

- CPI_EUR and CPI_USA seems to be cointegrated.
- DPEUR and DPUSA seems rather stationary.

(b)

• ADF test for LOGPEUR shows that the coefficient , standard error and t-value of LOGPEUR_{t-1} is -0.1195, 0.049, and -2.455 respectively. Since -2.455>-3.5, we do not reject H_0 of non-stationarity and LOGPEUR is not stationary.

						=======
	coef	std err	t	P> t	[0.025	0.975]
const	0.5589	0.227	2.466	0.015	0.110	1.008
t	0.0002	8.62e-05	2.380	0.019	3.45e-05	0.000
lag1logpeur1	-0.1195	0.049	-2.455	0.016	-0.216	-0.023
lag1dpeur1	0.1343	0.092	1.465	0.146	-0.047	0.316
lag2dpeur1	-0.0410	0.091	-0.452	0.652	-0.221	0.139
lag3dpeur1	-0.1270	0.091	-1.392	0.166	-0.308	0.054

(b)

• ADF test for LOGPUSA shows that the coefficient , standard error and t-value of LOGPUSA_{t-1} is -0.0710, 0.030, and -2.403 respectively. Since -2.403>-3.5, we do not reject H_0 of non-stationarity and LOGPUSA is not stationary.

	coef	std err	t	P> t	[0.025	0.975]
const	0.3337	0.138	2.416	0.017	0.060	0.607
t	0.0001	6.37e-05	2.288	0.024	1.96e-05	0.000
lag1logpusa1	-0.0710	0.030	-2.403	0.018	-0.129	-0.013
lag1dpusa1	0.6077	0.089	6.863	0.000	0.432	0.783
lag2dpusa1	-0.1684	0.101	-1.668	0.098	-0.368	0.031
lag3dpusa1	0.0080	0.091	0.088	0.930	-0.172	0.188

• ACF and PACF results shown below motivate the use of the following AR model: DPEUR $t = \alpha + \beta 1$ DPEUR $t = 6 + \beta 2$ DPEUR $t = 12 + \epsilon t$.

(c)

• AR model is estimated as $DPEURt = 0.0004 + 0.1887DPEURt - 6 + 0.5980DPEURt - 12 + <math>\varepsilon t$.

	coef	std err	t	P> t	[0.025	0.975]
const	0.0004	0.000	1.365	0.175	-0.000	0.001
lag6dpeur1	0.1887	0.077	2.442	0.016	0.036	0.342
lag12dpeur1	0.5980	0.084	7.157	0.000	0.432	0.763

(d)

• After extending the AR model, the estimation shows that the t-value of DPUSA_{t-6} is -1.024>-2, so H_0 of insignificance is not rejected and DPUSA_{t-6} is not significant.

	coef	std err	t	P> t	[0.025	0.975]
const	0.0004	0.000	1.545	0.125	-0.000	0.001
lag6dpeur1	0.2030	0.079	2.584	0.011	0.047	0.359
lag12dpeur1	0.6367	0.087	7.279	0.000	0.463	0.810
lag1dpusa1	0.2264	0.051	4.429	0.000	0.125	0.328
lag6dpusa1	-0.0561	0.055	-1.024	0.308	-0.165	0.052
lag12dpusa1	-0.2300	0.054	-4.247	0.000	-0.337	-0.123

(d)

• ADL model is estimated as $DPEURt = 0.0003 + 0.1687DPEURt - 6 + 0.6552DPEURt - 12 + 0.2326DPUSAt - 1 - 0.2265DPUSAt - 12 + <math>\epsilon t$

	coef	std err	t	P> t	[0.025	0.975]
const	0.0003	0.000	1.267	0.208	-0.000	0.001
lag6dpeur1	0.1687	0.071	2.374	0.019	0.028	0.310
lag12dpeur1	0.6552	0.086	7.651	0.000	0.486	0.825
lag1dpusa1	0.2326	0.051	4.582	0.000	0.132	0.333
lag12dpusa1	-0.2265	0.054	-4.189	0.000	-0.334	-0.119

(e)

```
AR

RMSE 0.002321374221766279

MAE 0.0016953175

SUM 0.004871538

ADL

RMSE 0.0020801928971084225

MAE 0.00137636683333

SUM 0.000735182
```

- We can conclude that ADL model performs better than the AR model since its RMSE, MAE, and SUM are all lower than those of the AR model.
- Thus, inflation in the US has predictive power for inflation in the Euro area.