

What is claimed is

1. A process for stabilising and at the same time phase compatibilising plastics or plastic compositions by incorporating polymeric compounds obtainable by reacting a compound selected from the group consisting of the sterically hindered phenols, sterically hindered amines, lactones, sulfides, phosphites, benzotriazoles, benzophenones and 2-(2-hydroxy-phenyl)-1,3,5-triazines, which compounds contain at least one reactive group, with a compatibilisator.
 2. A process according to claim 1, wherein the sterically hindered phenols are

2. A process according to claim 1, wherein the sterically hindered phenols are

R_1 and R_2 are each independently of the other hydrogen, C_1 - C_{25} alkyl, phenyl- C_1 - C_3 alkyl which is unsubstituted or substituted once or several times at the aromatic ring by OH or/and C_1 - C_4 alkyl, unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_{12} cycloalkyl, or phenyl; n is 1, 2 or 3;

E is OH, SH, NHR₃, SO₃H, COOH, -CH=CH₂, —(CH₂)_m—CH(O)CH₂ or —P(=O)(R₄)OH;

m is 0 or 1:

R₃ is hydrogen or C₁-C₆alkyl:

R₄ is C₁-C₁₂alkyl, or phenyl which is unsubstituted or substituted by one or several C₁-C₄-alkyl, halogen or/and C₁-C₄alkoxy:

A if E is OH, SH or $-\text{CH}=\text{CH}_2$, is $-\text{C}_2\text{H}_5-$, $-\text{CH}_2-\text{S}-\text{CH}_2\text{CH}_2-$,

-C_nH_{2n}-(CO)-O-C_nH_{2n}-, -C_nH_{2n}-(CO)-NH-C_nH_{2n}-, or -C_nH_{2n}-(CO)-O-C_nH_{2n}-S-C_nH_{2n}-;

x is a number from 0 to 8:

p is a number from 2 to 8:

g is a number from 0 to 3.

B_1 and n are as defined above; or

- A if E is $-\text{NHR}_3$, $-\text{C}_x\text{H}_{2x}-$ or $-\text{C}_q\text{H}_{2q}-(\text{CO})-\text{NH-C}_p\text{H}_{2p}-$, wherein x, p and q have the meanings cited above; or
- A if E is COOH or SO₃H, is $-\text{C}_x\text{H}_{2x}-$, $-\text{CH}_2-\text{S-CH}_2-$ or $-\text{CH}_2-\text{S-CH}_2\text{CH}_2-$, wherein x has the meaning cited above; or

A if E is $-(\text{CH}_2)_m-\overset{\text{O}}{\text{CH}}-\text{CH}_2$, is a direct bond, $-\text{C}_q\text{H}_{2q}-(\text{CO})_m-\text{O-CH}_2-$ or $-\text{C}_x\text{H}_{2x}-\text{S-CH}_2-$, wherein q, m, x, R₁ and R₂ are as defined above;

A if E is $\overset{\text{O}}{\text{P}}-\text{R}_4$, is $-\text{CH}_2-$.

3. A process according to claim 1, wherein the sterically hindered amines are compounds

of formula II, IIIa or IIIb

R₈ is hydrogen, C₁-C₂₅alkyl, C₂-C₂₀alkenyl, C₂-C₂₀alkynyl, C₁-C₂₀alkoxy, phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl, C₅-C₈cycloalkoxy, phenyl, naphthyl, hydroxyethyl, CO-C₁-C₂₅alkyl, CO-phenyl, CO-naphthyl, CO-phenyl-C₁-C₃alkyl, O-CO-C₁-C₂₀alkyl or C₁-C₆alkyl-S-C₁-C₆alkyl, C₁-C₆alkyl-O-C₁-C₆alkyl,

C₁-C₆alkyl-(CO)-C₁-C₆alkyl, $-\text{CH}_2\text{CH}_2-\overset{\text{O}}{\text{O}}-\text{CH}_2-\text{CH}(\text{CH}_3)\text{CH}_2$ or $-\text{CH}_2-\overset{\text{O}}{\text{CH}}-\text{CH}_2$;

w is a number from 1 to 10;

Y is a single bond, C₁-C₂₅alkylene, phenylene, biphenylene, naphthylene,

Z is hydrogen, -COOR₉, -NH₂, -OR₉, hydroxyethyl, $-\text{CH}_2-\overset{\text{O}}{\text{CH}}-\text{CH}_2$ or $-\overset{\text{O}}{\text{C}}-\text{C}=\text{CH}_2$;

R₉ is hydrogen or C₁-C₁₂alkyl;

R₁₀ has the same definition as R₉.

