Математический анализ. Модуль 1. Лекции

1 Основы математического анализа

Математический анализ - изучение через размышление

Объект математического анализа - функция

В математическом анализе используются символы из математической логики и теории множеств.

1.1 Математическая логика

Объект изучения математической логики - высказывание.

Определение 1. Высказывание - повествовательное предложение, относительно которого можно сказать, истинно оно или ложно. Обозначаются заглавными буквами латинского алфавита.

Пример. 2+3=5 - истинно, 3<0 - ложно

1.1.1 Логические символы

- \(конъюнкция (логическое "И") \)
- ∨ дизъюнкция (логическое "ИЛИ")
- ⇒ импликация ("если А то В")
- \Leftrightarrow эквивалетность или равносильность ("тогда и только тогда")

Кванторы - общее название для логических операций

- 🗄 существует
- # не существует
- ! З существует единствуенный элемент
- ∀ для каждого

1.2 Теория множеств

Определение 2. Множество - совокупность объектов, связанных одним и тем же свойством. Обозначаются заглавными латинскими буквами. Элементы множества обозначаются строчными латинскими буквами.

1.2.1 Символы теории множеств

- ∈ принадлежит
- ∉ не принадлежит
- С включает
- ⊆ включает, возможно равенство
- = тожденственное равенство (для любого значения переменной)
- Ø пустое множество

1.2.2 Операции со множествами

- ∪ объединение множеств
- \cap пересечение множеств

Замечание.

$$A \cup B = \{x : x \in A \land x \in B\} \\ A \cap B = \{x : x \in A \lor x \in B\}.$$

Определение 3. Подмножество - множество A называется подмножеством B, если каждый элемент множества A является элементом множества B.

Определение 4. Универсальное множество - такое множество, подномножествами которого являются все рассматриваемые множества.

1.2.3 Способы задания множества

1. Перечислить все элементы:

$$A = \{1, 2, 3, 4 \dots\}.$$

2. Указание свойства, которым обладают все элементы множества:

$$B = \{x : Q(x)\}.$$

1.2.4 Числовые множества

- $\mathbb{N} = \{1, 2, 3, 4\}$ множество натуральных чисел
- $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}$ множество целых чисел
- $\mathbb{Q}=\{x: x=\frac{m}{n}, m\in \mathbb{Z}n\in \mathbb{N}\}$ множество рациональных чисел
- $I = \{\pi, \sqrt{2} \ldots\}$ множество иррациональных чисел
- ullet $\mathbb{R}=\mathbb{Q}\cup I$ множество действительных чисел

Замечание. Порядок вложенности:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

Промежутки

Определение 5. Промежуток - подножество X множества \mathbb{Q} , где $\forall x_1, x_2 \in X$ этому множеству принадлежат все x, где $x_1 < x < x_2$.

1.2.5 Виды промежутков

- 1. Отрезок $[a; b] = \{x \in \mathbb{R} : a \le x \le b\}$
- 2. Интервал $(a; b) = \{x \in \mathbb{R} : a < x < b\}$
- 3. Полуинтервал $[a; b) = \{x \in \mathbb{R} : a < x < b\}$

1.2.6 Конечные и бесконечные окрестности

Пусть $x_0 \in \mathbb{R}$, δ и ε - малые положительные величины

Определение 6. Окрестностью точки x_0 называется любой интервал, содержащий эту точку

Определение 7. δ - окрестностью $(S(x_0, \delta)$ точки x_0 называется интервал с центром в точке x_0 и длиной 2δ .

$$S(x_0; \delta) = (x_0 - \delta; x_0 + \delta)$$

Определение 8. ε - окрестностью $(S(x_0, \varepsilon))$ точки x_0 называется интервал с центром в точке x_0 и длиной 2ε .

$$S(x_0; \varepsilon) = (x_0 - \varepsilon; x_0 + \varepsilon)$$

Определение 9. Окрестностью $+\infty$ называется любой интервал вида:

$$S(+\infty) = (a; +\infty), a \in \mathbb{R}, a > 0.$$

Определение 10. Окрестностью $-\infty$ называется любой интеграл вида:

$$S(-\infty) = (-\infty; -a), a \in \mathbb{R}, a > 0.$$

Определение 11. Окрестностью ∞ называется любой интервал вида

$$S(\infty) = (-\infty; -a) \cup (a; +\infty), a \in \mathbb{R}, a > 0.$$

2 Числовая последовательность

Определение 12. Числовая последовательность - это <u>бесконечное</u> множество числовых значений, которое можно упорядочить (перенумеровать).

Задать последовательность - указать формулу или правило, по которой $\forall n \in \mathbb{N}$ можно записать соответствующий элемент последовательности.

Замечание. Множество значений последовательности может быть конечным или бесконечным, но число число элементов последовательности всегда бесконечно.

Пример.

$$1, -1, 1, -1, 1 \dots$$

Число элементов бесконечно

• Значенией последовательности два

Пример.

$$x_n = (-1)^{n+1}$$

2, 2, 2, 2, 2 . . .

Число элементов бесконечно

• Значенией последовательности одно

Пример.

$$x_n = 2 * 1^n$$

1, 2, 3, 4, 5 . . .

Число элементов бесконечно

• Значений последовательности бесконечно

$$x_n = n, \forall n \in \mathbb{N}.$$

Последовательность чисел $\{x_n\}$ называется $ney \delta$ ывающей, если каждый последующий член $x_{n+1} \geq x_n, \forall n \in \mathbb{N}.$

Пример. 1, 2, 3, 4, 4, 5, 5...

Последовательность чисел $\{x_n\}$ называется возрастающей, если каждый последующий член $x_{n+1}>x_n, \forall n\in\mathbb{N}.$

Пример. 1, 2, 3, 4, 5, 6, 7...

Последовательность чисел $\{x_n\}$ называется невозрастающей, если каждый последующий член $x_{n+1} \leq x_n, \forall n \in \mathbb{N}.$

```
Пример. \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{4} \dots
```

Последовательность чисел $\{x_n\}$ называется убывающей, если каждый последующий член $x_{n+1} < x_n, \forall n \in \mathbb{N}.$

```
Пример. \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \dots
```

Возрастающие и убывающие последовательности называются строго монотонными.

Неубывающие, возрастающие, невозрастающие и убывающие последовательности называются монотонными.

Немонотонная последовательность:

```
Пример. 1, 2, 3, 2, 1...
```

Постоянная последовательность

```
Пример. 1, 1, 1, 1, 1...
```

2.1 Предел последовательности

Определение 13. Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдется натуральное число $N\left(\varepsilon\right)$, такое, что если порядковый номер n члена последовательности станет больше $N(\varepsilon)$, то имеет место неравенство $|x_n-a|<\varepsilon$.

$$\lim_{x \to \infty} x_n = a \quad \Leftrightarrow \quad (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N}) : (\forall n > N(\varepsilon)) \Rightarrow |x_n - a| < \varepsilon.$$

Замечание. Т.е. начиная с номера $N(\varepsilon)+1$ все элементы последовательности $\{x_n\}$ попадают в ε -окрестность точки a.

2.1.1 Геометрический смысл

$$|x_n - a| < \varepsilon$$

$$-\varepsilon < x_n - a < \varepsilon$$

$$a - \varepsilon < x_n < a + \varepsilon$$

$$\forall n > N(\varepsilon)$$

Какой бы малый ε мы не взяли, бесконечное количество элементов последовательности $\{x_n\}$ попадают в ε -окрестность точки a, причем чем $\varepsilon\downarrow$, тем $N(\varepsilon)\uparrow$.

