Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2

Primer parcial - 4 de mayo de 2015. Duración: 3 horas

N° de parcial	Cédula	Apellido y nombre	Salón	Teórico

Primera parte: Múltiple Opción

MO				
1	2			

Ejercicio 1. Sea $0 \le n < 99$ tal que $n \equiv 5^{2579}$ (mód 99). Indicar cuál de las opciones es correcta:

A. n = 56.

B. n = 20.

C. n = 86.

D. n = 5.

Ejercicio 2. Sea $0 \le m < 297$ tal que $m \equiv 60^{181}$ (mód 297). Indicar cuál de las opciones es correcta:

A. m = 60.

B. m = 27.

C. m = 135.

D. m = 81.

Segunda parte: Desarrollo

Ejercicio 3. Sean $a, b, c \in \mathbb{Z}^+$, probar que:

a. $mcd(a,b) = min\{s > 0 : s = ax + by \text{ para algunos } x, y \in \mathbb{Z}\}.$

b. Si mcd(a, b) = 1 y $a \mid bc$ entonces $a \mid c$.

(Cualquier resultado que utilicen en esta parte tienen que demostrarlo).

Ejercicio 4. Dado el sistema

$$\left\{ \begin{array}{lll} x & \equiv & 8 \pmod{56} \\ x & \equiv & 1 \pmod{21} \\ x & \equiv & 4 \pmod{36} \\ x & \equiv & 8 \pmod{49} \end{array} \right. ,$$

investigar si tiene solución, y en caso que tenga encontrar todas sus soluciones.

Ejercicio 5.

- a. Sea p primo, probar que si $x^2 \equiv 1 \pmod{p}$ entonces $x \equiv 1 \pmod{p}$ o $x \equiv -1 \pmod{p}$.
- **b**. Sea n = pqr con p, q, r primos distintos. Probar que hay a lo sumo 8 soluciones módulo n a la ecuación $x^2 \equiv 1 \pmod{n}$.