Iniciado em sábado, 17 jun. 2023, 16:50

Estado Finalizada

Concluída em domingo, 18 jun. 2023, 23:59

Tempo 1 dia 7 horas

empregado

Avaliar 0,00 de um máximo de 10,00(0%)

Questão 1

Não respondido

Vale 1,00 ponto(s).

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $\vec{\mathbf{F}} = (y^2 + z^2)\mathbf{i} + (x^2 + z^2)\mathbf{j} + (x^2 + y^2)\mathbf{k}$, onde C é a borda do triângulo cortado do plano x + y + z = 1 pelo primeiro octante, no sentido anti-horário quando vista de cima.

a. 0

 \bigcirc b. 4

oc. 1

 \bigcirc d. 2

○ e. 3

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional:

$$\begin{aligned} & \text{rot} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 + z^2 & x^2 + z^2 & x^2 + y^2 \end{vmatrix} = (2y - 2z)\mathbf{i} + (2z - 2x)\mathbf{j} + (2x - 2y)\mathbf{k} = \mathbf{k}. \text{ Como } \vec{\mathbf{n}} = \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}, \text{ então } \\ \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} &= \frac{2y - 2z + 2z - 2x + 2x - 2y}{\sqrt{3}} = 0. \text{ Portanto, } \oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_S 0 d\sigma = 0. \end{aligned}$$

A resposta correta é:

0

Não respondido

Vale 1,00 ponto(s).

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $\vec{\mathbf{F}}=2y\mathbf{i}+3x\mathbf{j}-z^2\mathbf{k}$, onde C é a circunferência $x^2+y^2=9$ no plano xy, no sentido anti-horário quando vista de cima.

- \odot a. 4π
- \odot b. 11π
- \odot c. 5π
- \bigcirc d. 9π
- \odot e. 7π

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional: $\operatorname{rot} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2y & 3x & -z^2 \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} + (3-2)\mathbf{k} = \mathbf{k}$. Como $\vec{\mathbf{n}} = \mathbf{k}$, então $\operatorname{rot} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} = 1$. Dessa forma, $d\sigma = dx \, dy$. Portanto, $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_R dx \, dy$. Area do círculo $= 9\pi$.

A resposta correta é:

 9π

Questão 3

Não respondido

Vale 1,00 ponto(s).

Seja $\vec{\mathbf{n}}$ a normal unitária exterior da casca elíptica S: $4x^2+9y^2+36z^2=36$, $z\geq 0$, e seja $\vec{\mathbf{F}}=y\mathbf{i}+x^2\mathbf{j}+(x^2+y^4)^{\frac{3}{2}}\sin e^{\sqrt{xyz}}\mathbf{k}$. Encontre o valor de $\int\int_S \nabla \times \vec{\mathbf{F}}\cdot\vec{\mathbf{n}}\,d\sigma$.

- \odot a. 8π
- \odot b. -4π
- \odot c. 6π
- \odot d. -6π
- \circ e. -8π

Sua resposta está incorreta.

Solução: Temos $x=3\,\cos\,t$ e $y=2\,\sin\,t$

$$\vec{\mathbf{F}} = (2 \sin t)\mathbf{i} + (9 \cos^2 t)\mathbf{j} + (9 \cos^2 t + 16 \sin^4 t) \sin e^{\sqrt{(6 \sin t \cos t)(0)}}\mathbf{k}$$

 $r=(3\,\cos\,t)\mathbf{i}+(2\,\sin\,t)\mathbf{j}$, então $dec{\mathbf{r}}=(-3\,\sin\,t)\mathbf{i}+(2\,\cos\,t)\mathbf{j}$

$$\vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dt} = -6 \, \sin^2 \, t + 18 \, \cos^3 \, t$$

$$\int \int_S \nabla \times \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma = \int_0^{2\pi} \left(-6 \, \sin^2 \, t + 18 \, \cos^3 \, t \right) dt = \left[-3t + \frac{3}{2} \sin \, 2t + 6 (\sin \, t) (\cos^2 \, t + 2) \right]_0^{2\pi} = -6\pi.$$

A resposta correta é:

 -6π

Não respondido

Vale 1,00 ponto(s).

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $\vec{\mathbf{F}}=(y^2+z^2)\mathbf{i}+(x^2+y^2)\mathbf{j}+(x^2+y^2)\mathbf{k}$, onde C é o quadrado limitado pelas retas $x=\pm 1$ e $y=\pm 1$ no plano xy, no sentido anti-horário quando visto de cima.

