Topologie

David Wiedemann

Table des matières

1	Que	otients topologiques 3
	1.1	La topologie quotient
	1.2	Relations d'equivalence
	1.3	Separation et quotients
	1.4	Conditions de separation du quotient
	1.5	Quotients par des actions de groupe
	1.6	SO(n)
	1.7	Recollements
	1.8	Attachement de cellules
2	Hor	notopies et Groupe Fondamental
	2.1	Homotopie
	2.2	Attachement de cellules
	2.3	Homotopie et π_0
	2.4	Invariance Homotopique
	2.5	Groupe Fondamental
	2.6	Surfaces
\mathbf{L}	ist	of Theorems
	1	Definition (Topologie quotient)
	3	Proposition
	4	Proposition
	5	Proposition
	6	Theorème
	7	Proposition
	8	Proposition
	2	Definition
	9	Proposition (Proprietes universelles)
	3	Definition
	4	Definition (Reunion disjointe)

5	Definition	5
6	Definition	5
11	Proposition	5
12	Proposition	5
13	Proposition	6
14	Corollaire	7
7	Definition (Espaces projectifs)	7
17	Proposition	7
8	Definition (Espace projectif complexe)	7
9	Definition (Groupe topologique)	8
20	Lemme	8
10	Definition	8
11	Definition	8
22	Proposition	8
23	Proposition	9
12	Definition (Recollement)	9
26	Proposition	10
27	Lemme	10
28	Lemme	10
29	Proposition	11
31	Proposition	11
13	Definition (Suspension)	12
14	Definition (Homotopie entre applications)	12
32	Proposition	12
15	Definition (Classes d'homotopie)	13
16	Definition (Espaces Homotopes)	13
33		13
35	Proposition	14
36	Corollaire	14
37	Corollaire	14
38	Proposition	14
39	Proposition	15
40	Corollaire	15
17	Definition (Pinch and Fold)	15
18		16
41		16
42		17
19		17
20		17

1 Quotients topologiques

Un espace topologique (X, τ) est ecrit X si la topologie est claire. Le singloton $\{*\}$ est note *.

La boule unite de \mathbb{R}^n est notee D^n et la version ouverte sera $int(D)^n$.

1.1 La topologie quotient

But : Construire de nouveaux espaces a l'aide d'espaces connus en identifiant des points.

Soit X un espace, Y un ensemble et $q: X \to Y$ surjective.

Definition 1 (Topologie quotient)

La topologie quotient sur Y est la topologie des $V\subset Y$ tel que $q^{-1}(V)$ est ouvert dans X .

Remarque

q est alors continue et on verifie que c'est une topologie.

Exemple

X = [0,1] et $Y = (0,1) \cup \{*\}$ et q l'application qui envoie 0 et 1 sur *.

Alors q est surjective et donc Y peut etre muni de la topologie quotient et est homeomorphe a un cercle.

On definit $f: S^1 \to Y: e^{2\pi i t} \mapsto t \text{ si } 0 < t < 1 \text{ et} * sinon.$

Proposition 3

Soit $q: X \to Y$ une application continue, surjective et ouverte, alors q est un quotient.

Proposition 4

Soit $V \subset Y$ un sous-ensemble tel que $q^{-1}(V)$ est ouverte dans X. Comme q est surjective, alors $V = q(q^{-1}(V))$ et c'est un ouvert car q envoie les ouverts sur les ouverts.

Proposition 5

Une composition de quotients est un quotient.

Theorème 6

La topologie quotient est la plus fine qui rend q continue. De plus, pour $g: Y \to Z$, g est continue si et seulement si $g \circ q$ est continue.

Proposition 7

 $Si~q:X\rightarrow Y~est~continue,~la~preimage~d'un~ouvert~de~Y~est~ouvert~dans~X.$

La topologie quotient est celle qui contient le plus d'ouvert possibles.

Clairement, si g est continue, alors $g \circ q$ l'est aussi.

Si $g \circ q$ est continue, soit $W \subset Z$ un ouvert, alors $(g \circ q)^{-1}(W) = q^{-1}(g^{-1}(W))$ est ouvert et par definition $g^{-1}(W)$ est ouvert dans Y.

