UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: FYS1120 Elektromagnetisme

Eksamensdag: 3. desember 2014. Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 3 sider

Vedlegg: Liste med likninger (3 sider)

Tillatte hjelpemidler: Angell/Øgrim og Lian: Fysiske størrelser og enheter

Rottman: Matematisk formelsamling Elektronisk kalkulator av godkjent type

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

En uendelig lang og tynn stang har konstant positiv ladning per lengde, λ .

- (a) Bruk Gauss' lov til å vise at det elektriske feltet i avstand r fra stanga er $E = \lambda/2\pi\epsilon_0 r$. Beskriv retningen på feltet.
- SVAR: E-feltet er rettet radielt vekk fra stangen. Vi legger en sylindrisk Gaussflate der aksen sammenfaller med stangen. Fluksen av E-feltet gjennom flaten blir $\Phi_E = E \ 2\pi \ rL$, der L er lengden av sylinderen. Flaten omslutter ladningen λL , og Gauss' lov gir da $E \ 2\pi \ rL = \lambda L/\ \epsilon_0$, som gir det oppgitte uttrykket for E.
- (b) Finn et uttrykk for spenningen (forskjellen i potensial) mellom to punkter i ulik avstand r_A og $r_B > r_A$ fra stanga. Regn ut spenningen når $r_A = 0.5$ m, $r_B = 0.6$ m og $\lambda = 17$ nC/m.

SVAR: Potensialforskjellen er gitt ved $\Delta V = V_{\rm A} - V_{\rm B} = \int E(r) \, dr$ som gir $\Delta V = (\lambda/2\pi\epsilon_0) \ln(r_{\rm B}/r_{\rm A})$. Innsetting av tall gir $\Delta V = 55.7 \, \rm V$.

Oppgave 2

(a) Betrakt en prosess der en parallell-plate kondensator med vakum mellom platene lades opp ved å flytte ladninger (elektroner) fra den ene platen til den andre. Vis at arbeidet utført ved å flytte en total ladning Q er $W = Q^2/2C$, der C er kapasitansen.

SVAR: Se læreboka, avsnitt med tittel «Energy storage in capacitors and electric-field energy».

- (b) Vis at energitettheten i det elektriske feltet, E, mellom platene er $u = \varepsilon_0 E^2/2$. Regn ut energitettheten i E-feltet ved lynnedslag, der typisk E = 3 MV/m.
- SVAR: Arbeidet, W, i spm. (a) er lik den potensielle energien U i den oppladede kondensatoren, (når uladet kondensator har U=0). Kan da skrive $U = CV^2/2$, der det er brukt at Q = CV, og V er potensialforskjellen mellom platene. For kondensatoren gjelder at $C = \varepsilon_0 A/d$, der A er platenes areal og d er deres avstand. Det elektriske feltet mellom platene er E = V/d. Setter inn i uttrykket for U, og bruker at energitettheten er u = U/Ad, og får det oppgitte svar. Energitettheten for oppgitt E-felt blir $U = 39.8 \text{ J/m}^3$.
- I nærheten av sterke permanent-magneter kan man ha magnetfelt på 1 T.
 Hvor stor er energitettheten der?
 Gir svaret grunn til <u>ikke</u> å holde sterke magneter i hånden?
- SVAR: Energitettheten i magnetfelt er $u = B^2/2\mu_0$, som for B = 1 T gir $u = 3.98 \ 10^5$ J/m³. Beregningen viser at energitettheten i *B*-feltet er 10,000 ganger større enn i typiske *E*-felt ved lynnedslag. I motsetning til *E*-felt, som lett kan ionisere og flytte på elektriske ladninger i organisk materiale, har <u>statiske</u> magnetfelt her svært liten påvirkning.

Oppgave 3

Figuren under til venstre viser to parallelle vertikale strømførende ledninger. Anta at ledningene er mye lenger enn avstanden mellom dem.

(a) Tegn figur som viser magnetfelt-linjene i horisontalplanet når de to strømmene er like store og har motsatt retning.

SVAR:

- (b) Beregn kraften mellom ledningene per lengde når avstanden er 1 cm og strømmen er 3 A. Angi retningen på kraften.
- SVAR: Kraft per lengde på strøm I_1 fra strøm I_2 er gitt ved $F = B_2 I_1$ der $B_2 = (\mu_0/2\pi) I_2/d$ og d er avstanden mellom ledningene. Med $I_1 = I_2 = 3$ A, og d = 1 cm gir dette $F = 1.8^{\circ} 10^{-4}$ N/m. Kraften mellom ledningene er frastøtende.

Figuren over til høyre viser et metallrør med indre og ytre radius R_1 og R_2 . Røret leder en total strøm I, som vi antar er uniformt fordelt over lederens tverrsnitt.

- (c) Bruk Ampere's lov til å finne uttrykk for magnetfeltet utenfor røret, og i hulrommet inni.
- SVAR: P.g.a. sylinder symmetri må feltlinjene danne konsentriske sirkler med sentrum i midten av røret. Utføres linjeintegralet av B-feltet rundt en sirkel utenfor røret gir Ampere's lov at; $B(r) \ 2\pi r = \mu_0 I$, og man får $B(r) = (\mu_0/2\pi)I/r$. Utføres tilsvarende integral i hulrommet vil integrasjonsveien omslutte null strøm, følgelig er B=0 der.
- (d) Vis at inne i metallet er magnetfeltet gitt ved $B = \mu_0 I \frac{r^2 R_I^2}{2\pi r (R_2^2 R_I^2)}$.
- SVAR: Med uniform strømtetthet, j, i metallet kan den uttrykkes som $j = I/\pi (R_2^2 R_1^2)$. Utføres nå linjeintegralet langs en sirkel med radius r i metallet er den omsluttede strømmen gitt ved $j\pi (r^2 R_1^2)$. Da sier Ampere's lov at $B 2\pi r = \mu_0 j\pi (r^2 R_1^2)$. Setter man inn for j, fåes the oppgitte uttrykket for B.

Oppgave 4

Betrakt kretsen vist på figuren over. Kondensatoren, som har kapasitans C = 5 nF, er først tilkoplet batteriet som gir en konstant spenning på 12 V. Ved tiden t = 0 bytter bryteren posisjon.

- (a) Hvor stor ladning har kondensatoren før bryteren bytter posisjon, og hvor mye energi er da lagret i kondensatoren?
- SVAR: Kondensatoren har da en spenning mellom platene på $V_{\rm C}=12~{\rm V}.$ Ladningen er da $q=C~V_{\rm C}=6\cdot10^{-8}~{\rm C}.$ Lagret energi er $U=CV_{\rm C}^{2}/2=3.6\cdot10^{-7}~{\rm J}.$

- (b) Anta at spolen har null resistans. Hva må induktansen i spolen være for at strømmen skal oscillere med vinkelfrekvens $\omega = 100 \,\pi \,\mathrm{s}^{-1}$? Finn uttrykk for strømmen i kretsen for $t \ge 0$.
- SVAR: For $t \ge 0$ gjelder at $0 = V_C + V_L = q(t)/C + L I'(t)$, der I er strømmen gjennom spolen og kondensatoren. Deriverer mhp t, og får at strømmen tilfredsstiller, I(t) = -LC I''(t). Løsningen av denne likningen er av typen sin ωt og $\cos \omega t$, der $\omega^2 = 1/LC$. Her må $I(t) = \sin \omega t$, da strømmen er null i det bryteren bytter posisjon. Induktansen må være $L = 1/(\omega^2 C) = 2 \cdot 10^3$ H.

Ta nå hensyn til at spolen er laget av en 10 m lang koppertråd med tverrsnitt $0.5~\text{mm}^2$. Kopper har resistivitet $\rho = 1.72~10^{-8}~\Omega\text{m}$.

- (c) Finn spolens resistans. Sett opp differensial-likningen som nå beskriver strømmen i kretsen for $t \ge 0$. Lag en skisse av strømmens tidsforløp.
- SVAR: Resistansen er gitt ved $R = \rho l/A$, der $l = 10 \text{ m og } A = 0.5 \text{ mm}^2$, som gir $R = 0.17 \Omega$. For $t \ge 0$ gjelder nå likningen $0 = V_C + V_R + V_L = q(t)/C + RI + LI'(t)$ Fra formelark finner man at strømmen nå vil oscillere med frekvensen $\omega = \sqrt{\frac{1}{LC} \left(\frac{R}{2L}\right)^2}$

Løsningen av likningen gir at oscillasjonen er eksponensielt dempet. (Forventet svar skal også inkludere en enkel graf av en dempet oscillerende kurve)