Study Guide: Solving differential equations with finite elements

Hans Petter Langtangen 1,2

 $^1{\rm Center}$ for Biomedical Computing, Simula Research Laboratory $^2{\rm Department}$ of Informatics, University of Oslo

Oct 28, 2013

Contents

0.1	Differe	ential equation models
	0.1.1	Abstract differential equation
	0.1.2	Abstract boundary conditions
	0.1.3	Reminder about notation
	0.1.4	Residual-minimizing principles
	0.1.5	The least squares method
	0.1.6	The Galerkin method
	0.1.7	The Method of Weighted Residuals
	0.1.8	Terminology: test and trial Functions
	0.1.9	The collocation method
0.2	Examp	ples on using the principles
	0.2.1	The first model problem
	0.2.2	Boundary conditions
	0.2.3	The least squares method; principle
	0.2.4	The least squares method; equation system
	0.2.5	Orthogonality of the basis functions gives diagonal matrix
	0.2.6	Least squares method; solution
	0.2.7	The Galerkin method; principle
	0.2.8	The Galerkin method; solution
	0.2.9	The collocation method
	0.2.10	
0.3	Useful	techniques
	0.3.1	Integration by parts
	0.3.2	Boundary function; principles
	0.3.3	Boundary function; example
	0.3.4	Abstract notation for variational formulations
	0.3.5	Example on abstract notation
	0.3.6	Bilinear and linear forms
	0.3.7	The linear system associated with abstract form
	0.3.8	Equivalence with minimization problem
0.4	Examples on variational formulations	
	0.4.1	Variable coefficient; problem
	0.4.2	Variable coefficient; variational formulation (1)
	0.4.3	Variable coefficient; variational formulation (2)
	0.4.4	Variable coefficient; abstract notation
	0.4.5	Variable coefficient; linear system
	0.4.6	First-order derivative in the equation and boundary condition; problem . 14
	0.4.7	First-order derivative in the equation and boundary condition; details 14

	0.4.8	First-order derivative in the equation and boundary condition; observations	14
	0.4.9	First-order derivative in the equation and boundary condition; abstract	
			15
	0.4.10	1 , , , , , , , , , , , , , , , , , , ,	15
		ο,	15
		/ 1	15
	0.4.13	,	16
	0.4.14	,	16
	0.4.15	1 0	16
	0.4.16	1 0	16
	0.4.17	When the numerical method is exact	17
	0.4.18	Computation in the global physical domain; formulas	17
	0.4.19	Computation in the global physical domain; details	18
	0.4.20	Computation in the global physical domain; linear system	18
	0.4.21	Comparison with a finite difference discretization	18
	0.4.22	Cellwise computations; formulas	19
	0.4.23	Cellwise computations; details	19
	0.4.24	Cellwise computations; details of boundary cells	19
	0.4.25	Cellwise computations; assembly	20
0.5	Bound	ary conditions: specified nonzero value	20
	0.5.1	General construction of a boundary function	20
	0.5.2	Example with two Dirichlet values; variational formulation	20
	0.5.3	Example with two Dirichlet values; details	21
	0.5.4	Example with two Dirichlet values; cellwise computations	21
	0.5.5	Modification of the linear system; ideas	21
	0.5.6	Modification of the linear system; linear system	21
	0.5.7		22
	0.5.8		22
	0.5.9	Symmetric modification of the linear system; algorithm	22
	0.5.10		23
	0.5.11		23
0.6	Bound	ary conditions: specified derivative	23

0.1 Differential equation models

Our aim is to extend the ideas for approximating f by u, or solving

$$u = f$$

to real differential equations like

$$-u'' + bu = f$$
, $u(0) = 1$, $u'(L) = D$

Three methods are addressed:

- 1. least squares
- 2. Galerkin/projection

3. collocation (interpolation)

Method 2 will be totally dominating!

0.1.1 Abstract differential equation

$$\mathcal{L}(u) = 0, \quad x \in \Omega \tag{1}$$

Examples (1D problems):

$$\mathcal{L}(u) = \frac{d^2u}{dx^2} - f(x),\tag{2}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) + f(x), \tag{3}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) - au + f(x), \tag{4}$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) + f(u, x) \tag{5}$$

0.1.2 Abstract boundary conditions

$$\mathcal{B}_0(u) = 0, \ x = 0, \quad \mathcal{B}_1(u) = 0, \ x = L$$
 (6)

Examples:

$$\mathcal{B}_i(u) = u - g,$$
 Dirichlet condition (7)

$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - g,$$
 Neumann condition (8)

$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - h(u - g), \qquad \text{Robin condition}$$
 (9)

