

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift _® DE 197 18 423 A 1

(1) Aktenzeichen:

197 18 423.5

(2) Anmeldetag:

30. 4.97

(3) Offenlegungstag:

5. 11. 98

⑤ Int. Cl.6: H 01 Q 7/00

H 01 Q 7/08 H 01 Q 1/22 H 01 Q 1/32 H 04 B 5/00 G 08 C 17/04 B 60 R 25/00 // E05B 49/00

(7) Anmelder:

Siemens AG, 80333 München, DE

(72) Erfinder:

Gold, Peter, 92318 Neumarkt, DE

66) Entgegenhaltungen:

DE 37 21 822 C1 DE 1 96 41 056 A1 DE 1 95 42 441 A1 DE 38 20 248 A1 US 48 79 570 07 83 190 A1 EP

DE-Z.: "Electronic Actuell Magazin", Heft 4, 1996, S. 27-30; JP-Abstract E-1075 June 7, 1991, Vol. 15, No. 223;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(5) Tragbarer Signalempfänger

Ein Signalempfänger (1) weist drei Spulen (Sx, Sv und S,) auf, die jeweils senkrecht zueinander angeordnet sind und somit eine Empfangscharakteristik im wesentlichen in je eine Raumrichtung aufweisen. Somit können sicher Signale einer Sendeantenne empfangen werden, wenn sich der Signalempfänger innerhalb der Reichweite der Sendeantenne befindet. Dies ist unabhängig von der Winkellage des Signalempfängers bezüglich der Sendeanten-

Beschreibung

Die Erfindung betrifft einen tragbaren Signalempfänger, insbesondere für ein Diebstahlschutzsystem eines Kraftfahrzeugs.

Ein bekannter Signalempfänger (DE 37 21 822 C1) ist auf einer Chipkarte angeordnet. Als Empfangsantenne weist er eine Spule auf, deren Windungen in der Ebene der Chipkarte liegen. Wenn ein solcher Signalempfänger bei einem Diebstahlschutzsystem für ein Kraftfahrzeug verwendet wird, so ist noch ein Signalsender auf der Chipkarte angeordnet. Somit können sowohl Signale zu einer Identifizierungseinheit ausgesendet als auch von dieser empfangen werden.

Wenn ein Benutzer in sein Fahrzeug einsteigen möchte, 15 so wird zunächst durch Betätigen eines Auslösemittels ein Frage-Antwort-Dialog ausgelöst. Hierbei wird ein Fragesignal induktiv über ein Magnetfeld von einer Sendeantenne in Form einer Spule im Kraftfahrzeug zu einem von dem Benutzer getragenen Signalempfänger gesendet. Falls dieser 20 das Fragesignal empfängt, so wird ein Antwortsignal erzeugt, das zurück zu dem Kraftfahrzeug gesendet wird. Dort wird das Antwortsignal mit einem Sollsignal verglichen und bei Übereinstimmung wird ein Freigabesignal erzeugt.

Wenn die Sendeantenne im Fahrzeug und die Antenne des 25 Signalempfängers als Spulen ausgeführt sind, so werden beim Ansteuern der Spulen mit sinusförmigen Signalen elektromagnetische Felder erzeugt. Diese Felder induzieren in der Spule des Signalempfängers eine Spannung. Damit die induzierte Spannung niöglichst groß ist, müssen Feldlinien in genügendem Maße die Spule des Signalempfängers durchsetzen.

In der Fig. 5 ist ein Magnetfeld B dargestellt, das von einer Spule (Sendeantenne 12) erzeugt wird, die sich im Kraftfahrzeug befindet. In dieses Magnetfeld wird ein Signalempfänger mit seiner Spule 13 gebracht. Je nach Lage (Richtung der Ebene der Windungen) der Spule 13, wird sie mehr oder weniger stark von dem Magnetfeld (Magnetfeldlinien) durchsetzt. Eine Windung der Spule 13 umschließt dabei eine Fläche, die im folgenden als Windungsfläche A 40 bezeichnet wird.

