

TUTORIAL

CSCI361 – Computer Security

Sionggo Japit

sjapit@uow.edu.au

12 February 2024

FAST EXPONENTIATION

MODULAR EXPONENTIATION METHOD

Modular Exponentiation Method

To calculate $X^a \mod m$:

1. Write a in base two:

$$a = a_0 2^0 + a_1 2^1 + a_2 2^2 + ... + a_{n-1} 2^{n-1}$$

- 2. Calculate X^{2'}, where 1 £ i £ n-1.
- 3. Use $X^a = (X^{2^0})^{a_0} (X^{2^1})^{a_1} (X^{2^{n-1}})^{a_{n-1}}$ and multiply the X^{2i} for which a_i is not zero.

For example:

- To find 7²¹⁹ mod 1823
- Step 1: (determine how many bits are required to store the value 219)
 - $n = log_2 219 = 8 bits (round up)$
- Step 2:
 - Calculate the first 8 terms as shown in the next slide.

$2^0 = 12/2/20$	271 (mod 1823)	7 (mod 1823) CSCI361 - Comuter Security 6	7
$2^1 = 2$	7 ² (mod 1823)	7 x 7 = 49 (mod 1823)	49
$2^2 = 4$	7 ⁴ (mod 1823)	$(7^2)^2 = (49)^2 = 2401 \pmod{1823} = 578 \pmod{1823}$	578
$2^3 = 8$	7 ⁸ (mod 1823)	(7 ⁴) ² (mod 1823) = (578) ² (mod 1823) = 334084 (mod 1823) = 475 (mod 1823)	475
2 ⁴ = 16	7 ¹⁶ (mod 1823)	(78) ² (mod 1823) = (475) ² (mod 1823) = 225625 (mod 1823) = 1396 (mod 1823)	1396
2 ⁵ = 32	7 ³² (mod 1823)	(7 ¹⁶) ² (mod 1823) = (1396) ² (mod 1823) = 1948816 (mod 1823) = 29 (mod 1823)	29
2 ⁶ = 64	7 ⁶⁴ (mod 1823)	(7 ³²) ² (mod 1823) = (29) ² (mod 1823) = 841 (mod 1823)	841
$2^7 = 128$	7 ¹²⁸ (mod 1823)	$(7^{64})^2 \pmod{1823}$ = $(841)^2 \pmod{1823}$	1780

- Step 3:
 - Break the exponential power. This can be achieved by expressing the power, in this case 219, in binary form; i.e., 219 = 11011011, and thus

$$219 = 128 + 64 + 16 + 8 + 2 + 1$$

And so,

$$7^{219} \mod 1823$$
= $7^{128+64+16+8+2+1} \mod 1823$
= $7^{128} \cdot 7^{64} \cdot 7^{16} \cdot 7^8 \cdot 7^2 \cdot 7^1 \mod 1823$

 $= 336 \mod 1823$

- Step 4:
 - Fill in equation with the pre-computed solution (from step 2)

```
That is,
```

```
7<sup>219</sup> mod 1823

= 1780 ´841 ´1396 ´475 ´49 ´7 mod 1823

= 297 ´1396 ´475 ´49 ´7 mod 1823

= 791 ´475 ´49 ´7 mod 1823

= 187 ´49 ´7 mod 1823

= 48 ´7 mod 1823
```

SQUARE AND MULTIPLY (S SX) METHOD

Square and Multiply (SX) method

To calculate N^p

- 1. Write p in binary equivalent
- 2. For each binary bit in p,
 - If '1', replace with SX
 - If '0', replace with S
- 3. Remove the first SX (of the most significant bit)
- 4. For each S, compute Square mod p
- 5. For each X, multiply with N mod p

For example:

Compute 7²¹⁹ mod 1823

- Step 1:
 - Write 219 in binary form; i.e., 11011011
- Step 2:
 - Express 11011011 in SX form; i.e., SX SX S SX SX S
- Step 3:
 - Drop the first SX, we have SX S SX SX SX SX

