dynamic-equilibrium

December 23, 2021

[1]: import numpy as np
import matplotlib.pyplot as plt

1 동적 평형(dynamic equilibrium)

동적 평형은 가역반응에서 정반응과 역반응의 반응 속도가 같아져 계속 반응하고 있으나 반응이 정지한 것처럼 보이는 상태이다.

이 동적평형의 대표적 예는 다음이 있다.

- 상평형(phase equilibrium)
- 용해평형(solubility equilibrium)
- 화학평형(chemical equilibrium)
-

간단한 동적평형의 경우 쉽게 연립 상미분 방정식을 세울 수 있고 그 해또한 쉽게 구할 수 있는데 이를 보고자 한다.

2 상평형

2.1 구성 조건

- X(l) ←→ X(g)는 가역반응이다.
- x, y는 각각 X(l), X(g)의 양을 의미한다.
- $X(l) \longrightarrow X(g)$ (증발, evaporation)의 속도, v_e 는 온도와 여러 변수가 혼재된 변수 T에 따라 변하며 T가 일정하면 정반응 속도도 항상 일정하다. 구체적으로 $v_e = T$
- $X(l) \leftarrow X(g)$ (응축, condensation)의 속도, v_c 는 일정하지 않고 변하며, 정반응 속도에 시간이 지날수록 수렴한다. 구체적으로 역반응 속도, v_c 는 임의의 상수 k에 대하여 $v_c=ky$ 를 만족한다.
- *x*, *y* 는 다음 식을 만족한다.

$$\begin{cases} \frac{dx}{dt} &= v_c - v_e \\ = ky - T \\ \frac{dy}{dt} &= v_e - v_c \\ = T - ky \end{cases}$$

2.2 상평형예제1

```
• 초기조건

- X(1):100

- X(g):0

- T=1

- k=0.05
```

```
[2]: t, dt = np.linspace(0, 100, 100000, retstep= True)
     x = np.zeros_like(t) # liquid
     y = np.zeros_like(t) # gas
     v_c = np.zeros_like(t) # condensation speed
     v_e = np.zeros_like(t) # evaporation speed
     T = 1 # evaporation constant
    k = 0.05 \# condensation constant
     # initial value
     x[0] = 100
     y[0] = 0
     v c[0] = 0
     v_e[0] = T
     for i in range(len(t)-1):
         x[i+1] = x[i] + dt * (v_c[i] - v_e[i])
         y[i+1] = y[i] + dt * (v_e[i] - v_c[i])
         v_e[i+1] = T
         v_c[i+1] = k * y[i+1]
```

```
[3]: fig, ax = plt.subplots(1,2, figsize=(14, 5))
    fig.suptitle("Example 1")

ax[0].plot(t, y, label=r"gas", color='red')
ax[0].plot(t, x, label=r"liquid", color='blue')
ax[0].set_xlabel("time")
ax[0].set_ylabel("amount")
ax[0].set_ylim((0, 100+5))

ax[1].plot(t, v_e, label='evaporation', color='orangered')
ax[1].plot(t, v_c, label='condensation', color='purple')
ax[1].set_xlabel("time")
ax[1].set_ylabel("reaction rate")
ax[1].set_ylim((0, 1+0.05))

ax[0].text(60, 0.98*100, f"T={T}", size=12)
ax[0].text(60, 0.92*100, f"k={k}", size=12)
```

```
ax[1].legend()
ax[0].legend()
plt.show()
```



```
[4]: print(f"초기 물질량: {x[0]:.5f}, {y[0]:.5f} => {x[0]+y[0]:.5f}") print(f"최종 물질량: {x[-1]:.5f}, {y[-1]:.5f} => {x[-1]+y[-1]:.5f}")
```

