Проблем падобранца

Семинарски рад у оквиру курса Основе математичког моделирања Математички факултет Београд

Capa Селаковић mi17017@alas.matf.bg.ac.rs

Јелена Кељаћ mi18106@alas.matf.bg.ac.rs

Лидија Ђаловић mi18107@alas.matf.bg.ac.rs

27. мај 2022.

1 Задатак

Падобранац масе 90kg искаче из авиона на висини H. Отпор ваздуха је пропорционалан квадрату брзине кретања. Гранична брзина слободног пада падобранца без отвореног падобрана је 50m/s, а са отвореним падобраном 5m/s. Падобран се отвара тренутно на некој висини h. Безбедна брзина доскока је 10m/s. Поставити математички модел и за разне вредности висине H израчунати најмању висину h која гарантује безбедан доскок.

2 Постављање модела

Са x(t) означавамо функцију за пређени пут, са v(t) функцију за брзину, а са a(t) функцију за убрзање. Све три функције зависе од времена. При решавању задатка имамо у виду да је

$$x'(t) = v(t)$$

$$v'(t) = a(t)$$

На падобранца у сваком тренутку делују сила отпора ваздуха F_O и сила Земљине теже Q. Резултујућа сила $\vec{F}=m\cdot\vec{a}$ на падобранца по Другом Њутновом закону (у векторском облику) износи:

$$\vec{F} = \vec{Q} + \vec{F_0}$$

Пошто се падобранац креће у смеру силе \vec{Q} , њу у рачуну узимамо са позитивним предзнаком, док сила отпора делује у супротном смеру од кретања тако да њу пишемо са негативним предзнаком:

$$m \cdot a = Q - F_O$$

Обзиром да је сила отпора сразмерна квадрату брзине, можемо је изразити као $F_O=k\cdot v^2$, док за силу Земљине теже користимо $Q=m\cdot g$. Тада добијамо једначину

$$m \cdot a = m \cdot g - k \cdot v^2$$

Дељењем једначине са m добијамо

$$a = g - \frac{k}{m} \cdot v^2 \quad (1)$$

Одавде добијамо диференцијалну једначину

$$v' = g - \frac{k}{m} \cdot v^2$$

Да бисмо решили једначину, тј. добили v(t), прво је потребно да израчунамо коефицијент k и узмемо у обзир да су нам m и g познати ($m=90kg,\ g=9.81m/s^2$). Из (1), на основу граничних вредности брзине и убрзања које је у том тренутку једнако нули, можемо израчунати вредности за k. За случај пре отварања падобрана, добијамо k1=0.35316, док за случај након отварања падобрана добијамо k2=35.316.

Решавамо диференцијалну једначину:

$$v'(t) = g - \frac{k}{m} \cdot v^{2}(t)$$

$$\frac{dv}{dt} = g - \frac{k}{m} \cdot v^{2}(t)$$

$$\frac{dv}{g - \frac{k}{m} \cdot v^{2}(t)} = dt$$

$$\int \frac{dv}{g - \frac{k}{m} \cdot v^{2}(t)} = \int dt$$

$$\frac{1}{g} \int \frac{dv}{1 - \frac{k}{mg} \cdot v^{2}(t)} = t + c$$

$$\frac{1}{g} \int \frac{dv}{1 - \left(\sqrt{\frac{k}{mg}} \cdot v(t)\right)^{2}} = t + c \quad (2)$$

Уводимо смену:

$$u = \sqrt{\frac{k}{mg}} \cdot v(t), \quad du = \sqrt{\frac{k}{mg}} \cdot dv$$

Након увођења смене, (2) изгледа овако:

$$\frac{1}{g} \cdot \sqrt{\frac{mg}{k}} \int \frac{du}{1 - u^2} = t + c$$

$$\frac{1}{2} \sqrt{\frac{m}{gk}} \cdot \ln \frac{|1 + u|}{|1 - u|} = t + c$$

Враћањем смене добијамо:

$$\frac{1}{2}\sqrt{\frac{m}{gk}}\cdot \ln\frac{|1+\sqrt{\frac{k}{mg}}\cdot v(t)|}{|1-\sqrt{\frac{k}{mg}}\cdot v(t)|} = t+c \quad (3)$$

Сада смо стигли до дела где задатак раздвајамо на два дела: пре и после отварања падобрана. Од апсолутних заграда се ослобађамо у оба дела задатка у зависности од: вредности $m,\ g,\ k1,\ k2$ и од вредности које може имати брзина у датом делу кретања. Надаље, са $x_1(t)$ и $v_1(t)$ означавамо функције за пређени пут и брзину пре отварања падобрана, а након отварања означавамо их са $x_2(t)$ и $v_2(t)$.

