Contents

1	Cla	sses		3
	1.1	real –	real numbers and its functions	3
		1.1.1	RealField – field of real numbers	5
			1.1.1.1 getCharacteristic – get characteristic	6
			1.1.1.2 issubring – subring test	6
			1.1.1.3 issuperring – superring test	6
		1.1.2	Real – a Real number	7
			1.1.2.1 getRing – get ring object	8
		1.1.3	Constant – real number with error correction	9
		1.1.4	ExponentialPowerSeries – exponential power series	9
		1.1.5	AbsoluteError – absolute error	9
		1.1.6	RelativeError – relative error	9
		1.1.7	exp(function) – exponential value	9
		1.1.8	sqrt(function) – square root	9
		1.1.9	log(function) – logarithm	9
		1.1.10	$\log 1 \text{piter(function)} - \text{iterator of } \log (1+x)$	9
		1.1.11	piGaussLegendre(function) – pi by Gauss-Legendre	9
		1.1.12	eContinuedFraction(function) – Napier's Constant by con-	
			tinued fraction expansion	9
		1.1.13	floor(function) – floor the number	10
		1.1.14	ceil(function) – ceil the number	10
		1.1.15	tranc(function) – round-off the number	10
		1.1.16	$\sin(\text{function}) - \sin e \text{ function}$	10
			$\cos(\text{function}) - \cos \text{ine function}$	10
		1.1.18	tan(function) – tangent function	10
		1.1.19	sinh(function) – hyperbolic sine function	10
			cosh(function) – hyperbolic cosine function	10
		1.1.21	tanh(function) – hyperbolic tangent function	10
		1.1.22	asin(function) – arc sine function	11
		1.1.23	acos(function) – arc cosine function	11
		1.1.24	atan(function) – arc tangent function	11
		1.1.25	atan2(function) – arc tangent function	11
		1.1.26	hypot (function) – Euclidean distance function	11
		1.1.27	pow(function) – power function	11

1.1.28	degrees(function) – convert angle to degree	11
1.1.29	radians(function) – convert angle to radian	11
1.1.30	fabs(function) – absolute value	11
1.1.31	fmod(function) – modulo function over real	11
1.1.32	frexp(function) – expression with base and binary exponent	12
1.1.33	ldexp(function) – construct number from base and binary	
	exponent	12
1.1.34	EulerTransform(function) – iterator yields terms of Euler	
	transform	12

Chapter 1

Classes

1.1 real – real numbers and its functions

The module real provides arbitrary precision real numbers and their utilities. The functions provided are corresponding to the math standard module.

- Classes
 - RealField
 - Real
 - †Constant
 - †ExponentialPowerSeries
 - †AbsoluteError
 - †RelativeError
- Functions
 - $-\exp$
 - sqrt
 - log
 - log1piter
 - piGaussLegendre
 - eContinuedFraction
 - floor
 - ceil
 - tranc
 - sin
 - cos

- tan
- sinh
- $-\cosh$
- tanh
- asin
- acos
- atan
- atan2
- hypot
- pow
- degrees
- radians
- fabs
- fmod
- frexp
- ldexp
- $\ Euler Transform$

This module also provides following constants:

e :

This constant is obsolete (Ver 1.1.0).

 \mathbf{pi} :

This constant is obsolete (Ver 1.1.0).

Log 2:

This constant is obsolete (Ver 1.1.0).

${\bf the Real Field} :$

theRealField is the instance of RealField.

1.1.1 RealField – field of real numbers

The class is for the field of real numbers. The class has the single instance the Real Field.

This class is a subclass of **Field**.

Initialize (Constructor)

$ext{RealField}() ightarrow extit{RealField}$

Create an instance of RealField. You may not want to create an instance, since there is already **theRealField**.

Attributes

 ${f zero}$:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

Operations

operator	explanation
x in R	membership test; return whether an element is in or not.
repr(R)	return representation string.
str(R)	return string.

Methods

1.1.1.1 getCharacteristic - get characteristic

```
\mathtt{getCharacteristic}(\mathtt{self}) 	o integer
```

Return the characteristic, zero.

1.1.1.2 is subring – subring test

$$issubring(self, aRing: Ring) \rightarrow bool$$

Report whether another ring contains the real field as subring.

${\bf 1.1.1.3}\quad {\bf is superring-superring\ test}$

 $issuperring(self, aRing: \frac{Ring}{}) o bool$

Report whether the real field contains another ring as subring.

1.1.2 Real – a Real number

Real is a class of real number. This class is only for consistency for other **Ring** object.

