

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO								
Disciplina:					Código da Disciplina:			
Processos de Fabricação II					EMC212			
Course:								
Manufacturing Processes II								
Materia:								
Procesos de fabricación II								
Periodicidade: Semestral	Carga horária total:	80	Carga ho	rária semana	ı: 02 - 00 - 02			
Curso/Habilitação/Ênfase:	•	*		Série:	Período:			
Engenharia Mecânica				5	Diurno			
Engenharia Mecânica				5	Noturno			
Engenharia Mecânica				5	Noturno			
Professor Responsável:		Titulação - Graduação			Pós-Graduação			
Adalto de Farias		Engenheiro Mecânico		Doutor				
Professores:		Titulação - Graduaç	ção		Pós-Graduação			
Adalto de Farias		Engenheiro Mecânico			Doutor			
Gelson Freitas Miori		Engenheiro Mecânico Dout		Doutor				
Marco Antonio Stipkovic		Engenheiro Mecânico		Mestre				
	MODAL	IDADE DE ENSI	INO					

Presencial: 70%

Mediada por tecnologia: 30%

* Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

A DISCIPLINA NÃO CONTEMPLA ATIVIDADES DE EXTENSÃO.

EMENTA

Teoria: Apresentar ao aluno os conceitos de processos de fabricação mecânicos capacitando-o a identificar e diferenciar as características e potencialidades de cada processo. Capacitar o futuro engenheiro disponibilizando as técnicas para dimensionamento das operações de fabricação. Trabalhar junto ao aluno os conceitos e tópicos referentes aos processos de fabricação mecânicos de fabricação por Fundição em areia, shell-moulding, cera perdida e sob-pressão; Processos de conformação plástica, Laminação, Forjamento em matriz aberta e fechada, Estampagem, Trefilação e Extrusão. As atividades de laboratório abordam os conceitos da não linearidade dos processos de conformação plástica. Os alunos trabalharão com software de elementos e volume finitos na simulação não linear dos processos de conformação a volume constante.

2021-EMC212 página 1 de 8

SYLLABUS

Theory: Introduce the student to the concepts of mechanical manufacturing processes enabling him to identify and differentiate the characteristics of each process. Train the future engineer providing the techniques for dimensioning manufacturing operations. Provide the student concepts and topics related to process by Sand casting, shell-molding, lost wax and pressure casting; Plastic forming processes, Lamination, Open and closed die forging, Stamping, Drawing and Extrusion.

The laboratory activities deal with the concepts of non-linearity of the metal plastic forming processes. Students will work with finite element and finite volume software with nonlinear simulation of constant volume forming processes.

TEMARIO

Teoría: Introducir al alumno en los conceptos de los procesos mecánicos de fabricación que le permitan identificar y diferenciar las características y potencialidades de cada proceso. Formar al futuro ingeniero proporcionando las técnicas para dimensionar las operaciones de fabricación. Trabajar con el alumno los conceptos y temas relacionados con los procesos de fabricación mecánica de fabricación por fundición en arena, moldeo por concha, cera perdida y bajo presión; Procesos de conformado de plásticos, Laminación, Forjado en matriz abierta y cerrada, Estampado, Estirado y Extrusión. Las actividades de laboratorio abordan los conceptos de no linealidad en los procesos de conformado de plásticos. Los estudiantes trabajarán con software de volumen y elementos finitos en la simulación no lineal de procesos de conformado a volumen constante.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- Processos de manufatura de peças mecânicas.
- Desenho técnico mecânico.
- Elementos de Máquinas.
- Processos de fabricação: usinagem.
- Elementos de máquinas: aplicação e representação.
- Materiais de construção mecânica.
- Noções de metrologia.

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

Competência 1:Analisar e compreender os usuários das soluções de engenharia e seu contexto, para formular os requerimentos de engenharia e conceber soluções apropriadasCompetência 2:Dominar o ciclo completo de investigação dos aspectos analítico, numérico e experimental de um mesmo fenômeno, aprendendo a conciliar as diferenças encontradas no conhecimento interdisciplinar coordenado entre as disciplinas do Curso de Engenharia Mecânica.

