Chapter 4: Divide and Conquer

Chin Lung Lu

Department of Computer Science National Tsing Hua University

Divide and conquer strategy (cont'd)

Example (finding maximum problem):

Find the maximum among $S = \{29, 14, 15, 1, 6, 10, 32, 12\}.$

Divide and conquer strategy

Basic idea of divide and conquer strategy:

- 1. If the problem size is small enough, then solve the problem by some straightforward method; otherwise, divide a problem into two (or more) smaller sub-problems, preferably in equal size. (Note that each sub-problem is identical to its original problem, except its input size is smaller.)
- 2. Solve these two sub-problems by using the divide and conquer strategy again (i.e., solving them recursively).
- 3. Merge two sub-solutions into the final solution.

Time complexity of divide and conquer

 \blacktriangleright Let T(n) be the time complexity of a problem with input size n.

Recursive formula of T(n):

Recursive formula of
$$T(n)$$
:
$$T(n) = \begin{cases} 2T(\frac{n}{2}) + S(n) + M(n) & \text{if } n \ge c \\ b & \text{if } n < c \end{cases}$$

- \triangleright S(n): Time to divide the problem into two sub-problems
- \blacktriangleright M(n): Time to merge two sub-solutions into the final solution
- b (a constant): Time to straightforwardly solve the sub-problem of size small enough

Time complexity of divide and conquer (cont'd)

Example (finding maximum problem): let
$$n = 2^k$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \mathcal{O}(1) & \text{if } n > 2\\ 1 & \text{if } n = 2 \end{cases}$$

$$T(n) = 2T(\frac{n}{2}) + 1$$

$$= 2(2T(\frac{n}{4}) + 1) + 1 = 2^2T(\frac{n}{2^2}) + 2^1 + 2^0$$

$$\vdots$$

$$= 2^{k-1}T(2) + 2^{k-2} + \dots + 2^0$$

$$= 2^{k-1} + 2^{k-2} + \dots + 2^0$$

$$= 2^k - 1$$

$$= n - 1$$

$$= \mathcal{O}(n)$$

Quick sort

▶ Given a set of n numbers $a_1, a_2, ..., a_n$, we choose a number X to divide $a_1, a_2, ..., a_n$ into two lists as shown below.

Quick sort algorithm

Algorithm: Quicksort(f, l)

Input: A sequence of (l-f+1) numbers $a_f, a_{f+1}, \ldots, a_l$.

Output: The sorted sequence of $a_f, a_{f+1}, \ldots, a_l$.

```
1. if f \ge l, then return

2. X = a_f, i = f, j = l

3. while i < j do

4. while a_j \ge X and i < j do

5. j = j - 1

6. a_i \leftrightarrow a_j

7. while a_i \le X and i < j do

8. i = i + 1

9. a_i \leftrightarrow a_j

10. end while

11. Quicksort(f, j - 1), Quicksort(j + 1, l)
```

Example of quick sort

Iteration 1: Let

$$a_1 = 3, a_2 = 6, a_3 = 1, a_4 = 4, a_5 = 5, a_6 = 2.$$

X = 3	a_1	a_2	a_3	a_4	a_5	a_6
i = 1, j = 6	3	6	1	4	5	2
$(a_j = a_6 < X)$	↑ <i>i</i>					$\uparrow j$
$a_1 \leftrightarrow a_6$	2	6	1	4	5	3
$(a_i = a_1 < X)$	$\uparrow i$					$\uparrow j$
i = i + 1 = 2	2	6	1	4	5	3
$(a_i = a_2 > X)$		$\uparrow i$				$\uparrow j$
$a_2 \leftrightarrow a_6$	2	3	1	4	5	6
$(a_j = a_6 > X)$		$\uparrow i$				$\uparrow j$
j = j - 1 = 5	2	3	1	4	5	6
$(a_j = a_5 > X)$		$\uparrow i$			$\uparrow j$	

Example of quick sort (cont'd)

Iteration 1 (cont'd):

X = 3	a_1	a_2	a_3	a_4	a_5	a_6
j = j - 1 = 4	2	3	1	4	5	6
$(a_j = a_4 > X)$		$\uparrow i$		$\uparrow j$		
j = j - 1 = 3	2	3	1	4	5	6
$(a_j = a_3 < X)$		$\uparrow i$	$\uparrow j$			
$a_2 \leftrightarrow a_3$	2	1	3	4	5	6
$(a_i = a_2 < X)$		$\uparrow i$	$\uparrow j$			
i = i + 1 = 3	2	1	3	4	5	6
(i = j = 3)			$i \uparrow j$			
(end of iteration 1)	≤ 3	≤ 3	=3	≥ 3	≥ 3	≥ 3

Given $T(n) = 2T(\frac{n}{2}) + \mathcal{O}(n)$, let $n = 2^k$ (i.e., $k = \log_2 n$).

Time complexity of quick sort (cont'd)

$$T(n) \leq 2T(\frac{n}{2}) + cn$$

$$\leq 2(2T(\frac{n}{4}) + c\frac{n}{2}) + cn$$

$$= 4T(\frac{n}{4}) + 2c\frac{n}{2} + cn$$

$$\vdots$$

$$= 2^{k}T(\frac{n}{2^{k}}) + 2^{k-1}c\frac{n}{2^{k-1}} + 2^{k-2}c\frac{n}{2^{k-2}} + \dots + 2^{0}c\frac{n}{2^{0}}$$

$$= nT(1) + cn + cn + \dots + cn$$

$$= nT(1) + cnk$$

$$= n + cn\log_{2} n$$

Therefore, $T(n) = \mathcal{O}(n \log n)$.

Time complexity of quick sort

 \blacktriangleright Let T(n) be the time complexity of quick sort with input size n.

Best case:

- The best case occurs when we can split the problem into two equal-size subproblems for each round.
- ▶ It means that $T(n) = 2T(\frac{n}{2}) + \mathcal{O}(n)$.
- ▶ In this case, we have $T(n) = \mathcal{O}(n \log n)$.

Worst case:

- ► The worst case occurs when the input data is already a sorted or reversely sorted sequence.
- ▶ In this case, we have $T(n) = T(n-1) + \mathcal{O}(n) = \mathcal{O}(n^2)$.

Merge sort algorithm

Algorithm: *MergeSort*(*C*) **Input:** A list *C* of *n* elements

Outrote A social list of the social

Output: A sorted list of these *n* elements

- 1. **if** n = 1 **then** return C.
- 2. Let C_L be the list of first $\frac{n}{2}$ elements of c.
- 3. Let C_R be the list of last $n \frac{n}{2}$ elements of c.
- 4. $S_L = MergeSort(C_L)$.
- 5. $S_R = MergeSort(C_R)$.
- 6. $Merge(S_L, S_R)$.

11

Example of merge sort

Time complexity of merge sort

Note that the cost of merging two sorted sequences is $\mathcal{O}(n)$.

Time complexity of the merge sort T(n):

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \mathcal{O}(n) & \text{if } n > 2\\ 1 & \text{if } n = 2 \end{cases}$$

▶ Therefore, we have $T(n) = \mathcal{O}(n \log n)$.

Point domination

▶ In the 2D space, a point (x_1, y_1) dominates a point (x_2, y_2) if $x_1 > x_2$ and $y_1 > y_2$.

Maximal point

13

15

▶ A point is called a maximal point if no other point dominates it.

 (x_1,y_1) is a maximal point, but both (x_2,y_2) and (x_3,y_3) are not.

2D maxima finding problem

ightharpoonup Given a set of n points, the 2D maxima finding problem is to find all of the maximal points among these n points.

The circle points are maximal points.

2D maxima finding problem (cont'd)

- ► A straightforward method we can use to solve the 2D maxima finding problem is to compare every pair of points.
- ▶ This method requires $\mathcal{O}(n^2)$ comparison of points.
- ▶ In fact, the divide and conquer strategy can solve the problem in $O(n \log n)$ steps.

17

Divide and conquer method

Dividing process of 2D maxima finding problem

Divide and conquer method

Merging process of 2D maxima finding problem

Note that the x-value of a point in S_R is always larger than the x-value of every point in S_L .

Observation:

A point in S_L is a maximal point if and only if its y-value is not less than the y-value of a maximal point in S_R .

Divide and conquer method

Merging process of 2D maxima finding problem (cont'd)

Example:

 P_3 is not a maximal point in S_L because its y-value is less than the y-values of P_8 and P_9 in S_R .

21

Time complexity of FindMax(S)

- Let T(n) be the time complexity of FindMax(S).
- ▶ In fact, L can be found in $\mathcal{O}(n)$ time by finding the median of n numbers (will be discussed in Chapter 6 on prune and search).
- \triangleright Step 4 costs $\mathcal{O}(n \log n)$ time using heap sort.

Recursive formula of T(n):

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \mathcal{O}(n) + \mathcal{O}(n\log n) & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

▶ It can be proved that $T(n) = \mathcal{O}(n \log^2 n)$.

Divide and conquer algorithm

2D maxima finding problem

Algorithm: FindMax(S)

Input: A set S of n planar points.

Output: A set MP(S) of all maximal points of S.

- 1. **if** S contains only one point **then** return S.
- 2. Find L perpendicular to the x-axis that separates S into S_L and $|S_R| = |S_R| = n/2$.
- 3. $FindMax(S_L)$ and $FindMax(S_R)$.

