RÉSULTANT DE 2 POLYNÔMES (CCP MP 2009)

Soient p et q deux entiers naturels n'ont nuls, et soient

$$P = \sum_{k=0}^{p} a_k X^k \quad \text{et} \quad Q = \sum_{k=0}^{q} b_k X^k$$

deux polynômes de $\mathbb{C}[X]$ avec $a_p \neq 0$ et $b_q \neq 0$.

On appelle résultant de P et Q le nombre complexe noté Res(P,Q):

$$\operatorname{Res}(P,Q) \ = \ \begin{vmatrix} a_0 & & & b_0 \\ a_1 & \ddots & & b_1 & \ddots \\ \vdots & & a_0 & & \vdots & & b_0 \\ a_p & & a_1 & a_0 & \vdots & & b_1 \\ & \ddots & \vdots & a_1 & b_q & & \vdots \\ & & a_p & \vdots & & \ddots & \vdots \\ & & & a_p & & & b_q \end{vmatrix}$$

C'est un déterminant d'ordre p+q, dont les q premières colonnes représentent les coefficients du polynôme P et les p dernières les coefficients du polynôme Q, les positions non remplies étant des zéros.

Par exemple, si $P = 1 + 2X + 3X^2$ et $Q = 4 + 5X + 6X^2 + 7X^3$,

$$\operatorname{Res}(P,Q) = \begin{vmatrix} 1 & 0 & 0 & 4 & 0 \\ 2 & 1 & 0 & 5 & 4 \\ 3 & 2 & 1 & 6 & 5 \\ 0 & 3 & 2 & 7 & 6 \\ 0 & 0 & 3 & 0 & 7 \end{vmatrix}$$

La matrice servant à définir le résultant sera notée $M_{P,Q}$: $\operatorname{Res}(P,Q) = \det M_{P,Q}$ On note E l'espace vectoriel produit $\mathbb{C}_{q-1}[X] \times \mathbb{C}_{p-1}[X]$ et F l'espace vectoriel $\mathbb{C}_{p+q-1}[X]$. Enfin, $u_{P,Q}$ désigne l'application définie sur E par

$$\forall (A, B) \in E , u_{P,Q}(A, B) = AP + BQ$$

- **1.** a) Démontrer que $u_{P,Q}$ est une application linéaire de E dans F.
 - b) Si on suppose que $u_{P,Q}$ est surjective, montrer que P et Q n'ont pas de racine commune dans \mathbb{C} .
 - c) Si on suppose que P et Q n'ont pas de racine commune dans \mathbb{C} , montrer que $u_{P,Q}$ est injective.
 - d) En déduire une condition nécessaire et suffisante pour que P et Q n'aient pas de racine commune dans \mathbb{C} .
- **2.** On note $\mathscr{B} = ((1,0),(X,0),\dots,(X^{q-1},0),(0,1),(0,X),\dots,(0,X^{p-1}))$ et $\mathscr{B}' = (1,X,\dots,X^{p+q-1})$ la base canonique de F.
 - a) Montrer que \mathcal{B} est une base de E.
 - b) Déterminer la matrice de $u_{P,Q}$ dans les bases \mathscr{B} et \mathscr{B}' .
 - c) Démontrer que $\operatorname{Res}(P,Q) \neq 0$ si et seulement si P et Q n'ont pas de racine commune dans \mathbb{C} .
- **3. a)** Démontrer qu'un polynôme P de $\mathbb{C}[X]$ admet une racine multiple dans \mathbb{C} si et seulement si $\mathrm{Res}(P,P')=0$.

b) Donner une condition nécessaire et suffisante pour que le polynôme $X^3 + aX + b$ admette une racine multiple.

– DM N°3 –

- **4.** Dans toute cette question, on note $P = X^4 + X^3 + 1$ et $Q = X^3 X + 1$.
 - a) En utilisant les résultats précédents, montrer que P et Q n'ont pas de racine commune dans $\mathbb C$.
 - b) Démontrer qu'il existe un et un seul couple $(A_0, B_0) \in \mathbb{C}_2[X] \times \mathbb{C}_3[X]$ tel que

$$A_0P + B_0Q = 1.$$

Calculer A_0 et B_0 en utilisant la matrice de $u_{P,Q}$.

c) Déterminer tous les couples (A, B) de polynômes de $\mathbb{C}[X]$ tels que

$$AP + BQ = 1$$