Introduction

The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Course Information

- Instructor:
 - Prof. Hyungsoo Jung (정형수), hyungsoo.jung@gmail.com
- TA:
 - Please look behind you !!!
 - 오규석
 - 김영진

Course Information

- Textbook :
 - The Art of Multiprocessor Programming
- Grading:
 - Only one paper exam (30% ~ 40%)
 - A series of programming projects (VERY IMPORTANT) (60% ~ 70%)
- Late and Missing Work
 - We do NOT strictly accept any late projects,
 but give partial credits for unfinished work, if it
 makes sense.

Hardware Development Trend

- Processor cores
- Network bandwidth
- Storage medium (HDD & SSD)

Moore's Law (processor cores)

"The number of transistors incorporated in a chip will approximately double every 24 months."

--Gordon Moore, Intel co-founder

Moore's Law (processor cores)

Microprocessor Transistor Counts 1971-2011 & Moore's Law

2014: IBM's System z processor 5.7GHz and with 2.75B transistors.

Nielsens' Law (network bandwidth)

"Users' bandwidth grows by 50% per year (10% less than Moore's Law for computer speed)."

--Jakob Nielsen, Nielsen Norman Group

Nielsens' Law (network bandwidth)

Storage medium (HDD & SSD)

Storage medium (HDD & SSD)

Trends in areal density of HDDs and innovation technologies

Storage medium (HDD & SSD)

Many legacy system software designs are based on the characteristics of HDD.

Trend Summary

		Annualized Growth Rate	Compound Growth Over 10 Years
Nielsen's Law	Internet bandwidth	50%	57×
Moore's Law	Computer power	60%	100×

Problems in System Software

How bad is the performance collapse?

Throughput

How bad is the performance collapse?

What causes this collapse?

Let's profile databases to peek a little bit deeper inside the system.

Profiling: read-only queries under "SERIALIZABLE" isolation on 32 cores on 4 sockets

Latch contention is the cause !!!

Mutex (latch)

Duration is usually very short Spin-waiting on contention

This works fine as long as the duration is really short.

Concurrency control by latches

In-memory Data Structures

Mutex (Latch)

More threads

Access

In high contention:

- (1) latch duration gets longer
- (2) spin-waiting incurs the cache invalidation storm on Concurrency cont multicores!!!

B+tree

(3) This causes performance collapse !!!!

Pages

Leaf
Pages

Table
Pages

In-memory Data Structures

Goal

 Design software (especially core data structures and algorithms) to have multicore scalability !!!

Sequential Computation

