

# **Hypothesis Testing Overview**



Hypothesis testing---explain in the format of writtern in exam

Sure! Here's a concise and clear **exam-style answer** for the topic of **Hypothesis Testing**:

# **Hypothesis Testing**

#### **Definition:**

Hypothesis testing is a statistical method used to make decisions or inferences about population parameters based on sample data. It helps to determine whether there is enough evidence to reject a given assumption (hypothesis) about a population.

# **Steps in Hypothesis Testing:**

#### 1. Formulate Hypotheses:

- **Null Hypothesis (H<sub>0</sub>):** Assumes no effect or no difference. Example: H<sub>0</sub>:  $\mu = \mu_0$  (population mean is equal to a specific value)
- Alternative Hypothesis (H<sub>1</sub> or Ha): Represents what we want to prove. Example: H<sub>1</sub>:  $\mu = \mu_0$

#### 2. Select Significance Level (α):

Common values: 0.05, 0.01. It represents the probability of rejecting the null hypothesis when it is actually true.

#### 3. Choose the Appropriate Test Statistic:

Depends on sample size, data type, and whether population standard deviation is known. Examples: Z-test, t-test, chi-square test, etc.

# 4. Determine the Critical Value or p-value:

This helps to decide whether to reject H₀.

# 5. Make the Decision:

- ∘ If p-value  $< \alpha \rightarrow \text{Reject H}_0$
- ∘ If p-value ≥  $\alpha$  → Do not reject H<sub>0</sub>

### 6. Draw a Conclusion:

Based on the decision, conclude whether there is enough evidence to support H<sub>1</sub>.

# **Example:**

Suppose a company claims that the average life of its bulbs is 1000 hours. A sample of 30 bulbs shows a mean life of 980 hours with a standard deviation of 50 hours. At  $\alpha$  = 0.05, is the company's claim valid?



- $H_0$ :  $\mu = 1000$
- H₁: µ ≠1000
- Test statistic:  $t = (980 1000) / (50 / \sqrt{30})$
- Compare with critical t-value for  $\alpha$  = 0.05 and df = 29
- Based on result, conclude whether to reject or not reject H<sub>0</sub>.

Let me know if you'd like the above with a worked-out numerical example.