INFERÊNCIA CAUSAL COM MACHINE LEARNING

uma aplicação para evasão fiscal

Rafael Felipe Bressan

2021-01-09

Receita Federal do Brasil

Motivação

Causalidade

- Limite de velocidade reduz as mortes no trânsito?
- Permissão para cobrança de bagagem aérea reduziu o preço das tarifas?
- O recebimento de uma carta-cobrança da Receita Federal faz com que o contribuinte recolha seus impostos devidos?
- Essas questões são causais em sua natureza. Requerem conhecimento do processo de geração dos dados. Suas respostas não podem ser calculadas apenas com os dados observados.

Causalidade

- Análise causal requer manipulação/intervenção no processo gerador
- Uma quebra estrutural é induzida
- Correlações anteriores não são mais válidas
- Dados puramente observacionais n\u00e3o carregam toda a informa\u00e7\u00e3o necess\u00e1ria

Machine Learning sem Viés

$$Y_i = f(\mathsf{X}_i, \epsilon_i; \theta)$$

- Causalidade requer inferência sobre parâmetros da distribuição, heta
 - Machine Learning tradicional oferece correlações a partir de dados observacionais
 - Inferência ≠ previsão
 - ML: minimiza $\hat{e} = \hat{y} Y$
 - Análise causal: estima $\hat{\theta}$ com intervalo de confiança
 - Boa previsão não garante correta estimação de parâmetros
 - Viés de regularização: $\hat{f}_1(\cdot;\hat{\theta}_1) \approx \hat{f}_2(\cdot;\hat{\theta}_2)$ mesmo se $\hat{\theta}_1 \neq \hat{\theta}_2$

Machine Learning sem Viés

- Como fazer com que algoritmos de ML façam estimação causal não-viesada?
- · Fronteira do conhecimento em inferência causal
 - Chernozhukov et al. (2018) Double Machine Learning
 - Wager and Athey (2018) Causal Forests
 - Syrgkanis et al. (2019) Doubly Robust Instrumental Variables

Experimento Randomizado

Experimento Randomizado

- Experimentos randomizados são o padrão-ouro para inferência causal
- Re-analisaremos o trabalho de Fellner, Sausgruber, and Traxler (2013)
- Correspondências fiscais para mais de 50.000 contribuintes
- Analisar efeitos de variação no conteúdo
 - · Valores médios por tipo de carta
 - Heterogeneidade nos efeitos

Modelo ForestDML

• Modelo parcialmente linear. Tratamento T é exógeno, não é necessária instrumentalização

$$\begin{split} Y &= \theta(\mathsf{X}) \cdot T + g(\mathsf{X}, \mathsf{W}) + \epsilon \\ T &= f(\mathsf{X}, \mathsf{W}) + \eta \\ \mathbb{E}[\eta \cdot \epsilon \mid \mathsf{X}, \mathsf{W}] &= 0 \end{split}$$

$$\mathbb{E}[\eta \cdot \mathsf{X}, \mathsf{W}] = 0$$

Através de DML (ortogonalização de Neyman e cross-fitting)

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} K_{x}\left(X_{i}\right) \cdot \left(Y_{i} - \hat{q}\left(X_{i}, W_{i}\right) - \theta \cdot \left(T_{i} - \hat{f}\left(X_{i}, W_{i}\right)\right)\right)^{2}$$

• Kernel K_x é uma floresta causal

Modelo DRIV

• Tratamento é endógeno. Necessita de variável instrumental

$$Y = \theta(\mathsf{X}) \cdot T + g(\mathsf{X}) + \epsilon, \qquad \mathbb{E}[\epsilon \mid \mathsf{X}, Z] = 0$$

$$Z = m(\mathsf{X}) + \eta, \qquad \mathbb{E}[\eta \mid \mathsf{X}] = 0$$

$$\mathbb{E}[\eta \cdot \epsilon \mid \mathsf{X}] \neq 0$$

$$\mathbb{E}[T \cdot \epsilon \mid \mathsf{X}] \neq 0$$

• Estimativa preliminar de $\theta(x)$ e algoritmo Doubly Robust

$$\hat{\theta}_{DR}(x) = \underset{\theta}{\operatorname{argmin}} \sum_{i \in \mathcal{I}} \left(\theta_{\mathsf{pre}} \left(x \right) + \frac{ \left(\hat{\tilde{Y}}_i - \theta_{\mathsf{pre}} \left(x \right) \hat{\tilde{T}}_i \right) \hat{\tilde{Z}}_i}{\hat{\beta}(X_i)} - \theta(X_i) \right)^2$$

Resultados

- Receber uma correspondência tem efeito positivo sobre o registro para pagamento do tributo
- Uma ameaça na carta aumenta este efeito
- Informações e apelo moral não possui efeito estatisticamente significativo

	OLS	Fores	stDML	IV2SLS	DRIV
	ATE	ATE	ATT	LATE	LATE
Correio	0,0650	0,0766	0,0766	0,0767	0,0588
Ameaça	0,0750	0,0850	0,0848	0,0872	0,0650
Info	0,0646	0,0762	0,0760	0,0728	0,0547
Moral	0,0648	0,0695	0,0695	0,0724	0,0513

Referências i

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. 2018. "Double/debiased machine learning for treatment and structural parameters." *The Econometrics Journal* 21 (1): C1–C68. https://doi.org/10.1111/ectj.12097.

Fellner, Gerlinde, Rupert Sausgruber, and Christian Traxler. 2013. "Testing Enforcement Strategies in the Field: Threat, Moral Appeal and Social Information." *Journal of the European Economic Association* 11 (3): 634–60.

Syrgkanis, Vasilis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, and Greg Lewis. 2019. "Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments." http://arxiv.org/abs/1905.10176.

Wager, Stefan, and Susan Athey. 2018. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests." Journal of the American Statistical Association 113 (523): 1228–42.