Alexey Izmailov

Brown University Department of Applied Mathematics

Alexey Izmailov

Solving Differential

Blocks and

Blocks

Tables &

Tables

References

$\underline{\text{Outline}}$

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks an

Blocks

Columns

Tables of Figures

Deference

Here is some text

- This is some normal text.
- This is some alerted text
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

This is a quotation.

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks an

Columns

Columns

Figures

Tables

References

Here is some text

- This is some normal text.
- This is some alerted text.
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (

This is a quotation.

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks an

Columns

Columns

Figures
Tables

References

Here is some text

- This is some normal text.
- This is some alerted text.
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1)

This is a guotation

Alexey Izmailo

Solving Differential Equations with Wavelets

Blocks an

Blocks

Columns

Tables & Figures

References

Here is some text

- This is some normal text.
- This is some alerted text.
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1)

This is a quotation

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks ar

Columns

Columns

Tables & Figures

References

Here is some text

- This is some normal text.
- This is some alerted text.
- This is some inline math $e^{i\pi} + 1 = 0$
- This is some displayed math

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1)

This is a quotation.

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks and Columns

Blocks

Columns

Figures

References

Wavelet Galerkin Methods

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks and

Blocks

Tables

Figures Tables

References

Collocation Points

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks and Columns

Blocks

Tables &

Tables

References

Wavelets on Collocation Points

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks and Columns

Blocks

Tables & Figures _{Tables}

References

A Collocation Method for Second-Order ODEs

Alexey Izmailov

Solving Differential Equations with Wavelets

Blocks and Columns

Blocks

Columns

Figures

Doforoncoc

Error Estimate

Alexey Izmailov

Solving Differential Equations with Wavelet

Blocks and

Blocks

Tables & Figures Tables

References

<u>Blocks</u>

This is a Block

This is important information

This is an Alert block

This is an important alert

This is an Example block

This is an example

Alexey Izmailov

Solving Differential Equations with Wavelet

Blocks and

Columnis

Columns

Tables & Figures

References

Contents of the first column

Contents split into two lines

Alexey Izmailov

Differential Equations

Blocks and

Coldiiiii

Columns

Tables &

igures

Figures

Izmailo

Solving Differential Equations with Wavele

Blocks and

Blocks

Tables &

Figures Tables

Doforoncoo

Tables

1	2	3
4	5	6
7	8	9

Table: This is a Table!

Figures

Figures

Alexey Izmailov

Solving Differential Equations with Wavele

Blocks and Columns

Blocks

Tables & Figures

Tables

References

References

- Chick png from wikimedia: Chick
- ▶ Dice PNG from wikimedia: Dice
- ► Wikibooks on Beamer: LATEX presentations
- ► Beamer user guide