Pumas NCA Tutorial - Analyzing infusion data

Beatriz Guglieri Lopez, Shamir Kalaria, Vijay Ivaturi

July 19, 2019

using Pumas, PumasTutorials, CSV, Plots

1 Introduction

In this tutorial, we will cover the fundamentals of performing an NCA analysis with Pumas using an example dataset in which an intravenous infusion was administered.

2 The dataset

- Single 2000 mg 2-hour IV infusion dose to 24 subjects
- Blood samples for pharmacokinetic analysis were collected every 30 minutes

```
data = PumasTutorials.tutorial_data("data/nca", "SD_IV_infusion")
data = CSV.read(data, missingstring="NA")
first(data, 10)
```

	ID	time	DV	BLQ	DOSE	Infusion_Time	Formulation
	Int64	Float64	Float64	Int64	Int64	Int64	String
1	1	0.0	0.0	0	2000	2	iv
2	1	0.5	9.1425	0	0	0	iv
3	1	1.0	17.9045	0	0	0	iv
4	1	1.5	25.2709	0	0	0	iv
5	1	2.0	29.4367	0	0	0	iv
6	1	2.5	29.1849	0	0	0	iv
7	1	3.0	26.8687	0	0	0	iv
8	1	3.5	20.8217	0	0	0	iv
9	1	4.0	19.6429	0	0	0	iv
10	1	4.5	17.5575	0	0	0	iv

Please, note that the DOSE and the Infusion_Time column must only contain a value at the time the dose was administered.

3 Defining the units

```
timeu = u"hr"
concu = u"mg/L"
amtu = u"mg"
mg
```

4 Defining the population object

In the case of the infusion, the read_nca function should

• carry the name of the column that contains the duration of the infusion (duration=).

```
pop = read_nca(data, id=:ID, time=:time, conc=:DV, amt=:DOSE, ii=24timeu,
   route=:Formulation, duration=:Infusion_Time,timeu=timeu,
    concu=concu, amtu=amtu,lloq=0.4concu)
NCAPopulation (24 subjects):
  ID: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2
0, 21, 22, 23, 24]
    concentration: mg L^-1
    time:
                   hr
                   mg hr L^-1
    auc:
    aumc:
                   mg hr^2 L^-1
                   hr^-1
    \lambda z:
    dose:
```

Note that in the above syntam:

- route= is mapped to the Formulation column that should specify iv
- LLOQ was set to 0.4 by 11q=0.4concu

A basic plot function exists for single dose data without grouping or multiple analytes. More functionality will be added soon. In this example of single dose data, here is the plot output plot(pop)

5 NCA functions

5.0.1 NCA.auc

NCA.auc(pop,auctype=:last,method=:linear)

	id	auc
	Int64	Unitful
1	1	170.557 mg hr L-1
2	2	171.183 mg hr L-1
3	3	$177.307 \text{ mg hr L} \hat{1}$
4	4	170.187 mg hr L - 1
5	5	168.923 mg hr L - 1
6	6	$174.448 \text{ mg hr L}^2$
7	7	$177.059 \text{ mg hr L} \hat{1}$
8	8	173.479 mg hr L-1
9	9	$174.841 \text{ mg hr L} \hat{1}$
10	10	170.972 mg hr L-1
11	11	$168.468~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
12	12	$173.454~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
13	13	$172.529 \text{ mg hr L} \hat{1}$
14	14	174.262 mg hr L -1
15	15	$172.386 \text{ mg hr L} \hat{1}$
16	16	$169.952 \text{ mg hr L} \hat{1}$
17	17	$170.451 \text{ mg hr L} \hat{1}$
18	18	173.565 mg hr L-1
19	19	$174.075 \text{ mg hr L} \hat{1}$
20	20	$174.062 \text{ mg hr L} \hat{1}$
21	21	$172.185 \text{ mg hr L} \hat{1}$
22	22	$169.771~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
23	23	176.241 mg hr L-1
24	24	168.571 mg hr L-1

To change the methods to log-linear trapezoidal (method=:linuplogdown) or to linear-log (method=:linlog) one can use

```
NCA.auc(pop,auctype=:inf,method=:linuplogdown)
```

