Demostracions

1 Demostració directa

Considerem A_1, A_2, \ldots, A_n un conjunt d'hipòtesis, i una afirmació B. Volem demostrar que si A_1, \ldots, A_n , llavors B.

Es procedeix acceptant les hipòtesis. Es raona amb les hipòtesis, les definicions i resultats previs. Finalment s'acaba justificant B.

Estructura

Demostració. Suposem A_1, \ldots, A_n .

Arguments.

Per tant B.

1.0.1 Exemples

Proposició 1.1. Siguin $a, b, c \in \mathbb{Z}$. Si a|b i b|c, llavors a|c.

Demostraci'o. Suposem que $a,b,c\in\mathbb{Z}$ i a|b i b|c. Es vol veure que a|c.

Si a|b, llavors b=an per $n\in\mathbb{Z}$. De la mateixa manera, b|c vol dir c=mb per $m\in\mathbb{Z}$. Per tant, c=amn. Com que $mn\in\mathbb{Z}$, llavors es conclou que a|c.

Proposició 1.2. Si $n \in \mathbb{Z}$ és parell, llavors n^2 també és parell.

Demostració. Suposem que n és parell. Per tant n=2a per $a\in\mathbb{Z}$.

$$n^2 = (2a)^2 = 4a^2 = 2(2a^2)$$

Com que $2a^2 \in \mathbb{Z}$, llavors n^2 és parell.

2 Demostracions per contrarecíproc

Demostracions basades en $A \to B \equiv \neg B \to \neg A$. Suposem $\neg B$ i mostrem que llavors $\neg A$.

2.0.1 Exemples

Proposició 2.1. Si n^2 és parell, llavors n també és parell.

Demostració. Suposem que n no és parell. Llavors n és senar, per tant es pot expressar com a n=2k+1 per $k\in\mathbb{Z}$.

$$n^2 = (2k+1)^2 = 4k^2 + 1 + 4k = 2(2k^2 + 2k) + 1$$

Per tant n no és parell si n^2 tampoc ho és. Es conclou que si n^2 és parell, llavors n també ho és.

Proposició 2.2. Si $a, b \in \mathbb{R}$ són tals que $a \cdot b \notin \mathbb{Q}$, llavors o $a \notin \mathbb{Q}$ o $b \notin \mathbb{Q}$.

Demostraci'o. Suposem que a i b són racionals, llavors es poden escriure com $a=\frac{p}{q}$ i $b=\frac{r}{s}$ per $p,q,r,s\in\mathbb{Z}$ i $q,s\neq 0$. Llavors, $a\cdot b=\frac{p\cdot r}{q\cdot s}$ amb $q\cdot s\neq 0$. Per tant $a\cdot b\in\mathbb{Q}$.

3 Demostracions per reducció a l'absurd

Volem demostrar A. Per fer-ho, suposem $\neg A$. Es raona fins que s'arriba a una contradicció. Per tant es conclou que $\neg A$ és impossible i per tant A.

També es pot aplicar a condicionals. Volem demostrar que $A \to B$. Suposem que $\neg(A \to B) \equiv (A \land \neg B)$. Es raona fins que es troba una contradicció. Per tant $A \to B$.

3.0.1 Exemples

Proposició 3.1. El nombre $\sqrt{2}$ és irracional.

Demostració. Per contradicció. Suposem que $\sqrt{2} \in \mathbb{Q}$. Llavors $\sqrt{2} = \frac{p}{q}$ per $p, q \in \mathbb{Z}$ coprimers.

$$(\sqrt{2})^2 = \frac{p^2}{q^2} \Rightarrow 2q^2 = p^2$$

Per tant p^2 és parell i p també ho és. Llavors podem p=2a per $a\in\mathbb{Z}$.

$$(\sqrt{2})^2 = \frac{(2a)^2}{q^2} \Rightarrow 2q^2 = 4a^2 \Rightarrow q^2 = 2a^2$$

Per tant q^2 és parell i q també ho és. Tant p com q són parells, cosa que contradiu la hipòtesi inicial que q i p són coprimers. S'arriba a una contradicció, per tant $\sqrt{2} \notin \mathbb{Q}$.

Definició 3.1 (Nombre primer). Un nombre natural n és primer si i només si $n \geq 2$ i els únics divisors de n són 1 i n mateix.

Fet 3.1. Tot nombre natural major o igual que 2 té com a mínim un divisor primer.

Fet 3.2. Si x|a i x|a+b, llavors x|b.

Proposició 3.2. Hi ha un nombre infinit de nombres primers.

Demostració. Suposem que hi ha un nombre finit de primers. Llavors els podem posar en una llista finita p_1, p_2, \ldots, p_k . Considerem el número $a = p_1 p_2 p_3 \cdots p_k + 1$. És sap que A té un divisor p que és primer. Donat a que els únics primers són els de la llista, existeix un $i \in [1, k]$ tal que $p = p_i$. Llavors $p|p_1p_2\cdots p_k$ i p|a. Llavors p ha de dividir el nombre 1, per tant p=1 i p no és primer. S'arriba a una contradicció i per tant hi ha un nombre infinit de nombres primers.

4 Tipus d'enunciats i les estratègies de demostració

4.1 Demostració d'un bicondicional

Enunciats del tipus, A i B són equivalents, A és condició necessària i suficient de B. L'estratègia és descomposar l'enunciat. $(A \leftrightarrow B) \equiv (A \to B) \land (B \to A)$. Per tant es demostra en dues parts.

- (\rightarrow) Es suposa A i es demostra B.
- (\leftarrow) Es suposa B i es demostra A.

4.2 Enunciats equivalents

A vegades es vol demostrar que una serie d'enunciats A_1, A_2, A_3, \ldots són equivalents. Es sol fer un cercle d'implicacions.

$$A_1 \to A_2 \to \cdots \to A_{n-1} \to A_n \to A_1$$

. Per questions de facilitat a l'hora de demostrar implicacions també es poden fer sub-cercles.

4.3 Enunciats amb conjunció

Enunciats de la forma $(A \wedge B)$.

Es demostra A, a continuació és demostra B.

4.4 Enunciats amb disjunció

Demostració d'enunciats de la forma $(A \vee B)$. Hi ha més d'una manera. En general no és viable demostrar A o B individualment.

- Reducció a l'absurd. Suposem que $\neg (A \lor B) \equiv (\neg A \land \neg B)$. Es desenvolupa fins a arribar a una contradicció.
- $(A \lor B) \equiv (\neg A \to B) \equiv (\neg B \to A).$

4.5 Ús d'una disjunció en una demostració com a resultat intermedi

Com s'utilitza en una demostració una disjunció com a informació o resultat intermedi. S'obren dos casos.

Sabem que $A \vee B$, volem demostrar P.

- Cas 1: Si A, llavors P.
- Cas 2: Si B, llavors P.

Cal demostrar els dos casos per determinar que P és cert.

4.5.1 Exemples

Proposició 4.1. $\forall n \in \mathbb{N}, n^2 + n$ és parell.

Demostració. Cas 1: Si n és parell, n^2 és parell. Un nombre parell més un altre, és parell. Per tant, $n^2 + n$ és parell.

Cas 2: Si n és senar, n^2 és senar. Un nombre senar més un altre senar, és senar. Per tant $n^2 + n$ és senar.

Per tant, per qualsevol $n \in \mathbb{N}$ el nombre $n^2 + n$ és parell.

5 Inferències, equivalències i estratègies importants

5.1 Inferències

- Si A i B, llavors $(A \wedge B)$.
- Si $(A \wedge B)$, llavors A. (I B).

- Si A, llavors $(A \vee B)$.
- Si $(A \vee B)$ i $\neg A$, llavors B.
- Si $(A \to B)$ i A, llavors B.
- Si $(A \to B)$ i $\neg B$, llavors $\neg A$.

Equivalències 5.2

- $(A \vee B) \equiv (B \vee A)$. (Commutativa).
- $\bullet \neg \neg A \equiv A.$
- $(A \wedge B) \equiv (B \wedge A)$. (Commutativa). $\neg (A \wedge B) \equiv (\neg A \vee \neg B)$ (Llei de DeMorgan).
- $(A \leftrightarrow B) \equiv (A \to B) \land (B \to A)$.
- $\neg (A \lor B) \equiv (\neg A \land \neg B)$ (Llei de DeMorgan).

5.3 Estratègies

- 1. Demostració directa d'un condicional $(A \rightarrow B)$:
 - \bullet Es suposa A i es demostra B.
- 2. Reducció a l'absurt de A:
 - Es suposa $\neg A$ i s'arriba a una contradicció.
- 3. Demostració per casos. Es vol demostrar C amb hipòtesi $(A \vee B)$:
 - Es suposa A i es demostra C.
 - Es suposa B i es demostra C.

Demostració d'enunciats amb quantificadors 6

- $\forall x \ A(x)$ (Com a dada en una demostració):
 - Si $\forall x \ A(x)$, llavors A(t) sigui la t que sigui.
- $\forall x \ A(x)$ (Demostració):
 - Demostrar que per un x genèric A(x) es compleix.
- $\exists x \ A(x)$ (Com a dada):
 - No hi ha cap inferència associada.
 - Estratègia: Introduir una variable nova que refereixi a alguna cosa amb la propietat A.
- $\exists x \ A(x)$ (Demostració):
 - Cal trobar un element x tal que A(x).

6.0.1 Exemples

Proposició 6.1. $\forall n \in \mathbb{Z} \ \exists m \in \mathbb{Z} \ n m$.(Tot enter és divisor de com a mínim un enter).	
Demostració. Sigui $n \in \mathbb{Z}$. Volem veure que hi ha un enter m tal que $n m$ per qualsevol n . Prene $n=m$ i clarament $n m$.	em
Proposició 6.2. $\exists n \in \mathbb{Z} \ \forall m \in \mathbb{Z} \ n m$. (Hi ha un enter que divideix tots els enters).	
Demostració. Prenem $n = 1$. Llavors $\forall m \in \mathbb{Z}$ es compleix que $n m$.	
Proposició 6.3. $\exists m \in \mathbb{Z} \ \forall n \in \mathbb{Z} \ n m$. (Existeix un enter que és divisible per tots els enters).	
Demostració. Prenem $m = 0$. Llavors $n m \forall n \in \mathbb{Z}$.	
Proposició 6.4. $\forall m \in \mathbb{Z} \ \exists n \in \mathbb{Z} \ n m$. (Qualsevol enter té un divisor enter).	
Demostració. Prenem $n = m$. Llavors clarament $n m$.	

6.1 Demostració d'unicitat

Demostració de enunciats del tipus "Existeix un únic x que compleix P. Cal demostrar per un costat l'existència d'aquest element i d'altre banda que és únic. Per demostrar que un element és únic hi ha dues estratègies:

- Un cop determinat un x que ho compleix, demostrar que qualsevol x' que també ho compleixi és x=x'.
- Prendre dues solucions arbitràries x_1, x_2 i demostrar que $x_1 = x_2$.