МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 7304	 Сергеев И.Д.
Преподаватель	 Ефремов М.А

Санкт-Петербург 2021

Цель работы.

Изучение параметров надежности программ по временным моделям обнаружения ошибок, в частности с использованием модели Джелински-Моранды.

Постановка задачи.

Необходимо выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{Xi\}$, где Xi случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,30], также смотри примечание в π .3), в соответствии с:
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения W(y) = b*exp(-b*y), y >= 0, с параметром b = 0.1 и соответственно $m_{9\text{ксп}} = s_{9\text{ксп}} = 1/b = 10$.
 - с. релеевским законом распределения $W(y) = (y/c^2)*exp(-y^2/(2*c^2)),$ y >= 0, с параметром c = 8.0 и соответственно $m_{pen} = c*sqrt(\pi/2), s_{pen} = c*sqrt(2 \pi/2).$
- 2. Каждый из 3-х массивов {Xi} интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{Xi\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{Xi\}$ использовать n=30,24 и 18 элементов). Для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если B > n, оценить значения средних времен Xj, j = n + 1, n + 2..., n + k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход выполнения.

Равномерное распределение, n = 30:
 Отсортированные сгенерированные значения в Таблице 1:

i	N	i	N	i	N
1	0.254	11	5.647	21	11.864
2	0. 495	12	6.656	22	13.069
3	1.400	13	7.673	23	14.606
4	3.463	14	8.216	24	15.053
5	3.697	15	8.295	25	15.781
6	3.894	16	9.046	26	16.557
7	3.948	17	9.726	27	18.002
8	4.529	18	9.872	28	18.813
9	4.990	19	11.368	29	19.436
10	5.162	20	11.713	30	19.781

Таблица 1: Сгенерированные значения (равномерное распределение, n = 30)

Проверка существования макисмума \hat{B} :

$$A > (n+1)/2$$
,

Воспользуемся следующей формулой для вычисления А:

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 20.74 > 15.5 = (n + 1) / 2.$$

 $m \ge n + 1$, формулы для вычисления f и g:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Вычисление m, f и g представлено на Таблице 2:

m	31	32	33	34	35
f	3.995	3.027	2.558	2.255	2.035
g	2,924	2,664	2,447	2,262	2,103
$ \mathbf{f} - \mathbf{g} $	1.071	0,363	0,111	0.007	0,068

Таблица 2: Вычисление m, f и g (равномерное распределение, n = 30)

$$m = 34$$
, значит $\hat{B} = m - 1 = 33$.

Вычисление К будет происходить по формуле:

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

$$K = 0.007994$$

Оценка значений средних времен Хј будет произведено по формуле:

$$X_{n\!+\!1} = \! \frac{1}{\hat{z}(t_n)} \! = \! \frac{1}{\hat{K}\!\left(\hat{B} - n\right)}.$$

Средние времена до обнаружения k=3 следующих ошибок ($n=30,\ \hat{B}=33$) представлено в Таблице 3:

J XJ

31	41,698
32	62,547
33	125,094

Таблцица 3: Средние времена до обнаружения k=3 следующих ошибок

Время до полного завершения тестирования: 229,339

Полное время: 512,345

2. Равномерное распределение, n = 24:

Отсортированные сгенерированные значения представлена на Таблице 4:

i	N	i	N	i	N
1	0.787	9	4.481	17	12.518
2	1.622	10	5.655	18	12.791
3	1.941	11	6.532	19	14.976
4	2.678	12	8.680	20	16.192
5	2.995	13	9.577	21	18.188
6	3.322	14	10.093	22	18.458
7	4.197	15	10.153	23	19.514
8	4.261	16	12.498	24	19.734

Таблица 4: Сгенерированные значения (равномерное распределение, n = 24)

Проверка существования макисмума \hat{B} :

$$A = 17 > 12.5 = (n + 1) / 2.$$

Вычисление m, f и g представлено на Таблице 5:

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	3	2,667	2.4	2,181	2	1,846
$ \mathbf{f} - \mathbf{g} $	0.776	0.251	0.046	0.125	0.156	0.168

Таблица 5: Вычисление m, f и g (равномерное распределение, n=24)

m = 27, значит $\hat{B} = m - 1 = 26$.

