An Elementary Approach to Elementary Topos Theory

Todd Trimble

Western Connecticut State University Department of Mathematics

October 26, 2019

► Tierney's approach: private communication.

► Tierney's approach: private communication.

Standard approach: forbiddingly technical (monadicity criteria, Beck-Chevalley conditions, ...) for those who grew up on naive set theory.

► Tierney's approach: private communication.

Standard approach: forbiddingly technical (monadicity criteria, Beck-Chevalley conditions, ...) for those who grew up on naive set theory.

Tierney's approach: constructions are more natively "set-theoretical".

Standard approach to deduce existence of colimits: $P: E^{op} \rightarrow E$ is monadic.

- Standard approach to deduce existence of colimits:
 P: E^{op} → E is monadic.
- ightharpoonup Construction of coproducts: X + Y is an equalizer:

$$X+Y \rightarrowtail P(PX \times PY) \xrightarrow{\stackrel{u_{P(PX \times PY)}}{\longrightarrow}} PPP(PX \times PY)$$

$$P(PX \times PY) \xrightarrow{P(P(P\pi_{PX} \circ u_X), P(P\pi_{PY} \circ u_Y))} PPP(PX \times PY)$$

$$u: 1_E \to PP$$
 is unit $u_X(x) = \{A: PX | x \in A\}$

Power-object definition of topos: finite limits, universal relations $\ni_X \hookrightarrow PX \times X$.

Power-object definition of topos: finite limits, universal relations $\ni_X \hookrightarrow PX \times X$.

▶ $sing_X : X \to PX$ classifies $\delta_X : X \to X \times X$.

$$ightharpoonup$$
 $\ni_1 = 1 \rightarrow P1 \times 1$, aka $t: 1 \rightarrow \Omega$.

► All monos are regular:

Epi-mono factorizations are unique when they exist.

$$ightharpoonup$$
 $\ni_1 = 1 \rightarrow P1 \times 1$, aka $t: 1 \rightarrow \Omega$.

► All monos are regular:

$$A \stackrel{i}{\rightarrowtail} X \xrightarrow{\chi_{i}} \Omega$$

$$\downarrow_{!} \stackrel{t}{\longrightarrow} 1$$

Epi-mono factorizations are unique when they exist.

► Toposes are balanced.

Cartesian closure

Exponentials PZ^Y exist, namely $P(Y \times Z) \cong (PZ)^Y$:

$$X \to P(Y \times Z)$$

$$R \to X \times Y \times Z$$

$$X \times Y \to PZ$$

$$X \to PZ^{Y}$$

$$egin{array}{ccc} X & \longrightarrow & 1 & & \downarrow t & \downarrow t$$

$$\begin{array}{ccc}
X^{Y} & \longrightarrow & 1^{Y} \\
\downarrow & & \downarrow_{t^{Y}} \\
PX^{Y} & \xrightarrow{\tau^{Y}} & P1^{Y}
\end{array}$$

Slice theorem

▶ If E is a topos, then for any object X, the category E/X is also a topos. The change of base $X^*: E \to E/X$ is logical and has left and right adjoints.

• $f^*: E/Y \to (E/Y)/f \simeq E/X$, for $f: X \to Y$, is logical.

Slice theorem

▶ If E is a topos, then for any object X, the category E/X is also a topos. The change of base $X^*: E \to E/X$ is logical and has left and right adjoints.

• $f^*: E/Y \to (E/Y)/f \simeq E/X$, for $f: X \to Y$, is logical.

