

Linear Circuits

BONNIE FERRI, PROFESSOR AND ASSOCIATE CHAIR School of Electrical and Computer Engineering

Module 2

Lesson 4: Equivalent Resistance

Equivalent Resistance

Objective:

• Simplify a combinations of resistors by replacing them with equivalent resistors

Builds Upon

Resistors in Series:

$$\underset{a}{\overset{\bullet}{\longrightarrow}} \underset{R_1}{\overset{\bullet}{\bigvee}} \underset{R_2}{\overset{\bullet}{\longrightarrow}} \underset{b}{\overset{\bullet}{\bigvee}}$$

• Resistors in Parallel:

$$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$

$$R_{eq} = \frac{1}{\sum \frac{1}{R_k}}$$

Georgia Tech

Example

Georgia Tech

Key Concept

- Replace series and parallel resistor combinations with their equivalent resistances
- Redraw and reduce again, down to one resistor