CENG 384 - Signals and Systems for Computer Engineers Spring 2018-2019

Written Assignment 1

Kosen, Emrah e1942317@ceng.metu.edu.tr

Oren, Zeki e226461@ceng.metu.edu.tr

March 22, 2019

1. (a) 1.
$$z = x + yj$$

$$3z + 4 = 2j - \overline{z}$$

$$3x + 3yj + 4 = 2j - x + yj$$

$$4x + 2yj = -4 + 2j$$

$$x = -1, y = 1$$

$$z = -1 + j$$

$$\overline{z} = -1 - j$$

$$|z|^2 = z.\overline{z} = (-1 + j).(-1 - j) = 2$$

$$\theta = tan^{-1}\frac{b}{a} = tan^{-1}(-1) = -45 \text{ or } 180\text{-}45 \text{ because of real part is positive and imaginary part negative } \theta = 135$$

$$r = \sqrt{a_2 + b_2} = \sqrt{2}$$

$$a = \sqrt{2}\sin(135) = 1 \text{ and } b = \sqrt{2}\cos(135) = -1$$

(b)
$$z^3 = r^3 * e^{3j\theta} = 4^3(\cos(3\theta) + j*\sin(3\theta))$$

 $r = 4$
 $\cos(3\theta) = 0$
 $j.\sin(3\theta) = j$
 $\theta = \frac{\pi}{6}$
 $z = 4^*(\cos(\frac{\pi}{6}) + j*\sin(\frac{\pi}{6})) = 4^*e^{j*\frac{\pi}{6}}$

(c)
$$\frac{(1-j)(1+j\sqrt{3})}{1+j} = \frac{(1-j)(1-j)(1+j\sqrt{3})}{(1+j)(1-j)} = \frac{(-2j)(1+j\sqrt{3})}{2} = -j + \sqrt{3}$$

$$r = \sqrt{3+1} = 2 \text{ and } \theta = tan^{-1} \frac{-1}{\sqrt{3}}$$
(d)
$$z = -j(\cos(*\frac{\pi}{2}) + j\sin(*\frac{\pi}{2})) = -j^*\cos(*\frac{\pi}{2}) + \sin(*\frac{\pi}{2})$$

(d)
$$z = -j(\cos(*\frac{\pi}{2}) + j\sin(*\frac{\pi}{2})) = -j*\cos(*\frac{\pi}{2}) + \sin(*\frac{\pi}{2})$$

 $\cos(*\frac{\pi}{2}) = \sin(0)$
 $\sin(*\frac{\pi}{2}) = \cos(0)$
 $z = \cos(0) - j*\sin(0)$
 $|z| = r = 1$ So, $z = e^{j\frac{\pi}{2}}$

2. .

3. (a) -

(b) 3.
$$\delta(n+7)$$
 - 4. $\delta(n+4)$ + 2. $\delta(n+2)$ - 1. $\delta(n+1)$ - 1. $\delta(n)$ + 3. $\delta(n-3)$

4. (a) The fundamental period of $\cos(\frac{13\pi*n}{10})$ is $T_1 = \frac{10*2*\pi}{13*\pi} = \frac{20}{13}$. The fundamental period of $\sin(\frac{7\pi*n}{3})$ is $T_2 = \frac{3*2*\pi}{7*\pi} = \frac{6}{7}$. The fundamental period of $x[n] = \frac{ekok(20,6)}{ebob(13,7)} = 60$

or

$$y(n) = \cos(\frac{39\pi * n}{30}) + \sin(\frac{70\pi * n}{30})$$
 so the fundamental frequency is $\frac{\pi}{30}$ than $T = \frac{2*\pi}{\frac{\pi}{30}} = 60$.

- (b) The fundamental frequency is $w_0=5$ T = $\frac{2*\pi}{w0}$ *k if x(n) is periodic, k and T should be an integer. Then, it is not periodic.
- (c) The fundamental period of x(t) = $\frac{2*\pi}{3\pi} = \frac{2}{3}$
- (d) $-je^{j5t} = -j(\cos(5t) + j\sin(5t)) = -j\cos(5t) + \sin(5t)$ = $\cos(5t + \frac{\pi}{2}) + j\sin(5t + \frac{\pi}{2})$ = $e^{j(5t + \frac{\pi}{2})}$ the fundamental period of $x(t) = \frac{2\pi}{5}$

5. In this figure $x(n) \neq x(-n)$ and $x(n) \neq -x(-n)$. So, the signal is neither even nor odd.

Any signal can be represented by its even and odd parts.

