Blockdiagramm STM32 Nucleo Training Base-Shield M3 V3.3 suitable for Pinout of L152RE or F103RB HC-SR04 RCW-0001 Å ۰،0 PC 1 trig 10 PC_0-GND PC_00 PC_02 PC_04 PC_06 PC_08 PC_10 PC_12 PC_14 PC_01 PC_03 PC_05 PC_07 PC_09 PC_11 PC_13 PC_15 <u>____</u> **€** 3V3 PC 0 **C** B7 PC 1 **€** B6 C0 () C4 **⊂** B6 20 В7 C1 () C5 PC 2 Grove Connector GND C2 () C6 PC 3 5V GND **C3V3** сз 🔾 Ст PC 4 **€** GND SND O GND StemmaQT **€** 3V3 PC 5 3V3 O 3V3 Connector DC Connectors 20Pin (male) PB_00 PB_02 PB_04 PB_06 PB_01 PB 03 В9 PC 6 **€** B8 PMOD 12 Pin PB_05 PB_07 PC_7 В9 Grove Connector 20 PB_08 PB_09 PA_8 PA_6 PA_7 PB_09 PB_11 PB_13 PB_15 5V PC_8 GND PB_10 PB_12 **€3**V3 GND PB_14 C3V3 PC_10 StemmaQT GND GND Connector **€**B11 PC_11 **€** B10 PA_00 PA_02 PA_04 PA_01 PA_03 PA_05 ← B10 PC_12 **€** B11 **Grove Connector** PC13 PA_05 PA_07 PA_09 PA_11 PA_13 PA_15 PA_06 PA_08 Normally High GND Nucleo 20 OnBoard on PC_14 OSC32_OUT 32.768 kHz **€3**V3 PA_10 PA_12 PC 15 StemmaQT 3V3 GND 5V Connector Logic-Analyzer PB_0 B3 B4 **B**4 PB 1 R7 Α4 荊 C8 C7 WIFI-ESP-01 PB 2 GND 뼦 1<u>5</u>[V RxD PB_10 PB 3 **NUCLEO** PB_11 UART3_RX PB 4 **L152RE** PB_12 PB 5 **F130RB** PB_13 CH PD PB 6 LM75B € FSP-12S PB_14 GPI00 OSOYOO ESP8266 Wi-Fi Module PB 7 I²C compatible to Bluetooth Slot PB_15 GPIO1 PB 8 RST - PA 7 2.4 GH: BT-HC-05 PB_9 PB 10 E Rx -PB_10 PB_10 E Tx PB 11 -PB_11 GND GND PB_12 PB_12 vcc 5V PB_13 State PB 12 Kev Frequency Generator switchable I²C pull-up resistors PA_1 **─**₩ f = 4...654 Hz UART TX PA2→ тмрз6 🌡 Indikator LED Analog PA 5 **(A7** PA 6 I²C-OLED OnBoard **(5**V Display PA 7 SSD1306 GND SH1106 - 1.3" PA 8 S-SCL SCL SDA PB 9 Servo PB_8 S-SDA PB_9 PA 10 PA_11 S-SDA PA_12 PA 12 SDA Display - PCF 8574 didactic onboard elements PH_0/PD_0 PH_1/PD_1 M.Schreger - 7/4/2025