VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačných technológií

Elektronika pre informačné technológie

Projekt č.1

Obsah

Príklad 1	3
Riešenie obvodu	3
Príklad 2	7
Riešenie obvodu	7
Príklad 3	10
Riešenie obvodu	
Príklad 4	13
Riešenie obvodu	13
Príklad 5	15
Riešenie obvodu	15
Skúška správnosti	17
Tabuľka výsledkov	

Stanovte napätie UR2 a prúd IR2. Použite metódu postupného zjednodušovania obvodu.

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$
Н	135	80	680	600	260	310	575	870	355	265

Riešenie obvodu

1. Sériové zapojenie rezistorov R7 a R8

$$R_{78} = R_7 + R_8 = 355 + 265 = 620 \,\Omega$$

2. Paralelné zapojenie rezistorov R5 a R6

$$R_{56} = \frac{R_5 \cdot R_6}{R_5 + R_6} = \frac{575 \cdot 870}{575 + 870} = 346,193772 \,\Omega$$

3. Sériové zapojenie zdrojov U_1 a U_2

$$U = U_1 + U_2 = 135 + 80 = 215 V$$

4. Trojuholník – hviezda

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3} = \frac{680 \cdot 600}{680 + 600 + 260} = 264,935064 \,\Omega$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} = \frac{680 \cdot 260}{680 + 600 + 260} = 114,805194 \,\Omega$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} = \frac{600 \cdot 260}{680 + 600 + 260} = 101,298701 \,\Omega$$

5. Sériové zapojenie R_C a R₄

$$R_{C4} = R_C + R_4 = 101,298701 + 310 = 411,298701 \Omega$$

6. Sériové zapojenie R_B a R₅₆

$$R_{B56} = R_B + R_{56} = 114,805194 + 346,193772 = 460,998966 \Omega$$

7. Paralelné zapojenie R_{B56} a R_{C4}

$$R_{B56C4} = \frac{R_{B56} \cdot R_{C4}}{R_{B56} + R_{C4}} = 217,36648 \,\Omega$$

8. Ekvivalentný odpor R_{ekv}

$$R_{ekv} = \, R_A + \, R_{\rm B56C4} + R_{78} = \, 264,935064 + 217,36648 + 620 = 1102,301544 \, \Omega$$

9. Celkový prúd obvodu

$$I = \frac{U}{R_{ekv}} = \frac{215}{1102,301544} = 0,195046 A$$

10. Napätie na rezistoroch R₇₈ a R_{B56C4}

$$U_{R78} = I \cdot R_{78} = 0,195046 \cdot 620 = 120,92852 V$$

$$U_{RB56C4} = I \cdot R_{B56C4} = 0,195046 \cdot 217,36648 = 42,396462 V$$

11. Rezistory R_{B56} a R_{C4} sú zapojené paralelne – je na nich rovnaké napätie

$$U_{RB56C4} = U_{RB56} = U_{RC4} = 42,396462 V$$

 $I_{RC4} = \frac{U_{RC4}}{R_{C4}} = \frac{42,396462}{411,298701} = 0,103079 A$

12. Rezistory R_C a R₄ sú zapojené sériovo – je na nich rovnaký prúd

$$I_{RB56C4} = I_{RB56} + I_{RC4} = A$$

$$U_{RC} = R_C \cdot I_{RC4} = 101,298701 \cdot 0,103079 = 10,441768 V$$

$$U_{R4} = R_4 \cdot I_{RC4} = 310 \cdot 0,103079 = 31,95449 V$$

13. Pomocou 2. Kirhoffového zákona vypočítame hľadané napätie U_{R2}

$$-U + U_{R2} + U_{R4} + U_{R78} = 0$$

$$-215 + U_{R2} + 31,95449 + 120,92852 = 0$$

$$U_{R2} - 62,11699 = 0$$

$$U_{R2} = 62,1165 V$$

14. Vypočítame hľadaný prúd I_{R2}

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{62,12}{600} = 0,1035 A$$

Stanovte napätie UR6 a prúd IR6. Použite metódu Théveninovej vety.

sk.	U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$
Н	220	190	360	580	205	560	250

