



## Università degli Studi di Padova Dipartimento di Matematica "Tullio Levi-Civita Corso di Laurea Magistrale in Informatica

Esame di Teoria dei Tipi

Teoria dei Tipi Elaborato scritto - Settembre 2020 Eleonora Signor, 1237581

# Indice

| 1 | Intr | oduzi   | one                                                                                                                        | 5  |
|---|------|---------|----------------------------------------------------------------------------------------------------------------------------|----|
|   | 1.1  | La tri  | plice faccia della teoria dei tipi                                                                                         | 5  |
|   | 1.2  | Come    | nasce la teoria dei tipi                                                                                                   | 5  |
|   | 1.3  |         | adosso di Russell                                                                                                          | 6  |
|   | 1.4  |         | orincipali nelle teorie di tipo moderne                                                                                    | 7  |
|   |      | 1.4.1   | Richiamo della teoria del $\lambda$ -calcolo di $\mathit{Church}$                                                          | 7  |
|   | 1.5  | Che c   | osa è un tipo?                                                                                                             | 8  |
|   | 1.6  | Esemp   | pi di tipi                                                                                                                 | 10 |
|   |      | 1.6.1   | I tipi dipendenti                                                                                                          | 10 |
|   | 1.7  | Regol   | e paradigmatiche per caratterizzare la teoria dei tipi                                                                     | 11 |
|   |      | 1.7.1   | $Simbolo \in \dots $ | 11 |
|   |      | 1.7.2   | Uguaglianza definizionale vs uguaglianza proposizionale .                                                                  | 12 |
|   |      | 1.7.3   | Generazione di contesti                                                                                                    | 12 |
| 2 | Reg  | gole de | ella teoria dei tipi                                                                                                       | 13 |
|   | 2.1  | Regol   | e strutturali                                                                                                              | 13 |
|   |      | 2.1.1   | Regole di formazione dei contesti                                                                                          | 13 |
|   |      | 2.1.2   | Regole di assunzione delle variabili                                                                                       | 14 |
|   |      | 2.1.3   | Regole strutturali addizionali sull'uguaglianza                                                                            | 14 |
|   |      | 2.1.4   | Regole di conversione dell'uguaglianza per tipi uguali                                                                     | 14 |
|   |      | 2.1.5   | Regole di indebolimento e di sostituzione                                                                                  | 14 |
|   |      | 2.1.6   | Regole proprie e derivabili                                                                                                | 15 |
|   |      | 2.1.7   | Nozione di contesto telescopico                                                                                            | 16 |
|   |      | 2.1.8   | Esempi di applicazione                                                                                                     | 16 |
|   |      | 2.1.9   | Regole di tipaggio                                                                                                         | 17 |
|   | 2.2  | Il tipo | singoletto                                                                                                                 | 17 |
|   |      | 2.2.1   | Regola di formazione                                                                                                       | 17 |
|   |      | 2.2.2   | Regole di Introduzione                                                                                                     | 18 |
|   |      | 2.2.3   | Regole di Eliminazione                                                                                                     | 18 |
|   |      | 2.2.4   | Regole di Conversione                                                                                                      | 18 |
|   |      | 2.2.5   | Osservazioni sul tipo singoletto                                                                                           | 19 |
|   | 2.3  | Sanita  | ary checks rules                                                                                                           | 19 |
|   | 2.4  | Eserci  | zi                                                                                                                         | 20 |
| 3 | Nat  | urali,  | Somma disgiunta e liste                                                                                                    | 21 |
| 4 | Ugı  | ıagliar | nza proposizionale                                                                                                         | 23 |

| 4 |                                             | INDICE |
|---|---------------------------------------------|--------|
| 5 | Somma indiciata forte e prodotto cartesiano | 25     |

6 Tipo delle funzioni e tipo prodotto dipendente 27

**29** 

7 La logica della teoria dei tipi di  $Martin-L\ddot{o}f$ 

A Tabelle 31

## Introduzione

#### 1.1 La triplice faccia della teoria dei tipi

La teoria dei tipi offre una base teorica a fondamento dello sviluppo di:

- Matematica: nella teoria degli insiemi;
- Logica: come fondamento dei connettivi logici e dei quantificatori, con trattazione mediate tecniche di *proof-teory* per dimostrarne la non falsità o non contradditorietà;
- Informatica: per la correttezza dei programmi, da una semantica operazionale a un certo tipo di operazioni.

  Con riferimento alla teoria degli insiemi, visto come linguaggio di programmazione funzionale, è possibile specificare con formule l'obiettivo di un programma e dimostrarne la correttezza attraverso la specifica.

La teoria dei tipi nasce per garantire la *Certified Proof Correctness*. Ovvero la correttezza dei programmi, volta a costruire gli assistenti automatici per le formalizzazioni.

### 1.2 Come nasce la teoria dei tipi

Gli errori di programmazione sono stati preponderanti alla nascita di metodi automatici, che assicurassero la correttezza del *software*. Alcuni di questi, degni di nota, sono stati:

- Incidente nel lancio dell'Apollo 11;
- Tragedie sanitarie: incidenti avvenuti tra il 1985-1987, in cui dei pazienti ricevettero una massiccia *overdose* di radiazioni e per la quali alcuni morirono;
- Errori di vita civile: riserva di solo due cifre per il campo età all'interno dei *database*. Ecco che una signora danese ricevette per il suo 107-esimo compleanno, una mail dalle autorità della scuola locale per iscriversi alla prima elementare.

Per la matematica la correttezza delle dimostrazioni è irrilevante solo quando la soluzione è certa (come accade con il cubo di *Rubik*, dove so che la soluzione è corretta quando ognuno dei lati è uniformemente colorato); e in generale questo è difficile che accada.

Un'esempio di problema, dove la soluzione non è certa, è il Teorema dei Quattro Colori, risolto da un *computer* e la cui prova di correttezza della dimostrazione fu data dal *proof assistant* Coq. Quest'ultimo basato sulla teoria dei tipi e intellegibile dall'essere umano.

