Álgebra Booleana

Teoremas de Múltiples Variables

$$x+y=y+x \\ x\cdot y=y\cdot x \\ x+(y+z)=(x+y)+z=x+y+z \\ x(yz)=(xy)z=xyz \\ x(y+z)=xy+xz \\ (w+x)(y+z)=wy+xy+wz+xz \\ x+xy=x \\ x+\overline{x}y=x+y \\ \overline{x}+xy=\overline{x}+y$$

Teoremas de Morgan

$$\frac{\overline{(x+y)} = \overline{x} \cdot \overline{y}}{(x \cdot y) = \overline{x} + \overline{y}}$$

Teoremas de una Variable

AND	OR	
$x \cdot 0 = 0$	x+0=x	
$x \cdot 1 = 1$	x+1=x	
$x \cdot x = x$	x + x = x	
$x \cdot \overline{x} = 0$	$x+\overline{x}=1$	

Números Binarios

Formato Signo Magnitud

$$\underbrace{1}_{\text{Signo Magnitud}}\underbrace{10011} = -13$$

Complemento 1

$$C_2^N \,=\, \begin{matrix} 1 & 0 & 0 & 1 & 1 & 1 \\ \pmb{\downarrow} & \pmb{\downarrow} & \pmb{\downarrow} & \pmb{\downarrow} & \pmb{\downarrow} & \pmb{\downarrow} \\ 0 & 1 & 1 & 0 & 0 & 0 \end{matrix}$$

Distribución

Complemento 2

Construcción del Mapa-K

Distribución					
00	01	11	10		
0	1	3	2		
4	5	7	6		
12	13	15	14		
8	9	11	10		
	0 4 12	0 1 4 5 12 13	0 1 3 4 5 7 12 13 15		

ABCD		ABCD	
0000	Θ	1000	8
0001	1	1001	9
0010	2	1010	10
0011	3	1011	11
0100	4	1100	12
0101	5	1101	13
0110	6	1110	14
0111	7	1111	15

Circuitos Lógicos

Operació	n	Definición	Compuerta
NOT	,	$\overline{\mathbf{x}}$	>-
OR	+	x+y	
AND		$\mathbf{x} \cdot \mathbf{y}$	
XOR	Ф	$ \begin{array}{c} (x+y)(\overline{x}+\overline{y}) \\ x\overline{y}+\overline{x}y \end{array} $	
NOR	ļ	$\overline{(x+y)} = \overline{x} \cdot \overline{y}$	
NAND	1	$\overline{(x \cdot y)} = \overline{x} + \overline{y}$	
XNOR	0	$ \begin{array}{c} (x+\overline{y})(\overline{x}+y) \\ xy+\overline{x}\overline{y} \end{array} $	7

Universalidad de las Compuertas NAND y NOR

Operació	Operación NAND		NOR
NOT	•	$\overline{(\mathbf{x} \cdot \mathbf{x})}$	$\overline{(x+x)}$
OR	+	$\overline{(\overline{\mathbf{x}}{\cdot}\overline{\mathbf{y}})}$	$\overline{(x+y)}$
AND		$\overline{(\mathbf{x} \cdot \mathbf{y})}$	$\overline{(\overline{x}+\overline{y})}$
XOR	0	$\overline{\overline{(\mathbf{x} \!\cdot\! \! \mathbf{y})} \overline{(\overline{\mathbf{x}} \!\cdot\! \mathbf{y})}}$	$\overline{(x+y)}+\overline{(\overline{x}+\overline{y})}$
NOR	1	$\overline{(\overline{\mathbf{x}}{\cdot}\overline{\mathbf{y}})}$	~
NAND	1	~	$\overline{(\overline{x}+\overline{y})}$
XNOR	0	$\overline{\left(\mathbf{x}\!\cdot\!\mathbf{y} \right) \left(\overline{\mathbf{x}}\!\cdot\!\overline{\mathbf{y}} \right)}$	$\overline{(x+\overline{y})+(\overline{x}+y)}$

Tablas de Diseño de Flip-Flops

Flip-Flop SR						
Q(t)	\rightarrow	Q(t+1)	S	R		
0	\rightarrow	0	Θ	×		
0	\rightarrow	1	1	Θ		
1	\rightarrow	0	0	1		
1	\rightarrow	1	х	0		

Flip-Flop JK						
Q(t)	\rightarrow	Q(t+1)	J	K		
0	\rightarrow	0	0	х		
0	\rightarrow	1	1	х		
1	\rightarrow	0	х	1		
1	\rightarrow	1	х	0		

Flip-Flop D						
Q(t)	\rightarrow	Q(t+1)	D			
0	\rightarrow	0	0			
0	\rightarrow	1	1			
1	\rightarrow	0	0			
1	\rightarrow	1	1			

Flip-Flop T						
Q(t)	\rightarrow	Q(t+1)	Т			
0	\rightarrow	0	Θ			
0	1					
1	1					
1	\rightarrow	1	0			

7-Segment Display

DEC	DEC BCD SEGMENT	
0	0000	ABCEDF
1	0001	ВС
2	0010	ABDEG
3	0011	ABCDG
4	0100	BCFG
5	0101	ACDFG
6	0110	ACDEFG
7	0111	ABC
8	1000	ABCDEFG
9	1001	ABCFG

Notación de Suma

$$f(\underbrace{x,y,z}_{\text{Variables}}) = \underbrace{\sum_{\text{Valores de activación}} m(0,4,5,6)}_{\text{Valores de activación}} + \underbrace{\sum_{\text{Redundancía}} d(9,14)}_{\text{Redundancía}}$$

Sistemas Numéricos

DEC	CUA	ост	HEX	BIN	Gray	COMP ₁	-COMP ₂
0	0	0	0	0000	0000	1111	00000
1	1	1	1	0001	0001	1110	11111
2	2	2	2	0010	0011	1101	11110
3	3	3	3	0011	0010	1100	11101
4	10	4	4	0100	0110	1011	11100
5	11	5	5	0101	0111	1010	11011
6	12	6	6	0110	0101	1001	11010
7	13	7	7	0111	0100	1000	11001
8	20	10	8	1000	1100	0111	11000
9	21	11	9	1001	1101	0110	10111
10	22	12	А	1010	1111	0101	10110
11	23	13	В	1011	1110	0100	10101
12	30	14	С	1100	1010	0011	10100
13	31	15	D	1101	1011	0010	10011
14	32	16	Е	1110	1001	0001	10010
15	33	17	F	1111	1000	0000	10001

Tablas de Verdad

AB	XOR	NOR	NAND	XNOR
00	Θ	1	1	1
01	1	0	1	0
10	1	0	1	0
11	Θ	Θ	0	1

Autor: Luis E. Galindo Amaya egalindo54@uabc.edu.mx

Taller de Impresión: @libros.y.zines.corrientes

Fecha:	
29 de mayo de 2022	

ABC	XOR	NOR	NAND	XNOR
000	0	1	1	1
001	1	0	1	0
010	1	0	1	0
011	0	0	1	1
100	1	0	1	0
101	0	0	1	1
110	0	Θ	1	1
111	1	0	0	0