Proposition 8

Le quotient d'un compact est compact

Preuve

L'image d'un compact est compacte.

1.2 Relations d'equivalence

Si $q: X \to Y$ est un quotient, on definit sur X une relation d'equivalence \sim par $x \sim x'$ ssi q(x) = q(x'), alors les points de Y sont les classes d'equivalence [x].

Definition 2

 $Si \simeq est \ une \ relation \ d'equivalence \ sur \ X, \ alors \ X/\sim est \ l'espace \ quotient \ des \ classes \ d'equivalence.$

Proposition 9 (Proprietes universelles)

Soit \sim une relation d'equivalence sur X et $f: X \to Z$ tel que $x \sim x' \implies f(x) = f(x')$, alors il existe un unique $\overline{f}: X/\sim Z$ tel que $\overline{f}\circ q = f$

Preuve

Pour que le triangle commute, on doit poser $\overline{f}([x]) = f(x)$ et l'application est bien definie par hypothese et donc unique.

On sait que \overline{f} est continue ssi $\overline{f} \circ q$ l'est.

Definition 3

Si $A \subset X$, on pose $x \sim x' \iff x = x'$ ou $x, x' \in A$. Le collapse X/A est l'espace quotient X/\sim

Par exemple $I/\{0,1\}$.

Exemple

$$D^n/\partial D^n = D^n/S^{n-1} = S^n$$

Pour deux espaces bien connus, pointes (X_1, x_1) et (X_2, x_2) , on peut construire un nouvel espace en identifiant x_1 et x_2 .

Definition 4 (Reunion disjointe)

Soit I un ensemble, X_{α} un espace pour chaque $\alpha \in I$. La reunion disjointe $\bigcup X_{\alpha}$ est l'ensemble $\bigcup_{\alpha \in I} X_{\alpha} \times \{\alpha\}$ dont la topologie est engendree par les sous-ensemble de la forme $U_{\alpha} \times \{\alpha\}$

Definition 5

Soit I un ensemble et pour tout $\alpha \in I$, (X_{α}, x_{α}) un espace pointe. Le wedge $\bigvee_{\alpha} X_{\alpha}$ est le collapse de la reunion disjointe ou on identifie les points de base

Definition 6

Soit X un espace. Le cylindre Cyl(X) est $X \times I$ et le cone CX est le collapse du cylindre a la base.

1.3 Separation et quotients

On definit sur $\mathbb{R} \times \{0;1\}$ une relation d'equivalence \sim par $(x,0) \sim (x,1)$ si $x \neq 0$.

Le quotient est la droite a deux origines dont on ne peut separer les deux origines (0,1) et (0,0) par des ouverts.

Regardons le graphe de \sim dans $\mathbb{R} \times \{0;1\} \times (\mathbb{R} \times \{0,1\})$ (ie. une copie de 4 plans)

Proposition 11

 $Si~X/\sim est~separe,~alors~le~graphe~de\sim dans~X\times X~est~ferme.$

Preuve

La preimage de $\Delta \subset X/\sim \times X/\sim par\ q\times q\ est\ \Gamma_{\sim}$. Comme Δ est ferme, sa preimage aussi.

Lecture 2: Conditions de Separation

Sat 26 Feb

1.4 Conditions de separation du quotient

On donne une condition necessaire et une condition suffisante pour que le quotient soit separe

Proposition 12

Soit \sim une relation d'equivalence sur un espace X. Si X/\sim est separe, le graphe Γ de la relation est ferme dans $X\times X$

Preuve

 $Si~X/\sim est~separe,~par~un~lemme,~la~diagonale~\Delta\subset X/\sim \times X/\sim est~ferme.$

Considerons $q \times q : X \times X \to X/\sim X/\sim$. Cette application est continue et donc $(q \times q)^{-1}(\Delta)$ est un ferme de $X \times X$. Or cette preimage est l'ensemble des paires de points $(x,y) \in X \times X$ t $q(x) = q(y) \iff x \sim y$.

On donne maintenant une condition suffisante permettant de conclure qu'un quotient est separe.

