EEE104 – Digital Electronics (I) Lecture 13

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Flip-Flops and Related Devices

- Latches
- Edge-Triggered Flip-Flops
- Flip-Flop Applications

- A latch is a bistable digital circuit used for storing a bit.
- An S-R latch with active

 LOW inputs is formed
 with two NAND gates.
- The output of one gate is fed back to the input of the other.

- A NAND gate is equivalent to a negative-OR gate.
- Hence the S-R Latch equivalent implementation.
- It will be used extensively later.

How does it work?

- 1. Suppose that /S and /R are both 1 originally.
- 2. When a negative pulse appears at /S, i.e. /S = 0, then Q = 1, /Q = 0.
- 3. When the pulse finishes, i.e. /S = 1, Q is still 1 and /Q is still 0.

So the low-level pulse at /S **sets** the output Q to 1.

How does it work?

- 1. Suppose that /S and /R are both 1 originally.
- 2. When a negative pulse appears at /R, i.e. /R = 0, then /Q = 1 and Q = 0.
- 3. When the pulse finishes,i.e. /R = 1, Q is still 0 and /Q is still 1.

So the low-level pulse at /R **resets** the output Q to 0.

How does it work?

When both /S and /R are 1, the outputs will not be changed.

$$Q = \overline{1 \cdot \overline{Q}} = \overline{\overline{Q}} = Q$$

$$\overline{Q} = \overline{1 \cdot Q} = \overline{Q}$$

How does it work?

What will happen when both /S and /R are 0?

- Both Q and /Q will become 1.
- When /S and /R become HIGH simultaneously, the outputs are ideally LOW but uncertain due to the competition in gate speed.

An S-R latch with active-LOW inputs is formed using NAND gates.

INPUTS		OUTPUTS			
<u>5</u>	R	Q	\overline{Q}	COMMENTS	
1	1	NC	NC	No change. Latch remains in present state.	
0	1	1	0	Latch SET.	
1	0	0	1	Latch RESET.	
0	0	1	1	Invalid condition	
0	U	1	1	Invalid condition	

An S-R latch with active-HIGH inputs is formed using NOR gates.

COMMENTS		OUTPUTS_		INPUTS	
		Q	Q	R	5
remains in present state.	No change. Latch	NC	NC	0	0
	Latch RESET.	1	0	1	0
	Latch SET.	0	1	0	1
	Invalid condition	0	0	1	1

An Example: For a latch with active-LOW inputs

Application Example

The latch as a contact-bounce eliminator

Latches – The Gated S-R Latch

- A gated latch is a latch with an enable input EN.
- The latch will not change until EN is HIGH.
 Otherwise it is like an S-R latch with active-LOW inputs /S = 1 and /R = 1.

Latches – The Gated S-R Latch

An Example: For a latch with active-HIGH inputs

Latches – The Gated D Latch

- It has only one input in addition to EN.
- When D = 1 and EN = 1, Q = 1.
- When D = 0 and EN = 1, Q = 0.
- Output Q follows the input D when EN is HIGH.

Latches – The Gated D Latch

An Example:

