Important Misc in Probab/Stat¹

1 Important matrix decompositions

 Eigen Decomposition: Let P be a matrix of eigenvectors of a given square matrix A and D be a diagonal matrix with the corresponding eigenvalues on the diagonal. Then, as long as P is a square matrix, A can be written as an eigen decomposition

$$A = PDP^{-1}$$
.

where D is a diagonal matrix. Furthermore, if A is symmetric, then the columns of P are orthogonal vectors.

If **P** is not a square matrix (for example, the space of eigenvectors of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is one-dimensional), then **P** cannot have a matrix inverse and **A** does not have an eigen decomposition. However, if **P** is $m \times n$ (with m > n), then **A** can be written using a so-called singular value decomposition.

- 2. **QR-decomposition** (Gram-Schmidt orthogonality): For any matrix $A_{n \times m}$, there exists QR-decomposition $A = Q_{n \times m} R_{m \times m}$, where $Q^{\top}Q = I_{m \times m}$ and R is an upper triangular.
- 3. **QR-decomposition** (Another version) For any matrix $\mathbf{A}_{n \times m}$ of rank k, there exists QR-decomposition $\mathbf{A} = \mathbf{Q}_{n \times m} \mathbf{R}_{m \times m}$, where $\mathbf{Q}^{\top} \mathbf{Q}$ is diagonal and \mathbf{R} is a **unit** upper triangular.
- 4. **Left orthogonal decomposition** For any matrix $\mathbf{A}_{n \times m}$, there exist non-singular matrix $\mathbf{P}_{m \times m}$ and orthogonal matrix $\mathbf{G}_{n \times n}$ such that $\mathbf{A} = \mathbf{G} \begin{bmatrix} \mathbf{I}_r & 0 \\ 0 & 0 \end{bmatrix} \mathbf{P}$, where $r = rank(\mathbf{A})$.
- 5. Cholesky Decomposition: For positive matrix $A_{n \times n}$, there exists Cholesky-decomposition $A = T^{\top}T$, where T is an upper triangular. Also T is unique.
- 6. **A** and **B** are real symmetric matrices. Then there exists a orthogonal matrix P such that $P^{\top}AP$ and $P^{\top}BP$ are both diagonal if and only if AB = BA.
- 7. **Spectral decomposition** (A special case of item 1): Let \mathbf{A} be $n \times n$ symmetric matrix. There exists an orthogonal matrix $\mathbf{T} = (t_1, \dots, t_n)$ such that $\mathbf{T}^{\top} \mathbf{A} \mathbf{T} = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \Lambda$, where $\lambda_1 \geq \dots \geq \lambda_n$ are the ordered eigenvalues of \mathbf{A} . With this ordering, Λ is unique and \mathbf{T} is unique up to a postfactor.

$$\boldsymbol{A} = \sum_{i=1}^n \lambda_i t_i t_i^{\top}.$$

2 Normal Distribution

• If

$$\left(\begin{array}{c} \mathbf{Y} \\ \mathbf{X} \end{array}\right) \sim \text{Normal} \left\{ \left(\begin{array}{c} \mu_y \\ \mu_x \end{array}\right), \left(\begin{array}{cc} \Sigma_{yy} & \Sigma_{yx} \\ \Sigma_{xy} & \Sigma_{xx} \end{array}\right) \right\}.$$

Then $\mathbf{Y}|\mathbf{X} \sim \text{Normal}\left(\mu_{y|x}, \Sigma_{y|x}\right)$ with $\mu_{y|x} = \mu_y + \Sigma_{yx}\Sigma_{xx}^{-1}(\mathbf{X} - \mu_x)$ and $\Sigma_{y|x} = \Sigma_{yy} - \Sigma_{yx}\Sigma_{xx}^{-1}\Sigma_{xy}$

• A useful equality (Φ, φ: normal CDF, pdf)

$$\int \Phi(a+bx)\phi(x)dx = \Phi\left(\frac{a}{\sqrt{1+b^2}}\right).$$

Proof. Let X, Z be iid random variables following standard normal. Then $\Phi(a+bx) = Pr(Z \le a+bx)$. Note that

$$\int \Phi(a+bx)\phi(x)dx = E_X \Phi(a+bX)
= E_X \{ P_Z(Z \le a+bX) \}
= E_X \{ P_Z(Z-bX \le a) \}
= P_{(Z,X)}(Z-bX \le a)
= P \{ N(0,1) \le a/\sqrt{1+b^2} \} = \Phi\left(\frac{a}{\sqrt{1+b^2}}\right) 4.2$$

Stein formulae: X is a N(0,1) random variable and g is an indefinite integral of the Lebesque measurable function such that E|g'(X)| < ∞. Then

$$E\{g'(X)\} = E\{Xg(X)\}.$$

3 Linear and Quadratic Forms

- 1. $q = \mathbf{y}^{\top} \mathbf{A} \mathbf{y}$ is called a quadratic form in \mathbf{y} . $E(q) = \operatorname{tr}(\mathbf{A} \mathbf{V}) + \mu^{\top} \mathbf{A} \mu$ (\mathbf{y} may not be normal) and $\operatorname{cov}(q_1, q_2) = 2\operatorname{tr}(\mathbf{A}_1 \mathbf{V} \mathbf{A}_2 \mathbf{V}) + 4\mu^{\top} \mathbf{A}_1 \mathbf{V} \mathbf{A}_2 \mu$.
- 2. $\mathbf{y} \sim N(\mu, \mathbf{V})$ then its characteristic function is $m_{\mathbf{y}}(t) = \exp\{t^{\top}\mu + \frac{1}{2}t^{\top}\mathbf{V}t\}$. The conditional density of \mathbf{y}_2 given \mathbf{y}_1 is $N(\mu_2 + \mathbf{V}_{21}\mathbf{V}_{11}^{-1}(y_1 \mu_1), \mathbf{V}_{22} \mathbf{V}_{21}\mathbf{V}_{11}^{-1}\mathbf{V}_{12})$.
- 3. Craig's Theorem $\mathbf{y} \sim N(\mu, \mathbf{V})$. By is independent of $\mathbf{y}^{\top} \mathbf{A} \mathbf{y}$ iff $\mathbf{BVA} = 0$; $\mathbf{y}^{\top} \mathbf{B} \mathbf{y}$ is independent of $\mathbf{y}^{\top} \mathbf{A} \mathbf{y}$ iff $\mathbf{BVA} = 0$. $q = \mathbf{y}^{\top} \mathbf{A} \mathbf{y} \sim \mathcal{X}^2(r, \lambda)$, with $r = r(\mathbf{A})$ and $\lambda = 1/2\mu^{\top} \mathbf{A} \mu$, if and only if \mathbf{AV} is idempotent.
- Cochran's Theorem r(A_i) = r_i. Let A = ∑₁^k A_i if AV is idempotent and r(A) = ∑₁^k r_i, then q_i = y[⊤] A_iy are mutually independent, noncentral chi-squared variables with X²(r_i, 1/2μA_iμ).

4 Algebra

algebra tex

 $\mathbf{A} = (a_{ij})_{sn}$, $\mathbf{B} = (b_{ij})_{nm}$; tr(\mathbf{A}): the trace of \mathbf{A} ; $r(\mathbf{A})$: the rank of \mathbf{A} ; det(\mathbf{A}): the determinant of \mathbf{A} .

4.1 Trace and Eigenvalues

- 1. $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B})$.
- 2. $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$.
- 3. **A** and **B** are real symmetric. Then $tr(ABAB) \le tr(A^2B^2)$, the equality holds if and only if AB = BA.

- 4. If \mathbf{A}_n is a symmetric and $r(\mathbf{A}) = 1$, then $|I_n + \mathbf{A}_n| = 1 + \operatorname{tr}(\mathbf{A})$.
- 5. For any $n \times n$ matrix **A** with eigenvalues $\lambda_1, \dots, \lambda_n$, we have the following:
 - (a) $\operatorname{tr}(\mathbf{A}) = \sum \lambda_i$
 - (b) $\det(\mathbf{A}) = \prod \lambda_i$
 - (c) $\det(I_n \pm \mathbf{A}) = \prod (1 \pm \lambda_i)$
- For conformable matrices, the nonzero eigenvalues of AB are the same as those of BA.

2 Rank

- 1. r(AB) > r(A) + r(B) n.
- 2. $\mathbf{A} = (a_{ij})_{nn}$. If $\mathbf{A}^2 = I_n$. Then $r(\mathbf{A} + I_n) + r(\mathbf{A} I_n) = n$.
- 3. $r(A + B) \le r(A) + r(B)$.
- 4. If AB = 0. $r(A) + r(B) \le n$.
- 5. $r(\mathbf{A}) = r(\mathbf{A}^{\top} \mathbf{A}) = r(\mathbf{A} \mathbf{A}^{\top}).$
- 6. If A, B, C are $m \times n$, $n \times p$ $p \times q$ matrices, then $r(AB) + r(BC) \le r(B) + r(ABC)$.

4.3 Patterned Matrices

1. If **A** and **C** are symmetric and all inverses exist,

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}^{-1} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F}^{\top} & -\mathbf{F}\mathbf{E}^{-1} \\ -\mathbf{E}^{-1}\mathbf{F}^{\top} & \mathbf{E}^{-1} \end{pmatrix}$$

where $\mathbf{E} = \mathbf{C} - \mathbf{B}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{B}$ and $\mathbf{F} = \mathbf{A}^{-1} \mathbf{B}$.

2.
$$\begin{vmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{vmatrix} = \left\{ \begin{array}{l} |\mathbf{D}||\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}| & \text{if } \mathbf{D}^{-1} \text{ exists,} \\ |\mathbf{A}||\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}| & \text{if } \mathbf{A}^{-1} \text{ exists.} \end{array} \right.$$

$$\mathbf{Proof.}$$

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C} \end{pmatrix} \cdot \begin{pmatrix} I_r & O \\ -\mathbf{D}^{-1}\mathbf{C} & I_s \end{pmatrix} = \begin{pmatrix} \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C} & \mathbf{B} \\ O & \mathbf{D} \end{pmatrix}.$$

- 3. For matrixes $\mathbf{B}_{n \times m}$ and $\mathbf{C}_{m \times n}$, and non-singular $\mathbf{A}_{n \times n}$, $|\mathbf{A} + \mathbf{B}\mathbf{C}| = |\mathbf{A}| |\mathbf{I}_m + \mathbf{C}\mathbf{A}^{-1}\mathbf{B}|$.
- 4. $(I+AB)^{-1} = I A(I+BA)^{-1}B$; |I+AB| = |I+BA|; $|A| = |A_{11}||A_{22} A_{21}A_{11}^{-1}A_{12}|$.
- 5. $(A + UBV)^{-1} = A^{-1} A^{-1}UB(B + BVA^{-1}UB)^{-1}BVA^{-1}$. For the particular case B = 1, $U = \mathbf{u}$, and $V = \mathbf{v}^{\top}$, we have $(A + \mathbf{u}\mathbf{v}^{\top})^{-1} = A^{-1} A^{-1}\mathbf{u}\mathbf{v}^{\top}A^{-1}(1 + \mathbf{v}^{\top}A^{-1}\mathbf{u})^{-1}$. Furthermore $\mathbf{x}^{\top}(A + \mathbf{x}\mathbf{x}^{\top})^{-1}\mathbf{x} = \frac{\mathbf{x}^{\top}A^{-1}\mathbf{x}}{1 + \mathbf{x}^{\top}A^{-1}\mathbf{x}}$.

¹1-VIP-misc-pocket-HL.tex

4.4 Positive (semi)definite Matrices

- 1. Denote $\mathbf{A}_n = (a_{ij})_{nn}$. If \mathbf{A}_n is a positive matrix, $|\mathbf{A}_n| \le a_{nn} |\mathbf{A}_{n-1}|$, and so $|\mathbf{A}_n| \le \prod_{i=1}^n a_{ii}$.
- 2. **A** and **B** are real symmetric matrices. Then there exists a orthogonal matrix P such that $P^{\top}AP$ and $P^{\top}BP$ are both diagonal if and only if AB = BA.
- 3. **A** is symmetric. Then **A** is nonnegative if and only if there exists a matrix $\mathbf{C} = (c_{ij})_{rn}$ for $r = rank(\mathbf{A})$ such that $\mathbf{A} = \mathbf{C}^{\top}\mathbf{C} \iff$ there exists $\mathbf{B} = (b_{ij})_{mn}$ such that $\mathbf{A} = \mathbf{B}^{\top}\mathbf{B} \iff$ all of eigenvalues of **A** are nonnegative.
- 4. **A** is positive and **B** is non-negative. Then $|\mathbf{A} + \mathbf{B}| \ge |\mathbf{A}|$ and equality holds if and only if $\mathbf{B} = 0$.
- 5. If **A** is positive, then

$$f(Y) = \left[\begin{array}{cc} \mathbf{A} & Y \\ Y^{\top} & 0 \end{array} \right]$$

is negative, where $Y = (y_1, \dots, y_n)^{\top}$.

Note that $f(Y) = Y^{\top} \{ (-1)^{2n+2} \mathbf{A}^* \} Y$, where $\mathbf{A}^* = |\mathbf{A}| \mathbf{A}^{-1}$.

6. Cholesky Decomposition.

For positive matrix $A_{n \times n}$, there exists Cholesky-decomposition $A = T^{\top}T$, where T is an upper triangular. Also T is unique.

- 7. Let $X^{\top} = (x_1, \dots, x_n)$, where the x_i are n independent d—dimensional vectors of random variables, and let \boldsymbol{A} be a positive semidefinite $n \times n$ matrix of rank $r(\geq d)$. Suppose that for each x_i and all $\mathbf{b}(\neq 0)$ and c, prob $[\mathbf{b}^{\top}x_i = c] = 0$. Then $\operatorname{prob}(X^{\top}\boldsymbol{A}X > 0) = 1$.
- 8. If **A** is positive and **B** is symmetric. Then there exists a nonsingular matrix C such that $C^{T}AC$ =identity matrix and $C^{T}BC = \Lambda$, a diagonal matrix diag($\lambda_1, \dots, \lambda_r, 0, \dots, 0$), where λ_i is the eigenvalue of **A**.

