

Program Correctness

Block 3

Jorge A. Pérez (based on slides by Arnold Meijster)

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Outline

From Last Lecture
Euclid's algorithm (gcd)

Initialization and Active Finalization

Exercise 6.5

Exercise 6.7

How to find a good invariant?

Heuristic: Split conjuncts

Heuristic: Replace constant by variable

Heuristic: Generalization

Examples

The starting point is the specification $\{P\}$ T $\{Q\}$.

- 0 Based on the specification, we decide that we need a loop.
- 1 Choose an invariant J and a guard B such that

$$J \wedge \neg B \Rightarrow Q$$
 (aka finalization)

2 Initialization: Find a command T_0 such that

$$\{P\}$$
 T_0 $\{J\}$

3 Variant function: Choose a $vf \in \mathbb{Z}$ and prove

$$J \wedge B \Rightarrow vf > 0$$

4 Body of the loop: Find a command S such that

$$\{J \wedge B \wedge vf = V\} S \{J \wedge vf < V\}$$

5 Conclude that

$$\{P\}$$
 T_0 ; while B do S end $\{Q\}$

We consider the following specification for computing the greatest common divisor of x and y, denoted gcd(x, y):

```
egin{aligned} 	extsf{Var} & x, \; y: \; \mathbb{Z}; \ & \{P: \; x>0 \wedge y>0 \wedge \gcd(x,y)=Z\} \ & S \ & \{Q: \; x=Z\} \end{aligned}
```


Before we derive an algorithm, recall that if $x,y\in\mathbb{Z}$ and y>0, then x div y and x mod y are integers that satisfy

$$(x = y \cdot (x \text{ div } y) + x \text{ mod } y) \land 0 \le x \text{ mod } y < y$$

Before we derive an algorithm, recall that if $x,y\in\mathbb{Z}$ and y>0, then x div y and x mod y are integers that satisfy

$$(x = y \cdot (x \text{ div } y) + x \text{ mod } y) \wedge 0 \leq x \text{ mod } y < y$$

Also, if z divides y, then $(z \text{ divides } i \cdot y + j) \equiv (z \text{ divides } j)$.

Before we derive an algorithm, recall that if $x, y \in \mathbb{Z}$ and y > 0, then x div y and x mod y are integers that satisfy

$$(x = y \cdot (x \text{ div } y) + x \text{ mod } y) \land 0 \le x \text{ mod } y < y$$

Also, if z divides y, then $(z \text{ divides } i \cdot y + j) \equiv (z \text{ divides } j)$.

Using these facts, we can prove that

- every common divisor of x and y>0 is also
- a common divisor of y and $x \mod y$ (and vice versa).

Before we derive an algorithm, recall that if $x, y \in \mathbb{Z}$ and y > 0, then x div y and x mod y are integers that satisfy

$$(x = y \cdot (x \mathsf{\ div\ } y) + x \mathsf{\ mod\ } y) \wedge 0 \leq x \mathsf{\ mod\ } y < y$$

Also, if z divides y, then (z divides $i \cdot y + j$) \equiv (z divides j).

Using these facts, we can prove that

- every common divisor of x and y>0 is also
- a common divisor of y and $x \mod y$ (and vice versa).

We can therefore use the recurrence:

$$egin{array}{lll} x>0 &\Rightarrow& \gcd(x,0)=x \ y>0 &\Rightarrow& \gcd(x,y)=\gcd(y,x mod y) \end{array}$$


```
egin{aligned} \{P: \; x>0 \wedge y>0 \wedge \gcd(x,y)=Z\} \ S \ \{Q: \; x=Z\} \end{aligned}
```

0 We decide that we need a **while**: Using the recurrence we expect to decrease the values of x and y iteratively.


```
egin{aligned} \{P: \; x>0 \wedge y>0 \wedge \gcd(x,y)=Z\} \ S \ \{Q: \; x=Z\} \end{aligned}
```

- 0 We decide that we need a **while**: Using the recurrence we expect to decrease the values of x and y iteratively.
- 1 Choose an invariant J and a guard B such that $J \wedge \neg B \Rightarrow Q$.

$$J: x > 0 \land y \ge 0 \land \gcd(x, y) = Z$$
 $B: y \ne 0$

Notice:

$$J \wedge \neg B \equiv x > 0 \wedge y \geq 0 \wedge \gcd(x,y) = Z \wedge y = 0$$
 {logic; substitution $y = 0$ } $\Rightarrow x > 0 \wedge \gcd(x,0) = Z$ { $\gcd(x,0) = x$ } $\Rightarrow Q: x = Z$

Up to here:

$$egin{aligned} P:x>0 \wedge y>0 \wedge \gcd(x,y) &= Z\ J:x>0 \wedge y \geq 0 \wedge \gcd(x,y) &= Z\ B:y
eq 0 \end{aligned}$$

