1 Basic Properties

- 1. $E(X) = \sum xp(x)$
- 2. $Var(X) = \sum (x \mu)^2 f(x)$
- 3. X is around E(X), give or take SD(X)
- 4. E(aX + bY) = aE(X) + bE(Y)
- 5. $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$
- 6. $Var(X) = E(X^2) [E(X)]^2$
- 7. $Cov(X_1, X_2) = E(X_1X_2) E(X_1)E(X_2)$
- 8. P(AB) = P(A)P(B) if A and B independent
- 9. RV is centered when E(X) = 0, and any RV can be centered via Y = X - E(X)with SD and variance unaffected
- 10. In $X = \mu + \epsilon$, μ is the unknown constant of interest, and ϵ represents random measurement error.
- 11. if X, Y are independent:
 - (a) $M_{X+Y}(t) = M_X(t)M_Y(t)$
 - (b) E(XY) = E(X)E(Y), converse is true if X and Y are bivariate normal, extends to multivariate normal

2 Approximations

2.1 Law of Large Numbers

Let $X_1, X_2, ..., X_n$ be IID, with expectation μ and variance σ^2 . $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{\infty} |\mathbf{3.6}|$ F-distribution μ . Let $x_1, x_2, ..., x_n$ be realisations of the Let $U \sim \chi_m^2, V \sim \chi_n^2$ be independent, W =random variable $X_1, X_2, ..., X_n$, then $\overline{x_n} = \frac{U/m}{V/n}$ has an F distribution with (m,n) d.f. $\frac{1}{n}\sum_{i=1}^n x_i \xrightarrow{\infty} \mu$

2.2 Central Limit Theorem

 $\frac{S_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{\infty} \frac{\sum_{i=1}^{n-1}}{\mathcal{N}}(0,1)$

Distributions

3.1 Poisson(λ)

 $Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, ...$ $E(X) = Var(X) = \lambda$

3.2 Normal $X \sim \mathcal{N}(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), -\infty < x < \infty$$

- 1. When $\mu = 0$, f(x) is an even function, and $E(X^k) = 0$ where k is odd
- 2. $Y = \frac{X E(X)}{SD(X)}$ is the standard normal

3.3 Gamma Γ

$$\begin{split} g(t) &= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} e^{-\lambda t}, t \geq 0 \\ \$ \mu_1 &= \alpha \frac{\lambda}{\lambda, \mu_2 = \frac{\alpha(\alpha+1)}{\lambda^2}} \end{split}$$

3.4 χ^2 Distribution

Let $\mathcal{Z} \sim \mathcal{N}(0,1)$, $\mathcal{U} = \mathcal{Z}^2$ has a χ^2 distribution SD of population = σ with 1 d.f.

$$- \int f_{\mathcal{U}}(u) = \frac{1}{\sqrt{2\pi}} u^{-\frac{1}{2}} e^{-\frac{u}{2}}, u \ge 0$$

$$\chi_1^2 \sim \Gamma(\alpha = \frac{1}{2}, \lambda = \frac{1}{2})$$

 $\begin{array}{l} \chi_1^2 \sim \Gamma(\alpha = \frac{1}{2}, \lambda = \frac{1}{2}) \\ \operatorname{Let} U_1, U_2, ..., U_n \text{ be } \chi_1^2 \text{ IID, then } V = \sum_{i=1}^n U_i \\ \operatorname{is} \ \chi_n^2 \ \text{ with n degree freedom, } V \sim \Gamma(\alpha = \frac{1}{2}) \end{array}$ $\frac{n}{2}, \lambda = \frac{1}{2}$

$$E(\chi_n^2) = n, Var(\chi_n^2) = 2n$$

$$M(t) = (1 - 2t)^{-\frac{n}{2}}$$

3.5 t-distribution

Let $\mathcal{Z} \sim \mathcal{N}(0,1)$, $\mathcal{U}_n \sim \chi_n^2$ be independent, $t_n = \frac{\mathcal{Z}}{\sqrt{I_{r_n}/n}}$ has a t-distribution with n d.f.

$$f(t) = \frac{\Gamma([(n+1)/2])}{\sqrt{n}\pi\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

- 1. t is symmetric about 0
- $2. t_n \xrightarrow{\infty} \mathcal{Z}$

If $X \sim t_n$, $X^2 = \frac{Z/1}{U_n/n}$ is an F distribution with (1,n) d.f, with $w \geq 0$:

