Can <u>LLMs</u> - outperform the - classical - OCR/HTR tools?

II-Meeting 08/9^{bre}/2024 **Seorin Kim**

Objectives

To digitize the handwritten historical records

With LLMs, we want to achieve:

- Compatible results to the classical OCR/HTR pipelines
- Less ground truth (*GT = expensive!)

Historical Records

Challenges:

- Layout
- Mismatch: Content vs. Column names
 - E.g., memo
- Old symbols
- Numbers are hard to read

	N** DATE DU DÉPÔ	DU DÉPÔT DÉSIGNATION DES PERSONNES DÉCÉDÉES, OU ABSENTES.			DATE DU DÉCÈS eu da	NOMS, PRÉNOMS
	des l'ordre déclarations.	NOMS.	PRÉNOMS	DOMICILES	en postession, en cas d'absence.	ET DEMEURES DES PARTIES DÉCÉARANTES,
		Arrete le vins	other octob	22 1919 de	monif	
		Soveoté le ving	gt neuf orlow	Bes egig o	fervaid	
1	398 Erente	Horrent	Alfrhonse fr	Ofrhain	169 g1918	Howcord Ebrai Lautus
1	398 ² 2	Sefevre	1	1		-breolie Chexise
		Source le le le le	te vilobas 1	919 de	uni's	
		Soveti le h	ents un velo	bu 1919	dreni'd	
		Someté le fre	mles noveme	De 1919 6	oussain	topremist
,		Soveté le deux	novembre 1	919 Din	ranche	dervaid
6	399 6000 g bee	Desmedt	Jeanne	Nivesles -	13 mai	Evillocka Elise santier
	400 s	Monsene	Breval Of Our	Chabery -	1 867918	Monoeur actour
6	401 8	Bouty	Flenni B	zaine l' 2	le férais-	Bouly Borie Silia
		Soveete le tre	oid novembe	ne 1919 d	Geresis	

Workflow

Compared Models

LLMs:

- GPT 40
- Claude Sonnet 3.5

OCRs:

- EasyOCR
- Keras OCR
- Pytesseract OCR
- TrOCR

Compared Types

LLMs

(Zero-shot) Prompting?	Simple PromptComplex Prompt
#Examples?	One exampleTwo examples
Refine?	 Refine with the complex prompt output

OCRs

~Zeroshot?	•	Without finetuning
Conventional • use		Finetuning with 20% data (6 th epoch)
	•	Finetuning with 50% data (6 th epoch)

BLEU Scores – whole scans

*BLEU Scores

Simple vs. Complex Prompts

		Line-l	oy-line
Model 1	Model 2	t-stat	p-value
GPT Complex	Claude Complex	1.307	0.192
GPT Simple	Claude Simple	4.088	0.000
GPT Complex	GPT Simple	7.217	0.000
Claude Complex	Claude Simple	8.596	0.000
GPT Complex	Claude Simple	9.057	0.000
Claude Complex	GPT Simple	4.709	0.000

*BLEU Scores

Simple vs. Complex Prompts

Model 1	Model 2
GPT Complex	Claude Complex
GPT Simple	Claude Simple
GPT Complex	GPT Simple
Claude Complex	Claude Simple
GPT Complex	Claude Simple
Claude Complex	GPT Simple

Whole Scans		
t-stat	p-value	
4.532	0.000	
7.256	0.000	
8.870	0.000	
12.255	0.000	
5.708	0.000	
18.086	0.000	

*BLEU Scores

Simple vs. Complex Prompts

		Line-by-line		Whole	Scans
Model 1	Model 2	t-stat	p-value	t-stat	p-value
GPT Complex	Claude Complex	1.307	0.192	4.532	0.000
GPT Simple	Claude Simple	4.088	0.000	7.256	0.000
GPT Complex	GPT Simple	7.217	0.000	8.870	0.000
Claude Complex	Claude Simple	8.596	0.000	12.255	0.000
GPT Complex	Claude Simple	9.057	0.000	5.708	0.000
Claude Complex	GPT Simple	4.709	0.000	18.086	0.000

*BLEU Scores

Complex vs. Refine Complex

		Line-l	by-line
Model 1	Model 2	t-stat	p-value
GPT Complex	Claude Complex	1.307	0.192
GPT Refine	Claude Refine	2.705	0.007
GPT Complex	GPT Refine	5.127	0.000
Claude Complex	Claude Refine	6.637	0.000
GPT Complex	Claude Refine	4.501	0.000
Claude Complex	GPT Refine	0.657	0.511

*BLEU Scores

Complex vs. Refine Complex

Model 1	Model 2
GPT Complex	Claude Complex
GPT Refine	Claude Refine
GPT Complex	GPT Refine
Claude Complex	Claude Refine
GPT Complex	Claude Refine
Claude Complex	GPT Refine

*BLEU Scores

Complex vs. Refine Complex

		Line-by-line		Whole	e Scans
Model 1	Model 2	t-stat	p-value	t-stat	p-value
GPT Complex	Claude Complex	1.307	0.192	4.532	0.000
GPT Refine	Claude Refine	2.705	0.007	0.484	0.634
GPT Complex	GPT Refine	5.127	0.000	0.315	0.756
Claude Complex	Claude Refine	6.637	0.000	5.032	0.000
GPT Complex	Claude Refine	4.501	0.000	0.229	0.821
Claude Complex	GPT Refine	0.657	0.511	3.999	0.001

*BLEU Scores

One shot vs. Two shots

		Line-k	y-line
Model 1	Model 2	t-stat	p-value
GPT One	Claude One	7.075	0.000
GPT Two	Claude Two	4.351	0.000
GPT One	GPT Two	18.948	0.000
Claude One	Claude Two	4.420	0.000
GPT One	Claude Two	9.489	0.000
Claude One	GPT Two	0.153	0.878

*BLEU Scores

One shot vs. Two shots

Model 1	Model 2
GPT One	Claude One
GPT Two	Claude Two
GPT One	GPT Two
Claude One	Claude Two
GPT One	Claude Two
Claude One	GPT Two

Whole Scans		
t-stat	p-value	
0.138	0.891	
2.408	0.028	
1.544	0.141	
1.608	0.126	
0.745	0.467	
2.656	0.017	

*BLEU Scores

One shot vs. Two shots

		Line-by-line		Whole	Scans
Model 1	Model 2	t-stat	p-value	t-stat	p-value
GPT One	Claude One	7.075	0.000	0.138	0.891
GPT Two	Claude Two	4.351	0.000	2.408	0.028
GPT One	GPT Two	18.948	0.000	1.544	0.141
Claude One	Claude Two	4.420	0.000	1.608	0.126
GPT One	Claude Two	9.489	0.000	0.745	0.467
Claude One	GPT Two	0.153	0.878	2.656	0.017

CER – line by line

Zoomed at [-0.5, 2]

CER – whole scans

Zoomed at [-0.5, 2]

BLEU vs. CER

[0,1]

[0,+∞]

Document 1: line 9 and 10

399 trois 9bre Desmedt Jeanne Nivelles 13 mai 1919 Willock Elise & autres 9480 530 8950 15 Db 1919 18 mars 1921 10 février 1920 39

400 d Monseur Raoul Oscar Clabecq 1 8b 1918 Monseur Arthur 69051 31417 659093 15 d 1 août 1919

Line	BLEU	CER	_
9	0.341	0.300	آ
10	0.000	0.547	
9	0.000	0.815	
10	0.000	0.842	

399 trois 9bre Desmedt Jeanne Nivelles 13 mai 1919 Célibataire sans profession 9410 520 39_10 15 3/4 _919 13 mars 1920 10 février __21 __

400 _ Monseur Pascal Henri Célestin 1 8bre 1848 Receveur Débitant 69060 34478 34582 15 32 4 avril 1919

Arrêté le vingt novembre 1919 Dimanche servais
Arrêté le vingt quatre novembre 1919 Dimanche servais

BLEU is more conservative than CER.

^{*}The use of one reference list leads to smaller BLEU.

BLEU vs. CER

[0,1]

[0,+∞]

Document 9: line 3 and 4

Line	BLEU	CER	
3	0.809	0.024	
4	0.000	0.195	_
3	0.000	0.095	_
4	0.000	0.073	_

OCRs

- Fine-tuning dependent
 - Without finetuning, no comprehensible outputs
 - With only 20% and 50% of data finetuned, the outputs are often repetitions of the trained data

LLMs

- Easy to use
 - With only a few examples, the quality increases significantly
 - No need layout analysis
 - No finetuning required
- line-by-line > whole scans
 - Keeps the same #rows
 - Layout analysis required?
- Whole > line-by-line
 - It understands the context better

CER Scores $[0,+\infty]$

$$CER = \frac{S+D+I}{N} = \frac{S+D+I}{S+D+C}$$

S = #Substitutions, D = #Deletions, I = #Insertions, C = #Correct Characters, N = #Characters in the references (N=S+D+C)

- Not always [0,1], especially in case of a high number of insertions
- Often associated to the % of characters that were incorrectly predicted.
- The lower the value, the better the performance (CER == 0 ⇔ Perfect)

CER Scores $[0,+\infty]$

$$CER = \frac{S+D+I}{N} = \frac{S+D+I}{S+D+C}$$

Reference: Cat , **Substitution**: <u>B</u>at , **Insertion**: Cats , **Deletion**: _at

Candidate	Reference	CER
"hello world"	"hello"	I=6, N=5, CER=1.2
"this is the prediction"	"this is the reference"	S=6 N=21, CER=0.29
"there is <mark>an</mark> other sample"	"there is <u>an</u> other <u>on</u> e"	S=3, I=7, D=2, N=20, CER=0.6

▲ Careful with white spaces.

BLEU* Scores [0,1]

*Bilingual Evaluation Understudy (Papineni et al. 2002)

- 1 Modified N-gram: Candidate vs. Reference(s)
 - Modified such that it punishes the random repetition of one or a few words of the reference in the candidate
- 2 To combine the modified precisions for the various N-gram sizes: **geometric mean**
 - Because the precision exponentially decays with the increase in N
- 3 Sentence brevity penalty (**BP**)
 - E.g., Candidate: "of the" vs. Ref: "It is [...] the command of the Party" → Modified n-gram precision == 1 (2/2 unigram, 1/1 bigram)
 - (1) already punishes sentences longer than the refs
 - BP == 1, if when the lengths are the same between the candidate (c) and ref (r)
 - If $c \le r$, BP == $e^{1-\frac{r}{c}}$

BLEU Scores [0,1]

$$BLEU = BP \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-\frac{r}{c})} & \text{if } c \le r \end{cases}$$

$$w_n = 1/N$$
 (*Default N == 4)

BLEU

$$BLEU = BP \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

$$Precisions (BP=1)$$

$$[0.57, 0.33, 0.2, 0.0]$$

$$\Leftrightarrow$$

$$[4/7, 2/6, 1/5, 0/4]$$

$$Document 9: line 4$$

$$Arrêté le vingt six novembre 1919 servais$$

$$Arrêté le vingt huit octobre 1919 Servais$$

BLEU N=3	BLEU N=4	CER
0.336	0.000	0.195

Comparison of BLEU Scores (N=3 vs N=4)

Comparison of BLEU Scores (N=2 vs. N=3 vs. N=4)

BLEU Scores vs. Human Evaluations