Departamento de Matemática da Universidade de Aveiro

CÁLCULO 2 - agrup. 1

2017/18

Folha 2: Séries de Fourier

- 1. Considere a série de Fourier $\sum_{n=0}^{\infty} \frac{\sin(nx)}{n^2}$
 - (a) Porque a série converge uniformemente em $[-\pi, \pi]$?
 - (b) Justifique que a soma da série é uma função contínua em $[-\pi, \pi]$.
- 2. Determine a série de Fourier para a função $f(x) = x \cos(x), x \in]-\pi,\pi[$.
- 3. Determine a série de Fourier para a função $f(t)=1, x\in]1, \pi[$ e $f(t)=-1, t\in]-\pi, 0].$
- 4. Determine a série de Fourier para a função periódica do período $2\pi f(t) = |\sin(t)|$.
- 5. Determine a série de Fourier para a função periódica do período $2\pi f(t) = \frac{1}{2} (\sin t + |\sin(t)|)$.
- 6. A função periódica do período 2π f é dado no interval $]-\pi,\pi[$ por $f(x)=|x|(\pi-|x|).$
 - (a) Esboce a função f e determine os seus coeficientes de Fourier.
 - (b) Porque a série de Fourier converge em qualquer ponto $x \in \mathbb{R}$?
- 7. Determine o valor da série numérica

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{4n^2 - 1}$$

usando a série de Fourier para a função periódica do período $2\pi f$ com $f(x) = \cos(\frac{x}{2}), x \in]-\pi, \pi[$. Para isso justifique a formula

$$\int_{-\pi}^{\pi} \cos\left(\frac{x}{2}\right) \cos(nx) dx = (-1)^n \frac{4}{1 - 4n^2}, \qquad n = 1, 2, 3, \dots$$