Билет 1

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение линейного (векторного) пространства.
- 2. Сформулировать теорему о собственных векторах линейного оператора, отвечающих различным собственным значениям.

Задачи

- 3. Найти базис и рамерность линейной оболочки системы векторов $\boldsymbol{a}_1=(1,-2,1)^T,\ \boldsymbol{a}_2=(-2,-1,4)^T,\ \boldsymbol{a}_3=(-3,-4,9)^T,\ \boldsymbol{a}_4=(0,-5,6)^T$ пространства \mathbb{R}^3 .
- 4. В базисе e_1 , e_2 пространства \mathbb{R}^2 квадратичная форма Q записывается как $Q(x_1,x_2)=3x_1^2+x_2^2+4x_1x_2$. Найти выражение $Q(y_1,y_2)$ этой квадратичной формы в базисе $e_1'=e_1+e_2$, $e_2'=2e_1-e_2$.
- 5. Найти матрицу линейного оператора $A: \mathbb{R}^2 \to \mathbb{R}^2$ в стандартном базисе e_1, e_2 , если A переводит векторы $a_1 = (3, 11)^T, a_2 = (1, 4)^T$ в векторы $b_1 = (0, 1)^T, b_2 = (1, 0)^T$ соответственно.
- 6. Методом ортогональных преобразований привести квадратичную форму $3x^2+6y^2-4xy$ к каноническому виду. Указать соответствующее преобразование. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

засчитывается, только если выполнена часть А; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Доказать неравенства Коши-Буняковского и треугольника.

Задача

8. В линейном пространстве многочленов степени не выше 3 найти матрицу перехода от базиса $\mathcal{B} = \{1, t-1, (t-1)^2, (t-1)^3\}$ к базису $\mathcal{B}' = \{1, t+2, (t+2)^2, (t+2)^3\}.$

ЛА, РК1; для ИУ (кроме ИУ-9), РЛ, БМТ; 2013-2014 уч. год

Билет 2

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение линейно зависимой и линейно независимой системы векторов.
- 2. Дать определение самосопряжённого линейного оператора на евклидовом пространстве и сформулировать теорему о виде матрицы самосопряжённого оператора в ортонормированном базисе.

Задачи

- 3. Найти ортогональный базис линейной оболочки системы векторов $\boldsymbol{a}_1 = (1,1,1,1)^T$, $\boldsymbol{a}_2 = (1,1,1,0)^T$, $\boldsymbol{a}_3 = (1,1,0,0)^T$ евклидова пространства \mathbb{R}^4 (скалярное произведение стандартное).
- 4. Найти матрицу перехода от базиса $\boldsymbol{a}_1=(1,2)^T,\, \boldsymbol{a}_2=(3,5)^T$ к базису $\boldsymbol{b}_1=(-1,2)^T,\, \boldsymbol{b}_2=(2,-1)^T$ пространства $\mathbb{R}^2.$
- 5. Линейный оператор A, действующий на некотором двумерном пространстве, в базисе e_1 , e_2 имеет матрицу $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Найти матрицу этого линейного оператора в базисе $e_1' = e_1 e_2$, $e_2' = 2e_1 + e_2$.
- 6. Привести квадратичную форму $4x_1x_3+x_3^2+2x_2x_3$ к сумме квадратов методом Лагранжа. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

засчитывается, только если выполнена часть А; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Вывести формулу преобразования координат вектора при переходе от одного базиса линейного пространства к другому.

Задача

8. Привести кривую $-3x^2+3y^2+8xy-8\sqrt{5}x-6\sqrt{5}y+15=0$ к каноническому виду. Указать соответствующее преобразование координат. Постороить кривую в исходной системе координат.

Билет 3

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение базиса и размерности линейного пространства.
- 2. Сформулировать теорему о корнях характеристического уравнения самосопряжённого оператора.