Una citazione importante va al matematico Russo V.V. Voevodsky, vincitore della medaglia Fields. Esso si battè per la creazione di un proof assistant, per rendere le dimostrazioni da informali, per problemi complessi, a completamente formalizzate, con l'impiego della teoria dei tipi. I suoi studi trovano principale applicazione in campo algebrico e geometrico; ma i concetti emersi assunsero delle 1connotazioni più ampie. Voevodsky, difatti, si rese conto che formalizzare equivale a programmare. Ciò significa che la teoria dei tipi permette di vedere una dimostrazione come un programma.

Esiste la certezza assoluta per una certa teoria, esclusivamente, quando ha un numero di assiomi, accettati per fede, molto limitato. In quanto assiomalizzabile da un calcolatore.

In coclusione formalizzare in una teoria dei tipi (come quella degli insiemi) equivale a programmare un programma.

#### 1.3 Il Paradosso di Russell

La base della teoria dei tipi, compresa quella di *Martin-Löf*, si deve a B. *Russell*. Siamo nel 1907 quando nasce la teoria dei tipi, sviluppata nei *Principia Mathematica* da B. *Russel* assieme ad A.N. *Whitehead*. Tale teoria, intesa come logica e non informatica, nasce come soluzione alternativa alla teoria degli insiemi, di allora, con lo scopo di fondare la matematica su un sistema formale accettabile e non contradditorio.

Di seguito espongo un sistema contradditorio della teoria degli insiemi.

#### Linguaggio L di una teoria degli insiemi F

- L linguaggio del primo ordine (=, &,  $\rightarrow$ ,  $\vee$ ,  $\forall x$ ,  $\exists x$ ), con l'aggiunta del predicato  $\in$  "appartiene"
- $\bullet \ \, \text{variabili VAR} \ni \{ \mathbf{x},\, \mathbf{y},\, \mathbf{z},\, \mathbf{w}, \dots \}$

dove x, y, z sono da intendersi come insiemi e x  $\epsilon$  y = "x appartiene a y".

All'interno di L c'è una teoria degli insiemi. Tra cui prende posto l'assioma di comprensione di Frege, definito nel modo seguente:

Per ogni formula  $\phi(x)$  vale che  $\exists z \ \forall y \ (y \in z \Leftrightarrow \phi(y)) \ [\equiv \exists z \ z = \{x \mid \phi(x)\}]$ 

Teorema (o Paradosso) di Russell: la teoria F è contradditoria.

#### Dimostrazione:

$$\phi(\mathbf{x}) = \mathbf{x} \notin \mathbf{x} \ (\equiv \neg \ (\mathbf{x} \in \mathbf{x}))$$

Per l'assioma di comprensione  $\exists z \ z = \{x \mid x \notin x\} \ (\exists z \ \forall y \ (y \in z \Leftrightarrow y \notin y))$ 

Ponendo y=z ottengo che z $\in$ z  $\Leftrightarrow$  z $\notin$ z, risulta una **contraddizione**.

L'assioma di comprensione è contradditorio perchè permette di formare insiemi che non appartengono a se stessi.

Come correggere la contraddizione?

La soluzione accettabile è porre agli insiemi una **gerarchia di tipi**. In questo modo l'assioma di comprensione diventa:

$$\exists z \ \forall y \ (y \in a \rightarrow (y \in z \Leftrightarrow \phi(y)) \equiv z = \{x \in a \mid \phi(x)\}$$

In questo modo non posso più creare il Paradosso di Russell.

Al momento questa teoria dei tipi non è utilizzata. Una sua evoluzione diretta è la teoria dei tipi di  $Martin\text{-}L\ddot{o}f$ .

L'idea di Russell fu dunque quella di costruire insiemi partendo da una gerarchia.

#### 1.4 Idee principali nelle teorie di tipo moderne

Le teorie di tipo moderne (chiamate  $\lambda$ -calcolo tipato) nascono, nel corso degli anni '30, dalla combinazione della teoria di tipo di Russell con il  $\lambda$ -calcolo di Church.

#### 1.4.1 Richiamo della teoria del $\lambda$ -calcolo di *Church*

Ha origine dalla logica, è un linguaggio in grado di trattare le funzioni e rivolto alla loro formalizzazione. Consiste in un linguaggio formale, le cui componenti principali sono programmi chiamati termini (pensati come funzioni). La grammatica è la seguente:

$$t := x \mid b_1(b_2) \mid \lambda x.t$$

Esempio di applicazione:  $tg(x) \equiv \lambda x.tg(x)$ 

#### Regole di computazione di base

$$(\lambda x.t)(b) \to t[\frac{x}{b}] \qquad \frac{b_1 \to b_2}{b_1(a_1) \to b_2(a_2)} \qquad \frac{b_1 \to b_2}{\lambda x.b_1 \to \lambda x.b_2}$$

Si dice che un programma si riduca a un altro, cioè converge, solo se c'è una sequenza di riduzioni (applicazione di regole e/o assiomi), che connettono il primo programma con l'ultimo. Si parla, in questo modo, di **chiusura transitiva e simmetrica**, che si conclude quando il programma non è più riducibile. Quanto appena descritto può venire espresso nel seguente modo:

 $t \to t'$  sse esiste un numero finito di passi per cui t si riduce a t', ovvero esiste

$$b_1 \dots b_m$$
 t.c.  $t \to b_1 \to b_2 \dots \to b_m \to t'$ .

Il  $\lambda$  calcolo permette di codificare qualsiasi programma scritto in qualunque linguaggio (imperativo, dichiarativo, Java, C++, BASIC, ...). Tuttavia tale linguaggio non codifica solo programmi che terminano, ma anche programmi che non lo fanno. Un esempio di applicazione, per quest'ultima categoria, è un programma con computazione infinita:  $\lambda x.x(x)$ 

 $\lambda x.x(x)$  lo applichiamo a se stesso. Perció diventa  $\Lambda \equiv (\lambda x.x(x))(\lambda x.x(x))$  che seguendo la computazione si riduce a:

$$x(x)\left[\frac{x}{\lambda x.x(x)}\right] \equiv (\lambda x.x(x))(\lambda x.x(x))$$

Dunque esiste una catena di  $(t_i)_{i\in\mathbb{N}}$  di termini  $t_i \to t_{i+1}$ . Ciò significa che  $\Lambda$  non termina in qualunque linguaggio sia interpretato.

