Antecipação e adaptação: como incorporar os dinamismos do mundo financeiro

Igor Nascimento

Laboratório de Aprendizado de Máquina em Finanças e Organizações - LAMFO

28/02/2018

Sumário

Introdução

Amostragem aleatória

Markov Chain Monte Carlo

Partícula

Métodos numéricos

Monte Carlo

Amostragem de Importância - Al

Amostragem de Importância Sequencial - (AIS)

Reamostragem

Estimação estados latentes

Filtro Bootstrap

Visão geral

- 1. Contexto
- 2. Amostragem aleatória
- 3. Modelos Dinâmicos
- 4. Filtro de Partículas

Mundo financeiro

O investidor (banco, pessoa física, fundo de investimento, fundo de pensão) possui um capital e deseja utiliza-lo para atingir um objetivo:

- Rendimento superior a taxa de captação
- Segurança financeira
- Lucro ao investidor
- Aposentadoria

► Ações (PETR3, VALE3, IBOVESPA)

- Ações (PETR3, VALE3, IBOVESPA)
- ► Títulos de dívida pública (NTN-B, LTN)

- Ações (PETR3, VALE3, IBOVESPA)
- ► Títulos de dívida pública (NTN-B, LTN)
- Empresa de terceiros (Debêntures)]

- Ações (PETR3, VALE3, IBOVESPA)
- ► Títulos de dívida pública (NTN-B, LTN)
- Empresa de terceiros (Debêntures)]
- Empresas própria (Empresário)

- Ações (PETR3, VALE3, IBOVESPA)
- ► Títulos de dívida pública (NTN-B, LTN)
- Empresa de terceiros (Debêntures)]
- Empresas própria (Empresário)
- Outros (criptomoeda, Avestrus Master, Hinode)

Alocação de ativos ou portfólio é escolher um ou mais ativos.

Alocação

- ▶ Retorno: qual o valor esperado ao final do investimento
- Risco: quais são os valores possíveis para o retorno

O trabalho seminal de [Markowitz, 1952] sobre alocação de portfólio e fronteira eficiente.

[Markowitz, 1952]

ativos:

$$r_1, r_2, ..., r_N$$

retorno:

$$E(r_1) = \mu_1, E(r_2) = \mu_2, ..., E(r_N) = \mu_N$$

variância:

$$V(r_1) = \sigma_1^2, V(r_2) = \sigma_2^2, ..., V(r_N) = \sigma_N^2$$

covariância (correlação):

$$COR(r_i, r_j) = \rho_{ij}$$

Alocação

Determinar a locação, isto é, o percentual $w_1, w_2, ..., w_N$ que cada ativo representa da carteira:

$$E_{portflio} = E(\mathbf{W}) = \sum_{i=1}^{N} w_i \times \mu_i$$
 (1)

$$V_{portflio} = V(\mathbf{W}) = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \times \sigma_i \sigma_j \times \rho_{ij}$$
 (2)

Fronteira Eficiente

"Optimal weight of each asset, such that the overall portfolio provides the best return for a fixed level of risk, or conversely, the smallest risk for a given overall return?" [Laloux et al., 1999]

Minicaso

- ► IFN: índice setor financeiro
- ► IMOB: índice do setor imobiliário
- ► ICON: índice de consumo
- ► IEE: índice de energia
- ► INDX: índice da indústria

Índices IBOVESPA

Estatísticas

Fronteira

Objetivo

Apresentar:

- Métodos numéricos para séries temporais
- Desenvolvimentos recentes
- Principais aplicações

Expectativa ao final

- ▶ Identificar diferenças entre os principais métodos
- ► Relacionar a aplicações em Finanças
- ► Conhecer referências clássicas e recentes na área

Value at Risk (Var)

- ► Em um dia ruim, quanto eu posso perder em um determinado portfólio?
- Quantos dias ruins eu suportaria nesse portfólio?

Monte Carlo

Monte Carlo

- descrição: (re)amostragem "paramétrica"
- vantagens: acessa "todo"espaço
- desvantagem: conhecimento prévio da distribuição

Normal Multivariada

$$X \sim N_k (\tilde{\mu}, \Sigma)$$

$$f(X) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\det \Sigma}} \exp\left(-\frac{1}{2}(\tilde{X} - \tilde{\mu})\Sigma^{-1}(\tilde{X} - \tilde{\mu})\right)$$

- 1. modelo
- 2. parâmetros
- 3. amostragem

Code - MC

```
set.seed(1052210218)
library(MASS)
n_mc <- 100000
mc <- mvrnorm(n=n_mc,mu,Sigma)
mc <- matriz_mc %*% w_optm
qlim <- quantile(mc,p=0.05)</pre>
```

Value at Risk (Var)

Pontos importantes

- Suposição da distribuição:
- Estrutura de dependência longitudinal?

