IA Applications in Transcription Factors Binding Site

André Borges Farias fariasab@lncc.br

Transcription Factor (TF)

- Proteins that bind to specific DNA sequences (TFBS) to regulate gene transcription.
- Play a fundamental role in gene expression regulation.
- Act as transcription activators or repressors.

Characteristics that influence TF binding:

The modulation of TF-DNA recognition depends on the characteristics of transcription factors (TFs) or DNA binding sites.

Inukai S, Kock KH, Bulyk ML. Transcription factor–DNA binding: beyond binding site motifs. Current Opinion in Genetics & Development. 2017 Apr;43:110–9.

Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R. Absence of a simple code: how transcription factors read the genome. Trends in Biochemical Sciences. 2014 Sep;39(9):381–99.

Entraf

https://entraf.iimas.unam.mx

Tenorio-Salgado, S.; Ledesma-Dominguez, L.; Galan-Vasquez, E.; Farias, A. B., Alvarez, D.I., Villalpando, J. L.; Perez-Rueda, E. ENcyclopedia of TRAnscription Factors in Bacteria and Archaea genomes (ENTRAF) version 2.0. Database. Submitted.

Can the algorithm include all biological complexity?

What's in the black box? How does the model learn the data?

mathematical modeling

Position Weight Matrices (PWMs)

PWM is a 4×L matrix, where:

- L is the length of the motif (number of positions in the binding sequence).
- Each line represents a nucleotide (A, C, G, T).

Position Weight Matrices (PWMs)

$$PWM(b,i) = \log_2(\frac{f(b,i)}{p(b)})$$

f(b,i) is the observed frequency of nucleotide b at position i.

p(b)=0.25 assuming that each base (A, C, G or T) occurs with 25% probability

Base	1	2	3	4
Α	Log2((2/5)/0.25)	Log2((1/5)/0.25)	Log2((1 /5)/ 0.25)	Log2((1/5)/ 0.25)
С	Log2((1/5)/0.25)	Log2((1/5)/0.25)	Log2((1 /5)/ 0.25)	Log2((2/5)/ 0.25)
G	Log2((1/5)/0.25)	Log2((1/5)/0.25)	Log2((2 /5)/ 0.25)	Log2((1/5)/ 0.25)
Т	Log2((1/5)/0.25)	Log2((2/5)/0.25)	Log2((1 /5)/ 0.25)	Log2((1/5)/ 0.25)

Position Weight Matrices (PWMs)

$$PWM(b,i) = \log_2(\frac{f(b,i)}{p(b)})$$

f(b,i) is the observed frequency of nucleotide b at position i.

p(b)=0.25 assuming that each base (A, C, G or T) occurs with 25% probability

Base	1	2	3	4
Α	0,68	-0,32	-0,32	-0,32
С	-0,32	-0,32	-0,32	0,68
G	-0,32	-0,32	0,68	-0,32
Т	-0,32	0,68	-0,32	-0,32

We can now use this PWM to predict new binding sites by scanning sequences.

Prediction using PWMs

Suppose you want to predict an unknown sequence:

ATGCCATGACGTAGCTAGTGCTAGC

We choose a reference TF, represented by the matrix (PWM) below:

Base	1	2	3	4	5	6
А	1.2	-0.8	0.5	-0.3	1.1	-1.0
С	-1.1	0.2	-0.7	1.5	-0.5	0.9
G	0.4	1.7	-0.9	-1.3	0.8	-0.2
Т	-0.5	-1.0	1.2	0.3	-1.4	0.5

Prediction using PWMs

We define an score (S):

$$S = \sum_{i=1}^{L} PWM(b_i, i)$$

Where,
L is the length of the sequence;

PWM(b_i, i) is the PWM value for nucleotide bi at position i

ATGCCATGACGTAGCTAGTGCTAGC

A at position $1 \rightarrow 1.2$ T at position $2 \rightarrow -1.0$ G at position $3 \rightarrow -0.9$ C at position $4 \rightarrow 1.5$ C at position $5 \rightarrow -0.5$ A at position $6 \rightarrow -1.0$

	•					
Bas e	1	2	3	4	5	6
Α	1.2	-0.8	0.5	-0.3	1.1	-1.0
С	-1.1	0.2	-0.7	1.5	-0.5	0.9
G	0.4	1.7	-0.9	-1.3	8.0	-0.2
Т	-0.5	-1.0	1.2	0.3	-1.4	0.5

$$S = 1.2 + (-1.0) + (-0.9) + 1.5 + (-0.5) + (-1.0) = -0.7$$

Predictions using PWMs

Repeat the same process for the rest of the sequence:

Position 1-6: ATGCCA \rightarrow S₁ Position 2-7: TGCCAT \rightarrow S₂ Position 3-8: GCCATG \rightarrow S₃ Position 4-9: CCATGA \rightarrow S₄

Posição	Sequência	Score	Predição
1-6	ATGCCT	-0.7	Não significativo
2-7	TGCCAT	0.3 Valores	Não significativo
3-8	GCCATG	1.1 <u>a</u>	Sítio de Ligação
4-9	CCATGA	-0.2 catórios	Não significativo

