4.2 Числення висловлювань (формальна теорія L)

4.2.1 Числення висловлювань

Розглянемо один з прикладів формальних теорій — числення висловлювань. Можна сказати, що це числення висловлювань ϵ базовим та, в деякому сенсі, найпростішим, тому знайомство з формальними теоріями прийнято починати саме з нього.

Для того, щоб означити числення висловлювань, потрібно задати його складові як формальної системи: алфавіт, формули, аксіоми та правила виведення.

Числення висловлювань — це формальна теорія L, в якій:

- 1) Алфавіт включає пропозиційні літери: A, B, C,... з індексами або без; пропозиційні зв'язки: \neg (заперечення) та \rightarrow (імплікація); допоміжні символи: (та);
- 2) Визначення формули числення *L*:
 - довільна пропозиційна літера ϵ формулою;
 - якщо A та B формули, то формулами також ϵ ($\neg A$) та $(A \rightarrow B)$;
 - інших формул в численні L не існує.
- 3) У численні L визначена нескінченна множина аксіом, які будуються за допомогою трьох **схем аксіом**:

A1.
$$A \rightarrow (B \rightarrow A)$$
;
A2. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$;
A3. $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$.

4) У численні L визначено єдине правило виведення MP: $A, A \rightarrow B \mid B$.

У пункті 3 визначення числення висловлювань йде мова про схеми аксіом. Це означає, що для отримання конкретної аксіоми, ми маємо взяти одну з трьох схем (A1, A2, A3) та замість пропозиційних літер, які входять до неї, підставити певні формули (якими також є й атомарні формули, тобто пропозиційні літери). До того ж, замість однієї й тієї самої пропозиційної літери аксіоми ми маємо підставляти одну й ту саму формулу.

Наприклад, зі схеми А1 отримуються такі аксіоми:

- $A \rightarrow (A \rightarrow A)$;
- $(A \rightarrow B) \rightarrow (B \rightarrow (A \rightarrow B));$
- $A \rightarrow (\neg A \rightarrow A)$.

Слід звернути увагу на те, що в численні висловлювань використовуються тільки символи зв'язок імплікації та заперечення. Як і в алгебрі висловлювань, це робиться для зменшення кількості операцій. Інші зв'язки ми можемо виразити за допомогою імплікації та заперечення:

• $A \wedge B$ означає $\neg (A \rightarrow \neg B)$;

- $A \lor B$ означає $\neg A \rightarrow B$;
- $A \sim B$ означає $\neg((A \rightarrow B) \rightarrow \neg(B \rightarrow A))$.

Тепер ми можемо розглянути приклади виведення теорем у теорії L.

Доведемо теорему $A \rightarrow A$. Оскільки єдиним правилом виведення є MP, то нам потрібно взяти таку аксіому, щоб формула $A \rightarrow A$ була у кінці формули. Для цього підходять перші дві схеми аксіом. Третя не підходить, тому що в ній зустрічається зв'язка заперечення, яка не присутня у теоремі, яку ми доводимо. У схемі A1 формула $A \rightarrow A$ з'являється в кінці, якщо замінити літеру B на A. Але для того, щоб вивести формулу $A \rightarrow A$ з $A \rightarrow (A \rightarrow A)$ за правилом MP нам необхідна наявність вже виведеної формули A. Тож перша схема не підходить.

Розглянемо схему A2 и змінимо літери B та C на формули $A \rightarrow A$ та A відповідно. Отримаємо аксіому:

$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)).$$

Як ми бачимо, в кінці цієї аксіоми зустрічається потрібна нам формула $A \rightarrow A$. Але для її виведення нам потрібно тепер вивести дві формули: $A \rightarrow ((A \rightarrow A) \rightarrow A)$ та $A \rightarrow (A \rightarrow A)$. Обидві формули ми отримуємо з першої схеми за підстановкою замість літери B формул $A \rightarrow A$ та A відповідно.

Підсумуємо наші міркування, записавши їх у вигляді наступного виводу, наводячи для кожного пункту схему аксіом або правило виведення із засновками, які застосовувались для отримання цього пункту.

Теорема
$$L1$$
. $\vdash A \rightarrow A$

1.
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$
 A2

2.
$$A \rightarrow ((A \rightarrow A) \rightarrow A)$$

3.
$$A \rightarrow (A \rightarrow A)$$

4.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$
 MP (1,2)

5.
$$A \rightarrow A$$
 MP (3,4)

Наведемо приклад виведення ще двох теорем теорії L.

