Markov Chain Monte Carlo

Dustin Lang Perimeter Institute for Theoretical Physics

Symmetries Graduate School, 2023-01-23

Borrowing heavily from Dan Foreman-Mackey's slides https://speakerdeck.com/dfm/data-analysis-with-mcmc1

These slides are available at https://github.com/dstndstn/MCMC-talk

data analysis with

Markov chain Monte Carlo

Dan Foreman-Mackey

CCPP@NYU

The graphical model of my research.

The graphical model of my research.

p(data | physics)

likelihood function/generative model

 $p({
m physics}\,|\,{
m data}) \propto p({
m physics})\,p({
m data}\,|\,{
m physics})$ posterior probability

- Perlmutter+1999 (https://arxiv.org/abs/astro-ph/9812133)
- Measured the observed peak brightnesses of a sample of type-1a supernovae (in astronomer "mag" units), and the redshifts ("z") of the supernova host galaxies
- ightharpoonupmag = mag_{intrinsic} + luminosity_distance(z, parameters)

- ► Generative model: $mag_i = mag_{intrinsic} + luminosity_distance(z_i, parameters) + \epsilon_i$
- ▶ Probability of data given a model ("likelihood"): $p(\{\text{mag}_i\} \mid \text{params}) = \prod_i \text{Gaussian}(\text{mag}_i \mid \mu = f(z_i, \text{params}), \sigma_i^2)$
- $p(\text{mag}_i \mid \Omega_M, \Omega_{\Lambda}) = \mathcal{N}(\text{mag}_i \mid \text{mag}_{\text{int}} + D_L(z_i, \Omega_M, \Omega_{\Lambda}), \sigma_i^2)$

- ▶ Use Bayes' theorem to convert data likelihoods into contraints on the model parameters $\theta = \{\Omega_M, \Omega_\Lambda\}$
- ▶ $p(\theta \mid \text{data}) \propto p(\theta) p(\text{data} \mid \theta)$
- ▶ $p(\Omega_M, \Omega_\Lambda | \{ \text{mag}_i \}) \propto$ $p(\Omega_M, \Omega_\Lambda) \prod_i \mathcal{N}(\text{mag}_i | \text{mag}_{\text{int}} + D_L(z_i, \Omega_M, \Omega_\Lambda), \sigma_i^2)$

Resulting parameter constraints (blue ellipse):

Why we often need MCMC

- Real-life models and likelihoods are often complex
- ... so the resulting constraints have complicated distributions (not Gaussians!)
- but we can represent them with samplings
- MCMC is used for drawing samples from probability distributions that we can compute numerically but cannot solve analytically

Samplings to represent constraints - examples

- From https://arxiv.org/abs/1910.04899
- With a sampling: Marginalize over a parameter by projecting it out

Samplings to represent constraints - examples

From https://arxiv.org/abs/1611.00036

MCMC

draws samples from a probability function

and all you need to be able to do is

evaluate the function

(up to a constant)

Metropolis-Hastings

About the name

- Monte Carlo: a reference to the famous Monte Carlo Casino in Monaco, alluding to the randomness used in the algorithm
- Markov Chain: a list of samples, where each one is generated by a process that only looks at the previous one.
- Markov: a 19th-centure Russian mathematician and impressive-moustache-haver with an extensive list of things named after him
- Metropolis—Hastings: lead authors of 1953 and 1970 papers (resp.) giving the algorithm with symmetric and general proposal distributions (resp.)

