Explainability Report: Logistic Regression for Phishing Website Detection

Model Overview

• Model: Logistic Regression

• **Target**: Binary classification (1 = Phishing, -1 = Legitimate)

• Data: UCI Phishing Website Dataset (with engineered features)

1. Logistic Regression Assumptions Check

Assumption	Status	Notes
Binary outcome	✓ Satisfied	Target values: 1, -1
Independence of observations	Assumed (given no time series or grouping)	
Linear relationship (logit link)	Approximate via feature relationships	Visualized: Actual vs Predicted
Sample size adequacy	✓ Satisfied	~10+ samples per feature/class
No multicollinearity	♠ Partial Violation	Several VIF > 10

VIF (Variance Inflation Factor) revealed potential multicollinearity. While no *definite* multicollinearity (VIF > 100) was found, several variables exceeded VIF > 10, indicating possible redundancy and affecting interpretability of coefficients.

3. Feature Interpretability

Feature Importance via Coefficients

Feature	Coefficient (impact)
statistical_report	+ve — strong indicator of phishing
https_token	+ve
web_traffic	-ve
having_at_symbol	+ve
request_url	+ve
Positive coefficients imply higher likelihood of ph present/active.	ishing when feature is
4. Model Explainability	

SHAP (SHapley Additive Explanations)

• Tool Used: shap.LinearExplainer (optimized for linear models)

• Sample Size: 10 test samples with background of 100 training instances

SHAP Summary Plot Insights:

- Top influencers:
 - o https_token
 - o statistical_report
 - o having_at_symbol
 - o request_url
 - obfuscation_score
- SHAP values clearly show whether each feature increased or decreased phishing probability.

LIME (Local Interpretable Model-agnostic Explanations)

- Explained one random instance using lime_tabular.
- Output: Top 10 features influencing a single prediction.
- Displayed weights for both phishing and legitimate classes.