

日本国特許庁 JAPAN PATENT OFFICE

29. 7. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

REC'D 24 SEP 2004

出願年月日 Date of Application:

2004年 5月27日

WIPO PCT

出 願 番 号 Application Number:

特願2004-157360

[ST. 10/C]:

[JP2004-157360]

出 願 人
Applicant(s):

株式会社リコー

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1 (a) OR (b)

官

1)1

2004年

11)

9月10日

【書類名】 特許願 【整理番号】 0307326 【提出日】 平成16年 5月27日 【あて先】 特許庁長官 今井 康夫 殿 【国際特許分類】 G11B 7/00 G11B 7/0045 【発明者】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【住所又は居所】 【氏名】 松葉 貴信 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 二宮 正樹 【特許出願人】 【識別番号】 000006747 【氏名又は名称】 株式会社リコー 【代表者】 桜井 正光 【代理人】 【識別番号】 100101177 【弁理士】 【氏名又は名称】 柏木 慎史 【電話番号】 03 (5333) 4133 【選任した代理人】 【識別番号】 100102130 【弁理士】 【氏名又は名称】 小山 尚人 03 (5333) 4133 【電話番号】 【選任した代理人】 【識別番号】 100072110 【弁理士】 柏木明 【氏名又は名称】 【電話番号】 03 (5333) 4133 【先の出願に基づく優先権主張】 【出願番号】 特願2003-392206 平成15年11月21日 【出願日】 【手数料の表示】 【予納台帳番号】 063027 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 9808802

【包括委任状番号】

0004335

【書類名】特許請求の範囲

【請求項1】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録方法において、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記試し書き 領域が各記録層に形成され、光の入射側から数えて第2層目以降の前記記録層に情報記録 を行う場合に、当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う前に 当該記録層より前記光の入射側に位置している前記記録層で当該試し書き領域と同一の記 録面に位置する部分に記録を行う、ことを特徴とする記録方法。

【請求項2】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録方法において、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記試し書き 領域が各記録層に形成され、当該試し書き領域は異なる記録層間では同一記録面に重なら ないように配置されているときに、光の入射側から数えて第2層目以降の前記記録層に情 報記録を行う場合に、当該記録層より前記光の入射側に位置している前記記録層にすでに 情報の記録がなされているときは、当該第2層目以降の記録層の前記試し書き領域で前記 試し書きを行う前に当該記録層より前記光の入射側に位置している前記記録層で当該試し 書き領域と同一の記録面に位置する部分に記録を行う、ことを特徴とする記録方法。

【請求項3】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録方法において、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記試し書き 領域が各記録層に形成され、この記録層が異なる記録層間では同一記録面に重ならないよ うに配置されているときに、前記各記録層に順次情報記録を行う場合に、この情報記録を 行う前に前記各記録層の前記各試し書き領域で前記試し書きを行い、この際、前記第2層 目以降の記録層の前記試し書き領域で前記試し書きを行う前に当該記録層より前記光の入 射側に位置している前記記録層で当該試し書き領域と同一の記録面に位置する部分に記録 を行う、ことを特徴とする記録方法。

【請求項4】

前記光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に、当該記録層より前記光の入射側に位置している前記記録層にいまだ情報の記録がなされていないときは、前記部分に記録を行うことなく当該第2層目以降の記録層の前記試し書き領域で試し書きを行う、ことを特徴とする請求項2に記載の記録方法。

【請求項5】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録方法において、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記試し書き 領域が各記録層に形成され、当該試し書き領域は異なる記録層間では同一記録面に重なる ように配置されているときに、光の入射側から数えて第2層目以降の前記記録層に情報記 録を行う場合に、当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う前 に当該記録層より前記光の入射側に位置している前記記録層で当該試し書き領域と同一の 記録面に位置する試し書き領域に記録を行う、ことを特徴とする記録方法。

【請求項6】

前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録層より前記光の入射側に位置している前記記録層で行う記録は当該記録層の試し書き領域のうち1回の試し書きに使用する部分のみに行い、その後に行う前記第2層目以降の記録層で行う前記試し書きは当該部分と同一記録面に位置する前記試し書き領域に行う、ことを特徴とする請求項5に記載の記録方法。

【請求項7】

2/

前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録層より前記光の入射側に位置している前記記録層で行う記録は当該記録層の試し書き領域の全体に行う、ことを特徴とする請求項5に記載の記録方法。

【請求項8】

前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録層より前記光の入射側に位置している前記記録層で行う記録を行ったときは当該記録を行った領域を示す情報を前記記録媒体のカウント領域に記録する、ことを特徴とする請求項5~7のいずれかの一に記載の記録方法。