0.1.3 Reminder about notation

- $u_e(x)$ is the symbol for the exact solution of $\mathcal{L}(u_e) = 0$
- u(x) denotes an approximate solution
- We seek $u \in V$
- $V = \operatorname{span}\{\psi_0(x), \dots, \psi_N(x)\}, V \text{ has basis } \{\psi_i\}_{i \in I}$
- $I = \{0, \dots, N\}$ is an index set
- $u(x) = \sum_{j \in I} c_j \psi_j(x)$
- Inner product: $(u, v) = \int_{\Omega} uv \, dx$
- Norm: $||u|| = \sqrt{(u,u)}$

0.1.4 Residual-minimizing principles

- When solving u = f we knew the error e = f u and could use principles for minimizing the error
- When solving $\mathcal{L}(u_e) = 0$ we do not know u_e and cannot work with the error $e = u_e u$
- ullet We only have the error in the equation: the residual R

Inserting $u = \sum_{j} c_{j} \psi_{j}$ in $\mathcal{L} = 0$ gives a residual

$$R = \mathcal{L}(u) = \mathcal{L}(\sum_{j} c_{j} \psi_{j}) \neq 0$$
(10)

Goal: minimize R wrt $\{c_i\}_{i\in I}$ (and hope it makes a small e too)

$$R = R(c_0, \dots, c_N; x)$$

0.1.5 The least squares method

Idea: minimize

$$E = ||R||^2 = (R, R) = \int_{\Omega} R^2 dx \tag{11}$$

Minimization wrt $\{c_i\}_{i\in I}$ implies

$$\frac{\partial E}{\partial c_i} = \int_{\Omega} 2R \frac{\partial R}{\partial c_i} dx = 0 \quad \Leftrightarrow \quad (R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in I$$
 (12)

N+1 equations for N+1 unknowns $\{c_i\}_{i\in I}$

0.1.6 The Galerkin method

Idea: make R orthogonal to V,

$$(R, v) = 0, \quad \forall v \in V \tag{13}$$

This implies

$$(R, \psi_i) = 0, \quad i \in I \tag{14}$$

N+1 equations for N+1 unknowns $\{c_i\}_{i\in I}$

0.1.7 The Method of Weighted Residuals

Generalization of the Galerkin method: demand R orthogonal to some space W, possibly $W \neq V$:

$$(R, v) = 0, \quad \forall v \in W \tag{15}$$

If $\{w_0, \ldots, w_N\}$ is a basis for W:

$$(R, w_i) = 0, \quad i \in I \tag{16}$$

- N+1 equations for N+1 unknowns $\{c_i\}_{i\in I}$
- Weighted residual with $w_i = \partial R/\partial c_i$ gives least squares

0.1.8 Terminology: test and trial Functions

- ψ_j used in $\sum_j c_j \psi_j$ is called *trial function*
- ψ_i or w_i used as weight in Galerkin's method is called *test function*

0.1.9 The collocation method

Idea: demand R = 0 at N + 1 points

$$R(x_i; c_0, \dots, c_N) = 0, \quad i \in I$$

$$\tag{17}$$

Note: The collocation method is a weighted residual method with delta functions as weights

$$0 = \int_{\Omega} R(x; c_0, \dots, c_N) \delta(x - x_i) dx = R(x_i; c_0, \dots, c_N)$$

property of
$$\delta(x)$$
: $\int_{\Omega} f(x)\delta(x-x_i)dx = f(x_i), \quad x_i \in \Omega$ (18)

0.2 Examples on using the principles

Goal.

Exemplify the least squares, Galerkin, and collocation methods in a simple 1D problem with global basis functions.

0.2.1 The first model problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, L], \quad u(0) = 0, \ u(L) = 0$$
(19)

Basis functions:

$$\psi_i(x) = \sin\left((i+1)\pi\frac{x}{L}\right), \quad i \in I$$
(20)

The residual:

$$R(x; c_0, \dots, c_N) = u''(x) + f(x),$$

$$= \frac{d^2}{dx^2} \left(\sum_{j \in I} c_j \psi_j(x) \right) + f(x),$$

$$= -\sum_{j \in I} c_j \psi_j''(x) + f(x)$$
(21)

0.2.2 Boundary conditions

Since u(0) = u(L) = 0 we must ensure that all $\psi_i(0) = \psi_i(L) = 0$. Then

$$u(0) = \sum_{j} c_{j} \psi_{j}(0) = 0, \quad u(L) = \sum_{j} c_{j} \psi_{j}(L)$$

- \bullet u known: Dirichlet boundary condition
- u' known: Neumann boundary condition
- Must have $\psi_i = 0$ where Dirichlet conditions apply

0.2.3 The least squares method; principle

$$(R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in I$$

$$\frac{\partial R}{\partial c_i} = \frac{\partial}{\partial c_i} \left(\sum_{j \in I} c_j \psi_j''(x) + f(x) \right) = \psi_i''(x)$$
(22)

Because:

$$\frac{\partial}{\partial c_i} \left(c_0 \psi_0'' + c_1 \psi_1'' + \dots + c_{i-1} \psi_{i-1}'' + c_i \psi_i'' + c_{i+1} \psi_{i+1}'' + \dots + c_N \psi_N'' \right) = \psi_i''$$

0.2.4 The least squares method; equation system

$$(\sum_{j} c_{j} \psi_{j}'' + f, \psi_{i}'') = 0, \quad i \in I$$
(23)

Rearrangement:

$$\sum_{j \in I} (\psi_i'', \psi_j'') c_j = -(f, \psi_i''), \quad i \in I$$
(24)

This is a linear system

$$\sum_{j \in I} A_{i,j} c_j = b_i, \quad i \in I$$

with

$$A_{i,j} = (\psi_i'', \psi_j'')$$

$$= \pi^4 (i+1)^2 (j+1)^2 L^{-4} \int_0^L \sin\left((i+1)\pi \frac{x}{L}\right) \sin\left((j+1)\pi \frac{x}{L}\right) dx$$

$$= \begin{cases} \frac{1}{2} L^{-3} \pi^4 (i+1)^4 & i=j\\ 0, & i\neq j \end{cases}$$
(25)

$$b_i = -(f, \psi_i'') = (i+1)^2 \pi^2 L^{-2} \int_0^L f(x) \sin\left((i+1)\pi \frac{x}{L}\right) dx$$
 (26)

0.2.5 Orthogonality of the basis functions gives diagonal matrix Useful property:

$$\int_{0}^{L} \sin\left((i+1)\pi\frac{x}{L}\right) \sin\left((j+1)\pi\frac{x}{L}\right) dx = \delta ij, \quad \Rightarrow (\psi_i'', \psi_j'') = \delta_{ij}, \quad \delta_{ij} = \begin{cases} \frac{1}{2}L & i=j\\ 0, & i\neq j \end{cases}$$
 (27)

With diagonal $A_{i,j}$ we can easily solve for c_i :

$$c_{i} = \frac{2L}{\pi^{2}(i+1)^{2}} \int_{0}^{L} f(x) \sin\left((i+1)\pi \frac{x}{L}\right) dx$$
 (28)

0.2.6 Least squares method; solution

Let's sympy do the work (f(x) = 2):

```
from sympy import *
import sys

i, j = symbols('i j', integer=True)
x, L = symbols('x L')
f = 2
a = 2*L/(pi**2*(i+1)**2)
c_i = a*integrate(f*sin((i+1)*pi*x/L), (x, 0, L))
c_i = simplify(c_i)
print c_i
```

$$c_{i} = 4 \frac{L^{2} \left((-1)^{i} + 1 \right)}{\pi^{3} \left(i^{3} + 3i^{2} + 3i + 1 \right)}$$

$$u(x) = \sum_{k=0}^{N/2} \frac{8L^{2}}{\pi^{3} (2k+1)^{3}} \sin \left((2k+1)\pi \frac{x}{L} \right). \tag{29}$$

- Fast decay: $c_2 = c_0/27$, $c_4 = c_0/125$
- Only one term might be good enough

$$u(x) \approx \frac{8L^2}{\pi^3} \sin\left(\pi \frac{x}{L}\right)$$
.

0.2.7 The Galerkin method; principle

$$(u'' + f, v) = 0, \quad \forall v \in V,$$

or

$$(u'', v) = -(f, v), \quad \forall v \in V \tag{30}$$

This is a variational formulation of the differential equation problem.

 $\forall v \in V$ means for all basis functions:

$$\left(\sum_{i \in I} c_j \psi_j'', \psi_i\right) = -(f, \psi_i), \quad i \in I$$
(31)

0.2.8 The Galerkin method; solution

Since $\psi_i'' \propto \psi_i$, Galerkin's method gives the same linear system and the same solution as the least squares method (in this particular example).

0.2.9 The collocation method

R=0 or the differential equation must be satisfied at N+1 points:

$$-\sum_{i\in I} c_j \psi_j''(x_i) = f(x_i), \quad i\in I$$
(32)

This is a linear system $\sum_{i} A_{i,j} = b_i$ with entries

$$A_{i,j} = -\psi_j''(x_i) = (j+1)^2 \pi^2 L^{-2} \sin\left((j+1)\pi \frac{x_i}{L}\right), \quad b_i = 2$$

Choose: $N = 0, x_0 = L/2$

$$c_0 = 2L^2/\pi^2$$

0.2.10 Comparison of the methods

- Exact solution: u(x) = x(L x)
- Galerkin or least squares (N=0): $u(x)=8L^2\pi^{-3}\sin(\pi x/L)$
- Collocation method (N=0): $u(x) = 2L^2\pi^{-2}\sin(\pi x/L)$.
- Max error in Galerkin/least sq.: $-0.008L^2$
- Max error in collocation: $0.047L^2$

