Differential Topology

Ikhan Choi

April 21, 2025

Contents

I	De Rham theory	3
1	De Rham theory 1.1 De Rham theorem	4
2	Hodge theory	5
II	Cobordism	6
3	Morse theory 3.1 Morse functions	7 7 8
4		10
5		11
III	Topological quantum field theory	12
6	Chern-Simons theory 6.1 Chern-Weil theory	13 16 17 17
7		18
8		19
IV	Index theory	20
9		21
10		22
11		23
V	Symplectic geometry	24
12		25

13	26
14	27

Part I De Rham theory

De Rham theory

1.1 De Rham theorem

Hodge theory

elliptic operators

Part II

Cobordism

Morse theory

3.1 Morse functions

Definition 3.1.1. Let M be a manifold. A *Morse function* is a smooth function $f: M \to \mathbb{R}$ such that all critical points are nondegenerate.

Proposition 3.1.2. Let M be an embedded submanifold of \mathbb{R}^n . For almost every point $p \in \mathbb{R}^n$, the function $f: M \to \mathbb{R}: x \mapsto ||x-p||^2$ is Morse.

Proof. Suppose that $p \in \mathbb{R}^n$ makes f be not Morse so that it possesses a degenerate critical point. Note that the notation x can denote not only a point variable on M but also the embedding map $M \hookrightarrow \mathbb{R}^n$. Let $N \subset M \times \mathbb{R}^n$ be the normal bundle of the tangent bundle TM and define a map $\varphi : N \to \mathbb{R}^n$ such that $\varphi(x,y) = x + y$. We claim that the point (x, p - x) is contained in N and φ is critical at this point if f is degenerate at x.

The differential of f is

$$df_{\nu}(\nu) = 2(x-p) \cdot dx(\nu) = 2(x-p) \cdot \nu$$

so x is critical point if and only if x - p is proportional to $T_x M$.

Let $\{x^i\}_{i=1}^m$ be orthonormal coordinates for M and let $\{e_j\}_{j=1}^{n-m}$ be an orthonormal frame field of N. Define coordinate functions $\{x^i, y^j\}$ on the manifold N by

$$x^{i}(x, y) := x^{i}(x)$$
, and $y^{j}(x, y) := y \cdot e_{j}(x)$.

Then,

$$\left\{\frac{\partial x}{\partial x^1}, \dots, \frac{\partial x}{\partial x^m}, \frac{\partial y}{\partial y^1}, \dots, \frac{\partial y}{\partial y^{n-m}}\right\}$$

always form an orthonormal basis on \mathbb{R}^n and

Since

$$\frac{\partial \varphi}{\partial x^i} = \frac{\partial x}{\partial x^i} + \frac{\partial y}{\partial x^i} \quad \text{and} \quad \frac{\partial \varphi}{\partial y^j} = \frac{\partial y}{\partial y^j},$$

we have

$$\begin{split} \frac{\partial \varphi}{\partial x^i} \cdot \frac{\partial x}{\partial x^k} &= \delta_{ik} - y \cdot \frac{\partial^2 x}{\partial x^i \partial x^k}, \qquad \frac{\partial \varphi}{\partial x^i} \cdot \frac{\partial y}{\partial y^l} &= -y \cdot \frac{\partial^2 y}{\partial x^i \partial y^l}, \\ \frac{\partial \varphi}{\partial y^j} \cdot \frac{\partial x}{\partial x^k} &= 0, \qquad \qquad \frac{\partial \varphi}{\partial y^j} \cdot \frac{\partial y}{\partial y^l} &= \delta_{jl}. \end{split}$$

To represent $d\varphi(\partial_{x^1}, \cdots, \partial_{y^{n-m}})$ with matrix, we can write

$$\begin{pmatrix} \frac{\partial \varphi}{\partial x^i} \\ \frac{\partial \varphi}{\partial y^j} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial x^k} & \frac{\partial y}{\partial y^l} \end{pmatrix} = \begin{pmatrix} \operatorname{id} - y \cdot \frac{\partial^2 x}{\partial x^i \partial x^k} & -y \cdot \frac{\partial^2 y}{\partial x^i \partial y^l} \\ 0 & \operatorname{id} \end{pmatrix}.$$

Then,

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = 2 \left(id + (x - p) \cdot \frac{\partial^2 x}{\partial x^i \partial x^j} \right)$$

deduces that $d\varphi$ is not surjective at (x, p - x). Therefore, by the Sard theorem, set of such p has measure zero.

Proposition 3.1.3. Let M be a manifold. The set of Morse functions is dense in $C^{\infty}(M)$.

