Prof Simon McIntosh-Smith

Isambard PI
University of Bristol /
GW4 Alliance

Isambard: The world's first production 64-Bit Arm supercomputer

'Isambard' is a new UK Tier 2 HPC service from GW4

1804-1859

Isambard system specification

- **10,752** Armv8 cores (168 x 2 x 32)
 - Cavium ThunderX2 32core 2.1GHz
- Cray XC50 Scout form factor
- High-speed **Aries** interconnect
- Cray HPC optimised software stack
 - CCE, CrayPAT, Cray MPI, math libraries, ...
- Technology comparison:
 - x86, Xeon Phi, Pascal GPUs
- Phase 1 installed March 2017
- Phase 2 (the Arm part) arrives July 2018
- £4.7m total project cost over 3 years

Isambard's core mission: evaluating Arm for production HPC

Starting by optimizing the top 10 most heavily used codes on Archer

- VASP, CASTEP, GROMACS, CP2K, UM, HYDRA, NAMD, Oasis, SBLI, NEMO
- Note: most of these codes are written in FORTRAN
 Additional important codes for project partners:
- OpenFOAM, OpenIFS, WRF, CASINO, LAMMPS, ...

RED = codes optimised at the first Isambard hackathon **BLUE** = codes optimised at the second hackathon

Southampton

Cavium ThunderX2, a seriously beefy CPU

- 32 cores at up to 2.5GHz
- Each core is 4-way superscalar, Out-of-Order
- 32KB L1, 256KB L2 per core
- Shared 32MB L3
- Dual 128-bit wide NEON vectors
 - Compared to Skylake's 512-bit vectors, and Broadwell's 256-bit vectors
- 8 channels of 2666MHz DDR4
 - Compared to 6 channels on Skylake, 4 channels on Broadwell
 - AMD's EPYC also has 8 channels

Processor	Cores	Clock speed GHz	TDP Watts	FP64 TFLOP/s	Bandwidth GB/s
Broadwell	2×22	2.2	145	1.55	154
Skylake Gold	2×20	2.4	150	3.07	256
Skylake Platinum	2×28	2.1	165	3.76	256
Knights Landing	1×64	1.3	215	2.66	\sim 490
ThunderX2	2×32	2.2	175	1.13	320

BDW 22c	Intel Broadwell E5-2699 v4, \$4,115 each (near top-bin)
SKL 20c	Intel Skylake Gold 6148, \$3,078 each
SKL 28c	Intel Skylake Platinum 8176, \$8,719 each (near top-bin)
TX2 32c	Cavium ThunderX2, \$1.795 each (near top-bin)

Performance on mini-apps (node level comparisons)

Performance on heavily used applications from Archer

Benchmark	ThunderX2	Broadwell	Skylake	Xeon Phi
STREAM	GCC 8	Intel 18	Intel 18	Intel 18
CloverLeaf	CCE 8.7	Intel 18	Intel 18	Intel 18
TeaLeaf	GCC 7	Intel 18	Intel 18	Intel 18
SNAP	CCE 8.6	Intel 18	Intel 18	Intel 18
Neutral	GCC 8	Intel 18	Intel 18	Intel 18
CP2K	GCC 8	GCC 7	GCC 7	_
GROMACS	GCC 7	GCC 7	GCC 7	_
NAMD	Arm 18.2	GCC 7	Intel 18	_
NEMO	CCE 8.7	CCE 8.7	CCE 8.7	_
OpenFOAM	GCC 7	GCC 7	GCC 7	_
OpenSBLI	CCE 8.7	Intel 18	Intel 18	_
UM	CCE 8.6	CCE 8.5	CCE 8.6	_
VASP	CCE 8.7	Intel 17	Intel 17	_

Comparison of compilers on Arm

STREAM	99%	100%	99%	98% -
CloverLeaf	93%	94%	95%	100% -
TeaLeaf	100%	95%	95%	99% -
SNAP	82%	86%	100%	100% -
Neutral	98%	100%	92%	83% -
CP2K	98%	100%	BUILD	CRASH -
GROMACS	99%	100%	89%	CRASH -
NAMD	83%	CRASH	100%	BUILD -
OpenFOAM	100%	BUILD	96%	BUILD -
	GCC 7	GCC 8	Arm 18.3	CCE 8.7

Comparing Performance per Dollar

- Hard to do this rigorously
 - RRP is not what anyone pays
 - Whole system cost has to be taken into account
 - Purchase price vs. TCO
- However, we can form some useful intuition
 - The following charts were generated by taking the performance results, dividing by the official published list prices of the CPUs only, then renormalizing to Broadwell

Performance per Dollar: applications

What about Arm CPUs with Infiniband?

- Bristol also collaborating with HPE to host an Apollo70 "Catalyst" system:
 - 64 dual socket ThunderX2 nodes (4,096 cores)
 - Mellanox EDR Infiniband interconnect

- Will enable scaling comparisons across Cray Aries and IB
- Hoping to share results at SC18, Denver

Conclusions

- Early results show ThunderX2 performance is competitive with current high-end server CPUs, while performance per dollar is compelling
- The software tools ecosystem is already in good shape
- The full Isambard XC50 Arm system is due to be installed in July 2018, aiming to open for science by the end of the summer
- The signs are that Arm-based systems are now real alternatives for HPC, reintroducing much needed competition to the market
- Added benefits include real opportunity for co-design

For more information

Comparative Benchmarking of the First Generation of HPC-Optimised Arm Processors on Isambard

S. McIntosh-Smith, J. Price, T. Deakin and A. Poenaru, CUG 2018, Stockholm

http://uob-hpc.github.io/2018/05/23/CUG18.html

Bristol HPC group: https://uob-hpc.github.io/

Isambard: http://gw4.ac.uk/isambard/

Twitter: @simonmcs

