Propositional Calculus

Jong Yih Kuo

jykuo@ntut.edu.tw
Department of Computer Science and
Information Engineering
National Taipei University of Technology

Contents

- □ Proposition Logic
- □ The Formal Language
- □ Rules of Inference
- □ Logic Semantics
- □ Proof Procedures
- Soundness and Completeness
- □ PSAT Problem

Proposition Logic - Set

- □ Set Construction
 - ○{set : range | condition operation }
 - ○{Signature | Predicate Term}
- Examples of Sets
 - Set of colours: {green, blue, yellow}
 - Empty set: { } or φ
 - Alternate even numbers:

```
 > \{ x : N \mid x \mod 2 = 0 \cdot 2 * x \} = \{0,4,8,12,16,20,\ldots \}
```

O Squares of multiples of 4 (excluding zero):

```
 > \{ x : Z \mid (x \mod 4 = 0) \land (x > 0) \cdot x * x \} = \{16,64,144,256,... \}
```

Definition of Proposition Logic

- □ Description 宣告語句 Proposition Logic
 - OBinary-valued (true or false) about the world
 - OUsage: The values of some features cannot be sensed directly, their values can be inferred from the values of other features
- □ Difficult to represent
 - OGeneral laws, "all blue boxes are pushable"
 - \circ Negative information, "block A is not on the floor" (without saying where block A is)
 - Ouncertain information, "either block *A* is on block *B* or block *A* is on block *C*"
 - O"Help!" or "What I say is all false."

Using Constraints on Feature

- □ Consider: a robot that is able to lift a block
 - o if that block is liftable and the robot's battery power source is adequate
 - If both are satisfied, then when the robot tries to life a block it is holding, its arm moves.
- □ Formulation
 - ox1 (BATTERY_OK)
 - ox2 (LIFTABLE)
 - ox3 (MOVES)
 - o constraint in the language of the propositional calculus
 - > BATTERY_OK ∧ LIFTABLE ∧ MOVES

The Formal Language (1)

□ Elements

- Atoms
 - > Strings of characters begin true or false, for example, P, Q, R, ..., P1, P2, ON_A_B, and so on.
- Connectives
 - \gt \lor (disjunction/or), \land (conjunction/ and), \Rightarrow (implies), \neg (negation), \equiv (equivalence).
- Well-formed formula (wff), also called sentences
 - > Any atom is a wff.
 - \triangleright If P and Q are wffs, so are $P \lor Q$, $P \land Q$, $P \Rightarrow Q$, $\neg P$.

The Formal Language (2)

- □ Literal
 - \bigcirc atoms and a \neg sign in front of them, e.g. P, \neg P
- □ Clause
 - \circ Disjunction of literal, e.g. $\neg P \lor Q \lor R$
- □ *Antecedent* and *Consequent*
 - \circ In $P \Rightarrow Q$,
 - P is called the antecedent, premise, or hypothesis of the implication.
 - $\circ Q$ is called the *consequent*, or *conclusion* of the implication.
- Contrapositive
 - $\bigcirc \neg P \Rightarrow Q$ is the contrapositive $\neg Q \Rightarrow P$

Logic Semantics (1)

- □ The semantics of propositional logic are an interpretation (true/false) of any expression in propositional logic
- □ The semantics of propositional logic are also called a Boolean valuation.
- A Boolean valuation is a mapping ν from the set of propositional formulas to the set $\{T/F\}$

○
$$v$$
 ($True$) = T , v ($False$) = F
○ If v (P) = T , v (Q) = F , v (R) = F
○ v (($P \Rightarrow Q$) $\land R$) = v ($T \Rightarrow F$) $\land v$ (F) = F $\land F$ = F

Logic Semantics (2)

- □ Interpretation
 - An association of atoms with propositions
 - Each atom has *values True* or *False*.
- □ Given the values of atoms under some interpretation
 - ouse a truth table to compute a value for any wff.

Definitions of Proof (1)

- □ Proof, -
 - The sequence of wffs $\{w_1, w_2, ..., w_n\}$ is called a *proof* of *P* from a set of wffs $(\Delta = \{w_1, w_2, ..., w_n\})$
 - \triangleright iff each w_i is either in \triangle or can be inferred from a wff
 - $\circ \Delta P$
 - > A proof procedure is a way to calculate the above
 - Proof procedures are algorithms that perform "mechanical manipulations on strings of symbols.

