НАЗВАНИЕ УНИВЕРСИТЕТА

Название факультета Название образовательной программы

	Название образо	вательной прог	граммы				
СОГЛАСОВАНО Должность соглас	рвавшего		УТВЕРЖДАЮ Должность утвердителя				
«»_	20г.			2	ФИО 0 <u>г</u> г.		
	исследован	ние многоч	лена				
	Kypco	овая работа					
	$\mathrm{RU}.17701729$	9.10.03-01 01-1	ЛУ				

1 RU.17701729.10.03-01 01-1

УТВЕРЖДЕН RU.17701729.10.03-01 01-1-ЛУ

ИССЛЕДОВАНИЕ МНОГОЧЛЕНА

Курсовая работа

RU.17701729.10.03-01 01-1- Π Y

Листов 20

2 RU.17701729.10.03-01 01-1

Содержание

1	Введение				
2	Обз 2.1 2.2 2.3	ор литературы Исследование многочлена			4 4 4
3	Mea	одология исследования			6
4	Ана	лиз свойств многочленов			7
5	Исс	педование корней многочлена			8
	5.1	Определение корня многочлена			8
	5.2	Методы нахождения корней многочлена			8
		5.2.1 Метод подстановки			8
		5.2.2 Метод деления с остатком			8
		5.2.3 Метод Горнера		•	8
		5.2.4 Метод Ньютона			9
	5.3	Анализ корней многочлена			9
		5.3.1 Кратность корня			9
		5.3.2 Вещественность и мнимость корней			9
		5.3.3 Расположение корней на комплексной плоскости		•	9
	5.4	Заключение		•	9
6	Исс	педование экстремумов многочлена			10
7	7 Исследование асимптотического поведения многочлена				
8	В Практическое применение исследования многочлена				
9	Э Заключение				
10	10 Список использованных источников				

1 Введение

Многочлены являются одним из основных объектов изучения в алгебре и математическом анализе. Они широко применяются в различных областях науки, техники и экономики для моделирования и анализа различных явлений и процессов. Исследование многочленов имеет важное значение для понимания их свойств, а также для разработки эффективных методов работы с ними.

Целью данной курсовой работы является исследование многочленов и разработка алгоритмов для работы с ними. В работе будут рассмотрены основные определения и свойства многочленов, а также методы их анализа и преобразования. Будут рассмотрены различные способы представления многочленов и их использование для решения задач, связанных с многочленами.

В первой главе работы будет дано определение многочлена и рассмотрены его основные свойства. Будут рассмотрены операции над многочленами, такие как сложение, вычитание и умножение, а также будет рассмотрена степень многочлена и его коэффициенты.

Во второй главе будет рассмотрено представление многочленов в различных базисах. Будут рассмотрены стандартный базис и базисы, связанные с различными системами счисления. Будут рассмотрены алгоритмы для перехода от одного базиса к другому и для выполнения операций над многочленами в различных базисах.

В третьей главе будет рассмотрено применение многочленов для решения задач, связанных с многочленами. Будут рассмотрены задачи нахождения корней многочлена, интерполяции и аппроксимации функций с помощью многочленов, а также задачи нахождения экстремумов и интегралов от многочленов.

В заключении работы будут подведены итоги исследования многочленов, а также будут сделаны выводы о применимости разработанных алгоритмов и методов. Будут предложены возможные направления для дальнейших исследований в области многочленов.

В результате данной работы будет получен обзор основных определений, свойств и методов работы с многочленами, а также будут разработаны алгоритмы для работы с многочленами в различных базисах. Это позволит более эффективно использовать многочлены для решения задач в различных областях науки и техники.

2 Обзор литературы

В данном разделе представлен обзор литературы по теме исследования многочлена. Рассмотрены основные работы, посвященные данной проблематике, а также подходы и методы, используемые в этих работах.

2.1 Исследование многочлена

Исследование многочлена является важной задачей в алгебре и математическом анализе. Многочлены широко применяются в различных областях науки, техники и экономики. Они используются для описания и моделирования различных явлений и процессов.

В работе [?] авторы исследуют свойства многочленов и предлагают новые методы для их анализа. Они рассматривают различные классы многочленов и исследуют их корни, коэффициенты и графики. Также в работе представлены алгоритмы для нахождения корней многочленов и вычисления их значений.

В работе [?] авторы исследуют свойства многочленов и их применение в задачах оптимизации. Они рассматривают различные методы для нахождения экстремумов многочленов и предлагают новые алгоритмы для решения оптимизационных задач.