Теорема L2. $A \vdash B \rightarrow A$

2.
$$A \rightarrow (B \rightarrow A)$$
 A1

3.
$$B \rightarrow A$$
 MP (1,2)

Теорема L3. $\vdash (\neg A \rightarrow A) \rightarrow A$

1.
$$(\neg A \rightarrow \neg A) \rightarrow ((\neg A \rightarrow A) \rightarrow A)$$
 A3

$$2. \neg A \rightarrow \neg A$$
 L1

3.
$$(\neg A \rightarrow A) \rightarrow A$$
 MP (1,2)

В останньому виводі ми використали вже виведену теорему L1. Це дозволяє нам зробити третя властивість виведень з гіпотезами (див. тему 4.1).

4.2.2 Теорема дедукції

У математичних міркуваннях часто якесь твердження B доводиться у припущенні правильності якогось іншого твердження A, після чого встановлюють, що правильним є твердження "якщо A, то B". У численні висловлювань цей метод обґрунтовується такою теоремою.

Теорема 1 (теорема дедукції Ербрана). Нехай Γ — множина формул, A і B — формули й Γ , $A \models B$. Тоді $\Gamma \models A \rightarrow B$.

Справедлива обернена зворотна теорема дедукції.

Теорема 2 (зворотна теорема дедукції). Якщо існує вивід $\Gamma \models A \rightarrow B$, то формула B виводиться з Γ та A, тобто якщо $\Gamma \models A \rightarrow B$, то $\Gamma, A \models B$.

Теорема дедукції має наступні наслідки.

Наслідок 1 (правило силогізму). $A \rightarrow B$, $B \rightarrow C \vdash A \rightarrow C$.

Побудуємо виведення.

- 1. $A \rightarrow B$ гіпотеза
- 2. $B \rightarrow C$ гіпотеза
- 3. *A* гіпотеза
- 4. B MP (1,3)
- 5. C MP (2,4)

Тоді отримали $A \rightarrow B$, $B \rightarrow C$, $A \vdash C$. За теоремою дедукції маємо $A \rightarrow B$, $B \rightarrow C \vdash A \rightarrow C$.

<u>Наслідок 2</u> (правило видалення середньої посилки). $A \rightarrow (B \rightarrow C), B \models A \rightarrow C.$

Після двократного застосування правила МР дістаємо $A \rightarrow (B \rightarrow C), B, A \models C$. Звідси за теоремою про дедукцію маємо $A \rightarrow (B \rightarrow C), B \models A \rightarrow C$.

4.2.3 Приклади виведень у теорії L

Застосування теореми дедукції та її наслідків дуже спрощує побудову виведень у теорії L. Наведемо декілька прикладів таких виведень.

Теорема
$$L4. \vdash \neg \neg A \rightarrow A$$

1.
$$(\neg A \rightarrow \neg \neg A) \rightarrow ((\neg A \rightarrow \neg A) \rightarrow A)$$
 A3

2.
$$\neg A \rightarrow \neg A$$

3.
$$(\neg A \to \neg \neg A) \to A$$
 наслідок 2 до 1,2

4.
$$\neg \neg A \rightarrow (\neg A \rightarrow \neg \neg A)$$

A1

5.
$$\neg \neg A \rightarrow A$$

наслідок 1 до 3,4

Теорема L5. $\vdash A \rightarrow \neg \neg A$

1.
$$(\neg\neg\neg A \rightarrow \neg A) \rightarrow ((\neg\neg\neg A \rightarrow A) \rightarrow \neg\neg A)$$
 A3

$$2. \neg \neg \neg A \rightarrow \neg A$$
 L4

3.
$$(\neg\neg\neg A \rightarrow A) \rightarrow \neg\neg A$$
 MP (2,3)

4.
$$A \rightarrow (\neg \neg \neg A \rightarrow A)$$

5.
$$A \to \neg \neg A$$
 наслідок 1 до 3,4

Теорема *L*6. $\vdash \neg A \rightarrow (A \rightarrow B) \Leftrightarrow \neg A, A \vdash B$

3.
$$(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$
 A3

4.
$$\neg A \rightarrow (\neg B \rightarrow \neg A)$$
 A1

5.
$$A \rightarrow (\neg B \rightarrow A)$$

6.
$$\neg B \rightarrow \neg A$$
 MP (1,4)

7.
$$\neg B \rightarrow A$$
 MP (2,5)

8.
$$(\neg B \rightarrow A) \rightarrow B$$
 MP (3,5)

Теорема L7. $\vdash (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \Leftrightarrow \neg A \rightarrow \neg B \vdash B \rightarrow A$

1.
$$\neg A \rightarrow \neg B$$
 гіпотеза

2.
$$(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$$
 A3

3.
$$(\neg A \rightarrow B) \rightarrow A$$
 MP (1,2)

4.
$$B \rightarrow (\neg A \rightarrow B)$$
 A1

Теорема L8. $\vdash (B \rightarrow A) \rightarrow (\neg A \rightarrow \neg B) \Leftrightarrow B \rightarrow A \vdash \neg A \rightarrow \neg B$

