Novo Espaço – Matemática A, 12.º ano

Proposta de resolução do teste de avaliação [março - 2023]

1. Na figura ao lado, está representada parte do gráfico da função g, de domínio \mathbb{R} , definida por $g(x) = e^{-x}$.

Considera as sucessões (u_n) , (v_n) e (w_n) tais que:

$$u_n = n - n^2$$
; $v_n = \sqrt{n}$ e $w_n = \frac{1}{n^2 + 1}$

Determina $\lim [g(u_n)]$, $\lim [g(v_n)]$ e $\lim [g(w_n)]$.

1. $\lim (u_n) = \lim (n - n^2) = -\infty$; $\lim g(u_n) = +\infty$ $\lim (v_n) = \lim \sqrt{n} = +\infty$; $\lim g(v_n) = 0$ $\lim (w_n) = \lim \frac{1}{n^2 + 1} = 0$; $\lim g(w_n) = 1$

2. Considera a equação:

$$x(e^{3x}-e^2)(x^2-4)\log_3(2x-1)=0$$

Do conjunto-solução da equação, escolhe-se, ao acaso, uma solução.

Qual é a probabilidade de escolher uma solução que seja um número inteiro?

(A)
$$\frac{2}{3}$$

(B)
$$\frac{4}{5}$$

(C)
$$\frac{3}{4}$$

(D)
$$\frac{1}{5}$$

2. $x(e^{3x} - e^2)(x^2 - 4)\log_3(2x - 1) = 0$ $\Leftrightarrow (x = 0 \lor e^{3x} = e^2 \lor x^2 - 4 = 0 \lor 2x - 1 = 1) \land 2x - 1 > 0$ $\Leftrightarrow (x = 0 \lor x = \frac{2}{3} \lor x = 2 \lor x = -2 \lor x = 1) \land x > \frac{1}{2}$ $\Leftrightarrow x = \frac{2}{3} \lor x = 2 \lor x = 1$

Conjunto-solução: $S = \left\{ \frac{2}{3}, 2, 1 \right\}$

A probabilidade pedida é $\frac{2}{3}$.

Opção correta: (A) $\frac{2}{3}$

3. Para um certo número k, diferente de zero, sabe-se que $\lim_{x\to 0} \frac{e^{3x} - e^x}{e^{kx} - 1} = 3$.

Qual é o valor de k?

- **(A)** 3
- **(B)** $\frac{3}{2}$
- (C) $\frac{1}{3}$
- **(D)** $\frac{2}{3}$

3.
$$\lim_{x \to 0} \frac{e^{3x} - e^{x}}{e^{kx} - 1} = \lim_{x \to 0} \frac{e^{x} \left(e^{2x} - 1\right)}{e^{kx} - 1} = \lim_{x \to 0} \left[e^{x} \times \frac{\frac{e^{2x} - 1}{2x} \times 2}{\frac{e^{kx} - 1}{kx} \times k} \right] =$$

$$= \frac{2}{k} \lim_{x \to 0} e^{x} \times \frac{\lim_{2x \to 0} \frac{e^{2x} - 1}{2x}}{\lim_{kx \to 0} \frac{e^{kx} - 1}{kx}} = \frac{2}{k} \times 1 \times \frac{1}{1} = \frac{2}{k}$$

Então,
$$\frac{2}{k} = 3$$
, ou seja, $k = \frac{2}{3}$.

Opção correta: (D)
$$\frac{2}{3}$$

4. Considera, para um certo número real k, a função f, de domínio $\mathbb R$, definida por:

$$f(x) = \begin{cases} \frac{\sqrt{x}}{x} & \text{se } x > 0\\ k & \text{se } -1 \le x \le 0\\ \ln\left(1 + \frac{1}{x}\right) & \text{se } x < -1 \end{cases}$$

4.1. Verifica se o gráfico de *f* tem assíntotas horizontais. Em caso afirmativo, apresenta uma equação para cada uma dessas assíntotas.

4.1.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sqrt{x}}{x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0^{+}$$

A reta de equação y = 0 é assíntota ao gráfico de f, quando $x \to +\infty$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[\ln\left(1 + \frac{1}{x}\right) \right] = \ln\left(1 + 0^{-}\right) = 0^{-}$$

A reta de equação y = 0 é assíntota ao gráfico de f, quando $x \rightarrow -\infty$.

Resposta: O gráfico de f tem uma única assíntota horizontal, a reta de equação y = 0.

4.2. Mostra que:

a) qualquer que seja o valor de k, a função f não é contínua em x = 0 nem em x = -1.

b) se
$$x < -1$$
, então $f'(x) = -\frac{1}{x^2 + x}$.