Задачи

- 3. Вектор $c \in \mathbb{R}^2$ имеет координаты $(1,-1)^T$ в базисе $e_1 = (1,0)^T$, $e_2 = (0,1)^T$. Найти его координаты в базисе $e_1' = (2,1)^T$, $e_2' = (1,1)^T$.
- 4. Базис $\mathcal{B}' = \{i', j', k'\}$ получается из правого ортонормированного базиса $\mathcal{B} = \{i, j, k\}$ пространства V_3 поворотом на 90° против часовой стрелки вокруг вектора i. Базис $\mathcal{B}'' = \{i'', j'', k''\}$ получается из базиса \mathcal{B}' поворотом на 90° по часовой стрелке вокруг вектора k'. Найти матрицу перехода от базиса \mathcal{B} к базису \mathcal{B}'' .
- 5. Найти собственные числа и собственные векторы линейного оператора $A\colon \mathbb{R}^2 \to \mathbb{R}^2$, заданного матрицей $\begin{pmatrix} 5 & 2 \\ -6 & -3 \end{pmatrix}$.
- 6. С помощью критерия Сильвестра определить, является ли квадратичная форма $2x_1^2-2x_1x_2+x_2^2+x_3^2-4x_3x_4+5x_4^2$ положительно определённой, отрицательно определённой, неопределённой.

Часть Б

засчитывается, только если выполнена часть А; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Вывести формулу преобразования матрицы линейного оператора при переходе к новому базису.

Задача

8. Методом ортогональных преобразований привести квадратичную форму $2x^2+5y^2+5z^2+4xy-4xz-8yz$ к каноническому виду. Указать соответствующеее преобразование координат.

ЛА, РК1; для ИУ (кроме ИУ-9), РЛ, БМТ; 2013-2014 уч. год

Билет 4

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; опенка 20 баллов

Теория

- 1. Дать определение матрицы перехода от одного базиса к другому.
- 2. Сформулировать теорему о собственных векторах самосопряжённого оператора, отвечающих различным собственным значениям.

Задачи

- 3. Принадлежит ли вектор $\boldsymbol{c}=(-9,11,7,7)^T\in\mathbb{R}^4$ линейной оболочке векторов $\boldsymbol{a}=(3,2,1,1)^T$ и $\boldsymbol{b}=(-7,1,1,1)^T$? Если да, то разложить его по векторам \boldsymbol{a} и \boldsymbol{b} .
- 4. В базисе e_1 , e_2 пространства \mathbb{R}^2 квадратичная форма Q записывается как $Q(x_1,x_2)=-x_1^2+5x_2^2+6x_1x_2$. Найти выражение $Q(y_1,y_2)$ этой квадратичной формы в базисе $e_1'=e_1+2e_2$, $e_2'=2e_1-3e_2$.
- 5. Найти матрицу линейного оператора $A: \mathbb{R}^2 \to \mathbb{R}^2$ в стандартном базисе $\boldsymbol{e}_1, \ \boldsymbol{e}_2, \$ если A переводит векторы $\boldsymbol{a}_1 = (3, -2)^T, \ \boldsymbol{a}_2 = (-4, 3)^T$ в векторы $\boldsymbol{b}_1 = (-1, -1)^T, \ \boldsymbol{b}_2 = (1, 1)^T$ соответственно.
- 6. Методом ортогональных преобразований привести квадратичную форму $4xy-4x^2-y^2$ к каноническому виду. Указать соответствующеее преобразование. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

засчитывается, только если выполнена часть A; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Доказать теорему о собственных векторах линейного оператора, отвечающих различным собственным значениям.

Задача

8. В линейном пространстве многочленов степени не выше 3 найти матрицу перехода от базиса $\mathcal{B} = \{1, t+1, (t+1)^2, (t+1)^3\}$ к базису $\mathcal{B}' = \{1, t-2, (t-2)^2, (t-2)^3\}.$

Билет 5

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение подпространства линейного пространства и линейной оболочки системы векторов.
- 2. Записать формулу преобразования матрицы квадратичной формы при переходе к новому базису.

Задачи

- 3. Найти ортогональный базис линейной оболочки системы векторов $\mathbf{a}_1 = (0,1,1,0)^T$, $\mathbf{a}_2 = (1,0,1,1)^T$, $\mathbf{a}_3 = (1,1,0,0)^T$ евклидова пространства \mathbb{R}^4 (скалярное произведение стандартное).
- 4. Найти матрицу перехода от базиса $\boldsymbol{a}_1 = (-1,1)^T$, $\boldsymbol{a}_2 = (4,-2)^T$ к базису $\boldsymbol{b}_1 = (1,1)^T$, $\boldsymbol{b}_2 = (3,5)^T$ пространства \mathbb{R}^2 .
- 5. Линейный оператор A, действующий на некотором двумерном пространстве, в базисе e_1 , e_2 имеет матрицу $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. Найти матрицу этого линейного оператора в базисе $e_1' = e_1 2e_2$, $e_2' = -2e_1 + 5e_2$.
- 6. Привести квадратичную форму $x_1^2 + 4x_1x_2 + 2x_2x_3 4x_1x_3$ к сумме квадратов методом Лагранжа. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

засчитывается, только если выполнена часть А; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Доказать инвариантность характеристического уравнения линейного оператора и инвариантность следа матрицы.

Задача

8. Привести кривую $9x^2+y^2+6xy+12\sqrt{10}x+4\sqrt{10}y+30=0$ к каноническому виду. Указать соответствующее преобразование координат. Построить кривую в исходной системе координат.

ЛА, РК1; для ИУ (кроме ИУ-9), РЛ, БМТ; 2013-2014 уч. год

Билет 6

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; опенка 20 баллов

Теория

- 1. Дать определение скалярного произведения и евклидова пространства.
- 2. Сформулировать теорему о существовании для самосопряжённого оператора ортонормированного базиса, в котором его матрица имеет простой вид.

Задачи

- 3. Вектор $c \in \mathbb{R}^2$ имеет координаты $(-1,1)^T$ в базисе $a_1 = (1,1)^T$, $a_2 = (1,-1)^T$. Найти его координаты в базисе $b_1 = (2,5)^T$, $b_2 = (1,2)^T$.
- 4. Базис $\mathcal{B}' = \{i', j', k'\}$ получается из правого ортонормированного базиса $\mathcal{B} = \{i, j, k\}$ пространства V_3 поворотом на 90° против часовой стрелки вокруг вектора j. Базис $\mathcal{B}'' = \{i'', j'', k''\}$ получается из базиса \mathcal{B}' поворотом на 90° против часовой стрелки вокруг вектора k'. Найти матрицу перехода от базиса \mathcal{B} к базису \mathcal{B}'' .
- 5. Найти собственные числа и собственные векторы линейного оператора $A\colon \mathbb{R}^2 \to \mathbb{R}^2$, заданного матрицей $\begin{pmatrix} -9 & -25 \\ 4 & 11 \end{pmatrix}$.
- 6. С помощью критерия Сильвестра определить, является ли квадратичная форма $-x_1^2+6x_1x_4-3x_2^2-x_3^2-3x_4^2$ положительно определённой, отрицательно определённой, неопределённой.

Часть Б

засчитывается, только если выполнена часть А; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Вывести формулу преобразования матрицы квадратичной формы при переходе к новому базису.

Задача

8. Методом ортогональных преобразований привести квадратичную форму $-x^2-y^2-7z^2+16xy-8xz-8yz$ к каноническому виду. Указать соответствующеее преобразование координат.

Билет 7

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение ортогональной системы векторов и ортонормированного базиса евклидова пространства.
- 2. Сформулировать критерий Сильвестра положительной определённости квадратичной формы и следствия для отрицательно определённых и неопределённых форм.

