Algorithm Templates Collection for HEOI2018

Kvar_ispw17

April 4, 2018

Life sucks, you're gonna love it.

Contents

I	Data Structure	4
	ı.ı Splay	4
	1.2 Link-Cut Tree	7
	I.3 k-D Tree	9
	1.4 2-D Segment Tree	12
	I.5 Binary Indexed Tree	13
2	String	14
	2.1 Suffix Array	14
	2.2 Suffix Automaton	15
3	Graph Theory	16
	3.1 Divide and Conquer on Graph	16
	3.1.1 Divide on Edges	
	3.1.2 Divide on Vertices	19
	3.2 Heavy-Light Decomposition	20
4	Mathematics	21
	4.1 Transformation	2.1
	4.I.I Fast Fourier transform (FFT)	21
	4.1.2 Number-Theoretic transform (NTT)	23
	4.1.3 Fast WalshfiHadamard transform (FWT)	25
	4.2 Simplex Algorithm	27
	4.3 Lucas's Theorem	28
	4.3.1 Regular Usage	28
	4.3.2 Advanced Usage	29
	4.4 Taylor's Theorem	
	4.5 Lagrange Polynomial	
5	Computational Geometry	32
6	Others	40
	6.1 Simulated Annealing	40

1 Data Structure

1.1 Splay

```
1 #define ls tr[u].ch[0]
 2 #define rs tr[u].ch[1]
 3 const int nil = 0;
 4 int root, tot;
 6 struct node {
 7
       int v, siz, ch[2], fa, rev, sum, tag;
 8
       node() {
 9
           rev = tag = v = sum = 0;
10
           fa = ch[0] = ch[1] = 0;
           siz = 1;
11
12
13 } tr[N];
14
  void up(int u) {
16
       tr[u].siz = 1;
       tr[u].sum = tr[u].v;
17
18
       if (ls) {
19
           tr[u].sum += tr[ls].sum;
           tr[u].siz += tr[ls].siz;
20
21
       }
22
       if (rs) {
23
           tr[u].sum += tr[rs].sum;
24
           tr[u].siz += tr[rs].siz;
25
       }
26 }
27
28 void down(int u) {
29
       if (tr[u].rev) {
           if (ls) tr[ls].rev ^= 1;
30
31
           if (rs) tr[rs].rev ^= 1;
32
           swap(ls, rs);
33
           tr[u].rev = 0;
34
       }
35
       if (tr[u].tag) {
           tr[ls].tag += tr[u].tag;
36
```

```
37
           tr[rs].tag += tr[u].tag;
38
           tr[u].sum += tr[u].tag * tr[u].siz;
           tr[u].v += tr[u].tag;
39
40
           tr[u].tag = 0;
       }
41
42 }
43
44 int son(int u) {
       return u == tr[tr[u].fa].ch[1];
46 }
47
48 int build(int &u, int x[], int l, int r) {
49
       if (1 > r) return 0;
       u = ++tot; if (l == r) { tr[u].v = tr[u].sum = x[l]; return u; }
50
51
       int mid = ceil((1 + r) / 2.);
52
       tr[u].v = x[mid];
53
       ls = build(ls, x, l, mid - 1); if (ls) tr[ls].fa = u;
       rs = build(rs, x, mid + 1, r); if (rs) tr[rs].fa = u;
54
55
       up(u); return u;
56 }
57
58 void rotate(int u) {
       int f = tr[u].fa, pf = tr[f].fa; down(f);
59
60
       down(u); int d = son(u), pd = pf ? son(f) : 0;
61
       tr[f].ch[d] = tr[u].ch[d ^ 1];
       if (tr[u].ch[d ^ 1]) tr[tr[u].ch[d ^ 1]].fa = f;
62
63
       tr[u].ch[d ^ 1] = f; tr[f].fa = u;
       pf ? tr[pf].ch[pd] = u : root = u;
64
65
       tr[u].fa = pf, up(f), up(u);
66 }
67
68 int search(int u, int k) {
       down(u); int siz = 0;
69
70
       if (ls) siz = tr[ls].siz;
71
       if (k < siz + 1) return search(ls, k);</pre>
       else if (k > siz + 1) return search(rs, k - (siz + 1));
72
73
       else return u;
74 }
75
76 int at(int k) { return search(root, k + 1); }
```

```
77 void splay(int u, int t) {
        while (tr[u].fa != t) {
78
79
            if (tr[tr[u].fa].fa != t)
80
               rotate(son(u) == son(tr[u].fa) ? tr[u].fa : u);
81
            rotate(u);
82
        }
83 }
84
85 void insert(int u, int k, int x[], int l, int r) {
        int t = build(t, x, l, r), p = at(k), q;
86
87
        splay(p, nil), q = tr[p].ch[1];
88
        tr[p].ch[1] = t, tr[t].fa = p;
89
        splay(p = at(k + tr[t].siz), nil);
90
        tr[p].ch[1] = q, tr[q].fa = p;
91 }
92
93 void erase(int u, int 1, int r) {
94
        int p = at(1 - 1), q = at(r + 1);
95
        splay(p, nil), splay(q, p);
96
        tr[q].ch[0] = nil;
97 }
98
99 void reverse(int u, int 1, int r) {
100
        int p = at(1 - 1), q = at(r + 1);
101
        splay(p, nil), splay(q, p);
102
        tr[tr[q].ch[0]].rev ^= 1;
103 }
104
105 void add(int 1, int r, int val) {
106
        int p = at(1 - 1), q = at(r + 1);
        splay(p, nil), splay(q, p);
107
108
        int w = tr[q].ch[0];
109
        tr[w].sum += tr[w].siz * val;
        tr[w].v += val;
110
111
        if (tr[w].ch[0]) tr[tr[w].ch[0]].tag += val;
        if (tr[w].ch[1]) tr[tr[w].ch[1]].tag += val;
112
113 }
114
115 int query(int u, int l, int r) {
        int p = at(1 - 1), q = at(r + 1);
```

```
117
        splay(p, nil), splay(q, p);
118
        int ret = tr[tr[q].ch[0]].sum;
119
        return ret;
120 }
                                 Link-Cut Tree
 1 #define null 0x0
 2
 3 class node {
  4
        public:
  5
        int fa, ch[2], rev;
        node() { ch[0] = ch[1] = fa = rev = null; }
 7 } tr[N];
 8
 9 void down(int u) {
 10
        if (tr[u].rev) {
            if (tr[u].ch[0]) tr[tr[u].ch[0]].rev ^= 1;
 11
 12
            if (tr[u].ch[1]) tr[tr[u].ch[1]].rev ^= 1;
 13
            tr[u].rev = 0;
 14
            std::swap(tr[u].ch[0], tr[u].ch[1]);
        }
 15
 16 }
 17
 18 int son(int u) {
        return tr[tr[u].fa].ch[1] == u;
 19
20 }
 21 int isroot(int u) {
22
        return tr[tr[u].fa].ch[0] != u && tr[tr[u].fa].ch[1] != u;
23 }
24
25 void rotate(int u) {
        int f = tr[u].fa, pf = tr[f].fa, d = son(u);
 26
        tr[u].fa = pf;
 27
        if (!isroot(f)) tr[pf].ch[son(f)] = u, tr[u].fa = pf;
 28
29
        tr[f].ch[d] = tr[u].ch[d ^ 1];
        if (tr[f].ch[d]) tr[tr[f].ch[d]].fa = f;
30
31
        tr[f].fa = u, tr[u].ch[d ^ 1] = f;
32 }
```

