PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-331941

(43)Date of publication of application: 02.12.1994

(51)Int.CI.

G02B 27/42

GO2B 13/18

(21)Application number : 05-116791

....

(71)Applicant:

OLYMPUS OPTICAL CO LTD

(22)Date of filing:

19.05.1993

(72)Inventor:

HISAYOSHI KEIICHI

(54) PROJECTION LENS SYSTEM

(57)Abstract:

PURPOSE: To provide a compact projection lens in which aberrations including the chromatic aberration are effectively compensated and having less problem of manufacturing ability, high resolving power and a wide exposure area when a glass material available for a lens material is limited. CONSTITUTION: In a projection lens system 10 composed of plural lenses in which at least one lens is composed of a diffractive optical element 11, the diffractive optical element 11 has paraxial positive power and a pitch array continuously varying from a positive power to a negative power as being separated from the optical axis. Since the diffractive optical element 11 generates a large aberration having inverted sign to the aberration generated in a diffraction system, the various aberrations of the projection lens system 10 are excellently compensated and an on-axis chromatic aberration is also improved. By such a pitch array, the minimum pitch of the diffractive optical element 11 does not become too small.

LEGAL STATUS

[Date of request for examination]

09.05.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP) (12)公開特許公報 (A) (11)特許出願公開番号

特開平6-331941

(43)公開日 平成6年(1994)12月2日

(51) Int. C1. 5

識別記号

庁内整理番号

技術表示箇所

G02B 27/42

9120-2K

13/18

9120-2K

審査請求 未請求 請求項の数2 OL (全19頁)

(21)出願番号

特願平5-116791

(22)出願日

平成5年(1993)5月19日

(71)出願人 000000376

オリンパス光学工業株式会社

東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 久芳圭一

FΙ

東京都渋谷区幡ヶ谷2丁目43番2号オリ

ンパス光学工業株式会社内

(74)代理人 弁理士 韮澤 弘 (外7名)

(54) 【発明の名称】投影レンズ系

. (57)【要約】

【目的】 レンズ材料として使用できる硝材が限定され ている場合に、色収差を含む諸収差を有効に補正したコ ンパクトで製作性の問題の少ない高解像力・広露光面積 投影レンズ系。

【構成】 複数のレンズから構成されており、その中の 少なくとも1つのレンズが回折光学素子11からなる投 影レンズ系10において、回折光学素子11が、近軸的 には正パワーを持ち、光軸から離れるに従って正パワー から負パワーに連続的に変化するピッチ配列を持つ。回 折光学素子は、屈折系で発生する収差と逆符号の大きな 収差を発生させるので、投影レンズ系の諸収差を良好に 補正し、軸上色収差も改善される。このようなピッチ配 列により、回折光学素子の最小ピッチがあまり小さくな らない。

【特許請求の範囲】

【請求項1】 複数のレンズから構成されており、その 中の少なくとも1つのレンズが回折光学素子からなる投 影レンズ系において、前記回折光学素子が、近軸的には 正パワーを持ち、光軸から離れるに従って正パワーから 負パワーに連続的に変化するピッチ配列を持つことを特 徴とする投影レンズ系。

【請求項2】 前記回折光学素子の中間部の正パワーか ら負パワーへ変化する途中のノーパワー部の位置が、下 記の条件を満足することを特徴とする請求項1記載の投 10 影レンズ系。

$h / 2 \leq p$

ただし、hは前記回折光学素子の有効半径、pは前記回 折光学素子中間部のノーパワー部の半径である。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、IC、LSI等の微細 な集積回路パターンを半導体基板上に露光する投影露光 装置(以下、ステッパと言う。) に用いられる投影レン し150nm程度の紫外から真空紫外に及ぶ波長域の光 源を用いて集積回路パターンを半導体基板上に露光する のに有効な投影レンズ系に関するものである。

[0002]

【従来の技術】従来より、IC、LSI、液晶ディスプ レー、薄膜磁気ヘッドのパターンを半導体等の基板上に 露光するためにステッパが使用されているが、近年の集 積回路の集積度の向上に伴い、ステッパの投影レンズ系 にもより一層の高解像力・広露光面積化が要求されてい る。

【0003】一般に、レンズ系の解像力・焦点深度と波 長、開口数の間には、次式が成立する。

解像力 $= k_{\perp} \cdot \lambda / NA$

焦点深度 = k, $\cdot \lambda / NA$

ただし、入は波長、NAは開口数、k, k, はプロセ スに依存する比例定数である。

【0004】したがって、投影レンズの解像力を向上さ せるためには、露光波長を短波長化するか、NAを大き くすればよい。しかし、NAを大きくする方法は、焦点 深度の急激な減少を招くと共に、光学設計上の困難が伴

【0005】そこで、露光波長の短波長化により高解像 力化する試みがなされている。具体的には、従来のステ ッパで使用されている超高圧水銀ランプのg線(436 n m) や i 線 (365 n m) では解像力が不十分となっ たことから、より波長の短いKrFエキシマレーザ (2 48 nm) やArFエキシマレーザ(193 nm) が次 世代光源として有望視されている。

【0006】一方、投影レンズを広露光面積化するため

系を係数倍する)、あるいは、非球面レンズを使用する ということが行われている。前者は、従来のように球面 系石英レンズを使用する限りは広露光面積化にも限界が あるので、投影光学系を係数倍することで、露光面積を 拡大しようとするものである。

[0007]

【発明が解決しようとする課題】ところで、まず、高解 像化するために上記のようにエキシマレーザを光源とす る場合の問題点を述べると、エキシマレーザ光は、フリ ーランでは、半値幅が0.3~0.4 n m程度と大きい ために、投影レンズ系の色消しが必要となる。しかし、 エキシマレーザ光の波長領域では、通常のガラスの透過 率が不十分であることから、使用できる硝材は、石英、 蛍石、MgF, 等に限定されるが、蛍石は硬度が低くて 傷つきやすく、光学研磨も容易ではなく、また、MgF , は潮解性、異方性がある等、石英以外の硝材には加工 性の問題がある。したがって、投影レンズに実用上使用 できる硝材は、石英に限定される。

【0008】以上のような背景により、投影レンズ系は ズ系に関し、特に、エキシマレーザ等の300nmない 20 石英のみからなる単色設計レンズとし、光源の波長スペ クトルを狭帯域化することで、光学系の色収差の発生を 防ぐのが一般的方法である。しかし、このような構成の 光学系には、次のような問題点が生ずる。

> 【0009】 ②狭帯域化によりレーザの出力が低下す る。

②中心波長、スペクトル半値幅等を高精度に維持するた めに、レーザが複雑化する。

③光源に許容されるスペクトル半値幅はNA¹に反比例 するため、デバイスの集積化に伴って投影レンズ系を高 30 NA化すると、許容半値幅が極端に厳しくなる。

【0010】次に、投影レンズを広露光面積化する場合 の問題点としては、投影レンズを係数倍して物像間距離 を増加させると、投影光学系の巨大化を招き、遂にはス テッパが従来のクリーンルームに入らなくなる、あるい は、巨大なクリーンルームが必要となるという問題が生

【0011】また、光源に要求されるスペクトル半値幅 は投影レンズの焦点距離に反比例するので、光学系を係 数倍するという方法は、より一層の狭帯域化が必要にな り好ましくない。

【0012】一方、屈折系レンズの場合、球面レンズと 非球面レンズの製法は異なり、ステッパレンズに要求さ れるような高精度な非球面レンズの製作は容易ではな

【0013】そこで、これらの問題点を解決するため に、特公平4-214516号に開示されているよう に、回折光学素子を使用した投影レンズが提案されてい る.

【0014】しかし、色収差の補正を主目的として回折 には、投影レンズの物像間距離を増加させる(投影光学 50 光学素子に正パワーの作用のみを持たせると、回折光学

素子の有効径最周辺でのピッチが非常に小さくなり、製作が非常に困難となり、かつ、色収差以外の収差補正効果があまり大きくない。

【0015】以上述べたように、エキシマレーザを光源とする高解像力・高露光面積の投影光学系には、多くの問題点がある。

【0016】本発明は上記問題点を解決するためになされたものであり、その目的は、レンズ材料として使用できる硝材が限定されている場合に、色収差を含む諸収差を有効に補正したコンパクトで製作性の問題の少ない高 10解像力・広露光面積投影レンズ系を提供することである。

[0017]

【課題を解決するための手段】上記目的を達成する本発明の投影レンズ系は、複数のレンズから構成されており、その中の少なくとも1つのレンズが回折光学素子(以下、DOE:Diffractive Optical Element)からなる投影レンズ系において、前記回折光学素子が、近軸的には正パワーを持ち、光軸から離れるに従って正パワーから負パワーに連続的に変化するピッチ配列を持つこ 20とを特徴とするものである。

【0018】この場合、回折光学素子の中間部の正パワーから負パワーへ変化する途中のノーパワー部の位置が、下記の条件を満足することが好ましい。

$h / 2 \le p$

ただし、hは回折光学素子の有効半径、pは回折光学素子中間部のノーパワー部の半径である。

[0019]

 $n \cdot \sin \theta = n' \cdot \sin \theta'$

ただし、n :入射側媒質の屈折率

n':射出側媒質の屈折率

θ :光線の入射角

θ':光線の射出角

 $n \cdot \sin \theta - n' \cdot \sin \theta' = m \lambda / d$

ただし、n : 入射側媒質の屈折率

n':射出側媒質の屈折率

θ :光線の入射角

 θ ': 光線の射出角

m :回折次数

入 :波長

d :DOEのピッチ

なお、DOE**③**は、図3に断面を示すようにプレーズ化をするか、図4に断面を示すようにプレーズ近似(この場合は、階段状に近似した)を行うと、高回折効率を維持することができる。

