Suicide Rates Overview 1985 to 2020

```
In [1]: #importing the Libery
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

warnings.filterwarnings('ignore')
%pylab inline
```

%pylab is deprecated, use %matplotlib inline and import the requir
ed libraries.

Populating the interactive namespace from numpy and matplotlib

Data Collection ¶

```
In [2]: #loading the Data set in pandas
data = pd.read_csv('master.csv')
```

```
In [3]: #drop the value
data = data.drop(['country-year', 'HDI for year'], axis=1)
```

In [4]: #check first five rows of the dataset
data.head()

Out [4]:

	country	year	sex	age	suicides_no	population	suicides/100k pop	gdp_for_year (\$)	gdp_
0	Albania	1987	male	15- 24 years	21	312900	6.71	2,156,624,900	
1	Albania	1987	male	35- 54 years	16	308000	5.19	2,156,624,900	
2	Albania	1987	female	15- 24 years	14	289700	4.83	2,156,624,900	
3	Albania	1987	male	75+ years	1	21800	4.59	2,156,624,900	
4	Albania	1987	male	25- 34 years	9	274300	3.28	2,156,624,900	

In [5]: #check last five rows of the dataset data.tail()

Out[5]:

	country	year	sex	age	suicides_no	population	suicides/100k pop	gdp_for_ye (
27815	Uzbekistan	2014	female	35- 54 years	107	3620833	2.96	63,067,077,1
27816	Uzbekistan	2014	female	75+ years	9	348465	2.58	63,067,077,1
27817	Uzbekistan	2014	male	5-14 years	60	2762158	2.17	63,067,077,17
27818	Uzbekistan	2014	female	5-14 years	44	2631600	1.67	63,067,077,17
27819	Uzbekistan	2014	female	55- 74 years	21	1438935	1.46	63,067,077,17

In [6]: #check shape of the datset

data.shape

Out[6]: (27820, 10)

In [7]: |#check basic infomation of the. dataset data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 27820 entries, 0 to 27819 Data columns (total 10 columns):

Data	cotamins (total to c	o camino, i	
#	Column	Non-Null Count	Dtype
0	country	27820 non-null	object
1	year	27820 non-null	int64
2	sex	27820 non-null	object
3	age	27820 non-null	object
4	suicides_no	27820 non-null	int64
5	population	27820 non-null	int64
6	suicides/100k pop	27820 non-null	float64
7	gdp_for_year (\$)	27820 non-null	object
8	<pre>gdp_per_capita (\$)</pre>	27820 non-null	int64
9	generation	27820 non-null	object
4+,,,,,	$\frac{1}{100}$	1/1) object/E)	_

dtypes: float64(1), int64(4), object(5)

memory usage: 2.1+ MB

In [8]: #check mathamtic realtionship of the dataset
data[['suicides_no','population','suicides/100k pop','gdp_per_capit

Out[8]:

	suicides_no	population	suicides/100k pop	gdp_per_capita (\$)
count	27820.000000	2.782000e+04	27820.000000	27820.000000
mean	242.574407	1.844794e+06	12.816097	16866.464414
std	902.047917	3.911779e+06	18.961511	18887.576472
min	0.000000	2.780000e+02	0.000000	251.000000
25%	3.000000	9.749850e+04	0.920000	3447.000000
50%	25.000000	4.301500e+05	5.990000	9372.000000
75%	131.000000	1.486143e+06	16.620000	24874.000000
max	22338.000000	4.380521e+07	224.970000	126352.000000

```
In [9]: #check missing value opf the dataset
data.isnull().sum()
```

```
Out[9]: country
                                0
                                0
        year
        sex
                                0
                                0
        age
        suicides_no
        population
                                0
         suicides/100k pop
         gdp_for_year ($)
                                0
        gdp_per_capita ($)
                                0
        generation
        dtype: int64
```

EDA of the Dataset

```
In [10]: #conut the value of country
         data['country'].value_counts()
Out[10]: Mauritius
                                     382
                                     382
         Austria
         Netherlands
                                     382
         Iceland
                                     382
         Brazil
                                     372
         Bosnia and Herzegovina
                                      24
         Cabo Verde
                                      12
         Dominica
                                      12
         Macau
                                      12
         Mongolia
                                      10
         Name: country, Length: 101, dtype: int64
```

```
In [11]: #plot distplot for year
sns.distplot(data['year'])
```

Out[11]: <Axes: xlabel='year', ylabel='Density'>


```
In [12]: #plot distplot for suicides_no
sns.distplot(data['suicides_no'])
```

Out[12]: <Axes: xlabel='suicides_no', ylabel='Density'>

In [13]: sns.histplot(data['suicides_no'])

Out[13]: <Axes: xlabel='suicides_no', ylabel='Count'>

In [14]: #plot distplot for suicides/100k pop
sns.distplot(data['suicides/100k pop'])

Out[14]: <Axes: xlabel='suicides/100k pop', ylabel='Density'>


```
In [15]: #plot distplot for gdp_per_capita ($)
sns.distplot(data['gdp_per_capita ($)'])
```

Out[15]: <Axes: xlabel='gdp_per_capita (\$)', ylabel='Density'>


```
In [16]: #plot distplot for population
sns.distplot(data['population'])
```

Out[16]: <Axes: xlabel='population', ylabel='Density'>

In [20]: sns.histplot(data['generation'])

Out[20]: <Axes: xlabel='generation', ylabel='Count'>

In [24]: # Sum suicides by countrys data_country = data.groupby(["country"]).sum()["suicides_no"].reset # Visualization with Bar Plot plt.figure(figsize=(15,10)) sns.barplot(x=data_country['country'], y=data_country['suicides_no' plt.xticks(rotation= 90) plt.xlabel('Country') plt.ylabel('Suicide') plt.title('Suicide Rate Given Country')

Out[24]: Text(0.5, 1.0, 'Suicide Rate Given Country')


```
In [25]: # Sum suicides by years
data_year = data.groupby(["year"]).sum()["suicides_no"].reset_index

plt.figure(figsize=(16,10))
ax= sns.barplot(x=data_year["year"], y=data_year["suicides_no"])
plt.xlabel('Year')
plt.ylabel('Suicides')
plt.title('Suicide Rate Given Year')
```

Out[25]: Text(0.5, 1.0, 'Suicide Rate Given Year')

In [28]: # Sum suicides by age and sex in all years
data_as = data.groupby(["age","sex"]).sum()["suicides_no"].reset_in
data_as

Out[28]:

	age	sex	suicides_no
0	15-24 years	female	175437
1	15-24 years	male	633105
2	25-34 years	female	208823
3	25-34 years	male	915089
4	35-54 years	female	506233
5	35-54 years	male	1945908
6	5-14 years	female	16997
7	5-14 years	male	35267
8	55-74 years	female	430036
9	55-74 years	male	1228407
10	75+ years	female	221984
11	75+ years	male	431134

Out[29]:

	country	year	sex	age	suicides_no	population	suicides/100k pop	gdp_for_ye (
2	Albania	1987	female	15- 24 years	14	289700	4.83	2,156,624,90
5	Albania	1987	female	75+ years	1	35600	2.81	2,156,624,90
6	Albania	1987	female	35- 54 years	6	278800	2.15	2,156,624,90
7	Albania	1987	female	25- 34 years	4	257200	1.56	2,156,624,90
9	Albania	1987	female	5-14 years	0	311000	0.00	2,156,624,90
27814	Uzbekistan	2014	female	25- 34 years	162	2735238	5.92	63,067,077,1
27815	Uzbekistan	2014	female	35- 54 years	107	3620833	2.96	63,067,077,1
27816	Uzbekistan	2014	female	75+ years	9	348465	2.58	63,067,077,17
27818	Uzbekistan	2014	female	5-14 years	44	2631600	1.67	63,067,077,17
27819	Uzbekistan	2014	female	55- 74 years	21	1438935	1.46	63,067,077,1

13910 rows × 10 columns

In [30]: male = data[data["sex"]=="male"]
male

Out [30]:

	country	year	sex	age	suicides_no	population	suicides/100k pop	gdp_for_year (\$)
0	Albania	1987	male	15- 24 years	21	312900	6.71	2,156,624,900
1	Albania	1987	male	35- 54 years	16	308000	5.19	2,156,624,900
3	Albania	1987	male	75+ years	1	21800	4.59	2,156,624,900
4	Albania	1987	male	25- 34 years	9	274300	3.28	2,156,624,900
8	Albania	1987	male	55- 74 years	1	137500	0.73	2,156,624,900
								•••
27809	Uzbekistan	2014	male	25- 34 years	318	2739150	11.61	63,067,077,179
27811	Uzbekistan	2014	male	55- 74 years	144	1271111	11.33	63,067,077,179
27812	Uzbekistan	2014	male	15- 24 years	347	3126905	11.10	63,067,077,179
27813	Uzbekistan	2014	male	75+ years	17	224995	7.56	63,067,077,179
27817	Uzbekistan	2014	male	5-14 years	60	2762158	2.17	63,067,077,179

