Introducción al Análsis Inteligente de Datos (IDA)

Maria-Amparo Vila vila@decsai.ugr.es

Grupo de Investigación en Bases de Datos y Sistemas de Información Inteligentes https://idbis.ugr.es/ Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad de Granada

Introducción al tema

Estructura de la presentación

- 1. Introduccion ideas básicas y motivación actual
- 2. KDD y Análisis Inteligentes de datos.
- 3. El proceso de KDD y El proceso CRISP-DM
- 4. Concepto de Minería de Datos
 - 4.1 Minería de datos y Estadística
 - 4.2 Minería de datos y aprendizaje
- 5. Problemas más importantes en Minería de Datos.
 - 5.1 EDA.Generalización y resumen. DM y DW
 - 5.2 Modelos descriptivos: Agrupamiento
 - 5.3 Modelos descriptivos: Modelización de dependencias
 - 5.4 Modelos predicitivos: Clasificación
 - 5.5 Modelos predictivos: Prediccion y Análisis de secuencias.
- 6. Tipos de Minería de datos

- Desde el comienzo de la civilización el ser humano ha recopilado datos numéricos: babilonios, egipcios, chinos, griegos romanos, hacían censos, contabilizaban cosechas y recaudaban impuestos etc.
- También desde el comienzo de la civilización el ser humano ha tratado de describir el mundo que le rodea mediante "patrones" entendidos estos como regularidades: astronomia etc. Hasta el siglo XVIII estas descripciones eran verbales.

Introducción al IDA : ideas básicas, motivación histórica

3 A partir del siglo XVIII aparece el "método científico" para el estudio de los fenómenos naturales y sociales:

- 3 A partir del siglo XVIII aparece el "método científico" para el estudio de los fenómenos naturales y sociales:
 - La descripción de los fenómenos naturales o sociales, son hipótesis que deben sustentarse mediante la experimentación o la observación

- 3 A partir del siglo XVIII aparece el "método científico" para el estudio de los fenómenos naturales y sociales:
 - La descripción de los fenómenos naturales o sociales, son hipótesis que deben sustentarse mediante la experimentación o la observación
 - Es necesario analizar datos y estudiar mediante técnicas numéricas y/o estadísticas las regularidades y relaciones entre los mismos.

- 3 A partir del siglo XVIII aparece el "método científico" para el estudio de los fenómenos naturales y sociales:
 - La descripción de los fenómenos naturales o sociales, son hipótesis que deben sustentarse mediante la experimentación o la observación
 - Es necesario analizar datos y estudiar mediante técnicas numéricas y/o estadísticas las regularidades y relaciones entre los mismos.
 - La falta de "máquinas para calcular y almacenar datos" impulsan el desarrollo de disciplinas tales como la Teoría de Muestras, la Estadística Matemática, el Análsis Numérico durante todo el siglo XIX y parte del XX

Introducción al IDA: ideas básicas, motivación histórica

4 A partir del uso de los computadores las técnicas de análsis de datos pueden tratar datos de forma masiva y las posibilidades de descripción de fenómemos se amplían:

- 4 A partir del uso de los computadores las técnicas de análsis de datos pueden tratar datos de forma masiva y las posibilidades de descripción de fenómemos se amplían:
 - El tipo y las propiedades de las variables a utilizar se hace menos riguroso
 - Aparecen nuevas técnicas de análisis: EDA (Análisis exploratorio de datos), Taxonomía numérica, Métodos de predicción no probabilísticos etc.

- 4 A partir del uso de los computadores las técnicas de análsis de datos pueden tratar datos de forma masiva y las posibilidades de descripción de fenómemos se amplían:
 - El tipo y las propiedades de las variables a utilizar se hace menos riguroso
 - Aparecen nuevas técnicas de análisis: EDA (Análisis exploratorio de datos), Taxonomía numérica, Métodos de predicción no probabilísticos etc.
- 5 Dado que parte de estas técnicas se desarrollaron como métodos de aprendizaje dentro de la I.A. se denominaron de Análisis Inteligente de Datos

Introducción al KDD : ideas básicas, y motivación

- Datos y Bases de datos han crecido de forma vertiginosa
- Un enfoque de consulta a bases de datos clásico no proporciona realmente soluciones para los directivos. Es necesario resumir la información y presentarla de forma inteligible.

