

UPDATE 2017-07-31

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna²

¹EEIGM, Université de Lorraine, Nancy, France ²Division of Materials Science, Luleâ University of Technology, Luleâ, Sweden

July 31, 2017

Outline

- Symbols, Models, Equations & Reference Data
- **Nesults**
- Summary & Conclusion

Symbols Reference Models Angular discretization Material properties Evaluation of Gn VCCT VCC

SYMBOLS, MODELS, EQUATIONS & REFERENCE DATA

Description

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VC

Symbols

Symbol

Unit

θ	[°]	Debond angular position with respect to the center of the arc defined by the debond itself
$\Delta \theta$	[°]	Debond semi-angular aperture
δ	[°]	Angle subtended by a single element at the fiber/matrix interface
VF_f	[-]	Fiber volume fraction
I	[<i>µm</i>]	Ply's half-length, equal to RVE's half-length (square element)
и	$[\mu m]$	Displacement along x
W	$[\mu m]$	Displacement along z

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

Symbols Reference Models Angular discretization Material properties Evaluation of G_0 VCCT

Symbols

Symbol	Unit	Description
Γ ₁	[-]	Bonded part of fiber surface
Γ_2	[-]	Free (debonded) part of fiber surface
Γ_3	[-]	Bonded part of matrix surface
Γ_4	[-]	Free (debonded) part of matrix surface

Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCCI

Reference Models

Simple RVE, BC: free.

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCCI

Reference Models

Simple RVE, BC: fixed vertical displacement.

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

Reference Models

Simple RVE, BC: fixed vertical and homogeneous horizontal displacement.

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

Angular discretization

Angular discretization at fiber/matrix interface: $\delta = \frac{360^{\circ}}{4N_{\odot}}$.

Symbols Reference Models Angular discretization Material properties Evaluation of G_0 VCCT VCC

Material properties

Material	E [GPa]	G [GPa]	$\nu\left[- ight]$
Glass fiber	70,0	29,2	0,2
Ероху	3,5	1,25	0,4

ymbols Reference Models Angular discretization Material properties **Evaluation of** G_0 VCCT VCC

Evaluation of G_0

$$G_0 = \pi R_f \sigma_0^2 \frac{1 + k_m}{8G_m} \tag{1}$$

$$k_m = 3 - 4\nu_m \tag{2}$$

$$\sigma_0^{undamaged} = \frac{E_m}{1 - \nu_m^2} \varepsilon_{xx} \tag{3}$$

Symbols, Models, Equations & Reference Data Results

Symbols Reference Models Angular discretization Material properties Evaluation of Go VCCT VCCI

Virtual Crack Closure Technique (Nodal Forces at Crack Tip)

$$\Delta u = \left| \Delta u_{1}^{\text{matrix}} \right|_{\text{element before crack tip}} - \Delta u_{1}^{\text{fiber}}$$
(4)

$$\Delta w = \left| \Delta w_1^{matrix} - \Delta w_1^{fiber} \right|$$
 (5)

$$\beta = \arctan \begin{pmatrix} z_{\text{crack tip}}^{\text{matrix}, \text{undef}} \\ z_{\text{crack tio}}^{\text{matrix}, \text{undef}} \end{pmatrix}$$
 (6)

$$\Delta_{r} = \cos(\beta)\Delta u + \sin(\beta)\Delta w \qquad \Delta_{\theta} = -\sin(\beta)\Delta u + \cos(\beta)\Delta w \tag{7}$$

$$F_r = \cos(\beta)F_\chi^{reaction} + \sin(\beta)F_Z^{reaction}$$
 $F_\theta = -\sin(\beta)F_\chi^{reaction} + \cos(\beta)F_Z^{reaction}$ (8)

$$G_{I} = \frac{1}{2} \frac{F_{r} \Delta_{r}}{R_{r} \delta}$$
 $G_{II} = \frac{1}{2} \frac{F_{\theta} \Delta_{\theta}}{R_{r} \delta}$ $b = 1.0 \leftrightarrow \Delta A = bR_{f} \delta$ (9)

