КОГНИТИВНЕ МОДЕЛЮВАННЯ

122 «Комп'ютерні науки» КНм-20 2021 / 2022 навчальний рік

КЛАСІФІКАЦІЯ ШТУЧНИХ НЕЙРОННИХ МЕРЕЖ

Класифікація ШНМ

- 1. Класифікація.
- 2. Архітектури (загальний огляд).
- 3. Процес налаштування ШНМ.
- 4. Процес навчання ШНМ
- 5. Перцептрон

Классификация нейронов

Нейрон:

- **1.** Детерминированные / стохастические Функция активации Y = F(S) не имеет вероятностных параметров / имеет вероятностные параметры.
- **2. Статические** / динамические Функция активации Y = F(S) не зависит от времени / зависит от времени Y = F(S, t).

Классификация нейронных сетей по решаемым задачам:

- **Распознавание (классификация) образцов.** (распознавание лиц, эмоций, классификация товаров, ...).
- **Кластеризация** (выделение классов читателей, выделение спама, выделение классов изображений,) **(обучение без учителя).**
- **Прогнозирование** (курсов акция, трафик на сайтах, потребление энергии, ...).
- **Фильтрация** (выделение полезного сигнала на фоне зашумленного) .
- И другие ... (генерация, идентификация, управление, ...).

Ознаки класифікації ШНМ

- 1. Присутність прихованих шарів
 - 2. Зворотній звязок
 - 3. Модульність
 - 4. Связність
 - 5. Часові затримки
 - 6. Навчання

І.Спосіб навчання

II.Топологія

III.Модель

3 вчителем

Повнозвязні

Пряме розповсюдження

Без вчителя

Багатошарові

Рекурентні ШНС

3 підкрипленням

Слабозвязні

Радіально-базісні функції

> **Мережі Кохонена**

IV.Налаштування

Фіксовані коефіціенти

Динамічні коефіціенти

1. Наличие скрытых слоев:

Однослойные – не содержат скрытых слоев

Многослойные - один или более

скрытых слоев **INPUT OUTPUT INPUT HIDDEN** OUTPUT

Классификация нейронных мереж

2. Обратная связь:

Не рекуррентные — прямого распространения (только прямые связи) Рекуррентные — обратного распространения (обратные связи)

3. Модульность:

Модульные — вычисления в сети распределены по отдельным группам (модулям), которые не пресекаются в совей работе

Немодульные – все нейроны выполняют одинаковые вычисления

4. Связность:

Полносвязные — каждый нейрон текущего слоя связан со **всеми** нейронами следующего слоя

Неполносвязные — нейроны текущего слоя передают сигналы только части нейронов следующего слоя

6. Обучение:

Обучающиеся с учителем — есть этап тренировки (supervised).
Обучающиеся без учителя — этап тренировки не выделяется, самообучающиеся (unsupervised)
С подкреплением — без учителя с динамическим программированием.

Архитектуры нейронных сетей

Одношаровий перцептрон

Богатошаровий перцетрон

Не рекурентні

Нейронні мережі

Рекурентні

Мережі змагання Мережі Кохена Мережі Холфіда

Мережі ART

Налаштування ШНМ на задачу

Використання ШНМ. Навчання

Эпоха (epoch) - перебор всех векторов тренировочного множества

Використання ШНМ. Тестування

Налаштування ШНМ на задачу

Предварительная обработка — выбор из массива данных наиболее информативных либо понижение размерности данных.

Выбор структуры и функций активации – выбор архитектуры и оценка количества слоев (скрытых), оценка количества нейронов в слоях.

Оценка мощности множества обучения – оценка количества обучающих векторов.

Выбор алгоритма обучения — определение наиболее подходящего алгоритма обучения ИНС, определение условия окончания обучения.

Обучение.

Оценка качества обучения — вероятность правильно работы ИНС на тестовом множестве.

Перцептрон (персептрон, perceptio) – модель восприятия информации мозгом.

Перцептрон - статическая нерекуррентная многослойная ИНС (**MLP**).

Обучение (с учителем) – как правило, алгоритм обратного распространения ошибки.

Многослойный перцептрон Алгоритм обучения – базируется на методах нелинейного программирования

- -методы первого порядка:
 - метод наискорейшего спуска (градиентный),
 - метод сопряженных градиентов,
 - квазинютоновские методы.
- -методы второго порядка (Ньютона-Рафсона и др.)

- $\cdot k$ эпоха,
- $\cdot L$ количество слоев,
- l номер слоя, l=1,...,L,
- \cdot N $^{(l)}$ количество нейрон в l-ом слое,
- i номер нейрона в (l -1)-ом слое, i=1,..., $N^{(l-1)}$
- $\cdot j$ номер нейрона в (l)-ом слое,
- $w_{ij}^{(l)}(k)$ вес связи *i-го* нейрона в (*l-1*)-ом слое с *j-м* нейроном *l-*го слоя на *k-й* эпохе,
- $\cdot b_{j}^{(l)}(k)$ смещение j- го нейрона l-го слоя на k-й эпохе,
- $\{x_m, d_m\}$ пары (вход, выход) обучающих векторов, m номер пары, m = 1,...,P,
- Р мощность обучающего множества.

Step 1. k=1. Задаем все пороги и веса равномерно распределенные на интервале (0, 1) или (-0.5 + 0.5)

Step 2. Задаем обучающую пару m=1.

Step 3. Прямой ход. Вычисление выходных сигналов каждого нейрона каждого слоя.

$$y_i^{(0)}(k) = x_m$$

$$S_{j}^{(l)}(k) = \sum_{i=0}^{N^{(l-1)}} w_{ij}^{(l)}(k) * y_{i}^{(l-1)}(k)$$
$$y_{j}^{(l)}(k) = f^{(l)}(S_{j}^{(l)}(k))$$

Функции стоимости: $E(k) = ERR(y_j^{(L)}(k), d_m)$

Mean Square Error/Quadratic Loss/L2 Loss

MSE =
$$\frac{1}{N} \sum_{j=1}^{N^{(L)}} (y_j^{(L)}(k) - d_m)^2$$
,

Mean Absolute Error/L1 Loss

MAE =
$$\frac{1}{N} \sum_{j=1}^{N^{(L)}} |(y_j^{(L)}(k) - d_m)|$$
,

Cross Entropy Loss

$$CEL = -(y_j^{(L)} log(d_m)) + (1 - (y_j^{(L)}) log(1 - d_m))$$

Step 4. Вычисление ошибки (стоимости, cost) $N^{(L)}$

$$E(k) = 0.5 \sum_{j=1}^{\infty} e_j^2(k),$$

$$e_j(k) = y_j^{(L)}(k) - d_m$$
.

Step 5. Настраиваем синаптические веса

$$w_{ij}^{(l)}(k+1) = w_{ij}^{(l)}(k) - \eta * \frac{\partial E(k)}{\partial w_{ij}^{(l)}(k)}$$

 η - параметр, задающий скорость обучения (спуска по антиградиенту), $0<\eta<1$.

Многослойный перцептрон Step 6. Проверка условия завершения если k mod P > 0, то m=m+1, k=k+1, на step 3

если k mod P = 0, и $^1/_P \sum_{s=1}^P E(k-P+s) > \varepsilon$, то k=k+1, на step 2

если k mod P = 0, и
$$^{1}/_{P}\sum_{s=1}^{P}E(k-P+s)<\varepsilon$$
, stop

Многослойный перцептрон Градиент?

Зависит от вида функций активации.

$$\frac{\partial E(k)}{\partial w_{ij}^{(l)}(k)} = y_i^{(l-1)}(k) * g_j^{(l)}(k)$$

$$g_{j}^{(l)}(k) = \begin{cases} f'^{(l)}(S_{j}^{(l)}(k)) * \sum_{q=1}^{N^{(l+1)}} w_{jq}^{(l+1)}(k) * g_{q}^{(l+1)}(k), l < L \\ f'^{(l)}(S_{j}^{(l)}(k)) * (y_{j}^{(L)}(k) - d_{m,j}), \qquad l = L \end{cases}$$

Многослойный перцептрон Если функция активации = сигмоида:

$$f^{(l)}\left(S_{j}^{(l)}(k)\right) = \frac{1}{1+e^{-\left(S_{j}^{(l)}(k)\right)}},$$

$$f'^{(l)}\left(S_j^{(l)}(k)\right) = f^{(l)}\left(S_j^{(l)}(k)\right)(1 - f'^{(l)}\left(S_j^{(l)}(k)\right)).$$

Рекомендована ЛІТЕРАТУРА

- Федоров Е.Е. Искусственные нейронные сети. Красноармейск, ДВНЗ «ДонНТУ», 2016. — 338 с.
- Хакин С. Нейронные сети: полный курс, 2-е изд. М.: Издательский дом «Вильямс», 2016. 1104 с.

Контрольні запитання

- 1. Надайте класифікацію штучних нейронів
- 2. Надайте класифікацію штучних нейронних мереж.
- 3. Визначте процес налаштування нейронної мережі на вирішення задачі.
- 4. Надайте архітектуру перцептрона.
- 5. Надайте математичний опис функціонування перцептрона.

The END Mod 2. Lec 5.