若总体 X 的概率密度为 f(x), 则样本 X_1, X_2, \cdots, X_n 的联合概率密度为

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i).$$

若总体 X 的分布列 $Pr(X = x_i)$, 则样本 X_1, X_2, \dots, X_n 的联合分布列为

$$\Pr(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n \Pr(X_i = x_i).$$

8.2 常用统计量

为研究样本的特性, 我们引入统计量:

定义 8.2 设 X_1, X_2, \dots, X_n 是来自总体 X 的一个样本, $g(X_1, X_2, \dots, X_n)$ 是关于 X_1, X_2, \dots, X_n 的一个连续、且不含任意参数的函数,称 $g(X_1, X_2, \dots, X_n)$ 是一个 统计量.

由于 X_1, X_2, \dots, X_n 是随机变量,因此统计量 $g(X_1, X_2, \dots, X_n)$ 是一个随机变量.而 $g(x_1, x_2, \dots, x_n)$ 为 $g(X_1, X_2, \dots, X_n)$ 的一次观察值.下面研究一些常用统计量.

假设 X_1, X_2, \cdots, X_n 是来自总体 X 的一个样本, 定义 **样本均值** 为

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

根据样本的独立同分布性质有

引理 8.1 设总体 X 的期望为 $E[X] = \mu$, 方差 $Var(X) = \sigma^2$, 则有

$$E[\bar{X}] = \mu, \quad Var(\bar{X}) = \sigma^2/n, \quad \bar{X} \xrightarrow{d} \mathcal{N}(\mu, \sigma^2/n).$$

假设 X_1, X_2, \cdots, X_n 是来自总体 X 的一个样本, 定义 **样本方差** 为

$$S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2.$$

引理 8.2 设总体 X 的期望为 $E[X] = \mu$, 方差 $Var(X) = \sigma^2$, 则有

$$E[S_0^2] = \frac{n-1}{n}\sigma^2.$$

证明 根据 $E[X_i^2] = \sigma^2 + \mu^2$ 有

$$E(\bar{X}^2) = E\left[\left(\frac{1}{n}\sum_{i=1}^n X_i\right)^2\right] = \frac{1}{n^2}E\left[\left(\sum_{i=1}^n X_i\right)^2\right] = \frac{1}{n^2}E\left[\sum_{i=1}^n X_i^2 + \sum_{i \neq j} X_i X_j\right] = \frac{\sigma^2}{n} + \mu^2,$$

8.2 常用统计量 139

于是有

$$E(S_0^2) = E(X_i^2) - E(\bar{X}^2) = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 = \frac{n-1}{n}\sigma^2.$$

由此可知样本方差 S_0^2 与总体方差 σ^2 之间存在偏差.

进一步定义 样本标准差 为:

$$S_0 = \sqrt{S_0^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}.$$

定义 修正后的样本方差 为:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 \mathbb{P} $S^2 = \frac{n}{n-1} S_0^2$,

引理 8.3 设总体 X 的期望为 $E[X] = \mu$, 方差 $Var(X) = \sigma^2$, 则有

$$E[S^2] = \sigma^2.$$

证明 根据期望的性质有

$$E[S^2] = E\left[\frac{n}{n-1}S_0^2\right] = \frac{n}{n-1}E\left[S_0^2\right] = \sigma^2.$$

假设 X_1, X_2, \cdots, X_n 是来自总体 X 的一个样本, 定义 **样本** k **阶原点矩** 为:

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, \qquad k = 1, 2, \cdots.$$

定义 样本 k 阶中心矩 为:

$$B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k, \qquad k = 1, 2, \cdots.$$

例 8.1 设总体 $X \sim \mathcal{N}(20,3)$, 从总体中抽取两独立样本, 容量分别为 10 和 15. 求这两个样本均值之差的绝对值大于 0.3 的概率.

