Alkenols, process for their preparation, their use as fragrances and flavouring compositions containing these alkenols.

Patent number:

EP0086945

Publication date:

1983-08-31

Inventor:

KAISER ROMAN; LAMPARSKY DIETMAR DR

Applicant:

.#

GIVAUDAN & CIE SA (CH)

Classification:

- international:

C07C29/40; C07C33/03; C07F3/02; C11B9/00;

C07C29/00; C07C33/00; C07F3/00; C11B9/00; (IPC1-7): C07C33/03; A23L1/226; A61K7/46; C07C29/40;

C11B9/00

- european:

C07C29/40; C07C33/03; C07F3/02; C11B9/00B4

Application number: EP19830100328 19830115 Priority number(s): CH19820000491 19820127

Also published as:

US4572795 (A1) JP58128332 (A)

EP0086945 (B1)

Cited documents:

EP0045453

Report a data error here

Abstract not available for EP0086945

Abstract of corresponding document: US4572795

The invention is concerned with compounds of the formula: I wherein: R1 is selected from the group consisting of hydrogen and methyl; R2 is selected from the group consisting of normal or terminally singly branched alkyl or alkenyl groups having four to seven carbon atoms provided that: (i) when R1 is hydrogen the alkyl group must have at least five carbon atoms, and (ii) when R1 is methyl, R2 is an alkyl group. This invention is also concerned with odorant compositions containing these compounds.

Data supplied from the esp@cenet database - Worldwide

(1) Veröffentlichungsnummer:

086 945

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 83100328.0

(22) Anmeldetag: 15.01.83

· (5) Int. Cl.³: **C 07 C 33/03**C 07 C 29/40, A 61 K 7/46
C 11 B 9/00, A 23 L 1/226

30 Priorität: 27.01.82 CH 491/82

(43) Veröffentlichungstag der Anmeldung: 31.08.83 Patentblatt 83/35

84 Benannte Vertragsstaaten: CH DE FR GB LI NL

(1) Anmelder: L. GIVAUDAN & CIE Société Anonyme

CH-1214 Vernier-Genève(CH)

Erfinder: Kaiser, Roman Weidstrasse 6 CH-8610 Uster(CH)

(72) Erfinder: Lamparsky, Dietmar, Dr. Sonnhalde 8 CH-8602 Wangen(CH)

74) Vertreter: Urech, Peter, Dr. et al, Grenzacherstrasse 124 Postfach 3255 CH-4002 Basel(CH)

- (4) Neue Alkenole(I), Verfahren zu deren Herstellung, Verwendung von (I) als Riechstoffe und Riechstoffkompositionen mit
- 5) Die Erfindung betrifft neue Riechstoffe, nämlich neue Alkohole der aligemeinen Formel.

$$R^{1}$$
 OH CH_{3}
 $| | | | |$
 R^{2} — CH — CH — CH_{2} — CH_{3}

worin R¹ für Wasserstoff und R² für geradkettiges oder endständig einmal verzweigtes C_{5-2} -Alkyl oder C_{4-7} -Alkenyl steht, oder R¹ Methyl und R² geradkettiges oder endständig einmal verzweigtes C_{4-7} -Alkyl darstellt.

Die Erfindung betrifft auch Riechstoffkompositionen mit einem Gehalt an Verbindungen I, ein Verfahren zur Herstellung der Verbindungen I und die Verwendung der Verbindungen I als Riechstoffe.

Ref. 6510/191

- Neue Alkenole(I), Verfahren zu deren Herstellung, Verwendung von (I) als Riechstoffe und Riechstoffkompositionen mit einem Gehalt an (I)
- Die Erfindung betrifft neue Riechstoffe. Es handelt sich dabei um die Verbindungen der Formel

$$R^2$$
 OH CH_3
 R^2 - CH - CH - C = CH - CH_2 - CH_3

worin R^1 für Wasserstoff und R^2 für geradkettiges oder endständig einmal verzweigte C_{5-7} -Alkyl oder C_{4-7} -Alkenyl steht, oder R^1 Methyl und R^2 geradkettiges oder endständig einmal verzweigtes C_{4-7} -Alkyl ist.

20

Beispiele von C_{4-7} bzw. C_{5-7} -Alkylresten sind: n-Butyl, iso-Butyl, n-Amyl, iso-Amyl, n-Hexyl, iso-Hexyl, n-Heptyl, iso-Heptyl. Bevorzugte Reste sind n-Amyl und iso-Amyl (insbesondere im Falle von R^1 = H) und n-Butyl 25 bzw. iso-Butyl (insbesondere im Falle von R^1 = CH_3).

Beispiele von C_{4-7} -Alkenylresten sind: Methallyl, Butenyl, Methylbutenyl, Methylpentenyl, Pentenyl, etc. Die endständig verzweigten Alkenyle wie z.B. Methylbutenyl oder Methylpentenyl sind bevorzugt.

Eine bevorzugte Untergruppe von Verbindungen I bildet diejenige mit R^1 = Wasserstoff und R^2 = geradkettiges oder endständig einmal verzweigtes C_{5-7} -Alkyl oder C_{4-7} -Alkenyl. Die gesättigten Reste R^2 wiederum sind bevorzugt.

Die Formel soll demgemäss insbesondere die sekundären Alkohole:

	4-Methyl-undec-3-en-5-ol	(Ia)*
	4-Methyl-dodec-3-en-5-ol	(Ib)
5	4-Methyl-tridec-3-en-5-ol	(Ic)
	4,6-Dimethyl-dec-3-en-5-ol	(Id)*
	4,6-Dimethyl-undec -3-en-5-ol	(Ie)
	4,9-Dimethyl-dec-3-en-5-ol	(If)*

4,6,8-Trimethyl-non-3-en-5-ol (Ig)*

10

4,10-Dimethyl-3,9-undecadien-5-ol(II)

in Form ihrer jeweils möglichen Stereoisomeren (cis- bzw. trans-Konfiguration an den Doppelbindungen) umfassen. Die mit einem Stern markierten Verbindungen sind bevorzugt.

20

25

Die Erfindung betrifft ferner ein Verfahren zur Herstellung der Verbindungen der Formel I.

Dieses Verfahren ist dadurch gekennzeichnet, dass man 2-Methyl-2-pentenal mit einer Verbindung der Formel

worin \mathbb{R}^1 und \mathbb{R}^2 obige Bedeutung besitzen und X für Halogen steht, umsetzt.

30

Als Halogenide II kommen alle Halogenide in Frage, doch wird vorzugsweise das Bromid verwendet.

Die Umsetzung des Methylpentenals mit der Verbindung II erfolgt zweckmässigerweise nach den an sich bekannten Methoden der Grignardreaktion, siehe z.B. Organikum, Org. chem. Grundpraktikum, Nachdruck 15. Auflage, VEB deutscher Verlag der Wissenschaften, Berlin 1977, 617 seq. Man arbeitet also zweckmässigerweise in Diäthyläther oder einem höheren Alkyläther bzw. in Tetrahydrofuran als Iösungsmittel und bei Temperaturen von ca. O-80°C.

Die Verbindungen I weisen besondere organoleptische Eigenschaften auf, auf Grund derer sie sich vorzüglich als Riechstoffe eignen.

Die Erfindung betrifft demgemäss auch die Verwendung 15 der Verbindungen I als Riechstoffe.

Das 4-Methyl-undec-3-en-5-ol Ia beispielsweise besitzt einen blumigen fruchtigen und zugleich grün wirkenden Geruch, der im Fond durch pudrige, an Schokolade erinnernde Nuancen ergänzt wird, während das 4,6,8-Tri-methyl-non-3-en-5-ol Ig in erster Linie fruchtige beerenartige und zusätzlich angenehm würzige Geruchsnoten besitzt. Im Falle der C_{4-7} -Alkenylderivate weisen die Produkte zumeist noch eine überraschende zusätzliche fettigbutterartige Geruchsnote auf.

Die Verbindungen der Formel I eignen sich aufgrund ihrer natürlichen Geruchsnoten insbesondere zur Modifizierung von bekannten, z.B,

a) blumigen Kompositionen, (z.B. für Cologne-Typen u.ä., Extraits, Seifen und Kosmetika) wo insbesondere die blumigen Noten intensiviert werden,

b) des weiteren aber auch von Chypre- und Fougèretypen, die durch Zusatz von Verbindungen I "moderner", belebter wirken und insbesondere einen sehr angenehmen frischgrünen Aspekt erhalten (Extrait-Typen und Eaux de Cologne

30

20

der masculinen Richtung).

5

10

15

20

Die Verbindungen I verbinden sich mit zahlreichen bekannten Riechstoffingredienzien natürlichen oder synthetischen Ursprungs, wobei die Palette der natürlichen
Rohstoffe sowohl leicht- als auch mittel- und schwerflüchtige Komponenten, und diejenige der Synthetika
Vertreter aus praktisch allen Stoffklassen umfassen kann,
wie dies aus der folgenden Zusammenstellung ersichtlich
ist:

- Naturprodukte: Basilikumöl, Baummoos-Absolue, Bergamotteöl, Cassisknospen-Absolue, Cedernholzöl, Ciste Labdanum, Corianderöl, Eichenmoos-Absolue, Elemiöl, Fichtennadelöl, Galbanum, Geraniumöl, Jasmin-Absolue und sein synthetischer Ersatz, Jonquille-Absolue, Lavendelöl, Mandarinenöl, Mastix-Absolue, Palmarosaöl, Patchouliöl, Petitgrainöl Paraguay, Sandelholzöl, Weihrauch, Ylang-Ylang-Oel und sein synthetischer Ersatz, Zitronenöl, etc.
- -Alkohole: Citronellol, Geraniol, cis-3-Hexenol, Linalool, Sandela® (3-Isocamphyl-5-cyclohexanol), 2,2,8-Trimethyl-7-nonen-3-ol, etc.
- -Aldehyde: α-Amylzimtaldehyd, Cyclamenaldehyd, Hydroxy-citronellal, 2,6,10-Trimethyl-undec-9-en-l-al(Adoxal[®]), etc.
- -<u>Ketone</u>: 3,7,7-Trimethyl-3-[3'-methyl-2'-butenyl]-bicyclo-[4,1,0]-hepten-4-on,α-Jonon, Vertofix (=acetyliertes Cedernholzöl),etc.
- -Ester: Amylsalicylat, Benzylacetat, Citronellylacetat, cis-3-Hexenylacetat, l-Methyl-2-sec-butylcyclohexylacetat, Methyldihydrojasmonat, Phenyläthylisobutyrat, Phenyläthyltiglat, 2,3,6,6-tetramethylcyclohex-2-en-carbonsäureäthylester, 3,6,6-Trimethyl-2-äthyl-cyclohex -2-en-car-

bonsäure-äthylester, etc.

-<u>Verschiedene</u>: Eugenol, Limonen, p-Menthan-8-thiol-3-on, l-Methylcyclododecyl-methyläther, γ-Undecalacton, Ambrettemoschus, Galaxolid (1,3,4,6,7,8-Hexahydro-4,6,6,-7,8,8-hexamethyl-cyclopenta-γ-2-benzopyran), Ketonmoschus, Musk 174 (12-Oxahexadecanolid), etc.

Die Verbindungen der Formel I lassen sich in weiten Grenzen einsetzen, die beispielsweise von O,l(Detergen-10 tien)-25% (alkoholische Lösungen) in Kompositionen reichen können, ohne dass diese Werte jedoch Grenzwerte darstellen sollen, da der erfahrene Parfümeur auch mit noch ge ringeren Konzentrationen Effekte erzielen oder aber mit noch höheren Dosierungen, z.B. mit bis zu 40% neuartige 15 Komplexe aufbauen kann. Die bevorzugten Konzentrationen bewegen sich zwischen 0,5 und 20%. Die mit I hergestellten Kompositionen lassen sich für alle Arten von parfümierten Verbrauchsgütern einsetzen (Eaux de Cologne, Eaux de Toilette, Extraits, Lotionen, Crèmes, Shampoos, 20 Seifen, Salben, Puder, Zahnpasten, Mundwässer, Desodorantien, Detergentien, Tabak, etc.)

Die Verbindungen I können demgemäss bei der Herstel
lung von Kompositionen und - wie obige Zusammenstellung
zeigt - unter Verwendung einer breiten Palette bekannter
Riechstoffe, verwendet werden. Bei der Herstellung solcher Kompositionen können die oben aufgeführten bekannten
Riechstoffe nach (dem Parfümeur bekannter) Art und Weise
verwendet werden, wie z.B. aus W.A. Poucher, Perfumes,
Cosmetics and Soaps 2, 7. Auflage, Chapman und Hall,
London, 1974 hervorgehend.

1 Beispiel 1

5

In einer für Grignard-Reaktionen üblichen Apparatur werden 14,30 g (0,59 g-Atome) Magnesium in 100 ml Aether vorgelegt. Unter Rühren und unter Schutzgasatmosphäre (N₂) werden anschliessend 99,0 g (0,60 Mol) 1-Bromhexan in 400 ml absolutem Aether so zugetropft, dass der Aether nach Einsetzen der Reaktion ständig schwach siedet. Nach beendeter Zugabe wird noch 30 Min. bei Rückflusstemperatur gehalten, dann auf 10°C abgekühlt und eine 10 Lösung von 49,1 g (0,50 Mol) 2-Methyl-2-pentenal in 300 ml Aether während 30 Min.so zugetropft, dass die Reaktionstemperatur ständig zwischen 10° und 25° liegt. Zwecks Beendigung der Reaktion wird noch eine Stunde bei 15 Rückflusstemperatur gehalten, dann der Grignard-Komplex mit gesättigter Ammoniumchlorid-Lösung und Eis zersetzt, die überstehende ätherische Lösung mit gesättigter Kochsalzlösung gewaschen und getrocknet. Nach Abdampfen des Lösungsmittels verbleiben 105,3 g Rohprodukt, die fraktioniert destilliert werden. Man erhält so 77,8 g (84,4%) 20 olfaktisch gutes 4-Methyl-3-undecen-5-ol vom Siedepunkt 66⁰/0,04 mmHq.

Spektrale Daten: IR: 3340, 2958, 2924, 2858, 1670, 25 1460, 1378, 1303, 1045, 1002, 854.

 $MS : 184(M^+,7), 169(2), 155(26), 113(5), 99(100),$ 81(26), 71(15),55(17), 43(70), 41(18).

30 Geruch: blumig, fruchtig, grün, an Schokolade erinnernd.

1 Beispiel 2

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion von 3,38 g(O,139 g-Atome) Magnesium in 20 ml Aether und 24,89 g(O,139 Mol) 1-Bromheptan in 80 ml Aether erhältlich ist, mit 11,90 g(O,12 Mol) 2-Methyl-2-pentenal in 30 ml Aether umgesetzt.

Die fraktionierte Destillation des Rohproduktes (29,5 g) ergibt 16,3 g(68,5%) olfaktisch gutes 4-Methyl-3-dodecen-5-ol vom Siedepunkt 74⁰/0,04 mmHg.

Spektrale Daten: IR: 3340, 2920, 2850, 1670, 1460, 1375, 1300, 1048, 1010, 852.

MS.: $198(M^{\dagger}, 19)$, 169(25), 127(7), 109(2), 99(100), 81(17), 69(5), 55(8), 43(20), 41(14).

20 Geruch: grün, blumig, fruchtig.

Beispiel 3

25

Analog Beispiel l wird das Grignardreagens, welches durch Reaktion von 3,38g (O,139 g-Atome) Magnesium in 20 ml Aether und 26,9 g (O,139 Mol) l-Bromoctan in 80 ml Aether erhältlich ist, mit ll,80 g (O,12 Mol) 2-Methyl-2-penten-l-al in 30 ml Aether umgesetzt.

Die fraktionierte Destillation des Rohproduktes (28,9 g) ergibt 20,7 g (81,2%) olfaktisch gutes 4-Methyl-3-tridecen-5-ol vom Siedepunkt 85°/0,15 mmHg.

- Spektrale Daten: IR: 3340, 2920, 2842, 1670, 1458,
 1377, 1302, 1112, 1070, 995, 852.
- MS: $212(M^{+},3)$, 183(12), 141(3), 99(87), 81(24), 71(18), 57(15), 55(22), 43(100), 41(30).

Geruch: fruchtig, grün, fettig.

10 Beispiel 4

15

30

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion von 8,03 g(0,33 g-Atome) Magnesium in 100 ml Aether und 58,18 g(0,35 Mol) 2-Bromhexan in 250 ml Aether erhältlich ist, mit 28,4 g(0,29 Mol) 2-Methyl-2-pentenal in 50 ml Aether umgesetzt.

Die fraktionierte Destillation des Rohproduktes (43,0 g) ergibt 26,4 g(49,4%) olfaktisch gutes 4,6-Di-methyl-3-decen-5-ol vom Siedepunkt 105⁰/12 mmHg.

Spektrale Daten: IR: 3380, 2958, 2924, 2865, 2855, 1670, 1460, 1378, 1300, 1000, 850.

25 MS: $184(M^+,1)$, 155(1), 109(1) 99(60), 85(3), 81(15), 71(10), 55(18), 43(100), 41(38).

Geruch: grün, fettig, blumig, fruchtig, an Schokolade erinnernde Nuancen.

Beispiel 5

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion von 3,38 g(0,139 g-Atome) Magnesium in 20 ml Aether und 24,89 g(0,139 Mol) 2-Bromheptan in 80 ml Aether erhältlich ist mit 11,90 g (0,12 Mol) 2-Methyl-2-

pentenal in 30 ml Aether umgesetzt.

Die fraktionierte Destillation des Rohproduktes (28,7 g) ergibt 12,1 g(50,9%) olfaktisch gutes 4,6-Dimethyl-3-undecen-5-ol vom Siedepunkt 65 /0,04 mmHg.

Spektrale Daten: IR: 3380, 2958, 2920, 2860, 1670, 1458, 1385, 1300, 1000 850.

10 MS: $198(M^+,6)$, 169(37), 99(100), 81(5), 71(4), 55(7), 43(17), 41(15).

Geruch: grün, blumig, fruchtig(Beeren).

15

5

Beispiel 6

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion von 3,38 g(0,139 g-Atome) Magnesium in 20 ml Aether und 23,0 g(0,139 Mol) 1-Brom 4-methyl-pentan in 80 ml Aether erhältlich ist, mit 11,9 g(0,12 Mol) 2-Methyl-2-pentenal in 30 ml Aether umgesetzt.

Die fraktionierte Destillation des Rohproduktes

25 (23,2 g) ergibt 17,2 g(77,8%) olfaktisch gutes 2,7-Dimethyl-7-decen-6-ol(bzw. 4,9-Dimethyl-dec-3-en-5-ol) vom
Siedepunkt 81^O/O,1 mmHg.

Spektrale Daten: IR: 3340, 2950, 2922, 2862, 1670, 30 1460, 1385, 1365, 1303, 1068, 1045, 1010, 854.

MS: 184(5), 155(13), 109(3), 99(100), 85(11), 81(32), 71(15), 69(17), 55(18), 43(77), 41(20).

Geruch: grün, fruchtig, blumig, an Schokolade erinnernde Nuance. Beispiel 7

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion von 19,2 g(0,79 g-Atome) Magnesium in 200 ml Aether und 169,9 g(0,80 Mol) 2-Brom-4-methylpentan in 400 ml Aether erhältlich ist, mit 68,0 g (0,69 Mol) 2-Methyl-2-pentenal in 200 ml Aether umgesetzt.