Let
$$S_n = \sum_{i=1}^n X_i$$
 where $X_1, X_2, ..., X_n$ IID.
$$f(w) = \frac{\Gamma([(n+1)/2])}{\Gamma(m/2)\Gamma(n/2)} \frac{m^{\frac{m}{2}}}{n} w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{m+n}{2}}$$
For $n > 2$, $E(w) = \frac{n}{n-2}$

4 Sampling

Let $X_1, X_2, ..., X_n$ be IID $\mathcal{N}(\mu, \sigma^2)$. sample mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ sample variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

4.1 Properties of \overline{X} and S^2

- 1. \overline{X} and S^2 are independent
- 2. $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$
- 3. $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$
- 4. $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$

4.2 Survey Sampling

variable x. The ith individual has fixed value $\left|\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2\right|$

mean of population =
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

total of population = $\tau = \sum_{i=1}^{N} x_i = \mu N$
SD of population = σ
 $\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2 \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2$

4.2.1 Dichotomous case

Population are members with value 0 or 1. Let SE is multiplied by $\frac{N-n}{N-1}$, because s^2 is biased p be the proportion of members with value 1 $\mu = p, \sigma^2 = p(1-p)$

4.3 Simple Random Sampling (SRS)

Assume n random draws are made without replacement. (Not SRS, will be corrected for later).

4.3.1 Lemma A

The draws X_i have the same distribution, and denote $\xi_1, \xi_2, ... \xi_n$ as values assumed by the population, and let the number of members with value ξ_i be n_i

$$P(X_i = \xi_j) = \frac{n_j}{N}$$

$$E(X_i) = \mu, Var(x_i) = \sigma^2$$

4.3.2 Lemma B

For $i \neq j$, $Cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$

We use sample mean \overline{X} to estimate μ : $E(\overline{X}) = \mu$ from Lemma A, and

 $\frac{N-n}{N-1}$ is the finite population correction factor. In 0-1 population, let \hat{p} be proportion of 1s in the sample:

$$E(\hat{p}) = p, SD(\hat{p}) = \sqrt{\frac{p(1-p)}{n} \frac{N-n}{N-1}}$$

4.3.3 Estimation Problem

Let $X_1, X_2, ..., X_n$ be random draws with re- 4.5 Estimation of a Ratio placement. Then \overline{X} is an estimator of μ . and

4.3.4 Standard Error (SE)

Since $E(\overline{X}) = \mu$, the estimator is unbiased. The error in a particular estimate \overline{X} is unknown, but on average its size is about $SD(\overline{x}) = \frac{\sigma}{\sqrt{n}}$

Standard error of an \overline{X} is defined to be $SD(\overline{X})$ In population of size N, we are interested in a An unbiased estimator for σ^2 is $s^2 =$

param	est	SE	Est. SE
μ	\overline{X}	$\frac{\sigma}{\sqrt{n}}$	$\frac{s}{\sqrt{n}}$
p	\hat{p}	$\sqrt{\frac{p(1-p)}{n}}$	$\sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}}$

4.3.5 Without Replacement

for σ^2 : $E(\frac{N-1}{N}s^2) = \sigma^2$, but N is normally

4.3.6 Confidence Interval

An approximate $1 - \alpha$ CI for μ is $(\overline{x}-z_{\alpha/2}\frac{s}{\sqrt{n}},\overline{x}+z_{\alpha/2}\frac{s}{\sqrt{n}})$

4.4 Measurement Error

Let $x_1, x_2, ..., x_n$ be independent measurements of unknown constant μ . $X_i = \mu + \epsilon_i$. The errors are IID with expectation 0, and variance σ^2 . $x_i = \mu + e_i$, where x_i and e_i are realisations of the RV. Then \overline{x} is an estimate of μ , with SE $\frac{\sigma}{\sqrt{n}}$.

4.4.1 Biased Measurements

Let $X = \mu + \epsilon$, where $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$ Suppose X is used to measure an unknown constant a, $a \neq \mu$. $X = a + (\mu - a) + \epsilon$, where $\mu - a$ is the bias.

