WHAT IS CLAIMED IS:

- A coating composition comprising:
 a sol-gel matrix and
 a dendrimeric organochalcogeno derivative bound to at least a
- 5 portion of the sol-gel matrix.
 - 2. The coating composition according to claim 1, wherein the sol-gel matrix is a sol-gel processed xerogel.
- The coating composition according to claim 2, wherein the xerogel is formed from doped or undoped tetramethylorthosilane, doped or undoped tetraethylorthosilane, hybrid n-propyltrimethoxysilane/tetramethylorthosilane, hybrid bis[3-(trimethoxysilyl)propyl]ethylenediamine)/ tetraethylorthosilane, hybrid tetramethylorthosilane/n-propyl-trimethoxysilane/bis[3-(trimethoxysilyl)propyl]ethylenediamine), or hybrid tetramethylorthosilane /n-octyl-triethoxysilane.
- 4. The coating composition according to claim 1, wherein the dendrimeric organochalcogeno derivative has the formula:

$$R^{2}E$$
 $R^{2}E$
 R^{2

$$R^{1}C$$
 O
 n
 ER^{2}
 O
 n
 ER^{2}
 O
 n
 ER^{2}

$$R^{1}$$
 R^{1}
 R

$$R^1$$
 O
 N
 ER^2
 N
 ER^2

wherein each Y individually is H or $O(CH_2)_nER^2$, each X individually is H, $N((CH_2)_nCO_2Na)_2$ or

$$0 \longrightarrow 0 \longrightarrow ER^2$$

$$0 \longrightarrow n \longrightarrow ER^2$$

$$ER^2$$

10

R¹ is a substituted or unsubstituted, straight or branched chain C1-C10 alkyl group, a substituted or unsubstituted, straight or branched chain C1-C10 alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group,

each E individually is a chalcogen,

15

each R² individually is a substituted or unsubstituted, straight or branched chain C1-C16 alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, an ethylene glycol oligomer, or a perfluoroalkyl group, and

each n individually is an integer from 1 to 16.

20

5. The coating composition according to claim 4, wherein ER² is selected from the group consisting of EPh, 4-(CH₃)₂C₆H₄E, 4-(CH₃)₂NC₆H₄E, 4-(NaO₂CCH₂)₂NC₆H₄E, 4-(NaO₂CCH₂)₂NC₆H₄E, 4-(HOCH₂CH₂)₂NC₆H₄E, and 4-(NaO₂CCH₂O)C₆H₄E.

6. The coating composition according to claim 4, wherein R^2 is selected from the group consisting of phenyl, n- C_6H_{13} ,

NMe₂
$$N(CH_2CO_2Na)_{2,}$$
 and OCH_2CO_2Na

5

- 7. The coating composition according to claim 1, wherein the dendrimeric organochalcogeno derivative is non-covalently bound to at least a portion of the sol-gel matrix.
- 10 8. The coating composition according to claim 1, wherein the dendrimeric organochalcogeno derivative is covalently bound to at least a portion of the sol-gel matrix.
- 9. The coating composition according to claim 1, wherein from about 0.1 wt.% to about 5 wt.% of dendrimeric organochalcogeno derivative is bound to the sol-gel matrix.
 - 10. A system comprising:a coating composition comprising

20

a sol-gel matrix and

a dendrimeric organochalcogeno derivative bound to at least a portion of the sol-gel matrix, and

a substrate, wherein at least a portion of the substrate is coated with the coating composition.

25

11. The system according to claim 10, wherein the sol-gel matrix is a sol-gel processed xerogel.

- 12. The system according to claim 11, wherein the xerogel is formed from doped or undoped tetramethylorthosilane, doped or undoped tetraethylorthosilane, hybrid *n*-propyl-trimethoxysilane/tetramethylorthosilane, hybrid bis[3-(trimethoxysilyl)propyl]ethylenediamine)/ tetraethylorthosilane,
- 5 hybrid tetramethylorthosilane/*n*-propyl-trimethoxysilane/bis[3-(trimethoxysilyl)propyl]ethylenediamine), or hybrid tetramethylorthosilane /noctyl-triethoxysilane.
- 13. The system according to claim 10, wherein the dendrimeric organochalcogeno derivative has the formula:

$$R^{2}E$$
 $R^{2}E$
 R

$$R^{1}C$$
 O
 n
 ER^{2}
 O
 n
 ER^{2}
 O
 n
 ER^{2}

$$R^{1}$$
 R^{1}
 R

$$R^1$$
 O
 N
 ER^2
 N
 N
 ER^2

wherein each Y individually is H or $O(CH_2)_nER^2$, each X individually is H, $N((CH_2)_nCO_2Na)_2$ or

$$0 \longrightarrow 0 \longrightarrow ER^2$$

$$0 \longrightarrow n \longrightarrow ER^2$$

$$ER^2$$

5

10

15

R¹ is a substituted or unsubstituted, straight or branched chain C1-C10 alkyl group, a substituted or unsubstituted, straight or branched chain C1-C10 alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group,

each E individually is a chalcogen,

each R² individually is a substituted or unsubstituted, straight or branched chain C1-C16 alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, an ethylene glycol oligomer, or a perfluoroalkyl group, and

each n individually is an integer from 1 to 16.

- 14. The system according to claim 13, wherein ER² is selected 20 from the group consisting of EPh, 4-(CH₃)₂C₆H₄E, 4-(CH₃)₂NC₆H₄E, 4-(H₃O₂CCH₂)₂NC₆H₄E, 4-(NaO₂CCH₂)₂NC₆H₄E, 4-(HOCH₂CH₂)₂NC₆H₄E, and 4-(NaO₂CCH₂O)C₆H₄E.
- 15. The system according to claim 13, wherein R^2 is selected from the group consisting of phenyl, n- C_6H_{13} ,

$$\begin{picture}(2000) \put(0.000){\mathbb{N}} \put(0.0$$

- The system according to claim 10, wherein the dendrimeric organochalcogeno derivative is non-covalently bound to at least a portion of the
 sol-gel matrix.
 - 17. The system according to claim 10, wherein the dendrimeric organochalcogeno derivative is covalently bound to at least a portion of the sol-gel matrix.

18. The system according to claim 10, wherein from about 0.1 wt% to about 5 wt.% of dendrimeric organochalcogeno derivative is bound to the sol-gel matrix.

10

20

25

- 15 19. The system according to claim 10, wherein the substrate is selected from the group consisting of metals, plastics, glass, and wood.
 - 20. A method of preventing fouling of surfaces subjected to a marine environment, said method comprising:

providing a coating composition comprising a sol-gel matrix, and applying the coating composition to a surface subjected to a marine environment under conditions effective to prevent or reduce fouling of the surface.

- 21. The method according to claim 20, wherein the sol-gel matrix is a sol-gel processed xerogel.
- 22. The method according to claim 21, wherein the xerogel is formed from doped or undoped tetramethylorthosilane, doped or undoped

tetraethylorthosilane, hybrid *n*-propyl-trimethoxysilane/tetramethylorthosilane, hybrid bis[3-(trimethoxysilyl)propyl]ethylenediamine)/ tetraethylorthosilane, hybrid tetramethylorthosilane/*n*-propyl-trimethoxysilane/bis[3-(trimethoxysilyl)propyl]ethylenediamine), or hybrid tetramethylorthosilane /n-octyl-triethoxysilane.

23. The method according to claim 20, wherein the coating composition further comprises a dendrimeric organochalcogeno derivative bound to at least a portion of the sol-gel matrix.

10

5

24. The method according to claim 23, wherein the dendrimeric organochalcogeno derivative has the formula:

$$R^{2}E$$
 $R^{2}E$
 R^{2

$$R^{1}C$$
 O
 n
 ER^{2}
 O
 n
 ER^{2}

$$R^{1}C$$
 $R^{1}C$
 R^{1

$$R^{1}$$
 R^{1}
 R

$$R \xrightarrow{O} \xrightarrow{N}_{n} \xrightarrow{O} \xrightarrow{N}_{n} \xrightarrow{ER^{2}} \xrightarrow{N}_{n} \xrightarrow{ER^{2}} \xrightarrow{N}_{n} \xrightarrow{ER^{2}} \xrightarrow{N}_{n} \xrightarrow{ER^{2}} \xrightarrow{N}_{n} \xrightarrow{ER^{2}} \xrightarrow{N}_{n} \xrightarrow{ER^{2}} \xrightarrow{N}_{n} \xrightarrow{N}_{n} \xrightarrow{ER^{2}} \xrightarrow{N}_{n} \xrightarrow{N}_{$$

$$R^{2}E$$
 $R^{2}E$
 R

$$R^1$$
 O
 Y
 ER^2
 O
 N
 ER^2

wherein each Y individually is H or O(CH₂)_nER², each X individually is H, N((CH₂)_nCO₂Na)₂ or

$$\begin{array}{c|c}
O & \longrightarrow & ER^2 \\
O & \longrightarrow & n & ER^2 \\
O & \longrightarrow & n & ER^2
\end{array}$$

R¹ is a substituted or unsubstituted, straight or branched chain C1-C10 alkyl group, a substituted or unsubstituted, straight or branched chain C1-C10 alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group,

each E individually is a chalcogen,

each R² individually is a substituted or unsubstituted, straight or branched chain C1-C16 alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, an ethylene glycol oligomer, or a perfluoroalkyl group, and

each n individually is an integer from 1 to 16.

- 25. The method according to claim 24, wherein ER² is selected from the group consisting of EPh, 4-(CH₃)₂C₆H₄E, 4-(CH₃)₂NC₆H₄E, 4-(HoC₆H₄E, 4-(CH₃O₂CCH₂)₂NC₆H₄E, 4-(NaO₂CCH₂)₂NC₆H₄E, 4-(HoCH₂CH₂)₂NC₆H₄E, and 4-(NaO₂CCH₂O)C₆H₄E.
 - 26. The method according to claim 24, wherein R^2 is selected from the group consisting of phenyl, n- C_6H_{13} ,

5

10

- 27. The method according to claim 23, wherein the dendrimeric organochalcogeno derivative is non-covalently bound to at least a portion of the sol-gel matrix.
 - 28. The method according to claim 23, wherein the dendrimeric organochalcogeno derivative is covalently bound to at least a portion of the sol-gel matrix.

- 29. The method according to claim 23, wherein from about 0.1 wt.% to about 5 wt.% of dendrimeric organochalcogeno derivative is bound to the sol-gel matrix.
- 15 30. The method according to claim 20, wherein the surface is selected from the group consisting of metals, plastics, glass, and wood.
 - 31. The method according to claim 20, wherein applying comprises spraying, dipping, spreading, or brushing.