Calculus II Homework Trigonometry review

1. Let $x \in (0,1)$. Express the following using x and $\sqrt{1-x^2}$.

Solution. 1.b. Let $y = \arcsin x$. Then $\sin y = x$, and we can draw a right triangle with opposite side length x and hypotenuse length 1 to find the other trigonometric ratios of y.

answer: $\sqrt{1-x^2}$

Then $\cos y = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$. Now we use the double angle formula to find $\sin(2\arcsin x)$.

$$\sin(2\arcsin x) = \sin(2y)$$

$$= 2\sin y \cos y$$

$$= 2x\sqrt{1 - x^2}.$$

Solution. 1.c. Use the result of Problem 1.b. This also requires the addition formula for sine:

$$\sin(A+B) = \sin A \cos B + \sin B \cos A,$$

and the double angle formula for cosine:

$$\cos(2y) = \cos^2 y - \sin^2 y.$$

1

$$\sin(3\arcsin x) = \sin(3y)$$

$$= \sin(2y + y)$$

$$= \sin(2y)\cos y + \sin y\cos(2y)$$

$$= (2\sin y\cos y)\cos y + \sin y(\cos^2 y - \sin^2 y)$$
Use addition formula
$$= 2\sin y\cos^2 y + \sin y\cos^2 y - \sin^3 y$$

$$= 3\sin y\cos^2 y - \sin^3 y$$

$$= 3\sin y(1 - \sin^2 y) - \sin^3 y$$

$$= 3x(1 - x^2) - x^3$$

$$= 3x - 4x^3.$$

The solution is complete. A careful look at the solution above reveals a strategy useful for problems similar to this one.

- (a) Identify the inverse trigonometric expression- $\arcsin x, \arccos x, \arctan x, \dots$ In the present problem that was $y = \arcsin x$.
- (b) The problem is therefore a trigonometric function of y.
- (c) Using trig identities and algebra, rewrite the problem as a trigonometric expression involving only the trig function that transforms y to x. In the present problem we rewrote everything using $\sin y$.
- (d) Use the fact that $\sin(\arcsin x) = x$, $\cos(\arccos x) = x$, ..., etc. to simplify.

Solution. 1.f We use the same strategy outlined in the end of the solution of Problem 1.c. Set $y = \arccos x$ and so $\cos(y) = x$. Therefore:

$$\begin{array}{lll} \sin(3y) & = & \sin(2y+y) \\ & = & \sin(2y)\cos y + \sin y\cos(2y) \\ & = & 2\sin y\cos y\cos y + \sin y(2\cos^2 y - 1) \\ & = & 2\sin y\cos^2 y + \sin y(2\cos^2 y - 1) \\ & = & \sin y(4\cos^2 y - 1) \\ & = & \sqrt{1-x^2}(4x^2 - 1) \end{array} \quad \text{use} \begin{array}{l} \cos y & = & x \\ \sin y & = & \sqrt{1-x^2} \end{array}$$

2. Express as the following as an algebraic expression of x. In other words, "get rid" of the trigonometric and inverse trigonometric expressions.

(a)
$$\cos^2(\arctan x)$$
.
$$\frac{z^{x-1} \wedge z_{\text{DMNSUE}}}{z_{\text{T}}} = \frac{1}{z_{\text{DMNSUE}}}$$
(b) $-\sin^2(\operatorname{arccot} x)$.
$$\frac{z^{x+1}}{z_{\text{T}}} = z_{\text{DMNSUE}}$$
(c) $\frac{1}{\cos(\operatorname{arcsin} x)}$.

Solution. 2.b. We follow the strategy outlined in the end of the solution of Problem 1.c. We set $y = \operatorname{arccot} x$. Then we need to express $-\sin^2 y$ via $\cot y$. That is a matter of algebra:

$$-\sin^{2}(\operatorname{arccot} x) = -\sin^{2} y$$

$$= -\frac{\sin^{2} y}{\sin^{2} y + \cos^{2} y}$$

$$= -\frac{1}{\frac{\sin^{2} y + \cos^{2} y}{\sin^{2} y}}$$

$$= -\frac{1}{1 + \cot^{2} y}$$

$$= -\frac{1}{1 + x^{2}}$$
Set $y = \operatorname{arccot} x$

$$use $\sin^{2} y + \cos^{2} y = 1$
Substitute back $\cot y = x$$$

3. Rewrite as a rational function of t. This problem will be later used to derive the Euler substitutions (an important technique for integrating).

(a)
$$\cos(2 \arctan t)$$
.

(g)
$$\cos(2\operatorname{arccot} t)$$
.

answer:
$$\frac{2}{1+1}$$

answer: $\frac{12}{1+1}$

answer: $\frac{1-\frac{2}{1}}{1+\frac{2}{1}}$: iswers

(b)
$$\sin(2 \arctan t)$$
.

(h)
$$\sin(2\operatorname{arccot} t)$$
.

(c)
$$\tan (2 \arctan t)$$
.