Proof. There exists a \mathbf{D} such that $\mathbf{A} = \mathbf{D}^{\top} \mathbf{D}$. Note that $\mathbf{D}^{-1 \top} \mathbf{B} \mathbf{D}^{-1}$ is still symmetric. There is a \mathbf{C} such that $\mathbf{C}^{\top} \mathbf{D}^{-1 \top} \mathbf{B} \mathbf{D}^{-1} \mathbf{C} = \Lambda$. Taking $C = \mathbf{D}^{-1} \mathbf{C}$, the proof follows.

9. Suppose **A** and **B** are positive. A - B is positive if and only if $B^{-1} - A^{-1}$ is positive.

Proof. Denote S = A - B. If S is positive, there exists a nonsingular matrix C such that $C^{\top}SC = I$ and $C^{\top}BC = \Lambda$. It follows that $A = C^{-1\top}(\Lambda + I)C^{-1}$ and $B = C^{-1\top}\Lambda C^{-1}$, and then $B^{-1} - A^{-1} = C^{-1\top}\{\Lambda^{-1} - (\Lambda + I)^{-1}\}C^{-1} \ge O$. Conversely, the proof for significant condition becomes trivial because the above arguments.

The conclusion can be generalized to **nonnegative** case since we can consider $\mathbf{A} - \mathbf{B} + 1/n\mathbf{I}$ and finally let $n \to \infty$. Without the assumption of \mathbf{A} and \mathbf{B} being positive, the conclusion is false, see for example, $\mathbf{A} = \mathbf{I}$ and $\mathbf{B} = -0.5\mathbf{I}$.

4.5 Idempotent Matrices

A matrix \boldsymbol{A} is idempotent if $\boldsymbol{A}^2 = \boldsymbol{A}$. A symmetric idempotent matrix is called a projection matrix.

1. If \mathbf{A} is a projection matrix of rank r, then it can be expressed in the form

$$\mathbf{A} = \sum_{i=1}^r \mathbf{t}_i \mathbf{t}_i^{\top}.$$

where $\mathbf{t}_1, \dots, \mathbf{t}_r$ form an orthonormal set.

- 2. If **A** is a projection matrix, then $r(\mathbf{A}) = \operatorname{tr}(\mathbf{A})$.
- 3. If **A** is idempotent, then so is I A.

4.6 Vector and Matrix Differentiation

$$\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \qquad \frac{\partial \mathbf{x}^{\top} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{x}$$

$$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x} \qquad \frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A} \mathbf{y}$$

$$\frac{\partial |\mathbf{X}|}{\partial x_{ij}} = \left\{ \begin{array}{c} X_{ij} & \text{if all elements of } \mathbf{X} \text{ are distinct} \\ X_{ii} & \text{otherwise} \end{array} \right\} \qquad \mathbf{X} \text{ is symmetric}$$

$$\frac{\partial tr \mathbf{X} \mathbf{Y}}{\partial \mathbf{X}} = \left\{ \begin{array}{c} \mathbf{Y}^{\top} & \text{if all elements of } \mathbf{X} \text{ are distinct} \\ \mathbf{Y} + \mathbf{Y}^{\top} - Diag(\mathbf{Y}) & \text{if } \mathbf{X} \text{ is symmetric} \end{array} \right.$$

 $\frac{\partial \mathbf{X}^{-1}}{\partial x_{ij}} = \left\{ \begin{array}{cc} \mathbf{X}^{-1} \mathbf{J}_{ij} \mathbf{X}^{-1} & \text{if all elements of} \\ \mathbf{X}^{-1} \mathbf{J}_{ii} \mathbf{X}^{-1} & \text{if } i = j \\ \mathbf{X}^{-1} (\mathbf{J}_{ii} + \mathbf{J}_{ii}) \mathbf{X}^{-1} & \text{otherwise} \end{array} \right\} \quad \mathbf{X} \text{ is symmetric}$

where X_{ij} denotes the cofactor of x_{ij} in X and J_{ij} denotes a matrix with 1 in the (i, j)th place and zeros elsewhere.

4.7 Basic Concepts and Facts

- 1. For s = m and $m \ge n$, $|\lambda E AB| = \lambda^{m-n} |\lambda E BA|$.
- 2. **A** is n-order matrix. If $|a_{ii}| \ge \sum_{i \ne j} |a_{ij}|$ for $i = 1, \dots, n$, then $|\mathbf{A}| \ne 0$; If $a_{ii} \ge \sum_{i \ne j} |a_{ij}|$ for $i = 1, \dots, n$, then $|\mathbf{A}| > 0$.
- 3. **A** is n-order matrix. There exists a orthogonal matrix P such that $P^{\top}AP$ is trigonal matrix if and only if all eigenvalues of **A** are real.
- 4. If **A** is orthogonal and its eigenvalues are all of real, then **A** must be symmetric and $A^2 = E$.
- 5. Suppose that $\{A_k\}$ is a sequence of real symmetric matrices, and $A_iA_j = A_jA_i$ for $i \neq j$. Then there exists a orthogonal matrix P such that $P^{T}A_{k}P$ are all diagonal.
- 6. Any real inverable matrix \mathbf{A} can be decomposed into SS_1S_2 , where S is positive, S_1 and S_2 are real symmetric orthogonal.
- 1. A square matrix \mathbf{A} such that $\mathbf{A}^k = 0$ for some integer k is called *nilpotent* matrix, and the smallest positive integral exponent k such that $\mathbf{A}^k = 0$ is called the *index* of \mathbf{A} .
- 2. $\mathbf{A} = -\mathbf{A}^{\top}$ is called *skew-symmetric*
- 3. A matrix \mathbf{A} with complex elements is said to be *Hamitian* if $\mathbf{A} = \mathbf{A}^*$, and *skew-Hermitian* if $\mathbf{A} = -\mathbf{A}^*$.

- 4. \mathbf{A} is equivalent to \mathbf{B} if \mathbf{B} can be obtained from \mathbf{A} by the successive application of finitely many elementary row and column operations, and we write $\mathbf{A} \stackrel{\text{E}}{=} \mathbf{B}$.
- 5. $\mathbf{A} \stackrel{E}{=} \mathbf{B}$ iff $\mathbf{A} = SAT$, where S and T are $m \times m$ and $n \times n$ non-singular matrices, respectively.
- 6. Every nonzero **A** is *equivalent* to $\begin{bmatrix} I_r & O_{r,n-r} \\ O_{m-r,r} & O_{m-r,m-r} \end{bmatrix}$.
- 7. Matrices of the form $\begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ are called *canonical matrices*
- 8. If **A** and **B** are two square matrices of order *n* and *m*, respectively, the matrix

$$\mathbf{A} \stackrel{\cdot}{+} \mathbf{B} = \left[\begin{array}{cc} \mathbf{A} & O \\ O & \mathbf{B} \end{array} \right]$$

is called their direct sum.

- 9. \mathbf{A}_{ij} is called the *cofactor* of element a_{ij} .
- 10. (The Hamilton-Cayley Theorem) Let \mathbf{A} be an $n \times n$ matrix and let

$$f(\lambda) \equiv (-1)^n \{ \lambda^n - p_1 \lambda^{n-1} + \dots + (-1)^n p_n \}$$

 $\mathbf{A}^{n} - p_{1}\mathbf{A}^{n-1} + \cdots + (-1)^{n}p_{n}I_{n} = O_{n}.$

if all elements of
$$\boldsymbol{X}$$
 are disti**he** the characteristic function of \boldsymbol{A} . Then

11. Denote
$$I_n$$
 by \mathbf{A}_0 , one successively computes

$$c_1, \mathbf{A}_1, c_2, \mathbf{A}_2, \cdots, \mathbf{A}_{n-1}, c_n$$
 by the two formulas

Then
$$\mathbf{A}^{-1} = \mathbf{A}_{n-1}/c_n$$
.

12. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the characteristic roots, distinct or not, of an $n \times n$ matrix \mathbf{A} , and if $g(\mathbf{A})$ is any polynomial function of \mathbf{A} , then the characteristic roots of $g(\mathbf{A})$ are $g(\lambda_1), \dots, g(\lambda_n)$.

 $c_k = (1/k)\operatorname{tr}(\mathbf{A}\mathbf{A}_k) \ \mathbf{A}_k = \mathbf{A}\mathbf{A}_{k-1} - c_k \mathbf{I}$

- 13. **A** is **similar** to **B** if and only if there exists a nonsingular matrix **P** such that $\mathbf{A} = P^{-1}\mathbf{B}P$. We write $\mathbf{A} \stackrel{S}{=} \mathbf{B}$.
- 14. Any square matrix **A** is *similar* to an upper triangular matrix whose diagonal elements are the eigenvalues of **A**.
- 15. A square matrix \mathbf{B} is said to be *congruent* to \mathbf{A} if and only if there exists a nonsingular matrix P such that $\mathbf{A} = P^{\top} \mathbf{B} P$. We write $\mathbf{A} \stackrel{\text{C}}{=} \mathbf{B}$.
- 16. An elementary row operation applied to a square matrix, and followed by the corresponding elementary column operation, is called an *elementary cogredient operation* on the matrix.
- 17. Every symmetric R matrix A of rank r is *congruent* to a matrix of the form diag(I_r , O).
- 18. Any $n \times n$ real symmetric matrix \mathbf{A} is orthogonal similar to a diagonal matrix whose diagonal elements are the eigenvalues of \mathbf{A} .

$$AB = BA$$
 commutative
19. $AB = -BA$ anti-commute
 $A^2 = I$ involutory

4.8 Optimization and Inequalities

1. Consider the matrix function f, where

$$f(\mathbf{X}) = -\log|\mathbf{X}| + \operatorname{tr}(\mathbf{X}^{-1}\mathbf{A}).$$

If A > O, then, subject to X > O, f(X) is minimized uniquely at X = A.

- Let f: θ → f(θ) be a real-valued function with domain Θ, and let g: θ → g(θ) = φ be a bijective (one-to-one) function from Θ onto Φ. Since g is bijective, it has an inverse, g⁻¹, say, and we can define h(φ) = f(g⁻¹(θ)) for φ ∈ Φ.
 - (a) If $f(\theta)$ attains a maximum at $\theta = \widehat{\theta}$, $h(\phi)$ attains its maximum at $\widehat{\phi} = g(\theta)$.
 - (b) If the maximum of $f(\theta)$ occurs uniquely at $\widehat{\phi}$, then the maximum of $h(\phi)$ occurs uniquely at $\widehat{\phi}$.
- 3. Frobenius norm approximation. Let **B** be a $p \times q$ matrix of rank r with singular value decomposition $\sum_{i=1}^{r} \delta_i l_i m_i^{\top}$, and let **C** be a $p \times q$ matrix of ranks s(s < r). Then

$$\|\boldsymbol{B} - \boldsymbol{C}\|^2 = \sum_{i=1}^p \sum_{j=1}^q (b_{ij} - c_{ij})^2$$

is minimized when

$$\mathbf{C} = \mathbf{B}_{(s)} = \sum_{i=1}^{s} \delta_i l_i m_i^{\top}.$$

The minimum value is $\sum_{i=s+1}^{r} \delta_i^2$.

4. Let \mathbf{A} be an $n \times n$ symmetric matrix with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$, and a corresponding set of orthogonal eigenvectors $\mathbf{t}_1, \cdots, \mathbf{t}_n$. Define $T_k = (\mathbf{t}_1, \cdots, \mathbf{t}_k)$ $(k = 1, \cdots, n - 1)$ and $T = (\mathbf{t}_1, \cdots, \mathbf{t}_n)$. Then, if we assume that $\mathbf{x} \ne 0$, we have the following:

(a)

$$\sup_{\mathbf{x}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} = \lambda_1,$$

and the supremum is attained if $\mathbf{x} = \mathbf{t}_1$.

(b)

$$\sup_{T_k^{\top} \mathbf{x} = 0} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} = \lambda_{k+1},$$

and the supremum is attained if $\mathbf{x} = \mathbf{t}_{k+1}$.

(c)

$$\inf_{\mathbf{x}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} = \lambda_n,$$

and the infimum is attained if $\mathbf{x} = \mathbf{t}_n$.

(d) If $T_{n-k} = (\mathbf{t}_{n-k+1}, \dots, \mathbf{t}_n)$

$$\inf_{T_{n-k}^{\top}\mathbf{x}=0}\frac{\mathbf{x}^{\top}\mathbf{A}\mathbf{x}}{\mathbf{x}^{\top}\mathbf{x}}=\lambda_{n-k},$$

and the infimum is attained if $\mathbf{x} = \mathbf{t}_{n-k}$.

(e) Courant-Fischer min-max theorem.

$$\inf_{L_{n \times k}} \sup_{L^{\top} \mathbf{x} = 0} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} = \lambda_{k+1},$$

and the result is attained if $L = T_k$ and $\mathbf{x} = \mathbf{t}_{k+1}$.

(f)

$$\sup_{L_{n \times k}} \inf_{L^{\top} \mathbf{x} = 0} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} = \lambda_{n-k},$$

and the result is attained if $L = T_{n-k}$ in (d) and $\mathbf{x} = \mathbf{t}_{n-k}$.

5. Let \mathbf{A} be an $n \times n$ symmetric matrix and let \mathbf{D} be any $n \times n$ positive definite matrix. Let $\gamma_1 \ge \cdots \ge \gamma_n$ be eigenvalues of $\mathbf{D}^{-1}\mathbf{A}$ with corresponding eigenvectors $\mathbf{v}_1, \cdots, \mathbf{v}_n$. Then

$$\sup_{\mathbf{x}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{D} \mathbf{x}} = \gamma_1, \quad \text{and } \inf_{\mathbf{x}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{D} \mathbf{x}} = \gamma_n,$$

with the bounds being attained when $\mathbf{x} = \mathbf{v}_1$ and $\mathbf{x} = \mathbf{v}_n$, respectively.

6. If **D** is positive definite, then for any **a**

$$\sup_{\mathbf{x}} \frac{(\mathbf{a}^{\top} \mathbf{x})^2}{\mathbf{x}^{\top} \mathbf{D} \mathbf{x}} = \mathbf{a}^{\top} \mathbf{D}^{-1} \mathbf{a}.$$

The supremum occurs when **x** is proportional to $\mathbf{D}^{-1}\mathbf{a}$.

7. Let **M** and **N** be positive definite, then

$$\sup_{\mathbf{x},\mathbf{y}} \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{M} \mathbf{x} \cdot \mathbf{y}^{\top} \mathbf{N} \mathbf{y}} = \mathbf{\theta}_{max},$$

where θ_{max} is the largest eigenvalue of $\mathbf{M}^{-1}\mathbf{L}^{\top}\mathbf{N}^{-1}\mathbf{L}$. The supremum occurs when \mathbf{x} is an eigenvector of $\mathbf{M}^{-1}\mathbf{L}^{\top}\mathbf{N}^{-1}\mathbf{L}$ corresponding to θ_{max} , and \mathbf{y} is an eigenvector of $\mathbf{M}^{-1}\mathbf{L}^{\top}\mathbf{M}^{-1}\mathbf{L}$ corresponding to θ_{max} .

8. Let C be $p \times q$ matrix of rank m and let $p_1^2 \ge \cdots \ge p_m^2 > 0$ be the nonzero eigenvalues of CC^{\top} . Let $\mathbf{t}_1, \cdots, \mathbf{t}_m$ be the corresponding eigenvectors of CC^{\top} and let $\mathbf{w}_1, \cdots, \mathbf{w}_m$ be the corresponding eigenvectors of $C^{\top}C$. If $T_k = (\mathbf{t}_1, \cdots, \mathbf{t}_k)$ and $W_k = (\mathbf{w}_1, \cdots, \mathbf{w}_k)$ (k < m), then

$$\sup_{\mathbf{T}_{\mathbf{b}}^{\top}\mathbf{x}=\mathbf{0},\mathbf{W}_{\mathbf{b}}^{\top}\mathbf{y}=\mathbf{0}}\frac{(\mathbf{x}^{\top}\boldsymbol{C}\mathbf{y})^{2}}{\mathbf{x}^{\top}\mathbf{x}\cdot\mathbf{y}^{\top}\mathbf{y}}=\rho_{k+1}^{2},$$

and the supremum occurs when $\mathbf{x} = \mathbf{t}_{k+1}$ and $\mathbf{y} = \mathbf{w}_{k+1}$.

- 9. Let **A** and **B** be an $n \times n$ symmetric matrices with eigenvalues $\rho_1(\mathbf{A}) \ge \cdots \ge \rho_n(\mathbf{A})$ and $\rho_1(\mathbf{B}) \ge \cdots \ge \rho_n(\mathbf{B})$, respectively. If $\mathbf{A} \mathbf{B} > \mathbf{O}$, then we have the following:
 - (a) $\rho_i(\mathbf{A}) \geq \rho_i(\mathbf{B}) \ (i = 1, \dots, n)$
 - (b) $tr(\boldsymbol{A}) \geq tr(\boldsymbol{B})$
 - (c) $|\mathbf{A}| \geq |\mathbf{B}|$
 - (d) $\|\mathbf{A}\| > \|\mathbf{B}\|$, where $\|\mathbf{A}\| = \{\text{tr}(\mathbf{A}\mathbf{A}^{\top})\}^{1/2}$.

10. Let \mathbf{A} , \mathbf{B} and $\mathbf{A} - \mathbf{B}$ be an $n \times n$ positive semidefinite matrices, with $r(\mathbf{B}) < r$, and let $\rho_i(\cdot)$ represent the *i*th largest eigenvalues. Then

$$\rho_i(\mathbf{A} - \mathbf{B}) \geq \left\{ \begin{array}{ll} \rho_{r+i}(\mathbf{A}) & i = 1, \cdots, n-r \\ 0 & i = n-r+1, \cdots, n \end{array} \right.$$

Equality occurs if

$$\mathbf{\textit{B}} = \mathbf{\textit{B}}_0 = \sum_{i=1}^r \rho_i(\mathbf{\textit{A}}) \mathbf{t}_i \mathbf{t}_i^{\top},$$

where $\mathbf{t}_1, \dots, \mathbf{t}_n$ are orthogonal eigenvectors corresponding to $\rho_1(\mathbf{A}), \dots, \rho_n(\mathbf{A})$.

4.9 Jacobians and Transformations

1. If the distinct elements of a symmetric $d \times d$ matrix \mathbf{A} have a joint density function of the form $g(\lambda_1, \dots, \lambda_d)$ where $\lambda_1 \ge \dots \ge \lambda_d$ are the eigenvalues of \mathbf{A} , then the joint density function of the eigenvalues is

$$\pi^{d^2/2}g(\lambda_1,\cdots,\lambda_d)\left\{\prod_{i\leq k}(\lambda_j-\lambda_k)\right\}\Big/\Gamma_d(d/2)$$

where $\Gamma_d(d/2) = \pi^{d(d-1)/4} \prod_{i=1}^d \Gamma(\frac{1}{2}[d+1-j]).$

Let X be an m × n matrix of distinct random variables and let Z = a(X), where Z is m × n and a is a bijective function. Then there exists an inverse function b = a⁻¹, so that X = b(Z). If X has density f and Z has density density g, then

$$g(\mathbf{Z}) = f(b[\mathbf{Z}]) \left| \frac{d\mathbf{X}}{d\mathbf{Z}} \right|,$$

where $d\mathbf{X}/d\mathbf{Z}$ represents the Jacobian of the transformation from \mathbf{X} to \mathbf{Z} .

(a) If X = AZB, where A and B are $m \times m$ and $n \times n$ nonsingular matrices, respectively, then

$$\frac{d\mathbf{X}}{d\mathbf{Z}} = |\mathbf{A}|^n |\mathbf{B}|^m.$$

(b) If X and Z are $n \times n$ symmetric matrices, A is nonsingular matrices, and $X = AZA^{\top}$

$$\frac{d\mathbf{X}}{d\mathbf{Z}} = |\mathbf{A}|^{n+1}$$

(c) Let E and H be $d \times d$ positive definite matrices, and let Z = E + H and $V = (E + H)^{-1/2}H(E + H)^{-1/2}$.

$$\frac{d(\boldsymbol{H},\boldsymbol{E})}{d(\boldsymbol{V},\boldsymbol{Z})} = |\boldsymbol{Z}|^{(d+1)/2}.$$

4.10 Generalized Inverse

4.10.1 *g*-inverse

If AGA = A, G is called a generalized inverse (g-inverse).

- 1. For each matrix $\mathbf{A} = \mathbf{A}_I \mathbf{A}_R \stackrel{\Delta}{=} \mathbf{BC}, \mathbf{A}^- = \mathbf{C}^\top (\mathbf{CC}^\top)^{-1} (\mathbf{B}^\top \mathbf{B})^{-1} \mathbf{B}^\top$.
- 2. $r(\mathbf{A}) = r(\mathbf{A}^{-}) = r(\mathbf{A}\mathbf{A}^{-}) = r(\mathbf{A}^{-}\mathbf{A})$
- 3. If \mathbf{A} is an $m \times n$ matrix of rank m, then $\mathbf{A}^- = \mathbf{A}^\top (\mathbf{A}\mathbf{A}^\top)^{-1}$ (right-inverse) and $\mathbf{A}\mathbf{A}^- = I_m$. If $r(\mathbf{A}) = n$, then $\mathbf{A}^- = (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top$ (left-inverse) and $\mathbf{A}^- \mathbf{A} = I_n$.
- 4. It is not always true that $(GH)^- = H^-G^-$ for all matrices H, G.
- 5. Let **B** be an $m \times r$ matrix of rank r and **C** be an $r \times m$ matrix of rank r; then $(BC)^- = C^-B^-$.
- 6. $(\mathbf{A}^{\top}\mathbf{A})^{-} = \mathbf{A}^{-}(\mathbf{A}^{\top})^{-}$ for any matrix \mathbf{A} .
- 7. Let **P** be an $m \times m$ orthogonal matrix, **Q** be an $n \times n$ orthogonal matrix, and **A** is any $m \times n$ matrix. Then $(PAQ)^- = Q^-A^-P^-$.

4.10.2 c-inverse

- 1. $r(\mathbf{X}^c) \ge r(\mathbf{X}) = r(\mathbf{X}\mathbf{X}^c) = r(\mathbf{X}^c\mathbf{X})$ for any matrix \mathbf{X} .
- 2. $\mathbf{X}^{c}\mathbf{X}$ and $\mathbf{X}\mathbf{X}^{c}$ are idempotent matrices.
- 3. If \mathbf{X}^c is any c-inverse of \mathbf{X} , then $(\mathbf{X}^c)^{\top}$ is a c-inverse of \mathbf{X}^{\top} .
- 4. For any $m \times n$ matrix **X** of rank r > 0, define

$$\mathbf{K} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{c} \mathbf{X}^{\top}.$$

Then **K** is invariant for any c-inverse of $\mathbf{X}^{\top}\mathbf{X}$.

- 5. $\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{c}\mathbf{X}^{\top} = \mathbf{X}\mathbf{X}^{-}$ for any c-inverse $(\mathbf{X}^{\top}\mathbf{X})^{c}$ of $\mathbf{X}^{\top}\mathbf{X}$.
- 6. $r(\mathbf{K}) = r(\mathbf{X})$.
- 7. $KX = X : X^{T}K = X^{T}$
- 8. $(\mathbf{X}^{\top}\mathbf{X})^{c}\mathbf{X}^{\top}$ is a *c*-inverse of **X** for any *c*-inverse of $\mathbf{X}^{\top}\mathbf{X}$.
- 9. $\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^c$ is a c-inverse of \mathbf{X}^{\top} for any c-inverse of $\mathbf{X}^{\top}\mathbf{X}$.

4.11 Linear Equations

Let \mathbf{A} be an $m \times n$ matrix and \mathbf{A}^c be any c—inverse of \mathbf{A} . Suppose a solution exists to the system $\mathbf{A}\mathbf{x} = g$. For each $n \times 1$ vector \mathbf{h} , the vector \mathbf{x}_0 is a solution, where

$$\mathbf{x}_0 = \mathbf{A}^c g + (I_n - \mathbf{A}^c \mathbf{A}) \mathbf{h}. \tag{1}$$

Also, every solution to the system can be written in the form of Equation (1) for some $n \times 1$ vector **h**.

1. If **A** is an $m \times m$ symmetric matrix such that $\mathbf{1}^{\mathsf{T}} \mathbf{A} = \mathbf{0}$, then

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{1}^{\top} \end{bmatrix}^{-} = \begin{bmatrix} \mathbf{A}^{-}, \frac{1}{m} \mathbf{1} \end{bmatrix}$$

2. If \mathbf{A} is an $m \times m$ symmetric matrix of rank m-1 such that $\mathbf{1}^{\top} \mathbf{A} = \mathbf{0}$, then $\mathbf{B} = \mathbf{A} + \mathbf{1} \mathbf{1}^{\top} / n$ is nonsingular and its inverse is $\mathbf{A}^{-} + \mathbf{J} / n$; Meanwhile

$$\begin{bmatrix} \mathbf{A} & \mathbf{1} \\ \mathbf{1}^{\top} & 0 \end{bmatrix}^{-} = \begin{bmatrix} \mathbf{A}^{-} & \frac{1}{n}\mathbf{1} \\ \frac{1}{n}\mathbf{1}^{\top} & 0 \end{bmatrix}.$$

5 Analysis

analysis.tex

- 1. f(x) is bound and g(x) is differentiable on [a,b]. $g(\lambda) = 0$ for some $\lambda \neq 0$, if $|g(x)f(x) + \lambda g'(x)| \leq |g(x)|$, then g(x) = 0 for all $x \in [a,b]$.
- 2. f(x) is monotone on $[0,\infty]$ and $\int_0^\infty f(x)dx$ is well-defined. Then

$$\lim_{h \to 0^+} h \sum_{n=1}^{\infty} f(nh) = \int_0^{\infty} f(x) dx.$$

3. f(x) is 2*n*-differentiable on [a,b], and $|f^{(2n)}(x)| \le M$, $f^{(m)}(a) = f^{(m)}(b) = 0$ for $m = 0, \dots, n-1$. Then

$$\left| \int_{a}^{b} f(x)dx \right| \le \frac{(n!)^{2}M}{(2n)!(2n+1)!} (b-a)^{2n+1}.$$

4. f(x) and g(x) are bound on any sub-interval of $[0,+\infty)$, and satisfy that g(x+T)>g(x) for some T>0 and any x>0, $g(x)\to +\infty$. In addition.

$$\lim_{x \to \infty} \frac{f(x+T) - f(x)}{g(x+T) - g(x)} = l,$$

where l may be $+\infty$. Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = l.$$

5. f(x) and g(x) are bound on any sub-interval of $[0, +\infty)$, and satisfy that 0 < g(x+T) < g(x) for some T > 0 and any x > 0, $\lim_{x \to \infty} g(x) = 0$. In addition,

$$\lim_{x \to \infty} \frac{f(x+T) - f(x)}{g(x+T) - g(x)} = l,$$

where l may be $+\infty$. Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = l.$$

6. f'(x) is absolutely continuous on [a,b], then for any $c \in (a,b)$ and p > 1

$$\int_{a}^{b} |f''(x)|^{p} dx \ge \left\{ \frac{p-1}{2p-1} (b-a) \right\}^{1-p} \left| \frac{f(b)-f(c)}{b-c} - \frac{f(c)-f(a)}{c-a} \right|^{p}.$$

- 7. Positive series $\sum u_n$
 - comparing principle;
 - · integal decision;
 - $\lim u_n/u_{n+1} = \rho$, $\rho > 1$ converges and $\rho < 1$ deverges;
 - Cauchy criterion: lim sup u_n^{1/n} = ρ, ρ > 1 converges and ρ < 1 deverges;
 - $u_n/u_{n+1} = \lambda + \mu/n + o(\theta_n/n^{1+t}), \lambda > 1$ converges, $\lambda < 1$ deverges, $\lambda = 1 \mu > 1$ converges and $\mu < 1$ deverges;
 - $\sum |b_n| < \infty$, $u_n/u_{n+1} = \lambda + 1/n + o(b_n)$, deverges;
 - $u_{n+1}/u_n = 1 \alpha/n + O(1/n^{\lambda})$, $\alpha > 1$ converges, $\alpha < 1$ deverges;

- $u_{n+1}/u_n = 1 1/n \alpha'_n/n \log n$, $\alpha'_n \ge \alpha > 1$ converges, $\alpha'_n \le \alpha < 1$ deverges.
- (Roll Theorem) f'(x) is bound on finite or infinite interval (a,b), and lim_{x→a+} f(x) = lim_{x→b-} f(x). Then there exists at least one c∈ (a,b) such that f'(c) = 0.
- 9. (Dabu Theorem) m < |f'(x)| < M Then for any $\mu \in (m, M)$, there exists $x_{\mu} \in (a, b)$ such that $f'(x_{\mu}) = \mu$.
- 10. f(x) is differentiable on and $|f'(x)| \le M$ on (a,b), then

$$\left| \frac{1}{b-a} \int_a^b f(x) dx - \frac{f(b) + f(a)}{2} \right| \le \frac{M(b-a)}{4} \left\{ 1 - \left(\frac{f(b) - f(a)}{M(b-a)} \right)^2 \right\}.$$

11. From Joseph Edward (1954).

$$\int_0^1 \frac{(-\log x)^p}{(1-x)^2} dx = \int_0^\infty y^p \sum_{n=1}^\infty n y^{-ny} dy = p! \sum_{k=1}^\infty \frac{1}{k^p}$$

12.

$$\int_0^1 \frac{(-\log x)^p}{(1+x)^2} dx = p! (1-2^{1-p}) \sum_{k=1}^\infty \frac{1}{k^p}$$

The relationship of some important inequalities

Denote $M_r(a) = (\sum_{i=1}^n p_i a_i^r)^{1/r}$ for $a = (a_1, \cdots, a_n)^\top$ with $a_i \ge 0$ and $r \ge 1$, $\{p_i\}$ are weight $(\sum p_i = 1)$. $G(a) = \prod a_i^{p_i}$.

