

$$Q(x) = \sum_{i=1}^p \sum_{j=1}^p \underbrace{a_{ij} x_i x_j}_{\text{Scalay}} = x^T A x \,,$$

where a_{ij} is the (i, j)th element of a symmetric $p \times p$ matrix A.

• If

$$Q(x) \geq 0 \text{ for all } x \neq (0, \dots, 0)^T$$

then the matrix A is called semi positive definite, which is denoted by $A \geq 0$. ($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

However if the quadratic form satisfies

$$Q(x) > 0$$
 for all $x \neq (0, \dots, 0)^T$ 二维行 0 分战

then the matrix A is called positive definite, which is denoted by A > 0.

Then |A| > 0, A^{-1} exists, A is of full rank p, A is non singular.

• If $A \ge 0$ then R = 0 then R = 0 nonsigner R = 0

$$rank(A) = r < p$$

and

- p-r eigenvalues of A are equal to zero
- while the other r are strictly positive.

2.4 GEOMETRICAL ASPECTS

For the rest of Chap 2, vectors are columns unless specified otherwise. To get the results for rows, transpose each vector in each expression.

Distance

• The Euclidian distance d(x,y) between $x,y \in \mathbb{R}^p$ is defined by

$$d(x,y) = \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2} = \sqrt{(x-y)^T (x-y)}$$

Example in \mathbb{R}^2 , where $x = (x_1, x_2)^T$ and $y = (y_1, y_2)^T$:

加神

• A weighted version of this distance can be defined as

$$d(x,y) = \sqrt{\sum_{i=1}^p w_i (x_i - y_i)^2} = \sqrt{(x-y)^T W(x-y)}$$

where each $w_i > 0$ and $W = \text{diag}(w_1, \dots, w_p)$.

• This can be further generalised into the following distance:

$$d(x,y) = \sqrt{(x-y)^T A(x-y)}$$

where A is a $p \times p$ positive definite matrix.

Norm

• The (Euclidian) norm of a vector $x \in \mathbb{R}^p$ is defined by

$$\|x\| = \sqrt{\sum_{i=1}^p x_i^2} = \sqrt{x^T x}$$
. (rector normalization)

- A unit vector is a vector of norm 1.
- Multiplication by an orthogonal matrix is norm preserving: If O is a $p \times p$ orthogonal matrix, then $\|Ox\| = \|x\|, \quad \text{with }$

since

$$||Ox||^2 = x^T Q^T Q x = x^T x = ||x||^2.$$

$$(O X) (O X) = x O X = x^T x = ||x||^2.$$

• Can be generalised into a norm with respect to a positive definite $p \times p$ matrix A:

$$||x||_A = \sqrt{x^T A x} .$$

Angle between two vectors

• The angle θ between two vectors $x, y \in \mathbb{R}^p$ is defined through the cosine of θ by:

$$\cos(\theta) = \frac{x^T y}{\|x\| \cdot \|y\|}.$$

• Orthogonal projection $p_x \in \mathbb{R}^p$ of $x \in \mathbb{R}^p$ onto $y \in \mathbb{R}^p$; example in \mathbb{R}^2 :

 p_x is projected on the line defined by y. What is its length $||p_x||$?

• From trigono: in right angled triangle ACB with right angle at C, $\cos(\text{angle at A}) = b/c$.

If x and y point in same direction $(x^Ty > 0)$:

$$\cos(\theta) = \|p_x\|/\|x\| \Rightarrow \underbrace{\|p_x\| = \cos(\theta)\|x\| = x^T y/\|y\|}; \quad \text{Then the proof of the proo$$

if point in opposite directions $(x^T y < 0)$: $||p_x|| = -x^T y/||y||$.

In both cases, $p_x = \frac{x^T y}{\|y\|} \cdot \frac{y}{\|y\|}$ where $y/\|y\|$ is the unit vector in the direction of y.

Rotation

• We often describe a vector in \mathbb{R}^p through a system of p axes by giving the p coordinates of the vector in that coordinate system.

