

Г	-Some counting: If G has n vertices
	then the maximum number of edges
	is (n). The complete graph Kn=G has
	- all the edges.
	For two graphs G, H with n vertices
	each, there are n! possible bijections.
	(we could check them all to see if
	- there is an isomorphism)
	Shortcuts! If G # H, we might not have
	to check all n! bisections. Instead we
	could find invariants,
	Def. The degree of a vertex in G is
	the number of edges which include (touch)
	that vertex.
	Ex: deg(a) = 0 deg(d)=2)
	G: (a) deg(b) = 3 deg(e) = 1
	deg (c) = 2
	@ B
	Def: The degree sequence of G is the list
*	of degrees from largest to smallest.
	degseq (6) = (3,2,2,1,0)
	Theorem: If $G \cong H$ then $degseg(G) = degseg(H)$.
	Thus degree is a graph invariant.
	Use to show that G = H via contrapositive!
	deg seq (G) ≠ deg seq (H) ⇒ G ≠ H.
1	