Reference Models Angular discretization Material properties Evaluation of G₀ VC

Virtual Crack Closure Integral (Stress at Surface Nodes)

$$G_{I} = \frac{1}{2\Delta A} \int_{0}^{\Delta c} \sigma_{II}(s) \, \delta u_{II}(s - \Delta c) \, ds \quad G_{II} = \frac{1}{2\Delta A} \int_{0}^{\Delta c} \tau_{SII}(s) \, \delta u_{SI}(s - \Delta c) \, ds \tag{10}$$

with the reference frame centered on the crack tip and rotated according to the orientation of the crack tip.

$$\beta = \arctan \left(\frac{z_{\text{crack tip}}^{\textit{matrix}}, \textit{undef}}{x_{\text{matrix}}^{\textit{matrix}}, \textit{undef}} \right) \tag{11}$$

$$\Delta u^i = \left| \Delta u^{\textit{matrix}}_{i \text{ elements before crack tip}} - \Delta u^{\textit{fiber}}_{i \text{ elements before crack tip}} \right| \tag{12}$$

$$\Delta w^{i} = \left| \Delta w_{i}^{matrix} - \Delta w_{i}^{fiber} \right|$$
 (13)

$$\Delta_f^i = \cos(\beta)\Delta u^i + \sin(\beta)\Delta w^i \qquad \Delta_\theta^i = -\sin(\beta)\Delta u^i + \cos(\beta)\Delta w^i$$
 (14)

Symbols, Models, Equations & Reference Data Results

Reference Models Angular discretization Material properties Evaluation of Go

Virtual Crack Closure Integral (Stress at Surface Nodes)

$$\sigma_{II}^{m,i} = \sigma_{XX}^{m,i}$$
 elements after c.t. $\cos^2 \beta + \sigma_{ZZ}^{m,i}$ elements after c.t. $\sin^2 \beta + 2\tau_{XZ}^{m,i}$ elements after c.t. $\sin \beta \cos \beta$ (15)

$$\tau_{\ell\theta}^{m,i} = \left(\sigma_{ZZ}^{m,i \text{ elements after c:ack tip}} - \sigma_{\chi\chi}^{m,i \text{ elements after c:t.}}\right) \sin\beta\cos\beta + \tau_{\chi Z}^{m,i \text{ elements after c:t.}} \left(\cos^2\beta - \sin^2\beta\right)$$
(16)

where m stands for material, i.e. stresses can be extracted either on the fiber or the matrix surface.

$$G_{I}^{m} = \frac{1}{2R_{f}\delta b} \sum_{i=1}^{N \ln t} \frac{1}{2} R_{f}\delta \left(\sigma_{rr}^{m,i} \Delta_{r}^{i} + \sigma_{rr}^{m,i-1} \Delta_{r}^{i-1} \right) \qquad G_{II}^{m} = \frac{1}{2R_{f}\delta b} \sum_{i=1}^{N \ln t} \frac{1}{2} R_{f}\delta \left(\tau_{r\theta}^{m,i} \Delta_{\theta}^{i} + \tau_{r\theta}^{m,i-1} \Delta_{\theta}^{i-1} \right)$$
(17)

remembering b = 1, i.e. unit depth in the out-of-plane direction, they simplify to

$$G_{I}^{m} = \frac{1}{4} \left(\sigma_{rr}^{m,0} \Delta_{r}^{0} + \sum_{i=1}^{N \text{ Int } EI-1} \left(2\sigma_{rr}^{m,i} \Delta_{r}^{i} \right) + \sigma_{rr}^{m,N \text{ Int } EI} \Delta_{r}^{N \text{ Int } EI} \right)$$
(18)