- In multivariate statistics it is sometimes useful to rotate the axes (all of them at the same time) by an angle θ , creating in this way a new p coordinate system.
- In \mathbb{R}^2 , we can describe a rotation of angle θ via the orthogonal matrix

$$\Gamma = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}.$$

斯特的可對於 If the original axes are rotated counter clockwise through the origin by an angle θ then the new coordinates y of a point with coordinates x in the original system of axes is given by

If the rotation is clockwise, then instead we have

$$y = \Gamma^T x .$$

X前于13年中一少好种转级的。

ullet More generally, premultiplying a vector x by an orthogonal matrix Γ geometrically corresponds to a rotation of the system of axes.

3 MEAN, COVARIANCE, CORRELATION

Sections 3.1, 3.2, 3.3 in Härdle and Simar (2015).

3.1 MEAN

• The mean $\mu \in \mathbb{R}^p$ of a random vector $\mathbf{X} = (X_1, \dots, X_p)^T$ is defined by

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix} = \begin{pmatrix} E(X_1) \\ \vdots \\ E(X_p) \end{pmatrix} .$$

• In practice don't usually know μ but can estimate it from a sample

$$\mathbf{X}_1 = (X_{11}, \dots, X_{1p})^T, \dots, \mathbf{X}_n = (X_{n1}, \dots, X_{np})^T$$

by the sample mean

$$ar{\mathbf{X}} = \begin{pmatrix} ar{X}_1 \\ \vdots \\ ar{X}_p \end{pmatrix} ,$$

where, for j = 1, ..., p, the sample mean

$$\bar{X}_j = \frac{1}{n} \sum_{i=1}^n X_{ij}$$

of the *j*th component X_j is an estimator of μ_j .

• Recall the notation

$$\mathcal{X} = \left(egin{array}{ccc} X_{11} & \dots & X_{1p} \ X_{21} & \dots & X_{2p} \ & dots \ X_{n1} & \dots & X_{np} \end{array}
ight)$$

and $\mathbf{1}_n = (1, \dots, 1)^T$, a column vector of length n.

We can express $\bar{\mathbf{X}}$ in matrix notation as

$$\bar{\mathbf{X}} = n^{-1} \mathcal{X}^T \mathbf{1}_n \qquad \text{The first state of the property of the pr$$

• Note: in the slides, to avoid too heavy notations, when there is no ambiguity we will not use bold to denote a vector.

3.2 COVARIANCE MATRIX

• The covariance σ_{XY} between two random variables X and Y is a measure of the linear dependence between them:

$$\sigma_{XY} = \operatorname{cov}(X, Y) = E(XY) - E(X)E(Y).$$

- $\sigma_{XX} = \operatorname{var}(X)$.
- if X and Y are independent then $\sigma_{XY} = 0$.
- However $\sigma_{XY} = 0$ does not imply that X and Y are independent (there could be a nonlinear dependence).

positive covariance

negative covariance

• If $\mathbf{X} = (X_1, \dots, X_p)^T$ is a random vector, we can collect the pairwise covariances between each pair X_i and X_j in the $p \times p$ covariance matrix Σ :

$$\Sigma = \begin{pmatrix} \sigma_{X_1 X_1} & \dots & \sigma_{X_1 X_p} \\ \vdots & & & \\ \sigma_{X_p X_1} & \dots & \sigma_{X_p X_p} \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1p} \\ \vdots & & & \\ \sigma_{p1} & \dots & \sigma_{pp} \end{pmatrix}$$

- To highlight that it is the covariance of **X** we can write $\Sigma_{\mathbf{X}}$.
- Σ is symmetric: $\Sigma = \Sigma^T$.
- Σ is semi positive definite: $\Sigma \geq 0$.
- In matrix notation,

$$\Sigma = \operatorname{var}(\mathbf{X}) = E\{(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T\},\,$$

where **X** and μ are written as column p-vectors .