0.3 Useful techniques

0.3.1 Integration by parts

Second-order derivatives will hereafter be integrated by parts

$$\int_{0}^{L} u''(x)v(x)dx = -\int_{0}^{L} u'(x)v'(x)dx + [vu']_{0}^{L}$$

$$= -\int_{0}^{L} u'(x)v'(x)dx + u'(L)v(L) - u'(0)v(0)$$
(33)

Motivation:

- Lowers the order of derivatives
- Gives more symmetric forms (incl. matrices)
- Enables easy handling of Neumann boundary conditions
- Finite element basis functions φ_i have discontinuous derivatives (at cell boundaries) and are not suited for terms with φ_i''

0.3.2 Boundary function; principles

- What about nonzero Dirichlet conditions?
- E.g. u(L) = D
- Problem: $u(L) = \sum_{j} c_{j} \psi_{j}(L) = 0$ always
- Remedy: $u(x) = B(x) + \sum_{j} c_j \psi_j(x)$
- Construct B such that B(0) = u(0), B(L) = u(L)
- No restrictions of how B(x) varies in the interior of Ω

0.3.3 Boundary function; example

u(0) = C and u(L) = D. Choose

$$B(x) = L^{-1}(C(L-x) + Dx): B(0) = C, B(L) = D$$

$$u(x) = L^{-1}(C(L-x) + Dx) + \sum_{j \in I} c_j \psi_j(x), (34)$$

$$u(0) = C, \quad u(L) = 0$$

0.3.4 Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation) applies an abstract notation for the variational formulation: *Find $(u - B) \in V$ such that

$$a(u,v) = L(v) \quad \forall v \in V$$

0.3.5 Example on abstract notation

Given a variational formulation for -u'' = f:

$$\int_{\Omega} u'v'dx = \int_{\Omega} fvdx \quad \text{or} \quad (u',v') = (f,v) \quad \forall v \in V$$

Abstract formulation: finn $(u - B) \in V$ such that

$$a(u, v) = L(v) \quad \forall v \in V$$

We identify

$$a(u, v) = (u', v'), L(v) = (f, v)$$

0.3.6 Bilinear and linear forms

- a(u, v) is a bilinear form
- L(v) is a linear form

Linear form means

$$L(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 L(v_1) + \alpha_2 L(v_2),$$

Bilinear form means

$$a(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 a(u_1, v) + \alpha_2 a(u_2, v),$$

$$a(u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 a(u, v_1) + \alpha_2 a(u, v_2)$$

In nonlinear problems: Find $(u - B) \in V$ such that $F(u; v) = 0 \ \forall v \in V$

0.3.7 The linear system associated with abstract form

$$a(u, v) = L(v) \quad \forall v \in V$$

is equivalent to

$$a(u, \psi_i) = L(\psi_i) \quad i \in I$$

Insert $u = \sum_{j} c_{j} \psi_{j}$ and use linearity:

$$\sum_{j \in I} a(\psi_j, \psi_i) c_j = L(\psi_i) \quad i \in I$$

This is a linear system

$$\sum_{i \in I} A_{i,j} c_j = b_i, \quad i \in I$$

with

$$A_{i,j} = a(\psi_j, \psi_i)$$
$$b_i = L(\psi_i)$$

0.3.8 Equivalence with minimization problem

If a(u, v) = a(v, u),

$$a(u, v) = L(v) \quad \forall v \in V,$$

is equivalent to minimizing the functional

$$F(v) = \frac{1}{2}a(v,v) - L(v)$$

over all functions $v \in V$. That is,

$$F(u) \le F(v) \quad \forall v \in V$$
.

- Much used in the early days of finite elements
- Still much used in structural analysis and elasticity
- Not as general as Galerkin's method (since a(u, v) = a(v, u))

0.4 Examples on variational formulations

Goal.

Derive variational formulations for many prototype differential equations in 1D that include

- variable coefficints
- mixed Dirichlet and Neumann conditions
- nonlinear coefficients

0.4.1 Variable coefficient; problem

$$-\frac{d}{dx}\left(\alpha(x)\frac{du}{dx}\right) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u(L) = D.$$
 (35)

- Variable coefficient $\alpha(x)$
- Nonzero Dirichlet conditions at x = 0 and x = L
- Must have $\psi_i(0) = \psi_i(L) = 0$
- $V = \operatorname{span}\{\psi_0, \dots, \psi_N\}$
- $v \in V$: v(0) = v(L) = 0

$$u(x) = B(x) + \sum_{j \in I} c_j \psi_i(x)$$

$$B(x) = C + \frac{1}{L}(D - C)x$$

0.4.2 Variable coefficient; variational formulation (1)

$$R = -\frac{d}{dx} \left(a \frac{du}{dx} \right) - f$$

Galerkin's method:

$$(R, v) = 0, \quad \forall v \in V,$$

or with integrals:

$$\int_{\Omega} \left(\frac{d}{dx} \left(\alpha \frac{du}{dx} \right) - f \right) v \, \mathrm{d}x = 0, \quad \forall v \in V.$$

0.4.3 Variable coefficient; variational formulation (2)

Integration by parts:

$$-\int_{\Omega} \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) v \, dx = \int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} \, dx - \left[\alpha \frac{du}{dx} v \right]_{0}^{L}.$$

Boundary terms vanish since v(0) = v(L) = 0

Variational formulation.

