Problem Set 1 Solutions COMP301 Fall 2019 03.10.2019 17:30 - 18:45

Problem 11:

- $(1) \{3n+2|n\in\mathbb{N}\}\$
 - (a) Top-down $n \in S$ if n = 2 or $n 3 \in S$
 - (b) Bottom-up

S is the smallest set satisfying the two properties:

 $2 \in S$ and

if $n \in S$ then $n + 3 \in S$

(c) Rules of Inference

$$\frac{n \in S}{2 \in S} \quad \frac{n \in S}{n+3 \in S}$$

- (2) $\{2n + 3m + 1 | n, m \in \mathbb{N}\}\$
 - (a) Top-down $n \in S$ if n = 1 or $n 2 \in S$ or $n 3 \in S$.
 - (b) Bottom-up

S is the smallest set satisfying the two properties:

 $1 \in S$ and

if $n \in S$ then $n + 2 \in S$ or $n + 3 \in S$

(c) Rules of Inference

$$\frac{n \in S}{1 \in S} \quad \frac{n \in S}{n+2 \in S} \quad \frac{n \in S}{n+3 \in S}$$

- (3) $\{(n, 2n+1)|n \in \mathbb{N}\}$
 - (a) Top-down

$$(m,n) \in S$$
 if $m = 0$ and $n = 1$ or $(m-1,n-2) \in S$

(b) Bottom-up

S is the smallest set satisfying the two properties:

 $(0,1) \in S$ and

if $(m, n) \in S$ then $(m + 1, n + 2) \in S$

(c) Rules of Inference

$$\frac{(m,n) \in S}{(0,1) \in S} \quad \frac{(m,n) \in S}{(m+1,n+2) \in S}$$

 $(4) \ \{(n,n^2)|n\in\mathbb{N}\}$

 $^{^{1}}$ EOPL p.16 Exercise 1.1

- (a) Top-down $(m,n) \in S$ if m=0 and n=0 or $(m-1,n-2m+1) \in S$
- (b) Bottom-up S is the smallest set satisfying the two properties: $(0,0) \in S$ and
 - if $(m, n) \in S$ then $(m + 1, n + 2m + 1) \in S$
- (c) Rules of Inference

$$\frac{(m,n) \in S}{(0,0) \in S} \quad \frac{(m,n) \in S}{(m+1,n+2m+1) \in S}$$

Problem 2^2 :

List-of-Int

- \rightarrow (Int . List-of-Int)
- \rightarrow (Int . (Int . List-of-Int))
- $\rightarrow (\texttt{Int} \ . \ (\texttt{Int} \ . \ (\texttt{Int} \ . \ \texttt{List-of-Int)}))$
- \rightarrow (-7 . (Int . (Int . List-of-Int)))
- \rightarrow (-7 . (3 . (Int . List-of-Int)))
- \rightarrow (-7 . (3 . (14 . List-of-Int)))
- \rightarrow (-7 . (3 . (14 . ())))

Problem 3³: If we dont check (null? lst) and we do (car lst), it is possible that car might be applied to an empty list, which causes an error.

 $^{^2}$ EOPL p.16 Exercise 1.4

³EOPL p.16 Exercise 1.6

Problem 4⁴: Refer to *ps1solutions.scm*.

 $^{^4\}mathrm{EOPL}$ p.22 Exercise 1.12

Problem 5⁵: Refer to *ps1solutions.scm*.

 $^{^5\}mathrm{EOPL}$ p.27 Exercise 1.21

Problem 6⁶: Refer to *ps1solutions.scm*.

 $^{^6\}mathrm{EOPL}$ p.28 Exercise 1.26

Problem 7⁷: Refer to *ps1solutions.scm*.

 $^{^7}$ EOPL p.30 Exercise 1.34

Problem 8⁸: Refer to *ps1solutions.scm*.

⁸EOPL p.30 Exercise 1.36