Пример. Рассмотрим последовательность $x_n = \frac{1}{n+1} = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6} \ldots \}$

$$\lim_{n \to \infty} x_n = a \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Пусть $\varepsilon = 0.3$, $x_n \in (a - \varepsilon; a + \varepsilon)$, т.е. (-0.3; 0.3)Получается два элемента $x_1, x_2 \notin (-0.3, 0.3)$

$$\Rightarrow N(\varepsilon) = 2$$

$$N(\varepsilon) + 1 = 3$$

$$x_3, x_4, x_5 \dots \in (-0.3, 0.3)$$

Определение 14. Последовательность, имеющая предел, назыается cxodsueŭcs.

Определение 15. Последовательность $\{x_n\}$ называется ограниченной снизу (сверху), если $\exists m \in \mathbb{R}(M \in \mathbb{R})$, что для всех $\forall n \in \mathbb{N}$ выполнено неравенство $x_n \geq m \ (x_n \leq M)$

Определение 16. Последовательность x_n называется ограниченной, если она ограничена и сверху, и снизу, т.е. $\forall n \in \mathbb{N}, m \leq x_n \leq M$ или $|x_n| \leq M$.

Определение 17. Последовательность $\{x_n\}$ называется фундаментальной, если для любого $\varepsilon>0$ \exists свой порядковый номер $N(\varepsilon)$ такой, что при всех $n\geq N(\varepsilon)$ и $m\geq N(\varepsilon)$ выполнено неравенство $|x_n-x_m|<\varepsilon$.

$$\forall \varepsilon > 0 \exists N(\varepsilon) \quad \forall n \ge N(\varepsilon) \quad \forall m \ge N(\varepsilon) \Rightarrow |x_n - x_m| < \varepsilon$$

Теорема 1. Критерий Коши существования предела последовательности

Для того, чтобы последовательность была сходящейся, необходимо и достаточно она была фундаментальной.

$$\{x_n\}$$
 - сходится $\Leftrightarrow \{x_n\}$ - фундаментальная.

2.2 Свойства сходящихся последовательность

Теорема 2. О существовании единственности предела последовательности

Любая сходящаяся последовательность имеет единственный предел.

Доказательство. Аналитическое доказательство. Пусть $\{x_n\}$ - сходя-

щаяся последовательность.

Рассуждаем методом от противного. Пусть последовательность $\{x_n\}$ более одного предела.

$$\lim_{n \to \infty} = a$$

$$\lim_{n \to \infty} = b$$

$$a \neq b$$

$$\lim_{n \to \infty} = a \Leftrightarrow (\forall \varepsilon_1 > 0)(\exists N_1(\varepsilon_1) \in N)(\forall n > N_1(\varepsilon_1) \Rightarrow |x_n - a| < \varepsilon_1) \quad (1)$$

$$\lim_{n \to \infty} = b \Leftrightarrow (\forall \varepsilon_2 > 0)(\exists N_2(\varepsilon_2) \in N)(\forall n > N_2(\varepsilon_2) \Rightarrow |x_n - b| < \varepsilon_2) \quad (2)$$

Выберем $N = max\{N_1(\varepsilon_1), N_2(\varepsilon_2)\}.$ Пусть

$$\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{|b-a|}{3}$$

$$3\varepsilon = |b - a| = |b - a + x_n - x_n| =$$

$$= |(x_n - a) - (x_n - b)| \le |x_n - a| + |x_n - b| < \varepsilon_1 + \varepsilon_2 = 2\varepsilon$$

$$3\varepsilon < 2\varepsilon$$

Противоречие. Значит, предоположение не является верным \Rightarrow последовательность x_n имеет единственный предел. \square

Доказательство. Геометрическое доказательство

Нельзя уложить бесконечное число членов последовательности x_n в две непересекающиеся окрестности.

Теорема 3. Об ограниченности сходящейся последовательности. Любая сходящаяся последовательность ограничена.

Доказательство. По определению сходящейся последовательности

$$\Rightarrow \lim_{n \to \infty} = a \Leftrightarrow (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n > N(\varepsilon) \Rightarrow |x_n - a| < \varepsilon).$$

Выберем в качестве $M = \max\{|x_1|, |x_2|, \dots |x_n|, |a-\varepsilon|, |a+\varepsilon|\}$. Тогда для $\forall n \in \mathbb{N}$ будет верно $|x_n| \leq M$ - это и означает, что последовательность x_n - ограниченная.

Теорема 4. *Признак сходимости Вейерштрасса.* Ограниченная монотонная последовательность сходится.

2.2.1 Предел последовательности $x_n = \left(1 + \frac{1}{n}\right)$

Теорема 5. Последовательность $x_n = \left(1 + \frac{1}{n}\right)$ имеет предел равный e.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e$$

3 Предел функции

Определение 18. Окрестностью, из которой исключена точка x_0 называется *проколотой окрестностью*.

$$\mathring{S}(x_0; \delta) = S(x_0; \delta) \setminus x_0$$

Определение 19. Определение функции по Коши или на языке ε и δ . Число a называется пределом функции y=f(x) в точке x_0 , если $\forall \varepsilon>0$ найдется δ , зависящее от ε такое что $\forall x\in \mathring{S}(x_0;\delta)$ будет верно неравенство $|f(x)-a|<\varepsilon$.

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0; \delta) \Rightarrow |f(x) - a| < \varepsilon)$$

Эквивалентные записи определения

$$\dots \forall x \in \mathring{S}(x_0; \delta) \Rightarrow \dots$$
$$\dots \forall x \neq x_0, |x - x_0| < \varepsilon \Rightarrow \dots$$
$$\dots \forall x, 0 < |x - x_0| < \delta \Rightarrow \dots$$

$$\dots \Rightarrow |f(x) - a| < \varepsilon$$

 $\dots \Rightarrow f(x) \in \mathring{S}(a, \varepsilon)$

Геометрический смысл предела функции

Если для $\forall \mathring{S}(a;\varepsilon)$ найдется $\mathring{S}(x_0;\delta)$, то соответствующее значение функции лежат в $\mathring{S}(a;\varepsilon)$ (полоса 2ε):

$$\forall x_1 \in \mathring{S}(x_0; \delta) \Rightarrow |f(x_1) - a| < \varepsilon$$

Определение 20. Определение предела функции по Гейне или на языке последовательностей.

Число a называется пределом $y=f\left(x\right)$ в точке x_{0} , если эта функция определена в окрестности точки a и \forall последовательнсти x_{n} из об-

ласти определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} = a \Leftrightarrow (\forall x_n \in D_f)(\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = a)$$

Геометрический смысл

$$\forall x_n \lim_{n \to \infty} x_n = x_0$$

Для любых точек x, достаточно близких к точке x_0 (на языке математики $\lim_{n\to\infty}x_n=x_0$) соответствующие значения $f(x_n)$ достаточно близко расположены к a (на языке математики - $\lim_{n\to\infty}f(x_n)=a$)

Теорема 6. Определение предела функции по Коши и по Гейне *экви-валентны*.

3.1 Ограниченная функция

Определение 21. Функция называется ограниченной в данной области изменения аргумента x, если $\exists M \in \mathbb{R}, M > 0, |f(x)| \leq M$.

Если $\not\exists M\in\mathbb{R}, M>0$, то функция f(x) называется неограниченной.

Определение 22. Функция называется **локально ограниченной** при $x \to x_0$, если существует проколотая окрестность с центром в точке x_0 , в которой данная функция ограничена.

3.2 Основные теоремы о пределах

Теорема 7. О локальной ограниченности функции, имеющей конечный предел.

Функция, имеющая конечный предел, локально ограничена.

Доказательство.

$$\lim_{x \to x_0} f(x) = a$$

$$\Leftrightarrow (\forall \varepsilon > 0) (\exists \delta(\varepsilon) > 0) (\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon)$$

Распишем:

$$\begin{array}{ll} -\varepsilon < f(x) - a < \varepsilon \\ a - \varepsilon < f(x) < a + \varepsilon \end{array} \qquad \forall x \in \mathring{S}(x_0, \delta)$$

Выберем $M = max\{|a - \varepsilon|, |a + \varepsilon|\}$

$$|f(x)| \le M, \quad \forall x \in \mathring{S}(x_0, a)$$

Что и требовалось доказать.