13910 rows × 10 columns

In [39]: # Sum suicide by country and sex
data_cs = data_groupby(["country","sex"]).sum()["suicides_no"].rese
data_cs_Turkey = data_cs[data_cs['country']=='Turkey']
data_cs_Turkey

Out[39]:

	country	sex	suicides_no
186	Turkey	female	2569
187	Turkey	male	7562

```
In [40]: labels = data_cs_Turkey.sex.value_counts().index
    colors = ['#f9f7f0','#d0041b']
    explode = [0,0]
    sizes = data_cs_Turkey.suicides_no.value_counts().index.sort_values

# Visualization with Pie Plot
    plt.figure(figsize = (7,7))
    plt.pie(sizes, explode=explode, labels=labels, colors=colors, autop
    plt.title('Suicide Rates in Turkey',fontsize = 15)
    plt.show()
```

Suicide Rates in Turkey


```
In [41]: data_generation = data["generation"].value_counts()
data_generation
```

Out[41]: Generation X 6408
Silent 6364
Millenials 5844
Boomers 4990
G.I. Generation 2744
Generation Z 1470

Name: generation, dtype: int64

```
In [42]: labels = data_generation.index
    explode = [0.05,0.05,0.05,0.05,0.05]
    sizes = data_generation.values

plt.figure(figsize = (7,7))
    plt.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%')
    plt.title('Generations', fontsize = 15)
    plt.show()
```

Generations

In [43]: # Visualization with Violin Plot plt.figure(figsize=(10,8)) pal = sns.cubehelix_palette(2, rot=-.5, dark=.3) sns.violinplot(x="sex", y="suicides_no",data=data, palette=pal, inn plt.show()

In [44]: # Heatmap
f,ax = plt.subplots(figsize=(6, 6))
sns.heatmap(data.corr(), cmap="Blues",annot=True, linewidths=0.5,li
plt.show()


```
In [47]: # Visualization with Lm Plot
sns.lmplot(x="year", y="gdp_per_capita ($)", data=data)
plt.show()
```



```
In [48]: # Visualization with Box Plot
sns.boxplot(data['gdp_per_capita ($)'])
plt.show()
```


In [49]: sns.boxplot(data['year'])
plt.show()

Boxplot grouped by sex


```
In [51]: # Sum suicide by country, sex and age
data_csa = data.groupby(["country","sex","age"]).sum()["suicides_no
data_csa = data_csa[:605]
```

In [52]: # Visualization with Swarm Plot
 plt.figure(figsize=(10,8))
 sns.swarmplot(x="sex", y="suicides_no",hue="age", data=data_csa)
 plt.show()

In [53]: sns.pairplot(data, hue="generation")
 plt.show()

In [5]: from IPython.display import Image
Image('missed countries.png')

Out[5]:

Count of suicides for 31 years. Note that not all countries are included in this list! This is extremely important.

```
In [6]:
    suic_sum = pd.DataFrame(data['suicides_no'].groupby(data['country']
    suic_sum = suic_sum.reset_index().sort_index(by='suicides_no', asce
    most_cont = suic_sum.head(8)
    fig = plt.figure(figsize=(20, 10))
    plt.title('Count of suicides for 31 years.')
    sns.set(font_scale=2)
    sns.barplot(y='suicides_no', x='country', data=most_cont, palette="
    plt.xticks(rotation=45)
    plt.ylabel('');
    plt.xlabel('')
    plt.tight_layout()
```


In [7]: from mpl_toolkits.basemap import Basemap
concap = pd.read_csv('../input/world-capitals-gps/concap.csv')
concap.head()

\sim				г-	- 1	
<i>1</i> 1		-	- 1		, ,	
.,					, ,	_
$\mathbf{\circ}$	u		_	. 4		

	CountryName	CapitalName	CapitalLatitude	CapitalLongitude	CountryCode	ContinentN _i
0	Somaliland	Hargeisa	9.550000	44.050000	NaN	A [.]
1	South Georgia and South Sandwich Islands	King Edward Point	-54.283333	-36.500000	GS	Antarc
2	French Southern and Antarctic Lands	Port-aux- Français	-49.350000	70.216667	TF	Antarc
3	Palestine	Jerusalem	31.766667	35.233333	PS	
4	Aland Islands	Mariehamn	60.116667	19.900000	AX	Euı

```
In [8]: def reg(x):
    if x == 'Russia':
        res = 'Russian Federation'
    else:
        res = x
        return res
    concap['CountryName'] = concap['CountryName'].apply(reg)

data_full = pd.merge(concap[['CountryName', 'CapitalName', 'Capital suic_sum,left_on='CountryName',right_on='country')
```