• In practice Σ is usually unknown but can be estimated from an iid sample $\mathbf{X}_1, \dots, \mathbf{X}_n$ by the sample covariance matrix

$$S = \begin{pmatrix} s_{X_1X_1} & \dots & s_{X_1X_p} \\ \vdots & & \vdots \\ s_{X_pX_1} & \dots & s_{X_pX_p} \end{pmatrix} = \begin{pmatrix} s_{11} & \dots & s_{1p} \\ \vdots & & \vdots \\ s_{p1} & \dots & s_{pp} \end{pmatrix},$$

where, for
$$j,k=1,\ldots,p$$
,
$$s_{X_jX_k}=s_{kj}=\boxed{\frac{1}{n-1}}\sum_{i=1}^n(X_{ij}-\bar{X}_j)(X_{ik}-\bar{X}_k)$$

is the sample covariance between X_j and X_k .

- Again, we may write $S = S_X$ to highlight the correspondence to X.
 - Like Σ , S is symmetric $(S = S^T)$ and semipositive definite.

• We can obtain S by computing

$$S = \frac{1}{n-1} \mathcal{X}^T \mathcal{X} - \frac{n}{n-1} \bar{\mathbf{X}} \bar{\mathbf{X}}^T,$$

$$\mathcal{Y} \mathcal{Y} \mathcal{X} \mathcal{X}^T \mathcal{X} - \frac{n}{n-1} \bar{\mathbf{X}} \bar{\mathbf{X}}^T,$$
where \mathcal{X} is the $n \times p$ data matrix and $\bar{\mathbf{X}}$ is written as column p -vector.

Hint: always check that matrix dimensions are compatible (i.e. matrices products make sense etc).

3.3 CORRELATION MATRIX

- Problem with covariance matrix: it is not unit invariant, i.e. if we change the units, covariances change.
- The correlation is a measure of linear dependence which is unit invariant.
- The correlation matrix P of a random vector $\mathbf{X} = (X_1, \dots, X_p)^T$ is a $p \times p$ matrix defined by:

$$P = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1p} \\ \rho_{21} & 1 & \dots & \rho_{2p} \\ \vdots & & & \\ \rho_{p1} & \rho_{p2} & \dots & 1 \end{pmatrix}$$

where

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} \quad \rho \left(\text{by an inner by the final of the points of the points$$

is the correlation between X_i and X_j .

- We always have $-1 \le \rho_{ij} \le 1$.
- ρ_{ij} is a measure of the linear relationship between X_i and X_j .
- $|\rho_{ij}| = 1$ means perfect linear relationship.
- $\rho_{ij}=0$ means absence of linear relationship, but does not imply independence.

Strong positive and negative correlations:

Near zero correlations (does not always imply independence):

where Σ is the $p \times p$ covariance matrix and

$$D = \operatorname{diag}(\sigma_{11}, \dots, \sigma_{pp})$$

is the $p \times p$ diagonal matrix of variances.

• In practice *P* is usually unknown but can be estimated from a iid sample X_1, \ldots, X_n by the sample correlation matrix

操物機構作用
$$R = \begin{pmatrix} r_{11} & \dots & r_{1p} \\ \vdots & & & \\ r_{p1} & \dots & r_{pp} \end{pmatrix}$$

where, for $j, k = 1, \ldots, p$,

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}s_{kk}}}$$

is the sample correlation between X_j and X_k computed from $\mathbf{X}_1, \dots, \mathbf{X}_n$.

• In matrix notation we can write

样和粉节
$$R = D^{-1/2}SD^{-1/2}$$
,

where S is the $p \times p$ sample covariance matrix and, on this occasion,

$$D = \operatorname{diag}(s_{11}, \dots, s_{pp})$$

is the $p \times p$ diagonal matrix of sample variances.

3.4 Linear transformations

Let $\mathbf{X} = (X_1, \dots, X_p)^T$ be a *p*-vector and let \mathbf{Y} be *q*-vector defined by

$$\mathbf{Y} = A\mathbf{X} + \mathbf{b} \,,$$

where A is a $q \times p$ matrix and b is a $q \times 1$ vector. Then we have

$$E(\mathbf{Y}) = A \cdot E(\mathbf{X}) + \mathbf{b}$$

$$\bar{\mathbf{Y}} = A\bar{\mathbf{X}} + \mathbf{b}$$

$$\Sigma_{\mathbf{Y}} = A\Sigma_{\mathbf{X}}A^{T}$$

$$S_{\mathbf{Y}} = AS_{\mathbf{X}}A^{T}$$

➡ Hint: to know where to put the transpose, always check that matrix dimensions are compatible.

