Spis treści

1	SocialPageRank	2
	1.1 Opis	2
2	Adapted PageRank	4

Rozdział 1

SocialPageRank

1.1 Opis

Social PageRank jest statycznym rankingiem stron z perspektywy użytkownika sieci. Algorytm bazuje na obserwacji relacji miedzy popularnymi stronami, tagami i udzielającymi sie użytkownikami. Popularne strony są dodawane przez udzielających się użytkowników, które są opisywane popularnymi tagami. Udzielający się użytkownicy używają popularnych tagów dla popularnych stron. Popularne tagi używane są do annotacji popularnych stron przez ważnych użytkowników.

Bazując na powyższych założeniach algorytm propaguje i wzmacnia zależności między popularnymi tagami, użytkownikami i dokumentami.

Dane wejsciowe:

 N_T : ilośc tagów

 N_U : ilośc użytkowników N_D : ilośc dokumentów

 M_{DU} : macierz $N_D \times N_D$ asocjacyjna między dokumentami a użytkownikami

 M_{UT} : macierz $N_U \times N_T$ asocjacyjna między użytkownikami a tagami M_{TD} : macierz $N_T \times N_D$ asocjacyjna między tagami a dokumentami

 P_0 : wektor, od długości N_D ,

Inicjalizacja

W komórce macierzy $M_{DU}(d_n,u_k)$ znajduje się wartość będąca ilością annotacji przypisanych do dokumentu d_n przez użytkownika u_k . Podobnie dla pozostałych macierzy, elementy $M_{UT}(u_k,t_n)$ to ilość dokumentów opisanych tagiem t_n przez użytkownika u_k , elementy $M_{TD}(t_n,d_k)$: ile użytkowników dodawało dokument d_k i oznaczyło go annotacją t_n .

Wektor P_0 zainicializowany został losowymi wartościami z przedziału [0,1]. Jest on pierwszym przybliżeniem rank dokumentów.

$$\begin{aligned} \mathbf{repeat} \\ U_i &= M_{DU}^T * P_i \\ T_i &= M_{UT}^T * U_i \\ P_i' &= M_{TD}^T * T_i \\ T_i' &= M_{TD} * P_i' \\ U_i' &= M_{UT} * T_i' \\ P_(i+1) &= M_{DU} * U_i' \end{aligned}$$
 until wartości wektora P_n nie zbiegną

Rozdział 2

Adapted PageRank