Book 5 Proposition 8

For unequal magnitudes, the greater (magnitude) has a greater ratio than the lesser to the same (magnitude). And the latter (magnitude) has a greater ratio to the lesser (magnitude) than to the greater.

Let AB and C be unequal magnitudes, and let AB be the greater (of the two), and D another random magnitude. I say that AB has a greater ratio to D than C (has) to D, and (that) D has a greater ratio to C than (it has) to AB.

For since AB is greater than C, let BE be made equal to C. So, the lesser of AE and EB, being multiplied, will sometimes be greater than D [Def. 5.4]. First of all, let AE be less than EB, and let AE have been multiplied, and let FG be a multiple of it which (is) greater than D. And as many times as FG is (divisible) by AE, so many times let GH also have become (divisible) by EB, and E by E and E be an ultiple multiple E of E have been taken, and the triple multiple E of E have been taken, and the triple multiple E of E have becomes the first multiple of E (which is) greater

than K. Let it have been taken, and let it also be the quadruple multiple N of D—the first (multiple) greater than K.

Therefore, since K is less than N first, K is thus not less than M. And since FG and GH are equal multiples of AE and EB (respectively), FG and FH are thus equal multiples of AE and AB (respectively) [Prop. 5.1]. And FG and K are equal multiples of AE and C (respectively). Thus, FH and K are equal multiples of AB and C (respectively). Thus, FH, K are equal multiples of AB, C. Again, since GH and K are equal multiples of EB and C, and EB (is) equal to C, GH (is) thus also equal to K. And K is not less than M. Thus, GH not less than M either. And FG (is) greater than D. Thus, the whole of FH is greater than D and M (added) together. But, D and M (added) together is equal to N, inasmuch as M is three times D, and M and D (added) together is four times D, and N is also four times D. Thus, M and D (added) together is equal to N. But, FH is greater than M and D. Thus, FH exceeds N. And K does not exceed N. And FH, K are equal multiples of AB, C, and N another random multiple of D. Thus, AB has a greater ratio to D than C (has) to D[Def. 5.7].

So, I say that D also has a greater ratio to C than D (has) to AB.

For, similarly, by the same construction, we can show that N exceeds K, and N does not exceed FH. And N is a multiple of D, and FH, K other random equal multiples of AB, C (respectively). Thus, D has a greater

ratio to C than D (has) to AB [Def. 5.5].

And so let AE be greater than EB. So, the lesser, EB, being multiplied, will sometimes be greater than D. Let it have been multiplied, and let GH be a multiple of EB(which is) greater than D. And as many times as GHis (divisible) by EB, so many times let FG also have become (divisible) by AE, and K by C. So, similarly (to the above), we can show that FH and K are equal multiples of AB and C (respectively). And, similarly (to the above), let the multiple N of D, (which is) the first (multiple) greater than FG, have been taken. So, FGis again not less than M. And GH (is) greater than D. Thus, the whole of FH exceeds D and M, that is to say N. And K does not exceed N, inasmuch as FG, which (is) greater than GH—that is to say, K—also does not exceed N. And, following the above (arguments), we (can) complete the proof in the same manner.

Thus, for unequal magnitudes, the greater (magnitude) has a greater ratio than the lesser to the same (magnitude). And the latter (magnitude) has a greater ratio to the lesser (magnitude) than to the greater. (Which is) the very thing it was required to show.