- descrição: (re)amostragem "não-paramétrica"
- vantagens: não requer conhecimento sobre a distribuição
- desvantagem: acessa espaço "realizado"

- descrição: (re)amostragem "não-paramétrica"
- vantagens: não requer conhecimento sobre a distribuição
- desvantagem: acessa espaço "realizado"
- Suposição da distribuição: amostragem aleatória nos próprios dados
- Estrutura de dependência longitudinal: Base divida em janelas 5 meses

Value at Risk (Var) - Bootstrap

Método

- 1. Monte Carlo
- 2. Bootstrap
- 3. Markov Chain Monte Carlo

Monte Carlo

História do Método Monte Carlo.

Monte Carlo

Por que isso é interessante ?

O que é Bootstrap

Sistemas Complexos

Por que isso é interessante ?

Markov Chain Monte Carlo

O que é Markov Chain Monte Carlo?

Markov Chain Monte Carlo

Por que isso é interessante ?

Estimar um parâmetro desconhecido.

Estimar um parâmetro desconhecido.

Método de estimação

Estimação

Filtro de partículas

Definição Naive
Parte de um todo

Definição Naive
Parte de um todo

1. Parte: Partículas.

Definição Naive

Parte de um todo

1. Parte: Partículas.

2. Todo: Espaço paramétrico.

Definição Naive

Parte de um todo.

1. Parte: Partículas.

2. Todo: Espaço paramétrico.

Definição

Partículas são realizações de um experimento cujos valores possíveis estão definidos no espaço paramétrico.

Exemplo do uso de Filtro de partículas na Robótica

Medida de proximidade

Aproximação

Propagação

Parte não observável - sistema

Sequência θ_t com estrutura de dependência de um Processo Markoviano, $\{\theta_t,\ t=1,...,n\}$.

Parte não observável - sistema

Sequência θ_t com estrutura de dependência de um Processo Markoviano, $\{\theta_t, t=1,...,n\}$.

Parte observável

Sequência y_t { y_t , t = 1, ..., n} que é dependente, exclusivamente, de θ_t .

Equação do Sistema

$$\theta_t \sim \pi(.|\theta_{t-1})$$

Equação do Sistema

$$\theta_t \sim \pi(.|\theta_{t-1})$$

Equação das Observações

$$y_t \sim \pi(.|\theta_t)$$

Propriedades

A.1: $\theta_t, t = 1, ..., n$ é uma sequência de estados de um Processo Markoviano;

$$\pi(\theta_{1:n}) = \pi(\theta_1) \prod_{k=2}^n \pi(\theta_k | \theta_{k-1})$$

Propriedades

A.1: $\theta_t, t = 1, ..., n$ é uma sequência de estados de um Processo Markoviano;

$$\pi(\theta_{1:n}) = \pi(\theta_1) \prod_{k=2}^n \pi(\theta_k | \theta_{k-1})$$

A.2: $y_{1:t}$ é um vetor de observações que são condicionalmente independentes dado $\theta_{1:t}$, para cada t=1,...,n.

$$\pi(y_t|\theta_{1:t}, y_{1:t-1}) = \pi(y_t|\theta_t)$$

Distribuição conjunta

Essas propriedades permitem descrever a **distribuição conjunta** das observações e dos estados como o produto das seguintes **distribuições condicionais**:

$$\pi(y_{1:n}, \theta_{1:n}) = \pi(\theta_0) \prod_{t=1}^{n} \pi(\theta_t | \theta_{t-1}) \pi(y_t | \theta_t)$$

Interesse:

$$\pi(\theta_{1:n}|y_{1:n}) = \frac{\pi(\theta_{1:n}, y_{1:n})}{\pi(y_{1:n})}$$

Método de estimação

Estimação

Métodos numéricos

Métodos numéricos

Estimação

Monte Carlo

Distribuição alvo : $\pi_n(\theta_1,...,\theta_n)$ para n fixo.

Distribuição alvo : $\pi_n(\theta_1,...,\theta_n)$ para n fixo.

Gera-se N amostras independentes da variável aleatória $\Theta_{1:n}^i \sim \pi_n(\theta_1,...,\theta_n)$, i=1,...,N.

Distribuição alvo : $\pi_n(\theta_1,...,\theta_n)$ para n fixo.

Gera-se N amostras independentes da variável aleatória $\Theta_{1:n}^i \sim \pi_n(\theta_1,...,\theta_n)$, i=1,...,N.

Aproximação e dada por:

$$\hat{\pi}_n(\theta_1,...,\theta_n) = \frac{1}{N} \sum_{i}^{N} \delta_{\Theta_{1:n}^i}(\theta_{1:n}),$$

sendo $\delta_{\Theta^i_{1:n}}(\theta_{1:n})$ uma função indicadora de massa no ponto $\theta_{1:n}.$

Considerer mensurar uma função ϕ_n em $\pi(\theta_1,...,\theta_n)$:

$$E(\phi_n) = \int \phi_n(\theta_1, ..., \theta_n) \pi_n(\theta_1, ..., \theta_n) d\theta_{1:n}$$

Considerer mensurar uma função ϕ_n em $\pi(\theta_1,...,\theta_n)$:

$$E(\phi_n) = \int \phi_n(\theta_1, ..., \theta_n) \pi_n(\theta_1, ..., \theta_n) d\theta_{1:n}$$

Pelo método Monte Carlo, **avaliamos** ϕ_n no suporte simulado de $\pi(\theta_1,...,\theta_n)$ por meio das **amostras**:

$$\hat{E}(\phi_n) = \int \phi_n(\theta_1, ..., \theta_n) \hat{\pi}_n(\theta_1, ..., \theta_n) d\theta_{1:n}$$

Considerer mensurar uma função ϕ_n em $\pi(\theta_1,...,\theta_n)$:

$$E(\phi_n) = \int \phi_n(\theta_1, ..., \theta_n) \pi_n(\theta_1, ..., \theta_n) d\theta_{1:n}$$

Pelo método Monte Carlo, **avaliamos** ϕ_n no suporte simulado de $\pi(\theta_1,...,\theta_n)$ por meio das **amostras**:

$$\hat{E}(\phi_n) = \int \phi_n(\theta_1, ..., \theta_n) \hat{\pi}_n(\theta_1, ..., \theta_n) d\theta_{1:n}$$

$$\hat{E}(\phi_n) = \frac{1}{N} \sum_{i=1}^N \phi_n(\Theta_{1:n}^i)$$

Desvantagens

Problema 1: Não é fácil se gerar $\pi_n(\theta_1,...,\theta_n)$.

Desvantagens

Problema 1: Não é fácil se gerar $\pi_n(\theta_1,...,\theta_n)$.

<u>Problema 2</u>: Ainda que fosse possível se gerar, a dimensão de $\pi_n(\theta_1,...,\theta_n)$ pode ser muito grande para se obter amostras multivariadas. Problema encontrado no método **<u>MCMC</u>**.

Estimação

Amostragem de importância

A amostragem de importância trata o **problema 1**: não se sabe gerar $\pi(\theta_{1:n})$.

A amostragem de importância trata o **problema 1**: não se sabe gerar $\pi(\theta_{1:n})$.

Utiliza-se uma **distribuição de importância** q(.) para obter o mesmo suporte da distribuição $\pi(.)$.

$$E_{\pi}(\phi) = \int \phi(\theta)\pi(\theta)d\theta = \int rac{\phi(\theta)\pi(\theta)}{q(\theta)}q(\theta)d\theta$$

A amostragem de importância trata o **problema 1**: não se sabe gerar $\pi(\theta_{1:n})$.

Utiliza-se uma distribuição de importância q(.) para obter o mesmo suporte da distribuição $\pi(.)$.

$$E_{\pi}(\phi) = \int \phi(heta)\pi(heta)d heta = \int rac{\phi(heta)\pi(heta)}{q(heta)}q(heta)d heta$$

A quantidade $\frac{\pi(\theta)}{q(\theta)}$ fornece um ajuste da discrepância entre **gerar um suporte** de $\pi(\theta)$ por meio da distribuição geradora $q(\theta)$.

Notação

Considere a seguinte representação, [?]:

$$\pi(\theta_{1:n}) = \frac{\gamma_n(\theta_{1:n})}{Z_n(\theta_{1:n})}, \qquad Z_n = \int \gamma_n(\theta_{1:n}) d\theta_{1:n}$$

Notação

Considere a seguinte representação, [?]:

$$\pi(\theta_{1:n}) = \frac{\gamma_n(\theta_{1:n})}{Z_n(\theta_{1:n})}, \qquad Z_n = \int \gamma_n(\theta_{1:n}) d\theta_{1:n}$$

Considere uma distribuição auxilar, tal que:

$$\pi(\theta_{1:n}) > 0 \rightarrow q_n(\theta_{1:n}) > 0$$

Peso

A distribuição de interesse:

$$\pi(heta_{1:n}) = rac{\gamma_n(heta_{1:n})}{Z_n(heta_{1:n})} = rac{\overbrace{\gamma_n(heta_{1:n})}^{W_n}}{q_n(heta_{1:n})} rac{q_n(heta_{1:n})}{Z_n(heta_{1:n})}$$
 $\pi(heta_{1:n}) = rac{w_n(heta_{1:n})q_n(heta_{1:n})}{Z_n(heta_{1:n})}$

Peso

A distribuição de interesse:

$$\pi(\theta_{1:n}) = \frac{\gamma_n(\theta_{1:n})}{Z_n(\theta_{1:n})} = \underbrace{\frac{W_n}{\gamma_n(\theta_{1:n})}}_{q_n(\theta_{1:n})} \underbrace{\frac{g_n(\theta_{1:n})}{Z_n(\theta_{1:n})}}_{q_n(\theta_{1:n})}$$

$$\pi(\theta_{1:n}) = \frac{w_n(\theta_{1:n})q_n(\theta_{1:n})}{Z_n(\theta_{1:n})}$$

O denominador é:

$$Z(\theta_{1:n}) = \int w_n(\theta_{1:n}) q_n(\theta_{1:n}) d\theta_{1:n}$$

Considere N amostras independentes $\Theta_{1:n}^i \sim q_n(\theta_{1:n})$.

