[2019–2020] группа: Геом-10 26 ноября 2019 г.

Серия 8. Проективные преобразования, часть 2

Теорема. Существует проективное преобразование, сохраняющее данную окружность ω и переводящее данную точку X внутри неё в её центр. Исключительной прямой этого преобразования служит поляра точки X относительно ω .

Наблюдение. На прямой, параллельной исключительной, сохраняются отношения отрезков.

- **1.** Внутри окружности отмечена точка S, через которую проходят хорды AC, BD, A'C', B'D'. Отрезки AB и A'B' пересекаются в точке X, отрезки CD и C'D' в точке Y. Докажите, что точки X, Y, S коллинеарны.
- **2.** Вписанная в треугольник ABC окружность ω касается его сторон BC, CA, AB в точках A_1 , B_1 , C_1 . Внутри окружности ω отмечена точка P. Отрезки AP, BP, CP пересекают ω в точках A', B', C'. Докажите, что прямые A_1A' , B_1B' , C_1C' пересекаются в одной точке. Обратите внимание, что поляра точки P может пересекать треугольник ABC.
- **3.** Вписанная окружность ω треугольника ABC касается его сторон BC, CA, AB в точках A_1 , B_1 , C_1 соответственно. Прямые BB_1 и CC_1 пересекаются в точке J. Прямая AA_1 второй раз пересекает окружность ω в точке T. Касательная к ω в точке T пересекает стороны AB, AC в точках P и Q. Отрезки PJ и QJ пересекают ω в точках X и Y. Докажите, что прямые PQ, XY, BC пересекаются в одной точке или попарно параллельны.
- **4.** (Эта задача была на сборах, но попробуйте её переосмыслить в контексте проективных преобразований.) Медиана AK треугольника ABC пересекает вписанную окружность ω в точках M и N. Прямые, проходящие через точки M и N параллельно прямой BC, вторично пересекают окружность ω в точках X и Y соответственно ($M \neq X, N \neq Y$). Прямы е AX и AY пересекают отрезок BC в точках P и Q. Докажите, что BP = CQ.
- **5.** Выпуклый четырехугольник ABCD описан около окружности ω . Пусть PQ- диаметр ω , перпендикулярный прямой AC. Известно, что прямые BP и DQ пересекаются в точке X, а прямые BQ и DP- в точке Y. Докажите, что точки X и Y лежат на прямой AC.
- **6.** В треугольнике ABC проведены чевианы AA_1 , BB_1 , CC_1 , пересекающиеся в одной точке. Из точек A_1 , B_1 , C_1 проведены касательные ко вписанной окружности, отличные от сторон треугольника. Соответственные точки касания обозначены через A_2 , B_2 , C_2 . Докажите, что прямые AA_2 , BB_2 , CC_2 пересекаются в одной точке.
- 7. Окружность, вписанная в треугольник ABC, касается сторон BC и AC в точках D и E соответственно. Пусть P точка на меньшей дуге DE окружности такая, что $\angle APE = \angle DPB$. Отрезки AP и BP пересекают отрезок DE в точках K и L соответственно. Докажите, что 2KL = DE.