Теорема 8. *О единственности предела функции.* Если функция имеет конечный предел, то он единственный.

Доказательство. Предположим, что функция имеет более одного предела, например 2 - a и b. Тогда:

$$\lim_{x \to x_0} = a \tag{1}$$

$$\lim_{x \to x_0} = b \tag{2}$$

 $a \neq b$, пусть b > a

$$(1) \Leftrightarrow (\forall \varepsilon_1 > 0)(\exists \delta_1(\varepsilon_1) > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \Rightarrow |f(x) - a| < \varepsilon_1)$$

$$(2) \Leftrightarrow (\forall \varepsilon_2 > 0)(\exists \delta_2(\varepsilon_2) > 0)(\forall x \in \mathring{S}(x_0, \delta_2) \Rightarrow |f(x) - b| < \varepsilon_2)$$

Распишем:

$$(1) \Rightarrow a - \varepsilon_1 < f(x) < a + \varepsilon_1, \forall x \in \mathring{S}(x_0, \delta_1)$$

$$(2) \Rightarrow b - \varepsilon_2 < f(x) < b + \varepsilon_2, \forall x \in \mathring{S}(x_0, \delta_2)$$

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда $\forall x \in \mathring{S}(x_0, \delta)$ будет верно (1) и (2) одновременно.

Пусть $\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{b-a}{2}$:

$$(1) \Rightarrow f(x) < a + \varepsilon_1 = a + \frac{b-a}{2} = \frac{a+b}{2}$$

$$(2) \Rightarrow f(x) > b - \varepsilon_2 = b - \frac{b - a}{2} = \frac{a + b}{2}$$

 $\forall x \in \mathring{S}(x_0, \delta)$

Мы получили противоречие. Это означает, что предположение не является верным. Функция имеет единственный предел. $\hfill\Box$

Теорема 9. O сохранении функией знака своего предела Если $\lim_{x\to x_0}=a\neq 0$, то $\exists \mathring{S}(x_0,\delta)$ такая, что функция в ней сохраняет знак своего предела.

$$\lim_{x \to x_0} f(x) = a \neq 0 \to \begin{cases} a > 0 \\ a < 0 \end{cases} \Rightarrow \begin{cases} f(x) > 0 \\ f(x) < 0 \end{cases} \quad \forall x \in \mathring{S}(x_0, \delta)$$

Доказательство. Пусть a > 0. Выберем $\varepsilon = a > 0$.

$$\lim_{x \to x_0} = a \Leftrightarrow (\forall \varepsilon = a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon = a)$$

Распишем:

$$-a < f(x) - a < a$$
$$0 < f(x) < 2a$$

Знак у функции f(x) и числа a - одинаковые.

Пусть a < 0. Выберем $\varepsilon = -a$.

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \varepsilon = -a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon = -a)$$

Распишем:

$$-a < f(x) - a < a$$
$$-2a < f(x) < 0$$

Знак у функции f(x) и числа a - одинаковые.

Значит, f(x) сохраняет знак своего предела $\forall x \in \mathring{S}(x_0, \delta)$

Следствие. Если функция y=f(x) имеет предел в точке x_0 и знакопостояна в $\mathring{S}(x_0,\delta)$, тогда её предел не может иметь с ней противоположные знак.

Теорема 10. О предельном переходе в неравенстве.

Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\forall x \in \mathring{S}(x_0, \delta)$ верно f(x) < g(x). Тогда $\forall x \in \mathring{S}(x_0, \delta)$ имеет место неравенство $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$.

Доказательство. По условию $f(x) < g(x), \forall x \in \mathring{S}(x_0, \delta)$.

Введём функцию $F(x) = f(x) - g(x) < 0, \forall x \in \mathring{S}(x_0, \delta)$. Т.к. f(x) и g(x) имеют конечные пределы в точке x_0 , соответственно и функция F(X) имеет конечный предел в точке x_0 (как разность f(x) и g(x)).

По следствию из предыдущей теоремы $\Rightarrow \lim_{x \to x_0} F(x)$

Подставим F(x) = f(x) - g(x):

$$\lim_{x\to x_0} \left(f(x)-g(x)\right) \leq 0 \Rightarrow \lim_{x\to x_0} f(x) - \lim_{x\to x_0} g(x) \leq 0 \Rightarrow \lim_{x\to x_0} f(x) \leq \lim_{x\to x_0} g(x)$$

Пример. Пусть f(x) = 0, $g(x) = x^2$ и $x_0 = 0$.

$$\forall x \in \mathring{S}(x_0, \delta) \qquad 0 < x^2$$

$$\lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 = 0$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$$

$$\lim_{x \to 0} f(x) \le \lim_{x \to 0} g(x)$$

В теореме знак строгий переходит в нестрогий!

Теорема 11. О пределе промежуточной функции.

Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\lim_{x\to x_0}f(x)=a$ и $\lim_{x\to x_0}g(x)=a,$ $\forall x\in \mathring{S}(x_0,\delta)$ верно неравенство $f(x)\leq h(x)\leq g(x).$ Тогда $\lim_{x\to x_0}h(x)=a.$

Доказательство. По условию:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta_1(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon)$$
(1)

$$\lim_{x \to x_0} g(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta_2(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |g(x) - a| < \varepsilon)$$
(2)

Выберем $\delta_0 = min\{\delta, \delta_1, \delta_2\}$, тогда (1), (2) и $f(x) \leq h(x) \leq g(x)$ верны одновременно $\forall x \in \mathring{S}(x_0, \delta_0)$.

(1)
$$a - \varepsilon < f(x) < a + \varepsilon$$

(2)
$$a - \varepsilon < g(x) < a + \varepsilon$$

$$\begin{split} f(x) & \leq h(x) \leq g(x) \\ \Rightarrow a - \varepsilon_1 < f(x) \leq h(x) \leq g(x) < a + \varepsilon_2 \\ \Rightarrow \forall x \in \mathring{S}(x_0, \delta_0) \qquad a - \varepsilon < h(x) < a + \varepsilon \end{split}$$

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_0(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta_0 \Rightarrow |h(x) - a| < \varepsilon)$$
 \Rightarrow по определению предела
$$\lim_{x \to x_0} h(x) = a$$

Теорема 12. О пределе сложной функции.

Если функция y=f(x) имеет предел в точке x_0 равный a, то функция $\varphi(y)$ имеет предел в точке a, равный C, тода сложная функция $\varphi(f(x))$ имеет предел в точке x_0 , равный C.

$$\begin{cases} y = f(x) \\ \lim_{x \to x_0} f(x) = a \\ \lim_{y \to a} \varphi(y) = C \end{cases} \Rightarrow \lim_{x \to x_0} \varphi(f(x)) = C$$

Доказательство.

$$\lim_{y \to a} \varphi(y) \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta_1 > 0)(\forall y \in \mathring{S}(a, \delta_1) \Rightarrow |\varphi(y) - a| < \varepsilon)$$
 (1)

Выберем в качестве ε в пределе найденное δ_1 :

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \delta_1 > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \Rightarrow |f(x) - a| < \delta_1$$
(2)

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \Rightarrow |\varphi(f(x)) - c| < \varepsilon)$$

Что равносильно:

$$\lim_{x \to x_0} \varphi(f(x)) = c$$

4 Бесконечно малые функции

Определение 23. Функция называется бесконечно малой при $x \to x_0$, если предел функции в этой точке равен 0. Кратко - б.м.ф. или б.м.в.

$$\lim_{x \to x_0} f(x) = 0$$
$$(\forall \varepsilon > 0) (\exists \delta(\varepsilon)) (\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x)| < \varepsilon)$$

Замечание. Стремление аргумента может быть *любое*, главное, чтобы предел был равен нулю.

Бесконечно малые функции обозначаются $\alpha(x), \beta(x), \gamma(x) \dots$

Пример.

$$y = x - 2$$
$$\lim_{x \to 2} (x - 2) = 0$$

y=x-2 при $x \to 2$ является бесконечно малой.

Пример.

$$y = \sin(x)$$
$$\lim_{x \to 0} \sin(x) = 0$$

 $y = \sin(x)$ при $x \to 0$ является бесконечно малой.

Пример.

$$y = \sin(\frac{1}{x})$$
$$\lim_{x \to \infty} \sin(\frac{1}{x}) = 0$$

 $y = \sin(\frac{1}{x})$ при $x \to \infty$ является бесконечно малой.

4.1 Свойства бесконечно малых функций

Теорема 13. О сумме конечного числа бесконечно малых функций. Конечная сумма бесконечно малых функции есть бесконечно малая функция.

Доказательство. Пусть дано конечное число бесконечно малых функций, например две: $\alpha(x), \beta(x)$. Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} \alpha(x) = 0 \qquad \lim_{x \to x_0} \beta(x) = 0$$

Нужно доказать, что:

$$\lim_{x \to x_0} (\alpha(x) + \beta(x)) = 0$$

Распишем:

$$\lim_{x \to x_0} \alpha(x) = 0 \Leftrightarrow$$

$$(\forall \varepsilon_1 = \frac{\varepsilon}{2} > 0)(\exists \delta_1 > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \Rightarrow |\alpha(x)| < \frac{\varepsilon}{2}) \qquad (1)$$

$$\lim_{x \to x_0} \beta(x) = 0 \Leftrightarrow$$

$$(\forall \varepsilon_2 = \frac{\varepsilon}{2} > 0)(\exists \delta_2 > 0)(\forall x \in \mathring{S}(x_0, \delta_2) \Rightarrow |\beta(x)| < \frac{\varepsilon}{2}) \qquad (2)$$

$$(\forall \varepsilon_2 = \frac{\varepsilon}{2} > 0)(\exists \delta_2 > 0)(\forall x \in \mathring{S}(x_0, \delta_2) \Rightarrow |\beta(x)| < \frac{\varepsilon}{2})$$
 (2)

Выберем $\delta = min\{\delta_1, \delta_2\}$. Тогда (1) и (2) верны одновременно. По-

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta)$$

$$\Rightarrow |\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon)$$

Тогда по определнию бесконечно малой функции:

$$\lim_{x \to x_0} (\alpha(x) + \beta(x)) = 0$$

Теорема 14. О произведении бесконечно малой функций на локально ограниченную.

Произведение бесконечно малой функции на локальной ограниченную есть величина бесконечно малая.

Доказательство. Пусть $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, а функция f(x) при $x \to x_0$ является локально ограниченной. Доказываем, что:

$$\alpha(x) \cdot f(x) = 0$$

Распишем:

$$\lim_{x \to x_0} \alpha(x) = 0$$

$$\Leftrightarrow (\forall \varepsilon_1 = \frac{\varepsilon}{M} > 0)(\exists \delta_1 > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \Rightarrow |\alpha(x)| < \varepsilon_1 = \frac{\varepsilon}{M}) \qquad (1)$$

$$M \in \mathbb{R}, M > 0$$

$$\forall x \in \mathring{S}(x_0, \delta_2) \Rightarrow |f(x)| < M \qquad (2)$$

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда (1) и (2) верны одновременно. В итоге получаем:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow$$
$$|\alpha(x) \cdot f(x)| = |\alpha(x)| \cdot |f(x)| < \frac{\varepsilon}{M} \cdot M < \varepsilon$$

Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} \alpha(x) \cdot f(x) = 0$$

Пример.

$$\lim_{x \to \infty} \frac{\sin(x)}{x} = \lim_{x \to \infty} \frac{1}{x} \cdot \sin(x) = 0$$

Т.к. $\sin(x)$, при $x \to \infty$ является локально ограниченной $\sin(x) \le 1$.

Теорема 15. O связи функции, её предела и бесконечно малой. Функция y = f(x) имеет конечный предел в точке x_0 тогда и только тогда, когда её можно представить в виде суммы предела и некоторой бесконечно малой функции.

$$\lim_{x o x_0}f(x)=a\Leftrightarrow f(x)=a+lpha(x),$$
где $lpha(x)$ – б.м.ф при $x o x_0$

Доказательство. Необходимость.

Дано:

$$\lim_{x\to x_0} f(x) = a$$

Доказать:

$$f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. при $x \to x_0$

Распишем:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon)$$

Обозначим $f(x) - a = \alpha(x)$, тогда:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |\alpha(x)| < \varepsilon)$$

По определению бесконечно малой функции $\alpha(x)$ - бесконечно малая функция. Из обозначения следует, что:

$$f(x) = a + \alpha(x)$$

где $\alpha(x)$ - бесконечно малая функция при $x \to x_0$. $\mathcal{A}ocmamoчносm$ ь.

Дано:

$$f(x)=a+lpha(x),$$
где $lpha(x)$ - б.м.ф. при $x o x_0$

Доказать:

$$\lim_{x \to x_0} f(x) = a$$

По определению б.м.ф.:

$$\lim_{x \to x_0} \alpha(x) = 0 \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\mathring{S}(x_0, \delta) \Rightarrow |\alpha(x)| < \varepsilon$$

С учётом введённого обозначения:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon \Leftrightarrow \lim_{x \to x_0} f(x) = a$$

Следствие. Т.к. любая бесконечно малая функция локально ограничена, то произведение двух бесконечно малых функций есть бесконечно малая функция.

Следствие. Произведение бесконечно малой функции на константу есть величина бесконечно малая.

5 Арифметические операции над функциями, имеющими конечный предел

Пусть f(x) и g(x) имеют конечные пределы в точке x_0 .

Теорема 16. Предел суммы (разности) двух функций, имеющих конечные пределы равен сумме (разности) пределов.

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

Теорема 17. О пределе отношения функций.

Предел отношения двух функций, имеющих конечный предел, равен частному их пределов при условии, что предел в знаменателе отличен от нуля.

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \lim_{x \to x_0} g(x) \neq 0$$

Теорема 18. О пределе произведения функций.

Предел произведения функций равен произведению пределов.

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Доказательство. Пусть:

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = a$$

$$\lim_{x \to x_0} f(x) = b$$
(2)

По теореме о связи функции, её предела и бесконечно малой функции:

$$(1) \Rightarrow f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. $(2) \Rightarrow f(x) = b + \beta(x)$, где $\beta(x)$ - б.м.ф.

Рассмотрим:

$$\begin{split} f(x) \cdot g(x) &= (a + \alpha(x))(b + \beta(x)) \\ &= ab + \underbrace{a \cdot \beta(x) + b\alpha(x) + \alpha(x) \cdot \beta(x)}_{\gamma(x)} \\ &= ab + \gamma(x) \end{split}$$

По следствию из теоремы 15:

$$a\cdot eta(x)=$$
 б.м.ф. при $x o 0$ $b\cdot lpha(x)=$ б.м.ф. при $x o 0$ $lpha(x)\cdot eta(x)=$ б.м.ф. при $x o 0$

По теореме о сумме конечного числа с б.м.ф.:

$$\gamma(x) =$$
б.м.ф. при $x \to 0$

Далее расписываем предел:

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} (f(x) \cdot g(x))$$

$$= \lim_{x \to x_0} ab + \lim_{x \to x_0} \gamma(x)$$

$$= ab + 0$$

$$= ab$$

Следствие.

$$\lim_{x \to x_0} (c \cdot f(x)) = c \cdot \lim_{x \to x_0} f(x)$$

6 Односторонние пределы

Определение 24. Число A_1 называется пределом функции y=f(x) в точке x_0 **слева**, если:

$$\lim_{x \to x_0 -} f(x) = A_1 \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in (x_0 - \delta, x_0) \Rightarrow |f(x) - A_1| < \varepsilon)$$

Определение 25. Число A_2 называется пределом функции y=f(x) в точке x_0 **справа**, если:

$$\lim_{x \to x_0 +} f(x) = A_2 \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in (x_0, x_0 + \delta) \Rightarrow |f(x) - A_2| < \varepsilon)$$

Пределы справа и слева называют односторонними пределами.

Теорема 19. О существовании предела функции в точке. Функция y = f(x) в точке x_0 имеет конечный предел тогда и только тогда, когда существуют пределы справа и слева и они равны между собой.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x)$$

6.1 Пределы на бесконечности

Определение 26. Число a называется пределом функции y = f(x) при $x \to +\infty$, если:

$$\lim_{x \to +\infty} f(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x > N \Rightarrow |f(x) - a| < \varepsilon)$$

где N - большое число, $N>0, N\in\mathbb{R}$.

Определение 27. Число a называется пределом функции y=f(x) при $x \to -\infty$, если:

$$\lim_{x \to -\infty} f(x) = a \Leftrightarrow (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x < -N) \Rightarrow |f(x) - a| < \varepsilon)$$

где N - большое число, $N>0, N\in\mathbb{R}.$

Замечание.

$$\lim_{x \to +\infty} f(x) = a \Leftrightarrow$$

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x > N \Rightarrow |f(x) - a| < \varepsilon)$$

$$\lim_{x \to -\infty} f(x) = a \Leftrightarrow$$

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x < -N) \Rightarrow |f(x) - a| < \varepsilon$$

$$\lim_{x \to \infty} f(x) = a \Leftrightarrow$$

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x \in |x| > N \Rightarrow |f(x) - a| < \varepsilon)$$

6.2 Бесконечные пределы

Определение 28. Функция y = f(x) имеет бесконечный предел при $x \to x_0$, если:

$$\lim_{x\to x_0} f(x) = \infty \Leftrightarrow (\forall M>0) (\exists \delta(M)>0) (\forall x\in \mathring{S}(x_0,\delta) \Rightarrow |f(x)|>M)$$

где M - большое число, $M>0, M\in\mathbb{R},$ а δ - малое число.

Замечание.

$$\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow f(x) > M)$$
$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow f(x) < -M)$$

Пример.

$$y = \operatorname{arctg}(x), \qquad x \to \infty$$

$$\lim_{x \to +\infty} \operatorname{arctg}(x) = \frac{\pi}{2}$$

$$\lim_{x \to -\infty} \operatorname{arctg}(x) = -\frac{\pi}{2}$$

Пример.

$$y = \ln(x), \qquad x \to 0$$

$$\lim_{x \to 0-} = \not\exists$$

$$\lim_{x \to 0+} = -\infty$$

Пример.

$$y = \sqrt{-x}, \qquad x \to 0$$

$$\lim_{x \to 0+} = \mathbb{A}$$

$$\lim_{x \to 0-} = 0$$

Пример.

$$y = \frac{1}{|x-2|}, \qquad x \to 2$$

$$\lim_{x \to 2+} \frac{1}{|x-2|} = +\infty$$

$$\lim_{x \to 2-} \frac{1}{|x-2|} = +\infty$$

Определение 29. Функция y = f(x) называется бесконечно большой функцией (далее - б.б.ф. если:

$$\lim_{x \to x_0} f(x) = \infty$$

Бесконечный предел на бесконечности

$$\lim_{x \to \infty} = \infty \Leftrightarrow (\forall M > 0)(\exists N(M) > 0)(\forall x \in |x| > N \Rightarrow |f(x)| > M)$$

6.3 Сравнение бесконечно малых и бесконечно больших функцих

Теорема 20. O связи бесконечно малой и бесконечно большой функции.

Если $\alpha(x)$ - бесконечно большая функция при $x \to x_0$, то $\frac{1}{\alpha(x)}$ - бесконечно малая функция при $x \to x_0$.

Доказательство. По условию $\alpha(x)$ - б.б.ф при $x \to x_0$. По определению:

$$\lim_{x\to x_0}\alpha(x)=\infty\Leftrightarrow (\forall M>0)(\exists \delta(M)>0)(\forall x\in \mathring{S}(x_0,\delta)\Rightarrow |f(x)|>M)$$

Рассмотрим неравенство:

$$|\alpha(x)| > M, \forall x \in \mathring{S}(x_0, \delta)$$

Обозначим $\varepsilon = \frac{1}{M}$.

$$|\alpha(x) > M| \Rightarrow \frac{1}{|\alpha(x)|} < \frac{1}{M}$$

 $\Rightarrow |\frac{1}{\alpha(x)}| < \frac{1}{M} < \varepsilon$

В итоге получаем:

$$\forall x \in \mathring{s}(x_0, \delta) \Rightarrow \left| \frac{1}{\alpha(x)} \right| < \varepsilon$$

Что по определению является бесконечно малой функцией.

1-ый замечательный предел

Теорема 21.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Доказательство. Рассмотрим $\lim_{x\to 0+}\frac{\sin(x)}{x}=1.$ Потом $\lim_{x\to 0-}\frac{\sin(x)}{x}=1.$

Пусть α - угол в радианах, $x \to 0, x \in (0, \frac{\pi}{2})$.

Тут должен быть рисунок, но его пока нет :(.

Окружность R=1.

Отложим луч OK под углом к оси oX равным x, где $O(0,0), K \in$ окружности.

 $KH \perp OA$.

Рассмотрим $\triangle OKH$. OA=1 как радиус. $\sin(x)=\frac{KH}{OA}=KH$. Рассмотрим $\triangle OLA$. OA=1 как радиус. $\operatorname{tg}(x)=\frac{LA}{OA}=LA$.

Из геометрических построений (да будут они когда-нибудь...):

$$S_{\triangle OKA} < S_{secOKA} < S_{\triangle OLA}$$

$$\begin{split} S_{\triangle OKA} &= \frac{1}{2}OA \cdot KH = \frac{1}{2}\sin(x) = \frac{\sin(x)}{2} \\ S_{secOKA} &= \frac{1}{2}OA \cdot OK \cdot KA = \frac{1}{2} \cdot x = \frac{x}{2} \\ S_{\triangle OLa} &= \frac{1}{2}OA \cdot LA = \frac{1}{2} \cdot 1 \cdot \operatorname{tg}(x) = \frac{tg(x)}{2} \end{split}$$

$$\frac{\sin(x)}{2} < \frac{x}{2} < \frac{\operatorname{tg}(x)}{2} \quad | \cdot 2$$

$$\sin(x) < x < tg(x)$$

$$x \to 0+ \Rightarrow \begin{cases} \sin(x) > 0 \\ \operatorname{tg}(x) > 0 \end{cases} \Rightarrow \sin(x) < x < \operatorname{tg}(x) \quad | : \sin(x)$$

$$1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$

$$\cos(x) < \frac{\sin(x)}{x} < 1$$

По теореме о предельном переходе в неравенстве:

$$\lim_{x \to 0+} \cos(x) \le \lim_{x \to 0+} \frac{\sin(x)}{x} \le 1$$

По теореме о промежуточной функции:

$$\lim_{x \to 0+} \cos(x) = 1 \Rightarrow \lim_{x \to 0+} \frac{\sin(x)}{x} = 1$$

Аналогично для $\lim_{x \to 0-} \frac{\sin(x)}{x} = 1$. Т.к. односторонние пределы равны:

$$\lim_{x \to 0+} \frac{\sin(x)}{x} = \lim_{x \to 0-} \frac{\sin(x)}{x} = 1 \Leftrightarrow \lim_{x \to x_0} \frac{\sin(x)}{x} = 1$$

Следствие.