/* Recursively find maximal points of S_L and S_R */

- 4. Project the maximal points of S_L and S_R onto L and sort them by their y-values.
- 5. Conduct a linear scan on the projections and discard each of the maximal points of S_L if its y-value is less than the y-value of some maximal point of S_R .

Time complexity of FindMax(S) (cont'd)

Let
$$n = 2^k$$
 (i.e., $k = \log_2 n$).

$$T(n) \leq 2T(\frac{n}{2}) + cn \log_2 n$$

$$\leq 2(2T(\frac{n}{4}) + c\frac{n}{2} \log_2 \frac{n}{2}) + cn \log_2 n$$

$$= 2^2T(\frac{n}{2^2}) + cn(\log_2 \frac{n}{2^1} + \log_2 \frac{n}{2^0})$$

$$\vdots$$

$$= 2^kT(\frac{n}{2^k}) + cn(\log_2 \frac{n}{2^{k-1}} + \log_2 \frac{n}{2^{k-2}} + \dots + \log_2 \frac{n}{2^0})$$

$$= nT(1) + cn(\log_2 2 + \log_2 4 + \dots + \log_2 n)$$

$$= nT(1) + cn\left(\frac{(1 + \log_2 n) \log_2 n}{2}\right)$$

$$= n + \frac{cn \log_2 n}{2} + \frac{cn \log_2 n}{2}$$

Therefore,
$$T(n) = \mathcal{O}(n \log^2 n)$$
.

Time complexity of FindMax(S) (cont'd)

- The divide and conquer algorithm is dominated by sorting in the merging step.
- ► The sorting actually can be done only once by a pre-sorting.
- ▶ Using the pre-sorting, the merging complexity is $\mathcal{O}(n)$.

Modified recursive formula of T(n):

The total time complexity is $T(n) + \mathcal{O}(n \log n)$, where

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \mathcal{O}(n) + \mathcal{O}(n) & \text{if } n > 1 \\ 1 & \text{if } n = 1 \end{cases}$$

- ▶ As shown before, $T(n) = \mathcal{O}(n \log n)$.
- ▶ Hence, the time complexity of FindMax(S) is $O(n \log n)$.

1D closest pair problem

Definition:

Given a set S of n points in one-dimensional space, the 1D closest pair problem is to find a pair of points which are closest together.

Example The closest pair in the set $\{4, 11, 1, 7, 3\}$ is (3, 4).

A simple algorithm to solve the 1D closest pair problem:

- 1. Sort *n* numbers.
- 2. Linearly scan the sorted n numbers and find two consecutive numbers whose distance is minimum.
- ▶ The time complexity of this simple algorithm is $\mathcal{O}(n \log n)$.

25

26

2D closest pair problem

Definition:

Given a set S of n points in two-dimensional space, find a pair of points which are closest together.

Divide and conquer for 2D closest pair

▶ Find a line L perpendicular to the x-axis to partition S into S_L and S_R such that $|S_L| \simeq |S_R|$.

Divide and conquer for 2D closest pair (cont'd)

▶ By recursively solving the 2D closest pair problem in S_L and S_R , we obtain d_L and d_R , which denote the distances of the closest pairs in S_L and S_R , respectively.

Divide and conquer for 2D closest pair (cont'd)

- ▶ Let $d = \min(d_L, d_R)$.
- ▶ If the closest pair (P_a, P_b) of S consists of a point in S_L and a point in S_R , then P_a and P_b have to lie within a slab centered at line L and bounded by lines L d and L + d.

29

31

Divide and conquer for 2D closest pair (cont'd)

- ▶ In other words, we may examine only points in the slab during the merging step in the divide and conquer algorithm.
- ightharpoonup In the worst case, there can be n points within the slab.
- ► Hence the brute force method to find the closest pair in this slab need to calculate $n^2/4$ distances and comparisons.
- ► This kind of merging step will not be good for our divide and conquer algorithm.

Divide and conquer for 2D closest pair (cont'd)

- ▶ If a point P in S_L and a point Q in S_R constitute a closest pair, the distance between P and Q must be less than d.
- ▶ It means that we do not consider a point too far away from *P*.
- ▶ Actually, we only have to examine the shaded area as follows.

Divide and conquer for 2D closest pair (cont'd)

▶ If *P* is exactly on *L*, then we only have to examine points within the rectangle *A*.

There are at most 6 points in the rectangle A.

Divide and conquer algorithm

2D closest pair problem

Algorithm: 2dClosestPair(S)

Input: A set S of n points in the plane.

Output: The distance of the closest pair in S.

Preprocessing: Sort the points of S by their y-values and x-values, respectively.

