สัปดาห์ที่ 1: Data Transfer and Receive + UI พื้นฐาน

• โครงสร้างโปรแกรมและการส่ง/รับข้อมูล

- o วางโครงสร้างโปรแกรมหลัก (Code architecture) สำหรับการสื่อสารผ่าน Serial (I2C) โดยใช้คำสั่งเช่น START_READING และ STOP_READING
- กำหนดค่าพารามิเตอร์ในการสื่อสาร:
 - Parity Bit เพื่อเช็ค error
 - Stop Bit
 - Flow Control
- ทดสอบรับส่งข้อมูลโดยแสดงตัวอย่างข้อมูลจาก Realterm เพื่อให้แน่ใจว่าสามารถแยกแยะข้อมูล JSON กับข้อความ อื่น ๆ ได้
- o สามารถจับ JSON object ได้ครบถ้วน (โดยอาจแยกโหมด sensor data กับ command อื่นๆ)

• การแสดงผลกราฟ (Graph Display) และ Time Scale

- o ออกแบบ UI พื้นฐานในหน้าหลัก (Main tab) ที่มีพื้นที่สำหรับแสดงข้อมูล (Overview, Data Log)
- o พัฒนาโครงสร้างสำหรับส่วนของกราฟใน Graph tab รวมทั้งพิจารณาเพิ่มตัวเลือก Time Scale (ถ้ามีความจำเป็น)
- ทดสอบการสะสมและเก็บข้อมูลสำหรับการวาดกราฟ

• ปรับ UI เบื้องต้น

- o ใช้ Tkinter และ ttk ในการจัดวางหน้าต่าง (layout) และ widget ต่าง ๆ ให้เหมาะสมกับการนำเสนอข้อมูล
- เขียนการบันทึก log เหตุการณ์ผ่าน Text widget (Event Log)

สิ่งที่คาดหวังจะมีลักษณะคล้ายๆ Application ของ Realterm

Basic Layout

สัปดาห์ที่ 2: ทดสอบและพัฒนาระบบ WiFi และ MQTT

• Credential ข้อมูลสำคัญ

- ใช้ Library Preferences แหนการใช้ EEPROM ซึ่งเป็นการใช้ Flash Memory ที่เราต้องการข้อมูลถาวรเก็บไว้
 อย่างถาวร โดยไม่สุญหายจากการ Disconnect หรือ การ Reboot
- Preference จะมีการสนับสนนและการพัฒนาจาก Developer เยอะกว่า EEPROM เลยเลือกใช้

Multitasking

o ใช้ FREERTOS ในการจัดการกับงานที่ต้องทำงานพร้อมกันอย่าง MQTT และการรับ Sensor โดยจะสั่งผ่านคนละ Function กันแทนการเขียนใน For loop() อย่างเดียว

- แก้ปัญหาการ Interrupt ของ Serial command โดยแยกโหมดการตั้งค่า WiFi (WiFi Setup Mode) ออกมาให้
 ชัดเฉน
- พัฒนาการส่งคำสั่ง SET_WIFI ไปยัง ESP32 และทดสอบการเชื่อมต่อ WiFi ว่า Username/Password ที่ส่งไปนั้น ตรงกับที่เก็บไว้ใน firmware หรือ Preferences
- เพิ่มฟีเจอร์สำหรับการออกจากโหมด WiFi setup (เช่น ให้แสดงปุ่มยืนยันการออกจากโหมดพร้อมสัญญาณ LED บน ESP32)

