BECA / Dr. Huson / Geometry 1-6 Angle measures Name:

I can measure angles

1. Do Now: Given \overline{LMN} , LM = 3x + 1, MN = 7, LN = 17. Find x.

- (a) Write down an equation to represent the situation.
- (b) Solve for x.
- (c) Check your answer.
- 2. Given an angle with vertex A.
 - (a) Using a protractor, measure angle A in degrees. $m \angle A =$
 - (b) Draw a ray \overrightarrow{AB} that exactly bisects $\angle A$.
 - (c) What is the measure of each half angle?

Angle measures using the Babylonian system of 360° in a circle

A full rotation is 360° (a full "turn").

A half turn (straight line) is 180°.

 90° is a quarter turn or a *right* angle.

Acute angles measure less than 90°. Obtuse angles measure more than 90°.

Adjacent angles ("next to" each other) share a common ray and are external to each other.

3. Write down the name of the *three* angles shown in the diagram below and their angle measures, using your protractor.

- (a) _____
- (b) _____
- (c) ____
- (d) What do you notice about the angle measures?
- 4. In your notebook, draw an angle that measures 55°

- 5. (a) Write down the name of the angle shown in the diagram below using proper geometric notation.
 - (b) Find the measure of the angle in degrees with a protractor.
 - (c) Is it an acute, obtuse, or right angle?

6. Given point B is the midpoint of \overline{AC} , with AB = x + 2, BC = 11.

First write and equation representing the situation, then find x.

7. Find the value of each expression.

(a)
$$|11| =$$

(c)
$$|-4.75| =$$

(b)
$$|-7| =$$

(d)
$$|10 - 7| =$$

8. Given \overrightarrow{QS} as shown on the number line.

(a) In the given number line units, what is the distance between Q and S?

$$QS =$$

- (b) Mark the point R, the midpoint of \overline{QS} .
- 9. Given \overline{MN} with M(-1) and N(3), as shown on the number line.

What is the length of the segment \overline{MN} ? Show your work as an equation.