Rules for Computing Limits

The following rules are closely related to the rules for continuous functions.

Consider functions $f: D \rightarrow \mathbb{R}$, $g: D \rightarrow \mathbb{R}$ with the same domain, $C \in \mathbb{R}$ and $a \in D \setminus \{a\}$.

* Sum rule: If $\lim_{n\to a} f(n) = L$ and $\lim_{n\to a} g(n) = K$ (and in particular both limits exist),

then $\lim_{n \to a} (t+g)(n) = L+K$ (and in particular the limit enists).

* broduct rule: Under the same assumptions as for the sum rule,

lim (fig)(n) = L·K (and in particular the limit exists).

* Multiple rule: If lim t (n) = L (and in particular the limit exists),

then lim (c.f)(x) = c.L (and in particular the limit enists).

* Pertriction rule: If $\lim_{n\to a} f(n) = L$ (and in particular the limit enists)

and if $D' \subset D$ such that $a \in D' \setminus \{a\}$, then $\lim_{x \to a} f|_{D'}(x) = L$ (and the limit enjoys).

- * Composition rule: If $\lim_{n\to a} g(n) = K$ (and in particular the limit exists) and if $f \circ g$ is well-defined and f(n) is continuous at n = K, then $\lim_{n\to a} (f \circ g)(n) = f(K)$.
- * Quotient rule: If $\lim_{n\to a} f(n) = L$ and $\lim_{n\to a} g(n) = K$ with $K\neq 0$ (and tin particular the limits enist), then $\lim_{n\to a} \frac{t}{g}(n) = \frac{L}{K}$ (and in particular the limit enists).

Remark Most rules for limits can be written without using Land K, e.g.

$$\lim_{n \to a} (f+g)(x) = \lim_{n \to a} f(x) + \lim_{n \to a} g(x),$$

$$\lim_{n \to a} (f+g)(x) = \lim_{n \to a} f(x) - \lim_{n \to a} g(x),$$

$$\lim_{n \to a} (c+f)(x) = c \cdot \lim_{n \to a} f(x),$$

$$\lim_{n \to a} f|_{D}(x) = \lim_{n \to a} f(x),$$

$$\lim_{n \to a} (f \circ g)(x) = f(\lim_{n \to a} g(x)),$$

$$\lim_{n \to a} \frac{f}{g}(x) = \lim_{n \to a} f(x) / \lim_{n \to a} g(x).$$

Warning: these formulae hold under the assumptions stated before, but they may fail atherwise. Beware of the direction of the implication.

Example Consider
$$f(n) = \frac{x-1}{n}$$
 and $g(n) = \frac{1}{n}$ on the domain $|R| \{0\}$,

We have
$$f(n) + g(n) = \frac{n-1}{n} + \frac{1}{n} = \frac{n-1+1}{n} = \frac{n}{n} = 1 \text{ and } \lim_{n \to \infty} (f+g)(n) = \lim_{n \to \infty} 1 = 1,$$

However, the limits him & (n) and him g (n) do not exist!

Left and Right hand limits

For a function
$$f: D \to \mathbb{R}$$
, and $a \in \overline{D \setminus \{a\}}$ and $L \in \mathbb{R}$ we write
$$\lim_{n \to a^{-}} f(x) = L \quad \text{if} \quad g(x) = \begin{cases} f(x) & \text{if } x \in D \text{ and } x < a \\ & \text{if } x = a \end{cases} \quad \text{is continuous at } a,$$

$$\lim_{n \to a^{+}} f(x) = L \quad \text{if} \quad g(x) = \begin{cases} f(x) & \text{if } x \in D \text{ and } x > a \end{cases} \quad \text{is continuous at } a,$$

$$\lim_{n \to a^{+}} f(x) = L \quad \text{if} \quad g(x) = \begin{cases} f(x) & \text{if } x \in D \text{ and } x > a \end{cases} \quad \text{is continuous at } a.$$

Remarks

 \star $\lim_{n\to a} f(n) = L$ iff $\lim_{n\to a} f(n) = L$ and $\lim_{n\to a} f(n) = L$.

It can happen that the left and right hand limit both exist, but they are not equal. In that case the (two-rided) limit does not exist.

* f is continuous at $a \in D$ iff $\lim_{n \to a} f(n) = f(a)$, i.e.

t(a), lim f(n) and lim f(n) must all exist and be equal.

Example Determine whether $f(n) = \begin{cases} n - \frac{1}{2} & \text{if } n < 1 \\ 2^{-R} & \text{if } n > 1 \end{cases}$

Solution: $n-\frac{1}{2}$ and 2^{-n} are continuous on \mathbb{R} , so f(x) is continuous except possibly at n=1, where the domain is split,

 $\lim_{n \to 1^-} f(u) = \lim_{n \to 1^-} n - \frac{1}{2} \qquad (vsing formula for x < 1)$

 $=\lim_{n\to 1} x-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2} \text{ (using continuity of } x-\frac{1}{2}),$

 $\lim_{n\to 1^+} f(n) = \lim_{n\to 1^+} 2^{-2e} \qquad (using formula for n>1)$

= $\lim_{n \to 7} 2^{-n} = 2^{-1} = \frac{1}{2}$ (using continuity of 2^{-n}).

We find that $\lim_{n\to 1} f(n) = \frac{1}{2}$ as a two-sided limit.

However, $f(1)=1\neq \frac{1}{2}$, to f(n) is not continuous at n=1.

