The role of intrinsic motivations in learning vocal mappings

a developmental robotics study

Clément Moulin-Frier and Pierre-Yves Oudeyer Flowers-team, Inria/ENSTA-Paritech

Objective: Learning forward and/or inverse sensorimotor models

Objective: Learning forward and/or inverse sensorimotor

models

Problems: High dimensional, non-linear, redundant, limited

time

Objective: Learning forward and/or inverse sensorimotor

models

Problems: High dimensional, non-linear, redundant, limited

time

Solution: Need to drive the learning process ⇒ exploration

strategies

Goal babbling

- Intrinsically-motivated (or active) exploration
 - (Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Baldassare and Mirolli, 2013; Barlo et al., 2004,
 ...)
- ⇒ Combining both principles in a unified probabilistic model
- ⇒ Relevance for infant (early vocal) development

Goal babbling

- Intrinsically-motivated (or active) exploration
 - (Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Baldassare and Mirolli, 2013; Barlo et al., 2004,
 ...)
- ⇒ Combining both principles in a unified probabilistic model
- ⇒ Relevance for infant (early vocal) development

Goal babbling

- Intrinsically-motivated (or active) exploration
 - (Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Baldassare and Mirolli, 2013; Barto et al., 2004
- ⇒ Combining both principles in a unified probabilistic model
- ⇒ Relevance for infant (early vocal) development

Goal babbling

(Rolf et al., 2009, 2012, 2013)

- Intrinsically-motivated (or active) exploration
 - (Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Baldassare and Mirolli, 2013; Barto et al., 2004
- ⇒ Combining both principles in a unified probabilistic model
- ⇒ Relevance for infant (early vocal) development

Goal babbling

(Rolf et al., 2009, 2012, 2013)

- Intrinsically-motivated (or active) exploration
 - (Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Baldassare and Mirolli, 2013; Barto et al., 2004,
- ⇒ Combining both principles in a unified probabilistic model
- ⇒ Relevance for infant (early vocal) development

Goal babbling

(Rolf et al., 2009, 2012, 2013)

- Intrinsically-motivated (or active) exploration
 - (Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Baldassare and Mirolli, 2013; Barto et al., 2004,
 ...)
- ⇒ Combining both principles in a unified probabilistic mode
- ⇒ Relevance for infant (early vocal) developmen

Goal babbling

(Rolf et al., 2009, 2012, 2013)

- Intrinsically-motivated (or active) exploration
 - (Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Baldassare and Mirolli, 2013; Barto et al., 2004,
 ...)
- ⇒ Combining both principles in a unified probabilistic model
- ⇒ Relevance for infant (early vocal) development

Goal babbling

(Rolf et al., 2009, 2012, 2013)

- Intrinsically-motivated (or active) exploration
 - (Schmidhuber, 2006; Oudeyer and Kaplan, 2007; Baldassare and Mirolli, 2013; Barto et al., 2004,
 ...)
- ⇒ Combining both principles in a unified probabilistic model
- ⇒ Relevance for infant (early vocal) development

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_a \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - a Undate the model
- Goal babbling
 - Sample $s_{\alpha} \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_{\sigma} \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Undate the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_{\sigma} \in S$
 - Optimization procedure
 - Observe s = f(m)

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_{\sigma} \in S$
 - Optimization procedure
 - Observe s = f(m)

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_a \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - ullet Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - ullet Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

- Motor M and sensory S spaces
- Environment s = f(m)
 - unknown
- Motor babbling
 - Sample $m \in M$
 - Execute m
 - Observe s = f(m)
 - Update the model
- Goal babbling
 - Sample $s_g \in S$
 - Optimization procedure
 - Observe s = f(m)
 - Update the model

Maximizing the learning progress

Maximizing the learning progress

Maximizing the learning progress

time spent in each task when maximizing learning progress

Outline

- Probabilistic unification
- 2 Results

Choice space X	Interest distribution $p(X)$	
	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

```
: while true do

2: x \sim p(X)

3: y \sim p(Y \mid x)

4: m = M((x, y))

5: s = f(m) + \epsilon

6: e = distance(S(x, y), s)

7: update(p(M S), (m, s))

8: update(p(X), (x, e))
```

