Best Sum

Problem Statement

You are given two arrays A and B of length \mathbf{N} . Let S be the set of integers from 1 to \mathbf{N} . Can you find the maximum possible value of $(A_{i1}+A_{i2}+...+A_{ik})^2+(B_{i1}+B_{i2}+...+B_{ik})^2$ where $\{i1,i2...ik\}$ is a non-empty subset of S?

Input

The first line contains a single integer **T**, denoting the number of test cases. T testcases follow, each test case given in following format.

Ν

A1 A2 ... AN

B1 B2 ... BN

Constraints

$$-10^6 \le A_i$$
, $B_i \le 10^6$

Output

For each test case, output the maximum possible value in one line.

Sample

Input	Output
3	50
2	2060801650
-1 5	2562486632
4 -5	
3	
-23811 30333 -4664	
7711 6868 27644	
3	
2082 -16541 -31115	
29658 -9930 2306	

Explanation

All possible non-empty subsets for N = 2 of $S = \{1,2\}$ are $\{1\}$, $\{2\}$ and $\{1,2\}$. The maximum possible values of the above equation now are

•
$$(-1)^2 + (4)^2 = 17$$

•
$$(5)^2 + (-5)^2 = 50$$

•
$$(-1+5)^2 + (4-5)^2 = 17$$

hence 50.

Source: Hackerrank 20/20 world finals