

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICA

Instituto de Estadística

Profesora: Reinaldo Arellano Ayudantes: Yoseph Barrera

Modelos Probabilisticos Ayudantía 1 2025

- 1. Demuestre las siguientes igualdades
 - $a) A = (A \cap B) \cup (A \cap B^c).$
 - b) $A^c B^c = B A$.
 - c) $A \cap B^c = A (A \cap B)$.
- 2. Se lanza un dado n veces Sea el evento "En el i-ésimo lanzamiento sale 2" denotado por A_i , con i = 1, ..., n. Describa los siguientes eventos usando los conjuntos A_i y las operaciones usuales:
 - a) B = "En ninguno de los n lanzamientos sale 2".
 - b) C = "En al menos un lanzamiento sale 2".
 - c) D = "En exactamente un lanzamiento sale 2".
 - d) E = "En a lo más un lanzamiento sale 2".
- 3. Sea $\Omega = \{a, b, c\}$ decida si F y G son σ -álgebras, donde:
 - $F = \{\{a, b, c\}, \{a\}, \{b\}, \emptyset\}.$
 - $G = \{\Omega, \emptyset, \{a, b\}, \{c\}\}.$

Además, muestre que $F \cup G$ no es una σ -álgebra pero $F \cap G$ sí lo es.

- 4. Sean F_i , con $i=1,2,3,\,\sigma$ -álgebras de subconjuntos de Ω tales que $F_3\subseteq F_2\subseteq F_1$. Analice si los siguientes conjuntos son σ -álgebras:
 - $a) F_1 \cup F_2.$
 - b) $F_3 \cap (F_1 F_2)$.
 - $c) F_1 \cap (F_2 \cup F_3).$
- 5. Sea Ω un espacio muestral y A_1, A_2, \dots, A_k una secuencia de eventos. Demuestre lo siguiente:
 - a) $\bigcup_{i=1}^{k} A_i = \bigcup_{i=1}^{k} B_i$, donde $B_i = A_i (A_1 \cup A_2 \cup \cdots \cup A_{i-1})$, para $i = 2, 3, \ldots, k$, y $B_1 = A_1$.
 - b) Con lo anterior, deduzca que $B_i \cap B_j = \emptyset$ y además que $B_i \subseteq A_i$ para todo i, j.
- 6. Sean P una medida de probabilidad y A y B eventos tales que $P(A) = \frac{1}{3}$ y $P(B^c) = \frac{1}{4}$. ¿Pueden ser disjuntos los eventos A y B?