```
In [8]:
```

```
import warnings
warnings.filterwarnings("ignore")

import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier, RandomForestClassifier
from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt
from sklearn.model_selection import RandomizedSearchCV
```

Introduction

For today's tutorial, I will show the demos of tree-base methods. While taking this tutorial, you can run this notebook step by step. I will use the python package called *scikit-learn* for models and *pandas* for feature visualization.

Decision Tree

In this section, I will show the demo of Decision Tree (DT) to classify the hand-written digits.

Table of Contents

- Data Preparation
- Data Visualization
- Sample Codes
 - Single Tree
 - Bagging Classification
 - Random Forest
- Feature Importance

References

- Decision Trees
- Bagging Classifier
- Random Forest

Data Preparation

In this demo, I will use the same dataset as the previous tutorial, MNIST. This includes the hand-written digits and mostly used for classification.

```
In [24]: mnist = fetch_openml("mnist_784", data_home="mnist/")
    data_num = 3000
    X = mnist.data.values[:data_num]/255
    y = np. array(mnist.target.values[:data_num], dtype=np.int)

In [25]: classes = np. sort(pd. unique(y))
    n_samples = X. shape[0]

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state="print(f"# of training data: {len(y_train)}")
    print(f"# of test data : {len(y_test)}")

# of training data: 2400
# of test data : 600
```

Data Visualization

Since data is originally represented as 2d image, we can visualize it with the reshaping function. Since some codes are unique to python (numpy) programming, you do not need to obsess with this cell.

```
In [26]: # --- Adjustable Parameters ---
display_num = 3

# -------
width = len(classes)
length = display_num
fig = plt.figure(figsize=(width*3, length*3.5))
for i in classes:
    images = X_train[y_train==i][:display_num]
    for j in range(display_num):
        ax = fig. add_subplot(length, width, j*width+i+1)
        ax. set_axis_off()
        image = images[j].reshape(28, 28)
        ax. imshow(image, cmap=plt.cm.gray_r)
        ax. set_title(f"Train: {i}", fontsize=15)
```


Coding Samples

Let's train your own tree models to classify hand-written digits. Among the models explained in the lesson (please check *DDA3020 Lecture 08 Tree-based methods.pdf*), I will introduce the demos of Single Tree, Bagging Classifier, and Random Forest. And, since they have tree-related hyperparameters to set, I will conduct a hyper-parameter tuning later in this tutorial.

Single Tree

Among hyper-parameters, I will focus on two hyper-parameters: max_depth and min_samples_split (ppg.52 in the slide).

- Functions
 - DecisionTreeClassifier : Define Single Tree.
- Hyper-Parameters
 - max_depth : The maximum depth of the tree
 - min_samples_split : The minimum number of samples required to split an internal node

Train Accuracy : 0.8866666666666667 Test Accuracy : 0.74666666666666667

Bagging Classifier

As explained in the lecture, Bagging Classifier includes multiple classifiers with different subtraining dataset. We have n_estimators to set the # of classifiers (decision trees).

Note: We can use any classifier for Bagging Classifier (ex. SVC)

- Functions
 - BaggingClassifier: Define Bagging Classifier
- Hyper-Parameters
 - n_estimators:# of classifiers

Random Forest

Train Accuracy : 0.9654166666666667 Test Accuracy : 0.85333333333333334

For Random Forest, it has the same hyper-parameters as Bagging Classifier but expected to be better than that.

- Functions
 - RandomForestClassifier : Define Random Forest

```
clf.fit(X_train, y_train)
print(f"Train Accuracy : {clf.score(X_train, y_train)}")
print(f"Test Accuracy : {clf.score(X_test, y_test)}")
```

Train Accuracy: 0.96125

Test Accuracy: 0.8766666666666667

Hyper-Parameters Tuning

As explained in the lesson, tree-based models are vulnerable to overfitting. So, we need to find better hyperparameters (high accuracy and weaker overfitting) via hyper-parameters tuning. Since the grid search requires much time to process, I will use Randomized Search used in the last tutorial.

 ${\sf cv}$ in arguments of RandomizedSearchCV indicates the k in ${\sf Cross\ Validation}$.

