

Lecture content

- Trigonometric Fourier Series
 - Example of Fourier Series.
- Conditions for existence of Fourier Series

FS coefficients

As shown in example 3, the square waveform can be expressed as a sum of sinusoids or complex exponentials. We can replace

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_o t}$$

with
$$x(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos \omega_n t + b_n \sin \omega_n t]$$

where
$$a_0 = c_0 = \frac{1}{T} \int_{\langle T \rangle} x(t) dt$$
 is the d.c term,

$$a_n = 2\operatorname{Re}[c_n] = \frac{2}{T} \int_{} x(t) \cos n\omega_0 t dt$$

$$b_n = -2\operatorname{Im}[c_n] = \frac{2}{T} \int_{} x(t) \sin n\omega_0 t dt$$

If x(t) is an even function $b_n = 0$. If x(t) is an odd function $a_0 = 0$ and $a_n = 0$.

Example

Consider the periodic square wave x(t) shown in figure 4.3. Find the Fourier Series coefficients for x(t).

EEE201 Signals and Systems, CH Tan The University Of Sheffield

Dirichlet conditions

1. x(t) is absolutely integrable over any period.

$$\int_{< T >} |x(t)| dt < \infty$$

which ensures that the Fourier Series coefficients will be finite since

$$\left|c_{n}\right| = \frac{1}{T} \int_{\langle T \rangle} \left|x(t)e^{-jn\omega_{o}t}\right| dt = \frac{1}{T} \int_{\langle T \rangle} \left|x(t)\right| dt$$

So if
$$\int_{} |x(t)| dt < \infty \Longrightarrow |c_n| < \infty$$

Dirichlet conditions

2. x(t) has a finite number of maxima and minima over any period.

The signal shown below is absolutely integrable but has an infinite number of maxima and minima. $x(t) = \sin(2\pi/t)$

$$\int_{< T>} |x(t)| dt < \infty$$

Dirichlet conditions

3. x(t) has a finite number of discontinuities over any period.

$$\int_{} |x(t)| dt < \infty$$

Gibbs phenomenon

- ripples reduced as the number of components *N* in the Fourier Series representation increases.
- an overshoot of 9% of the height of the discontinuity independent of *N*.
- this behaviour is known as **Gibbs** phenomenon.

The implication is that the Fourier Series representation of a discontinuous signal, such as the square wave, will in general exhibits high-frequency ripples and overshoot near the discontinuity.

It is therefore necessary to use sufficiently large value of *N* if such approximation is used in practice, so that the total energy in the ripples is insignificant.

FS example

Consider a RC low pass filter shown in figure 4.8.

We can show that this RC circuit is a low pass filter by analysing the response of the circuit to the harmonics of a periodic signal. Consider an input signal shown in

figure 4.8(b).