 $\Lambda$  risulta un buon metodo per rappresentare le funzioni, ma non è completo, rispetto all'intuizione matematica di funzione. È necessario, per questo, tipare le variabili; ovvero  $\lambda x.x \in A \to B(x \in A)$ .

Il  $\lambda$ -cacolo tipato, nato dal  $\lambda$ -calcolo "puro", è anch'esso un linguaggio di programmazione. Essendo tipato può essere trattato come una teoria degli insiemi.

#### 1.5 Che cosa è un tipo?

Per rispondere a questa domanda è necessario fornire la semantica intuitiva di tipo. Per farlo è utile pensare alla teoria dei tipi come paradigma di fondazione sia logico che matematico che informatico.

| ria dei tipi mo- |       | Sintassi in<br>un linguaggio<br>logico/per una<br>logica (anche<br>predicativo) | linguaggio di<br>programma- |
|------------------|-------|---------------------------------------------------------------------------------|-----------------------------|
| A type           | A set | A prop                                                                          | A data type                 |
|                  |       |                                                                                 |                             |

Tabella 1.1: Sintassi per i diversi paradigmi funzionali.

Per la sintassi:

- nella **teoria dei tipi moderna** a rappresenta un termine e A un tipo;
- nella sintassi in una **teoria degli insiemi** a è un elemento e A un insieme. Coincidendo con la corrispondenza originale in mente da Russell.
- nella sitassi in un **linguaggio logico** *a* rappresenta una proposizione di *A*, inteso come insieme di tipo delle sue dimostrazioni. Perciò un *proof-term* affermante come la proposizione di *A* sia vera.

• nella teoria in una sintassi di un **linguaggio di programmazione** a rappresenta un programma e A una specifica.

Dunque quando parliamo di tipo ci riferiamo a un insieme, una proposizione o data type, a seconda dell'applicazione di tipo che si ha in mente.

Dal punto di vista logico non si hanno solo proposizioni, ma anche predicati. Parlare solo di tipo non risulta quindi sufficiente. Per questo se si vuole rappresentare non una proposizione, ma un predicato A(x) si usa la seguente sitassi: A(x) prop $[x \in D]$ .

Dalla logica si sa che i predicati  $\phi(\mathbf{x})$  hanno  $\mathbf{x}$  senza un dominio specifico, perchè la sintasssi non determina che cosa è in  $\mathbf{x}$ . Al seguito di tutto questo i predicati hanno una variabile che deve essere tipata come  $\phi(\mathbf{x})$  **prop**[ $\mathbf{x} \in \mathbf{D}$ ]. Dunque (definizione di predicato)

$$\exists \mathbf{z} \quad \mathbf{z} = \{ \mathbf{x} \in \mathbf{a} | \phi(\mathbf{x}) \} \quad \equiv \quad \phi(\mathbf{x}) \operatorname{prop}[\mathbf{x} \in \mathbf{a}]$$

Quanto appena definito da origine al concetto di **tipo dipendente**, nel quale vengono tipate tutte le variabili che appartengono ad una **famiglia di tipo**.

Le famiglie di tipo sono indispensabili per rappresentare il concetto di predicato. Di seguito ho riassunto in forma tabellare le diverse famiglie.

| di tipo                      | negli insiemi                      | in logica                    | dati dipendenti          |
|------------------------------|------------------------------------|------------------------------|--------------------------|
| $A(x) \text{ prop}[x \in D]$ | $A(x) \operatorname{set}[x \in D]$ | $A(x) \text{ prop}[x \in D]$ | $A(x) datatype[x \in D]$ |

Tabella 1.2: Famiglia di tipi.

Il concetto di tipo dipendente è stato introdotto per la prima volta da *Martin-Löf. Russell* si era limitato a definire esclusivamente il concetto di funzione proposizionale dipendente da un tipo.

## 1.6 Esempi di tipi

| A type                    | A set                                                                                                             | A prop                                                                      | A data type                                                      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|
| N <sub>1</sub> singoletto | l'insieme<br>singoletto                                                                                           | tt costante vero                                                            | tipo Unit                                                        |
| N <sub>0</sub> vuoto      | l'insieme vuoto                                                                                                   | $\perp$ costante falso                                                      | vuoto come data-<br>type                                         |
| BxC (tipo prodotto)       | l'insieme prodot-<br>to cartesiano del-<br>l'insieme B con<br>l'insieme C                                         | B&C congiunzio-<br>ne della proposi-<br>zione B e della<br>proposizione C   | tipo prodot-<br>to cartesiamo<br>(come in set<br>theory)         |
| B+C (tipo somma binaria)  | l'insieme unione<br>disgiunta dell'in-<br>sieme B con l'in-<br>sieme C                                            | B∨C disgiunta<br>della proposi-<br>zione B e della<br>proposizione C        | tipo unione di-<br>sgiunta con codi-<br>fica                     |
| $B \rightarrow C$         | l'insieme delle funzioni dall'insieme B verso l'insieme C: $A \rightarrow B \equiv \{f \mid f: B \rightarrow C\}$ | $B \rightarrow C$ , implicazione della proposizone B e della proposizione C | insieme delle fun-<br>zioni dal dataty-<br>pe B al datatype<br>C |

Tabella 1.3: Famiglia di tipi.

