5. 同步触发器的特点

 触发器由统一的时钟信号控制工作, 所以时钟触发器是同步时序逻辑电路 ,也称同步触发器。

- 时钟触发器在CLK=1期间,输入信号都可以影响触发器的状态输出。所以,从触发方式上说,时钟触发器属于电平触发。
- · CLK=1期间, G_3 、 G_4 开启,如果R、S多次变化,Q也将随之多次变化,即输出状态不是按照时钟节拍变化。

在 CLK=1期间,FF处于触发状态, Q^{n+1} 随着输入信号 R, S, D, J, K, T 的变化而变化,出现空翻现象。

空翻:一个 CLK 周期内,Q 端只能变化一次,变化一次以上称为触发器的空翻。

触发器的抗干扰能力较差,限制了此类触发器的应用范围。

§5.2 脉冲触发的触发器

§5.2.1 主从RS-FF (Master-Slave RS-FF)

克服 FF 的空翻,希望其状态在每个时钟周期 只变化一次。

为此,在时钟RS触发器基础上设计了主从RS 触发器(Master-Slave RS Flip-Flop)。

两个相同的同步RS-FF相连

两个CLK之间加一个非门 (一个 FF 工作, 另一个停止)。

从触发器的状态 Q 为整个触发器的状态。

主触发器的状态为Q'

CLK=0, 主 FF 停, Q'保持 \overline{CLK} =1, 从FF开门

 $\}$: Q' 保持 : Q 保持

CLK=1, 主 FF 开门, $S,R \rightarrow Q$ ' \overline{CLK} =0, 从 FF 关门

∴ Q 保持

∴在 CLK=0 和 CLK=1期间, Q 保持

在 CLK 从 1 到 0 的时刻, 主FF内的信息传送到 Q

∴主从结构 RS-FF 是在CLK 下降沿 触发的FF

Q 是CLK 有效边沿到达之前的最后信息

§ 5.2.2 主从 JK-FF

在主从RS-FF上引出两条反馈 线构成主从 JK-FF。

$$Q^{n+1} = J\bar{Q}^n + \bar{K}Q^n$$

主从 JK-FF 是合格产品,无空翻,无状态不定

功能描述

主从 JK-FF 在 <u>CLK 下降沿触发</u>, <u>CLK</u> 下降沿到来之前:

不用考虑Q

Qⁿ 为有效边沿前的最后信息

练习

§ 5.2.3 触发器的直接输入

$$\overline{R}_D = 0$$
, $\overline{S}_D = 1$, $Q = 0$
 $\overline{S}_D = 0$, $\overline{R}_D = 1$, $Q = 1$

异步输入强制触发器的状态,绝对优先,与 J, K, CLK 等信号无关。

$\overline{S}_D \overline{R}_L$	$CLK J K Q^n$	Q^{n+1}
0 0		不允许
0 1	φφφφ	1 S_D 直接置 1
1 0	φφφφ	0 \overline{R}_D 直接置 0 (清 0)
1 1		FF 工作

$$\begin{cases}
Q^{n+1} = JQ^n + KQ^n \\
\overline{S}_D = \overline{R}_D = 1
\end{cases}$$

$$Q \qquad \overline{Q} \qquad Q \qquad \overline{Q} \qquad Q \qquad \overline{Q} \qquad \overline{Q}$$

§ 5.2.4 主从 D-FF

主从 JK-FF 加一个非门

特征方程
$$\begin{cases} Q^{n+1} = D \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

D-FF 是 JK-FF 中 J + K 的部分,是 JK-FF 的特例

在 CLK 下降沿到达之前,若D=0 (D=1),当CLK 下降沿到达时, $Q^{n+1}=0$ ($Q^{n+1}=1$)。

练习

§ 5.2.5 主从 T-FF

$$J = K = T$$

$$Q \mid \overline{Q}$$

$$\overline{S}_{D} \longrightarrow \overline{R}_{D}$$

$$T$$

$$CLK$$

T-FF特征方程:

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

$$\overline{S}_D = \overline{R}_D = 1$$

$$T = 0, \qquad Q^{n+1} = Q^n$$

$$T = 1, \qquad Q^{n+1} = \overline{Q}^n$$

Toggle - FF

T-FF 是 JK-FF 中J=K 的部分,是JK-FF 的特例

§ 5.2.6 主从结构 FF的问题

主从JK触发器的一次变化问题

- ・ 例如, $\underline{CLK=1}$,当 Q = 0时,门G8被封锁,若J=0,则主触发器Q'保持0。
- ・ 若J由0变为1,则主触发器Q'也由0变为1,而且只变化一次。

CLK=1 期间,输入信号数据(J、K、D、T)的变化会导致触发器出现 "一次变化" 现象,使FF 输出状态不能反映 CLK 在从 1 到 0 前瞬间 J、K端的状态,破坏了逻辑关系。

主从FF 只能用在CLK 信号很窄的场合

§5.3 边沿触发器

- · 为了解决*CLK*=1期间输入控制电平不许改变的限制,可采用边沿触发方式。
- · 特点: 触发器只在时钟跳转时发生翻转,而在 *CLK*=1或*CLK*=0期间,输入端的任何变化都不影响输出。

如果翻转发生在上升沿就叫"上升沿触发"或 "正边沿触发"。如果翻转发生在下降沿就叫"下降 沿触发"或"负边缘触发"。

1.维持-阻塞D触发器(TTL正边沿D触发器)

工作原理

$$(\overline{S}_D = \overline{R}_D = 1)$$

CLK=0, $G_3=G_4=1$, Q 保持

D过 G₆、G₅ 等在 G₃、G₄入口

当CLK 上升沿到达

若
$$D=0$$
, $G_6=1$, $G_5=0$, $G_3=1$, $G_4=0$, $Q=0$

若
$$D=1$$
, $G_6=0$, $G_5=1$, $G_3=0$, $G_4=1$, $Q=1$

维持 - 阻塞FF在CLK 上升沿触发

CLK上升沿前D的数据为CLK上升沿到时 Q^{n+1} 的状态

边沿触发方式,正边沿到达时触发,其他时间输出不变,抗干扰能力强。

① 直接输入 \overline{R}_D \overline{S}_D

- 画波形步骤:
- ② CLK 有效边沿

③ 特征方程

 $Q^{n+1} = J\overline{Q}^{n} + KQ^{n}$ $Q^{n+1} = T \oplus Q^n$

例: 画出上升边沿触发的D-FF波形

2. 正边沿触发 JK-FF

符号

$$\begin{cases} Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

除了上升沿触发外, 与主从JK-FF相同。

3. 正边沿触发 T-FF

符号:

$$\begin{cases} Q^{n+1} = T \oplus Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

CLK 正边沿触发

6 种合格产品:

负边沿触发 JK-FF, D-FF, T-FF

正边沿触发 JK-FF, D-FF, T-FF

§5.6 触发器应用

Applications of FF

例1. 根据下图中触发器及 CLK, \overline{R}_D , T 波形, 对应 画出 Q 波形。

$$T=1$$
, $Q^{n+1}=\overline{Q}^n$

二分频电路

$$T_Q = 2T_{CLK}$$

$$f_Q = \frac{1}{2} f_{CLK}$$

用D触发器 将一个时钟进行2分频

D触发器功能

CLK[†] 时,Q=D

R_D、S_D不用时,悬空 或通过4.7kΩ的电阻 接高电平

频率 $f_{\rm Q} = f_{\rm CLK}/2$

用2个2分频器级联组成一个4分频器

频率
$$f_{2Q} = f_{1Q}/2 = f_{CLK}/4$$

2. 触发器如图所示,对应输入波形画出输出波形 2。

例 3. 对应下图电路的输入CLK 和 K_1 波形画出输出 Q_1 和 Q_2 的波形。初始 Q_1 和 Q_2 为高电平。

例 4. 根据下图电路及CLK 和 K_1 输入波形,画出输出 Q_1 和 Q_2 波形。初始状态 $Q_1 = Q_2 = 0$ 。

例 5.

消除(接触跳动)噪声电路: 当一个开关闭合时, 在开关完全闭合之前几毫秒时间内,有时会发生金 属接触点之间的碰撞和跳动,这样置位端将产生不 正确的结果,导致机器的误动作。

用基本RS-FF:

当开关第一次与2点相接时, $\overline{S}=0$, $\overline{R}=1$,输出Q为高电平;当开关跳开时, $\overline{S}=1$, $\overline{R}=1$,输出Q不变。

作业 **5.9 5.10** 5.14 5.17 **5.21**