МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

УТВЕРЖДАЮ

Декан/Директор

/ В.В. Соболев

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Методы и системы анализа больших данных» 10/017 (2023)

(наименование - полностью)

направление (специально	ь) 01.04.04 «Прикладная математика» (шифр, наименование – полностью)
направленность (профил обеспечения и матем искусственного интеллек	рограмма/специализация) «Разработка программного ических методов решения задач с использованием (наименование – полностью)
уровень образования:	магистратура
форма обучения:	ОЧНАЯ (очная, очно-заочная или заочная)
общая трудоемкость дис	плины составляет:5 зачетных единиц(ы)

Кафедра	«Прикладная математика и инфор	мационные технологии»
	полное наименование кафедры, предста	вляющей рабочую программу
Составитель	Касаткина Екатерина Васильевна	
	Ф.И.О.(полностью), ст	епень, звание
	ма составлена на основании федер о образования и рассмотрена на засе	рального государственного образовательного дании кафедры
Протокол от	27.04. 20 <u>33</u> r.№ 5	
Заведующий кафе,	дрой	
		<u> 97. год.</u> 20 <u>33</u> г.
СОГЛАСОВАНО		
01.04.04 «Прикла		е компетенции соответствуют учебному план «Разработка программного обеспечения и ием искусственного интеллекта»)
Протокол заседант 010000 «Математи (шифр и наименовани	ия учебно-методической комиссии п <u>ка и механика»</u> от	о УГСН 20 <u>_33</u> г. № <u>3</u>
Председатель учеб 010000 «Математи (шифр и наименовани		Н/В.Г. Суфиянов/ В.Г. Суфиянов
		0

Аннотация к дисциплине

Название	Методы и системы анализа больших данных				
	методы и системы анализа оольших данных				
дисциплины					
Направление	01.04.04 «Прикладная математика»				
(специальность)					
подготовки					
Направленность	Разработка программного обеспечения и математических методов				
(профиль/программа/	решения задач с использованием искусственного интеллекта				
специализация)					
Место дисциплины	Обязательная часть Блока 1 «Дисциплины (модули)»				
Трудоемкость (з.е. /	5 з.е., 180 часов				
часы)					
Цель изучения	формирование у студентов навыков построения математических				
дисциплины	моделей реальных объектов и процессов на основе обработки				
	больших массивов больших данных с использованием систем				
	распределенных вычислений				
Компетенции,	ОПК-2. Способен разрабатывать и развивать математические				
формируемые в	методы моделирования объектов, процессов и систем в области				
результате освоения	профессиональной деятельности				
дисциплины					
Содержание	Технологии и системы анализа больших массивов данных.				
дисциплины	Классификация и регрессия. Кластеризация. Латентно-				
(основные разделы и	семантический анализ				
темы)					
Форма	Экзамен				
промежуточной					
аттестации					

1. Цели и задачи дисциплины

Целью преподавания дисциплины является формирование у студентов навыков построения математических моделей реальных объектов и процессов на основе обработки больших массивов больших данных и процессов с использованием систем распределенных вычислений.

Задачи дисциплины:

- формирование системы знаний о современных методах обработки и анализа больших данных;
- обучение особенностям реализации математических методов обработки данных на современных платформах распределенных вычислений.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

No	Знания			
п/п 3				
1.	платформы обработки больших данных			
2.	методы анализа больших данных			
3.	методы оценки параметров математических моделей			

Умения, приобретаемые в ходе освоения дисциплины

Nº	Умения								
Π/Π \mathbf{y}									
1.	проводить распределенную обработку больших данных								
2.	реализовывать математические методы моделирования и статистической								
	обработки данных на языках высокого уровня								

Навыки, приобретаемые в ходе освоения дисциплины

Nº	Навыки
п/п Н	
1.	практические навыки использования современных информационных технологий
	для статистической обработки данных
2.	навыки разработки математических моделей объектов и процессов на основе
	обработки статистических данных

