

A company of SIM Tech

SIM5360 Multiplexer User Manual Application Note

Document Title:	SIM5360 Multiplexer User Manual Application Note
Version:	0.01
Date:	2014-03-26
10Status:	Release
Document Control ID:	SIM5360_Multiplexer_User_Manual_Application_Note_V0.01

General Notes

SIMCom offers this information as a service to its customers, to support application and engineering efforts that use the products designed by SIMCom. The information provided is based upon requirements specifically provided to SIMCom by the customers. SIMCom has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by SIMCom within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCom Limited., copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2014

Content

Version History	4
1. Introduction	6
1.1. SIMCOM Multiplexer Design Purpose	6
1.2. Architecture Diagram	6
1.3. Restrictions	7
1.4. References	7
2. SIMCOM Multiplexer Protocol	8
2.1. Transmission Frame Structures	8
2.1.1. Opening and Closing Flag Field	8
2.1.2. Address Field	8
2.1.3. Control Field	8
2.1.4. Length Field	9
2.1.5. Information Fields	9
2.2. Frame Type	10
2.2.1. SABM	10
2.2.2. UA	10
2.2.3. DISC	10
2.2.4. DM	10
2.2.5. UIH	10
2.2.6. UI	11
2.3. DLC Establishment	12
2.4. Closing Down DLC	12
2.5. Control channel	12
2.5.1. PSC	12
2.5.2. CLD	13
2.5.3. Test	13
2.5.4. MSC	13
2.5.5. FCoff	13
2.5.6. FCon	13
2.5.7. PN, NSC, RPN, RLS, SNC	14
2.6. Data Channel	15
2.7. About Flow Control	16
2.8. Samples for Frame Structure	17
2.9. Transmission bit sequence	17
3. Examples	18
3.1. Establish Channels	18
3.2. Frame Transmission	20
3.3. Flow Control	21
3.4. Dealing with the wrong frame	23
3.5. Closing Down Multiplexers	24

Version History

Time	Version	Description	Author
2014-3-26	V0.01	Created	

Abbreviations

DLC:	Data Link Connection
DLCI:	Data Link Connection Identifier
RLS:	Remote Line Status Command
SABM:	Set Asynchronous Balanced Mode
UA:	Unnumbered Acknowledgement
DM:	Disconnected Mode
DISC:	Disconnect (DISC) command
UIH:	Unnumbered information with header check (UIH) command and response
UI:	Unnumbered Information command and response
PSC:	Power Saving Control
CLD:	Multiplexer Close Down
MSC:	Modem Status Command
TE:	Terminal Equipment
MS:	Mobile Station
FC:	Flow Control
RTC:	Ready To Communicate
RTR:	Ready To Receive
IC:	Incoming Call Indicator
DV:	Data Valid
PN:	Parameter Negotiation
FCon:	Flow Control On Command
FCoff:	Flow Control Off Command
NSC:	Non Support Command
RPN:	Remote Port Negotiation
RLS:	Remote Line Status Command
SNC:	Service Negotiation Command
TE:	Terminal Equipment
MS:	Mobile Station

1. Introduction

The present document describes the SIMCOM multiplexer protocol and the technical details of how to make use of it.

1.1. SIMCOM Multiplexer Design Purpose

A device using GPRS or GSM data may wish to receive and transmit multiple streams of data simultaneously. These are Command data (AT commands), GPRS data and GSM circuit switched data (CSD). These streams are essentially independent to one another.

As to the non-multiplexer device, it is so inefficient to deal with only one kind or one channel of data stream during a period of time. Therefore, SIMCOM multiplexer is designed with GSM0710 standard to separate transmission device layer into several logic channels (DLC) in order to transmit data simultaneously. Each channel has its own buffer management and flow control mechanism.

1.2. Architecture Diagram

SIMCOM multiplexer architecture diagram is as following:

SIMCOM Multiplexer is established upon system transmission device layer (Commonly serial port). Data streams are addressed with DLCI value and encapsulated in frames based on GSM 0710 protocol (Chapter 2, SIMCOM Multiplexer Protocol) and transmitted through interface provided by transmission device layer.

