PASSAGE

— A Travel Safety Assistant —

CSE 6242 Fall '15 Capstone Project

Team

Matt Garvey

Nilaksh Das

Jiaxing Su

Bhanu Verma

Meghna Natraj

Advisor

Dr. Polo Chau

PROBLEM

 Atlanta is one of the most crime-ridden cities in U.S.A.

 Pedestrians are highly susceptible to crime, especially at night.

Clery Act Safety Alert Armed Robbery

Incident Date/Time: December 30, 2014, at approximately 6:15 p.m.

Incident Location: Hemphill Avenue, NW near Center Street Apartments

Incident Description: A student reported to the Atlanta Police Department that while walking north on Hemphill Avenue, just north of the Georgia Tech Police Department, he was approached by a black male who brandished a handgun and demanded the student's phone. When the student refused to give the suspect his phone, the suspect fired the weapon in the direction of the student. The student began to approach the male, who retreated to a black 4-door sedan that was parked a short distance away. As the student continued to approach the male, he fired a second shot in the direction of the student before climbing into the passenger seat. The vehicle was last seen heading northbound on Hemphill Avenue. The student believed the gun might have been loaded with blanks.

After the incident, the student continued walking north on Hemphill Avenue before deciding to contact the police approximately ten to fifteen minutes later. The student met with Atlanta Police and Georgia Tech Police at the McDonald's on Northside Drive, where officers began to canvas the surrounding area. Investigators are currently processing the crime scene.

OBJECTIVES

- Enhance walking safety by providing routes with less crime risk
- Provide risk-distance trade-off path choices to users
- Enable safety alert to friends when user is in distress

ANALYTICS BUILDING BLOCKS

Collection

Cleaning

Integration

Analysis

Visualization

Presentation

Dissemination

 Collection
 Cleaning
 Integration
 Analysis
 Visualization
 Presentation

CRIME DATA

- Atlanta Police Department website
- $\circ \quad 2009 \Rightarrow 2015$
- ~ 250k crimes
- All crime data in CSV format

MI_PRINX	offense_id	rpt_date	occur_date	occur_time	poss_date	poss_time	beat location	UC2 Literal	neighborhood	х	у
1160569	90360664	2/5/2009	2/3/2009	13:50:00	2/3/2009	15:00:00	305 55 MCDONOUGH BLVD SW	LARCENY-NON VEHICLE	South Atlanta	-84.3865	33.72024
1160570	90370891	2/6/2009	2/6/2009	8:50:00	2/6/2009	10:45:00	502 464 ANSLEY WALK TER NW	LARCENY-FROM VEHICLE	Ansley Park	-84.3728	33.79685
1160572	91681984	6/17/2009	6/17/2009	14:00:00	6/17/2009	15:00:00	604 375 AUBURN AVE	LARCENY-NON VEHICLE	Sweet Auburn	-84.3752	33.7554
1160573	72692336	2/24/2010	2/24/2010	23:29:00	2/24/2010	23:30:00	303 600 MARTIN ST	AGG ASSAULT	Pittsburgh	-84.3946	33.72212

CLASSES OF CRIMES

Legend

> 20,000
> 5,000 AND < 20,000
< 5,000

Class	Count (2009 - 2015)
LARCENY-FROM VEHICLE	64345
LARCENY-NON VEHICLE	55902
BURGLARY-RESIDENCE	38277
AUTO THEFT	33256
AGG ASSAULT	16388
ROBBERY-PEDESTRIAN	12483
BURGLARY-NONRES	7243
ROBBERY-RESIDENCE	1632
ROBBERY-COMMERCIAL	1575
RAPE	789
HOMICIDE	592

MAP DATA

- OpenStreetMap of Atlanta
- Downloaded using Mapzen metro extracts

Collection Cleaning Integration Analysis Visualization Presentation

Data is usually messy!

offense_id	occur_date	occur_time	location	Shift	UC2 Literal	x	у	
90360664	02/03/2009	13:50:00	55 MCDONOUGH BLVD SW	Day	LARCENY-NON	-84.38654	33.72024	
91681984	06/17/2009	14:00:00	375 AUBURN AVE	Day	LARCENY-NON	-84.37521	33.7554	
80081069	01/08/2008	13:14:00	447 ARNOLD STREET	NE	Day	BURGLARY-RES	-84.36896	33.76658
82040835	07/21/2008	18:00:00	1721 BROWNING ST	Eve	BURGLARY-RE	-84.44342	33.75265	
82922120	10/19/2008	18:30:00	3393 PEACHTREE ROAD	Eve	AUTO THEFT	-84.36212	33.84676	
83271617	11/22/2008	16:00:00	106 DOGWOOD DR NW	Eve	BURGLARY-RE	-84.49389	33.78241	

