PROBABILITY

B DHEERAJ KUMAR - FWC22008

- 13.1.6 ¹ A coin is tossed three times where
 - (i) E:head on third toss, F:head on first two tosses
 - (ii)E:atleast two heads,F:atmost two heads
 - (iii)E:atmost two tails,F:atleast one tail

determine $P(E \mid F)$

Solution: : In an experiment of tossing a coin 3 times, random variable $X \in \{0, 1, 2, 3\}$ follows binomial distribution.

By using the binomial distribution formula:

$$\Pr(X=k) = {}^{n}C_{k} \times p^{k} \times (1-p)^{n-k}$$

Random Variable	Values	Description
X	{0,1,2,3}	Number of heads or tails in a respective cases

Table 13.1.6.2: Random variable X

Variable	Description	
k	total number of success	
p	probability of success of individual trial	
n	number of trials $=3$	

Table 13.1.6.4: variable and Description

i E:head on third toss, F:head on first two tosses

PARAMETER	DESCRIPTION
E	It is the head on the third toss
F	Head on the first two tosses

Table 13.1.6.6: parameter and Description

By using product rule,

¹Read question numbers as (CHAPTER NUMBER).(EXERCISE NUMBER).(QUESTION NUMBER)

$$Pr(F) = \frac{1}{2} \times \frac{1}{2} \tag{13.1.6.1}$$

$$Pr(F) = 0.25 (13.1.6.2)$$

$$Pr(EF) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
 (13.1.6.3)

$$Pr(EF) = 0.125 (13.1.6.4)$$

$$Pr(E \mid F) = \frac{Pr(EF)}{Pr(F)} \tag{13.1.6.5}$$

$$Pr(E \mid F) = 0.5 \tag{13.1.6.6}$$

ii E:atleast two heads,F:atmost two heads

PARAMETER	DESCRIPTION
E	Atleast 2 heads when tossed thrice
F	Atmost 2 heads when tossed thrice

Table 13.1.6.8: parameter and Description

$$Pr(F) = Pr(X \le 2)$$
 (13.1.6.7)
 $Pr(F) = Pr(X = 0) + Pr(X = 1) + Pr(X = 2)$ (13.1.6.8)

$$F) = Pr(X = 0) + Pr(X = 1) + Pr(X = 2)$$
(13.1.6.8)

$$Pr(F) = {}^{3}C_{0}(\frac{1}{2})^{3} + {}^{3}C_{1}(\frac{1}{2})^{3} + {}^{3}C_{2}(\frac{1}{2})^{3}$$
 (13.1.6.9)

$$Pr(F) = 0.875 \tag{13.1.6.10}$$

$$Pr(EF) = Pr(X = 2)$$
 (13.1.6.11)

$$Pr(EF) = {}^{3}C_{2}(\frac{1}{2})^{3}$$
 (13.1.6.12)

$$Pr(EF) = 0.375$$
 (13.1.6.13)

$$Pr(E \mid F) = \frac{Pr(EF)}{Pr(F)}$$
 (13.1.6.14)

$$Pr(E \mid F) = 0.428$$
 (13.1.6.15)

iii E:atmost two tails,F:atleast one tail

PARAMETER	DESCRIPTION
E	Atmost two tails when tossed thrice
F	Atleast one tail when tossed thrice

Table 13.1.6.10: parameter and Description

$$Pr(F) = Pr(X \ge 1)$$
 (13.1.6.16)

$$Pr(F) = 1 - Pr(X = 0) (13.1.6.17)$$

$$Pr(F) = 0.875 (13.1.6.18)$$

$$Pr(EF) = Pr(X = 1) + Pr(X = 2)$$
 (13.1.6.19)

$$Pr(EF) = {}^{3}C_{1}(\frac{1}{2})^{3} + {}^{3}C_{2}(\frac{1}{2})^{3}$$
 (13.1.6.20)

$$Pr(EF) = 0.75 (13.1.6.21)$$

$$Pr(EF) = 0.75$$
 (13.1.6.21)
 $Pr(E \mid F) = \frac{Pr(EF)}{Pr(F)}$ (13.1.6.22)

$$Pr(E \mid F) = 0.857$$
 (13.1.6.23)