## Bayes Nets

Chapter 14

## Overview

- Bayes Nets (Graphical Models)
  - Syntax, Semantics
  - How to compactly represent Joint Distributions
  - How to efficiently do inference
- \* Dynamic Bayes Nets
  - \* How to adapt BN to reason over time
  - \* Markov Models, Hidden MM, Particle Filters
- Project 3 will use these concepts!

## Conditional Independence

 Conditional Independence is our most basic and robust knowledge about uncertain environments

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

 $X \perp \!\!\! \perp Y | Z$ 

- \* What about this domain:
  - \* Traffic
  - Need an Umbrella
  - Raining

## Bayes Nets

- \* Two problems with full joint distribution tables for prob. models
  - \* gets WAY too big
  - awkward to specify joint prob for more than a few vars
- Bayes Nets are a technique for describing complex joint distributions with simple local distributions (Conditional Probabilities)

## The Chain Rule

Remember....the definition of conditional probability, also called the Product Rule:  $P(a \land b) = P(a \mid b) P(a)$ 

$$\begin{split} P(x_1,...,x_n) &= P(x_n \mid x_{n-1},...,x_1) \; P(x_{n-1},...,x_1) \\ P(x_1,...,x_n) &= P(x_n \mid x_{n-1},...,x_1) \; P(x_{n-1} \mid x_{n-2},...,x_1) \; P(x_{n-1} \mid x_{n-2},...,x_n) \\ P(x_1,...,x_n) &= P(x_n \mid x_{n-1},...,x_1) \; P(x_{n-1} \mid x_{n-2},...,x_n) \; ... \\ P(x_2 \mid x_1) \; P(x_1) \\ P(x_1,...,x_n) &= \prod_{i=1}^n P(x_i \mid x_{i-1},...,x_n) \end{split}$$

Chain rule is the product rule applied multiple times, turning a joint probability into conditional probabilities

## Traffic, Rain, Umbrella

\* Trivial decomposition

```
P(\text{Traffic}, \text{Rain}, \text{Umbrella}) =
P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})
```

 Conditional Independence assumptions

```
P(\text{Traffic}, \text{Rain}, \text{Umbrella}) =
P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})
```

 Bayes Nets let us compactly express conditional independence

(chain rule of probability)

$$P(A, B, C, D) = P(D | C, B, A)P(C | B, A)P(B | A)P(A)$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$



$$P(A, B, C, D) = P(D | C, B, A)P(C | B, A)P(B | A)P(A)$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$

$$P(C \mid A)$$

$$\frac{I_{\ell}(P)}{C\perp B\,|\,A}$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$

$$P(C \mid A)$$

$$\frac{I_{\ell}(P)}{C \perp B \mid A}$$



$$P(A, B, C, D) = P(D|C, B, A)P(C|B, A)P(B|A)P(A)$$

$$P(D|C) \qquad P(C|A)$$

$$egin{aligned} I_\ell(P) \ C \perp B \, | \, A \ D \perp \{A,B\} \, | \, C \end{aligned}$$



$$P(A, B, C, D) = P(D|C, B, A)P(C|B, A)P(B|A)P(A)$$

$$P(D|C) \qquad P(C|A)$$

$$egin{aligned} I_\ell(P) \ C \perp B \, | \, A \ D \perp \{A,B\} \, | \, C \end{aligned}$$



#### Chain Rule of Bayesian Networks

$$P(A, B, C, D) = P(D | C)P(C | A)P(B | A)P(A)$$

$$egin{aligned} I_\ell(P) \ C \perp B \, | \, A \ D \perp \{A,B\} \, | \, C \end{aligned}$$



#### Chain Rule of Bayesian Networks

$$P(A, B, C, D) = P(D | C)P(C | A)P(B | A)P(A)$$

In general: 
$$P(X) = \prod_{i=1}^{N} P(x_i \mid pa(x_i))$$
 Chain rule of Bayes nets

$$egin{aligned} I_\ell(P) \ C \perp B \, | \, A \ D \perp \{A,B\} \, | \, C \end{aligned}$$



#### Chain Rule of Bayesian Networks

$$P(A, B, C, D) = P(D | C)P(C | A)P(B | A)P(A)$$

In general: 
$$P(X) = \prod_{i=1}^{N} P(x_i \mid pa(x_i))$$
 Chain rule of Bayes nets

$$egin{aligned} I_\ell(P) \ C \perp B \mid A \ D \perp \{A,B\} \mid C \end{aligned}$$

3 C B 2

**Topological Order:** 

A, B, C, D

Parents come before Children!

