PRIMERO, SIGUIENTE, PREDICT

Compiladores

Dpto. de Ingeniería de la Información y las Comunicaciones

Análisis descendente

- Objetivo: analizar una cadena de forma determinista.
- Punto de partida: autómata de pila para $G = (V_N, V_T, S, P)$.

Transiciones deterministas Transiciones no deterministas

- Problema: las transiciones no deterministas funcionan "a ciegas".
- Solución: usar como información el siguiente token a de la entrada.

Análisis descendente determinista

• ¿Cómo hacer determinista el autómata de pila anterior?

- con aquellos $a \in V_T$ que "predicen" el uso de la regla $A \to \alpha$.
- a solo puede predecir una regla de A.
- Esto se puede lograr con las gramáticas LL(1).

Terminales que predicen una regla (I)

- ¿Qué símbolos $a \in V_T$ predicen cada regla?
- En reglas $A \to \alpha$ que producen cadenas distintas de λ : $A \Rightarrow \alpha \Rightarrow^* aw$, siendo $a \in V_T$ y $w \in V_T^*$

- Los símbolos a que pueden aparecer en el primer nodo hoja desde α son símbolos que predicen $A \to \alpha$.
- En conjunto se denominan PRIMERO(α).

Terminales que predicen una regla (II)

• En reglas $A \to \alpha$ que producen λ : $A \Rightarrow \alpha \Rightarrow^* \lambda$ y $S \Rightarrow^* wAa\beta$, con $w \in V_T^*$ y $\beta \in (V_N \cup V_T)^*$.

- Los símbolos a que pueden aparecer en el primer nodo hoja a la derecha de A son símbolos que predicen $A \rightarrow \alpha$.
- En conjunto se llaman SIGUIENTE(A).

Conjunto PRIMERO (I)

- PRIMERO(X): $V_T \cup V_N \cup \{\lambda\} \rightarrow \mathcal{P}(V_T \cup \{\lambda\})$
- Casos base:
 - Si $X \in V_T$, PRIMERO $(X) = \{X\}$
 - Si $X = \lambda$, PRIMERO(λ) = { λ }
- Caso recursivo:
 - Si $X \in V_N$, y $X \to \alpha_1 \mid \cdots \mid \alpha_n$: PRIMERO $(X) = \text{PRIMERO}(\alpha_1) \cup \cdots \cup \text{PRIMERO}(\alpha_n)$

Conjunto PRIMERO (II)

- Llamamos $\alpha = X_1 X_2 \cdots X_k$ con $X_i \in (V_T \cup V_N) \ \forall i$
- PRIMERO $(X_1X_2\cdots X_k):(V_T\cup V_N)^*\to \mathcal{P}(V_T\cup \{\lambda\})$
- Inicializar:
 - PRIMERO(α) = \emptyset
- REPETIR desde i = 1 hasta k:
 - PRIMERO(α) = PRIMERO(α) \cup PRIMERO(X_i) $-\{\lambda\}$
 - Si $\lambda \notin \mathsf{PRIMERO}(X_i)$, salir de REPETIR.
- Sólo si $\lambda \in \mathsf{PRIMERO}(X_i) \ \forall i$ entonces:
 - PRIMERO(α) = PRIMERO(α) $\cup \{\lambda\}$

Conjunto PRIMERO (III)

• Ejemplo de cálculo de PRIMERO $(X_1X_2\cdots X_k)$

Conjunto SIGUIENTE (I)

- SIGUIENTE(X) : $V_N \to \mathcal{P}(V_T \cup \{\$\})$
- $a \in SIGUIENTE(X)$ si $S \Rightarrow^* wXa\beta$ con $w \in V_T^*$ y $\beta \in (V_T \cup V_N)^*$

• Imposible enumerar todas las formas sentenciales $wXa\beta$.

Conjunto SIGUIENTE (II)

- Inicializar: SIGUIENTE(X) = \emptyset
- Casos base:
 - Si X es el símbolo inicial de G:
 SIGUIENTE(X) = SIGUIENTE(X) ∪ {\$}
 - Si $Y \to \alpha X\beta$: SIGUIENTE(X) = SIGUIENTE(X) \cup (PRIMERO(β) - { λ })
- Caso recursivo:
 - Si $Y \to \alpha X$ o $Y \to \alpha X \beta$ y $\lambda \in \mathsf{PRIMERO}(\beta)$: SIGUIENTE $(X) = \mathsf{SIGUIENTE}(X) \cup \mathsf{SIGUIENTE}(Y)$

Conjunto SIGUIENTE (III)

• Ejemplo de cálculo de SIGUIENTE(X) caso base:

Conjunto SIGUIENTE (IV)

• Ejemplo de cálculo de SIGUIENTE(X) caso recursivo:

- $S \Rightarrow^* \gamma Y \delta \Rightarrow \gamma \alpha X \delta$
- $S \Rightarrow^* \gamma Y \delta \Rightarrow \gamma \alpha X \beta \delta$ con $\lambda \in \mathsf{PRIMERO}(\beta)$

Función PREDICT

- PREDICT($A \rightarrow \alpha$) : $P \rightarrow \mathcal{P}(V_T \cup \{\$\})$
- PREDICT($A \rightarrow \alpha$) = PRIMERO(α) { λ }
- Si $\lambda \in \mathsf{PRIMERO}(\alpha)$ entonces:
 - PREDICT($A \rightarrow \alpha$) = PREDICT($A \rightarrow \alpha$) \cup SIGUIENTE(A)