(i)
$$\tan (2 \operatorname{arccot} t)$$
.

answer:
$$\frac{2t}{1-t^2}$$

answer: $\frac{2z}{1-2z}$:rowers

answer: $\frac{22}{1+2}$

(d)
$$\cot (2 \arctan t)$$
.

(j)
$$\cot (2 \operatorname{arccot} t)$$
.

answer:
$$rac{1}{2}\left(rac{1}{4}-rac{1}{4}
ight)$$
 .

answer: $\frac{1}{2} \left(t - \frac{1}{2}\right)$

(e)
$$\csc(2 \arctan t)$$
.

(k)
$$\csc(2\operatorname{arccot} t)$$
.

answer:
$$\frac{1}{2} \left(t + \frac{1}{t}\right)$$

answer: $\frac{1}{2} \left(t + \frac{1}{2}\right)$

(f)
$$\sec (2 \arctan t)$$
.

(1)
$$\sec (2 \operatorname{arccot} t)$$
.

answer:
$$\frac{2j+1}{2j-1}$$

answer: $\frac{1+2}{1-2}$:

Solution. 3.a Set $z = \arctan t$, and so $\tan z = t$. Then

$$\cos(2 \arctan t) = \cos(2z)$$

$$= \frac{\cos(2z)}{1}$$

$$= \frac{\cos^2 z - \sin^2 z}{\cos^2 z + \sin^2 z}$$

$$= \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\sin^2 z + \cos^2 z) \frac{1}{\cos^2 z}}$$

$$= \frac{1 - \tan^2 z}{1 + \tan^2 z}$$

$$= \frac{1 - t^2}{1 + t^2}.$$

use double angle formulas and $1 = \sin^2 z + \cos^2 z$

divide top and bottom by $\cos^2 z$

Solution. 3.d Set $z = \arctan t$, and so $\tan z = t$. Then

$$\cot(2 \arctan t) = \cot(2z)$$

$$= \frac{\cos(2z)}{\sin(2z)}$$

$$= \frac{\cos^2 z - \sin^2 z}{2 \sin z \cos z}$$

$$= \frac{1 - \tan^2 z}{2 \tan z}$$

$$= \frac{1 - t^2}{2t}$$

$$= \frac{1}{2} \left(\frac{1}{t} - t\right)$$

use double angle formulas

4. Compute the derivative (derive the formula).

(a) $(\arctan x)'$.

- $\frac{z^{x+1}}{1}$ hansue (d) $(\arccos x)'$.

 $\frac{1}{2x-1}\sqrt{1-1}$

(b) $(\operatorname{arccot} x)'$.

- $\frac{z^{x+1}}{1}$ (e) Let arcsec denote the inverse of the secant function. Compute $(\operatorname{arcsec} x)'$.

(c) $(\arcsin x)'$.

5. (a) Let $a+b \neq k\pi$, $a \neq k\pi + \frac{\pi}{2}$ and $b \neq k\pi + \frac{\pi}{2}$ for any $k \in \mathbb{Z}$ (integers). Prove that

$$\frac{\tan a + \tan b}{1 - \tan a \tan b} = \tan(a + b) \quad .$$

(b) Let x and y be real. Prove that, for $xy \neq 1$, we have

$$\arctan x + \arctan y = \arctan\left(\frac{x+y}{1-xy}\right)$$

if the left hand side lies between $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Solution. 5.a We start by recalling the formulas

$$cos(a+b) = cos a cos b - sin a sin b$$

$$sin(a+b) = sin a cos b + sin b cos a$$

These formulas have been previously studied; alternatively they follow from Euler's formula and the computation

$$\cos(a+b) + i\sin(a+b) = e^{i(a+b)} = e^{ia}e^{ib} = (\cos a + i\sin a)(\cos b + i\sin b)$$
$$= \cos a\cos b - \sin a\sin b + i(\sin a\cos b + \sin b\cos a)$$

Now 5.a is done via a straightforward computation:

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)} = \frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b - \sin a \sin b} = \frac{(\sin a \cos b + \sin b \cos a) \frac{1}{\cos a \cos b}}{(\cos a \cos b - \sin a \sin b) \frac{1}{\cos a \cos b}}$$

$$= \frac{\tan a + \tan b}{1 - \tan a \tan b}.$$
(1)

5.b is a consequence of 5.a. Let $a = \arctan x$, $b = \arctan y$. Then (??) becomes

$$\tan(\arctan x + \arctan y) = \frac{\tan(\arctan x) + \tan(\arctan y)}{1 - \tan(\arctan x)\tan(\arctan y)} = \frac{x + y}{1 - xy} ,$$

where we use the fact that $\tan(\arctan w) = w$ for all w. We recall that $\arctan(\tan z) = z$ whenever $z \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Now take \arctan on both sides of the above equality to obtain

$$\arctan x + \arctan y = \arctan \left(\frac{x+y}{1-xy}\right)$$
.