lA para la Industria: detectar problemas de manufacturing

Industriarako Adimen Artifiziala: manufacturing arazoak detektatzea

28/10/2020 - 16/12/2020

Sobre mi

Mikel Cañizo Zubizarreta

Investigador del equipo de Data Analytics e Inteligencia Artificial en

Mantenimiento Predictivo

Analítica Avanzada

Monitorización en Tiempo Real

Plataformas Digitales

Deep Learning

Sobre mi

Híbrido entre científico de datos e ingeniero de datos

• Plataformas digitales:

- Herramientas y servicios para el envío, procesamiento y almacenamiento de los datos
- Big Data

• Plataformas digitales:

- Herramientas y servicios para el envío, procesamiento y almacenamiento de los datos
- Big Data

• Preprocesado:

- Procesado de los datos crudos
- Preparación de los datos para generar modelos IA

• Plataformas digitales:

- Herramientas y servicios para el envío, procesamiento y almacenamiento de los datos
- Big Data

• Preprocesado:

- Procesado de los datos crudos
- Preparación de los datos para generar modelos IA

• Visualización:

- Visualización de los datos
- ¿Qué forma tienen los datos?

• Plataformas digitales:

- Herramientas y servicios para el envío, procesamiento y almacenamiento de los datos
- Big Data

• Preprocesado:

- Procesado de los datos crudos
- Preparación de los datos para generar modelos IA

• Visualización:

- Visualización de los datos
- ¿Qué forma tienen los datos?

Análisis y validación:

- Tipos de modelos de IA
- Generación de modelos (detección de anomalías)

• Plataformas digitales:

- Herramientas y servicios para el envío, procesamiento y almacenamiento de los datos
- Big Data

• Preprocesado:

- Procesado de los datos crudos
- Preparación de los datos para generar modelos IA

• Visualización:

- Visualización de los datos
- ¿Qué forma tienen los datos?

Análisis y validación:

- Tipos de modelos de IA
- Generación de modelos (detección de anomalías)

• ¿¿Despliegue??

09/12/2020

Despliegue de modelos

¿Es la realidad así de simple?

- ¿Qué versión del modelo desplegamos?
 - Preprocesamientos diferentes
 - Feature engineering

- ¿En qué formato desplegamos el modelo?
 - No todas las herramientas usan los mismos formatos
 - Diferentes herramientas de entrenamiento y producción
 - Limitaciones de memoria (embebidos, móviles...)

- ¿Cuándo despliego el nuevo modelo?
 - Evolución de los sistemas monitorizados
 - Monitorización de los modelos
 - Concept drift
 - ¿Cúando re-entrenar el modelo?

- ¿Cómo llevo la **trazabilidad** del modelo?
 - Múltiples versiones de los modelos (hiperparámetros, datos...)
 - ¿Cómo saber qué pruebas he realizado?
 - ¿Cómo volver a atrás en caso de fallos?
 - **Versiones** de los datos

Model

- ¿Cómo llevar a producción todo esto?
- ¿Cómo puedo registrar un histórico de modelos, configuraciones y pruebas?
- ¿Cómo pongo en producción los modelos?

- ¿Cómo llevar a producción todo esto?
- ¿Cómo puedo registrar un histórico de modelos, configuraciones y pruebas?
- ¿Cómo pongo en producción los modelos?

La solución

MLOps = ML + DEV + OPS

Experiment:

Data acquisition
Business understanding
Initial modeling

Develop:

Modeling + Testing **Continuous integration**Continuous deployment

Operate:

Continuous deliveryData Feedback Loop
System + Model monitoring

La solución

- Automatización del ciclo de vida de los modelos
 - Seleccionar las herramientas para todo el ciclo de vida
 - Generar pipelines
 - Automatización de toda la fase de desarrollo + validación + despliegue

Ventajas

• Trazabilidad de los modelos

Reproducibilidad

Control del versiones

• Conexión entre Data Scientist y Data Engineer

• Ciclo de vida **automatizado** (menos errores humanos)

Vale, pero...

¿Cómo aplico el MLOps al mundo real?

MLOps

• En la actualidad existen varias plataformas

Microsoft Machine Learning for Apache Spark

mlflow

- Es una **plataforma end-to-end** para la **gestión** del **ciclo de vida** de los modelos IA
 - Integración con cualquier librería (scikit-learn, TF, keras, Pytorch, Spark, Flink...)

