程序代写代做 CS编程辅导

Question 1
A beam of spin-1/2 particles are prepared in the tall being quantum state:

$$|\psi\rangle = |+\rangle_x + \sqrt{2}e^{i\pi/4}|-\rangle_x. \tag{1}$$

Answer the following sing nment Project Exam Help

- 1. Normalise this quantum state vector.
- 2. What are the possible results of a measurement of the spin component S_x , and with what probabilities to the adult. The spin component S_x , and with what
- 3. Calculate the expectation value $\langle S_x \rangle$ and the uncertainty ΔS_x for this state. How does this quantity relate to your answer to Part 2 of this question? *Hint*: Make sure you write the vector in the correct basis $\frac{1}{49389476}$
- 4. What are the possible results of a measurement of the spin component S_z , and with what probabilities do they occur?
- 5. Calculate the repeats in value of the State Om

Question 2

Consider a beam of spin-1/2 particles prepared in the quantum state:

$$|\psi\rangle_1 = \frac{\sqrt{3}}{2}|+\rangle - \frac{i}{2}|-\rangle. \tag{2}$$

Answer the following questions.

1. Show that the above state is normalised. Prove that the state

$$|\psi\rangle_2 = e^{\frac{i\pi}{4}} \frac{\sqrt{3}}{2} |+\rangle - e^{\frac{i\pi}{4}} \frac{i}{2} |-\rangle. \tag{3}$$

is also normalised.

- 2. Using Born's Rule, calculate the probability of measuring S_z and getting outcomes $+\hbar/2$ and $-\hbar/2$ for both $|\psi\rangle_1$ and $|\psi\rangle_2$.
- 3. Comment on your results in Part 2, in particular, on the impact of the overall phase on measurement outcomes.
- 4. Identify a spatial vector \vec{n} and the associated spin operator $S_{\vec{n}}$ (written as a matrix) for which the state $|\psi\rangle_1$ is an eigenvector with eigenvalue $+\hbar/2$.

Hint: Start by comparing the state $|\psi\rangle_1$ with the state $|+\rangle_n$ in your formula sheet.

程序代写代做 CS编程辅导

- 5. What is the other eigenvector of this same spin operator, with eigenvalue $-\hbar/2$?
- 6. Calculate the national nation of these two eigenvectors.

Question 3

Consider the follow the source are *not* state $|\psi\rangle$ from the The measurement h experiments. In this experiment the spins ejected from specific quantum state $|\psi\rangle$. Your job is to determine the the spin component S_x , S_y , or S_z on many copies of $|\psi\rangle$. elow. The statistics for S_y are intentionally left blank.

Answer the following questions.

- 1. Based on the measurement data above, determine the state vector $|\psi\rangle$ that describes the spin-1/2 particles exiting the source.
 - Hint: This question involves using the Born rule in reverse. Consider which general state $|\psi\rangle=\cos\frac{\theta}{2}\,|+\rangle+e^{i\phi}\sin\frac{\theta}{2}\,|-\rangle$ on the Bloch sphere, or alternatively which general state $|\psi\rangle=a\,|+\rangle+b\,|-\rangle$, is consistent with the measured probabilities. If using the Bloch sphere, think about what the measured probabilities indicate about θ and ϕ of a general state $|\psi\rangle$ on the Bloch sphere.
- 2. Based on the state $|\psi\rangle$ that you have inferred, what are the possible results of a measurement of the spin component S_y , and with what the probabilities do they occur? Are they consistent with the measured data?

Hint: Remember that there may be some statistical fluctuations in the data due to the sample size.

Question 4

An electron is placed in a controllable magnetic field \vec{B} . The initial spin state of the electron is $|\psi(t=0)\rangle = |+\rangle$. Your goal is to make the spin precess to the state $|+\rangle_x$ by applying uniform magnetic fields. Answer the following questions.

(a) Consider the following experiment:

程序代写代做 CS编程辅导

• First, you apply a magnetic field $\vec{B} = B_x \hat{x}$ in the x-direction for a time t_x , and then turn it off

• Implies the sum of the pulse of the sum o

What the final state is $|+\rangle_x$?
Write y the charge of the electron e, the mass of the electron m_e , and the final state is $|+\rangle_x$?

(b) Now co

• Instead \vec{B}_x is the magnetic fields sequentially, you apply them simultaneously with equal strengths. The resultant magnetic field is $\vec{B} = B_x \hat{x} + B_z \hat{z}$, where $B_x = B_z$. You apply this field for a time t, and then turn it off.

What time should pure to consule that the final state is $|+\rangle_x$? Write your answer in terms of the charge of the electron e, the mass of the electron m_e , and the magnetic field strengths $B_x = B_z$.

(c) For $B_x = B_z$ which of these experiments is quicker to perform?

Hint: Use the Broch spin protune to reason about this question. You may invoke the general solution for the precession of a spin- $\frac{1}{2}$ state about the direction of a uniform magnetic field derived in lectures.

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com