Équations Différentielles Linéaires d'ordre 1 $_{\rm Corrigé}$

1	D.	Δ	RΙ	10	7	1	X	Γ l-	é	_
		¬		∕ \	•		∕ \			

Novembre 2023

	Crédits:	Ibrahim	pour tout	(i'aime	pas les	EDL'
--	----------	---------	-----------	---------	---------	------

	1	(0)	1	/
Exercices.				
Exercice 11.1				2

Exercice 11.1 $[\Diamond \Diamond \Diamond]$

Résoudre les équations différentielles ci-dessous

1.
$$y' - 2y = 2 \operatorname{sur} \mathbb{R}$$
 2. $(x^2 + 1)y' + xy = x$ 3. $y' + \tan(x)y = \sin(2x) \operatorname{sur} \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 4. $y' - \ln(x)y = x^x \operatorname{sur} \mathbb{R}_+^*$ 5. $(1 - x)y' - y = \frac{1}{1 - x} \operatorname{sur} \left[-\infty, 1 \right]$

1. Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda e^{2x} \mid \lambda \in \mathbb{R}\}$

Solution particulière, avec y constante : $S_p: x \mapsto -1$.

Ensemble de solutions : $S = \{\lambda e^{2x} - 1 \mid \lambda \in \mathbb{R}\}.$

2. L'équation se réecrit comme $y' + \frac{x}{x^2+1}y = \frac{x}{x^2+1}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} \mid \lambda \in \mathbb{R}\}$

Solution particulière : $S_p: x \mapsto 1$ est solution évidente.

Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} + 1 \mid \lambda \in \mathbb{R}\}.$

3.Soit $I =]-\frac{\pi}{2}, \frac{\pi}{2}[.$

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \cos x \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

z est solution
$$\iff \forall x \in I, \ \lambda'(x)\cos(x) = \sin(2x)$$

 $\iff \forall x \in I, \ \lambda'(x) = \frac{\sin(2x)}{\cos(x)} = 2\sin(x)$
 $\iff \lambda = -2\cos$

Ainsi, $z = -2\cos^2$.

Ensemble de solutions : $S = \{x \mapsto \lambda \cos x - 2 \cos^2 x \mid \lambda \in \mathbb{R}\}.$

4. Soit $I = \mathbb{R}_+^*$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \frac{x^x}{e^x} \mid \lambda \in \mathbb{R}\}$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

$$z$$
 est solution $\iff \forall x \in I, \ \lambda'(x) \frac{x^x}{e^x} = x^x$
 $\iff \forall x \in I, \ \lambda'(x) = e^x$
 $\iff \lambda = e^{\cdot}$

Ainsi, $z: x \mapsto x^x$

Ensemble de solutions : $S = \{x \mapsto \lambda \frac{x^x}{e^x} + x^x \mid \lambda \in \mathbb{R}\}$

5. Soit $I =]-\infty, 1[$. L'équation se réecrit comme $y' - \frac{1}{1-x}y = \frac{1}{(1-x)^2}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{1-x} \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

$$z$$
 est solution $\iff \forall x \in I, \ \frac{\lambda'(x)}{1-x} = \frac{1}{(1-x)^2}$
 $\iff \forall x \in I, \ \lambda'(x) = \frac{1}{1-x}$
 $\iff \forall x \in I, \ \lambda(x) = -\ln(1-x)$

Ainsi, $z: x \mapsto -\frac{\ln(1-x)}{1-x}$.

Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{1-x} - \frac{\ln(1-x)}{1-x} \mid \lambda \in \mathbb{R}\}$