

Nombre:	Grupo:
Apellidos:	

Cuestión 1.- (0,75 puntos)

Dado el circuito de la figura, rellenar el cronograma adjunto utilizando las variables intermedias que sean precisas. Suponer que los biestables son activos por flanco de subida y que su valor inicial es 0.

Cuestión 2.- (0,75 puntos)

Diseñar un contador síncrono ascendente módulo 9 (que cuente de 0 a 8), con puesta a cero asíncrona. Diseñarlo con entrada de habilitación y reset.

Problema 1.- (2,5 puntos)

- a) Dibujar el diagrama de estados de un detector de secuencias de tipo Mealy, que detecte las secuencias 1010 y 10111, es decir, que active la salida Y cuando su entrada X reciba consecutivamente los bits de alguna de las dos secuencias.
- b) A partir del diagrama de estados de la figura, construir un circuito secuencial síncrono utilizando biestables T y puertas lógicas. Se considerará que el estado de reset del circuito es E0. Las entradas del circuito se denominan A y B, y las salidas M y N.

Cuestión 1.- (0,75 puntos)

Dado el circuito de la figura, rellenar el cronograma adjunto utilizando las variables intermedias que sean precisas. Suponer que los biestables son activos por flanco de subida y que su valor inicial es 0.

Solución:

Cuestión 2.- (0,75 puntos)

Diseñar un contador síncrono ascendente módulo 9 (que cuente de 0 a 8), con puesta a cero asíncrona. Diseñarlo con entrada de habilitación y reset.

Solución:

Problema 1.- (2,5 puntos)

a) Dibujar el diagrama de estados de un detector de secuencias de tipo Mealy, que detecte las secuencias 1010 y 10111, es decir, que active la salida Y cuando su entrada X reciba consecutivamente los bits de alguna de las dos secuencias.

Solución:

b) A partir del diagrama de estados de la figura, construir un circuito secuencial síncrono utilizando biestables T y puertas lógicas. Se considerará que el estado de reset del circuito es E0. Las entradas del circuito se denominan A y B, y las salidas M y N.

Solución:

Asignación de estados:

Puesto que los cuatro estados tienen cuatro combinaciones distintas de las dos salidas, podemos coger la codificación de estados en que coinciden las Q y las salidas M y N. Así, no es necesario calcular M y N.

Estado	$Q_1=M$	$Q_0=N$
E0	1	1
E1	1	0
E2	0	1
E3	0	0

Tabla de transiciones:

Estado	\mathbf{Q}_1	\mathbf{Q}_{0}	A	В	Estado'	Q ₁ '	Q ₀ '	T_1	T_0
E3	0	0	0	0	E0	1	1	1	1
	0	0	0	1	E2	0	1	0	1
	0	0	1	0	E3	0	0	0	0
	0	0	1	1	E3	0	0	0	0
E2	0	1	0	0	E0	1	1	1	0
	0	1	0	1	E1	1	0	1	1
	0	1	1	0	E3	0	0	0	1
	0	1	1	1	E3	0	0	0	1
E1	1	0	0	0	E0	1	1	0	1
	1	0	0	1	E0	1	1	0	1
	1	0	1	0	E2	0	1	1	1
	1	0	1	1	E3	0	0	1	0
E0	1	1	0	0	E0	1	1	0	0
	1	1	0	1	E0	1	1	0	0
	1	1	1	0	E1	1	0	0	1
	1	1	1	1	E3	0	0	1	1

Simplificación de funciones:

$$T_1 = \overline{Q_1} \overline{A} \overline{B} + \overline{Q_1} \overline{Q_0} \overline{A} + \overline{Q_1} A B + \overline{Q_1} \overline{Q_0} A$$

$$T_0 = \overline{Q_1}Q_0B + Q_1\overline{Q_0}B + \overline{Q_0}A + Q_0A$$

Implementación:

