Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems June 2014 - V

1. (2.5p) We consider the planar differential system

$$x' = -4y, \quad y' = x .$$

- a) Find its general solution.
- b) Specify the type and stability of this linear system.
- c) Represent its phase portrait. What type of curves are the orbits?
- 2. (1.5p) We consider the initial value problem

$$y' = 1 - xy^2$$
, $y(0) = 0$.

Write the Euler numerical formula for this IVP, in the interval [0, 1], with constant stepsize h = 0.02. Compute the approximate values in x = 0.02and, respectively x = 0.04. How many steps there are needed in order to calculate the approximate value in x = 1?

3. (1.5p) We consider the map $f: \mathbb{R} \to \mathbb{R}, f(x) = x - \frac{1}{4}(x^2 - 2)$ and, given $x_0 \in \mathbb{R}$, consider the sequence $(x_k)_{k\geq 0}$ satisfying the recurrence

$$x_{k+1} = f(x_k) .$$

- a) Find the fixed points of f, and study their stability.
- b) Find $(x_k)_{k\geq 0}$ when $x_0=\sqrt{2}$.
- c) There exists some $x_0 \in \mathbb{R} \setminus \{\sqrt{2}\}$ such that $\lim_{k \to \infty} x_k = \sqrt{2}$? d) There exists some $x_0 \in \mathbb{R}$ such that $\lim_{k \to \infty} x_k = 2$?