Cauchy $\Longrightarrow M_{2r}(a) > M_r(a) \Longrightarrow M_r(a) \to G(a)$ by letting $r \to 0 \Longrightarrow$ Hölder

$$\sum_{k=1}^{n} a_k^{\alpha} b_k^{\beta} \cdots l_k^{\lambda} \le (\sum_{k=1}^{n} a_k)^{\alpha} (\sum_{k=1}^{n} b_k)^{\beta} \cdots (\sum_{k=1}^{n} l_k)^{\lambda}$$
for $\alpha, \beta, \dots, \lambda > 0$ and $\alpha + \beta + \dots + \lambda = 1$.

$$\text{H\"{o}lder} \Rightarrow \begin{cases} (\text{Minkowski}) \left\{ \sum_{j=1}^{k} a_{j}^{r} \right\}^{1/r} \leq \left\{ \sum_{j=1}^{k} a_{j}^{r} \right\}^{1/r} & r > 1 \\ (\text{Jensen}) \left(\sum_{1}^{n} a_{k}^{s} \right)^{1/s} \leq \left(\sum_{1}^{n} a_{k}^{r} \right)^{1/r} & 0 < r < s \\ (\text{Liap}) \left\{ M_{s}(a) \right\}^{s} \leq \left[\left\{ M_{r}(a) \right\}^{r} \right]^{\frac{(r-s)}{l-r}} \left[\left\{ M_{t}(a) \right\}^{t} \right]^{\frac{(s-r)}{l-r}} & 0 < r < s \\ (\text{Increasing property of}) \ f(x) = M_{x}(a) \end{cases}$$

Good Examples in Linear Models

linear.tex

1. Consider the linear model

$$\underline{Y} = X\beta + Z\gamma + \underline{e} \quad \underline{e} \sim N(\overline{0}, \sigma^2 \mathbf{I}).$$

where \underline{Y} is $n \times 1$, $\gamma q \times 1$, β is $p \times 1$, X is $n \times p$, Z is $n \times q$, [X,Z] is of rank p+q and n > p+q.

- (a) Show that $\mathbf{Z}^{\top}(\mathbf{I} \mathbf{X}\mathbf{X}^{-})\mathbf{Z}$ is positive $r[\mathbf{Z}^{\top}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}] = r\{(\mathbf{X}, \mathbf{Z})^{\top}[\mathbf{I} - \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}]\} >$ $r\{(\boldsymbol{X},\boldsymbol{Z})^{\top}\}+r\{\boldsymbol{I}-\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\}-n=$ $p+q+(n-p)-n=q\mathbf{Z}^{\top}[\mathbf{I}-\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}]\mathbf{Z}$ is full rank and nonnegative definite.
- (b) Show that the MLE of β and γ are:

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}(\underline{Y} - \boldsymbol{Z}\widehat{\boldsymbol{\gamma}}) \text{ and } \widehat{\boldsymbol{\gamma}} = \{\boldsymbol{Z}^{\top}(\boldsymbol{I} - \boldsymbol{X}\boldsymbol{X}^{-})\boldsymbol{Z}\}^{-1}\boldsymbol{Z}^{\top}(\boldsymbol{I} - \boldsymbol{X}\boldsymbol{X}^{-})\underline{Y}$$

- (c) How would the estimators of β and γ change if \boldsymbol{X} and \boldsymbol{Z} were orthogonal? Find the joint distribution of the estimators.
- 2. Consider the linear model

$$\left[\begin{array}{c} \underline{Y}_1 \\ \underline{Y}_2 \end{array}\right] = \left[\begin{array}{cc} \textbf{\textit{X}}_1 & 0 \\ 0 & \textbf{\textit{X}}_2 \end{array}\right] \left[\begin{array}{c} \underline{\beta}_1 \\ \underline{\beta}_2 \end{array}\right] + \underline{e} \quad \underline{e} \sim N(\overline{0}, \sigma^2 \mathbf{I}).$$

where \underline{Y}_i is $n_i \times 1$, β_i is $p \times 1$, X_i is $n_i \times p$ of rank p and $n_1 + n_2 = n$. Now, consider the following three estimators

$$\widehat{\boldsymbol{\beta}}_1 = (\boldsymbol{X}_1^{\top} \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^{\top} \underline{Y}_1, \ \widehat{\boldsymbol{\beta}}_2 = (\boldsymbol{X}_2^{\top} \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^{\top} \underline{Y}_2, \ \& \widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \underline{Y}$$

We wish to test $H_0: \beta_1 = \beta_2$ vs $H_a: \beta_1 \neq \beta_2$. Two possible test statistics are

$$F_1 = \frac{(\widehat{\underline{\beta}}_1 - \widehat{\underline{\beta}}_2)^{\top} \{ (\boldsymbol{X}_1^{\top} \boldsymbol{X}_1)^{-1} + (\boldsymbol{X}_2^{\top} \boldsymbol{X}_2)^{-1} \}^{-1} (\widehat{\underline{\beta}}_1 - \widehat{\underline{\beta}}_2)}{SSE_1 + SSE_2} \times \frac{n - 2p}{p}$$

$$F_2 = \frac{(\widehat{\underline{\beta}} - \widehat{\underline{\beta}}_1)^{\top} \{ (\boldsymbol{X}_1^{\top} \boldsymbol{X}_1)^{-1} - (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \}^{-1} (\widehat{\underline{\beta}} - \widehat{\underline{\beta}}_1)}{SSE_1 + SSE_2} \times \frac{n - 2p}{p}$$

(a) Show that

$$\begin{aligned} & (\boldsymbol{X}_{1}^{\top}\boldsymbol{X}_{1})\{(\boldsymbol{X}_{1}^{\top}\boldsymbol{X}_{1})^{-1} + (\boldsymbol{X}_{2}^{\top}\boldsymbol{X}_{2})^{-1}\}(\boldsymbol{X}_{1}^{\top}\boldsymbol{X}_{1})^{-1} \\ & = (\boldsymbol{X}^{\top}\boldsymbol{X})(\boldsymbol{X}_{2}^{\top}\boldsymbol{X}_{2})^{-1}\{(\boldsymbol{X}_{1}^{\top}\boldsymbol{X}_{1})^{-1} + (\boldsymbol{X}_{2}^{\top}\boldsymbol{X}_{2})^{-1}\}^{-1}(\boldsymbol{X}_{2}^{\top}\boldsymbol{X}_{2})^{-1}(\boldsymbol{X}^{\top}\boldsymbol{X}). \end{aligned}$$

- (b) Show that $F_1 = F_2$.
- 3. Consider the linear model $\underline{Y} = \mathbf{X}\boldsymbol{\beta} + \underline{e}$, where \mathbf{X} is $n \times p$ of rank pand $\underline{e} \sim N(0, \sigma^2 \mathbf{I})$. Partition \mathbf{X} into $\mathbf{X} = [\mathbf{X}_1 | \mathbf{X}_2 | \mathbf{X}_3]$, where \mathbf{X}_i is $n_i \times p$ of rank p_i . Equivalently, let $\beta^{\top} = [\beta_1^{\top} | \beta_2^{\top} | \beta_2^{\top}]$. Thus $\underline{Y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \mathbf{X}_3 \boldsymbol{\beta}_3 + \underline{e}$
 - (a) Show that successively fitting the model $\underline{Y} = \underline{e}$, $\underline{Y} = X_1 \beta_1 + \underline{e}$, $\underline{Y} = X_1 \underline{\beta}_1 + X_2 \underline{\beta}_2 + \underline{e}$, and $\underline{Y} = X \underline{\beta} + \underline{e}$ yields SS's for $\underline{\beta}_1, \underline{\beta}_2$ and β_2 which are orthogonal.
 - (b) Prove that the SSE for the model containing β must be at leat as small as the SSE for the model with only β_1 .

(c) Now, let $\underline{e} \sim N(0, \sigma^2 \mathbf{V})$, $\widehat{\beta}_{ols} = (\mathbf{X}^\top \mathbf{X})^{-1} (\mathbf{X}^\top \underline{Y})$ and $\underline{\widehat{\beta}}_{wls} = (\boldsymbol{X}^{\top}\boldsymbol{V}^{-1}\boldsymbol{X})^{-1}(\boldsymbol{X}^{\top}\boldsymbol{V}^{-1}\underline{Y}). \text{ Show that } V(\underline{\widehat{\beta}}_{ols}) - V(\underline{\widehat{\beta}}_{wls})$ is nonnegative definite.

$$(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{V}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} \ge (\mathbf{X}^{\top}\mathbf{V}^{-1}\mathbf{X})^{-1}$$

$$\iff (\mathbf{X}^{\top}\mathbf{X})(\mathbf{X}^{\top}\mathbf{V}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{X}) \le (\mathbf{X}^{\top}\mathbf{V}^{-1}\mathbf{X})$$

$$\iff \mathbf{X}^{\top}\{\mathbf{V}^{-1} - \mathbf{X}(\mathbf{X}^{\top}\mathbf{V}\mathbf{X})^{-1}\mathbf{X}^{\top}\}\mathbf{X} \ge 0$$

$$\iff \mathbf{V}^{-1} - \mathbf{X}(\mathbf{X}^{\top}\mathbf{V}\mathbf{X})^{-1}\mathbf{X}^{\top} \ge 0$$

$$\iff \mathbf{I} - \mathbf{V}^{1/2}\mathbf{X}(\mathbf{X}^{\top}\mathbf{V}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{V}^{1/2} > 0$$

Note that $\mathbf{I} - \mathbf{V}^{1/2}\mathbf{X}(\mathbf{X}^{\top}\mathbf{V}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{V}^{1/2}$ is a symmetric and idempotent matrix. The conclusion follows.

4. Consider two models for Y where for both models e_i are iid $N(0, \sigma^2)$ and $\mathbf{X} = [\mathbf{X}_1 | \mathbf{X}_2]$ in $n \times (p_1 + p_2)$ of rank $(p_1 + p_2)$.

$$M1: \underline{Y} = \mathbf{X}_1 \underline{\beta}_1 + \underline{e}$$

$$M2: \underline{Y} = \mathbf{X}_1 \underline{\beta}_1 + \mathbf{X}_2 \underline{\beta}_2 + \underline{e}$$

- (a) Under what conditions does the estimator of β_1 using M1 equal the estimator of β_1 using M2?
- (b) Prove that the SSE under M2 is less than or equal to SSE under M1.

Note that

$$\begin{aligned} &\textbf{sth wrong} - \boldsymbol{X}_1^\top \Big\{ \boldsymbol{X}_2 (\boldsymbol{X}_2^\top \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^\top \boldsymbol{X}_1 [\boldsymbol{X}_1^\top (\boldsymbol{I} - \boldsymbol{H}_{x_2}) \boldsymbol{X}_1]^{-1} \Big\} \boldsymbol{X}_1^\top + \\ &\boldsymbol{X}_2 \Big\{ [\boldsymbol{X}_2^\top (\boldsymbol{I} - \boldsymbol{H}_{x_1}) \boldsymbol{X}_2]^{-1} \boldsymbol{X}_2^\top \Big\} \text{ is nonnegative definite.} \end{aligned} \qquad - \text{HL}$$

$$SSE_2 - SSE_1 = \mathbf{Y}^{\top} (\mathbf{H}_x - \mathbf{H}_{x_1}) \mathbf{Y} = \mathbf{y} \widetilde{\mathbf{X}}_2 (\widetilde{\mathbf{X}}_2^{\top} \widetilde{\mathbf{X}}_2)^{-1} \widetilde{\mathbf{X}}_2 \mathbf{Y}$$

where $\widetilde{\mathbf{X}}_2 = (\mathbf{I} - \mathbf{H}_{x_1}) X_2$ (Th7.1 of Ronald, p247).

7 Essential Probablity

- (i) A π -class \mathcal{P} is a class of subsets of Ω such that $A, B \in \mathcal{P}$ implies $AB \in \mathcal{P}$
- (ii) A semi-field S is a class of subsets of Ω such that S is closed under finite intersections, and $A \in \mathcal{S}$ implies $A^c = \bigcap_{i=1}^m B_i$ where $B_i \in \mathcal{S}$ and disjoint and $m < \infty$.
- iii) λ -class $\mathcal{L} \iff \Omega \in \mathcal{L}$; $A, B \in \mathcal{L}$ and $A \subset B$ implies $BA^c \in \mathcal{L}$; $A_n \in \mathcal{L}$ and $A_n \uparrow A$ implies $A \in \mathcal{L}$.
- Th1.11 (**Dynhin's Class Theorem**) Suppose \mathcal{P} is a π -class for Ω . Then $\sigma(\mathcal{P}) = \lambda(\mathcal{P}).$
- Th1.12 Let $(\Omega, \mathcal{F}_i, \mu_i)$ be measure spaces (i=1,2). Suppose \mathcal{P} is a π -class such that $\mathcal{P} \subset \mathcal{F}_i$, μ_1 and μ_2 agree on \mathcal{P} and there exist $A_n \uparrow \Omega$ with $A_n \in \mathcal{P}$ and $\mu_i(A_n) < \infty$. Then μ_1 and μ_2 agree on $\sigma(\mathcal{P})$.

- Th1.14 (Carathépdpry's Extension Theorem) Suppose \mathcal{F} is a field of subsets of Ω and $\mu: \mathcal{P} \to \mathbb{R}^+$. If $\mu(\emptyset) = 0$; $\mu(A) > 0$ for all $A \in \mathcal{F}$; if $A_i \in \mathcal{F}$ disjoint and $A = \bigcup A_i$ is in \mathcal{F} then $\mu(A) = \sum \mu(A_i)$. Then there exists a unique extension of μ to $\sigma(\mathcal{F})$.
- Th1.16 f is measurable iff $f^{-1}((-\infty,x]) \in \mathcal{F}$ for every $x \in R$ and $f^{-1}(\{-\infty\}) \in \mathcal{F}, f^{-1}(\{\infty\}) \in \mathcal{F}.$
- Th 1.17 f is measurable iff it is the pointwise limit of simple functions.
- Th1.18 If f_n are measurable, then $\lim f_n$ is measurable; $f_1 + f_2$ is also measurable; Continuous and monotone functions are Borel measurable.
- Df1.21 Let $f: \Omega \to \overline{R}$ be \mathcal{F} measurable and μ be σ-finite (i) $f = \sum_{i=1}^{m} a_i 1_{A_i}$ is simple. Then $\int f d\mu = \sum a_i \mu(A_i)$.
 - (ii) $f \ge 0$ and $f_n \uparrow f$, where $f_n \ge 0$ is simple. $\int f d\mu = \lim \int f_n d\mu$.
 - (iii) f is measurable. $\int f d\mu = \int f_+ d\mu \int f_- d\mu$.
- Th1.22 (vii) If f > 0 a.e. and $\int f d\mu < \infty$ then $f < \infty$ a.e. (viii) If $f \ge 0$ a.e. and $\mu(\{\omega : f(\omega) > 0\}) > 0$ then $\int f d\mu > 0$.
- Th1.24 If g is Riemann integrable on [a, b] then it is Lebesgue integrable on [a,b] (it is also bounded and continuous a.e., i.e. let $A = \{x : x_n \to x \text{ but } g(x_n) \not\to g(x)\} \text{ then } \mu(A) = 0. ([a,b] \text{ has to be})$ bounded, otherwise not true. For example, $\int_0^\infty \frac{\sin x}{x} dx = \pi$ but $\int_0^\infty \frac{\sin x}{r} d\mu \ doesn't \ exist)$
- Th1.26 (Monotone Convergence) Suppose $f_n \ge 0$ measurable and $f_n \uparrow f$ a.s., then $\int f_n d\mu \uparrow \int f d\mu$.
- Th1.27 (**Fatou's Theorem**) $f_n > 0$ measurable, then $\liminf_{n\to\infty} \int f_n d\mu \ge \int \liminf_{n\to\infty} f_n d\mu$. $f_n \leq f$ integrable, then $\limsup_{n\to\infty} \int f_n d\mu \leq \int \limsup_{n\to\infty} f_n d\mu$.
- Th1.28 (**Dominated Convergence Theorem**) $|f_n| \le g$ and g is integrable. $f_n \to f$ means $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$.
- Th1.29(Extended DCT) $|f_n| \le g_n \to g$, $f_n \to f$. g_n and g integrable and $\lim_{n\to\infty} \int g_n d\mu = \int g d\mu$. Then $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$.
- Th1.33 (**Fubini's Theorem**) $\mu_1 \times \mu_2$ is a product measure on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$. μ_i is σ -finite. $f(w_1, w_2)$ is $\mathcal{F}_1 \times \mathcal{F}_2$ measurable and is either non-negative or $\mu_1 \times \mu_2$ integrable. Then

$$\int_{\Omega_1 \times \Omega_2} f(w_1, w_2) d(\mu_1 \times \mu_2) = \int_{\Omega_1} \left\{ \int_{\Omega_2} f(w_1, w_2) d\mu_2 \right\} \mu_1$$
$$= \int_{\Omega_2} \left\{ \int_{\Omega_1} f(w_1, w_2) d\mu_1 \right\} \mu_2$$

Th 1.35 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. If $f, g \ge 0$ and μ is a σ -finite, then $\int_A f d\mu = \int_A g d\mu$ for all $A \in \mathcal{F} \iff f = g$ a.e. (μ) . If f, g are μ - integrable and \mathcal{P} is π -class generating \mathcal{F} , then $\int_A f d\mu = \int_A g d\mu$ for all $A \in \mathcal{P} \iff f = g$ a.e. (μ) .

7.1 Random Variables

Th2.7 $X \sim F$ and r > 0. Then $E(|X|^r) = r \int_0^\infty x^{r-1} \{1 - F(x) + F(-x)\} dx$.

Th2.10 (Minkowski Inequality) $(\int |f+g|^r d\mu)^{1/r} \le (\int |f|^r d\mu)^{1/r} + (\int |g|^r d\mu)^{1/r}$

- Co2.19 Let X_1, X_2, \dots , be independent random variables (or vectors). If g_1, g_2, \dots are measurable, then $g_1(X_1), g_2(X_2), \dots$ are also independent.
 - A_1,A_2,\cdots independent $\iff B_1,B_2,\cdots$ independent if each $B_n \in \{\emptyset,A_n,A_n^c,\Omega\}$
- Th2.20 Let F_1, \dots be probability d.f.'s. There exists (Ω, \mathcal{F}, P) and a sequence of **independent** r.v.'s X_1, \dots such that $X_i \sim F_i$ for all i > 1.

7.2 Convergence of Random Variables

Ex3.8 (A useful lower bound) Let $Y \ge 0$ with $E(Y^2) < \infty$ and let a < E(Y). Then we have $P(Y > a) \ge (EY - a)^2 / EY^2$. This is often used with a = 0.

<u>Proof.</u> Using Cauchy-Schwarz inequality to $Y1_{(Y>a)}$, we obtain that

$$P(Y > a) \ge \frac{(EY1_{(Y > a)})^2}{EY^2} = \frac{(EY - EY1_{(Y \le a)})^2}{EY^2} \ge \frac{(EY - a)^2}{EY^2}$$

Th3.8

- Suppose X_n , X are a.s. finite and g is *continuous*. Then $X_n \to X$ a.s. (pr) implies $g(X_n) \to g(X)$ a.s. (pr)
- Suppose X_n, Y_n, X, Y are a.s. finite and $X_n \to X$ a.s. (pr) and $Y_n \to Y$ a.s. (pr). Then $X_n + Y_n \to X + Y$ a.s. (pr) and $\max(X_n, Y_n) \to \max(X, Y)$ a.s. (pr)
- If X_n, X, M_n are a.s. finite and $M_n \to \infty$ and $X_n \to X$ a.s. Then $X_{M_n} \to X$ a.s. (not true for probability convergence).

Th3.9 (Borel-Cantelli Theorem).

- $\sum_{n=1}^{n} P(A_n) < \infty$, then $P(\overline{\lim}A_n) = 0$.
- If A_n are independent, then $\sum_{n=1}^{n} P(A_n) = \infty$ if and only if $P\{\overline{\lim}A_n\} = 1$ or $P\{\overline{\lim}A_n\} = 0$.
- Th3.10 $X_n \longrightarrow^{pr} X \iff \forall$ subsequence $n_k \to \infty$ there exist a further subsequence $n_{k_j} \to \infty$ such that $X_{n_{k_i}} \longrightarrow X$ a.s. (Useful result)
- Th3.11 $X_n \longrightarrow^{pr} X$ and $|X_n| < Y$ and $E(Y) < \infty$. Then $E(X_n) \to E(X)$.
- Th3.17 (**Glivenko-Cantelli Theorem**) X_n iid $\sim F$ with empirical distribution F_n . Then $P\{\sup_x | F_n(x) F(x)| \to 0\} = 1$.
- Df3.18 (**Tail events**) Let X_1, \cdots be r.v.'s on (Ω, \mathcal{F}, P) . An event A is a tail event for $\{X_n\}$ if $A \in \sigma(X_n, X_{n+1}, \cdots)$ for every n. $\{\lim X_n = X\}$, $\{\lim X_n = X\}$, $\{\lim \sup X_n \le x\}$, $\{\sum^{\infty} |X_n| < \infty\}$ are all tail events, but $\{\sum^{\infty} X_n \le x\}$ not.
- Df3.20 $\{X_n\}$ is uniformly integrable if $\sup_n \int_{|X_n| > a} |X_n| dP \to 0$ as $a \to \infty$.
- Th3.21 If either of following holds, $\{X_n\}$ is uniformly integrable
 - (i) $|X_n| \le Y$ a.s. for each n and $E|Y| < \infty$;
 - (ii) $|X_n| \le Y_n$ and $\{Y_n\}$ is uniformly integrable;
 - (iii) $\sup_{n} E|X_n|^{1+\varepsilon} < \infty$ for some $\varepsilon > 0$;
 - (iv) $\sup_n E(|g(X_n)|) < \infty$ and $|g(x)|/|x| \to \infty$ as $|x| \to \infty$
- Th3.22 $\{X_n\}$ is uniformly integrable \iff (i)(uniformly bounded) $\sup_n E(|X_n|) < \infty$, and (ii)(uniformly continuous) for each $\varepsilon > 0$, there is $\delta > 0$ such that $P(A) < \delta \longrightarrow \sup_n \int_A |X_n| dP < \varepsilon$.

- Th3.23 Suppose $0 and <math>X_n \rightarrow^{pr} X$. Then the following are equivalent.
 - (i) $\{X_n\}$ is uniformly integrable
 - (ii) $X_n \to X$ (L^p) and either $X_n \in L^p$ all n or $X \in L^p$.
 - (iii) $E(|X_n|^p) \to E(|X|^p) < \infty$

7.3 Convergence of Distributions $\rightarrow^{\mathcal{L}}$

- Th4.3 $X_n \to^{pr} X$, then $X_n \to^{\mathcal{L}} X$. If $X_n \in (\Omega, \mathcal{F}, P)$, then $X_n \to^{pr} a$ (constant) $\iff X_n \to^{\mathcal{L}} a$
- Th4.4 Let P_n, P be probability measures with densities wrt a common measure μ . $f_n = dP_n/(d\mu)$ and $f = dP/(d\mu)$. If $f_n \to f$ a.e.(μ), then $\sup_{A \in \mathcal{F}} |P_n(A) P(A)| \le \int |f_n f| d\mu \to 0$
- Th4.5 (Slutsky) $X_n \to^{\mathcal{L}} X$ and $Y_n \to^{\mathcal{L}} C_1$, $Z_n \to^{\mathcal{L}} C_2$. Then $X_n + Y_n \to^{\mathcal{L}} X + C_1$ and $X_n Z_n \to^{\mathcal{L}} C_2 X$. (Even $Y_n \to^{pr} Y$ may $X_n + Y_n \to^{\mathcal{L}} X + Y$)
- Th4.9 (Skorohod's Theorem) Suppose F_n , F are probability distribution functions on R and $F_n \to^{\mathcal{L}} F$. Then there exists a probability space (Ω, \mathcal{F}, P) and r.v.'s Y_n , Y such that $Y_n \sim F_n$ and $Y \sim F$ and $Y_n(\omega) \to Y(\omega)$ for **every** $\omega \in \Omega$. (because of this theorem, some topic about expectation involved into $\to^{\mathcal{L}}$ can be transferred into that into $\to^{a.s.}$)

Th4.10 $X_n \to^{\mathcal{L}} X$

- (i) If $X_n \ge 0$ then $\liminf_n E(X_n) \ge E(X)$
- (ii) If $P(|X_n| > x) \le P(|Y| > x)$ and $E(|Y|) < \infty$, then $\lim_n E(X_n) = E(X)$.
- (iii) $\{X_n\}$ is uniformly integrable iff $E(X_n) \to E(X)$ as $n \to \infty$.
- Th4.11 (Continuous Mapping Theorem) Let $X_n \sim F_n$ and $X \sim F$. If $X_n \to^{\mathcal{L}} X$ and $h : R \to R$ measurable and discontinuous only on D with $P(x \in D) = 0$. Then $h(X_n) \to^{\mathcal{L}} h(X)$.
- Th4.20(**Taylor expansion of the characteristic function**). If $E|X|^n < \infty$, then $E(X^k) = (-i)^k \phi^{(k)}(0)$ for $k = 1, \dots, n$ and

$$\phi(t) = \sum_{k=0}^{n-1} \frac{\phi^{(k)}(0)}{k!} t^k + O(t^n) = \sum_{k=0}^{n} \frac{\phi^{(k)}(0)}{k!} t^k + o(t^n) (\text{ as } t \to \infty)$$

Le4.21 $(X,Y) \sim f(x,y)$. Then

$$X+Y \sim \int_{R^1} f(x,z-x)dx, \quad X-Y \sim \int_{R^1} f(x+z,x)dx$$
$$X/Y \sim \int_{R^1} f(xz,x)|x|dx.$$

Th4.22 (**Inverse formula**) For any $x_1 < x_2$,

$$\frac{1}{2} \{ F(x_2 + 0) + F(x_2) \} - \frac{1}{2} \{ F(x_1 + 0) + F(x_1) \}$$

$$= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-itx_1} - e^{-itx_2}}{it} \phi(t) dt$$

- Th4.26 (Continuity Theorem) Let $\{F_n\}$ be a sequence of d.f.'s with c.f.'s ϕ_n . Then $F_n \to^{\mathcal{L}} F$ for some d.f. $F \Longleftrightarrow \phi_n(t) \to \phi(t)$ for all t and ϕ is continuous at t = 0. In this case, ϕ is the c.f. of F and the convergence $\phi_n \to \phi$ is uniformly in every finite interval.
- Th4.28 (Lindeberg-Lévy central limit theorem) $\{X_i\}$ are i.i.d. with mean zero and finite variance. Then

$$\lim_{n \to \infty} \left\{ \frac{1}{\sqrt{n}\sigma} \sum_{i=1}^{n} X_i < x \right\} = N(0,1)$$

De4.30 (Lindeberg Condition) A triangular array $\{X_{nk}\}$ with mean zero satisfies the Lindeberg condition if

$$\lim_{n \to \infty} \frac{1}{B_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk}| > \tau B_n} X_{nk}^2 dP = 0 \text{ for any } \tau > 0.B_n^2 = \sum_{i=1}^{r_n} E X_{ni}^2.$$

Th4.31 (Central limit theorem) $\{X_i\}$ are independent with finite variance σ_i^2 . Then

$$\lim_{n \to \infty} \left\{ \frac{1}{B_n} \sum_{i=1}^n (X_i - EX_i) < x \right\} = N(0, 1) \text{ and } \lim_{n \to \infty} \max_{k \le n} \frac{\sigma_k}{B_n} = 0$$

if and only if *Lindeberg condition* holds. The second one is called **Feller condition** or uniformly asymptotically negligible.

