

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Системы обработки информации и управления

Лабораторная работа №3 По курсу «Методы машинного обучения в АСОИУ» «Обработка признаков (часть 2).»

Выполнил:

ИУ5-22М Бабин А.С.

14.02.2024

Проверил:

Балашов А.М.

Лабораторная работа №3: Обработка признаков (часть 2).

Текстовое описание набора данных

Датасет laptop_price.csv (источник (https://www.kaggle.com/muhammetvarl/laptop-price)) содержит информацию о характеристиках ноутбуков.

Параметры:

- laptop_ID уникальный идентификатор ноутбука,
- Сотрапу производитель ноутбука,
- Product название модели ноутубка,
- ТуреName тип ноутбука,
- Inches размер дисплея ноутбука в дюймах,
- ScreenResolution разрешение экрана ноутбука,
- Сри процессор ноутбука,
- Ram оперативная память ноутбука,
- Метогу тип и объём жёсткого диска (или жёстких дисков) ноутбука,
- Gpu графический процессор ноутбука,
- OpSys операционная система, установленная на ноутбуке,
- Weight масса ноутбука,
- Price_euros стоимость ноутбука в евро.

Подключение библиотек

```
In [56]: import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler
    from sklearn.feature_selection import SelectFromModel
    from sklearn.linear_model import LinearRegression, Lasso
    import seaborn as sns
    import warnings
    import math

#from sklearn.preprocessing import OneHotEncoder
#from sklearn.ensemble import RandomForestRegressor
#from sklearn.model_selection import train_test_split
#from sklearn.metrics import mean_squared_error

warnings.simplefilter('ignore')
```

In [5]: !pip install gmdh
from gmdh import Combi

Requirement already satisfied: gmdh in /usr/local/lib/python3.10/dist-packages (1.0.3)
Requirement already satisfied: docstring-inheritance in /usr/local/lib/python3.10/dist-packages (from gmdh) (2.1.2)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from gmdh) (1.25.2)

Загрузка датасета из файла laptop_price.csv

In [6]: data = pd.read_csv('laptop_price.csv', encoding='windows-1251')

Выведем первые 5 строк датасета для проверки корректного импорта данных:

In [7]: data.head()

Out[7]:		laptop_ID	Company	Product	TypeName	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu
	0	1	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8GB	128GB SSD	Intel Iris Plus Graphics 640
	1	2	Apple	Macbook Air			Intel HD Graphics 6000				
	2	3	НР	250 G6	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8GB	256GB SSD	Intel HD Graphics 620
	3	4	Apple	MacBook Pro	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16GB	512GB SSD	AMD Radeon Pro 455
	4	5	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8GB	256GB SSD	Intel Iris Plus Graphics 650

Видим, что данные загружены корректно. Разбиения по строкам и столбцам произведены верно. Проблем с кодировкой не возникло.

Обработка нестандартных признаков

Ещё раз посмотрим на наши данные:

In [8]: data.head()

Out[8]:		laptop_ID	Company	Product	TypeName	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu
	0	1	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8GB	128GB SSD	Intel Iris Plus Graphics 640
	1	2	Apple	Macbook Air	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8GB	128GB Flash Storage	Intel HD Graphics 6000
	2	3	НР	250 G6	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8GB	256GB SSD	Intel HD Graphics 620
	3	4	Apple	MacBook Pro	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16GB	512GB SSD	AMD Radeon Pro 455
	4	5	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8GB	256GB SSD	Intel Iris Plus Graphics 650
4											>

Выведем типы данных для всех столбцов:

```
In [9]: data.dtypes
Out[9]: laptop_ID
                               int64
        Company
                              object
        Product
                              object
        TypeName
                              object
        Inches
                             float64
        ScreenResolution
                              object
        Cpu
                              object
        Ram
                              object
        Memory
                              object
        Gpu
                              object
        0pSys
                              object
        Weight
                              object
        Price_euros
                             float64
        dtype: object
```

Признак Ram

Заметим, что признак Ram можно сделать целочисленным, приведя все значения к однйо единице измерения и убрав её название из самих значений. Информативность от этого не уменьшится, а оцеивать целочисленный признак будет намного удобнее, чем строковый. Посмотрим, какие единицы измерения используются в значениях признака Ram.