 R_1 R_2 R_4 R_6 R_6 R_6 R_6 R_6 R_6

Riešenie obvodu

1. Vypočítame celkový odpor R_i , skratujeme zdroj a odstránime rezistor R_6

$$R_{123} = \frac{R_1 \cdot (R_2 + R_3)}{R_1 + R_2 + R_3} = 158,0531 \,\Omega$$

$$R_{1234} = R_{123} + R_4 = 158,0531 + 205 = 363,0531\,\Omega$$

$$R_i = \frac{R_{1234} \cdot R_5}{R_{1234} + R_5} = \frac{363,0531 \cdot 560}{363,0531 + 560} = 220,2579 \,\Omega$$

2. Pomocou metódy slučkových prúdov vypočítame napätie U_i

I:
$$I_A \cdot R_1 + R_{23}(I_A - I_B) = U$$

 $190I_A + 940I_A - 940I_B = 220$
 $1130I_A - 940I_B = 220$

II:
$$I_B \cdot R_4 + I_B \cdot R_5 + R_{23}(I_B - I_A) = 0$$

 $205I_B + 560I_B + 940I_B - 940I_A = 0$
 $1705I_B - 940I_A = 0$
 $I_B = \frac{940I_A}{1705}$

3. Hodnotu I_B dosadíme do rovnice I. a dostaneme hodnotu I_A

$$1130I_A - 940\frac{940I_A}{1705} = 220$$
$$I_A = 0.359618 A$$

4. Do vzorca pre výpočet I_B dosadíme I_A a dostaneme hodnotu I_B

$$I_B = \frac{940I_A}{1705} = \frac{940 \cdot 0,359618}{1705} = 0,198264 A$$

8

5. Pomocou Ohmovho zákona vypočítame U_i

$$U_i = U_{R5} = I_B \cdot R_5 = 0,198264 \cdot 560 = 111,0282 V$$

6. Vypočítame hľadané hodnoty I_{R6} a U_{R6}

$$I_{R6} = \frac{U_i}{R_i + R_6} = \frac{111,02784}{220,2579 + 250} = \mathbf{0}, \mathbf{2361} A$$

$$U_{R6} = I_{R6} \cdot R_6 = 0.2361 \cdot 250 = 59,0252 V$$

Stanovte napätieUR4 a prúd IR4. Použite metódu uzlových napätí (UA, UB, UC).

sk.	U[V]	$I_1[A]$	I ₂ [A]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$
Н	130	0,95	0,5	47	39	58	28	25

Riešenie obvodu

1. Označíme uzly A,B,C a R ako referenčný, vyznačíme všetky prúdy

2. Pre každý uzol zostavíme rovnicu podľa 1.kirhoffového zákona

A:
$$I_1 = I_{R2} + I_{R1}$$

B: $I_{R3} = I_{R2} + I_2$
C: $I_{R4} = I_{R3} + I_{R5} - I_2$

3. Prúdy vyjadríme pomocou uzlových napätí

$$I_{1} = \frac{U_{A} - U_{B}}{R_{2}} + \frac{U_{A}}{R_{1}}$$

$$\frac{U_{B} - U_{C}}{R_{3}} = \frac{U_{A} - U_{B}}{R_{2}} + I_{2}$$

$$\frac{U_{C}}{R_{4}} = \frac{U_{B} - U_{C}}{R_{2}} + \frac{U - U_{C}}{R_{5}} - I_{2}$$

4. Dosadíme známe hodnoty

$$0.95 = \frac{U_A - U_B}{39} + \frac{U_A}{47}$$
$$\frac{U_B - U_C}{58} = \frac{U_A - U_B}{39} + 0.5$$
$$\frac{U_C}{28} = \frac{U_B - U_C}{58} + \frac{130 - U_C}{25} - 0.5$$

5. Sústavu upravíme, prepíšeme do matice a vypočítame pomocou Gaussovej eliminačnej metódy

$$1720U_A - 940U_B = 34827$$

$$-58U_A + 97U_B - 39U_C = 1131$$

$$-350U_B + 1887U_C = 95410$$

$$\begin{pmatrix} 1720 & -940 & 0 & 34827 \\ -58 & 97 & -39 & 1131 \\ 0 & -350 & 1887 & 95410 \end{pmatrix}$$

6. Po vypočítaní matice dostaneme hodnoty U_A , U_B a U_C

$$U_A = \frac{10082393}{166640} = 60,504 V$$

$$U_B = \frac{6137311}{83320} = 73,6596 V$$

$$U_C = \frac{535115}{8332} = 64,2241 V$$

7. Uzlové napätia dosadíme do rovníc pre výpočet hľadaných hodnôt I_{R4} a U_{R4}

$$I_{R4} = \frac{U_C}{R_4} = \frac{64,2241}{28} = 2,2937 A$$

$$U_{R4} = I_{R4} \cdot R_4 = 2,2937 \cdot 28 = 64,2241 V$$

Pre napájacie napätie platí: $u1 = U1 \cdot \sin(2\pi f t)$, $u2 = U2 \cdot \sin(2\pi f t)$.

