1. (1) G(s) 的幅值与相位分别为

$$egin{aligned} M(\omega) &= |G(\mathrm{j}\omega)| = rac{1}{\sqrt{\omega^2 + 100}}, \ \phi(\omega) &= otG(\mathrm{j}\omega) = -rctan\left(rac{\omega}{10}
ight). \end{aligned}$$

将数据带入得

ω	$ G(\mathrm{j}\omega) $	$\angle G(\mathrm{j}\omega)$
1	0.100	$-5.711\degree$
2	0.098	$-11.310\degree$
5	0.089	$-26.565\degree$
10	0.071	$-45.000\degree$
20	0.045	$-63.435\degree$
50	0.020	$-78.690\degree$
100	0.010	$-84.289\degree$

 $G(\mathrm{j}\omega) = 0.1 \cdot rac{1}{\mathrm{j}\omega/10+1}$

(2) 传递函数的 Bode 形式为

幅频对数特性曲线 $0 < \omega < 10$, 水平渐近线的值为 0.1;

 $\omega = 10$, 实际幅值约为 0.1/0.707 = 0.0707; $\omega > 10$, 渐近线斜率为 -1. 如图 1(a) 所示. 相频特性曲线

 $0 \le \omega < 2$, 水平渐近线的值为 0° ; $\omega = 2$, 实际相位约为 $0^{\circ} - 11^{\circ} = -11^{\circ}$; $\omega \approx 10$, 近似过 $(2,0^{\circ})$, $(50,-90^{\circ})$ 的直线;

 $\omega = 50$, 实际相位约为 $-90^{\circ} + 11^{\circ} = -79^{\circ}$; $\omega > 50$, 水平渐近线的值为 -90° ; 如图 1(b) 所示.

1G(jw)11

101

 $0 < \omega < 3$, 渐近线的斜率为 -2, 过点 (1,0.375);

 $\omega > 8$, 渐近线斜率为 -2.

 $0 < \omega < 3$,水平渐近线的值为 -180° ;

幅频对数特性曲线

$\omega = 3$, 实际幅值约为 $0.0417 \times 1.4 = 0.0584$; $3 < \omega < 8$, 渐近线斜率为 -1;

如图 2(a) 所示.

相频特性曲线

2. 传递函数的 Bode 形式为

$$\omega = 8$$
, 实际幅值约为 $0.0156 \times 0.707 = 0.0110$; $\omega > 8$, 渐近线斜率为 -2 .

 $\omega \approx 3$, 一阶项 j $\omega/3+1$ 的相位曲线近似过 $(0.6,-90^{\circ}),(15,0^{\circ})$ 的直线;

 $3 < \omega < 8$, 水平渐近线的值为 -90° ; $\omega \approx 8$, 一阶项 $(j\omega/8+1)^{-1}$ 的相位曲线近似过 $(1.6,0^{\circ}),(40,-90^{\circ})$ 的直线; $\omega > 8$, 水平渐近线的值为 -180° ; 如图 2(b) 所示.

8 10 26(ga) -135 图 2 3. 由渐近线的斜率变化知, 传递函数有如下 Bode 形式 $G(\mathrm{j}\omega) = K_0(\mathrm{j}\omega)^{-1} \cdot (\mathrm{j}\omega au + 1)$ 当 $\omega=1$ 时, 渐近线的值为 10, 故 $K_0=10$. 转折频率 $\omega=10$, 故 $\tau=0.1$ $G(s) = 10s^{-1} \cdot (s/10+1) = 1 + rac{10}{s}.$

幅频对数特性曲线 $0 < \omega < 1$, 渐近线的斜率为 -1, 过点 (1,1); $\omega = 1$, 实际幅值约为 $1 \times 0.707 = 0.707$;

 $1 < \omega < 5$, 渐近线斜率为 -2;

 $\omega > 5$, 渐近线斜率为 -4.

如图 3(a) 所示.

相频特性曲线

 $\omega = 5$,谐振峰值略小于 $0.1 imes rac{1}{2 imes 0.4} = 0.125$;

 $0 < \omega < 1$, 水平渐近线的值为 -90° ;

 $G(\mathrm{j}\omega) = K(\mathrm{j}\omega)^{-1} \cdot rac{1}{\mathrm{j}\omega + 1} \cdot rac{1}{(\mathrm{j}\omega/5)^2 + 0.4(\mathrm{j}\omega/5) + 1}$

 $1 < \omega < 5$,水平渐近线的值为 -180° ; $\omega = 5$, 实际相位略大于 -270° ; $\omega > 5$, 水平渐近线的值为 -360° ;

化简得

5. 超前补偿有如下形式

如图 3(b) 所示.

4. (1) 开环传递函数的 Bode 形式为

当 K=1 时,

传递函数为

16(100) 100

26(jw)

10-1

 $\omega \approx 1$, 一阶项 $(j\omega + 1)^{-1}$ 的相位曲线近似过 $(0.2, -90^{\circ}), (5, -180^{\circ})$ 的直线;

5 10'

510

100

图 4

10-3 10-4

穿越频率 $\omega_c \approx 2$, 相位裕度 PM $\approx 5^{\circ}$.

候选的补偿器为

Bode 图如图 5 所示.

101

100 19-1 10-2

eG(jw)

-180

选取超前补偿的最大相位 $\phi_{\max}=70^\circ,\$ 则 $\sin 70^\circ=\frac{1-\alpha}{1+\alpha},\$ 得超前比率 $\frac{1}{\alpha}\approx 32.$

ZG(jw)

10 103

ZDG(ju)

10

10-0 101

6. 未施加补偿器时, 取 K=1, 则开环传递函数的 Bode 图如图 6 所示.

1G(jw)

10 10 103

图 7

5 10°

相位裕度 PM≈45°,满足设计要求.

滞后补偿有如下形式

候选的补偿器为

Bode 图如图 7 所示.