環球城市數學競賽

葉均承・葉永南・孫文先

環球城市數學競賽爲一項國際性的數學比賽, 試題活潑難度高, 經常被視爲奧林匹克數學比賽的熱身賽。這項競試在台灣迄今已舉辦了三年, 參加的學生相當踴躍, 頗受各界的重視。本文係環球城市數學競賽 1999 年秋季賽國中組與高中組的試題分析。

本文以幾位學生的解題動機爲主體, 貫穿整個試題分析, 係其獨特之處, 將能引導學生 正確的數學學習方法, 並提供教師們很好的參考資料。

前言

環球城市數學競賽 (International Mathematics Tournament of Towns) 肇始於1980年,原只有前蘇聯的三個城市莫斯科 (Moscow)、基輔 (Kiev) 及里加 (Riga) 市參加,現已成爲國際性的比賽,由俄羅斯科學院主辦,有上百個城市,數十萬名學生參加。

比賽每年有二輪, 秋季賽通常在每年十月, 春季賽通常在次年二月, 全世界同步舉行。各城市自行初閱後, 將試卷得分較高者依人口一定比例之數量呈交總主辦單位複核評比。競賽指定語文為英語、俄語、法語、德語、西班牙語、世界語, 非使用上述語文之參賽城市必須自行翻譯試題及送交總部之答案卷。每輪競賽分爲國中組 (Junior) 及高中組 (Senior)。國一 (在俄羅斯爲 7th form) 及國一以下學生參加國中組競賽以原始分數乘以3/2計分, 國二學生 (8th form)則以原始分數乘以4/3計分; 高一 (10th form) 及高一以下學生參加高中組競賽, 以原始分數乘以5/4計分。每組試卷又分爲初級卷 (O-Level) 及高級卷 (A-Level), 間隔一週測試, 參賽者可擇一或二者均參加, 高級卷較難, 但每題佔分較多。初級卷測試時間4小時; 高級卷測試時間5小時。以參賽者每次試卷得分最高之三題總分爲原始分數, 以初級卷及高級卷較高之得分參加評比。參賽成績優異者將由俄羅斯科學院頒發證書, 各城市之成績優異者由各地主辦單位頒發獎狀。

1992年起,除了競賽之外,又多了二項活動。第一項是邀請成績優異的學生參加爲期一週的夏令營,此夏令營通常在俄羅斯鄉間舉行,開營時即給營員一些分成若干組的挑戰題 (有些問題尚未有人解答),由一位教授指導三位學生,共同研討這些問題。在夏令營期間營員亦參加一些專題研討及聯誼活動。另一項豐富的活動是通訊指導優異的學生作進階研究及培訓,每位學生配置一位教授指導。

1998年7月底, 數學競賽國家聯盟 (World Federation of National Mathematics Competitions) 在大陸廣州中山舉行。由於許多成員均參加在台灣主辦之第39屆 IMO, 這些成員

在 IMO 結束後轉機至廣州中山。環球城市數學競賽主席 Konstantinov 在此會議期間授權九章出版社負責亞洲華語地區之賽事。台灣賽區之給獎辦法爲各組成績名列台灣所有參賽選手前 1/2 者頒發一等獎、二等獎、三等獎獎狀。1999年給獎比例爲 1:2:3 (即一等獎數量佔所有考生之 1/12); 2000增加佳作獎, 給獎比例改爲 1:3:6:12 (即一等獎數量佔所有考生之 1/44), 名列各組前三名之女生, 另給女生獎; 2001年給獎比例再改爲 1:3:6:15 (即一等獎數量佔所有考生之 1/50)。

在這裡,我們將對1999秋季賽的題目作解析供國內中學生及教師參考。

1999秋季賽 國中組 初級卷解析

- (1) 將一直角三角形的紙片,沿著一條直線摺,使直角的頂點和三角形另一個頂點重合,得出一個四邊形。
 - (a) 這個四邊形兩條對角線相交, 彼此分爲兩段, 求每條對角線的兩段長度的比率。(二分)
 - (b) 將摺好的四邊形紙片,從原三角形的第三個頂點開始沿著對角線剪開,使得原紙片成爲 三張小紙片,假如原三角形的面積爲1,求最小那塊紙片的面積。(二分)
- 小淳: (a) 部份我會作一些, 按照題目的意思, 點 B 與直角點 C 重合, 可沿 \overline{FD} 摺 $\triangle ABC$, 使得我得到圖一。由於 $\triangle FDG$ 與 $\triangle DGC$ 同高, 所以 $\overline{FG} = \frac{\triangle FDG}{\triangle DGC}$ 面積, 我們可以令 $\triangle FDG$ 爲 x, $\triangle DGC$ 面積爲 y, 因爲 $\angle FDB$ + $\angle FDC = 180^\circ$, 又 $\angle FDB = \angle FDC$, 所以 $\angle FDB = 90^\circ$, 因此 $\overline{DF}//\overline{AC}$ 。因爲 D

是 \overline{BC} 的中點,所以 \overline{DF} 必交 \overline{AB} 於中點,即 F 是 \overline{AB} 的中點。由於 $\triangle AFD$ 與 $\triangle CFD$ 同高,則 $\triangle ADF$ 面積 = $\triangle CDF$ 面積 = x+y,我們得到 $\triangle AFG=y$,又 因爲 $\triangle ACD$ 與 $\triangle ABD$ 同高,則 $\triangle ACD$ 面積 = $\triangle ABD$ 面積 = $2\triangle ADF$ 面積 = 2x+2y,所以 $\triangle AGC$ 面積 = $\triangle ACD$ 面積 $-\triangle DGC$ 面積 = 2x+y,然後我就不會了。

