Robustness to Missing Data: Breakdown Point Analysis

Daniel Ober-Reynolds

University of California, Los Angeles doberreynolds@gmail.com

23 June 2023

- ▶ Missing data is common, as are the selection concerns it raises
- Common solution: assume data are Missing (Completely) At Random
 - Impute or ignore incomplete observations, use standard methods
 - Convenient solution, often implausible justification
- This paper proposes an interpretable measure of selection, and estimates how much selection is needed to overturn a conclusion

- ▶ Missing data is common, as are the selection concerns it raises
- ► Common solution: assume data are Missing (Completely) At Random
 - Impute or ignore incomplete observations, use standard methods
 - Convenient solution, often implausible justification
- ► This paper proposes an interpretable measure of selection, and estimates how much selection is needed to overturn a conclusion

- ▶ Missing data is common, as are the selection concerns it raises
- Common solution: assume data are Missing (Completely) At Random
 - Impute or ignore incomplete observations, use standard methods
 - Convenient solution, often implausible justification
- ► This paper proposes an interpretable measure of selection, and estimates how much selection is needed to overturn a conclusion

- Missing data is common, as are the selection concerns it raises
- Common solution: assume data are Missing (Completely) At Random
 - Impute or ignore incomplete observations, use standard methods
 - Convenient solution, often implausible justification
- ► This paper proposes an interpretable measure of selection, and estimates how much selection is needed to overturn a conclusion

- Missing data is common, as are the selection concerns it raises
- Common solution: assume data are Missing (Completely) At Random
 - Impute or ignore incomplete observations, use standard methods
 - Convenient solution, often implausible justification
- ► This paper proposes an interpretable measure of selection, and estimates how much selection is needed to overturn a conclusion

 Bollinger et al. (2019) "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch"

- ▶ Bollinger et al. (2019) "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch"
 - CPS ASEC 2015 item and whole nonresponse rate: 43%

- Bollinger et al. (2019) "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch"
 - CPS ASEC 2015 item and whole nonresponse rate: 43%
 - By linking data with SSA tax records, show missing earnings data is not MAR

- Bollinger et al. (2019) "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch"
 - CPS ASEC 2015 item and whole nonresponse rate: 43%
 - By linking data with SSA tax records, show missing earnings data is not MAR
- ► Finkelstein et al. (2012), "The Oregon Health Insurance Experiment: Evidence From the First Year"

- Bollinger et al. (2019) "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch"
 - CPS ASEC 2015 item and whole nonresponse rate: 43%
 - By linking data with SSA tax records, show missing earnings data is not MAR
- ► Finkelstein et al. (2012), "The Oregon Health Insurance Experiment: Evidence From the First Year"
 - Survey data shows Medicaid improved self-reported physical/mental health

- Bollinger et al. (2019) "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch"
 - CPS ASEC 2015 item and whole nonresponse rate: 43%
 - By linking data with SSA tax records, show missing earnings data is not MAR
- Finkelstein et al. (2012), "The Oregon Health Insurance Experiment: Evidence From the First Year"
 - Survey data shows Medicaid improved self-reported physical/mental health
 - Only 50% of survey recipients responded.

- Bollinger et al. (2019) "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch"
 - CPS ASEC 2015 item and whole nonresponse rate: 43%
 - By linking data with SSA tax records, show missing earnings data is not MAR
- ▶ Finkelstein et al. (2012), "The Oregon Health Insurance Experiment: Evidence From the First Year"
 - Survey data shows Medicaid improved self-reported physical/mental health
 - Only 50% of survey recipients responded.
 - When Lee (2009) sample selection bounds were applied, this conclusion could no longer be supported.

Missing data without MAR

- Point identification: Heckman (1979), Das et al. (2003)
- Partial identification: Manski (2005), Lee (2009)
- Robustness/sensitivity analysis: Kline and Santos (2013)

Robustness/Sensitivity analysis

- Missing data: Kline and Santos (2013)
- Potential outcomes: Masten and Poirier (2020)
- Omitted variable bias: Diegert et al. (2022)

⇒ This paper contributes a robustness exercise for missing data that

- i. allows for any number of variables to be missing
- ii. directly uses the researcher's GMM model
- iii. requires no additional data or modeling (no exclusion restriction)
- iv. gives results that are succinct and interpretable

- Missing data without MAR
 - Point identification: Heckman (1979), Das et al. (2003)
 - Partial identification: Manski (2005), Lee (2009)
 - Robustness/sensitivity analysis: Kline and Santos (2013)
- Robustness/Sensitivity analysis
 - Missing data: Kline and Santos (2013)
 - Potential outcomes: Masten and Poirier (2020)
 - Omitted variable bias: Diegert et al. (2022)
- ⇒ This paper contributes a robustness exercise for missing data that
 - i. allows for any number of variables to be missi
 - ii. directly uses the researcher's GMM model
 - iii. requires no additional data or modeling (no exclusion restriction)
 - iv. gives results that are succinct and interpretable

- Missing data without MAR
 - Point identification: Heckman (1979), Das et al. (2003)
 - Partial identification: Manski (2005), Lee (2009)
 - Robustness/sensitivity analysis: Kline and Santos (2013)
- Robustness/Sensitivity analysis
 - Missing data: Kline and Santos (2013)
 - Potential outcomes: Masten and Poirier (2020)
 - Omitted variable bias: Diegert et al. (2022)
- ⇒ This paper contributes a robustness exercise for missing data that
 - i. allows for any number of variables to be miss
 - ii. directly uses the researcher's GMM model
 - iii. requires no additional data or modeling (no exclusion restriction)
 - iv. gives results that are succinct and interpretable

- Missing data without MAR
 - Point identification: Heckman (1979), Das et al. (2003)
 - Partial identification: Manski (2005), Lee (2009)
 - Robustness/sensitivity analysis: Kline and Santos (2013)
- Robustness/Sensitivity analysis
 - Missing data: Kline and Santos (2013)
 - Potential outcomes: Masten and Poirier (2020)
 - Omitted variable bias: Diegert et al. (2022)
- ⇒ This paper contributes a robustness exercise for missing data that
 - i. allows for any number of variables to be missi
 - ii. directly uses the researcher's GMM model
 - iii. requires no additional data or modeling (no exclusion restriction)
 - iv. gives results that are succinct and interpretable

- Missing data without MAR
 - Point identification: Heckman (1979), Das et al. (2003)
 - Partial identification: Manski (2005), Lee (2009)
 - Robustness/sensitivity analysis: Kline and Santos (2013)
- Robustness/Sensitivity analysis
 - Missing data: Kline and Santos (2013)
 - Potential outcomes: Masten and Poirier (2020)
 - Omitted variable bias: Diegert et al. (2022)
- \Rightarrow This paper contributes a robustness exercise for missing data that
 - i. allows for any number of variables to be missing
 - ii. directly uses the researcher's GMM model
 - iii. requires no additional data or modeling (no exclusion restriction)
 - iv. gives results that are succinct and interpretable

- Missing data without MAR
 - Point identification: Heckman (1979), Das et al. (2003)
 - Partial identification: Manski (2005), Lee (2009)
 - Robustness/sensitivity analysis: Kline and Santos (2013)
- Robustness/Sensitivity analysis
 - Missing data: Kline and Santos (2013)
 - Potential outcomes: Masten and Poirier (2020)
 - Omitted variable bias: Diegert et al. (2022)
- \Rightarrow This paper contributes a robustness exercise for missing data that
 - i. allows for any number of variables to be missing
 - ii. directly uses the researcher's GMM model
 - iii. requires no additional data or modeling (no exclusion restriction)
 - iv. gives results that are succinct and interpretable

- Missing data without MAR
 - Point identification: Heckman (1979), Das et al. (2003)
 - Partial identification: Manski (2005), Lee (2009)
 - Robustness/sensitivity analysis: Kline and Santos (2013)
- Robustness/Sensitivity analysis
 - Missing data: Kline and Santos (2013)
 - Potential outcomes: Masten and Poirier (2020)
 - Omitted variable bias: Diegert et al. (2022)
- \Rightarrow This paper contributes a robustness exercise for missing data that
 - i. allows for any number of variables to be missing
 - ii. directly uses the researcher's GMM model
 - iii. requires no additional data or modeling (no exclusion restriction)
 - iv. gives results that are succinct and interpretable

- Missing data without MAR
 - Point identification: Heckman (1979), Das et al. (2003)
 - Partial identification: Manski (2005), Lee (2009)
 - Robustness/sensitivity analysis: Kline and Santos (2013)
- Robustness/Sensitivity analysis
 - Missing data: Kline and Santos (2013)
 - Potential outcomes: Masten and Poirier (2020)
 - Omitted variable bias: Diegert et al. (2022)
- \Rightarrow This paper contributes a robustness exercise for missing data that
 - i. allows for any number of variables to be missing
 - ii. directly uses the researcher's GMM model
 - iii. requires no additional data or modeling (no exclusion restriction)
 - iv. gives results that are succinct and interpretable

- Missing data without MAR
 - Point identification: Heckman (1979), Das et al. (2003)
 - Partial identification: Manski (2005), Lee (2009)
 - Robustness/sensitivity analysis: Kline and Santos (2013)
- Robustness/Sensitivity analysis
 - Missing data: Kline and Santos (2013)
 - Potential outcomes: Masten and Poirier (2020)
 - Omitted variable bias: Diegert et al. (2022)
- \Rightarrow This paper contributes a robustness exercise for missing data that
 - i. allows for any number of variables to be missing
 - ii. directly uses the researcher's GMM model
 - iii. requires no additional data or modeling (no exclusion restriction)
 - iv. gives results that are succinct and interpretable

Overview

- Introduction
- 2 Setting
- Breakdown Point Analysis
- 4 Estimation
- Simulations

Overview

- Introduction
- Setting
- Breakdown Point Analysis
- 4 Estimation
- Simulations

▶ Data is i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.

