MTD2A_binary_input

MTD2A: Model Train Detection And Action – arduino library https://github.com/MTD2A/MTD2A Jørgen Bo Madsen / V1.5 / 19-09-2025

MTD2A_binary_input er en brugervenlig avanceret og funktionel C++ klasse til tidsstyret håndtering af input fra sensorer, knapper og meget mere samt programmet selv. MTD2A understøtter parallel processering og asynkron eksekvering.

Klassen er blandt en række logiske byggeklodser, der løser forskellig funktioner. Fælles for dem alle:

- Understøtter en bred vifte af inputsensorer og outputenheder
- Er enkle at bruge til at bygge komplekse løsninger med få kommandoer
- Fungere Ikke-blokerende, procesorienteret og tilstandsdrevet
- Tilbyder omfattende kontrol- og fejlfindingsinformation
- · Grundigt dokumenterede med eksempler

•

Indholds for tegnelse

WITDZA_L	binary_input	1
Funk	ktionsbeskrivelse	1
Inpu	ıt detektering og aktivering	3
Pin II	nput mode	4
Simp	pel binær funktion	5
Time	e delay – first trigger	6
Time	e delay – last trigger	7
Mon	nostable – first trigger	8
Mon	nostable – last trigger	9
Ekse	empler på configuration	9
Set og get	t funktionsoversigt 1	LO
Print	t_conf();1	1

Funktionsbeskrivelse

MTD2A_binary_input processen består af 3 funktioner:

- MTD2A_binary_input object_name ("object_name",
 delayTimeMS, { LAST_TRIGGER | FIRST_TRIGGER }, {TIME_DELAY | MONO_STABLE}, pinBlockTimeMS);
- object_name.initialize (pinNumber, {NORMAL | INVERTED}, { INPUT_PULLUP | INPUT });
 Kaldes i void setup (); og efter Serial.begin ("Hastighed");
- 3. MTD2A_loop_execute (); Kaldes som det sidste I void loop ();

Alle funktioner benytter default værdier og kan derfor kaldes med ingen og op til max antal parametre. Dog skal parameret angives i stigende rækkefølge startende fra den første. Se eksempl herunder:

```
MTD2A_binary_input object_name;
MTD2A_binary_input object_name ("object_name");
MTD2A_binary_input object_name ("object_name", delayTimeMS);
MTD2A_binary_input object_name ("object_name", delayTimeMS, triggerMode);
MTD2A_binary_input object_name ("object_name", delayTimeMS, triggerMode, timerMode);
MTD2A_binary_input object_name ("object_name", delayTimeMS, triggerMode, timerMode, pinBlockTimeMS);
Default: ("Object_name", 0 , LAST_TRIGGER, TIMER_DELAY, 0);
```

Eksempel

```
// Read sensor and write phase state information to Arduino IDE serial monitor
// https://github.com/MTD2A/FC-51
#include <MTD2A.h>
using namespace MTD2A_const;

MTD2A_binary_input FC_51_sensor ("FC-51 sensor", 5000);
// "FC-51 sensor" = Sensor (object) name, which is displayed together with status messages
// 5000 = Time delay in milliseconds (5 seconds)
// default: LAST_TRIGGER = Start calculating time from last impulse (LOW->HIGH)
// default: TIME_DELAY = Use time delay (timer function)

void setup () {
    Serial.begin (9600); // Required and first if status messages are to be displayed
    while (!Serial) { delay(10); } // ESP32 Serial Monitor ready delay

byte FC51_SENSOR_PIN = 2;
FC_51_sensor.initialize (FC51_SENSOR_PIN); // Arduino board pin 2 input.
FC_51_sensor.set_debugPrint (); // Display status messages
}

void loop () {
    MTD2A_loop_execute ();
}
```

Eksempel på udskrift til IDE Serial Monitor:

Flere eksempler og youtube demo video:

https://github.com/MTD2A/MTD2A/tree/main/examples

DEMO video: https://youtu.be/eyGRazX9Bko

Proces faser

Afhægig af den aktuelle konfiguration gennemføres processen i mellem 3 og 5 faser.

- 0. 0) Når funktion object_name.reset (); kaldes. 4) Den initelle fase når programmet starter.
- 1. Første gang at der er sket en ændring i input (sensor eller programmet selv).
- 2. Sidste gang at der skete en ændring i input. Kan forekommer flere gange.
- 3. Blokering af input fra sensor eller programmet selv i en tidsbestemt periode.
- 4. Afventer ny input (tilstandsændring) fra sensor eller programmet selv.

Globale nummerkonstanter:

RESET_PHASE, FIRST_TIME_PHASE, LAST_TIME_PHASE, BLOCKING_PHASE & COMPLETE_PHASE

Det øjeblikkelige fasesskift kan identificeres med funktion: object_name.get_phaseChange (); = { true | false }

Proces status

Ved overgang til FIRST_TIME_PHASE eller LAST_TIME_PHASE skifter ProcessState til ACTIVE. Ved overgang til COMPLETE_PHASE skifter processState til COMPLETE.

Timing

Tidsperiodene sættes som standard når objektet instantieres (aktiveres).

Det er muligt at definere nye tidsperioder for begge timere:

object_name.set_delayTimeMS ({0 - 4294967295}); object_name.set_pinBlockMS ({0 - 4294967295});

Se dokumentet MTD2A.PDF og asnittet "Kadance", "Synkronisering" samt "Eksekveringshastighed".

Input detektering og aktivering

MTD2A_binary_input læser input fra

- 1) Digital benforbindelse på Arduino boardet
- 2) Programmet selv.

Input fra digital benforbindelse på Arduino board er som standard konfigureret med INPUT_PULLUP. Det betyder at der er tilsluttet en modstand på typisk 10 K ohm mellem input benforbindelsen og + (plus) = HIGH. Aktivering sker ved at forbinde benforbindelsen til – (minus) = LOW.

Se mere her: <u>INPUT | INPUT | PULLUP | OUTPUT | Arduino Documentation</u>

Der kan benyttes alle former for bryde og slutte kontakter, momentan og skifte kontakter, relæer og alle former for kredsløb med Open Collector transistor NPN - binært og analogt. Ved analogt kredsløb skifter status efter spændingsniveauerne som beskrevet her: <u>HIGH | LOW | Arduino Documentation</u>

Hvis input kredsløbet også benytter egen pullup modstand, vil det som udgangspunkt virke som det skal. I modsat fald kan INPUT PULLUP vælges fra ved at angive INPUT i funktionen:

object name.initialize (pinNumber, {NORMAL | INVERTED}, {INPUT PULLUP | INPUT });.

Der er to mulige input til funktionen:		inputState	CurrState
1. Input fra digital benforbindelse på Arduino board	HIGH	HIGH	HIGH
<pre>pinState => {HIGH LOW} pin read only.</pre>	HIGH	LOW	LOW
2. <u>Input fra s</u> elve programmet	LOW	HIGH	LOW
<pre>inputState = {HIGH LOW} write & read.</pre>	LOW	LOW	LOW

Input aflæses fra det digitale benforbindelsesnummer, der er specificeret i object_name.initialize (pinNumber); Kaldes funktionen ikke, bliver benforbindelsen ikke aflæst pinReadToggl = disable og pinNumber = 255.

Hvis benforbindelsenummer er initialiseret korrekt med ovenstående funktion, er det muligt løbende at styre om benforbinelsen skal aflæses eller ej med funktionen:

object_name.set_pinReadToggl ({ENABLE | DISABLE});

Input kan også komme fra programmet selv:

object_name.set_inputState ({HIGH | LOW}, {PULSE | FIXED});

Pulse angiver en enkelt impuls (kort monostabilt) og fixed virker permanent og indtil Pulse angives.

Pin Input mode

Der er to måder af aflæse input på:

- 1. NORMAL Trigger sker ved HIGH -> LOW. Output spejler input. Fx reflektionssensor.
- 2. INVERTED Trigger sker ved LOW -> HIGH. Output følger input. Fx strålebrydning sensor.

Default normal object_name.initialize (pinNumber, INVERTED);

I de følgende eksempler tages der udgangspunkt i FC-51 binær strålebrydning sensor, hvor sender er placeret på den ene side af toget, og modtager erplaceret på den anden side.

Simpel binær funktion

MTD2A_binary_input FC_51_sensor ("FC_51_sensor");

Når input går fra LOW til HIGH gør output præcis det samme, og omvendt.

Sensordetektering af et togsæt i bevægelse vil uundgåeligt medføre et antal impulser grundet variationer i opbygning af togvognene og lokomotiv, samt "huller" ved sammenkoblinger med mere. Disse variationer kan medføre uforudsete genaktivering af funktioner og fejl i den efterfølgende logik proces.

Eksempel på kørende tog

Time delay – first trigger

Når input går fra LOW til HIGH fastholdes output HIGH ind til at den definerede tidsperiode ophører. Er input HIGH ved tidsperiodens ophør, forbliver output HIGH, ind til at input går fra HIGH til LOW.

object_name.reset ();

Nulstiller alle styrings og process variable og gør klar til ny start. Alle funktionskonfigurerede variable og standard værdier bibeholdes. Procesfasen skifter til RESET_PHASE

object_name.set_stopDelayTimer (); Stopper øjejeblikkeligt forsinkelsespersioden og går videre tilnæste fase.

Eksempel på kørende tog

Hvis uhensigtsmæssig genaktivering skal undgås, skal delayTimeMS være lang for at sikre, at det også fungerer ved langsomt kørende tog. I eksemplet herunder er delayTimeMS for kort, hvilket mefører to aktiveringer i stedt for en.

delayTimeMS = 5.000 millisekunder og triggerMode = FIRST_TRIGGER.
5 sekund forsinkelse målt fra første detektering af tog.
MTD2A_binary_input FC_51_sensor ("FC_51_sensor", 5000, FIRST_TRIGGER);

Time delay – last trigger

Når input går fra LOW til HIGH fastholdes output HIGH ind til at den definerede tidsperiode ophører. Hver gang input går fra HIGH tol LOW forskydes starten for tidsperioden til det nye tidspunkt. Er input HIGH ved tidsperiodens ophør, forbliver output HIGH, ind til at input går fra HIGH til LOW.

