EA991 - Laboratório de Aprendizado de Máquina

Métodos tradicionais de regressão

Prof. Levy Boccato
Prof. Denis G. Fantinato

O problema de regressão

Relembrando

- Classificação tenta determinar a qual classe um exemplo pertence, baseado em objetos cujas classes são conhecidas, gerando um modelo que pode ser aplicado a novos objetos
- A saída esperada em classificação é um atributo nominal (classe)

E se o valor que queremos predizer for numérico, ao invés de um conjunto nominal de valores?
 Então o nosso problema passa a ser de regressão ao invés de classificação!

$$\forall i, y_i \in \mathbb{R}$$

Exemplo de Regressão

• Prever o valor (mil reais) de imóveis em função de sua área (m²):

m2	valor
38.00	146.00
50.00	150.00
50.00	165.00
55.00	170.00
60.00	210.00
64.00	220.00
64.00	250.00
73.00	300.00
80.00	500.00
75.00	400.00
58.00	360.00
58.00	350.00
65.00	410.00
	38.00 50.00 50.00 55.00 60.00 64.00 73.00 80.00 75.00 58.00 58.00

Exemplo de Regressão

 Como no problema de Classificação, o modelo mais simples que podemos ter é baseado em modelos lineares em relação à entrada

Exemplo de Regressão

 Como no problema de Classificação, o modelo mais simples que podemos ter é baseado em modelos lineares em relação à entrada

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

sendo $\mathbf{w} \in \mathbb{R}^{M \times 1}$ e $w_0 \in \mathbb{R}$

 $\mathbf{w} = \text{parâmetros/pesos}$

 $w_0 = \mathsf{bias}$

Note que, diferentemente do problema de classificação, não há necessidade de uma função não linear ou um decisor.

• No problema de regressão linear, gostaríamos de obter os parâmetros do modelo de forma a minimizar uma função custo

• Opções para compor a Função Custo:

$$g(\mathbf{x}_i) - y_i$$
$$|g(\mathbf{x}_i) - y_i|$$
$$\frac{1}{2}(g(\mathbf{x}_i) - y_i)^2$$

Diferença Módulo da diferença Diferença ao quadrado

• De forma bastante interessante, a escolha da diferença ao quadrado gera uma função custo que é facilmente derivável e que possui solução fechada

De forma bastante interessante, a escolha da diferença ao quadrado gera uma função custo que é facilmente derivável e que possui solução fechada

Representação do problema:

$$\phi(\mathbf{x}) = egin{bmatrix} 1 & & & \text{Adicionamos um} \\ x_1 & & & \text{atributo dummy para corresponder ao bias} \\ \vdots & & & & \end{bmatrix}$$

nesse caso
$$ilde{\mathbf{w}} = (w_0, \mathbf{w})$$
 e para facilitar $ilde{\mathbf{X}} = \begin{bmatrix} \phi(\mathbf{x}_1)^T \\ \vdots \\ \phi(\mathbf{x}_N)^T \end{bmatrix}$

Todas as amostras de treinamento são concatenadas

• A solução para esse problema é conhecida como mínimos quadrados

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - g(\mathbf{x}_i^T))^2$$
$$J(\tilde{\mathbf{w}}) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \tilde{\mathbf{w}}^T \phi(\mathbf{x}_i^T))^2$$
$$J(\tilde{\mathbf{w}}) = \frac{1}{2N} ||\mathbf{y} - \tilde{\mathbf{X}} \tilde{\mathbf{w}}||^2$$

$$J(\tilde{\mathbf{w}}) = \frac{1}{2N} \|\mathbf{y} - \tilde{\mathbf{X}} \tilde{\mathbf{w}}\|^2 = \frac{1}{2N} \left(\mathbf{y} - \tilde{\mathbf{X}} \tilde{\mathbf{w}}\right)^T \left(\mathbf{y} - \tilde{\mathbf{X}} \tilde{\mathbf{w}}\right)$$

$$\propto \mathbf{y}^T \mathbf{y} - 2\tilde{\mathbf{w}}^T \tilde{\mathbf{X}}^T \mathbf{y} + \tilde{\mathbf{w}}^T \tilde{\mathbf{X}}^T \tilde{\mathbf{X}} \tilde{\mathbf{w}}$$

$$\nabla J(\tilde{\mathbf{w}}) = 0$$

$$2\tilde{\mathbf{X}}^T \tilde{\mathbf{X}} \tilde{\mathbf{w}} = 2\tilde{\mathbf{X}}^T \mathbf{y}$$

$$\tilde{\mathbf{w}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{y}$$

Solução fechada usou todas as entradas e saídas do conjunto de treinamento

- Entretanto, dependemos de X^TX ter inversa
 - Isso é um problema se temos atributos correlacionados
 - Ou seja, podem existir colunas de X que são linearmente dependentes

- Possíveis soluções:
 - o seleção de variáveis, segundo algum critério, mantendo apenas as mais relevantes ao problema
 - o redução de dimensionalidade (por exemplo, PCA)
 - usar um modelo ajustado pelo iterativamente (pelo método do gradiente)

Modelos lineares nos parâmetros

Modelos Lineares nos Parâmetros

• Podemos aplicar uma transformação não linear sobre os dados:

$$\phi(\mathbf{x}) = \begin{bmatrix} 1 \\ \phi(x_1) \\ \phi(x_2) \\ \vdots \\ \phi(x_M) \end{bmatrix}$$

Nesse caso, a saída do modelo será

$$g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + w_0$$

Note que este modelo realiza uma transformação não linear em relação às entradas, mas é linear em relação aos parâmetros do modelo!

