Departamento de Química - FCT/UNL Simulação e Optimização de Processos Optimização Linear, com variáveis contínuas e/ou discretas Problemas Propostos

Problema 1

Uma empresa de camionagem dispõe de 1.2 milhões de Euros para investir em novos camiões, face a duas alternativas: camiões do tipo A a 30 mil Euros e camiões do tipo B a 40 mil Euros. Os camiões do tipo A requerem um condutor por dia e produzem 2100 ton-km/dia (ou seja, em cada dia, o produto da massa transportada pela distância percorrida é igual a 2100 ton-km). Os camiões do tipo B requerem dois condutores por dia e produzem 3600 ton-km/dia. O limite máximo de camiões a comprar é 30 e o limite máximo de condutores é 50. Quantos camiões de cada tipo deverão ser comprados de modo a maximizar a capacidade em ton-km/dia?

- a) Formule o problema, identificando as variáveis de decisão, a função objectivo e as restrições, bem como as respectivas unidades.
- b) Resolva o problema: (i) graficamente; (ii) recorrendo à plataforma GAMS.

Problema 2

Uma refinaria é abastecida com dois crudes diferentes, a partir dos quais se produzem três produtos refinados, com os rendimentos indicados na tabela abaixo. Devido a restrições de equipamento e armazenamento, existem limites para a produção dos três produtos. O lucro associado à refinação dos crudes é de 2 EUR/barril para o crude 1 e 1.4 EUR/barril para o crude 2.

- a) Determine os caudais diários óptimos para cada crude.
- **b)** Comente quanto aos preços sombra associados ao incremento na produção de gasolina, querosene e fuelóleo.

	Rendimen	Produção máxima	
	Crude 1	(barril/dia)	
Gasolina	70	31	6000
Querosene	6	9	2400
Fuelóelo	24	60	12000

Problema 3

Considere a rede de produção de C a partir de A:

O produto intermédio B é produzido por três processos diferentes (P1, P2 e P3) e pode ainda ser comprado ao exterior (quantidade Bc). Os custos de A e B são de 400 e 500 EUR/ton, respectivamente. O produto C é vendido a 900 EUR/ton. Os custos de operação dos 4 processos

- (EUR/h) são, respectivamente: 50 + 10A1; 40 + 7A2; 70+8A3 e 90+15(B+Bc). Todos os caudais (A1, A2,...) são medidos em ton/h. Tem-se ainda as seguintes condições:
- (i) Conversões globais dos 4 processos, respectivamente iguais a: 0.95; 0.85; 0.99 e 0.90;
- (i) Limites nas capacidades: $3 \le A1 \le 6$, $3 \le A2 \le 8$ e $2 \le A3 \le 5$ (ton/h);
- (ii) Disponibilidades máximas de A e B, respectivamente iguais a 20 e 10 ton/h;
- (iii) Procura de C estimada em 18 ton/h.
- a) Determine o plano óptimo de operação que maximiza o lucro.
- **b)** Resolva o problema anterior, contemplando a condição adicional: caso seja necessário comprar B, a quantidade mínima deve ser de 5 ton/h.
- c) Considere agora que a procura de C é incerta, sendo descrita por 3 cenários, com valores {16; 18; 20} (ton/h) e respectivas probabilidades de ocorrência {0.4; 0.5; 0.1}. Admitindo que o plano de operação pode ser ajustado a cada um destes possíveis cenários, reformule e resolva o problema da alínea a), sendo agora o objectivo a maximização do lucro esperado, face à incerteza na procura do produto C.
- **d)** E se for antes desejável uma optimização robusta face à procura incerta? Qual é neste caso o plano óptimo e o lucro máximo?

Problema 4

Uma empresa alimentar compra diferentes tipos de óleos, refina-os e vende misturas deles. Os óleos comprados em bruto são de duas categorias: óleos vegetais (VEG1 e VEG2) e não-vegetais (OIL1, OIL2, OIL3). O custo actual dos óleos é, respectivamente, 110, 120, 130, 110 e 115 EUR/ton. O preço de venda da mistura é de 150 EUR/ton. As capacidades máximas de refinação são de 200 ton/mês (VEG) e 250 ton/mês (OIL). A dureza final da mistura (propriedade importante para a qualidade do produto) deve ser entre 3 e 6 (unidades de dureza). Pode admitir-se uma regra linear para a dureza da mistura a partir das durezas dos óleos individuais: 8.8; 6.1; 2.0; 4.2; 5.0 (óleos pela ordem acima indicada). Considera-se ainda que a perda de massa na refinação é desprezável, assim como o custo de refinação.

- **a)** Qual a política de compra e fabrico que a empresa deve adoptar, de modo a maximizar o lucro? (problema estático, num só período)
- b) E se a perda de massa na refinação e custos de refinação não forem desprezáveis?
- c) Considere agora o mesmo problema, mas expandido para vários períodos. Os preços actuais e futuros são os apresentados na tabela abaixo. O limite de armazenamento é 1000 ton e o custo de armazenamento é de 5 EUR/ton/mês. As existências no início de Janeiro são de 500 ton de cada óleo e este é também o nível mínimo de stock a garantir no final de Junho. Qual é a política óptima de compra e fabrico para este horizonte de 6 meses? (problema dinâmico multi-períodos).