Proposition 13

Soit \sim une relation d'equivalence sur un espace X separe. Si $q^{-1}(q(x))$ est compact pour tout point $x \in X$ et de plus que pour $F \subset X$ ferme $q^{-1}(q(F))$ est ferme, alors le quotient est separe.

Preuve

Soit $\overline{x} = q(x)$ et $\overline{y} = q(y)$ deux points distincts de X/\sim .

Les saturations $q^{-1}(\overline{x}), q^{-1}(\overline{y})$ sont des compacts par hypothese.

Comme X est separe, on peut separer des compacts avec des ouverts disjoints U et V.

On a donc

$$q^{-1}(\overline{x}) \subset U, q^{-1}(\overline{y}) \subset V \ et \ U \cap V = \emptyset$$

Posons $E = X \setminus U, F = X \setminus V$ deux fermes de X.

Par hypothese, les saturations $q^{-1}(q(E))$ et $q^{-1}(q(F))$ sont fermes. Ainsi $U' = X \setminus q^{-1}(q(E))$ et $V' = X \setminus q^{-1}(q(F))$ sont des ouverts. On observe que $E \subset q^{-1}(q(E)), F \subset q^{-1}(q(F)),$ alors $U' \subset U, V' \subset V$.

De plus $q^{-1}(q(x)) \subset U'$ et $q^{-1}(q(y)) \subset V'$.

Il reste a montrer que q(U') et q(V') sont ouverts dans X/\sim et disjoints. Pour le premier point, il suffit de verifier que $q^{-1}(q(U'))$ est ouvert dans X. On pretend que $q^{-1}(q(U')) = U'$.

En effet, $U' \subset q^{-1}(q(U'))$ est toujours vrai, il faut donc montrer l'inclusion inverse.

Soit $u \in q^{-1}(q(U'))$, donc $q(u) \in q(U')$. Donc $q(u) \notin q(E)$ et donc $u \in U'$ Le meme resultat est vrai pour V'.

Il faut donc finalement encore montrer que q(U') et q(V') sont des voisinages ouverts, de \overline{x} et \overline{y} disjoints.

Supposons qu'il existe $u' \in U', v' \in V'$ tel que q(u') = q(v'). Alors $u' \in q^{-1}(q(v')) \subset q^{-1}(q(V')) = V'$.

Donc $U' \cap V' \neq \emptyset$, contradiction.

Lecture 3: Groupes topologiques

Mon 28 Feb

Corollaire 14

Soit $A \subset X$ un sous-espace compact d'un espace X separe. Alors le collapse $\mathfrak{X}A$ est separe.

Preuve

Il suffit de verifier les proprietes du theoreme.

Soit $\overline{x} \in \mathfrak{X}A$.

Si $x \in A$, $q^{-1}(x) = A$ est compact. Si $x \notin A$, $q^{-1}(\overline{x}) = \{x\}$ qui est compact. Soit F un ferme de X, alors si $F \cap A = \emptyset$, on a que $q^{-1}(q(F)) = F$ ferme, sinon $F \cap A \neq \emptyset$ et alors

$$q^{-1}(q(F)) = F \cup A$$

Comme A est compact et X separe, alors A ferme.

Exemple

Soit \sim une relation d'equivalence sur \mathbb{R}^2 defini par $(x,y) \sim (x',y') \iff (x-x',y-y') \in \mathbb{Z}^2$.

Alors

$$\mathbb{R}^2 \sim$$

est un tore, separe, or la proposition ne s'applique pas car $q^{-1}(0,0) = \mathbb{Z}^2$.

Definition 7 (Espaces projectifs)

L'espace projectif reel $\mathbb{R}P^n$ est le quotient de S^n par la relation antipodale $x \sim y \iff x = \pm y \ pour \ x, y \in S^n \subset \mathbb{R}^{n+1}$

Exemple

$$-\mathbb{R}P^0 = \mathfrak{S}^{\mathfrak{o}} \sim = *, \mathbb{R}P^1 = \mathfrak{S}^1 \sim \cong S^1.$$

— De plus $\mathbb{R}P^2 = S^2/\sim$ est le plan projectif

Proposition 17

 $\mathbb{R}P^n$ est compact et separe

Suit immediatement des propositions.