Considere N amostras independentes $\Theta_{1:n}^i \sim q_n(\theta_{1:n})$.

Aproximação Monte Carlo é:

$$\hat{q}_n(\theta_{1:n}) = \frac{1}{N} \sum_{i}^{N} \delta_{\Theta^i}(\theta_{1:n})$$

Dessa forma, a aproximação para a distribuição de interesse é:

Considere N amostras independentes $\Theta_{1:n}^i \sim q_n(\theta_{1:n})$.

Aproximação Monte Carlo é:

$$\hat{q}_n(\theta_{1:n}) = \frac{1}{N} \sum_{i}^{N} \delta_{\Theta^i}(\theta_{1:n})$$

Dessa forma, a aproximação para a distribuição de interesse é:

$$\hat{\pi}_{n}(\theta_{1:n}) = \frac{w_{n}(\theta_{1:n})\hat{q}_{n}(\theta_{1:n})}{\int w_{n}(\theta_{1:n})\hat{q}_{n}(\theta_{1:n})d\theta_{1:n}}$$

A distribuição de interesse pode ser expressa por:

$$\hat{\pi}_n(\theta_{1:n}) = \frac{\frac{1}{N} \sum_{i=1}^{N} w_n(\Theta_{1:n}^i) \delta_{\Theta_{1:n}^i}(\theta_{1:n})}{\int w_n(\theta_{1:n}) \left[\frac{1}{N} \sum_{i=1}^{N} \delta_{\Theta_{1:n}^i}(\theta_{1:n}) \right] d\theta_{1:n}}$$

A distribuição de interesse pode ser expressa por:

$$\hat{\pi}_{n}(\theta_{1:n}) = \frac{\frac{1}{N} \sum_{i=1}^{N} w_{n}(\Theta_{1:n}^{i}) \delta_{\Theta_{1:n}^{i}}(\theta_{1:n})}{\int w_{n}(\theta_{1:n}) \left[\frac{1}{N} \sum_{i=1}^{N} \delta_{\Theta_{1:n}^{i}}(\theta_{1:n})\right] d\theta_{1:n}}$$

$$\hat{\pi}_{n}(\theta_{1:n}) = \frac{\sum_{i=1}^{N} w_{n}(\Theta_{1:n}^{i}) \delta_{\Theta_{1:n}^{i}}(\theta_{1:n})}{\sum_{i=1}^{N} w_{n}(\Theta_{1:n}^{i}) \left[\int \delta_{\Theta_{1:n}^{i}}(\theta_{1:n}) d\theta_{1:n}\right]},$$

sendo,

A distribuição de interesse pode ser expressa por:

$$\hat{\pi}_{n}(\theta_{1:n}) = \frac{\frac{1}{N} \sum_{i=1}^{N} w_{n}(\Theta_{1:n}^{i}) \delta_{\Theta_{1:n}^{i}}(\theta_{1:n})}{\int w_{n}(\theta_{1:n}) \left[\frac{1}{N} \sum_{i=1}^{N} \delta_{\Theta_{1:n}^{i}}(\theta_{1:n})\right] d\theta_{1:n}}$$

$$\hat{\pi}_{n}(\theta_{1:n}) = \frac{\sum_{i=1}^{N} w_{n}(\Theta_{1:n}^{i}) \delta_{\Theta_{1:n}^{i}}(\theta_{1:n})}{\sum_{i=1}^{N} w_{n}(\Theta_{1:n}^{i}) \left[\int \delta_{\Theta_{1:n}^{i}}(\theta_{1:n}) d\theta_{1:n}\right]},$$

$$\int \delta_{\Theta_{1:n}^{i}}(\theta_{1:n}) d\theta_{1:n} = 1$$

$$\hat{Z}_{n}(\theta_{1:n}) = \sum_{i=1}^{N} w_{n}(\Theta_{1:n}^{i})$$

Dessa forma,

$$\hat{\pi}_n(\theta_{1:n}) = \frac{\sum_{i=1}^N w_n(\Theta_{1:n}^i) \delta_{\Theta_{1:n}^i}(\theta_{1:n})}{\sum_{i=1}^N w_n(\Theta_{1:n}^i)}$$

Dessa forma,

$$\hat{\pi}_n(\theta_{1:n}) = \frac{\sum_{i=1}^N w_n(\Theta_{1:n}^i) \delta_{\Theta_{1:n}^i}(\theta_{1:n})}{\sum_{i=1}^N w_n(\Theta_{1:n}^i)}$$

Sendo:

$$W_n(\theta_{1:n}) = \frac{w_n(\Theta_{1:n})}{\sum_{j=1}^N w_n(\Theta_{1:n}^j)}$$

Dessa forma,

$$\hat{\pi}_n(\theta_{1:n}) = \frac{\sum_{i=1}^{N} w_n(\Theta_{1:n}^i) \delta_{\Theta_{1:n}^i}(\theta_{1:n})}{\sum_{i=1}^{N} w_n(\Theta_{1:n}^i)}$$

