Topological data analysis Lecture 4

Anton Ayzenberg

ATA Lab, FCS NRU HSE Noeon Research

Spring 2024
Faculty of Computer Science / Yandex Data School

A principal incompatibility between "topology" and "applied".

- Data analysis and machine learning deal with real numbers and real optimization.
- Topological invariants are discrete. There is no space with 2.3457 many connected components or $\frac{5}{6}$ many holes.
- How can one make Topology "applied"?

A principal incompatibility between "topology" and "applied".

- Data analysis and machine learning deal with real numbers and real optimization.
- Topological invariants are discrete. There is no space with 2.3457 many connected components or $\frac{5}{6}$ many holes.
- How can one make Topology "applied"?

Introduce "topological processes"!

Let X_t be a space depending on time $t \in \mathbb{R}$. If $t_1 \leqslant t_2$, we assume there is a map

$$f_{t_1 \leqslant t_2} : X_{t_1} \to X_{t_2},$$

such that $f_{t\leqslant t}=\operatorname{id}_{X_t}$ and $f_{t_2\leqslant t_3}\circ f_{t_1\leqslant t_2}=f_{t_1\leqslant t_3}.$

Compare this with stochastic processes...

Idea of applied topology

Topological process

Let X_t be a space depending on time $t\in\mathbb{R}$ and there are maps $f_{t_1\leqslant t_2}\colon X_{t_1} o X_{t_2}$.

Usually, all connecting maps $f_{t_1 \leqslant t_2}$ are inclusions. In this case the process is called a **filtration**.

Idea

- ullet We may average topological invariants along all values of time t.
- This gives real-valued invariants which can be optimized using methods of machine learning.

Important construction

Sublevel set filtration

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function. Consider sublevel sets of f

$$X_t^f = \{ x \in \mathbb{R}^d \mid f(x) \le t \}$$

This is a filtration.

Another important construction

Čech filtration

Let $X = \{x_1, \dots, x_m\} \subset \mathbb{R}^d$ be a finite set (point cloud). Itself, the space X is not interesting topologically. But we may surround each point with a ball of variable radius t/2, and see how topology evolve:

$$X_t = \bigcup_{i=1}^m B_{t/2}(x_i)$$

This is a filtration defined for $t \ge 0$.

Čech filtration

Toy example: average number of components

Let $X = \{x_1, \dots, x_m\} \subset \mathbb{R}^d$ be a point cloud and X_t its Čech filtration. Let $\operatorname{nc}(X_t)$ be the number of connected components of X_t .

A new invariant

Define the number

$$\overline{\mathsf{nc}}(X) = \int_0^{+\infty} (\mathsf{nc}(X_t) - 1) dt.$$

Toy example: average number of components

Let $X = \{x_1, \dots, x_m\} \subset \mathbb{R}^d$ be a point cloud and X_t its Čech filtration. Let $\operatorname{nc}(X_t)$ be the number of connected components of X_t .

A new invariant

Define the number

$$\overline{\mathsf{nc}}(X) = \int_0^{+\infty} (\mathsf{nc}(X_t) - 1) dt.$$

Question: any guess what $\overline{nc}(X)$ is?

Demonstration: press to play in browser

Toy example: evolution of components

Answer:

 $\overline{\operatorname{nc}}(X)$ equals the length of the minimal spanning tree of X. Guess why.

Toy example: evolution of components

Answer:

 $\overline{\operatorname{nc}}(X)$ equals the length of the minimal spanning tree of X. Guess why.

Open question: how can we encode such dendrograms?

Persistent homology

Homology

Homology = higher dimensional analogue of counting connected components. $\beta_i(X)$ = number of *i*-dimensional holes in X.

Persistent homology

How the number of holes in a filtration changes in time.

Filtrations with discrete time

Filtration

A chain of simplicial complexes

$$K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_m = K$$

is called a filtration.

For each j, it induces the chain of linear maps

$$H_j(K_0) \to H_j(K_1) \to H_j(K_2) \to \cdots \to H_j(K_m)$$

of k-vector spaces.

Persistence modules

Definition

A persistence module is a chain of finite dimensional \Bbbk -vector spaces and linear maps

$$V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_m \rightarrow \cdots$$

If, for some m, $V_m = V_{m+1} = \cdots$, we say that persistence module **stabilizes**.

Main example: *j*-th homology of a filtration is a stabilizing persistence module. It is called **the persistence homology module** of a filtration:

$$H_j(K_0) \to H_j(K_1) \to H_j(K_2) \to \cdots \to H_j(K_m) \stackrel{=}{\to} \cdots$$

Persistence modules

Definition

A persistence module is a chain of finite dimensional k-vector spaces and linear maps

$$V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_m \rightarrow \cdots$$

If, for some m, $V_m = V_{m+1} = \cdots$, we say that persistence module **stabilizes**.

Main example: *j*-th homology of a filtration is a stabilizing persistence module. It is called **the persistence homology module** of a filtration:

$$H_j(K_0) \to H_j(K_1) \to H_j(K_2) \to \cdots \to H_j(K_m) \stackrel{=}{\to} \cdots$$

Exercise: prove that persistence module is the synonym for "graded module over the polynomial ring $\mathbb{k}[x]$ " if you understand this phrase.

Interval modules and the structure theorem

Example: An interval module $I_{[b;d)}$ is the following module

$$0 \to \cdots \to 0 \to \mathbb{k} \xrightarrow{=\atop b} \cdots \xrightarrow{=\atop b} \mathbb{k} \to 0 \to \cdots$$

where $b \in \mathbb{Z}_+$ is called the birth-time of a module and $d \in \mathbb{Z}_+ \sqcup \{+\infty\}$ is the death-time.

