Self-Explainable Graph Neural Networks for Link Prediction | Network[1]

reporter: Jiale Liu

paper author: Huaisheng Zhu, Dongsheng Luo, Xianfeng Tang, Junjie Xu, Hui Liu, Suhang Wang

ACM Symposium on Neural Gaze Detection, June 03-05, 2018, Woodstock, NY

May 11, 2024

Introduction

Problems to Solve

Methodology

Prediction

Loss Function

illustration

Self-Explainable Graph Neural Networks for Link Prediction

Problems to Solve

Problems

- 1. for a pair of nodes (v_i, v_i) , how we can identify K most important neighbors of v_i and v_i .
- 2. How to take both graph structure and node attributes into consideration when measuring node similarity for identifying important neighbors for link prediction?

Introduction

Problems to Solve

Methodology

Prediction

Loss Function

Overview

Self-Explainable Graph Neural Networks for Link Prediction

High-order Structure Similarity

To measure this high-order similarity, we propose to use a Graph Diffusion matrix which calculates the closeness of nodes in the graph structure by repeatedly passing the weighting coefficients to the neighboring nodes and represents the high-order similarity between nodes based on graph structure:

$$\mathbf{S} = \sum_{k=0}^{\infty} \theta_k \mathbf{T}^k,\tag{1}$$

 ${f T}$ represents the random walk transition matrix as ${f T}={f A}{f D}^{-1}$ PPR chooses $\theta_{\nu}^{\text{PPR}} = \gamma (1 - \gamma)^k$ with teleport probability $\gamma \in (0,1)$. γ is set as 0.05 in the experiment. $\tilde{S} = D_c^{-1/2} S D_c^{-1/2}$

$$s_{\mathsf{ST}}(v_i, v_c, v_i) = \tilde{S}_{ci}, \tag{2}$$

Node Similarity

$$\mathbf{H}^{m} = MLP(\mathbf{X}), \quad \mathbf{H}^{r} = \sigma(\tilde{\mathbf{A}}[\mathbf{H}^{m}||\mathbf{X}]\mathbf{W}) + \mathbf{H}^{m},$$
 (3)

$$s_{NO}(v_i, v_c, v_j) = sigmoid((\mathbf{h}_j^r)^T \mathbf{h}_c^r), \ \forall \ v_c \in \mathcal{N}_i$$
 (4)

$$s(v_i, v_c, v_j) = \alpha \cdot s_{ST}(v_i, v_c, v_j) + (1 - \alpha) \cdot s_{NO}(v_i, v_c, v_j), \quad (5)$$

$$b_{ic} = \frac{\exp\left(s\left(v_i, v_c, v_j\right)\right)}{\sum_{v_c \in \mathcal{N}_i^r} \exp\left(s\left(v_i, v_c, v_j\right)\right)}.$$
 (6)

Finally, node v_i 's representation vectors can be obtained as:

$$\mathbf{h}_{i} = \mathbf{h}_{i}^{r} + \beta \sum_{c} b_{ic} \mathbf{h}_{c}^{r}, \tag{7}$$

Prediction

Self-Explainable Graph Neural Networks for Link Prediction

Prediction

$$p_{ij} = \operatorname{sigmoid}(\mathbf{h}_i^T \mathbf{h}_j). \tag{8}$$

Introduction

Problems to Solve

Methodology

Prediction

Loss Function

Explanation Enhancement

$$\mathbf{h}_{i}^{\mathsf{rand}} = \mathbf{h}_{i}^{r} + \beta \sum_{\nu_{c} \in \mathcal{N}_{i}^{\mathsf{rand}}} b_{ic}^{\mathsf{rand}} \mathbf{h}_{c}^{r}, \tag{9}$$

$$p_{ij}^{\mathsf{rand}} = \mathsf{sigmoid}((\mathbf{h}_i^{\mathsf{rand}})^T \mathbf{h}_j^{\mathsf{rand}}). \tag{10}$$

$$\mathcal{L}_{\mathsf{dis}}^{p} = \sum_{e_{ij} \in \mathcal{E}_{L}, e_{ij} = 1} \max(0, p_{ij}^{\mathsf{rand}} + \delta - p_{ij}), \tag{11}$$

Loss

If nodes v_i and v_i have lower similarity scores with nodes in \mathcal{N}_i^r and \mathcal{N}_i^r respectively, the similarity of \mathbf{h}_i and \mathbf{h}_j will be small and the model will give a lower probability for the link of (v_i, v_i) . To achieve this purpose, we randomly sample unlinked pairs $e_{ii} = 0$ which have the same number as the number of linked pairs $e_{ii} = 1$ in \mathcal{E}_I . The set of randomly selected unlinked pairs can be denoted as \mathcal{E}_N . The similarity scores can be minimized through the following loss function:

$$\mathcal{L}_{\mathsf{dis}}^{n} = \sum_{e_{ij} \in \mathcal{E}_{N}} \left(\sum_{v_{c} \in \mathcal{N}_{i}^{r}} s(v_{i}, v_{c}, v_{j})^{2} + \sum_{v_{c} \in \mathcal{N}_{j}^{r}} s(v_{j}, v_{c}, v_{i})^{2} \right). \tag{12}$$

Overall Objective Function

$$\mathcal{L}_{\mathsf{cls}} = \sum_{e_{ii} \in \mathcal{E}_I} -\log p_{ij} + \sum_{e_{ii} \in \mathcal{E}_N} -\log (1 - p_{ij}), \qquad (13)$$

$$\min_{\Theta} \mathcal{L} = \mathcal{L}_{\mathsf{cls}} + \lambda (\mathcal{L}_{\mathsf{dis}}^{p} + \mathcal{L}_{\mathsf{dis}}^{n}), \tag{14}$$

Algorithm 1 Training Algorithm of ILP-GNN.

Input: $\mathcal{G} = (\mathcal{V}, \mathcal{E}_L, \mathbf{X}), K, \lambda, \alpha, \delta$

Output: GNN model g_{θ} with explanation for link prediction.

- 1: Randomly initialize the model parameters Θ .
- 2: Calculate high-order distance via Eq.(1).
- 3: repeat
- 4: For each node pair (v_i, v_j) , assign weights $s_{ST}(v_i, v_c, v_j)$ to neighbors of v_i by high-order structure similarity in Eq.(2).
- Learn node feature representation by Eq.(3) and assign weights to neighbors of v_i by node similarity in Eq.(4).
- 6: Do the same operation on v_j and aggregate top K neighbors of v_i and v_j with two kinds of weights in Eq.(7).
- 7: Calculate the probability p_{ij} of a link between two nodes.
- Randomly choose neighbors except from top K neighbors to obtain p_{ij}^{rand} and calculate $\mathcal{L}_{\text{dis}}^{p}$ in Eq.(11)
- 9: Calculate \mathcal{L}_{dis}^n using negative samples
- 10: Update Θ by minimizing the overall loss function in Eq.(14)
- 11: **until** convergence

Introduction

Problems to Solve

Methodology

Prediction

Loss Function

[1] Huaisheng Zhu et al. Self-Explainable Graph Neural Networks for Link Prediction. 2023. arXiv: 2305.12578 [cs.LG].