Técnicas de Projeto (Parte 4) Projeto e Análise de Algoritmos

Daniel Capanema

Pontificia Universidade Católica de Minas Gerais

- Programação não está relacionado com um programa de computador.
 - A palavra está relacionada com um método de solução baseado em tabela.
- Programação dinâmica (PD) × Divisão-e-conquista (DC):
 - DC quebra o problema em sub-problemas menores.
 - PD resolve todos os sub-problemas menores mas somente reusa as soluções ótimas.

 Programação dinâmica quebra o problema em vários problemas sobrepostos.

- Programação dinâmica quebra o problema em vários problemas sobrepostos.
- □ É um método para a construção de algoritmos para a resolução de problemas computacionais, em especial os de otimização combinatória.
- □ É aplicável a problemas nos quais a solução ótima pode ser computada a partir da solução ótima previamente calculada e memorizada (evitar recálculo) de outros subproblemas que, sobrepostos, compõem o problema original.

Programação Dinâmica

 O que um problema de otimização deve ter para que a programação dinâmica seja aplicável são duas principais características:

1. Subestrutura ótima:

 Quando uma solução ótima para o problema contém em seu interior soluções ótimas para subproblemas.

Superposição de subproblemas:

 Quando um algoritmo recursivo reexamina o mesmo problema muitas vezes.

- Quando \sum Tamanhos dos sub-problemas = O(n)
 - o É provável que o algoritmo recursivo tenha complexidade polinomial.
- Quando a divisão de um problema de tamanho n resulta em:
 - o n Sub-problemas × Tamanho n 1 cada um
 - o É provável que o algoritmo recursivo tenha complexidade exponencial.
- Nesse caso, a técnica de programação dinâmica pode levar a um algoritmo mais eficiente.
 - A programação dinâmica calcula a solução para todos os sub-problemas, partindo dos sub-problemas menores para os maiores, armazenando os resultados em uma tabela.
 - A vantagem é que uma vez que um sub-problema é resolvido, a resposta é armazenada em uma tabela e nunca mais é recalculado.

- Suponha o exemplo da sequencia de Fibonacci, implementada de forma recursiva
 - Quando a forma recursiva é implementada sem maiores cuidados, sem memorização, o seu cálculo de tempo cresce exponencialmente.

```
Se n <= 1 então F(n) := 1 caso contrário F(n) := F(n-1) + F(n-2)
```

 Quando implementada de forma recursiva "ingênua" (naive), sem memorização, a dupla chamada à F na segunda linha, causa a necessidade da repetição de cálculos, que cresce exponencialmente.

- Suponha o exemplo da sequencia de Fibonacci, implementada de forma recursiva
 - Observe que a rigor esse caso não é um problema de programação dinâmica!
 - O cálculo do n-ésimo número de Fibonacci cresce linearmente, e não exponencialmente.
 - Porém este exemplo ainda assim é utilizado, pois a simplicidade é grande.

Fibonacci com PD:

 Solução iterativa: criar um vetor para armazenar os valores anteriores.

$$Fib(n) = \begin{cases} 1 & n \le 1\\ Fib(n-1) + Fib(n-2) & n > 1 \end{cases}$$

- Fibonacci com PD:
 - Solução iterativa: criar um vetor para armazenar os valores anteriores.

```
// PD, bottom up, não usa recursividade e armazena os
resultados anteriores em Array

int DP_Bottom_Up(int n) {
   memo[0] = memo[1] = 1; // Valores padrões
   //de 2 a n ( ja sabemos que fib(0) e fib(1) = 1)
   for (int i=2; i<=n; i++) {
       memo[i] = memo[i-1] + memo[i-2];
   }
   return memo[n];
}</pre>
```

 Tabela de memo(n) guarda valor dos somatórios; para cada entrada basta acrescentar 1 termo

- Dado um conjunto de n moedas, cada uma com valor ci, e, dada uma quantidade P, precisamos achar o numero mínimo de moedas para obter aquela quantidade
- Definimos a função D (i, Q) como o número mínimo de moedas necessário para obter uma quantidade Q, usando os i primeiros tipos de moedas (1...i).
- A solução da função Troco pode utilizar o ou mais moedas do tipo i
 - Se não usa nenhuma moeda do tipo i então:
 - D(i,Q) = D(i-1,Q)
 - Se usa sim, k moedas do tipo i, então:
 - D(i,Q) = D(i-1, Q K*ci) + k

- M={1,2,4,5,8}
- S=17

n

m

- $M=\{1,2,6,8\}$
- S=12

W

m

		0	1	2	3	4	5	6	7	8	9	10	11	12
	1	0	1	2	3	4	5	6	7	8	9	10	11	12
	2	0	1	1	2	2	3	3	4	4	5	5	6	6
	6	0	1	1	2	2	3	1	2	2	3	3	4	2
	8	0	1	1	2	2	3	1	2	1	2	2	3	2

- M={1,4,6}
- S= 8

```
Moedas (int P, int N, int C[], int D[][]) {
   int i, j;
   For (i=0;i <=N; i++)
      D[i][0]=0;
   For (i=1;i <=P; i++)
      D[0][i]=NUM MAX;
   For (i=1; i<=N; i++)
      For (j=1; j<=P; j++) {
         If (C[i] > i)
            D[i][j] = D[i-1][j];
         Else if (D[i-1][j] < (D[i][j-C[i]]+1))
            D[i][j]=D[i-1][j];
         Else
            D[i][j] = D[i][j-C[i]]+1;
```


- Este é um problema de otimização e como tal possui muitas soluções possíveis, onde cada uma delas tem um valor
- Desejamos descobrir uma solução com o valor ótimo de acordo com um critério de minimização ou maximização.
- Existem muitas variações deste problema, consideraremos a mais simples delas:
 - Definição Mochila(n,K): dados um inteiro K e n itens de tamanhos diferentes tal que o i-ésimo item tem um tamanho inteiro ki, descobrir um subconjunto de itens cujos tamanhos somam exatamente K, ou determine que nenhum tal subconjunto existe.

Observações

- A mochila pode ser um caminhão, navio, chip de silício, etc.
- Mochila(i,j) denotará o problema com os primeiros i itens e uma mochila de tamanho j.
- Por simplicidade, nos concentraremos apenas em descobrir se uma solução existe.

- Algoritmo Mochila (S,K)
- Entrada: um vetor S de tamanho n armazenando os tamanhos dos itens e o tamanho K da mochila.
- Saída: um vetor bidimensional P tal que
 - P(i,j).existe = true se existe uma solução com os primeiros i elementos para uma mochila de tamanho j;
 - P(i,j).pertence = true se o i-ésimo elemento pertence a solução.

Início

```
P(0,0).existe = true;
para j = 1 até K faça
  P(0,j).existe = false;
para i = 1 até n faça
  para j = 0 até K faça
    P(i,i).existe = false;
    if P(i - 1, j).existe então
      P(i,j).existe = true;
      P(i,j).pertence = false;
    senão se (j - S(i) >= 0) então
      se P(i - 1, j - S(i)).existe então
        P(i,j).existe = true;
        P(i,j).pertence = true.
```

Fim

- O problema da mochila (em inglês, Knapsack problem) é um problema de otimização combinatória
- Nome devido ao modelo de uma situação em que é necessário preencher uma mochila com objetos de diferentes pesos e valores
- O objetivo é que se preencha a mochila com o maior valor possível, não ultrapassando o peso máximo

$$T(i,j) = \begin{cases} T(i-1,j) & se \ R[i] > S[j] \\ \max(T(i-1,j), T(i-1,S[j]-R[i]) + V[i] & se \ R[i] \le S[j] \end{cases}$$

Capacidade 10

Peso	Lucro	Item	0	1	2	3	4	5	6	7	8	9	10
w1=3	x1=5	1	0	0	0	5	5	5	10	10	10	15	15
w2=4	x2=7	2	0	0	0	5	7	7	10	12	14	15	17
w3=5	x3=8	3	0	0	0	5	7	8	10	12	14	15	17

Capacidade 10

Peso	Lucro	Item	0	1	2	3	4	5	6	7	8	9	10
w1=3	x1=5	1	0	0	0	5	5	5	10	10	10	15	15
w2=4	x2=7	2	0	0	0	5	7	7	10	12	14	15	17
w3=5	x3=8	3	0	0	0	5	7	8	10	12	14	15	17

Seja

$$M = M_1 \times M_2 \times ... \times M_n$$

- onde M_i é uma matriz com d_{i-1} linhas e d_i colunas, 2≤i≤n.
- Isto serve para dizer apenas que a matriz M_i possui uma quantidade de linhas igual a quantidade de colunas de M_{i-1} (d_{i-1}) e uma quantidade de colunas dada por d_i.
- A ordem da multiplicação pode ter um efeito enorme no número total de operações de adição e multiplicação necessárias para obter M.
- Considere o produto de uma matriz p x q por outra matriz q x r cujo algoritmo requer O(pqr) operações.

Considere o produto

$$M = M1[10, 20] \times M2[20, 50] \times M3[50 \times 1] \times M4[1, 100]$$

- onde as dimensões de cada matriz aparecem entre colchetes.
- Sejam duas possíveis ordens de avaliação dessa multiplicação:

$$M = M_1 \times (M_2 \times (M_3 \times M_4))$$
 $M = (M_1 \times (M_2 \times M_3)) \times M_4$ $20 \times 50 \times 1 = 1\,000 \text{ operações}$ $M = M_1 \times (M_2 \times M_a)$, sendo M_a [50, 100] $M = (M_1 \times M_a) \times M_4$, sendo M_a [20, 1] $10 \times 20 \times 100 = 100\,000 \text{ operações}$ $M = M_1 \times M_b$, sendo M_b [20, 100] $M = M_1 \times M_b$, sendo M_b [20, 100] $M = M_1 \times M_2$, sendo M_b [10, 1] $M = M_1 \times M_2$, sendo M_b [10, 1] $M = M_1 \times M_2$, sendo M_b [10, 1] $M = M_1 \times M_2$, sendo M_b [10, 1] $M = M_1 \times M_2$, sendo M_2 [10, 1]

Total = $125\,000$ operações

Total = 2200 operações

- Tentar todas as ordens possíveis para minimizar o número de operações f(n) é exponencial em n, onde f(n)≥ 2ⁿ⁻².
- Usando programação dinâmica é possível obter um algoritmo O(n³).
- Seja m_{ij} o menor custo para computar
 M_i x M_{i+1} x ... x M_i, para 1 ≤ i ≤ j ≤ n.

$$m_{ij} = \left\{ \begin{array}{ll} \mathbf{0}, & \text{se } i = j, \\ \mathrm{Min}_{i \leq k < j} \; (m_{ik} + m_{k+1,j} + d_{i-1} d_k d_j), & \text{se } j > i. \end{array} \right.$$

- m_{ik} representa o custo mínimo para calcular M' = M_i x M_{i+1} x ... x M_k.
- m_{k+1,j} representa o custo mínimo para calcular M" = M_{k+1}
 M_{k+2} x M_j.
- d. d. d. representa o custo de multiplicar M' [d.; d.] por M''[d.; d.].
- m_{ij}; j > i representa o custo mínimo de todos os valores possíveis de k entre i e j 1, da soma dos três termos.

