Capstone Project: Heatmap Anomaly Detection

Week 6 Progress Report

This week:

- Train/test split
- Basic methods → evaluations
- Further exploration of Metrics dataset
- PCA/Dimensional reduction

Recap:

Definition of "clearly broken grid:"

Triangle/line structure not visible even with noisy bootstrap enhancement. We do not care about rest of heatmap as long as this pattern is clearly defined.

- Created baseline of "clearly broken banners" for two grids:
 - "Triangle grid": 57 clearly broken out of 872 → ~6.5%
 - "Line grid": 113 clearly broken out of $861 \rightarrow \sim 13.5\%$
 - Is it reasonable that there is such a discrepancy?
- 2. Added heatmap images for banners classified as "broken" to <u>GitHub</u>.

Click clustering method (recap):

- 1. Bootstrap 100'000 clicks from fully aggregated dataset (filtered by grid_id).
- 2. Normalize (Standardize)
- 3. Run DBSCAN cluster with eps = .2 and min_samples = 1000
 - \rightarrow 4 clusters + noise.
- 4. For given (noisy bootstrap enhanced) domain, get 1-nn for each click in training data and select that label {0,1,2,3}
 - a. If pct of points labelled as noise above a certain threshold → anomalous.
 - b. Hypothesis testing: p_0 = pct of noise points in training data. H_0: p_0 < noise/total, H_A: p_0 >= noise/total → p-value larger than threshold (cannot reject null) → anomalous.

Click clustering method:

Epsilon: 0.13 delta pct thres: 0.00 Pct_thres: 0.63

Broken pct: 0.14, Total in CB: 27, Missed in CB: 1, Pct missed: 0.04, Not in CB: 2 confusion matrix (rate) ((TPR,FNR),(FPR,TNR)): (0.96 , 0.04) (0.01 , 0.99)

- 100k bootstrapped samples to generate clusters.
- Use enhanced **5k** bootstrapped samples per domain.
 - The two grid's perform very well upon hyperparameter tuning:
 - Grid_id = 333346 performs best with eps = 0.13 and 1k min_sample

Click clustering method:

100k bootstrapped samples to generate clusters.

Use enhanced **5k** bootstrapped samples per domain.

- The two grid's perform very well upon hyperparameter tuning:
 - Grid_id = 333519 performs best with eps = 0.13 and 1k min sample
 - We remove "corner clusters"

Epsilon: 0.15 delta pct thres: 0.00 Pct_thres: 0.57

Broken pct: 0.06, Total in CB: 29, Missed in CB: 5, Pct missed: 0.17, Not in CB: 0 confusion matrix (rate) ((TPR,FNR),(FPR,TNR)): (0.83, 0.17) (0.00, 1.00)

Performance across grid:

Epsilon: 0.13 Estimated number of clusters: 6 Estimated number of noise points: 39161 Pct of noise points: 0.391610

Correspondingly, translating the same parameters from one to the does perform well:

- o 333346 → 333519:
 - Remove corner cluster:
 - TPR: 0.97 (1/40 missed)
 - FNR: 0.03 (5/600-ish)
 - Include corner cluster:
 - TPR: 0.8 (8/40 missed)
 - FNR: 0.0 (0/600-ish)
- 333519 → 333346:

Epsilon: 0.13 Pct_thres: 0.64

```
Broken pct: 0.07, Total in CB: 40, Missed in CB: 1, Pct missed: 0.03, Not in CB: 5 confusion matrix (rate) ((TPR,FNR),(FPR,TNR)):
    ( 0.97 , 0.03 )
    ( 0.01 , 0.99 )
```

Generalization:

- **Zero-shot learning:** How many different banners are there overall and could we run baselines there, or is the aim to do "zero-shot learning"?
- Expect that the results will be consistent for 3-banner types, but thresholds will change depending on the number of products per banner.
- Crude but powerful baseline model \rightarrow expect this to be hard to top.

