Bioestatistica

Semana Temática da Biologia (USP) - 2016

Responda!

- · Qual a aceleração com a qual um objeto cai na terra?
- Qual a massa molar do carbonato de cálcio?
- Quanto pesa uma andorinha?

Responda!

- · Qual a aceleração com a qual um objeto cai na terra?
- Qual a massa molar do carbonato de cálcio?
- Quanto pesa uma andorinha?

A variação é inerente à Biologia

O que precisamos para responder a pergunta?

- Quanto pesa uma andorinha?
- Dados
 - Observações individuais
 - Variável

Tipos de variáveis

População

População e amostra

Como lidar quando há variação?

- Medida de tendência central
- Medida de variabilidade

Como lidar quando há variação?

- Medida de tendência central
- Medida de variabilidade

Peso das andorinhas (em g): 18, 12, 14, 16, 15, 15

Tendência central

- Média
- Mediana
- Moda

Tendência central

Peso das andorinhas (em g): 18, 12, 14, 16, 15, 15

Média

Média = 15

Mediana

Mediana = 15

Moda

Moda = 15

Variabilidade

- Variância
- Desvio padrão
- · Coeficiente de variação

Variabilidade

Peso das andorinhas (em g): 18, 12, 14, 16, 15, 15

Variância

$$Var = 3.33$$

Desvio padrão

$$DP = 1.82$$

• Coeficiente de variação CV = 12,2%

$$CV = 12,2\%$$

Podemos confiar no que calculamos?

População Amostra Estatística de interesse

(e.g., média)

Podemos confiar no que calculamos?

População Amostra Estatística de interesse (e.g., média) Inferência sobre a população

Distribuição de densidades

Média da amostra $\sim N(15,2)$

Média da amostra $\sim N(15,2)$

Distribuição t

Média da amostra $\sim t_{6-1}(0,1)$

Distribuição t

- · O que é uma hipótese?
 - Conjectura sobre um parâmetro populacional
 - · Exemplo: "Andorinhas pesam mais que 16g"

Passo 1 - Deduza uma hipótese nula

- · "Andorinhas pesam mais que 16g"
- Deduza uma hipótese nula
 - H₀: Andorinhas pesam I 6g

Possibilidades envolvidas em um teste de hipóteses		
Realidade Decisão	Aceitar H ₀	Rejeitar H ₀
	Decisão correta	Erro do Tipo I
H ₀ é verdadeira	$1 - \alpha = P(Aceitar H_0 / H_0 \text{ \'e V}) = P(H_0 / H_0)$	α = P(Erro do tipo I) = P(Rejeitar H ₀ / H ₀ é V) = Nível de significância do teste = P(H ₁ / H ₀)
	Erro do Tipo II	Decisão correta
H ₀ é falsa	β = P(Erro do tipo II) = = P(Aceitar H ₀ / H ₀ é falsa) = P(Aceitar H ₀ /H ₁ é V) = P(H ₀ /H ₁)	1 - β = P(Rejeitar H ₀ / H ₀ é falsa) = P(H ₁ / H ₁) = Poder do teste.

Passo 2 - Calcule sua Estatística

- "Eu acho que andorinhas pesam mais que 16g"
- Calcule sua estatística de interesse
 - H₀: Média(Peso de andorinhas) = 16g
 - H_I: Média(Peso de andorinhas) > 16g

Estatística t

$$t = \frac{(\bar{x} - \mu)}{\frac{sd}{\sqrt{n}}}$$

$$t \sim t_{n-1}(0,1)$$

Estatística t

$$t_{obs} = \frac{(15-16)}{\frac{2}{\sqrt{6}}} = -1.22 \qquad t \sim t_{6-1}(0,1)$$

Estatística t

$$t_{obs} = \frac{(15 - 16)}{\frac{2}{\sqrt{6}}} = -1.22 \qquad t \sim t_{6-1}(0, 1)$$

Nível descritivo (p-valor)

$$p - valor = P(t > t_{obs}|H_0 \text{ \'e verdadeira})$$

- H₀: Média(Peso de andorinhas) = 16g
- H_I: Média(Peso de andorinhas) > 16g

Nível descritivo (p-valor)

$$t_{obs} = \frac{(15-16)}{\frac{2}{\sqrt{6}}} = -1.22$$
 $t \sim t_{6-1}(0,1)$

$$p-valor = P(t > t_{obs}|H_0 \text{ \'e verdadeira})$$

Passo 3 - Calcule o p-valor

- E agora?
- · Regra de decisão: nível de significância
- 5%

Se
$$p - valor \ge 5\% \implies \text{N\~ao}$$
 rejeito H_0
Se $p - valor < 5\% \implies \text{Rejeito}$ H_0

PASSO 4 - DECIDO COM BASE NO NÍVEL DE SIGNIFICÂNCIA

- I. Deduzo uma hipótese nula
- 2. Calculo minha estatística de interesse
- 3. Calculo p-valor
- 4. Decido com base em um nível de significância