Técnicas de clasificación: CreditCard

JOSE LÓPEZ GALDÓN ANTONIO ROMERO MARTÍNEZ-EIROA FRANCISCO DEL VAL YAGÜE

17/10/2020

ÍNDICE

- 1. INTRODUCCIÓN
- 2. MODELOS DE CLASIFICACIÓN
- 3. CONCLUSIONES FINALES

1. INTRODUCCIÓN

Objetivo del trabajo

Realizar un análisis de clasificación con la finalidad de categorizar a los individuos en función de si le concedemos la tarjeta de crédito o no.

Base de datos

Para nuestro análisis hemos seleccionado la base de datos CreditCard del paquete AER.

Nuestra variables son:

card, reports, age, income, share, expenditure, owner, selfemp, dependents, months, majorcards, active

Histograma de las variables numéricas

—

Diagramas de caja de las variables numéricas

EDA

Gráfico de correlaciones

2. MODELOS DE CLASIFICACIÓN

MODELO LINEAL

Modelo Lineal

lm (formula = card ~ ., data = CreditCard)

```
Coefficients:
##
       Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.643e-01 3.986e-02 14.155 < 2e-16 ***
## reports -1.318e-01 7.180e-03 -18.360 < 2e-16 ***
## age -6.022e-04 1.103e-03 -0.546 0.585319
## income 2.115e-02 6.158e-03 3.434 0.000612 ***
## share 1.399e+00 1.002e-01 13.963 < 2e-16 ***
## owner 7.208e-02 2.181e-02 3.305 0.000975 ***
## selfemp -5.780e-02 3.689e-02 -1.567 0.117351
## dependents -2.230e-02 8.089e-03 -2.757 0.005910 **
## months
         4.164e-05 1.567e-04 0.266 0.790513
## majorcards 6.279e-02 2.430e-02 2.584 0.009868 **
## active 9.287e-03 1.587e-03 5.854 6.07e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Modelo Lineal

Matriz de confusión y precisión

	NO	YES
NO	103	4
YES	193	1019

accuracy(1m) = 85 %

Modelo Lineal AIC

lm (formula = card ~ reports + income + share +
owner + selfemp + dependents + majorcards +
active, data = CreditCard)

	NO	YES
NO	104	2
YES	192	1021

accuracy(1m) = 85,29 %

MODELO LOGÍSTICO

Modelo Logístico

```
glm(formula = card ~ ., data = CreditCard,
family = binomial(link = logit))
```

```
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -5.089e+00 9.601e-01 -5.300 1.16e-07 ***
## reports -2.504e+00 1.010e+00 -2.479 0.01318 *
## age 1.631e-02 2.219e-02 0.735 0.46239
## income 3.459e-01 1.496e-01 2.312 0.02080 *
## share 3.020e+03 6.235e+02 4.844 1.27e-06 ***
## owner 2.531e-01 5.568e-01 0.454 0.64948
## selfemp 4.853e-01 6.816e-01 0.712 0.47646
## dependents -6.529e-01 2.630e-01 -2.482 0.01305 *
## months -4.157e-03 4.119e-03 -1.009 0.31296
## majorcards 3.502e-01 5.527e-01 0.634 0.52634
## active
             9.529e-02 3.455e-02 2.758 0.00581 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Modelo Logístico

Matriz de confusión y precisión

	NO	YES
NO	294	23
YES	2	1000

accuracy(glm) = 98,10 %

Modelo Logístico

Curva ROC

MODELO LDA

Análisis Discriminante Lineal

 $lda(card \sim ., data = CreditCard)$

	NO	YES
Probabilidades a priori	22,44 %	77,56 %

Análisis Discriminante Lineal

Matriz de confusión y precisión

	NO	YES
NO	114	6
YES	182	1017

accuracy(1da) = 85,75 %

Análisis Discriminante Lineal

Gráficos de partición

MODELO QDA

Análisis Discriminante Cuadrático

qda(card ~ ., data = CreditCard)

	NO	YES
Probabilidades a priori	22,44 %	77,56 %

Análisis Discriminante Cuadrático

Matriz de confusión y precisión

	NO	YES
NO	295	23
YES	1	1000

accuracy(qda) = 98,18 %

Análisis Discriminante Cuadrático

Gráficos de partición

3. CONCLUSIONES

Precisión de los modelos

Modelo Lineal	Modelo Lineal AIC	Modelo Logístico	LDA	QDA
85,06 %	85,29 %	98,10 %	85,75 %	98,18 %

Matriz de coste

	NO	YES
NO	0	10
YES	3	-3

Coste de los modelos

Modelo Lineal	Modelo Lineal AIC	Modelo Logístico	LDA	QDA
-2.438	-2.467	-2.764	-2.445	-2.767

^{*} cantidades en 1.000 USD