Конспект по матанализу II семестр Современное программирование, факультет математики и компьютерных наук, СПбГУ (лекции Бахрева Федора Львовича)

Тамарин Вячеслав

24 июня 2020 г.

Оглавление

1	Инт	F F	2
	1.1	Интегральное исчисление	2
			2
		1.1.2 Теорема о среднем	2
	1.2	Приближенное вычисление интеграла	3
	1.3	Приближенное вычисление интеграла	4
		± "	6
		1.3.2 Формула трапеции	6
		1 0 1	7
	1.4	±	8
		1.4.1 Свойства	
	1.5	Вычисление площадей и объемов	2
		1.5.1 Площади	
		1.5.2 Объемы	2
	1.6	Кривые в \mathbb{R}^n и их площади	4
		1.6.1 Поговорим о длине	5
		1.6.2 Важные частные случаи общей формулы	8
_			_
2		фференциальное исчисление функций многих вещественных переменных	
	2.1	Нормированные пространства	
	0.0	2.1.1 Продолжение примеров	
	2.2	Сжимающие отображения	
		2.2.1 Линейные и полилинейные непрерывные отображения (операторы)	
	0.9	2.2.2 Пространство линейных непрерывных операторов	
	2.3	Дифференциальные отображения	
	2.4	Примеры и дополнительные свойства дифференцирования	
	$\frac{2.5}{2.6}$	Частные производные	
	2.6	Важный частный случай: $X=\mathbb{R}^m,\ Y=\mathbb{R}^n$	
	2.7	Теорема о конечном приращении (Лагранжа)	
	2.8	Производные высших порядков	
		2.8.1 Общий случай	
		2.8.2 Связь между двумя подходами	
	0.0	2.8.3 Симметричность дифференциалов	
		Многомерная формула Тейлора	
		Исследование внутренних экстремумов	
	2.11	Странные примеры экстремумов	
		2.11.1 Задача Гюйгенса	
		2.11.2 Кратчайшее расстояние до линейного подпространства	
	0.10	2.11.3 Задача о брахистороне	
	2.12	Поверхности и криволинейные координаты	
		2.12.1 Касательная плоскость к графику функции	
		2.12.2 Касательный вектор	y

ОГЛАВЛЕНИЕ 2

		2.12.3 Чуть более общая ситуация
	2.13	Теорема о неявном отображении (функции)
		2.13.1 Мотивация
		2.13.2 Подстановка
	2.14	Теорема о неявном отображении
		Условные экстремумы
		2.15.1 Примеры
3	Ряд	ы 59
	3.1	Определения и примеры
		3.1.1 Свойства
	3.2	Положительные ряды
	3.3	Числовые ряды с произвольными членами
	3.4	Умножение рядов
	3.5	Бесконечные произведения

Глава 1

Интергирование

1.1 Интегральное исчисление

Лекция 1

1.1.1 Формула Тейлора с остаточным членом в интегральной форме

 $f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x),$

где

$$T_{n,x_0}f(x) = \sum_{i=0}^{n} \frac{1}{i!} f^{(i)}(x) (x - x_0)^i,$$

а R_{n,x_0} — остаток.

Теорема 1.1.1: Формула Тейлора с остатком в интегральной форме

 $f \in C^{n+1}(\langle a,b \rangle), \ x,x_0 \in (a,b).$ Тогда остаток в формуле Тейлора представим в виде

$$R_{n,x_0} = \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t) (x-t)^n dt.$$

Доказательство. Индукция по n.

База: n = 1. По формуле Ньютона-Лейбница:

$$R_{0,x_0}f(x) = f(x) - f(x_0) = \int_{x_0}^x f'(t)dt.$$

Переход: $n-1 \rightarrow n$.

$$R_{n-1,x_0}f(x) = \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(x-t)^{n-1} dt =$$

$$= \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(t) d\left(\frac{(x-t)^n}{n}\right) =$$

$$= \underbrace{-\frac{1}{n!} f^{(n)}(t)(x-t)^n \Big|_{x_0}^x}_{n!} + \underbrace{\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt}_{R_{n,x_0}f(x)}$$

14 feb

1.1.2 Теорема о среднем

Теорема 1.1.2: Хитрая теорема о среднем

 $f,g\in C[a,b],\ g\geqslant 0.$ Тогда

$$\exists c \in (a,b) : \int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx.$$

Доказательство. Найдем максимум и минимум f на [a,b].

$$m \leqslant f(x) \leqslant M$$
.

Тогда

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x).$$

Так как интеграл монотонен

$$\begin{split} m \int_a^b g(x) dx &\leqslant \int_a^b f(x) d(x) dx \leqslant M \int_a^b g(x) dx \\ m &\leqslant \frac{\int_a^b f(x) g(x) dx}{\int_a^b g(x) dx} \leqslant M. \end{split}$$

По теореме Больцано-Коши о промежуточном значении

$$\exists c \in (a,b) : f(c) = \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx}.$$

Следствие 1. Если $|f^{(n+1)}| \leq M$, то существует понятно какая оценка сверху для $|R_{n,x_0}f(x)|$.

Теорема 1.1.3

Формула Тейлора с остатком в форме Лагранжа следует из формулы Тейлора с остатком в интегральной форме.

Доказательство. Запишем остаток в форме Лагранжа:

$$R_{n,x_0}f(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!}(x-x_0)^{n+1}, \quad \theta$$
 лежит между x, x_0 .

По прошлой теореме 1.1.2, где $g(t) = (x-t)^n$, получаем, что

$$\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\theta) \int_{x_0}^x (x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\theta) \cdot \left(-\frac{(x-t)^{n+1}}{n+1}\right) \Big|_{x_0}^x.$$

1.2 Приближенное вычисление интеграла

Определение 1: Дробление

Пусть $\tau = \{x_0, x_1, \dots x_n\}$, $a < x_0 < \dots < x_n < b$. Тогда τ называется дроблением отрезка [a, b]. Мелкость дробления $|\tau| = \max_{0 \le i \le n-1} (x_{i+1}x_i)$.

 θ называется оснащением дробления τ , если $\theta = \{t_1, \dots t_n\} : t_i = [x_{i-1}, x_i]$.

Пара (τ, θ) называется оснащенным дроблением.

Определение 2: Интегральная сумма

Если $f \in C[a,b], (\tau,\theta)$ — оснащенное дробление отрезка [a,b], интегральной суммой называется

$$S_{\tau,\theta}(f) = \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}).$$

Теорема 1.2.1

 $f \in C[a,b]$. Тогда $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall (\tau,\theta)$ — оснащенное дробление отрезка $[a,b], \; |\tau| < \delta :$

$$\left| S_{\tau,\theta}(f) - \int_a^b f(x) dx \right| \leqslant \varepsilon.$$

To ecta $\lim_{|\tau|\to 0} = \int_a^b f(x) dx$.

Доказательство. По теореме Кантора о равномерной непрерывности

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall s, t \in [a, b] : \left(|s - t| < \delta \Longrightarrow |f(s) - f(t)| < \frac{\varepsilon}{|b - a|} \right).$$

Перепишем неравенство

$$\left| \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}) - \sum_{j=1}^{n} \underbrace{\int_{x_{j-1}}^{x_j} f(x) dx}_{(x_j - x_{j-1})f(c_i)} \right| \leqslant \sum_{j=1}^{n} \left| f(t_j) - f(c_j) \right| (x_j - x_{j-1}) \leqslant \frac{\varepsilon}{|b - a|} \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon.$$

1.3 Приближенное вычисление интеграла

Определение 3: Дробление

Пусть $\tau = \{x_0, \dots, x_n\}, \ a < x_0 < \dots < x_n < b$. Тогда τ называется дроблением отрезка [a, b]. Мелкость дробления —

$$|\tau| = \max_{0 \le i \le n-1} (x_{i+1} - x_i).$$

Оснащение дробления —

$$\theta = \{t_1, \dots t_n\}, \quad t_j \in [x_{j-1}, x_j].$$

Оснащенное дробление — пара (τ, θ)

Определение 4

 $f \in C[a,b], (\theta,\tau)$ — оснащенное дробление отрезка [a,b]. Тогда

$$S_{\tau,\theta}(f) = \sum_{j=1}^{n} f(t_j)(x_j - x_{j+1})$$

называется интегральной суммой.

Теорема 1.3.1

 $f \in C[a,b]$. Тогда $\forall \varepsilon > 0 \; \exists \delta > 0$ такие, что для любого оснащенного дробления (τ,θ) отрезка [a,b], $|\tau| < \delta$:

$$\left| S_{\tau,\theta}(t) - \int_a^b f(x) dx \right| \leqslant \varepsilon.$$

То есть

$$\lim_{|\tau|\to 0} S_{\tau,\theta} \to \int_a^b f(x) dx.$$

Доказательство. По теореме Кантора о равномерной непрерывности $\forall \varepsilon > 0 \; \exists \delta > 0 \colon \left(\forall s, t \in [a,b], |s-t| < S \Longrightarrow |f(s) - f(t)| < \frac{\varepsilon}{|b-a|} \right).$

$$\left| \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}) - \sum_{j=1}^{n} \int_{x_{j-1}}^{x_j} f(x) dx \right| \le$$

$$\le \left| \sum_{j=1}^{n} |f(t_j) - f(r_j)| (x_j - x_{j-1}) \right| \le$$

$$\le \frac{\varepsilon}{b - a} \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon$$

Здесь $t_i, r_i \in [x_i, x_{i-1}].$

Определение 5

Пусть $f \colon [a,b] \to \mathbb{R}$ и

$$\exists A : \forall \varepsilon > 0 \ \exists \delta > 0 : \forall (\tau, \theta) \ |\tau| < \delta \ |S_{\tau, \theta} - A| < \varepsilon.$$

 ${
m Tor}$ да A — интеграл по Риману от функции f на отрезке [a,b].

Упражнение. Доказать, что, если f кусочно-непрерывна (то есть имеет 1 разрыв первого рода в точке c), то f интегрируема по Риману и

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Пример 1.3.1.

$$\int_0^a e^x dx = ?$$

Рассмотрим $\tau=\left\{0,\frac{a}{n},\frac{2a}{n},\dots,a\right\}$ и $\theta=\left\{0,\frac{a}{n},\frac{2a}{n},\dots,a\frac{n-1}{n}\right\}$

$$\int_{0}^{a} e^{x} dx = \lim_{n \to \infty} \sum_{j=0}^{n-1} f\left(\frac{ja}{n}\right) \cdot \frac{a}{n} = \lim_{n \to \infty} \frac{a}{n} \left(1 + e^{\frac{a}{n}} + \dots + e^{a\frac{n-1}{n}}\right) =$$

$$= \lim_{n \to \infty} \frac{a}{n} \frac{e^{\frac{an}{n} - 1}}{e^{\frac{a}{n}} - 1} = \lim_{n \to \infty} \underbrace{\frac{a}{n} \cdot \frac{1}{e^{\frac{a}{n} - 1}}}_{\to 0} e^{a} - 1 = e^{a} - 1$$

Пример 1.3.2.

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \dots + \frac{1}{2n} \right) = \lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{1 + \frac{1}{n}} + \dots + \frac{1}{1 + \frac{n}{n}} \right) =$$

$$= \int_0^1 \frac{dx}{1+x} = \ln(1+x) \Big|_0^1 = \ln 2$$

Пример 1.3.3. p > 0

$$\sum_{k=1}^{n} k^{p} = n^{1+p} \left(\left(\frac{1}{n} \right)^{p} + \left(\frac{2}{n} \right)^{p} + \dots + \left(\frac{n}{n} \right)^{p} \right) \cdot \frac{1}{n} =$$

$$= n^{1+p} \int_{0}^{1} x^{p} dx = \frac{1}{p+1} \cdot n^{p+1}$$

1.3.1 Интеграл Пуассона

$$\begin{split} I(a) &= \int_0^\pi \underbrace{\ln(1 - 2a\cos x + a^2)}_{f(x)} dx = \lim_{n \to \infty} \sum_{k=1}^n \frac{\pi}{n} f\left(\frac{(k-1)\pi}{n}\right) = \\ &= \lim_{n \to \infty} \sum_{k=1}^n \frac{\pi}{n} \ln\left(1 - 2a\cos\left(\frac{(k-1)\pi}{n}\right) + a^2\right) = \lim_{n \to \infty} \frac{\pi}{n} \ln\left(\prod_{k=1}^n 1 - 2a\cos\frac{(k-1)\pi}{n} + a^2\right) = \\ &= \lim_{n \to \infty} \frac{\pi}{n} \ln\left(\frac{a^{2n} - 1}{a + 1} \cdot (a - 1)\right) = \lim_{n \to \infty} \ln\left(\frac{a^{2n} - 1}{n}\right) = \\ &= \begin{cases} 0 & |a| < 1 \\ 2\ln a & |a| > 1 \end{cases} \end{split}$$

Упражнение.

$$\int_0^\pi \ln(\cos x) dx = ?.$$

Упражнение.

- I(a) = I(-a)
- $I(-a) + I(a) = I(a^2)$

1.3.2 Формула трапеции

Утверждение. Пусть $|f'| \leq c$. Тогда

$$\left| \int_{a}^{b} f(x)dx - S_{\tau,\theta}(f) \right| \leqslant$$

$$\leqslant \sum_{t_{j},c_{i} \in [x_{j-1},x_{j}]} |f(t_{j}) - f(c_{j})| (x_{j} - x_{j-1}) \leqslant C \cdot |b - a|$$

Формула трапеции

$$\sum \frac{f(x_j) + f(x_{j-1})}{2} (x_j - x_{j-1}) \approx \int_a^b f(x) dx.$$

Теорема 1.3.2: о погрешности в формуле трапеции

 $f \in C^2[a,b].$

$$\int_{a}^{b} f(x)dx - \sum_{j=1}^{n} \frac{f(x_{j-1}) + f(x_{j})}{2} (x_{j} - x_{j-1}) \leqslant \frac{1}{8} |\tau|^{2} \int_{a}^{b} |f''(x)| dx.$$

Для равномерного дробления

$$\left| \int_{a}^{b} f(x)dx - \frac{b-a}{n} \sum_{j=1}^{n} \frac{f\left(a + \frac{j-1}{n}b\right) + f\left(a + \frac{j}{n}b\right)}{2} \right| \le \frac{1}{8} \frac{(b-a)^{2}}{n^{2}} \int_{a}^{b} |f''(x)| dx$$

Доказательство. Рассмотрим один участок разбиения $[x_{j-1}, x_j]$ и докажем неравенство для него. Пусть g — линейная функция, соединяющая вершины столбцов на каждом участке разбиения. Определим h = f - g. $h(x_j) = h(x_{j-1}) = 0, h'' = (f - g)'' = f''$. Обозначим $x_{j-1} = \alpha, x_j = \beta$.

Перепишем нужное неравенство

$$\left| \int_{\alpha}^{\beta} h(x) dx \right| \leqslant \frac{1}{8} (\beta - \alpha)^2 \int_{\alpha}^{\beta} |h''(x)| dx.$$

Проинтегрируем, где c любая константа, c_1, c_2 корни уравнения $\frac{(x-\alpha)(x-\beta)}{2} = 0$:

$$\int_{\alpha}^{\beta} h(x)dx = \int_{\alpha}^{\beta} h(x)d(x-c) = (x-c)h(x) \Big|_{\alpha}^{\beta} - \int_{\alpha}^{\beta} h'(x)(x-c)dx =$$

$$= (x-c)h(x) \Big|_{\alpha}^{\beta} - \int_{\alpha}^{\beta} h'(x)d\left(\frac{x^{2}}{2} + c_{1}x + c_{2}\right) =$$

$$= (x-c)h(x) \Big|_{\alpha}^{\beta} - h'(x)\left(\frac{x^{2}}{2} + c_{1}x + c_{2}\right) \Big|_{\alpha}^{\beta} + \int_{\alpha}^{\beta} h''(x)\left(\frac{x^{2}}{2} + c_{1}x + c_{2}\right) dx =$$

$$= \int_{\alpha}^{\beta} h''(x)\frac{(x-\alpha)(x-\beta)}{2} dx$$

Так как $\sqrt{(x-\alpha)(x-\beta)}\leqslant \frac{\alpha-\beta}{2}$, можем переписать

$$\left| \int_{\alpha}^{\beta} h(x) fx \right| \leqslant \left(\frac{\alpha - \beta}{2} \right)^{2} \cdot \frac{1}{2} \int_{\alpha}^{\beta} \left| h''(x) \right| dx = \frac{1}{8} (\beta - \alpha)^{2} \int_{\alpha}^{\beta} \left| h''(x) \right| dx.$$

Следствие 2 (Формула Эйлера-Маклорена).

$$f(m) + f(m+1) + \dots + f(n) = \frac{f(m) + f(n)}{2} + \frac{f(m)}{2} + f(m+1) + \dots + f(n-1) + \frac{f(n)}{2} = \frac{f(m) + f(n)}{2} + T(f, m, n)$$

Воспользуемся рассуждениями из доказательства выше. Так, можно получить, что

$$T(f, m, n) = \int_{m}^{n} f(x)dx + \sum_{k=m}^{n-1} \int_{k}^{k+1} f''(x) \frac{(x-k)(k+1-x)}{2} dx =$$

$$= \int_{m}^{n} f(x)dx + \int_{m}^{n} f''(x) \frac{\{x\}(1-\{x\})}{2} dx$$

Пример 1.3.4. Рассмотрим $1^p + \ldots + n^p$ при p = -1 — гармоническая сумма.

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \frac{1}{2} \left(1 + \frac{1}{n} \right) + \underbrace{\int_1^n \frac{dx}{x}}_{\ln n} + \underbrace{\int_1^n \frac{2}{x^3} \frac{\{x\}(1 - \{x\})}{2} dx}_{\leqslant \int_1^n \frac{dx}{x^3} = -\frac{1}{2x^2} \Big|_1^n \leqslant \frac{1}{2}}_{1} = \ln n + \gamma + o(1)$$

1.3.3 Формула Стирлинга

$$\ln(n!) = \ln(1) + \ln(2) + \dots + \ln(n) =$$

$$= \frac{1}{2}\ln(n) + \int_{1}^{n} \ln x dx - \int_{1}^{n} \frac{\{x\}(1 - \{x\})}{2x^{2}} dx =$$

$$= \frac{1}{2}\ln n + n\ln n - n - 0 + 1 + C + o(1)$$

Следовательно, $n! \approx \frac{n^n}{e^n} \sqrt{n} \tilde{C}$. Тогда, используя формулу Валлиса, получаем $C_{2n}^n \approx \frac{4^n}{\sqrt{\pi n}}$. Подставим в формулу n!:

$$C_{2n}^{n} = \frac{(2n)!}{n!^{2}} - \frac{\tilde{C}\left(\frac{2n}{e}\right)\sqrt{2n}}{(\tilde{C})^{2}\left(\frac{n}{e}\right)^{2n}n} = \frac{1}{\tilde{C}} \cdot \frac{4^{n}\sqrt{2}}{\sqrt{n}}.$$

Из чего следует, что $\tilde{C} = \sqrt{2\pi}$

Теорема 1.3.3: Формула Стирлинга

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi}.$$

1.4 Несобственные интегралы

Определение 6: Несобственный интеграл

 Π усть $-\infty < a < b \leqslant +\infty$, $f \in C[a,b)$. Тогда несобственным интегралом называется

$$\int_{a}^{b} f(x)dx = \lim_{B \to b^{-}} \int_{a}^{B} f(x)dx.$$

Если предел существует, то $\int_a^{\to b} f(x) dx$ сходится, иначе расходится. Аналогично определяется $\int_{\to a}^b f(x) dx$.

Теорема 1.4.1: Критерий Больцано-Коши

 $\int_{a}^{b} f(x)dx$ сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta \in (a,b) \colon \forall B_1, B_2 \in (\delta,b) \colon \left| \int_{B_1}^{B_2} f(x) dx \right| < \varepsilon.$$

 \mathcal{A} оказательство. Пусть $F(B)\coloneqq\int_a^B f(x)dx$. Тогда, если $\int_a^{\to b} f(x)dx$ сходится, то $\exists\lim_{B\to b-} F(B)$, а значит

$$\forall \varepsilon > 0 \ \exists \delta \colon \forall B_1, B_2 \in (\delta, B) \colon |F(B_1) - F(B_2)| < \varepsilon.$$

В обратную сторону следует из того, что последовательность $F(B_i)$ фундаментальна.

Замечание. Критерий Коши чаще используется для расходимости.

Пример 1.4.1. $\int_0^1 x^{\alpha} dx$. Если $\alpha \geqslant 0$, то все легко. Но если $\alpha < 0$, то необходимо считать предел

$$\lim_{A \to 0+} \int_A^1 x^{\alpha} dx = \lim \frac{x^{\alpha+1}}{\alpha+1} \Big|_A^1.$$

Предел существует только при $\alpha > -1$, а при $\alpha \leqslant -1$ ряд расходится.

Пример 1.4.2. $\int_{-\infty}^{+\infty} x^{\alpha}$. При $\alpha \neq 1$,

$$\int_{1}^{B} x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} \Big|_{1}^{B}.$$

При $\alpha < -1$ интеграл сходится, а при $\alpha \geqslant -1$ расходится.

Лекция 2

1.4.1 Свойства

Свойства.

1 $c \in (a,b)$:

$$\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} .$$

 $2 \int_{a}^{b} f dx - cxo \partial umcs \Longrightarrow \lim_{A \to b} \int_{A}^{b} f = 0$

 $\mathbf{2}$ ' Если $\int_A^{\to b} f \not\to_{A \to b-} \Longrightarrow \int_a^{\to b} pacxodumcs$ (необходимое условие сходимости несобственного интеграла).

линейность $f, g - \phi y n \kappa u u na [a, b), \alpha, \beta \in \mathbb{R}.$

$$\int_{a}^{\to b}, \int_{a}^{\to b} g \, cxo \partial smcs \implies \int_{a}^{\to b} (\alpha f + \beta g) = \alpha \int_{a}^{\to b} + \beta \int_{a}^{\to b} g.$$

монотонность $f \leqslant g, \int_a^{\to b} f + \int_a^{\to b} g \, cxo \partial x m cx.$

$$\int_{a}^{\to b} f \leqslant \int_{a}^{\to b} g.$$

Определение 7: Абсолютная сходимость

 Γ оворят, что $\int_a^{\to b} f$ сходится абсолютно, ecnu $cxo\partial umc$ я $\int_a^{\to b} |f|$.

 $Ecnu \int_a^{\to b} f \ cxodumc$ я абсолютно, то $\int_a^{\to b} f \ cxodumc$ я и верно неравенство

$$\left| \int_{a}^{\to b} f \right| \leqslant \int_{a}^{\to b} |f| \,.$$

Доказательство. Воспользуемся критерием Больцано-Коши:

$$\int_{a}^{\to b} |f| \,\operatorname{сходится} \implies \forall \varepsilon > 0 \,\, \exists \delta \in (a,b) : \forall B_{1}, B_{2} \in (\delta,b) : \int_{B_{1}}^{B_{2}} |f| dx < \varepsilon \Longrightarrow \left| \int_{B_{1}}^{B_{2}} f dx \right| < \varepsilon.$$

Для любого B:

$$\left| \int_a^B \right| \leqslant \int_a^B |f| dx.$$

Определение 8: Условная сходимость

 $\int_a^{\to b} f$ называется условно сходящимся, если $\int_a^{\to b} f$ сходится, а $\int_a^{\to b} |f|$ расходится.

