1. FILTERED COLIMITS IN THE CATEGORY OF MODULES

Definition 1.1. Let *I* be a category. Suppose that the following conditions are satisfied.

(1) For any objects $i, j \in I$ there exists an object $k \in I$ and a diagram

(2) For any pair of parallel morphisms in *I*

$$i \Longrightarrow j$$

there exist an object $k \in I$ and a morphism $j \to k$ such that, the following diagram is commutative

$$i \longrightarrow j \longrightarrow k$$

Then we say that *I* is a filtered category.

Let *R* be a ring.

Proposition 1.2. Let I be a small filtered category. Then the functor sending I-indexed diagram of left R-modules to its colimit is exact.

Proof. Suppose that

$$\left\{0 \longrightarrow K_i \stackrel{r_i}{\longrightarrow} M_i \stackrel{p_i}{\longrightarrow} N_i \longrightarrow 0\right\}_{i \in I}$$

is an *I*-indexed family of short exact sequences. Consider a complex

$$0 \longrightarrow K \stackrel{r}{\longrightarrow} M \stackrel{p}{\longrightarrow} N \longrightarrow 0$$

where $K = \operatorname{colim}_{i \in I} K_i$, $M = \operatorname{colim}_{i \in I} M_i$, $N = \operatorname{colim}_{i \in I} N_i$, $r = \operatorname{colim}_{i \in I} r_i$ and $p = \operatorname{colim}_{i \in I} p_i$. Clearly the complex is exact from the right. It suffices to prove that r is a monomorphism. For $i \in I$ denote by $v_i : K_i \to K$, $u_i : M_i \to M$ structural morphisms. Pick $k \in K$ such that r(k) = 0. Since I is filtered, we have

$$K = \sum_{i \in I} v_i(K_i), M = \sum_{i \in I} u_i(M_i)$$

Thus there exists $i_0 \in I$ and $k_{i_0} \in K_{i_0}$ such that $v_{i_0}(k_{i_0}) = k$. We have $u_{i_0}(r_{i_0}(k_{i_0})) = r(k) = 0$. Again using the fact that I is filtered, we deduce that there exist $i_1 \in I$ and a morphism $\alpha: i_0 \to i_1$ such that $u_\alpha(r_{i_0}(k_{i_0})) = 0$, where $u_\alpha: M_{i_0} \to M_{i_1}$ is a morphism in the I-indexed diagram $\{M_i\}_{i \in I}$. Now let $k_{i_1} = v_\alpha(k_{i_0})$, where $v_\alpha: K_{i_0} \to K_{i_1}$ is a morphism in the I-indexed diagram $\{K_i\}_{i \in I}$. Then

 $v_{i_1}(k_{i_1}) = k$ and $r_{i_1}(k_{i_1}) = 0$. Since r_{i_1} is a monomorphism, we derive that $k_{i_1} = 0$ and hence $k = v_{i_1}(k_{i_1}) = 0$. Thus r is a monomorphism.

Corollary 1.3. Let M be a right R-module. Then for every $i \in \mathbb{N}$ functor $\operatorname{Tor}_i^R(M, -)$ defined on the category of left R-modules and with values in the category of abelian groups preserves filtered colimits.

Proof. Let *I* be a small filtered category and $\{N_i\}_{i\in I}$ be an *I*-indexed diagram of left *R*-modules. Fix a projective resolution $P_{\bullet} \to M$ of *M*. Since tensor product commutes with colimits, we have

$$\operatorname{colim}_{i \in I} (P_{\bullet} \otimes_{R} N_{i}) = P_{\bullet} \otimes_{R} \operatorname{colim}_{i \in I} N_{i}$$

in the category of complexes of abelian groups. Since exact functors preserve kernels, cokernels and images, we derive by Proposition 1.2 that for every $n \in \mathbb{N}$ there is an identification

$$\operatorname{Tor}_{n}^{R}(M,\operatorname{colim}_{i\in I}N_{i}) = H_{n}\left(P_{\bullet}\otimes_{R}\operatorname{colim}_{i\in I}N_{i}\right) = H_{n}\left(\operatorname{colim}_{i\in I}\left(P_{\bullet}\otimes_{R}N_{i}\right)\right) =$$

$$= \operatorname{colim}_{i\in I}H_{n}\left(P_{\bullet}\otimes_{R}N_{i}\right) = \operatorname{colim}_{i\in I}\operatorname{Tor}_{n}^{R}\left(M,N_{i}\right)$$

of cocones.

2. HOMOLOGICAL CHARACTERIZATIONS OF FLATNESS

Let *R* be a ring with unit.

Definition 2.1. Let M be a right R-module. We say that M is flat if the functor $M \otimes_R (-)$ defined on the category of left R-modules and with values in the category of abelian groups is exact.

Proposition 2.2. Let I be a filtered category and $\{M_i\}_{i\in I}$ be an I-indexed diagram of flat right R-modules. Then $\operatorname{colim}_{i\in I} M_i$ is a flat right R-module.

Proof. Proposition 1.2 implies that filtered colimits of short exact sequences of abelian groups are short exact sequences. Thus filtered colimits of flat right R-modules are flat.

Proposition 2.3. *Let* M *be a right* R*-module. Then the following are equivalent.*

- (i) For every finitely generated left ideal $I \subseteq R$ morphism $M \otimes_R I \to M$ induced by the inclusion of I in R is a monomorphism.
- (ii) $\operatorname{Tor}_1^R(M, R/I) = 0$ for every finitely generated left ideal $I \subseteq R$.
- (iii) M is flat.
- (iv) $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for every left R-module N and i > 0.

Proof. The implication (i) \Rightarrow (ii) is straightforward.

Suppose that (ii) holds. Then for every left ideal $I \subseteq R$ we can write $I = \operatorname{colim}_{\lambda \in \Lambda} I_{\lambda}$, where $\{I_{\lambda}\}_{\lambda \in \Lambda}$ is a filtered set of all finitely generated left ideals of R contained in I. This induces a presentation of R/I as a filtered colimit of the system $\{R/I_{\lambda}\}_{\lambda \in \Lambda}$ and thus by Corollary 1.3 we have

$$\operatorname{Tor}_{1}^{R}(M, R/I) = \operatorname{colim}_{\lambda \in \Lambda} \operatorname{Tor}_{1}^{R}(M, R/I_{\lambda}) = 0$$

Now suppose that *N* is a finitely generated left module over *R*. Then we can decompose *N* such that it fits in an exact sequence

$$0 \longrightarrow K \longrightarrow N \stackrel{q}{\longrightarrow} R/I \longrightarrow 0$$

Now we have $\operatorname{Tor}_1^R(M,K) = 0$ implies that $\operatorname{Tor}_1^R(M,N) = 0$. Therefore, using induction on the minimal number of generators of finitely generated left R-module we may prove that $\operatorname{Tor}_1^R(M,N) = 0$ for every finitely generated left R-module. Since every left R-module is a filtered colimit of its finitely generated left R-submodules, we derive by Corollary 1.3 that $\operatorname{Tor}_1^R(M,N) = 0$ for every left R-module N. Using first terms of the long exact sequence for Tor associated with $M \otimes_R (-)$ we deduce that (iii).

Now if M is flat, then tensoring with M is exact. This means that tensor product of a free resolution of some left R-module N with M have trivial higher homologies. Thus $\operatorname{Tor}_i^R(M,N) = 0$ for i > 0. This gives (iii) \Rightarrow (iv).

Finally (iv) \Rightarrow (i) is obvious.

3. FLATNESS IN TERMS OF EQUATIONS

Let *R* be a ring with unit.

Proposition 3.1. Let M be a right R-module and N be a left R-module. Suppose that $\{y_i\}_{i\in I}$ is a set of generators for N and $\{x_i\}_{i\in I}$ is a set of elements of M. Suppose that all x_i for $i\in I$ except of finitely many are zero. Assume that

$$\sum_{i \in I} x_i \otimes y_i = 0$$

in tensor product $M \otimes_R N$. Then there exist $n \in \mathbb{N}$, $\{a_{ik}\}_{i \in I, 1 \le k \le n}$ in R and $\{z_k\}_{1 \le k \le n}$ in M such that

- (1) $x_i = \sum_{k=1}^n z_k a_{ik}$ for every $i \in I$
- (2) $0 = \sum_{i \in I} a_{ik} y_i$ for every $1 \le k \le n$

