YTÜ	YTÜ FİZİK BÖLÜMÜ, 2016-2017 GÜZ DÖNEMİ FIZ1001 Fizik-1 Ara Sınav-II		Tarih : 10 Aralık 2016				Süre: 100 dk.			
YTÜ			P1	P2	Р3	P4	P5	P6	TOPLAM	
Adı Soya	ık									
Öğrenci Numarası										
Bölüm					<u> </u>					
Grup No	Sınav Yeri	Öğrencinin İmzası	YÖK'ün 2547 sayılı Kanunun Öğrenci Disiplin Yönetmeliğinin 9. Maddesi olan "Sınavlarda kopya yapmak ve yaptırmak veya buna teşebbüs etmek" fiili işleyenler bir veya iki yarıyıl uzaklaştırma cezası alırlar.							
Dersi veren Öğretim Üyesinin Adı Soyadı			Hesap makinası kullanılmayacaktır. Problemlerle ilgili herhangi bir soru sormayınız. Herhangi bir açıklama kesinlikle yapılmayacaktır. Cözümlerinizi okunaklı ve size avrılan alanlarda yapınız.							

 $m_1=2~kg$ kütleli ve $\vec{v}_1=10\hat{\imath}~(m/s)$ hızı ile hareket eden bir cisim, $m_2=4~kg$ kütleli ve $\vec{v}_2=-2\hat{\imath}~(m/s)$ hızla hareket eden cisim ile kafa kafaya (merkezi) bir çarpışma yapmaktadır.

- (i) Çarpışma tamamen esnek olmayan türden ise;
- a) Cisimlerin son hızlarını bulunuz.

$$m_{1}\vec{v}_{1} + m_{2}\vec{v}_{2} = (m_{1} + m_{2})\vec{v}_{s}$$
 2
 $2.10\hat{i} + 4.(-2\hat{i}) = (2+4)\vec{v}_{s}$ 2
 $12\hat{i} = 6\vec{v}_{s}$
 $\vec{v}_{s} = 2\hat{i} \text{ mis}$ 1

b) Çarpışma $10^{-3} s$ sürmüş ise m_2 'nin m_1 'e uyguladığı ortalama kuvveti bulunuz.

$$\vec{F} = \frac{\Delta \vec{P}_1}{\Delta t} = \frac{m_1(\vec{V}_S - \vec{V}_1)}{\Delta t} \mathbf{2}$$

$$\vec{F} = 2 \frac{(2\hat{1} - 10\hat{1})}{10^3} = \frac{-16\hat{1}}{10^3} \mathbf{1}$$

$$\vec{F} = 16 \times 10^3 (-\hat{1}) \times \mathbf{2}$$

c) Kaybolan veya kazanılan enerjiyi hesaplayınız.

$$\Delta K = K_5 - K_i$$
 1

 $\Delta K = \frac{1}{2} (m_{1} + m_{2}) V_{5}^{2} - \frac{1}{2} m_{1} V_{1}^{2} - \frac{1}{2} m_{2} V_{2}^{2}$
 $\Delta K = \frac{1}{2} \cdot 6 \cdot 4 - \frac{1}{2} \cdot 2 \cdot 100 - \frac{1}{2} K_{1} \cdot 4$
 $\Delta K = 12 - 100 - 8$
 $\Delta K = -96j$ Energi kaybolur.

(ii) Çarpışma esnek çarpışma ise;

a) Cisimlerin çarpışmadan sonraki hızlarını bulunuz (\vec{v}_1' ve \vec{v}_2').

