```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\20_states - 20_states.csv")
 data

Out[2]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	
5072	1953	Mashonaland West Province	247	ZW	Zimbabwe	MW	NaN	-17.485103	
5073	1960	Masvingo Province	247	ZW	Zimbabwe	MV	NaN	-20.624151	
5074	1954	Matabeleland North Province	247	ZW	Zimbabwe	MN	NaN	-18.533157	
5075	1952	Matabeleland South Province	247	ZW	Zimbabwe	MS	NaN	-21.052337	
5076	1957	Midlands Province	247	ZW	Zimbabwe	MI	NaN	-19.055201	
5077 rows × 9 columns									
4								>	

```
In [3]: df=data.head(100)
df
```

Out[3]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	lo
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	66
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67
95	1105	Chlef	4	DZ	Algeria	2	NaN	36.169351	1
96	1121	Constantine	4	DZ	Algeria	25	NaN	36.337391	6
97	4912	Djanet	4	DZ	Algeria	56	NaN	23.831087	8
98	1098	Djelfa	4	DZ	Algeria	17	NaN	34.670396	3
99	1129	El Bayadh	4	DZ	Algeria	32	NaN	32.714882	О

100 rows × 9 columns

In [4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 9 columns):
```

```
#
    Column
                  Non-Null Count Dtype
     ____
                  -----
                                  ----
                                  int64
 0
     id
                  100 non-null
 1
    name
                  100 non-null
                                  object
 2
                  100 non-null
                                  int64
    country id
 3
    country code 100 non-null
                                  object
 4
    country_name 100 non-null
                                  object
 5
    state_code
                  100 non-null
                                  object
 6
                                  object
    type
                  0 non-null
 7
                                  float64
    latitude
                  100 non-null
 8
    longitude
                  100 non-null
                                  float64
dtypes: float64(2), int64(2), object(5)
```

```
In [5]: df.columns
```

memory usage: 7.2+ KB

```
In [6]: x=df[['id', 'country_id','latitude']]
         y=df['longitude']
 In [7]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
 In [8]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
 Out[8]: LinearRegression()
 In [9]:
         print(lr.intercept_)
         188.20640431703944
In [10]:
         coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
         coeff
Out[10]:
                    Co-efficient
                      -0.006581
                 id
          country_id
                     -24.323027
             latitude
                      -2.239640
         prediction=lr.predict(x_test)
In [11]:
         plt.scatter(y_test,prediction)
Out[11]: <matplotlib.collections.PathCollection at 0x1812f5a4df0>
```



```
In [12]: |print(lr.score(x_test,y_test))
         0.34557989731176086
In [13]: |print(lr.score(x_train,y_train))
         0.6707827927637978
In [14]: from sklearn.linear_model import Ridge,Lasso
In [15]: |rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[15]: Ridge(alpha=10)
In [16]: | rr.score(x_test,y_test)
Out[16]: 0.2927719760168427
In [17]: |la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[17]: Lasso(alpha=10)
In [18]: |la.score(x_test,y_test)
Out[18]: 0.16537454347109348
In [19]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x train,y train)
Out[19]: ElasticNet()
In [20]: print(en.coef )
         [ 7.79621195e-03 -8.75510466e+00 6.21087362e-01]
In [21]: |print(en.intercept_)
         14.0168051185506
In [22]: |print(en.predict(x_test))
         [18.44926877 56.26745273 18.29848759 57.34308414 18.33746865 17.95687914
          31.52429515 19.00562952 17.38083279 56.75028782 58.47856599 58.37029113
          17.73551907 58.04367384 18.08526112 18.74435097 17.85301743 17.58170596
          58.49022624 57.28269935 9.66766666 18.35450978 59.86450191 10.07552781
          17.94372326 17.88869537 57.94228096 18.31937655 18.34303911 17.87941984
```

```
In [23]: print(en.score(x_test,y_test))
```

0.23302776988904683

Evaluation metrics

Model Saving

```
In [28]: import pickle
In [29]: filename='prediction'
  pickle.dump(lr,open(filename,'wb'))
In []:
```