Term presentation Problem 3

Satvik Saha, 19MS154 November 18, 2020

MA2102: Linear Algebra I Indian Institute of Science Education and Research, Kolkata

Problem statement

Let V and W be vector spaces over the same field F. Show that the set $\mathcal{L}(V,W)$, consisting of linear maps from V to W, is a vector space. If V and W are finite dimensional, then find the dimension of $\mathcal{L}(V,W)$.

Preliminaries

A vector space V over a field F is a set equipped with a binary operation $+: V \times V \to F$ called addition, and an operation $\cdot: F \times V \to V$ called scalar multiplication, such that

- 1. $u + v \in V$, for all $u, v \in V$.
- 2. $\lambda u \in V$, for all $u \in V$, $\lambda \in F$.
- 3. u + v = v + u, for all $u, v \in V$.
- 4. (u + v) + w = u + (v + w), for all $u, v, w \in V$.
- 5. There exists $0 \in V$ such that 0 + v = v for all $v \in V$.
- 6. For all $v \in V$, there exists $u \in V$ such that v + u = 0. We denote u = -v.
- 7. $\lambda(u+v) = \lambda u + \lambda v$, for all $u, v \in V$, $\lambda \in F$.
- 8. $(\lambda \mu)\mathbf{v} = \lambda(\mu \mathbf{v})$ for all $\mathbf{v} \in V$, $\lambda, \mu \in F$.
- 9. $(\lambda + \mu)\mathbf{v} = \lambda\mathbf{v} + \mu\mathbf{v}$, for all $\mathbf{v} \in V$, $\lambda, \mu \in F$.
- 10. There exists $1 \in F$ such that $1\mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in V$.

Preliminaries

A basis of a vector space *V* over a field *F* is a set of linearly independent vectors in *V* such that any element of *V* can be written as a finite linear combination of them.

The dimension of a vector space *V* is equal to number of elements in a basis of *V*. This is well defined by the Replacement Theorem, which guarantees that any two bases will have the same size.

Preliminaries

A linear map between the vector spaces V and W is a map $T \colon V \to W$ such that for all $u, v \in V$ and $\lambda \in F$,

$$T(u + v) = T(u) + T(v),$$

 $T(\lambda v) = \lambda T(v).$

$\mathcal{L}(V,W)$ as a vector space

Let $T, T_1, T_2 \colon V \to W$ be linear maps and let $\lambda \in F$. We define addition and scalar multiplication on $\mathcal{L}(V, W)$ as follows.

$$(T_1 + T_2)(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v})$$
 for all $\mathbf{v} \in V$,
 $(\lambda T)(\mathbf{v}) = \lambda T(\mathbf{v})$ for all $\mathbf{v} \in V$.

$\mathcal{L}(V,W)$ as a vector space: Closure

 $T_1 + T_2$ and λT are both linear maps in $\mathcal{L}(V, W)$.

$$(T_1 + T_2)(u + \mu v) = T_1(u + \mu v) + T_2(u + \mu v)$$

= $T_1(u) + \mu T_1(v) + T_2(u) + \mu T_2(v)$
= $(T_1 + T_2)(u) + \mu (T_1 + T_2)(v)$.

$$(\lambda T)(\mathbf{u} + \mu \mathbf{v}) = \lambda T(\mathbf{u} + \mu \mathbf{v})$$
$$= \lambda T(\mathbf{u}) + \lambda \mu T(\mathbf{v})$$
$$= (\lambda T)(\mathbf{u}) + \mu(\lambda T)(\mathbf{v}).$$

$\mathcal{L}(V,W)$ as a vector space: Commutativity and Associativity of addition

For all $\mathbf{v} \in V$, note that the commutativity of addition in W gives

$$(T_1 + T_2)(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}) = T_2(\mathbf{v}) + T_1(\mathbf{v}) = (T_2 + T_1)(\mathbf{v}).$$

The associativity of addition in W gives

$$((T_1 + T_2) + T_3)(\mathbf{v}) = T_1(\mathbf{v}) + (T_2 + T_3)(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}) + T_3(\mathbf{v}),$$

$$(T_1 + (T_2 + T_3))(\mathbf{v}) = (T_1 + T_2)(\mathbf{v}) + T_3(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}) + T_3(\mathbf{v}).$$

Thus,
$$T_1 + T_2 = T_2 + T_1$$
 and $(T_1 + T_2) + T_3 = T_1 + (T_2 + T_3)$.

