Auto-tuning Spark Big Data Workloads on POWER8:Prediction-Based Dynamic SMT Threading

Research Question

- ◆ Different big data workloads have disparate architectural charactristics
- ◆ Identify the most efficient SMT configuration to achieve the best performance
- ◆ Focus on auto-tuning SMT configuration for Spark-based big data workloads on POWER8
- ◆Methodology could be gengerlized to Hadoop, Flink

Summary of Methodology

◆ Propose a prediction-based dynamic SMT threading(PBDST) framework to adjust the thread count in SMT cores on POWER8 processor by eight machine learning algorithm

Methodology-Definition

- ◆ SMT: simultaneous multithreading has potential to increase the processor resource utilization
- ◆ POWER8: a processor architecture, support up to 8-way multithreading
- ◆ Profile: hardware performance counters
- Configuration: number of threads

Methodology-PBDS framework

Methodology- dataset

- ◆ 29 Spark application
- ◆ 20 application used for traing set
- 9 application used for testing set

Training Set	No.	Name	Source
	1	Spark-als	Spark-perf
	2	Spark-kmeans	Spark-perf
	3	Spark-spearman	Spark-perf
	4	Spark-chi-sq-feature	Spark-perf
	5	Spark-NaiveBayes	BigDataBench
	6	Spark-terasort	BigDataBench
	7	Spark-grep	BigDataBench
	8	Spark-sort	BigDataBench
	9	Spark-pykmeans	Spark-perf
	10	Spark-pyals	Spark-perf
	11	Spark-pearson	Spark-perf
	12	Spark-pybayes	Spark-perf
	13	Spark-pycout-w-fltr	Spark-perf
	14	Spark-summary-statistics	Spark-perf
	15	Spark-pyspearman	Spark-perf
	16	Spark-count	Spark-perf
	17	Spark-chi-sq-mat:	Spark-perf
	18	Spark-gmm	Spark-perf
	19	Spark-svd	Spark-perf
	20	Spark-WordCount	BigDataBench
Testing Set	21	Spark-ConnectedComponent	BigDataBench
	22	Spark-block-matrix-mult	Spark-perf
	23	Spark-word2vec	Spark-perf
	24	Spark-pca	Spark-perf
	25	Spark-pypearson	Spark-perf
	26	Spark-glm	Spark-perf
	27	Spark-PageRank	BigDataBench
	28	Spark-int-sory-by-key	Spark-perf
	29	Spark-fp-growth	Spark-perf

Methodology- offline training

◆ run training set with different SMT configurations, from one thread per core to eight threads per core

◆ for each workload, collect the microarchitecture level statistics during the whole lifetime

• one model for each SMT configuration

Methodology- offline training

Methodology-Input & Output data

application 1, 1 thread

Input data: *traing profile data*, this is a matrix and each row is the micro-architecture level statistics of applications in thread 1

Output data: *group label*, this is an array which records the best SMT configurations for application 1,application 2,...application 20

Methodology- Online prediction

In 9 testing application, for every application, use the first round of tasks' micro-architecture level profiles to predict the optiaml SMT configuration for the upcoming tasks in the same stage

Auto-tuning

Algorithm 1 Algorithm used to trigger the PBDST hooks in DAGScheduler

```
Input: Variables:
    Current SMT configurations: CurSMT;
    The number of cores: cores;
    The TaskSet information: taskSet;
1. if submitTaskSet() then
2. if noStageIsRuningWithProfiler() then
3. if taskSet.size > CurSMT * cores then
4. PBDST.profiler.start();
5. end if
6. end if
7. end if
```

```
Algorithm 2 Algorithm used to trigger the PBDST hooks
in CoarseGrainedSchedulerBackend
Input: Variables:
   Current SMT configurations: CurSMT;
   Task state: state;
   Current Stage Id: curStageId;
   Last Stage Id: lastStageId;
 1. if isFinished(state) then
     if lastStageId != curStageId then
 2.
 3.
        lastStageId = curStageId
       if profilerIsRuning() then
 4.
          PBDST.profiler.stop();
 6.
          predictSMT = PBDST.prediction(CurSMT);
          if predictSMT != CurSMT then
            for excutor in excutor Map do
              executor.freeCores.updating(predictSMT);
 9.
            end for
10.
          end if
11.
12.
        end if
13.
     end if
14. end if
```

Prediction Schema

First Schema: performs multiple predictions, each stage uses its locally optimal SMT configuration

---frequently threading-switching, rebalanceing the thread distribution, prediction. All of those will cause performance penalty

Second Schema: predicts the best SMT configuration in the first stage and keep it unchane in all stages

Figure 5: The average static prediction errors of different predictors with diverse SMT configurations.

Figure 6: Effects of using different machine learning algorithms when perform automatic predictions.

PBDST framework can achieve avarage perfomance improvement rangeing from 5.2% to 16.2% for different predictions with different prediction schemes.

Result