 $Var(\overline{X}) = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$ from Lemma B, where Mean square error (MSE) is $E((X-a)^2) =$ $\sigma^2 + (\mu - a)^2$

with n IID measurements, $\overline{x} = \mu + \overline{\epsilon}$

$$E((x-a)^{2}) = \frac{\sigma^{2}}{n} + (\mu - a)^{2}$$

 $MSE = SE^2 + bias^2$, hence \sqrt{MSE} is a good measure of the accuracy of the estimate \bar{x} of

Consider a population of N members, the observed value of \overline{X} , \overline{x} is an estimate of μ . and two characteristics are recorded: $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n), r = \frac{\mu_y}{\mu}$

An obvious estimator of r is $R = \frac{\overline{Y}}{\overline{Y}}$

 $Cov(\overline{X}, \overline{Y}) = \frac{\sigma_{xy}}{n}$, where

 $\sigma_{xy} := \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(x_i - \mu_y)$ is the population covariance.

4.5.1 Properties

With SRS, the approx variance of $R = \overline{Y}/\overline{X}$

$$\begin{split} Var(R) &\approx \frac{1}{\mu_x^2} \left(r^2 \sigma_{\overline{X}}^2 + \sigma_{\overline{Y}}^2 - 2r \sigma_{\overline{XY}} \right) \\ &= \frac{1}{n} \frac{N-n}{N-1} \frac{1}{\mu_x^2} \left(r^2 \sigma_{\overline{X}}^2 + \sigma_{\overline{Y}}^2 - 2r \sigma_{\overline{XY}} \right) \end{split}$$

Population coefficient $\rho = \frac{\sigma_{xy}}{\sigma_{xx}\sigma_{xy}}$

$$E(R) \approx r + \frac{1}{n} \left(\frac{N-n}{N-1} \right) \frac{1}{\mu_x^2} \left(r \sigma_x^2 - \rho \sigma_x \sigma_y \right)$$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)$$

4.5.2 Ratio Estimates

$$\begin{split} &\overline{Y}_R = \frac{\mu_x}{\overline{X}} \overline{Y} = \mu_x R \\ &Var(\overline{Y}_R) \approx \frac{1}{n} \frac{N-n}{N-1} (r^2 \sigma_x^2 + \sigma_y^2 - 2r \rho \sigma_x \sigma_y) \\ &E(\overline{Y}_R) - \mu_y \approx \frac{1}{n} \frac{N-n}{N-1} \frac{1}{\mu_x} \left(r \sigma_x^2 - \rho \sigma_x \sigma_y \right) \end{split}$$

standard error.

 \overline{Y}_R is better than \overline{Y} , having smaller variance, when $\rho > \frac{1}{2} \left(\frac{C_x}{C_y} \right)$, where $C_i = \sigma_i / \mu_i$

Variance of \overline{Y}_R can be estimated by $s_{\overline{Y}_{R}}^{2} = \frac{1}{n} \frac{N-n}{N-1} \left(R^{2} s_{x}^{2} + s_{y}^{2} - 2 R s_{xy} \right)$

An approximate $1 - \alpha$ C.I. for μ_{ν} is $\overline{Y}_{R} \pm$ $z_{\alpha}/2s_{\overline{Y}_{P}}$

5 Estimation

Let $X_1, X_2, ..., X_n$ be IID random variables with density $f(x|\theta)$, where $\theta \in \mathbb{R}^P$ is an unknown constant. Realisations $x_1, x_2, ..., x_n$ will be used to estimate θ , the estimate a realisation of RV $\hat{\theta}$. The bias and SE are: bias = $E(\hat{\theta}) - \theta$, $SE = SD(\hat{\theta})$

5.1 Moments

Let $X_1, X_2, ..., X_n$ be IID with the same distribution as X.

 $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ is an estimator of μ_k , where μ_k is the kth moment. An estimate is also denoted $\hat{\mu}_k$.

5.2 Method of Moments

To estimate θ , express it as a function of moments $g(\hat{\mu}_1, \hat{\mu}_2, ...)$

The bias and SE in an estimate, still depends on the unknown value of the constant. Suppose 1.67 and 0.38 are estimates of λ and α . $\left| \frac{\partial l}{\partial u} \right| = \frac{\sum (X_i - \mu)}{\sigma^2} \implies \hat{\mu} = \overline{x}$

Data is generated from $\Gamma(1.67, 0.38)$, and the $\frac{\partial l}{\partial \sigma} = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^3} - \frac{n}{\sigma}$ MOM estimators are written as $\widehat{1.67}$ and $\widehat{0.38}$. Because the sample size is large, $(\hat{\lambda} - \lambda, \hat{\alpha} - \lambda,$ $\alpha \approx (1.67 - 1.67, 0.38 - 0.38)$

Monte Carlo is used to generate many real- $l(\theta) = n\alpha \log \lambda + (\alpha - 1) \sum_{i=1}^{n} \log X_i - G$ Given the realisations \overline{x} and s, isations of 1.67 via the $\Gamma(1.67, 0.38)$ distribution. With 10,000 realisations,

 $bias(1.67) = E_{1.67,0.38}(\widehat{1.67} - 1.67) \approx 0.09$ $SE(1.67) = SD_{1.67,0.38}(\widehat{0.38}) \approx 0.35$

and λ is estimated as 1.58 ± 0.35 $\overline{X} \xrightarrow[n]{\infty} \alpha/\lambda, \hat{\sigma}^2 \xrightarrow[n]{\infty} \alpha/\lambda^2$, MOM estimators are consistent (asymptotically unbiased).

Poisson(
$$\lambda$$
): bias = 0, $SE \approx \sqrt{\frac{\overline{x}}{n}}$
 $N(\mu, \sigma^2)$: $\mu = \mu_1$, $\sigma^2 = \mu_2 - \mu_1^2$
 $\Gamma(\lambda, \alpha)$: $\hat{\lambda} = \frac{\hat{\mu}_1}{\hat{\mu}_2 - \hat{\mu}_1^2} = \frac{\overline{X}}{\hat{\sigma}^2}$, $\hat{\alpha} = \frac{\hat{\mu}_1^2}{\hat{\mu}_2 - \hat{\mu}_1^2} = \frac{\overline{X}^2}{\hat{\sigma}^2}$

(MLE)

Let $f(\cdot|\theta): \theta \in \Theta$ be a (identifiable) paramet- to n. $\forall i$: ric identity

Suppose $X_1, X_2, ..., X_n$ are IID with density $Cov(X_i, X_i) = -np_i p_i, \forall i \neq j$ $f(\cdot|\theta)$, where $\theta_0 \in \Theta$ is an unknown con- $l(p) = +\sum_{i=1}^{r-1} x_i \log p_i + x_r \log(1-p_1-...-p_r)$ stant, we want to estimate θ_0 using realisations p_{r-1}

$$\theta \to L(\theta) = \prod_{i=1}^n f(x_i|\theta)$$

The maximum likelihood (ML) estimate of θ_0 is the number that maximises the likelihood over θ .

The estimate is a realisation of the ML estima tor $\hat{\theta}_0$, which can also be found my maximising $L(\theta) = \prod_{i=1}^{n} f(X_i | \theta)$

The bias and SE are:

5.3.1 Poisson Case

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} = \frac{\lambda \sum_{i=1}^{n} x_i e^{-n\lambda}}{\prod_{i=1}^{n} x_i!}$$
$$l(\lambda) = \sum_{i=1}^{n} x_i \log \lambda - n\lambda - \sum_{i=1}^{n} \log x_i!$$
$$\text{ML estimate of } \lambda_0 \text{ is } \overline{x}. \text{ ML estimator is } \hat{\lambda}_0 = \overline{X}$$

5.3.2 Normal case

$$l(\mu, \sigma) = -n\log\sigma - \frac{n\log 2\pi}{2} - \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{2\sigma^2}$$
$$\frac{\partial l}{\partial \mu} = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} \implies \hat{\mu} = \overline{x}$$

$$\frac{\partial l}{\partial \sigma} = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^3} - \frac{n}{\sigma}$$

$$\implies \hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

5.3.3 Gamma case

$$l(\theta) = n\alpha \log \lambda + (\alpha - 1) \sum_{i=1}^{n} \log X_{i} - \begin{cases} \text{Given the realisations } \overline{x} \text{ and } s, \\ \frac{\lambda \sum_{i=1}^{n} X_{i} - n \log \Gamma(\alpha)}{\alpha} \end{cases} = n \log \alpha + \sum_{i=1}^{n} \log X_{i} - \sum_{i=1}^{n} X_{i} - \begin{cases} \overline{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \end{cases} \end{cases}$$
is the exact $1 - \alpha$ CI for μ .
$$\frac{\partial l}{\partial \lambda} = \frac{n\alpha}{\lambda} - \sum_{i=1}^{n} X_{i}$$

$$\hat{\lambda} = \frac{\hat{\alpha}}{\hat{x}}$$
is the exact $1 - \alpha$ CI for α .
$$\frac{n\hat{\sigma}^{2}}{\sigma^{2}} \sim \chi_{n-1}$$

$$\left(\frac{n\hat{\sigma}^{2}}{\chi_{n-1,\alpha/2}^{2}}, \frac{n\hat{\sigma}^{2}}{\chi_{n-1,1-\alpha/2}^{2}}\right)$$
is the exact $1 - \alpha$ CI for α .

bias and SE are estimated through Monte Carlo and Bootstrap methods.

