Notes

1 Conjugate Gradient Method

1.1 Overview

The conjugate gradient method (cgm) is an algorithm used to solve a linear system of the form

$$Ax = b (1)$$

Where A is a symmetric $(A^T = A)$ positive definite $(x^T Ax > 0)$ $n \times n$ matrix, x, b vectors.

The algorithm is iterative, starting from a guess solution x_0 and taking a step towards the solution at each cycle.

The search directions are calculated from the residual term, defined as $r_i = b - Ax_i$.

It is possible to prove that by choosing the step direction to be A-orthogonal to all the previous ones, the solution converges the fastest (i.e. the error term $||e_i|| = ||x_i - x||$ is minimized).

1.2 Steepest descent

A simpler algorithm is the steepest descent.

The idea is to take a step in the direction of the residual so that the quadratic form is minimized.

$$x_{i+1} = x_i + \alpha_i r_i \tag{2}$$

$$\alpha_i$$
 such that $\frac{df(x_{i+1})}{d\alpha_i} = 0 \implies \alpha_i = \frac{\|r_i\|}{\|r_i\|_A}$ (3)

This method is inefficient as x_i often finds itself oscillating around the solution, since the search directions explore non-disjoint subspaces.

1.3 The algorithm

A better alternative is to set the search direction to be A-orthogonal to the error at the next iteration. If this is the case, it can be proven that an exact solution be found after n iterations.

$$d_i^T A e_{i+1} = 0 \implies \frac{df(x_{i+1})}{d\alpha_i} = -r_{i+1}^T d_i = 0$$
 (4)

$$\alpha_i = \frac{r_i^T d_i}{\|d_i\|_A} \tag{5}$$

By definition, the residual is orthogonal to the previous search directions, we also have $r_i^T r_j = \delta_{ij}$. Since

$$r_{i+1} = -A(e_{i+1}) = -A(e_i + \alpha_i d_i) = r_i - \alpha_i A d_i$$
(6)

Finire

1.4 Preconditioning

The rate of convergance of cgm depends on the conditioning of the matrix A, defined as $\kappa(A) = \frac{\max \lambda_i}{\min \lambda_i}$, where λ_i are the eigenvalues of the matrix. The closer $\kappa(A)$ is to 1, the faster the convergence of the method.

Given a certain matrix M, symmetric, positive definite and easily invertible and such that $M^{-1}A$ has better conditioning than A, which is to say M well approximates A, we can hope to solve the problem

$$M^{-1}Ax = M^{-1}b (7)$$

much faster than the original problem, where the two solutions will be the same. The problem is that $M^{-1}A$ is not necessarily symmetric or positive definite. The fact that $\exists E$ such that $M = EE^T$ and $E^{-1}AE^{-T}$ is symmetric and positive definite, we can solve the problem.

$$E^{-1}AE^{-T}x = E^{-1}b (8)$$

By using some clever substitutions, we can go back to the original problem with the aid of the preconditioner, giving the following algorithm Finire

$\mathbf{2}$ Finding the smallest eigenvalue

Finding the smallest eigenvalue/eigenvector pair of a matrix amounts to evaluating the minimum of the Reyleigh quotient

$$\lambda(x) = \frac{x^T A x}{x^T x} \tag{9}$$

Or, more generally

$$Ax = B\omega x \implies \lambda(x) = \frac{x^T A x}{x^T B x}$$
 (10)

 λ is not a quadratic form, hence te cgm needs to be modified to use it.

2.1 Useful multivariable relations

Given $f(x) = x^T A x$ and taking the derivative of f in the direction of v

$$f(x + hv) = (x + hv)^{T} A(x + hv) = f(x) + hv^{T} Ax + hx^{T} Av + o(h)$$
 (11)

$$\frac{\mathrm{d}f}{\mathrm{d}v} = \lim_{h \to 0} \frac{f(x+hv) - f(x)}{h} = v^T A x + x^T A v = v^T A x + v^T A^T x \tag{12}$$

We can now evaluate the gradient of f in x

$$\nabla_x f(x) = \frac{\mathrm{d}f}{\mathrm{d}v} = (A + A^T)x \tag{13}$$

We can now take the gradient of the Rayleigh quotient

$$\nabla \lambda(x) = \frac{(A + A^T)xx^TBx - (B + B^T)xx^TAx}{(x^TBx)^2}$$
(14)

Using the fact that A and B are symemtric

$$\nabla \lambda(x) = 2 \frac{Axx^T Bx - Bxx^T Ax}{(x^T Bx)^2} = 2 \frac{Ax - \lambda(x)Bx}{x^T Bx}$$
 (15)

2.2 Non linear conjugate gradient