

ET DE L'ELEVAGE

THE RESPIRATORY SURVEILLANCE SYSTEM IN MADAGASCAR

Norosoa RAZANAJATOVO, PhD, NIC Technical Leader

Madagascar Factsheet

Geographical location:

- Island located in the Indian Ocean off the Eastern coast of Southern Africa
- Separated from the African continent by the Mozambique Channel
- Estimated population: 30.3 millions (in 2023)
- 23 Regions, 114 Districts
- Capital: Antananarivo
- 5 bioclimates: per humid, humid, mountain, sub humid, semi arid
- Currency: Ariary
- Language: Malagasy ☺, French ☺, English ☺

History of the Respiratory Surveillance in Madagascar

Biological Sentinel Surveillance System

MoPH (+Min. Livestock)

- lead and manage the surveillance system
- Develop actions
- o reorient public health policies if needed
- organize meeting, site visit, new implementation, etc...
- disseminate newsletter

CSB_R Hospital

IPM

- NIC
- EPI

- o collect clinical data
- report/notify case by "e-IDSR"
- collect biological sample related to the cases

- Lab testing
- Data management
- develop and share : study protocol, questionnaire, SOP, reports, results
- participate in site visit, outbreak investigation

Biological Sentinel Surveillance System

Respiratory surveillance:

- ✓ 31 ILI sites
- ✓ 5 SARI sites

Geographical location of the Biological Sentinel Surveillance sites, Madagascar, 2025

NIC lab staff in 2025, 15 people

- 1 NIC Director (coming soon)
- 1 NIC Deputy head/Technical Leader
- 2 Coordinators (1 medical doctor, 1 veterinarian)
- 1 Surveillance Officer (medical doctor)
- 2 Surveillance assistants
- 2 Engineers
- 5 Laboratory technicians
- 1 Sampler agent

Other staff involved in NIC activities, 6 people

- 1 Project managers
- 2 Administrative assistant
- 1 Data manager
- 2 Lab agents

Epi unit staff in 2025, 5 people

- 1 Biological Sentinel Surveillance Coordinator (Public health specialist)
- 1 Clinical Study Technician (Medical doctors)
- 2 Data managers
- 1 Clinical Research Manager

Laboratory surveillance

Algorythm of sample collection and testing

Human laboratory Surveillance

- ✓ If outbreak or unusual situation → PCR for 14 seasonal respiratory viruses
- ✓ If suspicion of zoonosis → Avian flu, MERS-CoV

NIC Lab capacity

- Cell Culture: isolation of A/H1, A/H3, B in MDCK cell lines, RSV in Hep-2, HRV in MRC5, ADV in RD and Hep-2
- Serology:
 - detection of viral Ag by HAI
 - detection of Ab by microneutralisation

NSB3 Lab: cell isolation of avian Flu, SARS-CoV-2

NGS sequencing: SARS-CoV-2, RSV, FLU

Molecular detection

- o A/H1, A/H3, B/Vic, B/Yam
- SARS-CoV-2
- 14 seasonal respiratory viruses
- zoonotic viruses: avian Flu, MERS-CoV

Diagnostic kits

Virus	Kits
Influenza detection	CDC Multiplex Flu/SC2 kits from IRR
Influenza subtyping	CDC kits from IRR
SARS-CoV-2	CDC Multiplex Flu/SC2 kits from IRR
RSV typing/subtyping	CDC kits from IRR
Avian flu	CDC kits form IRR Publication
Multiplex seasonal respiratory viruses	Developed from publications

INFLUENZA, 2025

	Tested	Pos	% Pos
ILI	1903	712	37%
SARI	1211	129	11%
Total	3114	841	27%

Subtype	Clade 1	Clade 2
A/H1N1/pdm09	6B.1A.5a.2a	6B.1A.5a.2a.1
A/H3N2	3C.2a1b.2a.2a.3a.1	
B/Vic	V1A.3a.2	

SARS-CoV-2, 2025

	Tested	Pos	% Pos
ILI	1903	78	4%
SARI	1009	26	3%
Total	2913	104	4%

RSV, 2025

	Tested	Pos	% Pos
ILI	716	91	13%
SARI	1009	493	49%
Total	1927	584	30%

Subtype	Lineage
RSV A	AD1
RSV B	BD

Mortality surveillance

Mortality surveillance

- Since 2016
- 6 Districts of Antananarivo
- Collect of mortality data via tablets
- Codification of deaths according to CIM-10
- 2 staffs of IPM, 13 staffs of BMH and urban commune of Antananarivo

Achievements, 2023-2025

Leading causes of death from 01 January 2023 to 30 March 2025, Antananarivo

Cause of death	< 5 yrs	5-24 yrs	25-44 yrs	45-64 yrs	>65 yrs	Total
Stroke	26	23	486	1500	1288	3323
Heart Failure	34	91	309	598	875	1907
ARI (J00-J22)	436	116	189	318	384	1443
All causes	3522	1730	4931	8166	7793	26142

- In all ages, ARI → 3rd cause of deaths (6% of all deaths)
- In children < 5 years, ARI → 1st cause of deaths (13% of all deaths)</p>

Monitoring of ARI mortality pattern via web application of urban commune of Antananarivo

Animal surveillance

Animal surveillance

- Since August 2021
- In collaboration with the Ministry of Livestock and Agriculture
- 3 live-bird markets in Antananarivo
- Sample collection on a weekly basis
- Collect of throat and fecal swabs
- PCR screening of influenza A
- Three targeted avian influenza A subtypes: A/H5; A/H7 and A/H9
- Sequencing of positive/non subtypable by NGS Illumina

Genomic surveillance

Flu, RSV, SARS-CoV-2

Sequencing and Bioinformatics capacities

- Three trained people
- Two technologies:
 - Nanopore: MinION (May 2021)
 - Illumina: ISeq 100 (March 2020)
 MiniSeq (October 2023)

- Targeted sequencing/Metagenomic sequencing
- Use of LIMS
- Data storage: local server
- Tools for analysis: pipeline
 - Influenza: MIRA
 - RSV: CZID
 - SARS-CoV-2: Institut Pasteur Paris

SARS-CoV-2 sequencing

- July 2020: first SARS-CoV-2 sequences generated locally
- Samples from SARI and ILI (selection depending on situation)
- Cut off: ct=28
- From July 2020-Aug 2025: 2 267 sequences generated at IPM (samples from IPM and LA2M)
- Periodic sharing of sequences on GISAID (961 sequences uploaded)

RSV sequencing

- Implemented in 2022 with Illumina (Iseq100)
- Before 2025, sequencing under specific project
- 2025: routine sequencing under surveillance activities planned
- Samples from SARI (and ILI if required)
- Cut off: ct<28
- 184 sequences generated
- Periodic sharing of sequences on GISAID (64 sequences uploaded on GISAID)

The iSeq 100 system

Influenza sequencing

- Developed in April 2024 with MinION
- Performed routinely
- Samples from human (ILI and SARI) and avian
- Cut off: ct<28</p>
- 1769 sequences generated in country
- Periodic sharing of sequences on GISAID (All sequences uploaded)
- The NIC continue sending shipment to WHO CC (CDC Atlanta and the Francis Crick Institute London)

Reporting and Sharing

Sharing and reporting (National)

Individual report (for Sentinel sites)

Antananarivo le 28 Février 2023

Weekly report (for MoH)

Syndrome grippal

- 29 échantillons naso-pharyngés en provenance de 7/11 CSB_R étaient reçus et analysés
- S43: 3,45 % (1/29) étaient positifs à SARS-CoV2
- → La recherche de FLUA et FLU B est en cours

Figure 2 : Cas confirmés de grippe et COVID-19, CSB_R, Madagascar, S01/2021 à S43/2022, n=1861 Source: CNRG IPM

IDSR Monthly report (for MoH and local partners)

Sharing and reporting (International)

- 1. Weekly report of data to RespiMart
 - Flunet (lab data) by NIC
 - FluID (Epi data) by MoH
 - PISA by NIC
- 2. Weekly report to GIHSN (Epi and lab data)

- 4. Upload of genomic sequences on GISAID
 - Influenza, RSV, SARS-CoV-2

- 3. Shipment of specimens to WHO CC
 - 4 seasonal shipments per year for Flu
 - Shipment of RSV samples if required
 - Shipment of avian Flu samples if required

CHALLENGES

Challenges (1)

- Sites
 - Work overload (need of dedicated staff for data)
 - Completeness of CRF
 - Delay in data entry in DHIS2
 - Frequent staff turnover
 - Lack of awareness of clinicians
 - Lack of motivation
 - Electricity and water supplies

Challenges (2)

- EPI and data management
 - Ensure data quality
 - Difficulty to link Epi and Lab data (interoperability system)
 - Insufficient HR (only 3 people from EPI-RC)
 - Insufficient IT equipment for data management

Challenges (3)

- Lab
 - Delays in supplies, reagents and equipment procurement
 - Delays in reporting results (depending on priority disease and response)
 - Limited access to advanced diagnostic tools
 - Maintenance of equipment (need continuous funding)
 - Challenge of international shipment procedure

Challenges (4)

- Lab Sequencing
 - Infrastructure and equipment
 - Unstable power supplies; slow connexion (internet)
 - Outdating of equipment and reagents (e.g Illumina) need to renew
 - Cost of reagents (eg. Illumina)
 - Limited capacity on NGS sequencing (in terms of reagents)
 - Obtain sufficient materials for genetic sequencing
 - Limited qualified personnel

Challenges (5)

Other challenges

- Sustainability of fundings (Funding dependance from external partners/donors (ex. CDC coag)
- Limited support from government
- Lack of fluid communication
- Insufficient capacity buildings
- Lack of routine refresh trainings

MINISTERE DE L'AGRICULTURE ET DE L'ELEVAGE