

RELATÓRIO TÉCNICO PARCIAL 2 DYNASIM/UFAL MAR/17-SET/17

Projeto: Métodos Computacionais para Análise de Linhas de Ancoragem e

Risers no Programa Dynasim Módulo DOOLINES

Processo: 2015/00402-7 No. SAP: 4600533005

No. Jurídico: 5850.0102342.16.9

Nome do coordenador: Dr. Eduardo Nobre Lages

Autores:

Dr. Eduardo Nobre Lages

Dr. Eduardo Setton Sampaio da Silveira

Dr. Fábio Martins Gonçalves Ferreira

Me. Heleno Pontes Bezerra Neto

Ma. Michele Agra de Lemos Martins

Mestrando Pedro Henrique Rios Silveira

Mestrando Ricardo Vital Barroso

Graduando César Anderson de Melo Rodrigues

Graduando Jéssica Pontes de Vasconcelos

Graduando Weverton Marques da Silva

Maceió, 02 de setembro de 2017

SUMÁRIO

1.	Apresentação	5
2.	Introdução	5
3.	Objetivos	6
4.	Justificativas	7
5.	Resultados Esperados	8
6.	Benefício do projeto/aplicação na indústria	8
7.	Metodologia	8
8.	Mecanismos de acompanhamento de execução	9
9.	Atividades do projeto	9
10.	Referências	9
A.	GRADAÇÃO DA MALHA PARA MINIMIZAÇÃO DE RUÍDOS NA RESPOSTA	12
A.1.	Apresentação	13
A.2.	Introdução	13
A.3.	Revisão Bibliográfica	14
A.3.1.	Bazant (1978)	14
A.3.2.	Bazant & Celep (1982)	15
A.3.3.	Celep & Bazant (1983)	15
A.3.4.	Celep & Turhan (1987)	16
A.3.5.	Jiang & Rogers (1991)	16
A.4.	Considerações finais	16
A.5.	Referências	17
B.	GERAÇÃO DA MALHA COM REFINAMENTO ADAPTATIVO	18
B.1.	Apresentação	19
B.2.	Introdução	19
B.3.	Metodologia	20
B.3.1.	Implementação	20
B.3.2.	Parâmetros relacionados a estratégia de refinamento adaptativo	22
B.4.	Resultados e discussões	24
B.4.1.	Implementação	24
B.4.2.	Parâmetros relacionados a estratégia de refinamento adaptativo	30
B.5.	Considerações finais	35
B.6.	Referências	35
C.	OTIMIZAÇÃO NO CÁLCULO DA CINEMÁTICA DA ONDA PELA IMPLEMENTAÇ	ÃO DE
	DUAS NOVAS METODOLOGIAS	37
C.1.	Apresentação	38

Universidade Federal de Alagoas LABORATÓRIO DE COMPUTAÇÃO CIENTÍFICA E VISUALIZAÇÃO

C.2.	Introdução	38
C.3.	Ondas Oceânicas	38
C.3.1.	Cinemática de Onda	39
C.4.	CASO ANALISADO	40
C.5.	Considerações finais	42
C.6.	Referências	43
D.	IMPLEMENTAÇÃO DE METODOLOGIA DE ANÁLISE NO DOMÍNIO DA FREQU	ÊNCIA
		44
D.1.	Apresentação	45
D.2.	Introdução	45
D.2.1.	Análise dinâmica	45
D.2.2.	Linearização da força	46
D.3.	Metodologia	47
D.3.1.	Onda regular	48
D.3.2.	Onda irregular	49
D.4.	Resultados e discussões	50
D.4.1.	Onda regular	50
D.4.2.	Onda irregular	52
D.5.	Considerações finais	54
D.6.	Referências	
E.	FERRAMENTA DE TESTE FUNCIONAL	
E.1.	Apresentação	57
E.2.	Introdução	57
E.3.	Teste de software	57
E.3.1.	Teste de unidade	58
E.3.2.	Teste funcional	59
E.3.3.	Teste de software científico	60
E.4.	O framework Catch	
E.4.1.	Macros de asserção	61
E.4.2.	Macros de casos de teste e seções	62
E.4.3.	Escrevendo teste de unidade usando o Catch	
E.5.	Considerações finais	66
E.6.	Referências	
F.	WRAPPER EM LUA DO DOOLINES	68
F.1.	Apresentação	69
F.2.	Introdução	
F.3.	Criação manual de wrapper lua	70
F.4.	Criação automática de wrapper lua	71
F.5.	Considerações finais	76
F.6.	Referências	
G.	CATENÁRIA LEVANDO EM CONSIDERAÇÃO A PARTE INERCIAL	E DE
	AMORTECIMENTO	78
G.1.	Apresentação	79

Universidade Federal de Alagoas LABORATÓRIO DE COMPUTAÇÃO CIENTÍFICA E VISUALIZAÇÃO

G.2.	Introdução	79
G.3.	Formulação em catenária elástica	80
G.4.	Procedimento iterativo de solução	84
G.5.	Considerações finais	85
G.6.	Referências	85
H.	FERRAMENTAS PARA OTIMIZAÇÃO DE SISTEMAS DE ANCORAGEM	87
H.1.	Apresentação	88
H.2.	Introdução	88
H.2.1.	Sistemas de ancoragem	88
H.2.2.	Algoritmos genéticos	89
H.2.3.	Algoritmos baseados em gradiente	90
H.3.	Metodologia	91
H.4.	Resultados e discussões	92
H.4.1.	Algoritmos genéticos	93
H.4.2.	Algoritmo de busca local	94
H.4.3.	Abordagem híbrida	95
H.5.	Considerações finais	97
H.6.	Referências	98
l.	ATUALIZAÇÃO DO MANUAL DO FRAMEWORK DOOLINES	101
I.1.	Apresentação	102
1.2.	Comentários	102
J.	MANUTENÇÃO DO SISTEMA	103
J.1.	Apresentação	104
J.2.	Ações realizadas	104