Sparse Mixture Model (with jk-means a special case)

1 Sparse Mixture Model

1.1 General Framework

On a separable metrics space $\{\mathcal{X}, \mathcal{F}\}$, we assume each data y_i has the following probabilty density as the likelihood:

$$[y_i] = \sum_{k=1}^{\kappa} w_{k,i} \delta_{\theta_k}(y_i)$$

$$w_{k,i} = \frac{u_{k,i} v_k}{\sum_{k=1}^{\kappa} u_{k,i} v_k}$$

$$u_{k,i} \in \{0, 1\}$$

$$(1)$$

where $\delta_{\theta_k}(y_i)$ is a probabilty density corresponds to a component distribution with parameter θ_k , and $w_{k,i}$ is the component weight that varies by index i and $\sum_{k=1}^{\kappa} w_{k,i} = 1$. The weight varying is due to the randomness in $u_{k,i}$. Due to the 0's $u_{k,i}$ introduces, this induces sparsity in the membership probabilty $w_{k,i}$. Therefore, we refer this as the sparse mixture model.

1.2 Estimation

We now use the latent variable $\{z_{1,i}, z_{2,i}, \dots z_{\kappa,i}\} \sim MultiNomial(\{w_{1,i}, w_{2,i}, \dots w_{\kappa,i}\})$ that takes value of $\{0, \dots, 1, \dots 0\}$ that assign randomly one 1 to one of κ vertices in the simplex. The likelihood can be rewritten as:

$$[y_i] = \sum_{k=1}^{\kappa} \int z_{k,i} \delta_{\theta_k}(y_i) P(dz_{k,i}) = \int \sum_{k=1}^{\kappa} z_{k,i} \delta_{\theta_k}(y_i) P(dz_{k,i})$$
(2)

where $P(dz_{k,i})$ is the measure of the multinomial distribution aforementioned, the last equation is due to Fubini theorem. Note due to the $z_{k,i}$ takes only one 1 out of K, this allows a simple log-density augmented with $z_{k,i}$:

$$\log[\{y_i\}_i, \{z_{k,i}\}_{k,i}] = \sum_{i} \sum_{k=1}^{\kappa} z_{k,i} \log\{\delta_{\theta_k}(y_i)v_k\}$$
(3)

This allows us to utilize Expectation-Maximization algorithm for parameter estimation:

Algorithm 1 EM algorithm

- 1: **while** $||\theta^{(s)} \theta^{(s+1)}|| > \epsilon$ **do**
- Maximize over $\{u_{i,k}\}_k$ by $\underset{\{u_{i,k}\}_k}{\operatorname{argmax}} \{u_{i,k}v_k\delta_{\theta_k}(y_i)\}$ for all i;

 Compute $\mathbb{E}(z_{k,i}) = \frac{w_{k,i}\delta_{\theta_k}(y_i)}{\sum_k w_{k,i}\delta_{\theta_k}(y_i)}$ with $w_{k,i} = u_{i,k}v_k$;

 Set $\theta_k^{(s+1)} = \operatorname{argmax} \sum_{k=1}^{\kappa} \mathbb{E} z_{k,i} \log \delta_{\theta_k}(y_i)$ for all kSet $v_k^{(s+1)} = \sum_i \mathbb{E} z_{k,i} / \sum_i \sum_k \mathbb{E} z_{k,i}$ ▷ pick top J out K based on (1)
- 3: \triangleright E step based on (3)
- ▶ M step: obtain MLE based on (3) 4:
- ▶ M step: obtain MLE based on (3)

1.2.1JK-Means

With the above general framework, there is a special case $\{u_{1,i},u_{2,i},\dots u_{\kappa,i}\}\sim J$ out of K draws and $\nu_k = 1/\kappa$. We refer this as JK-Means as when J = 1, this reduces to standard K-means method. The estimation procedure is the same as above except step 5 is skipped.