To compute the AUC over an interval, one could do

```
NCA.auc(pop, interval=(0,12).*timeu)
```

where we need to apply the time unit (timeu) to the interval for units compatibility. Multiple intervals can also be specified:

```
NCA.auc(pop, interval=[(0,12).*timeu,(0,6).*timeu])
```

5.0.2 NCA.lambdaz

The function to calculate the terminal rate constant (λz) is:

```
NCA.lambdaz(pop)
```

This function has options that allow

- to specify the maximum number of points to be used for lambdaz threshold=3
- calculation to be performed over specified indices idxs=[18,19,20] where index 18,19,20 of the subject will be used for lambdaz
- speification of exact time points to use for lambdaz slopetimes=[18.5,19,19.5].*timeu

```
NCA.lambdaz(pop, threshold=3)
NCA.lambdaz(pop, idxs=[18,19,20])
NCA.lambdaz(pop, slopetimes=[18.5,19,19.5].*timeu)
```

5.0.3 NCA.cmax

To calculate the maximum concentration for the first subject we would use:

```
cmax = NCA.cmax(pop[1])
29.4367368 mg L^-1
```

5.0.4 NCA.normalizedose

If we want dose-normalized Cmax for that same subject:

```
NCA.normalizedose(cmax,pop[1])
0.0147183684 L^-1
```

This can be used on any parameter that can be dose normalized.

Other functions to calculate single PK parameters are the following:

```
NCA.lambdazr2(pop)
NCA.lambdazadjr2(pop)
NCA.lambdazintercept(pop)
NCA.lambdaztimefirst(pop)
NCA.lambdaznpoints(pop)
NCA.tmax(pop)
NCA.cmin(pop)
NCA.tmin(pop)
NCA.tlast(pop)
NCA.clast(pop)
NCA.aumc(pop)
NCA.aumclast(pop)
NCA.thalf(pop)
NCA.cl(pop)
NCA. vss (pop)
NCA.vz(pop)
```

	id	VZ
	Int64	Unitful
1	1	30.6639 L
2	2	32.3386 L
3	3	10.3627 L
4	4	24.7198 L
5	5	-19.3688 L
6	6	37.0702 L
7	7	45.5432 L
8	8	22.8918 L
9	9	-23.0548 L
10	10	33.1127 L
11	11	-9.75512 L
12	12	32.7396 L
13	13	46.5234 L
14	14	54.7095 L
15	15	-34.0404 L
16	16	7.99809 L
17	17	26.6045 L
18	18	-27.3057 L
19	19	39.0445 L
20	20	16.3506 L
21	21	43.5989 L
22	22	6.49356 L
23	23	8.78626 L
24	24	-4.95184 L

6 NCA report

If we want a complete report of the NCA analysis we can just use the function NCAreport to obtain a data frame that contains all the above mentioned pharmacokinetic parameters.

```
report = NCAReport(pop)
report = NCA.to_dataframe(report)
```

