Year	I	Course Code: 21BCA2C6L Cr	redits	04	
Sem.	П	Course Title: Discrete Mathematics	ours	40	
Course Pre- requisites, if any		NA			
Formative Assessment Marks: 40			uration SA: 02 hrs	ration of A: 02 hrs.	
Course Outcomes	•	 At the end of the course the student should be able To understand the basic concepts of Mathematics set and functions. To understand various counting techniques and inclusion and exclusions. Understand the concepts of various types of rela ordering and Equivalence relations. Apply the concepts of generating functions to recurrence relations. Familiarize the fundamental concepts of graph shortest path algorithm 	al reasor principle ations, pa	e of artial	
Unit No.		Course Content	Hou	ırs	
Unit I		The Foundations: Logic and proofs: Propositional Logic, Applications of Propositional Logic, Propositional Equivalences, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference, Introduction to Proofs, Proof Methods and Strategy. Basic Structures: Sets, Functions, Sequences, Sums, and Matrices: Sets, set operations, Functions, Sequences and Summations, matrices.	l dd)	
Unit II		Counting: Basics of counting, Pigeonhole principle, Permutation and combination, Binomial Coefficient and Combination, Generating Permutation and Combination. Advanced Counting Techniques: Applications of Recurrence Relations, Solving Linear Recurrence, Relations, Divide and Conquer Algorithms and Recurrence Relations, Generating functions, Inclusion-Exclusion, Applications of Inclusion-exclusion.	d d f c,)	
Unit III		Induction and Recursion: Mathematical Induction Strong Induction and Well- Ordering, Recursive Definitions and Structural Induction, Recursive	e	2	

	Algorithms, Program Corrections. Relation: Properties of relation, Composition of relation, Closer operation on relation, Equivalence relation and partition. Operation on relation, Representing relation.				
Unit IV	Graphs : Graphs and Graph models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring	08			
Recommended Learning Resources					
Print	Reference Books:				
Resources	 Discrete Mathematics and Its Applications, Kenneth H. Rosen: Seventh Edition, 2012. Discrete Mathematical Structure, Bernard Kolman, Robert C, Busby, Sharon Ross, 2003. Graph Theory with Applications to Engg and Comp. Sci: Narsingh Deo-PHI1986. Discrete and Combinatorial Mathematics Ralph P. Grimaldi, B. V. Ramatta, Pearson, Education, 5Edition. Discrete Mathematical Structures, Trembley and Manobar. 				