

EGADS Algorithm Handbook EUFAR FP7

N6SP - Standards and Protocols

Last Updated: August 23, 2010

Contents

1	Spatial Transformations 1						
2	Tem	aporal Transformations	2				
3	Thermodynamics						
	3.1	Pressure altitude	4				
	3.2	Density of dry air	5				
	3.3	Relative humidity from capacitive probe					
	3.4	Pressure and angle of incidence					
	3.5	Potential Temperature	8				
	3.6	Equivalent Potential Temperature					
	3.7	Static Temperature					
	3.8	Virtual Temperature	11				
	3.9	True air speed	12				
	3.10	Longitudinal true airspeed	13				
4	Mic	rophysics	14				

Spatial Transformations

Temporal Transformations

Thermodynamics

3.1 Pressure altitude

Algorithm name: altitude_pressure_cnrm

Summary: Calculates pressure altitude using virtual temperature.

Inputs:	
T_v	Vector
P_s	Vector

 P_s Vector Static pressure [hPa] $P_{surface}$ Coeff Surface pressure [hPa]

 R_a/g Coeff Gas constant of air over acceleration of gravity

Virtual temperature [K or o C]

Outputs:

 Alt_p Vector Pressure altitude [m]

Formula:

$$Alt_p = \frac{R_a}{g} T_v \log \left(\frac{P_{surface}}{P_s} \right)$$

Source: CNRM/GMEI/TRAMM

References:

3.2 Density of dry air

Algorithm name: density_dry_air_cnrm

Summary: Calculates density of dry air given static temperature and pressure.

Inputs:		
P_s	Vector	Static pressure [hPa]
T_s	Vector	Static temperature [K or \circ C]
Outputs:		
$\overline{\rho}$	Vector	Density of dry air [kg/m ³]

Formula:

$$\rho = \frac{100P_s}{R_a T_s}$$

with
$$R_a = 287.05 \text{ J kg}^-1 \text{ K}^-1$$

Density of humid air can be calculated using this same algorithm by using virtual temperature instead of static temperature.

Source: CNRM/GMEI/TRAMM

References: Equation d'état d'un gaz parfait, Triplet-Roche [?], page 34.

3.3 Relative humidity from capacitive probe

Algorithm name: hum_rel_capacitive_cnrm

Summary: Calculates relative humidity using the measured frequency from a capacitive probe.

Inputs:		
Ucapf	Vector	Output frequency of the capacitive probe [Hz]
T_s	Vector	Static temperature [K]
P_s	Vector	Static pressure [hPa]
ΔP	Vector	Dynamic pressure [hPa]
C_t	Coeff.	Temperature correction coefficient [%°C]
F_{min}	Coeff.	Minimal acceptable frequency [Hz]
C_0	Coeff.	0th degree calibration coefficient
C_1	Coeff.	1st degree calibration coefficient
C_2	Coeff.	2nd degree calibration coefficient
Outputs:		
H_u	Vector	Relative humidity [%]

Formula: If $Ucapf \leq F_{min}$ then $Ucapf = F_{min}$

$$H_{u} = \frac{P_{s}}{P_{s} + \Delta P} \left[C_{0} + C_{1}U cap f + C_{2}U cap f^{2} + C_{t}(T_{s} - 20) \right]$$

with T_s in ${}^{\circ}C$.

Source: CNRM/GMEI/TRAMM

References: H. Bellec and G. Duverneuil. Appareils de mesure de l'hygrométrie sur le Merlin IV. Note de Centre 9, Météo-France CNRM/CAM, July 1996.

3.4 Pressure and angle of incidence

Algorithm name: pressure_angle_incidence_cnrm

Summary: Calculates static pressure and dynamic pressure by correction of static error. Angle of attack and sideslip are calculated from the horizontal and vertical differential pressures.

Ι	n	D.	u	t	\mathbf{s}	٠

-		
P_{sr}	Vector	Raw static pressure [hPa]
ΔP_r	Vector	Raw dynamic pressure [hPa]
ΔP_h	Vector	Horizontal differential pressure [hPa]
ΔP_v	Vector	Vertical differential pressure [hPa]
C_{lpha}	Coeff.[2]	Angle of attack calibration coefficients
C_{eta}	Coeff.[2]	Slip calibration coefficients
$C_{errstat}$	Coeff.[4]	Static error coefficients

Outputs:

P_s	Vector	Static Pressure [hPa]
ΔP	Vector	Dynamic pressure corrected with static error
		[hPa]
α	Vector	Angle of attack [rad]
eta	Vector	Sideslip [rad]

Formula: If $\Delta P_r > 25$ hPa:

$$Errstat = C_{errstat}[0] + C_{errstat}[1]\Delta P_r + C_{errstat}[2]\Delta P_r^2 + C_{errstat}[3]\Delta P_r^3$$

otherwise:

$$Errstat = \frac{\Delta P_r}{25} Errstat@25hPaP_s = P_{sr} - Errstat\Delta P = \Delta P_r + Errstat\alpha = C_{\alpha}[0] + C_{\alpha}[1] \frac{\Delta P_v}{\Delta P} \beta = C_{\beta}[0] + C_{\beta}[0]$$

Source: CNRM/GMEI/TRAMM

References:

3.5 Potential Temperature

Algorithm name: temp_potential_cnrm

Summary: Calculates potential temperature.

