计算机的组成

贺利坚 主讲

"解剖"计算机

CPU

□ 总线

□ 内存(条)

□ 扩展槽(接外部设备)

	地址总线	
CPU	数据总线	
	控制总线	

计算机的组成

CPU 是计算机的核心部件,它控制整个计算机的运作并进行运算。要想让一个CPU工作,就必须向它提供指令和数据。

指令和数据在存储器(内存)中存放。 离开了内存,性能再好的CPU也无法工作。

指令和数据的表示

- □计算机中的数据和指令,存储在内存或磁盘上。
- □数据和指令,都是二进制信息。
- □问题: 二进制信息1000100111011000是数据,还是指令?
 - № 1000100111011000 -> 89D8H (数据)
 - № 1000100111011000 -> MOV AX,BX (程序)

□数据如何表示?

- № 1000100111011000B (二进制)
- № 89D8**H** (十六进制)
- ⁴ 104730○ (八进制)
- ¹ 35288D (十进制)
- □数据量:B、KB、MB、GB、TB...

计算机中的存储单元

□存储器被划分为若干个存储单元,每个存储单元从0开始顺序编号;

■例如:

一个存储器有128个存储单元,	
编 号 从0~127,	
如右图示:	
实际	
内存空间很"大",	
8086有20条数据线,	
寻址空间2 ²⁰ ,为1MB	

0	
1	
2	
3	
•••	
•••	
124	
125	
126	
127	

计算机中的总线

- □在计算机中专门有连接CPU和其他芯片的导线,通常称为总线。
 - ⑩ 物理上:一根根导线的集合;
 - ⑩ 逻辑上划分为
 - □ 地址总线
 - 数据总线
 - □ 控制总线

三类总线

- CPU是通过**地址总线**来指 定存储单元的。
- 地址总线宽度,决定了可寻址的存储单元大小。
- N根地址总线(宽度为
 N),对应寻址空间2^N。

- CPU与内存或其它器件之间的数据传送是通过 数据总线来进行的。
- 数据总线的宽度决定了CPU和外界的数据传送 速度。
- 例:向内存中写入数据89D8H时的数据传送

8088CPU(8位数据总线) 上传送的信息

第二次,89 第一次,D8

控制总线

地址总线

CPU

0

8086CPU(16位数据总线) 上传送的信息

- CPU通过**控制总线**对外部 器件进行控制。
- 控制总线是一些不同控制 线的集合
- 控制总线宽度决定了CPU 对外部器件的控制能力。

x86CPU性能一览

CPU	地址总线宽度	寻址能力	数据总线宽度	一次传送数据	读取1KB数据要读次
8080	16	640KB	8	1B	1024
8088	20	1MB	8	1B	1024
8086	20	1MB	16	2В	512
80286	24	16MB	16	2B	512
80386	32	4GB	32	4B	256