Proof. Consider a free left R-module F on a set I and a morphism $\phi: F \to N$ given by $\phi(e_i) = y_i$, where e_i is a free generator corresponding to $i \in I$. Let $K = \ker(\phi)$. Applying $M \otimes_R (-)$ we derive that $M \otimes_R K$ maps onto the kernel of $1_M \otimes_R \phi$. Next by assumptions $(1_M \otimes_R \phi)(\sum_{i \in I} x_i \otimes e_i) = \sum_{i \in I} x_i \otimes y_i = 0$. Thus $\sum_{i \in I} x_i \otimes e_i$ is equal to $\sum_{k=1}^n z_k \otimes f_k$ for $z_k \in M$, $f_k \in K$ and $n \in \mathbb{N}$. We can write $f_k = \sum_{i \in I} a_{ik}e_i$. Then we have

$$\sum_{k=1}^{n} z_k \otimes f_k = \sum_{k=1}^{n} z_k \otimes \left(\sum_{i \in I} a_{ik} e_i\right) = \sum_{k=1}^{n} \sum_{i \in I} \left(z_k \otimes a_{ik} e_i\right) = \sum_{i \in I} \sum_{k=1}^{n} \left(z_k a_{ik} \otimes e_i\right) = \sum_{i \in I} \left(\sum_{k=1}^{n} z_k a_{ik}\right) \otimes e_i$$

We deduce that $x_i = \sum_{k=1}^n z_k a_{ik}$ and $0 = \sum_{i \in I} a_{ik} y_i$ for every $i \in I$ and $1 \le k \le n$.

Theorem 3.2 (Equational criteria for flatness). *Let M be a right R-module. Then the following are equivalent.*

- (i) M is flat.
- (ii) For every set of elements $\{x_i\}_{i=1,\dots,n}$ in M and a relation

$$\sum_{i=1}^{n} x_i a_i = 0$$

where $a_i \in R$ there exist elements $z_k \in M$ and $r_{ik} \in R$ for $1 \le k \le l$ such that

$$x_i = \sum_{k=1}^{l} z_k r_{ik}, 0 = \sum_{i=1}^{n} r_{ik} a_i$$

for every $1 \le i \le n$ and $1 \le k \le l$.

(iii) For every finitely presented right R-module N, every morphism $\phi: N \to M$ and every finitely generated R-submodule $K \subseteq \ker(\phi)$ there exists a factorization

where G is a finitely generated free right R-module and $K \subseteq \ker(\psi)$.

(iv) For every set of elements $\{x_i\}_{i=1,\dots,n}$ in M and a finite set of relations

$$\sum_{i=1}^{n} x_i a_{ij} = 0$$

where $1 \le j \le m$ and $a_{ij} \in R$ there exist elements $z_k \in M$ and $r_{ik} \in R$ for $1 \le k \le l$ such that

$$x_i = \sum_{k=1}^{l} z_k r_{ik}, 0 = \sum_{i=1}^{n} r_{ik} a_{ij}$$

for every $1 \le i \le n$, $1 \le j \le m$ and $1 \le k \le l$.

Proof. Suppose that *M* is flat. We will show that (ii) holds.. We have relation

$$\sum_{i=1}^{n} x_i a_i = 0$$

Let $I = \sum_{1 \le i \le n} Ra_i \subseteq R$ be a left ideal. Since M is flat, the canonical morphism $M \otimes_R I \to M$ is a monomorphism. It sends $\sum_{i=1}^n x_i \otimes a_i$ to $\sum_{i=1}^n x_i a_i = 0$. It follows that

$$\sum_{i=1}^{n} x_i \otimes a_i = 0$$

in $M \otimes_R I$. Thus by Proposition 3.1 there exist $\{r_{ik}\}_{1 \le i \le n, 1 \le k \le l}$ in R and $\{z_k\}_{1 \le k \le l}$ in M such that

$$x_i = \sum_{k=1}^{l} z_k r_{ik}, \ 0 = \sum_{i=1}^{n} r_{ik} a_i$$

for every $1 \le i \le n$ and $1 \le k \le l$.

Now we prove that (ii) \Rightarrow (iii). Suppose first that N is a finitely generated and free right R-module, $\phi: N \to M$ is a morphism and $K \subseteq \ker(\phi)$ is finitely generated. Note that our result easily follows from (ii) of the theorem, if $K \subseteq \ker(\phi)$ is generated by a single element. Now easy induction on the number of generators for $K \subseteq \ker(\phi)$ yields the assertion (iii) in the case of finitely generated free right R-module N.

