Sarah Cooper	
Presentation Z	
week 4 Question 2	
2. Expectation for T	ransformations (Blitzstein 4.5, Rice 4.1-4.2, 4.6,)
	for a non-linear function $g(x)$, it is unusual for $E(g(X))$ to equate to $g(E(X))$.
	on for Jensen's inequality and state its implications for expected values. For that $E(1/X) \ge 1/E(X)$, and that $E(\log(X)) \le \log(E(X)) \le E(X) - 1$.
Jensen's Inequal	Mry.
a) - when a is co	nvex:
g(E(x)) ≤ E	
Convex	
Sum tan	gent lire: now)=g(e(u))+g'(e(u))(x-e(u)) g(x) ≥ n(u) • E(g(x)) ≥ E(h(u))=g(e(u))
(028(02)	g(x) z n(x) :
Sc	o, Elgix))z gieixi)
- when g is cond	ave
B(E(X)) > E(g(x))
Concave	
	Here Elgix) = Elnix) = g(Eix)
(m) (m)	20 E(8(x)) = 8(E(x))
1	
snow E(x) = E(x)	
8(x)= x	$g'(x) = \frac{1}{x^2}$ $g''(x) = \frac{1}{x^3}$: convex
*convex ×20	then use Jensen's shows that
	(大) 2 6(文)
	1)7= 100(E(1)) = E(1)-1
164.	x)=10g(x)
'1 0	(x)= x 9"(x)= x2 concave 80 &(109(x)) & 109(xx)
3	econd part: $\log(x) \leq x-1$
	log(EW) = EW-1
	00 8(10g(x)) ± 10g(E(x)) ± E(x)-1

b) State Theorem A of 4.1 in Rice and explain why this is called the law of the unconscious statistician (see also Blitzstein 4.5). Explain how LOTUS is used when we find Var(X) = $E((X-E(X))^2) = E(X^2) - E(X)^2$. Describe what would be involved to find a variance without using LOTUS (e.g., for a Gamma variable).

b) theorem A:

Suppose Y= q(x)

a) If x is discrete with frequency function p(x), tren

6(4) = Sagle) full dx provided that Sigle) if with dx co

E(Y)= & g(x)p(x) provided that & E/g(x)/p(x) < 00

b) If X is continuous with density function flx), then

why the name? You can get the Elg(x)) knowing only theavency function of X (P(x)).

we do not need me PMF of que).

wren going from E(x) to E(g(x)) It is tempting to change x to g(x) in the definition, which can

LOTUS for Variance:

Var(x) = B(x2)-(B(x))2

Y=X2 -> find fy(y) (with out LOTOS you need to find a new pat fy(y)

xx (x)x2 = (xx3 2010) (w +vd

Finding variance for Gamma

 $x \sim 6 \text{amma} (x, x)$ $f_x(x) = \frac{\lambda^{\mu} x^{\mu \lambda} e^{-\lambda x}}{P(\mu)}$ $x \geq 0$ we know $f(x) = \frac{\mu}{\lambda}$ and $V(x) = \frac{\lambda^{\mu}}{\lambda^{\mu}}$

To And Variance with LOTUS you use moment generating functions

frist Moment: E(x) = X

 $Vor(x) = E(x^2) - E(x)^2 = \frac{x}{x^2} - \left(\frac{x}{x}\right)^2 = \frac{x^2}{x^2}$

se dare easily in an unconscious state. Sounds too good to be the jobs LOTUS says it is the

- c) State the multivariate version of LOTUS and show this implies E(X+Y) = E(X) + E(Y), even if X and Y are not independent. Describe what would be involved to find a covariance without using LOTUS
- c) Multivariate LOTUS: Rice 4.1 Theorem B

Suppose that X_1, \ldots, X_n are jointly distributed random variables and Y = $g(X_1,\ldots,X_n).$

a. If the X_i are discrete with frequency function $p(x_1, \ldots, x_n)$, then

$$E(Y) = \sum_{x_1,\ldots,x_n} g(x_1,\ldots,x_n) p(x_1,\ldots,x_n)$$

provided that $\sum_{x_1,\dots,x_n} |g(x_1,\dots,x_n)| p(x_1,\dots,x_n) < \infty$. **b.** If the X_i are continuous with joint density function $f(x_1,\dots,x_n)$, then

$$E(Y) = \int \int \cdots \int g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_1 \cdots dx_n$$

provided that the integral with |g| in place of g converges.

$$g(x,y) = x+y \rightarrow transfer mation function $g(x,y) = x+y \rightarrow transfer mation function$$$

CONORIGINA COV (X,Y)=E[(X-MX)(Y-MY)] = E(XY)-E(X)E(Y)

$$E(X) = \sum_{x} F_{x}(x) dx$$

Define Z=XY find fz(z) tren E(XY)=E(2)= 5 2 f=(2) dz

tren also And E(X) and E(Y)

EUTOS FUONTIN

	e) Show how to find approximations to the mean and variance of a transformation of a ravariable using Taylor's approximation. As an example, find approximations to the mean variance of $Y = \log(X)$, for $X \sim \operatorname{Gamma}(\alpha, \lambda)$.																	
										. 7								
e)	Y= 9	(x)	≈ q(r(xu)	u-x).	'x) a'((xu	د ان	(-从x)- ''8	(wx)						
	0)	0	~		\widetilde{o}	J.			0								

$$E(d(x)) = d(nx) + 0 + \frac{\Delta x}{\Delta x} (x) \partial_{n}(nx)$$

Example)
$$x \sim Gamma(\alpha_1 x)$$

$$\begin{aligned}
Y &= \log(x) & E(x) = \frac{\alpha}{x} & Var(x) = \frac{1}{x^2} \\
&= \log(\frac{\alpha}{x}) - \frac{1}{2\alpha}
\end{aligned}$$

$$Var(x) &= \frac{1}{x^2} & G(x) = \frac{1}{x} & G(x) = \frac{1}{x^2} \\
&= \log(\frac{\alpha}{x}) - \frac{1}{2\alpha}$$

$$Var(x) &= \frac{1}{x^2} & G(x) = \frac{1}{x} & G(x) = \frac{1}{x^2} & G$$

Recall
$$\mathcal{E}(\log(x)) \leq \log(\mathcal{E}(x))$$
 (from tensen's) so since we are surphacting from $\log(\frac{x}{x})$ this mequality holds the.

$$Nor(lod(x)) = \left(\frac{\alpha^{1}}{2}\right)_{S} \left(\frac{y_{S}}{\alpha^{2}}\right) = \frac{\alpha}{2}$$

$$= \left(\frac{\alpha^{1}}{2}\right)_{S} \left(\frac{y_{S}}{\alpha^{2}}\right) = \frac{\alpha}{2}$$

$$= Nor(x^{2}, (n^{2}))_{S} \text{ deveray exblanation}$$