PYTHON機器學習入門

UNIT 5: CLASSFICATION

授課教師: 江尚瑀

SUPERVISED LEARNING-CLASSIFICATION

有許多分類演算法...

- Logistic Regression
- KNN
- Support Vector Classifier
- Decision Tree
- Random Forest

• ...

• a frontier which best segregates the two classes (hyper-plane/ line)

Scenario-1: Identify the right hyper-plane? Scenario-2: Identify the right hyper-plane

Scenario-3: Identify the right hyper-plane?

maximizing the distances between nearest data point (either class)

Scenario-4: Can we classify two classes?

SVM has a feature to ignore outliers and find the hyper-plane that has maximum margin.

Scenario-5: Find the hyper-plane to segregate to classes?

we can't have linear hyper-plane between the two classes

只要對所有的資料,有一個函數可以滿足 $\mathbf{k}(\mathbf{x},\mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$ 這個 $\mathbf{k}(\mathbf{x},\mathbf{y})$ 就是一個 $\mathbf{k}(\mathbf{x},\mathbf{y})$ 就是一個 $\mathbf{k}(\mathbf{x},\mathbf{y})$ 就是一個 $\mathbf{k}(\mathbf{x},\mathbf{y})$ 。

KERNEL FUNCTION

SVM solves this problem by introducing additional feature. Here, we will add a new feature z=x2+y2

mostly useful in non-linear separation problem

*Should we need to add this feature manually to have a hyper-plane. No, SVM has a technique called the kernel trick.

*These are functions which takes low dimensional input space and transform it to a higher dimensional space i.e. it converts not separable problem to separable problem, these functions are called **kernels**.

NON-LINEAR FUNCTION

- Kernel: 'linear', 'rfb', 'poly'
- Gamma: Higher the value of gamma, will try to exact fit the as per training data set i.e. generalization error and cause over-fitting problem.
- C: the number of instances that are allowed to fall within the margin, C influences the number of support vectors used by the model.

kernel='linear'

kernel='rbf'

• gird search:一種調參手段

```
from sklearn import svm, grid search
def svc param selection(X, y, nfolds):
    Cs = [0.001, 0.01, 0.1, 1, 10]
    gammas = [0.001, 0.01, 0.1, 1]
    param_grid = {'C': Cs, 'gamma' : gammas}
    grid search = GridSearchCV(svm.SVC(kernel='rbf'), param grid,
cv=nfolds)
    grid search.fit(X, y)
    grid search.best params
    return grid search.best params
```

PROS AND CONS ASSOCIATED WITH SVM

• Pros:

- It works really well with clear margin of separation
- It is effective in high dimensional spaces.
- It is effective in cases where number of dimensions is greater than the number of samples.
- It uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

• Cons:

- It doesn't perform well, when we have large data set because the required training time is higher
- It also doesn't perform very well, when the data set has more noise i.e. target classes are overlapping
- SVM doesn't directly provide probability estimates, these are calculated using an expensive five-fold cross-validation. It is related SVC method of Python scikit-learn library.

LAB

• SVM

DECISION TREE

BEFORE MOVE NEXT

舉例來說你是一個披薩公司(像是必X客、達X樂)的資料科學家,你成功建立了一個模型能預測披薩是美味的披薩還是難吃的披薩。利用先前我們介紹的幾種方法,你得到了以下的

披薩美味方程式:模型的決策邊界:-100+6*溫度+3*濕度=0

100 + 6*温度 + 3*濕度 > 0 預測是一個美味的披薩

100 + 6*溫度 + 3*濕度 < 0 預測是一個難吃的披薩

但可能沒人知道你在幹嘛!

決策樹

決策樹準確度不一定比較精準,但決策樹模型的可解釋性(Interpretability)高

決策樹(DECISION TREES)

• 是一種條件式的分類器, 專門處理分類問題的樹狀結構

Diameter = 3 Colour = orange Grows in summer = yes SHAPE = CIRCLE

如何建構決策樹

- 依據現有資料建構一個決策樹,通常採「由上而下」的方式,從整群依據 某個特徵分為數個子群。再從各個子群依據某個特徵,將子群分為更小的 子群,直到子群內的資料都是同一個類別為止。
- 問題: 如何在每一步選擇一個**最好**的特徵來分群? 指使用該特徵時,會使 子群中的資料變<mark>純</mark>

愈純的資料彰顯其意義時,所要使用的資訊量愈少; 反之,所使用的資訊量要愈多

INFORMATION ENTROPY

Information Entropy: measure of randomness
 More randomness in the data => more entropy