2.1 Пре отварања падобрана k1 = 0.35316

Пре отварања падобрана кретање је убрзано са граничном брзином од 50m/s. Знајући граничну брзину, можемо закључити да ће, за такве вредности брзине $(0 \le v_1 < 50m/s)$, увек важити да је:

$$\sqrt{\frac{k_1}{mg}} \cdot v_1 < 1$$

и на основу тога се ослобађамо апсолутних заграда у једнакости (3). У даљем решавању користимо и то да је почетна брзина падобранца пре отварања падобрана нула, тј. $v_1(0) = 0$ и да пређени пут почиње од нуле, тј. $x_1(0) = 0$. Решавамо (3):

$$\ln \frac{1 + \sqrt{\frac{k_1}{mg}} \cdot v_1(t)}{1 - \sqrt{\frac{k_1}{mg}} \cdot v_1(t)} = 2\sqrt{\frac{gk_1}{m}} \cdot (t+c)$$

$$e^{2\sqrt{\frac{gk_1}{m}}(t+c)} = \frac{1 + \sqrt{\frac{k_1}{mg}} \cdot v_1(t)}{1 - \sqrt{\frac{k_1}{mg}} \cdot v_1(t)}$$

$$1 + \sqrt{\frac{k_1}{mg}} \cdot v_1(t) = e^{2\sqrt{\frac{gk_1}{m}} \cdot (t+c)} \cdot \left(1 - \sqrt{\frac{k_1}{mg}} \cdot v_1(t)\right)$$

$$\sqrt{\frac{k_1}{mg}} \cdot v_1(t) = e^{2\sqrt{\frac{gk_1}{m}} \cdot (t+c)} - \sqrt{\frac{k_1}{mg}} \cdot v_1(t) \cdot e^{2\sqrt{\frac{gk_1}{m}} \cdot (t+c)} - 1$$

$$v_1(t) \cdot \left(\sqrt{\frac{k_1}{mg}} + \sqrt{\frac{k_1}{mg}} \cdot e^{2\sqrt{\frac{gk_1}{m}} \cdot (t+c)}\right) = e^{2\sqrt{\frac{gk_1}{m}} \cdot (t+c)} - 1$$

$$v_1(t) = \frac{e^{2\sqrt{\frac{gk_1}{m}} \cdot (t+c)} - 1}{\sqrt{\frac{k_1}{mg}} \cdot \left(e^{2\sqrt{\frac{gk_1}{m}} \cdot (t+c)} + 1\right)} = \sqrt{\frac{mg}{k_1}} \tanh\left(\sqrt{\frac{gk_1}{m}} \cdot (t+c)\right)$$

$$v_1(t) = \sqrt{\frac{mg}{k_1}} \tanh\left(\sqrt{\frac{gk_1}{m}} \cdot (t+c)\right)$$

Из услова $v_1(0) = 0$, рачунамо константу c:

$$\sqrt{\frac{mg}{k_1}} \tanh\left(\sqrt{\frac{gk_1}{m}} \cdot c\right) = 0$$

$$\tanh\left(\sqrt{\frac{gk_1}{m}} \cdot c\right) = 0 \implies c = 0$$

Када заменимо c = 0 у (3), добијамо:

$$\boxed{\mathbf{v}_1(t) = \sqrt{\frac{mg}{k_1}} \tanh\left(\sqrt{\frac{gk_1}{m}} \cdot t\right)}$$

Сада можемо добити $x_1(t)$ из једнакости $x_1'(t) = v_1(t)$.

$$x_1'(t) = \sqrt{\frac{mg}{k_1}} \tanh\left(\sqrt{\frac{gk_1}{m}} \cdot t\right)$$
$$x_1(t) = \sqrt{\frac{mg}{k_1}} \int \tanh\left(\sqrt{\frac{gk_1}{m}} \cdot t\right) dt \quad (4)$$

Посебно рачунамо вредност интеграла $\int \tanh\left(\sqrt{\frac{gk_1}{m}}\cdot t\right)dt$ (5). Због једноставности користимо $a=\sqrt{\frac{gk_1}{m}}$.