K = 0.020153

Средние времена до обнаружения k=2 следующих ошибок ($n=24,\ \hat{B}=26$) представлено в Таблице 6:

j	Xj
25	24,810
26	49,620

Таблцица 6: Средние времена до обнаружения k=2 следующих ошибок

Время до полного завершения тестирования: 74,43

Полное время: 296,273

3. Равномерное распределение, n = 18:

Отсортированные сгенерированные значения представлена на Таблице 7:

i	N	i	N	i	N
1	0.887	7	7.702	13	13.031
2	2.852	8	8.453	14	13.644
3	4.115	9	8.458	15	14.050
4	4.313	10	9.810	16	14.350
5	6.580	11	10.578	17	17.798
6	7.637	12	11.034	18	18.516

Таблица 7: Сгенерированные значения (равномерное распределение, n = 18)

Проверка существования макисмума \hat{B} :

$$A = 12.06 > 9.5 = (n + 1) / 2.$$

Вычисление m, f и g представлено на Таблице 8:

m	19	20	21	22
f	3.495	2.548	2.098	1.812
g	2,594	2,267	2,013	1,811
$ \mathbf{f} - \mathbf{g} $	0.901	0.281	0.085	0.001

Таблица 8: Вычисление m, f и g (равномерное распределение, n = 18)

m = 22, значит $\hat{B} = m - 1 = 21$.

K = 0.021646

Средние времена до обнаружения k=3 следующих ошибок ($n=18,\ \hat{B}=21$) представлено в Таблице 9:

j	Xj
19	15,399
20	23,099
21	46,198

Таблцица 9: Средние времена до обнаружения k=3 следующих ошибок

Время до полного завершения тестирования: 96,245

Полное время: 270,053

4. Экспоненциальное распределение, n = 30:

Отсортированные сгенерированные значения представлена на Таблице 10:

i	N	i	N	i	N
1	0.435	11	4.521	21	12.369
2	0.565	12	4.760	22	13.901
3	0.740	13	5.106	23	18.417
4	0.829	14	5.137	24	18.632
5	0.910	15	6.770	25	21.836
6	1.234	16	8.500	26	23.499
7	1.528	17	9.104	27	25.035
8	2.515	18	11.891	28	32.943
9	3.470	19	12.273	29	59.974
10	4.192	20	12.343	30	74.345

Таблица 10: Сгенерированные значения (экспоненциальное распределение, n = 30)

Проверка существования макисмума \hat{B} :

A = 24.17 > 15.5 = (n + 1) / 2.

Вычисление m, f и g представлено на Таблице 11:

m	31	32	33
f	3.995	3.027	2.558
g	4,392	3,831	3,398
$ \mathbf{f} - \mathbf{g} $	0.545	0.804	0.84

Таблица 11: Вычисление m, f и g (экспоненциальное распределение, n = 30)

m = 31, значит $\hat{B} = m - 1 = 30$.

аблициа 12: Средние времена до обнаружения k=1 следующих ошибок Полное время: 397,774

5. Экспоненциальное распределение, n = 24:

Отсортированные сгенерированные значения представлена на Таблице 13:

i	N	i	N	i	N
1	0.905	9	3.566	17	16.359
2	1.452	10	4.355	18	16.542
3	1.479	11	4.660	19	17.775
4	1.813	12	4.933	20	19.378
5	1.919	13	6.371	21	21.350
6	2.920	14	6.480	22	21.457
7	3.075	15	11.335	23	22.939
8	3.228	16	11.847	24	24.974

Таблица 13: Сгенерированные значения (экспоненциальное распределение, n = 24)

Проверка существования макисмума \hat{B} :

$$A = 17.99 > 12.5 = (n + 1) / 2.$$

Вычисление m, f и g представлено на Таблице 14:

m	25	26	27
f	3.776	2.816	2.354

g	3,423	2,996	2,664
$ \mathbf{f} - \mathbf{g} $	0.353	0.180	0.310

Таблица 14: Вычисление m, f и g (экспоненциальное распределение, n = 24)

m = 26, значит $\hat{B} = m - 1 = 25$.

