Exercise:

i) Find the total derivative of u want 't' when $u=e^x siny$, when x = log t, $y = t^2$ And $\frac{du}{dt} = sin t^2 + 2t^2 \cdot cost^2$ a) If $u = c^x sin(yz)$, when $x = t^2$, y = t - 1, $z = \frac{1}{t}$, find $\frac{du}{dt}$ at

t=1. Ans: $\frac{du}{dt} = c$ 3) Find $\frac{du}{dt}$ if $u = x^2 + y^2 + z^2 = x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$ Ans: $\frac{du}{dt} = 4e^{2t}$

4) If $z = \sqrt{(u,v)}$, where $u = x^2 - y^2$, v = 2xy, $p = x^2$ a) $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 2(x^2 + y^2) \frac{\partial z}{\partial u}$

by $\left(\frac{\partial z}{\partial \pi}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 4\left(x^2 + y^2\right) \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2\right]$

5) If $u = e^{x} \sin y$, $v = e^{x} \cos y$ and $\omega = \int (u, v)$, P.T. $\frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} = \left(u^{2} + v^{2}\right) \left(\frac{\partial^{2} w}{\partial u^{2}} + \frac{\partial^{2} w}{\partial v^{2}}\right)$ 6) If $u = \int \left(\frac{y - x}{xy}, \frac{z - x}{xz}\right)$, P.T. $x^{2} \frac{\partial u}{\partial x} + y^{2} \frac{\partial u}{\partial y} + z^{2} \frac{\partial u}{\partial z} = 0$

7) If $u = \int (x, s, t)$ and $h = \frac{s}{y}$, $s = \frac{y}{z}$ and $t = \frac{z}{x}$, $s = \frac{y}{x}$

8) $\exists u = x + y^2$, $v = y^2$, find $\frac{\partial(u, v)}{\partial(x, y)}$ Ans: $\frac{2y}{x}$

9) $\frac{\pi}{4}$ $x = x \cos \theta$, $y = x \sin \theta$, z = z, find $\frac{\partial(x, y, z)}{\partial(x, \theta, z)}$ $\frac{\partial(x, \theta, z)}{\partial(x, \theta, z)}$ defined where are cylindrical polar coordinates

$$\frac{\partial(u,v,\omega)}{\partial(z,v,z)} = (x-y)(y-z)(z-x)$$

11)
$$I = yz$$
, $V = xz$, $\omega = xy$, ST , $\frac{\partial(u, v, \omega)}{\partial(x, y, z)} = 4$

$$J = \frac{\partial(u, v, \omega)}{\partial(x, y, z)}$$
 and $J' = \frac{\partial(x, y, z)}{\partial(u, v, \omega)}$. Also verify $JJ' = 1$.

13) Debumine the extreme values of following functions
$$f(x,y)$$
:
a) $2xy - 5x^2 - 2y^2 + 4x + 4y - 6$ thu: $\left(\frac{2}{3}, \frac{4}{3}\right)$ is point of maximum and $f\left(\frac{2}{3}, \frac{4}{3}\right) = -2$

b)
$$x^3y^2(1-x-y)$$
 Aru: $(0,0)$ and $(\frac{1}{2},\frac{1}{3})$ are critical points, $(\frac{1}{2},\frac{1}{3})$ in point of maximum and $f(\frac{1}{2},\frac{1}{3}) = \frac{1}{432}$

c)
$$n^3 + y^3 - 3ny$$
 Ans: (0,0) and (1,1) are critical points,
(0,0) is a saddle point, (1,1) is a point of minimum and $f(1,1) = -1$

d>
$$x^4 + 2x^2y - x^2 + 3y^2$$
 Ans: $(0,0)$, $(\frac{\sqrt{3}}{2}, -\frac{1}{4})$, $(-\frac{\sqrt{3}}{2}, -\frac{1}{4})$ are

e) $2x^3 + x^2y + 5x^2 + y^2$ Are: min. value = 0 at (0,0), max. value = $\frac{125}{7}$ at $(-\frac{5}{3}, 0)$ and $(-1, 2), (-1, -2) \rightarrow saddle points$

1) x3+3xy2-15x2-15y2+72x Ans: max. value = 112 at (4,0)

14) A rectangular box without a lid is to be made from 12 m² cardbox. Find the maximum value of such a box using dagrange's method of multipliers

Ans: V(2, 2, 1) = 4 m³

15) Find the extreme values of $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$ Ans: Max. value is $f(0, \pm 1) = 2$,
Min. value $f(\pm 1, 0) = 1$.

16) Find the pointr on the sphere $x^2+y^2+z^2=4$ that are closest to and farthest from the point (3,1,-1).

Ans: Closest point is $(\frac{6}{\sqrt{11}},\frac{2}{\sqrt{11}},\frac{-2}{\sqrt{11}})$, Farthest point

$$\frac{1}{\sqrt{11}} \left(-\frac{6}{\sqrt{11}}, -\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}} \right)$$

17) A rectangular box open at the top is to have volume of 32 cubic feet. Find dimensions of box requiring least material for construction.

Ans: Minimum surface area, represents least material required for construction and dimensions are x = y = 4ft, z = 2ft