33

```
34 int st[N];
35 void splay(int u) {
       int top = 0; st[++top] = u;
37
       for (int v = u; !isroot(v); v = tr[v].fa) st[++top] = tr[v].fa;
38
       for (int i = top; i; i--) down(st[i]);
39
       while (!isroot(u)) {
           if (!isroot(tr[u].fa)) rotate(son(u) == son(tr[u].fa) ?
40
              tr[u].fa : u);
          rotate(u);
41
       }
42
43 }
44 void access(int u, int t = 0) {
45
       while (u) { splay(u); tr[u].ch[1] = t; t = u, u = tr[u].fa; }
46 }
47
48 void makeroot(int u) { access(u), splay(u), tr[u].rev ^= 1; }
49 void link(int u, int v) { makeroot(u), tr[u].fa = v, splay(u); }
50 void cut(int u, int v) {
51
       makeroot(u), access(v);
       splay(v), tr[u].fa = tr[v].ch[0] = null;
52
53 }
54 int getroot(int u) {
       access(u), splay(u);
55
56
       while (tr[u].ch[0]) u = tr[u].ch[0];
       splay(u); return u;
57
58 }
```

1.3 k-D Tree

```
1 const double fac = .65;
 2 const int N = 5e5 + 5;
 3 const int M = 2e5 + 5;
 5 int D, n, Q, root;
 6 int st[M], cnt, ans, tot;
 7 int lst_ans;
9
   struct node {
10
       int d[2], ch[2], x[2], y[2], v, w, siz, rd;
11
       node() {}
12
       node(int _x, int _y, int _v) : _v(v), _w(v), _siz(1) {
13
           ch[0] = ch[1] = 0;
14
           x[0] = x[1] = d[0] = _x;
15
           y[0] = y[1] = d[1] = _y;
16
           rd = 0;
17
       void clear() {
18
           x[0] = x[1] = d[0];
19
           y[0] = y[1] = d[1];
20
21
           ch[0] = ch[1] = 0;
           w = v, siz = 1, rd = 0;
22
23
24 } tr[M];
25
26 #define check(p)
       ((p).x[0] \le X1&&X0 \le (p).x[1]&&(p).y[0] \le Y1&&Y0 \le (p).y[1])
27 #define cmax(a,b) ((a)<(b)?(a)=(b):1)
28 #define cmin(a,b) ((a)>(b)?(a)=(b):1)
29
30 #define ls tr[p].ch[0]
31 #define rs tr[p].ch[1]
32
33 void mt(int f, int s) {
       tr[f].w += tr[s].w;
34
35
       tr[f].siz += tr[s].siz;
       cmin(tr[f].x[0], tr[s].x[0]);
36
       cmax(tr[f].x[1], tr[s].x[1]);
37
```

```
cmin(tr[f].y[0], tr[s].y[0]);
38
39
       cmax(tr[f].y[1], tr[s].y[1]);
40 }
41
42 bool cmp(const int &a, const int &b) {
       return tr[a].d[D] < tr[b].d[D];</pre>
44 }
45
46 int bt(int 1, int r, int d) {
47
       int mid = (1 + r) >> 1;
48
       D = d;
49
       nth_element(st + 1, st + mid, st + r + 1, cmp);
       int p = st[mid];
50
       tr[p].clear();
51
       tr[p].rd = d;
52
       if (1 < mid) ls = bt(1, mid - 1, d ^ 1), mt(p, ls);
53
54
       if (r > mid) rs = bt(mid + 1, r, d ^ 1), mt(p, rs);
55
       return p;
56 }
57
58 void dfs(int p) {
59
       st[++cnt] = p;
60
       if(ls) dfs(ls);
61
       if(rs) dfs(rs);
62 }
63
64 int ins(int p, int nw) {
       if (p == 0) {
65
           tr[p].rd = rand() & 1;
66
67
           return nw;
       }
68
69
       mt(p, nw), D = tr[p].rd;
70
       int &nxt = tr[p].ch[tr[nw].d[D] > tr[p].d[D]];
       if (max(tr[ls].siz, tr[rs].siz) > tr[p].siz * fac) {
71
72
           cnt = 0;
           st[++cnt] = nw;
73
74
           dfs(p);
75
           int rot = bt(1, cnt, tr[p].rd);
           if (p == root) root = rot;
76
77
           return rot;
```

```
78
       }
79
       nxt = ins(nxt, nw);
80
       return p;
81 }
82
83 void ask(int p, int X0, int Y0, int X1, int Y1) {
       if (X0 \le tr[p].x[0] \&\& tr[p].x[1] \le X1 \&\& \
84
85
       YO \leftarrow tr[p].y[0] && tr[p].y[1] \leftarrow Y1) {
           ans += tr[p].w;
86
87
           return;
88
89
       if (XO <= tr[p].d[0] && tr[p].d[0] <= X1 && \
90
       Y0 <= tr[p].d[1] && tr[p].d[1] <= Y1) {
91
           ans += tr[p].v;
92
       }
93
       if (ls && check(tr[ls])) ask(ls, X0, Y0, X1, Y1);
       if (rs && check(tr[rs])) ask(rs, X0, Y0, X1, Y1);
94
95 }
```

1.4 2-D Segment Tree

```
1 int ls[330*N], rs[330*N], rot[4*N], tot; ll tr[330*N], ans;
 2
 3 void __mul(int &p, int l, int r, int L, int R, ll v ) {
       if (p == 0) tr[p = ++tot] = 1;
       if (L <= 1 && r <= R) { tr[p] = merge(tr[p], v); return; }
 6
       int mid = (1 + r) >> 1;
 7
       if (L <= mid) __mul(ls[p], l, mid, L, R, v);</pre>
 8
       if (R > mid) __mul(rs[p], mid + 1, r, L, R, v);
 9 }
10
11 void __query(int p, int l, int r, int P) {
12
       if (p == 0) return;
13
       ans = merge(ans, tr[p]);
14
       if (l == r) return;
15
       int mid = (1 + r) >> 1;
       if (P <= mid) __query(ls[p], 1, mid, P);</pre>
16
17
       else __query(rs[p], mid + 1, r, P);
18 }
19
20 void mul(int p, int l, int r, int L1, int R1, int L2, int R2, l1
21
       if (L1 <= 1 && r <= R1) {
22
           __mul(rot[p], 0, n + 1, L2, R2, v);
23
           return;
24
25
       int mid = (1 + r) >> 1;
       if (L1 <= mid) mul(p << 1, 1, mid, L1, R1, L2, R2, v);
26
27
       if (R1 > mid) mul(p << 1 | 1, mid + 1, r, L1, R1, L2, R2, v);
28 }
29
30 void query(int p, int 1, int r, int P1, int P2) {
31
       if (rot[p]) __query(rot[p], 0, n + 1, P2);
32
       if (1 == r) return;
       int mid = (1 + r) >> 1;
33
34
       if (P1 <= mid) query(p << 1, 1, mid, P1, P2);
35
       else query(p << 1 | 1, mid + 1, r, P1, P2);
36 }
```

1.5 Binary Indexed Tree

```
1 int maxn; ll c1[N], c2[N];
2 int lowbit(int x) { return x & -x; }
3 void init(int n) {
       maxn = n;
       for (int i = 1; i \le n; i++) c1[i] = c2[i] = 0;
6 }
7 void add(int x, int v) {
       for (int i = x; i <= maxn; i += lowbit(i))</pre>
          c1[i] += v, c2[i] += (11)x * v;
10 }
11 ll sum(int x) {
12
       11 r1 = 0, r2 = 0;
       for (int i = x; i; i -= lowbit(i))
13
          r1 += c1[i], r2 += c2[i];
15
       return r1 * (x + 1) - r2;
16 }
17 void add(int 1, int r, int v) { add(1, v), add(r + 1, -v); }
18 ll sum(int l, int r) { return sum(r) - sum(l - 1); }
```

2 String

2.1 Suffix Array

```
1 int buf1[N], buf2[N], buc[N];
3 void sort(char str[], int n, int sa[], int rk[], int ht[]) {
       int *x = buf1, *y = buf2, m = 127;
       for (int i = 0; i <= m; i++) buc[i] = 0;
       for (int i = 1; i <= n; i++) buc[x[i] = str[i]]++;
7
       for (int i = 1; i <= m; i++) buc[i] += buc[i - 1];
8
       for (int i = n; i; i--) sa[buc[x[i]]--] = i;
9
       for (int k = 1; k \le n; k \le 1) {
10
           int p = 0;
           for (int i = n - k + 1; i \le n; i++) y[++p] = i;
11
           for (int i = 1; i <= n; i++)
12
13
               if (sa[i] > k) y[++p] = sa[i] - k;
14
           for (int i = 0; i \le m; i++) buc[i] = 0;
           for (int i = 1; i \le n; i++) buc[x[y[i]]]++;
15
           for (int i = 1; i <= m; i++) buc[i] += buc[i - 1];
16
17
           for (int i = n; i; i--) sa[buc[x[y[i]]]--] = y[i];
18
           swap(x, y), x[sa[1]] = p = 1;
           for (int i = 2; i \le n; i++)
19
           if (y[sa[i - 1]] == y[sa[i]] && \
20
                 y [sa[i - 1] + k] == y[sa[i] + k]) x[sa[i]] = p;
21
22
           else x[sa[i]] = ++p;
           if ((m = p) >= n) break;
23
24
       }
25
       for (int i = 1; i <= n; i++) rk[sa[i]] = i;
26
       for (int j = 0, k = 0, i = 1; i \le n; ht[rk[i++]] = k)
27
       for (k ? k-- : 0, j = sa[rk[i] - 1]; \setminus
28
             str[i + k] == str[j + k]; k++);
29 }
```

2.2 Suffix Automaton

```
1 struct node {
       int nxt[26];
3
       int fa, len;
4 } tr[N];
5
6 int tot = 1, last = 1, root = 1;
7
8 void add(int x) {
9
       int p = last, np = ++tot;
10
       tr[np].len = tr[p].len + 1;
       while (p \&\& tr[p].nxt[c] == 0)
11
           tr[p].nxt[c] = np, p = tr[p].fa;
12
13
       if (p == 0) tr[np].fa = root;
14
       else {
15
           int q = tr[p].ch[c];
           if (tr[q].len == tr[p].len + 1) tr[np].fa = q;
16
17
           else {
18
               int nq = ++tot;
              tr[nq] = tr[q];
19
20
              tr[nq].len = tr[p].len + 1;
21
              tr[q].fa = tr[np].fa = nq;
22
              while (p \&\& tr[p].ch[c] == q)
23
                  tr[p].ch[c] = nq, p = tr[p].fa;
24
           }
25
       }
26 }
```