1.3. Restrictions

- DC1/XON and DC3/XOFF flow control is not supported
- Error Recovery Mode is not supported
- PN, NSC, RPN, RLS, SNC message frames are not supported
- All the system parameters defined in GSM 0710 are set to default as following table(The max length is 255)

Parameter	Value	Comment
T1 (Acknowledgement Timer)	100 milliseconds	Time that a station will wait for an acknowledgement before resorting to other action
N1 (Maximum Frame Size)	255	Maximum number of octets that may be contained in an information field
N2 (Maximum number of retransmissions)	3	Not used
T2 (Response Timer for multiplexer control channel)	300 milliseconds	Not used
T3 (Response Timer for wake-up procedure)	10 seconds	Amount of time the transmitting station of a power wake-up command waits before raising an alarm when no response is received
K (Window Size)	N/A	Not used

- UI Frames are not supported
- Only supports GSM 0710 Basic Option

1.4. References

- ✓ Digital cellular telecommunications system (Phase 2+). Terminal Equipment to Mobile Station (TE-MS) multiplexer protocol(GSM 07.10 version 7.1.0 Release 1998)
- ✓ SIMCOM AT Commands Set. SIM5360_ATC_V0.08

2. SIMCOM Multiplexer Protocol

SIMCOM Multiplexer protocol provides a data transmission mechanism by establishing DLC between TE and MS. Several DLC can be set up. Each one is independent to one another and has its own management of buffer and flow control. All information transmitted between the TE and MS is conveyed in frames.

2.1. Transmission Frame Structures

The frame structure is composed of an opening and a closing flag, an address field, a control field, a Length field, an information field and FCS field. Please see following table.

Opening Flag	Address Field	Control Field	Length Field	Information Field	FCS Field	Closing Flag
1 byte	1 byte	1 byte	2 byte	Multi-byte	1 byte	1 byte

2.1.1. Opening and Closing Flag Field

Each frame begins and ends with a flag sequence octet which is defined as a constant bit pattern 0xF9

2.1.2. Address Field

The address field consists of a single octet. It contains the Data Link Connection Identifier (DLCI), the C/R bit and the address field extension bit (EA) as following table.

Bit							
1	2	3	4	5	6	7	8
EA	CR	D	L	C	I		

EA bit: According to ISO/IEC 13239:1997, the range of the address field may be extended by use of the EA bit. When the EA bit is set to 1 in an octet, it signifies that this octet is the last octet of the address field. When the EA bit is set to 0, it signifies that another octet of the address field follows. SIMCOM multiplexer only supports one address octet so the EA bit is always set to 1.

C/R bit: The C/R (command/response) bit identifies the frame as either a command or a response.

DLCI bit: Total bits is six, indicates logical channel number. The channel number value range is 0~63.

2.1.3. Control Field

The content of the control field defines the type of frame(Refer to 2.2 frame type). The frame type is six .The control fields of the frames used in the present document are described in the following table.

Bit								HEX[1]	Frame Type	Comment
1	2	3	4	5	6	7	8			
1	1	1	1	P/F	1	0	0	0x2F	SABM	Set Asynchronous Balanced Mode
1	1	0	0	P/F	1	1	0	0x63	UA	Unnumbered Acknowledgement
1	1	1	1	P/F	0	0	0	0x0F	DM	Disconnected Mode
1	1	0	0	P/F	0	1	0	0x43	DISC	Disconnect
1	1	1	1	P/F	1	1	1	0xEF	UIH	Unnumbered Information with Header check
1	1	0	0	P/F	0	0	0	0x03	UI	Unnumbered Information (Optional)

Note: 1. Hex value does not count the bit 5 value.

2.1.4. Length Field

Refer to as follow table:

Bit							
1	2	3	4	5	6	7	8
EA	L1	L2	L3	L4	L5	L6	L7

The L1 to L7 bits indicates the length of the following data field.

The range of the length field may be extended by use of the EA bit. When the EA bit is set to 1 in an octet, it signifies that this octet is the last octet of the length field. When the EA bit is set to 0, it signifies that a second octet of the length field follows. SIMCOM multiplexer only supports EA is 1(one byte)

Note: Length field should always be contained in each frame even though information field is empty.

2.1.5. Information Fields

The information field is the payload of frame and carries the user data information (e.g. AT Command and PPP data packet). The field is octet structured. The information field is only present in UIH frames.

2.2. Frame Type

2.2.1. SABM

SABM is command frame and shall be used to establish DLC between TE and MS. Please refer to 3.1 for more details.

2.2.2. UA

UA frame is the response to SABM or DISC frame. Please see following diagram and refer to 3.1 and 3.6 for more details.

2.2.3. DISC

DISC is command frame and shall be used to close down DLC. Prior to acting the command, the receiving station shall confirm the acceptance of the DISC command by the transmission of a UA response. Please see the diagram above and refer to 3.6 for more details.

2.2.4. DM

The DM response frame shall be used to report a status that DLC is already closed down . Please refer to 3.1 for more details.

