Supplementary Information

Terabase-scale metagenome coassembly with MetaHipMer

Steven Hofmeyr^{1,*}, Rob Egan², Evangelos Georganas³, Alex C Copeland², Robert Riley², Alicia Clum², Emiley Eloe-Fadrosh², Simon Roux², Eugene Goltsman², Aydın Buluç^{1,4}, Daniel Rokhsar^{2,5}, Leonid Oliker¹, and Katherine Yelick^{1,4}

ABSTRACT

Metagenome sequence datasets can contain terabytes of reads, too many to be *coassembled* together on a single shared-memory computer; consequently, they have only been assembled sample by sample (*multiassembly*) and combining the results is challenging. We can now perform coassembly of the largest datasets using MetaHipMer, a metagenome assembler designed to run on supercomputers and large clusters of compute nodes. We have reported on the implementation of MetaHipMer previously; in this paper we focus on analyzing the advantages of very large coassembly. In particular, we show that coassembly recovers a larger genome fraction than multiassembly and enables the discovery of more complete genomes, with lower error rates. We present several assemblies of terabyte datasets that have never been coassembled before, demonstrating the benefit of the MetaHipMer coassembly approach. MetaHipMer is available for public use under an open source license and all datasets used in the paper are available for public download.

1 Command lines for software used

Note: all words in capitals starting with a \$ are user-defined variables, e.g. \$READ_LENGTH is a read length, such as 150.

1.1 Mason

Version: 2.0.9

Available from: https://github.com/seqan/seqan/tree/master/apps/mason2

Command line:

```
mason_simulator --illumina-read-length $READ_LENGTH -ir $REFERENCE_FILE \
   -n $NUMBER_PAIRS --fragment-mean-size $INSERT_SIZE_MEAN \
   --fragment-size-std-dev $INSERT_SIZE_STDDEV -o $OUT_1.fq -or $OUT_2.fq
```

Where the number of pairs is determined from the desired depth by:

```
NUMBER PAIRS = $REFERENCE LENGTH * $CHOSEN DEPTH / $READ LENGTH
```

1.2 CAMISIM

Version: 0.0.6

Available from: https://github.com/CAMI-challenge/CAMISIM

Command line:

```
metagenomesimulation.py arctic_synth_config.ini
```

Where the configuration file arctic_synth_config.ini is:

```
[Main]
seed=632741178
phase=0
```

¹Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

²Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

³Parallel Computing Lab, Intel Corp., Santa Clara CA 95054, USA

⁴Department of Electrical Engineering and Computer Sciences, University of California, Berkeley CA 94720, USA

⁵Department of Molecular and Cellular Biology, University of California, Berkeley CA 94720, USA

^{*}shofmeyr@lbl.gov

```
max_processors=1
dataset_id=RL
output_directory=arctic_synth/arctic_samples_replicates
temp_directory=/dev/shm
qsa=False
pooled_gsa=False
anonymous=False
compress=0
[ReadSimulator]
readsim=tools/art_illumina-2.3.6/art_illumina
error_profiles=tools/art_illumina-2.3.6/profiles
samtools=tools/samtools-1.3/samtools
profile=mbarc
size=0.4
type=art
fragments_size_mean=270
fragment_size_standard_deviation=30
[CommunityDesign]
distribution_file_paths=
ncbi_taxdump=mar_ref/ncbi_taxonomy
strain_simulation_template=scripts/StrainSimulationWrapper/sgEvolver/simulation_dir
number_of_samples=12
[community0]
metadata=arctic_synth/arctic-species-metadata.tsv
id_to_genome_file=arctic_synth/arctic-species.tsv
id_to_gff_file=
genomes_total=25
genomes_real=25
max_strains_per_otu=1
ratio=1
mode=replicates
log_mu=1
log_sigma=1
gauss_mu=1
gauss_sigma=1
view=False
1.3 Quast
Version: 5.0.0
Available from: http://quast.sourceforge.net/quast.html
Command line:
metaquast.py --rna-finding --no-icarus --fragmented -t 80 -o $OUTPUT \
  -r $REFERENCE FASTQ $ASSEMBLED FASTA
The number of complete rRNAs (16S and 23S) are counted with the following bash commands:
grep "product=16S" $GFF_FILE |grep -v partial|wc -l
grep "product=23S" $GFF_FILE |grep -v partial|wc -l
where $GFF_FILE is found in the metaquast output at
combined_reference/predicted_genes/$ASSEMBLER_NAME.rna.gff
```