Colimits in E/Y, when they exist, are stable under pullback $f^*: E/Y \to E/X$.

$$1 \times 1 \stackrel{t \times t}{ o} \Omega imes \Omega$$

$$\wedge = \chi_{t \times t} : \Omega \times \Omega \to \Omega$$

$$1 \times 1 \stackrel{t \times t}{ o} \Omega \times \Omega$$

$$\wedge = \chi_{t \times t} : \Omega \times \Omega \to \Omega$$

$$[\leq]\hookrightarrow\Omega\times\Omega$$

$$\Rightarrow = \chi_{[\leq]} : \Omega \times \Omega \to \Omega$$

$$X \stackrel{!}{\to} 1 \stackrel{t}{\to} \Omega$$
$$t_X : 1 \to \Omega^X = PX$$
$$\forall_X = \chi_{t_X} : PX \to \Omega$$

$$\frac{X \stackrel{!}{\to} 1 \stackrel{t}{\to} \Omega}{t_X : 1 \to \Omega^X = PX}$$
$$\forall_X = \chi_{t_X} : PX \to \Omega$$

Define
$$\bigcap_X : PPX \to PX$$
 by

$$\bigcap \mathcal{F} = \{x : X \mid \forall_{A:PX} \ A \in_{PX} \mathcal{F} \Rightarrow x \in_{X} A\}$$

Construction of coproducts

▶ Initial object: define $0 \hookrightarrow 1$ to be "intersection all subobjects of 1", classified by

$$1\stackrel{t_{P1}}{\to} PP1\stackrel{\bigcap}{\to} P1$$

- Lemma: 0 is initial.
- ▶ Uniqueness: if $f, g : 0 \Rightarrow X$, then Eq $(f, g) \mapsto 0$ is an equality, by minimality of 0 in Sub(1).
- Existence: consider

▶ 0 is strict by cartesian closure, so $0 \rightarrow X$ is monic.

▶ 0 is strict by cartesian closure, so $0 \rightarrow X$ is monic.

▶ Given X, Y, disjointly embed them into $PX \times PY$:

$$X \times 1 \xrightarrow{\chi_{\delta} \times \chi_{0}} PX \times PY$$
 $1 \times Y \xrightarrow{\chi_{0} \times \chi_{\delta}} PX \times PY$

 $X \sqcup Y$ is the "disjoint union": the intersection of the definable family of subobjects of $PX \times PY$ containing these embeddings.

Lemma: Any two disjoint unions of X, Y are isomorphic.

▶ **Proof:** If $Z = X \cup Y$ via $i : X \rightarrow Z$ and $j : Y \rightarrow Z$, then map Z into $PX \times PY$ via

$$\begin{array}{cccc}
X & \stackrel{\langle 1_X, i \rangle}{\hookrightarrow} & X \times Z & Y & \stackrel{\langle 1_Y, j \rangle}{\hookrightarrow} & Y \times Z \\
Z & \rightarrow PX & Z & \rightarrow PY
\end{array}$$

Then $Z \to PX \times PY$ is monic. Both Z and $X \sqcup Y$ are least upper bounds of X and Y in $Sub(PX \times PY)$. \square

▶ **Theorem:** $X \sqcup Y$ is the coproduct.

▶ **Proof:** Given $f: X \to B$ and $g: Y \to B$, form

$$X \overset{\langle 1_X, f \rangle}{\hookrightarrow} X \times B, \qquad Y \overset{\langle 1_Y, g \rangle}{\hookrightarrow} Y \times B.$$

Then $(X \sqcup Y) \times B \cong (X \times B) \sqcup (Y \times B)$. So both X, Y embed disjointly in $(X \sqcup Y) \times B$. Obtain

$$X \sqcup Y \hookrightarrow (X \sqcup Y) \times B$$
.

For $f: X \to Y$, define im(f) to be the intersection of the (definable) family of subobjects through which f factors.

For $f: X \to Y$, define im(f) to be the intersection of the (definable) family of subobjects through which f factors.

$$X \longrightarrow B$$

$$\downarrow^{1_X} \qquad \downarrow$$

$$X \longrightarrow Y$$

For $f: X \to Y$, define im(f) to be the intersection of the (definable) family of subobjects through which f factors.

$$\begin{array}{ccc}
B & X \longrightarrow B \\
\downarrow^{1_X} & \downarrow \\
X \xrightarrow{f} Y & X \xrightarrow{f} Y
\end{array}$$

$$\blacktriangleright$$
 im $(f) = \bigcap_{Y} \{B : PY \mid f^*B = X\}$

▶ **Lemma:** $f: X \to Y$ indeed factors through im $(f): I \to Y$.

