Introduction to Relational Algebra

Title:

What is Relational Algebra?

Content:

- A procedural query language used to query relational databases.
- Operates on **relations** (tables) and produces new relations as results.
- It serves as the theoretical foundation for SQL.

Key Points:

- Composed of a set of operators.
- Provides a formal framework for manipulating relational data.

Basic Operators in Relational Algebra

Title:

Basic Operators

Content:

• Selection (σ):

Filters rows based on a condition.

• Projection (π):

Extracts specific columns.

• Union (∪):

Combines results of two relations, removing duplicates.

• Set Difference (-):

Returns rows in the first relation but not in the second.

• Cartesian Product (×):

Combines every row of one relation with every row of another.

Selection (σ) Operator

Title:

Selection Operator (σ)

Content:

• Definition:

Filters rows based on a condition (predicate).

• Syntax:

 σ _condition(Relation)

- **Example:** σ_age > 30(Employees)
- Result:

Returns all employees older than 30 years.

Projection (π) Operator

Title:

Projection Operator (π)

Content:

Definition:

Extracts specific columns from a relation.

• Syntax:

 π _column1, column2, ...(Relation)

- **Example:** π_name, salary(Employees)
- Result:

Returns the names and salaries of all employees.

Union (∪) Operator

Title:

Union Operator (∪)

Content:

• Definition:

Combines two relations that have the same set of attributes, eliminating duplicates.

• Syntax:

Relation1 U Relation2

• **Example:** Employees ∪ Contractors

• Result:

Returns all unique rows from both employees and contractors.

Set Difference (-) Operator

Title:

Set Difference Operator (-)

Content:

Definition:

Returns rows in the first relation but not in the second.

• Syntax:

Relation1 - Relation2

- **Example:** Employees RetiredEmployees
- Result:

Returns all employees who are not retired.

Cartesian Product (×) Operator

Title:

Cartesian Product Operator (x)

Content:

Definition:

Combines each row of one relation with each row of another.

• Syntax:

Relation1 × Relation2

• **Example:** Employees × Departments

Result:

Returns every combination of an employee with a department.

Advanced Operators in Relational Algebra

Title:

Advanced Operators

Content:

• Rename (ρ):

Renames attributes or relations.

• Intersection (∩):

Finds common rows between two relations (also can be written as (Relation1 – (Relation1 – Relation2))).

Join (⋈):

Combines rows from two relations based on a condition (like matching keys).

Join (⋈) Operator

Title:

Join Operator (⋈)

Content:

Definition:

Combines two relations based on a matching condition, typically using a foreign key relationship.

• Syntax:

Relation1 ⋈ Condition Relation2

• **Example:** Employees ⋈ Employees.DepartmentID = Departments.DepartmentID Departments

• Result:

Returns a combined relation of employees with their respective departments.

Conclusion

Title:

Summary of Relational Algebra

Content:

- Relational Algebra is foundational in querying relational databases.
- It uses a small set of powerful operators to perform operations on data.
- Each operator can be combined to create complex queries.

Takeaway:

It serves as the basis for SQL and offers a formal method for database manipulation.