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos

- C1)Conhecer os principais processos de fabricação mecânica.
- C2)Conhecer as características e potencialidades de cada processo.
- C3)Conhecer as técnicas para dimensionamento das operações de fabricação,

2021-EMC212 página 2 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

analiticamente e numericamente.

C4)Formação nas áreas da Engenharia Mecânica pertinentes ao desenho, mecânico, projeto de máquinas e processos de fabricação.

Habilidades

- H1)Habilidade para avaliar e desenvolver soluções de problemas de relacionados aos processos de fabricação.
- H2)Atuar em equipe.
- H3)Avaliar criticamente a operação e manutenção de sistemas e processos de fabricação mecânicos.
- H4)Conceber, projetar e analisar processos mecânicos de fabricação e seu ferramental pertinente.
- H5)Demonstrar noção de ordem de grandeza na estimativa de dados e na avaliação de resultados relacionados aos processos de produção.
- H6)Conduzir experimentos e interpretar resultados.
- H7)Habilidade para utilizar os recursos de informática necessários para a solução dos problemas relacionados aos processos de fabricação.

Atitudes

- Al)Ter espírito de liderança e capacidade para inserir-se no trabalho em equipe.
- A2)Ter visão sistêmica e interdisciplinar na solução de problemas técnicos.
- A3) Ter percepção do conjunto e capacidade de síntese.
- A4)Ter posição crítica com relação a conceitos de ordem de grandeza.
- A5)Ter compromisso com a qualidade do trabalho.
- A6)Ter compromisso com a segurança no trabalho e do público em geral.
- A7)Ter dinamismo para saber acompanhar as mudanças tecnológicas em constante transformação.
- A8)Organizar o seu trabalho.
- A9)Tomar decisões e implementá-las

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Project Based Learning
- Problem Based Learning

METODOLOGIA DIDÁTICA

Introdução aos conceitos e tópicos através de metodologia de solução de problemas. Aplicação de metodologias ativas para resolução de um projeto apresentado na Mecânica.

Uso de aulas expositivas, metodologias hibridas com auxílio de mídias e resolução de exercícios. Treinamento de habilidades em uso de softwares de simulação de processos de fabricação mecânica.

2021-EMC212 página 3 de 8

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIACAO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina semestral, com trabalhos e provas (uma e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0$

Peso de $\mathrm{MP}(k_{_{\mathrm{P}}})$: 0,6 Peso de $\mathrm{MT}(k_{_{\mathrm{T}}})$: 0,4

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina oferecerá base informativa e de conhecimento sobre as diferentes possíveis alternativas de manufatura de um determinado componente mecânico. Permitirá a redução substancial de não conformidades, muito comumente causadas no desenvolvimento de projetos mecânicos, quando o engenheiro adquirir um conhecimento mais amplo das alternativas de fabricação existentes. Garantirá uma maior familiriarização com as diferentes áreas de produção mecânica.

Preparar o futuro engenheiro para atuar nos seguintes campos de atuação segundo a resolução CREA: 1.3.4.01.01; 1.3.4.01.02; 1.3.4.08.00; 1.3.4.9.01 e 1.3.4.9.02

BIBLIOGRAFIA

Bibliografia Básica:

ALTAN, Taylan; OH, Soo-Ik; GEGEL, Harold L. Conformação de metais. Trad. de Reginaldo Teixeira Coelho; rev. téc. de Luís Antônio Adami; supervisão de Rosalvo Tiago Ruffino. São Carlos, SP: EESC-USP, 1999. 350 p. ISBN 8585205253.

ALVES FILHO, Avelino. Elementos finitos: a base da tecnologia CAE/Análise não Linear. São Paulo, SP: Érica, 2012. 320 p. ISBN 9788536503950.

