

Éléments de Physique : Mécanique

CHAPITRE 4: STATIQUE

Table des matières

- 1. Moment de force
- 2. Centres de masse et de gravité
- 3. Equilibre et stabilité

Introduction

Jusqu'à présent, nous nous sommes intéressés à

- ➢ la description du mouvement (cinématique)
- ➢ l'origine des changements du mouvement (forces et lois de Newton)

 dans le cas de corps ponctuels (ou assimilés).

Cependant, la condition

$$\sum_{i} \mathbf{F}_{i} = 0$$

n'est pas suffisante pour l'équilibre dans le cas de **corps étendus** : le point d'application des forces joue un rôle important.

Moment d'une force

Le **moment d'une force** par rapport à un point est la capacité qu'a cette force de produire un mouvement de rotation autour de ce point.

Moment d'une force au

On applique une force d'intensité constante à un objet libre de tourner autour d'un point fixe, mais on varie l'angle de la force.

$$au = 0$$
 pour $\theta = 0^{\circ}$, 180°
 $au = au_{\max}$ pour $\theta = 90^{\circ}$

 $\rightarrow \tau$ est proportionnel à $\sin \theta$

Moment d'une force au

On applique une force d'intensité constante à un objet libre de tourner autour d'un point fixe, mais à des endroits différents et avec des angles différents.

 $\rightarrow \tau$ est proportionnel à r et à F

Amplitude de au

Direction de au

La direction de τ est la direction autour de laquelle se fait la rotation (c'est-à-dire l'axe de rotation) :

$$(\tau \perp r, \tau \perp F)$$

Le sens positif est celui produisant une rotation dans le sens trigonométrique (inverse des aiguilles d'une montre).

Produit vectoriel

Le **moment d'une force** (par rapport à un point) est un **vecteur** et s'obtient en calculant un **produit vectoriel** :

$$\tau = r \times F$$

- ightharpoonup Amplitude : $\tau = rF \sin \theta$
- \triangleright Direction : $\perp r$ et F
- > Sens : donné par la règle de la main droite

Produit vectoriel (noté \times ou \wedge):

$$C = A \times B$$

$$|C| = AB \sin \theta$$

$$C \perp A \text{ et } B$$

Produit vectoriel

Le produit vectoriel n'est **pas commutatif** : il change de signe si on permute les deux vecteurs.

Propriété : $r \times F = -F \times r$

Par convention:

- indique un vecteur qui « sort » du plan
- (x) indique un vecteur qui « rentre » dans le plan

Couple de forces

Un **couple de forces** est formé par deux forces

- de même amplitude
- de même direction
- de sens contraires
- dont les lignes d'actions sont différentes

La **force résultante** est nulle : $\sum_{i} F_{i} = 0$

Le **moment de force résultant** vaut : $au = m{l} imes m{F}$

$$\tau = \tau_1 + \tau_2 = x_1 F - x_2 F = -(x_2 - x_1) F = -lF$$

Conditions d'équilibre (pour un corps solide étendu)

Equilibre de translation

Force résultante nulle :

$$\sum_{i} \mathbf{F}_{i} = 0$$

Equilibre de rotation

Moment de forces résultant (par rapport à un point quelconque) nul :

$$\sum_{i} \boldsymbol{\tau}_{i} = 0$$

Notes:

- > choisir un repère droitier
- définir correctement le point d'application des forces

Exemple: balançoire

Appliquons les conditions d'équilibre en choisissant 2 points de référence P différents pour le moment de forces.

$$N = w_1 + w_2$$

$$\boldsymbol{\tau}_N + \boldsymbol{\tau}_1 + \boldsymbol{\tau}_2 = 0$$

$$0 + (-x_1)(-w_1) + x_2(-w_2) = 0$$

$$\frac{x_2}{x_1} = \frac{w_1}{w_2}$$

$$\frac{x_2}{x_1} = \frac{w_1}{w_2}$$

$$x_1 N + 0 + (x_1 + x_2)(-w_2) = 0$$

$$\frac{x_2}{x_1} = \frac{w_1}{w_2}$$

$$\sum_{i} \boldsymbol{F}_{i} = 0$$

$$\sum_i \tau_i = 0$$

$$N = w_1 + w_2$$

$$\tau_N + \tau_1 + \tau_2 = 0$$

$$x_1 N + 0 + (x_1 + x_2)(-w_2) = 0$$

$$\frac{x_2}{x_2} = \frac{w_1}{x_2}$$

Centre de masse

Exemple simple : système composé de 2 masses ponctuelles.

