Sequence and Series

Yashas.N

1 Trivial properties

- The below properties are for in general complete spaces. whose defining property is the following point
- ullet Cauchy sequence \iff Convergent sequence

(in general metric spaces \mathbb{R}^n for $n \in \mathbb{N}$ are complete in particular \mathbb{R} and \mathbb{C} are complete).

• $a_n \to 0$ as $n \to \infty$ is a necessary condition for a series $\sum_{n=1}^{\infty} a_n$ to converge. (not sufficient eg: $\sum_{n=1}^{\infty} 1/n$ harmonic series)

2 Tests for positive termed series

ullet Below tests apply for series whose general terms are positive only (i.e. ≥ 0)

(Note : it can also be used to check for absolute convergence as taking absolute value of each term results in terms ≥ 0)

- Comparison test: for series $\sum u_n$, $\sum v_n$ if $u_n \leq k \times v_n$ for k > o then u_n follows behaviour (convergence or divergence) of v_n
- Limit form of comparison test for series $\sum u_n, \sum v_n$ if

$$l = \lim_{n \to \infty} \frac{u_n}{v_n}.$$

thon

- \blacksquare if $l\neq o$ then $\sum u_n$ follows behaviour of $\sum \nu_n.$
- if l = 0 then $\sum u_n$ converges if $\sum v_n$ converges.

(as $o < u_m \le v_m$ holds for sufficiently large m, and also if $\sum u_n$ diverges then $\sum v_n$ diverges).

- if $l = \infty \sum u_n$ diverges if $\sum v_n$ diverges. (as $o < v_m \le u_m$ holds like preceding point).
- Cauchy's Condensation test: if f(n) is a monotone decreasing sequence of positive numbers (i.e. $f(n) > o, f(k) \ge f(k+1) \ \forall k \in \mathbb{N}$) then for $m \in \mathbb{N} \sum f(n)$ and $\sum m^n f(m^n)$ have same behaviour. (Mostly used in the form $\sum 2^n f(2^n)$.)
- Raabe's Test: for series $\sum u_n$ of positive real numbers if $D_n = n \left(\mathbf{1} \frac{u_n}{u_{n+1}} \right)$ and

$$D = \limsup D_n$$
, $d = \liminf D_n$

then:

- if D < 1 series converges
- if $\mathbf{d} > \mathbf{1}$ series diverges
- no conclusions if $\mathbf{d} \leq \mathbf{1} \leq \mathbf{D}$
- Integral test : if $f(x) \ge 0$ in $[1, \infty)$ and is monotonically decreasing then $\sum_{n=1}^{\infty} f(n)$ and $\int_{1}^{\infty} f(x) dx$ follow same behaviour.
- Intergral inequality : if $\sum_{n=1}^{\infty} f(n)$ is as above and converges to s then the for partial sums $s_n = \sum_{n=1}^{\infty} f(k)$ we have

$$\int_{n+1}^{\infty} f(t)dt \le s - s_n \le \int_{n}^{\infty} f(t)dt$$

3 General tests

• Ratio test for series $\sum z_n$ with non zero terms $\in \mathbb{C}$ if $r_n = \left| \frac{z_{n+1}}{z_n} \right|$

$$r = \lim \inf r_n$$
, $R = \lim \sup r_n$.

then:

- if R < 1 series converges absolutely
- \blacksquare if $\mathbf{r} > \mathbf{1}$ series diverges
- no conclusion of behaviour if $r \le 1 \ge R$
- Root test : for series $\sum z_n$ if

$$L = \limsup |z_n|^{1/n}$$

then:

- if L < 1 series converges absolutely.
- \blacksquare if L > 1 series diverges.
- if L = 1 no conclusion.

Miscellaneous series properties

- if $\sum (x_n + y_n)$ converges then both $\sum x_n$ and $\sum y_n$ converge or diverge (one cannot diverge and another converge).
- if $\sum a_n$ and $\sum b_n$ converge absolutely then $\sum c_n = \sum a_n b_n$ converges absolutely.
- restatement of above point : $a_n, b_n > o$ and $\sum a_n$, $\sum b_n$ converge then $\sum a_n b_n$ converges
- if $a_n \geq 0$ and $\sum a_n$ converges then $\sum a_n^k$ for $k \ge 1$ converges (as $a_n \to 0$, for sufficiently large n we get $a_n < 1 \implies (a_n)^k \le a_n$ and by comparison test convergence follows).
- if $o < a_n \rightarrow a$ then

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n} \to a$$

- ullet for converse of above point if s_n converges and if for $a_n = s_n - s_{n-1}$, $\lim na_n = 0$ then a_n converges
- similar to above point if $|na_n| \leq M < \infty \ \forall n$ and $\lim s_n = s$ then $a_n \to s$
- if $o < a_n \rightarrow a$ then

$$(\alpha_1.\alpha_2...\alpha_n)^{1/n} \to \alpha$$

- if $\sum a_n$ converges then $\sum \frac{\sqrt{a_n}}{n}$ converges
- \bullet if $a_n \rightarrow o$ and $\sum a_n$ converges then $\sum \sqrt{a_n a_{n+1}}$ converges.
- Series $\sum_{n=0}^{\infty} \left(\frac{az+b}{cz+d}\right)^n$ for |a| = |c| > 0 converges whenever

$$\frac{|\mathbf{b}|^2 - |\mathbf{d}|^2}{2} < \mathbf{Re}(z(c\bar{\mathbf{d}} - \alpha\bar{\mathbf{b}})).$$

or in general if $|a| \neq |c|$, then converges whenever

$$\frac{(|a|^2-|c|^2)|z|^2+|b|^2-|d|^2}{2} < \text{Re}(z(c\bar{d}-a\bar{b})).$$

- Dirichlet's Test :If $\left\{\sum_{k=1}^{n} a_k\right\}$ is a bounded sequence and $\{b_n\}$ is an null sequence $(b_n \rightarrow$ o as $n\to\infty)$ then $\sum_{n=\tau}\alpha_nb_n$ converges.
- Abel's Test : if $\{x_n\}$ is convergent monotone sequence and series $\sum y_n$ is convergent then $\sum x_n y_n$ is convergent.
- if $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ diverges, $s_n = \sum_{n=1}^{\infty} a_n$

- $\blacksquare \sum_{n=1}^{\infty} \frac{a_n}{s_n} \text{ diverges}$
- $\blacksquare \sum_{n=1}^{\infty} \frac{a_n}{s_n^2} \text{ converges}$
- For any sequence $\{a_n\}$

$$\left| \liminf \left| \frac{\alpha_{n+1}}{\alpha_n} \right| \leq \lim \inf \left| \alpha_n \right|^{1/n}$$

$$\leq \limsup |\mathfrak{a}_n|^{1/n} \leq \limsup \left|\frac{\mathfrak{a}_{n+1}}{\mathfrak{a}_n}\right|$$

- ullet if $\sum a_n$ converges and $\{b_n\}$ is monotonic and bounded then $\sum a_n b_n$ converges
- **Leibniz Theorem** : if $\{c_n\}$ is such that $c_n > 0$ and is monotonic decreasing to $\mathbf{0}$ (i.e. c_{n+1}

$$c_n$$
, $c_n \to 0$) then $\sum_{n=1}^{\infty} (-1)^{n+1} c_n$ converges.

- \bullet a series $\sum \alpha_n$ is said to be absolutely convergent if $\sum |a_n|$ converges
- if a series is absolutely convergent the it is convergent.

• if
$$\sum_{n=0}^{\infty} a_n$$
 converges absolutely, $\sum_{n=0}^{\infty} a_n = A$, $\sum_{n=0}^{\infty} b_n = B$ and $c_n = \sum_{k=0}^{n} a_k b_{n-k}$ (Cauchy product) then $\sum_{n=0}^{\infty} c_n = AB$

- Cauchy product of two absolutely convergent series is absolutely convergent.
- if $\{k_n\}$ is a sequence in \mathbb{N} such that every integer appears once and if $a'_n = a_{k_n}$ then a rearrangement of $\sum a_n$ is of type $\sum a'_n$
- Riemann Rearrangement Theorem : if series of real numbers $\sum a_n$ converges but not absolutely then for any $-\infty \geq \alpha \geq \beta \geq \infty$ series $\sum a_n$ can be rearranged to $\sum a_n'$ with partial sum s'_n such that

 $\lim \inf s'_n = \alpha$ and $\lim \sup s'_n = \beta$

• for a given double sequence $\{a_{ij}\}$ for i =1, 2, ..., j = 1, 2, ... if $\sum_{i=1}^{\infty} |a_{ij}| = b_i$ and $\sum b_i$ converges then

$$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\alpha_{ij}=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\alpha_{ij}$$

, same holds true i.e. summation can be changed if each of $a_{ij} \geq o$ also.

$$\lim_{n\to\infty}\sum_{r=\alpha}^{\beta}\frac{\mathbf{1}}{n}f(\frac{r}{n})=\int\limits_{\alpha}^{b}f(x)dx$$

where replace:

$$r/n \to x$$

$$1/n \to dx$$

$$a = \lim_{n \to \infty} \alpha/n$$

$$b = \lim_{n \to \infty} \beta/n$$

(to derive use simple notion of Riemann Integration: if f is integrable in [a,b] then for every $\epsilon \rightarrow 0$ $\left| \sum_{i=1}^{n} f(t_i) \Delta(x_i) - \int_{\Omega} f(x) d(x) \right| < \epsilon \text{ holds for some parti-}$ tion $p([x_i, x_{i+1}]_1^{n-1})$ of [a, b] and for any $t_i \in [x_i, x_{i+1}]$