интегрирование по частям $f,g \in C^1[a,b)$

$$\int_{a}^{\to b} fg' = fg \Big|_{a}^{\to b} - \int_{a}^{\to b} f'g, \quad fg \Big|_{a}^{\to b} = \lim_{x \to b-} f(x)g(x) - f(a)g(a).$$

Если два предела из трех существуют, то существует третий и верно это равенство.

замена переменной $\varphi: [\alpha, \beta) \to [a, b), \ \varphi \in C^1[\alpha, \beta), f \in C[a, b).$ Если существует предел, обозначим его $ma\kappa$: $\exists \lim_{x \to \beta^-} \varphi(x) = \varphi(\beta^-)$.

$$\int_{\alpha}^{\beta} f(\varphi(x))\varphi'(x)dx = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(y)dy.$$

Доказательство. $D \in [\alpha, \beta)$.

$$\Phi(\gamma) = \int_{\alpha}^{\gamma} f(\varphi(x))\varphi'(x)dx.$$

 $c \in [a,b)$

$$F(c) = \int_{\varphi(\alpha)}^{c} f(y)dy.$$

Обычная формула замены перменной: $\Phi = F(\varphi(x))$

Пусть $\exists \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(y) dy$. Возьмем любую последовательность $\{\gamma_n\} \subset [\alpha,\beta), \gamma_n \to \beta-.$

$$\Phi(\gamma_n) = F(\varphi(\gamma_n)).$$

$$\int_{\alpha}^{\gamma_n} f \circ \varphi' = \int_{\varphi(\alpha)}^{\varphi(\gamma_n)} \to \int_{\varphi(\alpha)}^{\varphi(\beta)}.$$

 \sqsubseteq Пусть $\exists \int_{\alpha}^{\to \beta} (f \circ g) \varphi'$. Надо проверить, что $\exists \int_{\varphi(\alpha)}^{\varphi(\beta-)} f$

- 1. $\varphi(\beta -) < b$ очевидно.
- 2. $\varphi(\beta-) = b \ \{c_n\} \subset [\varphi(\alpha), b), \ c_n \to b \ \exists \gamma_{n \in [\alpha, \beta)} : \varphi(\gamma_n) = c_n.$ Существует подпоследовательность, стремящаяся либо к β , либо к числу меньшему β .
 - $\{\gamma_{n_k}\} \to \beta$

$$\int_{\alpha}^{\gamma_{n_k}} = \int_{\varphi(\gamma)}^{\varphi(\gamma_{n_k} = c_{n_k})}.$$

• $\{\gamma_{n_k}\} \to \tilde{\beta} < \beta$

$$\varphi(\gamma_{n_k}) \to \varphi(\beta) \in [a, b) < b.$$

Но должно быть равно b. Противоречие.

Значит $\gamma_n \to b$.

$$\int_{alpha}^{\varphi(\gamma_n)} (f \circ g) \varphi' = \int_{phi(alpha)}^{phi(\gamma_n)} f = \int_{\varphi(\alpha)}^{c_n} f.$$

Теорема 1.4.2: Признаки сравнения

Пусть $0\leqslant f\leqslant g,\ f,g\in C[a,b)$. Тогда

- 1. если $\int_a^{\to b} g$ сходится, то $\int_a^{\to b} f$ сходится,
- 2. если $\int_a^{\to b} g$ расходится, то $\int_a^{\to b} f$ расходится.

Доказательство.

- 1. Используем критерий Коши $\forall \varepsilon > 0 \ \exists \delta \in (a,b): \forall B_1, B_2 \in (\delta,b): \ \int_{B_1}^{B_2} g < \varepsilon \Longrightarrow \int_{B_1}^{B_2} f < \varepsilon$
- 2. Аналогично

Теорема 1.4.3: Признаки Абеля и Дирихле

 $f\in C[a,b),\ g\in C^1[a,b),\ g$ монотонна.

Признак Дирихле Если f имеет ограниченную первообразную на $[a,b), g \to 0$, то $\int^{tb} fg$ сходится.

Признак Абеля Если $\int_a^{\to b} f$ сходится, g ограничена, то $\int_a^{\to b} f g$ сходится.

Доказательство. F — первообразная f. $F(B) = \int_a^B f$.

$$\int_{a}^{b} fg dx = \int_{a}^{b} g dF = Fg \Big|_{a}^{b} - \int_{a}^{b} Fg' dx.$$

признак Даламбера $\lim_{B\to b^-} F(B)g(B) = 0$

признак Абеля $\exists \lim F, \exists \lim g$

Теперь про интеграл. Пусть $M = \max F$, он существует, так как F ограничена в любом случае.

$$\int_{a}^{\to b} Fg'dx \leqslant M \cdot \int_{a}^{\to b} |g|dx = M \cdot \left| \int_{a}^{\to b} g'dx \right| = M \cdot |g(b-) - g(a)| \,.$$

Пример 1.4.3.

$$\int_0^{\frac{1}{2}} x^{\alpha} |\ln x|^{\beta}.$$

Рассмотрим случай $\alpha > 1$. Метод удавливания логарифма: $\varepsilon > 0$: $\alpha - \varepsilon > -1$,

$$x^{\alpha}|\ln x|^{\beta} = x^{\alpha-\varepsilon}x^{\varepsilon}|\ln x|^{\beta} \underset{x\to 0}{\longrightarrow} 0 \leqslant Cx^{\alpha-\varepsilon}.$$

Тогда $\int_0^{\frac{1}{2}} x^{\alpha-\varepsilon} dx$ сходится. Если $\alpha < -1$,

$$\varepsilon>0 \ \alpha+\varepsilon<-1.$$

$$x^{\alpha}|\ln x|^b=x^{\varepsilon+\alpha}\underbrace{x^{-\varepsilon}|\ln x|^{\beta}}_{\to\infty}.$$

Тогда $\int_0^{\frac{1}{2}} x^{\alpha+\varepsilon} dx$ расходится.

Если $\alpha = -1$, сделаем замену:

$$\int_0^{\frac{1}{2}} \frac{|\ln x|^{\beta}}{x} dx = -\int_0^{\frac{1}{2}} |\ln x|^{\beta} d(f(x)) = \int_{-\ln\frac{1}{2}}^{\infty} y^{\beta} dy.$$

Тоже сходтся.

Пример 1.4.4.

$$\int_{10}^{+\infty} \frac{\sin x}{s^{\alpha}} dx, \quad \int_{10}^{+\infty} \frac{\cos 7x}{x^{\alpha}} dx.$$

 $\alpha > 0$.

$$\int_{10}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx$$
 сходится, так как сходится
$$\int_{10}^{+\infty} \frac{dx}{x^{\alpha}}.$$

2. $0 < \alpha \le 1$. По признаку Дирихле: $f(x) = \sin x$ – ограничена первообразная, $g(x) = \frac{1}{x^{\alpha}}$ – убывает.

Значит

$$\int_{10}^{+\infty} \frac{\sin x}{x^{\alpha}} dx \, \operatorname{сходится.}$$

Пример 1.4.5 (Более общий вид).

$$\int_{10}^{+\infty} f(x) \sin \lambda x dx, \quad \int_{10}^{+\infty} f(x) \cos \lambda x dx, \quad \lambda \in \mathbb{R} \setminus \{0\}.$$

 $f \in C^1[0, +\infty), f$ монотонна.

Если при $x \to +\infty$ $f \to 0$, то интегралы сходятся,

Если при $x \to +\infty$ $f \not\to 0$, то интегралы расходятся.

Ремарка.

$$\int_{10}^{+\infty} f(x)dx \ \text{сходится} \ \neq f \to 0, \ \text{при } x \to +\infty.$$

Упражнение.

$$\int_{10}^{+\infty} f(x)dx$$
 сходится, $f \in C[10, +\infty)$.

Следует ли из этого, что

$$\int_{10}^{+\infty} (f(x))^3 dx$$
 сходится?

1.5 Вычисление площадей и объемов

1.5.1 Площади

- 1. $f \in C[a,b], f \geqslant 0, P_f = \{(x,y) \mid x \in [a,b], y \in [0,f(x)]\}$. Тогда $S(P_f) = \int_a^b f(x) dx$
- 2. Криволинейная трапеция. $f,g\in C[a,b],\ f\geqslant g,\ T_{f,g}=\{(x,y)\mid xin[a,b],y\in [g(x),f(x)]\}.$ Тогда $S(T_{f,g})=\int_a^b f(x)-g(x)dx$

Следствие 3 (Принцип Кавальери). Если есть две фигуры на плоскости расположенные в одной полосе и длина всех сечений прямыми, параллельными полосе, равны, то их площади равны.

Сейчас мы можем доказать его только для случаев, когда все границы фигур — графики функции.

3. Площадь криволинейного сектора в полярных координатах. $f: [\alpha, \beta] \to \mathbb{R}, \ \beta - \alpha \leqslant 2\pi, \ f \geqslant 0, \ g$ непрерывна.

$$\tilde{P}_f = \{(r, \varphi) \in \mathbb{R}^2 \mid \varphi \in [a, b], \ r \in [0, f(\varphi)]\}.$$

Пусть τ — дробление $[\alpha, \beta]$, $\tau = \{\gamma_j\}_{j=0}^n$, $\alpha = \gamma_0 < \gamma_1 < \dots \gamma_n = \beta$. Пусть $M_j = \max_{[\gamma_j, \gamma_{j+1}]}$, $m_j = \min_{[\gamma_j, \gamma_{j+1}]}$.

$$\sum \frac{m_j^2}{2} (\gamma_j - \gamma_{j+1}) \leqslant S(\tilde{P}_f) \leqslant \sum \frac{M_j^2}{2(\gamma_j - \gamma_{j+1})}.$$

Крайние стремятся к $\frac{1}{2}\int_{\alpha}^{\beta}f^{2}(\varphi)d\varphi$. Значит

$$S(\tilde{P}_f)\frac{1}{2}\int_a^b fst(\varphi)d\varphi.$$

4. Площадь фигуры, ограниченной праметрически заданной кривой. $x,y:\mathbb{R}to\mathbb{R}.\ \forall t: x(t+T)=x(t),y(t+T)=y(T).\ x,y\in C^1(\mathbb{R})$

$$S = \int_{A}^{B} (f(x) - g(x)) dx.$$

$$\int_{A}^{B} g(x) dx = \int_{t \in [b, a+T]}^{a+T} y(f) x'(t) dt$$

$$\int_{t \in [b, a+T]}^{dx = x'(t)} dx = \int_{t \in [a, b]}^{a+T} y(t) x'(t) dt$$

$$\int_{A}^{B} f(x) dx = \int_{t \in [a, b]}^{a+T} y(t) x'(t) dt$$

$$\int_{A}^{a} f(x) dx = \int_{t \in [a, b]}^{a+T} y(t) x'(t) dt = \int_{t \in [a, b]}^{a+T} y'(t) x(t) dt$$

$$S = \int_{A}^{B} (f(x) - g(x))dx = -\int_{a}^{a+T} y(t)x'(t)dt = \int_{a}^{a+T} y'(t)x(t)dt.$$

1.5.2 Объемы

- 1. Аксиомы и свойства такие же как и у площади. Можно определить псевдообъем.
- 2. Фигура $T \subset \mathbb{R}^3$, $T \subset \{(x, y, z) \in \mathbb{R}^3 \mid x \in [a, b]\}$.

Определение 9

Сечение $T(x) = \{(y, z) \in \mathbb{R}^2 \mid (x, y, z) \in T\}.$

 $\forall x: T(x)$ имеет площадь, а

$$V(T) = \int_{a}^{b} S(T(x))dx.$$

3. Дополнительное ограничение не T:

$$\forall \Delta \subset [a, b] \ \exists x_*, x^* \in \Delta : \forall x \in \Delta \ T(x_*) \subset T(x) \subset T(x^*).$$

Пример 1.5.1. T — тело вращения, $f \in C[a, b], f \ge 0$.

$$T = \{(x, y, z) \mid \sqrt{y^2 + z^2} \leqslant f(x)\}.$$

Доказательство формулы. Постулируем объем цилиндра: с произвольным основанием V = SH. Рассмотрим тело T и au дробление отрезка [a,b] . Поместим его между двумя цилиндрами.

$$\sum (x_j - x_{j-1}) S(T(x_* \Delta_j)) \leqslant V \leqslant (x_j - x_{j-1}) S(T(x^* \Delta_j)).$$

Обе суммы стремятся к $\int_a^b S(T(x))dx$ как интегральные суммы.

28 feb

Рис. 1.1: Цилиндр

Пример 1.5.2 (Интеграл Эйлера-Пуассона).

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

$$T=\{0\leqslant y\leqslant e^{-(x^2+y^2)}\}$$

$$T(x) = \{(y, z) \in \mathbb{R}^2 \mid 0 \leqslant y \leqslant e^{-(x^2 + z^2)}\}.$$

Посчитаем площадь сечения

$$S(T(x)) = \int_{-\infty}^{\infty} e^{-(x^2+z^2)} dz = e^{-(x^2)} int_{-\infty}^{\infty} e^{-y^2} = Ie^{-x^2}.$$

Лекция 3

$$\int_{-\infty}^{\infty} e^{-x^2} dx = I.$$

Получили, что $V=I^2$.

$$V = \int_0^1 S(y)dy = \pi \int_0^1 r(y)^2 dy = .$$

Где $r(y) = \sqrt{-\ln y}$. Подставляем:

$$= -\pi \int_0^1 \ln y \, dy = -\pi (y \ln y - y) \Big|_0^1 = \pi.$$

1.6 Кривые в \mathbb{R}^n и их площади

Определение 10: Путь

Путь в \mathbb{R}^n — отображение $\gamma:[a,b]\to\mathbb{R}^n,\ \gamma\in C[a,b].$

Можно разложить по координатам

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t)), \ \gamma_i$$
 — координатные отображения для γ .

Начало пути — $\gamma(a)$, конец пути — $\gamma(b)$.

Hосители пути — $\gamma([a,b])$.

 γ замкнут, если $\gamma(a) = \gamma(b)$.

 $\gamma \in C^n[a,b] \Longleftrightarrow \forall i: \gamma_i \in C^r[a,b] \Longleftrightarrow \gamma - r$ -гладкий путь.

 γ^{-1} — противоположный путь, если $\gamma^{-1}(t) = \gamma(a-b-t), \ \forall t \in [a,b].$

Замечание. Разные пути могут иметь один общий носитель.

Определение 11

Два пути $\gamma:[a,b]\to\mathbb{R}^n$ и $\tilde{\gamma}:[c,d]\to\mathbb{R}^n$ эквивалентны, если существует строго возрастающая сюрьекция

$$\varphi:[a,b]\to [c,d]:\gamma=\tilde{\gamma}\circ\varphi.$$

Утверждение. Это отношение эквивалентности.

Определение 12: Кривая

Кривая в \mathbb{R}^n — класс эквивалентности путей. Параметризация кривой — путь, представляющий кривую.

Пример 1.6.1.

$$\gamma_1: [0,\pi] \to \mathbb{R}^2 \quad \gamma_1(t) = (\cos t, \sin t_0).$$

$$\gamma_2: [-1,1] \to \mathbb{R}^2 \quad \gamma_2(t) = (-t, \sqrt{1-t^2}).$$

Можно определить:

начало кривой

- конец кривой
- простота
- замкнутость
- ullet кривя r-гладкая, если у нее есть хотя бы одна гладкая параметризация.

1.6.1 Поговорим о длине

Ожидаемые свойства:

• $\gamma: [a,b] \to \mathbb{R}^n, c \in (a,b).$

$$\gamma = \gamma\mid_{[a,c]}, \quad \gamma = \gamma\mid_{[c,b]} \Longrightarrow l(\gamma) = l(\gamma) + l(\gamma).$$

- независимость от параметризации
- $l(\gamma) \geqslant |\gamma(a) \gamma(b)|$
- $l(\gamma) \geqslant \sum_{1}^{m} |\gamma(x_j) \gamma(x_{j-1})|$, где \forall дробления [a,b] $\tau = \{x_j\}$

Определение 13: Длина пути

$$\gamma:[a,b] o \mathbb{R}^n$$
 — путь. $l(\gamma)=\sup_{ au}l_{ au}$, где

$$l_{\tau} = \sum_{j=1}^{m} |\gamma(x_j) - \gamma(x_{j-1})|, \ \tau = \{x_j\}_{j=0}^{m}.$$

Упражнение. Придумать пример бесконечно длинного пути.

Определение 14: Спрямляемый путь

Если путь имеет конечную длину, он называется спрямляемым.

Определение 15: Длина кривой

Длина кривой — длина любой из ее параметризаций.

Свойства.

1.
$$\gamma \sim \tilde{\gamma} \Longrightarrow l(\gamma) = l(\tilde{\gamma})$$

$$\gamma: [a,b], c \in (ab)$$
 $\gamma = \gamma \mid_{[a,c]}, \gamma \gamma \mid_{[c,b]}$

Тогда
$$l(\gamma) = l(\gamma) + l(\gamma)$$
.

Доказательство.

$$\boxed{1 \Longrightarrow 2}$$
 τ — дробление $[a,b]$.

$$\tau^{l} (\tau \cap [a, c] \cup \{c\})$$
$$\tau^{r} = (\tau \cap [c, b] \cup \{c\})$$

$$l(\gamma) = \sum_{j=1}^{n} |\gamma(x_j) - \gamma(x_{j-1})| \leqslant l_{\tau^l}(\gamma^l) - l_{tau^r}(\gamma^r) \leqslant l(\gamma^l) - l(\gamma^r).$$

$$\boxed{2\Longrightarrow 1}$$
 au^l — дробление $[a,b],\, au^r$ — дробление $[c,d].\, au= au^l\cup au^r.$

$$l(\gamma) \leqslant l_{\tau}(\gamma) = l_{\tau^{l}}(\gamma^{l}) + l_{\tau^{r}}(\gamma^{r})$$

$$\sup_{\tau^{l}} l(\gamma) \geqslant l(\gamma^{l}) + l_{\tau^{r}}(\gamma^{r}) \qquad \forall \tau^{l}$$

$$\sup_{\tau^{r}} l(\gamma) \geqslant l(\gamma^{l}) + l_{\tau^{r}}(\gamma^{r}) \qquad \forall \tau^{r}$$

Теорема 1.6.1: Длина гладкого пути

 $\gamma:[a,b]\to\mathbb{R}^n$ — гладкий путь. Тогда γ обязательно спр и

$$l(\gamma) = \int_a^b |\gamma'(t)| dt.$$
$$\gamma'(t) = (\gamma'_1(t), \dots, \gamma'_n(\tau)).$$
$$|\gamma'(t)| = \sqrt{|\gamma'_1(t)|^2 + \dots + \gamma'_n(t)^2}.$$

Доказательство.

1.
$$\Delta \subset [a,b]$$
 — отрезок. Пусть $m_j(\Delta) = \min_{t \in \Delta} |\gamma_j'(t)|, M_j(\Delta) = \max_{t \in \Delta} |\gamma_j'(t)|.$

$$m(\Delta) = \sqrt{\sum_{j=1}^{n} (m_j(\Delta))^2}, \qquad M(\Delta) = \sqrt{\sum_{j=1}^{n} (M_j(\Delta))^2}.$$

Для всех $\Delta \subset [a,b]$ чему равно $l(\gamma|_{\Delta})$?