Die Größe der in der Spule 13 des Signalempfängers induzierten Spannung (hierzu proportional ist der verkettete Fluß Φ) ist unter anderem von einem Winkel α abhängig (vgl. Fig. 6a bis 6c), der der Winkel zwischen der Windungsfläche A (in der Fig. 6 sind Flächenvektoren A' dargestellt, die senkrecht zur Windungsfläche A stehen, und Flußverkettungsvektoren Φ dargestellt) der Spule 13 des Signalempfängers und den Feldlinien des durch die Sendeantenne 12 im Kraftfahrzeug erzeugten Magnetfeldes B ist.

Die in der Spule 13 des Signalempfängers induzierte Spannung ist am größten, wenn die Spule 13 senkrecht von den Magnetfeldlinien durchsetzt wird (Fig. 6a) und ist sehr klein, wenn sie in etwa parallel zu den Magnetfeldlinien angeordnet ist (Fig. 6c). Die Höhe der Spannung ist überdies 55 von der von den Windungen der Spule 13 des Signalempfängers umschlossenen wirksamen Windungsfläche A abhängig.

Die Abhängigkeit des verketteten Flusses Φ vom Winkel wird durch die allgemein bekannte Formel $\Phi = B \cdot A \cdot \cos\alpha$ 60 verdeutlicht.

Dementsprechend kann es vorkommen, daß keine oder nur eine sehr geringe Spannung in der Spule 13 des Signalempfängers induzien wird, wenn die Spule 13 parallel zu den Feldlinien (α etwa 90° \rightarrow cos $\alpha \approx 0$) angeordnet ist (gemäß Spule 13' in der Fig. 5). Wenn die Spule 13 in ihrer Lage von dieser parallelen Lage abweicht (vgl. Spule 13" in Fig. 5), so wird die induzierte Spannung größer. Wenn die

Spule 13 des Signalempfängers dagegen senkrecht von den Magnetfeldlinien durchsetzt wird (α etwa 90° $\rightarrow \cos\alpha \approx$ 1), so wird die maximale Spannung in der Spule 1 induziert (vgl. Spule 13" in Fig. 5).

Abhängig von der Lage der Spule 13 des Signalempfängers wird eine mehr oder weniger große Spannung in der Spule induziert. Um dieses Problem zu umgehen, wurde in einer früheren Anmeldung (DE 195 42 441) vorgeschlagen, im Kraftfahrzeug zwei dicht beieinander angeordnete Rahmenantennen vorzusehen. Die beiden Rahmenantennen werden dabei phasenverschoben angesteuert, so daß ein hinund herbewegtes Magnetfeld entsteht (vgl. Fig. 5, gestrichelten Doppelpfeil). Der gleiche Effekt würde erzielt, wenn die Spule des Signalempfängers hin- und herbewegt wird (vgl. Spulen 13' und 13" in Fig. 5).

Allerdings ist hierzu einerseits ein sehr hoher Aufwand für die Sendeantenne im Kraftfahrzeug erforderlich. Zum einen werden zwei dicht beieinander angeordnete Rahmenantennen benötigt und zum anderen müssen die beiden Rahmenantennen auch noch phasenverschoben zueinander werden. Anderseits müßte der Benutzer vorm Einsteigen in sein Kraftfahrzeug den Signalempfänger hin- und herbewegen, damit sicher das Fragesignal empfangen wird.

Der Erfindung liegt das Problem zugrunde, einen tragbaren Signalempfänger zu schaffen, der unabhängig von der Winkellage in Bezug auf eine Sendeantenne sicher ein Signal von der Sendeantenne empfängt, wenn er in der Nähe der Sendeantenne angeordnet ist.

Dieses Problem wird erfindungsgemäß durch die Merkmale von Patentanspruch 1 gelöst. Dabei weist der Signalempfänger drei Antennen in Form von Spulen auf, deren Windungsflächen jeweils senkrecht zueinander angeordnet sind. Falls sich der Signalempfänger innerhalb der Reichweite einer Sendeantenne liegt, so wird durch die dreidimensionale Anordnung der Spulen unabhängig von der Winkellage des Signalempfängers zumindest in einer der drei Spulen eine Spannung induziert, die in dem Signalempfänger weiterverarbeitet werden kann.

Vorteilhafte Ausgestaltungen der Erfindung sind durch die Unteransprüche gekennzeichnet. So können die Spulen als Luftspulen oder als Ferritspule mit einem Ferritkern ausgebildet sein. Die Ferritkerne können einstückig hergestellt sein, auf die eine oder mehrere Spulen jeweils senkrecht zueinander aufgewickelt sind.

Die Spulen können dabei auf einer scheckkartengroßen Karte oder auf einem Schlüsselgriff eines herkömmlichen Türschlüssels angeordnet sein.

Ausführungsbeispiele der Erfindung werden im folgenden anhand der schematischen Figuren näher erläutert. Es zeigen:

Fig. 1 eine Draufsicht auf einen erfindungsgemäßen Signalempfänger,

Fig. 2 ein weiteres Ausführungsbeispiel eines Signalempfängers,

Fig. 3a bis 3c Ausführungsbeispiele für Ferritkerne mit gewickelten Spulen,

Fig. 4 ein Blockschaltbild des Signalempfängers,

Fig. 5 ein Feldlinienbild eines durch eine Sendeantenne in einem Kraftfahrzeug erzeugten Magnetfeldes und

Fig. 6a bis 6c magnetische Flußverkettungen einer Spule in dem Magnetield gemäß Fig. 5.

Ein tragbarer Signalempfänger 1 (Fig. 1) wird vorzugsweise für ein Diebstahlschutzsystem eines Kraftfahrzeugs verwendet. Er weist eine Trägerplatte 2 und zumindest drei Empfangsantennen in Form von Spulen S_x , S_y und S_z auf. Die drei Spulen S_x , S_y und S_z sind mit einer Empfangseinheit 3 elektrisch verbunden, die als integriertes Halbleiterbauelement auf der Trägerplatte 2 angeordnet sein kann.

Bei Verwendung für ein Diebstahlschutzsystem wird zunächst ein Fragesignal mit Hilfe eines elektromagnetischen Feldes von einer nicht dargestellten Sendeantenne beispielsweise in der Türverkleidung oder in den Außenspiegeln des Kraftfahrzeugs ausgesendet. Wenn der Signalempfänger 1 in der Nähe der Sendeantenne angeordnet ist, so empfängt er das Fragesignal über eine oder mehrere der Spulen S_x , S_y und S_z , indem eine Spannung in den Spulen induziert wird, die abhängig von der Winkellage der Spulen bezüglich des Magnetfeldes ist. Das Fragesignal wird daraufhin in der 10 Empfangseinheit 3 ausgewertet.

Damit eine Benutzer seine Berechtigung (Authentifikation) nachzuweisen kann, kann noch eine Sendeeinheit 4 auf der Trägerplatte 2 angeordnet sein, die nach Empfang des Fragesignals ein Antwortsignal erzeugt, das eine benutzeroder fahrzeugspezifische Codeinformation enthält. Da die Spulen S_x , S_y und S_z auch als Sendespulen benutzt werden können, wird das Antwortsignal über eine oder mehrere Spulen S_λ . S_y und S_z zu dem Kraftfahrzeug zurückgesendet. Es kann aber auch noch ein weiterer Sender, beispielsweise in Form einer weiteren Spule auf der Trägerplatte 2 angeordnet sein, mit dem das Antwortsignal ausgesendet wird.

Das dort empfangene Antwortsignal wird in einem Steuergerät ausgewertet. Hierzu wird es mit einem erwarteten Sollsignal verglichen (Authentifikation) und bei zumindest weitgehender Übereinstimmung der beiden Signale wird ein Freigabesignal erzeugt, durch das beispielsweise die Türen des Kraftfahrzeugs entriegelt (Zugangskontrolle) oder ein zum Fahren des Fahrzeugs benötigtes Aggregat (elektronische Wegfahrsperre) im Kraftfahrzeug freigegeben wird.

