МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №1.2

по дисциплине: Дискретная математика тема: «Нормальные формы Кантора»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили:

ст. пр. Рязанов Юрий Дмитриевич ст. пр. Бондаренко Татьяна Владимировна

Лабораторная работа №1.2

Нормальные формы Кантора Вариант 10

Цель работы: изучить способы получения различных нормальных форм Кантора множества, заданного произвольным теоретико-множественным выражением.

№1. Представить множество, заданное исходным выражением, в нормальной форме Кантора.

$$((C \cup B) - D \triangle (C - B) \triangle A) \cap A = ((C \cup B) \cap \overline{D} \triangle (C \cap \overline{B}) \triangle A) \cap A = ((C \cap \overline{D} \cup B \cap \overline{D}) \triangle (C \cap \overline{B}) \triangle A) \cap A = (((C \cap \overline{D} \cup B \cap \overline{D}) \triangle (C \cap \overline{B}) \triangle A) \cap A = (((C \cap \overline{D} \cup B \cap \overline{D}) \cap (C \cap \overline{B})) \cap (C \cap \overline{B})) \cap (C \cap \overline{B})) \cap (C \cap \overline{B}) \cap$$

Получили НФК: $A\cap B\cap D\cup A\cap \overline{B}\cap \overline{C}\cup A\cap \overline{C}\cap D\cup A\cap \overline{B}\cap \overline{D}$

№2. Получить совершенную нормальную форму Кантора множества, заданного исходным выражением.

$$\begin{array}{l} A \cap B \cap \overline{D} \cup A \cap \overline{B} \cap \overline{C} \cup A \cap \overline{C} \cap D \cup A \cap \overline{B} \cap \overline{D} = \\ A \cap B \cap C \cap D \cup A \cap B \cap \overline{C} \cap D \cup A \cap \overline{B} \cap \overline{C} \cap D \cup A \cap \overline{B} \cap \overline{C} \cap \overline{D} \cup A \cap B \cap \overline{C} \cap \overline{D} \cup A \cap \overline{B} \cap \overline{C} \cap \overline{D} \cup A \cap \overline{C} \cap \overline{$$

Получили совершенную $H\Phi K$: $A\cap B\cap C\cap D\cup A\cap B\cap \overline{C}\cap D\cup A\cap \overline{B}\cap \overline{C}\cap D\cup A\cap \overline{C}\cap \overline{C}\cap D\cup A\cap \overline{C}\cap \overline{C}\cap D\cup A\cap \overline{C}\cap \overline{C}$

№3. Получить сокращенную нормальную форму Кантора множества, заданного исходным выражением.

Номер группы								
0	1	2	3	4				
	1000+	1001+ 1010+	1101+	1111+				
	100- 10-0	1-01	11-1					

Получили сокращённую $H\Phi K$: $A\cap \overline{B}\cap \overline{C}\cup A\cap \overline{B}\cap \overline{D}\cup A\cap \overline{C}\cap D\cup A\cap B\cap D$

№4. Получить тупиковые нормальные формы Кантора множества, заданного исходным выражением. Выбрать минимальную нормальную форму Кантора.

Простые	Конституенты					
импликанты	1000	1001	1010	1101	1111	
10-0	+		+			
100-	+	+				
1-01		+		+		
11-1				+	+	

$$(a \cup b) \cap (b \cup c) \cap a \cap (c \cup d) \cap d = (b \cup c) \cap a \cap (c \cup d) \cap d = (b \cup c) \cap a \cap d = a \cap b \cap d \cup a \cap c \cap d$$

Получили две *тупиковые* $H\Phi K$:

$$A \cap \overline{B} \cap \overline{D} \cup A \cap \overline{B} \cap \overline{C} \cup A \cap B \cap D$$
$$A \cap \overline{B} \cap \overline{D} \cup A \cap \overline{C} \cap D \cup A \cap B \cap D$$

В данном случае тупиковые НФК имеют одинаковую сложность, поэтому они обе являются минимальными НФК. Однако если оценивать сложность количеством операций, *минимальной тупиковой НФК* будет только вторая.

Otbet:
$$A \cap \overline{B} \cap \overline{D} \cup A \cap \overline{C} \cap D \cup A \cap B \cap D$$

Вывод: в ходе лабораторной работы изучили способы получения различных нормальных форм Кантора множества, заданного произвольным теоретико-множественным выражением.