Introducción al KDD : ideas básicas, y motivación

- Datos y Bases de datos han crecido de forma vertiginosa
- Un enfoque de consulta a bases de datos clásico no proporciona realmente soluciones para los directivos. Es necesario resumir la información y presentarla de forma inteligible.
- A partir de los 80 se pide a un sistema que:
- Proporcione propiedades de los datos no explícitas.
- Permita conocer relaciones entre los datos.
- Proporcione información resumida y/o clasificada.
- Todas estas facilidades deben estar integradas en un interfaz de usuario amigable e interactivo.

Introducción al KDD : ideas básicas, y motivación histórica

Los sistemas de bases de datos clásicos ofrecen muy pocas funcionalidades para llevar a cabo aplicaciones como las que hemos expuesto.

Introducción al KDD : ideas básicas, y motivación histórica

Los sistemas de bases de datos clásicos ofrecen muy pocas funcionalidades para llevar a cabo aplicaciones como las que hemos expuesto.

Una nueva forma de aproximación a las bases de datos

Minería de datos (Data Mining, DM)

Extracción de conocimiento(Knowledge Discovery, KDD)

Introducción al KDD : ideas básicas, y motivación histórica

Los sistemas de bases de datos clásicos ofrecen muy pocas funcionalidades para llevar a cabo aplicaciones como las que hemos expuesto.

Una nueva forma de aproximación a las bases de datos

Minería de datos (Data Mining, DM)

Extracción de conocimiento(Knowledge Discovery, KDD)

Definición

Minería de Datos (DM o KDD) es un proceso no trivial de identificación de patrones en los datos válidos, novedosos, potencialmente útiles y comprensibles (Frawley et al. 1991)

El térmimo patrón hay que tomarlo en sentido amplio (relaciones, tendencias, agrupamientos, clasificaciones etc..)

Introducción al KDD : ideas básicas, y motivación histórica

Definición

Extracción de conocimiento

El proceso de uso de una base de datos para cualquier consulta que se requiera; incluyendo:

- Preprocesamiento, muestreo y transformaciones,
- Aplicación de técnicas de minería de datos para obtener patrones
- La evaluación de los resultados de dicha minería para identificar qué patrones se consideran conocimiento

(Fayyad et al. 1996)

Introducción al KDD : ideas básicas, y motivación histórica

Definición

Extracción de conocimiento

El proceso de uso de una base de datos para cualquier consulta que se requiera; incluyendo:

- Preprocesamiento, muestreo y transformaciones,
- Aplicación de técnicas de minería de datos para obtener patrones
- La evaluación de los resultados de dicha minería para identificar qué patrones se consideran conocimiento

(Fayyad et al. 1996)

IDA y KDD se consideran sinónimos. KDD tiene una connotación más empresarial e IDA más científica. DM es una etapa de ambos procesos

Introducción al KDD : etapas en un proceso de KDD

El proceso CRISP_DM (CRoss Industry Standard Process for Data Mining)

El proceso CRISP_DM :Etapas

Comprension del proyecto

- ¿Cual es exactamente el problema?. ¿Que beneficios se esperan con su solución?
- ¿Qué tipo de solución estamos buscando? ¿Qué respuestas pedimos?
- ¿Que sabemos acerca del dominio del proyecto?
- ¿Cual es el riego/costo de no resolverlo?

El proceso CRISP_DM :Etapas

Comprension del proyecto

- ¿Cual es exactamente el problema?. ¿Que beneficios se esperan con su solución?
- ¿Qué tipo de solución estamos buscando? ¿Qué respuestas pedimos?
- ¿Que sabemos acerca del dominio del proyecto?
- ¿Cual es el riego/costo de no resolverlo?

Comprension de los datos

- ¿De que datos disponemos?
- ¿Son relevantes para el problema?.¿Son fiables, válidos?
- ¿Son los datos suficentes en términos de: calidad, cantidad y temporalidad?

El proceso CRISP_DM :Etapas

Preparación de los datos

- ¿Sobre qué datos nos concentramos?
- ¿Como puedo mejorar su calidad?
- ¿Necesitan ser transformados (preprocesados)?

El proceso CRISP_DM :Etapas

Preparación de los datos

- ¿Sobre qué datos nos concentramos?
- ¿Como puedo mejorar su calidad?
- ¿Necesitan ser transformados (preprocesados)?

