Supplementary material of the paper "Deep Learning-Based Prediction Models for the Detection of Vitamin D Deficiency and 25-Hydroxyvitamin D Levels Using Complete Blood Count Tests"

Uğur Engin EŞSİZ¹, Çiğdem İnan ACI^{2,*}, Esra SARAÇ³, and Mehmet ACI²

¹Department of Industrial Engineering, Çukurova University, Adana, Turkey
²Department of Computer Engineering, Mersin University, Mersin, Turkey
³Department of Computer Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey

This PDF file contains the tables and the figures created for the Deep Learning-Based Prediction Models for the Detection of Vitamin D Deficiency and 25-Hydroxyvitamin D Levels Using Complete Blood Count Tests titled article published in the Romanian Journal of Information Science and Technology. You can access the article via this link: (the link will be added after publication)

Block diagram of the DL-based prediction models.

Pseudo-code for Multivariate Imputation by Chained Equations (MICE) algorithm (Iterative Data Imputation)

```
Define Y as a nxp data matrix where rows represent samples and columns represent variables.

Data: Incomplete dataset Y = (Y^{obs}, Y^{mis})

Result: Incomplete dataset Y^T = (Y^{obs}, Y^{mis,T}) at iteration T

Define Y_j as the j^{th} feature column of Y where Y_j = (Y_j^{obs}, Y_j^{mis})

for j \leftarrow 1 to p do

imputation model for incomplete variable Y_j \leftarrow P(Y_j|Y_{-j}, \theta_j)

starting imputations Y_j^{mis,0} \leftarrow \text{draws from } Y_j^{obs}

Define Y_{-j}^t = (Y_1^t, Y_2^t, ..., Y_{j-1}^t, Y_{j+1}^{t-1}, ..., Y_{p-1}^{t-1}, Y_p^{t-1}) where Y_j^t is the j^{th} feature at iteration t

for t \leftarrow 1 to T do

for j \leftarrow 1 to p do

\theta_j^t draw from posterior P(\theta_j|Y_j^{obs}, Y_{-j}^t)

Y_j^{mis,t} draws from posterior predictive P(Y_j^{mis}|Y_{-j}^t, \theta_j^t)

return Y^T
```

Pseudo-code for the Synthetic Minority Oversampling Technique (SMOTE)

```
Input: Minority data D^{(t)} = \{x_i \in X\} where i = 1, 2, ..., T

Number of minority instances (T), SMOTE percentage(N), number of nearest neighbors (k)

for i = 1, 2, ..., T do

Find the k nearest (minority class) neighbors of x_i

\hat{N} = [N/100]

while \hat{N} \neq 0 do

Select one of the k nearest neighbors, call this \bar{x}

Select a random number \alpha \in [0, 1]

\hat{x} = x_i + \alpha(\bar{x} - x_i)

Append \hat{x} to S

\hat{N} = \hat{N} - 1

end while

end for

Output: Return synthetic data S
```

```
Pseudo-code for Randomized Decision Trees (Extra Trees Classifier)
(ETC)
Given (x1,y1),(x2,y2),...,(xn,yn) with feature space F where xi \in X and yi \in
Given the number of decision trees M and max depth of each tree
max_depth
procedure Train ((x1, y1), (x2, y2), \dots, (xn, yn))
   ETC \leftarrow \{\}
   for i from 1 to M do
        Ti \in X \rightarrow \Omega
        while ( do depth(T) < max\_depth)
        Randomly select Xi \subset X without replacement
        Randomly select feature f \in F
          Use f as the node to construct tree
        end while
        ETC = ETC \cup \{Ti\}
    end for
    return ETC
end procedure
procedure Test(x)
     for i from 1 to M do
    Select decision tree Ti from ETC
    yi \leftarrow Ti(x)
    end for
    y = \frac{\sum_{i=1}^{M} y_i}{}
return y
end procedure
```

LASSO Regularization (L1)

$$loss = \sum_{i=0}^{n} (y_i - y')^2$$

$$loss = \sum_{i=0}^{n} (y_i - X_i \beta)^2$$

$$L1 = \frac{1}{n} \sum_{i=0}^{n} (y_i - X_i \beta)^2 + \frac{\lambda}{n} \sum_{j=0}^{m} |\beta|$$

where y_i actual, y' predicted, X input, β co-efficient, λ regularization parameter.

Feature Importance Distribution of the Models

Feature importance distribution of the Model 1.

Feature importance distribution of the Model 2.

Feature importance distribution of the Model 3.

Convergence Plots of the Models

