Computing Distributions of Economic Models via Simulation

John Stachurski and Vance Martin

Institute of Economic Research Kyoto University

March 2008

Structure of the Talk

- Review of LLN, CLT
- Review of Markov chains
- Outline of the problem
- Common solution techniques
- A better technique
- Our contribution

Let $(Y_i)_{i\geq 1}$ be an IID sequence of random variables in \mathbb{R} .

Let
$$\bar{Y}_n := rac{1}{n} \sum_{i=1}^n Y_i$$
 and let $\mu := \mathbb{E}Y$.

$$(\bar{Y}_n - \mu) \rightarrow 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mu) \xrightarrow{\mathscr{D}} N(0, \sigma^2)$$

Let $(Y_i)_{i\geq 1}$ be an IID sequence of random variables in \mathbb{R} .

Let
$$\bar{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$$
 and let $\mu := \mathbb{E}Y$.

$$(\bar{Y}_n - \mu) \rightarrow 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mu) \xrightarrow{\mathscr{D}} N(0, \sigma^2)$$

Let $(Y_i)_{i\geq 1}$ be an IID sequence of random variables in \mathbb{R} .

Let
$$\bar{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$$
 and let $\mu := \mathbb{E}Y$.

$$(\bar{Y}_n - \mu) \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mu) \xrightarrow{\mathscr{D}} N(0, \sigma^2)$$

Let $(Y_i)_{i\geq 1}$ be an IID sequence of random variables in \mathbb{R} .

Let
$$\bar{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$$
 and let $\mu := \mathbb{E}Y$.

$$(\bar{Y}_n - \mu) \rightarrow 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mu) \stackrel{\mathscr{D}}{\to} N(0, \sigma^2)$$

Let $(Y_i)_{i\geq 1}$ be an IID sequence of random variables in \mathbb{R} .

Let
$$\bar{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$$
 and let $\mu := \mathbb{E}Y$.

$$(\bar{Y}_n - \mu) \rightarrow 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mu) \stackrel{\mathscr{D}}{\to} N(0, \sigma^2)$$

The CLT gives a rate of convergence:

$$(\bar{Y}_n - \mu) = O_P(n^{-1/2})$$

Definition: if
$$X_n = O_P(n^{-1/2})$$
 then

$$\forall \varepsilon > 0, \ \exists M < \infty \text{ s.t. } \sup_{n \in \mathbb{N}} \mathbb{P}\{|X_n| > Mn^{-1/2}\} \le \varepsilon$$

The CLT gives a rate of convergence:

$$(\bar{Y}_n - \mu) = O_P(n^{-1/2})$$

Definition: if $X_n = O_P(n^{-1/2})$ then

$$\forall \varepsilon > 0, \ \exists M < \infty \text{ s.t. } \sup_{n \in \mathbb{N}} \mathbb{P}\{|X_n| > Mn^{-1/2}\} \le \varepsilon$$

$$\langle x, y \rangle = \sum_{i=1}^k x_i y_i$$
 and $||x|| := \langle x, x \rangle^{1/2}$

Let $Y=(Y_1,\ldots,Y_k)\in\mathbb{R}^k$ be a random vector, $\mathbb{E}\|Y\|<\infty$.

Expectation is $\mathcal{E}Y := (\mathbb{E}Y_1, \dots, \mathbb{E}Y_k) \in \mathbb{R}^k$. Equivalently:

$$\langle \mathcal{E}Y, x \rangle = \mathbb{E}\langle Y, x \rangle \quad \forall x \in \mathbb{R}^k$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathscr{D}}{\to} N(0, \Sigma)$$

$$\langle x,y \rangle = \sum_{i=1}^k x_i y_i$$
 and $\|x\| := \langle x,x \rangle^{1/2}$

Let $Y=(Y_1,\ldots,Y_k)\in\mathbb{R}^k$ be a random vector, $\mathbb{E}\|Y\|<\infty.$

Expectation is $\mathcal{E}Y:=(\mathbb{E}Y_1,\ldots,\mathbb{E}Y_k)\in\mathbb{R}^k.$ Equivalently:

$$\langle \mathcal{E}Y, x \rangle = \mathbb{E}\langle Y, x \rangle \quad \forall x \in \mathbb{R}^k$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathscr{D}}{\to} N(0, \Sigma)$$

$$\langle x,y \rangle = \sum_{i=1}^k x_i y_i$$
 and $\|x\| := \langle x,x \rangle^{1/2}$

Let $Y = (Y_1, \dots, Y_k) \in \mathbb{R}^k$ be a random vector, $\mathbb{E}||Y|| < \infty$.

Expectation is $\mathcal{E}Y:=(\mathbb{E}Y_1,\ldots,\mathbb{E}Y_k)\in\mathbb{R}^k.$ Equivalently:

$$\langle \mathcal{E}Y, x \rangle = \mathbb{E}\langle Y, x \rangle \quad \forall x \in \mathbb{R}^k$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathscr{D}}{\to} N(0, \Sigma)$$

$$\langle x,y \rangle = \sum_{i=1}^k x_i y_i$$
 and $\|x\| := \langle x,x \rangle^{1/2}$

Let $Y = (Y_1, \dots, Y_k) \in \mathbb{R}^k$ be a random vector, $\mathbb{E}||Y|| < \infty$.

Expectation is $\mathcal{E}Y := (\mathbb{E}Y_1, \dots, \mathbb{E}Y_k) \in \mathbb{R}^k$. Equivalently:

$$\langle \mathcal{E}Y, x \rangle = \mathbb{E}\langle Y, x \rangle \quad \forall x \in \mathbb{R}^k$$

Under suitable moment conditions LLN and CLT still hold:

 $\|\bar{Y}_n - \mathcal{E}Y\| \to 0$ with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathcal{D}}{\to} N(0, \Sigma)$$

$$\langle x, y \rangle = \sum_{i=1}^k x_i y_i$$
 and $||x|| := \langle x, x \rangle^{1/2}$

Let $Y=(Y_1,\ldots,Y_k)\in\mathbb{R}^k$ be a random vector, $\mathbb{E}\|Y\|<\infty$.

