	Normal probability Distribution Date:
	A continuous probability distribution its probability density function is bell-shaped and determined by its mean and 3D.
	* Normal probability Density function
	$f(x) = \frac{1}{6\sqrt{2\pi}} e^{-(x-14)^2/26^2}$
The second second second second second	when $h = mean$ $\pi = 3.14159$ $\sigma = SD$ $e = 2.71828$
	Standard deviation (5)
-	1 (Mean)
	* Standard Normal probability Distribution:
	A random variable that has has a normal distribution with a mean of zero and a S.D of one is said to have a standard Normal Probability Distribution
	$f(2) = \frac{1}{e^{-2^2/2}}$
	V2R
	Figing 24, Saint Parker @

Page No.:

Figing We Solved Pentur ®

Converting to standard Normal Random Variable 2 = X = 14 Exercises: P(2 5 1.5) = 0.9332 (a) P(251) = 0.8413 (b) P(15251,5) = 0,9332-0,8413 = 0,0919, P(06262-5) = 0,9938-0,5 = 0,4932. P(2 \le -10) = 0.1587 (i) (a) P(2 \$7 -1) = 1-0.1587 = 0.8413 (b) P(2 71-1-5) = 1-0-0668 = 0.9332. P(-2-5 62) = 1-0.0062 = 0.9938 (d) P(-3 < 2 < 0) = 0,5 -0,0013 = 0,4987 (e) P (052 50.83) = 0.7967 - 0.S = 0.2957 (a) = 0.5 -0.0582 = 0.4418 P(-157 5250) (h) P(2>0.44) = 1-0.6700 = 0.3300(C) P(27-0.23) = 1-0.4090 = 0.5910 (d) P(261.20) = 0.8849 (e) = 0.2389 P(26-0.71) A) P(-1.98 < 2 < 0.49) = 0-6879 - 0.0239 = 0.6640 (a) P(0.5252 51.22) = 0.8888 - 0.8985 =0.1903 (6) (c) 8-1492 - 0-0401 20-1091 P (-175 62 6-1.04) =

Page No.:

(a) 2 = 1-98 2 = 0 is + 0.4750 = 019750 So 221-98 2=0-61 1-0.1314 = 0.8686 50 221.12 2 20,44 1-0.3300 = 0.6700 SO 2 = 0.44 (a) 2 = 0,80 0,9030/2 + 0,5 = 0,9515 50 2 = 1-66 0,2052/2 + ors = 0,6026 So 2 = 0,26 2 = 2-56 1-0-6915=0-3085 502=-0-50 1-0.01 = 8,9900 50 2 = 2-33 1-0,025 = 0,9750 502 = 1,96 -0.05 = 0.9500 50 2 = 1.65 1-0,10 = 0,9000 50 2 = 1.29 Given 4=77 0 = 20 (a) x = 50 2= x - 4 - 50 - 72 = -1-35 SO P (26-1.35) = 0.0855 (b) x > 100 2 = 1000-77 = 1.150 P (271.15) = 1-0-8749 = 0.125 30, 12.5% of Workers spent more han 100 to hours.

Page	No.	:	
Date			

(c) Given: Upper 20% of Vsage So left side of 2(ie. bottom) = 1-0,2 = 0.80 also, 4 = 77 0 = 20

2 = x-M

= 1. DC = PC+20 = 77 60 + 0-8(20)

76 = 93//

93 horrs is considered as heavy user.

Page	No.	:	
Date	4		

* Normal Approximation of Binomial probability 4 = np = = = Unp (1-P) (28) Given P = 0.20 n = 160 (W M = MP = (100) (0-20) = 20 o = Vnp (1-P) = V16 = 4 Dyes because np = 20 so binomial probability can be approximated by the nogmal probability distribution (c) Given X Practly 24 (onsidering continuity Correction factor P(23,5 5 > < 524-5) FOX X = 23.5 2 = X-12 23.5 - 20 -0.8780 P(2 5 0.89) = 0.8106 FOR X = 24.5 2= x-1/2 - 24.5 - 20 - 1.12/0 P (25 1-13) = 0-8708 50, P(0-88 L 2 \le 1.13) = 0.8708 - 0-8106 5 0.0602/

Page 1	Ja			
rayor	40,	*	-	
Date:				

(8) Given 12 2000 12200 (a) le = nP = (200) (or8) = 120 = NnP (1-P) = Nn8 = 6-9282 (a) les because le 5/20 so, binomial Probability distosh ston. 1 Given x = 100 to 110. Considering continuits correction factor. P(99.5 5x 5110.5) 2=99-5-120 = -2-96 P(2 6-2.91) =0.0015 6.9982 2:110.5-120 = -1.37 P(26-1.37)=0.0853 P(-2-96 = 25 -1.32) = 0.0853 - 0.0015 = 0.0838/ (d) Given X 7/30 considering continuity correction factor 19(129.5 \(\sigma \) 2 = 129.5 -120, = 1.37 P(251.37)=0.914

SO P(x >1 130) = 1 - 0,9147 = 0,0853/

Figing My Salant Posters @

Page No	. :	
Date:		

(28)	Given n = 250 P = 0-20
	(a) 4 = nP = 250 × 0120 = 50
	50, 50 adults smoke,
	Jnp(1-P) = Uno = 6.3246
	considering Continuity Correction factor D(XL39(3)
	2 = 39-5 - 50 = -1-66 P(2 \in 1.66) = 0.048
	P(x 539,5) = 0.04854
	62 P156 C26 C66)
	considering continuity correction factor
	2;54-5-50 - 0.71 P(250.71) = 0.7611 6-3246
	2 = 60.5 -50 = 1.88 p (22/186) = 0.9575 6.3248
	P(sy. 5 5 2 660, S) = 0,9575 - 0,9811 = 0,1907,
	"//

Flying W4 Soleed Pentres ®

Page	No.	*	
Date	-		

2770 P(x = 696) Continuity Correction Enctor 2=6955-50 3.08 P(253.08)=0-9990 50, P(X > 6915) = 1 - 8,9990 = 8,0010/ * Exponential Probability Distribution The exponential probability distribution B used for sandom variables such as the time between armivals at a ear wash. The time required to load a trook. The distance between major defects in a highway and * Exponential probability pensity Finchon f(n) = pe e-x/er for x mo * Exponential Distribution Cumulative probability P(x = xn) = 1e-xo/16

Page No.	
Date:	

(3) Given for = \$ e x/8 for 270 (a) $P(X \le 8) = 1 - e^{-6/8} = 0.5296/1$ (b) $P(X \le 8) = 1 - e^{-9/8} = 0.3935/1$ (c) $P(X \ge 8) = 1 - 0.5298 = 0.4929/1$ (d) $P(Y \le X \le 8) = 0.5298 - 0.3935 = 0.1341/1$ (a) $P(x \in 20) = 1 - e^{-x_0/2}$ (b) $P(x \in 20) = 1 - e^{-x_0/2}$ (c) $P(x \neq 2) = 1 - e^{-x_0/2} = 0.4866$ (d) $P(x \neq 5) = e^{-3/3} = 0.3679$ (e) $P(x \neq 5) = 10 - e^{-5/3} = 0.8111$ (e) P(2 = 7 = 5) = 0.8/11 -0.4866 = 0.3245 (a) $P(x \le 10) = 1 - e^{-10/2-1} = 0.5824$ (b) $P(x \ge 10) = 1 - e^{-20/12.1} = 0.1915$ (c) P(10 5x \$20) = 0.8085-0.829 = 0.2461 (d) P(2)18) = e-19/12-1 = 0.2259 BB M = 8.5 PEN hour (a) $f(x) = 5.5e^{-5.5}$ (b) 515/4=1,3750 Per 13 min for no-intersultions: e-1-5750 = 0.2528 (c) 5,5/6 = 0,9/67 Per lomin for interruption: 10 1-0-0,9/67 = 0,6002/