$$G_{II}^{m} = \frac{1}{4} \left(\tau_{r\theta}^{m,0} \Delta_{\theta}^{0} + \sum_{i=1}^{N \text{ Int } EI - 1} \left(2\tau_{r\theta}^{m,i} \Delta_{\theta}^{i} \right) + \tau_{r\theta}^{m,N \text{ Int } EI} \Delta_{\theta}^{N \text{ Int } EI} \right)$$

$$\tag{19}$$

Model Data $\delta=1.0^\circ$ $\delta=0.9^\circ$ $\delta=0.8^\circ$ $\delta=0.7^\circ$ $\delta=0.6^\circ$ $\delta=0.5^\circ$ $\delta=0.4^\circ$ $\delta=0.3^\circ$ $\delta=0.2^\circ$ Summary

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.5^{\circ}$

 0.4° $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summ

Model Data

Quantity	Value
θ [$^{\circ}$]	0
$\Delta heta\left[^{\circ} ight]$	$\in [10,150]$
δ [$^{\circ}$]	$\in [1,0.2]$
$VF_f[-]$	$7.9\cdot 10^{-5}$
$\frac{L}{R_t}[-]$	~ 100
$R_f[\mu m]$	1

 $\label{eq:delta-$

 σ_0 , $\delta=1.0^\circ$

In red small strain FEM, in black analytical plain strain value.

 $\label{eq:def-Model Data} \ \ \delta = \textbf{1.0}^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary and Model}$

 $G_0, \delta = 1.0^{\circ}$

In red small strain FEM, in black analytical plain strain value.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral (Abaqus built-in routine), $\delta=1.0^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta = 1.0^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral and VCCT in forces, $\delta = 1.0^{\circ}$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_l from VCCI, stresses extracted on fiber surface, $\delta = 1.0^{\circ}$

Normalized energy release rate $\frac{G_{i-1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_{\parallel} from VCCI, stresses extracted on fiber surface, $\delta=1.0^{\circ}$

Normalized energy release rate $\frac{G_{s,t}}{st}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_{TOT} from VCCI, stresses extracted on fiber surface, $\delta=1.0^{\circ}$

Normalized energy release rate $\frac{G_{i+1}}{G_{i+1}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Summary of $G_{(...)}$ from VCCI, stresses extracted on liber surface,

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_l from VCCl, stresses extracted on matrix surface, $\delta = 1.0^{\circ}$

Normalized energy release rate $\frac{G_{i+1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_{II} from VCCI, stresses extracted on matrix surface, $\delta=1.0^{\circ}$

Normalized energy release rate $\frac{G_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_{TOT} from VCCI, stresses extracted on matrix surface, $\delta = 1.0^{\circ}$

Normalized energy release rate $\frac{G_{1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

Summary or $G_{(...)}$ from VCCI, stresses extracted on matrix surface,

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 σ_{0} , $\delta=0.9^{\circ}$

In red small strain FEM, in black analytical plain strain value.

30

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

$$G_0$$
, $\delta = 0.9^\circ$

In red small strain FEM, in black analytical plain strain value.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral (Abaqus built-in routine), $\delta = 0.9^{\circ}$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta=0.9^\circ$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral and VCCT in forces, $\delta = 0.9^{\circ}$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.7^{\circ}$

 $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta =$

 G_l from VCCI, stresses extracted on fiber surface, $\delta = 9.0^{\circ}$

Normalized energy release rate $\frac{G_{s,t}}{st}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_{\parallel} from VCCI, stresses extracted on fiber surface, $\delta=9.0^{\circ}$

Normalized energy release rate $\frac{a_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

G_{TOT} from VCCI, stresses extracted on fiber surface, $\delta = 9.0^{\circ}$

Normalized energy release rate $\frac{G_{i-1}}{d_i}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary Summary of $G_{(...)}$ from VGGI, Stresses extracted on Tiber Surface,

