Systems of Modal Logic

All systems of modal logic are extensions of propositional logic. They accept a common inference rule but differ by their characteristic axioms (more precisely, axiom schemata). To formulate the inference rule and axioms, we introduce the following primitive operator:

 $\Box \phi$: "it is necessarily true that ϕ ".

It is convenient to also introduce the following operator:

 $\Diamond \phi \iff \neg \Box \neg \phi$: "it is possibly true that ϕ " (ϕ is not necessarily false iff. it is possibly true).

Now to the modal systems. The common inference rule is:

Necessitation If ϕ is a truth of logic, infer $\Box \phi$.

$$\frac{\phi}{\Box \phi}$$

The Lewis Modal Systems

System K Characteristic Axiom: $\Box(\phi \supset \psi) \supset (\Box \phi \supset \Box \psi)$

If it is necessarily true that if ϕ then ψ , then: if it is necessarily true that ϕ , then it is also necessarily true that ψ .

System D System K plus

Characteristic Axiom: $\Box \phi \supset \Diamond \phi$

If ϕ is necessarily true, then it is possibly true.

System T System K plus

Characteristic Axiom: $\Box \phi \supset \phi$

If it is necessarily true that ϕ , then it is actually true that ϕ .

System B System T plus

Characteristic Axiom: $\Diamond \Box \phi \supset \phi$

If ϕ is possibly necessarily true, then ϕ is actually true.

System S4 System T plus

Characteristic Axiom: $\Box \phi \supset \Box \Box \phi$

Whatever is necessarily true is necessarily necessary.

System S5 System T plus

Characteristic Axiom: $\Diamond \Box \phi \supset \Box \phi$

Whatever is possibly necessary is necessary.

Exercises

- 1. Show that the following are provable in all modal systems:
 - $\Box(p \land q) \supset (\Box p \supset \Box q)$
 - $(\Box p \lor \Box q) \supset \Box (p \lor q)$
 - $\Box(p\supset q)\supset (\Diamond p\supset \Diamond q)$
- 2. For each of the formulae in the previous question, explain in plain English (no formal symbols!) why they are plausible.
- 3. Prove that the characteristic axioms of B and S4 are theorems of S5.
- 4. An alternative reading of $\Box \phi$ is: it will always be the case that ϕ .
 - a) On this reading, what would $\Diamond \phi$ mean?
 - b) How plausible or implausible are the various modal systems under this interpretation? Explain for each system.
- 5. Here is yet another reading of the modal symbols. Let $\Diamond p$ mean that the truth of p is consistent with your knowledge (roughly, for all you know, p could be true).
 - a) On this reading, what would $\Box \phi$ mean?
 - b) How plausible or implausible are the various modal systems under this interpretation? Explain for each system.