Introduction to Google Earth Engine

CoPhil EO AI/ML Training - Day 1, Session 4

Stylianos Kotsopoulos

EU-Philippines CoPhil Programme

Welcome to Session 4

Final Session of Day 1!

Google Earth Engine

Planetary-scale geospatial analysis in the cloud

Duration: 2 hours (Hands-on with Python API)

Learning Objectives

By the end of this session, you will be able to:

- 1. Understand what GEE is and why it's powerful
- 2. Authenticate and initialize GEE Python API
- 3. Access Sentinel-1 and Sentinel-2 imagery
- 4. Filter image collections (spatial, temporal, property)
- 5. Apply cloud masking to Sentinel-2
- 6. Create temporal composites (median, mean)
- 7. Calculate spectral indices (NDVI, NDWI)
- 8. Visualize results with geemap
- 9. Export data for further analysis

Session Roadmap

Time	Topic	Duration
00-15 min	GEE Overview & Authentication	15 min
15-55 min	Core Concepts & Sentinel Access (HANDS-ON)	40 min
55-60 min	Break	5 min
60-110 min	Processing & Visualization (HANDS-ON)	50 min
110-120 min		

Part 1: Google Earth Engine Overview

What is Google Earth Engine?

Cloud-Based Platform for Geospatial Analysis

- Massive data catalog (petabytes)
- Powerful compute (Google's infrastructure)
- Free for research & education
- No download needed
- Process at scale

"Planetary-scale geospatial analysis"

Google Earth Engine

GEE Architecture and Workflow

Google Earth Engine complete architecture showing User Interface, Cloud Processing, Data Catalog, and Outputs

Why GEE for This Training?

Addresses Key Challenges:

- X Traditional: Download 100s of GB of Sentinel data
- **GEE:** Access entire archive without downloading
- X Traditional: Need powerful computer for processing
- **GEE:** Google's infrastructure does the work
- X Traditional: Complex cloud masking & preprocessing
- **GEE:** Built-in algorithms & analysis-ready data
- X Traditional: Time-series analysis is painful
- **GEE:** Designed for temporal analysis

Perfect for Philippine-scale analysis!

GEE Data Catalog

Datasets Available:

Satellite Imagery:

- Sentinel-1, 2, 3, 5P
- Landsat (entire archive!)
- MODIS
- Planet, SkySat (some)
- Many more...

Geophysical:

- Climate data
- Elevation (SRTM, ASTER)
- Weather data
- Population datasets
- Land cover products

Browse: https://developers.google.com/earth-engine/datasets

Python API vs JavaScript Code Editor

JavaScript Code Editor

- Web-based IDE
- Interactive visualization
- Quick prototyping
- Built-in examples

Today: Python-only approach using geemap

Python API (Our Focus)

- Jupyter notebooks
- Integration with ML libraries
- Familiar Python ecosystem
- **geemap** package for visualization

geemap Package

Python package for interactive GEE mapping

- Built on ipyleaflet
- Interactive map visualization
- Layer controls
- Inspector tool
- Split-panel comparison
- Export functionality
- Makes Python GEE as easy as Code Editor

GEE Authentication

Sign Up for GEE

! Before We Code

You need a Google Earth Engine account!

Sign up: https://earthengine.google.com/signup

Steps:

- 1. Visit signup page
- 2. Use Gmail account
- 3. Select "Research/Education"
- 4. Wait for approval (usually instant)

Already have account? Great! Let's authenticate.

Authentication Process

83d Open Notebook: Day1_Session4_Google_Earth_Engine.ipynb

Authentication Code:

```
import ee
import geemap

# Authenticate (first time only)
ee.Authenticate()

# Initialize
ee.Initialize()
print("GEE Initialized Successfully!")
```


Part 2: Core GEE Concepts

Key GEE Objects

ee.lmage

- Single raster image
- Multiple bands
- Properties (metadata)

ee.ImageCollection

- Stack of images
- Time series
- Filter and reduce

ee.Geometry

- Points, lines, polygons
- Define areas of interest

ee.Feature / FeatureCollection

- Vector data with attributes
- Shapefiles, GeoJSON

Everything is server-side! Code describes operations, execution happens on Google's servers.

