Transformaciones en 2D y 3D Computación Gráfica y Modelamiento

Prof. María Cecilia Rivara mcrivara@dcc.uchile.cl 2011/2

Motivación

Transformaciones en ℝ²

Transformación	Representación vectorial / matricial P , P' puntos en el plano $P = [x, y]^T$ $P' = [x', y']^T$
Traslación	$P' = P + T$ $T = \begin{pmatrix} d_X \\ d_y \end{pmatrix}$ vector de traslación
Escalamiento	$ P' = SP $ $ S = \begin{bmatrix} s_X & 0 \\ 0 & s_y \end{bmatrix} \text{ matriz de escalamiento} $
Rotación alrededor del origen en ángulo θ (positivo en sentido contrario punteros reloj)	$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \text{ matriz de rotación}$ $RR^T = I \text{matriz ortogonal preserva ángulos y longitudes}$

TRASLACIÓN NO TIENE REPRESENTACIÓN MATRICIAL EN IR2

Deseable que la traslación se maneje como una matriz

Coordenadas Homogéneas (1)

Desarrolladas en Geometría (E. A. Maxwell 1946)

$$P = (x, y) \text{ en } IR^2 \rightarrow P_h = (x_h, y_h, w)$$

Representación homogénea de P, donde $x = \frac{x_h}{w}$, $y = \frac{y_h}{w}$

Coordenadas Homogéneas (2)

- Propiedades / restricciones
 - Hay infinitas representaciones para un mismo punto (2,3,6) = (4,6,12) = (1/3, 1/2, 1)
 - Con frecuencia se normaliza w =1
 - Al menos una coordenada es obligatoriamente ≠ 0
 - El punto (x, y, 0) representa punto en el infinito en la dirección (x, y)
- Estas coordenadas "homogeinizan" el tratamiento del infinito
- EN COMPUTACIÓN GRÁFICA PERMITEN EL TRATO HOMOGÉNEO DE TODAS LAS TRANSFORMACIONES COMO MATRICES

Transformaciones Elementales 2D en Coordenadas Homogéneas

Puntos P =
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 P' = $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$ Matrices 3 x3

Traslación $T(dx, dy) = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix}$ $P' = TP$
 $T^{-1} = T(-d_x, -d_y)$

Escalamiento $S(s_x, s_y) = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $P' = SP$
 $S^{-1} = S(1/s_x, 1/s_y)$

Rotación
$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 $P' = RP$ $R^{-1} = R^{T}$

Shearing
$$SH_x = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 $Sh_y = \begin{bmatrix} 1 & 0 & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Composición de Transformaciones 2D

- > Se combinan las matrices elementales para producir el efecto deseado
- > Se gana eficiencia usando la matriz resultante

Ejemplo: Rotación alrededor de punto arbitrario $P_1(x_1, y_1)$

Pasos:

- Traslade P₁ al origen
- Rote alrededor del origen
- Traslade para que el punto en el origen vuelva a P₁

$$T(x_1, y_1) . R(\theta) . T(-x_1, -y_1) = M$$
 Matriz Resultante

SON CONMUTATIVAS LAS TRANSFORMACIONES?

No siempre!

Son conmutativas en DOS dimensiones

- Traslaciones entre sí
- Escalamientos entre sí
- Rotaciones entre sí
- \triangleright Escalamiento ($s_x = s_y$) y Rotación

Productos arbitrarios de Transformaciones

- Productos de Rotaciones preservan ángulos y longitudes
- Productos de secuencias arbitrarias de transformaciones, preservan paralelismo de las líneas, pero no longitudes ni ángulos

CUIDADO!

Algunos textos de CG, incluyendo primera adición de Foleyvan Dam, usan la convención de premultiplicar matrices por vectores fila

$$\begin{bmatrix} x & y & 1 \end{bmatrix} \qquad \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix}$$

Se necesita transponer las matrices para pasar de una convención a la otra.

Composición de Transformaciones

Ejercicios

 Demuestre que puede transformar un segmento de línea, transformando sus puntos extremos y construyendo un nuevo segmento

de línea entre los puntos transformados.