The Algorithm (1)

```
def mcmc(prob_func, propose_func, initial_pos, nsteps):
     p = initial_pos
     prob = prob_func(p)
     chain = \Pi
     for i in range(nsteps):
         # propose a new position in parameter space
         # . . .
         # compute probability at new position
         # ...
         # decide whether to jump to the new position
         if # ...
             # ...
             # ...
         # save the position
         chain.append(p)
     return chain
```

The Algorithm (2)

```
def mcmc(prob_func, propose_func, initial_pos, nsteps):
     p = initial_pos
     prob = prob_func(p)
     chain = \Pi
     for i in range(nsteps):
         # propose a new position in parameter space
         p_new = propose_func(p)
         # compute probability at new position
         prob_new = prob_func(p_new)
         # decide whether to jump to the new position
         if prob_new / prob > uniform_random():
             p = p_new
             prob = prob_new
         # save the position
         chain.append(p)
     return chain
```

The Algorithm (3)

```
def mcmc(logprob_func, propose_func, initial_pos, nsteps):
     p = initial_pos
     logprob = logprob_func(p)
     chain = \Pi
     for i in range(nsteps):
         # propose a new position in parameter space
         p_new = propose_func(p)
         # compute probability at new position
         logprob_new = logprob_func(p_new)
         # decide whether to jump to the new position
         if exp(logprob_new - logprob) > uniform_random():
             p = p_new
             logprob = logprob_new
         # save the position
         chain.append(p)
     return chain
```

The Algorithm (4)

```
def mcmc(logprob_func, propose_func, initial_pos, nsteps):
     p = initial_pos
     logprob = logprob_func(p)
     chain = []
     naccept = 0
     for i in range(nsteps):
         # propose a new position in parameter space
         p_new = propose_func(p)
         # compute probability at new position
         logprob_new = logprob_func(p_new)
         # decide whether to jump to the new position
         if exp(logprob_new - logprob) > uniform_random():
             p = p_new
             logprob = logprob_new
             naccept += 1
         # save the position
         chain.append(p)
     return chain, naccept/nsteps
```

Practicalities

- How do I choose a proposal distribution?
- How many steps do I have to take?

Metropolis-Hastings in the real world

Metropolis-Hastings in the real world

A connection to symmetries

- In Metropolis—Hastings MCMC, the proposal distribution needs tuning parameters, especially as dimensionality increases
- Can be seen as a lack of symmetry in the algorithm—the algorithm is sensitive to the parameterization of the problem
- ► For example, it's not invariant to an affine transformation
- Next lecture, I'll show you an alternative algorithm that does have affine invariance

How many samples do I need?

- ▶ Burn-in skip the first N samples
- Has my chain converged?
- MCMC produces correlated samples, so
 - How correlated are my samples?
 - Can measure the autocorrelation time τ
 - ▶ Keep $1/\tau$ of the MCMC samples
 - eg https://github.com/dfm/acor
 - How many uncorrelated samples do I need?
 - ▶ No easy general answer to this question!
 - "How many can you afford?"

How many samples do I need?

- ▶ Burn-in skip the first N samples
- Has my chain converged?
- MCMC produces correlated samples, so
 - How correlated are my samples?
 - \blacktriangleright Can measure the *autocorrelation time* τ
 - Keep $1/\tau$ of the MCMC samples
 - eg https://github.com/dfm/acor
 - How many uncorrelated samples do I need?
 - ▶ No easy general answer to this question!
 - "How many can you afford?"

How many samples do I need?

- ▶ Burn-in skip the first N samples
- Has my chain converged?
- MCMC produces correlated samples, so
 - How correlated are my samples?
 - \blacktriangleright Can measure the *autocorrelation time* τ
 - Keep $1/\tau$ of the MCMC samples
 - eg https://github.com/dfm/acor
 - How many uncorrelated samples do I need?
 - No easy general answer to this question!
 - "How many can you afford?"

as you learned in middle school

$$\int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} \approx \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{x}_n)$$
where: $\mathbf{x}_n \sim p(\mathbf{x})$

error:
$$\delta \propto \frac{1}{\sqrt{N'}}$$
 number of independent camples

Conclusions

- MCMC remains an essential tool for probabilistic inference
- For science: lets us contrain model parameters based on data (Bayesian inference)
- Beguilingly simple algorithm, but difficult practicalities
- ▶ MCMC has beautiful theoretical guarantees... as compute time $\to \infty$

This afternoon's tutorial/lab session

- ▶ Bob Room, 3:15–4:30
- Time to play with MCMC yourself!
- We'll use Google CoLab no need to install anything on your computer
- In the Python language