| Date:                                                                 |
|-----------------------------------------------------------------------|
| Latches and Flip Flops                                                |
| . Flip flops are building blocks of sequential circuits.              |
| . Astable don't have stable Ds and 1s; non-stop change                |
| · Monostable have single stable state (not in course)                 |
| · Bistable have two stable states 112001112000                        |
| - Flip flops are bistable multivibrators.                             |
|                                                                       |
| · Latches and Plip flops store data                                   |
| - Latches manually operated, flip flops automatic through clock (CLK) |
| Set-Reset (1SR) Latch:                                                |
| R - S - C                                                             |
|                                                                       |
| Active Active                                                         |
| HIGH LOW TO                                                           |
| R                                                                     |
|                                                                       |
| S                                                                     |
|                                                                       |
| R                                                                     |
| CQ.                                                                   |
| R B R S B R R                                                         |
|                                                                       |
|                                                                       |
| MIGHTY PAPER PRODUCT                                                  |
| MIGHT Y PAPER PRODUCT                                                 |
|                                                                       |

MININA THE PARTY OF THE PARTY O

| Date: |  |
|-------|--|
| Duic. |  |

| Active | HIGH | S-R |    |           | Act | ive 1 | DW   | S-R |           | - |
|--------|------|-----|----|-----------|-----|-------|------|-----|-----------|---|
| S      | R    | Q   | Q  |           | 10  | R     | Q    | ā   |           | 4 |
| 0      | 0    | NC  | NC | No Change | 0   | 0     | 1    | 1.  | Irwalia   | a |
| 0      | 1 1  | 0   | 1  | Reset     | 0   | 1     | #1   | Ø10 | 3ot       | 0 |
| 1      | 0    | 1   | 0  | Set       | 1   | D     | 0.89 |     | Reset     | ( |
| 1      | 1 1  | 0   | 0  | Invalid   | 1   |       | NC D | BNC | No Change | ( |



# An Application

The Latch as a Contact-Bounce Eliminator





- (a) Switch contact bounce
- (b) Contact-bounce eliminator circuit





# THE 74LS75 D LATCH

# The 74LS75 quad gated D latches.



| Inputs |    | Out   | puts        |           |  |  |
|--------|----|-------|-------------|-----------|--|--|
| D      | EN | Q     | Q           | Comments  |  |  |
| 0      | 1  | 0     | 1           | RESET     |  |  |
| 1      | 1  | 1     | 0           | SET       |  |  |
| X      | 0  | $Q_0$ | $\bar{Q}_0$ | No change |  |  |

Note:  $Q_0$  is the prior output level before the indicated input conditions were established.

(b) Truth table (each latch)













### FLIP-FLOP OPERATING CHARACTERISTICS **Propagation Delay Times** Propagation delays, clock to output. 50% point on triggering edge 50% point CLK CLK 50% point on HIGH-to-LOW Q 50% point on LOW-to-HIGH Q transition of Q transition of Q t<sub>PHI</sub>. Propagation delays, preset input to output and clear input to output. 50% point 50% point PRE $\overline{CLR}$ Q Q 50% point 50% point IPHI. IPLH

### Set-up Time

The set-up time (ts) is the minimum interval required for the logic levels to be maintained constantly on the inputs (J and K, or Sand R, or D) prior to the triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip-flop.

for a D flip-flop.



#### Hold Time

The hold time (b) is the minimum interval required for the logic levels to remain on the inputs after the triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip-flop. for a D flip-flop.



## Maximum Clock Frequency

The maximum clock frequency ( $f_{\text{max}}$ ) is the highest rate at which a flip-flop can be reliably triggered. At clock frequencies above the maximum, the flip-flop would be unable to respond quickly enough, and its operation would be impaired.

## **Pulse Widths**

Minimum pulse widths  $(t_W)$  for reliable operation are usually specified by the manufacturer for the clock, preset, and clear inputs. Typically, the clock is specified by its minimum HIGH time and its minimum LOW time.

