HW8

Sam Olson

$\mathbf{Q}\mathbf{1}$

Suppose there is one observation X with pdf

$$f(x) = 2\theta(1-2x) + 2x$$
, for $x \in [0,1]$, $\theta \in [0,1]$.

Find the **Bayes test** for

$$H_0: \theta \le 0.4$$
 vs. $H_1: \theta > 0.4$

with respect to the **uniform prior** on [0,1].

$\mathbf{Q2}$

Problem 9.13, Casella and Berger (2nd Edition)

Let X be a single observation from the $\mathrm{Beta}(\theta,1)$ pdf.

a)

Let $Y = -(\log X)^{-1}$. Evaluate the confidence coefficient of the set [y/2, y].

Answer

b)

Find a pivotal quantity and use it to set up a confidence interval having the same confidence coefficient as the interval in part (a).

Answer

c)

Compare the two confidence intervals.

$\mathbf{Q3}$

Problem 9.16, Casella and Berger (2nd Edition)

Let X_1, \ldots, X_n be i.i.d. $N(\theta, \sigma^2)$, where σ^2 is known. For each of the following hypotheses, write out the acceptance region of a level α test and the $1-\alpha$ confidence interval that results from inverting the test.

a)

 $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$

Answer

b)

 $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_0$

Answer

c)

 $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$

$\mathbf{Q4}$

Problem 9.11, Casella and Berger (2nd Edition)

If T is a continuous random variable with cdf $F_T(t \mid \theta)$ and $\alpha_1 + \alpha_2 = \alpha$, show that an α -level acceptance region of the hypothesis $H_0: \theta = \theta_0$ is

$$\{t : \alpha_1 \le F_T(t \mid \theta_0) \le 1 - \alpha_2\},\$$

with associated confidence $1-\alpha$ set

$$\{\theta: \alpha_1 \leq F_T(t \mid \theta) \leq 1 - \alpha_2\}.$$