4. A process according to claim 1, wherein the lactones are compounds of formula III

R₁₁, R₁₂, R_{12a} and R₁₃ are each independently of one another hydrogen, C₁-C₂₅alkyl, phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl or phenyl; and

G is OH, OCH₂CH₂OH, $-\text{O}-\text{CH}_2-\overset{\text{O}}{\text{CH}}-\text{CH}_2$ or -OCH₂COOH.

5. A process according to claim 1, wherein the sulfides are compounds of formula IV

R₁₅ is C₁-C₁₈alkyl, benzyl, phenyl or $\overset{\text{S}}{\underset{\parallel}{\text{P}}}-(\text{OR}_{17})_2$; and

R₁₆ is -CH₂CH₂OH, $-\text{CH}_2-\overset{\text{O}}{\text{CH}}-\text{CH}_2$, -CH₂COOH or -CH₂CH₂COOH; and

R₁₇ is C₁-C₁₈alkyl or unsubstituted or C₁-C₄alkyl-substituted phenyl.

6. A process according to claim 1, wherein the phosphites are compounds of formula V

R_{16a} is $-\text{CH}_2\text{CH}_2\text{OH}$ or $-\text{CH}_2\text{CH}_2\text{COOH}$; and

R_{17a} is $\text{C}_1\text{-C}_{18}\text{alkyl}$ or unsubstituted or $\text{C}_1\text{-C}_4\text{alkyl-substituted phenyl}$.

7. A process according to claim 1, wherein the benzotriazoles, benzophenones and 2,4,6-triaryl-1,3,5-triazines are compounds of formula VI, VIa, VIb or VIc

R_{18} is $-(\text{CH}_2)_l\text{---R}_{20}$, $-\text{O---CH}_2\text{---CH(OH)---CH}_2$ or NH_2 ;

R_{19} is $\text{C}_1\text{-C}_{12}\text{alkyl}$, $\alpha,\alpha\text{-dimethylbenzyl}$ or a radical

R_{20} is $-\text{OH}$, $-\text{SH}$, $-\text{NHR}_{30}$, $-\text{SO}_3\text{H}$, $-\text{COOR}_{21}$, $-\text{CH}=\text{CH}_2$, $-(\text{CH}_2)_m\text{---CH(OH)---CH}_2$ or $-(\text{CO})\text{-NH---(CH}_2)_n\text{-NCO}$;

R_{21} is hydrogen, $-\text{CH}_2\text{---CH(OH)---CH}_2$ or $-\text{CH}_2\text{---CH(OH)---CH}_2\text{---O---(CO)---R}_{22}$;

R_{22} is $\text{C}_1\text{-C}_4\text{alkyl}$ or phenyl;

R_{23} and R_{24} are each independently of the other hydrogen or $\text{C}_1\text{-C}_4\text{alkyl}$;

R_{25} is hydrogen, $-(\text{CH}_2)_n\text{-OH}$, $-\text{CH}_2\text{---CH(OH)---CH}_2$, $-(\text{CH}_2)_n\text{COOH}$ or $-(\text{CO})\text{-NH---(CH}_2)_n\text{-NCO}$;

R₂₆ is hydrogen, OH or C₁-C₁₂alkoxy;

R₂₇ is hydrogen or OH;

R₂₈ is hydrogen or

;

R₂₉ is hydrogen or halogen;

R₃₀ is hydrogen or C₁-C₉alkyl;

m is 0 or 1;

t is a number from 0 to 6;

u is a number from 2 to 12.

8. A process according to claim 1, wherein the compatibiliser compound is a polymer containing acid groups, acid anhydride groups, ester groups, epoxy groups or alcohol groups or wherein the compatibiliser compound is a copolymer or terpolymer of polyethylene, polypropylene, vinyl acetate or styrene with acrylic acid.

9. A process according to claim 8, wherein the compatibiliser compound is a polymer with acrylic acid (AA) function, glycidyl methacrylate (GMA) function, methacrylic acid (MAA) function, maleic anhydride (MAH) function or vinyl alcohol (VA) function.

