Language Models

Hongning Wang CS@UVa

Two-stage smoothing [Zhai & Lafferty 02]

Stage-1

- -Explain unseen words
- -Dirichlet prior (Bayesian)

Stage-2

- -Explain noise in query
- -2-component mixture

$$P(w|d) = \text{ (1-λ)} \ \frac{c(w,d) + \mu p(w|C)}{|d|} + \lambda p(w|U) \ \frac{|d|}{|d|} + \mu$$

User background model
Can be approximated by p(w|C)

Estimating λ using EM algorithm

[Zhai & Lafferty 02]

$$p(Q \mid \lambda, U) = \sum_{i=1}^{N} \pi_{i} \prod_{j=1}^{m} ((1-\lambda)p(q_{j} \mid d_{i}) + \lambda p(q_{j} \mid U))$$

$$\hat{\lambda} = \underset{\lambda}{\operatorname{argmax}} p(Q \mid \lambda, U)$$

$$p(q_{j} \mid d_{i}) = \frac{c(q_{j}, d_{i}) + \hat{\mu}p(q_{j} \mid C)}{|d_{i}| + \hat{\mu}}$$

Expectation-Maximization (EM) algorithm for estimating λ and $\{\pi_i\}_{i=1}^N$

CS@UVa CS 6501: Information Retrieval 3

Introduction to EM

- Parameter estimation
 - All data is observable
 - Maximum likelihood method
 - Optimize the analytic form of $L(\theta) = \log p(X|\theta)$
 - Missing/unobservable data
 - Data: X (observed) + H(hidden)
 - Likelihood: $L(\theta) = \log \int p(X, H|\theta) dH$
 - Approximate it!

Most of cases are intractable

We have missing date.

Background knowledge

- Jensen's inequality
 - For any convex function f(x) and positive weights λ ,

$$f\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} f(x_{i}) \qquad \sum_{i} \lambda_{i} = 1$$

Expectation Maximization

• Maximize data likelihood function by pushing the lower bound

Proposal distributions for q(H)

•
$$L(\theta) = \log \int p(X, H|\theta) dH = \log \int \frac{q(H)p(X, H|\theta)}{q(H)} dH$$

Jensen's inequality $f(E[x]) \ge E[f(x)]$ $\ge \int q(H) \log p(X, H|\theta) dH - \int q(H) \log q(H) dH$

Lower bound: easier to compute, many good properties!

Components we need to tune when optimizing $L(\theta)$: q(H) and θ !

Intuitive understanding of EM

• Optimize the lower bound with respect to q(H)

•
$$L(\theta) = \log \int p(X, H|\theta) dH = \log \int \frac{q(H)p(X, H|\theta)}{q(H)} dH$$

Jensen's inequality $f(E[x]) \geq E[f(x)] \geq \int q(H) \log p(X, H|\theta) dH - \int q(H) \log q(H) dH$

$$= \int q(H) [\log p(H|X, \theta) + \log p(X|\theta)] dH - \int q(H) \log q(H) dH$$

$$= \int q(H) \log \frac{p(H|X, \theta)}{q(H)} dH + \log p(X|\theta)$$

KL-divergence between q(H) and $p(H|X,\theta)$

Constant with respect to q(H)

- Optimize the lower bound with respect to q(H)
 - $L(\theta) \ge KL(q(H)||p(H|X,\theta)) + L(\theta)$
 - KL-divergence is non-negative, and equals to zero iff $q(H) = p(H|X,\theta)$
 - A step further: when $q(H) = p(H|X,\theta)$, we will get $L(\theta) \ge L(\theta)$, i.e., the lower bound is tight!
 - Other choice of q(H) cannot lead to this tight bound, but might reduce computational complexity
 - Note: calculation of q(H) is based on current θ

- Optimize the lower bound with respect to q(H)
 - Optimal solution: $q(H) = p(H|X, \theta^t)$

Posterior distribution of H given current model θ^t

CS@UVa CS 6501: Information Retrieval 10

• Optimize the lower bound with respect to θ

•
$$L(\theta) \ge \int p(H|X, \theta^t) \log p(X, H|\theta) dH - \int p(H|X, \theta^t) \log p(H|X, \theta^t) dH$$
 Constant w.r.t. θ

•
$$\theta^{t+1} = argmax_{\theta} \int p(H|X, \theta^t) \log p(X, H|\theta) dH$$

= $argmax_{\theta} E_{H|X, \theta^t} [\log p(X, H|\theta)]$

Expectation of complete data likelihood

Expectation Maximization

- EM tries to iteratively maximize likelihood
 - "Complete" likelihood: $L^{c}(\theta) = \log p(X, H|\theta)$
 - Starting from an initial guess $\theta^{(0)}$,
 - 1. E-step: compute the <u>expectation</u> of the complete likelihood

$$Q(\theta; \theta^t) = \mathbb{E}_{H|X,\theta^t}[L^c(\theta)] = \int p(H|X, \theta^t) \log p(X, H|\theta^t) dH$$

2. M-step: compute $\theta^{(t+1)}$ by <u>maximizing</u> the 0-function

$$\theta^{t+1} = argmax_{\theta}Q(\theta; \theta^t)$$
Key step!

Intuitive understanding of EM

S=We have missing date.

E-step = computing the lower bound M-step = maximizing the lower bound

Convergence guarantee

Proof of EM

$$\log p(X|\theta) = \log p(H, X|\theta) - \log p(H|X, \theta)$$

Taking expectation with respect to $p(H|X, \theta^t)$ of both sides:

$$\log p(X|\theta) = \int p(H|X,\theta^t) \log p(H,X|\theta) dH - \int p(H|X,\theta^t) \log p(H|X,\theta) dH$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t) \leftarrow Cross-entropy$$

Then the change of log data likelihood between EM iteration is:

$$\log p(X|\theta) - \log p(X|\theta^t) = Q(\theta;\theta^t) + H(\theta;\theta^t) - Q(\theta^t;\theta^t) - H(\theta^t;\theta^t)$$

By Jensen's inequality, we know $H(\theta; \theta^t) \ge H(\theta^t; \theta^t)$, that means

$$\log p(X|\theta) - \log p(X|\theta^t) \ge Q(\theta;\theta^t) - Q(\theta^t;\theta^t) \ge 0$$

M-step guarantee this

What is not guaranteed

- Global optimal is not guaranteed!
 - Likelihood: $L(\theta) = \log \int p(X, H|\theta) dH$ is non-convex in most of case
 - EM boils down to a greedy algorithm
 - Alternative ascent
- Generalized EM
 - E-step: $\hat{q}(H) = \operatorname{argmin}_{q(H)} KL(q(H)||p(H|X,\theta))$
 - M-step: choose θ that improves $Q(\theta; \theta^t)$

Estimating λ using Mixture Model [Zhai & Lafferty 02]

Expectation-Maximization (EM) algorithm for estimating λ and $\{\pi_i\}_{i=1}^N$

CS@UVa CS 6501: Information Retrieval 16

Variants of basic LM approach

- Different smoothing strategies
 - Hidden Markov Models (essentially linear interpolation)
 - Smoothing with an IDF-like reference model [Hiemstra & Kraaij
 - Performance tends to be similar to the basic LM approach
 - Many other possibilities for smoothing [Chen & Goodman 98]
- Different priors
 - Link information as prior leads to significant improvement of Web entry page retrieval performance [Kraaij et al. 02]
 - Time as prior [Li & Croft 03]
 - PageRank as prior [Kurland & Lee 05]
- Passage retrieval [Liu & Croft 02]

