Want more content like this? Subscribe here
(https://docs.google.com/forms/d/e/1FAIpQLSeOryp8VzYIs4ZtE9HVkRcMJyDcJ2FieM82fUsFoCssHu9DA/viewform) to be notified of new
releases!

(https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning#cs-229---machine-learning)CS 229 - Machine Learning (teaching/cs-229)

| Supervised Learning | Unsupervised Learning | Deep Learning | Tips and tricks |
|---------------------|-----------------------|---------------|-----------------|
|---------------------|-----------------------|---------------|-----------------|

# (https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervisedlearning#cheatsheet)Supervised Learning cheatsheet

By Afshine Amidi (https://twitter.com/afshinea) and Shervine Amidi (https://twitter.com/shervinea)

### (https://stanford.edu/~shervine/teaching/cs-229/cheatsheetsupervised-learning#introduction) Introduction to Supervised Learning

Given a set of data points  $\{x^{(1)},...,x^{(m)}\}$  associated to a set of outcomes  $\{y^{(1)},...,y^{(m)}\}$ , we want to build a classifier that learns how to predict y from x.

 $\Box$  **Type of prediction** — The different types of predictive models are summed up in the table below:

|          | Regression        | Classification                        |
|----------|-------------------|---------------------------------------|
| Outcome  | Continuous        | Class                                 |
| Examples | Linear regression | Logistic regression, SVM, Naive Bayes |

| $\square$ Type of model $-$ | - The different models | are summed up | in the table below: |
|-----------------------------|------------------------|---------------|---------------------|
| ,,,                         |                        |               |                     |

|  | Discriminative model | Generative model |
|--|----------------------|------------------|
|--|----------------------|------------------|

| Goal              | Directly estimate $P(y   x)$ | Estimate $P(x y)$ to then deduce $P(y x)$ |
|-------------------|------------------------------|-------------------------------------------|
| What's<br>learned | Decision boundary            | Probability distributions of the data     |
| Illustration      |                              |                                           |
| Examples          | Regressions, SVMs            | GDA, Naive Bayes                          |

### [https://stanford.edu/~shervine/teaching/cs-229/cheatsheetsupervised-learning#notations) Notations and general concepts

 $\Box$  **Hypothesis** — The hypothesis is noted  $h_{\theta}$  and is the model that we choose. For a given input data  $x^{(i)}$  the model prediction output is  $h_{\theta}(x^{(i)})$ .

 $\square$  Loss function — A loss function is a function  $L:(z,y)\in\mathbb{R}\times Y\longmapsto L(z,y)\in\mathbb{R}$  that takes as inputs the predicted value z corresponding to the real data value y and outputs how different they are. The common loss functions are summed up in the table below:

| Least squared error  | Logistic loss       | Hinge loss             | Cro            |
|----------------------|---------------------|------------------------|----------------|
| $\frac{1}{2}(y-z)^2$ | $\log(1+\exp(-yz))$ | $\max(0,1-yz)$         | $-\Big[y \ y)$ |
| $y\in\mathbb{R}$     | y = -1 $y = 1$      | y = -1 $y = 1$ $y = 1$ | y = 0          |
| Linear regression    | Logistic regression | SVM                    | Neı            |

 $\square$  **Cost function** — The cost function J is commonly used to assess the performance of a model, and is defined with the loss function L as follows:

$$J( heta) = \sum_{i=1}^m L(h_ heta(x^{(i)}), y^{(i)})$$

 $\Box$  Gradient descent — By noting  $\alpha \in \mathbb{R}$  the learning rate, the update rule for gradient descent is expressed with the learning rate and the cost function J as follows:

$$\theta \longleftarrow \theta - \alpha \nabla J(\theta)$$



Remark: Stochastic gradient descent (SGD) is updating the parameter based on each training example, and batch gradient descent is on a batch of training examples.

 $\Box$  **Likelihood** — The likelihood of a model  $L(\theta)$  given parameters  $\theta$  is used to find the optimal parameters  $\theta$  through likelihood maximization. We have:

$$heta^{ ext{opt}} = rg\max_{ heta} L( heta)$$

Remark: in practice, we use the log-likelihood  $\ell(\theta) = \log(L(\theta))$  which is easier to optimize.

