Theoretische Informatik: Blatt 9

 Abgabe bis 9. Oktober 2015 Assistent: Sacha Krug, CHN D $42\,$

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 7

(a) Wir wollen zeigen, dass NTIME(f) unter Vereinigung abgeschlossen ist.

Seien $L_1, L_2 \in \text{NTIME}(f)$, dann gibt es nichtdeterministische MTMs M_1, M_2 mit $L(M_1) = L_1$ und $L(M_2) = L_2$ und $\text{Time}_{M_1}(n), \text{Time}_{M_2}(n) \in \mathcal{O}(f(n))$.

Wir konstruieren nun eine neue MTM M mit $L(M) = L := L_1 \cup L_2$.

M simuliert dazu M_1 und M_2 gleichzeitig. Sobald eine von beiden akzeptiert, akzeptiert M ihre Eingabe. Falls beide verwerfen, verwirft auch M.

Falls nun also ein x in L_1 oder L_2 ist, wird M akzeptieren $\Rightarrow x \in L$. Um zu akzeptieren braucht M das Minimum der Zeit der beiden MTMs um zu akzeptieren. Daher ist $\mathrm{Time}_M(x) = \max\{\mathrm{Time}_{M_1}(x), \mathrm{Time}_{M_2}(x)\}$ für alle x. Daher: $\mathrm{Time}_M(n) \in \mathcal{O}(f(n))$ Daher folgt, dass $L = L(M) \in \mathrm{NTIME}(f)$.

- (b) Wir wissen $L \in \text{NTIME}(f)$ und $L' \in \text{TIME}(f)$. Es gibt also eine N-MTM M_1 mit $L(M_1) = L$ und eine MTM M_2 mit $L(M_2) = L'$. Um zu zeigen, dass $L L' \in \text{NTIME}(f)$ konstruieren wir eine N-MTM M, doe folgendermaßen funktioniert. M simuliert M_1 auf der Eingabe. Falls M_1 nicht akzeptiert, akzeptiert auch M nicht. Akzeptiert M_1 doch, dann simulieren wir die Eingabe auch auf M_2 . Akzeptiert M_2 verwerfen wir. Verw
 - Fall 1 M_1 akzeptiert nicht: Eingabe verwerfen.
 - Fall 2 M_1 akzeptiert:

Simuliere M_2 auf der Eingabe.

F1ll 1 M_2 akzeptiert: Eingabe verwerfen.

F2ll 2 M_2 verwirft: Eingabe akzeptieren.