PROVA SCRITTA DI ELETTRONICA 1 FEBBRAIO 2007

1)) Nel circuito in figura, i transistori e il diodo possono essere descritti da un modello "a soglia", con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento $V_u(V_i)$, per 0< V_i < V_{cc} .

$$V_{cc}$$
 = 5 V, β_F =100, R_1 = 20 k Ω , R_2 = 500 Ω , R_3 = 1k Ω .

- 2) Nel circuito in figura, i transistori MOS sono caratterizzati dai coefficienti β e dalle tensioni di soglia V_{TN} e $|V_{TP}|$. Il segnale di clock CK e il segnale di ingresso V_{in} abbiano l'andamento illustrato dalla figura sottostante. Si calcoli:
 - 1. il valore assunto dai segnali V_A , V_B , V_Y in corrispondenza dei fronti di discesa e salita del clock supponendo esauriti i transitori prima di ogni transizione del segnale di clock.
 - 2. il tempo di propagazione t_{pHL} del segnale V_y a seguito della transizione istantanea da "0" (0 V) a "1" (V_{DD}) del segnale di clock con V_X =0 V (si veda figura). Ai fini dei calcoli è lecito considerare tale tempo come somma dei

tempi di propagazione di ogni stadio, ciascuno calcolato in risposta ad una transizione istantanea del rispettivo ingresso.

 V_{dd} = 3.3 V, V_{TN} = 0.4 V, $|V_{TP}|$ = 0.6 V, $β_1$ = $β_2$ = 40 μA/V², $β_3$ = 90 μA/V², $β_4$ = 40 μA/V², $β_5$ = 50 μA/V², C_b =2 fF, C_v =5 fF.

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- · Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Compito del 1-02-2007 – Soluzione Esercizio #1

Osservazione preliminare: Q2 quando on sempre in AD.

Regione 1: Suppongo Q1 OFF (Q1 sarà OFF fintantoché vi $\langle v_{\gamma} \rangle$, Q2 ON in AD e D ON.

$ie2=(vcc-v_{\gamma}-vu)/r2$	Da cui si ricava vu= 3.083 V, valore che
$ir3=(vu-v_{\gamma})/r3$	soddisfa le ipotesi fatte.
Ma ie2=ir3	
	Si rimane in regione 1 fintantoché Q1 rimane
	OFF ovvero per vi $<$ v _{γ} =0.75 V.

Regione 2: Suppongo Q1 ON in AD, Q2 in AD e D ON.

$ie2=(vcc-v_{\gamma}-vu)/r2$ $ir3=(vu-v_{\gamma})/r3$ $ib1=(vi-v_{\gamma})/r1$ Ma $ie2=ir3+\beta_f*ib1$ Risolvendo si trova che:	 vu = 4.333 -1.667 vi. Si rimane in questa regione fintantochè o A) Q1 va SAT, oppure B) D va OFF. 	
A) Si può notare che in realtà se Q1 va SAT, vu=vcesat $\langle v_{\gamma}$, quindi quando Q1 va sat, D deve essere già spento. Avverrà prima che il diodo D si spenga, quindi il caso B).	B) Cerchiamo quindi solo il valore di vi per il quale D va off, ovvero il valore per il quale: $vu=v_{\gamma}=0.75V$. $ie2=(vcc-v_{\gamma}-v_{\gamma})/r2$ $ib1=(vi-v_{\gamma})/r1$ Ma $ie2=\beta f^*ib1$ da cui si ricava che $vi=2.15$ V	
Si rimane in regione 2 per $v_{\gamma} < vi < 2.15 \text{ V}$.		

Regione 3: Q1 AD, Q2 AD, D OFF.

110g10110 0: (1112; (2112; 2 011:		
$ie2=(vcc-vu-v_{\gamma})/r2$	Quando Q1 va sat, vu=vcesat=0.2V	
$ib1=(vi-v_{\gamma})/r1$	ie2= $(vcc-vcesat-v_{\gamma})/r2$	
Ma $ie2=\beta_f*ib1$	$ib1=(vi-v_{\gamma})/r1$	
Risolvendo si trova che: vu=6.125 -2.5 vi	Ma ie2= β_f *ib1	
Si rimane in questa regione fintantochè Q1 va	Risolvendo si trova vi=2.37 V	
SAT.		
Si rimane in regione 3 per 2.15 V <vi <2.37="" td="" v<=""></vi>		

Regione 4: Q1 SAT, Q2 AD, D OFF. vu=vcesat=0.2V.

Di seguito si riporta la caratteristica statica di trasferimento.

Calcolo tpHc

1° stadio

Vob

Neq 2

B

CB

$$\frac{dV_B}{dt} = \frac{1}{Deq 2}$$

Meq 2

 $\frac{dV_B}{dt} = \frac{2}{2}$
 $\frac{(V_{05} - V_{75} - V_{7N})^2}{2}$
 $\frac{dV_B}{dt} = \frac{2}{2}$
 $\frac{(V_{05} - V_{75} - V_{7N})^2}{2}$
 $\frac{dV_B}{dt} = \frac{2}{2}$
 $\frac{(V_{05} - V_{75} - V_{7N})^2}{2}$
 $\frac{dV_B}{dt} = \frac{68.36ps}{2}$

2° stadio

H5 SAT Se VOS 2/65 - VFN

VSS - VFN

MS

 $\frac{V_{05} - V_{7N}}{V_{15} - V_{75}}$
 $\frac{V_{15} - V_{75}}{2}$
 $\frac{V_{15} - V_{15}}{2}$
 $\frac{V$