Kinetik Enerji Korunumu;

$$\frac{1}{2}$$
 m $V_1^2 + \frac{1}{2}$ m $_2V_2^2 = \frac{1}{2}$ m $_1V_1^2 + \frac{1}{2}$ m $_2V_2^2$
 $\frac{1}{2}$ $\frac{1}{$

$$(1) \Rightarrow 6\hat{1} = \vec{V}_1 + 24\hat{1} + 2\vec{V}_1'$$

$$-18\hat{1} = 3\vec{V}_1' \Rightarrow \vec{V}_1' = -6\hat{1} \text{ m/s}$$

M kütleli ve R yarıçaplı bir disk, durgun halden başlayarak, sabit açısal ivme ile sabit bir eksen etrafında dönmektedir. $(I_{disk} = \frac{1}{2}MR^2)$

a) Diskin üzerinde, dönme ekseninden r kadar uzaklıkta bir noktanın a_t teğetsel ivmesinin, merkezcil ivme a_r 'ye eşit olacağı "t" zamanını açısal ivmeye (α) bağlı olarak yazınız.

$$\begin{cases}
a_{t} = r\alpha \\
\alpha_{r} = rw^{2} \text{ ve } w = y_{0} + \alpha + \alpha + \alpha \\
\alpha_{t} = \alpha_{r} \\
4\alpha = x (\alpha + x)^{2} \Rightarrow 1 = \frac{1}{r\alpha} (\alpha + x)^{2} \Rightarrow 1$$

b) Bu t anındaki açısal yer değiştirmeyi (θ) bulunuz.

$$\Delta \theta = \frac{1}{2} \propto + \frac{1}{2} \propto +^{2}$$

$$\Delta \theta = \frac{1}{2} \propto + \frac{1}{2}$$

$$\Delta \theta = 0.5 \text{ rad}$$

$$2$$

c) t anına kadar diskin üzerinde yapılan işi M, R ve α cinsinden bulunuz.

$$W = \Delta K_{D}.$$

$$W = \frac{1}{2} I W_{s}^{2} - \frac{1}{2} I W_{i}^{2}; W_{i} = 0$$

$$W_{s} = \alpha t = \frac{\alpha}{12} \Rightarrow W_{s} = \sqrt{\alpha} \frac{1}{3} \frac{\sqrt{\alpha}}{\sqrt{3}}$$

$$W = \frac{1}{2} \cdot \frac{1}{2} M R^{2} \cdot (\sqrt{\alpha})^{2}$$

$$W = \frac{M R^{2} \alpha}{4} \cdot \frac{1}{2}$$

PROBLEM 3

Şekilde görüldüğü gibi her biri 3M kütleli ve 2R boyunda olan üç özdeş çubuk birbirlerine dik olacak şekilde yerleştirilmiştir. Çubukların uçlarına şekildeki gibi $m_1=\frac{M}{2}$, $m_2=M$ ve $m_3=2M$ noktasal kütleleri sabitlenmiştir.

(m kütleli l uzunluklu bir çubuk için $I_{KM}=rac{1}{12}ml^2$ 'dir)

a) Sistem y-ekseni etrafında sabit ω açısal hızı ile dönerse açısal momentumu (\vec{L}), M, R ve ω cinsinden bulunuz.

3M kütleli 2R uzunluklu Gubuk igin;

$$\Gamma_{KM}^{G} = \frac{1}{12} 3M (2R)^{2} \Rightarrow \Gamma_{KM}^{G} = MR^{2}$$

b) Sistem z-ekseni etrafında sabit α açısal ivme ile dönerse torku ($\vec{\tau}$), M, R ve α cinsinden bulunuz.

$$I_{z} = 2I_{Km}^{4} + 2m_{1}R^{2} + 2m_{2}R^{2}$$

$$I_{z} = 2(MR^{2} + MR^{2} + MR^{2})$$

Şekilde görüldüğü gibi m_2 kütleli bir silindir (yo-yo), kütlesi m_1 olan bir cisme kütlesiz bir makara ve ip yardımı ile bağlanmıştır. m_1 kütlesi aşağıya doğru hareket ederken, yo-yo yatayla θ açısı yapan bir eğik düzlem üzerinde yukarı doğru yuvarlanmaktadır. Eğik düzlem ile silindir arasında sürtünme yoktur.

Burada $m_1=10~kg$, $m_2=5~kg$, r=0.5~m, $g=10~m/s^2~sin37=0.6$, cos37=0.8~ve~M kütleli R yarıçaplı silindir için merkezinden geçen eksene göre eylemsizlik momenti $I=\frac{1}{2}MR^2$.

a) Her bir cisim için kuvvet diyagramlarını çizerek <u>hareket</u> <u>denklemlerini yazınız.</u>

 $\underline{m_1}$:

 m_2 :

$$\sum \overline{x} = T - m_2 g \sin \theta = m_2 o_{12} (2)$$

$$\sum \overline{y} = n - m_2 g \cos \theta = 0 (3)$$

$$\sum \overline{z} = \overline{z} = T \cdot \Gamma = I \times 2$$

$$T = \frac{\Gamma}{\Gamma} \propto (4).$$

b) α açısal ivmesini a_1 , a_2 ve r cinsinden yazınız.

$$a_1 - a_2 = r \alpha$$
 Yuvarlanma sarti:
$$\alpha = \frac{a_1 - a_2}{r}$$

c) a_1 ivmesinin büyüklüğünü bulunuz.

$$(4) \Rightarrow T = \frac{I}{\Gamma} \left(\frac{q_1 - q_2}{\Gamma} \right) = \frac{I}{r^2} \left(\frac{q_1 - q_2}{\Gamma} \right)$$

$$I = \frac{1}{2} M_2 \cdot (2r)^2 \Rightarrow I = \frac{1}{2} \cdot 5 \cdot 4r^2$$

$$I = 10 r^2$$

$$T = 10 (q_1 - q_2) (5)$$

(2) => T-5.10 0,6=502.

$$a_2 = \frac{1}{5} (T-30) \Rightarrow (5)^7 + e + az + III.$$

 $T = 1091 - 2(T-30)$
 $3T = 1091 + 60$ (6)

(1)=)
$$100-T=10.01$$

 $T=100-1001$ (7)
(7) ve (6) don

$$30\% - 3\% a_1 = 10\% a_1 + 16\%$$

$$24 = 491 \Rightarrow \boxed{a_1 = 6m/s^2}$$

 m_1 ve m_2 kütleli iki kişi buzlu zemin üzerinde duran L uzunluklu M kütleli bir kalasın uç noktalarında durmaktadır (Şekil-1). Aynı anda m_1 kütleli kişi $2\,m$ sağa ve m_2 kişi ise $5\,m$ sola doğru hareket etmiştir (Şekil-2). Bu durumda kalasın sol ucu ne kadar yer değiştirir. İlk durumdaki m_1 'in konumunu orijin seçiniz. (Her iki şekilde sistem durgundur).

$$(m_1 = 40 \text{ kg}, m_2 = 50 \text{ kg}, M = 10 \text{ kg}, L = 10 \text{ m}).$$

Kütle merkezinin konumu degismez.

Xxxx = Xxx veya ZZo=ZZo

 $X = \frac{m_1 - x_1 + m_2 x_2 + m_1 x_3}{m_1 + m_2 x_2 + m_3} = \frac{m_1 x_1' + m_2 x_2' + m_3'}{m_1 + m_2 + m_3}$

$$40.0 + 50.10 + 10.05 = 40(2+d) + 50(5+d) + 10(5+d)$$

550 = 80 + 40d + 250 + 50d + 50 + 10d

$$17 = 10 d$$

$$d = \frac{17}{10} \Rightarrow [d = 1.7 m]$$

M kütleli ve R yarıçaplı bir küre θ açılı bir eğik düzlemde yukarı doğru yuvarlanmaktadır. Eğer kürenin başlangıç hızı v_0 ise, kürenin aşağı doğru yuvarlanmadan önce kat edeceği l mesafesini bulunuz ($I=\frac{2}{5}MR^2$).

$$K_{i} + U_{i} = K_{s} + U_{s}$$

$$\frac{1}{2} I_{km} w^{2} + \frac{1}{2} M V_{o}^{2} = 0 + Mgh$$

$$w = \frac{V_{o}}{R} (2)$$

$$\frac{1}{2} M R^{2} U_{o}^{2} + \frac{1}{2} M V_{o}^{2} = Mgl Sin \theta$$

$$\ell = \frac{7 \sqrt{6^2}}{1098in0}$$