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ОПК-2. Способен разрабатывать и развивать математические методы моделирования объектов, процессов и систем в области профессиональной деятельности	ОПК-2.1. Знать: методы анализа систем данных на основе современных технологий извлечения новых знаний из данных; современные информационнокоммуникационные и интеллектуальные технологии, инструментальные среды для решения профессиональных задач	1, 2, 3		

ОПК-2.2. Уметь: обосновывать		
выбор методов анализа данных для		
решения профессиональных задач;		
обосновывать выбор современных		
информационно-коммуникационных	1, 2	
и интеллектуальных технологий,		
разрабатывать оригинальные		
математические модели для решения		
профессиональных задач		
ОПК-2.3. Владеть: навыками		
применения современных		
программных средств для анализа		
данных при решении		
профессиональных задач;		
разработки оригинальных		1, 2
математических моделей, в том		1, 2
числе с использованием		
современных информационно-		
коммуникационных и		
интеллектуальных технологий, для		
решения профессиональных задач		

3. Место дисциплины в структуре ООП

Дисциплина относится к обязательной части Блока 1 «Дисциплины (модули)» ООП.

Дисциплина изучается на 2 курсе в 1 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей):

– Программирование на R/ Python.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): -;

4. Структура и содержание дисциплины

4.1. Структура дисциплин

№ п/п	Раздел дисциплины. Форма промежуточной аттестации	Всего часов на раздел Семестр				ие трудос видам у	Содержание самостоятельной работы		
11/11	(по семестрам)	сег на ј	Ce		кон	гактная	r	CPC	самостоятельной расоты
	(no cesteempast)	В		ЛК	пр	лаб	КЧА	CIC	
1	2	3	4	5	6	7	8	10	11
1.	Технологии и системы анализа больших массивов данных	36	3	6	-	8	-	22	Защита лабораторной работы
2.	Классификация и регрессия	36	3	6	-	8	-	22	Защита лабораторной работы
3.	Кластеризация	36	3	6	II	8	-	22	Защита лабораторной работы
4.	Латентно-семантический анализ	36	3	6	ı	8	-	22	Защита лабораторной работы
5.	Подготовка к экзамену	36	3	_	0,4 35,6		35,6	Экзамен	
	Итого	180	3	24	-	32	0,4	123,6	

4.2. Содержание разделов курса и формируемых в них компетенций

N_2	Раздел	Коды компетенции	Знания	Умения	Навыки	Форма контроля
Π/Π	дисциплины	и индикаторов				

1.	Технологии и системы анализа больших	ОПК-2	1, 2, 3	1, 2	1, 2	Защита лабораторной работы
	массивов данных					puccia
2.	Классификация и	ОПК-2	1, 2, 3	1, 2	1, 2	Защита лабораторной
	регрессия					работы
3.	Кластеризация	ОПК-2	1, 2, 3	1, 2	1, 2	Защита лабораторной работы
4.	Латентно-семантический анализ	ОПК-2	1, 2, 3	1, 2	1, 2	Защита лабораторной работы

4.3. Наименование тем лекций, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лекций	Трудоем- кость (час)
1.	1	Технологии анализа больших массивов данных. Кластерная вычислительная платформа Apache Spark. Технология хранения данных Hadoop. Форматы данных HDFS: csv, json, protobuf. Коллекция элементов RDD. Работа с данными ключ/значение. Обработка данных с использованием языков программирования Scala, Java, Python и R. Визуализация данных с использованием GraphX.	6
2.	2	Машинное обучение. Библиотека MLlib. Линейный и нелинейный регрессионный анализ. Классификация «с учителем». Логистическая регрессия. Дискриминантный анализ. Деревья решений.	6
3.	3	Классификация «без учителя». Иерархический кластерный анализ. Итерационные методы кластерного анализа. Метод k-средних.	6
4.	4	4 Метод главных компонент. Поиск ассоциаций.	
	Всего		24

4.4. Наименование тем практических занятий, их содержание и объем в часах

Практические занятия учебным планом не предусмотрены.

