Programming Parallel Computers

 $igl[ext{Spring Nuance} \, igl| ext{Log out} \, igr]$ Courses Aalto 2023 Help

Aalto 2023

[Index | Contest | Submissions] [IS | 4 | 6a | 6b | 9a (SO | 4 | 5 | 6) [P | 9a] (X | 0a | 0b | 9a | 9b)

CP: correlated pairs

Please read the general instructions on this page first, and then check the individual tasks for more details. For each task you can download a zip file that contains the code templates you can use for development.

<u>Task</u>	Attempts	Expected	Points	Max	Rating	Rec.	Deadline for full points
CP1: CP	U baseline						
•	it a simple sequen all arithmetic with			•		rallelism ye	et; try to make it work correctly firs
For this in	itial exercise, we h	nave disabled auto	o-vectorizati	on.			
	0	-	-	5	*	R	2023-04-30 at 23:59:59
CP2a: in	struction-level	parallelism					
pipelined		,		•			e performance-critical operations and arithmetic with double-precision
For this te	echnical exercise, v	we have disabled	auto-vectori	zation.			
	0	_	-	3	*	R	2023-05-07 at 23:59:59
CP2b: m	ulticore paralle	elism					
Parallelize	e your solution to (CP1 with the help	-				exploiting multiple CPU cores in with double-precision floating po
For this te	echnical exercise, v	we have disabled	auto-vectori	zation.			
	0	_	-	3	*	R	2023-05-07 at 23:59:59
CP2c: ve	ectorization						
with one i		•	•		-	•	nultiple useful arithmetic operationall arithmetic with double-precision
For this te	echnical exercise, v	we have disabled	auto-vectori	zation.			
	0	_	_	3	*	R	2023-05-07 at 23:59:59
•	nmetic with double			•		R	the memory access pattern. Pleas 2023-05-14 at 23:59:59
	st solution with		aalva tha ta	ok oo foot o	naasibla Va	ul oro ono	ourogod to ovaloit instruction love
parallelisr	•	and vector instruc	ctions when	ever possibl	e, and also to		ouraged to exploit instruction-leve the memory access pattern. In this
-	0	_	_	5+2	**	R	2023-05-14 at 23:59:59
CD4: CD	U baseline						
Implemen	t a simple baselin	s are executed or	the GPU; yo	ou can do so	ome lightweig	ht preproc	reasonably efficient. Make sure the cessing and postprocessing also c
	0	_	_	5	*	R	2023-05-21 at 23:59:59
CP5: fac	t GPU solution						
Using all r	esources that you	have in the GPU ,	solve the ta	sk as fast a s	s possible . In	this task,	you are permitted to use single-
precision	floating point num	nbers.		10 : 0		C	0000 05 00 . 00 50 50
	0	_	_	10 + 2	**	R	2023-05-28 at 23:59:59
Try to use idea of St topmost l	rassen's algorithm	. It is sufficient to you can then fall	use the bas	ic idea of St	rassen's algo	rithm (ada	n to CP3b so that it uses the basic apted to our task as needed) in the th rounding errors; you may need t
	0	_	_	5	***		2023-06-04 at 23:59:59
CDO f	ot colution with	a daubles					
	ist solution with version of CP3a wh		. exnerimen	tal henchme	arks that also	try to mea	asure cache traffic. This is a
somewha	t tricky endevour, a	as the exact mear	ning of cach	e performar	ice events ca	n be CPU s	specific. We would therefore like t

General instructions for this exercise

You are given m input vectors, each with n numbers. Your task is to calculate the correlation between every pair of input vectors.

hear your feedback on how this works on your local system, as well as any cases where the reported numbers seem to differ

- 0 ★★ 2023-06-04 at 23:59:59

Interface

from your expectations.

You need to implement the following function:

void correlate(int ny, int nx, const float* data, float* result)

Here data is a pointer to the input matrix, with ny rows and nx columns. For all 0 <= y < ny and 0 <= x < nx, the element at row y and column x is stored in data[x + y*nx].

The function has to solve the following task: for all [i] and [j] with [0 <= j <= i < ny], calculate the correlation coefficient between row i of the input matrix and row j of the input matrix, and store the result in result[i + j*ny].

Note that the correlations are symmetric, so we will only compute the upper triangle of the result matrix. You can leave the lower triangle [i < j] undefined. The arrays data and result are already allocated by whoever calls this function; you do not need to do any

memory management related to these arrays. You should not assume that <code>result</code> contains any valid values at the point of call. In particular, it is not guaranteed to be initialized with zeros.

Details The input and output are always given as single-precision floating point numbers (type float). However,

• If the task specifies that you must use double-precision floating point numbers, then all arithmetic operations must be done with type double, all intermediate results must be stored in variables of type

depending on the task, we will do arithmetic with either single or double precision numbers:

- double, and you will only round the final result to single precision. • If the task specifies that you can use single-precision floating point numbers, then you are encouraged to use the type float whenever possible.
- However, in each case you will have to make sure the numerical precision of the results is sufficiently high. The grading tool makes sure the error is sufficiently small. The error thresholds are chosen so that a straightforward and efficient solution is typically good enough, but please feel free to ask the course staff for hints if you are

struggling with the rounding errors. **Examples**

These examples show what a correct implementation will do if you apply it to a bitmap image: • Input (first image): vector i = row i of the image.

• Output (second image): red pixel at (i, j) = positive correlation between rows i and j, blue pixel = negative correlation.

