Задача 1. Пусть $F_1(x)$ и $F_2(x)$ — две такие функции, что на некотором промежутке $(F_1(x))' = (F_2(x))'$. Докажите, что найдется такая константа C, что $F_1(x) = F_2(x) + C$ на этом промежутке.

Определение 1. *Натуральным логарифмом* положительного числа t назовем интеграл $\int\limits_{1}^{t} \frac{1}{x} \, dx$. Обозначение: $\ln t$.

Задача 2[©]. Докажите, что $(\ln t)' = 1/t$.

Задача 3. Докажите, что натуральный логарифм — монотонно возрастающая функция.

Задача 4^{\varnothing} . **a)** Пусть a — положительное число. Найдите производную функции $\ln at$.

б) Докажите, что $\ln ab = \ln a + \ln b$ для любых положительных чисел a и b.

Задача 5. Докажите, что $\ln t^r = r \ln t$ при любом рациональном r.

Задача 6 $^{\varnothing}$. Докажите, что $\ln t$ неограниченно возрастает при $t \to +\infty$.

Задача 7. Докажите, что уравнение $\ln t = a$ имеет единственное решение при любом $a \in \mathbb{R}$.

Определение 2. Решение уравнения из задачи 7 при a=1 обозначается буквой e.

Задача 8°. Докажите, что $\lim_{n\to +\infty} \frac{\ln(1+1/n)}{1/n} = 1$, и выведите отсюда, что $e = \lim_{n\to +\infty} (1+1/n)^n$, то есть новое определение числа e совпадает со старым.

Задача 9. Докажите, что функция $y = \ln t$ имеет обратную функцию (обозначим ее E(y)). Где определена эта функция? Непрерывна ли она? Как ведет себя эта функция при $y \to -\infty$ и при $y \to +\infty$?

Задача 10[©]. Докажите, что $E(a) \cdot E(b) = E(a+b)$ при любых a и b из \mathbb{R} .

Задача 11. Докажите, что $E(r) = e^r$ при любом рациональном r.

Определение 3. Пусть $x \in \mathbb{R}$. Определим x-тую степень числа e формулой $e^x = E(x)$. В результате

- 2) для рациональных x определение e^x эквивалентно известному из алгебры,
- 3) $e^a e^b = e^{a+b}$ при любых a и b из \mathbb{R} .

Задача 12 $^{\varnothing}$. Найдите производную функции e^x .

Задача 13 $^{\varnothing}$. Докажите, что $e^x = \lim_{n \to +\infty} (1 + x/n)^n$.

Задача 14. Пусть a — положительное число. Определите для каждого $x \in \mathbb{R}$ число a^x так, чтобы a^x была непрерывной функцией от x, причем для рациональных чисел x определение a^x было эквивалентно уже известному из алгебры.

Задача 15. Докажите, что $a^x a^y = a^{x+y}$ при любых x и y из \mathbb{R} .

Задача 16 $^{\varnothing}$. Найдите производную функции a^x .

Определение 4. Пусть $\alpha \in \mathbb{R}$. Функция $x \mapsto x^{\alpha}$, определённая на множестве \mathbb{R}_+ , называется *степенной функцией*, а число α называется *показателем степени*.

Задача 17[©]. Представьте степенную функцию в виде композиции показательной и логарифмической функций.

Задача 18 $^{\varnothing}$. Найдите производную функции x^{α} , где $\alpha \in \mathbb{R}$.

Задача 19. Найдите все непрерывные функции $f: \mathbb{R} \to \mathbb{R}$, удовлетворяющие при всех $x, y \in \mathbb{R}$ условию **a)** $f(x \cdot y) = f(x) \cdot f(y)$; **б)** $f(x + y) = f(x) \cdot f(y)$; **в)** $f(x \cdot y) = f(x) + f(y)$.

Задача 20*. Сколько решений имеет уравнение $\log_{1/16} x = \left(\frac{1}{16}\right)^x$?

1	2	3	4 a	4 б	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 a	19 б	19 B	20