## National University of Computer and Emerging Sciences, Lahore Campus



Course: Program: Digital Logic Design BS(Computer Science/ Data Course Code: | EE1005

**Duration:** Paper Date: Section:

Science/Robotics except BSR-2E) **60 Minutes** 10/04/2023 ALL

**Total Marks:** Weight Page(s):

Semester:

Spring 2023 50 15% 6

Exam:

Midterm-2

Roll No. Section:

Instruction/Notes:

Attempt all the questions in the space provided to you in this answer booklet.

Extra rough sheets are NOT ALLOWED.

Draw neat circuits.

Question 1 [8 + 8= 16 Marks]: Latches [CLO 5]

a) Fill in the characteristic table of A-B Latch circuit given below.

|    | rks       | Ma         |
|----|-----------|------------|
| 6) | CLO 5 (16 | CLO 4 (34) |
|    | CLO 5 (1  | CLO 4 (34) |

| Q(t) | Α | В | Q(t+1) |
|------|---|---|--------|
| 0    | 0 | 0 | 0      |
| 0    | 0 | 1 | 1      |
| 0    | 1 | 0 | 1      |
| 0    | 1 | 1 | 0      |
| 1    | 0 | 0 | 0      |
| 1    | 0 | 1 | 1      |
| 1    | 1 | 0 |        |
| 1    | 1 | 1 |        |



b) Fill in the reduced characteristic table of A-B Latch.

| Α | В | Q(t+1)    |  |
|---|---|-----------|--|
| 0 | 0 |           |  |
| 0 | 1 |           |  |
| 1 | 0 |           |  |
| 1 | 1 | Q(t), Mem |  |



Question 2 [10+10 = 20 Marks]: Decoders and Multiplexers

[CLO 4]

|   | In  | put |   | Output |
|---|-----|-----|---|--------|
| Α | В   | С   | D | F      |
| 0 | 0   | 0   | 0 | O      |
| 0 | 0   | 0   | 1 |        |
| 0 | 0   | 1   | 0 |        |
| 0 | . 0 | 1   | 1 | 1      |
| 0 | 1   | 0   | 0 | 0      |
| 0 | 1   | 0   | 1 | 0      |
| 0 | 1   | 1   | 0 |        |
| 0 | 1   | 1   | 1 |        |
| 1 | 0   | 0   | 0 |        |
| 1 | 0   | 0   | 1 | 0      |
| 1 | 0   | . 1 | 0 | 0      |
| 1 | 0   | 1   | 1 |        |
| 1 | 1   | 0   | 0 | 0      |
| 1 | . 1 | 0   | 1 |        |
| 1 | 1   | 1   | 0 |        |
| 1 | 1   | 1   | 1 | Ö      |

Implement the function given below

 $F(A, B, C, D) = \sum m(1,2,3,6,7,8,11,13,14)$ 

(a) Using a 4x1 MUX and external Gates only. Take A and B as Selection Inputs and C and D a Data Inputs. Properly label inputs and outputs to get credit.



chool of Computer SciencePage2



[CLO 4]

We have to design a machine that takes two 2-bit numbers  $A(A_1A_0)$  and  $B(B_1B_0)$  and two selection signals

 $M_1M_0$  as Inputs and produces result R as the output according to the following functionality:

| M <sub>1</sub> M <sub>0</sub> as Inputs a | and produces result R as the | e output according | Description                    |
|-------------------------------------------|------------------------------|--------------------|--------------------------------|
| 2000                                      | M0                           | Operation R= A + B | Adds A and B Subtract B from A |
| MI                                        | 0                            | R= A - B           | Doubles A                      |
| 0                                         | 1<br>X                       | R= A * 2           | 7                              |
| 1                                         |                              |                    |                                |

Your task is to make a fully functional machine. Properly show the flow of data and label all blocks and inputs/outputs to get credit.

You have to design the machine using Decoder(s) block, Adder-Subtractor(s) block and additional gates required (Detailed gate implementation of Decoder(s) blocks and Adder-Subtractor(s) blocks are not required. Also mention the sizes of decoder block and Adder/Subtractor block used)\_

