ARITMETIKA MODULAR DAN FINITE FIELDS

KULIAH KRIPTOGRAFI DAN KEAMANAN JARINGAN

OUTLINE

- Keterbagian dan algoritma pembagian
- Aritmetika modular
- Group, ring, field
- Aritmetika polinomial

PENGGUNAAN

- AES
- Kriptografi kurva elips
- Message authentication code: CMAC
- Skema enkripsi autentikasi GMC (Galois/Counter Mode)

KETERBAGIAN

- b membagi a jika a = mb, dengan a, b, m bilangan bulat.
 - Notasi: b | a
 - b disebut pembagi dari a.
- Properti dari keterbagian bilangan bulat:
 - Jika a | 1 maka a = ± 1.
 - Jika a | b dan b | a maka a = ±b.
 - Sebarang b ≠ 0 membagi 0.
 - Jika a | b dan b | c maka a | c.
 - Jika b | g dan b | h maka b | (mg + nh) untuk sembarang bilangan bulat m dan n.
 - Misalkan g = b X g₁, h = b X h₁.
 - Maka mg + nh = $mbg_1 + nbh_1 = b \times (mg_1 + nh_1)$

ALGORITMA PEMBAGIAN

 Diberikan sebarang bilangan bulat (integer) positif n dan sebarang bilangan non-negatif a. Akan diperoleh integer quotient q dan integer remainder r yang memenuhi aturan:

```
• a = qn + r, 0 \le r \le n; q = |\_a/n_|
```

r disebut residue.

GREATEST COMMON DIVISOR

- Dua bilangan disebut relatif prima jika faktor persekutuannya hanya bilangan 1.
 - Contoh: 8 dan 15 adalah relatif prima.
- Greatest common divisor (faktor persekutuan terbesar) dari a dan b adalah integer paling besar yang membagi baik a maupun b.
 - Notasi: gcd(a, b) atau fpb(a, b).
 - gcd(0, 0) = 0.
 - Harus bilangan positif → secara umum: gcd(a, b) = gcd(|a|, |b|).
 - gcd(a, 0) = |a|.

ALGORITMA EUCLID

Mencari gcd dengan algoritma Euclidean:

- Misalkan akan dicari gcd(a, b) dengan a ≥ b.
- Maka: $a = q_1b + r_1$, $0 \le r_1 < b$. Jika $r_1 = 0$, maka $b \mid a$.
- Karena b > r_1 maka: b = $q_2r_1 + r_2$, $0 \le r_2 < r_1$.
- Proses ini berulang sampai didapatkan remainder yang berupa 0 pada suatu langkah ke-(n+1):
 - $a = q_1b + r_1$, $0 < r_1 < b$.
 - $b = q_2 r_1 + r_2$, $0 < r_2 < r_1$.
 - $r_1 = q_3 r_2 + r_3$, $0 < r_3 < r_2$.
 - $r_2 = q_4 r_3 + r_4$, $0 < r_4 < r_3$.
 - •
 - $r_{n-2} = q_n r_{n-1} + r_n$, $0 < r_n < r_{n-1}$.
 - $r_{n-1} = q_{n+1}r_n + 0$
- Maka: $d = gcd(a, b) = r_n$

ARITMETIKA MODULAR

- Jika a integer dan n integer positif, kita definisikan a mod n sebagai sisa dari a dibagi dengan n.
 - n disebut modulus.
 - Contoh: 11 mod 7 = 4; -11 mod 7 = 3.
- Dua integer a dan b disebut congruent modulo n jika a mod n = b mod n.
 - Ditulis sebagai: $a \equiv b \pmod{n}$.
 - Contoh: $73 \equiv 4 \pmod{23}$; $21 \equiv -9 \pmod{10}$
 - Jika $a \equiv 0 \pmod{n}$ maka n | a.
 - Properti kongruensi:
 - $a \equiv b \pmod{n}$ jika $n \mid (a-b)$.
 - $a \equiv b \pmod{n}$ mengakibatkan $b \equiv a \pmod{n}$.
 - $a \equiv b \pmod{n}$ dan $b \equiv c \pmod{n}$ mengakibatkan $a \equiv c \pmod{n}$

