Assignment 1: Project Report - Simple Linear Regression

Submitted By: Shubham Murari

Net ID: SXM170056

Course: BUAN 6341.501 – Applied Machine Learning

Problem Summary:

We have been provided with a regression problem for 'Appliances Energy Prediction'. There are 19735 instances (records) with no missing values. The energy data was logged on a time basis where the Temperature and Humidity Conditions of a house were monitored with the help of sensors. Additionally, the data is merged with the nearest airport's weather station's data. Also, the actual dataset shows that this is multi variate time series problem but for our analysis and specially for this project we are not considering the date time variable.

Goal:

Our goal is to implement the Gradient Descent algorithm and calculate the Cost Function value for our model, where we are predicting the Appliances' energy uses which is our target variable. We need to predict it on the basis of different values of Temperature, Humidity, Visibility etc. which is given in our dataset.

Exploratory Analysis and Feature Engineering:

Before directly jump into any conclusion or analysis, there are certain steps that I kept in my mind before starting this interesting exercise.

- 1. The various Temperature and Humidity values that were given to me, are they from same building/area?
- **2.** If yes, then, how these values are related to each other?
- **3.** How significant each value is when it comes to the relation between my target variable and independent variables?
- **4.** Is there any *correlation*?
- 5. How is the distribution of my data? Is it normal or skewed etc.?

Once I made myself clear with all these details I started with my analysis. But again, let me walk through the way in which I answered all these questions and fix these issues.

Step 1:

When I closely observed the summary statistics for various **Temperature and Humidity** values which were given in the data set, I found the following things-

	Appliances	lights	T1	RH_1	T2	RH_2	Т3	RH_3	T4	RH_4
count	19735.000000	19735.000000	19735.000000	19735.000000	19735.000000	19735.000000	19735.000000	19735.000000	<u>19735.000000</u>	19735.000000
mean	97.694958	3.801875	21.686571	40.259739	20.341219	40.420420	22.267611	39.242500	20.855335	39.026904
std	102.524891	7.935988	1.606066	3.979299	2.192974	4.069813	2.006111	3.254576	2.042884	4.341321
min	10.000000	0.000000	16.790000	27.023333	16.100000	20.463333	17.200000	28.766667	15.100000	27.660000
25%	50.000000	0.000000	20.760000	37.333333	18.790000	37.900000	20.790000	36.900000	19.530000	35.530000
50%	60.000000	0.000000	21.600000	39.656667	20.000000	40.500000	22.100000	38.530000	20.666667	38.400000
75%	100.000000	0.000000	22.600000	43.066667	21.500000	43.260000	23.290000	41.760000	22.100000	42.156667
max	1080.000000	70.000000	26.260000	63.360000	29.856667	56.026667	29.236000	50.163333	26.200000	51.090000

- **Temperature Values:** Temperature values (T1, T2, T3 etc. other than T6 which is the outside temperature of the building) have almost **Mean Values in the range of 19-21**
- Humidity Values: Most of the Humidity values (RH_1, RH_2, RH_3 etc.) have the Mean Values in the range of 38-40

So this paerticular observation gave me an idea that there MIGHT be some correlation between the temperature and humidity values of different rooms inside the building. To get more clarity on this I opted for the Correlation (Heat Map) Plot of my data set.

Step 2:

As I discussed before, this small observation of summary stats gave me an inkling of correlation between different variables, to get more clarity on that I tried to plot the correlation plot for my data set.

This plot uses a warm-to-cool color spectrum to show how different variables are correlated to each other, but some times to observe these many variables can be very taxing. So for this purpose I implemented the method to fetch correlation matrix to further select the features for my analysis.

I used the following function – set the correlation threshold as 0.80

Further drill down the Correlation Matrix:

Heat Map:

Correlation Matrix: (it is just for the reference, whole matrix is available on notebook)

		corr
rv1	rv2	1.000000
Т6	T_out	0.974787
17	Т9	0.944776
T5	Т9	0.911055
Т3	Т9	0.901324
RH_3	RH_4	0.898978
RH_4	RH_7	0.894301
T1	Т3	0.892402

Step 3:

Distribution of the variables – this is also an important aspect, ideally there should be a normal distribution for the regression. I quickly checked it using the 'dist. plot'

As you can see below most of my values were normally distributed for this data-

However, we later normalized the values also, so that we can fir it into our model, normalizing the variables always help to achieve good prediction results or we can say *optimized cost function value*.

Feature Selection:

Once the data is prepared and exploratory analysis is done, I selected 16 Features from my dataset (which were basically filtered on the basis of correlation and distribution)

Regression Equation:

Experiment 1: (Linear Regression & Logistic Regression)

Objective-

Experiment with various Parameters for Linear Regression (e.g. learning rate ∝) and plot the curves for both Train and Test Cost.