Co4.32 (**Lyapounov theorem**) Suppose $\{X_i\}$ are independent with satisfying, for some $\delta > 0$.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{E|X_i|^{2+\delta}}{\{\sum_{i=1}^{n} \sigma_i^2\}^{1+\delta/2}} = 0$$

Then $\{X_n\}$ satisfies a central limit theorem.

7.4 Absolute continuity/Conditional Expectation

- De5.4 Let X be a r.v. on (Ω, \mathcal{F}, P) such that its mean exists and let Q be a sub σ -field of \mathcal{F} . The conditional expectation of X given Q is any r.v. (denote E(X|Q)) satisfying
 - (i) E(X|Q) is measurable wrt Q, and
 - (ii) $E\{1_B E(X|Q)\} = E(1_B X)$ for any $B \in Q$.

$$E\{g(X)|Y\} = \frac{\int g(x)f(x,Y)dx}{\int f(x,Y)dx}$$

Th5.9 $\mathcal{P}_1 \subset \mathcal{P}_2$. Then $E\{E(X|\mathcal{P}_1)|\mathcal{P}_2\} = E\{E(X|\mathcal{P}_2)|\mathcal{P}_1\} = E(X|\mathcal{P}_1)$ a.s. In particular, $E\{E(X|Y)|Y,Z\} = E\{E(X|Y,Z)|Y\} = E(X|Y)$ a.s.

An interesting counterexample-Sometimes,

 $E\{E(Y|X)Z\} \neq E(YZ)$. For example, $Y = g(X) + \varepsilon$. The error term ε is independent of X with zero mean and finite variance σ^2 . Let $Z = \varepsilon$. Then $E\{E(Y|X)Z\} = E\{g(X)Z\} = 0$. But $E(YZ) = E(\varepsilon^2) = \sigma^2$

Th 5.10 \mathcal{P}_1 and \mathcal{P}_2 are all σ -fields and $E\{E(X|\mathcal{P}_1)|\mathcal{P}_2\} = E(X|\mathcal{P}_2 \cap \mathcal{P}_1)$ a.s.

Related Materials

1. (**Feller-Chung Theorem**) For each integral number $j, A_j A_{i-1}^C \cdots A_0^C$ and B_i are independent, where $A_0 = \emptyset$. Then $P(\bigcup_i A_i B_i) \ge \alpha P(\bigcup_i A_i)$ for $\alpha = \inf_i P(B_i)$.

Proof. Note that

$$\bigcup_{j} A_{j} B_{j} = A_{1} B_{1} + A_{2} B_{2} (A_{1} B_{1})^{C} + \cdots \supset A_{1} B_{1} + A_{2} B_{2} A_{1}^{C} + \cdots$$

$$P(\bigcup_{j} A_{j} B_{j}) \geq P(A_{1} B_{1}) + P(A_{2} A_{1}^{C}) P(B_{2}) + \cdots \geq \alpha \{P(A_{1}) + P(A_{2} A_{1}^{C}) + P(A_{2} A_{1}^{C}) + \cdots \} \{X_{n} \}$$

$$= \alpha P(\bigcup_{i} A_{j}).$$

2. X_1, \dots, X_n are independent and **symmetric** random variables. Write $S_k = \sum_{i=1}^k X_i$ for $k = 1, \dots, n$. Then

$$P(\max_{1 \le k \le n} S_k > a) \le 2P(S_n < a).$$

Proof. Set $A_k = \{S_1 < a, \dots, S_{k-1} < a, S_k > a\}$ and $B_k = \{S_n - S_k > 0\}$. Using the results of the previous item, we can prove this conclusion. This inequality is often used in Wiener processes.

3. *X* and *Y* are independent with means zero. Then $E|X+Y|^r > \max(E|X|^r, E|Y|^r)$ for any r > 1.

Proof. For any x, $|x|^r = |E(x+Y)|^r \le E|x+Y|^r$. It follows that

$$\begin{split} E|X+Y|^r &= \int |x+y|^r dF_X(x) dF_Y(y) \\ &= \int dF_X(x) \left\{ \int |x+y|^r dF_Y(y) \right\} \\ &= \int E|x+Y|^r dF_X(x) \ge \int |x|^r dF_X(x) = E|X|^r. \end{split}$$

4. (Generalized Kolmogorov inequality) X_1, \dots, X_n are independent random variables with mean zeros. Write $S_k = \sum_{i=1}^k X_i$ for $k = 1, \dots, n$ and $A = \{\sup_{k \le n} |S_k| \ge C\}$ for some positive constant C.

$$C^r P(A) < E(|S_n|^r I_A) < E|S_n|^r$$
 for $r > 1$.

<u>Proof.</u> Set $A_0 = \emptyset$ and $A_k = \{\sup_{i \le k} |S_i| < C, |S_k| \ge C\}$. Then A_1, \dots, A_n are disconnect each other and $A = \sum A_k$. It follows from the result of the former item that

$$E|S_n|^r I_A = \sum_{k=1}^n E|S_n|^r I_{A_k} \ge \sum_{k=1}^n E|S_k|^r I_{A_k} \ge \sum_{k=1}^n C^r EI_{A_k} = C^r P(A),$$

and we complete the proof of the first assertion. The second one is trivial

- 5. If random variable X is integral, then $|median(X) - E(X)| \le \{2var(X)\}^{1/2}.$
- 6. $E|X|^p \le \infty \ (p \ge 1)$ if and only if $\sum_{n=1}^{\infty} \int_{|x|>n} |x|^{p-1} dF(x) < \infty$.
- 7. (Borel law of large number) $\mu_n \sim \text{Bernoulli}(n, p)$, then

$$P\left\{\lim_{n\to\infty}\frac{\mu_n}{n}=p\right\}=1\iff P\left\{\left|\frac{\mu_n}{n}-p\right|>\epsilon\right\}\leq \frac{E|\mu_n-np|^4}{n^4\epsilon^4}$$

8. (Hajek-Renyi inequality) X_i are independent each other with finite

$$P\left\{\max_{m\leq j\leq n}\left|C_{j}\sum_{i=m}^{j}(X_{i}-EX_{i})\right|>\varepsilon\right\}\leq \frac{1}{\varepsilon^{2}}\left(C_{m}^{2}\sum_{i=1}^{m}\sigma_{i}^{2}+\sum_{i=1+m}^{n}C_{i}^{2}\sigma_{i}^{2}\right)$$

- 9. (Kolmogorov strong law of large number) X_i are independent each other with finite variances. If $\sum_{n=1}^{\infty} D(X_n)/b_n^2 < \infty$ for $b_n \uparrow \infty$, then $\sum_{i=1}^{n} (X_i - EX_i)/b_n \to 0$ a.s.
- 10. (Kolmogorov strong law of large number) X_i are i.i.d. $\sum_{i=1}^n X_i/n$ a.s. converges to a if and only if $EX_i < \infty$ and $a = E(X_1)$.
- 11. Chebyschev inequality, Markov inequality.
- $\{X_n\}$ is satisfied with law of large numbers.
- 13. $X_i \sim F_i(x)$. If $\lim_{A\to\infty} \sup_{1\le n<\infty} \int_{|x|>A} |x| dF_n(x) = 0$, Then $\{X_n\}$ is satisfied with law of large numbers. (Use Kolmogorov three series **theorem** to prove)
- 14. X_i are independent. If there exists $\alpha > 1$ and $\beta > 0$ such that $E|X_n|^{\alpha} < \beta$, Then $\{X_n\}$ is satisfied with law of large numbers.
- 15. (Markov law of large number) X_i are independent with mean zero. There exists a $0 < \delta < 1$ such that

$$\frac{1}{n^{1+\delta}}\sum_{i=1}^n E|X_i|^{1+\delta}\to 0$$

Then $\{X_n\}$ is satisfied with law of large numbers.

16. (Elementary Inequality) f(x) is a non-decreasing continuous function. Define

$$a.e \sup f(\xi) = \inf\{c : P(f|\xi| > c) = 0\}.$$

Then we have the following conclusion:

$$\frac{Ef(|\xi|) - f(\varepsilon)}{a.e \sup f(\xi)} \le P(|\xi| > \varepsilon) \le \frac{Ef(|\xi|)}{f(\varepsilon)}$$

In this case, assume f(0) = 0, then $\xi_n \to 0$ in probability if and only if $Ef(|\xi_n|) \to 0$.

17. (Gnedenko law of large number) Taking $f(x) = x^2/(1+x^2)$ in **elementary inequality**, we know that $\{X_n\}$ is satisfied with law of large numbersif and only if

$$E\left[\frac{\{\sum_{i=1}^{n}(X_{i}-EX_{i})\}^{2}}{n^{2}+\{\sum_{i=1}^{n}(X_{i}-EX_{i})\}^{2}}\right]\rightarrow0\Longleftrightarrow\sum_{i=1}^{n}E\left\{\frac{(X_{i}-EX_{i})^{2}}{1+(X_{i}-EX_{i})^{2}}\right\}\rightarrow0\text{ if independents }X_{i}\rightarrow^{pr}0\Longleftrightarrow nP(|X_{1}|>n)=o(1)\text{ and }\frac{1}{n}\max_{1\leq i\leq n}X_{i}\rightarrow^{a.s}0\Longleftrightarrow E|X_{i}\rightarrow^{a.s}\rightarrow^{a.s}0$$

- 18. $\{X_i\}$ are independent. There exist constants k_n such that $\max_{1 \le i \le n} |X_i| \le k_n$ and $k_n/B_n \to 0$. Then $\{X_i\}$ obey central limit theorem.
- 19. $\{X_i\}$ are independent and obey central limit theorem. $\{X_n\}$ are satisfied with law of large numbers and only if $B_n^2 = o(n^2)$.
- 20. $\{X_i\}$ are independent. $X_1 \sim U[-1,1]$ and $X_k \sim N(0,4^{k-1})$ for $k=2,\cdots$. Then $\{X_k\}$ satisfy central limit theorem (using c.f. to prove), but not Lindeberg condition and Feller condition because $b_n/B_n^2 \to 1/2$.
- 21. (The 1st Helly Theorem) Suppose f(x) is a continuous function on [a,b], $F_n(x)$ uniformly bound nondecreasing and converge to F(x) on [a,b]. a,b are the continuous points of F(x), then

$$\lim_{n \to \infty} \int_a^b f(x) dF_n(x) = \int_a^b f(x) dF(x)$$

22. (The 2nd Helly Theorem) Suppose f(x) is a continuous bounded function on R^1 , $F_n(x)$ uniformly bound nondecreasing and converge to F(x) on R^1 . In addition $F_n(-\infty) \to F(-\infty)$ and $F_n(\infty) \to F(\infty)$.

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)dF_n(x)=\int_{-\infty}^{\infty}f(x)dF(x).$$

• 147 Suppose X_n are independent, then $X_n \to a.s. 0 \iff \forall \varepsilon$. $\sum_{n=1}^{\infty} P\{|X_n| \geq \varepsilon\} < \infty.$

The proof can be completed using Borel-Cantelli Theorem by setting $A_n = \{|X_n| \geq \varepsilon\}.$

• 179 Suppose $\{X_n, n \ge 1\}$ is iid. Then there exists a sequence of constants C_n such that

$$\frac{1}{n}\left(\sum_{i=1}^{n}X_{j}-C_{n}\right)\to^{pr}0\Longleftrightarrow\lim_{n\to\infty}nP(|X_{1}|\geq n)=0$$

and $C_n = nP(|X_1| \ge n)$. If $E|X_1| < \infty$, C_n can be taken $nE(X_1)$.

• 177 Let p > 0 and F be the cdf of r.v. X. (i) If $E|X|^p < \infty$, then for any $\alpha > -1, \beta > 0$ and $\gamma \ge 0$ satisfying $\frac{\alpha+1}{\beta} + \gamma = p$, we have

$$\sum_{n=1}^{\infty} n^{\alpha} \int_{|x| > n^{\beta}} |x|^{\gamma} dF(x) < \infty. \tag{2}$$

Conversely, if there is a set of (α, β, γ) satisfying (2), then $E|X|^p < \infty$. (ii) If " $\alpha > -1$ " was changed into " $\alpha < -1$ ", the integral in (2) should also changed as $\int_{|x|<\eta\beta} |x|^{\gamma} dF(x)$. (This is a very useful result. For example, prove **183**. If p < 1, taking $\alpha = 0, \beta = 1/p$ and $\gamma = 0$ we have $E|X|^p < \infty \iff \sum_{n=1}^{\infty} P(|X| \ge n^{1/p}) < \infty$; If p > 1, taking $\alpha = 0, \beta = 1$ and $\gamma = p - 1$ we have $E|X|^p < \infty \iff \sum_{n=1}^{\infty} E\{|X|^{p-1}I_{|X|>n}\} < \infty$

• 183 (Marcinkiewicz-Zygmund Theorem) Suppose $\{X_n, n \ge 1\}$ is iid and $p \in (0,2)$. Then there exists a sequence of constants C_n such

$$n^{-1/p}\left(\sum_{j=1}^n X_j - C_n\right) \to^{a.s.} 0 \Longleftrightarrow E|X_1|^{1/p} < \infty,$$

and $C_n = 0$ if $0 and <math>nE(X_1)$ otherwise.

• 211 Suppose $\{X_n, n \ge 1\}$ is iid. Then

• (**Doob Inequality**) For independent sequence $\{X_n\}$ with mean zero and p > 1,

$$E\left(\max_{1\leq k\leq n}\left|\sum_{j=1}^{k}X_{j}\right|^{p}\right)\leq \left(\frac{p}{p-1}\right)^{p}E\left(\left|\sum_{j=1}^{n}X_{j}\right|^{p}\right)$$

- 65, 81, 138 in the big notebook
- Characteristic Functions

Dis.	density	c.f.	additivity
B(n,p)	$\binom{n}{x} p^x (1-p)^{n-x}$	$(pe^{it}+1-p)^n$	$B(n_1, p) * B(n_2, p) = B(n_1 + n_2, p)$
$P(\lambda)$	$\frac{\lambda^{x}}{x!} \exp(-\lambda)$	$\exp{\{\lambda(e^{it}-1)\}}$	$P(\lambda_1) * P(\lambda_2) = P(\lambda_1 + \lambda_2)$
$\mathit{N}(\mu,\sigma^2)$	$(\sqrt{2\pi}\sigma)^{-1} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$\exp(i\mu t - \frac{\sigma^2 t^2}{2})$	$N(\mu_1, \sigma_1^2) * N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
$\Gamma(\alpha,\lambda)$	$\frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda-1} e^{-\alpha x}$	$\left(1-\frac{it}{\alpha}\right)^{-\lambda}$	$\Gamma(\alpha,\lambda_1)*\Gamma(\alpha,\lambda_2)=\Gamma(\alpha,\lambda_1+\lambda_2)$
$C(\alpha,\mu)$	$\frac{\alpha}{\pi\{\alpha^2+(x-\mu)^2\}}$	$e^{i\mu t-\alpha t }$	$C(\alpha_1, \mu_1) * C(\alpha_2, \mu_2) = C(\alpha_1 + \alpha_2, \mu_1 + \mu_2)$
$\chi^2(n)$	$\frac{1}{2^{n/2}\Gamma(n/2)} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}$	$(1-2it)^{-\frac{n}{2}}$	$X^2(n_1) * X^2(n_2) = X^2(n_1 + n_2)$

8 Basics of Statistical Inference

Definition 1 Suppose X is an observation from an unknown distribution $P \in \mathcal{P}$ where \mathcal{P} is a family of distributions. A statistic T = T(X) is said to be sufficient for $P \in \mathcal{P}$ (or $\theta \in \Theta$ where $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ is a parametric family) if the conditional distribution of X given T does not depend on P (or θ in parametric family).

Theorem 1 (N-F factorization Theorem). Suppose X is an observation from $P \in \mathcal{P} = \{f(\cdot, \theta), \theta \in \Theta\}$. A statistic T = T(X) is sufficient for \mathcal{P} iff $f(x, \theta) = g(t(x), \theta)h(x)$ where g and h re two functions and h if free of θ .

Theorem 2 *Consider the model* $\mathcal{P} = \{f(\cdot, \theta); \theta \in \Theta\}$ *. Let T be a minimal sufficient statistic (T* is a function of any sufficient statistic). Then for any x, y in the sample space.

$$T(x) = T(y) \iff L(\theta, x) \propto L(\theta, y)$$

- **Remark 1** Theorem 2 shows that the likelihood function is equivalent to the following: Sufficiency principle inference for a given model which admits a minimal sufficient statistic T should be identical for any x and y such that T(x) = T(y).
 - Thereon 2 also provides methods for identifying minimal sufficient statistic. If T is a statistic such that for any x, y

$$T(x) = T(y) \iff L(\theta, x) \propto L(\theta, y).$$

Then T is minimal sufficient.

Definition 2 *The family* $\{f(\cdot,\theta); \theta \in \Theta\}$ *constitutes an exponential family if*

$$f(x, \theta) = h(x) \exp \left\{ \sum_{i=1}^{k} \phi_i(\theta) T_i(x) - \tau(\theta) \right\}$$

where T_1, \dots, T_k and h are functions of x not depending on θ , and ϕ_1, \dots, ϕ_k and τ are functions of θ not depending on x.

Theorem 3 *If the exponential family is in reduced form, then* $(T_1(x), \dots, T_k(x))$ *is* **minimal sufficient statistic**.

Theorem 4 If k = 1 and $f(x, \theta) = h(x) \exp{\{\phi(\theta)T(x) - \tau(\theta)\}}$, then the moments of T can be represented in terms of ϕ and τ

$$E_{\theta}\{T(X)\} = \frac{\tau'(\theta)}{\phi'(\theta)} \quad and \quad Var_{\theta}\{T(X)\} = \frac{\phi'(\theta)\tau''(\theta) - \tau'(\theta)\phi''(\theta)}{\phi'^3(\theta)}.$$

and so on.

Definition 3 A statistic T(x) is an ancillary statistic if its distribution does not depend on the parameter.

Definition 4 Suppose **x** is an observation from an unknown distribution $\mathcal{P} = \{P_{\theta}; \theta \in \Theta\}$. A statistic T = T(X) is said to be complete if for any measurable function g, Eg(T) = 0 for all $P \in \mathcal{P}$ means that g(t) = 0 a.e. P

We say that T = T(X) is boundedly complete if the previous statement holds for and bounded measurable function g.

- **Example 1** (a) Suppose $X \sim B(n, p)$. Suppose g is such that $\sum_{x=0}^{n} g(x) \binom{n}{x} p^{x} (1-p)^{x} = 0$ for all p. This means g(x) = 0 for $x = 0, 1, \dots, n$, and X is complete.
- (b) X_1, \dots, X_n are iid $U(0, \theta)$ for $\theta \in (0, \infty)$. Then $X_{(n)}$ is sufficient. Suppose g is such that $0 = Eg(X_{(n)}) \propto \int g(t)t^{n-1}dt$ for all θ . This means that $g(t)t^{n-1} = 0$ a.e. from measure theory. Thus $X_{(n)}$ is complete.
- (c) X_1, \dots, X_m are iid with pdf $N(\mu, \sigma_1^2)$ and Y_1, \dots, Y_n are iid with pdf $N(\mu, \sigma_2^2)$ and they are independent. $T = (\sum_{i=1}^m X_i^2, \sum_{i=1}^n Y_i^2, \sum_{i=1}^n Y_i, \sum_{i=1}^m Y_i, \sum_{i=1}^m X_i)$ is sufficient. But T is not complete since $E \sum X_i E \sum Y_i = 0$ for all $\mu, \sigma_1^2, \sigma_2^2$.
- (d) X_1, \dots, X_n are iid $U(\theta, \theta + 1)$ for $\theta \in R^1$. Then $T = (X_{(1)}, X_{(n)})$ is minimal sufficient but not complete(HW).
- (e) Suppose X is observation from

$$P \in \left\{ f(x, \phi_1, \dots, \phi_k) = h(x) \exp\{\sum_{i=1}^k \phi_i T_i(x) - \xi(\phi)\}, \phi \in \Theta \right\}$$

where Θ contains an open set (the family is said to be full-rank). Then (T_1, \dots, T_k) is **complete**.

Theorem 5 Let T be a one-dimensional complete and sufficient statistic. Then it is minimal sufficient.

Lemma 1 Let X, Y be r.v.'s where Y has finite variance, then (i) E(E(Y|X)) = E(Y) and (ii) $Var\{E(Y|X)\} \le Var(Y)$.

Theorem 6 (Basu Theorem) Let V and T be two statistics based on an observation X from $P_{\theta} \in \mathcal{P}$. If T is boundedly complete and sufficient and the distribution of V doesn't depend on θ . Then V and T are independent for any θ .

8.1 Point Estimation

Theorem 7 (Blackwell-Lehmann-Rao-Scheffé Theorem)(B-L-R-S) Let X be an observation from a distribution in a family $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$. Assume that $g(\theta)$ is U-estimable and U is an unbiased estimator of $g(\theta)$.

- If T is sufficient for g(θ), E(U|T) is also unbiased for g(θ) and Var_θ[E(U|T)] ≤ Var_θ(U) for all θ.
- If T is complete and sufficient for θ, Then E(U|T) is the unique UMVUE of g(θ). (Here unique means if there exists another estimator V which is UMVUE, then V(x) = U(X) a.e.P_θ)
- Therefore if a unbiased estimator is not one function of a complete and sufficient statistic, the estimator must not be UMVUE. For example the sample variance S_n^2 for σ^2 in $N(0, \sigma^2)$.

The following are typical approaches for deriving UMVUE when a complete and sufficient statistic T is available.

- (i) We happen to know that $\phi(T)$ is unbiased for $g(\theta)$, then $\phi(T)$ is UMVUE of $g(\theta)$.
- (ii) We first identify an unbiased estimator U of $g(\theta)$, and then calculate E(U|T), which is UMVUE.
- (iii) In some case, one can solve $E_{\theta}\phi(T) = g(\theta)$ for ϕ .

Theorem 8 Let \mathcal{U} be the set of all unbiased estimators of 0 with finite variance and T an unbiased estimator of $g(\theta)$. A necessary and sufficient condition for T to be UMVUE is that Cov(U,T) = 0 for all $U \in \mathcal{U}$.

Theorem 9 (The Cramér-Rao Lower Bound). Let X be an observation from $P \in \mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$, where Θ is an open set in \mathbb{R}^k . Suppose that T = T(X) is an unbiased estimator of $g(\theta)$, where g is differentiable at all $\theta \in \Theta$. Further, suppose that P_{θ} has a density function $f(x,\theta)$ w.r.t some measure v for all $\theta \in \Theta$, and $f(x,\theta)$ is differentiable in θ and satisfies that

$$\frac{\partial}{\partial \theta} \int h(x) f(x, \theta) dv = \int h(x) \frac{\partial}{\partial \theta} f(x, \theta) dv$$
 (3)

for all $\theta \in \Theta$, and h(x) = 1 and h(x) = T(x). Then

$$Var_{\theta}\{T(X)\} \ge \left(\frac{\partial}{\partial \theta}g(\theta)\right)I^{-1}(\theta)\left(\frac{\partial}{\partial \theta}g(\theta)\right)^{T}$$

where
$$I(\theta) = E_{\theta} \left\{ \left(\frac{\partial}{\partial \theta} \log f(X, \theta) \right) \left(\frac{\partial}{\partial \theta} \log f(X, \theta) \right)^T \right\}$$

The r.v. $\frac{\partial}{\partial \theta} f(x, \theta)$ is called *the efficient score* of θ . $I(\theta)$ is called Fisher Information Matrix.

Series Expansion Method Often we wish to estimate $g(\theta)$ when we have an unbiased estimator T of θ . We are attempted to use g(T) as the estimator of $g(\theta)$, but this is typically biased. We can express g(T) about θ using Taylor series

$$g(T) \approx g(\theta) + g'(\theta)(T - \theta) + \frac{1}{2}g''(\theta)(T - \theta)^2$$

Taking expectation both side, we get

$$Eg(T) \approx g(\theta) + \frac{1}{2}g''(\theta)Var(T).$$

Often Var(T) = O(1/n). This means that the bias has order 1/n. In some cases, we can estimate $g''(\theta)Var(T)$ and modify g(T) accordingly. So that it will have smaller bias.

Jackknife.
$$\overline{T}_{n-1,\cdot} = \frac{1}{n} \sum_{j=1}^{n} T_{n-1,j}$$
. Define $\overline{T_n^J} = nT_n - (n-1)\overline{T}_{n-1,\cdot}$

8.2 Maximum Likelihood Estimation (MLE)

Definition 5 Suppose **X** is a sample from $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ where P_{θ} is assumed to have a density $f(x, \theta)$. Let $L(\theta, x)$ be the likelihood function. A statistic $\widehat{\theta} \in \Theta$ satisfying

$$L(\widehat{\boldsymbol{\theta}}, \mathbf{X}) = \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}, \mathbf{X})$$

is called maximum likelihood estimate of θ . $\widehat{\theta}$ viewed as an estimator is called maximum likelihood estimator.

Newton-Raphson Let θ_0 be a fixed point. Write

$$\overline{Dl(\theta,x) = \left[\frac{\partial}{\partial \theta_1}l(\theta,x), \cdots, \frac{\partial}{\partial \theta_k}l(\theta,x)\right]^T} \text{ and }
D^2l(\theta,x) = \left[\frac{\partial^2}{\partial \theta_1 \partial \theta_1}l(\theta,x)\right]_{i,i=1,2,k}^i \cdot \widehat{\theta} \approx \theta_0 - [D^2l(\theta_0,x)]^{-1}Dl(\theta_0,x).$$

EM-algorithm

E-step (Estimation step). Compute $Q(\theta|\theta_k) = E_{\theta_k}[\log L(\theta, X)|Y]$; $\overline{\text{M-step}}$ (Maximization step). Select θ_{k+1} as the maximization of $Q(\theta|\theta_k)$. Apply these steps iteratively until "convergence". **Theorem 10** Let X_1, \dots, X_n be iid with a common density $f(x, \theta)$ w.r.t a σ -finite measure (focus on pdf and pmf) where θ is real-valued. Assume the following conditions.

- (a) The parameter space θ is an open interval (finite or infinite)
- (b) The distribution P_{θ} of X_i have common support so that $A = \{x, f(x, \theta) > 0\}$ is independent of θ .
- (c) For any $x \in A$, the density $f(x, \theta)$ is three times differentiable in θ , (d)

$$E_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X, \theta) \right] = 0.$$

and

$$E_{\theta} \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(X, \theta) \right] = -I(\theta).$$

(e) There exists a finite neighbor $c(\theta_0 - \epsilon, \theta_0 + \epsilon)$ and a function M(x) such that

$$\left| \frac{\partial^3}{\partial \theta^3} \log f(x, \theta) \right| \le M(x)$$

for all $x \in A$ *and* $\theta \in c(\theta_0 - \varepsilon, \theta_0 + \varepsilon)$ *with* $E_{\theta_0}M(X) < \infty$.

