Clase práctica de Cálculo Avanzado - 8/5

Ejercicio 1. Sea $C \subset \mathbb{R}$ el conjunto de Cantor. Probar que es un subconjunto cerrado con la métrica usual.

Solución. Recordamos que el conjunto de Cantor admite la siguiente descripción:

$$\bigcap_{n=1}^{\infty}\bigcup_{k=0}^{3^n-1}\left(\left[\frac{3k}{3^n},\frac{3k+1}{3^n}\right]\cup\left[\frac{3k+2}{3^n},\frac{3k+3}{3^n}\right]\right).$$

Cada uno de los términos de la intersección es una unión finita de intervalos cerrados. Por lo tanto son cerrados. Entonces, como intersección arbitraria de cerrados es cerrado, C es un subconjunto cerrado de \mathbb{R} .

Ejercicio 2. Sea (X, d) un espacio métrico, y sea $F \subseteq X$ un subconjunto cerrado. Probar que $F^{\circ} = \emptyset$ si y sólo si existe un abierto $G \subseteq X$ tal que $F = \partial G$.

Solución. \Leftarrow) Sabemos que $F = \partial G$ con G un abierto de X. Veamos que $(\partial G)^{\circ} = \emptyset$. Si no es vacío, existe $x \in (\partial G)^{\circ}$. Entonces existe r > 0 tal que $B(x,r) \subseteq \partial G$. En particular, $B(x,r) \cap G \neq \emptyset$. Por lo tanto, existe $y \in B(x,r) \cap G$. Como B(x,r) está contenida en ∂G , entonces $y \in G \cap \partial G$. Pero $\partial G = \overline{G} \setminus G^{\circ} = \overline{G} \setminus G$. Es decir que $G \cap \partial G = \emptyset$, lo cual es absurdo, pues teníamos que $y \in G \cap \partial G$.

 \Rightarrow) Veamos que F = $\partial(F^c)$. Por definición tenemos que

$$\mathfrak{d}(\mathsf{F}^{\mathsf{c}}) = \overline{\mathsf{F}^{\mathsf{c}}} \cap \overline{(\mathsf{F}^{\mathsf{c}})^{\mathsf{c}}} = \overline{\mathsf{F}^{\mathsf{c}}} \cap \overline{\mathsf{F}} = \mathfrak{d}\mathsf{F}.$$

Es decir que basta probar que $F=\partial F$. Como F es cerrado, $F=\overline{F}=\partial F\cup F^\circ$. Además $F^\circ=\emptyset$, entonces tenemos lo que queríamos.

Ejercicio 3. Sea (X, d) un espacio métrico, y sea $A \subseteq X$. Probar que $\partial(A^{\circ}) \subseteq \partial A$.

Solución. Sea $x \in \partial(A^\circ)$. Sea r > 0, veamos que $B(x,r) \cap A \neq \emptyset$ y que $B(x,r) \cap A^c \neq \emptyset$. Sabemos que $B(x,r) \cap A^\circ \neq \emptyset$ y que $B(x,r) \cap (A^\circ)^c \neq \emptyset$.

Como $B(x,r) \cap A^{\circ} \subseteq B(x,r) \cap A$, entonces $B(x,r) \cap A \neq \emptyset$. Ahora supongamos que $B(x,r) \cap A^{c} = \emptyset$. Entonces $B(x,r) \subseteq A$. Es decir que $x \in A^{\circ}$. Más aún, $B(x,r) \subseteq A^{\circ}$. Luego $B(x,r) \cap (A^{\circ})^{c} = \emptyset$, lo cual es absurdo. Por lo tanto $B(x,r) \cap A^{c} \neq \emptyset$.

Ejercicio 4. Sea X = C[0, 1]. Consideramos las siguientes distancias en X:

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx;$$

$$d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Sea $\{f_n\}_{n\in\mathbb{N}}$ la sucesión dada por $f_n(x)=x^n$. Analizar su convergencia con ambas métricas.

Solución. Primero veamos que $\lim_{n\to\infty} f_n = 0$ con d_1 :

$$d_1(f_n,0) = \int_0^1 |x^n - 0| dx = \frac{x^{n+1}}{n+1}|_0^1 = \frac{1}{n+1}.$$

Al tomar límite en la última expresión, obtenemos que $\lim_{n\to\infty} f_n = 0$.

Ahora veamos que $\{f_n\}_{n\in\mathbb{N}}$ no es convergente con d_∞ . Supongamos que $\lim_{n\to\infty} f_n = g$. Entonces si $x\in[0,1]$, $|f_n(x)-g(x)|\leq d_\infty(f_n,g)\to 0$. Luego

$$g(x) = \begin{cases} 1 & \text{si } x = 1, \\ 0 & \text{si } x \neq 1. \end{cases}$$

Pero $g \notin C[0,1]$, pues no es continua. Por lo tanto $\{f_n\}_{n \in \mathbb{N}}$ no converge con d_{∞} .