Interrogation écrite n°01

NOM:	Prénom:	Note:
------	---------	-------

1. Compléter le domaine de définition, l'image, le domaine de dérivabilité et la dérivée des fonctions suivantes.

	Domaine de définition	Image	Domaine de dérivabilité	Dérivée
arcsin				
arccos				
arctan				

2. Soit x_0, \dots, x_n des réels deux à deux distincts. Montrer que l'application $(P, Q) \in \mathbb{R}_n[X] \mapsto \langle P, Q \rangle = \sum_{k=0}^n P(x_k)Q(x_k)$ est un produit scalaire sur $\mathbb{R}_n[X]$.

Symétrie Evident Bilinéarité Evident Positivité Evident

Définition Soit $P \in \mathbb{R}_n[X]$ tel que $\langle P, P \rangle = 0$. Alors $\sum_{k=0}^n P(x_k)^2 = 0$. On en déduit que $\forall k \in [0, n]$, $P(x_k) = 0$. Ainsi P possède au moins n+1 racines et $\deg P \leq n$ donc P=0.

3. Soit f l'endomorphisme de \mathbb{R}^3 défini par f(x, y, z) = (-x + 3y + 2z, 2x - y + z, y + z). Déterminer le rang de f. f est-il injectif? surjectif?

 $\text{La matrice de f dans la base canonique de \mathbb{R}^3 est $A = \begin{pmatrix} -1 & 3 & 2 \\ 2 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$. \textit{Via les opérations $L_2 \leftarrow L_2 + 2L_1$ puis $L_3 \leftarrow 5L_3 - L_2$, on trouve que }$

$$rg(A) = rg\begin{pmatrix} -1 & 3 & 2 \\ 0 & 5 & 5 \\ 0 & 0 & 0 \end{pmatrix} = 2$$

Puisque $rg(f) < 3 = dim \mathbb{R}^3$, f n'est ni injectif ni surjectif.

4. Factoriser $X^4 + 1$ en produit de polynômes irréductibles de $\mathbb{C}[X]$ puis de $\mathbb{R}[X]$.

 $e^{\frac{i\pi}{4}}$ est clairement racine de X^4+1 . Comme X^4+1 est pair, $-e^{\frac{i\pi}{4}}$ est également racine de X^4+1 . Enfin, comme X^4+1 est à coefficients réels, $e^{-\frac{i\pi}{4}}$ et $-e^{-\frac{i\pi}{4}}$ sont également racines de X^4+1 .

Puisque $\deg(X^4+1)=4$, ces quatre complexes sont exactement les racines de X^4+1 et celles-ci sont toutes simples. On en déduit que la décomposition en facteurs irréductibles de X^4+1 dans $\mathbb{C}[X]$ est

$$X^4 + 1 = \left(X - e^{\frac{i\pi}{4}}\right) \left(X - e^{-\frac{i\pi}{4}}\right) \left(X + e^{\frac{i\pi}{4}}\right) \left(X + e^{-\frac{i\pi}{4}}\right)$$

En regroupant les racines conjuguées, on obtient la décomposition en facteurs irréductibles de X^4+1 dans $\mathbb{R}[X]$

$$X^4 + 1 = \left(X^2 - 2X\cos\frac{\pi}{4} + 1\right)\left(X^2 - 2X\cos\frac{\pi}{4} + 1\right) = (X^2 - X\sqrt{2} + 1)(X^2 + X\sqrt{2} + 1)$$

5. Justifier la convergence et calculer la somme de la série $\sum_{n\geq 2} \frac{1}{n^2-1}$.

Pour tout entier
$$n \geq 2$$
,

$$\frac{1}{n^2-1} = \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) = \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n} \right) + \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

Comme $\lim_{n\to+\infty}\frac{1}{n}=0$, la série $\sum_{n\geq2}\frac{1}{n^2-1}$ converge comme combinaison linéaire de deux séries convergentes et sa somme est

$$\sum_{n=2}^{+\infty} \frac{1}{n^2 - 1} = \frac{1}{2} \cdot \frac{1}{1} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$$

6. On pose pour $n \in \mathbb{N}^*$, $u_n = \sin\left(\frac{1}{\sqrt{n}}\right) - \frac{1}{\sqrt{n}}\cos\left(\frac{1}{\sqrt{n}}\right)$. Déterminer la nature de la série $\sum u_n$.

On sait que $\sin(x) = x + O(x^3)$ et que $\cos(x) = 1 + O(x^2)$. On en déduit que $\sin(x) - x\cos(x) = O(x^3)$ et donc que $u_n = O\left(\frac{1}{n^{3/2}}\right)$. Comme 3/2 > 1, $\sum \frac{1}{n^{3/2}}$ est une série de Riemann (à termes positifs) convergente. On en déduit que $\sum u_n$ converge.

- 7. On note $\mathcal{N}_n(\mathbb{K})$ l'ensemble des matrices de trace nulle de $\mathcal{M}_n(\mathbb{K})$. Justifier que $\mathcal{N}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ et préciser sa dimension.
 - L'application $M \in \mathcal{M}_n(\mathbb{K}) \mapsto tr(M)$ est une forme linéaire non nulle. Par conséquent, $\mathcal{N}_n(\mathbb{K})$ est un hyperplan de $\mathcal{M}_n(\mathbb{K})$. C'est donc un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimenson $n^2 1$.
- 8. Montrer que l'ensemble \mathcal{A} des suites arithmétiques réelles est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. Donner une base et la dimension de \mathcal{A} . On justifiera sa réponse.

$$\begin{split} \mathcal{A} &= \left\{ (a+nr)_{n \in \mathbb{N}}, \ (a,r) \in \mathbb{R}^2 \right\} \\ &= \left\{ a(1)_{n \in \mathbb{N}} + r(n)_{n \in \mathbb{N}}, \ (a,r) \in \mathbb{R}^2 \right\} \\ &= \operatorname{vect} \left((1)_{n \in \mathbb{N}}, (n)_{n \in \mathbb{N}} \right) \end{split}$$

Ceci montre que \mathcal{A} est bien un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. Montrons que la famille $((1)_{n\in\mathbb{N}},(n)_{n\in\mathbb{N}})$ est une base de \mathcal{A} . Soit $(a,r)\in\mathbb{R}^2$ tel que $a(1)_{n\in\mathbb{N}}+r(n)_{n\in\mathbb{N}}=(0)_{n\in\mathbb{N}}$. En évaluant aux rangs 0 et 1, on obtient a=0 et a+r=0 de sorte que a=r=0. La famille $((1)_{n\in\mathbb{N}},(n)_{n\in\mathbb{N}})$ est donc libre et, comme elle engendre \mathcal{A} , c'est une base de \mathcal{A} . On en déduit que $\dim \mathcal{A}=2$.