МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра ЕОМ

3BiT

Лабораторна робота 1 з дисципліни «Моделювання комп'ютерних систем» Варіант 27

> Виконав: ст.гр. КІ-202 Хомин П. Л. Прийняв: Козак Н. Б.

Львів – 2024 **Лабораторна робота №1** **Тема роботи:** Ознайомлення із середовищем Xilinx ISE. Ознайомлення із лабораторним стендом Elbert V2 – Spartan 3A FPGA.

Мета роботи: Використовуючи компоненти з бібліотеки, реалізувати дешифратор та просимулювати його роботу.

Варіант 17:

in_1	in_0	out_0	out_1	out_2	out_3	out_4	out_5
0	0	1	1	0	0	1	0
0	1	1	1	0	1	0	0
1	0	0	1	1	1	0	0
1	1	1	0	0	0	1	1

Виконання роботи

За допомогою елементів OUT_0: 2AБO з інвертором, OUT_1: 2AБO з двома інверторами, OUT_2: 2I з інвертором, OUT_3: два 2I з інвертором та 2 АБО, OUT_4: 2I, 2I з інверторами та 2AБO, OUT_5: 2I створюємо схему. Схема зображена на рис.1.

Рис.1. Реалізована схема згідно завдання.

Після цього створив файл з розширенням .ucf, в якому міститься даний код:

#	+-	++	+	++	+	+-	++	+-	++	+	+-	++	-+	+-	+-	++	-+	+-	++	-+	-+	+-	+-	+-	++	-+	+-	+-1	++	-+	+	++	++	+	+-	+-	++	+-	++	-+	+-	++	+	+-	++	+	+-	++	+	+-	++	++	+-	+-	++	+-	+-	++	+
+	+-	++	-+	+-	++	+-	++	+-	++	-+	+-	++	+ +	-+-	+-	+-	++	-#																																									

[#] This file is a .ucf for ElbertV2 Development Board

```
# To use it in your project:
# * Remove or comment the lines corresponding to unused pins in the project
# * Rename the used signals according to the your project
*************************
               UCF for ElbertV2 Development Board
**************************
CONFIG VCCAUX = "3.3";
# Clock 12 MHz
# NET "Clk"
             LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
################
             LED
################
 NET "OUT_0"
             LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT_1"
             LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT_2"
             LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT_3"
             LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT_4"
             LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "OUT_5"
             LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "LED[6]"
              LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
              LOC = P55 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
 NET "LED[7]"
################
            DP Switches
################
 NET "IN 0"
           LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =
12;
 NET "IN_1"
           LOC = P69 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =
12:
# NET "DPSwitch[2]"
                LOC = P68 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
DRIVE = 12;
 NET "DPSwitch[3]"
                LOC = P64 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
DRIVE = 12;
# NET "DPSwitch[4]"
                LOC = P63 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
DRIVE = 12;
```

```
# NET "DPSwitch[5]" LOC = P60 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
DRIVE = 12;

# NET "DPSwitch[6]" LOC = P59 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
DRIVE = 12;

# NET "DPSwitch[7]" LOC = P58 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW |
DRIVE = 12;
```

Після запуску в режимі симуляції ми отримали такий графік:

Рис.2. симуляції роботи схеми з встановленими вхідними значеннями протягом 1000 ns.

На ньому ми можемо побачити, що всі задані варіантом комбінації збігаються. **Висновок:** Я познайомився із середовищем Xilinx, змоделював схему згідно завдання та протестував її на тестовому стенді.