A hazards approach to the biometric analysis of infant mortality

Göran Broström¹ Tommy Bengtsson²

²CED, Lund University (tommy.bengtsson@ekh.lu.se)

¹CEDAR, Umeå University (gb@ehar.se, https://github.com/goranbrostrom)

Outline

- Bourgeois-Pichat (1951): Biometric analysis of IM (background).
- Hazard-based alternative.
- Theoretical considerations
- Real-world examples.

Bourgeois-Pichat and causes of death

- Two categories:
 - Endogenous: inherited, delivery, etc.
 - Exogenous: accidental, infectious diseases, etc.
- How to differentiate between the two categories without infornation of causes of death?

Bourgeois-Pichat's Biometric model.

The biometric model

Two postulates:

- Endogenous deaths only occur during the neonatal period (0-28 days).
- ② On a specific time scale, exogenous infant mortality is uniformly distributed.

The log-cube transform

$$g(t) = C \log^3(t+1), \ 0 < t \le 365.$$

where C is a normalizing constant:

$$C = \frac{365}{\log^3(365+1)}$$

Note: C is not part of B-P's original definition.

Demonstration of the B-P plot

Assume 100 births, of which 90 survives infancy, ten death ages:

2, 6, 10, 15, 25, 41, 90, 120, 180, 309.

Calculation (no ties): $\frac{1}{100}, \frac{2}{100}, \frac{3}{100}, \dots, \frac{10}{100}$.

Demonstration of the B-P plot II

Assume 100 births, of which 90 survives infancy, ten death ages:

2, 6, 10, 15, 25, 41, 90, 120, 180, 309.

Calculation (no ties): $\frac{1}{100}, \frac{2}{100}, \frac{3}{100}, \dots, \frac{10}{100}$.

The hazards plot

Assume 100 births, of which 90 survives infancy, ten death ages:

2, 6, 10, 15, 25, 41, 90, 120, 180, 309 (same as before).

Calculation (no ties): $\frac{1}{100}, \frac{2}{99}, \frac{3}{98}, \dots, \frac{10}{91}$.

The hazards plot II

Exogenous slope =
$$\frac{\#(post deaths)}{post exposure} = \frac{5}{27626} \approx 0.00018$$

Post exposure = $90(365 - 68) + (93 - 68) + (163 - 68) + \cdots + (335 - 68) \approx 27626$

Adding the endogenous mortality

Earlier work

- Knodel & Kintner (1977).
 - Discusses effects of breastfeeding habits.
- Wrigley (1977).
 - Problems with data recording.
- Lynch, Greenhouse & Brändström (1998).
 - Mentions "constant hazard".
 - Suggest linear regression methods.
- Bengtsson (1999).
 - Data quality.
- Manfredini (2004).
 - Deals with effect of climate variation.

Study areas

Västerbotten 1801–1950

Väterbotten 1861-1890

Västerbotten 1921–1950

Cohort effect of birth month, Västerbotten

Conclusion:

Post-neonatal linearity is a population property, not an individual.

Period effect of month, Västerbotten

Looks quite proportional!

Scania 1711-1800

Skellefteå 1801–1820

Biometric analysis on the natural time scale

Given that the exogenous mortality follows an Exponential distribution on the log-cube scale, it follows that the cumulative hazards function on the natural time scale is

$$H(t;\lambda) = \lambda \log^3(t+1), \ t > 0,$$

and it follows that the hazard function h is given by

$$h(t; \lambda) = \frac{3\log^2(t+1)}{t+1}, \ t > 0,$$

Exogenous mortality on the normal time scale

Natural vs. log-cube time scales

Västerbotten 1861-1890.

Conclusions

- Advantages of the hazards method.
 - Fits naturally into modern survival analysis, allows censored and truncated data, and
 - The exogenous component forms a class of proportional hazards distributions.
- Restriction for both models.
 - Models for populations, not for individuals.
 - Less useful for traditional survival analysis. *. The log-cube transform is not universal.