- 2 Initialization: Find a command T_0 such that $\{P\}$ T_0 $\{J\}$. Because $y > 0 \Rightarrow y \geq 0$, we have $P \Rightarrow J$. Therefore, initialization is not necessary, and $T_0 = \text{skip}$.
- 3 Variant function: Choose a $vf \in \mathbb{Z}$ and prove $J \wedge B \Rightarrow vf \geq 0$ Since J ensures $y \geq 0$, we can simply choose vf = y. Clearly, we have: $J \wedge B \Rightarrow J \Rightarrow y \geq 0 \equiv vf \geq 0$.

$$\{J \wedge B \wedge vf = V\}$$

$$\{J \wedge vf < V\}$$

$$egin{aligned} \{J \wedge B \wedge vf &= V\} \ & ext{(* definitions } J,\,B,\, ext{and } vf ext{*)} \ \{\underbrace{x > 0 \wedge y \geq 0 \wedge \gcd(x,y) = Z}_{J} \ \wedge \ y
eq 0 \wedge y = V\} \end{aligned}$$


```
 \begin{cases} J \wedge B \wedge vf = V \} \\ \text{(* definitions } J, B, \text{ and } vf \text{ *)} \\ \{\underline{x > 0 \wedge y \geq 0 \wedge \gcd(x,y) = Z} \ \wedge \ y \neq 0 \wedge y = V \} \end{cases}   (\text{* recurrence; } y > 0 \Rightarrow \gcd(x,y) = \gcd(y,x \text{ mod } y) \text{ *)} \\ \{y > 0 \wedge \gcd(y,x \text{ mod } y) = Z \wedge 0 \leq x \text{ mod } y < y = V \}
```


4 Body: Find S such that $\{J \land B \land vf = V\}$ S $\{J \land vf < V\}$ $\{J \land B \land vf = V\}$ (* definitions J, B, and vf *) $\{x > 0 \land y \ge 0 \land \gcd(x,y) = Z \land y \ne 0 \land y = V\}$ (* recurrence; $y > 0 \Rightarrow \gcd(x,y) = \gcd(y,x \bmod y)$ *) $\{y > 0 \land \gcd(y,x \bmod y) = Z \land 0 \le x \bmod y < y = V\}$ $m := x \bmod y$; $\{y > 0 \land \gcd(y,m) = Z \land 0 < m < y = V\}$

$$\{J \wedge vf < V\}$$

4 Body: Find S such that $\{J \land B \land vf = V\}$ S $\{J \land vf < V\}$ $\{J \wedge B \wedge vf = V\}$ (* definitions J, B, and vf *) $\{x>0 \land y\geq 0 \land \gcd(x,y)=Z \ \land \ y\neq 0 \land y=V\}$ (* recurrence; $y > 0 \Rightarrow \gcd(x, y) = \gcd(y, x \bmod y)$ *) $\{y > 0 \land \gcd(y, x \bmod y) = Z \land 0 \le x \bmod y \le y = V\}$ $m:=x \bmod y$: $\{y > 0 \land \gcd(y, m) = Z \land 0 \le m \le y = V\}$ (* logic *) $\{y > 0 \land \gcd(y, m) = Z \land m > 0 \land m < V\}$

$$\{J \wedge vf < V\}$$

4 Body: Find S such that $\{J \land B \land vf = V\}$ S $\{J \land vf < V\}$ $\{J \wedge B \wedge vf = V\}$ (* definitions J, B, and vf *) $\{x>0 \land y\geq 0 \land \gcd(x,y)=Z \ \land \ y\neq 0 \land y=V\}$ (* recurrence; $y > 0 \Rightarrow \gcd(x, y) = \gcd(y, x \bmod y)$ *) $\{y > 0 \land \gcd(y, x \bmod y) = Z \land 0 \le x \bmod y \le y = V\}$ $m:=x \bmod y$: $\{y > 0 \land \gcd(y, m) = Z \land 0 \le m \le y = V\}$ (* logic *) $\{y > 0 \land \gcd(y, m) = Z \land m > 0 \land m < V\}$ x := y; $\{x>0 \land \gcd(x,m)=Z \land m>0 \land m < V\}$

$$\{J \wedge vf < V\}$$

4 Body: Find S such that $\{J \land B \land vf = V\}$ S $\{J \land vf < V\}$ $\{J \wedge B \wedge vf = V\}$ (* definitions J, B, and vf *) $\{x>0 \land y\geq 0 \land \gcd(x,y)=Z \ \land \ y\neq 0 \land y=V\}$ (* recurrence; $y > 0 \Rightarrow \gcd(x, y) = \gcd(y, x \bmod y)$ *) $\{y > 0 \land \gcd(y, x \bmod y) = Z \land 0 \le x \bmod y \le y = V\}$ $m:=x \bmod y$: $\{y > 0 \land \gcd(y, m) = Z \land 0 \le m \le y = V\}$ (* logic *) $\{y > 0 \land \gcd(y, m) = Z \land m > 0 \land m < V\}$ x := y; $\{x>0 \land \gcd(x,m)=Z \land m>0 \land m < V\}$ y := m; $\{x>0 \land \gcd(x,y)=Z \land y>0 \land y< V\}$ $\{J \wedge vf < V\}$

4 Body: Find S such that $\{J \land B \land vf = V\}$ S $\{J \land vf < V\}$ $\{J \wedge B \wedge vf = V\}$ (* definitions J, B, and vf *) $\{x>0 \land y\geq 0 \land \gcd(x,y)=Z \land y\neq 0 \land y=V\}$ (* recurrence; $y > 0 \Rightarrow \gcd(x, y) = \gcd(y, x \bmod y)$ *) $\{y > 0 \land \gcd(y, x \bmod y) = Z \land 0 \le x \bmod y \le y = V\}$ $m:=x \bmod y$: $\{y > 0 \land \gcd(y, m) = Z \land 0 \le m \le y = V\}$ (* logic *) $\{y > 0 \land \gcd(y, m) = Z \land m > 0 \land m < V\}$ x := y; $\{x > 0 \land \gcd(x, m) = Z \land m > 0 \land m < V\}$ y := m; $\{x > 0 \land \gcd(x, y) = Z \land y > 0 \land y < V\}$ (* definitions J and vf *) $\{J \wedge vf < V\}$

5 We found the following program fragment (Euclid's algorithm):

```
\begin{array}{l} \text{var } x, \ y, \ m: \ \mathbb{Z}; \\ \{P: \ x>0 \land y>0 \land \gcd(x,y)=Z\} \\ \{J: \ x>0 \land y \geq 0 \land \gcd(x,y)=Z\} \\ \quad \  \  \, \text{(* } vf=y \text{ *)} \\ \text{while } y \neq 0 \text{ do} \\ \quad m:=x \text{ mod } y; \\ \quad x:=y; \\ \quad y:=m; \\ \text{end}; \\ \{Q: \ x=Z\} \end{array}
```

Outline

From Last Lecture Euclid's algorithm (gcd)

Initialization and Active Finalization

Exercise 6.5

Exercise 6.7

How to find a good invariant?

Heuristic: Split conjuncts

Heuristic: Replace constant by variable

Heuristic: Generalization

Examples

Proof rule: while-loop

Recall the proof rule for while-loops:

$$\frac{J \wedge B \Rightarrow \textit{vf} \geq 0 \quad \{J \wedge B \wedge \textit{vf} = V\} \; S \; \{J \wedge \textit{vf} < V\}}{\{J\} \; \text{while} \; B \; \; \text{do} \; S \; \text{end} \; \{J \wedge \neg B\}}$$

The starting point is the specification $\{P\}$ T $\{Q\}$.

The starting point is the specification $\{P\}$ T $\{Q\}$.

0 Based on the specification, we decide that we need a loop.

The starting point is the specification $\{P\}$ T $\{Q\}$.

- 0 Based on the specification, we decide that we need a loop.
- 1 Choose an invariant J and a guard B such that

$$J \wedge \neg B \Rightarrow Q$$
 (aka finalization)

The starting point is the specification $\{P\}$ T $\{Q\}$.

- 0 Based on the specification, we decide that we need a loop.
- 1 Choose an invariant J and a guard B such that

$$J \wedge \neg B \Rightarrow Q$$
 (aka finalization)

2 Initialization: Find a command T_0 such that

$$\{P\}$$
 T_0 $\{J\}$

The starting point is the specification $\{P\}$ T $\{Q\}$.

- 0 Based on the specification, we decide that we need a loop.
- 1 Choose an invariant J and a guard B such that

$$J \wedge \neg B \Rightarrow Q$$
 (aka finalization)

2 Initialization: Find a command T_0 such that

$$\{P\}$$
 T_0 $\{J\}$

3 Variant function: Choose a $vf \in \mathbb{Z}$ and prove

$$J \wedge B \Rightarrow vf \geq 0$$

The starting point is the specification $\{P\}$ T $\{Q\}$.

- 0 Based on the specification, we decide that we need a loop.
- 1 Choose an invariant J and a guard B such that

$$J \wedge \neg B \Rightarrow Q$$
 (aka finalization)

2 Initialization: Find a command T_0 such that

$$\{P\}$$
 T_0 $\{J\}$

3 Variant function: Choose a $vf \in \mathbb{Z}$ and prove

$$J \wedge B \Rightarrow vf \geq 0$$

4 Body of the loop: Find a command S such that

$${J \wedge B \wedge vf = V} S {J \wedge vf < V}$$

The starting point is the specification $\{P\}$ T $\{Q\}$.

- 0 Based on the specification, we decide that we need a loop.
- 1 Choose an invariant J and a guard B such that

$$J \wedge \neg B \Rightarrow Q$$
 (aka finalization)

2 Initialization: Find a command T_0 such that

$$\{P\}$$
 $T_0\{J\}$

3 Variant function: Choose a $vf \in \mathbb{Z}$ and prove

$$J \wedge B \Rightarrow vf \geq 0$$

4 Body of the loop: Find a command S such that

$$\{J \wedge B \wedge vf = V\} S \{J \wedge vf < V\}$$

5 Conclude that

$$\{P\}$$
 T_0 ; while B do S end $\{Q\}$

Initialization and Active Finalization

(Active) Initialization

- ▶ In general, we need a command T_0 to establish the initial validity of the invariant: $\{P\}$ T_0 $\{J\}$.
- ▶ If $P \Rightarrow J$ then $T_0 = \text{skip}$ (e.g. Euclid's algorithm)
- ▶ Otherwise, if $P \not\Rightarrow J$ then we need an (active) initialization command T_0 .

Initialization and Active Finalization

(Active) Initialization

- ▶ In general, we need a command T_0 to establish the initial validity of the invariant: $\{P\}$ T_0 $\{J\}$.
- ▶ If $P \Rightarrow J$ then $T_0 = \text{skip}$ (e.g. Euclid's algorithm)
- ▶ Otherwise, if $P \not\Rightarrow J$ then we need an (active) initialization command T_0 .

Active Finalization

- ▶ Similarly, if $J \land \neg B \Rightarrow Q_1$ but $J \land \neg B \not\Rightarrow Q$, then we need a command T_1 that establishes the postcondition: $\{Q_1\}$ T_1 $\{Q\}$.
- ▶ In this case, we call T_1 an active finalization.

A Generalized Rule

$$\begin{cases} P \} \ T_0 \ \{J\} \quad \{Q_1\} \ T_1 \ \{Q\} \\ J \land B \Rightarrow \textit{vf} \geq 0 \quad \{J \land B \land \textit{vf} = V\} \ S \ \{J \land \textit{vf} < V\} \\ \hline \{P\} \ T_0; \ \{J\} \ \textbf{while} \ B \ \textbf{do} \ S \ \textbf{end}; \ \{Q_1\} \ T_1; \ \{Q\} \end{cases}$$

Specific cases:

- If $T_0 = \mathbf{skip}$ then initialization is not necessary (and we may need to show that $P \Rightarrow J$).
- If $T_1 = \text{skip}$ then active finalization is not necessary (and we may need to show that $Q_1 \Rightarrow Q$).

Plan

Rest of Today:

- Exercises 6.5 and 6.7: loops with initialization and finalization.
- Some heuristics for finding a good invariant.

Next week:

- More on recurrence relations (Monday)
- No lecture on Thursday

Exercise 6.5

The function f is defined by the recurrence:

$$egin{array}{lll} y \leq 0 &\Rightarrow& f(y,z) = z \ y > 0 &\Rightarrow& f(y,z) = 10 \cdot f(y ext{ div } 10,z) + y ext{ mod } 10 \end{array}$$

Find a command *S* that satisfies the specification:

```
egin{aligned} 	extsf{var} & y, & z: & \mathbb{Z}; \ & \{P: & Z = f(y,z)\} \ & S \ & \{Q: & Z = z\} \end{aligned}
```

Use active finalization, auxiliary variables m and n, and

$$J:\ Z=m\cdot f(y,z)+n$$

Exercise 6.5: Initialization


```
egin{aligned} y &\leq 0 \Rightarrow f(y,z) = z \ y &> 0 \Rightarrow f(y,z) = 10 \cdot f(y 	ext{ div } 10,z) + y 	ext{ mod } 10 \ P:Z &= f(y,z) \ J:Z &= m \cdot f(y,z) + n \ Q:Z &= z \end{aligned}
```

Because $P \not\Rightarrow J$, we need initialization, but it is easy:

```
\{P: Z = f(y, z)\}
(* calculus *)
\{Z = 1 \cdot f(y, z) + 0\}
m := 1; n := 0;
\{J: Z = m \cdot f(y, z) + n\}
```

Exercise 6.5: Guard

$$egin{aligned} y &\leq 0 \Rightarrow f(y,z) = z \ y &> 0 \Rightarrow f(y,z) = 10 \cdot f(y ext{ div } 10,z) + y ext{ mod } 10 \ P &: Z &= f(y,z) \ J &: Z &= m \cdot f(y,z) + n \ \mathcal{Q} &: Z &= z \end{aligned}$$

We now define the guard B. We know f(y,z) directly if $y \le 0$. Therefore, we choose B to be $\neg (y \le 0)$, i.e. B: y > 0.

Exercise 6.5: Guard


```
egin{aligned} y &\leq 0 \Rightarrow f(y,z) = z \ y &> 0 \Rightarrow f(y,z) = 10 \cdot f(y 	ext{ div } 10,z) + y 	ext{ mod } 10 \ P : Z &= f(y,z) \ J : Z &= m \cdot f(y,z) + n \ Q : Z &= z \end{aligned}
```

We now define the guard B. We know f(y, z) directly if $y \le 0$. Therefore, we choose B to be $\neg(y \le 0)$, i.e. B: y > 0.

Given this, $J \wedge \neg B \not\Rightarrow Q$ and so we need active finalization:

```
egin{aligned} \{J \wedge 
eg B\} \ \{Z = m \cdot f(y,z) + n \wedge y \leq 0\} \ & 	ext{(* definition } f 	ext{*)} \ \{Z = m \cdot z + n\} \ z := m * z + n; \ \{Q : Z = z\} \end{aligned}
```


Because B: y > 0, we need to decrease y until $y \le 0$.

We choose $vf = y \in \mathbb{Z}$. Clearly, $B \equiv vf > 0$ and $J \wedge B \Rightarrow vf \geq 0$.

Because B: y > 0, we need to decrease y until $y \le 0$.

We choose $vf = y \in \mathbb{Z}$. Clearly, $B \equiv vf > 0$ and $J \wedge B \Rightarrow vf \geq 0$.

$$\{J \wedge B \wedge vf = V\} \ \{Z = m \cdot f(y, z) + n \wedge y > 0 \wedge y = V\}$$

$$\{J \wedge vf < V\}$$

Because B: y > 0, we need to decrease y until $y \le 0$.

We choose $vf = y \in \mathbb{Z}$. Clearly, $B \equiv vf > 0$ and $J \wedge B \Rightarrow vf \geq 0$.

$$\begin{split} & \{J \wedge B \wedge vf = V\} \\ & \{Z = m \cdot f(y,z) + n \wedge y > 0 \wedge y = V\} \\ & \text{(* definition } f; y = V > 0 \Rightarrow y \text{ div } 10 < V \text{ *)} \\ & \{Z = m \cdot (10 \cdot f(y \text{ div } 10,z) + y \text{ mod } 10) + n \ \wedge \ y \text{ div } 10 < V\} \end{split}$$

Because B: y > 0, we need to decrease y until $y \le 0$.

We choose $vf = y \in \mathbb{Z}$. Clearly, $B \equiv vf > 0$ and $J \wedge B \Rightarrow vf \geq 0$.

$$\{J \wedge vf < V\}$$

Because B: y > 0, we need to decrease y until $y \le 0$.

We choose $vf = y \in \mathbb{Z}$. Clearly, $B \equiv vf > 0$ and $J \wedge B \Rightarrow vf \geq 0$.

$$\{J \wedge v f < V\}$$

Because B: y > 0, we need to decrease y until $y \le 0$.

We choose $vf = y \in \mathbb{Z}$. Clearly, $B \equiv vf > 0$ and $J \wedge B \Rightarrow vf \geq 0$.

```
\{J \wedge B \wedge vf = V\}
   \{Z = m \cdot f(y, z) + n \wedge y > 0 \wedge y = V\}
      (* definition f: y = V > 0 \Rightarrow y \text{ div } 10 < V^*)
   \{Z = m \cdot (10 \cdot f(y \text{ div } 10, z) + y \text{ mod } 10) + n \land y \text{ div } 10 < V\}
     (* calculus *)
   \{Z = 10 \cdot m \cdot f(y \text{ div } 10, z) + m \cdot (y \text{ mod } 10) + n \land y \text{ div } 10 < V\}
n := m * (y \mod 10) + n;
   \{Z = 10 \cdot m \cdot f(y \text{ div } 10, z) + n \land y \text{ div } 10 < V\}
m := 10 * m;
   \{Z = m \cdot f(y \text{ div } 10, z) + n \wedge y \text{ div } 10 < V\}
```

$$\{J \wedge v f < V\}$$

Because B: y > 0, we need to decrease y until $y \le 0$.