초기 물질량: 100.00000, 0.00000 => 100.00000 최종 물질량: 80.13474, 19.86526 => 100.00000

2.3 상평형 예제 2

• 초기조건 - X(1):100 - X(g):0 - T = 1.5 - k = 0.025

```
[5]: t, dt = np.linspace(0, 200, 200000, retstep= True)
    x = np.zeros_like(t)
    y = np.zeros_like(t)
    v_c = np.zeros_like(t)
    v_e = np.zeros_like(t)

T = 1.5
    k = 0.025

x[0] = 100
    y[0] = 0
    v_c[0] = 0
```

```
v_e[0] = T

for i in range(len(t)-1):
    x[i+1] = x[i] + dt * (v_c[i] - v_e[i])
    y[i+1] = y[i] + dt * (v_e[i] - v_c[i])
    v_e[i+1] = T
    v_c[i+1] = k * y[i+1]
```

```
[6]: fig, ax = plt.subplots(1,2, figsize=(14, 5))
     fig.suptitle("Example 2")
     ax[0].plot(t, y, label=r"gas", color='red')
     ax[0].plot(t, x, label=r"liquid", color='blue')
     ax[0].set_xlabel("time")
     ax[0].set_ylabel("amount")
     ax[0].set ylim((0, 100+5))
     ax[1].plot(t, v_e, label='evaporation', color='orangered')
     ax[1].plot(t, v_c, label='condensation', color='purple')
     ax[1].set_xlabel("time")
     ax[1].set_ylabel("reaction rate")
     ax[1].set_ylim((0, 1.5+0.05))
     ax[0].text(120, 0.98*100, f"T={T}", size=12)
     ax[0].text(120, 0.92*100, f"k={k}", size=12)
     ax[1].legend()
     ax[0].legend()
     plt.show()
```

Example 2


```
[7]: print(f"초기 물질량: {x[0]:.5f}, {y[0]:.5f} => {x[0]+y[0]:.5f}")
    print(f"최종 물질량: {x[-1]:.5f}, {y[-1]:.5f} => {x[-1]+y[-1]:.5f}")
    초기 물질량: 100.00000, 0.00000 => 100.00000
    최종 물질량: 40.40425, 59.59575 => 100.00000
    2.4 상평형 잘못된 예제
      • 초기조건
          -X(1):100
           - X(g) : 0
           -T = 2
           -k = 0.015
[8]: t, dt = np.linspace(0, 300, 300000, retstep= True)
    x = np.zeros_like(t)
    y = np.zeros_like(t)
    v_c = np.zeros_like(t)
    v_e = np.zeros_like(t)
    T = 2
    k = 0.015
    x[0] = 100
    y[0] = 0
    v_c[0] = 0
    v e[0] = T
    for i in range(len(t)-1):
        x[i+1] = x[i] + dt * (v_c[i] - v_e[i])
        y[i+1] = y[i] + dt * (v_e[i] - v_c[i])
        v_e[i+1] = T
        v_c[i+1] = k * y[i+1]
[9]: fig, ax = plt.subplots(1,2, figsize=(14, 5))
    fig.suptitle("Invalid Example")
    ax[0].plot(t, y, label=r"gas", color='red')
    ax[0].plot(t, x, label=r"liquid", color='blue')
    ax[0].set xlabel("time")
    ax[0].set_ylabel("amount")
    ax[0].set_ylim((0, 100+5))
    ax[1].plot(t, v_e, label='evaporation', color='orangered')
    ax[1].plot(t, v_c, label='condensation', color='purple')
    ax[1].set_xlabel("time")
```

ax[1].set_ylabel("reaction rate")

```
ax[1].set_ylim((0, 2+0.1))
ax[0].text(180, 0.98*100, f"T={T}", size=12)
ax[0].text(180, 0.92*100, f"k={k}", size=12)
ax[1].legend()
ax[0].legend()
plt.show()
```

Invalid Example


```
[10]: print(f"초기 물질량: {x[0]:.5f}, {y[0]:.5f} => {x[0]+y[0]:.5f}") print(f"최종 물질량: {x[-1]:.5f}, {y[-1]:.5f} => {x[-1]+y[-1]:.5f}")
```

초기 물질량: 100.00000, 0.00000 => 100.00000 최종 물질량: -31.85218, 131.85218 => 100.00000

다음과 같이 상수나 양이 잘못된 경우 실제로는 나오지 않는 수치가 나온다는 점에서 한계가 있다.

2.5 결론

반응 속도 그래프가 책에서 보던것과 많이 닮아 있어 작성한 구성 조건에 나온 식은 유효한 것 같고. 또한 초기 물질과 반응 후 물질의 양이 동일한 것으로 보아 결론적으로 잘 작성된 식인 것 같다.

다만, 상수 등의 조건 때문에 실제로는 나올 수 없는 수치가 나온다는 점에서 상수를 적절히 조절할 필요가 있다.

3 용해평형

3.1 구성 조건

- X(s) ←→ X(aq)는 가역반응이다.
- *x*, *y* 는 각각 X(s) 와 X(aq)의 양을 의미한다.

- $X(s) \longrightarrow X(aq)$ (용해, dissolution)의 속도, v_s 는 일정하다. 구체적으로 $v_s = k_s$
- $X(s) \leftarrow X(aq)$ (석출, eduction)의 속도, v_e 는 변하며 용해 속도에 시간이 지날수록 수렴한다. 구체적으로 임의의 상수 k_e 에 대하여 $v_e=k_ey$
- *x*, *y* 는 다음 식을 만족한다.

$$\begin{cases} \frac{dx}{dt} &= v_e - v_s \\ = k_e y - k_s \\ \frac{dy}{dt} &= v_s - v_e \\ = k_s - k_e y \end{cases}$$

용해평형은 상평형과 똑같은 식 구조를 지닌다.

4 화학평형

4.1 구성 조건

- $2A \longleftrightarrow A_2$ 는 가역반응이다.
- *x*, *y*는 각각 A 와 A₂의 양을 의미한다.
- $2A \longrightarrow A_2$ 의 속도, $v_1 \in A$ 의 양에 비례한다.

$$v_1 = k_1 x$$

• $2A \leftarrow A_2$ 의 속도, $v_2 \in A_2$ 의 양에 비례한다.

$$v_2 = k_2 y$$

• *x*, *y* 는 다음 식을 만족한다.

$$\begin{cases} \frac{dx}{dt} &= 2v_2 - 2v_1 \\ = 2k_2y - 2k_1x \\ \frac{dy}{dt} &= v_1 - v_2 \\ = k_1x - k_2y \end{cases}$$

4.2 화학평형예제1

- 초기조건
 - A : 1
 - $A_2 : 0$
 - $-k_1 = 0.2$
 - $-k_2 = 0.2$

```
v1 = np.zeros_like(t)
v2 = np.zeros_like(t)

k1 = 0.2
k2 = 0.2

x[0] = 1
y[0] = 0
v1[0] = k1*x[0]
v2[0] = k2*y[0]

for i in range(len(t)-1):
    x[i+1] = x[i] + dt * 2*(v2[i] - v1[i])
    y[i+1] = y[i] + dt * (v1[i] - v2[i])
    v1[i+1] = k1 * x[i+1]
    v2[i+1] = k2 * y[i+1]
```

```
[12]: fig, ax = plt.subplots(1,2, figsize=(14, 5))
      fig.suptitle(f"Example A {x[0]}")
      ax[0].plot(t, y, label=r"A2", color='red')
      ax[0].plot(t, x, label=r"A", color='blue')
      ax[0].set_xlabel("time")
      ax[0].set_ylabel("amount")
      ax[0].set_ylim((0, 1+0.05))
      ax[1].plot(t, v1, label='A to A2', color='orangered')
      ax[1].plot(t, v2, label='A2 to A', color='purple')
      ax[1].set_xlabel("time")
      ax[1].set_ylabel("reaction rate")
      ax[1].set_ylim((0, 0.2+0.01))
      ax[0].text(6, 0.98, f"k1={k1}", size=12)
      ax[0].text(6, 0.92, f"k2={k2}", size=12)
      ax[1].legend()
      ax[0].legend()
      plt.show()
```

Example A 1.0


```
[13]: print(f"초기 물질량: {x[0]:.5f}, {y[0]:.5f} => {x[0]+2*y[0]:.5f}") print(f"최종 물질량: {x[-1]:.5f}, {y[-1]:.5f} => {x[-1]+2*y[-1]:.5f}")
```

초기 물질량: 1.00000, 0.00000 => 1.00000 최종 물질량: 0.33499, 0.33251 => 1.00000

4.3 화학평형예제2

• 초기조건 -A:0 $-A_2:0.5$ $-k_1=0.2$ $-k_2=0.2$

```
[14]: t, dt = np.linspace(0, 10, 100000, retstep= True)
    x = np.zeros_like(t)
    y = np.zeros_like(t)
    v1 = np.zeros_like(t)
    v2 = np.zeros_like(t)

    k1 = 0.2
    k2 = 0.2

    x[0] = 0
    y[0] = 0.5
    v1[0] = k1*x[0]
    v2[0] = k2*y[0]

for i in range(len(t)-1):
        x[i+1] = x[i] + dt * 2*(v2[i] - v1[i])
        y[i+1] = y[i] + dt * (v1[i] - v2[i])
```

```
v1[i+1] = k1 * x[i+1]
v2[i+1] = k2 * y[i+1]
```

```
[15]: fig, ax = plt.subplots(1,2, figsize=(14, 5))
      fig.suptitle(f"Example A2 {y[0]}")
      ax[0].plot(t, y, label=r"A2", color='red')
      ax[0].plot(t, x, label=r"A", color='blue')
      ax[0].set_xlabel("time")
      ax[0].set_ylabel("amount")
      ax[0].set_ylim((0, 1+0.05))
      ax[1].plot(t, v1, label='A to A2', color='orangered')
      ax[1].plot(t, v2, label='A2 to A', color='purple')
      ax[1].set xlabel("time")
      ax[1].set ylabel("reaction rate")
      ax[1].set_ylim((0, 0.2+0.01))
      ax[0].text(6, 0.98, f"k1={k1}", size=12)
      ax[0].text(6, 0.92, f"k2={k2}", size=12)
      ax[1].legend()
      ax[0].legend()
      plt.show()
```

Example A2 0.5


```
[16]: print(f"초기 물질량: {x[0]:.5f}, {y[0]:.5f} => {x[0]+2*y[0]:.5f}") print(f"최종 물질량: {x[-1]:.5f}, {y[-1]:.5f} => {x[-1]+2*y[-1]:.5f}")
```

초기 물질량: 0.00000, 0.50000 => 1.00000

4.4 화학평형예제3

```
• 초기조건
            - A: 0.5
            -A_2:0.25
            -k_1=0.2
            -k_2 = 0.2
[17]: t, dt = np.linspace(0, 10, 100000, retstep= True)
      x = np.zeros_like(t)
      y = np.zeros_like(t)
      v1 = np.zeros_like(t)
      v2 = np.zeros_like(t)
      k1 = 0.2
      k2 = 0.2
      x[0] = 0.5
      y[0] = 0.25
      v1[0] = k1*x[0]
      v2[0] = k2*y[0]
      for i in range(len(t)-1):
          x[i+1] = x[i] + dt * 2*(v2[i] - v1[i])
          y[i+1] = y[i] + dt * (v1[i] - v2[i])
          v1[i+1] = k1 * x[i+1]
          v2[i+1] = k2 * y[i+1]
[18]: fig, ax = plt.subplots(1,2, figsize=(14, 5))
      fig.suptitle(f"Example A \{x[0]\}/A2 \{y[0]\}")
      ax[0].plot(t, y, label=r"A2", color='red')
      ax[0].plot(t, x, label=r"A", color='blue')
      ax[0].set_xlabel("time")
      ax[0].set_ylabel("amount")
      ax[0].set_ylim((0, 1+0.05))
      ax[1].plot(t, v1, label='A to A2', color='orangered')
      ax[1].plot(t, v2, label='A2 to A', color='purple')
      ax[1].set_xlabel("time")
      ax[1].set_ylabel("reaction rate")
      ax[1].set_ylim((0, 0.2+0.01))
      ax[0].text(6, 0.98, f"k1={k1}", size=12)
      ax[0].text(6, 0.92, f"k2={k2}", size=12)
```

```
ax[1].legend()
ax[0].legend()
plt.show()
```

Example A 0.5/A2 0.25


```
[19]: print(f"초기 물질량: {x[0]:.5f}, {y[0]:.5f} => {x[0]+2*y[0]:.5f}") print(f"최종 물질량: {x[-1]:.5f}, {y[-1]:.5f} => {x[-1]+2*y[-1]:.5f}")
```

초기 물질량: 0.50000, 0.25000 => 1.00000 최종 물질량: 0.33375, 0.33313 => 1.00000

4.5 결론

세가지 예제 모두 초기 A의 양이 일정하다면 동일한 동적평형 상태로 수렴한다. (단, k_i 도 동일해야함)

이 식도 책에서 보던 화학평형 상태를 잘 반영하고 물질량도 불변하므로 반응이 잘 구현된 식인 것같다.

5 동적 평형 일반화

5.1 구성조건

- x, y는 각각 A 와 B의 양을 의미한다.
- $aA \longrightarrow bB$ 의 속도, $v_1 \in A$ 의 양에 비례한다.

$$v_1 = k_1 x$$

• $aA \leftarrow bB$ 의 속도, $v_2 \in A_2$ 의 양에 비례한다.

$$v_2 = k_2 y$$

• *x*, *y* 는 다음 식을 만족한다.

$$\begin{cases} \frac{dx}{dt} &= av_2 - av_1 \\ = ak_2y - ak_1x \\ \frac{dy}{dt} &= bv_1 - bv_2 \\ = bk_1x - bk_2y \end{cases}$$

5.2 일반화 예제 1

$$3A \longleftrightarrow 1B$$

• 초기조건 - A:1 - B:0 - k₁ = 0.2 - k₂ = 0.2

```
[31]: t, dt = np.linspace(0, 10, 100000, retstep= True)
      x = np.zeros_like(t)
      y = np.zeros_like(t)
      v1 = np.zeros_like(t)
      v2 = np.zeros_like(t)
     k1 = 0.2
     k2 = 0.2
      a=3
      b=1
      x[0] = 1
      y[0] = 0
      v1[0] = k1*x[0]
      v2[0] = k2*y[0]
      for i in range(len(t)-1):
          x[i+1] = x[i] + dt * a*(v2[i] - v1[i])
          y[i+1] = y[i] + dt * b*(v1[i] - v2[i])
          v1[i+1] = k1 * x[i+1]
          v2[i+1] = k2 * y[i+1]
```

```
[32]: fig, ax = plt.subplots(1,2, figsize=(14, 5))
fig.suptitle(f"Example I")
```

```
ax[0].plot(t, x, label=r"A", color='red')
ax[0].plot(t, y, label=r"B", color='blue')
ax[0].set_xlabel("time")
ax[0].set_ylabel("amount")
ax[0].set_ylim((0, 1+0.05))

ax[1].plot(t, v1, label='A to B', color='red')
ax[1].plot(t, v2, label='B to A', color='blue')
ax[1].set_xlabel("time")
ax[1].set_ylabel("reaction rate")
ax[1].set_ylim((0, 0.2+0.01))

ax[0].text(6, 0.98, f"k1={k1}", size=12)
ax[0].text(6, 0.92, f"k2={k2}", size=12)

ax[1].legend()
ax[0].legend()
plt.show()
```



```
[33]: print(f"초기 물질량: {x[0]:.5f}, {y[0]:.5f} => {b*x[0]+a*y[0]:.5f}") print(f"최종 물질량: {x[-1]:.5f}, {y[-1]:.5f} => {b*x[-1]+a*y[-1]:.5f}")
```

초기 물질량: 1.00000, 0.00000 => 1.00000 최종 물질량: 0.25025, 0.24992 => 1.00000

5.3 일반화 예제 2

 $3A \longleftrightarrow 2B$

• 초기조건

```
- B:1
            -k_1 = 0.2
            -k_2=0.2
[36]: t, dt = np.linspace(0, 10, 100000, retstep= True)
      x = np.zeros_like(t)
      y = np.zeros_like(t)
      v1 = np.zeros_like(t)
      v2 = np.zeros_like(t)
     k1 = 0.2
     k2 = 0.2
      a=3
      b=2
      x[0] = 0
      y[0] = 1
      v1[0] = k1*x[0]
      v2[0] = k2*y[0]
      for i in range(len(t)-1):
          x[i+1] = x[i] + dt * a*(v2[i] - v1[i])
          y[i+1] = y[i] + dt * b*(v1[i] - v2[i])
          v1[i+1] = k1 * x[i+1]
          v2[i+1] = k2 * y[i+1]
[37]: fig, ax = plt.subplots(1,2, figsize=(14, 5))
      fig.suptitle(f"Example II")
      ax[0].plot(t, x, label=r"A", color='red')
      ax[0].plot(t, y, label=r"B", color='blue')
      ax[0].set_xlabel("time")
      ax[0].set_ylabel("amount")
      ax[0].set_ylim((0, 1+0.05))
      ax[1].plot(t, v1, label='A to B', color='red')
      ax[1].plot(t, v2, label='B to A', color='blue')
      ax[1].set_xlabel("time")
      ax[1].set_ylabel("reaction rate")
      ax[1].set_ylim((0, 0.2+0.01))
      ax[0].text(6, 0.98, f"k1={k1}", size=12)
      ax[0].text(6, 0.92, f"k2={k2}", size=12)
```

- A : 0

```
ax[1].legend()
ax[0].legend()
plt.show()
```



```
[39]: print(f"초기 물질량: {x[0]:.5f}, {y[0]:.5f} => {b*x[0]+a*y[0]:.5f}") print(f"최종 물질량: {x[-1]:.5f}, {y[-1]:.5f} => {b*x[-1]+a*y[-1]:.5f}")
```

초기 물질량: 0.00000, 1.00000 => 3.00000 최종 물질량: 0.59997, 0.60002 => 3.00000

5.4 결론

확언할 수는 없지만 지금까지의 동적평형을 보았을 때, 이 식은 일반화된 동적평형을 잘 반영하는 것같다.

이 식으로 동적평형에서 반응물, 생성물이 단일할 때 계수에 따라 일반화할 수 있었다.