【0026】また、m次回折光に対するプレーズ化を行う場合は、図3に示すフレネルレンズ形状の断面を持っ

 $(n, -1) dz/dh = n \cdot \sin \theta - n' \cdot \sin \theta' \dots$

ただし、n. :ultra-high index lens の屈折率

(以下に説明する設計では、n. = 10001とし

【作用】本発明においては、投影レンズ系中の回折光学素子は、屈折系で発生する収差と逆符号の大きな収差を発生させるので、投影レンズ系の収差を良好に補正することができる。また、この回折光学素子が近軸的には正パワーであるので、軸上色収差も改善される。さらに、この回折光学素子のピッチ配列が光軸から離れるに従って正パワーから負パワーに連続的に変化するようになっているので、回折光学素子の最小ピッチがあまり小さくならない。

【0020】その結果、レンズ材料として使用できる硝材が限定されている場合でも、色収差を含む諸収差を良好に補正したコンパクトで製作性の問題の少ない高解像力・高露光面積の投影レンズ系を提供することができる。

[0021]

【実施例】以下、本発明による投影レンズ系の各実施例 について説明する。まず、最初に、本発明で使用してい る回折光学素子を含む光学系の設計方法について述べ る

0 【0022】回折現象に基づく光学素子である本発明で 用いるDOEについての原理的な説明は、例えは、『光 学デザイナーのための小型光学エレメント』 (オプトロ ニクス社) の第6章、第7章に詳しいが、以下に簡単に 説明する。

【0023】屈折現象に基づく光学素子では、図1に示すように、光線のは(式1)に従うスネルの法則に基づいて曲げられる。

[0024]

… (式1)

30 それに対して、DOEの場合は、図2に示すように、光 線**①**は(式2)で表現される回折現象により曲げられ る。

[0025]

d … (式2)

た溝の深さaを以下の式にて設定するとよい。

[0027] $a = m \cdot \lambda / (n'' - 1)$

ただし、n":DOE®の基板部の屈折率

DOEを含む光学系を設計する手法として、Sweatt mod elが知られている。これについては、『W.C.Sweatt. "N

40 EW METHODS OF DESIGNING HOLOGRAPHIC OPTCALELEMENT S", SPIE, Vol. 126, pp. 46-53(1977) 』に詳しいが、図 5 を使用して、以下に簡単に説明する。

【0028】図5において、⑤はn≫1なる屈折系レンズ (ultra-high index lens)、②は法線、zは光軸方向の座標、hは基板に沿う方向の座標とする。上記の論文によれば、(式3)が成立する。

[0029]

た。)

50 z : ultra-high index lens の光軸方向の座標

h :光軸からの距離

n :入射側媒質の屈折率

n':射出側媒質の屈折率

θ :光線の入射角

θ':光線の射出角

したがって、(式2)、(式3)より、次の(式4)が

成立する。

[0030]

 $(n_1 - 1) dz/dh = m\lambda/d$

… (式4)

すなわち、「n≫1なる屈折系レンズの面形状」と「D

OEのピッチ」の間には、(式4)で表現される等価関 係が成立するので、Sweatt modelにより設計した ultr

a-high index lens の面形状から、DOEのピッチ分布

を求めることができる。

【0031】具体的には、ultra-high index lens を (式5) で定義される非球面レンズとして設計したとす

ると、

 $z = c h^{i} / \{1 + (1 - c^{i} (k + 1) h^{i})^{i/i} \}$

+Ah'+Bh'+Ch'+Dh'' … (式5)

ただし、z : 光軸でレンズに接する接平面からのずれ

(サグ値)

c : 曲率

h :光軸からの距離

k : 円錐定数

A : 4 次非球面係数

B:6次非球面係数

C : 8 次非球面係数

D :10次非球面係数

(式4)、(式5)より、

 $d = m \lambda / ((n-1) dz/dh)$

= $[m \lambda / (n-1)] \times [c h' / \{1 + (1-c' (k+1) h')\}^{1/2} + A h' + B h' + C h' + D h'']^{-1} \cdots (式 6)$

が得られる。この(式 6)に従ってDOEのピッチ d 分 20 ズ系の数値データは後記するが、その断面図を図 6 に、布を決めればよい。なお、以下に示す実施例では、非球 面項として 10 次までしか使用していないが、もちろん 2 を示す収差図を図 7 に、また、本実施例の投影レンズ系 2 次、1 4次・・の非球面項を使用してもよい。 で使用しているDOEのピッチの配列を図 8 に示す。図

【0032】上記(式6)より明らかなように、回折次数mを大きくすると、ピッチdが大きくなり、製作が易しくなることが分かる。以下の実施例では、説明を簡単にするため、m=±1と定義している。

【0033】 (第1実施例) 本実施例における投影レン

ズ系の数値データは後記するが、その断面図を図6に、その球面収差、非点収差、ディストーション、コマ収差を示す収差図を図7に、また、本実施例の投影レンズ系で使用しているDOEのピッチの配列を図8に示す。図6において、符号11がDOEであり、図8において、マイナスのピッチは、凹レンズ作用を持つことを示す。また、本実施例を含むDOE・屈折系で発生している3次収差を表1に示す。

[0034]

