ENSF 608: Understanding and Mapping the Relational Data Model

Dr. Emily Marasco

Fall 2021

Textbook: Fundamentals of Database Systems, 7th Ed., Elmasri & Navathe

Lesson Content

- Relational model concepts and constraints
- Relational database schemas
- Update operations and dealing with constraint violations
- ER-to-Relational mapping algorithm
- Mapping EER model constructs to relations

Relational Model Concepts

- The model was first proposed by Dr. Codd of IBM Research in 1970: "A Relational Model for Large Shared Data Banks," Communications of the ACM, June 1970
- Based on the concept of a Relation
 - The strength of the relational approach to data management comes from the formal foundation provided by the theory of relations
- We review the essentials of the formal relational model in this topic
- In practice, there is a standard model based on SQL this is described in Chapters 6 and 7 as a language
- Note: There are several important differences between the formal model and the practical model, as we shall see

Informal Definitions (1 of 2)

- Informally, a relation looks like a table of values.
- A relation typically contains a set of rows.
- The data elements in each row represent certain facts that correspond to a real-world entity or relationship
 - In the formal model, rows are called tuples
- Each column has a column header that gives an indication of the meaning of the data items in that column
 - In the formal model, the column header is called an attribute name (or just attribute)

Example of a Relation

Figure 5.1 The attributes and tuples of a relation STUDENT.

Informal Definitions (2 of 2)

- Key of a Relation:
 - Each row has a value of a data item (or set of items)
 that uniquely identifies that row in the table
 - Called the key
 - In the STUDENT table, SSN is the key
 - Sometimes row-ids or sequential numbers are assigned as keys to identify the rows in a table
 - Called artificial key or surrogate key

Formal Definitions - Schema

- The Schema (or description) of a Relation:
 - Denoted by $R(A_1, A_2,A_n)$
 - R is the name of the relation
 - The **attributes** of the relation are $A_1, A_2, ..., A_n$
- Example:

CUSTOMER (Cust-id, Cust-name, Address, Phone #)

- CUSTOMER is the relation name
- Defined over the four attributes: Cust-ID, Cust-name, Address, Phone #

CUSTOMER

Cust-ID	Cust-name	Address	Phone #
---------	-----------	---------	---------

- Each attribute has a domain or a set of valid values.
 - For example, the domain of Cust-id is 6 digit numbers.

Formal Definitions - Tuple

- A tuple is an ordered set of values (enclosed in angled brackets '<...>')
- Each value is derived from an appropriate domain.
- A row in the CUSTOMER relation is a 4-tuple and would consist of four values, for example:
 - <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
 - This is called a 4-tuple as it has 4 values
 - A tuple (row) in the CUSTOMER relation.
- A relation is a set of such tuples (rows)

Formal Definitions - Domain

- A domain has a logical definition:
 - Example: "Alberta_phone_numbers" are the set of 10 digit phone numbers valid in Alberta.
- A domain also has a data-type or a format defined for it.
 - The Alberta_phone_numbers may have a format: (ddd)ddd-dddd where each d is a decimal digit.
 - Dates have various formats such as year, month, date formatted as yyyy-mm-dd, or as dd mm,yyyy etc.
- The attribute name designates the role played by a domain in a relation:
 - Used to interpret the meaning of the data elements corresponding to that attribute
 - Example: The domain Date may be used to define two attributes named "Invoice-date" and "Payment-date" with different meanings

Formal Definitions - State

- The relation state is a subset of the Cartesian product of the domains of its attributes
 - each domain contains the set of all possible values the attribute can take.
- Example: attribute Cust-name is defined over the domain of character strings of maximum length 25
 - dom(Cust-name) is varchar(25)
- The role these strings play in the CUSTOMER relation is that of the name of a customer.

Formal Definitions - Summary

- Formally,
 - Given $R(A_1, A_2,, A_n)$
 - $r(R) \subset dom(A_1) \times dom(A_2) \times \times dom(A_n)$
- $R(A_1, A_2, ..., A_n)$ is the **schema** of the relation
- R is the name of the relation
- $A_1, A_2, ..., A_n$ are the **attributes** of the relation
- r(R): a specific state (or "value" or "population") of relation
 R this is a set of tuples (rows)
 - $r(R) = \{t_1, t_2, ..., t_n\}$ where each ti is an *n*-tuple
 - $t_i = \langle v_1, v_2, ..., v_n \rangle$ where each v_j element-of dom (A_j)

Formal Definitions - Example

- Let $R(A_1, A_2)$ be a relation schema:
 - Let dom(A_1) = {0,1}
 - Let dom(A_2) = {a,b,c}
- Then: $dom(A_1) \times dom(A_2)$ is all possible combinations:

$$\{<0,a>,<0,b>,<0,c>,<1,a>,<1,b>,<1,c>\}$$

- The relation state $r(R) \subset dom(A_1) \times dom(A_2)$
- For example: r(R) could be {<0,a>,<0,b>,<1,c>}
 - this is one possible state (or "population" or "extension") r of the relation R, defined over A_1 and A_2 .
 - It has three 2-tuples: <0,a>,<0,b>,<1,c>

Definition Summary

Informal Terms	Formal Terms		
Table	Relation		
Column Header	Attribute		
All possible Column Values	Domain		
Row	Tuple		
Table Definition	Schema of a Relation		
Populated Table	State of the Relation		

Example – A Relation STUDENT

 $R(A_1, A_2, A_3, A_4, A_5, A_6, A_7) = STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)$

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string, Office_phone: string, Age: integer, Gpa: real)

Example domain: dom(Gpa) = Grade_point_averages

Grade_point_averages are the possible values of computed grade point averages; each must be a real (floating-point) number between 0 and 4.

Example tuple: t = <'Barbara Benson', '533-68-1238', '839-8461', '7384 Fontana Lane', NULL, 19, 3.25>

Characteristics of Relations (1 of 3)

- Ordering of tuples in a relation r(R):
 - The tuples are not considered to be ordered, even though they appear to be in the tabular form.
- Ordering of attributes in a relation schema R (and of values within each tuple):
 - We will consider the attributes in $R(A_1, A_2, ..., A_n)$ and the values in $t = \langle v_1, v_2, ..., v_n \rangle$ to be ordered.
 - (However, a more general alternative definition of relation does not require this ordering. It includes both the name and the value for each of the attributes).
 - Example: t = { <name, "John" >, <SSN, 123456789> }
 - This representation may be called as "self-describing".

Same State as Previous Figure (but with Different Order of Tuples)

Figure 5.2 The relation STUDENT from Figure 5.1 with a different order of tuples.

STUDENT

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Characteristics of Relations (2 of 3)

- Values in a tuple:
 - All values are considered atomic (indivisible).
 - Each value in a tuple must be from the domain of the attribute for that column
 - If tuple $t = \langle v_1, v_2, ..., v_n \rangle$ is a tuple (row) in the relation state r of $R(A_1, A_2, ..., A_n)$
 - Then each v_i must be a value from dom (A_i)
 - A special **null** value is used to represent values that are unknown or not available or inapplicable in certain tuples.

Characteristics of Relations (3 of 3)

- Notation:
 - We refer to component values of a tuple t by:
 - t [A_i] or t.A_i
 - This is the value v_i of attribute A_i for tuple t
 - Similarly, $t [A_u, A_v, ..., A_w]$ refers to the subtuple of t containing the values of attributes $A_u, A_v, ..., A_w$, respectively in t