MAT102 - College Algebra - Polynomial and Rational Functions

3.1 Quadratic Functions and Applications [1]

Miraj Samarakkody

Tougaloo College

Updated - June 2, 2025

▶ A function of the form f(x) = mx + c $(m \neq 0)$ is a linear function.

- A function of the form $f(x) = mx + c \ (m \neq 0)$ is a linear function.
- ► The function defined by $f(x) = ax^2 + bx + c$ ($a \neq 0$) is called a **quadratic function**.

- A function of the form $f(x) = mx + c \ (m \neq 0)$ is a linear function.
- ► The function defined by $f(x) = ax^2 + bx + c$ ($a \neq 0$) is called a **quadratic function**.

- A function of the form $f(x) = mx + c \ (m \neq 0)$ is a linear function.
- ► The function defined by $f(x) = ax^2 + bx + c$ ($a \neq 0$) is called a **quadratic function**.

A function defined by $f(x) = ax^2 + bx + c$ ($a \ne 0$) is called a **quadratic function**. By completing the square, f(x) can be expressed in **vertex form** as $f(x) = a(x - h)^2 + k$.

▶ The graph of f is a parabola with vertex (h, k).

- ▶ The graph of f is a parabola with vertex (h, k).
- ▶ If a > 0, the parabola opens upward, and the vertex is the minimum point. The minimum value of f is k.

- ▶ The graph of f is a parabola with vertex (h, k).
- If a > 0, the parabola opens upward, and the vertex is the minimum point. The minimum value of f is k.
- ▶ If a < 0, the parabola opens downward, and the vertex is the minimum point. The minimum value of f is k.

- ▶ The graph of f is a parabola with vertex (h, k).
- If a > 0, the parabola opens upward, and the vertex is the minimum point. The minimum value of f is k.
- ▶ If a < 0, the parabola opens downward, and the vertex is the minimum point. The minimum value of f is k.
- ▶ The axis of symmetry is x = h. This is the vertical line that passes through the vertex.

Give
$$f(x) = -2(x-1)^2 + 8$$
,

1. Determine whether the graph of the parabola opens upward or downward.

Give
$$f(x) = -2(x-1)^2 + 8$$
,

- Determine whether the graph of the parabola opens upward or downward.
- 2. Identify the vertex.

Give
$$f(x) = -2(x-1)^2 + 8$$
,

- 1. Determine whether the graph of the parabola opens upward or downward.
- 2. Identify the vertex.
- 3. Determine the *x*-intercepts.

Give
$$f(x) = -2(x-1)^2 + 8$$
,

- 1. Determine whether the graph of the parabola opens upward or downward.
- 2. Identify the vertex.
- 3. Determine the *x*-intercepts.
- 4. Determin the *y*-intercepts.

Give
$$f(x) = -2(x-1)^2 + 8$$
,

- 1. Determine whether the graph of the parabola opens upward or downward.
- 2. Identify the vertex.
- 3. Determine the *x*-intercepts.
- 4. Determin the *y*-intercepts.
- 5. Sketch the function.

Give
$$f(x) = -2(x-1)^2 + 8$$
,

- 1. Determine whether the graph of the parabola opens upward or downward.
- 2. Identify the vertex.
- 3. Determine the *x*-intercepts.
- 4. Determin the *y*-intercepts.
- 5. Sketch the function.
- 6. Determine the axis of symmetry.

Give
$$f(x) = -2(x-1)^2 + 8$$
,

- 1. Determine whether the graph of the parabola opens upward or downward.
- 2. Identify the vertex.
- 3. Determine the x-intercepts.
- 4. Determin the *y*-intercepts.
- 5. Sketch the function.
- 6. Determine the axis of symmetry.
- 7. Determine the maximum or minimum value of f.

Give
$$f(x) = -2(x-1)^2 + 8$$
,

- 1. Determine whether the graph of the parabola opens upward or downward.
- 2. Identify the vertex.
- 3. Determine the *x*-intercepts.
- 4. Determin the *y*-intercepts.
- 5. Sketch the function.
- 6. Determine the axis of symmetry.
- 7. Determine the maximum or minimum value of f.
- 8. Write down the domain and range in interval notaion.

Given
$$f(x) = 3x^2 + 12x + 5$$
,

1. Write the function in vertex form.

Given
$$f(x) = 3x^2 + 12x + 5$$
,

- 1. Write the function in vertex form.
- 2. Identify the vertex.

Given
$$f(x) = 3x^2 + 12x + 5$$
,

- 1. Write the function in vertex form.
- 2. Identify the vertex.
- 3. Identify the x-intercept.

Given
$$f(x) = 3x^2 + 12x + 5$$
,

- 1. Write the function in vertex form.
- 2. Identify the vertex.
- 3. Identify the *x*-intercept.
- 4. Identify the y-intercept.

Given
$$f(x) = 3x^2 + 12x + 5$$
,

- 1. Write the function in vertex form.
- 2. Identify the vertex.
- 3. Identify the *x*-intercept.
- 4. Identify the *y*—intercept.
- 5. Sketch the function.

Given
$$f(x) = 3x^2 + 12x + 5$$
,

- 1. Write the function in vertex form.
- 2. Identify the vertex.
- 3. Identify the *x*-intercept.
- 4. Identify the *y*—intercept.
- 5. Sketch the function.
- 6. Determine the axis of symmetry.

Given
$$f(x) = 3x^2 + 12x + 5$$
,

- 1. Write the function in vertex form.
- 2. Identify the vertex.
- 3. Identify the *x*-intercept.
- 4. Identify the *y*—intercept.
- 5. Sketch the function.
- 6. Determine the axis of symmetry.
- 7. Determine the minimum or maximum value of f.

Given
$$f(x) = 3x^2 + 12x + 5$$
,

- 1. Write the function in vertex form.
- 2. Identify the vertex.
- 3. Identify the *x*-intercept.
- 4. Identify the *y*—intercept.
- 5. Sketch the function.
- 6. Determine the axis of symmetry.
- 7. Determine the minimum or maximum value of f.
- 8. Write the domain and range in interval notation.

Vertex Formula to Find the Vertex of a Parabola

For
$$f(x) = ax^2 + bx + c$$
 $(a \neq 0)$, the vertex is given by
$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$$

Given
$$f = -x^2 + 4x - 5$$
,

1. State whether the graph of the parabola opens upward or downward.

Given
$$f = -x^2 + 4x - 5$$
,

- 1. State whether the graph of the parabola opens upward or downward.
- 2. Determine the vertex of the parabola by using the vertex formula.

Given
$$f = -x^2 + 4x - 5$$
,

- 1. State whether the graph of the parabola opens upward or downward.
- 2. Determine the vertex of the parabola by using the vertex formula.
- 3. Determine the x-intercepts.

Given
$$f = -x^2 + 4x - 5$$
,

- 1. State whether the graph of the parabola opens upward or downward.
- 2. Determine the vertex of the parabola by using the vertex formula.
- 3. Determine the x-intercepts.
- 4. Determine the *y*-intercepts.

Given
$$f = -x^2 + 4x - 5$$
,

- 1. State whether the graph of the parabola opens upward or downward.
- 2. Determine the vertex of the parabola by using the vertex formula.
- 3. Determine the x-intercepts.
- 4. Determine the *y*-intercepts.
- 5. Sketh the graph.

Given
$$f = -x^2 + 4x - 5$$
,

- 1. State whether the graph of the parabola opens upward or downward.
- 2. Determine the vertex of the parabola by using the vertex formula.
- 3. Determine the x-intercepts.
- 4. Determine the *y*-intercepts.
- 5. Sketh the graph.
- Determine the axis of symmetry.

Given
$$f = -x^2 + 4x - 5$$
,

- 1. State whether the graph of the parabola opens upward or downward.
- 2. Determine the vertex of the parabola by using the vertex formula.
- 3. Determine the x-intercepts.
- 4. Determine the *y*-intercepts.
- 5. Sketh the graph.
- 6. Determine the axis of symmetry.
- 7. Determine the minimmum or maximum value of f.

Given
$$f = -x^2 + 4x - 5$$
,

- 1. State whether the graph of the parabola opens upward or downward.
- 2. Determine the vertex of the parabola by using the vertex formula.
- 3. Determine the x-intercepts.
- 4. Determine the *y*-intercepts.
- 5. Sketh the graph.
- 6. Determine the axis of symmetry.
- 7. Determine the minimmum or maximum value of f.
- 8. Write the domain and range in interval notation.

Given a quadratic function defined by $f(x) = ax^2 + bx + c \ (a \neq 0)$,

Given a quadratic function defined by

$$f(x) = ax^2 + bx + c \ (a \neq 0),$$

▶ If $b^2 - 4ac = 0$, the graph of y = f(x) has one x-intercept.

Given a quadratic function defined by

$$f(x) = ax^2 + bx + c \ (a \neq 0),$$

- ▶ If $b^2 4ac = 0$, the graph of y = f(x) has one x-intercept.
- ▶ If $b^2 4ac > 0$, the graph of y = f(x) has two x-intercept.

Given a quadratic function defined by

$$f(x) = ax^2 + bx + c \ (a \neq 0),$$

- ▶ If $b^2 4ac = 0$, the graph of y = f(x) has one x-intercept.
- ▶ If $b^2 4ac > 0$, the graph of y = f(x) has two x-intercept.
- ▶ If $b^2 4ac < 0$, the graph of y = f(x) has no x-intercept.

Example - Using a Quadratic Function for Projectile Motion

A stone is thrown from a 100-m cliff at an initial speed of 20 m/sec at an angle of 30^0 from the horizontal. The height of the stone can be modeled by $h(t) = -4.9t^2 + 10t + 100$, where h(t) is the height in meters and t is the time in seconds after the stone is

released.

 Determine the time at which the stone will be at its maximum height.

Example - Using a Quadratic Function for Projectile Motion

A stone is thrown from a 100-m cliff at an initial speed of 20 m/sec at an angle of 30^0 from the horizontal. The height of the stone can be modeled by $h(t) = -4.9t^2 + 10t + 100$, where h(t) is the height in meters and t is the time in seconds after the stone is

released.

- Determine the time at which the stone will be at its maximum height.
- 2. Determine the maximum height.

Example - Using a Quadratic Function for Projectile Motion

A stone is thrown from a 100-m cliff at an initial speed of 20 m/sec at an angle of 30^0 from the horizontal. The height of the stone can be modeled by $h(t) = -4.9t^2 + 10t + 100$, where h(t) is the height in meters and t is the time in seconds after the stone is

released.

- Determine the time at which the stone will be at its maximum height.
- 2. Determine the maximum height.
- 3. Determine the time at which the stone will hit the ground.

Example - Applying a Quadratic Function to Geometry

A parking area is to be constructed adjacent to a road. The develoer has purchased 340 ft of fencing. Determine dimesions for the parking lot that would maximize the area. Then find the maximum area.

References

Julie Miller and Donna Gerken.

College Algebra.

McGraw-Hill Education, New York, 2nd edition, 2016.