表1:本実施例の投影レンズ (FN36) の3次収差とさらに広フィールド化

した際 (FN46、FN60) の3次収差の変化

ただし、FN : 視野数 (露光領域)

SA : 球面収差

TCO:タンジェンシャルコマ

TAS: タンジェンシャル非点収差

SAS:サジタル非点収差 DST:ディストーション PTZ:ペッツパール和

		FN36 (本実施例)			
·		球面作用	非球面作用	FN48	FN60
	SA	-0.002	10. 354	18. 088	26. 182
DOEで	TC0	0. 018	0. 299	9. 785	26. 181
発生する	TAS	-0. 084	0.003	1. 614	8.488
収差	SAS	-0.028	0.001	0. 538	2.829
	DST	-0.001	0.000	0. 079	0.890
	PTZ	0	0	0	0
	SA	-10	. 357	-18. 092	-26. 184
屈折系で	TC0	-0	. 315	-9. 785	-26. 183
発生する	TAS	0	. 079	-1. 615	-8.489
収差	SAS	o	. 026	-0. 538	-2.829
	DST	-0	. 004	-0.088	-0.913
	PTZ	−0	. 000	-0.000	0.000
条件式 (1) の					
p値		0.65 h		0.45h	0.33 h

【0035】本実施例の投影レンズ系10は広露光面積化に重点を置いている。広露光面積化する際には、像面湾曲の補正がより重要となるので、ペッツバール和を良好に補正する必要がある。この投影レンズ系10は、レンズL7とレンズL8からなるレンズ群12、及び、レンズL12とレンズL13からなるレンズ群13という互いに凹面を向かい合わせたレンズ群を2組備えており、両レンズ群12、13の間に凸レンズ群14を配置している。この構成により、上記の凹面での光線高を比較的小さくし、この凹面の凹パワーを強くすることで、ペッツバール和の補正を行っている。また、DOE11は、屈折率無限大なる屈折系レンズと等価であるので、ペッツバール和は全く悪化させない。以上の理由により、本実施例の投影レンズ系10は、良好なペッツバール和を持つ。

【0036】また、ステッパレンズの場合、球面収差の 補正が特に重要で、色収差としては、波長変動によるガウス像面の移動(軸上色収差)の補正が重要である。したがって、特開平2-1109号、特開平4-2145 50 16号に開示されているように、球面収差、軸上色収差の補正に有効な瞳付近あるいはマージナル光線高の大きな箇所にDOEを使用するとよい。そこで、本実施例では、DOE11をマージナル光線高の大きな箇所に使用している。

【0037】本実施例におけるDOE11のピッチの配列は、図8に示す通りである。DOE11の光軸から有効径周辺に向かうにつれ、弱い凸作用(大きなピッチ)→強い凸作用(小さなピッチ)→弱い凸作用(大きなピッチ)→強い凹作用(小さなピッチ)と、正パワーから負パワーへ連続的に変化している。すなわち、非常に大きな非球面的作用を持っている。通常の屈折系レンズにこのように大きな非球面作用を持たせようとすると、形状が複雑となるので、高精度の加工が非常に困難となる。しかし、DOEの場合は、通常の球面作用を持つDOEの製作も、製法は同じで製作性の難易度に差がない。

【0038】一般に、DOEでは、高回折効率を得るた

めにプレーズ化が行われるが、本実施例のDOE11の 断面図を誇張して図9に示す。図9に示すように、凹レンズ作用を持つ領域では、プレーズ角を凸レンズ作用を 持つ領域とは反転させる。図9の概念図では、プレーズ 化を行っているが、もちろん、図4に示すような階段近 似によるプレーズ化近似を行ってもよい。

【0039】図8のようなピッチ配列による収差補正作用を以下に述べる。表1に示す通り、特許請求の範囲第1項を満足する本実施例におけるDOE11は、多大な収差補正を行っており、その収差補正は、球面作用では 10なく、特許請求の範囲第1項を満足する非球面作用によりなされていることが分かる。

【0040】本実施例におけるDOE11は、石英レンズで発生している球面収差、コマ収差、非点収差、ディストーションと反対符号の大きな逆収差を発生させている。その結果、レンズ全系の球面収差、コマ収差、非点収差、ディストーションを極めて良好に補正している。【0041】以上述べたように、本発明の特許請求の範囲第1項を満足するDOE11の使用により、投影レンズ系10のザイデルの5収差全てが良好に補正されてい 20

【0042】以上は、3次収差についてであるが、特許請求の範囲第1項を満足するDOE11は、有効径周辺の凹作用により、屈折系レンズにより発生するマイナスの高次球面収差を補正する等、高次収差も良好に補正している。その結果、図7の収差図に示すように、良好な性能のレンズ系が得られている。

【0043】また、DOE11が近軸的には正パワーであることから、屈折系レンズで発生する軸上色収差も補正している。例えば、このレンズ系を 248.38 ± 0.005 n 30 mの波長の光で使用すると、石英レンズ群により ±1.1 μ mの軸上色収差が発生するが、DOE11が ±0.2 μ mの逆色収差を発生させ、色収差の補正を行っている。

【0044】DOE11の有効径周辺部が凹作用ではな く凸作用のままだと、収差補正能力が不充分である。D OE11の有効径周辺部が凸作用の場合の投影レンズ系の図7と同様な収差図と図8と同様なDOEのピッチの分布をそれぞれ図10、図11に示す。

【0045】図7と図10を比較すれば分かるように、DOEが凸レンズ作用しか持たないと、DOEの収差補正能力があまり大きくなく、レンズ系の性能も不十分であることが分かる。なお、本実施例におけるDOE11は、製作の容易さから、平行平面板の表面に回折面を加工するとけているが、球面、非球面の曲面上に回折面を加工するということは、ultra-high index lens のベンディングを行わないということで、収差補正能力を制限する。その点、曲面上に回折面を加工すると、屈折系レンズとultra-high index lens の接合レンズの接合面も収差補正に寄与することになり、収差補正上好ましい。

【0046】また、本実施例ではDOEを1枚しか使用 していないが、2枚以上使用すると、さらに収差補正効 果が増して好ましいことは言うまでもない。

【0047】また、本実施例における投影レンズ系において、好ましくは、

$(1) h/2 \leq p$

なる条件を満足することが望ましい。ただし、hはDOEの有効半径、pはDOE中間部のノーパワー部の半径である。

【0048】 pが条件式(1)の下限値を下回ると、DOEの収差補正量が極度に大きくなり、DOEの有効径 周辺での凹作用が強くなりすぎる。この結果、サブミクロンのピッチが必要となり、DOEの製作が非常に困難 となる。

【0049】実際に本実施例の投影レンズを広フィールド化して行った際の、DOEで発生する3次収差係数、レンズ全系で発生する3次収差係数を表1に、広フィールド化(FN46、FN60)に伴うピッチ分布の変化を図12、図13に示す。

[0050]

表2:本実施例の投影レンズ (FN36) を広フィールド化した際 (FN46 、FN60) のDOEの焦点距離の変化 (単位:mm)

	FN36 (本実施例)	FN48	FN60
DOEの焦点距離	2790	2762	2731

【0051】表2に示したように、広フィールド化に伴うDOEの焦点距離の変化はない。すなわち、球面作用にあまり変化はない。にも係わらず、表1に示すように、広フィールド化に伴い増加する屈折系レンズ(石英レンズ)の収差をDOEが良好に補正するのは、本発明の特許請求の範囲の非球面作用による。広フィールド化に伴い、DOEの非球面作用は増し、屈折レンズ(石英レンズ)の収差を打ち消す大きな逆収差を発生させる。

その結果、投影レンズ系は良好に収差補正がなされる。 【0052】しかし、DOEの非球面作用が増加すると 収差補正能力が増すが、図12、図13に示すように、 DOE周辺の最小ピッチが極端に小さくなり、製作が非 常に困難となる。よって、条件式(1)を満たすのが望ましい。

【0053】本実施例では、p=0.65hで、最小ピッチは、図8に示すように、5.4 μmと製作性の問題の

ない値である。

【0054】以上述べたように、本実施例によれば、ウ エハ・レクチル間=800mmという短い距離を保った まま、NA0. 48、露光領域 φ36 mmという高解像 力・広露光面積の投影レンズ系が実現できる。

【0055】なお、後記する数値データにおいて、第3 3面が非球面で、非球面形状は(式5)で定義される。 また、第31面~第32面がDOE11を加工する基板 で、第33面~第34面で定義されるのがDOE11が 相当するultra-high index lens である。

【0056】 (第2実施例) 本実施例における投影レン ズ系20の数値データは後記するが、その断面図を図1 4に、その図7と同様な収差図を図15に、また、本実 施例の投影レンズ系で使用しているDOEのピッチの配 列を図16に示す。図14において、符号21がDOE

【0057】本実施例も、第1実施例と同様、色収差の 補正より投影レンズ系の広露光面積化に重点を置いてお り、屈折系レンズ(石英レンズ)の構成は第1実施例と ほぼ同様である。本実施例では、DOE21が光束径が 20 比較的小さな箇所に配置されている。このとき、DOE 21の外径が比較的小さくできるので、製作上好都合で ある。

【0058】この場合、DOE21が瞳付近にあるの で、コマ収差、非点収差、ディストーション、像面湾曲 という軸外収差をあまり悪化させることなく、大きなプ ラスの球面収差を発生させている。その結果、屈折系レ ンズで発生しているマイナスの球面収差を改善し、良好 な性能の投影レンズ系を実現している。

の発生をDOE21が補正しているため、レンズ全系で 発生するペッツバール和が大きく改善されている。

【0060】なお、本実施例では、p=0.57hと、 条件式(1)を満足しており、製作可能なピッチとなっ ている。

【0061】なお、後記する数値データにおいて、第2 7面が非球面で、非球面形状は(式5)で定義される。 また、第25面~第26面がDOE21を加工する基板 で、第27面~第28面で定義されるのがDOE21が 相当するultra-high index lens である。