Proof. Let f be a smooth function on M. Embed M in \mathbb{R}^{d-1} such that $x \mapsto (x_2, \dots, x_d)$. Then, $x \mapsto (f(x), x_2, \dots, x_d)$ gives an embedding into R^d . Define a sequence $\{\varepsilon_n\}_n \subset \mathbb{R}^n$ such that $\varepsilon_n \to 0$ and the sequence of functions

$$f_n(x) := \frac{\|x + ne_1 + \varepsilon_n\|^2 - n^2}{2n}$$

is Morse, where $\{e_i\}$ denotes the standard basis of \mathbb{R}^d . This can be done by the previous proposition. Then,

$$f_n(x) = \frac{(f(x) + n + \varepsilon_n \cdot e_1)^2 + \dots + (x_n + \varepsilon_n \cdot e_d)^2 - n^2}{2n}$$
$$= f(x) + \frac{\|x + \varepsilon_n\|}{2n} + \varepsilon_n \cdot e_1$$

proves that $||f_n - f||_{C^k(K)} \to 0$ on every compact $K \subset M$.

Theorem 3.1.4 (Morse lemma). Let p be a nondegenerate critical point of a Morse function f on a manifold M. Then, there exists a local chart (U, φ) of p such that

$$f \circ \varphi^{-1}(x_1, \dots, x_m) = f(p) - \sum_{i=1}^k x_i^2 + \sum_{i=k+1}^n x_i^2$$

for some k. This chart is called Morse chart.

Proof. □

Corollary 3.1.5. The critical points of a Morse function are isolated. In particular, on a compact manifold are finitely many critical points of a Morse function.

3.2 Pseudo-gradients

Definition 3.2.1. Let f be a Morse function on a manifold M. A pseudo-gradient adapted to f is a vector field X such that

- (a) df(X) < 0 at all noncritical points,
- (b) there is a Morse chart at critical points in which X = grad f, where the metric is induced from the chart.

Proposition 3.2.2. A pseudo-gradient always exists for any Morse functions.

Proof. Cover the manifold with charts such that every critical point is contained in a unique chart, which is Morse. For each chart (U, φ) , we can define a vector field on U by

$$X := -d\varphi^{-1}(\operatorname{grad}(f \circ \varphi^{-1})),$$

using the standard metric on $\varphi(U)$. Then, we have

$$df(X) = -\langle \operatorname{grad}(f \circ \varphi^{-1}), \operatorname{grad}(f \circ \varphi^{-1}) \rangle \leq 0,$$

where the equality holds only at critical points. With a partition of unity, the vector fields are combined and easily checked to be pseudogradient. \Box

Definition 3.2.3. Let p be a critical point of a Morse function f on a manifold M. Denote $\varphi^s: M \to M$ by the flow of a pseudo-gradient. A *stable manifold* is defined as

$$W^{s}(p) := \{ x \in M : \lim_{s \to \infty} \varphi^{s}(x) = p \},$$

and an unstable manifold is defined as

$$W^{u}(p) := \{ x \in M : \lim_{s \to -\infty} \varphi^{s}(x) = p \}.$$

Proposition 3.2.4. The stable manifolds and unstable manifolds are manifolds. Further, they are diffeomorphic open disks. Moreover, the index of p is equal to

$$\dim W^u(p) = \operatorname{codim} W^s(p)$$

.

Part III

Topological quantum field theory

Chern-Simons theory

6.1 (Lie algebra-valued forms). Let $\pi: P \to M$ be a smooth principal G-bundle for a compact Lie group G. The three vector bundles $P \times \mathfrak{g}$, TP, T^*P over P and their section spaces

$$\Gamma(P \times \mathfrak{g}) = \Omega^{0}(P, \mathfrak{g}), \qquad \Gamma(TP) = \mathfrak{X}(P), \qquad \Gamma(T^{*}P) = \Omega^{1}(P)$$

admit smooth right *G*-actions ad⁻¹, dR, $(dR^*)^{-1}$ respectively. The actions are not equivariant in the sense that they trivially act on the base space *P*. The right *G*-action on $\Omega^1(P,\mathfrak{g})$ is given in the identification $\Omega^1(P,\mathfrak{g}) := \Omega^0(P,\mathfrak{g}) \otimes_P \Omega^1(P)$ with the tensor product bundle as $\mathrm{ad}^{-1} \otimes (dR^*)^{-1}$.

$$((dR_{b}^{*})^{-1}(dR_{\sigma}^{*})^{-1}\omega)(X) = \omega(dR_{g^{-1}}dR_{h^{-1}}X) = \omega(d(R_{(gh)^{-1}})X) = ((dR_{\sigma h}^{*})^{-1}\omega)(X)$$

notation: if F is a vector space, then

$$\Omega^k(M,F) := \Gamma(M \times F) \otimes_M \Omega^k(M),$$

and if E is a vector bundle over M, then

$$\Omega^k(M,E) := \Gamma(E) \otimes_M \Omega^k(M).$$

trace and determinant.