- ▶ Data is i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.
 - Variables of interest are $(Y,X) \in \mathbb{R}^{d_y} \times \mathbb{R}^{d_x}$.

- ▶ Data is i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.
 - Variables of interest are $(Y, X) \in \mathbb{R}^{d_y} \times \mathbb{R}^{d_x}$.
 - Y may be a vector. If present, X_i is assumed finitely supported

- ▶ Data is i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.
 - Variables of interest are $(Y, X) \in \mathbb{R}^{d_y} \times \mathbb{R}^{d_x}$.
 - Y may be a vector. If present, X_i is assumed finitely supported
 - Example: $Y_i = (Y_i^{(1)}, Y_i^{(2)}) \in \mathbb{R}^2$ collected through survey, X_i is administrative data (age, occupation, etc.).

- ▶ Data is i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.
 - Variables of interest are $(Y, X) \in \mathbb{R}^{d_y} \times \mathbb{R}^{d_x}$.
 - Y may be a vector. If present, X_i is assumed finitely supported
 - Example: $Y_i = (Y_i^{(1)}, Y_i^{(2)}) \in \mathbb{R}^2$ collected through survey, X_i is administrative data (age, occupation, etc.).
- lacktriangle Parameter $eta \in \mathbf{B} \subseteq \mathbb{R}^{d_b}$ is identified through moment conditions

$$E_{P}[g(Y,X,b)] = 0$$
 if and only if $b = \beta$

where P is the unconditional distribution of (Y, X).

- ▶ Data is i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.
 - Variables of interest are $(Y, X) \in \mathbb{R}^{d_y} \times \mathbb{R}^{d_x}$.
 - Y may be a vector. If present, X_i is assumed finitely supported
 - Example: $Y_i = (Y_i^{(1)}, Y_i^{(2)}) \in \mathbb{R}^2$ collected through survey, X_i is administrative data (age, occupation, etc.).
- lacktriangle Parameter $eta \in \mathbf{B} \subseteq \mathbb{R}^{d_b}$ is identified through moment conditions

$$E_{P}[g(Y,X,b)] = 0$$
 if and only if $b = \beta$

where P is the unconditional distribution of (Y, X).

• Example: OLS coefficients $g(Y, X, b) = {Y^{(2)} \choose X} (Y^{(1)} - (Y^{(2)}, X^{\mathsf{T}})b)$

- ▶ Data is i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.
 - Variables of interest are $(Y,X) \in \mathbb{R}^{d_y} \times \mathbb{R}^{d_x}$.
 - Y may be a vector. If present, X_i is assumed finitely supported
 - Example: $Y_i = (Y_i^{(1)}, Y_i^{(2)}) \in \mathbb{R}^2$ collected through survey, X_i is administrative data (age, occupation, etc.).
- lacktriangle Parameter $eta \in \mathbf{B} \subseteq \mathbb{R}^{d_b}$ is identified through moment conditions

$$E_{P}[g(Y,X,b)] = 0$$
 if and only if $b = \beta$

where P is the unconditional distribution of (Y, X).

- Example: OLS coefficients $g(Y, X, b) = {Y^{(2)} \choose X} (Y^{(1)} (Y^{(2)}, X^{\mathsf{T}})b)$
- ▶ Conclusion to be investigated is that β is outside \mathbf{B}_0

$$H_0: \beta \in \mathbf{B}_0$$

$$H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$$

- ▶ Data is i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.
 - Variables of interest are $(Y, X) \in \mathbb{R}^{d_y} \times \mathbb{R}^{d_x}$.
 - Y may be a vector. If present, X_i is assumed finitely supported
 - Example: $Y_i = (Y_i^{(1)}, Y_i^{(2)}) \in \mathbb{R}^2$ collected through survey, X_i is administrative data (age, occupation, etc.).
- lacktriangle Parameter $eta \in \mathbf{B} \subseteq \mathbb{R}^{d_b}$ is identified through moment conditions

$$E_{P}[g(Y,X,b)] = 0$$
 if and only if $b = \beta$

where P is the unconditional distribution of (Y, X).

- Example: OLS coefficients $g(Y, X, b) = {Y^{(2)} \choose X} (Y^{(1)} (Y^{(2)}, X^{\mathsf{T}})b)$
- ▶ Conclusion to be investigated is that β is outside \mathbf{B}_0

$$H_0: \beta \in \mathbf{B}_0$$
 vs $H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$

• Example: first OLS coefficient is positive. $\mathbf{B}_0 = \{b \in \mathbf{B} \; ; \; b^{(1)} \leq 0\}$

▶ Let
$$p_D = P(D = 1)$$
, $X \mid D = 0 \sim P_{0X}$, and

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

▶ Let $p_D = P(D = 1)$, $X \mid D = 0 \sim P_{0X}$, and

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

• The sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, identifies p_D , P_1 , and P_{0X} ...

▶ Let $p_D = P(D = 1)$, $X \mid D = 0 \sim P_{0X}$, and

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

- The sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, identifies p_D , P_1 , and P_{0X} ...
- ...but not P_0 , P, or β solving $E_P[g(Y,X,\beta)] = 0$

▶ Let $p_D = P(D = 1)$, $X \mid D = 0 \sim P_{0X}$, and

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

- The sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, identifies p_D , P_1 , and P_{0X} ...
- ...but not P_0 , P, or β solving $E_P[g(Y, X, \beta)] = 0$
- **Common solution:** estimate β_1 instead

$$E_{P_1}[g(Y,X,\beta_1)]=0$$

MCAR is the assumption $P_0 = P_1$. Implies $P = P_1$ and $\beta = \beta_1$.

▶ Let $p_D = P(D = 1)$, $X \mid D = 0 \sim P_{0X}$, and

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

- The sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, identifies p_D , P_1 , and P_{0X} ...
- ...but not P_0 , P, or β solving $E_P[g(Y, X, \beta)] = 0$
- **Common solution:** estimate β_1 instead

$$E_{P_1}[g(Y,X,\beta_1)]=0$$

MCAR is the assumption $P_0 = P_1$. Implies $P = P_1$ and $\beta = \beta_1$.

▶ Suppose preliminary analysis suggests $\beta_1 \in \mathbf{B} \setminus \mathbf{B}_0$, but MCAR is doubtful.

▶ Let $p_D = P(D = 1)$, $X \mid D = 0 \sim P_{0X}$, and

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

- The sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, identifies p_D , P_1 , and P_{0X} ...
- ...but not P_0 , P, or β solving $E_P[g(Y, X, \beta)] = 0$
- **Common solution:** estimate β_1 instead

$$E_{P_1}[g(Y,X,\beta_1)]=0$$

MCAR is the assumption $P_0 = P_1$. Implies $P = P_1$ and $\beta = \beta_1$.

- ▶ Suppose preliminary analysis suggests $\beta_1 \in \mathbf{B} \setminus \mathbf{B}_0$, but MCAR is doubtful.
 - Hope to defend $\beta \in \mathbf{B} \setminus \mathbf{B}_0$

▶ Let $p_D = P(D = 1)$, $X \mid D = 0 \sim P_{0X}$, and

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

- The sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, identifies p_D , P_1 , and P_{0X} ...
- ...but not P_0 , P, or β solving $E_P[g(Y,X,\beta)]=0$
- **Common solution:** estimate β_1 instead

$$E_{P_1}[g(Y,X,\beta_1)]=0$$

MCAR is the assumption $P_0 = P_1$. Implies $P = P_1$ and $\beta = \beta_1$.

▶ Suppose preliminary analysis suggests $\beta_1 \in \mathbf{B} \setminus \mathbf{B}_0$, but MCAR is doubtful.

MAR?

- Hope to defend $\beta \in \mathbf{B} \setminus \mathbf{B}_0$
- So $P_0 \neq P_1$... but *how* different could they plausibly be?

▶ Let $p_D = P(D = 1)$, $X \mid D = 0 \sim P_{0X}$, and

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

- The sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, identifies p_D, P_1 , and P_{0X} ...
- ...but not P_0 , P, or β solving $E_P[g(Y, X, \beta)] = 0$
- **Common solution:** estimate β_1 instead

$$E_{P_1}[g(Y,X,\beta_1)]=0$$

MCAR is the assumption $P_0 = P_1$. Implies $P = P_1$ and $\beta = \beta_1$.

- ▶ Suppose preliminary analysis suggests $\beta_1 \in \mathbf{B} \setminus \mathbf{B}_0$, but MCAR is doubtful. \bigcirc
 - Hope to defend $\beta \in \mathbf{B} \setminus \mathbf{B}_0$
 - So $P_0 \neq P_1$... but how different could they plausibly be?
 - A quantitative measure of selection will allow meaningful discussion.

