

=> file biosis caba caplus embase japio lifesci medline scisearch
=> s diagnos? and tuberculosis and (slide? or card?) and hydrophobic and
glycolipid? and liposome?

L1 0 DIAGNOS? AND TUBERCULOSIS AND (SLIDE? OR CARD?) AND HYDROPHOBIC
AND GLYCOLIPID? AND LIPOSOME?

=> s diagnos? and tuberculosis and (slide? or card? or strip?) and hydrophobic
and glycolipid? and liposome?

L2 0 DIAGNOS? AND TUBERCULOSIS AND (SLIDE? OR CARD? OR STRIP?) AND
HYDROPHOBIC AND GLYCOLIPID? AND LIPOSOME?

=> s diagnos? and tuberculosis and kit? and hydrophobic and glycolipid? and
liposome?

L3 0 DIAGNOS? AND TUBERCULOSIS AND KIT? AND HYDROPHOBIC AND GLYCOLIPI
D? AND LIPOSOME?

=> s diagnos? and tuberculosis and (kit? or card? or slide?)
L4 5215 5215 DIAGNOS? AND TUBERCULOSIS AND (KIT? OR CARD? OR SLIDE?)

=> s l4 and glycolipid?
L5 37 L4 AND GLYCOLIPID?

=> dup rem 15
PROCESSING COMPLETED FOR L5
L6 24 DUP REM L5 (13 DUPLICATES REMOVED)

=> d bib ab kwic 1-
YOU HAVE REQUESTED DATA FROM 24 ANSWERS - CONTINUE? Y/ (N):y

L6 ANSWER 1 OF 24 CAPLUS COPYRIGHT 2009 ACS on STN
AN 2009:487086 CAPLUS <>LOGINID::20090826>>
DN 150:465243
TI Methods and probes for detecting and differentiating between *Mycobacterium*
species using fluorescent *in situ* hybridization
IN Shah, Jyotsna S.; Weltman, Helena; Harris, Nick
PA ID Fish Technology, Inc., USA
SO PCT Int. Appl., 27pp.
CODEN: PIXXD2
DT Patent
LA English
FAN.CNT 3

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2009051776	A2	20090423	WO 2008-US11845	20081017
W: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW				
RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
US 20090130673	A1	20090521	US 2007-975306	20071018

PRAI US 2007-975306 A 20071018
US 2005-703329P P 20050728
US 2006-494430 A2 20060727

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB The present invention is based on the discovery of an improved method of allowing the probe to penetrate the cell wall of Mycobacteria including but not limited to M. ***tuberculosis*** complex (MTB Complex), M. avium complex (MAC) for directly detecting the presence of a target nucleic acid, protein, peptide, lipopeptide, glycopeptide, lipid, etc., in cells from culture or from specimens obtained from an individual (e.g., sputum, biopsies, CSF, paraffin embedded tissues) by fluorescent in situ hybridization. The invented method is particularly well suited for detecting nucleic acids specific to pathogens that which are found within sputum, whole blood, cerebrospinal fluid (CSF), other body fluids or infected tissues. More specifically, improvements of the traditional fixation/pretreatment methods are described that allow probes (e.g., oligonucleotide probes, PNA probes or antibodies and antibody fragments) to penetrate inside cells which may be located either inside or outside infected host cells. In addn., a procedure with a counterstain (e.g., DAPI, Evans Blue, potassium permanganate) after hybridization with a fluorescence labeled probe, for example, allows the organisms that retain the hybridized probes to be easily visualized in culture or clin. samples. The unique in situ hybridization pretreatment procedures, detection techniques and compns. of the present invention described herein allow the use of recombinant DNA, RNA or DNA and RNA oligonucleotides, PNA, peptide, glycoproteins (including antibodies and antibody fragments), lipids and ***glycolipid*** probes in cells, microorganisms or tissue sections and is compatible with microscopic examn. routinely performed in bacteriol., parasitol., histol. or pathol. labs.

AB . . . an improved method of allowing the probe to penetrate the cell wall of Mycobacteria including but not limited to M. ***tuberculosis*** complex (MTB Complex), M. avium complex (MAC) for directly detecting the presence of a target nucleic acid, protein, peptide, lipopeptide, . . . use of recombinant DNA, RNA or DNA and RNA oligonucleotides, PNA, peptide, glycoproteins (including antibodies and antibody fragments), lipids and ***glycolipid*** probes in cells, microorganisms or tissue sections and is compatible with microscopic examn. routinely performed in bacteriol., parasitol., histol. or. . .

ST differentiation Mycobacterium species ***diagnosis*** probe FISH
analysis

IT Amphibia

Animal tissue

Aves

Birds

Body fluid

Centrifugation

Fish

Human

Mammalia

Mycobacterium

Mycobacterium abscessus

Mycobacterium chelonae

Mycobacterium fortuitum

Mycobacterium gordonaee

Mycobacterium kansasii

Mycobacterium malmoense

Mycobacterium senegalense

Mycobacterium simiae
Mycobacterium ***tuberculosis***
Mycobacterium xenopi
Nucleic acid amplification
Reptilia
Sample preparation
Species differences
Sputum
(methods and probes for detecting and differentiating between
Mycobacterium species using fluorescent in situ hybridization)
IT ***Diagnosis***
(mol.; methods and probes for detecting and differentiating between
Mycobacterium species using fluorescent in situ hybridization)
IT Laboratory ware
(***slides*** ; methods and probes for detecting and differentiating
between Mycobacterium species using fluorescent in situ hybridization)
L6 ANSWER 2 OF 24 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights
reserved on STN DUPLICATE 1
AN 2007510106 EMBASE <<LOGINID::20090826>>
TI Rapid liposomal agglutination ***card*** test for the detection of
antigens in patients with active ***tuberculosis*** .
AU Tiwari, R.P.
CS Diagnostic Division, Nicholas Piramal India Limited, Pawane, Navi, Mumbai,
India.
AU Tiwari, R.P.; Garg, S.K.; Bisen, Prakash S. (correspondence)
CS Institute of Biotechnology and Allied Sciences, Seedling Academy of
Design, Technology and Management, Jagatpura, Jaipur, India. psbisen@gmail
.com
AU Garg, S.K.
CS Department of Biochemistry, University of Nebraska, Lincoln, NE, United
States.
AU Bharmal, R.N.; Kartikeyan, S.
CS Department of Microbiology, Preventive and Social Medicine, Rajiv Gandhi
Medical College, Kalwa, Thane, India.
AU Bisen, Prakash S. (correspondence)
CS Bisen Biotech and Biopharma Pvt. Ltd., M-7 Laxmipuram, Transport Nagar,
Gwalior 474009, India. psbisen@gmail.com
SO International Journal of Tuberculosis and Lung Disease, (Oct 2007) Vol.
11, No. 10, pp. 1143-1151.
Refs: 30
ISSN: 1027-3719 CODEN: IJTDF0
CY France
DT Journal; Article
FS 015 Chest Diseases, Thoracic Surgery and Tuberculosis
004 Microbiology: Bacteriology, Mycology, Parasitology and Virology
006 Internal Medicine
LA English
SL English; French; Spanish; Castilian
ED Entered STN: 30 Oct 2007
Last Updated on STN: 30 Oct 2007
AB SETTING: A total of 1360 subjects with clinically confirmed pulmonary and
extra-pulmonary ***tuberculosis*** (TB) and other non-tuberculous
conditions. OBJECTIVES: To develop a rapid, sensitive and specific
diagnostic test for the detection of the ***glycolipid***
antigen of Mycobacterium ***tuberculosis*** in a variety of clinical
samples. STUDY DESIGN: Affinity-purified rabbit anti- ***glycolipid***

antibodies (IgG) were coupled to liposome particles (0.2-0.4 .mu.m) in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinamide to prepare the working reagent of the TB/M

card test. RESULTS: Antibody-conjugated liposomes, when determined with the ***glycolipid*** antigens present in the specimens, formed a dark blue agglutination within 4 min. No dumping was observed in samples from normal healthy subjects or patients with other diseases. The test was shown to be effective in detecting

glycolipid antigens of M. ***tuberculosis*** in clinical samples from patients with active TB with as low as 1 ng/ml analytical sensitivity, 97.4% clinical sensitivity and 96.9% specificity.

CONCLUSION: The TB/M ***card*** test was found to be comparatively economical (4 Indian Rupees or US\$ 0.09/test), rapid (4 min) and seems fairly useful for mass testing of a variety of biological specimens (cerebrospinal, pleural and synovial fluids, serum, tissue biopsy extract) from patients with tuberculous meningitis, pulmonary TB and other extra-pulmonary TB in endemic countries. .COPYRGT. 2007 The Union.

TI Rapid liposomal agglutination ***card*** test for the detection of antigens in patients with active ***tuberculosis*** .

AB SETTING: A total of 1360 subjects with clinically confirmed pulmonary and extra-pulmonary ***tuberculosis*** (TB) and other non-tuberculous conditions. OBJECTIVES: To develop a rapid, sensitive and specific ***diagnostic*** test for the detection of the ***glycolipid*** antigen of *Mycobacterium* ***tuberculosis*** in a variety of clinical samples. STUDY DESIGN: Affinity-purified rabbit anti- ***glycolipid*** antibodies (IgG) were coupled to liposome particles (0.2-0.4 .mu.m) in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinamide to prepare the working reagent of the TB/M

card test. RESULTS: Antibody-conjugated liposomes, when determined with the ***glycolipid*** antigens present in the specimens, formed a dark blue agglutination within 4 min. No dumping was observed in samples from normal healthy subjects or patients with other diseases. The test was shown to be effective in detecting

glycolipid antigens of M. ***tuberculosis*** in clinical samples from patients with active TB with as low as 1 ng/ml analytical sensitivity, 97.4% clinical sensitivity and 96.9% specificity.

CONCLUSION: The TB/M ***card*** test was found to be comparatively economical (4 Indian Rupees or US\$ 0.09/test), rapid (4 min) and seems fairly useful. . . .

CT Medical Descriptors:

adolescent

adult

*agglutination test

*antigen detection

article

cerebrospinal fluid

controlled study

diagnostic test

extrapulmonary tuberculosis

human

lung tuberculosis

major clinical study

Mycobacterium tuberculosis

pleura fluid

priority journal

school child

sensitivity and specificity

synovial fluid
****tuberculosis***
tuberculous meningitis
1 (3 dimethylaminopropyl) 3 ethylcarbodiimide
amide
antibody conjugate
glycolipid
liposome
n hydroxysuccinamide
tissue extract

L6 ANSWER 3 OF 24 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN

AN 2007352782 EMBASE <>LOGINID::20090826>>

TI Current issues on molecular and immunological ***diagnosis*** of ****tuberculosis*** .

AU Cho, Sang-Nae, Dr. (correspondence)

CS Department of Microbiology, Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea, Republic of. raycho@yumc.yonsei.ac.kr

SO Yonsei Medical Journal, (Jun 2007) Vol. 48, No. 3, pp. 347-359.

Refs: 117

ISSN: 0513-5796 CODEN: YOMJA9

CY Korea, Republic of

DT Journal; General Review; (Review)

FS 015 Chest Diseases, Thoracic Surgery and Tuberculosis
026 Immunology, Serology and Transplantation
027 Biophysics, Bioengineering and Medical Instrumentation
037 Drug Literature Index
004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

LA English

SL English

ED Entered STN: 27 Aug 2007
Last Updated on STN: 27 Aug 2007

AB Laboratory ***diagnosis*** of ****tuberculosis*** (TB) traditionally relies on smear microscopy and culture of Mycobacterium ****tuberculosis*** from clinical samples. With recent advances in technology, there have been numerous efforts to develop new ***diagnostic*** tests for TB that overcome the low sensitivity and specificity and long turnover time associated with current ***diagnostic*** tests. Molecular biological tests based on nucleic acid amplification have brought an unprecedented opportunity for the rapid and specific detection of M. ****tuberculosis*** from clinical specimens. With automated sequencing analysis, species identification of mycobacteria is now easier and more accurate than with conventional methods, and rapid detection of mutations in the genes associated with resistance to TB drugs provides early information on the potential drug resistance for each clinical isolate or for clinical samples. In addition, immunological, tests for the detection of M. ****tuberculosis*** antigens and antibodies to the antigens have been explored to identify individuals at risk of developing TB or with latent TB infection (LTBI). The recent introduction of commercial IFN-.gamma. assay ***kits*** , for the detection of LTBI provides a new approach for TB control even in areas with a high incidence of TB. However, these molecular and immunological tools still require further evaluation using large scale cohort studies before implementation in TB control programs.

TI Current issues on molecular and immunological ***diagnosis*** of

tuberculosis .

AB Laboratory ***diagnosis*** of ***tuberculosis*** (TB) traditionally relies on smear microscopy and culture of *Mycobacterium* ***tuberculosis*** from clinical samples. With recent advances in technology, there have been numerous efforts to develop new ***diagnostic*** tests for TB that overcome the low sensitivity and specificity and long turnover time associated with current ***diagnostic*** tests. Molecular biological tests based on nucleic acid amplification have brought an unprecedented opportunity for the rapid and specific detection of *M.* ***tuberculosis*** from clinical specimens. With automated sequencing analysis, species identification of mycobacteria is now easier and more accurate than with conventional. . . potential drug resistance for each clinical isolate or for clinical samples. In addition, immunological, tests for the detection of *M.* ***tuberculosis*** antigens and antibodies to the antigens have been explored to identify individuals at risk of developing TB or with latent TB infection (LTBI). The recent introduction of commercial IFN-.gamma. assay ***kits*** , for the detection of LTBI provides a new approach for TB control even in areas with a high incidence of. . .

CT Medical Descriptors:

agglutination test
antibiotic resistance
antibody detection
antigen detection
bacterium identification
confounding variable
diagnostic kit
DNA extraction
DNA probe
enzyme linked immunosorbent assay
gene mutation
high performance liquid chromatography
high risk patient
human
infection control
molecular biology
molecular mechanics
****Mycobacterium* tuberculosis***
nonhuman
nucleic acid amplification
polymerase chain reaction
prevalence
review
risk factor
sensitivity and specificity
sequence analysis
serodiagnosis
tuberculin test
****tuberculosis: DI, diagnosis***
****tuberculosis: DR, drug resistance***
****tuberculosis: ET, etiology***
****tuberculosis: PC, prevention***
BCG vaccine
cord factor: EC, endogenous compound
ethambutol
gamma interferon
glycolipid: EC, endogenous compound

immunoglobulin G: EC, endogenous compound
immunoglobulin M: EC, endogenous compound
isoniazid
kanamycin
pyrazinamide
quinoline derived antiinfective agent
rifampicin
streptomycin

L6 ANSWER 4 OF 24 MEDLINE on STN
AN 2006400463 MEDLINE <>LOGINID::20090826>>
DN PubMed ID: 16817794
TI Evaluation of serological ***diagnosis*** tests for
tuberculosis in hemodialysis patients.
AU Yanai Mitsuru; Uehara Yuki; Takeuchi Makoto; Nagura Yuji; Hoshino Tadashi;
Hayashi Kuniki; Kumasaka Kazunari
CS Department of Laboratory Medicine, Nihon University School of Medicine,
Tokyo, Japan.. myanai@med.nihon-u.ac.jp
SO Therapeutic apheresis and dialysis : official peer-reviewed journal of the
International Society for Apheresis, the Japanese Society for Apheresis,
the Japanese Society for Dialysis Therapy, (2006 Jun) Vol. 10, No. 3, pp.
278-81.
Journal code: 101181252. ISSN: 1744-9979.
CY Australia
DT (CLINICAL TRIAL)
Journal; Article; (JOURNAL ARTICLE)
(MULTICENTER STUDY)
(RESEARCH SUPPORT, NON-U.S. GOV'T)
LA English
FS Priority Journals
EM 200611
ED Entered STN: 6 Jul 2006
Last Updated on STN: 19 Dec 2006
Entered Medline: 28 Nov 2006
AB Patients receiving hemodialysis are generally considered to be at
increased risk of developing ***tuberculosis***. In the current
study, in order to evaluate the usefulness of serological tests in
dialysis patients, serum antibodies for tuberculous ***glycolipids***
antigen (TBGL) and for lipoarabinomannan (LAM) were measured in
hemodialysis patients. The present study included 243 hemodialysis
patients. Serum antibodies for TBGL and LAM were measured. Tuberculin
skin tests were carried out and chest X-rays evaluated at the same time.
There were no patients with active ***tuberculosis*** at the time of
blood sampling. Thirty-six patients (14.8%) and 25 patients (10.3%) were
positive for anti-TBGL antibody and anti-LAM antibody, respectively. One
hundred and fifty-five patients (63.8%) were positive for tuberculin skin
testing and 123 patients (50.6%) had old pulmonary ***tuberculosis***
on their chest X-ray. There was no significant correlation between the
results of anti-TBGL antibody and anti-LAM antibody. There were no
relationships among the results of tuberculin skin test and the two
serological tests. However, positivity of anti-TBGL antibody and anti-LAM
antibody was significantly higher in patients with findings of old
tuberculosis on the chest X-ray than those without findings. The
current results show that these serological tests are positive more
frequently in hemodialysis patients without any proof of active
tuberculosis than in healthy subjects (2%) and careful
interpretation is necessary for relevant results.

TI Evaluation of serological ***diagnosis*** tests for ***tuberculosis*** in hemodialysis patients.

AB Patients receiving hemodialysis are generally considered to be at increased risk of developing ***tuberculosis***. In the current study, in order to evaluate the usefulness of serological tests in dialysis patients, serum antibodies for tuberculous ***glycolipids*** antigen (TBGL) and for lipoarabinomannan (LAM) were measured in hemodialysis patients. The present study included 243 hemodialysis patients. Serum antibodies. . . Tuberculin skin tests were carried out and chest X-rays evaluated at the same time. There were no patients with active ***tuberculosis*** at the time of blood sampling. Thirty-six patients (14.8%) and 25 patients (10.3%) were positive for anti-TBGL antibody and anti-LAM. . . respectively. One hundred and fifty-five patients (63.8%) were positive for tuberculin skin testing and 123 patients (50.6%) had old pulmonary ***tuberculosis*** on their chest X-ray. There was no significant correlation between the results of anti-TBGL antibody and anti-LAM antibody. There were. . . two serological tests. However, positivity of anti-TBGL antibody and anti-LAM antibody was significantly higher in patients with findings of old ***tuberculosis*** on the chest X-ray than those without findings. The current results show that these serological tests are positive more frequently in hemodialysis patients without any proof of active ***tuberculosis*** than in healthy subjects (2%) and careful interpretation is necessary for relevant results.

CT . . .

Evaluation Studies as Topic

False Positive Reactions

Humans

Kidney Failure, Chronic: CO, complications

*Kidney Failure, Chronic: MI, microbiology

Middle Aged

****Reagent Kits, Diagnostic: MI, microbiology***

*Renal Dialysis

Sensitivity and Specificity

*Serologic Tests: MT, methods

Tuberculin Test

****Tuberculosis: DI, diagnosis***

CN 0 (Antigens, Bacterial); 0 (Reagent ***Kits*** , ***Diagnostic***)

L6 ANSWER 5 OF 24 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN DUPLICATE 2

AN 2005211276 EMBASE <<LOGINID::20090826>>

TI Clinical application of testing methods on acid-fast bacteria.

AU Ichiyama, Satoshi (correspondence)

CS Dept. of Clin. Laboratory Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan.
sichiyam@kuhp.kyoto-u.ac.jp

AU Suzuki, Katsuhiro

CS National Hospital Organization, Kinki-Chuo Chest Medical Center.

SO Kekkaku, (Feb 2005) Vol. 80, No. 2, pp. 95-111.

ISSN: 0022-9776 CODEN: KEKKAG

CY Japan

DT Journal; Conference Article; (Conference paper)

FS 015 Chest Diseases, Thoracic Surgery and Tuberculosis

017 Public Health, Social Medicine and Epidemiology

037 Drug Literature Index

004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

LA Japanese
SL English
ED Entered STN: 26 May 2005
Last Updated on STN: 26 May 2005
AB Clinical bacteriology pertaining to acid-fast bacteria has made marked advances over the past decade, initiated by the development of a DNA probe ***kit*** for identification of acid-fast bacteria. Wide-spread use of nucleic acid amplification for rapid detection of tubercle bacillus contributed more greatly than any other factor to such advances in this field. At present, 90% of all ***kits*** used for nucleic acid amplification in the world are consumed in Japan. Unfortunately, not a few clinicians in Japan have a false idea that the smear method and nucleic acid amplification are necessary but culture is not. In any event nucleic acid amplification has exerted significant impacts on the routine works at bacteriology laboratories. Among others, collecting bacteria by pretreatment with NALC-NaOH has simplified the introduction of the collective mode smear method and liquid media. Furthermore, as clinicians have become increasingly more experienced with various methods of molecular biology, it now seems possible to apply these techniques for detection of genes encoding drug resistance and for utilization of molecular epidemiology in routine laboratory works. Meanwhile, attempts to ***diagnose*** acid-fast bacteriosis by checking blood for antibody have also been made, primarily in Japan. At present, two ***kits*** for detecting antibodies to ***glycolipids*** (LAM, TDM, etc.) are covered by national health insurance in Japan. We have an impression that in Japan clinicians do not have adequate knowledge and skill to make full use of these new testing methods clinically. We, as the chairmen of this symposium, hope that this symposium will help clinicians increase their skill related to new testing methods, eventually leading to stimulation of advances in clinical practices related to acid-fast bacteria in Japan. 1. Smear microscopy by concentration method and broth culture system:
Kazunari TSUYUGUCHI (Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center) Smear microscopy and culture still remain the cornerstone to ***diagnose*** ***tuberculosis***. However, the classical methods in Japan using direct microscopy and Ogawa solid media were not sufficient for clinical use. In recent years substantial advance has been made in these fields. Concentration of clinical samples by centrifugation improves the sensitivity of smear microscopy with excellent reproducibility. The Mycobacteria Growth Indicator Tube (MGIT) system using liquid media yields high sensitivity and rapidity. Using these methods, more and more ***tuberculosis*** cases would be correctly ***diagnosed*** and treated adequately based on drug susceptibility testing. 2. New technologies for anti- ***tuberculosis*** drug susceptibility testing : Satoshi MITARAI (Bacteriology Division, Reference Centre for Mycobacterium, Research Institute of ***Tuberculosis***, Japan Anti- ***Tuberculosis*** Association) Several new technologies have been developed to obtain anti- ***tuberculosis*** drug susceptibility testing (AST) results rapidly, utilising liquid culture and molecular technologies. Mycobacterium Growth Indicator Tube (MGIT), as a popular liquid culturing and AST system, was evaluated for its accuracy and usefulness. As for isoniazid, MGIT showed 12.6% of discordant result comparing with standard method. These MGIT resistant and Ogawa susceptible strains had relatively high MICs ranging 0.13 to 2.0 .mu. g/m/. The molecular detection of resistant gene mutation is also a useful method to estimate drug resistance rapidly. The rpoB mutation detection is reliable with high sensitivity and specificity. 3. Nucleic acid amplification and novel ***diagnostic*** methods: Shunji

TAKAKURA (Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine) Sensitivities of nucleic acid amplification tests (NAATs) for the ***diagnosis*** of ***tuberculosis*** meet clinical requirement that patients with high-risk of transmission should be identified within a day. Comparison of the performance of various NAATs is difficult because of the difference in sample processing and in samples tested among methods and reports. Considering the limitations of NAATs (low sensitivity compared with culture, inability to differentiate dead bacilli from the living), further advances would be expected when novel technologies could confer additional information, such as drug susceptibility, quantity, viability, and genotype. 4. Serodiagnosis of *Mycobacterium avium* complex lung disease : Seigo ***KITADA*** (Department of Internal Medicine, National Hospital Organization Toneyama National Hospital) *Mycobacterium avium* complex (MAC) organisms are ubiquitous in environment and a contamination in respiratory tracts is sometimes observed, and that complex the ***diagnosis***. We developed a serodiagnostic method for MAC disease using an enzyme immunoassay with the MAC-specific glycopeptidolipid (GPL) core as antigen. A significant increase in GPL core antibodies was detected in sera of patients with MAC pulmonary diseases compared to patients who were colonized with MAC, patients with *M. kansasii* disease and ***tuberculosis*** and healthy subjects. The serodiagnosis is useful for ***diagnosis*** of MAC lung disease. 5. Molecular epidemiologic tools for ***tuberculosis*** : IS6110 RFLP, Spoligotyping, and VNTR: Tomoshige MATSUMOTO, Hiromi ANO, Tetsuya TAKASHIMA, Izuo TSUYUGUCHI (Osaka Prefectural Medical Center for Respiratory and Allergic Diseases) We have performed molecular typing on about 1,300 culture positive clinical isolates that made up the majority of ***tuberculosis*** strains in part of southeast Osaka since 2001 until now. By spoligotyping, about 75% of entire strains belonged to the Beijing strain. Particular spoligotyping descriptions, which were not described in SpolDBIII, were found in the strains with lower than 6 copies of IS6110 RFLP. We described them as Osaka type. We could also show that direct typing from Tb PCR positive sputum of patients with ***tuberculosis*** was possible by VNTR and that VNTR with 16 loci was useful in ***tuberculosis*** typing in Osaka.

AB . . . pertaining to acid-fast bacteria has made marked advances over the past decade, initiated by the development of a DNA probe ***kit*** for identification of acid-fast bacteria. Wide-spread use of nucleic acid amplification for rapid detection of tubercle bacillus contributed more greatly than any other factor to such advances in this field. At present, 90% of all ***kits*** used for nucleic acid amplification in the world are consumed in Japan. Unfortunately, not a few clinicians in Japan have . . . for detection of genes encoding drug resistance and for utilization of molecular epidemiology in routine laboratory works. Meanwhile, attempts to ***diagnose*** acid-fast bacteriosis by checking blood for antibody have also been made, primarily in Japan. At present, two ***kits*** for detecting antibodies to ***glycolipids*** (LAM, TDM, etc.) are covered by national health insurance in Japan. We have an impression that in Japan clinicians do. . . TSUYUGUCHI (Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center) Smear microscopy and culture still remain the cornerstone to ***diagnose*** ***tuberculosis***. However, the classical methods in Japan using direct microscopy and Ogawa solid media were not sufficient for clinical use. In. . . *Mycobacteria* Growth Indicator Tube (MGIT) system using liquid media yields high sensitivity and rapidity. Using these methods, more and more ***tuberculosis*** cases would be

correctly ***diagnosed*** and treated adequately based on drug susceptibility testing. 2. New technologies for anti- ***tuberculosis*** drug susceptibility testing : Satoshi MITARAI (Bacteriology Division, Reference Centre for Mycobacterium, Research Institute of ***Tuberculosis***, Japan Anti- ***Tuberculosis*** Association) Several new technologies have been developed to obtain anti- ***tuberculosis*** drug susceptibility testing (AST) results rapidly, utilising liquid culture and molecular technologies. Mycobacterium Growth Indicator Tube (MGIT), as a popular. . . drug resistance rapidly. The rpoB mutation detection is reliable with high sensitivity and specificity. 3. Nucleic acid amplification and novel ***diagnostic*** methods: Shunji TAKAKURA (Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine) Sensitivities of nucleic acid amplification tests (NAATs) for the ***diagnosis*** of ***tuberculosis*** meet clinical requirement that patients with high-risk of transmission should be identified within a day. Comparison of the performance of. . . additional information, such as drug susceptibility, quantity, viability, and genotype. 4. Serodiagnosis of Mycobacterium avium complex lung disease : Seigo ***KITADA*** (Department of Internal Medicine, National Hospital Organization Toneyama National Hospital) Mycobacterium avium complex (MAC) organisms are ubiquitous in environment and a contamination in respiratory tracts is sometimes observed, and that complex the ***diagnosis***. We developed a serodiagnostic method for MAC disease using an enzyme immunoassay with the MAC-specific glycopeptidolipid (GPL) core as antigen. . . of patients with MAC pulmonary diseases compared to patients who were colonized with MAC, patients with M. kansasii disease and ***tuberculosis*** and healthy subjects. The serodiagnosis is useful for ***diagnosis*** of MAC lung disease. 5. Molecular epidemiologic tools for ***tuberculosis*** : IS6110 RFLP, Spoligotyping, and VNTR: Tomoshige MATSUMOTO, Hiromi ANO, Tetsuya TAKASHIMA, Izuo TSUYUGUCHI (Osaka Prefectural Medical Center for Respiratory and. . . Allergic Diseases) We have performed molecular typing on about 1,300 culture positive clinical isolates that made up the majority of ***tuberculosis*** strains in part of southeast Osaka since 2001 until now. By spoligotyping, about 75% of entire strains belonged to the. . . described them as Osaka type. We could also show that direct typing from Tb PCR positive sputum of patients with ***tuberculosis*** was possible by VNTR and that VNTR with 16 loci was useful in ***tuberculosis*** typing in Osaka.