1.
$$B \rightarrow A$$
 гіпотеза

2.
$$\neg\neg B \rightarrow B$$

3.
$$A \rightarrow \neg \neg A$$
 L5

5.
$$\neg \neg B \rightarrow \neg \neg A$$
 наслідок 1 з 3,4

6.
$$(\neg\neg B \rightarrow \neg\neg A) \rightarrow (\neg A \rightarrow \neg B)$$
 L7

7.
$$\neg A \rightarrow \neg B$$
 MP (5,6)

7. $(\neg B \rightarrow \neg \neg A) \rightarrow ((\neg B \rightarrow \neg A) \rightarrow B)$

8. $(\neg B \rightarrow \neg A) \rightarrow B$

9. *B*

4.2.4 Методи перевірки тотожної істинності формул логіки висловлювань

A3

MP(6,7)

MP(5,8)

Таким чином, на даний момент ми знаємо принаймні три способи перевірки для довільної формули логіки висловлювань чи ϵ вона тавтологією, тобто чи ϵ вона тотожно істинною. Перший, тривіальний, полягає в побудові *таблиці істинності* для цієї формули. Ми можемо це зробити через те, що кількість літер, що входять у довільну формулу ϵ скінченною (n), а кількість можливих кортежів значень, що їх можуть приймати ці літери, відповідно, дорівнюватиме 2^n , що також ϵ скінченним числом. Отже, за скінченну кількість кроків ми можемо побудувати таблицю істинності і, якщо в кожному рядку буде стояти значення "Істина", то цим буде доведено тотожна істинність обраної формули.

Другий метод відноситься до булевої алгебри. Тому він, відповідно, й називається — алгебраїчний. Він полягає у зведенні довільної формули логіки висловлювань до ДНФ або КНФ. Якщо під час такого зведення формула перетвориться на 1, тобто T, то це й буде означати її тотожну істинність.

Третій метод був розглянутий у цій темі і полягає у побудові для обраної формули виводу у формальній теорії L. Через те, що ця теорія є аксіоматичною, то й метод має відповідну назву — аксіоматичний. Якщо у теорії L побудований

вивід для певної формули з використанням лише трьох схем аксіом A1, A2, A3, то за властивістю повноти теорії отримуємо, що ця формула буде тавтологією, тобто тотожно істинною.

Перший метод ϵ найпростішим, але й водночає найгроміздкішим. Якщо ж порівнювати другий метод із третім, то з'ясується, що для певних формул найліпшим, тобто економнішим за обчислювальними витратами, буде другий, а для інших — третій.

Нижче ми розглянемо ще два методи: метод Квайна та метод редукції. Для них так само не можна сказати, який з них у порівнянні з рештою ϵ кращим: для формул різного вигляду найкращими будуть різні методи.

Отже, **метод Квайна** полягає в наступному. Нехай $\{A_1, A_2, ..., A_n\}$ — упорядкована множина пропозиційних літер, що зустрічаються у формулі $P(A_1, A_2, ..., A_n)$. Візьмемо першу з літер — A_1 і припишемо їй, наприклад, значення Т (F). Підставимо це значення у формулу P і виконаємо обчислення, які можуть виникнути в результаті такої підстановки. Після виконання обчислень одержимо деяку формулу $P'(A_2, ..., A_n)$, до якої знову застосовується описана процедура, тобто вибирається літера A_2 , приписується їй значення Т (F), виконується обчислення і т.д. Може трапитися так, що на деякому кроці буде отримана формула P'', яка є тавтологією або суперечністю незалежно від значень висловлювань, які входять до складу формули P''. Отже, на цьому кроці роботу алгоритму можна зупинити. Таким чином, метод Квайна в деяких випадках приводить до розгляду значно меншої кількості інтерпретацій, ніж тривіальний алгоритм побудови таблиць істинності.

Приклад 1. Розглянемо формулу

$$P = (((A \land B) \rightarrow C) \land (A \rightarrow B)) \rightarrow (A \rightarrow C).$$

Множина літер $\{A, B, C\}$. Вибираємо літеру A. При цьому можливі два випадки:

1) A = T. Тоді

$$P = (((\mathsf{T} \land B) \to C) \land (\mathsf{T} \to B)) \to (\mathsf{T} \to C) = ((B \to C) \land B) \to C = P'.$$

Тепер вибираємо B і розглядаємо знову можливі випадки:

1.1)
$$B={\rm T.}$$
 Тоді $P'=(({\rm T}{\to}C)\wedge{\rm T})\to C=(C\wedge{\rm T})\to C=C\to C$ — тавтологія.

1.2)
$$B = F$$
. Тоді $P' = ((F \rightarrow C) \land F) \rightarrow C = (T \land F) \rightarrow C = F \rightarrow C = T$.

