

SEQUENCE LISTING

<110> Hemmati-Brivanlou, Ali
Weinstein, Daniel C.

<120> TRANSLATION INITIATION FACTOR 4AIII, AND METHODS OF USE
THEREOF

<130> 600-1-211 N

<140> UNASSIGNED
<141> 1999-05-25

<160> 12

<170> PatentIn Ver. 2.0

<210> 1
<211> 1245
<212> DNA
<213> Xenopus laevis

<400> 1
atggcggccg cagctgtgc aggagttgcc ggggtgacca cggcgcacgc gaagcggctt 60
ttacgggagg agatatgac caccgtggag ttccagacca gcgaagaagt ggatgtaacg 120
ccaacgtttg atacgatggg gctgaggaa gaccttctga gaggcatcta tgcttatgga 180
tttgagaaaac catcggttat acaacagaag gcaatcaagc agatcatcaa aggaaggat 240
gtgatcgcac aatcacagtc tggtacaggg aaaacagcaa cttttgtgt ttctgtgcta 300
cagtgtttgg atattcagat ccgtgaaacc caagccttga ttttagcacc caccaaagag 360
tttagcacggc aaattcagaa ggtgttgctt gcttggggg actacatgaa tgtgcagtgt 420
catgcgtgta ttggaggcac aaatgttgaa gaggatatcc gaaaattgga ttatggcag 480
cacgttgttg ctggAACACC agggcgtgtt ttgatatgaa ttgcacgcag aagtttaaga 540
actcgggcca taaaaatgtt agtgctggat gaagctgatg aaatgttcaa taagggttc 600
aaggagcaaa ttatgtatgt atacaggtat ctgcctccag caacacaagt ttgtttaatc 660
agtgcgtaccc tgccacatgaa aatcctgaa atgaccaata agtttatgac tgatcccattc 720
cgtatccttg tgaaacgtga tgagttgaca ctggaggca tcaagcagtt ttttgtggca 780
gtggagagag aagagtggaa atttgatact ttgtgtgatt tatatgacac ttgtactatt 840
acacaagctg taatcttctg caacacaaaa agaaaggtag attgggtgac tgaaaaaatg 900
agagaagcaa atttcacagt ttgcgtcaatg catgggtgata tgccccaaaa ggagagagag 960
tcaatcatgaa aagaattccg atctggtgca agccgagtcc tcataatcaac ggacgtctgg 1020
gcccgaggat tggatgtgcc acaggtctcc ttgattatca actatgatct tcccaataac 1080
cgagaattgt acattcacag aattggccga tcaggaagat atggaagaaa gggtgttgcc 1140
attaactttg tcaagaatgaa tgacatccgt atttaagag atattgagca gtactattcg 1200
acccagattt gtaaaatgcc aatgaacgat gctgatcttta tttga 1245

<210> 2
<211> 415
<212> PRT

Arg Ile Leu Val Lys Arg Asp Glu Leu Thr Leu Glu Gly Ile Lys Gln
245 ILE Pro Ala Ala 250 255

Phe Phe Val Ala Val Glu Arg Glu Glu Trp Lys Phe Asp Thr Leu Cys
260 265 270

Asp Leu Tyr Asp Thr Leu Thr Ile Thr Gln Ala Val Ile Phe Cys Asn
275 280 285

Thr Lys Arg Lys Val Asp Trp Leu Thr Glu Lys Met Arg Glu Ala Asn
290 295 300

Phe Thr Val Ser Ser Met His Gly Asp Met Pro Gln Lys Glu Arg Glu
305 310 315 320

Ser Ile Met Lys Glu Phe Arg Ser Gly Ala Ser Arg Val Leu Ile Ser
325 330 335

Thr Asp Val Trp Ala Arg Gly Leu Asp Val Pro Gln Val Ser Leu Ile
340 345 350

Ile Asn Tyr Asp Leu Pro Asn Asn Arg Glu Leu Tyr Ile His Arg Ile
355 360 365

Gly Arg Ser Gly Arg Tyr Gly Arg Lys Gly Val Ala Ile Asn Phe Val
370 375 380

Lys Asn Asp Asp Ile Arg Ile Leu Arg Asp Ile Glu Gln Tyr Tyr Ser
385 390 395 400

Thr Gln Ile Asp Glu Met Pro Met Asn Val Ala Asp Leu Ile Glx
405 410 415

<210> 3

<211> 532

<212> DNA

<213> Homo sapiens

<400> 3

aagcagatca tcaaaggag agatgtcatc gcacagtctc agtccggcac aggaaaaaca 60
gccaccttca gatatcgtt cttccatgt ttggatattc aggttcgtga aactcaagct 120
ttgatcttgg ctcccacaag agagttggct gtgcagatcc agaaggggct gcttgctctc 180
ggtgactaca tgaatgtcca gtgccatgcc tgcattggag gcaccaatgt tggcgaggac 240
atcaggaagc tggattacgg acagcatgtt gttgcggca ctccagggcg tgttttgtat 300
atgattcgtc gcagaaggct aaggacacgt gctatcaaaa tggatgtttt ggatgaagct 360
gtgaaatgt tgaataaagg tttcaaagag cagatttacg atgtatacag gtacctgcct 420
ccagccacac aggtggttct catcagtgcc acgctgccac acgagattct ggagatgacc 480

<213> Xenopus laevis

<400> 2

Met Ala Ala Ala Ala Val Ala Gly Val Ala Gly Leu Thr Thr Ala His
1 5 10 15

Ala Lys Arg Leu Leu Arg Glu Glu Asp Met Thr Thr Val Glu Phe Gln
20 25 30

Thr Ser Glu Glu Val Asp Val Thr Pro Thr Phe Asp Thr Met Gly Leu
35 40 45

Arg Glu Asp Leu Leu Arg Gly Ile Tyr Ala Tyr Gly Phe Glu Lys Pro
50 55 60

Ser Ala Ile Gln Gln Lys Ala Ile Lys Gln Ile Ile Lys Gly Arg Asp
65 70 73 75 80

Val Ile Ala Gln Ser Gln Ser Gly Thr Gly Lys Thr Ala Thr Phe Cys
85 90 95

Ile Val Ser Val Leu Gln Cys Leu Asp Ile Gln Ile Arg Glu Thr Gln Ala
100 105 110

Leu Ile Leu Ala Pro Thr Lys Glu Leu Ala Arg Gln Ile Gln Lys Val
115 120 125

Leu Leu Ala Leu Gly Asp Tyr Met Asn Val Gln Cys His Ala Cys Ile
130 135 140

Gly Gly Thr Asn Val Gly Glu Asp Ile Arg Lys Leu Asp Tyr Gly Gln
145 150 155 160

His Val Val Ala Gly Thr Pro Gly Arg Val Phe Asp Met Ile Arg Arg
165 170 175

Arg Ser Leu Arg Thr Arg Ala Ile Lys Met Leu Val Leu Asp Glu Ala
180 185 190

Asp Glu Met Leu Asn Lys Gly Phe Lys Glu Gln Ile Tyr Asp Val Tyr
195 200 205

Arg Tyr Leu Pro Pro Ala Thr Gln Val Cys Leu Ile Ser Ala Thr Leu
210 215 220

Pro His Glu Ile Leu Glu Met Thr Asn Lys Phe Met Thr Asp Pro Ile
225 230 235 240

aacaagttca tgaccgaccc aatccgcac ttgggtggaa ttcctgcagc cc

532

<210> 4

<211> 177

<212> PRT

<213> Homo sapiens

<400> 4

Lys Gln Ile Ile Lys Gly Arg Asp Val Ile Ala Gln Ser Gln Ser Gly
1 5 10 15

Thr Gly Lys Thr Ala Thr Phe Ser Ile Ser Val Leu Gln Cys Leu Asp
20 25 30

Ile Gln Val Arg Glu Thr Gln Ala Leu Ile Leu Ala Pro Thr Arg Glu
35 40 45

Leu Ala Val Gln Ile Gln Lys Gly Leu Leu Ala Leu Gly Asp Tyr Met
50 55 60

Asn Val Gln Cys His Ala Cys Ile Gly Gly Thr Asn Val Gly Glu Asp
65 70 75 80

Ile Arg Lys Leu Asp Tyr Gly Gln His Val Val Ala Gly Thr Pro Gly
85 90 95

Arg Val Phe Asp Met Ile Arg Arg Arg Ser Leu Arg Thr Arg Ala Ile
100 105 110

Lys Met Leu Val Leu Asp Glu Ala Asp Glu Met Leu Asn Lys Gly Phe
115 120 125

Lys Glu Gln Ile Tyr Asp Val Tyr Arg Tyr Leu Pro Pro Ala Thr Gln
130 135 140

Val Val Leu Ile Ser Ala Thr Leu Pro His Glu Ile Leu Glu Met Thr
145 150 155 160

Asn Lys Phe Met Thr Asp Pro Ile Arg Ile Leu Val Gly Ile Pro Ala
165 170 175

Ala

<210> 5

<211> 1536

<212> DNA

<213> Homo sapiens

<400> 5

cggcagcgag gtcgcgcgag gcacagcgag gtcggcagcg gcgcgcgctg tgctcttccg 60
cggactctga atcatggcga ccacggccac gatggcgacc tcgggctcgg cgcgaaagcg 120
gctgctcaaa gaggaagaca tgactaaagt ggaattcgag accagcgagg aggtggatgt 180
gaccccccacg ttgcacacca tgggcctcg gggggacctg ctgcgggca tctacgctta 240
cggtttgaa aaaccatcg caatccagca acgagcaatc aagcagatca tcaaaggagg 300
agatgtcatc gcacagtctc agtccggcac agaaaaaca gccaccctca gtatctca 360
cctccagtgt ttggatattc aggttcgtga aactcaagct ttgatcttgg ctcccacaag 420
agagttggct gtgcagatcc agaagggct gcttgctctc ggtgactaca tgaatgtcca 480
gtgccatgcc tgcattggag gcaccaatgt tggcgaggac atcagaagc tggattacgg 540
acagcatgtt gtcgcgggca ctccaggcg tggatgtt atgattcgtc gcagaaggct 600
aaggacacgt gctatcaaaa tggatgttt ggatgaagct gatgaaatgt tgaataaaagg 660
tttcaaagag cagattacg atgtatacag gtacctgcct tcagccacac aggtggttct 720
catcagtgcc acgctgccac acgagattct ggagatgacc aacaagttca tgaccgaccc 780
aatccgcattc ttggtaaac gtgatgaatt gactctggaa ggcataaagc aattttctgt 840
ggcagtggag agggaaagagt gggaaatttga cactctgtgt gacctctacg acacactgac 900
catcactcag gcggcatct tctgcaacac caaaagaaag gtggactggc tgacggagaa 960
aatgagggaa gccaacttca ctgtatctc aatgcatgga gacatgcccc agaaagagcg 1020
ggagtccatc atgaaggagt tccggctcgg cgccagccga gtgcttattt ctacagatgt 1080
ctggccagg gggatgtt tccctcaatgt gtcctcatc attaactatg atctccctaa 1140
taacagagaa ttgtacatac acagaattgg gagatcaggt caatacggcc ggaagggtgt 1200
ggccattaac tttgtaaaga atgacgacat ccgcatttca agagatatcg agcagacta 1260
ttccactcag attgatgaga tgccgatgaa cgttgctgtat ttatctgaa gcagcagatc 1320
agtggatgtt gggagactgt tcacctgtgt tttggatgtt ttagatccaa 1380
gattctactt aatggggttt atatggactt tcttctcata aatggcctgc cgtctccctt 1440
cctttaaga ggatatgggg attctgcctt ctttcttat ttacatgtaa ataatacatt 1500
gttctaagtc ttttcatta aaaattnaa acttta 1536

<210> 6

<211> 411

<212> PRT

<213> Homo sapiens

<400> 6

Met Ala Thr Thr Ala Thr Met Ala Thr Ser Gly Ser Ala Arg Lys Arg
1 5 10 15

Leu Leu Lys Glu Glu Asp Met Thr Lys Val Glu Phe Glu Thr Ser Glu
20 25 30

Glu Val Asp Val Thr Pro Thr Phe Asp Thr Met Gly Leu Arg Glu Asp
35 40 45

Leu Leu Arg Gly Ile Tyr Ala Tyr Gly Phe Glu Lys Pro Ser Ala Ile
50 55 60

Gln Gln Arg Ala Ile Lys Gln Ile Ile Lys Gly Arg Asp Val Ile Ala
65 70 75 80

Gln Ser Gln Ser Gly Thr Gly Lys Thr Ala Thr Phe Ser Ile Ser Val
85 90 95

Leu Gln Cys Leu Asp Ile Gln Val Arg Glu Thr Gln Ala Leu Ile Leu
100 105 110

Ala Pro Thr Arg Glu Leu Ala Val Gln Ile Gln Lys Gly Leu Leu Ala
115 120 125

Leu Gly Asp Tyr Met Asn Val Gln Cys His Ala Cys Ile Gly Gly Thr
130 135 140

Asn Val Gly Glu Asp Ile Arg Lys Leu Asp Tyr Gly Gln His Val Val
145 150 155 160

Ala Gly Thr Pro Gly Arg Val Phe Asp Met Ile Arg Arg Arg Ser Leu
165 170 175

Arg Thr Arg Ala Ile Lys Met Leu Val Leu Asp Glu Ala Asp Glu Met
180 185 190

Leu Asn Lys Gly Phe Lys Glu Gln Ile Tyr Asp Val Tyr Arg Tyr Leu
195 200 205

Pro Ser Ala Thr Gln Val Val Leu Ile Ser Ala Thr Leu Pro His Glu
210 215 220

Ile Leu Glu Met Thr Asn Lys Phe Met Thr Asp Pro Ile Arg Ile Leu
225 230 235 240

Val Lys Arg Asp Glu Leu Thr Leu Glu Gly Ile Lys Gln Phe Phe Val
245 250 255

Ala Val Glu Arg Glu Glu Trp Lys Phe Asp Thr Leu Cys Asp Leu Tyr
260 265 270

Asp Thr Leu Thr Ile Thr Gln Ala Val Ile Phe Cys Asn Thr Lys Arg
275 280 285

Lys Val Asp Trp Leu Thr Glu Lys Met Arg Glu Ala Asn Phe Thr Val
290 295 300

Ser Ser Met His Gly Asp Met Pro Gln Lys Glu Arg Glu Ser Ile Met
305 310 315 320

Lys Glu Phe Arg Ser Gly Ala Ser Arg Val Leu Ile Ser Thr Asp Val

325

330

335

Trp Ala Arg Gly Leu Asp Val Pro Gln Val Ser Leu Ile Ile Asn Tyr

340

345

350

Asp Leu Pro Asn Asn Arg Glu Leu Tyr Ile His Arg Ile Gly Arg Ser

355

360

365

Gly Gln Tyr Gly Arg Lys Gly Val Ala Ile Asn Phe Val Lys Asn Asp

370

375

380

Asp Ile Arg Ile Leu Arg Asp Ile Glu Gln Tyr Tyr Ser Thr Gln Ile

385

390

395

400

Asp Glu Met Pro Met Asn Val Ala Asp Leu Ile

405

410

<210> 7

<211> 1682

<212> DNA

<213> Homo sapiens

<400> 7

cagcggcaca gcgagggtcg cagcggcaca gcgagggtcg cagcggcaca gcgagggtcg 60
cagcggcaca gcgagggtcg cagcggcaca gcgagggtcg cagcggcaca gcgagggtcg 120
cagcggcagc gaggtcgca gcccacagc gaggtcgca gcccacagc ggtcggcagc 180
ggcgcgcgt gtgccttcc gcccactctg aatcatggcg accacggcca cgatggcgcac 240
ctcgggctcg ggcgaaagc ggctgctcaa agaggaagac atgactaaag tggattcga 300
gaccagcgag gaggtggatg tgaccccac gttcgacacc atgggcctgc gggaggac 360
gctgcggggc atctacgctt acggtttga aaaaccatca gcaatccagc aacgagcaat 420
caagcagatc atcaaaggga gagatgtcat cgcacagtct cagtccggca caggaaaaac 480
agccaccccttc agtatctcag tcctccagtg tttggatatt caggttcgtg aaactcaagc 540
tttgatcttg gctccacaa gagatggc tgtcgagatc cagaaggggc tgcttgctct 600
cggtgactac atgaatgtcc agtgcctgc ctgcatttgc ggcaccaatg ttggcgagga 660
catcaggaag ctggattacg gacagcatgt tgtcgcggc actccaggc gtgttttga 720
tatgattcgt cgcagaagcc taaggacacg tgctatcaaa atgttggttt tggatgaagc 780
tcatgaaaatg ttgaataaaag gttcaaaaga gcagattac gatgtataca ggtacctgcc 840
tccagccaca caggtggttc tcatcagtgc cacgctgcca cacgagattc tggagatgac 900
caacaagttc atgaccgacc caatccgcac ctttgtgaaa cgtgatgaat tgactctgga 960
aggcatcaag caattttcg tggcagtggc gagggaaagag tggaaatttgc acactctgt 1020
tgacctctac gacacactga ccatcactca ggcggtcac ttctgcaaca caaaaagaaa 1080
ggtgactgg ctgacggaga aaatgaggga agccaacttc actgtatcct caatgcattgg 1140
agacatgccc cagaaagagc gggagtccat catgaaggag ttccggtcgg gcccagccg 1200
agtgcatttatt tctacagatg tctggccag ggggttggat gtccctcagg tgcctcat 1260
cattaactat gatctcccta ataacagaga attgtacata cacagaatttgc gggatcagg 1320
tcgatacggc cggaaagggtg tggccattaa ctttgtaaag aatgacgaca tccgcacatcct 1380

cagagatatac gagcagtactt attccactca gattgatgag atgccatga acgttgctga 1440
tcttatctga agcagcagat cagtggatg agggagactg ttcaacctgct gtgtactcct 1500
gtttggaaatg attagatcc agattctact taatgggtt tatatggact ttcttctcat 1560
aaatggcctg ccgtctccct tccttgaag agatatggg gattctgctc tctttctta 1620
tttacatgt aataatacat tgttctaagt cttttcatt aaaaattaa aactttccc 1680
at 1682

<210> 8
<211> 411
<212> PRT
<213> Homo sapiens

<400> 8
Met Ala Thr Thr Ala Thr Met Ala Thr Ser Gly Ser Ala Arg Lys Arg
1 5 10 15

Leu Leu Lys Glu Glu Asp Met Thr Lys Val Glu Phe Glu Thr Ser Glu
20 25 30

Glu Val Asp Val Thr Pro Thr Phe Asp Thr Met Gly Leu Arg Glu Asp
35 40 45

Leu Leu Arg Gly Ile Tyr Ala Tyr Gly Phe Glu Lys Pro Ser Ala Ile
50 55 60

Gln Gln Arg Ala Ile Lys Gln Ile Ile Lys Gly Arg Asp Val Ile Ala
65 70 75 80

Gln Ser Gln Ser Gly Thr Gly Lys Thr Ala Thr Phe Ser Ile Ser Val
85 90 95

Leu Gln Cys Leu Asp Ile Gln Val Arg Glu Thr Gln Ala Leu Ile Leu
100 105 110

Ala Pro Thr Arg Glu Leu Ala Val Gln Ile Gln Lys Gly Leu Leu Ala
115 120 125

Leu Gly Asp Tyr Met Asn Val Gln Cys His Ala Cys Ile Gly Gly Thr
130 135 140

Asn Val Gly Glu Asp Ile Arg Lys Leu Asp Tyr Gly Gln His Val Val
145 150 155 160

Ala Gly Thr Pro Gly Arg Val Phe Asp Met Ile Arg Arg Arg Ser Leu
165 170 175

Arg Thr Arg Ala Ile Lys Met Leu Val Leu Asp Glu Ala Asp Glu Met
180 185 190

Leu Asn Lys Gly Phe Lys Glu Gln Ile Tyr Asp Val Tyr Arg Tyr Leu
195 200 205

Pro Pro Ala Thr Gln Val Val Leu Ile Ser Ala Thr Leu Pro His Glu
210 215 220

Ile Leu Glu Met Thr Asn Lys Phe Met Thr Asp Pro Ile Arg Ile Leu
225 230 235 240

Val Lys Arg Asp Glu Leu Thr Leu Glu Gly Ile Lys Gln Phe Phe Val
245 250 255

Ala Val Glu Arg Glu Glu Trp Lys Phe Asp Thr Leu Cys Asp Leu Tyr
260 265 270

Asp Thr Leu Thr Ile Thr Gln Ala Val Ile Phe Cys Asn Thr Lys Arg
275 280 285

Lys Val Asp Trp Leu Thr Glu Lys Met Arg Glu Ala Asn Phe Thr Val
290 295 300

Ser Ser Met His Gly Asp Met Pro Gln Lys Glu Arg Glu Ser Ile Met
305 310 315 320

Lys Glu Phe Arg Ser Gly Ala Ser Arg Val Leu Ile Ser Thr Asp Val
325 330 335

Trp Ala Arg Gly Leu Asp Val Pro Gln Val Ser Leu Ile Ile Asn Tyr
340 345 350

Asp Leu Pro Asn Asn Arg Glu Leu Tyr Ile His Arg Ile Gly Arg Ser
355 360 365

Gly Arg Tyr Gly Arg Lys Gly Val Ala Ile Asn Phe Val Lys Asn Asp
370 375 380

Asp Ile Arg Ile Leu Arg Asp Ile Glu Gln Tyr Tyr Ser Thr Gln Ile
385 390 395 400

Asp Glu Met Pro Met Asn Val Ala Asp Leu Ile
405 410

<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer

<400> 9
gggtgttgcc attaactttg tc 22

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer

<400> 10
cctgccacat gaaatcctgg 20

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer

<400> 11
gagtcgcagt ctggatattg c 21

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer

<400> 12
tggaatgttag ccagtctgcc 20