- Hyper-Parameters
 - max_depth : The maximum depth of the tree
 - min_samples_split : The minimum number of samples required to split an internal node

Single Tree

```
models = \{\}
dt = DecisionTreeClassifier(random_state=0)
distributions = dict(
    max_depth=np. arange(5, 31),
    min_samples_split=2**np.arange(0, 4),
# Random Search
clf = RandomizedSearchCV(dt, distributions, random_state=0, n_iter=20, cv=3, n_jobs=
search = clf.fit(X train, y train)
best params = search.best params
print("Best Parameters:")
for key in best params:
               {key}: {best_params[key]}")
# Classification with Best Parameters
st = DecisionTreeClassifier(random_state=0,
                             min_samples_split=best_params["min_samples_split"],
                             max_depth=best_params["max_depth"]
st. fit (X train, y train)
models["single tree"] = st
print(f"Train Accuracy : {st. score(X_train, y_train)}")
print(f"Test Accuracy : {st. score(X_test, y_test)}")
```

Best Parameters: min samples split: 4

```
max_depth: 20
```

Train Accuracy : 0.9729166666666667 Test Accuracy : 0.7583333333333333

Bagging Classifier

```
dt = DecisionTreeClassifier(random_state=0)
bc = BaggingClassifier(base estimator=dt,
                         n estimators=10,
                         random_state=0)
 distributions = dict(
    base_estimator__max_depth=np.arange(5, 31),
    base\_estimator\_min\_samples\_split=2**np. arange(0, 4),
 # Random Search
 clf = RandomizedSearchCV(bc, distributions, random_state=0, n_iter=20, cv=3, n_jobs=-
 search = clf. fit(X_train, y_train)
 best_params = search.best_params_
 print("Best Parameters:")
 for key in best_params:
    print(f"
                {key}: {best_params[key]}")
 # Classification with Best Parameters
dt = DecisionTreeClassifier(random state=0,
                              min_samples_split=best_params["base_estimator__min_sample"]
                              max_depth=best_params["base_estimator__max_depth"])
bc = BaggingClassifier(base_estimator=dt,
                         n estimators=10,
                         random state=0)
 bc.fit(X_train, y_train)
 models["bagging"] = bc
 print()
 print(f"Train Accuracy : {bc. score(X_train, y_train)}")
 print(f"Test Accuracy : {bc. score(X test, y test)}")
Best Parameters:
    base estimator min samples split: 4
    base_estimator__max_depth: 11
Train Accuracy: 0.9925
Test Accuracy: 0.875
```

Random Forest

```
best_params = search.best_params_
 print("Best Parameters:")
 for key in best params:
    print(f"
                 {key}: {best_params[key]}")
 # Classification with Best Parameters
rf = RandomForestClassifier(random state=0,
                             n_{estimators=10},
                              min_samples_split=best_params["min_samples_split"],
                              max_depth=best_params["max_depth"]
 rf. fit(X train, y train)
 models["random forest"] = rf
 print()
 print(f"Train Accuracy : {rf. score(X_train, y_train)}")
 print(f"Test Accuracy : {rf. score(X_test, y_test)}")
Best Parameters:
    min samples split: 4
    max depth: 12
Train Accuracy: 0.9945833333333334
```

Feature Importance

Test Accuracy: 0.9016666666666666

One of other advantages of using tree-based models is its interpretability. In other words, We can easily understand how the models process data. Among them, I will introduce feature importance, which shows how each feature (in our case, pixels of images) affects the result.

- New Attributes
 - feature_importances_ : feature importance of each feature

Single Tree

```
model = models["single tree"]

fi = model.feature_importances_
fi_df = pd.DataFrame([np.array([f"pixel-({i//28}, {i%28})" for i in range(784)]), fi
fi_df["importance"] = fi_df["importance"].values.astype("float")

fi_df.sort_values(by="importance", ascending=False)
```

```
        Out [317]:
        name
        importance

        455
        pixel-(16, 7)
        0.054454

        101
        pixel-(3, 17)
        0.049829

        433
        pixel-(15, 13)
        0.048679

        401
        pixel-(14, 9)
        0.046974

        319
        pixel-(11, 11)
        0.037186
```

	name	importance
275	pixel-(9, 23)	0.000000
277	pixel-(9, 25)	0.000000
278	pixel-(9, 26)	0.000000
279	pixel-(9, 27)	0.000000
783	pixel-(27, 27)	0.000000

784 rows × 2 columns

Bagging Classifier

Out[270]:		name	importance
	101	pixel-(3, 17)	0.044064
	211	pixel-(7, 15)	0.038646
	377	pixel-(13, 13)	0.032051
	271	pixel-(9, 19)	0.026425
	455	pixel-(16, 7)	0.025969
	•••		
	252	pixel-(9, 0)	0.000000
	251	pixel-(8, 27)	0.000000
	250	pixel-(8, 26)	0.000000
	244	pixel-(8, 20)	0.000000
	783	pixel-(27, 27)	0.000000

784 rows × 2 columns

Random Forest

	name	importance
409	pixel-(14, 17)	0.011869
541	pixel-(19, 9)	0.011469
430	pixel-(15, 10)	0.010728
350	pixel-(12, 14)	0.010294
373	pixel-(13, 9)	0.009845
•••		
255	pixel-(9, 3)	0.000000
254	pixel-(9, 2)	0.000000
253	pixel-(9, 1)	0.000000

784 rows × 2 columns

783 pixel-(27, 27)

pixel-(9, 0)

252

2d Representation of Feature Importance

0.000000

0.000000

Of course, the feature name of MNIST is not intuitive, so let's visualize it in 2d-representation.

```
width = len(models)
length = 1

fig = plt.figure(figsize=(width*5, length*5.5))

for i, name in enumerate(models):
    if name in ["bagging"]:
        fi = np.zeros((784))
        for tree in models[name].estimators_:
            fi += tree.feature_importances_
            fi = fi/len(models[name].estimators_)
    else:
        fi = models[name].feature_importances_
        ax = fig.add_subplot(length, width, i+1)
        ax.imshow(fi.reshape(28, 28))
        ax.set_title(name, fontsize=20)
```


Let's Observe the Validity of Feature Importance

Let's modify the values of the *un-important* features and the *important* features; and see the result.

```
frame = np. zeros((28, 28))
frame[[0,-1],:] = 1
frame[:, [0,-1]] = 1
X_test_edge = X_test + frame.reshape(1, 784)
X_{\text{test\_edge}}[X_{\text{test\_edge}}] = 1
width = len(classes)
length = 2
fig = plt. figure (figsize=(width*3, length*3.5))
for i in classes:
    images = X_test[y_test==i][:1]
    ax = fig. add\_subplot(length, width, i+1)
    ax. set_axis_off()
    image = images[0]. reshape(28, 28)
    ax.imshow(image, cmap=plt.cm.gray_r)
    ax. set_title(f"Test: {i}", fontsize=15)
    images = X_test_edge[y_test==i][:1]
    ax = fig. add subplot (length, width, width+i+1)
    ax. set axis off()
    image = images[0].reshape(28, 28)
    ax.imshow(image, cmap=plt.cm.gray_r)
    ax. set_title(f"Test(Edge): {i}", fontsize=15)
```



```
frame = np. zeros((28, 28))
frame = np. zeros((28, 28))
frame[11:17, 11:17] = 1
X_test_center = X_test + frame. reshape(1, 784)
X \text{ test center}[X \text{ test center} > 1] = 1
width = len(classes)
length = 2
fig = plt. figure (figsize=(width*3, length*3.5))
for i in classes:
    images = X_test[y_test==i][:1]
    ax = fig. add\_subplot(length, width, i+1)
    ax. set_axis_off()
    image = images[0]. reshape(28, 28)
    ax. imshow(image, cmap=plt.cm. gray r)
    ax. set_title(f"Test: {i}", fontsize=15)
    images = X test center[y test==i][:1]
    ax = fig. add subplot(length, width, width+i+1)
    ax. set_axis_off()
    image = images[0]. reshape(28, 28)
```

```
ax. imshow(image, cmap=plt.cm. gray_r)
ax. set_title(f"Test(Center): {i}", fontsize=15)
```



```
for i, name in enumerate(models):
    print(f"Classifier: {name}")
    print(f" Original Test Accuracy: {models[name].score(X_test, y_test)}")
    print(f" Edge Test Accuracy: {models[name].score(X_test_edge, y_test)}")
    print(f" Center Test Accuracy: {models[name].score(X_test_enter, y_test)}")
    print()
```

Classifier: single tree

Center Test Accuracy: 0.32

Classifier: bagging

Original Test Accuracy: 0.875 Edge Test Accuracy: 0.875

Classifier: random forest