Metrics Dataset: Visualizations

- Drop many collinear features.
 (e.g. Sov_short_ttc highly correlated with sov_short_ttc_score, etc)
- Compare distributions of broken vs non-broken
- Importance of features from Decision Tree methods:

Metrics Dataset: PCA

-5.0 -7.5 -5.0 -2.5

PCA₁

- Basic supervised classifiers (Decision Trees, Random Forest, Logistic Regression) don't perform well
 - Problem with unbalanced dataset and overfitting.
 - Grid search over model complexity (regularization).
 - Upsample/downsample → slight improvements but not competitive
 - Add interactions/higher-order features
- Consistently ~40 misclassifications (FP+FN) in test set from 31 positives and 320 negative instances.
- PCA less powerful but shows some structure.

Combined Datasets

- Different methods of aggregating PCA's:
 - PCA on both individually →
 combine → scale → combined
 PCA (top)
 - PCA on HM only → combine → scale → combined PCA (bottom)
- Adding more components changes scores a little bit.

Combined Datasets: Clustering results

Accuracy Score: 0.9541595925297114

	precision	recall	f1-score	support
0	0.97	0.95	0.96	508
1	0.70	0.76	0.73	72
accuracy			0.93	580
macro avg	0.83	0.86	0.84	580
weighted avg	0.93	0.93	0.93	580

Accuracy Score: 0.9293103448275862

KNN - Grid 333519

- PCA: n=2 components
- Train/Test data split: 80% vs. 20%
- CV on KNN: best k = 5
- Accuracy results test on
 - test dataset
 - whole dataset

Accuracy: 0.977 Confusion Matri [[157 2] [3 13]] Classification	ix:			
	orecision	recall	f1-score	support
0 1	0.98 0.87	0.99 0.81	0.98 0.84	159 16
accuracy macro avg weighted avg	0.92 0.97	0.90 0.97	0.97 0.91 0.97	175 175 175
Accuracy: 0.98 Confusion Matr [[810 5] [7 50]] Classification	rix:	recall	f1–score	support
0 1	0.99 0.91	0.99 0.88	0.99 0.89	815 57
accuracy macro avg weighted avg	0.95 0.99	0.94 0.99	0.99 0.94 0.99	872 872 872

KNN - Grid 333346

- PCA: n=2 components
- Train/Test data split: 80% vs. 20%
- CV on KNN: best k = 5
- Accuracy results test on
 - test dataset
 - whole dataset

Accuracy: 0.9 Confusion Mat [[145 3] [0 25]] Classificatio	rix:	recall	f1–score	support
				5500 1 510 9
0	1.00	0.98	0.99	148
1	0.89	1.00	0.94	25
accuracy			0.98	173
macro avg	0.95	0.99	0.97	173
weighted avg	0.98	0.98	0.98	173
Accuracy: 0.9 Confusion Mat [[734 14] [7 106]] Classificatio	rix:			
	precision	recall	f1-score	support
0 1	0.99 0.88	0.98 0.94	0.99 0.91	748 113
accuracy macro avg weighted avg	0.94 0.98	0.96 0.98	0.98 0.95 0.98	861 861 861

Isolation Forest with PCA

- 80% Train, 20% Test
- Perform separately onto different grid
- With PCA, n= 2 components

Hyperparameters:

```
    n estimators=500,
```

-
$$\max$$
 features = 2000,

- max samples='auto',
- contamination=0.1,
- bootstrap = True

Grid 333519

Confusion Matrix: [[153 10]

[5 6]]

Accuracy: 0.9137931034482759

Classification Report:

	precision	recall	f1-score	support
0	0.97	0.94	0.95	163
1	0.38	0.55	0.44	11
accuracy			0.91	174
macro avg	0.67	0.74	0.70	174
weighted avg	0.93	0.91	0.92	174

Grid 333346

Confusion Matrix:

[[145 4] [15 8]]

Accuracy: 0.8895348837209303

Classification Report:

		precision	recall	f1-score	support
	0	0.91	0.97	0.94	149
	1	0.67	0.35	0.46	23
accui	racy			0.89	172
macro	avg	0.79	0.66	0.70	172
weighted	avg	0.87	0.89	0.87	172

True Positive Rate (TPR): 0.34782608695652173 True Negative Rate (TNR): 0.9731543624161074

One Class SVM with PCA

- 80% Train, 20% Test
- Perform separately onto different grid
- With PCA, n= 2 components

Hyperparameters:

