Commutative Algebra

Vatsal Limabchia

May 2018

1 Introduction

Why study commutative algebra? Number theory and algebraic geometry use this language. The following are references.

- M Reid, Undergraduate commutative algebra, 1995
- M Atiyah and I G Macdonald, Introduction to commutative algebra, 1969

2 Rings and ideals

Definition 1. A commutative **ring** with 1 is a set A with two operations + and \cdot , and two elements 0 and 1 such that the following holds.

- (A, +) is a group with zero 0.
- Multiplication is
 - associative $((xy)z = x(yz) \text{ for all } x, y, z \in A)$,
 - commutative $(xy = yx \text{ for all } x, y \in A)$, and
 - distributive over addition $(x(y+z) = xy + xz \text{ for all } x, y, z \in A)$.
- $x \cdot 1 = 1 \cdot x = x$ for all $x \in A$.

Example. \mathbb{Z} is a ring. The set of even integers $2\mathbb{Z}$ is not a ring because it does not contain 1.

Remark 2. Can it happen that 0 = 1? $x \cdot 0 = x \cdot (0 + 0) = x \cdot 0 + x \cdot 0$ gives $x \cdot 0 = 0$. But $x \cdot 1 = x$. Then x = 0 for all $x \in A$, so $A = \{0\}$.

Let A be a commutative ring with 1.

Definition 3. A ring homomorphism $f:A\to B$ is a homomorphism of abelian groups such that $f(xy)=f(x)\,f(y)$ for any $x,y\in A$ and f(1)=1.

Proposition 4. A composition of homomorphisms is a homomorphism.

An **isomorphism** is a bijective homomorphism. If $f:A\to B$ is an isomorphism, we write $A\cong B$.

Definition 5. A subset $I \subset A$ is called an **ideal** if I is a subgroup of (A, +) and AI = I. Equivalently, for any $a \in A$ and any $x \in I$ we have $ax \in I$. The **quotient ring** A/I is the quotient group $\{a + I \mid a \in A\}$, which is actually a ring by (a + I)(b + I) = ab + I. 1 + I is the 1 in A/I. $f : A \to A/I$ such that f(a) = a + I is a surjective ring homomorphism. An ideal $I \subset A$ is **principal** if there is $r \in A$ such that I = rA.

Proposition 6. There is a natural bijection between the ideals of A that contain a fixed ideal I and the ideals of A/I.

Proof. Suppose $J \subset A$ is an ideal containing I. Then associate to J its image $f(J) \subset A/I$. To check this, note that since $f: A \to A/I$ is surjective, for any $x \in A/I$ there is a $y \in A$ such that f(y) = x. Hence $xf(J) = f(y) f(J) = f(yJ) \subset f(J)$. Conversely, take an ideal $M \subset A/I$ and associate to it $f^{-1}(M) \subset A$. This is an ideal in A. To check that for all $a \in A$ we have $af^{-1}(M) \subset f^{-1}(M)$, we note that this is equivalent to $f(a) M \subset M$, which is true. These maps are inverses to each other.

Definition 7. Let $g: A \to B$ be a homomorphism of rings. The **image** is the subset $Im(g) = \{x \in B \mid \exists y \in A, \ g(y) = x\}$. The **kernel** is the subset $Ker(g) = \{y \in A \mid g(y) = 0\}$.

The image is a subring of (B, +) but not necessarily an ideal, but the kernel is.

Example. Let $g: \mathbb{Z} \hookrightarrow \mathbb{Q}$. $2\mathbb{Z}$ is an ideal in \mathbb{Z} , but not in \mathbb{Q} .

An isomorphism theorem states that $A/Ker(g) \cong Im(g) = g(A)$ by $a \mapsto a + Ker(g)$.

3 Polynomial rings

Let R be a ring. Define R[X] as the ring of polynomials $\sum_{i=0}^{n} a_i X^i$ with coefficients $a_i \in R$ and

$$\left(\sum_{i=0}^{k} a_i X^i\right) \left(\sum_{j=0}^{m} b_j X^i\right) = \sum_{k=0}^{n+m} \left(\sum_{k=i+j} a_i b_j\right) X^k.$$

Define $R[X_1, X_2]$ to be the ring $R[X_1][X_2]$. In general, $R[X_1, \ldots, X_n] = R[X_1] \ldots [X_2]$.

4 Zero-divisors, nilpotent elements, units

Definition 8. A **zero-divisor** in A is an element $x \in A$ such that there exists $y \in A$, $y \neq 0$, with the property that xy = 0. A ring with no non-zero zero-divisors is called an **integral domain**. A **nilpotent** is an element $x \in A$ such that $x^n = 0$ for some $n \geq 1$. A **unit** $a \in A$ is an element such that there exists $b \in A$ with the property that ab = 1. Such elements are also called **invertible**. b is denoted by a^{-1} . The units form a group under multiplication, denoted by A^* .

Example. In $A = \mathbb{Z}$, $\mathbb{Z}^* = \{1, -1\}$ and \mathbb{Z} is an integral domain. In $A = \mathbb{Z}/4 = \{4\mathbb{Z}, 1 + 4\mathbb{Z}, 2 + 4\mathbb{Z}, 3 + 4\mathbb{Z}\}$, $2 + 4\mathbb{Z}$ is a zero-divisor in $\mathbb{Z}/4$ that is also nilpotent.

Definition 9. A field is a ring in which $0 \neq 1$ and every non-zero element is a unit. So if k is a field, then $k \setminus \{0\} = k^*$.

Proposition 10. Let A be a non-zero ring. Then the following are equivalent.

- 1. A is a field.
- 2. The only ideals in A are $(0) = \{0\}$ and (1) = A.
- 3. Every homomorphism $A \to B$, where $B \neq 0$, is injective.

Proof.

- 1 \Longrightarrow 2 Let $I \subset A$ be a non-zero ideal. Then there exists $x \in I$, $x \neq 0$. Then x is a unit, i.e. there exists $y \in A$ such that xy = 1. For all $a \in A$, $a = a.1 = a.y.x \in (x)$. Thus I = A.
- 2 \Longrightarrow 3 Let $f: A \to B$. Ker(f) is an ideal of A. If $Ker(f) \neq \{0\}$, then Ker(f) = A. But then $1 \in Ker(f)$ and f(1) = 0 but f(1) = 1 so in B we have that 0 = 1. Then $B = \{0\}$, which is a contradiction.
- $3 \implies 1$ Let $x \in A$, $x \ne 0$. If $1 \in (x) = xA$, then x is a unit. If $1 \notin (x)$, then x is not a unit. If $1 \notin (x)$, then consider the map $A \to A/(x)$ sending $a \mapsto a + (x)$. Since $1 \notin (x)$, 1 + (x) is not zero in A/(x). So this is a non-injective homomorphism to a non-zero ring. This contradicts 3.

5 Prime ideals and maximal ideals

Definition 11. An ideal $P \subset A$ is a **prime ideal** if for any $x, y \in A$, $xy \in P$ implies $x \in P$ or $y \in P$. An ideal $M \subset A$ is called **maximal** if there does not exist an ideal I in A such that $M \subsetneq I \subsetneq A$.

Lemma 12. An ideal $P \subset A$ is prime if and only if A/P is an integral domain. An ideal $M \subset A$ is maximal if and only if A/M is a field.

Proof. Let $x, y \in A$ such that $xy \in P$. Then (x + P)(y + P) = xy + P = P. If $x \notin P$ and $y \notin P$, then $x + P \neq P$ and $y + P \neq P$. These are zero-divisors in A/P. Conversely, if A/P is not an integral domain, then it has zero-divisors. So there exist $x, y \in A$ such that (x + P)(y + P) = P. This implies $xy \in P$. Since P is prime, $x \in P$ or $y \in P$. So one of x + P and y + P is zero in A/P. Recall that there is a bijection between the ideals in A containing A with the ideals in A/M. Thus $A \subset A$ is maximal if and only if the only ideals in A/M are A0 and A1, if and only if A2 is a field.

Remark 13. Every field is an integral domain, hence every maximal ideal is prime. The converse is false. Take any integral domain which is not a field, such as \mathbb{Z} . Then $(0) \in \mathbb{Z}$ is a prime ideal which is not a maximal ideal.

Proposition 14. If $f: A \to B$ is a homomorphism of rings, and $P \subset B$ is a prime ideal, then $f^{-1}(P)$ is a prime ideal in A.

Proof. Assume that for some $x, y \in A$ we have $xy \in f^{-1}(P)$. Then $f(xy) = f(x) f(y) \in P$. Then $f(x) \in P$ or $f(y) \in P$. Then $x \in f^{-1}(P)$ or $y \in f^{-1}(P)$.

Remark 15. This does not hold for maximal ideals. Let $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$. $f^{-1}((0)) = (0)$, but (0) is maximal in \mathbb{Q} and not maximal in \mathbb{Z} . But if $f: A \to B$ is a surjective homomorphism of rings, then f^{-1} sends maximal ideals of B to maximal ideals of A. (Exercise)

Theorem 16. Every non-zero ring contains at least one maximal ideal.

We need Zorn's lemma, which belongs to set theory. A **partially ordered set** or **poset** is a set S equipped with a **partial order**. By definition it is a reflexive, transitive, antisymmetric binary relation \leq ,

$$x \le x$$
, $x \le y, y \le z \implies x \le z$, $x \le y, y \le x \implies x = y$.

We don't require that for arbitrary x and y in S, we have either $x \le y$ or $y \le x$. A subset $T \subset S$ is called a **chain** if for any $x \in T$, $y \in T$ we have $x \le y$ or $y \le x$. An **upper bound** for a subset $T \subset S$ is an element $x \in S$ such that for any $t \in T$ we have $t \le s$. A **maximal element** in S is an element $x \in S$ such that if $y \in S$ and $y \ge x$, then y = x.

Theorem 17 (Zorn's lemma). If S is a non-empty partially ordered set such that every chain in S has an upper bound in S, then S contains a maximal element.

Proof of Theorem 16. Let A be a non-zero ring. To apply Zorn's lemma it is enough to show that every growing chain of ideals $I_1 \subset I_2 \subset \ldots$, such that $1 \in I_i$ for all i, has an upper bound which is an ideal not equal to A, so not containing 1. Then Zorn's lemma applied to the set of ideals of A not containing 1 and ordered by inclusion, implies the existence of a maximal ideal. So we have a chain I_j , where j is an element of a set J. Consider $I = \bigcup_{i \in J} I_i$. Claim that I is an ideal in A and $1 \notin I$.

- $1 \notin I$ is clear. Because otherwise $1 \in I$ gives $1 \in I_j$ for $j \in J$, but it is a contradiction.
- For any $a \in A$ we have $aI \subset I$, so for all $x \in I$, $ax \in I$. But then $x \in I_j$ for some j. Then $ax \in I_j \subset I$.
- Suppose $x, y \in I$. Must show $x + y \in I$. There exists $j_1 \in J$ such that $x \in I_{j_1}$. Similarly, there exists $j_2 \in J$ such that $y \in I_{j_2}$. Recall that I_j for $j \in J$ is a chain. Hence either $j_1 \leq j_2$ or $j_2 \leq j_1$. This means that either $I_{j_1} \subset I_{j_2}$ or $I_{j_2} \subset I_{j_1}$. Without loss of generality assume that $I_{j_1} \subset I_{j_2}$. Then $x, y \in I_{j_2}$. Hence $x + y \in I_{j_2}$, hence $x + y \in I$. This proves that I is an ideal not containing 1.

Definition 18. A ring with a unique maximal ideal is called a **local ring**.

Corollary 19. Let I be an ideal of A and $I \neq A$. Then I is contained in a maximal ideal of A.

Proof. There is a bijection between the ideals of A containing I and the ideals in A/I. If $I \subset J \subset A$, then $J \mapsto J/I$. J/I is an ideal in A/I. By Theorem 16, A/I contains a maximal ideal, say $M \subset A/I$. Let $f: A \to A/I$ be the map sending $x \mapsto x + I$. Consider $f^{-1}(M) \subset A$. This is an ideal in A. In general, if $I \subset J \subset A$ are ideals, then f induces an isomorphism of rings $A/J \to (A/I)(J/I)$. For additive groups, this is one of the standard isomorphisms theorems, but this respects multiplication, so is an isomorphism of rings. Now, we know that M maximal in A/I implies that (A/I) is a field. This ring is isomorphic to $A/f^{-1}(M)$. Hence $A/f^{-1}(M)$ is also a field. Therefore, $f^{-1}(M)$ is maximal in A.

Corollary 20. Every non-unit is contained in a maximal ideal.

Proof. If $x \in A$ is a non-unit, consider (x). $1 \notin (x)$, otherwise x is a unit. By Corollary 19 (x) is contained in a maximal ideal of A.

Example.

- Every field is a local ring. In this case (0) is a maximal ideal.
- Let k be a field. Consider the ring of formal power series $k[[t]] = \{a_0 + a_1t + \cdots \mid a_i \in k\}$, such that

$$\left(\sum_{i=0}^{\infty} a_i t^i\right) \left(\sum_{j=0}^{\infty} b_j t^j\right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) t + \dots$$

Then the principal ideal (t) is a maximal ideal. Indeed, $k[[t]]/(t) \cong k$ is a field. (Exercise: $k[[t]] \setminus (t) = k[[t]]^*$)

• $\mathbb{Z}_{(p)} = \{a/b \mid a, b \in \mathbb{Z}, \ b \neq 0, \ p \nmid b\}$. (Exercise: (p) is a maximal ideal and there are no other maximal ideals)

If A is a local ring with maximal ideal M, then A/M is called the **residue field** of A.

Lemma 21 (Prime avoidance). Let A be a ring and $P \subset A$ be a prime ideal. Suppose that I_1, \ldots, I_n are ideals in A such that $\bigcap_{i=1}^n I_i \subset P$. Then there exists j, $1 \leq j \leq n$, such that $I_j \subset P$. If $\bigcap_{i=1}^n I_i = P$, then there exists j, $1 \leq j \leq n$, such that $I_j = P$.

Proof. Suppose our claim is false. Then there exists $a_j \in I_j$ such that $a_j \notin P$ for j = 1, ..., n. Then $a_1 ... a_n \in \bigcap_{j=1}^n I_i \subset P$. $(a_1 ... a_{n-1}) a_n \in P$ gives $a_1 ... a_{n-1} \in P$ or $a_n \in P$. But $a_n \notin P$, so $a_1 ... a_{n-2} \in P$, a contradiction. The second statement follows. We know that $I_k \subset P$ for some $k, 1 \le k \le n$, but $P = \bigcap_{j=1}^n I_j \subset I_k$. Hence $P = I_k$.

6 Nilradical and the Jacobson radical

Proposition 22. Let A be a ring. The set N(A) of all nilpotent elements of A is an ideal in A. It is called the **nilradical** of A. The quotient ring A/N(A) has no non-zero nilpotents.

Proof. Clearly, if $x^n = 0$ and $y^n = 0$, then $(xy)^n = 0$, if $n \ge m$. $(x+y)^{n+m}$ is the sum with coefficients of of monomials in which either the power of x is $\ge n$ or the power of y is $\ge m$. So this is zero. Let $a \in A$. Then $(ax)^n = 0$. Therefore, N(A) is an ideal. Now let t + N(A) for $t \in A$ be a nilpotent element in A/N(A). For some k we have $t^k + N(A)$ is the trivial coset, that is $t^k \in N(A)$. Thus $(t^k)^l = 0$ for some l > 0. Hence $t \in N(A)$, so t + N(A) is the zero element of A/N(A).

Proposition 23. The nilradical N(A) is the intersection of all prime ideals of A.

- $\subset N(A) \subset \bigcap_{P \subset A} P$, where P is a prime ideal of A. Take $x \in A$, $x^n = 0$. Take a prime ideal $P \subset A$. We have that $P \ni x^n = x \dots x$ gives $x \in P$.
- ⊃ Now let $f \in A$ be a non-nilpotent element, that is $0 \notin \{f^i \mid i \geq 1\}$. Let Σ be the set of ideals of A that do not intersect $\{f^i \mid i \geq 1\}$. Σ contains the zero ideal (0), so $\Sigma \neq \emptyset$. Order the elements of Σ by inclusion. Every chain in Σ has an upper bound. If I_j for $j \in J$ is a chain, then $\bigcup_{j \in J} I_j$ is an ideal of A. Moreover, if $f^k \in \bigcup_{j \in J} I_j$, then $f^k \in I_{j_0}$ for some $j_0 \in J$, but this is impossible. By Zorn's lemma, we know that Σ has a maximal element. Call it P. Claim that P is a prime ideal. To prove this, assume that $x, y \in A$ such that $x, y \notin P$. We must show that $xy \notin P$. Consider P + (x), all elements of the form $\alpha + rx$, where $\alpha \in P$ and $r \in A$. $x \notin P$ gives $P \neq P + (x)$. By construction, P is maximal in Σ, hence $P + \sigma$ is not in Σ, that is there exists $n \geq 1$ such that $f^n \in P + (x)$. Similarly, there exists m such that $f^m \in P + (y)$. Therefore, f^{n+m} belongs to P + (xy). If $xy \in P$, then P + (xy) = P but then $f^{n+m} \in P$, which is absurd because $P \in \Sigma$. Thus $xy \notin P$. This shows that P is a prime ideal and $f \notin P$.

What happens if we consider the intersection of all maximal ideals of A. This intersection is called the **Jacobson radical** of A. It is denoted by J(A).

Proposition 24. $x \in J(A)$ if and only if 1 - xy is a unit in A for all $y \in A$.

Proof. Suppose that $x \in J(A)$, that is x is contained in every maximal ideal of A, but 1-xy is not a unit for some $y \in A$. By Corollary 20 every non-unit is contained in some maximal ideal, so there exists a maximal ideal $M \subset A$ such that $1-xy \in M$. Since $x \in M$ we conclude that $1 \in M$, which is impossible. Conversely, suppose $x \notin J(A)$, that is $x \notin M$ for some maximal ideal $M \subset A$. Consider the sum of two ideals M + (x). This is an ideal in A, such that $M \subsetneq M + (x)$. Since M is maximal, we have M + (x) = A. Therefore 1 = m + xy, where $m \in A$ and $y \in A$. Now $1 - xy = m \in M$ cannot be a unit.

Let $I \subset A$ be an ideal. The **radical** rad(I) or r(I) or \sqrt{I} is defined as $\{x \in A \mid \exists n \geq 1, \ x^n \in I\}$.

Proposition 25. r(I) is the intersection of all prime ideals of A that contain I.

Proof. Use the bijection between ideals containing I and the ideals in A/I.

Definition 26. Let J be an index set. Suppose we have a ring R_j for $j \in J$. $\prod_{j \in J} R_j$ has a natural structure of a ring. 0 in $\prod_{j \in J} R_j$ is $(0, \ldots, 0)$ and 1 in $\prod_{j \in J}$ is defined as $(1, \ldots, 1)$, $(r_j)_{j \in J} + (r'_j)_{j \in J} = (r_j + r'_j)_{j \in J}$, and $(r_j)_{j \in J} \cdot (r'_j)_{j \in J} = (r_j \cdot r'_j)_{j \in J}$. $\prod_{j \in J} R_j$ is called the **product of rings** R_j for $j \in J$. If R is a ring equipped with homomorphisms $f_j : R \to R_j$ for each $j \in J$, then $(f_j) : R \to \prod_{j \in J} R_j$ is a homomorphism of rings.

Recall that $N\left(R\right) = \bigcap_{P \subset R} P$, where P are prime ideals of R. Consider the product ring $\prod_{P \subset R} R/P$. Putting together the canonical surjective maps $R \to R/P$ by $x \mapsto x + P$ for all $P \subset R$ we obtain a homomorphism $f: R \to \prod_{P \subset R} R/P$. $Ker(f) = \bigcup_{P \subset R} Ker[R \to R/P] = \bigcap_{P \subset R} = N\left(R\right)$. Hence we get an injective homomorphism $R/N\left(R\right) \to \prod_{P \subset R} R/P$. Similarly, we get an injective homomorphism $R/N\left(R\right) \to \prod_{M \subset R} R/M$, where M are maximal ideals of R and N(R) is the Jacobson radical of R.

7 Localisation of rings

Localisation refers to introducing denominators.

Example. From $R = \mathbb{Z}$ to $\mathbb{Q} = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}.$

Definition 27. A subset $S \subset A$ is called a **multiplicative set** if $1 \in S$, $0 \notin S$, and if $a, b \in S$, then $ab \in S$, that is S is closed under multiplication.

Example.

- Take any $a \in A$ which is not nilpotent, that is $a^n = 0$ for $n \ge 1$. Then $\{1, a, a^2, \dots\}$ is a multiplicative set.
- Let $P \subset A$ be a prime ideal. Then $A \setminus P$ is a multiplicative set. Indeed, $x, y \notin P$ gives $xy \notin P$.
- Let $P_j \subset A$, for $j \in J$, be a family of prime ideals of A. Then $A \setminus \bigcup_{j \in J} P_j = \bigcap_{j \in J} (A \setminus P_j)$ is a multiplicative set.
- A^* is a multiplicative set in A.
- The set of all non-zero-divisors of A is a multiplicative set.
- Let $I \subset A$ be an ideal. Then $1 + I = \{1 + x \mid x \in I\}$ is a multiplicative set.

Definition 28. Let A be a ring with a multiplicative set S. Consider $A \times S$, that is the set of pairs of elements (a, s), where $a \in A$ and $s \in S$. Define an equivalence relation \sim as follows. $(a, s) \sim (b, t)$ if and only if there exists $u \in S$ such that u(at - bs) = 0. Define $S^{-1}A$ to be the set of equivalence classes of \sim . Write the equivalence class of (a, s) as a/s. Define multiplication on $S^{-1}A$ as

$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}.$$

Define addition on $S^{-1}A$ as

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}.$$

Define 0 in $S^{-1}A$ as 0/1 and we define 1 in $S^{-1}A$ as 1/1.

- Exercise: check that if $(a, s) \sim (a', s')$ and $(b, t) \sim (b', t')$, then $(ab, st) \sim (a'b', s't')$.
- Exercise: check that if $(a, s) \sim (a', s')$ and $(b, t) \sim (b', t')$, then $(at + bs, st) \sim (a't' + b's', s't')$.
- Exercise: with this definition $S^{-1}A$ is a ring.

Remark 29. \sim is indeed an equivalence relation. $(a,s) \sim (a,s), (a,s) \sim (b,t)$ gives $(b,t) \sim (a,s)$. Let us check that if $(a,s) \sim (b,t)$ and $(b,t) \sim (c,r)$, then $(a,s) \sim (c,r)$. There exist $u,v \in S$ such that u(at-bs)=0 and v(br-ct)=0. Then uv(atr-bsr)=0 and uv(brs-cts)=0, so uvt(ar-bs)=0.

Lemma 30. Let A be a ring with a multiplicative set S. Then $f: A \to S^{-1}A$ defined by f(x) = x/1 is a homomorphism of rings. Ker(f) = 0 if and only if S contains no zero-divisors.

Proof.

$$f(x+y) = \frac{x+y}{1} = \frac{x}{1} + \frac{y}{1}, \qquad f(xy) = \frac{xy}{1} = \frac{x}{1} \cdot \frac{y}{1}.$$

 $Ker(f) = \{x \mid \exists u \in S, \ ux = 0\} \text{ since } x/1 = 0/1 \text{ if and only if there exists } u \in S \text{ such that } u(x \cdot 1 - 0 \cdot 1) = 0.$

Example. Let k be a field. Explore what happens when A = k[x,y]/(xy) and $S = \{1, x, ...\}$. Determine $S^{-1}A$ and Ker(f).

Lemma 31 (Universal property of localisation). Let A be a ring with a multiplicative set $S \subset A$. Suppose $g: A \to B$ is a homomorphism such that $g(S) \subset B^*$, that is for all $s \in S$, g(s) is a unit in B. Then there exists a unique homomorphism $h: S^{-1}A \to B$ such that $g = h \circ f$, where $f: A \to S^{-1}A$ is the canonical map.

Proof. Define $h\left(a/s\right) = g\left(a\right)g\left(s\right)^{-1}$ since g invertible. Check that h is well-defined, that is if a/s = a'/s', then $u\left(as'-a's\right) = 0$ for $u \in S$. Apply g and get $g\left(u\right)\left(g\left(a\right)g\left(s'\right) - g\left(a'\right)g\left(s\right)\right) = 0$. $g\left(u\right) \in B^*$ and $g\left(a\right)g\left(s'\right) = g\left(a'\right)g\left(s\right)$. Hence $g\left(a\right)g\left(s\right)^{-1} = g\left(a'\right)g\left(s'\right)^{-1}$. Take any $a \in A$. Then $f\left(a\right) = a/1$, hence $(h \circ f)\left(a\right) = g\left(a\right)$. Finally, let us show there is only one homomorphism $h: S^{-1}A \to B$ such that $g = h \circ f$. Suppose $h': S^{-1}A \to B$ is such that $g = h' \circ f$, so that for any $a \in A$ we have $g\left(a\right) = h'\left(a\right)$. For any $s \in S$, s^{-1} is an element of $S^{-1}A$, and so is s. $1 = s^{-1}s$ gives $1 = h'\left(1\right) = h'\left(s^{-1}\right)h'\left(s\right)$. Thus $h'\left(s^{-1}\right) = h'\left(s\right)^{-1} = g\left(s\right)^{-1}$ because h' on the image of A in $S^{-1}A$ is the same as g. Comparing this with the definition of h we see that h' = h.

Let $I \subset A$ be an ideal. Define $S^{-1}I = \{x/s \mid x \in I, s \in S\}$. This is an ideal in $S^{-1}I$. It is the ideal generated by $f(I) \subset S^{-1}A$.

Proposition 32. Let A be a ring with a multiplicative set S. Let I_1, \ldots, I_n be ideals in A. Then

- $S^{-1}(I_1 + \cdots + I_n) = S^{-1}I_1 + \cdots + S^{-1}I_n$,
- $S^{-1}(I_1 \dots I_n) = S^{-1}I_1 \dots S^{-1}I_n$,
- $S^{-1}\left(\bigcap_{j=1}^{n} I_{j}\right) = \bigcap_{j=1}^{n} S^{-1}I_{j}$, and
- $r(S^{-1}I) = S^{-1}r(I)$, where r(I) is the radical of I.

Proposition 33. Every ideal of $S^{-1}A$ is of the form $S^{-1}I$ for some ideal $I \subset A$.

Proof. Start with an ideal $J \subset S^{-1}A$. Consider $f^{-1}(J) \subset A$. This is an ideal. Call it I. Claim that $J = S^{-1}I$. Pick any element $a/s \in J$. Then $a \in J$. Since $f(a) = a/1 \in J$ we have that $a \in I$. Therefore, $a/s \in S^{-1}I$. This proves $J \subset S^{-1}I$. But it is clear that $S^{-1}I \subset J$. Indeed, $x \in I$ then $x/1 \in J$. But J is an ideal, hence $x/s \in J$.

Theorem 34. The prime ideals in $S^{-1}A$ are the ideals $S^{-1}P$, where P is a prime ideal of A such that $P \cap S \neq \emptyset$. Thus we have a bijection between the set of prime ideals in $S^{-1}A$ and the set of prime ideals in A that do not intersect A.

Proof. Suppose that P is a prime ideal in A, $P \cap S \neq \emptyset$. Claim that $S^{-1}P$ is a prime ideal in $S^{-1}A$. If $(a/s)(b/t) \in S^{-1}P$, then (a/s)(b/t) = c/u, where $c \in P$, $u \in S$. This is equivalent to v(abu - cst) = 0 for some $v \in S$. $(ab)(vu) = c \in P$ such that $v \in P$. $vu \in S$ and $S \cap P = \emptyset$, so $vu \notin P$. But $P \subset A$ is a prime ideal, hence $ab \in P$. Thus $a \in P$ gives $a/s \in S^{-1}P$ or $b \in P$ gives $b/t \in S^{-1}P$. This proves $S^{-1}P \subset S^{-1}A$ is prime. For any ideal $J \subset S^{-1}A$, we know that $f^{-1}J$ is an ideal in S. Moreover, if J is prime, then $f^{-1}J \subset A$ is prime. Let us show that $f^{-1}J \cap S = \emptyset$. Otherwise, take $s \in S \cap f^{-1}J$, so $s/1 \in J$. But $1/s \in J^{-1}A$, hence $1 = (1/s)s \in J$, so $J = S^{-1}A$. But J is a prime ideal, so $J \neq S^{-1}A$. To show that $P \mapsto S^{-1}P$ and $J \mapsto f^{-1}J$ are the identity maps, we need to check that $P = f^{-1}(S^{-1}P)$ and $J = S^{-1}f^{-1}(J)$. $S^{-1}P = \{x/s \mid x \in P, s \in S\}$. If $y \in f^{-1}(S^{-1}P) \subset A$ is such that f(y) = x/s, then y/1 = x/s. Hence $y = x \in P$. Since $y \in S = x \in P$. Therefore, $y \in P$. Hence $y \in S = x \in P$. Now let us prove that $y \in S^{-1}I$. In the proof of Proposition 33 we have taken $y \in S^{-1}I$. So we are done.

8 Determinants

Lemma 35. Let $f(x_1, ..., x_n) \in \mathbb{Z}[x_1, ..., x_n]$. If f as a function $\mathbb{Z}^n \to \mathbb{Z}$ is zero, that is f only takes zero values on arbitrary elements of \mathbb{Z}^n , then f is the zero polynomial.

Proof. Induction in n. If n=1, then f(x) is a polynomial with infinitely many roots. So f(x) is the zero polynomial, so cannot have more than $\deg(f)$ roots. Assume we know the lemma for n-1 variables. Write $f(x_1,\ldots,x_n)=\sum_{i=0}^N f_i(x_1,\ldots,x_{n-1})\,x_n^i$ for $f_j(x_1,\ldots,x_{n-1})\in\mathbb{Z}[x_1,\ldots,x_{n-1}]$. Fix x_1,\ldots,x_{n-1} . We get a polynomial in one variable x_n , so this polynomial has zero coefficients. This implies that each $f_i(x_1,\ldots,x_n)$ takes only zero values. By the induction assumption, each f_i is the zero polynomial.

Remark 36. This means that if a polynomial formula with coefficients in \mathbb{Z} is true in \mathbb{Z} , this is true in an arbitrary commutative ring.

Example.
$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
 is true in any ring.

The underlying fact is the existence of a canonical map $\mathbb{Z} \to R$ by $1 \mapsto 1$.

Definition 37. Let R be a commutative ring. Let $A = (a_{ij})$ be a square matrix for $1 \le i \le n$ and $1 \le j \le n$, with entries in R. Then det (A) is defined as $(-1)^{i+1} a_{i1} M_{i1} + \dots + (-1)^{i+n} a_{in} M_{in}$ for i fixed. Here M_{ij} is the determinant of the $(n-1) \times (n-1)$ submatrix of A obtained by removing the i-th row and the j-th column.

Proposition 38. det $(A) = (-1)^{i+1} a_{i1} M_{i1} + \dots (-1)^{i+n} a_{in} M_{in}$.

Proof. This is known for matrices with entries in \mathbb{C} , so by Remark 36 this holds in any commutative ring. \square

Remark 39. The official definition is

$$\det\left(A\right) = \sum_{\pi \in S_n} sgn\left(\pi\right) a_{1\pi(1)} \dots a_{n\pi(n)},$$

where $sgn: S_n \to \{\pm 1\}$.

Proposition 40. For $i \neq j$,

$$(-1)^{j+1} a_{i1} M_{j1} + \dots + (-1)^{j+n} a_{in} M_{jn} = 0,$$

$$(-1)^{j+1} a_{1i} M_{1i} + \dots + (-1)^{j+n} a_{ni} M_{ni} = 0.$$

Define the **adjacent** matrix as an $n \times n$ matrix $A_{ij}^v = (-1)^{i+j} M_{ji}$. Putting together all the previous identities we get the following.

Theorem 41. $A \cdot A^v = A^v \cdot A = \det(A) I_n$.

9 Modules

Definition 42. Let A be a ring. A **module** M over A is an abelian group (M, 0, +) with an action \cdot of A on M, that is $A \times M \to M$ by $a \cdot m = am$, such that the following axioms hold.

- $1 \cdot m = m$ for all $m \in M$ and $a \in A$.
- $\mu \cdot (\lambda \cdot m) = (\mu \lambda) \cdot m \ \lambda, \mu \in A$.
- $\lambda(x+y) = \lambda x + \lambda y$ for all $\lambda \in A$ and $x, y \in M$.
- $(\mu + \lambda) x = \mu x + \lambda x$ for all $\mu, \lambda \in A$ and $x \in M$.

Example.

- M = A. More generally, consider an ideal $I \subset A$. A acts on I by $A \times I \to I$ by $a \cdot x = ax$.
- If A is a field, then an A-module is the same as a vector space over this field.
- Take M to be any abelian group. Take $A = \mathbb{Z}$. Define an action of \mathbb{Z} as follows. $1 \cdot m = m$ and $n \cdot m = (1 + \dots + 1) \cdot m = m + \dots + m = nm$. $0 = n + (-n) \in \mathbb{Z}$, then $0 = (n + (-n)) \cdot m = nm + (-n)m$. Hence $(-n) \cdot m = -(n \cdot m) = -(m + \dots + m)$. So, there is exactly one way to equip any abelian group with the structure of a \mathbb{Z} -module.
- Let k be a field and let A = k[x]. A k[x]-module is a vector space over k with extra structure $x \times M \to M$. This is a linear transformation of M. It can be arbitrary. Thus a k[x]-module is a pair (M, f), where M is a k-vector space and $f: M \to M$ is linear transformation of M.

