IMPORTANT: Besides your **calculator** and the sheets you use for calculations you are only allowed to have an A4 sized **"copy sheet"** during this exam. Notes, problems and alike are not permitted. **Please submit your "copy sheet"** along with your **solutions**. You may get your "copy sheet" back after your solutions have been graded. **Do not forget to write down units and convert units carefully! Cell phones are not allowed and should be placed on the front desk before the exam.**

EHB222E INTRODUCTION TO ELECTRONICS (11394) Midterm Exam #1 3 November 2015 13.30-15.30 inci ÇİLESİZ, PhD, Hacer ATAR YILDIZ, PhD EEF 4104

- 1. Assume you have a diode made of n- and p-typed doped silicon with the following parameters: μ_n = 1600 cm²/Vs, μ_p = 600 cm²/Vs. n_i = 1,5 10¹¹0 1/cm³, q = 1,602 10¹¹9 C, ϵ_r = 12, ϵ_o = 8,85 10¹¹2 F/m, V_T = 25 mV.
 - a. Find the specific resistances of n- and p-type silicon if dopant densities are $4\ 10^{15}$ /cm³ and $2\ 10^{16}$ /cm³, respectively. (8 points)
 - b. Calculate minority and majority carrier densities for both doped regions.(5 points)
 - c. Find the barrier voltage and saturation current for a junction area of **0,2** mm². (8 points) $\tau_n = \tau_p = 1$ µsec.
 - d. Determine the depletion zone width in unbiased state, when the junction is reverse biased at 2,75 V and when it is forward biased at 0,25 V. (9 points)
- 2. For the circuit shown on the right sketch V_{out} as a function of V_{in} for V_{in}: -10 V to +10 V assuming all three resistors are 10k and the voltage drop across conducting diodes are constant at 0,6 V. (30 points)

 HINT: Analyze the circuit first at V_{in} = 0V; then at +10 V and -10 V, and finally at values in between.
- Study DC characteristics of the 3-stage BJT amplifier circuit with |VBE| = 0,6 V, hFE = 200 for all four transistors. Do not neglect base currents.
 - a. Design a current source that will provide 0,4 mA biasing current to the differential stage. (10 points)
 - b. Choose **R**_{C3} such that, T₃ is in active mode (30 points)

+10 V

GOOD LUCK

SOLUTIONS:

Using Einstein Equation , i.e., $D_{p/n}=V_T\mu_{p/n}\Rightarrow D_p=15\frac{cm^2}{s}$; $D_n=40\frac{cm^2}{s}$

a.
$$\sigma_p = q \cdot \left(\frac{n_i^2}{N_A} \mu_n + N_A \mu_p\right) \cong q N_A \mu_p = 1.92 / \Omega cm \Rightarrow \rho_p = \underline{0.52\Omega cm}$$

$$\sigma_n = q \cdot \left(N_D \mu_n + \frac{n_i^2}{N_D} \mu_p\right) \cong q N_D \mu_n = 1.03 / \Omega cm \Rightarrow \rho_n = \underline{0.98\Omega cm}$$

$$n_n = N_D = \underline{4 \cdot 10^{15} / cm^3}; p_n = \frac{n_i^2}{N_D} = \underline{5.6 \cdot 10^4 / cm^3}$$
 b.
$$p_p = N_A = \underline{2 \cdot 10^{16} / cm^3}; n_p = \frac{n_i^2}{N_A} = \underline{1.13 \cdot 10^4 / cm^3}$$
 c.
$$V_B = V_T \cdot \ln \left(\frac{N_A \cdot N_D}{n_i^2}\right) = \underline{665mV} \text{ and } I_o = A \cdot q \cdot n_i^2 \cdot \left[\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A}\right] = \underline{926fA}$$

c.
$$V_B = V_T \cdot \ln\left(\frac{N_A \cdot N_D}{n_i^2}\right) = \underline{\underline{665mV}}$$
 and $I_o = A \cdot q \cdot n_i^2 \cdot \left[\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A}\right] = \underline{\underline{926fA}}$ Where $L_{n/p} = \sqrt{D_{n/p} \tau_{n/p}} \Rightarrow L_n = 632nm; L_p = 387nm;$

d. unbiased
$$w_{dep} = \sqrt{\frac{2 \cdot \varepsilon_o \cdot \varepsilon_r \cdot V_B}{q}} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) = \underbrace{\frac{0,51 \mu m}{m}}$$
 with reverse bias at 2,5 V, $w_{dep} = \sqrt{\frac{2 \cdot \varepsilon_o \cdot \varepsilon_r \cdot \left(V_B + V_{bias}\right)}{q}} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) = \underbrace{\frac{1,17 \mu m}{m}}$ with forward bias at 0,25 V, $w_{dep} = \sqrt{\frac{2 \cdot \varepsilon_o \cdot \varepsilon_r \cdot \left(V_B - V_{bias}\right)}{q}} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) = \underbrace{\frac{0,41 \mu m}{m}}$

