Mechanistic Interpretability for Vision Models Optimization

23th July 2025 Computer Vision's course project

Authors:

Project resources

https://colab.research.google.com/drive/1NNMyHI6ySeZPHcacPNtQd6y8-yUvGMZX#scrollTo=6jzzOI7xEby3

https://github.com/Sassotek/Mechanistic-Interpretability-for-Vision-Models-Optimization

A Note on the Journey

The development of this project has been a complex experience, much like a roller-coaster ride of ups and downs but each difficulty pushed us to grow and find alternative solutions.

Field of reaserch?

- ViTs show very high performance on many vision task
- High computational cost makes ViTs not suitable for edge devices with limited hardware capabilities.

The project goal (35

Starting from a baseline ViT observe the model behavior and try to find a good compromise while trying to get a better inference time at the cost of a worse model accuracy cutting the edges in the computational graph that are less significative.

Overview

- ▲ Goal and ideas
- A Hardware and settings
- Dataset
- Model Architecture
- ▲ Training
- **▲** ACDC → pruning
- ▲ Final results and evaluation
- References

Hardware & settings

2 different GPUs were used while working on colab

Nvidia GeForce RTX 3070

Nvidia Tesla T4

Dataset

Tiny ImageNet △

- 200 classes
- 64x64 images

Augmentations applied {

Random horizontal flip

Random resized crop

Random rotation

Gaussian noise

Random erasing

Normalization with ImageNet mean & std

CutMix

MixUp

Pagina 6 di 13

Model Architecture

We tested many different configurations of the Vit Model.

The last version is composed by

• Latent Size: 256

• Patch Size: 8

• 12 Encoders

• 8 MLP Heads

Other versions include bigger and smaller models, tested with different patch sizes.

- 30 epochs
- Batch size: 128
- Gradient flow visualization
- AMP: Automatic Mixed Precision
- CosineAnnealingLR

Pruing Phase

3 cuts = 81/518 edges

- Another 5 epochs training phase done on both pruned model and baseline model
- Not much changes in inference time
- The training gap between non-pruned and pruned model is recovered during training

	Model	Test Loss	Test Accuracy	InferenceTime
0	Baseline Model	361.098648	36.25%	70.08s
1	Baseline Model Pruned	383.527886	33.00%	65.66s
2	Upgraded Baseline Model	368.932721	36.34%	60.77s
3	Upgraded Baseline Model Pruned	363.318928	36.38%	61.60s

- [1] A. Conmy et al. (2023). Towards Automated Circuit Discovery for Mechanistic Interpretability. In: Advances in Neural Information Processing Systems 36 (NeurIPS 2023)

 [https://arxiv.org/abs/2304.14997]
- [2] A. Syed, C. Rager and A.Conmy, (2024). Attribution Patching Outperforms Automated Circuit Discovery, BlackboxNLP 2024.

 [https://arxiv.org/abs/2310.10348]
- [3] A. Vaswani et al. (2017). Attention is all you need.
 In: Advances in Neural Information Processing Systems 36 (NeurIPS 2017)
 [https://arxiv.org/abs/1706.03762]
- [4] TinyImageNet dataset [https://www.kaggle.com/datasets/wissamsalam/tiny-imagenet-cleaned-for-classification]
- [5] A.Dosovitskiy et al.(2021).An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [https://arxiv.org/abs/2010.11929]

- [6] Einops Guide [https://nbviewer.org/github/arogozhnikov/einops/blob/main/docs/1-einops-basics.ipynb]
- [7] VISO.ai [https://viso.ai/deep-learning/vision-transformer-vit/]