Team Meeting

06 MAY 2022 / 14:15 AM / ZOOM

Attendees

Ate, Xavier, Jesse, Ni, Stefan, Jiadong

Agenda

Last Meeting Follow-up

- 1. Result report
 - a. Missing data "NA", (194 in 1658)
 - b. 0.5971 AUC for classifier of supplementary 13 (MZ vs DZ), 0 AUC for classifier of supplementary 14 (MZ vs (DZ & family))
 - c. Confusion matrix for classifier 13

```
mdz
Estimate DZ MZ
DZ 177 81
MZ 435 771
```

d. Excel file

New Business

1. Machine learning Classifiers (ideas need to search in google scholar)

Classifier	Pros	Cons
SVM	- The dimensionality reduction process can be rejected to achieve high classification accuracy.	- Not suitable for large dataset (time consuming)
	- Insensitive to overfitting.	
Logistic Regression	- Good accuracy for many simple data sets and it performs well when the dataset is linearly separable.	- High dimension data tend to overfit the model - feature selection / dimensionality reduction process is necessary.
Bayesian Algorithm	- Good performance on small-scale data, suitable for incremental training	- Need to calculate the prior probability
	- Not sensitive to missing data and the algorithm is relatively simple, which is easy to interpret	- Classification decision has error rate
		- Not good if the sample attribute is related
Adaboosting	- High-precision classifier that can be used to	- The number of iterations is not easy to set
	construct sub-classifiers using various methods	- Data imbalance leads to the decline of classification
	- Simple to implement	accuracy
	- Overfitting is not easy to occur	- The training is time-consuming
Stochastic Gradient boosting	- Avoid the problems arising from overfitting of its base classifier - Inherent variable selection and assigning variable amount of degrees of freedom to the selected variables by boosting algorithms could be a	- High computational complexity (due to low learning rate in shrinkage process)

	reason for high performance in high dimensional problems. - Boosting yields consistent function approximations even when the number of predictors grows fast to infinity, where the underlying true function is sparse.	
Random Forests	- Not computationally intensive - Limits correlation among trees can help in building an ensemble classifier with high generalization accuracy for high dimensional data problems - Low classification error rates (compare with boosting and svm) - Little need to tune parameters - Robust and does not overfit	 For very large data sets, the size of the trees can take up a lot of memory. Poor performance on imbalanced data

References:

 $\label{lem:http://plaza.ufl.edu/psnvijay/Site/Publications_files/Classification_HDD.pdf $$ $$ $$ $$ $$ https://www.usu.edu/math/jrstevens/bioinf/8.Forests.pdf - Random forests $$ $$ $$ $$ https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-015-0723-9.pd $$ f$ - Stochastic gradient boosting $$$

2. Report

Notes

- Possible reasons for low AUC:
 - o Different normalization methods
 - Something wrong in the code
 - Different distribution of the dataset
 - Not transform the response value (link function)
- Cut-off influences the confusion matrix, but the AUC and ROC

Action Items

- Double check the code for aim 1
- Ask shuai if the test data is normalized the same as the nature paper
- PCA data visualization (scatterplot different colors for different datasets)
- Ask access to the original dataset from the nature paper, replicate the testing step. (for debugging)
- Split our dataset to training and testing, retrain the model, then see whether AUC would be improved.

Next Meeting Agenda