Find $(u - B) \in V$ such that

$$\int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} dx = \int_{\Omega} f(x)v dx, \quad \forall v \in V,$$

Compact notation:

$$(\alpha u', v') = (f, v), \quad \forall v \in V$$

0.4.4 Variable coefficient; abstract notation

$$a(u, v) = L(v) \quad \forall v \in V,$$

$$a(u, v) = (\alpha u', v'), \quad L(v) = (f, v)$$

0.4.5 Variable coefficient; linear system

 $v = \psi_i$ and $u = B + \sum_j c_j \psi_j$:

$$(\alpha B' + \alpha \sum_{i \in I} c_j \psi'_j, \psi'_i) = (f, \psi_i), \quad i \in I.$$

Reorder to form linear system:

$$\sum_{j \in I} (\alpha \psi'_j, \psi'_i) c_j = (f, \psi_i) + (a(D - C)L^{-1}, \psi'_i), \quad i \in I.$$

This is $\sum_{i} A_{i,j} c_j = b_i$ with

$$A_{i,j} = (a\psi'_j, \psi'_i) = \int_{\Omega} \alpha(x)\psi'_j(x), \psi'_i(x) dx,$$

$$b_i = (f, \psi_i) + (a(D - C)L^{-1}, \psi'_i) = \int_{\Omega} \left(f(x)\psi_i(x) + \alpha(x)\frac{D - C}{L}\psi'_i(x) \right) dx.$$

0.4.6 First-order derivative in the equation and boundary condition; problem

$$-u''(x) + bu'(x) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u'(L) = E$$
(36)

New features:

- first-order derivative u' in the equation
- boundary condition with u': u'(L) = E

Initial steps:

- Must force $\psi_i(0) = 0$ because of Dirichlet condition at x = 0
- Boundary function: B(x) = C(L-x)/L
- No requirements on $\psi_i(L)$ (no Dirichlet condition at x=L)

0.4.7 First-order derivative in the equation and boundary condition; details

$$u = \frac{C}{L}(L - x) + \sum_{j \in I} c_j \psi_i(x)$$

Galerkin's method: multiply by v, integrate over Ω , integrate by parts.

$$(-u'' + bu' - f, v) = 0, \quad \forall v \in V,$$

$$(u', v') + (bu', v) = (f, v) + [u'v]_0^L, \quad \forall v \in V,$$

$$(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V,$$

0.4.8 First-order derivative in the equation and boundary condition; observations

$$(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V,$$

Important:

- $[u'v]_0^L = u'(L)v(L) = Ev(L)$ because v(0) = 0 and u'(L) = E
- The boundary term can be used to implement Neumann conditions
- Forgetting the boundary term implies the condition u' = 0 (!)
- \bullet Such conditions are called $natural\ boundary\ conditions$

0.4.9 First-order derivative in the equation and boundary condition; abstract notation

Abstract notation:

$$a(u, v) = L(v) \quad \forall v \in V,$$

where

$$a(u,v) = (u',v') + (bu',v), \quad L(v) = (f+C,v) + Ev(L)$$

0.4.10 First-order derivative in the equation and boundary condition; linear system

Insert $u = B + \sum_{j} c_j \psi_j$ and $v = \psi_i$:

$$\sum_{j \in I} \underbrace{((\psi'_j, \psi'_i) + (b\psi'_j, \psi_i))}_{A_{i,j}} c_j = \underbrace{(f, \psi_i) + (bCL^{-1}, \psi'_i) + E\psi_i(L)}_{b_i}$$

Observation: $A_{i,j}$ is not symmetric because of the term

$$(b\psi'_j, \psi_i) = \int_{\Omega} b\psi'_j \psi_i dx \neq \int_{\Omega} b\psi'_i \psi_j dx = (\psi'_i, b\psi_j)$$

0.4.11 Terminology: natural and essential boundary conditions

$$(u',v') + (bu',v) = (f,v) + u'(L)v(L) - u'(0)v(0)$$

- Note: forgetting the boundary terms implies u'(L) = u'(0) = 0 (unless prescribe a Dirichlet condition)
- \bullet Conditions on u' are simply inserted in the variational form and called *natural conditions*
- Conditions on u at x = 0 requires modifying V (through $\psi_i(0) = 0$) and are known as essential conditions

Lesson learned.

It is easy to forget the boundary term when integrating by parts. That mistake may prescribe a condition on u'!

0.4.12 Nonlinear coefficient; problem

$$-(\alpha(u)u')' = f(u), \quad x \in [0, L], \ u(0) = 0, \ u'(L) = E.$$
(37)

- V: basis $\{\psi_i\}_{i\in I}$ with $\psi_i(0)=0$ because of u(0)=0
- How does the nonlinear coefficient $\alpha(u)$ impact the variational formulation?

0.4.13 Nonlinear coefficient; variational formulation

Galerkin: multiply by v, integrate, integrate by parts

$$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} dx = \int_0^L f(u)v dx + [\alpha(u)vu']_0^L \quad \forall v \in V$$

- $\alpha(u(0))v(0)u'(0) = 0$ since v(0)
- $\alpha(u(L))v(L)u'(L) = \alpha(u(L))v(L)E$ since u'(L) = E

$$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} v \, dx = \int_0^L f(u)v \, dx + \alpha(u(L))v(L)E \quad \forall v \in V$$

or

$$(\alpha(u)u', v') = (f(u), v) + \alpha(L)v(L)E \quad \forall v \in V$$

0.4.14 Nonlinear coefficient; where does the nonlinearity cause challenges?

- Abstract notation: no a(u, v) and L(v) because a and L are nonlinear
- Abstract notation: $F(u; v) = 0 \ \forall v \in V$
- What about forming a linear system? We get a nonlinear system of algebraic equations
- Must use methods like Picard iteration or Newton's method to solve nonlinear algebraic equations
- But: the variational formulation was not much affected by nonlinearities

0.4.15 Computing with Dirichlet and Neumann conditions; problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, 1], \quad u'(0) = C, \ u(1) = D$$

- Use a global polynomial basis $\psi_i \sim x^i$ on [0,1]
- Because of u(1) = D: $\psi_i(1) = 0$
- Basis: $\psi_i(x) = (1-x)^{i+1}, i \in I$
- \bullet B(x) = Dx

0.4.16 Computing with Dirichlet and Neumann conditions; details

$$A_{i,j} = (\psi'_j, \psi'_i) = \int_0^1 \psi'_i(x)\psi'_j(x)dx = \int_0^1 (i+1)(j+1)(1-x)^{i+j}dx,$$

$$b_i = (2, \psi_i) - (D, \psi_i') - C\psi_i(0)$$

=
$$\int_0^1 (2(1-x)^{i+1} - D(i+1)(1-x)^i) dx - C\psi_i(0)$$

Can easily do the integrals with sympy. N = 1:

$$\begin{pmatrix} 1 & 1 \\ 1 & 4/3 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} -C+D+1 \\ 2/3-C+D \end{pmatrix}$$
$$c_0 = -C+D+2, \quad c_1 = -1,$$

$$u(x) = 1 - x^2 + D + C(x - 1)$$
 (exact solution)

0.4.17 When the numerical method is exact

Let

$$u = B + F$$
, $F \in Va(B + F, v) = L(v)$ $\forall v \in Vu_e = B + E$, $E \in Va(B + E, v) = L(v)$ $\forall v \in Vu_e = B + E$

Subtract: a(F - E, v) = 0 and E = F.

Apart from boundary conditions, u_e lies in the same as we seek u. Then $u = u_e$.

!split ====== Computing with finite elements ======

Tasks:

* Address the model problem -u''(x) = 2, u(0) = u(L) = 0 * Uniform finite element mesh with P1 elements * Show all finite element computations in detail

!split ====== Variational formulation, finite element mesh, and basis ======

$$-u''(x) = 2$$
, $x \in (0, L)$, $u(0) = u(L) = 0$,

Variational formulation:

$$(u', v') = (2, v) \quad \forall v \in V$$

Since u(0) = 0 and u(L) = 0, we must force

$$v(0) = v(L) = 0, \quad \psi_i(0) = \psi_i(L) = 0$$

Use finite element basis, but exclude φ_0 and φ_{N_n} since these are not 0 on the boundary:

$$\psi_i = \varphi_{i+1}, \quad i = 0, \dots, N = N_n - 2$$

$$u = \sum_{i \in I} c_j \varphi_{\nu(i)}, \quad i = 0, \dots, N, \quad \nu(j) = j + 1$$

Irregular numbering: more complicated $\nu(j)$ mapping

0.4.18 Computation in the global physical domain; formulas

$$A_{i,j} = \int_0^L \varphi'_{i+1}(x)\varphi'_{j+1}(x)dx, \quad b_i = \int_0^L 2\varphi_{i+1}(x)dx$$

 $i+1 \rightarrow i, j+1 \rightarrow j$

$$A_{i-1,j-1} = \int_0^L \varphi_i'(x)\varphi_j'(x) dx, \quad b_{i-1} = \int_0^L 2\varphi_i(x) dx$$