Так как все значения измеряются в GB, просто уберем две этих буквы из значений, а информацию о единице измерения перенесём в название признака:

```
In [11]: data['Ram'] = data['Ram'].map(lambda x:int(x[:-2]))
    data.rename(columns={'Ram': 'Ram_GB'}, inplace=True)
    data.head()
```

Out[11]:		laptop_ID	Company	Product	TypeName	Inches	ScreenResolution	Cpu	Ram_GB	Memory	G_l
	0	1	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8	128GB SSD	Intel I PI Graph 6
	1	2	Apple	Macbook Air	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8	128GB Flash Storage	Intel F Graph 60
	2	3	НР	250 G6	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8	256GB SSD	Intel F Graph 6
	3	4	Apple	MacBook Pro	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16	512GB SSD	AN Rade Pro 4
	4	5	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8	256GB SSD	Intel I Pl Graph 6
,											

Признак Weight

Проведём аналогичные преобразования с признаком Weight . Проверим, есть ли значения с другой единицей измерения помимо kg:

```
In [12]: data[data['Weight'].apply(lambda x: not x.endswith('kg'))]

Out[12]: laptop_ID Company Product TypeName Inches ScreenResolution Cpu Ram_GB Memory Gpu OpS]
```

Записи с другими единицами измерения не найдены. Удаляем буквы kg из значений и информацию о единице измерения переносим в название признака:

```
In [13]: data['Weight'] = data['Weight'].map(lambda x:float(x[:-2]))
    data.rename(columns={'Weight': 'Weight_kg'}, inplace=True)
    data.head()
```

Out[13]:		laptop_ID	Company	Product	TypeName	Inches	ScreenResolution	Cpu	Ram_GB	Memory	Gl
	0	1	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8	128GB SSD	Intel I Pl Graph 6
	1	2	Apple	Macbook Air	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8	128GB Flash Storage	Intel F Graph 60
	2	3	НР	250 G6	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8	256GB SSD	Intel F Graph 6
	3	4	Apple	MacBook Pro	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16	512GB SSD	AN Rade Pro 4
	4	5	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8	256GB SSD	Intel I PI Graph 6
4											•

Признак ScreenResolution

Признак ScreenResolution заменим на несколько отдельных признаков: ScreenType, ScreenWidth, ScreenHeight. Первый признак останется строковым, два остальных будут целочисленными.

```
In [14]: data['ScreenResolution'].unique()
Out[14]: array(['IPS Panel Retina Display 2560x1600', '1440x900',
                'Full HD 1920x1080', 'IPS Panel Retina Display 2880x1800',
                '1366x768', 'IPS Panel Full HD 1920x1080',
                'IPS Panel Retina Display 2304x1440',
                'IPS Panel Full HD / Touchscreen 1920x1080',
                'Full HD / Touchscreen 1920x1080',
                'Touchscreen / Quad HD+ 3200x1800',
                'IPS Panel Touchscreen 1920x1200', 'Touchscreen 2256x1504',
                'Quad HD+ / Touchscreen 3200x1800', 'IPS Panel 1366x768',
                'IPS Panel 4K Ultra HD / Touchscreen 3840x2160',
                'IPS Panel Full HD 2160x1440',
                '4K Ultra HD / Touchscreen 3840x2160', 'Touchscreen 2560x1440',
                '1600x900', 'IPS Panel 4K Ultra HD 3840x2160',
                '4K Ultra HD 3840x2160', 'Touchscreen 1366x768',
                'IPS Panel Full HD 1366x768', 'IPS Panel 2560x1440',
                'IPS Panel Full HD 2560x1440',
                'IPS Panel Retina Display 2736x1824', 'Touchscreen 2400x1600',
                '2560x1440', 'IPS Panel Quad HD+ 2560x1440',
                'IPS Panel Quad HD+ 3200x1800',
                'IPS Panel Quad HD+ / Touchscreen 3200x1800',
                'IPS Panel Touchscreen 1366x768', '1920x1080',
                'IPS Panel Full HD 1920x1200',
                'IPS Panel Touchscreen / 4K Ultra HD 3840x2160',
                'IPS Panel Touchscreen 2560x1440',
                'Touchscreen / Full HD 1920x1080', 'Quad HD+ 3200x1800',
                'Touchscreen / 4K Ultra HD 3840x2160',
                'IPS Panel Touchscreen 2400x1600'], dtype=object)
```

In [15]: data['ScreenType'] = data['ScreenResolution'].apply(lambda x: x[:x.rfind(' ')] if x.rfind(
 data['ScreenWidth'] = data['ScreenResolution'].apply(lambda x: int(x[x.rfind(' ') + 1: x.r
 data['ScreenHeight'] = data['ScreenResolution'].apply(lambda x: int(x[x.rfind('x') + 1:]))
 data['ScreenRes'] = data['ScreenWidth'].apply(str) + 'x' + data['ScreenHeight'].apply(str)
 data[['ScreenResolution', 'ScreenType', 'ScreenWidth', 'ScreenHeight', 'ScreenRes']].head(