解 设 X_1, X_2, \ldots, X_{10} 和 $X_1', X_2', \ldots, X_{15}'$ 分别为来自总体 $X \sim \mathcal{N}(20,3)$ 的两个独立样本. 根据正态分布的性质有

$$\bar{X}_1 = \frac{1}{10} \sum_{i=1}^{10} X_i \sim \mathcal{N}(20, 3/10), \qquad \bar{X}_2 = \frac{1}{15} \sum_{i=1}^{15} X_i' \sim \mathcal{N}(20, 1/5).$$

进一步根据正态分布的性质有 $\bar{X}_1 - \bar{X}_2 \sim \mathcal{N}(0, 1/2)$, 于是可得

$$\Pr(|\bar{X}_1 - \bar{X}_2| > 0.3) = 2 - 2\Phi(0.3/\sqrt{1/2}).$$

假设 X_1, X_2, \cdots, X_n 是来自总体 X 的一个样本, 定义 **最小次序统计量** 和 **最大次序统计量** 分别为:

$$X_{(1)} = \min\{X_1, X_2, \cdots, X_n\}$$
 π $X_{(n)} = \max\{X_1, X_2, \cdots, X_n\},$

以及定义 样本极差 为

$$R_n = X_{(n)} - X_{(1)}.$$

设总体 X 的分布函数为 F(x), 则有

$$F_{X_{(1)}}(x) = \Pr(X_{(1)} \le x) = 1 - \Pr(X_{(1)} > x) = 1 - (1 - F(x))^n, \qquad F_{X_{(n)}}(x) = F^n(x).$$

定理 8.1 设总体 X 的密度函数为 f(x), 分布函数为 F(x), X_1, X_2, \cdots, X_n 是来自总体 X 的一个样本, 则第 k 次序统计量 $X_{(k)}$ 的分布函数和密度函数分别为

$$F_k(x) = \sum_{r=k}^n \binom{n}{r} [F(x)]^r [1 - F(x)]^{n-r}$$

$$f_k(x) = \frac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} [1 - F(x)]^{n-k} f(x).$$

证明 根据题意有第 k 次序统计量 $X_{(k)}$ 的分布函数为

$$F_k(x) = \Pr[X_{(k)} \le x] = \Pr[X_1, X_2, \cdots, X_n \text{ 中至少有 } k \text{ 个随机变量 } \le x]$$

$$= \sum_{r=k}^n \Pr[X_1, X_2, \cdots, X_n \text{ 中恰有 } r \text{ 个随机变量 } \le x, \ n-r \text{ 个随机变量 } > x]$$

$$= \sum_{r=k}^n \binom{n}{r} [F(x)]^r [1-F(x)]^{n-r}.$$

利用恒等式

$$\sum_{r=k}^{n} \binom{n}{r} p^{r} (1-p)^{n-r} = \frac{n!}{(k-1)!(n-k)!} \int_{0}^{p} t^{k-1} (1-t)^{n-k} dt \quad (r \in [n], \ p \in [0,1])$$

由此可知

$$F_k(x) = \frac{n!}{(k-1)!(n-k)!} \int_0^{F(x)} t^{k-1} (1-t)^{n-k} dt,$$

根据积分函数求导完成证明.

8.3 Beta 分布、Γ 分布、Dirichlet 分布

首先介绍两积分函数.

定义 8.3 (Beta-函数) 对任意给定 $\alpha_1 > 0$ 和 $\alpha_2 > 0$, 定义 Beta 函数为

Beta
$$(\alpha_1, \alpha_2) = \int_0^1 x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1} dx,$$

有些书简记为 $B(\alpha_1,\alpha_2)$, 被称为第一类欧拉积分函数.

根据数学分析可知 Beta (α_1,α_2) 在定义域 $(0,+\infty)\times(0,+\infty)$ 连续. 利用变量替换 t=1-x,根据定义有

$$Beta(\alpha_1, \alpha_2) = \int_0^1 t^{\alpha_1 - 1} (1 - t)^{\alpha_2 - 1} dt = \int_1^0 (1 - x)^{\alpha_1 - 1} x^{\alpha_2 - 1} d(1 - x)
= \int_0^1 x^{\alpha_2 - 1} (1 - x)^{\alpha_1 - 1} dx = Beta(\alpha_2, \alpha_1),$$

由此可知 Beta 函数的对称性: Beta(α_1, α_2) = Beta(α_2, α_1).

定义 8.4 (Γ -函数) 对任意给定 $\alpha > 0$, 定义 Γ -函数为

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx,$$

又被称为第二类欧拉积分函数.

性质 8.1 对 Γ -函数, 有 $\Gamma(1) = 1$ 和 $\Gamma(1/2) = \sqrt{\pi}$, 以及对 $\alpha > 1$ 有 $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$.

证明 根据定义有

$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = 1.$$

利用变量替换 $x = t^{1/2}$ 有

$$\Gamma(1/2) = \int_0^{+\infty} t^{-\frac{1}{2}} e^{-t} dt = \int_0^{+\infty} x^{-1} e^{-x^2} dx^2 = 2 \int_0^{+\infty} e^{-x^2} dx = \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$$

进一步有

$$\Gamma(\alpha) = -\int_0^\infty x^{\alpha - 1} de^{-x} = -[x^{\alpha - 1}e^{-x}]_0^{+\infty} + (\alpha - 1)\int_0^{+\infty} x^{\alpha - 2}e^{-x} dx = (\alpha - 1)\Gamma(\alpha - 1)$$

对任意正整数 n, 根据上面的性质有

$$\Gamma(n) = (n-1)!$$

关于 Beta 函数和 Γ-函数, 有如下关系:

定理 8.2 对任意给定 $\alpha_1 > 0$ 和 $\alpha_2 > 0$, 有

Beta
$$(\alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)}$$
.

证明 根据 Γ-函数的定义有

$$\Gamma(\alpha_1)\Gamma(\alpha_2) = \int_0^{+\infty} t^{\alpha_1 - 1} e^{-t} dt \int_0^{+\infty} s^{\alpha_2 - 1} e^{-s} ds = \int_0^{+\infty} \int_0^{+\infty} e^{-(t+s)} t^{\alpha_1 - 1} s^{\alpha_2 - 1} dt ds.$$

引入变量替换 x = t + s 和 y = t/(t + s), 反解可得 t = xy 和 s = x - xy, 计算雅可比行列式有

$$\begin{vmatrix} \frac{\partial t}{\partial x} & \frac{\partial t}{\partial y} \\ \frac{\partial s}{\partial x} & \frac{\partial s}{\partial y} \end{vmatrix} = \begin{vmatrix} y & x \\ 1 - y & -x \end{vmatrix} = -x.$$

同时有 $x \in (0, +\infty)$ 和 $y \in (0, 1)$ 成立, 由此可得

$$\Gamma(\alpha_{1})\Gamma(\alpha_{2}) = \int_{0}^{1} \int_{0}^{+\infty} e^{-x} x^{\alpha_{1}-1} y^{\alpha_{1}-1} x^{\alpha_{2}-1} (1-y)^{\alpha_{2}-1} |x| dx dy$$

$$= \int_{0}^{1} \int_{0}^{+\infty} e^{-x} x^{\alpha_{1}+\alpha_{2}-1} y^{\alpha_{1}-1} (1-y)^{\alpha_{2}-1} dx dy$$

$$= \int_{0}^{+\infty} e^{-x} x^{\alpha_{1}+\alpha_{2}-1} dx \int_{0}^{1} y^{\alpha_{1}-1} (1-y)^{\alpha_{2}-1} dy$$

$$= \Gamma(\alpha_{1} + \alpha_{2}) \operatorname{Beta}(\alpha_{1}, \alpha_{2})$$

定理得证.

