QuantEcon Lunchtalk 15:

Introduction to Automatic Differentiation

Shu Hu

$$y=(f_K\circ f_{K-1}\circ\cdots\circ f_1)(x)=f_K(f_{K-1}(\cdots(f_1(x))))$$

- x are the inputs,
- y are the observations,
- $f_i, i=1,\cdots K$, called the function in the i-th layer, possesses its own parameters.

If we have inputs x and observations y and a network structure defined by

$$f_0 := x$$

and

$$f_i := \sigma_i (A_{i-1} f_{i-1} + b_{i-1})$$

for $i=1,\cdots,K$, where

- x_{i-1} is the output of layer i-1,
- ullet σ is an activation function, and
- A_{i-1}, b_{j-1} are model parameters.

Then we may be interested in find $A_j, b_j, j=0,\cdots, K-1$ s.t. the squared loss

$$L(heta) = \|y - f_K(heta, x)\|^2$$

is minimized, where $\theta = \{A_0, b_0, \cdots, A_{K-1}, b_{K-1}\}$.

To obtain the gradients w.r.t. the parameter set heta, we require partial derivatives of L w.r.t the parameters $heta_j=\{A_j,b_j\}$ of each layer $j=0,\cdots,K-1$, which is enabled by the chain rule

$$rac{\partial L}{\partial heta_{K-1}} = rac{\partial L}{\partial f_K} rac{\partial f_K}{\partial heta_{K-1}}$$

and

$$\frac{\partial L}{\partial heta_{K-2}} = \frac{\partial L}{\partial f_K} \left| \frac{\partial f_K}{\partial f_{K-1}} \frac{\partial f_{K-1}}{\partial heta_{K-2}} \right|$$

and

$$rac{\partial L}{\partial heta_i} = rac{\partial L}{\partial f_K} rac{\partial f_K}{\partial heta_{K-1}} \cdots egin{array}{c} rac{\partial f_{i+2}}{\partial f_{i+1}} rac{\partial f_{i+1}}{\partial heta_i} \end{array}$$

Automatic Differentation: Primer

Basic idea:

• a set of techniques to numerically evaluate the exact gradient of a function by working with intermediate variables and applying the chain rule.

Example 1, consider the data flow from input x to output y via intermediate variables a,b.

Other Differentiation Methods vs AutoDiff

- Manual Differentiation
- Numerical Differentiation
- Symbolic Differentiation
- Automatic Differentiation

Example

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2))$$

Intermediate Variables of the Example

$$a=x^2,$$
 $b=\exp(a)$ $c=a+b$ $d=\sqrt{c}$ $e=\cos(c)$ $f=d+e$

Computational Graph of the Example

Autodiff

Let

- x_1, \cdots, x_d be the input variables to the function
- x_{d+1}, \cdots, x_D be the intermediate variables
- x_D be the output variable.

Then the computation graph can be expressed as

$$x_i=g_i(x_{Pa(x_i)}),\ for\ i=d+1,\cdots,D$$

- $g_i(\cdot)$ are elementary functions
- ullet $x_{Pa(x_i)}$ are the parent nodes of the variable x_i in the graph

Autodiff

Given a function defined in this way, we can use the chain rule to compute the derivative of the fucntion in a step-by-step fashion.

ullet since by definition $f=x_D$ and hence

$$rac{\partial f}{\partial x_D}=1$$

ullet For other variables x_i we apply the chain rule

$$rac{\partial f}{\partial x_i} = \sum_{x_j: x_i \in Pa(x_j)} rac{\partial f}{\partial x_j} rac{\partial x_j}{\partial x_i} = \sum_{x_j: x_i \in Pa(x_j)} rac{\partial f}{\partial x_j} rac{\partial g_j}{\partial x_i}$$

 $\circ Pa(x_i)$ is the set of parent nodes of x_i in the computation graph.