Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа <u>М3106</u>	К работе допущен	
Студент <u>Шеин Максим Андреевич</u>	Работа выполнена	
Преподаватель Качин Валерий Александрови Отчет принят		

Рабочий протокол и отчет по лабораторной работе № 6

Изучение электростатического поля методом моделирования

1)Цель работы:

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабопроводящей среде.

2)Задачи, решаемые при выполнении работы:

Измерение потенциалов в разных точках поля, а также построение графиков.

3)Объект исследования:

Электростатическое поле

4) Метод экспериментального исследования:

Наблюдение

5)Рабочие формулы и исходные данные:

Исходные данные		Погрешность
Проводимость	100	δ a = 0,01
Диэлек. проницаемость	1	δ a = 0,01
R1, Om	0.02	δa = 0,001
R2, Om	0.5	δ a = 0,001
R3, Om	5	δa = 0,01
L1, cm	20	δa = 0,01
L2, cm	1,9	δa = 0,001
d1, см	1,9	δa = 0,001
d2, см	20	δa = 0,01
r, Om	0,001	δ a = 0,0001
Umax, B	20	δa = 0,01
ε1, Φ/м	1	δa = 0,01
ε2, Ф/м	5	δa = 0,01

$$\mathbf{E}=rac{\Delta\phi}{\Delta\mathbf{d}}ig(rac{\mathrm{B}}{\mathrm{M}}ig)$$
, где $\Delta\phi$ – изменение потенциала между двумя

точками, ∆d – расстояние между этими точками.

6)Измерительные приборы

№ п/п	Наименование	Тип Прибора	Диапазон	Погрешность
1	Вольтметр	Электронный	0 - 20 B	0.5 B
2	Линейка	Измерительный прибор	0 – 2 см	0.05 мм

7)Схема установки:

8)Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Изменение потенциала, В	Расстояние, см	Изменение потенциала, В	Расстояние, см	Изменение потенциала, В	Расстояние, см
1,2	0,1	2,3	0,1	1,7	0,1
1,2	0,1	2,45	0,1	2,2	0,1
1,2	0,1	2,9	0,1	2,4	0,1
1,2	0,1	3,2	0,1	2,6	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
0,7	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	0	0,1	0,43	0,1
1,2	0,1	3,2	0,1	2,6	0,1
1,2	0,1	2,9	0,1	2,4	0,1
1,2	0,1	2,45	0,1	2,2	0,1
1.2	0.1	2.3	0.1	1.7	0.1

Внешний радиус, см	0,02
Внутренний радиус, см	0,001
Длина пластин, см	20
Расстояние между пластинами, см	1,9
Максимальный потенциал, В	20
Проводимость	100
Диэлектрическая проницаемость	1

Внешний радиус, см	0,5
Внутренний радиус, см	0,001
Длина пластин, см	20
Расстояние между пластинами, см	1,9
Максимальный потенциал, В	20
Проводимость	100
Диэлектрическая проницаемость	1

Внешний радиус, см	0,5
Внутренний радиус, см	0,001
Длина пластин, см	20
Расстояние между пластинами, см	1,9
Максимальный потенциал, В	20
Проводимость	10^-9
Диэлектрическая проницаемость	5

9)Расчет результатов косвенных измерений (таблицы, примеры расчетов):

Напряжённость, В/м
1200
1200
1200
1200
1200
1200
1200
1200
1200
700
1200
1200
1200
1200
1200
1200
1200
1200
1200

Напряжённость, В/м
2300
2450
2900
3200
0
0
0
0
0
0
0
0
0
0
0
3200
2900
2450
2300

Напряжённост	ь, В/м
1700	
2200	
2400	
2600	
430	
430	
430	
430	
430	
430	
430	
430	
430	
430	
430	
2600	
2400	
2200	
1700	

10)Графики

А также стало известно, что при соотношениях линейных размеров пластин конденсатора и расстояний между ними — существенной напряжённости не возникает. Ещё, при определённых параметрах тела, которогое поместили в конденсатор, распределения напряжённости неотличимы. При увеличении диэлектрической проницаемости кольца — напряжённость поля выше.

Напряжённость вдоль оси совпала с полученной экспериментально