Modelado

- ¿A que tipo(s) de modelo(s)/problema(s) correponde mi proyecto? (Seleccion de modelo)
- ¿Cual es la técnica más adecuada para construir el modelo?(Construcción del modelo)
- ¿Es correcto el modelo desde el punto de vista técnico?.
 (Validación del modelo)

El proceso CRISP_DM :Etapas

Evaluación

- ¿Satisface el modelo los requerimientos de nuestro proyecto?
- ¿Qué hemos aprendido acerca de nuestro problema a través del modelo?

El proceso CRISP_DM :Etapas

Evaluación

- ¿Satisface el modelo los requerimientos de nuestro proyecto?
- ¿Qué hemos aprendido acerca de nuestro problema a través del modelo?

Implantación

- ¿Cómo puede ser útil el conocimiento adquirido para la toma de decisiones?
- ¿Cómo puedo saber si el modelo sigue siendo válido?.

Concepto de Minería de Datos

Definition

Entendemos por **Minería de Datos (DM)** el conjunto de técnicas que permiten preparar los datos, construir el modelo y validarlo en un proceso de KDD o IDA

Concepto de Minería de Datos

Definition

Entendemos por Minería de Datos (DM) el conjunto de técnicas que permiten preparar los datos, construir el modelo y validarlo en un proceso de KDD o IDA

- Las técnicas de DM son muy variadas así como los problemas que tratan.
- La mayoría de las técnicas de minería de datos han de ser escalables
- Algunos autores opinan que los métodos de preparación y estudio de los datos previos a la selección del modelo no forman parte del DM.

Niveles de Minería de datos

Niveles de Minería de datos

No-dirigida o pura No hay restricciones sobre el sistema, ni tampoco indicaciones acerca de lo que espera el usuario.

Responde a : *Dime algo interesante sobre los datos* Corresponde al **Análisis Exploratorio de Datos**.

Niveles de Minería de datos

No-dirigida o pura No hay restricciones sobre el sistema, ni tampoco indicaciones acerca de lo que espera el usuario.

Responde a: Dime algo interesante sobre los datos

Corresponde al Análisis Exploratorio de Datos.

Dirigida El objetivo se específica algo más específico pero se tiene una actitud **Descriptiva**. Ejemplo: ¿Cómo se agrupan los clientes de un banco'?

Corresponde a la extracción de patrones

Niveles de Minería de datos

- No-dirigida o pura No hay restricciones sobre el sistema, ni tampoco indicaciones acerca de lo que espera el usuario.

 Responde a: Dime algo interesante sobre los datos

 Corresponde al Análisis Exploratorio de Datos.
 - Dirigida El objetivo se especifica algo más específico pero se tiene una actitud **Descriptiva**. Ejemplo: ¿Cómo se agrupan los clientes de un banco'?

 Corresponde a la extracción de patrones
 - Prediccion Se trata **predecir** el valor de una variable. Ejemplo: ¿Puedo caracterizar un cliente moroso por su edad, tipos de trabajo etc..?

Niveles de Minería de datos

- No-dirigida o pura No hay restricciones sobre el sistema, ni tampoco indicaciones acerca de lo que espera el usuario.

 Responde a: Dime algo interesante sobre los datos

 Corresponde al Análisis Exploratorio de Datos.
 - Dirigida El objetivo se especifica algo más específico pero se tiene una actitud **Descriptiva**. Ejemplo: ¿Cómo se agrupan los clientes de un banco'?

 Corresponde a la extracción de patrones
 - Prediccion Se trata **predecir** el valor de una variable. Ejemplo: ¿Puedo caracterizar un cliente moroso por su edad, tipos de trabajo etc..?

Estos tres niveles se corresponden con los modelos tratados en DM: Exploratorios, descriptivos y predictivos

Minería de Datos y Estadística

Minería de Datos y Estadística

 Inicialmente la Estadística se desarrolló para resolver problemas de tratmiento de datos sin ayuda de computadores. Posteriormente se enriqueció con el uso de los ordenadores.

