HPCC Systems

O Grupo RELX

RELX é um provedor global de análises baseadas em informações e ferramentas de decisão para clientes profissionais e empresariais. O Grupo atende clientes em mais de 180 países e possui escritórios em cerca de 40 países, com um total que supera 36 mil contribuidores.

Saiba mais em www.relx.com

Científico

Eventos

Análise de risco

Legal

HPCC Systems: Ativos e Clientes

• 12 petabytes de dados públicos e privados

Unidade	Símbolo	Número de Bytes
Kilobyte	КВ	2^10 = 1024 bytes
Megabyte	MB	2^20 = 1,048,576 bytes
Gigabyte	GB	2^30 = 1,073,741,824 bytes
Terabyte	ТВ	2^40 = 1,099,511,627,776 bytes
Petabyte	PB	2^50 = 1,125,899,906,842,624 bytes
Exabyte	EB	2^60 = 1,152,921,504,606,846,976 bytes
Zettabyte	ZB	2^70 = 1,180,591,620,717,411,303,424 bytes
Yottabyte	YΒ	2^80 = 1,208,925,819,614,629,174,706,176 bytes

HPCC Systems: Ativos e Clientes

- 12 petabytes de dados públicos e privados
- 9 dos 10 maiores bancos do mundo

270+ milhões de transações por hora

• 100% dos 50 maiores bancos americanos

• Clientes em mais de 180 países

 98 das 100 maiores seguradoras do mundo

84% dos integrantes da Fortune 500

 Mais de 7500 órgãos governamentais: locais, estaduais e federais

A LexisNexis Risk Solutions

Estrutura no Brasil

Total de 140 colaboradores

Área de atuação

Análise de dados para organizações que buscam gerenciar riscos, encontrar oportunidades e melhorar seus resultados. Sediada em Atlanta, Geórgia, a LexisNexis Risk Solutions tem mais de 11.000 funcionários ao redor do mundo.

Tecnologia de código aberto

Plataforma de computação de Big Data de código aberto chamada HPCC Systems com vastos ativos de dados para proporcionar inteligência de decisão para clientes.

A plataforma HPCC Systems

- Stack para big data
- Processamento paralelo
- Dados distribuídos
- Código aberto
- Gratuita

"Funil" de dados no HPCC Systems

Cadeia de Big Data em HPCC Systems

High Performance Computing Cluster (HPCC)

Breve histórico do HPCC Systems

2001

Primeira versão da plataforma é lançada 2011

Código aberto (licença Apache e código no GitHub) 2012 - 16

Melhorias contínuas com **FOCO NA QUALIDADE**

Suporte e treinamento aprimorado

2017- Presente

Aprimoramentos de arquitetura (Cloud)

Desenvolvimentos em Machine Learning

I.A. generative e afins

Visão geral do stack

Cluster Thor

Extração, transformação e carregamento de dados

Cluster ROXIE

Entrega online de consultas em big data

Ferramentas para manipulação de dados

Perfilamento, limpeza, consolidação e linking de dados

Bibliotecas de Machine Learning

Supervisionado, não-supervisionado, aprendizagem profunda

Conectividade

Plugins de integração com outros sistemas

Os componentes da plataforma

Jornada em direção à nuvem

Bibliotecas de perfilamento de dados

Bibliotecas de machine learning

Não supervisionado

Clusterização

DBSCAN

K-Means

PLN

Text Vectors
Levenshtein Deletion

Neighborhood

Redução de Dimensão
PCA

Supervisionado

Classificação

SVM

Árvores de decisão

Regression logística

Classification Forest

Alocação Latente de Dirichlet (Topic Modeling)

Regressão

Regressão linear

GLM

Regression Forest

Redes neurais & Deep Learning

Autoencoders

Redes neurais convolucionais

Redes neurais recorrentes

Perceptrons

Métodos ensemble

Random Forest

Gradient Boosted Forest

Gradient Boosted
Trees

Plugins para conectividade

WsSQL

TOMBOLO

SPARK

JDBC/ODBC Driver

KAFKA

PENTAHO

Couchbase

Tableau

SQS

Java API

MEMCACHED

REDIS

Linguagens suportadas

- C++
- R
- Python

- Java
- Cassandra
- SQL/SqLite

```
CODE: SELECT ALL

IMPORT python;
SET OF STRING split(STRING text) := EMBED(python)
  return text.split()
ENDEMBED;
split('Once upon a time');
```

```
⊗HPCC<sup>™</sup>
S Y S T E M S
```

