Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

УТВЕРЖДЕНО Проректор по учебной работе А. А. Воронов 17 июня 2024 г.

ΠΡΟΓΡΑΜΜΑ

по дисциплине: Квантовая механика

по направлению подготовки:

03.03.01 «Прикладные математика и физика»

физтех-школа: ФРКТ

кафедра: теоретической физики им. Л.Д. Ландау

 $\begin{array}{ccc} \text{курс:} & \underline{4} \\ \text{семестр:} & \underline{7} \end{array}$

лекции – 30 часов — Экзамен – 7 семестр

практические (семинарские)

занятия – 30 часов

Программу и задание составил д.ф.-м.н., доц. А. В. Дорофеенко

Программа принята на заседании кафедры теоретической физики им. Л.Д. Ландау 25 мая 2024 года

Заведующий кафедрой Э. Т. Ахмедов д.ф.-м.н.

1. Стационарная теория возмущений

Первое и второе приближения стационарной теории возмущений. Критерий применимости теории. Стационарное возмущение вырожденных уровней дискретного спектра. Секулярное уравнение. Правильные волновые функции нулевого приближения. Эффект Штарка в атоме водорода. Функция Грина стационарного уравнения Шрёдингера и теория возмущений для непрерывного спектра.

2. Нестационарная теория возмущений

Представление взаимодействия. Оператор эволюции в представлении взаимодействия. Вероятность перехода. Переходы под влиянием возмущения, действующего в течение конечного времени. Переходы под влиянием периодического возмущения в состояния дискретного и непрерывного спектра. "Золотое правило" Ферми. Переходы под влиянием постоянного возмущения. Адиабатические и внезапные возмущения. Квазистационарные состояния.

3. Релятивистская квантовая механика. Частица в магнитном поле

Уравнение Клейна—Гордона. Уравнение Дирака для свободной релятивистской частицы. Плотности вероятности и потока вероятности для дираковской частицы. Спин и полный момент количества движения. Состояния с положительными и отрицательными энергиями. Уравнение Дирака для заряженной частицы в электромагнитном поле. Градиентная инвариантность уравнения Дирака. Нерелятивистское приближение, уравнение Паули. Собственный магнитный момент электрона. Спин-орбитальное взаимодействие. Движение заряженной частицы в постоянном и однородном магнитном поле, уровни Ландау.

4. Сложение моментов

Сложение моментов. Коэффициенты Клебша-Гордана.

5. Тождественные частицы

Перестановочная симметрия волновой функции системы тождественных частиц. Бозоны и фермионы. Детерминант Слэтера. Принцип Паули. Разделение координатной и спиновой частей волновой функции системы тождественных частиц. Связь симметрии координатной части волновой функции системы с полным спином.

6. Атом гелия

Атом гелия. Пара- и ортосостояния. Обменное взаимодействие.

7. Сложный атом

Вариационный принцип в квантовой механике. Вариационный метод расчета уровней энергии и волновых функций. Метод Хартри-Фока. Атомные оболочки и термы. Правило Хунда. Сложный атом в магнитном поле. Эффект Зеемана.

8. Теория рассеяния

Постановка задачи рассеяния. Упругое рассеяние. Амплитуда и сечение рассеяния. Функция Грина задачи рассеяния. Интегральное уравнение задачи рассеяния. Приближение Борна. Критерии применимости борновского приближения. Особенности рассеяния тождественных частиц.

9. Основы теории излучения

Вторичное квантование. Квантование электромагнитного поля. Сведение гамильтониана электромагнитного поля к системе гамильтонианов гармонического осциллятора. Фотоны. Взаимодействие атома с квантовым полем: оператор взаимодействия, описание процессов спонтанного и вынужденного излучения и поглощения.

Литература

Основная

- Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. — Москва : Физматлит, 2008, 2016.
- 2. *Белоусов Ю.М.* Курс квантовой механики. Москва : МФТИ, 2006.
- 3. Галицкий В.М., Карнаков Б.М., Коган В.И. Задачи по квантовой механике. Москва : Наука, 1981.
- 4. *Белоусов Ю.М., Бурмистров С.Н., Тернов А.И.* Задачи по теоретической физике. Долгопрудный : ИД «Интеллект», 2013.

