Lecture 26.
Def (4.5. R & AxA Ris equlation relation 27 it is symmetric, reflex and transitive. e.f. Ex= \(\xi_{\alpha} \) a6A \(\xi_{\alpha} \).
W= { All English nords } R: { Lx, y) start with same letter } reflexive symmetric transitive R= \$ (x, y) have a letter in common; reflexive symmetric transitive x R; = {(x, y) have same number of elements reflexive symmetric transitive x
Det 4.5.9. Fix m66t x1x68 x is equilation if m(1x-x). 2.e. \(\frac{1}{2}\)k62, \(\frac{1}{2}\)=\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\
Proof: reflexive: Let xbz , then $x-x=0$, $0=0.m$.
Symmetric: let x, y 6 2. assume x im/. so m(xxy). so there exist k62 x-y=km. y-x0=-km. Since -k: s also an interger, thus y=mx. transitive:
Det 4.5. }. For xcA, the equivalence class of x t 2 is. [x] _R = &y cA xRy }. write [x] _R if 2 is understand. A/2 = { ix] _R xcA}.
e-f. $\frac{2}{10}$ on $\frac{2}{10}$ $\frac{2}$ $\frac{2}{10}$ $\frac{2}{10}$ $\frac{2}{10}$ $\frac{2}{10}$ $\frac{2}{10}$ $\frac{2}{$
$\begin{array}{c} \text{etc} = \\ \text{L3} = \text{L0}, 3 = \\ \text{O}, 13, 12, 13, 12, 3. \end{array}$

= { { -6, -3,0,3,63,	
8-5,-2,1,4,73,	
{-4,-1,2,5,8}	
Notice: xc [x]. Yxc& Since ce	2s a reflexive relation.
disjoint: Folasilad	
[13 n [2] = b =>	[a], [b] are either equal or disjoint
II3 n io3 = \psi.	
[0] U[1] U[2] = 2	
For 70-762, [N] = [7] :	}} ≈=; × :>> y ∈ [×].
· · · · · · · · · · · · · · · · · · ·	
e-f. W= { English words }. R= { some First letter }.	
W/2 = \$ = 12 = 1 (2 = 12)	F2-7 7 2-1/
$W/2$ = { [ant], [bat], [cat] [bat] = [boy] [bat] R.[boy]	Loug J. 22 26 elements.
List) - Looy) - Look) KILOOY).	
Lemma 4.5.5. R. A. A. equivereln	
2. 4 x, y 6 A y 6 [x] 2 : 77 [x]	{ = L x }
Proof =1: 70A. Since R =5 reflex	200 x P2 (2 x 2 x 2 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x
	7 Ru
50 ×2y → [x3=2y3.	
To show [x } & Ex], &c Ex	3-> xR2-> ZKx (Symmetric).
	- + thy laransitive).
	27 26 [73.
	60 27