

Qualification Round 2010

A. Snapper Chain

B. Fair Warning

C. Theme Park

Contest Analysis

Questions asked 3

Submissions

Snapper Chain

10pt | Not attempted 9461/11212 users correct (84%)

Not attempted 7957/9406 users correct (85%)

Fair Warning

10pt | Not attempted 3312/4340 users correct (76%)

23pt | Not attempted 2469/3001 users correct (82%)

Theme Park

10pt	Not attempted 8033/8501 users correct (94%)
23pt	Not attempted 3050/7644 users correct (40%)

Top Scores neal.wu

LayCurse	99
eireksten	99
agus.mw	99
lympanda	99
pmnox	99
levlam	99
ZhukovDmitry	99
kmod	99
stubbscroll	99

Problem C. Theme Park

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the Quick-Start Guide to get started.

Small input 10 points

Solve C-small

Solve C-large

Large input 23 points

Problem

Roller coasters are so much fun! It seems like everybody who visits the theme park wants to ride the roller coaster. Some people go alone; other people go in groups, and don't want to board the roller coaster unless they can all go together. And everyone who rides the roller coaster wants to ride again. A ride costs 1 Euro per person; your job is to figure out how much money the roller coaster will make today.

The roller coaster can hold **k** people at once. People queue for it in groups. Groups board the roller coaster, one at a time, until there are no more groups left or there is no room for the next group; then the roller coaster goes, whether it's full or not. Once the ride is over, all of its passengers re-queue in the same order. The roller coaster will run R times in a day.

For example, suppose $\mathbf{R}=4$, $\mathbf{k}=6$, and there are four groups of people with sizes: 1, 4, 2, 1. The first time the roller coaster goes, the first two groups [1, 4] will ride, leaving an empty seat (the group of 2 won't fit, and the group of 1 can't go ahead of them). Then they'll go to the back of the queue, which now looks like 2, 1, 1, 4. The second time, the coaster will hold 4 people: [2, 1, 1]. Now the queue looks like 4, 2, 1, 1. The third time, it will hold 6 people: [4, 2]. Now the queue looks like [1, 1, 4, 2]. Finally, it will hold 6 people: [1, 1, 4]. The roller coaster has made a total of 21 Euros!

Input

The first line of the input gives the number of test cases, **T**. **T** test cases follow, with each test case consisting of two lines. The first line contains three spaceseparated integers: **R**, **k** and **N**. The second line contains **N** space-separated integers $\mathbf{g_i}$, each of which is the size of a group that wants to ride. $\mathbf{g_0}$ is the size of the first group, $\mathbf{g_1}$ is the size of the second group, etc.

Output

qq

For each test case, output one line containing "Case #x: y", where x is the case number (starting from 1) and y is the number of Euros made by the roller coaster.

Limits

 $1 \le \mathbf{T} \le 50$. $g_i \leq k$.

Small dataset

 $1 < \mathbf{R} < 1000$. $1 \le \mathbf{k} \le 100$.

 $1 \le N \le 10$. $1 \leq \mathbf{g_i} \leq 10$.

Large dataset

 $1 \le \mathbf{R} \le 10^8.$ $1 \le \mathbf{k} \le 10^9.$ $1 \le N \le 1000$.

 $1 \le \mathbf{g_i} \le 10^7$.

Sample

Input	Output
3 4 6 4 1 4 2 1 100 10 1 1 5 5 10 2 4 2 3 4 2 1 2 1 3	Case #1: 21 Case #2: 100 Case #3: 20

 $\textbf{All problem statements, input data and contest analyses are licensed under the \underline{\textbf{Creative Commons Attribution License}}.$

© 2008-2017 Google Google Home - Terms and Conditions - Privacy Policies and Principles

Powered by

Google Cloud Platform