

Spatio-Temporal Graph Convolutional A	let works:
A Deep Learning Framework for Mas	- Cio
toce casting	
2.1 Trappic Prediction on Road Scans	
-> predict the most likely truppic measurements (e.g. speed or truppic plaw) in the next H Steps given the previous M trappic observation	
Uttb, Vt+H= agmox log P(Vt+1,, Vt+H Vt-MH3 V	t), (1)
-> VtEIR is an observation vector of a road segments at time	step t
-> GE=(VB & W), Vt is a finite set of vertices, from a monitor stations in traffic network, Esis a set of edges, in dicating the connected	ess between
intraffic network, Esis a set of edges, indicating the connected no Stations, while WE (Ruen donotes the weighted adjacency matrix of	of Gt.
22 Convolution on graph	
-> g caph convolution operator "** g" based on spectral graph	convolution
consolutional Theorem in good fourier transform	
-make graph undicected	
- L=D-A [Laplacian matrix]	
- L=D-A [Laplacian matrix] Wintuition = difference between graph signal Xi and it aug({ Xi j & N; })	5
\rightarrow normalized symmetric Loplacian $(\tilde{L})=\tilde{D}^{-\frac{1}{2}}.L.\tilde{D}^{-\frac{1}{2}}=\tilde{L}-\tilde{D}^{-\frac{1}{2}}.A.$	V -
-> be cause Lis symmetric seigenvectors are orthonormal, i.e.	UT OT T
UiTUj = 0 ip i +j, and UiTUi=1. In Matrix form, this becomes 1. hence:	101=111
L=U. N.UT 1 L eigenvalues along the diagonal matrix of L	
eigenvectors of L	

-) now convolution time complexity is O(K|E|)

-) ea.(5) is now K-localized since it is Kth order polynomial in the Laplacian, i.e. it depends only on nodes that are maximum K-hop away from the Central node.

1-St order approximation

-) assume TIMUX=2

$$X + GW = \theta (I_N + 0^{-\frac{1}{2}} \cdot W0^{-\frac{1}{2}}) \cdot X = \theta (0^{-\frac{1}{2}} \cdot \overline{W} \cdot \overline{0}^{-\frac{1}{2}}) \cdot X$$

- For each time step tox M, convolution operation with some kernel W imposed on $X \in \mathbb{R}^{n \times c_i}$ in papellel, thus X in convolution is $X \in \mathbb{R}^{n \times n \times c_i}$ - Frame $V \in \mathbb{R}^n = X \in \mathbb{R}^{n \times c_i}$ [Ci=1]

3. Roposed movels

Figure 2: Architecture of spatio-temporal graph convolutional networks. The framework STGCN consists of two spatio-temporal convolutional blocks (ST-Conv blocks) and a fully-connected output layer in the end. Each ST-Conv block contains two temporal gated convolution layers and one spatial graph convolution layer in the middle. The residual connection and bottleneck strategy are applied inside each block. The input $v_{t-M+1},...,v_t$ is uniformly processed by ST-Conv blocks to explore spatial and temporal dependencies coherently. Comprehensive features are integrated by an output layer to generate the final prediction \hat{v} .

3.1. Gatel-INN for Extracting Temporal Features

- -7 RNN for traffic prediction = time consuming iterations
 -7 Gated CNN = footer than RNN Callow parallelization)
 -7 Capture Rextract temporal dynamic behaviors of traffic plans.
- -> Kernel I EIRKEXCIX 2Co [PQ]=I * Y E [R (M-K+1) x 2 Go -> input Y E IRMX Ci -> I * TY= PO 6 (Q) EIR (M-K+1) x Go

Figure 3: PeMS sensor network in District 7 of California (left), each dot denotes a sensor station; Heat map of weighted adjacency matrix in PeMSD7(M) (right).

Model	BJER4 (15/ 30/ 45 min)			
Model	MAE MAPE (%)		RMSE	
HA	5.21	14.64	7.56	
LSVR	4.24/ 5.23/ 6.12	10.11/ 12.70/ 14.95	5.91/7.27/8.81	
ARIMA	5.99/ 6.27/ 6.70	15.42/ 16.36/ 17.67	8.19/ 8.38/ 8.72	
FNN	4.30/ 5.33/ 6.14	10.68/ 13.48/ 15.82	5.86/ 7.31/ 8.58	
FC-LSTM	4.24/ 4.74/ 5.22	10.78/ 12.17/ 13.60	5.71/6.62/7.44	
GCGRU	3.84/ 4.62/ 5.32	9.31/11.41/13.30	5.22/ 6.35/ 7.58	
STGCN(Cheb)	3.78/ 4.45/ 5.03	9.11/ 10.80/ 12.27	5.20/ 6.20/ 7.21	
STGCN(1 st)	3.83/ 4.51/ 5.10	9.28/ 11.19/ 12.79	5.29/ 6.39/ 7.39	

Table 1: Performance comparison of different approaches on the dataset BJER4.

Model	PeMSD7(M) (15/30/45 min)		PeMSD7(L) (15/30/45 min)			
	MAE	MAPE (%)	RMSE	MAE	MAPE (%)	RMSE
HA	4.01	10.61	7.20	4.60	12.50	8.05
LSVR	2.50/ 3.63/ 4.54	5.81/ 8.88/ 11.50	4.55/ 6.67/ 8.28	2.69/ 3.85/ 4.79	6.27/ 9.48/ 12.42	4.88/ 7.10/ 8.72
ARIMA	5.55/ 5.86/ 6.27	12.92/ 13.94/ 15.20	9.00/ 9.13/ 9.38	5.50/ 5.87/ 6.30	12.30/ 13.54/ 14.85	8.63/ 8.96/ 9.39
FNN	2.74/ 4.02/ 5.04	6.38/ 9.72/ 12.38	4.75/ 6.98/ 8.58	2.74/ 3.92/ 4.78	7.11/ 10.89/ 13.56	4.87/ 7.02/ 8.46
FC-LSTM	3.57/ 3.94/ 4.16	8.60/ 9.55/ 10.10	6.20/ 7.03/ 7.51	4.38/ 4.51/ 4.66	11.10/ 11.41/ 11.69	7.68/ 7.94/ 8.20
GCGRU	2.37/ 3.31/ 4.01	5.54/ 8.06/ 9.99	4.21/ 5.96/ 7.13	2.48/ 3.43/ 4.12 *	5.76/ 8.45/ 10.51 *	4.40/ 6.25/ 7.49 *
STGCN(Cheb)	2.25/ 3.03/ 3.57	5.26/ 7.33 / 8.69	4.04/ 5.70/ 6.77	2.37/ 3.27/ 3.97	5.56/ 7.98/ 9.73	4.32/ 6.21/ 7.45
STGCN(1 st)	2.26/ 3.09/ 3.79	5.24 / 7.39/ 9.12	4.07/ 5.77/ 7.03	2.40/ 3.31/ 4.01	5.63/ 8.21/ 10.12	4.38/ 6.43/ 7.81

Table 2: Performance comparison of different approaches on the dataset PeMSD7.

Dataset	Time Consumption (s)			
Dataset	STGCN(Cheb)	$STGCN(1^{st})$	GCGRU	
PeMSD7(M)	272.34	271.18	3824.54	
PeMSD7(L)	1926.81	1554.37	19511.92	

Table 3: Time consumptions of training on the dataset PeMSD7.

Figure 4: Speed prediction in the morning peak and evening rush hours of the dataset PeMSD7.

Figure 5: Test RMSE versus the training time (left); Test MAE versus the number of training epochs (right). (PeMSD7(M))