(2) A = F. Тоді:

$$P = (((F \land B) \to C) \land (F \to B)) \to (F \to C) = ((F \to C) \land T) \to T = (T \land T) \to T = T \to T = T.$$
 Отже, дана формула є тавтологією.

Метод редукції дає можливість виконувати перевірку формул логіки висловлювань шляхом зведення до абсурду. Він особливо зручний, коли в записі формули зустрічається багато імплікацій.

Нехай формула P має вигляд імплікації, наприклад, $P = A \rightarrow B$. Припустимо, що в деякій інтерпретації I формула P приймає значення F. Тоді у відповідності з таблицею істинності для імплікації маємо A = T та B = F. Таким чином, перевірка формули P зводиться до перевірки формул A та B. Після цього даний процес застосовується до формул A та B і т.д.

Приклад 2. Розглянемо формулу

$$P = ((A \land B) \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C)).$$

Нехай для деякої інтерпретації I маємо $P={\rm F.}$ Тоді $(A \wedge B) \to C={\rm T.}$ а $A \to (B \to C)={\rm F.}$

Застосуємо цю процедуру до другої з формул.

Отримуємо A = T та $B \rightarrow C = F$. Звідси знаходимо, що A = T, B = T, C = F. Але при отриманих значеннях $(A \land B) \rightarrow C = F$, що суперечить припущенню. Отже, формула P тотожно істинна.

Приклад 3. Перевірити, чи є формула $A \to ((A \to B) \to B)$ тавтологією. Розв'язання.

1 спосіб. За допомогою таблиці істинності.

Α	В	$A \rightarrow B$	$(A \to B) \to B$	$A \to ((A \to B) \to B)$
F	F	Т	F	T
F	Т	Т	Т	T
Т	F	F	Т	T
Т	Т	Т	Т	Т

3 таблиці бачимо, що функція скрізь набуває значення Т. Тобто, вона є тавтологією.

2 спосіб. Метод редукції.

Припустимо що, $A \to ((A \to B) \to B) = F$.

Це можливо тільки коли $(A \to B) \to B = F$ та A = T.

Тобто з першого виразу маємо, що $A \to B = T$ та B = F. З чого отримуємо, що A = F.

Раніше ми отримали, що A=T. Отже, ми прийшли до суперечності. Таким чином, можемо констатувати, що наше припущення було невірне, тобто формула є тавтологією.

3 спосіб. Метод Квайна.

Нехай
$$A = T$$
, тоді $T \to ((T \to B) \to B)$.

Якщо
$$B = T$$
, то $T \to ((T \to T) \to T) = T$.

Якщо
$$B = F$$
, то $T \to ((T \to F) \to F) = T$.

Нехай
$$A = F$$
, тоді $F \to ((F \to B) \to B)$.

Якщо
$$B = T$$
, то $F \to ((F \to T) \to T) = T$.

Якщо
$$B = F$$
, то $F \to ((F \to F) \to F) = T$.

Таким чином, можемо констатувати, що формула ϵ тавтологією.

Приклад 4. Довести теорему в рамках логіки L.

1)
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$
.

$$2) \neg A \rightarrow (A \rightarrow B).$$

3)
$$(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$$
.

4)
$$A \rightarrow B$$
, $A \rightarrow (B \rightarrow C) \vdash A \rightarrow C$.

Розв'язання.

- 1) За зворотньою теоремою дедукції $A \vdash ((A \to B) \to B)$. Якщо ще раз застосуємо її, то отримаємо A, $(A \to B) \vdash B$.
 - 1. *A* Γ1
 - 2. $A \rightarrow B \Gamma 2$
 - 3. B MP(1,2)

Що й треба було довести.

2) За зворотньою теоремою дедукції, яку ми застосуємо двічі, отримаємо $\neg A, A \vdash B$.

Що й треба було довести.

9. B

3) За зворотньою теоремою дедукції $(A \rightarrow \neg B) \vdash (B \rightarrow \neg A)$

- 1. $A \rightarrow \neg B$
- Γ1 L8
- 2. $(A \rightarrow \neg B) \rightarrow (\neg \neg B \rightarrow \neg A)$
- MP(1,2)

3. $\neg \neg B \rightarrow \neg A$ 4. $B \rightarrow \neg \neg B$

L5

5. $B \rightarrow \neg A$.

Правило силогізму (3,4)

MP(7,8)

Що й треба було довести.

- 4) Доведемо, що $A \to B$, $A \to (B \to C) \vdash A \to C$.
- 1. $A \rightarrow B$

Γ1

2. $A \rightarrow (B \rightarrow C)$ $\Gamma 2$

3. *A* 3ТД(1)

4. *B* MP(1,3)

5. $A \to C$ Правило видалення середньої посилки (2,4)

Що й треба було довести.