22-R-IM-TW-37

In the spirit of E-week, you want to determine how fast a foosball travels just after being hit. You measure the moment of inertia of the foosball figure about the horizontal bar to be $I_{bar} = 0.004 \text{ kg} \cdot \text{m}^2$ and the length L to be 7 cm. Also, in the spirit of Engineering, you approximate the coefficient of restitution to be e = 1. If the foosball figure starts from rest and rotates 270° due to an applied moment of 0.8 N·m before it hits the 0.04 kg ball (which is initially at rest), how fast will the ball be travelling just after impact?

Solution:

We can think of the motion in 3 states:

- 1. When the figure is initially at rest
- 2. When the figure rotates just before it makes contact with the ball
- 3. Just after the figure makes contact with the ball

$$\theta = 270 \cdot \frac{\pi}{180} = \frac{3\pi}{2}$$

$$M = I_{bar}\alpha$$

$$\alpha = \frac{M}{I_{bar}} = \frac{0.8}{0.004} = 200 \text{ [rad/s}^2\text{]}$$

$$\omega_2^2 = \omega_1^2 + 2\alpha\Delta\theta$$

$$\omega_1 = 0$$

$$\omega_2 = \sqrt{2\alpha\Delta\theta} = \sqrt{2(200)(3\pi/2)} = 43.4 \text{ [rad/s]}$$

$$(H_O)_2 = I_{bar}\omega_2$$

$$(H_O)_3 = I_{bar}\omega_3 + m_b(v_G)_3L$$

$$(H_O)_2 = (H_O)_3$$

$$I_{bar}\omega_2 = I_{bar}\omega_3 + m_b(v_G)_3L$$

$$v = \omega r$$

$$e = 1 = \frac{(v_G)_3 - (v_A)_{fig,3}}{(v_A)_{fig,2}} = \frac{(v_G)_3 - \omega_3L}{\omega_2L}$$

$$\omega_2L = (v_G)_3 - \omega_3L$$

$$\omega_3 = \frac{(v_G)_3}{L} - \omega_2$$

$$I_{bar}\omega_2 = \frac{I_{bar}(v_G)_3}{L} - I_{bar}\omega_2 + m_b(v_G)_3L$$

$$2I_{bar}\omega_2 = (v_G)_3 \left(\frac{I_{bar}}{L} + m_bL\right)$$

$$(v_G)_3 = \frac{2I_{bar}\omega_2}{\frac{I_{bar}}{L}} = \frac{2(0.004)(43.4)}{0.007} = 5.79 \text{ [m/s]}$$