【請求項9】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録装置において、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記が各記録 層に形成され、光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に 、当該第2層目以降の記録層より前記光の入射側に位置している前記記録層で当該第2層 目以降の記録層の前記試し書き領域と同一の記録面に位置する部分に記録を行う前処理手 段と、

この記録後に当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う試し書き手段と、

を備えていることを特徴とする記録装置。

【請求項10】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録装置において、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記が各記録層に形成され、当該試し書き領域が異なる記録層間では同一記録面に重ならないように配置されているときに、光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に、当該記録層より前記光の入射側に位置している前記記録層にすでに情報の記録がなされているときは、当該第2層目以降の記録層より前記光の入射側に位置している前記記録層で当該第2層目以降の記録層の前記試し書き領域と同一の記録面に位置する部分に記録を行う前処理手段と、

この記録後に当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う試し書き手段と、

を備えていることを特徴とする記録装置。

【請求項11】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録装置において、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記試し書き領域が各記録層に形成され、この記録層が異なる記録層間では同一記録面に重ならないように配置されているときに、前記各記録層に順次情報記録を行う場合に、この情報記録を行う前に前記各記録層の前記各試し書き領域で前記試し書きを行う試し書き手段と、

この試し書きの際、前記第2層目以降の記録層の前記試し書き領域で前記試し書きを行う前に当該記録層より前記光の入射側に位置している前記記録層で当該試し書き領域と同一の記録面に位置する部分に記録を行う前処理手段と、

を備えていることを特徴とする記録装置。

【請求項12】

前記試し書き手段は、前記光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に、当該記録層より前記光の入射側に位置している前記記録層にいまだ情報の記録がなされていないときは、前記前処理手段で前記部分に記録を行うことなく当該第2層目以降の記録層の前記試し書き領域で試し書きを行う、ことを特徴とする請求項10に記載の記録装置。

【請求項13】

前記前処理手段は、前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録層より前記光の入射側に位置している前記記録層で行う記録は当該記録層の試し書き領域のうち1回の試し書きに使用する部分のみに行い、

前記試し書き手段は、その後に行う前記第2層目以降の記録層で行う前記試し書きを当該部分と同一記録面に位置する前記試し書き領域に行う、

ことを特徴とする請求項9に記載の記録装置。

【請求項14】

前記前処理手段は、前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録 層より前記光の入射側に位置している前記記録層で行う記録を当該記録層の試し書き領域 の全体に行う、ことを特徴とする請求項9に記載の記録装置。

【請求項15】

前記前処理手段は、前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録 層より前記光の入射側に位置している前記記録層で行う記録を行ったときは当該記録を行った領域を示す情報を前記記録媒体のカウント領域に記録する、ことを特徴とする請求項 13又は14に記載の記録装置。

【請求項16】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う処理を記録装置に実行させるコンピュータに読み取り可能なプログラムにおいて、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記が各記録層に形成され、光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に、当該第2層目以降の記録層より前記光の入射側に位置している前記記録層で当該第2層目以降の記録層の前記試し書き領域と同一の記録面に位置する部分に記録を行う前処理手段と、

この記録後に当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う試し書き手段と、

をコンピュータに実行させることを特徴とするプログラム。

【請求項17】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う処理を記録装置に実行させるコンピュータに読み取り可能なプログラムにおいて、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記が各記録 層に形成され、当該試し書き領域が異なる記録層間では同一記録面に重ならないように配置されているときに、光の入射側から数えて第2層目以降の前記記録層に情報記録を行う 場合に、当該記録層より前記光の入射側に位置している前記記録層にすでに情報の記録が なされているときは、当該第2層目以降の記録層より前記光の入射側に位置している前記 記録層で当該第2層目以降の記録層の前記試し書き領域と同一の記録面に位置する部分に 記録を行う前処理手段と、

この記録後に当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う試し書き手段と、

をコンピュータに実行させることを特徴とするプログラム。

【請求項18】

記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う処理を記録装置に実行させるコンピュータに読み取り可能なプログラムにおいて、

前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記試し書き 領域が各記録層に形成され、この記録層が異なる記録層間では同一記録面に重ならないよ うに配置されているときに、前記各記録層に順次情報記録を行う場合に、この情報記録を 行う前に前記各記録層の前記各試し書き領域で前記試し書きを行う試し書き手段と、

