EXERCISE 1

RUNLIN ZHANG

截止日期:最迟在3.25 提交作业。

评分标准:取 sup-norm ——只要做对一小道题,就能得到满分。

Exercise 0.1. Let $G := SL_2(\mathbb{R})$ act on $X := \mathbb{R}^n$ continuously, that is to say, we have a continuous map $G \times X \to X$ satisfying suitable compatibility conditions. For every $x \in X$, let G_x be the stabilizer of x in G. By assumption G_x is closed in G. Show that the orbit map

$$G/G_x \to G.x$$

 $[g] \mapsto g.x$

is a homeomorphism if the orbit is open in its closure. Here G/G_x is equipped with the quotient topology and G.x is equipped with the subspace topology.

Remark 0.1. Hint: Apply Baire's category theorem to X and then make use of the group action. Once you finish proving this exercise, it should be clear to you that the statement holds for more general G and X.

Exercise 0.2. Let $G := SL_2(\mathbb{R})$ and

$$U := \left\{ \left[\begin{array}{cc} 1 & s \\ 0 & 1 \end{array} \right] \ s \in \mathbb{R} \right\}.$$

Let Γ be a discrete subgroup of G. Assume the above exercise. Show that $Ug\Gamma/\Gamma$ is dense in G/Γ iff Γ . e_1 is dense in $\mathbb{R}^2 \setminus \{0\}$ where $e_1 := (1,0) \in \mathbb{R}^2$.

Exercise 0.3. Consider the action of $SL_2(\mathbb{R})$ on $\mathcal{H}^2 := \{z \in \mathbb{C}, Im(z) > 0\}$ defined by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right).z := \frac{az+b}{cz+d}.$$

Show that the map $g \mapsto g.i$ induces a homeomorphism $SL_2(\mathbb{R})/SO_2(\mathbb{R}) \cong \mathcal{H}^2$.

Exercise 0.4. Let $\rho: SL_2(\mathbb{R}) \to GL(V)$ be a faithful (namely, ρ is injective) finite dimensional real representation of $SL_2(\mathbb{R})$. Show that there does not exist an $SL_2(\mathbb{R})$ -invariant Euclidean metric on V.

Exercise 0.5. Show that there does not exist a Riemannian metric (that is to say, a smooth metric) on $SL_2(\mathbb{R})$ that is both left and right $SL_2(\mathbb{R})$ -invariant.

Remark 0.2. Consider the conjugate action of $SL_2(\mathbb{R})$ at the identity and use the exercise above.

Definition 0.3. Recall that a discrete subgroup Γ is said to be a lattice in G iff G/Γ admits a finite G-invariant measure.

Date: 2022.03.

Exercise 0.6. Let Γ be a lattice in $\operatorname{SL}_2(\mathbb{R})$, and assume Γ is not cocompact in $\operatorname{SL}_2(\mathbb{R})$. Let $X := \operatorname{SL}_2(\mathbb{R})/\Gamma$. Let d be a right invariant Riemannian metric on $\operatorname{SL}_2(\mathbb{R})$, which induces a quotient Riemannian metric d_X on X, from which we can define a (volume) measure on X. Accept the fact that such a measure is necessarily the $\operatorname{SL}_2(\mathbb{R})$ -invariant finite measure on X. Show that a sequence $(x_n) \subset X$ goes to ∞ iff $\operatorname{InjRad}(x_n) \to 0$ as $n \to \infty$.

Exercise 0.7. Assume the notations and the conclusion of the exercise above. Show that $(g_n\Gamma/\Gamma) \subset X$ goes to ∞ iff there exists $\gamma_n \in \Gamma$ such that $\mathrm{dist}(\mathrm{id}, g_n\gamma_ng_n^{-1}) \to 0$.