8 = 9.0° Committed energy robous rate $\frac{G_{ij}}{G_{ij}}$ as function of crack angular semi-sporture $\Delta \theta_i$, calculated with in locus brew-based and stross-based AVCCT post-processing rootines with strosses extracted on the liber side of the interface

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$

 $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_l from VCCI, stresses extracted on matrix surface, $\delta = 9.0^{\circ}$

Normalized energy release rate $\frac{G_{i-1}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{II} from VCCI, stresses extracted on matrix surface, $\delta = 9.0^{\circ}$

Normalized energy release rate $\frac{G_{i+1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{TOT} from VCCI, stresses extracted on matrix surface, $\delta = 9.0^{\circ}$

Normalized energy release rate $\frac{G_{cr}}{2\pi^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary Summary of $G_{(...)}$ from VGG, Stresses extracted on matrix surface,

 $\delta=9.0^{\circ}_{
m combined energy release rate rac{\alpha_{
m co}}{m_{
m co}}}$ as function of crack angular semi-operture $\Delta\theta$, calculated with in-loose force-based and stross-based VCCT post-processing restricts with strosses extracted on the matrix side of the interface

 $\label{eq:model_delta_$

$$\sigma_0$$
, $\delta = 0.8^\circ$

In red small strain FEM, in black analytical plain strain value.

 $\label{eq:delta-$

 G_0 , $\delta = 0.8^\circ$

In red small strain FEM, in black analytical plain strain value.

J-Integral (Abaqus built-in routine), $\delta = 0.8^{\circ}$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

VCCT in forces (in-house Python routine), $\delta = 0.8^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

J-Integral and VCCT in forces, $\delta = 0.8^{\circ}$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

G_l from VCCl, stresses extracted on fiber surface, $\delta = 8.0^{\circ}$

Normalized energy release rate $\frac{G_{12}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

G_{II} from VCCI, stresses extracted on fiber surface, $\delta = 8.0^{\circ}$

Normalized energy release rate $\frac{a_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.5^{\circ}$

 $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

G_{TOT} from VCCI, stresses extracted on fiber surface, $\delta=8.0^\circ$

Normalized energy release rate $\frac{d_{i+1}}{d_i}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = \textbf{0.8}^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary } \delta = 0.2^{\circ} \quad \delta = 0.2^{\circ$

Summary of $G_{(\cdot\cdot)}$ from VCCI, stresses extracted on liber surface,

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$

 $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

G_l from VCCI, stresses extracted on matrix surface, $\delta = 8.0^{\circ}$

Normalized energy release rate $\frac{G_{i-1}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{II} from VCCI, stresses extracted on matrix surface, $\delta=8.0^{\circ}$

Normalized energy release rate $\frac{G_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{TOT} from VCCI, stresses extracted on matrix surface, $\delta = 8.0^{\circ}$

Normalized energy release rate $\frac{G_{12}}{G_{12}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Summary or $G_{(...)}$ from VCCI, stresses extracted on matrix surface,

Model Data $\delta=1.0^\circ$ $\delta=0.9^\circ$ $\delta=0.8^\circ$ $\delta=0.7^\circ$ $\delta=0.6^\circ$ $\delta=0.5^\circ$ $\delta=0.4^\circ$ $\delta=0.3^\circ$ $\delta=0.2^\circ$ Summary

$$\sigma_0$$
, $\delta=0.7^\circ$

In red small strain FEM, in black analytical plain strain value.

 $\label{eq:decomposition} \mbox{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \mbox{Summary and } \mbox{Summary$

 $G_0, \delta = 0.7^{\circ}$

In red small strain FEM, in black analytical plain strain value.