Expectation is $\mathcal{E}Y := (\mathbb{E}Y_1, \dots, \mathbb{E}Y_k) \in \mathbb{R}^k$. Equivalently:

$$\langle \mathcal{E}Y, x \rangle = \mathbb{E}\langle Y, x \rangle \quad \forall x \in \mathbb{R}^k$$

Under suitable moment conditions LLN and CLT still hold:

 $\|\bar{Y}_n - \mathcal{E}Y\| \to 0$ with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathcal{D}}{\to} N(0, \Sigma)$$

$$\langle x,y \rangle = \sum_{i=1}^k x_i y_i$$
 and $\|x\| := \langle x,x \rangle^{1/2}$

Let $Y=(Y_1,\ldots,Y_k)\in\mathbb{R}^k$ be a random vector, $\mathbb{E}\|Y\|<\infty$.

Expectation is $\mathcal{E}Y := (\mathbb{E}Y_1, \dots, \mathbb{E}Y_k) \in \mathbb{R}^k$. Equivalently:

$$\langle \mathcal{E}Y, x \rangle = \mathbb{E}\langle Y, x \rangle \quad \forall x \in \mathbb{R}^k$$

Under suitable moment conditions LLN and CLT still hold:

 $\|\bar{Y}_n - \mathcal{E}Y\| \to 0$ with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathcal{D}}{\to} N(0, \Sigma)$$

$$\langle x, y \rangle = \sum_{i=1}^k x_i y_i$$
 and $||x|| := \langle x, x \rangle^{1/2}$

Let $Y = (Y_1, \dots, Y_k) \in \mathbb{R}^k$ be a random vector, $\mathbb{E}||Y|| < \infty$.

Expectation is $\mathcal{E}Y := (\mathbb{E}Y_1, \dots, \mathbb{E}Y_k) \in \mathbb{R}^k$. Equivalently:

$$\langle \mathcal{E}Y, x \rangle = \mathbb{E}\langle Y, x \rangle \quad \forall x \in \mathbb{R}^k$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \xrightarrow{\mathscr{D}} N(0, \Sigma)$$

$$\langle f,g \rangle = \int f(x)g(x)dx$$
 and $\|f\| := \langle f,f \rangle^{1/2}$

Let Y be a random function in L_2 with $\mathbb{E}||Y|| < \infty$.

Define the expectation $\mathcal{E}Y$ of r.v. Y to be unique function s.t.

$$\langle \mathcal{E}Y, g \rangle = \mathbb{E}\langle Y, g \rangle \quad \forall g \in L_2$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathcal{D}}{\to} N(0, \Sigma)$$

$$\langle f,g \rangle = \int f(x)g(x)dx$$
 and $\|f\| := \langle f,f \rangle^{1/2}$

Let Y be a random function in L_2 with $\mathbb{E}||Y|| < \infty$.

Define the expectation $\mathcal{E}Y$ of r.v. Y to be unique function s.t.

$$\langle \mathcal{E}Y, g \rangle = \mathbb{E}\langle Y, g \rangle \quad \forall g \in L_2$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathcal{D}}{\to} N(0, \Sigma)$$

$$\langle f,g \rangle = \int f(x)g(x)dx$$
 and $\|f\| := \langle f,f \rangle^{1/2}$

Let Y be a random function in L_2 with $\mathbb{E}||Y|| < \infty$.

Define the expectation $\mathcal{E}Y$ of r.v. Y to be unique function s.t.

$$\langle \mathcal{E}Y, g \rangle = \mathbb{E}\langle Y, g \rangle \quad \forall g \in L_2$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathcal{D}}{\to} N(0, \Sigma)$$

$$\langle f,g\rangle = \int f(x)g(x)dx \quad \text{and} \quad \|f\| := \langle f,f\rangle^{1/2}$$

Let Y be a random function in L_2 with $\mathbb{E}||Y|| < \infty$.

Define the expectation $\mathcal{E}Y$ of r.v. Y to be unique function s.t.

$$\langle \mathcal{E}Y, g \rangle = \mathbb{E}\langle Y, g \rangle \quad \forall g \in L_2$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathscr{D}}{\to} N(0, \Sigma)$$

$$\langle f,g \rangle = \int f(x)g(x)dx$$
 and $\|f\| := \langle f,f \rangle^{1/2}$

Let Y be a random function in L_2 with $\mathbb{E}||Y|| < \infty$.

Define the expectation $\mathcal{E}Y$ of r.v. Y to be unique function s.t.

$$\langle \mathcal{E}Y, g \rangle = \mathbb{E}\langle Y, g \rangle \quad \forall g \in L_2$$

$$\|\bar{Y}_n - \mathcal{E}Y\| \to 0$$
 with probability one

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) \stackrel{\mathscr{D}}{\to} N(0, \Sigma)$$

$$Y = \text{the function } f(x) = W_0 + W_1 x + W_2 x^2; W_i \sim N(0, 1).$$

Consider an \mathbb{R} -valued process $(X_t)_{t>0}$ defined by

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t \ge 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_0 = x_0$$
 (1)

This is an example of a discrete time Markov chain.

Note
$$X_1 = h(x_0) + W_1$$
, $X_2 = h(h(x_0) + W_1) + W_2$, etc.

Thus, for some F we have $X_t = F(x_0, W_1, \dots, W_t)$.

Consider an \mathbb{R} -valued process $(X_t)_{t\geq 0}$ defined by

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t>1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_0 = x_0$$
 (1)

This is an example of a discrete time Markov chain.

Note
$$X_1 = h(x_0) + W_1$$
, $X_2 = h(h(x_0) + W_1) + W_2$, etc.

Thus, for some F we have $X_t = F(x_0, W_1, \dots, W_t)$.

Consider an \mathbb{R} -valued process $(X_t)_{t\geq 0}$ defined by

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t>1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_0 = x_0$$
 (1)

This is an example of a discrete time Markov chain.

Note
$$X_1 = h(x_0) + W_1$$
, $X_2 = h(h(x_0) + W_1) + W_2$, etc.

