P4 - Elt 441 - SEP - 30/3/22 A= 9+6= 15 B= 7+8=15 Weritran Alver - 96708 Dodos (Pot) P2 P3 (3) Dodon des reamon de sistema: $\begin{cases} k \mid m \\ 1 \mid 2 \\ 2 \mid 3 \end{cases}$ Zkm Dados (set.) {V1 V2 01 0.015 + 20.3 Inegnita (est) 02 03 V3 0.015+ j0.8 47 Para esse sistema as admitâncias das listas são: $-1 \frac{4}{12} = \frac{+1}{212} = \frac{1}{0.015 + j0.3} = 0.1663 - 3.3250j$ Incognito (Pat) P, Q, Q2 * Definição dos variavis a serem encontrada $-1 \quad 4_{23} = \frac{1}{Z_{23}} = \frac{1}{0.015 + 10.8} = 0.0234 - 1.24.962$ Y= g+jB Parte real $g = \begin{bmatrix} 0.1663 & -0.1663 & 0 \\ -0.1663 & 0.1897 & -0.0034 \end{bmatrix} \quad B = \begin{bmatrix} -3.305 & 3.305 & 0 \\ 3.325 & -4.5746 & 1.0496 \\ 0 & -0.0034 & 0.0034 \end{bmatrix}$ $0 \quad 1.2496 \quad -1.2496 \end{bmatrix}$

Com as doson farmewides de G = B, temos as requirely equation: $P_{2} = V_{2} \left[V_{1} (g_{31} \cos(\theta_{1} - \theta_{1}) + B_{21} \sin(\theta_{2} - \theta_{1})) + V_{3} (g_{23} \cos(\theta_{2} - \theta_{3}) + B_{23} \sin(\theta_{2} - \theta_{3})) + V_{3} g_{22} \right]$ $P_{3} = V_{3} \left[V_{2} (g_{32} \cos(\theta_{3} - \theta_{2}) + B_{32} \cos(\theta_{3} - \theta_{2})) + V_{3} g_{33} \right]$ $Q_{3} = V_{3} \left[V_{2} (g_{32} \cos(\theta_{3} - \theta_{2}) - B_{32} \cos(\theta_{3} - \theta_{2})) - V_{3} g_{32} \right]$ $Q_{3} = V_{3} \left[V_{2} (g_{32} \cos(\theta_{3} - \theta_{2}) - B_{32} \cos(\theta_{3} - \theta_{2})) - V_{3} g_{32} \right]$ $Q_{3} = V_{3} \left[V_{2} (g_{32} \cos(\theta_{3} - \theta_{2}) - B_{32} \cos(\theta_{3} - \theta_{2})) - V_{3} g_{32} \right]$

 $\begin{array}{lll}
A & \begin{cases}
P_{2 \text{ exp}} = 0.24 & j & P_{3 \text{ exp}} = -0.23 & j & Q_{3 \text{ exp}} = 0.06 & j & V_{1} = 1 & j & V_{2} = 1 & j & 0 \\
\Delta P_{2} = P_{2 \text{ exp}} - P_{2} & \Delta P_{3} = P_{3 \text{ exp}} - P_{3} & \Delta Q_{3} = Q_{3 \text{ exp}} - Q_{3}
\end{array}$

Substituindo es valores mas equisiones encontranos:

 $\Delta P_{2} = -V_{3} \left[1.2496 \text{ sen} (\theta_{2} - \theta_{3}) - 0.0234 \text{ cos} (\theta_{2} - \theta_{3}) \right] - 3.3250 \text{ sen} (\theta_{2}) + 0.1663 \text{ cos} (\theta_{2}) + 0.0503$ $\Delta P_{3} = -V_{3} \left[0.0234 V_{3} - 1.2496 \text{ sen} (\theta_{2} - \theta_{3}) - 0.0234 \text{ cos} (\theta_{2} - \theta_{3}) \right] - 0.23$

Δ(23= - V3 [1.2496 V3 + 0.0234 nen(0, -03) - 1.2496 cos(02-03)]+0.06

Partindo distas equaçãos, podirios calcular a matriz jacolisia, do sistema.

$$\frac{\partial\Delta P_2}{\partial\theta_2} = -V_3 \left[0.0234 \operatorname{con}(\theta_2 - \theta_3) + 1.2496 \cos(\theta_2 - \theta_3) \right] - 0.1663 \operatorname{con}(\theta_2) - 3.3250 \cos(\theta_2)$$

$$\frac{\partial \Delta P_2}{\partial \theta_3} = -V_3 \left[-0.0034 \text{ ran} \left(\theta_2 - \theta_3 \right) - 1.2496 \text{ ran} \left(\theta_2 - \theta_3 \right) \right]$$

$$\frac{\partial 0 \beta_{2}}{\partial V_{3}} = -1.2496 \text{ nen} (\theta_{2} - \theta_{3}) + 0.0234 \cos(\theta_{2} - \theta_{3})$$