【0062】 (第3実施例) 本実施例における投影レン ズ系30の数値データは後記するが、その断面図を図1 7に、その図7と同様な収差図を図18に、また、本実

面番号	R	d	V M
1	-161.715	10.000	石英
2	-199.952	0.100	
3	340.968	. 10.000	石英
4	142.471	11.075	
5	354.193	10.000	石英
6	176.097	12.704	

施例の投影レンズ系で使用しているDOEのピッチの配 列を図19に示す。図17において、符号31がDOE

【0063】本実施例は、色収差の補正より投影レンズ の高NA化に重点を置いている。屈折系レンズ(石英レ ンズ) の構成は第1実施例とほぼ同様である。あまり外 径の大きなDOEを使用したくない場合は、本実施例の ように、DOE31を瞳付近のように光束径が比較的小 さな箇所に配置すればよい。また、この場合には、広フ 10 ィールド化に伴うDOE31の有効径の増加がないの で、DOE31の最小ピッチが小さくなり難く、製作上 好ましい。

【0064】本実施例の場合も、特許請求の範囲第1項 の非球面作用により、多大な収差補正がなされている。 この場合のDOE31も、屈折系レンズで発生する球面 収差、コマ収差、非点収差、ディストーションと反対符 号の大きな逆収差を発生させている。その結果、高NA 化設計で問題となる球面収差を中心に、諸収差を良好に 補正している。また、第1、第2実施例と同様、DOE 31の使用で像面湾曲は大きく改善されている。

【0065】なお、本実施例では、p=0.74hと、 条件式(1)を満足しており、製作可能なピッチとなっ ている.

【0066】なお、後記する数値データにおいて、第2 7面が非球面で、非球面形状は(式5)で定義される。 また、第25面~第26面がDOE31を加工する基板 で、第27面~第28面で定義されるのがDOE31が 相当するultra-high index lens である。

【0067】以下、各実施例の数値データを示す。面番 【0059】また、凹レンズのパワーの増大に伴う収差 30 号は、レンズ面の物体側から数えた通し番号であり、面 番号に、上記したように、DOEが相当するultra-high index lens 11、21、31のレンズ面の番号を含め てある。Rは曲率半径、dは面間隔、VMは硝材で、硝 材名のDOEは上記のultra-high index lens を構成す る仮想硝材を示す。ここでは、ultra-high index lens を構成する仮想硝材の屈折率は10001、石英の屈折 率は1.508379としている。また、入は波長、N Aは開口数、φは露光領域の直径、□は露光領域の1辺 の長さ、βは倍率、OIDは物像間距離を示す。

【0068】第1実施例

 $\lambda = 248 \,\mathrm{n}\,\mathrm{m}, \,\, \mathrm{NA} = 0.48, \,\, \phi = 36 \,\mathrm{m}\,\mathrm{m} \,\, (\square \, 25 \,\mathrm{m}\,\mathrm{m})$ $\beta = 1 / 5$, O I D = 800 mm

(8) 13 14 7 1212.997 18.058石英 8 -256.398 0.100 9 203.590 20.354 石英 1 0 -1353.068 0.100 1 1 175.770 27.036 石英 1 2 -251.160 0.100 1 3 1001.806 10.000 石英 1 4 72.058 23.310 15 -164.443 10.000 石英 16 121.239 34.141 17 374.728 10.000 石英 18 204.012 37.747 19 178.226 19.926 石英 2 0 -384.487 0.100 2 1 537.059 11.469 石英 2 2 -923.608 0.100 2 3 254.543 10.000 石英 2 4 147.932 23.858 2 5 -103.925 10.000 石英 2 6 336.922 51.251 2 7 29381.534 17.922 石英 28 -291.819 14.167 29 674.998 32.585 石英 3 0 -203.019 0.100 3 1 ∞ 10.000 石英 (DOEの基板) 3 2 ∞ 0.000 33 (非球面) 2.79043×10^{7} 0.000 DOE 3 4 ∞ 0.1003 5 439.333 30.382 石英 36 -262.348 0.1003 7 109.366 30.642 石英 3 8 319.908 7.633 3 9 186.858 41.685 石英 4 0 56.280 13.586 4 1 124.936 10.000 石英 4 2 72.744 0.100 4 3 56.018 13.034 石英 4 4 70.161 29.956 4 5 77.762 10.000 石英 4 6 51.774 0.313 4 7 46.306 20.929 石英 4 8 -173.472 3.236 49 -102.641 10.000 石英 5 0 -308.947

非球面係数

第33面

 $R = 2.79043 \times 10^{7}$

k = -1

 $A = -2.73103 \times 10^{-12}$

 $B = -1.50751 \times 10^{-17}$

 $C = -2.53992 \times 10^{-11}$

 $D = -1.91297 \times 10^{-16}$

【0069】第2実施例

 $\lambda = 248 \,\mathrm{n}\,\mathrm{m}$, NA = 0.48, $\phi = 33 \,\mathrm{m}\,\mathrm{m}$ ($\Box 23 \,\mathrm{m}\,\mathrm{m}$),