4 MULTIVARIATE DISTRIBUTIONS

4.1 DISTRIBUTION AND DENSITY FUNCTION

Sections 4.1, 4.2 in Härdle and Simar (2015).

Let $\mathbf{X} = (X_1, \dots, X_p)^T$ be a random vector.

• For all $\mathbf{x} = (x_1, \dots, x_p)^T \in \mathbb{R}^p$, the contribution function (cdf), or distribution function, of \mathbf{X} is defined by

$$F_{\mathbf{X}}(\mathbf{x}) = P(\mathbf{X} \le \mathbf{x}) = P(X_1 \le x_1, \dots, X_p \le x_p)$$

• When there is no ambiguity, we can write F instead of F_X . Advantage: less heavy notations.

• If X is continuous, the probability density function (pdf) or density, $f_{\rm X}$, of X is a nonnegative function defined through

$$F_{\mathbf{X}}(\mathbf{x}) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_p} f_{\mathbf{X}}(\mathbf{u}) \, d\mathbf{u} \equiv \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_p} f_{\mathbf{X}}(u_1, \dots, u_p) \, du_1 \dots \, du_p \,,$$
 where $\mathbf{u} = (u_1, \dots, u_p)$. The specific is 24% as

• It always satisfies

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{u}) d\mathbf{u} = 1.$$

• When there is no ambiguity, we can write f instead of f_X .

• The <u>marginal cdf</u> of a subset of X is obtained by the marginal of X computed at the subset, letting the other values equal to infinity.

ightharpoonup For example, the marginal cdf of X_1 is obtained by taking

 \bullet and the marginal cdf of (X_1, X_3) is obtained by taking

$$F_{X_1,X_3}(x_1, x_3) = P(X_1 \le x_1, X_3 \le x_3)$$

$$= P(X_1 \le x_1, X_2 \le \infty, X_3 \le x_3, X_4 \le \infty, ..., X_p \le \infty)$$

$$= F_{\mathbf{X}}(x_1, \infty, x_3, \infty, ..., \infty).$$

- $\text{ For a continuous random vector } \mathbf{X} \text{, the marginal density of a subset }$ of X is obtained from the joint density f_X of X by integrating out the other components.
 - $lue{}$ For example, the marginal density X_1 is obtained by taking

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, u_2, \dots, u_p) du_2 \dots du_p$$

 \blacksquare and the marginal density of (X_1, X_3) is obtained by taking

$$f_{X_1,X_3}(x_1,x_3) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1,u_2,x_3,u_4,\dots,u_p) du_2 du_4\dots du_p.$$

• For two continuous random vectors X_1 and X_2 , the conditional pdf of X_2 given X_1 is given by

$$f_{X_2|X_1}(x_2|x_1) = f_{X_1,X_2}(x_1,x_2)/f_{X_1}(x_1)$$
.

It is defined only for values x_1 such that $f_{X_1}(x_1) > 0$.

• Two continuous random vectors X_1 and X_2 are independent if and only if

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$$
.

• If X_1 and X_2 are independent then

$$\underbrace{f_{X_2|X_1}(x_2|x_1)}_{f_{X_2|X_1}(x_2|X_1)} = f_{X_1,X_2}(x_1,x_2)/f_{X_1}(x_1) = f_{X_1}(x_1)f_{X_2}(x_2)/f_{X_1}(x_1) = \underbrace{f_{X_2}(x_2)}_{f_{X_1}(x_2)}.$$

Thus knowing the value of X_1 does not change probability assessments on X_2 and vice versa.

• The mean $\mu \in \mathbb{R}^p$ of a random vector $X = (X_1, \dots, X_p)^T$ is defined by

$$\mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix} = \begin{pmatrix} E(X_1) \\ \vdots \\ E(X_p) \end{pmatrix} = \begin{pmatrix} \int x f_{X_1}(x) \, dx \\ \vdots \\ \int x f_{X_p}(x) \, dx \end{pmatrix}.$$

ightharpoonup If X and Y are two p-vectors and α and β are constants then

$$E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y).$$

• If X is a $p \times 1$ vector which is independent of the $q \times 1$ vector Y then

$$E(XY^T) = E(X)E(Y^T).$$

➡ Hint: Remember to always check that matrix dimensions are compatible.

