

Constraints

Martha Hoffmann Session 4 RLI, 18.09.2019

Introducing words

Inner workings of oemof: Linear optimization and constraints

All workshop contents at: https://github.com/smartie2076/oemof_workshop
Todays jupyter notebooks are stored in _Oemof_workshop

Introduction to linear optimization Linear equation systems of oemof models **In-build oemof constraints Introducing own constraints Further examples for constraints**

Introduction to linear optimization Linear equation systems of oemof models **In-build oemof constraints Introducing own constraints Further examples for constraints**

An introduction to linear optimization

- Example: <u>./3_LP_general_example.ipynb</u>
- ► Linear Problem (LP) / Mixed Integer (Linear) Problem (MI(L)P) consists of :
 - a target function
 - a set of constraints and balances
- Solver searches on the edges of the solutions space for the optimal solution
- Available solvers: CBC, GLPK, Gurobi, ...
- ► Time steps adjustable (e.g. 15 mins, hourly)

Introduction to linear optimization **Linear equation systems of oemof models In-build oemof constraints Introducing own constraints Further examples for constraints**

Linear equation system generated by oemof

A set of linear equations fully describes an energy system model as a whole

The "lp-file"

- ► Linear equation system describes energy system fully
 - generated using Pyomo package
 - can be stored in "lp-file"
- ► The "Ip-file" is transferred to solver for optimization
 - Recommended solver: coinor-cbc
 - Same file can be optimized with different solvers
- ► Lp-file can help to verify and debug your code
- Example: <u>./micro_grid_fixed_cap_basic.ipynb</u>

The "lp-file": Objective value

► The objective value should be minimized:

```
min
objective:
+0.03955047913155272 GenericInvestmentStorageBlock_invest(storage)
+0.022175440918742569 InvestmentFlow_invest(genset_electricity_bus)
+0.034350422598754829 InvestmentFlow_invest(pv_electricity_bus)
+0.091601126930012891 InvestmentFlow_invest(wind_electricity_bus)
+0.063761955366631234 flow(diesel_fuel_bus_0)
+0.063761955366631234 flow(diesel_fuel_bus_1)
+0.063761955366631234 flow(diesel_fuel_bus_2)
+0.063761955366631234 flow(diesel_fuel_bus_3)
+0.063761955366631234 flow(diesel_fuel_bus_4)
```

Optimizing with oemof - Objective value

- Oemof generates a linear equation system describing the energy system model
- Solves for the minimal objective value (costs)
- Target function:

$$\min \sum_{i} (Capex(i) * CRF(i) + Opex_{fix}(i)) * P_{inst}(i) + \sum_{i} \sum_{t} Opex_{var}(i) * E_{gen}(i,t)$$

$$i \in \{WEA, PV, BHKW, Speicher\}$$

 $t \in \{1...8760\}$

Capex	Capital expenditure	EUR/kW
CRF	Capital recovery factor	-
$Opex_{fix}$	Fixed operational expenditure	EUR/(kW*a)
$Opex_{var}$	Variable operational expenditure	EUR/kWh
P_{inst}	Capacity of component	kW
E_{gen}	Generated electricity per timestep	kWh
i	Index of system components	-
t	Index of time steps	-

The "lp-file": Bus balances

- ► Each bus is by default balanced:
 - $\blacktriangleright \sum inputs = \sum outputs \ \forall \ t$
 - ▶ le. no energy can be lost or generated from nowhere
 - ▶ Can require "shortage"-Source or "excess"-Sink

```
c_e_Bus_balance(fuel_bus_0)_:
+1 flow(diesel_fuel_bus_0)
-1 flow(fuel_bus_genset_0)
= 0
```

The "lp-file": Bus balances

- ► Each bus is by default balanced:
 - $\sum inputs = \sum outputs \ \forall \ t$
 - ▶ le. no energy can be lost or generated from nowhere
 - ▶ Can require "shortage"-Source or "excess"-Sink

```
c_e_Transformer_relation(genset_fuel_bus_electricity_bus_0)_:
+1 flow(fuel_bus_genset_0)
-3.030303030303030303 flow(genset_electricity_bus_0)
= 0

c_e_InvestmentFlow_fixed(wind_electricity_bus_0)_:
-0.31556899999999999 InvestmentFlow_invest(wind_electricity_bus)
+1 flow(wind_electricity_bus_0)
= 0
```

The "lp-file": Bus balances

- ► Each bus is by default balanced:
 - $\sum inputs = \sum outputs \ \forall \ t$
 - ▶ le. no energy can be lost or generated from nowhere
 - ▶ Can require "shortage"-Source or "excess"-Sink

```
c_e_Bus_balance(electricity_bus_0)_:
-1 flow(electricity_bus_excess_0)
-1 flow(electricity_bus_storage_0)
+1 flow(genset_electricity_bus_0)
+1 flow(pv_electricity_bus_0)
+1 flow(storage_electricity_bus_0)
+1 flow(wind_electricity_bus_0)
= 279.53099120000002
```