Consider the universal enveloping algebra $U(\mathfrak{g})$. Then, $\Omega(P,U(\mathfrak{g}))$ is an algebra bundle over P because it is the tensor product of two algebra bundles over P. Concretely, if we denote the multiplication of $\omega_1 \in \Omega^k(P,U(\mathfrak{g}))$ and $\omega_2 \in \Omega^l(P,U(\mathfrak{g}))$ by $\omega_1 \wedge \omega_2 \in \Omega^{k+l}(P,U(\mathfrak{g}))$, then it is computed in the geometric wedge product convention as

$$(\omega_1 \wedge \omega_2)(X_1, \cdots, X_{k+l}) := \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \omega_1(X_{\sigma(1)}, \cdots, X_{\sigma(k)}) \omega_2(X_{\sigma(k+1)}, \cdots, X_{\sigma(k+l)})$$

and we also define $[\omega_1, \omega_2] \in \Omega^{k+l}(P, U(\mathfrak{g}))$ such that

$$[\omega_{1}, \omega_{2}](X_{1}, \cdots, X_{k+l}) := \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) [\omega_{1}(X_{\sigma(1)}, \cdots, X_{\sigma(k)}), \omega_{2}(X_{\sigma(k+1)}, \cdots, X_{\sigma(k+l)})]$$

and

$$d\omega(X_0, X_1, \dots, X_k) := \frac{1}{k+1} \sum_{0 \le i \le k} (-1)^i X_i(\omega(X_0, \dots, \widehat{X}_i, \dots, X_k))$$

$$+ \frac{1}{k+1} \sum_{0 \le i \le k} (-1)^{i+j} \omega([X_i, X_j], X_0, \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots, X_k).$$

Let $\omega \in \Omega^1(P,\mathfrak{g})$. We can embed $\Omega(P,\mathfrak{g}) \subset \Omega(P,U(\mathfrak{g}))$ to do computations. Then,

$$(\omega \wedge \omega)(X,Y) = \omega(X)\omega(Y) - \omega(Y)\omega(X) = [\omega(X),\omega(Y)]$$

and

$$[\omega,\omega](X,Y) = [\omega(X),\omega(Y)] - [\omega(Y),\omega(X)] = 2[\omega(X),\omega(Y)]$$

imply that $\omega \wedge \omega = \frac{1}{2}[\omega, \omega] \in \Omega^2(P, \mathfrak{g})$. We also have

$$d\omega(X,Y) = \frac{1}{2}(X(\omega(Y)) - Y(\omega(X))) + \frac{1}{2}\omega([X,Y]).$$

The coefficient conventions are not so important that coefficients are eventually cancelled when we write an equation of forms.

6.2 (Ehresmann connections). Let $\pi: E \to M$ be a smooth fiber bundle. An *Ehresmann connection* on E is a vector subbundle $HE \to E$ of the tangent bundle TE such that $VE \oplus HE = TE$, where $VE \to E$ is defined by the kernel of $TE \to TM$. It is the choice of the splitting section of the exact sequence

$$0 \rightarrow VE \rightarrow TE \rightarrow \pi^*TM \rightarrow 0.$$

This horizontal subbundle HE gives rise to a surjective linear bundle map $TE \rightarrow VE$ to the vertical subbundle, and also a cartesian square

$$\begin{array}{ccc}
HE & \xrightarrow{d\pi} & TM \\
\downarrow & & \downarrow \\
E & \xrightarrow{\pi} & M,
\end{array}$$

so that we have a Lie algebra bundle map $\mathfrak{X}(M) \to \mathfrak{X}(E)$ with horizontal image, called the *horizontal lift*. parallel transport

6.3 (Connection forms). Let $\pi: P \to M$ be a smooth principal *G*-bundle. Keep in mind that the vertical bundle VP is canonically trivialized by the right *G*-equivariant bundle map $P \times \mathfrak{g} \to VP \subset TP$ constructed by the image of the injective linear bundle map

$$P \times \mathfrak{q} \to T(P \times G) \to TP$$
, over P ,

where the first map is $P \times \mathfrak{g} \to T(P \times G)$: $(u,A) \mapsto ((u,e),(0,A))$ and the second map is the differential $T(P \times G) \to TP$ of the principal action $P \times G \to P$. This trivialization induces a right G-equivariant P-linear embedding $\Omega^0(P,\mathfrak{g}) \to \mathfrak{X}(P)$, and for a constant section $A \in \Omega^0(P,\mathfrak{g})$ we can assign the *fundamental vector field* $A^\# \in \mathfrak{X}(P)$.