4.2.

a)
$$f(0) = k$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{x}}{x} = \lim_{x \to 0^{+}} \frac{1}{\sqrt{x}} = +\infty$$

Como $\lim_{x\to 0^+} f(x) \neq f(0)$, conclui-se que a função f é **descontínua** em x=0.

$$f(-1) = k$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \left[\ln\left(1 + \frac{1}{x}\right) \right] = -\infty$$

Como $\lim_{x \to -1^-} f(x) \neq f(-1)$, conclui-se que a função f é **descontínua** em x = -1.

b) Se
$$x < -1$$
, então $f'(x) = \left[\ln \left(1 + \frac{1}{x} \right) \right]'$.

$$\left[\ln\left(1+\frac{1}{x}\right)\right]' = \frac{\left(1+\frac{1}{x}\right)'}{\left(1+\frac{1}{x}\right)} = \frac{-\frac{1}{x^2}}{1+\frac{1}{x}} = -\frac{x}{x^2(x+1)} = -\frac{1}{x^2+x}$$

Fica provado que, se x < -1, então $f'(x) = -\frac{1}{x^2 + x}$.

5. Na figura ao lado, estão representações gráficas das funções f e g, de domínio \mathbb{R} , e um triângulo [OAB]. Sabe-se que:

•
$$g(x) = e^x + 1$$
;

- o ponto P é o ponto de interseção dos gráficos das funções f e g;
- o ponto A é o ponto de interseção do gráfico de f com o eixo Oy;
- os pontos B e P são simétricos um do outro em relação ao eixo Oy.

Mostra que a medida da área do triângulo [OAB] é igual a $\ln 8$.

5. As coordenadas do ponto A são (0, f(0)).

$$f(0) = 6 \times e^0 = 6$$
.

A abcissa do ponto P é solução da equação f(x) = g(x).

$$f(x) = g(x) \Leftrightarrow 6e^{-x} = e^{x} + 1 \Leftrightarrow \frac{6}{e^{x}} = e^{x} + 1 \Leftrightarrow e^{2x} + e^{x} - 6 = 0$$

$$e^x = \frac{-1 \pm \sqrt{1 + 24}}{2} \Leftrightarrow e^x = 2 \lor e^x = -3 \Leftrightarrow e^x = 2 \Leftrightarrow x = \ln 2$$

As coordenadas do ponto P são $(\ln 2, g(\ln 2))$.

$$g(\ln 2) = e^{\ln 2} + 1 = 2 + 1 = 3$$

$$P(\ln 2, 3)$$

Medida da área do triângulo
$$[OAB]$$
: $\frac{\overline{OA} \times \frac{\overline{BP}}{2}}{2} = \frac{6 \times \ln 2}{2} = 3 \ln 2 = \ln(2^3) = \ln 8$

6. Seja f uma função de domínio \mathbb{R}^+ .

A função
$$f'$$
, função derivada de f , é definida por $f'(x) = \frac{2\ln(x)}{x}$.

6.1. O gráfico de f tem um ponto de inflexão. Determina a abcissa desse ponto.

6.1.
$$f''(x) = \left(\frac{2\ln(x)}{x}\right)' = 2 \times \frac{\frac{1}{x} \times x - \ln(x)}{x^2} = 2 \times \frac{1 - \ln(x)}{x^2}$$

$$f''(x) = 0 \Leftrightarrow 1 - \ln(x) = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e$$

x	0		e	+∞
f''(x)		+	0	_
f		\vee		\wedge

A abcissa do ponto de inflexão é e.

6.2. Considera a reta r que passa no ponto A(1,1) e num ponto B do gráfico da função f'.

Sabe-se que o declive da reta r é igual a $-\sqrt{2}$.

Recorre às capacidades gráficas da calculadora e determina a abcissa do ponto B.

Apresenta o resultado arredondado às décimas.

Na tua resposta:

- apresenta uma equação que te permita obter o valor pedido;
- reproduz, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora;
- assinala o ponto cuja abcissa é pedida com valor arredondado às décimas.

6.2. O ponto B pertence ao gráfico de f'.

As coordenadas de *B* são do tipo $\left(x, \frac{2\ln(x)}{x}\right)$.

Um vetor diretor da reta $r \in \overrightarrow{AB} = B - A = \left(x - 1, \frac{2 \ln x}{x} - 1\right)$.

O declive da reta r é dado por $\frac{2 \ln x}{x} - 1$. Então:

$$\frac{2\ln x}{\frac{x}{x-1}} = -\sqrt{2} \Leftrightarrow \frac{2\ln x}{x} - 1 = -\sqrt{2}(x-1)$$

Recorrendo à calculadora resolve-se graficamente a equação: $\frac{2 \ln x}{x} - 1 = -\sqrt{2}(x-1)$

A abcissa do ponto B, arredondada às décimas, é 1,4.

FIM

Cotações										Total
Questões	1.	2.	3.	4.1	4.2. a)	4.2. b)	5.	6.1.	6.2.	Total
Cotações	21	16	16	25	25	25	25	25	22	200