

PROJECT TITLE:

ENERGY CONSUMPTION ANALYSIS

TEAM MEMBERS:

- 1.ADITYA
- 2. SARWAN
- 3.AKSHAY
- 4. ANJAN KARTHIK

INTRODUCTION:

Purpose: Analyze and correlate energy consumption, population, GDP, and emissions across countries.

Tools Used: SQL, CSV, PowerPoint

Data Source: Internal CSV datasets

Table Descriptions

consumption_3: Energy consumption (Total + Sector wise)

country_3 : Master table with country metadata (region, code, etc.)

ER DIAGRAM:

PROBLEM STATMENT:

- 1. How does energy consumption relate to GDP and population?
- 2. What countries are leading in energy efficiency?
- 3. Are emissions growing faster than population or GDP?
- 4. Which countries are at risk due to overconsumption?
- 5. Can we identify patterns for sustainable energy use?

General & Comparative Analysis

What is the total emission per country for the most recent year available?

select country, sum(emission) as Total_emission from emission_3
group by country order by Total_emission desc limit 5;

country	Total_emission
China	92338
United States	38453
India	20223
Russia	14481
Japan	8137

What are the top 5 countries by GDP in the most recent year?

select country, sum(value) as Toatal_gdp from gdp_3
group by country order by Toatal_gdp desc limit 5;

country Toatal_gdp				
China	130157.8			
United States	106826.87			
India	50604.869			
Japan	25424.289000000004			
Germany	22082.897			

FIND THE YEAR WHEN United Kingdom HAD THYE HIGHEST PER CAPITA EMISSION.

SELECT YEAR, MAX(PER_CAPITA_EMISSION) AS Highest_Capita FROM EMISSION_3
 WHERE COUNTRY = "United Kingdom"
 GROUP BY YEAR;

2021	0.007126096
2023	0.007126096
2022	0.007126096
2020	0.007126096

Compare energy production and consumption by country and year.

select p.energy, c.country, c.year from consumption c inner join production p
on c.country = p.country;

energy	country	year
Nuclear (quad Btu)	Afghanistan	2020
Nuclear (quad Btu)	Afghanistan	2021
Nuclear (quad Btu)	Afghanistan	2022
Nuclear (quad Btu)	Afghanistan	2023
Nuclear (quad Btu)	Afghanistan	2020
Nuclear (quad Btu)	Afghanistan	2022
Nuclear (quad Btu)	Afghanistan	2020
Nuclear (quad Btu)	Afghanistan	2021
Nuclear (quad Btu)	Afghanistan	2023
Nuclear (quad Btu)	Afghanistan	2022
Nuclear (quad Btu)	Afghanistan	2020
Nuclear (quad Btu)	Afghanistan	2021
Nuclear (quad Btu)	Afghanistan	2023

Which energy types contribute most to emissions across all countries?

select country, energy_type, sum(emission) as total_emission from emission_3
group by country, energy_type order by total_emission desc limit 1;

cou	untry	energy_type	total_emission
Chi	ina	CO2 emissions (MMtonnes CO2)	46169

Trend Analysis Over Time

How have global emissions changed year over year?

```
select * from emission_3;
select year, sum(emission) as change_emission from emission_3
group by year;
```


year	change_emission
2020	67852
2021	70976
2022	72445
2023	74161

What is the trend in GDP for each country over the given years?

```
select * from gdp_3;
select country ,year, sum(value) as change_value from gdp_3
group by country, year;
```

country	year	change_value
Afghanistan	2020	83.21645
Albania	2020	36.78752
Algeria	2020	531.9749
Angola	2020	215.9016
Antigua and Barbuda	2020	1.772876
Argentina	2020	866.9691
Armenia	2020	33.00228
Aruba	2020	2.584789
Australia	2020	1219.307
Austria	2020	453.2275
Azerbaijan	2020	140.3826
Bahrain	2020	71.83838
Bangladesh	2020	922.9937
Barbados	2020	3.962201
Belarus	2020	176.2621
Belgium	2020	553.6443
Belize	2020	2.958894
Benin	2020	40.03826

How has population growth affected total emissions in each country?

```
select p.countries, round(sum(p.value),2) as Total_growth, sum(e.emission) as Total_emission
from population p
inner join emission_3 e on p.countries = e.country
group by country order by Total_growth desc;
```


countri	es	Total_grow	Total_emission
India		114100016	101115
China		113914064	461690
United S	States	26773419.2	192265
Indones	ia	22321305.6	26565
Pakista	n	19471264	8200
Nigeria		17859820.8	4370
Brazil		16826508.8	17025
Banglad	lesh	13573939.2	4470
Russia		11648772.8	72405
Mexico	= =	10298576	17080
Ethiopia	1	10035073.6	625
Japan		10001686.4	40685
Philippin	nes	9118102.4	5590
Egypt	====	9023432	9155
Congo-	Kins	8201630.88	190
Vietnam	1	7968555.84	11480
Iran		7166073.6	29830
Turkiye		6953291.84	15665
Cormor		6710406 06	25705

WHAT IS THE AVEARGE POPULATION IN 2020

SELECT ROUND(AVG(VALUE),2) AS AVG_POPULATION

FROM POPULATION

WHERE YEAR = 2020;

AVG_POPULATION

39362.84

What is the average yearly change in emissions per capita for each country?

```
select * from emission_3;
select country ,year, round(avg(per_capita_emission),5) from emission_3
group by country, year;
```


country	year	round(avg(per_capita_emission
/ u 1000 01000		10.007.10
Antigua and Barbuda	2020	0.00713
Aruba	2020	0.00713
Belize	2020	0.00713
Bermuda	2020	0.00713
Bhutan	2020	0.00713
Botswana	2020	0.00713
British Virgin Islands	2020	0.00713
Burkina Faso	2020	0.00713
Burundi	2020	0.00713
Cabo Verde	2020	0.00713
Cambodia	2020	0.00713
Cayman Islands	2020	0.00713
Central African Rep	2020	0.00713
Chad	2020	0.00713
Comoros	2020	0.00713
Congo-Kinshasa	2020	0.00713
Cook Islands	2020	0.00713
Costa Rica	2020	0.00713

Has energy consumption increased or decreased over the years for major economies?

```
select g.year , round(sum(g.value),2) as total_economy , sum(c.consumption) as total_consumption
from gdp_3 g
inner join consumption c on g.country = c.country
group by year order by total_economy desc;
```

countries	Total_grow	Total_emission
India	114100016	101115
China	113914064	461690
United States	26773419.2	192265
Indonesia	22321305.6	26565
Pakistan	19471264	8200
Nigeria	17859820.8	4370
Brazil	16826508.8	17025
Bangladesh	13573939.2	4470
Russia	11648772.8	72405
Mexico	10298576	17080
Ethiopia	10035073.6	625
Japan	10001686.4	40685
Philippines	9118102.4	5590
Egypt	9023432	9155
Congo-Kins	. 8201630.88	190
Vietnam	7968555.84	11480

WHAT IS THE TOTAL ENERGY CONSUMED IN 2023

SELECT SUM(CONSUMPTION) AS TOTAL_CONSUMPTION_2023 FROM CONSUMPTION

WHERE YEAR = 2023;

TOTAL_CONSUMPTION_2023

612

What is the emission-to-GDP ratio for each country by year?

SELECT * FROM EMISSION_3;
SELECT COUNTRY, YEAR, ROUND(AVG(PER_CAPITA_EMISSION), 5) AS TOTAL_ECONOMY
FROM EMISSION_3
GROUP BY COUNTRY, YEAR ORDER BY TOTAL_ECONOMY DESC;

COUNTRY	YEAR	TOTAL_ECONOMY
/ II Italiotioa	LULU	0.007 10
Antigua and Barbuda	2020	0.00713
Aruba	2020	0.00713
Belize	2020	0.00713
Bermuda	2020	0.00713
Bhutan	2020	0.00713
Botswana	2020	0.00713
British Virgin Islands	2020	0.00713
Burkina Faso	2020	0.00713
Burundi	2020	0.00713
Cabo Verde	2020	0.00713
Cambodia	2020	0.00713
Cayman Islands	2020	0.00713
Central African Rep	2020	0.00713
Chad	2020	0.00713
Comoros	2020	0.00713
Congo-Kinshasa	2020	0.00713

What is the global average GDP, emission, and population by year?

```
SELECT
    g.year,
    ROUND(AVG(g.value), 2) AS avg_gdp,
    ROUND(AVG(e.emission), 2) AS avg_emission,
    ROUND(AVG(p.value), 2) AS avg_population

FROM
    gdp_3 g

JOIN
    emission_3 e ON g.country = e.country AND g.year = e.year

JOIN
    population p ON g.country = p.countries AND g.year = p.year

GROUP BY g.year ORDER BY g.year;
```


year	avg_gdp	avg_emission	avg_populati
2020	629.03	85.40	39656.2
2021	671.04	89.44	39986.57
2022	694.6	91.29	40345.81
2023	717.93	93.46	40711.66

What is the global share (%) of emissions by country?

```
SELECT country,
    ROUND(SUM(emission) * 100.0 / (SELECT SUM(emission) FROM emission_3), 2) AS emission_share_pct
FROM
    emission_3
GROUP BY
    country
ORDER BY
    emission_share_pct DESC limit 5;
```

country	emission_share
China	32.35
United States	13.47
India	7.09
Russia	5.07
Japan	2.85

What are the top 10 countries by population and how do their emissions compare?

```
SELECT

C.country,
SUM(p.value) AS total_population,
SUM(e.emission) AS total_emission

FROM
population p
JOIN
emission_3 e ON p.countries = e.country AND p.year = e.year
JOIN
country c ON p.countries = c.country

GROUP BY
c.country
ORDER BY
total_population DESC
LIMIT 10;
```

country	total_population	total_emission
China	22801232	92338
India	22721260	20223
United States	5334912.8	38453
Indonesia	4446374.800000001	5313
Pakistan	3862739.2000000007	1640
Nigeria	3534237.19999999997	874
Brazil	3358632.8000000007	3405
Bangladesh	2699235.1999999993	894
Russia	2332911.5999999996	14481
Mexico	2051200	3416

CONCLUSION:

- 1. SQL enabled comprehensive analysis of global datasets.
- 2. Uncovered valuable insights: top energy users, GDP-emission trends, per capita consumption.
- 3. Demonstrated the power of SQL in solving real-world sustainability questions.
- 4. Future work: Extend analysis using Python/Power BI for forecasts and dashboards.

THANK YOU