## 1.6.1 I tipi dipendenti

| $\mathrm{A}(\mathrm{x})\mathrm{type}[\mathrm{x}{\in}\mathrm{B}]$ |  |  |  |
|------------------------------------------------------------------|--|--|--|
| tipo indiciato                                                   |  |  |  |
| $\prod C(x)$                                                     |  |  |  |
| $x \in B$                                                        |  |  |  |
| tipo somma disgiunta indiciata                                   |  |  |  |
| $\sum C(x)$                                                      |  |  |  |
| $x \epsilon B$                                                   |  |  |  |

| $A(x)set[x \in B]$                                                                              | $A(x)prop[x \in B]$          | $A(x)$ datatype $[x \in B]$                                                               |
|-------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------|
| $\{f: B \to \coprod_{x \in B} C(x)\}$ $\coprod_{x \in B} C(x) = \{b, c   b \in B  c \in C(b)\}$ | $\forall x \epsilon B  C(x)$ | tipo prodotto indiciato<br>come in set theory (non<br>esiste un data-type spe-<br>cifico) |
| $\coprod_{x \in B} C(x)$ $\coprod_{x \in B} C(x) = \{b, c   b \in B  c \in C(b)\}$              | $\exists x \epsilon B  C(x)$ | non è primitivo deriva sempre dalla set theory                                            |

Tabella 1.4: Tipi dipendenti.

#### 1.7. REGOLE PARADIGMATICHE PER CARATTERIZZARE LA TEORIA DEI TIPI11

Lo slogan principale della teoria dei tipi è quello di tipare le variabili in un linguaggio formale set teorico/computazionale.

Esite anche il **tipo uguaglianza**:

• intensionale: Id(B,c,d);

• estensionale: Eq(B,c,d).

Introdotte da Martin-Löf.

E i costrutti degli **universi**, in cui U è universo di proposizioni e di insiemi.

# 1.7 Regole paradigmatiche per caratterizzare la teoria dei tipi

La teoria dei tipi è stata formalizzata usando la nozione di **giudizio**, dove si asserisce qualcosa come vero.

Ci sono quattro forme di giudizio (nelle quali  $\Gamma$  identifica il contesto):

- A type[Γ]: A è un tipo, possibilmente indicato da variabili nel contesto Γ, dipendente da Γ stesso. Rappresenta il giudizio di tipo.
- $\mathbf{A} = \mathbf{B}$  type $[\Gamma]$ : il tipo A dipendente da  $\Gamma$  è uguale al tipo B dipendente da  $\Gamma$ . Rappresenta il giudizio di uguaglianza di tipo.
- a ∈ A type[Γ]: a è un elemento del tipo A, possibilmente indiciato, ovvero dipendente da Γ e dalle sue variabili di contesto. Un esempio di tipo dipendente è l'array, che ha termini di funzioni che dipendono da Γ. Invece il termine non è dipendente quando si parla di funzione costante senza variabili.
- $\mathbf{a} = \mathbf{b} \in \mathbf{A}$  type[ $\Gamma$ ]: a come elemento del tipo A dipende da  $\Gamma$  ed è uguale in modo definizionale/computazionale al termine b. Quest'ultimo, difatti, è elemento del tipo A dipendente da  $\Gamma$ .

All'interno di ogni singolo giudizio si lavora con la teoria dei tipi.

I giudizi solo esclusivamente asserzioni, dicono solo qualcosa quando è vero (non si usano i quantificatori). Essi limitano le frasi che si possono fare per codificare la logica intuizionistica.

#### 1.7.1 Simbolo $\in$

Il significato di  $a \in A$  in teoria dei tipi è differente da quello insiemistico. Espongo il concetto con un esempio trattato a lezione:

$$1 \in Nat \tag{1.1}$$

- In set theory usuale  $\in$  è tra insiemi. Nell'equazione 1.1, 1 rappresenta lui stesso un'insieme e Nat l'insieme dei numeri Naturali. Risulta vero che  $1\equiv\{\varnothing\}$ , poichè  $0\equiv\varnothing$ .
- Invece in **teoria dei tipi** (di *Martin-Löf* come di *Russell*) 1 rappresenta un elemento ma non un tipo e Nat il tipo dei Naturali. Vi è dunque la distinzione tra elemento e tipo (come esiste quella tra programmi e tipi).

## 1.7.2 Uguaglianza definizionale vs uguaglianza proposizionale

Specifico  $\mathbf{a} = \mathbf{b} \in \mathbf{A}[\Gamma]$  come l'uguaglianza computazionale/definizionale, che viene data come primitiva e non va confusa con l'uguaglianza proposizionale/estensionale tra a e b.

L'uguaglianza proposizionale a=b è rappresentata non da un giudizio, che asserisce solo ciò che è vero, ma bensì da un tipo Eq(A,a,b) che può anche essere senza termini e/o essere falso, dal punto di vista logico.

Visti come programmi, a e b rappresentano lo stesso programma. In  $\lambda$ -calcolo a $\rightarrow$ b oppure b $\rightarrow$ a (si riducono). Inoltre a e b possono essere sia termini finali che trovarsi in mezzo alla computazione.

#### 1.7.3 Generazione di contesti

Esiste anche un quinto giudizio ausiliario (\$ 2.1.1) F-C, che permette di generare i contesti. Tale giudizio, a differenza dei primi quattro, rimane immutato in ogni teoria dei tipi.

## Regole della teoria dei tipi

Lo scopo della teoria dei tipi è offrire un sistema formale in cui derivare, tramite regole e assiomi, giudizi nella forma:

$$A\ type[\Gamma] \qquad A=B\ type[\Gamma] \qquad a\in A\ type[\Gamma] \qquad a=b\in A\ type[\Gamma] \\ +\ ausiliaria \quad \Gamma\ cont$$

L'ultimo giudizio non è necessario, serve esclusivamente per imparare. Quando si formula una nuova teoria dei tipi è bene impiegare il minor numero possibile di regole strutturali e di formazione di tipi e termini. Tali regole devono essere rivolte all'ottimizzazione e correttezza della teoria. Alcune di queste, come quelle di indebolimento e sostituzione in §2.1.5, sono irrinunciabili, la cui validità è sempre garantita e utilizzate nella derivazione di ogni teoria.