3 Graph Theory

3.1 Divide and Conquer on Graph

3.1.1 Divide on Edges

```
1 int n, m, Q, color[N], pos[N];
2 int hd[N], tmp[N], nxt[4*N], to[4*N], w[4*N], tot;
4 void add(int a, int b, int c) {
       nxt[++tot] = hd[a], to[hd[a] = tot] = b, w[tot] = c;
       nxt[++tot] = hd[b], to[hd[b] = tot] = a, w[tot] = c;
7 }
9 void add_tmp(int a, int b, int c) {
       nxt[++tot] = tmp[a], to[tmp[a] = tot] = b, w[tot] = c;
10
       nxt[++tot] = tmp[b], to[tmp[b] = tot] = a, w[tot] = c;
11
12
       assert(tot < 6 * n);
13 }
14
  void build(vector<int> &ch, int fa, int l, int r) {
16
       if (1 > r) return;
17
       if (1 == r) {
18
           int e = ch[1];
19
           add_tmp(fa, to[e], w[e]);
20
           return;
       }
21
22
       int u = ++n;
23
       color[u] = 1;
24
       int mid = (1 + r) / 2;
25
       add_tmp(fa, u, 0);
26
       build(ch, u, l, mid);
27
       build(ch, u, mid + 1, r);
28 }
29
30 void reconstruct(int u, int fa) {
31
       vector<int> ch;
       for (int e = hd[u]; e != -1; e = nxt[e]) {
32
33
           int v = to[e];
34
           if (v != fa) {
```

```
35
               reconstruct(v, u);
36
               ch.push_back(e);
37
           }
38
39
       if (!ch.empty()) {
40
           int sz = (int)ch.size() - 1;
41
           int mid = sz / 2;
42
           build(ch, u, 0, mid);
           build(ch, u, mid + 1, sz);
43
44
       }
45 }
46
   /* CAUTION : This class $data is used for multiple cases and have
       multiple means */
   class data {
48
49
       public:
50
       int a, b;
51
       data() {}
52
       data(int a, int b) : a(a), b(b) {}
53
       bool operator < (const data &rhs) const { return a == rhs.a ? b</pre>
           < rhs.b : a < rhs.a; }
       bool operator > (const data &rhs) const { return a == rhs.a ? b
54
           > rhs.b : a > rhs.a; }
55 };
56
57 int siz[N], del[N];
58
59 priority_queue<data> h[2*N];
                                                   /* $data represented
       -> { dis_to_root, node_id } */
60 vector<data> idx[N];
                                                           /* $data
       represented -> { HID, dis_to_root } */
61 data Heap[N];
                                                                  /*
       $data represented -> { best_ans, idx }
                                                   */
62
63 data find_center(int u, int fa, int sz) {
       siz[u] = 1;
64
65
       data ret = data(inf, -1);
```

```
/* $data represented
```

```
-> { bigger_sz, edge_id } */
66
       for(int v, e = hd[u]; e != -1; e = nxt[e]) {
67
           if(del[e >> 1] || (v = to[e]) == fa) continue;
68
           ret = min(ret, find_center(v, u, sz));
69
           siz[u] += siz[v];
70
           ret = min(ret, data(max(siz[v], sz - siz[v]), e));
71
72
       return ret;
73 }
74
75 int tmp_sz;
76 void dfs(int u, int fa, int dis, int ID) {
77
       tmp_sz++;
78
       if(color[u] == 0) h[ID].emplace(data(dis, u));
79
       idx[u].emplace_back(data(ID, dis));
80
       for(int e = hd[u]; e != -1; e = nxt[e]) {
81
           int v = to[e]:
82
           if(del[e >> 1] || v == fa) continue;
83
           dfs(v, u, dis + w[e], ID);
84
       }
85 }
86
87 void divide(int u, int sz) {
       int sz1, sz2;
88
       if(sz <= 1) return;</pre>
89
       int e = find_center(u, 0, sz).b;
90
91
       del[e >> 1] = true;
92
       tmp_sz = 0, h[e].emplace(data(-inf, -1));
93
       dfs(to[e], 0, 0, e), sz1 = tmp_sz;
       tmp_sz = 0, h[e^1].emplace(data(-inf, -1));
94
95
       dfs(to[e^1], 0, 0, e^1), sz2 = tmp_sz;
96
       Heap[e >> 1] = data(h[e].top().a + w[e] + h[e^1].top().a, e >> 0
           1);
97
       divide(to[e], sz1);
98
       divide(to[e^1], sz2);
99 }
```

3.2 Heavy-Light Decomposition

```
1 void dfs1(int u, int _fa, int _dep) {
2
       fa[u] = _fa;
 3
       dep[u] = _dep;
 4
       s[u] = 1;
 5
       for (int e = hd[u]; e; e = nxt[e]) {
6
           int v = to[e];
7
           if (v != _fa) {
               dfs1(v, u, _dep + 1);
8
9
               s[u] += s[v];
               if (!u_son[u] || s[v] > s[u_son[u]]) u_son[u] = v;
10
           }
11
12
       }
13 }
14
  void dfs2(int u, int id) {
15
16
       top[u] = id;
17
       f[u] = ++mark;
18
       df[mark] = u;
19
       if (!u_son[u]) return;
       dfs2(u_son[u], id);
20
21
       for (int e = hd[u]; e; e = nxt[e]) {
22
           int v = to[e];
23
           if (v != u_son[u] && v != fa[u]) dfs2(v, v);
24
       }
25 }
26
27
   void update(int a, int b, int c) {
       for (; top[a] != top[b]; b = fa[top[b]]) {
28
29
           if (dep[top[b]] < dep[top[a]]) swap(a, b);</pre>
30
           update(1, mark, f[top[b]], f[b], c, 1);
31
       }
32
       if (dep[b] < dep[a]) swap(a, b);</pre>
33
       update(1, mark, f[a], f[b], c, 1);
34 }
```

4 Mathematics

4.1 Transformation

4.1.1 Fast Fourier transform (FFT)

```
1 const long double PI = acos(-1.0);
 2 const long double EPS = 1E-8;
 3
 4 class complex {
 5
       public:
 6
       long double re, im;
 7
       complex() {}
 8
       complex(long double re, long double im) : re(re), im(im) {}
 9
       complex operator + (const complex &x) {
10
           return complex(re + x.re, im + x.im);
11
12
       complex operator - (const complex &x) {
13
           return complex(re - x.re, im - x.im);
14
15
       complex operator * (const complex &x) {
16
           return complex(re * x.re - im * x.im, im * x.re + re *
              x.im);
17
18
       complex operator / (const complex &x) {
19
           return complex((re * x.re + im * x.im) / (x.re * x.re +
              x.im * x.im),
20
           (im * x.re - re * x.im) / (x.re * x.re + x.im * x.im));
21
22 };
23
24 int n, rev[N];
25
   complex F[N], w[N];
26
   void FFT(complex * F, int n, int offset) {
27
28
       for (int i = 0; i < n; i++)
29
           if (rev[i] > i) std::swap(F[i], F[rev[i]]);
30
       for (int i = 2; i <= n; i <<= 1) {
           complex wi(cos(offset * 2 * PI / i), \
31
32
                       sin(offset * 2 * PI / i));
```

```
for (int j = 0; j < n; j += i) {
33
34
               complex w(1, 0);
35
               for (int k = j, h = i >> 1; k < j + h; k++) {
36
                   complex t = w * F[k + h], u = F[k];
37
                  F[k] = u + t;
38
                  F[k + h] = u - t;
39
                  w = w * wi;
40
               }
           }
41
42
       }
43
       if (offset == -1)
           for (int i = 0; i < n; i++) F[i].re = F[i].re / n;
44
45 }
46
47 int main() {
       scanf("%d", &n);
48
49
       for (int i = 0; i < n; i++) {
50
           double x;
51
           scanf("%lf", &x);
52
           F[i].re = x;
53
       n = 1 \ll (int)ceil(log2(n));
54
55
56
       for (int i = 0; i < n; i++)
           rev[i] = (rev[i >> 1] >> 1) | \
57
58
                     ((i \& 1) << ((11)\log_2(n) - 1));
59
60
       FFT(F, n, 1);
61
       FFT(F, n, -1);
62
       for (int i = 0; i < n; i++) print(F[i], '\n');
63
       return 0;
64 }
```

