

SCHWINGUNGSFORMEN AN GEKOPPELTEN TORSIONSPENDELN MIT ZUSATZMASSE

Im Rahmen der Veranstaltung: Modellierung und

Simulation physikalischer Systeme

Dozent: Prof. Dr. Stefan Kontermann SoSe2024

Hunter Dennis und Daniele Alice

11.07.2024

INHALT

- 1. Aufgabenstellung
- VerschiedeneSchwingungsfälle
- 3. Animation
- 4. Programm Vorführung
- 5. Quellen

Abb. 1: Aufbau Pohl'sches Rad [1]

1. AUFGABENSTELLUNG

Abb. 2a: Skizze zwei gekoppelter Torsionspendel

Abb. 2b : Skizze Torsionspendel 1 mit Zusatzmasse m

1. AUFGABENSTELLUNG: UNTERSUCHUNG DES EINFLUSSES EINER ZUSATZMASSE

Parameter:

- Trägheitsmoment: J
- Torsionsfederkonstante der beiden Rückstellfedern: D*
- Torsionsfederkonstante der Kopplungsfeder: DD*
- Dämpfungskoeffizient: b*
- Zusatzmasse: m
- Abstand Zusatzmasse von Achse: r_z

Anfangsbedingungen:

- $\varphi_1(0)$ und $\dot{\varphi}_1(0)$
- $\varphi_2(0)$ und $\dot{\varphi}_2(0)$

$$\ddot{\varphi_1} + \frac{b^*}{J}\dot{\varphi_1} + \frac{D^*}{J}\varphi_1 + \frac{D^{**}}{J}(\varphi_1 - \varphi_2) - \frac{m \cdot g \cdot r_z \cdot \sin(\varphi_1)}{J} = 0$$

2. VERSCHIEDENE SCHWINGUNGSFÄLLE

Anfangsbedingungen:

 $\phi_1(0) = 0^{\circ}$

 $\phi_2(0) = 0^{\circ}$

 $\omega_1(0) = 0^{\circ}/s$

 $\omega_2(0) = 0^{\circ}/s$

Systemparameter:

 $J = 10.00 \text{kgm}^2$

 $D_1 = 0.10Nm$

 $D_2 = 0.01Nm$

b = 0.20Nms

 $\alpha_{\rm e,max}$ = 50.0°

m = 0g

 $d_m = 100mm$

 $f_e = 1.0Hz$

Anfangsbedingungen:

$$\phi_1(0) = 0^{\circ}$$

$$\phi_2(0) = 0^\circ$$

$$\omega_1(0) = 0^{\circ}/s$$

$$\omega_2(0) = 0^{\circ}/s$$

Systemparameter:

$$J = 10.00 \text{kgm}^2$$

$$D_1 = 0.10Nm$$

$$D_2 = 0.01Nm$$

$$b = 0.20Nms$$

$$\alpha_{\rm e,max}$$
 = 50.0°

$$m = 1000g$$

$$d_m = 100mm$$

$$f_e = 1.0Hz$$

Abb.5 Ungedämpfte Erzwungene Schwingung ohne Zusatzmasse

Anfangsbedingungen:

 $Systemparameter: \\ J = 10.00kgm^2 \\ D_1 = 0.10Nm \\ D_2 = 0.10Nm \\ b = 0.00Nms \\ \alpha_{e,max} = 50.0^{\circ} \\ m = 0g \\ d_m = 100mm \\ \\$

 $\phi_1(0) = 0^{\circ}$ $\phi_2(0) = 0^{\circ}$ $\omega_1(0) = 0^{\circ}/s$ $\omega_2(0) = 0^{\circ}/s$

 $f_e = 0.2Hz$

Anfangsbedingungen:

 $\phi_1(0) = 0^{\circ}$

 $\phi_2(0) = 0^{\circ}$ $\omega_1(0) = 0^{\circ}/s$

 $\omega_2(0) = 0^{\circ}/s$

Systemparameter:

 $J = 10.00 \text{kgm}^2$

 $D_1 = 0.10Nm$

 $D_2 = 0.10Nm$

b = 0.00Nms

 $\alpha_{e.max} = 50.0^{\circ}$

m = 1000g

 $d_m = 100mm$

 $f_e = 0.2Hz$

Abb.6 Ungedämpfte Erzwungene Schwingung mit Zusatzmasse

Erregerauslenkung und gekoppelte Oszis Erreger 2000 1000 α_e / Grad -1000 -2000

100

t/s

Anfangsbedingungen:

