

Viaggi supersonici

Patronaggio Riccardo Tomasello Lorenzo

Indice

- Cenni storici sul primo aereo supersonico(BELL-X1)
- Raccontare in breve la storia del Concorde
- Spiegare come è possibile che questi mezzi riescano a superare la barriera del suono
- Pregi e difetti dei viaggi supersonici
- Il futuro dei viaggi supersonici

Cenni storici sul primo aereo supersonico (BELL-X1)

Il primo aereo supersonico fu il BELL-X1, progettato per volare a una velocità compresa circa tra Mach 0,75 e Mach 1,25; volò per la prima volta con successo il 14 ottobre 1947 superando la barriera del suono con ben 1220 km/h.

Storia del Concorde

Il Concorde, è stato un aereo da trasporto supersonico, che effettuò il primo volo con a bordo passeggeri il 21 gennaio 1974. Dopo pochi anni, a causa di vari problemi tecnici(eccesivo rumore, costi elevati di mantenimento, ecc.) e soprattutto per via del disastroso incidente tra il 2000 e 2003, il Concorde venne dismesso.

I mezzi supersonici e la barriera del suono

Si parla di "muro del suono" perché la resistenza dell'aria aumenta sempre di più con l'aumentare della velocità dell'aereo, diventando elevatissima quando la velocità si approssima a Mach 1. Quando le molecole d'aria non fanno più in tempo a spostarsi per lasciare spazio all'aereo e vengono urtate, provocando il famoso fenomeno del "bang" sonico. Durante la seconda guerra mondiale i velivoli, a causa dell'elevata velocità, esplodevano in modo inaspettato, come se avessero impattato contro un muro. Venne quindi coniato il termine "muro del suono".

Il futuro dei viaggi supersonici

Numerose società si stanno impegnando affinché i viaggi supersonici possono tornare ad essere di uso comune. Come ad esempio il CEO di Boom Supersonic che ha di recente affermato l'importanza che potrebbero avere i viaggi supersonici in un periodo cosi complicato come quello della pandemia di Covid, con l'auspicio che entro il 2030 si tutto questo possa essere realizzato.

PREGI	DIFETTI	
Ridotti tempi di volo	Elevati costi manutenzione	
Finalità ecologiche	Elevati costi biglietti	
Progresso scientifico	Eccessivo rumore	

Soglie di tolleranza del rumore

Il rumore, in generale, è un segnale non desiderato e imprevedibile, che sommandosi ad altri segnali, li distorce in maniera più o meno grave. L'esposizione prolungata al rumore causa l'STS, ovvero lo spostamento temporaneo della soglia uditiva e innalzandosi temporaneamente rispetto a quella di riposo. Per questo è stato emanato un decreto legislativo per salvaguardare i lavoratori in base ai livelli di esposizione(80,85,87 dB).

Boom sonico

Il boom sonico è il suono prodotto dal cono di Mach generato dalle onde d'urto create da un oggetto che si muove, in un fluido, con velocità superiore alla velocità del suono. I boom sonici possono essere molto forti, ad esempio per un aereo da trasporto supersonico commerciale, può essere di circa 136 decibel, o 120 Pa. II boom sonico può avvenire quindi anche non appena l'aereo e il suono si trovano alla stessa velocità.

Boom sonico

Un altro esempio di boom sonico è lo schiocco prodotto da una frusta. L'estremità della frusta si muove a una velocità superiore a quella del suono e crea il rumore caratteristico. La punta ha molto meno massa dell'impugnatura e quindi l'energia si trasferisce dall'impugnatura all'estremità.

$$E = \frac{1}{2}mv^2$$

La velocità della frusta aumenta via via che diminuisce la massa.

Velocità del suono

La velocità delle onde dipende dalle proprietà chimiche e fisiche del mezzo di propagazione. Le onde sonore di propagano nell'aria a temperatura di 20°C e pressione pari a 1 atm ad una velocità di 343,85 m/s.

$$v_{m,T} = v_{m,0} + \alpha_m(T)$$

Materiali	Velocità del suono in m/s	Velocità del suono in km/h
Ghiaccio	3200	11 520
Vetro	5300	19 080
Argento	2600	9360
Alluminio	5100	18 360
Anidride carbonica	259	932,4
Ferro	5000	18 000
Metano	430	1548
Mercurio	1400	5040
Oro	3200	11 520
Ossigeno	318	1144,8
Sangue	1570	5652
Scheletro umano	4080	14 688
Zinco	4200	15 120

Conclusioni

Personalmente il tema ci ha molto preso, perché riteniamo un grande passo in avanti per il progresso tecnologico l'eventuale ritorno dei viaggi supersonici, che a nostro parere possono essere molto utili per collegare grande distanze in poco tempo, e soprattutto sarebbe un'ottima opzione per i pendolari, che cosi arriverebbero puntuali a lezione.

GRAZIE PER L'ATTENZIONE