Einführung Code-basierte Kryptografie Code-basiertes Kryptosystem – McEliece

Fahrplan

Grundlagen

McEliece - Code-basierte Kryptografie

Quellen

Zusammenfassung

- ▶ McEliece asymmetrisches Public-Key-Kryptosystem 1978 nach Robert McEliece [McE78]
- Grundlegende Idee: Führe absichtliche Fehler in die Chiffre ein
- Verwenden eines allgemeinen fehlerkorrigierende Codes
 - ▶ Dekodierung i.A. *NP*-Hart [Sch07, S. 479], [SP18, S. 353ff]
 - lacktriangle Unterklasse an linearen Codes auch in P lösbar ightarrow Goppa-Codes
- ightharpoonup Angreifer ohne Goppa-Code kann nur in \mathcal{P} , also polynomiell viel rechnen
 - lacktriangle Die Entschlüsselung eines zufälligen linearen Codes ist ein \mathcal{NP} -Hartes Problem -> [Lju04]
 - lacktriangle Die Generatormatrix eines Goppa-Codes sieht zufällig aus -> [Fau+13]

Fahrplan Grundlagen Grundlagen

Hamming Gewicht und Distanz

Galoiskörper

Linear-Codes

Goppa-Codes

McEliece – Code-basierte Kryptografie

McEliece-Kryptosystem

Parameter Definitionen

McEliece Algorithmus

Schlüsselerzeugung Gen

Verschlüsselung Enc

Entschlüsselung Dec

Beispiel McElicece-Kryptosystem

Vor- & Nachteile

Quellen

Hamming Gewicht

▶ Das Hamming Gewicht eines Vektors *x* der Länge *n* ist definiert als:

$$weight_{\Delta}(x) := \sum_{i=1}^{n} weight_{\Delta}(x_i)$$

mit

weight_{$$\Delta$$}(x_i) = 1 : $x_i \neq 0$,
weight _{Δ} (x_i) = 0 : $x_i = 0$

► Beispiel:

$$weight_{\Delta}(\underline{1}00\underline{1}) = 2$$

Hamming Distanz

- Sei Σ ein diskretes Alphabet und $c_1=(c_{1_1},\ldots,c_{1_n})$, $c_2=(c_{2_1},\ldots,c_{2_n})$ Codewörter sodass $c_1,c_2\in C\subseteq \Sigma^n$, wboei C die Menge der gültigen Codeworte darstellt
- ▶ Hamming Distanz d zwischen c_1 und c_2 ist definiert als:

$$\Delta(c_1, c_2) := |\{i \in \{1, \dots, n\} | c_{1_i} \neq c_{2_i}\}|$$

Beispiel:

$$11011001 \oplus 10011101 = 0\underline{1}000\underline{1}00 \implies \Delta(11011001, 10011101) = 2$$

Hamming Distanz

► Für mehr als zwei Worte versteht man das Minimum aller Abstände zwischen verschiedenen Wörtern innerhalb des Codes als deren Hamming Distanz.

$$d = \Delta(C) := \min_{\forall i,j \in \{1,\ldots,n\} | i \neq j} \Delta(c_i, c_j)$$

Beispiel:

$$\begin{array}{c} 010 \oplus 011 = 00\underline{1} \implies \Delta(010,011) = 1 \\ 010 \oplus 101 = \underline{111} \implies \Delta(010,101) = 3 \\ 011 \oplus 101 = \underline{11}0 \implies \Delta(011,101) = 2 \\ \\ d = \min\{1,3,2\} = 1 \end{array}$$

Galoiskörper

- ► Ein endlicher Körper der abgeschlossen bezüglich '+' und '*'.
- ► Beispiel:

Die Restklassen modulo 2 bilden den Körper $\mathbb{F}_2 = GF(2)$. [Kun91]

- Addition: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0
- ▶ Multiplikation: 0 * 0 = 0 * 1 = 1 * 0 = 0, 1 * 1 = 1

Linear-Codes

▶ Ein binärer Blockcode $C \subseteq GF(2^n) \subseteq \Sigma^n$ heißt linearer Code, wenn gilt:

$$\forall c_1, c_2 \in C \colon c1 \oplus c2 \in C$$

 \blacktriangleright Bei gegebener Hamming Distanz d wird der Code C auch (n, k, d)-Code genannt.

Goppa-Codes

▶ Ein Goppa Polynom $g_i \in GF(p^m)$ wird definiert durch:

$$g(x) = g_0 + g_1 x + \ldots + g_t x^t = \sum_{i=0}^t g_i x^i$$

Es sei L eine endliche Untergruppe $GF(p^m)$, wobei p eine Primzahl ist.

$$L = \{\alpha_1, \dots \alpha_n\} \subseteq GF(p^m)$$

mit
$$g(\alpha_i) \neq 0 \ \forall \alpha_i \in L$$
.

(binary) Goppa-Codes

▶ Ein binärer Goppa-Code $\Gamma(L, g(x))$ ist ein (n, k, d)-Code, der durch ein Generatorpolynom $g(x) \in GF(2^n)$ vom Grad t und einer Sequenz L, über dem endlichen Körper $GF(2^n)$ definiert ist.

Fahrplan Code-basierte Kryptografie

Grundlagen

Hamming Gewicht und Distanz

Galoiskörper

Linear-Codes

Goppa-Codes

McEliece – Code-basierte Kryptografie

McEliece-Kryptosystem

Parameter Definitionen

McEliece Algorithmus

Schlüsselerzeugung Gen

Verschlüsselung Enc

Entschlüsselung Dec

Beispiel McElicece-Kryptosystem

Vor- & Nachteile

Quellen

Grundlegende Idee McEliece Kryptosystem

- ► Transformiere Klartext *m* (Message) mithilfe einer Generator-Matrix in allgemeinen Goppa-Code
- ► Multiplikation mit randomisierten Matrizen führt zu allgemeinem linearen Code
 - ► Gist: Reihe von Matrix-Multiplikationen ist Verschlüsselung
- ► Retransformation ohne Matrizen in Goppa-Code ist problemtisch: *NP*-Hart [SP18]
- Öffentlicher Schlüssel:
 - ▶ Beinhaltet Generator-Matrix zur Umwandlung in allg. linearen Code
 - ► Zusätzlich: Anzahl der maximal einbaubaren Fehler in der Chiffre c
 - Fehler sind also die Anzahl der Bits, die invertiert werden sollen
- Privater Schlüssel: Umwandlung des allgemeinen, linearen Codes in Goppa-Code
 - ► Für performante Retransformation
 - Und Fehlerkorrektur

Parameter Definitionen

- Systemparameter m gibt die Blockgröße an, für zu verschlüsselnde Nachricht
- ightharpoonup C sei ein binärer (n, k) Goppa-Code mit t effizient korrigierbaren Fehlern
- ightharpoonup t gibt die maximale Anz. eff. korrigierbarer Fehler durch Goppa-Code C^{-1}
- Daraus ergeben sich:
 - ▶ Blocklänge Chiffretext: $n = 2^m$
 - Nachricht Blocklänge $k = n m \cdot t$
 - ▶ Minimale *Hamming-Distance d* des Codes *C*: $d = 2 \cdot t + 1$

¹McEliece fixiert t = 50, als Maximalwert [McE78]

McEliece als CPA-Sicheres kryptografisches Shema

- ▶ Das McEliece-Kryptosystem $\Pi := (Gen, Enc, Dec)$
- ► Wobei:
 - Gen Schlüsselerzeugung
 - Enc Verschlüsselung
 - Dec Entschlüsselung
- ► Korrekheit: Es muss gelten

$$m = Dec_{priv}(c) = Dec_{priv}(Enc_{pub}(m))$$

Schlüsselerzeugung Gen

- ightharpoonup Erzeuge Generator-Matrix $G^{k \times n}$ für Goppa-Code C
 - ▶ Matrix aus der binärer Klartext mit Länge *k* die Chiffre der Länge *n* berechnet werden kann
- ightharpoonup Erzeuge zufällige, binäre, nicht singuläre² Scramble-Matrix $S^{k \times k}$
 - ightharpoonup S muss in \mathbb{Z}_2 invertierbar sein
- ightharpoonup Permutationsmatrix $P^{n \times n}$
 - Binärmatrix, je Zeile genau ein 1 Element enthalten ist
- ▶ Berechne: $G'^{k \times n} = S \cdot G \cdot P$
- ightharpoonup Schlüssel: K := (G, S, P, G', t)
 - ightharpoonup Öffentlicher Schlüssel: $K_{pub} := (G', t)$
 - ▶ Privater Schlüssel: $K_{priv} := (G, S, P)$

²M.a.W. *S* ist regulär, $\det S \neq 0$; wichtig für Invertierbarkeit

Verschlüsselung *Enc*

- ▶ Nachricht in Blöcke, sodass $m \in \mathbb{Z}_2^k$
- $lackbox{f Sei}\ z\in\mathbb{Z}_2^n$ ein belieber Vektor der Länge n, mit maximaler Gewichtung t
 - ► Gewichtung t: maximale Anzahl Einsen in z
 - Fehlervektor erlaubt es Chiffre an maximal t Stellen zu invertieren
- $Enc_{pub}(m,z) = c = m \cdot G + z$

Entschlüsselung Dec

- ▶ Berechne $c' = cP^{-1}$
 - $ightharpoonup c' = c \cdot P^{-1} = (mG' + z) \cdot P^{-1} = (mG' \cdot P^{-1} + z \cdot P^{-1}) = m(SGP \cdot P^{-1}) + z \cdot P^{-1}$
- ightharpoonup Anwenden decode(c') des Goppa-Codes auf c', sodass m' gefunden werden kann
 - ► Rausrechnen des Fehlervektors z
 - ▶ D.h. wir erhalten: $m' = m(SGP \cdot P^{-1}) = m \cdot SG$
 - ► Hamming-Distanz: $d_H(m'\dot{G}, c') \le t$
 - ► Invertiere mit Generatormatrix *G*
- ▶ Multiplikation mit S^{-1} : $m = m'S^{-1}$
- ► Kompakt: $dec_{priv}(c) = decode(cP^{-1}) \cdot S^{-1}$

Beispiel McElicece-Kryptosystem

- ▶ Kryptosystem (n, k, d) mit Systmeparameter: n = 7, k = 4, d = 3
 - ▶ 4 Bit Klartext auf 7 Bit Chiffretext
 - ightharpoonup Hamming-Distanz d=3
 - ▶ Somit lassen sich $t = \frac{d-1}{2} = 1$ Bitfehler korrigieren

► Schlüsselerzeugung *Gen*: Generator-Matrix erzeugt Hamming-Code statt Goppa-Code

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Da d=3 unterscheidet sich jede Zeile in mindestens drei Werten

► Zufällige Matrizen S und P

$$S = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Berechnung des öffentlichen Schlüssels $G' = S \cdot G \cdot P$:

Berechnung des öffentlichen Schlüssels $G' = S \cdot G \cdot P$:

Der öffentlichen Schlüssels $K_{pub} = (G', t)$:

$$\mathcal{K}_{pub} = (\mathcal{G}',t) = \left(egin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}, 1
ight)$$

Nachricht m = (1101), Fehlervektor z mit maximalem Gewicht t = 1 und Länge n = 7: Wähle z = (0000100)

$$Enc_{pub}(m,z) = c = m \cdot G' + z$$

$$m = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \end{pmatrix} = c$$

Entschlüsselung der Chiffre: Invertierung der Permuation $c' = cP^{-1}$

- Dekodierung des Hamming-Codes:
- ▶ Berehcne Hamming-Distanz d der Generator-Matrix G: $\begin{pmatrix} 1 & 3 & 3 & 2 \end{pmatrix}$
- ► Somit ist $m' = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$
- ▶ Berechne Klartext *m*

$$m = m'S^{-1} =$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix}$$

Vor- & Nachteile

- ► The good news: Es gab keine erfolgreichen Angriffe gegen das McEliece-Verfahren
- ► Verhfahren gilt als *IND-CCA2* [Dot+12] sicher, somit ist es auch *IND-CPA* sicher [Noj+08]
- ➤ Angriffe McEliece mit originalen Parametern von 1978 in 1400 Tagen (Einzelne Machine) oder in 7 Tagen mithilfe von 200 CPUs [Bal+16], [CS98]
- ► Jedoch:
 - ▶ Bruce Schneier: McEliece-Kryptosystem etwa 2 bis 3 mal langsamer als RSA [Sch07, S. 479ff]
 - **E**xtrem große öffentliche Schlüssel: \hat{G} ist Matrix $k \times n$
 - ▶ Bei Parameter (1024, 524, 101) ist $k \cdot n = 1024 \cdot 524 = 536576$ Bit also etwa 67kBytes
 - ightharpoonup Chiffretext ist fast doppelt so groß wie Klartext, aus 524Bit klartext werden zu 1024 Bit Chiffre

Quellen I

Marco Baldi u. a. "Enhanced public key security for the McEliece cryptosystem". In: *Journal of Cryptology* 29.1 (2016), S. 1–27.

Anne Canteaut und Nicolas Sendrier. "Cryptanalysis of the original McEliece cryptosystem". In: *International Conference on the Theory and Application of Cryptology and Information Security*. Springer. 1998, S. 187–199.

Nico Dottling u. a. "A CCA2 secure variant of the McEliece cryptosystem". In: *IEEE Transactions on Information Theory* 58.10 (2012), S. 6672–6680.

J. Faugère u. a. "A Distinguisher for High-Rate McEliece Cryptosystems". In: *IEEE Transactions on Information Theory* 59.10 (2013).

Ernst Kunz. *Endliche Körper (Galois-Felder)*. Vieweg+Teubner Verlag, 1991, S. 185–190.

Quellen II

Ivana Ljubic. "Exact and memetic algorithms for two network design problems". In: *PhD, Technische Universitat Wien, Vienna Austria* (2004).

Robert J McEliece. "A public-key cryptosystem based on algebraic". In: *Coding Thv* 4244 (1978), S. 114–116.

Ryo Nojima u. a. "Semantic security for the McEliece cryptosystem without random oracles". In: *Designs, Codes and Cryptography* 49.1-3 (2008), S. 289–305.

Bruce Schneier. *Applied cryptography: protocols, algorithms, and source code in C.* John Wiley & Sons, 2007.

Douglas Robert Stinson und Maura Paterson. *Cryptography: theory and practice.* CRC press, 2018.