

Can a Neural Network Learn the Laws of Physics?

A Swinging Pendulum Example

Alexander Heinlein¹

Wiskunde D-dag, TU Delft, The Netherlands, June 6, 2025

¹Delft University of Technology

Artificial Intelligence and Neural Networks

- Modern Al uses artificial neural networks, built on mathematics: matrix and vector operations.
- Hopfield and Hinton won the 2024 Nobel Prize in Physics for pioneering artificial neural network models; they employ principles of physics to motivate the machine learning models.

Artificial Intelligence and Neural Networks

- Artificial neural networks (ANNs) or simply neural networks (NNs) are machine learning models loosely inspired by the structure of biological brains.
- Biological neurons respond only when inputs (stimulus) exceed a certain threshold.

Machine Learning

Wikipedia

"Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that **can learn from data** and generalise to unseen data, and thus perform tasks **without explicit instructions**."

https://en.wikipedia.org/wiki/Machine_learning

Mitchell (1997)

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

— Mitchell, T. (1997). Machine Learning

Learning From Data

"learnable parameters"

$$x_3^{(2)} = \sigma \Big(\sum_{i=1}^5 w_i^{(2)} x_i^{(1)} + b_3^{(2)} \Big)$$

$$x_3^{(2)} = \underbrace{\sigma}_{\text{activation}} \left(\sum_{i=1}^5 \underbrace{w_i^{(2)}}_{\text{weight}} x_i^{(1)} + \underbrace{b_3^{(2)}}_{\text{bias}} \right)$$

$$x_3^{(2)} = \underbrace{\sigma}_{\text{activation}} \left(\sum_{i=1}^{5} \underbrace{w_i^{(2)}}_{\text{weight}} x_i^{(1)} + \underbrace{b_3^{(2)}}_{\text{bias}} \right)$$

$$x_3^{(2)} = \underbrace{\sigma}_{\text{activation}} \left(\sum_{i=1}^5 \underbrace{w_i^{(2)}}_{\text{weight}} x_i^{(1)} + \underbrace{b_3^{(2)}}_{\text{bias}} \right)$$

$$x^{(2)} = \sigma \left(W^{(2)} x^{(1)} + b^{(2)} \right)$$

$$x^{(j+1)} = \sigma(W^{(j+1)}x^{(j)} + b^{(j+1)})$$

Training a Neural Network

Minimize

$$\sum_{i=1}^{n} (y_i - ANN(x_i))^2$$

with respect to

weights $W^{(j)}$ and biases $b^{(j)}$.

Training a Neural Network

Minimize

$$\underbrace{\sum_{i=1}^{n} (y_i - ANN(x_i))^2}_{\text{loss function}}$$

with respect to

weights $W^{(j)}$ and biases $b^{(j)}$.

Rolling a Ball Down a Hill

Visualizing the Loss Landscape

 ${\sf Taken\ from\ https://github.com/tomgoldstein/loss-landscape}$

Training Process

Rolling a Ball Down a Hill

Visualizing the Loss Landscape

Follow the steepest descent

Training Process

 We can adjust the mass of the ball to avoid getting stuck

9/23

If we **remove the activation** σ , the model is given by:

$$x^{(2)} = W^{(2)}x^{(1)} + b^{(2)}$$
 $x^{(1)} = W^{(1)}x^{(0)} + b^{(1)}$

The Power of Nonlinearity

If we **remove the activation** σ , the model is given by:

$$x^{(2)} = W^{(2)}x^{(1)} + b^{(2)}$$
 $x^{(1)} = W^{(1)}x^{(0)} + b^{(1)}$

We obtain a linear model:

$$x^{(2)} = W^{(2)} (W^{(1)} x^{(0)} + b^{(1)}) + b^{(2)} = \underbrace{W^{(2)} W^{(1)}}_{:=W} x^{(0)} + \underbrace{W^{(2)} b^{(1)}}_{:=b} + b^{(2)} = W x^{(0)} + b$$

Without σ

The Power of Nonlinearity

For a classification example:

A. Heinlein (TU Delft)

Wiskunde D-dag

12/23

Intermediate Summary

 An artificial neural network consists of layers: each applies a linear transformation

$$Wx + b$$

followed by a nonlinear activation

0

- Nonlinearity gives neural networks their power
- lacktriangle Training: **adjusting** W and b
- Training is complex, but can be seen as rolling a ball down a hill

Can Neural Networks Learn Physics?

A Swinging Pendulum — Undamped

Let us consider a "simple" example!

Let us consider a "simple" example!

minimize
$$\sum_{i=1}^{n} (\theta_i - \text{ANN}(t_i))^2$$

minimize
$$\sum_{i=1}^{n} (\theta_i - \text{ANN}(t_i))^2$$

Newton's Second Law of Motion

F = ma

- F: net force acting on a body
- *m*: mass of the body
- a: acceleration of the body

Pendulum

Sir Isaac Newton (1643–1727) formulated the laws of motion and gravity.

Pendulum ma

$$\Rightarrow$$
 $ma = -mg \sin \theta \Rightarrow a = -g \sin \theta$

Pendulum

We have

$$s(t) = L\theta(t)$$

 $\Rightarrow v(t) = L\theta'(t)$ (velocity)
 $\Rightarrow a(t) = L\theta''(t)$ (acceleration)

Hence, we obtain

$$a(t) = -g \sin \theta(t)$$

 $\Rightarrow \theta''(t) = -\frac{g}{L} \sin \theta(t)$

The change of the angle θ follows the equation

$$\theta''(t) + \frac{g}{L}\sin\theta(t) = 0.$$

If we add damping λ (coefficient of friction) relative to the velocity, we obtain the equation:

$$\theta''(t) + \lambda \theta'(t) + \frac{g}{I} \sin \theta(t) = 0$$

The change of the angle θ follows the equation

$$\theta''(t) + \frac{g}{I}\sin\theta(t) = 0.$$

If we add damping λ (coefficient of friction) relative to the velocity, we obtain the equation:

$$\theta''(t) + \lambda \theta'(t) + \frac{g}{I} \sin \theta(t) = 0.$$

Where no data

minimize
$$\sum_{i=1}^{n} (\theta_i - ANN(t_i))^2$$

is given, employ instead:

minimize
$$\sum_{i=1}^{n} \left(\text{ANN''}(t) + \lambda \text{ANN'}(t_i) + \frac{g}{L} \sin \text{ANN}(t_i) \right)^2$$

This approach is called **physics-informed neural networks** (PINNs)!

Current Research – More "Challenging" Problems

Deep learning

- Courses
 - TU Delft: https://ocw.tudelft.nl/courses/ai-skills-introduction-to-unsupervised-deep-and-reinforcement-learning/subjects/module-4-introduction-to-deep-learning/
 - Stanford University: https://cs230.stanford.edu/

Physics-informed neural networks

- Blog posts
 - https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/so-what-is-a-physics-informed-neural-neur
- Videos
 - https://www.youtube.com/@CAMLabETHZurich/videos
 - https://www.youtube.com/@Eigensteve

...and more!

Questions?

Thank you for your attention!