- 1. if S contains only one point then return ∞ as its distance.
- 2. Find a median line L perpendicular to the x-axis to divide S into two equal sized subsets S_L and S_R .
- 3. $2dClosestPair(S_L)$ and $2dClosestPair(S_R)$.

 /* Recursively solve the problems of S_L and S_R */
- 4. Let $d = \min\{d_L, d_R\}$.

33

34

Divide and conquer algorithm (cont'd)

2D closest pair problem

Algorithm: 2dClosestPair(S) (cont'd)

- 5. Project all points within the area bounded by L-d and L+d onto L.
- 6. **for** each point P in the half slab bounded by L-d and L with descending y-value ${\bf do}$
- 7. Let the *y*-value of P be y_p .
- 8. Find all points in the half slab bounded by L and L+d whose y-values fall within y_p+d and y_p-d .
- 9. **if** the shortest distance d' between P and a point in the other half slab is less than d **then**
- 10. d = d'.
- 11. **end if**
- 12. end for

Divide and conquer algorithm (cont'd)

2D closest pair problem

Time complexity of 2dClosestPair(S):

The time complexity of this algorithm is $\mathcal{O}(n \log n) + T(n)$ and

$$T(n) = 2T\left(\frac{n}{2}\right) + Split(n) + Merge(n)$$

where $Split(n) = \mathcal{O}(n)$ and $Merge(n) = \mathcal{O}(n)$.

- ▶ Split(n) = O(n) because points are sorted by their *x*-values.
- ▶ $Merge(n) = \mathcal{O}(n)$ since the area bounded by L d and L + d contains at most n points and for each point from the left half slab, at most 6 points need to be examined.

Divide and conquer algorithm (cont'd)

2D closest pair problem

Recursive formula of T(n):

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \mathcal{O}(n) + \mathcal{O}(n) & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$
$$= \mathcal{O}(n\log n)$$

As a result, the time complexity of the divide and conquer algorithm for the 2D closest pair problem is $\mathcal{O}(n \log n)$.

Master theorem

 \blacktriangleright Let T(n) be the recurrence defined below:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \geq 1$ and b > 1 are constants and f(n) is a positive function.

- \triangleright The above recurrence of T(n) describes the running time of an algorithm that divides a problem of size n into a subproblems, each of size n/b.
- ▶ The *a* subproblems are solved recursively, each in $T(\frac{n}{h})$ time.
- \blacktriangleright The function f(n) denotes the cost of dividing the problem and combining the results of the subproblems.

37

Master theorem (cont'd)

Case 1:

$$T(n) = \Theta(n^{\log_b a})$$
, if $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$.

Example 1:

Let
$$T(n) = 9T(\frac{n}{3}) + n$$
. Then $T(n) = \Theta(n^2)$.

- In this case, we have a = 9, b = 3 and f(n) = n.
- We then have $n^{\log_b a} = n^{\log_3 9} = n^2$.
- ▶ By letting $\epsilon = 1$, we have $f(n) = n = \mathcal{O}(n) = \mathcal{O}(n^{\log_b a \epsilon})$.
- ► Hence, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.

Master theorem (cont'd)

Case 2:

$$T(n) = \Theta(n^{\log_b a} \log_2 n)$$
, if $f(n) = \Theta(n^{\log_b a})$.

Example 2:

Let
$$T(n) = T(\frac{2n}{3}) + 1$$
. Then $T(n) = \Theta(\log_2 n)$.

- ▶ In this case, we have $a = 1, b = \frac{3}{2}$ and f(n) = 1.
- ► Thus, we have $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$.
- ightharpoonup Clearly, $f(n) = 1 = \Theta(1) = \Theta(n^{\log_b a})$.
- ightharpoonup Hence, $T(n) = \Theta(n^{\log_b a} \log_2 n) = \Theta(\log_2 n)$.

Master theorem (cont'd)

Case 3:

 $T(n)=\Theta(f(n))$, if $f(n)=\Omega(n^{\log_b a+\epsilon})$ for some constant $\epsilon>0$ and $af(n/b)\leq cf(n)$ for some constant c<1 and all sufficiently large n.

Example 3:

Let $T(n) = 3T(\frac{n}{4}) + n \log_2 n$. Then $T(n) = \Theta(n \log_2 n)$.

- ▶ In this case, $n^{\log_b a} = n^{\log_4 3} \approx O(n^{0.793})$ and $f(n) = n \log_2 n$.
- ▶ By letting $\epsilon \approx 0.2$, we have $f(n) = n \log_2 n = \Omega(n^{\log_b a + \epsilon})$.
- ▶ Also, $af(\frac{n}{b}) = 3(\frac{n}{4}) \log_2(\frac{n}{4}) \le (\frac{3}{4}) n \log_2 n = cf(n)$ for $c = \frac{3}{4}$.

Master theorem (cont'd)

Example 4:

Let $T(n) = 2T(\frac{n}{2}) + n \log_2 n$. Then $T(n) = \Theta(n \log_2^2 n)$.

- ln this case, $n^{\log_b a} = n^{\log_2 2} = n$ and $f(n) = n \log_2 n$.
- Note that case 3 of the master method cannot apply to this case, since $\log_2 n = O(n^{\epsilon})$ for any positive constant ϵ .

Master theorem (cont'd)

To easily prove the correctness of the master theorem, we assume that T(n) is defined on exact power of b (i.e., $n = 1, b, b^2, ...$):

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n = b^i \\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Actually, the proof below can be applied to all positive integers *n* with a little modification.

Proof of master theorem

Recursive tree T(n) = aT(n/b) + f(n)

Proof of master theorem (cont'd)

Recursive tree T(n) = aT(n/b) + f(n)

45

Proof of master theorem (cont'd)

- ▶ The cost for all internal nodes at depth j is $a^{j}f\left(\frac{n}{b^{j}}\right)$.
- ► Therefore, the total cost of all internal nodes is:

$$\sum_{j=0}^{\log_b n-1} a^j f\left(\frac{n}{b^j}\right)$$

- ► This sum is the cost of dividing problems into subproblems and then recombining the subproblems.
- As a result, we have;

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n - 1} a^j f\left(\frac{n}{b^j}\right)$$

Proof of master theorem (cont'd)

Lemma:

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n-1} a^j f\left(\frac{n}{b^j}\right).$$

- ▶ In general, there are a^j nodes at depth j (starting from 0) and each such node has the cost $f\left(\frac{n}{h^j}\right)$.
- ► There are $a^{\log_b n} = n^{\log_b a}$ leaves in the tree, because each leaf is at depth $\log_b n$.
- ▶ Since the cost of each leaf is $T(1) = \Theta(1)$, the total cost of all leaves is $n^{\log_b a}$.
- ▶ This is the cost of doing all $n^{\log_b a}$ subproblems of size 1.

Proof of master theorem (cont'd)

 $\blacktriangleright \text{ Let } g(n) = \sum_{j=0}^{\log_b n - 1} a^j f\left(\frac{n}{b^j}\right).$

Case 1:

If $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, $g(n) = \mathcal{O}(n^{\log_b a})$.

- ▶ Since $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$, $f\left(\frac{n}{b^i}\right) = \mathcal{O}\left(\left(\frac{n}{b^i}\right)^{\log_b a \epsilon}\right)$.
- ▶ Then we have $g(n) = \mathcal{O}\left(\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a \epsilon}\right)$.

46

Proof of master theorem (cont'd)

$$\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a-\epsilon} = n^{\log_b a-\epsilon} \sum_{j=0}^{\log_b n-1} \left(\frac{ab^{\epsilon}}{b^{\log_b a}}\right)^j$$

$$= n^{\log_b a-\epsilon} \sum_{j=0}^{\log_b n-1} (b^{\epsilon})^j$$

$$= n^{\log_b a-\epsilon} \left(\frac{b^{\epsilon \log_b n}-1}{b^{\epsilon}-1}\right)$$

$$= n^{\log_b a-\epsilon} \left(\frac{n^{\epsilon}-1}{b^{\epsilon}-1}\right)$$

Since b and ϵ are constants, $n^{\log_b a - \epsilon} \left(\frac{n^{\epsilon} - 1}{b^{\epsilon} - 1} \right) = \mathcal{O}(n^{\log_b a})$. Therefore, we have $g(n) = \mathcal{O}(n^{\log_b a})$.

Proof of master theorem (cont'd)

Case 2:

If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \log_2 n)$.

- Assume that $f(n) = \Theta(n^{\log_b a})$.
- ▶ Then $f\left(\frac{n}{b^j}\right) = \Theta\left(\left(\frac{n}{b^j}\right)^{\log_b a}\right)$ and

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f\left(\frac{n}{b^j}\right) = \Theta\left(\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a}\right)$$

Proof of master theorem (cont'd)

 $\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a} = n^{\log_b a} \sum_{j=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^j$ $= n^{\log_b a} \sum_{j=0}^{\log_b n-1} 1$ $= n^{\log_b a} \log_b n$

Therefore, $g(n) = \Theta(n^{\log_b a} \log_b n) = \Theta(n^{\log_b a} \log_2 n)$

Proof of master theorem (cont'd)

Case 3:

49

If $af(\frac{n}{b}) \leq cf(n)$ for some constant c < 1 and all sufficiently large n, then $g(n) = \Theta(f(n))$.

- ▶ Since f(n) appears in the definition of g(n) and all terms of g(n) are nonnegative, we have $g(n) = \Omega(f(n))$.
- Assume that $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant c < 1 and all sufficiently large n.
- ▶ We can rewrite this assumption as $f(\frac{n}{b}) \leq (\frac{c}{a})f(n)$.

50

Proof of master theorem (cont'd)

▶ By iterating the inequality $f(\frac{n}{b}) \leq (\frac{c}{a})f(n)$ j times, we have (assume $\frac{n}{b^{j-1}}$ is still sufficiently large):

$$f\left(\frac{n}{b^{j}}\right) \leq \left(\frac{c}{a}\right)^{1} f\left(\frac{n}{b^{j-1}}\right)$$

$$\leq \left(\frac{c}{a}\right)^{2} f\left(\frac{n}{b^{j-2}}\right)$$

$$\vdots$$

$$\leq \left(\frac{c}{a}\right)^{j} f\left(\frac{n}{b^{0}}\right)$$

▶ Therefore, $f\left(\frac{n}{b^j}\right) \leq \left(\frac{c}{a}\right)^j f(n)$ or equivalently $a^j f\left(\frac{n}{b^j}\right) \leq c^j f(n)$.

$f\left(\frac{n}{2}\right) < \left(\frac{c}{2}\right)^{1} f\left(\frac{n}{2}\right)$

Proof of master theorem (cont'd)

▶ We use $\mathcal{O}(1)$ to denote the terms in g(n) that are not covered by the assumption that n is sufficiently large.

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f\left(\frac{n}{b^j}\right)$$

$$\leq \sum_{j=0}^{\log_b n - 1} c^j f(n) + \mathcal{O}(1)$$

$$\leq f(n) \sum_{j=0}^{\infty} c^j + \mathcal{O}(1)$$

$$= f(n) \left(\frac{1}{1 - c}\right) + \mathcal{O}(1)$$

$$= \mathcal{O}(f(n))$$

▶ Therefore, $g(n) = \Theta(f(n))$.

53

Proof of master theorem (cont'd)

Case 1: Total cost is dominated by cost of leaves

If $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

$$T(n) = \Theta(n^{\log_b a}) + \mathcal{O}(n^{\log_b a}) = \Theta(n^{\log_b a}).$$

Case 2: Total cost is evenly distributed among levels If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

 $\mathbf{r}(x) = \mathbf{r}(x) + \mathbf{r}$

$$T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \log n) = \Theta(n^{\log_b a} \log_2 n).$$

Proof of master theorem (cont'd)

Case 3: Total cost is dominated by cost of root

If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ and $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and for all sufficiently large n, $T(n) = \Theta(f(n))$.

$$T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n)).$$

Convex hull

- ightharpoonup Convex polygon is a polygon P such that any line connecting any two points inside P must lie in P.
- ► The convex hull of a given set of planar points is the smallest convex polygon containing all of the points

Convex hull problem

Definition:

Given a set S of planar points, find a convex hull for S, i.e., obtain the vertices of the convex hull in counterclockwise (clockwise) order.

57

Convex hull problem

Divide and conquer algorithm

Algorithm: CH(S) for computing a convex hull for S

- 1. if |S| < 3 then CH(S) = S and return.
- 2. Find a median line perpendicular to the x-axis to divide S into S_L and S_R .
- 3. Recursively find $CH(S_L)$ and $CH(S_R)$.
- 4. Find an interior point P of $CH(S_L)$. /* Merging step */
- 5. Find v_1 and v_2 of $CH(S_R)$ such that $CH(S_R)$ is divided into two sequences of vertices that have increasing polar angles with respect to P, and let $y(v_1) > y(v_2)$.
 - S_1 : $V(CH(S_L))$ in counterclockwise direction.
 - S_2 : $V(CH(S_R))$ from v_2 to v_1 in counterclockwise.
 - S_3 : $V(CH(S_R))$ from v_2 to v_1 in clockwise order.
- 6. Merge S_1, S_2, S_3 and conduct the Graham scan.

Convex hull problem (cont'd)

- $ightharpoonup CH(S_L) = (g,h,i,j,k) \text{ and } CH(S_R) = (a,b,c,d,e,f)$
- $v_1 = d$ and $v_2 = a$
- $ightharpoonup S_1 = (g, h, i, j, k), S_2 = (a, b, c, d) \text{ and } S_3 = (f, e)$

58

Convex hull problem (cont'd)

How to find v_1 and v_2 ?

- Construct a horizontal line through *P*.
- ▶ If this line intersects $CH(S_R)$, then v_1 is the vertex of $CH(S_R)$ with the greatest polar angle $<\frac{\pi}{2}$ and v_2 is the vertex with the least polar angle $>\frac{3\pi}{2}$.
- ▶ If this line does not intersects $CH(S_R)$, then v_1 is the vertex of $CH(S_R)$ with the largest polar angle and v_2 is the vertex with the smallest polar angle.