Sample is
$$\{D_i, D_i Y_i, X_i\}_{i=1}^n$$
, i.i.d.. $p_D = P(D=1)$,
$$(Y, X) \mid D = 1 \sim P_1, \qquad (Y, X) \mid D = 0 \sim P_0,$$

$$P = p_D P_1 + (1 - p_D) P_0$$

Selection is a greater concern when context suggests (Y, X) would predict D well

Sample is
$$\{D_i, D_i Y_i, X_i\}_{i=1}^n$$
, i.i.d.. $p_D = P(D=1)$,
$$(Y, X) \mid D = 1 \sim P_1, \qquad (Y, X) \mid D = 0 \sim P_0,$$

$$P = p_D P_1 + (1 - p_D) P_0$$

- \triangleright Selection is a greater concern when context suggests (Y, X) would predict D well
 - Example: survey asking about arrest record, vs. survey asking about TV preferences

Sample is $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, i.i.d., $p_D = P(D = 1)$,

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

- \triangleright Selection is a greater concern when context suggests (Y, X) would predict D well
 - Example: survey asking about arrest record, vs. survey asking about TV preferences
- ▶ See this formally with densities. Let f_1 , f_0 be densities of P_1 , P_0 wrt P. Then

$$f_1(y,x) = \frac{p_D(y,x)}{p_D}$$
 $f_0(y,x) = \frac{1 - p_D(y,x)}{1 - p_D}$

where $p_D(y, x) = P(D = 1 | Y = y, X = x)$.

Sample is $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, i.i.d.. $p_D = P(D = 1)$,

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = p_D P_1 + (1 - p_D) P_0$

- \triangleright Selection is a greater concern when context suggests (Y, X) would predict D well
 - Example: survey asking about arrest record, vs. survey asking about TV preferences
- ▶ See this formally with densities. Let f_1 , f_0 be densities of P_1 , P_0 wrt P. Then

$$f_1(y,x) = \frac{p_D(y,x)}{p_D}$$
 $f_0(y,x) = \frac{1 - p_D(y,x)}{1 - p_D}$

where $p_D(y, x) = P(D = 1 | Y = y, X = x)$.

• Optimistic: D is independent of (Y, X). $\Rightarrow p_D(y, x) = p_D$, so $f_1 = f_0$ (data is MCAR)

Sample is $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, i.i.d.. $p_D = P(D = 1)$,

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = \rho_D P_1 + (1 - \rho_D) P_0$

- \triangleright Selection is a greater concern when context suggests (Y, X) would predict D well
 - Example: survey asking about arrest record, vs. survey asking about TV preferences
- ▶ See this formally with densities. Let f_1 , f_0 be densities of P_1 , P_0 wrt P. Then

$$f_1(y,x) = \frac{p_D(y,x)}{p_D}$$
 $f_0(y,x) = \frac{1 - p_D(y,x)}{1 - p_D}$

where $p_D(y, x) = P(D = 1 | Y = y, X = x)$.

- Optimistic: D is independent of (Y, X). $\Rightarrow p_D(y, x) = p_D$, so $f_1 = f_0$ (data is MCAR)
- Pessimistic: D is almost a function of (Y, X). $\Rightarrow p_D(y, x) \approx 1$ or 0; f_1 and f_0 look quite different

▶ Measure **selection** as the **squared Hellinger distance** between P₀ and P₁:

$$H^{2}(P_{0}, P_{1}) = \frac{1}{2} E_{P} \left[(\sqrt{f_{0}(Y, X)} - \sqrt{f_{1}(Y, X)})^{2} \right]$$

where $f_0(y,x)$ and $f_1(y,x)$ are densities of P_0 and P_1 wrt P.

▶ Measure **selection** as the **squared Hellinger distance** between P_0 and P_1 :

$$H^{2}(P_{0}, P_{1}) = \frac{1}{2} E_{P} \left[(\sqrt{f_{0}(Y, X)} - \sqrt{f_{1}(Y, X)})^{2} \right]$$

where $f_0(y,x)$ and $f_1(y,x)$ are densities of P_0 and P_1 wrt P.

$$H^2(P_0, P_1) = 1 - rac{\mathsf{E}_P\left[\sqrt{\mathsf{Var}(D \mid Y, X)}
ight]}{\sqrt{\mathsf{Var}(D)}}$$

▶ Measure **selection** as the **squared Hellinger distance** between P_0 and P_1 :

$$H^{2}(P_{0}, P_{1}) = \frac{1}{2} E_{P} \left[(\sqrt{f_{0}(Y, X)} - \sqrt{f_{1}(Y, X)})^{2} \right]$$

where $f_0(y,x)$ and $f_1(y,x)$ are densities of P_0 and P_1 wrt P.

• $f_1(y,x) = p_D(y,x)/p_D$ and $f_0(y,x) = (1 - p_D(y,x))/p_D$ implies

$$H^2(P_0, P_1) = 1 - \frac{E_P\left[\sqrt{\mathsf{Var}(D \mid Y, X)}\right]}{\sqrt{\mathsf{Var}(D)}}$$

• Interpretation: expected percent standard deviation of D "explained" by (Y,X)

▶ Measure **selection** as the **squared Hellinger distance** between P_0 and P_1 :

$$H^{2}(P_{0}, P_{1}) = \frac{1}{2} E_{P} \left[(\sqrt{f_{0}(Y, X)} - \sqrt{f_{1}(Y, X)})^{2} \right]$$

where $f_0(y,x)$ and $f_1(y,x)$ are densities of P_0 and P_1 wrt P.

• $f_1(y,x) = p_D(y,x)/p_D$ and $f_0(y,x) = (1 - p_D(y,x))/p_D$ implies

$$H^2(P_0, P_1) = 1 - rac{\mathsf{E}_P\left[\sqrt{\mathsf{Var}(D \mid Y, X)}
ight]}{\sqrt{\mathsf{Var}(D)}}$$

- Interpretation: expected percent standard deviation of D "explained" by (Y,X)
- Captures intuition: more predictive power, higher selection

▶ Measure **selection** as the **squared Hellinger distance** between P_0 and P_1 :

$$H^{2}(P_{0}, P_{1}) = \frac{1}{2} E_{P} \left[(\sqrt{f_{0}(Y, X)} - \sqrt{f_{1}(Y, X)})^{2} \right]$$

where $f_0(y,x)$ and $f_1(y,x)$ are densities of P_0 and P_1 wrt P.

$$H^2(P_0, P_1) = 1 - rac{\mathsf{E}_P\left[\sqrt{\mathsf{Var}(D \mid Y, X)}
ight]}{\sqrt{\mathsf{Var}(D)}}$$

- Interpretation: expected percent standard deviation of D "explained" by (Y,X)
- Captures intuition: more predictive power, higher selection
- Range is [0,1]. Equals $0 \Leftrightarrow Var(D \mid Y, X) = Var(D)$, equals $1 \Leftrightarrow Var(D \mid Y, X) = 0$

▶ Measure **selection** as the **squared Hellinger distance** between P_0 and P_1 :

$$H^{2}(P_{0}, P_{1}) = \frac{1}{2} E_{P} \left[(\sqrt{f_{0}(Y, X)} - \sqrt{f_{1}(Y, X)})^{2} \right]$$

where $f_0(y,x)$ and $f_1(y,x)$ are densities of P_0 and P_1 wrt P.

$$H^2(P_0, P_1) = 1 - rac{\mathsf{E}_P\left[\sqrt{\mathsf{Var}(D \mid Y, X)}
ight]}{\sqrt{\mathsf{Var}(D)}}$$

- Interpretation: expected percent standard deviation of D "explained" by (Y,X)
- Captures intuition: more predictive power, higher selection
- Range is [0,1]. Equals $0 \Leftrightarrow Var(D \mid Y, X) = Var(D)$, equals $1 \Leftrightarrow Var(D \mid Y, X) = 0$
- Assumption: P_0 is dominated by P_1 . Domination

▶ Measure **selection** as the **squared Hellinger distance** between P_0 and P_1 :

$$H^{2}(P_{0}, P_{1}) = \frac{1}{2} E_{P} \left[\left(\sqrt{f_{0}(Y, X)} - \sqrt{f_{1}(Y, X)} \right)^{2} \right]$$

where $f_0(y,x)$ and $f_1(y,x)$ are densities of P_0 and P_1 wrt P.

$$H^2(P_0, P_1) = 1 - rac{E_P\left[\sqrt{\mathsf{Var}(D \mid Y, X)}
ight]}{\sqrt{\mathsf{Var}(D)}}$$

- Interpretation: expected percent standard deviation of D "explained" by (Y,X)
- Captures intuition: more predictive power, higher selection
- Range is [0,1]. Equals $0 \Leftrightarrow Var(D \mid Y, X) = Var(D)$, equals $1 \Leftrightarrow Var(D \mid Y, X) = 0$
- Assumption: P_0 is dominated by P_1 . Domination
 - Rules out selection mechanisms that "truncate" data; e.g. $D_i = \mathbb{1}\{Y_i \leq c\}$.