Definition 43. Let M and N be A-modules. A map $f: M \to N$ is called a **homomorphism of** A-modules if f is a homomorphism of abelian groups and f(a,m) = af(m) for any $a \in A$ and $m \in M$. If $f: M \to N$ and $g: M \to N$ are homomorphisms of A-modules, then so is f + g, so we get $Hom_A(M, N)$, a group of such homomorphisms. This is also an A-module via the action $(a, f(a)) \mapsto a \cdot f(a)$.

Definition 44. A submodule $N \subset M$ is a subgroup, stable under the action of A. Then M/N is naturally an A-module with A-action inherited from M. Define $(N:M) = \{a \in A \mid raM \subset rN \subset N\}$. This is an ideal in A. In particular, can do this when N = 0. Note $Ann(M) = (0:M) = \{a \in A \mid aM = 0\}$. This is called the **annihilator** of M.

Definition 45. If $f: M \to N$ is a homomorphism of A-modules, then Ker(f) is an A-module and $Im(f) \cong M/Ker(f)$ is as isomorphism of A-modules.

Definition 46. An A-module M is **finitely generated** if there exist m_1, \ldots, m_n in M such that $M = \{a_1m_1 + \cdots + a_nm_n \mid a_i \in A\}$.

Example. A free A-module of rank n is the set $A^n = \{(a_1, \ldots, a_n) \mid a_i \in A\}$ with coordinate-wise addition. $a \in A$ acts on (a_1, \ldots, a_n) by sending it to (aa_1, \ldots, aa_n) . If $f(1, 0, \ldots, 0) = m_1, f: A^m \to M$ is an example of an A-module homomorphism.

Lemma 47. Let A be a ring. Let M be a finitely generated A-module and let $A \subset A$ be an ideal such that JM = M, that is sums of xm, where $x \in J$ and $m \in M$, give all of M. Then there exists $a \in J$ such that (1-a)M = 0.

Proof. Let m_1, \ldots, m_n be a set of generators of M. $m_i \in M = JM$, so $m_i = x_{i1}m_1 + \cdots + x_{in}m_n$, where $x_{ij} \in J$. Let $X = (x_{ij})_{1 \le i,j \le n}$, so

$$(I_n - X) \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = 0.$$

Let $(I_n - X)^v$ be the adjunct matrix of $I_n - X$. Then $(I_n - X)^v (I_n - X) = \det(I_n - X) I_n$. Hence

$$\det\left(I_n - X\right) \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

 $\det(I_n - X) = \prod_{i=1}^n (1 - x_{ii}) + J \equiv 1 \mod J$. So $\det(I_n - X) = 1 - a$, where $a \in J$. $(1 - a) m_i = 0$ for all i gives (1 - a) M = 0.

Corollary 48 (Nakayama's lemma). Let A be a ring and let M be an A-module, which is finitely generated. Let $I \subset A$ be an ideal contained in the Jacobson radical J(A). Then IM = M implies M = 0.

Proof. Lemma 47 gives an $a \in I$ such that (1-a)M. But $a \in J(A)$. By Proposition 24 $1-a \in A^*$ so that there exists $u \in A^*$ such that u(1-a) = 1, so $M = 1 \cdot M = u(1-a) \cdot M = 0$.

Another proof considers $M=(m_1,\ldots,m_n)$. Let us call a generating set minimal, if no proper set is a generating set. Assume that m_1,\ldots,m_n is a minimal generating set. IM=M implies that $m_1=a_1m_1+\cdots+a_nm_n$, where $a_i\in I$. $(1-a_1)m_1=a_2m_2+\cdots+a_nm_n$. Proposition 24 says that $1-a_1\in A^*$. Hence $m_1=(1-a_1)^{-1}a_2m_2+\cdots+(1-a_1)^{-1}a_nm_n$. This is a contradiction, because m_2,\ldots,m_n is a generating set.

10 Localisation of modules

Definition 49. Let A be a ring with a multiplicative set S, and let M be an A-module. Define \sim on $M \times S$ by $(m,s) \sim (n,t)$ if and only if there exists $u \in S$ such that u(tm-sn)=0. This is an equivalence relation. Denote the equivalence class of (m,s) by m/s. Then the set of these equivalence classes form a module denoted by $S^{-1}M$ over $S^{-1}A$. The action of $S^{-1}A$ on $S^{-1}M$ is (a/s)(m/t)=(am/st). m/s+n/t=(mt+ns)/st. The zero in $S^{-1}M$ is 0/1.

Definition 50. Let A be a ring and let $P \subset A$ be a prime ideal. Then $S = A \setminus P$ is a multiplicative set. The ring $S^{-1}A$ is denoted A_P . It is called the localisation of A at P. Recall that by Theorem 34 the prime ideals of A_P are of the form $S^{-1}I$, where $I \subset A$ is a prime ideal such that $I \cap (A \setminus P) = \emptyset$, if and only if $I \subset P$.

Theorem 51. Let A be a ring with a prime ideal P. Then $a \in A_P$ is a unit if and only if $a \notin PA_P = S^{-1}P = (A \setminus P)^{-1}P$. The ideal PA_P is the unique maximal ideal of A_P . So A_P is a local ring.

Proof. Suppose $a/s \in A_P$ is a unit. Then for some $b/t \in A_P$ we have (a/s)(b/t) = 1. ab/st - 1/1 = 0 if and only if there exists $u \in S$ such that u(ab-st) = 0. $uab = ust \in S = A \setminus P$. Hence $a \notin P$, so that $a/s \notin PA_P$. Conversely, if $a/s \notin PA_P$, then $a \notin P$ and $s \in S$ gives $a \in S = A \setminus P$. So a/s is a unit whose inverse is s/a. PA_P is a maximal ideal, because joining any new element will be the whole ring, as this element must be a unit.

Example. $\mathbb{Z}_{(p)} = \{a/b \mid a, b \in \mathbb{Z}, \ (p, b) = 1\}$ and

$$p\mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ p \mid a, \ (p, b) = 1 \right\}, \qquad \mathbb{Z}_{(p)}^* = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ p \nmid a, \ (p, b) = 1 \right\}.$$

Do the same for A = k[x] and P = (f(x)), where f(x) is irreducible.

Proposition 52. Let M be an A-module. Then M=0 if and only if $M_P=0$ for all maximal ideals $P\subset A$.

Proof. Suppose $M \neq 0$. Choose $x \in M$, $x \neq 0$. Define $I = Ann(x) = \{a \in A \mid ax = 0\}$. This is an ideal in A, and $I \neq A$ because $1 \cdot x = x$, so $1 \notin I$. Let P be a maximal ideal such that $I \subset P$. Claim that $M_P \neq 0$. Consider $x/1 \in M_P$. If $M_P = 0$, then x/0 = 0/1, so ux = 0 for some $u \in A \setminus P$. $u \in I = Ann(x)$ but $u \notin P$. This is a contradiction because $I \subset P$.

11 Chain conditions

Lemma 53. Let Σ be a partially ordered set. Then the following properties are equivalent.

- 1. Every non-empty subset of Σ has a maximal element.
- 2. Every ascending chain $x_1 \le x_2 \le \dots$ is stationary, that is there exists n such that for any $m \ge 0$ we have $x_{n+m} = x_n$.

Proof.

 $1 \implies 2$ Any ascending chain has a maximal element, say x_n . Hence $x_{m+n} = x_n$, for all $m \ge 0$.

2 \Longrightarrow 1 Suppose $S \subset \Sigma$ does not have a maximal element. Choose $x_1 \in S$. There exists $x_2 \in S$ such that $x_2 > x_1$. If $x_1 < \cdots < x_2$ are chosen, then since x_n is not a maximal element, we can choose $x_{n+1} > x_n$. This constructs an ascending chain that is not stationary.

Definition 54. A ring A is called **Noetherian** if every ascending chain of ideals in A is stationary. An A-module M is Noetherian if every chain of submodules of M is stationary. In particular, a ring A is Noetherian if it is a Noetherian module over A. A ring A is called **Artinian** if every descending chain of ideals is stationary. An A-module M is Artinian if every descending chain of submodules is stationary.

Example. Let $\mathbb{Z} \supset (n)$ is Noetherian. $(a) \subset (b)$ if and only if b divides a. $(15) \subsetneq (5) \subsetneq (1) = \mathbb{Z}$. But $(2) \supsetneq (4) \supsetneq \cdots \supsetneq (2^n) \supsetneq \ldots$ is an infinite descending chain of ideals so \mathbb{Z} is not Artinian. If A is a finite ring, then it is trivially both Noetherian and Artinian.

Proposition 55. Let A be a ring and let M be an A-module. Then M is Noetherian if and only if every submodule of M is finitely generated.

Proof. Suppose M is Noetherian, but $N \subset M$ is a submodule that is not finitely generated. Then take $x_1 \in N$. Since $N \neq (x_1)$, the submodule generated by x_1 , we can find $x_2 \in N \setminus (x_1)$. This gives $(x_1) \subsetneq (x_1, x_2)$ and so on. This produces an ascending chain which is not stationary, a contradiction. Now suppose that every submodule of M is $f \cdot g$. Consider any ascending chain $M_1 \subset M_2 \subset \ldots$. Let $N = \bigcup_{i \geq 1} M_i$. This is a submodule of M. By assumption $N = (x_1, \ldots, x_n)$ for some $x_i \in N$. For each x_i there is an M_j in our chain such that $x_i \in M_j$. So there will be some M_l that contains x_1, \ldots, x_n . Then $N = M_l$. And clearly for any $m \geq 0$ we have $M_l \subset M_{l+m} \subset N = M_l$, so $M_{l+m} = M_l$. So M is Noetherian.

Remark 56. Applying this to the A-module A we see that A is Noetherian if and only if every ideal is finitely generated. Hence every principal ideal domain is Noetherian.

Example. \mathbb{Z} , k[x], $k[x_1, \ldots, x_n]$. Hilbert's basis theorem says that if R is Noetherian, then R[x] is also Noetherian.

Proposition 57. Let A be a ring. Let M be an A-module and $N \subset M$ a submodule. Then M is Noetherian if and only if N and M/N are both Noetherian A-modules.

