Probability and Statistics for JMC

Lectured by Alex Geringer-Sameth Typed by Aris Zhu Yi Qing

May 15, 2021

Contents

1	Rev	riew of Elementary Set Theory	2
2	Visi	ual and Numerical Summaries	3
	2.1	Visualization	3
	2.2	Summary Statistics	5
		2.2.1 Measures of Location	5
		2.2.2 Measures of Dispersion	6
		2.2.3 Covariance, Correlation, and Skewness	6
		2.2.4 Box-and-whisker plot	7
3	Pro	bability	8
	3.1	Formal Definition of Probability	8
		3.1.1 σ -algebra	8
		3.1.2 Probability Measure	9
	3.2	Conditional Probability	10
	3.3	Independence	11
	3.4		11
4	Disc		13
	4.1	Random Variables	13
	4.2	Discrete Random Variables	14
	4.3	Functions of a Discrete Random Variable	16
	4.4	Mean and Variance	16
	4.5	Some important Discrete Random Variables	18

Review of Elementary Set Theory

```
Ω
              universal set
      \emptyset
              empty set
A\subseteq\Omega
             subset of \Omega
      \overline{A}
             Complement of A
    |A|
             cardinality of A
             union (A \text{ or } B)
A \cup B
A \cap B
             intersection(A \text{ and } B)
A = B
             both sets have exactly the same elements
  A \backslash B
             set difference (elements in A that are not in B)
              a singleton with only the element \omega in the set
   \{\omega\}
              \big\{(a,b)|a\in A,b\in B\big\}
A \times B
```

Visual and Numerical Summaries

2.1 Visualization

Definition 1. The *histogram* allows us to visualize how a sample of data is distributed, say the observed values are $\{x_1, \ldots, x_2\}$. The first step is deciding on a set of *bins* that divide the range of x into a series of intervals. A histogram then shows the *frequency* for each bin.

<u>Comments</u> Often the histogram's y-axis is normalized in some way.

- Instead of showing frequency, the height of the histogram can show **relative frequency**, the fraction of the data set contained within the bin. In this case, $1 = \sum_{\text{bins } i} y_i$, where y_i is the relative frequency at bin i.
- The histogram could also show the **density**, the relative frequency divided by the bin width. In this case, $1 = \sum_{\text{bins } i} \rho_i \Delta x_i$, where ρ_i is the density for bin i and Δx_i is the width of bin i.

Definition 2. The *empirical cumulative distribution function* of a sample of real values $\{x_1, \ldots, x_n\}$ is

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(x_i \le x),$$

where $I(x_i \leq x)$ is an *indicator function*, i.e. the value is 1 when $x_i \leq x$ and 0 when $x_i > x$.

Figure 2.1: The first diagram is the histogram, and the second diagram is the empirical cdf with the same set of data

2.2 Summary Statistics

2.2.1 Measures of Location

arithmetic mean
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 geometric mean
$$x_G = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$$
 harmonic mean
$$\frac{1}{x_H} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i}$$

$$i^{\text{th}} \text{ order statistic} \qquad x_{(i)} = \text{the } i^{\text{th}} \text{ smallest value of the sample}$$

$$median \qquad x_{\left(\frac{n+1}{2}\right)}$$
 mode
$$x_i \text{ which occurs most frequently in the sample}$$

Comments

• For positive data $\{x_1, \ldots, x_n\}$,

arithmetic mean \geq geometric mean \geq harmonic mean.

• Arithmetic mean and geometric mean are related in the following way:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} \ln y_i = \frac{1}{n} \ln \prod_{i=1}^{n} y_i = \ln \left(\prod_{i=1}^{n} y_i \right)^{\frac{1}{n}} = \ln x_G,$$

where $x_i = \ln y_i$.