Die fraktionierte Destillation des Rohproduktes

(137 g) ergibt 54,0 g(42,5%) olfaktisch gutes 2,4,6-Trimethyl-6-nonen-5-ol(bzw. 4,6,8-Trimethyl-non-3-en-5-ol)
vom Siedepunkt 100°/12 mmHg.

Spektrale Daten: IR: 3400, 2955, 2922, 2863, 1670, 1460, 1384, 1366, 1065, 1005, 960, 853.

MS: 184(M⁺, < 0,2), 109(1), 99(71), 85(5), 81(17), 71(11), 57(7), 55(15), 43(100), 41(22).

Geruch: grün, fruchtig, nach Beeren, würzig.

20

1

5

Beispiel 8

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion von 6,60 g(0,27 g-Atome) Magnesium in 30 ml Tetrahydrofuran und 28,50 g(0,27 Mol) 3-Methyl-3-buten-l-ylchlorid in 120 ml Tetrahydrofuran erhältlich ist, mit 22,90 g (0,23 Mol) 2-Methyl-2-pentenal in 40 ml Tetrahydrofuran umgesetzt.

30

25

Die fraktionierte Destillation des Rohproduktes (46,6 g) ergibt 24,1 g(62,3%) olfaktisch gutes 2,6-Dimethyl-1,6-nonadien-5-ol vom Siedepunkt 62⁰/0,03 mmHg.

35 Spektrale Daten: IR: 3340,2065, 2955, 2922, 2860, 1650, 1440, 1370, 1300, 1060, 1008, 882, 855.

1 MS: $168(M^+, 2)$, 150(49), 139(68), 121(15), 112(82), 99(100), 81(40), 69(31), 55(30), 43(50).

Geruch: blumig, fruchtig, blätterartig, schwach bitter, an Kakao erinnernde Nuancen.

Beispiel 9

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion von 3,38 g(0,139 g-Atome) Magnesium in 20 ml Tetrahydrofuran und 16,5 g(0,139 Mol) cis-3-Hexe - nylchlorid in 70 ml Tetrahydrofuran erhältlich ist, mit 11,8 g(0,12 Mol) 2-Methyl-2-pentenal in 20 ml Tetrahydrofuran umgesetzt.

Die fraktionierte Destillation des Rohproduktes (33,1 g) ergibt 12,8 g(58,5%)olfaktisch gutes 4-Methyl-3,8 (Z)-undecadien-5-ol vom Siedepunkt 58⁰/0,03 mmHq.

20 Spektrale Daten: IR: 3340, 3000, 2955, 2922, 2862,

1660, 1452, 1302, 1060, 1000, 855, 720.

MS: $182(M^+, 2)$, 153(13), 100(18), 99(37), 81(28), 71(20), 69(28), 55(28), 43(100), 41(45).

Geruch: grün, nach Butter, blumig.

30 Beispiel 10

35

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion von 7,10 g(0,29 g-Atome) Magnesium in 50 ml Aether und 43,60 g(0,29 Mol) 4-Penten-l-ylbromid in 200 ml Aether erhältlich ist, mit 24,50 g(0,25 Mol) 2-Methyl-2-pentenal in 50 ml Aether umgesetzt.

- Die fraktionierte Destillation des Rohproduktes (43,7 g) ergibt 29,8 g (70,8%) olfaktisch gutes 4-Methyl-3,9-decadien-5-ol vom Siedepunkt 101⁰/12 mmHg.
- 5 Spektrale Daten: IR: 3340, 3075, 2960, 2925, 2860, 1645, 1460, 1304, 1060, 1015, 990, 908, 853.

MS: $168(M^+,3)$, 139(30), 125(8), 99(100), 81(37), 71(17), 69(31), 55(28), 43(92), 41(31).

10

Geruch: grün, metallisch, fettig.

Beispiel 11

15

20

25

30

Analog Beispiel 1 wird das Grignardreagens, welches durch Reaktion um 6,60 g(0,27 g-Atome) Magnesium in 50 ml Aether und 45,00 g(0,28 Mol) 4-Methyl-3-penten-1-ylbromid in 150 ml Aether erhältlich ist, mit 23,56 g (0,24 Mol) 2-Methyl-2-pentenal in 70 ml Aether umgesetzt.

Die fraktionierte Destillation des Rohproduktes (50,0 g) ergibt 31,7 g(72,4%) olfaktisch gutes 2,7-Dimethyl-2,7-decadien-6-ol(bzw. 4,9-Dimethyl-3,8-decadien -5-ol) vom Siedepunkt 1150/12 mmHg.

Spektrale Daten: IR: 3350, 2960, 2922, 2865, 2855, 1670, 1450, 1375, 1105, 1052, 1005, 855, 829.

MS: 182(M⁺, 20), 153(53), 135(16), 125(19), 121(14), 99(55), 97(42), 93(25), 83(37), 81(50), 71(35), 69(60), 55(47), 43(100), 41(62).

Geruch: fettig, aldehydisch, grün, blumig.

Beispiel 12

1

20

Analog den vorhergehenden Beispielen werden 0,89 g (O,O37 g-Atome) Magnesium in 5 ml absolutem Aether bei der Siedetemperatur des Aethers mit einer Lösung von 5 6,6 g(O,O37 Mol) 5-Methyl-4-hexenylbromid in 20 ml abs. Aether zur Reaktion gebracht. Nach beendeter Zugabe wird noch 30 Min. bei Rückflusstemperatur gehalten. Anschliessend werden bei Raumtemperatur 3,0 g(0,03 Mol) 2-Methyl-2-pentenal in 5 ml abs. Aether während 30 Min. so zu-10 getropft, dass der Aether wieder zu sieden beginnt. Nach einer weiteren Stunde Rückflussieren wird das Reaktionsgemisch abgekühlt, mit Eis und gesättigter Ammoniumchloridlösung zersetzt und aufgearbeitet. Man erhält so 2,9 g 4,10-Dimethyl-3,9-undecadien-5-ol vom 15 Siedepunkt $110^{\circ}/0.06 \text{ mmHg}, n_{D}^{20} = 1.4705.$

Spektrale Daten: IR: 3360, 1670, 1454, 1380, 1072, 1024, 1000, 864 cm⁻¹.

MS: $196(6,M^{+})$, 167(13), 149(5), 125(26), 99(35), 96(25), 82(100), 81(52), 69(31), 55(37), 43(71).

Geruch: fruchtig(Melone), blumig(Cyclamen), frisch, grün.

Beispiel 13

Grün-blumige Parfumerie-Base

5

30

35

	Gev	wichtsteile
	Hydroxycitronellal	250
	Methyl-dihydrojasmonat	250
10	Dipropylenglykol	200
	Bergamottöl	100
	Citronellol	50
	p-Menthan-8-thiol-3-on	10
	Mandarinenöl	10
15	Galbanumöl	10
	Jasmin synthetisch	10
	Palmarosaöl	10
	Mastix absolut	5
	Geraniumöl	5
20	Cyclamenaldehyd	5
	Corianderöl	5
	Phenyläthylisobutyrat	5
	cis-Hexenol 10% in Dipropylenglyko	ol 5
	Basilikumöl	3
25 .	Cassis-Knospenöl absolut	2
		935

Der Zusatz von 65 Teilen 4-Methyl-3-undecen-5-ol bewirkt ein Unterstreichen der blumigen Seite der ursprünglichen Komposition. Es entsteht ein vorher nicht erkennbarer Muguet-Charakter.

Durch Zusatz von 65 Teilen 4-Methyl-3,8(Z)-undecadien-5-ol ändert sich der Geruchscharakter der Komposition in eindrücklicher Weise. Es entsteht ein fruchtiger (nach Beeren), würziger Eindruck, und gleichzeitig wird durch 1 Komplexierung mit den Citrusbestandteilen der Komposition ein Eau -de-Cologne-Effekt bewirkt.

5 <u>Beispiel 14</u>

Allgemein blumige Base

10	Gewichtste	eile
10	Dipropylenglykol	200
	Limonen	150
	α-Jonon	60
	Citronellol	50
15	Linalool	50
	Vertofix coeur	50
	Galaxolide 50(1,3,4,6,7,8-Hexahydro-	
	4,6,6,7,8,8-hexamethyl-cyclopenta-y-	
	2-benzopyran)	30
20	Benzylacetat	30
	2-Aethyl-3,6,6-trimethyl-2-cyclo -	
1	hexen-1-yl-carbonsäureäthylester	30
	Jasmin synthetisch	20
	Keton-moschus	20
25	Phenyläthyltiglat	20
	2,2,8-Trimethyl-7-nonen-3-ol	15
	Weihrauchharz(50% Dipropylenglykol)	15
	Citronellylacetat	10
	Hexenylacetat(10% Dipropylenglykol)	10
30	Ylang-Ylang-Öl	10
	Ylang-Ylang-synthetisch	10
	Zitronenöl	10
	Undecalakton	10
	Cyclamenaldehyd	5
35	Galbanumöl	5
	Sandelholzöl	5
	Jonquille absolut(10% Dipropylenglykol)	5

1	Ciste Labdanumöl	5
	Adoxal(10% Dipropylenglykol)	5
		830

170 Teile 4-Methyl-3-dodecen-5-ol unterstreichen in obiger Komposition den Sandel-blumigen Komplex und verstärken damit den gewünschten Eindruck dieser Komposition.

170 Teile 4,6,8-Trimethyl-3-nonen-5-ol bewirken dagegen einen sehr verblüffenden Effekt in der Base: trotz des sehr grünen Charakters dieser Substanz entsteht in der Base ein sehr angenehm beeriger, auch kosmetisch grün-blumig wirkender Geruchskomplex, der sich gut für Seifen eignet.

Der Zusatz von 2,6-Dimethyl-1,6-nonadien-5-ol bewirkt eine Betonung des grün-blumigen Aspektes, d.h. die neue Verbindung komplexiert mit anderen Komponenten(z.B. mit Galbanum) der Grundbase.

20 Beispiel 15

10

Parfumerie (Chypre) Base

		<u>Gewichtsteile</u>
25	•	•
	<pre>l-Methyl-l-methoxy-cyclododecan</pre>	200
	Bergamottöl	150
	Hydroxycitronellal	100
	Citronellol	80
30	Petitgrainöl	60
	12-oxa-hexadecanolid	60 .
	Corianderöl	40
	Galbanumöl	40
	Zedernholzöl	40
35	Patchouliöl	40
	Zitronenöl	40

1	Elemiöl	10
	Eichenmoos absolut	10
	Fichtennadelöl	125
		995

5

Der Zusatz von 5 Teilen 4-Methyl-3-undecen-5-ol bewirkt eine Auffrischung der grünen und krautigen Aspekte dieser Komposition.

5 Teile 4,6,8-Trimethyl-3-nonen-5-ol andererseits
bewirken in dieser Base eine viel grössere Diffusion, die
neue Base wirkt viel frischer, grüner und auch krautig,
so dass sie für ein modernes Herren-Cologne sehr geeignet
ist. Der Effekt ist ähnlich mit dem mit 4-Methyl-3-undecen15 5-ol erzielten, aber wesentlich ausgeprägter.

Beispiel 16

20 Parfumerie-Base Richtung Fougère

		Gewichtsteile
	Lavendelöl	200
25	Amylsalicylat	180
	Baummoos 50% in Dipropylenglykol	100
	Citronellol	100
	Geraniol	80
	Ambrettemoschus	80
30 .	Bergamottöl	80
	α-Jonon	80
	α~Amylzimtaldehyd	25
	Eugenol	25
	Metambrate Giv(1-Acetoxy-1-methyl	
35	2-sec. butyl-cyclohexan)	_20
		970

Gibt man zu dieser Fougère-Komposition 30 Teile
4-Methyl-3-undecen-5-ol, so wird diese viel frischer und
grüner; sie erhält mehr Volumen (wesentlich verstärkte
Diffusion) und wirkt dadurch viel stärker als die Komposition ohne Zusatz.

4,6,8-Trimethyl-3-nonen-5-ol wirkt durch ein Unterstreichen speziell der krautigen Note. Der Zusatz vermittelt so der Fougère-Komposition mehr Leben.

10

Beispiel 17

Parfumeriekomposition Typ Cologne

12	<u>G</u>	ewichtsteile
	Dipropylenglykol	450
	Myrascone ® Giv (2-Aethyl-3,6,6-tri-	-
20	methyl-cyclohexen-l-yl-carbonsäure-	-
	äthylester)	80
	Galaxolide 50®	60
	Hydroxycitronellal	60
	${ t Madrox}^{ ext{(R)}}$ Giv(1-Methyl-1-methoxy-cyclo) -
25	dodecan)	60
	Sandela	60
	Bergamottöl	60
	Fichtennadelöl	30
	Ketonmoschus	30
30	Givescone ® Giv	30
	3,7,7-Trimethy1-3-[3'-methy1-2'-bu	-
	tenyl]-bicyclo 4.1.0 -heptan-4-on	
	(Isomerengemisch)	20
	Petitgrainöl	15
35	p-Menthan-8-thiol-3-on	5
	Baum-Moos absolut	5
		965

Ein Zusatz von 35 Teilen 4-Methyl-3-undecen-5-ol wirkt durch blumige Nuancierung dieses Eau-de-Cologne -Typs und unterstreicht damit dessen femininen Charakter.

Durch Zusatz von 35 Teilen 2,6-Dimethyl-1,6-nonadien-5-ol wird die Cologne-Base dagegen in der Folge viel würziger und krautiger. Sie wirkt sehr viel frischer und belebter und tendiert jetzt viel mehr in Richtung Herren-Eau-de-Cologne.

Patentansprüche

Verbindungen der Formel

5

10

. 25

$$R^{2}$$
 - CH - CH - C = CH - CH₂ - CH₃

worin R^1 für Wasserstoff und R^2 für geradkettiges oder endständig einmal verzweigtes C_{5-7} -Alkyl oder C_{4-7} -Alkenyl steht, oder R^1 Methyl und R^2 geradkettiges oder endständig einmal verzweigtes C_{4-7} -Alkyl ist.

- 2. 4-Methyl-undec-3-en-5-ol.
- 3. 4,6-Dimethyl-dec-3-en-5-ol.
 - 4. 4,9-Dimethyl-dec-3-en-5-ol.
- 5. 4,6,8-Trimethyl-non-3-en-5-ol.
 - 6. 2,6-Dimethyl-1,6-nonadien-5-ol.
- 7. Eine Verbindung ausgewählt aus 4-Methyl-dodec-3en-5-ol, 4-Methyl-tridec-3-en-5-ol, 4,6-Dimethyl-undec-3-en-5-ol, 4,7,8-Trimethyl-non-3-en-5-ol, 4-Methyl-3,9decadien-5-ol, 4-Methyl-3,8-undecadien-5-ol , 4,9-Dimethyl-3,8-decadien-5-ol, 4,10-Dimethyl-3,9-undecadien5-ol.

8. Verbindungen der Formel

$$R^2$$
 - CH -

worin R^1 für Wasserstoff und R^2 für geradkettiges oder endständig einmal verzweigtes C_{5-7} -Alkyl

oder C_{4-7} - Alkenyl steht, oder R^1 Methyl und R^2 geradkettiges oder endständig einmal verzweigtes C_{4-7} -Alkyl darstellt, als Riechstoffe.

5

9. Riechstoffkomposition, gekennzeichnet durch einen Gehalt an einer Verbindung der Formel

$$R^{2}$$
 - CH - CH - CH - CH_{2} - CH_{3}

worin R^1 für Wasserstoff und R^2 für geradkettiges oder endständig einmal verzweigtes C_{5-7} -Alkyl oder C_{4-7} - Alkenyl steht, oder R^1 Methyl und R^2 geradkettiges oder endständig einmal verzweigtes C_{4-7} -Alkyl darstellt.

- 15 10. Riechstoffkomposition, gekennzeichnet durch einen Gehalt an 4-Methyl-undec-3-en-5-ol.
 - 11. Riechstoffkomposition, gekennzeichnet durch einen Gehalt an 4,6-Dimethyl-dec-3-en-5-ol.

- 12. Riechstoffkomposition, gekennzeichnet durch einen Gehalt an 4,9-Dimethyl-dec-3-en-5-ol.
- 13. Riechstoffkomposition, gekennzeichnet durch einen Gehalt an 4,6,8-Trimethyl-non-3-en-5-ol.
 - 14. Riechstoffkomposition, gekennzeichnet durch einen Gehalt an 2,6-Dimethyl-1,6-nonadien-5-ol.
- 30 15. Verfahren zur Herstellung von Verbindungen der Formel

$$R^2$$
 - CH -

worin R¹ für Wasserstoff und R² für geradkettiges
oder endständig einmal verzweigtes C₅₋₇-Alkyl
oder C₄₋₇ - Alkenyl steht, oder R¹ Methyl
und R² geradkettiges oder endständig einmal verzweigtes C₄₋₇-Alkyl darstellt,
dadurch gekennzeichnet, dass man 2-Methyl-2-pentenal mit

dadurch gekennzeichnet, dass man 2-Methyl-2-pentenal mit einer Verbindung der Formel

$$R^1$$

$$R^2 - CH - MgX$$
II

worin R¹ und R² obige Bedeutung besitzen und X für 10 Halogen steht,

16. Verwendung von Verbindungen der Formel

$$R^{1}$$
 OH CH_{3}
 R^{2} - CH - CH - C = CH - CH₂ - CH₃ I

worin R^1 für Wasserstoff und R^2 für geradkettiges oder endständig einmal verzweigtes C_{5-7} -Alkyl oder C_{4-7} - Alkenyl steht, oder R^1 Methyl und R^2 geradkettiges oder endständig einmal verzweigtes C_{4-7} -Alkyl darstellt, als Riechstoffe.

- 17. Verwendung von 4-Methyl-undec-3-en-5-ol als Riechstoff.
- 18. Verwendung von 4,6-Dimethyl-dec-3-en-5-ol als Riechstoff.
- 19. Verwendung von 4,9-Dimethyl-dec-3-en-5-ol als
 30 Riechstoff.

15

20

- 1 20. Verwendung von 4,6,8-Trimethyl-non-3-en-5-ol als Riechstoff.
- 21. Verwendung von 2,6-Dimethyl-1,6-nonadien-5-ol als Riechstoff.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 83 10 0328

	EINSCHLÄ	GIGE DOKUMENTE						
Kategorie	Kennzeichnung des Dokume der maß	ents mit Angabe, sowelt erford geblichen Teile	erlich,	Betrifft Anspruch			ATION DER G (int. Cl. 3)	
X,P	EP-A-0 045 453 * Ganzes Dokume	(GIVAUDAN) nt *		1-21	C A C	07 C 07 C 61 K 11 E 23 I	29 [/] /4 7/4 3 9/0	6
				!	SAC	ECHERO HGEBIET	CHIERTE FE (Int. Ci. ³)	
					A C C	23 L 61 K 07 C 07 C	7/4 29/4 33/0	6 0 3
Der	vorliegende Recherchenbericht wu	rde für alle Patentansprüche e	rstellt.					
	Recherchenort BERLIN	Abschlußdatum der Ri 28-04-19	echerche 183	KNAAC	K M	rüter		-
X: voi Y: voi an A: tec O: nic P: Zw	ATEGORIE DER GENANNTEN D in besonderer Bedeutung allein in besonderer Bedeutung in Verl deren Veröffentlichung derselbi schnologischer Hintergrund shtschriftliche Offenbarung rischenliteratur r Erfindung zugrunde liegende i	OKUMENTEN E betrachtet bindung mit einer E en Kategorie	: älteres Pa nachdem D: in der Ann : aus ander	tentdokume Anmeldedal neldung ang n Gründen a	nt, das j um verö eführtes ngeführ			