```
# importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
# importig dataset
df = pd.read csv('winequality-red.csv')
df
      fixed acidity volatile acidity citric acid residual sugar
chlorides \
                7.4
                                0.700
                                               0.00
                                                                 1.9
0
0.076
1
                7.8
                                0.880
                                               0.00
                                                                2.6
0.098
                7.8
                                0.760
                                               0.04
                                                                2.3
2
0.092
3
               11.2
                                0.280
                                               0.56
                                                                 1.9
0.075
                7.4
                                0.700
                                               0.00
                                                                 1.9
0.076
. . .
                . . .
                                   . . .
                                                . . .
. . .
                6.2
                                0.600
                                               0.08
                                                                2.0
1594
0.090
                5.9
                                0.550
                                               0.10
                                                                2.2
1595
0.062
                6.3
                                0.510
                                               0.13
                                                                2.3
1596
0.076
                5.9
                                                                2.0
1597
                                0.645
                                               0.12
0.075
                6.0
                                0.310
                                               0.47
1598
                                                                3.6
0.067
      free sulfur dioxide total sulfur dioxide density
                                                             рΗ
sulphates \
                     11.0
                                            34.0 0.99780 3.51
0
0.56
                     25.0
                                            67.0 0.99680 3.20
1
0.68
                                            54.0 0.99700 3.26
2
                     15.0
0.65
                     17.0
                                            60.0 0.99800 3.16
3
0.58
                     11.0
                                            34.0 0.99780 3.51
0.56
```

```
. . .
                       . . .
                                              . . .
                                                       1594
                      32.0
                                             44.0 0.99490 3.45
0.58
                      39.0
                                             51.0 0.99512 3.52
1595
0.76
1596
                      29.0
                                             40.0 0.99574 3.42
0.75
1597
                      32.0
                                             44.0 0.99547
                                                            3.57
0.71
1598
                      18.0
                                             42.0 0.99549 3.39
0.66
              quality
      alcohol
                      5
0
          9.4
          9.8
                      5
1
2
                      5
          9.8
                     6
3
          9.8
                      5
4
          9.4
                     . .
1594
         10.5
                      5
         11.2
1595
                      6
         11.0
                      6
1596
1597
         10.2
                      5
1598
         11.0
                      6
[1599 rows x 12 columns]
# checking whether the data is balanced or not
df.quality.value_counts()
5
     681
6
     638
7
     199
4
      53
8
      18
3
      10
Name: quality, dtype: int64
df.shape
(1599, 12)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
#
     Column
                            Non-Null Count
                                             Dtype
- - -
     fixed acidity
                            1599 non-null
                                             float64
 0
```

1	volatile acidity	1599	non-null	float64
2	citric acid	1599	non-null	float64
3	residual sugar	1599	non-null	float64
4	chlorides	1599	non-null	float64
5	free sulfur dioxide	1599	non-null	float64
6	total sulfur dioxide	1599	non-null	float64
7	density	1599	non-null	float64
8	рН	1599	non-null	float64
9	sulphates	1599	non-null	float64
10	alcohol	1599	non-null	float64
11	quality	1599	non-null	int64
1+vn	$ac \cdot float64(11) int64$	(1)		

dtypes: float64(11), int64(1) memory usage: 150.0 KB

df.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	\
count	1599.000000	1599.000000	1599.000000	1599.000000	
mean	8.319637	0.527821	0.270976	2.538806	
std	1.741096	0.179060	0.194801	1.409928	
min	4.600000	0.120000	0.000000	0.900000	
25%	7.100000	0.390000	0.090000	1.900000	
50%	7.900000	0.520000	0.260000	2.200000	
75%	9.200000	0.640000	0.420000	2.600000	
max	15.900000	1.580000	1.000000	15.500000	
	chlorides	free sulfur dioxide	e total sulfu	r dioxide	
density	y \				
count -	1500 000000	1500 00000	1 1 1 1	000000	

chlo	rides free	sulfur di	ioxide	total su	lfur dioxide
density \					
count 1599.0	00000	1599.0	900000		1599.000000
1599.000000					
	87467	15.8	874922		46.467792
0.996747	47065	10	460157		22 225224
	47065	10.4	460157		32.895324
0.001887	12000	1	00000		C 000000
min 0.0 0.990070	12000	1.0	900000		6.000000
	70000	7 (900000		22.000000
0.995600	70000	/.\	00000		22.000000
	79000	14 (900000		38.000000
0.996750	73000	14.	00000		30.000000
	90000	21.0	000000		62.000000
0.997835					0_100000
max 0.6	11000	72.0	900000		289.000000
1.003690					

	рН	sulphates	alcohol	quality
count	1599.000000	1599.000000	1599.000000	1599.000000
mean	3.311113	0.658149	10.422983	5.636023
std	0.154386	0.169507	1.065668	0.807569
min	2.740000	0.330000	8.400000	3.000000

```
25%
          3.210000
                       0.550000
                                     9.500000
                                                  5.000000
50%
          3.310000
                       0.620000
                                    10.200000
                                                  6.000000
                                    11.100000
                                                  6.000000
75%
          3.400000
                       0.730000
          4.010000
                       2.000000
                                    14.900000
                                                  8,000000
max
# checking if there are any null values present in the data
df.isnull().sum()
fixed acidity
                        0
volatile acidity
                        0
citric acid
                        0
residual sugar
                        0
chlorides
                        0
free sulfur dioxide
                        0
total sulfur dioxide
                        0
                        0
density
рН
                        0
sulphates
                        0
alcohol
                        0
quality
                        0
dtype: int64
Exploratory Data Analysis
# let's check distribution of the data
features = df.columns[:-1]
def get percentile(feature,g range):
    dist = df[feature].describe()[str(q range) + '%']
    return round(dist,2)
def render counterplot():
    fig = plt.figure(figsize=(18,20))
    for column, feature in enumerate(features ):
        fig.add subplot(4,3, column +1)
        q1 = get percentile(feature, 25)
        q2 = get percentile(feature,50)
        q3 = get percentile(feature, 75)
        sns.histplot(data = df, x = feature, kde=True, color='orange')
        plt.axvline(q1, linestyle ='--', color='green',label='Q1')
        plt.axvline(g2,color='red',label='02(median)')
        plt.axvline(q3,linestyle='--',color='black',label='Q3')
        plt.legend()
render counterplot()
```


We can clearly look at countplot and can tell that data is
imbalanced
sns.countplot(x='quality',data=df,palette='Set2')

<matplotlib.axes._subplots.AxesSubplot at 0x1b5d11a0fd0>


```
# Outlier check using a box plot
features_ = df.columns[:-1]
fig = plt.figure(figsize=(16,20))
for column, feature in enumerate(features_):
    fig.add_subplot(5,3, column+1)
    sns.boxplot(data=df, x='quality',y =feature)
```



```
# Split features and target
x = df.drop('quality',axis= 1)
y = df['quality']
```

Χ

	fixed acidity	volatile acidity	citric acid	residual sugar
chlori	ides \			
0	7.4	0.700	0.00	1.9
0.076				
1	7.8	0.880	0.00	2.6
0.098				
2	7.8	0.760	0.04	2.3
0.092				
3	11.2	0.280	0.56	1.9
0.075				
4	7.4	0.700	0.00	1.9
0.076				