► Setting:

- ► Setting:
 - Model: $E_P[g(Y, X, \beta)] = 0$

- Setting:
 - Model: $E_P[g(Y, X, \beta)] = 0$
 - Hypothesis test: $H_0: \beta \in \mathbf{B}_0$ vs $H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$

- Setting:
 - Model: $E_P[g(Y, X, \beta)] = 0$
 - Hypothesis test: $H_0: \beta \in \mathbf{B}_0$ vs $H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$
 - Data: $\{D_i, D_i Y_i, X_i\}_{i=1}^n$ i.i.d.. with $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.

- Setting:
 - Model: $E_P[g(Y, X, \beta)] = 0$
 - Hypothesis test: $H_0: \beta \in \mathbf{B}_0$ vs $H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$
 - Data: $\{D_i, D_i, Y_i, X_i\}_{i=1}^n$ i.i.d.. with $D_i = \mathbb{I}\{Y_i \text{ is observed}\}$.
 - Identified: p_D , P_1 , P_{0X} . Not identified: $P = p_D P_1 + (1 p_D) P_0$, or β

- Setting:
 - Model: $E_P[g(Y, X, \beta)] = 0$
 - Hypothesis test: $H_0: \beta \in \mathbf{B}_0$ vs $H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$
 - Data: $\{D_i, D_i Y_i, X_i\}_{i=1}^n$ i.i.d.. with $D_i = \mathbb{I}\{Y_i \text{ is observed}\}$.
 - Identified: p_D , P_1 , P_{0X} . Not identified: $P = p_D P_1 + (1 p_D) P_0$, or β
 - Measure of selection: $H^2(P_0, P_1) = 1 E_P[\sqrt{\text{Var}(D \mid Y, X)}]/\sqrt{\text{Var}(D)}$

- Setting:
 - Model: $E_P[g(Y, X, \beta)] = 0$
 - Hypothesis test: $H_0: \beta \in \mathbf{B}_0$ vs $H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$
 - Data: $\{D_i, D_i Y_i, X_i\}_{i=1}^n$ i.i.d.. with $D_i = \mathbb{1}\{Y_i \text{ is observed}\}.$
 - Identified: p_D , P_1 , P_{0X} . Not identified: $P = p_D P_1 + (1 p_D) P_0$, or β
 - Measure of selection: $H^2(P_0, P_1) = 1 E_P[\sqrt{\text{Var}(D \mid Y, X)}]/\sqrt{\text{Var}(D)}$
- ▶ β_1 solves $E_{P_1}[g(Y,X,\beta_1)] = 0$; preliminary analysis suggests $\beta_1 \in \mathbf{B} \setminus \mathbf{B}_0$

- Setting:
 - Model: $E_P[g(Y, X, \beta)] = 0$
 - Hypothesis test: $H_0: \beta \in \mathbf{B}_0$ vs $H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$
 - Data: $\{D_i, D_i Y_i, X_i\}_{i=1}^n$ i.i.d.. with $D_i = \mathbb{1}\{Y_i \text{ is observed}\}.$
 - Identified: p_D , P_1 , P_{0X} . Not identified: $P = p_D P_1 + (1 p_D) P_0$, or β
 - Measure of selection: $H^2(P_0, P_1) = 1 E_P[\sqrt{\text{Var}(D \mid Y, X)}]/\sqrt{\text{Var}(D)}$
- ▶ β_1 solves $E_{P_1}[g(Y,X,\beta_1)] = 0$; preliminary analysis suggests $\beta_1 \in \mathbf{B} \setminus \mathbf{B}_0$
- ▶ How much selection is needed to overturn the conclusion?

- Setting:
 - Model: $E_P[g(Y, X, \beta)] = 0$
 - Hypothesis test: $H_0: \beta \in \mathbf{B}_0$ vs $H_1: \beta \in \mathbf{B} \setminus \mathbf{B}_0$
 - Data: $\{D_i, D_i Y_i, X_i\}_{i=1}^n$ i.i.d.. with $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$.
 - Identified: p_D , P_1 , P_{0X} . Not identified: $P = p_D P_1 + (1 p_D) P_0$, or β
 - Measure of selection: $H^2(P_0, P_1) = 1 E_P[\sqrt{\text{Var}(D \mid Y, X)}]/\sqrt{\text{Var}(D)}$
- ▶ β_1 solves $E_{P_1}[g(Y,X,\beta_1)] = 0$; preliminary analysis suggests $\beta_1 \in \mathbf{B} \setminus \mathbf{B}_0$
- How much selection is needed to overturn the conclusion?
 - Given p_D , P_1 , and P_{0X} how large must $H^2(P_0, P_1)$ be to rationalize $\beta \in \mathbf{B}_0$?

Overview

- Introduction
- 2 Setting
- Breakdown Point Analysis
- 4 Estimation
- Simulations

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

Let P^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$$

lackbox Let ${f P}^b$ be the set of distributions Q dominated by P_1 with marginal $Q_X=P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\text{min over } Q \text{ rationalizing } b}$$

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

$$\delta^{BP} = \underbrace{\inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\text{min over } b \in \mathbf{B}_0}$$

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

▶ The **breakdown point** is the minimum selection needed to rationalize $\beta \in \mathbf{B}_0$:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$$

ightharpoonup Large values of δ^{BP} assuage selection concerns

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

▶ The **breakdown point** is the minimum selection needed to rationalize $\beta \in \mathbf{B}_0$:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$$

- ▶ Large values of δ^{BP} assuage selection concerns
 - The claim $\beta \in \mathbf{B}_0$ implies $\delta^{BP} \leq \frac{1}{2}H^2(P_0,P_1) = 1 E_P\left[\sqrt{\mathsf{Var}(D\mid Y,X)}\right]/\sqrt{\mathsf{Var}(D)}$

Nominally Identified Sets

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$$

- ▶ Large values of δ^{BP} assuage selection concerns
 - The claim $\beta \in \mathbf{B}_0$ implies $\delta^{BP} \leq \frac{1}{2}H^2(P_0, P_1) = 1 E_P\left[\sqrt{\mathsf{Var}(D \mid Y, X)}\right]/\sqrt{\mathsf{Var}(D)}$
 - If the claim (Y, X) predicts D this well is implausible, then $\beta \in \mathbf{B}_0$ is implausible.

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$$

- ▶ Large values of δ^{BP} assuage selection concerns
 - The claim $\beta \in \mathbf{B}_0$ implies $\delta^{BP} \leq \frac{1}{2}H^2(P_0,P_1) = 1 E_P\left[\sqrt{\mathsf{Var}(D\mid Y,X)}\right]/\sqrt{\mathsf{Var}(D)}$
 - If the claim (Y, X) predicts D this well is implausible, then $\beta \in \mathbf{B}_0$ is implausible.
 - Context matters! Example: Survey about arrest record vs. survey about TV

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

▶ The **breakdown point** is the minimum selection needed to rationalize $\beta \in \mathbf{B}_0$:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$$

- ▶ Large values of δ^{BP} assuage selection concerns
 - The claim $\beta \in \mathbf{B}_0$ implies $\delta^{BP} \leq \frac{1}{2}H^2(P_0,P_1) = 1 E_P\left[\sqrt{\mathsf{Var}(D\mid Y,X)}\right]/\sqrt{\mathsf{Var}(D)}$
 - If the claim (Y, X) predicts D this well is implausible, then $\beta \in \mathbf{B}_0$ is implausible.
 - Context matters! Example: Survey about arrest record vs. survey about TV
- \triangleright δ^{BP} is point identified

Nominally Identified Sets

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

▶ The **breakdown point** is the minimum selection needed to rationalize $\beta \in \mathbf{B}_0$:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$$

- ightharpoonup Large values of δ^{BP} assuage selection concerns
 - The claim $\beta \in \mathbf{B}_0$ implies $\delta^{BP} \leq \frac{1}{2}H^2(P_0,P_1) = 1 E_P\left[\sqrt{\mathsf{Var}(D\mid Y,X)}\right]/\sqrt{\mathsf{Var}(D)}$
 - If the claim (Y, X) predicts D this well is implausible, then $\beta \in \mathbf{B}_0$ is implausible.
 - Context matters! Example: Survey about arrest record vs. survey about TV
- $ightharpoonup \delta^{BP}$ is point identified
 - Reporting estimates $\hat{\delta}_n^{BP}$ can facilitate selection concern discussions

Nominally Identified Sets

Breakdown point

Let \mathbf{P}^b be the set of distributions Q dominated by P_1 with marginal $Q_X = P_{0X}$ and

$$0 = p_D E_{P_1}[g(Y, X, b)] + (1 - p_D) E_Q[g(Y, X, b)]$$

say Q rationalizes b.

