Operaciones algebraicas con sucesos en probabilidad

	UNIÓN	INTERSECCIÓN
Asociativa	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Conmutativa	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Idempotente	$A \cup A = A$	$A \cap A = A$
Distributiva	$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$	$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
Complementarios	$A \cup A^c = \Omega$	$A \cap A^c = \emptyset$
Suceso Imposible	$A \cup \emptyset = A$	$A \cap \varnothing = \varnothing$
Leyes de Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B} P[\overline{A \cup B}] = 1 - P[A \cup B]$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

Propiedades de la Probabilidad

1.
$$P(\overline{A}) = 1 - P(A), \forall A \in \beta$$

2.
$$P(\emptyset) = 0$$

3.
$$\forall A, B \in \beta, A \subset B \Rightarrow P(A) \leq P(B)$$

4.
$$\forall A \in \beta$$
, $0 \le P(A) \le 1$

5.
$$\forall A, B \in \beta$$
, $P(A - B) = P(A) - P(A \cap B)$ Nota $P[A \cap \overline{B}] = P[A - B] = P[A] - P[A \cap B]$

6.
$$\forall A, B \in \beta$$
, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

7.
$$\forall A,B,C \in \beta$$
,
 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$

Propiedades de la probabilidad condicionada

$$P\left(\overline{A}/B\right) = 1 - P\left(A/B\right)$$

$$P(E/B)=1$$

$$P(A \cap B) = P(A)P(B/A) = P(B)P(A/B) \ge 0$$

Teorema de la Probabilidad Compuesta

$$P(A \cap B \cap C) = P(A)P(B/A)P(C/A \cap B)$$

Independencia de sucesos

A y B son independientes $\langle P(A \cap B) = P(A)P(B)$

 $A_1, A_2, ..., A_n$ son independie ntes $\Leftrightarrow P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) P(A_2) ... P(A_n)$

Teorema de la Probabilidad Total

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B/A_i)$$

Teorema de Bayes

$$P\left(\frac{A_{i}}{B}\right) = \frac{P(A_{i})P\left(\frac{B}{A_{i}}\right)}{\sum_{i=1}^{n} P(A_{i})P\left(\frac{B}{A_{i}}\right)}$$