1594		6.2	0.600	Θ.	08	2	2.0
0.090 1595		5.9	0.550	0.	10	2	2.2
0.062 1596 0.076 1597 0.075 1598 0.067		6.3	0.510	Θ.	13	2	2.3
		5.9	0.645	0.	12	2	2.0
		6.0	0.310	0.	47	3	3.6
aul nh		ur dioxide	total sulfur d	lioxide	density	рН	
0 0.56	ates \	11.0		34.0	0.99780	3.51	
0.56 1 0.68		25.0		67.0	0.99680	3.20	
0.00 2 0.65		15.0		54.0	0.99700	3.26	
0.05 3 0.58		17.0		60.0	0.99800	3.16	
4 0.56		11.0		34.0	0.99780	3.51	
1594 0.58		32.0		44.0	0.99490	3.45	
1595 0.76		39.0		51.0	0.99512	3.52	
1596 0.75		29.0		40.0	0.99574	3.42	
1597 0.71		32.0		44.0	0.99547	3.57	
1598 0.66		18.0		42.0	0.99549	3.39	
0 1 2 3 4	alcohol 9.4 9.8 9.8 9.8 9.8						
1594 1595 1596 1597 1598	10.5 11.2 11.0 10.2 11.0						

```
[1599 rows x 11 columns]
x.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 11 columns):
#
    Column
                          Non-Null Count
                                          Dtype
     -----
                           _____
 0
    fixed acidity
                          1599 non-null
                                          float64
    volatile acidity
                          1599 non-null
                                          float64
 1
 2
    citric acid
                          1599 non-null
                                          float64
 3
    residual sugar
                          1599 non-null
                                          float64
 4
                          1599 non-null
    chlorides
                                          float64
 5
    free sulfur dioxide
                          1599 non-null
                                          float64
    total sulfur dioxide 1599 non-null
                                          float64
 6
 7
                          1599 non-null
    density
                                          float64
 8
                          1599 non-null
                                          float64
    рН
 9
    sulphates
                          1599 non-null
                                          float64
 10
    alcohol
                          1599 non-null
                                          float64
dtypes: float64(11)
memory usage: 137.5 KB
# Importing StandardScaler to perform scaling
from sklearn.preprocessing import StandardScaler
# Scaling down the data
scaler = StandardScaler()
x[x.columns] = scaler.fit transform(x[x.columns])
Χ
      fixed acidity volatile acidity citric acid residual sugar
chlorides
          -0.528360
                            0.961877
                                        -1.391472
                                                        -0.453218 -
0.243707
         -0.298547
                            1.967442
                                        -1.391472
                                                         0.043416
0.223875
2
          -0.298547
                            1.297065
                                        -1.186070
                                                        -0.169427
0.096353
3
          1.654856
                            -1.384443
                                        1.484154
                                                        -0.453218 -
0.264960
                            0.961877
                                        -1.391472
          -0.528360
                                                        -0.453218 -
0.243707
. . .
                . . .
1594
         -1.217796
                            0.403229
                                        -0.980669
                                                        -0.382271
0.053845
1595
         -1.390155
                            0.123905
                                        -0.877968
                                                        -0.240375 -
0.541259
```

```
1596
          -1.160343
                             -0.099554
                                          -0.723916
                                                           -0.169427 -
0.243707
1597
          -1.390155
                             0.654620
                                          -0.775267
                                                           -0.382271
0.264960
                             -1.216849
                                           1.021999
1598
          -1.332702
                                                            0.752894
0.434990
      free sulfur dioxide total sulfur dioxide
                                                   density
                                                                   pH \
0
                -0.466193
                                       -0.379133
                                                  0.558274
                                                             1.288643
1
                 0.872638
                                        0.624363
                                                  0.028261 -0.719933
2
                -0.083669
                                        0.229047
                                                  0.134264 - 0.331177
3
                                                  0.664277 -0.979104
                 0.107592
                                        0.411500
4
                -0.466193
                                       -0.379133
                                                 0.558274
                                                             1.288643
                                       -0.075043 -0.978765
1594
                 1.542054
                                                             0.899886
1595
                 2.211469
                                        0.137820 -0.862162
                                                            1.353436
1596
                 1.255161
                                       -0.196679 -0.533554 0.705508
1597
                 1.542054
                                       -0.075043 -0.676657
                                                            1.677400
                 0.203223
                                       -0.135861 -0.666057 0.511130
1598
      sulphates
                  alcohol
0
      -0.579207 -0.960246
1
       0.128950 -0.584777
2
      -0.048089 -0.584777
3
      -0.461180 -0.584777
4
      -0.579207 -0.960246
      -0.461180
                 0.072294
1594
1595
       0.601055
                 0.729364
1596
       0.542042
                 0.541630
1597
       0.305990 -0.209308
1598
       0.010924
                 0.541630
[1599 rows x 11 columns]
# Plotting heatmap to understand the correlation among the data
plt.figure(figsize=(18,12))
sns.heatmap(x.corr(), annot=True)
```

<matplotlib.axes. subplots.AxesSubplot at 0x1b5de4f1850>

Handling Imbalanced Dataset # importing SMOTE from imblearn.over_sampling from imblearn.over_sampling import SMOTE

```
# Balancing the data using SMOTE through oversampling
smote = SMOTE()
x_sm, y_sm = smote.fit_resample(x,y)

# We can see now the data is balanced
y_sm.value_counts()

7 681
5 681
5 681
8 681
6 681
```

Name: quality, dtype: int64

4

681

```
# splitting the data into training and testing data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test =
train_test_split(x_sm,y_sm,test_size=0.2, random_state=42)
# importing required libraries for model building
```

importing required libraries for model building
import tensorflow

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.layers import Dropout
x train
      fixed acidity volatile acidity citric acid residual sugar
chlorides
          \
2185
          -0.571384
                             3.417322
                                          -1.380485
                                                           1.028101
0.159421
                             0.577521
2462
                                          -1.289872
                                                          -0.485580 -
          -0.841831
0.458564
2819
          -0.939248
                             2.857041
                                          -0.996251
                                                          -0.177501 -
0.422091
          -0.580848
                                          -1.156907
1769
                             2.625052
                                                          -0.179511 -
0.496395
1373
          -0.356000
                             1.241200
                                          -0.005010
                                                           0.894790
0.478920
. . .
. . .
1130
           0.448342
                             0.403229
                                          -1.391472
                                                          -0.453218
0.626274
1294
          -0.068735
                             0.598756
                                          -0.877968
                                                          -0.311323 -
0.307468
          -0.643266
                             0.514959
                                          -1.083370
860
                                                          0.114364 -
0.222453
3507
                            -0.751943
           0.460028
                                          1.196940
                                                          -0.476063 -
0.337006
3174
          -1.772759
                             0.943529
                                         -1.207899
                                                          -0.753634 -
0.904831
      free sulfur dioxide total sulfur dioxide
                                                   density
                                                                  pН
2185
                -1.029747
                                       -0.993818 -0.111762 2.010704
2462
                -1.108578
                                       -1.161171 -1.123429
                                                            0.213942
                                       -0.449179 -0.183765
2819
                 0.291599
                                                            1.370640
1769
                 0.270529
                                       -0.014968
                                                  0.140154
                                                            0.171952
1373
                 1.733315
                                        1.293361 -0.056541 -0.460762
. . .
                -1.039977
                                       -1.108948
                                                 0.505273 -0.849519
1130
                                       0.411500 -0.194345 -0.136798
1294
                 0.872638
                                       1.171725
                                                  0.378070
860
                -0.083669
                                                            1.288643
3507
                -0.855199
                                       -0.924432 -1.063204 -0.681498
3174
                -0.222034
                                       1.297254 -2.233439
                                                           1.641560
      sulphates
                  alcohol
```

2185 -0.640414 0.184714 2462 -1.400213 0.111085 2819 -0.524670 0.548751 1769 -0.643319 -0.597531 1373 -1.228350 -1.054113

```
-0.166115 -0.021574
1130
1294
       0.542042
                 0.447763
      -0.697233 -0.866379
860
3507
       0.279989
                 1.898725
3174
       1.425954
                 2.367053
[3268 rows \times 11 columns]
# creating a sequence for an ANN model
model = Sequential()
model.add(tensorflow.keras.layers.Input(shape=11,))
model.add(tensorflow.keras.layers.Dense(32,activation='relu'))
model.add(tensorflow.keras.layers.Dense(64,activation='relu'))
model.add(tensorflow.keras.layers.Dropout(0.3))
model.add(tensorflow.keras.layers.Dense(128,activation='relu'))
model.add(tensorflow.keras.layers.Dense(6,activation='softmax'))
# LabelEncoding because categorical crossentropy take data in one-hot
encoded format
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y train = le.fit transform(y train)
y test = le.fit transform(y test)
# Converted into 0-5 but still not one-hot encoded
y test
array([3, 2, 4, 4, 1, 1, 2, 3, 2, 3, 5, 4, 2, 0, 5, 3, 2, 2, 5, 1, 3,
0,
       2, 3, 1, 0, 3, 0, 2, 5, 2, 0, 5, 3, 0, 3, 2, 5, 2, 4, 5, 5, 3,
4,
       4, 2, 4, 2, 1, 5, 3, 3, 2, 3, 3, 0, 1, 4, 1, 3, 3, 1, 3, 0, 5,
1,
       0, 4, 4, 3, 1, 0, 2, 4, 1, 2, 1, 1, 4, 0, 5, 3, 2, 3, 3, 5, 5,
2,
       5, 1, 0, 3, 3, 2, 3, 3, 4, 5, 5, 1, 5, 2, 2, 3, 1, 3, 0, 4,
4,
       3, 1, 4, 3, 2, 3, 0, 5, 1, 2, 2, 2, 3, 2, 3, 4, 2, 4, 2, 0, 4,
4,
       2, 0, 1, 0, 5, 2, 3, 0, 4, 2, 3, 3, 4, 5, 4, 3, 5, 1, 1, 2, 1,
2,
       1, 1, 0, 5, 4, 5, 1, 0, 5, 3, 4, 0, 5, 3, 1, 1, 1, 5, 1, 1, 5,
3,
       3, 0, 3, 1, 1, 2, 5, 5, 4, 4, 2, 4, 2, 4, 2, 3, 2, 4, 3, 1, 1,
0,
       1, 5, 4, 5, 0, 1, 0, 4, 1, 2, 1, 3, 5, 4, 2, 3, 5, 4, 1, 2, 4,
0,
       2, 0, 5, 5, 4, 0, 2, 0, 3, 5, 4, 1, 5, 1, 2, 3, 5, 4, 1, 1, 4,
5,
       0, 1, 3, 3, 1, 2, 3, 4, 1, 3, 3, 5, 1, 4, 2, 1, 2, 2, 1, 4, 0,
```

```
3,
       3, 0, 4, 4, 5, 0, 4, 1, 3, 3, 0, 3, 3, 3, 0, 5, 2, 5, 2, 3, 2,
2,
       0, 1, 1, 5, 5, 0, 1, 2, 4, 0, 0, 2, 4, 1, 3, 5, 1, 4, 1, 1, 3,
0,
       3, 2, 5, 3, 4, 1, 0, 3, 2, 1, 1, 4, 0, 4, 3, 1, 5, 3, 1, 5, 3,
5,
       2, 0, 5, 3, 3, 5, 3, 3, 2, 0, 0, 3, 0, 5, 5, 3, 5, 2, 4, 5, 5,
0,
       2, 0, 1, 5, 5, 1, 2, 2, 5, 2, 4, 0, 3, 1, 4, 5, 3, 0, 1, 2, 5,
3,
       4, 1, 2, 0, 2, 5, 4, 4, 0, 0, 2, 3, 1, 1, 2, 0, 0, 3, 0, 5, 5,
0,
       2, 5, 3, 1, 0, 3, 2, 3, 2, 3, 4, 2, 1, 3, 2, 0, 3, 5, 2, 1, 0,
1,
       2, 0, 0, 5, 0, 4, 2, 2, 0, 2, 4, 3, 3, 2, 4, 4, 4, 3, 4, 5, 1,
0,
       1, 4, 4, 1, 5, 0, 3, 2, 4, 4, 1, 5, 5, 0, 2, 5, 5, 3, 3, 3, 5,
1,
       4, 0, 0, 1, 2, 5, 0, 0, 3, 3, 0, 0, 2, 0, 1, 5, 0, 3, 3, 1, 5,
5,
       2, 3, 0, 4, 3, 1, 1, 1, 2, 2, 1, 3, 3, 1, 4, 0, 4, 2, 1, 2, 0,
3,
       3, 5, 2, 4, 0, 2, 5, 5, 5, 5, 5, 5, 4, 1, 4, 1, 4, 1, 4, 5,
2,
       2, 0, 0, 1, 2, 5, 1, 2, 1, 2, 5, 0, 4, 3, 0, 1, 5, 2, 2, 2, 2,
3,
       2, 0, 3, 5, 2, 3, 4, 0, 2, 4, 2, 1, 1, 0, 5, 3, 3, 5, 4, 0, 4,
5,
       4, 5, 3, 2, 4, 2, 3, 5, 3, 4, 5, 0, 1, 2, 0, 0, 4, 0, 4, 2, 2,
3,
       0, 5, 2, 2, 2, 4, 5, 1, 0, 0, 2, 5, 5, 4, 2, 3, 1, 5, 3, 3,
5,
       5, 0, 4, 4, 1, 3, 5, 0, 1, 1, 2, 1, 2, 1, 5, 5, 1, 2, 0, 3, 2,
2,
       2, 4, 3, 4, 2, 1, 1, 5, 0, 2, 4, 3, 3, 3, 3, 3, 3, 0, 5, 2, 0,
3,
       0, 0, 2, 1, 3, 3, 4, 4, 5, 4, 4, 5, 3, 4, 2, 3, 0, 1, 3, 0, 0,
3,
       2, 0, 3, 1, 0, 3, 0, 1, 5, 1, 5, 1, 4, 3, 2, 1, 5, 2, 3, 4, 3,
1,
       1, 0, 3, 4, 5, 1, 5, 1, 4, 0, 0, 0, 2, 0, 5, 2, 0, 4, 4, 1, 2,
1,
       2, 0, 1, 4, 0, 5, 0, 5, 3, 0, 4, 3, 2, 3, 2, 0, 1, 0, 3, 0, 0,
4,
       1, 1, 2, 5, 4, 3, 0, 0, 0, 2, 2, 5, 5, 1, 3, 4, 4, 4, 2, 2, 0,
5,
       3, 1, 4, 3, 5, 4, 1, 0, 1, 5, 3, 3, 0, 3, 5, 3, 3, 5, 3, 0, 3,
2,
       2, 3, 2, 0, 0, 5, 5, 2, 5, 5, 2, 2, 4, 5, 3, 1, 2, 2, 5, 5, 1,
```

```
2,
    2, 0, 1, 2], dtype=int64)
# Flattening the array to feed the data to input layers
y train = pd.DataFrame(y train.reshape(len(y train),1))
y test = pd.DataFrame(y test.reshape(len(y test),1))
y train
    0
    0
0
1
    1
2
    1
3
    0
4
    2
3263
   3
   3
3264
3265
   2
3266 5
3267 4
[3268 rows x 1 columns]
# Now converting the flattened array into one-hot encoded format
y train = tensorflow.keras.utils.to categorical(y train,6)
y test = tensorflow.keras.utils.to categorical(y test,6)
# Building the model
model.compile(optimizer='adam',loss='categorical crossentropy',metrics
=['accuracy'])
# Training the model
model.fit(x train,y train,epochs=400,verbose=1)
Epoch 1/400
- accuracy: 0.4058
Epoch 2/400
- accuracy: 0.5370
Epoch 3/400
- accuracy: 0.6019
Epoch 4/400
- accuracy: 0.6343
Epoch 5/400
- accuracy: 0.6717
Epoch 6/400
```