Server-Side vs Client-Side

Server-Side (ee.*):

```
# Runs on Google servers
image = ee.Image('COPERNICUS/S2/...')
ndvi = image.normalizedDifference(['B8', 'B4'])
mean_ndvi = ndvi.reduceRegion(
    reducer=ee.Reducer.mean(),
    geometry=aoi,
    scale=10
)
```

Fast, scalable

Client-Side (Python):

```
1 # Runs on your computer
2 result = mean_ndvi.getInfo()
3 print(result) # Downloads result
4
5 # Visualization
6 Map = geemap.Map()
7 Map.addLayer(ndvi)
8 Map # Display
```

For viewing results

Filtering

Three main filter types:

1. Spatial (filterBounds):

```
1 aoi = ee.Geometry.Rectangle([120.5, 14.5, 121.0, 15.0]) # Metro Manila
2 images = collection.filterBounds(aoi)
```

2. Temporal (filterDate):

```
1 images = collection.filterDate('2024-01-01', '2024-12-31')
```

3. Property (filter):

```
1 # Cloud cover < 20%
2 images = collection.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))</pre>
```

Chain filters together!

Reducers

Aggregate data across space or time:

Temporal Reduction:

```
1 # Median composite
2 median = collection.median()
3
4 # Mean
5 mean = collection.mean()
6
7 # Max NDVI
8 max_ndvi = collection.max()
```

Most common: Median composite to remove clouds

Spatial Reduction:

```
1 # Mean value in region
2 mean_val = image.reduceRegion(
3     reducer=ee.Reducer.mean(),
4     geometry=aoi,
5     scale=10
6 )
```


Sentinel Data in GEE

Accessing Sentinel-2

83dLive Coding Exercise 1

```
1 # Define area of interest (Palawan)
2 aoi = ee.Geometry.Rectangle([118.0, 8.0, 120.5, 11.5])
4 # Load Sentinel-2 collection
5 s2 = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED') \\
       .filterBounds(aoi) \\
6
       .filterDate('2024-01-01', '2024-12-31') \\
       .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
8
9
10 # Print collection info
11 print('Number of images:', s2.size().getInfo())
12
13 # Get first image
14 first_image = s2.first()
15 print('Bands:', first_image.bandNames().getInfo())
```


Visualizing Sentinel-2

83dLive Coding Exercise 2

```
1  # Create map
2  Map = geemap.Map(center=[9.5, 118.5], zoom=8)
3
4  # Visualization parameters - True Color
5  vis_params_rgb = {
6     'bands': ['B4', 'B3', 'B2'],
7     'min': 0,
8     'max': 3000,
9     'gamma': 1.4
10 }
11
12  # Add layer
13  Map.addLayer(first_image, vis_params_rgb, 'Sentinel-2 True Color')
14  Map
```


False Color Composite

83dLive Coding Exercise 3

```
1 # False color (vegetation = red)
2 vis_params_false = {
3     'bands': ['B8', 'B4', 'B3'], # NIR, Red, Green
4     'min': 0,
5     'max': 3000
6 }
7
8 Map.addLayer(first_image, vis_params_false, 'False Color')
```

Vegetation appears bright red!

Accessing Sentinel-1

83dLive Coding Exercise 4

```
# Load Sentinel-1 collection
s1 = ee.ImageCollection('COPERNICUS/S1_GRD') \\
ifilterBounds(aoi) \\
ifilterDate('2024-01-01', '2024-12-31') \\
ifilter(ee.Filter.eq('instrumentMode', 'IW')) \\
ifilter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) \\
ifilter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'))

# Get median composite
s1_median = s1.select('VV').median()

# Visualize
vis_params_s1 = {'min': -25, 'max': 0}
Map.addLayer(s1_median, vis_params_s1, 'Sentinel-1 VV')
```