小地: 你看! 因爲 $\overline{FD}//\overline{AC}$,所以我們得到 $\angle GFD = \angle GCA$, $\angle GDF = \angle GAC$,進而證明 $\triangle FDG \sim \triangle CAG$,所以 $\frac{\overline{FG}}{\overline{GC}} = \frac{\overline{DG}}{\overline{AG}}$,即 $\frac{x}{y} = \frac{y}{2x+y}$,這樣就得到 $x(2x+y) = y^2$,即 $0 = 2x^2 + xy - y^2 = (x+y)(2x-y)$,因爲 x,y 都是正數, $x+y \neq 0$,所以 2x-y=0,此即 y=2x,也就是 $\frac{x}{y}=\frac{1}{2}$ 。

小淳: 哇! 好難喲!

小君: 其實作法可以簡單許多, 不必用到解一元二次方程式。如果利用三角形的二腰中點連線 必平行底邊且其長度恰爲底邊的一半之性質, 再利用 $\triangle FDG \sim \triangle CAG$, 可得 $\frac{1}{2}$ = $\frac{\overline{FD}}{\overline{AC}} = \frac{\overline{FG}}{\overline{GC}} = \frac{\overline{DG}}{\overline{AC}}$

小淳: 好棒喔! 聽起來不難嘛! 那我試試看 (b) 部份。 咦, 我怎麼只有剪成二部份而已!

小君: 拜託, 你沒有按照題意先把 B 點和 C 點重合摺 好, 千萬不能再打開, 這樣就可以剪成 $\triangle ADC$, $\triangle ADH$ 和 $\triangle BDH$ 三部份。(b) 就是要我們求 圖二中的 $\triangle BDH$ 面積。摺好之後, B 與 C 點 重合, H 點與 G 點也重合, 所以 $\triangle BDH$ 面積 $= \triangle DGC$ 面積。

小淳: 那簡單, $\triangle DGC$ 的面積是 y, $\triangle ABC$ 的面積是 $\triangle BDF$ 面積的 4 倍。由於同高, 所以 $\triangle BDF$ 面積 = $\triangle ADF$ 面積 = x + y, 則 $\triangle ABC$ 的面積是 4x + 4y = 6y, 所以 $\triangle DGC = \frac{1}{6}\triangle ABC$ 面積 $=\frac{1}{6}$.

小承: 其實在 (a) 部份中, F 點是 $\triangle ABC$ 的外心, G 點是 $\triangle ABC$ 的重心, 也就是三角形中 線的交點, 重心 G 把三條中線都分爲二段, 其長度的比例爲2:1。

小淳: 小承, 你在說什麼呀? 聽聾嘸!

- (2) 令 a, b, c 爲整數, 並且滿足 a+b+c=0。假設 $d=a^{1999}+b^{1999}+c^{1999}$ 。請問:
 - (a) 有沒有可能 d = 2? (二分)
 - (b) 有沒有可能 d 是個質數? (二分)(大於1的整數, 如果只有1及本身的因數, 稱它爲質數。)

小淳: 這題很簡單, 我用 a=1, b=-1, c=0 代入, 計算結果: d=1+(-1)+0=0, 所 以 d 不可能是2. 也不可能是質數。

小君: 什麼跟什麼嘛! 你只是用一種情形代入得到 d=0, 怎麼能保證 d "不可能" 是2也不可 能是質數。

小青: 這題在暗示 d "不可能"是2, 否則, 因爲2是質數, 那麼 (b) 部份就不用作了。

小承: 對! 你說得很對, 但是這不是證明。

小青: 由於 a+b+c=0, 如果 a, b, c 有一個或一個以上的數是 0, 則 d=0。如果 a, b, c 都 不爲0, 則a, b, c 有正, 有負。即a, b, c 是二負一正或者二正一負。不失一般性, 令b, c 同號但與 a 不同號,且 a 爲正。那麼 $a^{1999} = |(b+c)^{1999}|$ 遠大於 $|b|^{1999} + |c|^{1999}$, 所以 d 不可能是 2。

小承: 小青說得不清楚。我學過二項式定理, 那就是:

$$(b+c)^{n} = b^{n} + \binom{n}{1}b^{n-1}c + \binom{n}{2}b^{n-2}c^{2} + \dots + \binom{n}{n-1}bc^{n-1} + c^{n}$$
$$= b^{n} + c^{n} + bc\left[\binom{n}{1}b^{n-2} + \binom{n}{2}b^{n-3}c + \dots + \binom{n}{n-1}c^{n-2}\right]$$

根據小靑的想法,應該是說:

- (1) a, b, c 中有一個或一個以上的數是 0, 則 d = 0。
- (2) a, b, c 三個數不可能同時全爲正或者全爲負。不失一般性,令 b, c 同號但與 a 不同號。所以 a=-(b+c)。因此

$$d = (-1)^n bc \left[\binom{n}{1} b^{n-2} + \binom{n}{2} b^{n-3} c + \dots + \binom{n}{n-1} c^{n-2} \right]$$

現在 n = 1999, 由於 1999是質數, 若 0 < k < 1999, 則 $\binom{1999}{k}$ 一定是 1999的倍數。 那就直接推導出 d 是 1999的倍數。 若 d 是 質數則 |b| = |c| = 1, 我們可得 |a| = 2, 所以 $|d| = 2^{1999} - 2$ 不是質數, 得知 (a), (b) 都是不可能。

小淳、小君: 我們都沒學過二項式定理, 聽說高三才會學到, 那我們怎麼可能會作這題?