4.1.2 Number-Theoretic transform (NTT)

```
1 ll n, inv_n, F[N], rev[N], q;
 2 const 11 MOD = 1004535809; // = 479 * 2 ^ 21 + 1
 3 \text{ const } 11 \text{ g} = 3;
 5 ll q_pow(ll a, ll b) {
 6
       ll ret = 1;
 7
       while (b) {
           if (b & 1) ret = ret * a % MOD;
           a = a * a % MOD;
10
           b >>= 1;
11
       }
12
       return ret;
13 }
14
15 void NTT(ll F[], ll n, int offset) {
16
       for (int i = 0; i < n; i++)
17
           if (rev[i] > i) std::swap(F[i], F[rev[i]]);
       for (int i = 2; i <= n; i <<= 1) {
18
19
           ll wi = q_pow(g, offset == 1 ? \
                            (MOD - 1) / i :\
20
21
                            MOD - 1 - (MOD - 1) / i);
           for (int j = 0; j < n; j += i) {
22
23
               11 w = 1;
               for (int k = j, h = i >> 1; k < j + h; k++) {
24
25
                   ll t = w * F[k + h], u = F[k];
26
                   F[k] = (u + t) \% MOD;
27
                   F[k + h] = ((u - t) \% MOD + MOD) \% MOD;
28
                   w = w * wi % MOD;
29
           }
30
       }
31
32
       if (offset == -1)
33
           for (int i = 0; i < n; i++) F[i] = F[i] * inv_n % MOD;
34 }
35
36 int main() {
37
       scanf("%lld", &n);
       for (int i = 0; i < n; i++) scanf("%lld", &F[i]);</pre>
38
```

```
39
       n = 1 \ll (int)ceil(log2(n));
40
       inv_n = q_pow(n, MOD - 2);
41
       for (int i = 0; i < n; i++)
42
43
           rev[i] = (rev[i >> 1] >> 1) | \
                     ((i \& 1) << ((11)\log_2(n) - 1));
44
45
46
       NTT(F, n, 1);
       NTT(F, n, -1);
47
       for (int i = 0; i < n; i++) printf("\t%lld\n", F[i]);
48
49
       return 0;
50 }
```

4.1.3 Fast WalshfiHadamard transform (FWT)

```
1 #define mod
 2 int rev; // rev = inverse of 2 in mod
 3
 4 void FWT(int A[], int n) {
 5
       for (int d = 1; d < n; d <<= 1) {
           for (int m = d << 1, i = 0; i < n; i += m) {
 6
               for (int j = 0; j < d; j++) {
 7
                  int x = A[i + j], y = A[i + j + d];
 8
 9
10
                  /*
                   xor : A[i + j] = x + y,
11
12
                          A[i + j + d] = (x - y + mod) \% mod;
13
                   and : A[i + j] = x + y;
                       : A[i + j + d] = x + y;
14
15
                   */
16
17
                  // example for ^ :
                  A[i + j] = (x + y) \% mod;
18
19
                  A[i + j + d] = (x - y + mod) \% mod;
20
              }
21
           }
22
       }
23 }
24
25
26 void UFWT(int A[], int n) {
27
       for (int d = 1; d < n; d <<= 1) {
           for (int m = d << 1, i = 0; i < n; i += m) {
28
               for (int j = 0; j < d; j++) {
29
30
                   int x = A[i + j], y = A[i + j + d];
31
                  /*
32
                   xor : A[i + j] = (x + y) / 2,
33
                          A[i + j + d] = (x - y) / 2;
34
35
                   and : A[i + j] = x - y;
                      : A[i + j + d] = y - x;
36
37
                   */
38
```

```
// example for ^ :
39
                  A[i + j] = 111 * (x + y) * rev % mod;
40
41
                  A[i + j + d] = (111 * (x - y) * rev % mod + mod) %
                     mod;
42
              }
43
          }
       }
44
45 }
46
47 void solve(int A[], int B[], int n) {
48
       FWT(A, n);
49
       FWT(B, n);
50
       for (int i = 0; i < n; i++) A[i] = 111 * A[i] * B[i] % mod;
51
       UFWT(A, n);
52 }
```

4.2 Simplex Algorithm

```
1 double c[N], A[M][N], b[M], ans;
 2 int n, m;
 3
 4 void pivot(int id, int p) {
       A[id][p] = 1 / A[id][p];
 6
       b[id] *= A[id][p];
 7
       for (int i = 1; i <= n; i++) if (i ^ p) A[id][i] *= A[id][p];
 8
       for (int i = 1; i <= m; i++) {
           if ((i ^ id) && A[i][p]) {
 9
               for (int j = 1; j \le n; j++)
10
               if (j ^ p) A[i][j] -= A[i][p] * A[id][j];
11
12
               b[i] -= A[i][p] * b[id];
               A[i][p] *= -A[id][p];
13
           }
14
15
16
       for (int i = 1; i \le n; i++) if (i \hat{p}) c[i] -= c[p] * A[id][i];
17
       ans += c[p] * b[id];
18
       c[p] *= -A[id][p];
19 }
20
21 double solve() {
22
       while (true) {
23
           int p, min_id;
24
           for (p = 1; p \le n; p++) if (c[p] > 0) break;
25
           if (p == n + 1) return ans;
26
           double mn = inf;
27
           for (int i = 1; i <= m; i++)
           if (A[i][p] > 0 \&\& Min > b[i] / A[i][p]) { mn = b[i];}
28
               min_id = i; }
29
           if (mn == inf) return mn;
30
           pivot(min_id, p);
31
       }
32 }
```