Choice space X	Interest distribution $p(X)$	
	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$		Active goal exploration (SAGG-RIAC)

```
: while true do

2: x \sim p(X)

3: y \sim p(Y \mid X)

4: m = M((x, y))

5: s = f(m) + \epsilon

6: e = distance(S(x, y), s)

6: update(p(M S), (m, s))

6: update(p(X), (x, e))
```

Choice space X	Interest distribution $p(X)$	
	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

```
: while true do

2: x \sim p(X)

3: y \sim p(Y \mid X)

4: m = M((x, y))

5: s = f(m) + \epsilon

6: e = distance(S(x, y), s)

6: update(p(M S), (m, s))

6: update(p(X), (x, e))
```

Choice space X	Interest distribution $p(X)$	
	Random exploration	Active exploration
Motor babbling: $X = M, Y = S$		Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

```
1: while true do

2: x \sim p(X)

3: y \sim p(Y \mid x)

4: m = M((x, y))

5: s = f(m) + \epsilon

6: e = distance(S(x, y), s)

7: update(p(M S), (m, s))

8: update(p(X), (x, e))
```

Choice space X	Interest dist	ribution $p(X)$	
	Random exploration	Active exploration	
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)	
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)	

```
: while true do

2: x \sim p(X)

3: y \sim p(Y \mid X)

4: m = M((x, y))

5: s = f(m) + \epsilon

6: e = distance(S(x, y), s)

6: update(p(M S), (m, s))

6: update(p(X), (x, e))
```

Choice space X	Interest dist	Interest distribution $p(X)$	
	Random exploration	Active exploration	
Motor babbling: $X = M, Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)	
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)	

```
: while true do

2: x \sim p(X)

3: y \sim p(Y \mid X)

4: m = M((x, y))

5: s = f(m) + \epsilon

6: e = distance(S(x, y), s)

7: update(p(M S), (m, s))

8: update(p(X), (x, e))
```

Choice space X	Interest distribution $p(X)$	
	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

```
: while true do

2: x \sim p(X)

3: y \sim p(Y \mid X)

4: m = M((x, y))

5: s = f(m) + \epsilon

6: e = distance(S(x, y), s)

7: update(p(M S), (m, s))

8: update(p(X), (x, e))
```

Choice space X	Interest distribution $p(X)$	
0110100 00000 71	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

```
while true do
x \sim p(X)
y \sim p(Y \mid X)
m = M((x, y))
s = f(m) + \epsilon
e = distance(S(x, y), s)
update(p(M S), (m, s))
update(p(X), (x, e))
```

Choice space X	Interest distr	ribution $\rho(X)$
0110100 00000 71	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

```
: while true do

: x \sim p(X)

: y \sim p(Y \mid x)

: m = M((x, y))

: s = f(m) + \epsilon

: e = distance(S(x, y), s)

: update(p(M \mid S), (m, s))

: update(p(X), (x, e))
```

Choice space X	Interest distribution $p(X)$	
	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

Sensorimotor model p(M S)

```
2: x \sim p(X)

3: y \sim p(Y \mid x)

4: m = M((x, y))

5: s = f(m) + \epsilon

6: e = distance(S(x, y), s)

7: update(p(M S), (m, s))

8: update(p(X), (x, e))
```

Choice space X	Interest distr	Interest distribution $p(X)$	
0110100 00000 71	Random exploration	Active exploration	
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)	
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)	


```
1: while true do
2: x \sim p(X)
3: y \sim p(Y \mid x)
4: m = M((x, y))
5: s = f(m) + \epsilon
6: e = distance(S(x, y), s)
7: update(p(M S), (m, s))
8: update(p(X), (x, e))
```

Choice space X	Interest distribution $p(X)$	
0110100 00000 71	Random exploration	Active exploration
Motor babbling: $X = M, Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

- 1: while true do
 - $x \sim p(X)$
 - $y \sim p(Y \mid x)$
- $4: \qquad m = M((x, y))$
- $s = f(m) + \epsilon$
- 6: e = distance(S(x, y), s)
- 7: update(p(M S), (m, s
- 8: update(p(X), (x, e))
- 9: end whi