Пусть $\tau = \{x_j\}_{j=0}^m$. Тогда

$$l_{\tau}(\gamma \mid_{\Delta}) = \sum_{j=1}^{m} \sqrt{\sum_{k=1}^{n} |\gamma_k(x_j) - \gamma_k(x_{j-1})|^2}.$$

По теореме Лагранжа результат равен

$$l_{\tau}(\gamma \mid \Delta) = \sum_{j=1}^{m} \sqrt{\sum_{k=1}^{n} |\gamma'_{k}(c_{i})|^{2} \cdot |x_{j} - x_{j-1}|} = \sum_{j=1}^{m} (x_{j} - x_{j-1}) \sqrt{\sum_{k=1}^{n} |\gamma'_{k}(c_{i})|^{2}}.$$

Выражение под корнем не превосходит $M(\Delta)$ и не менее $m(\Delta)$

$$|\Delta| m(\Delta) \leqslant l_{\tau}(\gamma \mid_{\Delta}) \leqslant |\Delta| M(\Delta).$$

2. Докажем утверждение для интеграла. Так как

$$m(\Delta) \leqslant \min_{\Delta} \sqrt{|\gamma_i'(t)|^2 + \ldots + |\gamma_n'(t)|^2} \leqslant \max_{\Delta} \sqrt{|\gamma_1'(t)|^2 + \ldots + |\gamma_n'(t)|^2} \leqslant M(\Delta),$$
$$\int_{\Delta} |\gamma_k'(t)| dt = \int_{\Delta} \sqrt{|\gamma_1'(t)| sr + \ldots + |\gamma_n'(t)|} dt.$$

Тогда

$$|\Delta| m(\Delta) \le \int_{\Delta} |\gamma'(t)| dt \le |\Delta| M(\Delta).$$

3. Докажем равенство величин, зажатых между одинаковыми границами: так как кривая гладкая, первая производная непрерывна

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon s,t \in [a,b], \ |s-t| < \delta \quad \forall j \in [1,k] \colon \left| \gamma_j'(s) - \gamma_j'(t) \right| < \varepsilon.$$

 $|\Delta|<\delta\Longrightarrow M(\Delta)-m(\Delta)=\sqrt{\sum M_j(\Delta)^2}-\sqrt{\sum m_j(\Delta)^2}\leqslant \sum |M_j(\Delta)-m_j(\Delta)|\leqslant \varepsilon n.$ Распишем предпоследний переход: пусть $a_j=M_j(\Delta),\ b_j=m_j(\Delta),$

$$\left|\sum a_j^2 - \sum b_j^2\right| = \frac{\left|\sum a_j^2 - \sum b_j^2\right|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}} \leqslant \frac{\sum |a_j - b_j| \cdot |a_j + b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}} \leqslant \sum |a_j - b_j| \cdot \underbrace{\frac{|a_j + b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \sum |a_j - b_j| \cdot \underbrace{\frac{|a_j + b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \sum |a_j - b_j| \cdot \underbrace{\frac{|a_j + b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1} \leqslant \underbrace{\sum |a_j - b_j|}_{\leqslant 1} \cdot \underbrace{\frac{|a_j - b_j|}{\sqrt{\sum a_j^2} + \sqrt{\sum b_j^2}}}_{\leqslant 1}$$

4. Теперь возьмем дробление [a,b] на кусочки длиной меньше δ .

$$[a,b] = \Delta_1 \cup \ldots \cup \Delta_k, \quad |\Delta_j| < \delta.$$

Запишем два неравенства

$$m(\Delta_{j})|\Delta_{j}| \leqslant l(\gamma \mid_{\Delta_{j}}) \leqslant M(\Delta_{j})|\Delta_{j}|.$$

$$m(\Delta_{j})|\Delta_{j}| \leqslant \int_{\Delta_{j}} |\gamma'(t)| dt \leqslant M(\Delta_{j})|\Delta_{j}|.$$

$$\sum_{j=1}^{k} m(\Delta_{j}) |\Delta_{j}| \leqslant l(\gamma) \leqslant \sum_{j=1}^{k} M_{j=1}^{k} M(\Delta_{j}) |\Delta_{j}|$$

$$\sum_{j=1}^{k} m(\Delta_{j}) |\Delta_{j}| \leqslant \int_{a}^{b} |\gamma'| \leqslant \sum_{j=1}^{k} M_{j=1}^{k} M(\Delta_{j}) |\Delta_{j}|$$

$$\sum_{j=1}^{k} M(\gamma_{j}) |\Delta_{j}| - \sum_{j=1}^{k} m(\Delta_{j}) |\Delta_{j}| \leqslant \varepsilon n \cdot \sum_{j=1}^{k} |\Delta_{i}| = \varepsilon n(b-a).$$

Пример 1.6.2. Посчитаем длину окружности: $\gamma = (\cos t, \sin t), \ t \in [0, 2\pi], \ \gamma' = (-\sin t, \cos t), \ |\gamma'| = 1.$ Тогда

$$l(\gamma) = \int_0^{2\pi} 1dt = 2\pi.$$

1.6.2 Важные частные случаи общей формулы

1. $\gamma(t) = (x(t), y(t), z(t))$ — путь в \mathbb{R}^3 .

$$l(\gamma) = \int_{a}^{b} \sqrt{|x'(t)|^{2} + |y'(t)|^{2} + |z'(t)|^{2}}.$$

2. Длина графика функции. $f \in C^1[a,b], \Gamma_f = \{(x,f(t)) \mid x \in [a,b]\}.$

$$l(\Gamma_f) = \int_a^b \sqrt{1 + (f'(t))^2} dx.$$

3. Длина кривой в полярных координатах $r: [\alpha, \beta] \to \mathbb{R}_+, \{(r(\varphi), \varphi)\} = \{(r(\varphi)\cos\varphi, r(\varphi)\sin\varphi)\}$

$$l(\gamma) = \int_{\alpha h}^{\beta} \sqrt{r^2 + (r')^2} d\varphi.$$

Pemapka. $\gamma:[a,b] \to \mathbb{R}^m, \ \Delta \subset [a,b]$ — отрезок.

$$l(\gamma\mid_{\Delta}) = \int_{\Delta} \underbrace{\left|\gamma'(t)\right| dt}_{\text{Дифференциал дуги}}.$$

Если f задана на носителе пути γ получаем «неравномерную длину»: $\int_a^b f(t) \, |\gamma'(t)| \, dt$

Глава 2

Дифференциальное исчисление функций многих вещественных переменных

2.1 Нормированные пространства

Пример 2.1.1. \mathbb{R}^m , \mathbb{C}^m .

$$||x||_p = \left(\sum_{j=1}^m |x_j|^2\right)^{\frac{1}{p}}, \quad p \geqslant 1.$$

Если $p = +\infty$, $||x||_{+\infty} = \max_{1 \leq j \leq m}$.

3амечание. Все нормы в \mathbb{R}^m эквивалентны.

Пример 2.1.2. (K, ρ) — метрический компакт. Рассмотрим множество

$$C(K) = \{ f : K \to \mathbb{R} \mid f$$
 — непрерывна $\}$,

оно линейно над \mathbb{R}^m . Норма:

$$||f||_{\infty} = ||f||_{C(K)} = \max_{x \in K} |f(x)|.$$

Теорема 2.1.1

C(K)— полно.

Доказательство. Рассмотрим фундментальную последовательность функций $|f_n| \subset C(K)$. Возьмем $x \in K: \{f_n(x)\}_{n=1}^{\infty} \subset \mathbb{R}$ — фундаментальна. Следовательно,

$$\exists \lim_{n \to \infty} f_n(x) =: f(x).$$

Последовательности фундаментальны, значит

$$\forall \varepsilon > 0 \ \exists N : \forall k, n > N : ||f_k - f_n|| < \varepsilon \ \forall x \in K \ |f_k(x) - f_n(x)| < \varepsilon.$$

Устремим $k \to \infty$. $f_k(x) \to f(x)$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in K : |f(x) - f_n(x)| \leqslant \varepsilon.$$

Возьмем $n_0 > N$. f_{n_0} — равномерно непрерывна, тогда

$$\forall \varepsilon \exists \delta > 0 \ \forall x_1, x_2 : \rho(x_1, x_2) < \delta \Longrightarrow |f_{n_0}(x_1) - f_{n_0}(x_2)| < \varepsilon.$$

$$|f(x_1) - f(x_2)| \le |(x_1) - f_{n_0}(x_1)| + |f_{n_0}(x_1) - f_{n_0}(x_2)| |f_{n_0}(x_1 - f(x_2))| \le 3\varepsilon.$$

Следовательно, $f \in C(K)$. Докажем сходимость по норме:

$$\forall \varepsilon > 0 \; \exists N > 0 \; \forall n > N : \underbrace{\forall x \in K \; |f(x) - f_{n_0}(x)| \leqslant \varepsilon}_{\max_{x \in K} |f - f_n| \leqslant \varepsilon}.$$

Пример 2.1.3. (K, ρ) — метрический компакт. Рассмотрим множество $l_{\infty}(K) = \{f : K \to \mathbb{R} \mid f$ — ограничена $\}$, оно линейно над \mathbb{R}^m . Норма:

$$||f||_{\infty} = \sup_{x \in K} |f(x)|.$$

Теорема 2.1.2

 $l_{\infty}(X)$ — полно.

Доказательство. Аналогично.

Замечание. $C(K) \subset l_{\infty}(K)$ — замкнутое подпространство.

Замечание. Замкнутое подпространство полного пространства полно.

Пример 2.1.4. $K = [a, b], C^1(K) = C^1[a, b].$

$$C^1[a,b] = \{f: [a,b] \to \mathbb{R} \mid f$$
 дифференцируема на $[a,b], f' \in C[a,b] \}$.

Определим норму $\varphi_3(t) = \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|.$

Теорема 2.1.3

 $(C^{1}[a,b], \varphi_{3})$ полно.

Доказательство. $\{f_n\} \subset C^1[a,b]$ фундаментальна. Так как $\varphi_3(f_n - f_k) \to_{n,kro\infty} 0$, $\varphi_1(f_n - f_k) \to 0$ и $\varphi_2(f_n - f_k) \to 0$. Тогда $||f_n - f_k|| \to 0$ и $||f'_n - f'_k|| \to 0$. Получаем, что $\{f_n\}$ фундаментальна в C[a,b] и $\{f'_n\}$ фундаментальна в C[a,b].

Докажем два пункта:

- 1. $f \in C^1$, то есть $\exists g = f'$.
- 2. $f_3(f_n f) \to 0$

Докажем, что $f(a) - \left(\int_a^b g(t)dt + f(a) \right) \to 0.$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N : \max |f_n - f| < \varepsilon \wedge \max |f'_n - g| < \varepsilon.$$

Перепишем модуль разности

$$= \left| f_n(x) - \left(\int_a^x f'_n(t)dt + f(a) \right) + (f(x) - f_n(x)) - \int_a^x \left(g(t) - f'_n(t) \right) dt - (f_n(a) - f(a)) \right| \le$$

$$\le |f(x) - f_n(x)| + \int_a^x |g(x) - f'_n(t)| dt + |f_n(a) - f(a)| < \varepsilon (b - a + 2)$$

Проверили первый пункт. Второй следует из того, что $f_n \to f \wedge f'_n \to g$.

 $Peмapкa. ||f_n - f|| \to 0, \quad f_n \in C(K) \Longrightarrow f \in C(k).$

$$x_k \to x_0 \Longrightarrow f(x_k) \to f(x_0).$$

$$\lim_{k \to \infty} \lim_{n \to \infty} f_n(x_k) = \lim_{n \to \infty} \lim_{k \to \infty} (x_k) = f(n).$$

6 march

Pемарка. Из того, что $\|f_n - f\|_{\infty} \to 0$ и $\|f'_n - g\|$, следует f' = g. То есть

$$\left(\lim_{n\to\infty} f_n\right)' = \lim_{n\to\infty} f_n'.$$

Упражнение. $\varphi_4(t) = |f(a)| + \max_{x \in [a,b]} |f'(x)|$

Лекция 4

2.1.1 Продолжение примеров

1. $C_p[a,b] = \{ f \in C[a,b] \}$

$$||f||_{C_p[a,b]} = ||f||_p = \left(\int_a^b |f(x)| \, dx\right)^{\frac{1}{p}}, \quad p \geqslant 1.$$

Это норма:

- Не меньше нуля
- $||f|| = 0 \iff f = 0$
- $\|\lambda f\| = |\lambda| \cdot \|f\|$
- Неравенство треугольника $\|f\| + \|g\| \geqslant \|f + g\|$ (сейчас доказывать не будем)

Эта норма не подная. Но есть процедура пополнения.

Теорема 2.1.4: без доказательства)

 (X, ρ) — метрическое пространство. Тогда $\exists ! (Y, \tilde{\rho})$ — полное метрическое пространство, такое что

- (a) $X \subset Y$
- (b) $\rho = \tilde{\rho} \mid_{X \times X}$
- (c) Y = dX

Такое пространство пополняется до $L_p(a,b)$.

2. $l_p = \{x = (x_1, \ldots) \mid x_j \in \mathbb{R}, \ \exists \lim_{n \to \infty} \sum_{j=1}^n |x_j|^p \}, \qquad p \geqslant 1 \ \text{Такое пространство тоже нормировано:}$

$$||x||_{\rho} = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}.$$

 $Упраженение. \ l_p$ полно

Замечание. В бесконечномерных нормированных пространствах компактность не равносильна замкнутости и конечности. Верно только в правую сторону.

• l_p . Возьмем шар $B = \{x \in l_p \mid ||x|| \le 1\}$

$$e^{1} = (1, 0, 0, ...)$$

 $e^{2} = (0, 1, 0, 0, ...)$
 \vdots
 $e^{k} = (\underbrace{0, ...0}_{k-1}, 1, 0, ...)$

Упраженение. Проверить не компактность $B = \{ f \in C[a,b] \mid ||f|| = 1 \}$ в C[a,b].

2.2 Сжимающие отображения

Определение 16

(X,
ho) — метрическое пространство. U: X o X. U называется сжимающим отображением, если

$$\forall \gamma < 1 \ \forall x_1, x_2 \in X \colon \rho(U(x_1), U(x_2)) \leqslant \gamma \rho(x_1, x_2).$$

Теорема 2.2.1: Принцип сжимающих отображений

 (X, ρ) полно.

- 1. U сжимающее отображение $\Longrightarrow \exists ! x_* \colon U(x_1) = x_*$ неподвижная точка
- 2. Если $\exists N \colon U^N$ сжимающее отображение $\Longrightarrow \exists !x_* \colon U(x_* = x_*)$

Доказательство.

1. Рассмотрим траекторию точки x_1 .

$$x_1, x_2 = U(x_1), x_3 = U(x_2), \dots x_n = U(x_{n-1}).$$

$$\rho(x_{n+1}, x_n) \leqslant \gamma \rho(x_n, x_{n-1}) \leqslant \\ \gamma^2 \rho(x_{n-1}, x_{n-2}) \leqslant \\ \dots \\ \leqslant \gamma^{n-1} \rho(x_2, x_1) = \gamma^{n-1} d$$

Тогда по неравенству треугольника

$$\forall m > n : \rho(x_n, x_m) \leqslant \sum_{k=n-1}^{\infty} \gamma^k d = \gamma^{n-1} d(1 + \gamma + \ldots) = \frac{\gamma^{n-1} d}{1 - \gamma} \longrightarrow 0.$$

Следовательно, $\{x_n\}$ фундаментальна. Так как наше пространство полно, существует предел этой последовательности. $U(x_n) = x_{n+1}$. Первое стремиться к $U(x_*)$, второе — к x_* .

Единственность следует из того, что иначе мы можем уменьшить расстояние между двумя фиксированными неподвижными точками.

2. $\exists x_*$, посмотрим на $U^N(x_*)$. Посмотрим на последовательное применение U несколько раз. На N-ом шаге мы придем в x_* .

Единственность уже доказали.

Пример 2.2.1 (Обыкновенная линейное дифференциальное уравнение первого порядка).

$$f'(x) + a(x) \cdot f(x) = b(x),$$
 $a, b \in C[0, 1],$ $f(0) = c$

Задача: найти $f \in C^1[0,1]$. То есть доказать, что оно существует и единственна.

$$f(x) = c + \int_0^x (b(t) - a(t)f(t)) dt.$$

Заведем отображение $U: C[0,1] \to C[0,1]$, что $(U(f))(x) = c + \int_0^x (b(t) - a(t)f(t)) dt$. Хотим найти неподвижную точку отображения U (то есть такую f).

Пусть $(U_0(f))(x) = -\int_0^x a(t)f(t)dt$. Правда ли, что

1.
$$U^n(f) - U^n(g) = U_0^n(f) - U_0^n(g) = U_0^n(f-g)$$

2. $\exists n \colon U_0^n$ — сжимающее отображение из C[0,1] в C[0,1].

Проверим

1. При n = 1, очевидно.

$$U^{n}(f) - U^{n}(g) = U\left(U^{n-1}(f)\right) - U\left(U^{n-1}(g)\right) =$$

$$= U_{0}\left(U_{0}^{n-1}(f)\right) - U_{0}(U_{0}^{n-1}(g)) =$$

$$= U_{0}\left(U^{n-1}(f) - U^{n-1}(g)\right) =$$

$$= U_{0}\left(U_{0}^{n-1}(f) - U_{0}^{n-1}(g)\right) =$$

$$= U_{0}^{n}(f) - U_{0}^{n}(g)$$

2. $||U_0^n(f-q)||_{\infty} \leq \gamma ||f-q||$

Пусть f - g = h. $||U_0^n(h)||_{\infty} = \gamma ||h||$. Пусть $M = \max|a|, ||h||_{\infty} |h(x)|$.

$$(U_0^1(h))(x) = -\int_0^x a(t_1)h(t_1)dt_1$$

$$(U_0^2(h))(x) = (-1)^2 \int_0^x a(t_2) \left(\int_0^{t_2} a(t_1)h(t_1)dt_1\right) dt_2$$

$$\vdots$$

$$(U_0^n(h))(x) = (-1)^n \int_0^x a(t_n) \int_0^{t_n} (\dots) dt_n$$

Оценим

$$|(U_0^n(h))(x)| \leqslant M^n \cdot ||h||_{\infty} \int_0^x \int_0^{t_n} \int_0^{t_{n-1}} \dots \int_0^{t_1} dt_1 dt_2 \dots dt_n = M^n \cdot ||h||_{\infty} \frac{x^n}{n!}.$$

$$||U_0^n(h)||_{\infty} \leqslant \left(M^n \frac{x^n}{n!}\right) ||h||_{\infty}.$$

Выражение в скобках стремиться к нулю при $n \to \infty$. Значит, U_0^n сжимающее.

Замечание. На самом деле мы сейчас посчитали объем обрезанного куба.

$$f \in C[0,1]$$
. Так как $f(x) = c + \int_0^x (b(t) - a(t)f(t))dt, f \in C^1[a,b]$

Упраженение. X полно, $U:X\to X,\ \forall x,y\colon \rho(U(x),U(y))<\rho(x,y).$

- 1. Верно ли, что U сжимающее?
- 2. Верно ли, что обязательно есть неподвижная точка?

2.2.1 Линейные и полилинейные непрерывные отображения (операторы)

Определение 17: Линейное отображение

X,Y — линейные пространства над одним полем скаляров (либо \mathbb{R} , либо \mathbb{C}). $U:X \to Y$ называется линейным, если

- 1. $\forall x_1, x_2 \in X : U(x_1 + x_2) = U(x_1) + U(x_2)$
- 2. $\forall x \in X, \ \lambda$ скаляр: $U(\lambda x) = \lambda U(x)$

3амечание. Для экономии университетского мела не пишут скобки у линейный отображений: $U(x_1) = Ux_1$

Обозначение. $\operatorname{Hom}(X,Y)$ — множество всех линейных отображений из X в Y.

Определение 18: Полилинейное отображение

 $X_1, \dots X_n$ — линейные пространства, Y — линейное пространство над одним скаляром. $U: X_1 \times X_2 \times \dots \times X_n \to Y$ — полилинейное отображение, если оно линейно по каждому из аргументов.

Обозначение. $Poly(X_1, ... X_n, Y)$ — множество всех полилинейных отображений.

Определение 19

Если Y — поле скаляров, линейное отображение $U: X \to Y$ называется линейным функционалом.

Пример 2.2.2. $X = \{x = (x_1, ...) \mid x_j \in \mathbb{R}, \text{ лишь конечное число отлично от нуля} U: X \to X, x \mapsto (x_1, 2x_2, 3x_3, ...)$

Пример 2.2.3 (δ -функция). $\delta: C[-1,1] \to \mathbb{R}, \ \delta(f) = f(0)$.

Пример 2.2.4. $U:C[a,b] \to \mathbb{R}, \ Uf = \int_a^b f(x) dx$

Пример 2.2.5. $U:C[a,b] \to \mathbb{R},\ Uf(x) = \int_a^x f(t)dt$

Пример 2.2.6. $U \in \text{Poly}(\underbrace{\mathbb{R}, \mathbb{R}, \dots \mathbb{R}}_{n}; \mathbb{R}), \ U(x_1, \dots x_n) = x_1 x_2 x_3 \dots x_n$

Пример 2.2.7. $U \in \text{Poly}(\mathbb{R}^n, \mathbb{R}^n; \mathbb{R}), \ U(x, y) = (x, y)$

Пример 2.2.8. $U \in \text{Poly}(\mathbb{R}^3, \mathbb{R}^3; \mathbb{R}^3), U(x, y) - [x, y]$ — векторное произведение.

Пример 2.2.9. Определитель, все возможные формы объема.

Пример 2.2.10. $U_j \in \text{Hom}(X,Y)$. Можно сделать из этого полилинейное $U \in \text{Poly}(X_1,X_2,\ldots,X_n;Y)$, $U(x_1,\ldots x_n) = U_1x_1 + U_2x_2 + \ldots U_nx_n$.

Пример 2.2.11. $U: C^1[a,b] \to C[a,b], \ Uf = f'$

Теорема 2.2.2: Эквивалентные условия непрерывности линейного отображения

X, Y — линейный нормированные пространства с одним полем скаляров, $U \in \text{Hom}(X, Y)$. Следующие утверждения эквивалентны:

- 1. U непрерывно
- 2. U непрерывно в 0
- 3. $\exists C \ \forall x \in X \colon ||Ux||_Y \leqslant C||x||_X$

Определение 20: Операторная норма

U — непрерывное линейное отображение (оператор) из X в Y.

$$||U|| = \inf\{C \mid x \in X, ||Ux|| \leqslant C||x||\}.$$

 $\|U\|$ — операторная норма.

Замечание. Если U — разрывное отображение, считаем, что $||U|| = \infty$.

Замечание.

$$||U|| = \sup_{x \neq 0} \frac{||Ux||}{||x||}.$$

Пример 2.2.12. Нормы в прошлых примерах

2.2.2
$$||U|| = \infty$$

2.2.3
$$||U|| = 1$$

2.2.4
$$||U|| = b - a$$

2.2.5
$$||U|| = b - a$$

2.2.11
$$||U|| = 1$$

Теорема 2.2.3: Условие непрерывности полилинейного отображения

 $U \in \text{Poly}(X_1, \dots X_m; Y), X_i, Y$ — линейные нормированные пространства. Следующие утверждения эквивалентны:

- 1. U непрерывно
- $2. \ U$ непрерывно в 0

3.
$$\exists C \ \forall x_1 \in X_1, x_2 \in X_2, \dots x_n \in X_n : \|U(x_1, \dots x_n)\| \leqslant X \|x_1\| \cdot \dots \cdot \|x_n\|$$

Замечание. В прямом произведении есть норма (Например, такая)

$$||(x_1, \dots x_n)|| = \max\{||x_1||_{X_1}, \dots ||x_n||_{X_n}\}.$$

Определение 21: Норма полилинейного отображения

$$||U|| = \inf \{ C \mid \forall x_1 \in X_1, \dots x_n \in X_n \mid ||U(x_1, \dots x_n)| < C ||x_1|| \cdot \dots ||x_n|| \}.$$

Теорема 2.2.4: Эквивалентные способы вычисления оперератора

U- линейное непрерывное отображение X o Y. Тогда

$$||U|| = \sup_{x \neq 0} \frac{||U||}{||x||} = \sup_{||x|| = 1} ||Ux|| = \sup_{||x|| \leqslant 1} ||Ux|| = \sup_{||x|| < 1} ||Ux||$$

 $\ensuremath{\mathcal{A}\!\!\!/} oкaзательство.$ Обозначим супремумы за A,B,C,D. Очевидно, что $C\geqslant B$ и $C\geqslant D$

$$C = \sup_{\|x\| < 1} \|Ux\| \leqslant \sup_{\|x\| \leqslant 1} \frac{\|Ux\|}{\|X\|} \leqslant \sup_{x \neq 0} \frac{\|Ux\|}{\|x\|} = A.$$

Докажем, что $B\geqslant A.$ $x\neq 0, \ \tilde{x}=\frac{x}{\|x\|}.$

$$\frac{\|Ux\|}{\|x\|} = \|Ux\| \leqslant B.$$

Значит, $\sup_{x\neq 0} \frac{\|Ux\|}{\|x\|} \leqslant B$.

Теперь докажем, что $D \geqslant A$.

$$x \neq 0, \ \varepsilon > 0 \colon \tilde{x} = \frac{x}{\|x\|} (1 - e\varepsilon), \quad \|\tilde{x}\| = 1 - \varepsilon < 1.$$

$$\begin{cases} \|U\tilde{x}\| \leqslant D \\ \|U\tilde{x}\| = \frac{1-\varepsilon}{\|x\|} \|Ux\| \end{cases} \implies \frac{\|Ux\|}{\|x\|} \leqslant \frac{D}{1-\varepsilon} \to 0.$$

Следовательно,

$$\frac{\|Ux\|}{\|x\|} \leqslant D \Longrightarrow \sup_{x \neq} \frac{\|Ux\|}{\|x\|} \leqslant D.$$

Ремарка. В конечномерных пространствах все линейные и полилинейные отображения непрерывны.

