Question 3 (15 points):

A number in a 16-bit floating pointing format is represented as follows: the most significant bit is the sign bit, next there are 5 bits used for the exponent, and 10 bits for the fraction. This format is illustrated below:

15	14	10	9
S		biased exponent	fraction

The exponent is expressed in excess-16 format (also known as a bias representation). Given the binary representation above, the decimal value of the number represented can be computed by the following expression:

$$N = \begin{cases} (-1)^S \times 0.0 & \text{if } biasedexponent = 0 \text{ and } fraction = 0 \\ (-1)^S \times 0.fraction \times 2^{-14} & \text{if } biasedexponent = 0 \text{ and } fraction \neq 0 \\ (-1)^S \times 1.fraction \times 2^{biasedexponent-15} & \text{if } 0 < biasedexponent < 31 \\ (-1)^S \times \infty & \text{if } biasedexponent = 31 \text{ and } fraction = 0 \\ NaN & \text{if } biasedexponent = 31 \text{ and } fraction \neq 0 \end{cases}$$

1. (10 points) Complete the table below with the missing hexadecimal and decimal values for values in this representation.

Hexadecimal	Decimal		
0xC808	-8.0625		
0x0001	$2^{-24} = 5.96 \times 10^{-8}$		
0×7C00	+∞		
0x7BFF	2 ¹⁶ -2 ⁵		

The printed version of the exam had a typo, the decimal value in the last row of the table was printed as $2^{31} - 220$. That number cannot be represented in the 16-bit floating point representation. The idea of the question was to have the following value in the last row:

2. (5 points) In this representation $A = 0x7800 = 32768_{10}$ and $B = 0x4CC0 = 19_{10}$ Assume a floating-point unit uses the NVIDIA format presented above. This unit has one guard, one round, and one sticky bit. What is the value of A + B, expressed in normalized base-two notation, computed by this machine?

```
A = 0111 1000 0000 0000 = 1.0 \times 2^{30-15} = 1.0 \times 2^{15}
B = 0100 1100 1100 0000 = 1.0011 \times 2^{19-15} = 1.0011 \times 2^4
Denormalizing B to make the exponents identical:
B = 0.000 0000 0001 0011
```

	mant	issa	Guard	Round Sticky		
A = +	1.0000	0000	001	0	0	0
B = +	0.0000	0000	001	1	0	1
A+B =	1.0000	0000	001	1	0	1

Now we have to round up because of the sticky bit. Therefore the result is: