	KONGU ENG	INEERING CO	OLLEGE, PERUNDURAI, ERODE (Autonomous)		
Estd: 1984		COURSE DA	(Autonomous)	- 638 060	AC-04 P
Name of the Faculty	Dr.R. Manjula Devi	Designation &	AN - PRACTICAL COURSE		Revision -1 IQAC
Programme &	DE CCE	Dept. Course Code &	Assistant Professor (SrG)/CSE	Academic Year	2019-2020
Department of the Students	BE, CSE	Name Name	18CSL31 - Data Structures Laboratory	Semester & Section	III Sem, A Sec

1. Course Outcomes:

On com	pletion of the course, the students will be able to	Blooms Levels
CO1	Identify the appropriate data structure for solving the given problem	K3
CO2	Use a data structure to implement another data structure	K3
CO3	Synthesize operations like searching, insertion, deletion and traversing on various data structures	K3

						Mapping of	COs with I	POs, PSOs			276			
COs / POs & PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	3	2	1	1	1								3	1
CO2	3	2	1	1	1								3	1
CO3	3	2	1	1	1				and the same				3	1
Average	3	2	1	1	1					Verilla .				

2. Teaching Learning Plan (Practical)

Learnin	Experiments Planned	Mapped	Level
S.No.	Experiments on Singly Linked List for the given application	CO1 CO3	K3
1.	Experiments on Singly Linked Electrical		
	• Insertion		
	Deletion	CO1	К3
	Display L. Linked List		
2	Display Experiments using Singly Linked List		

		CO3	
	Polynomial Addition Polynomial Addition	CO1	K3
	Polynomial Addition Experiments using Circularly Linked List for the given application	CO3	N.S
	• Insertion		
	Deletion		
	Display	CO1	K3
1.	Experiments using Stack		1.0
	Balancing Parenthesis		
	Infix to Postfix		
	- Everescion Evaluation	CO3	K3
5.	Expression Evaluation Experiments using Queue for the given application		
	• Enqueue		
		CO3	K3
6.	Experiments using Priority Queue for the given application		
	• Enqueue		
		CO3	K3
7.	Experiments using Binary Search Tree for the given application		
	• Insertion		
	• Deletion		
	• Display		
	Find	CO2	K3
8.	Experiments on Graph Traversal techniques	COZ	
1	Searching	COS	3 K3
9.	Experiments using AVL tree for the given application	Co.	
1	• Insertion		
	• Deletion		
	• Display		
	• Find		Y/2
10.	Experiments on Graph	CC)2 K3
10.	Order the vertices for the given application		772
11	Experiments on Red Black tree	C	O3 K3
11.	• Insertion		
	• Deletion		
	• Display		

3. Laboratory Experiment Schedule

	A music player needs to store III	Actua	Date
1.	A music player needs to store Illayaraja's hit songs. Develop a C program to implement the following operations: i. Read the hit songs of Illayaraja and store it in the beginning of the music player otherwise add to the list of the songs iii. Display the songs in the music player and count the number of songs in the music player v. Print the play list in reverse order	Batch 1	Batch 2
2.	Perform the following polynomial operations: i. Add 10x5+2x3-1 to 8x4-x3+16x2 ii. Subtract 100x4-19x2-7x from 150x3+8x-14		
3.	When multiple applications are running on a PC, it is common for the operating system to put the running applications on a list and then to cycle through them, giving each of them a slice of time to execute and then making them wait while the CPU is given to another application. When the operating system reaches the end of the list it can cycle around to the front of the list. Assist the operating system to perform the above operations using the appropriate data structure.		
4.	 a. Perform infix into postfix expression conversion. b. Consider that you are given the following C program: void main() { printf("KONGU"; 		
.	if((a>b)&&(b>c) } When the program is executed, the compiler reports an error "Missing parenthesis". Show how the compiler detects the error. Write a program to show how the evaluation of an expression takes place in a computer. For example: printf("%d",(2* 5 +(7+9))); will produce the output 26. printf("%d",(2* 5 +(7+9))); will produce the output 42.		

	instruction to land. The services are provided
6.	Assume 'n' number of air planes are waiting for the instruction to land. The services are provided from the ground station on first come first serve basis. i. Display the order in which the air planes are serviced ii. Display the air planes in the order of waiting time in air (Lowest to highest)
7.	Implement the following service using priority queue. Vehicle Type Priority (Assume lowest value has highest priority)
	Medium Passenger Vehicle 2 (Bus) Light motor vehicle(cars) 4
	Ambulance 1 Medium goods vehicle 3
8.	Suppose the customer is getting online orders placed and he wants to maintain the live data in sorted order of prices. For example, he wishes to know the number of items purchased at cost below a given cost at any moment. Or he wishes to know number of items purchased at higher cost than given cost. Help the customer to implement the above scenario.
9.	Google maps uses graphs for building transportation systems, where intersection of two(or more) roads are considered to be a vertex and the road connecting two vertices is considered to be an edge. Visit the roads using BFS and DFS
10.	Consider that the height of the student has to be maintained in a tree. The tree height must be balanced at all the time. Implement it with a suitable data structure.
11.	A person wants to travel from a home city to all other cities. Find the order in which the person has to visit the cities (No need to return back).
12.	Implement the operations of Red Black tree: i. Store a number on to the tree ii. Delete a number from the tree iii. Display all the numbers in the tree

* C Compiler

5. Assessment Rubrics

	ension	Level 1 Excellent	Level 2 Above Average	Level 3 Average	Level 4 below	Level 5 Poor
Conduct of Experiment (25)	Preparation (10)	data at	applications. (8-7)	Incomplete understanding of the data structures and its applications.	ncomplete inderstanding of the data structures without its applications.	Not Prepared
	Experimental Setup(15)	algorithm for the given problem. Evidence of typical cases tested	algorithm but not efficient for the given	algorithm but not efficient for the given problem. Evidence of		Not able to design an algorithm. N evidence of testing (3-0
Record(15)		record are complete. (15-13)	complete, but some record are somewhat incomplete.	One or more experiment are incomplete, but some record are somewhat incomplete.(9-6)	One or more	All experim with record incomplete
Viva(10)	Question &	questions without	Answered all the questions with confusion (8-7)	Answered only few questions (6-4)	Answered only few questions with confusion (4-3)	Not able to answer (2

Course Faculty

Course Coordinator

& HOD