CS 161 Intro. To Artificial Intelligence

Week 10, Discussion 1D

Neurons

Important Terms:

- Activations
 - o input
 - output
- Weights
- Bias
- Activation functions
 - Binary step functions
 - E.g. Step, Sign
 - Linear functions
 - Non-linear functions
 - E.g. Sigmoid, ReLU

Activation Functions

- Activation functions
 - Binary step functions
 - E.g. Step, Sign
 - Linear functions
 - Same as linear regression
 - Non-linear functions
 - E.g. Sigmoid, ReLU

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = 1 \text{ if } z \ge t$ $\phi(z) = 0 \text{ if } z < t$	Perceptron variant	t threshold
Sign (Signum)	$\phi(z) = 1 \text{ if } z \ge 0$ $\phi(z) = -1 \text{ if } z < 0$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	-
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	

Feedforward NN

A NN is also a <u>universal function approximator</u>

- A simple NN can represent a wide variety of functions when given appropriate parameters
- Feedforward NN: a NN that connections between the nodes do not form a cycle. Recurrent NNs are not

feedforward

Neurons with Step Activation Functions

Example Functions:

- And
- Or
- Not
- Limitation:
 - A single neuron can only represent linearly separable function
 - o E.g. XOR won't work

NN as a Function

$$Q_{5} = g(w_{35} q_{3} + q_{4} w_{45})$$

$$= g(w_{35} g(w_{13} q_{1} + w_{23} q_{2}) + w_{45} g(w_{145} q_{1} + w_{24} q_{2}))$$

- $a_5 = f(a_1, a_2, w_{13}, w_{14}, ..., w_{45})$
- If we are given the dataset, then given each input (data case), output activation is a function of weights

$$a_5 = f(w_{13}, w_{14}, ..., w_{45})$$

Gets more complicated with non-feedforward NNs!

Training NNs

$$Q_{5} = g(w_{35} q_{3} + a_{4} w_{45})$$

$$= g(w_{35} g(w_{13} q_{1} + w_{23} q_{2}) + w_{45} g(w_{145} g(w_{145} + w_{24} q_{2}))$$

Loss function is used to find **optimal weights**: How far from the correct label are you?

- Cross Entropy (CE)
- Mean Square Error (MSE):

o MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (NN(I_i) - O_i)^2$$

 $\circ NN(I_i) \text{ is } \mathbf{f_i}(w_1, w_2, ..., w_k)$

Training NNs

Loss function is what we want to optimize:

- Mean Square Error (MSE):
 - o MSE = $\frac{1}{n} \sum_{i=1}^{n} (NN(I_i) O_i)^2$
 - $\circ NN(I_i) \text{ is } \mathbf{f_i}(w_1, w_2, \dots, w_k)$

Gradient Descent (GD) is often used to find weights that optimize loss functions

- Partial derivatives: $(\frac{\delta f}{\delta w_1}, \frac{\delta f}{\delta w_2}, ..., \frac{\delta f}{\delta w_k}) \rightarrow$ this vector is called **gradient**
- If step size is too big, we may miss the optimal value
- GD has many variations (e.g. Adam optimizer), can have different step sizes, etc.
- Calculation proceeds backwards through the network → backpropagation

Other important concepts about training NNs:

- Performance metric: the accuracy obtained from test or validation data
- Train / validation / test data:
 - Test data: should never be used or seen in the training step
 - Validation data: normally part of the training data, may be used for cross-validation
- Epoch: one iteration of gradient descent(s)
 - Classical GD goes through all training examples to compute MSE = $\frac{1}{n} \sum_{i=1}^{n} (NN(I_i) O_i)^2$
 - Stochastic GD (SGD) goes through single examples or batches to compute MSE → more efficient
- Batch (mini-batch): a subset of the training data → no need to compute MSE on entire dataset
 - Often divided randomly
 - Batch size is a hyper-parameter (e.g. 32, 64, 128)
- Stopping criteria: can based on # of epochs, loss and performance metrics (using validation data)

Convolutional Neural Network (CNN)

Convolution layer:

- Padding: add additional boundaries
 (of 0's) to source pixels to preserve
 dimensions
- Filter size: e.g. f=3 for 3 x 3 filter
- Stride: how big are the steps of the filter in each move
- Channels: multiple # for colored images
- Output of convolution will often be passed through a non-linear activation function like ReLU

CNN - Filter

Same filter can be stacked to apply on colored images (multiple channels)

Multiple filters can be applied on one image to extract different features

Eg: Edges vs average color in an area.

