Problemes AC

1.1

a)

TC = 1/ freq.

Procesador A -> $1/(2*10^9) = 0.5$ nanogeconds Procesador B -> $1/(3*10^9) = 0.33$ nanosegonds

b)

Texec = Nins * CPI * TC

Processador A -> $2000000*1.2*0.5*10^{-9} = 0.0012s$

Processador B -> $2000000*1.5*0.33*10^{-9} = 0.00099s$

c)

Nins = Texec/(CPI*TC)

Nins = $1/(1.5*0.33*10^{-9}) = 2.02*10^{9}$ instrucciones

d)

Tb/Ta = 1.25 -> 1/1.25 = Ta -> Ta = 0.8s

Texec = Nins * CPI * TC -> 0.8/(1.2*0.5*10^-9) = 1.33*10^9 instrucciones

e)

4bytes * 1.33*10^9 instruccions = 5.33*10^9 bytes = 5.33 GB

1.2

a)

```
Texec = Nins * CPI * TC

TC = 1 / 10^9 = 1*10^-9

Texec = (10^6*2+10^9*3+10^9*4)*TC = 7.002 segundos
```

b)

Es de cálculo porque las instrucciones de acceso a memoria representan 1% del total.

c)

```
Texe fase 3 = 10^9*4*10-9 = 4s
Texe fase 3/nueva fase 3 = 1.25 -> nueva fase 3 = 3.2s
```

```
Texec total = (10^6*2+10^9*3)*1*10-9+3.2 = 6.202s
Speedup = 7/6.202 = 1.1286 -> Hemos aumentado un 12.86% la rapidez
```

d)

El CPI de las instrucciones en fase 1 es de 2 ciclos cada instrucción por lo tanto si quisiéramos que la fase uno tardase la mitad en ejecutarse deberíamos reducir a la mitad el CPI de la fase uno, es decir, 1 ciclo/instrucción.

e)

No podemos mejorar tanto el programa tocando solo las instrucciones de acceso a memoria pues estas representan un 1% del total de instrucciones dinámicas $(10^6+10^7+10^7)/(10^6+10^9+10^9) = 0.01$.

```
1.6
```

a)

0.3*2+0.3*5+0.15*7+0.15*3+0.1*4 = 4 ciclos

b)

MIPS = millones instrucciones por segundo ->
MIPS = 1/(1000000*4*(1/(2*10^9)) = 500
MFLOPS = millones de operaciones en punto flotante
MFLOPS = (500mips*0.15)*2ins = 150

c)

CPI = Texec/(Nins*TC) = 2*(0.3-0.15*0.3)+5*(0.3-0.25*0.3)+7*0.15+3*0.15+4*0.1)/0.88(%) = 4.02 ciclos SpeedUP = $(4*0,5*10^{-9})/0.88*4.02*(0.5+0.005*0.5)*10^{-9} = 1.07686$, aumentado un 7.69%

d)

MIPS = 1/10^6*4.02*0.525*10^-9 = 473.82 MFLOPS = (473.82*0.15)*2 = 142.15

```
1.9
a)
23700/(0.75*63200/200) = 100€
b)
63200/200 * 0.75 * 0.92 = 218 dados
c)
(100+20)/0.92 = 130.34€
Con 50% de beneficio 130.34+0.5*130.34 = 195.65€
d)
Viejo -> E = P*t = 7200*50+25200*10 = 223.38 MJ/año
Nuevo -> E = P*t = 7200*40+25200*5 = 151.11 MJ/año
e)
200/(223.38-151.11) = 2.77 años
f)
Viejo -> 36000*50 +50400*10 = 23*10^6 J/dia = 840.96 MJ/año
Nuevo -> 36000*40 +50400*5 = 617.58 MJ/año
g)
200/(840-617.58) = 0.895 años
h)
Usar los nuevos.
i)
Porque consumen más memoria
i)
Viejo -> 7200*100+25200*30+54000*10 = 735.84 MJ/año
Nuevo -> 7200*80 +25200*20 +54000*5 = 492.75 MJ/año
```

k)No lo sería porque no amortizamos la embodied energy.

1.11

Potencia de fugas = I * V Potencia = C*V^2*f

120 = 3*10^9*1.6^2*C+I*1.6 27.5 = 1*10^9*1*C+I*1 27.5-1*10^9*1*C = I 120 = 3*10^9*1.6^2*C+(27.5-1*10^9*1*C)*1.6 120 = 768*10^7*C+44-16*10^8*C 76 = 608*10^8*C C = 1.25*10^-8 F -> 12.5 nF I = 15 A