L'analogue complexe donne

Definition 8 (Espace projectif complexe)

L'espace projectif complexe $\mathbb{C}P^n$ est le quotient de $S^{2n+1} \subset \mathbb{C}^{n+1}$ par la relation $x \sim y \iff \exists \alpha \in S^1$ tel que $x = \alpha y$.

De meme, pour les quaternions \mathbb{H} , on peut definir $\mathbb{H}P^n$, pour les octonions

1.5 Quotients par des actions de groupe

Definition 9 (Groupe topologique)

Un groupe topologique est un groupe G tel que les applications de multiplication $\mu: G \times G \to G$ et l'inverse $\iota: G \to G$ sont continues.

Tout groupe peut etre vu comme un groupe topologique discret.

Exemple

Le cercle unite $S^1 \subset \mathbb{C}$ muni de la multiplication complexe est un groupe topologique

Remarque

Les seules spheres qui sont des groupes topologiques sont S^0, S^1, S^3

Lemme 20

 $Si\ H < G\ est\ un\ sous-groupe\ d'un\ groupe\ topologique\ G,\ la\ topologie\ induite\ en\ fait\ un\ groupe\ topologique.$

Definition 10

Une action d'un groupe topologique G sur un espace X est une application $\mu: X \times G \to X$ telle que

$$\mu(x, 1_G) = x \forall x \in X \ et \ \mu(x, gg') = \mu(\mu(x, g), g')$$

Definition 11

Soit μ une action de G sur X, l'espace des orbites $\mathfrak{X}G$ et l'espace quotient de X par la relation $x \sim y \iff \exists g \in G$ tel que $y = \mu(x,g)$

Remarque

Si H < G est un groupe topologique, alors H agit sur G par multiplication a droite et $\mathfrak{G}H$ est l'espace des orbites gH. Si H est un sous-groupe normal, ce quotient est un groupe.

Proposition 22

Soit μ une action d'un groupe topologique G sur un espace X, alors

- 1. $q: X \to \mathfrak{X}G$ est ouverte
- 2. Si X est compact, le quotient est compact
- 3. Si X et G sont compact et separe, alors $\mathfrak{X}G$ aussi.

Preuve

Soit $U \subset X$ ouvert, q(U) est ouvert car $q^{-1}(q(U)) = \bigcup_{g \in G} U \cdot g$ et $U \cdot g$ est ouvert car la translation est continue et est meme un homeomorphisme. La propriete 2 est immediate.

On considere $X \times X \times G \to X \times X$ en envoyant $(x, y, g) \mapsto (x, yg)$, cette application est continue.

Le graphe Γ de la relation definie par μ est l'image de $\Delta \times G$.

Comme X est separe, Δ est ferme donc compact et G est compact.

Ainsi Γ est compact dans $X \times X$ separe donc Γ est ferme.

Soient xG et yG deux orbites differentes, ie. $(x,y) \notin \Gamma$.

Il existe donc des ouverts $x \in U, y \in V$ tel que $U \times V \cap \Gamma = \emptyset$.

Comme q est ouverte, q(U), q(V) sont des voisinages ouverts des orbites xG et yG respectivement. On conclut en remarquant que ces images sont disjointes.

Sinon on aurait zG commun, ie. $zg \in U, zg' \in V$ pour $g, g' \in G$ et alors $(zg, zgg^{-1}g') \in \Gamma \cap (U \times V)$

1.6 SO(n)

Proposition 23

Soit G compact et X separe. Soit μ une action transitive de G sur X. Alors, si G_x , alors

$$\mathfrak{G}G_x = X$$

pour tout $x \in X$.

Preuve

On definit $\mu_x: G \to X$ envoyant $g \mapsto xg$, continue.

On observe que μ_x envoie G_x sur x et par transitivite, μ_x est surjective.

Par la propriete universelle du quotient, μ_x passe au quotient.

 $\bar{\mu}_x$ est une bijection continue. C'est un homeo car $\mathfrak{G}G_x$ est compact, X separe.

Lecture 4: Attachements de Cellules

Mon 07 Mar

1.7 Recollements

On construit de nouveaux espaces a l'aide de pieces plus simple. On se donne $f:A\to X,g:A\to Y$ deux applications. On recolle X et Y le long de A

Definition 12 (Recollement)

Le recollement de X et Y le long de A est le quotient de $X \coprod Y$ par la relation d'equivalence engendree par $f(a) \sim g(a) \forall a \in A$

Remarque

Il ne suffit pas d'identifier $f(a) \sim g(a)$ pour que la relation soit une relation d'equivalence.

Pour garantir la transitivite, on a des zigszags d'equivalence $f(a) \sim g(a) = g(b) \sim f(b) = f(c) \sim g(c) \dots$

Exemple

Si $A = *, f(*) = x_0 \in X, g(*) = y_0 \in Y$, alors le recollement $X \cup_* Y$ est le $wedge\ X \vee Y$

On notera le recollement $X \cup_A Y$.

Si $q: X \coprod Y \to X \cup_A Y$ est le quotient, alors l'inclusion $i_1: X \to X \coprod Y$ induit $i = q \circ i_i: X \to X \cup_A Y$ et de meme pour l'inclusion de Y.

Proposition 26

Le recollement $X \cup_A Y$ est le pushout de $Y \leftarrow A \rightarrow X$.

Preuve

On doit montrer l'existence et l'unicite de θ .

Puisque chaque element de $X \cup_A Y$ admet un representant dans X ou Y, on doit poser $\theta([x]) = \alpha(x) \forall x \in X$ et $\theta([y]) = \beta(y) \forall y \in Y$.

On montre l'existence.

Posons $\Theta: X \coprod Y \to Z$ l'application determinee par α et β .

On verifie que Θ est compatible avec \sim . Soit $a \in A$, alors $\Theta(f(a)) = \alpha(f(a)) = \beta(g(a)) = \Theta(g(a))$.

Ainsi Θ passe au quotient et induit θ , qui est donc bien continue. \square

Des maintenant, on suppose que $g:A\subset Y$ est l'inclusion d'un sous-espace ferme.

Lemme 27

Soit $C \subset Y$, alors la saturation de C est

$$f(C\cap A)\coprod (C\cup f^{-1}\circ f(C\cap A))$$

Preuve

On va regarder ce qui se passe pour tout $c \in C$.

Si
$$c \notin A$$
, alors $q^{-1}(q(c)) = \{c\}$, sinon $q^{-1}(q(c))$ contient $f(c) \in X$ et $f^{-1}(f(c)) \subset Y$

Lemme 28

$$Si\ C\subset X\ ,\ q^{-1}(q(C))=C\prod f^{-1}(C)\subset X\coprod Y$$

Preuve

Comme ci-dessus, si $c \in C$ n'est pas dans l'image de f, on a $q^{-1}(q(c)) = \{c\}$, sinon on a $c \in X$ et $f^{-1}(c) \subset A \subset Y$

Proposition 29

Soient X et Y deux espaces separes, $g: A \subset Y$ l'inclusion d'un compact, alors $X \cup_A Y$ est separe.

Preuve

On observe que $X \coprod Y$ est separe. Avant d'appliquer le critere de separabilite, on montre que l'application quotient est fermee. Comme un ferme de $X \coprod Y$ est la reunion disjointe de deux fermes on a deux cas.

Si $C \subset X$ ferme, alors q(C) est ferme $\iff q^{-1}(q(C))$ est fermee. Par le lemme ci-dessus.

$$q^{-1}(q(C)) = C \prod f^{-1}(C)$$

qui sont fermes

Si
$$C \subset Y$$
, alors $q^{-1}(q(C)) = f(C \cap A) \coprod (C \cup f^{-1}(f(C \cap A)))$

On a $f(C \cap A)$ compact et donc ferme puisque Y est separe.

Pour conclure, on verifie les deux conditions du critere.

Pour conclure, on verifie les deux conditions du critere, la saturation d'un ferme est fermee grace aux preparatifs.

Soit $z \in X \coprod Y$, on doit montrer que $q^{-1}(q(z))$ est compact, les lemmes cidessus permettent de conclure parce que si $z = a \in A, f^{-1}(f(a))$ est un ferme d'un compact et est donc compacte.