We choose $vf = y \in \mathbb{Z}$. Clearly, $B \equiv vf > 0$ and $J \wedge B \Rightarrow vf \geq 0$.

```
\{J \wedge B \wedge vf = V\}
   \{Z = m \cdot f(y, z) + n \wedge y > 0 \wedge y = V\}
      (* definition f: y = V > 0 \Rightarrow y \text{ div } 10 < V^*)
   \{Z = m \cdot (10 \cdot f(y \text{ div } 10, z) + y \text{ mod } 10) + n \land y \text{ div } 10 < V\}
     (* calculus *)
   \{Z = 10 \cdot m \cdot f(y \text{ div } 10, z) + m \cdot (y \text{ mod } 10) + n \land y \text{ div } 10 < V\}
n := m * (y \mod 10) + n;
   \{Z = 10 \cdot m \cdot f(y \text{ div } 10, z) + n \land y \text{ div } 10 < V\}
m := 10 * m;
   \{Z = m \cdot f(y \text{ div } 10, z) + n \wedge y \text{ div } 10 < V\}
y := y \, \text{div} \, 10:
   \{Z = m \cdot f(y, z) + n \wedge y < V\}
   \{J \wedge vf < V\}
```

Exercise 6.5: Conclusion

Using active initialization and finalization, we derived the following program fragment:

```
var n, m, y, z : \mathbb{Z};
  \{P: Z = f(y,z)\}
m := 1;
n := 0:
  \{J: Z=m\cdot f(y,z)+n\}
    (* vf = v *)
while y > 0 do
  n := m * (y \mod 10) + n;
  m := 10 * m;
  y := y \  div \  10;
end;
z := m * z + n;
  \{Q: z = Z\}
```

Exercise 6.7

The function h is defined by the recurrence:

$$h(0) = 0$$
 $n > 0 \Rightarrow h(n) = 5 \cdot h(n ext{ div } 3) + n ext{ mod } 4$

Find a command S that satisfies the following specification:

```
egin{aligned} 	extsf{var} & n, \ x: \ \mathbb{Z}; \ & \{P: \ n \geq 0 \wedge Z = h(n)\} \ S \ & \{Q: \ Z = x\} \end{aligned}
```

Exercise 6.7

The function h is defined by the recurrence:

$$h(0) = 0$$
 $n > 0 \Rightarrow h(n) = 5 \cdot h(n ext{ div } 3) + n ext{ mod } 4$

Find a command S that satisfies the following specification:

$$egin{aligned} extsf{var} & n, \ x: \ \mathbb{Z}; \ & \{P: \ n \geq 0 \wedge Z = h(n)\} \ S \ & \{Q: \ Z = x\} \end{aligned}$$

Introduce a variable y and use the invariant

$$J:\ Z=y\cdot h(n)+x\wedge n\geq 0$$

Exercise 6.7: Initialization

$$h(0)=0$$
 $n>0 \Rightarrow h(n)=5\cdot h(n ext{ div }3)+n ext{ mod }4$ $P:n\geq 0 \wedge Z=h(n)$ $J:Z=y\cdot h(n)+x\wedge n\geq 0$

Because $P \not\Rightarrow J$, we need initialization,

Exercise 6.7: Initialization

$$h(0)=0$$
 $n>0\Rightarrow h(n)=5\cdot h(n ext{ div }3)+n ext{ mod }4$ $P:n\geq 0\wedge Z=h(n)$ $J:Z=y\cdot h(n)+x\wedge n\geq 0$

Because $P \neq J$, we need initialization, but it is easy:

$$egin{aligned} \{P: Z &= h(n) \wedge n \geq 0\} \ & ext{(* calculus *)} \ \{Z &= 1 \cdot h(n) + 0 \wedge n \geq 0\} \ x: &= 0; \ y: &= 1; \ \{J: Z &= y \cdot h(n) + x \wedge n \geq 0\} \end{aligned}$$

Exercise 6.7: Guard and Variant

$$h(0)=0$$
 $n>0\Rightarrow h(n)=5\cdot h(n ext{ div }3)+n ext{ mod }4$ $Q:Z=x$ $J:Z=y\cdot h(n)+x\wedge n\geq 0$

We now define the guard B. We know h(n) directly if n = 0. Therefore, we choose $B: n \neq 0$.

Exercise 6.7: Guard and Variant

$$h(0)=0$$
 $n>0\Rightarrow h(n)=5\cdot h(n extbf{ div }3)+n extbf{ mod }4$ $Q:Z=x$ $J:Z=y\cdot h(n)+x\wedge n\geq 0$

We now define the guard B. We know h(n) directly if n=0. Therefore, we choose $B: n \neq 0$. We check that $J \wedge \neg B \Rightarrow Q$:

$$J \wedge \neg B = Z = y \cdot h(n) + x \wedge n \geq 0 \wedge n = 0$$
 $(*h(0) = 0 \text{ and logic *})$
 $\Rightarrow Z = y \cdot 0 + x$
 $(* calculus *)$
 $\equiv Z = x$

