Aug 22, 2016

Active stereo vision system for object position estimation

Lab Seminar

Han Sol Kang

Contents

Introduction

Active Stereo Vision

Active Stereo Vision

- Distance computation
- Filling method for empty disparity region
- Residual error filtering
- Phase shifting
- Experimental results

Conclusion

Introduction Active Stereo Vision

Active Stereo Vision

: The active stereo vision is a form of stereo vision which actively employs a light such as a laser or a structured light to simplify the stereo matching problem.

- Conventional structured-light vision (SLV)
 - : employs a structured light or laser, and finds projector-camera correspondences
- Conventional active stereo vision (ASV)
 - : employs a structured light or laser, however, the stereo matching is performed only for camera-camera correspondences, in **the same way as the passive stereo vision.**
- Structured-light stereo(SLS)
 - : a hybrid technique, which utilizes both camera-camera and projector-camera correspondences.

Distance Computation

Distance from a point to a plane

$$ax + by + cz + d = 0$$

$$D = \frac{\left| ax_1 + by_1 + cz_1 + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$

Filling method for empty disparity region

Using neighbor value

: disparity

: no disparity region

Filling method for empty disparity region

Using neighbor value

342.5	0	8	8	343	0	0	343.5	8	8	0	344
342.5	0	8	343	0	8	0	344	8	8	0	344
343.5	0	8	343	0	8	0	343.5	8	8	0	344
343	8	8	343	0	8	0	343.5	8	8	0	344
342.5	8	8	343	2	8	0	343.5	8	8	8	344
343	8	3	343	0	8	0	343.5	8	8	3	344
343	8	3	343	0	8	0	343.5	3	8	3	343.5
342.5	8	3	343	0	8	0	343.5	3	8	3	343.5
342.5	8	3	343	3	8	0	344	3	8	3	344
342.5	8	8	343	8	8	8	344	8	8	343.5	8
343	0	8	343.5	0	8	0	344	8	8	343.5	0
342.5	8	8	343	8	8	0	344.5	3	8	343.5	8
342.5	0	3	343	0	8	0	343.5	0	8	344	0
343	8	3	343	0	8	0	343.5	0	3	344	8
343	0	0	343	Ø	0	3	344	0	0	344	0

Filling method for empty disparity region

Using neighbor value

342.5	343	343	343	343	343.5	343.5	343.5	344	344	344	344
342.5	343	343	343	344	344	344	344	344	344	344	344
343.5	343	343	343	343.5	343.5	343.5	343.5	344	344	344	344
343	343	343	343	343.5	343.5	343.5	343.5	344	344	344	344
342.5	343	343	343	343.5	343.5	343.5	343.5	344	344	344	344
343	343	343	343	343.5	343.5	343.5	343.5	344	344	344	344
343	343	343	343	343.5	343.5	343.5	343.5	343.5	343.5	343.5	343.5
342.5	343	343	343	343.5	343.5	343.5	343.5	343.5	343.5	343.5	343.5
342.5	343	343	343	344	344	344	344	344	344	344	344
342.5	343	343	343	344	344	344	344	343.5	343.5	343.5	343.5
343	343.5	343.5	343.5	344	344	344	344	343.5	343.5	343.5	344
342.5	343	343	343	344.5	344.5	344.5	344.5	343.5	343.5	343.5	344
342.5	343	343	343	343.5	343.5	343.5	343.5	344	344	344	344
343	343	343	343	343.5	343.5	343.5	343.5	344	344	344	344
343	343	343	343	344	344	344	344	344	344	344	344

Filling method for empty disparity region

Linear Interpolation

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x) - y_1}{x - x_1}$$

$$f(x) = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

: no disparity region

: disparity

Filling method for empty disparity region

Residual error filtering

residual error $z_i - \hat{z}_i$

Phase shifting

Structured light

: Structured light is the process of projecting a known pattern (often grids or horizontal bars) on to a scene. The way that these deform when striking surfaces allows vision systems to calculate the depth and surface information of the objects in the scene.

