Ex6.1 Nonsingular Curve which Is Birational but Not Isomorphic to \mathbb{P}^1 .

Y を \mathbb{P}^1 と同型でない nonsingular rational curve とする. rational は Ex4.4 で定義されていて、 \mathbb{P}^1 と birational であることを意味する. したがって Them3.4 と Cor4.5 より $K:=K(Y)\cong K(\mathbb{P}^1)=k[u,v]_{((0))}$. また、Y が \mathbb{P}^1 と同型でないことから $\mathcal{O}(Y)=:R\not\equiv k=\mathcal{O}(\mathbb{P}^1)$. $K(Y)\cong K(\mathbb{P}^1)$ の同型写像を用いて $R\subset K(\mathbb{P}^1)$ と考える.

(a) Y is isomorphic to an open subset of \mathbb{A}^1 .

 $R \neq k$ より、Y 全体で定義される定数でない regular function $\alpha \in R \setminus k$ がとれる.

- (b) Y is affine.
- (a) より $Y \equiv \mathbb{A}^1 \setminus \{P_1, \dots, P_s\}$ となる $\{P_1, \dots, P_s\}$ が存在する。この時 $f = (x P_1) \cdots (x P_s)$ とすれば、 $Y \equiv \mathbb{A}^1 \setminus \mathcal{Z}_a(f)$. なので Lemma4.2 より Y は affine.
- (c) A(Y) is UFD.

 \mathbb{A}^2 の coordinate variable を x,y とする.Lemma4.2 より, $A(Y)=k[x]_f$.Ati-Mac Prop3.11 より,局所化 $k[x]_f$ のイデアルはすべて拡大イデアルである.すなわち, $k[x]_f$ の任意のイデアル \mathfrak{a} に対して $k[x]_f$ のイデアル \mathfrak{a}' が存在し, \mathfrak{a} は \mathfrak{a}' の元を $x\mapsto x/1$ で写したもので生成される.k[x] は PID だから, $k[x]_f$ も PID.PID ならば UFD であることは代数概論にもある.

Ex6.2 An Elliptic Curve

 $f=y^2-x^3+x$ を考えよう、 $Y=\mathcal{Z}_a(f)\subset\mathbb{A}^2$ とし、考える体 k の標数は 2 でないとする、また、 $K=K(Y), A=A(Y), \bar{x}=x+(f), \bar{y}=y+(f)$ とする、

(a) Y :: nonsingular, and A :: integrally closed domain.

Y が nonsingular affine curve であることは次の連立方程式が解を持たないことと同値である.

$$y^2 - x^3 + x = -3x^2 + 1 = 2y = 0.$$

 $char k \neq 2$ なので、これは以下と同値。

$$x(x+1)(x-1) = -3x^2 + 1 = 0.$$

これは明らかに解を持たない.

さらに affine curve Y については以下のような同値な命題の列があるので,A が integrally closed domain であることがわかる.

Y :: nonsingular affine curve

 \iff $\forall P \in Y, \mathcal{O}_{P,Y} :: \text{regular local ring}$

 \iff $\forall P \in Y, \mathcal{O}_{P,Y} :: integrally closed domain$

 $\iff Y :: \text{normal affine curve}$

 \iff A(=A(Y)) :: integrally closed domain

Them 5.1, Them 6.2, Ex 3.17d を用いた.

(b) $k[\bar{x}]$:: polynomial ring, and A is the integral closure of $k[\bar{x}]$ in K.

 \bar{x} が k 上超越的であることを示そう。仮に超越的でない,すなわち代数的であるとすると,多項式 $p(X) \in k[X]$ が存在して $p(\bar{x}) = 0$ となる.これは $p(x) \in (f)$ と同値.したがって $\mathcal{Z}_a(p) \subseteq \mathcal{Z}_a(f) = Y$ と同値である.仮に p(x) の k における解の 1 つを α とすると,p(x) が y を含まないので,以下が成り立つことが必要.

$$\mathcal{Z}_a(x-\alpha)\subseteq Y$$
.

なので $y^2-\alpha^3+\alpha=0$ が恒等式になる. しかしこれは不可能. よって \bar{x} は k 上超越的であり, したがって $k[\bar{x}]$ は polynomial ring である.

 $k[\bar{x}]$ は polynomial ring だから, $k[\bar{x}]$ は Y の任意の局所環に含まれる.Ati-Mac Cor5.22 より $k[\bar{x}]$ の integral closure は $k[\bar{x}]$ を含むすべての付値環の共通集合.Y は nonsingular であるから Them6.2 より Y の任意の局所環は付置環である.したがって以下が言える.

the integral closure of
$$k[\bar{x}] = \bigcap_{P \in Y} A_{\mathfrak{m}_P} = \bigcap_{\mathfrak{m} \in \operatorname{Max}(A)} A_{\mathfrak{m}}.$$

最右辺は Them3.2 の証明で述べられているように A に等しいから, $k[\bar{x}]$ の integral closure は A.

(c) Properties of the Norm.

A の自己準同型 σ を $\bar{x}\mapsto \bar{x}; \bar{y}\mapsto -\bar{y}$ で定義する。 σ は明らかに $\sigma^2=\mathrm{id}$ で、巡回群をなす。これを用いて norm N を $a\in A\mapsto a\cdot\sigma(a)$ と定義する。これは体拡大 $K/k(\bar{x})$ の norm(対論で用いられる)である。

 σ で fix される元がなす A の部分環を考える. $\sigma(\bar{x}^m\bar{y}^n)=(-1)^n\bar{x}^m\bar{y}^n$ と $-1\neq 1$ より, \bar{y} の次数が偶数であるような単項式が fix される. よって,

$$A^{\langle \sigma \rangle} = k[\bar{x}, \bar{y}^2] = k[\bar{x}, \bar{x}^3 - \bar{x}] = k[\bar{x}].$$

 $\sigma(N(a))=\sigma(a)\cdot\sigma^2(a)=N(a)$ より, im $N\subset k[\bar x]$. また $N(1)=1\cdot\sigma(1)=1$, $N(ab)=ab\cdot\sigma(a)\sigma(b)=N(a)N(b)$ が成り立つ.

(d) The units of $A = k^{\times}$, and \bar{x}, \bar{y} :: irreducible elements.

単元 $u \in A^{\times}$ をとる. (b) で示したことから、以下がわかる.

$$1 = N(uu^{-1}) = N(u)N(u^{-1}) \in k[\bar{x}].$$

したがって N(u) は $k[\bar{x}]$ の単元であるが,すでに示したとおり $k[\bar{x}]$ は polynomial ring なので $N(u)=u\cdot\sigma(u)\in k^{\times}$. $\mathcal{Z}_a(N(u))$ を考えると,

$$\mathcal{Z}_a(N(u)) = \mathcal{Z}_a(u) \cup \mathcal{Z}_a(\sigma(u)) = \emptyset.$$

なので $\mathcal{Z}_a(u) = \emptyset$ であり、したがって $u \in k^{\times}$.

 \bar{x} が irreducible でないと仮定しよう. すると $\bar{x} = uv$ となる非単元 $u, v \in A \setminus k^{\times}$ がある.

$$u = \alpha \bar{x} + \beta \bar{y} \ \text{ where } \ \alpha, \beta \in A$$

とおこう。すると $(\alpha v-1)\bar{x}+\beta v\bar{y}=0$ が成り立つ。 $v\in A$ は非単元だから $\alpha v\neq 1$. よって $\bar{x}=\frac{\beta v}{1-\alpha v}\bar{y}$ となる。このことから Y は y 軸全体を含むか,または x 軸との交点は (0,0) のみとなるか,どちらかになる。しかし実際はどちらでもなく,矛盾。よって \bar{x} は irreducible。

 \bar{y} が irreducible でないと仮定すると、同様にして以下にできる.

$$\bar{y} = \omega \bar{x}$$
 where $\omega \in k(\bar{x}, \bar{y})$.

これを f に代入すると, $\bar{x}(\bar{x}^2+\omega^2\bar{x}-1)=0$ が得られる.Y は y 軸全体 $(=\mathcal{Z}_a(x))$ を含まないので

$$\bar{x}^2 + \omega^2 \bar{x} - 1 = 0.$$

これは Y 上の任意の点で成り立つ方程式であるから Y は y 軸と交わらない. しかし実際は交わるので 矛盾.

(e) Y :: not rational curve.

A において、以下の等式が成り立つ。

$$\bar{y}^2 = \bar{y} \cdot \bar{y} = \bar{x} \cdot (\bar{x} - 1) \cdot (\bar{x} - 1).$$

 \bar{x}, \bar{y} は既約元であるから、これは \bar{y}^2 に 2 つの既約元分解を与えている.よって A=A(Y) は UFD でなく、同時に Y は明らかに \mathbb{P}^1 と同型でない.これらのことから $\operatorname{Ex6.1c}$ より Y は rational でない.

Ex6.3 Give counterexample to Prop6.8.

- \blacksquare If dim $X \geq 2$.
- \blacksquare If Y :: not projective variety.

Ex6.4 Make surjective morphism $\phi: Y \to \mathbb{P}^1$ from nonconstant rational function.

Y :: nonsingular projective curve とする. Y 上の任意の定数でない rational function f=g/h に対して以下のように写像を定める.

$$\phi: \quad Y \quad \to \qquad \mathbb{P}^1$$

$$P \quad \mapsto \quad (1:f(P)) = (h(P):g(P))$$

TODO: これが surjective morphism であることを示す.

Ex6.5 Subvariety of nonsingular projective curve is closed subset.

Ex6.6 Automorphisms of \mathbb{P}^1 .

 $\mathbb{P}^1 = \mathbb{A}^1 + \{\infty\}$ を考える. Fractional linear transformation of \mathbb{P}^1 を以下のような写像と定める.

$$x \mapsto \frac{ax+b}{cx+d}$$
 where $a,b,c,d \in k, ad-bc \neq 0$.

Fractional linear transformation of \mathbb{P}^1 全体を PGL(1) と書く.

(a) $(ax+b)/(cx+d) \in PGL(1)$ induces an automorphism of \mathbb{P}^1 .

 $\frac{ax+b}{cx+d}$ の逆写像は $\frac{-dx+b}{cx-a}$ である.これらは明らかに \mathbb{P}^1 の定数でない rational function.($\mathbb{P}^1=\mathbb{A}^1+\{\infty\}$ と考えていることに注意.必要なら x=u/v と斉次化せよ.) Ex6.4 より, \mathbb{P}^1 の automorphism が誘導される.

(b) Aut $\mathbb{P}^1 \cong \operatorname{Aut} k(x)$.

 $\phi \in \operatorname{Aut} \mathbb{P}^1$ を任意に取ると、以下のように k(x) の自己同型写像が誘導される.

$$\phi^*: \quad k(x) \quad \to \quad k(x)$$
$$\frac{g}{h}(x) \quad \mapsto \quad \left(\frac{g}{h} \circ \phi\right)(x)$$

これが自己同型であることは morphism の定義から明らか.

逆に $\psi \in \operatorname{Aut} k(x)$ を任意に取ると、以下のように \mathbb{P}^1 の自己同型写像が誘導される.

$$\begin{array}{cccc} \psi_*: & \mathbb{P}^1 & \to & \mathbb{P}^1 \\ & a & \mapsto & (\psi(x))(a) \end{array}$$

 $\psi(x) \in k(x)$ に注意.

(c) Aut k(x) = PGL(1), and then Aut $\mathbb{P}^1 \cong PGL(1)$.

k(x) の自己準同型は x の像で決定されることは明らか、そこで $\mathrm{Aut}\,k(x)$ のある元 ψ は x を $f/g\in k(x)$ に写すとしよう、この時,f,g は高々 1 次式でなくては ψ が inverse morphism を持たないことを示す。

X = f/g としよう.

$$X = \frac{a_n x^n + \dots + a_0}{b_n x^n + \dots + b_0}$$
 where $\{a_i\}, \{b_j\} \subset k, a_n \text{ or } b_n \neq 0.$

必ずしも分子分母の次数は n でないが n 以下であることに注意せよ. X の値が与えられた時, $\psi^{-1}(X)$ は以下の方程式の解集合である.

$$(a_n - Xb_n)x^n + (a_{n-1} - Xb_{n-1})x^{n-1} + \dots + (a_0 - Xb_0) = 0.$$

 ψ が全単射ならば任意の X について $\psi^{-1}(X)$ は一点集合である. よって n=1, すなわち $\mathrm{Aut}\,k(x)\subseteq PGL(1)$. 逆の包含関係は明らかだから、主張が示せた.

Ex6.7 If $\mathbb{A}^1 - \{P_1, \dots, P_s\} \equiv \mathbb{A}^1 - \{Q_1, \dots, Q_t\}$ then s = t. Converse?