TEST REPORT

Reference No :	WTS18S08121348W
FCC ID:	2AKSEPIR-TH-01
	Smart iBlue Technology Limited
Address:	Unit 12,10/F.,Hong Man Industrial Centre,2 Hong Man Street,Chai Wan,Hong Kong
Manufacturer :	
Address:	11 Chang Yuan Er Lu,Lu Dong District,523000 Humen, Dong Guan County, PEOPLE'S REPUBLIC OF CHINA
Product Name:	PIR Sensor
Model No :	PIR-TH-01
Standards:	FCC CFR47 Part 15 C Section 15.247:2018
Date of Receipt sample :	2018-08-23
Date of Test:	2018-08-23 to 2018-09-06
Date of Issue:	2018-09-06
Test Result:	Pass
reproduced, except in full, without	report refer only to the sample(s) tested, this test report cannot be ut prior written permission of the company. Thout specific stamp of test institute and the signatures of compiler and
Address: 1/F., Fukangtai Bui	Prepared By: Waltek Services (Shenzhen) Co., Ltd. Iding, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by: Approved by:

Jack Wen / Test Engineer

Philo Zhong / Manager

Reference No.: WTS18S08121348W Page 2 of 46

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China.Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), ISED (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

2.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD \ RED	-
Taiwan		NCC	-
Hong Kong	ISO/IEC 17025	OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd.	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

3 Contents

1	COVER PAGE	Page
2	LABORATORIES INTRODUCTION	
_	2.1 Test Facility	
3	CONTENTS	
4	REPORT REVISION HISTORY	
5	GENERAL INFORMATION	7
	5.1 GENERAL DESCRIPTION OF E.U.T	
	5.2 DETAILS OF E.U.T	
	5.3 CHANNEL LIST	
6	EQUIPMENT USED DURING TEST	
	6.1 EQUIPMENTS LIST	10
	6.2 MEASUREMENT UNCERTAINTY	
_	6.3 TEST EQUIPMENT CALIBRATION	
7	TEST SUMMARY	
8		
	8.1 EUT OPERATION	
	8.3 SPECTRUM ANALYZER SETUP	15
	8.4 TEST PROCEDURE	
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
9	BAND EDGE MEASUREMENT	21
	9.1 TEST PRODUCE	
	9.2 TEST RESULT	
10		
	10.1 TEST PROCEDURE	
11	BANDWIDTH MEASUREMENT	
11	11.1 Test Procedure:	
	11.2 TEST ROCEDORE	
12	MAXIMUM PEAK OUTPUT POWER	30
	12.1 TEST PROCEDURE:	
	12.2 TEST RESULT:	
13		
	13.1 TEST PROCEDURE:	
14		
15	·	
	15.1 REQUIREMENTS	
	15.2 THE PROCEDURES / LIMIT	35
	15.3 MPE CALCULATION METHOD	
16		
	16.1 RADIATED EMISSION	37

Reference No.: WTS18S08121348W Page 5 of 46

17	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	39
	17.1	EUT – External View	39
	17.2	FUT - Internal View	43

Reference No.: WTS18S08121348W Page 6 of 46

4 Report Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS18S08121348W	2018-08-23	2018-08-23 to 2018-09-06	2018-09-06	original	-	Valid

Reference No.: WTS18S08121348W Page 7 of 46

5 General Information

5.1 General Description of E.U.T

Product Name: PIR Sensor Model No.: PIR-TH-01

Model Difference: N/A

Operation Frequency: 2402-2480MHz

RF output power: -1.67dBm

Antenna Gain: 1.1dBi

Type of modulation: GFSK

Antenna installation: PCB Printed Antenna

5.2 Details of E.U.T

Ratings: Input: DC 4.5V by batteries

Reference No.: Page 8 of 46

5.3 Channel List

BLE:

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

Reference No.: WTS18S08121348W Page 9 of 46

5.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
Maximum Peak Output Power	BLE	1 Mbps	0/19/39	TX
Power Spectral Density	BLE	1 Mbps	0/19/39	TX
Frequency Range	BLE	1 Mbps	0/19/39	TX
Transmitter Spurious Emissions	BLE	1 Mbps	0/19/39	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product.