4.5. Наименование тем лабораторных работ, их содержание и объем в часах

Лабораторные работы учебным планом не предусмотрены.

№ п/п	№ раздела дисциплины	Наименование практических работ	Трудоем- кость (час)
1.	1	Обработка больших наборов данных с использованием Python и R.	4
2.	1	Визуализация данных с использованием GraphX.	4
3.	2	Линейный и нелинейный регрессионный анализ.	4
4.	2	Методы классификации.	4
5.	3	Иерархический кластерный анализ.	4
6.	3	Итерационные методы кластерного анализа.	4
7.	4	Метод главных компонент.	4
8.	4	Методы поиска ассоциаций в наборах данных.	4
	Всего		32

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся защиты лабораторных работ.

Примечание: Оценочные материалы приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – экзамен.

6. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература

- 1. Воронов, В. И. Data Mining технологии обработки больших данных [Электронный ресурс] : учебное пособие / В. И. Воронов, Л. И. Воронова, В. А. Усачев. Электрон. текстовые данные. М. : Московский технический университет связи и информатики, 2018. 47 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/81324.html
- 2. Пальмов, С. В. Интеллектуальный анализ данных [Электронный ресурс] : учебное пособие / С. В. Пальмов. Электрон. текстовые данные. Самара : Поволжский государственный университет телекоммуникаций и информатики, 2017. 127 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/75376.html

б) дополнительная литература

- 3. Кухаренко, Б. Г. Интеллектуальные системы и технологии [Электронный ресурс] : учебное пособие / Б. Г. Кухаренко. Электрон. текстовые данные. М. : Московская государственная академия водного транспорта, 2019. 116 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/47933.html
- 4. Интеллектуальные системы [Электронный ресурс]: методические указания к лабораторным работам для студентов бакалавриата, обучающихся по направлению подготовки 01.03.04 «Прикладная математика» М.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2020. 57 с. Режим доступа: http://www.iprbookshop.ru/39786.html
- 5. Гибридные адаптивные интеллектуальные системы. Часть 1. Теория и технология разработки [Электронный ресурс]: монография / П.М. Клачек [и др.]. Калининград: Балтийский федеральный университет им. Иммануила Канта, 2018. 375 с. Режим доступа: http://www.iprbookshop.ru/23834.html

в) методические указания

- 6. Русяк И.Г., Кетова К.В., Касаткина Е.В., Сабурова Е.А., Вавилова Д.Д. Методические указания к оформлению и выполнению рефератов, лабораторных работ, курсовых работ и проектов, практик, выпускных квалификационных работ для студентов направления 01.04.04 «Прикладная математика», 2018. 38 с.— Рег. номер МиЕН-055.
- 7. Методические указания к проведению практических занятий по дисциплине "Алгоритмы и структуры данных" для направления 01.04.04 "Прикладная математика" / сост. В.Г. Суфиянов Ижевск: 2019. Рег. номер 127/МиЕН.
- 8. Русяк И.Г., Кетова К.В., Касаткина Е.В., Сабурова Е.А., Вавилова Д.Д. Методические указания к оформлению и выполнению рефератов, лабораторных работ, курсовых работ и проектов, практик, выпускных квалификационных работ для студентов направления 01.04.04 «Прикладная математика», 2019. 38 с.— Рег. номер 106/МиЕН.
- 9. Методические указания к проведению практических занятий и лабораторных работ по дисциплине "Методы и системы анализа больших данных" для направления 01.04.04 "Прикладная математика" / сост. В.Г. Суфиянов Ижевск: 2019. Рег. номер 174/МиЕН.