Le **centre de masse** est défini comme

$$x_{CM} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} = \frac{m_1 x_1 + m_2 x_2}{M}$$

Si
$$m_1=m_2 \rightarrow x_{CM}=\frac{x_1+x_2}{2}$$

Si $m_1=0 \rightarrow x_{CM}=x_2$

Centre de masse

Pour un système composé de N masses ponctuelles :

$$x_{CM} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_N x_N}{m_1 + m_2 + \dots + m_N} = \frac{\sum_{i=1}^{N} m_i x_i}{M}$$

Dans les 3 directions de l'espace :

$$x_{CM} = \frac{\sum_{i=1}^{N} m_i x_i}{M}$$

$$y_{CM} = \frac{\sum_{i=1}^{N} m_i y_i}{M}$$

$$r_{CM} = \frac{\sum_{i=1}^{N} m_i r_i}{M}$$

$$z_{CM} = \frac{\sum_{i=1}^{N} m_i z_i}{M}$$

Mouvement de translation

$$M \boldsymbol{r}_{CM} = \sum_{i=1}^{N} m_i \boldsymbol{r}_i$$

Prenons la différentielle par rapport au temps :

$$M\frac{d\mathbf{r}_{CM}}{dt} = \sum_{i=1}^{N} m_i \frac{d\mathbf{r}_i}{dt} \rightarrow M\mathbf{v}_{CM} = \sum_{i=1}^{N} m_i \mathbf{v}_i$$

$$d\mathbf{v}_{CM} = \sum_{i=1}^{N} m_i \mathbf{v}_i$$

$$M\frac{d\mathbf{v}_{CM}}{dt} = \sum_{i=1}^{N} m_i \frac{d\mathbf{v}_i}{dt} \qquad \to M\mathbf{a}_{CM} = \sum_{i=1}^{N} m_i \mathbf{a}_i = \sum_{i=1}^{N} \mathbf{F}_i$$

Le CM d'un corps étendu se déplace comme un corps ponctuel de même masse, sur lequel agit la force externe totale $\boldsymbol{F}_{ext} = \sum_{i=1}^{N} \boldsymbol{F}_{i}$.

$$M\boldsymbol{a}_{CM} = \sum_{i=1}^{N} \boldsymbol{F}_i = \boldsymbol{F}_{ext}$$

Mouvement complexe

Translation + rotation

Le CM d'un corps étendu suit la trajectoire que suivrait un corps ponctuel de même masse, soumis à la même force nette $\mathbf{F}_{ext} = \sum_{i=1}^{N} \mathbf{F}_{i}$.

Mouvement général du corps étendu

Mouvement detranslation ducentre de masse

Mouvement derotation autour du centre de masse

Centre de gravité

Le centre de gravité d'un corps est le point d'application du poids.

Force résultante :

$$w = \sum_{i=1}^{N} w_i$$

Moment de force résultant :

$$\boldsymbol{\tau} = \sum_{i=1}^{N} \boldsymbol{r}_i \times \boldsymbol{w}_i = \boldsymbol{r}_{CG} \times \boldsymbol{w}$$

Lorsque g est homogène : centre de masse = centre de gravité

Centre de gravité

Détermination expérimentale

Un objet en suspension se positionne pour que le CG se trouve sur la verticale passant par le point P de suspension.

$$\tau = r \times w = rw \sin \theta$$

Centre de gravité

Le centre de gravité d'un **objet symétrique homogène** se trouve au **centre géométrique** de l'objet.

Celui-ci peut être situé en dehors de l'objet.

Equilibre et stabilité

Force résultante :

$$w = N_1 + N_2$$

Moment de force résultant :

$$\tau_{CM} = x_1 \times N_1 + x_2 \times N_2 = 0$$

$$= -x_1 N_1 + x_2 N_2 = 0$$

$$N_1 = \frac{x_2}{x_1 + x_2} w \quad N_2 = \frac{x_1}{x_1 + x_2} w$$

Force résultante :

$$w = N_1 + N_2$$

Moment de force résultant :

$$\tau_{CM} = x_1 \times N_1 + x_2 \times N_2 = 0 = x_1 N_1 + x_2 N_2 = 0$$

→ Impossible

Equilibre et stabilité

Un objet bascule lorsque la verticale passant par le CG coupe la base en dehors du polygone de sustentation défini par les supports

Equilibre et stabilité

Cheval

Le CG est toujours dans le triangle défini par les pattes en contact avec le sol.

Course à pied

Le CG est à l'avant des pieds (position instable). On lance les jambes en avant pour retrouver l'équilibre

Leviers

Force appliquée : F_A

Force de résistance : F_R

À l'équilibre :

$$x_R F_R = x_A F_A$$

Avantage mécanique :

$$AM = \frac{F_R}{F_A} = \frac{x_A}{x_R}$$