

CS153: Compilers Lecture 10: LL Parsing

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Greg Morrisett

Announcements

- HW3 LLVMlite out
 - Due Oct 15

Today

- LL Parsing
 - Nullable, First, Follow sets
 - Constructing an LL parsing table

LL(k) Parsing

- Our parser combinators backtrack
 - •alt p1 p2 = fun cs -> (p1 cs) @ (p2 c2) runs p1 on cs, then backs up and runs p2 on same input!
 - Inefficient! Tries all possible parses
- Could we somehow know which production to use?
- Basic idea: look at the next k symbols to predict whether we want p1 or p2
- How do we predict which production to use?

FIRST Sets

• Given string γ of terminal and non-terminal symbols FIRST(γ) is set of all terminal symbols that can start a string derived from γ

$$E \rightarrow T E'$$
 $T \rightarrow F T'$ $F \rightarrow id$
 $E' \rightarrow + T E'$ $T' \rightarrow * F T'$ $F \rightarrow num$
 $E' \rightarrow - T E'$ $T' \rightarrow / F T'$ $F \rightarrow (E)$
 $E' \rightarrow$ $T' \rightarrow$

- E.g., $FIRST(F T') = \{ id, num, (\} \}$
- We can use FIRST sets to determine which production to use!
 - Given nonterminal X, and all its productions

$$X \rightarrow \gamma_1, X \rightarrow \gamma_2, ..., X \rightarrow \gamma_n,$$
 if FIRST(γ_1), ..., FIRST(γ_n) all mutually disjoint, then next character tells us which production to use

Computing FIRST Sets

- See Appel for algorithm. Intuition here...
- Consider FIRST(X Y Z)
- How do compute it? Do we just need to know FIRST(X)?
- What if *X* can derive the empty string?
- Then $FIRST(Y) \subseteq FIRST(X Y Z)$
- What if Y can also derive the empty string?
- Then $FIRST(Z) \subseteq FIRST(X Y Z)$

Computing FIRST, FOLLOW and Nullable

- To compute FIRST sets, we need to compute whether nonterminals can produce empty string
- •FIRST(γ) = all terminal symbols that can start a string derived from γ
- Nullable(X) = true iff X can derive the empty string
- •We will also compute: FOLLOW(X) = all terminals that can immediately follow X
 - •i.e., $t \in FOLLOW(X)$ if there is a derivation containing Xt
- Algorithm iterates computing these until fix point reached
- **Note:** knowing nullable(X) and FIRST(X) for all non-terminals X allows us to compute nullable(Y) and FIRST(Y) for arbitrary strings of symbols Y

$S \rightarrow E \text{ eof}$
$E \rightarrow T E'$
$E' \rightarrow + T E'$
$E' \rightarrow - T E'$
$E' \rightarrow$
$T \rightarrow F T'$
$T' \rightarrow * F T'$

	nullable	FIRST	FOLLOW
5	上		
Ε	上		
E'	Т		
T	上		
T'	Т		
F			

 $F \rightarrow id$ $F \rightarrow num$ $F \rightarrow (E)$

 $T' \rightarrow / F T'$

 $T' \rightarrow$

X is nullable if there is a production $X \rightarrow \gamma$ where γ is empty, or γ is all nullable nonterminals

T' and E' are nullable!

And, we've finished nullable. Why?

$$S \rightarrow E \text{ eof}$$
 $E \rightarrow T E'$
 $E' \rightarrow + T E'$
 $E' \rightarrow - T E'$
 E

	nullable	FIRST	FOLLOW
5	上		
Ε			
E'	Т	+ -	
T	上		
T'	Т	* /	
F	<u></u>	id num (

 $F \rightarrow id$ $F \rightarrow num$ $F \rightarrow (E)$

Given production $X \rightarrow t\gamma$, $t \in FIRST(X)$

$$S \rightarrow E \text{ eof}$$
 $E \rightarrow T E'$
 $E' \rightarrow + T E'$
 $E' \rightarrow - T E'$
 $E' \rightarrow$
 $T \rightarrow F T'$
 $T' \rightarrow * F T'$
 $T' \rightarrow / F T'$
 $T' \rightarrow / F T'$

	nullable	FIRST	FOLLOW
S		id num (
Ε	1	id num (
E'		+ -	
T	4	id num (
T'	T	* /	
F	<u>L</u>	id num (

 $F \rightarrow id$

 $F \rightarrow \text{num}$

 $F \rightarrow (E)$

Given production $X \to \gamma Y \sigma$, if nullable(γ) then FIRST(Y) \subseteq FIRST(X)

Repeat until no more changes...

$$S \rightarrow E \text{ eof}$$
 $E \rightarrow T E'$
 $E' \rightarrow + T E'$
 $E' \rightarrow - T E'$
 $E' \rightarrow - T E'$
 $E' \rightarrow T$

	nullable	FIRST	FOLLOW
5	上	id num (
Ε		id num (eof)
E'	Т	+ -	eof)
T	上	id num (+ - eof)
T'	Т	* /	+ - eof)
F		id num (* / + - eof)

Given production $X \rightarrow \gamma Z \delta \sigma$

$$F \rightarrow id$$
 $F \rightarrow num$

$$F \rightarrow (E)$$

$$FIRST(\delta) \subseteq FOLLOW(Z)$$

and if δ is nullable then FIRST(σ) \subseteq FOLLOW(Z) and if $\delta \sigma$ is nullable then FOLLOW(X) \subseteq FOLLOW(Z)

Predictive Parsing Table

- Make predictive parsing table with rows nonterminals, columns terminals
 - Table entries are productions
 - When parsing nonterminal *X*, and next token is *t*, entry for *X* and *t* will tell us which production to use

$$S \rightarrow E \text{ eof } T \rightarrow FT'$$
 $E \rightarrow TE' T' \rightarrow *FT' Example$
 $E' \rightarrow +TE' T' \rightarrow /FT'$
 $E' \rightarrow -TE' T' \rightarrow F \rightarrow \text{id}$
 $E' \rightarrow F \rightarrow \text{num}$
 $E' \rightarrow F \rightarrow \text{num}$
 $E' \rightarrow F \rightarrow \text{num}$

	nullable	FIRST	FOLLOW
5	Т	id num (
Ε	Т	id num (eof)
E'	Т	+ -	eof)
T	Т	id num (+ - eof)
T'	Т	* /	+ - eof)
F		id num (* / + - eof)

	id	num	+	-	*	/	()	eof
S	$S \to E \text{ eof}$	$S \to E \text{ eof}$					$S \to E \text{ eof}$		
Ε	$E \rightarrow T E'$	$E \rightarrow T E'$					$E \rightarrow T E'$		
E'			$E' \rightarrow + T E'$	$E' \rightarrow - T E'$				<i>E'</i> →	E' →
T	$T \to F T'$	$T \rightarrow F T'$					$T \rightarrow F T'$		
T'			$T' \rightarrow$	$T' \rightarrow$	T' →* F T'	$T' \rightarrow / F T'$		<i>T′</i> →	<i>T′</i> →
F	$F \rightarrow id$	$F \rightarrow \text{num}$					$F \rightarrow (E)$		

For $X \rightarrow \gamma$, add $X \rightarrow \gamma$ to row X column t for all $t \in FIRST(\gamma)$

For $X \to \gamma$, if γ is nullable, add $X \to \gamma$ to row X column t for all $t \in FOLLOW(X)$

	id	num	+	_	*	/	()	eof
S	$S \to E \text{ eof}$	$S \to E \text{ eof}$					$S \to E \text{ eof}$		
Ε	$E \rightarrow T E'$	$E \rightarrow T E'$					$E \rightarrow T E'$		
E'			$E' \rightarrow + T E'$	$E' \rightarrow - T E'$				E' →	E' →
T	$T \to F T'$	$T \to F T'$					$T \to F T'$		
T'			$T' \rightarrow$	$T' \rightarrow$	$T' \rightarrow * F T'$	$T' \rightarrow / F T'$		<i>T'</i> →	$T' \rightarrow$
F	$F \rightarrow id$	$F \rightarrow \text{num}$					$F \rightarrow (E)$		

- If each cell contains at most one production, parsing is predictive!
 - Table tells us exactly which production to apply

	id	num	+	-	*	/	()	eof
S	$S \to E \text{ eof}$	$S \to E \text{ eof}$					$S \to E \text{ eof}$		
Ε	$E \to T E'$	$E \rightarrow T E'$					$E \rightarrow T E'$		
E'			$E' \rightarrow + T E'$	E' → - T E'				E' →	E' →
T	$T \to F T'$	$T \rightarrow F T'$					$T \rightarrow F T'$		
T'			<i>T′</i> →	<i>T′</i> →	T' →* F T'	$T' \rightarrow / F T'$		<i>T′</i> →	<i>T′</i> →
F	$F \rightarrow id$	$F \rightarrow \text{num}$					$F \rightarrow (E)$		

S
E eof
T E' eof
F T' E' eof
(E) T' E' eof

Parse S, next token is (, use $S \rightarrow E \text{ eof}$) Parse E, next token is (, use $E \rightarrow T E'$) Parse E, next token is (, use $E \rightarrow E E'$) Parse E, next token is (, use $E \rightarrow E E'$) (foo + 7) eof

	id	num	+	_	*	/	()	eof
S	$S \to E \text{ eof}$	$S \to E \text{ eof}$					$S \to E \text{ eof}$		
Ε	$E \rightarrow T E'$	$E \rightarrow T E'$					$E \rightarrow T E'$		
E'			$E' \rightarrow + T E'$	E' → - T E'				E' →	E' →
T	$T \to F T'$	$T \rightarrow F T'$					$T \to F T'$		
T'			<i>T′</i> →	<i>T′</i> →	$T' \rightarrow * F T'$	$T' \rightarrow / F T'$		<i>T′</i> →	<i>T′</i> →
F	$F \rightarrow id$	$F \rightarrow \text{num}$					$F \rightarrow (E)$		

S
E eof
T E' eof
F T' E' eof
(E) T' E' eof
(T E') T' E' eof
(F T' E') T' E' eof

Parse S, next token is (, use $S \rightarrow E$ eof Parse E, next token is (, use $E \rightarrow T$ E'Parse E, next token is (, use $E \rightarrow E$ E'Parse E, next token is (, use $E \rightarrow E'$ Parse E, next token is id, use $E \rightarrow E'$

Parse F, next token is id, use $F \rightarrow id$

(foo + 7) eof

	id	num	+	_	*	/	()	eof
S	$S \to E \text{ eof}$	$S \to E \text{ eof}$					$S \to E \text{ eof}$		
Ε	$E \rightarrow T E'$	$E \rightarrow T E'$					$E \rightarrow T E'$		
E'			$E' \rightarrow + T E'$	E' → - T E'				E' →	E' →
T	$T \to F T'$	$T \rightarrow F T'$					$T \to F T'$		
T'			<i>T′</i> →	<i>T′</i> →	T' →* F T'	$T' \rightarrow / F T'$		<i>T′</i> →	<i>T′</i> →
F	$F \rightarrow id$	$F \rightarrow \text{num}$					$F \rightarrow (E)$		

(*FT'E'*) *T'E'* eof

(id T' E') T' E' eof

(id E') T' E' eof

(id + TE') T'E' eof

(id + FT'E')T'E' eof

Parse F, next token is id, use $F \rightarrow id$

Parse T', next token is +, use $T' \rightarrow$

Parse E', next token is +, use $E' \rightarrow + T E'$

Parse T, next token is num, use $T \rightarrow F T'$

Parse F, next token is num, use $F \rightarrow$ num

foo + 7) eof

	id	num	+	-	*	/	()	eof
S	$S \to E \text{ eof}$	$S \to E \text{ eof}$					$S \to E \text{ eof}$		
Ε	$E \rightarrow T E'$	$E \rightarrow T E'$					$E \rightarrow T E'$		
E'			$E' \rightarrow + T E'$	$E' \rightarrow - T E'$				<i>E'</i> →	E' →
T	$T \to F T'$	$T \rightarrow F T'$					$T \rightarrow F T'$		
T'			<i>T′</i> →	<i>T′</i> →	$T' \rightarrow * F T'$	$T' \rightarrow / F T'$		<i>T′</i> →	<i>T′</i> →
F	$F \rightarrow id$	$F \rightarrow \text{num}$					$F \rightarrow (E)$		

```
(id + FT'E') T'E' eof Parse F, next token is num, use F \to num

(id + num T'E') T'E' eof Parse T', next token is ), use T' \to

(id + num E') T'E' eof Parse E', next token is ), use E' \to

(id + num) T'E' eof Parse T', next token is eof, use T' \to

(id + num) E' eof Parse E', next token is eof, use E' \to

(id + num) eof
```

(foo + 7) eof

LL(1), LL(k), LL(*)

 Grammars whose predictive parsing table contain at most one production per cell are called LL(1)

Left-to-right parse

Leftmost derivation

1-symbol lookahead

i.e., go through token streamfrom left to right.(Almost all parsers do this)

Derivation expands the leftmost non-terminal

LL(1), LL(k), LL(*)

- Grammars whose predictive parsing table contain at most one production per cell are called LL(1)
- Can be generalized to LL(2), LL(3), etc.
 - Columns of predictive parsing table have k tokens
 - •FIRST(*X*) generalized to FIRST-*k*(*X*)
- •An LL(*) grammar can determine next production using finite (but maybe unbounded) lookahead
- •An ambiguous grammar is not LL(k) for any k, or even LL(*)

•Why?

LR(k)

- What if grammar is unambiguous but not LL(k)?
- LR(k) parsing is more powerful technique

Rightmost derivation

Derivation expands the rightmost non-terminal

(Constructs derivation in reverse order!)