## Power Dissipation

The **power dissipation** of any digital circuit is the total power consumption of the device. For example, if the flip-flop operates on a +5 V dc source and draws 5 mA of current, the power dissipation is

$$P = V_{CC} \times I_{CC} = 5 \text{ V} \times 5 \text{ mA} = 25 \text{ mW}$$

|                                                                                    |          |        |             |           |          |          |        | ٥      |
|------------------------------------------------------------------------------------|----------|--------|-------------|-----------|----------|----------|--------|--------|
|                                                                                    |          |        |             |           | Date:    |          |        | -      |
| Applications of                                                                    | of JK    | Flip F | lop:        |           |          |          |        | G.     |
|                                                                                    | ge Imoti | ransfe | <u> </u>    |           |          | •        |        | -      |
| · Frequency.                                                                       | livider  |        |             | <i>(</i>  |          |          |        | _      |
| - Frequency                                                                        |          | by     | 2" W        | nere n:   | = number | of J     | K Ship | flogs. |
| - 15 input                                                                         | f= 8 kH  | z ano  | 2 81        | ip Slops, | output d | Frequenc | y = 8  | = 24   |
| . 1                                                                                | -        |        |             |           |          |          | 22     | •      |
| H3.                                                                                | 000      | 1-     |             | IT        | m 1      | 1        |        |        |
| TU -   c                                                                           |          |        | Ja Os<br>UK | $J_2$     |          | J3       |        |        |
| L K                                                                                |          |        | K1 Q1       | Her K     |          | J K      |        | -      |
|                                                                                    | J and K  |        | NI OI       | 1, 71     | 2 22     | 7/3      | s us   | •      |
| CUK OF ERD                                                                         | 2 0/2    | 2 01   | 多3 日        | 至4 日1     | 25 0个    | 36 DT    | 47     | 18     |
|                                                                                    |          |        |             |           |          | 2010     | 211    | 4      |
| 0, 1                                                                               | 0        | 1      | 0           | 1         | 6        | 1        | 0      | 11     |
|                                                                                    | 1        |        |             | 1         |          |          |        |        |
| Q 1                                                                                | 1        | 0      | 101         | 1 1       | 1        | D        | 0      | 1      |
|                                                                                    |          |        |             |           |          |          |        |        |
| 0, 11                                                                              | 2        | 1      | 1 1         | D         | . 0      | 1 0      | 10     | 11     |
| = ;                                                                                | 1        |        | 1           |           |          | 1        | 1      |        |
| 0 2 1                                                                              | 1        | 1      | 12          | 1 1       | 1 1      | 1 1      | 1.1    | 10     |
| 1                                                                                  | 1).      | 12     | 1           | 10        | 1        |          |        |        |
| 1813                                                                               | 14       | 13     | 12          | 17        | 10       | 9        | 8      | 70     |
| 00 is 1/2                                                                          | and Og   | · is   | 1/4         | the freq  | wency of | f CLK    | and s  | o on C |
| · Binary com                                                                       | ter      |        |             |           |          |          |        | 6      |
|                                                                                    |          |        |             |           |          |          |        |        |
| - Pattern of binary count sequence is same as initialisation of truth table inputs |          |        |             |           |          |          |        |        |
| The light square of the lights                                                     |          |        |             |           |          |          |        |        |
| MIGHTY PAPER PRODUCT                                                               |          |        |             |           |          |          |        |        |
|                                                                                    |          |        |             |           |          |          |        | •      |
| El Toel Hile III                                                                   |          |        |             |           |          |          |        |        |



### ASYNCHRONOUS COUNTER OPERATION

The term **asynchronous** refers to events that do not have a fixed time relationship with each other and, generally, do not occur at the same time. An **asynchronous counter** is one in which the flip-flops (FF) within the counter do not change states at exactly the same time because they do not have a common clock pulse.