Reference No.: WTS18S08121348W Page 10 of 46

6 Equipment Used during Test

6.1 Equipments List

	Radiated electromagnetic disturbance(9kHz to 30MHz)								
- tudia									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	EMI Test Receiver	R&S	ESCI	101155	2017.09.11	2018.09.10			
2	LARGE LOOP ANTENNA	Laplace	RF300	9057	2018.07.18	2019.07.17			
3	Cable	Laplace	RF300	-	2018.07.18	2019.07.17			
3m Se	emi-anechoic Chambe	er for Radiation							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	Spectrum Analyzer	R&S	FSP	100091	2018.04.20	2019.04.19			
2	Amplifier	Agilent	8447D	2944A10178	2018.01.10	2019.01.09			
3	Active Loop Antenna	Com-Power Corp.	AL-130R	10160007	2018.04.17	2019.04.16			
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2018.05.18	2019.05.17			
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017.10.14	2018.10.15			
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2018.05.18	2019.05.17			
7	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2018.05.18	2019.05.17			
8	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018.04.07	2019.04.06			
9	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2018.04.07	2019.04.06			
10	Universal Radio Communication Tester	R&S	CMU 200	112461	2018.04.20	2019.04.19			
11	Universal Radio Communication Tester	R&S	CMW 500	127818	2018.04.20	2019.04.19			
12	Signal Generater	R&S	SMP22	100102	2017.09.12	2018.09.11			
3m Se	3m Semi-anechoic Chamber for Radiation(TDK)								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	Test Receiver	R&S	ESCI	101296	2018.04.20	2019.04.19			
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018.04.19	2019.04.18			
3	Amplifier	ANRITSU	MH648A	M43381	2018.04.20	2019.04.19			
4	Cable	HUBER+SUHNER	CBL2	525178	2018.04.20	2019.04.19			

RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY4511494 3	2017-09-14	2018-09-13	
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11	
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY5052020 7	2017-09-12	2018-09-11	

6.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

6.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guang dong, China.

Reference No.: WTS18S08121348W Page 12 of 46

7 Test Summary

Test Items	Test Requirement	Result
	15.247	
Radiated Emissions	15.205(a)	С
	15.209(a)	
Conducted Spurious Emissions	15.247(d)	С
Bandwidth	15.247(a)(2)	С
Maximum Peak Output Power	15.247(b)(3),(4)	С
Power Spectral Density	15.247(e)	С
Band Edge	15.247(d)	С
Antenna Requirement	15.203	С
Maximum Permissible Exposure	1.1307(b)(1)	0
(Exposure of Humans to RF Fields)	1.1307(b)(1)	С
Note: C=Compliance; NC=Not Compliance;	NT=Not Tested; N/A=N	ot Applicable.

Reference No.: WTS18S08121348W Page 13 of 46

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10: 2013

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS18S08121348W Page 15 of 46

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

	•	
Below 30MHz	Z	
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH	Hz	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTS18S08121348W Page 16 of 46

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS18S08121348W Page 17 of 46

8.6 Summary of Test Results

Test Frequency: 9KHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 1GHz

Only the worst case GFSK Low channel were record in the report.

Horizontal:

Test Frequency : 1GHz ~ 18GHz

Frequen	Frequen Receiver Detector		Turn table	I RX Antenna I		Correct	Corrected	Limit	Margin
су	Reading	Detector	Angl e	Height	Polar	Factor	Amplitude		Wargiii
(MHz)	(dBµV)	(PK/QP/Av e)	Degr ee	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµ V/m)	(dB)
	GFSK Low Channel 2402MHz								
4804	46.24	PK	242	1.4	V	-1.06	45.18	74.00	-28.82
4804	43.72	Ave	242	1.4	V	-1.06	42.66	54.00	-11.34
7206	44.70	PK	346	1.1	V	1.33	46.03	74.00	-27.97
7206	44.56	Ave	346	1.1	V	1.33	45.89	54.00	-8.11