Задачи

- 3. Найти базис и рамерность линейной оболочки системы векторов $\boldsymbol{a}_1=(3,-2,-3)^T,\ \boldsymbol{a}_2=(1,2,3)^T,\ \boldsymbol{a}_3=(1,-6,-9)^T,\ \boldsymbol{a}_4=(-5,6,9)^T$ пространства \mathbb{R}^3 .
- 4. В базисе e_1 , e_2 пространства \mathbb{R}^2 квадратичная форма Q записывается как $Q(x_1,x_2)=-x_1^2-x_2^2+4x_1x_2$. Найти выражение $Q(y_1,y_2)$ этой квадратичной формы в базисе $e_1'=-e_1+e_2$, $e_2'=e_1-2e_2$.
- 5. Найти матрицу линейного оператора $A: \mathbb{R}^2 \to \mathbb{R}^2$ в стандартном базисе e_1, e_2 , если A переводит векторы $a_1 = (1, 2)^T, a_2 = (3, 4)^T$ в векторы $b_1 = b_2 = (2, 2)^T$ соответственно.
- 6. Методом ортогональных преобразований привести квадратичную форму $7x^2-y^2+6xy$ к каноническому виду. Указать соответствующее преобразование. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

засчитывается, только если выполнена часть A; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Вывести формулу преобразования координат вектора при переходе от одного базиса линейного пространства к другому.

Задача

8. В линейном пространстве многочленов степени не выше 3 найти матрицу перехода от базиса $\mathcal{B} = \{1, t-2, (t-2)^2, (t-2)^3\}$ к базису $\mathcal{B}' = \{1, t+2, (t+2)^2, (t+2)^3\}.$

ЛА, РК1; для ИУ (кроме ИУ-9), РЛ, БМТ; 2013-2014 уч. год

Билет 8

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение линейного оператора и матрицы линейного оператора.
- 2. Сформулировать закон инерции квадратичных форм.

Задачи

- 3. Найти ортогональный базис линейной оболочки системы векторов $\boldsymbol{a}_1=(1,1,0,0)^T,\; \boldsymbol{a}_2=(3,1,1,0)^T,\; \boldsymbol{a}_3=(-2,4,6,1)^T$ евклидова пространства \mathbb{R}^4 (скалярное произведение стандартное).
- 4. Найти матрицу перехода от базиса $\boldsymbol{a}_1 = (7,3)^T$, $\boldsymbol{a}_2 = (6,2)^T$ к базису $\boldsymbol{b}_1 = (5,3)^T$, $\boldsymbol{b}_2 = (2,2)^T$ пространства \mathbb{R}^2 .
- 5. Линейный оператор A, действующий на некотором двумерном пространстве, в базисе e_1 , e_2 имеет матрицу $\begin{pmatrix} 0 & -2 \\ 1 & 1 \end{pmatrix}$. Найти матрицу этого линейного оператора в базисе $e'_1 = -3e_1 + 2e_2$, $e'_2 = 2e_1 e_2$. 6. Привести квадратичную форму $x_1^2 + 2x_1x_2 + 2x_2x_3 + 4x_1x_3 x_2^2$ к сум-
- 6. Привести квадратичную форму $x_1^2 + 2x_1x_2 + 2x_2x_3 + 4x_1x_3 x_2^2$ к сумме квадратов методом Лагранжа. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

засчитывается, только если выполнена часть А; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Доказать неравенства Коши-Буняковского и треугольника.

Задача

8. Привести кривую $32x^2+7y^2+60xy+20\sqrt{13}x+22\sqrt{13}y+39=0$ к каноническому виду. Указать соответствующее преобразование координат. Построить кривую в исходной системе координат.

Билет 9

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение ортогонального линейного оператора и ортогональной матрицы.
- 2. Записать формулу преобразования координат вектора при переходе от одного базиса линейного пространства к другому.