CNN - Max Pooling

Max pooling layer:

Take the biggest/most influential point

CNN Architecture

Idea: somehow the hidden layers select features that are representative of the classes

Strength & Limitation of NN

Strength:

- Universal function estimator very expressive
- Conceptually easy to build
- Allow us to do things that couldn't do before
 - E.g. CNN for image analysis

Limitation:

- Requires huge amount of data
- Not robust
- Results are not easy to explain □ needs explainable Al

General Info

- When: Wednesday, June 8 8am-11am
- Where: **Engineering VI ML0C**
- Format: on paper in class, contains only T/F and multiple-choice
 - 60 questions in total
 - Cumulative, but focus more on the content after the midterm
 - Some questions need computation but not complex
 - Bring a calculator, pencil and scratch paper.
- Closed book and Closed notes

LISP

- quote or ': everything under it is kept symbolic
- nil or (): empty list
- car: first element of the list, cdr: the rest of the list (always a list)
- (cons arg1 arg2): reverse of car+cdr
- (list arg1 ... argn): construct a list '(arg1 ... argn)
- (append '(|11 | |12 ...) '(|21 | |22 ...) ... '(|n1 | |n2 ...)): '(|11 | |12 ... | |21 | |22 ... | |n1 | |n2 ...)
- predicates: atom, listp, null, equal
- (cond (cond1 value1) (cond2 value2) ... (condn valuen))
- (let ((var1 value1) ... (varn valuem)) (expression))
 - o let: parallel assignment, let*: sequential assignment

LISP - Know what a function will do

- (defun functionName (arg1 ... argn) (expression))
- Calling a function: (functionName arg1 ... argn)
- General form for a lisp recursion function

SEARCH

- Search Problem Formulation
 - o Initial state, State space, Actions, Transition model, Goal Test
 - 8 queens complete formulation and incremental formulation
- State space and search tree
- Solution
 - A path from initial state to goal state
- Node generation and expansion
- Fringe
 - Nodes to expand. Keep in memory
- Properties of search strategies
 - Completeness, Optimality, Time complexity, Space complexity
- Tree search and graph search
 - o Graph search maintains an "explored" set and does not re-expand states

Remember: **Search tree/space** and expanded nodes are different

Uninformed Search: Properties

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?		$\operatorname{Yes}^{a,b}$	No	No	Yes ^a
Time	$O(b^d)$	$O($ b^[C*/ ϵ] $)$	$O(b^m)$	$O(b^\ell)$	$O(b^d)$
Space	$O(b^d)$	$O($ b^[C*/ ϵ] $)$	O(bm)	$O(b\ell)$	O(bd)
Optimal?	Yes^c	Yes	No	No	Yes^c

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b optimal if step costs are all identical; b if both directions use breadth-first search.

Uninformed Search:

- Breadth-first search: expands the shallowest nodes first
 - Complete, optimal for unit step costs, exponential space complexity.
- Uniform-cost search: expands the node with lowest path cost
 - Complete, optimal
- **Depth-first search**: expands the deepest unexpanded node first.
 - Neither complete nor optimal, but has linear space complexity.
- **Depth-limited search:** adds a depth bound to DFS
- Iterative deepening search: calls depth-first search with increasing depth limits until a goal is found.
- o Complete, optimal for unit step costs, time complexity comparable to breadth-first search, linear space complexity.

