Introduction to PDEs, Fall 2022

Homework 6 Due Nov 14

Nam	٠		
INAII	ıe:		

1. In measure theory, there are two additional convergence manners for $f_n \to f$: convergence in measure (called convergence in probability) and convergence almost everywhere (convergence almost surely). This should give you a flavor that probability is a measure and vice versa. Convergence in measure states that for each fixed $\varepsilon > 0$

$$m(\lbrace x \in \Omega : |f_n(x) - f(x)| \ge \varepsilon \rbrace) \to 0$$
, as $n \to \infty$,

and convergence almost everywhere means that the measure of the non-convergence region is zero, i.e., for each fixed $\varepsilon > 0$

$$m(\lbrace x \in \Omega : \lim_{n \to \infty} |f_n(x) - f(x)| \ge \varepsilon \rbrace) = 0.$$

- i) what are the relationships between these two convergence manners? Prove your claims or give a counter-example.
- ii) what are their relationships between strong convergence (convergence in L^2 for instance)? Prove your claims or give a counter-example.

I would like to point out that convergence is global behavior in strong contrast to pointwise convergence since all the points are involved in the convergence limit.

- 2. It is known that strong convergence implies weak convergence, while not the converse. One counter-example we mentioned in class is $f_n(x) := \sin nx$ over $(0, 2\pi)$.
 - (i) Prove that $\sin nx \to 0$ in $L^2((0, 2\pi))$.
 - (ii) Prove that $\sin nx \rightarrow 0$ weakly by showing

$$\int_{0}^{2\pi} g(x) \sin nx dx \to 0 = \Big(\int_{0}^{2\pi} g(x) 0 dx \Big), \forall g \in L^{2}((0, 2\pi)).$$

If suffices even if $g \in L^1$. Hint: Riemann–Lebesgue lemma.

3. We recall that $f_n(x) \rightharpoonup f(x)$ weakly in L^p (resp. convergence in distribution) if for any $\phi \in L^q$ (resp. continuous and bounded), which is its conjugate space with $\frac{1}{p} + \frac{1}{q} = 1$, we have that

$$\int_{\Omega} f_n \phi dx \to \int_{\Omega} f \phi dx.$$

Here we see that for any q in L^q

$$\langle \cdot, g \rangle = \int_{\Omega} \cdot g$$

defines a bounded linear functional for L^p . Then we also call L^q the dual space of L^p since any element in L^q defines a functional for L^q .

- (i) Another type of convergence that you may see sometimes is $||f_n||_p \to ||f||_p$, which merely states the convergence of a sequence of real numbers. Prove that if $f_n \to f$ in L^p , then $||f_n||_p \to ||f||_p$ (Use Minkowski triangle inequality); however the opposite statement is not necessarily true. Give a counter-example and show it;
- (ii) We have proved that strong convergence in L^p implies the weak convergence by Holder's inequality, however, the opposite statement is not necessarily true. For example, prove that $\sin nx$ converges to zero weakly, but not strongly in L^p . Hint: Riemann–Lebesgue lemma;
- (iii) Prove that, if $f_n \rightharpoonup f$ weakly and $||f_n||_p \to ||f||_p$, then $f_n \to f$ strongly.