Modelos Lineares nos Parâmetros

• Assim, se aplicarmos uma transformação não linear sobre os dados:

$$ilde{\mathbf{X}} = egin{bmatrix} \phi(\mathbf{x}_1)^T \ dots \ \phi(\mathbf{x}_N)^T \end{bmatrix}$$

o critério de mínimos quadrados leva à solução vista anteriormente, porém com as entradas transformadas:

$$\tilde{\mathbf{w}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{y}$$

• Trata-se de uma restrição sobre os pesos do modelo, através da definição de uma distribuição *a priori*, que surge como um termo de penalidade P(w) na função custo:

$$\min_{\mathbf{w}} J(\mathbf{w}) + \lambda P(\mathbf{w})$$

em que $\lambda > 0$ é chamado de coeficiente de regularização.

Tipos mais usados:

- Ridge P(w) usa norma L2 (possui solução fechada)
- Lasso P(w) usa norma L1
- ElasticNet P(w) usa ambas normas L1 e L2

Ridge regression:

- Evita valores muito discrepantes de w
- É capaz de reduzir os efeitos do sobreajuste

Ridge regression:

- Evita valores muito discrepantes de w
- É capaz de reduzir os efeitos do sobreajuste

Lasso regression:

- O uso da norma L1 faz com que w tenha uma distribuição esparsa, com vários valores nulos
- Dessa forma, essa técnica pode ser utilizada para a seleção de atributos

k-Vizinhos Mais Próximos

k-Vizinhos Mais Próximos

- Seja V o conjunto dos k-Vizinhos mais próximos de uma amostra de teste
- A predição para esta amostra de teste é

$$\hat{y} = \frac{1}{K} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{V}} y_i$$

• De forma análoga ao problema de classificação, essa abordagem gera um regressor que é não linear no espaço das amostras, porém é linear por partes

k-Vizinhos Mais Próximos

Exemplo:

Árvores para Regressão

Árvores para regressão

Para utilizarmos o algoritmo de Árvore para regressão, precisamos mudar duas etapas em relação ao equivalente para classificação:

- A forma de realizar a predição numérica
- Como escolher o atributo a ser utilizado para a divisão

Árvores para regressão

Predição numérica:

- Verificamos o nó folha em que o objeto de teste se encontra
- Computamos a média dos valores de saída para cada um dos objetos no nó folha
 Seja F os objetos no nó folha

$$\hat{y} = \frac{1}{|\mathcal{V}|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{F}} y_i$$

Podemos ter um modelo mais sofisticado por meio de ponderação ou usando uma regressão linear nos objetos da folha

Árvores para regressão

Escolha do Atributo:

- Como a predição é feita considerando a média, selecionamos a divisão que produz maior redução no erro quadrático (ao invés do índice de gini ou entropia)
- Seja S um (sub)conjunto dos dados, podemos indicar o erro quadrático médio obtido pela predição da média como:

$$\mathsf{EQM}(\mathcal{S}) = \frac{1}{N} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{S}} (y_i - \bar{y})^2 \qquad \bar{y} = \frac{1}{N} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{S}} y_i$$

$$\mathsf{EQM_DIV}(D(\mathcal{X},A)) = \sum_{\mathcal{X}_i \in D(\mathcal{X},A)} \frac{|\mathcal{X}_i|}{|\mathcal{X}|} \mathsf{EQM}(\mathcal{X}_i)$$

$$RE(\mathcal{X}, A) = EQM(\mathcal{X}) - EQM_DIV(D(\mathcal{X}, A))$$

Máquinas de Vetores Suporte para Regressão

Support Vector Regression (SVR)

 No SVR, a margem é definida como a tolerância ao erro do modelo, também chamada de tubo ε-insensível.

Classification problem using SVM

Regression problem using SVR

Support Vector Regression (SVR)

- Este tubo permite algum desvio dos pontos de dados em relação ao hiperplano sem ser contabilizado como erro.
- A formulação é similar ao problema de classificação, porém as amostras devem estar dentro do tubo ε-insensível

Support Vector Regression (SVR)

- Analogamente ao problema de classificação, também é possível admitir uma tolerância a erros (amostras fora do tubo ε-insensível)
- Além disso, permite que se obtenha uma regressão não linear.

Mensurando Acertos/Erros

Mensurando Acertos/Erros

- No contexto de regressão faz sentido vermos a diferença entre o valor predito e o valor real. Nesse âmbito, as duas métricas mais usuais são:
- Erro quadrático médio (Mean Squared Error):

$$MSE(S,g) = \frac{1}{N} \sum_{(\mathbf{x}_i, y_i) \in S} (y_i - g(\mathbf{x}_i))^2$$

Root Mean Square Error

$$\mathsf{RMSE}(\mathcal{S}, g) = \sqrt{\frac{1}{N} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{S}} (y_i - g(\mathbf{x}_i))^2}$$

Mensurando Acertos/Erros

• Coeficiente de determinação R²:

$$R^{2} = 1 - \frac{\sum (y_{\text{actual}} - y_{\text{predicted}})^{2}}{\sum (y_{\text{actual}} - \bar{y})^{2}}$$

 $\underline{\mathbf{y}}$ é a média dos valores $\mathbf{y}_{\text{actual}}$.

- R² = 1: o modelo explica perfeitamente toda a variância na variável-alvo.
- R² = 0: o modelo não explica nenhuma variância; as previsões não são melhores do que simplesmente usar a média.
- R² < 0: o modelo tem um desempenho pior do que simplesmente usar a média, indicando um ajuste ruim

Existem outras medidas, mas normalmente são variações dessas.