

AI Planning Hatem A. Rashwan

Plan-Space Search and Hierarchical Planning

Plan-Space Search

Plan-Space Planner (PSP) Partial Plans

Overview

- Search States: Partial Plans
- Plan Refinement Operations
- The Plan-Space Search Problem
- Flawless Partial Plans
- The PSP Algorithm

State-Space vs. Plan-Space Search

- state-space search: search through graph (tree) of nodes representing world states
- plan-space search:
 search through graph of partial plans
 - nodes: partially specified plans
 - arcs: plan refinement operations
 - solutions: partial-order plans

MESIIA – MIA

State-Space vs. Plan-Space Search

Planning as Search

	State Space		Plan Space
Algorihtm	Progression	Regression	Partial-Order causal link: UCPOP
Node	World State	Set of World States	Partial Plans
Edge	Apply Action If prec satisfied, Add adds, Delete deletes	Regress Action If a provides some g in CG: CG' = CG - effects(a) + preconditions(a)	Plan refinements: Satisfy Goals: Step addition Step reuse Resolve Threats Demotion Promotion Confrontation

MESIIA - MIA

Partial Plans

• plan: set of actions organized into some structure

- partial plan:
 - subset of the actions
 - subset of the organizational structure
 - temporal ordering of actions
 - rationale: what the action achieves in the plan
 - subset of variable bindings

Definition of Partial Plans

- A partial plan is a tuple $\pi = (A, \prec, B, L)$, where:
 - $A = \{a_1,...,a_k\}$ is a set of partially instantiated planning operators;
 - \prec is a set of ordering constraints on A of the form $(a_i \prec a_i)$;
 - B is a set of binding constraints on the variables of actions in A of the form x=y, x≠y;
 - L is a set of causal links of the form $\langle a_i \rightarrow [p] \rightarrow a_j \rangle$ such that:
 - a_i and a_j are actions in A;
 - the constraint $(a_i \prec a_i)$ is in \prec ;
 - proposition p is an effect of a_i and a precondition of a_j ; and
 - the binding constraints for variables in a_i and a_j appearing in p are in B.

MESIIA – MIA

Overview

- Search States: Partial Plans
- Plan Refinement Operations
- The Plan-Space Search Problem
- Flawless Partial Plans
- The PSP Algorithm

Adding Actions

- partial plan contains actions
 - initial state
 - goal conditions
 - set of operators with different variables

Operators indicate what action to perform and with which variables.

- reason for adding new actions
 - to achieve unsatisfied preconditions
 - to achieve unsatisfied goal conditions

MFSIIA – MIA

Dock-Worker Robots (DWR) Example State

Predicates in the DWR Domain

```
(loaded ?r -robot ?c -container); robot r loaded with container c
(unloaded ?r -robot); robot r without loading
(at ?r -robot ?l -location); robot r in a location l
(belongs ?k -crane ?1 -location); carne k belongs to a location 1
(attached ?p -pile ?1 -location); pile p "attached" to a location l
(adjacent ?11 ?12 -location); location 11 is adjacent to location 12
(occupied ?1 -location); location is full (the robot cannot come)
(in ?c -container ?p -pile); container c on a pile p
(on ?c ?cc -container); container c on container cc
(top ?c -container ?p -pile); container c is at the top of a pile p
(empty ?k -crane); empty crane k
(holding ?k -crane ?c -container); crane k holds a container c
```

Actions in the DWR Domain

- Move (r,1,1') robot r from location I to some adjacent and unoccupied location I'
- Take (c,k,p,1) container c with empty crane k from the top of pile p, all located at the same location l
- Put (k, 1, c, p) container c held by crane k on top of pile p, all located at location l
- Load (k, l, c, r) container c held by crane k onto unloaded robot r, all located at location l
- Unload (k, l, c, r) container c with empty crane k from loaded robot r, all located at location l

Adding Actions: Example


```
1:move(r_1, l_1, m_1)

preconditions
at(r_1, l_1)
\neg occupied(m_1)
adjacent(l_1, m_1)
adjacent(l_1, m_1)
\neg at(r_1, l_1)
```

```
2:load(k_2, l_2, c_2, r_2)

preconditions
belong(k_2, l_2)

holding(k_2, c_2)

at(r_2, l_2)

unloaded(r_2)

effects

empty(k_2)

loaded(r_2, c_2)

¬holding(k_2, c_2)

¬unloaded(r_2)
```


Adding Causal Links

- partial plan contains causal links
 - links from the provider
 - an effect of an action or
 - an atom that holds in the initial state
 - to the consumer
 - a precondition of an action or
 - a goal condition
- reasons for adding causal links
 - prevent interference with other actions

Adding Causal Links: Example

Adding Variable Bindings

- partial plan contains variable bindings
 - new operators introduce new (copies of) variables into the plan
 - solution plan must contain actions
 - variable binding constraints keep track of possible values for variables and co-designation
- reasons for adding variable bindings
 - to turn operators into actions
 - to unify and effect with the precondition it supports