Дополнительная

- 1. Дирак П.А.М. Принципы квантовой механики. Москва : Наука, 1979.
- 2. Блохинцев Д.И. Основы квантовой механики. Москва : Наука, 1976.
- 3. $\mathit{Kucenee}\ B.B.\ \mathit{K}$ вантовая механика. Москва : МЦНМО, 2009.
- 4. Тернов А.И. Основы релятивистской квантовой механики: учебное пособие. Москва : МФТИ, 2002.
- 5. Аллилуев С.П. Квантовая теория сложного атома и квантовая теория излучения: учебное пособие. Москва : МФТИ, 1984.

УПРАЖНЕНИЯ

- 1. Разложите в ряд по степеням λ оператор $\hat{G} = (\hat{A} \lambda \hat{B})^{-1}$.
- 2. Вычислите следующие матричные элементы для атома водорода:

$$\langle 2p|\hat{x}|1s\rangle,\quad \langle 2p|\hat{y}|1s\rangle,\quad \langle 2p|\hat{z}|1s\rangle.$$

Какие правила отбора они определяют?

3. То же, но для матричных элементов

$$\langle 2p|\hat{p}_x|1s\rangle, \quad \langle 2p|\hat{p}_y|1s\rangle, \quad \langle 2p|\hat{p}_z|1s\rangle.$$

- 4. Найдите функцию Грина свободной частицы в одномерном случае. Используя эту функцию, найдите энергию связанного состояния частицы в потенциале $V(x) = -(\hbar^2 \mathbf{z}_0/m)\delta(x)$.
- 5. Покажите, что уравнение Дирака инвариантно относительно калибровочного преобразования электромагнитного поля. Как при этом преобразуется волновая функция?
- 6.* Выведите формулу для плотности тока вероятности электрона в магнитном поле.
- 7. Вычислите средние значения операторов $(\hat{\bf l}\hat{\bf s}),\,(\hat{\bf l}\hat{\bf j})$ и $(\hat{\bf j}\hat{\bf s})$ в состоянии $|l,s,j,m_i\rangle$.
- 8. Используя понижающий оператор \hat{S}_- , постройте собственные функции операторов $\hat{\mathbf{S}}^2$ и \hat{S}_z двух бозонов со спинами $s_1=s_2=1$ $(\hat{\mathbf{S}}=\hat{\mathbf{s}}_1+\hat{\mathbf{s}}_2,\,\hat{S}_-=\hat{s}_{1-}+\hat{s}_{2-}).$

ЗАДАЧИ

Первое задание

1. Используя стационарную теорию возмущений, найдите поправки к уровням энергии линейного гармонического осциллятора под действием следующих возмущений:

(a)
$$\hat{V} = \alpha x$$
, (6) $\hat{V} = Ax^3 + Bx^4$.

2. Найдите смещение уровня энергии основного состояния атома водорода, обусловленное конечным размером ядра. Примите, что ядро представляет собой равномерно заряженный по объему шар радиуса r_0 .

- $3.^{C}$ Вычислите электрическую поляризуемость атома водорода в основном состоянии.
- 4. С Исследуйте расщепление в однородном электрическом поле уровня энергии атома водорода с главным квантовым числом n=2 (эффект Штарка). Как зависит энергия расщепления от величины поля? Найдите правильные волновые функции нулевого приближения.
- 5. В результате β -распада ядра атома трития образуется ион ${}^{3}\mathrm{He}^{+}$. Вычислите вероятности того, что этот ион окажется: (а) в основном состоянии; (б) на первом возбужденном уровне. Каково отношение этих вероятностей?
- 6. Найдите вероятность перехода между состояниями дискретного спектра под действием возмущений:

(a)
$$V(t) = V_0 e^{-t^2/\tau^2}$$
, (6) $V(t) = \frac{V_0}{2} \left(1 + \frac{2}{\pi} \operatorname{arctg} \frac{t}{\tau} \right)$.

