Lab 3: Predicting Telecom Churn with tidymodels

Boutelba Houssem

1. Import Library & data

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                    v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.0 v tibble 3.2.1
## v lubridate 1.9.3
                    v tidyr
                                 1.3.1
## v purrr
             1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(tidymodels)
## -- Attaching packages ------ tidymodels 1.2.0 --
## v broom 1.0.5 v rsample 1.2.1
## v dials 1.2.1 v tune 1.2.0
## v infer 1.0.7 v workflows 1.1.4
## v modeldata 1.3.0
                        v workflowsets 1.1.0
            v yardstick 1.3.1
## v parsnip
               1.0.10
## v recipes
## -- Conflicts ----- tidymodels_conflicts() --
## x scales::discard() masks purrr::discard()
## x dplyr::filter() masks stats::filter()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag()
                 masks stats::lag()
## x yardstick::spec() masks readr::spec()
## x recipes::step() masks stats::step()
## * Dig deeper into tidy modeling with R at https://www.tmwr.org
library(janitor)
## Attachement du package : 'janitor'
## Les objets suivants sont masqués depuis 'package:stats':
      chisq.test, fisher.test
##
```

```
library(broom)
library(gridExtra)

##
## Attachement du package : 'gridExtra'
##
## L'objet suivant est masqué depuis 'package:dplyr':
##
## combine

library(gtExtras)

## Le chargement a nécessité le package : gt

library(readxl)
churn_data <- read.csv("C:\\Users\\Hp\\Desktop\\Machine Learning\\Customer Churn\\Telco-Customer-Churn.</pre>
```

2. Taking a look at the data

```
summary(churn_data)
```

```
##
     customerID
                                         SeniorCitizen
                                                            Partner
                          gender
  Length:7043
                      Length:7043
                                         Min. :0.0000
                                                          Length:7043
## Class :character
                                          1st Qu.:0.0000
                                                          Class : character
                      Class : character
   Mode :character
                      Mode :character
                                         Median :0.0000
                                                          Mode :character
##
                                         Mean :0.1621
##
                                          3rd Qu.:0.0000
                                                :1.0000
##
                                         Max.
##
    Dependents
##
                          tenure
                                       PhoneService
                                                          MultipleLines
##
   Length:7043
                      Min. : 0.00
                                      Length:7043
                                                          Length:7043
                       1st Qu.: 9.00
   Class : character
                                       Class :character
                                                          Class : character
##
   Mode :character
                      Median :29.00
                                      Mode :character
                                                         Mode :character
##
                      Mean
                            :32.37
##
                      3rd Qu.:55.00
##
                      Max.
                             :72.00
##
##
  InternetService
                      OnlineSecurity
                                          OnlineBackup
                                                            DeviceProtection
   Length:7043
                      Length:7043
                                         Length:7043
##
                                                            Length:7043
   Class :character
                      Class : character
                                         Class :character
                                                            Class : character
##
   Mode :character
                      Mode :character
                                         Mode :character
                                                            Mode : character
##
##
##
##
## TechSupport
                       StreamingTV
                                          StreamingMovies
                                                               Contract
   Length:7043
                       Length:7043
                                          Length:7043
                                                             Length:7043
```