1.4 MetaBAT2

```
Version: 2.13-29-g2e72973
```

Available from: https://bitbucket.org/berkeleylab/metabat

Command line:

```
metabat2 -i $READS -o $OUTDIR/bin
```

1.5 CheckM

Version: 1.0.13

Available from: https://ecogenomics.github.io/CheckM

Command line:

```
checkm lineage_wf -f $OUTDIR/CheckM.txt -t $NUM_CORES -x fa $OUTDIR $OUTDIR/SCG
```

where OUTDIR is the MetaBAT2 output directory.

The results were analyzed for completeness and contamination using the following R script:

2 Assemblers

2.1 MetaHipMer

Version: 1.2.1

Available from: https://sourceforge.net/projects/hipmer

Command line:

```
hipmer --meta -i $READS
```

2.2 MEGAHIT

Version: 1.1.3

Available from: https://github.com/voutcn/megahit

Command line:

megahit --12 \$READS

2.3 metaSPAdes

Version: 3.13.0

Available from: http://cab.spbu.ru/software/meta-spades/

Command line:

metaspades.py --pe1-12 \$READS --only-assembler -t \$NUM_CORES

3 Datasets

See Tables S1 and S2 for details on all the datasets. Further details for ArcticSynth can be found in Tables S3 and S4.

Dataset	Description	Author/PI	Reference
Wetlands	Wetland surface sediment. Metagenomics sequences from	S. Tringe	S. Theroux, et al. "Microbial diversity in restored wetlands of San
	a time-series of wetlands soil samples collected from		Francisco Bay." American Geophysical Union, Fall Meeting 2013,
	several physical sites in the Twitchell Wetlands in the San		abstract id. B33A-0463 (2013).
	Francisco Bay-Delta.		
Cow Rumen	A collection of metagenomic DNA sequenced from mi-	M. Hess	M. Hess, et al. "Metagenomic discovery of biomass-degrading genes
	crobes adherent to plant fiber incubated in the cow rumen.		and genomes from cow rumen." Science 331(6016), 463–467 (2011)
Soil Carbon	Metagenome DNA sequenced for a project that aims to	D. Buckley	Unpublished; JGI CSP 503502: Microbial metabolic dependency and
	identify and characterize the dominant uncultivated mi-		its impacts on the soil carbon cycle
	croorganisms that mediate major transformations in the		
	soil carbon cycle.		
WA	Marine microbial communities from the Western Arctic		
	Ocean.		
Marine	Tara Oceans polar circle sample.		
Gut	Human gut metagenome sample.		
MBARC-26	Synthetic high-depth, simple dataset composed of 23 bac-	E. Singer	E. Singer, et al. "Next Generation Sequencing Data of a Defined
	terial and 3 archaeal strains with finished genomes that		Microbial Mock Community." Scientific Data 3 (September). Nature
	span 10 phyla and 14 classes, a range of GC contents,		Publishing Group: 160081. (2016) doi:10.1038/sdata.2016.81.
	genome sizes, repeat content, and that encompass a di-		
	verse abundance profile.		
ArcticSynth	Synthetic metagenome sample of 25 genomes matching	S. Hofmeyr	
	Western Arctic Ocean (see Tables S3 and S4		

Table S1. Description of datasets.