J-Integral (Abagus built-in routine), $\delta = 0.7^{\circ}$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

VCCT in forces (in-house Python routine), $\delta=0.7^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

J-Integral and VCCT in forces, $\delta = 0.7^{\circ}$

Normalized energy release rate $\frac{a_{i+}}{a_i}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

G_l from VCCl, stresses extracted on fiber surface, $\delta = 7.0^{\circ}$

Normalized energy release rate $\frac{G_{+}}{dr}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

G_{II} from VCCI, stresses extracted on fiber surface, $\delta = 7.0^{\circ}$

Normalized energy release rate $\frac{G_{12}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

G_{TOT} from VCCI, stresses extracted on fiber surface, $\delta = 7.0^{\circ}$

Normalized energy release rate $\frac{d_{i+1}}{d_i}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $\label{eq:decomposition} \mbox{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \mbox{Summary Summary Polynomials} \quad \delta = 0.00^{\circ} \quad \delta = 0.$

Summary of $G_{(\cdot,\cdot)}$ from VCCI, stresses extracted on liber surface,

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ δ

 $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_l from VCCI, stresses extracted on matrix surface, $\delta = 7.0^{\circ}$

Normalized energy release rate $\frac{G_{i,j}}{G}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{II} from VCCI, stresses extracted on matrix surface, $\delta = 7.0^{\circ}$

Normalized energy release rate $\frac{G_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{TOT} from VCCI, stresses extracted on matrix surface, $\delta = 7.0^{\circ}$

Normalized energy release rate $\frac{G_{12}}{G_{12}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Summary of $G_{(\cdot\cdot)}$ from VCCI, stresses extracted on matrix surface,

 $\mbox{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \mbox{Summary Summary Polynomials} \quad \delta = 0.00^{\circ} \quad \delta$

$$\sigma_0$$
, $\delta = 0.6^\circ$

In red small strain FEM, in black analytical plain strain value.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 G_{0} , $\delta = 0.6^{\circ}$

In red small strain FEM, in black analytical plain strain value.

J-Integral (Abaqus built-in routine), $\delta = 0.6^{\circ}$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

VCCT in forces (in-house Python routine), $\delta=0.6^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

J-Integral and VCCT in forces, $\delta=0.6^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

G_l from VCCI, stresses extracted on fiber surface, $\delta = 6.0^{\circ}$

Normalized energy release rate $\frac{a_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

G_{II} from VCCI, stresses extracted on fiber surface, $\delta = 6.0^{\circ}$

Normalized energy release rate $\frac{a_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

G_{TOT} from VCCI, stresses extracted on fiber surface, $\delta = 6.0^{\circ}$

Normalized energy release rate $\frac{G_{i-1}}{d_i}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = \textbf{0.6}^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary } \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \delta = 0.2^{\circ$

Summary of $G_{(...)}$ from VCCI, stresses extracted on liber surface,

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$

 $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_l from VCCl, stresses extracted on matrix surface, $\delta = 6.0^{\circ}$

Normalized energy release rate $\frac{G_{i+1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

 G_{II} from VCCI, stresses extracted on matrix surface, $\delta=6.0^{\circ}$

G_{TOT} from VCCI, stresses extracted on matrix surface, $\delta = 6.0^{\circ}$

Normalized energy release rate $\frac{G_{c,b}}{dc}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

 $\label{eq:delta-$

Summary of $G_{(\cdot,\cdot)}$ from VCCI, stresses extracted on matrix surface,

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

$$\sigma_0$$
, $\delta=0.5^\circ$

In red small strain FEM, in black analytical plain strain value.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

$$G_0$$
, $\delta = 0.5^\circ$

In red small strain FEM, in black analytical plain strain value.

J-Integral (Abagus built-in routine), $\delta=0.5^{\circ}$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

VCCT in forces (in-house Python routine), $\delta=0.5^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

J-Integral and VCCT in forces, $\delta=0.5^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

G_l from VCCI, stresses extracted on fiber surface, $\delta = 5.0^{\circ}$

Normalized energy release rate $\frac{G_{12}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

G_{\parallel} from VCCI, stresses extracted on fiber surface, $\delta = 5.0^{\circ}$

Normalized energy release rate $\frac{G_{i-1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Symbols, Models, Equations & Reference Data Results Summary & Conclusion $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$