0.4.19 Computation in the global physical domain; details

$$\varphi_i = \pm h^{-1}$$

$$A_{i-1,i-1} = h^{-2}2h = 2h^{-1}, \quad A_{i-1,i-2} = h^{-1}(-h^{-1})h = -h^{-1}, \quad A_{i-1,i} = A_{i-1,i-2}$$

$$b_{i-1} = 2(\frac{1}{2}h + \frac{1}{2}h) = 2h$$

0.4.20 Computation in the global physical domain; linear system

0.4.21 Comparison with a finite difference discretization

- Recall: $c_i = u(x_{i+1}) \equiv u_{i+1}$
- Write out a general equation at node i-1, expressed by u_i

$$-\frac{1}{h}u_{i-1} + \frac{2}{h}u_i - \frac{1}{h}u_{i+1} = 2h \tag{39}$$

The standard finite difference method for -u'' = 2 is

$$-\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_i - \frac{1}{h^2}u_{i+1} = 2$$

The finite element method and the finite difference method are identical in this example.

(Remains to study the equations involving boundary values)

0.4.22 Cellwise computations; formulas

- Repeat the previous example, but apply the cellwise algorithm
- Work with one cell at a time
- Thansform physical cell to reference cell $X \in [-1, 1]$

$$\begin{split} A_{i-1,j-1}^{(e)} &= \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{d}{dx} \tilde{\varphi}_r(X) \frac{d}{dx} \tilde{\varphi}_s(X) \frac{h}{2} \, \mathrm{d}X, \\ \tilde{\varphi}_0(X) &= \frac{1}{2} (1-X), \quad \tilde{\varphi}_1(X) = \frac{1}{2} (1+X) \\ &\frac{d\tilde{\varphi}_0}{dX} = -\frac{1}{2}, \quad \frac{d\tilde{\varphi}_1}{dX} = \frac{1}{2} \end{split}$$

From the chain rule

$$\frac{d\tilde{\varphi}_r}{dx} = \frac{d\tilde{\varphi}_r}{dX}\frac{dX}{dx} = \frac{2}{h}\frac{d\tilde{\varphi}_r}{dX}$$

0.4.23 Cellwise computations; details

$$A_{i-1,j-1}^{(e)} = \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{2}{h} \frac{d\tilde{\varphi}_r}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_s}{dX} \frac{h}{2} \, \mathrm{d}X$$
$$b_{i-1}^{(e)} = \int_{\Omega^{(e)}} 2\varphi_i(x) \, \mathrm{d}x = \int_{-1}^1 2\tilde{\varphi}_r(X) \frac{h}{2} \, \mathrm{d}X, \quad i = q(e,r), \ r = 0, 1$$

Must run through all r, s = 0, 1 and r = 0, 1 and compute each entry in the element matrix and vector:

$$\tilde{A}^{(e)} = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(e)} = h \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \tag{40}$$

0.4.24 Cellwise computations; details of boundary cells

- The boundary cells involve only one unknown
- $\Omega^{(0)}$: left node value known, only a contribution from right node
- $\Omega^{(N_e)}$: right node value known, only a contribution from left node

$$\tilde{A}^{(e)} = \frac{1}{h} (1), \quad \tilde{b}^{(e)} = h (1), \quad e = 0, \ e = N_e$$

Only one degree of freedom ("node") in these cells (r = 0)

0.4.25 Cellwise computations; assembly

4 P1 elements:

```
vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]]
```

Python code for the assembly algorithm:

Result: same linear system

0.5 Boundary conditions: specified nonzero value

0.5.1 General construction of a boundary function

- B(x) is not always easy to construct (extend to the interior of Ω), at least not in 2D and 3D
- With finite element φ_i , B(x) can be constructed in a completely general way
- I_b : set of indices with nodes where u is known
- U_i : Dirichlet value of u at node $i, i \in I_b$

$$B(x) = \sum_{j \in I_b} U_j \varphi_j(x), \tag{41}$$

1D: $I_b = \{1, N_n\}$

$$u(x) = U_0 \varphi_0(x) + U_{N_n} \varphi_{N_n}(x) + \sum_{j \in I} c_j \varphi_{\nu(j)}, \quad \nu(j) = j + 1, \ N = N_n - 2$$
 (42)

0.5.2 Example with two Dirichlet values; variational formulation

$$-u'' = 2$$
, $u(0) = C$, $u(L) = D$

$$(u', v') = (2, v) \quad \forall v \in V$$

Insert $u = B + \sum_{j} c_{j} \psi_{j}$ in variational formulation:

$$A_{i,j} = \int_0^L \psi_i'(x)\psi_j'(x) dx, \quad b_i = \int_0^L (f(x) - B'(x))\psi_i(x) dx$$

0.5.3 Example with two Dirichlet values; details

$$\psi_i = \varphi_{i+1}, i = 0, \dots, N = N_n - 2$$

$$u(x) = \underline{0 \cdot \varphi_0 + D\varphi_{N_n}}_{B(x)} + \sum_{j \in I} c_j \varphi_{j+1} \qquad = D\varphi_{N_n} + c_0 \varphi_1 + c_1 \varphi_2 + \dots + c_N \varphi_{N_n-1}.$$

$$A_{i-1,j-1} = \int_0^L \varphi_i'(x)\varphi_j'(x)\,\mathrm{d}x, \quad b_{i-1} = \int_0^L (f(x) - D\varphi_{N_n}'(x))\varphi_i(x)\,\mathrm{d}x,$$

for $i, j = 1, \dots, N + 1 = N_n - 1$.

New boundary term from B': -D/2

0.5.4 Example with two Dirichlet values; cellwise computations

- Element matrices as in the previous example (with u = 0 on the boundary)
- New element vector

$$\tilde{b}_0^{(e)} = \int_{-1}^1 \left(f - D \frac{2}{h} \frac{\tilde{\varphi}_1}{dX} \right) \tilde{\varphi}_0 \frac{h}{2} dX = \left(\frac{h}{2} (2 - D \frac{2}{h} \frac{1}{2}) \int_{-1}^1 \tilde{\varphi}_0 dX = h - D/2, \quad e = N_e = N_n - 1 \right)$$

0.5.5 Modification of the linear system; ideas

- Method 1: incorporate Dirichlet values through a B(x) function and demand $\psi_i = 0$ where Dirichlet values apply
- Method 2: drop B(x), drop demands to ψ_i , just assemble as if there were no Dirichlet conditions, and modify the linear system instead

Method 2: $\psi_i = \varphi_i$

$$u(x) = \sum_{j \in I} c_j \varphi_j(x), \quad I = \{0, \dots, N = N_n\}$$
 (43)

u is treated as unknown at x = 0 and x = L

0.5.6 Modification of the linear system; linear system

$$-u'' = 2$$
, $u(0) = 0$, $u(L) = D$

$$\frac{1}{h} \begin{pmatrix}
1 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
c_0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_N
\end{pmatrix}
= \begin{pmatrix}
h \\ 2h \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 2h \\ h
\end{pmatrix}$$
(44)

0.5.7 Modification of the linear system; modifications

- Dirichlet condition $u(x_i) = U_i$ means $c_i = U_i$ (since $c_i = u(x_i)$)
- Replace first row by $c_0 = 0$
- Replace last row by $c_N = D$

$$\frac{1}{h} \begin{pmatrix}
1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_N
\end{pmatrix} = \begin{pmatrix}
0 \\ 2h \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 2h \\ D
\end{pmatrix}$$
(45)

0.5.8 Modification of the linear system; element matrix/vector

In cell 0 we know u for local node (degree of freedom) r=0 and replace the first cell equation by $\tilde{c}_0=0$:

$$\tilde{A}^{(0)} = A = \frac{1}{h} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(0)} = \begin{pmatrix} 0 \\ h \end{pmatrix}$$

$$\tag{46}$$

In cell N_e we know u for local node r=1 and replace the last equation in the cell system by $\tilde{c}_1=D$:

$$\tilde{A}^{(N_e)} = A = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad \tilde{b}^{(N_e)} = \begin{pmatrix} h \\ D \end{pmatrix}$$

$$\tag{47}$$

0.5.9 Symmetric modification of the linear system; algorithm

- The modification above destroys symmetry of the matrix: $A_{0,1} \neq A_{1,0}$)
- Symmetry is often important in 2D and 3D (faster computations)
- A more complex modification preserves symmetry

Algorithm for incorporating $c_i = U_i$:

- 1. Subtract column i times U_i from the right-hand side
- 2. Zero out column and row no i
- 3. Place 1 on the diagonal
- 4. Set $b_i = U_i$

0.5.10 Symmetric modification of the linear system; example

$$\frac{1}{h} \begin{pmatrix}
1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 2 & -1 & \ddots & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
c_0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_N
\end{pmatrix}
= \begin{pmatrix}
0 \\ 2h \\ \vdots \\ \vdots \\ \vdots \\ 2h + D/h \\ D
\end{pmatrix}$$
(48)

0.5.11 Modification of the element matrix and vector

- Modification of the linear system can be done in the the element matrix and vector instead
- Exactly the same procedure

Last degree of freedom in the last element is prescribed:

$$\tilde{A}^{(N-1)} = A = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad \tilde{b}^{(N-1)} = \begin{pmatrix} h \\ D \end{pmatrix}$$

$$\tag{49}$$

Or symmetric modification:

$$\tilde{A}^{(N-1)} = A = \frac{1}{h} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \tilde{b}^{(N-1)} = \begin{pmatrix} h + D/h \\ D \end{pmatrix}$$
 (50)

0.6 Boundary conditions: specified derivative

Focus: how to incorporate u'(0) = C with finite elements.

Index

integration by parts, 10

test function, 5 test space, 5 trial function, 5 trial space, 5