Dataset	Platform	Size (GB)	# Reads	Gbp	SRA	URL
Wetlands	Illumina GAII	2637	7467203592	1120	SRR1182407 SRR1184661 SRR403474	
					SRR404111 SRR404117 SRR404119	
					SRR404151 SRR404204 SRR407529	
					SRR407548 SRR407549 SRR410821	
					SRR437909 SRR5198900 SRR5198901	
					SRR5198902 SRR5198903 SRR5246785	
					SRR5246787 SRR5246790 SRR5246791	
					SRR6203186	
Cow Rumen	Illimina HiSeq	2663	7922832126	1188		https://portal.nersc.
						gov/dna/RD/CowRumen/
						CowRumenRaw/
Soil Carbon	Illimuna NovaSeq	3343	9901426776	1471		
WA	Illimuna HiSeq 2500	822	2465328090	370	SRR5819383 SRR5819595 SRR5819381	https://gold.jgi.doe.
						gov/study?id=Gs0118432
Marine	Illimuna HiSeq 2500	100.6	478583618	48	ERR2762185	https://portal.nersc.
						gov/project/hipmer/
						MetaHipMer_datasets_
						12_2019/
Gut	Illimuna HiSeq 2000	7.9	30169866	3	SRR769529	https://portal.nersc.
						gov/project/hipmer/
						MetaHipMer_datasets_
						12_2019/
MBARC-26	HiSeq-HO 2000	31.9	173981994	52	SRX1836716	
ArcticSynth	Simulated	9.9	31999090	2.3	See Table S4	https://portal.nersc.
						gov/project/hipmer/
						MetaHipMer_datasets_
						12_2019/

Table S2. Details of datasets.

Genome	Abundances per Sample										Depth		
Arcticibacterium luteifluviistationis	0.0031	0.0206	0.0062	0.0003	0.0019	0.0102	0.0042	0.0177	0.0189	0.0121	7e-06	0.0109	10.4
Candidatus Nitrosopumilus sp AR2	0.0033	0.0245	0.0185	0.0128	0.0059	0.0055	7e-06	0.0023	0.0029	0.0161	0.0155	0.0165	12.2
Colwellia psychrerythraea 34H	0.0907	0.0821	0.0798	0.0846	0.0868	0.0724	0.0803	0.0729	0.0763	0.0857	0.0663	0.0808	93.8
Colwellia sp Arc7-D MMP08912473	0.0060	0.0091	0.0160	0.0133	0.0115	0.0158	0.0029	0.0115	0.0232	0.0144	0.0111	0.0010	13.3
Denitrovibrio acetiphilus DSM 12809	0.0108	0.0135	0.0144	0.0092	0.0128	0.0226	0.0165	0.0109	0.0227	0.0140	0.0224	0.0285	19.4
Desulfotalea psychrophila LSv54	0.0942	0.0785	0.0927	0.0865	0.0807	0.0860	0.0872	0.0785	0.0871	0.0926	0.0851	0.0877	101.5
Flavobacterium arcticum	0.0369	0.0367	0.0439	0.0495	0.0479	0.0445	0.0398	0.0376	0.0241	0.0325	0.0539	0.0348	47.3
Kosmotoga olearia TBF 1951	0.0077	0.0138	0.0098	0.0159	0.0109	0.0143	0.0085	0.0205	0.0109	0.0117	0.0079	0.0198	14.9
Marinobacter psychrophilus 20041	0.0028	0.0087	7e-06	0.0078	0.0147	0.0120	0.0019	0.0070	0.0115	0.0147	0.0053	0.0067	9.2
Marinobacter sp Arc7 DN 1	0.0495	0.0469	0.0528	0.0628	0.0493	0.0490	0.0447	0.0595	0.0459	0.0521	0.0459	0.0589	60.5
Marinobacter sp BSs20148	0.0185	0.0199	0.0278	0.0183	0.0221	0.0182	0.0172	0.0264	0.0352	0.0143	0.0207	0.0231	25.7
Microbacterium sp LKL04	0.1485	0.1298	0.1305	0.1265	0.1511	0.1340	0.1276	0.1311	0.1308	0.1251	0.1186	0.1169	153.7
Nocardiopsis dassonvillei NOCA502F	0.0143	0.0200	0.0017	0.0236	0.0135	0.0132	0.0239	0.0291	0.0061	0.0152	0.0165	0.0178	19.1
Octadecabacter arcticus 238	0.0140	0.0274	0.0151	0.0087	0.0214	0.0165	0.0260	0.0218	0.0080	0.0053	0.0228	0.0297	21.2
Paraglaciecola psychrophila 170	0.0663	0.0503	0.0598	0.0667	0.0577	0.0691	0.0588	0.0637	0.0572	0.0601	0.0657	0.0555	71.6
Polaribacter sp ALD11	0.0091	0.0101	0.0188	0.0190	0.0063	0.0187	0.0190	0.0194	0.0148	0.0179	0.0260	0.0084	18.3
Pseudoalteromonas aliena EH1	0.0200	0.0190	0.0153	0.0117	0.0307	0.0166	0.0327	0.0317	0.0214	0.0283	0.0323	0.0312	28.4
Psychrobacter sp P11G3	0.0134	0.0179	0.0162	0.0156	0.0166	0.0156	0.0210	0.0087	0.0191	0.0106	0.0186	0.0053	17.5
Psychromonas ingrahamii 37	0.0743	0.0698	0.0603	0.0657	0.0700	0.0657	0.0755	0.0761	0.0744	0.0708	0.0732	0.0682	82.6
Rhodobacteraceae bacterium BAR1	0.0488	0.0421	0.0530	0.0401	0.0439	0.0519	0.0425	0.0501	0.0534	0.0475	0.0520	0.0549	56.8
Rhodococcus sp B7740	0.0317	0.0357	0.0279	0.0354	0.0241	0.0274	0.0364	0.0310	0.0319	0.0340	0.0302	0.0315	36.9
Salegentibacter sp T436	0.0190	0.0163	0.0308	0.0146	0.0245	0.0135	0.0185	0.0222	0.0171	0.0228	0.0115	0.0271	23.3
Sulfitobacter sp SK011	0.1257	0.1190	0.1173	0.1149	0.1070	0.1094	0.1059	0.1016	0.1152	0.1090	0.1133	0.0915	130.1
Thalassolituus oleivorans R6-15	0.0783	0.0656	0.0614	0.0741	0.0744	0.0808	0.0802	0.0595	0.0792	0.0780	0.0626	0.0784	85.4
Thalassolituus oleivorans strain K188	0.0127	0.0220	0.0295	0.0221	0.0138	0.0166	0.0284	0.0085	0.0121	0.0148	0.0222	0.0143	21.2

Table S3. Abundances and depths of the 12 replicate samples for *ArcticSynth*.

Genome	Refseq identifiers					
Arcticibacterium luteifluviistationis	NZ_CP029480.1					
Candidatus Nitrosopumilus sp AR2	CP003843.1					
Colwellia psychrerythraea 34H	CP000083.1					
Colwellia sp Arc7-D MMP08912473	CP028924.1					
Denitrovibrio acetiphilus DSM 12809	CP001968.1					
Desulfotalea psychrophila LSv54	CR522870.1 CR522871.1 CR522872.1					
Flavobacterium arcticum	NZ_CP031188					
Kosmotoga olearia TBF 1951	CP001634.1					
Marinobacter psychrophilus 20041	NZ_CP011494.1					
Marinobacter sp Arc7 DN 1	NZ_CP031848.1					
Marinobacter sp BSs20148	CP003735.1					
Microbacterium sp LKL04	LT627736.1					
Nocardiopsis dassonvillei NOCA502F	NZ_CP017965.1					
Octadecabacter arcticus 238	CP003742.1 CP003743.1 CP003744.1					
Paraglaciecola psychrophila 170	NC_020514.1					
Polaribacter sp ALD11	CP025119.1					
Pseudoalteromonas aliena EH1	NZ_CP019628.1					
Psychrobacter sp P11G3	NZ_CM003596.1 NZ_CM003597.1 NZ_CM003598.1 NZ_CM003599.1 NZ_CM003600.1					
Psychromonas ingrahamii 37	CP000510.1					
Rhodobacteraceae bacterium BAR1	NZ_CP032125.1					
Rhodococcus sp B7740	NZ_CP010797.1					
Salegentibacter sp T436	NZ_CP012872.1					
Sulfitobacter sp SK011	NZ_CP025803.1					
Thalassolituus oleivorans R6-15	CP006829.1					
Thalassolituus oleivorans strain K188	NZ_CP017810.1					

 Table S4. NCBI Refseq accession identifiers for ArcticSynth.