# Intelligent Campus Network Monitoring and Optimization

IoT and Machine Learning

#### Final Review

Hemesh Yeturu (CB.SC.U4AIE23166) Joel John (CB.SC.U4AIE23131) Abhishek Sankaramani (CB.SC.U4AIE23107) Adarsh P (CB.SC.U4AIE23109)

#### Introduction

- The primary goal of this research is to develop a real-time indoor localization system based on Wi-Fi RSSI values using ESP32 devices for applications such as distance estimation, environmental classification, and dead zone detection.
- The existing research shows the potential of RSSI-based localization but often struggles with challenges such as signal degradation, multi-path interference, and dynamic environments.
- The paper addresses these challenges by integrating machine learning models to improve the accuracy of distance estimation, environmental classification, and dead zone detection.
- Previous studies, such as those by Neupane et al. (2024), Nakatani et al. (2018), and Singh et al. (2021), have explored Wi-Fi localization, but none provide a real-time, adaptable solution for dynamic indoor environments with changing signal strength.
- The proposed system leverages the ESP32-based hardware to collect real-time data and machine learning models for robust, scalable, and cost-effective solutions to address these gaps.

## Background Context

#### Organization of the Report

- Chapter 1: Introduction
   Overview, literature, problem statement, and objectives.
- Chapter 2: Background
   Key technologies and system foundation.
- Chapter 3: Proposed Work
   System design, ESP32 setup, and ML integration.
- Chapter 4: Results and Discussion
   Model performance analysis and observations.
- Chapter 5: Conclusion and Future Work
   Summary and scope for future enhancements.

## **Objectives**

- To develop a real-time indoor localization system using ESP32 devices that leverages Wi-Fi RSSI values to estimate distances and determine the locations of devices within a given area.
- To integrate machine learning models for accurate distance estimation, environmental classification, and dead zone detection based on real-time RSSI measurements.
- To classify environments as either indoor or outdoor based on Wi-Fi signal characteristics, enhancing the adaptability of the system to various real-world environments.
- To introduce a novel dead zone detection technique that identifies weak or unavailable Wi-Fi signal areas, providing real-time feedback for network optimization.
- To design a low-cost, scalable solution using ESP32 devices that can be easily deployed for large-scale networks and real-time Wi-Fi optimization tasks.

## Methodology Approach

- ESP32 devices are used to collect real-time RSSI data from Wi-Fi networks in indoor and outdoor environments.
- The relationship between RSSI and distance is modeled using the log-distance path loss formula.
- Collected data is sent to a central server for processing and fed into machine learning models.
- Machine learning models are trained for distance estimation, environmental classification, and dead zone detection.
- Real-time predictions are made using trained models, and results are visualized for network optimization.
- The system operates in low-power mode for efficiency and is evaluated using metrics like MAE, RMSE, R<sup>2</sup>, accuracy, and F1-score.

### Dead Zone Detection Model Performance Evaluation



Figure: (a) XGBoost and Logistic Regression training



Figure: (b) Logistic Regression classification report

Figure: (c) Optimized threshold performance

Figure: Dead zone model evaluation summary

## Dead Zone Detection Results: Interpretation

- Figure (a) shows that both XGBoost and Logistic Regression models achieved strong performance during training, with high ROC-AUC and F1 scores, indicating reliable classification ability.
- Figure (b) presents the classification report for Logistic Regression, achieving an accuracy of 92.6% and macro-averaged F1 score of 0.93, showing its strength in detecting dead zones accurately.
- Figure (c) highlights the effect of threshold tuning, which improved the F1 score to 0.959 and recall to 1.0, confirming perfect detection of true dead zones without false negatives.
- These results validate the robustness and real-time applicability of Logistic Regression and XGBoost for indoor dead zone detection using RSSI data.

### **Environmental Classifier**

```
PS C:\Users\HEMESH YETURU\OneDrive\Desktop\iot_trial> python train_environment_classifier.pg
Loaded 3369 data points from JSON file
Dataset shape after filtering: (3369, 8)
Class distribution:
Name: count, dtype: int64
Saved label encoder to model_env_classifier_label_encoder.pk1
Applying SMOTE to balance training classes...
Class distribution after balancing:
outdoor_urban 2444
Name: count, dtype: int64
Training XGBoost model...
Predictions with confidence < 0.6: 123 out of 674
Environment classifier accuracy: 0.628
Macro F1 score: 0.518
Classification Report:
              precision recall f1-score support
outdoor urban
 weighted avg
Saved enhanced environment classifier to model env classifier.pkl
Saved feature extractor to model env classifier extractor.pk1
```

Figure: Environment classifier metrics showing imbalanced performance, with strong precision for indoor classification but low recall for outdoor urban regions.