Thus, for some F we have $X_t = F(x_0, W_1, \dots, W_t)$.

Consider an \mathbb{R} -valued process $(X_t)_{t\geq 0}$ defined by

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t>1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_0 = x_0$$
 (1)

This is an example of a discrete time Markov chain.

Note
$$X_1 = h(x_0) + W_1$$
, $X_2 = h(h(x_0) + W_1) + W_2$, etc.

Thus, for some F we have $X_t = F(x_0, W_1, \dots, W_t)$.

Consider an \mathbb{R} -valued process $(X_t)_{t\geq 0}$ defined by

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t>1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_0 = x_0$$
 (1)

This is an example of a discrete time Markov chain.

Note
$$X_1 = h(x_0) + W_1$$
, $X_2 = h(h(x_0) + W_1) + W_2$, etc.

Thus, for some F we have $X_t = F(x_0, W_1, \dots, W_t)$.

Consider an \mathbb{R} -valued process $(X_t)_{t\geq 0}$ defined by

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t>1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_0 = x_0$$
 (1)

This is an example of a discrete time Markov chain.

Note
$$X_1 = h(x_0) + W_1$$
, $X_2 = h(h(x_0) + W_1) + W_2$, etc.

Thus, for some F we have $X_t = F(x_0, W_1, \dots, W_t)$.

$$p(\cdot|X_{t-1}) = \text{Dist. of } X_t \text{ given } X_{t-1}$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{[y-h(X_{t-1})]^2}{2\sigma^2}\right\}$$

$$\therefore X_t | X_{t-1} = h(X_{t-1}) + N(0, \sigma^2) = N(h(X_{t-1}), \sigma^2)$$

The sequence $(\psi_t)_{t\geq 1}$ satisfies VIE

$$\psi_t(y) = \int p(y|x)\psi_{t-1}(x)dx \quad (y \in \mathbb{R})$$
 (2)

$$p(\cdot|X_{t-1})=$$
 Dist. of X_t given X_{t-1}
$$=\frac{1}{\sqrt{2\pi}\sigma}\exp\left\{-\frac{[y-h(X_{t-1})]^2}{2\sigma^2}\right\}$$

$$\therefore X_t | X_{t-1} = h(X_{t-1}) + N(0, \sigma^2) = N(h(X_{t-1}), \sigma^2)$$

The sequence $(\psi_t)_{t\geq 1}$ satisfies VIE

$$\psi_t(y) = \int p(y|x)\psi_{t-1}(x)dx \quad (y \in \mathbb{R})$$
 (2)

$$\begin{split} p(\cdot|X_{t-1}) &= \text{Dist. of } X_t \text{ given } X_{t-1} \\ &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{[y-h(X_{t-1})]^2}{2\sigma^2}\right\} \end{split}$$

$$\therefore X_t | X_{t-1} = h(X_{t-1}) + N(0, \sigma^2) = N(h(X_{t-1}), \sigma^2)$$

The sequence $(\psi_t)_{t\geq 1}$ satisfies VIE

$$\psi_t(y) = \int p(y|x)\psi_{t-1}(x)dx \quad (y \in \mathbb{R})$$
 (2)

$$p(\cdot|X_{t-1}) = ext{Dist. of } X_t ext{ given } X_{t-1}$$

$$= rac{1}{\sqrt{2\pi}\sigma} \exp\left\{-rac{[y-h(X_{t-1})]^2}{2\sigma^2}
ight\}$$

$$\therefore X_t | X_{t-1} = h(X_{t-1}) + N(0, \sigma^2) = N(h(X_{t-1}), \sigma^2)$$

The sequence $(\psi_t)_{t\geq 1}$ satisfies VIE:

$$\psi_t(y) = \int p(y|x)\psi_{t-1}(x)dx \quad (y \in \mathbb{R})$$
 (2

Proof.

For any two random variables X, Y we have

$$\frac{p_{X,Y}(x,y)}{p_X(x)} = p_{Y|X}(y|x)$$

$$\therefore \int p_{X,Y}(x,y)dx = \int p_{Y|X}(y|x)p_X(x)dx$$

Recall that:
$$\int p_{X,Y}(x,y)dx = p_Y(y)$$

$$\therefore p_Y(y) = \int p_{Y|X}(y|x)p_X(x)dx$$

Proof.

For any two random variables X, Y we have

$$\frac{p_{X,Y}(x,y)}{p_X(x)} = p_{Y|X}(y|x)$$

$$\therefore \int p_{X,Y}(x,y)dx = \int p_{Y|X}(y|x)p_X(x)dx$$

Recall that:
$$\int p_{X,Y}(x,y)dx = p_Y(y)$$

$$\therefore p_Y(y) = \int p_{Y|X}(y|x)p_X(x)dx$$

Proof.

For any two random variables X, Y we have

$$\frac{p_{X,Y}(x,y)}{p_X(x)} = p_{Y|X}(y|x)$$

$$\therefore \int p_{X,Y}(x,y)dx = \int p_{Y|X}(y|x)p_X(x)dx$$

Recall that:
$$\int p_{X,Y}(x,y)dx = p_Y(y)$$

$$\therefore p_Y(y) = \int p_{Y|X}(y|x)p_X(x)dx$$

Proof.

For any two random variables X, Y we have

$$\frac{p_{X,Y}(x,y)}{p_X(x)} = p_{Y|X}(y|x)$$

$$\therefore \int p_{X,Y}(x,y)dx = \int p_{Y|X}(y|x)p_X(x)dx$$

Recall that:
$$\int p_{X,Y}(x,y)dx = p_Y(y)$$

$$\therefore p_Y(y) = \int p_{Y|X}(y|x)p_X(x)dx$$

Sometimes the sequence $(\psi_t)_{t\geq 1}$ converges:

Stationary Distribution

The limit ψ_{∞} is called stationary, satisfies

$$\psi_{\infty}(y) = \int p(y|x)\psi_{\infty}(x)dx \quad (y \in \mathbb{R})$$
 (3)

Example: For $X_t = h(X_{t-1}) + N(0, \sigma^2)$, if

$$\exists \lambda < 1, \ L < \infty \text{ s.t. } |h(x)| \leq \lambda |x| + L, \ \forall x \in \mathbb{R}$$

then this limit exists, unique, stable.

