AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A router, comprising:
2	a content addressable memory which stores Internet Protocol address
3	prefixes in an order independent of lengths of the Internet Protocol address
4	prefixes, wherein new entries are stored in the content addressable memory in
5	random order; and
6	an encoder coupled to the content addressable memory which stores a
7	plurality of codes corresponding to the Internet Protocol address prefixes in the
8	content addressable memory, and compares the codes corresponding to matching
9	Internet Protocol address prefixes to find a longest matching Internet Protocol
10	address prefix.
1	2. (Original) The router of claim 1, further comprising:
2	a memory coupled to the encoder, the memory for storing a port number
3	corresponding to each Internet Protocol address prefix in the content addressable
4	memory and other information for routing an incoming Internet Protocol packet.
1	3. (Original) The router for claim 1, wherein the encoder includes circuitry
2	for finding one of the plurality of codes.
1	4. (Original) The router for claim 1, wherein the encoder includes circuitry
2	for deleting one of the plurality of codes.

1	5. (Original) The router of claim 1, wherein each of the plurality of codes
2	indicates a number of relevant bits in the corresponding Internet Protocol address
3	prefix.
1	6. (Original) The router of claim 5, wherein among the codes
2	corresponding to matching Internet Protocol address prefixes, a code indicating a
3	highest number of relevant bits indicates the longest matching Internet Protocol
4	address prefix.
1	7. (Original) The router of claim 5, wherein the code indicates up to 32
2	relevant bits in the corresponding Internet Protocol address prefix.
1	8. (Original) The router of claim 5, wherein the code indicates up to 128
2	relevant bits in the corresponding Internet Protocol address prefix.
1	9. (Currently amended) A method for finding a longest matching prefix for
2	an Internet Protocol address, comprising:
3	storing Internet Protocol address prefixed in a content addressable memory
4	in an order independent of lengths of the Internet Protocol address prefixes.
5	wherein new entries are stored in the content addressable memory in random
6	order; and
7 '	comparing codes corresponding to matching Internet Protocol address
8	prefixes in an encoder to find a longest matching Internet Protocol address prefix.
1	10. (Original) The method of claim 9, wherein the codes indicate numbers
2	of relevant bits in the corresponding Internet Protocol address prefixes.

2

I	11. (Original) The method of claim 10, wherein among the codes
2	corresponding to matching Internet Protocol addresses prefixes, the code
3	indicating a highest number of relevant bits indicates the longest matching
4	Internet Protocol address prefix.
1	12-25 (Canceled).
1	26. (Currently amended) A method of operating a router, comprising:
2	receiving Internet Protocol address prefixes, wherein the Internet Protocol
3	address prefixes are stored within a content addressable memory in random order;
4	generating codes corresponding to a number of relevant bits in the Internet
5	Protocol address prefix
6	receiving a packet with a destination Internet Protocol address;
7	comparing the destination Internet Protocol address to the Internet
8	Protocol address prefixes to find the Internet Protocol address prefixes that match
9	the destination Internet Protocol address:
10	comparing the codes corresponding to the matching Internet Protocol
11	address prefixes to find a longest matching Internet Protocol address prefix; and
12	sending the packet to a port corresponding to the longest matching Interne
13	Protocol address prefix.
1	27-30 (Canceled).