2.2 Reciprocal of Quadratic Functions

1. Use a graphing calculator to compare each of the following functions. Include a sketch of each.

comparison

$$y = (x-3)(x+1)$$

$$y = \frac{1}{(x-3)(x+1)}$$

comparison

2. Sketch the graph of $f(x) = -x^2 + 5x - 6$ and its reciprocal on the same axis. Clearly identify the intersection(s) between f(x) and its reciprocal.

3. Determine the following information about each of the following graphs

Equation	$y = \frac{1}{(x+3)(x-3)}$
Domain	
Range	
x-int	y-int
Max/Min	
H. Asymptote:	V. Asymptote(s):

As $x \rightarrow$	$f(x) \rightarrow$
3+	
3-	
- 3 ⁺	
-3-	
+∞	

Equation	$y = \frac{-1}{(x-2)^2}$	
Domain		
Range		
x-int	y-int	
Max/Min		
H. Asymptote:	V. Asymptote(s):	

As $x \rightarrow$	$f(x) \rightarrow$
2+	
2-	
+∞	
-∞	

Equation	$y = \frac{1}{x^2 + 4}$	
Domain		- 83
Range		
x-int	y-int	
Max/Min		- 6
H. Asymptote:	V. Asymptote(s):	

As $x \rightarrow$	$f(x) \rightarrow$
+∞	
-∞	

4. Determine the equation of each of the following graphs:

a)

b

Summary

Reciprocals of quadratics can be classified into 3 different types:

i.
$$f(x) = \frac{1}{(x-a)^2}$$

$$ii. f(x) = \frac{k}{(x-a)(x-b)}$$

iii.
$$f(x) = \frac{1}{x^2 + a}$$
, $a > 0$

_____vertical asymptotes and

_____ vertical asymptotes and

_____ vertical asymptotes (hat shaped)

_____"branches"

_____"branches"

- > All the y-coordinates of a reciprocal function are the reciprocals of the y-coordinates of the original function.
- > The graph of a reciprocal function has a vertical asymptote at each zero of the original function.
- > A reciprocal function will always have as a horizontal asymptote if the original function is linear or quadratic.
- \succ A reciprocal function has the same positive/negative intervals as the original function.
- > Intervals of increase on the original function are intervals of decrease on the reciprocal function. Intervals of decrease on the original function are intervals of increase on the reciprocal function.
- > If the range of the original function includes 1 and/or-1 the reciprocal function will intersect the original function at a point (or points) where the y-coordinate is 1 or -1.
- > If the original function has a local minimum point, the reciprocal function will have a local maximum point at the same x-value (and vice versa).

2.2 Practice

- 1) Find constants a and b that guarantee that the graph of the function defined by $h(x) = \frac{ax^2 + 7}{9 bx^2}$ will have a vertical asymptote at $x = \pm \frac{3}{5}$ and a horizontal asymptote at y = -2.
- 2) Sketch the graph of following functions.

$$a) y = \frac{-1}{x(x-5)}$$

b)
$$y = \frac{-3}{(x+3)^2}$$

- 3) For each case, create a function that has a graph with the given features.
 - (a) a vertical asymptote x = 1 and a horizontal asymptote y = 0
 - (b) two vertical asymptotes x = -1 and x = 3, horizontal asymptote y = -1, and x-intercepts -2 and 4.
- 4) Sketch the graph of the reciprocal of each function.

a)

b)

c)

d)

e)

f)

5) Sketch the graph of $f(x)=-2x^2+10x-12$ and its reciprocal on the same axis. Clearly identify the intersection(s) between f(x) and its reciprocal.

6) Determine the equation of each of the following graphs:

Warm up

1. Which of the following functions does **not** have a vertical asymptote?

A)
$$f(x) = \frac{x}{x^2 - x}$$

$$B) \qquad f(x) = \frac{x^2 - 1}{x}$$

C)
$$f(x) = \frac{x-1}{x^2 - x}$$

D)
$$f(x) = \frac{x^2 - 1}{x - 1}$$

2. The function $f(x) = \frac{1}{x^2 - 6x - 16}$ has a local maximum at

A)
$$f(x) = \pm 1$$

B)
$$(3,-25)$$

C)
$$\left(3, \frac{-1}{25}\right)$$

D)
$$\left(0, \frac{-1}{16}\right)$$

3. Which of the following has a horizontal asymptote of y = 1?

A)
$$f(x) = \frac{x^2 + 2x - 24}{x^3 - 64}$$

B)
$$f(x) = \frac{2x^2 - 2x - 24}{4x^2 - 64}$$

C)
$$f(x) = \frac{x^4 + 3x^2 - 40}{(x^2 + 1)(x + 8)}$$

D)
$$f(x) = \frac{(x^2-4)(2x-9)}{(x)(2x-3)(x-1)}$$

- 4. Consider the function $f(x) = \frac{1}{x^2 + 6x + 8}$.
 - a) Determine the point at which the slope of the tangent is 0.
 - b) Determine the equation of the tangent line at this point.