Prof^a Jerusa Marchi

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
e-mail: jerusa@inf.ufsc.br

Aplicações:

- Lâmpada
- Implementação de sistemas de controle simples baseados em estados (máquinas de refrigerante, jornais, salgadinhos, chocolates e elevadores).
- porta automática
- Análise léxica (compiladores)
- Busca em texto

- Dispositivo simples
 - fita de entrada
 - cabeçote de leitura
 - unidade central de processamento (estados)
 - memória limitada conceito de estado

- Há dois tipos de máquinas de estados finitos:
 - transdutores de linguagens com entrada e saída
 - reconhecedores de linguagens com duas saídas possíveis
 - aceitação
 - rejeição

- Podem ser:
 - Determinímisticos
 - Não Determinísticos

Autômatos Finitos Determinísticos

Um autômato finito (AFD) é um quíntupla:

$$M = (K, \Sigma, \delta, s, F)$$

Onde:

- K = conjunto finito de estados
- Σ = conjunto finito de símbolos de entrada
- $\delta: K \times \Sigma \to K$ = função de transição
- s =estado inicial $(s \in K)$
- $F = \text{conjunto de estados finais } (F \subseteq K)$

Autômatos Finitos Determinísticos

- O autômato é dito determinístico pois pela definição da função de transição δ , cada par (*estado*, *símbolo*) mapeia para **exatamente** *um* estado.
 - $ullet q, p \in K \ \mathbf{e} \ a \in \Sigma$

$$\delta(q, a) = p$$

Autômatos Finitos Não Determinísticos

Um autômato finito não determinístico (AFND) é um quíntupla:

$$M = (K, \Sigma, \delta, s, F)$$

Onde:

- K = conjunto finito de estados
- Σ = conjunto finito de símbolos de entrada
- $\delta: K \times (\Sigma \cup \{\varepsilon\}) \to 2^K$ = função de transição
- s =estado inicial $(s \in K)$
- $F = \text{conjunto de estados finais } (F \subseteq K)$

Autômatos Finitos Não Determinísticos

- O autômato é dito não determinístico se há pelo menos uma transição δ , para um par (*estado*, *símbolo*) que mapeia para um **subconjunto de estados**.
 - \bullet $q, p, r \in K$ e $a \in \Sigma$

$$\delta(q, a) = \{p, r\}$$

- Há duas formas de representar um AF:
 - Diagrama de transição
 - Tabela de transição

- Diagrama de Transição:
 - é um grafo direcionado e rotulado
 - os vértices representam os estados (círculos)
 - o estado inicial é diferenciado por uma seta
 - os estados finais são representados por círculos duplos
 - as arestas representam as transições $\delta(p,a) \to q$

• Exemplo: $L_1 = \{w \mid \in \Sigma^* = \{a, b\} \text{ e } | w | \text{ é par } \}$ Diagrama de transição

- Tabela de Transição
 - forma tabular de representar um AF onde a primeira coluna lista os estados e a primeira linha, os símbolos do alfabeto. O conteúdo da posição (q,a) será p se existir uma transição $\delta(q,a) \to p$.

• Exemplo: $L_1 = \{w \mid \in \Sigma^* = \{a, b\} \text{ e } \mid w \mid \text{ é par } \}$

Configuração:

 uma configuração é determinada pelo estado corrente e pela parte ainda não processada da palavra

 $[q_0, abab]$

que representa a configuração inicial para a palavra w=abab

Computação:

- é uma sequência de configurações
- usa-se a relação ⊢ (resulta em) para indicar que a máquina passa de uma configuração à outra. Diz-se que:

$$[q_1, w] \vdash [q_2, y]$$

se e somente se existe uma transição de q_1 para q_2 sob a, onde $a \in \Sigma$ e w = ay

Exemplo:

$$[q_0, abab] \vdash [q_1, bab] \vdash [q_0, ab] \vdash [q_1, b] \vdash [q_0, \varepsilon]$$

• Uma sentença w é aceita por um autômato finito $M=(K,\Sigma,\delta,q_0,F)$ sse $\widehat{\delta}(q_0,w)\to q$ e $q\in F$, ou seja, há uma computação

$$[q_0, w] \vdash_M^* [q, \varepsilon]$$

A linguagem reconhecida por um autômato M é aquela cujo conjunto de sentenças é aceito por M

$$L(M) = \{ w \mid \widehat{\delta}(q_0, w) \to q \ \mathbf{e} \ q \in F \}$$

- ${\color{red} \blacktriangleright}$ Dois autômatos finitos M_1 e M_2 são ditos equivalentes sse $L(M_1)=L(M_2)$
- Uma linguagem é regular sse ela for aceita por um autômato finito

- AFND e AFD representam a mesma classe de linguagens
- Portanto, há uma relação entre AFND e AFD Para todo Autômato Finito Não Determinístico há um Autômato Finito Determinístico equivalente.

- **●** Dado um AFND $M = (K, \Sigma, \delta, q_0, F)$, um AFD $M' = (K', \Sigma, \delta', q'_0, F')$ é construido a partir de M como segue:
 - $K' = \rho(K) = 2^K$, ou seja, o conjunto potência do conjunto de estados de M
 - $q_0' = \{q_0\} \text{ onde } \{q_0\} \in K'$
 - $F'=\rho(k)\in K'$ tal que $\rho(k)\cap F\neq 0$, ou seja serão estados finais de M' todos os subconjuntos de K' que contém pelo menos um estado final de M
 - δ' para $\rho(k) \in K'$ e $a \in \Sigma$, seja

$$\delta'(\rho(k), a) = \{ q \in K \mid q \in \delta(k, a) \}$$

para algum $k \in \rho(k)$. Ou seja

$$\delta'(\rho(k), a) = \bigcup_{k \in \rho(k)} \delta(k, a)$$

Ainda precisamos considerar transições ε . Para qualquer estado $\rho(k)$ de M', define-se $fecho(\rho(k))$ como a coleção de estados que poder ser alcançados somente por transições ε , incluindo os próprios membros de $\rho(k)$. Formalmente para $\rho(k) \subseteq K$ seja

$$\varepsilon\text{-fecho}(\rho(k)) = \quad \{q \mid q \text{ pode ser alcançado a partir de } \rho(k)$$
 somente por transições $\varepsilon\}$

A função de transição de M' é modificada para considerar essas transições, subtituindo $\delta(k,a)$ por ε -fecho $(\delta(k,a))$, consequentemente:

$$\delta'(\rho(k),a) = \bigcup_{k \in \rho(k)} \varepsilon\text{-fecho}(\delta(k,a))$$

- $L_1 = \{w \mid w \in \Sigma = \{a, b\}^* \text{ e } w \text{ termina com } abb\}$
- $L_2=\{w\mid w\in\Sigma=\{0,1\}^*\ {\rm e}\ |w|\geq 2\ {\rm e}\ {\rm começa}\ {\rm e}\ {\rm termina}\ {\rm com}\ {\rm o}\ {\rm mesmo}\ {\rm digito}\}$
- $L_3 = \{w \mid w \in \Sigma = \{0\}^* \text{ e } w = 0^k \text{ para } k \text{ múltiplo de } 2 \text{ ou } 3\}$