# Introduction to Logic, Logic Gates and Boolean Algebra

Topics to be covered

### Logic Gates

- Logic Gates are the basic building blocks of any digital system. A logic gate can have one or more than one input but only one output. The relationship between the input/s and the output is based on a **certain logic**. The gates are named based on the logic.
- The names of the logic gates are:
- Basic Gates:
  - NOT Gate or Inverter
  - AND Gate
  - OR Gate
- Universal Gates:
  - NAND Gate
  - NOR Gate
- Exclusive Gates:
  - Exclusive-OR Gate
  - Exclusive-NOR

**Bit:** in binary system we know that there are two digits 0 (low voltage) and 1(high voltage). The voltages used to represent a '1' or '0' are called logic levels



- Rulse is when clock frequency is applied to a circuit.
- Rising edge and falling edge.
- Reriodic and non-periodic waveforms.

# Inverter(NOT gate)



Output of an inverter is opposite/complement of its input.



When the input is LOW, the output is HIGH
When the input is HIGH, the output is LOW



Pulsed waveforms

### **AND** Gate



The output of an AND gate is HIGH only when all inputs are HIGH and LOW when any input is LOW.



 $N = 2^n$ 





### The OR Gate



Distinctive shape symbol

The output of an OR gate is HIGH whenever one or more inputs are HIGH and Low when all inputs are LOW

$$N=2^n$$



| Α | В | Χ | X = A + B  |
|---|---|---|------------|
| 0 | 0 | 0 | <i>*</i>   |
| 0 | 1 | 1 | Boolean    |
| 1 | 0 | 1 | expression |
| 1 | 1 | 1 |            |

Truth table



Pulsed waveforms

## The NAND Gate —







The output of a NAND gate is HIGH whenever one or more inputs are LOW.

| Α | В | Χ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

 $X = \overline{AB}$ 

Boolean expression

Truth table





Pulsed waveforms

3: 3 = 3 8 A





Distinctive shape symbol

$$\begin{array}{c}
A \\
B
\end{array}$$

$$= A \\
B$$

The output of a NOR gate is LOW whenever one or more inputs are HIGH.

| Α | В | Χ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

$$X = \overline{A + B}$$

Boolean expression



Pulsed waveforms



# Exclusive-OR



The output of an XOR gate is **HIGH** whenever the two inputs are different.

Distinctive shape symbol

| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Truth table



Boolean expression



Pulsed waveforms

The output of an XOR gate is HIGH when there are ODD number of 1's on the inputs to the gate

### Exclusive-NOR Gate



The output of an EX-NOR gate is HIGHwhenever the two inputs are identical.

Distinctive shape symbol

| Α | В | Χ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Truth table

 $X = \overline{A \oplus B}$ 

Boolean expression



Pulsed waveforms

The output of an EX-NOR gate is HIGH when there are EVEN number of 1's on the inputs to the gate except when all its inputs are "LOW".



### **Fixed-Function Integrated Circuits**

### IC package styles

- Dual in-line package (DIP)
- Small-outline IC (SOIC)
- Flat pack (FP)
- Plastic-leaded chip carrier (PLCC)
- Leadless-ceramic chip carrier (LCCC)









#### IC configurations:

| 01 1A Vcc 14 13 12 12 10 10 06 2Y 3A GND 3Y 08          | 01 1Y Vcc 14 13 13 12 12 12 15 06 07 2B 3B GND 3A 7402    | 01 1A Vec 14 13 03 12 2A 6Y 11 10 05 06 3A 5Y 09 09 07 GND 4Y 08 |
|---------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|
| 01 1A Vcc 14 13 13 19 4A 12 11 10 05 2B 3B 09 08 GND 3Y | 01 1A Vcc 14 13 13 12 14 12 11 10 05 06 2Y 3A GND 3Y 7432 | 01 1A Vcc 14 13 13 19 4A 12 11 10 05 2B 3B 2Y 3A GND 3Y 7486     |

#### Integrated Circuits (ICs):

7400 :- Quad 2 I/p NAND. 7402 :- Quad 2 I/p NOR. 7404 :- Hex Inverter. 7408 :- Quad 2 I/p AND.

7432 :- Quad 2 I/p OR. 7486 :- Quad 2 I/p X-OR.

### RULES OF BOOLEAN ALGEBRA

### Basic rules of Boolean algebra.

1. 
$$A + 0 = A$$

**2.** 
$$A + 1 = 1$$

3. 
$$A \cdot 0 = 0$$

**4.** 
$$A \cdot 1 = A$$

5. 
$$A + A = A$$

**6.** 
$$A + \overline{A} = 1$$

7. 
$$A \cdot A = A$$

8. 
$$A \cdot \overline{A} = 0$$

9. 
$$\overline{\overline{A}} = A$$

10. 
$$A + AB = A$$

11. 
$$A + \overline{A}B = A + B$$

12. 
$$(A + B)(A + C) = A + BC$$

Rule 1. A + 0 = A

$$A = 1$$
 $0$ 
 $X = 1$ 

$$A=0$$
  $X=0$ 

| Α | В | X |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

| A | 1 | В | X |
|---|---|---|---|
| ( | ) | 0 | 0 |
| ( | ) | 1 | 0 |
| 3 | Ĺ | 0 | 0 |
|   |   | 1 | 1 |

Rule 2. A + 1 = 1

$$A = 1$$
 $X = 1$ 

AND Truth Table

Rule 3. 
$$A \cdot 0 = 0$$

$$A = 1$$
  $X = 0$ 

$$A=0$$
  $X=0$ 

1. 
$$A + 0 = A$$

7. 
$$A \cdot A = A$$

2. 
$$A + 1 = 1$$

-X = 1

8. 
$$A \cdot \overline{A} = 0$$

3. 
$$A \cdot 0 = 0$$

9. 
$$\overline{A} = A$$

**4.** 
$$A \cdot 1 = A$$

10. 
$$A + AB = A$$

5. 
$$A + A = A$$

11. 
$$A + \overline{A}B = A + B$$

6. 
$$A + \overline{A} = 1$$

12. 
$$(A + B)(A + C) = A + BC$$

$$A = 0$$
  $X = 0$ 

Rule 4.  $A \cdot 1 = A$ 

$$A = 1$$
  $X = 1$ 

Rule 5. 
$$A + A = A$$

$$A = 0$$

$$X = 0$$

$$A = 1$$
 $A = 1$ 
 $X = 1$ 



### Rule 6. $A + \overline{A} = 1$

$$A = 0$$
 $\bar{A} = 1$ 
 $X = 1$ 

$$A = 1$$
 $\overline{A} = 0$ 
 $X = 1$ 

#### Rule 7. $A \cdot A = A$

$$A = 0$$
 $A = 0$ 
 $X = 0$ 

$$A = 1$$

$$A = 1$$

$$X = 1$$

#### Rule 8. $A \cdot \overline{A} = 0$

$$A = 1$$
 $\overline{A} = 0$ 
 $X = 0$ 

$$A = 0$$
 $\widetilde{A} = 1$ 
 $X = 0$ 

1. 
$$A + 0 = A$$

2. 
$$A + 1 = 1$$

3. 
$$A \cdot 0 = 0$$

**4.** 
$$A \cdot 1 = A$$

5. 
$$A + A = A$$

**6.** 
$$A + \overline{A} = 1$$

7. 
$$A \cdot A = A$$

8. 
$$A \cdot \overline{A} = 0$$

9. 
$$\overline{A} = A$$

10. 
$$A + AB = A$$

11. 
$$A + \overline{AB} = A + B$$

12. 
$$(A + B)(A + C) = A + BC$$

Rule 9. 
$$\overline{\overline{A}} = A$$





#### Rule 10. A + AB = A

$$A + AB = A(1 + B)$$
 Factoring (distributive law)  
=  $A \cdot 1$  Rule 2:  $(1 + B) = 1$   
=  $A$  Rule 4:  $A \cdot 1 = A$ 

|   |   | 1   |   |
|---|---|-----|---|
| 0 | 0 | 0   | 0 |
| 0 | 1 | 0   | 0 |
| 1 | 0 | 0   | 1 |
| 1 | 1 | 1 1 | 1 |