5-Minute Break

Stretch Break

Stand up • Grab water • Back in 5 minutes

Part 3: Processing & Analysis

Cloud Masking

83dLive Coding Exercise 5

```
def maskS2clouds(image):
        """Mask clouds using QA60 band"""
        qa = image.select('QA60')
 4
       # Bits 10 and 11 are clouds and cirrus
 6
        cloudBitMask = 1 << 10</pre>
        cirrusBitMask = 1 << 11</pre>
 8
        # Both flags should be zero (clear)
 9
        mask = qa.bitwiseAnd(cloudBitMask).eq(0) \\
10
            .And(qa.bitwiseAnd(cirrusBitMask).eq(0))
11
12
        return image.updateMask(mask)
13
14
15 # Apply to collection
16 s2_masked = s2.map(maskS2clouds)
17
18 # Create cloud-free composite
```


Understanding Bitwise Operations

How QA60 Band Stores Cloud Information:

```
QA60 value = 1024 (binary: 10000000000)

Bit 10 set → Cloud present

Bit mask operation:
cloud_bit_mask = 1 << 10  # Shift 1 left by 10 = 1024
qa.bitwiseAnd(cloud_bit_mask)  # Extract bit 10
```

Why Bitwise?

- Efficient storage (multiple flags in one band)
- Bit 10 = Opaque clouds
- Bit 11 = Cirrus clouds
- Can check multiple conditions

QA60 Bit Flags:

Bit	Flag
10	Opaque clouds
11	Cirrus clouds

Example Values:

- 0 = Clear (0000000000)
- 1024 = Clouds (1000000000)
- 2048 = Cirrus (10000000000)
- 3072 = Both (11000000000)

Advanced Cloud Masking: SCL Band

Scene Classification Layer (SCL) - More Detailed Classification:

```
def mask_s2_clouds_scl(image):
       """Advanced cloud masking using SCL band"""
       scl = image.select('SCL')
       # SCL Classification Values:
       # 3 = Cloud shadows
       # 4 = Vegetation
       # 5 = Bare soil
       #6 = Water
       # 8 = Cloud medium probability
       # 9 = Cloud high probability
       # 10 = Thin cirrus
13
       # 11 = Snow/ice
14
15
       # Keep only clear land/water pixels
       mask = scl.eq(4).0r(scl.eq(5)).0r(scl.eq(6))
16
17
18
       return image.updateMask(mask).divide(10000)
```

SCL vs QA60: SCL provides more granular classification but requires loading additional band

Calculating NDVI

83dLive Coding Exercise 6

```
1 # Calculate NDVI
2 ndvi = composite.normalizedDifference(['B8', 'B4']).rename('NDVI')
3
4 # Visualization parameters
5 ndvi_vis = {
6     'min': -0.2,
7     'max': 0.8,
8     'palette': ['brown', 'yellow', 'green', 'darkgreen']
9 }
10
11 Map.addLayer(ndvi, ndvi_vis, 'NDVI')
```

Dark green = healthy vegetation

Other Indices

83dLive Coding Exercise 7

```
# NDWI (water)
ndwi = composite.normalizedDifference(['B3', 'B8']).rename('NDWI')

# NDBI (built-up)
ndbi = composite.normalizedDifference(['B11', 'B8']).rename('NDBI')

# Add to map
Map.addLayer(ndwi, {'min': -0.5, 'max': 0.5, 'palette': ['white', 'blue']}, 'NDWI')
Map.addLayer(ndbi, {'min': -0.5, 'max': 0.5, 'palette': ['green', 'gray']}, 'NDBI')
```


Temporal Compositing

Compare different time periods:

```
1 # Dry season (Jan-Mar)
2 dry = s2_masked.filterDate('2024-01-01', '2024-03-31').median()
4 # Wet season (Jul-Sep)
5 wet = s2_masked.filterDate('2024-07-01', '2024-09-30').median()
7 # Calculate NDVI for both
8 ndvi_dry = dry.normalizedDifference(['B8', 'B4'])
9 ndvi_wet = wet.normalizedDifference(['B8', 'B4'])
10
11 # Difference
12 ndvi_change = ndvi_wet.subtract(ndvi_dry)
13
14 Map.addLayer(ndvi_change, {'min': -0.5, 'max': 0.5,
                               'palette': ['red', 'white', 'green']},
15
16
                'NDVI Change')
```

