

Data Smell Detection +

A data analysis tool

TABLE OF CONTENTS

Introduction

Methodology

Results

Conclusions

01 INTRODUCTION

Some definitions to get started

What are Data Smells?

«Signals or clues about the presence of latent problems or anomalies in data»

What are Data
Quality
Dimensions
(DQDs)?

«Characteristic or part of information for classifying information and data requirements»

Some papers about the topics

Data Smells: Categories, Causes and Consequences, and Detection of Suspicious Data in Al-based Systems

Harald Foidl University of Innshruck harald.foidl@uibk.ac.at

Michael Felderer University of Innshruck Austria Blekinge Institute of Technology Sweden michael felderer@uibk.ac.at

Rudolf Ramler Software Competence Center Hagenberg GmbH rudolf.ramler@sech.at

ABSTRACT

High data quality is fundamental for today's Al-based systems. However, although data quality has been an object of research for sues (e.g., ambiguous, extraneous values). These kinds of issues are he associated with an increased risk of future problems in Al-based systems (e.g., technical debt, data-induced faults). As a counterpart to code smells in software engineering, we refer to such issues as on their causes, consequences, detection, and use in the context of into three categories (i.e., Believability Smells, Understandability Smells, Consistency Smells) is presented. Moreover, the article outlines tool support for detecting data smells and presents the result

Harald Fold!, Michael Felderer, and Rodolf Ramber, 2022. Data Smells: Catregories, Camera and Corossquences, and Detection of Suspicious Data in Al-based Systems. In 1st Conference on All Engineering - Software Engineering for A1 (CAIN'22), May 16–24, 2022, Pittsburgh, FA, USA, ACM, New York, NY,

Applications based on artificial intelligence (AI) (e.g., automated driving, predictive maintenance) have grown in popularity over the past decade. However, the resulting Al-based systems pose several challenges [7, 38]. One of these challenges is their strong data dependency [52]. This dependency is caused by data-hungry machine learning (ML) algorithms, typically used in Al-based systems to make intelligent decisions automatically. As a result, poor quality systems, resulting in huge monetary losses or, in the worst case, Recent research (e.g., [28, 49]), however, suggests that data quality problems are pervasive in Al-based systems. Data quality issues

even became one of the main reasons why they suffer badly from technical debt [6].

To improve this situation and thus meet the demand for high data quality in the context of Al-based systems, research in the area of data validation has recently gained significant interest (e.g., [5, 9, 11, 37, 47]). To reliably detect data issues, data validation methods generally require some context-specific constraints, which are usually defined by schemes or rules [1]. However, this declarative and context-dependent nature of data validation combined with the constantly growing amount of data makes data validation a tedious

To address this issue, we previously proposed using potential data issues as indicators of latent data quality problems to guide the data validation process in a risk-driven way [17]. These potential data problems are usually indicated by context-independent, suspiciou data values, patterns, and representations, highlighting data that should be prioritised during the validation. We referred to these potential data issues as data smells by analogy with code smells.

In the field of software engineering, code smells have become established as indicators of bad design and programming practices that are not faults per se but increase the likelihood of introducing faults in the future [19, 60]. In that sense, code smells are potential

We assert that data smells share several characteristics with code smells. For example, they typically arise due to violated best practices in data handling (e.g., wrong sequence of operations) or data management (e.g., missing data catalogue). Further, they can lead to interpretation issues of software components and impede the evolution and maintenance of AI-based systems. Therefore, w claim that data smells contribute massively to the emergence o technical debt and data-induced bugs within AI-based systems and are thus an increasingly important area of research.

partly considered such potential data issues. In fact, previous studie (e.g., [31, 33, 35]) mainly focused on actual data errors, lacking a precise definition or categorization of such potential issues.

This paper aims to address this gap by providing a solid foundation of data smells. In detail, we describe the characteristics of data the context of Al-based systems. We further present a catalogue comprising 36 data smells divided into three categories (Believabil ity, Understandability, and Consistency Data Smells). Moreover the detection of data smells is discussed and corresponding tool support is presented. Although we consider data smells in the con-

Unmasking Data Secrets: An Empirical Investigation into Data Smells and Their Impact on Data Quality

Gilberto Recupito Sesa Lab - University of Salerno Salerno, Italy grecupito@unisa.it

Dario Di Nucci Sesa Lab - University of Salerno

ABSTRACT Artificial Intelligence (AI) is rapidly advancing with a data-centered approach suitable for various domains. Nevertheless, Al faces signidiverse sources can introduce quality issues that may threaten the development of Al-enabled systems. A growing concern in this context is the emergence of data smells - issues specific to the data used in building AI models, which can have long-term consences. In this paper, we aim at enlarging the current body of knowledge on data smells, by proposing a two-step investigation into the matter. First, we updated an existing literature review in an effort of cataloguing the currently existing data smalls and the tools to detect them. Afterward, we assess the prevalence of data smells and their correlation with data quality metrics. We identify a novel set composed of 12 data smells distributed across three additional categories. Secondly, we observe that the correlation be tween data smells and data quality is notably impactful, exhibiting a pronounced and substantial effect, especially in highly diffuse data smell instances. This research sheds light on the complex relationship between data smells and data quality, providing valuable insights into the challenges of maintaining AI-enabled systems.

CCS CONCEPTS

Software and its engineering — Software maintenance tools.

KEYWORDS

Al Technical Debt; Data Smells; Data Quality; Software Engineering for Artificial Intelligence, Empirical Software Engineering.

Gilberto Recupito, Raimondo Rapaccinolo, Dario Di Nacci, and Fabio Palomba. 2023. Unmasking Data Secrets: An Empirical Investigation into Data Smells and Their Impact on Data Quality. In CAIN '24: 3rd International Conference

Raimondo Rapacciuolo University of Salerno Salerno, Italy

r.rapacciuolo1@studenti.unisa.it Fabio Palomba

Sesa Lab - University of Salerno

on Al Engineering - Software Engineering for Al, April 14-15, 2024, Lisbon, ES. ACM, New York, NY, USA, 11 pages. https://doi.org/000

INTRODUCTION

Artificial Intelligence (AI) is more and more diffused nowadays, being used by individuals and communies to make informed decisions [54] and automate tasks that would typically done by humans [38] Indeed, Al-intensive systems, i.e., systems that embed artificial in telligence models and algorithms, have been recently deployed in multiple domains, with some recent applications showing highly efficient and accurate performance [31, 34].

However, the development of artificial intelligence-enabled sys tems differs from other types of software because the program and its effectiveness in solving a specific task heavily rely on the data and observations used to train models [3].

More specifically. Al-enabled systems are defined as a system is an Al-specific component [30]. In this context, data represents tems. Performing data analysis and validation is a crucial initial step for designers of machine learning components. Failure to properly analyze the training data may lead to model degradation [27] Therefore, it is crucial to prioritize data quality to build a reliable and effective Al-enabled system. Data quality issues can arise for various reasons, e.g., data entry errors, inadequate data cleaning or bias in the data. Addressing these issues requires a well-defined data quality management strategy that includes profiling, cleansing, and data enrichment [33]. While different tools and practices are available to support feature engineering and data transformation for managing Al pipelines [39], the need to improve the practices

Data quality degradation could also lead to technical debt for the whole system [13]. Data debt, primarily when introduced by data quality issues or data anomalies, can strongly impact AI-enabled systems, degrading model performance and causing problems to all the subsequent phases involved in the pipeline [2].

In analyzing technical debt specific to data, data smeils are repre-

sented using the analogy of code smells. As code smells are defined as symptoms of poor design and implementation choices [15], data smells are data value-based indications of latent data quality issue While other types of data quality issues are investigated in research

What is DSD?

Data Smell Detection (DSD) is solution to enable automated data smell detection.

Machine Learning approach

Detection procedure

Data Smell Detection (DSD) is solution to enable automated data smell detection.