Consider it on the map. I will remind you, that many big (by population) countries aren't included in this dataset.

```
In [9]: def mapWorld(col1, size2, title3, label4, metr=100, colmap='hot'):
            m = Basemap(projection='mill', llcrnrlat=-60, urcrnrlat=70,
                    llcrnrlon=-110, urcrnrlon=180, resolution='c')
            m.drawcoastlines()
            m.drawcountries()
            m.drawparallels(np.arange(-90, 91., 30.))
            m.drawmeridians(np.arange(-90, 90., 60.))
            lat = data_full['CapitalLatitude'].values
            lon = data_full['CapitalLongitude'].values
            a_1 = data_full[col1].values
            if size2:
                a_2 = data_full[size2].values
            else: a_2 = 1
            m.scatter(lon, lat, latlon=True, c=a_1, s=metr*a_2, linewidth=1
            cbar = m.colorbar()
            cbar.set_label(label4,fontsize=30)
            plt.title(title3, fontsize=30)
            plt.show()
        sns.set(font_scale=1.5)
        plt.figure(figsize=(15,15))
        mapWorld(col1='suicides_no', size2=False, title3='Suicide count', l
```


Compare it with map - gdp_per_capita (\$)

Consider same barplot with with gender difference:

Compare this with statistics - suicides/100k pop.

```
In [12]: suic_mean = pd.DataFrame(data['suicides/100k pop'].groupby(data['co suic_mean = suic_mean.reset_index() suic_mean_most = suic_mean.sort_index(by='suicides/100k pop',ascend fig = plt.figure(figsize=(15,5)) plt.title('suicides/100k pop.') #sns.set(font_scale=1.5) sns.barplot(y='suicides/100k pop',x='country',data=suic_mean_most,p plt.ylabel('suicides/100k pop') plt.tight_layout()
```


Let's divide data into old and new:

Here we can see count of suicides by year distribution:

What is the most critical age group?

```
In [16]: suic_sum_yr = pd.DataFrame(data['suicides_no'].groupby([data['gener suic_sum_yr = suic_sum_yr.reset_index().sort_index(by='suicides_no' most_cont_yr = suic_sum_yr fig = plt.figure(figsize=(30,10)) plt.title('The distribution of suicides by age groups')

sns.set(font_scale=2) sns.barplot(y='suicides_no',x='year',hue='generation',data=most_con plt.ylabel('Count of suicides') plt.xticks(rotation=45) plt.tight_layout()
```


For this map, color - generation, size - suicides_no

```
In [18]: data_new = data[data['year'] < 2000]
    title_map = 'Generation suicides before 2000 year'
    data_gener = pd.DataFrame(data_new['suicides_no'].groupby([data_new age_max = pd.DataFrame(data_gener['suicides_no'].groupby(data_gener gen_full = pd.merge(age_max,data_gener,left_on=['suicides_no','coun data_full = pd.merge(concap[['CountryName', 'CapitalName', 'Capital gen_full,left_on='CountryName',right_on='country')
    data_full.dropna(inplace=True)

def gener(x):
    dic_t = {'Generation X':100,'Silent':200,'G.I. Generation':300, return dic_t[x] data_full.generation = data_full.generation.apply(gener)
    print(" Generation X:100 \n Silent:200 \n G.I. Generation:300 \n Bo plt.figure(figsize=(15,15))
    mapWorld(col1='generation', size2='suicides_no', title3=title_map,l</pre>
```

Generation X:100

Silent:200

G.I. Generation:300

Boomers:400 Millenials:500 Generation Z:600


```
In [19]: data_new = data[data['year']>=2000]
    title_map = 'Generation suicides after 2000 year'
    data_gener = pd.DataFrame(data_new['suicides_no'].groupby([data_new age_max = pd.DataFrame(data_gener['suicides_no'].groupby(data_gener gen_full = pd.merge(age_max,data_gener,left_on=['suicides_no','coun data_full = pd.merge(concap[['CountryName', 'CapitalName', 'Capital gen_full,left_on='CountryName',right_on='country')
    data_full.dropna(inplace=True)

def gener(x):
    dic_t = {'Generation X':100,'Silent':200,'G.I. Generation':300, return dic_t[x]}
    data_full.generation = data_full.generation.apply(gener)
    print("Generation X:100 \n Silent:200 \n G.I. Generation:300 \n Bo plt.figure(figsize=(15,15))
    mapWorld(col1='generation', size2='suicides_no', title3=title_map,l
```

Generation X:100

Silent:200

G.I. Generation:300

Boomers:400 Millenials:500 Generation Z:600

