p8105_hw5_bt2654

Boxiang Tang 2024-11-13

Problem 1

Step 1: Create a function to check for duplicate birthdays

```
# Loading the necessary packages
library(ggplot2)
library(tidyverse)
library(dplyr)
library(purrr)
library(tidyr)
# Function to check if there are duplicate birthdays in a group of size n
check_duplicate_birthday =
  function(n) {
  # Generate random birthdays for n people (1 to 365 represents each day in a
  birthdays = sample(1:365,
                     replace = TRUE)
  # Check if there are any duplicate birthdays, return TRUE if there are dupli
  any(duplicated(birthdays))
}
# Test the created function for a group of 30 people
check_duplicate_birthday(30)
## [1] TRUE
```

Step 2: Run the simulation for each group size from 2 to 50

Step 3: Plot the probability as a function of group size

Step 4: Analysis and Commentary

- As shown in the plot, the probability of at least two people sharing a birthday increases as the group size grows. This phenomenon is commonly known as the "birthday paradox." Surprisingly, even with a group size as small as 23, the probability exceeds 50%, which is counterintuitive. This result highlights how seemingly improbable events can have higher probabilities in larger groups due to the combinatorial nature of comparisons.
- In this experiment, we assumed that birthdays are uniformly distributed across 365 days, which simplifies the calculation but may not perfectly reflect real-world birthday distributions.

Problem 2

Step 1: Set up the experiment parameters

```
# Set sample size and standard deviation
n = 30
sigma = 5
# Define the number of simulations
num simulations = 5000
```

Step 2: Perform t-tests for mu = 0 and save the results

```
# Function to perform simulations for a given mean (mu)
simulate tests =
 function(mu) {
 # Create vectors to store the estimated mean and p-values
  estimates = numeric(num simulations)
 p_values = numeric(num_simulations)
 # Run simulations
 for (i in 1:num simulations) {
    # Generate a sample of size n from a normal distribution with mean mu and
    sample_data = rnorm(n,
                        mean = mu,
                        sd = sigma)
    # Perform one-sample t-test against mu = 0
    t_test_result = t.test(sample_data,
                           mu = 0)
    # Extract the estimated mean and p-value
    tidy result = broom::tidy(t test result)
    estimates[i] = tidy_result$estimate
    p_values[i] = tidy_result$p.value
  }
 # Return a data frame with results
  return(data.frame(estimate = estimates,
                    p_value = p_values))
}
# Perform simulations for mu = 0 and save results
results_mu_0 = simulate_tests(mu = 0)
# Display the summary results
results_mu_0 |>
summary() |>
  knitr::kable()
```

estimate	p_value
Min. :-3.677139	Min. :0.0001963
1st Qu.:-0.601035	1st Qu.:0.2458980
Median : 0.011468	Median :0.4965626
Mean: 0.009338	Mean :0.4984652
3rd Qu.: 0.630759	3rd Qu.:0.7501816
Max.: 3.435530	Max. :0.9995911

Step 3: Repeat the experiment for multiple values of mu

Step 4: Calculate the power (proportion of times the null hypothesis was rejected) for each mu

Step 5: Plot power vs. effect size

Power of t-test vs. True Mean

Comments on the first plot:

The first plot shows the power of the one-sample t-test as a function of the true mean, μ . Power is defined as the probability of correctly rejecting a false null hypothesis. From the plot, we observe that when $\mu=0$, the power is near zero, as expected, since there is no true effect to detect. As μ increases, the power of the test also increases, eventually

reaching close to 1 (100%) for higher values of μ . This trend aligns with the concept that a larger effect size (in this case, a greater deviation of μ from 0) enhances the likelihood of detecting a true effect. This plot illustrates the positive association between effect size and test power, demonstrating that with larger true means, the test is more sensitive to correctly identifying a deviation from the null hypothesis.

Step 6: Calculate and plot the average estimate of mu

```
# Calculate the average estimate of mu for each value of true mu
average_estimates = sapply(results_list,
                           function(df) {
  mean(df$estimate)
})
# Calculate the average estimate of mu only for samples where the null was rej
average_estimates_rejected = sapply(results_list,
                                    function(df) {
  mean(df$estimate[df$p value < 0.05])</pre>
})
# Create a data frame for plotting
estimate_data = data.frame(mu = mu_values,
                            avg_estimate = average_estimates,
                            avg estimate rejected = average estimates rejected
# Plot average estimate of mu and overlay rejected estimates
ggplot(estimate data,
       aes(x = mu)) +
  geom line(aes(y = avg estimate,
                color = "All Samples")) +
  geom_point(aes(y = avg_estimate,
                 color = "All Samples")) +
  geom line(aes(y = avg estimate rejected,
                color = "Rejected Samples")) +
  geom_point(aes(y = avg_estimate_rejected,
                 color = "Rejected Samples")) +
  labs(
    title = "Average Estimate of Mu vs. True Mu",
    x = "True Mean (mu)",
    y = "Average Estimate of Mu",
    color = "Estimate Type" # Legend title
  ) +
  theme minimal() +
  scale color manual(
    values = c("All Samples" = "blue",
```


Comments on the second plot:

The second plot overlays two lines: the average estimate of ${\hat \mu}$ across all samples (blue) and the average estimate of ${\hat \mu}$ in samples where the null hypothesis was rejected (red). When ${\mu}=0$, both lines start at the origin, with no observable discrepancy. However, as ${\mu}$ increases, we see that the average ${\hat \mu}$ for all samples continues to closely track the true mean ${\mu}$, as expected. The average ${\hat \mu}$ for samples where the null was rejected, however, consistently remains higher than the true mean, especially at lower values of ${\mu}$. This discrepancy results from selection bias: samples with larger deviations from 0 (positive or negative) are more likely to yield a significant p-value, thus appearing in the rejected group. As ${\mu}$ increases, the difference diminishes, illustrating that the bias is more pronounced for smaller effect sizes and nearly negligible when ${\mu}$ becomes large.

Question Answer Is the sample average of $\hat{\mu}$ across tests for which the null is rejected approximately equal to the true value of μ ? Why or why not?

No, the sample average of \uphi across tests where the null is rejected is generally not equal to the true mean \upmu , especially for smaller \upmu values. This bias occurs because tests that produce extreme values of \uphi (farther from 0) are more likely to reject the null hypothesis. Thus, the rejected samples tend to have inflated average estimates. As \upmu becomes larger, the bias lessens because the effect size is naturally large enough to reject the null hypothesis more consistently without relying on selection bias.

Problem 3

Overall Data Description

Data Dimensions: This dataset contains 49 rows and 2 columns.

This dataset provides information on homicides across various U.S. cities, capturing details about each case, including victim demographics, case status, and location. Below is a description of each key variables:

- uid: Unique identifier for each homicide case, with 0 unique values in the dataset.
- reported_date: The date the homicide was reported, in the format YYYYMMDD. Ensuring consistent date format is essential for accurate time-based analysis.
- victim_last and victim_first: The last and first names of the victim, respectively. These fields allow for identification but are not typically used for statistical analysis.
- victim_race : The race of the victim, including categories such as .
- victim_age: Age of the victim at the time of the homicide, ranging from to -. Filtering
 out unrealistic ages (e.g., below 0 or above 120) may be necessary for accurate
 analysis.
- victim_sex: The gender of the victim, including.
- **city** and **state**: The location of the homicide. The dataset covers 0 cities and 0 states.
- lat and lon: Latitude and longitude coordinates for the location of each homicide, enabling geospatial analysis.
- **disposition**: The case status, indicating whether it was solved. Categories include: . This variable is essential for analyzing the proportion of unsolved cases.

Step 1: Load the data

```
data = read.csv("data/homicide-data.csv")
```

Step 2: Data Cleaning

Step 3: Summarize data by city

City	Total	Unsolved
Albuquerque, NM	378	146
Atlanta, GA	973	373

City	Total	Unsolved
Baltimore, MD	2827	1825
Baton Rouge, LA	424	196
Birmingham, AL	800	347
Boston, MA	614	310
Buffalo, NY	521	319
Charlotte, NC	687	206
Chicago, IL	5535	4073
Cincinnati, OH	694	309
Columbus, OH	1084	575
Dallas, TX	1567	754
Denver, CO	312	169
Detroit, MI	2519	1482
Durham, NC	276	101
Fort Worth, TX	549	255
Fresno, CA	487	169
Houston, TX	2942	1493
Indianapolis, IN	1322	594
Jacksonville, FL	1168	597
Kansas City, MO	1190	486
Las Vegas, NV	1381	572
Long Beach, CA	378	156
Los Angeles, CA	2257	1106
Louisville, KY	576	261
Memphis, TN	1514	483

City	Total	Unsolved
Miami, FL	744	450
Milwaukee, wl	1115	403
Minneapolis, MN	366	187
Nashville, TN	767	278
New Orleans, LA	1434	930
New York, NY	627	243
Oakland, CA	947	508
Oklahoma City, OK	672	326
Omaha, NE	409	169
Philadelphia, PA	3037	1360
Phoenix, AZ	914	504
Pittsburgh, PA	631	337
Richmond, VA	429	113
Sacramento, CA	376	139
San Antonio, TX	833	357
San Bernardino, CA	275	170
San Diego, CA	461	175
San Francisco, CA	663	336
Savannah, GA	246	115
St. Louis, MO	1677	905
Stockton, CA	444	266
Tampa, FL	208	95
Tulsa, OK	583	193
Washington, DC	1345	589

Summary of Homicides by City and State

Step 4: Single City Analysis - Baltimore, MD

```
# Filter data for Baltimore, MD and perform a proportion test
baltimore data =
 homicide_summary |>
  filter(city_state == "Baltimore, MD")
# Conduct the proportion test for unsolved homicides in Baltimore
baltimore test =
  prop.test(baltimore_data$unsolved_homicides,
            baltimore data$total homicides)
# Use broom::tidy to organize test results into a clean format
baltimore results =
 baltimore_test|>
 broom::tidy() |>
 print()
## # A tibble: 1 × 8
##
     estimate statistic p.value parameter conf.low conf.high method
                                                                         alterr
##
        <dbl>
                  <dbl>
                           <dbl>
                                     <int>
                                               <dbl>
                                                         <dbl> <chr>
                                                                         <chr>
                   239. 6.46e-54
## 1
        0.646
                                         1
                                               0.628
                                                         0.663 1-sample... two.si
```

Step 5: Multi-City Analysis - All Cities

```
conf.low,
conf.high)
```

Step 6: Plotting the Results with Enhanced Readability

```
# Reorder city state by estimated proportion to make the plot more readable
homicide_results =
 homicide results |>
 arrange(estimate) |>
 mutate(city_state = factor(city_state, levels = unique(city_state)))
# Create the plot showing the proportion of unsolved homicides with confidence
ggplot(homicide_results,
       aes(x = estimate,
           y = reorder(city_state, estimate))) +
 geom_point(color = "#0073C2") +
 geom errorbar(aes(xmin = conf.low, xmax = conf.high),
                width = 0.2, color = "#808080") + #
 labs(
   title = "Proportion of Unsolved Homicides by City",
   x = "Proportion of Unsolved Homicides",
   y = "City, State"
 theme minimal(base size = 12) +
 theme(
   plot.title = element_text(size = 14,
                              face = "bold",
                              hjust = 0.5),
   axis.text.y = element_text(size = 9,
                               color = "#4D4D4D"),
   axis.text.x = element_text(size = 10,
                               color = "#4D4D4D"),
   axis.title = element text(face = "bold"),
   panel.grid.major = element_line(color = "#E5E5E5"),
   panel.grid.minor = element_blank(),
   panel.background = element rect(fill = "#FAFAFA",
                                    color = NA)
 )
```

Proportion of Unsolved Homicides by City