- Esta herramienta facilita la gestión del ciclo de vida de los modelos
 - Se **almacena cada paso** durante la **fase de desarrollo** (metadata store)
 - Se **registran** todos los **modelos** (model registry)
 - **Mapeo** prueba -> modelo
 - Facilita el **despliegue**
 - Reproducibilidad

- Mlflow dispone de un servidor para hacer el tracking
 - Los usuarios se pueden conectar de forma remota al servidor
 - Es necesario tener instalado Mlflow en el lado cliente
 - Los metadatos y modelos se guardan en el servidor

ml*flow*

• MLflow tiene integración con múltiples BBDD y repositorios

- Fichero local
- SQLite
- MySQL
- MSSQI
- PostgreSQL

ml*flow*

• MLflow tiene integración con múltiples BBDD y repositorios

- Fichero local
- SQLite
- MySQL
- MSSQI
- PostgreSQL

- Amazon S₃
- Azure Blob Storage
- Google Cloud Storage
- Servidor FTP o SFTP
- NFS
- HDFS

mlflow - Tracking

- Estructura:
 - **Experimento**: se refiere a un **proyecto común** que engloba las pruebas realizadas para generar un modelo para un caso de uso específico

```
mlflow.create_experiment(name, artifact_location=None) [source]
```

- <u>RUN</u>: se refiere a una prueba o ejecución de entrenamiento que se realizan dentro de un experimento.
 - <u>Parámetros</u>: hiperparámetros del modelo. Cada RUN tiene uno o varios parámetros asociados, pero para una ejecución en concreto cada parámetro solo puede tener un valor.
 - <u>Métricas</u>: métricas de evaluación del modelo. Cada RUN tiene una o varias métricas asociadas, pero para una ejecución en concreto cada métrica solo puede tener un valor.

```
with mlflow.start_run():
    mlflow.log_param("x", 1)
    mlflow.log_metric("y", 2)
...
```

- Registra todos los metadatos de la prueba
- Cada prueba se organiza bajo el concepto *RUN*:
 - Code version: versión del código (si está en un repositorio Git se registra el hash del commit).
 - Start & end time: cuándo se ha iniciado y finalizado el run.
 - Source: nombre del fichero donde se encuentra el código fuente o el nombre del proyecto.
 - Parameters: registra en formato clave/valor los parámetros utilizados para entrenar el modelo.
 - Metrics: registra en formato clave/valor las métricas definidas para evaluar el rendimiento.
 - **Artifacts**: registra el modelo entrenado en el formato especificado (artifact = modelo)

- Registra todos los metadatos de la prueba
- Cada prueba se organiza bajo el concepto *RUN*:
 - Code version: versión del código (si está en un repositorio Git se registra el hash del commit).
 - Start & end time: cuándo se ha iniciado y finalizado el run.
 - Source: nombre del fichero donde se encuentra el código fuente o el nombre del proyecto.
 - Parameters: registra en formato clave/valor los parámetros utilizados para entrenar el modelo.
 - Metrics: registra en formato clave/valor las métricas definidas para evaluar el rendimiento.
 - **Artifacts**: registra el modelo entrenado en el formato especificado (artifact = modelo)

metadata

- Registra todos los metadatos de la prueba
- Cada prueba se organiza bajo el concepto *RUN*:
 - **Code version**: versión del código (si está en un repositorio Git se registra el hash del commit).
 - Start & end time: cuándo se ha iniciado y finalizado el run.
 - Source: nombre del fichero donde se encuentra el código fuente o el nombre del proyecto.
 - Parameters: registra en formato clave/valor los parámetros utilizados para entrenar el modelo.
 - **Metrics**: registra en formato clave/valor las métricas definidas para evaluar el rendimiento.
 - **Artifacts**: registra el modelo entrenado en el formato especificado (artifact = modelo)

26

• Interfaz gráfica (<a href="http://<ip-servidor>:5000">http://<ip-servidor>:5000)