Collection Cleaning Integration Analysis Visualization Presentation

Integration of 2 datasets

City Crime Data – available by **coordinates** and **time of day**

City Map Data - in **OpenStreetMap** format

MAP DATA

- Converted to a graph using osm4routing
- Graph consists of nodes on every road segment in the city
- Nodes on the same road segment are successively connected by edges
- o Nodes: 111,380
- o Edges: 141,656

MAP DATA - EDGE LENGTH

Walkable Distance

- Skewed left with a mean of ~215m
- Majority of edges being under 150m
- o Maximum 400m-500m

• Assign risk values to nodes based on crime density

- Assign risk values to nodes based on crime density
- Assign risk values to edges based on node values

- Assign risk values to nodes based on crime density
- Assign risk values to edges based on node values
- Each edge has a both a distance and risk value

Collection Cleaning Integration Analysis Visualization Presentation

OPTIMAL PATHS

Pulse algorithm

- shortest distance, more risk → least risk, more distance
- pruning algorithm
- outputs all dominant paths

TRADEOFF ANALYSIS

• Left Plot:

- Ratio of Least-Risk-Path's distance to the Shortest-Distance-Path's distance
- o mean: 1.13

• Right Plot:

- Ratio of Shortest-Distance-Path's risk to the Least-Risk-Path's risk
- o mean: 1.58

Takeaway

 Going from SDP to LRP produces a larger proportional decrease in risk than the proportional increase in distance

Ratio of Distance and Risk

RUNTIME ANALYSIS

400 recorded runtime instances Statistics (seconds)

mean	1.22
SD	0.51
max	6.8 (not shown)
min	1.15

runtime analysis

TECHNOLOGY

- MongoDB (Storing graph data, geospatial indexing)

- Apache Spark (Preprocessing)

- Python 2.7 (Preprocessing / Back-end)

- Node.js (Back-end)

Phonegap - HTML/JS (Front-end)

Collection Cleaning Integration Analysis Visualization Presentation

 Collection
 Cleaning
 Integration
 Analysis
 Visualization
 Presentation

DEMO

Alice and Bob login

Alice requests Bob to track her

Bob receives a notification from Alice

Alice confirms her destination

The algorithm offers Alice multiple routes which range from shortest (pink) to safest (green)

Alice starts
"safe mode" and
places her thumb
on the screen

Bob will be notified if Alice removes her thumb, signaling distress

PASSAGE: A Travel Safety Assistant With Safe Path Recommendations For Pedestrians

Matthew Garvey

College of Computing Georgia Institute of Technology Atlanta, GA 30332, USA mgarvey6@gatech.edu

Nilaksh Das

College of Computing Georgia Institute of Technology Atlanta, GA 30332, USA nilakshdas@gatech.edu

Jiaxing Su

College of Engineering Georgia Institute of Technology Atlanta, GA 30332, USA Jiaxingsu@gatech.edu

Meghna Natraj

College of Computing Georgia Institute of Technology Atlanta, GA 30332, USA mnatraj@gatech.edu

Bhanu Verma

College of Computing Georgia Institute of Technology Atlanta, GA 30332, USA bhanuverma@gatech.edu

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

IUI'16 Poster paper

Abstract

Atlanta has consistently ranked as one of the most dangerous cities in America with over 2.5 million crime events recorded within the past six years. People who commute by walking are highly susceptible to crime here. To address

Alice and Bob login

Alice requests Bob to track her

Bob receives a notification from Alice

Alice confirms her destination

The algorithm offers Alice multiple routes which range from shortest (pink) to safest (green)

Alice starts "safe mode" and places her thumb on the screen

Bob will be notified if Alice removes her thumb, signaling distress

Team Passage:

Matt Garvey Nilaksh Das Jiaxing Su Meghna Natraj Bhanu Verma **Advisor:**

Dr. Polo Chau

PASSAGE