Then any consistent sequence $\widehat{\theta}_n$ of roots of the likelihood equation satisfies $\sqrt{n}(\widehat{\theta}_n - \theta_0) \longrightarrow N(0, I^{-1}(\theta)).$

Definition 6 Let X_1, \dots, X_n be iid with a common density $f(x, \theta)$. Let $I(\theta)$ be the Fisher information of X, which is assumed to be well-defined and finite. Let T_n be an estimator of $g(\theta)$ where $g(\theta)$ is differentiable with $g'(\theta) > 0$. We say T_n is **asymptotically efficient** if

$$\sqrt{n}(T_n - g(\theta)) \longrightarrow N(0, \nu(\theta))$$

where $v(\theta) = [g'(\theta)]^2/(I(\theta))$.

Theorem 11 Suppose that the conditions of Theorem 10 hold and that $\widetilde{\theta}_n$ is any root-n consistent estimators, i.e. $\sqrt{n}(\widetilde{\theta}_n - \theta_0) = O_p(1)$. Then the estimator sequence

$$T_n = \widetilde{\Theta}_n - \frac{l'(\widetilde{\Theta}_n, x)}{l''(\widetilde{\Theta}_n, x)}$$

is asymptotically efficient.

(In fact
$$n^{1/4}(\widetilde{\theta}_n - \theta_0) = o_p(1)$$
 is enough)

8.3 Robustness

Stieltiess Integral $F(x) = pF_c(x) + qF_d(x)$, where $F_c(x)$ has a derivative $f_c(x)$ and $F_d(x)$ is a step function with discontinuous points x_1, \dots, x_n , the size of jump at the x_i is p_i . Then

$$\int g(x)dF(x) = p \int g(x)dF_c(x) + q \sum_{i=1}^n g(x_i)p_i.$$

Definition 7 The influence function (or curse) of T at F is defined for each x by

$$IF(x,T,F) = \lim_{\varepsilon \downarrow 0} \frac{T((1-\varepsilon)F + \varepsilon \delta_x) - T(F)}{\varepsilon}$$

when the limit exists.

It is usually true that $\sqrt{n}\{T(F_n) - T(F)\} \longrightarrow N\{0, \int IF^2(x, T.F)dF(x)\}$.

8.4 Decision Theoretic Estimation

- Risk function: $R_T(\theta) = \int L(T(x), g(\theta)) p_{\theta}(x) d\mu(x) = E_{\theta}[L(T(x), g(\theta))]$. An estimator T is said to be admissible if there is no other estimator T^* such that $R_{T^*}(\theta) \leq R_T(\theta)$ for all $\theta \in \Theta$ and $R_{T^*}(\theta) < R_T(\theta)$ for some A
- Bayes Risk: $\overline{R}_T = \int R_T(\theta)\pi(\theta)d\theta$. An estimator T_{π} is said to be **Bayes** estimator with respect to π if $\overline{R}_{T_{\pi}} \leq \overline{R}_T$ for all estimator T. Special Cases:
 - $L(T(x), g(\theta)) = \{T(x) g(\theta)\}^2$. $\rho_T(x) = \int \{T(x) - g(\theta)\}^2 \pi(\theta|x) d\theta$. Thus $\rho_T(x)$ is minimized by $T(x) = E\{g(\theta)|X\}$.
 - $L(T(x), g(\theta)) = |T(x) g(\theta)|$. $\rho_T(x) = \int |T(x) - g(\theta)| \pi(\theta|x) d\theta$. Thus $\rho_T(x)$ is minimized by T(x) = the **median** of $g(\theta)$ given X, which is just Bayes estimator.
 - $L(T(x), g(\theta)) = w(\theta) \{T(x) g(\theta)\}^2$. $\rho_T(x) = \int w(\theta) \{T(x) - g(\theta)\}^2 \pi(\theta|x) d\theta$. Thus $\rho_T(x)$ is minimized by

$$T(x) = \frac{E\{w(\theta)g(\theta)|X\}}{E\{w(\theta)|X\}}.$$

 An estimator T_π is said to be Minimax estimator if sup_{θ∈Θ} R_T(θ) ≤ sup_{θ∈Θ} R_{T*} for any other estimator T* of θ.
 Suppose T_π is Bayes with respect to π and T_π has constant risk. Then T_π is minimax.

Remark: The MLE or UMVUE may be inadmissible!

Proposition 8.1 If T_{π} is unique Bayes with respect to prior π , then T_{π} is admissible.

8.5 Hypothesis Test

parameter space Θ

MP-level $-\alpha$ test.

Hypothesis

- $H_0: \theta \in \Theta_0 \subset \Theta \iff H_1: \theta \in \Theta_0^c$
- Reject H_0 if $\delta(x) = 1$ and accept (do not reject) H_0 if $\delta(x) = 0$.
- $\gamma(\theta) = P_{\theta}(\delta(x) = 1)$ is called **power function** of δ at θ .
- $\alpha(\theta) = \gamma(\theta)$ =probability of type I error for $\theta \in \Theta_0$;
- $\beta(\theta) = 1 \gamma(\theta)$ =probability of type II error for $\theta \in \Theta_0^c$.
- 1. (UMT) A test φ of size α is a uniformly most powerful test if $\gamma_{\varphi}(\theta) \geq \gamma_{\widetilde{\theta}}(\theta)$ for all $\theta \in \Theta_0^c$ and size of α .
- 2. (**N-P Lemma**) Any type of the form $\varphi(x) = \begin{cases} 1 & f_1/f_0 > c \\ \xi(x) & f_1/f_0 = c \\ 0 & o.w \end{cases}$ for some c > 0 and $0 < \xi(x) < 1$ satisfying $E_{\theta_0} \{ \varphi(X) \} = \alpha$ is

- 3. Let $\{f_{\theta}; \theta \in \Theta\}$ be a family with MLR in T(x). (for all $\theta < \theta'$, $f_{\theta'}(x)/f_{\theta}(x)$ is a non-decreasing function of T(x))
 - (i) For testing $H_0: \theta \le \theta_0$ vs $H_1: \theta > \theta_0$, there exists a UMP test of level α given by

$$\varphi(x) = \begin{cases}
1 & T(X) > c \\
\xi & T(X) = c \\
0 & o.w
\end{cases}$$
(4)

where c and ξ are determined by

$$E_{\theta_0} \varphi(X) = \alpha \tag{5}$$

- (ii) The power function $\gamma(\theta) = E_{\theta}\phi(X)$ of the test (4) is strictly increasing for all θ .
- (iii) For all θ' , the test determined by (4) and (5) is UMP for testing $H_0: \theta \le \theta'$ vs $H_1: \theta > \theta'$ at level $\alpha' = \gamma(\theta')$.
- 4. Suppose $X = (X_1, \dots, X_n)$ is a random variable from the **one-dimensional exponential** family

$$f_{\theta}(x) = h(x) \exp\{T(x)\theta - \tau(\theta)\}\$$

then the **UMPU** test for $H_0: \theta = \theta_0 \iff H_1: \theta \neq \theta_0$ is given by

$$\phi(x) = \begin{cases}
1 & T(x) < C_1 \text{ or } T(X) > C_2 \\
\xi_i & T(x) = C_i \text{ for } i = 1, 2 \\
0 & C_1 < T(x) < C_2
\end{cases}$$
(6)

where C_i and ξ_i are determined by the following two equations

$$E_{\theta_0}\{\varphi(X)\} = \alpha \qquad \qquad E_{\theta_0}\{T(X)\varphi(X)\} = \alpha E_{\theta_0}\{T(X)\}.$$

5. Suppose *X* has pdf $f_{\theta,\eta}(x) = c(\theta,\eta)h(x) \exp\left\{\theta u(x) + \sum_{i=1}^k \eta_i T_i(x)\right\}$ where $(\theta,\eta) \in \mathbb{R}^{k+1}$. Define

$$\varphi(u,t) = \begin{cases}
1 & u > c(t) \\
\xi(t) & u = c(t) \\
0 & o.w
\end{cases}$$

where c(t) and $\xi(t)$ are determined by

$$E_{\theta_0}[\varphi\{U(X),T(X)\}|T(X)=t]=\alpha$$

for all t with $T = (T_1, \dots, T_k)$. Then φ is a **UMPU** level $1 - \alpha$ test for $H_0 : \theta < \theta_0 \Longleftrightarrow H_1 : \theta > \theta_0$.

Assume the setting as in item 5 and consider testing
 H₀: θ = θ₀ ←⇒ H₁: θ ≠ θ₀. Then the **UMPU** test of level α is given by

$$\phi(u,t) = \begin{cases}
1 & u > c_1(t) \text{ or } u < c_2(t) \\
\xi_i(t) & u = c_i(t) \\
0 & o.w
\end{cases}$$

where $c_i(t)$ and $\xi_i(t)$ are determined by $E_{\theta_0}\{\varphi\{U,T\}|T=t\}=\alpha$ and $E_{\theta_0}[U\varphi\{U,T\}|T=t]=\alpha E_{\theta_0}\{U|T=t\}$ for all t.

7. Suppose *X* has pdf $f_{\theta,\eta}(x) = c(\theta,\eta)h(x) \exp\left\{\theta u(x) + \sum_{i=1}^k \eta_i T_i(x)\right\}$ and that V = V(u,T) is independent of *T* when $\theta = \theta_0$.

(a) Assume further that V(u,t) is increasing in u for each fixed t. Then the **UMPU** test of $H_0: \theta \leq \theta_0 \Longleftrightarrow H_1: \theta > \theta_0$ is given

$$\varphi(u,t) = \begin{cases} 1 & V > C \\ \xi & V = C \\ 0 & o.w \end{cases}$$

where *C* and ξ are determined by $E_{\theta_0}\{\varphi(X)\} = \alpha$.

(b) Assume further that V(u,t)=a(t)u+b(t) where a(t)>0 for all t. Then the **UMPU** test of $H_0:\theta=\theta_0 \Longleftrightarrow H_1:\theta\neq\theta_0$ is given

$$\phi(V) = \begin{cases}
1 & V < C_1 \text{ or } V > C_2 \\
\xi_i & V = C_i \\
0 & o.w
\end{cases}$$

where C_i and ξ_i are determined by $E_{\theta_0}\{\varphi(V)\} = \alpha$ and $E_{\theta_0}\{\varphi(V)V\} = \alpha E_{\theta_0}(V)$.

- 8. (LRT) $\lambda(x) = \frac{\sup_{\theta \in \Theta} f_{\theta}(x)}{\sup_{\theta \in \Theta_0} f_{\theta}(x)}$.
- 9. Wald test statistic

$$W = n\{R(\widehat{\theta})\}^T \left[\left\{ \frac{\partial}{\partial \theta} R(\widehat{\theta}) \right\}^T I^{-1}(\widehat{\theta}) \left\{ \frac{\partial}{\partial \theta} R(\widehat{\theta}) \right\} \right]^{-1} R(\widehat{\theta})$$

$$(H_0 : R(\theta) = 0 \Longleftrightarrow H_1 : R(\theta) \neq 0)$$

- 10. **Rao's** score statistic $(H_0: \theta = \theta_0 \iff H_1: \theta \neq \theta_0)$ $S = \frac{1}{n} \left\{ \frac{\partial I(\theta_0)}{\partial \theta} \right\}^T I^{-1}(\theta_0) \left\{ \frac{\partial I(\theta_0)}{\partial \theta} \right\}.$
- 11. For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the *acceptance* region of a level α test of $H_0: \theta = \theta_0$. For each $x \in X$, define $C(x) = \{\theta_0: x \in A(\theta_0)\}$. Then random set C(X) is a 1α *confidence set*. Vice versa.
- 12. A $1-\alpha$ **highest posterior density** (HPD) credible set for θ is a subset \mathcal{C} of θ , of the form $\mathcal{C}_{\alpha} = \{\theta \in \Theta : \pi(\theta|x) > K(\alpha)\}$ where $K(\alpha)$ is the largest const s.t. $P(\mathcal{C}_{\alpha}|x) \geq 1-\alpha$.

8.6 Standard Errors

- 1. $\operatorname{Se}(\widehat{\boldsymbol{\theta}}) = \{E(\widehat{\boldsymbol{\theta}} \boldsymbol{\theta})^2\}^{1/2}$
- 2. Rmse $(\widehat{\theta}) = \left\{ \frac{1}{r} \sum_{j=1}^{r} (\widehat{\theta}_j \theta)^2 \right\}^{1/2}$, where $\{\widehat{\theta}_j\}$ are the estimators $\widehat{\theta}$ for r replications
- 3. Ese $(\widehat{\theta})$: estimate Se $(\widehat{\theta})$, when it depends another parameters, e.g. Se $(\overline{X}) = \sigma/n$, then Ese $(\widehat{\theta}) = S/\sqrt{n}$.
- 4. Ase($\widehat{\theta}$)
- 5. Ease($\widehat{\theta}$): estimate Ase($\widehat{\theta}$)
- 6. All of above assume that one knows the PDF of what one is sampling from
- 7. Jse($\widehat{\theta}$): Jacknife Se($\widehat{\theta}$)

$$Jse(\widehat{\theta}) = \left[\frac{n-1}{n} \sum_{i=1}^{n} {\{\widehat{\theta}_{(i)} - Je(\widehat{\theta})\}^2}\right]^{1/2} \quad \text{where } Je(\widehat{\theta}) = \overline{\widehat{\theta}_{(i)}}$$

 $\widehat{\widehat{\theta}}_{(i)} = \widehat{\theta}$ with the *i*-th obs left over.

8. Bse($\widehat{\theta}$): Bootstrap Se($\widehat{\theta}$)

$$\mathit{Bse}(\widehat{\boldsymbol{\theta}}) = \left[\frac{1}{B}\sum_{b=1}^{B}\{\widehat{\boldsymbol{\theta}}_b - be(\widehat{\boldsymbol{\theta}})\}^2\right]^{1/2} \quad \text{where } be(\widehat{\boldsymbol{\theta}}) = \frac{1}{B}\sum_{b=1}^{B}\widehat{\boldsymbol{\theta}}_b$$