2.2.5. UIH

The UIH frame shall be used to send user data,it is command frame or response frame. Please refer to 3.2 for more details.

2.2.6. UI

Not support

2.3. DLC Establishment

TE establishes a DLC by sending a SABM frame to MS with the P-bit set to 1. The address field contains the DLCI value associated with the desired connection. If MS is ready to establish the connection it will reply with a UA frame with the F-bit set to 1. If MS is not ready or unwilling to establish the particular DLC it will reply with a DM frame with the F-bit set to 1. Please refer to 3.1 for more details.

2.4. Closing Down DLC

The release of a DLC will be initiated from by the transmission of a DISC frame with the P-bit set to 1. Confirmation of the DLC release is signaled by MS sending a UA frame with the F-bit set to 1. Once the DLC has been released the MS enter disconnected mode for that particular DLC. If MS receiving the DISC command is already in a disconnected mode it will send a DM response. Please refer to 3.6 for more details.

2.5. Control channel

Multiplexer control channel is the basic channel which is used to establish DLC, launch power saving, wake up from power saving and implement flow control mechanism.

Control channel is the first channel established at the initiation of the multiplexer and it has the DLCI value 0.

UIH message frame is transmitted through control channel. All UIH message frame conform to the following format.

Type	Length	Value 1	Value 2	Value n
------	--------	---------	---------	-------	---------

Type field octet has the following format:

1	2	3	4	5	6	7	8
EA	C/R	T1	T2	T3	T4	T5	T6

T1---T6 is the type coding of information command. Please refer 2.5.1 to 2.5.6 fore more details.

The length field octet has the following structure:

1	2	3	4	5	6	7	8
EA	L1	L2	L3	L4	L5	L6	L7

The message frame is divided into following types:

2.5.1. PSC

Message type coding octet:

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	0	1	0

Hex value is 0x43(Command), 0x41(Response)

TE sends a PSC event frame to MS, MS feeds back a PSC response frame to confirm.

The length field in PSC message frame is 0. It has no value octet.

2.5.2. CLD

Message type coding octet:

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	0	1	1

Hex value is 0xC3 (Command), 0xC1 (Response)

The length field in CLD message frame is 0. It has no value octet.

2.5.3. Test

Message type coding octet:

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	0	0

Hex value is 0x23 (Command), 0x21 (Response)

The test command is used to test the connection between MS and the TE. The length byte describes the number of value bytes, which are used as a verification pattern. The opposite entity shall respond with exactly the same value bytes.

2.5.4. MSC

MSC message frame is designed to convey virtual V.24 control signals.

Message format is:

Type	Length	DLCI	V.24 control signals	Break signals (Optional)
------	--------	------	----------------------	--------------------------

Message type coding octet:

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	1	1

Hex value is 0xE3 (Command), 0xE1 (Response)

V.24 control signals format is:

1	2	3	4	5	6	7	8
EA	FC	RTC	RTR	reserved(0)	reserved (0)	IC	DV

Break signals is set to 0x01.

2.5.5. FCoFF

Message type coding octet is:

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	1	0

Hex value is 0x63 (Command), 0x61 (Response)

The length byte contains the value 0 and there are no value octets

2.5.6. FCon

Message type coding octet is:

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	0	1

Hex value is 0xA3 (Command), 0xA1 (Response)

The length byte contains the value 0 and there are no value octets

2.5.7. PN, NSC, RPN, RLS, SNC

Not Supported.

2.6. Data Channel

Data channels shall be used to transmit user data streams such as AT command data, GPRS data and GSM CSD data streams.

2.7. About Flow Control

SIMCOM multiplexer supports software flow control and can not perform hardware flow control mechanism. Software flow control is implemented by GSM 0710 MSC, FCOFF and FCON message frame.

MS will send MSC message to TE with FC bit set to 1 in V.24 control signals when refuse to accept frames. Whereas, set to 0 to inform recovery of receiving frames.

TE will send MSC message to MS with FC bit set to 1 in V.24 control signals when refuses to accept frames. Whereas, set to 0 to inform recovery of receiving frames. When receiving MSC, MS will feed back MSC response to indicate recover data transmission.

TE also can send FCOFF message to MS when refuses accept anything except control messages on DLC 0. After this, MS will stop sending any frames through all the data channels except control channels. Control channel is still alive and free to send any control message. Whereas, sends FCON to recover transmission. When receiving FCOFF or FCON message, MS will feed back FCOFF or FCON response.

The difference between MSC and FCON, FCOFF is that the former only flow controls one of the data channels, and the latter controls all the data channels except controls channel.

