指标	
时钟周期/ns	4	
面积/um^2	199593.981445	
功耗 mW	42.2706	

时序信息节选:

clock clk (rise edge)	0.00 0.00
clock network delay (ideal)	0.00 0.00
registers uut/data reg[29][20]/CK (DF	FRHQX1) 0.00 # 0.00 r
registers uut/data reg[29][20]/Q (DFF	
registers uut/U2943/Y (AOI22XL)	0.13 0.32 r
registers uut/U2944/Y (NAND2XL)	0.05 0.36 f
registers uut/U2948/Y (NAND4BBX2)	0.12 0.48 f
registers uut/U2949/Y (NOR2X2)	0.08 0.56 r
registers uut/U2956/Y (NAND2X2)	0.04 0.60 f
registers uut/rDout1[20] (Registers)	0.00 0.60 f
U3833/Y (AOI21X2)	0.13 0.73 r
U2031/Y (AOI22X2)	0.09 0.82 f
U2030/Y (NAND4X2)	0.14 0.97 r
U2029/Y (NOR3X2)	0.06 1.03 f
U2028/Y (AOI2BB2X4)	0.13 1.16 f
U2055/Y (NAND4X4)	0.12 1.28 r
U4128/Y (MXI2X4)	0.11 1.39 f
U4203/Y (NOR2X4)	0.09 1.48 r
U4209/Y (NOR2X4)	0.05 1.52 f
U4210/Y (BUFX20)	0.11 1.63 f
U4371/Y (AOI22X1)	0.11 1.74 r
U1756/Y (NAND4XL)	0.06 1.80 f
DFFPC/dataout_reg[6]/D (DFFHQX4)	0.00 1.80 f
data arrival time	1.80
clock clk' (rise edge)	2.00 2.00
clock network delay (ideal)	0.00 2.00
clock uncertainty	0.00 2.00
DFFPC/dataout reg[6]/CK (DFFHQX4)	0.00 2.00 r
library setup time	-0.20 1.80
data required time	1.80
data required time	1.80
data arrival time	-1.80
	-1.00
slack (MET)	0.00

五.附录

./src_modelsim 文件夹包含仿真的代码,有不可综合语句 ./dc/src 内为综合代码 ./dc/run.tcl 综合脚本 ./dc/reports/ 内为综合报告信息 ./dc/output/ 内为进行 RTL 仿真的 map 以及 sdf 文件 ./uut.pdf 为 MIPS 的 schematic 图

./AES128/ 内有 aes 算法的汇报文件和机器码