A connection form is simply a right G-equivariant left inverse of this fundamental vector field map. More precisely, it is defined as a Lie algebra-valued 1-form $\omega \in \Omega^1(P,\mathfrak{g})$ or a P-linear map $\omega : \mathfrak{X}(P) \to \Omega^0(P,\mathfrak{g})$ which is

(i) right *G*-invariant in the sense that $\omega(dR_gX) = \operatorname{ad}_g^{-1}(\omega(X)) \in \Omega^0(P,\mathfrak{g})$ for all $X \in \mathfrak{X}(P)$,

(ii) vertical in the sense that $\omega(A^{\#}) = A$ for constant sections $A \in \mathfrak{g}$.

A connection form decompose the vector bundle TP into the direct sum of VP and the kernel, which gives rise to the corresponding horizontal subbundle. A connection form ω projects $X \in \mathfrak{X}(P)$ to the vertical one.

(a) We can also define a connection as an right G-invariant Ehresmann connection $HP \rightarrow P$.

Proof. (a) Since a right *G*-equivariant Ehresmann connection gives rise to a linear map $TP \to VP$, so by composition with $VP \cong P \times \mathfrak{g}$, we get the corresponding connection form $TP \to P \times \mathfrak{g}$.

6.4. Note that G is itself a principal G-bundle over a point. There is a natural connection form $\omega_G \in \Omega^1(G,\mathfrak{g})$ called the *Maurer-Cartan form*, defined such that $\omega_G : \mathfrak{X}(G) \to \Omega^0(G,\mathfrak{g}) : X \mapsto (g \mapsto dL_g^{-1}(X|_g))$. The right G-invariance of the Maurer-Cartan form ω_G is due to

$$\omega_G(dR_h(v)) = dL_{gh}^{-1}dR_h(v) = dL_h^{-1}dR_hdL_g^{-1}(v) = \mathrm{ad}_h^{-1}\,\omega_G(v), \qquad v \in T_gG, \ h \in G.$$

We can check ω_G is a connection form.

6.5 (Curvature form). Let P be a principal G-bundle over M. The *curvature form* of the connection form $\omega \in \Omega^1(P,\mathfrak{g})$ can be defined either the covariant derivative of ω or the Cartan structural equation $\Omega = d\omega + \frac{1}{2}[\omega,\omega] \in \Omega^2(P,\mathfrak{g})$.

The curvature form is horizontal in the sense that for every vertical vector field $X \in \mathfrak{X}(P)$ we have $\iota_X \Omega = 0 \in \Omega^1(P,\mathfrak{g})$.

6.6 (Exterior covariant derivatives). Let $\pi: P \to M$ be a smooth principal G-bundle. Let F be a faithful representation of G. We have a right G-equivariant trivial vector bundle $P \times F$ over P, where the action is given such that $(p, f)g = (pg, g^{-1}f)$, and the associated vector bundle $E := P \times_G F$ over M.

We say a *F*-valued form $\omega \in \Omega^k(P, F)$ is horizontal if $\iota_X \omega = 0$ for vertical $X \in \mathfrak{X}(P)$. We have

$$\Omega^k(M,E) \cong \Omega^k_h(P,F)^G$$
,

where $\Omega_h^k(P,F)^G$ denotes the set of right *G*-invariant horizontal *F*-valued *k*-forms on *P*, since we have a cartesian square

$$\begin{array}{ccc}
P \times F & \longrightarrow & E \\
\downarrow & & \downarrow \\
P & \longrightarrow & M.
\end{array}$$

The exterior derivative $d: \Omega^k(P,F)^G \to \Omega^{k+1}(P,F)^G$ does not preserve horizontality in general. For a connection form $\omega \in \Omega^1(P,\mathfrak{g})^G$, we can define the *exterior covariant derivative* $\nabla: \Omega^0(M,E) \to \Omega^1(M,E)$ is defined such that we have a commutative diagram

$$\Omega^{k}(M,E) \xrightarrow{\nabla} \Omega^{k+1}(M,E)$$

$$\parallel \qquad \qquad \parallel$$

$$\Omega^{k}_{h}(P,F)^{G} \xrightarrow{d_{\omega}} \Omega^{k+1}_{h}(P,F)^{G},$$

where d_{ω} is defined by

$$d_{\omega}\psi(X_0,\cdots,X_k):=d\psi(HX_0^*,\cdots,HX_k^*),$$

where $HX_i = X_i - \omega(X_i) \in \mathfrak{X}(P)$ are horizontal components of $X_i \in \mathfrak{X}(P)$. The most important case is k = 0.