Some limits and theorems

• L'Hospital Rule : if f, g are real differentiable functions in (a,b) (for $-\infty \le a < b \le \infty$) such that $g'(x) \neq o$ in (a,b) then as $x \rightarrow a$ $f(x) \rightarrow o, g(x) \rightarrow o \text{ or if } g(x) \rightarrow \pm \infty \text{ and}$ if $\frac{f'(x)}{g'(x)} \to A$ then $\frac{f(x)}{g(x)} \to A$ (analogous result holds for $x \to b$) (is also true if f, g are complex valued and $f(x) \rightarrow o, g(x) \rightarrow o$

- for $f, g : D \subset \mathbb{R} \to \mathbb{R}$, if $\lim_{x \to c} f(x) = 0$ and g(x) is bounded in some deleted neighbourhood of c then $\lim_{x\to c} f(x)g(x) = 0$
- if $\lim_{x \to c} f(x) = 1$ and g is continuous at 1 or in some set whose limit point is 1 then $\lim_{x \to c} g(f(x)) = \lim_{x \to 1} g(x)$
- $\lim_{n\to\infty} \sum_{m=1}^{n} \frac{1}{m} \ln n = \gamma$ a fixed number
- if a > 1 and p(n) is a fixed polynomial in n then $\lim_{n \to \infty} \frac{a^n}{p(n)} = \pm \infty$ (depends on p(n), precisely on coefficient of largest degree term).
- $\lim_{n \to \infty} n^{1/n} = 1$ in particular if $|z| \neq 0$ then $\lim_{n\to\infty}|z|^{1/n}=1$
- $\lim_{n\to\infty} \left(\mathbf{1} + \frac{a}{n}\right)^{1/n} = e^a$
- for $\alpha \in \mathbb{R}$, p > 0 we have $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$
- if α , $\beta > 0$ and $x \in \mathbb{R}$ then :
- $\lim_{x \to \infty} \frac{(\ln(x))^{\alpha}}{x^{\beta}} = 0$ $\lim_{x \to \infty} \frac{x^{\alpha}}{e^{\beta x}} = 0$
- from some preceding points we get growth of ln(n) < growth of n < growth of p(n)(for non constant p(n).) \leq growth of a^n $(a > 1) \leq$ growth of n!.
- series $\sum_{p=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for $p \le 1$
- series $\sum_{n=2}^{\infty} \frac{\mathbf{1}}{n(\ln n)^p}$ converges for $p > \mathbf{1}$ and diverges for $p \le 1$ this result can be continued to series like $\sum_{n=1}^{\infty} \frac{1}{n \ln n (\ln \ln n)^p}$

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n \ln \ln n (\ln \ln \ln n)^{p}}$$
 and so on.

 \bullet for series such as $\sum_{n=o}^{\infty} \mathfrak{q}^n z^{kn}$ for some $k \geq o$

fixed then this series is equal to series $\sum_{n\geq 0} \alpha_n z^n$

where
$$\alpha_n = \begin{cases} q^{n/k} & \text{if } n = \text{0, k, 2k, 3k, ...} \\ \text{0} & \text{otherwise} \end{cases}$$
 Thus $R = \underset{\infty}{\text{lim}} \sup \textbf{1}/|\alpha_n|^{\textbf{1/n}} = q^{-\textbf{1/k}}.$ for

 $\sum^{\infty} \mathfrak{q}^{\mathfrak{n}} z^{k\mathfrak{n}} \text{ series.}$

6 Uniform Convergence

- define uniform norm for a function $f : A \subseteq$ $\mathbb{R} \to \mathbb{R}$ as $||\mathbf{f}||_{\mathbf{A}} = \sup(|\mathbf{f}(\mathfrak{a})| \text{ for } \mathfrak{a} \in \mathbf{A})$
- A sequence of bounded functions $\{f_n\}$ in \mathbb{R} converges uniformly to f in domain $A \subseteq R$ iff $||f_n-f||_A\to o$ i.e. the uniform norm of f_n-f converges too.
- one way to find the uniform norm for a func-

tion is to differentiate it and find its maximum on domain.

• **Dinni's Theorem** : if $\{f_n\}$ is a monotone sequence of continuous functions on [a, b] (closed and bounded) that converges to f which is continuous on [a, b] then the convergence is uniform.

References

- [1] Rudin W.: Principles of Mathematical Analysis, McGraw-Hill, 3, (1976).
- [2] Ponnusamy S., Silverman H.: Complex Variables and Applications, Birkhauser, (206).
- [3] Robert G. Bartle, Donald R. Sherbert: Introduction to Real Analysis, Wiley publishers, 4, (2011).