Stationary Distribution

The limit ψ_{∞} is called stationary, satisfies

$$\psi_{\infty}(y) = \int p(y|x)\psi_{\infty}(x)dx \quad (y \in \mathbb{R})$$
 (3)

Example: For $X_t = h(X_{t-1}) + N(0, \sigma^2)$, if

$$\exists \lambda < 1, \ L < \infty \text{ s.t. } |h(x)| \leq \lambda |x| + L, \ \forall x \in \mathbb{R}$$

then this limit exists, unique, stable.

- Suppose we are studying the price of a commodity.
- Price at time t denoted by X_t
- Fix model : $X_t = h(X_{t-1}) + W_t$ where $(W_t)_{t\geq 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$.
- How to compute ψ_T numerically?
- How to compute ψ_{∞} numerically if it exists?

- Suppose we are studying the price of a commodity.
- Price at time t denoted by X_t .
- Fix model : $X_t = h(X_{t-1}) + W_t$ where $(W_t)_{t \ge 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$.
- How to compute ψ_T numerically?
- How to compute ψ_{∞} numerically if it exists?

- Suppose we are studying the price of a commodity.
- Price at time t denoted by X_t .
- Fix model : $X_t = h(X_{t-1}) + W_t$ where $(W_t)_{t \geq 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$.
- How to compute ψ_T numerically?
- How to compute ψ_{∞} numerically if it exists?

- Suppose we are studying the price of a commodity.
- Price at time t denoted by X_t .
- Fix model : $X_t = h(X_{t-1}) + W_t$ where $(W_t)_{t \geq 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$.
- How to compute ψ_T numerically?
- How to compute ψ_{∞} numerically if it exists?

- Suppose we are studying the price of a commodity.
- Price at time t denoted by X_t .
- Fix model : $X_t = h(X_{t-1}) + W_t$ where $(W_t)_{t\geq 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$.
- How to compute ψ_T numerically?
- How to compute ψ_{∞} numerically if it exists?

- Suppose we are studying the price of a commodity.
- Price at time t denoted by X_t .
- Fix model : $X_t = h(X_{t-1}) + W_t$ where $(W_t)_{t \geq 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$.
- How to compute ψ_T numerically?
- How to compute ψ_{∞} numerically if it exists?

Distribution of commodity price

Computation of ψ_T

Common technique 1: Discretization.

- Discretize state space onto grid of size n.
- Replace $X_t = h(X_{t-1}) + N(0, \sigma^2)$ with "similar" model taking values on the grid.
- Solve for time T distribution ψ_T^n .

• But how far is ψ_T^n from target ψ_T for given n?

Computation of ψ_T

Common technique 1: Discretization.

- Discretize state space onto grid of size n.
- Replace $X_t = h(X_{t-1}) + N(0, \sigma^2)$ with "similar" model taking values on the grid.
- Solve for time T distribution ψ_T^n .

• But how far is ψ_T^n from target ψ_T for given n?

Computation of ψ_T

Common technique 1: Discretization.

- Discretize state space onto grid of size n.
- Replace $X_t = h(X_{t-1}) + N(0, \sigma^2)$ with "similar" model taking values on the grid.
- Solve for time T distribution ψ_T^n .

• But how far is ψ_T^n from target ψ_T for given n?

Common technique 1: Simulation.

Review

Generate n draws of X_T using $X_t = h(X_{t-1}) + W_t$, $X_0 = x_0$:

Now use (X_T^1, \dots, X_T^n) to generate some approximation ψ_T^n .

Common technique 1: Simulation.

Review

Generate n draws of X_T using $X_t = h(X_{t-1}) + W_t$, $X_0 = x_0$:

Now use (X_T^1, \dots, X_T^n) to generate some approximation ψ_T^n .

Common technique 1: Simulation.

Generate n draws of X_T using $X_t = h(X_{t-1}) + W_t$, $X_0 = x_0$:

Now use (X_T^1,\ldots,X_T^n) to generate some approximation ψ_T^n .

Example 1: Histogram

Example 2: Kernel Density Estimator

Has the expression

$$f_T^n(y) = \frac{1}{n\delta_n} \sum_{i=1}^n K\left(\frac{y - X_T^i}{\delta_n}\right). \tag{4}$$

Here

- K a density
- $\delta_n > 0$ the bandwidth, chosen s.t. $\delta_n \to 0$.

Example 2: Kernel Density Estimator

Has the expression

$$f_T^n(y) = \frac{1}{n\delta_n} \sum_{i=1}^n K\left(\frac{y - X_T^i}{\delta_n}\right). \tag{4}$$

Here

- K a density
- $\delta_n > 0$ the bandwidth, chosen s.t. $\delta_n \to 0$.

Example 2: Kernel Density Estimator

Has the expression

$$f_T^n(y) = \frac{1}{n\delta_n} \sum_{i=1}^n K\left(\frac{y - X_T^i}{\delta_n}\right). \tag{4}$$

Here

- K a density
- $\delta_n > 0$ the bandwidth, chosen s.t. $\delta_n \to 0$.

Review

Recall the notion of L_1 distance:

Asymptotic properties excellent:

• For KDE f_T^n we have $f_T^n \to \psi_T$ in L_1 with prob one.

However, finite sample propeties are not as good:

• Slower than the parametric rate $O_P(n^{-1/2})$.

Asymptotic properties excellent:

• For KDE f_T^n we have $f_T^n o \psi_T$ in L_1 with prob one.

However, finite sample propeties are not as good:

• Slower than the parametric rate $O_P(n^{-1/2})$.

Asymptotic properties excellent:

• For KDE f_T^n we have $f_T^n o \psi_T$ in L_1 with prob one.

However, finite sample propeties are not as good:

• Slower than the parametric rate $O_P(n^{-1/2})$.

Why We Can Do Better

- Obtain faster convergence if incorporate more structure.
 - Not only do we have (X_T^1, \dots, X_T^n) ,
 - we also have h and know $W \sim N(0, \sigma^2)$.

