

DEPARTMENT OF COMPUTER SCIENCE

COURSE OUTLINE

Unit Code & Name	CCS416: Information Retrieval	
Prerequisite	Data Mining; Artificial Intelligence; Database Administration	
Cohort	CCS Y4 S2, January 2024	
Lecturer	Dr. Obuhuma James	
Contact	Contact jobuhuma@maseno.ac.ke / +254710 463 258	

Purpose

The course is aimed at enabling the student to study of information retrieval and data mining techniques. It is about how to find relevant information and subsequently extract meaningful patterns out of it.

Learning Outcomes

By the end of the course, the student should be able to:

- 1. Explain the common algorithms and techniques for information retrieval.
- 2. Describe the techniques and algorithms existing in practical retrieval and data mining systems.
- 3. Discuss the challenges and existing techniques for the emerging topics of MapReduce, portfolio retrieval and online advertising.
- 4. Apply the quantitative evaluation methods for the IR systems and data mining techniques.

Course Content

Information retrieval systems. Representation and storage of information: Boolean Representation. Vector space model. Knowledge-based schemes. Genetic algorithms and association rules for document representation. Document Processing: Classification of document. Ranking and indexing schemes using probabilistic, fuzzy-set theoretic and knowledge-based techniques. Query-document similarity computation: Conventional matching schemes. Conceptual cohesiveness. Relevance feedback. Interactive query modification techniques. Performance evaluation of information retrieval systems. Application to Internet Search: Web mining and information filtering.

Delivery Methodology

Lectures, laboratory exercises, assignments and projects

Learning Resources

Books, Computers, Internet

Course Contents

Period	Topic	Outline
Week 1 – 2	1. Introduction	History of IR
		Components of IR
		■ IR Issues
		 Open-Source Search Engine Framework
		 The Impact of the Web on IR
		■ The Role of AI in IR
		 IR Vs Web Search
		 Components of a Search Engine
Week 3 – 5	2. Boolean and Vector Space	Term Weighting

		Retrieval Models	 Preprocessing
			 Language Model Based IR
			 Probabilistic IR
Week 6 – 8	3.	Web Search Engine	 Web Search Overview
			 Web Search Architectures
			 Crawling
Week 9 – 11	4.	Web Search	 Link Analysis
			 Specialised Search
Week 10 - 13	5.	Document Text Mining	 Information Filtering, organization and relevant
		ð	feedback
			 Text Mining
			 Text Classification
			 Categorisation Algorithms: naive Bayes; decision
			trees; and nearest neighbor
			 Clustering Algorithms: agglomerative clustering; k-
			means; expectation maximization (EM)

Course Assessment

Continuous Assessment Tests 30%

CATs - 20% Lab work - 10%

End of Semester Examination 70%

Course Textbook

- 1. "Introduction to Information Retrieval," Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Cambridge University Press, ISBN 0521865719
- 2. "Modern Information Retrieval," Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Addison Wesley, ISBN 9780201398298
- 3. "Introduction to Data Mining," Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Addison-Wesley, ISBN 978-0321321367
- 4. "Pattern Recognition and Machine Learning," Christopher M. Bishop, Springer, ISBN 978-0-387-31073-2

Reference Textbooks

Course Journals

- 1. IEE Transactions on Computers, IEEE Computer Society, ISSN: 00189340.
- 2. The SIAM Journal on Computing, Society of Industrial and Applied Mathematics, ISSN: 0097-5397.
- 3. Journal of Computer Science and Technology, Springer, ISSN: 1000-9000.

Online Resources