G_{TOT} from VCCI, stresses extracted on fiber surface, $\delta = 5.0^{\circ}$

Normalized energy release rate $\frac{G_{i-1}}{d_i}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $\label{eq:delta-$

Summary or G(...) from VCCI, stresses extracted on liber surface,

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$

 $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_l from VCCI, stresses extracted on matrix surface, $\delta = 5.0^{\circ}$

Normalized energy release rate $\frac{G_{i,j}}{G_{i,j}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{II} from VCCI, stresses extracted on matrix surface, $\delta = 5.0^{\circ}$

Normalized energy release rate $\frac{G_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{TOT} from VCCI, stresses extracted on matrix surface, $\delta = 5.0^{\circ}$

Normalized energy release rate $\frac{G_{i,i}}{G_{i,j}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary Summary Sum$

Summary of $G_{(\cdot\cdot)}$ from VGGI, stresses extracted on matrix surface,

 $\label{eq:model_delta_$

 σ_0 , $\delta = 0.4^\circ$

In red small strain FEM, in black analytical plain strain value.

 $\label{eq:decomposition} \mbox{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \mbox{Summary Summary Polynomials} \quad \delta = 0.00^{\circ} \quad \delta = 0.$

 G_0 , $\delta = 0.4^\circ$

In red small strain FEM, in black analytical plain strain value.

J-Integral (Abaqus built-in routine), $\delta = 0.4^{\circ}$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

VCCT in forces (in-house Python routine), $\delta = 0.4^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$

 $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT, percentual error on BEM, $\delta=0.4^\circ$

$\Delta \theta$	[°]	$\frac{\frac{G_I}{G_0} _{FEM} - \frac{G_I}{G_0} _{BEM}}{\frac{G_I}{G_0} _{BEM}}$	$\frac{\frac{G_{II}}{G_0} _{\textit{FEM}} - \frac{G_{II}}{G_0} _{\textit{BEM}}}{\frac{G_{II}}{G_0} _{\textit{BEM}}}$	$\frac{\frac{G_{TOT}}{G_0} _{FEM} - \frac{G_{TOT}}{G_0} _{BEM}}{\frac{G_{TOT}}{G_0} _{BEM}}$
10	0	11.84%	-45.09%	0.06%
20	0	26.79%	-28.36%	2.95%
30	0	48.73%	-19.81%	4.31%
40	0	77.24%	-12.93%	2.20%
50	0	181.34%	-6.75%	2.04%
60	0	1084.50%	0.68%	2.78%
70	0		3.99%	3.93%
80	0		4.79%	4.61%
90	0		5.62%	6.07%
10	00		6.18%	6.59%
11	0		3.83%	5.37%
12	20		1.31%	-2.40%
13	30		-4.97%	-9.28%
14	10		-30.42%	-29.99%
15	50		-61.36%	-14.84%

J-Integral and VCCT in forces, $\delta=0.4^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

G_l from VCCI, stresses extracted on fiber surface, $\delta = 4.0^{\circ}$

Normalized energy release rate $\frac{G_{s,t}}{st}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

G_{II} from VCCI, stresses extracted on fiber surface, $\delta = 4.0^{\circ}$

Normalized energy release rate $\frac{G_{+}}{d^{2}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

G_{TOT} from VCCI, stresses extracted on fiber surface, $\delta = 4.0^{\circ}$

Normalized energy release rate $\frac{G_{c}^{2}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Summary or $G_{(...)}$ from VCCI, stresses extracted on liber surface,

G_l from VCCl, stresses extracted on matrix surface, $\delta = 4.0^{\circ}$

Normalized energy release rate $\frac{G_{i+1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{II} from VCCI, stresses extracted on matrix surface, $\delta=4.0^{\circ}$

Normalized energy release rate $\frac{G_{i+1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

G_{TOT} from VCCI, stresses extracted on matrix surface, $\delta = 4.0^{\circ}$

Normalized energy release rate $\frac{G_{1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = \textbf{0.4}^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary } \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \delta = 0.2^{\circ$

Summary of $G_{(\cdot\cdot)}$ from VCCI, stresses extracted on matrix surface,

109

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

 $\mbox{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = \textbf{0.3}^{\circ} \quad \delta = \textbf{0.2}^{\circ} \quad \mbox{Summary Summary Properties of the properties of th$

 σ_0 , $\delta=0.3^\circ$

In red small strain FEM, in black analytical plain strain value.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

 $\mbox{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = \textbf{0.3}^{\circ} \quad \delta = \textbf{0.2}^{\circ} \quad \mbox{Summary Summary Polynomials} \quad \delta = 0.8^{\circ} \quad \delta = 0.8$

$$G_0$$
, $\delta=0.3^\circ$

In red small strain FEM, in black analytical plain strain value.

J-Integral (Abaqus built-in routine), $\delta=0.3^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

VCCT in forces (in-house Python routine), $\delta=0.3^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$

 $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

VCCT, percentual error on BEM, $\delta=0.3^\circ$

$\Delta \theta$ [°	$\frac{G_I}{G_0} _{FEM} - \frac{G_I}{G_0} _{BEM}$	$\frac{\frac{G_{II}}{G_0}\mid_{\textit{FEM}} - \frac{G_{II}}{G_0}\mid_{\textit{BEM}}}{\frac{G_{II}}{G_0}\mid_{\textit{BEM}}}$	$\frac{\frac{G_{TOT}}{G_0}\mid_{\textit{FEM}} - \frac{G_{TOT}}{G_0}\mid_{\textit{BEM}}}{\frac{G_{TOT}}{G_0}\mid_{\textit{BEM}}}$
10	11.91%	-39.86%	1.23%
20	24.60%	-26.37%	2.56%
30	44.60%	-16.55%	4.97%
40	73.27%	-12.54%	1.86%
50	154.60%	-5.10%	2.35%
60	955.70%	1.01%	2.87%
70		3.99%	4.01%
80		4.79%	4.83%
90		5.62%	5.66%
100		6.18%	6.22%
110		3.83%	3.38%
120		1.31%	-4.08%
130		-4.97%	-10.17%
140		-30.42%	-34.90%
150		-61.36%	-0.52%

J-Integral and VCCT in forces, $\delta=0.3^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

G_l from VCCI, stresses extracted on fiber surface, $\delta = 3.0^{\circ}$

Normalized energy release rate $\frac{G_{+}}{dr}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

G_{II} from VCCI, stresses extracted on fiber surface, $\delta=3.0^{\circ}$

Normalized energy release rate $\frac{a_{ij}}{L^2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

G_{TOT} from VCCI, stresses extracted on fiber surface, $\delta=3.0^\circ$

Normalized energy release rate $\frac{G_{+}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = \textbf{0.3}^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary } \delta = 0.8^{\circ} \quad \delta = 0.8^{\circ$

Summary or G_(...) from VCCI, stresses extracted on liber surface,

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black BEM results.

G_l from VCCl, stresses extracted on matrix surface, $\delta = 3.0^{\circ}$

Normalized energy release rate $\frac{G_{i+1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

G_{II} from VCCI, stresses extracted on matrix surface, $\delta=3.0^{\circ}$

Normalized energy release rate $\frac{G_{i+1}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

G_{TOT} from VCCI, stresses extracted on matrix surface, $\delta=3.0^{\circ}$

Normalized energy release rate $\frac{G_{i,i}}{G_{i,j}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black

Summary of Gan from VCCI, stresses extracted on matrix surface,

Fading from blue to red for increasing number of integration elements, Virtual Crack Closure Integral (VCCI) from FEM results; in green VCCT from FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

$$\sigma_0$$
, $\delta=0.2^\circ$

In red small strain FEM, in black analytical plain strain value.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

 $\label{eq:model_delta} \mbox{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = \textbf{0.2}^{\circ} \quad \mbox{Summary and the model}$

 G_0 , $\delta = 0.2^\circ$

In red small strain FEM, in black analytical plain strain value.

