Eigenvalues and Eigenvectors (review):

Definition 1. An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \mathbf{v} for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nonzero (nontrivial) solution \mathbf{v} of $A\mathbf{v} = \lambda \mathbf{v}$; such a \mathbf{v} is called an *eigenvector corresponding to* λ .

Remark 1. From Definition-1, λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0} \tag{1}$$

has a nontrivial solution ($\mathbf{v} \neq \mathbf{0}$). Since \mathbf{v} is a nonzero vector, the matrix ($\mathbf{A} - \lambda \mathbf{I}$) must be singular (non-invertible). A matrix is singular if and only if its determinant is zero, thus, the eigenvalues of \mathbf{A} are the scalars (λ) for which

$$\det\left(\mathbf{A} - \lambda \mathbf{I}\right) = \mathbf{0}. \tag{2}$$

The determinant in (2) is a polynominal of degree n called *characteristic polynomial* of A. The eigenvalues of A are the roots of the *characteristic equation*. Since a polynomial of degree n has exactly n roots, a matrix of order n has n eigenvalues .

What does it mean for a matrix A to have an eigenvalue of 0?

This happens if and only if the equation

$$\mathbf{A}\mathbf{v} = 0\mathbf{v} \tag{3}$$

has a nontrivial solution (according to the Definition 1). But (3) is equivalent to $\mathbf{A}\mathbf{v} = \mathbf{0}$, which has a nontrivial solution if only if \mathbf{A} is not *invertible*.

Remark 2. Let the matrix A of order n have n distinct eigenvalues as

$$\mathbf{V} = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$$
 and $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$,

and hence **A** has a complete system of eigenpairs $(\lambda_i, \mathbf{v}_i)$, i = 1, ..., n. The the individual relations $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$ can be combined in the matrix equation

$$\mathbf{A}\mathbf{V} = \mathbf{V}\mathbf{\Lambda}.\tag{4}$$

Because the eigenvectors \mathbf{v}_i are linearly independent, the matrix \mathbf{V} is nonsingular. Hence, \mathbf{A} is diagonalizable and we may write

$$\mathbf{V}^{-1}\mathbf{A}\,\mathbf{V} = \mathbf{\Lambda}\,. \tag{5}$$

Proposition 1. Let a $n \times n$ matrix A be diagonalizeable, it is

$$\mathbf{A}^{k} = (\mathbf{V}\Lambda\mathbf{V}^{-1})^{k}$$

$$= (\mathbf{V}\Lambda\mathbf{V}^{-1}) \cdots (\mathbf{V}\Lambda\mathbf{V}^{-1})$$

$$= \mathbf{V}\Lambda^{k}\mathbf{V}^{-1}$$

$$= \mathbf{V} \operatorname{diag}(\lambda_{1}^{k}, \dots, \lambda_{n}^{k}) \mathbf{V}^{-1}.$$
(6)

For the case of k < 0, (6) is hold only if **A** is invertible, i.e. all $\lambda_i \neq 0$.

Definition 2. A matrix $\mathbf{B}_{n \times n}$ is said to be similar to a matrix $\mathbf{A}_{n \times n}$ if there exists a nonsingular square matrix $\mathbf{T}_{n \times n}$ such that $\mathbf{B} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$.

The transformation $A \to T^{-1}AT$ is called a *similarity transformation* by the *similarity matrix* T. The relation "B is similar to A" is sometimes abbreviated $B \sim A$.

Note 1. Defining $\mathbf{Q} = \mathbf{T}^{-1}$ similarity transformation can be equivalently rewritten as $\mathbf{B} = \mathbf{Q}\mathbf{A}\mathbf{Q}^{-1}$, where (now) Q is the *similarity matrix*.

Note 2. Recall the following properties of determinant of square matrices,

- $\det \mathbf{A} \det \mathbf{B} = \det (\mathbf{A} \mathbf{B})$
- $\det(\mathbf{P}^{-1})\det(\mathbf{P}) = \det(\mathbf{P}^{-1}\mathbf{P}) = \det(\mathbf{I}) = 1$.