Eksempel på kørende tog

Denne metode er bedst egnet til at detektere hurtigt- og langsomt kørende tog uden uhensigtsmæssige genaktiveringer.

delayTimeMS = 5.000 millisekunder og triggerMode = LAST_TRIGGER.

5 sekunder forsinkelse målt fra sidste detektering af tog (HIGH til LOW).

MTD2A_binary_input FC_51_sensor ("FC_51_sensor", 5000, LAST_TRIGGER);

Monostable – first trigger

Monostabilt fastholder altid den definerede tidsperiode, uanset om input skifter mellem HIGH og LOW i tidsperioden, og forbliver input enten HIGH eller LOW, ændre det ikke tidsperioden.

Eksempel på kørende tog

delayTimeMS = 5.000 millisekunder, triggerMode = FIRST_TRIGGER, timerMode = MONO_STABLE, pinBlockMS = 12.000 millisekunder (tidsperiode hvor input fra benforbindelsen blokeres fra delayTimeMS afslutning og frem til monostabil afslutning).

5 sekunder forsinkelse målt fra første detektering af tog (LOW til HIGH).

MTD2A_binary_input FC_51_sensor ("FC_51_sensor", 5000, FIRST_TRIGGER, MONO_STABLE, 12000);

object_name.set_stopBlockTimer (); Stopper øjejeblikkeligt forsinkelsespersioden og går videre tilnæste fase.

Monostable – last trigger

Monostabilt fastholder altid den definerede tidsperiode, men skifter input i mellem HIGH og LOW i tidsperioden, forlænges tidsperioden hver gang. Efter den samlede tidsperiode skifter output til LOW, uanset om input enten er HIGH eller LOW.

Eksempel på kørende tog der standser over sensor

delayTimeMS = 3.000 millisekunder, triggerMode = LAST_TRIGGER, timerMode = MONO_STABLE.

3 sekunder forsinkelse målt fra første detektering af tog (LOW til HIGH).

MTD2A_binary_input FC_51_sensor ("FC_51_sensor", 3000, LAST_TRIGGER, MONO_STABLE);

Eksempler på configuration

- 1. MTD2A_binary_input FC_51_sensor ("FC_51_sensor", 5000);
- FC_51_sensor.initialize (A0);
- 3. FC_51_sensor.set_debugPrint ();
- 4. MTD2A_loop_execute ();

Set og get funktionsoversigt

Set functions	Comment
set_pinReadToggl ({ENABLE DISABLE});	Enable or disable pin reading
set_pinReadMode ({NORMAL INVERTED});	Configure pin trigger input
set_inputState ({HIGH LOW}, {PULSE FIXED});	Activate input state and set input mode
set_delayTimeMS ({0 - 4294967295});	Set new delay time after instantiation
set_pinBlockMS ({0 - 4294967295});	Set new blocking time after instantiation
set_stopDelayTimer ();	Stop first og last timer process immediately.
set_stopBlockTimer ();	Stop blocking timer process immediately.
set_debugPrint ({ENABLE DISABLE});	Activate print phase number and text.
set_errorPrint ({ENABLE DISABLE});	Activate error messages.

Get functions	Comment
<pre>get_processtState (); return bool {ACTIVE COMPLETE}</pre>	Process state
get_pinState (); return bool {HIGH LOW}	Current pin input state
get_phaseChange (); return bool {true false}	Momentarily phase change (one loop time)
get phaseNumber (), return wints + (0, 4)	Reset = 0, firstTime =1, lastTime = 2,
get_phaseNumber (); return uint8_t {0 - 4}	blocking = 3, pending = 4
get_firstTimeMS (); return uint32_t milliseconds	First time trigger time (falling edge)
get_lastTimeMS (); return uint32_t milliseconds	Last time trigger time (rising edge)
get_endTimeMS (); return uint32_t milliseconds	End time (total delay time)
get_inputGoLow (); return bool {true false}	Falling edge detected
get_inputGoHigh (); return bool {true false}	Rising edge detected
get_reset_error (); return uint8_t {0-255}	Get error/warning number and reset number: Error [1 – 127] warning [128 – 255]

Operator overloading	Function
object_name_1 == object_name_2	bool processState_1 == processState_2
object_name_1 != object_name_2	bool processState_1 != processState_2
object_name_1 > object_name_2	bool processState_1 = ACTIVE & processState_2 = COMPLETE
object_name_1 < object_name_2	bool processState_1 = COMPLETE & processState_2 = ACTIVE
object_name_1 >> object_name_2	bool lastTimeMS_1 > lastTimeMS_2
object_name_1 << object_name_2	bool lastTimeMS_1 < lastTimeMS_2

Print_conf();

object_name.print_conf ();