	id	doseamt	$lambda_z$	half_life	tmax	cmax	clast	
	Int64	Unitful	Unitful	Unitful	Unitful	Unitful	Unitful	
1	1	2000 mg	0.380768 hr ² 1	1.82039 hr	2.0 hr	29.4367 mg L-1	0.280525 mg L-1	0
2	2	2000 mg	0.359903 hr - 1	$1.92593 \; \mathrm{hr}$	2.0 hr	$34.6225~\mathrm{mg}~\mathrm{L}$ 21	$0.23629~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
3	3	2000 mg	$1.08775 \text{ hr} \hat{-} 1$	0.637233 hr	2.0 hr	$34.9916 \text{ mg L} \hat{2}1$	$0.13635~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
4	4	2000 mg	$0.473609 \text{ hr} \hat{-} 1$	1.46354 hr	2.0 hr	$31.1252 \text{ mg L} \hat{2}1$	$0.304896~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
5	5	2000 mg	-0.613372 hr	-1.13006 hr	2.0 hr	$30.2427~\mathrm{mg}~\mathrm{L}$ 21	$0.354381~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
6	6	2000 mg	0.307699 hr -1	2.25268 hr	2.0 hr	$32.8505 \text{ mg L} \hat{-}1$	$0.274121~\mathrm{mg}~\mathrm{L}\hat{-}1$	
7	7	2000 mg	$0.246005 \text{ hr} \hat{-} 1$	2.81761 hr	2.0 hr	$34.0576~\mathrm{mg}$ L-1	$0.35681~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
8	8	2000 mg	$0.502704~\mathrm{hr}\mathring{-}1$	1.37884 hr	2.0 hr	$33.253~\mathrm{mg}~\mathrm{L}$ 2	$0.159291~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
9	9	2000 mg	-0.497009 hr2	-1.39464 hr	2.0 hr	$35.928~\mathrm{mg}$ L-1	$0.147872~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
10	10	2000 mg	$0.351833~\mathrm{hr}\hat{-}1$	$1.9701~\mathrm{hr}$	2.0 hr	$30.314~\mathrm{mg}$ L-1	$0.246073~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$	C
11	11	2000 mg	-1.21993 hr ² 1	-0.568187 hr	2.0 hr	$32.7331~\mathrm{mg}~\mathrm{Le}$	$0.498754~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
12	12	2000 mg	$0.350243~\mathrm{hr}\hat{-}1$	1.97905 hr	2.0 hr	$34.1103~\mathrm{mg}$ L-1	$0.337286~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$	C
13	13	2000 mg	0.247839 hr 1	2.79676 hr	2.0 hr	$30.7831 \text{ mg L} \hat{2}1$	$0.229543~\mathrm{mg}$ L-1	C
14	14	2000 mg	$0.207269~\mathrm{hr}\mathring{-}1$	$3.3442~\mathrm{hr}$	2.0 hr	$30.4458 \text{ mg L} \hat{1}$	$0.437615~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
15	15	2000 mg	-0.342741 hr ² 1	-2.02237 hr	2.0 hr	$33.1621~\mathrm{mg}~\mathrm{L}\hat{-}1$	$0.329866~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
16	16	2000 mg	$1.47088 \text{ hr} \hat{-} 1$	0.471246 hr	2.0 hr	$30.9219~\mathrm{mg}$ L-1	$0.080925~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
17	17	2000 mg	0.439428 hr21	$1.57739 \; \mathrm{hr}$	2.0 hr	$31.4966~\mathrm{mg}~\mathrm{L}\hat{-}1$	$0.274488~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
18	18	2000 mg	-0.424339 hr ² 1	-1.63348 hr	2.0 hr	$33.1599~\mathrm{mg}~\mathrm{L}\hat{-}1$	$0.405454~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
19	19	2000 mg	$0.29365~\mathrm{hr}\hat{-}1$	$2.36046~\mathrm{hr}$	2.0 hr	$31.3835 \text{ mg L} \hat{1}$	$0.106554~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
20	20	2000 mg	0.701601 hr - 1	0.987951 hr	2.0 hr	32.7522 mg L-1	$0.197867~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
21	21	2000 mg	$0.265666~\mathrm{hr}\hat{-}1$	2.6091 hr	2.0 hr	$30.867~\mathrm{mg}~\mathrm{L}\hat{-}1$	$0.129004~\mathrm{mg}$ L-1	C
22	22	$2000~\mathrm{mg}$	$1.81378~\mathrm{hr}{\stackrel{\scriptscriptstyle \diamond}{\scriptscriptstyle }}1$	0.382157 hr	$2.0 \ \mathrm{hr}$	$31.9961~\mathrm{mg}~\mathrm{L}\hat{-}1$	$0.0710516~\mathrm{mg}$ L-1	0
23	23	$2000~\mathrm{mg}$	$1.29115~\mathrm{hr}{}^{\mathtt{c}}1$	0.536844 hr	$2.0 \ \mathrm{hr}$	$33.5559 \text{ mg L} \hat{2}1$	$0.0743402~\mathrm{mg}$ L-1	0
24	24	2000 mg	-2.39769 hr^2	-0.289089 hr	2.0 hr	$35.0072~\mathrm{mg~L-1}$	$0.291334~\mathrm{mg}~\mathrm{L}\hat{-}1$	C

By default, the AUC and AUMC reported are observed. If predicted PK parameters are needed instead, the following code should be used:

```
report = NCAReport(pop,pred=true)
report = NCA.to_dataframe(report)
```