• For $x_{(i)}$, when i is not an integer, we define $\alpha \in (0,1)$ s.t. $\alpha = i - \lfloor i \rfloor$, and

$$x_{(i)} = (1 - \alpha)x_{(\lfloor i \rfloor)} + \alpha x_{(\lceil i \rceil)}.$$

2.2.2 Measures of Dispersion

mean square/sample variance
$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$
 root mean square/sample standard deviation
$$s = \sqrt{s^2}$$
 range
$$x_{(n)} - x_{(1)}$$
 first quartile
$$x_{\left(\frac{1}{4}(n+1)\right)}$$
 third quartile
$$x_{\left(\frac{3}{4}(n+1)\right)} - x_{\left(\frac{3}{4}(n+1)\right)}$$
 interquartile range
$$x_{\left(\frac{1}{4}(n+1)\right)} - x_{\left(\frac{3}{4}(n+1)\right)}$$

Comments

• sample variance's different expression:

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2} = \overline{x^{2}} - \overline{x}^{2}.$$

• Robustness, shown in table 2.1

Table 2.1: Robustness of different location and dispersion statistic

	Least Robust	More Robust	Most Robust
Location	$\frac{x_{(1)} + x_{(n)}}{2}$	\overline{x}	$\mathcal{X}_{\left(\frac{n+1}{2}\right)}$
Dispersion	$x_{(n)} - x_{(1)}$	s	$x_{\left(\frac{3}{4}(n+1)\right)} - x_{\left(\frac{1}{4}(n+1)\right)}$

2.2.3 Covariance, Correlation, and Skewness

covariance
$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

correlation $r_{xy} = \frac{s_{xy}}{s_x s_y}$
skewness $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s}\right)^3$

Comments

• covariance's different expression:

$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i + \frac{1}{n} \sum_{i=1}^{n} -x_i \overline{y} - \overline{x} y_i + \overline{x} \overline{y} = \frac{\sum_{i=1}^{n} x_i y_i}{n} - \overline{x} \overline{y}.$$

In the random variable's context, it is

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

• Correlation gives a scale-invariant measurement of relatedness between x and y, since

$$|r_{xy}| \leq 1.$$

• A sample is **positively** (**negatively**) or **right** (**left**) **skewed** if the upper tail of the histogram of the sample is longer (shorter) than the lower tail.

2.2.4 Box-and-whisker plot

The diagram is based on the five-point summary (use Figure 2.2 as reference):

- Median middle line in the box.
- 3rd and 1st Quartiles top and bottom of the box.
- "Whiskers" extend out as dashed lines from the box to max/min values, which are the two short horizontal lines.
- Any outliers, i.e. extreme points beyond the whiskers, are plotted individually as dots.

Figure 2.2: the counts of insects found in agricultural experimental units treated with six different insecticides A-F

Probability

3.1 Formal Definition of Probability

3.1.1 σ -algebra

Definition 3. \mathcal{F} , a collection of subsets of a set S, is called a σ -algebra associated with S if:

- (a) $S \in \mathcal{F}$,
- (b) \mathcal{F} is closed under complements w.r.t. S:

$$E \in \mathcal{F} \Longrightarrow \overline{E} \in \mathcal{F},$$

(c) \mathcal{F} is closed under countable unions:

$$E_1, E_2, \ldots \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{F}.$$

Comments Definition 3 implies two facts.

1. \mathcal{F} must contain the empty set \emptyset .

Proof. Since
$$S \in \mathcal{F}$$
, we have $\overline{S} = \emptyset \in \mathcal{F}$.

2. \mathcal{F} must be closed under countable intersections.

Proof. Let $E_1, E_2, \ldots \in \mathcal{F}$. We can then imply the following:

$$\overline{E_1}, \overline{E_2}, \ldots \in \mathcal{F} \Rightarrow \bigcup_i \overline{E_i} \in \mathcal{F} \Rightarrow \overline{\bigcup_i \overline{E_i}} \in \mathcal{F} \xrightarrow{\text{De Morgan's Law}} \bigcap_i E_i \in \mathcal{F}.$$

In short, we can take unions, intersections, and complements of members of \mathcal{F} in any combination and the result will always be a member of \mathcal{F} .

3.1.2 Probability Measure

(Kolmogorov's axioms of probability) Definition 4. A probability measure P is a function $P : \mathcal{F} \mapsto \mathbb{R}$ satisfying

- (a) $P(E) \ge 0 \ \forall E \in \mathcal{F}$,
- (b) P(S) = 1,
- (c) If $E_1, E_2, \ldots \in \mathcal{F}$ are disjoint (i.e. $E_i \cap E_j = \emptyset \ \forall i \neq j$) then

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i).$$

The triplet (S, \mathcal{F}, P) , consisting of a set S, a σ -algebra \mathcal{F} of subsets of S, and a probability measure P, is called a **probability space**.

