

Explore Quantum Teleportation Algorithms with Cloud-based Quantum Computers

Computer Science Capstone with Professor Marin and Professor Byrnes

Xinyao Han | Yile Xu

PROBLEM STATEMENT

QUANTUM COMPUTING

- Quantum superposition and entanglement.
- Drastically increase computation speed

QUANTUM TELEPORTATION

- Quantum state change of two distant entities.
- Transmits long distance information
- Enable Quantum Internet

DISTRIBUTED SYSTEM PROBLEMS

Network

PROJECT POSITIONING

RELATED WORK I

FUNDAMENTAL NETWORK PROBLEMS

- Lower Bonds
- Graph Optimization, Verification Problem

DOES NOT HELP

RELATED WORK II

SUPERLUMINAL TRANSMISSION

Quantum teleportation cannot be achieved super-luminally as the transmission of the classical message through the medium is limited to traveling at the speed of light

RELATED WORK III

DISTRIBUTED COMPUTATION POWER

A notional quantum network composed of quantum nodes for processing and storing quantum states and quantum channels for distributing quantum information. Alternatively, such a network can be viewed as a strongly correlated many-particle system.

Quantum cloud computing speed-up: The volume of the cube represents the computation power.

QUANTUM TELEPORTATION

Circuit diagram for the quantum teleportation algorithm.

EVAL METHOD - FIDELITY

$$F(
ho,\sigma) = \left(\operatorname{tr} \sqrt{\sqrt{
ho} \sigma \sqrt{
ho}}
ight)^2$$
 for density operators

FIDELITY OF QUANTUM STATES

- Density operators represent quantum states
- A measure of the "closeness" of two quantum states

SOLUTION

FIDELITY MEASURE

Perform a rotation on the basis of the state that is teleported and find if the teleported state after state preparation is reversed to be |0>

4 CORRECTION TYPES

- Implement different versions of circuits to ensure all the corrections
- are applied properly. Calculate the mean and the std, plotted the
 - fidelity of all these circuits separately.

RESULTS AND DISCUSSION

CONTRIBUTION AND FUTURE WORK

CONTRIBUTION

- We benchmark the performance of the IBM quantum processor using on-chip quantum teleportation with post selection.
- We build 3 qubits quantum teleportation algorithms on IBM quantum processor with our own state preparation and applied 4 different corrections.
- We simulate the performance of quantum teleportation using simulator and implement teleportation on quantum computer.
- We systematically test the performance using fidelity and analyze the results.

FUTURE WORK

- Generalized version of circuits