Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

ANOVA

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Aula passada

ANOVA

O Comparação de médias de 3 ou mais grupos.

Fonte de Variação	Soma dos Quadrados (SQ)	gl	Quadrados das Médias	Estatística F	
Entre os grupos	$SQ_{TRAT} = \sum_{i=1}^k n_i (rac{y_i}{n_i} - rac{ar{y}_{}}{N})^2$	k - 1	$QM_{TRAT} = rac{SQ_{TRAT}}{k-1}$	$F=rac{QM_{TRAT}}{QM_{ERRO}}$	
Dentro dos Grupos	$SQ_{ERRO} = SQ_{Total} - SQ_{TRAT}$	n - k	$QM_{ERRO} = rac{SQ_{ERRO}}{n-k}$	-	
Total	$SQ_{Total} = \sum_{i=1}^k \sum_{j=1}^n (y_{ij} - rac{ar{y}_{}}{N})^2$	n - 1	-	-	

Nesta aula

ANOVA de dois fatores

	SQ	GL	QM	F
Fator A	SQA	A-1	SQA/(A-1)	QMA/QMD
Fator B	SQB	B-1	SQB/(B-1)	QMB/QMD
Efeito da Interação	SQI	(A-1)x(B-1)	SQI/(A-1)(B-1)	QMI/QMD
Dentro do grupo	SQD	N-AB	SQD/(N-AB)	
Total	SQT	N-1		

O que é?

É uma análise de variância utilizada para avaliar simultaneamente duas variáveis.

As variáveis são também chamadas de **fatores**.

	SQ	GL	QM	F
Fator A	SQA	A-1	SQA/(A-1)	QMA/QMD
Fator B	SQB	B-1	SQB/(B-1)	QMB/QMD
Interação	SQI	(A-1)(B-1)	SQI/(A-1)(B-1)	QMI/QMD
Dentro do grupo	SQD	N-AB	SQD/(N-AB)	
Total	SQT	N-1		

1	Α	В	С	D		
3		Body Location				
4	Climate	Arm	Neck Fo			
5	Cold	15	21	11		
6		23	11			
7		26	26 28			
8		19	16	19		
9		31	23	10		
10	Dry	33	25 3			
11		26	29	29		
12		15	17	39		
13		18	18 22			
14		33	12	24		
15	Humid	28	16	26		
16		20	18	37		
17		18	26	39		
18		36	36	34		
19		38	34	50		

Hipóteses

Hipóteses nulas:

- Não há diferença nas médias do fator A;
- Não há diferença nas médias do fator B;
- Não há interação entre os fatores
 A e B;

Hipótese alternativas:

- 1 e 2 → as médias não são iguais;
- 3 → existe interação entre A e B.

Pressupostos

- Distribuição normal;
- Variâncias iguais;

supp e dose são estatisticamente significante → mudar a dose ou o método impacta significativamente na média do tamanho do dente.

Modelo aditivo → Considera que os dois fatores são independentes. Se existe a presunção de que os dois fatores interagem para criar um efeito sinérgico, deve-se utilizar o modelo de interação.

```
Df Sum Sq Mean Sq F value Pr(>F)

supp 1 205.4 205.4 15.572 0.000231 ***

dose 2 2426.4 1213.2 92.000 < 2e-16 ***

supp:dose 2 108.3 54.2 4.107 0.021860 *

Residuals 54 712.1 13.2

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

É possível verificar que *supp* e *dose* são estatisticamente significativo, assim como a interação entre eles. Se a interação é significativa, a relação entre a dose e o tamanho do dente depende do método.

Se a interação não for estatisticamente significativo → modelo aditivo.

Exercício

Em um experimento foi verificado o crescimento de duas espécies de plantas em quatro solos que foram tratados com fertilizantes de diferentes maneiras como os dados ao lado.

Visualize os dados e realize o teste ANOVA. Então, interprete os resultados obtidos.

		Fertilizer Treatment			
		Control	<u>F1</u>	<u>F2</u>	F3
Species	A	21.0	32.0	22.5	28.0
		19.5	30.5	26.0	27.5
		22.5	25.0	28.0	31.0
		21.5	27.5	27.0	29.5
		20.5	28.0	26.5	30.0
		21.0	28.6	25.2	29.2
	В	23.7	30.1	30.6	36.1
		23.8	28.9	31.1	36.6
		23.8	30.9	28.1	38.7
		23.7	34.4	34.9	37.1
		22.8	32.7	30.1	36.8
		24.4	32.7	25.5	37.1