TP:

On considère une source binaire, indépendante, équirepartie. Le signal émis a pour expression : $s(t) = \sum_{k=0}^{L-1} c_k g(t-kT)$ où les c_k sont une suite de symboles à valeurs dans l'alphabet $\{-3b,-b,+b,+3b\}$. T désigne l'intervalle de temps entre deux symboles consécutifs. g(t) est un signal réel normalisé. Le bruit $\underline{n}(t)$ est une réalisation d'un processus blanc, gaussien, centré. On note $\underline{r}(t) = s(t) + \underline{n}(t)$ le signal reçu.

On considère que le signal reçu, filtré et échantillonné vaut : $\underline{y}_n = c_n + \underline{n}_n$ où \underline{n}_n est un bruit gaussien, centré, de variance $N_0/2$. On note par E_b l'énergie d'un bit.

- 1. Générer un vecteur représentant une séquence de 10⁷ bits sur MATLAB.
- 2. Proposer un mapping de gray.
- 3. Que vaut b pour que $E_b = 1$.
- 4. Traduire la séquence de bits en vecteur symboles.
- 5. Pour $E_b/N_0 = 2 dB$ calculer la variance du bruit.
- 6. Générer un vecteur représentant les séquences du bruit \underline{n}_n (On utilisera la fonction randn())
- 7. Ajouter le vecteur bruit au vecteur symbole pour stimuler le vecteur y_n .
- 8. Estimer les symboles \hat{c}_n obtenus à partir du vecteur \underline{y}_n .
- 9. Estimer la probabilité d'erreur symboles p_{es} .

- 10. En déduire le vecteur des bits obtenus en réception \hat{b}_k .
- 11. Estimer le taux d'erreur par élément binaire TEB.
- 12. Evaluer p_{es} et TEB pour $E_b/N_0=0$,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 dB
- 13. Tracer p_{es} et TEB en fonction de E_b/N_0 en dB ceci en échelle logarithmique (On utilisera la fonction semilogy()).
- 14. Utiliser les formules théoriques pour réaliser une comparaison avec les courbes stimulée obtenues.
- 15. Refaire les mêmes tracés pour un codage non-gray.
- 16. Conclure.