CODE

rement in bracket or corbel resisting

- A_n = area of reinforcement in bracket or corbel resisting factored restraint force N_{uc} , mm²
- A_{nz} = area of a face of a nodal zone or a section through a nodal zone, mm²
- A_{Na} = projected influence area of a single adhesive anchor or group of adhesive anchors, for calculation of bond strength in tension, mm²
- A_{Nao} = projected influence area of a single adhesive anchor, for calculation of bond strength in tension if not limited by edge distance or spacing, mm²
- A_{Nc} = projected concrete failure area of a single anchor or group of anchors, for calculation of strength in tension, mm²
- A_{Nco} = projected concrete failure area of a single anchor, for calculation of strength in tension if not limited by edge distance or spacing, mm²
- A_o = gross area enclosed by torsional shear flow path, mm²
- A_{oh} = area enclosed by centerline of the outermost closed transverse torsional reinforcement, mm²
- A_{pd} = total area occupied by duct, sheathing, and prestressing reinforcement, mm²
- A_{ps} = area of prestressed longitudinal tension reinforcement, mm²
- A_{pt} = total area of prestressing reinforcement, mm²
- A_s = area of nonprestressed longitudinal tension reinforcement, mm²
- A_s' = area of compression reinforcement, mm²
- A_{sc} = area of primary tension reinforcement in a corbel or bracket, mm²
- $A_{se,N}$ = effective cross-sectional area of anchor in tension, mm²
- $A_{se,V}$ = effective cross-sectional area of anchor in shear, mm²
- A_{sh} = total cross-sectional area of transverse reinforcement, including crossties, within spacing s and perpendicular to dimension b_c , mm²
- A_{si} = total area of surface reinforcement at spacing s_i in the *i*-th layer crossing a strut, with reinforcement at an angle α_i to the axis of the strut, mm²
- $A_{s,min}$ = minimum area of flexural reinforcement, mm²
- A_{st} = total area of nonprestressed longitudinal reinforcement including bars or steel shapes, and excluding prestressing reinforcement, mm²
- A_t = area of one leg of a closed stirrup, hoop, or tie resisting torsion within spacing s, mm²
- A_{th} = total cross-sectional area of ties or stirrups confining hooked bars, mm²
- A_{tp} = area of prestressing reinforcement in a tie, mm²
- A_{tr} = total cross-sectional area of all transverse reinforcement within spacing s that crosses the potential plane of splitting through the reinforcement being developed, mm²
- A_{ts} = area of nonprestressed reinforcement in a tie, mm²

COMMENTARY

