

General Description

Maxim's redesigned DG408 and DG409 CMOS analog multiplexers now feature guaranteed matching between channels (8 Ω max) and flatness over the specified signal range (9 Ω max). These low on-resistance muxes $(100\Omega \text{ max})$ conduct equally well in either direction and feature guaranteed low charge injection (15pC max). In addition, these new muxes offer low input off-leakage current over temperature—less than 5nA at +85°C.

The DG408 is a 1-of-8 multiplexer/demultiplexer and the DG409 is a dual 4-channel multiplexer/demultiplexer. Both muxes operate with a +5V to +30V single supply and with ±5V to ±20V dual supplies. ESD protection is guaranteed to be greater than 2000V per Method 3015.7 of MIL-STD-883. These improved muxes are pin-compatible plug-in upgrades for the industry standard DG408 and DG409.

Applications

Sample-and-Hold Circuits

Test Equipment

Guidance and Control Systems

Communications Systems

Data-Acquisition Systems

Audio Signal Routing

Features

- Pin-Compatible Plug-In Upgrades for Industry Standard DG408/DG409
- ♦ Guaranteed Matching Between Channels, 8Ω Max
- ♦ Guaranteed On-Resistance Flatness, 9Ω Max
- ♦ Guaranteed Low Charge Injection, 15pC Max
- ♦ Low On-Resistance, 100Ω Max
- ♦ Input Leakage, 5nA Max at +85°C
- ♦ Low Power Consumption, 1.25mW Max
- ♦ Rail-to-Rail Signal Handling
- **♦ Digital Input Controls TTL/CMOS Compatible**
- ♦ ESD Protection >2000V per Method 3015.7

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG408CUE	0°C to +70°C	16 TSSOP
DG408CJ	0°C to +70°C	16 Plastic DIP
DG408CY	0°C to +70°C	16 Narrow SO
DG408C/D	0°C to +70°C	Dice*
DG408EUE	0°C to +70°C	16 TSSOP
DG408DJ	-40°C to +85°C	16 Plastic DIP
DG408DY	-40°C to +85°C	16 Narrow SO

Ordering Information continued at end of data sheet.

Pin Configurations

Functional Diagrams

^{*}Contact factory for dice specifications.

^{**}Contact factory for availability and processing to MIL-STD-883.

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to V- V+0.3V, 44V	Plastic DIP (derate 10.53mW/°C above +70°C)842mW Narrow SO (derate 8.70mW/°C above +70°C)696mW
GND0.3V, 25V	CERDIP (derate 10.00mW/°C above +70°C)800mW
Digital Inputs, S, D (Note 1)(V 2V) to (V+ + 2V) or	Operating Temperature Ranges
30mA, (whichever occurs first)	DG408/DG409C0°C to +70°C
Continuous Current (any terminal)30mA	DG408/DG409D,E40°C to +85°C
Peak Current, S, D	DG408/DG409AK55°C to +125°C
(pulsed at 1ms, 10% duty cycle max)100mA	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation ($T_A = +70$ °C)	Lead Temperature (soldering, 10sec)+300°C
TSSOP (derate 9.4mW/°C above +70°C)755mW	

Note 1: Signals on S_, D_, EN, A0, A1, or A2 exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+ = 15V, V- = -15V, GND = 0V, V_{AH} = +2.4V, V_{AL} = +0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS	
SWITCH									
Analog Signal Range	Vanalog	(Note 3)	(Note 3)			-15		15	V
Drain-Source On-Resistance	rDS(ON)	$I_S = -1.0 \text{mA},$ $V_D = \pm 10 \text{V}$		$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to			60	100 125	Ω
On-Resistance Matching		$I_S = -1.0 \text{mA},$		$T_A = T_{MIN} U$ $T_A = +25^{\circ}C$			1.5	8	
Between Channels	Δr _{DS} (ON)	$V_D = \pm 10V$ (No	ote 4)	TA = TMIN to	о Тмах			10	Ω
On-Resistance Flatness	rFLAT	$I_S = -1.0 \text{mA},$	IS = -1.0 mA, $VD = \pm 5 \text{V or } 0 \text{V}$;		1.8	9	Ω
On Hodiotarioo Hatricoo	IFLAT	$V_D = \pm 5V \text{ or } 0V$			$T_A = T_{MIN}$ to T_{MAX}			12	20
Course Off Leekees Current	I _{S(OFF)}	V _D = +10V, V _S = ±10V, V _{EN} = 0V		$T_A = +25^{\circ}C$,	-0.5	0.01	0.5	
Source-Off Leakage Current (Note 5)				$T_A = T_{MIN}$	C, D	-5		5	nA
(1.1010-0)				to TMAX	А	-50		50	
		$V_D = \pm 10V$,	Vn = +10V			-1	0.02	1	
		$V_S = +10V$,	DG408	$T_A = T_{MIN}$	C, D	-10		10	
Drain-Off Leakage Current	I _{D(OFF)}	$V_{EN} = 0V$		to TMAX	А	-100		100	nA
(Note 5)		V _D = +10V, V _S = ±10V, V _{EN} = 0V	DG409	T _A = +25°C		-1	0.02	1	
				TA = TMIN	C, D	-5		5	
				to T _M AX	А	-50		50	1
				T _A = +25°C		-1	0.02	1	
Drain-On Leakage Current	In case	$V_D = \pm 10V$,	DG408	TA = TMIN	C, D	-20		20	1
		$V_S = \pm 10V$,		to T _{MAX}	Α	-100		100	nA
(Note 5)	ID(ON)	sequence each switch		T _A = +25°C	;	-1	0.02	1	1 11/4
		on	DG409	T _A = T _{MIN}	C, D	-10		10	1
				to T _{MAX}	А	-50		50	1

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+ = 15V, V- = -15V, GND = 0V, V_{AH} = +2.4V, V_{AL} = +0.8V, T_{A} = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS		
INPUT		I						I		
Input Current with Input Voltage High	I _{AH}	V _A = 2.4V or 15\	$V_A = 2.4V \text{ or } 15V$				1.0	μΑ		
Input Current with Input Voltage Low	I _{AL}	VEN = 0V or 2.4V VA = 0V	٧,		-1.0		1.0	μΑ		
SUPPLY										
Power-Supply Range					±5		±20	V		
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4 5\/	T _A = +25°C		16	30			
Danish on Community Community	1.	$V_{EN} = V_A = 0V o$	or 4.5V	TA = TMIN to TMAX			75	μΑ		
Positive Supply Current	l+	VEN = 2.4V,		T _A = +25°C		0.075	0.5			
		$V_{A(ALL)} = 0V \text{ or } 2$	2.4V	$T_A = T_{MIN}$ to T_{MAX}			2	mA mA		
N: 0 1 0 1		V _{EN} = 2.4V,		T _A = +25°C	-1		1			
Negative Supply Current	I-	$V_{A(ALL)} = 0V \text{ or } 2$	2.4V	TA = TMIN to TMAX	-10		10	μA		
DYNAMIC										
Transition Times	+			T _A = +25°C		85	175			
Transition Time	ttrans	Figure 2		TA = TMIN to TMAX			250	ns		
Break-Before-Make Interval	topen	Figure 4		T _A = +25°C	10	40		ns		
Enable Turn-On Time	to(=, 1)	Figure 3		T _A = +25°C		85	150	ns		
Enable Turn-On Time	ton(EN)			TA = TMIN to TMAX			225			
Enable Turn-Off Time	to==/=\.\\	Figure 2		T _A = +25°C			150	ns		
Enable Turn-Oil Time	toff(EN)	Figure 3		TA = TMIN to TMAX			300			
Charge Injection (Note 3)	Q	C_L = 1.0nF, V_S = 0V, R_S = 0 Ω , Figure	5	T _A = +25°C		2	15	рС		
Off Isolation (Note 6)	Viso	$VEN = 0V,$ $RL = 1k\Omega,$ $f = 100kHz, Figu$	ıre 6	T _A = +25°C		-75		dB		
Crosstalk Between Input Channels	V _{CT}	$V_{EN} = 2.4V$, f = 100kHz, $V_{GEN} = 1V_{P-P}$, $R_L = 1k\Omega$, Figure 7		T _A = +25°C		-92		dB		
Logic Input Capacitance	CIN	f = 1MHz		T _A = +25°C		8		рF		
Source-Off Capacitance	Cs(OFF)	f = 1MHz, VEN = VS = 0V, Figure 8		T _A = +25°C		3		pF		
Drain-Off Capacitance	C _{D(OFF)}	f = 1MHz, VEN = 0.8V VD = 0V,		T _A = +25°C		26		pF		
		Figure 8	DG409			14				
Drain-On Capacitance	C _{D(ON)}	f = 1MHz, V _{EN} = 2.4V	DG408	T _A = +25°C		37		pF		
Drain-On Capacitance	CS(ON)	V _D = 0V, Figure 8	DG409	1A - T23 U	25			ρΓ		

ELECTRICAL CHARACTERISTICS—Single Supply

(V+ = 12V, V- = 0V, GND = 0V, VAH = +2.4V, VAL = +0.8V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			TYP (Note 2)	MAX	UNITS
SWITCH							
Analog Signal Range	Vanalog	(Note 3)		0		12	V
Drain-Source On-Resistance	rDS(ON)	I _S = -1.0mA V _D = 3V or 10V	T _A = +25°C		120	175	Ω
DYNAMIC			1				
Transition Time (Note 3)	t _{TRANS}	VS1 = 8V, VS8 = 0V, VA = 0V, Figure 2	T _A = +25°C		115	450	ns
Enable Turn-On Time (Note 3)	ton(EN)	VAL = 0V, VS1 = 5V, Figure 3	T _A = +25°C		100	600	ns
Enable Turn-Off Time (Note 3)	toff(EN)	VAL = 0V, VS1 = 5V, Figure 3	T _A = +25°C		75	300	ns
Charge Injection	Q	$C_L = 1.0$ nF, $V_S = 0$ V, $R_S = 0$ \Omega	T _A = +25°C		2		рС