CODE: SELECT ALL IMPORT python; r := RECORD STRING word; UTF8 tags; END; DATASET(R) tag(STRING text) := IMPORT(python, './ex2.tag'); tag('Once upon a time there was a boy called Richard');

```
CODE: SELECTALL

IMPORT MySQL;

stringrec := RECORD

string name

END;

sqlrec := RECORD

string ssn;

string address;

END;

DATASET (sqlrec) MySQLJoin(dataset(stringrec) inrecs) := EMBED(mysql)

SELECT * from tbl1 where name = ?;

ENDEMBED;

MySQLJoin(indata);
```

Linguagem ECL

```
// Elementos constituintes basicos da ECL
// Uma definicao
Mydef := 'Olá mundo'; // definicao do tipo "value"
// Uma acao
OUTPUT('Olá mundo');
OUTPUT(mydef);
// Estruturas de dados basicas em ECL
// Estrutura RECORD
rec := RECORD
 STRING10 Firstname;
            Lastname:
 STRING1 Gender:
  UNSIGNED1 Age;
 INTEGER Balance;
 DECIMAL7_2 Income;
// Declaracao DATASET
ds := DATASET([{'Alysson', 'Oliveira', 'M', 26, 100, 1000.50},
               {'Bruno', 'Camargo', '', 22, -100, 500.00},
               {'Elaine', 'Silva', 'F', 19, -50, 750.60},
               {'Julia', 'Caetano', 'F', 45, 500, 5000},
               {'Orlando', 'Silva', 'U',67,300,4000}],rec);
OUTPUT(ds);
```

```
HPCC
SYSTEMS
```

```
recset := ds(Age<65);</pre>
recset := ds(Age<65,Gender='M');</pre>
IsSeniorMale := ds.Age>65 AND ds.Gender='M'; //definição do tipo "boolean"
SetGender := ['M','F']; //definicao do tipo "set"
recset := ds(Gender IN SetGender);
COUNT(recset); //Equivale a: OUTPUT(COUNT(recset));
tbl := TABLE(ds,{Firstname,LastName,Income});
sortbl := SORT(tbl,LastName);
sortbl;
dedptbl := DEDUP(sortbl,LastName);
dedptbl;
rec2 := RECORD
  UNSIGNED recid:
    STRING10 Firstname;
              Lastname;
               Gender;
    UNSIGNED1 Age;
              Balance;
    DECIMAL7_2 Income;
rec2 MyTransf(rec Le, UNSIGNED cnt) := TRANSFORM
  SELF.recid:=cnt;
  SELF := Le:
newds := PROJECT(ds,MyTransf(LEFT,COUNTER));
```

Macros nativas

 Processo de ingestão para qualquer conjunto de registros

```
FM Upper(Ds):= FUNCTIONMACRO
  #EXPORTXML(Data, RECORDOF(Ds));
  #DECLARE(newrecord)
  #SET(newrecord, 'newrecord := RECORD \n')
 #FOR(Data)
   #FOR(Field)
      #IF(%'@type'% = 'string')
          #APPEND(newrecord,%'@ecltype'%+' '+%'@label'%+':= std.Str
      #FLSE
          #APPEND(newrecord, #TEXT(Ds)+'.'+%'@label'%+';\n')
 #APPEND(newrecord, '\nEND;')
  #APPEND(newrecord, '\nsaida := TABLE('+#TEXT(Ds)+', newrecord);
RETURN %'newrecord'%;
ENDMACRO:
OUTPUT(FM Upper(DsTeste));
```



```
newrecord := RECORD
  DsTeste.id:
  string10 name:= std.Str.ToUpperCase(DsTeste.name);
  string10 lastname:= std.Str.ToUpperCase(DsTeste.lastname);
  DsTeste.age;
  string field1:= std.Str.ToUpperCase(DsTeste.field1);
  string field2:= std.Str.ToUpperCase(DsTeste.field2);
  string field3:= std.Str.ToUpperCase(DsTeste.field3);
  string field4:= std.Str.ToUpperCase(DsTeste.field4);
  string field5:= std.Str.ToUpperCase(DsTeste.field5);
  string field6:= std.Str.ToUpperCase(DsTeste.field6);
  string field7:= std.Str.ToUpperCase(DsTeste.field7);
  string field8:= std.Str.ToUpperCase(DsTeste.field8);
  string field9:= std.Str.ToUpperCase(DsTeste.field9);
  string field10:= std.Str.ToUpperCase(DsTeste.field10);
  string field11:= std.Str.ToUpperCase(DsTeste.field11);
  string field12:= std.Str.ToUpperCase(DsTeste.field12);
  string field13:= std.Str.ToUpperCase(DsTeste.field13);
  string field14:= std.Str.ToUpperCase(DsTeste.field14);
  string field15:= std.Str.ToUpperCase(DsTeste.field15);
  string field16:= std.Str.ToUpperCase(DsTeste.field16);
  string field17:= std.Str.ToUpperCase(DsTeste.field17);
  string field18:= std.Str.ToUpperCase(DsTeste.field18);
  string field19:= std.Str.ToUpperCase(DsTeste.field19);
  string field20:= std.Str.ToUpperCase(DsTeste.field20);
saida := TABLE(DsTeste, newrecord);
OUTPUT (saida):
```

I.A. Generativa

Write an initial code for a data ingestion action for a dataset with 12 different definitions, being each one of them a different month of the year

```
EXPORT monthsIngestion := MODULE
    EXPORT months := RECORD
        STRING Jan;
        STRING Feb;
        STRING Mar;
        STRING Apr;
        STRING May;
        STRING Jun;
        STRING Jul;
        STRING Aug;
        STRING Sep;
        STRING Oct;
        STRING Nov;
        STRING Dec;
    EXPORT ds := DATASET(yourFile,months,CSV);
END;
```


Relacionamento com Academia

Universidade de São Paulo Brasil

Universidades Brasileiras

Universidade de São Paulo Brasil

- Disciplina Optativa na Poli/USP (<u>Link</u> para a disciplina)
- Cursos de Difusão (Fundação Vanzolini)
- Co-orientação de IC's (PIBIC)
- Co-Orientação de TCC's

- Co-Orientação de IC's
- Co-Orientação de TCC's e Metrados
 - Artigos publicados (ERAD/RS, CotB, Fusion, etc)
 - Apresentações no HPCC Summit
- Compra de equipamentos

Universidades Brasileiras

- Cursos de Difusão
- Co-orientação de IC's (PIBIC)
- Co-Orientação de TCC's

Universidades Estrangeiras

- Pesquisas de Doutorado
 - Deep Learning, Machine Learning, Text Mining, Natural Language Processing

- Estagiários
 - Machine Learning

Projetos de Pesquisa, Mentorias e Parcerias Acadêmicas

Site: https://hpccsystems.com/community/academics

- Programa de Estágio
- Mentorias Acadêmicas
- Bolsas de Estudo
- Publicações Acadêmicas
- Treinamentos

Código Aberto

Github: https://github.com/hpcc-systems

- Linguagem: C++
- Repositório bastante ativo
 - 250+ Commits nos últimos 30 dias
- Documentação
 - Arquivos README.md dentro do repositório
 - Site do HPCC (https://hpccsystems.com/training/documentation)
- Tickets
 - https://track.hpccsystems.com/secure/Dashboard.jspa

Minicurso amanhã

Minicurso 5

Processamento e análise de Big Data para aplicação de algoritmos de Machine Learning através da plataforma HPCC Systems

Horário e local: 24/04 (8:30 - 11:30) — LAB2

Resumo: Ao longo do minicurso os participantes terão a oportunidade de conhecer os conceitos essenciais de processamento e análise de volumes massivos de dados (Big Data), e o processo de desenvolvimento de um serviço de consulta através da utilização da plataforma open-source composta por um Cluster Computacional de Alto Desempenho (HPCC Systems), assim como a aplicação de algoritmos de Aprendizado de Máquina, e a possibilidade de aplicar os conhecimentos adquiridos em um ambiente de treinamento disponibilizado em sala de aula.

Autores

Alysson Oliveira

Alysson Oliveira é formado em Engenharia de Computação pela USP e atual engenheiro de software na LexisNexis Risk. Sua principal atuação gira em torno do suporte e desenvolvimento de programas de treinamento para a plataforma HPCC Systems no Brasil, abrangendo o público acadêmico, pesquisadores e profissionais da área da computação e de dados. Também busca estabelecer parcerias com universidades a fim de oferecer aos alunos de graduação a oportunidade de trabalhar em projetos científicos.

Considerações Finais & Perguntas

• Alysson.Oliveira@lexisnexisrisk.com

• Mauro.marques@lexisnexisrisk.com

