

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Ankit Kumar, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher

모두의연구소 김승일

대부분의 NLP 문제는 QA Task로 볼 수 있음

QA Task Sentiment

Classification

POS-Tagging Task

Jane went to the hallway.

Mary walked to the bathroom.

Sandra went to the garden.

Daniel went back to the garden.

Sandra took the milk there.

Q: Where is the milk?

A: garden

I: It started boring, but then it got interesting.

Q: What's the sentiment?

A: positive

Q: POS tags?

A: PRP VBD JJ , CC RB PRP VBD JJ .

QA Task Example

Dynamic Memory Networks

Dynamic Memory Networks: Input Module

word vector

End-of-sentences tokens

$$h_t = GRU(x_t, h_{t-1}).$$

Output of input module = T sequence of hidden state

Dynamic Memory Networks: Question Module

Output of question module = final hidden state

Dynamic Memory Networks: Episodic Memory Module

* 결국, previous memory, input, question 을 입력으로하는 attention mechanism + multiple hierachy memory구조가 필요.

Dynamic Memory Networks: Episodic Memory Module

Input / question / previous memory 간의 attention

Dynamic Memory Networks: Episodic Memory Module

attention mechanism

: prev memory, input, question 간의 relation을 다 봐야함.

뭐가 좋은지 모르니 입력으로 그냥 다 때려넣음.

(5) 식을 입력으로 하는 2 Layer NN를 통해 attention weight (여기서는 gating)를 구함

$$[c, m, q, c \circ q, c \circ m, |c - q|, |c - m|, c^T W^{(b)} q, c^T W^{(b)} m],$$
(5)

$$h_t^i = g_t^i GRU(c_t, h_{t-1}^i) + (1 - g_t^i) h_{t-1}^i$$
 (7)

$$e^i = h_{T_C}^i (8)$$

Dynamic Memory Networks: Answer Module

Initial hidden m1 Input q (+prev.output)

$$y_t = \operatorname{softmax}(W^{(a)}a_t) \tag{9}$$

$$a_t = GRU([y_{t-1}, q], a_{t-1}),$$
 (10)

Experiments : QA Task

Task	MemNN	DMN
1: Single Supporting Fact	100 100	
2: Two Supporting Facts	100 98.2	
3: Three Supporting Facts	100	95.2
4: Two Argument Relations	100	100
5: Three Argument Relations	98	99.3
6: Yes/No Questions	100	100
7: Counting	85	96.9
8: Lists/Sets	91	96.5
9: Simple Negation	100	100
10: Indefinite Knowledge	98	97.5
11: Basic Coreference	100	99.9
12: Conjunction	100	100
13: Compound Coreference	100	99.8
14: Time Reasoning	99	100
15: Basic Deduction	100	100
16: Basic Induction	100	99.4
17: Positional Reasoning	65	59.6
18: Size Reasoning	95	95.3
19: Path Finding	36	34.5
20: Agent's Motivations	100	100
Mean Accuracy (%)	93.3	93.6

ExperimentsSentiment Analysis

Task	Binary	Fine-grained
MV-RNN	82.9	44.4
RNTN	85.4	45.7
DCNN	86.8	48.5
PVec	87.8	48.7
CNN-MC	88.1	47.4
DRNN	86.6	49.8
CT-LSTM	88.0	51.0
DMN	88.6	52.1

ExperimentsPOS tagging

Model	Acc (%)
SVMTool	97.15
Sogaard	97.27
Suzuki et al.	97.40
Spoustova et al.	97.44
SCNN	97.50
DMN	97.56
THE THEORY OF THE PARTY	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 3. Test accuracies on WSJ-PTB

ExperimentsEffectiveness of Episodic Memory Module

Max passes	task 3 three-facts	task 7 count	task 8 lists/sets	sentiment (fine grain)
0 pass	0	48.8	33.6	50.0
1 pass	0	48.8	54.0	51.5
2 pass	16.7	49.1	55.6	52.1
3 pass	64.7	83.4	83.4	50.1
5 pass	95.2	96.9	96.5	N/A

Experiments: Attention Weight

观台。是四年工程

E-mail: si.kim@modulabs.co.kr

FB: <u>www.facebook.com/lab4all</u>

www.facebook.com/groups/modulabs

Blog: www.whyDSP.org