The conditional expectation $E(X_2|X_1=x_1)$ is defined by

$$E(X_2|X_1=x_1)=\int\underbrace{x_2f_{X_2|X_1}(x_2|x_1)\,dx_2}_{\{\chi_1\}\chi_1(\chi_2|X_1)\neq\underbrace{\chi_1\chi_2}_{\{\chi_1\}\chi_1(\chi_2|X_1)}\}$$
 and the conditional covariance matrix $\mathrm{var}(X_2|X_1=x_1)$ is defined by

$$\operatorname{var}(X_2|X_1 = x_1) = E(X_2 X_2^T | X_1 = x_1) - E(X_2 | X_1 = x_1) E(X_2^T | X_1 = x_1),$$

if X_2 is a column vector.

Hint: In doubt check the dimension of the resulting matrices to see if you get them right.

• As seen earlier, the covariance matrix Σ of a vector X of mean μ is defined by

$$\Sigma = \text{var}(X) = E\{(X - \mu)(X - \mu)^T\}.$$

We write

$$X \sim (\mu, \Sigma)$$

to denote a vector X with mean μ and covariance matrix Σ .

• We can also define a covariance matrix between a $p \times 1$ vector X of mean μ and a $q \times 1$ vector Y of mean ν by

$$\Sigma_{X,Y} = \text{cov}(X,Y) = E\{(X - \mu)(Y - \nu)^T\} = E(XY^T) - E(X)E(Y^T).$$

The elements of this matrix are the pairwise covariances between the components of X and those of Y.

ightharpoonup For $p \times 1$ vectors X and Y and a $q \times 1$ vector Z, we have

$$cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)$$

• For $p \times 1$ vectors X and Y we have

For matrices A and B and random vectors X and Y of dimensions such that the below quantities are well defined we have

$$cov(AX, BY) = A cov(X, Y)B^{T}.$$

4.2 MULTINORMAL DISTRIBUTION

Sections 4.4, 4.5, 5.1 in Härdle and Simar (2015).

A very useful and commonly encountered distribution is the multinormal distribution, also simply called normal distribution.

ullet Recall that in the univariate case, the density of a $N(\mu,\sigma^2)$ is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-(x-\mu)^2/(2\sigma^2)\}.$$

 ■ In the multivariate case, need to deal with vectors and matrices.

The density of a normal vector $X = (X_1, \dots, X_p)^T$ with mean $\mu = (\mu_1, \dots, \mu_p)^T$ and positive definite covariance matrix

$$\Sigma = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1p} \\ \vdots & & \\ \sigma_{p1} & \dots & \sigma_{pp} \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & \dots & \sigma_{1p} \\ \vdots & & \\ \sigma_{p1} & \dots & \sigma_p^2 \end{pmatrix} ,$$

where $\sigma_j^2 = \text{var}(X_j)$, is given by

$$f(x) = |2\pi\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}. \tag{1}$$

• If the p-vector X is normal with mean μ and cov matrix Σ we write

$$X \sim N_p(\mu, \Sigma)$$
.

If the X_i 's are independent, then

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \dots & 0 \\ \vdots & & \\ 0 & \dots & \sigma_p^2 \end{pmatrix} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_p^2).$$

Thus

$$|2\pi\Sigma|=|\operatorname{diag}(2\pi\sigma_1^2,\dots,2\pi\sigma_p^2)|=(2\pi)^p\sigma_1^2\cdots\sigma_p^2$$

and

 $\Sigma^{-1} = \operatorname{diag}(\sigma_1^{-2}, \dots, \sigma_p^{-2})$

so that

$$f(x) = \frac{1}{\sqrt{(2\pi)^p} \prod_{j=1}^p \sigma_j} \exp\left\{-\frac{1}{2} \sum_{j=1}^p (x_j - \mu_j)^2 / \sigma_j^2\right\}$$

$$= \frac{1}{\sqrt{(2\pi)^p} \prod_{j=1}^p \sigma_j} \prod_{j=1}^p \exp\left\{-\frac{1}{2} (x_j - \mu_j)^2 / \sigma_j^2\right\}$$

$$= \prod_{j=1}^p \left[\frac{1}{\sqrt{2\pi}\sigma_j} \exp\left\{-(x_j - \mu_j)^2 / (2\sigma_j^2)\right\}\right].$$

is the product of densities of p univariate $N(\mu_j, \sigma_j^2)$.

We see from (1) that f(x) takes the same value for all $x \in \mathbb{R}^p$ such

$$(x - \mu)^T \Sigma^{-1}(x - \mu) = c$$

where c is a positive constant. For each c > 0, these x-values correspond to an ellipsoid (a different one for each c > 0; they are called contour ellipsoids).

The quantity

$$\sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

is called the Mahalanobis distance between x and μ and μ for example in p=2 dimensions:

Fig. 4.3 Scatterplot of a normal sample and contour ellipses for $\mu = \binom{3}{2}$ and $\Sigma = \binom{1}{-1.5} \binom{-1.5}{4}$

• Let $X \sim N_p(\mu, \Sigma)$, A a $q \times p$ matrix and b a $q \times 1$ vector. Then

$$Y = AX + b \sim N_q(A\mu + b, A\Sigma A^T)$$
.

• Let $X = (X_1^T, X_2^T)^T \sim N_p(\mu, \Sigma)$ where X_1 and X_2 are two column vectors. Then

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

where

$$\Sigma_{11} = \text{var}(X_1), \quad \Sigma_{22} = \text{var}(X_2), \quad \Sigma_{12} = \text{cov}(X_1, X_2) \quad \Sigma_{21} = \text{cov}(X_2, X_1).$$

Then one can prove (not us)

$$\Sigma_{12} = 0 \iff X_1 \text{ and } X_2 \text{ are independent.}$$

• If $X \sim N_p(\mu, \Sigma)$ and A and B are matrices with p columns, then

AX and BX are independent
$$\Leftrightarrow$$
 $A\Sigma B^T = 0$. (2)

• If $X \sim N_p(\mu, \Sigma)$ and Σ is invertible, then

$$Y = (X - \mu)^T \Sigma^{-1} (X - \mu) \sim \chi_p^2 \quad \text{(chi square with p degrees of freedom)}.$$

$$\text{(chi square with p degrees of freedom)}.$$

$$\text{If X_1, \ldots, X_n are i.i.d.} \sim N_p(\mu, \Sigma), \text{ then}$$

$$\text{(color in the polynomial of the polynomial polynomial in the polynomial polynomial$$

Aurore Delaigle Lecture notes, MAST 90138, 2023

y= $(x-W)^{\frac{1}{2}-\frac{1}{2}} = \frac{1}{2}(x-W)$ = $z^{\frac{1}{2}}$ where $z=z^{-\frac{1}{2}}(x-W)$ $x = x^{\frac{1}{2}}$

5 Zin X20)

x-11 (5)

66

It depends on 3 parameters: p, a $p \times p$ scale matrix Σ and the number of degrees of freedom n:

$$W_p(\Sigma, n)$$
.

• Recall that if Z_1, \ldots, Z_n are independent N(0, 1) then

$$X = \sum_{k=1}^{n} Z_k^2 \sim \chi_n^2$$

is a chi square with n degrees of freedom.

• If M is an $p \times n$ matrix whose columns are independent and all have a $N_p(0,\Sigma)$ distribution, then the matrix

$$M: 23/3 = 12$$

$$7 Columns are normal distribution 7x7$$

i.e. MM^T has a Wishart distribution with parameters p, Σ and α

 $W_1(6^2, n)$ $Y = MM^T = (\Pi_1, \dots, \Pi_n) C_{\Pi_2} P = \Pi^2 + \dots + \Pi_n^2$ There $\Pi_j \leq a$ we independent $N(60, 6^2)$ Thus $\Pi_j = 6Z_j$ where $Z_j = N(0, 1)$ and the $Z_j = 1$ are idependent.

Thus $M = 6^2 Z_j Z_j^2$ γ_n^2

143