Vo vzťahu pre napätie uL2 = UL2 $\cdot \sin(2\pi f t + \phi L2)$ určite |UL2 | a ϕ L2.

Použite metódu slučkových prúdov.

Pomocné smery šípiek napájacích zdrojov platí pre špeciálny časový moment ($t = \pi 2\omega$).

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	L ₁ [mH]	L ₂ [mH]	$C_1[\mu F]$	$C_2[\mu F]$	f[Hz]
Н	5	6	10	10	160	75	155	70	95

Riešenie obvodu

1. Prevod jednotiek

$$L_1 = 160mH = 0.16H$$

 $L_2 = 75mH = 0.075H$
 $C_1 = 155\mu F = 1.55 \cdot 10^{-4}F$
 $C_2 = 70\mu F = 7 \cdot 10^{-5}F$

2. Vypočítame uhlovú rýchlosť

$$\omega = 2\pi f = 2\pi \cdot 95 = 190\pi = 596,9026 \, rad \cdot s^{-1}$$

3. Vypočítame impedancie

$$Z_{L1} = j\omega L_1 = j \cdot 190\pi \cdot 0,16 = j95,50442 \Omega$$

$$Z_{L2} = j\omega L_2 = j \cdot 190\pi \cdot 0,075 = j44,7677 \Omega$$

$$Z_{C1} = -\frac{1}{j\omega C} = -\frac{1}{j \cdot 596,9026 \cdot 0,000155} = -j10,808485 \Omega$$

$$Z_{C2} = -\frac{1}{j\omega C} = -\frac{1}{j \cdot 596,9026 \cdot 0,00007} = -j23,93307 \Omega$$

4. Naznačíme slučkové prúdy a zostavíme rovnice

$$I_A: I_A(Z_{L1} + Z_{C1} + R_1 + R_2) - I_B(Z_{C1} + R_1) - I_C(R_2) = 0$$

$$I_B: -I_A(Z_{C1} + R_1) + I_B(Z_{C1} + Z_{L2} + R_1) - I_C(Z_{L2}) = U_1$$

$$I_C: -I_A(R_2) - I_B(Z_{L2}) + I_C(R_2 + Z_{C2} + Z_{L2}) = -U_2$$

5. Z rovníc vytvoríme matice

$$\begin{pmatrix} Z_{L1}+Z_{C1}+R_1+R_2 & -Z_{C1}-R_1 & -R_2 \\ -Z_{C1}-R_1 & Z_{C1}+Z_{L2}+R_1 & -Z_{L2} \\ -R_2 & -Z_{L2} & R_2+Z_{C2}+Z_{L2} \end{pmatrix} \cdot \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ -6 \end{pmatrix}$$

6. Po dosadení a úprave dostaneme

$$\begin{pmatrix} 85,695935j+20 & 10,808485j-10 & -10 \\ 10,808485j-10 & 34,959215j+10 & -44,7677j \\ -10 & -44,7677j & 10+20,83463j \end{pmatrix} \cdot \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ -6 \end{pmatrix}$$

7. Vypočítame prúdy I_A , I_B , I_C

$$I_A = -0.0113 - 0.0189j A$$

 $I_B = -0.0177 - 0.1108j A$
 $I_C = -0.0452 + 0.0336j A$

8. Vypočítame prúd a napätie cievky L_2

$$I_{L2} = I_B - I_C = (-0.0177 - 0.1108j) - (-0.0452 + 0.0336j) = 0.0275 - 0.1444j A$$

$$U_{L2} = I_{L2} \cdot Z_{L2} = (0.0275 - 0.1444j) \cdot 44.7677j = 6.4661 + 1.2279j A$$

$$U_{L2} = \sqrt{6.4661^2 + 1.2279^2} = 6.5817 V$$

9. Vypočítame fázový posun φ

$$\varphi = arctg \frac{I_m(U_{L2})}{R_e(U_{L2})} = arctg \frac{1,2279}{6,4661} = 0,1876rad = 10,7521^{\circ}$$

