Simulated Annealing

Brian Busemeyer Algorithms, 02/28/2017

Physical annealing: heating up to smooth out defects

anneal

Physical annealing: heating up to smooth out defects

anneal

Why it works: high temperature exploration, low temperature conclusion

Physically, atoms want to fill holes, but have trouble finding them

high temperature exploration, low temperature conclusion

First heat it up: allows for atom to pop out of local minima

high temperature exploration, low temperature conclusion

Then slowly cool it...

high temperature exploration, low temperature conclusion

Then slowly cool it...

high temperature exploration, low temperature conclusion

If cooling is slow, equillibrium.

In equillibrium, lowest energy is exponentially more likely.

Metropolis with acceptance $e^{-(E_{\rm new}-E_{\rm old})/k_{\rm B}T}$

T is an adjustable parameter

(see movie)

For 1000 steps (slow cooling): reliable performance.

For 100 steps (fast cooling): unreliable

Simulated Annealing:

Mimicks the physical process of annealing for approximate optimization

It can handle noisy surfaces

Simple, parallelizable, and should handle high dimensions (We'll see if it does later!)

Energy

Low temperature available states