COWTCHOOX math system

This document will describe hwo the math system works.

Crate a math environnement

There are two ways to do that:

- Use dollars for inline math: **\$This is math\$**
- Use double dollars for a big, centered block of math: \$\$This is math\$\$

These tag will be converted into <mathnode> tags, with double-dollar maths having the center class.

Basic usage

Inside math, comments, HTML tags and everything else is still supported. All spaces in math are not displayed, you can add them manually by escaping them: \ (yes there is a space after the backslash).

In math you can use math operators. The syntax is:

```
?operator_name {first argument} {second argument} ...
```

For instance, $?frac{1}{2}$ gives $\frac{1}{2}$. If an argument is only one objet, you can omit the braces: ?frac 1 2

Some operators have an **alias**. It allow them to be called in a shorted way. For instance, to show \in , you can use ?belongsto or it's alias \in . Aliases takes arguments exactly in the same way.

Some aliases are infix. That means they have two arguments, and that the first should be placed before the alias. Here for a fraction: 1 / 2 or an exponent: 2 ^ n.

You can add braces ({}) to group things. (It will create additional <div>s)

Tags

Tags inside math works exactly in the same way, except for regular tags, that need an additional percentage sign as shown here:

```
<%div>This is inside a div</div><%br/>
```

It prevent any ambiguities with some math symbols. Custom tags (with !), and arguments tags (with :) are not affected.

Greek letters

You can use greek letters in math. To do that, use \S , followed by the equivalent letter. For uppercase, use an uppercase letter. For example, $\S d$ gives δ , and $\S D$ gives Δ .

	_		_
§a	a	§b	β
§c	ψ	§d	δ
§e	ε	§f	φ
§g	γ	§h	η
§i	ι	§j	ξ
§k	ж	§Ί	λ
§m	μ	§n	ν
§o	0	§р	π
§r	Q	§s	σ
§t	τ	§u	ϑ
§v	ω	ξx	χ
§y	v	§z	ζ

Table 1: List of greek letters

Parentheses

Parentheses will match the height of the inner content.

Source	Result
(1/2)	$\left(\frac{1}{2}\right)$
[1/2]	$\left[\frac{1}{2}\right]$
%{1/2%}	$\left\{\frac{1}{2}\right\}$

Table 1: Parentheses

Be carful, because sometimes you would have to write something like $\frac{1}{2}$, $\frac{2}{3}$. You will have to tell the compiler that the first bracket should math with the one after (and not with a bracket before!). You can do that by putting an exclamation mark before the bracket: !]1/2, 2/3] %{ can match with }, this is useful to make systems.