Frequen	equen Receiver		Turn table		RX Antenna		Corrected Corrected		Morgin
су	Reading	Detector	Angl e	Height	Polar	ed Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Av e)	Degr ee	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµ V/m)	(dB)
	GFSK Middle Channel 2440MHz								
4880	46.11	PK	270	1.3	V	-0.62	45.49	74.00	-28.51
4880	43.59	Ave	270	1.3	V	-0.62	42.97	54.00	-11.03
7320	44.73	PK	353	1.3	V	2.21	46.94	74.00	-27.06
7320	44.03	Ave	353	1.3	V	2.21	46.24	54.00	-7.76

Frequen	quen Receiver		Turn table		RX Antenna		Corrected	Limit		
су	Reading	Detector	Detector	Angl e	Height	Polar	- ed Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Av e)	Degr ee	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµ V/m)	(dB)	
	GFSK High Channel 2480MHz									
4960	45.81	PK	324	1.6	V	-0.24	45.57	74.00	-28.43	
4960	43.52	Ave	324	1.6	V	-0.24	43.28	54.00	-10.72	
7440	45.41	PK	256	1.6	V	2.84	48.25	74.00	-25.75	
7440	43.90	Ave	256	1.6	V	2.84	46.74	54.00	-7.26	

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS18S08121348W Page 21 of 46

9 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance V05

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Test result plots shown as follows:

Reference No.: WTS18S08121348W Page 23 of 46

10 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance V05

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

10.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

Above 30MHz:

RBW = 1MHz, VBW = 3MHz, Sweep = auto

Detector function = peak, Trace = max hold

10.2 Test Result

BLE Low Channel

Middle Channel

High Channel

BLE Low Channel

Fundamental

Middle Channel

High Channel

Reference No.: WTS18S08121348W Page 27 of 46

11 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance V05

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

11.2 Test Result:

Operation mode	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low channel	0.702	1.050
Middle channel	0.702	1.050
High channel	0.702	1.050

Low channel

Reference No.: WTS18S08121348W Page 30 of 46

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance V05

12.1 Test Procedure:

558074 D01 DTS Meas Guidance V04

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

12.2 Test Result:

Maximum Peak Output Power (dBm)						
Low channel Middle channel High channel						
-2.50	-1.67					
Limit: 1W/30dBm						

Reference No.: WTS18S08121348W Page 32 of 46

13 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 15.247 Meas Guidance V05

13.1 Test Procedure:

558074 D01 DTS Meas Guidance V04

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result:

Power Spectral Density(dBm)							
Low channel	Middle channel	High channel					
-17.63	-17.10	-17.07					
Limit: 8dBm per 3kHz							

Test mode: Middle channel

Test mode: High channel

14 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has a PCB Printed Antenna, meets the requirements of FCC 15.203.

Reference No.: WTS18S08121348W Page 35 of 46

15 RF Exposure

Test Requirement: FCC Part 1.1307
Evaluation Method: FCC Part 2.1091

15.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

15.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS18S08121348W Page 36 of 46

15.3 MPE Calculation Method

 $\mathbf{P} = \mathsf{Peak} \; \mathsf{RF} \; \mathsf{output} \; \mathsf{power} \; (\mathsf{W})$

 ${f G}={\sf EUT}$ Antenna numeric gain (numeric)

R = Separation distance between radiator and human body (m)=0.2m

The formula can be changed to

 $Pd = P_{out}*G/(4*Pi*R^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
1.10	1.288	-1.67	0.681	0.0002	1

Result: No SAR measurement is required.

16 Photographs – Test Setup Photos

16.1 Radiated Emission

Test frequency Below 30MHz

Test frequency from 30MHz to 1GHz

Test frequency above 1GHz

17 Photographs - Constructional Details

17.1 EUT - External View

Reference No.: WTS18S08121348W Page 40 of 46

Reference No.: WTS18S08121348W Page 41 of 46

Reference No.: WTS18S08121348W Page 42 of 46

Reference No.: WTS18S08121348W Page 43 of 46

17.2 EUT - Internal View

Reference No.: WTS18S08121348W Page 44 of 46

Reference No.: WTS18S08121348W Page 45 of 46

Reference No.: WTS18S08121348W Page 46 of 46

====End of Report=====