Preços actuais e futuros das matérias-primas (EUR/ton)

	VEG1	VEG2	OIL1	OIL2	OIL3
Jan	110	120	130	110	115
Fev	130	130	110	90	115
Mar	110	140	130	100	95
Abr	120	110	120	120	125
Mai	100	120	150	110	105
Jun	90	100	140	80	135

- d) Suponha agora que são aplicáveis as seguintes restrições:
- i) O número máximo de óleos na mistura é 3;
- ii) Se um dado óleo é usado num mês, deve sê-lo numa quantidade mínima de 20 ton;
- iii) Se a mistura contém um óleo vegetal, então tem obrigatoriamente de conter o óleo OIL3.

Determine a política óptima de compra e fabrico, atendendo a estas novas restrições. Comece por fazêlo para o problema estático da alínea a) e depois para o problema multi-períodos da alínea c).

Problema 5

Uma fábrica produz dois produtos P1 e P2, através de vários processos de extracção a partir das matérias-primas A1, A2 e A3. Considere os rendimentos de extracção e outros dados processuais e económicos abaixo indicados.

- (a) Construa uma formulação matemática que permita determinar o plano óptimo de produção numa base mensal (kg/mês de matérias-primas e produtos).
- (b) Calcule a solução óptima.
- (c) Proponha uma extensão da formulação da alínea a), para um período de 6 meses, com disponibilidade variável de matérias-primas (mês a mês), procura variável de P1 e procura constante de P2. O custo de armazenamento da matéria-prima é C_A EUR/ton/mês (para qualquer uma das matérias-primas). O custo de armazenamento dos produtos é desprezável.
- Rendimentos dos processos de extracção:

```
100 kg A1 \rightarrow 5 kg de P1
100 kg de A2 \rightarrow 3 kg de P1 e 1 kg de P2
100 kg de A3 \rightarrow 1.5 kg de P1 e 4 kg de P2
```

- Custo de fabrico: 0.1 EUR/kg de matéria-prima.
- Custo das matérias-primas A1, A2 e A3, respectivamente: 0.8, 0.7 e 0.9 EUR/kg.
- Preço de mercado dos produtos P1 e P2: 50 e 60 EUR/kg.
- Disponibilidade máxima das matérias-primas A1, A2 e A3: 12, 8 e 10 ton/mês.
- Procura dos produtos P1 e P2: 750 e 500 kg/mês.
- Capacidade máxima da fábrica: 22 ton/mês de matéria-prima total (A1 + A2 + A3).

Problema 6

Uma empresa de tintas produz sete produtos distintos (P1 a P7), com o auxílio dos seguintes equipamentos principais: quatro misturadores, dois decantadores, três reactores, um secador e uma coluna de destilação. Cada produto contribui de forma distinta para o lucro da empresa (definido em EUR/unidade, 1 unidade = 25 litros).

Produto	P1	P2	P3	P4	P5	P6	P7
Lucro	10	60	80	4	11	9	3

Os tempos de processamento unitários (horas/unidade), requeridos para cada produto, são os seguintes:

Unidade	P1	P2	P3	P4	P5	P6	P7
Misturador	0.5	0.7	-	-	0.3	0.2	0.5
Decantador	0.1	0.2	-	0.3	-	0.2	0.5
Reactor	0.2	-	0.8	-	-	-	0.6
Secador	0.5	0.3	-	0.7	1.0	-	0.8
C. destilação	-	-	1.2	-	1.5	-	0.9

(um traço indica que um produto não requer um determinado equipamento)

De Janeiro a Junho, alguns equipamentos vão estar desactivados para manutenção, de acordo com o seguinte plano:

Mês	Jan	Fev	Mar	Abr	Mai	Jun
Equipamento	1 mist.	2 reac.	1 sec.	1 dec.	1 mist. + 1 dec.	1 c. dest. + 1 reac.

Para cada produto, as restrições de mercado em cada mês (quantidade máxima que pode ser vendida) são as seguintes:

Mês	P1	P2	P3	P4	P5	P6	P7
Jan	500	1000	150	300	200	200	90
Fev	600	500	100	0	100	300	140
Mar	300	600	0	0	125	400	90
Abr	200	300	200	500	50	0	90
Mai	0	100	250	100	250	300	0
Jun	500	500	50	300	260	500	50

É possível armazenar até 100 unidades de cada produto, com um custo de 0.6 EUR/(unidade.mês). O valor dos stocks em Janeiro é nulo, mas é desejado finalizar com um stock de 50 a 70 unidades de cada produto no fim de Junho. A fábrica opera 6 dias por semana, com 2 turnos de 8 horas cada. O número de dias produtivos em cada mês deve ser verificado de acordo com o calendário de 2012.

- Não é necessário, por agora, analisar o escalonamento da produção.
- **a)** Determine o plano óptimo de produção. Comece por considerar o problema apenas para o primeiro mês e sem atender a existências em stock. Numa segunda fase, formule e resolva o problema para o horizonte total de 6 meses. Comente quanto ao valor da aquisição de mais equipamento.
- **b)** Em vez de estipular quando cada equipamento é desactivado para manutenção, é agora desejado conhecer qual o melhor mês para o efeito. Sabe-se que cada máquina deverá ser parada durante um mês do período de 6 meses, com excepção dos misturadores, dos quais apenas dois necessitam de manutenção a cada 6 meses. Qual é agora o plano óptimo de produção? Comente quanto ao valor acrescentado de optimizar o plano de manutenção.