この試し書きの際、前記第2層目以降の記録層の前記試し書き領域で前記試し書きを行

1

う前に当該記録層より前記光の入射側に位置している前記記録層で当該試し書き領域と同一の記録面に位置する部分に記録を行う前処理手段と、

をコンピュータに実行させることを特徴とするプログラム。

【請求項19】

前記試し書き手段は、前記光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に、当該記録層より前記光の入射側に位置している前記記録層にいまだ情報の記録がなされていないときは、前記前処理手段で前記部分に記録を行うことなく当該第2層目以降の記録層の前記試し書き領域で試し書きを行う、ことを特徴とする請求項17に記載のプログラム。

【請求項20】

前記前処理手段は、前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録 層より前記光の入射側に位置している前記記録層で行う記録は当該記録層の試し書き領域 のうち1回の試し書きに使用する部分のみに行い、

前記試し書き手段は、その後に行う前記第2層目以降の記録層で行う前記試し書きを当該部分と同一記録面に位置する前記試し書き領域に行う、

ことを特徴とする請求項16に記載のプログラム。

【請求項21】

前記前処理手段は、前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録 層より前記光の入射側に位置している前記記録層で行う記録を当該記録層の試し書き領域 の全体に行う、ことを特徴とする請求項16に記載のプログラム。

【請求項22】

前記前処理手段は、前記第2層目以降の記録層で行う前記試し書きを行う前に当該記録 層より前記光の入射側に位置している前記記録層で行う記録を行ったときは当該記録を行った領域を示す情報を前記記録媒体のカウント領域に記録する、ことを特徴とする請求項 20又は21に記載のプログラム。

【請求項23】

プログラムを記憶している記憶媒体において、

前記プログラムは請求項16~22のいずれかの一に記載のプログラムである、ことを 特徴する記憶媒体。

【書類名】明細書

【発明の名称】記録方法、記録装置、プログラム、および記憶媒体 【技術分野】

[0001]

本発明は、記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録方法、記録装置、及びプログラムに関する。

【背景技術】

[0002]

特許文献1には、記録層が多層構造である多層光ディスクの第2層目以降の記録層に対して情報を記録する際に、その記録層より光の入射側に位置する記録層の記録状態により透過光量が変化しても、記録レーザ光のレーザパワーの適切な制御を行うことができ、良好な特性で情報を記録することができるようにすることを目的とする技術が開示されている。すなわち、レーザ光源からのレーザ光は光ピックアップにより光ディスクの記録膜表面に収束され、戻り光は光検出部で検出され、制御部に入力され、レーザドライバのパワーコントロールが行われるが、ユーザデータの記録を行う前に、制御部が、ユーザデータ記録領域以外の記録パワーテスト領域にて、記録パワーのテストを行って記録パワーを決定し、決定された記録パワーに基づいてユーザデータ記録領域にユーザデータの記録を行う、とするものである。

[0003]

【特許文献1】特開2003-22532公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

従来の単一の記録層しか持たない単層構造の記録媒体に対して記録を行う際に、個々の記録装置のばらつきや記録速度、記録媒体の特性等の条件により記録を行うための最適なレーザパワーは異なるため、情報の追記又は書き換えを行う場合に、所定の試し書き領域で試し書きを行ってレーザの最適記録パワー制御(OPC:Optimum Power Control)を行っている。そして、OPCは同一記録面に複数の記録層を持つ多層構造の記録媒体(多層記録媒体)に情報の追記又は書き換えを行う場合にも行わなくてはならない。

[0005]

そして、このような多層記録媒体に情報の記録を行う場合、次のような課題がある。

[0006]

1. 例えば、同一記録面に2つの記録層を持つ2層構造の多層記録媒体の場合、第2層目に情報を記録する場合、第1層目の記録層を透過して、第2層目に情報を記録することになる。従って、第1層目が消去状態(高反射率、低透過率)か記録状態(低反射率、高透過率)かによって、第2層目に到達する光ビームの光量が変化してしまい、最適な記録パワーが変わってしまう。この最適な記録パワーの変動はジッタ、エラーレートなど第2層目の記録特性の劣化に繋がってしまう。

[0007]

2. 第1層目と第2層目の試し書き領域が互いに重ならないようにずらして配置されている、追記又は書き換え可能な多層記録媒体に情報の記録を行う場合、第1層目の情報記録は第1層目の試し書き領域でOPCを行うことにより最適記録パワーが求められるが、第2層目に情報を記録する場合、第1層目は既に記録状態になっており、第2層目の情報記録は低反射率、高透過率の状態で記録することになる。この場合の第2層目の試し書き領域はずらして配置されているので、第1層目は消去状態であり、これから実際に情報を記録しようとしている第2層目の状態とは異なる状態になっている。

[0008]