т —		
l m	nn	ts:
111	νu	. 60.0

inpacs.		
T_s	Vector	Static temperature [K or oC]
P_s	Vector	Static pressure [hPa]
R_a/c_{pa}	Coeff.	Gas constant of air divided by specific heat of
		air at constant pressure

Outputs:

 θ Vector Potential temperature [same unit as T_s]

Formula:

$$\theta = T_s \left(\frac{1000}{P_s}\right)^{R_a/c_{pa}}$$

Source: CNRM/GMEI/TRAMM

References: Triplet-Roche [?].

3.6 Equivalent Potential Temperature

Algorithm name: temp_potential_equiv_cnrm

Summary: Calculates equivalent potential temperature of air. The equivalent potential temperature is the temperature a parcel of air would reach if all water vapor in the parcel condensed, and the parcel was brought adiabatially to 1000 hPa.

inputs:		
T_s	Vector	Static temperature [K or ∘C]
θ	Vector	Potential temperature [K or oC]
r	Vector	Vater vapor mixing ratio [g/kg]
c_{pa}	Coeff.	Specific heat of dry air at constant pressure
Outputs:		
$\overline{\theta_e}$	Vector	Equivalent potential temperature [same units as
		$T_s]$

Formula:

$$\theta_e = \theta \left(1 + r \frac{L}{c_{pa} T_s} \right)$$

where $L = 3136.17 - 2.34T_s$ (for T_s in K)

Source: CNRM/GMEI/TRAMM

References: From the CAM routine which is identical to the algorithm P. Durand cited in the formula book created for PYREX.

3.7 Static Temperature

Algorithm name: temp_static_cnrm

Summary: Calculates static temperature of the air from total temperature. This method applies to probe types such as the Rosemount.

$\mathbf{Inputs:}$		
T_t	Vector	Measured total temperature [K]
ΔP	Vector	Dynamic pressure [hPa]
P_s	Vector	Static pressure [hPa]
r_f	Coeff.	Probe recovery coefficient
R_a/c_{pa}	Coeff.	Gas constant of air divided by specific heat of
		air at constant pressure
Outputs:		
T_s	Vector	Static temperature [K]

Formula:

$$T_s = \frac{T_t}{1 + r_f \left(\left(1 + \frac{\Delta P}{P_s} \right)^{R_a/c_{pa}} - 1 \right)}$$

Source: CNRM/GMEI/TRAMM

References:

3.8 Virtual Temperature

Algorithm name: temp_virtual_cnrm

Summary: Calculates the virtual temperature of air.

T_s	Vector	Static temperature [K or ∘C]
r	Vector	Water vapor mixing ratio [g/kg]

Outputs:

 T_v Vector Virtual temperature [same units as T_s]

Formula:

$$T_v = T_s \frac{1 + (R_v/R_a)r}{1 + r}$$

where $R_v/R_a = 1.608$

Source: CNRM/GMEI/TRAMM

References: Triplet-Roche [?], page 56.

3.9 True air speed

Algorithm name: velocity_tas_cnrm

Summary: Calculates true air speed based on static pressure, static temperature and dynamic pressure using the Barré-St Venant formula.

Inputs:		
T_s	Vector	Static temperature [K]
ΔP	Vector	Dynamic pressure [hPa]
P_s	Vector	Static pressure [hPa]
c_{pa}	Coeff.	Specific heat of air at constant pressure (for dry air $1004 \text{ J K}^{-1} \text{ kg}^{-1}$)
R_a/c_{pa}	Coeff.	Gas constant of air divided by specific heat of air at constant pressure
Outputs:		
V_t	Vector	True air speed [m/s]

Formula:

$$V_p^2 = 2c_{pa}T_s \left[\left(1 + \frac{\Delta P}{P_s} \right)^{R_a/c_{pa}} - 1 \right]$$

Source: CNRM/GMEI/TRAMM

References: NCAR-RAF Bulletin #23 [?], Méchanique des fluides, Candel [?]

3.10 Longitudinal true airspeed

Algorithm name: velocity_tas_longitudinal_cnrm

Summary: Calculates the true air speed along the longitudinal axis of the aircraft.

Inputs:		
$\overline{V_t}$	Vector	True air speed [m/s]
α	Vector	Angle of attack [rad]
eta	Vector	Sideslip angle [rad]
Outputs:		
V_{tx}	Vector	Longitudinal true air speed [m/s]

Formula:

$$V_{tx} = \frac{V_t}{\sqrt{1 + \tan^2 \alpha + \tan^2 \beta}}$$

Source: CNRM/GMEI/TRAMM

References: NCAR-RAF Bulletin #23 [?]

Microphysics