Proof. Suppose M is Noetherian. Then clearly N is Noetherian. M/N is Noetherian too. Indeed, let L be a submodule of M/N. Let T be the inverse image of L in M. Then we have a surjective homomorphism of A-modules $T \to L$. Since T is finitely generated, so that $T = (x_1, \ldots, x_n)$ for some $x_i \in T$. Then the images of x_1, \ldots, x_n generate L. Now assume N and M/N are Noetherian. This can also be proved using ascending chains. Take any ascending chain $M_1 \subset M_2 \subset \ldots$ Then $N \cap M_1 \subset N \cap M_2 \subset \ldots$ is an ascending chain of submodules of N. Let $n_1 \in \mathbb{N}$ be such that for all $i \geq 0$, $N \cap M_{n+i} = N \cap M_{n_1}$. Consider $(M_i + N)/N \subset M/N$. This is just the set of cosets x + N, where $x \in M_i$. In fact $(M_i + N)/N \cong M_i/M \cap N$. We obtain an ascending chain $(M_1 + N)/N \subset (M_2 + N)/N \subset \cdots \subset (M_{n_2} + N)/N = (M_{n_1} + N)/N = \ldots$. Take $n = \max\{n_1, n_2\}$. It works, that is $M_n = M_{n+1} = \ldots$ Indeed, take any $x \in M_{n+i}$ for $i \geq 0$. Then there exists $y \in M_n$ such that x + N = y + N. Thus $x - y \in N \cap M_{n+i}$. But this is $N \cap M_n$. So there exists $z \in N \cap M_n$ such that x - y = z. Hence $x = y + z \in M_n$.

Corollary 58. Let A be a Noetherian or Artinian ring. Let M be a finitely generated A-module. Then M is Noetherian or Artinian.

Proof. Let $M = (m_1, \ldots, m_n)$ for $m_i \in M$, so

$$M = \{a_1 m_1 + \dots + a_n m_n \mid a_i \in A\}.$$

Let $A^{\oplus n} = \{(a_1, \dots, a_n) \mid a_i \in A\}$ be a free A-module of rank n. There is a homomorphism of A-modules $A^{\oplus n} \to M$ sending (a_1, \dots, a_n) to $a_1m_1 + \dots + a_nm_n$. It is surjective. By Proposition 57 it is enough to show that $A^{\oplus n}$ is Noetherian. Prove by induction in n. Clearly, A is Noetherian. $A^{\oplus (n-1)} \subset A^{\oplus n}$. The quotient $A^{\oplus n}/A^{\oplus (n-1)} \cong A$ by $(a_1, \dots, a_n) \mapsto a_n$. By Proposition 57 $A^{\oplus (n-1)}$ and A Noetherian implies that $A^{\oplus n}$ is Noetherian too. (Exercise: do the same in the Artinian case)

Corollary 59. Let A be a ring and let M be an A-module. Suppose that we have $0 = M_0 \subset ...M_n = M$ are A-submodules of M. Then M is Noetherian or Artinian if and only if each quotient M_{i+1}/M_i is Noetherian or Artinian.

Proof. Use Proposition 57. \Box

Lemma 60. Let A be a Noetherian ring. Let $S \subset A$ be a multiplicative set. Then $S^{-1}A$ is Noetherian.

Proof. Consider a non-empty set Σ of ideals of $S^{-1}A$. There is a canonical homomorphism of rings $f: A \to S^{-1}A$ by f(a) = a/1. If I is an ideal of $S^{-1}A$, then $f^{-1}(I)$ is an ideal in A. Then $I = S^{-1}f^{-1}(I)$. Now Σ gives a non-empty set of ideals of A under $I \to f^{-1}(I)$. Let J be a maximal element of this set. Then $S^{-1}J$ is a maximal element of Σ . Hence $S^{-1}A$ is Noetherian.

12 Primary decomposition

Definition 61. An ideal Q in a ring R not equal to R, that is a proper ideal, is called **primary** if all $x, y \in R$ such that $xy \in Q$ we have $x \in Q$ or $y^n \in Q$ for some n. Equivalently, $I \subsetneq R$ is called primary if every zero-divisor in R/I is nilpotent.

Example. Let p be a prime number. Then (p^m) for $m \ge 1$ is a primary ideal in \mathbb{Z} . $ab \in (p^m)$ if and only if $p^m \mid ab$. Consider a. If $p \nmid a$, then $p^m \mid b$, hence $b \in (p^m)$. Otherwise $p \mid a$, then $p^m \mid a^m$, so $a^m \in (p^m)$.

Example. $(f(x)^n) \subset k[x]$ for f(x) irreducible is primary.

Example. Let R = k[x, y] and $I = (x^3, y^5, xy)$. Claim that I is primary. Take any $f(x, y) = f_0 + xg(x, y) + yh(x, y)$. If $f_0 = 0$, since x and y are nilpotent, when considered as elements of R/I, f(x, y) is nilpotent. If $f_0 \neq 0$, f(x, y) is a sum of a unit and a nilpotent, hence a unit. In particular, any zero-divisor in R/I is nilpotent.

Example. Let R = k[x, y] and I = (xy). $xy \in I$, but $x^n \notin I$ for all $n \ge 0$. Hence I is not a primary ideal.

Example. Even simpler, $(6) \subset \mathbb{Z}$ is not a primary ideal.

Proposition 62. Let $I \subset R$ be an ideal. If the radical r(I) is a maximal ideal, then I is primary. In particular, any power of a maximal ideal is primary.

Proof. Consider R/I. r(I)/I is the nilradical of the ring R/I, which is the intersection of all prime ideals of R/I. We are given that r(I) is a maximal ideal, so r(I)/I is a maximal ideal of R/I. Hence r(I)/I is the unique prime ideal of R/I. If $x \notin r(I)/I$, then $x \in (R/I)^*$. Indeed, every non-unit is contained in a maximal ideal by Corollary 20, but there is only one maximal ideal and x is not in it. If $x \in r(I)/I$, then x is nilpotent. So all zero-divisor of R/I are nilpotent, hence I is a primary ideal of R. Now let $M \subset R$ be a maximal ideal. Then M^n is primary, since $r(M^n) = M$. Indeed, for any $x \in M$ $x^n \in M^n$, so $M \subset r(M^n)$. Since M is maximal we must have $M = r(M^n)$.

Example. In the example $I = (x^3, xy, y^5) \supset (x, y)^5$.

Proposition 63. Let $I \subset R$ be a primary ideal. Then the radical r(I) is a prime ideal of R. It is the smallest prime ideal of R containing I.

Proof. Let $x, y \in R$ for $xy \in r(I)$. Then there exists n such that $x^ny^n \in I$. If $x^n \in I$, then $x \in r(I)$. Suppose $x^n \notin I$. Since I is primary, there exists m such that $(y^n)^m \in I$. Then $y \in r(I)$. This proves that r(I) is prime. Note that r(I) is the intersection of all prime ideals containing I. Hence if r(I) is a prime ideal, it is the smallest prime ideal containing I.

Definition 64. Let $P \subset R$ be a prime ideal. An ideal $I \subset R$ is called P-primary, if I is a primary ideal such that r(I) = P.

Lemma 65. Let I_1, \ldots, I_n be P-primary ideals in R, where P is a prime ideal. Then $\bigcap_{j=1}^n I_j$ is also a P-primary ideal.

Proof. Assume n=2. The general case by induction. $r(I_1)=r(I_2)=P$ and $r(I_1\cap I_2)=r(I_1)\cap r(I_2)$. Hence $r(I_1\cap I_2)=P$. Let us show that $I_1\cap I_2$ is primary. Take $x,y\in R$ such that $xy\in I_1\cap I_2\subset I_1$. If $x\notin I_1\cap I_2$, then, say, $x\in I_1$. We know that $y^n\in I_1$ for some $n\geq 0$. Hence $y\in r(I_1)=P=r(I_1\cap I_2)$, so that $y^m\in I_1\cap I_2$.

A warning that it is not true in general that if r(I) is prime, then I is primary. True if r(I) is maximal though.

Definition 66. Let R be a ring, and let $I \subseteq R$ be an ideal. Call I **irreducible** if for any two ideals J and K in R such that $I = J \cap K$ we have either J = I or K = I. I is **reducible**, that is not irreducible, if $I = J_1 \cap J_2$, where $I \subseteq J_i$ for i = 1, 2.

Note. $x \in R$, which is not a unit, is irreducible if x is not a product of two non-units.

Proposition 67.

- 1. Any prime ideal is irreducible.
- 2. If R is Noetherian, then any irreducible ideal is primary.

Proof.

1. Let P be a prime ideal. Suppose $P = I \cap J$. Note that $IJ \subset I \cap J$. By the prime avoidance lemma 21 $I \cap J \subset P$ implies that $I \subset P$ or $J \subset P$. Say, $I \subset P = I \cap J \subset I$. Thus I = P.

2. Let $I \subset R$ be an irreducible ideal. Go over to R/I. An equivalent statement is given that the zero ideal in a ring is irreducible, that is (0) is not the intersection of two non-zero ideals, show that xy=0, $x \neq 0$ implies $y^n=0$ for some n. So let A=R/I. We work in A, so $x,y \in A$. R Noetherian gives A is Noetherian. Consider $\{\alpha \in A \mid \alpha y=0\} = Ann(y) \subset Ann(y^2) \subset \ldots$. These are ideals in A. There is an n>0 such that $Ann(y^n) = Ann(y^{n+1})$. We want to show that some $y^k=0$, that is $(y^k)=(0)$. Claim that can take k=n. Let us prove that $0=(x)\cap (y^n)\neq (0)\cap (y^n)$. By the irreducibility of the zero ideal, this imply $(y^n)=0$. Suppose that there exists $a\neq 0$, $(a)\in (x)\cap (y^n)$. Then a=rx for some $r\in A$. Then ay=rxy=0. But $a\in (y^n)$, so $a=by^n$ for some $b\in A$. We obtain $by^{n+1}=0$. In other words, $b\in Ann(y^{n+1})=Ann(y^n)$ so that $by^n=0$ so a=0. We proved that $y^n=0$. Therefore, $I\subset R$ is a primary ideal.

Let R be a ring and let $I \subsetneq R$ be an ideal. A **primary decomposition** of I is an expression of I as an intersection of finitely many primary ideals.

Theorem 68 (Noether). Any proper ideal in a Noetherian ring has a primary decomposition.

Proof. Let $I \subseteq R$ be an ideal. We want to prove that I is an intersection of finitely many irreducible ideals using Proposition 67. Suppose that this is not true. Look at all the ideals of R that cannot be written as intersections of finitely many irreducible ideals. Since R is Noetherian, this set has a maximal element, say J. By construction, J is not an irreducible ideal of R. Hence J is reducible, so $J = J_1 \cap J_2$, where $J \subseteq J_1$ and $J \subseteq J_2$. As J is a maximal element of our set of ideals, J_1 and J_2 are not in this set. Therefore, J_1 and J_2 each can be written as an intersection of finitely many irreducible ideals. Then $J = J_1 \cap J_2$ is also an intersection of finitely many irreducible ideals. This is a contradiction. Thus our set is empty, and so theorem is proved.

Recall that if I and J are ideals, then $(I:J) = \{r \in R \mid rJ \subset I\}.$

Lemma 69. Let R be a ring with a prime ideal P. Let $I \subset R$ be a P-primary ideal, that is P = r(I). Let $x \in R$. Then

```
1. x \in I, then (I : (x)) = R.
```

2. $x \notin I$, then (I : (x)) is a P-primary ideal.

3.
$$x \notin P$$
, then $(I : (x)) = I$.

Proof.

- 1. Obvious. $x \in I$ gives $1 \cdot x \in I$ so $1 \in (I : (x))$.
- 2. We want to prove the following.
 - r((I:(x))) = P. Take $y \in (I:(x))$. Then $yx \in I$. We know that I is primary and $x \notin I$. Hence $y^n \in I$ for some $n \ge 1$. Therefore, $y \in r(I) = P$. We proved that $I \subset (I:(x)) \subset P$. This implies $P = r(I) \subset r((I:(x))) \subset r(P) = P$. This shows that r((I:(x))) = P. So 1 is proved.
 - (I:(x)) is primary. We need to show that if $yz \in (I:(x))$, so $y(xz) = xyz \in I$, and $y \notin r((I:(x)))$, so $y^n \notin (I:(x))$ for all n gives $y^nx \notin I$, then we must show $z \in (I:(x))$. But I is primary and y^n /I for all n, by definition of primary ideals we must have $xz \in I$. Hence $z \in (I:(x))$. So 2 is proved.

Hence 2 is proved.

3. Let $y \in (I:(x))$. Then $xy \in I$. $x \notin P = r(I)$ hence no power of x is in I. Hence y must be in I.

We know that any ideal of a Noetherian ring has a primary decomposition $I = I_1 \cap \cdots \cap I_n$, where each $I_i \subset R$ is primary. Let us call this decomposition **minimal** if $r(I_i)$ are distinct prime ideals for $i = 1, \ldots, n$. Indeed, this can be arranged with Lemma 65 because $\bigcap_{s=1}^n$, where each I_s is a P-primary ideal, is again a P-primary ideal and we have $I_j \not\supseteq \bigcap_{l \neq i} I_l$, which can clearly be arranged by removing redundant ideals.

Theorem 70 (First uniqueness theorem). Let $I = \bigcap_{j=1}^m I_j$ be a minimal primary decomposition. Then the prime ideals $r(I_1), \ldots, r(I_n)$ are uniquely determined by I, so they do not depend on the choice of a primary decomposition.

Proof. Consider (I:(x)) for $x \in R$. Look at r((I:(x))) and consider the prime ideals of R that can be written as r((I:(x))). Claim that such prime ideals are precisely $r(I_1), \ldots, r(I_n)$. $(I:(x)) = \left(\bigcap_{j=1}^n I_j:(x)\right) = \bigcap_{j=1}^n r((I:(x)))$. Hence $r((I:(x))) = \bigcap_{j=1}^n r((I:(x)))$. Lemma 69 gives

- $x \in I_j$ gives $(I_j : (x)) = R$, so $r((I_j : (x))) = R$, and
- $x \notin I_j$ gives $(I_j : (x))$ is P_j -primary, so $r((I_j : (x))) = P_j$.

Therefore, $r((I:(x))) = \bigcap_{x \notin I_j} P_j$. If r((I:(x))) is prime, we know by the prime avoidance lemma 21 that $r((I:(x))) = P_j$ for some P_j . Conversely, for each j, by minimality of our primary decomposition, there exists $x_j \notin I_j$, but $x_j \in \bigcap_{l \neq j} I_l$. Then $r((I_l:(x_j))) = R$ for $l \neq j$, so $r((I_j:(x_j))) = P_j$. Hence $r((I:(x_j))) = P_j$.

13 Artinian rings and modules

Definition 71. Let A be a ring and let M be a non-zero A-module. M is **simple** if and only if the only submodules of M are 0 and M. Any A-module M has a **composition series** if it contains submodules $M = M_0 \supset \cdots \supset M_n = 0$ such that the quotients M_i/M_{i+1} are simple A-modules for $i = 0, \ldots, n-1$. Any such collection of submodules is called a composition series.

Proposition 72. For any A-module M the following are equivalent.

- 1. M is both Noetherian and Artinian.
- 2. M has a composition series.

Proof.

- 1 \Longrightarrow 2 Since M is Noetherian, M contains a maximal submodule. Any set of submodules of M has a maximal element. Call it M_1 . Call $M=M_0$. Then M_1/M_0 is simple by the choice of M_1 . Continue, and find $M_2 \subset M_1$ maximal submodule. We construct a decreasing chain of submodules $M=M_0 \supsetneq \cdots \supsetneq M_0=0$ because M is Artinian. So we obtain a composition series.
- 2 \Longrightarrow 1 Assume M has a composition series $M=M_0 \supsetneq M_n=0$. Any simple module is Noetherian and Artinian. Corollary 59 says that if $L \subset N$ are A-modules such that L and N/L are Artinian, then N is also Artinian. The same for Noetherian. Apply this to M_{n-2}/M_{n-1} , where M_{n-1} is simple. We know that M_{n-2}/M_{n-1} is also simple. Hence M_{n-2} is Noetherian and Artinian. Then apply this to $M_{n-3} \supset M_{n-2}$.

Proposition 73. If M has a composition series of length n, then any other composition series of M will have length n.

Proof. Let l(M) denote the smallest length of a composition series of M. If M has no composition series, set $l(M) = \infty$.

- Let $N \subsetneq M$ be a proper submodule. Then l(N) < l(M). Let n = l(M) and suppose that $M = M_0 \supsetneq \cdots \supsetneq M_n = 0$ is a composition series. Consider $N_i = N \cap M_i$. $N = N_0 \supset \cdots \supset N_n = 0$. $N_{i+1} = N_i \cap M_{i+1}$. $N_i/N_{i+1} = N_i/(N_i \cap M_{i+1}) = (N_i + M_{i+1})/M_{i+1} \subset M_i/M_{i+1}$, which is a simple module. Hence $N_i/N_{i+1} = 0$ or $N_i/N_{i+1} = M_i/M_{i+1}$. So remove repeated terms in $N = N_0 \supset \ldots N_n = 0$. We obtain a composition series for N. This proves that $l(N) \le n = l(M)$. Assume that $N \ne M$. Let us show that $l(N) \ne l(M)$. Let us prove that if l(N) = l(M), then N = M. We started with a composition series of length n = l(M). If l(N) = l(M), then there were no repetitions in $N = N_0 \supsetneq \cdots \supsetneq N_n = 0$. All inclusions here are strict. $N_n = M_n = 0$. $N_{n-1} = N \cap M_{n-1} \ne 0$ is a submodule of M_{n-1} , which is simple. Thus $N_{n-1} = M_{n-1}$. Then $N_{n-2} = N \cap M_{n-2} \ne N_{n-1} = N \cap M_{n-1}$. Therefore, $0 \ne N_{n-2}/N_{n-1} \subset M_{n-2}/M_{n-1}$ is an equality. Hence $N_{n-2} = M_{n-2}$. Continue like this. The final shows that $N_0 = M_0$, that is N = M.
- Let $M = M_0 \supseteq \cdots \supseteq M_k = 0$ be a composition series. We have $k \ge l(M)$. 1 gives that $l(M) = l(M_0) > \cdots > l(M_k) = 0$. Hence $l(M_{k-1}) \ge 1, \ldots, l(M) \ge k$. Hence k = f(M).

Definition 74. If $l(M) < \infty$, then l(M) is called the **length** of M.

Proposition 75. Let M be an A-module and let N be a submodule of M. Then N and M/N have finite length, then M has finite length and l(M) = l(N) + l(M/N).

Proof. Take a composition series of M/N and pull it back to M via the map $M \to M/N$. $M = M_0 \supsetneq \cdots \supsetneq N \supsetneq \ldots$ Now take a composition series in N and combine it with the M_i 's.

Example.

- Any field is an Artinian ring.
- A finite dimensional vector space over a field k is an Artinian k-module.
- Finite rings and finite modules are Artinian.
- An example of a non-Artinian ring is k[t].

Lemma 76. An Artinian integral domain is a field.

Proof. Let $x \in A$, $x \neq 0$. Consider $(x) \supset (x^2) \supset \dots$ This is a descending chain of ideals, hence is stationary, that is there exists n such that $(x^n) = (x^{n+k})$ for all $k \geq 0$. In particular, $(x^n) = (x^{n+1})$, hence $x^n = x^{n+1}y$ for some $y \in A$. A is an integral domain, hence $x(x^{n-1} - x^ny) = 0$ for $x \neq 0$ implies $x^{n-1} = x^ny$. Continue and obtain 1 = xy. Hence $x \in A^*$, so A is a field.

Corollary 77. In an Artinian ring any prime ideal is maximal.

Proof. Let $P \subset A$ be a prime ideal. Then A/P is also an Artinian ring. A/P is an integral domain, hence a field by Lemma 76. So P is maximal.

Corollary 78. In an Artinian ring the nilradical coincides with the Jacobson radical.

Lemma 79. Let A be an Artinian ring. Then A has only finitely many maximal ideals.

Proof. For contradiction suppose we have countably many maximal ideals $I_1, I_2, \ldots I_1 \supset \cdots \supset I_1 \cap \cdots \cap I_n = I_1 \cap \cdots \cap I_{n+1} = \ldots$. This implies that $I_1 \cap \cdots \cap I_n \subset I_{n+1}$. Since I_{n+1} is a prime ideal, there is a $j \in \{1, \ldots, n\}$ such that $I_j \subset I_{n+1}$ by the prime avoidance lemma. But I_j is a maximal ideal, hence $I_j = I_{n+1}$, but we assumed that all the I_k 's are pairwise different. Contradiction.

Lemma 80. The nilradical of an Artinian ring is nilpotent. In other words, there exist $n \in \mathbb{Z}_{\geq 1}$ such that $N(A)^n = 0$.

Proof. $N(A) \supset \cdots \supset N(A)^n = N(A)^{n+1} = \cdots$ Such an n exists, because A is Artinian. We want to show that $N(A)^n = 0$. Let C be the set of all ideals $I \subset A$ such that $I \cdot N(A)^n \neq 0$. For contradiction we assume $N(A)^n \neq 0$. Then C is not empty, because C contains N(A). Since A is Artinian, any non-empty set of ideals of A has a minimal element, say I. So we have $I \cdot N(A)^n \neq 0$. So there is an $x \in I$ such that $x \cdot N(A)^n \neq 0$. But then $(x) \cdot N(A)^n \neq 0$, so (x) is in C. Since I is minimal and $(x) \subset I$, we must have (x) = I. Let us observe that $0 \neq (x) \cdot N(A)^n = (x) \cdot N(A)^n \cdot N(A)^n$. This shows that the ideal $(x) \cdot N(A)^n$ is in C, but $(x) \cdot N(A)^n \subset (x) = I$, which is minimal in C. Therefore, $(x) \cdot N(A)^n = (x) \ni x$. This implies that x = xy, where $y \in N(A)^n \subset N(A)$. In particular, y is nilpotent, that is $y^m = 0$ for some m. $x = \cdots = xy^m = 0$, so x = 0. Hence I = 0. This is a contradiction as $I \cdot N(A)^n \neq 0$. Thus $N(A)^n = 0$. \square

Lemma 81. Let k be a field and let V be a vector space over k. The following are equivalent.

- 1. V is finite dimensional.
- 2. V is a Noetherian k-module.
- 3. V is an Artinian k-module.

Proof.

- $1 \implies 2$ Trivial.
- $2 \implies 3$ Use the fact that V has a finite generating set.
- $3 \implies 1$ Trivial.

Lemma 82. Let A be a ring. Suppose we have maximal ideals I_1, \ldots, I_n , possibly with repetitions. If $I_1 \ldots I_n = 0$, then A is Artinian if and only if A is Noetherian.