$$\nabla_X s =$$

6.7 (Local expression of principal connections). Let $\pi: P \to M$ be a smooth principal G-bundle, where G is a compact Lie group. Then, we can fix $\{\varphi_\alpha\}$ be a local trivialization of π such that $\varphi_\alpha: \pi^{-1}(U_\alpha) \to U_\alpha \times G$ is right G-equivariant. Consider a bundle map

$$(\Omega^{1}(U_{\alpha},\mathfrak{g}),\mathrm{ad}^{-1}\otimes\mathrm{id})\rightarrow(\Omega^{1}(\pi^{-1}(U_{\alpha}),\mathfrak{g}),\mathrm{ad}^{-1}\otimes(dR^{*})^{-1}):A\mapsto\varphi_{\alpha}^{*}(\mathrm{pr}_{2}^{*}(\omega_{G})+\mathrm{pr}_{1}^{*}(A))$$

along the map $\pi^{-1}(U_{\alpha}) \to U_{\alpha}$, where $A \in \Omega^{1}(U_{\alpha}, \mathfrak{g})$ and the vertical term ω_{G} denotes the Maurer-Cartan form. In the physical contexts of gauge theory such as the standard model, the 1-form $A \in \Omega^{1}(U_{\alpha}, \mathfrak{g})$ is mainly used to describe principal connections.

- (a) The above local representation is a right *G*-equivariant affine bundle map.
- (b) The above local representation is injective and the image is exactly the set of connection forms on the trivial principal *G*-bundle $\pi^{-1}(U_{\alpha})$ over U_{α} .
- (c) What is the meaning of the expression $\nabla = d + A$?
- (d) Local expression of $\Omega = d\omega + \frac{1}{2}[\omega, \omega]$?
- (e) What is the meaning of the expression $dA \wedge A + \frac{2}{3}A \wedge A \wedge A$ and how can we write it in terms of principal connections.

Proof. (a) We interpret $A \in \Omega^1(U_\alpha, \mathfrak{g})$ as $A : \mathfrak{X}(U_\alpha) \to \Omega^0(U_\alpha, \mathfrak{g})$ so that for every $X \in \mathfrak{X}(U_\alpha)$,

(c)

Let $L \to M$ be a trivial line bundle.

Let $s \in \Omega^0(M, L)$, so that $ds : \Omega^1(M, L)$ or

$$ds: \mathfrak{X}(M) \to \Omega^0(M,L): X \mapsto X^{\mu} \partial_{\mu} s.$$

Let $A \in \Omega^1(M, \mathfrak{u}(1))$ or

$$A: \mathfrak{X}(M) \to \Omega^0(M, \mathfrak{u}(1)): X \mapsto X^{\mu}A_{\mu}.$$

We have

$$\nabla_X s = (\nabla s)(X) = ((d+A)s)(X) = X^{\mu} \partial_{\mu} s + X^{\mu} A_{\mu} s$$

$$S := \frac{k}{4\pi} \int_{M} \operatorname{tr} \left(dA \wedge A + \frac{2}{3} A \wedge A \wedge A \right)$$

In this case, the field equation is F = 0.

6.1 Chern-Weil theory

$$(\operatorname{Sym}^n \mathfrak{q}^*)^G \cong (\operatorname{Sym}^n \mathfrak{t}^*)^W \cong H^{2n}(BG, \mathbb{R}).$$

Given a principal G-bundle $P \rightarrow X$, this isomorphism induces a ring homomorphism

$$CW : (Sym^* \mathfrak{q}^*)^G \to H^{ev}(X, \mathbb{R}),$$

called the *Chern-Weil homomorphism*. In fact, when X is a smooth manifold, then there is a direct construction of the Chern-Weil homomorphism using connections. Choose any connection ω on P, and let Ω be the curvature.

$$(\operatorname{Sym}^n \mathfrak{g}^*)^G \otimes \Omega^{2n}(P, \mathfrak{g}^{\otimes n}) \to \Omega^{2n}(P)$$

- 6.2 Chern-Simons invariants
- 6.3 Differential cohomology

Part IV Index theory

Part V Symplectic geometry