

MLT-DR: Multi-Lingual/Task Demonstration Retrieval An Attempt towards Generalized Retriever for In-Context Learning

Retriever models will be available at: https://github.com/google-deepmind/mlt_dr

{kazumah, arjunakula, karthikraman, bemike}@google.com

Kazuma Hashimoto, Arjun Reddy Akula, Karthik Raman, Michael Bendersky

TL:DR

- Investigating generalization ability of retrieval for in-context learning (ICL)
- Training with 81 datasets with diverse tasks, domains, and languages - Augmenting the training data with Google Translate for >230 languages

[Many tasks]

translation, NLI, paraphrase, sentiment/emoji/emotion, dialog domain/intent/slot, semantic parsing, NER, relation, syntax, coref, summarization, QA, relevance, ggen, ...

[Many langs]

[Previous work]

Fine-tuning a dense retriever to find useful demonstrations for ICL with LLMs

Contrastive learning (the encoder is shared across tasks and languages)

[Multi/cross-lingual data augmentation]

Translating some datasets into many languages before the utility estimation

Research Question (2)	0	AfriSenti Zero (39.43)				
Q. Does MT help? A. Yes.	R_0 R_{NO} R_{NO} +M'	40.50 41.48 41.92 42.97 -0.41 -1.32 -1.25 -0.44 Γ +0.15 +0.39 +0.49 +1.29				
\		ATIS-intent hi,tr (29.67)				

Other aspects are also $R_{\rm NO}$ investigated in our paper. +5.72 +3.82 +3.02 +2.47 $R_{NO}+MT$

Research Question (1)

Q. Does the **demonstration text format** matter when tested on unseen tasks?

A. Yes, using (x, y) instead of (x) alone would hurt the generalization ability.

) : generi	c mT5 retriever S	TD: (instruct, x, y)	DESC: (instruct, x, des	cription(y)) NO: (i	nstruct, x)
	AfriSenti Zero (39.43)	GoEmotions (27.92)	CLINC150 (70.58)	Orcas-I (42.00)	
R_0	40.50 41.48 41.92 42.97	27.19 29.05 30.66 32.36	91.36 93.53 94.24 95.87	46.30 48.70 51.00 54.30	
$R_{\rm STD}$	-0.51 -0.54 -0.03 -1.37	+0.52 +0.34 -0.48 -1.31	-1.34 -1.60 -1.62 -1.96	-0.90 -1.20 -3.50 -6.00	
$R_{ m DESC}$	-1.00 -0.27 -0.32 -1.81	+0.53 +0.53 -0.04 +0.74	-0.69 -1.31 -1.08 -2.11	+1.40 +0.90 +0.50 -0.30	
$R_{\rm NO}$	R _{NO} -0.41 -1.32 -1.25 -0.44 +0	+0.34 +0.61 -0.05 -0.09	+2.35 +2.14 +1.78 +0.40	+0.70 +0.50 -1.00 -0.80	
	MIT-R (1.09)	SSENT (7.38)	XML-MT enja (37.71)	XML-MT enfi (23.56)	
R_0	40.14 49.34 54.54 60.46	24.66 27.52 30.33 27.32	52.10 55.54 56.19 56.08	36.43 39.00 39.86 40.00	
$R_{\rm STD}$	+6.44 +6.10 +4.68 +1.83	+3.21 +3.02 -0.21 -2.10	+0.36 +0.93 +0.31 +0.55	-0.23 +0.26 +0.08 -0.43	
$R_{ m DESC}$	+5.63 +5.18 +3.98 +1.78	+3.95 +4.03 +1.38 +1.38	+0.52 +0.57 +1.08 +0.28	-0.06 -0.03 +0.56 -0.22	
$R_{\rm NO}$	+5.19 +5.88 +3.99 +2.26	+0.66 +1.35 -1.16 +0.44	+0.85 +0.06 +0.92 +0.02	+0.84 +0.72 +0.60 -2.32	

k-shot ICL with k=1, 3, 5, 10 (no data augmentation with MT)

Discussions: challenges towards even better generalization

Adaptability to arbitrary formats of tasks by real users

- We carefully selected and processed the datasets, but they are (too) clean.
- In real usecases of LLM APIs, the users will type their tasks in arbitrary (potentially more complicated) forms.
- # Understanding of more nuanced task instructions (i.e., controllability)

- Can the retriever have capabilities of understanding the tasks in nuanced ways?

- For example, instead of just "machine translation," we may have specific priorities like entity precision/recall, writing styles, etc.