K = 0.012965

Средние времена до обнаружения k=1 следующих ошибок ($n=24,\ \hat{B}=25$) представлено в Таблице 15:

j	Xj
25	77,131

Таблцица 15: Средние времена до обнаружения k=1 следующих ошибок

Время до полного завершения тестирования: 77,131

Полное время: 308,233

6. Экспоненциальное распределение, n = 18:

Отсортированные сгенерированные значения представлена на Таблице 16:

i	N	i	N	i	N
1	0.515	7	4.360	13	9.647
2	0.537	8	6.627	14	11.397
3	1.554	9	6.698	15	18.157
4	1.881	10	7.373	16	19.018
5	2.016	11	8.061	17	23.144
6	3.341	12	8.503	18	24.568

Таблица 16: Сгенерированные значения (экспоненциальное распределение, n =

18)

Проверка существования макисмума \hat{B} :

$$A = 13.66 > 9.5 = (n + 1) / 2.$$

Вычисление m, f и g представлено на Таблице 17:

m	19	20
f	3.495	2.548
g	3,371	2.839
$ \mathbf{f} - \mathbf{g} $	0.124	0.291

Таблица 17: Вычисление m, f и g (экспоненциальное распределение, n = 18)

m = 19, значит $\hat{B} = m - 1 = 18$.

 $\hat{B} = n$, значит время до полного завершения тестирования: 0.

Полное время: 157,397

7. Релеевское распределение, n = 30:

Отсортированные сгенерированные значения представлена на Таблице 18:

i	N	i	N	i	N
1	2.147	11	7.149	21	12.157
2	3.561	12	7.636	22	12.552
3	4.509	13	7.879	23	13.015
4	4.760	14	8.133	24	13.302
5	4.844	15	8.817	25	13.560
6	4.988	16	8.920	26	13.671
7	5.179	17	9.553	27	15.580
8	5.493	18	10.619	28	17.450
9	5.779	19	11.415	29	23.570
10	6.838	20	11.922	30	27.398

Таблица 18: Сгенерированные значения (релеевское распределение, n = 30)

Проверка существования макисмума \hat{B} :

$$A = 19.58 > 15.5 = (n + 1) / 2.$$

Вычисление m, f и g представлено на Таблице 19:

m	31	32	33	34	35	36	37	38	39
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609	1.510
g	2,627	2,415	2,235	2,080	1,946	1,827	1,722	1,629	1,545

$ \mathbf{f} - \mathbf{g} $	1.368	0.612	0.323	0.175	0.089	0.036	0.003	0.02	0.035
-----------------------------	-------	-------	-------	-------	-------	-------	-------	------	-------

Таблица 19: Вычисление m, f и g (релеевское распределение, n = 30)

m = 37, значит $\hat{B} = m - 1 = 36$.