3. また、第1層目と第2層目の試し書き領域が互いに重なるように配置されている場合も、第2層目の試し書き領域でOPCを行うときに、その第2層目の試し書き領域と同

2/

一記録面で重なり合う第1層目の試し書き領域が消去状態であると、これから実際に情報 を記録しようとしている第2層目の状態とは異なる状態になっている。

[0009]

本発明の目的は、多層記録媒体の第2層目以降の記録層に情報の記録を行う場合に、試し書きにより最適な記録パワーを求めることができるようにすることである。

【課題を解決するための手段】

[0010]

本発明は、記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録方法において、前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記試し書き領域が各記録層に形成され、光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に、当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う前に当該記録層より前記光の入射側に位置している前記記録層で当該試し書き領域と同一の記録面に位置する部分に記録を行う、ことを特徴とする記録方法である。

[0011]

別の面から見た本発明は、記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う記録装置において、前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記が各記録層に形成され、光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に、当該第2層目以降の記録層より前記光の入射側に位置している前記記録層で当該第2層目以降の記録層の前記試し書き領域と同一の記録面に位置する部分に記録を行う前処理手段と、この記録後に当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う試し書き手段と、を備えていることを特徴とする記録装置である。

[0012]

別の面から見た本発明は、記録媒体の試し書き領域で試し書きを行って最適な記録パワー値を求め、この最適な記録パワーで前記記録媒体に対して情報の記録を行う処理を記録装置に実行させるコンピュータに読み取り可能なプログラムにおいて、前記記録媒体が同一記録面に複数の記録層を持つ多層記録媒体であって、前記が各記録層に形成され、光の入射側から数えて第2層目以降の前記記録層に情報記録を行う場合に、当該第2層目以降の記録層の前記試し書き領域と同一の記録面に位置する部分に記録を行う前処理手段と、この記録後に当該第2層目以降の記録層の前記試し書き領域で前記試し書きを行う試し書き手段と、をコンピュータに実行させることを特徴とするプログラムである。

【発明の効果】

[0013]

本発明によれば、多層記録媒体の第2層目以降の記録層に情報の記録を行う場合に、最 適な記録パワーを求めることができる。

【発明を実施するための最良の形態】

[0014]

「実施の形態1]

本発明を実施するための最良の一形態について説明する。

[0015]

図1は、本実施の形態に用いる多層記録媒体201の構成を示す説明図である。この多層記録媒体201は、同一記録面に複数の記録層(この例では、第1層202、第2層203の2層構造)を持つ多層構造の記録媒体で、光学的に情報の記録、再生を行うことができる光ディスク、光磁気ディスクなどである。

[0016]

多層記録媒体201は、第1層202、第2層203とも、情報を記録するデータ領域202a,203aを有するほか、内周側、外周側に記録時に最適なレーザパワーを求めるOPCを行うための試し書き領域202b,202c,203b,203cが設けられ

ている。この試し書き領域 2 0 2 b 2 2 0 3 b、 2 0 2 c 2 2 0 3 c は、互いに多層記録 媒体 2 0 1 の同一記録面に重なり合わないように、各層 2 0 2、 2 0 3 毎にずらして配置 されている。

[0017]

図2は、多層記録媒体201に対し、レーザの最適記録パワー制御を行って情報の記録を行うための記録装置101の構成を示す。

[0018]

多層記録媒体201などの記録媒体Dは、回転モータ114を駆動源として回転する。 この回転モータ114はディスク回転制御手段102によって制御され、所定の速度で回 転する。

[0019]

ヘッド103は、サーボ手段104によってフォーカシングサーボ、トラッキングサーボを実現し、記録媒体Dの記録膜上に光ビームを集光させ、記録マークを形成する。また、記録媒体Dの半径方向に移動可能で、記録媒体Dにあらかじめ設けられた試し書き領域や、データ領域にアクセス可能である。

[0020]

ヘッド103には図示しない光源が搭載されている。これは一般的には半導体レーザ(LD:Laser Diode)用いられる。このレーザはLDドライバ112によって、所定の記録パワー状態に、入力パルス信号で変調される。レーザが、記録パワー状態とスペースパワー状態の間で変調されることで、記録膜上には記録マークとそうでないところができる。これを再生すると反射率の差が生じて、情報信号として再生することができる。

[0021]

記録マークは、記録媒体DがDVD-R、DVD+Rのような非可逆な有機色素媒体では、ピット(穴)であり、そうでないところはスペースと呼ばれる。

[0022]

パワー設定手段111は、記録装置101を集中的に制御するコントローラ107から入力される記録パワー指令に応じて、LDドライバ112を駆動し、レーザをそのパワーで光らせる。また、OPC時には試し書きモードになり、順次記録パワーを可変する。

[0023]

記録媒体Dに記録する記録データは、データ生成手段113で所定のフォーマットで符号化や変調処理がなされ、シリアル形式で記録データ列として出力される。

[0024]

パルス幅の設定は、固定でもよいが、線速度やディスク種別に応じてコントローラ107によってそれぞれに設定するとなおよい。線速度やディスク種別による、記録マーク長ごとの感度の違いを吸収できるからである。

[0025]

記録媒体Dの種別は、ヘッド103でディスクの特定場所を再生したときの再生信号を解読することにより検出する。この種別は、例えば、記録媒体Dを製造したメーカーを何らかの方法で特定できれば、メーカー別にしてもよいし、同一メーカーでもさらに細かく分類できればなおよい。他の種別の同定手法としては、例えば、記録媒体Dにあらかじめ埋め込んである各種パラメータを用いることもできる。例えば、推奨パワーやパルス幅などを埋め込んである場合はそれを用いてもよい。

[0026]

あるいは、メーカーごとに特定のメーカー識別コード(ベンダーコード)を埋め込んでおく場合もある。さらに細分類のためのコードを埋め込んでもよい。こうすることで、同一メーカーのさまざまな記録膜に応じて、最適なパルス幅設定(Write Strategy)が可能になる。

[0027]

次に、試し書き、すなわち、OPC(Optimum Power Control)について説明する。

[0028]

この試し書きは、ある線速度で記録パワーを順次変化させて記録し、その後、その記録 位置を再生して記録状態を評価し、最適な記録状態になる記録パワーを決定する処理であ る。

[0029]

図2の記録装置101では、コントローラ107からの指令によりパワー設定手段111で、順次、記録パワーを変化させて記録することができる。記録媒体Dが多層記録媒体201である場合、試し書きを行う領域は、図1に示す、前述の試し書き領域202b,202c,203b,203cである。

[0030]

この試し書き領域に記録後、ヘッド103で同じ記録位置を再生して再生信号(RF信号)を得る。このRF信号の適当なパラメータを評価することで、最適な記録状態が評価できる。例えば β 値検出手段106では β なるパラメータを測定する。

[0031]

この β 値検出手段106は、RF信号の低域成分を除去(AC結合)して、その上側包絡線レベルaと下側包絡線レベルbを検出する。この説明を図3に基づいて行う。記録膜の特性として、記録マーク部で反射率が下がると仮定し、RF信号は低反射部で低レベルになるとする。そうすると、適正な記録状態のときAC結合されたRF信号は、図3(a)に示すように上下対称で、 "a=b" になる。また記録パワーが過大のときは、記録マーク部が長くなるから、図3(b)に示すように、AC結合すると上側レベルが高くなり "a>b" になる。また記録パワーが不足のときは、記録マーク部が短くなるから、図3(c)に示すように、AC結合すると下側レベルが高くなり、 "a<bb" になる。

[0032]

このaとbの差をRF振幅 "a + b" で正規化した量が β である。すなわち、 $\beta = (a - b) / (a + b)$

である。 【0033】

ここで、 β が大きいとパワー過大、小さいとパワー不足である。最適なパワーは β がある値(例えば4%程度)になったときで、この β を β targetと呼ぶ。OPCは順次記録パワーを変化させて記録し、記録した部分の β 値を評価し、 β targetとなるときの記録パワーを求めることにより行う。

[0034]

[0035]

[0036]

次に、多層記録媒体201に対して、OPCを具体的にどのように行うか図5のフローチャートを参照して説明する。

[0037]

例えば、線速度一定(CLV:Constant Linear Velocity)で多層記録媒体201を回転させながら記録する場合、多層記録媒体201と記録を行うレーザビームとの相対速度がいつも一定なので、記録パワーや記録パルス幅などの記録条件は、一度最適に決めてし

まえば、多層記録媒体201の全面にわたり変える必要がない。

[0038]

このため、内周部あるいは外周部の試し書き領域202bと203b、202cと203cで、記録パワーを可変してOPCを行い、これにより決定した最適記録パワーを用いて、同じ線速度で全面記録する。

[0039]

図5に示すように、まず、コントローラ107は、第1層目の記録層202に対する情報記録は、単層の記録媒体Dに記録する時と同様に、内周部に配置されている試し書き領域202bにおいてOPCを行って最適記録パワーを決定し(ステップS1)、これに基づいて第1層目の記録層202のデータ領域202aに情報記録を行う(ステップS2)。第1層目のデータ領域202aの情報記録が終了して(ステップS3のY)、第2層目の記録層203に記録を行うが、このとき、第2層目の最適記録パワーを求めなければいけない。ここで、第2層目の試し書き領域203bと、これから実際に情報の記録を行おうとしている第2層目のデータ記録領域203aのレーザ入射側にあたる第1層目のデータ記録領域203bの記録状態が異なることになる。

