Name: Swagat Panda ID: 2017B5A30983P

Lab IV

Design of VCVS, VCCS, CCVS and CCCS using LM741

Objectives

A To design the following four topologies using LM741 OPAMP

- 1. Voltage Controlled Voltage Source (VCVS)
- 2. Current Controlled Voltage Source (CCVS)
- 3. Voltage Controlled Current Source (VCCS)
- 4. Current Controlled Current Source (CCCS) and find

Simulated values of voltage gain (Av) by

- a) Varying RL with constant source
- b) Varying source with constant RL

Compare the results from simulation with the theoretical values of Av.

IC LM741

- LM741 operational amplifier is a DC-coupled high gain electronic voltage amplifier.
- It has only one op-amp inside.
- An operational amplifier IC is used as a comparator, which compares the two signals, the inverting and non-inverting signal.
- The main function of this IC is to do mathematical operation in various circuits.
- Op-amps have large gain and usually used as Voltage Amplifier.
- The LM741 can operate with a single or dual power supply voltage.

1. VCVS

Source $V_S = 50 \text{mV}$ and load varied

Load $R_L = 10k\Omega$ and source varied

V _s (mV)	$R_{L}\left(k\Omega\right)$	Simulated A _v	Theoretical $A_v = 1 + (R_1/R_2)$
50	2.2	6.0206012 dB = 2 V/V	$1 + (10k\Omega/10k\Omega) = 2 \text{ V/V}$
50	3.9	6.0206012 dB = 2 V/V	$1 + (10k\Omega/10k\Omega) = 2 \text{ V/V}$
50	5.6	6.0206012 dB = 2 V/V	$1 + (10k\Omega/10k\Omega) = 2 \text{ V/V}$
50	10	6.0206012 dB = 2 V/V	$1 + (10k\Omega/10k\Omega) = 2 \text{ V/V}$
50	10	6.0206012 dB = 2 V/V	$1 + (10k\Omega/10k\Omega) = 2 \text{ V/V}$
100	10	6.0206012 dB = 2 V/V	$1 + (10k\Omega/10k\Omega) = 2 \text{ V/V}$
150	10	6.0206012 dB = 2 V/V	$1 + (10k\Omega/10k\Omega) = 2 \text{ V/V}$
200	10	6.0206012 dB = 2 V/V	$1 + (10k\Omega/10k\Omega) = 2 \text{ V/V}$

2. CCVS

Source $V_s = 50 \text{mV}$ and load varied

Load $R_L = 10k\Omega$ and source varied

V _s (mV)	R ₁ (kΩ)	Simulated A _R	Theoretical $A_R = R_f$
50	2.2	$93.4419 \text{ dB} = 46.99969 \text{ k}\Omega$	47 kΩ
50	3.9	$93.441903 \text{ dB} = 46.99971 \text{ k}\Omega$	47 kΩ
50	5.6	$93.441903 \text{ dB} = 46.999707 \text{ k}\Omega$	47 kΩ
50	10	$93.441904 \text{ dB} = 46.999712 \text{ k}\Omega$	47 kΩ
50	10	$93.441904 \text{ dB} = 46.999712 \text{ k}\Omega$	47 kΩ
100	10	$93.441904 \text{ dB} = 46.999712 \text{ k}\Omega$	$47~\mathrm{k}\Omega$
150	10	$93.441904 \text{ dB} = 46.999712 \text{ k}\Omega$	$47~\mathrm{k}\Omega$
200	10	$93.441904 \text{ dB} = 46.999712 \text{ k}\Omega$	$47~\mathrm{k}\Omega$

Source $V_s = 50 \text{mV}$ and load varied

Load $R_L = 10k\Omega$ and source varied

Vs (mV)	$R_{L}\left(k\Omega\right)$	Simulated A _T	Theoretical $A_T = 1/R_2$
50	2.2	$-40.003373 \text{ dB} = 0.009996 \Omega-1$	$1/100\Omega = 0.01 \ \Omega \text{-}1$
50	3.9	$-40.008951 \text{ dB} = 0.009989 \Omega-1$	$1/100\Omega = 0.01 \ \Omega \text{-}1$
50	5.6	$-40.017022 \text{ dB} = 0.009980 \Omega-1$	$1/100\Omega = 0.01 \ \Omega - 1$
50	10	$-40.04938 \text{ dB} = 0.009943 \Omega - 1$	$1/100\Omega = 0.01 \ \Omega - 1$
50	10	$-40.04938 \text{ dB} = 0.009943 \Omega - 1$	$1/100\Omega = 0.01 \ \Omega - 1$
100	10	$-40.04938 \text{ dB} = 0.009943 \Omega - 1$	$1/100\Omega = 0.01 \ \Omega - 1$
150	10	$-40.04938 \text{ dB} = 0.009943 \Omega - 1$	$1/100\Omega = 0.01 \ \Omega - 1$
200	10	$-40.04938 \text{ dB} = 0.009943 \Omega - 1$	$1/100\Omega = 0.01 \ \Omega - 1$

4. CCCS

Source $V_s = 50 \text{mV}$ and load varied

Load $R_L = 10k\Omega$ and source varied

V _s (mV)	$R_1(k\Omega)$	Simulated A _i	Theoretical $A_i = 1 + (R_1/R)$
50	2.2	53.455683 dB = 470.7433 A/A	$1 + (47k\Omega/100\Omega) = 471 \text{ A/A}$
50	3.9	53.448248 dB = 470.3405 A/A	$1 + (47k\Omega/100\Omega) = 471 \text{ A/A}$
50	5.6	54.437428 dB = 469.755 A/A	$1 + (47k\Omega/100\Omega) = 471 \text{ A/A}$
50	10	54.393902 dB = 467.4069 A/A	$1 + (47k\Omega/100\Omega) = 471 \text{ A/A}$
50	10	54.393902 dB = 467.4069 A/A	$1 + (47k\Omega/100\Omega) = 471 \text{ A/A}$
100	10	54.393902 dB = 467.4069 A/A	$1 + (47k\Omega/100\Omega) = 471 \text{ A/A}$
150	10	54.393902 dB = 467.4069 A/A	$1 + (47k\Omega/100\Omega) = 471 \text{ A/A}$
200	10	54.393902 dB = 467.4069 A/A	$1 + (47k\Omega/100\Omega) = 471 \text{ A/A}$