Max Flow problem Max flow is determined by the "bottleneck"

Reverse a edge (flow)

 $f_r(v,u) = f(u,v)$

That is why we got a reverse flow

Figure 26.5 The execution of the basic Ford-Fulkerson algorithm. (a)–(d) Successive iterations of the while loop. The left side of each part shows the residual network G_f from line 4 with a shaded augmenting path p. The right side of each part shows the new flow f that results from adding f_p to f. The residual network in (a) is the input network G. (e) The residual network at the last while loop test. It has no augmenting paths, and the flow f shown in (d) is therefore a maximum flow.

Note: (b) Since we push a flow of 4 from $(S) \rightarrow (V_1)$, we can push 16-4=12 from $(S) \rightarrow (V_1)$ possibly. Also we can push 4 from $(V_1) \rightarrow (S_1)$ to cancel out 4 from $(S_2) \rightarrow (V_1)$ resulting in 0 capacity from $(V_1) \rightarrow (S_2)$ which is true.

HW4 Help understand cut #2 Side note: hal problem cuts Original graph w/ capacities The capacity of the following cuts capacity (from source set to sinkset) Cut ' 7+3 = 108+6=14 (Maximize the capacity across the cut, we don't have to use backward arc from (4) > (3) 3 2+8=10 6+2+8=16 (the same reason) 3+1+3+2=9 (we don't use by the backward arc 5 (5)→(D) more cuts cut 5 is the minimum/minimal cut

cut 5 is the minimum/minimal cut because the total capacity across the cut is the minimum among all possible cuts on the graph.