### Variable Elimination Example

## Bayes Net Notation

- Nodes: variables (with domains)
- \* Arcs: interactions
  - \* Directional
  - \* "Direct Influence" between vars
  - Formally:
     conditional indep.





## Example: Coin Flips

\* N independent flips



\* No interactions between variables

## Example: Traffic

- \* Variables:
  - \* R: It rains
  - \* T: There's traffic
- \* Model 1: independence
- \* Model 2: rain causes traffic
- \* Which is better for an agent to use?

## Example: Traffic 2

- Let's build a causal graphical model
- \* Variables:
  - \* T: Traffic
  - \* R: It rains
  - \* L: Low air pressure
  - \* D: Roof drips
  - \* B: Ballgame
  - \* C: Cavity

# Example: Burglar Alarm

- \* Variables:
  - \* B: Burglary
  - \* A: Alarm goes off
  - \* M: Mary calls
  - \* J: John calls
  - \* E: Earthquake

## Bayes' Net Semantics

\* Formalizing the semantics of a BNA



- \* A directed, acyclic graph
- A conditional distribution for each node
  - Local conditional prob tables (CPT)
  - P(X | parent nodes)
     Bayes' Net = Graph Topology + CPTs

Bayes' nets implicitly encode joint distributions



- \* As a product of local cond. distrib
- \* Can multiply all relevant conditionals to get any full joint  $P(x_1, x_2, ... x_n) = \prod_{i=1}^{n} P(x_i | parents(X_i))$
- \* Example: $P(+cavity, +catch, \neg toothache)$
- \* This let's us construct any entry in the full joint distribution table!

Bayes Net: Structure + CPTs



P(Cavity)
P(Toothache | Cavity)
P(Catch | Cavity)

Bayes Net: Structure + CPTs



P(Cavity)
P(Toothache | Cavity)
P(Catch | Cavity)

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

P(catch, cavity, ¬toothache) = P(cavity)

Bayes Net: Structure + CPTs



P(Cavity)
P(Toothache | Cavity)
P(Catch | Cavity)

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

P(catch, cavity, ¬toothache) =
P(cavity) P(¬toothache | cavity)

Bayes Net: Structure + CPTs



P(Cavity)
P(Toothache | Cavity)
P(Catch | Cavity)

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

P(catch, cavity, ¬toothache) =
P(cavity) P(¬toothache | cavity) P(catch | cavity)

## Example: Coin Flips

\* N independent flips

\* 
$$P(h,h,t,h) = 5 * .5 * .5 * .5$$

## Example: Traffic



## Example CTPs:

Alarm

| В  | P(B)  |
|----|-------|
| +b | 0.001 |
| ¬b | 0.999 |

Burglary Earthqk

Alarm

**J**ohn calls

Mary calls

| A  | 7  | P(J A) |
|----|----|--------|
| +a | +j | 0.9    |
| +a | ¬j | 0.1    |
| ¬а | +j | 0.05   |
| ¬a | ٦j | 0.95   |

| A  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | ¬m | 0.3    |
| ¬а | +m | 0.01   |
| ¬а | ¬m | 0.99   |

| Ε  | P(E)  |
|----|-------|
| +e | 0.002 |
| ¬e | 0.998 |

| В  | Е            | Α  | P(A B,E) |
|----|--------------|----|----------|
| +b | <del>e</del> | +a | 0.95     |
| +b | +e           | ¬а | 0.05     |
| +b | ¬е           | +a | 0.94     |
| +b | ¬е           | ¬a | 0.06     |
| ¬b | <del>e</del> | +a | 0.29     |
| ¬b | +e           | ¬а | 0.71     |
| ¬b | ¬е           | +a | 0.001    |
| ¬b | ¬е           | ¬а | 0.999    |

# Building (Entire) Joint we can use the Bayes Net to build any entry from full distribution it encodes

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Typically no reason to build everything, just calc what we need on the fly
- Every BN over a domain of variables Implicitly Defines a Joint Distribution

# Size of a Bayes' Net \* Size of joint dist table of N boolean vars

- \* 2<sup>N</sup>
- Size of N-node net where each node has up to k parents
  - $* O(N*2^{k+1})$
- \* BN can be huge savings if k << N</p>
- \* Easier to find local CPTs vs global joints

## Bayes' Nets So Far...

- \* What we know:
  - Syntax and Semantics of BNs
- \* Next: properties of the joint distribution
  - Formalizing the notion of conditional independence and causality
  - Goal: answer queries about conditional independence and influence
  - \* Need to calc posterior probabilities quickly!