VCCT in forces (in-house Python routine), $\delta = 0.2^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$

 $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT, percentual error on BEM, $\delta=0.2^{\circ}$

$\Delta heta\left[^{\circ} ight]$	$\frac{\frac{G_I}{G_0}\mid_{\textit{FEM}} - \frac{G_I}{G_0}\mid_{\textit{BEM}}}{\frac{G_I}{G_0}\mid_{\textit{BEM}}}$	$\frac{\frac{G_{II}}{G_0}\mid_{\textit{FEM}} - \frac{G_{II}}{G_0}\mid_{\textit{BEM}}}{\frac{G_{II}}{G_0}\mid_{\textit{BEM}}}$	$\frac{\frac{G_{TOT}}{G_0}\mid_{FEM} - \frac{G_{TOT}}{G_0}\mid_{BEM}}{\frac{G_{TOT}}{G_0}\mid_{BEM}}$
10	11.41%	-32.33%	2.44%
20	21.51%	-23.07%	2.24%
30	39.40%	-13.34%	5.22%
40	62.43%	-10.19%	1.99%
50	131.80%	-4.28%	2.06%
60	712.56%	1.64%	3.03%
70		4.05%	4.06%
80		5.02%	5.05%
90		5.69%	5.71%
100		5.83%	5.86%
110		4.45%	3.97%
120		1.55%	-3.88%
130		-6.42%	-11.60%
140		-28.46%	-33.11%
150		-67.88%	-0.52%

G_l , VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

G₁ Error with respect to BEM, VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from

G_{\parallel} , VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Results Summary & Conclusion $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$

G_{\parallel} Error with respect to BEM, VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from

G_{TOT} , VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

G_{TOT} Error with respect to BEM, VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

≥ SUMMARY & CONCLUSION

mbols, Models, Equations & Reference Data Results Summary & Conc

Summary

- Implemented Virtual Crack Closure Integral (VCCI) method for the calculation of G_l and G_{ll}
- ✓ Analysis of free infinite RVE ($\frac{L}{R_f}$ ~ 100) for several mesh refinements $\delta \in [1.0^{\circ}, 0.2^{\circ}]$
- \checkmark G_I, G_{II} and G_{TOT} calculated using Abaqus built-in J-Integral routine, in-house implemented VCCT and VCCI routines

mbols Models Equations & Reference Data Results Summary &

Conclusion

- ✓ Good agreement of J-Integral results with G_{TOT} from BEM
- J-Integral convergence improves refining the mesh
- For $\delta = 0.4^{\circ}, 0.3^{\circ}, 0.2^{\circ}$ maxima are at the right angle (20° for G_{II} , 60° for G_{II} and G_{TOT}) with in-house VCCT
- \checkmark G_{TOT} relative errors of VCCT over BEM are small (\sim 5% or less) for every $\Delta\theta$
- \checkmark G_{II} relative errors of VCCT over BEM are small ($\sim 5\%$ or less) for $\Delta \theta > 40^\circ$
- Results tend to converge to BEM values as the mesh is refined

mbols, Models, Equations & Reference Data Results Summary & Conclusion

Conclusion

- \times G_l relative errors of VCCT over BEM are high (> 10%)
- $ightharpoonup G_{II}$ relative errors of VCCT over BEM are high (> 10%) for $\Delta heta \leq 40^\circ$
- \times G_l of VCCI has correct functional form but values are overestimated (except for very small integration lengths)
- \times G_{II} (and consequently G_{TOT}) of VCCI provides strange results

Symbols, Models, Equations & Reference Data Results Summary & Conclusion

Next steps

New analysis with $\delta = 0.05^{\circ}$ to see if a better agreement of G_l values is attained

