Física Geral I: Lista de exercícios 5

Entregar antes do 4 de julho de 2018

Instruções

- Fazer a questão correspondente ao último algarismo do seu RA. Se esse for 0, faça a questão 10.
- Além da questão anterior, faça uma outra questão de sua escolha.

Questões

 Uma bola, inicialmente em repouso, desliza por um tobogão sem atrito de acordo com a figura 1.
Determine a altura mínima h a partir da qual a bola deve ser solta para que ela consiga passar por cima do muro de 3 m de altura.

2. Uma bola, inicialmente em repouso, é solta desde uma altura $h=10\,\mathrm{m}$ e desliza por um tobogão de superfície rugosa de acordo com a figura 1. Determine o trabalho realizado pela força de atrito sobre a bola devido ao tobogão sabendo que a bola colide no muro de $3\,\mathrm{m}$ de altura logo de $0.4\,\mathrm{s}$ após sua saída do tobogão. (Massa da bola: $1\,\mathrm{kg}$).

3. Na figura 2, um bloco vai subir uma colina cujo ponto mais alto é horizontal. Determine a velocidade mínima com a qual o bloco deve subir a colina para que ele não caia no precipício de 6 m de comprimento. (Despreze atritos)

4. Uma força de 20 N é aplicada sobre um bloco de 5 kg, inicialmente em repouso, que pode deslizar por uma superfície reta que tem uma parte lisa e outra rugosa (ver figura 3). (i) Se a distância entre os pontos 1 e 2 (parte lisa) é de 4 m, determine a velocidade do bloco no ponto 2. (ii) Se depois do ponto 2 não se aplica mais a força sobre o bloco, determine a distância que ele percorre na parte rugosa até se deter sabendo que o coeficiente de atrito cinético nessa parte é μ_c = 0,8.

5. A figura 4 mostra um bloco de 5 kg no ponto 1 que está inicialmente em repouso comprimindo uma mola, cuja constante é $k=10\,\mathrm{N/m}$. (i) Determine a distância que a mola deve ser comprimida, em relação ao seu ponto de equilíbrio, para que o bloco consiga andar 10 m na parte rugosa antes de se deter. (Coeficiente de atrito cinético $\mu_c=0.6$). Determine também a velocidade do bloco no ponto 2.

Figura 4

6. A figura 5 mostra uma esfera A sobre uma mesa a qual está unida a uma outra esfera B por uma corda que passa por um orifício da mesa. A esfera A desliza sem atrito sobre a mesa realizando um movimento circular uniforme de raio $R=0.5\,\mathrm{m}$. Se as massas das esferas são $m_A=0.2\,\mathrm{kg}$ e $m_B=2\,\mathrm{kg}$ e a esfera B está a uma certa altura do chão, determine o módulo da velocidade da esfera A para que a esfera B não caia.

Figura 5

7. A figura 6 mostra um arame em forma de V e um anel que pode deslizar por uma das partes do arame sem atrito. Determine o valor da velocidade angular constante ω para que o anel permaneça girando a uma altura $h=1\,\mathrm{m}$.

8. Um bloco de 2 kg está inicialmente em repouso no ponto mais alto de um plano inclinado (ver figura 7). Determine a constante da mola k para que o bloco comprima a mola 1 m ao se deter. (Despreze atrito)

Figura 7

9. Na figura 8, um bloco de 1 kg de massa sai do ponto 1 com uma velocidade inicial v. Qual deve ser o valor mínimo de v para que o bloco consiga chegar no ponto 2? (Coeficiente de atrito cinético da parte rugosa: $\mu_c = 0.6$).

 Usando os dados do exercício anterior, determine a velocidade inicial do bloco para que ele se detenha na metade da superfície rugosa.