Green = vegetation increase, Red = vegetation decrease

Composite Methods Comparison

Different ways to create composites:

1. Median Composite

- 1 composite = collection.median()
- Most common
- Reduces outliers
- Good for cloud removal

2. Mean Composite

1 composite = collection.mean()

Average of all values

- Smooth results
- Can blur features

3. Greenest Pixel

```
1 def add_ndvi(img):
2    ndvi = img.normalizedDifference(['B8','
3    return img.addBands(ndvi.rename('NDVI')
4
5 composite = collection.map(add_ndvi).qualit
```

- Maximum NDVI pixel
- Best vegetation condition
- Ideal for crop mapping

Greenest Pixel Composite Example

Philippine Rice Monitoring Application:

```
1 # Define Central Luzon rice area
 2 rice_aoi = ee.Geometry.Rectangle([120.5, 15.0, 121.5, 16.0])
 4 # Load Sentinel-2 for growing season
 5 s2_rice = (ee.ImageCollection('COPERNICUS/S2_SR')
       .filterBounds(rice_aoi)
       .filterDate('2024-06-01', '2024-10-31') # Main rice season
        .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 30))
        .map(maskS2clouds))
 9
10
11 # Add NDVI band to each image
12 def add_ndvi_band(image):
       ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
13
       return image.addBands(ndvi)
14
15
16 s2_with_ndvi = s2_rice.map(add_ndvi_band)
17
18 # Create greenest pixel composite
```

Result: Captures peak rice biomass across entire growing season

Time Series Analysis

Extract time series at a point:

```
1 # Define point (Manila)
 2 point = ee.Geometry.Point([121.0, 14.6])
 4 # Function to add date and NDVI
 5 def addNDVI(image):
       ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
       return image.addBands(ndvi).set('date', image.date().format('YYYY-MM-dd'))
 9 # Add NDVI to collection
10 s2_ndvi = s2_masked.map(addNDVI)
11
12 # Extract time series
13 ts = s2_ndvi.select('NDVI').getRegion(point, 10).getInfo()
14
15 # Convert to pandas DataFrame
16 import pandas as pd
17 df = pd.DataFrame(ts[1:], columns=ts[0])
18 print(df.head())
```


Philippine Example: Rice Monitoring

83dLive Coding Exercise 8 - Complete Workflow

```
1 # Rice growing area (Central Luzon)
 2 rice_aoi = ee.Geometry.Rectangle([120.5, 15.0, 121.0, 15.5])
 4 # One year of data
 5 rice_s2 = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED') \\
       .filterBounds(rice_aoi) \\
       .filterDate('2024-01-01', '2024-12-31') \\
       .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 30)) \\
 8
        .map(maskS2clouds)
 9
10
11 # Monthly composites
12 def monthlyComposite(month):
13
       start = ee.Date.fromYMD(2024, month, 1)
       end = start.advance(1, 'month')
14
       return rice_s2.filterDate(start, end).median() \\
15
            .set('month', month)
16
17
18 # Create 12 monthly NDVI composites
```


Part 4: Export & Integration

Exporting Data

Export to Google Drive:

```
1 # Export image
2 task = ee.batch.Export.image.toDrive(
       image=composite,
       description='Palawan_S2_Composite',
       folder='GEE_Exports',
       region=aoi,
       scale=<mark>10</mark>,
       crs='EPSG:4326',
       maxPixels=1e9
9
10 )
11
12 # Start task
13 task.start()
14
15 # Check status
16 print('Task Status:', task.status())
```

Find exported file in Google Drive!

Export Options

Export Types:

- toDrive() Google Drive
- toAsset() GEE Asset (reuse in GEE)
- toCloudStorage() Google Cloud Storage

Data Types:

- Image (raster)
- Table (vector)
- Video (time series animation)

Best Practices:

- Set appropriate scale (resolution)
- Define region (don't export globally!)
- Use maxPixels wisely
- Check crs matches your needs
- Monitor tasks in Code Editor

Integration with ML Workflows

GEE → Python ML Pipeline:

```
1 # 1. Process in GEE (fast, scalable)
 2 composite = s2_masked.median()
 3 ndvi = composite.normalizedDifference(['B8', 'B4'])
 5 # 2. Sample training data
 6 training = ndvi.sampleRegions(
       collection=training_polygons,
       scale=10
 9 )
10
11 # 3. Export to Drive
12 ee.batch.Export.table.toDrive(
13
       collection=training,
       description='training_data',
14
       fileFormat='CSV'
16 ).start()
17
18 # 4. Download and use in scikit-learn/TensorFlow (Dav 2!)
```


geemap Advanced Features

Split-panel comparison:

```
1 left_layer = geemap.ee_tile_layer(dry, vis_params, 'Dry Season')
2 right_layer = geemap.ee_tile_layer(wet, vis_params, 'Wet Season')
3
4 Map = geemap.Map()
5 Map.split_map(left_layer, right_layer)
6 Map
```

Time slider:

```
1 Map.add_time_slider(monthly_ndvi, vis_params, date_format='YYYY-MM')
```

Interactive charting, legends, colorbars, and more!

Philippine Case Studies

Case Study 1: Typhoon Impact Assessment

Scenario: Assess vegetation damage from Typhoon Odette (Rai) - December 2021

```
1 # Define affected region (Bohol & Cebu)
 visayas_aoi = ee.Geometry.Rectangle([123.5, 9.5, 125.0, 11.0])
 4 # Pre-typhoon (November 2021)
   pre_typhoon = (ee.ImageCollection('COPERNICUS/S2_SR')
       .filterBounds(visayas aoi)
        .filterDate('2021-11-01', '2021-11-30')
       .filter(ee.Filter.lt('CLOUDY PIXEL PERCENTAGE', 30))
        .map(maskS2clouds)
 9
        .median())
10
11
12 # Post-typhoon (January 2022)
13 post_typhoon = (ee.ImageCollection('COPERNICUS/S2_SR')
        .filterBounds(visayas_aoi)
14
       .filterDate('2022-01-15', '2022-02-15')
15
        .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 30))
16
17
        .map(maskS2clouds)
        .median())
18
```

Analysis:

- Red areas = severe damage
- Yellow = moderate damage
- Coastal coconut plantations heavily affected
- Rapid assessment for disaster response

Output: Damage map for NDRRMC

Case Study 2: Manila Bay Water Quality

Scenario: Monitor turbidity and suspended sediment in Manila Bay

```
1 # Define Manila Bay AOI
 2 manila_bay = ee.Geometry.Polygon([
       [[120.7, 14.4], [120.95, 14.4], [121.0, 14.65],
         [120.75, 14.75], [120.7, 14.4]]
 5 ])
 7 # Load Sentinel-2 (dry season 2024)
 8 s2_manila = (ee.ImageCollection('COPERNICUS/S2_SR')
        .filterBounds(manila_bay)
        .filterDate('2024-02-01', '2024-04-30')
10
       .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
        .map(maskS2clouds)
13
        .median())
14
15 # Calculate Turbidity Index (Red/Green ratio)
16 turbidity = s2_manila.select('B4').divide(s2_manila.select('B3'))
17
18 Map.addLaver(turbidity.
```

Application: Monitor rehabilitation progress, identify pollution sources

Case Study 3: Rice Paddy Phenology (Sentinel-1)

