92586 Computational Linguistics

Lesson 7. tf-idf¹

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

14/03/2022

¹Lesson 6 was based on notebooks only

Table of Contents

From BoW to tf

Zipf's Law

Inverse Document Frequency

These slides cover roughly chapter 3 of Lane et al. (2019)

Previously

- ► Pre-processing
- ► BoW representation
- ► One rule-based sentiment model
- ► One statistical model (Naïve Bayes)

From BoW to tf

Intuition

- 1. The frequency of a token t in a document d is an important factor of its **relevance**
- 2. The relative frequency of a word in a document wrt **all other documents** in the collection provides even better information

"Counting" Bag of Words

A word that appears often contributes more to the "meaning" of the document

A document with many occurrences of "good", "awesome", "best" is more **positive** than one in which they occur only once.

$$d_1 = \begin{bmatrix} 0 & 1 & 0 & 0 & 2 & 0 & 1 & 3 & 0 & 0 & 0 & 0 \\ d_2 = \begin{bmatrix} 2 & 3 & 5 & 0 & 0 & 0 & 4 & 0 & 0 & 4 & 2 \end{bmatrix}$$

Let us see the difference...

Already a useful representation for diverse tasks, such as detecting **spam** and computing **"sentiment"**

Binary Bag of Words

We departed from a binary representation.

We were simply interested in the existence (or not) of a word in a document.

here dict is 13 words

tf: Term Frequency

tf represents the number of times a word appears in a document (In general) the frequency of a word depends on the length of the document

- lacktriangle Shorter document ightarrow lower frequencies
- lacktriangle Longer document ightarrow higher frequencies

Ideally, our counting should be document-length independent.

Normalisation!

tf: Term Frequency (Normalised)

Why normalising?

word dog appears 3 times in d_1 word dog appears 100 times in d_2

Intuition: dog is way more important for d_2 than for d_1

 d_1 is an email by a veterinarian (30 words)

d₂ is War & Peace (580k words)

If normalised...

$$tf(dog, d_1) = 3/30 = 0.1$$

 $tf(dog, d_2) = 100/580,000 = 0.00017$

Reminder: normalised frequencies are probabilities

Let us see

tf: Term Frequency (Normalised)

Playing with a longer text

- ► Loading frequencies into a dictionary
- ► Vectorising frequencies
- ► Normalising frequencies

tf: Term Frequency (Normalised)

Playing with a longer text

https://en.wikipedia.org/wiki/Russo-Ukrainian_War

The Russo-Ukrainian War is an ongoing war primarily involving Russia, pro-Russian forces, and Belarus on one side, and Ukraine and its international supporters on the other. Conflict began in February 2014 following the Revolution of Dignity, and focused on the status of Crimea and parts of the Donbas, internationally recognised as part of Ukraine. The conflict includes the Russian annexation of Crimea (2014), the war in Donbas (2014-present), naval incidents, cyberwarfare, and political tensions. [...]

Let us see

Note. The examples use NLTK. Nowadays, there are better tools. For instance, parsing with **spaCy** is faster and more accurate

tf: Term Frequency

From a single to multiple documents

- lacktriangleright The vectors have to be comparable across documents ightarrow normalisation
- ► Each value in the vectors must represent **the same word**

each vector necessarily has length = len(dict)?

This is when representations become sparse: many values become $\boldsymbol{0}$

Sparse vector most of the elements are **zero**Dense vector most of the elements are **nonzero**

■ Let us see

See https://en.wikipedia.org/wiki/Sparse_matrix

Vectors of Term Frequency

Vectors

- ► Primary building blocks of linear algebra
- ► Ordered list of numbers, or coordinates, in a vector space
- ► They describe a location in that space. . .
- ► or identify a direction/magnitude/distance in that space

Vector space Collection of all possible vectors

 $[1,4] \rightarrow 2D$ vector space $[1,4,9] \rightarrow 3D$ vector space

We have an 18D vectors space (we have seen 1kD and bigger ones!) "So, it is clear now: our vectors must have 18 values" --> 18 dimensions, ofc

Comparing Vectors

Cosine similarity

Properties of the cosine similarity

- ▶ It is ranged in [-1,1]
- ► This is a very convenient range for ML
- lacktriangledown cos = 1 represents identical normalised vectors that point in exactly the same direction
- ► cos = 0 represents two vectors that share no components (they are perpendicular in all dimensions)
- ► In *tf*-like representations, cosine is ranged in [0,1] (no negative frequencies)