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

D:代表某一個特徵, 且有m個類別

p: 是某一個類別在這個特徵中出現的機率

若只有兩類時:

當資料全部都是同一類,則entropy=0; 若資料是各自一半時,entropy=I

Entropy =
$$-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$$

Decision Tree 從root到 leaf,entropy 會由高變低。因為經過不同的篩子會不斷進行過濾,去蕪存菁 (愈來愈純)。當entropy=0時,就是最純的狀態

決定那個特徵是最佳分割

- 計算完entropy後,接著計算information gain
- Information gain: 用來衡量某特徵值對於資料分類的能力
- The information gain, Gain(S, A) of an attribute A, relative to the collection of examples S

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{S_v}{S} Entropy(S_v)$$

Where Values (A) is the set of all potential values for attribute A, and S_v is the subset of S for which the attribute A has value v.

- During two weeks, The target is "play ball?"
- which can be Yes or No.

Outlook	Temp	Humidity	Windy	Play Golf
Rain	Hot	High	false	No
Rain	Hot	High	true	No
overcast	Hot	High	false	Yes
Sunny	Mild	High	false	Yes
Sunny	Cool	normal	false	Yes
Sunny	Cool	normal	true	No
overcast	Cool	normal	true	Yes
Rain	Mild	High	false	No
Rain	Cool	normal	false	Yes
Sunny	Mild	normal	false	Yes
Rain	Mild	normal	true	Yes
overcast	Mild	High	true	Yes
overcast	Hot	normal	false	Yes
Sunny	Mild	High	true	NO

Step 1: Calculate entropy of Play Golf (target).

Play	Golf	Entropy(Play Golf) = Entropy (5,9)
Yes	No	$= - (0.36 \log_2 0.36) - (0.64 \log_2 0.64)$
9	5	= 0.94

Step 2: The dataset is then split into the different attributes.

		Play	Golf	
		Yes	No	
	Sunny	3	2	
Outlook	Overcast	4	0	
	Rainy	2	3	
Gain=0.247				

		Play Golf	
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1
Gain=0.029			

		Play	Golf	
		Yes	No	
Humidita	High	3	4	
Humidity	Normal	6	1	
Gain=0.152				

		Play	Golf	
		Yes	No	
Windy	False	6	2	
Windy	True	3	3	
Gain=0.048				

IG 愈大表示此特徵 內資料凌亂程度愈小

Outlook Gain: 0.94- (5/14*E(3,2)+4/14*E(4,0)+5/14*E(2,3))=0.247

Temp Gain: 0.94-(4/14*E(2,2)+6/14*E(4,2)+4/14*E(3,1))=0.029

Humility Gain: $0.94 - (7/14 \times E(3,4) + 7/14 \times E(6,1)) = 0.152$

Windy Gain: 0.94-(8/14*E(6,2)+6/14*E(3,3))=0.048

Step 4a: A branch with the entropy of Outlook= overcast.

Temp	Humidity	Windy	Play Golf
hot	high	False	Yes
cool	normal	True	Yes
mild	high	True	Yes
hot	normal	False	Yes

Step 4b: A branch with entropy of Outlook= sunny (Windy=False & Windy=True).

Temp	Humidity	Windy	Play Golf
mild	high	False	Yes
cool	normal	False	Yes
mild	normal	False	Yes
mild	high	True	NO
cool	normal	True	No

Step 4c: A branch with entropy of Outlook= rain (Humidity= high & Humidity = normal)

Temp	Humidity	Windy	Play Golf
hot	high	false	No
hot	high	true	No
mild	high	false	No
Cool	normal	false	Yes
mild	normal	true	Yes

Exercise:

試著計算Temp, Humidity, Windy 的 Information Gain 並畫出在Rainy 下的樹狀結構

Decision Tree of Weather data sets

決策樹優缺點

Pros:

- Implicitly perform feature selection
- Easy to interpret and explain.
- Can generate rules helping experts to formalize their knowledge.
- Data classification without much calculations
- Handling both continuous and discrete data
- Require relatively little effort from users for data preparation
 - they do not need variable scaling;
 - they can deal with a reasonable amount of missing values;
 - they are not affected by outliers.

決策樹優缺點

Cons:

- The high classification error rate while training set is small in comparison with the number of classes
- Exponential calculation growth while problem is getting bigger.

RANDOM FOREST

隨機森林(RANDOM FORESTS)

- 在訓練資料中,取部份特徵與部份資料產生樹。每重複此步驟,就會再產生一棵樹
- 多棵樹採 Ensemble (Majority Vote) 的方式決定最終判斷

HOW DOES IT WORK?

HOW DOES IT WORK?

