UFRGS – INSTITUTO DE MATEMÁTICA e
ESTATÍSTICA
Departamento de Matemática Pura e Aplicada
MAT01169
Terceira avaliação

1	2	3	Total

Nome:	Cartão:	

Regras:

- Apresente as respostas em papel escrito à mão.
- Questão 1 (3 pontos): Apresente o desenvolvimento do Método de Euler Implícito. Ele é um método de Runge-Kutta de primeira ordem que utiliza a aproximação das diferenças regressivas.
- Questão 2 (2 pontos): Apresente um algoritmo para o Método de Euler Implícito que utiliza o algoritmo de Newton-Raphson para resolver as equações utilizadas.
- Questão 3 (3 pontos): Resolva o seguinte Problema de Valor Inicial utilizando o Método de Euler Implícito:

$$\frac{d^2y(t)}{dt^2} + \frac{2}{N}\frac{dy(t)}{dt} + \frac{2}{N^2}y(t) = 0$$

onde N é o seu **número do cartão UFRGS**. Considere as condições iniciais y(0) = 1 e y'(0) = 0. Escolha adequadamente o número de pontos e o intervalo entre os pontos da solução aproximada. Apresente no mínimo mil pontos entre t = 0 e $t = t_f$ onde $y(t) < 0.01 \ \forall t > t_f$.