_	id	doseamt	$lambda_z$	half_life	tmax	cmax	clast	
	Int64	Unitful	Unitful	Unitful	Unitful	Unitful	Unitful	
1	1	2000 mg	0.380768 hr^2	1.82039 hr	2.0 hr	29.4367 mg L-1	$0.280525~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
2	2	$2000~\mathrm{mg}$	0.359903 hr - 1	1.92593 hr	2.0 hr	$34.6225~\mathrm{mg}~\mathrm{L}$ 21	$0.23629~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
3	3	$2000~\mathrm{mg}$	$1.08775~\mathrm{hr}\hat{-}1$	0.637233 hr	2.0 hr	$34.9916~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$	$0.13635~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
4	4	$2000~\mathrm{mg}$	0.473609 hr^2	1.46354 hr	$2.0 \ \mathrm{hr}$	$31.1252~\mathrm{mg}~\mathrm{L}\mathring{\scriptscriptstyle{-}}1$	$0.304896~\mathrm{mg}~\mathrm{L}\hat{-}1$	O
5	5	$2000~\mathrm{mg}$	-0.613372 hr^2	-1.13006 hr	$2.0 \ \mathrm{hr}$	$30.2427~\mathrm{mg}~\mathrm{L}\mathring{\scriptscriptstyle{-}}1$	$0.354381~\mathrm{mg}~\mathrm{L}\hat{-}1$	O
6	6	$2000~\mathrm{mg}$	0.307699 hr^2	$2.25268~\mathrm{hr}$	2.0 hr	$32.8505~\mathrm{mg}~\mathrm{L}$ 2	$0.274121~\mathrm{mg}~\mathrm{L}\hat{-}1$	(
7	7	$2000~\mathrm{mg}$	0.246005 hr21	2.81761 hr	$2.0 \ \mathrm{hr}$	$34.0576~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$	$0.35681~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
8	8	$2000~\mathrm{mg}$	$0.502704~\mathrm{hr}\hat{-}1$	1.37884 hr	$2.0 \ \mathrm{hr}$	$33.253~\mathrm{mg}~\mathrm{L}$ 21	$0.159291~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
9	9	$2000~\mathrm{mg}$	-0.497009 hr^2 1	-1.39464 hr	$2.0 \ \mathrm{hr}$	$35.928~\mathrm{mg}$ L-1	$0.147872~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
10	10	$2000~\mathrm{mg}$	0.351833 hr21	$1.9701 \ hr$	$2.0 \ \mathrm{hr}$	$30.314~\mathrm{mg}$ L-1	$0.246073~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
11	11	$2000~\mathrm{mg}$	-1.21993 hr ² 1	-0.568187 hr	$2.0 \ \mathrm{hr}$	$32.7331~\mathrm{mg}~\mathrm{L}$ 2	$0.498754~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
12	12	$2000~\mathrm{mg}$	0.350243 hr21	1.97905 hr	$2.0 \ \mathrm{hr}$	$34.1103~\mathrm{mg}$ L-1	$0.337286~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
13	13	$2000~\mathrm{mg}$	0.247839 hr^2	2.79676 hr	$2.0 \ \mathrm{hr}$	$30.7831~\mathrm{mg}~\mathrm{L}\mathring{\scriptscriptstyle{-}}1$	$0.229543~\mathrm{mg}$ L-1	C
14	14	$2000~\mathrm{mg}$	0.207269 hr21	3.3442 hr	$2.0 \ \mathrm{hr}$	$30.4458~\mathrm{mg}$ L-1	$0.437615~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
15	15	2000 mg	-0.342741 hr^2	-2.02237 hr	2.0 hr	33.1621 mg L-1	$0.329866~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
16	16	$2000~\mathrm{mg}$	$1.47088~\mathrm{hr}\hat{-}1$	0.471246 hr	$2.0 \ \mathrm{hr}$	$30.9219~\mathrm{mg}$ L-1	$0.080925~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
17	17	$2000~\mathrm{mg}$	0.439428 hr21	$1.57739 \; \mathrm{hr}$	$2.0 \ \mathrm{hr}$	$31.4966~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$	$0.274488~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
18	18	$2000~\mathrm{mg}$	-0.424339 hr ² 1	-1.63348 hr	$2.0 \ \mathrm{hr}$	$33.1599~\mathrm{mg}~\mathrm{L}\mathring{-}1$	$0.405454~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
19	19	$2000~\mathrm{mg}$	$0.29365~\mathrm{hr}\hat{-}1$	$2.36046~\mathrm{hr}$	2.0 hr	$31.3835~\mathrm{mg}~\mathrm{L}\hat{-}1$	$0.106554~\mathrm{mg}~\mathrm{L}\hat{-}1$	C
20	20	$2000~\mathrm{mg}$	0.701601 hr - 1	0.987951 hr	$2.0 \ \mathrm{hr}$	$32.7522~\mathrm{mg}~\mathrm{L}$	$0.197867~\mathrm{mg}~\mathrm{L}\text{-}1$	0
21	21	$2000~\mathrm{mg}$	0.265666 hr21	2.6091 hr	$2.0 \ \mathrm{hr}$	$30.867~\mathrm{mg}~\mathrm{L}\mathring{\scriptscriptstyle{-}}1$	$0.129004~\mathrm{mg}$ L-1	C
22	22	$2000~\mathrm{mg}$	$1.81378~\mathrm{hr}{}^{\mathtt{c}}1$	0.382157 hr	2.0 hr	$31.9961~\mathrm{mg}~\mathrm{L}\hat{-}1$	$0.0710516~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
23	23	$2000~\mathrm{mg}$	1.29115 hr	0.536844 hr	$2.0 \ \mathrm{hr}$	$33.5559~\mathrm{mg}~\mathrm{L}\mathring{\mathtt{-}}1$	$0.0743402~\mathrm{mg}~\mathrm{L}\hat{-}1$	0
24	24	$2000~\mathrm{mg}$	-2.39769 hr^2	-0.289089 hr	$2.0 \ \mathrm{hr}$	$35.0072~\mathrm{mg}~\mathrm{L}$ 2	$0.291334~\mathrm{mg}~\mathrm{L}\hat{-}1$	0