10. A process according to claim 8, wherein the compatibiliser compound is a copolymer consisting of polyethylene acrylic acid (PE-AA),
polyethylene glycidyl methacrylate (PE-GMA),
polyethylene methacrylic acid (PE-MAA) or
polyethylene maleic anhydride (PE-MAH) or
a terpolymer of polyethylene and vinyl acetate with acrylic acid or
a terpolymer of polyethylene and acrylates with acrylic acid.

11. A process according to claim 8, wherein the compatibiliser compound is a grafted polyethylene or polypropylene copolymer selected from the group consisting of maleic anhydride grafted to polyethylene vinyl acetate (MAH-g-PE-vinyl acetate), maleic anhydride grafted to low density polyethylene (MAH-g-LDPE), maleic anhydride grafted to high density

polyethylene (MAH-g-HDPE), maleic anhydride grafted to linear low density polyethylene (MAH-g-LLDPE), acrylic acid grafted to polypropylene (AA-g-PP), glycidyl methacrylate grafted to polypropylene (GMA-g-PP), maleic anhydride grafted to polypropylene (MAH-g-PP), maleic anhydride grafted to ethylene/propylene terpolymer (MAH-g-EPDM), maleic anhydride grafted to ethylene/propylene rubber (MAH-g-EPM) and maleic anhydride grafted to polyethylene/polypropylene copolymer (MAH-g-PE/PP).

12. A process according to claim 8, wherein the compatibiliser compound is a grafted styrene co- or terpolymer selected from the group consisting of styrene/acrylonitrile grafted with maleic anhydride (SAN-g-MAH), styrene/maleic anhydride/methyl methacrylate, styrene/butadiene/styrene block copolymer grafted with maleic anhydride (SBS-g-MAH), styrene/ethylene/propylene/styrene block copolymer grafted with maleic anhydride (SEPS-g-MAH), styrene/ethylene/butadiene/styrene block copolymer grafted with maleic anhydride (SEPS-g-MAH) and acrylic acid/polyethylene/polystyrene terpolymer (AA-PE-PS-terpolymer).
13. A process according to claim 8, wherein the compatibiliser compound is a vinyl alcohol copolymer.
14. A process according to claim 1, wherein the polymers to be stabilised are at least two different polymers.
15. A process according to claim 1, wherein the polymers to be stabilised are recycled material.
16. A compound obtainable by reacting sterically hindered phenols of formula I

R₁ and R₂ are each independently of the other hydrogen, C₁-C₂₅alkyl, phenyl-C₁-C₃alkyl which is unsubstituted or substituted once or several times at the aromatic ring by OH or/and C₁-C₄alkyl, unsubstituted or C₁-C₄alkyl-substituted C₅-C₁₂cycloalkyl, or phenyl;

n is 1, 2 or 3;

E is OH, SH, NHR₃, SO₃H, COOH, -CH=CH₂, —(CH₂)_m—CH—CH₂ or ;

m is 0 or 1;

R₃ is hydrogen or C₁-C₉alkyl;

R₄ is C₁-C₁₂alkyl, phenyl which is unsubstituted or substituted by one or several C₁-C₄alkyl, halogen or/and C₁-C₁₈alkoxy;

A if E is OH, SH or -CH=CH₂, is -C_xH_{2x}-, -CH₂-S-CH₂CH₂-, -C_qH_{2q}-(CO)-O-C_pH_{2p}-, -C_qH_{2q}-(CO)-NH-C_pH_{2p}- or -C_qH_{2q}-(CO)-O-C_pH_{2p}-S-C_qH_{2q}-,

x is a number from 0 to 8;

p is a number from 2 to 8;

q is a number from 0 to 3;

R₁ and n are as defined above; or

A if E is -NHR₃, is -C_xH_{2x}- or -C_qH_{2q}-(CO)-NH-C_pH_{2p}-, wherein x, p and q have the meanings cited above; or

A if E is COOH or SO₃H, is -C_xH_{2x}-, -CH₂-S-CH₂- or -CH₂-S-CH₂CH₂-, wherein x has the meaning cited above; or

A if E is —(CH₂)_m—CH—CH₂ , is a direct bond, -C_qH_{2q}-(CO)-O-CH₂- or -C_xH_{2x}-S-CH₂-, wherein q, m, x, R₁ and R₂ are as defined above;

A if E is , is -CH₂-;

or sterically hindered amines of formula II, IIa or IIb

R₈ is hydrogen, C₁-C₂₅alkyl, C₂-C₂₀alkenyl, C₂-C₂₀alkynyl, C₁-C₂₀alkoxy, phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl, C₅-C₈cycloalkoxy, phenyl, naphthyl, hydroxyethyl, CO-C₁-C₂₅alkyl, CO-phenyl, CO-naphthyl, CO-phenyl-C₁-C₃alkyl, O-CO-C₁-C₂₀alkyl or C₁-C₆alkyl-S-C₁-C₆alkyl, C₁-C₆alkyl-O-C₁-C₆alkyl, C₁-C₆alkyl-(CO)-C₁-C₆alkyl, -CH₂CH₂-O-CH₂-CH(O)-CH₂ or -CH₂-CH(O)-CH₂;

w is a number from 1 to 10;

Y is a single bond, C₁-C₂₅alkylene, phenylene, biphenylene, naphthylene,

Z is hydrogen, -COOR₉, -NH₂, -OR₉, hydroxyethyl, -CH₂-CH(O)-CH₂ or $\text{--}\overset{\text{O}}{\underset{\text{R}_9}{\text{C}}}=\text{CH}_2$;

R₉ is hydrogen or C₁-C₁₂alkyl;

R₁₀ has the same definition as **R₈**;

or lactones of formula III

R₁₁, R₁₂, R_{12a} and R₁₃ are each independently of one another hydrogen, C₁-C₂₅alkyl,

phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl or phenyl; and

G is OH, OCH₂CH₂OH, $-\text{CH}_2-\overset{\text{O}}{\text{CH}}-\text{CH}_2$ or $-\text{OCH}_2\text{COOH}$;

or sulfides of formula IV

R₁₅ is C₁-C₁₈alkyl, benzyl, phenyl or $\overset{\text{S}}{\underset{\parallel}{\text{P}}}-(\text{OR}_{17})_2$; and

R₁₆ is $-\text{CH}_2\text{CH}_2\text{OH}$, $-\text{CH}_2-\overset{\text{O}}{\text{CH}}-\text{CH}_2$, $-\text{CH}_2\text{COOH}$ or $-\text{CH}_2\text{CH}_2\text{COOH}$; and

R₁₇ is C₁-C₁₈alkyl or unsubstituted or C₁-C₄alkyl-substituted phenyl;

or phosphites of formula V

R_{16a} is $-\text{CH}_2\text{CH}_2\text{OH}$ or $-\text{CH}_2\text{CH}_2\text{COOH}$; and

R_{17a} is C₁-C₁₈alkyl or unsubstituted or C₁-C₄alkyl-substituted phenyl;

or benzotriazoles, benzophenones or 2,4,6-triaryl-1,3,5-triazines of formula VI, VIa, VIb or

VIc

R₁₈ is $-(\text{CH}_2)_t\text{-R}_{20}$, $-\text{O}-\text{CH}_2-\overset{\text{O}}{\text{CH}}-\text{CH}_2$ or NH₂;

R₁₉ is C₁-C₁₂alkyl, α,α-dimethylbenzyl or a radical ;

R₂₀ is -OH, -SH, -NHR₃₀, -SO₃H, -COOR₂₁, -CH=CH₂, -(CH₂)_m-CH(O)CH₂ or -(CO)-NH-(CH₂)_u-NCO;

R₂₁ is hydrogen, -CH₂-CH(O)CH₂ or -CH₂-CH(OH)-CH₂-O-(CO)-R₂₂;

R₂₂ is C₁-C₄alkyl or phenyl;

R₂₃ and R₂₄ are each independently of the other hydrogen or C₁-C₄alkyl;

R₂₅ is hydrogen, -(CH₂)_u-OH, -CH₂-CH(O)CH₂, -(CH₂)_uCOOH or -(CO)-NH-(CH₂)_u-NCO;

R₂₆ is hydrogen, OH or C₁-C₁₂alkoxy;

R₂₇ is hydrogen or OH;

R₂₈ is hydrogen or ;

R₂₉ is hydrogen or halogen;

R₃₀ is hydrogen or C₁-C₉alkyl;

m is 0 or 1;

t is a number from 0 to 6;

u is a number from 2 to 12;

with a compatibiliser compound.

17. Use of compounds according to claim 16 as stabilisers and at the same time as phase compatibilisers in plastics or plastic compositions.