Interval modules and the structure theorem

Example: An interval module $I_{[b;d)}$ is the following module

$$0 \to \cdots \to 0 \to \underset{b}{\overset{=}{\underset{b}{\times}}} \cdots \xrightarrow{\overset{=}{\underset{b}{\times}}} \mathbb{k} \to \underset{d}{\underset{d}{\longleftrightarrow}} 0 \to \cdots$$

where $b \in \mathbb{Z}_+$ is called the birth-time of a module and $d \in \mathbb{Z}_+ \sqcup \{+\infty\}$ is the death-time.

Main Structural Theorem (about persistence modules)

Every stabilizing persistence module is isomorphic to a direct sum of interval modules. The summands are determined uniquely up to permutation.

Interval modules and the structure theorem

Example: An interval module $I_{[b;d)}$ is the following module

$$0 \to \cdots \to 0 \to \mathbb{k} \xrightarrow{=\atop b} \cdots \xrightarrow{=\atop b} \mathbb{k} \to 0 \to \cdots$$

where $b \in \mathbb{Z}_+$ is called the birth-time of a module and $d \in \mathbb{Z}_+ \sqcup \{+\infty\}$ is the death-time.

Main Structural Theorem (about persistence modules)

Every stabilizing persistence module is isomorphic to a direct sum of interval modules. The summands are determined uniquely up to permutation.

Remark: This is actually an instance of the classification theorem for finitely generated modules over PID (the ring $\mathbb{k}[x]$ is a principal ideal domain).

Persistence homology decomposed into interval summands

Persistence homology decomposed into interval summands

Persistent homology of a filtration

Filtration:

$$K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_m = K$$

j-th persistent homology module:

$$H_j(K_0) \to H_j(K_1) \to H_j(K_2) \to \cdots \to H_j(K_m).$$

Persistent homology of a filtration

Filtration:

$$K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_m = K$$

j-th persistent homology module:

$$H_j(K_0) \to H_j(K_1) \to H_j(K_2) \to \cdots \to H_j(K_m).$$

Main question

Should we compute all homology $H_j(K_i)$ separately, and then merge them to get interval decomposition?

Persistent homology of a filtration

Filtration:

$$K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_m = K$$

j-th persistent homology module:

$$H_j(K_0) \to H_j(K_1) \to H_j(K_2) \to \cdots \to H_j(K_m).$$

Main question

Should we compute all homology $H_j(K_i)$ separately, and then merge them to get interval decomposition?

Luckily, no! We need to store our filtration in an optimal form.

Instead of $K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_m = K$ let us store the list of all simplices of K together with their birth times.

We have two lists: **BirthTimes** and **Simplices**. We assume they satisfy the following:

• Their indices agree: BirthTimes[i] is the time of appearance of Simplices[i] in the filtration.

We have two lists: **BirthTimes** and **Simplices**. We assume they satisfy the following:

- Their indices agree: BirthTimes[i] is the time of appearance of Simplices[i] in the filtration.
- BirthTimes is sorted.

We have two lists: **BirthTimes** and **Simplices**. We assume they satisfy the following:

- Their indices agree: BirthTimes[i] is the time of appearance of Simplices[i] in the filtration.
- BirthTimes is sorted.
- For each i all subsets of Simplices[i] have indices < i.

We have two lists: **BirthTimes** and **Simplices**. We assume they satisfy the following:

- Their indices agree: BirthTimes[i] is the time of appearance of Simplices[i] in the filtration.
- BirthTimes is sorted.
- For each i all subsets of Simplices[i] have indices < i.

Exercise: prove that BirthTimes and Simplices can be simultaneously sorted this way.

We have two lists: **BirthTimes** and **Simplices**. We assume they satisfy the following:

- Their indices agree: BirthTimes[i] is the time of appearance of Simplices[i] in the filtration.
- BirthTimes is sorted.
- For each i all subsets of Simplices[i] have indices < i.

Exercise: prove that BirthTimes and Simplices can be simultaneously sorted this way.

Last condition assures that $K^i = \{\text{Simplices}[j] \mid j \leq i\}$ is always a simplicial complex.

Last condition assures that $K^i = \{\text{Simplices}[j] \mid j \leq i\}$ is always a simplicial complex. We get new filtration

$$K^0 \subset K^1 \subset K^2 \subset \cdots \subset K^N$$

where N is the total number of simplices.

What is good

At each step of this new filtration, exactly one simplex is added. Namely Simplices[i] is added at i-th step.

What happens with homology at each step

Proposition

Assume that $L \subset K$ and $K \backslash L$ is a single j-dim simplex. Then we have an alternative:

- (j-1)-th Betti number reduces by 1.
- j-th Betti number increases by 1.

Other Betti numbers do not change.

Adding a j-simplex, we either seal up a (j-1)-hole, or create a j-hole.

Exercise: prove it.

Adding a 2-simplex

Our detailed filtration

Our detailed filtration

Sources

S. Barannikov, *Framed Morse complex and its invariants*, Advances in Soviet Mathematics. Vol.21 (1994), pp. 93–115.

H.Y. Cheung, T. C. Kwok, L. C. Lau, Fast matrix rank algorithms and applications, J. ACM 60:5 (2013), Article 31.

H. Edelsbrunner, J. L. Harer, Computational Topology: An Introduction, 2010.

Morozov, Dionysus2 library https://mrzv.org/software/dionysus2/

A. J. Zomorodian, Topology for computing, 2005.