Exercise 6.7: Guard and Variant

$$h(0)=0$$
 $n>0\Rightarrow h(n)=5\cdot h(n extbf{ div }3)+n extbf{ mod }4$ $Q:Z=x$ $J:Z=y\cdot h(n)+x\wedge n\geq 0$

We now define the guard B. We know h(n) directly if n = 0. Therefore, we choose $B: n \neq 0$. We check that $J \wedge \neg B \Rightarrow Q$:

$$J \wedge \neg B = Z = y \cdot h(n) + x \wedge n \geq 0 \wedge n = 0$$
 $(*h(0) = 0 \text{ and logic *})$
 $\Rightarrow Z = y \cdot 0 + x$
 $(* calculus *)$
 $\equiv Z = x$

As J gives $n \ge 0$ and $B: n \ne 0$, we need to decrease n until n = 0. We choose $vf = n \in \mathbb{Z}$. Clearly, $J \wedge B \Rightarrow vf > 0$.

$$egin{aligned} \{J \wedge B \wedge v f = V\} \ \{Z = y \cdot h(n) + x \wedge n \geq 0 \wedge n \neq 0 \wedge n = V\} \end{aligned}$$

$$\{J \wedge vf < V\}$$


```
 \{ J \wedge B \wedge vf = V \}  \{ Z = y \cdot h(n) + x \wedge n \geq 0 \wedge n \neq 0 \wedge n = V \}  (* n > 0 \Rightarrow h(n) = 5 \cdot h(n \text{ div } 3) + n \text{ mod } 4 \wedge 0 \leq n \text{ div } 3 < n \text{ *})  \{ Z = y \cdot (5 \cdot h(n \text{ div } 3) + n \text{ mod } 4) + x \wedge 0 \leq n \text{ div } 3 < V \}
```

$$\{J \wedge vf < V\}$$

$$\{J \wedge vf < V\}$$

$$\{J \wedge vf < V\}$$


```
\{J \wedge B \wedge vf = V\}
   \{Z = y \cdot h(n) + x \wedge n > 0 \wedge n \neq 0 \wedge n = V\}
     (*n > 0 \Rightarrow h(n) = 5 \cdot h(n \text{ div } 3) + n \text{ mod } 4 \land 0 \le n \text{ div } 3 \le n *)
   \{Z = y \cdot (5 \cdot h(n \text{ div } 3) + n \text{ mod } 4) + x \wedge 0 \le n \text{ div } 3 \le V\}
      (* calculus *)
   \{Z = 5 \cdot y \cdot h(n \text{ div } 3) + y \cdot (n \text{ mod } 4) + x \land 0 \le n \text{ div } 3 \le V\}
x := y * (n \mod 4) + x;
   \{Z = 5 \cdot y \cdot h(n \text{ div } 3) + x \land 0 < n \text{ div } 3 < V\}
u := 5 * u:
   \{Z = y \cdot h(n \text{ div } 3) + x \wedge 0 < n \text{ div } 3 < V\}
   \{J \wedge vf < V\}
```



```
\{J \wedge B \wedge vf = V\}
   \{Z = y \cdot h(n) + x \wedge n > 0 \wedge n \neq 0 \wedge n = V\}
     (*n > 0 \Rightarrow h(n) = 5 \cdot h(n \text{ div } 3) + n \text{ mod } 4 \land 0 \le n \text{ div } 3 \le n *)
   \{Z = y \cdot (5 \cdot h(n \text{ div } 3) + n \text{ mod } 4) + x \wedge 0 \le n \text{ div } 3 \le V\}
      (* calculus *)
   \{Z = 5 \cdot y \cdot h(n \text{ div } 3) + y \cdot (n \text{ mod } 4) + x \land 0 \le n \text{ div } 3 \le V\}
x := y * (n \mod 4) + x;
   \{Z = 5 \cdot y \cdot h(n \text{ div } 3) + x \land 0 < n \text{ div } 3 < V\}
y := 5 * y;
   \{Z = y \cdot h(n \text{ div } 3) + x \wedge 0 < n \text{ div } 3 < V\}
n := n \operatorname{div} 3:
   \{Z = y \cdot h(n) + x \wedge 0 < n < V\}
   \{J \wedge vf < V\}
```

Exercise 6.7: Conclusion

Using initialization, we derived the following program fragment:

```
var x, y, n : \mathbb{Z};
  \{P: Z=h(n) \land n > 0\}
x := 0;
y := 1:
  \{J:\ Z=y\cdot h(n)+x\wedge n>0\}
    (* vf = n *)
while n \neq 0 do
  x := y * (n \mod 4) + x;
  y := 5 * y;
  n := n \operatorname{div} 3;
end:
  \{Q: x = Z\}
```

Outline

From Last Lecture
Euclid's algorithm (gcd)

Initialization and Active Finalization Exercise 6.5 Exercise 6.7

How to find a good invariant? Heuristic: Split conjuncts

Heuristic: Replace constant by variable

Heuristic: Generalization

Examples

How to find a good invariant?