4.3 Lucas's Theorem

4.3.1 Regular Usage

when mod is a prime number.

```
1 void prepare() {
       inv[1] = 1; fac[0] = facInv[0] = 1;
       for (int i = 1; i <= n; i++) {
           if (i != 1) inv[i] = (P - P / i) * inv[P % i] % P;
           fac[i] = fac[i - 1] * i % P;
5
6
           facInv[i] = facInv[i - 1] * inv[i] % P;
7
       }
8 }
9
10 ll lucas(int n, int m) {
11
       if (n < m) return 0;
12
       11 \text{ ans} = 1;
13
       for (; m; n /= P, m /= P) ans = ans * C(n \% P, m \% P) \% P;
14
       return ans;
15 }
```

4.3.2 Advanced Usage

when *mod* is not a prime number.

```
1 ll fac(ll n, ll p, ll pR) {
 2
       if (n == 0) return 1;
 3
       11 \text{ ret} = 1;
       for (ll i = 2; i <= pR; i++) if (i % p) ret = ret * i % pR;
 5
       ret = q_pow(ret, n / pR, pR);
 6
       ll r = n \% pR;
 7
       for (int i = 2; i <= r; i++) if (i % p) ret = ret * i % pR;
 8
       return ret * fac(n / p, p, pR) % pR;
 9 }
10
11 ll C(ll n, ll m, ll p, ll pR) {
       if (n < m) return 0;
13
       11 x = fac(n, p, pR), y = fac(m, p, pR), z = fac(n - m, p, pR);
14
       11 c = 0;
15
       for (ll i = n; i; i \neq p) c += i \neq p;
       for (ll i = m; i; i \neq p) c -= i \neq p;
16
17
       for (ll i = n - m; i; i /= p) c -= i / p;
18
       ll a = x * Inv(y, pR) % pR * Inv(z, pR) % pR * q_pow(p, c, pR)
           % pR;
       return a * (mod / pR) % mod * Inv(mod / pR, pR) % mod;
19
20 }
21
22 ll lucas(ll n, ll m) {
23
       11 x = mod, re = 0;
24
       for (ll i = 2; i \le mod; i++) if (x \% i == 0) {
25
           11 pR = 1;
           while (x \% i == 0) x /= i, pR *= i;
26
27
           re = (re + C(n, m, i, pR)) \% mod;
28
       }
29
       return re;
30 }
```

4.4 Taylor's Theorem

Let $k \geq 1$ be an integer and let the function $f: R \to R$ be k times differentiable at the point $a \in R$. Then there exists a function $h_k: R \to R$ such that

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k + h_k(x)(x-a)^k$$

and $\lim_{x\to a} h_k(x) = 0$. This is called the Peano form of the remainder.

Originally from wikipedia.org

4.5 Lagrange Polynomial

Given a set of k + 1 data points

$$(x_0, y_0), \ldots, (x_i, y_i), \ldots, (x_k, y_k)$$

where no two x_j are the same, the interpolation polynomial in the Lagrange form is a linear combination

$$L(x) := \sum_{j=0}^{k} y_j \ell_j(x)$$

of Lagrange basis polynomials

$$\ell_j(x) := \prod_{0 \le m \le k, m \ne j} \frac{x - x_m}{x_j - x_m} = \frac{(x - x_0)}{(x_j - x_0)} \cdots \frac{(x - x_{j-1})}{(x_j - x_{j-1})} \frac{(x - x_{j+1})}{(x_j - x_{j+1})} \cdots \frac{(x - x_k)}{(x_j - x_k)}$$

where $0 \le j \le k$. Note how, given the initial assumption that no two x_j are the same, $x_j - x_m \ne 0$, so this expression is always well-defined. The reason pairs $x_i = x_j$ with $y_i \ne y_j$ are not allowed is that no interpolation function L such that $y_i = L(x_i)$ would exist; a function can only get one value for each argument x_i . On the other hand, if also $y_i = y_j$, then those two points would actually be one single point. For all $i \ne j$, $\ell_j(x)$ includes the term $(x - x_i)$ in the numerator, so the whole product will be zero at $x = x_i$:

$$\ell_{j\neq i}(x_i) = \prod_{m\neq i} \frac{x_i - x_m}{x_j - x_m} = \frac{(x_i - x_0)}{(x_j - x_0)} \cdots \frac{(x_i - x_i)}{(x_j - x_i)} \cdots \frac{(x_i - x_k)}{(x_j - x_k)} = 0.$$

On the other hand,

$$\ell_i(x_i) := \prod_{m \neq i} \frac{x_i - x_m}{x_i - x_m} = 1$$

In other words, all basis polynomials are zero at $x=x_i$, except $\ell_i(x)$, for which it holds that $\ell_i(x_i)=1$, because it lacks the $(x-x_i)$ term. It follows that $y_i\ell_i(x_i)=y_i$, so at each point x_i , $L(x_i)=y_i+0+0+\ldots+0=y_i$, showing that L interpolates the function exactly.