```
- accuracy: 0.6818
Epoch 7/400
- accuracy: 0.7032
Epoch 8/400
- accuracy: 0.7111
Epoch 9/400
- accuracy: 0.7258
Epoch 10/400
- accuracy: 0.7405
Epoch 11/400
- accuracy: 0.7460
Epoch 12/400
- accuracy: 0.7448
Epoch 13/400
- accuracy: 0.7555
Epoch 14/400
- accuracy: 0.7650
Epoch 15/400
- accuracy: 0.7653
Epoch 16/400
- accuracy: 0.7739
Epoch 17/400
- accuracy: 0.7778
Epoch 18/400
- accuracy: 0.7861
Epoch 19/400
- accuracy: 0.7812
Epoch 20/400
103/103 [============= ] - Os 2ms/step - loss: 0.5290
- accuracy: 0.7855
Epoch 21/400
- accuracy: 0.7870
Epoch 22/400
- accuracy: 0.7980
Epoch 23/400
```

103/103 [========] - accuracy: 0.7935	-	0s	2ms/step	-	loss:	0.4975
Epoch 24/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.4945
Epoch 25/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.4873
Epoch 26/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.4865
Epoch 27/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.4633
- accuracy: 0.8109 Epoch 28/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.4723
- accuracy: 0.8048 Epoch 29/400 103/103 [============]	_	0s	2ms/step	-	loss:	0.4521
- accuracy: 0.8277 Epoch 30/400 103/103 [========]	_	0s	2ms/step	_	loss:	0.4535
- accuracy: 0.8146 Epoch 31/400 103/103 [=======]	_	0s	2ms/step	_	loss:	0.4474
- accuracy: 0.8179 Epoch 32/400 103/103 [=======]						
- accuracy: 0.8250 Epoch 33/400 103/103 [========]			-			
- accuracy: 0.8265 Epoch 34/400						
103/103 [====================================			·			
103/103 [====================================	-	0s	2ms/step	-	loss:	0.4274
103/103 [=========] - accuracy: 0.8268 Epoch 37/400	-	0s	2ms/step	-	loss:	0.4199
103/103 [====================================	-	0s	2ms/step	-	loss:	0.4114
103/103 [==========] - accuracy: 0.8320	-	0s	2ms/step	-	loss:	0.4114
Epoch 39/400 103/103 [===========] - accuracy: 0.8363	-	0s	2ms/step	-	loss:	0.4031

Epoch 40/400 103/103 [====================================	-	loss:	0.4040
Epoch 41/400 103/103 [====================================	-	loss:	0.3967
Epoch 42/400 103/103 [====================================	-	loss:	0.3938
Epoch 43/400 103/103 [====================================	-	loss:	0.3940
Epoch 44/400 103/103 [====================================	-	loss:	0.3807
103/103 [====================================	-	loss:	0.3941
103/103 [====================================			
103/103 [====================================			
103/103 [====================================			
103/103 [====================================			
103/103 [====================================			
103/103 [====================================			
- accuracy: 0.8586 Epoch 53/400 103/103 [====================================			
- accuracy: 0.8519 Epoch 54/400 103/103 [====================================			
- accuracy: 0.8550 Epoch 55/400 103/103 [====================================			
- accuracy: 0.8617 Epoch 56/400 103/103 [====================================			

```
- accuracy: 0.8614
Epoch 57/400
- accuracy: 0.8647
Epoch 58/400
- accuracy: 0.8684
Epoch 59/400
- accuracy: 0.8672
Epoch 60/400
- accuracy: 0.8635
Epoch 61/400
- accuracy: 0.8675
Epoch 62/400
103/103 [============== ] - 0s 2ms/step - loss: 0.3184
- accuracy: 0.8785
Epoch 63/400
- accuracy: 0.8660
Epoch 64/400
103/103 [============== ] - Os 2ms/step - loss: 0.3250
- accuracy: 0.8693
Epoch 65/400
- accuracy: 0.8730
Epoch 66/400
- accuracy: 0.8813
Epoch 67/400
- accuracy: 0.8748
Epoch 68/400
- accuracy: 0.8758
Epoch 69/400
- accuracy: 0.8837
Epoch 70/400
103/103 [============== ] - 0s 2ms/step - loss: 0.3090
- accuracy: 0.8767
Epoch 71/400
- accuracy: 0.8752
Epoch 72/400
- accuracy: 0.8730
Epoch 73/400
```

103/103 [====================================	0s	2ms/step	-	loss:	0.3050
Epoch 74/400 103/103 [====================================	0s	2ms/step	-	loss:	0.3018
Epoch 75/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2910
Epoch 76/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2968
Epoch 77/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2911
Epoch 78/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2954
Epoch 79/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2961
Epoch 80/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2969
103/103 [====================================	0s	2ms/step	-	loss:	0.2954
Epoch 82/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2860
Epoch 83/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2778
Epoch 84/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2797
Epoch 85/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2829
Epoch 86/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2772
Epoch 87/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2709
Epoch 88/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2723
Epoch 89/400 103/103 [====================================	0s	2ms/step	-	loss:	0.2716

```
- accuracy: 0.8923
Epoch 90/400
- accuracy: 0.8941
Epoch 91/400
- accuracy: 0.8831
Epoch 92/400
- accuracy: 0.8969
Epoch 93/400
- accuracy: 0.8944
Epoch 94/400
- accuracy: 0.8935
Epoch 95/400
- accuracy: 0.8950
Epoch 96/400
- accuracy: 0.8990
Epoch 97/400
- accuracy: 0.8938
Epoch 98/400
- accuracy: 0.8957
Epoch 99/400
- accuracy: 0.8966
Epoch 100/400
- accuracy: 0.8941
Epoch 101/400
- accuracy: 0.9018
Epoch 102/400
- accuracy: 0.8999
Epoch 103/400
- accuracy: 0.9073
Epoch 104/400
- accuracy: 0.9064
Epoch 105/400
- accuracy: 0.8984
Epoch 106/400
```

103/103 [=======] - accuracy: 0.9039 Epoch 107/400	-	0s	2ms/step	-	loss:	0.2445
103/103 [====================================	-	0s	2ms/step	-	loss:	0.2362
Epoch 108/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.2429
Epoch 109/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.2496
Epoch 110/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.2477
Epoch 111/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.2315
Epoch 112/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.2384
Epoch 113/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.2428
Epoch 114/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.2384
- accuracy: 0.9064 Epoch 115/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.2307
- accuracy: 0.9036 Epoch 116/400 103/103 [============]	-	0s	2ms/step	-	loss:	0.2302
- accuracy: 0.9079 Epoch 117/400 103/103 [=========]	_	0s	2ms/step	_	loss:	0.2423
- accuracy: 0.9021 Epoch 118/400 103/103 [========]	_	0s	2ms/step	_	loss:	0.2434
- accuracy: 0.8984 Epoch 119/400 103/103 [========]			·			
- accuracy: 0.9082 Epoch 120/400 103/103 [===========]						
- accuracy: 0.9116 Epoch 121/400			-			
103/103 [====================================			•			
103/103 [====================================	-	0s	2ms/step	-	loss:	0.2310

Epoch 123/400
103/103 [====================================
103/103 [====================================
Epoch 125/400 103/103 [====================================
- accuracy: 0.9048 Epoch 126/400
103/103 [====================================
103/103 [====================================
Epoch 128/400 103/103 [====================================
- accuracy: 0.9171 Epoch 129/400
103/103 [====================================
103/103 [====================================
Epoch 131/400 103/103 [====================================
- accuracy: 0.9091 Epoch 132/400
103/103 [====================================
103/103 [====================================
Epoch 134/400 103/103 [====================================
- accuracy: 0.9137 Epoch 135/400
103/103 [====================================
103/103 [====================================
Epoch 137/400 103/103 [====================================
- accuracy: 0.9106 Epoch 138/400 103/103 [====================================
- accuracy: 0.9134 Epoch 139/400
103/103 [====================================

```
- accuracy: 0.9183
Epoch 140/400
- accuracy: 0.9159
Epoch 141/400
- accuracy: 0.9192
Epoch 142/400
- accuracy: 0.9103
Epoch 143/400
- accuracy: 0.9189
Epoch 144/400
- accuracy: 0.9119
Epoch 145/400
- accuracy: 0.9195
Epoch 146/400
- accuracy: 0.9186
Epoch 147/400
- accuracy: 0.9238
Epoch 148/400
- accuracy: 0.9183
Epoch 149/400
103/103 [============= ] - Os 2ms/step - loss: 0.2108
- accuracy: 0.9165
Epoch 150/400
- accuracy: 0.9165
Epoch 151/400
- accuracy: 0.9174
Epoch 152/400
- accuracy: 0.9198
Epoch 153/400
- accuracy: 0.9217
Epoch 154/400
- accuracy: 0.9287
Epoch 155/400
- accuracy: 0.9244
Epoch 156/400
```

103/103 [====================================	ss: 0.1906
Epoch 157/400 103/103 [====================================	ss: 0.1964
Epoch 158/400 103/103 [====================================	ss: 0.2054
Epoch 159/400 103/103 [====================================	ss: 0.1947
Epoch 160/400 103/103 [====================================	ss: 0.2019
Epoch 161/400 103/103 [====================================	ss: 0.1896
Epoch 162/400 103/103 [====================================	ss: 0.1930
Epoch 163/400 103/103 [====================================	ss: 0.1977
Epoch 164/400 103/103 [====================================	ss: 0.1791
Epoch 165/400 103/103 [====================================	ss: 0.1900
Epoch 166/400 103/103 [====================================	ss: 0.1858
Epoch 167/400 103/103 [====================================	ss: 0.1922
Epoch 168/400 103/103 [====================================	ss: 0.1932
Epoch 169/400 103/103 [====================================	ss: 0.1857
Epoch 170/400 103/103 [====================================	ss: 0.1779
Epoch 171/400 103/103 [====================================	ss: 0.1807
Epoch 172/400 103/103 [====================================	ss: 0.1889

