Случайный поиск в задаче о назначениях

Ширинкина Дарья Андреевна, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н., профессор Ю. А. Сушков Рецензент: д.ф.-м.н., профессор Н. К. Кривулин

Санкт-Петербург 2016г.

Постановка задачи

Задано:

- ullet Набор функций $f_1(x[1:d]), f_2(x[1:d]) \dots f_n(x[1:d])$, где $f_i:D\subset \mathbb{R}^d o \mathbb{R}$ и $i\in I=\{1,2,\dots,n\}$
- $\{g[1],g[2],\ldots,g[m]\}$ набор фиксированных значений, $g[j]\in\mathbb{R}$ и $j\in J=\{1,2,\ldots,m\}$
- $n \geqslant m$
- ullet $\varphi: J
 ightarrow I$ инъективное отображение
- ullet Целевая функция C(x[1:d], arphi), отвечающая за точность приближения $f_i(x[1:d])$ к значениям g[j]

Задача синтеза системы:

$$C(x[1:d],\varphi) \to \min_{x,\varphi}$$

Постановка задачи

Часто используемые представления целевой функции:

•
$$C(x[1:d], \varphi) = F_1(x, \varphi) = \sum_{j \in J} (f_{\varphi(j)}(x[1:d]) - g[j])^2$$

•
$$C(x[1:d],\varphi) = F_2(x,\varphi) = \max_{j \in J} (f_{\varphi(j)}(x[1:d]) - g[j])^2$$

•
$$C(x[1:d],\varphi) = F_3(x,\varphi) = \max_{j \in J} \left| \frac{f_{\varphi(j)}(x[1:d])}{g[j]} - 1 \right|$$

Цель: изучение способа решения задачи, при котором отображение φ заменяется на дополнительное отображение для дальнейшего применения к целевой функции случайного поиска.

Случайный поиск

Пусть нужно найти минимум целевой функции C(x[1:d]). Случайный поиск имеет n_{stage} этапов, каждый этап состоит из m_{step} шагов.

Схема работы алгоритма:

- ullet На шаге j выбираются случайные значения $x_j[1:d]$
- Вычисляются $C_{\min}^j = \min\{C(x_j[1:d]); C_{\min}^{j-1}\}$
- После выполнения m_{step} шагов изменяется закон выбора значений $x_j[1:d]$ и происходит переход к следующему этапу

Детерминированный поиск оптимального отображения

Рассмотрим изученный способ решения (Сушков, 2000). Перепишем целевую функцию:

$$C(x[1:d]) = \min_{\varphi}(C(x[1:d],\varphi)).$$

Идея подхода:

- Применяем случайный поиск к функции C(x[1:d]) по аргументу x[1:d]
- Для вычисления функции C(x[1:d]) в фиксированной точке $\tilde{x}[1:d]$ используем алгоритм, находящий $\min_{\varphi}(C(\tilde{x}[1:d],\varphi))$

Недостатки:

- Время работы
- Алгоритм нахождения $\min_{\varphi}(C(\tilde{x}[1:d],\varphi))$ не является универсальным

Случайный поиск оптимального отображения

Представим целевую функцию $C(x[1:d],\varphi)$ в виде

$$C\left(x[1:d],\psi(y[1:r])\right)$$

- Множество значений отображения ψ все возможные отображения φ
- ullet $y\in [0;1]^r$, где $r\in \mathbb{N}$
- ullet Пусть $\psi(ilde{y},j)= ilde{arphi}(j)$, если $\psi(ilde{y})= ilde{arphi}$

Применяем случайный поиск к функции $C(x[1:d],\psi(y[1:r]))$ по аргументам x[1:d] и y[1:r].

В работе предложены 3 варианта задания функции $\psi(y,j)$.