 $\phi_1(0) = 0^{\circ}$

 $\phi_2(0) = 0^{\circ}$

 $\omega_1(0) = 0^{\circ}/s$

 $\omega_2(0) = 0^{\circ}/s$

Systemparameter:

 $J = 10.00 \text{kgm}^2$

 $D_1 = 0.10Nm$

 $D_2 = 0.10Nm$

b = 0.20Nms

 $\alpha_{e,max} = 50.0^{\circ}$

m = 0g

 $d_m = 100mm$

 $f_e = 0.2Hz$

200

250

150

9

-100

-150

0

50

Anfangsbedingungen:

 $\phi_1(0) = 0^{\circ}$

 $\phi_2(0) = 0^{\circ}$

 $\omega_1(0) = 0^{\circ}/s$ $\omega_2(0) = 0^{\circ}/s$

Systemparameter:

 $J = 10.00 \text{kgm}^2$

 $D_1 = 0.10Nm$

 $D_2 = 0.10Nm$

b = 0.20Nms

 $\alpha_{\rm e,max}$ = 50.0°

m = 1000g

 $d_m = 100mm$

 $f_e = 0.2Hz$

Anfangsbedingungen:

 $\phi_1(0) = 0^{\circ}$

 $\phi_2(0) = 0^{\circ}$ $\omega_1(0) = 0^{\circ}/s$

 $\omega_2(0) = 0^{\circ}/s$

Systemparameter:

 $J = 10.00 \text{kgm}^2$

 $D_1 = 0.10Nm$

 $D_2 = 0.00Nm$

b = 1.00Nms

 $\alpha_{\text{e.max}} = 50.0^{\circ}$

m = 1000g

 $d_m = 100mm$

 $f_e = 0.1Hz$

Abb.10a Symmetrische Normalschwindung ohne Zusatzmasse

12

Abb.10b Symmetrische Normalschwindung mit Zusatzmasse

13

Anfangsbedingungen:

Abb.11a Antisymmetrische Normalschwindung ohne Zusatzmasse

Abb.11b Antisymmetrische Normalschwindung mit Zusatzmasse

 $\phi_1(0) = 50^{\circ}$

 $\phi_2(0) = 0^\circ$

 $\omega_1(0) = 0^{\circ}/s$ $\omega_2(0) = 0^{\circ}/s$

Systemparameter:

 $J = 10.00 \text{kgm}^2$

 $D_1 = 0.10Nm$

 $D_2 = 0.10Nm$

b = 1.000Nms

 $\alpha_{\text{e,max}} = 5.00^{\circ}$ m = 0g

 $d_m = 100$ mm

 $f_e = 0.10Hz$

14

Abb.12 Schwebung ohne Zusatzmasse

Systemparameter

Trägheitsmoment J [kgm^2]	10 🕏
Federkonstante 1 D [Nm]	9.81
Federkonstante 2 [Nm]	1 🛧
Bremse b [Nms]	0 🕏
Erregeramplitude alpha_emax [grad]	5 🕏
Masse [g]	1000
Abstand der Masse [mm]	1000 🕏
Erregerfrequenz [Hz]	0.2

Anfangsbedingungen

Auslenkungswinkel 1 t=0 [grad]	0
Auslenkungswinkel 2 t=0 [grad]	0 🗘
Winkelgeschwindigkeit 1 t=0 [grad/s]	0 🛊
Winkelgeschwindigkeit 2 t=0 [grad/s]	0 🛊

15

Abb.12 Chaotisches Verhalten, wenn $m \cdot r_z \cdot g \sim D^*$

4. Programm Vorführung

3. ANIMATION

Vielen Dank für Ihre Aufmerksamkeit! Fragen?

5. QUELLEN

[1] "Freie und erzwungene Schwingungen eines Drehpendels (Pohl'sches Rad)" Georg-August-Universität Göttingen: https://lp.uni-goettingen.de/get/text/1237

[2] "Gedämpfte und erzwungene Schwingungen". In: Das Neue Physikalische Grundpraktikum. Springer-Lehrbuch. Springer, Berlin, Heidelberg, 2006 https://doi.org/10.1007/3-540-29968-8 7