V obvodu na obrázku nižšie v čase t = 0[s] zopne spínač S. Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie uC = f(t). Vykonajte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

sk.	U[V]	C[F]	$R_1[\Omega]$	$U_{C}(0)[V]$
Н	5	6	200	10

Riešenie obvodu

1. Zostavíme rovnice podľa 2.kirhoffového zákona a vypočítame prúd

$$U_R + U_C - U = 0$$

$$R \cdot I + U_C - U = 0$$

$$I = \frac{U - U_C}{R}$$

2. Zostavíme si rovnicu pre U_C

$$U'_{C} = \frac{1}{C} \cdot I = \frac{U - U_{C}}{R \cdot C} = \frac{5 - U_{C}}{200 \cdot 6}$$
$$U'_{C} + U_{C} \cdot \frac{1}{1200} = \frac{1}{240}$$

3. Vypočítame \(\lambda \) z charakteristickej rovnice

$$\lambda + \frac{1}{1200} = 0$$

$$\lambda = -\frac{1}{1200}$$

4. Všeobecný tvar rovnice

$$U_C(t) = k(t)e^{\lambda \cdot t}$$

$$U_C(t) = k(t)e^{-\frac{t}{1200}}$$

5. Zderivujeme rovnicu

$$U'_{C}(t) = k'(t)e^{-\frac{t}{1200}} + k(t)\left(-\frac{1}{1200}\right)e^{-\frac{t}{1200}}$$

6. Dosadíme do rovnice $u'_{C} + U_{C} \cdot \frac{1}{1200} = \frac{1}{240}$

$$k'(t)e^{-\frac{t}{1200}} + k(t)\left(-\frac{1}{1200}\right)e^{-\frac{t}{1200}} + U_C \cdot \frac{1}{1200} = \frac{1}{240}$$
$$k'(t)e^{-\frac{t}{1200}} = \frac{1}{240}$$

7. Pomocou integrácie vyjadríme k(t)

$$k'(t) = \frac{1}{240} e^{\frac{t}{1200}}$$

$$\int k'(t) = \int \frac{1}{240} e^{\frac{t}{1200}}$$

$$k(t) = 5e^{\frac{t}{1200}} + K$$

8. Dosadíme k(t) do všeobecnej rovnice

$$U_C(t) = \left(5e^{\frac{t}{1200}} + K\right) \cdot e^{-\frac{t}{1200}}$$
$$U_C(t) = 5 + Ke^{-\frac{t}{1200}}$$

9. Dosadíme $U_C(t) = 10V$, t = 0s;

$$U_C(0) = 5 + Ke^0$$
$$10 = 5 + K$$
$$K = 5$$

Výsledok:

$$U_{\mathcal{C}}(t) = 5 + 5e^{-\frac{t}{1200}}$$

Skúška správnosti

$$U'_{c} + U_{c} \cdot \frac{1}{1200} = \frac{1}{240}$$

$$U'_{c} + \frac{1}{1200} \cdot \left(5 + 5e^{-\frac{t}{1200}}\right) = \frac{1}{240}$$

$$U'_{c} + \frac{5}{1200} - \frac{5e^{-\frac{t}{1200}}}{1200} = \frac{1}{240}$$

$$U'_{c} = -\frac{5e^{-\frac{t}{1200}}}{1200}$$

$$U'_C + U_C \cdot \frac{1}{1200} = \frac{1}{240}$$
$$-\frac{5e^{-\frac{t}{1200}}}{1200} + \left(5 + 5e^{-\frac{t}{1200}}\right) \cdot \frac{1}{1200} = \frac{1}{240}$$
$$0 = 0$$

Tabuľka výsledkov

Príklad	Skupina	Výsledok
1	Н	$U_{R2} = 62,1165V$ $I_{R2} = 0,1035A$
2	Н	$I_{R6} = 0,2361A$ $U_{R6} = 59,0252V$
3	Н	$I_{R4} = 2,2937A$ $U_{R4} = 64,2241V$
4	Н	$ U_{L2} = 6,5817V$ $\phi = 10,7521^{\circ}$
5	Н	$u_C = 5 + 5e^{-\frac{t}{1200}}$