$$\int \tanh(a \cdot t)dt = \int \frac{e^{at} - e^{-at}}{e^{at} + e^{-at}}dt$$

Уводимо смену:

$$u = e^{at} + e^{-at}, \quad du = a(e^{at} - e^{-at}) dt$$

$$\int \frac{e^{at} - e^{-at}}{e^{at} + e^{-at}} dt = \frac{1}{a} \int \frac{du}{u} = \frac{1}{a} \cdot \ln|u| + c$$

Враћањем смене u, добијамо да је интеграл (5) једнак:

$$\frac{1}{a} \cdot \ln\left(e^{at} + e^{-at}\right) + c = \frac{1}{a} \cdot \ln\left(2\cosh at\right) + c = \frac{1}{a}\left(\ln 2 + \ln\left(\cosh at\right)\right) + c$$

Како је $\frac{\ln 2}{a}$ константа, у збиру са константом c биће такође константа, па је решење интеграла (5):

$$\frac{\ln(\cosh at)}{a} + c = \sqrt{\frac{m}{gk_1}} \ln\left(\cosh\left(\sqrt{\frac{gk_1}{m}} \cdot t\right)\right) + c$$

Користећи решење интеграла (5) у једнакости (4) добијамо:

$$x_1(t) = \frac{m}{k_1} \ln \left(\cosh \left(\sqrt{\frac{gk_1}{m}} \cdot t \right) \right) + c$$

Из услова $x_1(0) = 0$, добијамо константу c:

$$x_1(0) = \frac{m}{k_1} \ln(\cosh 0) + c = 0$$
$$c = 0 - \frac{m}{k_1} \ln 1 = 0$$

Одатле добијамо:

$$x_1(t) = \frac{m}{k_1} \ln \left(\cosh \left(\sqrt{\frac{gk_1}{m}} \cdot t \right) \right)$$

Напомена 1: Можемо закључити да је, за свако $t \in (0, +\infty)$, функција $v_1(t)$ позитивна (јер је $\tanh(x)$ позитивна функција за свако $x \in (0, +\infty)$). Пошто је $x_1'(t) = v_1(t)$, из овога следи да је x_1 растућа функција за свако $t \in (0, +\infty)$, а то нам је потребно да важи јер пређени пут кроз време треба да расте. Такође видимо и да је $x_1(0) = 0$, тј. пређени пут почиње од нуле.

2.2 Након отварања падобрана k2 = 35.316

После отварања падобрана, уколико се претходно кретао брзином од 5m/s или већом, падобранац се креће успорено (може се десити и да се кретао мањом брзином од 5m/s ако се отварање десило у веома раном временском тренутку - описано у наредној секцији). У овом делу кретања, гранична брзина је 5m/s. За такве вредности брзине $(50m/s>v_2>5m/s)$, можемо закључити да ће увек важити да је:

$$\sqrt{\frac{k_2}{mg}} \cdot v_2 > 1$$

и на основу тога се ослобађамо апсолутних заграда у једнакости (3). У овом делу задатка користимо то да се падобран отвара тренутно у неком тренутку t_d , тј. да је крајња брзина без падобрана једнака почетној брзини са падобраном, дакле $v_2(0) = v_1(t_d)$. Такође, почетни пређени пут са падобраном је једнак нули, тј. $x_2(0) = 0$. Настављамо да решавамо (3):

$$\ln \frac{\sqrt{\frac{k_2}{mg}} \cdot v_2(t) + 1}{\sqrt{\frac{k_2}{mg}} \cdot v_2(t) - 1} = 2\sqrt{\frac{gk_2}{m}} \cdot (t+c)$$

$$e^{2\sqrt{\frac{gk_2}{mg}} \cdot v_2(t) + 1} = \frac{\sqrt{\frac{k_2}{mg}} \cdot v_2(t) + 1}{\sqrt{\frac{k_2}{mg}} \cdot v_2(t) - 1}$$

$$\sqrt{\frac{k_2}{mg}} \cdot v_2(t) + 1 = e^{2\sqrt{\frac{gk_2}{m}} \cdot (t+c)} \cdot \left(\sqrt{\frac{k_2}{mg}} \cdot v_2(t) - 1\right)$$