г) перечень ресурсов информационно-коммуникационной сети Интернет

- 1. Электронно-библиотечная система IPRbooks. Режим доступа: http://www.iprbookshop.ru/
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi-bin/irbis64r 12/cgiirbis 64.exe?LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS
- 3. Открытое образование. Курсы ведущих вузов России. Режим доступа: https://openedu.ru/
- 4. Единое окно доступа к образовательным ресурсам. Режим доступа: http://window.edu.ru/
- 5. Научная электронная библиотека. Режим доступа: https://elibrary.ru

д) лицензионное и свободно распространяемое программное обеспечение

- 1. Microsoft Office Standard 2007 (Open License: 42267924).
- 2. Doctor Web Enterprise Suite (Лицензия № 116663324).
- 3. RStudio / R.
- 4. Anaconda / Python.
- 5. Apache Spark.
- 6. Apache Hadoop.

7. Материально-техническое обеспечение дисциплины

1. Лекционные занятия

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебнонаглядные пособия, тематические иллюстрации - при необходимости).

2. Лабораторные работы

Для лабораторных занятий используются аудитория №309, оснащенная следующим оборудованием:

- проектор,
- экран,
- компьютеры.
- 3. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интеренет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201 корпус № 1, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.7);
- помещения для самостоятельной работы обучающихся (ауд. 309, корпус № 6, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.48).

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психологомедико-педагогической комиссии (ПМПК).

Лист согласования рабочей программы дисциплины (модуля) на учебный год

Рабочая программа дисциплины (модуля) «Методы и системы анализа больших данных» по направлению подготовки (специальности) 01.04.04 «Прикладная математика» по направленности (профилю) подготовки «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта» согласована на ведение учебного процесса в учебном году:

Учебный год	«Согласовано»: заведующий кафедрой, ответственной за РПД (подпись и дата)	
2023 – 2024	Mpus-	27.04.2023
2024 – 2025		

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине

«Методы и системы анализа больших данных»

(наименование – полностью)

направление (специальность) _	01.04.04 «Прикладная математика» (шифр, наименование – полностью)	_
	рамма/специализация) <u>«Разработка программного методов решения задач с использованием искусствен</u>	
интеллекта»		
	(наименование – полностью)	
уровень образования:	магистратура	_
форма обучения:	ОЧНАЯ (очная, очно-заочная или заочная)	_
общая трудоемкость дисципли	ны составляет:5 зачетных единиц(ы)	

1. Оценочные средства

Оценивание формирование компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций представлены ниже.

№	Коды компетенции и индикаторов	Результат обучения	Формы текущего и
п/п		(знания, умения и навыки)	промежуточного контроля
	ОПК-2.1. Знать: методы анализа систем	31: платформы обработки больших	
	данных на основе современных	данных;	
	технологий извлечения новых знаний из	32: методы анализа больших	
1.	данных; современные информационно-	данных;	Лабораторная работа.
1.	коммуникационные и	33: методы оценки параметров	Экзамен.
	интеллектуальные технологии,	математических моделей;	
	инструментальные среды для решения		
	профессиональных задач		
	ОПК-2.2. Уметь: обосновывать выбор	У1: проводить распределенную	Лабораторная работа.
	методов анализа данных для решения	обработку больших данных;	Экзамен.
	профессиональных задач; обосновывать	У2: реализовывать математические	
	выбор современных информационно-	методы моделирования и	
2.	коммуникационных и	статистической обработки данных	
	интеллектуальных технологий,	на языках высокого уровня;	
	разрабатывать оригинальные		
	математические модели для решения		
	профессиональных задач		
	ОПК-2.3. Владеть: навыками	Н1: практически навыки	Лабораторная работа.
	применения современных программных	использования современных	Экзамен.
	средств для анализа данных при	информационных технологий для	
	решении профессиональных задач;	статистической обработки данных;	
3.	разработки оригинальных	Н3: навыками разработки	
٥.	математических моделей, в том числе с	математических моделей объектов и	
	использованием современных	процессов на основе обработки	
	информационно-коммуникационных и	статистических данных	
	интеллектуальных технологий, для		
	решения профессиональных задач		

Наименование: Лабораторная работа

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине

Варианты заданий: задания и требования к выполнению представлены в методических указаниях по дисциплине

Примеры заданий:

1

Провести анализ тегов MeSH из записей цитирований MEDLINE и их взаимосвязей. Построить сети совместной встречаемости тегов MeSH из записей цитирований MEDLINE с помощью GraphX и провести их анализ.

2.

Загрузите статистические данные для построения регрессионной модели.

Разделите статистические данные на обучающую и тестовую. Выполните регрессионный анализ статистических данных без регуляризации и с регуляризацией 1 L и 2 L. Выполните оценку

параметров регрессии с использованием потоковых методов. Оценить гиперпараметры регрессионных моделей (Ridge regression, Lasso, Elastic Net Regression).

- 3. Определите нетипичные данные в общем потоке информации посредством анализа отклонений;
- 4. Проведите разделения записей по заранее сформированным классам, т. е. кластеризацию.

Критерии оценки:

Приведены в разделе 2.

Наименование: Экзамен

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения экзамена:

- 1. Системы анализа статистических данных.
- 2. Технологии анализа больших массивов данных.
- 3. Платформа обработки статистических данных Apache Spark.
- 4. Платформа распределенных вычислений Apache Hadoop.
- 5. Форматы данных HDFS: csv, json, protobuf.
- 6. Коллекция элементов RDD. Работа с данными ключ/значение.
- 7. Обработка данных с использованием языков программирования Scala, Java, Python и R.
- 8. Визуализация данных с использованием GraphX.
- 9. Машинное обучение.
- 10. Библиотека MLlib.
- 11. Линейный и нелинейный регрессионный анализ данных.
- 12. Классификация «с учителем».
- 13. Дискриминантный анализ.
- 14. Деревья решений.
- 15. Логистический регрессионный анализ.
- 16. Классификация «без учителя».
- 17. Иерархический кластерный анализ.
- 18. Итерационные методы кластерного анализа. Метод k-средних.
- 19. Метод главных компонент.
- 20. Методы поиска ассоциаций в наборах данных.

Критерии оценки:

Приведены в разделе 2

Наименование: тест

Представление в ФОС: перечень вопросов

Перечень вопросов:

Компетенция

ОПК-2. Способен разрабатывать и развивать математические методы моделирования объектов, процессов и систем в области профессиональной деятельности

Индикаторы достижения компетенции:

ОПК-2.1. Знать: методы анализа систем данных на основе современных технологий извлечения новых знаний из данных; современные информационно-коммуникационные и интеллектуальные технологии, инструментальные среды для решения профессиональных задач

ОПК-2.2. Уметь: обосновывать выбор методов анализа данных для решения профессиональных задач; обосновывать выбор современных информационно-коммуникационных и интеллектуальных

технологий, разрабатывать оригинальные математические модели для решения профессиональных задач

ОПК-2.3. Владеть: навыками применения современных программных средств для анализа данных при решении профессиональных задач; разработки оригинальных математических моделей, в том числе с использованием современных информационно-коммуникационных и интеллектуальных технологий, для решения профессиональных задач

Проведение работы, заключающейся в ответе на вопросы теста (компетенция ОПК-2):

1. Перечислите четыре основных характеристики Big Data:

Варианты:

- a) Virtualization, Volume, Variability, Vehicle
- δ) Variety, Velocity, Volume, Value
- *B*) Video, Value, Variety, Volume
- 2) Verification, Volume, Velocity, Visualization

2. Что такое HDFS?