Adding Variable Bindings: Example

Adding Ordering Constraints

- partial plan contains ordering constraints
 - binary relation specifying the temporal order between actions in the plan
- reasons for adding ordering constraints
 - all actions after initial state
 - all actions before goal
 - causal link implies ordering constraint
 - to avoid possible interference

Adding Ordering Constraints: Example

Overview

- Search States: Partial Plans
- Plan Refinement Operations
- Plan-Space Search Problem
- Flawless Partial Plans
- The PSP Algorithm

Plan-Space Search: Initial Search State

- represent initial state and goal as dummy actions
 - init: no preconditions, initial state as effects
 - goal: goal conditions as preconditions, no effects
- empty plan π_0 = ({init, goal},{(init \prec goal)},{},{}):
 - two dummy actions init and goal;
 - one ordering constraint: init before goal;
 - no variable bindings; and
 - no causal links.

Plan-Space Search: Initial Search State Example

Plan-Space Search: Successor Function

- states are partial plans
- generate successor through plan refinement operators (one or more):
 - adding an action to A
 - adding an ordering constraint to ≺
 - adding a binding constraint to B
 - adding a causal link to L

Partial Order Solutions

- Let $\mathcal{P}=(\Sigma, s_i, g)$ be a planning problem. A plan $\pi = (A, \prec, B, L)$ is a (partial order) solution for \mathcal{P} if:

 - for every sequence $\langle a_1,...,a_k \rangle$ of all the actions in A-{init, goal} that is
 - totally ordered and grounded and respects ≺ and B
 - $\gamma(s_i, \langle a_1, ..., a_k \rangle)$ must satisfy g.

Overview

- Search States: Partial Plans
- Plan Refinement Operations
- Plan-Space Search Problem
- Flawless Partial Plans
- The PSP Algorithm

Threat: Example

Threats

- An action a_k in a partial plan $\pi = (A, \prec, B, L)$ is a threat to a causal link $\langle a_i [p] \rightarrow a_i \rangle$ iff:
 - a_k has an effect $\neg q$ that is possibly inconsistent with p, i.e. q and p are unifiable;
 - the ordering constraints $(a_i \prec a_k)$ and $(a_k \prec a_i)$ are consistent with \prec ; and
 - the binding constraints for the unification of q and p are consistent with B.

Flaws

- A flaw in a plan $\pi = (A, \prec, B, L)$ is either:
 - an unsatisfied sub-goal, i.e. a precondition of an action in A without a causal link that supports it; or
 - a threat, i.e. an action that may interfere with a causal link.

Flawless Plans and Solutions

- Proposition: A partial plan $\pi = (A, \prec, B, L)$ is a solution to the planning problem $\mathcal{P}=(\Sigma, s_i, g)$ if:
 - π has no flaw;
 - the ordering constraints
 < are not circular; and
 - the variable bindings B are consistent.

Overview

- Search States: Partial Plans
- Plan Refinement Operations
- The Plan-Space Search Problem
- Flawless Partial Plans
- The PSP Algorithm

Plan-Space Planning as a Search Problem

- given: statement of a planning problem $P=(O,s_i,g)$
- define the search problem as follows:
 - initial state: $\pi_0 = (\{\text{init}, \text{goal}\}, \{(\text{init} \prec \text{goal})\}, \{\}, \{\}\})$
 - goal test for plan state p: p has no flaws
 - path cost function for plan π : $|\pi|$
 - successor function for plan state p: refinements of p that maintain ≺ and B

PSP Procedure: Basic Operations

- PSP: Plan-Space Planner
- main principle: refine partial π plan while maintaining < and B consistent until π has no more flaws
- basic operations:
 - find the flaws of π , i.e. its sub-goals and its threats
 - select one of the flaws
 - find ways to resolve the chosen flaw
 - choose one of the resolvers for the flaw
 - refine π according to the chosen resolver

PSP: Pseudo Code

```
function PSP(plan)
 allFlaws ← plan.openGoals() + plan.threats()
 if allFlaws.empty() then return plan
 flaw \leftarrow allFlaws.selectOne()
 allResolvers \leftarrow flaw.getResolvers(plan)
 if allResolvers.empty() then return failure
 resolver ← allResolvers.chooseOne()
 newPlan \leftarrow plan.refine(resolver)
 return PSP(newPlan)
```

Hierarchical Planning

Hierarchical Task Network Planning (HTN)

STN Planning

- STN: Simple Task Network (is a simple version of HTN)
- what we know so far:
 - Terms, predicates, actions, state transition function, plans
- what's new:
 - tasks to be performed
 - methods describing ways in which tasks (subtasks) can be performed
 - organized collections of tasks (subtasks) called task networks

DWR Stack Moving Example

 task: move stack of containers from pallet p1 to pallet p3 in a way that preserves the order

- (informal) methods:
 - move topmost: take followed by put action
 - move stack: repeatedly move the topmost container until the stack is empty
 - move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)