 Δ δ delta 'dɛltə

Definitions of Proof (2)

- □ Theorem
 - $\bigcirc \Delta \vdash P$: If there is a proof of P from \triangle , P is a theorem of the set \triangle .
 - \circ Denote the set of inference rules by the letter R.
 - $\triangleright P$ can be proved from \triangle
 - $\rightarrow \Delta \mid_R P$
- □ A theory is the set of theorems that can be proven by a proof procedure.

Proof Example

 \square Given a set, \triangle , of wffs: $\{P, R, P \Rightarrow Q\}$ is a proof of $Q \wedge R$.

Propositional Truth Table (1)

 \Box Let *P* and *Q* be wffs

P	Q	¬Р	$\neg P \lor Q$	P⇒Q	$P \wedge Q$	P∨Q	
T	T	F	Т	Т	Т	T	An interpretation
T	F	F	F	F	F	T	—An interpretation
F	T	T	T	Т	F	T	
F	F	T	T	T	F	F	

Propositional Truth Table (2)

- □ If an model describes its world using n features (n atoms), then there are 2^n different value for its world.
- □ Given values for the *n* atoms, the model can be used the truth table to find the values of any wffs.
- □ Suppose the values of wffs in a set of wffs are given.
 - May be many interpretations that give each wff in a set of wffs the value *True*.

Equivalence (1)

- □ Two wffs are said to be *equivalent* iff their truth values are identical under *all* interpretations.
- □ DeMorgan's laws

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

□ Law of the contra positive

$$(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$$

 \square If $P \equiv Q$, then the following formula is valid

$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$

Equivalence (2)

□ Associative Laws

$$(P \land Q) \land R \equiv P \land (Q \land R)$$

 $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$

□ Distributive Laws

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

Equivalence (3)

$$\Box P \land \neg P \equiv F, \qquad P \lor \neg P \equiv T,$$

$$\square$$
 $P \land Q \equiv Q \land P$,

$$\square P \lor Q \equiv Q \lor P$$
,

$$\square$$
 $P \equiv \neg \neg P$,

$$\square P \Rightarrow Q \equiv \neg P \lor Q$$

$$\square P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Validity

- □ A wff is said to be *valid*, *or Tautologies*
 - It has value *True* under *all* interpretations of its constituent atoms.
 - > for all possible truth values of the propositional letters used in the formula.
 - oe.g.

$$\triangleright P \Longrightarrow P$$

$$> \neg (P \land \neg P)$$

$$> Q \lor T$$

$$\triangleright [(P \Rightarrow Q) \Rightarrow P] \Rightarrow P$$

$$ightharpoonup P \Rightarrow (Q \Rightarrow P)$$

Satisfiability

- \square An interpretation *I satisfies* a wff *W*
 - \circ if the W is assigned the True under that interpretation I.
 - there is a Boolean valuation v, v(W) = T
 - the W has a satisfying assignment I.
 - $\circ I \models W$
- □ *Model*, *M*
 - \circ An interpretation M that satisfies a wff W
 - $\circ M \models W$
- □ *Inconsistent* or *Unsatisfiable*
 - When *no* interpretation satisfies a wff, the wff is inconsistent or unsatisfiable.
 - \bigcirc e.g. F or $P \land \neg P$

Entailment

- □ Entailment: $\Delta \models w$
 - o a wff w, and a set of wffs $\Delta = \{w_1, w_2, ..., w_n\},\$
 - \circ If $I = \Delta$, then I = w
 - $\circ \Delta$ logically entails w,
 - $\circ w$ logically follows from Δ ,
 - $\circ w$ is a logical consequence of Δ .
 - \circ From premise $w_1, w_2, ..., w_n$, to conclude w
 - $\bigcirc (w_1, w_2, \dots, w_n) \models w \equiv (w_1 \land w_2 \land \dots \land w_n) \Rightarrow w$
- □ e.g.
 - $O\{P\} = P$
 - $\bigcirc \{P, P \Rightarrow Q\} = Q$
 - $\bigcirc P \wedge Q \models P$

Metatheorems

- □ Theorems about the propositional calculus
- □ Deductive theorem

If
$$\{w_1, w_2, ..., w_n\} \models w$$
, then $(w_1 \land w_2 \land ... \land w_n) \Rightarrow w$ is valid.

The PSAT Problem

- □ Propositional satisfiability (PSAT) problem
 - \circ Finding a model for a formula. (M = W)
 - Clause: A disjunction of literals
 - Conjunctive Normal Form (CNF)
 - > A formula written as a conjunction of clauses
- □ Solving the CNF PSAT problem
 - to try all of the ways to assign True and False to the atoms in the formula.
 - If there are n atoms in the formula, there are 2^n different assignments.

