# Processador MIPS - Introdução

# Objetivo Principal de um projetista de processadores:

- Obter um conjunto de instruções que facilite a construção do Hardware e do compilador
- Maximizar a performance
- Minimizar o custo

# Linguagem de Máquina

- Instruções (ou palavras)
- Conjunto de Instruções (ou vocabulário)

## Arquitetura de Von Neumann

Possibilidade de uma máquina digital armazenar seus programas no mesmo espaço de memória que os dados, podendo assim manipular tais programas.

# Modelo de Von Neumann



2

# Máquina de Von Neumann Periféricos In/out ULA ULA Lógica de controle Memória Read/Write

## **Arquitetura Harvard**

Se baseia na separação de barramentos de dados da memória, permitindo que um processador possa acessar as duas simultaneamente.

#### **Arquitetura Harvard**



3

Os avanços importantes na arquitetura de computadores são tipicamente associados aos marcos no projeto do conjunto de instruções

As decisões de projeto devem levar em conta:

- Tecnologia
- Organização de máquina
- Linguagens de programação
- Tecnologia de compilador
- Sistemas operacionais

Opções de CPU quanto ao uso de registradores

| Tipo         | Exemplo                                       | Operandos/<br>Inst ALU | Destino do<br>Resultado   | Método de acesso aos operandos                            |            |
|--------------|-----------------------------------------------|------------------------|---------------------------|-----------------------------------------------------------|------------|
| Stack        | B5500, B6500<br>HP2116B<br>HP 3000/70         | 0                      | Stack                     | Push & Pop Stack                                          | Pilha      |
| Accumulator  | PDP-8<br>Motorola 6809<br>+ ancient ones      | 1                      | Accumulator               | Acc = Acc + mem                                           | Acumulador |
| Register Set | IBM 360<br>DEC VAX<br>+ all modern<br>micro's | 2 or 3                 | Registers<br>or<br>Memory | Rx = Ry + mem (3)<br>Rx = Rx + Ry (2)<br>Rx = Rx + Rz (3) | GPR        |

5

# Exemplos de execução de instruções

Exemplo na implementação da adição : C = A + B

Pilha: Push A Push B Add

Add Pop C

Acumulador: Loa

Load A Add B Store C

GPR:

Load R1,A Add R1,B Store C, R1

## Comparativo do código/instruções

| tipo       | vantagens                                                                                                | desvantagens                                                                                               |  |
|------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| pilha      | •Endereço efetivo simples<br>•Instruções curtas<br>•Decodificação simples                                | Falta de acesso aleatório     Difícil de se gerar código     eficiente     Pilha é muitas vezes um gargalo |  |
| acumulador | •Estado interno minimal<br>•Rápida alteração de contexto<br>•Instruções curtas<br>•Decodificação simples | •Alto tráfego de memória                                                                                   |  |
| GPR        | •Muitas opções de geração de<br>código     •Código eficiente                                             | •Instruções longas<br>•Muitas opções para tamanho e<br>estrutura do conjunto de<br>registradores           |  |

7

Conclusão: atualmente predominam as Máquinas GPR

Motivo: de certa forma, responsabilidade da IBM

- Fabricante dominante no início
- Existem muitas técnicas de compilação para GPR

#### Provavelmente é a escolha certa

- Software tem mais tempo de vida que hardware
- Softwares existem a décadas
- Hardware é substituído a cada 2 a 4 anos

#### Tecnologia de compilações é importante

- Atualmente está bem avançado para GPR
- Também para VLIW (Very Large Instruction Word)

ver:

SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC, CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

9

- MIPS, acrônimo para Microprocessor without interlocked pipeline stages (Microprocessador sem estágios interligados de pipeline
- Uma arquitetura de microprocessadores RISC desenvolvido pela MIPS Computer Systems.
- Iniciado por David Patterson e Carlo Séquin, em Berkeley, com o nome de RISC em 1980. Em 1981, John Hennessy, pesquisador de Stanford, projetou e fabricou um chip ao qual ele deu o nome de MIPS.
- Em meados de 1990s estimou-se que um em cada três microprocessadores RISC era MIPS. Até 2006, usados em muitos produtos da SGI.

#### Aplicações:

- Computadores da Silicon Graphics;
- Muitos sistemas embutidos como Windows CE devices, Cisco routers, Foneras, Avaya;
- Consoles de video games: Nintendo 64, Sony PlayStation, PlayStation 2 e PlayStation, Portable handheld

# MIPS - um processador RISC "Típico"

- Instruções de formatos fixos de 32-bits (3 formatos)
- 32 registradores GPR de 32-bit (R0 contem zero)
- Instruções aritméticas reg-reg de 3-endereços
- Modo de endereçamento único para load/store: base + deslocamento
- Condições de desvio simples

10

- As primeiras versões das CPU's MIPS eram de 32-bits, mas as mais recentes tornaram-se 64-bits. Existem 5 versões da implementação MIPS, compatíveis entre si, chamadas MIPS I, MIPS II, MIPS III, MIPS IV, e MIPS 32/64.
- Pelo fato de ser um processador com design "limpo", esta arquitetura MIPS pode ser usada com fins educativos e influenciou processadores tais como o SPARC da Sun.



No Super Mario 64, o coelho é nomeado Mips em homenagem ao processador MIPS usado no sistema Nintendo 64.



