Nonlinear Dynamics & Chaos I

Exercice Set 5 Questions

Question 1

Consider the quadratic Duffing equation

$$\dot{u} = v,$$

$$\dot{v} = \beta u - u^2 - \delta v,$$

where $\delta > 0$, and $0 \le |\beta| \ll 1$.

- (a) Construct a β -dependent center manifold up to quadratic order near the origin for small β values.
- (b) Construct a stability diagram for the reduced system on the center manifold using β as a bifurcation parameter.

Question 2

Assume that a dynamical system, depending on a parameter μ , undergoes a <u>subcritical</u> Hopf bifurcation at $\mu = 0$. Let

$$\begin{cases} \dot{r} = r(d_0\mu + a_0r^2) \\ \dot{\theta} = \omega + e_0r^2 + b_0\mu \end{cases}$$

be the truncated normal form on the center manifold W^c_{μ} in polar coordinates. Which figure represents the correct bifurcation diagram for this system?

(a)

(b)

(c)

Question 3

Assume that the dynamical system $\dot{\mathbf{x}} = f(\mathbf{x}, \mu)$, $(\mathbf{x} \in \mathbb{R}, \ \mu \in \mathbb{R})$ undergoes a codimension 1 bifurcation at y = 0. If $f(-x, \mu) = -f(x, \mu)$, what type of bifurcation is possible at $\mu = 0$?

- (a) Saddle-node
- (b) Transcritical
- (c) Pitchfork
- (d) None

Question 4

Consider the dynamical system

$$\dot{x} = A(\mu)x + f(x;\mu)$$

where $x \in \mathbb{R}$, f(x,0) = -f(-x,0), $\forall x \in \mathbb{R}$, $\mu \in \mathbb{R}$, $f \in C^1$. Which of the following statements are true?

- (a) This system cannot have a saddle-node bifurcation at $\mu = 0$.
- (b) This system will have either a Hopf bifurcation or a transcritical bifurcation at $\mu = 0$.
- (c) This system has a hyperbolic fixed point at x = 0, and hence cannot have a bifurcation at $\mu = 0$.
- (d) None of the above

Question 5

Consider a dynamical system

$$\dot{x} = A(\mu^2)x + f(x,\mu)$$

where $x \in \mathbb{R}^2$, $A \in \mathbb{R}^{2 \times 2}$, $\mu \in \mathbb{R}$, $f(x,\mu) = \mathcal{O}(|x|^2)$, $\nabla \cdot f(x) < 0$ for $|x| \ll 1$ where the 2×2 matrix depends on μ^2 . Assume that A(0) has a purely imaginary pair of eigenvalues. Which of the following statements are true?

- (a) This system has a subcritical Hopf bifurcation at $\mu = 0$.
- (b) This system has a supercritical Hopf bifurcation at $\mu = 0$.
- (c) The x = 0 fixed point does not undergo a Hopf bifurcation.
- (d) The x = 0 fixed point undergoes a Hopf bifurcation, but its type cannot be determined from the information given.