▶ The **breakdown point** is the minimum selection needed to rationalize $\beta \in \mathbf{B}_0$:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$$

- \blacktriangleright Large values of δ^{BP} assuage selection concerns
 - The claim $\beta \in \mathbf{B}_0$ implies $\delta^{BP} \leq \frac{1}{2}H^2(P_0,P_1) = 1 E_P\left[\sqrt{\mathsf{Var}(D\mid Y,X)}\right]/\sqrt{\mathsf{Var}(D)}$
 - If the claim (Y, X) predicts D this well is implausible, then $\beta \in \mathbf{B}_0$ is implausible.
 - Context matters! Example: Survey about arrest record vs. survey about TV
- $ightharpoonup \delta^{BP}$ is point identified
 - Reporting estimates $\hat{\delta}_n^{BP}$ can facilitate selection concern discussions
 - Worries that $\hat{\delta}^{BP}_n > \delta^{\ddot{B}P}$ (due to sample noise) can be addressed with lower confidence intervals

Nominally Identified Sets

Breakdown point: uniform expectation

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

Breakdown point: uniform expectation

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

Example: The sample is $\{D_i, D_i Y_i\}_{i=1}^n$, and $\beta = E[Y] \in \mathbb{R}$.

$$Y \mid D = 1 \sim \mathcal{U}[0, 1],$$
 $p_D = P(D = 1) = 0.7$

The claim to be supported is $H_1: \beta > 0.4$.

Breakdown point: uniform expectation

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

Example: The sample is $\{D_i, D_i Y_i\}_{i=1}^n$, and $\beta = E[Y] \in \mathbb{R}$.

$$Y \mid D = 1 \sim \mathcal{U}[0, 1],$$
 $p_D = P(D = 1) = 0.7$

The claim to be supported is $H_1: \beta > 0.4$.

Overview

- Introduction
- 2 Setting
- Breakdown Point Analysis
- 4 Estimation
- Simulations

► The breakdown point:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

► The breakdown point:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

is estimated with a two-step procedure:

1. $\hat{\nu}_n(b)$ estimates $\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$

► The breakdown point:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

- 1. $\hat{\nu}_n(b)$ estimates $\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$
- 2. Plug-in second step $\hat{\delta}^{BP} = \inf_{b \in \mathbf{B}_0} \nu(b)$

The breakdown point:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

- 1. $\hat{\nu}_n(b)$ estimates $\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$
- 2. Plug-in second step $\hat{\delta}^{BP} = \inf_{b \in \mathsf{B}_0} \nu(b)$
- $ightharpoonup \hat{\nu}_n(b)$ based on finite dimensional, well-behaved dual problem

The breakdown point:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

- 1. $\hat{\nu}_n(b)$ estimates $\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$
- 2. Plug-in second step $\hat{\delta}^{BP} = \inf_{b \in \mathbf{B}_0} \nu(b)$
- $ightharpoonup \hat{
 u}_n(b)$ based on finite dimensional, well-behaved dual problem
- ▶ Second stage estimator analyzed using functional delta method

► The breakdown point:

$$\delta^{BP} = \inf_{b \in \mathbf{B}_0} \underbrace{\inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)}_{\nu(b)}$$

is estimated with a two-step procedure:

- 1. $\hat{\nu}_n(b)$ estimates $\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1)$
- 2. Plug-in second step $\hat{\delta}^{BP} = \inf_{b \in B_0} \nu(b)$
- $ightharpoonup \hat{\nu}_n(b)$ based on finite dimensional, well-behaved dual problem
- Second stage estimator analyzed using functional delta method
- Lower confidence intervals constructed using bootstrap procedure

Skip to Simulations

► The **primal problem** is

$$\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1) \tag{1}$$

► The **primal problem** is

$$\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1) \tag{1}$$

► The dual problem is

$$V(b) = \sup_{\lambda \in \mathbb{R}^{d_g + K}} E\left[\frac{\lambda^{\mathsf{T}} J(D) h(DY, X, b)}{1 - p_D} - \frac{Df^*(\lambda^{\mathsf{T}} h(DY, X, b))}{p_D}\right]$$
(2)

a finite dimensional convex optimization problem.

► The primal problem is

$$\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1) \tag{1}$$

► The dual problem is

$$V(b) = \sup_{\lambda \in \mathbb{R}^{d_g + K}} E\left[\frac{\lambda^{\mathsf{T}} J(D) h(DY, X, b)}{1 - p_D} - \frac{D f^*(\lambda^{\mathsf{T}} h(DY, X, b))}{p_D}\right]$$
(2)

- a finite dimensional convex optimization problem.
 - f*, J and h are known functions,
 - the expectation is wrt the distribution of (D, DY, X), and
 - K is the cardinality of Supp(X).

► The primal problem is

$$\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1) \tag{1}$$

► The dual problem is

$$V(b) = \sup_{\lambda \in \mathbb{R}^{d_g + K}} E\left[\frac{\lambda^{\mathsf{T}} J(D) h(DY, X, b)}{1 - p_D} - \frac{Df^*(\lambda^{\mathsf{T}} h(DY, X, b))}{p_D}\right]$$
(2)

- a finite dimensional convex optimization problem.
 - f*. J and h are known functions.
 - the expectation is wrt the distribution of (D, DY, X), and
 - K is the cardinality of Supp(X).
- ▶ Under regularity conditions, **strong duality** holds:

$$V(b) = \nu(b)$$

► The **primal problem** is

$$\nu(b) = \inf_{Q \in \mathbf{P}^b} H^2(Q, P_1) \tag{1}$$

13 / 19

► The dual problem is

$$V(b) = \sup_{\lambda \in \mathbb{R}^{d_g + K}} E\left[\frac{\lambda^{\mathsf{T}} J(D) h(DY, X, b)}{1 - p_D} - \frac{Df^*(\lambda^{\mathsf{T}} h(DY, X, b))}{p_D}\right]$$
(2)

a finite dimensional convex optimization problem.

- f^* , J and h are known functions.
- the expectation is wrt the distribution of (D, DY, X), and
- K is the cardinality of Supp(X).
- Under regularity conditions, strong duality holds:

$$V(b) = \nu(b)$$

- Assume this holds for all $b \in B \subseteq \mathbf{B}$, with $\inf_{b \in \mathbf{B}_0} \nu(b) = \inf_{b \in B \cap \mathbf{B}_0} \nu(b)$
- \implies we can focus on the dual problem.

Estimators

• With strong duality, the breakdown point is $\delta^{BP} = \inf_{b \in B \cap B_0} \nu(b)$, where

$$\nu(b) = \sup_{\lambda \in \mathbb{R}^{d_g + K}} E\left[\underbrace{\frac{\lambda^\intercal J(D) h(DY, X, b)}{1 - p_D} - \frac{Df^*(\lambda^\intercal h(DY, X, b))}{p_D}}_{:=\varphi(D, DY, X, b, \lambda, p)}\right]$$

Estimators

▶ With strong duality, the breakdown point is $\delta^{BP} = \inf_{b \in B \cap B_0} \nu(b)$, where

$$\nu(b) = \sup_{\lambda \in \mathbb{R}^{d_{\mathcal{G}} + K}} E\left[\underbrace{\frac{\lambda^{\mathsf{T}} J(D) h(DY, X, b)}{1 - p_D} - \frac{Df^*(\lambda^{\mathsf{T}} h(DY, X, b))}{p_D}}_{:=\varphi(D, DY, X, b, \lambda, p)}\right]$$

▶ Straightforward sample analogue estimators: $\hat{\delta}_n^{BP} = \inf_{b \in \mathbf{B}_0} \hat{\nu}_n(b)$, where

$$\hat{\nu}_n(b) = \sup_{\lambda \in \mathbb{R}^{d_g + K}} \frac{1}{n} \sum_{i=1}^n \varphi(D_i, D_i Y_i, X_i, b, \lambda, \hat{p}_{D,n})$$

Estimators

▶ With strong duality, the breakdown point is $\delta^{BP} = \inf_{b \in B \cap B_0} \nu(b)$, where

$$\nu(b) = \sup_{\lambda \in \mathbb{R}^{d_{\mathcal{G}} + K}} E\left[\underbrace{\frac{\lambda^{\mathsf{T}} J(D) h(DY, X, b)}{1 - p_D} - \frac{Df^*(\lambda^{\mathsf{T}} h(DY, X, b))}{p_D}}_{:=\varphi(D, DY, X, b, \lambda, p)}\right]$$

lacktriangle Straightforward sample analogue estimators: $\hat{\delta}_n^{BP} = \inf_{b \in \mathbf{B}_0} \hat{\nu}_n(b)$, where

$$\hat{\nu}_n(b) = \sup_{\lambda \in \mathbb{R}^{d_g + K}} \frac{1}{n} \sum_{i=1}^n \varphi(D_i, D_i Y_i, X_i, b, \lambda, \hat{p}_{D,n})$$

▶ Under additional regularity conditions, estimators are consistent:

$$\hat{\nu}_n \stackrel{p}{\to} \nu \quad \text{in } \ell^{\infty}(B), \qquad \qquad \hat{\delta}_n^{BP} \stackrel{p}{\to} \delta^{BP}$$

Consistency Assumptions

Theorem Under assumptions discussed in the paper,

$$\sqrt{n}(\hat{\nu}_n - \nu) \stackrel{L}{\rightarrow} \mathbb{G}_{\nu}$$

in $\ell^{\infty}(B)$

Theorem Under assumptions discussed in the paper,

$$\sqrt{n}(\hat{\nu}_n - \nu) \stackrel{L}{\to} \mathbb{G}_{\nu}$$
 in $\ell^{\infty}(B)$

Intuition: for a fixed b, view estimation as GMM:

$$\frac{1}{n}\sum_{i=1}^{n}\begin{pmatrix} \varphi(D_i,D_iY_i,X_i,b,\hat{\lambda}_n(b),\hat{\rho}_{D,n})-\hat{\nu}_n(b)\\ \nabla_{\lambda}\varphi(D_i,D_iY_i,X_i,b,\hat{\lambda}_n(b),\hat{\rho}_{D,n})\\ D_i-\hat{\rho}_{D,n} \end{pmatrix}=0$$

which is asymptotically linear. This linearization is shown to hold uniformly over $b \in B$.