CT Medical Descriptors:

acid fast bacterium
bacterial gene
bacteriology
bacterium culture
bacterium detection
bacterium isolate
clinical practice
conference paper
DNA probe
drug sensitivity
enzyme immunoassay
gene mutation
genotype
human
intermethod comparison
****lung disease: DI, diagnosis***

*lung disease: ET, etiology
 molecular biology
 molecular typing
 Mycobacterium avium
 Mycobacterium kansasii
 national health insurance
 nonhuman
 nucleic acid amplification
 respiratory system
 sensitivity analysis
 sensitivity and specificity
 serodiagnosis
 smear
 ****tuberculosis: DI, diagnosis***
 ****tuberculosis: ET, etiology***
 glycolipid
 isoniazid

L6 ANSWER 6 OF 24 CAPLUS COPYRIGHT 2009 ACS on STN
 AN 2004:18071 CAPLUS <<LOGINID::20090826>>

DN 140:73585

TI Reagents and method for ***diagnosis*** of active ***tuberculosis***
 or active acid-fast bacterial diseases, and test tools and ***kits***
 using the reagents

IN Yano, Ikuya; Sato, Yukihiro; Otsuka, Katsuji; Fujita, Yukiko; Doi, Takeshi
 PA Japan BCG Laboratory, Japan; Nippon Koketsu Kanso Kenkyusho K. K.

SO Jpn. Kokai Tokkyo Koho, 20 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2004003912	A	20040108	JP 2002-178220	20020619
	JP 3675778	B2	20050727		
PRAI	JP 2002-106297	A	20020409		

AB The reagents are ***kits*** contg. (1) a toxic ***glycolipid***
 (trehalose d6,6'-dimycolate) sepd. and purified from Mycobacterium bovis
 BCG Tokyo strain, (2) a ***glycolipid*** (trehalose 6-monomycolate)
 sepd. and purified from M. bovis BCG Tokyo strain, (3) a
 glycolipid (trehalose 6-monomycolate) sepd. and purified from M.
 avium complex (MAC), (4) a glycerophospholipid (phosphatidylinositol
 mannose) sepd. and purified from human-type M. ***tuberculosis***,
 and (5) a glycopeptide core prepd. by removal of serotype-specific sugar
 chains from a MAC-specific glycopeptide from MAC, sep. as antigens.
 Reactivity of these antigens towards the serum of patients with active
 tuberculosis was tested by ELISA.

TI Reagents and method for ***diagnosis*** of active ***tuberculosis***
 or active acid-fast bacterial diseases, and test tools and ***kits***
 using the reagents

AB The reagents are ***kits*** contg. (1) a toxic ***glycolipid***
 (trehalose d6,6'-dimycolate) sepd. and purified from Mycobacterium bovis
 BCG Tokyo strain, (2) a ***glycolipid*** (trehalose 6-monomycolate)
 sepd. and purified from M. bovis BCG Tokyo strain, (3) a
 glycolipid (trehalose 6-monomycolate) sepd. and purified from M.
 avium complex (MAC), (4) a glycerophospholipid (phosphatidylinositol
 mannose) sepd. and purified from human-type M. ***tuberculosis***,

and (5) a glycopeptide core prepd. by removal of serotype-specific sugar chains from a MAC-specific glycopeptide from MAC, sep. as antigens. Reactivity of these antigens towards the serum of patients with active ***tuberculosis*** was tested by ELISA.

ST ***diagnosis*** reagent antigen ***glycolipid***
glycerophospholipid ***tuberculosis*** ; glycopeptide
glycolipid acid fast bacteria ***diagnosis*** ; ELISA
tuberculosis ***diagnosis*** antigen Mycobacterium
glycolipid

IT Antibodies and Immunoglobulins
RL: ARG (Analytical reagent use); DGN (Diagnostic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(IgG, conjugates with peroxidase; reagents and method for
diagnosis of active ***tuberculosis*** or active acid-fast
bacterial diseases, and test tools and ***kits*** using reagents)

IT Eubacteria
(acid-fast; reagents and method for ***diagnosis*** of active
tuberculosis or active acid-fast bacterial diseases, and test
tools and ***kits*** using reagents)

IT Immunoassay
(enzyme-linked immunosorbent assay; reagents and method for
diagnosis of active ***tuberculosis*** or active acid-fast
bacterial diseases, and test tools and ***kits*** using reagents)

IT ***Diagnosis***
(immunodiagnosis; reagents and method for ***diagnosis*** of active
tuberculosis or active acid-fast bacterial diseases, and test
tools and ***kits*** using reagents)

IT Phosphatidylinositols
RL: ARG (Analytical reagent use); DGN (Diagnostic use); PUR (Purification
or recovery); ANST (Analytical study); BIOL (Biological study); PREP
(Preparation); USES (Uses)
(mannosides; reagents and method for ***diagnosis*** of active
tuberculosis or active acid-fast bacterial diseases, and test
tools and ***kits*** using reagents)

IT Blood analysis
Human
Mycobacterium avium
Mycobacterium bovis
Mycobacterium ***tuberculosis***
Test ***kits***
Tuberculosis
(reagents and method for ***diagnosis*** of active
tuberculosis or active acid-fast bacterial diseases, and test
tools and ***kits*** using reagents)

IT Antigens
Glycopeptides
RL: ARG (Analytical reagent use); DGN (Diagnostic use); PUR (Purification
or recovery); ANST (Analytical study); BIOL (Biological study); PREP
(Preparation); USES (Uses)
(reagents and method for ***diagnosis*** of active
tuberculosis or active acid-fast bacterial diseases, and test
tools and ***kits*** using reagents)

IT 7722-84-1, Hydrogen peroxide, biological studies 9003-99-0D, Peroxidase,
IgG conjugates 54827-17-7, 3,3',5,5'-Tetramethylbenzidine
RL: ARG (Analytical reagent use); DGN (Diagnostic use); ANST (Analytical
study); BIOL (Biological study); USES (Uses)
(reagents and method for ***diagnosis*** of active

tuberculosis or active acid-fast bacterial diseases, and test tools and ***kits*** using reagents)

IT 99-20-7DP, Trehalose, mycolic acid derivs. 3458-28-4DP, Mannose, phosphatidylinositol derivs. 61512-20-7P, Cord factor 139722-77-3DP, acyl derivs. 149471-31-8DP, mycolic acid derivs.
RL: ARG (Analytical reagent use); DGN (Diagnostic use); PUR (Purification or recovery); ANST (Analytical study); BIOL (Biological study); PREP (Preparation); USES (Uses)
(reagents and method for ***diagnosis*** of active ***tuberculosis*** or active acid-fast bacterial diseases, and test tools and ***kits*** using reagents)

L6 ANSWER 7 OF 24 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN

AN 2004121311 EMBASE <<LOGINID::20090826>>

TI Rapid Serodiagnosis of Active Pulmonary Mycobacterium ***tuberculosis*** by Analysis of Results from Multiple Antigen-Specific Tests.

AU Okuda, Yoshinari; Maekura, Ryoji (correspondence); Hirotani, Atsushi; Kitada, Seigo; Yoshimura, Kenji; Hiraga, Touru; Yamamoto, Yuoko; Itou, Masami; Ogura, Takeshi

CS Toneyama National Hospital, 5-1-1 Toneyama, Toyonaka City, Osaka 560-0045, Japan. maekurar@toneyama.hosp.go.jp

AU Ogihara, Toshio

CS Department of Geriatric Medicine, Osaka Univ. Grad. School of Medicine, Osaka, Japan.

SO Journal of Clinical Microbiology, (Mar 2004) Vol. 42, No. 3, pp. 1136-1141.

Refs: 21

ISSN: 0095-1137 CODEN: JCMIDW

CY United States

DT Journal; Article

FS 015 Chest Diseases, Thoracic Surgery and Tuberculosis
026 Immunology, Serology and Transplantation
027 Biophysics, Bioengineering and Medical Instrumentation
004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

LA English

SL English

ED Entered STN: 12 Apr 2004

Last Updated on STN: 12 Apr 2004

AB We have prospectively analyzed three antigens for serodiagnosis of ***tuberculosis*** (TB). These antigens were tuberculous ***glycolipid*** antigen, lipoarabinomannan polysaccharide antigen, and antigen 60 (A60), which was derived from purified protein derivatives. Of the 131 patients with active pulmonary TB, 57 were both smear and culture negative and 14 had chronic active pulmonary TB that remained smear positive for > 12 months of chemotherapy. One hundred twenty healthy adults were controls. The percentages of patients positive in all three tests were 58.8% for smear-positive active pulmonary TB and 71.4% for chronic active pulmonary TB. When the results of the three serodiagnostic tests were evaluated in combination, the sensitivity increased to 91.5% in patients with active pulmonary TB and to 86.0% in smear- and culture-negative patients. The false-positive rate of the three-test combination was 12.5% in the healthy control groups. In conclusion, it was not possible to detect all of the antibodies against antigenic substances in the cell walls of the tuberculous bacilli in the sera of all TB patients by using available serodiagnostic tests. However, the combined use of tests with three separate antigens maximizes the

effectiveness of serodiagnosis.

TI Rapid Serodiagnosis of Active Pulmonary Mycobacterium ***tuberculosis*** by Analysis of Results from Multiple Antigen-Specific Tests.

AB We have prospectively analyzed three antigens for serodiagnosis of ***tuberculosis*** (TB). These antigens were tuberculous ***glycolipid*** antigen, lipoarabinomannan polysaccharide antigen, and antigen 60 (A60), which was derived from purified protein derivatives. Of the 131 patients with. . .

CT Medical Descriptors:

adult

aged

analytical equipment

antibody detection

antigen specificity

article

bacterial cell wall

controlled study

enzyme linked immunosorbent assay

female

human

****lung tuberculosis: DI, diagnosis***

major clinical study

male

****Mycobacterium tuberculosis***

nonhuman

priority journal

sensitivity and specificity

*serodiagnosis

sputum culture

sputum smear

antibody: EC, endogenous compound

antigen

antigen 60

glycolipid

lipoarabinomannan

polysaccharide

tuberculin

unclassified drug

NP ***(1) Anda-TB kit*** ; ***(2) Determiner TBGL kit*** ; ***(3)***
*** MycoDot kit***

L6 ANSWER 8 OF 24 CAPLUS COPYRIGHT 2009 ACS on STN
AN 2004:719038 CAPLUS <>LOGINID::20090826>>
DN 142:314789

TI Usefulness of the antiacid bacteria antibody (TBGL.cntdot.LAM) measurement in the blood of the active ***tuberculosis*** case: comparison with the sputum inspection law results and concomitant use effects of both antibodies

AU Okuda, Isao; Obara, Chiaki; Sakamoto, Osamu; Tanaka, Tsukasa; Hasegawa, Tatsurou; Midorikawa, Kiyo; Watanabe, Katsumi; Ohtawa, Shuichi; Tezuka, Shunsuke

CS Dep. of Clinical Laboratory, Kohnodai Hospital, National Center of Neurology and Psychiatry, Ichihara, Chiba, 272-8516, Japan

SO Rinsho Kensa (2004), 48(5), 587-591
CODEN: RNKNAT; ISSN: 0485-1420

PB Igaku Shoin Ltd.

DT Journal

LA Japanese

AB Here, the authors assessed the usefulness of anti-tuberculous ***glycolipid*** (TBGL) and lipoarabinomannan (LAM) antibody assay ***kits*** for ***diagnosis*** of active ***tuberculosis*** . The assay system to detect both anti-TBGL and -LAM antibodies was rapid and specific and useful for ***diagnosis*** of pulmonary ***tuberculosis*** , even with patients with smear-neg. and culture neg. ***tuberculosis*** .

TI Usefulness of the antiacid bacteria antibody (TBGL.cndot.LAM) measurement in the blood of the active ***tuberculosis*** case: comparison with the sputum inspection law results and concomitant use effects of both antibodies

AB Here, the authors assessed the usefulness of anti-tuberculous ***glycolipid*** (TBGL) and lipoarabinomannan (LAM) antibody assay ***kits*** for ***diagnosis*** of active ***tuberculosis*** . The assay system to detect both anti-TBGL and -LAM antibodies was rapid and specific and useful for ***diagnosis*** of pulmonary ***tuberculosis*** , even with patients with smear-neg. and culture neg. ***tuberculosis*** .

ST tuberculous ***glycolipid*** lipoarabinomannan antibody ***tuberculosis*** ***diagnosis***

IT ***Glycolipids***

RL: BSU (Biological study, unclassified); BIOL (Biological study) (TBGL (tuberculous ***glycolipid***); anti-tuberculous ***glycolipid*** and lipoarabinomannan antibody assay ***kit*** for ***diagnosis*** of active ***tuberculosis***)

IT Blood analysis

Human

Test ***kits*** ***Tuberculosis*** (anti-tuberculous ***glycolipid*** and lipoarabinomannan antibody assay ***kit*** for ***diagnosis*** of active ***tuberculosis***)

IT Antibodies and Immunoglobulins

RL: ANT (Analyte); ANST (Analytical study) (anti-tuberculous ***glycolipid*** and lipoarabinomannan antibody assay ***kit*** for ***diagnosis*** of active ***tuberculosis***)

IT Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study) (lipoarabinomannans; anti-tuberculous ***glycolipid*** and lipoarabinomannan antibody assay ***kit*** for ***diagnosis*** of active ***tuberculosis***)

IT ***Diagnosis*** (serodiagnosis; anti-tuberculous ***glycolipid*** and lipoarabinomannan antibody assay ***kit*** for ***diagnosis*** of active ***tuberculosis***)

L6 ANSWER 9 OF 24 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN

AN 2003484869 EMBASE <>LOGINID::20090826>>

TI Evaluation of ***Tuberculosis*** Activity in Patients with Anthracofibrosis by Use of Serum Levels of IL-2 sR.alpha., IFN-.gamma. and TBGL (Tuberculous ***Glycolipid***) Antibody.