Теорема 2.2.5: эквивалентные способы вычисления нормы полилинейного оператора

 $U: X_1 \times \ldots \times X_n \to Y$.

$$||U|| = \sup_{x_j \neq 0} \frac{||U(x_1, \dots x_n)||}{||x_1|| \dots ||x_n||} || = \sup_{||x_j| = 1 |||||U(x_1, \dots x_n)||} = \sup_{||x_j|| < 1} = \sup_{||x_j|| \le 1}.$$

2.2.2 Пространство линейных непрерывных операторов

Теорема 2.2.6: О свойствах операторной нормы

 $U_1,U_2,U_3:X o Y$ — линейные непрерывные операторы, λ — скаляр. Тогда

- 1. $||U_1 + U_2|| \le ||U_1|| + ||U_2||$
- $2. \|\lambda U\| = |\lambda| \|U\|$
- $3. \|U\| = 0 \Longleftrightarrow U = 0$
- 4. $U:X \to Y, V:Y \to Z$ линейные отображения.

$$||VU|| \leqslant ||V|| \cdot ||U||$$

$$VU = V \circ U$$

$$VUx = V(U(x))$$

Обозначение. $L(X,Y) \subset \text{Hom}(X,Y)$ — пространство линейных операторов.

Лекция 5

Замечание. $L(X;Y) \subset \text{Hom}(X;Y)$ — линейные отображения из X в Y. Это линейное нормированное пространство.

13 march 18 апреля в 11:00 в каб 301 коллоквиум

Замечание. Тоже самое верно для полилинейных отобранной. То есть выполнены аксиомы нормы, доказательство аналогичное. $L(X_1, X_2, \dots X_n; Y) \subset \text{Poly}(X_1, \dots X_n; Y)$.

Теорема 2.2.7: О полноте пространства операторов

Если Y полно, то L(X;Y) Тоже полно.

Доказательство.

1. Построение предельного оператора.

$$\{U_n\}\subset L(X,Y)$$
 — фундаментальна, то есть $\|U_n-U_m\|\to 0, n,m\to\infty$.

Pассмотрим $x \in X$:

$$||U_m x - U_n x||_Y = ||(U_m - U_n)x||_Y \le ||U_m - U_n|| \cdot ||x||_X \to 0, \ n, m \to \infty.$$

Тогда $\{U_m x\}$ фундаментальна в Y, следовательно, $\exists \lim_{m\to\infty} U_m x \eqqcolon U(x)$

2. Линейность предельного отображения.

$$U(x_1 + x_2) = \lim_{m \to \infty} (U_m(x_1 + x_2)) = \lim_{m \to \infty} U_m x_1 + \lim_{m \to \infty} U_m x_2 = U x_1 + U x_2$$
$$U(\lambda x) = \lambda U x$$

3. Непрерывность U.

$$\varepsilon = 1 \; \exists N \colon \forall n, m \in \mathbb{N} \; \forall x \in X \colon ||U_m x - U_n x|| \leqslant 1 \cdot ||x||.$$

Устремим $n \to \infty$:

$$\exists N \ \forall n > N \ \forall x \in X : ||U_m x - U x|| \leqslant ||x||.$$

По неравенству треугольника, при достаточно большом m>N

$$||Ux|| \le ||Ux - U_m x|| + ||U_m x|| \le ||x|| + ||Um|| \cdot ||x|| \le (1 + ||U_m||) \cdot ||x||.$$

Следовательно, U непрерывно.

4. Сходимость $\{Um\}$ к U по норме L(X,Y).

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \forall x \in X : \|U_m x - U_n x\| \leqslant \varepsilon \|x\|.$$

При $x \to \infty$

$$\forall \varepsilon > 0 \ \exists N \ \forall m > N \ \forall x \in X \colon \|U_m x - U x\| \leqslant \varepsilon \|x\| \Longleftrightarrow \|U m - U\| \leqslant \varepsilon.$$

Теорема 2.2.8

Если Y полно, то $L(X_1, \ldots X_n; Y)$ полно.

Пример 2.2.13 (Самый важный случай). Y — пространство скаляров. $L(X,Y) = X^*$ — сопряженное пространство — пространство линейных непрерывных функционалов.

Теорема 2.2.9

 $L_1 = L(X_1 \dots X_k; L(X_{k+1}, \dots X_n; Y) \cong L(X_1, \dots X_n; Y) = L_2$, то есть существует изометрический (сохраняющий норму) изоморфизм.

Доказательство. Построим биекцию. $U \in L_1: U(x_1, \ldots, x_k) \in L(X_{k+1}, \ldots X_n; Y), U(x_1, \ldots x_k)(x_{k+1}, \ldots x_n) \in Y.$

Определим $\tilde{U}(x_1, \dots x_n) := U(x_1, \dots x_k)(x_{k+1}, \dots x_n)$. Оно будет полилинейно непрерывно. Это же определение работает и в обратную сторону.

Теперь нужно понять, что с нормой все в порядке.

$$||U|| = \sup_{\substack{||x_i||=1\\1\leqslant i\leqslant k}} ||U(x_1,\ldots x_n)|| = \sup_{\substack{||x_i||=1\\1\leqslant i\leqslant k}} \left(\sup_{\substack{||x_i||=1\\1\leqslant i\leqslant n}} ||U(x_1,\ldots x_k)(x_{k+1},\ldots x_n)||\right) = \sup_{\substack{||x_i||=1\\1\leqslant i\leqslant n}} ||\tilde{U}(x_1,\ldots x_n)|| = \tilde{U}.$$

2.3 Дифференциальные отображения

Определение 22

X,Y — нормированные пространства, $E\subset X,\ x\in E,\ x$ — внутренняя точка, $f:E o Y.\ f$ — дифференцируемо в точке x, если $\exists L\in L(X,Y)$:

$$f(x+h) - f(x) = L(h) + o(h), \qquad h \to 0, x+h \in E.$$

Замечание. $x, h \in X, f(x), f(x+h) \in Y, Lh \in Y$

Что такое o(h):

$$f(x+h) - f(x) = Lh + \alpha(x,h).$$

$$\lim_{h \to 0} \frac{\|\alpha(x,h)\|_{Y}}{\|h\|_{X}} = 0.$$

Определение 23

L — дифференциал f в точке x.

Обозначение. Обозначения дифференциала $D_x f, f'(x), d_x f, df(x)$

Формула из определения выглядит так

$$f(x+h) - f(x) = df(x)h + o(h), \quad h \to 0.$$

Замечание. Это определение — дифференцируемость по Фреше.

3амечание. В конечномерном случае из линейности L автоматически следует непрерывность.

Теорема 2.3.1

Если дифференциал в точке x существует, то он единственный.

Доказательство. Пусть $\exists L_1, L_2 \colon f(x+h) - f(x) = L_i h + o(h)$. Тогда $L_1 h - L_2 h - o(h)$, докажем, что $L = L_1 - L_2$ равно нулю.

Зафиксируем $h \neq 0$.

$$||Lh|| = \frac{||L(th)||}{||t||} = \underbrace{\frac{||L(th)||}{||th||}}_{\to 0, t \to 0} ||x|| \to 0, \quad t \to 0.$$

Следовательно, $||Lh|| = 0 \Longrightarrow L = 0$.

Определение 24

Если $f:E\subset X\to Y$ (E открыто), f дифференцируема во всех точках E, $df:E\to L(X,Y)$ — производное отображение.

 $\it Замечание.$ Если $\it f$ дифференцируема в точке $\it x,$ то $\it f$ непрерывна.

Правила дифференцирования

Линейность $f_1, f_2 : E \subset XtoY, f_1, f_2$ непрерывны в точке $x \in E$. Тогда $\forall \lambda_1, \lambda_2$ — скаляры: $\lambda_1 f_1 + \lambda_2 f_2$ дифференцируема в точке x и $d(\lambda_1 f_1 + \lambda_2 f_2)(x) = \lambda_1 df_1(x) + \lambda_2 df_2(x)$

Дифференциал композиции X,Y,Z — линейные нормируемые пространства, $U \subset X,\ V \subset Y,\ U,V$ открыты, $f:UtoY,g:V\to Z,\ x\in U, f(x)inV,$ f дифференцируема в точке x,g дифференцируема в точке f(x). Тогда $g\circ f$ дифференцируема в точке x.

$$d(q \circ f)(x) = dq(f(x)) \circ df(x)$$
.

Доказательство.

$$\begin{split} g(f(x+h)) - g(f(x)) &= \\ &= dg(f(x) \left(f(x+h) - f(x) \right) + o(f(x+h) - f(x)) \\ &= dg(f(x) \left(df(x)h + o(h) \right) + o(f(x+h) - f(x)) = \\ &= dg(f(x)) df(x)h + \underbrace{dg(f(x)(o(h)) + o(f(x+h) - f(x)))}_{?=o(h)} \\ &\underbrace{\frac{\|dg(f(x))(o(h))\|_Z}{\|h\|_X} \leqslant \frac{\|dg(f(x))\| \|o(h)\|}{\|h\|_X} \to 0. \\ &\underbrace{\frac{\|o(f(x+h) - f(x))\|}{\|h\|}}_{\to 0, h \to 0} = \underbrace{\frac{\|o(f(x+h) - f(x))\|}{\|f(x+h) - f(x)\|}}_{\circ \text{граничено}} \to 0, \ h \to 0. \end{split}$$

Дифференцирование обратного $x \in U \subset X$, U открыто, $f: U \to Y$, существует окрестность V(f(x)) в Y, в которой $\exists f^{-1}$. Предположим, что f дифференцируема в точке x, $\exists (df(x))^{-1} \in L(Y,X)$, f^{-1} непрерывна в точке f(x). Тогда f^{-1} дифференцируема в точке f(x) и

$$\underbrace{df^{-1}(f(x))}_{\in L(Y,X)} = (df(x))^{-1}.$$

Замечание. Здесь слишком много условий

Доказательство. $f(x) = y, \ f^{-1}(y) = x, \ f(x+h) = y+t, \ f^{-1}(y+t) = x+h. \ h \to 0 \Longleftrightarrow t \to 0.$ Давайте запишем

$$t = f(x+h) - f(x) = df(x)h + o(h).$$

Тогда $||t|| \leqslant C||h||$. Воспользуемся тем, что df(x) обратим.

$$(df(x))^{-1} t = h + (df(x))^{-1} (o(h))$$
(2.3.1)

$$\| (df(x))^{-1} (o(h)) \| \le \| (df(x))^{-1} \| \cdot \| o(h) \| \le \frac{\|h\|}{2}, \quad \|h\| < \delta.$$

То есть

$$\forall \varepsilon > 0 \ \exists \delta \colon \left(\|h\| < \delta \Longrightarrow \frac{\|o(h)\|}{\|h\|} < \frac{\varepsilon}{\|\left(df(x)\right)^{-1}\|} \right).$$

Тогда $\forall \|h\| < \delta \colon \|(df(x))^{-1}t\| \geqslant \frac{\|h\|}{2} \Longrightarrow \|h\| \leqslant C\|t\|$. Перепишем 2.3.1

$$f^{-1}(y+t) - f(y) = (df(x))^{-1}t + o(t).$$

Это определение дифференцируемости. Тогда

$$df^{-1}(f(x)) = (df(x))^{-1}$$

2.4 Примеры и дополнительные свойства дифференцирования

 $0. f: \mathbb{R} \to \mathbb{R}, f$ дифференцируема.

$$df(x): \mathbb{R} \to \mathbb{R}, \ h \mapsto f'(x)h.$$

- 1. $f: U \subset X \to Y$, f постоянно, то есть $f(x) = y_0 \quad \forall x \in U$. Тогда df(x) = 0 (нулевое линейное отображение, все переводит в нуль).
- 2. $f \in L(X,Y), df(x) = f$.

$$f(x+h) - f(x) = f(h) = (df(x))(h).$$

3. $f(x,y) = x^2 + 2xy$. $h = (h_x, h_y)$

$$f(x + h_x, y + h_y) - f(x, y) = x^2 + xh_x + h_x^2 + 3xy + 3xh_y + 3yh_x - x^2 - 3xy + 3h_xh_y = (2x + 3y)h_x + 3xh_y + \underbrace{h_x^2 + 3h_xh_y}_{o(h)}$$

В матричной форме

$$(2x+3y \quad 3x) \cdot \begin{pmatrix} h_x \\ h_y \end{pmatrix}$$
.

- 4. $x \in U \subset X$, $f: U \to Y$, $A \in L(Y, Z)$. Если f дифференцируема в точке x, то $A \circ f$ дифференцируема в точке x и $d(A \circ f)(x) = Adf(x)$
- 5. $x \in U \subset X$, $f: U \to Y_1 \times \ldots \times Y_n$. Это n отображений: $f(x) = (f_1(x), \ldots f_n(x))$, $f_j: U \to Y_j$. f дифференцируема в точек x, тогда и только тогда, когда $f_1, \ldots f_n$ дифференцируемы в точке x_0 .

Доказательство. $f(x+h)-f(x)=df(x)h+o(h)\in Y$. Левая часть равна

$$(f_1(x+h)-f_1(x),\ldots f_n(x+h)-f_n(x)).$$

А правая

$$(L_1h, L_2h, \dots L_nh) + o(h).$$

6. $x_j: X_1 \times X_2 \times \dots X_n \to X_j, \quad (x_1, \dots x_n) \mapsto x_j.$

$$dx_i(x)h = h_i$$
.

Это удобное обозначение базиса, которое мы будем дальше использовать.

7. $A: X_1 \times X_n \to Y$ — полилинейное и непрерывное. Оставим только два сомножителя. $A: X_1 \times X_2 \to Y$.

$$A(x_1 + h_1, x_2 + h_2) - A(x_1, x_2) = A(x_1, h_1) + A(h_1, x_2) + \underbrace{A(h_1, h_2)}_{o(h)}.$$

$$dA(x_1, x_2)h = A(h_1, x_1) + A(x_1, h_2).$$

Или можно записать так:

$$dA(x_1, x_2) = A(dx_1, x_2) + A(x_1, dx_2).$$

Совершенно аналогично для n координат.

Свойства.

1)
$$f(x) = x_1 \cdot \dots \cdot x_n, \ f: \mathbb{R}^n \to \mathbb{R}.$$

$$df(x) = \sum_{j=1}^{n} \left(dx_j \prod_{i \neq j} x_i \right).$$
$$df(x)h = \sum_{j=1}^{n} \left(h_j \prod_{i \neq j} x_i \right).$$

$$2) f_1, \dots f_n : X \to \mathbb{R}.$$

$$d(f_1 f_2 ... f_n)(x) = f_2(x) f_3(x) ... df_1(x) + ...$$

3)
$$\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} - c$$
калярное произведение.

$$d\langle \cdot, \cdot \rangle = \langle dx_1, x_2 \rangle + \langle x_1, dx_2 \rangle.$$

4)
$$f,g:X\to\mathbb{R}^n$$

$$d\langle f, g \rangle = \langle df, g \rangle + \langle f, dg \rangle.$$

5)
$$f: X \to Y \text{ } \mu a \partial \mathbb{R}(\mathbb{C}), \ \lambda: X \to \mathbb{R}$$

$$d(\lambda f) = \underbrace{f}_{\in Y} \underbrace{d\lambda}_{L(X,\mathbb{R})} + \lambda \underbrace{df}_{\in L(X,Y)}.$$

Упражение. $U = \{A \in L(X,Y) \mid \exists A^{-1} \in L(X,Y)\}$ — множество обратимых линейных отображений. $f: U \to L(X,Y), \ f(A) = A^{-1}$. Найти df.

2.5 Частные производные

Определение 25: Частные производные

Пусть $a \in X_1 \times X_2 \times \ldots \times X_n$. U — окрестность точки $a. f: U \to Y$. $f(x) = f(x_1, \ldots x_n)$.

Определим $\varphi_j \colon X_j \to Y, \ \varphi_j(x_j) = f(a_1, a_2, \dots x_j, a_{j+1}, \dots a_n).$

 $d\varphi_j(a_j)$ называется частным дифференциалом (частной производной) f по x_j в точке a, если существует.

Обозначение. Частный дифференциал обозначается кучей способов

$$\partial_{x_j} f(a), \ \frac{\partial f}{\partial x_j}, \partial_j f(a) \in L(x_i, Y).$$

Лекция **6**: †¹

20 march

Утверждение. Если отображение f дифференцируемо в точке $a \in X_1 \times ... \times X_m$, то у него есть все частные дифференциалы u

$$df(a)h = \partial_{x_1} f(a)h_1 + \ldots + \partial_{x_m} f(a)h_m, \qquad h = (h_1, \ldots h_m).$$

Доказательство. По определению,

$$f(a+h) - f(a) = df(a)h + o(h),$$
 $a, h \in X_1 \times ... \times X_m.$

Разобьем вектор h:

$$h = t_1 + \ldots + t_m = (h_1, \ldots, 0) + (0, h_2, \ldots, 0) + \ldots + (0, \ldots, h_m).$$

Тогда

$$df(a)t_i = \partial_{x_i}f(a)h_i = L_ih_i + o(h_i).$$

В сумме получаем

$$df(a)h = \sum_{i=1}^{m} \partial_{x_i} f(a)h_i.$$

¹Online лекции помечены символом †

$\mathbf{2.6}$ Важный частный случай: $X = \mathbb{R}^m, \ Y = \mathbb{R}^n$

Утверждение. Пусть $x \in U \subset \mathbb{R}^m$, $f \colon U \to \mathbb{R}^n$, $f(x) = (f_1(x), \dots f_n(x))$. Тогда f дифференцируема в точке x тогда u только тогда, когда $f_1, f_2, \dots f_n$ дифференцируемы в точке x u

$$df(x) = (df_1(x), \dots df_n(x)), \qquad \partial f_i(x) \in L(\mathbb{R}^m, \mathbb{R}), \ f_j \colon \mathbb{R}^m \to \mathbb{R}.$$

Доказательство.

 $\boxed{1\Longrightarrow 2}$ Пусть $h\in\mathbb{R}^m$. Запишем по определению

$$df(x)h = (f_1(x+h) - f_1(x), \dots f_n(x+h) - f_n(x)) = (df_1(x)h, \dots df_n(x)h) = f(x+h) - f(x).$$

 $2 \Longrightarrow 1$

• Если n=1, то получаем просто функцию, а не вектор-функцию. Если $f: U \subset \mathbb{R}^m \to \mathbb{R}$ дифференцируема в точке x, то существуют все частные производные и

$$df(x)h = \sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(x)h_j, \quad h = (h_1, \dots h_n)^{\top},$$

при этом

$$df(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots \frac{\partial f}{\partial x_m}\right), \quad h = (h_1, \dots h_m)^{\top}.$$

Можно завести вектор-градиент

grad
$$f(x) = \nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots \frac{\partial f}{\partial x_m}(x)\right)^{\top}$$
,

И тогда

$$df(x)h = \langle \operatorname{grad}(x), h \rangle$$
 — скалярное произведение.

• Вернемся к 2.6. Пусть $x \in U \subset \mathbb{R}^m$, $f(x) = (f_1(x), \dots f_n(x))$. Тогда f дифференцируема в точке x и существуют частные производные $\frac{\partial f_j}{\partial x_k}(x), \ j=1,\dots m, \ k=1,\dots n$

$$\partial f(x)h = \begin{pmatrix} df_1(x)h \\ \vdots \\ df_n(x)h \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \dots & \frac{\partial f_1}{\partial x_m}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \dots & \frac{\partial f_n}{\partial x_m}(x) \end{pmatrix} \cdot \begin{pmatrix} h_1 \\ \vdots \\ h_m \end{pmatrix}.$$

Получили матрицу дифференциала, которая называется матрицей Якоби, а если она квадратная, то ее определитель — якобиан.

Утверждение. Если есть отображения $f: \mathbb{R}^m \to \mathbb{R}^n, \ g: \mathbb{R}^n \to \mathbb{R}^k, \ u$ они дифференцируемы, то $d(f \circ f)(x) = dg(f(x)) \cdot df(x)$:

$$\begin{pmatrix} \frac{\partial(g_1 \circ f)}{\partial x_1} & \dots & \frac{\partial(g_1 \circ f)}{\partial x_n} \\ \dots & \frac{\partial(g_k \circ f)}{\partial x_1} (x) & \dots \\ \frac{\partial(g_k \circ f)}{\partial x_1} & \dots & \frac{\partial(g_k \circ f)}{\partial x_m} \end{pmatrix} = \begin{pmatrix} \frac{\partial g_1}{\partial f_1(x_1)} f(x) & \dots & \frac{\partial g_1}{\partial f_n(x)} f(x) \\ \dots & \dots & \dots \\ \frac{\partial g_k}{\partial f_1(x)} f(x) & \dots & \frac{\partial g_k}{\partial f_n(x)} f(x) \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial f_1}{\partial x_1} (x) & \dots & \frac{\partial f_1}{\partial x_m} (x) \\ \dots & \dots & \dots \\ \frac{\partial f_n}{\partial f_1(x)} (x) & \dots & \frac{\partial f_n}{\partial x_m} (x) \end{pmatrix}.$$

Правило цепочки:

$$\frac{\partial (g_i \circ f)}{\partial x_l}(x) = \sum_{i=1}^n \frac{\partial g_i}{\partial y_i}(f(x)) \frac{\partial f_j}{\partial x_l}(x).$$

Пример 2.6.1 (вычисление частных производных). Пусть $f(x,y) = x^3 + 3xy$.

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y.$$

$$\frac{\partial f}{\partial y}(x,y) = 3x.$$

То есть

$$df(x,y)h = (3x^2 + 3y \quad 3x) \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}.$$

Утверждение. Если $f: \mathbb{R}^m \to R$, то частные производные можно определять формулами

$$\frac{\partial f}{\partial x_j}(x) = \lim_{t \to 0} \frac{f(x + te_j) - f(x)}{t}, \qquad e_j = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix}^\top.$$

Это определение можно обобщить. Можно определить производную по направлению.

Определение 26: Производная по вектору

Пусть $f \colon X \to \mathbb{R}, \ v \in X$. Тогда

$$\frac{\partial f}{\partial v}(x) = \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t}$$

— производная по вектору v или вдоль вектора v. Если $\|v\|=1$, то называют производной по направлению v.

