1 Algebra

Absolute Value Inequalities: $|f(x)| < a \Rightarrow -a < f(x) < a$ $|f(x)| > a \Rightarrow f(x) > a \text{ or } f(x) < -a$

2 Important probability distributions Bernoulli

Parameter $p \in [0,1]$. Discrete, describes the success or failure in a single trial.

$$p_X(k) = \begin{cases} p, & \text{if } k = 1\\ (1-p), & \text{if } k = 0 \end{cases}$$

$$E[X] = p$$

$$Var(X) = p(1-p)$$

Parameter λ . Continuous

Frameter
$$\lambda$$
. Continuous
$$f_X(x) = \begin{cases} \lambda exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$$

$$(1 - exp(-\lambda x), & \text{if } x >= 0$$

$$F_X(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0\\ 0, & \text{o.w.} \end{cases}$$

$$E[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

Normal (Gaussian)

Parameters μ and $\sigma^2 > 0$. Continuous

$$f(x) = \frac{1}{\sqrt{(2\pi\sigma)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$E[X] = \mu$$

 $Var(X) = \sigma^2$

Useful properties:

Poisson

Parameter λ . Discrete, approximates the binomial PMF when n is large, p is small, and $\lambda = np$.

$$(\mathbf{p}_{\mathbf{x}}(k) = exp(-\lambda)\frac{\lambda^k}{k!} \text{ for } k = 0, 1, \dots,$$

$\mathbf{E}[X] = \lambda$ $Var(X) = \lambda$

Uniform 3 Expectation and Variance

Expectation

Variance Covariance

Variance and expectation of mean of n iid random variables

Let $X_1,...,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for all i = 1, 2, ..., n and $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i.$

Variance of the Mean:

$$Var(\overline{X_n}) = (\frac{\sigma^2}{n})^2 Var(X_1 + X_2,...,X_n) = \frac{\sigma^2}{n}.$$

Expectation of the mean:

$$E[\overline{X_n}] = \frac{1}{n}E[X_1 + X_2, ..., X_n] = \mu.$$

4 LLN and CLT

Let $X_1,...,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 \text{ for all } i = 1, 2, ..., n$

Weak and strong law of large numbers:

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P,a.s.} \mu$$
.

$$\frac{1}{n} \sum_{i=1}^{n} g(X_i) \xrightarrow[n \to \infty]{P,a.s.} \mathbf{E}[g(X)]$$

Central Limit Theorem:

$$\sqrt{(n)} \frac{\overline{X_n} - \mu}{\sqrt{(\sigma^2)}} \xrightarrow[n \to \infty]{(d)} N(0, 1)$$

$$\sqrt(n)(\overline{X_n}-\mu)\xrightarrow[n\to\infty]{(d)}N(0,\sigma^2)$$

- 5 Statistical models
- **Estimators**
- 7 Confidence intervals

Onesided **Twosided**

Delta Method

8 Hypothesis tests

Onesided **Twosided**

P-Value

9 Distance between distributions

Total variation

The total variation distance TV between the propability measures *P* and *Q* with a sample space *E* is defined as:

$$TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset E} |\mathbf{P}(A) - \mathbf{Q}(A)|,$$

Calculation with *f* and *g*:

Calculation with
$$f$$
 and g :

$$TV(\mathbf{P}, \mathbf{Q}) = \begin{cases} \frac{1}{2} \sum_{x \in E} |f(x) - g(x)|, & \text{discr} \\ \frac{1}{2} \int_{x \in E} |f(x) - g(x)| dx, & \text{cont} \end{cases}$$

$$L_n : E^n \times \Theta$$

$$(x_1, \dots, x_n, \theta)$$

Symmetry:

$$d(\mathbf{P},\mathbf{Q})=d(\mathbf{Q},\mathbf{P})$$

nonnegative:
$$d(\mathbf{P}, \mathbf{Q}) \ge 0$$

$$d(\mathbf{P}, \mathbf{Q}) \ge 0$$
 definite:

$$d(\mathbf{P}, \mathbf{Q}) = 0 \iff \mathbf{P} = \mathbf{Q}$$

triangle inequality: $d(\mathbf{P}, \mathbf{V}) \leq d(\mathbf{P}, \mathbf{Q}) + d(\mathbf{Q}, \mathbf{V})$

If the support of **P** and **Q** is disjoint: $d(\mathbf{P}, \mathbf{V}) = 1$

TV between continuous and discrete r.v: $d(\mathbf{P}, \mathbf{V}) = 1$

KL divergence

the KL divergence (also known as relative entropy) KL between between the propability measures P and Q with the common sample space E and pmf/pdf $L_n(x_1,...,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{n\lambda}$ functions f and g is defined as:

$$KL(\mathbf{P}, \mathbf{Q}) = \begin{cases} \sum_{x \in E} p(x) \ln\left(\frac{p(x)}{q(x)}\right), & \text{discr} \\ \int_{x \in E} p(x) \ln\left(\frac{p(x)}{q(x)}\right) dx, & \text{cont} \end{cases}$$

Not a distance Asymetric in general: $KL(\mathbf{P}, \mathbf{O}) \neq KL(\mathbf{O}, \mathbf{P})$ Nonnegative: $KL(\mathbf{P}, \mathbf{Q}) \ge 0$

Definite: if P = Q then KL(P, Q) = 0

Does not satisfy triangle inequality in general: $KL(\mathbf{P}, \mathbf{V}) \leq KL(\mathbf{P}, \mathbf{Q}) + KL(\mathbf{Q}, \mathbf{V})$

Estimator of KL divergence:

$$KL(\mathbf{P}_{\theta_{-}}, \mathbf{P}_{\theta}) = const - \mathbf{E}[ln(p_{\theta}(X))]$$

$$\widehat{KL}(\mathbf{P}_{\theta_{\sigma}}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta}(X_i))$$

10 Likelihood

Discrete Likelihood

Let $(E, \{P_{\theta}\}_{\theta \in \Theta})$ denote a discrete statistical model. Let p_{θ} denote the pmf of P_{θ} . Let $X_1, ..., X_n \stackrel{iid}{\sim} P_{\theta^*}$ where the parameter θ^* is unknown. Then the likelihood is the function

$$L_n: E^n \times \Theta \\ (x_1, \dots, x_n, \theta)$$

Bernoulli Variables:

$$L_n(x_1,...,x_n,p) = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$= L_n = \prod_{i=1}^n (x_i p + (1 - x_i)(1 - p))$$

Poisson Variables:

$$L_n(x_1,...,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{n\lambda_n}$$