$$\frac{\partial \Omega_{3}^{2}}{\partial V_{3}} = -0.0469 V_{3} + 1.2496 \text{ sen}(\theta_{2} - \theta_{3}) + 0.0234 \cos(\theta_{2} - \theta_{3})$$

$$\frac{\partial \Delta Q_{3}}{\partial \theta_{2}} = -V_{3} \left[1.2496 \text{ sen}(\theta_{2} - \theta_{3}) + 0.0234 \cos(\theta_{2} - \theta_{3}) \right]$$

$$\frac{\partial \Delta Q_{3}}{\partial \theta_{3}} = -V_{3} \left[-1.2496 \text{ sen}(\theta_{2} - \theta_{3}) - .0.0234 \cos(\theta_{2} - \theta_{3}) \right]$$

$$\frac{\partial \Delta Q_{3}}{\partial \theta_{3}} = -V_{3} \left[-1.2496 \text{ sen}(\theta_{2} - \theta_{3}) - .0.0234 \cos(\theta_{2} - \theta_{3}) \right]$$

$$\frac{\partial \Delta Q_{3}}{\partial \theta_{3}} = -2.4991 V_{3} - 0.0234 \cos(\theta_{2} - \theta_{3}) + 1.2496 \cos(\theta_{2} - \theta_{3})$$

Poro a realização de métado de Newton - Raphron, definimos umo solução enicial com $[0^{\circ}_{2}, 0^{\circ}_{3}, V^{\circ}_{3}] = [0, 0, 1]$. O algoritimo toro resolução e $g(x^{m}) = -J(x^{m}) \Delta x^{m}$, portanto:

m	/ Xm	9-1x")	J(人)	- J(x")"	Δׯ
0	0 0 1	0,2400 -0,2300 0.0600	1.2496 -1.2496 -0.0234 -0.0234 0.0234 -1.2496	+0.3007 +0.3007 0 +0.3008 +1.1008 -0.0150 0 +0.0150 +0.8000	+0.0030 -0.1819 +0.0446
1	0.0030 -0.1819 1.0446	-0.0093 0.0085 -0.0249	-4.6130 1.2975 -0.2067 1.2785 -1.2785 0.2038 -0.2640 0.2640 -1.3865	+0.3007 +0.3028 -0.0003 0.3007 1.1094 0.1183 -4.4017 0.1536 0.7439	-0.0002 0.0036 -0.0172
2	-0.1783	- 4.0551 7.2672 -39.6729) ×10-5			

Agora, com Oz, Oz e Vz, delerminados, collectar a valor de P, Q12 Q2, portanta:

$$\begin{cases} P_{1} = V_{1} \left[V_{2} \left(\mathcal{G}_{12} \cos_{2}(\theta_{1} - \theta_{2}) + \mathcal{B}_{12} \cos_{2}(\theta_{1} - \theta_{2}) \right) + V_{1} \mathcal{G}_{11} \right] \\ Q_{1} = V_{1} \left[V_{2} \left(\mathcal{G}_{12} \cos_{2}(\theta_{1} - \theta_{2}) - \mathcal{B}_{12} \cos_{2}(\theta_{1} - \theta_{2}) \right) - V_{1} \mathcal{B}_{11} \right] \\ Q_{2} = V_{2} \left[V_{1} \left(\mathcal{G}_{21} \cos_{2}(\theta_{2} - \theta_{1}) - \mathcal{B}_{21} \cos_{2}(\theta_{2} - \theta_{1}) \right) + V_{3} \left(\mathcal{G}_{23} \sin_{2}(\theta_{2} - \theta_{3}) - \mathcal{B}_{23} \cos_{2}(\theta_{2} - \theta_{3}) - V_{2} \mathcal{B}_{22} \right] \\ \leq \text{with inde as values, terms.} \\ \begin{cases} P_{2} = -0.1663 \cos_{2}(\theta_{2}) + 0.1663 - 3.3250 \cos(\theta_{2}) \\ Q_{1} = 0.1663 \cos_{2}(\theta_{2}) + 0.1663 - 3.3250 \cos(\theta_{2}) + 3.3250 \\ Q_{3} = V_{3} \left[-0.0234 \cos(\theta_{2} - \theta_{3}) - 1.2496 \cos(\theta_{2} - \theta_{3}) \right] - 0.1663 \cos(\theta_{3}) - 3.3250 \cos(\theta_{2}) + 4.5746 \\ \leq \text{with items so on values de } \mathcal{B}_{2}, \mathcal{B}_{3} = V_{3}, \text{terms} : P_{1} = -0.0292 \\ Q_{1} = 0.0005 \\ Q_{2} = -0.0180 \end{cases}$$

Respontan			
P1 = -0.0092	Q1= 0.0005	V3= 1.0273	02 - 0.0028
	Q2=-0.0180		03=-0.17 83
		1	