Convex hull problem (cont'd)

How to find v_1 and v_2 ?

61

Convex hull problem (cont'd)

How to find v_1 and v_2 ?

Convex hull problem (cont'd)

Merging step in the divide and conquer algorithm

► Merge S_1 , S_2 , S_3 to (g, h, a, b, f, c, e, d, i, j, k).

Convex hull problem (cont'd)

Merging step in the divide and conquer algorithm

▶ Graham scan examines the points of the new sequence one by one and eliminates those points h, f, e, i with reflexive angles.

Cross product

▶ Given two vectors $\overrightarrow{v_1} = (x_1, y_2)$ and $\overrightarrow{v_2} = (x_2, y_2)$, the cross product $\overrightarrow{v_1} \times \overrightarrow{v_2}$ is a vector, which is perpendicular to both $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$, with a direction given by the right-hand rule and a magnitude equal to $|x_1y_2 - x_2y_1|$.

Cross product (cont'd)

▶ To determine the direction of $\overrightarrow{v_1} \times \overrightarrow{v_2}$ in a convenient way, we treat $\overrightarrow{v_1} \times \overrightarrow{v_2}$ simply as the value of $x_1y_2 - x_2y_1$.

$$\overrightarrow{v_1} \times \overrightarrow{v_2} = x_1 y_2 - x_2 y_1$$

- ▶ If $\overrightarrow{v_1} \times \overrightarrow{v_2}$ is positive, $\overrightarrow{v_2}$ is counterclockwise from $\overrightarrow{v_1}$.
- ▶ If $\overrightarrow{v_1} \times \overrightarrow{v_2}$ is negative, $\overrightarrow{v_2}$ is clockwise from $\overrightarrow{v_1}$.

Turn left or right?

- We can use cross product to determine whether two consecutive line segments $\overline{p_0p_1}$ and $\overline{p_1p_2}$ turn left or right at point p_1 .
- ▶ If the sign of $\overline{p_0p_1^2} \times \overline{p_0p_2^2}$ is positive, $\overline{p_0p_2^2}$ is counterclockwise from $\overline{p_0p_1^2}$ and hence we make a left turn at p_1 .
- ▶ If the sign of $\overrightarrow{p_0p_1} \times \overrightarrow{p_0p_2}$ is negative, $\overrightarrow{p_0p_2}$ is clockwise from $\overrightarrow{p_0p_1}$ and hence we make a right turn at p_1 .

66

Convex hull problem (cont'd)

Divide and conquer algorithm

Time complexity of divide and conquer algorithm:

 $T(n) = 2T(\frac{n}{2}) + Split(n) + Merge(n)$

- ▶ Split(n) = O(n) for median finding process
- ► $Merge(n) = \mathcal{O}(n)$ for finding P, determination of v_1 and v_2 , merging of S_1, S_2, S_3 , and Graham scan
- ▶ In other words, we have $T(n) = 2T(\frac{n}{2}) + \mathcal{O}(n) = \mathcal{O}(n \log n)$.
- Note that it is optimal because the lower bound of the convex hull problem is $\Omega(n \log n)$.

71

A simple divide and conquer algorithm

- For simplicity, we assume that n is a power of 2 (i.e., $n = 2^k$, where k is a nonnegative integer).
- ▶ If *n* is not a power of two, extra rows and columns of zeros can be added to both *A* and *B* so that the resulting dimensions are a power of two.
- ▶ Suppose that we partition each of A,B and C into four $\frac{n}{2} \times \frac{n}{2}$ matrices as follows:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Matrix multiplication

- ▶ Let $A = (a_{ij})$ and $B = (b_{ij})$ be two $n \times n$ matrices.
- ▶ Then the product matrix $C = A \cdot B$ is also a $n \times n$ matrix and its entry c_{ii} is computed by the following formula:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

- ▶ To obtain matrix C, the conventional method needs to compute n^2 matrix entries, each of which is the sum of n values.
- ▶ As a result, the time of this conventional method is $\Theta(n^3)$.

A simple divide and conquer algorithm (cont'd)

▶ Then we can rewrite the equation $C = A \cdot B$ as follows:

$$\left(\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right) = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right) \cdot \left(\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right)$$

where

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

A simple divide and conquer algorithm (cont'd)

- ▶ Hence, to compute $A \cdot B$, we need to perform 8 multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices and 4 additions of $\frac{n}{2} \times \frac{n}{2}$ matrices.
- ▶ Because two $\frac{n}{2} \times \frac{n}{2}$ matrices can be added in time $\mathcal{O}(n^2)$, the overall computing time T(n) of this simple divide and conquer algorithm is as follows:

$$T(n) = \begin{cases} b & \text{if } n \le 2\\ 8T(\frac{n}{2}) + cn^2 & \text{if } n > 2 \end{cases}$$

where b and c are constants.

▶ By the master theorem, we have $T(n) = O(n^3)$, which is not better than the time of the conventional method.

Strassen's matrix multiplication

- ▶ Observe that matrix multiplications are more expensive than matrix additions ($\mathcal{O}(n^3)$ versus $\mathcal{O}(n^2)$).
- If we can reformulate the equations of C_{ij} used in the simple divide and conquer algorithm such that fewer multiplications (and possibly more additions) are used, then the time of the simple divide and conquer can be improved.
- ▶ Finally, Strassen discovered a way to compute all the C_{ij} using only 7 muliplications and 18 additions or substractions.

73

Strassen's matrix multiplication (cont'd)

Step 1:

Divide the input matrices A and B and output matrix C into $\frac{n}{2} \times \frac{n}{2}$ submatrices:

$$\left(\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right) = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right) \cdot \left(\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right)$$

▶ This step takes $\Theta(1)$ time by index calculation.

Strassen's matrix multiplication (cont'd)

Step 2:

75

Create the following 10 matrices S_1, S_2, \ldots, S_{10} , each of which is $\frac{n}{2} \times \frac{n}{2}$:

$$ightharpoonup S_1 = B_{12} - B_{22}$$

$$\triangleright$$
 $S_6 = B_{11} + B_{22}$

$$S_2 = A_{11} + A_{12}$$

$$ightharpoonup S_7 = A_{12} - A_{22}$$

$$ightharpoonup S_3 = A_{21} + A_{22}$$

$$\triangleright$$
 $S_8 = B_{21} + B_{22}$

$$\triangleright$$
 $S_4 = B_{21} - B_{11}$

$$ightharpoonup S_9 = A_{11} - A_{21}$$

$$S_5 = A_{11} + A_{22}$$

$$ightharpoonup S_{10} = B_{11} + B_{12}$$

▶ Since we have to add or substract $\frac{n}{2} \times \frac{n}{2}$ matrices 10 times, this step takes $\Theta(n^2)$ time.

Strassen's matrix multiplication (cont'd)

Step 3:

Recursively compute the following 7 matrix products P_1, P_2, \ldots, P_7 , each of which is $\frac{n}{2} \times \frac{n}{2}$:

$$ightharpoonup P_1 = A_{11} \cdot S_1 = A_{11} \cdot B_{12} - A_{11} \cdot B_{22}$$

$$P_2 = S_2 \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$P_3 = S_3 \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11}$$

$$P_4 = A_{22} \cdot S_4 = A_{22} \cdot B_{21} - A_{22} \cdot B_{11}$$

$$P_5 = S_5 \cdot S_6 = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$$

$$P_6 = S_7 \cdot S_8 = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22}$$

$$P_7 = S_9 \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12}$$

Strassen's matrix multiplication (cont'd)

Step 4:

77

Compute C_{11} , C_{12} , C_{21} , C_{22} by the following formulas:

$$ightharpoonup C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$ightharpoonup C_{22} = P_5 + P_1 - P_3 - P_7$$

▶ We add or substract $\frac{n}{2} \times \frac{n}{2}$ matrices 8 times in step 4 and hence this step takes $\Theta(n^2)$.

Strassen's matrix multiplication (cont'd)

Proof of
$$C_{11} = P_5 + P_4 - P_2 + P_6$$
:
 $A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22}$

$$A_{11}B_{11} + A_{12}B_{21}$$

Strassen's matrix multiplication (cont'd)

Proof of
$$C_{12} = P_1 + P_2$$
:

Strassen's matrix multiplication (cont'd)

Strassen's matrix multiplication (cont'd)

Proof of
$$C_{22} = P_5 + P_1 - P_3 - P_7$$
:
$$A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} - A_{11}B_{22} + A_{21}B_{11} - A_{21}B_{11} - A_{11}B_{11} - A_{11}B_{12} + A_{21}B_{12}$$

$$+A_{22}B_{22} + A_{21}B_{12}$$

Strassen's matrix multiplication (cont'd)

- ▶ When n > 1, steps 1, 2 and 4 take a total of $\Theta(n^2)$ time and step 3 requires to perform 7 multiplication of $\frac{n}{2} \times \frac{n}{2}$ matrices.
- ightharpoonup Hence, the running time T(n) of Strassen's algorithm can be expressed as follows:

$$T(n) = \begin{cases} b & \text{if } n \le 2\\ 7T(\frac{n}{2}) + cn^2 & \text{if } n > 2 \end{cases}$$

where b and c are constants.

▶ By the master theorem, we have:

$$T(n) = \mathcal{O}(n^{\log_2 7}) \approx O(n^{2.81})$$

8