Finally, we can save this data frame as a csv file if desired.

```
CSV.write("./tutorials/nca/report_SD_IV_infusion.csv", report)
```

```
Error: SystemError: opening file "./tutorials/nca/report_SD_IV_infusion.csv
": No such file or directory
```

using PumasTutorials

PumasTutorials.tutorial_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file])

6.1 Appendix

These tutorials are part of the PumasTutorials.jl repository, found at: https://github.com/JuliaDiffEq/Di To locally run this tutorial, do the following commands:

```
using PumasTutorials
PumasTutorials.weave_file("nca","SD_IV_infusion.jmd")
```

Computer Information:

```
Julia Version 1.1.1
Commit 55e36cc308 (2019-05-16 04:10 UTC)
```

Platform Info: OS: Windows (x86 64-w64-mingw32) CPU: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz WORD SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-6.0.1 (ORCJIT, skylake) Environment: JULIA EDITOR = "C:\Users\accou\AppData\Local\atom\app-1.38.2\atom.exe" -a JULIA NUM THREADS = 4 Package Information: Status `C:\Users\accou\.julia\environments\v1.1\Project.toml` [621f4979-c628-5d54-868e-fcf4e3e8185c] AbstractFFTs 0.4.1 [c52e3926-4ff0-5f6e-af25-54175e0327b1] Atom 0.8.8 [f0abef60-9ec0-11e9-27de-db6506a91768] AutoOffload 0.1.0 [6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf] BenchmarkTools 0.4.2 [4ece37e6-a012-11e8-38cd-91247efc2c34] Bioequivalence 0.1.0 [336ed68f-0bac-5ca0-87d4-7b16caf5d00b] CSV 0.5.9 [c5f51814-7f29-56b8-a69c-e4d8f6be1fde] CUDAdrv 3.0.1

```
[31c24e10-a181-5473-b8eb-7969acd0382f] Distributions 0.20.0
[e30172f5-a6a5-5a46-863b-614d45cd2de4] Documenter 0.23.0
[587475ba-b771-5e3f-ad9e-33799f191a9c] Flux 0.8.3
[f6369f11-7733-5829-9624-2563aa707210] ForwardDiff 0.10.3+
[ba82f77b-6841-5d2e-bd9f-4daf811aec27] GPUifyLoops 0.2.5
[c91e804a-d5a3-530f-b6f0-dfbca275c004] Gadfly 1.1.0
[bc5e4493-9b4d-5f90-b8aa-2b2bcaad7a26] GitHub 5.1.1
[7073ff75-c697-5162-941a-fcdaad2a7d2a] IJulia 1.18.1
[42fd0dbc-a981-5370-80f2-aaf504508153] IterativeSolvers 0.8.1
[033835bb-8acc-5ee8-8aae-3f567f8a3819] JLD2 0.1.2
[e5e0dc1b-0480-54bc-9374-aad01c23163d] Juno 0.7.0
[2d691ee1-e668-5016-a719-b2531b85e0f5] LIBLINEAR 0.5.1
[7f56f5a3-f504-529b-bc02-0b1fe5e64312] LSODA 0.4.0
[6f1fad26-d15e-5dc8-ae53-837a1d7b8c9f] Libtask 0.3.0