Свойства (Экстремальное свойство градиента). В случае \mathbb{R}^m

$$\frac{\partial f}{\partial v}(x) = \langle \operatorname{grad} f(x), v \rangle,$$

откуда

$$\left| \frac{\partial f}{\partial v}(x) \right| \le \left| \operatorname{grad} f(x) \right| \left| v \right|.$$

Функция растет быстрее всего в направлении градиента:

$$\max_{|v|=1} \left| \frac{\partial f}{\partial v}(x) \right|.$$

Доказательство. Все рассуждения предполагают, что f дифференцируема в x.

$$\frac{\partial f}{\partial v}(x) = \langle \operatorname{grad} f(x), v \rangle \Longleftrightarrow \frac{\partial f}{\partial v}(x) = df(x)v.$$

$$f(x + tv) - f(x) = df(x)(tv) + o_{t\to 0}(t).$$

Тогда

$$\frac{f(x+tv) - f(x)}{t} = df(x)v + \underbrace{\frac{o(t)}{t}}_{\to 0}.$$

2.7 Теорема о конечном приращении (Лагранжа)

Теорема 2.7.1: Теорема о конечном приращении

Пусть $f:U\subset X\to Y$ непрерывно на $[x,x+t]\subset U$ и дифференцируемо на (x,x+h). Тогда

$$||f(x+h) - f(x)||_Y \le \sup_{\xi \in (x,x+h)} ||df(\xi)||_{L(X,Y)} \cdot ||h||_X.$$

Доказательство. Обозначим супремум $M = \sup_{\xi \in (x,x+h)} \|df(\xi)\|_{L(X,Y)} = \sup_{\Theta \in (0,1)} \|df(x,+\Theta h)\|_{L(X,Y)}$. Достаточно проверить

$$\forall [\xi', \xi''] \subseteq (x, x+h) \colon ||f(\xi') - f(\xi'')|| \le M ||\xi' - \xi''||.$$

Предположим противное:

$$\Delta_1 = [\xi_1', \xi_1''] \colon \|f(\xi_1') - f(\xi_1'')\| \geqslant (M + \varepsilon_0) \|\xi_1' - \xi_1''\|, \quad \varepsilon_0 > 0.$$

Разделим отрезок пополам: $\Delta_1 = \Delta_1^1 \cup \Delta_1^2 = [\xi_1', \frac{\xi_1' + \xi_1''}{2}] \cup [\frac{\xi_1' + \xi_1''}{2}, \xi_1'']$. На одном из них обязательно выполнено прежнее неравенство.

Так можем построить последовательность $\Delta_1 \supset \Delta_2 \dots$ Пусть $\{\xi_0\} = \cap \Delta_i$. Тогда

$$f(\xi_0 + \delta) - f(\xi_0) = df(\xi_0)\delta + \alpha(\delta), \quad \frac{\|\alpha(\delta)\|}{\|\delta\|} \stackrel{\delta \to 0}{\to} 0.$$

Тогда

$$\exists \varepsilon > 0 \colon \left(\|\delta\| < \varepsilon \Longrightarrow \|f(\xi_0 + \delta) - f(\xi_0)\| \leqslant \left(M + \frac{\varepsilon_0}{2} \right) \|\delta\|, \quad \frac{\alpha(\delta)}{\|\delta\|} \stackrel{\delta \to 0}{\to} 0 \right).$$

То есть с некоторого момента все принадлежат окрестности $\exists N \colon \forall n > N \quad \Delta_n \subset B(\xi_0, \varepsilon)$.

$$||f(\xi'_n) - f(\xi''_m)|| \le + \begin{cases} ||f(\xi'_n) - f(\xi_0)|| \le \left(M + \frac{\varepsilon_0}{2}\right) ||\xi'_n - \xi_0|| \\ ||f(\xi''_n) - f(\xi_0)|| \le \left(M + \frac{\varepsilon_0}{2}\right) ||\xi''_n - \xi_0|| \end{cases} = \left(M + \frac{\varepsilon_0}{2}\right) ||\xi'_n - \xi''_n||.$$

Получаем противоречие, так как с некоторого момента утверждение неверно.

Замечание. На прямой теорема Лагранжа дает существование $\xi \in (x, x + \varepsilon)$:

$$|f(x+h) - f(x)| = |f'(\xi)| \cdot |h|.$$

Но для вектор-функции на плоскости это уже может быть не верно.

3амечание. В \mathbb{R}^n есть доказательства, использующие наличие скалярного произведения.

Следствие 4. Если f из теоремы и $A \in L(X,Y)$, то

$$||f(x+h) - f(x) - Ah|| \le \sup_{\xi \in (x,x+h)} ||df(\xi - Ah)|| ||h|| = \sup_{v \in (0,1)} ||df(x+vh - Ah)|| ||h||.$$

Это теорема при g(x) = f(x) - Ax.

Следствие 5. Если K — выпуклый компакт в X, $f \in C^1(K,Y)$, то f — Липшицево на K.

Определение 27

Если $f\colon U\subset X\to Y$ дифференцируемо во всех точках U и $df\colon U\to L(X,Y)$ непрерывно, то говорят, что f непрерывно дифференцируемо на U и пишут $f\in C^1(U,Y)$

Замечание. $f: U \subset X_1 \times ... \times X_m \to Y$ непрерывно дифференцируемо на U тогда и только тогда, когда непрерывны все частные производные.

Доказательство. Запишем

$$df(x) = (\partial x_1 f(x), \dots \partial x_m f(x)).$$

П

Применим это неравенство в следующем выражении

$$\sup_{\|h\|=1} \|\partial x_{j} f(x+\delta) h_{j} - \partial x_{j} f(x) h_{j}\| = \sup_{\|h\|=1} \|\partial x_{j} f(x+\delta) - \partial x_{j} f(x)\|.$$

$$\|df(x+\delta) - df(x)\| = \sup_{\|h\|=1} \|df(x+\delta) h - df(x) h\| = \sup_{\|h\|=1} \left\| \sum_{j=1}^{m} \partial x_{j} f(x_{j}+\delta) - \partial x_{j} f(x) h_{j} \right\| \le \sup_{\|h\|=1} \sum_{j=1}^{m} \|\partial x_{j} f(x+\delta) - \partial x_{j} f(x)\|$$

Теорема 2.7.2: Признак дифференцируемости

Пусть $f: U \subset X_1 \times \ldots \times X_m \to Y$, $x \in U$. Предположим, что f имеет все частные дифференциалы в U и они непрерывны в точке x. Тогда f дифференцируема в точке x.

Доказательство. Докажем для m=2. Дифференциал должен выглядеть так: $Lh=\partial_{x_1}f(x)h_1+\partial_{x_2}f(x)h_2$. $x\in U\subset X_1\times X_2$.

Проверим ||f(x+h) - f(x) - Lh|| = o(h) при $h \to 0$.

$$..(x) \leqslant \underbrace{\|f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1) - \partial_{x_2} f(x_1 x_2) h_1\|}_{\leqslant \sup_{\Theta_2 \in (0,1)} \|\partial_{x_2} f(x_1 + h_1, x_2 + \Theta_2 h_2) - \partial_{x_2} f(x_1, x_2)\| \cdot \|h_2\|} + \underbrace{\|f(x_1 + h_1, x_2) - f(x_1, x_2) - \partial_{x_1} f(x) h_1\|}_{\leqslant \sup_{\Theta_1 \in (0,1)} \|\partial_{x_1} f(x_1 + \Theta_1, x_2) - \partial_{x_1} f(x)\| \cdot \|h_1\|}_{\leqslant \sup_{\Theta_1 \in (0,1)} \|\partial_{x_1} f(x_1 + \Theta_1, x_2) - \partial_{x_1} f(x)\| \cdot \|h_1\|}$$

Заметим, что $||h_1|| \le ||h|| \wedge ||h_2|| \le ||h||$. Тогда можем переписать так:

$$\leq \|h\| \cdot \left(\sup_{\Theta_1} + \sup_{\Theta_1}\right).$$

Каждый из этих супремумов стремиться к 0 при $h \to 0$.

Следствие 6. Непрерывная дифференцируцемость на открытом множестве равносильна непрерывной дифференцируемости всех частных отображений (существованию и непрерывности всех частных дифференциалов).

Теорема 2.7.3: Теорема о конечном приращении для функций

Пусть $f: U \subset X \to \mathbb{R}$ непрерывна на $[x, x+h] \in U$ и дифференцируема на (x.x+h). Тогда существует такое $\xi \in (x, x+h)$, что

$$f(x+h) - f(x) = df(\xi)h.$$

Следствие 7. Если U- выпуклое множество и df(x)=0 для любого x из U, то f(x)=const на U.

Следствие 8. Если U — открытое связное множество в df(x) = 0 для всех $x \in U$, то f(x) = const на U.

Лекция 7: †

20 march

2.8 Производные высших порядков

Определение 28

Пусть $U \subset \mathbb{R}^m, \, f \colon U \to \mathbb{R}$, то есть $f(x) = f(x_1, \dots x_n)$. Частная производная

$$\partial_j f(x) = \lim_{t \to 0} \frac{f(x_t e_j) - f(x)}{t}$$

может быть определена на каком-то подмножестве U (для простоты будем считать, что на всем U)

То есть $\partial_i f \colon U \to \mathbb{R}$ — функция, у которой могут быть частные производные

$$\partial_k \partial_j f(x) = \partial_{x_k} \partial_{x_j} f(x) = \frac{\partial^2}{\partial_{x_k} \partial_{x_j}} (x) = \partial^2_{x_j x_k} f(x)$$

— вторая частная производная по x_i и x_j в точке x. По индукции можно определить k-ю производную.

$$\frac{\partial^k f}{\partial_{x_{j_k}} \dots \partial_{x_{j_1}}}(x) = \partial_{j_k} \dots \partial_{j_1} f(x).$$

Теорема 2.8.1: о перестановочности производных

Пусть функция $f: U \subset \mathbb{R}^m \to \mathbb{R}$ имеет вторые частные производные $\partial_{x_j}\partial_{x_k}f$ и $\partial_{x_k}\partial_{x_j}$ в U и они непрерывны в точке $x \in U$. Тогда $\partial_{x_i}\partial_{x_j}f(x) = \partial_{x_j}\partial_{x_k}f(x)$.

Доказательство. Зафиксируем все переменные кроме x_k и x_j . Тогда можем думать, что это и есть функция от двух переменных.

$$f(x) = f(x_1, x_2).$$

Рассмотрим точку (x_1, x_2) и точки на малом расстоянии, принадлежащие U. Изучим следующее вы-

Рис. 2.1:

ражение:

$$\underbrace{F(h_1, h_2)}_{\wp(1) - \wp(0)} = f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2 + h_2) - f(x_1 + h_1, h_2) + f(x_1, x_2),$$

где $\varphi(t) = f(x_1+h_1, x_2+h_2) - f(x_1, x_2+h_2)$. Оценим двумя способами по направлениям. Сначала фиксируем x и группируем пары 1-2 и 3-4.

Это дифференцируемая функция. Можем взять производную

$$\varphi'(t) = \partial_{x_2} f(x_1 + h_2, x_2 + h_2) \cdot h_2 - \partial_{x_2} f(x_1, x_2 + h_2) \cdot h_2.$$

По теореме Лагранжа $F(h_1,h_2) = \varphi'(\theta_2)$. Перепишем значение F и воспользуемся тем, что $x_2 + \theta_2 h_2$ зафиксировано, поэтому нужно посчитать производную по первой координате, взяв промежуточную точку

$$x_1 + \theta_1 h_1$$
:

$$F(h_1, h_2) = \varphi'(\theta_2) = h_2 \cdot (\partial_{x_2} f(x_1 + h_1, x_2 + \theta_2 h_2) - \partial_{x_2} f(x_1, x_2 + \theta_2 h_2)) = h_2 h_1 \partial_{x_1} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) = h_2 h_1 \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2) + h_2 h_2 \partial_{x_2} f(x_1 + \theta_2 h_2) + h_2 \partial_{x_2} f(x_1 + \theta_2 h_2) + h$$

Совершенно аналогично можно было сгруппировать другие пары слагаемых, поэтому существуют $\tilde{\theta}_1, \tilde{\theta}_2 \in (0,1)$, что

$$= h_1 h_2 \partial_{x_2} \partial_{x_1} f(x_1 + \tilde{\theta}_1 h_1, x_2 + \tilde{\theta}_2 h_2).$$

Посчитаем предел (с одной стороны, это $\partial_{x_1}\partial_{x_2}$, с другой, $\partial_{x_2}\partial_{x_1}$) и воспользуемся непрерывностью производных

$$\lim_{h \to 0} \frac{F(h_1, h_2)}{h_1 h_2} = \underbrace{\lim_{h \to 0} \partial_{x_1} \partial_{x_2} f(x_1 + \theta_1 h_1, x_2 + \theta_2 h_2)}_{\partial_{x_1} \partial_{x_2} f(x_1, x_2)} = \underbrace{\lim_{h \to 0} \partial_{x_2} \partial_{x_1} f(x_1 + \tilde{\theta}_1 h_1, x_2 + \tilde{\theta}_2 h_2)}_{\partial_{x_2} \partial_{x_1} f(x_1, x_2)}.$$

Определение 29

 $C^k(U,\mathbb{R})$ — множество функций, имеющих все k-ые частные производные, непрерывные в U.

Следствие 9. Если $f \in C^k(U,\mathbb{R})$, то для всех $n \leqslant k, 1 \leqslant j_1, \dots j_n \leqslant m, \sigma \in S_n, x \in U$ верно равенство

$$\partial_{j_n} \dots \partial_{j_1} f(x) = \partial_{j_{\sigma(n)}} \dots \partial_{j_{\sigma(1)}}.$$

2.8.1 Общий случай

Подход первый Пусть $f: U \subset X \to Y$ дифференцируемо на U, тогда $df: U \to L(X,Y)$ тоже отображение между нормированными пространствами и может оказаться дифференцируемо в точке $x \in U$.

Определение 30: Страшие дифференциалы

Если отображение df определено в окрестности точки x и дифференцируемо в этой точке, то говорят, что f дважды дифференцируемо в точке x.

Дифференциал отображения df называется вторым дифференциалом.

$$d^2f(x)=d(df)(x)\in L(X,L(X,Y))=L(X,X;Y)$$
 — билинейное отображение на $X imes X$.

По индукции можно определить полилинейное отображение на X^n :

$$d^n f(x) = d(d^{n-1} f)(x) \in L(\underbrace{X, \dots X}_n; Y).$$

Подход второй

Определение 31: Производная по вектору

Пусть $f: U \subset X \to Y$. Определим

$$\frac{\partial f}{\partial h}(x) = \partial_h f(x) = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t}.$$

Если ∂_k существует в U, то $\partial_h f \colon U \to Y$ и может оказаться, что существует производная по какомунибудь еще вектору. То есть можно определить вторую производную по паре векторов

$$\partial_{h_2}\partial_{h_1}f(x)$$
.

Аналогично можно определить более старшие производные

$$\partial_{h_n}\partial_{h_{h-1}}\dots\partial_{h_1}$$
.

Замечание. Наличие непрерывных производных по всем направлениях в точке не гарантирует дифференцируемость в бесконечном случае.

Свойства.

1. $\partial_{\lambda h} f(x) = \lambda \partial_h f(x)$

Доказательство. По определению

2. Если f дифференцируема в точке x, то $\partial_h f(x) = df(x)h$

Доказательство. Посчитаем

$$\frac{f(x+th)-f(x)}{t} = \frac{f(x)+df(x)(th)+o(\ldots)-f(x)}{t} = df(x)(h).$$

3. Ecau $A \in L(Y, Z)$, mo $\partial_h(A \circ f)(x) = A\partial_h f(x)$

Доказательство.

$$\frac{Af(x+th) - Af(x)}{t} = A\left(\frac{f(x+th) - f(x)}{t}\right).$$

Так как A — непрерывное отображение, в пределе тоже можем вынести A.

2.8.2 Связь между двумя подходами

Теорема 2.8.2: о связи старших дифференциалов и производных по векторам

Пусть $f:U\subset X\to Y$ n раз дифференцируемо в точке x. Тогда $\forall h_1,\ldots h_n\in X$:

$$(d^n f(x)(h_1, \dots h_n) = \partial_{h_1} \dots \partial_{h_n}) f(x).$$

Доказательство. Докажем для двух, то есть $\partial^2 f(x)(h_1,h_2) = \partial_{h_1}\partial_{h_2}f(x)$

$$(d(df)(x))h_1)h_2 = (\partial_{h_1}(df)(x))h_2.$$

Это равно по определению

$$\left(\lim_{t\to 0}\frac{df(x+th_1)-df(x)}{t}\right)h_2=$$

Если последовательность операторов A_n сходится к оператору A_0 , то есть $||A_0 - A_n|| \to 0_{L(X,Y)}$, то $A_n h_2 \to A_0 h_2$:

$$= \lim_{t \to 0} \frac{df(x+th_1)h_2 - df(x)h_2}{t} = \partial_{h_1} (df(x)h_2) = \partial_{h_1} (\partial_{h_1} f(x)).$$

По индукции можно доказать, что что утверждение верно для n переменных.

2.8.3 Симметричность дифференциалов

Теорема 2.8.3: О симметричности *n*-го дифференциала

Пусть $f: U \subset X \to Y$ дифференцируемо n раз в точке $x \in U$. Тогда полилинейное отображение $d^n f(x)$ является симметричной относительно любой пары своих аргументов.

$$d^n f(x)(h_1, \dots h_n) = \partial_{h_1} \dots \partial_{h_n} f(x).$$

Доказательство. Докажем, что второй дифференциал симметричный. Пусть $\exists d^2 f(x)$ и для всех $h_1, h_2 \colon d^2 f(h_1, h_2) = d^2 f(h_2, h_1)$.

Рассмотрим функцию

$$F(t, h_1, h_2) = f(x + t(h_1 + h_2)) - f(x + th_1) - f(x + th_2) + f(x).$$

Хотим доказать, что

Рис. 2.2:

$$\lim_{t \to 0} \frac{F(t, h_1, h_2)}{t^2} = d^2 f(x) h_1 h_2.$$

То есть

$$||F(t, h_1, h_2) - t^2 d^2 f(h_1, h_2)|| = o(t^2).$$

Заведем отображение $\varphi(v)=f(x+t(h_2+v))-f(x+tv)$, где v сонаправлен с h_2 и $\|v\|\leqslant \|h_2\|$. Тогда $F(t,h_1,h_2)=\varphi(h_2)-\varphi(0).$

Применим теорему о конечном приращении

$$\|\varphi(h_2) - \varphi(0) - \underbrace{(t^2 d^2 f(x) h_1)}_{A} h_2 \| \leqslant \sup_{\theta \in (0,1)} \|d\varphi(\theta h_2 - t^2 d^2 f(x) h_1 \|_{L(X,Y)} \cdot \|h_2\|_{\|X\|} =$$

$$= \sup_{\theta \in (0,1)} \|df(x + t(h_1 + \theta h_2)) \cdot t - df(x + t\theta h_2) \cdot t - t^2 d^2 f(x) h_1 \| \cdot \|h_2\|_{\|X\|} =$$

Воспользуемся тем, что df(x) дифференцируемо. Известно, что $df(x+\tilde{h})=df(x)+d^2f(x)\tilde{h}+\alpha(\tilde{h})$, где $\alpha(\tilde{h})=o(\tilde{h})$ (это все операторы). Выносим t и получаем

$$= \underline{df(x)} + \underline{d^2f(t(h_1 + \theta h_2))} + \alpha(t(h_1 + \theta h_2)) - \underline{df(x)} - \underline{d^2f(t\theta h_1)} - \alpha(t\theta h_2) - \underline{td^2f(x)h_1}$$

Первое и четвертое сокращаются, подчеркнутые в сумме дают 0, третье и шестое равны o(t). Всего осталось $o(t^2)$.

$extbf{T}$ еорема $extbf{2.8.4}$: частный случай, $X=\mathbb{R}^m$ \mathbb{R}^n

Пусть $\{e_j\}_{j=1}^m$ — стандартный базис.

$$h_j = \left(h_j^{(1)}, \dots h_j^{(m)}\right) \sum_{k=1}^m h_j^{(k)} e_k.$$

Тогда

$$d^{n} f(x)(h_{1}, \dots h_{n}) = d^{n} f(x) \left(\sum_{k=1}^{m} h_{1}^{(k)} e_{k}, \dots \sum_{k=1}^{m} x_{m}^{(k)} e_{k} \right) =$$

$$= \sum_{1 \leq k_{1}, \dots k_{n} \leq m} h_{1}^{(k_{1})} \cdot \dots \cdot h_{n}^{(k_{n})} d^{n} f(x)(e_{k_{1}}, \dots e_{k_{n}}) =$$

$$= \sum_{1 \leq k_{1}, \dots k_{n} \leq m} h_{1}^{(k_{1})} \cdot \dots \cdot h_{n}^{(k_{n})} \partial_{k_{1}} \dots \partial_{k_{n}} f(x)$$

Теорема 2.8.5: еще более частный случай, $X = \mathbb{R}^m, Y = \mathbb{R}, h_i = h_i$

Если $h = (h^{(1)}, \dots h^{(n)})$, То

$$d^n f(x)(h_1, \dots h_n) = \sum_{1 \leqslant k_i \leqslant m} \prod_{i=1}^n h_i^{(k_j)} \partial_{k_i} f(x).$$

$$d^{n} f(x) = \sum_{1 \le k_{i} \le m} \frac{\partial^{n} f}{\partial_{x_{k_{1}}} \dots \partial_{x_{k_{n}}}} (x) \partial_{x_{k_{1}}} \dots \partial_{x_{k_{n}}}.$$

Еще более частный случай, все h_i равны:

$$\partial^n f(x)(\underbrace{h, \dots h}_n) = = \sum_{1 \leqslant k_i \leqslant m} h^{(k_1)} \cdot \dots h^{(k_n)} \frac{\partial^n f}{\partial_{x_{k_1}} \dots \partial_{x_{k_n}}} (x) =$$

Сгруппируем одинаковые слагаемые, в которых α_1 раз происходит дифференцирование по x_1, α_2 — по $x_2 \dots a_m$ по $x_m, \sum \alpha_j = n, \ \alpha_j \in \mathbb{Z}^+$.

$$= \sum_{\alpha=(\alpha_1,\dots,\alpha_m)} \frac{n!}{\alpha_1!\dots\alpha_m!} \frac{\partial^n f(x)}{(\partial x_1)^{\alpha_1}\dots(\partial x_1)^{\alpha_m}} (h^{(1)})^{\alpha_1}\dots(h^{(n)})^{\alpha_m}$$

Обозначение. $\alpha=(\alpha_1,\dots\alpha_m)$ — мультииндекс, $\alpha_j\in\mathbb{Z}^+,\, |\alpha|=\sum\alpha_j$ — высота $\alpha,\,\alpha!=\prod\alpha_j!=\prod(h^{(j)}\alpha_j).$

Можно переписать формулу из теоремы

$$= \left(h^{(1)}\partial_{x_1} + \ldots + h^{(m)}\partial_{x_m}\right)^n f(x) = \sum_{|\alpha|=n} \frac{n!}{\alpha!} \frac{\partial^n f(x)}{\partial x^\alpha} h^\alpha.$$

Упраженение. В случае \mathbb{R}^2 написать, что такое

$$d^2 f(x,y)(h,h), h = (h_1, h_2).$$

2.9 Многомерная формула Тейлора

Пусть $f: U \subset \mathbb{R}^m \to \mathbb{R}$, $[x, x+h] \subset U, t \in (0,1)$.Рассмотрим функцию $\varphi(t) = f(x+th)$, $\varphi: [0,1] \to \mathbb{R}$. Если $f \in C^k(U,\mathbb{R})$, то $\varphi \in C^k[0,1]$.

$$\varphi' = df(x+th)h = \partial_h f(x+th)$$

$$\varphi''(t) = \partial_h \partial_h f(x+th) = d^2 f(x+ht)(h,h)$$

$$\vdots$$

$$\varphi^{(n)} = \sum_{|a| \leq n} \frac{n!}{a!} \frac{\partial^n f}{\partial x^\alpha} (x+th)h^\alpha = d^n f(x+th)(h,\dots h)$$

Теорема 2.9.1: Формула Тейлора с остатком в форме Лагранжа

Если $f \in C^{n+1}(U,\mathbb{R}), [x,x+h] \subset U$, то существует $\vartheta \in (0,1)$:

$$f(x+h) = \sum_{\alpha \leqslant n} \frac{h^{|\alpha|}}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(x) + \sum_{|\alpha|=n+1} \frac{h^{\alpha}}{\alpha!} \frac{\partial^{n+1} f}{\partial x^{\alpha}}(x+\vartheta h).$$

Доказательство. Запишем формулу Тейлора с остатком форме Лагранжа для функции $\varphi(t)=f(x+th)$:

$$\varphi(1) = \varphi(0) + \varphi'(0) + \frac{\varphi''}{2!} + \ldots + \frac{\varphi^{(n)}(0)}{n!} + \frac{\varphi^{(n+1)}(\vartheta)}{(n+1)!}.$$

Подставим в $\varphi(0)$ вместо φ соответствующее f и получим нужную формулу.

Теорема 2.9.2: Формула Тейлора в дифференциалах

Если $f \in C^{n+1}(U,\mathbb{R}), [x,x+h] \subset U$, то существует $\vartheta \in (0,1)$:

$$f(x+h) = \sum_{k=0}^{n} \frac{d^k f(x)h^k}{k!} + \frac{1}{(k+1)!} d^{k+1} f(x+\vartheta h)h^{k+1}.$$

Теорема 2.9.3: Формула Тейлора в дифференциалах в общем случае (без доказательства)

Если $f\colon X\to Y,\ f\in C^{n+1}(U,Y),\ [x,x+h]\subset U,$ то существует $\vartheta\in(0,1)$:

$$f(x+h) = \sum_{k=0}^{n} \frac{d^k f(x)h^k}{k!} + \frac{1}{(k+1)!} d^{k+1} f(x+\vartheta h)h^{k+1}.$$

2.10 Исследование внутренних экстремумов

Определение 32

Определение экстремумов, максимумов, минимумов, локальных и глобальных аналогично одномерным.

Теорема 2.10.1: необходимое условие экструмума

Пусть $f: U \to \mathbb{R}, x_0 \in U$. Тогда

- 1. Если для какого-то h существует $\partial_h f(x_0)$, то она равна 0.
- 2. Если f дифференцируема в точке x_0 , то $df(x_0) = 0$

3амечание. В случае дифференцируемости и $X = \mathbb{R}^m$ на m координат точки x_0 получаем m уравнений.

$$\partial_1 f(x_0) = \ldots = \partial_m f(x_m) = 0.$$

Определение 33

 $f:\mathbb{R}^m o\mathbb{R}$. Точка x_0 называется стационарной для f, если $\operatorname{grad} f(x_0)=0$.

Теорема 2.10.2: достаточное условие экструмума

Пусть $f:U\subset X\to\mathbb{R}$ дважды дифференцируема в окрестности точки $x_0\in U$ и $df(x_0)=0$.

- Если для некоторого $\nu > 0$ и любого h верно $d^2 f(x_0)(h,h) \geqslant \nu \|h\|^2$, то x_0 точка локального минимума.
- Если для некоторого $\nu > 0$ и любого h верно $-d^2 f(x_0)(h,h) \geqslant \nu \|h\|^2$, то x_0 точка локального максимума.

Доказательство. По формуле Тейлора:

$$f(x_0 + h) = f(x) + \underbrace{df(x_0)}_{=0} h + \frac{d^2 f(x_0)(h, h)}{2} + \text{остаток.}$$

Разберем случай $d^2f(x_0)(h,h)\geqslant v\cdot\|h^2\|$, еще мы знаем, что остаток равен $o(h^2)$. Тогда

$$f(x_0 + h) \geqslant f(x_0).$$

Поэтому x_0 — точка локального минимума.

 $\it B \, \mathbb{R}^m$ сводится к положительной или отрицательной определенности матрицы, составленной из вторых частных производных.

 $h^{\top} \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right) h.$

Для этого существует критерий Сильвестра.

Лекция 8: †

3 Apr

2.11 Странные примеры экстремумов

2.11.1 Задача Гюйгенса

Описание 1. Есть два шара с массами M и $m \in (0, M)$. Шар с массой M летит со скоростью V на покоящийся нар массой m. Какая скорость будет у малого шара после столкновения? И как ее вообще найти?

После столкновения посчитаем импульс и энергию. По закону сохранения импульса и закону сохранения энергии

$$m_1 v_1 + m_2 v_2 = m_1 \widetilde{v}_1 + m_2 \widetilde{v}_2$$

 $m_1 v_1^2 + m_2 v_2^2 = m_1 \widetilde{v}_1^2 + m_2 \widetilde{v}_2^2$

$$m_1(v_1 - \widetilde{v_1}) = m_2(\widetilde{v_2} - v_2)$$

 $m_1(v_1^2 - \widetilde{v_1}^2) = m_2(\widetilde{v_2}^2 - v_2^2)$

Рис. 2.3: Столкновение шаров

Поделим одно на другое и получим, что $v_1 + \widetilde{v_1} = v_2 + \widetilde{v_2}$. Дальше можно подставить в первое уравнение и получить

$$m_1v_1 + m_2v_2 = m_1\widetilde{v_1} + m_2(v_1 + \widetilde{v_1} - v_2).$$

Тогда

$$\widetilde{v}_1 = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}.$$

$$\widetilde{v}_2 = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2}.$$

Если $v_2 = 0$,

$$\widetilde{v_2} = \frac{2m_1v_1}{m_1 + m_2} \in (v_1, 2v_1).$$

Определение 34: Задача Гюйгенса

С какими массами $m_1, \dots m_n$ разместить по пути покоящиеся шары, чтобы передался максимальный импульс?

$$\widetilde{v} = v \cdot \frac{2M}{M + m_1} \cdot \frac{2m_1}{m_1 + m_2} \cdot \dots \cdot \frac{2m_n}{m_n + m} = f(m_1, \dots m_n) \cdot v \cdot 2^{n+1}.$$

Нужно найти максимум этой функции. Он существует, так как в бесконечности одной и переменных значение стремиться к 0. Обозначим $m_0 = M, \ m_{n+1} = m$.

Посчитаем частные производные и приравняем к 0

$$\partial_j f(\ldots) = 0 \iff m_j^2 = m_{j-1} m_{j+1}.$$

Тогда

$$q = \frac{M}{m_1} = \frac{m_1}{m_2} = \dots = \frac{m_n}{m}.$$

$$q^{n+1} = \frac{M}{m}, \quad q = \sqrt[n+1]{\frac{M}{m}}.$$

Рис. 2.4: Задача Гюйгенса

А скорость

$$\widetilde{v} = 2^{n+1} \left(\frac{q}{q+1} \right)^{n+1} v.$$

При n=0, получается $\widetilde{v}=2\cdot \frac{\frac{M}{m}}{\frac{M}{n}+1}<2$

Упражнение.

$$\lim_{n \to \infty} \left(\frac{2\sqrt[n]{\frac{M}{m}}}{\sqrt[n]{\frac{M}{m}} + 1} \right)^{n+1} = ?.$$

2.11.2 Кратчайшее расстояние до линейного подпространства

Теорема 2.11.1

Пусть H — пространство со скалярным произведением, $L \subset H$ — линейное подмножество (подпространство), $x_0 \in H$. Пусть z_0 — наилучшее приближение к x_0 в L, то есть

$$||x_0 - z_0|| = \min_{z \in L} ||x_0 - z||,$$

тогда $x_0 - z_0 \perp L$, то есть $\forall z \in L : \langle x_0 - z_0, z \rangle = 0$.

Доказательство. Введем функцию $f: L \to R$, $f(z) = ||x_0 - z||^2$. В точке z_0 эта функция имеет минимум. Хотим минимизировать f.

$$f(z) = \langle x_0 - z, x_0 - z \rangle = \langle z, z \rangle - \langle x_0, z \rangle - \langle z, x_0 \rangle + \langle x_0, x_0 \rangle.$$

Продифференцируем:

$$df(z_0)h = \langle z_0, h \rangle + \langle h, z_0 \rangle - \langle x_0, h \rangle - \langle h, x_0 \rangle$$
$$= \langle z_0 - x_0, h \rangle + \langle h, z_0 - x_0 \rangle =$$
$$= 2 \operatorname{Re} \langle h, z_0 - x_0 \rangle$$

Так как $\forall h \in L : df(z_0)h = 0$, в веществественном случае получаем перпендикулярность. Если поле комплексное, то для всех θ

$$2\operatorname{Re}\langle he^{i\theta}, z_0 - x_0 \rangle = 0.$$

Выберем θ так, что $\langle he^{i\theta}, z_0 - x_0 \rangle \in \mathbb{R}$, поэтому можно вынести скаляр $e^{i\theta}$ и получить $\langle h, z_0 - x_0 \rangle = 0$. \square

Определение 35: Аффинное подпространство

Пусть $L \subset X$, $x_0, l_0 \in H$, $L_0 \subset H$ — линейное подпространство. Подпространство $L = \{l_0 + z \mid z \in L_0\}$ называется аффиным.

Рассмотрим функцию $f\colon L \to \mathbb{R}, f(z) = \|z - x_0\|^2$. Нужно найти ее минимум. Пусть z_0 — точка минимума.

$$df(z_0) \colon L_0 \to \mathbb{R}.$$

$$f(z_0 + h) = f(z_0) + df(z_0)h + o(h).$$

Будем брать $h\colon z_0+h\in L\Longleftrightarrow h\in L_0$ — область допустимых приращений.

2.11.3 Задача о брахистороне

Постановка задачи Пусть есть координатная плоскость с осями x и y. Мы находимся в точке (0,0) и хотим попасть в точку (x', y'), выбрав оптимальную траекторию. Хотим минимизировать время, затраченное

Рис. 2.5: Задача о брахистороне

на спуск, по всем функциям f. Обозначим множество функций

$$L = \{ f \in C^1[0, x_* \mid f(0) = 0, \ f(x_*) = y_* \}.$$

Посчитаем мгновенную скорость:

$$\frac{mv(x)^2}{2} = mgx \Longrightarrow v(x) = \sqrt{2gx}.$$

Чтобы найти время, нужно разбить путь на малые отрезки, на них разделить расстояние на скорость и просуммировать. То есть проинтегрировать функцию. Воспользуемся утверждением о том, что при достаточно малом кусочке длина дуги будет равна $\sqrt{1+f'(x)^2}$:

$$T(f) = \int_0^{x_*} \frac{\sqrt{1 + f'(x)^2}}{\sqrt{2gx}} dx.$$

Заведем функционал $J: L \to \mathbb{R}$:

$$J[f] = \int_0^{x_*} \frac{\sqrt{1 + f'(x)^2}}{\sqrt{x}} dx.$$

Общий вид В более общем виде функционал J[f], где $F: \mathbb{R}^3 \to \mathbb{R}$, принимает такой вид:

$$J[f] = \int_a^b F(x, f(x), f'(x)) dx.$$

В нашем случае $F(u_1, u_2, u_3) = \frac{\sqrt{1+u_3^2}}{\sqrt{u_1}}$.

Упражнение. Если $F \in C^1(\mathbb{R}^3)$, то J дифференцируема.

Доказательство. Пусть $F \in C^1(\mathbb{R}^3), F: \mathbb{R}^3 \to \mathbb{R}, J: L \to \mathbb{R}$

$$L = \{ f \in C^1[a, b] \mid f(a) = A, \ f(b) = B \}.$$

Определим L_0 — пространство допустимых приращений к функции:

$$L_0 = \{ f \in C^1[a, b] \mid f(a) = f(b) = 0 \}.$$

Тогда $dJ(f)\colon L_0 \to \mathbb{R}$ — линейное непрерывное отображение.

Пусть $J = J_2 \circ J_1$, где

$$J_2: C[a,b] \to \mathbb{R},$$
 $J_2(f) = \int_a^b f(x)dx$
 $J_1: C^1[a,b] \to C[a,b],$ $J_1(f)(x) = F(x, f(x), f'(x))$

Тогда $dJ(f)=J_2\circ dJ_1(f)$. Чтобы доказать это, докажем, что $dJ_2(J_1(f))=J_2$. Пусть $q=J_1(f)\colon \mathbb{R}\to \mathbb{R}$ и $h\to 0$ — приращение. Тогда

$$J_2(q+h) - J_2(q) = \int_a^b q(x)dx = J_2(q).$$

Теперь нужно проверить, что J_1 дифференцируемо, так как с J_2 уже все в порядке.

$$d_h J(f) = J_2 \circ d_h J_1(f).$$

$$h \in L_0 = \lim_{t \to \infty} \frac{J_1(f + th) - J_1(f)}{t}.$$

Таким образом, для всех x нужно посчитать

$$\lim_{t \to \infty} \frac{F(x, f(x) + th(x), f'(x) + th'(x)) - F(x, f(x), f'(x))}{t}$$
(2.11.1)

Пусть

$$\varphi(t) = F(x, f(x) + th(x), f'(x) + th'(x)).$$

Тогда 2.11.1 равна $\varphi'(0)$. При этом

$$\varphi'(t) = \partial_2 F(x, f(x) + th(x), f'(x) + th'(x))h(x) + \partial_3 F(x, f(x) + th(x), f'(x) + th'(x))h'(x),$$

из чего следует, что 2.11.1 равно

$$\partial_2 F(x, f(x), f'(x))h(x) + \partial_3 F(x, f(x), f'(x))h'(x).$$

Проинтегрируем

$$\partial_h J(f) = \int_a^b \partial_2 F(x, f(x), f'(x)) h(x) + \partial_3 F(x, f(x), f'(x)) h'(x) dx.$$

Необходимое условие экстремума состоит в том, что $\forall h \in L_0 \colon \partial_h J(f) = 0$. Заметим, что

$$\partial_h J(f) = \int_a^b \left(\partial_2 F(x, f(x), f'(x)) - \frac{d}{dx} \left(\partial_3 F(\dots) \right) \right) h(x) dx + \partial_3 F(\dots) h(x) \Big|_a^b =$$

$$= \int_a^b g(x) h(x) dx = 0$$

Так как это равенство верно для всех h из L_0 , g(x)=0: пусть $g(x')\neq 0$. Тогда по непрерывности $g(x)\neq 0$ в некоторой окрестности x'. Тогда существует h такое, что $h(x)\neq 0$ только в этой окрестности x', поэтому

$$\int_{a}^{b} g(x)h(x)dx \neq 0.$$

Следовательно, f — экстремум. Тогда

$$\partial_2 F(x, f(x), f'(x)) - \frac{d}{dx} \partial_3 f(x, f(x), f'(x)) = 0, \ f(a) = A, \ f(b) = B.$$

Полученное дифференциальное уравнение от f называется уравнением Эйлера-Лагранжа.

Применим для решения первоначальной задачи

$$F(u_1, u_2, u_3) = F(x, f(x), f'(x)) = \sqrt{\frac{1 + f'(x)^2}{x}}.$$

Тогда $\partial_2 F(\ldots)$ в уравнении просто равно 0, а

$$\partial_3 F(\ldots) = \frac{f'(x)}{\sqrt{x} \cdot \sqrt{1 + f'(x)^2}}.$$

Поэтому

$$\left(\frac{f'(x)}{\sqrt{x} \cdot \sqrt{1 + f'(x)^2}}\right)' = 0, \quad f(x) = y', \quad f(0) = 0.$$

Следовательно,

$$\frac{f'(x)}{\sqrt{x} \cdot \sqrt{1 + f'(x)^2}} = c.$$

Возведем в квадрат и получим, что

$$\frac{x}{c^2} = \frac{1}{f'(x)^2} + 1 \Longrightarrow \frac{const - x}{x} = \frac{1}{f'(x)^2} \Longrightarrow f'(x) - \sqrt{\frac{x}{const - x}}.$$

Таким образом,

$$f(x) = \int_0^x \sqrt{\frac{s}{const - s}} dx,$$

при этом const можно подобрать так, что $f(x^*) = y^*$. Это циклоида.

Рис. 2.6: Циклоида

Лекция 9: †

10 Apr

2.12 Поверхности и криволинейные координаты

Определение 36: Поверхность-график

Пусть $f\colon U\subset\mathbb{R}^2 o\mathbb{R}$ — непрерывная функция на открытом множестве. Поверхность-график функции

 $S = \Gamma_f = \{(x, y, z) \mid z = f(x, y), \ (x, y) \in U\}.$

Определение 37: Параметризация

Параметризация S — отображение $F\colon U\to S$, такое что F(x,y)=(x,y,f(x,y)) — непрерывное, Биективное отображение

Пути на S Если $\gamma \colon [a,b] \to U$ — путь в U, то $F \circ \gamma$ — путь в S, и наоборот.

Криволинейные координаты на S (x,y) выполняют роль координат на S. Образы координатных линий — координатные кривые на S.

2.12.1 Касательная плоскость к графику функции

Пусть f дифференцируемо в точке $(x_0, y_0) \in U$. Тогда

$$f(x,y) = f(x_0, y_0) + A(x - x_0) + B(y - y_0) + o(\dots), \qquad (x,y) \to (x_0, y_0).$$
$$df(x_0, y_0) = (\partial_x f(x_0, y_0), \partial_y f(x_0, y_0)).$$

Определение 38: Касательная плоскость

Множество точек $(x,y,z) \in \mathbb{R}^3$, удовлетворяющий уравнению

$$z = f(x_0, y_0) + A(x - x_0) + B(y - y_0).$$

называется касательной плоскостью к S в точке $(x_0, y_0, f(x_0, y_0))$.

Замечание. Эта плоскость единственна и

$$A = \partial_x f(x_0, y_0), \qquad B = \partial_y f(x_0, y_0).$$

Замечание. Нормаль к плоскости

$$n = (\partial_x f(x_0, y_0), \partial_y f(x_0, y_0)) = (\nabla f(x_0, y_0), -1).$$

2.12.2 Касательный вектор

Определение 39: Касательный вектор к пути

Если гладкий путь в $\Gamma: [a,b] \to \mathbb{R}^3$, $\Gamma(t) = (x(t),y(t),z(t))$, то касательный вектор к нему — это (x'(t),y'(t),z'(t)). Если путь лежит на поверхности S, то есть $\Gamma=F\circ\gamma$, то

$$\Gamma'(t) = (x'(t), y'(t), \partial_x f(x(t), y(t) + \partial_y f(x(t), y(t)) y'(t)).$$

• Касательный вектор к пути на поверхности перпендикулярен нормали и лежит в касательной плоскости.

Уравнение нормали

$$n = (\partial_x f(x_0, y_0), \partial_y (x_0, y_0), -1).$$

• Верно и обратное: любой вектор из касательной плоскости является касательным к некоторому пути на поверхности.

$$(u,v,w)\bot n$$
 $x(t)=x_0+ut,\ y(t)=y_0+vt$ — путь в $U.$ $\Gamma(t)=(x(t),y(t),f(x(t),y(t))).$

Продифференцировав это, мы получим равенство выше.

2.12.3 Чуть более общая ситуация

• Если $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$, $f = (f_1, \dots f_m)$, то получим график отображения

$$S = \Gamma_f = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m \mid x \in U, y \in f(x)\}$$

- n-мерная поверхность в \mathbb{R}^{n+m} .
- $F: U \to S$, F(x) (x, f(x)) параметризация поверхности.
- Касательное пространство *п*-мерно и состоит из касательных векторов.
- Пространство нормалей m-мерное.

2.13 Теорема о неявном отображении (функции)

2.13.1 Мотивация

- Рассмотрим множество $\{x^2 + y^2 1 = 0\}$ окружность на плоскости. Это не график функции y = f(x), но почти для всех точек можем взять окрестность, которая будет графиком.
- Можно честно решить относительно y уравнение $y=\pm\sqrt{1-x^2}$

2.13.2 Подстановка

• Пусть задана система уравнений

$$\begin{cases} f_1(x_1, \dots x_n, y_1, \dots y_m) = 0 \\ \vdots \\ f_m(x_1, \dots x_n, y_1, \dots y_m) = 0 \end{cases}$$

• Хотим разрешить относительно $y = (y_1, \dots y_n)$

$$\begin{cases} y_1 = g_1(x_1, \dots x_n) \\ \vdots \\ y_m = g_m(x_1, \dots x_n) \end{cases}$$

• Тем самым, получить задание m-мерной поверхности в \mathbb{R}^{m+n} .

2.14 Теорема о неявном отображении

Теорема 2.14.1: О неявном отображении

- Пусть X, Y, Z нормированные пространства, Y полное, $(x_0, y_0) \in W \subset X \times Y$.
- Отображение непрерывно $F: W \to Z$ в точке $(x_0, y_0), F(x_0, y_0) = 0$
- В W существует частный дифференциал F по y ($\exists \partial_y F \colon W \to L(Y,Z)$) и непрерывен в точке (x_0,y_0) .
- Оператор обратим $(\partial_y F(x_0, y_0))^{-1} \in L(Z, Y)$

Тогда существуют $U\subset X$ — окрестность точки $x_0,\,V\subset Y$ — окрестность точки $y_0,\,f\colon U\to V$ такие, что $U\times V\subset W$ и

$$\{F(x,y) = 0\} \cap (U \times V) = \Gamma_f = \{(x,f(x)) \mid x \in U\}.$$

Доказательство. Пусть $(x_0, y_0) = (0, 0)$

Рис. 2.7: График функции в окрестности

1. Пусть $g_x(y) = y - (\partial_y F(0,0))^{-1} F(x,y), \quad g_x \colon Y \to Y.$

$$F(x,y) = 0 \iff y$$
 — неподвижная точка g_x .

Докажем это. Нужно выделить подмножество Y, где отображение действует.

$$dg_x(y) = I_Y - (\partial_y F(0,0))^{-1} \partial_y F(x,y).$$

Если (x,y) стремиться к (0,0), то последнее слагаемое будет стремиться к тождественному отображению I_Y , то есть правая часть равенства стремиться к 0.

$$\exists \Delta > 0 \colon ||x|| < \Delta, ||y|| < \Delta \Longrightarrow ||dg_x(y)|| < \frac{1}{2}.$$

Возьмем $\Delta > \varepsilon > 0$. $g_0(0) = 0$

$$\exists \delta > 0 \ \forall x, ||x|| < \delta \colon ||q_x(0)|| \leqslant \varepsilon/2.$$

2. **Ключевой момент:** так как производные меньше $\frac{1}{2}$, и $||g_x(0)|| \le \varepsilon/2$

$$g_x(\{\|y\| \leqslant \varepsilon\}) \subset \{\|y\| \leqslant \varepsilon\}.$$

Применим теорему о сжимающем отображении (так как производная ограничена $\frac{1}{2}$ и Y полное): $g_x\colon V\to V,\quad V=B_\varepsilon(0)\subset Y,$ поэтому

$$\exists y \colon ||y|| \leqslant \varepsilon, \quad ||g_x(y) - g_y(x)|| \leqslant \sup_{0 < \theta < 1} ||dg_x(\theta y)|| \cdot ||y|| \leqslant \frac{\varepsilon}{2}.$$

Так как Y полное, шар M, где действует g, является метрическим,отображение g_x сжимающее. Следовательно, существует единственная неподвижная точка

$$\exists ! \ y \colon ||y|| \leqslant \varepsilon, q_x(y) = y.$$

Рассмотрим $U = B_{\delta}(0)$. Оно подойдет.

3амечание. Отображение f непрерывно в точке x_0 , так как Δ мы выбираем сами.

Замечание. Если случай конечномерный, то достаточно требовать только обратимость (без непрерывности):

$$\exists \left(\partial_y F(x_0, y_0)\right)^{-1} \Longleftrightarrow \det \left(\frac{\partial f_i}{\partial y_i}(x_0, y_0)\right).$$

Теорема 2.14.2

Если в условиях прошлой теоремы 2.14.1 отображения F, $\partial_y F$ непрерывны не только в точке (x_0, y_0) , но в целой окрестности, то f непрерывно в окрестности точки x_0

Доказательство. Хотим проверить, что $\exists (d_y D(x,y))^{-1} \in L(Z,Y)$, при (x,y) близких к (x_0,y_0) . Уже знаем, что $\exists (\partial_y F(x_0,y_0))^{-1} \in L(Z,Y)$.

Лемма 1 (об обратимости оператора близкого к тождественному). $Y-nолное, B \in L(Y,Y), \|B\| \le 1.$ Тогда $\exists (I-B)^{-1} \in L(Y,Y).$

Доказательство. Сначала проверим обратимость, а потом непрерывность обратного отображения.

• Докажем, что

$$\forall v \in \exists! \ u \in Y \colon (I - B)u = v.$$

Последнее утверждение равносильно тому, что

$$u = c + Bu$$
 $g_v(u) = v + Bu$.

Теперь хотим найти неподвижную точку g_v . Это сжимающее отображение так как

$$||g_v(u_1) - g_v(u_2)|| = ||Bu_1 - Bu_2|| \le ||B|| \cdot ||u_1 - u_2|| \le ||u_1 - u_2||.$$

Тогда по теореме сжимающем отображении существует неподвижная точка.

• Проверим непрерывность: пусть u_n — решение для v_n , u — решение для v,

$$v_n \to v_0 \Longrightarrow u_n \to u, \ u_n = v_n + Bu_n \wedge u_0 = v_0 + Bu_0.$$

Вычтем одно из другого

$$u_n - u_0 = v_n - v_0 + B(u_n - u_0).$$

Теперь запишем неравенство треугольника для норм

$$||u_n - u_0|| \le ||v_n - v_0|| + ||B|| \cdot ||u_n - u_0||.$$

$$||u_n - u_0|| \le \frac{1}{1 - ||B||} ||v_n - v_0|| \to 0.$$

Лемма 2 (об обратимости обератора близкого к обратимому). Y- *полное пространство.* $A, A_0 \in L(Y,Z), \ \exists A_0^{-1} \in L(Z,Y). \ \textit{Если} \ \|A-A_0\| < \frac{1}{\|A_0^{-1}\|}, \ \textit{mo} \ \exists A^{-1} \in L(Z,Y)$

Доказательство. Применяем лемму 1

$$\underbrace{A}_{L(Y,Z)} = A_0 + A - A_0 = \underbrace{(I_Y + (A - A_0)A_0^{-1})}_{L(Y,Y)} \underbrace{A_0}_{L(Y,Z)}, \quad ||B|| \leqslant ||A - A_0|| \cdot ||A_0^{-1}|| < 1.$$

Знаем, что $A_0 \in L(Y,Z)$ обратимо и непрерывно. Проверим, что $I_Y + B = I_Y + (A-A_0)A_0^{-1}$ Обратимо и непрерывно.

$$||B|| \le ||A_0^{-1}|| \cdot ||A - A_0|| < 1.$$

Теперь можем применить 1 и получить обратимость непрерывность обратного. Поэтому $I_Y + B$ тоже обратимо и обратное непрерывно.

Итого, можем применить для всех (x, y) таких, что

$$\|\partial_y F(x,y) - \partial_y F(x_0,y_0)\| < \frac{1}{\|(\partial_y F(x_0,y_0))^{-1}\|},$$

теорему о неявной функции. Так как $\partial_Y F(x,y)$ непрерывно, можем взять шар с центром в (x_0,y_0) , где все точки обладают этим свойством.

Теорема 2.14.3

Если в условиях теоремы 2.14.1 дополнительно отображение F дифференцируемо в точке (x_0, y_0) , то и f дифференцируемо в точке x_0 и

$$df(x_0) = -(\partial_y F(x_0, y_0))^{-1} \partial_x F(x_0, y_0).$$

Доказательство. Пусть $(x_0, y_0) = (0, 0)$. по определнию дифференциала

$$F(x,y) = F(0,0) - \partial_x F(0,0)x + \partial_y F(0,0)_y + \underbrace{o(\|x\| + \|y\|)}_{\alpha(x,y)}.$$

Пусть мы уже живем в множестве, где определеная неявная функция f. Тогда $F(x,y)=0 \Longleftrightarrow y=f(x)$ и

$$0 = \partial_x F(0, 0)x + \partial_y F(0, 0)f(x) + \alpha(x, f(x)).$$

Выразим f(x):

$$f(x) = -\left(\partial_y F(0,0)\right)^{-1} \partial_x F(0,0) x - \underbrace{\left(\partial_y F(0,0)\right)^{-1} \alpha(x,f(x))}_{\text{проверим, что } = o(\|x\|)}.$$

Так как f непрерывно (x_0, y_0) , если $x \to 0$, $f(x) \to 0$.

$$\exists \delta > 0 \colon \|x\| < \delta \Longrightarrow \frac{\|\alpha(x, f(x))\|}{\|x\| + \|f(x)\|} \leqslant \frac{1}{\|d_y F(0, 0)^{-1}\|} \cdot \frac{1}{2}.$$

Все вместе

$$\|\partial_y F(0,0)^{-1} \alpha(x,f(x))\| \le \frac{1}{2} (\|x\| + \|f(x)\|).$$

Тогда

$$||f(x)|| \le C||x|| + \frac{1}{2}(||x|| + ||f(x)||).$$

Переносим $\frac{1}{2}$

$$\begin{split} \frac{1}{2} \|f(x)\| &\leqslant C \|x\| + \frac{1}{2} \|x\| \\ &\Longrightarrow \|f(x)\| \leqslant \widetilde{c} \|x\| \\ &\Longrightarrow o(\|x\| + \|f(x)\|) = o(\|x\|) \end{split}$$

Замечание. Можно попросить большую дифференцируемость F и получить большую дифференцируемость f. Аналогично можно попросить дифференцируемость в окрестности и получить дифференцируемость в окрестности.

Теорема 2.14.4: об обратном отображении

Пусть $F: W \subset Y \to X, Y$ — полно, $F(y_0) = x_0, F$ дифференцируемо в W, dF непрерывна в точке y_0 и существует $(dF(y_0))^{-1} \in L(X,Y)$.

Тогда существуют окрестности $U\subset W$ точки x_0 и V точка y_0 такие, что $F\colon V\to U$ — биекция, то есть существует $F^{-1}\colon U\to V,\, F^{-1}$ — дифференцируемо в точке x_0 и

$$d(F^{-1})(x_0) = (dF(y_0))^{-1}$$
.

Доказательство. Рассмотрим $G(x,y)=x-F(y), \quad G\colon X\times Y\to X$. Заметим, что $G(x,y)=0\Longleftrightarrow x=F(y)$. Поэтому $G(x_0,y_0)=0$.

$$\partial_y G(x_0,y_0) = -dF(y_0)$$
 — обратимо.
$$\exists (\partial_y G(x_0,y_0))^{-1} \in L(Y,X).$$

По теореме о неявной функции получаем, что существует

$$f: U \to V$$
 $G(x, f(x)) = 0 \iff x - F(f(x)) = 0.$

И $f = F^{-1}$ на U.

$$dF^{-1}(x_0) = df(x_0) = -\left(\partial_y G(x, y_0)\right)^{-1} \partial_x G(x_0, y_0) = (dF(y_0))^{-1}.$$

 $\it Замечание.$ Можно попросить большую дифференцируемость $\it F$ и получить большую дифференцируемость $\it f.$

Лекция 10: †

17 Apr

2.15 Условные экстремумы

Определение 40: Локальный максимум

Пусть $f\colon W\subset \mathbb{R}^{n+m}\to \mathbb{R},\ \Phi\colon W\to \mathbb{R}^m$, $z_0\in W,\ \Phi(z_0)=0$ и существует такая окрестность $U\subset W$ точки $z_0,$ что

$$\forall z \in U \cap \{\Phi = 0\} \quad f(z) \leqslant f(z_0).$$

Тогда точка z_0 называется точкой условного локального максимума функции f при условии $\Phi=0.$

Замечание. Аналогично определяется локальный минимум и экстремум, также строгие аналоги.

Замечание (уравнения связи). $\Phi(z) = (\Phi_1(z), \dots \Phi_m(z))$ тогда и только тогда, когда

$$\Phi_1(z) = 0, \dots \Phi_m(z) = 0$$

-m уравнений связи - часто задают n-мерную поверхность.

Когда такие поверхности получаются?

Пусть Φ непрерывно дифференцируемо в окрестности точки $z_0 \in W$, рассмотрим матрицу дифференциала

$$d\Phi(z) = \begin{pmatrix} \frac{\partial \Phi_1}{\partial z_1}(z_0) & \dots & \frac{\partial \Phi_1}{\partial z_{n+m}}(z_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial \Phi_m}{\partial z_1}(z_0) & \dots & \frac{\partial \Phi_m}{\partial z_{n+m}}(z_0) \end{pmatrix}.$$

Если $\operatorname{rank} d\Phi(z_0) = m$, то в окрестности точки z_0 уравнение $\Phi(z) = 0$ задает n-мерную плоскость в \mathbb{R}^{n+m} .

Если $\operatorname{rank} dq(z_0) = m$, то в матрице есть m линейно независимых столбцов. Будем считать, что последние m линейно независимы и обозначим

$$x_1 = z_1, \dots x_n = z_n, \quad y_1 = z_{n+1}, \dots y_m = z_{n+m}.$$

Тогда $\det \partial_y \Phi(z_0) \neq 0$, существует $(\partial_y \Phi(z_0))^{-1}$ и выполнена теорема о неявной функции:

$$\Phi(z) = 0 \iff y = q(x)$$

в окрестности точки $z_0, g(x)$ — неявная функция.

Приходим к тому, что надо искать экстремум функции

$$\widetilde{f}(x) = f(x,y) = f(x,g(x)), \qquad x = (x_1, \dots x_n).$$

Но возникает проблемка: g задана неявно.

Если z_0 — локальный экстремум функции f при условии, что $\Phi(z) = 0$, то x_0 — локальный экстремум функции \widetilde{f} . В случае гладкости обеих функций для этого есть необходимое условие экстремума

$$d\widetilde{f}(x_0) = 0 \iff \partial_x f(x_0, g(x_0)) + \partial_y f(x_0, g(x_0)) dy(x_0) = 0.$$

Еще $\Phi(x, g(x)) = 0$ в окрестности x_0 . Поэтому

$$\partial_x \Phi(x_0, g(x_0)) + \partial_y \Phi(x_0, g(x_0)) dg(x_0) = 0.$$

Получили условие на x_0 :

$$\begin{cases} \partial_x f(x_0, g(x_0)) + \partial_y f(x_0, g(x_0)) dy(x_0) = 0\\ \partial_x \Phi(x_0, g(x_0)) + \partial_y \Phi(x_0, g(x_0)) dg(x_0) = 0 \end{cases}$$

Воспользуемся обратимостью $\partial_u \Phi(x_0, g(x_0))$:

$$dg(x_0) = -(\partial_y \varphi(x_0, g(x_0)))^{-1} \, \partial_x \Phi(x_0, g(x_0)).$$

Подставим $dg(x_0)$ в первое уравнение:

$$\partial_x f(x_0, g(x_0)) - \underbrace{\partial_y f(x_0, g(x_0)) \left(\partial_y \Phi(x_0, g(x_0))\right)^{-1} \partial_x \Phi(x_0, g(x_0))}_{\lambda} = 0.$$

$$\begin{cases} \partial_x f(z_0) - \lambda \partial_x \Phi(z_0) = 0\\ \partial_y f(z_0) - \lambda \partial_y \Phi(z_0) = 0 \end{cases}$$

Получаем

$$df(z_0) - \lambda d\Phi(z_0) = 0 (2.15.1)$$

 λ — вектор-строка длины m, так как $\partial_y f(z_0) \in L(\mathbb{R}^m, \mathbb{R})$.

Тогда выражение 2.15.1 - n + m уравнений и еще есть m уравнений на $\Phi(z_0) = 0$.

Теорема 2.15.1: Необходимое условие условного экстремума

 $W \subset \mathbb{R}^{n+m}$, $f \in C^1(W,\mathbb{R})$, $\Phi \in C^1(W,\mathbb{R}^m)$, $z_0 \in W$, rank $d\Phi(z_0) = m$, $\Phi(z_0) = 0$. Если z_0 — точка условного локального экстремума функции f при условии $\Phi(z) = 0$, то существует $\lambda \in \mathbb{R}^m$ такое, что

$$df(z_0) - \lambda d\Phi(z_0) = 0.$$

Определение 41

 λ называется множителем Лагранжа, а метод называется методом неопределенных множителей Лагранжа.

Замечание. Система

$$df(z_0) - \lambda d\Phi(z_0) - 0, \quad \Phi(z_0) = 0$$

состоит из 2m+n уравнений с 2m+n неизвестным z_0 и λ .

2.15.1 Примеры

Минимум и максимум квадратичной формы на сфере $S^{n-1} \subset \mathbb{R}^n = \{x \in \mathbb{R}^n \mid |x| = 1\}$, где норма евклидова:

$$f: \mathbb{R}^n \to \mathbb{R}$$
 $f = \sum_{j=1}^n \sum_{k=1}^n a_{jk} x_j x_k = x^T A x$, $x = (x_1, \dots x_n)$.

Можно считать, что матрица A, задающая a_{jk} , симметрична $(a_{jk} = a_{kj})$.

Запишем уравнение связи:

$$\Phi(x) = x_1^2 + \ldots + x_n^2 - 1.$$

Тогда S^{n-1} — множество нулей этой функции, а S^{n-1} компактно, следовательно экстремумы достигаются.

$$\exists \lambda \in \mathbb{R} \colon d(f - \lambda \varphi)(x) = 0.$$

Посчитаем

$$\frac{\partial (f - \lambda \Phi)}{\partial x_j}(x) = 2\sum_{k=1}^n a_{jk} x_k - 2\lambda x_j,$$

что равносильно $Ax = \lambda x$. Следовательно, x — собственный вектор матрицы A, а λ — ее собственное число. Обозначим их за x_s и λ_s . Можно считать, что собственный вектор нормирован $|x_s| = 1$.

$$f(x_s) = x_s^{\top} A x_s = \lambda_s \underbrace{x_s^{\top} x_s}_{|x_s|^2} = \lambda_s.$$

Значит, нужно выбрать максимальное собственное число для максимального значения и минимальное — для минимального.

Задача Дидоны Хотим найти максимальную площадь S ограниченную кривой фиксированной длины P, при этом $L = \{ f \in C^2[0,l] \mid f(0) = f(l) = 0 \}$. Мы считаем, что кривая — график некоторой функции.

Рис. 2.8: Задача Дидоны

Для решения задачи нужно максимизировать следующий функционал

$$S(t)=\int_0^lf(x)dx$$
 при условии
$$\Phi(f)=\int_0^l\sqrt{1+(f'(x))^2}dx-P=0$$

В данном случае нам требуется более общая формулировка метода множителей Лагранжа, которую мы не доказывали, но здесь он тоже работает: если f — условный экстремум (экстрималь).

$$\exists \lambda \in \mathbb{R} : \forall h \in L \quad \partial_h(S - \lambda \Phi)(f) = 0.$$

Это выражение переписывается с помощью уравнения Эйлера-Лагранжа

$$(S - \lambda \Phi)(f) = \int_0^l F(x, f(x), f'(x)) dx$$
 $F(u_1, u_2, u_3) = u_2 - \lambda \sqrt{1 + u_3^2}.$

Мы знаем, что

$$\partial F - \frac{d}{dx}\partial_{x_1}F = 0$$
$$\partial_2 F = 1$$
$$\partial_3 F = -\lambda \frac{u_3}{\sqrt{1 + u_3^2}}$$
$$f(l) = f(0) = 0$$

Подставим и перепишем

$$1 + \lambda \left(\frac{f'(x)}{\sqrt{1 + (f'(x))^2}} \right)' = 0$$

Тогда

$$\frac{f'(x)}{\sqrt{1+(f'(x))^2}} = -\frac{x+C}{\lambda}.$$

Возведем обе части в квадрат:

$$\frac{(f'(x))^2}{1 + (f'(x))^2} = \frac{(x+C)^2}{\lambda^2}.$$

Выразим f'(x):

$$f'(x) = \sqrt{\frac{(x+C)^2}{\lambda^2 - (x+C)^2}}.$$
$$y = f(x) = \pm \sqrt{\lambda^2 - (x+C)^2} + C_1.$$
$$(y-C_1)^2 + (x+C)^2 = \lambda^2.$$

Получаем, что это действительно часть окружности, которая проходит через точки 0 и l и определяется длиной веревки.

Задача про цепную линию Есть два гвоздя и цепочка длины P. Необходимо понять, какую форму она примет для минимизации потенциальной энергии.

$$\Phi(f) = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx - P = 0.$$

Хотим минимизировать потенциальную энергию, то есть

$$J(f) = \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}} dx.$$

Множество подходящих функций

$$L = \{ f \in C^2[a, b] \mid f(x) = A, f(b) = B \}.$$

Множество допустимых приращений

$$L_0 = \{ f \in C^2[a, b] \mid f(a) = 0, f(b) = 0 \}.$$

Рис. 2.9: Задача про цепную линию

Воспользуемся методом множителей Лагранжа для бесконечномерного случая.

$$\exists \lambda \colon \forall h \in L_0 \ \partial_n (J - \lambda \Phi)(f) = 0.$$

Далее воспользуемся уравнением Эйлера-Лагранжа, где

$$F(u_1, u_2, u_3) = (u_2 - \lambda)\sqrt{1 + u_3^2}.$$

Первая переменная опять не используется. Получаем следующее уравнение:

$$\partial_2 F(f, f') - \frac{d}{dx} (\partial_3 F(f, f')) = 0 \tag{2.15.2}$$

Если считать в лоб, то будет не понятно, как решать дифференциальное уравнение. Но мы воспользуемся тем, что F не зависит от u_1 . Докажем, что из уравнения 2.15.2 следует следующее:

$$F(f, f') - f' \partial_3 F(f, f') = C.$$

Доказательство. Продифференцируем это выражение по x

$$\partial_2 F(f,f')f' + \underline{\partial_3 F(f,f')}f''' - \underline{f''}\partial_3 F(f,f') - f'(\partial_3 F(f,f')) = 0.$$

Получили, что это была константа, раз производная 0.

Tеперь раскроем F:

$$(f(x) - \lambda)\sqrt{1 + (f'(x))^2} - f'(x)(f(x) - \lambda)\frac{f'(x)}{\sqrt{1 + (f'(x))^2}} = C.$$

Здесь нужно найти минимальное значение.

Глава 3

Ряды

3.1 Определения и примеры

Определение 42

X — нормированное пространство, $\{x_k\}_{k=1}^\infty\subset X$. $\sum_{k=1}^\infty x_k$ — ряд, x_k — члены ряда. $S_n=\sum_{k=1}^n x_k$ — частичная сумма ряда.

Определение 43: сходимость ряда

 P яд $\sum_{k=1}^{\infty} x_k$ называется сходящимся, если

$$\exists \lim_{n \to \infty} S_n =: S.$$

Иначе ряд называется расходящимся.

Pемарка. В \mathbb{R} сумма ряда может быть равна $\pm \infty$.

Ремарка. Ряд может не начинаться с 1:

$$\sum_{k=0}^{\infty} x_k, \ \sum_{k=n}^{\infty} x_k.$$

Пример 3.1.1. $\sum_{k=1}^{\infty} 0 = 0$, этот ряд сходится.

Пример 3.1.2. $\sum_{k=1}^{\infty} (-1)^k$ расходится.

Пример 3.1.3. $z \in \mathbb{C}$. $\sum_{k=0}^{\infty} z^k$. Посчитаем частичную сумму $S_n \stackrel{z \neq 1}{=} \frac{z^{n+1}-1}{z-1}$. $\lim_{n \to \infty} z^n$ существует, если |z| < 1.

Пример 3.1.4. $\sum_{k=1}^{\infty} \frac{1}{k(k-1)}$ расходится, так как $S_n = 1 - \frac{1}{n+1} \to 1$.

Пример 3.1.5. $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$ тоже сходится.

Пример 3.1.6. Гармонический ряд $\sum_{k=1}^{\infty} \frac{1}{k}$ расходится, $H_n = \sum_{k=1}^n \frac{1}{k} \sim \ln n$.

3.1.1 Свойства

Свойства.

 $\boxed{1}$ $\sum_{k=1}^{\infty} x_k$ $cxodumcs \iff \forall m \in \mathbb{N}$ cxodumcs psd $\sum_{k=k+1}^{\infty} x_k$ u npu этом

$$\sum_{k=1}^{\infty} x_k = \sum_{k=1}^{n} x_k + \sum_{\substack{k=m+1 \ occmanor}}^{\infty}.$$

 $\boxed{2} \sum_{k=1}^{\infty} x_k \ cxodumcs \Longrightarrow \sum_{k=m+1}^{\infty} x_k \overset{m \to \infty}{\to} 0$

Доказательство. Распишем формулу суммы ряда:

$$S = S_m + \sum_{k=m+1}^{\infty} x_k.$$

 S_m стремиться к S при $m \to \infty$, поэтому

$$\sum_{k=m+1}^{\infty} x_k = S - S_m \stackrel{m \to \infty}{\to} 0.$$

линейность $\sum_{k=1}^{\infty} x_k \ u \sum_{k=1}^{\infty} y_k \ cxodsmcs$. Тогда

$$\forall \alpha, \beta : \sum_{k=1}^{\infty} (\alpha x_k + \beta y_k) \ cxodumcs$$

при этом

$$\forall \alpha, \beta : \sum_{k=1}^{\infty} (\alpha x_k + \beta y_k) = \alpha \sum_{k=1}^{\infty} x_k + \beta \sum_{k=1}^{\infty} y_k.$$

Замечание. Если один ряд сходится, а второй расходится, то их сумма расходится.

