

## Assignment on

Floating Point Representation, Addition and Multiplication Algorithm

Course Code: CSE 215

Course Title: Computer Architecture

Assignment no: 3

## **Submitted to:**

Name: Md. Ashiqur Rahman

Lecturer,

Dept. of CSE

at Bangladesh University of Business and Technology.

## **Submitted by:**

Name: Syeda Nowshin Ibnat

ID: 17183103020

Intake: 39

Section: 01

Program: B.Sc. in CSE

Date of Submission: 17.05.2020

## Assignment - 3

Q1: Show the IFEE 754 binary representation of the number - 0.625 in single and double precision.

9017: The number - 0.625 ten is also - 5 or - 5 ten

It is also represented by the binary fraction:

In scientific notation, the value is:

and in nonmalized scientific notation, it is:

The general nepnesentation for a single precision number is  $(-1)^S \times (1 + \text{Significand}) \times 2^{(Ezponent - 127)}$ 

at and so when we add the bias 127 to the exponent  $0b - 1.01_{440} X \overline{2}^{3}$ , the nesult

(-1) × (1+.01 0000 0000 0000 0000 0000) × 2

The single precision nepresentation is:

| 11 |              | 1  |     | 1  | -  |    |    | _       | ,  | -  | _  |    | _  | _  |    |    | _  |    |    |    |    |    |   |   |   |   |   |   |   |   |     |   |
|----|--------------|----|-----|----|----|----|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|-----|---|
|    | 31           | 30 | 20) | 58 | 27 | 26 | 25 | 24      | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 ( | 1 |
|    | 1            | 0  | 1   | 1  | 1  | 1  | 1  | 1       |    |    |    |    |    |    |    |    | 0  | _  |    | -  | -  | -  |   |   |   | _ | 0 | 0 | 0 | 0 | 0 2 | - |
| 1  | 1 bit 8 bits |    |     |    |    |    | •  | 23 bits |    |    |    |    |    |    |    |    |    |    |    | _  | L  |    |   | Ц |   | - |   |   |   |   |     |   |

|         | The double precision representation is:  1bit 11 bits 20 bits                                |
|---------|----------------------------------------------------------------------------------------------|
|         | 31 30 29 28 27 26 25 24 23 22 21 20 29 28 17 74 15 14 12 12 12 12 12 12 12 12 12 12 12 12 12 |
| 326ita- | 000000000000000000000000000000000000000                                                      |
|         | (-1) X (1+·01 0000 0000 0000 0000 0000 0000 0000                                             |
|         | 0000 0000 00) X 2 (10 92 - 1023) Amo                                                         |
|         | Qa: Add two numbers 0.5ten and 0.25ten in binary wing                                        |
|         | bloating point addition algorithm.                                                           |
|         | Soln: $0.5 = 0.10 = 0.10 \times 2^{\circ} = 1.0 \times 2^{\circ}$                            |
|         | $0.32 = 0.010 = 0.010 \times 2^{0} = 0.10 \times 2^{1} = 1.00 \times 2^{2}$                  |
|         | Step-1: (change the smaller number)                                                          |
|         | $1.00 \times 2^{2} = 0.10 \times 2^{1}$                                                      |
|         | Step-2: (Addition of the significands)                                                       |
|         | +0·10<br>1·10x3                                                                              |
|         | 1.10                                                                                         |

Step-3: ( find the nonmalized form & check if Overflow and underflow)

The hum in already nonmalized. And #here in no overflow or underflow.

```
Step-4: (Round the number)
conventing the nesult to decimal:
   1.10 \times 2^{-1} = 0.110
             = 0.75 ten
This sum is what we would expect tom from
adding o. Ften and 0.25ten.
Q3: Hultiply two numbers 1:5 tent in binary wing
floating point multiplication algorithm.
      1.5 = 01.10 = 01.10 \times 2^{\circ} = 1.10 \times 2^{\circ}
     1.25 = 01.010 = 01.010 \times 2^{\circ} = 1.010 \times 2^{\circ}
Step-1: (Find the exponent of the product)
     New exponent = 0+0=0
considering bias,
   New exponent = 0+127 = 127
Step-2: (Hulliplication of the significands)
    1.10
    110 ... The product is = 1.1110x2°
  x 1.01
```

step-3: (Normalize the product)

The product is already normalized. And here is no overstow or underflow.

Step-4: (Round the number)

11 · 110 × 2 1

Step-5: (Put the sign of the product)

+ 11.110×21

conventing to decimal to check own nesults:

 $11.110 \times 2^{1} = 1.1110$ = 1.875 ten.

Am: