Social Media Ad Click predicition

A curriculum based group project.

Ravula.Sandhya

Ande.Sravan Kumar

Chinta.Sai Krishna

Desharaju.Sai Anupam

Battu.Ajay Kumar

Saggurthi. Yashwanth

Barathala.Karthik

Samudrala.Sowmya Rani

Dakuri.Sairam Reddy

Azhar.Ahmed Ansari

Dataset

This is a collection of some thematically related datasets that are suitable for different types of regression analysis. Each set of datasets requires a different technique

Data Analysis

Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent and independent variable

Data Cleaning

It involves identifying and removing any missing, duplicate, or irrelevant data. The goal of data cleaning is to ensure that the data is accurate, consistent, and free of errors

Implementation

Implementing different type of regression models in order to find the accurate value for the given dataset.

Accuracy using different models

Different models give different outputs so the accuracy of those models are compared to find which method gives the best accuracy.

Attributes

Dataset

10 ATTRIBUTES & VALUES RANGING FROM 1-1000

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	0
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	0
2	69.47	26	59785.94	236.50	Organic bottom-line service- desk	Davidton	0	San Marino	2016-03-13 20:35:42	0
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time- frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	0
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	0
	***				***			***	***	
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00	1
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01	1
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57	1
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54	0
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21	1

Introduction

Logistic Regression

This type of statistical model is also known as logit model which is often used for classification and predictive analytics. Logistic regression estimates the probability of an event occurring, based on a given dataset of independent variables. Since the outcome is a probability, the dependent variable is bounded between 0 and 1.

logistic function is represented by the following formulas:

$$Logit(pi) = 1/(1 + exp(-pi)) In(pi/(1-pi)) = Beta_0 + Beta_1*X_1 + ... + B_k*K_k$$

Linear & Logistic Regression

Implementing

Out[0]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,

verbose=0, warm start=False)

log_reg_pred = log_reg_model.predict(X_test)

intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,

Logistic Regression Model

In [0]: from sklearn.model_selection import train_test_split In [0]: x_train, x_test, Y_train, Y_test = train_test_split(x, Y, test_size=0.3, random_state = 42) Implementing Logistic Regression Model In [0]: from sklearn.linear_model import LogisticRegression In [0]: log_reg_model = LogisticRegression() In [0]: log_reg_model.fit(x_train, Y_train)

Naive Bayes

The Naive Bayes classifier is a supervised machine learning algorithm, which is used for classification tasks. It is also part of a family of generative learning algorithms. It also uses Bayes' theorem to learn the probability of objects, their features, and which groups they belong to. It is also known as a probabilistic classifier.

Bayes Theorem provides a principled way for calculating the conditional probability. The simple form of the calculation for Bayes Theorem is:

$$P(A|B) = P(B|A) * P(A) / P(B)$$

Naive Bayes Naive bayes classifier Classifier 1 Classifier 2 6-Classifier 3 5 4 3 2 O 5 2 3

Implementing

Naive Bayes Model

```
Implementing Naive Bayes Model

In [30]: from sklearn.naive_bayes import GaussianNB

In [31]: nav_bayes_model = GaussianNB()

In [32]: nav_bayes_model.fit(X_train, Y_train)

Out[32]: GaussianNB()

In [33]: nav_bayes_pred = nav_bayes_model.predict(X_test)
```


Decision Tree

A decision tree is a non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks. It has a hierarchical, tree structure, which consists of a root node, branches, internal nodes and leaf nodes. It is also used in Random Forest to train on different subsets of training data, which makes random forest one of the most powerful algorithms in machine learning.

Implementing

Decision Tree Model

```
Implementing Decision Tree Model
In [34]: from sklearn.tree import DecisionTreeClassifier
In [35]: dec_tree_model = DecisionTreeClassifier()
In [36]: dec_tree_model.fit(X_train, Y_train)
Out[36]: DecisionTreeClassifier()
In [37]: dec_tree_pred = dec_tree_model.predict(X_test)
```

What age group does the dataset majorly consist of?

Which age group is spending maximum time on the internet?

What is the income distribution in different age groups?

zero error because of no duplicates

Checking Accuracy

IN EACH MODEL

Finding accuracy in each model

In [38]: from sklearn.metrics import accuracy_score

Logistic Regression

In [39]: log_reg_accuracy = accuracy_score(log_reg_pred, Y_test)
print(log_reg_accuracy*100)

90.666666666666

Naive Bayes

In [40]: nav_bayes_accuracy = accuracy_score(nav_bayes_pred, Y_test)
 print(nav_bayes_accuracy*100)

96.0

Decision Tree

In [41]: dec_tree_accuracy = accuracy_score(dec_tree_pred, Y_test)
 print(dec_tree_accuracy*100);

93.33333333333333

ACCURACY

In Different Models

- In this project different methods with a different logics have been performed on a specified dataset in order to calculate the accurate value of the output produced by those models for the further usage of the data.
- Logistic Regression Model: It estimates the probability of a binary outcome. May not perform well if the relationship between predictors and the target is highly non-linear. The accuracy produced is 90.666!!!
- Naive Bayes Model: Naive Bayes is based on probabilistic principles. Requires a small amount of training data. Well-suited for categorical data and text classification tasks. The accuracy produced is 96.0!!!
- Decision Tree Model: Decision Trees are capable of capturing complex non-linear relationships in the data. Can handle missing values in the dataset without requiring imputation. The accuracy produced is 93.333!!!

Project Results

Any Queries?

Related to the presentation..!

Thank you for watching!