- nu=0.06, sets an upper limit, expecting up to 5% of data points to be outliers
- kernel='rbf', employs the Radial Basis
 Function to handle non-linear data
- gamma='auto', adjusts gamma based on the number of features to prevent overfitting

Grid 333519

Confusion Matrix: [[163 0]

Accuracy: 0.9712643678160919

Classification Report:

		precision	recall	f1-score	support
	0	0.97	1.00	0.98	163
	1	1.00	0.55	0.71	11
accur	acy			0.97	174
macro	avg	0.99	0.77	0.85	174
weighted	avg	0.97	0.97	0.97	174

True Positive Rate (TPR): 0.5454545454545454

True Negative Rate (TNR): 1.0

Grid 333346

Confusion Matrix:

[[140 9] [6 17]]

Accuracy: 0.9127906976744186

Classification Report:

	precision	recall	f1-score	support
0	0.96	0.94	0.95	149
1	0.65	0.74	0.69	23
accuracy			0.91	172
macro avg	0.81	0.84	0.82	172
weighted avg	0.92	0.91	0.92	172

True Positive Rate (TPR): 0.7391304347826086 True Negative Rate (TNR): 0.9395973154362416

K-means - Grid 333519

train_test_split	[11	5]]			
Apply pca with 2 components (w/o pca the result was terrible)	- (1.000mm)		precision	recall	f1-score
k=4 gains the best result (merge the 3 minority clusters to be considered as anomaly)		0 1	0.93 0.62	0.98 0.31	0.96 0.42
	acc	curacy			0.92

[[156

21

macro avg weighted avg

True Positive Rate: 31.25% True Negative Rate: 98.11%

0.65

0.92

0.78

0.91

support

159 16

175

175

175

0.69

0.91

K-means - Grid 333346

k=6						k=5				
	4] 25]]	precision	recall	f1–score	support	[[147 1] [4 21]]	precision	recall	f1–score	support
		,					p. 55255			
	0	1.00	0.97	0.99	148	0	0.97	0.99	0.98	148
	1	0.86	1.00	0.93	25	1	0.95	0.84	0.89	25
accu	ıracy			0.98	173	accuracy			0.97	173
macro	avg	0.93	0.99	0.96	173	macro avg	0.96	0.92	0.94	173
weighted	lavg	0.98	0.98	0.98	173	weighted avg	0.97	0.97	0.97	173

True Positive Rate: 100.00% True Negative Rate: 97.30%

True Positive Rate: 84.00% True Negative Rate: 99.32%

PCA clustering results

Tests:

- Splitting the broken banners dataset into train/test
- Training on 333519 and testing on 333346

Grid_id: 333346

Grid_id: 333519

Train 333519 to classify 333346

333519/333346

	Accuracy	Precision	Recall
333519/333346	0.89	1.0	0.10
333346/333346	0.88	1.0	0.07

Train 333346 to classify 333519

	Accuracy	Precision	Recall
333346/333519	0.94	1.0	0.05
333519/333519	0.937	1.0	0.04

Conclusions and next steps

- Explained variance for all PCA plots for n =
 2 is 4%
- Refine clustering algorithm

MVU – study "data manifold":

- Study data manifold using Maximum Variance Unfolding/Semidefinite Embedding (MVU)
 - Intuition: create graph of close points in high dimensional space with distances
 - Use convex optimization to maximize distance between disconnected points s.t. connected points being nearby.

Next steps:

- Further exploration of "basic models":
 - How does data enhancement affect them (different enhancements?)?
 - Ensemble techniques: can we boost basic methods (majority voting)?
 - Other grids?
 - Understand edge cases.
- Understand PCA:
 - What "boxes" are important in the first few components → can we understand these features?
- Leverage metrics/combined dataset more.
- "Productionize current models"

- Implement fancier method → instead of features being explicit bins/clicks, create more meaningful feature vectors:
 - Use pretrained ResNet/ViT/... feature extractors and run clustering on feature vectors of heatmaps
 - Train Auto-Encoder on arbitrary synthetic clusterings (ask AE to recreate original image with discriminative loss).
 - Train/Fine-tune ResNet/ViT/... on synthetic data to count number of clusters → might lead to interesting feature vectors.