 $x_k \in \mathbb{R}^m$

$$\sum_{k=1}^{\infty} x_k = \left(\sum_{k=1}^{\infty} x_k^{(0)} + \dots + \sum_{k=1}^{\infty} x_k^{(m)}\right).$$

 $z_k \in \mathbb{C}. \ z_k = x_k + iy_k$.

$$\sum_{k=1}^{\infty} (\alpha x_k + iy_k) = \sum_{k=1}^{\infty} x_k + i \sum_{k=1}^{\infty} y_k.$$

монотонность $a_k, b_k \in \mathbb{R}, a_k \leqslant b_k, \sum_{k=1}^{\infty} a_k \ u \sum_{k=1}^{\infty} k \ cxodumcs \ (возможно \ c \pm \infty), morda$

$$\sum_{k=1}^{\infty} a_k \leqslant \sum_{k=1}^{\infty} b_k.$$

необходимое условие сходимости $\{x_k\}\subset X,\; \sum_{k=1}^\infty x_k\; cxo\partial umcs,\; mor\partial a\; x_k\stackrel{x o\infty}{\longrightarrow} 0.$

критерий Больцано-Коши Πycm ь X nonho. $\{x_k\}\subset X.$

$$\sum_{k=1}^{\infty} x_k \ \operatorname{cxodumcs} \Longleftrightarrow \forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall p \in \mathbb{N} : \left\| \sum_{k=n+1}^{n+p} x_k \right\| < \varepsilon.$$

Доказательство. Сходимость $\sum_{k=1}^{\infty} x_k$ равносильна тому, что $\{S_n\}$ сходится, что равносильно тому, что S_n фундаментальна в X. То есть

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N : ||S_m - S_n|| < \varepsilon.$$

$$m > n \Longrightarrow m = n + p, \ p \in \mathbb{N} : S_m - S_n = \sum_{k=n+1}^{n+p} x_k.$$

Лекция 11: †

Определение 44: Группировка ряда

 $\mathrm{Paccmotpum}$ ряд $\sum_{k=1}^\infty a_k$. $\sum_{k=1}^\infty A_k$ — группировка ряда $\sum_{k=1}^\infty a_k$, если

$$A_1 = a_1 + \ldots + a_{n_1},$$

$$A_2 = a_{n_1+1} + \ldots + a_{n_2},$$

то есть n_j — возрастающая последовательность натуральных чисел, $n_0=0$. $A_j=\sum_{k=n_{j-1}+1}^{n_j}a_k$.

Теорема 3.1.1: о группировке ряда

Пусть есть ряд $\sum_{k=1}^{\infty}a_k$ и его группировка $\sum_{k=1}^{A+k}$

1. Если ряд сходится, его группировка тоже сходится, причем $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} A_k$.

Доказательство. Частичные суммы группировки — это частичные суммы исходного ряда, поэтому их подпоследовательность сходится к тому же числу, что и вся последовательность. □

2. Пусть $a_n \to 0$ и в каждом A_k не более L слагаемых. Тогда, если $\sum_{k=1}^{\infty} A_k$ сходится, то $\sum_{k=1}^{\infty} a_k$ сходится.

Доказательство. Рассмотрим $S_n = \sum_{j=1}^n a_j, n_j < n \leqslant n_{j+1},$ где S_{n_j} и $S_{n_{j+1}}$ — частичные суммы ряда $\sum_{k=1}^\infty A_k$.

$$\exists \varepsilon \ \forall N \colon (n_j > N \Longrightarrow |S_{n_j} - S| < \varepsilon).$$

Еще потребуем, чтобы при k>N значение $|a_k|<rac{arepsilon}{L}$. Тогда

$$S_n = S_{n_j} + \underbrace{a_{n_j+1} + \ldots + a_n}_{\leq L \text{ Charaembly}}.$$

Каждое из дополнительных слагаемых не больше $\frac{\varepsilon}{L}$, поэтому

$$|S_{n_j+1} - S_n| \leqslant L \cdot \frac{\varepsilon}{L} = \varepsilon \Longrightarrow |S - S_n| < 2\varepsilon.$$

3. Пусть ряд числовой (\mathbb{R}). Для любого A_k в сумме участвуют только слагаемые одного знака. Тогда, если $\sum_{k=1}^{\infty} A_k$ сходится, то $\sum_{k=1}^{\infty} a_k$ сходится.

Доказательство. Если $n_i < n < n_j$, то S_n лежит между S_{n_j} и S_{n_i} . Можно добиться, чтобы расстояния были меньше ε , тогда и S_n будет отличаться на малую величину. Следовательно, и у S_n есть предел.

3.2 Положительные ряды

Определение 45: положительный ряд

Числовой ряд называется положительным, если все его члены неотрицательны.

Свойства.

 $\fbox{1}$ Ряд сходится тогда и только тогда, когда $\{S_n\}$ ограничена (сверху).

Признак сравнения $0\leqslant a_n\leqslant b_n,\ mo$

1. $\sum_{i=1}^{\infty} b_n$ сходится, тогда $\sum_{n=1}^{\infty} a_n$ сходится

23 Apr

2. $\sum_{n=1}^{\infty} a_n$ pacxodumcя, тогда $\sum_{n=1}^{\infty} b_n$ Тоже расходится.

2, $0 \leqslant a_n, b_n, \ a_n = \mathcal{O}(b_n) \ u \sum_{j=1}^{\infty} b_j \ cxodumcs, \ morda \sum_{n=1}^{\infty} a_n \ cxodumcs.$

2'' $0 \leqslant a_n, b_n$, если $a_n \sim b_n$, то $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда $\sum_{n=1}^{\infty} b_n$ сходится.

Признак Коши $\Pi y cmb \ a_n \geqslant 0 \ u \ q = \overline{\lim}_{n \to \infty} \sqrt[n]{a_n}$

1. $q<1,\ mo\ \sum_{n=1}^{\infty}a_n\ cxoдится$

 $2. q > 1, mo \sum_{n=1}^{\infty} a_n pacxodumcs$

Доказательство.

- 1. Выберем любое $0 < \tilde{q} < 1$, с некоторого места мы не выходим сильно правее q, поэтому $\exists N \ \forall n > 1$ $N: \sqrt[n]{a_n} < \tilde{q}$, тогда $a_n < (\tilde{q})^n$. А ряд $\sum_{k=1}^{\infty} q^k$ сходится.
- 2. $\forall N \; \exists n > N \colon a_n > 1 \Longrightarrow a_n \not\to 0$, следовательно, ряд расходится.

Замечание. Обычно достаточно использовать обычный предел в этом признаке.

Признак Даламбера $a_n>0$ u $\exists \lim_{nto+\infty}rac{a_{n+1}}{a_n}=q$. $Tor\partial a$

- 1. q > 1, то ряд расходится
- 2. q < 1, mo pяд cxoдumcя

Доказательство.

- 1. Если q > 1, $a_{n+1} > a_n$, поэтому ряд точно не сходится.
- 2. Если q<1, возьмем $q<\tilde{q}<1$, тогда $\exists N\ \forall n>N\colon \frac{a_{n+1}}{a_n}<\tilde{q}$. Запишем

$$a_{n+1} = \frac{a_{n+1}}{a_n} \cdot \frac{a_n}{a_{n-1}} \cdot \dots \cdot \frac{a_{N+1}}{a_N} \cdot a_N < (q)^{n-N+1} \cdot a_{N^2} = C(\tilde{q})^{n+1}.$$

 $\overline{ ext{Интеграль}}$ ный признак $\mid \varPi y cmb \; f\geqslant 0,$ монотонно убывает $f\colon [1,+\infty) o \mathbb{R}$. Тогда

$$\sum_{k=1}^{\infty} f(k) \ cxoдumcя \iff \int_{1}^{k} f(x)dx \ cxoдumcя.$$

Доказательство.

$$1 \Longrightarrow 2$$

$$\int_{1}^{\infty} f(x)dx = \sum_{k=1}^{\infty} \int_{k}^{k+1} f(x)dx \leqslant \sum_{k=1}^{\infty} f(k) \cdot (k+1-k) = \sum_{k=1}^{\infty} f(k).$$

Так как конечная сумма сходится, интеграл тоже сходится.

$$2 \Longrightarrow 1$$

$$\sum_{k=1}^{\infty} f(k) = f(1) + \sum_{k=1}^{\infty} f(k) \leqslant f(1) + \sum_{k=1}^{\infty} \int_{k}^{k+1} f(x) dx = f(1) + \int_{1}^{\infty} f(x) dx.$$

Так как интеграл сходится, сумма ограничена сверху, поэтому ряд сходится.

3.3Числовые ряды с произвольными членами

Определение 46: Абсолютная сходимость

 $x_k \in X$ — нормированное пространство. $\sum_{k=1}^\infty x_k$ абсолютно сходится, если сходится $\sum_{k=1}^\infty \|x_k\|$.

Свойства.

1 $\sum x_k, \sum y_k$ абсолютно сходятся, α, β — скаляры. Тогда ряд $\sum (\alpha x_k + \beta y_k)$ абсолютно сходится, так

$$\|\alpha x_k + \beta y_k\| \le \|\alpha\| \cdot \|x_k\| + \|\beta\| \cdot \|y_k\|.$$

2 Ecau $\sum_{k=1}^{\infty} x_k$ exodumes, $\sum_{k=1}^{\infty} \|x_k\|$ exodumes, mo $\|\sum_{k=1}^{\infty} x_k\| \leqslant \sum_{k=1}^{\infty} \|x_k\|$, mak kak

$$||S|| \stackrel{n \to \infty}{\longleftarrow} ||S_n|| \leqslant \sum_{k=1}^n ||x_k|| \stackrel{n \to \infty}{\longrightarrow} \sum_{k=1}^\infty ||x_k||.$$

 $\boxed{\mathbf{3}}\ X$ — полное нормированное пространство. $\sum_{k=1}^\infty \|x_k\|$ сходится, тогда $\sum_{k=1}^\infty x_k$ сходится.

Доказательство. По критерию Больцано-Коши

$$\forall \varepsilon > 0 \ \exists N \colon \forall n > N, \ p \in \mathbb{N} \ \sum_{k=n+1}^{n+p} \|x_k\| < \varepsilon,$$

следовательно,

$$\left\| \sum_{k=n+1}^{n+p} x_k \right\| < \varepsilon.$$

А тогда по критерию Больцано-Коши получаем, что $\sum_{k=1}^{\infty} x_k$ сходится.

Определение 47

Если ряд сходится, но не сходится абсолютно, он называется условно сходящимся.

- [4] В полном нормированном пространстве $\sum_{k=1}^{\infty} x_k$ сходится абсолютно, $\sum_{k=1}^{\infty} y_k$ сходится условно, тогда $\sum_{k=1}^{\infty} (x_k + y_k)$ сходится условно.
- $\boxed{f 5}$ Если X полное, то в признаках Коши и Даламбера можно считать

$$\overline{\lim}_{n \to \infty} \sqrt[n]{\|x_n\|} \ u \ \lim_{n \to \infty} \frac{\|x_{n+1}\|}{\|x_n\|}$$

соответственно.

Лемма 3 (преобразование Абеля). Пусть $\{a_n\}, \{b_n\}$ — последовательности. Пусть $A_n = \sum_{k=1}^n a_n \ u$ $A_0 = 0$. Рассмотрим

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (A_k - A_{k-1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k =$$

$$= \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n-1} A_k b_{k+1} = A_n b_n \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Получили дискретный аналог интегрирования по частям.

Теорема 3.3.1: Признаки Дирихле и Абеля

Пусть $\{a_n\}, \{b_n\}$ — числовые последовательности. b_n — монотонная последовательность, $b_n \in \mathbb{R}, a_n \in \mathbb{C}, A_n = \sum_{k=1}^n a_k$.

Признак Дирихле $\{A_n\}$ — ограниченная последовательность, $b_n o 0$.

Признак Абеля $\sum_{k=1}^n a_k$ сходится, b_n ограничено

Если выполнен один из признаков, $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Доказательство. Из преобразования Абеля:

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}).$$

Хотим доказать, что у обоих слагаемых есть предел.Первое слагаемое сходится при условии обоих признаков.

Докажем, что $\sum_{k=1}^{n-1} A_k(b_k - b_{k+1})$ абсолютно сходится (значит, и просто сходится, так как пространство полное).

Заметим, что в обоих признаках $\{A_k\}$ ограничена: в признаке Дирихле явно сказано, в признаке Абеля должно сходится. Пусть $|A_k| \leqslant C$. Тогда

$$\sum_{k=1}^{\infty} |A_k(b_k - b_{k+1})| \leqslant C \sum_{k=1}^{\infty} |b_k - b_{k+1}|.$$

Так как $\{b_n\}$ монотонна, b_k-b_{k+1} всегда одного знака. Пусть $b_k\geqslant b_{k+1}$ (иначе домноожим на -1). Тогда

$$\sum_{k=1}^{\infty} b_k - b_{k+1} = b_1 - b_{n+1}.$$

Из обоих признаков следует, что у $b_1 - b_{n+1}$ есть предел, поэтому следующий ряд сходится

$$C\sum_{k=1}^{\infty} |b_k - b_{k+1}|.$$

Следовательно, сходится и

$$\sum_{k=1}^{n-1} A_k (b_k - b_{k-1}).$$

Теорема 3.3.2: Признак Лейбница

Пусть b_n убывает к нулю. Тогда ряд $\sum_{n=1}^{\infty} (-1)^n b_n$ сходится.

Доказательство. Обозначим $a_n = (-1)^n$, $A_n \in \{1,0\}$ — ограничено. По признаку Дирихле ряд произведения сходится:

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} (-1)^n b_k.$$

Замечание. Если

$$S_n = \sum_{k=1}^n (-1)^k b_k, \quad S = \sum_{k=1}^\infty (-1)^k b_k \Longrightarrow |S - S_n| \leqslant b_{n+1}.$$

Пример 3.3.1 (Ряд Лейбница).

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{2k-1}$$
 сходится условно .

Пример 3.3.2.

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$$
 тоже сходится условно.

Пример 3.3.3.

$$\sum_{k=1}^{\infty} \frac{\sin k}{k}, \ \sum_{k=1}^{\infty} \frac{\cos k}{k} \text{ сходятся.}$$

$$A_n = \sum_{k=1}^n \sin k = \sum_{k=1}^n \operatorname{Im}(x \cos k i \sin k) = \operatorname{Im} \sum_{k=1}^n e^{ik}.$$

$$\sum_{k=1}^n e^{ik} = e^i \frac{e^{n_i} - 1}{e^i - 1} = e^i \frac{e^{\frac{n_i}{2}} \left(e^{\frac{n_i}{2}} - e^{-\frac{n_i}{2}}\right) \cdot \frac{1}{2i}}{e^{\frac{i}{2}} \left(e^{\frac{i}{2}} - e^{-\frac{i}{2}}\right) \cdot \frac{1}{2i}} = e^{\frac{n+1}{2}i} \frac{\sin \frac{n}{2}}{\sin \frac{1}{2}}.$$

Теперь берем мнимую часть

$$A_n = \frac{\sin\frac{n+1}{2}\sin\frac{n}{2}}{\sin\frac{1}{2}} \leqslant \frac{1}{\sin\frac{1}{2}}.$$

Для косинуса аналогично.

Теорема 3.3.3: О перестановке членов абсолютно сходящегося ряда

Пусть $\sum_{k=1}^{\infty} a_k$ — абсолютно сходящийся ряд. $\varphi \colon \mathbb{N} \to \mathbb{N}$ — биекция, тогда $\sum_{k=1}^{\infty} a_{\phi(k)}$ сходится к той же сумме.

Доказательство.

1. Пусть $a_k>0$. Обозначим $S_n=\sum_{k=1}^n a_k$ и $T_n=\sum_{k=1}^n a_{\varphi(k)}$. Тогда

$$\forall n \ \exists n_1, n_2 \colon S_n \leqslant T_{n_1} \leqslant S_{n_2} \Longrightarrow T_n \to S = \lim_{n \to \infty} S_n.$$

2. Пусть $a_k \in \mathbb{R}$. Запишем $a_k = (a_k)_+ - (a_k)_-, \ |a_k| = (a_k)_+ (a_k)_-$. Тогда

$$\sum |a_k|$$
 сходится $\Longrightarrow \sum_{k=1}^{\infty} (a_k)_+, \ \sum_{k=1}^{\infty} (a_k)_-$ сходятся..

Применим прошлый пункт: $\sum (a_k)_{\pm} = \sum (a_{\varphi(k)})_{\pm}$

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (a_k)_+ - \sum_{k=1}^{\infty} (a_k)_- = \sum_{k=1}^{\infty} (a_{\varphi(k)})_+ - \sum_{k=1}^{\infty} (a_{\varphi(k)})_- = \sum_{k=1}^{\infty} a_{\varphi(t)}.$$

3. Последний случай $a_k \in \mathbb{C}, \, a_k = b_k + i c_k$. Применяем второй пункт.

 $a_k \in \mathbb{R}$. $\sum_{k=1}^{\infty} a_k$ сходится условно. Тогда

$$\forall S \in \overline{\mathbb{R}} \ \exists \varphi \colon \mathbb{N} \to \mathbb{N} \colon \sum_{k=1}^{\infty} a_{\varphi(k)} = S$$

3.4 Умножение рядов

Теорема 3.4.1: Коши об умножении рядов

Пусть $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ — абсолютно сходящиеся численные ряды. Тогда $\sum_{k,n=1}^{\infty} a_k b_n$ сходится при любых порядках слагаемых, при этом

$$\sum_{k,n=1}^{\infty} a_k b_n = \sum_{k=1}^{\infty} a_k \cdot \sum_{n=1}^{\infty} b_n.$$

Доказательство. Пусть

$$\sum_{k=1}^{n} a_k = A_k, \sum_{k=1}^{n} |a_k| = \overline{A_n}, \sum_{k=1}^{\infty} |a_k| = \overline{A_n},$$

и аналогично для b.

Зафиксируем на множестве пар некоторый порядок.

Пусть S_m — частичная сумма $\sum |a_k||b_n|$, N — максимальный из встречающихся индексов.

$$S_m \leqslant \sum_{k=1}^N |a_k| \sum_{k=1}^N |b_k| \leqslant \overline{AB} \Longrightarrow$$
ряд $\sum |a_k| |b_n|$ сходится.

Теперь просуммируем с заданным порядком по квадратам: $1 \times 1, \ 2 \times 2, \dots$ Пусть мы взяли m слагаемых

$$n^2 \leqslant m < (n+1)^2.$$

Тогда

$$S \leftarrow S_{n^2} = A_n \cdot B_n \to A \cdot B.$$
$$|S_{n^2} - S_m| \leqslant |a_{n+1}| \cdot \overline{B} + |b_{n+1}| \cdot \overline{A} \stackrel{n \to \infty}{\longrightarrow} 0.$$

Значит,

$$S_m \to A \cdot B \Longrightarrow \sum_{k,n=1}^{\infty} = A \cdot B.$$

Определение 48: Произведение рядов по Коши

 $\sum_{n=1}^{\infty}a_n, \sum_{n=1}^{\infty}b_n$ — ряды. $c_n=a_1b_n+a_2b_{n-1}+\dots a_nb_1$. Тогда ряд $\sum_{n=1}^{\infty}c_n$ называется произведением рядов.

Теорема 3.4.2: Мергенс

 $\sum_{n=1}^{\infty} a_n$ сходится абсолютно, $\sum_{k=1}^{\infty} b_n$ сходится. Тогда $\sum_{n=1}^{\infty} c_n$ сходится и равно $\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$

Теорема 3.4.3: Абель

$$\sum_{n=1}^{\infty}a_n,\sum_{n=1}^{\infty}b_n,\sum_{n=1}^{\infty}c_n$$
 сходится, тогда $\sum_{n=1}^{\infty}c_n=\sum_{n=1}^{\infty}a_n\sum_{n=1}^{\infty}b_n$

Пример 3.4.1.
$$a_n = b_n = (-1)^n \frac{1}{\sqrt{n}} \Longrightarrow |a_n| \geqslant 1$$

3.5 Бесконечные произведения

Определение 49: Частичные произведения

Частичные произведения $\prod_{k=1}^n p_k = P_n$.

Частичные произведения сходятся к P, если $\exists \lim_{n\to\infty} P_n = P$ и $P \neq 0, P \neq \infty$.

Если P=0, говорят, что расходится к 0, если к $\pm \infty$, говорят, что расходится к $\pm \infty$.

Пример 3.5.1.

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2} \right).$$

$$P_n = \frac{1}{2} \cdot \frac{n+1}{n} \to \frac{1}{2}.$$

Пример 3.5.2 (Формула Ваниса).

$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{4n^2} \right) = \frac{2}{\pi}.$$

Свойства. Будем считать, что $p_n \neq 0$.

- $\boxed{1} \prod_{n=1}^{\infty} p_n \ cxo dumcs, morda \ p_n
 ightarrow 1$
- [2] Первые несколько слагаемых ряда можно отбросить, на сходимость это не повлияет
- $\fbox{3}$ Всегда можно считать, что $p_n>0$, так как, если ряд сходится, то $p_n\to 1$.
- $\boxed{4} \prod_{n=1}^{\infty} p_n, p_n > 0.$

$$\prod_{n=1}^{\infty} p_n \, \operatorname{cxodumcs} \Longleftrightarrow \prod_{n=1}^{\infty} \ln p_n \, \operatorname{cxodumcs}.$$

Uспользуем $\ln P_n = S_n$.

Пример 3.5.3. Пусть $p_n - n$ -ое простое число.

$$\prod_{n=1}^{\infty} \frac{p_n}{p_n - 1}$$
 расходится.

$$\prod_{n=1}^{\infty} \frac{p_n}{p_n - 1} = \prod_{n=1}^{\infty} \frac{1}{1 - \frac{1}{p_n}} = \prod_{n=1}^{\infty} \sum_{k=0}^{\infty} \frac{1}{p_n^k} \stackrel{?}{=} .$$

Оценим

$$P_n = \prod_{k=1}^n \frac{p_k}{p_k - 1} = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k}} \geqslant \prod_{k=1}^n \sum_{m=0}^n \frac{1}{p_k^m} = \sum_{0 \leqslant \alpha_j \leqslant n} \frac{1}{p_1^{\alpha_j} \cdot \ldots \cdot p_n^{\alpha_n}} \geqslant 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \ln n + C.$$

$$\sum_{n=1}^{\infty} \ln \left(\frac{p_n}{p_n - 1} \right), \ \ln \left(\frac{p_n}{p_n - 1} \right) = -\ln \left(1 - \frac{1}{p_n} \right) \sim \frac{1}{p_n}.$$

Тогда ряд $\sum_{n=1}^{\infty} \frac{1}{p_n}$ расходится.

Следовательно,

$$\stackrel{?}{=} \sum \frac{1}{p_1}^{\alpha_1} \cdot \dots p_s^{\alpha_s} = \sum_{n=1}^{\infty} \frac{1}{n} \to +\infty.$$