Types and refinements:

$$\begin{array}{ll} \text{Types} & \tau ::= \left\{ \nu \colon \mathbf{int} \mid \varphi \right\} \mid \tau \operatorname{\mathbf{ref}}^r \\ \text{Ownership} & r \in [0,1] \\ \text{Refinements} & \varphi ::= \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \top \\ & \mid \phi(\widehat{v}_1, \dots, \widehat{v}_n) \\ & \mid \widehat{v}_1 = \widehat{v}_2 \\ & \mid \mathcal{CP} \\ \text{Refinement Values} & \widehat{v} ::= \pi \mid n \mid \nu \\ & \text{Access Paths} & \pi ::= x \not \star \\ \text{Function Types} & \sigma ::= \forall \lambda . \left\langle x_1 : \tau_1, \dots, x_n : \tau_n \right\rangle \\ & & \rightarrow \left\langle x_1 : \tau_1', \dots, x_n : \tau_n' \mid \tau \right\rangle \\ \text{Context Variables} & \lambda \in \mathbf{CVar} \\ \text{Concrete Context} & \widehat{\ell} ::= \ell : \widehat{\ell} \mid \epsilon \\ & \text{Pred. Context} & \mathcal{C} ::= \ell : \mathcal{C} \mid \lambda \mid \epsilon \\ & \text{Context Query } \mathcal{CP} ::= \widehat{\ell} \subseteq \mathcal{C} \\ & \text{Typing Context} & \mathcal{L} ::= \lambda \mid \widehat{\ell} \end{array}$$

An access path denotes a path through memory by a root variable and a potentially empty sequence of references $\vec{\star}$. The empty sequence is denoted ϵ . We abbreviate $x \in \text{as } x$.

Well-formedness:

$$\frac{\forall x \in dom(\Gamma).\mathcal{L} \mid \Gamma \vdash_{WF} \Gamma(x)}{\mathcal{L} \vdash_{WF} \Gamma}$$
 (WF-Env)

$$\frac{\mathcal{L} \mid \Gamma \vdash_{WF} \varphi}{\mathcal{L} \mid \Gamma \vdash_{WF} \{ \nu : \mathbf{int} \mid \varphi \}}$$
 (WF-Int)

$$\frac{\mathcal{L} \mid \Gamma \vdash_{WF} \tau}{\mathcal{L} \mid \Gamma \vdash_{WF} \tau \operatorname{\mathbf{ref}}^r}$$
 (WF-Ref)

$$\frac{\Gamma \vdash \varphi}{\mathbf{FCV}(\varphi) \subseteq \mathbf{CV}(\mathcal{L})}$$

$$\frac{\Gamma \vdash \varphi}{\mathcal{L} \mid \Gamma \vdash_{WF} \varphi}$$
(WF-PHI)

$$\frac{\mathcal{L} \mid \Gamma \vdash_{WF} \tau \qquad \mathcal{L} \vdash_{WF} \Gamma}{\mathcal{L} \vdash_{WF} \tau \Rightarrow \Gamma}$$
 (WF-RESULT)

$$\frac{\lambda \vdash_{WF} x_1 : \tau_1, \dots, x_n : \tau_n}{\lambda \vdash_{WF} \tau \Rightarrow x_1 : \tau'_1, \dots, x_n : \tau'_n} \\ \frac{\vdash_{WF} \forall \lambda. \langle x_1 : \tau_1, \dots, x_n : \tau'_n \rangle \rightarrow \langle x_1 : \tau'_1, \dots, x_n : \tau'_n \mid \tau \rangle}{\vdash_{WF} \forall \lambda. \langle x_1 : \tau_1, \dots, x_n : \tau_n \rangle \rightarrow \langle x_1 : \tau'_1, \dots, x_n : \tau'_n \mid \tau \rangle}$$
 (WF-FunType)

$$\frac{\forall f \in dom(\Theta). \vdash_{WF} \Theta(f)}{\vdash_{WF} \Theta}$$
 (WF-Funenv)

Well-typed predicates:

$$\begin{array}{cccc} \Gamma \vdash \top & \Gamma \vdash \mathcal{CP} & \frac{\Gamma \vdash \varphi}{\Gamma \vdash \neg \varphi} & \frac{\Gamma \vdash \varphi_1 & \Gamma \vdash \varphi_2}{\Gamma \vdash \neg \varphi} \\ (\text{PR-TOP}) & (\text{PR-TOP}) & (\text{PR-NOT}) & (\text{PR-OR}) \end{array}$$

$$\begin{array}{ccc} \frac{\Gamma \vdash \widehat{v}_1 & \Gamma \vdash \widehat{v}_2}{\Gamma \vdash \widehat{v}_1 = \widehat{v}_2} & \frac{\Gamma \vdash \widehat{v}_1 & \cdots & \Gamma \vdash \widehat{v}_n}{\Gamma \vdash \phi(\widehat{v}_1, \dots, \widehat{v}_n)} \\ (\text{PR-EQ}) & & (\text{PR-APP}) \end{array}$$