```
- accuracy: 0.9269
Epoch 173/400
- accuracy: 0.9321
Epoch 174/400
- accuracy: 0.9259
Epoch 175/400
- accuracy: 0.9360
Epoch 176/400
- accuracy: 0.9223
Epoch 177/400
- accuracy: 0.9256
Epoch 178/400
- accuracy: 0.9324
Epoch 179/400
- accuracy: 0.9275
Epoch 180/400
- accuracy: 0.9339
Epoch 181/400
- accuracy: 0.9272
Epoch 182/400
103/103 [============== ] - Os 2ms/step - loss: 0.2015
- accuracy: 0.9201
Epoch 183/400
- accuracy: 0.9171
Epoch 184/400
- accuracy: 0.9318
Epoch 185/400
- accuracy: 0.9367
Epoch 186/400
- accuracy: 0.9253
Epoch 187/400
- accuracy: 0.9183
Epoch 188/400
- accuracy: 0.9238
Epoch 189/400
```

103/103 [============] - 0s 2ms/s ² - accuracy: 0.9318	tep - loss: 0.1763
Epoch 190/400 103/103 [====================================	tep - loss: 0.1853
Epoch 191/400 103/103 [====================================	tep - loss: 0.1874
Epoch 192/400 103/103 [====================================	tep - loss: 0.1837
Epoch 193/400 103/103 [====================================	tep - loss: 0.1784
Epoch 194/400 103/103 [====================================	tep - loss: 0.1768
Epoch 195/400 103/103 [====================================	tep - loss: 0.1778
Epoch 196/400 103/103 [====================================	tep - loss: 0.1873
Epoch 197/400 103/103 [====================================	tep - loss: 0.1625
Epoch 198/400 103/103 [====================================	tep - loss: 0.1725
Epoch 199/400 103/103 [====================================	tep - loss: 0.1641
Epoch 200/400 103/103 [====================================	tep - loss: 0.1649
- accuracy: 0.9391 Epoch 201/400 103/103 [====================================	tep - loss: 0.1611
- accuracy: 0.9397 Epoch 202/400 103/103 [====================================	tep - loss: 0.1624
- accuracy: 0.9376 Epoch 203/400 103/103 [====================================	tep - loss: 0.1662
- accuracy: 0.9339 Epoch 204/400 103/103 [====================================	tep - loss: 0.1564
- accuracy: 0.9400 Epoch 205/400 103/103 [====================================	
- accuracy: 0.9327	10p 1000. 0.1700

Epoch 206/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1712
Epoch 207/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1631
103/103 [====================================	-	0s	2ms/step	-	loss:	0.1620
103/103 [===========] - accuracy: 0.9290 Epoch 210/400	-	0s	2ms/step	-	loss:	0.1830
103/103 [==========] - accuracy: 0.9370 Epoch 211/400	-	0s	1ms/step	-	loss:	0.1609
103/103 [==========] - accuracy: 0.9348 Epoch 212/400			•			
103/103 [==========] - accuracy: 0.9376 Epoch 213/400						
103/103 [==========] - accuracy: 0.9385 Epoch 214/400			·			
103/103 [==========] - accuracy: 0.9367 Epoch 215/400						
103/103 [=========] - accuracy: 0.9299 Epoch 216/400						
103/103 [========] - accuracy: 0.9373 Epoch 217/400						
103/103 [=========] - accuracy: 0.9391 Epoch 218/400			•			
103/103 [=========] - accuracy: 0.9394 Epoch 219/400			•			
103/103 [==========] - accuracy: 0.9299 Epoch 220/400 103/103 [====================================			•			
- accuracy: 0.9360 Epoch 221/400 103/103 [=======]						
- accuracy: 0.9406 Epoch 222/400 103/103 [=======]			•			
		55	5, 5 ccp			3.2301

