IFT2125 Notes

Yuchen Hui 20150470

March 15, 2022

Contents

1	Kruscal Algo 1.1 Matrix Version Algo	1
2	Greedy Algorithm 2.1 Sac à dos greedy version	1 1 2
3	Programmation dynamique 3.1 Knapsack Problem 2	3
1	Kruscal Algo	
1.	1 Matrix Version Algo	

Greedy Algorithm

Sac à dos greedy version

Proof. Supposons que les objets sont numerotes par ordre decroissant de valeur par unite de poids, i.e.

$$\frac{v1}{w1} \geq \frac{v2}{w2}...$$

par l'algorithme vorace. SI tous les $x_i=1$,
alors la solution est trivialement

Sinon, soit j le plus petit indice tel que $x_j < 1$, on a alors que $x_i = 1, \forall i < j$

et $x_i = 0, \forall i > j$ et $\sum_{i=1}^{n} x_i w_i = W$. Soit $V(x) \sum_{i=1}^{n} x_i v_i$, la valeur de la soluttion X on doit demontrer que V(x)

Soit $Y=(x_1,x_2,...,x_n)$ une autre solution de probleme et soit $V\left(y\right)$ sa valeur. comme Y est une solution , $0\leq y_i\leq 1, \forall i$ et $\sum_{i=1}^n y_iw_i=W$

Algorithm 1 Kruskal

```
Require: n \ge 0 \lor x \ne 0
Ensure: y = x^n
   y \leftarrow 1
   if n < 0 then
      X \leftarrow 1/x
      N \leftarrow -n
   else
      X \leftarrow x
      N \leftarrow n
   end if
   while N \neq 0 do
      if N is even then
         X \leftarrow X \times X
         N \leftarrow N/2
      else \{N \text{ is odd}\}
         y \leftarrow y \times X
         N \leftarrow N-1
      end if
   end while
```

On veut montrer que $V\left(x\right)-V\left(y\right)\geq0$ et alors X sera la solution optimale Soit j le plus petit indice tel que $x_{j}<1$ si i < j, alors $\frac{v_{i}}{w_{i}}\geq\frac{v_{j}}{w_{j}}etx_{i}=1$

2.2 File d'attente

Strategie vorace: classe les clients par ordre croissant des ti et executer les taches dans cet ordre

Proof. Soit n clients ordonne arbitrairement est servit selon l'ordre c = 1,2,3,..,n. Le temps total de service requit est $T(c) = t_1 + (r+1+t_2) \dots + = nt_1 + (n-1)t_2 + \dots + t_n$

preuve par contradiction: i.e. qu<on suppose T(c) est optimal et c n'est pas l'ordre dans lequel on sert les clients en ordre croissant des t_i

3 Programmation dynamique

3.1 Knapsack Problem 2

```
Algorithm 2 fonction knapsack_dy(w[1..n],v[1..n],W): array V[0..n, 0..W]
Require: v_i > 0, w_i > 0, x_i \in \{0, 1\}, W \in \mathbb{N}^*
  {array w[1..n] indicates weights of objects 1 to n, array n[1..n] indicates their
  values. W is the max weight a sac a dos can bear. Here comes initialisation}
  array w[1..n] = ???
  array v[1..n] = ???
  array V[0..n,0..W]
  for j = 1 to W do V[0, j] = 0
  {establish matrix}
  for i = 1 to n do
    for j = 1 to W do
       V[i,j] \leftarrow \mathbf{if} \ j - w[i] < 0 \ \mathbf{then} \ V[i-1,j]
                 else V[i,j] = \max(V[i-1,j],V[i-1,j-w[i]] + v[i])
    end for
  end for
  return V[0..n, 0..W]
```