ASSIGNMENT 5

1

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ JAN 9, SHIFT 2

2) If 10 different balls have to be placed in 4 distinct boxes at random, then the

3) If $x = 2\sin\theta - \sin 2\theta$ and $y = 2\cos\theta - \cos 2\theta$, $\theta \in [0, 2\pi]$, then $\frac{d^2y}{dx^2}$ at $\theta = \pi$ is:

4) Let f and g be differentiable functions on \mathbb{R} , such that $f \circ g$ is the identity function.

c) $\frac{945}{211}$

c) $\frac{3}{2}$

c) 1

d) $\frac{965}{211}$

d) $-\frac{3}{4}$

d) $\frac{1}{5}$

probability that two of these boxes contain exactly 2 and 3 balls is:

If for some $a, b \in \mathbb{R}$, g'(a) = 5 and g(a) = b, then f'(b) is equal to:

b) $\frac{945}{210}$

b) $\frac{3}{4}$

b) 5

1) If $A = [x \in \mathbb{R} : |x| < 2]$ and $B = [x \in \mathbb{R} : |x - 2| \ge 3]$, then:

a) A - B = [-1, 2]b) $B - A = \mathbb{R} - [-2, 5]$ c) $A \cup B = \mathbb{R} - [2, 5]$ d) $A \cap B = [-2, -1]$

a) $\frac{965}{210}$

a) $-\frac{3}{8}$

a) $\frac{2}{5}$

5)	In the expansion of $\left(\frac{x}{\cos\theta} + \frac{1}{x\sin\theta}\right)^{16}$ if I_1 is the least value of the term independent of x when $\theta \in \left[\frac{\pi}{8}, \frac{\pi}{4}\right]$ and I_2 is the least value of the term independent of x when $\theta \in \left[\frac{\pi}{16}, \frac{\pi}{8}\right]$, then the ratio $I_2: I_1$ is equal to:			
	a) 16:1 b)	8:1	c) 1:8	d) 1:16
	Let $a,b \in \mathbb{R}, a \neq 0$, such α , which is also a root equation, then $a^2 + b^2$ is a) 24 b) 25 c) 26 d) 28	of the equation x^2		
	Let a function $f:[0, \frac{1}{2}]$ $F(x) = \int_{1}^{x} t^{2}g(t)dt$ wh x = 1 is: a) a point of inflection. b) a point of local maxim	here $g(t) = \int_1^t f(t)$		

- c) a point of local minima.
- d) not a critical point.
- 8) Let [t] denote the greatest integer $\leq t$ and $\lim_{x\to 0} x\left[\frac{4}{x}\right] = A$. Then the function, $f(x) = [x^2] \sin \pi x$ is discontinuous when x is equal to:
 - a) $\sqrt{(A+1)}$
 - b) \sqrt{A}

 - c) $\sqrt{(A+5)}$ d) $\sqrt{(A+21)}$
- 9) Let a-2b+c=1. If $f(x)=\begin{vmatrix} x+a & x+2 & x+1 \\ x+b & x+3 & x+2 \\ x+c & x+4 & x+3 \end{vmatrix}$, then
 - a) f(-50) = 501
 - b) f(-50) = -1
 - c) f(50) = 1
 - d) f(-50) = -501
- 10) Given: $f(x) = \begin{cases} x, & 0 \le x < \frac{1}{2} \\ \frac{1}{2}, & x = \frac{1}{2} \\ 1 x, & \frac{1}{2} < x \le 1 \end{cases}$ and $g(x) = \left(x \frac{1}{2}\right)^2, x \in \mathbb{R}$. Then the area

(in sq. units) of the region bounded by the curves y = f(x) and y = g(x) between the lines 2x = 1 to $2x = \sqrt{3}$ is:

- a) $\frac{\sqrt{3}}{4} \frac{1}{3}$ b) $\frac{1}{3} + \frac{\sqrt{3}}{4}$ c) $\frac{1}{2} + \frac{\sqrt{3}}{4}$ d) $\frac{1}{2} \frac{\sqrt{3}}{4}$

- 11) The following system of linear equations 7x + 6y 2z = 0 3x + 4y + 2z = 0x - 2y - 6z = 0 has
 - a) infinitely many solutions, [x, y, z] satisfying y = 2z
 - b) infinitely many solutions [x, y, z] satisfying x = 2z
 - c) no solution
 - d) only the trivial solution
- 12) If $p \to (p \land \neg q)$ is false, then the truth values of p and q are respectively:
 - a) *F*, *T*
- b) *T*, *F*
- c) *F*, *F*
- 13) The length of minor axis (along y-axis) of an ellipse of the standard form is $\frac{4}{\sqrt{3}}$. If this ellipse touches the line x + 6y = 8, then its eccentricity is:

 - b) $\frac{1}{2}\sqrt{\frac{11}{3}}$ c) $\sqrt{\frac{5}{6}}$

14) If z is a complex number satisfying |Re(z)| + |Im(z)| = 4, then |z| cannot be:

a)
$$\sqrt{7}$$

b)
$$\sqrt{\frac{2}{2}}$$

c) $\sqrt{10}$

d)
$$\sqrt{8}$$

15) If $x = \sum_{n=0}^{\infty} (-1)^n \tan^{2n} \theta$ and $y = \sum_{n=0}^{\infty} \cos^{2n} \theta$ where $0 < \theta < \frac{\pi}{4}$, then:

a)
$$y(1+x) = 1$$

b)
$$x(1-y) = 1$$

c)
$$y(1-x) = 1$$

d)
$$x(1+y) = 1$$