Ciągi

- Uzasadnij, że suma wszystkich liczb naturalnych nieparzystych czterocyfrowych mniejszych od 5000 jest równa 6000000.
- Udowodnij, że jeżeli drugi wyraz ciągu arytmetycznego jest średnią geometryczną wyrazu pierwszego i czwartego, to wyraz szósty jest średnią geometryczną wyrazu czwartego i dziewiątego.
- 3. Wykaż, że jeżeli ilorazem ciągu geometrycznego (a_n) jest $q=\frac{1+\sqrt{5}}{2}$, to każdy wyraz ciągu oprócz wyrazu pierwszego i ostatniego równy jest różnicy wyrazu następującego po nim i wyrazu go poprzedzającego.
- **4.** Wykaż, że jeżeli S_n , S_{2n} i S_{3n} oznaczają odpowiednio sumę n, 2n i 3n początkowych wyrazów ciągu geometrycznego (a_n) , to $S_n(S_{3n}-S_{2n})=(S_{2n}-S_n)^2$.
- 5. Wykaż, że jeżeli ciąg (ab, b^2, c^2) jest ciągiem arytmetycznym, to ciąg (b, c, 2b a) jest ciągiem geometrycznym.
- 6. Trzy różne liczby rzeczywiste różne od zera tworzą ciąg arytmetyczny, a kwadraty tych liczb zapisane w tym samym porządku tworzą ciąg geometryczny. Wykaż, ze iloraz q tego ciągu jest równy $q=(\sqrt{2}-1)^2$ lub $q=(\sqrt{2}+1)^2$.
- 7. Uzasadnij, że jeśli (a_n) jest ciągiem geometrycznym, to ciąg (b_n) o wyrazie ogólnym $b_n=a_{n+1}+a_n$ też jest ciągiem geometrycznym.
- 8. Uzasadnij, $\dot{z}e \lim_{n \to \infty} \left(\frac{n^3 1}{n^3 + 2} \frac{3n^2 + 1}{n^2 + 4} \right) = -2$,
- **9.** Dana jest funkcja f określona wzorem $f(x) = \frac{x+1}{x+3} + \frac{(x+1)^2}{(x+3)^2} + \frac{(x+1)^3}{(x+3)^3} + \cdots$. Uzasadnij, że zbiór wartości tej funkcji $ZW = (-\frac{1}{2}; \infty)$.
- 10. Suma trzech pierwszych wyrazów nieskończonego ciągu geometrycznego jest równa 21, zaś suma trzech następnych wyrazów jest równa $\frac{21}{64}$. Uzasadnij, że suma wszystkich wyrazów tego nieskończonego ciągu geometrycznego jest równa $21\frac{1}{3}$.
- **11.** Uzasadnij, że istnieje jedna liczba naturalna spełniająca równanie $x-\frac{1}{2x}+\frac{x^2}{2}-\frac{1}{4x}+\frac{x^3}{4}-\frac{1}{8x}+\cdots=1.$