Sendo:

$$\begin{aligned} W_n(\theta_{1:n}) &= \frac{w_n(\Theta_{1:n}^i)}{\sum_{j=1}^N w_n(\Theta_{1:n}^j)} \\ \hat{\pi}_n(\theta_{1:n}) &= \sum_{i=1}^N W_n(\Theta_{1:n}^i) \delta_{\Theta_{1:n}^i}(\theta_{1:n}) \end{aligned}$$

Dessa forma,

$$\hat{\pi}_n(\theta_{1:n}) = \frac{\sum_{i=1}^{N} w_n(\Theta_{1:n}^i) \delta_{\Theta_{1:n}^i}(\theta_{1:n})}{\sum_{i=1}^{N} w_n(\Theta_{1:n}^i)}$$

Sendo:

$$W_n(\theta_{1:n}) = rac{w_n(\Theta_{1:n}^i)}{\sum_{j=1}^N w_n(\Theta_{1:n}^j)}$$
 $\hat{\pi}_n(\theta_{1:n}) = \sum_{i=1}^N W_n(\Theta_{1:n}^i) \delta_{\Theta_{1:n}^i}(\theta_{1:n})$

A aproximação Monte Carlo para a função $\phi_n(.)$ é:

$$\hat{E}(\phi_n) = \frac{1}{N} \sum_{i=1}^{N} W_n(\Theta_{1:n}^i) \phi_n(\Theta_{1:n}^i).$$

Amostragem de importância sequencial (AIS)

Apesar do uso da amostragem de importância, amostrar $q_n(\theta_{1:n})$ pode ser **inviável devido a dimensão** n.

Apesar do uso da amostragem de importância, amostrar $q_n(\theta_{1:n})$ pode ser **inviável devido a dimensão** n.

Considere que a distribuição auxiliar escolhida, q(.), possa ser escrita por:

$$q(\theta_{1:n}) = q(\theta_{1:n-1})q(\theta_n|\theta_{1:n-1})$$

Apesar do uso da amostragem de importância, amostrar $q_n(\theta_{1:n})$ pode ser **inviável devido a dimensão** n.

Considere que a distribuição auxiliar escolhida, q(.), possa ser escrita por:

$$q(\theta_{1:n}) = q(\theta_{1:n-1})q(\theta_n|\theta_{1:n-1})$$

Tem-se:

$$q(heta_{1:n}) = q(heta_1) \prod_{k=2}^n q(heta_k | heta_{1:k-1})$$

Decomposição sequecial

Assim, os pesos no tempo t = 2:

$$w(\theta_{1:2}) = \frac{\gamma(\theta_{1:2})}{q(\theta_{1:2})} = \frac{\gamma(\theta_{1:2})}{q(\theta_1)q(\theta_2|\theta_1)}$$

Decomposição sequecial

Assim, os pesos no tempo t = 2:

$$w(\theta_{1:2}) = \frac{\gamma(\theta_{1:2})}{q(\theta_{1:2})} = \frac{\gamma(\theta_{1:2})}{q(\theta_1)q(\theta_2|\theta_1)}$$

Algebricamente,

$$w(\theta_{1:2}) = \frac{\gamma(\theta_1)}{q(\theta_1)} \frac{\gamma(\theta_{1:2})}{\gamma(\theta_1)q(\theta_2|\theta_1)}$$
$$w(\theta_{1:2}) = w_1(\theta_1) \frac{\gamma(\theta_{1:2})}{\gamma(\theta_1)q(\theta_2|\theta_1)}$$

Generalização

Por indução, tem-se, $\forall t > 1$:

$$w_n(\theta_{1:n}) = w_{n-1}(\theta_{1:n-1}) \frac{\gamma(\theta_{1:n})}{\gamma(\theta_{1:n-1}) q(\theta_n | \theta_{1:n-1})}$$

Generalização

Por indução, tem-se, $\forall t > 1$:

$$w_n(\theta_{1:n}) = w_{n-1}(\theta_{1:n-1}) \frac{\gamma(\theta_{1:n})}{\gamma(\theta_{1:n-1}) q(\theta_n | \theta_{1:n-1})}$$

Pesos são atualizados **iterativamente**. Isso reduz a dimensão da amostragem para a dimensão de θ_t , em cada tempo t.

$$\alpha_n(\theta_{1:n}) = \frac{\gamma(\theta_{1:n})}{\gamma(\theta_{1:n-1})q(\theta_n|\theta_{1:n-1})}$$

AIS - Filtragem

Na contexto da filtragem, tem-se que $\gamma(\theta_{1:n}) = p(\theta_{1:n}, y_{1:n})$. Assim:

$$\alpha_n(\theta_{1:n}) = \frac{p(\theta_{1:n}, y_{1:n})}{p(\theta_{1:n-1}, y_{1:n-1})q_n(\theta_n|\theta_{1:n-1})}$$