```
- accuracy: 0.9367
Epoch 223/400
- accuracy: 0.9452
Epoch 224/400
- accuracy: 0.9403
Epoch 225/400
- accuracy: 0.9367
Epoch 226/400
- accuracy: 0.9443
Epoch 227/400
- accuracy: 0.9382
Epoch 228/400
- accuracy: 0.9406
Epoch 229/400
- accuracy: 0.9364
Epoch 230/400
- accuracy: 0.9385
Epoch 231/400
- accuracy: 0.9391
Epoch 232/400
103/103 [============== ] - 0s 2ms/step - loss: 0.1654
- accuracy: 0.9385
Epoch 233/400
- accuracy: 0.9373
Epoch 234/400
- accuracy: 0.9336
Epoch 235/400
- accuracy: 0.9373
Epoch 236/400
- accuracy: 0.9403
Epoch 237/400
- accuracy: 0.9446
Epoch 238/400
- accuracy: 0.9443
Epoch 239/400
```

103/103 [====================================	-	loss:	0.1474
Epoch 240/400 103/103 [====================================	-	loss:	0.1578
Epoch 241/400 103/103 [====================================	-	loss:	0.1496
Epoch 242/400 103/103 [====================================	-	loss:	0.1536
Epoch 243/400 103/103 [====================================	-	loss:	0.1451
Epoch 244/400 103/103 [====================================	-	loss:	0.1532
Epoch 245/400 103/103 [====================================	-	loss:	0.1548
Epoch 246/400 103/103 [====================================	-	loss:	0.1466
Epoch 247/400 103/103 [====================================	-	loss:	0.1646
Epoch 248/400 103/103 [====================================	-	loss:	0.1432
Epoch 249/400 103/103 [====================================	-	loss:	0.1509
Epoch 250/400 103/103 [====================================	-	loss:	0.1518
Epoch 251/400 103/103 [====================================	-	loss:	0.1660
Epoch 252/400 103/103 [====================================	-	loss:	0.1562
- accuracy: 0.9345 Epoch 253/400 103/103 [====================================	-	loss:	0.1568
- accuracy: 0.9388 Epoch 254/400 103/103 [====================================	-	loss:	0.1423
- accuracy: 0.9486 Epoch 255/400 103/103 [====================================		loss:	0.1399
- accuracy: 0.9452			

Epoch 256/400 103/103 [====================================	459
- accuracy: 0.9458 Epoch 257/400	
103/103 [====================================	469
103/103 [====================================	385
Epoch 259/400 103/103 [====================================	504
Epoch 260/400 103/103 [====================================	425
- accuracy: 0.9465 Epoch 261/400 103/103 [====================================	132
- accuracy: 0.9446 Epoch 262/400	
103/103 [====================================	462
Epoch 263/400 103/103 [====================================	513
Epoch 264/400 103/103 [====================================	517
Epoch 265/400 103/103 [====================================	391
- accuracy: 0.9443 Epoch 266/400 103/103 [====================================	116
- accuracy: 0.9465 Epoch 267/400	
103/103 [====================================	437
103/103 [====================================	405
Epoch 269/400 103/103 [====================================	394
- accuracy: 0.9495 Epoch 270/400 103/103 [====================================	570
- accuracy: 0.9406 Epoch 271/400 103/103 [====================================	
- accuracy: 0.9443 Epoch 272/400	
103/103 [====================================	550

0.0410						
- accuracy: 0.9419						
Epoch 273/400 103/103 [====================================		0.5	2mc/cten		1000	0 1/28
- accuracy: 0.9489	_	03	21113/3 LEP	_	1033.	0.1420
Epoch 274/400						
103/103 [====================================	_	05	2ms/sten	_	1055.	0 1500
- accuracy: 0.9431		03	21113/3 CCP			0.1303
Epoch 275/400						
103/103 [====================================	_	05	2ms/sten	_	loss:	0.1491
- accuracy: 0.9425		0.5	2o, 5 cop			0.1.01
Epoch 276/400						
103/103 [==========]	_	0s	2ms/step	_	loss:	0.1328
- accuracy: 0.9474			-,,-			
Epoch 277/400						
103/103 [====================================	-	0s	2ms/step	-	loss:	0.1382
- accuracy: 0.9510			•			
Epoch 278/400						
103/103 [=========]	-	0s	2ms/step	-	loss:	0.1372
- accuracy: 0.9480						
Epoch 279/400						
103/103 [=======]	-	0s	2ms/step	-	loss:	0.1383
- accuracy: 0.9498						
Epoch 280/400						
103/103 [=======]	-	0s	2ms/step	-	loss:	0.1446
- accuracy: 0.9486						
Epoch 281/400		_			_	
103/103 [==========]	-	0s	2ms/step	-	loss:	0.1455
- accuracy: 0.9455						
Epoch 282/400		0 -	2		1	0 1005
103/103 [====================================	-	ΘS	2ms/step	-	loss:	0.1305
- accuracy: 0.9465						
Epoch 283/400 103/103 [====================================		0.0	2mc/cton		10001	0 1210
- accuracy: 0.9517	-	05	ziiis/step	-	10551	0.1310
Epoch 284/400						
103/103 [====================================	_	Θc	2mc/ctan	_	1000	0 1/26
- accuracy: 0.9471	_	03	21113/3 LEP	_	1033.	0.1420
Epoch 285/400						
103/103 [====================================	_	05	2ms/sten	_	1055.	0 1400
- accuracy: 0.9458		03	211137 3 CCP			0.1400
Epoch 286/400						
103/103 [====================================	_	05	2ms/sten	_	loss:	0.1275
- accuracy: 0.9526		0.5	2o, 5 cop			0.1275
Epoch 287/400						
103/103 [====================================	_	0s	2ms/step	_	loss:	0.1329
- accuracy: 0.9507			- ! -			
Epoch 288/400						
103/103 [=======]	-	0s	2ms/step	-	loss:	0.1440
- accuracy: 0.9465						
Epoch 289/400						

103/103 [====================================	7
Epoch 290/400 103/103 [====================================	7
Epoch 291/400 103/103 [====================================	8
Epoch 292/400 103/103 [====================================	3
Epoch 293/400 103/103 [====================================	4
Epoch 294/400 103/103 [====================================	5
Epoch 295/400 103/103 [====================================	8
Epoch 296/400 103/103 [====================================	3
Epoch 297/400 103/103 [====================================	4
Epoch 298/400 103/103 [====================================	4
Epoch 299/400 103/103 [====================================	1
Epoch 300/400 103/103 [====================================	3
- accuracy: 0.9538 Epoch 301/400 103/103 [====================================	5
- accuracy: 0.9455 Epoch 302/400 103/103 [====================================	4
- accuracy: 0.9538 Epoch 303/400 103/103 [====================================	3
- accuracy: 0.9468 Epoch 304/400 103/103 [====================================	5
- accuracy: 0.9520 Epoch 305/400 103/103 [====================================	
- accuracy: 0.9422	-

Epoch 306/400 103/103 [=======]	_	0s	2ms/step	_	loss:	0.1304
- accuracy: 0.9520 Epoch 307/400						
103/103 [=======]	-	0s	2ms/step	-	loss:	0.1235
- accuracy: 0.9547 Epoch 308/400						
103/103 [===========] - accuracy: 0.9458	-	0s	2ms/step	-	loss:	0.1395
Epoch 309/400		0-	2/		1	0 1267
103/103 [=========] - accuracy: 0.9513	-	05	ZIIIS/Step	-	1055;	0.1207
Epoch 310/400 103/103 [====================================	_	0s	2ms/step	_	loss:	0.1308
- accuracy: 0.9492 Epoch 311/400			. ,			
103/103 [=======]	-	0s	2ms/step	-	loss:	0.1310
- accuracy: 0.9504 Epoch 312/400						
103/103 [====================================	-	0s	2ms/step	-	loss:	0.1329
Epoch 313/400		٥٥	2ms/s+on		1000.	0 1207
103/103 [====================================	-	05	ZIIIS/Step	-	1055;	0.1207
Epoch 314/400 103/103 [====================================	_	0s	2ms/step	-	loss:	0.1223
- accuracy: 0.9541 Epoch 315/400						
103/103 [=======]	-	0s	2ms/step	-	loss:	0.1221
- accuracy: 0.9547 Epoch 316/400					_	
103/103 [====================================	-	0s	2ms/step	-	loss:	0.1270
Epoch 317/400 103/103 [========]	_	05	2ms/sten	_	1055.	0 1336
- accuracy: 0.9492		U.S	2m3/ 5 ccp			0.1550
Epoch 318/400		0-	1		1	0 1076
103/103 [====================================	-	US	Ims/step	-	toss:	0.12/0
Epoch 319/400 103/103 [====================================	_	0s	2ms/step	_	loss:	0.1351
- accuracy: 0.9513 Epoch 320/400			·			
103/103 [=======]	-	0s	2ms/step	-	loss:	0.1304
- accuracy: 0.9520 Epoch 321/400						
103/103 [===========] - accuracy: 0.9455	-	0s	2ms/step	-	loss:	0.1420
Epoch 322/400						

103/103 [===========] - accuracy: 0.9510	-	0s	2ms/step	-	loss:	0.1345
Epoch 323/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1474
Epoch 324/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1362
Epoch 325/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1481
Epoch 326/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1308
Epoch 327/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1294
Epoch 328/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1357
Epoch 329/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1343
Epoch 330/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1256
Epoch 331/400 103/103 [============]	-	0s	2ms/step	-	loss:	0.1289
- accuracy: 0.9535 Epoch 332/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1155
- accuracy: 0.9562 Epoch 333/400 103/103 [====================================	-	0s	2ms/step	-	loss:	0.1270
- accuracy: 0.9532 Epoch 334/400 103/103 [============]	-	0s	2ms/step	-	loss:	0.1326
- accuracy: 0.9520 Epoch 335/400 103/103 [========]	_	0s	2ms/step	_	loss:	0.1160
- accuracy: 0.9587 Epoch 336/400 103/103 [========]	_	0s	2ms/step	_	loss:	0.1218
- accuracy: 0.9535 Epoch 337/400 103/103 [========]			-			
- accuracy: 0.9526 Epoch 338/400 103/103 [========]			•			
- accuracy: 0.9569	_	U3	21113/3 CEβ	-	.033.	0.1221

Epoch 339/400 103/103 [====================================	306
Epoch 340/400 103/103 [====================================	295
103/103 [====================================	179
Epoch 342/400 103/103 [====================================	636
Epoch 343/400 103/103 [====================================	374
Epoch 344/400 103/103 [====================================	.055
Epoch 345/400 103/103 [====================================	.232
Epoch 346/400 103/103 [====================================	151
Epoch 347/400 103/103 [====================================	113
Epoch 348/400 103/103 [====================================	.381
Epoch 349/400 103/103 [====================================	401
Epoch 350/400 103/103 [====================================	209
Epoch 351/400 103/103 [====================================	284
Epoch 352/400 103/103 [====================================	040
Epoch 353/400 103/103 [====================================	.392
Epoch 354/400 103/103 [====================================	.078
Epoch 355/400 103/103 [====================================	314

```
- accuracy: 0.9538
Epoch 356/400
- accuracy: 0.9559
Epoch 357/400
- accuracy: 0.9541
Epoch 358/400
- accuracy: 0.9584
Epoch 359/400
- accuracy: 0.9575
Epoch 360/400
- accuracy: 0.9550
Epoch 361/400
103/103 [============== ] - Os 2ms/step - loss: 0.1287
- accuracy: 0.9517
Epoch 362/400
- accuracy: 0.9532
Epoch 363/400
- accuracy: 0.9501
Epoch 364/400
- accuracy: 0.9517
Epoch 365/400
103/103 [============== ] - 0s 2ms/step - loss: 0.1144
- accuracy: 0.9572
Epoch 366/400
- accuracy: 0.9538
Epoch 367/400
- accuracy: 0.9504
Epoch 368/400
- accuracy: 0.9581
Epoch 369/400
- accuracy: 0.9569
Epoch 370/400
- accuracy: 0.9553
Epoch 371/400
- accuracy: 0.9575
Epoch 372/400
```

103/103 [====================================	0s	2ms/step	-	loss:	0.1179
Epoch 373/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1128
Epoch 374/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1054
Epoch 375/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1203
Epoch 376/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1093
Epoch 377/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1188
Epoch 378/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1090
Epoch 379/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1251
Epoch 380/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1292
Epoch 381/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1251
Epoch 382/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1059
Epoch 383/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1164
Epoch 384/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1094
- accuracy: 0.9605 Epoch 385/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1116
- accuracy: 0.9581 Epoch 386/400 103/103 [====================================	0s	1ms/step	-	loss:	0.1177
- accuracy: 0.9569 Epoch 387/400 103/103 [====================================	0s	2ms/step	-	loss:	0.1126
- accuracy: 0.9602 Epoch 388/400 103/103 [====================================	0s	1ms/step	_	loss:	0.1077
- accuracy: 0.9584		•			

```
Epoch 389/400
- accuracy: 0.9553
Epoch 390/400
- accuracy: 0.9581
Epoch 391/400
- accuracy: 0.9535
Epoch 392/400
- accuracy: 0.9611
Epoch 393/400
- accuracy: 0.9581
Epoch 394/400
- accuracy: 0.9547
Epoch 395/400
- accuracy: 0.9605
Epoch 396/400
- accuracy: 0.9541
Epoch 397/400
- accuracy: 0.9621
Epoch 398/400
- accuracy: 0.9569
Epoch 399/400
103/103 [============== ] - Os 2ms/step - loss: 0.1037
- accuracy: 0.9624
Epoch 400/400
- accuracy: 0.9584
<keras.callbacks.History at 0x1b5e8656910>
y train
array([[1., 0., 0., 0., 0., 0.],
   [0., 1., 0., 0., 0., 0.]
   [0., 1., 0., 0., 0., 0.]
   [0., 0., 1., 0., 0., 0.]
   [0., 0., 0., 0., 0., 1.],
   [0., 0., 0., 0., 1., 0.]], dtype=float32)
```

```
# Predicting by rounding the value returned by softmax because metrics
accepts values less than 1
y pred = model.predict(x test).round()
26/26 [========= ] - 0s 2ms/step
y pred
array([[0., 0., 1., 0., 0., 0.],
       [0., 0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 1., 0.],
       [1., 0., 0., 0., 0., 0.]
       [0., 1., 0., 0., 0., 0.]
       [0., 0., 1., 0., 0., 0.]], dtype=float32)
# Finding out maximum value to get the original data
y pred = np.argmax(y pred,axis=1)
y pred
array([2, 2, 4, 4, 1, 1, 3, 2, 2, 1, 5, 4, 2, 0, 5, 2, 0, 3, 5, 1, 3,
0,
       2, 2, 1, 0, 3, 0, 3, 5, 2, 0, 5, 3, 0, 3, 2, 5, 2, 4, 5, 5, 3,
4,
       4, 1, 4, 1, 1, 5, 3, 3, 2, 3, 3, 0, 1, 4, 1, 3, 2, 1, 3, 0, 5,
1,
       0, 4, 4, 3, 1, 0, 2, 4, 1, 2, 1, 1, 4, 0, 5, 3, 3, 5, 2, 5, 5,
2,
       5, 1, 0, 3, 0, 2, 1, 3, 3, 4, 5, 5, 1, 5, 2, 2, 3, 1, 2, 0, 4,
4,
       3, 1, 4, 1, 2, 4, 0, 5, 1, 2, 2, 3, 3, 2, 3, 4, 2, 4, 2, 0, 4,
4,
       2, 0, 1, 0, 5, 3, 2, 0, 4, 2, 1, 3, 4, 5, 4, 3, 5, 1, 1, 2, 1,
2,
       1, 1, 0, 5, 4, 5, 1, 0, 5, 3, 4, 0, 5, 3, 1, 1, 1, 5, 1, 1, 5,
4,
       1, 0, 3, 1, 1, 3, 5, 5, 4, 4, 3, 4, 3, 4, 4, 3, 3, 4, 2, 1, 1,
0,
       1, 5, 4, 5, 0, 1, 0, 4, 1, 2, 2, 3, 5, 4, 3, 2, 5, 4, 1, 3, 4,
0,
       2, 0, 5, 5, 4, 0, 2, 0, 3, 5, 4, 1, 5, 1, 3, 3, 5, 4, 1, 1, 4,
5,
       0, 1, 2, 3, 1, 3, 3, 4, 1, 3, 3, 5, 1, 4, 2, 1, 2, 2, 1, 4, 0,
4,
       3, 0, 4, 4, 5, 0, 4, 1, 3, 4, 0, 3, 3, 4, 0, 5, 2, 5, 1, 4, 2,
2,
       0, 1, 1, 5, 5, 0, 1, 2, 4, 0, 0, 2, 4, 1, 2, 5, 1, 4, 1, 1, 3,
0,
       3, 2, 5, 3, 4, 1, 0, 2, 2, 1, 1, 4, 0, 4, 3, 1, 5, 3, 1, 5, 3,
5,
       2, 0, 5, 2, 2, 5, 3, 4, 3, 0, 0, 2, 0, 5, 5, 3, 5, 2, 4, 5, 5,
```

```
0,
       2, 0, 1, 5, 5, 1, 2, 2, 5, 0, 4, 0, 3, 1, 4, 5, 2, 0, 1, 2, 5,
4,
       4, 1, 3, 0, 2, 5, 4, 4, 0, 0, 3, 3, 1, 1, 2, 0, 0, 2, 0, 5, 5,
0,
       2, 5, 3, 1, 0, 3, 3, 4, 2, 3, 4, 2, 1, 3, 1, 0, 5, 5, 2, 1, 0,
1,
       2, 0, 0, 5, 0, 4, 2, 2, 0, 2, 4, 3, 2, 2, 4, 4, 4, 3, 4, 5, 1,
0,
       1, 4, 4, 1, 5, 0, 3, 2, 4, 4, 1, 5, 5, 0, 3, 5, 5, 3, 2, 3, 5,
1,
       4, 0, 0, 1, 0, 5, 0, 0, 3, 3, 0, 0, 2, 0, 1, 5, 0, 3, 2, 1, 5,
5,
       2, 3, 0, 4, 3, 1, 1, 1, 2, 2, 1, 2, 2, 1, 4, 0, 4, 2, 1, 2, 0,
3,
       3, 5, 0, 4, 0, 2, 5, 5, 5, 5, 5, 5, 5, 1, 4, 1, 4, 4, 1, 4, 5,
2,
       2, 0, 0, 1, 2, 5, 1, 3, 1, 3, 5, 0, 4, 3, 0, 1, 5, 2, 2, 2, 2,
2,
       2, 0, 4, 5, 0, 3, 4, 0, 2, 4, 2, 1, 1, 0, 5, 3, 1, 5, 4, 0, 4,
5,
       4, 5, 1, 2, 4, 3, 2, 5, 2, 4, 5, 0, 1, 2, 0, 0, 4, 0, 4, 2, 2,
3,
       0, 5, 2, 2, 3, 2, 4, 5, 1, 0, 0, 2, 5, 5, 4, 2, 3, 1, 5, 0, 2,
5,
       5, 0, 4, 4, 1, 3, 5, 0, 1, 1, 2, 1, 3, 1, 5, 5, 1, 2, 0, 3, 2,
2,
       3, 4, 3, 4, 2, 1, 1, 5, 0, 2, 4, 3, 3, 4, 2, 3, 3, 0, 5, 2, 0,
3,
       0, 0, 2, 1, 3, 2, 4, 4, 5, 0, 4, 5, 2, 4, 2, 3, 0, 1, 3, 0, 0,
3,
       2, 0, 2, 1, 0, 3, 0, 1, 5, 1, 5, 1, 4, 2, 0, 1, 5, 1, 3, 4, 2,
1,
       1, 0, 3, 4, 5, 1, 5, 1, 4, 0, 0, 0, 2, 0, 5, 2, 0, 4, 4, 1, 2,
1,
       2, 0, 1, 4, 0, 5, 0, 5, 3, 0, 4, 3, 2, 5, 2, 0, 1, 0, 3, 0, 0,
4,
       1, 1, 2, 5, 4, 3, 0, 0, 0, 2, 2, 5, 5, 1, 3, 4, 4, 4, 2, 2, 0,
5,
       3, 1, 4, 3, 5, 4, 1, 0, 1, 5, 3, 1, 0, 3, 5, 3, 4, 5, 3, 0, 2,
4,
       1, 3, 2, 0, 0, 5, 5, 2, 5, 5, 2, 2, 4, 5, 2, 1, 2, 0, 5, 5, 1,
2,
       1, 0, 1, 2], dtype=int64)
y_test
array([[0., 0., 0., 1., 0., 0.],
       [0., 0., 1., 0., 0., 0.]
       [0., 0., 0., 0., 1., 0.],
       . . . ,
```

