ISA 401/501: Business Intelligence & Data Visualization

19: Charts Used Time-Series, Spatial and Spatiotemporal Data

Fadel M. Megahed, PhD

Enders Associate Professor Farmer School of Business Miami University

- @FadelMegahed
- fmegahed
- ✓ fmegahed@miamioh.edu
- ? Automated Scheduler for Office Hours

Fall 2022

Recap of Assignment 14

Let us discuss why the majority of submitted solutions to Assignment 14 are incorrect. Here is an example of incorrect_submission.

Learning Objectives for Today's Class

- Understand main goals behind visualizing time-series data
- Explain the different types of charts for univariate and multivariate time-series
- Explain the different types of spatial plots
- Select suitable spatial graphs for different scenarios
- Understand how spatiotemporal plots can help in storytelling (what makes BI special)

Types of Data Over Time

Cross Sectional Data

Cross Sectional Data: Measurements on multiple units, recorded in a single time period.

Example 1: H1B 2020-2022 Data for Senior Data Scientists at Netflix

	START DATE *	JOB TITLE	BASE SALARY	
1	2021-08-11	SENIOR DATA SCIENTIST	118,955	LOS GATOS, CA
2	2021-06-14	SENIOR DATA SCIENTIST	143,291	LOS GATOS, CA
3	2021-09-09	SENIOR DATA SCIENTIST	143,291	LOS GATOS, CA
4	2021-10-18	SENIOR DATA SCIENTIST	143,562	LOS GATOS, CA
5	2022-07-20	SENIOR DATA SCIENTIST	143,562	LOS GATOS, CA
Sho	owing 1 to 5 of 18 e	ntries	Previous 1 2	3 4 Next

Cross Sectional Data

Cross Sectional Data: Measurements on multiple units, recorded in a single time period.

Example 2: NBA 2022-2023 Leaders - Top Players in PTS/Game

	Player + Pos + A	\ge ∳	Tm + G+ F	G + FG	3% •	eFG% •	PTS †	
1	Ja Morant	PG	23 MEI	M 4	11.5	0.548	0.619	35.3
2	Luka Dončić	PG	23 DAL	_ 2	11	0.478	0.543	33.5
3	Stephen Curry	PG	34 GSV	V 3	10.3	0.47	0.591	33.3
4	Damian Lillard	PG	32 POF	R 4	10.5	0.5	0.595	33.3
5	Donovan Mitchell	SG	26 CLE	3	11.3	0.493	0.572	33.3

6/33

Time Series Data

Time Series Data: Comparable measurements recorded on a single (or a few) variables over time (usually a long period of time).

Example 2: Stock prices of U.S. Airlines

Panel Data

Panel Data: Cross sectional measurements (usually many variables) repeated over time (usually over a few time periods).

Example: World Bank's Data

	iso3c∳	date 🕈	NY.GDP.MKTP.KD.ZG *	SH.DYN.NMRT *	SH.HIV.INCD.	.ZS 🛊	SH.MED.BE
1	CHN	2019	6	3.7			
2	CHN	2020	2.2	3.5			
3	CHN	2021	8.1	3.5			
4	EGY	2019	5.6	10.7			
5	EGY	2020	3.6	10.3			
4							>
Sho	Showing 1 to 5 of 9 entries			F	Previous 1	2	. Next

Source: Data queried from the World Bank Data using the wbstats in R. The printed results show a snapshot of 7 variables (out of a much larger panel dataset). You can think of panel data as a cross-sectional dataset with a longitudinal/time component.

Components of a Time Series

Trend

A **trend** is an increasing or decreasing pattern over time.

Increasing Trend

The meteoric rise of \$NFLX from 2020-04-01 to 2021-08-25

Trend

A **trend** is an increasing or decreasing pattern over time.

Decreasing Trend

The decline in \$DAL from 2020-02-03 to 2020-04-30

Seasonality

Seasonality refers to the property of a time series that displays REGULAR patterns that repeat at a constant frequency (m).

Seasonality with a Multiplicative Trend

Non-linear trend & seasonal component grows over time

AirPassengers R Dataset -- Source: Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976) Time Series Analysis, Forecasting and Control.

Cycle

Cyclical fluctuations are somewhat irregular (unknown duration).

The cyclical nature of auto sales

U.S. Bureau of Economic Analysis, Total Vehicle Sales [TOTALSA], retrieved from FRED, Federal Reserve Bank of St. Louis https://fred.stlouisfed.org/series/TOTALSA, on October 25, 2022

The Goals Behind Visualizing (Time Series) Data

Exploratory vs Confirmatory Viz Goals

Visualizations can be used to explore data, to confirm a hypothesis, or to manipulate a viewer. . . In exploratory visualization the user does not necessarily know what he is looking for. This creates a dynamic scenario in which interaction is critical. . . In a confirmatory visualization, the user has a hypothesis that needs to be tested. This scenario is more stable and predictable. System parameters are often predetermined. – (Grinstein and Ward 2001, 22)

A Structured Approach for Time Series Viz

A Potential Framework for Time Series Visualization

Singular TS

Monthly Retail Sales (RSCCASN) in the U.S.

Looking for Trends

Monthly Retail Sales (RSCCASN) in the U.S.

Looking for Seasonality

Multiple TS: Scatterplots

Scatterplot of GDP vs. Government Spending

Data from Muller-Droge et al. (2016)

Multiple TS: Scatterplot Matrix

Matrix Plot of GDP, GFCF, Govsurp & Unemp

Multiple TS: Panel Plots

Spaghetti Plots (Often w/ Clustering)

Summary Plots (Often w/ Clustering)

Spatial Plots

Choropleth Maps

Maps where areas are **shaded**, **colored**, **or patterned** relative to a data attribute value.

Choropleth Maps

Maps where areas are **shaded**, **colored**, **or patterned** relative to a data attribute value.

Population Density in U.S.

Cartograms

A cartogram is a map in which areas are scaled and distorted relative to a data attribute value

STATISTIQUE FIGURATIVE SUPERFICIE I millimètre carre représente 955 kilometres carrés ORVECE SUEDE INCATE

The First Cartogram – Emile Levasseur, 1868

Cartograms

A cartogram is a map in which areas are scaled and distorted relative to a data attribute value

The NYT's U.S. House Election Results 2018

Proportional Symbols Map

The NYT's U.S. Coverage of the Bush Vs Kerry Presidential Elections

Proportional Symbols Map

The NYT's U.S. Coverage of 2009 Super Bowl

Spatiotemporal Maps

Spatiotemporal Maps

2021-01-01

A visualization of car crashes in the Cincinnati metro area

Spatiotemporal Maps

Software Demo

Exploring the Cincy Crashes Dataset

Let us use Tableau to explore the cincy_2021_crashes.csv, where we will create the following:

- A calculated field titled unique_count
- A plot of the total number of unique crashes per day
- A table of number of unique crashes by week day
- A table of number of unique crashes by week day
- An animated symbols map

Recap

Summary of Main Points

- Understand main goals behind visualizing time-series data
- Explain the different types of charts for univariate and multivariate time-series
- Explain the different types of spatial plots
- Select suitable spatial graphs for different scenarios
- Understand how spatiotemporal plots can help in storytelling (what makes BI special)