#### Rule 11. $A + \overline{A}B = A + B$

$$A + \overline{A}B = (A + AB) + \overline{A}B$$

$$= (AA + AB) + \overline{A}B$$

$$= (AA + AB) + \overline{A}B$$

$$= AA + AB + A\overline{A} + \overline{A}B$$
Rule 7:  $A = AA$ 

$$= AA + AB + A\overline{A} + \overline{A}B$$
Rule 8: adding  $A\overline{A} = 0$ 
Rule 9:  $A + \overline{A}B$ 
Rule 9:

#### Rule 12. (A + B)(A + C) = A + BC

$$(A + B)(A + C) = AA + AC + AB + BC$$
 Distributive law
$$= A + AC + AB + BC$$
 Rule 7:  $AA = A$ 

$$= A(1 + C) + AB + BC$$
 Factoring (distributive law)
$$= A \cdot 1 + AB + BC$$
 Rule 2:  $1 + C = 1$ 

$$= A(1 + B) + BC$$
 Factoring (distributive law)
$$= A \cdot 1 + BC$$
 Factoring (distributive law)
$$= A \cdot 1 + BC$$
 Rule 2:  $1 + B = 1$ 

$$= A + BC$$
 Rule 4:  $A \cdot 1 = A$ 

$$= A + BC$$
 Rule 4:  $A \cdot 1 = A$ 

| A | В | C  | A + B | A+C | (A+B)(A+C) | BC | A + BC |
|---|---|----|-------|-----|------------|----|--------|
| 0 | 0 | 0  | 0     | 0   | 0          | 0  | 0      |
| 0 | 0 | 1. | 0     | 1   | 0          | 0  | 0      |
| 0 | 1 | 0  | 1     | 0   | 0          | 0  | 0      |
| 0 | 1 | 1  | 1     | 1   | 1          | 1  | 1      |
| 1 | 0 | 0  | 1     | 1   | 1          | 0  | 1      |
| 1 | 0 | 1  | 1     | 1   | 1          | 0  | 1      |
| 1 | 1 | 0  | 1     | 1   | 1          | 0  | 1      |
| 1 | 1 | 1  | 1     | 1   | 1          | 1  | 1      |



# Simplification using boolean algebra

#### Simplification means fewer gates for the same function

B + AC

#### EXAMPLE

$$AB + A(B + C) + B(B + C)$$
 $AB + A(B + C) + B(B + C)$ 
 $AB + AB + AC + BB + BC$ 
 $AB + AB + AC + B + BC$ 
 $AB + AC + B + BC$ 
 $AB + AC + B$ 
 $B + AC$ 



#### EXAMPLE

$$[A\overline{B}(C + BD) + \overline{A}\overline{B}]C \qquad \overline{B}C$$

$$\overline{A}BC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}C + ABC \qquad BC + A\overline{B} + \overline{B}\overline{C}$$

### DEMORGAN'S THEOREMS

• The first theorem is stated as follows:

The complement of a product of variables is equal to the sum of the complements of complements of the variable.

The formula of this theorem for two variables is written as

$$\overline{\mathbf{X}\mathbf{Y}} = \overline{\mathbf{X}} + \overline{\mathbf{Y}}$$



| Inputs |   | Output |                 |                               |
|--------|---|--------|-----------------|-------------------------------|
|        | X | Y      | $\overline{XY}$ | $\overline{X} + \overline{Y}$ |
|        | 0 | 0      | 1               | 1                             |
|        | 0 | 1      | 1               | 1                             |
|        | 1 | 0      | 1               | 1                             |
|        | 1 | 1      | 0               | 0                             |

### DEMORGAN'S THEOREMS

• The second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements of the variables.

