Topic 5: Word Relationships

Joe DeCesaro

2022-05-03

```
library(tidyr) #text analysis in R
library(pdftools)
library(lubridate) #working with date data
library(tidyverse)
library(tidytext)
library(readr)
library(quanteda)
library(readtext) #quanteda subpackage for reading pdf
library(quanteda.textstats)
library(quanteda.textplots)
library(ggplot2)
library(forcats)
library(stringr)
library(quanteda.textplots)
library(widyr)# pairwise correlations
library(igraph) #network plots
library(ggraph)
library(here)
```

Import EPA EJ Data

Setup

```
more_stops <-c("2015","2016", "2017", "2018", "2019", "2020", "www.epa.gov", "https")
add_stops<- tibble(word = c(stop_words$word, more_stops))
stop_vec <- as_vector(add_stops)</pre>
```

Now we'll create some different data objects that will set us up for the subsequent analyses

```
#convert to tidy format and apply my stop words
raw_text <- tidy(epa_corp)</pre>
#Distribution of most frequent words across documents
raw_words <- raw_text %>%
  mutate(year = as.factor(year)) %>%
  unnest_tokens(word, text) %>%
  anti_join(add_stops, by = 'word') %>%
  count(year, word, sort = TRUE)
#number of total words by document
total_words <- raw_words %>%
  group by(year) %>%
  summarize(total = sum(n))
report_words <- left_join(raw_words, total_words)</pre>
par_tokens <- unnest_tokens(raw_text, output = paragraphs, input = text, token = "paragraphs")</pre>
par_tokens <- par_tokens %>%
mutate(par_id = 1:n())
par_words <- unnest_tokens(par_tokens, output = word, input = paragraphs, token = "words")</pre>
word_cors <- par_words %>%
  add count(par id) %>%
  filter(n \ge 50) \%\%
  select(-n) %>%
  pairwise_cor(word, par_id, sort = TRUE)
tokens <- tokens(epa_corp, remove_punct = TRUE)</pre>
toks1<- tokens select(tokens, min nchar = 3)</pre>
toks1 <- tokens_tolower(toks1)</pre>
toks1 <- tokens_remove(toks1, pattern = (stop_vec))</pre>
dfm <- dfm(toks1)</pre>
#first the basic frequency stat
tstat_freq <- textstat_frequency(dfm, n = 5, groups = year)</pre>
head(tstat_freq, 10)
##
            feature frequency rank docfreq group
## 1 environmental
                       127 1
                                        1 2015
                               2
## 2
      communities
                          99
                                         1 2015
                         92 3
                                        1 2015
## 3
                epa
         justice
## 4
                         84 4
                                        1 2015
                         47 5
                                        1 2015
## 5
        community
```

```
environmental
                            109
                                            1 2016
                                    1
## 7
                             85
                                   2
                                            1 2016
        communities
## 8
             justice
                             71
                                   3
                                            1 2016
                                            1 2016
## 9
                             48
                                   4
                 epa
## 10
             federal
                             31
                                   5
                                            1 2016
toks2 <- tokens_ngrams(toks1, n=2)
dfm2 <- dfm(toks2)</pre>
dfm2 <- dfm_remove(dfm2, pattern = c(stop_vec))</pre>
freq_words2 <- textstat_frequency(dfm2, n=20)</pre>
freq words2$token <- rep("bigram", 20)</pre>
#tokens1 <- tokens_select(tokens1, pattern = stopwords("en"), selection = "remove")</pre>
```

Assignment

1. What are the most frequent trigrams in the dataset? How does this compare to the most frequent bigrams? Which n-gram seems more informative here, and why?

```
toks3 <- tokens ngrams(toks1, n=3)
dfm3 <- dfm(toks3)
dfm3 <- dfm_remove(dfm3, pattern = c(stop_vec))</pre>
freq_words3 <- textstat_frequency(dfm3, n=20)</pre>
freq_words3$token <- rep("trigram")</pre>
freq_words2 <- data.frame(freq_words2) %>% select(feature, frequency, token)
freq_words3 <- data.frame(freq_words3) %>% select(feature, frequency, token)
head(freq_words2)
##
                    feature frequency token
## 1 environmental justice
                                  556 bigram
     technical_assistance
## 2
                                  139 bigram
## 3
            drinking water
                                  133 bigram
## 4
             public_health
                                  123 bigram
## 5
           progress_report
                                  108 bigram
## 6
               air_quality
                                   73 bigram
head(freq words3)
```

```
##
                            feature frequency
                                                 token
## 1
            justice_fy2017_progress
                                            51 trigram
## 2
             fy2017_progress_report
                                            51 trigram
## 3
        environmental_public_health
                                            50 trigram
       environmental_justice_fy2017
                                            50 trigram
## 5 national_environmental_justice
                                            37 trigram
       office_environmental_justice
                                            32 trigram
```

The trigram most frequent "features" seem to mostly be official names of reports and does not seem to tell us anything more interesting about the documents than the bigrams. I think the bigrams are a more useful tool.

2. Choose a new focal term to replace "justice" and recreate the correlation table and network (see corr_paragraphs and corr_network chunks). Explore some of the plotting parameters in the cor_network chunk to see if you can improve the clarity or amount of information your plot conveys. Make sure to use a different color for the ties!

```
just_cors <- word_cors %>%
  filter(item1 == "indigenous")
word_cors %>%
  filter(item1 %in% c("indigenous"))%>%
  group_by(item1) %>%
  top_n(10) %>%
  ungroup() %>%
  mutate(item1 = as.factor(item1),
         name = reorder_within(item2, correlation, item1)) %>%
  ggplot(aes(y = name, x = correlation, fill = item1)) +
  geom_col(show.legend = FALSE) +
  scale_y_reordered() +
  labs(y = NULL,
       x = NULL,
       title = "Correlations with key words",
       subtitle = "EPA EJ Reports")
```

Correlations with key words EPA EJ Reports

#let's zoom in on just one of our key terms
indigenous_cors <- word_cors %>%

3. Write a function that allows you to conduct a keyness analysis to compare two individual EPA reports (hint: that means target and reference need to both be individual reports). Run the function on 3 pairs of reports, generating 3 keyness plots.

```
#Distribution of most frequent words across documents
raw_words <- raw_text %>%
  mutate(year = as.factor(year)) %>%
  unnest_tokens(word, text) %>%
  anti_join(add_stops, by = 'word') %>%
  count(year, word, sort = TRUE)
```

```
key_func <- function(target_rep, reference_rep){</pre>
  # read in the files
  files <- c(target_rep, reference_rep)</pre>
  reports <- lapply(X = files,
                      FUN = pdf_text)
  pdf_files <- readtext(file = files,</pre>
                          docvarsfrom = "filenames",
                          docvarnames = c("type", "year"),
                          sep = "_")
  #creating an initial corpus containing our data
  corp <- corpus(x = pdf_files, text_field = "text" )</pre>
  # tokenize
  tokens <- tokens(corp, remove_punct = TRUE)</pre>
  toks1<- tokens_select(tokens, min_nchar = 3)</pre>
  toks1 <- tokens_tolower(toks1)</pre>
  toks1 <- tokens_remove(toks1, pattern = (stop_vec))</pre>
  dfm <- dfm(toks1)</pre>
  #first the basic frequency stat
  tstat_freq <- textstat_frequency(dfm, n = 5, groups = year)</pre>
  keyness <- textstat_keyness(dfm, target = 1)</pre>
  return(keyness)
```


4. Select a word or multi-word term of interest and identify words related to it using windowing and keyness comparison. To do this you will create two objects: one containing all words occurring within a 10-word window of your term of interest, and the second object containing all other words. Then run a keyness comparison on these objects. Which one is the target, and which the reference? Hint

##		feature	chi2	р	n_target	n_reference
##	1	recognized	326.29503	0.000000e+00	15	13
##	2	tribes	317.31031	0.000000e+00	32	92
##	3	tribal	217.60905	0.000000e+00	39	208
##	4	federally	205.74679	0.000000e+00	10	9
##	5	minority	202.52656	0.000000e+00	21	61
##	6	low-income	166.64938	0.000000e+00	20	68
##	7	governments	139.76071	0.000000e+00	17	58
##	8	academia	106.13316	0.000000e+00	8	14
##	9	community-based	95.75908	0.000000e+00	12	41
##	10	permanent	86.82673	0.000000e+00	5	5
##	11	organizations	63.51566	1.554312e-15	16	107
##	12	collaborates	57.43890	3.486100e-14	4	5
##	13	panelists	54.13586	1.870726e-13	3	2
##	14	communities	51.05075	9.000578e-13	52	888
##	15	principles	48.97480	2.592704e-12	8	34
##	16	side	45.77579	1.325928e-11	4	7
##	17	protections	44.30239	2.813716e-11	3	3
##	18	and	36.37656	1.626472e-09	158	4464
##	19	un	32.02708	1.520380e-08	3	5
##	20	usg	32.02708	1.520380e-08	3	5

The tokens inside the 10-word window are the targets while the tokens outside the 10-word window are the references. The word "recognized" happens inside the 10 word window of indigenous words 15 times and outside of the window 13 times.