2. Assume there is no V_{in}. V_{out} = 0V because of the symmetry of the circuit, and because all diodes are conducting. This is the same as $V_{in} = 0V$. Now assume $V_{in} = 10V$. We can easily see that D₁ and D₃ are reverse biased because most of the voltage drop from +10 V to -10 V is over the resistors R_1 and R_2 . In other words, the anode of D_1 is much less than +10V whereas the cathode is at +10V (reverse bias). Also, D₄ is conducting, thus, the cathode of D₃ is at 9,4V wheras the anode of D₃ is much less than +9,4V. That means current flows (a) from +10V over R₁, D₂, and R₃ to ground (follow blue line), and (b) from V_{in} over D₄ and R₄ to -10V. Since only 0,6V drops on the conducting diodes 9,4V drops over the two resistors R₁ and R₃. Since R_1 and R_3 have equal values, we divide the voltage drop by 2 and this is $V_{out} = 4.7V$.

Now assume $V_{in} = -10V$. Similar to the observations above, D_4 and D_2 are reverse biased because most of the voltage drop from +10 V to -10 V is again over the resistors R₁ and R₂. In other words, the cathode of D₄ is much higher than -10V whereas the anode is at -10V (reverse bias again). Also, D₁ is conducting, thus, the anode of D₂ is at -9,4V whereas the cathode of D₂ is much higher than -9,4V. That means current flows (a) from the ground over R_3 , D_3 , and R_2 to -10V (follow red line), and (b) from +10V over R₁ and D₁ to V_{in}. Since only 0,6V drops on the conducting diodes 9,4V drops over the two resistors R₂ and R₃. Since R₂ and R₃ have equal values, we divide the voltage drop by 2 and

+10 V R_1 D_1 V_{out} V_{in} D_4 R_3 R_2 10 V

this $V_{out} \\$ Finally, we need to consider the output for $0V \ge V_{in} \ge -10V$ and $0V \le V_{in} \le +10V$. One sees easily that when all the 4 diodes are conducting, the output V_{out} follows the input V_{in} because the circuit is symmetrical. When do all the 4 diodes conduct? See the sketch below....Capito???? DO NOT JUST MEMORIZE GUYS, TRY TO ANALYZE...

- 3. DC characteristics are to be studied.
 - a. You do your own design!
 - b. Without neglecting the base currents of the differential (the very first) stage, for $V_i = 0 \text{ V}$

$$I_{C1} = I_{C2} = \frac{h_{FE}}{h_{FF} + 1} \cdot \frac{I_{ref}}{2} = \frac{200}{200 + 1} \cdot \frac{0.4mA}{2} \Rightarrow I_{C1} = I_{C2} = \underbrace{0.199mA}_{C1}$$

$$-(I_{C2}-I_{B3})33k+V_{BE3}+(h_{FE}+1)I_{B3}4k7=0$$

$$I_{C3} = h_{FE} \frac{33k * I_{C2} - V_{BE3}}{(h_{FE} + 1)4k7 + 33k} = 200 \frac{33k * 0,199mA - 0,6V}{(200 + 1)4k7 + 33k} = \underbrace{1,2mA}_{C3} = \underbrace{1,2mA$$

Now we need to find the base voltage of T₃. $V_{B3}=-10V+(I_{C2}-I_{B3})33k=\underline{-3.63V}$

For T3 to be in active mode $\,V_{{\it B}3} \leq V_{{\it C}3}$. I take $\,V_{{\it C}3} = -3,\!5V > -3,\!63V$. Thus

$$V_{C3} = V_{B4} = -10V + 4k7 \cdot I_{E4} + V_{BE4} = -10V + 4k7 \cdot I_{B4} (h_{FE} + 1) + 0.6V = -3.5V$$

$$\Rightarrow I_{C4} = h_{FE} \cdot I_{B4} = h_{FE} \frac{10V - 3.5V - 0.6V}{4k7 \cdot (h_{FE} + 1)} = \underbrace{\frac{1.2mA}{4k7 \cdot (h_{FE} + 1)}}_{=}$$

For T₃ to be in active mode

$$V_{C3} = -3.5V = 10V - R_{C3}(I_{C3} + I_{B4}) \Rightarrow R_{C3} \le \frac{10V + 3.5V}{(I_{C3} + I_{B4})} = \frac{11k1}{100}$$