[0040]

すなわち、第1層目の試し書き領域202bと第2層目の試し書き領域203bとは、前述のように同一の記録面において重ならないように互いにずらして配置されているので、第2層目の試し書き領域203bのレーザ光入射側の第1層目の部分(図1の符号202d)は消去状態(高反射率、低透過率)であり、これから記録を行おうとしている第2層目のデータ記録領域203aは、第1層目の情報記録が終了しているので、そのレーザ光入射側の第1層目(データ記録領域202a)は記録状態(低反射率、高透過率)となっている。

[0041]

このまま、第2層目の試し書き領域203bで最適記録パワーを求めることはできないので、実際の記録状態に合わせてから試し書きを行って、最適記録パワーを求めなくてはならない。そこで、第2層目へのレーザ光の透過状態をデータ領域203aと試し書き領域203bとで合わせるために、第2層目の試し書き領域203bのレーザ光入射側で、この試し書き領域203bと同一の記録面で重なっている第1層目の部分202dに記録を行う(前処理手段)(ステップS4)。

[0042]

その後、第2層目の試し書き領域203bでOPCを行って最適記録パワーを決定し(試し書き手段)(ステップS5)、第2層目のデータ記録領域203aにデータの記録を 行う(ステップS6)。

[0043]

図6は、別の処理例を示すフローチャートである。すなわち、コントローラ107は、第1層目のデータ領域202aに記録を行う前に第1層目と第2層目の試し書き領域202b,203bでOPCを行って第1層日および第2層目の最適記録パワーを予め求め(ステップS1,S4,S5)、その後、第1層目と第2層目のデータ領域202a,203aに順次データ記録を行う(ステップS2,S3,S6)。

[0044]

図5の処理に限らず、この図6の処理で記録を行ってもよいが、第1層目のデータ領域202aの記録終了時には温度によりレーザ特性も変わっているので、第1層目の記録が終了して、第2層目の記録を開始する直前にOPCを行って第2層目の記録パワーを決定する図5の処理の方が最適なパワーを決定することができる。

[0045]

また、図1に示すように、多層記録媒体201の外周部においても、第1層目と第2層目とでは試し書き領域202cと203cとが同一記録面で重ならないようにずらして配置されている場合に、この外周部の試し書き領域202c,203cでOPCを実行する場合も同様である。この場合は、ステップS4において、試し書き領域203cと同一の

記録面で重なっている第1層目の部分202eに記録を行う。

[0046]

また、第1層目の記録層202に対して情報の記録が済んでいるか否かにかかわらず第2層目の記録層203に情報の記録を行う場合もある。かかる場合の処理を図7のフローチャートを参照して説明する。すなわち、コントローラ107は、第1層目のデータ領域202aの情報記録がすでに終了しているときは(ステップS3のY)、第1層目の部分202dに記録を行った上で第2層目の試し書き領域203bで試し書きを実行するが(ステップS4~S6)、第1層目のデータ領域202aの情報記録が行われていないときは(ステップS3のN)、第1層目の部分202dに記録を行うことなく第2層目の試し書き領域203bで試し書きを実行する(ステップS5,S6)。

[0047]

「実施の形態2]

別の実施の形態について説明する。

[0048]

図8は、本実施の形態に用いる多層記録媒体201の構成を示す説明図である。図8において、図1と同一の符号は図1の多層記録媒体201と同様であり、詳細な説明は省略する。図8の多層記録媒体201が図1のものと相違するのは、試し書き領域202bと203b、202cと203cは、互いに多層記録媒体201の同一記録面に重なり合うように配置されている点である。そのため、図1のものとは異なり、第2層目の試し書き領域203bのレーザ光入射側の第1層目の部分202d、試し書き領域203cと同一の記録面で重なっている第1層目の部分202eは存在しない。

[0049]

このような多層記録媒体201に情報の記録を行う記録装置101のハードウエア構成は、図2を参照して前記したものと同様であり、以下では図2と同一符号を用い、詳細な説明は省略する。

[0050]

次に、記録装置101が実行する処理について説明する。

[0051]

図9は、記録装置101で多層記録媒体201にOPCを実行してデータの記録を開始するまでの処理のフローチャートである。

[0052]

まず、コントローラ107は、多層記録媒体201の第2層目に対する記録か、第1層目に対する記録かを、ライトコマンドのアドレスにより確認する(ステップS11)。第1層目の記録であれば、第1層目の試し書き領域202bあるいは202cでOPCを実行し、最適記録パワーを決定する(ステップS15)。そして、コントローラ107は、この決定した最適記録パワーを設定して多層記録媒体201のデータ領域203aに記録(Write)を行う(ステップS14)。

