< 마이크로프로세서 실험 및 설계(EECS0326-005) >

팀 프로젝트 6조

조원: 김한구, 전영원, 정석모, 홍성락

2024년 12월 6일 금요일 오전 9시 수업 시간에 진행한 발표 이후 팀원들과 앞으로의 팀 프로젝트 계획에 대한 회의를 한 결과, 발표한 내용에서 수정한 점들이 꽤 있어 이렇게 보고서 형식으로 6조의 최종 팀 프로젝트 계획 및 일정 그리고 각 조원들의 역할을 교수님께 알려드립니다.

[목표] S32K144 보드를 활용한 자동차 동작 구현							
'발표 이전' 프로젝트 계획							
기본 /추가	No.	사용 Part	역할	희망동작	발표 전/후 비교		
기본 목표	1.	VR&CDS	자동차 페달	'VR&CDS'통해 가변저항 값을 변경함으로써 자동차의 속도를 입력.	수정		
	2.	DC MOTOR	자동차 바퀴	'VR&CDS'통해 입력받은 자동차의 속도를 바탕으로 바퀴의 회전 속도 조절.	수정		
	3.	7 - SEGMENT	자동차 속도 계기판	'VR&CDS' 통해 입력받은 자동차의 속도를 '7- SEGMENT'를 통해 숫자 값으로 표현.	수정		
	4.	Switch 1	자동차 기어(전진)	'스위치'를 통해서 전진 기어(D) 입력.	수정		
	5.	Switch 2	자동차 기어(후진)	'스위치'를 통해서 후진 기어(R) 입력.	수정		
	6.	Switch 3	자동차 방향(좌)	'스위치'통해 자동차의 방향(좌) 입력.	-		
	7.	Switch 4	자동차 방향(우)	'스위치'를 통해 자동차의 방향(우) 입력.	-		
	8.	LED 1	자동차 방향지시등(좌)	'스위치'를 눌러 입력한 자동차의 방향에 맞게 좌측 'LED'점등.	-		
	9.	LED 2	자동차 방향지시등(우)	'스위치'를 눌러 입력한 자동차의 방향에 맞게 우측 'LED'점등.	-		
	10.	Servo Motor	자동차 스팅어링	'스위치'를 눌러 입력한 자동차의 방향에 맞게 'Servo Motor'로 방향 표현	수정		
추가 목표	1.	uWAVE SENSOR	AEB (긴급제동 장치)	'uWAVE SENSOR'를 통해 장애물을 감지하였 을 경우, 자동차의 속도를 0으로 설정.	-		
	2.	BUZZER&PIEZO	알림음	긴급 제동 장치 등이 작동했을 때, 경고음 발생.	-		
	3.	TEXT LCD	작동 알림	자동차의 직진, 후진, 좌, 우회전, 긴급 제동의 동작을 알려주는 LCD 화면 표시.	수정		
	4.	STEP MOTOR	자동차 연료 잔량 표현	자동차의 동작(속도 증감, 운행 시간)에 따라 자 동차의 연료 잔량 표현	삭제		

[**표** 1] '발표 이전' 프로젝트 계획

- 1. 발표 이전에는 'VR&CDS'을 통해 가변 저항 값을 변경함으로써 자동차의 속도를 조절할 예정이었으나 프로그램 상에서 ADC 및 Interrupt 충돌로 인한 오류가 빈번하게 발생하여 이를 방지하고자, 자동차의 속도를 두 개의 스위치를 사용, 자동차의 엑셀레이터 페달과 브레이크 페달을 구현하여 자동차의 속도를 조절하기로 하였습니다. 따라서 기존의 'VR&CDS'을 통해 입력한 자동차의 속도와 관련된 것들을 모두 스위치와 관련되도록 프로그램을 구현할 예정입니다.
- 2. 발표 이전에는 4개의 스위치를 통해서 자동차의 전진, 후진, 좌, 우 방향을 조절하였습니다. 하지만, 앞서 자동차의 속도를 두 개의 스위치를 사용, 엑셀레이터 페달과 브레이크 페달을 구현함으로써 전진, 후진 기어의 역할을 하는 스위치를 통합하여 사용 스위치의 개수를 줄일 필요가 있었습니다. 따라서 이를 수정하여 하나의 스위치로 자동차의 전진과 후진을 구현할 예정입니다.
- 3. 발표 이전에는 'Step Motor'를 사용하여 자동차의 연료 잔량을 표현할 예정이었으나, 프로그램의 복잡도와 'Step Motor'의 사용법을 고려한 결과, 삭제하기로 하였습니다. 추후, 여력이 된다면 추가하도록 하겠습니다.

따라서 저희 6조의 <u>수정한</u> '최종 프로젝트 계획'은 아래의 표와 같습니다. '세부 동작 구현'에 대한 내용은 '최종보고서'에 기술하도록 하겠습니다.

[목표] S32K144 보드를 활용한 자동차 동작 구현							
'발표 이후 수정한 최종' 프로젝트 계획							
기본 /추가	No.	사용 Part	역할	희망동작	수정 내용		
	1.	VR&CDS	자동차 핸들	'VR&CDS' 통해 가변저항 값을 변경함으로써 자동차의 진행 방향(좌, 우)을 입력.	자동차 페달 역할이 아닌 자동차 핸들 역할로 수정		
	2.	DC MOTOR	자동차 바퀴	'스위치'를 통해 입력받은 자동차의 속도를 바탕 으로 바퀴의 회전 속도 조절.	'VR&CDS'를 스위치로 변경		
	3.	7 - SEGMENT	자동차 속도 계기판	'스위치'를 통해 입력받은 자동차의 속도를 '7- SEGMENT'를 통해 숫자 값으로 표현.	'VR&CDS'를 스위치로 변경		
	4.	Switch 1	자동차 기어	'스위치'를 통해서 전진 기어(D)와 후진 기어(R) 입력.	기존 'Switch 1'과 'Switch 2'를 통합		
-111	5.	Switch 2	자동차 페달 (엑셀레이터)	'스위치'를 통해서 자동차의 속도(+) 입력	'VR&CDS'를 스위치로 변경		
기본 목표	6.	Switch 3	자동차 페달 (브레이크)	'스위치'를 통해서 자동차의 속도(-) 입력	'VR&CDS'를 스위치로 변경		
	7.	Switch 4	자동차 방향(좌)	'스위치'통해 자동차의 방향(좌) 입력.	-		
	8.	Switch 5	자동차 방향(우)	'스위치'를 통해 자동차의 방향(우) 입력.	-		
	9.	LED 1	자동차 방향지시등(좌)	'스위치'를 눌러 입력한 자동차의 방향에 맞게 좌측 'LED'점등.	-		
	10	LED 2	자동차 방향지시등(우)	'스위치'를 눌러 입력한 자동차의 방향에 맞게 우측 'LED'점등.	-		
	11.	Servo Motor	자동차 스팅어링	'스위치'를 눌러 입력한 자동차의 방향에 맞게 'Servo Motor'로 방향 표현	'스위치'를 'VR&CDS'로 변경		
추가 목표	1.	uWAVE SENSOR	AEB (긴급제동 장치)	'uWAVE SENSOR'를 통해 장애물을 감지하였 을 경우, 자동차의 속도를 0으로 설정.			
	2.	Buzzer&Piezo	알림음	긴급 제동 장치 등이 작동했을 때, 경고음 발생.	-		
	3.	TEXT LCD	작동 알림	자동차의 직진, 후진, 좌, 우회전, 긴급 제동의 동작을 알려주는 LCD 화면 표시.	-		

[표 2] '발표 이후 수정한 최종' 프로젝트 계획

아래는 저희 6조 조원 각각의 역할 분담 표입니다.

[목표] S32K144 보드를 활용한 자동차 동작 구현						
' <mark>최종</mark> ' 프로젝트 계획에 따른 역할 분담						
이름	학번	역할				
		• 팀 프로젝트 예비 발표 준비 및 발표, 최종 계획 보고(LMS 업로드).				
김한구	2019111967	• 'DC Motor'와 'Switch'를 활용한 자동차의 바퀴 동작 및 전진·후진 기어 구현.				
		• 'VR&CDS'와 'Serbo Motor'를 활용한 자동차의 조향 동작 구현.				
		• 팀 프로젝트 최종 발표 준비 및 발표.				
전영원	2020116706	• 'Switch'를 활한 자동차의 페달(엑셀레이터, 브레이크)과 좌·우 방향지시등 구현.				
		• '7-Segment'를 활용한 자동차의 속도를 현실과 유사하게 모델링하여 구현.				
		• 'uWave Sensor' 및 'Buzzer&Piezo'를 사용한 AEB(자동차 긴급 제동 장치) 구현.				
정석모	2020116686	• 'VR&CDS'와 'Serbo Motor'를 활용한 자동차의 조향 동작 구현.				
		• 각 조원들로 받은 코드를 정리 및 최적화.				
		• 'DC Motor'와 'Switch'를 활용한 자동차의 바퀴 동작 및 전진·후진 기어 구현.				
홍성락	2019113236	• 'TEXT LCD'를 활용한 자동차의 현재 동작 표현 구현.				
		• 각 조원들로 받은 코드를 정리 및 최적화.				

[표 3] '최종' 프로젝트 계획에 따른 역할 분담