This class is a subclass of **CommutativeRingElement**.

All implemented operators in this class are delegated to Float type.

Initialize (Constructor)

 ${\tt Real}({\tt value:} \ number)
ightarrow {\tt Real}$

Construct a Real object.

value must be int, long, Float or Rational.

Methods

1.1.2.1 getRing – get ring object

 $\mathtt{getRing}(\mathtt{self}) o extit{RealField}$

Return the real field instance.

1.1.3 Constant – real number with error correction

This class is obsolete (Ver 1.1.0).

1.1.4 ExponentialPowerSeries – exponential power series

This class is obsolete (Ver 1.1.0).

1.1.5 AbsoluteError – absolute error

This class is obsolete (Ver 1.1.0).

1.1.6 RelativeError – relative error

This class is obsolete (Ver 1.1.0).

1.1.7 exp(function) – exponential value

This function is obsolete (Ver 1.1.0).

$1.1.8 \quad \text{sqrt(function)} - \text{square root}$

This function is obsolete (Ver 1.1.0).

$1.1.9 \log(\text{function}) - \log(\text{arithm})$

This function is obsolete (Ver 1.1.0).

1.1.10 $\log 1 \text{piter}(\text{function}) - \text{iterator of } \log (1+x)$

 $log1piter(xx: number) \rightarrow iterator$

Return iterator for $\log(1+x)$.

1.1.11 piGaussLegendre(function) – pi by Gauss-Legendre

This function is obsolete (Ver 1.1.0).

1.1.12 eContinuedFraction(function) – Napier's Constant by continued fraction expansion

This function is obsolete (Ver 1.1.0).

1.1.13 floor(function) – floor the number

 $floor(x: number) \rightarrow integer$

Return the biggest integer not more than x.

1.1.14 ceil(function) – ceil the number

 $\operatorname{ceil}(\mathtt{x} \colon number) o integer$

Return the smallest integer not less than x.

1.1.15 tranc(function) - round-off the number

 $tranc(x: number) \rightarrow integer$

Return the number of rounded off x.

1.1.16 $\sin(\text{function}) - \sin \text{e}$ function

This function is obsolete (Ver 1.1.0).

1.1.17 $\cos(\text{function}) - \cos(\text{function})$

This function is obsolete (Ver 1.1.0).

1.1.18 tan(function) – tangent function

This function is obsolete (Ver 1.1.0).

1.1.19 sinh(function) – hyperbolic sine function

This function is obsolete (Ver 1.1.0).

1.1.20 cosh(function) – hyperbolic cosine function

This function is obsolete (Ver 1.1.0).

1.1.21 tanh(function) - hyperbolic tangent function

This function is obsolete (Ver 1.1.0).

1.1.22 asin(function) – arc sine function

This function is obsolete (Ver 1.1.0).

1.1.23 acos(function) – arc cosine function

This function is obsolete (Ver 1.1.0).

1.1.24 atan(function) – arc tangent function

This function is obsolete (Ver 1.1.0).

1.1.25 atan2(function) - arc tangent function

This function is obsolete (Ver 1.1.0).

1.1.26 hypot(function) – Euclidean distance function

This function is obsolete (Ver 1.1.0).

1.1.27 pow(function) – power function

This function is obsolete (Ver 1.1.0).

1.1.28 degrees(function) – convert angle to degree

This function is obsolete (Ver 1.1.0).

1.1.29 radians(function) – convert angle to radian

This function is obsolete (Ver 1.1.0).

1.1.30 fabs(function) – absolute value

 $fabs(x: number) \rightarrow number$

Return absolute value of x

$1.1.31 \quad { m fmod(function) - modulo\ function\ over\ real}$

 $fmod(x: number, y: number) \rightarrow number$

Return x-ny, where n is the quotient of x / y, rounded towards zero to an integer.

1.1.32 frexp(function) – expression with base and binary exponent

 $frexp(x: number) \rightarrow (m,e)$

Return a tuple (m,e), where $x=m\times 2^e,\ 1/2\leq abs(m)<1$ and e is an integer.

†This function is provided as the counter-part of math.frexp, but it might not be useful.

1.1.33 | ldexp(function) - construct number from base and binary exponent

 $ldexp(x: number, i: number) \rightarrow number$

Return $x \times 2^i$.

1.1.34 EulerTransform(function) – iterator yields terms of Euler transform

 $ext{EulerTransform(iterator: } iterator)
ightarrow iterator$

Return an iterator which yields terms of Euler transform of the given iterator.

Bibliography