小地: 別喪氣! 這題有簡單的方法, 題目問我們是否可能爲質數, 小靑又說題目暗示 (a) 不可能, 那我們檢查 d 是否爲某數的倍數就好了。

小淳:老天爺,自然數那麼多,我怎麼可能知道 d 會是哪一個數的倍數呢?

小地: 別急, 從簡單情形的著手嘛!

小君: 好, 我來。由於 x^n 與 x 的奇偶性相同,所以 $d=a^{1999}+b^{1999}+c^{1999}$ 與 a+b+c=0 的奇偶性也相同。因爲 a+b+c=0 是 2 的倍數,所以 d 也是 2 的倍數。帥啊! 好像不難哩! 再來看 d 是否爲 3 的倍數 . . .

小淳: 等一等, 讓我來試試看, $0^{1999} = 0$, $1^{1999} = 1$, 2^{1999} 除以3餘 . . . 嗯, 2除以3餘2, 2^2 除以3餘1 . . . , 呀! 2的次方除以3的餘數不是固定的。不行啦!

小君: 別急! 2^3 除以3餘2, 2^4 除以3餘1, 喔, 我知道了, 2的奇數次方除以3餘2, 這樣 x^{1999} 和 x 除以3的餘數相同。 $a^{1999}+b^{1999}+c^{1999}$ 和 a+b+c 除以3的餘數相同。又0是3的倍數,所以 d 也是3的倍數。哇! 我作出來了,d 是2跟3的倍數,當然 d "不可能" 是2、也 "不可能" 是質數。怎樣,我有夠聰明吧! 不好意思,不好意思!

(3) 平面上有 n 條直線, 每條直線恰好與1999條其它直線相交, 求 n 的所有可能值。(四分)

小淳: 這一題最簡單了,答案是 2000 條任意二條線都相交,所以 n 的值是 1+1999=2000。 小承: 會不會有其它答案呢?

小淳: 我不知道啊。

小君: 可以先觀察 n 值很小的情況, 如果有4條線, (i) 任意二線都相交, 則每條直線恰好其它 3條直線相交。(ii) 這4條線恰爲二組二條平行線排成井字形,則每條直線恰好與其它2條 直線相交。

如果有6條線, 則我們可以排成圖三的三種情況: 每條直線恰好與其它的(i) 5條(如 圖三 (a)), (ii) 4條 (如圖三 (b)), (iii) 3條 (如圖三 (c)) 直線相交。一般情形的時候我 可以這樣想: 這些直線分成 k 堆每一堆都有 m 條平行的直線, 但是不同堆的直線都不 平行, 則每條直線恰好和其它 $(k-1) \cdot m$ 條的直線相交, 現在令 $(k-1) \cdot m = 1999$, 所以可以知道 k = 2, m = 1999 或者 k = 2000, m = 1。因爲直線共有 $k \cdot m$ 條, 所 以答案有2種, $2 \times 1999 = 3998$ 和 $2000 \times 1 = 2000$ 。哇! 我又作出來了。

小承:慢著,你爲什麼可以假設"每一堆都有m條平行的直線"呢?

小君: 本來就是這樣嘛! 這樣也比較有對稱性. 而且作解答方便些嘛!

小承: 不行, 必須講理由才行。理由是: 如果堆數 > 2 (即 k > 2), 任一條直線都和同一堆中 的直線平行, 而和其它堆中的直線相交。在第 i 堆及第 j 堆中各挑出一條直線, 令其爲 L 與 M, 令: 全部直線數的個數爲 N, 第 i 堆直線的個數爲 I, 第 i 堆直線的個數爲 J, 又令 L 相交的所有直線數目爲 l, 和 M 相交的所有直線數目爲 m, 因爲和第 i 堆中 的任一條直線相交的直線數等於全部直線數減去第 i 堆的直線數, 所以 I = N - l。同 理 J = N - m。因爲和 每一條直線相交的直線個數都是一樣, 所以 l = m, 也就是說 I = J. 所以每堆的直線數目都必須一樣。

小淳: 幹嘛這麼麻煩呢?

小承: 數學是追求眞理, 概念必須弄淸楚才行。

(4) 義大利製的 A 廠牌時鐘, 每天時針只轉1圈, 分針轉24圈; 而一般的普通時鐘, 每天時針 轉兩圈, 分針轉24圈。 假設兩種時鐘的鐘面一樣大, 時針、分針也分別一樣長, 但分針略長 於時針。兩種時鐘「零時 | 的刻痕都固定位於鐘面的正上方。問24小時內, 有多少種情形時 針、分針和「零時」的相對位置,相同地出現在兩種時鐘上 (這時候兩種時鐘顯示的時間可能不同)? (四分)

小淳: 這一題很繁瑣, 但是不難。我畫圖就可以淸楚地作出答案了。圖四 (a) 是 A 廠的鐘。圖四 (b) 是普通的鐘。我只要把 A 廠的鐘每一個 k 點整, $0 \le k \le 23$, 的位置圖形都畫出來, 共有 24 種, 再看看那一種圖形的相對位置在普通的時鐘上也會出現, 結果是 12 種 (即 $k=0,2,\ldots,22$)。

小青: 其實我只畫4個圖, 1點整、2點整、3點整、4點整, *A* 廠的時鐘面上時針、分針和零時的位置, 就馬上推理知道2點、4點、6點、... 24點正的 *A* 廠的鐘面上時針、分針和零時的相對位置是否也會相同地出現在普通時鐘。

小君: 爲什麼你們只看每一個"整點"的位置? 難道其它時刻都不行嗎?