Out[15]:		ScreenResolution	ScreenType	ScreenWidth	ScreenHeight	ScreenRes
	0	IPS Panel Retina Display 2560x1600	IPS Panel Retina Display	2560	1600	2560x1600
	1	1440x900	-	1440	900	1440x900
	2	Full HD 1920x1080	Full HD	1920	1080	1920x1080
	3	IPS Panel Retina Display 2880x1800	IPS Panel Retina Display	2880	1800	2880x1800
	4	IPS Panel Retina Display 2560x1600	IPS Panel Retina Display	2560	1600	2560x1600
	5	1366x768	-	1366	768	1366x768
	6	IPS Panel Retina Display 2880x1800	IPS Panel Retina Display	2880	1800	2880x1800
	7	1440x900	-	1440	900	1440x900
	8	Full HD 1920x1080	Full HD	1920	1080	1920x1080
	9	IPS Panel Full HD 1920x1080	IPS Panel Full HD	1920	1080	1920x1080

In [16]: data.drop(['ScreenResolution'], axis=1, inplace=True)
 data.head()

Out[16]:		laptop_ID	Company	Product	TypeName	Inches	Cpu	Ram_GB	Memory	Gpu	OpSys	Weigh
	0	1	Apple	MacBook Pro	Ultrabook	13.3	Intel Core i5 2.3GHz	8	128GB SSD	Intel Iris Plus Graphics 640	macOS	
	1	2	Apple	Macbook Air	Ultrabook	13.3	Intel Core i5 1.8GHz	8	128GB Flash Storage	Intel HD Graphics 6000	macOS	
	2	3	НР	250 G6	Notebook	15.6	Intel Core i5 7200U 2.5GHz	8	256GB SSD	Intel HD Graphics 620	No OS	
	3	4	Apple	MacBook Pro	Ultrabook	15.4	Intel Core i7 2.7GHz	16	512GB SSD	AMD Radeon Pro 455	macOS	
	4	5	Apple	MacBook Pro	Ultrabook	13.3	Intel Core i5 3.1GHz	8	256GB SSD	Intel Iris Plus Graphics 650	macOS	
4												•

Признак Сри

Признак Сри заменим на 2 отдельных признака: Сри_type и Сри_GHz . Первый признак останется строковым, второй будет вещественным. Убедимся перед преобразованиями, что нет значений с единицей измерения, отличной от GHz.

In [18]: data['Cpu_type'] = data['Cpu'].apply(lambda x: x[:x.rfind(' ')])
 data['Cpu_GHz'] = data['Cpu'].apply(lambda x: float(x[x.rfind(' ') + 1: -3]))
 data[['Cpu', 'Cpu_type', 'Cpu_GHz']].head(10)

Out[18]:		Сри	Cpu_type	Cpu_GHz
	0	Intel Core i5 2.3GHz	Intel Core i5	2.3
	1	Intel Core i5 1.8GHz	Intel Core i5	1.8
2		Intel Core i5 7200U 2.5GHz	Intel Core i5 7200U	2.5
	3	Intel Core i7 2.7GHz	Intel Core i7	2.7
	4	Intel Core i5 3.1GHz	Intel Core i5	3.1
	5	AMD A9-Series 9420 3GHz	AMD A9-Series 9420	3.0
	6	Intel Core i7 2.2GHz	Intel Core i7	2.2
	7	Intel Core i5 1.8GHz	Intel Core i5	1.8
	8	Intel Core i7 8550U 1.8GHz	Intel Core i7 8550U	1.8
	9	Intel Core i5 8250U 1.6GHz	Intel Core i5 8250U	1.6

In [19]: data.drop(['Cpu'], axis=1, inplace=True)
 data.head()

Out[19]:		laptop_ID	Company	Product	TypeName	Inches	Ram_GB	Memory	Gpu	OpSys	Weight_kg	Pri
	0	1	Apple	MacBook Pro	Ultrabook	13.3	8	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37	
	1	2	Apple	Macbook Air	Ultrabook	13.3	8	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34	
	2	3	НР	250 G6	Notebook	15.6	8	256GB SSD	Intel HD Graphics 620	No OS	1.86	
	3	4	Apple	MacBook Pro	Ultrabook	15.4	16	512GB SSD	AMD Radeon Pro 455	macOS	1.83	
	4	5	Apple	MacBook Pro	Ultrabook	13.3	8	256GB SSD	Intel Iris Plus Graphics 650	macOS	1.37	

