POLITECHNIKA WROCŁAWSKA WYDZIAŁ INFORMATYKI I TELEKOMUNIKACJI

METODY ANALIZY I EKSPLORACJI DANYCH

Wykład 10 - Odkrywanie wzorców: reguły asocjacyjne.

DR INŻ. AGATA MIGALSKA

CEL I MOTYWACJA

ODKRYWANIE WZORCÓW (PATTERN DISCOVERY)

ODKRYWANIE WZORCÓW (PATTERN DISCOVERY)

CZYM JEST ODKRYWANIE WZORCÓW?

Biorąc pod uwagę ogromne dane dotyczące transakcji zakupowych, wykrywanie wzorców może pomóc odpowiedzieć na następujące pytania:

- Jakie grupy artykułów są często kupowane razem?
- Jeśli ktoś kupuje pieluchy w nocy, jakie jest prawdopodobieństwo, że kupi też piwo?
- Jeśli klient kupi iPhone'a 5 lub iPhone'a 7, jakie inne produkty elektroniczne klient najprawdopodobniej kupi w ciągu najbliższych 3 miesięcy?

Wzorzec: zestaw elementów, podsekwencji lub podstruktur, które często występują razem (lub są silnie skorelowane) w zbiorze danych.

ZASTOSOWANIA

- Przewidywanie danych transakcji zakupowych
- W przypadku klienta, który kupuje produkty A i B, jakie jest prawdopodobieństwo, że klient kupi produkt C?
- Przewidywanie strumieni kliknięć na stronie internetowej:
- Która strona internetowa zostanie kliknięta jako następna?
- Błędy oprogramowania do wydobywania: gdzie jest prawdopodobny błąd w tym programie błąd w tym programie?
- Identyfikacja obiektów lub podstruktur w obrazach, filmach i mediach społecznościowych
- Znajdowanie wysokiej jakości fraz, jednostek i atrybutów w obszernym tekście
- Znalezienie powtarzających się sekwencji DNA i białek w genomach
- Znajdowanie "ukrytych" społeczności w ogromnej sieci społecznościowej

ODKRYWANIE WZORCÓW

jest zadaniem
a) uczenia nadzorowanego
czy
b) uczenia nienadzorowanego?

ODKRYWANIE ASOCJACJI

ALGORYTMY ODKRYWANIA ASOCJACJI BINARNYCH

JAK
INTERESUJĄCY
JEST TEN
WZORZEC?

BARDZIEJ ZAAWANSOWANE TEMATY

ODKRYWANIE ASOCJACJI

ODKRYWANIE ASOCJACJI

ZBIORY CZĘSTE (FREQUENT ITEMSETS)

- **Zbiór (itemset)**: zbiór jednego lub więcej elementów
- k-zbiór (k-itemset): $X = \{x_1, \dots, x_k\}$
- (bezwzględne) wsparcie X: Częstotliwość lub liczba wystąpień zestawu przedmiotów X
- (względne) wsparcie, s: Ułamek transakcji zawierających X (tj. prawdopodobieństwo, że transakcja zawiera X)
- Zbiór X jest częsty, jeśli wsparcie X jest nie mniejsze niż próg minsup

T_id	Towary
1	piwo, orzeszki, pieluszki
2	piwo, kawa, pieluszki
3	piwo, pieluszki, jajka
4	orzeszki, jajka, mleko
5	orzeszki, kawa, pieluszki, jajka, mleko

Niech minsup = 50%

Częste zestawy 1-elementowe:

Piwo: 3 (60%), Orzeszki: 3 (60%), Pieluszki: 4 (80%), Jajka: 3 (60%)

Częste zestawy 2-elementowe:

{Piwo, pieluszki}: 3 (60%)

OD ZBIORÓW CZĘSTYCH DO REGUŁ ASOCJACYJNYCH

- ullet Reguly asocjacyjne: X o Y(s,c)
- ullet Wsparcie, s: Prawdopodobieństwo, że transakcja zawiera $X\cup Y$
 - \circ Uwaga: Notacja! $X \cup Y$ oznacza, że transakcja zawiera oba elementy, X i Y
- Ufność, c: Prawdopodobieństwo warunkowe, że transakcja zawierająca X zawiera również Y.

$$c = rac{s(X \cup Y)}{s(X)}$$

• **Odkrywanie reguł asocjacyjnych**: znajdowanie wszystkich **silnych** reguł asocjacyjnych, tzn. spełniających warunek minimalnego wsparcia i ufności

Niech minsup = 50%

Częste zestawy 1-elementowe:

Piwo: 3 (60%), Orzeszki: 3 (60%), Pieluszki: 4 (80%), Jajka: 3 (60%)

Częste zestawy 2-elementowe:

{Piwo, pieluszki}: 3 (60%)

Reguły asocjacyjne: Niech minconf=50% Piwo->Pieluchy (60%, 100%)

Pielucha->Piwo (60%, 75%)

ODKRYWANIE ZBIORÓW CZĘSTYCH

Algorytm naiwny

- Wygeneruj dla danego zbioru elementów L i bazy danych D wszystkie możliwe binarne reguły asocjacyjne
- Oblicz dla każdej reguł wsparcie i ufność
- Odrzuć te reguły, które nie spełniają warunków minimalnego wsparcia i minimalnej ufności.
- ullet Liczba wszystkich możliwych podzbiorów zbioru elementów L wynosi $\,2^{|L|}-1\,$

WŁASNOŚĆ ANTYMONOTONICZNOŚCI

- Jeżeli {piwo, pieluszki, orzeszki} jest zbiorem częstym, to {piwo, pieluszki} też jest zbiorem częstym.
- Każda transakcja zawierająca {piwo, pieluszki, orzeszki} zawiera również {piwo, pieluszki}.
- **Obserwacja**: Każdy podzbiór zbioru częstego musi być zbiorem częstym.
- Wydajna metodologia eksploracji:
 - o jeżeli jakikolwiek podzbiór zbioru S jest nieczęsty, odetnij gałąź zawierającą S.

Własność antymonotoniczności

Niech będzie danych zbiór elementów L oraz jego zbiór potęgowy $J=2^{|L|}$. Mówimy, że miara jest antymonotoniczna na zbiorze J, jeżeli $\forall X,Y\in J: (X\subseteq Y)\to f(Y)\leqslant f(X)$.

ALGORYTMY ODKRYWANIA ASOCJACJI BINARNYCH

ALGORYTM APRIORI

- 1. Niech k=1
- 2. Powtarzaj
 - a. Stwórz zbiór kandydatów C_k składający się z k-elementowych zbiorów częstych
 - b. Oblicz wsparcie dla każdego zbioru w C_k
 - c. Filtrowanie zbiorów kandydujących: $\mathbf{L_k}$ zbiór tych zbiorów c z $\mathbf{C_k}$, dla których $s(c)\geqslant minsup$
 - d. k := k + 1
 - e. Jeżeli $L_{k-1}=\emptyset$, to przerwij pętlę.
- 3. Zwróć $\bigcup_k L_k$

APRIORI - PRZYKŁAD

Transakcje

T_id	Towary
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

minsup=2

Zbiór	Wsparcie
k-elem	
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

Zbiór	Wsparcie
k-elem	
{A}	2
{B}	3
{C}	3
{E}	3

$$F_3=C_3$$

Zbiór	Wsparcie
k-elem	
{A,C}	2
{B,C}	2
{B,E}	3
{C,E}	2

Zbiór k-elem	Wsparcie
{A,B}	1
{A,C}	2
{A,E}	1
{B,C}	2
{B,E}	3
{C,E}	2

APRIORI - PRZYKŁAD

Transakcje

T_id	Towary
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

minsup=2

Zbiór	Wsparcie
k-elem	
{A}	2
{B}	3
{C}	3
{E}	3
{A,C}	2
{B,C}	2
{B,E}	3
{C,E}	2
{B,C,E}	2

APRIORI: TWORZENIE KANDYDATÓW

- 1. Tworzenie kandydatów C_k
 - a. Łączenie iloczyn kartezjański zbiorów L_{k-1}
 - b. Odcięcie usunięcie tych zbiorów, które mają choć jeden podzbiór nienależący do L_{k-1}

ECLAT: ALGORYTM EKSPLORACJI PIONOWEJ

- ECLAT (Equivalence Class Transformation) algorytm oparty na przeszukiwaniu w głąb oraz przecięciu zbiorów transakcji
- Algorytm rekurencyjnie generuje k-elementowe zbiory kandydujące, łącząc (k-1)-elementowe zbiory częste (tak jak Apriori).
- Do obliczenia wartości wsparcia k-elementowego zbioru kandydującego X, wygenerowanego przez połączenie dwóch zbiorów (k-1)-elementowych X₁ i X₂, wykorzystuje listy identyfikatorów transakcji zbiorów X₁ i X₂ (inaczej niż Apriori).
- Własności listy transakcji:
 - t(X) = t(Y): X i Y zawsze występują razem, np. t(B) = t(E)
 - o t(X) ⊂ t(Y): transakcje zawierające X zawsze zawierają Y, np. t(A)
 ⊂t(C)
- Algorytm zakłada sortowanie leksykograficzne elementów w zbiorach częstych.

Transakcje w orientacji poziomej

	' '	
T_id	Towary	
1	A, C, D	
2	B, C, E	
3	A, B, C, E	
4	B, E	

Transakcje w orientacji pionowej

F		
Towar	Transakcje	
Α	1, 3	
В	2, 3, 4	
С	1, 2, 3	
D	1	
E	2, 3, 4	

ECLAT - PRZYKŁAD

Transakcje

Towar	Transakcje	
Α	1, 3	
В	2, 3, 4	
С	1, 2, 3	
D	1	
E	2, 3, 4	

Zbiór k-elem	Transakcje	Wsparcie
{A}	1, 3	2
{B}	2, 3, 4	3
{C}	1, 2, 3	3
{D}	1	1
{E}	2, 3, 4	3

Zbiór k-elem	Transakcje	Wsparcie
{A, B}	3	1
{A, C}	1, 3	2
{A, E}	3	1
{B, C}	2, 3	2
{B, E}	2, 3, 4	3
{C, E}	2, 3	2

Zbiór k-elem	Transakcje	Wsparcie
{B, C, E}	2, 3	2

Algorytm często realizowany rekurencyjnie

FP-GROWTH: DRZEWO WZORCÓW

- FP-Growth: Frequent Pattern Growth
 - Znajduje 1-elementowe zbiory częste i dzieli bazę danych wg tych zbiorów na rozdzielne partycje.
 - Rekurencyjnie rozszerza zbiory częste poprzez znajdowanie ich pod-partycji.
 - Wykorzystując wydajną strukturę FP-drzewa.
- Algorytm:
 - o Rekurencyjnie tworzy i eksploruje (warunkowe (tj. wewnątrz partycji)) FP-drzewa dopóki przetwarzane FP-drzewo nie jest puste lub dopóki zawiera więcej niż jedną krawędź
- Algorytm zakłada sortowanie leksykograficzne elementów w zbiorach częstych.
- Algorytm eksploracji poziomej.
- Algorytm utrzymuje pomocniczą tablicę nagłówkową, która dla każdego elementu posiada listę wskaźników do tego elementu w FP-drzewie.

T_id	Towary	1-elementowe zbiory częste po usunięciu zbiorów nieczęstych, posortowane wg malejącego wsparcia
1	{f, a, c, d, g, i, m, p}	{f, c, a, m, p}
2	{a, b, c, f, l, m, o}	{f, c, a, b, m}
3	{b, f, h, j, o, w}	{f, b}
4	{b, c, k, s, p}	{c, b, p}
5	{a, f, c, e, l, p, m, n}	{f, c, a, m, p}

- 1. Przeskanuj bazę danych raz w celu znalezienia 1-elementowych zbiorów częstych. f:4, a:3, c:4, b:3, m:3, p:3
- Posortuj zbiory częste wg malejącego wsparcia
 F-list = f-c-a-b-m-p
- 3. Przeskanuj skompresowaną bazę danych i skonstruuj FP-drzewo.

T_id	1-elementowe zbiory częste po usunięciu zbiorów nieczęstych, posortowane wg malejącego wsparcia
1	{f, c, a, m, p}
2	{f, c, a, b, m}
3	{f, b}
4	{c, b, p}
5	{f, c, a, m, p}

Element	Wsparcie	Wskaźnik
f	4	f:1
С	4	,
a	3	
b	3	c:1
m	3	I
р	3	
		a:1
		m:1
		p:1

T_id	1-elementowe zbiory częste po usunięciu zbiorów nieczęstych, posortowane wg malejącego wsparcia
1	{f, c, a, m, p}
2	{f, c, a, b, m}
3	{f, b}
4	{c, b, p}
5	{f, c, a, m, p}

Wsparcie	Wskaźnik
4	f:2
4	
3	,
3	c:2
3	
3	
	a:2
	m:1 b:1
	p:1 - m:1
	4 3 3 3

T_id	1-elementowe zbiory częste po usunięciu zbiorów nieczęstych, posortowane wg malejącego wsparcia
1	{f, c, a, m, p}
2	{f, c, a, b, m}
3	{f, b}
4	{c, b, p}
5	{f, c, a, m, p}

Element	Wsparcie	Wskaźnik
f	4	f:3
С	4	
a	3	
b	3	c:2 b:1
m	3	
р	3	
		a:2
		m:1 b:1
		p:1 m:1

T_id	1-elementowe zbiory częste po usunięciu zbiorów nieczęstych, posortowane wg malejącego wsparcia
1	{f, c, a, m, p}
2	{f, c, a, b, m}
3	{f, b}
4	{c, b, p}
5	{f, c, a, m, p}

Element	Wsparcie	Wskaźnik
f	4	f:3 c:1
С	4	
a	3	
b	3	b:1 b:1
m	3	
р	3	
		a:2 p:1

T_id	1-elementowe zbiory częste po usunięciu zbiorów nieczęstych, posortowane wg malejącego wsparcia
1	{f, c, a, m, p}
2	{f, c, a, b, m}
3	{f, b}
4	{c, b, p}
5	{f, c, a, m, p}

Element	Wsparcie	Wskaźnik
f	4	f:4 c:1
С	4	
a	3	
b	3	b:1
m	3	
р	3	
		a:3 p:1
		m:2 b:1 p:2 m:1

Wzorzec	Warunkowa baza wzorca
С	f: 3
a	
b	
m	
р	

Ścieżka prefiksowa wzorca α - pojedyncza ścieżka, której końcowym wierzchołkiem jest α .

Wzorzec	Warunkowa baza wzorca
С	f: 3
a	fc: 3
b	
m	
р	

Wzorzec	Warunkowa baza wzorca
С	f: 3
a	fc: 3
b	fca: 1, f: 1, c: 1
m	
р	

Wzorzec	Warunkowa baza wzorca
С	f: 3
a	fc: 3
b	fca: 1, f: 1, c: 1
m	fca: 2, fcab: 1
р	fcam: 2, cb: 1

Wzorzec	Warunkowa baza wzorca
С	f: 3
a	fc: 3
b	fca: 1, f: 1, c: 1
m	fca: 2, fcab: 1
р	fcam: 2, cb: 1

PODSUMOWANIE

- Zbiór X jest częsty, jeśli wsparcie X jest nie mniejsze niż próg minsup
- **Odkrywanie reguł asocjacyjnych** znajdowanie wszystkich **silnych** reguł asocjacyjnych, tzn. spełniających warunek minimalnego wsparcia *minsup* i ufności *minconf*
- Obserwacja: Każdy podzbiór zbioru częstego musi być zbiorem częstym.
- Skalowalne metody odkrywania asocjacji w danych:
 - Eksploracja pozioma:
 - Apriori
 - FP-Growth
 - Eksploracja pionowa:
 - Eclat

IMPLEMENTACJE

- FPGrowth w Apache Spark
 https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html
- Apriori https://pypi.org/project/apriori-python/
- FP-Growth https://github.com/enaeseth/python-fp-growth
- FP-Growth https://pypi.org/project/pyfpgrowth/
- Apriori, ECLAT, FP-Growth https://github.com/udayRage/PAMI

JAK INTERESUJĄCY JEST TEN WZORZEC?

PRZYPOMNIENIE: REGUŁY ASOCJACYJNE

- Reguly asocjacyjne: X o Y(s,c)
- ullet Wsparcie, s: Prawdopodobieństwo, że transakcja zawiera $X\cup Y$
 - \circ Uwaga: Notacja! $X \cup Y$ oznacza, że transakcja zawiera oba elementy, X i Y
- Ufność, c: Prawdopodobieństwo warunkowe, że transakcja zawierająca X zawiera również Y.

$$c = rac{s(X \cup Y)}{s(X)}$$

• Odkrywanie reguł asocjacyjnych: znajdowanie wszystkich silnych reguł asocjacyjnych, tzn. spełniających warunek minimalnego wsparcia i ufności

Niech minsup = 50%

Częste zestawy 1-elementowe:

Piwo: 3 (60%), Orzeszki: 3 (60%), Pieluszki: 4 (80%), Jajka: 3 (60%)

Częste zestawy 2-elementowe:

{Piwo, pieluszki}: 3 (60%)

Reguły asocjacyjne: Niech minconf=50% Piwo->Pieluchy (60%, 100%)

Pielucha->Piwo (60%, 75%)

MIARY ATRAKCYJNOŚCI REGUŁ ASOCJACYJNYCH

- Popularne miary:
 - Wsparcie ocena ogólności reguły asocjacyjnej
 - Ufność ocena wiarygodności reguły asocjacyjnej
- Miary wsparcia i ufności są niewystarczające do oceny atrakcyjności reguły asocjacyjnej, gdyż:
 - o nie uwzględniają korelacji pomiędzy poprzednikiem i następnikiem reguły asocjacyjnej,
 - eliminują możliwość znalezienia interesujących reguł asocjacyjnych o niewielkim wsparciu.

	kawa	nie_kawa	suma
herbata	20	5	25
nie_herbata	70	5	75
suma	90	10	100

$$herbata
ightarrow kawa \left[s = rac{20}{100} = 0.2, \, c = rac{20}{25} = 0.8
ight]
onumber nie_herbata
ightarrow kawa \left[s = rac{70}{100} = 0.7, \, c = rac{70}{75} = 0.93
ight]$$

LIFT

• Lift - miara zależności / korelacji pomiędzy zdarzeniami

$$lift(A,B) \,=\, rac{P(B|A|)}{s(B)} = rac{c(A o B)}{s(B)} = rac{s(A\cup B)}{s(A)s(B)}$$

- o lift = 1 ⇔ zdarzenia A i B są niezależne
- o lift < 1 ⇔ zdarzenia A i B są skorelowane negatywnie
- o lift > 1 ⇔ zdarzenia A i B są skorelowane pozytywnie

INNE MIARY ATRAKCYJNOŚCI

- Nie sprawdza się jeżeli dla danej reguły istnieje wiele transakcji, które nie zawierają elementów reguły
 - o np. wiele transakcji nie zawierających ani kawy ani herbaty
- W odpowiedzi, w literaturze zaproponowano wiele innych miar, w tym takich, które są odporne na obecność transakcji nie zawierających m.in.:
 - miara cosinusów

$$Cosine(A,B) = rac{s(A \cup B)}{\sqrt{s(A)s(B)}}$$

o miara Jaccarda

$$Jaccard(A,B) = rac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$$

BARDZIEJ ZAAWANSOWANE TEMATY

WIELOPOZIOMOWE REGUŁY ASOCJACYJNE

- Obiekty, np. towary, często tworzą hierarchię

 - Chleb → Chleb pszenny
- Wielopoziomowe reguły mają często większą wartość poznawczą niż reguły jednopoziomowe.
- W jaki sposób ustawić próg minsup?
 - o jednolity próg dla wszystkich poziomów,
 - próg wsparcia coraz mniejszy wraz z głębokością w hierarchii.
- Jak wydajnie eksplorować dane jeżeli próg wsparcia jest zależny od poziomu w hierarchii?
 - Użyj najmniejszego wsparcia do filtrowania zbiorów.