1.8 Attachement de cellules

Ici
$$g: A \subset CA = {}^{A} \times {}^{I}/_{A \times 1}$$
.

Soit $f: A \to X$, le recollement $X \cup_A CA$ aussi note $X \cup_f CA$ est appele attachement d'une A-cellule sur X le long de f.

Si $A = S^{n-1}$ alors cet attachement est celui d'une n-cellule

Remarque

 $CS^{n-1} \simeq D^n$, on note $X \cup_f CS^{n-1} = X \cup_f e^n$ ou $X \cup_f D^n$ et on appelle $e^n \simeq D^n$ une n-cellule (fermee.)

Proposition 31

Si X est separe et A est compact et separe, alors $X \cup_f CA$ est separe. Si en plus X est compact

Preuve

Le premier point suit de la proposition precedente car CA est separe, le 2eme point suit du critere de compacite car $X \coprod Ca$ est compact.

Definition 13 (Suspension)

La suspension de A est le quotient $A \times I/(a,0) \sim (a',0)$ et $(a,1) \sim (a',1)$

Lecture 5: Homotopies et groupe fondamental

Sat 12 Mar

2 Homotopies et Groupe Fondamental

2.1 Homotopie

Definition 14 (Homotopie entre applications)

Soient $f, g: X \to Y$ des applications. On dit que f et g sont homotopes et on note $f \simeq g$ s'il existe une application $H: X \times I \to Y$ tel que H(-,0) = f et H(-,1) = g.

On appelle H une homotopie.

Proposition 32

La relation \simeq est une relation d'equivalence.

Preuve

Reflexivite

Suit du fait qu'on peut definir une homotopie constante.

$$H: X \times I \to Y: (x,t) \mapsto f(x)$$

Symetrie

La symetrie suit du fait qu'on peut parcourir une homotopie dans l'autre sens.

Ainsi, soit $H: X \times I \to Y$ une homotopie entre f et g. On pose

$$G: X \times I \to Y: (x,t) \mapsto H(x,1-t)$$

Transitivite

Supposons que $H: X \times I \to Y, G: X \times I \to Y$ sont des homotopies, $f \simeq g \simeq h$. On construit une homotopie $K: X \times I \to Y$ entre f et h

$$(x,t) \mapsto \begin{cases} H(x,2t) \ si \ 0 \le t \le \frac{1}{2} \\ G(x,2t-1) \ si \ \frac{1}{2} < t \le 1 \end{cases}$$

On voit que K est continue et montre que $f \simeq h$.

Definition 15 (Classes d'homotopie)

On note [X,Y] l'ensemble des classes d'homotopies d'applications $f:X\to Y$.

C'est donc $C(X,Y)/\sim$.

Lecture 6: Homotopies

Mon 14 Mar

Definition 16 (Espaces Homotopes)

Deux espaces X et Y sont homotopes ou homotopiquement equivalent, note $X \simeq Y$, s'il existe $f: X \to Y$ et $g: Y \to X$ tel que

$$g \circ f \simeq \operatorname{Id}_X \ et \ f \circ g \simeq \operatorname{Id}_Y$$

On dit que f et g sont des equivalences homotopiques et qu'elles sont inverses homotopiques l'une de l'autre.

Proposition 33

$$CX \simeq *$$

Preuve

 $\textit{Posons } CX = {}^{\textstyle X} \times {}^{\textstyle I}\!/_{\textstyle X} \times 0.$

On pose $f: * \to CX$ par f(*) = [x, 1] et on prend $g: CX \to *$.

On a $g \circ f = \mathrm{Id}_*$, il reste a voir que $f \circ g \simeq \mathrm{Id}_{CX}$. On construit une homotopie $H: CX \times I \to CX$, defini par

$$H([x,t],s)\mapsto [x,ts]$$

C'est une application (trivialement bien definie) et c'est une homotopie entre $f\circ g\simeq \mathrm{Id}_{CX}$

Remarque

Si f et sont des applications pointees $(X, x_0) \to (Y, y_0)$ qui sont homotopes au sens non pointe, il est faux en general que $f \simeq_* g$ au sens pointe.

