CSMA V.S. DLMA

Author: ZhankeZhou

Version: 1.0

CSMA V.S. DLMA

- 1. Attribute Comparison
 - 1.1 Action
 - 1.2 Channel
 - 1.3 State & Node
 - 1.4 Oberservation
 - 1.5 Optimization Target
 - 1.6 仿真环境交互
- 2. Question List
 - 2.1 CSMA

1. Attribute Comparison

1.1 Action

• 两边的action都为两类,发或者不发

1.2 Channel

- DLMA中,默认为一个channel,暂不支持多个channel
- CSMA中可创建不同channel,测试中使用的是一个channel

1.3 State & Node

- DLMA中, state长度为40, nodes数量为2
 - o 初始化 state 为全0
 - o next_state 与当前 state 的关系为:
 - next_state = np.concatenate([state[2:], [agent_action, observation_]])
 - 也就是说,next_state取state的后38个值,再把当前的 agent_action 和 observation 分别放在第 39和第40位,从而构成长度为40的next_state
- CSMA中,state与channel的计时器有关,nodes数量为50
 - o state的更新 update_state() 中: self.state = self.time 【其含义?】

1.4 Oberservation

• DLMA中,oberservation共有四种情况

- 1 tx, success [agent success]
- -1 tx, no success [collision]
- o 2 no tx, success [aloha success]
- -2 no tx, no success [idle]
- CSMA中, oberservation未进行相关设置

1.5 Optimization Target

• 两边都是最大化throughput

1.6 仿真环境交互

- 两边都是用 for loop 模拟真实使用情况
- DLMA中,请查看 environment.py 中的 step 接口
 - 在 step(action, global_time) 中,判断是否发送碰撞,计算各种reward
 - o step()的返回值为 oberservation 和各种 reward
- CSMA中,在 node 实例中的 simulate() 接口中计算是否发包,是否发生碰撞,退避多长时间等

2. Question List

2.1 CSMA

- 1. timeout 和 timeout_bar 是如何配合使用的?
- 2. 相关参数如 difs 或 difs_state 等的具体含义?
- 3. channel.state 数值的含义?
- 4. update_state()的含义?