

planetmath.org

Math for the people, by the people.

hyperbolic metric space

Canonical name HyperbolicMetricSpace
Date of creation 2013-03-22 17:11:29
Last modified on 2013-03-22 17:11:29
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)

Numerical id 6

Author Wkbj79 (1863)
Entry type Definition
Classification msc 54E99Classification msc 54E35Classification msc 20F06Defines δ hyperbolic

Let $\delta \geq 0$. A metric space (X,d) is δ hyperbolic if, for any figure ABC in X that is a geodesic triangle with respect to d and for every $P \in \overline{AB}$, there exists a point $Q \in \overline{AC} \cup \overline{BC}$ such that $d(P,Q) \leq \delta$.

A hyperbolic metric space is a metric space that is δ hyperbolic for some $\delta \geq 0$.

Although a metric space is hyperbolic if it is δ hyperbolic for some $\delta \geq 0$, one usually tries to find the smallest value of δ for which a hyperbolic metric space (X, d) is δ hyperbolic.

A example of a hyperbolic metric space is the real line under the usual metric. Given any three points $A,B,C\in\mathbb{R}$, we always have that $\overline{AB}\subseteq\overline{AC}\cup\overline{BC}$. Thus, for any $P\in\overline{AB}$, we can take Q=P. Therefore, the real line is 0 hyperbolic. reasoning can be used to show that every real tree is 0 hyperbolic.