Варианты:

- *а*) инструмент для анализа больших данных в системе Hadoop с помощью методов машинного обучения
- б) инструмент для импорта и экспорта данных в системе Hadoop
- в) реляционная СУБД, созданная для работы поверх файловой системы Наdoop
- г) распределенная файловая система, которая используется в системе Hadoop для хранения и обработки больших объемов данных
- 3. Дендрограмма является результатом работы

Варианты:

- а) иерархического кластерного анализа
- б) метода К-Средних
- в) метода деревьев решений
- г) методов построения ассоциативных правил
- 4. Библиотека MLlib предназначена для

Варианты:

- а) реализации алгоритмов машинного обучения на больших объемах данных на серверах Google
- б) реализации алгоритмов машинного обучения на неструктурированных данных на кластерах Amazon
- *в*) реализации алгоритмов машинного обучения на больших объемах данных с использованием кластеров Hadoop и Spark
- г) реализации алгоритмов хранения больших объемов данных
- 5. В Spark набор RDD можно преобразовать в набор пар ключ/значение с помощью функции

Варианты:

- a) lookup()
- *б*) map()
- *β*) keys()
- e) values()

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	б	г	а	в	б

1. Критерии и шкалы оценивания

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не ниже минимального.

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

Разделы	Форма контроля	Количество баллов	
дисциплины		min	max
1	Лабораторная работа	3	10
2	Лабораторная работа	3	10
3	Лабораторная работа	3	10
4	Лабораторная работа	3	10
5	Лабораторная работа	3	10
6	Лабораторная работа	3	10
7	Лабораторная работа	3	10
8	Лабораторная работа	3	10

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов	
	Лабораторная работа выполнена в полном объеме;	
	Представлен отчет, содержащий необходимые расчеты, выводы, оформленный	
Лабораторная	в соответствии с установленными требованиями;	
работа	Продемонстрирован удовлетворительный уровень владения материалом при	
	защите лабораторной работы, даны правильные ответы не менее чем на 50%	
	заданных вопросов	

Промежуточная аттестация по дисциплине проводится в форме экзамена.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы

Оценка	Набрано баллов
«онрилто»	75-80
«хорошо»	66-74
«удовлетворительно»	51-65
«неудовлетворительно»	25-50

Если сумма набранных баллов менее 25 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 25 до 50 баллов, обучающийся допускается до экзамена.

Билет к экзамену включает 2 теоретических вопроса и 3 практических заданий.

Промежуточная аттестация проводится в форме устного опроса и выполнения практической работы.

Время на подготовку: 180 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки.

Оценка	Критерии оценки	
	Обучающийся показал всестороннее, систематическое и глубокое знание	
	учебного материала, предусмотренного программой, умение уверенно	
WOTHWIND)	применять на их практике при решении задач (выполнении заданий),	
«ОТЛИЧНО»	способность полно, правильно и аргументировано отвечать на вопросы и	
	делать необходимые выводы. Свободно использует основную литературу	
	и знаком с дополнительной литературой, рекомендованной программой	
	Обучающийся показал полное знание теоретического материала,	
	владение основной литературой, рекомендованной в программе, умение	
	самостоятельно решать задачи (выполнять задания), способность	
«хорошо»	аргументировано отвечать на вопросы и делать необходимые выводы,	
«хорошо»	допускает единичные ошибки, исправляемые после замечания	
	преподавателя. Способен к самостоятельному пополнению и обновлению	
	знаний в ходе дальнейшей учебной работы и профессиональной	
	деятельности	
	Обучающийся демонстрирует неполное или фрагментарное знание	
	основного учебного материала, допускает существенные ошибки в его	
	изложении, испытывает затруднения и допускает ошибки при	
«удовлетворительно»	выполнении заданий (решении задач), выполняет задание при подсказке	
	преподавателя, затрудняется в формулировке выводов. Владеет знанием	
	основных разделов, необходимых для дальнейшего обучения, знаком с	
	основной и дополнительной литературой, рекомендованной программой	
	Обучающийся при ответе демонстрирует существенные пробелы в	
	знаниях основного учебного материала, допускает грубые ошибки в	
	формулировании основных понятий и при решении типовых задач (при	
«неудовлетворительно»	выполнении типовых заданий), не способен ответить на наводящие	
	вопросы преподавателя. Оценка ставится обучающимся, которые не	
	могут продолжить обучение или приступить к профессиональной	
	деятельности по окончании образовательного учреждения без	
	дополнительных занятий по рассматриваемой дисциплине	