Please refer to 3.4 for more details.

2.8. Samples for Frame Structure

Sample 1:

F9	03	3F	01	1C	F9
Opening Flag	Address Field	Control Field	Length Field	FCS	Closing Flag
Header	DLCI 0	SABM Frame	0, no information filed		Tail

This sample is a SABM frame to open DLCI 0.

Sample 2:

F9	05	EF	09	41 54 49 0D	58	F9
Opening Flag	Address Field	Control Field	Length Field	Information Field	FCS	Closing Flag
Header	DLC 1	UIH Frame	4	AT Command "ATI<CR>"		Tail

This sample is a UIH frame to transmit AT command "ATI<CR>".

Sample 3:

F9	01	EF	0B	E3 07 07 0D 01	79	F9
Opening Flag	Address Field	Control Field	Length Field	Information Field	FCS	Closing Flag
Header	DLC 0	UIH Frame	5	MSC Message, length 3		Tail

This sample is a MSC message carried in UIH frame to transmit V2.4 signal 0x0D.

2.9. Transmission bit sequence

Transmission is based on 1 start bit, 8 data bits, 1 stop bit, and no parity.

All the above mentioned frames format, transmission order starting from bit 1 (the first transmission low bit).

3. Examples

3.1. Establish Channels

Step 1: Launch Multiplexer

No	Step	Data Direction	Hex	Comment
		TE<—>M S		
1	TE launches MS multiplexer function by AT command	—>	61 74 2B 63 6D 75 78 3D 30 0D 0D 0A 4F 4B 0D 0A 0D 0A	AT+CMUX=0<CR><LF>
	MS feed back response	<—	61 74 2B 63 6D 75 78 3D 30 0D 0D 0A 4F 4B 0D 0A 0D 0A	AT+CMUX=0<CR><LF> OK<CR><LF><CR><LF>
	MS changes MS multiplexe function state feeding back response	<—	41542b434d55583d300d 0d0a4f4b0d0a	Note1 After receive ok, host need quickly send the establish DLC0 frame, otherwise the client will exit MUX state.

Note1

The four frame head flag commands transmission has two roles:

- 1) Indicates the MS terminal MUX state initialization is completed;
- 2) Synchronous after TE or MS data out of step.
Here is to play a role of 1)

Step 2: Establish DLC 0

No	Step	Data Direction	Hex	Comment
		TE<—>M S		
1	TE requests to Establishes control channel DLCI 0, using SABM frame	—>	F9 03 3F 01 1C F9	SABM Frame
	MS feeds back UA for receiving SABM and accepts to create DLCI 0	<—	F9 03 73 00 00 A4 F9	UA Frame

Step3: Establish DLC 1, 2

No	Step	Data Direction	Hex	Comment
		TE<—>M S		
1	TE requests to establish DLCI1 using SABM frame	—>	F9 07 3F 01 DE F9	
	MS feeds back UA frame for receiving	<—	F9 07 73 00 00 D7 F9	
2	TE sends MSC message frames	—>	F9 01 EF 0B E3 07 07 0D 01 79 F9	
	MS feeds back MSC response	<—	F9 01 EF 0A 00 E1 05 07 0D 01 96 F9	
3	TE requests to establish DLCI2 using SABM frame	—>	F9 0B 3F 01 59 F9	
	MS feeds back UA frame for receiving	<—	F9 0B 73 00 00 42 F9	
	MS feeds back MSC response	<—	F9 01 EF 0A 00 E1 05 07 0B 0D 01 96 F9	
	TE sends MSC message frames	—>	F9 01 EF 0B E3 07 0B 0D 01 79 F9	
4	MS feeds back MSC response	<—	F9 01 EF 0A 00 E1 05 07 0B 0D 01 96 F9	
5	Establishment of DLC 3, 4 are the same as above			
	By now, 4 channels have come into existence. Multiplexer can work normally			

Note 1

This command is used in order to determine which mode is used of MS Multiplexer.

- 1) MS is using Standard Multiplexer mode if responds with DM frame;
- 2) MS is using Embedded Multiplexer mode if responds with UA frame

Here is Standard Multiplexer mode.

Note 2

SIMCOM multiplexer only supports standard multiplexing mode, so MS feeds back DM frame F9 27 73 00 00 CD F9

3.2. Frame Transmission

After establishment of control channel and data channels, TE and MS can transmit data through UIH frames between each other.