Scenario: Track rice growth stages using SAR in Central Luzon

```
1 # Define rice area (Nueva Ecija)
2 rice_region = ee.Geometry.Rectangle([120.8, 15.3, 121.3, 15.8])
4 # Load Sentinel-1 time series (wet season 2024)
5 s1_rice = (ee.ImageCollection('COPERNICUS/S1_GRD')
       .filterBounds(rice_region)
       filterDate('2024-06-01', '2024-11-30')
       .filter(ee.Filter.eq('instrumentMode', 'IW'))
       .select('VH')) # VH sensitive to rice canopy
9
10
11 # Create time series chart
12 chart = geemap.image_series_by_region(
       s1_rice, rice_region, reducer='mean',
13
14
       scale=100, x_property='system:time_start'
15 )
16 chart
```

Phenology Pattern:

- Low VH = flooding/transplanting
- **Rising VH** = vegetative growth
- Peak VH = heading/flowering
- **Declining VH** = maturity/harvest

Case Study 4: Mangrove Monitoring in Palawan

Scenario: Map and monitor mangrove forest extent in Puerto Princesa

```
1 # Define Palawan coastal area
2 palawan_coast = ee.Geometry.Rectangle([118.7, 9.5, 119.0, 10.0])
4 # Load recent Sentinel-2
 5 s2_mangrove = (ee.ImageCollection('COPERNICUS/S2_SR')
       .filterBounds(palawan_coast)
       .filterDate('2024-01-01', '2024-12-31')
       .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
       map(maskS2clouds)
9
       .median())
10
11
12 # Mangrove index: NDVI + NDWI combination
13 ndvi = s2_mangrove.normalizedDifference(['B8', 'B4'])
14 ndwi = s2_mangrove.normalizedDifference(['B3', 'B8'])
15
16 # Simple mangrove classifier
17 mangrove_mask = ndvi.gt(0.3).And(ndwi.gt(-0.1))
18
```


Philippine Applications Summary

What GEE Enables for Philippines:

Disaster Response: - Flood mapping during typhoons - Damage assessment - Recovery monitoring **Agricultural Monitoring:** - Rice area mapping (PRiSM program) - Crop health assessment - Yield prediction **Environmental Management:** - Forest cover change - Mangrove monitoring - Water quality assessment **Urban Planning:** - Land cover mapping - Urban expansion tracking - Infrastructure development **All at national scale, updated regularly, cloud-free!**

Session Summary

What You've Learned:

☑ GEE platform & Python API authentication ☑ Core concepts: Image, ImageCollection, filtering, reducing ☑ Accessing Sentinel-1 and Sentinel-2 data ☑ Cloud masking (QA60 bitwise operations & SCL band) ☑ Calculating spectral indices (NDVI, NDWI, NDBI) ☑ Temporal compositing (median, mean, greenest pixel) ☑ Time series analysis and multi-temporal comparison ☑ Visualization with geemap ☑ Exporting data for ML workflows ☑ Philippine case studies (typhoon, water quality, rice, mangroves)

Q&A

Common Questions:

- GEE free tier limits?
- JavaScript vs Python trade-offs?
- How to handle large exports?
- Best practices for efficiency?

- Working with Landsat data?
- Custom algorithms in GEE?
- Integration with QGIS?
- Where to learn more?

Resources

Official Documentation:

https://developers.google.com/earth-engine

Python API:

https://geemap.org

Tutorials:

https://developers.google.com/earth-engine/tutorials

Community:

https://groups.google.com/forum/#!forum/google-earth-engine-developers

Awesome GEE:

https://github.com/giswqs/Awesome-GEE

Day 1 Complete!

Amazing Progress Today!

You've mastered:

- 1. Copernicus & Philippine EO ecosystem
- 2. AI/ML fundamentals for EO
- 3. V Python geospatial libraries (GeoPandas, Rasterio)
- 4. Google Earth Engine Python API

Tomorrow: Apply these skills to real ML problems!

Day 2 Preview

Machine Learning for Earth Observation

Morning: - Random Forest classification - Training data preparation - Model evaluation - **Palawan land cover mapping**

See you tomorrow!

Afternoon: - Deep learning introduction - CNN for imagery - Transfer learning - **Building damage** assessment

Thank You!

Excellent Work Today!

Rest well.

Tomorrow we build AI models!