Originally from wikipedia.org

5 Computational Geometry

```
1 /* Computational Geometry Base Definition */
 3 const double eps = 1e-10;
 4 const double PI = acos(-1.);
 6 class Point {
 7
       public:
       double x, y;
 8
       Point() {}
 9
10
       Point(double _x, double _y) {
           x = _x, y = _y;
11
12
13 };
14
15 typedef Point Vector;
16 typedef std::vector<Point> Polygon;
17
18 class Circle {
19
       public:
20
       Point c;
       double r;
21
       Circle(Point c, double r) : c(c), r(r) {}
22
23
       Point point(double a) {
           return Point(c.x * cos(a) * r, c.y * sin(a) * r);
24
25
       }
26 };
27
28 class Line {
29
       public:
30
       Point P;
31
       Vector v;
32
       double ang;
33
       Line() {}
       Line(Point P, Vector v) : P(P), v(v) {
34
35
           ang = atan2(v.y, v.x);
36
37
       bool operator < (const Line &L) const {</pre>
```

```
38
          return ang < L.ang;
39
40 };
41
42 int fcmp(double x) {
       return fabs(x) < eps ? 0 : x < 0 ? -1 : 1;
44 }
45 Vector operator + (Vector a, Vector b) {
       return Vector(a.x + b.x, a.y + b.y);
47 }
48 Vector operator - (Vector a, Vector b) {
       return Vector(a.x - b.x, a.y - b.y);
50 }
51 Vector operator * (Vector a, int k) {
52
       return Vector(a.x * k, a.y * k);
53 }
54 Vector operator / (Vector a, int k) {
       return Vector(a.x / k, a.y / k);
55
56 }
57 bool operator < (const Point &a, const Point &b) {
58
       return a.x == b.x ? a.y < a.y : a.x < a.x;
59 }
60 bool operator == (const Point &a, const Point &b) {
61
       return fcmp(a.x - b.x) == 0 && fcmp(a.y - b.y) == 0;
63 double Dot(Vector a, Vector b) {
64
       return a.x * b.x + a.y * b.y;
65 }
66 double Cross(Vector a, Vector b) {
67
       return a.x * b.y - a.y * b.x;
68 }
69 double Area2(Point A, Point B, Point C) {
70
       return Cross(B - A, C - A);
71 }
72 double Length(Vector a) {
73
       return sqrt(Dot(a, a));
74 }
75 double angle(Vector a) {
       return atan2(a.y, a.x);
76
77 }
```

```
78 double Angle(Vector a, Vector b) {
79
        return acos(Dot(a, b)) / (Length(a) * Length(b));
80 }
81 Vector Rotate(Vector a, double rad) {
        return Vector(a.x * cos(rad) - a.y * sin(rad), \
82
83
        a.x * sin(rad) + a.y * cos(rad));
84 }
85 Vector Normal(Vector a) {
86
        double L = Length(a);
        return Vector(-a.y / L, a.x / L);
87
88 }
89 double Dist(Point A, Point B) {
90
        return Length(B - A);
91 }
92 bool onLeft(Line L, Point P) {
        return Cross(L.v, P - L.P) > 0;
93
94 }
95 Point GetIntersection(Line a, Line b) {
96
        Vector u = a.P - b.P;
        double t = Cross(b.v, u) / Cross(a.v, b.v);
97
98
        return a.P + a.v * t;
99 }
100
101 /* Points and Segments Messing UP */
102
103 bool isPointOnSegment(Point P, Point A, Point B) {
104
        return Cross(Vector(P - A), Vector(P - B)) == 0 && \
105
        (P.x - A.x) * (P.x - B.x) <= 0;
106 }
107 bool isSegmentCrossed(Point A, Point B, Point C, Point D) {
        int a = fcmp(Cross(B - A, C - A) * Cross(D - A, B - A)) > 0;
108
        int b = fcmp(Cross(D - C, B - C) * Cross(A - C, D - C)) > 0;
109
110
        return a && b;
111 }
112 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
113
        Vector u = P - Q;
114
        int t = Cross(w, u) / Cross(v, w);
        return P + v * t;
115
116 }
117 Point GetSegmentIntersection(Point A, Point B, Point C, Point D) {
```

```
Vector a = B - A;
118
        double s1 = fabs(Cross(a, C - A));
119
120
        double s2 = fabs(Cross(a, D - A));
121
        return Point((s1 * D.x + s2 * C.x) / (s1 + s2), \
122
        (s1 * D.y + s2 * C.y) / (s1 + s2));
123 }
124 double DistanceToLine(Point P, Point A, Point B) {
        Vector a = B - A, b = P - A;
125
126
        return fabs(Cross(a, b)) / Length(a);
127 }
128 double DistanceToSegment(Point P, Point A, Point B) {
129
        if (A == B) return Length(P - A);
130
        Vector a = B - A, b = P - A, c = P - B;
        if (fcmp(Dot(a, b)) < 0) return Length(b);</pre>
131
        else if (fcmp(Dot(a, c)) > 0) return Length(c);
132
133
        else return fabs(Cross(a, b)) / Length(a);
134 }
135
136 /* Polygons and lines messing up */
137 double Area(Polygon P) {
138
        double ret = 0;
        Point St = *P.begin();
139
140
        int s = P.size();
141
        for (int i = 1; i < s - 1; i++) {
            Point A = P[i], B = P[i + 1];
142
            ret += Cross(A - St, B - St);
143
144
        }
145
        return ret;
146 }
147
148 int isPointInPolygon(Point A, Polygon P) {
149
        int wn = 0;
150
        int s = P.size();
        for (int i = 0; i < s; i++) {
151
152
            if (isPointOnSegment(A, P[i], P[(i + 1) % s])) return -1;
153
            int k = fcmp(Cross(P[(i + 1) % s] - P[i], A - P[i]));
154
            int d1 = fcmp(P[i].y - A.y);
            int d2 = fcmp(P[(i + 1) \% s].y - A.y);
155
            if (k > 0 \&\& d1 \le 0 \&\& d2 > 0) wn++;
156
157
            if (k < 0 \&\& d2 <= 0 \&\& d1 > 0) wn--;
```

```
158
159
        return wn ? 1 : 0;
160 }
161
162 int ConvexHull(Point P[], int n, Point ch[]) {
163
        int m = 0;
        for (int i = 0; i < n; i++) {
164
165
            while (m > 1 \&\& Cross(ch[m - 1] - ch[m - 2], \
            P[i] - ch[m - 2]) \le 0) m--;
166
167
            ch[m++] = P[i];
168
169
        int k = m;
        for (int i = n - 2; i \ge 0; i--) {
170
171
            while (m > k \&\& Cross(ch[m - 1] - ch[m - 2], \setminus
172
            P[i] - ch[m - 2]) \le 0) m--;
173
            ch[m++] = P[i];
174
        }
175
        if (n > 1) m--;
176
        return m;
177 }
178
179
    int HalfplainIntersection(Line L[], int n, Point Poly[]) {
        std::sort(L, L + n);
180
181
        int hd, tl;
182
        Point *P = new Point[n];
183
        Line *q = new Line[n];
184
        q[hd = tl = 0] = L[0];
        for (int i = 1; i < n; i++) {
185
            while (hd < tl && !onLeft(L[i], P[tl - 1])) tl--;
186
            while (hd < tl && !onLeft(L[i], P[hd])) hd++;</pre>
187
188
            q[++t1] = L[i];
189
            if (fabs(Cross(q[t1].v, q[t1 - 1].v) < eps)) {
190
                tl--;
                if (onLeft(q[t1], L[i].P)) q[t1] = L[i];
191
192
            }
193
            if (hd < tl) P[tl - 1] = GetIntersection(q[tl - 1], q[tl]);</pre>
194
        }
195
        while (hd < tl && !onLeft(q[hd], P[tl - 1])) tl--;
196
        if (t1 - hd < 0) return 0;
197
        P[t1] = GetIntersection(q[t1], q[hd]);
```

```
198
        int m = 0;
199
        for (int i = hd; i <= tl; i++) Poly[m++] = P[i];
200
        return m;
201 }
202
203 double RotatingCalipers(Point P[], int n) {
204
        int x = 1;
205
        double ans = 0;
        P[n] = P[0];
206
207
        for (int i = 0; i < n; i++) {
208
            while (Cross(P[i + 1] - P[i], P[x + 1] - P[i]) > \
            Cross(P[i + 1] - P[i], P[x] - P[i])) x = (x + 1) % n;
209
            ans = std::max(ans, Dist(P[x], P[i]));
210
            ans = std::max(ans, Dist(P[x + 1], P[i + 1]);
211
212
        }
213
        return ans;
214 }
215
216 using namespace std;
217
218 /* Circle and &^%^\#@ messing up */
219
220 int getLineCircleIntersection(Line L, Circle C, double &t1, double
        & t2, vector<Point> &sol) {
        double a = L.v.x, b = L.P.x - C.c.x, c = L.v.y, d = L.P.y -
221
            C.c.y;
        double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + c * d
222
            d * d - C.r * C.r;
223
        double delta = f * f - 4 * e * g;
224
        if (fcmp(delta) < 0) return 0;</pre>
225
        if (fcmp(delta) == 0) {
226
            t1 = t2 = -f / (2 * e);
227
            sol.push_back(C.point(t1));
228
            return 1;
229
        }
        t1 = (-f - sqrt(delta)) / (2 * e);
230
        sol.push_back(C.point(t1));
231
        t2 = (-f + sqrt(delta)) / (2 * e);
232
233
        sol.push_back(C.point(t2));
        return 2;
234
```

```
235 }
236
237 int getCircleCircleIntersection(Circle C1, Circle C2,
        vector<Point> &sol) {
238
        double d = Length(C1.c - C2.c);
239
        if (fcmp(d) == 0) {
240
            if (fcmp(C1.r - C2.r) == 0) return -1;
241
            return 0;
242
        }
243
        if (fcmp(C1.r + C2.r - d) < 0) return 0;
244
        if (fcmp(fabs(C1.r - C2.r) - d) > 0) return 0;
245
        double a = angle(C2.c - C1.c);
246
        double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 *
            C1.r * d));
247
        Point p1 = C1.point(a - da), p2 = C1.point(a + da);
248
        sol.push_back(p1);
249
        if (p1 == p2) return 1;
250
        sol.push_back(p2);
251
        return 2;
252 }
253
254 int getTangents(Point p, Circle C, Vector *v) {
255
        Vector u = C.c - p;
256
        double dist = Length(u);
        if (dist < C.r) return 0;
257
        else if (fcmp(dist - C.r) == 0) {
258
            v[0] = Rotate(u, PI / 2);
259
260
            return 1;
261
        } else {
262
            double ang = asin(C.r / dist);
            v[0] = Rotate(u, -ang);
263
264
            v[1] = Rotate(u, +ang);
265
            return 2;
        }
266
267 }
268
269 int getTangents(Circle A, Circle B, Point *a, Point *b) {
270
        int cnt = 0;
271
        if (A.r < B.r) \{ swap(A, B); swap(a, b); \}
        int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) *
272
```

```
(A.c.y - B.c.y);
273
        int rdiff = A.r - B.r;
274
        int rsum = A.r + B.r;
275
        if (d2 < rdiff * rdiff) return 0;</pre>
        double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
276
277
        if (d2 == 0 \&\& A.r == B.r) return -1;
278
        if (d2 == rdiff * rdiff) {
279
            a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++;
280
            return 1;
281
        }
282
        double ang = acos(A.r - B.r) / sqrt(d2);
283
        a[cnt] = A.point(base + ang);
284
        b[cnt] = B.point(base + ang); cnt++;
285
        a[cnt] = A.point(base - ang);
286
        b[cnt] = B.point(base - ang); cnt++;
287
        if (d2 == rsum * rsum) {
288
            a[cnt] = A.point(base);
            b[cnt] = B.point(PI + base); cnt++;
289
290
        } else if (d2 > rsum * rsum) {
291
            double ang = acos(A.r + B.r) / sqrt(d2);
292
            a[cnt] = A.point(base + ang);
            b[cnt] = B.point(PI + base + ang); cnt++;
293
294
            a[cnt] = A.point(base - ang);
            b[cnt] = B.point(PI + base - ang); cnt++;
295
296
297
        return cnt;
298 }
```

