Background

 Use common knowledge as much as possible to avoid complicated n-th order ToM reasoning...

- Intention distribution as compressed representation of history of the game

Big picture

Executing the game

- clone https://github.com/moorugi98/hanabi-learning-environment
- in hanabi-learning-environment, pip install.
- in examples, run python game_example.py
- most additional functions are implemented in examples/intention_update.py
- other basic attributes and methods from the framework in hanabi_learning_environment/pyhanabi.py

game_example.py

line 104: knowledge = intention_update.generate_knowledge(game, state)

called each time to generate a nested list common knowledge

Rank	red	green	blue	white	yellow
1	3	3	3	3	3
2	2	2	2	2	2
3	2	2	2	2	2
4	2	2	2	2	2
5	1	1	1	1	1

line 119: intention = intention_update.infer_joint_intention(...

called each time to update intention

intention_update.py

def generate knowledge(game, state)

start full then subtract discarded and played cards, set impossible realizations to 0 and set other card's realization to 0 if a card's realization is fixed

For the actual intention update (intention), the implementation just follows the equation

$$P(i_{total}|a,c) \stackrel{i.d.}{=} \prod_{h \in hands} P(i_h|a,c)$$
 infer joint intention

$$P(i|a,c) \stackrel{(1)}{=} \frac{P(a,i|c)}{P(a|c)} \stackrel{(2)}{=} \frac{\sum_{r^*} P(a,i,r^*|c)}{\sum_{i^*,r^*} P(a,i^*,r^*|c)} \stackrel{(3)}{=} \frac{\sum_{r^*} P(a|i,r^*,c) P(i,r^*|c)}{\sum_{i^*,r^*} P(a|i^*,r^*,c) P(i|c) P(r^*|c)}$$

$$\stackrel{(4)}{=} \frac{\sum_{r^*} P(a|i,r^*,c) P(i|c) P(r^*|c)}{\sum_{i^*,r^*} P(a|i^*,r^*,c) P(i^*|c) P(r^*|c)}$$

intention from last step

get_realisations_probs

a* should come from specific realisation and not from the actual state

$$P(a|i,r,c) \stackrel{(1)}{=} \frac{P(a,i|r,c)}{\sum_{a^*} P(a^*,i|r,c)} \stackrel{(2)}{=} \frac{P(i|a,r,c)P(a|r,c)}{\sum_{a^*} P(i|a^*,r,c)P(a^*|r,c)}$$

$$\stackrel{(3)}{=} \frac{P(i|r,c_{\text{new}})P(a|r,c)}{\sum_{a^*} P(i|,r,c_{\text{new}}^*)P(a^*|r,c)} \stackrel{(4)}{=} \frac{\exp(\alpha U(i;r,c_{\text{new}}))P(a|r,c)}{\sum_{a^*} \exp(\alpha U(i;r,c_{\text{new}}^*))P(a^*|r,c)}$$

pragmatic speaker

Neither Saskia's nor Bianca's utility function depend on k_new!!!

e.g. the more likely that the following cards from co-players can be played if the current card is played, the higher the intention to play should be

Solutions

- Think hard about how to create utility functions that makes sense...
- Try it out with NN approximator?

How to assess quality of produced intention distribution?