Detection Customization

Results

Goals of the Project

Addition of new data smell detectors

Calculate the data quality dimensions

Improvement on the reporting system

02 METHODOLOGY

DQDs Choice

Completeness

Using results of the implemented **Missing Value** smell

 $\frac{\textit{NumberOf NonEmptyValues}}{(\textit{TotalValues})}*100$

Uniqueness

Using results of the implemented **Duplicated Value** smell

 $\frac{NumberOfUniqueRows}{(TotalRows)}*100$

Validity

Using results of the implemented Integer as String, Floating-Point Number as String, Integer as Floating-Point Number smells

 $\frac{\textit{NumberOfValidValues}}{\textit{(TotalValues)}}*100$

Data Smell Choice

2 new regex-based data smell

Spacing Smell

 $"^\s|\s+ |\s"$

Special Character Smell

"[
$$^{a} - zA - z0 - 9 \$$
]"

Data Collection

A subset of **60** datasets used on earlier studies

These datasets cover most application domains, to have multiple **different** data types

Detector Testing

Spacing Smell Test Cases

```
"data": {
        "begin_space": [" test", "test", "test"],
        "multiple_begin_space": [" test", "test", "test"],
        "inner_space": ["test test", "test", "test"],
        "end_space": ["test ", "test", "test"],
        "multiple_end_space": ["test ", "test", "test"],
        "no_spacing_smell": ["test", "test test", "test"],
}
```

Special Character Smell Test Cases

Test Cases Examples

Expected output: False, if test data contains the smell, otherwise True

DQDs Testing

Randomly generation of **3** new datasets of **3** columns to evaluate metrics calculation

		Columns		
Dataset	Metric to evaluate	first_name	last_name	street_number
	Completeness	5 empty	9 empty	10 empty
Dataset #1	Uniqueness	4 duplicates	6 duplicates	10 duplicates
	Validity	all valid	all valid	7 non-valid
			Columns	
Dataset	Metric to evaluate	car_maker	color	model_year
	Completeness	10 empty	10 empty	10 empty
Dataset #2	Uniqueness	20 duplicates	22 duplicates	19 duplicates

		Columns		
Dataset	Metric to evaluate	ssn	currency	number
	Completeness	5 empty	7 empty	5 empty
Dataset #3	Uniqueness	12 duplicates	19 duplicates	16 duplicates
	Validity	all valid	all valid	1 non-valid

all valid

5 non-valid

all valid

Validity

Table 2.2: Datasets informations

03 RESULTS

DQDs Testing

The testing phase on DQDs implementations led to the following results

Completeness				
Dataset	Expected global value	Actual global value	Expected column values	Actual colum values
Dataset #1	77.33%	77.3%	83.33% / 70% / 66.67%	83.33% / 70% / 66.67%
Dataset #2	66.67%	66.67%	66.67% / 66.67% / 66.67%	66.67% / 66.67% / 66.67%
Dataset #3	81.11%	81.11%	83.33% / 76.67% / 83.33%	83.33% / 76.67% / 83.33%

	Uniqueness				
Dataset	Expected global value	Actual global value	Expected column values	Actual colum values	
Dataset #1	77.78%	77.78%	86.67% / 80% / 66.67%	86.67% / 80% / 66.67%	
Dataset #2	33.22%	33.22%	33.33% / 26.67% / 36.67%	33.33% / 26.67% / 36.67%	
Dataset #3	47.78%	47.78%	60% / 36.67% / 46.67%	60% / 36.67% / 46.67%	

Validity				
Dataset	Expected global value	Actual global value	Expected column values	Actual colum values
Dataset #1	92.22%	70%	100% / 100% / 76.66%	100% / 100% / 86.67%
Dataset #2	94.44%	70%	100% / 100% / 83.34%	100% / 100% / 93.33%
Dataset #3	98.89%	98.89%	100% / 100% / 96.67%	100% / 100% / 96.67%

DQDs Testing

The testing phase on DQDs implementations led to the following results

Completeness				
Dataset	Expected global value	Actual global value	Expected column values	Actual colum values
Dataset #1	77.33%	77.3%	83.33% / 70% / 66.67%	83.33% / 70% / 66.67%
Dataset #2	66.67%	66.67%	66.67% / 66.67% / 66.67%	66.67% / 66.67% / 66.67%
Dataset #3	81.11%	81.11%	83.33% / 76.67% / 83.33%	83.33% / 76.67% / 83.33%