Phase shifting

Phase shifting method (four step algorithm)

$$I_{1}(x, y) = I'(x, y) + I''(x, y)\cos[\phi(x, y)]$$

$$I_{2}(x, y) = I'(x, y) + I''(x, y)\cos[\phi(x, y) + \frac{\pi}{2}]$$

$$I_{3}(x, y) = I'(x, y) + I''(x, y)\cos[\phi(x, y) + \pi]$$

$$I_{4}(x, y) = I'(x, y) + I''(x, y)\cos[\phi(x, y) + \frac{3}{2}\pi]$$

$$\begin{split} I_1(x,y) &= I'(x,y) + I''(x,y) \cos[\phi(x,y)] \\ I_2(x,y) &= I'(x,y) - I''(x,y) \sin[\phi(x,y)] \\ I_3(x,y) &= I'(x,y) - I''(x,y) \cos[\phi(x,y)] \\ I_4(x,y) &= I'(x,y) + I''(x,y) \sin[\phi(x,y)] \end{split}$$

$$I'(x,y)$$

$$I''(x,y)$$

$$I_1 - I_3 = 2I''(x, y)\cos[\phi(x, y)]$$

$$\frac{I_4 - I_2}{I_1 - I_3} = \frac{\sin[\phi(x, y)]}{\cos[\phi(x, y)]} = \tan[\phi(x, y)]$$

 $I_4 - I_2 = 2I''(x, y) \sin[\phi(x, y)]$

$$\phi(x, y) = \tan^{-1} \left[\frac{I_4 - I_2}{I_1 - I_3} \right]$$

Phase shifting

Phase shifting method (three step algorithms)

$$I_{1}(x, y) = I'(x, y) + I''(x, y)\cos[\phi(x, y) - \alpha]$$

$$I_{2}(x, y) = I'(x, y) + I''(x, y)\cos[\phi(x, y)]$$

$$I_{3}(x, y) = I'(x, y) + I''(x, y)\cos[\phi(x, y) + \alpha]$$

Using the trigonometric addition identities

$$\begin{split} I_{1}(x,y) &= I'(x,y) + I''(x,y) \{ \cos[\phi(x,y)] \cos(\alpha) + \sin[\phi(x,y) \sin(\alpha)] \} \\ I_{2}(x,y) &= I'(x,y) + I''(x,y) \cos[\phi(x,y)] \\ I_{3}(x,y) &= I'(x,y) + I''(x,y) \{ \cos[\phi(x,y)] \cos(\alpha) - \sin[\phi(x,y) \sin(\alpha)] \} \\ I_{1} - I_{3} &= 2I''(x,y) \sin[\phi(x,y)] \sin(\alpha) \\ I_{2} - I_{1} &= I''(x,y) \cos[\phi(x,y)] \{ 1 - \cos(\alpha) \} - I''(x,y) \sin[\phi(x,y)] \sin(\alpha) \\ I_{2} - I_{3} &= I''(x,y) \cos[\phi(x,y)] \{ 1 - \cos(\alpha) \} + I''(x,y) \sin[\phi(x,y)] \sin(\alpha) \\ 2I_{2} - I_{1} - I_{3} &= 2I''(x,y) \cos[\phi(x,y)] \{ 1 - \cos(\alpha) \} \end{split}$$

Phase shifting

3-step phase shifting

$$I_{1} - I_{3} = 2I''(x, y) \sin[\phi(x, y)] \sin(\alpha)$$

$$2I_{2} - I_{1} - I_{3} = 2I''(x, y) \cos[\phi(x, y)] \{1 - \cos(\alpha)\}$$

$$\frac{I_{1} - I_{3}}{2I_{2} - I_{1} - I_{3}} = \frac{2I''(x, y) \sin[\phi(x, y)] \sin(\alpha)}{2I''(x, y) \cos[\phi(x, y)] \{1 - \cos(\alpha)\}}$$

$$= \frac{\sin[\phi(x, y)] \sin(\alpha)}{\cos[\phi(x, y)] \{1 - \cos(\alpha)\}} = \frac{\sin(\alpha)}{1 - \cos(\alpha)} \tan(\phi(x, y))$$

$$\phi(x, y) = \tan^{-1} \left\{ \left[\frac{1 - \cos(\alpha)}{\sin(\alpha)} \right] \frac{I_{1} - I_{3}}{2I_{2} - I_{1} - I_{3}} \right\}$$

$$when \alpha = \frac{3\pi}{2}$$

$$\phi(x, y) = \tan^{-1} \left(\sqrt{3} \frac{I_{1} - I_{3}}{2I_{2} - I_{1} - I_{3}} \right)$$

