

Class Diagrams for Abstract Data Types

Thai Son Hoang, Colin Snook, Dana Dghaym, and Michael Butler (accepted for ICTAC 2017)

ECS, University of Southampton, U.K.

Event-B Mini-Symposium ECS, University of Southampton, 27th June 2017

Outline

Motivation

Illustration. The Stack ADT

Example. The RailGround Case Study

Motivation. Visualisation for ADTs

The Aim

Aiding design of ADTs using class diagrams.

Stack ADT

- ► Polymorphic datatype.
- emptyStack: denotes an empty stack.
- ▶ top: takes a non-empty stack st and returns st's top element.
- pop: takes a non-empty stack st and returns a stack where st's top element is removed.
- ▶ push: takes a stack st and an element e and returns a stacks where e is added to the top of st.

- ► STACK is polymorphic with T is the type parameter.
- theory STACK<T>

- ► emptyStack is constant STACK
- ▶ top is a "query" operator returning an element of type T

```
emptyStack: "STACK<T>"
top(st : "STACK<T>"): "T"
```


pop is an operator with one input (st) and one output (of type STACK<T>)

```
pop(st: "STACK<T>"): "STACK<T>"
```


push is an operator with two inputs (st and e) and one output (of type STACK<T>)

```
push(st: "STACK<T>", e: "T"): "STACK<T>"
```


► ≺ is a predicate with two inputs (e and st) stating that e is in the stack st.

```
_{1} \prec (e: "T", st: "STACK<T>") infix
```


► Axioms are lifted to all instances of the STACK datatype, e.g.,

RailGround

- ► A formal model of a (simplified) railway interlocking system.
- ▶ Provided by Thales Austria GmbH.
- ► Research on formal validation and verification of railway systems.

RailGround. Concepture Entities

- ► Rail Elements: T, P1, P2
- ▶ Rail Connectors: a, b, c, ...
- ▶ Segments: bc, de, di, ...
- ▶ Paths/Route: [bc,de,fg], [bc, di,ig], ...
- Vacancy Detection: correspond to a set of segments
- ► Signals: S1, S2, S3, S4

Refinement Strategy

- ► M0: To abstractly specify active routes in the system, focusing on the collision-free property
- ► M1: To introduce the life-cycle of routes by specifying requested routes.
- ▶ M2: To formalise the rail elements and the link between rail elements and paths.
- ▶ M3: To specify the element positions and their association with the rail elements.
- ▶ M4: To introduce the track vacancy detection mechanism.
- ▶ **M5**: To introduce the signals protecting the trains' movement.

Southampton School of Electronics and Computer Science

Paths

- ▶ p ⊕ q: Paths p and q are disjoint.
- ightharpoonup p \sqsubseteq q: p is a sub-path of q.

Southampton School of Electronics and Computer Science

Rail Elements

- ► rail_elements (p): Returns the set of element of a path p
- ▶ shrink (p, re): Remove element re from path p.
- ▶ re « p (direct definition): Element re belongs to path p.

Southampton School of Electronics and Computer Science

Rail Positions

- ▶ rp re: rail position rp is a valid for rail element re.
- ▶ Default (re): The default position for rail element re
- ► Path_Element_Pos (p): the position of the rail elements for path p.

► TVD_Element (s): the rail element corresponding to the TVD section s

Signal

➤ Signal_Element (s): the rail element that the signal s protects.

Summary

- Classes are linked to data types
- ► Attributes and associations corresponding to operators.
- Class constraints are axioms on the data types.
- Visiualsation aids the design of ADTs.
- ▶ Future work:
 - ▶ Tool support
 - Theory instantiation