Chapitre I.

Équations de droites

Les savoir-faire du parcours

- Savoir déterminer une équation de droite à partir de deux points, un point et un vecteur directeur ou un point et la pente.
- Savoir déterminer la pente ou un vecteur directeur d'une droite donnée par une équation ou une représentation graphique.
- Savoir tracer une droite connaissant son équation cartésienne ou réduite.
- Savoir établir que trois points sont alignés ou non.
- Savoir déterminer si deux droites sont parallèles ou sécantes.

Les mathématiciennes et mathématiciens

Compétence

1

Vecteurs directeurs d'une droite.

Définition 1: Vecteurs directeur d'une droite..

Soit (d) une droite.

On appelle vecteur directeur de (d) tout vecteur non nul ayant la même direction que (d).

Remarque 2.

Une droite a une infinité de vecteurs directeurs.

Propriété 3: Définition d'une droite par un point et un vecteur directeur...

Soit (d) la droite de vecteur directeur \vec{u} et passant par le point A.

Alors pour tous points M de (d), les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires.

Définition 4.

La droite (d) de vecteur directeur \vec{u} et passant par le point A est l'ensemble des points M tels que \vec{AM} et \vec{u} sont colinéaires.

Équations cartésiennes de droites.

Propriété 5.

Démonstration exigible

Soit (d) une droite, alors il existe a, b et c trois nombres $(a;b) \neq (0;0)$ tels que tous les points M(x;y) de (d) ont leurs coordonnées qui sont solution de l'équation (E): ax + by + c = 0.

Cette équation est appelée équation cartésienne de la droite (d).

 $\vec{u}(-b;a)$ est un vecteur directeur de (d).

Preuve : Soit (d) la droite passant par $A(x_A;y_A)$ et de vecteur directeur $\vec{u}(x_{\vec{u}};y_{\vec{u}})$. Soit $M(x_m;y_M)$ un point de (d). On a $A\vec{M}(x_M-x_A;y_M-y_A)$.

$$det(\vec{AM}; \vec{u}) = \begin{vmatrix} x_M - x_A & x_{\vec{u}} \\ y_M - y_A & y_{\vec{u}} \end{vmatrix} = (x_M - x_A) \times y_{\vec{u}} - (y_M - y_A) \times x_{\vec{u}}$$

Les vecteurs \vec{AM} et \vec{u} sont colinéaires donc $det(\vec{AM}; \vec{u}) = 0$, donc $(x_M - x_A) \times y_{\vec{u}} - (y_M - y_A) \times x_{\vec{u}} = 0$. Soit :

$$y_{\vec{u}} \times x_M + (-x_{\vec{u}} \times y_M + (-x_A \times y_{\vec{u}} + y_A \times x_{\vec{u}})$$

En posant : $a=y_{\vec{u}},\,b=-x_{\vec{u}}$ et $c=-x_A\times y_{\vec{u}}+y_A\times x_{\vec{u}}.$ On obtient $a\times x_M+b\times y_M+c=0.$

Donc le couple $(x_M; y_M)$ est solution de (E): ax + by + c = 0 et $\vec{u}(-b; a)$ est un vecteur directeur de (d).

Premier SF

3

Équations réduites de droites.

Définition 6.

On considère une droite (d) d'équation cartésienne (E):ax+by+c=0

- Si b=0, alors (E) est équivalente à une équation (E_1) de la forme $(E_1): x=k$.
- Si $b \neq 0$, alors (E) est équivalente à une équation (E_1) de la forme $(E_1): y = mx + p$.
 - m est appelé la pente ou le coefficient directeur de la droite (d).
 - p est appelé l'ordonnée à l'origine de la droite (d).

Dans les deux cas, l'équation (E_1) est appelée l'équation réduite de la droite (d).

Propriété 7: Déterminer une équation réduite.

Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points.

- Si $x_A = x_B$, (AB) a pour équation réduite $x = x_A$, $\vec{u}(0;1)$ est un vecteur directeur de (AB).
- Si $x_A \neq x_B$, (AB) a une équation réduite de la forme : y = mx + p avec $m = \frac{y_B y_A}{x_B x_A}$ $\vec{u}(1;m)$ est un vecteur directeur de (AB).

4

Positions relatives de deux droites.

Propriété 8: Droites parallèles.

Deux droites sont parallèles si et seulement si elles ont des vecteurs directeurs colinéaires.

Remarque 9.

En considérant les équations réduites, des droites sont parallèles si et seulement si :

- elles ont des équations de la forme x=k
- elles ont des équations de la forme y = mx + p avec le même coefficient directeur.

Propriété 10: Point d'intersection de deux droites.

Soit (d_1) : ax + by + c = 0 et (d_2) : a'x + b'y + c' = 0

Si (d_1) et (d_2) sont sécantes alors leur point d'intersection a pour coordonnées l'unique solution du système

(S):
$$\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$$

Définition 11.

$$\text{Soit }(S): \begin{cases} ax+by+c=0\\ a'x+b'y+c'=0 \end{cases} \quad \text{un système}$$

à deux inconnues et deux équations. On appelle déterminant du système le nombre $\det(S)=ab-a'b$

Propriété 12.

Soit (S) un système à deux inconnues et deux équations

- Si $det(S) \neq 0$ alors (S) a une unique solution.
- Si det(S) = 0 alors (S) a soit aucune solution soit une infinité de solutions.

Projeté orthogonal d'un point sur une droite.

Définition 13.

Soit une droite (d) et un point A du plan.

Le projeté orthogonal du point A sur la droite (d) est le point d'intersection H de la droite (d) avec la perpendiculaire à (d) passant par A.

Propriété 14.

Démonstration exigible

Le projeté orthogonal du point A sur la droite (d) est le point de la droite (d) le plus proche du point A.

Preuve : H est le projeté orthogonal de A sur la droite (d).

Soit K le point de (d) le plus proche de A alors K est plus proche de A que H donc $AK \leqslant AH$ et $AK^2 \leqslant AH^2$. Le triangle AKH est rectangle en H donc d'après le théorème de M. Pythagore : $AK^2 = AH^2 + KH^2$ donc $AH^2 + KH^2 \leqslant AH^2$ soit $KH^2 \leqslant 0$ donc KH = 0 donc K et H sont confondus. Ainsi, H est le point de la droite (d) le plus proche du point A.

Propriété 15.

Démonstration exigible

Dans un triangle rectangle, si α est une mesure d'un angle aigu alors $cos^2(\alpha) + sin^2(\alpha) = 1$

Preuve : H est le projeté orthogonal de A sur la droite (d).

Soit P un point de (d) et soit α l'angle \widehat{APH} , le triangle APH est rectangle en H donc on peut utiliser les formules de trigonométrie : $cos(\alpha) = \frac{PH}{PA}$ et $sin(\alpha) = \frac{AH}{PA}$, donc :

$$cos^{2}(\alpha) + sin^{2}(\alpha) = \frac{PH^{2}}{PA^{2}} + \frac{AH^{2}}{PA^{2}} = \frac{PH^{2} + AH^{2}}{PA^{2}}$$

Or d'après le théorème de M. Pythagore : $PH^2+AH^2=PA^2$. Donc $cos^2(\alpha)+sin^2(\alpha)=\frac{PH^2+AH^2}{PA^2}=\frac{PA^2}{PA^2}=1$

Compétence.