Minería de Datos y Estadística

- Inicialmente la Estadística se desarrolló para resolver problemas de tratmiento de datos sin ayuda de computadores. Posteriormente se enriqueció con el uso de los ordenadores.
- La mayoría de las técnicas estadísticas imponen hipótesis muy fuertes a los datos: variables numéricas y continuas, independencia entre variables, igualdad de varianzas etc. pero pueden ser utilizadas dentro de un problema de DM si dichas hipótesis se cumplen

Minería de Datos y Estadística

- Inicialmente la Estadística se desarrolló para resolver problemas de tratmiento de datos sin ayuda de computadores. Posteriormente se enriqueció con el uso de los ordenadores.
- La mayoría de las técnicas estadísticas imponen hipótesis muy fuertes a los datos: variables numéricas y continuas, independencia entre variables, igualdad de varianzas etc. pero pueden ser utilizadas dentro de un problema de DM si dichas hipótesis se cumplen
- Muchas de las técnicas de validación de modelos provienen del Diseño de Experimentos.
- Algunas problemas de escalabilidad se resuelven mediante la Teoría de muestras

Minería de datos o Aprendizaje

- Es la Minería de Datos independiente del Aprendizaje?
- La diferencia está en la calidad de los datos.

Minería de datos o Aprendizaje

- Es la Minería de Datos independiente del Aprendizaje?
- La diferencia está en la calidad de los datos.
- Hay un gran volumen de datos Se reduce el espacio de búsqueda tanto en filas como en los dominios de las columnas
- Los datos varían con el tiempo El conocimiento adquirido debe poder actualizarse a medida que las bases de datos cambien.
- Los datos son incompletos y/o imprecisos En este punto la teoría de subconjuntos difusos es muy aplicable, tanto en la representación de los datos como en el conocimiento extraido.

Minería de datos o Aprendizaje

- Es la Minería de Datos independiente del Aprendizaje?
- La diferencia está en la calidad de los datos.
- Hay un gran volumen de datos Se reduce el espacio de búsqueda tanto en filas como en los dominios de las columnas
- Los datos varían con el tiempo El conocimiento adquirido debe poder actualizarse a medida que las bases de datos cambien.
- Los datos son incompletos y/o imprecisos En este punto la teoría de subconjuntos difusos es muy aplicable, tanto en la representación de los datos como en el conocimiento extraido.
- Los datos pueden ser "ruidosos", con errores no sistemáticos
- Puede haber gran cantidad de "datos perdidos"
- Algunos datos pueden ser redundantes o no significativos

Generalización y resumen

- Los datos y los objetos en las bases de datos contienen información muy detallada y a niveles muy primitivos
- La idea básica de la generalización (resumen) es proporcionar descripciones compactas para subconjuntos de datos a un nivel conceptual superior.
- Los datos resumidos se pueden analizar de manera exploratoria y visual. Sugiriendo análisis más sofisticados.

Generalización y resumen

- Los datos y los objetos en las bases de datos contienen información muy detallada y a niveles muy primitivos
- La idea básica de la generalización (resumen) es proporcionar descripciones compactas para subconjuntos de datos a un nivel conceptual superior.
- Los datos resumidos se pueden analizar de manera exploratoria y visual. Sugiriendo análisis más sofisticados.

El enfoque de cubo de datos "data cube"

- La idea básica es usar tablas multidimensionales con datos agregados
- La estructura obtenida se denomina cubo de datos multidimensional y se supone almacenada.

Minería de datos y "Data Warehousing"

• Es el Data Warehousing una parte de la Minería de Datos?

- Es el Data Warehousing una parte de la Minería de Datos?
- Aunque los problemas de generalización y resumen se consideran dentro de la minería de datos, realmente corresponden a la primera fase del proceso de KDD.

- Es el Data Warehousing una parte de la Minería de Datos?
- Aunque los problemas de generalización y resumen se consideran dentro de la minería de datos, realmente corresponden a la primera fase del proceso de KDD.
- La estructura de "cubo de datos" es típica de la representación de información en DW pero fué presentada en "KDD & Data Mining"

- Es el Data Warehousing una parte de la Minería de Datos?
- Aunque los problemas de generalización y resumen se consideran dentro de la minería de datos, realmente corresponden a la primera fase del proceso de KDD.
- La estructura de "cubo de datos" es típica de la representación de información en DW pero fué presentada en "KDD & Data Mining"
- La tecnología de DW es un enfoque comercial y se centra en implementación, desempeño y visualización interactiva.

