Proyecto: Diseño de un sistema para soportar algoritmos de control basados en aprendizaje automático en tiempo real

David Felipe Duarte Sánchez

14 de febrero de 2024

Bitácora Semana 1

Fecha	Horas	f Actividad	Descripción
07/02/2024	5	Corrección Anteproyecto	Cambio en los objetivos generales y es-
			pecíficos del proyecto
08/02/2024	8	Investigación para satisfacer los nuevos objetivos	Investigación sobre los sistemas en
			tiempo real y la relación que tienen con
			los sistemas de control automático, re-
			vision de [1] [14] y [6]
09/02/2024	7	Redacción y revisión del documento	Se redactó de nuevo el documento es-
			crito y se presentó por medio de TEC
			DIgital

- Cambio de objetivo general y específico.
- Incorporación de los indicadores y entregables
- Planteamiento de las alternativas
- Cambio en la seccion de Generalidades
- Cambio en la seccion de Entorno del proyecto

Lista de referencias consultadas para el entorno del proyecto, las generalidadesy las alternativas propuestas

Referencias

- [1] Alejandro Alonso and Alfons Crespo Lorente. Una panorámica de los sistemas de tiempo real. Revista Iberoamericana de Automática e Informática Industrial, 3(2):7–18, 2010.
- [2] Juan Antonio De la Puente. Introducción a los sistemas en tiempo real, 2000.
- [3] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware acceleration for neural networks: A comprehensive survey. *Proceedings of the IEEE*, 108(4):485–532, 2020.
- [4] Jose Duato, Antonio J Pena, Federico Silla, Juan C Fernandez, Rafael Mayo, and Enrique S Quintana-Orti. Enabling cuda acceleration within virtual machines using rcuda. In 2011 18th International Conference on High Performance Computing, pages 1–10. IEEE, 2011.
- [5] Ramón Galán, Agustín Jiménez, Ricardo Sanz, and Fernando Matía. Control inteligente. *Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial*, 4(10):43–48, 2000.
- [6] Dong-Il Kim, Jae Wook Jeon, and Sungkwun Kim. Software acceleration/deceleration methods for industrial robots and cnc machine tools. *Mechatronics*, 4(1):37–53, 1994.
- [7] Marius Meyer, Tobias Kenter, and Christian Plessl. Evaluating fpga accelerator performance with a parameterized opencl adaptation of selected benchmarks of the hpcchallenge benchmark suite. In 2020 IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC), pages 10–18. IEEE, 2020.

- [8] Alejandro Alonso Muñoz. Extensiones a los métodos de planificación de sistemas de tiempo real críticos basados en prioridades. PhD thesis, Universidad Politécnica de Madrid, 1994.
- [9] Muhsen Owaida, Nikolaos Bellas, Christos D Antonopoulos, Konstantis Daloukas, and Charalambos Antoniadis. Massively parallel programming models used as hardware description languages: The opencl case. In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 326–333. IEEE, 2011.
- [10] Rahul Razdan, Karl Brace, and Michael D Smith. Prisc software acceleration techniques. In *Proceedings* 1994 IEEE International Conference on Computer Design: VLSI in Computers and Processors, pages 145–149. IEEE, 1994.
- [11] Matthew Scarpino. OpenCL in action: how to accelerate graphics and computations. Simon and Schuster, 2011.
- [12] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vcuda: Gpu-accelerated high-performance computing in virtual machines. *IEEE Transactions on Computers*, 61(6):804–816, 2011.
- [13] Anshuman Verma, Ahmed E Helal, Konstantinos Krommydas, and Wu-Chun Feng. Accelerating workloads on fpgas via opencl: A case study with opendwarfs. Technical report, Department of Computer Science, Virginia Polytechnic Institute & State . . . , 2016.
- [14] Ruizhe Zhao, Wayne Luk, Xinyu Niu, Huifeng Shi, and Haitao Wang. Hardware acceleration for machine learning. In 2017 IEEE computer society annual symposium on VLSI (ISVLSI), pages 645–650. IEEE, 2017.

Bitácora Semana 2

Fecha	Horas	Actividad	Descripción
13/02/2024	5	Busqueda de Material bibliográfico	Referencias bibliográficas relacionadas
			con control automático, sistemas en
			tiempo real y aceleración por hardwa-
			re con cuda, open cl y one api.

- Buscar training de cuda, open cl, one api, para conocer más de estos sistemas.
- Por medio de la revisión bibliográfica lograr definir que es lo que se va a implementar en el proyecto y fundamentar el porqué lo estoy aplicando
- Búsqueda de referencias bibliográficas en tesis doctorales para conocer más sobre la implementación de plantas de control
- Redacción del marco teórico del proyecto