simulations

Brian Masinde (brima748) 2/6/2020

Sensitivity Analysis Simulations

Trzcinniczek Acrocephalus scirpaceus (Eurasian Reed Wabler)

From the snippet data provided it a sample of 2160 has mean mass of 0.01175 and fat mass of 0.00049. Assuming that these are uniformly distributed.

Unifromly distributed body mass and fat mass

Uniformly genereated data

Uniformly genereated data

plot(density(test_results\$range), main = "Range density, uniform body mass and fat mass")

Range density, uniform body mass and fat mass

Gaussian body mass and fat mass.

Normall distributed genereated data


```
## Identifier column not found. Auto-gen
## ## settings not defined. Using default constants.
##
## Default airDensity = 1.00 kg m^3
ggplot(acr_sim_data, aes(x = body.mass, y = test_results$range)) +
    geom_point() +
    ggtitle("Range vs body mass")
```

Range vs body mass

plot(density(test_results\$range), main = "Range density, gaussian body mass and fat mass")

Range density, gaussian body mass and fat mass

Gaussian body mass and fat mass (with independence, no sorting)

Normall distributed genereated data


```
test_results <- migrate(data = data, method = "cmm", speed_control = "constant_speed")
## Identifier column not found. Auto-gen
## ## settings not defined. Using default constants.
##
## Default airDensity = 1.00 kg m^3

ggplot(acr_sim_data, aes(x = body.mass, y = test_results$range)) +
    geom_point() +
    ggtitle("Range vs body mass")</pre>
```



```
test_results <- migrate(data = data, method = "cmm", speed_control = "constant_speed")

ggplot(acr_sim_data, aes(x = fat.mass, y = test_results$range)) +
    geom_point() +
    ggtitle("Range vs body mass")</pre>
```

Range vs body mass

plot(density(test_results\$range), main = "Range density, gaussian body mass and fat mass")

Range density, gaussian body mass and fat mass

Uncertainty in mechanical conversion efficiency.

Default value in flight is 0.23

```
# uniform prior
set.seed(2020)
mce <- runif(100, min = 0.229, max = 0.232)
boxplot(mce, main = "Variation in mechanical conversion efficiency")</pre>
```

Variation in mechanical conversion efficiency

Fat mass and muscle mass as constants

```
body.mass <- 0.01175
fat.mass <- 0.00049
muscle.mass <- body.mass * 0.17</pre>
wing.span <- 0.1946
wing.area <- 0.00773
taxon <- 1
data <- data.frame(cbind(body.mass, fat.mass, muscle.mass, wing.span, wing.area, taxon))</pre>
res <- list()
for (i in 1:length(mce)) {
  res[[i]] <- migrate(data = data, method = "cmm", speed_control = "constant_speed",
                       settings = list(mce = mce[i]) )
ranges <- c()
for (i in 1:length(mce)) {
  ranges[i] <- res[[i]][[1]]</pre>
}
ggplot() +
  geom_point(aes(x = mce, y = ranges)) +
```

ggtitle("Range vs body mass")

Range vs body mass

Larger variation in mce

```
# uniform prior
set.seed(2020)
mce <- rnorm(100,mean = 0.23, sd = 0.01)

boxplot(mce, main = "Variation in mechanical conversion efficiency")</pre>
```

Variation in mechanical conversion efficiency


```
body.mass <- 0.01175
fat.mass <- 0.00049
muscle.mass <- body.mass * 0.17</pre>
wing.span <- 0.1946
wing.area <- 0.00773
taxon <- 1
data <- data.frame(cbind(body.mass, fat.mass, muscle.mass, wing.span, wing.area, taxon))</pre>
res <- list()
for (i in 1:length(mce)) {
 res[[i]] <- migrate(data = data, method = "cmm", speed_control = "constant_speed",</pre>
                       settings = list(mce = mce[i]) )
}
ranges <- c()
for (i in 1:length(mce)) {
  ranges[i] <- res[[i]][[1]]</pre>
ggplot() +
  geom_point(aes(x = mce, y = ranges)) +
  ggtitle("Range vs mechanical conversion efficiency")
```

Range vs mechanical conversion efficiency