AIS - Filtragem

Na contexto da filtragem, tem-se que $\gamma(\theta_{1:n}) = p(\theta_{1:n}, y_{1:n})$. Assim:

$$\alpha_n(\theta_{1:n}) = \frac{p(\theta_{1:n}, y_{1:n})}{p(\theta_{1:n-1}, y_{1:n-1})q_n(\theta_n|\theta_{1:n-1})}$$

$$\alpha_n(\theta_{1:n}) = \frac{p(y_n|\theta_{1:n-1}, \theta_n, y_{1:n-1})p(\theta_n|\theta_{1:n-1}, y_{1:n-1})p(\theta_{1:n-1}, y_{1:n-1})}{p(\theta_{1:n-1}, y_{1:n-1})q_n(\theta_n|\theta_{1:n-1})}$$

AIS - Filtragem

Na contexto da filtragem, tem-se que $\gamma(\theta_{1:n}) = p(\theta_{1:n}, y_{1:n})$. Assim:

$$\alpha_n(\theta_{1:n}) = \frac{p(\theta_{1:n}, y_{1:n})}{p(\theta_{1:n-1}, y_{1:n-1})q_n(\theta_n|\theta_{1:n-1})}$$

$$\alpha_{n}(\theta_{1:n}) = \frac{p(y_{n}|\theta_{1:n-1}, \theta_{n}, y_{1:n-1})p(\theta_{n}|\theta_{1:n-1}, y_{1:n-1})p(\theta_{1:n-1}, y_{1:n-1})}{p(\theta_{1:n-1}, y_{1:n-1})q_{n}(\theta_{n}|\theta_{1:n-1})}$$

$$\alpha_{n}(\theta_{1:n}) = \frac{p(y_{n}|\theta_{1:n-1}, \theta_{n}, y_{1:n-1})p(\theta_{n}|\theta_{1:n-1}, y_{1:n-1})}{q_{n}(\theta_{n}|\theta_{1:n-1}, y_{1:n-1})}$$

Amostragem de importância sequencial

As propriedades Markovianas A.1 e A.2 garantem:

$$\alpha_n(\theta_{1:n}) = \frac{p(y_n|\theta_n)p(\theta_n|\theta_{n-1})}{q_n(\theta_n|\theta_{1:n-1})}$$

Amostragem de importância sequencial

As propriedades Markovianas A.1 e A.2 garantem:

$$\alpha_n(\theta_{1:n}) = \frac{p(y_n|\theta_n)p(\theta_n|\theta_{n-1})}{q_n(\theta_n|\theta_{1:n-1})}$$

Chamada de **peso de incremento**, a parte reponsável pelo processo **sequencial** de estimação.

$$w_n(\theta_{1:n}) = w_{n-1}(\theta_{1:n-1})\alpha_n(\theta_{1:n})$$

Amostragem de Importância sequencial

Considere o processo sequencial de reponderação do processo de Amostragem sequencial de Importância:

$$w_t \propto \frac{\pi(y_t|\theta_t)\pi(\theta_t|\theta_{t-1})}{g_{t|t-1}(\theta_t|\theta_{0:t-1},y_{1:t})}w_{t-1}$$

Amostragem de Importância sequencial

Considere o processo sequencial de reponderação do processo de Amostragem sequencial de Importância:

$$w_t \propto rac{\pi(y_t| heta_t)\pi(heta_t| heta_{t-1})}{g_{t|t-1}(heta_t| heta_{0:t-1},y_{1:t})}w_{t-1}$$

A função $g_{t|t-1}(\theta_t|\theta_{0:t-1},y_{1:t})$ é a responsável por gerar as propostas de partículas, conhecida como **função de transição de importância**.

Amostragem de Importância sequencial

Considere o processo sequencial de reponderação do processo de Amostragem sequencial de Importância:

$$w_t \propto \frac{\pi(y_t|\theta_t)\pi(\theta_t|\theta_{t-1})}{g_{t|t-1}(\theta_t|\theta_{0:t-1},y_{1:t})}w_{t-1}$$

A função $g_{t|t-1}(\theta_t|\theta_{0:t-1},y_{1:t})$ é a responsável por gerar as propostas de partículas, conhecida como **função de transição de importância**.

Os tipos de filtro de partículas são definidos pelo tipo de equação $g_{t|t-1}(.)$ escolhida.

Reamostragem

Degeneração

É possível que a distribuição dos pesos w_t^i se degenerem. Isso ocorre quando tem-se pesos com valores próximos de 1.

Degeneração

É possível que a distribuição dos pesos w_t^i se degenerem. Isso ocorre quando tem-se pesos com valores próximos de 1.

Adota-se então um critério de degeneração da distribuição dos pesos calculando o seguinte valor em cada vetor de partículas:

$$N_{eff}^t = rac{1}{\sum_i^N \left(w_t^i\right)^2}$$

Degeneração

É possível que a distribuição dos pesos w_t^i se degenerem. Isso ocorre quando tem-se pesos com valores próximos de 1.

