Mathematical Methods in Engineering and Applied Science.

Prof. A. Kasimov. Skoltech. F2021

Problem Set 9. Due on Dec. 12 at 23:59.

- (1) For the equation $\ddot{x} + \mu (x^2 + \dot{x}^2 1) \dot{x} + x = 0$, where $\mu > 0$:
 - (a) Find and classify all the fixed points.
 - (b) Show that the system has a circular limit cycle and find its amplitude and period.
 - (c) (Extra credit). Determine the stability of the limit cycle. Give an argument which shows that the limit cycle is unique, i.e., there are no other periodic trajectories.
- (2) Investigate the phase plane of the system $\dot{x} = y$, $\dot{y} = x(\mu x^2)$, for $\mu < 0$, $\mu = 0$, and $\mu > 0$. Describe the bifurcation as μ increases through zero.
- (3) Consider the equation $\ddot{x} + \mu f(x)\dot{x} + x = 0$, where f = -1 for |x| < 1 and f = 1 for $|x| \ge 1$.
 - (a) Show the system is equivalent to $\dot{x} = \mu (y F(x)), \dot{y} = -x/\mu$ where

$$F = \begin{cases} x + 2, & x \le -1 \\ -x, & |x| < 1 \\ x - 2, & x \ge 1. \end{cases}$$

- (b) Graph the nullclines.
- (c) Show that the system exhibits relaxation oscillations for $\mu \geq 1$, and plot the limit cycle in the (x, y) plane.
- (d) (Extra credit). Estimate the period of the limit cycle for $\mu \gg 1$.
- (4) Consider the system

$$\dot{x} = -y + \mu x + xy^2, \quad \dot{y} = x + \mu y - x^2.$$

- (a) Linearize about the origin and determine the type of the fixed point.
- (b) Write down the system to find all the fixed points. Eliminate y to find the equation for $x_c(\mu)$. Make a plot of this function to find out how many fixed points there are for given μ .
- (c) Investigate numerically the nature of the solutions on a phase plane as μ varies about $\mu = 0$.
- (d) What is the type of the bifurcation that takes place as μ crosses 0?
- (e) Rewrite the system in polar coordinates $x = r \cos \vartheta$, $y = r \sin \vartheta$ and approximate the system assuming r small. Show that to leading order the system becomes

$$\dot{r} = \mu r + \frac{1}{8}r^3, \quad \dot{\theta} = 1,$$

and hence one can expect a limit cycle of radius $r \approx \sqrt{-8\mu}$ when $\mu < 0$. Confirm this numerically.

(5) (Extra credit). Consider the system

$$\dot{x} = y, \quad \dot{y} = x^2 - y - \mu.$$

1

- (a) Analyze the fixed points of the system at all possible μ .
- (b) What type of bifurcation takes place as μ crosses 0?
- (c) Draw the bifurcation diagram in the space of x_c vs μ , where x_c is the critical point.
- (d) Plot the phase plane at $\mu = 0.01$.