$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = \frac{\sin(x)}{\cos(x)}$$

$$= \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \frac{x}{\cos(x)}$$

$$= \lim_{x \to 0} \frac{1}{\cos(x)}$$

Следствие.

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = \begin{vmatrix} t = \arcsin(x) \\ x \to 0, t \to 0 \end{vmatrix}$$

$$= \lim_{t \to 0} \frac{t}{\sin(t)}$$

$$= \lim_{t \to 0} \frac{1}{\frac{\sin(t)}{t}}$$

$$= \frac{1}{1} = 1$$

Следствие.

$$\lim_{x \to 0} \frac{\arctan(x)}{x}$$

Доказательство.

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = \begin{vmatrix} x = \operatorname{tg}(t) \\ x \to 0, t \to \infty \end{vmatrix}$$

$$= \lim_{t \to \infty} \frac{t}{\operatorname{tg}(t)}$$

$$= \lim_{t \to \infty} \frac{1}{\frac{tg(t)}{t}}$$

$$= \frac{1}{1} = 1$$

Следствие.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

Доказательство.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \left| \frac{\sin^2 \frac{x}{2} = \frac{1 - \cos(x)}{2}}{1 - \cos(x) = 2\sin^2 \frac{x}{2}} \right|$$

$$= \lim_{x \to 0} \frac{2\sin^2 x - 2}{x^2}$$

$$= 2\lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{(\frac{x}{2})^2} \cdot \frac{(\frac{x}{2})^2}{x^2}$$

$$= 2 \cdot \frac{1}{4} = \frac{1}{2}$$

Второй замечательный предел

Теорема 22.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Следствие.

$$\lim_{x \to 0} (1+x)^{\left(\frac{1}{x}\right)} = e$$

Доказательство.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \begin{vmatrix} x = \frac{1}{t} \\ x \to 0, t \to \infty \end{vmatrix}$$
$$= \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t$$
$$= e$$

Следствие.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$
$$= \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}$$
$$= \ln e = 1$$

Следствие.

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$

Доказательство.

$$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \frac{1}{x} \log_a (1+x)$$

$$= \lim_{x \to 0} \log_a (1+x)^{\frac{1}{x}}$$

$$= \log_a e = \frac{1}{\ln a}$$

Следствие.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \begin{vmatrix} e^x - 1 = t \\ x = \ln(t+1) \\ x \to 0, t \to 0 \end{vmatrix}$$

$$= \lim_{t \to 0} \frac{t}{\ln(1+t)}$$

$$= \frac{1}{\lim_{t \to 0} \frac{\ln(1+t)}{t}}$$

$$= \frac{1}{1} = 1$$

Следствие.

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

Доказательство.

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \begin{vmatrix} a^x - 1 = t \\ x = \log_a(1+t) \\ x \to 0, t \to 0 \end{vmatrix}$$

$$= \lim_{t \to 0} \frac{t}{\log_a(1+t)}$$

$$= \frac{1}{\lim_{t \to 0} \frac{\log_a(1+t)}{t}}$$

$$= \frac{1}{\frac{1}{\ln a}} = \ln a$$

7 Сравнение бесконечно малых и бесконечно больших функций

Пусть даны функции $\alpha(x)$ и $\beta(x)$, которые являются б.м.ф. при $x \to x_0$.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Рассмотрим варианты:

•

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$$

 $\alpha(x)$ имеет более высокий порядок малости, чем $\beta(x)$.

$$\alpha(x) = o(\beta(x)), \text{ при } x \to x_0$$

•

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \infty$$

 $\beta(x)$ имеет более высокий порядок малости, чем $\alpha(x)$.

$$\beta(x) = o(\alpha(x)),$$
 при $x \to x_0$

•

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

$$\alpha(x)$$
 и $\beta(x)$ - эквивалентны. $\alpha(x) \sim \beta(x)$, при $x \to x_0$

•

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = const$$

 $\alpha(x)$ и $\beta(x)$ - одного порядка малости.

$$lpha(x) = O(eta(x))$$
 при $x o x_0$

•

$$\exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

 $\alpha(x)$ и $\beta(x)$ - несравнимы.

Определение 30. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются одного порядка малости, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = const \neq 0$$

Определение 31. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются *несравнимыми* , если:

 $\exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$

Определение 32. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются *эквивалентными* , если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Определение 33. Если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$$

где $\alpha(x)$ и $\beta(x)$ – б.м.ф. при $x\to x_0$, то говорят, что функция $\alpha(x)$ имеет более высокий порядок малости, чем $\beta(x)$.

Определение 34. Б.м.ф. $\alpha(x)$ имеет порядок малости k относительно функции б.м.ф. $\beta(x)$, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{[\beta(x)]^k} = const \neq 0$$

где k – порядок малости.

7.1 Свойства эквивалентных бесконечно малых функций

Теорема 23. Если $\alpha(x)\sim\beta(x)$, а $\beta(x)\sim\gamma(x)$, при $x\to x_0$, то $\alpha(x)\sim\gamma(x)$ при $x\to x_0$.

Доказательство.

$$\lim_{x\to x_0}\frac{\alpha(x)}{\gamma(x)}=\lim_{x\to x_0}\frac{\alpha(x)\cdot\beta(x)}{\gamma(x)\cdot\beta(x)}=\lim_{x\to 0}\frac{\alpha(x)}{\beta(x)}\cdot\frac{\beta(x)}{\gamma(x)}=1\cdot 1=1$$

$$\Rightarrow \alpha(x)\sim\gamma(x), \text{при } x\to x_0$$

Теорема 24. Необходимое и достаточное условие экваивалентных бесконечно малых функий.

Две функции $\alpha(x)$ и $\beta(x)$ эквивалентны тогда и только тогда, когда их разность имеет более высокий порядок малости по сравнению с каждой из них.

$$\alpha(x),\beta(x)$$
 - б.м.ф при $x\to x_0$
$$\alpha(x)\sim\beta(x)\Leftrightarrow \frac{\alpha(x)-\beta(x)=o(\alpha(x))}{\alpha(x)-\beta(x)=o(\beta(x))}$$
 при $x\to x_0$

Доказательство. Необходимость.

Дано:

$$\alpha(x), \beta(x)$$
 - б.м.ф при $x \to x_0$

Доказать:

$$\alpha(x) - \beta(x) = o(\alpha(x))$$
, при $x \to x_0$

Доказательство:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = \lim_{x \to x_0} \left(1 - \frac{\beta(x)}{\alpha(x)} \right)$$
$$= 1 - \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)}$$
$$= 1 - \frac{1}{1} = 0$$

Достаточность.

Дано:

$$\alpha(x) - \beta(x) = o(\beta(x))$$
, при $x \to x_0$

Доказать:

$$\alpha(x) \sim \beta(x)$$
, при $x \to x_0$

Доказательство:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} - 1 \right)$$
$$= \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} - 1 = 0$$

$$\Rightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

$$\Rightarrow \alpha(x) \sim \beta(x), \text{при } x \to x_0$$

Теорема 25. О суммы бесконечно малых разного порядка.

Сумма бесконечно малых функций разных порядком малости эквивалентно слагаемому низшего порядка малости.

$$\left.\begin{array}{l} \alpha(x),\beta(x)\text{ - б.м.ф при }x\to x_0\\ \alpha(x)=o(\beta(x))\text{, при }x\to x_0 \end{array}\right\}\Rightarrow\alpha(x)+\beta(x)\sim\beta(x)\text{, при }x\to x_0$$

Доказательство. Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x) + \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} + 1 \right)$$
$$= \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} + 1$$
$$= 0 + 1 = 1$$

Следствие. Сумма б.б.ф. разного порядка роста эквивалентна слагаемому высшего порядка роста.