OPERASI ARITMETIKA MODULAR

Properti-properti:

- $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n.$
 - Contoh: 11 mod 8 = 3; 15 mod 8 = 7
 - $((11 \mod 8) + (15 \mod 8)) \mod 8 = 10 \mod 8 = 2$
 - $(11 + 15) \mod 8 = 26 \mod 8 = 2$
- $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$.
 - $((11 \mod 8) (15 \mod 8)) \mod 8 = -4 \mod 8 = 4$
 - $(11 15) \mod 8 = -4 \mod 8 = 4$
- $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$.
 - $((11 \mod 8) \times (15 \mod 8)) \mod 8 = 21 \mod 8 = 5$
 - $(11 \times 15) \mod 8 = 165 \mod 8 = 5$

Operasi modulo pada perpangkatan:

- Contoh: berapa 11⁷ mod 13?
- $11^2 = 121 \equiv 4 \pmod{13}$
- $11^4 = (11^2)^2 \equiv 4^2 \equiv 3 \pmod{13}$
- $11^7 = 11 \times 11^2 \times 11^4 \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2 \pmod{13}$

KLAS RESIDU

- Z_n adalah himpunan integer non-negatif kurang dari n: $Z_n = \{0, 1, 2, ..., (n-1)\}$.
 - Z_n disebut himpunan residu atau clas residu (mod n).
 - Tiap integer dalam Z_n merepresentasikan klas residu.
 - Klas residu (mod n) dapat diberi label [0], [1], ..., [n-1] dengan [r] = {a; a integer, a ≡ r (mod n)}
 - Contoh: salah satu klas residu (mod 4) adalah [1] ={..., -7, -3, 1, 5, 9, ...}.

PROPERTI ARITMETIKA DALAM Z_N

Properti aritmetika modular untuk integer di dalam Z_n:

- Komutatif: $(w + x) \mod n = (x + w) \mod n$ $(w X x) \mod n = (x X w) \mod n$
- Asosiatif: $[(w + x) + y] \mod n = [w + (x + y)] \mod n$ $[(w X x) X y] \mod n = [w X (x X y)] \mod n$
- Distributif: $[w X (x + y)] \mod n = [(w X x) + (w X y)] \mod n$
- Identitas: (0 + w) mod n = w mod n; (1 X w) mod n = w mod n
- Invers aditif (-w): untuk setiap $w \in Z_n$ terdapat z sedemikian hingga $w + z \equiv 0 \mod n$.
- Jika (a + b) \equiv (a +c) (mod n) maka b \equiv c (mod n)
- Jika (a X b) ≡ (a X c) (mod n) maka b ≡ c (mod n) hanya jika a relatif prima terhadap n.

ALGORITMA EUCLID (2)

- Basis: gcd(a, b) = gcd(b, a mod b)
- Maka algoritma tersebut dapat dinyatakan sebagai algoritma rekursif:
 - Euclid(a, b)
 If (b = 0) then return a
 else return Euclid(b, a mod b);

GROUP

Group G:

- Notasi: {G, •}
- Merupakan himpunan elemen dengan operasi biner yang dinotasikan dengan • yang menghubungkan setiap pasangan berurutan (a, b) dari elemen-elemen di G sedemikian hingga aksioma sbb berlaku:
 - Closure: jika a dan b berada di G, maka a b juga di G.
 - Asosiatif: a• (b c) = (a• b) c
 - Elemen identitas: terdapat elemen e di G sedemikian hingga a •
 e = e a = a untuk semua a di G.
 - Elemen invers: untuk setiap a di G, terdapat elemen a' di G sedemikian hingga a• a' = a' • a = e.
- Finite group: group dengan jumlah elemen berhingga. Order group adalah jumlah elemen di grup.
- Infinite group: jumlah elemen tak berhingga.

- Group abelian: group yang memenuhi properti:
 komutatif: a• b = b• a untuk semua a, b di G
 - Contoh: himpunan bilangan bulat pada operasi penjumlahan.
- Cyclic group:
 - Dalam group:
 - $a^3 = a a a$
 - $a^0 = e$, e elemen identitas
 - $a^{-n} = (a')^n$, di mana a' adalah invers dari a di group.
 - Cyclic group: setiap elemen dari G adalah power dari a^k (k integer) dari suatu elemen a di G. Elemen a disebut generator di G.
 - Contoh: group penjumlahan bilangan bulat dengan elemen generator 1.

RING

Ring R:

- Notasi: {R, +, X}.
- Adalah himpunan elemen dengan 2 operasi biner yang disebut penjumlahan dan perkalian sedemikian hingga untuk semua a, b, c di R aksioma berikut berlaku:
 - R merupakan grup abelian pada operasi penjumlahannya. Untuk grup aditif, elemen identitasnya adalah 0, sedangkan invers dari a adalah –a.
 - Closure pada perkalian: jika a dan b di R, maka ab juga di R.
 - Asosiatif dari perkalian: a(bc) = (ab)c untuk semua a, b, c di R.
 - Distributif: a(b+c) = ab + ac dan (a+b)c = ac + bc, a, b, c di R.
- Ring adalah himpunan yang dapat dikenai operasi penjumlahan, pengurangan, dan perkalian tanpa harus meninggalkan himpunan tersebut.
- Contoh: himpunan matriks bujur sangkar n dengan operasi penjumlahan dan perkalian.

Ring komutatif memenuhi aksioma:

- Komutatif pada perkalian: ab = ba untuk semua a, b di R.
- Integral domain (domain integral): ring komutatif yang memenuhi:
 - Identitas multiplikatif: Terdapat elemen 1 di R sedemikian hingga a1 = 1a = a untuk semua a di R.
 - Tidak ada pembagi 0: jika a, b di R dan ab = 0, maka a
 = 0 atau b = 0.
 - Contoh: himpunan bilangan bulat dengan operasi penjumlahan dan perkalian.

FIELD

Field:

- Notasi: {F, +, X}
- Adalah himpunan elemen dengan 2 operasi biner penjumlahan dan perkalian sedemikian hingga aksioma sbb berlaku:
 - F adalah domain integral.
 - Invers multiplikatif: untuk setiap a di F, kecuali 0, terdapat elemen a^{-1} sedemikian hingga $aa^{-1} = a^{-1}a = 1$.
- Field adalah himpunan di mana kita dapat melakukan operasi penjumlahan, pengurangan, perkalian, dan pembagian tanpa meninggalkan himpunan tersebut.
- Contoh: himpunan bilangan rasional.

FINITE FIELD GF(p)

- Finite field order p, dinotasikan dengan GF(p), adalah himpunan bilangan bulat Z_p= {0, 1, ..., p – 1} dengan operasi modulo p.
 - GF: Galois Field
- $I_p = \{0, 1, ..., p-1\}$ dengan aritmetika pada operasi modulo merupakan ring komutatif.
 - Z_p adalah grup abelian :
 - Closure: $(w + x) \mod p \in I_p$
 - Asosiatif: $[(w + x) + y] \mod p = [w + (x + y)] \mod p$
 - Komutatif: $(w + x) \mod p = (x + w) \mod p$
 - Identitas: (0 + w) mod p = w mod p
 - Invers aditif (-w): untuk semua $w \in Z_p$ terdapat z sedemikian hingga $w + z \equiv 0 \mod p$.
 - Z_D adalah ring komutatif :
 - Closure: (w X x) mod $p \in Z_p$
 - Asosiatif: $[(w X x) X y] \mod p = [w X (x X y)] \mod p$
 - Distributif: $[w \times (x + y)] \mod p = [(w \times x) + (w \times y)] \mod p$
 - Komutatif: $(w X x) \mod p = (x X w) \mod p$

- Suatu integer dalam I_p memiliki invers multiplikatif jika dan hanya jika integer tersebut relatif prima terhadap p.
 - Invers multiplikatif (w⁻¹): untuk semua $w \in Z_p$, $w \ne 0$, terdapat $z \in Z_p$ sedemikian hingga $w \times z \equiv 1 \mod p$.

Contoh: finite filed GF(2)

penjumlahan

+	0	1
0	0	1
1	1	0

perkalian

X	0	1
0	0	0
1	0	1

invers

W	-W	W -1
0	0	-
1	1	1

- Penjumlahan ekuivalen dengan XOR.
- Perkalian ekuivalen dengan AND.

