Find the domain of each function.

$$1) \quad g(x) = \frac{3}{x-4}$$

$$\frac{}{2)} \quad f(x) = x^2 - 2x - 15$$

$$\overline{g} = \int f(x) = \sqrt{x-3}$$

$$4) \quad f(x) = \frac{1}{\sqrt{x-3}}$$

5)
$$f(x) = \sqrt{24 - 2x}$$

Find f+g , f-g , fg , and $\frac{f}{g}$. Determine the domain of each function.

6)
$$f(x)=2x+3$$
, $g(x)=x-1$.

a)
$$f+g$$

b)
$$f-g$$

c) fg (Remember: f(x) = 2x + 3, g(x) = x - 1)

d)
$$\frac{f}{g}$$

7) $f(x) = 2x^2 - x - 3$ and g(x) = x + 1.

a)
$$f+g$$

b) f-g

c) fg

d)
$$\frac{f}{g}$$

8)	f(x) = -	\sqrt{x} and	g(x)=	=x-4.
Ο,) ("")	v aa	8(")	

a)
$$f+g$$

b)
$$f-g$$

d)
$$\frac{f}{g}$$

9)
$$f(x) = \sqrt{x-2} \text{ and } g(x) = \sqrt{2-x}$$
.

a)
$$f+g$$

b)
$$f-g$$

c) fg

d)
$$\frac{f}{g}$$

10) Given, $f(x) = 2x$; $g(x) = x + 7$, fin	10)	Given,	f(x)=	2x; g(x)	= x + 7	, find
---	-----	--------	-------	----------	---------	--------

- a) $(f \circ g)(x)$ and domain
- b) $(g \circ f)(x)$ and domain
- $\overline{\mathsf{c)} \quad (f \circ g)(2)}$
- $\overline{\mathsf{d)} \ (g \circ f)(2)}$
- 11) Given, $f(x) = \sqrt{x}$; g(x) = x 1, find
 - a) $(f \circ g)(x)$ and domain
 - b) $(g \circ f)(x)$ and domain
 - $\overline{\mathsf{c)} \quad \big(f \circ g\big)\!\big(2\big)}$
 - $\overline{\mathsf{d)} \ (g \circ f)(2)}$

- 12) Given, $f(x) = \sqrt{x}$; g(x) = x 2, find
 - a) $(f \circ g)(x)$
 - b) Domain of $f \circ g$
- 13) Given, $f(x) = x^2 + 4$; $g(x) = \sqrt{1-x}$, find
 - a) $(f \circ g)(x)$

b) Domain of $f \circ g$

Use the graphs of f and g to solve 14 – 16.

14)
$$(f+g)(-3)$$

- 15) (g-f)(-2)
- **16)** (*fg*)(2)

Use the graphs of $\,f\,$ and $\,g\,$ to evaluate each composite function.

17)
$$(f \circ g)(-1)$$

- **18)** $(f \circ g)(1)$
- 19) $(g \circ f)(0)$
- 20) $(g \circ f)(-1)$

