Package 'kgraph'

September 20, 2024

Title Knowledge Graphs Constructions and Visualizations

Version 1.0.0

Description Knowledge graphs enable to efficiently visualize and gain insights into largescale data analysis results, as p-values from multiple studies or embedding data matrices. The usual workflow is a user providing a data frame of association studies results and specifying target nodes, e.g. phenotypes, to visualize. The knowledge graph then shows all the features which are significantly associated with the phenotype, with the edges being proportional to the association scores. As the user adds several target nodes and grouping information about the nodes such as biological pathways, the construction of such graphs soon becomes complex. The 'kgraph' package aims to enable users to easily build such knowledge graphs, and provides two main features: first, to enable building a knowledge graph based on a data frame of concepts relationships, be it p-values or cosine similarities; second, to enable determining an appropriate cut-off on cosine similarities from a complete embedding matrix, to enable the building of a knowledge graph directly from an embedding matrix. The 'kgraph' package provides several display, layout and cut-off options, and has already proven useful to researchers to enable them to visualize large sets of p-value associations with various phenotypes, and to quickly be able to visualize embedding results. Two example datasets are provided to demonstrate these behaviors, and several live 'shiny' applications are hosted by the CELEHS laboratory and Parse Health, as the KESER Mental Health application <https://keser-mental-health.parse-health.</pre> org/> based on Hong C. (2021) <doi:10.1038/s41746-021-00519-z>.

Imports amap, bslib, data.table, dplyr, DT, grid, htmltools, igraph, magrittr, Matrix, pROC, plyr, RColorBrewer, reshape2, rsvd,

sgraph, shiny, text2vec

Depends R (>= 3.5.0)

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

URL https://gitlab.com/thomaschln/kgraph

BugReports https://gitlab.com/thomaschln/kgraph/-/issues

2 build_kgraph

NeedsCompilation no

Author Thomas Charlon [aut, cre] (https://orcid.org/0000-0001-7497-0470),
Hongyi Yuan [ctb] (https://orcid.org/0000-0003-2597-1973),
CELEHS [aut] (https://celehs.hms.harvard.edu),
PARSE Health [aut] (https://parse-health.org)

Maintainer Thomas Charlon <charlon@protonmail.com>

Repository CRAN

Date/Publication 2024-09-20 14:30:02 UTC

Contents

build_kgraph	2
build_kgraph_from_fit	4
cov_simi	4
df_cuis_pairs	5
df_embeds_dict	5
df_pval	6
df_pval_dict	7
dist_matrix	7
fit_embeds_kg	8
fit_embeds_to_pairs	9
gen_df_notpairs	
get_cutoff_threshold	
get_sgraph	
m_embeds	
norm_inprod	
project_pairs	
reshape_multiple_traits	
reshape_multiple_traits_dict	
sparse_encode	
stddev_mean	
%<%	
%\$%	
%>%	10

17

build_kgraph Build a knowledge graph

Description

Index

Build a knowledge graph

build_kgraph 3

Usage

```
build_kgraph(
    selected_concepts,
    df_weights,
    df_dict = NULL,
    rm_single_groups = TRUE,
    df_sup_nodes = NULL,
    display_val_digits = 3,
    display_val_str = "\nCosine similarity: ",
    str_other = "Other",
    highlight_mult = TRUE,
    multiline_labs = TRUE,
    autoscale = TRUE,
    spring_weights = TRUE,
    n_max_edges = 1000,
    ...
)
```

Arguments

selected_concepts

Concepts of interest

df_weights Data frame with columns concept1, concept2, and weight; typically the df_projs

slot of the object returned by function fit_embeds_to_pairs

df_dict Dictionary data frame, with columns id (matched to concepts in df_weights),

desc (for labels), color, and optionally group.

rm_single_groups

Should groups with only one element be removed

df_sup_nodes Data frame of supplementary nodes (work in progress)

display_val_digits

Number of weight digits to be displayed in labels

display_val_str

String to prefix to the displayed value

str_other String to use for missing groups

highlight_mult Highlight nodes connected to multiple nodes of interest.

multiline_labs Use multiline labels (shown when hovered on)

autoscale Perform scaling with sgraph::scale_graph spring_weights Use spring weights (reverts edges weights)

n_max_edges Threshold on number of edges

... Passed to scale_kgraph

Value

Knowledge graph, list of slots df_nodes and df_links

4 cov_simi

```
build_kgraph_from_fit Build a knowledge graph from a fit object
```

Description

Computes similarities for nodes of interest on the fly to avoid having to deal with very large similarity matrices when number of features is large.

Usage

```
build_kgraph_from_fit(selected_concepts, m_embeds, fit_kg, ...)
```

Arguments

```
selected_concepts
```

Concepts of interest

m_embeds Embeddings matrix

fit_kg Fit object

... Passed to build_kgraph

Value

Knowledge graph, list of slots df_nodes and df_links

cov_simi

Covariance similarity

Description

Covariance similarity

Usage

```
cov_simi(m_data)
```

Arguments

 m_{data}

Data matrix

Value

Similarity matrixd

df_cuis_pairs 5

df_cuis_pairs

A dataset containing CUIs pairs

Description

The dataframe provides clinician-curated pairs of related of medical concepts, useful to evaluate the performance of a machine learning model. It's an extract of the PrimeKG database (see vignette for URL).

Usage

```
data("df_cuis_pairs")
```

Format

A dataframe with 2358 rows and 4 columns.

Details

Each row defines a relationship between two CUIs, along with their textual descriptions.

Examples

```
data('m_embeds')
data('df_cuis_pairs')

fit_kg = fit_embeds_kg(m_embeds, 'cosine', df_pairs = df_cuis_pairs[c(1, 3)])
pROC::plot.roc(fit_kg$roc, print.auc = TRUE)
```

df_embeds_dict

A dictionary for the m_embeds object

Description

Dataframe with columns id (for the CUI), desc (textual description), group and color (higher level groups)

Usage

```
data("df_embeds_dict")
```

Format

A dataframe with 1118 rows and 4 columns.

6 df_pval

Details

Each row corresponds to one rowname of m_embeds.

Examples

df_pval

A dataset containing GWAS p-values

Description

This dataframe provides association scores between SNPs and mantal health-related phenotypes.

Usage

```
data("df_pval")
```

Format

A dataframe with 364 rows and 3 columns

Details

Each row defines an association between a SNP and a phenotype. Downloaded from GWAS Catalog at https://www.ebi.ac.uk/gwas/efotraits/EFO_0007623.

Examples

```
data('df_pval')
kg_obj = build_kgraph('EFO_0007623', df_pval)
```

df_pval_dict 7

df_pval_dict

A dictionary for the df_pval object

Description

Dataframe with columns id (for the phenotype or SNP identifier), desc (textual description), group, and color

Usage

```
data("df_pval_dict")
```

Format

A dataframe with 333 rows and 4 columns.

Details

Row IDs correspond to the identifiers found in columns concept1 and concept2 of the df_pval object.

Examples

```
data('df_pval')
data('df_pval_dict')

kg_obj = build_kgraph(c('EFO_0007623', 'EFO_0007624'), df_pval, df_pval_dict)
```

dist_matrix

 $dist_matrix$

Description

Dispatch of amap::Dist, text2vec::sim2, and norm_inprod methods.

Usage

```
dist_matrix(data, method = "euclidean", n_cores = 1)
```

Arguments

data	Rectangular numeric matrix [Observations, Features]
method	Methods accepted by amap::Dist or cosine and norm_inprod

n_cores Number of cores

8 fit_embeds_kg

Value

Dissimarility symmetric matrix

fit_embeds_kg

Fit embeddings to a kgraph object

Description

Build a fit_kgraph object to act as an intermediate between the embeddings and the knowledge graph. If possible (i.e. if number of features is not too large) compute all pair-wise similarities, otherwise determine the similarity threshold using a number of random pairs. If a data frame of known pairs is available, call fit_embeds_to_pairs which will produce an AUC and use the threshold_projs parameter as the specificity threshold (e.g. the default specificity of 0.9 corresponds to 10 percent false positives). Otherwise take the quantile of similarity values corresponding to threshold_projs.

Usage

```
fit_embeds_kg(
   m_embeds,
   similarity = c("cosine", "inprod", "cov_simi", "norm_inprod"),
   threshold_projs = 0.9,
   df_pairs = NULL,
   df_pairs_cols = 1:2,
   max_concepts = 1000,
   ...
)
```

Arguments

m_embeds Embedding matrix, rownames must be able to be matched to concepts in df_pairs similarity Similarity measure to be computed. One of 'inprod' (inner product), 'cosine', 'cov_simi' (covariance similarity), 'norm_inprod' (normalized inner product). threshold_projs

Specificity threshold to use for projections. (default 0.9 is equivalent to 10 percent false positives, and 0.95 to 5 percent false positives)

df_pairs

Known relationships data frame

df_pairs_cols Columns of df_pairs for identifiers, that map to m_embeds rownames

max_concepts Maximum number of concepts to compute all pair-wise similarities

Passed to gen_df_notpairs

Value

Knowledge graph, list of slots df_nodes and df_links

fit_embeds_to_pairs 9

```
fit_embeds_to_pairs Fit embeds to pairs
```

Description

Fit an embeddings matrix to a dataframe of known pairs of related concepts. Depending on matrix dimension, either compute all pair-wise similarities, or only those existing in the known pairs.

Usage

```
fit_embeds_to_pairs(
   m_embeds,
   df_pairs,
   df_pairs_cols = 1:2,
   similarity = c("inprod", "cosine", "cov_simi", "norm_inprod"),
   threshold_projs = 0.9,
   max_concepts = 1000
)
```

Arguments

m_embeds	Embedding matrix, rownames must be able to be matched to concepts in df_pairs
df_pairs	Known relationships data frame
df_pairs_cols	Columns of df_pairs for identifiers, that map to m_embeds rownames
similarity	Similarity measure to be computed. One of 'inprod' (inner product), 'cosine', 'cov_simi' (covariance similarity), 'norm_inprod' (normalized inner product).
threshold_projs	
	Specificity threshold to use for projections. (default 0.9 is equivalent to 10 percent false positives, and 0.95 to 5 percent false positives)
max_concepts	Maximum number of concepts to compute all pair-wise similarities

Value

List object with slots roc (pROC::roc return), sims and truth (to recompute partial AUCs using pROC), threshold_5fp (5 percent false positive threshold), n_concepts (length of concepts in embeddings), and df_projs (data frame listing pair-wise concepts similarities above threshold_projs).

10 get_cutoff_threshold

gen_df_notpairs

Generate null pairs

Description

Generate null pairs

Usage

```
gen_df_notpairs(
  ids,
  df_pairs = NULL,
  n_notpairs = if (is.null(df_pairs)) 1000 else nrow(df_pairs)
)
```

Arguments

ids Identifiers to sample from

df_pairs Known pairs data frame, to make sure no null pairs are in

n_notpairs Direct parameter to set number of null pairs returned, bypasses parameter type.

Value

Data frame with columns concept1, concept2, weight

```
get_cutoff_threshold Get cut-off threshold
```

Description

Get cut-off threshold

Usage

```
get_cutoff_threshold(roc_obj, specificity_lvl = 0.95)
```

Arguments

Specificity threshold (default 0.95 is equivalent to 5 percent false positives, and 0.9 to 10 percent false positives)

Value

Similarity value threshold

get_sgraph 11

get_sgraph

Wrapper to build a sgraph object fromk a kgraph object

Description

Wrapper to build a sgraph object fromk a kgraph object

Usage

```
get_sgraph(
  l_graph,
  colors_mapping = NULL,
  label_attrs = "label",
  igraph = NULL,
  ...
)
```

Arguments

1_graph List of df_nodes and df_links dataframes
colors_mapping Output of get_colors_map

label_attrs Column name of df_nodes that will be displayed igraph Intermediary igraph object, if already computed

... Passed to sgraph::sgraph_clusters

Value

Sgraph htmlwidget object

 m_{embeds}

A dataset containing medical word embeddings

Description

The embedding matrix has been fitted using Glove word embeddings on 1,700 open-access publications related to mental health.

Usage

```
data("m_embeds")
```

Format

A matrix with 1122 rows and 100 columns.

project_pairs

Details

Each row is the embedding vector of a CUI in 100 Glove dimensions.

Examples

```
data('m_embeds')
fit_kg = fit_embeds_kg(m_embeds, 'cosine')
```

norm_inprod

norm_inprod

Description

Normalized inner product with transposed input matrix

Usage

```
norm_inprod(m)
```

Arguments

m

Numeric matrix

Value

Numeric matrix

project_pairs

Predict known pairs

Description

Predict known pairs

Usage

```
project_pairs(m_simi, threshold)
```

Arguments

m_simi

Similarity matrix

threshold

Similarity value threshold

Value

Data frame with columns concept1, concept2, weight

reshape_multiple_traits

reshape_multiple_traits

Reshape multiple traits in example data

13

Description

Reshape multiple traits in example data

Usage

```
reshape_multiple_traits(df_pval)
```

Arguments

df_pval

Data frame of p-values

Value

Reshaped data frame

```
reshape_multiple_traits_dict
```

Reshape multiple traits in example data dictionary

Description

Reshape multiple traits in example data dictionary

Usage

```
reshape_multiple_traits_dict(df_dict)
```

Arguments

df_dict

Data frame of p-values dictionary

Value

Reshaped data frame

sparse_encode

sparse_encode sparse_encode

Description

Sparse encoding method by closest neighbors. Three methods are available: - hard encoding: each patient's closest neighbors are set to 0 - soft encoding: each patient's closest neighbors distances are transformed by the exponential norm, others are set to 0 - epsilon encoding: each patient's neighbors closer than the mean of the distance matrix are transformed by the exponential norm and others are set to 0.

Usage

```
sparse_encode(
   m_data,
   dist_method = "norm_inprod",
   encoding = c("epsilon", "hard", "soft"),
   sigma,
   n_neighbors = floor(nrow(m_data)/10),
   scale_obs = TRUE
)
```

Arguments

m_data Numeric matrix

dist_method Distance method passed to qb_dist

encoding Encoding method: one of hard, soft, or epsilon

sigma Parameter for the exponential norm transform. Default is mean of std. dev. of

distance matrix columns

n_neighbors Number of neighbors (ignored in epsilon encoding)

scale_obs Scale by observations

Value

Projected matrix

stddev_mean 15

stddev_mean stddev_mean

Description

Get mean of standard deviations of matrix columns

Usage

stddev_mean(m)

Arguments

n Numeric matrix

Value

Mean of standard deviations of matrix columns

%<>% Assignment pipe

Description

Pipe an object forward into a function or call expression and update the 'lhs' object with the resulting value. Magrittr imported function, see details and examples in the magrittr package.

Arguments

1hs An object which serves both as the initial value and as target.

rhs a function call using the magrittr semantics.

Value

None, used to update the value of lhs.

16 %>%

|--|

Description

Expose the names in 'lhs' to the 'rhs' expression. Magrittr imported function, see details and examples in the magrittr package.

Arguments

1hs A list, environment, or a data.frame.

rhs An expression where the names in lhs is available.

Value

Result of rhs applied to one or several names of lhs.

Description

Pipe an object forward into a function or call expression. Magrittr imported function, see details and examples in the magrittr package.

Arguments

1hs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.

Value

Result of rhs applied to lhs, see details in magrittr package.

Index

```
%<>%, 15
%>%, 16
%$%, 16
build_kgraph, 2
\verb|build_kgraph_from_fit, 4|
cov\_simi, 4
df_cuis_pairs, 5
df_embeds_dict, 5
df_pval, 6
df_pval_dict, 7
{\tt dist\_matrix}, {\color{red} 7}
\texttt{fit\_embeds\_kg}, \textcolor{red}{8}
\verb|fit_embeds_to_pairs|, 9
gen_df_notpairs, 10
{\tt get\_cutoff\_threshold}, {\tt 10}
get\_sgraph, 11
m_{embeds}, 11
norm_inprod, 12
project_pairs, 12
reshape_multiple_traits, 13
reshape_multiple_traits_dict, 13
sparse_encode, 14
stddev_mean, 15
```