Introduction to linear optimization Linear equation systems of oemof models **In-build oemof constraints Introducing own constraints**

Further examples for constraints

In-build bounds of flows

- ▶ Bounds limit Flows to an interval
- ► Decreases search area for valid optimization results
- ► Examples:
 - ► Component parameters: min_storage_capacity, max_storage capacity
 - ▶ Flow parameters: nominal value
 - ▶ Investment parameters: maximum

Example: ./micro_grid_system_inbuilt_bounds.ipynb

The "lp-file": Bounds


```
0 <= flow(wind_electricity_bus_4) <= +inf
0 <= InvestmentFlow_invest(electricity_bus_storage) <= +inf
0 <= InvestmentFlow_invest(genset_electricity_bus) <= +inf
0 <= InvestmentFlow_invest(pv_electricity_bus) <= 800
0 <= InvestmentFlow_invest(storage_electricity_bus) <= +inf
0 <= InvestmentFlow_invest(wind_electricity_bus) <= 500
0 <= GenericInvestmentStorageBlock_capacity(storage_0) <= +inf</pre>
```

```
c_u_GenericInvestmentStorageBlock_min_capacity(storage_0)_:
-1 GenericInvestmentStorageBlock_capacity(storage_0)
+0.20000000000000000 GenericInvestmentStorageBlock_invest(storage)
<= 0</pre>
```

In-built constraints

- ▶ Limit the sum of a Flow: $\sum Flow \cdot variable = const$
- ► Indirectly decreases search area of optimization, acts like a "exit criterion of a loop"
- ► Examples:
 - ▶summed max
 - ▶emission_limit

Example: ./micro_grid_fixed_inbuild_sum.ipynb

The "lp-file": Constraints

Introduction to linear optimization Linear equation systems of oemof models **In-build oemof constraints Introducing own constraints Further examples for constraints**

Guidelines for own constraints

- ► Rules for own constraints:
 - Linearized behaviour
 - ▶ No no "if-then-relation" with other decision variables
- ► If-then relations can be implemented when accessing a definite timeseries of actual value

Process of writing constraints

- 1. Simplify real-world boundary to valid constraint
- 2. Determine structure of constraint:
 - Does the constraint have to be applied each time step individually?
 - ▶ Does the constraint concern Investment objects?
- 3. Create a constraint with a constraint rule, add directly to the linear model of the energy system using Pyomo
- 4. Verify your constraint by checking...
 - ▶ ...the lp-file (for few timesteps)
 - ...the results (fow a higher number of timesteps)

Renewable share constraint

- ► Type: Summed minimum
- ► Based on: Minimum renewable share limit (constant)

$$\sum P_{PV} + \sum P_{Wind} - r_{lim} \cdot \sum P_{demand} \ge 0$$

Micro grid stability constraint

- ► Type: Minimum bound per timestep
- ▶ Based on: Minimum stability limit (constant)

$$P_{DG}(t) + P_{pcc,cons} + (SOC(t) - SOC_{min}) \cdot CAP_{storage,kWh} \cdot Crate \cdot \eta_{discharge} \cdot \eta_{inv}$$

$$>= L_s \cdot (P_D(t) - P_{short}(t)) \quad \forall t$$

$$P_{DG}(t) + P_{pcc,cons} + CAP_{storage,kW} \cdot \eta_{inv} > = L_s \cdot (P_D(t) - P_{short}(t)) \quad \forall t$$

Custom constraint with bounded flows:
_/micro_grid_custom_constraint_flows.ipynb

Introduction to linear optimization **Linear equation systems of oemof models In-build oemof constraints Introducing own constraints Further examples for constraints**

Intermittantly switching off a component

- ► Type: Setting flow value in timesteps
- ► Based on: External boolean timeseries

Forced battery charge

- ► Type: Setting flow per timestep
- ► Based on:
 - External boolean timeseries
 - Linerarized formular for value of flow

THANK YOU FOR YOUR ATTENTION!

How to follow Oemof's activities?

Website: https://oemof.org/

Github: https://github.com/oemof

Or join our mailing list!

License

Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0)

See license text for further information.

Tel: +49 (0)30 1208 434 88

E-Mail: martha.hoffmann@rl-institut.de

Web: http://www.rl-institut.de

Twitter: @rl_institut

Please quote as: "PRESENTATION TITLE" © Reiner Lemoine Institut | CC BY 4.0