Adota-se então um critério de degeneração da distribuição dos pesos calculando o seguinte valor em cada vetor de partículas:

$$N_{eff}^t = rac{1}{\sum_i^N (w_t^i)^2}$$

[?] indica utilizar de N/2 como critério para regeneração das partículas, substituindo os pesos das partículas por 1/N.

Reamostragem

O processo de reamostragem está presente no processo de estimação para reduzir a discrepância, o que em casos extremos causa a chamada **degeneração dos pesos de importância**.

Reamostragem

O processo de reamostragem está presente no processo de estimação para reduzir a discrepância, o que em casos extremos causa a chamada **degeneração dos pesos de importância**.

- Reamostragem Multinomial;
- Reamostragem Residual;
- Reamostragem Estratificada;
- Reamostragem Sistemática.

Reamostragem

O processo de reamostragem está presente no processo de estimação para reduzir a discrepância, o que em casos extremos causa a chamada degeneração dos pesos de importância.

- Reamostragem Multinomial;
- Reamostragem Residual;
- Reamostragem Estratificada;
- Reamostragem Sistemática.

Reamostrar com probabilidade proporcional ao peso de importância.

$$\{\theta_t^i, w_t^i\}, i = 1, ..., N$$

$$\{\theta_t^i, w_t^i\}, i = 1, ..., N$$

As partículas θ_t^i são reamostradas com w_t^i como peso

$$\{\theta_t^i, w_t^i\}, i = 1, ..., N$$

As partículas θ^i_t são reamostradas com w^i_t como peso As novas partículas tem peso $w^i_t=1/N.$

$$\{\theta_t^i, w_t^i\}, i = 1, ..., N$$

As partículas θ^i_t são reamostradas com w^i_t como peso As novas partículas tem peso $w^i_t=1/{\it N}.$

Partículas com baixa probabilidade são descartadas

Seção

Estimação

Filtro de Partículas

Filtro de Partículas

Método

Filtro Bootstrap

Sistema Dinâmico

Proposto por [?].

Equação do sistema

$$\theta_t = f(\theta_{t-1}, w_t), \qquad f: \Re^n \times \Re^m \Rightarrow \Re^n$$

Sistema Dinâmico

Proposto por [?].

Equação do sistema

$$\theta_t = f(\theta_{t-1}, w_t), \qquad f: \Re^n \times \Re^m \Rightarrow \Re^n$$

Equação das observações

$$y_t = h(\theta_t, v_t), \qquad h: \Re^n \times \Re^r \Rightarrow \Re^p$$

Sistema Dinâmico

Proposto por [?].

Equação do sistema

$$\theta_t = f(\theta_{t-1}, w_t), \qquad f: \Re^n \times \Re^m \Rightarrow \Re^n$$

Equação das observações

$$y_t = h(\theta_t, v_t), \qquad h: \Re^n \times \Re^r \Rightarrow \Re^p$$

Considere:

- $w_t \sim p_1(.) \text{ e } v_t \sim p_2(.)$

Objetivo

Considere a posteriori:

$$p(\theta_t|D_t) = \frac{h(y_t|\theta_t)p(\theta_t|D_{t-1})}{\int h(y_t|\theta_t)p(\theta_t|D_{t-1})d\theta_t}$$

Objetivo

Considere a posteriori:

$$p(\theta_t|D_t) = \frac{h(y_t|\theta_t)p(\theta_t|D_{t-1})}{\int h(y_t|\theta_t)p(\theta_t|D_{t-1})d\theta_t}$$

Três grandes tarefas:

3: Posteriori 2: Atualização 1: Propagação
$$\overbrace{p(\theta_t|D_t)} = \underbrace{\begin{bmatrix} h(y_t|\theta_t) \\ \int h(y_t|\theta_t)p(\theta_t|D_{t-1})d\theta_t \end{bmatrix}}_{p(\theta_t|D_{t-1})}$$

Por meio do suporte de $p(\theta_{t-1}|D_{t-1})$,

$$p(\theta_t|D_{t-1}) = \int f(\theta_t|\theta_{t-1})p(\theta_{t-1}|D_{t-1})d\theta_{t-1}$$

Por meio do suporte de $p(\theta_{t-1}|D_{t-1})$,

$$p(\theta_t|D_{t-1}) = \int f(\theta_t|\theta_{t-1})p(\theta_{t-1}|D_{t-1})d\theta_{t-1}$$

e "atravessando" a equação dos estados latente do sistema pelo suporte de w_t ,

$$p(\theta_t|\theta_{t-1}) = \int f(\theta_t|\theta_{t-1}, w_t) p(w_t|\theta_{t-1}) dw_t$$