Tasks

- task symbols: $T_S = \{t_1, ..., t_n\}$
 - operator names $\subsetneq T_S$: primitive tasks
 - non-primitive task symbols: T_S operator names
- $task: t_i(r_1,...,r_k)$
 - t_i: task symbol (primitive or non-primitive)
 - $r_1,...,r_k$: terms, objects manipulated by the task
 - ground task: are ground
- action $a=op(c_1,...,c_k)$ accomplishes ground primitive task $t_i(r_1,...,r_k)$ in state s iff
 - name(a) = t_i and $c_1 = r_1$ and ... and $c_k = r_k$ and
 - *a* is applicable in *s*

Simple Task Networks

- A <u>simple task network</u> w is an acyclic directed graph (*U,E*) in which
 - the node set $U = \{t_1, ..., t_n\}$ is a set of tasks and
 - the edges in *E* define a partial ordering of the tasks in *U*.

• A task network w is ground/primitive if all tasks $t_u \in U$ are ground/primitive, otherwise it is unground/non-primitive.

Totally Ordered STNs

- ordering: $t_u \prec t_v$ in w=(U,E) iff there is a path from t_u to t_v
- STN w is totally ordered iff E defines a total order on U
 - w is a sequence of tasks: $\langle t_1,...,t_n \rangle$
- Let $w = \langle t_1,...,t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - $\blacksquare \pi(w) = \langle a_1, ..., a_n \rangle$ where $a_i = t_i$; $1 \le i \le n$

STNs: DWR Example

tasks:

- t_1 = take(crane1,loc1,c1,c2,p1): primitive, ground
- t_2 = take(crane1,loc1,c2,c3,p1): primitive, ground
- t_3 = move-stack(p1,q): non-primitive, unground

task networks:

- $W_1 = (\{t_1, t_2, t_3\}, \{(t_1, t_2), (t_1, t_3)\})$
 - partially ordered, non-primitive, unground
- $w_2 = (\{t_1, t_2\}, \{(t_1, t_2)\})$
 - totally ordered: $w_2 = \langle t_1, t_2 \rangle$, ground, primitive
 - $\pi(w_2) = \langle take(crane1,loc1,c1,c2,p1),take(crane1,loc1,c2,c3,p1) \rangle$

STN Methods

- Let M_S be a set of method symbols. An <u>STN method</u> is a 4-tuple m=(name(m),task(m),precond(m),network(m)) where:
 - name(*m*):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - $n \in M_S$: unique method symbol
 - $x_1,...,x_k$: all the variable symbols that occur in m;
 - task(m): a non-primitive task;
 - precond(m): set of literals called the method's preconditions;
 - network(m): task network (U,E) containing the set of <u>subtasks</u>
 U of m.

STN Methods: DWR Example (1)

move topmost: take followed by put action

- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o, p_d)
 - precond: top(c, p_o), on(c, x_o), attached(p_o ,l), belong(k,l), attached(p_d ,l), top(x_o , p_o), top(x_d , p_d)
 - subtasks: $\langle take(k,l,c,x_o,p_o), put(k,l,c,x_d,p_d) \rangle$

STN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move(p_o,p_d,c,x_o)
 - task: move-stack(p_o, p_d)
 - precond: top (c,p_o) , on (c,x_o)
 - subtasks: $\langle move-topmost(p_o, p_d), move-stack(p_o, p_d) \rangle$
- no-move (p_o, p_d)
 - task: move-stack(p_o, p_d)
 - precond: top(pallet, p_o)
 - subtasks: ()

STN Methods: DWR Example (3)

 move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)

- move-stack-twice(p_o, p_i, p_d)
 - task: move-ordered-stack(p_o, p_d)
 - precond: -
 - subtasks: $\langle move-stack(p_o, p_i), move-stack(p_i, p_d) \rangle$

Method Decomposition: DWR Example

 $\delta(t, m_i, \sigma) = \langle \text{move-topmost}(p1, p2), \text{move-stack}(p1, p2) \rangle$

Decomposition of Tasks in STNs

- Let
 - w = (U,E) be a STN and
 - t∈U be a task with no predecessors in w and
 - m a method that is relevant for t under some substitution σ with network(m) = (U_m , E_m).
- The decomposition of t in w by m under σ is the STN $\delta(w,t,m,\sigma)$ where:
 - t is replaced in U by $\sigma(U_m)$ and
 - edges in E involving t are replaced by edges to appropriate nodes in $\sigma(U_m)$.

Decomposition Tree: DWR Example

HTN vs. STRIPS Planning

- Since
 - HTN is generalization of STN Planning, and
 - STN problems can encode undecidable problems, but
 - STRIPS cannot encode such problems:
- STN/HTN formalism is more expressive
- non-recursive STN can be translated into equivalent STRIPS problem
 - but exponentially larger in worst case
- "regular" STN is equivalent to STRIPS

End

5 1