CB&B 555 / CPSC 453 / CPSC 553 / GENE 555 (F16)

Schedule for Fall 2016

Aug. 31 Oct 18-24 Nov 18-24 Dec 9	Classes begin October recess November recess Reading period begins
Thu 9/1 Tue 9/6 Thu 9/8 Tue 9/13 Thu 9/15 Tue 9/20 Thu 9/22 Tue 9/27 Thu 9/29 Tue 10/4 Thu 10/6 Tue 10/11 Thu 10/13	Lecture 1: Intro to High Dimensional Data (CyTOF/ScRNA-SEQ/GBM) Lecture 2: Linear Dimensionality Reduction Methods (PCA, MDS) Lecture 3: Visualizing data with tSNE Lecture 4: Nonlinear Dimensionality Reduction Methods(Guy Wolf) Lecture 5: Diffusion Maps (Guy Wolf) Lecture 6: Trajectories and progressions Lecture 7: Wanderlust and Wishbone (Manu Setty) Lecture 8: Clustering: K-means and spectral Lecture 9: Gaussian Mixture Models and Hierarchical Linkage Lecture 10: Community Detection, Phenograph (Jacob Levine) Lecture 11: Kernel Methods, SVM (P1 due) Lecture 12: Constrained Programing, Kernel Density Estimation Lecture 13: Entropy, Mutual Information and Estimation (Kevin Moon)
Tue 10/18 Thu 10/23: Tue 10/25:	Lecture 14: DREMI and Gene/Protein Regulation No class fall break. Review Part 1
Thu 10/27 Tue 11/1 Thu 11/3 Tue 11/8	Lecture 15: Review Part 2 Midterm Lecture 16: Neural Networks and Deep Learning Lecture 17: Autoencoders, variational autoencoders (P2 due)
Thu 11/10 Tue 11/15 Thu 11/17 Tue 11/22 Tue 11/29	Lecture 18: CovNETS, RNNS Lecture 19: Comp bio work at Yale (Alex) Lecture 20: Comp bio work at Yale (Tobias) Lecture 21: Population Genetics (Chris Cotsapas) Lecture 22: Gut Microbiome Data (Noah Palm)
Thu 12/1 Tue 12/6 Thu 12/8	Lecture 23: Student Paper Presentations Student Paper Presentations 1 Student Paper Presentations 2
Project 1 Project 2 Final Project	Dimensionality reduction (Due 10/6) Clustering (Due 11/8) Research Report (Due 12/14)

- The class grade assignment will involve:

 1. Two programming assignments: 15% each

 3. Midterm exam 30%

 4. Paper Presentation 10%

 2. Fig. 1. Page 120%

- 2. Final Project 30%