Falls sich der Signalempfänger 1 in der Nähe einer Sendeantenne befindet, soll auf jeden Fall ein Fragesignal empfangen werden, und dies unabhängig von der Winkellage des Signalempfängers 1 in Bezug auf die Sendeantenne oder das von ihr erzeugte Magnetfeld. Daher sind die Spulen S_x, S_y und S_z auf dem Signalempfänger 1 derart "dreidimensional" gerichtet, daß ihre Windungsflächen und damit ihre magnetischen Flußvektoren Φ in etwa jeweils senkrecht zueinander stehen. Somit weist jede Spule S_x, S_y und S_z eine bevorzugt ausgeprägte Empfangscharakteristik in eine andere 40 Rauntrichtung auf.

Die Spule S_z ist bei dem ersten Ausführungsbeispiel mit ihren Windungen in der Ebene der Trägerplatte 2 gewickelt (der Windungssinn ist dabei in der Fig. 1 durch den umlaufenden Pfeil angegeben), so daß deren magnetischer Flußvektor Φ_z in die Zeichenebene von Fig. 1 hineingeht (dies soll der z-Achse eines kartesischen Koordinatensystems entsprechen). Die zweite Spule S_y ist auf einen Ferritkern 5 derart gewickelt, daß ihr magnetischer Flußvektor Φ_y in der Fig. 1 nach oben weist (dies entspricht der y-Achse des kartesischen Koordinatensystems). Die dritte Spule S_x ist ebenfalls so auf einen Ferritkern 6 gewickelt, daß ihr magnetischer Flußvektor Φ_x in der Fig. 1 nach rechts zeigt (dies entspricht der x-Achse des kartesischen Koordinatensystems)

Somit liegen die magnetischen Flußvektoren Φ_x , Φ_y und Φ_z der drei Spulen S_x , S_y und S_z in etwa in den drei Achsen des kartesisches Koordinatensystems. Die Windungsflächen der drei Spulen S_x , S_y und S_z liegen jeweils senkrecht zu den drei Achsen des kartesisches Koordinatensystems. Infolgedessen induzieren Magnetfeldkomponenten B_x , B_y und B_z des von der Sendeantenne erzeugten räumlichen Magnetfelds in der jeweilig entsprechend gerichteten Spule S_x , S_y oder S_z eine Spannung. Die Höhe der jeweils induzierten Spannung ist allerdings abhängig von der Winkellage der jeweiligen Spule S_x , S_y und S_z zu der jeweiligen Magnetfeldkomponente B_x , B_y bzw. B_z und deren Größe (vgl. auch Fig. 6a bis 6c).

Die Spulen S_x , S_y und S_z können dabei verteilt und räumlich getrennt voneinander auf der Trägerplatte 2 angeordnet sein. Ebenso ist es möglich, daß die Spulen Sx, Sy und Sz möglichst dicht beieinander jedoch mit in etwa senkrecht zueinander stehenden Windungsflächen gewickelt sind. Dies wird bei dem Ausführungsbeispiel nach Fig. 2 dargestellt. Dabei sind die Spulen Sx und Sv auf einem Ferritkern 7 aufgewickelt, der kreuzförmig mit Polschuhen 8 an den Enden seiner Schenkel ausgebildet ist. Die Spulen S_x und S_v sind jeweils diagonal zu den Schenkeln des Ferritkerns 7 und damit senkrecht zueinander gewickelt (jeweils senkrecht zur Zeichenebene). Die Spule Sz ist etwa ringförmig auf die Polschuhe 8 des Ferritkerns 7 gewickelt. Ihre Windungsfläche A ist dabei parallel zur Zeichenebene. Somit sind die Windungsflächen der drei Spulen Sx, Sy und Sz jeweils etwa senkrecht zueinander angeordnet.

Die Ausführungsform des Signalempfängers 1 nach Fig. 2 ist in seinen Abmessungen sehr klein. Die Spulen S_x , S_y und S_z sind dabei auf engstem Raum angeordnet. Somit kann ein solcher Signalempfänger 1 gut in Gehäuse mit kleinen Abmessungen eingebaut werden.

Die Spule S_z ist in der Fig. 1 als Luftspule und in der Fig. 2 nur teilweise als Ferritspule ausgebildet. Bei einer Luftspule ist das Inneren der Spule nicht mit einem magnetisch leitenden Material gefüllt.