Par exemple $f, g: S^1 \to S^1 \bigvee S^1$, f est donnee par a et g est donnee par $b \star a \star b^{-1}$ (concatenation).

On a que $f \simeq g$ pour $f_t: S^1 \to S^1 \bigvee S^1$ donne par $b|_{[1-t,1]} \star a \star \overline{b}|_{[0,t]}$

2.2 Attachement de cellules

 $\underline{\mathrm{But}}: f \simeq g: A \to X, \, \mathrm{alors}$

$$X \cup_f CA \simeq X \cup_G CA$$

Proposition 35

Si $f, g: A \to X$ sont homotopes, alors $X \cup_f CA \simeq X \cup_g CA$

Preuve

Pour comparer les deux espaces $Y = X \cup_f CA$ et $Y' = X \cup_g CA$, on construit des applications $h: Y \to Y'$ et $k: Y' \to Y$.

On definit $h: Y \to Y'$ par la propriete universelle du pushout.

On choisit $\iota': X \to Y'$ l'application donnee par la construction de Y'.

On pose

$$\alpha: CA \to Y'[a,t] \qquad \qquad \mapsto \begin{cases} H(a,2t) \ si \ t \leq \frac{1}{2} \\ [a,2t-1] \ si \ t > \frac{1}{2} \end{cases}$$

Si t = 0, alors H(a, 0) = f(a) donc le diagramme commute.

Si $t = \frac{1}{2}$, H(a, 1) = g(a). On construit k comme h, mais avec H(-, 1 - t).

On doit montrer que $k \circ h \simeq \operatorname{Id}_Y$ (et de meme $h \circ k \simeq \operatorname{Id}_{Y'}$)

Corollaire 36

Si $f, g: S^{n-1} \to X$ et $f \simeq g$, alors $X \cup_f e^n \simeq X \cup_g e^n$.

Corollaire 37

Si $f: A \to X$ est homotope a c_x constante, alors $X \cup_f CA \simeq X \bigvee \sum A$

2.3 Homotopie et π_0

Soit $S_0 = \{\pm 1\}$ sphere unite de \mathbb{R} .

On etudie les applications pointees de $(S_0, 1) \to (X, x_0)$. Ainsi $f(1) = x_0$ et f(-1) = x abritraire.

Deux telles applications f donnee par x et f' donee par x' sont homotopes (au sens pointe) s'il existe une homotopie pointee

$$H: S^0 \times I \to X$$

H est donc simplement donne par H(-1,t), un chemin dans X de x vers x'. Donc x et x' sont dans la meme composante connexe par arcs.

Proposition 38

L'ensemble $\pi_0 X$ des composantes connexes par arcs est en bijection avec $[S_0, X]_*$

2.4 Invariance Homotopique

Soit $f: X \to Y$, elle induit une application

$$f_*: [A, X] \rightarrow [A, Y]$$

$$[g] \mapsto [f \circ g]$$

Preuve

 $On\ veut\ montrer\ que\ l'application\ ci-dessus\ est\ bien\ definie.$

Si $g \sim g'$ via l'homotopie G, alors $f \circ g \simeq f \circ g'$ via $f \circ G$

Proposition 39

Si $f \simeq f': X \to Y$, alors $f_* = f'_*$.

Preuve

On choisit $H: X \times I \to Y$ une homotopie entre H(-,0) = f et H(-,1) = f'.

On veut montrer que $f \circ g \simeq f' \circ g$.

On construit $G: A \times I \to X \times I \to Y$ en envoyant

$$(a,t)\mapsto (g(a),t)\mapsto H(g(a),t)$$

Corollaire 40

Si $X \simeq Y$, alors $[A, X] \simeq [A, Y]$ comme ensembles.