 $\square$  **Newton's algorithm** — Newton's algorithm is a numerical method that finds  $\theta$  such that  $\ell'(\theta) = 0$ . Its update rule is as follows:

$$heta \leftarrow heta - rac{\ell'( heta)}{\ell''( heta)}$$

Remark: the multidimensional generalization, also known as the Newton-Raphson method, has the following update rule:

$$heta \leftarrow heta - \left(
abla_{ heta}^2 \ell( heta)
ight)^{-1} 
abla_{ heta} \ell( heta)$$

#### (https://stanford.edu/~shervine/teaching/cs-229/cheatsheetsupervised-learning#linear-models) Linear models

#### **Linear regression**

We assume here that  $y|x; heta \sim \mathcal{N}(\mu, \sigma^2)$ 

 $\square$  **Normal equations** — By noting X the design matrix, the value of  $\theta$  that minimizes the cost function is a closed-form solution such that:

$$oxed{ heta = (X^TX)^{-1}X^Ty}$$

 $\square$  LMS algorithm — By noting  $\alpha$  the learning rate, the update rule of the Least Mean Squares (LMS) algorithm for a training set of m data points, which is also known as the Widrow-Hoff learning rule, is as follows:

$$oxed{ orall j, \quad heta_j \leftarrow heta_j + lpha \sum_{i=1}^m \left[ y^{(i)} - h_ heta(x^{(i)}) 
ight] x_j^{(i)} }$$

Remark: the update rule is a particular case of the gradient ascent.

 $\square$  LWR — Locally Weighted Regression, also known as LWR, is a variant of linear regression that weights each training example in its cost function by  $w^{(i)}(x)$ , which is defined with parameter  $\tau \in \mathbb{R}$  as:

$$oxed{w^{(i)}(x)=\exp\left(-rac{(x^{(i)}-x)^2}{2 au^2}
ight)}$$

#### **Classification and logistic regression**

 $\square$  **Sigmoid function** — The sigmoid function g, also known as the logistic function, is defined as follows:

$$orall z \in \mathbb{R}, \quad \boxed{g(z) = rac{1}{1 + e^{-z}} \in ]0,1[}$$

 $\Box$  Logistic regression — We assume here that  $y|x; \theta \sim \mathrm{Bernoulli}(\phi)$ . We have the following form:

$$\boxed{\phi = p(y=1|x; heta) = rac{1}{1+\exp(- heta^T x)} = g( heta^T x)}$$

Remark: logistic regressions do not have closed form solutions.

 $\square$  Softmax regression — A softmax regression, also called a multiclass logistic regression, is used to generalize logistic regression when there are more than 2 outcome classes. By convention, we set  $\theta_K=0$ , which makes the Bernoulli parameter  $\phi_i$  of each class i be such that:

$$\phi_i = rac{\exp( heta_i^T x)}{\displaystyle\sum_{j=1}^K \exp( heta_j^T x)}$$

#### **Generalized Linear Models**

 $\square$  **Exponential family** — A class of distributions is said to be in the exponential family if it can be written in terms of a natural parameter, also called the canonical parameter or link function,  $\eta$ , a sufficient statistic T(y) and a log-partition function  $a(\eta)$  as follows:

$$\boxed{p(y;\eta) = b(y) \exp(\eta T(y) - a(\eta))}$$

Remark: we will often have T(y) = y. Also,  $\exp(-a(\eta))$  can be seen as a normalization parameter that will make sure that the probabilities sum to one.

The most common exponential distributions are summed up in the following table:

| Distribution | $\eta$                               | T(y) | $a(\eta)$                                    | b(y)                                                   |
|--------------|--------------------------------------|------|----------------------------------------------|--------------------------------------------------------|
| Bernoulli    | $\log\left(rac{\phi}{1-\phi} ight)$ | y    | $\log(1+\exp(\eta))$                         | 1                                                      |
| Gaussian     | $\mu$                                | y    | $rac{\eta^2}{2}$                            | $\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{y^2}{2}\right)$ |
| Poisson      | $\log(\lambda)$                      | y    | $e^{\eta}$                                   | $\frac{1}{y!}$                                         |
| Geometric    | $\log(1-\phi)$                       | y    | $\log\left(rac{e^{\eta}}{1-e^{\eta}} ight)$ | 1                                                      |

☐ **Assumptions of GLMs** — Generalized Linear Models (GLM) aim at predicting a random variable y as a function of  $x \in \mathbb{R}^{n+1}$  and rely on the following 3 assumptions:

$$egin{aligned} (1) & egin{aligned} y|x; heta \sim ext{ExpFamily}(\eta) \ (2) & eta_{ heta}(x) = E[y|x; heta] \ (3) & egin{aligned} \eta = heta^T x \end{aligned} \end{aligned}$$

$$(2) \quad \boxed{h_{\theta}(x) = E[y|x;\theta]}$$

$$(3) \quad \Big| \, \eta = heta^T x \Big|$$

Remark: ordinary least squares and logistic regression are special cases of generalized linear models.