根据上述定理可知

推论 8.1 对任意 $\alpha_1 > 1$ 和 $\alpha_2 > 0$, 有

$$Beta(\alpha_1, \alpha_2) = \frac{\alpha_1 - 1}{\alpha_1 + \alpha_2 - 1} Beta(\alpha_1 - 1, \alpha_2).$$

证明 根据前面的定理有

$$\mathrm{Beta}(\alpha_1,\alpha_2) = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1+\alpha_2)} = \frac{(\alpha_1-1)\Gamma(\alpha_1-1)\Gamma(\alpha_2)}{(\alpha_1+\alpha_2-1)\Gamma(\alpha_1+\alpha_2-1)} = \frac{\alpha_1-1}{\alpha_1+\alpha_2-1}\mathrm{Beta}(\alpha_1-1,\alpha_2).$$

定义 8.5 对任意 $\alpha_1, \alpha_2, \dots, \alpha_k > 0$, 定义多维 Beta 函数为

Beta
$$(\alpha_1, \alpha_2, \cdots, \alpha_k) = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)\cdots\Gamma(\alpha_k)}{\Gamma(\alpha_1 + \alpha_2 + \cdots + \alpha_k)}$$
.

下面介绍三种分布:

定义 8.6 (Beta 分布) 给定 $\alpha_1 > 0$ 和 $\alpha_2 > 0$, 若随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{x^{\alpha_1 - 1}(1 - x)^{\alpha_2 - 1}}{B(\alpha_1, \alpha_2)} & x \in (0, 1) \\ 0 & \sharp \dot{\Xi}. \end{cases}$$

称 X 服从参数为 α_1 和 α_2 的 Beta 分布,记 $X \sim B(\alpha_1, \alpha_2)$.

定理 8.3 若随机变量 $X \sim B(\alpha_1, \alpha_2)$, 则有

$$E[X] = \frac{\alpha_1}{\alpha_1 + \alpha_2}$$
 \Re $Var(X) = \frac{\alpha_1 \alpha_2}{(\alpha_1 + \alpha_2)^2 (\alpha_1 + \alpha_2 + 1)}.$

证明 根据期望的定义有

$$\begin{split} E[X] &= \frac{1}{B(\alpha_1,\alpha_2)} \int_0^1 x \cdot x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1} dx = \frac{B(\alpha_1 + 1,\alpha_2)}{B(\alpha_1,\alpha_2)} = \frac{\alpha_1}{\alpha_1 + \alpha_2}, \\ E[X^2] &= \frac{1}{B(\alpha_1,\alpha_2)} \int_0^1 x^{\alpha_1 + 1} (1 - x)^{\alpha_2 - 1} dx = \frac{B(\alpha_1 + 2,\alpha_2)}{B(\alpha_1,\alpha_2)} = \frac{\alpha_1 + 1}{\alpha_1 + \alpha_2 + 1} \frac{\alpha_1}{\alpha_1 + \alpha_2}, \end{split}$$

由此可得

$$Var(X) = E[X^2] - E[X]^2 = \frac{\alpha_1(1+\alpha_1)}{(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_2 + 1)} - (\frac{\alpha_1}{\alpha_1 + \alpha_2})^2 = \frac{\alpha_1\alpha_2}{(\alpha_1 + \alpha_2)^2(\alpha_1 + \alpha_2 + 1)}.$$

例 8.2 设独立同分布随机变量 X_1, X_2, \cdots, X_n 服从均匀分布 $\mathcal{U}(0,1)$, 记 $X_{(k)}$ 为其顺序统计量,则

$$X_{(k)} \sim B(k, n - k + 1).$$

证明 若随机变量 $X_i \sim U(0,1)$ $(i \in [n])$, 则当 $x \in (0,1)$ 时其分布函数 F(x) = x. 由此可得到第 k 个统计量 $X_{(k)}$ 的概率密度函数

$$f(x) = \frac{n!}{(k-1)!(n-k)!} (F(x))^{k-1} (1-F(x))^{n-k} = \frac{n!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k}$$
$$= \frac{1}{B(k, n-k+1)} x^{k-1} (1-x)^{n-k}.$$

下面定义 Γ 分布:

定义 8.7 如果随机变量 X 的概率密度

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & x > 0\\ 0 & x \leqslant 0 \end{cases}$$