Proof: We must show $f^*(im(f)) = X$. But

$$f^* \left(\bigcap_{B \mid f^*B = X} B \right) = \bigcap_{B \mid f^*B = X} f^*B \quad [E/Y \xrightarrow{f^*} E/X \text{ is logical}]$$

$$= \bigcap_{B \mid f^*B = X} X$$

$$= X \qquad \square$$

▶ **Lemma:** $X \to \text{im}(f) \hookrightarrow Y$ is the epi-mono factorization of $f: X \to Y$.

Proof: Put $I = \operatorname{im}(f)$; suppose $X \to I$ equalizes $g, h : I \rightrightarrows Z$. Then

$$X \to \text{Eq}(g,h) \rightarrowtail I \hookrightarrow Y$$

makes Eq(g, h) a subobject through which f factors. Hence Eq(g, h) = I and g = h. \square

Let $f, g: X \to Y$ be maps. Construct coequalizer $X \rightrightarrows Y \to Q$:

Let $f, g: X \to Y$ be maps. Construct coequalizer $X \rightrightarrows Y \to Q$:

▶ Form the image factorization of $\langle f, g \rangle : X \to Y \times Y$:

$$X \to R \rightarrowtail Y \times Y$$

Let $f, g: X \to Y$ be maps. Construct coequalizer $X \rightrightarrows Y \to Q$:

▶ Form the image factorization of $\langle f, g \rangle : X \to Y \times Y$:

$$X \to R \rightarrowtail Y \times Y$$

▶ The equivalence relation E on Y generated by $R: P(Y \times Y)$ is the intersection of the definable family of equivalence relations containing R.

Let $f, g: X \to Y$ be maps. Construct coequalizer $X \rightrightarrows Y \to Q$:

▶ Form the image factorization of $\langle f, g \rangle : X \to Y \times Y$:

$$X \to R \rightarrowtail Y \times Y$$

- ▶ The equivalence relation E on Y generated by $R: P(Y \times Y)$ is the intersection of the definable family of equivalence relations containing R.
- Form the classifying map $\chi_E: Y \to PY$ of $E \hookrightarrow Y \times Y$ (mapping y: Y to its E-equivalence class).

Let $f, g: X \to Y$ be maps. Construct coequalizer $X \rightrightarrows Y \to Q$:

▶ Form the image factorization of $\langle f, g \rangle : X \to Y \times Y$:

$$X \to R \rightarrowtail Y \times Y$$

- ▶ The equivalence relation E on Y generated by $R: P(Y \times Y)$ is the intersection of the definable family of equivalence relations containing R.
- ▶ Form the classifying map $\chi_E: Y \to PY$ of $E \hookrightarrow Y \times Y$ (mapping y: Y to its E-equivalence class).
- ▶ Form the image factorization of χ_E :

$$Y \twoheadrightarrow Q \rightarrowtail PY$$

Let $f, g: X \to Y$ be maps. Construct coequalizer $X \rightrightarrows Y \to Q$:

▶ Form the image factorization of $\langle f, g \rangle : X \to Y \times Y$:

$$X \rightarrow R \rightarrowtail Y \times Y$$

- ▶ The equivalence relation E on Y generated by $R: P(Y \times Y)$ is the intersection of the definable family of equivalence relations containing R.
- ▶ Form the classifying map $\chi_E: Y \to PY$ of $E \hookrightarrow Y \times Y$ (mapping y: Y to its E-equivalence class).
- ▶ Form the image factorization of χ_E :

$$Y \twoheadrightarrow Q \rightarrowtail PY$$

▶ **Theorem:** $Y \to Q$ is the coequalizer of f, g.