Communication Efficient Data Exchange Among Multiple Nodes

Himanshu Tyagi, Soumya Subhra Banerjee Indian Institute of Science

Introduction

Figure 1: Multiparty Data Exchange.

Multiple parties observing correlated data seek to recover each other's data. How can they accomplish this using minimum communication?

- ▶ In practice, algorithms like r-sync are used for data exchange.
 - ▶ Uses *one* guess.
 - Does not exploit the correlation between the data.
 - ▶ Needs more communication.
- ► In theory, Slepian-Wolf compression is the optimal solution.
- ▶ Difficulties in implementation of SW coding.
 - ▶ Search is over an exponential list in decoding.
 - Knowledge of $P_{X|Y}$ required.
- Suggested approach.
 - ▶ Use structured channel codes, in particular *Polar codes*, for implementation of SW compression [1].
 - ▶ Achieve universality using a Recursive Data Exchange protocol (RDE) [2].
 - ▶ Realise the RDE using H-ARQ based on polar codes.

Figure 2: Slepian-Wolf Compression.

HARQ based on Polar Codes

- ▶ Polar Codes for error control. N indentical and independent channels W are converted to a second set of channels which have probability of error tending to 0 or 1. Information is sent over the channels which have high reliability. Other channels are *frozen* with known bits.
- ► Hybrid-ARQ is instrumental when underlying channel W is unknown.
- ▶ In H-ARQ, initially *MSG+ Error Detection Code* is sent to receiver. On unsuccessful recovery, *Error Correction Code (FEC)* is communicated iteratively.
- ► Incremental freezing HARQ [3].
 - ▶ Initiates assuming a high reliability channel.
- Decoding failure is detected after each iteration at the decoder.
- ▶ In case of failure more unreliable bits are frozen by retransmission.

Figure 3: Incremental Freezing.

Decoding failure Detection

- Repeat-Top Polar Code (RT-Polar)
- \triangleright The scheme retransmits the t message bits sent over the most reliable polarized good channels over the least reliable good channels.
- \triangleright These two t-bit strings are decoded and compared to detect an error.
- ► Loglikelihood Threshold Polar (LT-Polar)
 - In a successful transmission a high percentage of the Log-Likehood Ratios (LLR) of the bit-channels clear the threshold with high probability.

Iterative SW Compression using

- ► Polar Codes for SW Compression.
 - Phere, X_N and Y_N are correlated. The bits that are to be sent for estimation of X_N from Y_N are decided by inverse Arikan transform, T^{-1} , and are communicated error-free.

Figure 4: Polar Coding for SW Compression.

- ► The RDE scheme iteratively communicates in steps until the data exchange is completed. This can be practically implemented by Hybrid ARQ.
- Error detection using CRC is not feasible in SW compression.

Results

Figure 5: FER for SW compression.

Figure 6: Rateloss for BSC.

Analytic t

- ▶ The proposed scheme reduces communication among nodes.
- ► The CRC-free universal polar code promises considerable rate gain for communication using short packet lengths.
- ► Future work.
- Extensive performance analysis and theoritical analysis of proposed error detection scheme as a RB-HARQ for polar codes.
- ▶ Implementation of the scheme for multiparty data exchange.

Conclusion and future work

- The proposed scheme reduces communication among nodes.
- ► The CRC-free universal polar code promises considerable rate gain for communication using short packet lengths.
- ► Future work.
- Extensive performance analysis and theoritical analysis of proposed error detection scheme as a RB-HARQ for polar codes.
- ▶ Implementation of the scheme for multiparty data exchange.

References

- [1] Polar Codes for Nonasymetric Slepian-Wolf coding, Saygun Onay, 2012.
- [2] Universal Multiparty Data Exchange and Secret Key Agreement, Himanshu Tyagi and Shun Watanabe, Information Theory (ISIT), 2016 IEEE International Symposium.
- [3] Capacity-Achieving Rateless Polar-Codes, Bin Li et al. 2015.

Contact information: <htyagi,bsoumya>@iisc.ac.in