Well-typed predicate values

$$\begin{array}{ccc} \Gamma \vdash n & \Gamma \vdash \nu & \frac{\vec{\star} \Downarrow \Gamma(x)}{\Gamma \vdash x \vec{\star}} \\ \text{(Pv-Int)} & \text{(Pv-Nu)} & \frac{(Pv-AP)}{(Pv-AP)} \end{array}$$

$$\begin{array}{ll}
\epsilon \Downarrow \{\nu : \mathbf{int} \mid _\} & \frac{\vec{\star} \Downarrow \tau & r > 0}{\star \vec{\star} \Downarrow \tau \mathbf{ref}^r} \\
(\text{AP-EPS}) & (\text{AP-Cons})
\end{array}$$

The addition operator is defined as in the ESOP 2020 paper.

We assume that $x \neq i$ is a valid variable in the underlying logic; it can be lifted to one using consistent substitution.

The denotation operation is defined as:

$$\begin{split} \llbracket \varGamma, x : \tau \rrbracket &= \llbracket \tau \rrbracket_x \wedge \llbracket \varGamma \rrbracket \\ \llbracket \bullet \rrbracket &= \top \\ \llbracket \{ \nu \colon \mathbf{int} \mid \varphi \} \rrbracket_\pi &= \llbracket \pi / \nu \rrbracket \varphi \\ \llbracket \tau \operatorname{\mathbf{ref}}^r \rrbracket_{x \, \overrightarrow{\star}} &= \llbracket \tau \rrbracket_{x \, \overrightarrow{\star} \, \star} \end{split}$$

We define a new strengthening operation $\tau \wedge \nu = \pi$ as:

$$\{\nu : \mathbf{int} \mid \varphi\} \land \nu = \pi \triangleq \{\nu : \mathbf{int} \mid \varphi \land \nu = \pi\}$$
$$\tau \operatorname{\mathbf{ref}}^0 \land \nu = \pi \triangleq \tau \operatorname{\mathbf{ref}}^0$$
$$\tau \operatorname{\mathbf{ref}}^r \land \nu = \pi \triangleq (\tau \land \nu = \pi \star) \operatorname{\mathbf{ref}}^r \text{ if } (r > 0)$$

We now describe the type rules for the extended type system. We omit the rules for T-ASSERT, T-SEQ, T-IF, T-LETINT, T-VAR, T-ALIAS, T-ALIASPTR, T-SUB as they are unchanged.

(The shapes of
$$\tau'$$
 and τ_2 are similar)
$$\mathcal{L} \vdash_{WF} \Gamma \setminus y$$

$$\frac{\Theta \mid \mathcal{L} \mid \Gamma[x \leftarrow \tau_1 \land \nu = y \star][y : (\tau_2 \land \nu = x) \mathbf{ref}^1] \vdash e : \tau \Rightarrow \Gamma'}{\Theta \mid \mathcal{L} \mid \Gamma[x : \tau_1 + \tau_2][y : \tau' \mathbf{ref}^1] \vdash y := x ; e : \tau \Rightarrow \Gamma'}$$
 (T-Assign)

(T-Frame)

1 **Proofs**

Define the partial type lookup operation $\Gamma(\pi)$ as:

$$\Gamma(x \,\vec{\star}) = \Gamma(x)(\vec{\star})$$
$$\tau(\epsilon) = \tau$$
$$(\tau' \, \mathbf{ref}^{r})(\star \,\vec{\star}) = \tau'(\vec{\star})$$

[JT: defining this traversal as a map operation on τ is gross] [H, v] is the partial function from $\vec{\star}$ to values v defined by

$$[H,v](\epsilon) = v \qquad [H,v](\star \vec{\star}) = \begin{cases} H(a) & \text{if } [H,v](\vec{\star}) = a \land a \in dom(H) \\ undef & o.w. \end{cases}$$

[H,R] is the partial map from π to values v defined by $[H,R](x\vec{\star})=[H,R(x)](\vec{\star})$

Lemma 1. If $\mathcal{L} \mid \Gamma \backslash x \vdash_{WF} \varphi$ and for all $y \neq x$ we have $\mathbf{own}(H, R(y), \Gamma(y))(a) = 0$, then $[H, R][n/\nu]\varphi$ is equivalent to $[H\{a \hookleftarrow v'\}, R][n/\nu]\varphi$ where R(x) = a.

Proof. Suppose not. Then there must be some access path π in φ such that for some prefix of the path (called π') we have $[H,R](\pi')=a$. From $\mathcal{L} \mid \Gamma \setminus x \vdash_{WF} \varphi$ we must have that π' cannot be rooted in x, and must therefore be rooted in some other variable z, whereby $\mathbf{own}(H,R(z),\Gamma(z))(a)=0$. But we must then have $\Gamma(\pi')=\tau'\mathbf{ref}^0$, which contradicts our assumption that $\mathcal{L} \mid \Gamma \setminus x \vdash_{WF} \varphi$.

Lemma 2. For any x, a, R, H, Γ , and n such that R(x) = a, $H \vdash v' \Downarrow n$, $H \vdash H(a) \Downarrow n$ and where for all $y \neq x$ we have $\mathbf{own}(H, R(y), \Gamma(y))(a) = 0$:

- 1. $H\{a \hookleftarrow v'\} \vdash v' \Downarrow n$
- 2. If $\mathcal{L} \mid \Gamma \setminus x \vdash_{WF} \tau$, $\mathbf{own}(H, v, \tau)(a) = 0$, and $\mathbf{SATv}(H, R, v, \tau)$ then $\mathbf{SATv}(H\{a \leftarrow v'\}, R, v, \tau)$.
- 3. If $\mathcal{L} \vdash_{WF} \Gamma \backslash x$, and $\mathbf{SATv}(H, R, v, \Gamma(z))$, then $\mathbf{SATv}(H\{a \leftarrow v\}, R, v, \Gamma(z))$

Proof.

- 1. From $H \vdash v' \Downarrow n$ and $H \vdash H(a) \Downarrow n$, we must have that for any possible sequence $\vec{\star}$, $[H, v'](\vec{\star}) \neq a$ (if we did, then we would have that v reaches an integer along paths of different lengths, a clear contradiction). Then the value of a in H is irrelevant to the derivation of $H \vdash v' \Downarrow n$, giving $H\{a \hookleftarrow v'\} \vdash v' \Downarrow n$.
- 2. By induction on the shape of τ . In the base case where $\tau = \{\nu : \mathbf{int} \mid \varphi\}$, from $\mathcal{L} \mid \Gamma \setminus x \vdash_{WF} \tau$ we have $\mathcal{L} \mid \Gamma \setminus x \vdash_{WF} \varphi$, where by from Lemma 1 we have $[H, R] [n/\nu] \varphi$ is equivalent to $[H \{a \leftarrow v'\}, R] [n/\nu] \varphi$ whereby the result holds by assumption.

In the inductive step, we have $\tau = \tau' \operatorname{ref}^r$, and v = a'. Suppose a = a': from $\operatorname{own}(H, v, \tau)(a) = 0$ we must then have r = 0, whereby $\tau' = \top_n$. From ??, item 1 above, [JT: the lemma that any shape consistent values satisfy the top type], we have $\operatorname{SATv}(H\{a \leftarrow v'\}, R, a, \tau)$.

Otherwise $a \neq a'$ in which case the result holds by inversion on $\mathcal{L} \mid \Gamma \backslash x \vdash_{WF} \tau$, $\mathbf{own}(H, v, \tau' \mathbf{ref}^r)(a) = 0$ and the inductive hypothesis.

3. Immediate result of item 2.

Lemma 3 (Preservation). For any e where $\Theta \mid \mathcal{L} \mid \Gamma_1 \vdash e : \tau \Rightarrow \Gamma_2$, for all e' and E such that $\Theta \mid [] : \tau \Rightarrow \Gamma_2 \mid \mathcal{L} \vdash_{ectx} E : \tau' \Rightarrow \Gamma_3 \text{ if } \langle H, R, \vec{F}, E[e] \rangle \longrightarrow_D \langle H, R, \vec{F}, E[e'] \rangle$, $\mathcal{L} \vdash_{WF} \Gamma_p$ and $\mathbf{Cons}(H, R, \Gamma_1 + \Gamma_p)$ then there exists some Γ_4 such that

1. Cons $(H', R', \Gamma_4 + \Gamma_p)$ 2. $\Theta \mid \mathcal{L} \mid \Gamma_4 \vdash e' : \tau \Rightarrow \Gamma_2$

Proof. By induction on the derivation of $\Theta \mid \mathcal{L} \mid \Gamma_1 \vdash e : \tau \Rightarrow \Gamma_2$.

Case T-Sub:

By the inductive hypothesis, that **Own** is anti-monotone w.r.t the subtyping relation **Admitted**, and the preservation of **Cons** by subtyping **Admitted** (??).

Case T-Frame:

Then we have that $\Theta \mid \mathcal{L} \mid \Gamma_1' \vdash e : \tau \Rightarrow \Gamma_2'$ where $\Gamma_1 = \Gamma_1' + \Gamma_1''$ and $\Gamma_2 = \Gamma_2' + \Gamma_1'$ and where $\mathcal{L} \vdash_{WF} \Gamma_1'$. We have $\mathbf{Cons}(H, R, \Gamma_1' + \Gamma_1'' + \Gamma_p)$. We must then have that $\mathcal{L} \vdash_{WF} \Gamma_1' + \Gamma_p$ by [Admitted: that WF is closed under +]. Taking Γ_p in the inductive hypothesis to be $\Gamma_p + \Gamma_1'$, we then have that $\mathbf{Cons}(H', R', \Gamma_4' + \Gamma_p + \Gamma_1')$ and $\Theta \mid \mathcal{L} \mid \Gamma_4' \vdash e' : \tau \Rightarrow \Gamma_2'$. We take $\Gamma_4 = \Gamma_4' + \Gamma_1'$. Then, by an application of T-Frame we have $\Theta \mid \mathcal{L} \mid \Gamma_4 \vdash e' : \tau \Rightarrow \Gamma_2$, and we then have $\mathbf{Cons}(H', R', \Gamma_4 + \Gamma_p)$ from $\mathbf{Cons}(H', R', \Gamma_4' + \Gamma_1' + \Gamma_p)$.

Case T-Assign:
$$e = y := x$$
; e'' $\Gamma_1(x) = \tau_1 + \tau_2$ $\Gamma_1(y) = \tau' \operatorname{ref}^1$ $|\tau'| = |\tau_1 + \tau_2|$ $\mathcal{L} \vdash_{WF} \Gamma_1 \setminus y$ $\Theta \mid \mathcal{L} \mid \Gamma[x \hookleftarrow \tau_1 \land \nu = y \star][y \hookleftarrow (\tau_2 \land \nu = x) \operatorname{ref}^1] \vdash e' : \tau \Rightarrow \Gamma_2$ $a = R(y)$ $H' = H\{a \hookleftarrow R(x)\}$ $R = R'$ $e'' = e'$

From Cons $(H, R, \Gamma_1 + \Gamma_p)$ and from $\Gamma_1(y) = \tau' \operatorname{ref}^1$ we must have that for any variable $z \in dom(\Gamma_1), z \neq y$ that own $(H, R(z), \Gamma_1(z))(a) = 0$ and similarly for all variables in $dom(\Gamma_p)$.

We must also have that if $y \in dom(\Gamma_p)$ that $\Gamma(y) = \top_n \operatorname{ref}^0$. Then by [Admitted: that 0 references are not referenced in types], we have $\mathcal{L} \vdash_{WF} \Gamma_p \setminus y$.

Next, from [Admitted: that SATv implies shape consistency], from SATv($H, R, R(y), \tau' \operatorname{ref}^1$) we have that $H \vdash R(y) \Downarrow |\tau' \operatorname{ref}^1|$, whereby we have $H \vdash H(R(y)) \Downarrow |\tau'|$. Similarly, from SATv($H, R, R(x), \tau_1 + \tau_2$) we have $H \vdash R(x) \Downarrow |\tau_1 + \tau_1|$.

From the above, our assumption $\mathcal{L} \vdash_{WF} \Gamma_1 \setminus y$ and Lemma 1 we then have $\mathbf{SATv}(H', R, R(z), \Gamma_1(z))$ for any $z \neq x$ and $z \neq y$.

Similarly, we must have that $\mathbf{SATv}(H', R, R(z), \Gamma_p(z))$ by the reasoning above and Lemma 1.

We must also have that $\mathbf{SATv}(H',R,R(x),\tau_1+\tau_2)$. From [Admitted: that SATv distributes over +], we therefore have $\mathbf{SATv}(H',R,R(x),\tau_1)$ and $\mathbf{SATv}(H',R,R(x),\tau_2)$. It is then immediate that $\mathbf{SATv}(H',R,R(x),\tau_1 \wedge \nu = y \star)$ and $\mathbf{SATv}(H',R,R(x),\tau_2 \wedge \nu = x)$. From the latter we then have $\mathbf{SATv}(H',R,R(y),(\tau_2 \wedge \nu = x)\mathbf{ref}^1)$.

[JT: The ownership reasoning is entirely similar to the ESOP paper. We can use that $\mathbf{Cons}(H, R, \Gamma_1 + \Gamma_p)$ and that ownership is only lost in Γ_1 to re-establish ownership consistency for $\Gamma_4 + \Gamma_p$]

We take $\Gamma_4 = \Gamma[x \leftrightarrow \tau_1 \land \nu = y \star][y \leftrightarrow (\tau_2 \land \nu = x) \operatorname{ref}^1]$ whereby from [Admitted: that adding SATv envs is Cons] and the previous reasoning we have Cons $(H', R', \Gamma_4 + \Gamma_p)$. That $\Theta \mid \mathcal{L} \mid \Gamma_4 \vdash e' : \tau \Rightarrow \Gamma_2$ is immediate from our assumption.