Метод 1

Рассматриваем r=m и $j\in J=\{1,2,\ldots,m\}$, $I=\{1,2,\ldots,n\}$. Вспомогательная функция:

$$\hat{\psi}(y[1:m],j) = \lceil (n-j+1) \cdot y[j] \rceil.$$

Пусть $\mathfrak{N} = \mathfrak{N}_1 = \{1, 2, \dots, n\}$ — упорядоченный набор. Вычисление $\psi(y[1:m],j)$:

- $oldsymbol{\Psi}(y[1:m],j)$ равно числу из \mathfrak{N}_j с номером $\hat{\psi}(y[1:m],j)$, обозначим его за α_j
- $m{Q}$ Если $\psi(y[1:m],j)=lpha_j$ выбранное число, тогда $\mathfrak{N}_{\mathbf{j+1}}=\mathfrak{N}_{\mathbf{j}}\setminuslpha_j$

Метод 2

Предполагаем, что r=1 и $I=J=\{1,2,\ldots,n\}.$ Вспомогательная функция:

$$\hat{\psi}(y_j, j) = \lceil (n - j + 1) \cdot y_j \rceil + 1$$

При этом $y_1=y$, а $y_{j+1}=\{(n-j+1)\cdot y_j\}$. Положим $\mathfrak{N}=\mathfrak{N}_1=\{1,2,\dots,n\}$ — упорядоченный набор. Вычисление $\psi(y,j)$:

- ullet $\psi(y,j)$ равно числу из \mathfrak{N}_j с номером $\hat{\psi}(y_j,j)$, обозначим его за $lpha_j$
- $m{Q}$ Если $\psi(y,j)=lpha_j$ выбранное число, тогда $\mathfrak{N}_{j+1}=\mathfrak{N}_j\setminuslpha_j$

Метод 3

Метод с использованием факториальной системы счисления.

Предполагаем, что r=1 и $I=J=\{1,2,\ldots,n\}.$ Вычисление $\psi(y,j)$:

- $oldsymbol{0}$ $u = \lfloor y \cdot n! \rfloor$ это номер перестановки порядка n
- ② ν в факториальной системе счисления: $\nu = \sum_{k=1}^{n-1} \nu_k \cdot k!$
- По множеству $\{\nu_1, \nu_2, \dots, \nu_{n-1}\}$ строится перестановка, j-ый элемент которой $\psi(y,j)$: коэффициент ν_k обозначает число инверсий для элемента k+1

Результаты

Для получения численных результатов использовались:

- $f_i(x[1:d]) = \frac{1}{2} \langle A_i x, x \rangle + \langle b_i, x \rangle + c_i$, где A_i матрица порядка $d \times d$, симметричная и неотрицательно определенная, b_i вектор размерности d, $c_i \in \mathbb{R}$, $i \in I = \{1, 2, \dots, n\}$
- $g[j]=f_{i_j}(x^*[1:d])$, где $j\in J=\{1,2,\ldots,m\}$ и $\{i_1,i_2,\ldots,i_m\}$ случайный набор индексов из I без повторений, $x^*[1:d]$ известная точка минимума
- $P=\frac{\hat{N}}{N}$, где P вероятность нахождения глобального минимума, \hat{N} число найденных значений целевой функции в окрестности 0,02 глобального минимума, N общее число запусков алгоритма поиска минимума

Результаты

Рис. 1: Зависимость вероятности нахождения минимума целевой функции от количества этапов случайного поиска. Параметры: $m_{step}=100,\ n=m=9.$

Результаты

Рис. 2: Зависимость вероятности нахождения минимума целевой функции F_1 от количества многоэкстремальных функций (n mult) среди набора $\{f_1, f_2, \ldots, f_n\}$ (остальные f_i квадратичного вида) для метода 1 и метода детерминированного поиска отображения (Shift algorithm). Параметры: $n=m=9,\ m_{step}=100.$

Рис. 3: Зависимость вероятности нахождения минимума целевой функции F_1 от m для метода 1.

Заключение

Результаты:

- Рассмотрены 3 различных способа задания отображения $\psi(y)$
- Выявлен один более эффективный метод из рассмотренных трёх способов задания отображения $\psi(y)$
- Получено, что в случае, когда m близко к $\frac{n}{2}$, для нахождения минимума с помощью метода 1 нужно увеличивать количество общих шагов случайного поиска по сравнению с $m \approx 1$ и $m \approx n$
- Показано, что количество общих шагов случайного поиска стоит увеличивать в случае, когда функции f_i имеют сложный многоэкстремальный характер