Exercise 0.8. For a matrix $X = (x_{i,j})$, let $\|X\|_{\sup} := \sup_{i,j} |x_{i,j}|$. By a direct computation, show that there exists a constant C > 0, such that for every $\varepsilon > 0$ and $X, Y \in \operatorname{SL}_2(\mathbb{R})$ with $\|\operatorname{id} - X\| \le \varepsilon$ and $\|\operatorname{id} - Y\| \le \varepsilon$, we have that

$$\|\operatorname{id} - XYX^{-1}Y^{-1}\| \le C \cdot \varepsilon^2.$$

Exercise 0.9. Notations as in the exercise above. Show that there exists a neighborhood \mathcal{N} of id in $SL_2(\mathbb{R})$ such that for every discrete subgroup $\Gamma \leq SL_2(\mathbb{R})$, $\Gamma \cap \mathcal{N}$ generates an abelian group.

Exercise 0.10. Notations as in the exercise above. Show that there exists a neighborhood \mathcal{N}' of id in $SL_2(\mathbb{R})$ such that for every discrete subgroup $\Gamma \leq SL_2(\mathbb{R})$, there exists $g \in SL_2(\mathbb{R})$ such that $g\Gamma g^{-1} \cap \mathcal{N}' = \{id\}$.

Exercise 0.11. Let Γ in $SL_2(\mathbb{R})$ be a lattice. Use previous exercises to show that Γ is not cocompact iff it contains non-identity unipotent matrices.

Remark 0.4. The "if" direction is proved in the class. This is a special instance of Kazhdan–Margulis theorem.

Exercise 0.12. Let $a_t := \begin{bmatrix} e^t & 0 \\ 0 & e^{-t} \end{bmatrix}$ and $u_s := \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$. In the class we have seen that for a discrete subgroup $\Gamma \leq \operatorname{SL}_2(\mathbb{R})$, if $x \in \operatorname{SL}_2(\mathbb{R})/\Gamma$ belongs to a compact u_s -orbit, then $a_t.x$ diverges as t goes to $-\infty$. Now assume Γ is a lattice. Show that the converse holds. Namely, if $a_t.x$ diverges as t goes to $-\infty$, then $\{u_s.x\}_{s \in \mathbb{R}}$ is compact.

We say that a matrix $g \in \operatorname{SL}_2(\mathbb{R})$ is \mathbb{R} -diagonalizable iff there exists $h \in \operatorname{SL}_2(\mathbb{R})$ such that hgh^{-1} is a diagonal matrix. Note that for a matrix $X_{\neq \pm \operatorname{id}} \in \operatorname{SL}_2(\mathbb{R})$, being \mathbb{R} -diagonalizable is equivalent to being hyperbolic in the sense that $\operatorname{trace}(X) > 2$. Fix a discrete subgroup Γ of $\operatorname{SL}_2(\mathbb{R})$, an \mathbb{R} -diagonalizable matrix $\gamma \in \Gamma$ is said to be *primitive* iff it can not be written as $(\gamma')^n$ for some $n \in \mathbb{Z}$, $n \neq \pm 1$ and some other $\gamma' \in \Gamma$ that is \mathbb{R} -diagonalizable. By definition \pm id is never primitive. Let

 $Prim(\Gamma) := \{ \gamma \text{ is } \mathbb{R}\text{-diagonalizable and primitive } \}.$

Exercise 0.13. Assume $\Gamma \leq SL_2(\mathbb{R})$ is a discrete subgroup containing $\{\pm id\}$. Find a bijection between

$$\{ compact \{a_t\} - orbits \} \cong Prim(\Gamma) / \sim_{\Gamma}$$

where \sim_{Γ} is the equivalence relation defined by $g \sim_{\Gamma} h$ iff $g = \gamma h \gamma^{-1}$ for some $\gamma \in \Gamma$.

Exercise 0.14. Classify all compact $\{a_t\}_{t\in\mathbb{R}}$ -orbits on $\mathrm{SL}_2(\mathbb{R})/\mathrm{SL}_2(\mathbb{Z})$.

Exercise 0.15. Classify all divergent $\{a_t\}_{t\in\mathbb{R}}$ -orbits on $\mathrm{SL}_2(\mathbb{R})/\mathrm{SL}_2(\mathbb{Z})$.

Recall that an orbit $\{a_t.x\}$ is said to be divergent iff for every compact set in $C \subset \operatorname{SL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{Z})$ there exists $t_0 > 0$ such that for all $|t| > t_0$, we have $a_t.x \notin C$.