## [https://stanford.edu/~shervine/teaching/cs-229/cheatsheetsupervised-learning#svm) **Support Vector Machines**

The goal of support vector machines is to find the line that maximizes the minimum distance to the line.

 $\square$  **Optimal margin classifier** — The optimal margin classifier h is such that:

$$h(x) = \mathrm{sign}(w^Tx - b)$$

where  $(w,b)\in\mathbb{R}^n imes\mathbb{R}$  is the solution of the following optimization problem:

$$oxed{\min rac{1}{2} ||w||^2} \qquad ext{such that} \quad oxed{y^{(i)}(w^T x^{(i)} - b) \geqslant 1}$$



Remark: the decision boundary is defined as  $w^Tx - b = 0$ 

 $\square$  **Hinge loss** — The hinge loss is used in the setting of SVMs and is defined as follows:

$$L(z,y)=[1-yz]_+=\max(0,1-yz)$$

 $\square$  **Kernel** — Given a feature mapping  $\phi$ , we define the kernel K as follows:

$$K(x,z) = \phi(x)^T \phi(z)$$

In practice, the kernel K defined by  $K(x,z)=\exp\left(-\frac{||x-z||^2}{2\sigma^2}\right)$  is called the Gaussian kernel and is commonly used.



Remark: we say that we use the "kernel trick" to compute the cost function using the kernel because we actually don't need to know the explicit mapping  $\phi$ , which is often very complicated. Instead, only the values K(x,z) are needed.

 $\square$  **Lagrangian** — We define the Lagrangian  $\mathcal{L}(w,b)$  as follows:

$$\mathcal{L}(w,b) = f(w) + \sum_{i=1}^l eta_i h_i(w)$$

Remark: the coefficients  $\beta_i$  are called the Lagrange multipliers.

### [https://stanford.edu/~shervine/teaching/cs-229/cheatsheetsupervised-learning#generative-learning) **Generative Learning**

A generative model first tries to learn how the data is generated by estimating P(x|y), which we can then use to estimate P(y|x) by using Bayes' rule.

#### **Gaussian Discriminant Analysis**

 $\square$  **Setting** — The Gaussian Discriminant Analysis assumes that y and x|y=0 and x|y=1are such that:

(1) 
$$y \sim \text{Bernoulli}(\phi)$$

$$(2) \quad \boxed{x|y=0 \sim \mathcal{N}(\mu_0,\Sigma)}$$

$$egin{aligned} (1) & egin{aligned} y \sim \mathrm{Bernoulli}(\phi) \ \ (2) & x|y=0 \sim \mathcal{N}(\mu_0,\Sigma) \ \ \ (3) & x|y=1 \sim \mathcal{N}(\mu_1,\Sigma) \end{aligned}$$

☐ **Estimation** — The following table sums up the estimates that we find when maximizing the likelihood:

| $\widehat{\phi}$                             | $\widehat{\mu_j}  (j=0,1)$                                                     | $\widehat{\Sigma}$                                                              |
|----------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $\frac{1}{m} \sum_{i=1}^m 1_{\{y^{(i)}=1\}}$ | $rac{\sum_{i=1}^m 1_{\{y^{(i)}=j\}} x^{(i)}}{\sum_{i=1}^m 1_{\{y^{(i)}=j\}}}$ | $rac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^T$ |

#### **Naive Bayes**

☐ **Assumption** — The Naive Bayes model supposes that the features of each data point are all independent:

$$P(x|y) = P(x_1, x_2, ...|y) = P(x_1|y)P(x_2|y)... = \prod_{i=1}^n P(x_i|y)$$

☐ **Solutions** — Maximizing the log-likelihood gives the following solutions:

$$P(y=k)=rac{1}{m} imes\#\{j|y^{(j)}=k\}$$

$$P(y=k) = rac{1}{m} imes \#\{j|y^{(j)} = k\} \hspace{0.5cm} ext{and} \hspace{0.5cm} P(x_i = l|y = k) = rac{\#\{j|y^{(j)} = k ext{ and } x_i^{(j)} = k\}}{\#\{j|y^{(j)} = k\}}$$

with  $k \in \{0,1\}$  and  $l \in \llbracket 1,L 
rbracket$ 

Remark: Naive Bayes is widely used for text classification and spam detection.

### [https://stanford.edu/~shervine/teaching/cs-229/cheatsheetsupervised-learning#tree)

#### Tree-based and ensemble methods

These methods can be used for both regression and classification problems.