Proof. Let $M_1 = I_1 \supset \cdots \supset M_n = I_1 \ldots I_n = 0$ and A be Noetherian, hence all the M_i 's are Noetherian too. Hence M_i/M_{i+1} are Noetherian A-modules for all i. Note that $M_i \cdot I_{i+1} = M_{i+1}$, hence $I_{i+1} \subset A$ acts as zero on M_i/M_{i+1} . Therefore, M_i/M_{i+1} is naturally a module for the quotient ring A/I_{i+1} . Since I_{i+1} is a maximal ideal, the ring A/I_{i+1} is a field, and M_i/M_{i+1} is a vector space over A/I_{i+1} . Since M_i/M_{i+1} is a Noetherian A-module, this is a finite dimensional vector space over A/I_{i+1} . By Lemma 81, M_i/M_{i+1} is also an Artinian A/I_{i+1} -module. Hence, M_i/M_{i+1} is an Artinian A-module. In particular, $M_{n-1}/M_n = M_{n-1}$ is Artinian, but M_{n-2}/M_{n-1} is also Artinian. Hence M_{n-2} is Artinian. Continue like this. Finally, prove that A is Artinian. (Exercise: converse)

Definition 83. Let A be a ring. The **Krull dimension** of A is the supremum of all $n \in \mathbb{Z}_{>0}$ such that A has a chain of proper prime ideals $I_0 \subsetneq \cdots \subsetneq I_n$. dim (A) is a positive integer or infinity.

Example.

- Any field has dimension zero.
- Any principal ideal domain which is not a field has dimension one, such as \mathbb{Z} or k[x], where k is a field. $(0) \subseteq P$ for P a prime ideal. In a PID all non-zero prime ideals are maximal. An integral domain but not a field has dim (A) = 1 if and only if all prime ideals are maximal.
- $k[x_1,\ldots,x_n]$ has this chain $(0)\subsetneq\cdots\subsetneq(x_1,\ldots,x_n)$. dim $(k[x_1,\ldots,x_n])\geq n$. In fact dimension is n.

Theorem 84. A ring is Artinian if and only if it is Noetherian and has dimension zero.

Proof. Let us show that A Artinian gives A Noetherian and dim (A) = 0. Corollary 77 says that every prime ideal is maximal, hence dim (A) = 0. Lemma 79 says that A has only finitely many maximal ideals, call them I_1, \ldots, I_n . $I_1 \ldots I_n \subset I_1 \cap \cdots \cap I_n = J(A) = N(A)$ by Corollary 78. But Lemma 80 says $N(A)^m = 0$ for some $m \geq 1$. We conclude that $I_1^m \ldots I_n^m = 0$. We can apply Lemma 82 and so prove that A is Noetherian. For the other implication, let us first prove that if A is Noetherian, then $N(A)^m = 0$, for some $m \geq 1$. Indeed, N(A) is finitely generated, so $N(A) = (m_1, \ldots, m_n)$. For each $i = 1, \ldots, m$, there

is a $a_i \geq 1$ such that $m_i^{a_i} = 0$. Take $a = a_1 + \dots + a_n$. Then $(m_1, \dots, m_n)^a = 0$. So N(A) is a nilpotent ideal. As a consequence, we obtain that any ideal in a Noetherian ring contains some power of its radical $I \subset A$. There exists n such that $r(I)^n \subset I$ by applying the fact that the nilradical is nilpotent to A/I and N(A/I) = r(I)/I, so $N(A/I)^n = 0$ gives $r(I)^n \subset I$. Now (0) in A has a primary decomposition, since A is Noetherian. Write $(0) = J_1 \cap \dots \cap J_n$, where J_i are primary ideals. We know that $P = r(J_i)$ is a prime ideal of A by Proposition 63. Since dim (A) = 0, each P_i is actually a maximal ideal. For each $i = 1, \dots, n$ there is a $k_i \geq 1$ such that $P_i^{k_i} \subset J_i$, since $P_i = r(J_i)$. Hence $P_i = r(J_i) \cap \dots \cap P_i \cap I_i \cap I_i \cap I_i$ hence $P_i = r(I_i) \cap I_i \cap I_i \cap I_i$. By Lemma 82 we conclude that $P_i = r(I_i) \cap I_i \cap I_i$.

Theorem 85 (Structure theorem). Any Artinian ring is isomorphic to a product of local Artinian rings.

Recall that a ring is local if it has only one maximal ideal.

Example. Let R = k[x]. Let f(x) be a non-zero polynomial and A = R/(f). dim_k $(A) < \infty$ so A is Artinian. $f(x) = \prod_{i=1}^{n} f_i(x)^{m_i}$, where $f_i(x)$ are pairwise different irreducible polynomials. The ideals of A correspond to factors of f(x). Maximal ideals correspond to $f_i(x)$. Chinese remainder theorem gives $A = R/(f) \cong \prod_{i=1}^{n} R/(f_i(x)^{m_i})$.

Definition 86. The ideal $I, J \subset R$ are coprime if I + J = R.

Suppose I_1, \ldots, I_n are ideals of R. Consider the natural homomorphism $\phi: R \to \prod_{i=1}^n R/I_i$ by $\phi(r) = (r + I_1, \ldots, r + I_n)$.

Lemma 87.

- If $I_j + I_k = R$ for any $j \neq k$, then $\prod_{i=1}^n = \bigcap_{j=1}^n I_j$.
- ϕ is surjective if and only if $I_i + I_k = R$ for any pair $j \neq k$.
- ϕ is injective if and only if $\bigcap_{j=1}^{n} I_j = 0$.

Proof. See problem sheet.

Proof of Theorem 85. Recall that A is an Artinian ring. By Lemma 79 A has only finitely many maximal ideals, say I_1, \ldots, I_n , all pairwise different. $I_1 \ldots I_n \subset I_1 \cap \cdots \cap I_n = J(A) = N(A)$ by Corollary 78. By Lemma 80 $N(A)^m = 0$. Hence $(I_1 \ldots I_n)^m = 0$. $I_j \subsetneq I_j + I_k = R$ for $j \neq k$, where I_j is maximal. By Lemma 87 $\bigcap_{j=1}^n I_j = \prod_{j=1}^n I_j$. Claim that if $j \neq k$, then $I_j^a + I_k^a = R$ for any $a \geq 1$. Indeed, $I_j + I_k = R$ so there exist $x \in I_j$, $y \in I_K$ such that 1 = x + y. Hence $1^{2a} = (x + y)^{2a}$, which is a sum of a multiple of x^a and a multiple of y^a , which is in $I_j^a + I_k^a$. By Lemma 87 we have $\bigcap_{j=1}^n I_j^a = \prod_{j=1}^n I_k^a$. So ϕ gives an isomorphism $A/\prod_{j=1}^n I_j^a \cong \prod_{j=1}^n A/I_j^a$. It is enough to show that each A/I_j^a is a local ring. Take a large enough, say a = m. Then $\prod_{j=1}^n I_j^a = 0$. Note that $N(A/I_j^a) = I_j/I_j^a$. Indeed, for all $x \in I_j$ we have $x^a \in I_j^a$. Since I_j/I_j^a is a maximal ideal of A/I_j^a , this is $N(A/I_j^a)$. This is the intersection of all prime ideals of A_j^a . Thus all of them coincide with I_j/I_j^a , so are maximal. Hence, I_j/I_j^a is a unique maximal ideal of A/I_j^a .

14 Integral closure and normal rings

Theorem 88. Let R be a ring. Let $A \subset R$ be a subring. Let $x \in R$. The following are equivalent.

- 1. There are $a_0, \ldots, a_{n-1} \in A$ such that $x^n + \cdots + a_n = 0$
- 2. The A-module A[x] is finitely generated. Here $A[x] \subset R$ are all polynomial expressions in x with coefficients in A.
- 3. There is a subring $B \subset R$ containing A and x such that B is a finitely generated A-module.

- $1 \implies 2$ $x^n = -\left(a_{n-1}x^{n-1} + \dots + a_0\right)$ so x^n belongs to the A-module generated by $1, \dots, x^{n-1}$. $x^{n+1} = -x\left(a_{n-1}x^{n-1} + \dots + a_0\right) = -a_{n-1}x^n + \dots$ Clearly, $x^k \in A \cdot 1 + \dots + A \cdot x^{n-1}$. So A[x] is a finitely generated A-module.
- $2 \implies 3$ Trivial. Indeed, take B = A[x].
- 3 \Longrightarrow 1 Assume such a B exists. There exists y_1, \ldots, y_n in B which generate B as an A-module. Now $x \in B$ and B is a ring, so $xy_1, \ldots, xy_n \in B$. Hence $xy_i = \sum_{j=1}^n a_{ij}y_j$ for $i = 1, \ldots, n$, where $a_{ij} \in A$. Let M be the matrix (a_{ij}) , and let $d = \det(x \cdot I M) \in B$. By the determinant trick, we have $dy_i = 0$ for $i = 1, \ldots, n$. Therefore, since $B = (y_1, \ldots, y_n)$, we have dB = 0. But B contains one. Hence d = 0. If p(t) is the characteristic polynomial of M, that is $p(t) = \det(t \cdot I M) \in A[t]$ with leading coefficient one, then p(x) = 0. This proves 1.

Definition 89. Let $A \subset R$ be rings. An element $x \in B$ is **integral** over A if the equivalent conditions of Theorem 88 hold. A monic polynomial $p(t) \in A[t]$ such that p(x) = 0 is called the **equation of integral dependence** of x over A. R is called integral over A if every element in R is integral over A.

Example.

- Let $R = k[x] \supset k[x^2] = A$. k[x] is integral over $k[x^2]$. $t^2 x^2 = 0$, hence x is integral. (Exercise: check that all elements are integral, without using Theorem 88)
- Let $\mathbb{Z}\left[\left(-1+\sqrt{-3}\right)/2\right]$ and $\zeta=\left(-1+\sqrt{-3}\right)/2$. $\zeta^2+\zeta+1=0$. $\mathbb{Z}\left[\left(-1+\sqrt{-3}\right)/2\right]$ is integral over \mathbb{Z} .
- But $\mathbb{Z}[1/5]$ is not an integral extension of \mathbb{Z} . 1/5 is not integral over \mathbb{Z} .

Lemma 90.

- 1. If $A \subset B \subset C$ are rings such that C is a finitely generated B-module and B is a finitely generated A-module, then C is a finitely generated A-module.
- 2. If $A \subset B$ are rings and $x_1, \ldots, x_n \in B$ are integral over A, then $A[x_1, \ldots, x_n]$ is a finitely generated A-module. Hence $A[x_1, \ldots, x_n]$ is an integral A-algebra.
- 3. If $A \subset B \subset C$ are rings such that C is integral over B and B is integral over A, then C is integral over A.
- 4. If A ⊂ B are rings, then the set of all elements of B integral over A is a subring B, called the integral closure of A in B and denoted by A. Then A is integrally closed in B, that is every element of B which is integrally closed over A already belongs to A.