Se la teoria dei tipi è dipendente si ha bisogno di tutti i giudizi. Invece in una teoria dei tipi non dipendente, come quella dei tipi semplici, il giudizio  $A=B\ type[\Gamma]$  può venire omesso.

## 2.1 Regole strutturali

Assioma unico: [] cont

Nel calcolo dei sequenti, in logica classica, le derivazioni di giudizio, valide in una teoria dei tipi con solo le regole singoletto, diventano derivazioni di sequenti nella forma  $\Gamma \dashv A$  e unico assioma  $\varphi \dashv \varphi$ .

Di seguito illustro le principali regole di contesto comuni a tutte le teorie dei tipi.

#### 2.1.1 Regole di formazione dei contesti

$$[\ ]$$
 cont dove  $[\ ] = \emptyset$ 

F-C) 
$$\frac{A \text{ type}[\Gamma]}{\Gamma, x \in A} x \in A \notin \Gamma$$

#### 2.1.2 Regole di assunzione delle variabili

var-ass) 
$$\frac{\Gamma, x \in A, \Delta \quad \text{cont}}{x \in \text{type}[\Gamma, x \in A, \Delta]}$$

#### 2.1.3 Regole strutturali addizionali sull'uguaglianza

L'uguaglianza, in una teoria dei tipi, consiste in una relazione di equivalenza sia fra tipi che fra termini. Sono perciò valide le seguenti regole di uguaglianza tra tipi:

$$ref) \quad \frac{A \; type[\Gamma]}{A = A \; type[\Gamma]} \qquad sym) \quad \frac{A = B \; type[\Gamma]}{B = A \; type[\Gamma]}$$
 
$$tra) \quad \frac{A = B \; type[\Gamma]}{A = C \; type[\Gamma]}$$

E allo stesso modo anche le regole di uguaglianza definizonale/computazionale tra termini:

$$ref) \quad \frac{a \in A \; type[\Gamma]}{a = a \in A \; type[\Gamma]} \qquad sym) \quad \frac{a = b \in A \; type[\Gamma]}{b = a \in A \; type[\Gamma]}$$
 
$$tra) \quad \frac{a = b \in A \; type[\Gamma]}{a = c \in A \; type[\Gamma]}$$

#### 2.1.4 Regole di conversione dell'uguaglianza per tipi uguali

L'appartenenza si conserva con l'uguaglianza di termini e tipi. Le regole da aggiungere, in una teoria dei tipi, per garantirlo sono:

$$\begin{array}{ll} conv) & \frac{a \in A \; type[\Gamma] \quad A = B \; type[\Gamma]}{a \in B \; type[\Gamma]} \\ \\ conv - eq) & \frac{a = b \in A \; type[\Gamma] \quad A = B \; type[\Gamma]}{a = b \in B \; type[\Gamma]} \end{array}$$

#### 2.1.5 Regole di indebolimento e di sostituzione

#### Indebolimento

$$\begin{array}{ll} ind-ty) & \frac{A\; type[\Gamma] \quad \Gamma, \Delta\; cont}{A\; type[\Gamma, \Delta]} \quad ind-ty-eq) \quad \frac{A=B\; type[\Gamma] \quad \Gamma, \Delta\; cont}{A=B\; type[\Gamma, \Delta]} \\ ind-te) & \frac{a\in A\; type[\Gamma] \quad \Gamma, \Delta\; cont}{a\in A\; type[\Gamma, \Delta]} \quad ind-te) \quad \frac{a=b\in A\; type[\Gamma] \quad \Gamma, \Delta\; cont}{a=b\in A\; type[\Gamma, \Delta]} \end{array}$$

#### Sostituzione

$$C(x_{1},...,x_{n}) \ type[\Gamma, x_{1} \in A_{1},...,x_{n} \in A_{n}(x_{1},...,x_{n-1})]$$

$$sub - typ) \quad \frac{a_{1} \in A_{1} \ type[\Gamma] \ ...a_{n} \in A_{n}(a_{1},...,a_{n-1}) \ type[\Gamma]}{C(a_{1},...,a_{n}) \ type[\Gamma]}$$

$$(2.1)$$

$$sub - eq - typ) \quad \frac{C(x_1, ..., x_n) \ type[\Gamma, x_1 \in A_1, ..., x_n \in A_n(x_1, ..., x_{n-1})]}{a_1 = b_1 \in A_1 \ type[\Gamma] ... a_n = b_n \in A_n(a_1, ..., a_{n-1}) \ type[\Gamma]}{C(a_1, ..., a_n) = C(b_1, ..., b_n) \ type[\Gamma]}$$

$$(2.2)$$

$$C(x_{1},...,x_{n}) = D(x_{1},...,x_{n}) \ type[\Gamma, x_{1} \in A_{1},...,x_{n} \in A_{n}(x_{1},...,x_{n-1})]$$

$$sub - Eqtyp) \quad \frac{a_{1} \in A_{1} \ type[\Gamma] \ ...a_{n} \in A_{n}(a_{1},...,a_{n-1}) \ type[\Gamma]}{C(a_{1},...,a_{n}) = D(a_{1},...,a_{n}) \ type[\Gamma]} \quad (2.3)$$

$$C(x_{1},...,x_{n}) = D(x_{1},...,x_{n}) \ type[\Gamma, x_{1} \in A_{1},...,x_{n} \in A_{n}(x_{1},...,x_{n-1})]$$

$$sub - eq - Eqtyp) \quad \frac{a_{1} = b_{1} \in A_{1} \ type[\Gamma] \ ...a_{n} = b_{n} \in A_{n}(a_{1},...,a_{n-1}) \ type[\Gamma]}{C(a_{1},...,a_{n}) = D(a_{1},...,a_{n}) \ type[\Gamma]}$$

$$(2.4)$$

$$c(x_{1},...,x_{n}) \in C(x_{1},...,x_{n}) \ type[\Gamma, x_{1} \in A_{1},...,x_{n} \in A_{n}(x_{1},...,x_{n-1})]$$