Proof Procedures (1)

- □ Proof procedures for propositional logic
 - o are alternate means to determine tautologies.
 - ouse the truth tables to determine tautologies.
- □ Forward proof
 - apply rules from premises to conclusions.
- Backward proof
 - o apply rules from conclusions to premises.
- □ Many proof procedures for propositional logic.
 - OHilbert Systems (axiom systems)
 - Natural Deduction
 - Resolution

Proof Procedures (2)

- □ Prove $P \Rightarrow Q$ is true, $(P \Rightarrow Q \equiv \neg P \lor Q)$
 - Otrivial proof (逕證法): prove Q is true
 - vacuous proof (假前題法): prove ¬P is true
 - Odirect proof (直接法): prove P, Q is true
 - \bigcirc indirect proof (間接法): prove $\{\neg Q \Rightarrow \neg P\}$

Hilbert Systems

- □ Also called axiom systems
 - ouse axioms and rules of inference (also called rules of derivation).
 - A proof is a finite sequence of formulas
 - > each term is either an axiom or follows from earlier terms by one of the rules of inference.
 - Three axiom (schemes)
 - $\triangleright P \Longrightarrow (Q \Longrightarrow P)$
 - \rightarrow $(P \Rightarrow (Q \Rightarrow R)) \Rightarrow ((P \Rightarrow Q) \Rightarrow (P \Rightarrow R))$
 - $\triangleright (\neg P \Rightarrow \neg Q) \Rightarrow (Q \Rightarrow P)$
 - One rule of inference: (modus ponens) $\{P, P \Rightarrow Q\}$

Hilbert Systems

$$\square (A \Rightarrow B), (B \Rightarrow C) \vdash_{H_1} (A \Rightarrow C)$$

$$\circ 1. (A \Rightarrow B)$$

$$\circ 2. (B \Rightarrow C)$$

$$\circ$$
 3. (B \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C))

$$\circ$$
4. (A \Rightarrow (B \Rightarrow C))

$$\bigcirc$$
 5. $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$ (4) and Ax-2

$$\circ$$
 6. (A \Rightarrow B) \Rightarrow (A \Rightarrow C)

$$\circ$$
 7. (A \Rightarrow C)

(2) and
$$Ax-1$$
 (3)

$$(4) \text{ and } Ax-2$$
 (5)

Deduction Theorem

- ☐ In any Hilbert System
 - with at least Axiom Schemes 1 and 2, and
 - with Modus Ponens as the only rule of inference

$$\bigcirc \{W, X\} \vdash Y \Leftrightarrow W \vdash (X \Rightarrow Y)$$

- - \circ Set out to show: $\{(P \Rightarrow Q), P\} \vdash (R \Rightarrow Q)$
 - o(1) P premise
 - \circ (2) (P \Rightarrow Q) premise
 - \circ (3) Q MP on 1 and 2
 - \circ (4) Q \Rightarrow (R \Rightarrow Q) Ax1
 - \circ (5) R \Rightarrow Q MP on 3 and 4
- □ Now we have proven $\{(P \Rightarrow Q), P\} \vdash (R \Rightarrow Q)$, using the deduction theorem, to conclude: $(P \Rightarrow Q) \vdash P \Rightarrow (R \Rightarrow Q)$

Natural Deduction (1)

- □ Natural deduction
 - o is a form of forward proof.
 - o is a collection of proof rules,
 - to infer formulas from other formulas,
 - o eventually to get from a set of premises to a conclusion.
 - $\circ p_1, p_2, p_3, \dots \vdash q$
 - the argument with premises p_1, p_2, p_3, \dots and conclusion q is valid.
 - An inference rule is a primitive valid argument form.
 - Each inference rule enables the elimination or the introduction of a logical connective

Natural Deduction (2)

```
Show: P \land Q, R \models Q \land R

○(1) P \land Q premise

○(2) R premise

○(3) Q elimination (1)

○(4) Q \land R introduction (2) (3)
```

Rule of Inference (1)

- □ Additional wffs can be produced from other ones (wffs: P and Q)
 - O Modus ponens (deductive method, 演繹法)

$$\Rightarrow \{P, P \Rightarrow Q\} \mid Q$$

Modus tollens

$$ightharpoonup \{P \Rightarrow Q, \neg Q\} \vdash \neg P$$

Introduction

$$\rightarrow \{P, Q\} \mid P \wedge Q$$

• Commutativity

$$\rightarrow \{Q \land P\} \mid P \land Q$$

Elimination

$$\rightarrow \{P \land Q\} \vdash P, \{P \land Q\} \vdash Q$$

Rule of Inference (2)

Resolution Principle (1)

- □ A powerful inference rule, (Theorem Proving)
 - \circ Prove by Resolution refutation $\Delta \omega$
 - \circ Instead, we refute $\Delta \wedge \neg \omega$
 - > Clause: (P1 ∨ P2 ∨ ... ∨ Pn)
 - Steps
 - > (1) Convert wff to set of clauses
 - \triangleright (2) Convert $\neg \omega$ to a clause.
 - > (3) Translate to CNF (Conjunctive Normal Form)
 - > (4) iterative apply resolution principle to the clauses, and add result until
 - No more resolvents can be add
 - An empty clause (false) is produced

Resolution Principle (2)

- □ (1) Convert wff to set of clauses
 - \circ Delete \Rightarrow , \Leftrightarrow

$$P \Rightarrow Q \equiv \neg P \lor Q$$

$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

○ Delete ¬

$$\Rightarrow \neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$\rightarrow \neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\rightarrow \neg \neg P \equiv P$$

- □ (2) Transfer wff into CNF
 - Put ∨ inside clause, put ∧ outside clause

$$\bigcirc P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

$$\bigcirc (P \lor \neg R) \land (P \lor Q) \Rightarrow \{(P \lor \neg R), (P \lor Q)\}$$

Resolution Principle (3)

□ Resolution principles

- ○任找恰好分別各有正負literal的二個clauses,正負literals相互 抵消,合併其餘literals
 - \rightarrow (P \lor Q) \land (R \lor ¬Q) \vdash (P \lor R): chaining
 - > R, $\neg R \lor P \vdash P$: modus ponens
 - > Chaining and modus ponens are special cases of resolution principle.
 - $-P \lor Q \lor R \lor S, \neg P \lor Q \lor W \vdash Q \lor R \lor S \lor W$
- ○如發現二個單一literal的clauses,恰分別具正負號,即已產生 矛盾現象(refutation),則可推論W成立。

Resolution Principle (4)

- □ Prove (BAT_OK, ¬MOVES, BAT_OK ∧ LIFTABLE ⇒ MOVES) | ¬ LIFTABLE
- □ Given
 - o 1. BAT_OK
 - ○2. ¬MOVES
 - \circ 3. BAT_OK \land LIFTABLE \Rightarrow MOVES

A refutation tree

- □ Convert into CNF
 - ○4. ¬BAT_OK ∨ ¬LIFTABLEV MOVES ---Clause form of 3
- □ Negation of goal:
 - o 5. LIFTABLE
- □ Perform resolution:
 - ○6. ¬BAT OK V MOVES
 - 7. ¬BAT OK (from 6, 2)

(from resolving 5 with 4)

3 8. Nil (from 7, 1)

Resolution Principle (5)

□ Horn clauses

- A Horn clause: a clause that has at most one positive literal.
- \circ Ex: P, $\neg P \lor Q$, $\neg P \lor \neg Q \lor R$, $\neg P \lor \neg R$
- Three types of Horn clauses.
 - > A single atom: called a "fact"
 - > An implication: called a "rule"
 - > A set of negative literals: called "goal"
- There are linear-time deduction algorithms for propositional Horn clauses.

Consistency

- □ A proof procedure is consistent
 - o if it is not possible to prove both w and $\neg w$
 - onot both -w and -w.

Soundness and Completeness

- \square for any set of wffs Δ , and wff w,
 - $\bigcirc (\Delta \mid_{\mathbf{R}} w) \Rightarrow (\Delta \models w)$
 - the set of inference rules, R, is *sound*
 - \circ we can find a proof of w from Δ , w logically follows from Δ ..
- \square for any set of wffs Δ , and wff w,
 - $\bigcirc (\Delta \models w) \Rightarrow (\Delta \models_{\mathbf{R}} w),$
 - that *R* is *complete*.
 - Eventually/whenever $\Delta \models w$, there exist (complete search) a proof of w from Δ using the set of inference rules.
- □ Inference rules, R, are sound and complete
 - $\bigcirc (\Delta \models_{\mathbf{R}} w) \Rightarrow (\Delta \models w)$, and $(\Delta \models w) \Rightarrow (\Delta \models_{\mathbf{R}} w)$,