K = 0.005892

Средние времена до обнаружения k=6 следующих ошибок ($n=30,\ \hat{B}=36$) представлено в Таблице 20:

j	Xj
31	28,287
32	33,944
33	42,430
34	56,574
35	84,861
36	169,722

Таблцица 20: Средние времена до обнаружения k=6 следующих ошибок

Время до полного завершения тестирования: 415,818

Полное время: 708,184

8. Релеевское распределение, n = 24:

Отсортированные сгенерированные значения представлена на Таблице 21:

i	N	i	N	i	N
1	2.079	9	7.407	17	11.889
2	2.618	10	7.679	18	12.276
3	3.000	11	8.572	19	12.461
4	3.679	12	8.806	20	13.155
5	4.400	13	9.000	21	15.497
6	4.453	14	9.909	22	16.092
7	5.877	15	10.039	23	18.689
8	6.482	16	10.220	24	20.420

Таблица 21: Сгенерированные значения (релеевское распределение, n = 24)

Проверка существования макисмума \hat{B} :

$$A = 16,06 > 12.5 = (n + 1) / 2.$$

Вычисление m, f и g представлено на Таблице 22:

m	25	26	27	28	29	30	31	32
f	3.776	2.816	2.354	1.844	2.058	1.678	1.545	1.434
g	2,685	2,414	2,194	2,01	1,855	1,722	1,606	1,506
$ \mathbf{f} - \mathbf{g} $	1.091	1,402	0.16	0.166	0.203	0.044	0.061	0.072

Таблица 22: Вычисление m, f и g (релеевское распределение, n = 24)

m = 30, значит $\hat{B} = m - 1 = 29$.

K = 0.007661

Средние времена до обнаружения k=5 следующих ошибок ($n=24,\ \dot{B}=29$) представлено в Таблице 23:

j	Xj
25	26,106
26	32,633
27	43,510
28	65,266
29	130,531

Таблцица 23: Средние времена до обнаружения k=5 следующих ошибок

Время до полного завершения тестирования: 298,046

Полное время: 522,745

9. Релеевское распределение, n = 18:

Отсортированные сгенерированные значения представлена на Таблице 24:

i	N	i	N	i	N
1	0.344	7	7.437	13	13.569
2	2.846	8	8.850	14	15.729

3	3.726	9	9.457	15	17.017
4	3.917	10	9.787	16	17.091
5	6.328	11	12.135	17	17.710
6	6.945	12	12.544	18	32.097

Таблица 24: Сгенерированные значения (релеевское распределение, n = 18)

Проверка существования макисмума \hat{B} :

$$A = 12.84 > 9.5 = (n + 1) / 2.$$

Вычисление m, f и g представлено на Таблице 25:

m	19	20	21	22	23	24
f	3.495	2.548	2.098	1.812	1.607	1.451
g	2,922	2,514	2,206	1,965	1,772	1,613
$ \mathbf{f} - \mathbf{g} $	0.573	0.034	0.108	0.153	0.165	0.162

Таблица 25: Вычисление m, f и g (релеевское распределение, n = 18)

m = 20, значит $\hat{B} = m - 1 = 19$.

K = 0.012726

Средние времена до обнаружения k=1 следующих ошибок ($n=18,\ \hat{B}=19$) представлено в Таблице 26:

j	Xj
19	78,579

Таблцица 26: Средние времена до обнаружения k = 1 следующих ошибок

Время до полного завершения тестирования: 78,579

Полное время: 276,108

10.Итоги исследования:

Оценка первоначального количества ошибок представлена в Таблице 27:

Распределение	n = 30	n = 24	n = 18
Равномерное	33	26	21

Экспоненциальное	30	25	18
Релеевское	36	29	19

Таблица 27: Оценка первоначального количества ошибок

Оценка полного времени проведения тестирования представлена в Таблипе 28:

Распределение	n = 30	n = 24	n = 18	
Равномерное	512,345	296,273	270,053	
Экспоненциальное	397,774	308,233	157,397	
Релеевское	708,184	522,745	276,108	

Таблица 28: Оценка полного времени проведения тестирования

Выводы.

В ходе выполнения лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Моранды для 3 законов распределения времен обнаружения отказов и различного числа данных. При всех возможных п релеевское распределение имеет худшие показатели, после него по времени идёт равномерное распределение. Экспоненциальный закон распределения оказался лучшим по всем характеристикам при всех возможных п, подтверждая предположение, что «время до следующего отказа программы распределено экспоненциально».