Suppose now that N is a finitely presented right R-module, $\phi: N \to M$ is a morphism and $K \subseteq \ker(\phi)$ is a finitely generated submodule. Take an epimorphism $f: F \to N$ where F is a finitely generated free left R-module. Let $\phi' = \phi f$ and pick a factorization

where *G* is a finitely generated free right *R*-module and $f^{-1}(K) \subseteq \ker(g)$. Such a factorization exists according to the fact that $f^{-1}(K)$ is a finitely generated submodule of $\ker(\phi')$. Since

 $\ker(f) \subseteq f^{-1}(K)$, we deduce that g factorizes through f. This proves the implication. Assume that (iii) holds. Suppose that $\{x_i\}_{i=1,\dots,n}$ are in M and we have a finite set of relations

$$\sum_{i=1}^{n} x_i a_{ij} = 0$$

where $1 \le j \le m$ and $a_{ij} \in R$. Let F be a right free R-module of rank n with basis $e_1,...,e_n$. Define a morphism $\phi : F \to M$ by $\phi(e_i) = x_i$ for $1 \le i \le n$. Then

$$K = \sum_{i=1}^{m} \left(\sum_{i=1}^{n} e_i a_{ij} \right) R \subseteq \ker(\phi)$$

is finitely generated. Hence by (iii) there exist a finitely generated free right *R*-module *G* and morphisms $\psi: F \to G$, $\theta: G \to M$ such that $\phi = \theta \cdot \psi$ and $K \subseteq \ker(\psi)$. Next if $f_1,...,f_l$ is a basis of *G*, then we pick $z_k = \theta(f_k)$ for $1 \le k \le l$. There exist $r_{ik} \in R$ for $1 \le k \le l$ and $1 \le i \le n$ such that $\psi(e_i) = \sum_{k=1}^l f_k r_{ik}$ for $1 \le i \le n$. Now straightforward verification shows that $z_k \in M$ and $r_{ik} \in R$ for $1 \le k \le l$ and $1 \le i \le n$ satisfy (iv).

Now assume that **(iv)** holds. Let I be a finitely generated left ideal in R. Suppose that a_i for $1 \le i \le n$ are generators of I. We are going to prove that the canonical morphism $M \otimes_R I \to M$ is a monomorphism. This implies **(i)** due to Proposition 2.3. Assume that there exist x_i for $1 \le i \le n$ in M such that $\sum_{i=1}^n x_i \otimes a_i \in M \otimes_R I$ is in the kernel of $M \otimes_R I \to M$. This means that $\sum_{i=1}^n x_i a_i = 0$ in M. According to **(iv)** there exist $z_k \in M$ and $r_{ik} \in R$ for $1 \le k \le l$ and $1 \le i \le n$ such that

$$x_i = \sum_{k=1}^{l} z_k r_{ik}, \ 0 = \sum_{i=1}^{n} r_{ik} a_i$$

Thus

$$\sum_{i=1}^{n} x_i \otimes a_i = \sum_{i=1}^{n} \left(\sum_{k=1}^{l} z_k r_{ik} \right) \otimes a_i = \sum_{i=1}^{n} \sum_{k=1}^{l} (z_k r_{ik} \otimes a_i) = \sum_{k=1}^{l} \sum_{i=1}^{n} (z_k \otimes r_{ik} a_i) = \sum_{k=1}^{l} z_k \otimes \left(\sum_{i=1}^{n} r_{ik} a_i \right) = 0$$

Hence the kernel of the morphism $M \otimes_R I \to M$ is trivial.

4. CATEGORICAL CHARACTERIZATIONS OF FLATNESS

Let *R* be a ring with unit.

Theorem 4.1 (Lazard's theorem). A right R-module M is flat if and only if it is a colimit of a filtered diagram of finitely generated free right R-modules.

Proof. If *M* is a filtered colimit of finitely generated flat right *R*-modules, then Proposition 2.2 implies that *M* is flat.

Assume now that M is flat. Consider a set of symbols $E = \{e_m \mid m \in M\}$. For every finite subset $\alpha \subseteq E$ let F_α be a right free R-module generated by symbols in α . Next for every such α let $q_\alpha : F_\alpha \to M$ be a morphism defined by formula $q_\alpha(e_m) = m$ for $e_m \in \alpha$.

Next we define a small diagram category I. Objects of I are finite subsets $\alpha \subseteq E$. Morphisms $f: \alpha \to \beta$ for any two finite subsets α , $\beta \subseteq E$ are morphisms of right R-modules $f: F_\alpha \to F_\beta$ such that $q_\beta \cdot f = q_\alpha$. The composition of morphisms in I is given by the usual composition of morphisms of right R-modules.