$\mathcal{L}(V,W)$ as a vector space: Existence of an additive identity and inverses

Define the linear map $\mathbf{0}_{\mathcal{L}} \colon V \to W$, $\mathbf{v} \mapsto \mathbf{0}_{W}$. For any $T \in \mathcal{L}(V, W)$, for all $\mathbf{v} \in W$.

$$(\mathbf{0}_{\mathcal{L}} + T)(\mathbf{v}) = \mathbf{0}_{\mathcal{L}}(\mathbf{v}) + T(\mathbf{v}) = \mathbf{0}_{W} + T(\mathbf{v}) = T(\mathbf{v}).$$

Define $T': V \to W, \mathbf{v} \mapsto -T(\mathbf{v})$. Then,

$$(T + T')(v) = T(v) + T'(v) = T(v) - T(v) = 0_{W} = 0_{\mathcal{L}}(v).$$

Thus, $\mathbf{0}_{\mathcal{L}} + T = T$ and $T + T' = \mathbf{0}_{\mathcal{L}}$.

$\mathcal{L}(V,W)$ as a vector space: Distributivity of scaling

For
$$\lambda, \mu \in F$$
, for all $\mathbf{v} \in V$,

$$(\lambda(T_1 + T_2))(\mathbf{v}) = \lambda(T_1 + T_2)(\mathbf{v})$$

$$= \lambda(T_1(\mathbf{v}) + T_2(\mathbf{v}))$$

$$= \lambda T_1(\mathbf{v}) + \lambda T_2(\mathbf{v})$$

$$= (\lambda T_1)(\mathbf{v}) + (\lambda T_2)(\mathbf{v})$$

$$= (\lambda T_1 + \lambda T_2)(\mathbf{v}).$$

$$((\lambda + \mu)T)(\mathbf{v}) = (\lambda + \mu)T(\mathbf{v})$$

$$= \lambda T(\mathbf{v}) + \mu T(\mathbf{v})$$

$$= (\lambda T)(\mathbf{v}) + (\mu T)(\mathbf{v})$$

$$= (\lambda T + \mu T)(\mathbf{v}).$$

Thus, $\lambda(T_1 + T_2) = \lambda T_1 + \lambda T_2$ and $(\lambda + \mu)T = \lambda T + \mu T$.

$\mathcal{L}(V,W)$ as a vector space: Scaling

For $\lambda, \mu \in F$, for all $\mathbf{v} \in V$,

$$((\lambda \mu)T)(\mathbf{v}) = (\lambda \mu)T(\mathbf{v})$$
$$= \lambda(\mu T(\mathbf{v}))$$
$$= \lambda(\mu T)(\mathbf{v})$$
$$= (\lambda(\mu T))(\mathbf{v}).$$

Thus, $(\lambda \mu T) = \lambda(\mu T)$.

Pick the scalar $1 \in F$ which satisfies $1\mathbf{w} = \mathbf{w}$ for all $\mathbf{w} \in W$. Then

$$(1T)(v) = 1(T(v)) = T(v),$$

so 1T = T.

Thus, we have verified that $\mathcal{L}(V,W)$ is a vector space, with the given structure of addition and scaling.

Dimension of $\mathcal{L}(V, W)$ when V and W are finite dimensional

Let $\beta = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of V and let $\gamma = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ be a basis of W.

Define the linear maps

$$T_{ij}: V \to W, \qquad \mathbf{v}_k \mapsto \delta_{ik} \mathbf{w}_j,$$

for all i = 1, ..., n and j = 1, ..., m. We claim that the set of all such T_{ij} comprises a basis of $\mathcal{L}(V, W)$.

Note that

$$T_{ij}(\lambda_1\mathbf{v}_1+\cdots+\lambda_n\mathbf{v}_n)=\lambda_i\mathbf{w}_j$$

Dimension of $\mathcal{L}(V, W)$ when V and W are finite dimensional

Let $\beta = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of V and let $\gamma = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ be a basis of W.

Define the linear maps

$$T_{ij}: V \to W, \qquad \mathbf{v}_k \mapsto \delta_{ik} \mathbf{w}_j,$$

for all i = 1, ..., n and j = 1, ..., m. We claim that the set of all such T_{ij} comprises a basis of $\mathcal{L}(V, W)$.