小淳、小青: 當然不可以啦! 不然你告訴我還有其他答案嗎?

小君: 不可以要求評審老師幫你證明, 小承說的 "要講理由才行"。 嗯, 我知道了, A 廠分針角速度是時針的24倍, 普通鐘的分針角速度是時針角速度的12倍, 由於 A 廠時鐘的分針角速度和普通鐘的分針角速度一樣, 但是普通鐘的時針角速度是 A 廠時鐘的時針角速度的2倍, 它們只有在指向"整點"的刻痕才會在同一位置, 所以才要看整點嘛!

小承: 題目不是問我們兩種鐘 "同時" 出現的相對位置的時刻有多少種? 所以小君的理由不全對, 最後的理由有偏差。理由應該是這樣的:

兩個鐘的 "零時" 刻痕都不動,分針角速度一樣,我們只要檢驗二種時鐘的時針在同一位置時,它們的分針也在同一位置,即普通廠的鐘是 a 點 b 分的話,則 A 廠的鐘必須是 c 點 b 分。

由於普通鐘的數字 x 刻痕與 A 廠鐘的偶數數字 2x 刻痕在同一位置; 而 A 廠鐘的奇數數字 2x+1 刻痕是介在普通鐘的數字 x 與 x+1 刻痕的中間。每次整點時,二種時鐘的分針都是從 "零時" 刻痕開始走,時針是從 "整點" 刻痕開始走。如果時針、分針和「零時」的相對位置,相同地出現在兩種時鐘上,則必須 a=2c 或 2c+1。

如果 60 > b > 0: 由於 A 廠時針由數字 a 開始走的角度是分針從"零時"刻痕 走過角度的 $\frac{1}{24}$, 普通時鐘的時針則是走 $\frac{1}{12}$ 。由於分針每分鐘繞了 $6^{\circ}(\frac{360^{\circ}}{60}=6^{\circ})$,當分 針繞了 $(6b)^{\circ}$, A 廠的時針繞了 $\frac{b}{4}^{\circ}$, 而普通時鐘的時針繞了 $\frac{b}{2}^{\circ}$ 。我們要考慮二種情形: (-) a=2c, A 廠的時針是從數字 a 開始繞了 $\frac{b}{4}$ °, 由於 60>b>0, 則 $\frac{b}{2}\neq\frac{b}{4}$ (不 合)。(二) a = 2c + 1, A 廠鐘的時針從數字 a - 1 (= 2c) 到 a 要走 15°。所以說 A 廠 鐘時針是從數字 a-1 開始共走了 $(\frac{b}{4}+15)^{\circ}$, 由於 60>b>0, 則 $\frac{b}{4}+15\neq\frac{b}{2}$ (不 合)。所以必須 b=0,這才是"要看整點"的理由。

(5) 能不能將 6×6 的棋盤, 分割爲 18 個 1×2 或 2×1 的長方形, 而且在每個長方形内只劃 一條對角線, 使得這18條對角線中的任何兩條對角線, 都沒有共同的端點? (四分) (註: 每個長方形都有二條對角線, 一條從左上到右下, 另一條從右上到左下。)

小淳、小君、小青: 這題好難哩! 我們根本無從著手嘛!

小承: 其實這題不難,當棋盤是 2×2 與 4×4 時很 容易作出來,就像圖五,那你們看,這兩個圖五 (a), (b) 有什麼關係呢? 如何從圖五 (a) 得到 圖五 (b) 呢?

小淳: 圖五 (b) 好像是圖五 (a) 放在中間, 外面再圍 著一圈。

小承: 對, 那 6×6 的棋盤怎麼辦?

小淳: 那 6×6 不也就是把 4×4 的外面再圍一圈 嗎? 我試試看, 哇, 你們看 (圖六) 6×6 的棋 盤我可以作出來了, 再試 8 × 8, 嗯, 也可以, 那任何 $2n \times 2n$ 都是一樣的作法! 好簡單哩!

小承: 對! 小淳! 你好聰明! 但是一般情形要用數 學歸納證明或把 $2n \times 2n$ 棋盤座標化再詳細 描述所有對角線的位置, 說明它們不會相交才 行。

1999秋季賽 國中組 高級卷解析

(1) 如果可以將正整數 $1,2,3,\ldots,n$ 重新排列成一數列, 使得任意連續三項之和, 都能被這三 項中的第一項整除。如果這個數列的最末一項是奇數, 試求 n 的最大值。(三分)

小淳: 第1項是2, 第2項是1, 第3項是3, 第4項是4, 第5項是5。這是我隨便試試所得到滿足 題意的最長數列。

小承: 你作對了一半, 它是最長的。但是你知道爲什麼滿足題意的數列最長的長度是5。

小淳: 不知道!

小君: 如果數列 a_1, a_2, \ldots, a_n 滿足題意,則不可能有連續二項是偶數,否則這二項之後的項都是偶數,題目要求最後一項是奇數。

小淳: 如果 a_i 是偶數, a_{i+1} 是奇數, 則 a_{i+2} 是奇數。但是 a_i 是奇數 那我就推不出什麼結論了。

小承: 其實你們兩個已經講出答案的主要部份了, 根據一個偶數後面一定要接二個或二個以上的奇數。除非接了一個奇數之後, 整個數列就結束了。由於從 1,2,...,n 中奇數的個數比偶數的個數最多多一個。所以整個數列最多只有2個偶數, 而且第一項是偶數, 也就是數列必須呈現偶奇奇偶奇 這樣我們用樹狀圖還可以找出所有滿足題意的最長數列出來。

有 21345, 23541, 25143, 43125和45321 共五組答案。

- (2) $\triangle ABC$ 爲銳角三角形, C' 是 AB 線段上之任一點; A' 是 BC 線段上之任一點; B' 是 CA 線段之中點。求證:
 - (a) 三角形 A'B'C' 之面積不大於三角形 ABC 面積的一半。(二分)
 - (b) 若三角形 A'B'C' 之面積等於三角形 ABC 面積的 $\frac{1}{4}$ 則 A' 是 BC 線段之中點或 C' 是 BA 線段之中點;反之,若 A' 是 BC 線段之中點或 C' 是 BA 線段之中點,則三角形 A'B'C' 之面積等於三角形 ABC 面積的 $\frac{1}{4}$ 。(二分)

小淳: 這題 (a) 部份很簡單, 如圖一 (a) 固定 B', C' 靠近 A 點, A' 點靠近 B 點則, $\triangle A'B'C'$ 會越大, 而 $\triangle AB'B$ 的面積 = $\frac{1}{2}\triangle ABC$ 的面積, 所以 $\triangle A'B'C'$ 不大於 $\triangle ABC$ 面 積的一半。

小承: 如果圖形不是圖一 (a) 而是圖一 (b) 怎麼辦?

小淳: 那是一樣的, 對稱嘛。

小承: 如果圖形是圖一 (c) 或圖一 (d) 呢?

小淳: 當圖形是圖一 (c) 和圖一 (d) 的情形, 若 C' 靠近 A, B 的中點 M 的話, $\triangle A'B'C'$ 的 面積會越來越大, B'M//BC 所以 $\triangle MB'A'$ 的面積 $=\frac{1}{4}\triangle ABC$ 的面積 $<\frac{1}{2}\triangle ABC$ 面積。 這樣 $\triangle A'B'C'$ 面積 $<\frac{1}{2}\triangle ABC$ 面積呀! 怎麼這麼麻煩啦。

小承: 你怎麼知道當點 A' 與 C' 愈接近它們所在邊的中點時, $\triangle A'B'C'$ 的面積會愈大? 這種 直觀的觀察結果並不嚴謹, 不能拿來當作證明的理由, 你還是要將理由說清楚才是, 否則 不能算完整地回答問題。

小淳: 這個我自己也不知道該怎麼說才好, 你們誰有比較嚴謹的證明, 告訴我好嗎。

小君: 好麻煩哦! 還要分那麼多種情況討論。我最近讀了張景中教授著的「平面幾何新路」, 我 想這個題目應可以用面積關係來解。假設 B' 是 \overline{AC} 中點, C', A' 分別為 \overline{AB} , \overline{BC} 線 段上的任意點。假設 $\overline{AC'} = p$, $\overline{BC'} = q$, $\overline{A'B} = s$, $\overline{A'C} = t$, $\overline{AB'} = \overline{B'C} = r$ 。根 據共角定理

$$\begin{split} \frac{\triangle A'BC'}{\triangle ABC} &= \frac{qs}{(p+q)(s+t)} \\ \frac{\triangle A'CB'}{\triangle ABC} &= \frac{rt}{2r(s+t)} = \frac{t}{2(s+t)} \\ \frac{\triangle B'AC'}{\triangle ABC} &= \frac{pr}{2r(p+q)} = \frac{p}{2(p+q)} \\ \frac{\triangle A'B'C'}{\triangle ABC} &= 1 - \frac{\triangle A'BC'}{\triangle ABC} - \frac{\triangle A'CB'}{\triangle ABC} - \frac{\triangle B'AC'}{\triangle ABC} \\ &= 1 - \frac{qs}{(p+q)(s+t)} - \frac{t}{2(s+t)} - \frac{P}{2(p+q)} \\ &= \frac{2(p+q)(s+t) - 2qs - t(p+q) - p(s+t)}{2(p+q)(s+t)} \\ &= \frac{2ps + 2qs + 2pt + 2qt - 2qs - tp - tq - ps - pt}{2(p+q)(s+t)} \\ &= \frac{ps + qt}{2(p+q)(s+t)} = \frac{ps + qt + qs + pt - qs - pt}{2(p+q)(s+t)} \\ &= \frac{1}{2} - \frac{qs + pt}{2(p+q)(s+t)} \le \frac{1}{2} \quad \left(\boxtimes \beta \mid \frac{qs + pt}{2(p+q)(s+t)} \ge 0 \right) \end{split}$$

小地: 不必分這麼多情形討論, 只要我們把所有的面積都擴大2倍就可以了。

小君、小淳: 怎麼說?

小地: 作一個平行四邊形 ABCD (如圖三)。延長 $\overline{C'B'}$ 交 \overline{CD} 於 C'', $\overline{A'B'}$ 交 \overline{AD} 於 A'', 連接 $\overline{C'A''}$, $\overline{A''C''}$, $\overline{A'C''}$, 因爲 B' 是 \overline{AC} 中點, 所以 $\overline{AB'} = \overline{B'C}$, 因爲 $\overline{BC}//\overline{AA''}$, 所以 $\angle B'A'C = \angle B'A''A$, 又 $\angle A'B'C = \angle A''B'A$, 所以 $\triangle A'B'C \cong \triangle A''B'A$ 。則 $\overline{A'B'} = \overline{A''B'}$ 。同理可證 $\overline{C'B'} = \overline{C''B'}$ 。因爲兩對分線互相 平行所以平行四邊形 A'C''A''C' 是平行四邊形,這樣,我們知道

$$\triangle A'B'C'$$
 面積 = $\frac{1}{4}$ 平行四邊形 $A'C''A''C'$ 面積
 $\leq \frac{1}{4}$ 平行四邊形 $ABCD$ 面積
 = $\frac{1}{2}\triangle ABC$ 面積, 得證

小淳: (b) 部份簡單多了, 如果 C' 是 \overline{AB} 中點, 那是 $\overline{B'C'}//\overline{BC}$, 因爲同底又同高。所以 $\triangle B'C'A'$ 面積 = $\triangle B'C'B$ 面積, 又 C' 是 \overline{AB} 中點, 所以

$$\triangle B'C'B$$
面積 $=\frac{1}{2}\triangle BAB'$ 面積 $=\frac{1}{4}\triangle ABC$ 面積

如果 A' 是 \overline{BC} 中點, 同理可證。

另一方面,假設點 A' 不是 \overline{BC} 中點,點 C' 不是 \overline{AB} 中點。若 $\overline{AC'}$ < $\overline{BC'}$,則 $\angle B'C'B + \angle CBA < 180^\circ$,也就是說 $\overline{C'B'}$ 與 \overline{BC} 的延長線必交於一點,當 A' 點愈接近 C 點時,從 A' 點所作 $\overline{C'B'}$ 的垂直線 h 的高度會隨之遞減;當 A' 點愈靠近 B 點時,垂直線 h 的高度會隨之遞增,因此 $\triangle A'B'C'$ 的面

積也會愈來愈大,只有在 A' 點是 \overline{BC} 中點 M 時才會使得 $\triangle A'B'C'$ 面積 = $\frac{1}{4}\triangle ABC$ 面積 (如右圖)。當 $\overline{AC'}>\overline{BC'}$ 時,同理可證。

小君: 照我剛才面積證的方法

$$\frac{\triangle A'B'C'}{\triangle ABC} = \frac{1}{4} \Leftrightarrow \frac{qs+pt}{(p+q)(s+t)} = \frac{1}{2}$$
$$\Leftrightarrow 2ps+2pt=ps+qs+pt+qt$$
$$\Leftrightarrow (p-q)(s-t) = 0$$
$$\Leftrightarrow p = q \text{ 或者 } s = t, \text{ 所以得證}.$$

小地: 你也可以用放大的圖去證明 (b), 道理與證明 (a) 差不多, 有興趣的話可以試看看。

- (3) 有100個砝碼, 它們的質量分別爲1,2,3, ..., 100克, 在所有可以將這100個砝碼分成二組 放在天平的雨邊, 使它們平衡的方法中, 試證: 一定可以從天平之兩邊各拿掉兩個砝碼, 而 不影響天平的平衡。(五分)
- 小承: 我的想法是: 將這100個砝碼分成二組放在天平的兩邊, 使它們平衡, 不失一般性, 設質 量爲1克的砝碼在左邊, 左邊的砝碼都標 L , 右邊的砝碼都標 R。

把所有砝碼拿出來, 按輕重從小到大排成一列, 成爲一個 L, R 的序列 a_1, a_2, a_3 , \ldots , a_{100} 其中 $a_1 = L$, $a_i \in \{L, R\}$ (即 $a_i \in L$ 代表質量爲 i 克的砝碼在左邊, $a_i \in R$ 代表質量爲 i 克的砝碼在右邊)。把這個序列分成數段 (至少2段),每段的標號 L 或 R都相同, 但和下一段不同。

(i) 只分成二段, 左邊是 a_1, a_2, \ldots, a_k , 而右邊是 a_{k+1} , a_{k+2},\ldots,a_{100} 。因爲左邊任一個砝碼都比右邊 任一個砝碼輕, 所以不可能從兩邊各拿掉兩個砝 碼, 而不影響平衡。

(ii) 如果分爲三段, 左邊是 $a_1, a_2, ..., a_i$ 及 a_{i+1} , $a_{i+2}, \ldots, a_{100},$ 而右邊是 $a_{i+1}, a_{i+2}, \ldots, a_i,$ 中 間的段落至少有二個砝碼 (即 i-i > 2), 否則 所有標號 L 的砝碼之總重量不會等於標號 R 的 砝碼之總重量。

因此取下圖中的四個砝碼: 左邊的 a_i , a_{i+1} , 及右邊 a_{i+1} , a_i , 則 i+j+1=i+1+j, 所以可以從兩邊各拿掉兩個砝碼, 而不影響平衡。

(iii) 如果分成四段, 且左邊是 a_1, a_2, \ldots, a_i 及 a_{i+2} , 而右邊是 a_{i+1} 及 a_{i+3}, \ldots, a_{100} , 則 因爲左邊任二個砝碼都比右邊任二個砝碼 輕, 所以不可能從兩邊各拿掉兩個砝碼, 而 不影響平衡。

(iv) 如果分成四段,且左邊是 a_1, a_2, \ldots, a_i 及 a_{j+i} , a_{j+2}, \ldots, a_k , 而右邊是 $a_{i+1}, a_{i+2}, \ldots, a_j$ 及 a_{k+1}, \ldots, a_{100} , 其中 $k-j \geq 2$ 或者 $j-i \geq 2$ 。則同 (ii) 的論證,可以從兩邊各拿掉兩個砝碼,而不影響平衡。

至少有一段有2個或2個以上的砝碼

(v) 如果分成5段以上,且左邊是 a_1, a_2, \ldots, a_i 及 $a_{j+1}, a_{j+2}, \ldots, a_k$ 及 $a_{l+1}, a_{l+2}, \ldots, a_{l+1}$ 及 a_{100} ,而右邊是 $a_{i+1}, a_{i+2}, \ldots, a_j$ 及 a_{k+1}, \ldots, a_l 則必同 (ii) 的論證,可以從兩邊各拿掉兩個砝碼,而不影響平衡。

如果是 (i), 則存在 k 使得 $1+2+3+\cdots+k=\frac{1}{2}k(k+1)=\frac{1}{4}n(n+1)$ 。 如果是 (iii), 則存在 k 使得 $1+2+3+\cdots+k+(k+2)=\frac{1}{2}(k+1)(k+2)+1=\frac{1}{4}n(n+1)$ 。

當 n = 100 時, 因爲 $\frac{1}{2} \cdot 70 \cdot 71 + 1 < \frac{1}{4} \cdot 100 \cdot 101 = 2525 < \frac{1}{2} \cdot 71 \cdot 72$ 不可能是 (i) 及 (iii)。故只能是 (ii)(iv)(v), 即必可以從左右各拿掉 2 個砝碼使得仍舊平衡。

- (4) 在 $n \times n$ 棋盤上的第1列放置 n 個黑色棋子,在第 n 列放置 n 個白色棋子。每次移動可以將任何一個棋子橫走或直走一步到相鄰的空格。試問:在下列二種情形中,要使所有的黑白棋子位置互調,最少各要走多 少步?
 - (1) 當 n = 8 時; (三分)
 - (2) 當 n=7 時。(四分)
- 小淳: 同一行中的黑白棋子對調,這2個棋子最多只有一種顏色棋子不走直線,如果棋子走直線,則它至少要比走直線多1步。當 n=8 時,走直線需要7步,至少有8個棋子不走直線。所以,全部至少要 $8\times7+8\times(7+1)=120$ 步。走法是依照下面三個圖形由左至右:

我們知道當 n = 7 時, 不走直線的棋子比走直線的棋子多走一步, 若且唯若。它走到隔壁行的尾端, 若不走直線的棋子回到同一行的尾端則它比走直線的棋子多走二步。如

果停在不是隔壁的其它行, 則會比走直線的棋子多走兩步, 因爲 n 是奇數, 不可能每隻 棋子都是走到隔壁行, 所以至少要 $7 \times 6 + 7 \times 7 + 1 = 92$ 步。走法是:

(5) 小唐和小夏輪流構造一個數列, 首先任給一個正整數作爲首項, 由小唐開始增添新項, 他選 擇的方法是將前一項的數值加上該數的某一位數字 (例如: 首項是 234, 小唐可選 234 + 2 或 234+3 或 234+4); 接著換小夏, 他選擇的方法是將小唐新添的數值減去該數的某一 位數字 (例如: 小唐選的數是237, 則小夏可選237-2 或237-3 或237-7), 如此不 停地輪流構造下去。求證: 有一個整數會在這數列中至少出現100次。(八分)

小淳: 如果希望某數在此數列 a_1, a_2, \ldots 出現 100 次, 則我們該如何去解題呢?

小承: 我希望能證明這個數列 a_1, a_2, \ldots 有上界, 即存在一個 M > 0, 使得對於所有正整數 n, 都有 $a_n \leq M$ 。由於我們可以無窮盡地構造這個數列,這樣就會有一個整數會在這數列 中至少出現100次。

我們從題目知道, 小唐添的項是偶數項 a_2, a_4, a_6, \ldots , 其中 $a_{2n} = a_{2n-1} + x$, x 是 a_{2n-1} 中的某一位數字, $0 \le x \le 9$ 。小夏添的項是奇數項, 其中 $a_{2n+1} = a_{2n} - y$, y 是 a_{2n} 中的某一位數字, 0 < y < 9。

如果
$$a_1$$
 是 n 位數, 則 $Z = \underbrace{44, \ldots, 431}_{n-1} > a_1$ 。令

$$A = \{0, 1, 2, 3, \dots, Z\}$$

$$B = \{Z + 1, Z + 2, \dots, Z + 9\} = \{44 \dots 432, \dots, 44 \dots 440\};$$

$$C = \{Z + 10, \dots, Z + 13\} = \{44 \dots 441, \dots, 44 \dots 444\};$$

$$D = \{Z + 14, \dots, Z + 17\} = \{44 \dots 445, \dots, 44 \dots 448\}.$$

我們用 $X \xrightarrow{\square} Y$ 代表已構造的數列中最後一項是 $a_i \in X$, 輪到甲添的新項 a_{i+1} 會屬 於Y。

如果數列中已構造的數列中最後一項是 a_i

- (1) 當 $a_i \in A$, 輪到小唐添新項 a_{i+1} 會屬於 $A \cup B$; 輪到小夏添新項 a_{i+1} 會屬於 $A \cup B$ 。
- (2) 當 $a_i \in B$, 輪到小唐添新項 a_{i+1} 會屬於 $B \cup C \cup D$; 輪到小夏添新項 a_{i+1} 會屬於 $A \cup B$ 。
- (3) 當 $a_i \in C$, 輪到小唐添新項 a_{i+1} 會屬於 $C \cup D$; 輪到小夏添新項 a_{i+1} 會屬於 B_o
- (4) 當 $a_i \in D$, 輪到小夏添新項 a_{i+1} 會屬於 $B \cup C$ 。(如下圖四);

$$A \longrightarrow B \longrightarrow A \cup B$$
 $A \longrightarrow B \longrightarrow A \cup B$ $B \longrightarrow B \cup C \cup D$ $B \longrightarrow B \cup C \cup B$ $C \longrightarrow B \longrightarrow B \cup C$ $B \longrightarrow B \cup C$

我們將證明: 對於任何正整數 $n, a_{2n} \leq Z + 18$ 和 $a_{2n+1} \leq Z + 13$:

當 n=1, 顯然 $a_2 \leq Z+18$ 和 $a_3 \leq Z+13$ 。

假設 n = k 時, $a_{2k} \le Z + 18$ 和 $a_{2k+1} \le Z + 13$ 。

當時 n=k+1 時, 因爲 $a_{2k+1}\leq Z+18$ (即 $a_{2k+2}\in A\cup B\cup C\cup D$), 由上述論證得知, 輪到小唐添的新項 $a_{2(k+1)}\leq Z+18$ (即 $a_{2(k+1)}\in A\cup B\cup C\cup D$); 由上述論證得知, 輪到小夏添的新項 $a_{2(k+1)+1}\leq Z+13$ (即 $a_{2(k+1)+1}\in A\cup B\cup C$)。

由數學歸納法得知, 對於任何正整數 $n, a_{2n} \leq Z + 18$ 和 $a_{2n+1} \leq Z + 13$ 。因此我們證明了數列中任何項都不會大於 Z + 18。

小君: 令 Z = 88...870, 我們可以令

$$A = \{0, 1, 2, \dots, Z\}$$
 $B = \{Z + 1, Z + 2, \dots, Z + 9\}$
 $C = \{Z + 10\}$ $D = \{Z + 11, Z + 12, \dots, Z + 18\}$

則集合 A, B, C 關係和圖四一樣,所以同理可證數列中任何項都不會大於 Z + 18。

小淳: 我跟你的想法一樣, 只不過 $Z = \overbrace{99...980}$ 這也是一種正確答案。

小南: 照小承的說法, 我們可以令 $P = A \cup B \cup C = \{1, 2, ..., 44 \cdots 444\}, Q = A \cup B \cup C \cup D = \{1, 2, ..., 44 \cdots 448\}, 則 <math>P \xrightarrow{\text{h} \to} Q$ 且 $Q \xrightarrow{\text{h} \to} P$, 因爲 $a_1 \in P$, 由小唐、小夏輪流構造下去, 所得到的新數一定在 Q 集合中, 因此證明數列中任何項都不會大於Z + 18。

(6) 有一張矩形的紙片, 内部隨意剪掉了 N 個小矩形的洞, 這些小矩形的邊都與原來紙片的邊 互相平行。若無論這 N 個洞如何分佈, 一定有方法能將這張有 N 個洞的紙片剪為 M 個 矩形小紙片, 試求 M 的最小值。(註: 矩形包括正方形) (九分)

小君: 我只會證明: 任意 N 個洞的紙片至多可以剪成 3N+1 個矩形。

沿著每一個洞的垂直方向的邊上下剪開。直到碰到其它洞的水平方向的邊或者矩形 紙片的邊爲止。至多剪了 2N 刀。

一條長條形攔腰剪一矩形,會把這長條形分成二條,所以每多一個"洞"至多造成多一片,故至多有 2N+1+N=3N+1 片。

小承: 爲了要證明 M=3N+1,我們還要證明 $M\geq 3N+1$ 。也就是說: 對於任意 N,我們要找一個有 N 個洞的圖,使得這個圖至少要分成 3N+1 個矩形。

考慮圖五,我們將證明這個圖至少要分成 3N+1 個矩形。

這個圖有 N 個洞, 從左上到右下 (編號爲 1, 2, 3, ..., N, 第 i+1 個洞在第 i 個的東南方。) 將第 i 個洞的東、西、南、北邊上的中點分別編號爲 e_i, w_i, s_i, n_i 。今把所有 n_i, e_i, s_i, w_i (一共有 4N 個點) 分成 N+3 個集合如

$$A_0 = \{n_1\}, \ A_1 = \{w_1\}, \ A_k = \{e_{k-1}, s_{k-1}, n_k, w_k\}, \ 2 \le k \le N$$

 $A_{N+1} = \{e_N\}, \ A_{N+2} = \{S_N\}.$

觀察圖五後,無論怎麼將這張有 N 個洞的紙片剪爲 M 個矩形小紙片,我們知道

- (i) 剪完之後的小矩形紙片至多只能同時包含 $e_k, s_k, n_{k+1}, w_{k+1}$ 這四個點中的二個點。 而且這二個點必須是 $\{e_k, w_{k+1}\}$, $\{e_k, n_{k+1}\}$ $\{s_k, w_{k+1}\}$ 或 $\{s_k, n_{k+1}\}$ 。
- (ii) 如果小矩形紙片包含四個點 $e_k, s_k, n_{k+1}, w_{k+1}$ 之中的二個點, 則另外二點必是不可能屬於同一矩形紙片, 如圖六。

- (iii) 剪完之後的小矩形紙片如果包含 A_i 集合中的點,則一定不會包含不同集合 A_j 中的點。
- 由 (i), (ii), (iii) 知道, 剪完之後包含所有 4N 個編號點之中 2 個點的小矩形紙片最多有 n-1 個。所以 $M \geq 4N-(N-1)=3N+1$ 。
- 小君: 我也可以這樣說: 因爲剪完之後的小矩形紙片如果包含 A_i 集合中的點, 則一定不會包含不同集合 A_j 中的點, 而 A_k , $2 \le k \le N$, 至少必須被包含於三個不同的小矩形紙片。另外還有四個單元素的集合 A_0 , A_1 , A_{N+1} , A_{N+2} , 所以 $M \ge 4+3(N-1)=3N+1$ 。 (下期續刊高中組初級卷及高級卷)

一本文作者葉均承就讀於北一女中一年級、葉永南爲中央研究院數學所研究員, 孫文先爲九章 出版社負責人—