Признак Gpu

Признак Gpu заменим на 2 отдельных признака: Gpu_producer и Gpu_model . Оба признака будут строковыми. Однако выделение категориального признака Gpu_producer может оказаться полезным при дальнейшем анализе данных.

```
In [20]: data['Gpu_producer'] = data['Gpu'].apply(lambda x: x[:x.find(' ')])
     data['Gpu_model'] = data['Gpu'].apply(lambda x: x[x.find(' ') + 1:])
     data[['Gpu', 'Gpu_producer', 'Gpu_model']].head(10)
```

Out[20]:		Gpu	Gpu_producer	Gpu_model
	0	Intel Iris Plus Graphics 640	Intel	Iris Plus Graphics 640
	1	Intel HD Graphics 6000	Intel	HD Graphics 6000
	2	Intel HD Graphics 620	Intel	HD Graphics 620
	3	AMD Radeon Pro 455	AMD	Radeon Pro 455
	4	Intel Iris Plus Graphics 650	Intel	Iris Plus Graphics 650
	5	AMD Radeon R5	AMD	Radeon R5
	6	Intel Iris Pro Graphics	Intel	Iris Pro Graphics
	7	Intel HD Graphics 6000	Intel	HD Graphics 6000
	8	Nvidia GeForce MX150	Nvidia	GeForce MX150
	9	Intel UHD Graphics 620	Intel	UHD Graphics 620

In [21]: data.drop(['Gpu'], axis=1, inplace=True)
 data.head()

Out[21]:		laptop_ID	Company	Product	TypeName	Inches	Ram_GB	Memory	OpSys	Weight_kg	Price_euros
	0	1	Apple	MacBook Pro	Ultrabook	13.3	8	128GB SSD	macOS	1.37	1339.69
	1	2	Apple	Macbook Air	Ultrabook	13.3	8	128GB Flash Storage	macOS	1.34	898.94
	2	3	НР	250 G6	Notebook	15.6	8	256GB SSD	No OS	1.86	575.00
	3	4	Apple	MacBook Pro	Ultrabook	15.4	16	512GB SSD	macOS	1.83	2537.45
	4	5	Apple	MacBook Pro	Ultrabook	13.3	8	256GB SSD	macOS	1.37	1803.60

Признак Memory

Признак Метогу заменим на 5 отдельных признака: Memory1_GB , Memory1_type , Memory2_GB , Memory2_type , Memory2 . Признаки Memory1_GB и Memory2_GB будут целочисленными, признаки Memory1_type , Memory2_type , Memory2 - строковыми. Признак Memory2 вводим для удобства дальнейшего анализа, он будет содержать в себе и тип и объём второго жёсткого диска. Если у ноутбука нет второго жёсткого диска, то Memory2_GB присвоим 0, а в Memory2_type и Memory2 запишем '-'. При разбиении необходимо учесть, что не все значения объёма памяти имеют единицу измерения GB. Если значение записано в ТВ, перед удалением единицы измерения значение нужно перевести в GB.

```
In [22]: data['Memory'].unique()
Out[22]: array(['128GB SSD', '128GB Flash Storage', '256GB SSD', '512GB SSD',
                 '500GB HDD', '256GB Flash Storage', '1TB HDD',
                 '32GB Flash Storage', '128GB SSD + 1TB HDD',
                 '256GB SSD + 256GB SSD', '64GB Flash Storage',
                 '256GB SSD + 1TB HDD', '256GB SSD + 2TB HDD', '32GB SSD',
                 '2TB HDD', '64GB SSD', '1.0TB Hybrid', '512GB SSD + 1TB HDD',
                 '1TB SSD', '256GB SSD + 500GB HDD', '128GB SSD + 2TB HDD', '512GB SSD + 512GB SSD', '16GB SSD', '16GB Flash Storage',
                 '512GB SSD + 256GB SSD', '512GB SSD + 2TB HDD',
                 '64GB Flash Storage + 1TB HDD', '180GB SSD', '1TB HDD + 1TB HDD',
                 '32GB HDD', '1TB SSD + 1TB HDD', '512GB Flash Storage',
                 '128GB HDD', '240GB SSD', '8GB SSD', '508GB Hybrid', '1.0TB HDD',
                 '512GB SSD + 1.0TB Hybrid', '256GB SSD + 1.0TB Hybrid'],
                dtype=object)
In [23]: def get_memory1_GBz(memory):
              space_index = memory.find(' ')
              size1 = int(float(memory[:space_index - 2]))
              if memory[space index - 2:space index] == 'TB':
                  size1 *= 1024
              return size1
          def get_memory1_type(memory):
              space_index = memory.find(' ')
              plus_index = memory.find('+')
              type1 = memory[space_index+1:plus_index-1] if plus_index != -1 else memory[space_index
              return type1
          def get_memory2_GBz(memory):
              plus index = memory.find('+')
              size2 = 0
              if plus_index != -1:
                  space_index = memory.find(' ', plus_index + 3)
                  size2 = int(float(memory[plus_index + 3:space_index - 2]))
                  if memory[space_index - 2:space_index] == 'TB':
                      size2 *= 1024
              return size2
          def get_memory2_type(memory):
              plus_index = memory.find('+')
              type2 = '-'
              if plus_index != -1:
                  space_index = memory.find(' ', plus_index + 3)
                  type2 = memory[space_index + 1:]
              return type2
```