- a. 1.5
- b. 2
- c. −1
- od. 1
- e. 0

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional:
$$\operatorname{rot} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 + z^2 & x^2 + y^2 & x^2 + y^2 \end{vmatrix} = (2y)\mathbf{i} + (2z - 2x)\mathbf{j} + (2x - 2y)\mathbf{k}$$
. Como $\vec{\mathbf{n}} = \mathbf{k}$, então $\vec{\mathbf{F}} \cdot \vec{\mathbf{n}} = 2x - 2y$. Dessa forma, $d\sigma = dx\,dy$. Portanto, $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{-1}^1 \int_{-1}^1 (2x - 2y) dx dy = \int_{-1}^1 -4y dy = 0$.

A resposta correta é:

n

Questão 5

Não respondido

Vale 1,00 ponto(s).

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $\vec{\mathbf{F}}=x^2\mathbf{i}+2x\mathbf{j}+z^2\mathbf{k}$, onde C é a elipse $4x^2+y^2=4$ no plano xy, no sentido anti-horário quando vista de cima.

- \odot a. 3π
- \odot b. 4π
- \odot c. 2π
- \bigcirc d. 0
- \odot e. π

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional:
$$\operatorname{rot} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & 2x & z^2 \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} + (2 - 0)\mathbf{k} = 2\mathbf{k}$$
. Como $\vec{\mathbf{n}} = \mathbf{k}$, então $\operatorname{rot} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} = 2$. Dessa forma, $d\sigma = dx \, dy$. Portanto, $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_S 2 \, dA = 2$ (Área da elipse) $= 4\pi$.

A resposta correta é:

 4π

Não respondido

Vale 1,00 ponto(s).

Encontre a divergência do campo de rotação da figura abaixo,

onde o campo é dado por $\; ec{\mathbf{F}} = rac{-y\mathbf{i} + x\mathbf{j}}{\sqrt{x^2 + y^2}}.$

- a. 1
- \bigcirc b. -1
- \circ c. 0
- \bigcirc d. 2
- \bigcirc e. -2

Sua resposta está incorreta.

Solução: Temos a equação $\vec{F}=rac{-y\mathbf{i}+x\mathbf{j}}{\sqrt{x^2+y^2}}$, para calcularmos a divergência, calculamos a derivada parcial e obtemos:

$$div \, \vec{\mathbf{F}} = \frac{xy - xy}{(x^2 + y^2)^{\frac{3}{2}}} = 0$$

A resposta correta é:

0

Não respondido

Vale 1,00 ponto(s).

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Lata cilíndrica $\vec{\mathbf{F}}=(6x^2+2xy)\mathbf{i}+(2y+x^2z)\mathbf{j}+4x^2y^3\mathbf{k}$, D: A região cortada do primeiro octante pelo cilindro $x^2+y^2=4$ e pelo plano z=3.

- \circ a. $112 + 6\pi$
- \odot b. $115-6\pi$
- \circ c. $114 6\pi$
- \odot d. $-111-6\pi$
- \circ e. $-113 + 6\pi$

Sua resposta está incorreta.

Solução: Primeiro fazemos a derivada parcial

$$rac{\partial}{\partial x}(6x^2+2xy)=12x+2y, rac{\partial}{\partial y}(2y+x^2z)=2$$
), $rac{\partial}{\partial z}(4x^2y^3)=0$. Obtemos $abla\cdot\vec{\mathbf{F}}=12x+2y+2$. Então calculamos o fluxo:

 $flux = \int \int_D \int (12x + 2y + 2) \, d\vec{\mathbf{V}} = \int_0^3 \int_0^{\frac{\pi}{2}} \int_0^2 (12r \cos \theta + 2r \sin \theta + 2) \, r \, dr \, d\theta \, dz = \int_0^3 \int_0^{\frac{\pi}{2}} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_0^3 \left(32 + 2 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz$ A resposta correta é:

 $112 + 6\pi$

Questão 8

Não respondido

Vale 1,00 ponto(s).

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Esfera $\vec{\mathbf{F}} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$, D: A esfera sólida $x^2 + y^2 + z^2 \le a^2$.

- \bigcirc a. $\frac{19\pi a^5}{5}$
- O b. $\frac{12\pi a^5}{5}$
- \bigcirc c. $\frac{14\pi a^5}{5}$
- O d. $\frac{17\pi a^5}{5}$
- \circ e. $\frac{13\pi a^5}{5}$

Sua resposta está incorreta.