DIETER, George E. Metalurgia mecânica. Trad. de Antonio Sérgio de Souza e Silva e outros. 2. ed. Rio de Janeiro, RJ: Guanabara Dois, 1981. 653 p.

GROOVER, Mickell P. Introdução aos processos de fabricação. Rio de Janeiro: LTC, c2012. 737 p. ISBN 9788521625193.

Bibliografia Complementar:

2021-EMC212 página 4 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

GROOVER, Mikell P. Fundamentos da moderna manufatura: Versão SI. 5. ed. Rio de Janeiro: GEN/LTC, c2017. v. 1. 421 p. ISBN 9788521633884.

GROOVER, Mikell P. Fundamentos da moderna manufatura: Versão SI. 5. ed. Rio de Janeiro: GEN/LTC, c2017. v. 2. 547 p. ISBN 97885216338891.

KALPAKJIAN, Serope. Manufacturing engineering and technology. 4. ed. New Jersey: Prentice Hall, 2000. 1148 p. ISBN 0-201-36131-0.

LESKO, Jim. Design industrial: Materiais e processos de fabricação. [Industria design: materials and manufacturing]. Trad. Wilson Kindlein Júnior e Clovis Belbute Peres. São Paulo, SP: Edgard Blücher, 2008. 272 p. ISBN 9788521203377.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

Simufact Forming

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Prova

P1: Toda matéria abordada nas aulas de teoria.

Psub: Toda a matéria

Trabalhos

- T1: Média das atividades (até 3) de aprendizagem ativas a serem realizadas nas aulas;
- T2 Atividade de Simulação com Software, Individual, no Laboratório de Simulação de Processos;
- T3 Projeto de uma ferramenta de conformação.

2021-EMC212 página 5 de 8

OUTRAS INFORMAÇÕES

2021-EMC212 página 6 de 8

APROVAÇÕES

2021-EMC212 página 7 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana		
1 T	Introdução da Disciplina -Fundamentos da Conformação dos Metais	0
1 L	FUNDAMENTOS DA SIMULAÇÃO DE PROCESSOS NÃO LINEARES	0
2 T	Processos de Conformação a Volume Constante - Introd. Forjamento	41% a 6
	com Matriz Aberta	
2 L	Simulação de Forjamento com Matriz ABERTA	91% a
		100%
3 T	Processo de Laminação	41% a 6
3 L	Simulação do Processo de Laminação	91% a
		100%
4 T	Processo de Trefilação	41% a 6
4 L	Simulação do Processo de Trefilação	91% a
		100%
5 T	Processo de Extrusão	41% a 6
5 L	Simulação do Processo de Extrusão	91% a
		100%
6 Т	Processo de Forjamento com Matriz Fechada	41% a 6
6 L	Simulação de Forjamento com Matriz FECHADA	91% a
		100%
7 T	Processo de Forjamento com Matriz Fechada-Projeto de Matriz	1% a 10
7 L	Atividade Individual em sala	91% a
0 =		100%
8 T	Processos de Conformação de Chapas	41% a 6
8 L	Simulação de Conformação de Chapas: DOBRA	91% a
9 Т	Duazarar da Canfarmarão da Chanas	100%
	Processos de Conformação de Chapas	41% a 6
9 L :	Simulação de Conformação de Chapas: CORTE	91% a 100%
10 T	Progoggog do Conformação do Chapag	41% a 6
10 T 10 L	Processos de Conformação de Chapas Projeto ferramenta de conformação	91% a
ТОП	FIOJECO TETTAMENTA de CONTOTMAÇÃO	100%
11 T	Processos de Conformação de Plásticos	11% a 4
11 L	Projeto ferramenta de conformação	91% a
11 11	riojeto leframenta de comormação	100%
12 T	Processos especiais de conformação	0
12 L	Projeto ferramenta de conformação	91% a
_	<u> </u>	100%
13 T	Metalurgia do Pó - Cerâmicos e Cermetos	0
	Projeto ferramenta de conformação	91% a
13 L	-	
13 L		100%

2021-EMC212 página 8 de 8