太陽フレア高エネルギー現象の電波観測

簑島 敬(海洋研究開発機構)

内容

- ・太陽フレア電波のおさらい
- ・太陽フレア電波観測研究の進展
- ALMAで狙うサイエンスターゲット

太陽フレア

- 加熱されたプラズマ からの熱的放射
- ・加速された電子から の非熱的放射
- ・ミリ波電波は非熱的放射

Kane (1974)

野辺山太陽電波

http://solar.nro.nao.ac.jp/

偏波計(NoRP)

7波長で太陽全面からの 放射を観測

電波ヘリオグラフ(NoRH)

2波長で太陽の2D画像を取得

NoRH vs. ALMA

下条さんスライドより抜粋

	NoRH	ALMA (Band 3)
波長	17 GHz, 34 GHz	84-116 GHz の間の4波長
空間分解能	10"@17 GHz 5"@34 GHz	0.38" @ 100 GHz(*1)
視野	太陽全面	62"@ 100 GHz(*2)
時間分解能	> 100 ms	> 32 ms
円偏光観測	Yes(17GHz)	No

*1:太陽観測モード時であって、ALMAの最高性能ではない

*2:大フレアの空間スケールは~100"

フレアのミリ波放射機構

- ジャイロシンクロトロン(GS)放射(Ramaty 1969)
 - 準相対論的電子のシンクロトロン放射
- 観測波長と現場のプラズマ環境の兼ね合いで、特性が大きく変わる

フレアのミリ波放射機構

NoRP観測(Minoshima+ 2008)

周波数 (GHz)

シンボルは観測 実線はフィッティング 数値計算(Fleishman+ 2003)

v_B: ジャイロ周波数

フレアミリ波放射のパラメータ

- 放射電子
 - 数密度
 - ・エネルギースペクトル
 - ・ピッチ角分布
- ●背景場
 - 磁場強度
 - ・磁力線と観測者の成す角
 - プラズマ密度

フレアミリ波放射の空間分布

NoRH 34G (Yokoyama+ 2002)

観測周波数固定

- ●高エネルギー電子@弱磁場
- ●低エネルギー電子@強磁場

ALMAでは何が見えそう?

NoRHでフレアを見てきた人々にとっては、未 知の周波数帯100 GHz

>100 GHz 電波の先行観測

Solar Submillimeter Telescope (SST; Kaufmann+ 2001)

Figures from Kaufmann+ (2004)

- Zhou+ (2011)から抜粋
 - <100 GHz のGSの外 挿っぽいイベント => ~10 MeV電子@コロ ナ!?
 - 左図のようなイベント=> 高エネルギー電子@強磁場領域?

太陽フレア電波観測研究の進展

- ・硬X線との共同観測

電子分布

- •数密度
- •エネルギー分布
- •ピッチ角分布

Figures from Yokoyama+ (2002), Fleishman+ (2003), Minoshima+ (2008)

硬X線•電波共同観測

E.g., Minoshima+ (2008); Song+ (2011); Kawate+ (2012)

高エネルギー電子伝播の観測

Yokoyama+ (2002)

高時間分解能(0.1s) 空間サイズ大

- 6x10³ km/s = ホイッスラーに捕捉された電子?
 (Stepanov+ 2007)
- 9x10⁴ km/s = ピッチ角70度の電子?

高エネルギー電子伝播の検証

Minoshima+ (2008)

放射分布

- ・左:注入電子の ピッチ角が特定の 場合
- •右:注入電子の ピッチ角が等方的

- 電子輸送数値計算 + GS計算
- ・加速された電子ピッチ角は等方的

電波源分布と注入電子分布

・ループに沿った強度分布 が時々刻々変化

電波源分布と注入電子分布

観測

•フォッカー・プラン ク輸送モデル

$$\frac{df}{dt} = \frac{\partial}{\partial \mu} \left(D_{\mu\mu} \frac{\partial f}{\partial \mu} \right) + S,$$

$$f = f(r, E, \mu; t).$$

•GS数值計算

Reznikova+ (2009)

- 注入電子分布Sの推定 => 加速モデルへ制約
- このイベントでは、ビーム+等方

電子加速・輸送のモデリング

20 keV電子密度

- ・断熱加速とピッチ角散乱
- ・加速・輸送・散逸のバランスで高度分布が決まる

Minoshima+ (2010; 2011)

電波源の高度分布

後藤智子(2012)修士論文

- 断熱加速が始まる前か ら高エネルギー電子は 存在
- 高エネルギー電子を速 く散乱する機構を示唆

— 17 GHz Radio Flux @end [SFU] 34 GHz 100 10 $\tau_{17} = 656 [s]$

 $\tau_{34} = 532 [s]$

ALMAで狙うサイエンスターゲット

- フレア 100 GHz 放射の空間分解は世界初
- 利点
 - 超高空間分解能 0.38"@ 100 GHz
 - 超高時間分解能 > 32 ms
- 弱点
 - 観測視野 62"@ 100 GHz
 - 観測占有時間

小規模で頻発するマイクロフレア

•個人的にはリムイベントのコロナ観測が魅力

>100 GHz放射源の特定

- ~10 MeV電子@コロナ!?
- 高エネルギー電子 @強磁場領域?

- ・画像合成で解決
- コロナで光っていればインパクト大

Yokoyama+ (2002)

電波源高速伝播が観測電波源の空間分解 された唯一のイベント

1-104

- NoRH: 大サイズ限定
 - 100秒角を10-20点で分解
- ALMA
 - ループを最大~100点で分解
- 5•10⁴
 (km)

 5•10⁴

 4•10⁴

 2•10⁴
 - 00:56:05 00:56:10 00:56:15 00:56:20 Start Time (28-Aug-99 00:56:04)
- 高速伝播:電子加速場所の決定
- ・低速伝播:ホイッスラー伝播?

温度異方性に伴うホイッスラー波動伝播の数値シミュレーション(Hikishima+ 2009)

電波源の高度分布

- HXRと17Gの関係は Minoshima+ (2012)でOK. 34G は不明
- NoRH34 GHz は 17 GHz より上空(後藤, 2012)
 - ・上空での電子加速
 - ・高エネルギー電子の速い散乱
 - NoRHでは解像度不十分
- さらに高エネルギーの 100 GHz は? ピーク高度、時間スケール
 - 空間分解、スペクトル分解
 - 10点程度で分解

加速現場@コロナ上空

1000 km 以下の多く の加速領域 (Aschwanden 2002)

- •初期加速+第2加速•輸送
- ALMA 空間分解能 0.38" = 266 km で初期加速領域を分解できるか?

まとめ

- 太陽フレア電波のおさらい
 - 非熱的電子のジャイロシンクロトロン(GS)放射
 - ALMA 100GHz では、コロナかループ足元
- ・太陽フレア電波観測研究の進展
 - 電子数値モデル+GS計算+観測で、電子分布関数の推定
- ALMAで狙うサイエンスターゲット
 - ・放射源の特定
 - ・電波源の空間分解観測
 - 加速現場そのものを分解出来るかも?