Comments

- The **sample space** (S) is the set of all possible outcomes of an experiment.
- The **event space** (\mathcal{F}) is the set of possible events, where an **event** E is a subset of the sample space, $E \subseteq S$. An **elementary event** is one that consist of a single element of S, i.e. a singleton.
- The probability measure (P) has three important interpretations:
 - 1. classical: Different outcomes in the sample space S are "equally likely",
 - 2. **frequentist**: the relative frequency of an event over many trials,
 - 3. **subjective**: a numerical measure of the degree of belief held by an individual.

Example 5. "A sensor can detect items within 10 cm of the sensor. The sensor is placed in a room together with an object, and the probability that the sensor makes a detection is 0.0001."

- 1. **classical**: The volume within 10 cm of the sensor divided by the volume of the room is 0.0001.
- 2. **frequentist**: If we repeat the experiment a lot of times, then the fraction of the experiments in which the sensor makes a detection is 0.0001.
- 3. **subjective**: Someone's subjective degree of belief, measured on a numerical scale from 0 to 1, that the sensor will detect is 0.0001.
- several results that can be derived from the probability measure axioms:

$$-P(\emptyset)=0.$$

$$-P(E) \le 1.$$

$$-P(\overline{E}) = 1 - P(E).$$

$$-P(E \cup F) = P(E) + P(F) - P(E \cap F)..$$

$$-P(E \cap \overline{F}) = P(E) - P(E \cap F).$$

$$-\text{If } E \subset F \text{ then } P(E) \le P(F).$$

3.2 Conditional Probability

Definition 6. If P(F) > 0 then the **conditional probability** of E given F is

$$P(E|F) = \frac{P(E \cap F)}{P(F)}.$$

Comments

- Difference among the following forms:
 - -P(E|F) conditional probabilities,
 - $-P(E \cap F)$ joint probabilities,
 - -P(E) marginal probabilities.
- several results derived from the conditional probability definition:
 - $-P(E|F) \ge 0$ for any event E.
 - P(F|F) = 1.
 - If the events E_1, E_1, \ldots are pairwise disjoint, then $P\left(\left(\bigcup_i E_i\right)|F\right) = \sum_i P(E_i|F)$.
- Warning: In general, $P(E|F) \neq P(F|E)$.

Example 7. A medical test for a disease D has outcomes + and -. The probabilities are

	D	\overline{D}	
+	0.009	0.099	0.108
_	0.001	0.891	0.892
	0.01	0.99	

By the definition of conditional probability, we have

$$P(+|D) = 90\%, \quad P(-|\overline{D}) = 90\%, \quad P(D|+) = \frac{0.009}{0.108} \approx 0.083.$$

The first two probabilities show that the test is fairly accurate. Sick people yield a positive 90% of the time and healthy people yield a negative 90% of the time.

3.3 Independence

Definition 8. Two events E and F are *independent* iff

$$P(E \cap F) = P(E)P(F).$$

Comments

• Extension: The events E_1, \ldots, E_k are independent if, for every subset of events of size $l \leq k$, say indexed by $\{i_1, \ldots, i_l\}$,

$$P\left(\bigcap_{j=1}^{l} E_{i_j}\right) = \prod_{j=1}^{l} P(E_{i_j}).$$

- Independence could be either assumed or verified via the definition.
- Disjoint events with positive probability are not independent.
- From the definition of conditional probability, we can deduce that E and F are independent iff P(E|F) = P(E).

Definition 9. For three events E_1, E_2, F , the pair of events E_1 and E_2 are said to be **conditionally independent given** F iff

$$P(E_1 \cap E_2|F) = P(E_1|F)P(E_2|F).$$

which could also be written as $E_1 \perp E_2 | F$.

3.4 Bayes' Theorem

(The Law of Total Probability) Theorem 10. Let $E_1, E_2, ...$ be a partition of S, i.e. $E_i \cap E_j = \emptyset$ for $i \neq j$ and $\bigcup_i E_i = S$. Then, for any event $F \subseteq S$, we have

$$P(F) = \sum_{i} P(F|E_i)P(E_i).$$

Proof.
$$P(F) = P(\bigcup_i F \cap E_i) = \sum_i P(F \cap E_i) = \sum_i P(F|E_i)P(E_i)$$
.

