Homework #6 – Modeling ECE 411 - Industry Design Processes Team 6: Kai Boldt, Ryan Nand, Ranvir Sandhu, Elijah Penn November 24th, 2020

V1.02

Social Distancing Device - Behavorial Model V1.03

Module	Social Distancing Device
Inputs	- Power Supply: 9V DC
1	- Analog Temperature Signal (Contactless Temperature
	Sensor)
	- 940nm IR Signal (Time of Flight Sensor)
Outputs	- LED Display (Visual Alert)
•	- Low Power Audio Amplifier (Auditory Alert)
Behavioral	The Social Distancing Device detects people that are within the CDC
Functionality	recommendation of 6' apart from another person to prevent the
	potential spread of COVID-19.
	Behavioral Flowchart Model
	The functionality of the model begins with a slide switch that the
	user can either input to leave the system OFF or turn the system ON.
	Once the system is ON, the system is powered by a 9V battery that is
	regulated to an operating voltage of 5V. From there the VCC of 5V
	powers the two sensors contained on the systems. Each sensor will
	take 1,000 samples through a FOR loop in the program and will
	summate each sample measurement into a total value. These are
	done to minimize any potential outliers in the dataset that can occur
	through system use. Then the system will compute an average value
	(temperature and distance) that'll be used through two conditional
	statements (If-Else Statements) to determine if the system needs to
	alert the user based on if they're currently failing to meet the CDC
	recommendation. Based on the average measurements the system
	can do one of three options. It can either display an auditory alert
	with an LED sequence, just the LED sequence, or nothing at all. The
	system will perpetually repeat these steps till the user decides to turn off the device.
	on the device.

IR Contactless Temperature Sensor Flowchart

MLX90614 Contactless Temperature Sensor - Behavorial Model V1.02

Module	IR Contactless Temperature Sensor
Inputs	- Power: 5V DC
	- Analog Temperature Signal (IR)
Outputs	- Digital Temperature Signal (Sends data to ATmega328p's
	I2C bus)
Behavioral	The IR Contactless Temperature Sensor measures the respective
Functionality	temperature of the object within the sensor's field of vision. Through
	testing, we determined that the sensor was accurate with single
	samples of measurements. However, we decided to take a summation
	of 1,000 samples of the measured temperature data through a FOR
	loop within our program. From there, the program takes the total
	summation of 1,000 temperature values and divides that by the total
	number of samples taken. This was done to remove potential outliers
	of data since the sensor has a 15° field of vision and the further the
	object's distance the sensor loses accuracy of the measured
	temperature.

Tine of Flight (ToF) Sensor Flowchart

VL53L1X Time of Flight Sensor - Behavorial Model V1.02

Module	Time of Flight (ToF) Sensor
Inputs	- Power: 5V DC Signal
	- 940nm IR Signal

Outputs	- Digital Distance Signal (Connected to ATmega328p's I2C
	bus)
Behavioral Functionality	The Time of Flight (ToF) measures the distance of an object from the IR sensor. The behavioral model is similar to what was observed with the Contactless Temperature Sensor. The behavioral model of this sensor begins by initializing 1,000 samples to be taken and summates all 1,000 samples of measured distance through a FOR loop. After the summation of all measured distances then the system will compute the average measured distance by dividing the total summation of measured values by the number of samples taken. This process was done for system stability by preventing potential outliers in the dataset from interfering with the conditional statements to
	determine if a notification type needs to occur.

LED Display and Auditory Alarm Flowchart

LED Display and Auditory Alert - Behavorial Model V1.02

Module	LED Display and Auditory Alarm
Inputs	- Power: 5V DC Signal
Imp at s	- Volume Control (10k Ω Potentiometer) Determined by user
Outputs	- Auditory Alarm (Tones with different frequencies)
Outputs	- LED Display (Light from two separate LED colors)
Behavioral	The LED Display and Auditory Alarm is the main form of
Functionality	notification for the user for failure to maintain 6' of distance between
1 diletionanty	other people.
	other people.
	LED Display
	The LED display is a cycling function between two different colors
	of LED's. The system is designed to initiate the first LED for 200ms
	and then the second LED for another 200ms. Once the 200ms
	duration has past then the program will turn off the respective LED
	that was on concurrently. The system is constructed to perform just
	one cycle of the LED sequence for overall program loop, but the
	system was designed to reduce all the apparent delays and processing
	time. Therefore, the LED's will appear as a continuous function if
	the same condition is met between complete system loops
	r van
	Auditory Alarm
	The Auditory Alarm is a sequence of tones played at different
	frequencies to alert the user if the user fails to maintain at least 3' of
	distance from another person. The alarm will always be the same
	through each iteration of the complete system loop. With this module
	the user has control over the volume at which the alarm will be
	played through each system iteration.