Choice space X	Interest distribution $p(X)$	
Cincide space X	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)


```
1: while true do
```

$$x \sim p(X)$$

$$y \sim p(Y \mid x)$$

$$H: \qquad m = M((x, y))$$

$$s = f(m) + \epsilon$$

6:
$$e = distance(S(x, y), s)$$

7:
$$update(p(M S), (m, s))$$

- 8: update(p(X), (x, e))
- 9: end whi

Choice space X	Interest distribution $p(X)$	
Chicke space X	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)


```
1: while true do
```

$$x \sim p(X)$$

$$v \sim p(Y \mid x)$$

$$M = M((x, y))$$

$$c = f(m) + c$$

$$5: \quad s = f(m) + \epsilon$$

6:
$$e = distance(S(x, y), s)$$

8:
$$update(p(X), (x, e))$$

9: end whi

Choice space X	Interest distribution $p(X)$	
Cilcios space X	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)


```
1: while true do
```

$$x \sim p(X)$$

$$V \sim p(Y \mid Y)$$

$$4: \quad m = M((x, y))$$

$$s = f(m) + \epsilon$$

$$S = I(m) + \epsilon$$

b:
$$e = distance(S(x, y), s)$$

8:
$$update(p(X), (x, e))$$

9: end whi

Choice space X	Interest distribution $p(X)$	
Chicke space X	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)


```
1: while true do
```

$$x \sim p(X)$$

$$v \sim p(Y \mid x)$$

$$H: m = M((x, y))$$

$$s = f(m) \perp \epsilon$$

$$S = I(m) + \epsilon$$

b:
$$e = distance(S(x, y), s)$$

- 8: update(p(N/5),(III,S
- 8: update(p(X), (x, e))
- 9: end whi

Choice space X	Interest distribution $p(X)$	
Choice space X	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

1: while true do

- 2: $x \sim p(X)$ 3: $y \sim p(Y \mid x)$
- $\begin{array}{ll} 3. & y \sim \rho(r \mid x) \\ 4: & m = M((x, y)) \end{array}$
- m = M((x, y)) $s = f(m) + \epsilon$
- 6: e = distance(S(x, y), s)
- 7: update(p(M S), (m, s) 8: update(p(X) (x e))
- 9: end while

o. ena wine

Choice space X	Interest distribution $p(X)$	
Cilcios space X	Random exploration	Active exploration
Motor babbling: $X = M$, $Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

Motor babbling

Goal babbling

1: while true do

2:
$$x \sim p(X)$$

$$v \sim p(Y)$$

3:
$$y \sim p(Y \mid x)$$

4: $m = M((x, y))$
5: $s = f(m) + \epsilon$

5:
$$s = f(m) + \epsilon$$

6:
$$e = distance(S(x, y), s)$$

8:
$$update(p(X), (X, e))$$

9: end while

Choice space X	Interest distribution $p(X)$	
Cilcios space X	Random exploration	Active exploration
Motor babbling: $X = M, Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

Motor babbling

- 1: while true do
- 2: $x \sim p(X)$
- 3: $y \sim p(Y \mid x)$

- 4: m = M((x, y))5: $s = f(m) + \epsilon$ 6: e = distance(S(x, y), s)7: update(p(M S), (m, s))

- 9: end while

Choice space X	Interest distribution $p(X)$	
Chicke space X	Random exploration	Active exploration
Motor babbling: $X = M, Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

Motor babbling

- 1: while true do
- $x \sim p(X)$
- 3: $y \sim p(Y \mid x)$ 4: m = M((x, y))5: $s = f(m) + \epsilon$ 6: e = distance(S(x, y), s)7: update(p(M S), (m, s))
- 9: end while

Choice space X	Interest distribution $p(X)$	
Citoto opuso X	Random exploration	Active exploration
Motor babbling: $X = M, Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

Motor babbling

- 1: while true do
- $x \sim p(X)$
- 3: $y \sim p(Y \mid x)$ 4: m = M((x, y))5: $s = f(m) + \epsilon$ 6: e = distance(S(x, y), s)7: $update(p(M \mid S), (m, s))$

 - 9: end while

Choice space X	Interest distribution $p(X)$	
Chicke space X	Random exploration	Active exploration
Motor babbling: $X = M, Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

Motor babbling

- 1: while true do
- $x \sim p(X)$ 3: $y \sim p(Y \mid x)$
- 4: m = M((x, y))
- 5: $s = f(m) + \epsilon$ 6: e = distance(S(x, y), s)
- 9: end while

Choice space X	Interest distribution $p(X)$	
Cilcios space X	Random exploration	Active exploration
Motor babbling: $X = M, Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

Motor babbling

- 1: while true do $x \sim p(X)$
- 3: $y \sim p(Y | x)$ 4: m = M((x, y))
- 5: $s = f(m) + \epsilon$ 6: e = distance(S(x, y), s)7: update(p(M S), (m, s))update(p(M|S), (m, s))
- 9: end while

Choice space X	Interest distribution $\rho(X)$	
Citoto opuso X	Random exploration	Active exploration
Motor babbling: $X = M, Y = S$	Random motor exploration (ACTUATOR-RANDOM)	Active motor exploration (ACTUATOR-RIAC)
Goal babbling: $X = S, Y = M$	Random goal exploration (SAGG-RANDOM)	Active goal exploration (SAGG-RIAC)

Motor babbling

- 1: while true do
 - $x \sim p(X)$
- 3: $y \sim p(Y \mid x)$ 4: m = M((x, y))5: $s = f(m) + \epsilon$
- 6: e = distance(S(x, y), s)7: update(p(M S), (m, s))update(p(M|S), (m, s))
- update(p(X),(x,e))
- 9: end while

Outline

- Probabilistic unification
- 2 Results

Sensorimotor system: articulatory synthesizer of Guenther (2006)

Sensorimotor system: articulatory synthesizer of Guenther (2006)

Sensorimotor system: articulatory synthesizer of Guenther (2006)

- To learn an inverse model:
 - Goal exploration strategies outperform motor exploration strategies
 - Active goal exploration outperforms random goal

• To learn an inverse model:

- Goal exploration strategies outperform motor exploration strategies
- Active goal exploration outperforms random goal exploration

- To learn an inverse model:
 - Goal exploration strategies outperform motor exploration strategies
 - Active goal exploration outperforms random goal exploration

- To learn an inverse model:
 - Goal exploration strategies outperform motor exploration strategies
 - Active goal exploration outperforms random goal exploration

Self organization of early vocal development

 Active goal exploration enables the self-organization of a developmental sequence, from simple to complex

Self organization of early vocal development

 Active goal exploration enables the self-organization of a developmental sequence, from simple to complex

Self organization of early vocal development

 Active goal exploration enables the self-organization of a developmental sequence, from simple to complex

Conclusions

Take-home messages

- Developmental robotics studies algorithmic principles that allows robots to efficiently explore and learn sensorimotor mappings
- These principles (e.g. goal babbling and intrinsically-motivated exploration, but also maturations, social guidance ...) are grounded in developmental psychology
- The interest they present for speech acquisition models has not been studied significantly but could yield important contributions to the field

Conclusions

Take-home messages

- Developmental robotics studies algorithmic principles that allows robots to efficiently explore and learn sensorimotor mappings
- These principles (e.g. goal babbling and intrinsically-motivated exploration, but also maturations, social guidance ...) are grounded in developmental psychology
- The interest they present for speech acquisition models has not been studied significantly but could yield important contributions to the field

Conclusions

Take-home messages

- Developmental robotics studies algorithmic principles that allows robots to efficiently explore and learn sensorimotor mappings
- These principles (e.g. goal babbling and intrinsically-motivated exploration, but also maturations, social guidance ...) are grounded in developmental psychology
- The interest they present for speech acquisition models has not been studied significantly but could yield important contributions to the field

- Active choice of sensorimotor dimensions X and Y to explore
- Extending the unification to more developmental robotics principles, e.g. social guidance and maturations.
- Using a physical model of the vocal tract

- Active choice of sensorimotor dimensions X and Y to explore
- Extending the unification to more developmental robotics principles, e.g. social guidance and maturations.
- Using a physical model of the vocal tract

- Active choice of sensorimotor dimensions X and Y to explore
- Extending the unification to more developmental robotics principles, e.g. social guidance and maturations.
- Using a physical model of the vocal tract

- Active choice of sensorimotor dimensions X and Y to explore
- Extending the unification to more developmental robotics principles, e.g. social guidance and maturations.
- Using a physical model of the vocal tract

(Yuki et al., ICDL-Epirob 2013)

Thank you for your attention. Any question?

Funding: ERC Starting Grant EXPLORERS 240 007