รະນນ MQTT Connection

CONNECT

clientId: "ExampleClient"

cleanSession: true

username (optional): "user1"

password (optional): "password"

lastWillTopic (optional): "/test/1"

lastWillQos (optional):

lastWillMessage (opt.): "unexpected exit"

lastWillRetain (optional): false

keepAlive: 60

- พัฒนาระบบ MQTT tab ให้มีฟิลด์สำหรับการตั้งค่า Broker, Port และ Topic
- ให้ผู้ใช้สามารถเลือก Topic ได้จาก dropdown (อย่างน้อย 3 Topic เช่น sensor/temperature, sensor/acceleration, sensor/velocity)
- ทดสอบการเชื่อมต่อ MQTT ในพื้นฐานด้วยการ publish/subscribe
- เสริมการส่งข้อมูล MQTT (รวมทั้งการใส่ password หากมีและการรับ feedback จาก MQTT broker)
- ปรับปรุง Event Handling
 - ทดสอบการรับข้อมูลจาก sensor ผ่าน Serial ร่วมกับการสั่งงานด้าน WiFi/MQTT เพื่อให้แน่ใจว่าไม่เกิดการชนกัน ของ command
 - o สร้างระบบ log ที่ชัดเจนเพื่อแยกแยะข้อมูล Sensor data กับข้อความ command ต่างๆ

สัปดาห์ที่ 3: Bug Fixes, Safety, และ Modernize UI

• แก้ไขข้อผิดพลาดและเพิ่มความปลอดภัย

- ตรวจสอบและแก้ไขปัญหาการ delay ของข้อมูล Sensor ที่เกิดจากปัญหาการ parse JSON (อาจใช้ flag สำหรับ หยุดส่งข้อมูล sensor ในขณะส่ง command)
- o ปรับปรุงการจัดการ buffer ในการอ่านข้อมูลจาก Serial ให้มีประสิทธิภาพมากขึ้น
- o เพิ่ม error handling และ log เพื่อตรวจสอบสถานะการเชื่อมต่อ WiFi/MQTT

• ปรับปรุงและทำให้ UI ดูทันสมัย

- พิจารณาใช้ ttk style ที่ custom ได้มากขึ้น ซึ่งจะมี CustomTkinter (Library ที่ใหม่ดูดีกว่าแต่ จะขาดบางฟังช์ชั่ นที่เราต้องการใช้)
- o ลองเขียนใน PyQT6 หรือ ใช้ Electron Framework เขียน Javascript แทน

• ทดสอบระบบทั้งหมด

- ทดสอบการทำงานร่วมกันของทุกส่วน: Data Transfer, Graph Display, WiFi Connection และ MQTT
 Connection
- o ตรวจสอบความปลอดภัย เช่น การตรวจสอบ Error จาก parity bit, stop bit ฯลฯ
- รายงาน bug ต่างๆที่พบเจอ และเพิ่ม Security ในแอปอย่างการป้องกันการ Overflow ของข้อมูลที่ขนาดใหญ่, การ
 Login ที่เยอะเกิน

Date	Task
Week 1	Data Transfer and Receive
Mon, Week 1	Setup Project Structure & Basic Serial Communication
Tue, Week 1	Implement Parity Bit, Stop Bit, Flow Control
Wed, Week 1	Serial Command Parsing & Basic Layout
Thu, Week 1	Graph UI Design & Basic Plotting from Matplotlib
Fri, Week 1	Add Time Scale to Graph Display
Sat, Week 1	Better Data parsing with Test command and Receiving
Week 2	MQTT and WiFi Testing
Mon, Week 2	Separate WiFi Setup Mode & LED indication
Tue, Week 2	Test WiFi Credentials & Connection
Wed, Week 2	Fix Serial Command Conflicts & Stability
Thu, Week 2	MQTT Connection & Authentication Setup
Fri, Week 2	MQTT Multiple Topics & Dynamic Topic Selection
Sat, Week 2	Test MQTT Publish and Subscribe
Week 3	Bug Fixes, Safety, UI Modernization
Mon, Week 3	Bug Fix: JSON Parsing Efficiency
Tue, Week 3	Bug Fix: Sensor Data Delay & Serial Reliability
Wed, Week 3	Error Handling & Safety Checks
Thu, Week 3	UI Enhancement (Responsive Design & Styling)
Fri, Week 3	Final System Integration Testing
Sat, Week 3	Documentation & User Manual

Reference

https://www.nextpcb.com/blog/spi-i2c-uart

https://www.hivemq.com/mqtt/mqtt-5/