Equações Funcionais Guilherme Zeus Moura zeusdanmou@gmail.com

1 Ideias úteis

- (a) Procurar algumas soluções para saber o que tentar provar.
- (b) Injetividade, sobretetividade, paridade, ...
- (c) Explorar quasi-simetrias.
- (d) Resolver para \mathbb{Z} , extender para \mathbb{Q} e extender para \mathbb{R} .

2 Problemas

Problema 1. Encontre todas as funções $f: \mathbb{R} \to \mathbb{R}$ tais que

$$2f(x) + f(1-x) = 1 + x$$

para todo x real.

Problema 2. (OMERJ 2006) Encontre todas as funções $f: \mathbb{R}^* \to \mathbb{R}$ tais que

$$2xf(x) + f\left(\frac{1}{x}\right) = x^2$$

para todo real não nulo x.

Problema 3. (Cauchy) Encontre todas as funções $f: \mathbb{Q} \to \mathbb{Q}$ tais que

$$f(x+y) = f(x) + f(y).$$

Problema 4. (IMO 2019) Seja \mathbb{Z} o conjunto dos números inteiros. Determine todas as funções $f: \mathbb{Z} \to \mathbb{Z}$ tais que, para quaisquer inteiros a e b,

$$f(2a) + 2f(b) = f(f(a+b)).$$

Problema 5. Encontre todas as funções $f: \mathbb{R} \in \mathbb{R}$ tais que f(0) = 1 e

$$f(xy + 1) = f(x)f(y) - f(y) - x + 2$$

para todos os $x \in y$ reais.

Problema 6. (2018 IMO Canada Training) Encontre todas as funções $f: \mathbb{Z} \to \mathbb{Z}$ tais que

$$f(x - f(y)) = f(f(x)) - f(y) - 1$$

para todos os $x \in y$ inteiros.

Problema 7. (IMO 2010) Encontre todas as funções $f: \mathbb{R} \to \mathbb{R}$ tais que

$$f(|x|y) = f(x)|f(y)|.$$

Problema 8. (IMO 2002) Ache todas as funções $f: \mathbb{R} \to \mathbb{R}$ satisfazendo

$$(f(x) + f(y))(f(w) + f(z)) = f(xw - yz) + f(xz + yw)$$

para todos os $x, y, w \in z$ reais.

Problema 9. (OBM 2010) Encontre todas as funções f do conjunto dos reais nos conjuntos dos reais tais que

$$f(a+b) = f(ab)$$

para todos a, b irracionais.

Problema 10. (OBM 1998) Determine todas as funções $f: \mathbb{N} \to \mathbb{N}$ que satisfazem

$$f(2f(x)) = x + 1998$$

para todo $x \in \mathbb{N} = \{0, 1, 2, \dots\}.$

Problema 11. (IMO 2004 IMO 2004) Encontre todos os polinômios $P(x) \in \mathbb{R}[x]$ que satisfaz a igualdade

$$P(a-b) + P(b-c) + P(c-a) = 2P(a+b+c)$$

para todas os a, b, c reais tais que ab + bc + ca = 0.

Problema 12. (IMO 2009) Determine todas as funções $f: \mathbb{Z}_+ \to \mathbb{Z}_+$ tais que, para todos os inteiros positivos a e b, existe um triângulo não degenerado¹ cujos lados medem

$$a, f(b) \in f(b+f(a)-1).$$

Problema 13. (IMO 1999) Ache todas as funções $f: \mathbb{R} \to \mathbb{R}$ satisfazendo

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1.$$

Problema 14. (OBM 2013) Encontre todas as funções injetoras f dos reais não nulos nos reais não nulos tais que

$$f(x+y) \cdot (f(x) + f(y)) = f(xy)$$

para todos x, y reais não nulos com $x + y \neq 0$.

Problema 15. (OBM 2012) Encontre todas as funções sobrejetoras $f: \mathbb{R}_+ \to \mathbb{R}_+$ tais que

$$2x \cdot f(f(x)) = (f(f(x)) + x) \cdot f(x)$$

para todo x real positivo.

Problema 16. (OBM 2006) Determine todas as funções $f: \mathbb{R} \to \mathbb{R}$ tais que

$$f(xf(y) + f(x)) = 2f(x) + xy.$$

 $^{^1\}mathrm{Um}$ triângulo não degenerado é um triângulo cujos vértices não são colineares.