ISEL – LEIM Processamento de Imagem e Visão

Inverno 2022-2023

Série de Exercícios 2

e forte):

Considere a seguinte matriz:

110	35	218	19	106
232	222	159	61	13
46	148	89	31	230
67	140	131	47	241
37	37	102	61	125

forte. Qual o histograma normalizado da amplitude dos contornos com dois níveis (fraco

que representa o módulo do gradiente de uma imagem, o limiar de 62 para determinar

os pixeis de contorno e o limiar de 94 para decidir entre pixeis com contorno fraco ou

[0,28; 0,48]

[0,08; 0,52]

[0,16; 0,44]

[0,32; 0,44]

Considere que dispõem de uma câmara com um sensor de 1" e relação largura/altura de 4/3 (dimensões do sensor: altura 12.8mm e largura 16.0mm). Utilizando o modelo de projecção simples, qual a distância focal da lente para que, a 10 metros de distância, tenha um campo de visão horizontal de 5 metros (considere que a distância é medida a partir do plano focal)?

32 mm.

40 mm.

15 mm.

10 mm.

 58
 58

 44
 111

 235
 47

 231
 112

 250
 28

Plano R	Plano G	Plano B	

Considere a imagem a cores representada pelos seguintes planos de cor.

por: $C_1 \to (0, 15; 0, 35), C_2 \to (0, 60; 0, 25)$ $(R_n, G_n, \text{ respetivamente}).$

Realize uma segmentação de cor no espaço RG normalizado, utilizando o algoritmo de distância ao centroide, considerando que existem duas cores dominantes representadas

 3
 42
 4
 5
 6
 9
 2
 10
 3
 1

 40
 5
 7
 9
 6
 4
 7
 6
 6

 8
 38
 9
 7
 7
 4
 6
 3
 0
 5

de circunferências de raio conhecido, obtém-se o seguinte troco do acumulador:

Considere que depois de aplicar o algoritmo da transformada de Hough para a detecção

-E	38	9	/	/	4	6	3	0	5
enad	36	4	2	2	2	3	6	4	7
2	34	10	1	4	4	3	1	3	7
Cool	32	3	17	5	5	6	9	2	6
0	30	7	2	10	1	3	9	2	0
		50	52	54	56	58	60	62	64
	Coordenada Y (pixel)								

Com base nesta porção do acumulador, quais os parâmetros da melhor circunferência (centro $C = [X_0; Y_0]$) que a transformada detectou?

[32;60]

32:521

42: 56L

|40:58|

Dada a seguinte matriz:

193	180	210	112	125
189	8	177	97	114
100	71	81	195	165
167	12	242	203	181
44	25	0	40	102

ue representa o módulo do gradiente de uma imagem e um limiar de

que representa o módulo do gradiente de uma imagem e um limiar de 70 para determinar os pixeis de contorno, a densidade de contornos desta imagem é:

X

dado por um classificador:

X	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	
ω	3	3	2	1	2	2	2	2	
ŵ	2	2	1	1	2	2	2	2	

Considere o seguinte conjunto de dados X com classe verdadeira ω e classe estimada $\hat{\omega}$.

Qual a probabilidade de erro?

2 (,

Considere uma câmara representada pelo modelo de projecção de perspectiva simples, que se conhecem os seguintes parâmetros intrínsecos, $k_y = k_y = 0.75$, que o eixo óptico intersecta o plano da imagem no píxel de coluna 320 e linha 240 e que a lente tem uma distância focal de 8mm. Determine qual o pixel que corresponde ao ponto 3D dado por [1000, 500, 40] (mm), representado no referencial da câmara ([X,Y,Z]).

[323; 235]

[330; 235]

|470;165|

[400; 200]

Considere a seguinte matriz:

ter gerado este campo de movimento?

traço fraco. Qual o tipo de situação de movimento da câmara e/ou de objectos que pode

que representa o resultado do calculo do fluxo óptico, onde as setas indicam o sentido do deslocamento e as setas com traço forte indicam um descolamento maior que as setas a

Deslocamento horizontal da câmara no sentido da esquerda para a direita (pan right).

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left) com um objecto a deslocar-se horizontalmente da direita para a esquerda.

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left).

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left) com um objecto a deslocar-se horizontalmente da esquerda para a direita.

de uma câmara digital de videovigilância adquiridas em 3 instantes de tempo.

Considere que as seguintes matrizes representam 3 imagens monocromáticas provenientes

	135 130 132	140 210 195	145 125 210	
(t)		(t+1)	(t+2)	

Pretende-se realizar um algoritmo de detecção de objectos com base em subtracção de imagens. Determine a imagem de fundo com base na filtragem de mediana temporal.

101	105	101
120	125	135
140	130	135

101	105	101
120	125	200
140	200	195

101	120	140
105	125	130
101	135	135

100	105	101
120	125	135
140	130	195