[0053]

第2層目の記録であれば(ステップS11のY)、第2層目の試し書きを行う領域203bあるいは203cと同一記録面に位置する第1層目の試し書きを行う領域202bあるいは202cに、第1層目を記録した最適記録パワーで情報を予め記録する(ステップS12)。この記録が終了した後に、その記録した領域202bあるいは202cと同一記録面に位置する第2層目の試し書きを行う領域203bあるいは203cにOPCを実行し、最適記録パワーを決定する(ステップS13)。記録装置101は、この決定した最適記録パワーを設定して、多層記録媒体201の第2層目のデータ領域202aに記録(Write)を行う(ステップS14)。

[0054]

このような処理により、第2層目を記録するための最適な記録パワーを的確に求めることができる。

[0055]

記録装置101が実行する別の処理例について説明する。

[0056]

図10は、記録装置101で多層記録媒体201にOPCを実行してデータの記録を開始するまでの処理のフローチャートである。図9と同一符号の処理については、図9を参照して前述した処理と同様であるため、詳細な説明は省略する。

[0057]

図10の処理では、第2層目の記録のときは(ステップS11のY)、第2層目の試し書き前に実行する第1層の試し書きは、試し書き領域202b,202cのうち1回の試し書きで使用する部分のみに対して、第1層目を記録した最適記録パワーで情報を予め記録する(ステップS16)。そして、この第1層に試し書きを行った1回の試し書きで使用する領域202cと同一の記録面にある第2層の試し書き領域でOPCを実行する(ステップS13)。この例では、図11に示すように、1回の試し書きで使用する領域は第1層目の試し書き領域202cの一部分202c1のみであり、この部分にデータの記録を行ってから、これと同一記録面に位置する第2層目の試し書き領域203cの一部分203c1のみにOPCを実行する。

[0058]

記録装置101が実行する別の処理例について説明する。

[0059]

図12は、記録装置101で多層記録媒体201にOPCを実行してデータの記録を開始するまでの処理のフローチャートである。図9と同一符号の処理については、図9を参照して前述した処理と同様であるため、詳細な説明は省略する。

[0060]

図12の処理では、第2層目の記録のときは(ステップS11のY)、第2層目の試し書きで行う試し書き領域203bあるいは203cと同一記録面に位置する第1層目の試し書き領域202bあるいは202c領域が、記録済みか否か判断する(ステップS17)。記録済みであれば(ステップS17のY)、第2層目のOPCを当該領域で実行し、最適記録パワーを決定する(ステップS18)。未記録であれば(ステップS17のN)、第2層目の試し書き領域203bまたは203cの全領域と同一の記録面に位置する第1層目の試し書き領域202bまたは202cの全体に対して、第1層目を記録した最適記録パワーで情報を予め記録する(ステップS19)。そして、第1層目の領域の記録が終了したら、第2層目のOPCを、第1層目の情報を記録した試し書き領域と同一記録面に位置する第2層目の試し書き領域で実行し、最適記録パワーを決定する(ステップS18)。この例では、図13に示すように、第2層目の試し書き領域203cの全領域と同一の記録面に位置する第1層目の試し書き領域202cの全体に対して、第1層目を記録した最適記録パワーで情報を予め記録する。

[0061]

これにより、第2層でのOPCを行うたびに、第2層の試し書き領域203bあるいは203cと同一の記録面に位置する第1層の試し書き領域202bあるいは202cに情報の記録を行う必要はなくなるので、第2層目のOPCを行うための時間を短縮できる。

[0062]

記録装置101が実行する別の処理例について説明する。

[0063]

図14は、記録装置101で多層記録媒体201にOPCを実行してデータの記録を開始するまでの処理のフローチャートである。図9と同一符号の処理については、図9を参照して前述した処理と同様であるため、詳細な説明は省略する。

[0064]

この処理では、第1層目の記録であれば(ステップS11のN)、第1層目のカウント領域(Disc Count Zone)(図15の符号301,302)から、試し書き開始アドレスを取得する(ステップS21)。そして、取得したアドレスの試し書き領域202b,202c(図15の符号303,304)でOPCを実行し、最適記録パワーを決定する(

ステップS22)。このOPCを実行したら、OPCで使用した試し書き領域がいずれの試し書き領域であるかカウント領域301または302に記録する(ステップS23)。

[0065]