## Environmental Classifier Results: Interpretation

- The classifier shows high precision and F1 score for the indoor class, indicating it performs well in detecting indoor environments correctly.
- The outdoor urban class suffers from low precision and lower F1 score, suggesting misclassification or underrepresentation in the training data.
- The overall accuracy is around 62.8%, which reflects the imbalance in class prediction performance, especially favoring the indoor class.
- Despite using techniques like SMOTE for balancing, the model still struggled to generalize well for outdoor urban samples.
- Future improvements could involve collecting more diverse outdoor samples or using ensemble techniques to boost minority class recall.

#### GP distance Model

```
Identified interests on the second control of the second control o
```

Figure: GP distance model achieving R<sup>2</sup> of 0.977 and MAE of 1.493.

## GP Distance Model Results: Interpretation

- The Gaussian Process (GP) regression model achieved a high R<sup>2</sup> value of 0.977, indicating strong correlation between predicted and actual distances.
- The model maintained a low Mean Absolute Error (MAE) of 1.493, demonstrating consistent prediction accuracy even with RSSI variability.
- GP models are non-parametric and provide probabilistic outputs, making them ideal for capturing uncertainty in RSSI-based distance estimation.
- The results confirm that GP regression effectively models the nonlinear RSSI-distance relationship in complex indoor environments.
- Despite its performance, GP may have scalability limitations for larger datasets due to computational complexity, suggesting need for sparse or approximated variants in real-time systems.

## ML Distance Model

```
| Section | Sect
```

Figure: ML distance model with R<sup>2</sup> of 0.9848 and MAE of 0.0828.

## ML Distance Model Results: Interpretation

- The machine learning distance model (HistGradientBoosting)
   achieved a very high R<sup>2</sup> score of 0.9848, showing excellent fit between
   predicted and actual distances.
- The MAE value of just 0.0828 indicates highly precise distance predictions, even under fluctuating signal strength.
- The model successfully learned complex nonlinear mappings between RSSI features and physical distances, outperforming simpler regression approaches.
- Its fast inference and high accuracy make it suitable for real-time localization in indoor environments.
- These results demonstrate the viability of gradient boosting for robust and scalable RSSI-based distance estimation.

#### Conclusion

- In this study, we presented a novel system for Wi-Fi-based indoor localization, environmental classification, and dead zone detection using ESP32-based devices and machine learning models.
- The XGBoost model demonstrated high accuracy in dead zone detection, while the Gaussian Process Distance Model and HistGradientBoosting model showed excellent performance in distance estimation.
- The results confirm that our system can provide real-time feedback for network optimization, addressing the challenges of weak signal areas and environmental classification.
- Future work will focus on deep learning integration, improving the system's scalability, and expanding the system to support multi-device collaboration for better performance in large-scale networks.

# Literature Review (1/6)

| Reference | Description                  | Advantages           | Limitations and Research Gaps        |
|-----------|------------------------------|----------------------|--------------------------------------|
| [1]       | Utilizes multiple condition  | Accurate RSSI        | Does not account for dynamic RSSI    |
|           | RSSI distance conversion for | conversion for       | variations in real-world conditions. |
|           | WiFi localization.           | localization.        |                                      |
| [2]       | Real-time analysis of WiFi   | Highlights interfer- | Only focuses on microwave interfer-  |
|           | spectrum in microwave-       | ence behavior.       | ence, not generalizable.             |
|           | noisy environments.          |                      |                                      |
| [3]       | Enhances signal strength es- | Boosts IoT ac-       | Depends on stable WiFi conditions;   |
|           | timation using WiFi perfor-  | curacy via better    | unstable signals poorly handled.     |
|           | mance metrics.               | RSSI estimation.     |                                      |