• Step 4:

```
    Construct the expression
```

•
$$(7^2 \times 7)^2$$

•
$$((7^2 \times 7)^2)^2 \times 7$$

•
$$(((7^2 \times 7)^2)^2 \times 7)^2 \times 7$$

•
$$((((7^2 \times 7)^2)^2 \times 7)^2 \times 7)^2$$

•
$$((((((7^2 \times 7)^2)^2) \times 7)^2 \times 7)^2)^2 \times 7$$

• Step 4:

- ...then compute as follow:
 - $((((((((7^2 \times 7)^2)^2) \times 7)^2 \times 7)^2)^2 \times 7)^2 \times 7)$ mod 1823
 - $((((((((343)^2)^2) \times 7)^2 \times 7)^2)^2 \times 7)^2 \times 7 \mod 1823$
 - ((((((117649)²) x 7)² x 7)²)² x 7)² x 7)² x 7 mod 1823
 - $((((((977)^2) \times 7)^2 \times 7)^2)^2 \times 7)^2 \times 7 \mod 1823$
 - ((((6681703)² x 7)²)² x 7)² x 7 mod 1823
 - ((((408)² x 7)²)² x 7)² x 7 mod 1823
 - (((1165248)²)² x 7)² x 7 mod 1823
 - (((351)²)² x 7)² x 7 mod 1823
 - ((123201)² x 7)² x 7 mod 1823
 - ((1060)² x 7)² x 7 mod 1823
 - (7865200)² x 7 mod 1823
 - $(778)^2 \times 7 \mod 1823$
 - 4236988 mod 1823
 - 336

SX S SX SX S SX SX

Alternatively, $SX: 7^2 \qquad 7 \mod 1823 = 343$ $S: 343^2 \mod 1823 = 977$ $SX: 977^2 \quad 7 \mod 1823 = 408$ $SX:408^2 \quad 7 \mod 1823 = 351$ $S : 351^2 \mod 1823 = 1060$ $SX:1060^2 \cdot 7 \mod 1823 = 778$ $SX:778^2 \quad 7 \mod 1823 = 336$

Hence $7^{219} \mod 1823 = 336$

Another example:

Compute 22¹⁹⁹ mod 71

- 1. Express 199 as binary: 11000111
- 2. Express 11000111 as SX S notation: SX SX S S S S S SX SX
- Drop the first SX term (of the most significant bit)
- 4. Translate the SX S notation to modulo expression and solve:

```
SX S S S SX SX SX
= ((((((22^2 \times 22)^2)^2)^2)^2 \times 22)^2 \times 22)^2 \times 22) \times 22 \pmod{71}
= (((((58 \times 22)^2)^2)^2)^2 \times 22)^2 \times 22)^2 \times 22 \pmod{71}
= (((((69^2)^2)^2)^2)^2 \times 22)^2 \times 22)^2 \times 22 \pmod{71}
= ((((4^2)^2)^2 \times 22)^2 \times 22)^2 \times 22 \pmod{71}
= (((16^2)^2 \times 22)^2 \times 22)^2 \times 22 \pmod{71}
= ((43^2) \times 22)^2 \times 22)^2 \times 22 \pmod{71}
= (3 \times 22)^2 \times 22)^2 \times 22 \pmod{71}
= (66^2 \times 22)^2 \times 22 \pmod{71}
= (25 \times 22)^2 \times 22 \pmod{71}
= 53^2 \times 22 \pmod{71}
= 40 \times 22 \pmod{71}
= 28
```

SX S S S SX SX SX

Alternatively, $SX: 22^2$ $^{22} \mod 71 = 69$ $S:69^2$ mod 71 = 4 $S : 4^2$ mod 71 = 16 $S : 16^2$ mod 71 = 43 $S:43^2$ mod 71 = 66 $SX: 66^2$ $22 \mod 71 = 53$ $SX: 53^2 \qquad 22 \mod 71 = 28$

Hence $22^{199} \mod 71 = 28$