## DMA Domácí úkol č. 8b

Tento úkol vypracujte a pak přineste na cvičení č. 9.

1. Nechť  $\mathcal{R}$  je relace na A. Dokažte:

Je-li  $\mathcal{R}$  antisymetrická, tak je i  $\mathcal{R}^{-1}$  antisymetrická.

Použijte novou strukturu důkazu (viz obdobný příklad na cvičení/semináři).

- **2.** Uvažujte zobrazení  $T: \mathbb{N} \to \mathbb{Z}$  dané T(n) = 2n. Rozhodněte, zda je toto zobrazení prosté a zda je na. Své odpovědi dokažte.
- 3. Bonus: Uvažujte zobrazení  $T: \mathbb{N}^2 \to \mathbb{N}$  dané T(m,n) = m+n. Rozhodněte, zda je toto zobrazení prosté a zda je na. Své odpovědi dokažte.

## Řešení:

1. Dk: Předpoklad:  $\mathcal{R}$  antisymetrická. Dokážeme:  $\mathcal{R}^{-1}$  antisymetrická.

Rozbor: Aby byla relace  $\mathcal S$  antisymetrická, musí pro všechna  $a,b\in A$  splňovat podmínku

 $[(a,b) \in \mathcal{S} \land (b,a) \in \mathcal{S}] \implies a = b$ , popřípadě  $[a\mathcal{S}b \land b\mathcal{S}a] \implies a = b$  dle preferovaného značení.

My chceme toto aplikovat na relaci  $\mathcal{R}^{-1}$ , tedy potřebujeme čtenáře přesvědčit o platnosti podmínky  $[a\mathcal{R}^{-1}b \wedge b\mathcal{R}^{-1}a] \implies a = b$ . Tím je dáno, odkud kam jej chceme zavést.

Takže znovu:

Dk: Předpoklad:  $\mathcal{R}$  antisymetrická. Dokážeme:  $\mathcal{R}^{-1}$  antisymetrická.

Vezměme libovolné  $\underline{a, b \in A}$  splňující  $\underline{(a, b) \in \mathcal{R}^{-1}}$  a  $\underline{(b, a) \in \mathcal{R}^{-1}}$ . Pak  $(b, a) \in \mathcal{R}$  a  $(a, b) \in \mathcal{R}$ , díky antisymetrii  $\mathcal{R}$  je tedy b = a neboli a = b.

Poznámka: Je také možné udělat kroky

$$[a\mathcal{R}^{-1}b \wedge b\mathcal{R}^{-1}a] \longrightarrow [b\mathcal{R}a \wedge a\mathcal{R}b] \longrightarrow [a\mathcal{R}b \wedge b\mathcal{R}a] \longrightarrow \underline{a=b}.$$

Všimněte si, že jsme v druhém kroku neměnili pořadí prvků v relacích, ale použili komutativitu logické konjunkce  $\wedge$ .

V důkazu jsem dával pozor na přesný zápis antisymetrie, tedy že v rovnosti je stejné pořadí prvků jako v první relaci předpokladu. Je to podstatné? Z hlediska logiky samozřejmě ano, ale z hlediska praktického matematického života by to lidé obvykle neřešili, protože stejně víme, že v rovnosti na pořadí nezáleží. Takže bych to bral i takto:

$$[a\mathcal{R}^{-1}b \wedge b\mathcal{R}^{-1}a] \longrightarrow [b\mathcal{R}a \wedge a\mathcal{R}b] \longrightarrow a = b.$$

Poznámka: Je také možné použít náš tradiční jednodušší přímý postup od předpokladu k závěru:

Předpoklad:  $\mathcal{R}$  antisymetrická  $\longrightarrow (a\mathcal{R}b \wedge b\mathcal{R}a) \implies a = b$ .

Relace v předpokladu přepíšeme dle definice  $\mathcal{R}^{-1}$  a dostaneme

$$(b\mathcal{R}^{-1}a \wedge a\mathcal{R}^{-1}b) \implies a = b$$
. Díky komutativitě  $\wedge$  pak

$$(a\mathcal{R}^{-1}b \wedge b\mathcal{R}^{-1}a) \implies a = b \text{ a tedy } \mathcal{R}^{-1} \text{ je antisymetrická}.$$

Tento typ důkazu má dvě nevýhody: Vyžaduje nějak logicky odůvodnit přechod od jednoho logického výroku v jiný, což vyžaduje určitou zkušenost. Zásadnější problém je, že selhává v komplikovanějších situacích, zejména v těch, kdy předpoklad a závěr nemají téměř stejnou logickou strukturu jako zde. Proto jsem v zadání chtěl, ať si procvičíte novou strukturu důkazu, která je výrazně flexibilnější.

## 2. Intuitivní představa je



Toto zobrazení je prosté.

Dk: Lib.  $m, n \in \mathbb{N}$ , předpokládáme T(m) = T(n). To znamená 2m = 2n, tedy m = n.

Na: Intuitivně: Zobrazení vyrábí sudá čísla. To ale nepokryje Z.

Toto zobrazení není na. Dk: Zvolme  $b=13\in\mathbb{Z}$ . Pak neexistuje  $n\in\mathbb{N}$  splňující T(n)=2n=13.

Poznámka: Je jasné, že za b lze zvolit libovolné liché číslo, libovolné záporné číslo či nulu.

Poznámka: Pokud nám nestačí intuice, je často dobrý nápad prostě zkusit důkaz: Vezmeme libovolné  $b \in \mathbb{Z}$ . Hledáme  $n \in \mathbb{N}$  tak, aby T(n) = b. Takže chceme 2n = b neboli  $n = \frac{1}{2}b$ . Pak opravdu funguje vzorec  $T(n) = 2n = 2 \cdot \frac{1}{2b} = b$ , ale neplatí  $n \in \mathbb{N}$  a tím se to zkazí.

Mimochodem to ukazuje, že když si někdo zvykne psát formálně to  $k \in \mathbb{Z}$  a podobně, jak s tím pořád otravuju, a nezamyslí se nad tím, tak tady automaticky napíše  $n \in \mathbb{N}$  a myslí si, že zobrazení je na.

## **3.** T není prosté.

Dk: T(1,2) = 3 = T(2,1).

Poznámka: Z rovnice T(m,n) = T(x,y) dostaneme m+n=x+y, chceme získat (m,n)=(x,y). To nejde.

T není na.

Dk: Neexistuje  $(m, n) \in \mathbb{N}$  takové, že T(m, n) = 1. Pro  $(m, n) \in \mathbb{N}$  totiž platí  $m + n \ge 1 + 1 = 2$ .

Poznámka: Pokud bychom T brali jako zobrazení  $\mathbb{N}^2 \mapsto \mathbb{N} \setminus \{1\}$ , tak už bude na.

Dk: Dáno  $b \in \mathbb{N} \setminus \{1\}$ . Zvolíme m = 1 a n = b - 1. Pak evidentně

$$T(m,n) = T(1,b-1) = 1 + (b-1) = b$$

a  $m \in \mathbb{N}$ . Víme  $n \in \mathbb{Z}$  a díky  $b \geq 2$  také  $n \geq 1$ , proto  $n \in \mathbb{N}$  a tedy  $(m, n) \in \mathbb{N}^2$ .