Por meio do suporte de $p(\theta_{t-1}|D_{t-1})$,

$$p(\theta_t|D_{t-1}) = \int f(\theta_t|\theta_{t-1})p(\theta_{t-1}|D_{t-1})d\theta_{t-1}$$

e "atravessando" a equação dos estados latente do sistema pelo suporte de w_t ,

$$p(\theta_t|\theta_{t-1}) = \int f(\theta_t|\theta_{t-1}, w_t) p(w_t|\theta_{t-1}) dw_t$$

obtém-se de forma determinística,

$$p(\theta_t|D_{t-1}) = \int \int f(\theta_t|\theta_{t-1}, w_t) p(w_t) p(\theta_{t-1}|D_{t-1}) dw_t d\theta_{t-1}$$

Com isso, pode-se obter $p(\theta_t|D_{t-1})$, faz-se:

Com isso, pode-se obter $p(\theta_t|D_{t-1})$, faz-se:

1- gerar suporte de θ_{t-1} a partir de $p(\theta_{t-1}|D_{t-1})$. Todo suporte da distribuição θ_{t-1} .

Com isso, pode-se obter $p(\theta_t|D_{t-1})$, faz-se:

- 1- gerar suporte de θ_{t-1} a partir de $p(\theta_{t-1}|D_{t-1})$. Todo suporte da distribuição θ_{t-1} .
- 2- gerar suporte de w_t a partir de $p(w_t)$. Todo suporte da distribuição w_t .

Com isso, pode-se obter $p(\theta_t|D_{t-1})$, faz-se:

- 1- gerar suporte de θ_{t-1} a partir de $p(\theta_{t-1}|D_{t-1})$. Todo suporte da distribuição θ_{t-1} .
- 2- gerar suporte de w_t a partir de $p(w_t)$. Todo suporte da distribuição w_t .
- 3- Obter de forma determinística, o suporte da distribuição de interesse por meio de $\{\theta_{t-1}, w_t\}$, obtidos pela função h(.).

Com isso, pode-se obter $p(\theta_t|D_{t-1})$, faz-se:

- 1- gerar suporte de θ_{t-1} a partir de $p(\theta_{t-1}|D_{t-1})$. Todo suporte da distribuição θ_{t-1} .
- 2- gerar suporte de w_t a partir de $p(w_t)$. Todo suporte da distribuição w_t .
- **3-** Obter de forma determinística, o suporte da distribuição de interesse por meio de $\{\theta_{t-1}, w_t\}$, **obtidos pela função** h(.).

A equação de interesse é representada por:

$$p(\theta_t|D_{t-1}) = \int \int \frac{3}{h(\theta_t|\theta_{t-1}, w_{t-1})} \frac{2}{p(w_{t-1})} \frac{1}{p(\theta_{t-1}|D_{t-1})} dw_{t-1}d\theta_{t-1}$$

2: Atualização

A distribuição gerada, "atravessa" a equação observável do sistema pelo suporte de v_t ,

$$p(y_t|\theta_t) = \int h(y_t|\theta_t, v_t)p(v_t)dv_t,$$

2: Atualização

A distribuição gerada, "atravessa"
a equação observável do sistema pelo suporte de v_t ,

$$p(y_t|\theta_t) = \int h(y_t|\theta_t, v_t) p(v_t) dv_t,$$

e é avaliada por:

$$\pi_t \propto h(y_t|\theta_t, v_t)$$

.

3: Posteriori

Obtém-se a distribuição de $p(\theta_t|D_t)$ por meio da combinação entre **1:Propagação** e **2:Atualização**.

3: Posteriori

Obtém-se a distribuição de $p(\theta_t|D_t)$ por meio da combinação entre 1:Propagação e 2:Atualização.

3: Posteriori 2: Atualização 1: Propagação
$$\overbrace{p(\theta_t|D_t)} = \overbrace{\left[\frac{h(y_t|\theta_t)}{\int h(y_t|\theta_t)p(\theta_t|D_{t-1})d\theta_t}\right]}^{2: Atualização} \overbrace{p(\theta_t|D_{t-1})}^{1: Propagação}$$

Algoritmo

- **1.1** Para t = 1: gerar N amostras $\{\theta_0^i, i = 1, ..., N\} \sim p(\theta_0)$;
- **1.2** Para t > 1: gerar N amostras $\{\theta_{t-1}^i, i = 1, ..., N\} \sim p(\theta_{t-1}|D_{t-1})$
 - **2** Gerar *N* amostra para $w_t^i \sim p_1(w)$
 - **3** Obter valores de θ_t^{i*} , de forma determinística, $\theta_{t*}^i = f(\theta_{t-1}^i, w_t^i)$
 - **4** Sendo v_t uma estatística conhecida, atualiza-se o peso de θ_t^{i*} usando:

$$\pi_{t}^{i} = \frac{p(y_{t}|\theta_{t}^{i*}, v_{t})}{\sum_{i}^{N} p(y_{t}|\theta_{t}^{j*}, v_{t})}$$

5 Reamostrar N vezes $\{\theta_t^{i*}, i=1,...,N\}$ com probabilidade igual a π_t^i .

Laloux, L., Cizeau, P., Bouchaud, J. P., and Potters, M. (1999). Noise dressing of financial correlation matrices. Physical Review Letters, 83(7):1467–1470.

Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance.