

R for Data Analysis Data Structures in R

(TB2 - Week 6)

Atefeh Khazaei

atefeh.khazaei@port.ac.uk

What we will learn this week?

- ☐ Data Structures in R
 - Vector
 - ☐ List
 - Matrix
 - ☐ Array
 - Data Frame
- Read Data

Vector

- □ VECTOR is the most basic object and default data structure in R
- ☐ Creating vectors using the following functions:
 - □ vector()
 - □ c()

```
V0 <- vector("integer", length = 5)</pre>
VØ
class(V0)
 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0
'integer'
v1 \leftarrow c(1, 2, 3, 4, 5)
ν1
is.vector(v1)
class(v1)
1 · 2 · 3 · 4 · 5
TRUE
'numeric'
```


Vector (cont.)

```
v2 <- c("a", "b", "c")
v2
is.vector(v2)
class(v2)
'a' · 'b' · 'c'
TRUE
'character'
v3 <- c(TRUE, TRUE, FALSE, FALSE, TRUE)
v3
is.vector(v3)
class(v3)
TRUE · TRUE · FALSE · FALSE · TRUE
TRUE
'logical'
```

```
v4 <- c(TRUE, "a", 2.5, 3)
v4
is.vector(v4)
class(v4)
'TRUE' · 'a' · '2.5' · '3'
TRUE
'character'
v5 \leftarrow c(v3, v4)
v5
is.vector(v5)
class(v5)
'TRUE' · 'TRUE' · 'FALSE' · 'TRUE' · 'TRUE' · 'a' · '2.5' · '3'
TRUE
'character'
```


Vector (cont.)

- □ as. is a command to convert different types together.
 - □ as.integer
 - □ as.numeric
- ☐ Do more example:
 - ☐ Try to convert logical class to integer and character.
 - ☐ Try to convert character class integer.

```
v1 <- c(1, 2, 3, 4, 5)
v1
is.vector(v1)
class(v1)
```

```
1 · 2 · 3 · 4 · 5
```

TRUE

'numeric'

```
v1 = as.character(v1)
v1
class(v1)
```

'character'

List

☐ LIST is a generic vector containing objects.

```
n = c(2,3,5)
s = c("aa", "bb", "cc", "dd")
b = c(TRUE, FALSE)

lst = list(n,s,b,3)
lst

1. 2 · 3 · 5
2. 'aa' · 'bb' · 'cc' · 'dd'
3. TRUE · FALSE
4. 3
```

```
lst[2]
  1. 'aa' · 'bb' · 'cc' · 'dd'
lst[c(2,4)]
  1. 'aa' · 'bb' · 'cc' · 'dd'
  2.3
lst[c(2,4)][[1]]
'aa' · 'bb' · 'cc' · 'dd'
lst[c(2,4)][[1]][1]
'aa'
```

Matrix

- MATRIX is a collection of data elements arranged in a two-dimensional rectangular layout.
- ☐ Create a matrix using **matrix()** function in R:

```
m1 \leftarrow matrix(c(T, T, F, F, T, F), nrow = 2)
m1
A matrix: 2 × 3 of type IgI
 TRUE FALSE TRUE
 TRUE FALSE FALSE
m2 <- matrix(c("a", "b",</pre>
                  "c", "d"),
                  ncol = 2,
                  byrow = T)
m2
Α
matrix:
2 \times 2
of type
chr
 c d
```


Matrix (cont.)

```
m3 = matrix(c(1,2,3,4,5,6), nrow=3, ncol=2)
m3

A
matrix:
3 × 2
of type
dbl

1  4
2  5
3  6
```

```
m3[2,1]
2
m3[,2]
4 · 5 · 6
m3[3,]
3 · 6
```

Matrix (cont.)

☐ The columns of two matrices having the same number of rows can be

combined into a larger matrix.

```
m3 = matrix(c(1,2,3,4,5,6), nrow=3, ncol=2)
m4 = matrix(c(7,8,9), nrow=3, ncol=1)

m5 = cbind(m3,m4)
m5

A matrix:
3 × 3 of
type dbl

1  4  7
2  5  8
3  6  9
```


Matrix (cont.)

☐ You can deconstruct a matrix by applying the c function, it will combine all

columns into one.

```
m3 = matrix(c(1,2,3,4,5,6), nrow=3, ncol=2)
m3

A
matrix:
3 × 2
of type
dbl

1  4
2  5
3  6
```

```
c(m3)
1 · 2 · 3 · 4 · 5 · 6
```


Array

☐ In matrix we only have two dimensions, but array is more flexible and you can have more than two dimensions.

```
# Give data, then dimensions (rows, columns, tables)
a1 \leftarrow array(c(1:24), c(4, 3, 2))
a1
 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21 \cdot 22 \cdot 23 \cdot 24
> a1 <- array(c(1:24), c(4, 3, 2))
> a1
, , 1
      [,1] [,2] [,3]
[2,]
[3,]
       3 7 11
[4,]
, , 2
       13
             17
       14
             18
       15
             19
                   23
       16 20
                   24
```