In [24]: data['Memory1_GB'] = data['Memory'].apply(get_memory1_GBz)
 data['Memory1_type'] = data['Memory'].apply(get_memory1_type)
 data['Memory2_GB'] = data['Memory'].apply(get_memory2_GBz)
 data['Memory2_type'] = data['Memory'].apply(get_memory2_type)
 data['Memory2'] = data['Memory2_type'] + (data['Memory2_type'] != '-') * (' ' + data['Memory2_type'] data['Memory', 'Memory1_type', 'Memory1_GB', 'Memory2_type', 'Memory2_GB', 'Memory2']].il

Out[24]:]: Memory		Memory1_type	Memory1_GB	Memory2_type	Memory2_GB	Memory2
	25	1TB HDD	HDD	1024	-	0	-
	26	128GB Flash Storage	Flash Storage	128	-	0	-
	27	256GB SSD	SSD	256	-	0	-
	28	256GB SSD + 256GB SSD	SSD	256	SSD	256	SSD 256GB
	29	1TB HDD	HDD	1024	-	0	-
	30	64GB Flash Storage	Flash Storage	64	-	0	-
	31	32GB Flash Storage	Flash Storage	32	-	0	-
	32	500GB HDD	HDD	500	-	0	-
	33	512GB SSD	SSD	512	-	0	-
	34	256GB Flash Storage	Flash Storage	256	-	0	-
	35	64GB Flash Storage	Flash Storage	64	-	0	-
	36	1TB HDD	HDD	1024	-	0	-
	37	128GB SSD + 1TB HDD	SSD	128	HDD	1024	HDD 1024GB
	38	1TB HDD	HDD	1024	-	0	-
	39	256GB SSD	SSD	256	-	0	-

In [25]: data.drop(['Memory'], axis=1, inplace=True)
 data.head()

Out[25]:		laptop_ID	Company	Product	TypeName	Inches	Ram_GB	OpSys	Weight_kg	Price_euros	ScreenTyp
	0	1	Apple	MacBook Pro	Ultrabook	13.3	8	macOS	1.37	1339.69	IPS Pan Retir Displa
	1	2	Apple	Macbook Air	Ultrabook	13.3	8	macOS	1.34	898.94	
	2	3	НР	250 G6	Notebook	15.6	8	No OS	1.86	575.00	Full H
	3	4	Apple	MacBook Pro	Ultrabook	15.4	16	macOS	1.83	2537.45	IPS Pan Retir Displa
	4	5	Apple	MacBook Pro	Ultrabook	13.3	8	macOS	1.37	1803.60	IPS Pan Retir Displa

 $5 \text{ rows} \times 22 \text{ columns}$

Обработка выбросов для числовых признаков

Замена выбросов

```
In [26]: fig = plt.figure(figsize=(10, 3))
    axes = fig.subplots(1, 2)
    sns.histplot(data['Weight_kg'], kde=True, color='brown', alpha=0.3, ax=axes[0])
    axes[0].title.set_text(f"Гистограмма распределения массы ноутбуков")
    axes[0].set_xlabel('Macca ноутбука')
    axes[0].set_ylabel('Количество ноутбуков')
    sns.boxplot(data['Weight_kg'], palette='pastel', ax=axes[1])
    axes[1].title.set_text(f"Диаграмма размаха массы ноутбуков")
    axes[1].set_xlabel('Macca ноутбука')
    plt.show();
```



```
In [27]: K = 1.5
    col = 'Weight_kg'
    IQR = data[col].quantile(0.75) - data[col].quantile(0.25)
    lower_boundary = data[col].quantile(0.25) - (K * IQR)
    upper_boundary = data[col].quantile(0.75) + (K * IQR)
    round(lower_boundary, 2), round(upper_boundary, 2)
```