Preuve

On a $f: X \to Y$ et $f': Y \to X$ inverses homotopes l'une de l'autre. Alors $[A, X] \to [A, Y] \to [A, X]$

Lecture 7: Groupe Fondamental

Mon 21 Mar

2.5 Groupe Fondamental

Un lacet

$$\alpha:I\to X$$

est une application satisfaisant $\alpha(0)=x_0=\alpha(1)$ ce qui signifie qu'il existe une application induite

$$\overline{\alpha}:S^1\to X$$

Et on note alors

$$\pi_1(X,x_0)=\pi_1X=[(S^1,1),(X,x_0)]$$

 $\pi_1 X$ a une structure de groupe donnee par la concatenation de lacets $\alpha \star \beta$

Definition 17 (Pinch and Fold)

L'application pinch

$$pinch: \sum A = {}^{A} \times {}^{I} /\!\!\! \sim \rightarrow \sum {}^{A} /\!\!\! /_{A \times \frac{1}{2}} \simeq \sum A \vee \sum A$$

Definition 18 (Fold)

Le pliage est une application

$$\nabla: X \vee X \to X$$

definie par la propriete universelle du pushout du diagramme $X \leftarrow * \rightarrow X$ avec le cone $\mathrm{Id}_X: X \rightarrow X$

La concatenation de deux lacets $\alpha, \beta: S^1 \to X$ est representee par

$$\alpha * \beta : S^1 \xrightarrow{\mathrm{pinch}} S^1 \vee S^1 \xrightarrow{\alpha \vee \beta} X \vee X \xrightarrow{\nabla} X$$

On a vu que la concatenation equipe $[S^1,X]_*$ d'une structure de groupe. L'associativite du groupe fondamental revient a dire que le diagramma suivant commute : A REMPLIR

En fait le groupe fondamental π_1 est un foncteur $\top_* \to Gr$, des espaces pointes vers les groupes

Proposition 41

Une application pointee $f: X \to Y$ induit un homomorphisme de groupes $f_*: \pi_1 X \to \pi_1$

Preuve

On sait que la postcomposition avec f induit une application $f_*: [S_1, X]_* \to [S_1, Y]_*$.

On montre que c'est un homomorphisme.

Soient $\alpha, \beta: S^1 \to X$, pointees, alors le diagramme suivant commute A REMPLIR

On a que 1 et 2 commutent et 3 commute aussi par la propriete universelle \square

On souhaite calculer $\pi_1(X \times Y)$, on note $C_*(S^1, X)$ l'ensemble des applications pointees $\alpha: S^1 \to X$.

Le groupe $\pi_1(X)$ en est un quotient $[S^1,X]_* = C_*(S^1,X)_{\simeq}$.

La propriete universelle du produit est qu'une application $\omega: S^1 \to X \times Y$ est donnee par ses projections $p_1 \circ \omega$ et $p_2 \circ \omega$, ie.

$$F: C_*(S^1, X) \times C_*(S^1, Y) \to C_*(S^1, X \times Y)$$
$$(\alpha, \beta) \mapsto (\omega: S^1 \to X \times Y)$$

est une bijection d'inverse

$$G: C_*(S^1, X \times Y) \to C_*(S^1, X) \times C_*(S^1, Y)$$

donne par la projection.

Proposition 42

Le foncteur π_1 preserve les produits.

Preuve

Les bijections F et G passent au quotient.

On montre que si $\alpha \simeq \alpha', \beta \simeq \beta'$, alors $F(\alpha, \beta) \simeq F(\alpha', \beta')$ et de meme, si $\omega \simeq \omega'$, alors la postcomposition par p_i donne des applications homotopes. La compatibilite avec la structure de groupes vient du fait que G est definie par $(p_1)_*$ et $(p_2)_*$ sur les deux composantes. \square

2.6 Surfaces

Definition 19 (Surface)

Une surface S est un espace topologique connexe par arcs, compact, sans bord tel que tout point $s \in S$ admet un voisinage ouvert U homeomorphe a D^2 avec $\partial U \simeq S^1$

Definition 20 (Somme connexe)

Soient S et T deux surfaces, la somme connexe S#T est la surface obtenue en choisissant $s \in S, t \in T$, des voisinages $s \in U \simeq D^2$ et $t \in V$ et un homeomorphisme $f: \partial U \to S^1 \to \partial V$ et en recollant

$$S\#T = {(S \setminus U) \coprod_{x \simeq f(x)} \forall x \in \partial U}$$

Remarque

S#T est bien defini (sans preuve), de plus

$$T \# S^2 \simeq T$$

Exemple

 $T^2 \# T^2$ est une surface de genre 2, un tore a deux trous.