	Uniqueness				
Dataset	Expected global value	Actual global value	Expected column values	Actual colum values	
Dataset #1	77.78%	77.78%	86.67% / 80% / 66.67%	86.67% / 80% / 66.67%	
Dataset #2	33.22%	33.22%	33.33% / 26.67% / 36.67%	33.33% / 26.67% / 36.67%	
Dataset #3	47.78%	47.78%	60% / 36.67% / 46.67%	60% / 36.67% / 46.67%	

Validity				
Dataset	Expected global value	Actual global value	Expected column values	Actual colum values
Dataset #1	92.22%	70%	100% / 100% / 76.66%	100% / 100% / 86.67%
Dataset #2	94.44%	70%	100% / 100% / 83.34%	100% / 100% / 93.33%
Dataset #3	98.89%	98.89%	100% / 100% / 96.67%	100% / 100% / 96.67%

Small differences between oracles and actual results

Wrong assumptions on how the smells involved work!

Real-World Simulation

Test procedures were also conducted on the new detectors with complete success!

The next step was to test them on some real data to see the results.

- > sf-salaries
- aws-cyberattacks
- indicators-by-company
- > red-light-camera-violations
- > food-inspections
- > metropolitan-objects

The choice of this subset of datasets was simply related to the fact that they represent different domains and fields.

Real-World Simulation

Dataset & Co	olumns	Total Elements Count	Faulty Elements
sf-salaries	EmployeeName	148654	10507
SI-SalatieS	JobTitle	148654	16
aws-cyberattacks	localeabbr	451581	83
	City	448203	7
	Country	448203	8
	Culture	448203	71
	Dimensions	448203	91856
	Dinasty	448203	3
	Excavation	448203	13
	Locale	448203	24
matropoliton objects	Locus	448203	5
metropolitan-objects	Medium	448203	5753
	Portfolio	448203	981
	Region	448203	408
	Reign	448203	3
	River	448203	8
	State	448203	8
	Subregion	448203	530
	Title	448203	4735
food inconnections	Address	153810	153366
food-inspections	Violations	153810	86170

Spacing smells detected

Dataset & Columns		Total Elements Count	Faulty Elements
sf-salaries	EmployeeName	148654	4614
31-3didi le3	JobTitle	148654	20703
	localeabbr	451581	83
	country	451581	872
aws-cyberattacks	datetime	451581	451581
aws cyberattacks	host	451581	451581
	srcstr	451581	451581
	locale	451581	11229
red-light-camera-violations	INTERSECTION	521533	11188
red-light-camera-violations	LOCATION	521533	494422
	City	448203	1656
	Classification	448203	152157
	Country	448203	2681
	County	448203	1696
	Culture	448203	34459
	Department	448203	12427
	Dimensions	448203	381726
	Dinasty	448203	9013
	Excavation	448203	12608
metropolitan-objects	Locale	448203	5372
metropolitan-objects	Locus	448203	2453
	Medium	448203	153559
	Portfolio	448203	12307
	Region	448203	12532
	Reign	448203	2062
	Repository	448203	448203
	River	448203	299
	State	448203	1181
	Subregion	448203	8006
	Title	448203	191502
	Address	153810	17136
	Location	153810	153266
food-inspections	Results	153810	14530
	Risk	153810	153725
	Violations	153810	123012

Special-character smells detected

User Interface Update

Improvements on the UI are **clearly** visible.

User Interface Update

Improvements on the UI are **clearly** visible.

User Interface Update

Improvements on the UI are **clearly** visible.

04 CONCLUSIONS

Conclusions

Report Improvements

Detector Extension

DQDs Implementation Improvements made on this tool are clearly visible and help users to visualize in a better way the results of the tool

Enrichment of the detector suite with two new smells that let users detect new type of smells and visualize faulty elements

New DQDs implemented which help users understanding some problems on it and verify if he was able to solve the problems checking how they evolve over time

Future Works

View the results in a convenient file format, without opening every time the tool

Saving a specific customization that could be used at multiple times

There are (still) some other unimplemented detectors that can be inserted into the detector suite

Contact with Mantainers

Thank you for your attention