第2層目の記録であれば(ステップS11のY)、第2層目の試し書き領域202bあるいは202cと同一の記録面に位置する第1層目の試し書き領域203bあるいは203cが記録済みか否かをカウント領域301,302で確認する(ステップS24)。記録済みであれば(ステップS24のY)、第2層目の試し書きを試し書き領域203bあるいは203cでOPCを実行し、最適記録パワーを決定する(ステップS13)。

[0066]

未記録であれば(ステップS 2 4 の N)、その第1層目の試し書き領域 2 0 3 b あるいは 2 0 3 c に第1層目を記録した最適記録パワーで予め情報を記録する(ステップS 2 5)。第1層目の情報の記録が終了したら、情報を記録した試し書き領域 2 0 3 b あるいは 2 0 3 c がいずれであるかをカウント領域 3 0 1 あるいは 3 0 2 に記録する(ステップS 2 6)。この第1層目を記録した後に、カウント領域 3 0 1 あるいは 3 0 2 に記録した第1層目の試し書き領域 2 0 3 b あるいは 2 0 3 c と同一の記録面に位置する第2層目の試し書き領域 2 0 2 b あるいは 2 0 2 c で O P C を実行し、最適記録パワーを決定する(ステップS 1 3)。

[0067]

このような処理を行えば、第1層目の試し書き領域の記録された領域が分かる為、すでに情報が記録されてある領域に対して、後で第1層目の試し書きを行うことを防ぐことができる。

[0068]

なお、図5~図7、図9、図10、図12、図14の処理は、コントローラ107が備えているマイクロコンピュータのCPUが、その記憶媒体であるROMに予め記録されているプログラムに基づいて実行するが、記録装置101の図示しないホストコンピュータが、その記憶装置に記憶しているプログラムに基づいて記録装置101を制御し、図5~図7の処理を記録装置101に実行させるようにしてもよい。

【図面の簡単な説明】

[0069]

- 【図1】多層記録媒体の構成を示す説明図である。
- 【図2】記録装置の電気的な接続を示すブロック図である。
- 【図3】AC結合を行って、上側包絡線レベルと下側包絡線レベルを検出する処理の 説明図である。
- 【図4】OPCについて説明する説明図である。
- 【図5】記録装置が実行する処理のフローチャートである。
- 【図6】記録装置が実行する他の処理例のフローチャートである。
- 【図7】記録装置が実行する他の処理例のフローチャートである。
- 【図8】多層記録媒体の別の構成を示す説明図である。
- 【図9】記録装置が実行する他の処理例のフローチャートである。
- 【図10】記録装置が実行する他の処理例のフローチャートである。
- 【図11】図10の処理を説明する説明図である。
- 【図12】記録装置が実行する他の処理例のフローチャートである。
- 【図13】図12の処理を説明する説明図である。
- 【図14】記録装置が実行する他の処理例のフローチャートである。
- 【図15】多層記録媒体におけるインナー(a)及びアウター(b)のドライブエリアの説明図である。

【符号の説明】

[0070]

- 101 記録装置
- 201 多層記録媒体

202,203 記録層 202a,202b データ領域 202b,202c,203b,203c 試し書き領域 202b,202e 部分 301,302 カウント領域

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

i

【図11】

【図12】

【図13】

【図14】

【図15】

(a) Initial Zone Physical Sectors (023080) Inner Disc Test Zone 16384 Physical Sectors Physical Sectors (02707F) Physical Sectors (023080) Count Zone Run-in 1024 Physical Sectors Physical Sectors (02747F) Physical Sectors (027480) Inner Disc Count Zone 4096 Physical Sectors Physical Sectors (02847F) Physical Sectors (028480) Inner Disc Administration Zone 4096 Physical Sectors Physical Sectors (02947F) Physical Sectors (029480) Table of Contents Zone 4096 Physical Sectors Physical Sectors (02A47F)

(b)

Lead-in Zone

【書類名】要約書

【要約】

【課題】 多層記録媒体の第2層目以降の記録層に情報の記録を行う場合に、試し書きにより最適な記録パワーを求めることができるようにする。

【解決手段】 光の入射側から数えて第2層目の記録層203に情報記録を行う場合に、記録層203より光の入射側に位置している第1層目の記録層202にすでに情報の記録がなされているときは、第2層目の記録層203の試し書き領域203bで試し書きを行う前に第1層目の記録層202で試し書き領域203bと同一の記録面に位置する部分202dに記録を行う。

【選択図】 図1

特願2004-157360

出 願 人 履 歴 情 報

識別番号

[000006747]

1. 変更年月日 [変更理由]

2002年 5月17日 住所変更

住 所 氏 名

東京都大田区中馬込1丁目3番6号

株式会社リコー