Informed Search:

- Informed search methods have access to <u>heuristic function h(n)</u>
 - Evaluate cost from node n to goal
 - o **Admissible**, consistent
- Greedy search expands nodes with minimal h(n)
 - Not always optimal but efficient
- A-star search expands nodes with minimal g(n) + h(n)
 - Complete and optimal
 - Tree-search version when h is admissible
 - Graph-search version when h is consistent

BFS is A-star with all edge-costs = 1 and heuristic = 0

Constraint Satisfaction:

- Constraint satisfaction problem formulation
 - Variables, Domains, Constraints
- Backtracking DFS
 - o Fail and backtrack when a consistent assignment is not possible
- **Heuristics**: increase the efficiency of backtracking DFS
 - Variable selection
 - Most constrained variable / Minimum Remaining Values heuristic
 - Most constraining variable / Degree heuristic
 - Value selection
 - Least constraining value

Constraint Satisfaction:

- Constraint propagation
 - Node consistency and arc consistency
 - AC-3 (push all the arcs)
 - Forward checking (variable-level arc consistency)

• Problem Structure

Tree-structured CSP

Game Playing: Basics

• Minimax:

- o a utility value for all goal states (leaves)
- o max player: value is max of its children
- o min player: value is min of its children
- o value of the root: the value of the game outcome

• Expected-minimax:

o calculate the expectation over children

Game Playing: Alpha-beta pruning

- Motivation: skip branches that won't matter to improve efficiency
- A generic algorithm:
 - \circ During the DFS search, each node carries an lower bound α and an upper bound β .
- \circ Pushing bound upward: when a child returns, it pushes its value onto the parent (**always tighten the bound**). Min-child pushes onto max-parent's α . Max-child pushes onto min- parent's β . (How to remember: Max player will modify its lower bound, and min player will modify its upper bound.)
- \circ Pushing bound downward: right before analyzing a child, parent pushes its bound (**Both a and β**) onto that child.
 - \circ Prune all unsearched children when parent has $\alpha \ge \beta$
- A website for alpha-beta pruning practice:

http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice/

Propositional Logic:

- Syntax and semantics
- Important terms: model, satisfiability, validity, entailment, etc.
- Syntactic forms: CNF, DNF, Horn clauses, NNF, DNNF
 - o All but horn clauses are universal. DNF, horn and DNNF are tractable

• Propositional Inference:

- Inference rules
- Method 1: Proof by enumeration model checking: E.g. Using a truth table
- Method 2: Proof by refutation (resolution):
 - Step 1: Convert KB to CNF
 - Step 2: Keep applying inference rules until an empty clause appear
 - \rightarrow Showing $\Delta \wedge \neg \alpha$ is unsatisfiable!

SAT Solvers and NNF Circuits...

List of Topics

Lisp and search strategies

- 1. Evaluate a simple LISP expression or function, or choose a sentence to complete it.
- 2. Understand differences among search algorithms and determine completeness, optimality, time, and space complexity for any of them.
- 3. Understand backtracking DFS and heuristics (variable order, value order, etc.) in constraint satisfaction problems.
- 4. MINIMAX and α - β pruning.

List of Topics

Propositional logic (PL) and first-order logic (FOL):

- 5. The concepts in PL and FOL, e.g. satisfiability, validity, entailment, consistency.
- 6. Translate English to FOL sentences, or the other way around.
- 7. Convert a propositional or first-order logic sentence to CNF. Perform Skolemization.
- 8. Apply resolution or other inference rules to PL/FOL sentences. Completeness and soundness of inference rules.
- 9. Find unifiers for two FOL sentences.
- 10. Decide whether a propositional or first-order sentence entails another sentence.

Reasoning over uncertainty:

- 11. Independence, conditional independence. Bayes rule.
- 12. Given background information, compute probabilities for events. □ use Bayesian rule
- 13. Compute probability for PL sentences given possible worlds.

List of Topics

Bayesian Network:

- 14. Model a problem as a Bayesian network.
- 15. Identify Markovian assumptions encoded by a Bayesian network (its semantics). Give joint probability using the chain rule.
- 16. Utilize d-separation to identify independence.
 - ☐ 3 types of valves, relationship between d-separation and independence

Machine Learning and Neural Network:

- 17. Concepts about Machine learning. Supervised learning and unsupervised learning.
 - □ with complete or incomplete dataset, learning BN parameters and BN structures
- 18. Definition for Entropy. Choose splitting attributes for a decision tree.
- 19. Concepts about Neural Network. Given input and NN structure, predict output.