How to incorporate this extra information?

Why We Can Do Better

- Obtain faster convergence if incorporate more structure.
 - Not only do we have (X_T^1, \dots, X_T^n) ,
 - we also have h and know $W \sim N(0, \sigma^2)$.

How to incorporate this extra information?

Why We Can Do Better

- Obtain faster convergence if incorporate more structure.
 - Not only do we have (X_T^1, \dots, X_T^n) ,
 - we also have h and know $W \sim N(0, \sigma^2)$.

How to incorporate this extra information?

Due to Glynn and Henderson (2001), MOR.

Recall

$$p(\cdot|X_{t-1}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{[y - h(X_{t-1})]^2}{2\sigma^2}\right\}$$

Notice that p encodes model $X_t = h(X_{t-1}) + N(0, \sigma^2)$.

Definition

$$\psi^n_T(y) := \frac{1}{n} \sum_{i=1}^n p(y \,|\, X^i_{T-1}) \quad \text{where } (X^i_{T-1})^n_{i=1} \overset{\text{IID}}{\sim} \psi_{T-1}$$

Due to Glynn and Henderson (2001), MOR.

Recall:

$$p(\cdot|X_{t-1}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{[y - h(X_{t-1})]^2}{2\sigma^2}\right\}$$

Notice that p encodes model $X_t = h(X_{t-1}) + N(0, \sigma^2)$.

Definition

$$\psi^n_T(y) := \frac{1}{n} \sum^n p(y \,|\, X^i_{T-1}) \quad \text{where } (X^i_{T-1})^n_{i=1} \stackrel{\text{IID}}{\sim} \psi_{T-1}$$

Due to Glynn and Henderson (2001), MOR.

Recall:

$$p(\cdot|X_{t-1}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{[y - h(X_{t-1})]^2}{2\sigma^2}\right\}$$

Notice that p encodes model $X_t = h(X_{t-1}) + N(0, \sigma^2)$.

Definition

$$\psi^n_T(y) := \frac{1}{n} \sum_{i=1}^n p(y \,|\, X^i_{T-1}) \quad \text{where } (X^i_{T-1})^n_{i=1} \stackrel{\text{IID}}{\sim} \psi_{T-1}$$

Due to Glynn and Henderson (2001), MOR.

Recall:

$$p(\cdot|X_{t-1}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{[y - h(X_{t-1})]^2}{2\sigma^2}\right\}$$

Notice that p encodes model $X_t = h(X_{t-1}) + N(0, \sigma^2)$.

Definition

$$\psi^n_T(y) := \frac{1}{n} \sum_{i=1}^n p(y \,|\, X^i_{T-1}) \quad \text{where } (X^i_{T-1})^n_{i=1} \stackrel{\text{IID}}{\sim} \psi_{T-1}$$

For fixed y,

$$\psi^n_T(y) := \frac{1}{n} \sum_{i=1}^n p(y \,|\, X^i_{T-1}) = \text{ sample mean of } Y := p(y \,|\, X_{T-1})$$

$$\therefore \quad (\psi_T^n(y) - \mathbb{E}Y) \to 0, \quad \sqrt{n}(\psi_T^n(y) - \mathbb{E}Y) \xrightarrow{\mathscr{D}} N(0, \sigma^2)$$

$$\mathbb{E}Y = \mathbb{E}p(y \mid X_{T-1}) = \int p(y \mid x)\psi_{T-1}(x)dx = \psi_T(y)$$

For fixed y,

$$\psi^n_T(y) := \frac{1}{n} \sum_{i=1}^n p(y \,|\, X^i_{T-1}) = \text{ sample mean of } Y := p(y \,|\, X_{T-1})$$

$$\therefore \quad (\psi^n_T(y) - \mathbb{E}Y) \to 0, \quad \sqrt{n}(\psi^n_T(y) - \mathbb{E}Y) \stackrel{\mathscr{D}}{\to} N(0, \sigma^2)$$

$$\mathbb{E}Y = \mathbb{E}p(y \mid X_{T-1}) = \int p(y \mid x)\psi_{T-1}(x)dx = \psi_T(y)$$

For fixed y,

$$\psi^n_T(y) := \frac{1}{n} \sum_{i=1}^n p(y \,|\, X^i_{T-1}) = \text{ sample mean of } Y := p(y \,|\, X_{T-1})$$

$$\therefore \quad (\psi^n_T(y) - \mathbb{E}Y) \to 0, \quad \sqrt{n}(\psi^n_T(y) - \mathbb{E}Y) \stackrel{\mathscr{D}}{\to} N(0, \sigma^2)$$

$$\mathbb{E}Y = \mathbb{E}p(y \mid X_{T-1}) = \int p(y \mid x)\psi_{T-1}(x)dx = \psi_T(y)$$

For fixed y,

$$\psi^n_T(y) := \frac{1}{n} \sum_{i=1}^n p(y \,|\, X^i_{T-1}) = \text{ sample mean of } Y := p(y \,|\, X_{T-1})$$

$$\therefore \quad (\psi^n_T(y) - \mathbb{E}Y) \to 0, \quad \sqrt{n}(\psi^n_T(y) - \mathbb{E}Y) \stackrel{\mathscr{D}}{\to} N(0, \sigma^2)$$

$$\mathbb{E}Y = \mathbb{E}p(y \,|\, X_{T-1}) = \int p(y \,|\, x) \psi_{T-1}(x) dx = \psi_T(y)$$

Review

Recall that the CLT gives us the $O_P(n^{-1/2})$ rate of convergence. In particular,

$$(\psi_T^n(y) - \psi_T(y)) = O_P(n^{-1/2})$$

Marginal distribution: Actual and estimates

Stationary Densities

When $X_t = h(X_{t-1}) + W_t$ stable exists a unique density ψ_∞ such that

$$\psi_{\infty}(y) = \int p(y \mid x) \psi_{\infty}(x) dx$$

Under moment conditions, LLN and CLT results available.

