Análise Matemática para Engenharia

folha de exercícios 1 -2021/2022 -

• Curvas e superfícies de nível. Gráficos de funções de duas variáveis

1. Faça corresponder o gráfico com a equação f(x, y, z) = 0.

(i)
$$\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$

(ii)
$$15x^2 - 4y^2 + 15z^2 = -4$$

(iii)
$$4x^2 - y^2 + 4z^2 = 4$$

(iv)
$$y^2 = 4x^2 + 9z^2$$

(v)
$$4x^2 - 4y + z^2 = 0$$

(vi)
$$4x^2 - y^2 + 4z = 0$$

2. Esboce o gráfico das superfícies seguintes:

(a)
$$z = 3$$
;

(c)
$$z = x^2 + y^2 + 4$$
; (e) $z = y^2$; (g) $x^2 + y^2 = 4$;

(e)
$$z = u^2$$
:

(g)
$$x^2 + y^2 = 4$$

(b)
$$r^2 + y^2 + z^2 = 9$$

(d)
$$z = 5 - x^2 - y^2$$

(b)
$$x^2 + y^2 + z^2 = 9$$
; (d) $z = 5 - x^2 - y^2$; (f) $2x + 4y + 3z = 12$; (h) $x^2 + z^2 = 4$.

(h)
$$r^2 + r^2 = 4$$

3. Para cada função f definida nas alíneas seguintes, determine o domínio e o valor de f nos pontos indicados. Faça um esboço gráfico do domínio de f.

(a)
$$f(x,y) = 2x - y^2$$
, (-2,5), (0,-2);

(b)
$$f(x,y) = \frac{1}{2x - v^2}$$
, (-2,1), (-1,0)

(c)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
, (2,1), (-1,-1)

(a)
$$f(x,y) = 2x - y$$
, $(2,3)$, $(0, 2)$,
(b) $f(x,y) = \frac{1}{2x - y^2}$, $(-2,1)$, $(-1,0)$;
(c) $f(x,y) = \frac{x}{x^2 + y^2}$, $(2,1)$, $(-1,-1)$;
(d) $f(x,y) = \frac{xy}{x - 2y}$, $(2,3)$, $(-1,4)$;

(e)
$$f(x,y) = \frac{xy}{x^2 - y^2}$$
, (2,0), (-1,2);

(f)
$$f(x,y) = \log(x+y)$$
, (0,1), (-1,2);

(g)
$$f(x,y) = \ln(x^2 + y)$$
, (1,0), (0,1);

(h)
$$f(x,y) = \frac{y}{\ln(x^2 - y)}$$
, $(0, -e)$, $(e, 0)$;

(i)
$$f(x,y) = \sqrt{1-x^2-y^2}$$
, (1,0), (-1/2,1/2);

(j)
$$f(x,y) = \sqrt{4-x^2} - \sqrt{y^2-4}$$
, (1,2), (-1,3);

(k)
$$f(x,y) = \sqrt{x^2 + y^2 - 4}$$
, (3,1), (-1,-3);

(I)
$$f(x,y) = \frac{1}{\sqrt{x+y}} + \frac{1}{\sqrt{x-y}}$$
, $(0,-1)$, $(1,-1)$.

(m)
$$f(x,y) = \left(\frac{x+y}{x^2-y}\right)^{1/2}$$
.

(o)
$$f(x,y) = \begin{cases} 2, & x^2 + y^2 \le 4 \\ -1, & \text{caso contrário} \end{cases}$$
.

(n)
$$f(x,y) = \begin{cases} \frac{\sqrt{x^2 + y^2}}{3y^2 - x}, & x \neq 3y^2 \\ 0, & x = 3y^2 \end{cases}$$
.

- **4.** Considere a função definida por $f(x,y) = \frac{x^4 + 2x^2y^2 + y^4}{1 x^2 u^2}$.
 - (a) Determine o domínio de f.
 - (b) Calcule o valor que f assume nos pontos da circunferência de equação $x^2 + y^2 = 4$.
- **5.** Esboce pelo menos 4 curvas de nível, para cada uma das funções $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ definidas por:

(a)
$$f(x,y) = x + y$$
;

(c)
$$f(x,y) = x^2 + y^2$$
:

(e)
$$f(x,y) = xy$$

(b)
$$f(x,y) = 3x + 3y$$
;

(c)
$$f(x,y) = x^2 + y^2$$
; (e) $f(x,y) = xy$;
(d) $f(x,y) = 1 - x^2 - y^2$; (f) $f(x,y) = y - x^2$.

(f)
$$f(x,y) = y - x^2$$

6. Esboce as curvas de nível e os gráficos das funções $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dadas por:

(a)
$$f(x,y) = x - y + 2$$
;

(c)
$$f(x,y) = \sqrt{1-x^2-y^2}$$
;

(b)
$$f(x,y) = x^2 + 4y^2$$
;

(d)
$$f(x,y) = -\sqrt{4 - x^2 - y^2}$$
.

7. Considere o gráfico da função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $f(x,y) = x^2 + y^2$. Descreva, por palavras, os gráficos das funções com as seguintes leis:

(a)
$$g(x,y) = x^2 + y^2 + 3$$
; (b) $h(x,y) = 5 - x^2 - y^2$; (c) $k(x,y) = x^2 + (y-1)^2$.

(b)
$$h(x,y) = 5 - x^2 - y^2$$

(c)
$$k(x, y) = x^2 + (y - 1)^2$$
.

8. Faça um esboço gráfico do domínio de cada uma das seguintes funções:

(a)
$$f(x, y, z) = \sqrt{1 - x^2 - y^2 - z^2}$$
;

(b)
$$f(x,y,z) = -\sqrt{x^2 + y^2 + z^2 - 25}$$