[20] Measures and their properties.

Def: Let (X.S) be a mble space. A measure on (X.S) is a function $\mu: S \longrightarrow [0.+\infty]$

S.t. \bigcirc $\mu(\phi) = 0$ \bigcirc countable additivity. If $E_1, E_2, \dots \in S$ and disjoint $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$

(which also leads to finite additivity)

example: • Direct measure on ∞ . $M(E) = 1 \{x_0 \in E_1 \in C_1, x_0 \in E_2\}$. • Counting MS . M(E) = #E. • $\{c_0, c_1, \dots, q_n\}$. $M(E) = \sum_{i \in E} C_i$ $M(\{i, 6\}) = c_1 + c_6$.

Note: Outer Measure is not a measure on (R. PCIR))
however, it is a measure on (IR. BCIR)

Def: $(X.S.\mu)$ is called a measure space. [(X.S)] is measurable.

-> Simple Properties:

- O Monotonicity. D.EGS. DCE. M(E)≥MCD)
 - D.EGS. DCE. of MCD) < >> MCE(D) = MCE)-MCD)

 Note: ∞-∞ is not defined
 - Note: ∞ ∞ is not defined

 (3) A,B &S, if μ (A \cap B) = ∞ \Rightarrow μ (A \cup B) = μ (A)+ μ (B)- μ (A \cap B)
 - (4) Countably subaddibivity: $\mu(\tilde{U} E_i) \leq \tilde{\Sigma}(\mu(E_i))$ $F_1 = E_1, F_2 = E_2 \setminus E_1$ $F_3 = E_3 \setminus (E_2 \cup E_1) \dots$

μ(UF;)=μ(UF;)=Σ(μ(F;)) < Σ(μ(E;)) (μ(F;) < μ(E;))

Thus
$$(X, S, M)$$
 measure space

I upward continuity of measure

 $E_1, \dots \in S$, $E_1, C_2, C_3 \dots \in S$, $E_2, C_3, C_4 \dots \in S$, $E_1, C_2, C_4 \dots \in S$, $E_1, C_2 \dots \in S$, $E_1, C_$

ex. (N, PCN), country mea)

$$E_R = \{ h, h_{+1}, \dots \}$$
 $E_1 \supseteq E_2 \supseteq \dots$
 $\mu(E_R) = \infty$, for any R .

?

 $P(R_1) = R_2 = 0$