$$sub - ter) \quad \frac{a_{1}inA_{1} \ type[\Gamma] \ ...a_{n} \in A_{n}(a_{1},...,a_{n-1}) \ type[\Gamma]}{c(a_{1},...,a_{n}) \in C(a_{1},...,a_{n}) \ type[\Gamma]}$$

$$(2.5)$$

$$c(x_{1},...,x_{n}) = d(x_{1},...,x_{n}) \in C(x_{1},...,x_{n}) \ type[\Gamma, x_{1} \in A_{1},...,x_{n} \in A_{n}(x_{1},...,x_{n-1})]$$

$$sub - eqter) \quad \frac{a_{1} \in A_{1} \ type[\Gamma] \ ...a_{n} \in A_{n}(a_{1},...,a_{n-1}) \ type[\Gamma]}{c(a_{1},...,a_{n}) = d(a_{1},...,a_{n}) \in C(a_{1},...,a_{n}) \ type[\Gamma]}$$

$$(2.6)$$

$$c(x_{1},...,x_{n}) \in C(x_{1},...,x_{n}) \ type[\Gamma, x_{1} \in A_{1},...,x_{n} \in A_{n}(x_{1},...,x_{n-1})]$$

$$sub - eq - ter) \quad \frac{a_{1} = b_{1} \in A_{1} \ type[\Gamma] \ ...a_{n} = b_{n} \in A_{n}(a_{1},...,a_{n-1}) \ type[\Gamma]}{c(a_{1},...,a_{n}) = c(b_{1},...,b_{n}) \in C(a_{1},...,a_{n}) \ type[\Gamma]}$$

$$(2.7)$$

$$c(x_{1},...,x_{n}) = d(x_{1},...,x_{n}) \in C(x_{1},...,x_{n}) \ type[\Gamma, x_{1} \in A_{1},...,x_{n} \in A_{n}(x_{1},...,x_{n-1})]$$

$$sub - eq - eqter) \quad \frac{a_{1} = b_{1} \in A_{1} \ type[\Gamma] \ ...a_{n} = b_{n} \in A_{n}(a_{1},...,a_{n-1}) \ type[\Gamma]}{c(a_{1},...,a_{n}) = d(b_{1},...,b_{n}) \in C(a_{1},...,a_{n}) \ type[\Gamma]}$$

$$(2.8)$$

#### 2.1.6 Regole proprie e derivabili

In una teoria formale ci sono due tipi di regole:

- regole proprie del calcolo, come lo sono le regole strutturali e quelle del singoletto;
- regole derivabili, come le regole di sostituzione, utili per abbreviare le derivazioni.

Una regola r $\frac{J_1,\ldots,J_n}{J}$ è ammissibile in un calcolo t sse i giudizi derivabili in t+r sono gli stessi dei giudizi derivabili in t. Ciò comporta che l'aggiunta di una regola rt non cambia i giudizi che ne possono derivare.

Quando un assioma è ammissibili e derivabile questo coincide con un giudizio derivabile.

#### 2.1.7 Nozione di contesto telescopico

Un giudizio, in teoria dei tipi dipendenti si esprime nella forma

$$A(x_1,...,x_n)[x_1 \in B_1,...,x_n \in B_n]$$

e prende il nome di **contesto telescopico**. Questi presenta una dipendenza continua, esemplificata nel seguente giudizio

$$A(x_1, x_2, x_3)$$
 type $[x \in C_1, x_2 \in C(x_1), x_3 \in C(x_1x_2)..)$ 

Inoltre si parla di contesti rigidi, ovvero senza possibilità di scambio. Come appare dall'esempio sotto.

$$[x \in Nat, y \in Nat, z \in Mat(x, y)]$$
 cont  $\Rightarrow$  è derivabile  $[y \in Nat, x \in Nat, z \in Mat(x, y)]$  cont  $\Rightarrow$  è derivabile  $[y \in Nat, z \in Mat(x, y), x \in Nat] \Rightarrow$  non è un contesto.

Percui non esiste lo scambio arbitrario, si deve porre attenzione alle dipendenza delle assunzioni, che provoca una sostituzione rigida.

#### 2.1.8 Esempi di applicazione

Attenzione all'ordine di sostituzione si deve partire sempre da quello con meno dipendenze.

$$c \in [C, \Gamma] \qquad b \in [B(c), \Gamma] \qquad A(x,y) \ type[x \in C, \ y \in B(x)]$$
 
$$A(c,b) \ type[\Gamma]$$

$$c \in [C,\Gamma] \qquad b \in [B(c),\Gamma] \qquad A(x,y) \ type[x \in C, \ y \in B(x)]$$
 
$$a(c,b) \in A(c,b) \ type[\Gamma]$$

Se si ha un tipo puo' venire usato il giudizio di uguaglianza tra termini e la sostituzione.

$$\frac{A(x) \; type[\Gamma, \, x \in C] \qquad c = e \in C[\Gamma]}{A(c) = A(e) \; type[\Gamma]}$$

È dunque fondamentale il concetto di uguaglianza fra tipi. Se considero che ci sia un elemento

$$\frac{a(x) \in A(x) \; type[\Gamma, \, x \in C] \qquad c = e \in C[\Gamma]}{a(c) = a(e) \in A(c) \; type[\Gamma]}$$

Per poter affermare che A(e) = A(c) devo poterlo dedurre. Per farlo mi sono indispensabili le **regole di conversione dell'uguaglianza del tipaggio** (§2.1.9).

#### 2.1.9 Regole di tipaggio

Regole di conversione

$$\frac{c \in C[\Gamma] \qquad C = D \ type[\Gamma]}{C \in D \ type[\Gamma]}$$

Se due tipi sono uguali allora hanno gli stessi termini:  $C = D \Rightarrow (c \in C \Leftrightarrow c \in D)$ . L'uguaglianza fra tipi è per questo simmetrica.

Tuttavia non sempre l'unicità del tipaggio di un termine (il  $\Leftrightarrow$ ) è garantito per ogni teoria. Nei casi trattati dal corso sì, in quanto verrà inteso che  $C=D\ type[\Gamma]$  sse due tipi hanno gli stessi elementi (come già accade in  $set\ theory$ ), ma può non essere sempre vero.

#### Regole di conversione dell'uguaglianza

$$\frac{c = d \in C[\Gamma] \qquad C = D \; type[\Gamma]}{c = d \in D \; type[\Gamma]}$$

Questa regola permette di convertire le uguaglianze nel tipaggio di un termine.

#### 2.2 Il tipo singoletto

Il tipo singoletto risulta essere paradigmatico per gli altri tipi. Per definirlo impiegherò i giudizi nella forma  $A\ type[\Gamma],\ a\in A\ type[\Gamma]$  e  $a=b\in A\ type[\Gamma].$  L'uguaglianza, invece, non verrà coinvolta, in quanto non può essere impiegata per definire un nuovo tipo, è difatti usata solo nelle derivazioni.

Innanzitutto come già visto in  $\S 2.1.1$  ogni derivazione parte sempre dal contesto vuoto  $(\varnothing)$ .

F-C) 
$$\frac{A \text{ type}[\Gamma]}{\Gamma, x \in A} x \in A \notin \Gamma$$

#### 2.2.1 Regola di formazione

F-S) 
$$\frac{[\Gamma] \text{ cont}}{N_1 \text{ type}[\Gamma] \text{ cont}}$$

La regola F-S Permette di derivare vari giudizi e di dire che cosa è un tipo.

Con l'impiego solo delle regole F-C e F-S si possono derivare  $[x_1 \in N_1... x_n \in N_1]$  cont e ottenere, così, contesti di una lista arbitraria di variabili diverse appartenenti a  $N_1$ , come si vede dall'esempio seguente.

$$\begin{aligned} & \text{F-C)} \frac{ \left[ \ \right] \text{ cont}}{\left[ x_1 \in N_1 \right] \text{ cont}} \ x_1 \in N_1 \notin \varnothing \\ & \text{F-S)} \frac{N_1 \text{ type } \left[ x_1 \in N_1 \right]}{\left[ x_1 \in N_1, \ x_2 \in N_1 \right] \text{ cont}} \ x_2 \in N_1 \notin x_1 \in N_1 \end{aligned}$$

#### 2.2.2 Regole di Introduzione

I-S) 
$$\frac{[\Gamma] \text{ cont}}{* \in N_1 \text{ type}[\Gamma] \text{ cont}}$$

Sia  $N_1$  in ogni contesto  $\Gamma$ , partendo da contesto  $\varnothing$ , la regola I-S permette di formare i termini, per mezzo dell'introduzione di un elemento costante \* in  $N_1$ .

Un esempio diretto della sua applicazione è

I-S) 
$$\frac{[\ ] \text{ cont}}{* \in N_1 \ (x_1 \in N_1 ... x_n \in N_1)}$$

#### 2.2.3 Regole di Eliminazione

E-S) 
$$\frac{\mathbf{t} \in N_1 \text{ type}[\Gamma] \qquad \mathbf{M}(\mathbf{z}) \text{ type}[\Gamma, \mathbf{z} \in N_1] \qquad \mathbf{c} \in \mathbf{M}(*) \text{ type}[\Gamma]}{El_{N_1}(\mathbf{t}, \mathbf{c}) \in \mathbf{M}(*) \text{ type}[\Gamma]}$$

El trattasi di costruttore di funzioni e  $M[t] = M(z)[\frac{z}{t}]$ . La regola di eliminazione si può equivalentemente scrivere in un altro modo

E-S)<sub>dip</sub> 
$$\frac{M(z) \text{ type}[\Gamma, z \in N_1] \quad c \in M(*) \text{ type}[\Gamma]}{El_{N_1}(z, c) \in M(z) \text{ type}[\Gamma, z \in N_1]}$$

Le regole E-S) $_{dip}$  + la regole di sostituzione + F-S + I-S permettono di verificare la validità di E-S.

$$\operatorname{sost}) \ \frac{\operatorname{t} \in N_1 \ \operatorname{type}[\Gamma]}{\operatorname{E-S})_{dip}} \ \frac{\operatorname{M}(\operatorname{z}) \ \operatorname{type}[\Gamma, \operatorname{z} \in N_1] \qquad \operatorname{c} \in \operatorname{M}(*) \ \operatorname{type}[\Gamma]}{\operatorname{El}_{N1}(\operatorname{z}, \operatorname{c}) \in \operatorname{M}(\operatorname{z}) \ \operatorname{type}[\Gamma]}$$
 
$$\operatorname{El}_{N1}(\operatorname{t}, \operatorname{c}) \in \operatorname{M}(\operatorname{t}) \ \operatorname{type}[\Gamma]$$

Inoltre vale anche il viceversa, da E-S si riesce a ottenere E- $S_{dip}$ .

#### 2.2.4 Regole di Conversione

C-S) 
$$\frac{M(z) \text{ type}[\Gamma, z \in N_1] \qquad c \in M(*) \text{ type}[\Gamma]}{El_{N_1}(*, c) = c \in M(*) \text{ type}[\Gamma]}$$

La conversione rende possibile l'applicazione della regola di eliminazione introducendo delle uguaglianze.

Le regole (S), (I-S), (E-S) e (C-S) hanno una spiegazione computazionale, e riguardano la compatibilità tra tipi, ma non da caratterizzare il tipo dei tipi. Inoltre il tipo singoletto non è dipendente.

#### 2.2.5Osservazioni sul tipo singoletto

L'eliminatore  $El_{N1}(z, c)$  rappresenta una funzione definita per ricorsione su  $N_1$ ,

difatti in C-S si ha che  $\mathrm{El}_{N1}(z,\,c)[\frac{z}{*}]=\mathrm{El}_{N1}(*,\,c).$  Supposto che se  $*\in\mathrm{N}_1[\Gamma]$  in E-S, allora per la singola conversione vale che  $\mathrm{El}_{N1}=\mathrm{c}\in\mathrm{M}(^*)$ . Dunque  $\mathrm{El}_{N1}(\mathrm{z},\,\mathrm{c})$  rappresenta un programma funzionale per ricorsione. Questi è definito su  $N_1$ , a partire da  $c \in M(*)$ , perciò  $El_{N_1}(*, c) =$ 

La regola di eliminazione permette di definire un programma funzionale da N<sub>1</sub> a M(z) esclusivamente con  $c \in M(*)$ , ovvero definendo \* come elemento canonico.

In

$$\frac{t \in N_1[\Gamma]}{t = * \in N_1[\Gamma]}$$

risulta vera l'uguaglianza definizionale?

No, non è vera. La regola di eliminazione consente di dare un valore al termine canonico, permettendo così di attribuire un valore a tutti i possibili termini del singoletto. Ma in generale questo non vale all'interno della teoria. Difatti l'uguaglianza definizionale è diversa da quella matematica e va intesa come computazionale e non proposizionale (come definito in §1.7.2).

#### 2.3 Sanitary checks rules

Le Sanitary checks sono regole strutturali utili per abbreviare le derivazioni. Queste sono derivabili solo se la teoria dei tipi è corretta.

Assumento T, come una teoria dei tipi di riferimento, le sanitary checks sono le seguenti:

$$\frac{[\Gamma,\,\Delta]\,\cot}{\Gamma\,\cot}$$

Se  $[\Gamma, \Delta]$  cont è derivabile in T allora anche  $[\Gamma]$  cont è derivabile in T.

$$\frac{J_1,...,J_n}{J}$$

Se  $J_i$  con i = 1,...,n in T sono derivabili allora anche J è derivabile in T.

$$\frac{\text{A type } [\Gamma]}{\Gamma \text{ cont}}$$

Se A type  $[\Gamma]$  è derivabile in T allora anche  $\Gamma$  cont è derivabile in T.

$$\frac{A = B \text{ type } [\Gamma]}{A \text{ type}[\Gamma]} \frac{A = B \text{ type } [\Gamma]}{B \text{ type}[\Gamma]}$$

Se A = B type  $[\Gamma]$  è derivabile in T allora anche A type  $[\Gamma]$  e B type  $[\Gamma]$  sono derivabili in T.

$$\frac{a \in A \text{ type } [\Gamma]}{A \text{ type}[\Gamma]}$$

Se  $a \in A$  type  $[\Gamma]$  è derivabile in T allora anche A type  $[\Gamma]$  è derivabile in T.

$$\frac{a=b\in A \; type \; [\Gamma]}{a\in A \; type [\Gamma]} \; \frac{a=b\in A \; type \; [\Gamma]}{b\in A \; type [\Gamma]}$$

Se a = b  $\in$  A type  $[\Gamma]$  è derivabile in T allora anche a  $\in$  A type  $[\Gamma]$  e b  $\in$  A type  $[\Gamma]$  sono derivabili in T.

#### 2.4 Esercizi

- 1. Dimostrare che da E-S si riesce a ottenere  $E\text{-}S_{dip}$  usando le derivazioni.
- 2. Dimostrare che la regola E-S è derivabile in una teoria dei tipi  $T_1$ , in cui si è rimpiazziata la regola di eliminazione E-S con la regola E- $N_1prog$ , aggiungendovi le regole di indebolimento, sostituzione e di sanitary checks.

$$\text{E-N}_{1prog}) \ \frac{\text{M(w) type} \ [\Gamma, \ w \in N_1] \qquad d \in \text{D(*) type} [\Gamma]}{\text{EL}_{N1}(w, \ d) \in \text{M(w) type} [\Gamma, \ w \in N_1]}$$

E-S) 
$$\frac{t' \in N_1 \text{ type}[\sum]}{\text{El}_{N_1}(t', d') \in M(t') \text{ type}[\Gamma]} \frac{d' \in M(*) \text{ type}[\sum]}{\text{El}_{N_1}(t', d') \in M(t') \text{ type}[\Gamma]}$$

#### Soluzione

Idea: parto dalla regola di eliminazione E-S, vi applico la regola di sostituzione sub-typ giungendo così alle premessi di  $E-N_{1prog}$ 

$$\text{sub-typ)} \frac{\frac{1}{\mathsf{t'} \in \mathsf{N}_1 \; \mathsf{type}[\Gamma]} \quad \text{E-N}_{1prog})}{\mathsf{E}!_{N_1}(\mathsf{t'}, \; \mathsf{d'}) \in \mathsf{M}(\mathsf{w}) \; \mathsf{type}[\Gamma, \; \mathsf{w} \in \mathsf{N}_1]} \quad \frac{\mathsf{d} \in \mathsf{D}(*) \; \mathsf{type}[\Gamma]}{\mathsf{E}!_{N_1}(\mathsf{w}, \; \mathsf{d'}) \in \mathsf{M}(\mathsf{w}) \; \mathsf{type}[\Gamma, \; \mathsf{w} \in \mathsf{N}_1]}}{\mathsf{E}!_{N_1}(\mathsf{t'}, \; \mathsf{d'}) \in \mathsf{M}(\mathsf{t'}) \; \mathsf{type}[\Gamma]}$$

Assumo che siano valide per costruzione le premesse di E- $N_{1prog}$  e di E-S.

Naturali, Somma disgiunta e liste

# Uguaglianza proposizionale

# Somma indiciata forte e prodotto cartesiano

#### $26 CAPITOLO \ 5. \ SOMMA\ INDICIATA\ FORTE\ E\ PRODOTTO\ CARTESIANO$

Tipo delle funzioni e tipo prodotto dipendente

#### $28 CAPITOLO \ 6. \ TIPO \ DELLE \ FUNZIONI \ E \ TIPO \ PRODOTTO \ DIPENDENTE$

La logica della teoria dei tipi di  $Martin-L\ddot{o}f$ 

#### 30CAPITOLO~7. LA LOGICA DELLA TEORIA DEI TIPI DI MARTIN-LÖF

# Appendice A

# Tabelle