Solution:

Following features were selected for this experiment including the Target Variable:

```
(['Appliances', 'lights', 'RH_1', 'T2', 'RH_2', 'T5', 'RH_5', 'RH_6',
    'T8', 'RH_8', 'T_out', 'Press_mm_hg', 'RH_out', 'Windspeed',
    'Visibility', 'Tdewpoint', 'rv1'],
```

Step 1: Data was splitted to Train and Test using the 70/30 split rule.

Step 2: Further we performed the feature vectorization and normalization.

Step 3: Initilize the value for *beta* as 1.

Step 4: Implemented the following functions for Cost Function, Gradient Descent and Learning Curves

Step 5: We tried different values of alpha and calculated the Train Cost and Test Cost for this model.

Learning Rate (∝)	<u>Iterations</u>	<u>Threshold</u>	Train Cost	Test Cost
0.01	6022	0.001	4453.244	4949.398
0.1	989	0.001	4451.761	4944.767
0.001	24213	0.001	4467.126	4972.513
0.5	3	0.001	4882.811	5357.399

So, for this experiment the maximum number of iterations were kept fixed at 100000 and learning rate were experimented at **0.01**, **0.1**, **0.001**, **0.5**

Above is the table which shows how Train and Test Cost is getting varied with the <u>Learning Rate (\propto)</u>. Below is the plot for Training/Test Cost vs Iterations for different values of <u>(\propto)</u> for <u>Linear:</u>

 $\alpha = 0.01$ $\alpha = 0.1$

Explaination:

- We can see from the train and test plots and the number of iterations taken by the gradient descent algorithm taking to converge we can say that –
- For smaller learning rate, the number of iterations required is more and in case of learning rate 0.001 the algorithm fails to converge within 20000 iterations.
- For this particular experiment, the best learning rate is 0.1 as the train and the test error are minimum and iterations are also less.

Part 2: Logistic Regression

We will convert this problem to the Logistic Regression problem, for this purpose I calculated the **Median of Appliances** which came out to be **60.0**.

I used the following logic to convert the problem into the Binary Classification problem:

```
In [14]: df['Appliances_Energy'] = np.where(df['Appliances']>= 60, 1, 0)
    df.drop(columns=['Appliances'],axis=1,inplace=True)
```

1:	Signifies the Higher Energy Uses
0:	Signifies the Lower Energy Uses

Additional function that we implemented was the **Sigmoid Function**:

Implementing Sigmoid function

```
def sigmoid(z):
    return 1/ (1 + np.exp(-z))
```

We observed the following values for Learning Rate (alpha) and Cost Functions:

<u>Learning Rate (∝)</u>	<u>Iterations</u>	Train Cost	Test Cost	Test Accuracy
0.01	16803	0.52082	0.530929	73.09576
0.1	4262	0.51983	0.52995	73.1295
0.5	1230	0.51974	0.52985	73.0282
1.0	697	0.51973	0.52984	73.0957

Explanation:

- For Experiment 1, the best results are obtained for a value of alpha =1. The train cost and test cost are as low as 0.51973 and 0.52984 respectively.
- Also, it is observed that for a fixed threshold of 0.0000001, the costs decrease as we increase the value of alpha. Accuracy is around **73.1** % for all values of alpha.

Below is the plot for Training/Test Cost vs Iterations for different values of (\propto) for Logistic:

Experiment 2: (Linear Regression – Change Convergence Threshold)

Objective:

Experiment with various thresholds for convergence for linear regression. Plot error results for train and test sets as a function of threshold and describe how varying the threshold affects.

For the same set of features that we considered in Experiment 1 and following the same steps, lets fix the value of alpha and vary the thresholds-

We will get the following observations:

<u>Learning</u> <u>Rate (∝)</u>	Iterations	(Convergence Criteria)	Train Cost	Test Cost
0.1	1758	0.0001	4451.533	4943.488
0.1	989	0.001	4451.761	4944.767
0.1	602	0.01	4453.228	4949.360
0.1	242	0.1	4466.999	4972.359
0.1	87	0.5	4499.824	5005.192
0.1	58	1.0	4519.764	5020.695

The threshold values chosen for this experimentation are 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0 at the fixed learning rate of alpha 0.1.

The plot of Train/Test Score vs Convergence Threshold is shown below:

So this plot clearly shows that for the **lower** values of Convergence Threshold i.e. **0.0001** both the Train Cost and Test Cost are having the minimum values as compare to the other thresholds.

