```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

Out[3]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
	0	1	lounge	51	882	25000	1	44.907242	8.611560
	1	2	рор	51	1186	32500	1	45.666359	12.241890
	2	3	sport	74	4658	142228	1	45.503300	11.417840
	3	4	lounge	51	2739	160000	1	40.633171	17.634609
	4	5	рор	73	3074	106880	1	41.903221	12.495650
	1533	1534	sport	51	3712	115280	1	45.069679	7.704920
	1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
	1535	1536	pop	51	2223	60457	1	45.481541	9.413480
	1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
	1537	1538	рор	51	1766	54276	1	40.323410	17.568270
	1538 r	ows ×	9 colun	nns					

In [4]: df=df[['engine_power','age_in_days']]
 df.columns=['Eng','Age']

In [5]: df.head(10)

Out[5]:		Eng	Age
	0	51	882
	1	51	1186
	2	74	4658
	3	51	2739
	4	73	3074
	5	74	3623
	6	51	731
	7	51	1521
	8	73	4049
	9	51	3653

In [6]: sns.lmplot(x="Eng",y="Age",data=df,order=2,ci=None)

Out[6]: <seaborn.axisgrid.FacetGrid at 0x1f6de2f9ae0>


```
In [7]: df.describe()
```

```
Out[7]:
```

```
Eng
                          Age
count 1538,000000 1538,000000
        51.904421 1650.980494
mean
         3.988023 1289.522278
  std
        51.000000
                    366.000000
 min
 25%
        51.000000
                    670.000000
 50%
        51.000000 1035.000000
 75%
        51.000000 2616.000000
        77.000000 4658.000000
 max
```

```
In [8]: df.info()
```

```
In [9]: | df.fillna(method='ffill',inplace=True)
```

C:\Users\Welcome\AppData\Local\Temp\ipykernel_7088\4116506308.py:1: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

```
In [10]: x=np.array(df['Eng']).reshape(-1,1)
y=np.array(df['Age']).reshape(-1,1)
```

```
In [11]: | df.dropna(inplace=True)
```

C:\Users\Welcome\AppData\Local\Temp\ipykernel_7088\1379821321.py:1: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [12]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print(reg.score(X_test,y_test))
```

0.09401800871027433

```
In [13]: y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```



```
In [14]: df500=df[:][:500]
sns.lmplot(x="Eng",y="Age",data=df500,order=1,ci=None)
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x1f6e5795ae0>


```
In [15]: df500.fillna(method='ffill',inplace=True)
    X=np.array(df500['Eng']).reshape(-1,1)
    y=np.array(df500['Age']).reshape(-1,1)
    df500.dropna(inplace=True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    print("Regression:",regr.score(X_test,y_test))
    y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```

Regression: 0.031001458410941818


```
In [16]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    mode1=LinearRegression()
    mode1.fit(X_train,y_train)
    y_pred=mode1.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.031001458410941818

```
In [ ]:
```