Data Frame

- □ Data Frame is more flexible than matrix and array.
- ☐ A universal container for large data sets.

```
# Data Frame Can combine vectors of the same length

vNumeric <- c(1, 2, 3)
vCharacter <- c("a", "b", "c")
vLogical <- c(T, F, T)

df1 <- cbind(vNumeric, vCharacter, vLogical)
df1 # Coerces all values to most basic data type

df2 <- as.data.frame(cbind(vNumeric, vCharacter, vLogical))
df2 # Makes a data frame with three different data types</pre>
```

A matrix: 3 × 3 of type chr					
vNumeric	vCharacter	vLogical			
1	а	TRUE			
2	b	FALSE			
3	С	TRUE			
0.1.1.5	0 0				
A data.frame	e: 3 × 3				
	vCharacter	vLogical			
		vLogical <fct></fct>			
vNumeric	vCharacter	_			
vNumeric <fct></fct>	vCharacter <fct></fct>	<fct></fct>			

Data Frame (cont.)

- Many data input functions of R like, read.table(), read.csv(), read.delim(), read.fwf() also read data into a data frame.
- ☐ Use either [, [[or \$ to access a column values of data frame.]

A data.frame: 3 × 3					
vNumeric	vCharacter	vLogical			
<fct></fct>	<fct></fct>	<fct></fct>			
1	а	TRUE			
2	b	FALSE			
3	С	TRUE			

Data Frame (cont.)

head(df2,n=2)					
A data.frame: 2 × 3					
v	Numeric	vCharac	ter	vLogical	
	<fct></fct>	<f< th=""><th>ct></th><th><fct></fct></th></f<>	ct>	<fct></fct>	
1	1		а	TRUE	
2	2		b	FALSE	
df2[,2:3]				
A data.frame: 3 × 2					
vCharacter vLogical					
	<fct></fct>	<fct></fct>			
	а	TRUE			
	b	FALSE			
	С	TRUE			

Data Frame (cont.)

```
vNumeric \langle -c(1, 2, 3) \rangle
vCharacter <- c("a", "b", "c")
vLogical <- c(T, F, T)
df2 <- as.data.frame(cbind(vNumeric, vCharacter, vLogical), stringsAsFactors=FALSE)</pre>
df2 # Makes a data frame with three different data types
A data.frame: 3 × 3
                                                                     df2[df2$vNumeric == 2, "vNumeric"] <- 5</pre>
                                                                     df2
vNumeric vCharacter vLogical
               <chr>
    <chr>
                       <chr>
                                                                     A data frame: 3 × 3
                       TRUE
                                                                      vNumeric vCharacter vLogical
                      FALSE
                                                                         <chr>
                                                                                    <chr>
                                                                                             <chr>
                  c TRUE
                                                                                             TRUE
                                                                                            FALSE
                                                                                            TRUE
```


Read Data

```
df3=read.csv("http://vincentarelbundock.github.io/Rdatasets/csv/datasets/USArrests.csv", stringsAsFactors = FALSE)
nrow(df3)
ncol(df3)
head(df3)
```

50

5

A data.frame: 6 × 5

	X	Murder	Assault	UrbanPop	Rape
	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>
1	Alabama	13.2	236	58	21.2
2	Alaska	10.0	263	48	44.5
3	Arizona	8.1	294	80	31.0
4	Arkansas	8.8	190	50	19.5
5	California	9.0	276	91	40.6
6	Colorado	7.9	204	78	38.7

Read Data (cont.)

```
dim(df3)
50 · 5
colnames(df3)
'X' · 'Murder' · 'Assault' · 'UrbanPop' · 'Rape'
summary(df3)
      Χ
                        Murder
                                        Assault
                                                        UrbanPop
 Length:50
                    Min.
                                     Min. : 45.0
                                                            :32.00
                           : 0.800
                                                     Min.
 Class :character
                    1st Qu.: 4.075
                                     1st Qu.:109.0
                                                     1st Qu.:54.50
 Mode :character
                    Median : 7.250
                                     Median :159.0
                                                     Median :66.00
                                          :170.8
                                                            :65.54
                           : 7.788
                                     Mean
                                                     Mean
                    Mean
                    3rd Qu.:11.250
                                     3rd Qu.:249.0
                                                     3rd Qu.:77.75
                           :17.400
                                            :337.0
                                                            :91.00
                    Max.
                                     Max.
                                                     Max.
      Rape
 Min. : 7.30
 1st Qu.:15.07
 Median :20.10
      :21.23
 Mean
 3rd Qu.:26.18
        :46.00
 Max.
```


References & More Resources

- ☐ References:
 - ☐ Learning R:

https://www.linkedin.com/learning/learning-r-2/

POPULAR

□ To use LinkedinLearning, you can log in with your university account:
https://myport.port.ac.uk/study-skills/linkedin-learning

2h 51m

Practical Session

☐ Try these slides' examples to understand data structures better.

