Практическое занятие №53.

Решение неравенств.

1. Решение иррациональных неравенств

1. Метод интервалов (для неравенств вида f(x) < 0)

- 1) Найти ОДЗ неравенства.
- 2) Найти нули функции f(x) (f(x) = 0).
- Отметить нули функции на ОДЗ и найти знак функции в каждом из промежутков, на которые разбивается ОДЗ.
- Записать ответ, учитывая знак неравенства.

$$\sqrt{x+4} > x+2.$$

 Заданное неравенство равносильно неравенству

$$\sqrt{x+4}-x-2>0$$
.
Обозначим $f(x)=\sqrt{x+4}-x-2$.
ОДЗ: $x+4\geqslant 0$, то есть $x\geqslant -4$.
Нули $f(x)$: $\sqrt{x+4}-x-2=0$, $\sqrt{x+4}=x+2$, $x+4=x^2+4x+4$, $x^2+3x=0$, $x_1=0$ — корень, $x_2=-3$ — посторонний корень.

2. Равносильные преобразования

- При возведении обеих частей неравенства в нечетную степень (с сохранением знака неравенства) получаем неравенство, равносильное данному (на ОДЗ данного неравенства).
- $\sqrt[3]{x+2} < -1$.
- ОДЗ: R.
 Данное неравенство равносильно неравенствам:

$$(\sqrt[3]{x+2})^3 < (-1)^3, x+2 < -1, x < -3.$$
 Omsem: $(-\infty; -3). \triangleleft$

- Если обе части неравенства неотрицательны, то при возведении обеих частей неравенства в четную степень (с сохранением знака неравенства) получаем неравенство, равносильное данному (на ОДЗ заданного неравенства).
- $\sqrt[4]{2x-6} < 1$.

 ОДЗ: $2x-6 \ge 0$, то есть $x \ge 3$.

 Обе части данного неравенства неотрицательны, следовательно, данное неравенство равносильно (на его ОДЗ) неравенствам:

$$(\sqrt[4]{2x-6})^4 < 1^4$$
, $2x-6 < 1$, $x < \frac{7}{2}$.

Учитывая ОДЗ, получаем

$$3 \le x < \frac{7}{2}.$$

Omsem: $\left[3; \frac{7}{2}\right)$.

3) Если на ОДЗ заданного неравенства какая-либо часть неравенства может принимать как положительные, так и отрицательные значения, то прежде чем возводить обе части неравенства в четную степень, эти случаи необходимо рассмотреть отдельно.

Например,
$$\begin{cases} g(x) \geqslant 0, \\ f(x) > g^{2k}(x) \end{cases}$$

$$g(x) \Rightarrow 0,$$

$$f(x) > g^{2k}(x)$$

$$\text{или } \begin{cases} f(x) \geqslant 0, \\ g(x) < 0. \end{cases}$$

$$\begin{cases} f(x) \geqslant 0, \\ g(x) < 0. \end{cases}$$

$$\begin{cases} f(x) \geqslant 0, \\ g(x) > 0, \\ g(x) > 0, \end{cases}$$

x-3>2, x>5.

Ombem: $(5; +\infty)$.

$$\sqrt{x+4} > x+2.$$

Данное неравенствао равносильно совокупности систем:

$$\begin{cases} x+2\geqslant 0, \\ \left(\sqrt{x+4}\right)^2>(x+2)^2 \end{cases}$$
 или $\begin{cases} x+4\geqslant 0, \\ x+2<0. \end{cases}$ Тогда $\begin{cases} x\geqslant -2, \\ x^2+3x<0 \end{cases}$ или $\begin{cases} x\geqslant -4, \\ x<-2. \end{cases}$

Тогда
$$\begin{cases} x \ge -2, \\ x^2 + 3x < 0 \end{cases}$$
 или
$$\begin{cases} x \ge -4, \\ x < -2. \end{cases}$$

Решив неравенство $x^2 + 3x < 0$, имеем -3 < x < 0 (см. рисунок).

$$+$$
 -3 0 x

Учитывая неравенство $x \ge -2$, получаем решение первой системы: $-2 \le x < 0$. Решение второй системы: -4 ≤ x < -2. Объединяя эти решения, получаем ответ.

x-3<2, x<5.

Omeem: $(-\infty; 5)$.

Omeem: [-4; 0). <

2. Решение показательных неравенств.

