Estimativa do "verdadeiro" valor de uma grandeza

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 valor midio

valon médio (estimativa do "vadadeio" valon)

Pesvio padrão:
$$\sigma_{\mathbf{x}} = \sqrt{\frac{1}{N-1} \sum_{i} (x_i - \bar{x}_i)^2}$$

significa que a probabilidade de, con una unica medida, o vulor dessa medida se encentra no intervol $x \pm \sigma_x$

Dervio padrão de média:
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{N}}$$

Este parâmeto significa que ha um probabilidade de (8%), de que o valor midro esteja afastado até of do verdadeiro valor de X.

Exemplo:

Intervalo de tempo medido usando um cronómetro com erro de leitura de 0.01 s							
		valor					ĺ
		médio					l
ensaio	t (s)	(s)	desvio (s)	desvio ² (s ²)	desvio padrão (s)	desvio padrão da média (s)	l
1	5.02	5.007	0.01	0.000168999999999997	- 0.167865687	0.053083791	ĺ
2	4.81		-0.20	0.038809000000000000			ĺ
3	4.98		-0.03	0.000728999999999959			ĺ
4	5.12		0.11	0.012769000000000100			ĺ
5	5.05		0.04	0.001849000000000010			ĺ
6	5.27		0.26	0.0691690000000000000			ĺ
7	4.71		-0.30	0.088208999999999800			ĺ
8	5.15		0.14	0.0204490000000000200			ĺ
9	4.88		-0.13	0.016128999999999900			ĺ
10	5.08		0.07	0.0053290000000000060			Ī

Medidan indirectar.

= + (x1, x2, x3,...)

σ[‡] = .

Tx2 } conhecidos (medidas directas)

$$\boldsymbol{\alpha}^{\frac{1}{2}} = \left[\left(\frac{2x}{2} \right)_{j}^{x} \boldsymbol{\alpha}_{x_{1}}^{x_{1}} + \left(\frac{3x}{2} \right)_{j}^{x_{2}} \boldsymbol{\alpha}_{x_{2}}^{x_{3}} + \cdots \right]_{\sqrt{2}}$$

derivada parcial

ulita-se a derivada em ndem a x, (x, x, ... são contrata no calento da derivada) Propagação de erros

Ex.: V = V(a, b, c)

$$\sigma_{v} = \left[\left(\frac{\partial v}{\partial v} \right)^{2} \sigma_{x}^{2} + \left(\frac{\partial v}{\partial v} \right)^{2} \sigma_{y}^{2} + \left(\frac{\partial v}{\partial v} \right)^{2} \sigma_{c}^{2} \right]^{1/2}$$

$$= \left[\left(bc \right)^{2} \sigma_{x}^{2} + \left(ac \right)^{2} \sigma_{y}^{2} + \left(ab \right)^{2} \sigma_{c}^{2} \right]^{1/2}$$

$$\left(\frac{\alpha^{2}}{\alpha^{2}}\right)_{J} = \frac{(\alpha^{2})_{J}}{(\alpha^{2})_{J}} + \frac{\alpha^{2}}{\alpha^{2}} + \frac{(\alpha^{2})_{J}}{(\alpha^{2})_{J}} + \frac{\alpha^{2}}{\alpha^{2}} + \frac{(\alpha^{2})_{J}}{(\alpha^{2})_{J}} + \alpha^{2}$$

$$= \left(\frac{\alpha^{2}}{\alpha^{2}}\right)_{J} + \left(\frac{\alpha^{2}}{\alpha^{2}}\right)_{J} + \left(\frac{\alpha^{2}}{\alpha^{2}}\right)_{J} + \left(\frac{\alpha^{2}}{\alpha^{2}}\right)_{J} + \frac{\alpha^{2}}{\alpha^{2}} + \frac{\alpha^{2}}{\alpha^{2}$$

 $\frac{\sigma_{V}}{V} = erro ulativo de V$

$$\frac{\sigma_{A}}{\sigma} = \frac{1}{\left(\frac{\sigma_{a}}{\sigma}\right)^{2} + \left(\frac{\sigma_{b}}{\sigma}\right)^{2} + \left(\frac{\sigma_{c}}{\sigma}\right)^{2}}{\sqrt{2}} \sqrt{2}$$