```
[1., 0., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0., 0.]
       [0., 0., 1., 0., 0., 0.]], dtype=float32)
# Finding out maximum value to get the original data
y test = np.argmax(y test,axis=1)
y_test
array([3, 2, 4, 4, 1, 1, 2, 3, 2, 3, 5, 4, 2, 0, 5, 3, 2, 2, 5, 1, 3,
0,
       2, 3, 1, 0, 3, 0, 2, 5, 2, 0, 5, 3, 0, 3, 2, 5, 2, 4, 5, 5, 3,
4,
       4, 2, 4, 2, 1, 5, 3, 3, 2, 3, 3, 0, 1, 4, 1, 3, 3, 1, 3, 0, 5,
1,
       0, 4, 4, 3, 1, 0, 2, 4, 1, 2, 1, 1, 4, 0, 5, 3, 2, 3, 3, 5, 5,
2,
       5, 1, 0, 3, 3, 2, 3, 3, 4, 5, 5, 1, 5, 2, 2, 3, 1, 3, 0, 4,
4,
       3, 1, 4, 3, 2, 3, 0, 5, 1, 2, 2, 2, 3, 2, 3, 4, 2, 4, 2, 0, 4,
4,
       2, 0, 1, 0, 5, 2, 3, 0, 4, 2, 3, 3, 4, 5, 4, 3, 5, 1, 1, 2, 1,
2,
       1, 1, 0, 5, 4, 5, 1, 0, 5, 3, 4, 0, 5, 3, 1, 1, 1, 5, 1, 1, 5,
3,
       3, 0, 3, 1, 1, 2, 5, 5, 4, 4, 2, 4, 2, 4, 2, 3, 2, 4, 3, 1, 1,
0,
       1, 5, 4, 5, 0, 1, 0, 4, 1, 2, 1, 3, 5, 4, 2, 3, 5, 4, 1, 2, 4,
0,
       2, 0, 5, 5, 4, 0, 2, 0, 3, 5, 4, 1, 5, 1, 2, 3, 5, 4, 1, 1, 4,
5,
       0, 1, 3, 3, 1, 2, 3, 4, 1, 3, 3, 5, 1, 4, 2, 1, 2, 2, 1, 4, 0,
3,
       3, 0, 4, 4, 5, 0, 4, 1, 3, 3, 0, 3, 3, 3, 0, 5, 2, 5, 2, 3, 2,
2,
       0, 1, 1, 5, 5, 0, 1, 2, 4, 0, 0, 2, 4, 1, 3, 5, 1, 4, 1, 1, 3,
0,
       3, 2, 5, 3, 4, 1, 0, 3, 2, 1, 1, 4, 0, 4, 3, 1, 5, 3, 1, 5, 3,
5,
       2, 0, 5, 3, 3, 5, 3, 3, 2, 0, 0, 3, 0, 5, 5, 3, 5, 2, 4, 5, 5,
0,
       2, 0, 1, 5, 5, 1, 2, 2, 5, 2, 4, 0, 3, 1, 4, 5, 3, 0, 1, 2, 5,
3,
       4, 1, 2, 0, 2, 5, 4, 4, 0, 0, 2, 3, 1, 1, 2, 0, 0, 3, 0, 5, 5,
0,
       2, 5, 3, 1, 0, 3, 2, 3, 2, 3, 4, 2, 1, 3, 2, 0, 3, 5, 2, 1, 0,
1,
       2, 0, 0, 5, 0, 4, 2, 2, 0, 2, 4, 3, 3, 2, 4, 4, 4, 3, 4, 5, 1,
0,
       1, 4, 4, 1, 5, 0, 3, 2, 4, 4, 1, 5, 5, 0, 2, 5, 5, 3, 3, 3, 5,
1,
       4, 0, 0, 1, 2, 5, 0, 0, 3, 3, 0, 0, 2, 0, 1, 5, 0, 3, 3, 1, 5,
```

```
5,
       2, 3, 0, 4, 3, 1, 1, 1, 2, 2, 1, 3, 3, 1, 4, 0, 4, 2, 1, 2, 0,
3,
       3, 5, 2, 4, 0, 2, 5, 5, 5, 5, 5, 5, 4, 1, 4, 1, 4, 4, 1, 4, 5,
2,
       2, 0, 0, 1, 2, 5, 1, 2, 1, 2, 5, 0, 4, 3, 0, 1, 5, 2, 2, 2, 2,
3,
       2, 0, 3, 5, 2, 3, 4, 0, 2, 4, 2, 1, 1, 0, 5, 3, 3, 5, 4, 0, 4,
5,
       4, 5, 3, 2, 4, 2, 3, 5, 3, 4, 5, 0, 1, 2, 0, 0, 4, 0, 4, 2, 2,
3,
       0, 5, 2, 2, 2, 2, 4, 5, 1, 0, 0, 2, 5, 5, 4, 2, 3, 1, 5, 3, 3,
5,
       5, 0, 4, 4, 1, 3, 5, 0, 1, 1, 2, 1, 2, 1, 5, 5, 1, 2, 0, 3, 2,
2,
       2, 4, 3, 4, 2, 1, 1, 5, 0, 2, 4, 3, 3, 3, 3, 3, 3, 0, 5, 2, 0,
3,
       0, 0, 2, 1, 3, 3, 4, 4, 5, 4, 4, 5, 3, 4, 2, 3, 0, 1, 3, 0, 0,
3,
       2, 0, 3, 1, 0, 3, 0, 1, 5, 1, 5, 1, 4, 3, 2, 1, 5, 2, 3, 4, 3,
1,
       1, 0, 3, 4, 5, 1, 5, 1, 4, 0, 0, 0, 2, 0, 5, 2, 0, 4, 4, 1, 2,
1,
       2, 0, 1, 4, 0, 5, 0, 5, 3, 0, 4, 3, 2, 3, 2, 0, 1, 0, 3, 0, 0,
4,
       1, 1, 2, 5, 4, 3, 0, 0, 0, 2, 2, 5, 5, 1, 3, 4, 4, 4, 2, 2, 0,
5,
       3, 1, 4, 3, 5, 4, 1, 0, 1, 5, 3, 3, 0, 3, 5, 3, 3, 5, 3, 0, 3,
2,
       2, 3, 2, 0, 0, 5, 5, 2, 5, 5, 2, 2, 4, 5, 3, 1, 2, 2, 5, 5, 1,
2,
       2, 0, 1, 2], dtype=int64)
```

Accuracy Score

from sklearn.metrics import accuracy_score
accuracy score(y test,y pred)*100

87.28606356968214

Classification Report

from sklearn.metrics import classification_report
print(classification report(y pred,y test))

	precision	recall	f1-score	support
0	1.00	0.93	0.96	142
1	0.99	0.90	0.94	145
2	0.73	0.75	0.74	145
3	0.61	0.79	0.69	120
4	0.98	0.89	0.93	128
5	1.00	0.97	0.99	138

accuracy			0.87	818
macro avg	0.89	0.87	0.88	818
weighted avg	0.89	0.87	0.88	818