• Contoh : GF(7)

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

X	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

W	-W	W ⁻¹
0	0	-
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

FINITE FIELD GF(2N)

- Misalkan suatu algoritma enkripsi beroperasi pada 8 bit.
 - Range: 0 255
 - Tetapi 256 bukan prima → aritmetika modulo 256 bukan merupakan field.
 - Bilangan prima terdekat: 251 → integer 251 sampai 255 tidak digunakan→ penyimpanan tidak efisien.

• Penggunaan blok 3-bit:

- Aritmetika modulo 8 (Z₈) didefinisikan.
- Tetapi kemunculan bilangan tidak nol pada tabel perkalian tidak merata.
 - Hanya empat kemunculan untuk 3, tetapi 12 kemunculan untuk 4.

tabel perkalian Z₈

Х	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

GF(23)

Penjumlahan dan perkalian 2³

- Tabel penjumlahan dan perkalian simetris pada diagonal utama → sifat komutatif
- Semua elemen tidak nol memiliki invers multiplikatif.
- Memenuhi syarat finite field → GF(2³⁾

Tabel penjumlahan pada GF(2³)

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

Tabel perkalian pada GF(2³)

		000	001	010	011	100	101	110	111
	X	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	5	7
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

ARITMETIKA POLINOMIAL

- Polinomial order n (n ≥ 0):
 - $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 = \sum_{i=0}^{n} a_i x^i$
 - $f(x) = \sum_{i=0}^{n} a_i x^i$; $g(x) = \sum_{i=0}^{m} a_i x^i$
- Operasi:
 - Penjumlahan
 - Pengurangan
 - Perkalian
 - Pembagian
- Contoh: $f(x) = x^3 + x^2 + 2$; $g(x) = x^2 x + 1$
 - $t(x) + d(x) = \dot{s}$
 - f(x) G(x) = 5
 - f(x) X G(x) = 5
 - f(x) / g(x) = 3

- Polinomial pada field F disebut irreducible jika dan hanya jika f(x) tidak dapat diekspresikan sebagai hasil kali dari 2 polinomial dengan derajat lebih kecil dari derajat f(x) → polinomial prima.
 - Contoh : $f(x) = x^3 + x + 1$ merupakan polinomial irreducible.

ARITMETIKA POLINOMIAL MODULAR PADA (2^N)

- Penjumlahan sama dengan operasi XOR.
- Penjumlahan dan pengurangan ekuivalen pada mod 2
 → 1 + 1 = 1 1 = 0; 1 + 0 = 1 0 = 1; 0 + 1 = 0 1 = 1
- Jika perkalian menghasilkan polinomial dengan derajat lebih besar daripada n – 1, maka polinomial direduksi dengan melakukan operasi modulo dengan suatu irreducible polynomial m(x) dengan derajat n.
 - Kita bagi dengan m(x) dan menyimpan sisanya.
 - Untuk suatu polinomial f(x), remainder/sisa diekspresikan sebagai $r(x) = f(x) \mod m(x)$.
- Contoh: irreducible polynomial derajat 3 adalah ($x^3 + x^2 + 1$) dan ($x^3 + x + 1$).

Tabel penjumlahan pada GF(2³)

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

Tabel perkalian pada GF(2³)

		000	001	010	011	100	101	110	111
	Χ	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	5	7
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

POLINOMIAL DI AES

- Menggunakan GF(2⁸).
- Irreducible polynomial: $m(x) = x^8 + x^4 + x^3 + x + 1$.
- Contoh:
 - $f(x) = x^6 + x^4 + x^2 + x + 1$
 - $g(x) = x^7 + x + 1$
 - $f(x) + g(x) = x^7 + x^6 + x^4 + x^2$
 - $f(x) \times g(x) = (x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1)$
 - $x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$) / $(x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1$
- Maka: $f(x) + g(x) \mod m(x) = x^7 + x^6 + 1$

LATIHAN

• Buatlah tabel penjumlahan dan perkalian untuk GF(2^4) dengan m(x) = $x^4 + x + 1$.