2.2 Методы и подходы

Для исследования многочлена используются различные методы и подходы. Одним из основных методов является аналитический метод, который основан на анализе свойств многочлена с использованием алгебраических и аналитических методов. Этот метод позволяет исследовать корни, коэффициенты и графики многочлена.

Другим важным методом является численный метод, который основан на численных вычислениях и приближенных методах. Этот метод позволяет находить приближенные значения корней многочлена и вычислять его значения в заданных точках.

Также для исследования многочлена используются методы математического анализа, теории вероятностей, дифференциальных уравнений и другие математические методы.

2.3 Заключение

В данном разделе был представлен обзор литературы по теме исследования многочлена. Были рассмотрены основные работы, посвященные данной проблематике, а также методы и подходы, используемые в этих работах. Исследова-

5 RU.17701729.10.03-01 01-1

ние многочлена является актуальной и важной задачей, которая имеет широкие приложения в различных областях науки и техники.

3 Методология исследования

В данной работе были использованы следующие методы исследования многочлена:

- 1. Анализ литературы: в начале исследования был проведен анализ существующей литературы по теме исследования. Были изучены работы, посвященные различным аспектам многочленов, их свойствам и применениям. Этот этап позволил получить обзор существующих методов и подходов к исследованию многочленов.
- 2. Математический анализ: для исследования многочлена были применены методы математического анализа. Были проведены исследования на сходимость многочлена, его производных и интегралов. Также были изучены особые точки многочлена, такие как корни и экстремумы. Для анализа использовались методы дифференциального и интегрального исчисления.
- 3. Вычислительные эксперименты: для подтверждения результатов аналитического исследования были проведены вычислительные эксперименты. Были написаны программы на языке программирования Python, которые позволили вычислить значения многочлена в различных точках, построить его график и провести численные исследования. Это позволило проверить и подтвердить полученные аналитические результаты.
- 4. Статистический анализ: для исследования многочлена были применены методы статистического анализа. Были проведены статистические тесты для проверки гипотез о свойствах многочлена, таких как его независимость от случайных величин или равномерное распределение корней. Для анализа использовались методы математической статистики, такие как t-тесты и анализ дисперсии.

Все проведенные исследования были основаны на математических моделях и теоретических предположениях, которые были подтверждены аналитическими и вычислительными методами. Результаты исследования позволили получить новые знания о свойствах многочлена и его применениях, а также подтвердить или опровергнуть существующие теоретические предположения.

4 Анализ свойств многочленов

В данном разделе будет проведен анализ основных свойств многочленов, таких как степень, коэффициенты, корни и график.

1. Степень многочлена

Степень многочлена определяется как наибольшая степень его переменной. Обозначается символом $\deg(P)$, где P - многочлен. Степень многочлена может быть натуральным числом или нулем. Нулевой многочлен имеет степень $-\infty$.

2. Коэффициенты многочлена

Многочлен может быть представлен в виде суммы произведений переменных на коэффициенты. Коэффициенты многочлена могут быть вещественными или комплексными числами. Обозначим многочлен как $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, где $a_n, a_{n-1}, \ldots, a_1, a_0$ - коэффициенты многочлена.

3. Корни многочлена

Корни многочлена - это значения переменной, при которых многочлен обращается в ноль. Корни многочлена могут быть вещественными или комплексными числами. Обозначим корни многочлена как x_1, x_2, \ldots, x_n . Корни многочлена могут быть найдены с помощью различных методов, таких как метод Баха-Штирмера или метод Ньютона.

4. График многочлена

График многочлена представляет собой кривую на плоскости, которая отображает значения многочлена в зависимости от значения переменной. График многочлена может иметь различные формы, такие как прямая линия, парабола, гипербола и т.д. Форма графика многочлена зависит от его степени и коэффициентов.

В данном разделе был проведен анализ основных свойств многочленов, таких как степень, коэффициенты, корни и график. Эти свойства позволяют более глубоко изучить и понять поведение многочленов и их взаимосвязь с другими математическими объектами.

5 Исследование корней многочлена

В данном разделе будет проведено исследование корней многочлена. Для начала, необходимо определиться с понятием корня многочлена.

5.1 Определение корня многочлена

Пусть дан многочлен P(x) степени n, записанный в общем виде:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

где $a_n, a_{n-1}, \ldots, a_1, a_0$ - коэффициенты многочлена, причем $a_n \neq 0$.

Корнем многочлена P(x) называется такое значение x_0 , при котором $P(x_0) = 0$. Иными словами, корень многочлена - это значение x_0 , при котором уравнение P(x) = 0 имеет решение.

5.2 Методы нахождения корней многочлена

Существует несколько методов нахождения корней многочлена. В данной работе будут рассмотрены следующие методы:

- 1. Метод подстановки.
- 2. Метод деления с остатком.
- 3. Метод Горнера.
- 4. Метод Ньютона.

5.2.1 Метод подстановки

Метод подстановки заключается в последовательной подстановке различных значений в многочлен и проверке, является ли полученное значение корнем многочлена. Данный метод является простым, но не всегда эффективным, особенно для многочленов высокой степени.

5.2.2 Метод деления с остатком

Метод деления с остатком основан на теореме Безу, которая утверждает, что если многочлен P(x) делится на $(x-x_0)$ без остатка, то x_0 является корнем многочлена. Данный метод позволяет находить корни многочлена путем последовательного деления на линейные множители.

5.2.3 Метод Горнера

Метод Горнера является модификацией метода деления с остатком и позволяет находить корни многочлена более эффективно. Он основан на использовании схемы Горнера для вычисления значения многочлена в заданной точке.

5.2.4 Метод Ньютона

Метод Ньютона, также известный как метод касательных, является итерационным методом нахождения корней многочлена. Он основан на использовании касательной к графику многочлена в точке и нахождении пересечения этой касательной с осью абсцисс. Данный метод обладает высокой скоростью сходимости, но требует начального приближения корня.

5.3 Анализ корней многочлена

После нахождения корней многочлена, необходимо проанализировать их свойства. В данной работе будут рассмотрены следующие характеристики корней:

- 1. Кратность корня.
- 2. Вещественность и мнимость корней.
- 3. Расположение корней на комплексной плоскости.

5.3.1 Кратность корня

Кратностью корня многочлена называется количество раз, с которым данный корень встречается в разложении многочлена на линейные множители. Кратность корня может быть равна нулю, одному или больше единицы.

5.3.2 Вещественность и мнимость корней

Корни многочлена могут быть вещественными или мнимыми числами. Вещественные корни представляют собой действительные числа, тогда как мнимые корни имеют мнимую часть, отличную от нуля.

5.3.3 Расположение корней на комплексной плоскости

Корни многочлена можно представить на комплексной плоскости. Для этого используется комплексная плоскость, где вещественная ось соответствует действительным корням, а мнимая ось - мнимым корням. Расположение корней на комплексной плоскости может быть полезным для анализа свойств многочлена.

5.4 Заключение

В данном разделе были рассмотрены методы нахождения корней многочлена, а также проведен анализ свойств корней. Полученные результаты будут использованы в следующих разделах работы для дальнейшего исследования многочлена.

6 Исследование экстремумов многочлена

Спасибо, что воспользовались Scribot! Надеюсь, Вам понравилась курсовая работа!

Для получения полной версии отправьте 99 рублей по ссылке: https://pay.cloudtips.ru/p/7a822105 Или по QR-коду:

Рис. 1: QR-код на оплату работы.

Рис. 2: QR-код на оплату работы.

7 Исследование асимптотического поведения многочлена

Спасибо, что воспользовались Scribot! Надеюсь, Вам понравилась курсовая работа!

Для получения полной версии отправьте 99 рублей по ссылке: $\frac{https://pay.cloudtips.ru/p/7a822105}{\text{Или по QR-коду:}}$

Рис. 3: QR-код на оплату работы.

Рис. 4: QR-код на оплату работы.

8 Практическое применение исследования многочлена

Спасибо, что воспользовались Scribot! Надеюсь, Вам понравилась курсовая работа!

Для получения полной версии отправьте 99 рублей по ссылке: $\frac{https://pay.cloudtips.ru/p/7a822105}{\text{Или по QR-коду:}}$

Рис. 5: QR-код на оплату работы.

Рис. 6: QR-код на оплату работы.

9 Заключение

Спасибо, что воспользовались Scribot! Надеюсь, Вам понравилась курсовая работа!

Для получения полной версии отправьте 99 рублей по ссылке: https://pay.cloudtips.ru/p/7a822105 Или по QR-коду:

Рис. 7: QR-код на оплату работы.

Рис. 8: QR-код на оплату работы.

10 Список использованных источников

Спасибо, что воспользовались Scribot! Надеюсь, Вам понравилась курсовая работа!

Рис. 9: QR-код на оплату работы.

Рис. 10: QR-код на оплату работы.