JASPAR Scan – Analysis of TFBS

JASPAR Scan – Analisys of TFBS

>Seq1

GTCTACCTCATCATAAATGAATAGTCATGAAGACTTTGGTTGCTTTAACGGCGTTGTGCAAGG GGAGATAGCATCAAAAAATCGCCACTTTGCGCAGGAATGGAGCGAAAGGGATGAAAAATCA ACAAACAGAAAAAAGATCCAAAAAAACGCTTGTGCAAAAAAATGGGATCCCTATAATGCGCCT CCATCGACACGGCGGA

>Seq 2

AAAGAAGTAAGCACACCTGCAAGGCCAGTTAACTGGCCATCGTAAATGGCCCGATAGTGTA AGCTATTCGGGCCTGCGGTGTTTATGCCTGGGGAACGCCACCGGGTAAAACACGTTCTTCA TTATCAATACTCTGAAACCGTCTGTTAATAACAGACGGTTTTTTGTCTATGGAAAA

Analysis results

Scan results

Total **59** putative site(s) were predicted with relative profile score threshold 80%.

Showing 1 to 10 of 59 entries

Display 10 v profiles Filter:								
Matrix ID 👙	Name \$	Score \$	Relative score 🔻	Sequence ID 🗼	Start	End \$	Strand	Predicted sequence
MA2267.1	MA2267.1.rib	13.721569	0.9971717	seq1	156	164	+	TGCAAAAAA
MA2294.1	MA2294.1.Xrp1	11.530659	0.9344376	seq1	53	62	+	GTTGTGCAAG
MA2232.1	MA2232.1.fd59A	11.46842	0.92562366	seq1	118	127	+	AAAATCAACA
MA2235.1	MA2235.1.FoxL1	8.583526	0.91622794	seq1	124	131	+	AACAAACA
MA2265.1	MA2265.1.retn	6.611742	0.8890682	seq1	13	18	-	ATTTAT
MA2261.1	MA2261.1.phol	10.200128	0.88342345	seq1	83	92	+	CGCCACTTTG
MA2265.1	MA2265.1.retn	6.415705	0.88296866	seq1	13	18	+	ATAAAT
MA2267.1	MA2267.1.rib	6.7273164	0.8789039	seq1	141	149	+	TCCAAAAAA
MA2237.1	MA2237.1.FoxP	7.0846124	0.87611276	seq1	120	128	+	AATCAACAA
MA2272.1	MA2272.1.slp2	7.650351	0.86979115	seq1	125	132	+	ACAAACAG

Previous

Next

Machine learning is an approach to **learning** complex patterns from existing data and using those patterns to make **predictions** on unknown data.

Briefings in Bioinformatics, 2024, **25(6)**, bbae581 https://doi.org/10.1093/bib/bbae581 Case Study

Predicting bacterial transcription factor binding sites through machine learning and structural characterization based on DNA duplex stability

André Borges Farias (D 1,2,*, Gustavo Sganzerla Martinez (D 3, Edgardo Galán-Vásquez (D 4, Marisa Fabiana Nicolás (D 1, Ernesto Pérez-Rueda (D 2,*

¹Laboratório Nacional de Computação Científica - LNCC, Avenida Getúlio Vargas, Petrópolis, Rio de Janeiro 25651075, Brazil

²Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Carretera Sierra Papacal, Mérida 97302, Yucatán, México

³Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax B3H 4H7, Nova Scotia, Canada

⁴Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Escolar S/N, Mexico City 01000, México

^{*}Corresponding authors, Ernesto Pérez-Rueda, E-mail: ernesto.perez@iimas.unam.mx; André Borges Farias, E-mail: bfarias.andre@gmail.com

Data

Clean and process data

Explainable

TFBS

CAGAGCAGGAAAATCCATA CACAGCAGATTAATCCATA TATAGCAGGAAGATCCATA CGCAGCAATTTAATCCATA TTCAGCAGGATAATGAATA CATAGCATTTTTATCCATA

CACGGCAGAAAAGTCCACA TTTAGCGGGAAAAGACATA

Regulon

Features Generation Elimination of duplicates

-0.2; -7.8; -3.2; -2.4; -5.5; ... -5.5; -6.2; -3.2; -7.8; -3.2; ... -0.2; -7.8; -3.2; -2.4; -5.5; ... -5.5; -6.2; -3.2; -7.8; -3.2; ... -0.2; -7.8; -3.2; -2.4; -5.5; ... -5.5; -6.2; -3.2; -7.8; -3.2; ... -0.2; -7.8; -3.2; -2.4; -5.5; ... -5.5; -6.2; -3.2; -7.8; -3.2; ...

Features randomization

-0.5; -6.3; -2.7; -1.6; -1.5; ... -1.2; -2.3; -4.3; -1.5; -4.2; ... -0.7; -4.2; -0.5; -3.2; -3.6; ... -0.8; -3.1; -0.2; -0.7; -5.2; ... -1.2; -0.6; -3.5; -0.5; -4.2; ... -4.2; -2.3; -4.2; -3.2; -1.5; ... -1.2; -2.5; -4.6; 4.3; -1.5; ... -3.2; -2.3; -7.8; -7.8; -3.5; ...

Train and model evaluation

Validations metrics

ML model to predict and classify TFBS

Classification task: TFBS-DR vs TFBS-IR

Classification task: TFBS vs non-TFBS

DDS plot (TFBS-IR)

Git clone https://github.com/farias-ab/TFBS-Prediction.git

