Московский государственный университет имени М.В. Ломоносова

Биологический факультет

Кафедра биоинженерии

Оценка влияния вариантов фенолов на динамику поливиниловых спиртов в водном растворе

студента IV курса Бова Максим Георгиевич

Руководители: к. ф.-м. н. Армеев Григорий Алексеевич аспирант Кристовский Николай Всеволодович

Введение

Химическая формула ПВС

Области применения поливинилового спирта

Цели и задачи

Цель:

Целью данной работы является изучение влияния фенолов на динамику растворов поливинилового спирта.

Задачи:

- Подготовить протокол параметризации и сборки систем, в состав которых входят молекулы полимеров, фенолов и воды.
- Провести расчеты молекулярной динамики для 5 видов систем: полимер в воде, полимер в растворе с фенолом, катехолом, резорцином и гидрохиноном.
- Исследовать структурные и физико-химические свойства молекулярных систем на основе анализа траекторий молекулярной динамики.

Структурные данные о цепи полимера ПВС были получены от коллег из института элементоорганических соединений им. А. И. Несмеянова РАН.

- Молекулярная масса 86000 г/моль
- Методом ¹³С ЯМР были полученные данные о составе молекулы: 55% синдиотактических участков, 18% изотактических участков и 27% атактических участков.

Схема генерации последовательности конформаций

Для проведения параметризации полимерная цепь была разделена на молекулярные блоки – составные части, по которым будет задаваться общая топология цепи.

Фенолы параметризовались по протоколу для малых молекул.

Гидрохинон

Схема протокола параметризации

Детали вычислений

- Была подготовлена система с 10 цепями полимеров длиной 53 мономера, траектории молекулярной динамики рассчитывались с использованием программного пакета GROMACS.
- Был проведен классический расчет молекулярной динамики, система не содержала ионов и моделировалась с использованием TIP3P. В качестве силового поля использовался GAFF2.
- В системы, где необходимо добавлялись фенолы, их число на систему составило 35 молекул.
- Протоколы выполнялись в следующем порядке: минимизаци, эквилибрация 1, алгоритм имитации отжига, эквилибрация 2, подготовительный запуск динамики, создание 5 реплик системы и запуск динамики.

Система после минимизации и эквилибрации

Для чистого ПВС (M_w = 20000 г/моль) R_g имеет значение 22 ± 1 Å для растворов 7-11% (w/w). В вычислительных экспериментах получены значения 1,2 Å

Статистические параметры

Система	μ	σ	Полуширина
Контроль	13,41	0,15	0,36
Фенол	13,13	0,1	0,23
Катехол	12,94	0,16	0,37
Резорцин	13,16	0,15	0,35
Гидрохинон	14,36	0,13	0,31

Распределение значений радиусов гираций

Источник: Nagarkar, Patel, 2019

Характеристические времена жизни

Система	$\tau_{_{\mathrm{внутр}}}$, пс	τ _{меж} , пс	τ _{вода} , пс
Контроль	91,77	126,34	15,3
Фенол	88,68	145,16	21,7
Катехол	85,1	114,72	23,52
Резорцин	94,98	101,22	17,34
Гидрохинон	76,30	95,45	21,7

Проведен анализ ANOVA для числа водородных связей, полученные значения p-value близки к 0, что свидетельствует о наличии статистически значимых различий.

Сравнения числа водородных связей

Для полученных систем был вычислен модуль Юнга через длину персистенции. В ходе данных расчетов был сделан ряд приближений: цепь полимера соответствует червеобразной модели (WLC), контурная длина полимерной цепи $L_c >> I_p$. Полученные данные оказались ниже экспериментальных значений.

Сравнение модулей Юнга различных систем

Выводы

- 1. Разработан и реализован универсальный протокол сборки молекулярных систем полимеров и модифицировано силовое поле Amber14SB для описания мономеров поливинилового спирта и фенольных соединений.
- 2. Разработанные параметры силового поля воспроизводят литературные данные по динамике поливиниловых спиртов.
- 3. Добавление различных вариантов фенолов изменяет характеристики систем:
 - 3.1. Плотность системы уменьшается в порядке: гидрохинон, вода, резорцин, фенол, катехол.
 - 3.2. Среднее число внутримолекулярных водородных связей уменьшается в порядке: вода, резорцин, фенол, катехол, гидрохинон.
 - 3.3. Среднее число межмолекулярных водородных связей уменьшается в порядке: фенол, вода, резорцин, гидрохинон, катехол.
 - 3.4. Среднее число водородных связей с водой уменьшается в порядке: гидрохинон, катехол, фенол, вода, резорцин.
 - 3.5. Среднее число водородных связей с фенолами уменьшается в порядке: гидрохинон, резорцин, катехол, фенол.

Спасибо за внимание!

Системы с гидрохиноном имеют самые свободные цепи, а самые свернутые у резорцина и катехола. Вода занимает промежуточное положение между группами.

Внутримолекулярные водородные связи

Характеристические времена

Внутримолекулярные водородные связи

Система	Вода	Фенол	Катехол	Резорцин	Гидрохинон
τ, пс	91,77	88,68	85,1	94,98	76,30

Межмолекулярные водородные связи

Характеристические времена

Система	Вода	Фенол	Катехол	Резорцин	Гидрохинон
т, пс	126,34	145,16	114,72	101,22	95,45

Водородные связи с молекулами воды

Характеристические времена

Система	Вода	Фенол	Катехол	Резорцин	Гидрохинон
т, пс	15,30	21,7	23,52	17,34	21,7

Водородные связи с молекулами фенолов

Выделяется 2 домена фенолов вокруг цепей полимеров. Наибольшая плотность наблюдается для катехола, наименьшая для резорцина.