AMATH 567

Applied Complex Variables

K.K. Tung

Autumn 2022

Homework 4

Due: Wednesday, November 2, 2022 Wietse Vaes 2224416

1. Using residue calculus, calculate

$$I = \int_{-\infty}^{\infty} \frac{\sin x}{\sinh x} dx.$$

Solution

We know that $\sin x = \text{Im}(e^{ix})$ and $\sinh x = \frac{e^x - e^{-x}}{2}$. Thus we want to evaluate:

$$I = 2\operatorname{Im} \int_{-\infty}^{\infty} \frac{e^{ix}}{e^x - e^{-x}} dx.$$

Poles to this are where $e^x = e^{-x}$. These are equal when $x = k\pi i$ with $k \in \mathbb{Z}$. However, since $\lim_{R\to\infty} \frac{1}{e^{Re^{it}} - e^{-Re^{it}}} = 0$ (if $2\pi k \le t \le 2\pi (k+1)$ with k even, the limit is $\frac{1}{\infty - 0} = 0$, if k is odd, the limit is $\frac{1}{0-\infty} = 0$), we can use Jordan's lemma to get that

$$\int_{-\infty}^{\infty} \frac{e^{iz}}{e^z - e^{-z}} dz = \lim_{R \to \infty} \int_{-R}^{R} \frac{e^{iz}}{e^z - e^{-z}} dz = \lim_{R \to \infty} \oint_{C_R} \frac{e^{iz}}{e^z - e^{-z}} dz$$

with C_R the closed semicircle on the positive half of the complex plane. Using the residue theorem, we're only interested in the residues with a positive complex coefficient and where x = 0, note that this last one is on C_{R+} . For $R \to \infty$ we get,

$$\lim_{R \to \infty} \oint_{C_R} \frac{e^{iz}}{e^z - e^{-z}} dz = \pi i \operatorname{Res}(0) + 2\pi i \sum_{k=1}^{\infty} \operatorname{Res}(k\pi i)$$

All of these poles are simple poles, thus we use the method of the lecture: if f(z) = P(z)/Q(z) with P(z) (in this case e^{iz}) analytic in z_0 and Q(z) (in this case $e^z - e^{-z}$) has a simple root in z_0 , then $\text{Res}(z_0) = \lim_{z \to z_0} \frac{P(z)}{Q'(z)}$. Thus,

$$\operatorname{Res}(k\pi i) = \lim_{z \to k\pi i} \frac{e^{iz}}{e^z + e^{-z}} = \frac{e^{-k\pi}}{e^{ik\pi} + e^{ik\pi}} = \frac{e^{-k\pi}}{2\cos(k\pi)} = \frac{(-1)^k e^{-k\pi}}{2}.$$

Thus,

$$\lim_{R \to \infty} \oint_{C_R} \frac{e^{iz}}{e^z - e^{-z}} dz = \frac{\pi}{2} i + \pi i \sum_{k=1}^{\infty} \left(-e^{-\pi} \right)^k = -\frac{\pi}{2} i + \pi i \sum_{k=0}^{\infty} \left(-e^{-\pi} \right)^k = \pi i \left(\frac{1}{1 + e^{-\pi}} - \frac{1}{2} \right)$$

$$= \frac{\pi}{2} \frac{1 - e^{-\pi}}{1 + e^{-\pi}} i = \frac{\pi}{2} \frac{e^{\pi/2} - e^{-\pi/2}}{e^{\pi/2} + e^{-\pi/2}} i$$

$$= \frac{\pi}{2} \tanh\left(\frac{\pi}{2}\right) i.$$

In conclusion:

$$\int_{-\infty}^{\infty} \frac{\sin x}{\sinh x} dx = 2 \text{Im} \int_{-\infty}^{\infty} \frac{e^{ix}}{e^x - e^{-x}} dx = 2 \text{Im} \lim_{R \to \infty} \oint_{C_R} \frac{e^{iz}}{e^z - e^{-z}} dz = \pi \tanh\left(\frac{\pi}{2}\right)$$

2. Using residue calculus, calculate

$$I = \int_{-\infty}^{\infty} \frac{1 + \cos(x)}{(x - \pi)^2} dx.$$

Solution

Say that C_{R+} is parameterised by Re^{it} , with $t \in [0, \pi]$ and l_R is the line between -R and R on the real axis, Assume for both that $R > \pi$. We then have the upper semicircle C_R as the union between both. Note also that this is a proper integral. Since π is the **only** pole and it is on C_R we know that, from lecture 13, that

$$I = P \int_{-\infty}^{\infty} \frac{1 + \cos(x)}{(x - \pi)^2} dx = \operatorname{Re}P \int_{-\infty}^{\infty} \frac{1 + e^{ix}}{(x - \pi)^2} dx = \operatorname{Re}\lim_{R \to \infty} P \oint_{C_R} \frac{1 + e^{iz}}{(z - \pi)^2} dz = \operatorname{Re}(\pi i \operatorname{Res}(\pi))$$

Note that this is true since,

$$0 \le \lim_{|z| \to \infty} |z \frac{1 + e^{iz}}{(z - \pi)^2}| \le \lim_{|z| \to \infty} \frac{|z|(|1| + |e^{iz}|)}{|(z - \pi)^2|} \le \lim_{|z| \to \infty} 2 \frac{|z|}{|z|^2} = 0,$$

thus we have that,

$$\lim_{R \to \infty} \int_{C_{R+}} \frac{1 + e^{iz}}{(z - \pi)^2} dz = 0.$$

Since π is a pole, we have that

Res
$$(\pi)$$
 = $\lim_{z \to \pi} \left((z - \pi) \frac{1 + e^{iz}}{(z - \pi)^2} \right) = \lim_{z \to \pi} \frac{1 + e^{iz}}{z - \pi} = ie^{i\pi} = -i$

(l'Hopital's rule).

In conclusion

$$I = \operatorname{Re}(-\pi i^2) = \pi.$$

3. Evaluate the following integral using residue calculus:

$$I = \int_0^\infty \frac{x^a}{1 + 2x\cos(b) + x^2} dx,$$

where -1 < a < 1, $a \neq 0$, and $-\pi < b < \pi$, $b \neq 0$. Justify all key steps. Do not use the general formula for this integral.

Solution

First we find the poles:

$$D = 4(\cos^2(b) - 1) = -4\sin^2(b) \Rightarrow z_{\pm} = \frac{-2(\cos(b) \pm i\sin(b))}{2} = -e^{\pm ib}$$

They are both simple poles since $b \in]-\pi,\pi[$ and they always have an imaginary component since $b \neq 0,\pi$ and $-\pi$ too. If we were to go to a complex variables function, we would get a multi valued function since $a \in]-1,1[$. For example, if $z=-1=e^{\pi i+2k\pi i}$, with $k \in \mathbb{Z}$, we have that $z^a=e^{a\pi i+2ka\pi i}$ where there exists multiple at least 2 k's where $2ka\in [0,2[$ $(k=0,\pm 1)$. Thus, for the following we state that $\arg(z)\in [0,2\pi[$ (setting a branch cut). Using the notations used in lecture 14 page 3, we have $C=C_0+C_1+C_2+C_R$ (take R>1):

First we calculate

$$\oint_C \frac{z^a}{1 + 2z\cos(b) + z^2} dz$$

Since neither poles are on the C_R if R > 1 and the radius δ of C_2 is small enough, we have that

$$\oint_C \frac{z^a}{1 + 2z\cos(b) + z^2} dz = 2\pi i \left(\operatorname{Res}(-e^{ib}) + \operatorname{Res}(-e^{-ib}) \right)$$

Since these are simple poles, they can easily be found by

$$\operatorname{Res}(-e^{ib}) = \lim_{z \to -e^{ib}} \frac{z^a}{z + e^{-ib}} = -\frac{-1^a e^{iab}}{e^{ib} - e^{-ib}} \text{ and } \operatorname{Res}(-e^{-ib}) = \lim_{z \to -e^{-ib}} \frac{z^a}{z + e^{ib}} = \frac{-1^a e^{-iab}}{e^{ib} - e^{-ib}}.$$

In conclusion:

$$\oint_C \frac{z^a}{1 + 2z\cos(b) + z^2} dz = (-1)^{a+1} 2\pi i \frac{\sin(ab)}{\sin(b)}$$

Since,

$$\begin{split} \lim_{|z| \to \infty} \left| z \frac{z^a}{1 + 2z \cos(b) + z^2} \right| &= \lim_{|z| \to \infty} \left| \frac{z^{a+1}}{1 + 2z \cos(b) + z^2} \right| \le \lim_{|z| \to \infty} \left| \frac{|z|^{a+1}}{-|1 + 2z \cos(b)| + |z|^2} \right| \\ &= \lim_{|z| \to \infty} \frac{1}{|z|^{1-a}} \stackrel{1-a>0}{=} 0, \end{split}$$

we have that $\int_{C_R} \frac{z^a}{1 + 2z \cos(b) + z^2} dz = 0.$

On C_2 , we look at what happens when it's radius goes to 0. Thus it is parameterised by δe^{it} for $t \in]0, 2\pi[$ as $\delta \to 0$. We then have

$$\lim_{\delta \to 0} \left| \int_{C_2} \frac{z^a}{1 + 2z \cos(b) + z^2} dz \right| = \lim_{\delta \to 0} \left| \int_0^{2\pi} \frac{\delta^a e^{ait}}{1 + 2\delta e^{it} \cos(b) + \delta^2 e^{2it}} \delta i e^{it} dt \right|$$

$$\leq \lim_{\delta \to 0} \int_0^{2\pi} \left| \frac{\delta^{a+1} e^{ait}}{1 + 2\delta e^{it} \cos(b) + \delta^2 e^{2it}} \right| dt$$

$$= \lim_{\delta \to 0} \int_0^{2\pi} \delta^{a+1} e^{ait} = 0$$

On C_0 we also want what happens when the radius of C_2 goes to zero. This means that the line C_0 goes to the branch line, or it can be parameterised by $te^{i0} = t$, with $t \in [0, R]$. If we take the limit of $R \to \infty$ we have that

$$\lim_{R \to \infty} \int_{C_0} \frac{z^a}{1 + 2z \cos(b) + z^2} dz = \lim_{R \to \infty} \int_0^R \frac{t^a}{1 + 2z \cos(b) + z^2} dt = I$$

On C_1 we also want what happens when the radius of C_2 goes to zero. This means that the line C_1 goes to the branch line from the other side than C_0 , or it can be parameterised by $(R-\tilde{t})e^{2\pi i}$, with $\tilde{t} \in [0,R]$. If we take the limit of $R \to \infty$ we have that

$$\lim_{R \to \infty} \int_{C_1} \frac{z^a}{1 + 2z \cos(b) + z^2} dz = \lim_{R \to \infty} \int_0^R \frac{-(R - \tilde{t})^a e^{a2\pi i}}{1 + 2(R - \tilde{t})e^{2\pi i} \cos(b) + (R - \tilde{t})^2 e^{4\pi i}} e^{2\pi i} d\tilde{t}$$

$$\stackrel{R - \tilde{t} = t}{=} -e^{2a\pi i} \lim_{R \to \infty} \int_0^R \frac{t^a}{1 + 2t \cos(b) + t^2} dt$$

$$= -e^{2a\pi i} I$$

In conclusion, for $\delta \to 0$

$$(-1)^{a+1} 2\pi i \frac{\sin(ab)}{\sin(b)} = \lim_{R \to \infty} \oint_{C_R} \frac{z^a}{1 + 2z\cos(b) + z^2} dz = (1 - e^{2a\pi i})I$$

Thus,

$$I = (-1)^{a+1} 2\pi i \frac{\sin(ab)}{\sin(b)(1 - e^{2a\pi i})} = (-1)^{a+2} \pi \frac{\sin(ab)}{\sin(b)e^{a\pi i}} = e^{a\pi i} \pi \frac{\sin(ab)}{\sin(b)\sin(a\pi)} e^{-a\pi i}$$
$$= \pi \frac{\sin(ab)}{\sin(b)\sin(a\pi)}$$

In conclusion:

$$I = \pi \frac{\sin(ab)}{\sin(b)\sin(a\pi)},$$

which is clearly real and exists because of the restrictions on b and a.