AU Jeong, Do Young; Lee, Byoung Jun; Jung, Hye Ryung; Lee, Sang Hun; Shin, Jong Wook; Kim, Jae-Yeol; Park, In Won; Choi, Byoung Whui, Dr. (correspondence)

CS Department of Internal Medicine, Chung-Ang Univ. College of Medicine, Seoul, Korea, Republic of. bwchoimd@nownuri.net

AU Cha, Young Joo

CS Dept. of Diagnostic Med. Examination, Chung-Ang Univ. College of Medicine, Seoul, Korea, Republic of.

AU Choi, Byoung Whui, Dr. (correspondence)

CS Department of Internal Medicine, Chung-Ang University Hospital, 65, Hankang-ro 3ka, Yongsan-ku, Seoul, 140-757, Korea, Republic of. bwchoimd@nownuri.net

SO Tuberculosis and Respiratory Diseases, (Sep 2003) Vol. 55, No. 3, pp. 250-256.

Refs: 10

ISSN: 0378-0066 CODEN: KHCHAM

CY Korea, Republic of

DT Journal; Article

FS 015 Chest Diseases, Thoracic Surgery and Tuberculosis
017 Public Health, Social Medicine and Epidemiology
005 General Pathology and Pathological Anatomy

LA Korean

SL English; Korean

ED Entered STN: 30 Dec 2003

Last Updated on STN: 30 Dec 2003

AB Background: Anthracofibrosis, a descriptive term for multiple black pigmentation with fibrosis on bronchoscopic examination, has a close relationship with active ***tuberculosis*** (TB). However, TB activity is determined in the later stage by the TB culture results in some cases of anthracofibrosis. Therefore, it is necessary to identify early markers of TB activity in anthracofibrosis. There have been several reports investigating the serum levels of IL-2 sR.alpha., IFN-.gamma. and TBGL antibody for the evaluation of TB activity. In the present study, we tried to measure the above mentioned serologic markers for the evaluation of TB activity in patients with anthracofibrosis. Methods: Anthracofibrosis was defined when there was deep pigmentation (in more than two lobar bronchi) and fibrotic stenosis of the bronchi on bronchoscopic examination. The serum of patients with anthracofibrosis was collected and stored under refrigeration before the start of anti-TB medication. The serum of healthy volunteers (N=16), patients with active TB prior to (N=22), and after (N=13), 6 month-medication was also collected and stored. Serum IL-2 sR.alpha. and IFN-.gamma. were measured with ELISA ***kit*** (R&D system, USA) and serum TBGL antibody was measured with TBGL EIA ***kit*** (Kyowa Inc, Japan). Results: Serum levels of IL-2 sRa in healthy volunteers, active TB patients before and after medication, and patients with anthracofibrosis were 640.+-174, 1,611.+-2,423, 953+-562, and 863.+-401 pg/ml, respectively. The serum IFN-.gamma. levels were 0, 8.16.+-17.34, 0.70.+-2.53, and 2.33.+-6.67 pg/ml, and TBGL antibody levels were 0.83.+-0.80, 5.91.+-6.71, 6.86.+-6.85, and 3.22.+-2.59 U/ml, respectively. The serum level of TBGL antibody was lower than that of other groups ($p<0.05$). There was no significant difference of serum IL-2 sRa and IFN-.gamma. levels among the four groups. Conclusion: The serum levels of IL-2 sR.alpha., IFN-.gamma. and TBGL antibody were not useful in the evaluation of TB activity in patients with anthracofibrosis. More useful ways need to be developed for the differentiation of active TB in patients with anthracofibrosis.

TI Evaluation of ***Tuberculosis*** Activity in Patients with Anthracofibrosis by Use of Serum Levels of IL-2 sR.alpha., IFN-.gamma. and TBGL (Tuberculous ***Glycolipid***) Antibody.

AB . . . Background: Anthracofibrosis, a descriptive term for multiple

black pigmentation with fibrosis on bronchoscopic examination, has a close relationship with active ***tuberculosis*** (TB). However, TB activity is determined in the later stage by the TB culture results in some cases of anthracofibrosis.. . . (N=22), and after (N=13), 6 month-medication was also collected and stored. Serum IL-2 sR.alpha. and IFN-.gamma. were measured with ELISA ***kit*** (R&D system, USA) and serum TBGL antibody was measured with TBGL EIA ***kit*** (Kyowa Inc, Japan). Results: Serum levels of IL-2 sRa in healthy volunteers, active TB patients before and after medication, and. . .

CT Medical Descriptors:

adult
aged
****anthracofibrosis: DI, diagnosis***
*anthracofibrosis: EP, epidemiology
*anthracofibrosis: ET, etiology
article
bronchoscopy
bronchus
clinical article
controlled study
evaluation
female
****fibrosis: DI, diagnosis***
*fibrosis: EP, epidemiology
*fibrosis: ET, etiology
human
male
pigmentation
serology
tuberculosis
gamma interferon: EC, endogenous compound
interleukin 2: EC, endogenous compound

L6 ANSWER 10 OF 24 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN
AN 2003376790 EMBASE <>LOGINID::20090826>>
TI ***Diagnosis*** of ***tuberculosis*** : Available technologies, limitations, and possibilities.
AU Garg, Sanjay K.; Tiwari, R.P.; Tiwari, Dileep; Bisen, Prakash S., Prof. (correspondence)
CS Department of Biotechnology, Madhav Inst. of Technol. and Science, Gwalior, India. prakash.bisen@hotmail.com
AU Singh, Rupinder
CS Department of Biotechnology, Panjab University, Chandigarh, India.
AU Malhotra, Dolly
CS Department of Botany, Motilal Vigyan Mahavidyalaya, Bhopal, India.
AU Ramnani, V.K.
CS Dept. of Microbiology and Immunology, Gandhi Medical College, Bhopal, India.
AU Prasad, G.B.K.S.
CS School of Studies in Biochemistry, Jiwaji University, Gwalior, India.
AU Chandra, Ramesh
CS Department of Biotechnology, JC Bose Institute of Life Sciences, Bundelkhand University, Jhansi, India.
AU Garg, Sanjay K.; Fraziano, M.; Colizzi, V.
CS Department of Biology, University of Rome Tor-Vergata, Rome, Italy.
AU Colizzi, V.

CS International Center for Aids, IRCCS, L. Spallanzani Institute, Rome, Italy.
AU Bisen, Prakash S., Prof. (correspondence)
CS Madhav Inst. of Technol. and Science, Gwalior, M.P. 474005, India.
prakash.bisen@hotmail.com
SO Journal of Clinical Laboratory Analysis, (2003) Vol. 17, No. 5, pp. 155-163.
Refs: 59
ISSN: 0887-8013 CODEN: JCANEM
CY United States
DT Journal; Article
FS 015 Chest Diseases, Thoracic Surgery and Tuberculosis
027 Biophysics, Bioengineering and Medical Instrumentation
004 Microbiology: Bacteriology, Mycology, Parasitology and Virology
005 General Pathology and Pathological Anatomy
LA English
SL English
ED Entered STN: 2 Oct 2003
Last Updated on STN: 2 Oct 2003
AB Rapid ***diagnosis*** and treatment are important for preventing transmission of *Mycobacterium* ***tuberculosis***. However, the ***diagnosis*** of ***tuberculosis*** continues to pose serious problems, mainly because of difficulties in differentiating between patients with active ***tuberculosis*** and those with healed lesions, normal *mycobacterium boris* BCG (*Bacillus Calmette Guerin*) vaccinated individuals, and unvaccinated Mantoux positives. Physicians still rely on conventional methods such as Ziehl-Neelsen (ZN) staining, fluorochrome staining, sputum culture, gastric lavage, and other non-traditional methods. Although the tuberculin test has aided in the ***diagnosis*** of ***tuberculosis*** for more than 85 years, its interpretation is difficult because sensitization with nontuberculous mycobacteria leads to false-positive tests. There have been numerous unsuccessful attempts to develop clinically useful serodiagnostic ***kits*** for ***tuberculosis***. A number of proteinaceous and nonprotein antigens (such as acyltrehaloses and phenolglycolipids) have been explored from time to time for the development of such assays but they have not proved to be clinically useful. It has been difficult to develop an ELISA utilizing a suitable antigen because *M.* ***tuberculosis*** shares a large number of antigenic proteins with other microorganisms that may or may not be pathogenic. With the advent of molecular biology techniques, there have been significant advances in nucleic acid-based amplification and hybridization, which are helping to rectify existing flaws in the ***diagnosis*** of ***tuberculosis***. The detection of mycobacterial DNA in clinical samples by polymerase chain reaction (PCR) is a promising approach for the rapid ***diagnosis*** of tuberculous infection. However, the PCR results must be corrected for the presence of inhibitors as well as for DNA contamination. In the modern era of genetics, marked by proteomics and genomics, the day is not far off when DNA chip-based hybridization assays will instantly reveal mycobacterial infections. .COPYRGT. 2003 Wiley-Liss, Inc.
TI ***Diagnosis*** of ***tuberculosis*** : Available technologies, limitations, and possibilities.
AB Rapid ***diagnosis*** and treatment are important for preventing transmission of *Mycobacterium* ***tuberculosis***. However, the ***diagnosis*** of ***tuberculosis*** continues to pose serious problems, mainly because of difficulties in differentiating between patients with active ***tuberculosis*** and those with healed lesions,

normal mycobacterium boris BCG (Bacillus Calmette Guerin) vaccinated individuals, and unvaccinated Mantoux positives. Physicians still. . . (ZN) staining, fluorochrome staining, sputum culture, gastric lavage, and other non-traditional methods. Although the tuberculin test has aided in the ***diagnosis*** of ***tuberculosis*** for more than 85 years, its interpretation is difficult because sensitization with nontuberculous mycobacteria leads to false-positive tests. There have been numerous unsuccessful attempts to develop clinically useful serodiagnostic

kits for ***tuberculosis*** . A number of proteinaceous and nonprotein antigens (such as acyltrehaloses and phenolglycolipids) have been explored from time to time for. . . not proved to be clinically useful. It has been difficult to develop an ELISA utilizing a suitable antigen because *M.* ***tuberculosis*** shares a large number of antigenic proteins with other microorganisms that may or may not be pathogenic. With the advent. . . there have been significant advances in nucleic acid-based amplification and hybridization, which are helping to rectify existing flaws in the ***diagnosis*** of

tuberculosis . The detection of mycobacterial DNA in clinical samples by polymerase chain reaction (PCR) is a promising approach for the rapid ***diagnosis*** of tuberculous infection. However, the PCR results must be corrected for the presence of inhibitors as well as for DNA. . .

CT Medical Descriptors:

article
bacterium detection
bacterium identification
 diagnostic accuracy
 diagnostic value
enzyme linked immunosorbent assay
fluorochrome staining
human
intermethod comparison
ligase chain reaction
 Mycobacterium tuberculosis
nonhuman
nucleic acid amplification
nucleic acid hybridization
polymerase chain reaction
radiometry
sensitivity and specificity
serodiagnosis
sputum culture
staining
stomach lavage
tuberculin test
 tuberculosis: DI, diagnosis
ziehl neelsen staining
acyltrehalose derivative
bacterial antigen
BCG vaccine
fluorochrome
 glycolipid
nucleic acid
phenolglycolipid derivative
trehalose
unclassified drug

L6 ANSWER 11 OF 24 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN DUPLICATE 3

AN 2002345343 EMBASE <>LOGINID::20090826>>

TI Evaluation of a commercially available serologic assay for antibodies against ***tuberculosis*** -associated ***glycolipid*** antigen.

AU Iinuma, Yoshitsugu, Dr. (correspondence); Senda, Kazuyoshi; Takakura, Shunji; Ichiyama, Satoshi; Tano, Masao; Abe, Tomoji; Yamamoto, Tomoko; Nakashima, Katsumitsu; Baba, Hisashi; Hasegawa, Yoshinori; Shimokata, Kaoru

CS Department of Clinical Laboratory, Nagoya University Hospital, Tsurumai-cho 65, Showa-ku, Nagoya-city 466-8560, Japan. yiinuma@med.nagoya-u.ac.jp

SO Clinical Chemistry and Laboratory Medicine, (2002) Vol. 40, No. 8, pp. 832-836.

Refs: 22

ISSN: 1434-6621 CODEN: CCLMFW

CY Germany

DT Journal; Article

FS 015 Chest Diseases, Thoracic Surgery and Tuberculosis
027 Biophysics, Bioengineering and Medical Instrumentation
004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

LA English

SL English

ED Entered STN: 17 Oct 2002
Last Updated on STN: 17 Oct 2002

AB A commercially available enzyme immunoassay developed to detect antibodies to a ***tuberculosis*** -associated ***glycolipid*** antigen was evaluated for serologic ***diagnosis*** of ***tuberculosis***. This was a multicenter study comparing the assay with other methods in 78 patients with active pulmonary ***tuberculosis*** and in 54 controls with non-tuberculous lung diseases. Sensitivities were highest for sputum culture (91.0%), followed by immunoassay (79.5%), nucleic acid amplification (77.3%), and finally acid-fast staining of sputum smear (60.3%). Immunoassay and amplification, both rapid methods, had similarly high sensitivity in smear-positive subjects (89.4 and 88.9%, respectively); in smear-negative subjects these two techniques showed low sensitivity (64.5 and 60.0%, respectively). Concordance between the two methods was relatively low (72.0%). With regard to specificity, seven out of ten patients with old ***tuberculosis*** had positive result by immunoassay (30% specificity). In the control group, 10 out of 54 patients had positive immunoassay result (72.2% specificity), with notably limited specificity in the elderly. The tuberculous ***glycolipid*** assay is a rapid method sufficiently sensitive for detection of ***tuberculosis*** infection, even in smear-negative patients.

TI Evaluation of a commercially available serologic assay for antibodies against ***tuberculosis*** -associated ***glycolipid*** antigen.

AB A commercially available enzyme immunoassay developed to detect antibodies to a ***tuberculosis*** -associated ***glycolipid*** antigen was evaluated for serologic ***diagnosis*** of ***tuberculosis***. This was a multicenter study comparing the assay with other methods in 78 patients with active pulmonary ***tuberculosis*** and in 54 controls with non-tuberculous lung diseases. Sensitivities were highest for sputum culture (91.0%), followed by immunoassay (79.5%), nucleic. . . Concordance between the two methods was relatively low (72.0%). With regard to specificity, seven out of ten patients with old ***tuberculosis*** had positive result by immunoassay (30% specificity).

In the control group, 10 out of 54 patients had positive immunoassay result (72.2% specificity), with notably limited specificity in the elderly. The tuberculous ***glycolipid*** assay is a rapid method sufficiently sensitive for detection of ***tuberculosis*** infection, even in smear-negative patients.

CT Medical Descriptors:

acid fast bacterium
adult
aged
antibody detection
article
clinical trial
controlled study
diagnostic kit
enzyme immunoassay
human
intermethod comparison
lung disease: DI, diagnosis
****lung tuberculosis: DI, diagnosis***
major clinical study
multicenter study
Mycobacterium tuberculosis
nucleic acid amplification
priority journal
sensitivity and specificity
serodiagnosis
sputum culture
sputum smear
staining
*bacterial antigen: EC, endogenous compound
*bacterium antibody: EC, endogenous compound
****glycolipid: EC, endogenous compound***
nucleic acid: EC, endogenous compound

L6 ANSWER 12 OF 24 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on
STN DUPLICATE 4

AN 2001:543089 BIOSIS <>LOGINID::20090826>>

DN PREV200100543089

TI Clinical evaluation of anti-tuberculous ***glycolipid***
immunoglobulin G antibody assay for rapid serodiagnosis of pulmonary
tuberculosis .

AU Maekura, Ryoji [Reprint author]; Okuda, Yoshinari; Nakagawa, Masaru;
Hiraga, Touru; Yokota, Souichirou; Ito, Masami; Yano, Ikuya; Kohno,
Hiroaki; Wada, Masako; Abe, Chiyoji; Toyoda, Takeo; Kishimoto, Toshio;
Ogura, Takeshi

CS Toneyama National Hospital, 5-1-1 Toneyama, Toyonaka-City, Osaka,
560-0045, Japan

maekurar@med.osaka-cu.ac.jp

SO Journal of Clinical Microbiology, (October, 2001) Vol. 39, No. 10, pp.
3603-3608. print.

CODEN: JCMIDW. ISSN: 0095-1137.

DT Article

LA English

ED Entered STN: 21 Nov 2001

Last Updated on STN: 25 Feb 2002

AB Previously we reported the development of a highly sensitive enzyme-linked
immunosorbent assay specific for anti-tuberculous ***glycolipid***

(anti-TBGL) for the rapid serodiagnosis of ***tuberculosis*** . In this study, the usefulness of an anti-TBGL antibody assay ***kit*** for rapid serodiagnosis was evaluated in a controlled multicenter study. Antibody titers in sera from 318 patients with active pulmonary ***tuberculosis*** (216 positive for *Mycobacterium* ***tuberculosis*** in smear and/or culture tests and 102 smear and culture negative and clinically ***diagnosed***), 58 patients with old ***tuberculosis*** , 177 patients with other respiratory diseases, 156 patients with nonrespiratory diseases, and 454 healthy subjects were examined. Sera from 256 younger healthy subjects from among the 454 healthy subjects were examined as a control. When the cutoff point of anti-TBGL antibody titer was determined as 2.0 U/ml, the sensitivity for active

tuberculosis patients was 81.1% and the specificity was 95.7%. Sensitivity in patients with smear-negative and culture-negative active pulmonary ***tuberculosis*** was 73.5%. Even in patients with noncavitory minimally advanced lesions, the positivity rate (60.0%) and the antibody titer (4.6+-9.4 U/ml) were significantly higher than those in the healthy group. These results indicate that this assay using anti-TBGL antibody is useful for the rapid serodiagnosis of active pulmonary ***tuberculosis*** .

TI Clinical evaluation of anti-tuberculous ***glycolipid*** immunoglobulin G antibody assay for rapid serodiagnosis of pulmonary ***tuberculosis*** .

AB Previously we reported the development of a highly sensitive enzyme-linked immunosorbent assay specific for anti-tuberculous ***glycolipid*** (anti-TBGL) for the rapid serodiagnosis of ***tuberculosis*** . In this study, the usefulness of an anti-TBGL antibody assay ***kit*** for rapid serodiagnosis was evaluated in a controlled multicenter study. Antibody titers in sera from 318 patients with active pulmonary ***tuberculosis*** (216 positive for *Mycobacterium* ***tuberculosis*** in smear and/or culture tests and 102 smear and culture negative and clinically ***diagnosed***), 58 patients with old ***tuberculosis*** , 177 patients with other respiratory diseases, 156 patients with nonrespiratory diseases, and 454 healthy subjects were examined. Sera from 256 . . . as a control. When the cutoff point of anti-TBGL antibody titer was determined as 2.0 U/ml, the sensitivity for active ***tuberculosis*** patients was 81.1% and the specificity was 95.7%. Sensitivity in patients with smear-negative and culture-negative active pulmonary ***tuberculosis*** was 73.5%. Even in patients with noncavitory minimally advanced lesions, the positivity rate (60.0%) and the antibody titer (4.6+-9.4 U/ml) . . . healthy group. These results indicate that this assay using anti-TBGL antibody is useful for the rapid serodiagnosis of active pulmonary ***tuberculosis*** .

IT . . .
System (Respiration); Serology (Allied Medical Sciences)
IT Parts, Structures, & Systems of Organisms
serum: blood and lymphatics
IT Diseases
pulmonary ***tuberculosis*** : bacterial disease, respiratory system disease
Tuberculosis , Pulmonary (MeSH)
IT Chemicals & Biochemicals
IgG [immunoglobulin G]
IT Methods & Equipment
anti- ***tuberculosis*** ***glycolipid*** immunoglobulin G antibody assay: analytical method
ORGN . . .

Mammals, Primates, Vertebrates

ORGN Classifier

Mycobacteriaceae 08881

Super Taxa

Mycobacteria; Actinomycetes and Related Organisms; Eubacteria;
Bacteria; Microorganisms

Organism Name

Mycobacterium ***tuberculosis*** : pathogen

Taxa Notes

Bacteria, Eubacteria, Microorganisms

L6 ANSWER 13 OF 24 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on
STN

AN 2001:251182 BIOSIS <>LOGINID::20090826>>

DN PREV200100251182

TI Rapid ***diagnosis*** of ***tuberculosis*** by detection of
mycobacterial lipoarabinomannan in urine.

AU Hamasur, Beston; Bruchfeld, Judith; Haile, Melles; Pawlowski, Andrzej;
Bjorvatn, Bjarne; Kallenius, Gunilla; Svenson, Stefan B. [Reprint author]

CS Swedish Institute for Infectious Disease Control, S-17182, Solna, Sweden
stefan.svensson@vmm.slu.se

SO Journal of Microbiological Methods, (May, 2001) Vol. 45, No. 1, pp. 41-52.
print.
CODEN: JMIMDQ. ISSN: 0167-7012.

DT Article

LA English

ED Entered STN: 23 May 2001
Last Updated on STN: 19 Feb 2002

AB There is an urgent need for improved tools for laboratory
diagnosis of active ***tuberculosis*** (TB). Here, we
describe two methods, a catch-up ELISA and a dipstick test based on the
detection in urine of lipoarabinomannan (LAM). LAM is a major and
specific ***glycolipid*** component of the outer mycobacterial cell
wall. Preliminary experiments showed that LAM is excreted in the urine of
mice injected intraperitoneally with a crude cell wall preparation of
Mycobacterium ***tuberculosis***. Both methods were highly sensitive,
detecting LAM at concentrations of 1 ng/ml and 5 pg/ml, respectively. Of
15 patients with active TB, all showed intermediate to high levels of LAM
in their urine (absorbance values from 0.3 to 1.2, mean 0.74). Only one
sample showed an absorbance value below the chosen cut off value of 0.4.
All but one of the urine samples from 26 healthy nursing workers exhibited
OD value below 0.4 cut off. These methods may prove valuable for rapid
and simple ***diagnosis*** of TB in particular in developing countries
lacking biosafety level 3 (BSL3) facilities.

TI Rapid ***diagnosis*** of ***tuberculosis*** by detection of
mycobacterial lipoarabinomannan in urine.

AB There is an urgent need for improved tools for laboratory
diagnosis of active ***tuberculosis*** (TB). Here, we
describe two methods, a catch-up ELISA and a dipstick test based on the
detection in urine of lipoarabinomannan (LAM). LAM is a major and
specific ***glycolipid*** component of the outer mycobacterial cell
wall. Preliminary experiments showed that LAM is excreted in the urine of
mice injected intraperitoneally with a crude cell wall preparation of
Mycobacterium ***tuberculosis***. Both methods were highly sensitive,
detecting LAM at concentrations of 1 ng/ml and 5 pg/ml, respectively. Of
15 patients with. . . 26 healthy nursing workers exhibited OD value
below 0.4 cut off. These methods may prove valuable for rapid and simple

diagnosis of TB in particular in developing countries lacking biosafety level 3 (BSL3) facilities.

IT . . . Concepts
 Methods and Techniques

IT Parts, Structures, & Systems of Organisms
 cell walls; urine: excretory system, biochemical analysis

IT Diseases
 tuberculosis : bacterial disease, ***diagnostic***
 methodology
 Tuberculosis (MeSH)

IT Chemicals & Biochemicals
 antibodies: uses; mycobacterial lipoarabinomannans: detection methods, quantitative analysis

IT Methods & Equipment
 catch-up ELISA technique: analytical method, applications, description, detection/labeling techniques; sandwich ELISA: analytical method, applications, description, detection/labeling techniques; ***slide*** agglutination assays: analytical method, applications, description, detection/labeling techniques

IT Miscellaneous Descriptors
 medical ***diagnostics*** ; methodology

ORGN . . .
 Mammals, Rodents, Vertebrates

ORGN Classifier
 Mycobacteriaceae 08881
 Super Taxa
 Mycobacteria; Actinomycetes and Related Organisms; Eubacteria;
 Bacteria; Microorganisms
 Organism Name
 Mycobacterium ***tuberculosis*** : pathogen
 Taxa Notes
 Bacteria, Eubacteria, Microorganisms

L6 ANSWER 14 OF 24 CAPLUS COPYRIGHT 2009 ACS on STN

AN 1999:136752 CAPLUS <<LOGINID::20090826>>

DN 130:208804

TI In situ immunodetection of antigens

IN Zeytinoglu, Fusun N.; Thiebaut, Franz B.

PA Browne, H. Lee, USA

SO U.S., 11 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5874226 CA 2221724 WO 9636274	A A1 A1	19990223 19961121 19961121	US 1995-447072 CA 1996-2221724 WO 1996-US6805	19950522 19960514 19960514
	W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML				
	AU 9657446 CN 1195275	A	19961129 19981007	AU 1996-57446 CN 1996-195515	19960514 19960514

CN 1146353	C	20040421		
EP 871393	A1	19981021	EP 1996-915750	19960514
	R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, NL, SE, IE			
JP 2002504222	T	20020205	JP 1996-534958	19960514
US 6080539	A	20000627	US 1998-168209	19981007
PRAI US 1995-447072	A	19950522		
WO 1996-US6805	W	19960514		

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB An antibody targeted to an antigen is brought into contact with a body component in situ by applying a retainer. The resulting antibody/antigen complex is labeled and may be amplified. The label is then detected either in situ or ex situ. The body component is skin or mucous membrane; the label comprises chromogen (e.g. 3-amino-9-Et carbazole), streptavidin, and a biotinylated oligonucleotide; and the antigen is a pathogenic antigen (e.g. tetanus toxoid, Papilloma virus E1 and E4, cell wall protein of *Mycobacterium leprae*, and others). The immunodetection method is useful for ***diagnosis*** of fungal infection, bacterial infection, viral infection, and neoplasm. The method is esp. useful for differential ***diagnosis*** between melanoma and fungal skin infection.

OSC.G 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

RE.CNT 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

AB . . . toxoid, Papilloma virus E1 and E4, cell wall protein of *Mycobacterium leprae*, and others). The immunodetection method is useful for ***diagnosis*** of fungal infection, bacterial infection, viral infection, and neoplasm. The method is esp. useful for differential ***diagnosis*** between melanoma and fungal skin infection.

IT Hepatitis

(A; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Hepatitis

(B; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Hepatitis

(C; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Proteins, specific or class

RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(E1; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Immunoglobulins

RL: ARG (Analytical reagent use); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(G1; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Immunoglobulins

RL: ARG (Analytical reagent use); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(G2a; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Immunoglobulins
RL: ARG (Analytical reagent use); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(G; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Ferritins
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(bacterioferritins; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Medical goods
(bandages; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Proteins, specific or class
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(gene E4; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Envelope proteins
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(gp120env; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Envelope proteins
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(gp21env; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Envelope proteins
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(gp41env; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT ***Diagnosis***
(immunodiagnosis; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Oligonucleotides
RL: ARG (Analytical reagent use); PRP (Properties); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(labeled; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm

diagnosis)

IT Infection
 (measles; test ***kit*** comprising skin or mucosal
 membrane-applying retainer, antibody labeled with chromogen and
 oligonucleotide for antigen detection and infection or neoplasm
 diagnosis)

IT Antigens
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
 (melanoma-assocd.; test ***kit*** comprising skin or mucosal
 membrane-applying retainer, antibody labeled with chromogen and
 oligonucleotide for antigen detection and infection or neoplasm
 diagnosis)

IT Proteins, specific or class
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
 (membrane, cell wall; test ***kit*** comprising skin or mucosal
 membrane-applying retainer, antibody labeled with chromogen and
 oligonucleotide for antigen detection and infection or neoplasm
 diagnosis)

IT Antibodies
RL: ARU (Analytical role, unclassified); THU (Therapeutic use); ANST
(Analytical study); BIOL (Biological study); USES (Uses)
 (monoclonal; test ***kit*** comprising skin or mucosal
 membrane-applying retainer, antibody labeled with chromogen and
 oligonucleotide for antigen detection and infection or neoplasm
 diagnosis)

IT gag proteins
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
 (p19gag; test ***kit*** comprising skin or mucosal
 membrane-applying retainer, antibody labeled with chromogen and
 oligonucleotide for antigen detection and infection or neoplasm
 diagnosis)

IT Proteins, specific or class
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
 (p28; test ***kit*** comprising skin or mucosal membrane-applying
 retainer, antibody labeled with chromogen and oligonucleotide for
 antigen detection and infection or neoplasm ***diagnosis***)

IT ***Glycolipids***
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
 (phenolic; test ***kit*** comprising skin or mucosal
 membrane-applying retainer, antibody labeled with chromogen and
 oligonucleotide for antigen detection and infection or neoplasm
 diagnosis)

IT Cell wall
 (protein; test ***kit*** comprising skin or mucosal
 membrane-applying retainer, antibody labeled with chromogen and
 oligonucleotide for antigen detection and infection or neoplasm
 diagnosis)

IT Thermus aquaticus
 (recA gene; test ***kit*** comprising skin or mucosal
 membrane-applying retainer, antibody labeled with chromogen and
 oligonucleotide for antigen detection and infection or neoplasm
 diagnosis)

IT Gene, microbial
RL: ARG (Analytical reagent use); PRP (Properties); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(recA; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Medical goods
(retainer; test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT AIDS (disease)
Aspergillus
Bacteria (Eubacteria)
Candida albicans
Clostridium perfringens
Clostridium tetani
Color formers
DNA sequences
Disease, animal
Human T-lymphotropic virus
Human T-lymphotropic virus 1
Human T-lymphotropic virus 2
Human herpesvirus
Human herpesvirus 1
Human herpesvirus 2
Human immunodeficiency virus
Human papillomavirus 16
Infection
Labels
Leukemia
Melanoma
Mucous membrane
Mycobacterium leprae
Mycoplasma
Mycosis
Neoplasm
PCR (polymerase chain reaction)
Papillomavirus
Pathogen
Polyomavirus
Rubella
Skin
Test ***kits***
Treponema pallidum
Tuberculosis
(test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Antigens
RL: ANT (Analyte); BSU (Biological study, unclassified); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(test ***kit*** comprising skin or mucosal membrane-applying retainer, antibody labeled with chromogen and oligonucleotide for antigen detection and infection or neoplasm ***diagnosis***)

IT Antibodies
RL: ARG (Analytical reagent use); THU (Therapeutic use); ANST (Analytical

study); BIOL (Biological study); USES (Uses)
(test ***kit*** comprising skin or mucosal membrane-applying
retainer, antibody labeled with chromogen and oligonucleotide for
antigen detection and infection or neoplasm ***diagnosis***)

IT Immune complexes
RL: ARU (Analytical role, unclassified); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(test ***kit*** comprising skin or mucosal membrane-applying
retainer, antibody labeled with chromogen and oligonucleotide for
antigen detection and infection or neoplasm ***diagnosis***)

IT Toxoids
RL: ANT (Analyte); BSU (Biological study, unclassified); ANST (Analytical study); BIOL (Biological study)
(tetanus; test ***kit*** comprising skin or mucosal
membrane-applying retainer, antibody labeled with chromogen and
oligonucleotide for antigen detection and infection or neoplasm
diagnosis)

IT Infection
(viral; test ***kit*** comprising skin or mucosal membrane-applying
retainer, antibody labeled with chromogen and oligonucleotide for
antigen detection and infection or neoplasm ***diagnosis***)

IT 58-85-5, Biotin
RL: ARU (Analytical role, unclassified); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(label; test ***kit*** comprising skin or mucosal membrane-applying
retainer, antibody labeled with chromogen and oligonucleotide for
antigen detection and infection or neoplasm ***diagnosis***)

IT 220916-57-4D, biotinylated
RL: ARG (Analytical reagent use); PRP (Properties); THU (Therapeutic use);
ANST (Analytical study); BIOL (Biological study); USES (Uses)
(nucleotide sequence; test ***kit*** comprising skin or mucosal
membrane-applying retainer, antibody labeled with chromogen and
oligonucleotide for antigen detection and infection or neoplasm
diagnosis)

IT 220896-84-4 220896-90-2
RL: ARU (Analytical role, unclassified); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(primer; test ***kit*** comprising skin or mucosal
membrane-applying retainer, antibody labeled with chromogen and
oligonucleotide for antigen detection and infection or neoplasm
diagnosis)

IT 132-32-1, 3-Amino-9-ethyl carbazole 9013-20-1, Streptavidin
RL: ARU (Analytical role, unclassified); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(test ***kit*** comprising skin or mucosal membrane-applying
retainer, antibody labeled with chromogen and oligonucleotide for
antigen detection and infection or neoplasm ***diagnosis***)

L6 ANSWER 15 OF 24 CAPLUS COPYRIGHT 2009 ACS on STN
AN 2000:79783 CAPLUS <<LOGINID::20090826>>
DN 132:306894
TI A rapid ***diagnosis*** of ***tuberculosis*** by detecting
anti-TBGL(tuberculous ***glycolipids***) antibodies
AU Sohn, Mal-hyeun; Kim, Sang-soon; Cho, Young-ja; Jung, Sil; Lee, Hyun-jung;
Kim, Seok-heoun; Lee, Wan-Young; Kim, Young-ho
CS Department of Laboratory, Mokpo National Tuberculosis Hospital, S. Korea
SO Igaku to Yakugaku (1999), 42(5), 879-883

CODEN: IGYAEI; ISSN: 0389-3898
 PB Shizen Kagakusha
 DT Journal
 LA Japanese
 AB An immunoassay ***kit*** was developed for detg. TBGL antibodies in blood serum of Korean patients with ***tuberculosis*** . This ***kit*** revealed 87.0 % pos. among 54 patients with ***tuberculosis*** .
 TI A rapid ***diagnosis*** of ***tuberculosis*** by detecting anti-TBGL(tuberculous ***glycolipids***) antibodies
 AB An immunoassay ***kit*** was developed for detg. TBGL antibodies in blood serum of Korean patients with ***tuberculosis*** . This ***kit*** revealed 87.0 % pos. among 54 patients with ***tuberculosis*** .
 ST ***tuberculosis*** ***diagnosis*** ***kit*** immunoassay blood serum
 IT Antibodies
 RL: ANT (Analyte); ANST (Analytical study)
 (rapid ***diagnosis*** of ***tuberculosis*** by detecting anti-TBGL(tuberculous ***glycolipids***) antibodies)
 IT ***Tuberculosis***
 (rapid ***diagnosis*** of ***tuberculosis*** using anti-TBGL(tuberculous ***glycolipids***) antibody)

 L6 ANSWER 16 OF 24 CAPLUS COPYRIGHT 2009 ACS on STN
 AN 1998:527193 CAPLUS <>LOGINID::20090826>>
 DN 129:166193
 OREF 129:33701a,33704a
 TI Therapeutic treatment and prevention of infections with a bioactive material encapsulated within a biodegradable-biocompatible polymeric matrix
 IN Setterstrom, Jean A.; Van Hamont, John E.; Reid, Robert H.; Jacob, Elliot; Jeyanthi, Ramasubbu; Boedeker, Edgar C.; McQueen, Charles E.; Tice, Thomas R.; Roberts, F. Donald; Friden, Phil
 PA United States Dept. of the Army, USA; Van Hamont, John E.; et al.
 SO PCT Int. Appl., 363 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 17

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9832427	A1	19980730	WO 1998-US1556	19980127
	W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW				
	RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
	US 6309669	B1	20011030	US 1997-789734	19970127
	AU 9863175	A	19980818	AU 1998-63175	19980127
PRAI	US 1997-789734	A	19970127		
	US 1984-590308	B1	19840316		
	US 1992-867301	A2	19920410		
	US 1995-446148	A2	19950522		

US 1995-446149 B2 19950522
US 1996-590973 B2 19960124
WO 1998-US1556 W 19980127

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB Novel burst-free, sustained release biocompatible and biodegradable microcapsules are disclosed which can be programmed to release their active core for variable durations ranging from 1-100 days in an aq. physiol. environment. The microcapsules are comprised of a core of polypeptide or other biol. active agent encapsulated in a matrix of poly(lactide/glycolide) copolymer, which may contain a pharmaceutically acceptable adjuvant, as a blend of uncapped free carboxyl end group and end-capped forms ranging in ratios from 100/0 to 1/99.

OSC.G 4 THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD (4 CITINGS)

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

IT ***Diagnosis***

(agents; prevention of infections with bioactive material encapsulated within biodegradable-biocompatible polymeric matrix)

IT *Absidia ramosa*

Actinobacillus equuli

Actinobacillus seminis

Arcanobacterium pyogenes

Aspergillus fumigatus

Babesia caballi

Brucella melitensis

Campylobacter fetus

Campylobacter fetus intestinalis

Candida albicans

Candida tropicalis

Chlamydia psittaci

Clostridium tetani

Equid herpesvirus 1

Equine arteritis virus

Escherichia coli

Gardnerella vaginalis

Human herpesvirus 1

Human herpesvirus 2

Leptospira interrogans pomona

Listeria monocytogenes

*Mycobacterium ***tuberculosis****

Mycoplasma bovigenitalium

Mycoplasma hominis

Neisseria gonorrhoeae

Pneumocystis carinii

Pseudomonas aeruginosa

Rhodococcus equi

Salmonella abortivaequina

Salmonella abortusovis

Streptococcus group B

Toxoplasma gondii

Treponema pallidum

Trichomonas vaginalis

Tritrichomonas foetus

Trypanosoma equiperdum

(antigens of; prevention of infections with bioactive material encapsulated within biodegradable-biocompatible polymeric matrix)

IT AIDS (disease)

Acinetobacter
Actinomycetales
Adenoviridae
Adrenoceptor agonists
Aerococcus
Aeromonas
Allergy inhibitors
Alzheimer's disease
Analgesics
Anesthetics
Angiogenesis
Angiogenesis inhibitors
Anthelmintics
Anti-infective agents
Anti-inflammatory agents
Antiarrhythmics
Antiarthritics
Antibacterial agents
Antibiotics
Anticholesteremic agents
Anticoagulants
Anticonvulsants
Antidepressants
Antidiabetic agents
Antidiarrheals
Antiemetics
Antihistamines
Antihypertensives
Antimalarials
Antimigraine agents
Antiparkinsonian agents
Antipyretics
Antirheumatic agents
Antiseraums
Antitumor agents
Antitussives
Antiulcer agents
Antiviral agents
Appetite depressants
Arbovirus
Arcanobacterium haemolyticum
Arenavirus
Asthma
Bacillus (bacterium genus)
Biocompatibility
Blood substitutes
Bordetella
Borrelia
Bronchodilators
Brucella
Cachexia
Calymmatobacterium
Campylobacter
 Cardiopulmonary bypass
 Cardiotonics
 Cardiovascular agents
Cholinergic agonists

Clostridium
Contraceptives
Coronavirus
Corynebacterium
Cryptosporidium parvum
Cystic fibrosis
Cytomegalovirus
Cytotoxic agents
Decongestants
Diagnosis
Diarrhea
Dissolution rate
Diuretics
Drug bioavailability
Drug dependence
Ebola virus
Echinococcus
Electrolytes, biological
Emulsifying agents
Enterobacteriaceae
Enterococcus
Enterovirus
Epitopes
Erysipelothrix
Expectorants
Filovirus
Flavobacterium
Freeze drying
Fungicides
Gardnerella
Gram-negative bacteria
Gram-positive bacteria (Firmicutes)
Haemophilus
Haemophilus ducreyi
Helicobacter
Hepatitis A virus
Hepatitis B virus
Hepatitis C virus
Human herpesvirus 3
Human herpesvirus 4
Human immunodeficiency virus
Human immunodeficiency virus 1
Human parainfluenza virus
Human poliovirus
Hypercholesterolemia
Hypnotics and Sedatives
Immunization
Immunomodulators
Immunostimulants
Infection
Influenza virus
Kidney, disease
Lactococcus
Legionella
Leptospira
Leuconostoc
Listeria

Measles virus
Melanoma
Micrococcus
Molluscum contagiosum virus
Moraxella
Multiple sclerosis
Mumps virus
Muscle relaxants
Narcotics
Neisseria
Nervous system agents
Nutrients
Opioid antagonists
Osteoarthritis
Osteomyelitis
Osteoporosis
Ovary, neoplasm
Pancreas, neoplasm
Papillomavirus
Parasiticides
Parkinson's disease
Pediococcus
Planococcus (bacterium)
Plesiomonas
Pneumonia
Poxviridae
Pseudomonas
Psoriasis
Psychotropics
Rabies virus
Reoviridae
Respiratory syncytial virus
Rheumatoid arthritis
Rhinovirus
Rhodococcus
Rotavirus
Rothia (bacterium)
Rubella virus
Salmonella typhi
Sexually transmitted diseases
Shigella boydii
Shigella dysenteriae
Shigella flexneri
Shigella sonnei
Spirillum
Staphylococcus
Streptobacillus
Streptococcus
Thrombosis
Tranquilizers
Treponema
Vaccines
Vasodilators
Vibrio
Vibrio cholerae
Wolinella succinogenes
Yersinia

(prevention of infections with bioactive material encapsulated within biodegradable-biocompatible polymeric matrix)

IT Alkaloids, biological studies
Antibodies
Antigens
Enzymes, biological studies
Estrogens
 Glycolipids
Glycopeptides
Growth factors, animal
Lipopolysaccharides
Peptides, biological studies
Pheromones, animal
Progestogens
Prostaglandins
Proteins, general, biological studies
Steroids, biological studies
Sulfonamides
Tetracyclines
Vitamins
RL: BPR (Biological process); BSU (Biological study, unclassified); DEV (Device component use); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
 (prevention of infections with bioactive material encapsulated within biodegradable-biocompatible polymeric matrix)

L6 ANSWER 17 OF 24 MEDLINE on STN
AN 1998220596 MEDLINE <>LOGINID::20090826>>
DN PubMed ID: 9562127
TI Detection of anti-lipoarabinomannan antibodies for the ***diagnosis*** of active ***tuberculosis*** .
AU Del Prete R; Picca V; Mosca A; D'Alagni M; Miragliotta G
CS Institute of Medical Microbiology, University of Bari, Italy.
SO The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, (1998 Feb) Vol. 2, No. 2, pp. 160-3.
Journal code: 9706389. ISSN: 1027-3719.
CY France
DT Journal; Article; (JOURNAL ARTICLE)
(RESEARCH SUPPORT, NON-U.S. GOV'T)
LA English
FS Priority Journals; AIDS
EM 199806
ED Entered STN: 18 Jun 1998
Last Updated on STN: 29 Jan 1999
Entered Medline: 10 Jun 1998
AB SETTING: A serological test that contributes in ***diagnosing*** ***tuberculosis*** would aid patient management. OBJECTIVE: To evaluate MycoDot, a new commercially available serological test, for the detection of immunoglobulin G antibodies to lipoarabinomannan (LAM), a ***glycolipid*** common to mycobacteria. DESIGN: Serum samples from 102 non-human immunodeficiency virus (HIV)-infected patients with no previous history of ***tuberculosis*** and with suspected active pulmonary (66) and/or extra-pulmonary (36) ***tuberculosis*** were investigated; 50 HIV-negative healthy subjects, sputum culture-negative, tuberculin skin

test negative and with no history of ***tuberculosis***, were used as controls. RESULTS AND CONCLUSION: In 28 patients with microbiologically ascertained ***tuberculosis*** 25/28 serum samples were positive, whereas the test was negative in two patients with renal ***tuberculosis*** and in one with pulmonary ***tuberculosis***. The remaining 74 serum samples were negative. The follow-up of these patients excluded a mycobacterial infection. Control subjects were negative. On the basis of our design, the MycoDot test, with its rapidity and degree of sensitivity, is suitable for routine use in laboratory ***diagnosis*** of both pulmonary and extrapulmonary ***tuberculosis***.

TI Detection of anti-lipoarabinomannan antibodies for the ***diagnosis*** of active ***tuberculosis***.

AB SETTING: A serological test that contributes in ***diagnosing*** ***tuberculosis*** would aid patient management. OBJECTIVE: To evaluate

MycоАot, a new commercially available serological test, for the detection of immunoglobulin G antibodies to lipoarabinomannan (LAM), a ***glycolipid*** common to mycobacteria. DESIGN: Serum samples from

102

non-human immunodeficiency virus (HIV)-infected patients with no previous history of ***tuberculosis*** and with suspected active pulmonary (66) and/or extra-pulmonary (36) ***tuberculosis*** were investigated; 50 HIV-negative healthy subjects, sputum culture-negative, tuberculin skin test negative and with no history of ***tuberculosis***, were used as controls. RESULTS AND CONCLUSION: In 28 patients with microbiologically ascertained ***tuberculosis*** 25/28 serum samples were positive, whereas the test was negative in two patients with renal ***tuberculosis*** and in one with pulmonary ***tuberculosis***.

The remaining 74 serum samples were negative. The follow-up of these patients excluded a mycobacterial infection. Control subjects were negative. . . of our design, the MycoDot test, with its rapidity and degree of sensitivity, is suitable for routine use in laboratory

diagnosis of both pulmonary and extrapulmonary ***tuberculosis***.

CT . . . Aged

*Antibodies, Bacterial: BL, blood

Case-Control Studies

Humans

*Immunoglobulin G: BL, blood

*Lipopolysaccharides: IM, immunology

Middle Aged

*Mycobacterium: IM, immunology

****Reagent Kits, Diagnostic***

Sensitivity and Specificity

Serologic Tests: MT, methods

****Tuberculosis: DI, diagnosis***

****Tuberculosis, Pulmonary: DI, diagnosis***

CN 0 (Antibodies, Bacterial); 0 (Immunoglobulin G); 0 (Lipopolysaccharides); 0 (Reagent ***Kits***, ***Diagnostic***); 0 (lipoarabinomannan)

L6 ANSWER 18 OF 24 MEDLINE on STN

AN 1998274822 MEDLINE <<LOGINID::20090826>>

DN PubMed ID: 9611875

TI [Serologic cross-reactions to Leishmania infantum using indirect immunofluorescence in HIV+ and HIV- patients with active ***tuberculosis***].

Reacciones cruzadas de la serología a *Leishmania infantum* por inmunofluorescencia indirecta en pacientes HIV+ y HIV- con ***tuberculosis*** activa.

AU Lopez-Velez R; Turientes M C; Gomez-Mampaso E
CS Medicina Tropical y Parasitología Clínica, Hospital Ramón y Cajal, Madrid.
SO Enfermedades infecciosas y microbiología clínica, (1998 Mar) Vol. 16, No. 3, pp. 130-1.
Journal code: 9104081. ISSN: 0213-005X.

CY Spain
DT (COMPARATIVE STUDY)
(ENGLISH ABSTRACT)
LA Journal; Article; (JOURNAL ARTICLE)
FS Spanish
EM Priority Journals; AIDS
ED 199806
Entered STN: 13 Jul 1998
Last Updated on STN: 13 Jul 1998
Entered Medline: 29 Jun 1998

AB BACKGROUND: Clinical presentation of disseminated ***tuberculosis*** and visceral leishmaniasis can be very similar, mainly in those infected with HIV, being serology a useful tool in making a differential ***diagnosis***. Cross-reactions of IFAT serodiagnosis of visceral leishmaniasis with other diseases are well known, but few data is available with ***tuberculosis***. METHODS AND RESULTS: Detection of serum antibodies against *Leishmania*, using a commercial IFAT ***kit***, was attempted in sera of 51 patients with active pulmonar and/or extrapulmonar ***tuberculosis*** (25 HIV+ and 26 HIV-). Overall cross-reactions was found in 19.6% patients without significative differences in between 2 groups, but differences in positive serum titres was observed: one at 1/256, three at 1/160, and one at 1/80 dilution, in the HIV+ group, whereas all 5 patients in HIV- group cross-reacted at 1/80 dilution. Recognition of specific leishmanial antigenic bands by serum antibodies of patients with ***tuberculosis*** were not clearly defined by Western-blot. CONCLUSIONS: IFAT technique for leishmaniasis cross-react in 20% of patients with ***tuberculosis***.

TI [Serologic cross-reactions to *Leishmania infantum* using indirect immunofluorescence in HIV+ and HIV- patients with active ***tuberculosis***].

Reacciones cruzadas de la serología a *Leishmania infantum* por inmunofluorescencia indirecta en pacientes HIV+ y HIV- con ***tuberculosis*** activa.

AB BACKGROUND: Clinical presentation of disseminated ***tuberculosis*** and visceral leishmaniasis can be very similar, mainly in those infected with HIV, being serology a useful tool in making a differential ***diagnosis***. Cross-reactions of IFAT serodiagnosis of visceral leishmaniasis with other diseases are well known, but few data is available with ***tuberculosis***. METHODS AND RESULTS: Detection of serum antibodies against *Leishmania*, using a commercial IFAT ***kit***, was attempted in sera of 51 patients with active pulmonar and/or extrapulmonar ***tuberculosis*** (25 HIV+ and 26 HIV-). Overall cross-reactions was found in 19.6% patients without significative differences in between 2 groups, but. . . patients in HIV- group cross-reacted at 1/80 dilution. Recognition of specific leishmanial antigenic bands by serum antibodies of patients with ***tuberculosis*** were not clearly defined by Western-blot. CONCLUSIONS: IFAT technique for leishmaniasis cross-react in 20% of patients with ***tuberculosis***.

CT *** AIDS-Related Opportunistic Infections: DI, diagnosis***

AIDS-Related Opportunistic Infections: IM, immunology
Animals
*Antibodies, Bacterial: IM, immunology
*Antibodies, Protozoan: IM, immunology
Antigens, Bacterial: IM, immunology
Blotting, Western
Cross Reactions
 *** Diagnosis, Differential***
False Positive Reactions
*Fluorescent Antibody Technique, Indirect
 *** Glycolipids: IM, immunology***
Glycoproteins: IM, immunology
*HIV Seronegativity: IM, immunology
*HIV Seropositivity: IM, immunology
 HIV-1
 Humans
*Leishmania infantum: IM, immunology
 *** Leishmaniasis, Visceral: DI, diagnosis***
*Leishmaniasis, Visceral: IM, immunology
Membrane Proteins: IM, immunology
 ****Mycobacterium tuberculosis: IM, immunology***
Protozoan Proteins: IM, immunology
Random Allocation
Serologic Tests
 *** Tuberculosis: DI, diagnosis***
 ****Tuberculosis: IM, immunology***
CN 0 (Antibodies, Bacterial); 0 (Antibodies, Protozoan); 0 (Antigens, Bacterial); 0 (***Glycolipids***); 0 (Glycoproteins); 0 (Membrane Proteins); 0 (Protozoan Proteins)
L6 ANSWER 19 OF 24 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN DUPLICATE 5
AN 1997024991 EMBASE <<LOGINID::20090826>>
TI Serodiagnosis of ***tuberculosis*** by detection of antituberculous ***glycolipid*** antigen (TBGL antigen) antibodies in serum using enzyme-linked immunosorbent assay: Clinical evaluation of anti-TBGL antibodies assay ***kit*** .
AU Toyoda, T. (correspondence); Osumi, M.; Aoyagi, T.; Kawashiro, T.
CS National Higashisaitama Hospital, 4147, Kurohama, Hasuda-shi, Saitama 349-01, Japan.
SO Kekkaku, (1996) Vol. 71, No. 12, pp. 655-661.
Refs: 10
ISSN: 0022-9776 CODEN: KEKKAG
CY Japan
DT Journal; Article
FS 015 Chest Diseases, Thoracic Surgery and Tuberculosis
026 Immunology, Serology and Transplantation
037 Drug Literature Index
004 Microbiology: Bacteriology, Mycology, Parasitology and Virology
LA Japanese
SL English; Japanese
ED Entered STN: 18 Feb 1997
Last Updated on STN: 18 Feb 1997
AB Kyowa Medex Co., Ltd. developed the ***kit*** for the sero- ***diagnosis*** of ***tuberculosis***, which detects IgG antibodies against tuberculous ***glycolipids*** antigen containing cord factor (TBGL antigen) prepared from M. ***tuberculosis*** using the enzyme

linked immunosorbent assay technique. We evaluated the ***kit*** using clinical specimens and the results are as follows: 1) In total, 34 out of 39 cases (87.2%) with active pulmonary ***tuberculosis*** showed positive anti- TBGL antibody. 2) Patients with cavity, patients with extensive lesions and patients excreting large amount of acid fast bacilli tended to show high positivity rates. 3) The antibody titers increased in 7 out of 11 cases after starting the antituberculous chemotherapy. 4) The use of the antibody is unsuitable for the determination of the activity of ***tuberculosis*** since the antibody titers only slightly decreased even after chemotherapy for two years. 5) Two out of four nontuberculous mycobacteriosis cases showed high antibody titers. 6) All three AIDS patients with ***tuberculosis*** showed low antibody titers. 7) The antibody was negative in almost all healthy controls showing a positive PPD skin test after vaccination with BCG, and it was therefore assumed that the antibody titer is not increased by BCG vaccination. 8) The antibody titers of the staff members working in the ***tuberculosis*** wards were not high compared with those of staff members working in the other wards.

TI Serodiagnosis of ***tuberculosis*** by detection of antituberculous ***glycolipid*** antigen (TBGL antigen) antibodies in serum using enzyme-linked immunosorbent assay: Clinical evaluation of anti-TBGL antibodies assay ***kit*** .

AB Kyowa Medex Co., Ltd. developed the ***kit*** for the sero- ***diagnosis*** of ***tuberculosis***, which detects IgG antibodies against tuberculous ***glycolipids*** antigen containing cord factor (TBGL antigen) prepared from M. ***tuberculosis*** using the enzyme linked immunosorbent assay technique. We evaluated the ***kit*** using clinical specimens and the results are as follows: 1) In total, 34 out of 39 cases (87.2%) with active pulmonary ***tuberculosis*** showed positive anti- TBGL antibody. 2) Patients with cavity, patients with extensive lesions and patients excreting large amount of acid. . . after starting the antituberculous chemotherapy. 4) The use of the antibody is unsuitable for the determination of the activity of ***tuberculosis*** since the antibody titers only slightly decreased even after chemotherapy for two years. 5) Two out of four nontuberculous mycobacteriosis cases showed high antibody titers. 6) All three AIDS patients with ***tuberculosis*** showed low antibody titers. 7) The antibody was negative in almost all healthy controls showing a positive PPD skin test. . . the antibody titer is not increased by BCG vaccination. 8) The antibody titers of the staff members working in the ***tuberculosis*** wards were not high compared with those of staff members working in the other wards.

CT Medical Descriptors:

acquired immune deficiency syndrome
antibody detection
antibody titer
article
bcg vaccination
clinical article
controlled study
enzyme linked immunosorbent assay
human

****lung tuberculosis: DI, diagnosis***

****lung tuberculosis: DT, drug therapy***

mycobacterium tuberculosis

*serodiagnosis

tuberculin test

*bacterial antigen
bcg vaccine
*cord factor
****glycolipid***
*immunoglobulin g antibody: EC, endogenous compound
tuberculostatic agent: DT, drug therapy

L6 ANSWER 20 OF 24 CAPLUS COPYRIGHT 2009 ACS on STN
AN 1997:104121 CAPLUS <>LOGINID::20090826>>
DN 126:156129
OREF 126:30171a,30174a
TI Comparison of A60 and three ****glycolipid*** antigens in an ELISA test for ****tuberculosis***
AU Simonney, Nancy; Molina, Jean Michel; Molimard, Mathieu; Oksenhendler, Eric; Lagrange, Philippe H.
CS Service de Microbiologie, Hopital Saint-Louis, Paris, Fr.
SO Clinical Microbiology and Infection (1996), 2(3), 214-222
CODEN: CMINFM; ISSN: 1198-743X
PB Decker Europe
DT Journal
LA English
AB The objectives of this study were to compare the ****diagnostic*** usefulness in ****tuberculosis*** of the serodiagnostic ELISA ****kit*** A60 (Anda Biologicals, Strasbourg, France) and of our domestic ELISA based on three purified cell wall ****glycolipid*** antigens. The presence and concns. of IgG and IgM anti-A60 antibodies and anti-LOS, anti-DAT and anti-PGLTb1 antibodies against the ****glycolipid*** antigens were detd. by ELISA in 50 HIV-seroneg. and 46 HIV-seropos. patients, with documented active ****tuberculosis***. The specificity of these ELISAs was detd. with use of sera from 50 healthy blood donors, 29 patients with non-mycobacterial pulmonary diseases and 24 HIV-pos. patients with disseminated Mycobacterium avium infection. With a calcd. cut-off for each antigen and Ig that gave a specificity higher than or equal to 98%, the cumulative ELISA results showed that only 36.5% of the patients with ****tuberculosis*** had a pos. response in the A60 test, as compared with 84.4% who showed a response to the three ****glycolipid*** antigens. This striking difference persisted when the cumulative sensitivities were calcd. according to the HIV status of the patients and the localization of ****tuberculosis***. The anti-A60 antibody (IgG and IgM) levels and the degree of sensitivity of the ELISA for detection of A60 antigen were always lower in HIV-pos. patients with pulmonary and extrapulmonary ****tuberculosis*** than in HIV-neg. patients with ****tuberculosis***. The sensitivity of A60 ELISA was further decreased in HIV-pos. patients with low CD4+ lymphocytes counts, in contrast to the results with the three ****glycolipid*** antigens. These results show the limitations of the A60 ELISA, and confirm the potencies of the ****glycolipid*** antigens in serodiagnosis of ****tuberculosis*** in HIV-pos. and HIV-neg. patients.
OSC.G 6 THERE ARE 6 CAPLUS RECORDS THAT CITE THIS RECORD (6 CITINGS)
TI Comparison of A60 and three ****glycolipid*** antigens in an ELISA test for ****tuberculosis***
AB The objectives of this study were to compare the ****diagnostic*** usefulness in ****tuberculosis*** of the serodiagnostic ELISA ****kit*** A60 (Anda Biologicals, Strasbourg, France) and of our domestic ELISA based on three purified cell wall ****glycolipid*** antigens.

The presence and concns. of IgG and IgM anti-A60 antibodies and anti-LOS, anti-DAT and anti-PGLTb1 antibodies against the ***glycolipid*** antigens were detd. by ELISA in 50 HIV-seroneg. and 46 HIV-seropos. patients, with documented active ***tuberculosis***. The specificity of these ELISAs was detd. with use of sera from 50 healthy blood donors, 29 patients with non-mycobacterial. . . a specificity higher than or equal to 98%, the cumulative ELISA results showed that only 36.5% of the patients with ***tuberculosis*** had a pos. response in the A60 test, as compared with 84.4% who showed a response to the three

glycolipid antigens. This striking difference persisted when the cumulative sensitivities were calcd. according to the HIV status of the patients and the localization of ***tuberculosis***. The anti-A60 antibody (IgG and IgM) levels and the degree of sensitivity of the ELISA for detection of A60 antigen were always lower in HIV-pos. patients with pulmonary and extrapulmonary ***tuberculosis*** than in HIV-neg. patients with ***tuberculosis***. The sensitivity of A60 ELISA was further decreased in HIV-pos. patients with low CD4+ lymphocytes counts, in contrast to the results with the three ***glycolipid*** antigens. These results show the limitations of the A60 ELISA, and confirm the potencies of the ***glycolipid*** antigens in serodiagnosis of ***tuberculosis*** in HIV-pos. and HIV-neg. patients.

ST HIV ***tuberculosis*** antigen Ig ELISA
IT Antigens
RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)
(A60; comparison of A60 and three ***glycolipid*** antigens in an ELISA test for ***tuberculosis*** in HIV-neg. and HIV-pos. humans)
IT Immunoglobulins
RL: ANT (Analyte); ANST (Analytical study)
(G; comparison of A60 and three ***glycolipid*** antigens in an ELISA test for ***tuberculosis*** in HIV-neg. and HIV-pos. humans)
IT Immunoglobulins
RL: ANT (Analyte); ANST (Analytical study)
(M; comparison of A60 and three ***glycolipid*** antigens in an ELISA test for ***tuberculosis*** in HIV-neg. and HIV-pos. humans)
IT Blood analysis
Human immunodeficiency virus
Mycobacterium ***tuberculosis***
(comparison of A60 and three ***glycolipid*** antigens in an ELISA test for ***tuberculosis*** in HIV-neg. and HIV-pos. humans)
IT ***Glycolipids***
RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)
(comparison of A60 and three ***glycolipid*** antigens in an ELISA test for ***tuberculosis*** in HIV-neg. and HIV-pos. humans)
IT Immunoassay
(enzyme-linked immunosorbent assay; comparison of A60 and three ***glycolipid*** antigens in an ELISA test for ***tuberculosis*** in HIV-neg. and HIV-pos. humans)

L6 ANSWER 21 OF 24 CAPLUS COPYRIGHT 2009 ACS on STN
AN 1996:13345 CAPLUS <<LOGINID::20090826>>
DN 124:50207
OREF 124:9379a,9382a
TI Membranes for ***diagnosis*** of ***tuberculosis***, a method of ***diagnosis*** of ***tuberculosis*** by using the membranes, and ***diagnostic*** ***kits*** for ***tuberculosis***
IN Yano, Ikuuya; Marumoto, Kazuaki; Itagaki, Tadashi; Suehiro, Takeshi
PA Nippon Baio Ratsudo Raboratori, Japan

SO Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 07248329	A	19950926	JP 1994-68080	19940311
PRAI	JP 1994-68080		19940311		

AB ***Tuberculosis*** is ***diagnosed*** by using amphipathic membranes on which mycolic acid-contg. ***glycolipids*** are immobilized. The membranes and ***kits*** contg. the membranes are also claimed. ***Tuberculosis*** is easily, promptly (within 3 h), and inexpensively (by eye inspection) ***diagnosed*** by this method. The membranes have higher specificity and sensitivity, thus requiring .apprx.1 .mu.g antigens. Mycolic acid-contg. ***glycolipid*** was dissolved in CHCl3/MeOH mixt., immobilized on poly(vinylidene difluoride) membrane, dried, treated with Tris buffer soln. for blocking, and washed with NaN3-contg. Tris buffer soln. to give a membrane. Serum from patients with ***tuberculosis*** was incubated with the membrane at 37.degree. for 1 h, then treated with a soln. contg. alk. phosphatase-labeled goat anti-human IgG at room temp. for 30 min, further treated with a substrate soln. contg. BCIP and NBT at room temp. for 10 min. A purple color developed.

TI Membranes for ***diagnosis*** of ***tuberculosis***, a method of ***diagnosis*** of ***tuberculosis*** by using the membranes, and ***diagnostic*** ***kits*** for ***tuberculosis***

AB ***Tuberculosis*** is ***diagnosed*** by using amphipathic membranes on which mycolic acid-contg. ***glycolipids*** are immobilized. The membranes and ***kits*** contg. the membranes are also claimed. ***Tuberculosis*** is easily, promptly (within 3 h), and inexpensively (by eye inspection) ***diagnosed*** by this method. The membranes have higher specificity and sensitivity, thus requiring .apprx.1 .mu.g antigens. Mycolic acid-contg. ***glycolipid*** was dissolved in CHCl3/MeOH mixt., immobilized on poly(vinylidene difluoride) membrane, dried, treated with Tris buffer soln. for blocking, and washed with NaN3-contg. Tris buffer soln. to give a membrane. Serum from patients with ***tuberculosis*** was incubated with the membrane at 37.degree. for 1 h, then treated with a soln. contg. alk. phosphatase-labeled goat anti-human. . . .

ST ***tuberculosis*** ***diagnosis*** amphipathic membrane; antibody mycolic acid ***diagnosis*** ***tuberculosis*** ; ***glycolipid*** immobilized membrane ***diagnosis*** ***tuberculosis***

IT Blood analysis

Tuberculosis

(antibodies to mycolic acid-contg. ***glycolipids*** in ***diagnosis*** of ***tuberculosis*** using amphipathic membranes)

IT Antibodies

RL: ANT (Analyte); ANST (Analytical study)

(antibodies to mycolic acid-contg. ***glycolipids*** in ***diagnosis*** of ***tuberculosis*** using amphipathic membranes)

IT ***Glycolipids***

RL: BSU (Biological study, unclassified); BIOL (Biological study)

(antibodies to mycolic acid-contg. ***glycolipids*** in

diagnosis of ***tuberculosis*** using amphipathic membranes)

IT Mycolic acids
RL: BSU (Biological study, unclassified); BIOL (Biological study) (antibodies to mycolic acid-contg. ***glycolipids*** in ***diagnosis*** of ***tuberculosis*** using amphipathic membranes)

IT 24937-79-9, Poly(vinylidene difluoride) 108778-13-8, Biodyne
RL: ARG (Analytical reagent use); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses) (membrane; antibodies to mycolic acid-contg. ***glycolipids*** in ***diagnosis*** of ***tuberculosis*** using amphipathic membranes)

L6 ANSWER 22 OF 24 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on STN

AN 1993:344321 BIOSIS <>LOGINID::20090826>>

DN PREV199396041321

TI Evaluation of the use of 5-mycoloyl-beta-arabinofuranosyl- (1 fwdarw 2)-5-mycoloyl-alpha-arabinofuranosyl-(1 fwdarw 1')-glycerol in serodiagnosis of *Mycobacterium avium* intracellulare complex infection.

AU Honda, I.; Kawajiri, K.; Watanabe, M. [Reprint author]; Toida, I.; Kawamata, K.; Minnikin, D. E.

CS Res. Inst. BCG, 3-1-5 Matsuyama Kiyose, Tokyo 204, Japan

SO Research in Microbiology, (1993) Vol. 144, No. 3, pp. 229-235.
CODEN: RMCREW. ISSN: 0923-2508.

DT Article

LA English

ED Entered STN: 26 Jul 1993
Last Updated on STN: 26 Jul 1993

AB 5-Mycoloyl-beta-arabinofuranosyl-(1 fwdarw 2)-5-mycoloyl-alpha-arabinofuranosyl-(1 fwdarw 1')-glycerol, an antigenic ***glycolipid*** from the *Mycobacterium avium*-intracellulare complex (MAC) was examined for its applicability to the serodiagnosis of MAC infection by ELISA. Serum IgM antibody titres against this ***glycolipid*** in healthy controls, pulmonary ***tuberculosis***, patients and sputum-MAC-culture-negative MAC patients were generally below the cut-off point (ELISA-negative), whereas most of the MAC-culture-positive MAC patient sera were ELISA-positive (93.5%) and their titres were often very high. Thus, high serum IgM titres against this ***glycolipid*** may be said to imply that the MAC disease is in an active phase.

AB 5-Mycoloyl-beta-arabinofuranosyl-(1 fwdarw 2)-5-mycoloyl-alpha-arabinofuranosyl-(1 fwdarw 1')-glycerol, an antigenic ***glycolipid*** from the *Mycobacterium avium*-intracellulare complex (MAC) was examined for its applicability to the serodiagnosis of MAC infection by ELISA. Serum IgM antibody titres against this ***glycolipid*** in healthy controls, pulmonary ***tuberculosis***, patients and sputum-MAC-culture-negative MAC patients were generally below the cut-off point (ELISA-negative), whereas most of the MAC-culture-positive MAC patient sera were ELISA-positive (93.5%) and their titres were often very high. Thus, high serum IgM titres against this ***glycolipid*** may be said to imply that the MAC disease is in an active phase.

IT Miscellaneous Descriptors
CHILDREN; DAKOPATTS ***KIT*** ; ***DIAGNOSTIC*** METHOD;
GASTROENTERITIS; IMMUNOLOGIC METHOD

L6 ANSWER 23 OF 24 MEDLINE on STN
AN 1984275719 MEDLINE <<LOGINID::20090826>>
DN PubMed ID: 6205491
TI [Major trends in lipid immunochemistry].
Osnovnye napravleniya immunokhimii lipidov.
AU Shvets V I; Krasnopol'skii Iu M
SO Ukrainskii biokhimicheskii zhurnal, (1984 May-Jun) Vol. 56, No. 3, pp.
254-63.
Journal code: 7804246. ISSN: 0201-8470.
CY USSR
DT (ENGLISH ABSTRACT)
LA Journal; Article; (JOURNAL ARTICLE)
LA Russian
FS Priority Journals
EM 198409
ED Entered STN: 20 Mar 1990
Last Updated on STN: 6 Feb 1998
Entered Medline: 13 Sep 1984
AB Data are presented on immunochemical properties of lipids, the most important group of biologically active substances. Problems on antigenic, immunogenic and adjuvant activities of lipids are considered. A possible use of lipid antigens for ***diagnosis*** of different infectious diseases is demonstrated and main principles of their construction are suggested. Data are available on immunogenicity of phospho- and ***glycolipid*** mixtures as well as on practical application of the obtained antibodies. Guidelines for the use of immunochemical properties of lipids are outlined.
AB . . . active substances. Problems on antigenic, immunogenic and adjuvant activities of lipids are considered. A possible use of lipid antigens for ***diagnosis*** of different infectious diseases is demonstrated and main principles of their construction are suggested. Data are available on immunogenicity of phospho- and ***glycolipid*** mixtures as well as on practical application of the obtained antibodies. Guidelines for the use of immunochemical properties of lipids. . .
CT Adjuvants, Immunologic: AD, administration & dosage
Animals
Brain: IM, immunology
*** Cardiolipins: IM, immunology***
Cattle
Epitopes: AN, analysis
*Epitopes: IM, immunology
Humans
Immunization
Lipids: AD, administration & dosage
*** Lipids: DU, diagnostic use***
*Lipids: IM, immunology
Liposomes: AD, administration & dosage
Liposomes: IM, immunology
*** Schistosomiasis: DI, diagnosis***
Serologic Tests
Syphilis Serodiagnosis
*** Tuberculosis, Pulmonary: DI, diagnosis***
CN 0 (Adjuvants, Immunologic); 0 (***Cardiolipins***); 0 (Epitopes); 0 (Lipids); 0 (Liposomes)

STN DUPLICATE 6
AN 1980:238850 BIOSIS <<LOGINID::20090826>>
DN PREV198070031346; BA70:31346
TI ENZYME LINKED IMMUNO SORBENT ASSAY TESTS FOR ANTIBODIES AGAINST
MYCOBACTERIAL GLYCO LIPIDS.
AU REGGIARDO Z [Reprint author]; VAZQUEZ E; SCHNAPER L
CS DEP PATHOL, UNIV MD SCH MED, 660 W REDWOOD ST, BALTIMORE, MD 21201, USA
SO Journal of Immunological Methods, (1980) Vol. 34, No. 1, pp. 55-60.
CODEN: JIMMBG. ISSN: 0022-1759.
DT Article
FS BA
LA ENGLISH
AB ELISA [enzyme-linked immunosorbent assay] tests with purified
mycobacterial ***glycolipids*** and bovine heart ***cardiolipin***
are described. The possible clinical use of ELISA tests with
mycobacterial ***glycolipids*** for the ***diagnosis*** of
tuberculosis and other mycobacterioses is discussed.
AB ELISA [enzyme-linked immunosorbent assay] tests with purified
mycobacterial ***glycolipids*** and bovine heart ***cardiolipin***
are described. The possible clinical use of ELISA tests with
mycobacterial ***glycolipids*** for the ***diagnosis*** of
tuberculosis and other mycobacterioses is discussed.
IT Major Concepts
 Cardiovascular System (Transport and Circulation); Immune
 System (Chemical Coordination and Homeostasis); Infection; Serology
 (Allied Medical Sciences)
IT Miscellaneous Descriptors
 BOVINE HEART ***CARDIO*** LIPIN ***TUBERCULOSIS***
 DIAGNOSIS