- **Note 2:** The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used in this data sheet.
- Note 3: Guaranteed by design.
- Note 4: ΔR_{ON} = R_{ON(MAX)} R_{ON(MIN)}. On-resistance match between channels and flatness are guaranteed only with specified voltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured at the extremes of the specified analog signal range.
- Note 5: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.
- **Note 6:** Off isolation = $20log V_D/V_S$, where V_D = output and V_S = input to off switch.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

Р	PIN		FUNCTION
DG408	DG409	NAME	FUNCTION
1, 15, 16	_	A0, A2, A1	Address Inputs
_	1, 16	A0, A1	Address Inputs
2	2	EN	Enable Input
3	3	V-	Negative Supply Voltage Input
4–7	_	S1–S4	Bidirectional Analog Inputs
_	4–7	S1A-S4A	Bidirectional Analog Inputs
8	_	D	Bidirectional Analog Output
_	8, 9	DA, DB	Bidirectional Analog Outputs
9–12	_	S8–S5	Bidirectional Analog Inputs
_	10–13	S4B-S1B	Bidirectional Analog Inputs
13	14	V+	Positive Supply Voltage Input
14	15	GND	Ground

Applications Information

Operation with Supply Voltages Other than 15V

Using supply voltages less than ±15V reduces the analog signal range. The DG408/DG409 switches operate with ±5V to ±20V bipolar supplies or with a +5V to +40V single supply. Connect V- to GND when operating with a single supply. Both device types can also operate with unbalanced supplies, such as +24V and -5V. The *Typical Operating Characteristics* graphs show typical on-resistance with 20V, 15V, 10V, and 5V supplies. (Switching times increase by a factor of two or more for operation at 5V.)

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, S or D. If power-supply sequencing is not possible, add two small signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to 1V below V+ and 1V above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed +44V.

Figure 1. Overvoltage Protection Using External Blocking Diodes

6 ______ /VI/XI/VI

Test Circuits/Timing Diagrams

Figure 2. Transition Time

Figure 3. Enable Switching Time

Test Circuits/Timing Diagrams (continued)

Figure 4. Break-Before-Make Interval

Figure 5. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 6. Off Isolation

Figure 8. Source/Drain Capacitance

Figure 7. Crosstalk

Pin Configurations/Functional Diagrams/Truth Tables (continued)

A2	A1	A0	EN	ON SWITCH
Χ	Х	Χ	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8
		DG4	08	
IC "n'	, VAL ~	0 8V	ו טפור	"1" V _{AH}

A1	A0	EN	ON SWITCH
Х	Х	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4
	D	G409	
LOGIC "0" V	AL ≤ 0.8	BV, LO	GIC "1" V

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
DG408DK	-40°C to +85°C	16 CERDIP
DG408AK	-55°C to +125°C	16 CERDIP**
DG408MY/PR	-55°C to +125°C	16 SO***
DG408MY/PR-T	-55°C to +125°C	16 SO***
DG409CUE	0°C to +70°C	16 TSSOP
DG409CJ	0°C to +70°C	16 Plastic DIP
DG409CY	0°C to +70°C	16 Narrow SO
DG409C/D	0°C to +70°C	Dice*
DG409EUE	-40°C to +85°C	16 TSSOP
DG409DJ	-40°C to +85°C	16 Plastic DIP
DG409DK	-40°C to +85°C	16 CERDIP
DG409AK	-55°C to +125°C	12 CERDIP**
DG409MY/PR	-55°C to +125°C	16 SO***
DG409MY/PR-T	-55°C to +125°C	16 SO***

^{*}Contact factory for dice specifications.

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 TSSOP	U16-1	<u>21-0066</u>
16 Plastic DIP	P16-2	21-0043
16 Narrow SO	S16-5	21-0041
16 SO	S16-5	21-0041
16 CERDIP	J16-3	<u>21-0590</u>

^{**}Contact factory for availability and processing to MIL-STD-883.

Improved, 8-Channel/Dual 4-Channel, High-Performance, CMOS Analog Multiplexers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	8/02	Changed operating voltage and TSSOP packaging	_
4	9/08	Added rugged plastic information	1, 11

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

DG408CUE+T DG408AK/883B DG409AK/883B DG408DY DG408DY-T DG408CJ+ DG408DY+ DG408CUE+

DG408CY+ DG408CY+T DG408DJ+ DG408DY+T DG408EUE+ DG408EUE+T DG409CJ+ DG409CUE+

DG409CUE+T DG409CY+ DG409CY+T DG409DJ+ DG409DY+ DG409DY+T DG409EUE+ DG409EUE+T

DG408DK DG409MY/PR-T DG408AZ/883B