

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Accelerate

Save up to 43%*

on your CSIR UGC NET Subscription with free extension of up to 6 months

Valid only till August 12, 11:59 PM!

	Duration	Current Price	Total Value	What you pay	What you Save
5	24 months + 6 months	₹ 23,100	£36,498	₹ 20,790	₹15,708 (43%)
<u>-</u>	12 months + 3 months	₹ 16,748	£ 23,967	₹ 15,073	₹8,894 (37%)
	6 Months + 1 Month	₹ 13,398	£15,804	₹ 12,058	₹3,746 (24%)
U.	24 months + 6 months	₹ 52,975	2.74,515	₹ 47,678	₹26,838 (36%)
koni	12 months + 3 months	₹ 30,780	₹.41,950	₹ 27,702	₹13,848 (33%)
	6 Months + 1 Month	₹ 21,540	₹ 26,130	₹ 19,386	₹5,744 (23%)

Subscribe Now

Accelerate

Save up to 43%*

on your IIT JAM Subscription with free extension of up to 6 months

Valid only till August 12, 11:59 PM!

	Duration	Current Price	Total Value	What you pay	What you Save
5	24 months + 6 months	₹ 23,100	Z-36;498	₹ 20,790	₹15,708 (43%)
2	12 months + 3 months	₹ 16,748	£ 23,967	₹ 15,073	₹8,894 (37%)
	6 Months + 1 Month	₹ 13,398	Z 15,804	₹ 12,058	₹3,746 (24%)
٦	24 months + 6 months	₹ 52,975	2.74,515	₹ 47,678	₹26,838 (36%)
Iconi	12 months + 3 months	₹ 30,780	₹.41,950	₹ 27,702	₹13,848 (33%)
	6 Months + 1 Month	₹ 21,540	7.25,130	₹ 19,386	₹5,744 (23%)

Subscribe Now

Use code

*T&C apply, as available on the platform

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo		
Save 25%	Total ₹ 12,252		

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹ 2,723 / mo	
	Total ₹ 2,723	

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo	
Save 45%	₹ 13,475 ₹ 12,128	

6 months	₹ 1,838 / mo	
Save 25%	₹-12,252 ₹ 11,027	

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Bernoulli's equation:

An equation of the form $\frac{dy}{dx} + Py = Qy^n$, where P and Q are constant or function of x alone and n is constant except 0 and 1 is called Bernoulli's equation.

Working rule:

$$\frac{1}{y^n}\frac{dy}{dx} + Py^{1-n} = Q \qquad \dots (1)$$

Suppose $y^{1-n} = t$

$$(1-n)y^{-n}\frac{dy}{dx} = \frac{dt}{dx}$$

Put in (1)
$$\frac{1}{(1-n)} \frac{dt}{dx} + P(x)t = Q(x)$$

$$\frac{dt}{dx} + (1-n)Pt = (1-n)Q$$
Which is FOFD linear DE,

$$\frac{dt}{dx} + (1-n)P.t = (1-n)Q$$

Q.1. Consider the ODE ty' $-3y = t^2y^{1/2}$, y(1) = 1. Find the value of y(2)

(a) 14

(b) 16

(c)0

(d) 8

Q.2. Solution of the differential equation

$$xy' + \sin 2y = x^3 \sin^2 y$$
 is

(a)
$$\cot y = -x^3 + cx^2$$
 (b) $2\cot y = x^3 + 2cx^2$

(b)
$$\tan y = -x^3 + cx^2$$
 (d) $2\tan y = x^3 + 2cx^2$

Q4. Consider the differential equation $\frac{dy}{dx} = ay - by^2$, where a, b > 0

and $y(0) = y_0$. As $x \to +\infty$ the solution y(x) tends to

(a) 0

(b) a/b

(c) b/a

(d) y_0

EXACT DIFFERENTIAL EQUATION

Now consider the differential equation Mdx + Ndy = 0

An equation of the form Mdx + Ndy = 0 that is said to be exact

if
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
 holds.

Then solution of this differential equation

$$\int Mdx = \int Ndy$$
y=cons. neglect terms contain x.

Rules for finding IF

Rule - I:

If
$$\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right]$$
 is a function of x alone say $f(x)$. Then $e^{\int f(x)dx}$ is

an integrating factor of Mdx + Ndy = 0

Rule – II.

If
$$\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$$
 is a function of y, say f(y)

then $e^{\int f(y)dy}$ is an integrating factor of Mdx + Ndy = 0

Rule III:

If Mdx + Ndy = 0 is homogeneous and $Mx + ny \neq 0$, then

$$\frac{1}{Mx + Ny}$$
 is the integrating factor of Mdx + Mdy = 0

TARGETED AUDIENCE

- O III-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Rule - IV:

If Mdx + Ndy = 0 is of the form,

$$f_1(xy).ydx + f_2(xy).xdy = 0$$
 and then $\frac{1}{Mx - Ny}$ is the integrating

factor.

Rule - V:

If the given differential equation Mdx + Ndy = 0 is of the form $x^{\alpha} y^{\beta} (mydx + nxdy) + x^{\alpha} y^{\beta} (m) ydx + n xdy) = 0$

Where α , β , m, n, α `, β `, m` and n` are constants. Then the given equation has x^hy^k as integrating factor.

Where h and k are obtained by the condition, so that given

equation become exact
$$\left(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\right)$$
. Then by comparing both

sides we get the values h and k

Q6. Let y(x) be the solution of the differential equation $(xy + y + e^{-x})dx + (x + e^{-x})dy = 0$ satisfying y(0) = 1.

Then y(-1) is equal to IIT JAM-2017

(a)
$$\frac{e}{e-1}$$

(c)
$$\frac{e}{1-e}$$

Q7. Let y(x) is a integrating factor of the differential equation

$$\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right)dx + \frac{1}{4}(x + xy^2)dy = 0$$

then y(x) is IIT JAM -2018

- (a) Even function (b) Odd function
- (c) Periodic function (d) Trignometric function

Q8. If $x^h y^k$ is an integrating factor of the differential equation y(1+xy)dx + x(1-xy)dy = 0, then the value of h + k is

IIT JAM 2019

(a) Divisible by 8

(b) Divisible by 2

(c) Divisible by 5

(d) None of these

Q9. The non-zero value of n for which the differential

equation $(3xy^2 + n^2x^2y)dx + (nx^3 + 3x^2y)dy = 0$,

 $x \neq 0$, becomes exact is IIT JAM 2016

$$(a) - 3$$

$$(b) -2$$

$$(d)$$
 3

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR