Data Sheet

CIS 3223 Homework 6

Name:

Dr Anthony Hughes

Temple ID (last 4 digits:

Simple non-graphing calculator

Make:

1 (12 pts) Consider the array H = [5, 13, 11, 7, 4, 3, 1, 6, 4, 2] of integers.

For heapsort implemented using a binary tree, what is the heap H after it has been heapified?

$$H = \begin{bmatrix} 13 & 7 & 11 & 6 & 4 & 3 & 1 & 5 & 4 & 2 \end{bmatrix}$$

What is the heap H after two complete cycles of heapsort?

2 (4 pts) Consider a node at position $j, j \ge 2$, in a complete 3-ary tree. Find the positions of its parent and its three children. Note that the position of the root of the tree is 1.

position of parent: $\frac{n+1}{3}$

positions of children: 3n-1

3n 3n+1

A	В	С	D	E	Z	Delete
0	∞	∞	∞	∞	∞	A
X	2(A)	6(A)	∞	∞	3(A)	В
X	X	5(B)	4(B)	∞	3(A)	Z
×	>=	5(B)	4(B)	9(z)	×	D
×	*	5(B)	×	7(E)	×	C
4	>	×	×	て(区)	×	E
×	×	~	~	~	×	~

parent	A	A	13	B	D	A
dist	0	2	5	4	7	3
vertex	A	В	C	D	E	Z

Draw a spanning tree (horizontally and add the distances.

4 (18 pts) Run the first 6 steps of Prim's algorithm on Graph K starting at A. The first two steps have been completed.

$$deletemin \rightarrow A$$
 Children of A updated: $cost(B) = 5$, $cost(D) = 7$, $cost(S) = 6$

$$\mathtt{deletemin} \to \mathtt{B} \quad \operatorname{AB} \operatorname{added} \operatorname{to} \operatorname{tree}$$

Children of B updated:
$$cost(C) = 3$$
, $cost(S) = 5$, $cost(T) = 6$

deletemin
$$\rightarrow C$$
 cuplated: $cost(F) = 3$, $cost(T) = 5$

. ---- complation

List the 6 vertices deleted:
$$\underline{A}$$
 \underline{B} \underline{C} \underline{F} \underline{E} \underline{T}

- 5 (16 pts) Consider graph H.
- (a) Run the DFS topological ordering algorithm on the graph. Whenever there is a choice, use alphabetical ordering.

(b) Redraw the graph with the vertices listed in descending post order (topological sort).