# Literature Review (2/6)

| Reference | Description                    | Advantages           | Limitations and Research Gaps         |
|-----------|--------------------------------|----------------------|---------------------------------------|
| [4]       | Reviews RSSI factors influ-    | Comprehensive in-    | No real-time strategies or implemen-  |
|           | encing indoor WiFi signal.     | sight on indoor sig- | tation provided.                      |
|           |                                | nal challenges.      |                                       |
| [5]       | Obstacle-aware distance es-    | Improves distance    | Requires extensive environmental pro- |
|           | timation using RSSI.           | accuracy amidst      | filing.                               |
|           |                                | obstructions.        |                                       |
| [6]       | SDN-based data offloading      | Reliable path        | Complex setup for heterogeneous net-  |
|           | using link quality prediction. | selection in         | works.                                |
|           |                                | LTE/WiFi.            |                                       |

# Literature Review (3/6)

| Reference | Description                   | Advantages           | Limitations and Research Gaps           |
|-----------|-------------------------------|----------------------|-----------------------------------------|
| [7]       | Indoor positioning using      | High accuracy        | High computation makes real-time        |
|           | fine-grained CSI and RSSI.    | with dual-signal     | scaling difficult.                      |
|           |                               | strategy.            |                                         |
| [8]       | WiFi-beacon dataset via au-   | Low-cost 3D data     | Navigation error affects dataset preci- |
|           | tonomous robot.               | collection.          | sion.                                   |
| [9]       | RSSI classification and trac- | Enhances trilatera-  | Assumes ideal signal propagation, ig-   |
|           | ing for trilateration.        | tion with filtering. | noring real-world multipath.            |

# Literature Review (4/6)

| Reference | Description                  | Advantages         | Limitations and Research Gaps         |
|-----------|------------------------------|--------------------|---------------------------------------|
| [10]      | RSSI/CSI-based device        | Enhances privacy   | Struggles in dense interference-prone |
|           | location-independent local-  | by ignoring device | environments.                         |
|           | ization.                     | location.          |                                       |
| [11]      | Public RSSI dataset for WiFi | Valuable open      | Controlled setting limits real-world  |
|           | indoor localization.         | data for bench-    | adaptability.                         |
|           |                              | marking.           |                                       |
| [12]      | Review on deep learning for  | Connects sensing   | Real-time usage limited due to high   |
|           | WiFi-based human sensing.    | and ML advance-    | processing needs.                     |
|           |                              | ments.             |                                       |

# Literature Review (5/6)

| Reference | Description                | Advantages            | Limitations and Research Gaps   |
|-----------|----------------------------|-----------------------|---------------------------------|
| [13]      | WiFi signal propagation at | Good for propaga-     | Doesn't address 5 GHz or modern |
|           | 2.4 GHz.                   | tion baseline un-     | dense environments.             |
|           |                            | derstanding.          |                                 |
| [14]      | ESP32 connectivity evalua- | Shows ESP32 ca-       | Doesn't generalize across ter-  |
|           | tion outdoors.             | pability in real use. | rain/urban variations.          |
| [15]      | ESP32 in military-grade    | Defense network       | Less focus on public/commercial |
|           | WiFi enhancement.          | reliability boost.    | adaptability.                   |

# Literature Review (6/6)

| Reference | Description                 | Advantages         | Limitations and Research Gaps         |
|-----------|-----------------------------|--------------------|---------------------------------------|
| [16]      | ESP32-based IoT device de-  | Budget-friendly    | Bound to ESP32's hardware limits      |
|           | sign and implementation.    | full-stack imple-  | and range.                            |
|           |                             | mentation.         |                                       |
| [17]      | WiFi fingerprinting with    | Accurate lo-       | CNN model size may challenge ultra-   |
|           | CNNs for IoT localization.  | calization with    | low-resource nodes.                   |
|           |                             | low-power devices. |                                       |
| [18]      | ML-based localization using | Joint optimization | Requires careful hardware calibration |
|           | FasterKAN.                  | of signal and com- | and tuning.                           |
|           |                             | putation.          |                                       |

#### Thank You

- In this work, we reviewed several key papers that contribute to our understanding of wireless communication, machine learning, and sensor networks.
- The implementation of these concepts in our system helped refine the signal strength measurement, noise analysis, and data collection techniques.
- By combining adaptive algorithms, real-time signal analysis, and advanced machine learning methods, we have made significant strides towards accurate network performance prediction.
- The lessons learned from the literature have also shaped the design of our project, especially in overcoming challenges related to environmental factors, interference, and signal strength fluctuations.
- Future work will focus on expanding the system to incorporate more complex models and enhance the real-time performance of the solution.