$$\frac{1}{n} \sum_{t=1}^{n} g(X_t) \to \int g(x) \psi_{\infty}(x) dx$$

$$\sqrt{n}\left(\frac{1}{n}\sum_{t=1}^{n}g(X_t)-\int g(x)\psi_{\infty}(x)dx\right)\to N(0,\sigma^2)$$

Stationary Densities

When $X_t = h(X_{t-1}) + W_t$ stable exists a unique density ψ_{∞} such that

$$\psi_{\infty}(y) = \int p(y \mid x) \psi_{\infty}(x) dx$$

Under moment conditions, LLN and CLT results available.

$$\frac{1}{n} \sum_{t=1}^{n} g(X_t) \to \int g(x) \psi_{\infty}(x) dx$$

$$\sqrt{n}\left(\frac{1}{n}\sum_{t=1}^{n}g(X_t)-\int g(x)\psi_{\infty}(x)dx\right)\to N(0,\sigma^2)$$

Stationary Densities

When $X_t = h(X_{t-1}) + W_t$ stable exists a unique density ψ_{∞} such that

$$\psi_{\infty}(y) = \int p(y \mid x) \psi_{\infty}(x) dx$$

Under moment conditions, LLN and CLT results available.

$$\frac{1}{n} \sum_{t=1}^{n} g(X_t) \to \int g(x) \psi_{\infty}(x) dx$$

$$\sqrt{n}\left(\frac{1}{n}\sum_{t=1}^{n}g(X_{t})-\int g(x)\psi_{\infty}(x)dx\right)\to N(0,\sigma^{2})$$

$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y \mid X_{t}), \quad y \in S$$
 (5)

In view of

$$\frac{1}{n}\sum_{t=1}^{n}g(X_{t})\to\int g(x)\psi_{\infty}(x)dx,$$

and

$$\psi_{\infty}(y) = \int p(y \mid x) \psi_{\infty}(x) dx,$$

$$\psi_{\infty}^{n}(y) = \frac{1}{n} \sum_{t=0}^{n} p(y \mid X_{t}) \to \int p(y \mid x) \psi_{\infty}(x) dx = \psi_{\infty}(y).$$

Set

$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y \mid X_{t}), \quad y \in S$$
 (5)

In view of

$$\frac{1}{n}\sum_{t=1}^{n}g(X_{t})\to\int g(x)\psi_{\infty}(x)dx,$$

and

$$\psi_{\infty}(y) = \int p(y \mid x) \psi_{\infty}(x) dx,$$

$$\psi_{\infty}^{n}(y) = \frac{1}{n} \sum_{t=0}^{n} p(y \mid X_{t}) \to \int p(y \mid x) \psi_{\infty}(x) dx = \psi_{\infty}(y).$$

Set

$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y \mid X_{t}), \quad y \in S$$
 (5)

In view of

$$\frac{1}{n}\sum_{t=1}^{n}g(X_{t})\to\int g(x)\psi_{\infty}(x)dx,$$

and

$$\psi_{\infty}(y) = \int p(y \mid x) \psi_{\infty}(x) dx,$$

$$\psi_{\infty}^{n}(y) = \frac{1}{n} \sum_{t=1}^{n} p(y \mid X_{t}) \to \int p(y \mid x) \psi_{\infty}(x) dx = \psi_{\infty}(y).$$

Set

$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y \mid X_{t}), \quad y \in S$$
 (5)

In view of

$$\frac{1}{n}\sum_{t=1}^{n}g(X_{t})\to\int g(x)\psi_{\infty}(x)dx,$$

and

$$\psi_{\infty}(y) = \int p(y \mid x) \psi_{\infty}(x) dx,$$

$$\psi_{\infty}^{n}(y) = \frac{1}{n} \sum_{t=1}^{n} p(y \mid X_{t}) \to \int p(y \mid x) \psi_{\infty}(x) dx = \psi_{\infty}(y).$$

By Markov chain CLT we can show that

Review

$$\sqrt{n}(\psi_{\infty}^{n}(y) - \psi_{\infty}(y)) \stackrel{\mathscr{D}}{\to} N(0, \sigma^{2})$$

$$\therefore \quad (\psi_{\infty}^n(y) - \psi_{\infty}(y)) = O_P(n^{-1/2})$$

By Markov chain CLT we can show that

Review

$$\sqrt{n}(\psi_{\infty}^{n}(y) - \psi_{\infty}(y)) \stackrel{\mathscr{D}}{\to} N(0, \sigma^{2})$$

$$\therefore \quad (\psi_{\infty}^{n}(y) - \psi_{\infty}(y)) = O_{P}(n^{-1/2})$$

Our Results

So far we have discussed

- convergence of $\psi_T^n(y) \to \psi_T(y)$, and
- convergence of $\psi_{\infty}^n(y) \to \psi_{\infty}(y)$.

We are interested convergence of functions:

- convergence of $\psi_T^n \to \psi_T$, and
- convergence of $\psi_{\infty}^n \to \psi_{\infty}$.

Our Results

So far we have discussed

- convergence of $\psi_T^n(y) \to \psi_T(y)$, and
- convergence of $\psi_{\infty}^n(y) \to \psi_{\infty}(y)$.

We are interested convergence of functions:

- convergence of $\psi_T^n \to \psi_T$, and
- convergence of $\psi_{\infty}^n \to \psi_{\infty}$.