Note that

$$T_{ij}(\lambda_1\mathbf{v}_1+\cdots+\lambda_n\mathbf{v}_n)=\lambda_i\mathbf{w}_j.$$

$$\mathsf{span}\{T_{ij}\} = \mathcal{L}(V, W)$$

Suppose $T: V \to W$ is a linear map in $\mathcal{L}(V, W)$. For each of the basis vectors $\mathbf{v}_i \in \beta$, there exist unique scalars a_{ij} such that

$$T(\mathbf{v}_i) = a_{i1}\mathbf{w}_1 + a_{i2}\mathbf{w}_2 + \cdots + a_{im}\mathbf{w}_m.$$

We see that

$$T = \sum_{i=1}^n \sum_{j=1}^m a_{ij} T_{ij}.$$

To prove this, pick any $v \in V$ and write $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then,

$$T(\mathbf{v}) = \sum_{i=1}^{n} \lambda_i T(\mathbf{v}_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i a_{ij} w_j = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} T_{ij}(\mathbf{v})$$

$\mathsf{span}\{T_{ij}\} = \mathcal{L}(V,W)$

Suppose $T: V \to W$ is a linear map in $\mathcal{L}(V, W)$. For each of the basis vectors $\mathbf{v}_i \in \beta$, there exist unique scalars a_{ij} such that

$$T(\mathbf{v}_i) = a_{i1}\mathbf{w}_1 + a_{i2}\mathbf{w}_2 + \cdots + a_{im}\mathbf{w}_m.$$

We see that

$$T = \sum_{i=1}^n \sum_{j=1}^m a_{ij} T_{ij}.$$

To prove this, pick any $v \in V$ and write $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then,

$$T(\mathbf{v}) = \sum_{i=1}^{n} \lambda_i T(\mathbf{v}_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i a_{ij} \mathbf{w}_j = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} T_{ij}(\mathbf{v}).$$

$\mathsf{span}\{T_{ij}\} = \mathcal{L}(V, W)$

Suppose $T: V \to W$ is a linear map in $\mathcal{L}(V, W)$. For each of the basis vectors $\mathbf{v}_i \in \beta$, there exist unique scalars a_{ij} such that

$$T(\mathbf{v}_i) = a_{i1}\mathbf{w}_1 + a_{i2}\mathbf{w}_2 + \cdots + a_{im}\mathbf{w}_m.$$

We see that

$$T = \sum_{i=1}^n \sum_{j=1}^m a_{ij} T_{ij}.$$

To prove this, pick any $\mathbf{v} \in V$ and write $\mathbf{v} = \lambda_1 \mathbf{v}_1 + \cdots + \lambda_n \mathbf{v}_n$. Then,

$$T(\mathbf{v}) = \sum_{i=1}^{n} \lambda_i T(\mathbf{v}_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i a_{ij} \mathbf{w}_j = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} T_{ij}(\mathbf{v}).$$

$\{T_{ij}\}$ is linearly independent

Consider the linear combination

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} T_{ij} = \mathbf{0}.$$

By successively evaluating this map on $oldsymbol{v}_k$ for $k=1,\ldots,n$, we see that

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} T_{ij}(\mathbf{v}_k) = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \delta_{ik} \mathbf{w}_j = \sum_{j=1}^{m} c_{kj} \mathbf{w}_j = \mathbf{0}.$$

The linear independence of $\gamma = \{w_1, \dots, w_m\}$ forces $c_{kj} = 0$

$\{T_{ij}\}$ is linearly independent

Consider the linear combination

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} T_{ij} = \mathbf{0}.$$

By successively evaluating this map on \mathbf{v}_k for k = 1, ..., n, we see that

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} T_{ij}(\mathbf{v}_{k}) = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \delta_{ik} \mathbf{w}_{j} = \sum_{j=1}^{m} c_{kj} \mathbf{w}_{j} = \mathbf{0}.$$

The linear independence of $\gamma = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ forces $c_{kj} = 0$.

Thus, the set of all T_{ij} is a linearly independent set which spans $\mathcal{L}(V, W)$. Hence, this comprises a basis of $\mathcal{L}(V, W)$.

This basis contains *mn* elements. Thus,

$$\dim \mathcal{L}(V,W) = mn,$$

where $n = \dim V$ and $m = \dim W$ are finite.