- **7.** Уровни энергии невозмущенной системы зависят от параметра λ и при некотором значении λ_0 два уровня энергии пересекаются: $E_1^{(0)}(\lambda_0) = E_2^{(0)}(\lambda_0)$. В начальный момент времени система находится на первом уровне в состоянии $\psi_1^{(0)}$. Определите вероятность найти систему в состоянии $\psi_2^{(0)}$ в момент времени t, если на систему накладывается постоянное возмущение \hat{V} , причем $V_{11} = V_{22} = 0$, но $V_{12} = V_{21}^* \neq 0$.
- 8. Найдите сечение фотоэффекта на атоме водорода под действием плоской монохроматической волны с частотой ω для случая $\hbar\omega\gg I$, где I потенциал ионизации атома. Используйте классическое (не квантовое) описание электромагнитного поля.
- 9. Найдите решения уравнения Дирака для свободного электрона.
- 10. $^{m{C}}$ На мюон, покоящийся в однородном магнитном поле $\mathcal{H}\parallel z$, падает циркулярно поляризованное радиочастотное поле $\mathbf{h}(t)\perp \mathcal{H}$. Найдите зависимость от времени спиновой функции $|\chi(t)\rangle$ и поляризации мюона $\mathbf{P}(t)=\langle \chi(t)|\hat{\pmb{\sigma}}|\chi(t)\rangle$, если в начальный момент $|\chi(0)\rangle=|+\rangle$.
- 11.* Покоящийся мюон помещен в магнитное поле $\mathcal{H}(t)$, медленно прецессирующее вокруг оси z, составляя с ней постоянный угол

- θ . Найдите зависимость от времени спиновой функции $|\chi(t)\rangle$ и поляризации $\mathbf{P}(t)$ мюона, если в начальный момент времени его состояние $|\chi(0)\rangle$ определяется положительной проекцией спина на направление магнитного поля. Покажите, что $\mathbf{P}(t)$ следует за направлением магнитного поля. Покажите, что за один полный оборот вектора магнитного поля спиновая функция приобретает фазу, пропорциональную телесному углу, который охватывает вектор $\mathcal{H}(t)$ (фаза Берри).
- $12.^C$ Исследуйте стационарные состояния бесспиновой частицы с зарядом e и массой m в постоянном и однородном магнитном поле \mathcal{H} . Найдите уровни энергии (уровни Ландау) и кратности их вырождения, считая, что движение частицы ограничено большим объемом V. Решите задачу в декартовых и цилиндрических координатах.
- 13. Для системы двух частиц со спином 1/2 найдите состояния с заданным полным моментом.
- $14.^{C}$ Найдите величину сверхтонкого расщепления основного состояния атома водорода. Вычислите длину волны излучения, испускающегося при переходе между расщепленными подуровнями.
- 15.* Найдите величину тонкого расщепления состояния атома водорода с главным квантовым числом n и орбитальным квантовым числом l. Выразите величину этого расщепления в атомных единицах энергии. Нарисуйте схему расщепленных уровней с n=3.
- $16.^{C}$ Найдите уровни энергии и волновые функции стационарных состояний двух невзаимодействующих тождественных частиц в потенциальном ящике

$$V(x) = \begin{cases} 0, & 0 < x < a, \\ \infty, & x < 0, x > a, \end{cases}$$

если этими частицами являются: (a) ферми-частицы со спинами s=1/2; (б) бозе-частицы со спинами s=0; (в) бозе-частицы со спинами s=1. Чему равна в каждом из этих случаев энергия основного состояния N частиц?

Второе задание

 $17.^{C}$ Вычислите энергию основного состояния атома водорода из вариационного принципа. В качестве пробных функций возьмите:

- (a) $\psi(r) \sim \exp(-r/a)$;
- (6) $\psi(r) \sim \exp(-r^2/2b^2)$.

В каком из этих случаев получается точное решение задачи и по какой причине?