Die Spule S_z ist unmittelbar auf die Trägerplatte 2 aufgebracht. Sie kann beispielsweise aus Drähten bestehen, die auf die Trägerplatte 2, beispielsweise in Nuten, spulenförmig befestigt werden. Ebenso kann die Trägerplatte 2 als Leiterplatte und die Spule S_z mit ihren Windungen in Form von Leiterbahnen ausgebildet sein. Die Trägerplatte kann im Bereich der Windungsfläche der Spule S_z mit Ferritmaterial versehen sein, wodurch ihre Güte/Koppelfaktor erhöht wird.

Die Spulen S_x und S_y sind in den Fig. 1 und 2 als Ferritspulen ausgebildet, bei denen die Windungen auf einen Ferritkern 5, 6, 7 gewickelt sind. Das Innere der Spulen S_x und S_y ist dann also weitgehend mit einem Material mit sehr hoher relativer Permeabilität μ_t ausgefüllt. Durch einen Ferritkern wird bekanntlich der magnetische Fluß Φ verstärkt. Infolgedessen kann bei gleicher Wirkung der Durchmesser der Windungen (und damit die Windungsfläche) der Spulen S_x , S_y und S_z verkleinert werden, falls die Spulen auf einen Ferritkern gewickelt sind.

In den Fig. 3a bis 3c sind weitere Ausführungsbeispiele für die Spulen S_x und S_y und deren Ferritkerne 5, 6 oder 7 dargestellt. Die Ferritkerne 5, 6 oder 7 können dabei einstückig in etwa kreuzförmig ausgebildet sein. Jede Spule S_x und S_y kann aber auch ihren eigenen Ferritkern 5, 6 aufweisen, der dann jeweils in etwa senkrecht zu dem Ferritkern der anderen Spule – z. T. übereinanderliegend wie in Fig. 3c – angeordnet ist.

Wenn die Spule S_z besonders groß (d. h. hoher Koppelfaktor oder große Güte, wie z. B. als Luftspule mit großem
Windungsdurchmesser oder als große Ferritspule mit einem
Ferritmaterial mit hoher Permeabilität) ausgebildet ist, so
hat dies den Vorteil, daß mit dem Empfang des elektromagnetischen Feldes auch Energie empfangen werden kann.
Falls kein Energiespeicher auf der Trägerplatte 2 angeordnei
ist oder falls dieser Energiespeicher leer ist, so kann allein
die empfangene Energie ausreichen, um das Fragesignal
auszuwerten und gegebenenfalls das Antwortsignal zu erzeugen sowie auszusenden. Somit dient dann eines solche,
besonders ausgeprägte Spule zum Verwirklichen einer Notlauffunktion bei Battericausfall.

Die Energie kann auch über eine separate, nicht dargestellte Spule empfangen werden. Wenn diese Spule mit einem besonderen hohen Koppelfaktor und/oder guter Güte ausgestaltet wird, so ist die Energieübertragung besonders effektiv.

Die drei Spulen Sx, Sy und Sz sind alle mit der Empfangseinheit 3 und mit der Sendeeinheit 4 verbunden (Fig. 4). Die in jeder Spule Sx, Sy und Sz erzeugte Spannung wird jeweils für sich in eigenen Verstärkern 9 verstärkt und einem gemeinsamen Addierer 10 zugeführt. In dem Addierer 10 werden die induzierten Spannungen infolge der räumlichen Magnetfeldkomponenten Bx, By und Bz addiert.

Statt des Addierers 10 kann auch ein nicht dargestellter den Spulen Sx, Sy und Sz induzierte Spannung zur Auswertung weiterleitet. Somit werden unerwünschte, kleinere Magnetfelder für die Auswertung unterdrückt (Überreichweitenvermeidung).

Falls in einer oder zwei der drei Spulen S_x , S_y oder S_z eine 15 zu geringe Spannung induziert wird, so verbleibt immer noch die dritte Spule, in der aufgrund des räumlichen Magnetfeldes und der dreidimensionalen Anordnung der Spulen S., Sy und Sz eine größere Spannung induziert wird, falls sich der Signalempfänger 1 in der Nähe der Sendeantenne 20 und damit innerhalb des Magnetfelds befindet.

Die Spulen S_x , S_y und S_z sind von ihren Abmessungen her so klein ausgebildet, daß die Trägerplatte 2 mit den Spulen S_x, S_y und S_z auf eine kleine flache Karte in Form einer Scheckkarte (wird auch als Smart Card bezeichnet) paßt. 25 Die Trägerplatte 2 kann auch derart klein ausgebildet werden, daß sie mit den Spulen Sx, Sy und Sz auf einem Schlüsselgriff eines mechanischen Tür-/Zündschlüssels befestigt werden kann. Somit kann der Signalempfänger 1 bequem vom Benutzer bei sich getragen werden.

Der Signalempfänger 1 kann auch in sonstigen, funktionell gleichwertigen Gehäusen angeordnet sein. Für die Erfindung ist die Form des Gehäuses unwesentlich. Wesentlich hingegen ist, daß die Spulen Sx, Sy und Sz jeweils senkrecht zueinander angeordnet sind und in ihren Abmessungen sehr 35 klein ausgebildet sind.

Da die drei Spulen Sx, Sy und Sz in etwa in alle drei Raumrichtungen x, y und z gerichtet sind, kommt es nicht auf die Winkellage des Signalempfängers 1 bezüglich der Sendeantenne an. Der Benutzer kann somit seinen Signalemplänger 1 sowohl in einer seiner Taschen oder in einer Handtasche mit sich tragen. Der Signalempfänger 1 kann auch im Fahrzeug in ein Fach abgelegt werden. Solange sich der Signalemplänger 1 innerhalb der Reichweite der Sendeantenne befindet und die Sendeantenne ein genügend großes 45 gnals auslöst. Magnetfeld erzeugt, wird mit dem erfindungsgemäßen Signalempfänger 1 sicher das Fragesignal empfangen.

Wenn zusätzlich noch eine Sendeeinheit 4 vorgesehen ist, so kann die Sendeeinheit 4 ein Antwortsignal nach Empfang des Fragesignals zurücksenden. Somit wird eine Authentifi- 50 kation durchgeführt. Wenn die Authentifikation erfolgreich ist, d. h. wenn sich das Antwortsignal als berechtigt herausstellt, so können Türschlösser ver- oder entriegelt oder eine Wegfahrsperre im Kraftfahrzeug gelöst werden.

Der Signalempfänger 1 kann nicht nur bei Diebstahl- 55 schutzsystemen für Kraftfahrzeuge verwendet werden. Er kann überall dort verwendet werden, wo ein Signal von einer Sendeantenne über ein Magnetfeld induktiv ausgesendet wird und von dem tragbaren Signalempfänger 1 empfangen werden soll. Ein zu übertragende binäre Information wird 60 dabei moduliert mit Hilfe des Magnetfeldes übertragen. Beim Empfang des Signals wird die binäre Information demoduliert und ausgewertet.

Die Reichweite von induktiv übertragenen Signalen beträgt etwa 1 bis 2 m. Die Reichweite ist abhängig von der 65 Sendefrequenz, die bei Anwendungen auf dem Gebiet der Automobiltechnik vorzugsweise 125 kHz beträgt. Die Reichweite ist auch abhängig von der Sendeleistung und der

Richtcharakteristik der Sendeantenne. Das Antwortsignal wird beispielsweise bei einer Sendefrequenz von 433 MHz zurück zum Kraftfahrzeug gesendet. Hierbei kann die Reichweite wesentlich größer sein.

Die Ferrite können aus reinen Magnetwerkstoffen (Verbindungen von Eisen(-oxiden) und Mangan-, Nickel- oder Zinkoxiden) oder auch aus einem Kunststoff bestehen, in den ferromagnetische Partikel eingebracht sind (Plastoferrite). Ferritkerne bestehen aus Ferriten und können sehr Maximaldetektor vorgesehen sein, der nur die größte der in 10 dünn als Stanzteile hergestellt werden. Somit kann die Dicke einer auf einen Ferritkern gewickelten Spule im Bereich von 1 bis 2 mm liegen. Die Länge der Schenkel der Ferrite kann im cm-Bereich liegen. Somit können kleine Bauformen realisiert werden, die nur geringen Platz auf der Trägerplatte 2 einnehmen.

Falls der Signalempfänger 1 auf einer Smart Card angeordnet ist, so kann er vorzugsweise in der Hemd- oder Hosentasche des Benutzers getragen werden. Ebenso kann er leicht in einer Handtasche o. ä. mitgenommen werden.

Abhängig von einer Vorzugsrichtung, in die das von der Sendeantenne erzeugte Magnetfeld gerichtet ist, und von einer Vorzugswinkellage des Signalempfängers 1 kann dann diejenige Spule S_x, S_y oder S_z, die bei dieser Vorzugsrichtung hauptsächlich von dem Magnetfeld durchsetzt wird, besonderes charakteristisch ausgebildet sein. So kann diese Spule S_x, S_y oder S_z mit ihren Windungen einen größeren Windungsdurchmesser (größere Windungsfläche) erhalten. Ebenso kann die Permeabilität durch einen hochpermeablen Fernitkern vergrößert werden. Die Anzahl der Windungen der Spule S_x, S_y oder S_z kann ebenfalls erhöht sein. Durch diesen Mehraufwand ist es dann wahrscheinlicher, daß ein Signal mit einer ausreichenden Stärke von dem Signalempfänger 1 empfangen wird, wenn sich der Signalempfänger 1 innerhalb der Reichweite der Sendeantenne befindet und diese auch ein Signal aussendet.

Es genügt, wenn der Signalempfänger 1 Signale empfangen kann. Vorteilhaft ist es für die Verwendung bei einem Diebstahlschutzsystem eines Kraftfahrzeugs, wenn zusätzlich noch eine Sendeeinheit 4 vorgesehen ist, die ein Antwortsignal nach Empfang des Fragesignal zurücksendet. Da die Spulen Sx, Sy und Sz sowohl Signale empfangen als auch welche senden können, kann der Signalempfänger 1 zusammen mit der Sendeeinheit 4 ein Transponder sein, der durch den Empfang des Fragesignals das Erzeugen des Antwortsi-

Patentansprüche

- 1. Tragbarer Signalempfänger mit einer Empfangseinheit (3), die ein induktiv übertragenes Signal über eine Antenne empfängt, dadurch gekennzeichnet, daß er drei Antennen in Form von Spulen (Sx, Sy und Sz) aufweist, deren Windungsflächen jeweils etwa senkrecht zueinander angeordnet sind.
- 2. Signalempfänger nach Anspruch 1, dadurch gekennzeichnet, daß die Spulen $(S_x, S_y \text{ und } S_z)$ als Luftspulen oder als Ferritspulen ausgebildet sind.
- 3. Signalempfänger nach Anspruch 1, dadurch gekennzeichnet, daß im Inneren der Spulen (Sx, Sy und S₂) ein Ferritkern (5, 6; 7) angeordnet ist.
- 4. Signalempfänger nach Anspruch 3, dadurch gekennzeichnet, daß der Ferritkern (7) zwei etwa kreuzförmige Schenkel aufweist, um die zwei der Spulen $(S_x, S_y \text{ und } S_z)$ senkrecht zueinander gewickelt sind.
- 5. Signalempfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er eine Trägerplatte (2) aufweist, die etwa scheckkartenförmig ausgebildet ist und auf der die Spulen $(S_x, S_y \text{ und } S_z)$

und die Empfangseinheit	(3)	angeordnet	sind.
-------------------------	-----	------------	-------

6. Signalempfänger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Trägerplatte (2) auf einem Schlüsselgriff angeordnet ist.

7. Signalempfänger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er neben der Empfangseinheit (3) noch eine Sendeeinheit (4) aufweist und für ein Diebstahlschutzsystem für ein Kraftfahrzeug verwendet wird.

Hierzu 4 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 197 18 423 A1 H 01 Q 7/00**5. November 1998

Nummer: Int. CI.⁶: Offenlegungstag: DE 197 18 423 Å1 H 01 Q 7/00
5. November 1998

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 197 18 423 A1 H 01 Q 7/00

5. November 1998

Nummer: Int. Cl.⁶: Offenlegungstag: DE 197 18 423 A1 *
• H'01 Q '7/00
5. November 1998

