Sample Mathematics Solutions

Q.1 [14 marks]

Fill in the blanks using appropriate choice from the given options

Q1.1 [1 mark]

If $A_{2\times 3}$ and $B_{3\times 4}$ are two matrices then find order of AB= ____

a. 4×2 b. 2×4 c. 3×3 d. AB is not possible

Answer: a. 2×4

Solution:

For matrix multiplication AB to be possible, the number of columns in matrix A must equal the number of rows in matrix B.

Given:

- Matrix A has order 2×3 (2 rows, 3 columns)
- Matrix B has order 3×4 (3 rows, 4 columns)

Since the number of columns in A (3) equals the number of rows in B (3), multiplication is possible.

The order of the resultant matrix AB will be:

$$AB_{(2\times3)} \times B_{(3\times4)} = (AB)_{(2\times4)}$$

Therefore, the order of AB is 2×4 .

Q1.2 [1 mark]

If
$$A = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ then find $AB = \underline{\hspace{1cm}}$

a. Not possible b. 9 c. [1 1] d. [1 6 2]

Answer: b. 9

Solution:

Given:

$$A = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}$$
 (order: 1×3)

$$B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ (order: } 3 \times 1)$$

Since A is 1×3 and B is 3×1 , multiplication is possible and the result will be 1×1 (a scalar).

$$AB = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$AB = (1)(1) + (3)(2) + (2)(1)$$

 $AB = 1 + 6 + 2 = 9$

Q1.3 [1 mark]

If
$$A \cdot I_2 = A$$
 then $I_2 = \underline{\hspace{1cm}}$

$$\text{a.} \ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{b.} \ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \text{c.} \ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{d.} \ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Answer: c. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Solution:

The condition $A \cdot I_2 = A$ means that I_2 is the identity matrix of order 2×2 .

The identity matrix has the property that when any matrix is multiplied by it, the original matrix remains unchanged.

The 2×2 identity matrix is:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Verification: For any 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$:

$$A \cdot I_2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = A$$

Calculus Problems

Q1.4 [1 mark]

If
$$\frac{d}{dx}(\sin^2 x + \cos^2 x) =$$

a. 1 b. 0 c.
$$-1$$
 d. x

Answer: b. 0

Solution:

We know that $\sin^2 x + \cos^2 x = 1$ (fundamental trigonometric identity).

Since the derivative of a constant is zero:
$$\frac{d}{dx}(\sin^2 x + \cos^2 x) = \frac{d}{dx}(1) = 0$$

Alternative approach (step by step):

$$\frac{d}{dx}(\sin^2 x + \cos^2 x)$$

$$= \frac{d}{dx}(\sin^2 x) + \frac{d}{dx}(\cos^2 x)$$

$$= 2\sin x \cos x + 2\cos x(-\sin x)$$

$$= 2\sin x \cos x - 2\sin x \cos x = 0$$

Integration Example

Evaluate: $\int x^5 dx$

Solution:

Using the power rule for integration: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ where $n \neq -1$

$$\int x^5 dx = \frac{x^{5+1}}{5+1} + C = \frac{x^6}{6} + C$$

Complex Numbers

Sample Problem

Simplify: (3 + 4i)(4 - 5i)

Solution:

$$(3+4i)(4-5i)$$

$$= 3(4) + 3(-5i) + 4i(4) + 4i(-5i)$$

= 12 - 15i + 16i - 20i²

$$=12-15i+16i-20i^{2}$$

Since $i^2 = -1$:

$$= 12 - 15i + 16i - 20(-1)$$

$$=12-15i+16i+20$$

$$= 32 + i$$

Differential Equations

Sample Problem

Solve:
$$x \frac{dy}{dx} + y = 0$$

Solution:

This is a separable differential equation.

Rearranging:
$$x \frac{dy}{dx} = -y$$

Separating variables:
$$\frac{dy}{y} = -\frac{dx}{x}$$

$$\int \frac{dy}{y} = \int -\frac{dx}{x}$$

$$\ln |u| = -\ln |x| + C$$

$$\ln|y| = \ln|x^{-1}| + C_1$$

Integrating both sides:
$$\int \frac{dy}{y} = \int -\frac{dx}{x}$$

$$\ln |y| = -\ln |x| + C_1$$

$$\ln |y| = \ln |x^{-1}| + C_1$$

$$|y| = e^{\ln |x^{-1}| + C_1} = e^{C_1} \cdot |x^{-1}|$$

Let
$$C = \pm e^{C_1}$$
, then: $y = \frac{C}{x}$

$$y = \frac{C}{x}$$

This is the general solution.