No	Step	Data Direction	Hex	Comment
		TE<—>M S		
1	TE sends AT command "ATI<CR>" through DLC 1	—>	F9 05 EF 09 41 54 49 0D 58 F9	UIH Frame
	MS feeds back through DLC 1	<—	F9 05 EF 08 00 41 54 49 0B 3F F9 F9 05 EF 20 00 0D 0A 53 49 4D 39 30 30 20 52 31 31 2E 30 0D 0A FF F9 F9 05 EF 0C 00 0D 0A 4F 4B 0D 0A 4A F9	UIH Frame
2	TE sends AT command "AT<CR>" through DLC 2"	—>	F9 09 EF 07 41 54 0D 35 F9	UIH Frame
	MS feeds back through DLC 2	<—	F9 09 EF 06 00 61 74 0D EF F9 F9 09 EF 0C 00 0D 0A 4F 4B 0D 0A DF F9	UIH Frame
3	DLC 3, 4 are same as above			

3.3. Flow Control

No	Step	Data Direction	Hex	Comment
		TE<—>M S		
1	MS sends MSC message with FC bit set to 1 through control channel DLC 0 to indicate refusing to accept anything on DLC 1	<—	F9 01 EF 0B E3 07 07 8F 01 79 F9	Note 1
2	MS sends MSC message with FC bit set to 0 through control channel DLC 0 to indicate recovery of DLC 1 data transmission	<—	F9 01 EF 0B E3 07 07 8D 01 79 F9	Note 2
3	TE sends MSC message with FC bit set to 1 through control channel DLC 0 to indicate refusing to accept anything on DLC 1	—>	F9 01 EF 0B E3 07 07 8F 01 79 F9	
4	TE sends MSC message with FC bit set to 0 through control channel DLC 0 to indicate recovery of DLC 1 data transmission	—>	F9 01 EF 0B E3 07 07 8D 01 79 F9	
5	TE sends FCoff message through DLC 0 to indicate refusing to accept anything on all DLC except DLC 0	—>	F9 01 EF 05 63 01 93 F9	Note 3
6	TE sends FCon message through DLC 0 to indicate recovery of data transmission	—>	F9 01 EF 05 A3 01 93 F9	Note 3

Note 1

The FC bit of 8F is set to 1 to indicate data is unable to receive.

Note 2

The FC bit of 8F is set to 0 to indicate recovery of receiving data.

Note 3

TE side controls all channels except DLC 0

3.4. Dealing with the wrong frame

After successful establishment of data channels, Data transmission between TE and MS is normal.

No	Step	Data Direction	Hex	Comment
		TE<---->M S		
1	TE sends hex value 0xF1	----->	F1	Note 1
2	TE tests AT command transmission through DLC 1 after re-sync	----->	F9 05 EF 07 41 54 0D 06 F9	Note 2
	MS feeds back response	<-----	F9 05 EF 07 41 54 0D 67 F9 F9 25 EF 0D 0D 0A 4F 4B 0D 0A 8A F9	

Note 1

Sending illegal hex byte will lead MS to receive a wrong frame.

Note 2

When receiving illegal hex byte between frames, MS will just throw it away automatically and wait for the next frame. If next Frame is legal, the Multiplexer will handle it, and MS will give you a right response; If not, the Multiplexer will still throw it away and wait for the next frame.

3.5. Closing Down Multiplexers

No	Step	Data Direction	Hex	Comment
		TE<—>M S		
1	TE sends DISC frame to request closing down DLC 1	→	F9 07 53 01 3f F9	
	MS feeds back UA frame to accept	←	F9 07 73 00 00 D7 F9	
2	TE sends DISC frame to request closing down DLC 2	→	F9 0b 53 01 B8 F9	
	MS feeds back UA frame to accept	←	F9 0b 73 00 00 42 F9	
3	TE sends DISC frame to request closing down DLC 3	→	F9 0f 53 01 3f F9	
	MS feeds back UA frame to accept	←	F9 0f 73 00 00 31 F9	
4	TE sends DISC frame to request closing down DLC 4	→	F9 13 53 01 3f F9	
	MS feeds back UA frame to accept	←	F9 13 73 00 00 A9 F9	
5	TE sends CLD message frame to request closing down multiplexer through DLC 0	→	F9 03 EF 05 C3 01 F2 F9	
	MS feeds back CLD response to accept	←	F9 01 EF 04 00 C1 01 D3 F9	
6	By now, closing down procedure is over			

Contact us:

Shanghai SIMCom Wireless Solutions Ltd.

Add: Building A, SIM Technology Building, No.633, Jinzhong Road, Changning District, Shanghai, P. R. China 200335

Tel: +86 21 3252 3300

Fax: +86 21 3252 3301

URL: www.sim.com/wm