- 1. Assume that $c_1, \ldots, c_n \in C$ generate C as a B-module. Assume that $b_1, \ldots, b_m \in B$ generate B as an A-module. Then $b_i c_j$ for all i and j generate C as an A-module.
- 2. By Theorem 88 $A[x_1]$ is a finitely generated A-module. But x_2 is integral over A, hence also over $A[x_1]$. Thus $A[x_1, x_2]$ is a finitely generated $A[x_1]$ -module. By 1 $A[x_1, x_2]$ is a finitely generated A-module. Then continue by repeating this n-1 times.
- 3. We must show that any $c \in C$ is integral over A. Since c is integral over B, there are $b_0, \ldots, b_{n-1} \in B$ such that $c^n + \cdots + b_0 = 0$. But B is integral over A, hence each b_i is integral over A. Then by $2 A [b_0, \ldots, b_{n-1}]$ is a finitely generated A-module. This implies that $A [b_0, \ldots, b_{n-1}, c]$ is a finitely generated A-module, using 1. Theorem 88 says that x is integral over A.

4. Must show that if x,y are integral elements of B, then so is xy,x+y,-x. Consider A[x,y]. By 2 this is a finitely generated A-module. This is a ring which is a finitely generated A-module, hence by Theorem 88 every element of this ring is integral over A. In particular, x+y,-x,xy are integral. Let us show that \widetilde{A} is integrally closed in B, that is for all $x \in B$ that is integral over \widetilde{A} belongs to \widetilde{A} . Indeed, $A \subset \widetilde{A} \subset \widetilde{A}$ are rings, and \widetilde{A} is integral over A, \widetilde{A} is integral over \widetilde{A} . Hence, by 3 \widetilde{A} is also integral over A. Therefore, $\widetilde{A} = \widetilde{A}$.

Definition 91. Let A be an integral domain, and let B be the field of fractions of A. In this case \widetilde{A} is called the **normalisation** of A. If $\widetilde{A} = A$, then A is called a **normal** ring.

Example.

- Any UFD is normal (Exercise), for example \mathbb{Z} is normal. $k[x_1,\ldots,x_n]$ is a UFD, hence a normal ring.
- Number theory examples. Let $\zeta = e^{2\pi i/n}$ for $n \geq 2$. $\mathbb{Q}(\zeta)$ is a cyclotomic field. $\mathbb{Z} \subset \mathbb{Q}(\zeta)$ and $\zeta^n 1 = 0$, hence ζ is integral over \mathbb{Z} . Assume F is a field extension of \mathbb{Q} . Define the ring of integers of F as the integral closure of \mathbb{Z} in F. A fact is that the ring of integers of $\mathbb{Q}(\zeta)$ is $\mathbb{Z}[\zeta]$. Another class of interesting number fields is $\mathbb{Q}(\sqrt{a})$ for $a \in \mathbb{Z}$ square-free. What is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{a})$? Is it $\mathbb{Z}[\sqrt{a}]$? $\sqrt{a^2} a = 0$. Yes, if $a \equiv 2 \mod 4$ or $a \equiv 3 \mod 4$. No, if $a \equiv 1 \mod 4$. It is bigger than $\mathbb{Z}[\sqrt{a}]$. $\mathbb{Q}(\sqrt{-3}) = \mathbb{Q}((-1 + \sqrt{3})/2) = \mathbb{Q}(\zeta_3) \supset \mathbb{Z}[\zeta_3]$, the normalisation of $\mathbb{Z}[\sqrt{a}]$.
- Normalisation in algebraic geometry. $y^2 = x^3$ has a cusp at (0,0), since $f(x,y) = x^3 y^2$ and $((\partial f/\partial x)(0,0), (\partial f/\partial x)(0,0)) = (0,0)$, a singular point. Let $A = k [x,y]/(y-x^3)$. A is the ring of functions on this curve. Is A normal? No. Let t = y/x. $t^2 = y^2/x^2$, so $t^2 x = 0$ hence t is an element of the field of fractions of A, which is not in A, but is integral over A. So $A \subset k[t]$ is in the field of fractions of A. But k[t] is a UFD, hence normal. Thus k[t] is the normalisation of A. The map $t \mapsto (t^2, t^3)$ is a map from the affine line to our curve. It is a desingularisation of our singular curve.

15 Discrete valuation rings

Theorem 92. Let R be an integral domain. The following are equivalent.

- 1. R is a UFD with only one irreducible element, up to multiplication by units.
- 2. R is a Noetherian local ring whose maximal ideal is principal.

Theorem 93. UFD with one irreducible element if and only if a Noetherian local ring whose maximal ideal is principal.

A ring R as in 1 is a ring where every non-unit is at^n for $a \in R^*$ and $n \ge 1$.

- 1 \Longrightarrow 2 Let t be an irreducible element of R. Every non-unit belongs to (t). So $R \setminus (t) \subset R^*$. In fact, the elements of R not divisible by t are units. So $R^* = R \setminus (t)$. Hence (t) is a maximal ideal. Claim that all ideals of R are (t^n) for $n \ge 1$. Let I be an ideal in R. Let n be the smallest integer such that I contains at^n for $a \in R^*$. Then $(t^n) = (at^n) \subset I$. I does not contain bt^m for $b \in R^*$ and m < n, hence $I = (t^n)$. Hence R is a PID, so is Noetherian. It is clear that if $n \ge 2$, then $(t^n) \subsetneq (t)$. So (t) is a unique maximal ideal.
- 2 \Longrightarrow 1 Let t be a generator of the maximal ideal. Then $R \setminus (t) = R^*$. Claim that $\bigcap_{n \geq 1} (t^n) = 0$, where $(t) \supset (t^2) \supset \ldots$. Equivalently, for each non-zero $a \in R$ there is a largest n such that $a \in (t^n)$. If $a \in (t)$, then $a \in R^*$ and n = 0 so we are done. Now assume $a \in (t)$. Then $a = a_1t$, for some $a_1 \in R$. If $a_1 \neq (t)$, that is $a_1 \in R^*$, then $a \notin (t^2)$. Indeed, otherwise $a = bt^2$, where $b \in R$. $bt^2 = a_1t$. R is an integral domain, hence $bt = a_1$, which is a contradiction. But if $a_1 \in (t)$, then $(a) \subsetneq (a_1)$. The

inclusion is strict, because otherwise there is a unit $u \in R^*$ such that $a_1 = ua = a_1ut$, hence ut = 1 which is absurd, because $t \notin R^*$. This shows that if n does not exist, then there is an infinite strictly increasing chain of ideals in R. This is a contradiction because R is Noetherian.

Recall that a set has a total order x < y if for every two elements exactly one of these holds.

$$x < y,$$
 $x = y,$ $x > y.$

An abelian group G is an **ordered group** if G has a total order compatible with the group structure, that is if x < y then x + z < y + z for any $z \in G$.

Example. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ with the usual order.

Definition 94. Let K be a field. A **valuation** in K is a surjective homomorphism $v: K^* \to G$, where G is an ordered group, such that $v(x \pm y) \ge \min\{v(x), v(y)\}$. One defines $v(0) = \infty$.

- Exercise: $R = \{x \in K \mid v(x) \ge 0\}$ is a ring, called the valuation ring of v.
- Exercise: if $R^* = \{x \in K \mid v(x) = 0\}$, $R \setminus R^* = \{x \in K \mid v(x) > 0\}$ is the unique maximal ideal of R, thus every valuation ring is a local integral domain.

Definition 95. A ring is called a **valuation ring** if its field of fractions K has a valuation $v: K^* \to G$, for some ordered group G, such that $R = \{x \in K \mid v(x) \ge 0\}$. A valuation ring is a **discrete valuation ring** if the ordered group is \mathbb{Z} , with the usual order.

Example.

- $\mathbb{Z}_{(p)} = \{a/b \mid a, b \in \mathbb{Z}, \ (p, b) = 1\}$ is a DVR, where $K = \mathbb{Q}$. $v\left(p^n \cdot (c/d)\right) = n \in \mathbb{Z}$, where $c, d \in \mathbb{Z}$ and $p \nmid c, d$.
- The ring of formal power series k[[t]] is a DVR. $v\left(a_0+a_1t+\ldots\right)=n$ such that $a_0=\cdots=a_{n-1}=0$ and $a_n\neq 0$ for $a_i\in k$. $k\left((t)\right)=\left\{\sum_{i\geq m}a_it^i\mid a_i\in k,\ m\in\mathbb{Z}\right\}$.
- An example of a valuation ring which is not a DVR. Fix n. Puiseux series is

$$k\left[\left[t^{1/n}\right]\right] = \left\{\sum_{i \ge n} a_i t^i \mid a_i \in k\right\}.$$

Let $R = \bigcup_{n \geq 1} k\left[\left[t^{1/n}\right]\right]$. Define v as the highest power of t dividing our element. $v: K^* \to \mathbb{Q}$ by $v\left(at^{c/d} + \ldots\right) = c/d$ is not a discrete valuation. Note that the power series with zero constant term form a maximal ideal of R. $t \subseteq t^{1/2} \subseteq \ldots$ So R is not a Noetherian ring.

Theorem 96. A valuation ring is Noetherian if and only if it is a DVR.

Proof. Let R be a Noetherian valuation ring. Then I claim that the maximal ideal I is principal. Any ideal in R is finitely generated, say $I=(x_1,\ldots,x_n)$. By induction, it is enough to show that any ideal with two generators, say (x,y), is generated by x or y. Consider v(x) and v(y). v(x) < v(y), v(x) = v(y), or v(x) > v(y). Without loss of generality assume that v(x) < v(y). Then $y \in (x)$ because $R = \{z \in K \mid v(z) \ge 0\}$. In particular, $v(y/x) = v(y) - v(y) \ge 0$ gives $y/x \in R$.

Theorem 97.

- 1. R is a DVR.
- 2. R is a UFD with only irreducible elements.
- 3. R is a Noetherian local ring with principal maximal ideal.

4. R is a Noetherian normal local ring of dimension one.

Proof. For contradiction, assume there exist $y \in I \setminus (t)$. It is possible that y has the additional property $Iy \subset (t)$. K is the field of fractions of R. $y/t \in K \setminus R$ and $(y/t)I \subset R$. We have (y/t)I is an ideal in R.

- 1. (y/t) I = R. 1 = xy/t so $t = xy \in I^2$, a contradiction.
- 2. $(y/t)I \subset I$. The goal is try to show that $y/t \in R$. Then $y \in (t)$ will be a contradiction. R is Noetherian, hence $I = (x_1, \ldots, x_n)$ for some $x_i \in R$.

$$\frac{y}{t}x_1 = a_{11}x_1 + \dots + a_{1n} + x_n, \dots, \frac{y}{t}x_n = a_{n1}x_1 + \dots + a_{nn} + x_n,$$

for $a_{ij} \in R$. $A^v \cdot A = \det(A) \cdot I$. Let

$$M = \begin{pmatrix} \frac{y}{t} - a_{11} & \dots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{n1} & \dots & \frac{y}{t} - a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0.$$

 $\det(M) \cdot x_i = 0$ for i = 1, ..., n. Without loss of generality $x_i \neq 0$. R is an integral domain. We see that $\det(M) = 0$. $\det(M) = (y/t)^n + \cdots + r_0$, where $r_i \in R$. Therefore, y/t is an element of K which is integral over R. By assumption R is normal, and since $y/t \in K$ is integral over R, we must have $y/t \in R$. Then $y \in (t)$ is a contradiction.