6 Others

6.1 Simulated Annealing

```
1 /*
 2 * J(y)
                   Evaluation function value in state y
 3 * S(i)
                   Indicates the current status
 4 * S(i+1)
                   Indicates the new status
 5 * r:0.95
                   Used to control the speed of cooling
 6 * T:1000
                   The temperature of the system,
                   the system should initially be at a high temperature
 8 * T_min: 0.001 The lower limit of the temperature.
 9
                   If the temperature T reaches T_min, stop searching
10 */
11
12 function SA:
13
14
       while (T > T_min):
15
           dE = J(S(i + 1)) - J(S(i));
16
17
           if (dE >= 0)
18
19
           // After the expression is moved, A better solution is
20
               obtained and the mobile is always accepted
21
22
               S(i + 1) = S(i);
23
24
           // Accepts movement from S(i) to S(i+1)
25
           else if (\exp(dE / T) > \operatorname{random}(0, 1))
26
27
               S(i + 1) = S(i);
28
29
           // Accepts movement from S(i) to S(i+1)
30
           T = r * T;
31
32
33
           //Cooling annealing, 0 < r < 1. The bigger r is, the slower the
               cooling is. The smaller r is, the faster the temperature
               is lowered.
```

34	
35	//If r is too large, the search for the global optimal
	solution may be higher, but the search process is
	longer. If r is too small, the search process will be
	fast, but in the end it may reach a local optimum.
36	
37	i++;