$$\begin{split} x(n) &= \mathrm{Odd}\Big\{x(n)\Big\} + \mathrm{Even}\Big\{x(n)\Big\} \\ &= \mathrm{Even}\Big\{x(n)\Big\} = \tfrac{1}{2}[x(n) + x(-n)] \qquad \qquad \mathrm{Odd}\Big\{x(n)\Big\} = \tfrac{1}{2}[x(n) - x(-n)] \\ &= \mathrm{Odd}\Big\{x(n)\Big\} + \mathrm{Even}\Big\{x(n)\Big\} = \tfrac{1}{2}[x(n) + x(-n) + x(n) - x(-n)] = \tfrac{2x(n)}{2} = x(n) \end{split}$$

$$\operatorname{Even}\Big\{x(n)\Big\} = \tfrac{1}{2}[x(n) + x(-n)] \qquad \operatorname{Odd}\Big\{x(n)\Big\} = \tfrac{1}{2}[x(n) - x(-n)]$$

As a result, addition of these plots will give us x(n) in Figure 2.

- 6. (a) y(t) = x(2t-3)
 - \Rightarrow This system has memory, because output signal y(t) depends on the present and past value of the input signal x(t).
 - \Rightarrow A system is stable for an output signal [y(t)] which is bounded for any bounded input signal [x(t)]. For a constant A > 0, |x(t)| < A for all t. For a constant B > 0, |y(t)| < B for all t. Let x(t) = u(t) [u(t) is a bounded signal]. If y(t) is bounded then system is stable.

and

Shifting and scaling the time doesn't effect the value of signal u(t). We just shift the signal 3 times right. Hence, this system is stable.

 \Rightarrow This system depends on past value of input signal x(t). Also, there is no dependence of future value of x(t). As a result, the system is causal.

$$\Rightarrow$$
 Let $x_1(t) \rightarrow$ System $\rightarrow y_1(t)$

$$x_2(t) \to \text{System} \to y_2(t)$$

$$y_1(t) = x_1(2t-3)$$

$$y_2(t) = x_2(2t-3)$$

$$y_1(t) + y_2(t) = x_1(2t-3) + x_2(2t-3)$$

$$ax_1(t) + bx_2(t) = ax_1(2t-3) + bx_2(2t-3)$$

So,
$$ay_1(t) + by_2(t) = ax_1(t) + bx_2(t)$$

Finally, the system is linear.

 \Rightarrow It has an one-to-one mapping. So, the system is invertible.

$$y^{-1} = x \left(\frac{t+3}{2} \right)$$

$$\Rightarrow$$
 Let $x_1(t) \rightarrow$ System $\rightarrow y_1(t)$

$$x_2(t) \to \text{System} \to y_2(t)$$

$$x_2(t) = x_1(t-t_0)$$

$$y_1(t) = x_1(2t-3)$$

$$y_2(t) = x_1(2t-2t_0-3)$$

 $y_1(t-t_0) = x_1(2t-2t_0-3)$. Then, $y_2(t) = y_1(t-t_0)$. Hence, the system is time-invariant.

(b)
$$y(t) = tx(t)$$

 \Rightarrow The system is memoryless because output signal y(t) doesn't depend on the past value of input signal x(t). For y(t) = h(x(t-t_o)) t_o = 0 for all t

 \Rightarrow Let x(t) = u(t). If y(t) is bounded then the system is stable.

and

Input signal x(t) is bounded; but output signal y(t) is not bounded. Hence, the system is not stable.

 \Rightarrow The system is causal because it is independent of future value of input signal x(t). $y(t) = h(x(t-t_o)) t_o = 0$ for all t

$$\Rightarrow$$
 Let $x_1(t) \rightarrow$ System $\rightarrow y_1(t)$

$$x_2(t) \to \text{System} \to y_2(t)$$

$$y_1(t) = t.x_1(t)$$

$$y_2(t) = t.x_2(t)$$

$$y_1(t) + y_2(t) = t \cdot [x_1(t) + x_2(t)]$$

$$a.x_1(t) + b.x_2(t) = a.tx_1(t) + b.tx_2(t)$$

So, $a.y_1(t) + b.y_2(t) = a.x_1(t) + b.x_2(t)$. Finally, the system is linear.

 \Rightarrow It has an one-to-one mapping. So, the system is invertible.

$$y^{-1} = x(t) \cdot \frac{1}{t}$$

$$\Rightarrow$$
 Let $x_1(t) \rightarrow \text{System} \rightarrow y_1(t)$

$$x_2(t) \to \text{System} \to y_2(t)$$

$$x_2(t) = x_1(t-t_0)$$

$$y_1(t) = t.x_1(t)$$

$$y_2(t) = t.x_1(t-t_0)$$

 $y_1(t-t_0)=(t-t_0)x_1((t-t_0))$. Then, $y_2(t)=y_1(t-t_0)$. Hence, the system is time-varying.

(c) y(n) = x(2n-3)

 \Rightarrow This system has memory, because output signal y(n) depends on the present and past value of the input signal x(n).

 \Rightarrow Let x(n) = u(n). If y(n) is bounded then the system is stable.

and

Sifting and scaling doesn't effect the value of signal u(n). We just shifted the signal 3 times right. Then the system is stable.

 \Rightarrow This system depends on future value of input signal x(n). For n = 5 y[5] = x[7]. Hence, the system is not causal.

$$\Rightarrow$$
 Let $x_1(n) \to \text{System} \to y_1(n)$ $x_2(n) \to \text{System} \to y_2(n)$

$$y_1(n) = x_1(2n-3)$$
 $y_2(n) = x_2(2n-3)$

$$y_1(n) + y_2(n) = x_1(2n-3) + x_2(2n-3)$$

$$a.x_1(n) + b.x_2(n) = ax_1(2n-3) + bx_2(2n-3)$$

So, $a.y_1(n) + b.y_2(n) = a.x_1(n) + b.x_2(n)$. Finally, the system is linear.

 $\Rightarrow y^{-1} = x(\frac{n+3}{2})$ is not invertible, because in some values of x(n) the output signal y(n) takes values which is not integer.

$$\Rightarrow$$
 Let $x_1(n) \rightarrow$ System $\rightarrow y_1(n)$ $x_2(n) \rightarrow$ System $\rightarrow y_2(n)$

$$x_2(\mathbf{n}) = x_1(\mathbf{n} - n_0)$$

$$y_1(n) = x_1(2n-3)$$
 $y_2(n) = x_1(2n-2n_0-3)$

 $y_1(n-n_0) = x_1(2n-2n_0-3)$. Then, $y_2(n) = y_1(n-n_0)$. Hence, the system is time-varying.

(d)
$$y(n) = \sum_{k=1}^{\infty} x(n-k)$$

 \Rightarrow This system has memory, because output signal y(n) depends on the present and past value of the input signal x(n). For y = 0, y[0] = x[-1] + x[-2] ... 0 > -1,-2...

 \Rightarrow For any bounded input x(n) it has unbounded output y(n) so it is not stable.

 \Rightarrow This system depends on past value of input signal x(n). There is no dependence on future value of x(n). For any $n \to n$ -k < n in k from zero to infinity. Hence, the system is causal.

$$\Rightarrow$$
 Let $x_1(n) \rightarrow$ System $\rightarrow y_1(n)$ $x_2(n) \rightarrow$ System $\rightarrow y_2(n)$

.
$$y_1(\mathbf{n}) = \sum_{k=1}^{\infty} x_1(\mathbf{n-k})$$
 $y_2(\mathbf{n}) = \sum_{k=1}^{\infty} x_2(\mathbf{n-k})$

$$y_1(n) + y_2(n) = \sum_{k=1}^{\infty} x_1(n-k) + \sum_{k=1}^{\infty} x_2(n-k)$$

$$a.x_1(n) + b.x_2(n) = a\sum_{k=1}^{\infty} x_1(n-k) + b\sum_{k=1}^{\infty} x_2(n-k)$$

So, $a.y_1(n) + b.y_2(n) = a.x_1(n) + b.x_2(n)$. Finally, the system is linear.

 $\Rightarrow x[n] = y[n{+}1]$ - y[n] so it is invertible.

$$\Rightarrow \text{Let } x_1(\mathbf{n}) \to \text{System} \to y_1(\mathbf{n}) \\ x_2(\mathbf{n}) \to \text{System} \to y_2(\mathbf{n})$$

$$x_2(\mathbf{n}) = x_1(\mathbf{n} - n_0)$$

.
$$y_1(\mathbf{n}) = \sum_{k=1}^{\infty} x_1(\mathbf{n}-\mathbf{k})$$
 $y_2(\mathbf{n}) = \sum_{k=1}^{\infty} x_1(\mathbf{n}-n_0-\mathbf{k})$

 $y_1(\mathbf{n}-n_0) = \sum_{k=1}^{\infty} x_1(\mathbf{n}-n_0-\mathbf{k})$. Then, $y_2(\mathbf{n}) = y_1(\mathbf{n}-n_0)$. Hence, the system is time-invariant.