Specifying with Propositions

- □ Consider the following text:
 - The system is in alert state only when it is waiting for an intruder and is on practice alert.
 - > alert ⇔ waiting ∧ practice
 - If the system is in teaching mode and is on practice alert, then it is in alert state.
 - > teaching \land practice \Rightarrow alert
 - The system will be in teaching mode and on practice alert and not waiting for an intruder.
 - > teaching \land practice $\land \neg$ alert

Detecting Contradictions

- □ From the previous system:
 - alert ⇔ waiting ∧ practice
 - \bigcirc teaching \land practice \Rightarrow alert
 - \bigcirc teaching \land practice $\land \neg$ alert
- □ The 2 and 3 propositions yield a contradiction
 - oalert ∧ ¬alert ...contradiction!
- □ The first proposition yields another contradiction:
 - \circ teaching \wedge practice $\wedge \neg$ (waiting \wedge practice)
 - Simplifies to
 - o alert ∧ ¬waiting ...contradiction
 - because alert requires waiting!

Proposition Example (1)

- □ (1) If the train arrives late and there are no taxis at the station, then John is late for his meeting.
- \square (2) John is not late for his meeting.
- \square (3) The train did arrive late.
- □ (4) Therefore, there were taxis at the station.
 - OP: the train arrives late
 - OQ: there are taxis at the station
 - OR: John is late for his meeting
 - \supset (1) P $\land \neg Q \Rightarrow R$
 - \circ (2) \neg R
 - \circ (3) P
 - \bigcirc Prove (4) $\{P \land \neg Q \Rightarrow R, \neg R, P\} \vdash Q$

Proposition Example (2)

- □ Prove (4) $\{P \land \neg Q \Rightarrow R, \neg R, P\}$ Q
 - Assert ¬Q
 - $\circ P \wedge \neg Q \Rightarrow R$,
 - Q C
 - $\circ R$
 - But ¬R contradiction
 - Assert false, Q

Not Specify with Propositions

- □ Fido is a dog, dogs like bones so Fido likes bones.
 - O Propositional analysis of this sentence yields:
 - > Fido is a dog (propos. 1) --- P
 - > Dogs like bones (propos. 2) --- Q
 - > Fido likes bones (propos. 3) --- R
 - Cannot derive R from P and Q using only propositional calculus
 - Predicate Calculus
 - > Dog (Fido)=true;
 - > Dog (lecturer)=false

Exercise I

- $\square (1) \{ (P \land Q) \land R, S \land T \} \vdash (Q \land S)$
- $\square (2) \{P, \neg \neg (Q \land R)\} | \neg (P \land R) \rangle$
- $\square (3) \{ \neg P \Rightarrow Q, \neg Q) \} \vdash (P)$
- $\Box (4) \{ (P \land Q) \Rightarrow R \} \vdash (P \Rightarrow (Q \Rightarrow R))$
- $\Box (5) \{P \land (Q \Rightarrow R)\} \vdash (P \land Q \Rightarrow R)$
- $\square (6) \{ P \Rightarrow Q, P \Rightarrow \neg Q \} \vdash (\neg P)$

Exercise II

- Knowledge Base
 - GasInTank ∧ FuelLineOK ⇒ GasInEngine
 - GasInEngine ∧ GoodSpark ⇒ EngineRuns
 - PowerToPlugs ∧ PlugsClean ⇒ GoodSpark
 - \bigcirc BatteryCharged \land CablesOK \Rightarrow PowerToPlugs
- □ Observed:
 - o¬ EngineRuns,
 - GasInTank, PlugsClean, BatteryCharged
- □ Prove:
 - ○¬ FuelLineOK ∨ ¬ CablesOK

Exercise II

- □ Knowledge Base and Observations:
 - (¬ GasInTank ∨ ¬ FuelLineOK ∨ GasInEngine)
 - (¬ GasInEngine ∨ ¬ GoodSpark ∨ EngineRuns)
 - (¬ PowerToPlugs ∨ ¬ PlugsClean ∨ GoodSpark)
 - (¬ BatteryCharged ∨ ¬ CablesOK ∨ PowerToPlugs)
 - ○(¬EngineRuns)
 - ○(GasInTank)
 - O(PlugsClean)
 - ○(BatteryCharged)
- □ Negation of Conclusion:
 - ○(FuelLineOK)
 - o(CablesOK)