Ther

Review

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n p(\cdot \mid X_{T-1}^i) =: \psi_T^n$$

Can prove that the L_2 expectation is $\mathcal{E}Y = \psi_T$

The L_2 LLN and CLT now give

$$\|\bar{Y}_n - \mathcal{E}Y\| = \|\psi_T^n - \psi_T\| \to 0$$

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) = \sqrt{n}(\psi_T^n - \psi_T) \stackrel{\mathscr{D}}{\to} N(0, C)$$

$$\|\psi_T^n - \psi_T\| = O_P(n^{-1/2})$$

Then

Review

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n p(\cdot \mid X_{T-1}^i) =: \psi_T^n$$

Can prove that the L_2 expectation is $\mathcal{E}Y = \psi_T$

The L_2 LLN and CLT now give

$$\|\bar{Y}_n - \mathcal{E}Y\| = \|\psi_T^n - \psi_T\| \to 0$$

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) = \sqrt{n}(\psi_T^n - \psi_T) \stackrel{\mathcal{D}}{\to} N(0, C)$$

$$\|\psi_T^n - \psi_T\| = O_P(n^{-1/2})$$

Then

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n p(\cdot \mid X_{T-1}^i) =: \psi_T^n$$

Can prove that the L_2 expectation is $\mathcal{E}Y = \psi_T$

The L_2 LLN and CLT now give

$$\|\bar{Y}_n - \mathcal{E}Y\| = \|\psi_T^n - \psi_T\| \to 0$$

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) = \sqrt{n}(\psi_T^n - \psi_T) \stackrel{\mathscr{D}}{\to} N(0, C)$$

$$\therefore \|\psi_T^n - \psi_T\| = O_P(n^{-1/2})$$

Then

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n p(\cdot \mid X_{T-1}^i) =: \psi_T^n$$

Can prove that the L_2 expectation is $\mathcal{E}Y=\psi_T$ The L_2 LLN and CLT now give

$$\|\bar{Y}_n - \mathcal{E}Y\| = \|\psi_T^n - \psi_T\| \to 0$$

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) = \sqrt{n}(\psi_T^n - \psi_T) \stackrel{\mathscr{D}}{\to} N(0, C)$$

$$\therefore \|\psi_T^n - \psi_T\| = O_P(n^{-1/2})$$

Then

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n p(\cdot \mid X_{T-1}^i) =: \psi_T^n$$

Can prove that the L_2 expectation is $\mathcal{E}Y=\psi_T$ The L_2 LLN and CLT now give

$$\|\bar{Y}_n - \mathcal{E}Y\| = \|\psi_T^n - \psi_T\| \to 0$$

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) = \sqrt{n}(\psi_T^n - \psi_T) \stackrel{\mathscr{D}}{\to} N(0, C)$$

$$\therefore \|\psi_T^n - \psi_T\| = O_P(n^{-1/2})$$

Then

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n p(\cdot \mid X_{T-1}^i) =: \psi_T^n$$

Can prove that the L_2 expectation is $\mathcal{E}Y=\psi_T$ The L_2 LLN and CLT now give

$$\|\bar{Y}_n - \mathcal{E}Y\| = \|\psi_T^n - \psi_T\| \to 0$$

$$\sqrt{n}(\bar{Y}_n - \mathcal{E}Y) = \sqrt{n}(\psi_T^n - \psi_T) \stackrel{\mathscr{D}}{\to} N(0, C)$$

$$\|\psi_T^n - \psi_T\| = O_P(n^{-1/2})$$

Now consider convergence of ψ_{∞}^n to ψ_{∞} .

Review

A Markov Chain Hilbert space CLT (Stachurski, 2006) gives

$$\sqrt{n}(\psi_{\infty}^n - \psi_{\infty}) \stackrel{\mathscr{D}}{\to} N(0, C)$$

$$\therefore \|\psi_{\infty}^n - \psi_{\infty}\| = O_P(n^{-1/2})$$

Regarding the asymptotic distribution of $\|\psi_{\infty}^n - \psi_{\infty}\|$:

$$n\|\psi_{\infty}^{n} - \psi_{\infty}\|^{2} \stackrel{\mathcal{D}}{\to} \sum_{\ell > 1}^{\infty} \lambda_{\ell} Z_{\ell}^{2} \quad (n \to \infty)$$

where $(\lambda_\ell)_{\ell \geq 1}$ are the eigenvalues of C, and $(Z_\ell)_{\ell \geq 1} \stackrel{\mathsf{IID}}{\sim} N(0,1)$

Now consider convergence of ψ_{∞}^n to ψ_{∞} .

Review

A Markov Chain Hilbert space CLT (Stachurski, 2006) gives

$$\sqrt{n}(\psi_{\infty}^n - \psi_{\infty}) \stackrel{\mathscr{D}}{\to} N(0, C)$$

$$\therefore \quad \|\psi_{\infty}^n - \psi_{\infty}\| = O_P(n^{-1/2})$$

Regarding the asymptotic distribution of $\|\psi_{\infty}^n - \psi_{\infty}\|$

$$n\|\psi_{\infty}^{n} - \psi_{\infty}\|^{2} \stackrel{\mathcal{D}}{\to} \sum_{\ell>1}^{\infty} \lambda_{\ell} Z_{\ell}^{2} \quad (n \to \infty)$$

where $(\lambda_\ell)_{\ell \geq 1}$ are the eigenvalues of C, and $(Z_\ell)_{\ell \geq 1} \stackrel{\text{IID}}{\sim} N(0,1)$

Now consider convergence of ψ_{∞}^n to ψ_{∞} .

Review

A Markov Chain Hilbert space CLT (Stachurski, 2006) gives

$$\sqrt{n}(\psi_{\infty}^n - \psi_{\infty}) \stackrel{\mathscr{D}}{\to} N(0, C)$$

$$\therefore \|\psi_{\infty}^n - \psi_{\infty}\| = O_P(n^{-1/2})$$

Regarding the asymptotic distribution of $\|\psi_{\infty}^n - \psi_{\infty}\|$:

$$n\|\psi_{\infty}^{n} - \psi_{\infty}\|^{2} \xrightarrow{\mathscr{D}} \sum_{\ell>1}^{\infty} \lambda_{\ell} Z_{\ell}^{2} \quad (n \to \infty)$$

where $(\lambda_\ell)_{\ell \geq 1}$ are the eigenvalues of C, and $(Z_\ell)_{\ell \geq 1} \stackrel{\text{IID}}{\sim} N(0,1)$

Take a (suitably stable) Markov model

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t \ge 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_1 = x_1$$
 (6)

Let $(\hat{X}_t)_{t=1}^n$ be observed data.