(Bayes' Theorem) Theorem 11. If P(F) > 0 and let $E_1, E_2, ...$ be a partition on S s.t. $P(E_i) > 0 \forall i$, we have

$$P(E_i|F) = \frac{P(F|E_i)P(E_i)}{P(F)} = \frac{P(F|E_i)P(E_i)}{\sum_{i} P(F|E_i)P(E_i)},$$

where $P(E_i|F)$ is called the **posterior**, $P(F|E_i)$ is called the **likelihood**, $P(E_i)$ is called the **prior**, and P(F) is called the **evidence**.

Proof. Exercise! haha

Example 12. A new covid-19 test is claimed to correctly identify 95% of people who are really covid-positive and 98% of people who are really covid-negative. If only 1 in a 1000 of the population are infected, what is the probability that a randomly selected person who tests positive actually has the disease?

Let I= "has a covid infection" and T= "test is positive". We are given $P(T|I)=0.95, P(\overline{T}|\overline{I})=0.98, P(I)=0.001$. We can thus derive that

$$P(I|T) = \frac{P(T|I)P(I)}{P(T)} = \frac{P(T|I)P(I)}{P(T|I)P(I) + P(T|\overline{I})P(\overline{I})} = \frac{0.95 \times 0.001}{0.95 \times 0.001 + 0.02 \times 0.999} = 0.045.$$

Discrete Random Variables

4.1 Random Variables

Definition 13. A *random variable* is a (measurable) mapping

$$X: S \mapsto \mathbb{R}$$

with the property that $\{s \in S : X(s) \le x\} \in \mathcal{F} \ \forall x \in \mathbb{R}$. This ensures that any set $B \subseteq \mathbb{R}$ corresponds to an event in the event space \mathcal{F} .

Definition 14. The image of S under X is called the range of the random variable

$$\mathbb{X} \equiv X(S) = \{X(s) | s \in S\} = \{x \in \mathbb{R} \mid \exists s \in S \text{ s.t. } X(s) = x\}.$$

So S contains all the possible outcomes of the experiment, \mathbb{X} contains all the possible outcomes of the random variable X.

Definition 15. The *probability distribution* of X is defined as

$$P_X = P_X(X \in B \subseteq \mathbb{R}) = P(\{s \in S : X(s) \in B\})$$

which enables us to transfer the probability measure P defined on \mathcal{F} to the real numbers in a natural way, and vice versa. For instance,

$$P_X(X = 7) = P(\{s \in S | X(s) = 7\}),$$

$$P_X(a < X \le b) = P(\{s \in S | a < X(s) \le b\}).$$

Example 16. Consider counting the number of heads in a sequence of 3 coin tosses. The underlying sample space is

$$S = \left\{TTT, TTH, THT, HTT, THH, HTH, HHT, HHH\right\}.$$

Since we are only interested in the number of heads in each sequence, we define the random variable X by

$$X(s) = \begin{cases} 0, & s = TTT, \\ 1, & s \in \{TTH, THT, HTT\}, \\ 2, & s \in \{HHT, HTH, THH\}, \\ 3, & s = HHH. \end{cases}$$

Thus, the probability of the number of heads X is less than 2 is

$$P_X(X < 2) = P(\{s \in S : X(s) < 2\})$$

$$= P(\{TTT, TTH, THT, HTT\})$$

$$= \frac{|\{TTT, TTH, THT, HTT\}|}{|S|}$$

$$= \frac{4}{8} = \frac{1}{2}.$$

On a side note, the above process uses the classical interpretation on the probability measure.

Definition 17. The *Cumulative Distribution Function (CDF)* of a random variable X is the function $F_X : \mathbb{R} \mapsto [0,1]$, defined by

$$F_X(x) = P_X(X \le x) = P(\{s \in S : X(s) \le x\}).$$

Comments

- Given a right-continuous function $F_X(x)$, check the following to verify if it is a valid CDF:
 - (i) $0 \le F_X(x) \le 1 \ \forall x \in \mathbb{R}$,
 - (ii) Monotonicity (non-decreasing): $\forall x_1, x_2 \in \mathbb{R}, x_1 < x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$.
 - (iii) $F_X(-\infty) = 0, F_X(\infty) = 1.$
- For finite intervals $(a, b] \subseteq \mathbb{R}$, it is easy to check that

$$P_X(a < X \le B) = F_X(b) - F_X(a).$$

• Usually we suppress the subscript of $P_X(\cdot)$ and just write $P(\cdot)$ for the probability measure for the random variable, unless there is any ambiguity.

4.2 Discrete Random Variables

Definition 18. A random variable X is **discrete** if the range of X, X, is countable, that is

$$\mathbb{X} = \{x_1, x_2, \dots, x_n\}$$
 (finite) or $\mathbb{X} = \{x_1, x_2, \dots\}$ (infinite).

Definition 19. For a discrete random variable X, we define the **Probability Mass** Function (PMF) as

$$p_X(x) = P_X(X = x), \quad x \in \mathbb{X}.$$

For completeness, we also define

$$p_X(x) = 0, \quad x \notin \mathbb{X}.$$

so that p_x is defined for all $x \in \mathbb{R}$.

Definition 20. The *support* of a random variable X is defined as

$$\left\{x \in \mathbb{R} : p_X(x) > 0\right\},\,$$

which is almost always the same as the range X.

Properties of p_X and F_X

- $p_X(x_i) \geq 0$.
- $\sum_{x \in \mathbb{X}} p_X(x) = 1$.
- $F_X(x) = P(X \le x), x \in \mathbb{R}$.
- Let X be a discrete random variable with range $\mathbb{X} = \{x_1, x_2, \ldots\}$, where $x_1 < x_2 < \ldots$. Then for any $x \in \mathbb{R}$, if $x < x_1$, $F_X(x) = 0$; otherwise

$$F_X(x) = \sum_{x_i \le x} p_X(x_i) \iff p_X(x_i) = F_X(x_i) - F_X(x_{i-1}), \quad i = 2, 3, \dots,$$

with $p_X(x_1) = F_X(x_1)$.

- $\lim_{x\to-\infty} F_X(x) = 0$, $\lim_{x\to\infty} F_X(x) = 1$.
- F_X is continuous from the right on \mathbb{R} , i.e. for $x \in \mathbb{R}$, $\lim_{h \to 0^+} F_X(x+h) = F_X(x)$.
- F_X is non-decreasing, i.e. $a < b \Longrightarrow F_X(a) \le F_X(b)$.
- For a < b, $P(a < X \le b) = F_X(b) F_X(a)$.

4.3 Functions of a Discrete Random Variable

Definition 21. The PMF of Y = g(X) is found by grouping all the values in the range of x that correspond to the same value of Y, i.e.

$$p_Y(y) = \sum_{x \in \mathbb{X}: g(x) = y} p_X(x).$$

4.4 Mean and Variance

Definition 22. The *expected value*, or *mean* of a discrete random variable X is defined to be

$$E_X(X) = \sum_{x \in \mathbb{X}} x p_X(x),$$

which is often written as E(X), E[X], or μ_X .

Theorem 23.

$$E(g(X)) = \sum_{x \in \mathbb{X}} g(x) p_X(x).$$

Proof. Let Y = g(X), then

$$E(Y) = \sum_{y \in \mathbb{Y}} y p_Y(y)$$

$$= \sum_{y \in \mathbb{Y}} y \sum_{x \in \mathbb{X}: g(x) = y} p_X(x)$$

$$= \sum_{y \in \mathbb{Y}} \sum_{x \in \mathbb{X}: g(x) = y} g(x) p_X(x)$$

$$= \sum_{x \in \mathbb{Y}} g(x) p_X(x).$$

Theorem 24. Let X be a random variable with p_X . Let g and h be real-valued functions, $g, h : \mathbb{R} \to \mathbb{R}$, and let a and b be constants. Then

$$E(ag(X) + bh(X)) = aE(g(X)) + bE(h(X)).$$

Proof. Exercise!

Definition 25. Let X be a random variable. The *variance* of X, denoted by σ^2 or σ_X^2 or $\operatorname{Var}_X(X)$, is defined by

$$\operatorname{Var}_X(X) = E_X \left[(X - E_X(X))^2 \right].$$

Proposition 26.

$$Var(X) = E(X^2) - E(X)^2.$$

Proof.

LHS =
$$E[X^2 - 2E(X)X + E(X)^2]$$

= $E(X^2) - 2E(X)E(X) + E(X)^2$
= RHS.

Proposition 27.

$$Var(aX \pm bY) = a^2 Var(X) + b^2 Var(Y) \pm 2ab Cov(X, Y).$$

Proof. Exercise!

Definition 28. The *standard deviation* of a random variable X, written $\operatorname{sd}_X(X)$ or σ_X , is the square root of the variance,

$$\sigma_X = \sqrt{\operatorname{Var}_X(X)}.$$

Definition 29. The *skewness* (γ_1) of a discrete random variable X is given by

$$\gamma_1 = \frac{E_X \left[\left\{ X - E_X(X) \right\}^3 \right]}{\sigma_X^3}.$$

Sums of Random Variables

Let X_1, X_2, \ldots, X_n be n random variables, perhaps with different distributions and not necessarily independent. Let $S_n = \sum_{i=1}^n X_i$ be the sum of those variables, and $\frac{S_n}{n}$ be their sample average. Both S_n and $\overline{S} = \frac{S_n}{n}$ are random variables themselves.

The mean of S_n and $\frac{S_n}{n}$ are given by

$$E(S_n) = \sum_{i=1}^n E(X_i), \quad E\left(\overline{S}\right) = \frac{\sum_{i=1}^n E(X_i)}{n} = \mu_X.$$

If X_1, X_2, \ldots, X_n are **independent**, we can calculate the variance of S_n and $\overline{S} = \frac{S_n}{n}$ as well:

$$\operatorname{Var}(S_n) = \sum_{i=1}^n \operatorname{Var}(X_i), \quad \operatorname{Var}(\overline{S}) = \frac{\sum_{i=1}^n \operatorname{Var}(X_i)}{n^2} = \frac{\sigma_X^2}{n}.$$

4.5 Some important Discrete Random Variables

Definition 30. We say X follows a **Bernoulli Distribution** if $X \sim \text{Bernoulli}(p)$, where $0 \le p \le 1$, and the pmf is given by

$$p_X(x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & \text{otherwise} \end{cases} = p^x (1 - p)^{1 - x}, \quad x \in \mathbb{X} = \{0, 1\}.$$

Definition 31. We say X follows a **Binomial Distribution** if $X \sim \text{Binomial}(n, p)$, where $0 \le p \le 1$ and $n \in \mathbb{Z}^+$, and the pmf is given by

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x \in \mathbb{X} = \{0, 1, 2, \dots, n\}.$$

Definition 32. We say X follows a **Geometric Distribution** if $X \sim \text{Geometric}(p)$, where $0 \le p \le 1$, and the pmf is given by

$$p_X(x) = p(1-p)^{x-1}, \quad x \in \mathbb{X} = \{1, 2, \ldots\}.$$

Alternatively, let Y = X - 1, then $Y \sim \text{Geometric}(p)$ with the pmf

$$p_Y(y) = p(1-p)^y, \quad y \in \mathbb{N} = \{0, 1, 2, \ldots\}.$$

Definition 33. We say X follows a **Poisson Distribution** if $X \sim \text{Poissons}(\lambda)$, where $\lambda > 0$, and the pmf is given by

$$p_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x \in \mathbb{X} = \{0, 1, 2, \ldots\}.$$

Definition 34. We say X follows a **Discrete Uniform Distribution** if $X \sim \text{Uniform}(\{1, 2, ..., n\})$, and the pmf is given by

$$p_X(x) = \frac{1}{n}, \quad x \in \mathbb{X} = \{1, 2, \dots, n\}.$$

		Variance (σ^2)	Skewness(γ_1)
Bernoulli	p	p(1-p)	N.A.
Binomial	np	np(1-p)	$\frac{1-2p}{\sqrt{np(1-p)}}$
Geometric(original)	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{2-p}{\sqrt{1-p}}$
Geometric(alternative)	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\frac{2-p}{\sqrt{1-p}}$
Poisson	λ	λ	$\frac{1}{\sqrt{\lambda}}$
Uniform	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	0

Table 4.1: Means and Variances of different distributions

Comments

- From table 4.1, we can see that the skewness of both Geometric and Poisson Distribution is always positive.
- Approximation of Bionomial distribution as Poisson distribution. It can be shown that for Binomial(n, p), when p is small and n is large, this distribution can be well approximated by the Poisson distribution with rate parameter $\lambda = np$, Poisson(np).