$$\sqrt{\frac{k_2}{mg}} \cdot v_2(t) + 1 = e^{2\sqrt{\frac{gk_2}{m}} \cdot (t+c)} \cdot \sqrt{\frac{k_2}{mg}} \cdot v_2(t) - e^{2\sqrt{\frac{gk_2}{m}} \cdot (t+c)}$$

$$v_2(t) \cdot \left(\sqrt{\frac{k_2}{mg}} - \sqrt{\frac{k_2}{mg}} \cdot e^{2\sqrt{\frac{gk_2}{m}} \cdot (t+c)}\right) = -e^{2\sqrt{\frac{gk_2}{m}} \cdot (t+c)} - 1$$

$$v_2(t) = \frac{e^{2\sqrt{\frac{gk_2}{m}} \cdot (t+c)} + 1}{\sqrt{\frac{k_2}{mg}} \cdot \left(e^{2\sqrt{\frac{gk_2}{m}} \cdot (t+c)} - 1\right)}$$

$$v_2(t) = \sqrt{\frac{mg}{k_2}} \coth\left(\sqrt{\frac{gk_2}{m}} \cdot (t+c)\right) \quad (6)$$

Из услова $v_2(0) = v_1(t_d)$ добијамо:

$$\sqrt{\frac{mg}{k_2}} \coth\left(\sqrt{\frac{gk_2}{m}} \cdot c\right) = v_1(t_d)$$

$$\coth\left(\sqrt{\frac{gk_2}{m}} \cdot c\right) = \sqrt{\frac{k_2}{mg}} \cdot v_1(t_d)$$

$$c = \sqrt{\frac{m}{gk_2}} \operatorname{arcoth}\left(\sqrt{\frac{k_2}{mg}} \cdot v_1(t_d)\right)$$

Када вратимо константу c у (6) добијамо:

$$v_{2}(t) = \sqrt{\frac{mg}{k_{2}}} \coth \left(\sqrt{\frac{gk_{2}}{m}} \cdot t + \operatorname{arcoth} \left(\sqrt{\frac{k_{2}}{mg}} \cdot v_{1}(t_{d}) \right) \right)$$

Сада рачунамо $x_2(t)$ из услова $x_2'(t) = v_2(t)$:

$$x_2(t) = \sqrt{\frac{mg}{k_2}} \int \coth\left(\sqrt{\frac{gk_2}{m}} \cdot t + \operatorname{arcoth}\left(\sqrt{\frac{k_2}{mg}} \cdot v_1\left(t_d\right)\right)\right) dt$$

Уводимо смену:

$$u = \sqrt{\frac{gk_2}{m}} \cdot t + \operatorname{arcoth}\left(\sqrt{\frac{k_2}{mg}} \cdot v_1\left(t_d\right)\right), \quad du = \sqrt{\frac{gk_2}{m}}dt$$
$$x_2(t) = \sqrt{\frac{m}{gk_2}}\sqrt{\frac{mg}{k_2}}\int \coth u du$$
$$x_2(t) = \frac{m}{k_2}\ln \sinh u + c$$

Напомена 2: Интеграл $\int \coth u du$ се решава сличним поступком који смо описали при решавању интеграла (5).

Враћањем смене добијамо да је:

$$x_2(t) = \frac{m}{k_2} \ln \left(\sinh \left(\sqrt{\frac{gk_2}{m}} \cdot t + \operatorname{arcoth} \left(\sqrt{\frac{k_2}{mg}} \cdot v_1(t_d) \right) \right) \right) + c \quad (7)$$

Из услова $x_2(0) = 0$ рачунамо константу c:

$$c = -\frac{m}{k_2} \ln \left(\sinh \left(\operatorname{arcoth} \left(\sqrt{\frac{k_2}{mg}} \cdot v_1 \left(t_d \right) \right) \right) \right)$$

Враћањем константе c у (7) добијамо:

$$x_{2}(t) = \frac{m}{k_{2}} \ln \left(\sinh \left(\sqrt{\frac{gk_{2}}{m}} \cdot t + \operatorname{arcoth} \left(\sqrt{\frac{k_{2}}{mg}} \cdot v_{1}\left(t_{d}\right) \right) \right) \right) - \frac{m}{k_{2}} \ln \left(\sinh \left(\operatorname{arcoth} \left(\sqrt{\frac{k_{2}}{mg}} \cdot v_{1}\left(t_{d}\right) \right) \right) \right)$$

$$\mathbf{x}_{2}(t) = \frac{m}{k_{2}} \ln \frac{\sinh \left(\sqrt{\frac{gk_{2}}{m}} \cdot t + \operatorname{arcoth} \left(\sqrt{\frac{k_{2}}{mg}} \cdot v_{1}\left(t_{d}\right)\right)\right)}{\sinh \left(\operatorname{arcoth} \left(\sqrt{\frac{k_{2}}{mg}} \cdot v_{1}\left(t_{d}\right)\right)\right)}$$

Напомена 3: Можемо закључити да је, за свако $t \in (0, +\infty)$, функција $v_2(t)$ позитивна (јер је $\coth(x)$ позитивна функција за свако $x \in (0, +\infty)$). Пошто је $x_2'(t) = v_2(t)$, из овога следи да је x_2 растућа функција за свако $t \in (0, +\infty)$, а то нам је потребно да важи јер пређени пут кроз време треба да расте. Такође видимо и да је $x_2(0) = 0$, а и то нам је потребно да важи јер време након отварања падобрана почиње од нуле.

2.3 Случај након отварања када је $0 \le v_1(t_d) < 5m/s$

Ако се падобранац пре отварања падобрана кретао брзином мањом од 5m/s, закључујемо да се на даље мора кретати благо убрзано тежећи ка брзини од 5m/s. У овом делу кретања, функције за брзину и пређени пут означавамо са $v_{22}(t)$ и $x_{22}(t)$. За вредности брзине $0 \le v_{22}(t) < 5m/s$, важиће да је:

$$\sqrt{\frac{k_2}{mg}} \cdot v_{22} < 1$$

Једнакост (3) ће стога имати исти ток решавања као при извођењу функција $v_1(t)$ и $x_1(t)$, само што сада уместо k_1 имамо k_2 :

$$\mathbf{v}_{22}(t) = \sqrt{\frac{mg}{k_2}} \tanh\left(\sqrt{\frac{gk_2}{m}} \cdot t\right)$$

$$x_{22}(t) = \frac{m}{k_2} \ln \left(\cosh \left(\sqrt{\frac{gk_2}{m}} \cdot t \right) \right)$$

Као и претходне, закључујемо да и овако дефинисане функције задовољавају потребе модела након отварања падобрана: брзина не прелази 5m/s и пређени пут расте и почиње од нуле.

Из неједнакости $v_1(t_d) < 5m/s$ можемо добити најкаснији тренутак отварања падобрана t_d , од ког би се на даље користиле функције $v_{22}(t)$ и $x_{22}(t)$.

$$\sqrt{\frac{mg}{k_1}} \tanh\left(\sqrt{\frac{gk_1}{m}} \cdot t_d\right) < 5$$

$$\sqrt{\frac{gk_1}{m}} \cdot t_d < 0.1$$

$$\boxed{t_d < 0.511}$$

Дакле, уколико падобранац отвори падобран у првих 0.511 секунди од искакања, функције које описују његову брзину и пређени пут након отварања падобрана су $v_{22}(t)$ и $x_{22}(t)$, а у супротном су $v_{2}(t)$ и $x_{2}(t)$.

3 Рачунање h за различите вредности H

Помоћу функција $x_1(t)$ и $v_1(t)$ може се израчунати да се, за веома мале висине од 5.202m и мање, може безбедно доскочити и без падобрана (тако што нађемо t_d за које је $v_1(t_d)=10$ и онда висину добијемо као $x_1(t_d)$). Дакле, h=0 за вредности $H\leq 5.202$. Функција $visine\ (Hstart, Hstep, Hend)$ прима три аргумента која описују у ком интервалу [Hstart, Hend] и са коликим кораком Hstep желимо да рачунамо вредности h за вредности H из задатог интервала. Идеја функције $visine\$ је следећа (за H>5.202):

За сваку висину H из интервала [Hstart, Hend] са кораком Hstep тражимо најкаснији тренутак t_{dmax} у ком се може отворити падобран, а да притом доскок буде безбедан. Када израчунамо t_{dmax} , вредност h рачунамо као:

$$h = H - x_1 \left(t_{dmax} \right) \quad (9)$$

Минималност висине h је овим путем обезбеђена јер је $x_1(t)$ растућа функција, па онда знамо да вредност h временом опада за H > 5.202 (што веће t_{dmax} нађемо, то ће h бити мање).

