Information Retrieval

End Semester Exam

Question 1	1
Question 2	3
Rocchio's Relevance Feedback Algorithm	3
Question 3	4
Extra Credit	6
Output	6

Question 1

$$\overrightarrow{Q_m} = \left(a \cdot \overrightarrow{Q_o}\right) + \left(b \cdot \frac{1}{|D_r|} \cdot \sum_{\overrightarrow{D_j} \in D_r} \overrightarrow{D_j}\right) - \left(c \cdot \frac{1}{|D_{nr}|} \cdot \sum_{\overrightarrow{D_k} \in D_{nr}} \overrightarrow{D_k}\right) \tag{Source: Wikipedia}$$

If the **weight for relevant documents (b) is decreased**, if the expected outcome is to have the new query moving away from centroid of relevant documents.

(Source: Wikipedia)

Explanation: The new Query vector Qm (coordinates), will move away from the centroid, if **non** relevant documents are favoured over the relevant as you can see from the image above.

- If we decrease the weight of relevant documents (b) or increase the weight of non
 relevant documents (c), the new query vector will move away from the centroid in the
 vector space model (depicted by the red arrows), because we are essentially giving more
 weight to the non relevant documents and the general direction of these documents lie
 away from the centroid.
- If we increase the weight of relevant documents (b) or decrease the weight of non
 relevant documents (c), the new query vector will move towards the centroid in the vector
 space model (depicted by the green arrows), because we are essentially giving more
 weight to the relevant documents and the general direction of these documents lie
 towards the centroid.

Question 2

Rocchio's Relevance Feedback Algorithm

$$\overrightarrow{Q_m} = \left(a \cdot \overrightarrow{Q_o}
ight) + \left(b \cdot rac{1}{|D_r|} \cdot \sum_{\overrightarrow{D_j} \in D_r} \overrightarrow{D_j}
ight) - \left(c \cdot rac{1}{|D_{nr}|} \cdot \sum_{\overrightarrow{D_k} \in D_{nr}} \overrightarrow{D_k}
ight)$$
 (Squrge)

(Source: Wikipedia)

- Clearly, the RD (relevant documents) = {D2, D3, D5, D6, D9} are given a preference (implying, weight of relevant documents b is close to 1) in the resulting query = {D2, D3, D5, D6, D9, D11, D13, D14, D15} and
- IRD = {D1, D4, D7, D8, D10} are given no preference, therefore they should be removed from the original query (implying, weight of irrelevant documents **c** is **0** since the third term in the equation has a negative sign).
- Q0 results = {D1, D2, D3, D4, D5, D6, D7, D8, D9, D10}
 Also, to remove IRD from original query results, the weight of the original query results in the equation above, a should be 1 to cancel out the IRD and keep RD.
- Note that to take into account the normalization done in the formula by using the lengths
 of the RD and IRD vectors.

The equation with weights now look like,

$$Qm = \{D2, D3, D5, D6, D9\} + new_documents$$

Therefore, approximately $\mathbf{a} = \mathbf{1} \mathbf{b} = \mathbf{1}$ and $\mathbf{c} = \mathbf{0}$.

Question 3

Query	Tf-idf score (Rank, docID, Score)			BM25 score		
Portable operating system	2 22 3 23 4 14 5 19 6 15 7 16 8 17 9 10	127 246 311 461 930 591 580 755 933	0.100407969844 0.0708559728367 0.064183214871 0.0632713808896 0.0555786634273 0.0550802009696 0.0535106101622 0.0479328643103 0.0470590258644 0.0448056870588	1 2 3 4 5 6 7 8 9	1461 2311 1755 2796 2735 379 2405 190 2689 2984	0.851006812757 0.687930173134 0.622014102817 0.453938760767 0.451699246445 0.448616149363 0.448004964973 0.441278232247 0.435751294307 0.429667863582
Parallel algorithm	2 27 3 29 4 14 5 12 6 95 7 13 8 39 9 22	664 714 973 11 262 50 802 92 266 685	0.0645439161889 0.0616798930983 0.0598187298652 0.0576284965972 0.0556413070594 0.0542565137961 0.0537865968241 0.0537865968241 0.0525970507947 0.0514978054698	1 2 3 4 5 6 7 8 9 10	371 199 2509 2430 1990 1560 2510 2090 2472 1559	0.744376551823 0.735161851255 0.654823450718 0.607454389368 0.588333331617 0.588333331617 0.568662172959 0.534994249906 0.499990935839 0.49403234759
Applied stochastic process	2 26 3 20 4 29 5 27 6 29 7 92 8 30 9 15	696 68 065 999 727 93 27 043 588	0.0898707874579 0.0808837087122 0.0518931125567 0.0510098205023 0.0479110930886 0.0430100811133 0.0405523621925 0.0386176042221 0.0374196128503 0.0357950009045	1 2 3 4 5 6 7 8 9 10	394 2727 141 2999 268 597 392 198 1085 293	0.392657186535 0.385906806263 0.376993238507 0.368286007248 0.355162757724 0.34869728607 0.34869728607 0.34869728607 0.323845936806 0.31693699368
Perform evaluation and model of computer system	2 29 3 30 4 30 5 19 6 30 7 25 8 13 9 31	318 984 048 070 938 089 542 844 136 653	0.235739430528 0.126055948741 0.103765515637 0.100157984655 0.0989886772492 0.0971103033211 0.0931604199867 0.0925794833052 0.0911233439483 0.0821952703005	1 2 3 4 5 6 7 8 9	2318 2984 2504 2311 2553 2502 2743 2255 3089 3136	1.63724603745 1.03064316654 0.895010624175 0.852088854327 0.851572922419 0.80739528562 0.76941173037 0.73432629124 0.699609279397 0.666134254018

Parallel process in	1	2288	0.106731788073	1	2278	0.796434597543
information retrieval	2	2278	0.103726491703	2	141	0.75998176833
	3	891	0.0918639442258	3	392	0.702939875336
	4	141	0.0881432999334	4	651	0.678469319036
	5	1457	0.0847858962943	5	275	0.678469319036
	6	1830	0.083495831255	6	2070	0.654159939246
	7	392	0.0822670799379	7	1085	0.649802186093
	8	651	0.0771451285634	8	1830	0.641047395313
	9	275	0.0771451285634	9	1251	0.601104918492
	10	2070	0.0747343432958	10	239	0.55203179303

Extra Credit

I have updated the Assignment 1 and 3 code to use the Query Relevance feedback with the choice of parameters $\mathbf{a} = \mathbf{1}$, $\mathbf{b} = \mathbf{1}$, $\mathbf{c} = \mathbf{0}$. Therefore, any **irrelevant documents will be removed** and **relevant documents** will be used to find new results!

Output

