Le but de cette activité est d'apprendre à élaborer une **séquence réactionnelle de synthèse** d'une espèce à partir d'une **banque de réactions** ainsi que d'identifier les étapes de **protection** / **déprotection** et justifier leur intérêt.

Doc. 1 Banque de réaction

Les réactions en chimie organiques sont nombreuses. Des **banques de réactions** regroupent les informations sur la réactivité des espèces organiques de différentes familles fonctionnelles en spécifiant les conditions expérimentales dans lesquelles les espèces réagissent ou ne réagissent pas.

Doc. 2 Schéma de transformation

Dans cette activité, plutôt que des équations de réactions, on utilise des **schémas de transformation**. Un schéma de transformation mentionne uniquement l'espèce de départ et l'espèce cible, sans nécessairement traduire la conservation des éléments. Il est d'usage de mentionner des conditions opératoires sur une flèche représentant le sens de réalisation de la transformation. Un schéma d'une transformation peut faire apparaître l'utilisation successive de conditions opératoires différentes. Dans ce cas, l'ordre de ces conditions est indiqué au moyen de numéros. Le composé formé intermédiairement n'est pas isolé expérimentalement et n'est pas représenté sur le schéma.

A. Premiers pas

Un petit premier exemple pour se familiariser à l'utilisation d'une banque (ici très réduite).

1. Proposer les formules topologiques des espèces manquantes lors des séquences suivantes :

Extrait de la banque de réactions : « Réduction des aldéhydes et cétones »

précurseur	cible	Exemple de schéma de réaction
aldéhyde	alcool	O ₂ N
cétone	alcool	OH OH of thanol, 25°C of than of the thanol, 25°C of than of the the the than of the the than of the

2. Représenter les structures des espèces manquantes obtenues lors de la séquence de transformations suivante :

Extraits de la banque de réactions :

Hydroboration, oxydation d'alcène				
alcène	alcool	$\frac{1) BH_3, THF}{2) H_2O_2, HO^-} \qquad \qquad rdt 98\%$ Le groupe « -OH » se fixe sur l'atome de carbone le moins encombré de la double liaison C=C.		
Estérification				
acide carboxylique	ester	OH + HO $\frac{H_2SO_4 (cat)}{chauffage}$ rdt 70%		
Oxydation d'alcool				
alcool	acide carboxylique	F OH $K_2Cr_2O_7$ H_2SO_4 , H_2O O		

B. Élaborer une séquence de réactions

Proposer une séquence multi-étapes permettant de synthétiser, à partir de l'alcène, l'alcool dont la structure est représentée ci-dessous :

Extraits de la banque de réactions :

Formation d'organomagnésien				
halogénoalcane	organomagnésien	CI Mg CI éther diéthylique		
Formation d'alcool sans rallongement de chaîne (réduction par NaBH ₄)				
cétone	alcool	OH NaBH ₄ of thanol rdt 85%		
avec allongement de chaîne (réduction par un organomagnésien)				
cétone	alcool	1) CH ₃ -MgCl 2) H ₃ O ⁺ rdt 62%		
		Hydratation d'un alcène		
alcène	alcool	mélange eau acide sulfurique rdt 90% (50% d'acide) Le groupe –OH sur l'atome de carbone de la liaison C=C le plus substitué		
Formation d'halogénoalcane				
alcool	halogénoalcane	OH Br HBr rdt 73%		

C. Identifier la nécessité d'une protection de groupe caractéristique

La séquence de réactions suivantes peut-elle conduire à l'espèce dont la structure est représentée cidessous ? Si non, proposer une modification de la séquence.

Extraits de la banque de réactions :

Réduction d'un ester par LiAlH₄				
ester	alcool	$\frac{1) \text{LiAlH}_4}{2) \text{H}_2\text{O}, \text{H}_2\text{SO}_4 \text{dilué}} \text{OH}$		
ester	alcool	1) LiAlH ₄ 2) H ₂ O, H ₂ SO ₄ dilué		
	Rédu	ction d'un aldéhyde par action de NaBH4		
aldéhyde	alcool	OH NaBH4 éthanol		
Réduction d'une cétone par action de LiAlH₄				
cétone	alcool	HO HO HO HO HO HO		
Formation d'un acétal				
cétone	acétal	HO OH APTS		
Hydrolyse d'un acétal				
acétal	halogénoalcane	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

D. Importance des conditions opératoires

Proposer une séquence de plusieurs réactions permettant de transformer l'aldéhyde dont la structure est représentée ci-dessous en alcène :

Extraits de la banque de réactions :

Formation d'un alcène par élimination sur un halogénoalcane				
halogénoalcane	alcène	Br EtO- (concentré) rdt 79%		
Formation d'un halogénoalcane				
alcool	halogénoalcane	OH Br rdt 73%		
Substitution sur un halogénoalcane				
halogénoalcane	éther	Br EtO-(dilué) éthanol, 55°C OEt rdt 91%		
Réduction d'un aldéhyde				
aldéhyde	alcool	OH NaBH4 rdt 85%		

E. Synthèse de polymères

Les polymères sont formés de molécules de très grandes tailles (appelées aussi macromolécules) présentant la ou les mêmes unités de répétition. Ils entrent dans la composition de nombreuses matières plastiques. Les chaînes des macromolécules formant deux polymères, le PVC et le PETE, sont représentés ci-dessous.

- 1. À partir de la banque de réactions, retrouver les structures des espèces réactives nécessaires pour les obtenir.
- 2. Représenter la structure du Kevlar obtenu à partir des deux monomères représentés ci-après. Le kevlar entre dans la fabrication de gilets pare-balle, voiles de bateau, etc.

Extraits de la banque de réactions :

F. Synthèses écoresponsables

En vous appuyant sur les exemples présentés dans la banque de réactions ci-dessous, et en les complétant par des recherches personnelles, comparer les voies de synthèse proposées en termes de toxicité, de production de déchets, de consommation d'énergie et de rendement.