Теорема 26. О замене функции на эквивалентную под знаком предела.

Предел **отношения** двух б.м.ф. (б.б.ф) не изменится, если заменить эти функции на эквивалентные.

$$\left.\begin{array}{l} \alpha(x),\beta(x)\text{ - б.м.ф. при }x\to x_0\\ \alpha(x)\sim\alpha_0(x)\\ \beta(x)\sim\beta_0(x) \end{array}\right\}\Rightarrow\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=\frac{\alpha_0(x)}{\beta(x)}$$

Доказательство. Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x) \cdot \alpha_0(x) \cdot \beta_0(x)}{\beta(x) \cdot \alpha_0(x) \cdot \beta_0(x)}$$

$$= \lim_{x \to x_0} \frac{\alpha(x)}{\alpha_0(x)} \cdot \lim_{x \to x_0} \frac{\beta_0(x)}{\beta(x)} \cdot \lim_{x \to x_0} \frac{\alpha_0(x)}{\beta_0(x)}$$

$$= 1 \cdot 1 \cdot 1 \cdot \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Таблица 1: Таблица эквивалентных б.м.ф

1-ый замечательный предел 2-ой замечательный предел

$$\begin{array}{l} \sin(x)\sim x \text{ при } x\to 0 \\ \operatorname{tg}(x)\sim x \text{ при } x\to 0 \\ \arcsin(x)\sim x \text{ при } x\to 0 \\ \operatorname{arctg}(x)\sim x \text{ при } x\to 0 \\ 1-\cos(x)\sim \frac{x^2}{2} \text{ при } x\to 0 \\ 1-\cos(x)\sim \frac{x^2}{2} \text{ при } x\to 0 \end{array} \qquad \begin{array}{l} \ln(1+x)\sim x \\ \log_a(1+x)\sim \frac{x}{\ln a} \\ e^x \quad x \\ a^x-1\sim x \ln a \end{array}$$

Сумма б.м.ф. и б.б.ф.

$$a_0+a_1x+a_2x^2+\ldots+a_nx^n\sim a_nx^n$$
 при $x o\infty$ $a_1x+a_2x^2+\ldots+a_nx^n\sim a_1x$ при $x o0$

8 Непрерывность функции. Точки разрыва

Определение 35. Функция f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке если:

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

Множество непрерывных функций в точке x_0 обозначается $C(x_0)$

$$f(x) \in C(x_0) \Leftrightarrow$$
 - функция непрерывна в точке x_0

Пример.

$$\lim_{x \to 0} \sin(x) = \sin(x) = 0 \Leftrightarrow \sin(x) \in C(0)$$

Пример.

$$sgnx = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases} \Rightarrow sgn \not\in C(0)$$

Определение 36. Функция y=f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке, если в достаточно малой окрестности точки x_0 значение функции близки к $f(x_0)$.

$$y = f(x) \in C(x_0)$$

$$\Leftrightarrow$$

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - f(x_0)| < \varepsilon)$$

Определение 37. Функция y = f(x) в некоторой окрестности точки x_0 называется непрерывной в этой точке, если выполняются условия:

$$1. \quad \exists \lim_{x \to x_0 +} f(x)$$

$$2. \quad \exists \lim_{x \to x_0 -} f(x)$$

3.
$$\lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x) = f(x)$$

Пусть y = f(x) определена в некоторой точке в окрестности x_0 . Выберем произвольный x в этой окрестности. Тогда:

$$\Delta x = x - x_0$$
 - приращение аргумента

$$\Delta y = f(x) - f(x_0)$$
 - соответствующее приращение функции

Определение 38. Функция y = f(x) называется непрерывной в точке x_0 , если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

$$\lim_{\Delta x \to 0} \Delta y = 0$$

8.1 Односторонняя непрерывность

Определение 39. Функция y=f(x) определённая в правосторонней окрестности точки x_0 (математическим языком - $[x_0,x_0+\delta)$) называется непрерывной справа в этой точке, если:

$$\exists \lim_{x \to x_0 +} = f(x_0)$$

Определение 40. Функция y=f(x) определённая в левосторонней окрестности точки x_0 (математическим языком - $(x_0-\delta,x_0]$) называется непрерывной справа в этой точке, если:

$$\exists \lim_{x \to x_0 -} = f(x_0)$$

Теорема 27. Для того, чтобы функция y = f(x) была непрерывна в точке x_0 необходимо и достаточно, чтобы она была непрерывна в этой точке справа и слева.

Определение 41. Функция y = f(x) называется непрерывной на интервале (a,b), если она непрерывна в каждой точке этого интервала.

Определение 42. Функция y = f(x) называется непрерывной на отрезке [a,b], если:

- 1. Непрерывна на интервале (a, b)
- 2. Непрерывна в точке a справа
- 3. Непрерывна в точке b слева
- \bullet C(a,b) множество функций, непрерывных на интервале.
- ullet C[a,b] множество функций, непрерывных на отрезке.
- \bullet C(X) множество функций, непрерывных на промежутке X.

8.2 Классификация точек разрыва

Определение 43. Пусть функция y=f(x) определена в некоторой точке проколотой окрестности точки x_0 непрерывна в любой точке этой окрестности (за исключением самой точки x_0). Тогда точка x_0 называется точкой разрыва функции.

Пусть точка x_0 - точка разрыва. Её можно классифицировать как:

- І-ого рода
 - Основное условие

$$\exists \lim_{x \to x_0 + -}$$

- Точка конечного разрыва

$$\lim_{x \to x_0 +} \neq \lim_{x \to x_0 -}$$

– Точка устранимого разрыва

$$\lim_{x o x_0+} = \lim_{x o x_0-}
eq f(x_0)$$
 или $ot
ot = f(x_0)$

• ІІ рода

$$\exists \lim_{x \to x_0 + -}$$

Определение 44. Если точка x_0 – точка разрыва функции y=f(x) и существуют конечные пределы $\lim_{x\to x_0+} f(x)$ и $\lim_{x\to x_0-} f(x)$, то x_0 называют точкой І-го рода.

Определение 45. Если точка x_0 – точка разрыва функции y=f(x) и не существуют конечные пределы $\lim_{x\to x_0+}f(x)$ и $\lim_{x\to x_0-}f(x)$ или $\lim_{x\to x_0}f(x)=\infty$, то x_0 называется точкой разрыва II-го рода.

Определение 46. Если точка x_0 – точка разрыва первого рода функции y=f(x), и предел $\lim_{x\to x0+}f(x)\neq \lim_{x\to x_0-}f(x)$, то x_0 называется точкой конечного разрыва или точкой $c\kappa a u\kappa a$.

Определение 47. Если точка x_0 – точка разрыва первого рода функции y=f(x), и предел $\lim_{x\to x_0+}f(x)=\lim_{x\to x_0-}f(x)$, но $\neq f(x_0)$, то точка x_0 называется точкой устранимого разрыва.

