Pulsar timing in Extreme Mass Ratio Binaries

Tom Kimpson w/, Kinwah Wu, Silvia Zane.

July 2, 2019

Mullard Space Science Laboratory, UCL

A Problem

GR is incomplete

- Field equations = Non-unique
- Breaks down: Singularities + Quantum Gravity

Strong vs. Weak fields

Weak Field

$$\epsilon \propto \frac{M}{r}$$

$$\epsilon \sim 10^{-10}$$

$$\epsilon \sim 10^{-6}$$

$$\epsilon \sim 10^{0}$$

Strong Field

How can we probe strong fields?

- Extreme Mass Ratio Binary (EMRB)
- Event Horizon Clock

Strong-field probe

Scientific prospects

3 important parameters:

$$M, \chi, Q$$

Fundamental Physics

- No Hair Theorem ($Q=-\chi^2$)
- Cosmic Censorship Conjecture ($\chi \leq M^2$)

Astrophysics

- Astrophysical BH = Kerr solution?
- Constrain low end of $M-\sigma$ relation / Existence of IMBH

Hunting Grounds

- · Galactic Centre
- · Globular Clusters

Detection Prospects

- $\cdot \lesssim 10^4~\text{PSR at} < 1~\text{pc}$ (Wharton et al. 2012, ApJ 753:108, Rajwade et al. 2017, MNRAS 471:730)
- Closest semi-major axis \lesssim 100 AU
- Closest pericentre distance \sim 2 AU (Zhang et al. 2014, ApJ 784:106)

Detection Prospects

- $\cdot \lesssim 10^4~\text{PSR at} < 1~\text{pc}$ (Wharton et al. 2012, ApJ 753:108, Rajwade et al. 2017, MNRAS 471:730)
- Closest semi-major axis \lesssim 100 AU
- Closest pericentre distance \sim 2 AU (Zhang et al. 2014, ApJ 784:106)

No such PSR-EMRB yet detected!

This Work

Goal: Use the next-generation radio telescopes to time a pulsar in orbit around a massive central black hole.

Require theoretical basis for PSR Timing Signal

This Work: Why?

- · Detection. e.g. Are our algorithms good enough?
- · Modelling. i.e. GR predictions vs. observation

This Work: How?

Require theoretical basis for PSR Timing Signal

Behaviour of light + Orbital Dynamics = Timing signal

This Work: How?

Require theoretical basis for PSR Timing Signal

Behaviour of light + Orbital Dynamics = Timing signal

Ray Tracing

This Work: How?

Require theoretical basis for PSR Timing Signal

Behaviour of light + Orbital Dynamics = Timing signal

PSR Orbital Dynamics

- Textbook GR: point particles.
- Real pulsars \neq point particles!

Creating the skeleton

$$T^{\mu\nu}_{:\nu} = 0$$

Multipole expansion to dipole order:

$$\frac{Dp^{\mu}}{d\tau} = -\frac{1}{2}R^{\mu}_{\nu\alpha\beta}u^{\nu}s^{\alpha\beta}$$

$$\frac{Ds^{\mu\nu}}{d\tau} = p^{\mu}u^{\nu} - p^{\nu}u^{\mu}$$

(Mathisson 1937, Papetrou 1951, Dixon 1974)

Equations are indeterminate

Choosing a centre of mass

Multipole expansion defined w.r.t some reference worldline $z^{\alpha}(\tau)$. Centre of mass is observer dependent.

How to choose a reference worldline?

Spin Couplings

- · Spin-spin
- Spin-orbit
- Spin-curvature

Orbital Dynamics: circular

Orbital Dynamics: eccentric

Spin Precession

Putting it all together...

Behaviour of light + Orbital Dynamics = Timing signal

Putting it all together...

Behaviour of light + Orbital Dynamics = Timing signal

Optimization problem

$$f(\alpha, \beta)$$

Effects to consider

- · Gravitational lensing
- · Primary/Secondary rays
- · Influence of plasma: temporal/spatial dispersion
- · Gravitational/Relativistic time dilation
- · Orbital Dynamics
- · Spin-curvature coupling (+spin-spin, spin-orbit)
- · Spin precession
- Relativistic aberration

Photon ToA, pulse profile, intensity, observability

Effects to consider

- Gravitational lensing
- Primary/Secondary rays
- Influence of plasma: temporal/spatial dispersion
- · Gravitational/Relativistic time dilation
- · Orbital Dynamics
- · Spin-curvature coupling (+spin-spin, spin-orbit)
- · Spin precession
- Relativistic aberration

Photon ToA, pulse profile, intensity, observability

Gravitational Bending

- Deviation from straight lines
- Primary/Secondary Rays

Plasma: spatial dispersion

Summary

- PSR-EMRB = precision strong-gravity probes
- Require fully relativistic $t \nu$ model
- Open question: How good are current methods?

References:

Kimpson et al. 2019, doi:10.1093/mnras/stz138 Kimpson et al. 2019, doi:10.1093/mnras/stz845

Putting it all together...

- Pulsar emission \neq isotropic
- · Find intersection with radiation point

$$x_{\rm rad}^i = R_{\rm PSR} \hat{\boldsymbol{\mathsf{n}}} + x_{\rm pulsar}^i$$

·
$$\hat{\mathbf{n}} = \hat{\mathbf{n}}(S_{\theta}(\tau), \psi)$$

Aberration

- 'Seen' if $\omega < \omega_{\rm C}$
- Global $\omega \neq \operatorname{Local} \omega$
- Transform to coming frame

