$WS \ 11/12$ To be submitted in the lecture on 18.01.2012

Numerische Mathematik für Ingenieure II Homework 9

Exercise 15: (6 points)

Let $V=H^1_0(\Omega)$ and $f\in L^2(\Omega)$. Furthermore, let $a:V\times V\to\mathbb{R}$ be the bilinear form defined by $a(u,v)=\int_\Omega \nabla u\cdot\nabla v d\Omega$ and $g:V\to\mathbb{R}$ be the linear form defined by $g(v)=\int_\Omega fv d\Omega$. Let $u\in V$ be the unique solution of the variational problem "find $u\in V$ s.t. a(u,v)=g(v) for all $v\in V$ " and let $u\in V_h$ be the Galerkin approximation with respect to the approximation space $V_h\subseteq V$, that is $a(u_h,v_h)=g(v_h)$ for all $v_h\in V_h$. Show that

$$\|\nabla(u - u_h)\|_{L^2}^2 = \|\nabla u\|_{L^2}^2 - \|\nabla u_h\|_{L^2}^2.$$

Exercise 16: (6 points)

Assume the CG method (see below for an algorithm) applied to a linear system with a SPD matrix $A \in \mathbb{R}^{N,N}$ proceeds to the iteration $J \in \mathbb{N}$. Let $r_j \in \mathbb{R}^N$ and $p_j \in \mathbb{R}^N$ be the vectors generated by the CG method for j = 0, ..., J. Show that

- (a) $r_i^{\mathsf{T}} r_j = 0$ for all $i, j = 0, \dots, J$ with $i \neq j$.
- (b) $p_i^{\mathsf{T}} A p_j = 0$ for all $i, j = 0, \dots, J$ with $i \neq j$.

Programming exercise 12: (8 points)

Consider the following algorithm for the CG method:

```
 \begin{array}{|c|c|c|} \textbf{Require: } A \in \mathbb{R}^{N \times N}, \ b, x_0 \in \mathbb{R}^N, \ maxit \in \mathbb{N}, \ tol \in \mathbb{R}_+ \\ \hline r_0 = b - Ax_0, \ p_0 = r_0 & & & & & & & \\ \textbf{for } j = 1, 2, \dots, maxit \ \textbf{do} & & & & & \\ \gamma_{j-1} = (r_{j-1}^T r_{j-1})/(p_{j-1}^T A p_{j-1}) & & & & & & \\ x_j = x_{j-1} + \gamma_{j-1} p_{j-1} & & & & & & & \\ x_j = x_{j-1} - \gamma_{j-1} A p_{j-1} & & & & & & \\ \textbf{tf } \|r_j\|_2/\|r_0\|_2 \leq tol \ \textbf{then} & & & & & & \\ \textbf{return } x_j & & & & & & \\ \textbf{end if} & & & & & & \\ \beta_j = r_j^T r_j/r_{j-1}^T r_{j-1} & & & & & \\ p_j = r_j + \beta_j p_{j-1} & & & & & \\ \textbf{end for} & & & & & \\ \hline \end{array}  \(\text{bull} \text{update of search direction} \text{end for} \)
```

(a) Implement the CG method in a function [xj,r2u,r2,e2,eA] = p12cg(A, b, x0, maxit, tol, x). The parameter x is the exact solution of Ax = b (which we don't have in practice, but we will use it for analyzing the method here). Let $J \in \mathbb{N}$ be the iteration number where the convergence criterion is satisfied (that is, $||r_{J-1}||_2/||r_0||_2 > tol$ and

 $||r_J||_2/||r_0||_2 \le tol$) or where the maximal number of iterations is reached, J = maxit. The first return value xj then should be the approximation computed in the J-th iteration: $xj = x_J$. Additionally, in each iteration j = 0, 1, 2, ..., J the following quantities have to be computed:

- $r2u(j+1) = ||r_j||_2/||r_0||_2$ (relative Euclidean norm of the *updated* residual as computed in the for-loop).
- $\mathbf{r2}(j+1) = \|b Ax_j\|_2/\|b Ax_0\|_2$ (relative Euclidean norm of the explicitly computed residual).
- e2(j+1) = $||x x_j||_2/||x x_0||_2$ (relative Euclidean norm of the error).
- eA(j+1) = $||x x_j||_A / ||x x_0||_A$ (relative A-norm of the error; $||v||_A := \sqrt{v^T A v}$).

The return values r2u, r2, e2 and eA should be column vectors of length J+1.

(b) Write a function p12diag(), that tests your implementation of the CG method with the following parameters and plots the return values r2u, r2, e2 and eA with the semilogy command:

$$A = \text{diag([1:48])}, \quad x = \text{ones(48,1)}, \quad b = Ax,$$
 $x_0 = \text{zeros(48,1)}, \quad maxit = 200, \quad tol = 10^{-12}.$

Annotate the plots appropriately.

(c) Write a function p12laplace() that tests your implementation of the CG method with the parameters maxit = 400, $tol = 10^{-6}$ and the $M^2 \times M^2$ matrix (compare Homework 4)

$$A_{M} = \begin{pmatrix} T_{M} & -E_{M} & & & & \\ -E_{M} & T_{M} & -E_{M} & & & & \\ & \ddots & \ddots & \ddots & & \\ & & -E_{M} & T_{M} & -E_{M} \\ & & & -E_{M} & T_{M} \end{pmatrix},$$

where M = 200, $E_M \in \mathbb{R}^{M \times M}$ is the identity matrix and $T_M = tridiag(-1, 4, -1) \in \mathbb{R}^{M \times M}$. Note that the matrix A_M is *sparse*. Therefore use the appropriate MAT-LAB/Octave functions (for example kron, gallery, speye) for the construction of A_M . The right hand side is

$$b = \frac{1}{(M+1)^2} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

and the "exact" solution can be obtained by using the backslash-operator, that is $x=A \b$. Plot the return values and annotate your plots appropriately as in (b).