The formula of this theorem for two variables is written as

$$\overline{\mathbf{X} + \mathbf{Y}} = \overline{\mathbf{X}}\mathbf{Y}$$



| Inputs |   | Output           |                            |  |
|--------|---|------------------|----------------------------|--|
| X      | Y | $\overline{X+Y}$ | $\overline{X}\overline{Y}$ |  |
| 0      | 0 | 1                | 1                          |  |
| 0      | 1 | 0                | 0                          |  |
| 1      | 0 | 0                | 0                          |  |
| 1      | 1 | 0                | 0                          |  |

### APPLICATION OF DEMORGAN'S THEOREM

Apply DeMorgan's theorems to the expressions XYZ and X + Y + Z.

#### Solution

$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{X + Y + Z} = \overline{X}\overline{Y}\overline{Z}$$

Apply DeMorgan's theorems to the expressions  $\overline{WXYZ}$  and  $\overline{W} + X + Y + Z$ .

#### Solution

$$\overline{WXYZ} = \overline{W} + \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{W + X + Y + Z} = \overline{W}\overline{X}\overline{Y}\overline{Z}$$

Apply DeMorgan's theorems to each expression: Solution

(a) 
$$\overline{(A + B)} + \overline{C}$$

(b) 
$$\overline{(A + B) + CD}$$

(c) 
$$\overline{(A+B)\overline{C}\overline{D}+E+\overline{F}}$$

(a) 
$$\overline{(\overline{A} + B)} + \overline{\overline{C}} = (\overline{\overline{A} + B})\overline{\overline{C}} = (A + B)C$$

(b) 
$$\overline{(\overline{A} + B) + CD} = (\overline{\overline{A} + B})\overline{CD} = (\overline{\overline{A}}\overline{B})(\overline{C} + \overline{D}) = A\overline{B}(\overline{C} + \overline{D})$$

(a) 
$$\overline{(\overline{A} + \overline{B})} + \overline{C} = (\overline{A} + \overline{B})\overline{\overline{C}} = (A + B)C$$
  
(b)  $\overline{(\overline{A} + B)} + CD = (\overline{\overline{A}} + B)\overline{CD} = (\overline{\overline{A}}\overline{B})(\overline{C} + \overline{D}) = A\overline{B}(\overline{C} + \overline{D})$   
(c)  $\overline{(A + B)}\overline{C}\overline{D} + E + \overline{F} = \overline{((A + B)}\overline{C}\overline{D})(\overline{E} + \overline{F}) = (\overline{A}\overline{B} + C + D)\overline{E}F$ 



### APPLICATION OF DEMORGAN'S THEOREM

Apply DeMorgan's theorem to the expression  $\overline{X} + \overline{Y} + \overline{Z}$ .

Apply DeMorgan's theorem to the expression  $\overline{W}\overline{X}\overline{Y}\overline{Z}$ .

Apply DeMorgan's theorems to each of the following expressions:

- (a) (A + B + C)D
- (b)  $\overline{ABC + DEF}$
- (c)  $A\overline{B} + \overline{C}D + EF$

The Boolean expression for an exclusive-OR gate is  $A\overline{B} + \overline{A}B$ . With this as a starting point, use DeMorgan's theorems and any other rules or laws that are applicable to develop an expression for the exclusive-NOR gate.

Starting with the expression for a 4-input NAND gate, use DeMorgan's theorems to develop an expression for a 4-input negative-OR gate.

Apply DeMorgan's theorems to the following expressions:

(a) 
$$\overline{ABC} + (\overline{\overline{D}} + E)$$

(b) 
$$\overline{(A+B)C}$$

(a) 
$$\overline{ABC} + (\overline{\overline{D} + E})$$
 (b)  $\overline{(A + B)C}$  (c)  $\overline{A + B + C} + \overline{\overline{DE}}$ 



### Textbooks:



- [1] Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall.
- (2] M. Morris Mano, "Digital Logic & Computer Design" Prentice Hall.