 $\beta = 1 / 5$, O I D = 800 mm

n n	,	17.14
号 R	d	V M
-158.037	10.000	石英
		40
		石英
		石英
		石英
-312.234		
283.224		石英
,		石英
		•
	17.701	石英
	19.646	
	33.573	石英
97.028	15.098	•
-176.795	10.000	石英
-444.638	36.711	
986.849	15.336	石英
-202.844	12.149	
	14.535	石英
	33.580	
	19.011	石英
-313.565		
∞		石英(DOEの基板)
∞		
(非球面) 2.52640 ×		
(非球面) 2.52640 ×		DOE
∞	4.489	
∞ -2416.732	4.489 22.039	D O E 石英
∞ -2416.732 -213.149	4.489 22.039 3.841	石英
~~ -2416.732 -213.149 2712.715	4.489 22.039 3.841 33.650	
-2416.732 -213.149 2712.715 -166.291	4.489 22.039 3.841 33.650 0.100	石英
-2416.732 -213.149 2712.715 -166.291 265.058	4.489 22.039 3.841 33.650 0.100 25.092	石英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699	4.489 22.039 3.841 33.650 0.100 25.092 2.169	石英 石英 石英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030	石英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724	石 英 石 英 石 英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512	石英 石英 石英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469	石 英 石 英 石 英 石 英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000	石 英 石 英 石 英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381 83.658	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000 0.100	石 英 英 英 英 英 英 英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381 83.658 59.070	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000 0.100 12.582	石 英 石 英 石 英 石 英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381 83.658 59.070 69.362	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000 0.100 12.582 40.454	石 石 石 石 石 石 石 英 英 英 英 英 英 英 英 英 英 英 英 英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381 83.658 59.070 69.362 88.193	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000 0.100 12.582 40.454 12.159	石 英 英 英 英 英 英 英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381 83.658 59.070 69.362 88.193 53.372	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000 0.100 12.582 40.454 12.159 0.109	石石石石石石石石石石
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381 83.658 59.070 69.362 88.193 53.372 46.865	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000 0.100 12.582 40.454 12.159 0.109 21.483	石 石 石 石 石 石 石 英 英 英 英 英 英 英 英 英 英 英 英 英
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381 83.658 59.070 69.362 88.193 53.372 46.865 -214.592	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000 0.100 12.582 40.454 12.159 0.109 21.483 3.453	石石石石石石石石石石石
-2416.732 -213.149 2712.715 -166.291 265.058 -898.699 131.586 456.448 135.521 60.945 153.381 83.658 59.070 69.362 88.193 53.372 46.865	4.489 22.039 3.841 33.650 0.100 25.092 2.169 25.030 4.724 30.512 15.469 10.000 0.100 12.582 40.454 12.159 0.109 21.483	石石石石石石石石石石
	-195.978 418.017 150.691 593.972 184.051 1355.015 -312.234 283.224 -26521.348 193.354 -226.777 227.211 82.978 -206.100 97.028 -176.795 -444.638 986.849 -202.844 94.405 90.169 -86.788 -313.565	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

17 $R = 2.52640 \times 10^{7}$ $D = -2.04374 \times 10^{-17}$ k = -1 $A = -5.11751 \times 10^{-12}$ 【0070】第3実施例 $B = 8.54374 \times 10^{-17}$ $\lambda = 248 \,\mathrm{n}\,\mathrm{m}$, NA = 0.60, $\phi = 24 \,\mathrm{m}\,\mathrm{m}$ ($\Box 17 \,\mathrm{m}\,\mathrm{m}$), $C = -1.44876 \times 10^{-1}$ $\beta = 1 / 5$, O I D = 800 mm d · V M 面番号 R 1 -7183.426 12.036 石英 2 -277.966 0.100 3 1753.436 10.000 石英 4 133.116 20.892 5 -129.156 10.000 石英 246.617 6 51.556 7 1186.050 26.334 石英 8 -180.1230.100 9 281.287 27.319 石英 1 0 -367.991 0.100 1 1 171.041 26.232 石英 1 2 -1814.658 0.100 1 3 83.495 10.000 石英 1 4 68.446 31.840 1 5 -400.11810.000 石英 16 78.082 18.004 1 7 -14254.36710.000 石英 18 227.084 11.187 19 142.747 25.105 石英 2 0 -220.789 0.100 2 1 -17980.404 12.758 石英 2 2 -253.59611.366 2 3 -2838.911 10.000 石英 2 4 155.055 8.134 2 5 10.000 石英 (DOEの基板) ∞ 2 6 ∞ 0.000 1.54177×10^{7} 0.000 27 (非球面) DOE 28 ∞ 8.135 2 9 -153.870 10.000 石英 3 0 187.267 44.249 3 1 -477.781 46.399 石英 3 2 -200.350 1.458 3 3 -1841.575 32.478 石英 3 4 -136.9490.100 3 5 219.727 26.348 石英 3 6 -1006.903 0.100 3 7 94.85628.649 石英 3 8 189.397 0.100 3 9 106.287 26.252 石英 4 0 52.251 6.996 4 1

60.567

50.025

46.763

49.969

4 2

4 3

4 4

10.000

0.100

14.474

17.818

石英

石英

4.5	59.808	10.000
4 6	38.583	0.100
4 7	35.807	20.164
4 8	956.425	2.817
4 9	-141.699	8.000
5.0	-377.416	

非球面係数

第27面

 $R = 1.54177 \times 10^{7}$

k = -1

 $A = -1.22700 \times 10^{-11}$ $B = -4.93739 \times 10^{-14}$ $C = 4.35829 \times 10^{-21}$

 $D = 1.22769 \times 10^{-11}$

[0071]

【発明の効果】以上説明したように、本発明によれば、レンズ材料として使用できる硝材が限定されている場合に、色収差を含む諸収差を良好に補正したコンパクトで製作性の問題の少ない高解像力・広露光面積の投影レン 20 ズ系を提供することができる。

【図面の簡単な説明】

【図1】本発明で用いる回折光学素子を説明するための 屈折の原理図である。

【図2】本発明で用いる回折光学素子を説明するための回折の原理図である。

【図3】ブレーズ化した回折光学素子の断面図である。

【図4】プレーズ近似化した回折光学素子の断面図であ ス

【図5】超高屈折率レンズ (ultra-high index lens)の説明図である。

【図 6 】本発明の第 1 実施例の投影レンズ系の断面図である。

【図7】第1実施例の球面収差、非点収差、ディストーション、コマ収差を示す収差図である。

【図8】第1実施例の投影レンズ系に使用している回折 光学素子のピッチの分布を示す図である。

【図9】第1実施例の投影レンズ系に使用している回折 光学素子のブレーズ角を説明するための概念図である。

【図10】凸作用の回折光学素子を用いる投影レンズ系 40

の図7と同様な収差図である。

石英

石英

石英

【図11】図10のレンズ系に使用している回折光学素子のピッチの分布を示す図である。

20

10 【図12】第1実施例の投影レンズ系を広フィールド化 した際の回折光学素子のピッチの分布を示す図である。

【図13】第1実施例の投影レンズ系をさらに広フィールド化した際の回折光学素子のピッチの分布を示す図である。

【図14】第2実施例の投影レンズ系の断面図である。

【図15】第2実施例の図7と同様な収差図である。

【図16】第2実施例に使用している回折光学素子のピッチの分布を示す図である。

【図17】第3実施例の投影レンズ系の断面図である。

【図18】第3実施例の図7と同様な収差図である。

【図19】第3実施例に使用している回折光学素子のピッチの分布を示す図である。

【符号の説明】

00 … 光線

②…法線

3 ... D O E

30

⑸ …ultra-high index lens

a…フレネルレンズ形状の断面の溝の深さ

10…第1実施例の投影レンズ系

11…第1実施例に使用しているDOE

12…互いに凹面を向かい合わせた第1のレンズ群

13…互いに凹面を向かい合わせた第2のレンズ群

14…両レンズ群12、13の間の凸レンズ群

20…第2実施例の投影レンズ系

21…第2実施例に使用しているDOE

30…第3実施例の投影レンズ系

31…第3実施例に使用しているDOE

L7、L8…第1レンズ群を構成するレンズ

L12、L13…第2レンズ群を構成するレンズ

【図1】

【図4】

コマ収差

コマ収差

【図11】

【図12】

【図13】

[図14]

【図16】

[図17]

コマ収差

コマ収差

【図19】

【手続補正書】

【提出日】平成5年6月11日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0031

【補正方法】変更

【補正内容】

【0031】具体的には、ultra-high index lens を (式5)で定義される非球面レンズとして設計したとす ると、

 $z = c h^{i} / \{1 + (1 - c^{i} (k+1) h^{i})^{i/i}\}$

+Ah' +Bh' +Ch' +Dh'' … (式5)

ただし、2 : 光軸でレンズに接する接平面からのずれ

(サグ値)

c :曲率

h :光軸からの距離

k : 円錐定数

A : 4次非球面係数

B : 6 次非球面係数

C:8次非球面係数

D : 10次非球面係数

(式4)、(式5)より、

 $d = m \lambda / ((n-1) dz/dh)$

= $[m \lambda / (n-1)] \times [c h / (1-c^{2} (k+1) h^{1})^{1/2}$

+4Ah³+6Bh³+8Ch⁷+10Dh⁷] · · · · (式6)

が得られる。この(式 6)に従ってDOEのピッチd分布を決めればよい。なお、以下に示す実施例では、非球面項として10次までしか使用していないが、もちろん12次、14次・・の非球面項を使用してもよい。

【手続補正2】

【補正対象掛類名】明細書

【補正対象項目名】 0 0 3 2

【補正方法】変更

【補正内容】

【0032】上記(式6)より明らかなように、回折次数mを大きくすると、ピッチdが大きくなり、製作が易しくなることが分かる。以下の実施例では、説明を簡単にするため、m=+1と定義している。