Security Overview

1 Risks and Defending Measures

- Risks
 - There is a public computer in the classroom, and you are about to log into your account on that computer; what are the risks?
 - You are working on your project in Bird library, and you leave your laptop unattended for a while, what are the risks?
 - You are running a web server on your machine, what are the risks? How do you lower the risks?
 - A trick question: what is the most secure system?
 - * A system that is disconnected from the networks, shutdown, dead, and useless.
 - Vulnerabilities: the most common attack is to exploit known software vulnerabilities.
 - An important objective of this course: to develop sharp risk-awareness skills, so you can identify potential risks when you use computers, operate computer systems, or develop software.
- Defense Techniques (Three lines of defense)
 - Prevention
 - * prevent it: make it impossible
 - * deter it: make it harder
 - * deflect it: make other targets more attractive
 - Detection
 - * monitoring
 - * intrusion detection
 - Recovery
 - * recover the data
 - * identify the damage
 - * find the culprit: forensics
 - The focus of this course: prevention
- How does prevention work?
 - Policies (IST courses)
 - Cryptography: Not just the encryption. Examples include digital cash, timestamping, secure multiparty computation, e-voting, e-bidding, etc.
 - Control (the key component of this course)
 - * hardware control
 - * software control
 - * Examples: make sure that only those with security clearance can read this file.

- How could prevention not work correctly?
 - Vulnerabilities
 - Malicious program: virus, trap doors, etc.
- How to achieve correct prevention?
 - Security engineering principles, awareness of risk, secure programming, etc.

2 The meaning of computer security

- When we talk about "computer security", we mean that we are addressing three very important aspects of any computer-related system
 - Confidentiality
 - Integrity
 - Availability
- For different applications, the interpretation of CIA is different.
- Confidentiality: access (reading, viewing, printing, knowing, etc.)
 - Contents : encryption (cryptography)
 - Existence of data: steganography. Example: stock investigation, prisoner, spy, watermarking
 - Resource hiding: operating system information and configuration. Example: Fingerprinting
 - Identity: (anonymity)
- Integrity: modification (includes writing, changing, changing status, deleting, and creating).
 - Data integrity
 - Program integrity
 - System integrity
 - Identity integrity (non-repudiation)
 - Origin (location) integrity (network traceback)
- Availability.
 - Denial of service