- Es el Data Warehousing una parte de la Minería de Datos?
- Aunque los problemas de generalización y resumen se consideran dentro de la minería de datos, realmente corresponden a la primera fase del proceso de KDD.
- La estructura de "cubo de datos" es típica de la representación de información en DW pero fué presentada en "KDD & Data Mining"
- La tecnología de DW es un enfoque comercial y se centra en implementación, desempeño y visualización interactiva.
- La Minería de Datos es más académica y desarrolla procesos más sofisticados.

- Es el Data Warehousing una parte de la Minería de Datos?
- Aunque los problemas de generalización y resumen se consideran dentro de la minería de datos, realmente corresponden a la primera fase del proceso de KDD.
- La estructura de "cubo de datos" es típica de la representación de información en DW pero fué presentada en "KDD & Data Mining"
- La tecnología de DW es un enfoque comercial y se centra en implementación, desempeño y visualización interactiva.
- La Minería de Datos es más académica y desarrolla procesos más sofisticados.
- Realmente son dos etapas de un proceso que pueden realimentarse.

Minería de datos y "Data Warehousing"

Algunas cuestiones "comerciales"

- Las grandes empresas de bases de datos ofertan herramientas de DW.
- Adicionalmente se ofertan herramientas de DM, en muchos casos no propias.
- La mejores herramientas de DM no son propias de casas de bases de datos
- Existe muy poca ayuda para el usuario

Datos de partida

La estructura de datos más habitual para trabajar con DM es el Dataset

items\variables	V_1	V_2	 V_n
i_1	d_{11}	d_{12}	 d_{1n}
:	:	:	 :
:	:	:	 ÷
i_m	d_{m1}	d_{m2}	 d_{mn}

Datos de partida

La estructura de datos más habitual para trabajar con DM es el Dataset

items\variables	V_1	V_2	 V_n
i_1	d_{11}	d_{12}	 d_{1n}
i :	:	:	 :
i :	:	:	 :
i_m	d_{m1}	d_{m2}	 d_{mn}

- los items representan los casos
- Las variables pueden ser de muchos tipos
- Puede haber datos perdidos

Modelos descriptivos: Agrupamiento (Clustering)

- Consiste en un proceso que agrupa los items de un "dataset" obteniendo un conjunto de "clusters" o clases.
- La mayoría de las técnicas surgen de la Taxonomía Matemática y se basan en la **similaridad** entre items.

Modelos descriptivos: Agrupamiento (Clustering)

- Consiste en un proceso que agrupa los items de un "dataset" obteniendo un conjunto de "clusters" o clases.
- La mayoría de las técnicas surgen de la Taxonomía Matemática y se basan en la **similaridad** entre items.
- No suelen utilizar conocimiento adicional acerca de la forma de los grupos.
- Existen muy diversas técnicas adaptadas a los tipos de datos.
- Las técnicas más avanzadas resuelven problemas de escalabilidad.

Modelización de dependencias

• *Objetivo:* Describir dependencias significativas entre las variables incluidas en la base de datos

Modelización de dependencias

- *Objetivo:* Describir dependencias significativas entre las variables incluidas en la base de datos Los modelos de dependencias pueden ser:
 - Cualitativas o cuantitativas (dependencias funcionales y análisis de regresión)
 - Dependencias parciales o completas

Modelización de dependencias

- Objetivo: Describir dependencias significativas entre las variables incluidas en la base de datos Los modelos de dependencias pueden ser:
 - Cualitativas o cuantitativas (dependencias funcionales y análisis de regresión)
 - Dependencias parciales o completas

Cuando se trata de variables cuantitativas, y se espera la existencia de una relación $y=f(x_1,...x_n)$ tenemos un **modelo predictivo** normalmente de análisis de regresión

Modelización de dependencias

- Objetivo: Describir dependencias significativas entre las variables incluidas en la base de datos Los modelos de dependencias pueden ser:
 - Cualitativas o cuantitativas (dependencias funcionales y análisis de regresión)
 - Dependencias parciales o completas

Cuando se trata de variables cuantitativas, y se espera la existencia de una relación $y=f(x_1,...x_n)$ tenemos un **modelo predictivo** normalmente de análisis de regresión

Cuando no se tiene conocimiento previo, las variables son más generales y se buscan asociaciones entre valores tenemos un modelo descriptivo

Problemas descriptivos: reglas de asociación

Descubren asociaciones importantes entre conjuntos de valores de atributos

• Un ejemplo clásico:

Buscar conexiones entre diferentes tipos de productos en una base de datos de ventas. Por ejemplo saber si los clientes que compran leche compran pan

Modelos descriptivos: Clasificación

- Se tiene un conjunto de datos donde una de las variables representa la clase a la que pertenence el item.
- Buscamos un *procedimiento de clasificación* que no permita incluir cada item nuevo en una clase.
- Las técnicas de clasificación se adaptan de las existentes en Aprendizaje con un especial énfasis en *problemas de escalabilidad*

Modelos descriptivos: Clasificación

- Se tiene un conjunto de datos donde una de las variables representa la clase a la que pertenence el item.
- Buscamos un *procedimiento de clasificación* que no permita incluir cada item nuevo en una clase.
- Las técnicas de clasificación se adaptan de las existentes en Aprendizaje con un especial énfasis en *problemas de escalabilidad*
- Se han adaptado con éxito ID-3, técnicas estadísticas (Análisis Discriminante, Bayesianas), técnicas basadas en redes neuronales y técnicas basadas en "rough sets" y técnicas basadas en lógica difusa.

La clasificación es uno de los problemas mejor estudiados en DM

Series temporales y Análisis de secuencias

- Este tipo de análisis se aplica a datos que dependen del tiempo y para los cuales se quiere encontrar un patrón temporal.
- Habitualmente estos problemas se han tratado mediante las Series Temporales pero estas técnicas de origen estadístico imponen muchas limitaciones a los datos.
- las secuencias suelen ser no estacionarias, no periódicas, irregulares e incluso caóticas.

Series temporales y Análisis de secuencias

- Este tipo de análisis se aplica a datos que dependen del tiempo y para los cuales se quiere encontrar un patrón temporal.
- Habitualmente estos problemas se han tratado mediante las Series Temporales pero estas técnicas de origen estadístico imponen muchas limitaciones a los datos.
- las secuencias suelen ser no estacionarias, no periódicas, irregulares e incluso caóticas.
- Entre las técnicas aplicadas están el procesamiento de se \tilde{n} ales adaptativo, los algoritmos genéticos, y la teoría del caos y sistemas dinámicos no lineales.

Series temporales y Análisis de secuencias

- Este tipo de análisis se aplica a datos que dependen del tiempo y para los cuales se quiere encontrar un patrón temporal.
- Habitualmente estos problemas se han tratado mediante las Series Temporales pero estas técnicas de origen estadístico imponen muchas limitaciones a los datos.
- las secuencias suelen ser no estacionarias, no periódicas, irregulares e incluso caóticas.
- Entre las técnicas aplicadas están el procesamiento de se \tilde{n} ales adaptativo, los algoritmos genéticos, y la teoría del caos y sistemas dinámicos no lineales.
- Se está dedicando mucho esfuerzo al análisis de patrones de secuencias discretas, dependientes o no del tiempo (Stream mining)

Tipos de Minería de datos

Según el ámbito donde se aplique aparecen distintos tipo de DM

Tipos de Minería de datos

Según el ámbito donde se aplique aparecen distintos tipo de DM

Text Mining Cuando se extrae conocimiento de textos.

- Problemas de no estructuración. Forma intermedia
- Problemas de semántica.
- Un problema típico. Detección de identidades

Tipos de Minería de datos

Según el ámbito donde se aplique aparecen distintos tipo de DM

Text Mining Cuando se extrae conocimiento de textos.

- Problemas de no estructuración. Forma intermedia
- Problemas de semántica.
- Un problema típico. Detección de identidades

Web Mining Cuando se extrae conocimiento de la Web

- Mineria Web de contenidos. Básicamente Text Mining
- Minería Web de uso.
- Mineria Web de conexión (Graph Mining)
- Minería sobre redes sociales.

Tipos de Minería de datos

Según el ámbito donde se aplique aparecen distintos tipo de DM

Text Mining Cuando se extrae conocimiento de textos.

- Problemas de no estructuración. Forma intermedia
- Problemas de semántica.
- Un problema típico. Detección de identidades

Web Mining Cuando se extrae conocimiento de la Web

- Mineria Web de contenidos. Básicamente Text Mining
- Minería Web de uso.
- Mineria Web de conexión (Graph Mining)
- Minería sobre redes sociales.

Bioinformática Básicamente Stream Mining y Clustering