We will now show that I is a filtered category. Pick α_1 , $\alpha_2 \in I$. Let $\alpha = \alpha_1 \cup \alpha_2$. Then α is well defined object of I. Moreover, canonical inclusions $\alpha_1 \subseteq \alpha$, $\alpha_2 \subseteq \alpha$ give rise to morphisms $f_1 : F_{\alpha_1} \to F_{\alpha}$ and $f_2 : F_{\alpha_2} \to F_{\alpha}$ in the category of right R-modules and hence give rise to morphisms $f_1 : \alpha_1 \to \alpha$ and $f_2 : \alpha_2 \to \alpha$ in I. This verifies the first axiom of filtered category for I. Now if $f, g : \alpha \to \beta$ are two morphisms in I, then

$$q_{\beta}\cdot(f-g)=q_{\alpha}-q_{\alpha}=0$$

in the category of right *R*-modules. Hence $(f - g)(F_{\alpha})$ is a finitely generated right *R*-submodule of F_{β} contained in the kernel of q_{β} . Using Theorem 3.2 we derive that there exists some finite

subset $\gamma \subseteq E$ and a morphism $h : F_{\beta} \to F_{\gamma}$ such that $h \cdot (f - g) = 0$ and $q_{\gamma} \cdot h = q_{\beta}$. This implies that $h : \beta \to \gamma$ is a morphism in I and $h \cdot f = h \cdot g$. Hence I verifies the second axiom for filtered category.

Now we define a diagram of finitely generated free right R-modules indexed by I. We send each object α of I to right R-module F_{α} and we send $f: \alpha \to \beta$ in I to $f: F_{\alpha} \to F_{\beta}$ in the category of right R-modules. It is clear that it is well defined I-indexed diagram.

Finally it suffices to verify that $q_{\alpha}: F_{\alpha} \to M$ for $\alpha \in I$ admit the universal property of colimit for the I-indexed diagram defined above. For this let N be some right R-module and $r_{\alpha}: F_{\alpha} \to N$ for $\alpha \in I$ be morphisms such that $r_{\beta} \cdot f = r_{\alpha}$ for every $f: \alpha \to \beta$ in I. Now we define a function $s: M \to N$ by formula

$$s(m) = r_{\alpha}(e_m)$$

for any $m \in M$ and any $\alpha \in I$ such that $e_m \in \alpha$. It is easy to verify that the function s is well defined. Moreover, it is a unique function that satisfies $s \cdot q_{\alpha} = r_{\alpha}$.

We will show now that s is a morphism of right R-modules. Pick $x \in R$ and $m \in M$. Consider $\alpha \in I$ such that e_m , $e_{mx} \in \alpha$. Since $q_\alpha(e_mx - e_{mx}) = mx - mx = 0$ and M is flat, by Theorem 3.2 there exist $\beta \in I$ and a morphism $f : \alpha \to \beta$ in I such that $f(e_mx - e_{mx}) = 0$. Hence we deduce that

$$s(m)x - s(mx) = r_{\alpha}(e_m)x - r_{\alpha}(e_{mx}) = r_{\alpha}(e_mx - e_{mx}) = r_{\beta}\left(f\left(e_mx - e_{mx}\right)\right) = 0$$

Similar argument shows that for m_1 , $m_2 \in M$ the relation $s(m_1 + m_2) - (s(m_1) + s(m_2)) = 0$ is satisfied.

Now according to the fact that $s: M \to N$ is a unique morphism of cocones in the category of right R-modules, we deduce that

$$M = \operatorname{colim}_{\alpha \in I} F_{\alpha}$$

Corollary 4.2. Let M be a right R-module of finite presentation. Then M is flat if and only if it is projective.

Proof. Using Theorem 4.1 we derive that $M = \operatorname{colim}_{\alpha \in I} F_{\alpha}$, where I is a filtered category and $\{F_{\alpha}\}_{\alpha \in I}$ is I-indexed diagram of finitely generated right free R-modules. Next we have that

$$\operatorname{Hom}_R(M, M) = \operatorname{colim}_{\alpha \in I} \operatorname{Hom}_R(M, F_\alpha)$$

by finite presentation of M. Thus there exists an $\alpha \in I$ and a morphism $f: M \to F_{\alpha}$ such that $q_{\alpha} \cdot f = 1_M$ for the structural morphism $q_{\alpha} : F_{\alpha} \to M$. This means that q_{α} is a retraction. Hence M is a direct summand of a right free R-module P_{β} . Thus it is projective.