Out[27]: (0.3, 3.5)

In [28]: data[col] = np.where(data[col] > upper_boundary, upper_boundary, np.where(data[col] < lowe</pre>

```
In [29]: fig = plt.figure(figsize=(10, 3))
    axes = fig.subplots(1, 2)
    sns.histplot(data['Weight_kg'], kde=True, color='brown', alpha=0.3, ax=axes[0])
    axes[0].title.set_text(f"Гистограмма распределения массы ноутбуков")
    axes[0].set_xlabel('Масса ноутбука')
    axes[0].set_ylabel('Количество ноутбуков')
    sns.boxplot(data['Weight_kg'], palette='pastel', ax=axes[1])
    axes[1].title.set_text(f"Диаграмма размаха массы ноутбуков")
    axes[1].set_xlabel('Масса ноутбука')
    plt.show();
```


Удаление выбросов

```
In [30]: fig = plt.figure(figsize=(11, 3))
    axes = fig.subplots(1, 2)
    sns.histplot(data['Cpu_GHz'], kde=True, color='brown', alpha=0.3, ax=axes[0])
    axes[0].title.set_text(f"Гистограмма распределения частот процессоров")
    axes[0].set_xlabel('Частота процессора')
    axes[0].set_ylabel('Количество ноутбуков')
    sns.boxplot(data['Cpu_GHz'], palette='pastel', ax=axes[1])
    axes[1].title.set_text(f"Диаграмма размаха частот процессоров")
    axes[1].set_xlabel('Частота процессора')
    plt.show();
```



```
In [31]: K = 1.5
    col = 'Cpu_GHz'
    IQR = data[col].quantile(0.75) - data[col].quantile(0.25)
    lower_boundary = data[col].quantile(0.25) - (K * IQR)
    upper_boundary = data[col].quantile(0.75) + (K * IQR)
    round(lower_boundary, 2), round(upper_boundary, 2)
```

Out[31]: (0.95, 3.75)

In [32]: data[data['Cpu_GHz'] < 0.95]</pre>

Out[32]:		laptop_ID	Company	Product	TypeName	Inches	Ram_GB	OpSys	Weight_kg	Price_euros	:
	697	705	Asus	Chromebook Flip	2 in 1 Convertible	12.5	4	Chrome OS	1.2	669.0	7
	1261	1279	Asus	ZenBook UX305CA- UBM1	Ultrabook	13.3	8	Windows 10	1.2	729.0	
	1275	1293	Asus	ZenBook UX305CA- UBM1	Ultrabook	13.3	8	Windows 10	1.2	729.0	
	1289	1307	Asus	ZenBook UX305CA- UBM1	Ultrabook	13.3	8	Windows 10	1.2	729.0	
	4 rows	× 22 coluı	mns								

In [33]: data[(data['Cpu_GHz'] < 0.95)].index
Out[33]: Int64Index([697, 1261, 1275, 1289], dtype='int64')
In [34]: data.drop(data[data['Cpu_GHz'] < 0.95].index, inplace=True)</pre>

Масштабирование признаков

Out[36]:		laptop_ID	Inches	Ram_GB	Weight_kg	Price_euros	ScreenWidth	ScreenHeight	Cpu_GHz	Memory
	0	-1.728896	-1.210175	-0.075938	-1.096730	0.307017	1.343457	1.857830	-0.006147	-0.8
	1	-1.726267	-1.210175	-0.075938	-1.147628	-0.323126	-0.918210	-0.599627	-1.004294	-0.8
	2	-1.723639	0.405176	-0.075938	-0.265396	-0.786266	0.051076	0.032290	0.393111	-0.5
	3	-1.721010	0.264711	1.496066	-0.316294	2.019464	1.989648	2.559960	0.792370	0.1
	4	-1.718381	-1.210175	-0.075938	-1.096730	0.970273	1.343457	1.857830	1.590887	-0.5

In [37]: data1.describe()

