Dynamic Overload Balancing in Server Farms

Chih-ping Li (MIT)
Georgios S. Paschos (MIT, CERTH/Greece)
Leandros Tassiulas (University of Thessaly, Greece)
Eytan Modiano (MIT)

IFIP Networking 2014

Overload in network systems

- Overload = traffic demand > system capacity
- Due to unpredictable demand fluctuation, flash crowd, DDoS attacks, node/link failures, natural disaster, power outage, etc
- Throughput loss and increasing delay
- Need to optimize throughput and overload surges

System model

- A_b(t) = # of jobs arriving at load balancer b in slot t
- A_b(t) ~ i.i.d. over slots with mean λ_b
- Each job has an i.i.d. random size X, which is unknown
- $c_s = service rate of server s (X/c_s is the job service time)$
- $w_b = \lambda_b E[X] = workload arrival rate$

System model

- Workload arrival rate > total system capacity
- Achievable performance?
- Control policy to maximize throughput and enforce queue overflow rates to have "good" properties?

Convex queue overflow region

- Overflow vector **q** is feasible if there exist flow variables that satisfy
 - $W_b = W_{b1} + W_{b2}$
 - $W_{bs} = q_s + r_s$
 - $r_s \le c_s$

Desired operating points

Maximum sum throughput

$$\sum_{s} r_{s} = \sum_{b} w_{b} - \sum_{s} q_{s}$$

- Total throughput = total workload total queue overflow
- Equivalent to minimizing total queue overflow

Desired operating points

- Min-max-fair queue overflow vector
 - Maximizing the time to first buffer overflow

- B/q_s = time to buffer overflow at server s
- min_s {B/q_s} = time to first system buffer overflow
- Solve: max_q min_s {B/q_s}
 - Equivalent to min_q max_s {qs}

Desired operating points

- Weighted min-max-fair queue overflow vector
 - Minimizing recovery time from temporary overload

- Overload happens in [0, T]
- Tqs = accumulated backlog at server s
- $Tq_s/c_s = backlog clearance time at s$
- max_s {Tq_s/c_s} = system recovery time
- Solve: min_q max_s {Tqs/cs}

Convex penalty minimization

Achieving desired operating points by solving convex minimization problems

minimize: $\sum_{s} h_{s}(q_{s})$

subject to: $({\it q}_1,\ldots,{\it q}_{\it S})\in {\it Q}$

hs: convex and increasing

a-fair penalty function

$$h(q) = \frac{q^{1+\alpha}}{1+\alpha}, \quad \alpha \ge 0$$

• Generalization of α -fair utility function by allowing $\alpha < 0$

$$g(q) = \frac{q^{1-a}}{1-a}$$
 (concave function)

• $\alpha=0$, h(q)=q, minimizing total queue overflow

minimize:
$$\sum_{s} q_{s}$$

subject to:
$$({\it q}_1,\ldots,{\it q}_{\it S})\in {\it Q}$$

Penalty proportional fairness ($\alpha=1$)

$$h(q) = q^2/2$$

The optimal queue overflow vector q* satisfies

$$\sum_{s=1}^{S} (q_s - q_s^*) q_s^* \ge 0, \ q \ne q^*$$

- To improve one's penalty by 1%, the others' penalty must worsen by at least 1%
- Rate proportional fairness r* (with g(r)=log(r)) satisfies

$$\sum_{n} \frac{r_n - r_n^*}{r_n^*} \leq 0, \ r \neq r^*$$

- To improve one's reward by 1%, the others' reward must worsen by at least 1%
- Product form vs ratio form

Min-max fairness ($\alpha = \infty$)

Let **q***(a) solve

minimize:
$$\sum_{s=1}^{\mathcal{S}} \frac{(q_s)^{1+a}}{1+a}$$
, subject to: $(q_1,\ldots,q_S) \in \mathcal{Q}$

- $q^*(\infty) = \lim_{a \to \infty} q^*(a)$ exists and is the min-max fair point in the feasible queue overflow region
- Example: $\alpha=9$, $\mathbf{q_1}=(3,\,\mathbf{2}.1,\,1)$, $\mathbf{q_2}=(3,\,\mathbf{2},\,1.9)$
 - q₂ is fairer than q₁
 - Double check: $3^{10} + (2.1)^{10} + 1^{10} > 3^{10} + 2^{10} + (1.9)^{10}$
 - a-fair penalty function singles out the largest components that are different
- Weighted min-max fairness: $h(q_s) = (q_s/c_s)^{1+\alpha}/(1+\alpha)$

Throughput optimality

Any control policy that solves

minimize:
$$\sum_s h_s(q_s)$$
, subject to: $(q_1,\ldots,q_S) \in \mathcal{Q}$

must achieve maximum throughput

 Proof: Construct a single-commodity network with queue overflows and use max-flow min-cut theorem

Dynamic control policy

Control queue overflow rates by job tagging

- Untagged jobs have strict priority over tagged jobs
- Keep # of untagged jobs N_s(t) finite at server s
 - $N_s(t) = \#$ of untagged jobs waiting at server s in slot t
 - job untagging rate = throughput at s
 - job tagging rate = queue overflow rate at s
- Use virtual queue to optimize job tagging rate

Optimizing job-tagging rate

Set up a virtual queue (i.e., counter) Y_s(t) at server s

```
# of jobs tagged by server s in slot t Y_s(t) Y_s(t)
```

- Minimizing h_s(job tagging rate at server s) by:
 - Stabilize queue Y_s(t)
 - Minimize h_s(average service rate of queue Y_s(t))
 - Lyapunov drift-plus-penalty algorithm

Optimal overload balancing policy

 Each balancer b routes jobs A_b(t) in a slot to the accessible server with the shortest queue over N_s(t) and Y_s(t)

- Server s tags all incoming jobs if and only if N_s(t) > Y_s(t)
- Update $N_s(t)$ and $Y_s(t)$ in every slot, where the service rate $y_s(t)$ of $Y_s(t)$ is the solution to

minimize: $Vh_s(y\mathbb{E}[X]) - Y_s(t)y$, subject to: $y \ge 0$

Optimal overload balancing policy

Theorem: The control policy yields queue overflow rates that satisfy

$$\sum_{s=1}^{S} h_s(q_s) \le h^* + F/V$$
 F: finite constant V: control parameter h*: optimal penalty

The policy doesn't need arrival statistics and is thus robust

Simulations

Server 1 workload in case B

Simulations

Summary

- Overload is increasingly common in network systems
- Overload control as a convex optimization problem in a stochastic queueing network
- α-fair penalty function
- A job-level dynamic control policy
 - Throughput optimal
 - Turn the optimal control of an unstable queueing system into one that stabilizes a virtualized queueing system
- Future research: multi-class traffic, integration with traditional load balancing, applications (traffic offloading, data load shedding, etc)