Comparing Vectors

Cosine similarity

The cosine of the angle between two vectors (θ theta)

$$\cos\theta = \frac{A \cdot B}{|A||B|} \tag{1}$$

where

 $A \cdot B$ is the **dot product** (we know it!)

|A| is the **magnitude** of vector A

■ Let us see an implementation (but there are efficient libraries to do it)

Zipf's Law

Zipf's Law

Given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table. 2

pos(w)	freq(w)	expected frequency
1st	k	-
2nd	k/2	
3rd	k/3	

The system behaves "roughly" exponentially

Examples population dynamics, economic output and COVID-19

Let's see it for text

²George K. Zipf; 1930s

Zipf's Law

Stats

- ► This distribution only holds with large volumes of data (not in a sentence, not in a couple of texts)
- ▶ By computing this distribution, we can obtain an a priori likelihood that a word *w* will appear in a document of the corpus

Zipf's Law

Frequencies of the Brown corpus: expected vs actual

W	$f_{exp}(w)$	$f_{act}(w)$	
the	_	69,971	
of	34,985	36,412	
and	23,323	28,853	
to	17,492	26,158	
a	13,994	23,195	
in	11,661	21,337	
that	9,995	10,594	
is	8,746	10,109	
was	7,774	9,815	
he	6,997	9,548	
for	6,361	9,489	
it	5,830	8,760	
with	5,382	7,289	
as	4,997	7,253	
his	4,664	6,996	

Inverse Document Frequency

idf-Inverse Document Frequency

There are two ways to count tokens

tf per document

idf across a full corpus

Let's see...

IDF How strange is it that this token appears in this document?

If w appears in d a lot, but rarely in any other $d' \in D \mid d' \neq d$ w is quite important for d!

■ Let's see

tf-idf

$$tf(t,d) = \frac{count(t,d)}{\sum_{t} count(t,d)}$$
 (2)

$$idf(t, D) = log \frac{\text{number of documents}}{\text{number of documents containing } t}$$
 (3)

$$tfidf(t,d,D) = tf(t,d) * idf(t,D)$$
 (4)

- ► The more often *t* appears in *d*, the higher the TF (and hence the TF-IDF)
- ► The higher the number of documents containing t, the lower the IDF (and hence the TF-IDF)

IDF and Zipf

Let us assume a corpus D, such that |D| = 1M

- ▶ 1 document $d \in D$ contains "cat" idf(cat) = 1,000,000/1 = 1,000,000
- ▶ 10 documents $\{d_1, d_2, \dots, d_{10}\} \in D$ contain "dog" idf(dog) = 1,000,000/10 = 100,000

According to Zipf's Law, when comparing w_1 and w_2 , even if $f(w_1) \sim f(w_2)$, one will be **exponentially higher** than the other one!

We need the inverse of exp() to mild the effect: log()

$$idf(cat) = log(1,000,000/1) = log(1,000,000) = 6$$

 $idf(dog) = log(1,000,000/10) = log(100,000) = 5$

tf-idf

Outcome The importance of a token in a specific document given its usage across the entire corpus.

"TF-IDF, is the humble foundation of a simple search engine" (Lane et al., 2019, p. 90)

Let's see

tf-idf Implementation

- ► We "hand-coded" the *tf-idf* implementation
- ► Optimised and easy-to-use libraries exist
- ► scikit-learn is a good alternative³

Let us see

³http://scikit-learn.org/. As usual, install it the first time; e.g., pip install scipy; pip install sklearn

Coming Next

► Towards "semantics"

tf-idf

Final Remarks

*tf-idf-*like weighting. . .

- ► is the most common baseline representation in NLP/IR papers nowadays
- ▶ is in the core of search engines and related technology
- ► Okapi BM25 has been one of the most successful ones (Robertson and Zaragoza, 2009)

Okapi First system using BM25 (U. of London)

BM best matching

25 Combination of BM11 and BM15

- ► Cosine similarity is a top choice metric for most text vector representations.
- Nothing prevents you from weighting *n*-grams, for n = [1, 2, ...]

References

Lane, H., C. Howard, and H. Hapkem

2019. Natural Language Processing in Action. Shelter Island,

NY: Manning Publication Co.

Robertson, S. and H. Zaragoza

2009. The probabilistic relevance framework: Bm25 and beyond. Foundations and Trends in Information Retrieval, 3:333—-389.