- ▶ Imagine you interrupt the loop, open it up, and take a snapshot:
 - What would you observe? (variables, predicates)
 - What is key to the loop's operation?

How to find a good invariant?

- Imagine you interrupt the loop, open it up, and take a snapshot:
 - What would you observe? (variables, predicates)
 - What is key to the loop's operation?
- ▶ Informally, J should be a predicate that is 'in between' P and Q.
- Not too weak (uninformative/useless), but not too strong (hard to initialize and restore).
- ► Rule of thumb: Use a predicate that can easily be initialized, and is obtained by weakening the postcondition Q.
- ▶ Choose the guard B such that $J \land \neg B \Rightarrow Q$.

Heuristic: Split conjuncts

- ▶ If Q is of the form $Q_0 \wedge Q_1$, then it could be useful to try to isolate one conjunct as in $J \equiv Q_0$ and $B \equiv \neg Q_1$ (or vice versa).
- ► Clearly, *J* must be easy to initialize, and *B* must be a valid test (i.e. without specification constants).
- ► Sometimes *Q* appears to be a single conjunct while it still can be expressed as two conjuncts.
 - Example: x < y can be expressed as $x \le y \land x \ne y$.

Heuristic: Replace expression by variable

- ▶ If Q contains an expression E, then J could be defined by replacing some (or all) occurrences of E in Q by a new variable i. This way, $J \land i = E \Rightarrow Q$.
- ▶ The guard must then be $B \equiv i \neq E$ and should not contain any specification constants.
- ▶ It is a good practice to augment *J* with some conjunct that indicates which range of values *i* may attain.

Heuristic: Replace constant by variable

A special case of the previous heuristic.

- ▶ If Q contains a constant n then we could define J by replacing some (or all) occurrences of n in Q by a new variable i, such that $J \wedge i = n \Rightarrow Q$.
- ▶ Clearly, the guard must be $B \equiv i \neq n$.
- Again, it is good practice to augment J with some conjunct that indicates which range of values i may attain.

Heuristic: Split a variable

A special case of the special case.

- ▶ If Q contains several occurrences of a variable k, then J could be defined by replacing some (but not all) occurrences of k in Q by a new variable i, such that $J \wedge i = k \Rightarrow Q$.
- ▶ Again, the guard must be $B \equiv i \neq k$.
- Again, it is good practice to augment J with some conjunct that indicates which range of values i may attain.

Heuristic: Generalization

Suppose a precondition P and a (post-regular) postcondition Q:

$$P: X = E$$

$$Q: x = X$$

Often, we can find a suitable J by generalizing E in P to some expression E_0 .

- ▶ Example 1: J: X = x + E where $\neg B \Rightarrow E = 0$.
- ▶ Example 2: $J: X = x \cdot E$ where $\neg B \Rightarrow E = 1$.

One could argue that this is similar to the heuristic "Replace constant by a variable" applied to the precondition:

- ▶ Example 1: P: X = 0 + E
- Example 2: $P: X = 1 \cdot E$

Outline

From Last Lecture Euclid's algorithm (gcd)

Initialization and Active Finalization

Exercise 6.5 Exercise 6.7

How to find a good invariant?

Heuristic: Split conjuncts

Heuristic: Replace constant by variable

Heuristic: Generalization

Examples

Examples: Exponentiation

Recall the following specification:

```
egin{aligned} \mathbf{const} \ x: \ \mathbb{R}; \ \mathbf{var} \ y: \ \mathbb{R}, \ n: \ \mathbb{Z}; \ \{P: \ n \geq 0 \wedge x^n = Y\} \ S \ \{Q: \ y = Y\} \end{aligned}
```

We found the invariant (and guard) by generalization:

$$J: n \ge 0 \land y \cdot x^n = Y$$
$$B: n \ne 0$$

Examples: Powers of 2

Recall the following specification:

```
\begin{array}{l} \textbf{const } x: \ \mathbb{Z}; \\ \textbf{var } i, \ y: \ \mathbb{Z}; \\ \{P: \ x>0\} \\ T \\ \{Q: \ x< y \leq 2 \cdot x \wedge y = 2^i\} \end{array}
```

We found the invariant (and guard) by conjunct-splitting Q:

$$J: y \le 2 \cdot x \wedge y = 2^i$$

 $B: x \ge y$

The End

- ▶ We have covered until Section 7.3 of the reader
- Next time: Deriving recurrence relations for exercises in Chapter 7