Решение более сложных показательных неравенств

І. С помощью равносильных преобразований (по схеме решения показательных уравнений, табл. 54) данное неравенство приводится к неравенству известного вида (квадратному, дробному и т. д.). После решения полученного неравенства приходим к простейшим показательным неравенствам.

$$4^{x+1} + 7 \cdot 2^{x} - 2 > 0.$$

$$4^{x} \cdot 4 + 7 \cdot 2^{x} - 2 > 0,$$

$$2^{2x} \cdot 4 + 7 \cdot 2^{x} - 2 > 0.$$

Замена $2^x = t$ дает неравенство $4t^2 + 7t - 2 > 0$, решения которого t < -2 или $t > \frac{1}{4}$ (см. рисунок).

Обратная замена дает $2^x < -2$ (решений нет) или $2^x > \frac{1}{4}$, откуда

 $2^x > 2^{-2}$, то есть x > -2. Ответ: $(-2; +\infty)$.

- II. Применяем метод интервалов¹, приводя данное неравенство к виду $f(x) \ge 0$ и используя схему:
- 1. Найти ОДЗ.
- 2. Найти нули f (x).
- 3. Отметить нули функции на ОДЗ и найти знак f(x) в каждом из промежутков, на которые разбивается ОДЗ.
- 4. Записать ответ, учитывая знак неравенства.

$$3^x + 4^x > 7$$
.

Решим неравенство методом интервалов. Данное неравенство равносильно неравенству

$$3^x + 4^x - 7 > 0.$$

Обозначим $f(x) = 3^x + 4^x - 7$.

- 1. ОДЗ: R.
- 2. Нули функции: f(x) = 0. $3^x + 4^x 7 = 0$. Поскольку функция $f(x) = 3^x + 4^x 7$ является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения: x = 1

$$(f(1) = 3^1 + 4^1 - 7 = 0).$$

3. Отмечаем нули функции на ОДЗ, находим знак f(x) в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства f(x) > 0.

Omsem: $(1; +\infty)$.

Задача 1 Решите неравенство
$$(0,6)^{x^2-7x+6} \ge 1$$
.

Решение

$$(0,6)^{x^2-7x+6} \ge (0,6)^0.$$

Поскольку функция $y = (0,6)^t$ является убывающей, то $x^2 - 7x + 6 \le 0$. Отсюда $1 \le x \le 6$ (см. рисунок).

Omeem: [1; 6]. <

Комментарий

Запишем правую часть неравенства как степень числа $0.6: 1 = (0.6)^0$.

Поскольку 0.6 < 1, то при переходе от степеней к показателям знак неравенства меняется на противоположный (получаем неравенство, равносильное данному).

Для решения полученного квадратного неравенства используем графическую иллюстрацию.

Знак неравенства меняется,

и учитывается ОДЗ.

3. Решение логарифмических неравенств

Знак неравенства не меняется,

и учитывается ОДЗ.

a > 1	0 < a < 1
<i>y</i> ^	<i>y</i> ∧
0 /1 x	
0/1 x	0 1 x
возрастает	убывает

2. Равносильные преобразования простейших логарифмических неравенств $a>1 \qquad 0 < a < 1$ $\log_a f(x) > \log_a g(x) \Leftrightarrow \begin{cases} f(x) > g(x), \\ f(x) > 0, \\ g(x) > 0 \end{cases}$ $\log_a f(x) > \log_a g(x) \Leftrightarrow \begin{cases} f(x) < g(x), \\ f(x) > 0, \\ g(x) > 0 \end{cases}$ $\Leftrightarrow \begin{cases} f(x) > g(x), \\ g(x) > 0. \end{cases}$ $\Leftrightarrow \begin{cases} f(x) < g(x), \\ f(x) > 0, \\ g(x) > 0. \end{cases}$

$$\log_2(x-5) > 3.$$

ightharpoonupОДЗ: x-5>0, то есть x>5. $\log_2(x-5)>\log_22^3$.

 Φ ункция $y = \log_2 t$ возрастающая, тогда

$$x-5>2^3,$$

 $x>13.$

Учитывая ОДЗ, имеем x > 13.

Ombem: $(13; +\infty)$.

$$\log_{\frac{1}{2}}(x-5) > 3.$$

ightharpoonup OД3: x - 5 > 0, то есть x > 5. $\log_{\frac{1}{2}}(x-5) > \log_{\frac{1}{2}}(\frac{1}{2})^3$.

Функция
$$y = \log_{\frac{1}{2}} t$$
 убывающая,

тогда
$$x-5 < \left(\frac{1}{2}\right)^3$$
, $x < 5\frac{1}{8}$.

Учитывая ОДЗ, имеем $5 < x < 5\frac{1}{8}$.

OTBET: $\left(5; 5\frac{1}{8}\right)$.