Solução: Primeiro fazemos a derivada parcial

$$flux = \int \int_D \int 3(x^2 + y^2 + z^2) \, d\vec{\mathbf{V}} = 3 \int_0^{2\pi} \int_0^{\pi} \int_0^a
ho^2(
ho^2 \, \sin \, \phi) \, d
ho \, d\phi \, d\theta = 3 \int_0^{2\pi} \int_0^{\pi} rac{a^5}{5} \sin \, \phi \, d\phi \, d\theta = 3 \int_0^{2\pi} rac{2a^5}{5} \, d\theta = rac{12\pi a^5}{5}$$

A resposta correta é:

 $\frac{12\pi a^{\circ}}{5}$

Não respondido

Vale 1,00 ponto(s).

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Esfera espessa $ec{\mathbf{F}}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}/\sqrt{x^2+y^2+z^2}$, D: A região $1\leq x^2+y^2+z^2\leq 4$.

- \bigcirc a. 12π
- \odot b. 14π
- \odot c. 13π
- \odot d. 11π
- \odot e. 15π

Sua resposta está incorreta.

Solução: Temos $ho=\sqrt{x^2+y^2+z^2}$, fazemos:

$$\frac{\partial \rho}{\partial x} = \frac{x}{\rho}, \ \frac{\partial \rho}{\partial y} = \frac{y}{\rho}, \ \frac{\partial \rho}{\partial z} = \frac{z}{\rho}.$$
 Dando continuidade

$$\frac{\partial}{\partial x} \left(\frac{x}{\rho} \right) = \frac{1}{\rho} - \left(\frac{x}{\rho^2} \right) \frac{\partial \rho}{\partial x} = \frac{1}{\rho} - \frac{x^2}{\rho^3}. \text{ Similar } \frac{\partial}{\partial y} \left(\frac{y}{\rho} \right) = \frac{1}{\rho} - \frac{y^2}{\rho^3} \text{ e } \frac{\partial}{\partial z} \left(\frac{z}{\rho} \right) = \frac{1}{\rho} - \frac{z^2}{\rho^3}. \text{ Obtemos } \nabla \cdot \vec{\mathbf{F}} = \frac{3}{\rho} - \frac{x^2 + y^2 + z^2}{\rho^3} = \frac{2}{\rho}. \text{ Então calculamos o fluxo:}$$

$$flux = \int \int_D \int \frac{2}{\rho} \, d\vec{\mathbf{V}} = \int_0^{2\pi} \int_0^{\pi} \int_1^2 \left(\frac{2}{\rho}\right) \, \left(\rho^2 \, \sin \, \phi\right) \, d\rho \, d\phi \, d\theta = \int_0^{2\pi} \int_0^{\pi} 3 \sin \, \phi \, d\phi \, d\theta = \int_0^{2\pi} 6 \, d\theta = 12\pi$$

A resposta correta é:

 12π

Não respondido

Vale 1,00 ponto(s).

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Cilindro e paraboloide $\vec{\mathbf{F}}=y\mathbf{i}+xy\mathbf{j}-z\mathbf{k}$, D: A região dentro do cilindro sólido $x^2+y^2\leq 4$ entre o plano z=0 e o paraboloide $z=x^2+y^2$.

- \bigcirc a. -16
- o b. 16
- oc. 14
- \bigcirc d. -8π
- \odot e. -14

Sua resposta está incorreta.

Solução: Inicialmente calculamos a derivada parcial

 $\frac{\partial}{\partial x}(y)=0, \frac{\partial}{\partial y}(xy)=x, \\ \\ \frac{\partial}{\partial z}(-z)=-1.$ Obtemos $\nabla\cdot\vec{\mathbf{F}}=x-1,$ como $z=x^2+y^2,$ em que $z=r^2$ em coordenadas cilíndricas. Seguimos calculando a integral tripla da divergência para encontrarmos o fluxo:

 $Flux = \int \int_D \int (x-1) \, dz \, dy \, dx = \int_0^{2\pi} \int_0^2 \int_0^{r^2} (r \, \cos \, \theta - 1) \, dz \, r \, dr \, d\theta = \int_0^{2\pi} \int_0^2 (r^3 \, \cos \, \theta - r^2) \, r \, dr \, d\theta = \int_0^{2\pi} \left[\frac{r^5}{5} \cos \, \theta - \frac{r^4}{4} \right]_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4$

A resposta correta é

 -8π