Како тражимо t_{dmax} за одређено H? Ради ефикасности и брзине израчунавања, у првој петљи желимо да нађемо интервал у ком се налази t_{dmax} . Поставимо да t_d узима вредности од 0 до 300 са кораком од пола секунде (ограничимо са 300 јер сматрамо да слободан пад неће трајати дуже од 5 минута). У свакој итерацији проверавамо да ли текуће t_d обезбеђује безбедан доскок. Уколико текуће t_d обезбеђује безбедан доскок, у променљиву t_{dmax} уписујемо вредност t_d . У супротном, излазимо из петље, а у променљивој t_{dmax} је сачувана вредност последњег t_d које обезбеђује безбедан доскок. Сада желимо да вредност t_{dmax} буде веће тачности. Знамо да се тачнија вредност налази на интервалу [$t_{dmax}, t_{dmax} + 0.5$], па тај интервал табелирамо са кораком 0.001. Истим поступком само на новом интервалу, у другој петљи тражимо ново t_{dmax} које ће бити веће тачности.

Како проверавамо да ли неко t_d обезбеђује безбедан доскок? Тако што за то t_d проверимо да ли постоји тренутак доскока t_u за које важи да је:

$$v_2(t_u) \le 10m/s \quad (10)$$

Ако је t_u тренутак доскока, онда да важи и да је $x_2(t_u) = h$. Одатле за текуће t_d и висину $h = H - x_1(t_d)$ рачунамо t_u . Једнакост $x_2(t_u) = h$ је заправо нелинеарна једначина коју треба решити. Решавамо је помоћу уграђене MATLAB функције fsolve са тачношћу 1e-3.

Ако за овако израчунато t_u и текуће t_d важи (10), то значи да t_d обезбеђује безбедан доскок и прелазимо на следеће t_d јер тражимо да t_d буде што веће. Ако не важи (10), онда је t_d из претходне итерације највеће могуће које обезбеђује безбедан доскок, сачувано је t_{dmax} и за тренутно H рачунамо h из (9).

3.1 Позиви функција visine и grafik

Први ред исписа резултата функције visine представљају вредности H,а други ред су њихове h.

```
>> visine(580,180,1500)
results =

500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 4.4293 4.4461 4.4712 4.4691 4.4865 4.4672 4.4813 4.4876 4.4906 4.4919 4.4925
```

Слика 1: Позив visine(500, 100, 1500)

```
>> visine(500,200,2000)
results =

500.0000 700.0000 900.0000 1100.0000 1300.0000 1500.0000 1700.0000 1900.0000
4.4293 4.4712 4.4865 4.4813 4.4906 4.4925 4.4929 4.4930
```

Слика 2: Позив visine(500, 200, 2000)

Слика 3: Позив visine(500, 500, 5000)

Слика 4: График зависности h од H за позив visine(0, 500, 5000)

Слика 5: График зависности hод H за позив visine(0,1,20)

Слика 6: Позив grafik(300)

Слика 7: Позив grafik(500)

Слика 8: Позив grafik(1200)

Слика 9: Позив grafik(4000)

3.2 Закључак

На основу резултата функције visine и графика са слике 4 видимо да, за веће вредности H, вредности h се изједначавају. То објашњавамо тиме што, при слободном паду, падобранац има граничну брзину $v_{1max} = 50m/s$. Када искочи са велике висине H, његова брзина временом постаје јако блиска v_{1max} , тако да, колико год даље да траје његов слободни пад, брзина му се кроз време не мења много (тежи ка v_{1max}). Стога су резултати h у табели исти за свако H које је довољно велико да омогући достизање брзине која је близу граничне при слободном паду.

Већ је поменуто да се, за веома мале висине од 5.202m и мање, може безбедно доскочити и без падобрана, тј. h=0 за вредности $H\leq 5.202m$. За висине H>5.202m, h расте све док H не постане висина која омогућава приближавање v_{1max} , када вредности h надаље постају исте.

На сликама 5,6,7,8 приказани су графици зависности брзине од времена за неке висине H. Функција grafik(H) за задато H илуструје зависност брзине од времена кретања падобранца који достиже минимално h. Плава линија на графику представља брзину пре отварања падобрана, а црвена након отварања. Тренутак спајања плаве и црвене линије на графику представља t_{dmax} , односно тренутак отварања падобрана у ком се достиже минимално h. Из приказаних графика видимо да са порастом H расте и t_{dmax} (што је веће H, то је могуће провести више времена у слободном паду).