5.3.4 Multinomial Case

$$Var(\overline{Y}_R) \approx \frac{1}{n} \frac{N-n}{N-1} (r^2 \sigma_x^2 + \sigma_y^2 - 2r \rho \sigma_x \sigma_y)$$

$$E(\overline{Y}_R) - \mu_y \approx \frac{1}{n} \frac{N-n}{N-1} \frac{1}{\mu_x} (r \sigma_x^2 - \rho \sigma_x \sigma_y)$$
The bias is of order $\frac{1}{n}$, small compared to its standard error.
$$\overline{Y}_R$$
 is better than \overline{Y} , having smaller variance, \overline{Y}_R better than \overline{Y} , having smaller variance, \overline{Y}_R be the smaller variance, \overline{Y}_R is better than \overline{Y}_R having smaller variance, \overline{Y}_R be a (identifiable) parameter to \overline{Y}_R .

$$\overline{Y}_R$$
 is \overline{Y}_R is better than \overline{Y}_R having smaller variance, \overline{Y}_R be a (identifiable) parameter to \overline{Y}_R .

ric identity Suppose
$$X_1, X_2, ..., X_n$$
 are IID with density $f(\cdot|\theta)$, where $\theta_0 \in \Theta$ is an unknown constant, we want to estimate θ_0 using realisations $x_1, x_2, ..., x_n$.
$$Pr(X_1 = x_1, X_2 = x_2, ...) = \prod_{i=1}^n f(x_i|\theta) \text{ for a discrete distribution.}$$

$$\theta \to L(\theta) = \prod_{i=1}^n f(x_i|\theta)$$
The maximum likelihood (ML) estimate of θ_0 is the number that maximizes the likelihood is the number that maximizes the likelihood. Suppose $E(X_i) = np_i, Var(X_i) = np_i(1-p_i)$

$$Cov(X_i, X_j) = -np_ip_j, \forall i \neq j$$

$$l(p) = +\sum_{i=1}^{r-1} x_i \log p_i + x_r \log(1-p_1-p_i)$$

$$\frac{\partial l}{\partial p_i} = \frac{x_i}{p_i} - \frac{x_r}{p_r} = 0 \text{ assuming MLE exists}$$

$$\frac{x_i}{p_i} = \frac{x_i}{p_r} \Rightarrow \hat{p}_i = \frac{x_i}{c}, c = \frac{x_r}{p_r}$$

$$\sum_{i=1}^r \hat{p}_i = \sum_{i=1}^r \frac{x_i}{c} = 1$$

$$\Rightarrow c = \sum_{i=1}^r x_i = n \Rightarrow \hat{p}_i = \frac{\overline{x}_i}{n}$$
same as MOM estimator.

5.3.5 MLE vs MOM

- 1. ML estimates have smaller SEs than MOM estimates
- 2. In some cases bias and SE have to be computed numerically via methods like Newton-Rhapson, and requires bootstrap and Monte Carlo

5.3.6 Hardy-Weinberg Equilibrium

Let a locus have two alleles A and a, where the proportion of a in the population is θ .

Assuming, the population is large, and mating is random, then in the next generation. the proportion of a alleles is the sum of 2 Be RV, $Bin(2,\theta)$ and the number of a alleles is $Bin(2n,\theta)$

5.3.7 CIs in MLE

When sample size is large, $\hat{\theta}_0$ is approximately

$$\frac{\hat{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$$
Given the realisations \overline{x} and s ,
$$\left(\overline{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}\right)$$
is the exact $1 - \alpha$ CI for μ .
$$\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}$$

$$\left(\frac{n\hat{\sigma}^2}{\chi_{n-1,\alpha/2}^2}, \frac{n\hat{\sigma}^2}{\chi_{n-1,1-\alpha/2}^2}\right)$$
is the exact $1 - \alpha$ CI for σ