Решение более сложных логарифмических неравенств

 С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида. $lg^2(10x) - lg x ≥ 3.$ ▶ ОДЗ: x > 0. На этой ОДЗ данное неравенство равносильно неравенствам:

 $(\lg 10 + \lg x)^2 - \lg x \ge 3, (1 + \lg x)^2 - \lg x \ge 3.$

Схема равносильных преобразований неравенства:

- Учитываем ОДЗ заданного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
- 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.

Замена $\lg x = t$. Тогда $(1+t)^2 - t \ge 3$, то есть $t^2 + t - 2 \ge 0$. Решение этого неравенства

$$t \leq -2$$
 или $t \geq 1$ (см. рисунок).

Обратная замена дает

$$\lg x \le -2$$
 или $\lg x \ge 1$.

Тогда $\lg x \le \lg 10^{-2}$ или $\lg x \ge \lg 10$.

Учитывая, что функция $y = \lg x$ является возрастающей, получаем:

$$x \le 10^{-2}$$
 или $x \ge 10$.

С учетом ОДЗ имеем:

$$0 < x \le 0,01$$
 или $x \ge 10$.

Omsem: $(0; 0,01] \cup [10; +\infty)$.

Применяется метод интервалов

(данное неравенство приводится к неравенству $f(x) \ge 0$) и используется схема:

- 1. Найти ОДЗ.
- 2. Найти нули f(x).
- Отметить нули функции на ОДЗ и найти знак f (x) на каждом из промежутков, на которые разбивается ОДЗ.
- 4. Записать ответ, учитывая знак неравенства.

$$\log_{x}(2x+3) < 2.$$

 Решим неравенство методом интервалов. Оно равносильно неравенству

$$\log_x(2x+3) - 2 < 0.$$

Обозначим $f(x) = \log_x(2x + 3) - 2$.

1. ОДЗ:
$$\begin{cases} 2x+3>0, \\ x>0, \\ x\neq 1, \end{cases}$$
 то есть
$$\begin{cases} x>0, \\ x\neq 1. \end{cases}$$

- 2. Нули функции: f(x) = 0. $\log_x(2x + 3) 2 = 0$. Тогда $\log_x(2x + 3) = 2$. На ОДЗ это уравнение равносильно уравнению $2x + 3 = x^2$ (полученному по определению логарифма). То есть $x^2 2x 3 = 0$, $x_1 = -1$, $x_2 = 3$. В ОДЗ входит только x = 3. Итак, f(x) имеет единственный нуль функции x = 3.
- 3. Отмечаем нули функции на ОДЗ, находим знак f(x) на каждом из промежутков, на которые разбивается ОДЗ, и записываем решения неравенства f(x) < 0.

Ответ: $x \in (0; 1) \cup (3; +\infty)$.

Задача 1

Решите неравенство $\log_{0.2}(x-1) + \log_{0.2}(x+3) \ge -1$

Решение

$$ightharpoonup$$
 ОДЗ: $\begin{cases} x-1>0, \\ x+3>0. \end{cases}$ Тогда $x>1.$

На этой ОДЗ данное неравенство равносильно неравенству

$$\log_{0,2}((x-1)(x+3)) \ge \log_{0,2}(0,2)^{-1}$$
.

Функция $y = \log_{0,2} t$ убывающая, поэтому $(x-1)(x+3) \le (0,2)^{-1}$.

Получаем $x^2 + 2x - 3 \le 5$, $x^2 + 2x - 8 \le 0$.

Последнее неравенство имеет решения:

$$-4 \le x \le 2$$
 (см. рисунок).

Учитывая ОДЗ, получаем $1 < x \le 2$.

Ответ: (1; 2]. <

Задания для самостоятельного решения.

$$(x+1)\sqrt{2-x} > 0;$$

$$\sqrt{2x+4} \le 2;$$

$$\sqrt{x^2 - 3x + 2} > -4.$$

$$3^x - 3^{x-3} > 26;$$

$$4^x - 2^x \ge 2.$$

$$2^{x+2} + 2^{x+5} < 9;$$

$$9^x - 3^x \le 6.$$

$$\log_2(x^2 - 3x) < 2;$$

$$\log_3^2 x - \log_3 x - 2 > 0.$$

$$\log_2^2 x + 2\log_2 x - 3 > 0.$$

Список использованных источников:

Нелин Е.П., Лазарев В.А.

Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профильный уровни. — М.: Илекса, 2011, — 480 с.: ил.

Ершова А.П., Нелин Е.П.

Самостоятельные и контрольные работы по алгебре и началам математического анализа для 10 класса.— М.: ИЛЕКСА, — 2013, — 144 с.