To get the more clarity on this we can also plot the <u>Train/Test Cost vs Iteration</u> for best combination i.e <u>Convergence Criteria and Learning Rate is 0.0001 and 0.1</u> respectively-

So the best value of threshold seems to be 0.0001 here.

Experiment 3: (Pick 10 Random Features)

Using **np. random. Choice ()**, I just picked 10 random variables and follow the same steps as above. Below is the best value for Train Cost and Test Cost in case of Random variable selection.

10 Randomly Picked variables are:

Again at alpha = 0.1 we are getting the best value for Randomly Picked variables but again these values are greater as compared to the model which uses 16 features.

Reason: This is as expected because the features that we picked to predict the Appliances Energy, were picked without any statistical significance, it just random selection. Its highly unlikely that we get the optimized values for cost function in this particular case. Moreover, odds of randomly picking 10 features performing better than the 16 feature dataset is quiet low.

For Linear Regression

<u>Model</u>	Learning Rate (∝)	<u>Iterations</u>	Train Cost	Test Cost
Model with 16 Features	0.1	989	4451.761	4944.767
Model with 10 Random Features	0.1	989	4716.215	5179.216

For Logistic Regression

<u>Model</u>	Learning Rate (∝)	<u>Iterations</u>	Train Cost	Test Cost	Test Accuracy
Model with 16 Features	1.0	697	0.51973	0.52984	73.0957
Model with 10 Random Features	1.0	527	0.58095	0.58585	69.9881

Experiment 4: (Pick 10 Best Features)

The 10 best features for this particular problem that I selected are:

T1, T2, T6, RH_1, RH_2, RH_6, T_out, lights, Windspeed, RH_out

My Approach behind the selection of 10 best features:

- Initial approach behind selecting these features was correlation between them. However, there are some features which I believe from the energy consumption's point of view. e.g. **lights** feature might have many 0 values but again its kind of *important* feature when it comes to predicting the value of actual energy consumption.
- Similarly, there are different rooms in the building e.g. I considered mainly the temperature and humidity of the **Kitchen Area, Living Room** and Northside of the Building (outside). Its highly likely that the consumption of electricity in the Living Room and Kitchen will be more due to frequent use of different appliances e.g. *Toaster, Refrigerator, Blender, TV, AC, Heater, Chimneys, Microwaves, Burners, Lamps etc.*
- And Outside Temperature/Humidity also plays a critical role in the consumption of devices
 which comes under HVAC division like (AC and Heater Systems). Based upon the outside
 humidity and temperature only we use these appliances which again consume high energy as
 compare to other small appliances.

For Linear Regression

<u>Model</u>	<u>Learning</u> Rate (∝)	<u>Iterations</u>	Train Cost	Test Cost	Performance
Model with 16 Features	0.1	989	4451.761	4944.767	Best
Model with 10 Random Features	0.1	235	4716.215	5179.216	Bad
Model with 10 Best Features	0.1	1935	4501.347	4945.306	Good

For Logistic Regression

<u>Model</u>	Learning Rate (∝)	<u>Iterations</u>	Train Cost	Test Cost	Test Accuracy	<u>Performance</u>
Model with 16 Features	1.0	697	0.51973	0.52984	73.0957	Best
Model with 10 Random Features	1.0	527	0.58095	0.58585	69.9881	Bad
Model with 10 Best Features	1.0	1323	0.55235	0.55763	69.785509	Good

Explanation:

- This model Performs better than the model where we <u>Randomly</u> picked the 10 features because
 there was no statistical significance was taken in consideration in case of random selection, the
 Training Cost and Test Cost of 10 best Feature Model is slightly better than the model that had
 random features.
- But when it comes to the comparison of this model which had 10 best features with the model that had 16 features, there is a slight difference in the Training and Testing Cost (as shown in the table above). Costs are slightly high for model with 10 best Features. Because it might be the case that smaller feature might be missing some important features due to size constraint or it might not be able to capture the variance in the dependent variable. On the contrary for the model that has 16 features it might be working fine.

Discussions: Challenges and what more can be done-

- As we know that Linear and Logistic Regression are the baseline algorithms, there are advanced ML algorithms like Random Forest, Decision Trees, KNN etc. which are expected to give the much more accurate results.
- 2. We could have implemented **Ridge and Lasso Regression** for better feature selections and more accurate results.
- 3. Since there was a **constraint in number of features** for the experiment 3 and 4, it was very challenging to pick the best features to train model. This made the model more restricted and the features that we selected might have not able to explain the variance of dependent variable.
- **4.** There were some features like Temperature and Humidity which were not varying much within the building, some of them were highly correlated which might have result in the higher cost values for Random Selection experiment. However, for the remaining experiments we take the correlation factor into consideration.
