	111/1-	() + :	Paraboli	c equa	tions		0
		1,	Differ		- 0		
		- Convider	the	one a	imenri mai	heat	
by o	uferen	Solve Solve	otient .	we pere	place the	partial 14	derivatives
A Street	t u	ijoid for	we have	tle Lallo In the	following ith ra	finite ,	dyserence
	ยาา		Hij -	aui,j +	ui-lij	on to	Scheme Nich:
mly was	at un =	ur,jn um,j	i we		41-1, j+1	d Imaa	₩ - O i-1-1:0
Avera	ging	these	two	аррожи	ntion.	we get	
	U	1/	2-h2			- h	- →②
			ue du	lijt -		dufference	<u>.</u> 3
uning	2	ሐ (3) m	O,	we ge	ŧ	

Crank - Nicholson duffer

called

method.

or

Scanned with CamScanner

Scheme

A ui,j+1 Uit1,j+1 HUHI 100 L

a u at A = average a the The value lo (1) ou ou at , B,G, D,E.

Strong Wald

```
④
 1 Wing Crank-Nichdsm's scheme, sulve
                                               Div.
    Un = 164E, DLILI, ETO given
    u(1,0)=0, u(0,t)=0, u(1,t)=100t.
    Compute a for one step in & direction taking
    h= 1/4 ·
                                  outi, uxx=aut
 Ydm :
           UXX = 164t
  3 p 100 17
           :. a=16, h=1/4.
   To use the Simpler form of Crank- Nichelson
    scheme, we choose k in such way that k=ah2
          1e, K= 16 [1/4)2 = 1
     1.410 p 1.1-10 (K=1)
     The Crank Nicholson Scheme
     urjt = - [uiti,jt + ui-,jt + uitij + ur-,j]
                    9- direction h= /4
                               0.75
                0.25
                                         < u(x10) = 0
                                      O
                               0
                        0
                 0
          O
1
    Ö
                                       100
                               ૫૩
                ) u1 42
t
direc.
                                      a(1,t)=100 t
k=1
  in votes of to a solution of the votes
       90 find u1142143 we use 10 at
          points.
     these
```

 $u_1 = \frac{1}{4} (0+0+0+u_2) = u_1 = u_1 = u_2$ (5) u2 = 1/4 (0+0+41+43) : u2 = 1/4 (41+43) → 3 u3 = 1/4 (0+0+42+100) : u3 = 1/4 (42+100) → @ sub. U1, U3 values in 3. $u_{a} = \frac{1}{4} \left[\frac{1}{4} (u_{2}) + \frac{1}{4} (u_{2} + 100) \right]$ = 16 42 + 1642 + 25 $u_2 = \frac{1}{8}u_2 + \frac{95}{4} = 0$ $u_2 = \frac{90}{7} = 7.1429$. = (1) U1 = 1.7857 and Ug = ab. 7857. .. The values are $u_1 = 1.7857$ $u_2 = 7.1429$ equation was at subject to u(x,0)=0, u(0,t)=0 to The Solve by Crank - Nicholson method the u(1/2)=== for two time (sut 101-01-0) = eu (14,4-ch-0+0) 1 . En unn = ut (given) x ranges from 0, to 1. Take (h=1/4) Ko To use the simpler form of crank-Nicholam scheme, we choose k such that [k=ah2].

:. K = (1) (/4) = 1/16

The Crank- Nicholson scheme

$$u_{i,j+1} = \frac{1}{4} \left[u_{i+1,j+1} + u_{i-1,j+1} + u_{i-1,j} + u_{i+1,j} \right]$$

) - (all) n- direction h= 1/4

Comment of the Contraction of th											
	i, c	O	0.25	0.5	21.0	TI	الله الله				
Ŀ	0	0 _	0	_ 0	D	0	+ u(1,0)=0				
direc.	1	0 —	u ₁	- u2	น่อ	1-16	5.17				
K=1	16			1 to 21.	ь _Ш	1 8					
	<u>a</u> 16	· 0:41:1-	uy	u5 ≈ ≾ ^µ (=	25 1	. 16	u u				
	1.0	1. Fagr		l kun	-,A	^	h-				

U(0, E) = 0

To find u1, u2, u3 we use 10 at these

boints .

$$u_1 = \frac{1}{4} (0+0+0+u_2)$$
 ... $u_1 = \frac{1}{4} u_2$
 $u_2 = \frac{1}{4} (0+0+u_1+u_3)$... $u_3 = \frac{1}{4} (0+0+u_1+u_3)$... $u_4 = \frac{1}{4} (0+0+u_1+u_3)$

Sub u, h uz in agm 3.

$$\frac{1}{4} \left(\frac{1}{4} (u_2) + \frac{1}{4} (u_2 + \frac{1}{16}) \right)$$

$$= \frac{1}{4} \left(\frac{u_2}{4} + \frac{u_2}{4} + \frac{1}{64} \right)$$

$$\frac{1}{8} = \frac{1}{856}$$

UI UZ

O-(Holy

0= 98- 170

Subject to
$$u(x_10)=0$$
, $u(0,t)=0$ 1 $u(1,t)=t$.

taking
$$h = 1/4 + k = \frac{1}{8}$$
.

$$h = \frac{1}{4!} \cdot k = \frac{1}{8!} \cdot 1 \cdot \lambda = \frac{k}{ah^2} = \frac{\frac{1}{8}}{\left(1\right)\left(\frac{1}{4}\right)^2} = 2$$

Using in General Crank - Niklation formula
$$\lambda (\text{Ui+1}, j+1 + \text{Ui-1}, j+1) - a(\lambda + 1) \text{Ui}, j+1 = a(\lambda - 1) \text{Ui}, j-1 \\ \lambda \text{Ui+1}, j+1 + \text{Ui-1}, j+1 - 3 \text{Ui}, j+1 = \text{Ui}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j-1 \\ \lambda \text{Ui+1}, j+1 + \text{Ui-1}, j+1 - 3 \text{Ui}, j+1 = \text{Ui}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j+1 + \text{Ui-1}, j+1 - 3 \text{Ui}, j+1 = \text{Ui}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j+1 - 3 \text{Ui}, j+1 = \text{Ui}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1}, j+1 - \text{Ui-1}, j+1 - 3 \text{Ui}, j+1 = \text{Ui}, j-1 + \text{Ui-1}, j-1 + \text{Ui-1},$$

ŧ