MSE TSM MobCom Team Project

23.10.2020, thomas.amberg@fhnw.ch and ulrich.fiedler@bfh.ch

Motivation

The team project is part of the TSM MobCom course and motivated as follows:

- Make the connection from theory to practice. Apply the knowledge acquired in the
 theory part of this course to develop your own "connected product" consisting of a
 smartphone app and a peripheral device, in a close to real life scenario.
- This project is part of the learning objective assessment, counting 30%.

Learning Objectives

Through the team project, you will:

- See what it takes to design and implement a viable connected product.
- Learn how to make the best use of limited smartphone display size.
- Learn how to prototype a device with sensors and actuators.
- Learn how to provide value to users and stakeholders
- Learn how to conduct a software project in a team
- See also <u>Module Description on Moodle</u>.

Methodology

Agile development with sprints, product backlog and board

Deliverables

The following deliverables are required:

- Code including README on GitHub*
 - Arduino firmware C source code
 - Native Android app source code and apk
- Presentation (PDF, 15 minutes)
 - Introduction (use case)
 - System architecture (reference model, HTTP and BLE interfaces)
 - User interface (screenshots, navigation)
 - Software architecture (reduced class diagram and sequence diagram)
 - Code quality and testing (SonarQube report, checklist, automated tests)
 - o Discussion (achievements, technical issues, lessons learned, outlook)

- Demonstration video (5 minutes, MP4)
 - o Explain setup, which part is which
 - Show how the below constraints are met
 - Show the main use case / functionality in action

Constraints

The following constraints have to be met:

- Use case
 - Provides real value to a specific target group*
 - o Is demonstrated with a working end-to-end prototype
- nRF52840 device
 - Includes one or more sensors or actuators**
 - Runs stand-alone, without a computer, e.g. on batteries
 - Implements a BLE peripheral providing one or more services
- Smartphone app
 - o Is a native Android app, written in either Kotlin or Java
 - Implements a BLE central, connects to the nRF52840 device
 - Uses a backend server or cloud service to store and retrieve data
 - Includes a visualisation of sensor data or actuator state

Evaluation Criteria

During evaluation we will give 0, 1 or 2 points each for:

- Viable use case, explanation of user benefit in presentation slides
- Presentation in class or online including demo, slides and oral performance
- App code quality (as measured with SonarQube) / testing / stability
- User interface / user experience / scope of features
- Completeness of deliverables
- Timeliness of delivery

^{*}A repository URL will be provided via GitHub Classroom at the project kick-off.

^{*}Not just a boring tech demo.

^{**}Additional sensors and actuators, beyond the built-in ones, are available on demand.

Example Use Cases

- Peripheral as a sensor
 - Weather station
 - Wearable step counter
 - o Door sensor / intrusion alert
 - o Occupancy sensor for a room
 - o Bike sensor (e.g. mounted to wheel)
- Peripheral as a controller
 - o Dice or "enchanted" object for a smartphone app / game
- Peripheral as an actuator
 - o Kid screen-time notification bracelet for parents