☐ **CART** — Classification and Regression Trees (CART), commonly known as decision trees, can be represented as binary trees. They have the advantage to be very interpretable.

☐ **Random forest** — It is a tree-based technique that uses a high number of decision trees built out of randomly selected sets of features. Contrary to the simple decision tree, it is highly uninterpretable but its generally good performance makes it a popular algorithm.

Remark: random forests are a type of ensemble methods.

☐ **Boosting** — The idea of boosting methods is to combine several weak learners to form a stronger one. The main ones are summed up in the table below:

| Adaptive boosting                                                                                               | Gradient boosting                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| <ul><li>High weights are put on errors to improve at the next boosting step</li><li>Known as Adaboost</li></ul> | <ul><li>Weak learners are trained on residuals</li><li>Examples include XGBoost</li></ul> |  |

## https://stanford.edu/~shervine/teaching/cs-229/cheatsheetsupervised-learning#other)

Other non-parametric approaches

 $\square$  k-nearest neighbors — The k-nearest neighbors algorithm, commonly known as k-NN, is a non-parametric approach where the response of a data point is determined by the nature of its kneighbors from the training set. It can be used in both classification and regression settings.

Remark: the higher the parameter k, the higher the bias, and the lower the parameter k, the higher the variance.



### [https://stanford.edu/~shervine/teaching/cs-229/cheatsheetsupervised-learning#learning-theory) **Learning Theory**

 $\square$  Union bound — Let  $A_1,...,A_k$  be k events. We have:



 $\square$  **Hoeffding inequality** — Let  $Z_1,..,Z_m$  be m iid variables drawn from a Bernoulli distribution of parameter  $\phi$ . Let  $\widehat{\phi}$  be their sample mean and  $\gamma > 0$  fixed. We have:

$$P(|\phi - \widehat{\phi}| > \gamma) \leqslant 2 \exp(-2\gamma^2 m)$$

Remark: this inequality is also known as the Chernoff bound.

 $\square$  **Training error** — For a given classifier h, we define the training error  $\hat{\epsilon}(h)$ , also known as the empirical risk or empirical error, to be as follows:

$$\left|\widehat{\epsilon}(h) = rac{1}{m} \sum_{i=1}^m \mathbb{1}_{\{h(x^{(i)}) 
eq y^{(i)}\}}
ight|$$

- ☐ **Probably Approximately Correct (PAC)** PAC is a framework under which numerous results on learning theory were proved, and has the following set of assumptions:
  - the training and testing sets follow the same distribution
  - the training examples are drawn independently
- $\square$  **Shattering** Given a set  $S=\{x^{(1)},...,x^{(d)}\}$ , and a set of classifiers  $\mathcal H$ , we say that  $\mathcal H$ shatters S if for any set of labels  $\{y^{(1)},...,y^{(d)}\}$ , we have:

$$oxed{\exists h \in \mathcal{H}, \quad orall i \in \llbracket 1, d 
rbracket}, \quad h(x^{(i)}) = y^{(i)}}$$

 $\Box$  **Upper bound theorem** — Let  $\mathcal H$  be a finite hypothesis class such that  $|\mathcal H|=k$  and let  $\delta$  and the sample size m be fixed. Then, with probability of at least  $1-\delta$ , we have:

$$\left| \epsilon(\widehat{h}) \leqslant \left( \min_{h \in \mathcal{H}} \epsilon(h) 
ight) + 2 \sqrt{rac{1}{2m} \log \left( rac{2k}{\delta} 
ight)} 
ight.$$

☐ **VC dimension** — The Vapnik-Chervonenkis (VC) dimension of a given infinite hypothesis class  $\mathcal{H}$ , noted  $VC(\mathcal{H})$  is the size of the largest set that is shattered by  $\mathcal{H}$ .

*Remark:* the VC dimension of  $\mathcal{H} = \{\text{set of linear classifiers in 2 dimensions}\}\$ is 3.

















 $\Box$  Theorem (Vapnik) — Let  ${\mathcal H}$  be given, with  ${
m VC}({\mathcal H})=d$  and m the number of training examples. With probability at least  $1 - \delta$ , we have:

$$\left| \epsilon(\widehat{h}) \leqslant \left( \min_{h \in \mathcal{H}} \epsilon(h) 
ight) + O\left( \sqrt{rac{d}{m} \log\left(rac{m}{d}
ight) + rac{1}{m} \log\left(rac{1}{\delta}
ight)} 
ight) 
ight|$$





(https://twitter.com/shervinea) (https://linkedin.com/in/shervineamidi)





(https://github.com/shervinea) (https://scholar.google.com/citations?user=nMnMTm8AAAAJ)

