UBC MATH CIRCLE 2024 PROBLEM SET 7 SOLUTIONS

Problem 1. Let f be a real-valued function on the plane such that for every square ABCD in the plane, f(A) + f(B) + f(C) + f(D) = 0. Does it follow that f(P) = 0 for all P in the plane?

Solution. Yes it does follow. Let P be any point in the plane and ABCD be any square with center P. Let E, F, G, H be the midpoints of the segments AB, BC, CD, DA respectively. Note that we then have squares ABCD, EFGH, AEPH, BFPE, CGPF and DHPG. Thus f must satisfy

$$f(A) + f(B) + f(C) + f(D) = 0$$

$$f(E) + f(F) + f(G) + f(H) = 0$$

$$f(A) + f(E) + f(P) + f(H) = 0$$

$$f(B) + f(F) + f(P) + f(E) = 0$$

$$f(C) + f(G) + f(P) + f(F) = 0$$

$$f(D) + f(H) + f(P) + f(G) = 0$$

Adding the last four equations, subtracting the first equation and twice the second equation gives 4f(P) = 0. Whence f(P) = 0.

Problem 2. Let m distinct positive integers a_1, \ldots, a_m be given. Prove that there exist fewer than 2^m positive integers b_1, \ldots, b_n such that all sums of distinct b_k 's are distinct and all a_i for $1 \le i \le m$ occur among them.

Solution. Consider the set B of powers of two that appear in the binary expansion of a_i for some $i \in \{1, ..., m\}$. For each subset $S \subset \{1, ..., m\}$, define a subset $B_S \subset B$ as follows. A power of two, $b \in B$, is contained in B_S if it does not appear in the binary expansion of a_i for any $j \notin S$ and appears in the binary expansion of a_i for all $i \in S$. Note that for any $i \in \{1, ..., m\}$, the set of powers of two appearing in the binary expansion of a_i is precisely $\bigcup_{i \in S} B_S$ where the union is taken over subsets $i \in S \subset \{1, \dots, m\}$. Indeed, no powers of two not contained in the binary expansion of a_i can lie in $\bigcup_{i \in S} B_S$, conversely, any power of two b in the binary expansion of a_i lies in B_T where $T = \{j \in \{1, ..., m\} :$ b is in the binary expansion of a_i and this contains i. Note moreover that for any distinct S, T, we have $B_S \cap B_T = \emptyset$. Indeed, if $b \in B_S$ and $i \in T \setminus S$ then $b \notin B_T$ since b is not a power of two in the binary expansion of a_i . Similarly, if $i \in S \setminus T$, then again $b \notin B_T$ since b is a power of two in the binary expansion of a_i , but no element of T is a power of two in the binary expansion of a_i . For each subset $S \subset \{1, \ldots, m\}$ such that B_S is nonempty, let $b_S = \sum_{b \in B_S} b$. We have seen that, for any $i \in \{1, \dots, m\}$, the set of powers of two in the binary expansion of a_i is $\bigcup_{i \in S} B_S$ and that these are all disjoint, thus $a_i = \sum_{i \in S} b_S$. Thus the a_i occur among all sums of the $\{b_S: S\subset \{1,\ldots,m\} \text{ with } b_S\neq\emptyset\}$. Moreover, since the powers of two in the binary expansions of the b_S are all disjoint, no two distinct sums of the b_S can be the same for otherwise there would be subsets $\{S_1, \ldots, S_k\}$ and $\{T_1, \ldots, T_l\}$ of

Date: April 7, 2024.

 $\{1,\ldots,m\}$ such that $\bigcup_{i=1}^k B_{S_i} = \bigcup_{j=1}^l B_{T_j}$ and disjointness implies that the two collections of subsets are the same. Finally, note that $B_{\emptyset} = \emptyset$, so that $\#\{b_S : S \subset \{1,\ldots,m\} \text{ with } b_S \neq \emptyset\} \leq \#\{S \subset \{1,\ldots,m\} : S \neq \emptyset\} = 2^m - 1$. Thus $\{b_S : S \subset \{1,\ldots,m\} \text{ with } b_S \neq \emptyset\}$ is the desired set.

Problem 3. For any polynomial $P \in \mathbb{C}[x]$ and for each complex number a, denote by P_a the set of all $z_0 \in \mathbb{C}$ such that $P(z_0) = a$. Let $P, Q \in \mathbb{C}[x]$ such that $P_2 = Q_2$ and $P_5 = Q_5$. Prove that P = Q.

Solution. Clearly this holds if P and hence Q are constant. Hence we may assume that P and hence also Q have degree at least 1. Let $\alpha_1, \ldots, \alpha_r$ be the elements of $P_2 = Q_2$ and β_1, \ldots, β_s be the elements of $P_5 = Q_5$. Then we let k_1, \ldots, k_r be the respective multiplicities of $\alpha_1, \ldots, \alpha_r$ as roots of P(x) - 2 and m_1, \ldots, m_s be the respective multiplicities of β_1, \ldots, β_s as roots of P(x) - 5. Then $k_1 - 1, \ldots, k_r - 1$ are the multiplicities of $\alpha_1, \ldots, \alpha_r$ as roots of P'(x) and similarly $m_1 - 1, \ldots, m_s - 1$ are the multiplicities of β_1, \ldots, β_s as roots of P'(x) = 0. Letting d be the degree of P(x), we get

$$d-1 \ge \sum_{i=1}^{r} (\alpha_i - 1) + \sum_{j=1}^{s} (\beta_j - 1)$$

On the other hand, we have $d = \sum_{i=1}^{r} \alpha_i$ and $d = \sum_{j=1}^{s} \beta_j$ since these are the multiplicities of the roots of P(x) - 2 respectively P(x) - 5 (recall that P has degree ≥ 1). So we obtain $d-1 \geq 2d-r-s$ or equivalently $r+s \geq d+1$. If D is the degree of Q(x), then applying the same argument to Q gives that $r+s \geq D+1$. In other words, the polynomial P(x) - Q(x), whose degree is bounded above by $\max\{d, D\}$, has at least $r+s \geq \max\{d, D\} + 1$ roots $\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_s$ counted with multiplicity. But this implies that P = Q identically.