Improving language models

- Capturing limited dependencies
 - Bigrams/Trigrams [Song & Croft 99]
 - Grammatical dependency [Nallapati & Allan 02, Srikanth & Srihari 03, Gao et al. 04]
 - Generally insignificant improvement as compared with other extensions such as feedback
- Full Bayesian query likelihood [Zaragoza et al. 03]
 - Performance similar to the basic LM approach
- Translation model for p(Q|D,R) [Berger & Lafferty 99, Jin et al. 02,Cao et al. 05]
 - Address polesemy and synonyms
 - Improves over the basic LM methods, but computationally expensive
- Cluster-based smoothing/scoring [Liu & Croft 04, Kurland & Lee 04, Tao et al. 06]
 - Improves over the basic LM, but computationally expensive
- Parsimonious LMs [Hiemstra et al. 04]
 - Using a mixture model to "factor out" non-discriminative words

A unified framework for IR: Risk Minimization

- Long-standing IR Challenges
 - Improve IR theory
 - Develop theoretically sound and empirically effective models
 - Go beyond the limited traditional notion of relevance (independent, topical relevance)
 - Improve IR practice
 - Optimize retrieval parameters automatically
- Language models are promising tools ...
 - How can we systematically exploit LMs in IR?
 - Can LMs offer anything hard/impossible to achieve in traditional IR?

Idea 1: Retrieval as decision-making (A more general notion of relevance)

Given a query,

- Which documents should be selected? (D)
- How should these docs be presented to the user? (π)

CS@UVa CS 6501: Information Retrieval 20

Idea 2: Systematic language modeling

QUERY MODELING Query Query Language Model **USER MODELING Loss Function Retrieval Decision: Document Documents** Language Models/

DOC MODELING

Generative model of document & query [Lafferty & Zhai 01b]

CS@UVa CS 6501: Information Retrieval 22

Applying Bayesian Decision Theory [Lafferty & Zhai 01b, Zhai 02, Zhai & Lafferty 06]

$$(D^*, \pi^*) = \underset{\Theta}{\operatorname{arg \, min}} \int_{\Theta} L(D, \pi, \theta) p(\theta \mid q, U, C, S) d\theta$$

$$\underset{D, \pi}{\longrightarrow} \underset{\text{loss}}{\longrightarrow} \underset{\text{hidden observed}}{\longleftarrow}$$

RISK MINIMIZATION

Bayes risk for choice (D, π)

Special cases

- Set-based models (choose D) Boolean model
- Ranking models (choose π)
 - Independent loss
 Relevance-based loss
 Distance-based loss
 Dependent loss
 Probabilistic relevance model
 Generative Relevance Theory
 Vector-space Model
 Two-stage LM
 KL-divergence model
 - Maximum Margin Relevance loss
 - Maximal Diverse Relevance loss

Optimal ranking for independent loss

$$\pi^* = \underset{\pi}{\operatorname{arg\,min}} \int_{\Theta} L(\pi, \theta) p(\theta \mid q, U, C, \vec{S}) d\theta$$
 — Decision space = {rankings}

Sequential browsing

Independent loss

 s_i is the probability that the user would stop reading after seeing the top i documents

"Risk ranking principle"

[Zhai 02]

Automatic parameter tuning

- Retrieval parameters are needed to
 - model different user preferences
 - customize a retrieval model to specific queries and documents
- Retrieval parameters in traditional models
 - EXTERNAL to the model, hard to interpret
 - Parameters are introduced heuristically to implement "intuition"
 - No principles to quantify them, must set empirically through many experiments
 - Still no guarantee for new queries/documents
- Language models make it possible to estimate parameters...

Parameter setting in risk minimization

Summary of risk minimization

- Risk minimization is a general probabilistic retrieval framework
 - Retrieval as a decision problem (=risk min.)
 - Separate/flexible language models for queries and docs
- Advantages
 - A unified framework for existing models
 - Automatic parameter tuning due to LMs
 - Allows for modeling complex retrieval tasks
- Lots of potential for exploring LMs...

What you should know

- EM algorithm
- Risk minimization framework