CSC 212: Data Structures and Abstractions Recursion

Jonathan Schrader

[credit Marco Alverez]

Department of Computer Science and Statistics University of Rhode Island

Fall 2022

Recursion

Recursion

- Solve a task by reducing it to smaller tasks (of the same structure)
- Technically, a recursive function is one that calls itself
- General form:
 - √ base case
 - solution for a **trivial case**
 - it can be used to stop the recursion (prevents "stack overflow")
 - every recursive algorithm needs at least one base case
 - √ recursive call(s)
 - divide problem into **smaller instance(s)** of the **same structure**

General Form

```
function() {
    if (this is the base case) {
        calculate trivialsolution
    } else {
        break task into subtasks
        solve each task recursively
        merge solutions if necessary
```

Why recursion?

- . Can we live without it?
 - yes, you can write "any program" with arrays, loops, and conditionals
- However ...
 - ✓ some formulas are explicitly recursive
 - ✓ some problems exhibit a natural recursive solution


```
int sum_array(int *A, int n) {
    // base case
    if (n == 1) {
        return A[0];
    // solve sub-task
    int sum = sum array(A, n-1);
    // return sum
    return A[n-1] + sum;
```

Recursion call tree

```
int sum_array(int *A, int n) {
    // base case
    if (n == 1) {
        return A[0];
    }

    // solve sub-task
    int sum = sum_array(A, n-1);

    // return sum
    return A[n-1] + sum;
}
```

Example: power of a number

```
b^n = b \cdot b \cdot \dots \cdot b

    n times
```

```
double power(double x, int n) {
    // base case
    if (n == 0) {
        return 1;
    }
    // recursive call
    return x * power(x, n-1);
}
```

Recursion call tree

```
double power(double x, int n) {
    // base case
    if (n == 0) {
        return 1;
    }
    // recursive call
    return x * power(x, n-1);
}
```

Is this faster?

```
double power(double x, int n) {
    if (n == 0)
        return 1;
    double half = power(x, n/2);
    if (n % 2 == 0) {
        return half * half;
    } else {
        return x * half * half;
```

Recursion call tree

```
double power(double x, int n) {
    if (n == 0) {
        return 1;
    }
    double half = power(x, n/2);
    if (n % 2 == 0) {
        return half * half;
    } else {
        return x * half * half;
    }
}
```

_			
_			

Sierpinski triangle

Sierpinski arrowhead

Sierpinski pyramid

0			3									
1	2	5	10	15	20	22	30	35	40	43	48	51

low

k = 48?

low mid high

k = 48?

0	1	2	3	4	5	6	7	8	9	10	11	12
1	2	5	10	15	20	22	30	35	40	43	48	51

low

high

$$k = 48?$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	_
	1	2	5	10	15	20	22	30	35	40	43	48	51	
•								low		mid			high	

$$k = 48?$$

low midhigh

$$k = 48?$$

```
int bsearch(int *A, int lo, int hi, int k) {
    // basecase
    if (hi < lo) {
        return NOT FOUND;
    // calculate midpoint index
    int mid = lo + ((hi-lo)/2);
    // key found?
    if (A[mid] == k)
        return mid;
    // key in upper subarray?
    if (A[mid] < k)
        return bsearch(A, mid+1, hi, k);
    // key is in lowersubarray?
    return bsearch(A, lo, mid-1, k);
```

Recursion Tree (binary search)

```
int bsearch(int *A, int lo, int hi, int k) {
    // base case
    if (hi < lo) {
        return NOT_FOUND;
    }
    // calculate midpoint index
    int mid = lo + ((hi-lo)/2);
    // key found?
    if (A[mid] == k)
        return mid;
    // key in upper subarray?
    if (A[mid] < k)
        return bsearch(A, mid+1, hi, k);
    // key is in lower subarray?
    return bsearch(A, lo, mid-1, k);
}</pre>
```

Complexity? Best-case, Worst-case, Average-case?

Table 1

n	time (days)	~ log(n)
1	0.000	0
10	0.000	3
100	0.000	7
1000	0.000	10
10000	0.000	13
100000	0.000	17
1000000	0.000	20
10000000	0.000	23
100000000	0.000	27
1000000000	0.000	30
10000000000	0.000	33
100000000000	0.000	37
1000000000000	0.000	40
10000000000000	0.000	43
1000000000000000	0.003	47
10000000000000000	0.028	50
100000000000000000	0.281	53
1000000000000000000	2.809	56
100000000000000000000	28.086	60
1000000000000000000000	280.863	63
10000000000000000000000	2808.628	66

Intel Core i9-9900K 412,090 MIPS at 4.7 GHz

Example: find peak in unimodal arrays

Unimodal arrays

An array is (strongly) unimodal if it can be split into an increasing part followed by a decreasing part

How to efficiently find the max?

1	2	5	16	20	18	17	16	15	12	10	8	5	
---	---	---	----	----	----	----	----	----	----	----	---	---	--

Find the max (strongly unimodal)

1	2	5	8	15	20	22	20	15	12	10	8	5
1	2	5	8	15	20	22	20	15	12	10	8	5
1	2	5	8	15	20	22	20	15	12	10	8	5
1	2	5	8	15	20	22	20	15	12	10	8	5
1	2	5	8	15	20	22	20	15	12	10	8	5
1	2	5	8	15	20	22	20	15	12	10	8	5
1	2	5	8	15	20	22	20	15	12	10	8	5
1	2	5	8	15	20	22	20	15	12	10	8	5

Find the max (strongly unimodal)

Recursion Tree?

Complexity? Best-case, Worst-case, Average-case?

```
int max_s_unimodal(int *A, int low, int hi) {
    if (low == hi) {
        return A[low];
    intmid = (low + hi) / 2;
    if (A[mid] < A[mid+1]) {
        return max_s_unimodal(A, mid+1, hi);
    } else {
        return max_s_unimodal(A, low, mid);
```

Unimodal arrays

An array is (weakly) unimodal if it can be split into a nondecreasing part followed by a nonincreasing part

How to efficiently find the max?

1	2	5	5	15	20	22	22	35	38	13	8	5	
---	---	---	---	----	----	----	----	----	----	----	---	---	--

Find the max (weakly unimodal)

Two recursive calls

```
int max_w_unimodal(int *A, int low, int hi) {
    if (low == hi) {
        return A[low];
    int mid = (low + hi) / 2;
    if (A[mid] < A[mid+1]) {
        return max_w_unimodal(A, mid+1, hi);
    } else if (A[mid] > A[mid+1]) {
        return max_w_unimodal(A, low, mid);
    } else {
        int left = max_w_unimodal(A, mid+1, hi);
        int right = max_w_unimodal(A, low, mid);
        return std::max(left, right);
```

Recursion Tree?

Complexity?