Theorem Under assumptions discussed in the paper,

$$\sqrt{n}(\hat{\nu}_n - \nu) \stackrel{L}{\to} \mathbb{G}_{\nu}$$
 in $\ell^{\infty}(B)$

Intuition: for a fixed b, view estimation as GMM:

$$\frac{1}{n}\sum_{i=1}^{n}\begin{pmatrix} \varphi(D_i,D_iY_i,X_i,b,\hat{\lambda}_n(b),\hat{\rho}_{D,n})-\hat{\nu}_n(b)\\ \nabla_{\lambda}\varphi(D_i,D_iY_i,X_i,b,\hat{\lambda}_n(b),\hat{\rho}_{D,n})\\ D_i-\hat{\rho}_{D,n} \end{pmatrix}=0$$

which is asymptotically linear. This linearization is shown to hold uniformly over $b \in B$.

Theorem Suppose the same assumptions hold. Then $\mathbf{m}(\nu) = \arg\min_{b \in B \cap \mathbf{B}_0} \nu(b)$ is nonempty and

$$\sqrt{n}(\hat{\delta}_n^{BP} - \delta^{BP}) \stackrel{L}{\to} \inf_{b \in \mathbf{m}(\nu)} \mathbb{G}_{\nu}(b)$$

Theorem Under assumptions discussed in the paper,

$$\sqrt{n}(\hat{\nu}_n - \nu) \stackrel{L}{\to} \mathbb{G}_{\nu}$$
 in $\ell^{\infty}(B)$

Intuition: for a fixed b, view estimation as GMM:

$$\frac{1}{n}\sum_{i=1}^{n}\begin{pmatrix} \varphi(D_i,D_iY_i,X_i,b,\hat{\lambda}_n(b),\hat{\rho}_{D,n})-\hat{\nu}_n(b)\\ \nabla_{\lambda}\varphi(D_i,D_iY_i,X_i,b,\hat{\lambda}_n(b),\hat{\rho}_{D,n})\\ D_i-\hat{\rho}_{D,n} \end{pmatrix}=0$$

which is asymptotically linear. This linearization is shown to hold uniformly over $b \in B$.

Theorem Suppose the same assumptions hold. Then $\mathbf{m}(\nu) = \arg\min_{b \in B \cap \mathbf{B}_0} \nu(b)$ is nonempty and

$$\sqrt{n}(\hat{\delta}_n^{BP} - \delta^{BP}) \stackrel{L}{\to} \inf_{b \in \mathsf{m}(\nu)} \mathbb{G}_{\nu}(b)$$

▶ Follows from Hadamard directional differentiability of $\nu \mapsto \inf_{b \in B \cap \mathbf{B}_0} \nu(b)$ and the functional delta method (Fang and Santos (2019)).

Theorem Under assumptions discussed in the paper,

$$\sqrt{n}(\hat{\nu}_n - \nu) \stackrel{L}{\to} \mathbb{G}_{\nu}$$
 in $\ell^{\infty}(B)$

Intuition: for a fixed b, view estimation as GMM:

$$\frac{1}{n}\sum_{i=1}^{n}\begin{pmatrix} \varphi(D_i,D_iY_i,X_i,b,\hat{\lambda}_n(b),\hat{\rho}_{D,n})-\hat{\nu}_n(b)\\ \nabla_{\lambda}\varphi(D_i,D_iY_i,X_i,b,\hat{\lambda}_n(b),\hat{\rho}_{D,n})\\ D_i-\hat{\rho}_{D,n} \end{pmatrix}=0$$

which is asymptotically linear. This linearization is shown to hold uniformly over $b \in B$.

Theorem Suppose the same assumptions hold. Then $\mathbf{m}(\nu) = \arg\min_{b \in B \cap \mathbf{B}_0} \nu(b)$ is nonempty and

$$\sqrt{n}(\hat{\delta}_n^{BP} - \delta^{BP}) \stackrel{L}{\to} \inf_{b \in \mathbf{m}(\nu)} \mathbb{G}_{\nu}(b)$$

- ▶ Follows from Hadamard directional differentiability of $\nu \mapsto \inf_{b \in B \cap B_0} \nu(b)$ and the functional delta method (Fang and Santos (2019)).
- $\mathbf{m}(\nu)$ is plausibly a singleton: $\{b^i\}$. If so, $\sqrt{n}(\hat{\delta}_n^{BP} \delta^{BP})$ is asymptotically normal.

ightharpoonup A large δ^{BP} assuages selection concerns

- ightharpoonup A large δ^{BP} assuages selection concerns
- Skeptical readers may worry $\hat{\delta}_n^{BP} > \delta^{BP}$ due to sample noise

- ightharpoonup A large δ^{BP} assuages selection concerns
- ► Skeptical readers may worry $\hat{\delta}_n^{BP} > \delta^{BP}$ due to sample noise
 - The argument is only strengthened if $\hat{\delta}_{n}^{BP}<\delta^{BP}$

- ightharpoonup A large δ^{BP} assuages selection concerns
- ► Skeptical readers may worry $\hat{\delta}_n^{BP} > \delta^{BP}$ due to sample noise
 - The argument is only strengthened if $\hat{\delta}_{n}^{BP}<\delta^{BP}$
- ▶ Reporting a **lower confidence interval** addresses this concern:

$$\lim_{n\to\infty} P\left(\underbrace{\hat{\delta}_{n}^{BP} - \frac{1}{\sqrt{n}}\hat{c}_{1-\alpha,n}}_{\widehat{C}I_{1,n}} \le \delta^{BP}\right) = 1 - \alpha$$

- ightharpoonup A large δ^{BP} assuages selection concerns
- ► Skeptical readers may worry $\hat{\delta}_n^{BP} > \delta^{BP}$ due to sample noise
 - The argument is only strengthened if $\hat{\delta}^{BP}_{n}<\delta^{BP}$
- ▶ Reporting a **lower confidence interval** addresses this concern:

$$\lim_{n\to\infty} P\left(\underbrace{\hat{\delta}_n^{BP} - \frac{1}{\sqrt{n}}\hat{c}_{1-\alpha,n}}_{\widehat{C}I_{1,n}} \le \delta^{BP}\right) = 1 - \alpha$$

 $ightharpoonup \hat{c}_{1-\alpha,n}$ is estimated with the score bootstrap

- ightharpoonup A large δ^{BP} assuages selection concerns
- ► Skeptical readers may worry $\hat{\delta}_n^{BP} > \delta^{BP}$ due to sample noise
 - The argument is only strengthened if $\hat{\delta}^{BP}_n < \delta^{BP}$
- ▶ Reporting a **lower confidence interval** addresses this concern:

$$\lim_{n\to\infty} P\left(\underbrace{\hat{\delta}_n^{BP} - \frac{1}{\sqrt{n}}\hat{c}_{1-\alpha,n}}_{\widehat{C}I_{1,n}} \leq \delta^{BP}\right) = 1 - \alpha$$

- $ightharpoonup \hat{c}_{1-\alpha,n}$ is estimated with the score bootstrap
 - Assuming $\mathbf{m}(\nu) = \arg\min_{b \in B \cap \mathbf{B}_0} \nu(b)$ is the singleton $\{b^i\}$, $\hat{c}_{1-\alpha,n}$ is computed with a computationally convenient procedure

Overview

- Introduction
- 2 Setting
- Breakdown Point Analysis
- 4 Estimation
- Simulations

Simulations: uniform expectation

Example: The sample is $\{D_i, D_i Y_i\}_{i=1}^n$, and $\beta = E[Y] \in \mathbb{R}$.

$$Y \mid D = 1 \sim \mathcal{U}[0, 1],$$
 $p_D = P(D = 1) = 0.7$

$$p_D = P(D=1) = 0.7$$

The claim to be supported is $H_1: \beta > 0.4$.

Simulations: uniform expectation

Example: The sample is $\{D_i, D_i Y_i\}_{i=1}^n$, and $\beta = E[Y] \in \mathbb{R}$.

$$Y \mid D = 1 \sim \mathcal{U}[0, 1],$$
 $p_D = P(D = 1) = 0.7$

$$p_D = P(D=1) = 0.7$$

The claim to be supported is $H_1: \beta > 0.4$.

250 simulations with P(D=1)=0.7, and $\delta^{BP}\approx 0.2$:

Table: Simulations, Squared Hellinger, Uniform, Mean

n	RMSE	Emp. Bias	Emp. CI Coverage	Ave. CI Length
1000	0.060	0.008	98.4	0.091
2000	0.040	0.005	97.6	0.063
3000	0.032	0.001	96.8	0.051
5000	0.024	0.003	96.4	0.040

Simulations: OLS

Consider a linear model

$$Y_1 = \beta_0 + \beta_1 X_1 + \beta_2 Y_2 + \beta_3 X_2 + \varepsilon = W^{\mathsf{T}} \beta + \varepsilon,$$
 $E[W \varepsilon] = 0$

where X_1, X_2 are discrete and Y_1, Y_2 are continuous.

▶ The conclusion to be investigated is $H_1: \beta_1 > 0$. The observed data is $\{D_i, D_i Y_{i1}, D_i Y_{i2}, X_{i1}, X_{i2}\}_{i=1}^n$.

Simulations: OLS

Consider a linear model

$$Y_1 = \beta_0 + \beta_1 X_1 + \beta_2 Y_2 + \beta_3 X_2 + \varepsilon = W^{\mathsf{T}} \beta + \varepsilon,$$
 $E[W \varepsilon] = 0$

where X_1, X_2 are discrete and Y_1, Y_2 are continuous.

- ▶ The conclusion to be investigated is $H_1: \beta_1 > 0$. The observed data is $\{D_i, D_i Y_{i1}, D_i Y_{i2}, X_{i1}, X_{i2}\}_{i=1}^n$.
- ▶ 250 simulations from a DGP with $P(D=1)\approx 0.7$, and $\delta^{BP}\approx 0.2$:

Table: Simulations, Squared Hellinger, OLS

n	RMSE	Emp. Bias	Emp. CI Coverage	Ave. CI Length
1000	0.043	0.009	100.0	0.078
2000	0.033	0.005	98.0	0.052
3000	0.026	0.007	98.0	0.043
5000	0.017	0.002	98.0	0.032

Empirical coverage suggests inference is conservative.

Conclusion

 Breakdown point analysis is a tractable approach to assessing how robust a conclusion is to relaxing common missing data assumptions.

Conclusion

- Breakdown point analysis is a tractable approach to assessing how robust a conclusion is to relaxing common missing data assumptions.
- ▶ For the conclusion $\beta \in \mathbf{B} \setminus \mathbf{B}_0$, the claim $\beta \in \mathbf{B}_0$ implies

$$\delta^{\mathit{BP}} \leq 1 - rac{E_{\mathit{P}}[\sqrt{\mathsf{Var}(\mathit{D} \mid \mathit{Y}, \mathit{X})}]}{\sqrt{\mathsf{Var}(\mathit{D})}}$$

If it is implausible (Y, X) predicts D this well, then $\beta \in \mathbf{B}_0$ is similarly implausible.

Conclusion

- Breakdown point analysis is a tractable approach to assessing how robust a conclusion is to relaxing common missing data assumptions.
- ▶ For the conclusion $\beta \in \mathbf{B} \setminus \mathbf{B}_0$, the claim $\beta \in \mathbf{B}_0$ implies

$$\delta^{\mathit{BP}} \leq 1 - \frac{E_{\mathit{P}}[\sqrt{\mathsf{Var}(D \mid Y, X)}]}{\sqrt{\mathsf{Var}(D)}}$$

If it is implausible (Y,X) predicts D this well, then $\beta \in \mathbf{B}_0$ is similarly implausible.

▶ The breakdown point δ^{BP} is \sqrt{n} -estimable, and lower confidence intervals can be constructed with simple bootstrap procedures.

Conclusion

- Breakdown point analysis is a tractable approach to assessing how robust a conclusion is to relaxing common missing data assumptions.
- ▶ For the conclusion $\beta \in \mathbf{B} \setminus \mathbf{B}_0$, the claim $\beta \in \mathbf{B}_0$ implies

$$\delta^{\mathit{BP}} \leq 1 - \frac{E_{\mathit{P}}[\sqrt{\mathsf{Var}(\mathit{D} \mid \mathit{Y}, \mathit{X})}]}{\sqrt{\mathsf{Var}(\mathit{D})}}$$

If it is implausible (Y, X) predicts D this well, then $\beta \in \mathbf{B}_0$ is similarly implausible.

- ▶ The breakdown point δ^{BP} is \sqrt{n} -estimable, and lower confidence intervals can be constructed with simple bootstrap procedures.
- ▶ Reporting $\hat{\delta}_n^{BP}$ and the lower confidence interval \widehat{CI}_L is a succinct summary of a conclusion's robustness.

References I

- Bollinger, Christopher R et al. (2019). "Trouble in the tails? What we know about earnings nonresponse 30 years after Lillard, Smith, and Welch". In: *Journal of Political Economy* 127(5), pp. 2143–2185.
- Das, Mitali, Whitney K Newey, and Francis Vella (2003). "Nonparametric estimation of sample selection models". In: *The Review of Economic Studies* 70(1), pp. 33–58.
- Diegert, Paul, Matthew A Masten, and Alexandre Poirier (2022). "Assessing Omitted Variable Bias when the Controls are Endogenous". In: arXiv preprint arXiv:2206.02303.
- Fang, Zheng and Andres Santos (2019). "Inference on directionally differentiable functions". In: *The Review of Economic Studies* 86(1), pp. 377–412.
- Finkelstein, Amy et al. (2012). "The Oregon health insurance experiment: evidence from the first year". In: The Quarterly journal of economics 127(3), pp. 1057–1106.
- Heckman, James J (1979). "Sample selection bias as a specification error". In: Econometrica: Journal of the econometric society, pp. 153–161.
- Kline, Patrick and Andres Santos (2013). "Sensitivity to missing data assumptions: Theory and an evaluation of the US wage structure". In: *Quantitative Economics* 4(2), pp. 231–267.
- Lee, David S (2009). "Training, wages, and sample selection: Estimating sharp bounds on treatment effects". In: The Review of Economic Studies 76(3), pp. 1071–1102.
- Manski, Charles F (2005). "Partial identification with missing data: concepts and findings". In: International Journal of Approximate Reasoning 39(2-3), pp. 151–165.
- Masten, Matthew A and Alexandre Poirier (2020). "Inference on breakdown frontiers". In: Quantitative Economics 11(1), pp. 41–111.

Missing (completely) at random

▶ With i.i.d. sample $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, where $D_i = \mathbb{1}\{Y_i \text{ is observed}\}$

$$(Y,X) \mid D = 1 \sim P_1,$$
 $(Y,X) \mid D = 0 \sim P_0,$ $P = \rho_D P_1 + (1 - \rho_D) P_0$

two common assumptions restore point identification of P

- ▶ Missing completely at random (MCAR) assumes $P_0 = P_1$
 - Testable: do distributions of X match? $P_{0X} = P_{1X}$?
 - Justifies dropping observations where $D_i = 0$
- ▶ Missing at random (MAR) assumes $Y \mid X = x, D = 0$ follows the same distribution as $Y \mid X = x, D = 1$
 - Not testable
 - Justifies imputating $Y \mid X = x, D = 0$ based on distribution of $Y \mid X = x, D = 1$
- Preliminary analysis may be based on either assumption.

Assumption: P_0 is dominated by P_1

- ▶ **Assumption:** P_0 is dominated by P_1 , i.e. $P_0 \ll P_1$.
 - For any set A with $P_1((X,Y) \in A) = 0$, then $P_0((X,Y) \in A) = 0$.
 - Simplifies analysis considerably; set of possible P_0 characterized by densities wrt P_1
 - Allows squared Hellinger to be written as an f-divergence
- ▶ Some support assumption is typically necessary for an interesting exercise.
 - Example: $\beta = E[Y]$. P_1 and P_0 given by

$$P_1(Y = -1) = 0.5$$
 $P_1(Y = 1) = 0.5$ $P_0(Y = -1) = 0.5$ $P_0(Y = 1) = 0.5 - \alpha$ $P_0(Y = y) = \alpha$

Then

$$H^2(P_0, P_1) = (\sqrt{0.5 - \alpha} - \sqrt{0.5} + \sqrt{\alpha})^2$$

can be made arbitrarily close to zero by choice of $\alpha > 0$. For any $\alpha > 0$,

$$E_P[Y] = (1 - p_D)E_{P_0}[Y] = (1 - p_D)\alpha(y - 1)$$

can be made **any number** by choice of $y \in \mathbb{R}$.

Squared Hellinger

Other selection measures: f-divergences

• Given a convex function $f: \mathbb{R} \to [0, \infty]$ satisfying $f(t) = \infty$ for t < 0 and taking a unique minimum of f(1) = 0, the corresponding f-divergence is the function given by

$$d_f(Q||P) = \begin{cases} \int f\left(\frac{dQ}{dP}\right) dP & \text{if } Q \ll P\\ \infty & \text{otherwise} \end{cases}$$
 (3)

Many popular divergences can be written as f-divergences (when $Q \ll P$):

Name	Common formula	$f(t)$ when $t \geq 0$
Squared Hellinger	$H^2(Q,P) = \frac{1}{2} \int \left(\sqrt{\frac{dQ}{dP}(z)} - 1 \right)^2 dP(z)$	$f(t) = \frac{1}{2}(\sqrt{t}-1)^2$
Kullback-Leibler (KL)	$\mathit{KL}(Q P) = \int \log\left(\frac{dQ}{dP}(z)\right) dQ(z)$	$f(t) = t\log(t) - t + 1$
"Reverse" KL	$\mathit{KL}(P \ Q) = \int \log \left(\frac{dP}{dQ}(z) \right) dP(z)$	$f(x) = -\log(t) + t - 1$
Cressie-Read	-	$f_{\gamma}(t)=rac{t^{\gamma}-\gamma t+\gamma-1}{\gamma(\gamma-1)}$, $\gamma<1$

Table: Common *f*-divergences

 Results in the paper allow any f-divergence (satisfying certain regularity conditions) to be used to measure selection

Breakdown Point through Partial Identification

- ▶ Breakdown point analysis can be framed as an exercise in partial identification, as in Kline and Santos (2013), Masten and Poirier (2020), and Diegert et al. (2022).
- ▶ In this framing, consider assumptions of the form $H^2(P_0, P_1) \leq \delta$ for some $\delta > 0$.
- ▶ The *nominal* identified set $\mathbf{B}_{ID}(\delta)$ for β grows with δ . As long as $\mathbf{B}_{ID}(\delta) \subseteq \mathbf{B} \setminus \mathbf{B}_0$, it is clear the conclusion holds.
- ▶ The **breakdown point** δ^{BP} can then be defined as either:
 - 1. the largest δ for which $\mathbf{B}_{ID}(\delta) \subseteq \mathbf{B} \setminus \mathbf{B}_0$, or
 - 2. the smallest δ for which $\mathbf{B}_{ID}(\delta) \cap \mathbf{B}_0 \neq \emptyset$

Breakdown Point

Dual problem (detailed)

The dual problem using squared Hellinger is

$$V(b) = \sup_{\lambda \in \mathbb{R}^{d_g + K}} E\left[\frac{\lambda^\intercal J(D) h(DY, X, b)}{1 - p_D} - \frac{Df^*(\lambda^\intercal h(DY, X, b))}{p_D}\right]$$

where

$$J(D) = \begin{bmatrix} -DI_{d_g} & 0 \\ 0 & (1-D)I_K \end{bmatrix}, \qquad h(DY, X, b) = \begin{pmatrix} g(DY, X, b) \\ 1\{X = x_1\} \\ \vdots \\ 1\{X = x_K\} \end{pmatrix},$$

$$f^*(r) = \begin{cases} \frac{1}{2} \left(\frac{1}{1-2r} - 1 \right) & \text{if } r < 1/2 \\ \infty & \text{o.w.} \end{cases}$$

and $\{x_1, \ldots, x_K\}$ is the support of X.

• $f^*(r) = \sup_{t \in \mathbb{R}} \{rt - f(t)\}$ is the **convex conjugate** of f(t), the function defining the f-divergence used to measure selection.

f-divergences

Formal assumptions: setting and strong duality

Assumption 1 (Setting) $\{D_i, D_i Y_i, X_i\}_{i=1}^n$ is an i.i.d. sample from a distribution satisfying

- (i) $p_D = P(D=1) \in (0,1)$
- (ii) $X \mid D = 1$ and $X \mid D = 0$ have the same finite support $\{x_1, \dots, x_K\}$
- (iii) $E[\sup_{b\in \mathbf{B}} ||g(Y,X,b)|| \mid D=1] < \infty$

Assumption 2 (Strong duality) $B \subseteq \mathbf{B}$ is such that $\inf_{b \in \mathbf{B}_0} \nu(b) = \inf_{b \in B \cap \mathbf{B}_0} \nu(b)$. Furthermore, for each $b \in B$,

- (i) there exists $Q^b \in \mathbf{P}^b$ such that $0 < \frac{\partial Q^b}{\partial P_1}(y,x) < \infty$, almost-surely P_1 .
- (ii) $\lambda(b)$ solving the dual problem is in the interior of $\{\lambda \; ; \; E[|f^*(\lambda^\intercal h(Y,X,b))| \; | \; D=1] < \infty.$

Formal assumptions: consistency

Assumption 3 (Consistency)

- (i) B is compact
- (ii) g(y, x, b) is continuous in b for all (y, x)
- (iii) For each $b\in B$, $\{h_j(y,x,b)\}_{j=1}^{d_g+K}$ are linearly independent in the sense that for any $\lambda\neq 0\in \mathbb{R}^{d_g+K}$,

$$P(\lambda^{\mathsf{T}} h(Y, X, b) \neq 0 \mid D = 1) > 0$$

(iv) For each $b \in B$, there exists a closed convex $\bar{\Lambda}^b$ with $\lambda(b) \in \operatorname{int}(\bar{\Lambda}^b)$ such that $\bar{\Lambda}^B = \left\{ (b, \lambda) \; ; \; b \in B, \; \lambda \in \bar{\Lambda}^b \right\}$ is copmact, and for some open $\mathcal{N} \subset \mathbb{R}$ containing p_D ,

$$E\left[\sup_{p\in\mathcal{N}}\sup_{(b,\lambda)\in\bar{\Lambda}^B} \left|\varphi(D,DY,X,b,\lambda,p)\right|\right]<\infty,$$

$$E\left[\sup_{(b,\lambda)\in\tilde{\Lambda}^{B}}\lVert\nabla_{\lambda}\varphi(D,DY,X,b,\lambda,\rho_{D})\rVert\right]<\infty,\quad E\left[\sup_{(b,\lambda)\in\tilde{\Lambda}^{B}}\lVert\nabla_{\lambda}^{2}\varphi(D,DY,X,b,\lambda,\rho_{D})\rVert\right]<\infty$$

If assumptions 1, 2, and 3 hold, then $\hat{\nu}_n \stackrel{p}{\to} \nu$ in $\ell^{\infty}(B)$ and $\hat{\delta}_n^{BP} \stackrel{p}{\to} \delta^{BP}$.

Formal assumptions: inference

Let
$$\theta(b) = (\nu(b), \lambda(b), \rho_D), \ \theta = (v, \lambda, \rho),$$

$$\phi(D,DY,X,b,\theta) = \phi(D,DY,X,b,v,\lambda,p) = \begin{pmatrix} \varphi(D,DY,X,b,\lambda,p) - v \\ \nabla_{\lambda}\varphi(D,DY,X,b,\lambda,p) \\ D - p \end{pmatrix},$$

$$\Theta^b = \Big\{\theta = (v,\lambda,p) \; ; \; v \in [0,\mathcal{V}], \; \lambda \in \bar{\Lambda}^b, p \in [\underline{p},\overline{p}] \Big\}, \text{ and } \theta^B = \Big\{(b,\theta) \; ; \; b \in B, \theta \in \Theta^b \Big\}.$$

Assumption 4 (Inference) Suppose that

- (i) B₀ is closed
- (ii) B is convex
- (iii) g(z, b) is continuously differentiable with respect to b
- (iv) $\hat{ heta}_n(b) = (\hat{
 u}_n(b), \hat{\lambda}_n(b), \hat{p}_{D,n}) \in \Theta^b$ for each b
- (v) There exists F(d, dy, x) such that

$$\sup_{b \in B} \sup_{\theta \in \Theta^b} \|\nabla_{(b,\theta)} \phi(d,dy,x,b,\theta)\| \le F(d,dy,x)$$

and
$$E[F(D, DY, X)^2] < \infty$$
.

If assumptions 1, 2, 3, and 4 hold, then

$$\sqrt{n}(\hat{\nu}_n - \nu) \overset{L}{\to} \mathbb{G}_{\nu} \text{ in } \ell^{\infty}(B), \qquad \qquad \text{and} \qquad \qquad \sqrt{n}(\hat{\delta}_n^{BP} - \delta^{BP}) \overset{L}{\to} \inf_{b \in \mathbf{m}(\nu)} \mathbb{G}_{\nu}(b) \text{ in } \mathbb{R}$$

Score bootstrap

- Let $\{W_i\}_{i=1}^n$ be i.i.d. scalars, independent of $\{D_i, D_i Y_i, X_i\}_{i=1}^n$, satisfying
 - (i) E[W] = 0,
 - (ii) $E[W^2] = 1$, and
 - (iii) $E[|W|^{2+a}] < \infty$ for some a > 0.
- Let $\hat{\Phi}_n(b) = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} \phi(D_i, D_i Y_i, X_i, b, \hat{\theta}_n(b)),$

$$\hat{G}_{n}^{*}(b) = \hat{\Phi}_{n}(b)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} W_{i} \phi(D_{i}, D_{i} Y_{i}, X_{i}, b, \hat{\theta}_{n}(b))$$

and $\hat{G}_n^*(b,1)$ be the first coordinate of the vector $\hat{G}_n^*(b)$.

Bootstrap procedure

- 1. Compute $\hat{b}_n^i = \arg\min_{b \in B \cap \mathbf{B}_0} \hat{\nu}_n(b)$,
- 2. Generate N bootstrap samples $\{W_i\}_{i=1}^n$ from a distribution with moments described above, and compute $\hat{G}_n^*(\hat{B}_n^i, 1)$ for each of the N bootstrap samples,
- 3. Let $\hat{c}_{1-\alpha,n}$ be the $1-\alpha$ quantile of $\{\hat{G}_{n,k}^*(\hat{b}_n^i,1)\}_{k=1}^N$.

If assumptions 1, 2, 3, and 4 hold, and $\mathbf{m}(\nu) = \arg\min_{b \in B \cap \mathbf{B}_0} \nu(b)$ is the singleton $\{b^i\}$, then

$$\lim_{n\to\infty} P\left(\hat{\delta}_n^{BP} - \frac{1}{\sqrt{n}}\hat{c}_{1-\alpha,n} \leq \delta^{BP}\right) = 1 - \alpha.$$