论文修改

第二章中添加过渡段,说明流固耦合与运动模拟的关系

状态:未修改、也不需要修改

在第一章(第一页)中已经解释,不需要更多地讲述。

第二章中"不再赘述"的口语描述

状态:已修改

上述四种方法是使用 FVM 网格下流体模拟进行流固耦合的常用方法,同样也适用于 MPM 流体与固体的耦合。本节将简要描述单向耦合、弱耦合、以及浸没边界法。强耦合算法复杂度较高,在此不做赘述。

立物理量联系,是 CFD 中常见的方法,需要较大的计算和存储开销。

上述四种方法是使用 FVM 网格下流体模拟进行流固耦合的常用方法,同样也适用于 MPM 流体与固体的耦合。本节将简要描述单向耦合、弱耦合、以及浸没边界法。

12

第 4.1 节 - 下方空格太多

状态:已修改

减小了间距:

东南大学本科毕业设计(论文)

第四章 实验结果与分析

本文的代码采用 C++ 实现,使用 Eigen^[36] 库实现线性代数操作,使用 Taskflow^[37] 算 法库实现多线程并行计算,使用 Vulkan 与 ImGUI 实现了 UI 界面与物体可视化。本文的 测试平台为 Apple M1 Max 搭配 32GB 统一内存。算法中较为复杂的函数梯度、Hessian 阵 (例如距离函数、障碍函数) 使用了 Sympy 库进行自动求导与计算优化。

4.1 动力学求解器

虽然本文主要关注于流固耦合算法,但一方面,与之配合的动力学求解器的性能也是整体算法的关键一环,另一方面,本设计中确实实现了相较于先前算法更为高效的动力学求解器。因此,本节将对实现的求解器的性能进行实验与分析。

4.1.1 弹簧质点模型求解器

弹簧质点模型的动力学解算基于公式3.13。实验中,我们对于多个模型尺寸的场景进行了分别测试,在同一场景中,分别实现了投影动力学方法 (PD)[18]作为基准。

我们对于不同规模的弹簧质点模型都进行了实验。实验中,设定布料一边固定,其余质点自由运动,弹簧劲度系数为 $k=2\times 10^3 N/m$,迭代收敛的误差限为 10^{-4} ,时间步长为 10^{-4} s。仿真结果如图4-1所示,该结果表明,无论是大、小规模的模型,本文使用的算法 都能进行实时模拟。仿真算法单时间步计算耗时如表4.1所示。结果表明,在不同场景下,本文使用的 Consensus ADMM 相较于 PD 有 $2\sim 5$ 倍的性能提升。

表 4.1 单个时间步计算耗时: Consensus ADMM 与 PD[18] 对比

模型尺寸	Consensus ADMM	PD
10×10	1.4ms	2.7ms
100×100	22ms	75ms
200×200	80ms	353ms

与此同时,由于无矩阵的特性,其允许用户在求解过程中随时对于质点添加位置约束。并且在施加约束时,也更加易于处理。图4-2说明了该特点,不难看出,在人工边界上 Consensus ADMM 具有更为平滑的结果。

27

第4.2节 - 碰撞检测算法表格

状态: 未修改

确认了样本总数为18,000,000,但具体的阳性/阴性样本(P/N)总数未确定。

- 1. 原文并未给出其中的阳性 (P) 、阴性 (N) 的数量与比例;
- 2. 实验是大三下进行测试的,时间过得太长了,只留下了表格记录的数字;

引用文件规范

状态:已修改

根据教务处本科毕设要求修改。

- 1. 删除了不需要的网页链接;
- 2. 删除了不需要的DOI;
- 3. 保留了大些的英文人名,在要求中也是大写;

术语表

状态:已修改

位置放在了目录前、英文摘要后。样式与正文的表格一致。

中英文术语对照表

术语	英文	中文
FSI	Fluid-Structure-Interaction	流固耦合
PDE	Partial Differential Equations	偏微分方程
FEM	Finite Element Method	有限元法
FVM	Finite Volumn Method	有限体积法
MPM	Material Point Method	物质点法
PD	Projective Dynamics	投影动力学
ADMM	Alternating Direction Method of Mul-	六 挂
	tipliers	交替方向乘子法
MGPCG	Multi-Grid Preconditioned Conjugated	好吃蛋儿知识为毛圆物共転找吃沙
	Gradient	矩阵预分解的多重网格共轭梯度法
IPC	Incremental Potential Contact	增量势能接触模型
CCD	Continuous Collision Detect	连续碰撞检测
BVH	Bounding volume hierarchies	层次包围盒
CFD	Computational fluid dynamic	计算流体力学