- A solução usando programação dinâmica calcula os valores de m_{ij} na ordem crescente das diferenças nos subscritos.
- O cálculo inicia com \mathbf{m}_{i} para todo \mathbf{m}_{i} , depois $\mathbf{m}_{i,i+1}$ para todo \mathbf{i} , depois $\mathbf{m}_{i,i+2}$, e assim sucessivamente.
- Desta forma, os valores m_{ik} e m_{k+1,j} estarão disponíveis no momento de calcular m_{ij}.
- Isto acontece porque j i tem que ser estritamente maior do que ambos os valores de k - i e j - (k +1) se k estiver no intervalo i k < j.

```
AVALIAMULTMATRIZES(n, d[0..n])
    Parâmetro: n (nº de matrizes); d[0..n] (dimensões das matrizes)
    MaxInt = major inteiro
       i, j, k, h, n, temp
       m[1..n, 1..n]
    for i \leftarrow 1 to n
       do m[i,i] \leftarrow 0
    for h \leftarrow 1 to n-1
        do for i \leftarrow 1 to n - h
 5
           do i \leftarrow i + h
 6
               m[i,j] \leftarrow MaxInt
 7
               for k \leftarrow i to j-1 do
 8
                  temp \leftarrow m[i,k] + m[k+1,j] + d[i-1] \times d[k] \times d[j]
 9
                  if temp < m[i, j]
10
                    then m[i,j] \leftarrow temp
    print m
```

 A execução de AVALIAMULTMATRIZES obtém o custo mínimo para multiplicar as n matrizes, assumindo que são necessárias pqr operações para multiplicar uma matriz p x q por outra matriz q x r.

A multiplicação de

$$M = M_1[10, 20] \times M_2[20, 50] \times M_3[50, 1] \times M_4[1, 100],$$

sendo

produz como resultado

$m_{11} = 0$	$m_{22} = 0$	$m_{33} = 0$	$m_{44} = 0$
$m_{12} = 10.000$	$m_{23} = 1.000$	$m_{34} = 5.000$	
$M_1 \times M_2$	$M_2 \times M_3$	$M_3 \times M_4$	
$m_{13} = 1.200$	$m_{24} = 3.000$		
$M_1 \times (M_2 \times M_3)$	$(M_2 \times M_3) \times M_4$		
$m_{14} = 2.200$			
$(M_1 \times (M_2 \times M_3)) \times M_4$	5		

• Dada uma sequência $X = \langle x_1, x_2, ..., x_m \rangle$, outra sequência $Z = \langle z_1, z_2, ..., z_k \rangle$ é uma subsequência de X se existe uma sequência estritamente crescente $\langle i_1, i_2, ..., i_k \rangle$ de índices de X tais que, para todo j = 1, 2, ..., k, temos:

$$X_i = Z_j$$

- Exemplo:
- X = <A, B, C, B, D, A, B> e Z = <B, C, D, B> Z é uma subsequência de X com sequência de índice correspondente <2, 3, 5, 7>.

- Dada duas sequências X e Y, dizemos que uma sequência Z é uma subsequência comum de X e Y se Z é uma subsequência de X e de Y ao mesmo tempo.
- Exemplo:
- X = <A, B, C, B, D, A, B> e Y = <B, D, C, A, B, A> a sequência<B, C, A> é uma subsequência comum. A sequência<B, C, B, A> é uma subsequência comum mais longa (LCS – longest common subsequence)

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & se \ i,j>0 \ x_i = y_i \\ max(c[i,j-1],c[i-1,j] & se \ i,j>o \ x_i \neq y_i \end{cases}$$

	уj	А	С	Т	G	Т	G	С	Α
xi	0	0	0	0	0	0	0	0	0
Α	0	1	1	1	1	1	1	1	1
С	0	1	2	2	2	2	2	2	2
G	0	1	2	2	3	3	3	3	3
Т	0	1	2	3	3	4	4	4	4
G	0	1	2	3	4	4	5	5	5
Т	0	1	2	3	4	5	5	5	5
С	0	1	2	3	4	5	5	6	6
А	0	1	2	3	4	5	5	6	7

	уj	А	С	Т	G	Т	G	С	Α
xi	0	0	0	0	0	0	0	0	0
Α	0								
С	0								
G	0								
Т	0								
G	0								
Т	0								
С	0								
Α	0								

Maior subsequência comum: ACGTGCA

```
LCS-LENGTH(X, Y)
1 m \leftarrow comprimento [X]
2 n \leftarrow comprimento [Y]
3 for i \leftarrow 0 to m
4 do c[i, 0] \leftarrow 0
5 for j \leftarrow 0 to n
  do c[0, j] \leftarrow 0
7 for i \leftarrow 1 to m
     do for j \leftarrow 0 to n
        do if x_i = y_i
9
         then c[i,j] \leftarrow c[i-1, j-1] + 1
10
      b[i, i] \leftarrow ""
11
12 else if c[i-1, j] \ge c[i, j-1]
then c[i, j] \stackrel{\checkmark}{\leftarrow} c[i-1, j]
14 b[i, j] \leftarrow "\uparrow"
15 else c[i, j] \leftarrow c[i, j-1]
     b[i, j] \leftarrow "\leftarrow"
16
17 return c e b
```

```
PRINT-LCS(b, X, i, j)
1 \text{ if } i = 0 \text{ ou } j = 0
2 then return
3 if b[i, j] = " "
   then PRINT-LCS(b, X, i, j)
5
 print X,
6 else if b[i, j] = "\uparrow"
   then PRINT-LCS(b, X, i-1, j)
8 else PRINT-LCS(b, X, i-1, j)
```

Programação Dinâmica: Principio de Otimalidade

- A solução eficiente está baseada no princípio da otimalidade:
 - Em uma seqüência ótima de escolhas ou de decisões cada sub-seqüência deve também ser ótima.
- Cada sub-seqüência representa o custo mínimo, assim como mij, j > i.
- Assim, todos os valores da tabela representam escolhas ótimas.

Programação Dinâmica: Principio de Otimalidade

- O princípio da otimalidade não pode ser aplicado indiscriminadamente.
- Se o princípio não se aplica é provável que não se possa resolver o problema com sucesso por meio de programação dinâmica.
 - Quando, por exemplo, o problema utiliza recursos limitados e o total de recursos usados nas sub-instâncias é maior do que os recursos disponíveis.
- Exemplo do princípio da otimalidade: suponha que o caminho mais curto entre Belo Horizonte e Curitiba passa por Campinas. Logo,
 - O caminho entre BH e Campinas também é o mais curto possível;
 - Como também é o caminho entre Campinas e Curitiba;
- Logo, o princípio da otimalidade se aplica.

Programação Dinâmica: Principio de Otimalidade

- Seja o problema de encontrar o caminho mais longo entre duas cidades. Temos que:
 - Um caminho simples nunca visita uma mesma cidade duas vezes.
 - Se o caminho mais longo entre Belo Horizonte e Curitiba passa por Campinas, isso não significa que o caminho possa ser obtido tomando o caminho simples mais longo entre Belo Horizonte e Campinas e depois o caminho simples mais longo entre Campinas e Curitiba.
- Observe que o caminho simples mais longo entre BH e Campinas pode passar por Curitiba!
 - Quando os dois caminhos simples são agrupados não existe uma garantia que o caminho resultante também seja simples.
 - Logo, o princípio da otimalidade não se aplica.

• Quando aplicar PD?

- Respeitam as duas características principais.
- o Problema computacional deve ter uma formulação recursiva.
- Não deve haver ciclos na formulação (usualmente o problema deve ser reduzido a problemas menores).
- Número total de instâncias do problema a ser resolvido deve ser pequeno (n).
- Tempo de execução é O(n) × tempo para resolver a recursão.

Exercícios

- Seja o problema da maior subsequência crescente, projete uma solução, para encontrar o tamanho da maior subsequência.
- 2. Seja uma estrada pedagiada. Os pedágios devem estar nas cidades ao longo da rodovia distantes pelo menos x Km. Cada pedágio colocado dará um lucro de yi. Projete um algoritmo para instalar os pedágios que produzirá o maior lucro possível.