Задачи

- 3. Вектор $c \in \mathbb{R}^2$ имеет координаты $(2,5)^T$ в базисе $e_1 = (1,0)^T$, $e_2 = (0,1)^T$. Найти его координаты в базисе $e'_1 = (7,4)^T$, $e'_2 = (2,1)^T$.
- 4. Базис $\mathcal{B}' = \{i', j', k'\}$ получается из правого ортонормированного базиса $\mathcal{B} = \{i, j, k\}$ пространства V_3 поворотом на 90° против часовой стрелки вокруг вектора k. Базис $\mathcal{B}'' = \{i'', j'', k''\}$ получается из базиса \mathcal{B}' поворотом на 45° против часовой стрелки вокруг вектора i'. Найти матрицу перехода от базиса \mathcal{B} к базису \mathcal{B}'' .
- 5. Найти собственные числа и собственные векторы линейного оператора $A\colon \mathbb{R}^2 \to \mathbb{R}^2$, заданного матрицей $\begin{pmatrix} -3 & -6 \\ 2 & 5 \end{pmatrix}$.
- 6. С помощью критерия Сильвестра определить, является ли квадратичная форма $-2x_1^2+10x_1x_2-4x_2^2-x_3^2-2x_3x_4-2x_4^2$ положительно определённой, отрицательно определённой, неопределённой.

Часть Б

засчитывается, только если выполнена часть A; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Вывести формулу преобразования матрицы линейного оператора при переходе к новому базису.

Задача

8. Методом ортогональных преобразований привести квадратичную форму $5x^2+37y^2+10z^2-24xy-12xz+36yz$ к каноническому виду. Указать соответствующеее преобразование координат.

ЛА, РК1; для ИУ (кроме ИУ-9), РЛ, БМТ; 2013-2014 уч. год

Билет 10

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение характеристического уравнения, собственного числа и собственного вектора линейного оператора.
- 2. Записать неравенства Коши-Буняковского и треугольника.

Задачи

- 3. Принадлежит ли вектор $\boldsymbol{c}=(1,2,3,4)^T\in\mathbb{R}^4$ линейной оболочке векторов $\boldsymbol{a}=(1,-1,1,-1)^T$ и $\boldsymbol{b}=(3,3,-2,-2)^T$? Если да, то разложить его по векторам \boldsymbol{a} и \boldsymbol{b} .
- 4. В базисе e_1 , e_2 пространства \mathbb{R}^2 квадратичная форма Q записывается как $Q(x_1,x_2)=x_1^2-2x_2^2+2x_1x_2$. Найти выражение $Q(y_1,y_2)$ этой квадратичной формы в базисе $e_1'=e_2$, $e_2'=e_1-e_2$.
- 5. Найти матрицу линейного оператора $A: \mathbb{R}^2 \to \mathbb{R}^2$ в стандартном базисе $\boldsymbol{e}_1, \, \boldsymbol{e}_2, \,$ если A переводит векторы $\boldsymbol{a}_1 = (3,2)^T, \, \boldsymbol{a}_2 = (2,3)^T$ в векторы $\boldsymbol{b}_1 = (1,3)^T, \, \boldsymbol{b}_2 = (-1,2)^T$ соответственно.
- 6. Методом ортогональных преобразований привести квадратичную форму $4xy-5x^2-8y^2$ к каноническому виду. Указать соответствующеее преобразование. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

засчитывается, только если выполнена часть A; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Доказать теорему о собственных векторах линейного оператора, отвечающих различным собственным значениям.

Задача

8. В линейном пространстве многочленов степени не выше 3 найти матрицу перехода от базиса $\mathcal{B} = \{1, t+2, (t+2)^2, (t+2)^3\}$ к базису $\mathcal{B}' = \{1, t-2, (t-2)^2, (t-2)^3\}.$

Билет 11

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 20 баллов

Теория

- 1. Дать определение квадратичной формы, матрицы и канонического вида квадратичной формы.
- 2. Сформулировать теорему о связи линейной зависимости и ортогональности системы векторов.

Задачи

- 3. Найти ортогональный базис линейной оболочки системы векторов $\mathbf{a}_1 = (2, -1, -1, 0)^T$, $\mathbf{a}_2 = (-1, 2, -1, 0)^T$, $\mathbf{a}_3 = (-1, -1, 2, -1)^T$ евклидова пространства \mathbb{R}^4 (скалярное произведение стандартное).
- 4. Найти матрицу перехода от базиса $\boldsymbol{a}_1 = (7,3)^T$, $\boldsymbol{a}_2 = (2,1)^T$ к базису $\boldsymbol{b}_1 = (3,2)^T$, $\boldsymbol{b}_2 = (2,3)^T$ пространства \mathbb{R}^2 .
- 5. Линейный оператор A, действующий на некотором двумерном пространстве, в базисе e_1 , e_2 имеет матрицу $\begin{pmatrix} -11 & -30 \\ 4 & 11 \end{pmatrix}$. Найти матрицу этого линейного оператора в базисе $e_1' = -3e_1 + e_2$, $e_2' = 5e_1 2e_2$.
- 6. Привести квадратичную форму $-4x_1x_2+4x_1x_3+\bar{x_2}^2+2x_2x_3$ к сумме квадратов методом Лагранжа. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

засчитывается, только если выполнена часть А; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Доказать инвариантность характеристического уравнения линейного оператора и инвариантность следа матрицы.

Задача

8. Привести кривую $15x^2-16xy-15y^2+2\sqrt{17}x+2\sqrt{17}y+16=0$ к каноническому виду. Указать соответствующее преобразование координат. Построить кривую в исходной системе координат.

ЛА, РК1; для ИУ (кроме ИУ-9), РЛ, БМТ; 2013-2014 уч. год

Билет 12

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; опенка 20 баллов

Теория

- 1. Дать определение положительно определённой, отрицательно определённой и неопределённой квадратичной формы.
- 2. Записать формулу преобразования матрицы линейного оператора при переходе к новому базису.

Задачи

- 3. Вектор $c \in \mathbb{R}^2$ имеет координаты $(1,1)^T$ в базисе $a_1 = (3,-2)^T$, $a_2 = (-2,-3)^T$. Найти его координаты в базисе $b_1 = (7,-2)^T$, $b_2 = (-4,1)^T$.
- 4. Базис $\mathcal{B}' = \{i', j', k'\}$ получается из правого ортонормированного базиса $\mathcal{B} = \{i, j, k\}$ пространства V_3 поворотом на 60° по часовой стрелке вокруг вектора k. Базис $\mathcal{B}'' = \{i'', j'', k''\}$ получается из базиса \mathcal{B}' поворотом на 90° против часовой стрелки вокруг вектора j'. Найти матрицу перехода от базиса \mathcal{B} к базису \mathcal{B}'' .
- 5. Найти собственные числа и собственные векторы линейного оператора $A\colon \mathbb{R}^2 \to \mathbb{R}^2$, заданного матрицей $\begin{pmatrix} 5 & 1 \\ -9 & -1 \end{pmatrix}$.
- 6. С помощью критерия Сильвестра определить, является ли квадратичная форма $x_1^2 + 6x_1x_4 + 4x_2^2 + x_3^2 + 2x_2x_3 + 2x_4^2$ положительно определённой, отрицательно определённой, неопределённой.

Часть Б

засчитывается, только если выполнена часть A; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Вывести формулу преобразования матрицы квадратичной формы при переходе к новому базису.

Задача

8. Методом ортогональных преобразований привести квадратичную форму $3x^2+3y^2+3z^2-2xy-2xz-2yz$ к каноническому виду. Указать соответствующеее преобразование координат.