[c7f686f2-ff18-58e9-bc7b-31028e88f75d] MCMCChains 0.3.10
[33e6dc65-8f57-5167-99aa-e5a354878fb2] MKL 0.0.0
[cc2ba9b6-d476-5e6d-8eaf-a92d5412d41d] MLDataUtils 0.5.0
[eb30cadb-4394-5ae3-aed4-317e484a6458] MLDatasets 0.3.0
[961ee093-0014-501f-94e3-6117800e7a78] ModelingToolkit 0.5.0
[4886b29c-78c9-11e9-0a6e-41e1f4161f7b] MonteCarloIntegration 0.0.1
[2774e3e8-f4cf-5e23-947b-6d7e65073b56] NLsolve 4.0.0
[872c559c-99b0-510c-b3b7-b6c96a88d5cd] NNlib 0.6.0
[8faf48c0-8b73-11e9-0e63-2155955bfa4d] NeuralNetDiffEq 0.1.0
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.12.0
[65888b18-ceab-5e60-b2b9-181511a3b968] ParameterizedFunctions 4.2.0
[14b8a8f1-9102-5b29-a752-f990bacb7fe1] PkgTemplates 0.6.1
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 0.25.3
[92933f4c-e287-5a05-a399-4b506db050ca] ProgressMeter 1.0.0
[d7b8c89e-ad89-52e0-b9fd-d0ed321fa021] Pumas 0.1.0
[b7b41870-aa11-11e9-048a-09266ec4a62f] PumasTutorials 0.0.1
[438e738f-606a-5dbb-bf0a-cddfbfd45ab0] PyCall 1.91.2
[d330b81b-6aea-500a-939a-2ce795aea3ee] PyPlot 2.8.1
[1fd47b50-473d-5c70-9696-f719f8f3bcdc] QuadGK 2.1.0
[612083be-0b0f-5412-89c1-4e7c75506a58] Queryverse 0.3.1
[6f49c342-dc21-5d91-9882-a32aef131414] RCall 0.13.3
[731186ca-8d62-57ce-b412-fbd966d074cd] RecursiveArrayTools 0.20.0
[37e2e3b7-166d-5795-8a7a-e32c996b4267] ReverseDiff 0.3.1
[295af30f-e4ad-537b-8983-00126c2a3abe] Revise 2.1.6
[2b6d1eac-7baa-5078-8adc-e6a3e659f14f] SingleFloats 0.1.3
[47a9eef4-7e08-11e9-0b38-333d64bd3804] SparseDiffTools 0.5.0
[90137ffa-7385-5640-81b9-e52037218182] StaticArrays 0.11.0
[4c63d2b9-4356-54db-8cca-17b64c39e42c] StatsFuns 0.8.0
[f3b207a7-027a-5e70-b257-86293d7955fd] StatsPlots 0.11.0
[9672c7b4-1e72-59bd-8a11-6ac3964bc41f] SteadyStateDiffEq 1.5.0
[789caeaf-c7a9-5a7d-9973-96adeb23e2a0] StochasticDiffEq 6.6.0
[c3572dad-4567-51f8-b174-8c6c989267f4] Sundials 3.6.1
[fd094767-a336-5f1f-9728-57cf17d0bbfb] Suppressor 0.1.1
[6fc51010-71bc-11e9-0e15-a3fcc6593c49] Surrogates 0.1.0
```

```
[9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c] Tracker 0.2.2
[fce5fe82-541a-59a6-adf8-730c64b5f9a0] Turing 0.6.18
[1986cc42-f94f-5a68-af5c-568840ba703d] Unitful 0.16.0
[44d3d7a6-8a23-5bf8-98c5-b353f8df5ec9] Weave 0.9.1
[e88e6eb3-aa80-5325-afca-941959d7151f] Zygote 0.3.2
```