				Parameters		Metrics		
Date ▼	User	Source	Version	alpha	lambda	mae	r2	rmse
2018-08-30 15:42:55	mlflow	R:train.R	da3f0a	1	1	0.638	0.03	0.857
2018-08-30 15:42:50	mlflow	R:train.R	da3f0a	1	0.5	0.639	0.039	0.853
2018-08-30 15:42:45	mlflow	R:train.R	da3f0a	1	0.2	0.617	0.153	0.804
2018-08-30 15:42:40	mlflow	R:train.R	da3f0a	1	0	0.597	0.224	0.77
2018-08-30 15:42:35	mlflow	R:train.R	da3f0a	0.5	1	0.639	0.039	0.853
2018-08-30 15:42:30	mlflow	R:train.R	da3f0a	0.5	0.5	0.621	0.125	0.818
2018-08-30 15:42:26	mlflow	R:train.R	da3f0a	0.5	0.2	0.616	0.169	0.794
2018-08-30 15:42:21	mlflow	R:train.R	da3f0a	0.5	0	0.597	0.224	0.77
2018-08-30 15:42:15	mlflow	R:train.R	da3f0a	0	1	0.617	0.158	0.801
2018-08-30 15:42:09	mlflow	R:train.R	da3f0a	0	0.5	0.617	0.171	0.793
2018-08-30 15:42:04	mlflow	R:train.R	da3f0a	0	0.2	0.618	0.178	0.788
2018-08-30 15:41:50	mlflow	R:train.R	da3f0a	0	0	0.597	0.224	0.77

mlflow - Model Registry

- Registra los modelos de cada prueba
- Cada prueba se organiza bajo el concepto *RUN*:
 - Model: modelo generado a partir de un experimento o run
 - **Registered modelo**: modelo registrado con un identificador único que tiene asociado la versión, el estado, la trazabilidad y otros metadatos
 - Model version: versión del modelo. Versión incremental automática
 - Model Stage: el estado del modelo (staging, production, archived, etc.)
 - Annotation & description: notas opcionales en formato Markdown

mlflow - Project

- Empaqueta el proyecto en un formato reproducible en cualquier plataforma
 - Incluye dependencias de librerías
 - Incluye el código
 - Define los parámetros de entrada (opcional)
- Un **proyecto MLflow** contiene lo siguiente (MLproject file):
 - Name: nombre del proyecto
 - Environment: entorno de ejecución
 - **Conda**: entorno de ejecución generado con Conda (*conda.yaml*)
 - **Docker**: entorno de ejecución generado mediante Docker (*Dokerfile*)
 - Entry point: punto de entrada del proyecto o comandos para ejecutar el proyecto
 - Puede tener varios puntos de entrada
 - Puede ser un .py o un .sh

MIFlow Projects

mlflow - Project

• Ejemplo

```
name: My Project
conda_env: my_env.yaml
# Can have a docker_env instead of a conda_env, e.g.
# docker_env:
     image: mlflow-docker-example
entry_points:
 main:
   parameters:
      data_file: path
      regularization: {type: float, default: 0.1}
   command: "python train.py -r {regularization} {data_file}"
 validate:
   parameters:
      data_file: path
   command: "python validate.py {data_file}"
```

mlflow - Model

- Guarda el modelo en un formato estándar y es capaz de servirlo
- Cada MLflow Model es un directorio que contiene ficheros arbitrarios junto con un fichero llamado *MLmodel*

```
# Directory written by mlflow.sklearn.save_model(model, "my_model")
my_model/
|--- MLmodel
--- model.pkl
```

• El fichero MLmodel contiene los flavors (formatos) en los que se puede ejecutar el modelo (soporte)

```
flavors:
    sklearn:
    sklearn_version: 0.19.1
    pickled_model: model.pkl
    python_function:
    loader_module: mlflow.sklearn
```

mlflow - Model

- ¿Qué es un flavor?
 - Es una **convención** para que las herramientas de despliegue **entiendan cómo pueden usar el modelo**

MIFlow Models

Model Signature

- Define el **esquema** de los **parámetros** de **entrada** y de **salida** del modelo
 - Nombre
 - Tipos de datos
- Fuerza que el modelo se ejecute con el **esquema** definido
 - **Genera excepciones** si las **variables** de entrada **no** son las **correctas**
 - O el **orden** de las variables **no es el correcto**

```
signature:
   inputs: '[{"name": "sepal length (cm)", "type": "double"}, {"name": "sepal width
        (cm)", "type": "double"}, {"name": "petal length (cm)", "type": "double"}, {"name":
        "petal width (cm)", "type": "double"}]'
   outputs: '[{"type": "integer"}]'
```

¿Demasiada información?

Resumen

¿Aún así podemos mejorar?

¿Cómo automatizar esto?

Pipelines automatizados