Примеры

Пример.

$$y = \frac{|x-1|}{x-1}$$

$$D_f = \mathbb{R} \setminus \{1\}$$

$$x = 1 \text{ - точка разрыва}$$

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} \frac{|x-1|}{x-1} = \frac{x-1}{x-1} = 1$$

$$\lim_{x \to 1-} f(x) = \lim_{x \to 1-} \frac{|x-1|}{x-1} = \frac{1-x}{x-1} = -1$$

$$\lim_{x \to 1+} f(x) \neq \lim_{x \to 1-} f(x)$$

$$\Rightarrow x = 1 \text{ - т.р. I рода, точка скачка}$$

$$\Delta f = |\lim_{x \to 1+} f(x) - \lim_{x \to 1-} f(x)| = |1 - (-1)| = 2$$

Пример.

$$y = \frac{\sin(x)}{x}$$

$$D_f = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0-} f(x)$$

$$\Rightarrow x = 0 - \text{ т.р. I рода, устранимая точка разрыва}$$

$$g(x) = \begin{cases} \frac{\sin(x)}{x}, x \neq 0 \\ 1, x = 0 \end{cases}$$

$$f(x) \not\in C(0)$$

$$g(x) \in C(0)$$

Пример.

$$y = e^{\frac{1}{x}}$$

$$D_f = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} e^{\frac{1}{x}} = e^{+\infty} = \infty$$

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} e^{\frac{1}{x}} = e^{-\infty} = 0$$

$$\lim_{x \to 0+} f(x) = \infty$$

$$\Rightarrow x = 0 \text{ - т.р. II рода}$$

8.3 Свойства непрерывных функций в точке

Теорема 28. Пусть функции:

$$y = f(x) y = g(x)$$
 $\in C(x_0)$

Тогда:

$$f(x) + g(x) \in C(x_0)$$
$$(f \cdot g)(x) \in C(x_0)$$

Доказательство. По определению непрерывной функции:

$$\lim_{x \to x_0} f(x) = f(x_0)$$
$$\lim_{x \to x_0} g(x) = g(x_0)$$

Рассмотрим:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) + f(x_0) = g(x_0)$$

$$\Rightarrow f(x) + g(x) \in C(x_0)$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0)$$

$$\Rightarrow (f \cdot g)(x) \in C(x_0)$$

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x_0)}$$

Теорема 29. Пусть

$$g(y) \in C(y_0), \quad y_0 = \lim_{x \to x_0} f(x)$$

Тогда:

$$\lim_{x \to 0} g(f(x)) = g(\lim_{x \to 0} f(x))$$

Доказательство. Т.к. функция $g(y) \in C(y_0)$, то $\lim_{y \to y_0} g(y) = g(y_0)$. С другой стороны, по условию $\lim_{x \to x_0} f(x) = y_0$. По теореме О пределе сложной функции $\exists \lim_{x \to x_0} g(f(x))$. Подставим в последнее равенство $y_0 = \lim_{x \to x_0} f(x)$:

$$\lim_{x\to x_0}g(f(x))=g(\lim_{x\to x_0}f(x))$$

Теорема 30. *О непрерывности сложной функции.*

Пусть функция $y=f(x)\in C(x_0)$, а функция $g(y_0)\in C(y_0)$, причем $y_0=f(x_0)$. Тогда сложная функция $F(x)=g(f(x))\in C(x_0)$.

Доказательство. Т.к. $y=f(x)\in C(x_0)$, то по определению непрерывности $\Rightarrow \lim_{x\to x_0} f(x)=f(x_0)$. Аналогично для $f(x)\in C(x_0)$ – по определению непрерывности $\Rightarrow \lim_{y\to y_0} g(y)=g(y_0)$. Рассмотрим $\lim_{x\to x_0} F(x)=\lim_{x\to x_0} g(f(x))$. По теореме 29:

$$\lim_{x\to x_0}g(f(x))=g(\lim_{x\to x_0}f(x))=$$

По непрерывности функции:

$$= g(f(x_0)) = F(x_0) \Rightarrow g(f(x)) \in C(x_0)$$

Теорема 31. О сохранении знака непрерывной функции в окрестности точки.

Если функция $f(x) \in C(x_0)$ и $f(x_0) \neq 0$, то $\exists S(x_0)$, в которой знак значения функции совпадает со знаком $f(x_0)$.

Доказательство. Т.к. функция $y=f(x)\in C(x_0)$, то $\lim_{x\to x_0}f(x)=f(x_0)$. По теореме о сохранении функции знака своего предела $\Rightarrow \exists S(x_0)$, в которой знак значений функции совпадает со знаком $f(x_0)$.

Замечание. На экзамене требуется доказать также и теорему о сохранении функции знака своего предела!

8.4 Непрерывность элементарных функций

Теорема 32. Основные элементарные функции непрерывные в области определения.

Доказательство. Это теорема доказывается для каждой элементарной функции отдельно. Докажем её для функций $y = \sin(x), y = \cos(x)$:

$$y=\sin(x), D_y=\mathbb{R}$$
 $x_0=0, \lim_{x\to x_0}\sin(x)=\sin(0)\Rightarrow y=\sin(x)\in C(0)$ $\forall x\in D_y=\mathbb{R}, \quad \Delta x$ — приращение функции
$$x=x_0+\Delta x, \quad x\in D_f=\mathbb{R}$$
 $\Delta y=y(x)-y(x_0)=y(x_0+\Delta x)-y(x_0)$
$$=\sin(x_0+\Delta x)-\sin(x_0)=2\sin\left(\frac{x_0+\Delta x-x_0}{2}\right)\cos\left(\frac{x_0+\Delta x+x_0}{2}\right)$$

$$=2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x_0+\frac{\Delta x}{2}\right)$$

$$\lim_{\Delta x\to 0}\Delta y=\lim_{\Delta x\to 0}2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x_0+\frac{\Delta x}{2}\right)=0$$
 — по т. об произв. огр. на б.м.ф.

Т.к. $\lim_{\Delta x \to 0} \Delta y = 0$ по опр. непр. функции $\Rightarrow y = \sin(x)$ непрерывна в точке x_0 . Т.к. x_0 – произвольная точка из области определения, то $y = \sin(x)$ непрерывна на всей области произведения.

Теорема 33. Элементарные функции непрерывны в области определения

Доказательство. Доказательство данной теоремы следует из определения элементарных функций с помощью операций *сложения*, *вычитания*, *умножения*, *композиции*, предыдущей теоремы, теоремы об алгебраических свойствах непрерывной функции и теоремы о композиции непрерывных функций.

8.5 Свойства функций, непрерывных на промежутке

Теорема 34. Об ограниченности непрерывной функции или Первая теорема Вейерштрасса. .

Если функция y = f(x) непрерывна на отрезке ab, то она на этом отрезке ограниченна.

$$f(x) \in C[a, b] \Rightarrow \exists M \in \mathbb{R}, M > 0, \forall x \in [a, b] : |f(x)| \le M$$

Теорема 35. О достижении непрерывной функции наибольшего и наименьшего значений или Вторая теорема Вейерштрасса.

Если функция $y=f(x)\in C[a,b],$ то она достигает на этом отрезке своего наибольшего и наименьшего значения.

$$f(x) \in C[a, b]$$

$$\Rightarrow$$

$$\exists x_*, x^* \in [a, b] : \forall x \in [a, b] \Rightarrow m = f(x_*) \le f(x) \le f(x^*) = M$$

Теорема 36. О существовании нуля непрерывной функции или Первая теорема Бальцана-Коши.

Если функция $y = f(x) \in C[a,b]$, и на концах отрезка принимает значения разных знаков, то $\exists c \in (a,b) : f(c) = 0$.

$$f(x) \in S[a,b] \land f(a) \cdot f(b) < 0 \Rightarrow \exists c \in (a,b) : f(c) = 0$$

Теорема 37. О промежуточном значении непрерывной функции или Вторая теорема Бальцана-Коши.

Если функция $y=f(x)\in C[a,b]$ и принимает на границах отрезка различные значения $f(a)=A\neq f(b)=B,$ то $\forall C\in [A,B]\exists c\in (a,b),$ в которой f(c)=C.

$$f(x) \in C[a,b] \land f(a) = A \neq f(b) = B \Rightarrow \exists C \in (A,B) \Rightarrow \exists c \in (a,b) : f(c) = C$$

Теорема 38. О существовании обратной κ непрерывной функции. Пусть $y=f(x)\in C(a,b)$ и строго монотонна на этом интервале. Тогда в соответствующем (a,b) интервале значений функции существует обратная функция $x=f^{-1}(y)$, которая так же строго монотонна и непрерывна.