WHAT IS CLAIMED IS:

1. A semiconductor light emitting device comprising: a substrate;

an n-type layer provided on the substrate and made of a nitride semiconductor material;

a multiple quantum well structure active layer including a plurality of well layers each made of $In_xGa_{(1-x-y)}Al_yN$ (0≤x, 0≤y, x+y<1)/and a plurality of barrier layers each made of $In_sGa_{(1-p-t)}Al_tN$ (0≤s, 0≤t, s+t<1), the multiple quantum well structure active layer being provided on the n-type layer; and

a p-type layer provided on the multiple quantum well structure active/layer and made of a nitride semiconductor material.

wherein the p-type layer contains hydrogen, and the hydrogen concentration of the p-type layer is greater than or equal to about 1x1016 atoms/cm3 and less than or equal to about 1x1019 atoms/cm3.

2. A semiconductor light emitting device according to claim 1, wherein the p-type layer contains Mg, and the Mg concentration of the p-type layer is greater than or equal to about 4x1019 atoms/cm3 and less than or equal to

about 1×10²¹ atoms/cm².

3. A semiconductor light emitting device according to claim 1, further comprising a p-type electrode for applying a voltage via the p-type layer to the multiple quantum well structure active layer, wherein the p-type electrode contains atoms selected from the group consisting of Pd. Sc. Y. La. Ce. Pr. Nd. Sm. Eu. Tb. Ti, Zr., Hf. V. Nb and Ta.

- 4. A semiconductor light emitting device according to claim 2, further comprising a p-type electrode for applying a voltage via the p-type layer to the multiple quantum well structure active layer, wherein the p-type electrode contains atoms selected from the group consisting of Pd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Tb, Ti, Zr, Hf, V, Nb and Ta,
- 5. A semiconductor light emitting device according to claim 1, the hydrogen concentration of the n-type layer is less than or equal to 1×10^{17} atoms/cm³.
- 6. A semiconductor light emitting device according to claim 4, the hydrogen concentration of the n-type layer

er 6

4

is less than or equal to 1×1017 atoms/cm3.

- 7. A semiconductor light emitting device according to claim 1, further comprising a layer including Al, wherein the p-type layer is provided, via the layer including Al, on the multiple quantum well structure active layer.
- 8. A semiconductor light emitting device according to claim 7, the layer including Al has a thickness of about 5 nm or more.
- 9. A method for producing a semiconductor light emitting device, the method comprising the steps of:

growing a nitride semiconductor material on a substrate to form an n-type layer;

forming a multiple quantum well structure active layer including a plurality of well layers each made of $In_xGa_{(1-x-y)}Al_yN$ (0 \le x, 0 \le y, x+y<1) and a plurality of barrier layers each made of $In_xGa_{(1-x-y)}Al_yN$ (0 \le s, 0 \le t, s+t<1), the multiple quantum well structure active layer being provided on the n-type layer; and

growing a nitride semiconductor material on the multiple quantum well structure active layer to form a p-type layer,

Sup Y

wherein the step of growing the p-type layer includes the step of growing a nitride semiconductor material in an atmosphere not containing hydrogen gas while keeping a temperature of the substrate at a first growth temperature.

10. A method according to claim 9, wherein the step of forming the p-type layer further includes the step of lowering the temperature of the substrate from the first growth temperature to about 400°C in the atmosphere not containing hydrogen gas after the step of growing the nitride semiconductor material in the atmosphere not containing hydrogen gas.