Experimental results

Experimental environment

Left Image

Right Image

Experimental results

Experimental results (distance)

Front point to base plane

Experimental results

Experimental results (distance)

Base point to front plane

Experimental results

Experimental results (distance)

unit:mm

Processing	Ce	nter	Quadrant		
	Value	error	Value	error	
			q1. 4.385054	-0.614946	
no processing (front	4.563789	-0.436211	q2. 4.845193	-0.154807	
point to base plane)			q3. 4.281380	-0.71862	
			q4. 4.747046	-0.252954	
			q1.5.217357	0.217357	
no processing (base	5.24870	0.24870	q2. 5.390904	0.390904	
point to front plane)	3.24070	0.24070	q3. 5.117112	0.117112	
			q4. 5.266062	0.266062	

Experimental results

Experimental results (filling method – neighbor value)

Front point to base plane

Experimental results

Experimental results (filling method – neighbor value)

Base point to front plane

Experimental results

Experimental results (filling method – neighbor value)

q1	q2
q3	q4

unit: mm

Processing	Ce	nter	Quadrant		
	Value	error	Value	error	
			q1. 4.429819	-0.570181	
neighbor value(front	4.611349	-0.388651	q2. 4.870867	-0.129133	
point to base plane)			q3. 4.350430	-0.64957	
			q4. 4.797889	-0.202111	
			q1. 5.231933	0.231933	
neighbor value(base	5.270999	0.270999	q2. 5.396667	0.396667	
point to front plane)	J.270999	0.270999	q3. 5.155178	0.155178	
			q4. 5.297791	0.297791	

Experimental results

Experimental results (filling method – interpolation)

Front point to base plane

Experimental results

Experimental results (filling method – interpolation)

Base point to front plane

Experimental results

Experimental results (filling method – interpolation)

q1	q2
q3	q4

unit: mm

Processing	Ce	nter	Quadrant		
	Value	error	Value	error	
		-0.357632	q1. 4.529568	-0.470432	
interpolation(front	4.642368		q2. 4.889927	-0.110073	
point to base plane)			q3. 4.394976	-0.605024	
			q4. 4.757254	-0.242746	
			q1. 5.166333	0.166333	
interpolation(base	5.164505	0.164505	q2. 5.301030	0.301030	
point to front plane)	5.104505	0.104303	q3. 5.033951	0.033951	
			q4. 5.149359	0.149359	

Experimental results

Experimental results (residual error filtering)

Front point to base plane

Experimental results

Experimental results (residual error filtering)

Base point to front plane

Experimental results

Experimental results (residual error filtering)

q1	q2
q3	q4

unit: mm

Processing	Ce	nter	Quadrant		
	Value	error	Value	error	
			q1. 4.409142	-0.590858	
residual filtering (front	4.581181	-0.418819	q2. 4.844759	-0.155241	
point to base plane)			q3. 4.323800	-0.6762	
			q4. 4.768509	-0.231491	
			q1. 5.232174	0.232174	
residual filtering (base	5.271585	0.271585	q2. 5.393533	0.393533	
point to front plane)	3.271303	0.271303	q3. 5.162072	0.162072	
			q4. 5.300266	0.300266	

Experimental results

Experimental results (phase shifting)

$$I_1(-\frac{2\pi}{3})$$

 I_2

$$I_3(+\frac{2\pi}{3})$$

Experimental results

Experimental results (phase shifting)

Phase image

Phase image(unwrapped)

Experimental results

Experimental results (phase shifting)

Conclusion

Measure the 5mm thick object

Fill the empty disparity region (neighbor value, interpolation)

Perform the filtering large residual error data set

Phase shifting algrithm

Experimental results

Experimental results (average error)

unit:mm

Processing	front point to base plane	base point to front plane
	average error	average error
no processing	-0.4355076	0.248027
neighbor value	-0.3879292	0.2705136
interpolation	-0.3571814	0.1630356
residual filtering	-0.4145218	0.271926