* The Row Space

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1N} \\ a_{21} & \cdots & a_{2N} \\ \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \stackrel{\leq}{=} \begin{pmatrix} \overrightarrow{\gamma}_1 \\ \overrightarrow{\gamma}_2 \\ \vdots \\ \overrightarrow{\gamma}_m \end{pmatrix}$$

Row Space of A (denoted by Row A) = Span $\{\vec{r}_1, \vec{r}_2, \dots, \vec{r}_m\}$ is a subspace of \mathbb{R}^n .

Thm: If two matrices A and B are now equivalent, then their now spaces are the same.

If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

* The Rank Theorem

Def: The rank of A is the dimension of the column space of A. Rank A = dim ColA

Theorem: The rank Theorem A: mxn

+ of pivots in A

2) rank A + dim Nul A = n

Proof: Since the pivot columns of a matrix A

form a basis for ColA, so

dim ColA = # of pivots in A = dim Row A

of pivots + # of free variables = n

Il

rankA

dim NulA

Ex: 1) If A is a 7x9 matrix with a two-dimensional null space, what is the rank of A?

2) Could a 6 × 9 matrix have a two-dimensional Null space?

Solution: (1) rank A = 9-2 = 7

(2) If $\dim NulA = 2$, then $\operatorname{rank} A = 9 - 2 = 7 = \dim Row A \le 6$. Contradiction So a 6x9 matrix can't have a two-dimensional null space.

Thm: The invertible Matrix Theorem.

Let A be an nxn matrix. Then the following statements are equivalent.

- (a) A is an invertible matrix
- (b) A is row equivalent to the nxn identity matrix.
- (c) A has a pivot positions
- (d) The equation $A\vec{x} = \vec{0}$ has only the trivial solution

	(e) The columns of A form a linearly independent set.
	If) The linear transformation $\overrightarrow{x} \mapsto A\overrightarrow{x}$ is one-to-one
	(9) The equation $A\vec{x} = \vec{b}$ has at least one solution
	for each b in Rn.
	(h) The columns span Rn.
	(i) The linear transformation $\vec{\alpha} \mapsto A\vec{\alpha}$ maps R^n onto R^n .
	(j) There is an $n \times n$ matrix C such that $CA = I$.
	(k) There is an $n \times n$ matrix D such that $AD = 1$.
	(1) AT is an invertible matrix.
	(m) The columns of A form a basis of Rn
	(n) $ColA = IR^{\hat{i}}$
	(o) dim ColA = n
	(p) rank $A = n$
	(3) Nul A = {0}
	(r) dim NulA =0
	(s) det (A) \$0
E;	x: The matrices below are row equivalent.
	(2 -1 1 -6 8 \

- 1) Find rank A and dim Nul A
- 2) Find bases for ColA and RowA

3) What is the next step to perform to find a
basis for Nul A?
4) How many pivot columns are in a now echelon
form of AT?
Solution: 1) rank A = 2
dim Nul = 5-2=3
2) The pivot columns of A are the first two
columns. So a basis for ColA is
$\left\{\overrightarrow{a}_{1}, \overrightarrow{a}_{2}\right\} = \left\{\begin{pmatrix} 2\\1\\-7\\4 \end{pmatrix}, \begin{pmatrix} -1\\-2\\8\\-5 \end{pmatrix}\right\}$
The nonzero rows of B form a basis for
RowA, namely,
$\{(1,-2,-4,3,-2), (0,3,9,-12,12)\}.$
3) For nulA, the next step is to perform
row operations on B to obtain the
reduced echelon form of A.
4). Since $ColA^T = RowA$, Rank $A^T = rankA$. So
AT has two pivot positions.
• • •