WIELOWYMIAROWE REGUŁY ASOCJACYJNE

- Jednowymiarowe reguły asocjacyjne
 - o wszystkie elementy są w jednym wymiarze, np. w wymiarze "produkt"
 - kupuje(X, "mleko") → kupuje(X, "chleb")
- Wielowymiarowe reguły asocjacyjne
 - o n≥2 wymiarów
 - wiek(X, "18-25") ∧ zawód(X, "student") → kupuje(X, "coca-cola")
 - wiek(X, "18-25") \land kupuje(X, "popcorn") \rightarrow kupuje(X, "coca-cola")
- Przekształcenia zmiennych
 - Zmienne kategoryczne binaryzujemy
 - stan_cywilny = {panna, kawaler, zamężna, żonaty, ...} → dla każdej kategorii tworzymy zmienną binarną stan_cywilny = panna, stan_cywilny = kawaler, itd.
 - Zmienne ciągłe przekształcamy do kategorii, a następnie binaryzujemy.
 - Przekształcenie do kategorii: binning, klasteryzacja.

NEGATYWNE ASOCJACJE

- parówki ∧ piwo → musztarda ∧ ¬czerwone_wino
- szalik_drużyny_A → ¬szalik_drużyny_B
- Definicja 1: Wzorce negatywne zawierają co najmniej jeden zbiór negatywny (w poprzedniku lub w następniku).
- Definicja 2: Wzorce negatywnie skorelowane.
 - Reguła X → Y o negatywnej korelacji zbiorów X i Y ma de facto charakter "wiedzy negatywnej", tzn. wystąpienie zbioru X w koszyku klienta zmniejsza prawdopodobieństwo wystąpienia zbioru Y w tym samym koszyku.
- Problem odkrywania wiedzy negatywnej jest trudniejszy od odkrywania wiedzy pozytywnej.
 - Liczba odkrywanych reguł negatywnych w zbiorze danych jest wielokrotnie większa niż liczba reguł pozytywnych.
 - "Ludzie, którzy kupują chleb w supermarkecie, nie kupują lodówki".
 - Należy określić podzbiór reguł negatywnych, który będzie interesujący.

DZIĘKUJĘ ZA UWAGĘ

ZBIORY DOMKNIĘTE I ZBIORY MAKSYMALNE

Wyrażanie wzorców w formie skompresowanej: Wzorce zamknięte

Jak poradzić sobie z takim wyzwaniem?

Rozwiązanie 1: Zamknięte formacje: Formacja (zestaw pozycji) X jest zamknięta, jeśli X występuje często i nie istnieje super-wzorzec Y zawierający X, z takim samym wsparciem jak X

Zamknięty wzór to bezstratna kompresja częstego wzoru

Zmniejszono liczbę wzorów, ale nie traci się informacji pomocniczych

Rozwiązanie 2: Maksymalne wzorce: Wzorzec X jest wzorcem maksymalnym, jeśli X jest częsty i nie istnieje żaden częsty superwzorzec Y zawierający X.

Różnica od zamkniętych wzorców?

Nie przejmuj się prawdziwym wsparciem wzorców podrzędnych wzorca maksymalnego

Max-pattern to kompresja stratna

Wiemy tylko, że wzór jest częsty, ale nie znamy już prawdziwego wsparcia

W wielu zastosowaniach eksploracja zamkniętych wzorców jest bardziej pożądana niż eksploracja maksymalnych wzorców.

CLOSET+

- Wydajny algorytm eksploracji zbiorów domkniętych oparty na FP-Growth.
- Przykład: Jeżeli Y pojawia się zawsze wtedy, gdy X, to Y jest łączone z X.
 - Mając
 - d-proj. db: {acef, acf} -> acfd-proj. db: {e}
 - otrzymujemy
 - acfd: 2