Розглянемо приклади шифрування, які ґрунтуються на техніці підстановок.

а) Шифр Цезаря. Цей шифр відомий з давніх часів і приписують його авторство Юлію Цезарю — римському імператору. Цей шифр базується на заміні кожної літери алфавіту новою літерою цього ж алфавіту, яка знаходиться на три позиції правіше.

a	b	С	d	e	f	g	h	i	j	k	1	m	
D	E	F	G	Н	I	J	K	L	M	N	0	P	
n	0	p	q	r	S	t	u	v	w	x	У	\mathbf{z}	
Q	R	S	\mathbf{T}	U	V	W	X	Y	\mathbf{z}	Α	В	C	

Дано відкритий текст: "meeting will in twelve" криптограма: PHHWLQJ ZLOO LQ WZHOYH

Зауважимо, що алфавіт "закручений" так, що після літери Z наступною буде йти літера A.

Якщо кожній літері припишемо числовий відповідник $(n(a) = 0, n(b) = 1, \ldots)$, то цей шифр можна подати у такому вигляді. Кожна літера відкритого тексту p замінюється літерою тексту зашифрованого q на підставі правила:

$$q = f(p) = n(p) + 3 \pmod{26}$$
.

Зсув літер в алфавіті може мати довільну величину, а це означає, що загальний вигляд алгоритму є таким:

$$q = f(p) = n(p) + k \pmod{26},$$

де $k \in \{1, 2, \dots, 26\}$. Алгоритм дешифрації досить простий:

$$p = g(q) = n(q) - k \pmod{26}$$
.

Якщо відомо, що даний текст зашифрований шифром Цезаря, то його криптоаналіз не складає труднощів. Цей криптоаналіз можна виконати як методом частотного аналізу, так і методом простого перебору, випробовуючи 25 можливих ключів.

Нижче на рисунку показані результати застосування методу перебору до зашифрованого тексту. В даному випадку відкритий текст дістаємо на третьому кроці перебору.

Ключ	PHHWLQJ	ZLOO	LQ	WZHOYH					
1	oggvkpi	yknn	kp	vygnxg					
2	nffujog	xjmm	jo	uxfmwf					
3	meeting	will	in	twelve					
4	lddshmc	vhkk	hm	svdkud					
20	:	:	- :						
25									

Рис. 2.6. Криптоаналіз шифру Цезаря методом перебору

Застосування методу перебору стало можливим, оскільки:

- 1) відомий алгоритм шифрування і дешифрування;
- 2) існує тільки 25 можливих ключів;
- 3) мова відкритого тексту відома і легко розпізнається.

Метод підстановки стає практичним, якщо існує великий простір для вибору ключів. Наприклад, американський стандартний алгоритм DES використовує 56-бітовий ключ, що дає простір вибору 2^{56} , або більше $7 \cdot 10^{16}$ можливих ключів.

Істотним є також третя риса. Якщо не відома мова відкритого тексту, то можемо не розпізнати результати розшифрування. Більше того, криптограма може бути яким-небудь способом скорочена або стиснена, а це додаткові перешкоди на шляху розшифрування. Якщо стиснемо файл, а потім його зашифруємо простим шифром підстановки, то ВТ може бути не розпізнаний цим методом.

Криптоаналіз шифру Цезаря можна ускладнити, якщо поміняти звичний порядок літер в алфавіті. Наприклад, нехай порядок літер змінений таким чином:

a	b	c	\mathbf{d}	e	f	g	h	i	j	k	l	m	n	0	p	q	r	S	t	u	v	w	x	у	z	
a	d	g	j	m	p	S	V	У	b	е	h	k	n	q	t	w	Z	С	f	i	1	О	r	u	Х	

Тоді шифрограма буде такою: KMMFYUS OYHH YU FOMHLM і її криптоаналіз стає складнішим.

- б) Блоковий спосіб шифрування з використанням техніки підстановок. Шифрування слова $p = y_1 y_2 \dots y_m$ у алфавіті зі звичним порядком літер виконується таким чином:
 - слово p розбивається на блоки по t символів в кожному блоці;
- кожний символ в блоці перетворюється за допомогою підстановок $\alpha_1, \alpha_2, \ldots, \alpha_t,$ кожна з яких має вигляд:

$$\alpha_i(k) = k + j_i \pmod{26},$$

де k – номер літери в алфавіті X, а $k+j_i \pmod{26}$ – її відповідник в алфавіті X при підстановці $\alpha_i,\ i=1,2,\ldots,t.$

Тоді, коли t=3, $\alpha_1(k)=k+3$, $\alpha_2(k)=k+7$, $\alpha_3(k)=k+10$, слово $p=thi\ sci\ phe\ ris\ sec\ ure\ перетворюється до слова$

$$q = wos vjs soo upc vlm xyo.$$

Дійсно, літера t має номер k=19 і $\alpha_1(k)=19+3=22$, а це номер літери w в алфавіті X, літера h має номер k=7 і $\alpha_2(k)=7+7=14$, а це номер літери o в алфавіті X, літера i має номер k=8 і $\alpha_3(k)=8+10=18$, а це номер літери s в алфавіті X, літера s має номер k=18 і $\alpha_1(k)=18+3=21$, а це номер літери s в алфавіті s і т. д.

Дешифрація виконується очевидним чином:

$$\alpha^{-1}(k) = \begin{cases}
k - j_i, & \text{якщо } k - j_i \ge 0, \\
k - j_i + 26, & \text{якщо } k - j_i < 0.
\end{cases}$$

Наприклад, літери о і с мають таких відповідників:

$$\alpha_3^{-1}(14)=14-10=4$$
, а це літера $e,$ $\alpha_3^{-1}(2)=2-10+26=18$, а це літера $s.$

Перевагою такого способу шифрування є те, що частота входження літер в текст шифрограми скрита, а це значно ускладнює криптоаналіз такого тексту. ♠.