Out[37]:		lap	top_ID	Inc	hes Ra	am_GB	Weight_kg	Price_euros	s ScreenWidth	Screent
	count	1.2990	00e+03	1.299000e-	+03 1.29900	00e+03 1	.299000e+03	1.299000e+03	3 1.299000e+03	1.29900
	mean	8.7518	374e-17	-2.352066e	-16 -1.7230	25e-16 -3	3.199904e-16	1.476879e-16	6.290409e-17	2.6529
	std	1.0003	85e+00	1.000385e-	+00 1.00038	35e+00 1	.000385e+00	1.000385e+00	1.000385e+00	1.00038
	min	-1.72889	96e+00	-3.457619e-	+00 -1.25494	11e+00 -2	.250418e+00	-1.359578e+00) -1.067642e+00	-1.06303
	25%	% -8.626864e-01 -7.1		-7.185464e	-01 -8.6193	98e-01 -8	3.761720e-01	-7.519526e-01	-5.951147e-01	-5.99627
	50%	-4.3632	222e-03	4.051758e	-01 -7.5937	84e-02 3	3.999223e-02	-2.086637e-01	5.107592e-02	3.22904
	75%	8.6710)43e-01	4.051758e	-01 -7.5937	84e-02 4	1.811083e-01	5.211948e-01	5.107592e-02	3.22904
	max	1.7385	72e+00	2.371690e-	+00 1.09280)9e+01 2	.517029e+00	7.111439e+00	3.928220e+00	3.82379
4										•
	MinMa	axScaler								
In [38]:		= pd.D .head()	ataFrame	e(MinMaxS	caler().fi	t_transfo	orm(data[n	umeric_columr	ns]), columns=	numeric_
Out[38]:	lap	top_ID	Inches	Ram_GB	Weight_kg	Price_euro	s ScreenW	idth ScreenHe	ight Cpu_GHz	Memory1
	0.0	000000	0.385542	0.096774	0.241993	0.19674	11 0.482	2619 0.597	7701 0.500000	0.058
	1 0.0	000758	0.385542	0.096774	0.231317	0.12235	0.029	9911 0.094	1828 0.307692	0.058
	2 0.0	001516	0.662651	0.096774	0.416370	0.06767	9 0.22	3929 0.224	4138 0.576923	0.121
	3 0.0	002274	0.638554	0.225806	0.405694	0.39889	0.61	1964 0.74	1379 0.653846	0.247
	4 0.0	003033	0.385542	0.096774	0.241993	0.27503	0.482	2619 0.597	7701 0.807692	0.121
4										>
In [39]:	data2	.descri	be()							
Out[39]:		lapto	p_ID	Inches	Ram_GB	Weight	_kg Price_e	euros ScreenW	idth ScreenHei	ght Cp
	count	1299.00	0000 12	99.000000	1299.000000	1299.000	000 1299.00	0000 1299.000	0000 1299.000	000 1299.0
	mean	0.49	8605	0.593144	0.103007	0.472	0.16	0498 0.213	3705 0.217	530 0.!
	std	0.28	8506	0.171613	0.082113	0.209	337 0.11	8095 0.200	0.204	710 0.
	min	0.00	0000	0.000000	0.000000	0.000	0.00	0.000	0.000	0.00
	25%	0.24	9810	0.469880	0.032258	0.288	256 0.07	1730 0.094	1584 0.094	328 0.:
	50%	0.49	7346	0.662651	0.096774	0.480	427 0.13	5865 0.223	3929 0.224	138 0.!
	75%	0.74	8673	0.662651	0.096774	0.572	954 0.22	2024 0.223	3929 0.224	138 0.0

RobustScaler

max

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

1.0

Out[40]:	lá	aptop_ID	Inches	s Ram_GB	Weight_kg	Price_euros	ScreenWidth	ScreenHeight	Cpu_GHz Me	emory1_(
	0 -	0.996960	-1.4375	5 0.0	-0.8375	0.405044	2.0	2.888889	-0.285714	-(
	1 -	0.995441	-1.4375	5 0.0	-0.8750	-0.089905	-1.5	-1.000000	-1.000000	-(
	2 -	0.993921	0.0000	0.0	-0.2250	-0.453680	0.0	0.000000	0.000000	(
	3 -	0.992401	-0.1250	2.0	-0.2625	1.750094	3.0	4.000000	0.285714	٠
	4 -	0.990881	-1.4375	5 0.0	-0.8375	0.926002	2.0	2.888889	0.857143	(
4										•
In [41]:	41]: data3.describe()									
Out[41]:	laptop_ID		Inches	Ram_GI	B Weight_k	Weight_kg Price_euros		ScreenHeigh	t Cp	
	cour	ı t 1299.0	00000	1299.000000	1299.00000	0 1299.00000	00 1299.00000	0 1299.000000	1299.00000	0 1299.0
	mea	n 0.0	02522	-0.360566	0.09661	3 -0.02946	0.16389	6 -0.079042	-0.05109	9 -0.7
	st	d 0.5	78327	0.890242	1.27275	1 0.73705	0.78575	8 1.548127	1.58309	5 0.
	mi	n -0.9	96960	-3.437500	-1.50000	0 -1.68750	-0.90399	2 -1.731250	-1.73333	3 -2.
	259	% -0.4	96201	-1.000000	-1.00000	0 -0.67500	00 -0.42672	9 -1.000000	-1.00000	0 -0.
	509	% 0.0	00000	0.000000	0.00000	0.00000	0.00000	0.000000	0.00000	0.0
	759	% 0.5	03799	0.000000	0.00000	0.32500	0.57327	1 0.000000	0.00000	0
	ma	x 1.0	07599	1.750000	14.00000	0 1.82500	00 5.74961	1 6.000000	6.00000	0 1.!
4										

Отбор признаков

Метод фильтрации

```
In [42]: print(f'Bcero записей: {data.shape[0]}')
    print('----')
    for column in data.columns:
        print(f'{column}: {data[column].value_counts().count()} уникальных значений', end='\n\
```

Всего записей: 1299

laptop_ID: 1299 уникальных значений

Company: 19 уникальных значений

Product: 617 уникальных значений

TypeName: 6 уникальных значений

Inches: 18 уникальных значений

Ram_GB: 9 уникальных значений

OpSys: 9 уникальных значений

Weight_kg: 155 уникальных значений

Price_euros: 790 уникальных значений

ScreenType: 21 уникальных значений

ScreenWidth: 13 уникальных значений

ScreenHeight: 10 уникальных значений

ScreenRes: 15 уникальных значений

Cpu_type: 91 уникальных значений

Cpu_GHz: 24 уникальных значений

Gpu_producer: 4 уникальных значений

Gpu_model: 110 уникальных значений

Memory1_GB: 13 уникальных значений

Memory1_type: 4 уникальных значений

Memory2_GB: 6 уникальных значений

Memory2_type: 4 уникальных значений

Memory2: 7 уникальных значений

In [43]: data.drop('laptop_ID', axis=1, inplace=True)

In [44]: data.corr()

Out[44]:		Inches	Ram_GB	Weight_kg	Price_euros	ScreenWidth	ScreenHeight	Cpu_GHz	Memory
	Inches	1.000000	0.237365	0.865295	0.065966	-0.071240	-0.095546	0.300841	0.26
	Ram_GB	0.237365	1.000000	0.327808	0.743089	0.433292	0.424588	0.370172	0.01
	Weight_kg	0.865295	0.327808	1.000000	0.145113	-0.060131	-0.082654	0.317048	0.20
	Price_euros	0.065966	0.743089	0.145113	1.000000	0.556920	0.553162	0.430624	-0.12
	ScreenWidth	-0.071240	0.433292	-0.060131	0.556920	1.000000	0.994219	0.186185	-0.07
	ScreenHeight	-0.095546	0.424588	-0.082654	0.553162	0.994219	1.000000	0.171977	-0.08
	Cpu_GHz	0.300841	0.370172	0.317048	0.430624	0.186185	0.171977	1.000000	0.0€
	Memory1_GB	0.269681	0.015448	0.209976	-0.125784	-0.075433	-0.082520	0.064683	1.00
	Memory2_GB	0.386133	0.391656	0.460859	0.294454	0.148548	0.137872	0.223192	-0.24

Для удобства анализа полученной таблицы построим по ней тепловую карту.

In [45]: plt.figure(figsize=(7, 5))
 sns.heatmap(data1.drop('Price_euros', axis=1).corr(), vmin=-1, vmax=1, annot=True, cmap='c
 plt.title('Матрица корреляций признаков');

In [46]: plt.figure(figsize=(7, 4))
 sns.heatmap(pd.DataFrame(data.corr()['Price_euros'].sort_values(ascending=False)[1:]), vmi
 plt.title('Корреляция признаков со стоимостью ноутбуков');


```
('Weight_kg', True),
         ('ScreenWidth', True),
          ('ScreenHeight', True),
          ('Cpu_GHz', True),
          ('Memory1_GB', True),
         ('Memory2_GB', True)]
In [59]: columns3 = numeric_columns
         columns3
Out[59]: ['Inches',
          'Ram_GB',
          'Weight_kg',
          'ScreenWidth',
          'ScreenHeight',
          'Cpu_GHz',
          'Memory1_GB',
          'Memory2_GB']
```