- 18. Найдите, пользуясь вариационным методом, энергию основного состояния гелиеподобного атома с зарядом ядра Z. В качестве пробной функции возьмите:

 - (a) $\psi(r_1, r_2) \sim e^{-\alpha(r_1 + r_2)};$ (b) $\psi(r_1, r_2) \sim e^{-\alpha r_1 \beta r_2} + e^{-\beta r_1 \alpha r_2}.$

В случае (б) воспользуйтесь численной процедурой минимизации среднего значения гамильтониана по параметрам α и β . Используя полученные результаты, установите, существует ли стабильный ион водорода Н-.

- $19.^{C}$ Пользуясь правилами Хунда, определите значения квантовых чисел L, S и J в основных состояниях следующих атомов: (a) кремния, (б) фосфора, (в) серы, (г) ванадия, (д) кобальта. (е) церия. Для случаев "а", "б" и "в" найдите все термы. Запишите спектроскопические символы полученных состояний.
- $20.^{C}$ Используя второй порядок стационарной теории возмущений, определите, как зависит энергия взаимодействия от расстояния R межлу:
 - (a) атомом и ионом ($\sim 1/R^4$);
 - (б) двумя атомами ($\sim 1/R^6$).
- $21.^{C}$ Желтый дублет натрия соответствует оптическим переходам $^2P_{3/2}$ $ightarrow^2$ $S_{1/2}$ и $^2P_{1/2}$ $ightarrow^2$ $S_{1/2}$. Исследуйте расщепление этого дублета в слабом и сильном магнитных полях. Сравните полученные картины расщепления линий натрия с расщеплениями синглетной линии кадмия, отвечающей переходу ${}^{1}D \to {}^{1}P$.
- 22. С помощью "золотого правила" Ферми получите формулу для дифференциального сечения упругого рассеяния в борновском приближении.
- $23.^{C}$ Найдите в борновском приближении дифференциальные и полные сечения рассеяния частицы в полях:

(a)
$$V(r) = \frac{\alpha}{r} e^{-\varkappa r}$$
, (6) $V(r) = \begin{cases} -V_0, & r < a, \\ 0, & r > a. \end{cases}$

В случае (а) покажите, что в пределе $\varkappa \to 0$ дифференциальное сечение принимает вид резерфордовского сечения рассеяния заряженной частицы на отталкивающем кулоновском центре. Запишите критерии применимости борновского приближения для рассматриваемых случаев.

- $24.^{C}$ Выразите дифференциальное сечение рассеяния:
 - (a) α -частиц на α -частицах,

друг на друге.

- (б) протонов на протонах через амплитуду рассеяния двух точечных заряженных частиц
- 25. Может ли распасться на две α -частицы нестабильное ядро ${}^8{\rm Be}^*,$ находящееся в состоянии с полным угловым моментом J=1?
- 26. Определите вероятность процесса, при котором ядро, связанное гармоническим потенциалом, останется в основном состоянии после испускания γ -кванта (эффект Мессбауэра).
- $27.^C$ Найдите угловое распределение фотонов, излучающихся в переходе $|2p\rangle \to |1s\rangle$ атома водорода, и время жизни $|2p\rangle$ состояния. Выразите это время в атомных единицах времени.
- 28. Нейтрон находится в однородном магнитном поле $\mathcal{H}_0 \parallel z$. Определите время жизни состояния с проекцией спина на направление поля $m_s = +1/2$. Получите численное значение времени жизни для $\mathcal{H}_0 = 1$ к Γ с.
- 29. Найдите сечение фотоэффекта на атоме водорода под действием плоской монохроматической волны с частотой ω для случая $\hbar\omega\gg I$, где I потенциал ионизации атома. Сравните с результатом вычислений при классическом описании поля.

Срок сдачи первого задания: 16.10 – 21.10.2024 года.

Срок сдачи второго задания: 11.12 - 16.12.2024 года.

Подписано в печать 17.06.2024. Формат $60 \times 84^1/_{16}$. Усл. печ. л. 0,5. Уч.-изд. л. 0,4. Тираж 60 экз. Заказ №111. Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)» тел.: +7(495)408-58-22, e-mail: rio@mipt.ru

Отдел оперативной полиграфии «Физтех-полиграф» 141700, Моск. обл., г. Долгопрудный, Институтский пер., 9 тел.: +7(495)408-84-30, e-mail: polygraph@mipt.ru