

CLAIMS:

1. A method for the production of an olefin polymer, which method comprises polymerising an olefin monomer in the presence of a catalyst component selected either from a complex of formula (I):

wherein Cp is a substituted or unsubstituted cyclopentadienyl or fluorenyl ring; R'' is a structural bridge between Cp and X imparting stereorrigidity to the component; each R is the same or different and is selected from a hydrocarbyl group having from 1-20 carbon atoms, a halogen, an alkoxy group, an alkoxyalkyl group, an alkylamino group or an alkylsilylo group; q is an integer from 0-8; X is a heteroatom from group 15 or 16 of the Periodic Table; M is a metal atom from group 4 of the Periodic Table ; R' is hydrogen or a hydrocarbyl having from 1 to 20 carbon atoms and each Q is a hydrocarbon having from 1-20 carbon atoms or is a halogen;

or from a complex of formula (II):

wherein L is an heteroatom-containing ligand; n is an integer of 1, 2, or 3; M is selected from Ti, Zr, Sc, V, Cr, Fe, Co, Ni, Pd, or a lanthanide metal; each Q is independently a hydrocarbon having 1-20 carbon atoms or a halogen; and p is the valence of M minus the sum of the coordination numbers of all L;

characterised in that the catalyst component comprises one or more alkyl moieties having a terminal olefin group, and wherein the alkyl moiety having a

terminal olefin group is a substituent on R", Cp and/or X in the complex of formula I or is a substituent on L, and/or Q in the complex of formula II.

2. A method according to claim 1, wherein Cp in formula (I) is a cyclopentadienyl ring and at least one group R in formula (I) is positioned on the Cp ring such that it is distal to the bridge R", which group R comprises a bulky group of the formula ZR*₃ in which Z is an atom from group 14 of the Periodic Table and each R* is the same or different and is chosen from a hydrogen or a hydrocarbyl group having from 1-20 carbon atoms.
3. A method according to claim 2, wherein ZR*₃ is selected from C(CH₃)₃, C(CH₃)₂Ph, CPh₃, and Si(CH₃)₃.
4. A method according to any preceding claim, wherein X in formula (I) is N or P.
5. A method according to any preceding claim, wherein R" comprises an alkylidene group having 1 to 20 carbon atoms, a germanium group, a silicon group, a siloxane group, an alkyl phosphine group, or an amine group.
6. A method according to claim 5, wherein R" comprises a substituted or unsubstituted ethylenyl group, an isopropylidene (Me₂C) group, a Ph₂C group, or a Me₂Si group.
7. A method according to any preceding claim, wherein M is Ti, Zr, or Hf.
8. A method according to any preceding claim, wherein Q is Cl or Me.

9. A method according to claim 1, wherein L in formula (II) is a bidentate ligand selected from:

wherein n is an integer of 2 or 3; R¹, R², R⁷, R⁸, R¹⁰, R¹¹, R¹², R¹³, R¹⁶ and R¹⁷ are each independently a hydrocarbyl or a substituted hydrocarbyl group , and R³, R⁴, R⁵, R⁶, R⁹, R¹⁴, R¹⁵, R¹⁸, and R¹⁹ are each independently a hydrogen, hydrocarbyl or substituted hydrocarbyl group; and wherein one or more of the following when taken together may form a ring: R³ and R⁴, both of R⁹, R⁵ and R⁷, R⁶ and R⁸, R¹⁸ and R¹⁹.

10. A method according to claim 1, wherein L in formula (II) is a tridentate ligand, having the following formula:

or three monodentate ligands having the following arrangement:

wherein R¹, R², R³ and R⁴ are each independently a hydrogen, hydrocarbyl or substituted hydrocarbyl group.

11. A method according to claim 9 or claim 10, wherein M is selected from Fe and Co.

12. A method according to any preceding claim, wherein the olefin monomer comprises ethylene or propylene.

13. A method according to any preceding claim, wherein the alkyl moiety having a terminal olefin group comprises a substituted or unsubstituted alkyl group having from 2-20 carbon atoms.

14. A method according to claim 13, wherein the alkyl moiety having a terminal olefin group comprises a ω -ethylenyl, ω -propylenyl, ω -butylenyl, ω -pentylenyl, ω -hexylenyl, ω -heptylenyl, ω -octylenyl, ω -nonylenyl or a ω -decylenyl group.

15. An olefin polymer, obtainable according to a method as defined in any of claims 1-14.

16. A metallocene catalyst as defined in any of claims 1-14.
17. Use of a metallocene catalyst for producing an olefin polymer, which catalyst is a catalyst as defined in claim 16.
18. Use according to claim 17, wherein the olefin polymer is an ethylene polymer or a propylene polymer.