Null hypothesis: data is generated by (6)

Let
$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y | \hat{X}_{t}).$$

Under the null,
$$n\|\psi_{\infty}^n - \psi_{\infty}\|^2 \stackrel{\mathcal{D}}{\to} T := \sum_{\ell \geq 1}^{\infty} \lambda_{\ell} Z_{\ell}^2$$

Take a (suitably stable) Markov model

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t \ge 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_1 = x_1$$
 (6)

Let $(\hat{X}_t)_{t=1}^n$ be observed data.

Null hypothesis: data is generated by (6).

Let
$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y | \hat{X}_{t}).$$

Under the null,
$$n\|\psi_{\infty}^n - \psi_{\infty}\|^2 \stackrel{\mathcal{D}}{\to} T := \sum_{\ell \geq 1}^{\infty} \lambda_{\ell} Z_{\ell}^2$$

Take a (suitably stable) Markov model

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t>1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_1 = x_1$$
 (6)

Let $(\hat{X}_t)_{t=1}^n$ be observed data.

Null hypothesis: data is generated by (6).

Let
$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y | \hat{X}_{t}).$$

Under the null,
$$n\|\psi_{\infty}^n - \psi_{\infty}\|^2 \stackrel{\mathcal{D}}{\to} T := \sum_{\ell > 1}^{\infty} \lambda_{\ell} Z_{\ell}^2$$
.

Take a (suitably stable) Markov model

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t \ge 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_1 = x_1$$
 (6)

Let $(\hat{X}_t)_{t=1}^n$ be observed data.

Null hypothesis: data is generated by (6).

Let
$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y | \hat{X}_{t}).$$

Under the null, $n\|\psi_{\infty}^n - \psi_{\infty}\|^2 \stackrel{\mathscr{D}}{\to} T := \sum_{\ell \geq 1}^{\infty} \lambda_{\ell} Z_{\ell}^2$.

Take a (suitably stable) Markov model

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t \ge 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_1 = x_1$$
 (6)

Let $(\hat{X}_t)_{t=1}^n$ be observed data.

Null hypothesis: data is generated by (6).

Let
$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y | \hat{X}_{t}).$$

Under the null,
$$n\|\psi_{\infty}^n - \psi_{\infty}\|^2 \stackrel{\mathscr{D}}{\to} T := \sum_{\ell>1}^{\infty} \lambda_{\ell} Z_{\ell}^2$$
.

Take a (suitably stable) Markov model

$$X_t = h(X_{t-1}) + W_t, \quad (W_t)_{t \ge 1} \stackrel{\text{IID}}{\sim} N(0, \sigma^2), \quad X_1 = x_1$$
 (6)

Let $(\hat{X}_t)_{t=1}^n$ be observed data.

Null hypothesis: data is generated by (6).

Let
$$\psi_{\infty}^{n}(y) := \frac{1}{n} \sum_{t=1}^{n} p(y | \hat{X}_{t}).$$

Under the null, $n\|\psi_{\infty}^n - \psi_{\infty}\|^2 \stackrel{\mathscr{Y}}{\to} T := \sum_{\ell \geq 1}^{\infty} \lambda_{\ell} Z_{\ell}^2$.

Applied the test to Vasicek model of interest rates:

$$dX_t = \kappa(\theta - X_t)dt + \sigma dB_t$$

To implement test, computed critical value of $\sum_{\ell>1}^{\infty} \lambda_{\ell} Z_{\ell}^2$

Requires the eigenvalues $(\lambda_{\ell})_{\ell\geq 1}$ of C, the asymptotic covariance function of $\sqrt{n}(\psi_{\infty}^n-\psi_{\infty})$.

Applied the test to Vasicek model of interest rates:

$$dX_t = \kappa(\theta - X_t)dt + \sigma dB_t$$

To implement test, computed critical value of $\sum_{\ell\geq 1}^{\infty}\lambda_{\ell}Z_{\ell}^{2}$.

Requires the eigenvalues $(\lambda_{\ell})_{\ell \geq 1}$ of C, the asymptotic covariance function of $\sqrt{n}(\psi_{\infty}^{n} - \psi_{\infty})$.

Applied the test to Vasicek model of interest rates:

$$dX_t = \kappa(\theta - X_t)dt + \sigma dB_t$$

To implement test, computed critical value of $\sum_{\ell\geq 1}^{\infty}\lambda_{\ell}Z_{\ell}^{2}$.

Requires the eigenvalues $(\lambda_{\ell})_{\ell \geq 1}$ of C, the asymptotic covariance function of $\sqrt{n}(\psi_{\infty}^{n} - \psi_{\infty})$.

Applied the test to Vasicek model of interest rates:

$$dX_t = \kappa(\theta - X_t)dt + \sigma dB_t$$

To implement test, computed critical value of $\sum_{\ell\geq 1}^{\infty}\lambda_{\ell}Z_{\ell}^{2}$.

Requires the eigenvalues $(\lambda_{\ell})_{\ell \geq 1}$ of C, the asymptotic covariance function of $\sqrt{n}(\psi_{\infty}^{n} - \psi_{\infty})$.

Figure: Covariance Function, Vasicek Model

Review

Computed the eigenvalues $(\lambda_{\ell})_{\ell \geq 1}$ of C by Galerkin projection.

Computed the critical value of $T:=\sum_{\ell>1}^{\infty}\lambda_{\ell}Z_{\ell}^{2}$ by simulation.

Results: statistic attains the asymptotic distribution much faster than test proposed by Aït-Sahalia (1996).

Review

Computed the eigenvalues $(\lambda_\ell)_{\ell\geq 1}$ of C by Galerkin projection.

Computed the critical value of $T:=\sum_{\ell>1}^{\infty}\lambda_{\ell}Z_{\ell}^{2}$ by simulation.

Results: statistic attains the asymptotic distribution much faster than test proposed by Aït-Sahalia (1996).

4 D > 4 P > 4 P > 4 P >

Computed the eigenvalues $(\lambda_{\ell})_{\ell>1}$ of C by Galerkin projection.

Computed the critical value of $T:=\sum_{\ell>1}^{\infty}\lambda_{\ell}Z_{\ell}^{2}$ by simulation.

Review

Results: statistic attains the asymptotic distribution much faster than test proposed by Aït-Sahalia (1996).