2. Demuestre que dos rotaciones sucesivas en 2D son aditivas:

$$R(\theta_1) \cdot R(\theta) = R (\theta_1 + \theta_2)$$

- 3. Demuestre que en 2D, el escalamiento y la rotación conmutan si $s_x = s_y$. Y que si $s_x \neq s_y$ esto no ocurre.
- 4. Encuentre una expresión para el error acumulado en θ y el número de

rotaciones incrementales realizadas

Transformaciones Elementales 3D en Coordenadas Homogéneas

$$P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow P_h = \begin{bmatrix} x_h \\ y_h \\ z_h \\ w \end{bmatrix}$$

P_h es representación homogénea de P

donde
$$x = \frac{X_h}{W}, y = \frac{y_h}{W}, z = \frac{Z_h}{W}$$

Punto (0, 0, 0, 0) no se permite Punto (a, b, c, 0) representa punto en el infinito Transformaciones son matrices de 4x4

Aplicación: ventana a viewport

Ventana en coord. del mundo

Viewport (ventana transformada)

Pasos: 1) trasladar ventana al origen

- 2) escalar ventana al tamaño del viewport (equivalente a cambiar de sistema de coordenadas)
- 3) trasladar por (u_{min}, v_{min})

Sistemas de coordenadas (1)

Orientado a la derecha

Convención estándar

Sistemas de coordenadas (2)

Orientado a la izquierda

asociado de manera natural al manejo de la pantalla: los z mayores están más lejos del punto de vista

Obs: rotaciones positivas se mueven en sentido de los punteros del reloj miradas desde el eje positivo (son idénticas en ambos sistemas)

Transformaciones Elementales 3D (Coord. Homog.)

Traslación
$$T(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T^{-1} = (-d_{x}, -d_{y}, -d_{z})$$
Escalamiento
$$S(s_{x}, s_{y}, s_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad S^{-1} = \left(\frac{1}{s_{x}}, \frac{1}{s_{y}}, \frac{1}{s_{z}}\right)$$

Rotaciones (en ángulo θ)

alrededor eje z
$$Rz(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

alrededor eje x
$$Rx(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

alrededor eje y
$$Ry(\theta) = \begin{bmatrix} cos\theta & 0 & sen\theta & 0 \\ 0 & 1 & 0 & 0 \\ -sen\theta & 0 & cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ejemplo: rotación de "eje x" en 90º alrededor eje z

$$\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$eje x eje y$$

Otras
$$SH_{xy} = \begin{bmatrix} 1 & 0 & s_{hx} & 0 \\ 0 & 1 & s_{hy} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} etc.$$

Composición de transformaciones

rotaciones y escalamien to agregados

Ejercicio: Trasladar segmentos orientados P_1 P_2 y P_1 P_3 tal que P_1 P_2 coincida con eje z y P_1 P_3 está sobre plano y z

Una solución:

- 1. Traslade P1 al origen
- 2. Rote alrededor del eje y hasta que P₁ P₂ quede sobre plano y z
- 3. Rote alrededor del eje x hasta que P₁ P₂ quede sobre el eje z
- 4. Rote alrededor del eje z hasta que P₁ P₃ quede en el plano y z

Ejercicio propuesto: rotación alrededor de eje arbitrario

IMPORTANTE: En 3D las rotaciones no son conmutativas!

Proceso visualización 3D (Rendering)

Necesitamos

- Proyecciones: transforman objetos 3D en proyecciones en plano 2D
- Volumen de la vista
- Plano de proyección (viewport en el dispositivo)

Conceptualmente

Proyecciones Geométricas Planas

Conceptos: proyectores rectos, centro de proyección, plano de proyección

Proyecciones

Perspectiva
Centro de proyección a
distancia finita del plano
de proyección

Paralela
Centro de proyección a
distancia infinita del
plano de proyección

CP en el infinito (proyectores paralelos)

(proyectores convergen) (pro

Perspectiva

En la proyección en perspectiva, el tamaño del objeto varía inversamente con la distancia del objeto al centro de proyección.

- Objetos parecen más realistas
- ➤ No es útil para almacenar forma y medidas exactas de los objetos. Las líneas paralelas en general no se mantienen paralelas.
- Proyecciones de líneas paralelas que no son paralelas al plano de proyección convergen en un punto de anulación (vanishing point)