Departamento Acadêmico de Eletrônica - DAELN IFSC – Câmpus Florianópolis

Eletrônica Digital 1

Circuitos combinacionais básicos

Prof. Matheus Leitzke Pinto matheus.pinto@ifsc.edu.br

Sumário de aula

- Multiplexador (MUX)
- Demultiplexador (DEMUX)
- Codificador
- Decodificador

Circuitos combinacionais báscicos

Possível implementação do MUX 2:1

sel	S
0	E _o
1	E ₁

Circuito lógico

Símbolo

Tabela verdade

Possível implementação do MUX 4:1

sel1	sel0	S
0	0	E _o
0	1	E ₁
1	0	E ₂
1	1	E ₃

Símbolo

Tabela verdade

Circuito lógico

Circuitos combinacionais báscicos

• O demultiplexador (DEMUX) é um circuito que tem por função direcionar sua única entrada para uma das saídas, com base nos sinais de seleção.

• O demultiplexador (DEMUX) é um circuito que tem por função direcionar sua única entrada para uma das saídas, com base nos sinais de seleção.

• O demultiplexador (DEMUX) é um circuito que tem por função direcionar sua única entrada para uma das saídas, com base nos sinais de seleção.

• O demultiplexador (DEMUX) é um circuito que tem por função direcionar sua única entrada para uma das saídas, com base nos sinais de seleção.

• O demultiplexador (DEMUX) é um circuito que tem por função direcionar sua única entrada para uma das saídas, com base nos sinais de seleção.

Possível implementação do DEMUX 1:2

sel	S ₀	S ₁
0	E	1
1	1	Е

Símbolo

Tabela verdade

Possível implementação do DEMUX 1:4

00 S0 01 S1 10 S2 11 S3 sel1 sel0

Símbolo

sel1	sel0	S ₀	S ₁	S ₂	S ₃
0	0	Е	1	1	1
0	1	1	Е	1	1
1	0	1	1	Е	1
1	1	1	1	1	Е

Tabela verdade

Circuitos combinacionais básicos

• Um codificador tem por função, em geral, compactar uma combinação de bits de entrada para um código conhecido.

• Esse código compactado pode ser melhor tratado por outra parte do sistema digital, pois possui menos bits.

Codificador decimal/BCD

- Tipo mais comum de codificador.
- Aceita N entradas, onde cada uma representa um número decimal, e gera o número binário/BCD correspondente na saída.

Codificador decimal/BCD

• Possível tabela verdade.

E _o	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	D	С	В	А
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

Codificador O chip 74174

SN54147, SN54LS147 . . . J OR W PACKAGE SN74147, SN74LS147 . . . D OR N PACKAGE (TOP VIEW)

FUNCTION TABLE - '147, 'LS147

	INPUTS									OUTI	PUTS	
1	2	3	4	5	6	7	8	9	D	С	В	Α
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
X	X	X	X	Χ	X	X	X	L	L	Н	Н	L
X	Χ	Χ	Χ	Χ	Χ	Χ	L	Н	L	Н	Н	н
X	X	X	Χ	Χ	Χ	L	Н	Н	Н	L	L	L
X	X	X	X	X	L	Н	Н	Н	Н	L	L	н
×	X	X	X	L	Н	Н	Н	Н	Н	L	Н	L
×	X	X	L	Н	Н	Н	Н	Н	Н	L	Н	н
X	X	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
X	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high logic level, L = low logic level, X = irrelevant

Circuitos combinacionais básicos

• Um **decodificador** tem por função, em geral, receber uma combinação de entrada que representa um código conhecido e **descompactar** em uma combinação maior de bits de saída.

• Essa saída irá fornecer diversos bits de sinal para outros circuitos.

Decodificador BCD/decimal

- Tipo mais comum de decodificador.
- Aceita um código BCD na entrada e ativa a saída correspondente ao número decimal.

Decodificador BCD/decimal

• Possível tabela verdade.

D	С	В	Α	S _o	S ₁	S ₂	S_3	S ₄	S ₅	S_6	S ₇	S ₈	S ₉
0	0	0	0										
0	0	0	1										
0	0	1	0										
0	0	1	1										
0	1	0	0										
0	1	0	1										
0	1	1	0										
0	1	1	1										
1	0	0	0										
1	0	0	1										

Decodificador BCD/7 segmentos

• Faz com que o número decimal equivalente ao código BCD das entradas seja mostrado em um display de sete segmentos

Decodificador BCD/7 segmentos

- Cada segmento do display é um LED.
- Podemos ter duas configurações de LED no display:

MSB

LSB

 $A \circ$

Decodificador BCD/7 seg

Decodificador O chip 7447

Dual-In-Line Package OUTPUTS VCC 16 15 12 14 13 11 10 3 **GND** BI/RBQ RBI TEST **INPUTS INPUTS**

Function Table

46A, 47A

Decimal or			Inpu	ts			BI/RBO	Outputs						
Function	ction LT RBI D C B A (Note 1)	(Note 1)	а	b	С	d	е	f	g					
0	н	н	L	L	L	L	Н	L	L	L	L	L	L	Н
1	Н	X	L	L	L	Н	Н	Н	L	L	Н	Н	Н	Н
2	н	×	L	L	Н	L	Н	L	L	Н	L	L	Н	L
3	Н	X	L	L	Н	Н	Н	L	L	L	L	Н	Н	L
4	н	×	L	Н	L	L	Н	н	L	L	Н	Н	L	L
5	Н	X	L	Н	L	Н	Н	L	Н	L	L	Н	L	L
6	н	X	L	Н	Н	L	Н	Н	Н	L	L	L	L	L
7	Н	X	L	Н	Н	Н	Н	L	L	L	Н	Н	Н	<u>H</u>
8	н	X	н	L	L	L	Н	L	L	L	L	L	L	L
9	Н	X	Н	L	L	Н	Н	L	L	L	Н	Н	L	L
10	н	×	н	L	Н	L	Н	Н	Н	Н	L	L	Н	L
11	Н	X	Н	L	Н	Н	Н	Н	Н	L	L	Н	Н	L
12	н	X	н	Н	L	L	Н	Н	L	Н	Н	Н	L	L
13	Н	X	Н	Н	L	Н	Н	L	Н	Н	L	Н	L	L
14	Н	X	н	Н	Н	L	Н	Н	Н	Н	L	L	L	L
15	Н	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
BI	Х	Х	X	X	X	X	L	Н	Н	Н	Н	Н	Н	Н
RBI	Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н