Naive Bayes Algorithm

Sentence Classification

What is Bayes Algorithm

Simple algorithm to classify text

Low training time and resources

Requires a set of labeled training data

Will be used to classify new sentences

No.	Training-Text	Label
1	"A great game"	Sports
2	"The election was over"	Not Sports
2	"Very clean match"	Sports
4	"A clean but forgettable game"	Sports
5	"It was a close election"	Not Sports

- Training data consists of two classes
 - Sport or not sport

The Probability A = classOF "B" BEING TRUE OF "A" BEING TRUE B = sentence GIVEN THAT "A" IS TRUE The probability The probability OF "A" BEING TRUE OF "B" BEING TRUE GIVEN THAT "B" IS TRUE 13 ayes rule

How does it work?

- Comparing the probabilities:

 - P (Not Sports | Hermann played a TT match) = P(A very close game|not Sports)*P(Not Sports)

 $P(A \ very \ close \ game)$

Probability of a sentence

• Likelyhood a setence is a sport sentence:

•
$$P(Sport) = \frac{Number\ of\ sentences\ in\ class\ "Sports"}{Total\ number\ of\ sentences\ in\ the\ training\ set}$$

- Similarily calculate P(Not Sports)
- "Naive" Bayes because we think each word is indipendent from the other ones
 - Possibility of a sentence "A very close game" is calculated like this:
 - $P(A \ very \ close \ game) = P(A) * P(very) * P(close) * P(game)$

Probability
of a
sentence in a
class

• Applying the probabilites of the words to Bayes formula:

```
P(A \ very \ close \ game \ | Sports) = \\ P(A|Sports) * P(very|Sports) * P(close|Sports) * P(game|Sports) \\ * P(Sports)
```


 Now all we have to do is calculate all the different probabilites by counting everything in our training data

No.	Training-Text	Label
1	"A great game"	Sports
2	"The election was over"	Not Sports
3	"Very clean match"	Sports
4	"A clean but forgettable game"	Sports
5	"It was a close election"	Not Sports

- P(Sports) = 3/5 | P(Not Sports) = 2/5
- Probability of a word in class Sports:
 - $P(game|Sports) = \frac{amount \ of \ "game" \ in \ Sports \ sentences}{total \ number \ of \ words \ in \ Sports \ sentences} = \frac{2}{11}$
 - Repeat for other words and other classes

- Sentence "a very close game"
 - P(close | Sports) = 0!
 - We have "close" 0 times in our Sports-data
 - → We would multiply with 0 → everything becomes 0
 - → We need Laplace Smoothing
- Laplace smoothing: We add 1 to every count so it's never zero. To balance this, we add the number of possible words to the divisor, so the division will never be greater than 1
 - → P(game | Sports) = $\frac{(2+1)}{(11+14)} = \frac{3}{25}$
 - 2 + 1 times the word "game" in Sports sentences
 - 11 words in Sports sentences
 - 14 possible words

Summary of calculation

- P(Sports) = $\frac{3}{5}$
- P(Not Sports) = $\frac{2}{5}$
- Anzahl (Words | Sports) = 11
- Anzahl (Words | Not Sports) = 9
- Anzahl (possible words) = 14
- P(A very close game |Sports) =
 P(A|Sports) * P(very|Sports) *
 P(close|Sports) * P(game|Sports) *
 P(Sports)
- → P(game | Sports) = $\frac{(2+1)}{(11+14)} = \frac{3}{25}$
 - 2 + 1 times the word "game" in Sports sentences
 - 11 words in Sports sentences
 - 14 possible words

- P(a very close game | Sports) =
- = P(a|Sports) * P(very|Sports) * P(close|Sports) *
 P(game|Sports) * P(Sports)

$$= \frac{3}{25} * \frac{2}{25} * \frac{1}{25} * \frac{3}{25} * \frac{3}{5} \approx 2,7648 e^{-5}$$

→ Analog für Not Sports:

P(a|Not Sports)*P(very|Not Sports)*P(close|Not Sports)*P(game|Not Sports)*P(Not Sports)

$$= \frac{2}{23} * \frac{1}{23} * \frac{2}{23} * \frac{1}{23} * \frac{2}{5} \approx 0,57176 e^{-5}$$

- → Larger number means higher probability
- → Its more likely that ist a Sports sentence ©

Homework

- "Hermann plays a TT match"
- P(Sports) = $\frac{4}{6}$
- P(Not Sports) = $\frac{2}{6}$
- Anzahl (Words | Sports) = 15
- Anzahl (Words | Not Sports) = 9
- Anzahl (possible words) = 14

- P(game | Sports) = $\frac{(2+1)}{(11+14)} = \frac{3}{25}$
 - 2 + 1 times the word "game" in Sports sentences
 - 11 words in Sports sentences
 - 14 possible words

No.	Training-Text	Label
1	"A great game"	Sports
2	"The election was over"	Not Sports
3	"Very clean match"	Sports
4	"A clean but forgettable game"	Sports
5	"It was a close election"	Not Sports
6	"A very close game"	Sports
	Target-Text	
New	"Hermann plays a TT match"	?

Probabilities

• Sports:

P(Hermann plays a TT match | Sports) =

P(Hermann|Sports) * P(plays|Sport) * P(a|Sports) * P(TT|Sports) * P(match|Sports) * P(Sports)

$$= \frac{1}{29} * \frac{1}{29} * \frac{4}{29} * \frac{1}{29} * \frac{2}{29} * \frac{4}{6} = 2,6002e-7$$

Not Sports:

P(Hermann plays a TT match | Not Sports) =

 $P(Hermann|Not\ Sports)*P(plays|Not\ Sport)*P(a|Not\ Sports)*P(TT|Not\ Sports)*P(match|Not\ Sports)$

$$= \frac{1}{23} * \frac{1}{23} * \frac{2}{23} * \frac{1}{23} * \frac{1}{23} * \frac{2}{6} = 1,0358e-7$$

→ It will be classified as a Sports-sentence

Vielen Dank für Ihre Aufmerksamkeit

- https://medium.com/@sweetai/a-brief-introduction-to-naive-bayes-classifier-31cf772195cd
- https://medium.com/analytics-vidhya/naive-bayesclassifier-for-text-classification-556fabaf252b#:~:text=The%20Naive%20Bayes%20class ifier%20is,time%20and%20less%20training%20data