Prüfung am Computer Relationale Datenbanken - 3. Semester

Seminargruppe: **CS13**

Lehrbeauftragter: Prof. Dr. Ingolf Brunner

24.04.2015 Datum:

Name	Vorname	Matrikelnummer	Login	
Dieser Programmentwurf besteht aus 4 Aufgaben auf 3 Seiten.				
Seitenanzahl der Lösung des Programmentwurfs: (Bei Angabe Lösungsseiten bitte durchnummerieren)				

Zugelassene Hilfsmittel:

- bereitgestellte Dokumention / Unterlagen auf dem Fileserver Bearbeitungszeit: 80 Minuten

Aufgaben

Beantworten Sie die folgenden Fragen in Stichpunkten:

1. Was versteht man unter einer transitiven Abhängigkeit?

2 Punkte

2. Was versteht man unter einer Universalrelation?

2 Punkte

3. Für die Darstellung welcher Beziehung eigenen sich Inklusionsabhängigkeiten?

2 Punkte

Bitte lösen Sie die folgende Aufgabe anhand des Datenbankmanagementsystems PostgreSQL. Verwenden Sie ausschließlich den Ihnen zu Beginn des Programmentwurfs übergebenen Klausur-Login am lokalen Rechner und den entsprechenden Klausur-Login am Datenbankserver!

4. Aufgabe - Datenbank *Tierbeobachtungsdatenbank*

Beispielanwendung einer *Tierbeobachtungsdatenbank*, in welcher ein Bestand an für Beobachtungen interessanten Wirbeltieren wie *Vögel*, *Lurche* (*Amphibien*) und *Säugetiere* enthalten ist. Bearbeiten Sie die folgenden Teilaufgaben und speichern Sie die SQL-Befehle zum Erzeugen und Bearbeiten fortlaufend in einem SQL-File im Homeverzeichnis ihres Klausurnutzers. Markieren Sie die einzelnen Teilaufgaben mit Kommentaren!

- **4. a)** Beschreiben Sie diese Anwendung in einem ER-Diagramm:
- 4 a) 1) Erstellen Sie die Entities:
 - Tiere mit den Spezialisierungen:
 - Vögel

(Namen, Wissenschaftlicher_Name, Art, Gattung, ID_Nr, Rote_Liste)

- Lurche
 - (Namen, Wissenschaftlicher Name, Art, Gattung, ID Nr, giftig)
- Säugetiere

(Namen, Wissenschaftlicher_Name, Art, Gattung, ID_Nr, eingeschleppt)

- Naturschutzstation
 - (Stationsname, Breitengrad, Längengrad)
- Beobachter

(Name, Adresse (Straße, PLZ, Ort), Qualifikation)

Verwenden Sie falls notwendig mehrwertige oder zusammengesetzte Attribute.

10 Punkte

4 a) 2) Definieren Sie die Beziehung "beobachtet" mit den Attributen Zeitpunkt, Breitengrad, Längengrad und Bemerkungen zwischen Tiere und Beobachter.

4 Punkte

4 a) 3) Jede Naturschutzstation ist einem Beobachter als Betreuer zuzuordnen. Definieren Sie die Beziehung "betreut" zwischen Naturschutzstation und Beobachter.

2 Punkte

4 b) Transformieren Sie das ER-Diagramm nach den Transformationsregeln in das objektrelationale Modell und implementieren Sie Ihren Entwurf mittels SQL. Den Zwischenschritt des objektrelationalen Modells müssen Sie nicht schriftlich niederlegen. Sorgen Sie mittels einer Fremdschlüsselbeziehung dafür, dass nur in der Datenbank eingetragene Tiere beobachtet werden können.

16 Punkte

4 c) Befüllen Sie die Datenbank mit den folgenden Beispieldatensätzen:

Beispiele für Vögel:

Namen	Wissenschaftlicher Name	Art	Gattung	Rote_Liste
Großtrappe	Otis tarda	Großtrappe	Otis	ja
Haussperling,	Passer domesticus	Haussperling	Passer	nein
Spatz				

Beispiel für einen Lurche:

Namen	Wissenschaftlicher Name	Art	Gattung	giftig
Feuersalamander, Feuermolch,	Salamandra salamandra	Feuer- salamander	Salamandra	ja
Erdmolch				

Beispiel für ein Säugetier:

Namen	Wissenschaftlicher Name	Art	Gattung	eingeschleppt
Kleine Hufeisennase	Rhinolophus hipposideros	Kleine Hufeisennase	Hufeisennasen	nein

Beispiele für Naturschutzstationen:

Stationsname	me Breitengrad Längengrad	
Zippendorf	53,602947 N	11,454985 O
Pobershau	50,755572 N	12,974854 O

Beispiele für Beobachter:

Name	Straße	PLZ	Ort	Qualifikation
Carl von Linné			Stockholm	Arzt und Naturwissenschaftler
Alexander von Humboldt	Oranienburger Strasse 67	13437	Berlin	Naturforscher

5 Punkte

4 d) Schreiben Sie eine Triggerfunktion, welche bei jeder Änderung an den Daten der Tabelle *Lurche* das Datum der Änderung und den Usernamen des Bearbeiters speichert!

Ergänzen Sie dazu die Tabelle *Lurche* um die notwendigen Felder ohne die Tabelle neu anzulegen!

5 Punkte

Speichern Sie ein Script zum Anlegen Ihrer Datenbank unter dem Namen "Vorname_Nachname.sql" im Homeverzeichnis Ihres Klausur-Logins (Windows: H:\ bzw. Linux: ~1.).