```
Class :character
                       Class : character
                                          Class :character
                                                              Class : character
##
   Mode :character
                       Mode :character
                                          Mode :character
                                                              Mode : character
##
##
##
##
   PaperlessBilling
                                          MonthlyCharges
                       PaymentMethod
##
                                                             TotalCharges
                                                : 18.25
##
   Length:7043
                       Length:7043
                                          Min.
                                                            Min. : 18.8
##
   Class : character
                       Class :character
                                           1st Qu.: 35.50
                                                            1st Qu.: 401.4
##
   Mode :character
                       Mode :character
                                           Median : 70.35
                                                            Median :1397.5
##
                                           Mean
                                                : 64.76
                                                            Mean
                                                                   :2283.3
##
                                           3rd Qu.: 89.85
                                                            3rd Qu.:3794.7
##
                                           Max.
                                                 :118.75
                                                            Max.
                                                                   :8684.8
                                                            NA's
##
                                                                   :11
##
       Churn
##
   Length:7043
##
   Class : character
   Mode :character
##
##
##
##
head(churn_data) %>%
 gt() %>%
 gt_theme_excel()
```

customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetSe
7590-VHVEG	Female	0	Yes	No	1	No	No phone service	DSL
5575-GNVDE	Male	0	No	No	34	Yes	No	DSL
3668-QPYBK	Male	0	No	No	2	Yes	No	DSL
7795-CFOCW	Male	0	No	No	45	No	No phone service	DSL
9237-HQITU	Female	0	No	No	2	Yes	No	Fiber opti
9305-CDSKC	Female	0	No	No	8	Yes	Yes	Fiber opti

```
glimpse(churn_data)
```

- The churn dataset has 11 missing values.

```
## Rows: 7,043
## Columns: 21
## $ customerID
                                                                                         <chr> "7590-VHVEG", "5575-GNVDE", "3668-QPYBK", "7795-CFOCW~
                                                                                         <chr> "Female", "Male", "Male", "Female", "Fem
## $ gender
## $ SeniorCitizen
                                                                                         ## $ Partner
                                                                                         <chr> "Yes", "No", "No", "No", "No", "No", "No", "No", "Yes~
                                                                                        <chr> "No", "No", "No", "No", "No", "Yes", "No", "No"~
## $ Dependents
                                                                                        <int> 1, 34, 2, 45, 2, 8, 22, 10, 28, 62, 13, 16, 58, 49, 2~
## $ tenure
## $ PhoneService
                                                                                         <chr> "No", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "No", ~
                                                                                         <chr> "No phone service", "No", "No", "No phone service", "~
## $ MultipleLines
```

```
## $ InternetService <chr> "DSL", "DSL", "DSL", "DSL", "Fiber optic", "Fiber opt~
                                                                <chr> "No", "Yes", "Yes", "No", "No", "No", "Yes", "~
## $ OnlineSecurity
## $ OnlineBackup
                                                                <chr> "Yes", "No", "Yes", "No", "No", "No", "Yes", "No", "N~
## $ DeviceProtection <chr> "No", "Yes", "No", "No", "No", "Yes", "No", "No", "No", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "Yes", "No", "Yes", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Y
                                                                <chr> "No", "No", "No", "Yes", "No", "No", "No", "No", "Yes~
## $ TechSupport
                                                                <chr> "No", "No", "No", "No", "Yes", "Yes", "Yes", "Ye-
## $ StreamingTV
                                                               <chr> "No", "No", "No", "No", "Yes", "No", "No", "Yes~
## $ StreamingMovies
                                                                <chr> "Month-to-month", "One year", "Month-to-month", "One ~
## $ Contract
## $ PaperlessBilling <chr> "Yes", "No", "Yes", "No", "Yes", "Yes", "Yes", "No", ~
                                                                <chr> "Electronic check", "Mailed check", "Mailed check", "~
## $ PaymentMethod
## $ MonthlyCharges
                                                                <dbl> 29.85, 56.95, 53.85, 42.30, 70.70, 99.65, 89.10, 29.7~
                                                                <dbl> 29.85, 1889.50, 108.15, 1840.75, 151.65, 820.50, 1949~
## $ TotalCharges
                                                                <chr> "No", "No", "Yes", "No", "Yes", "Yes", "No", "No", "Y-
## $ Churn
```

dim(churn_data)

[1] 7043 21

• this dataset has 7043 rows and 21 columns

3. Cleaning Data

```
churn_data <- churn_data %>%
  select(-customerID) %>%
  mutate(SeniorCitizen = as.factor(ifelse(churn_data$SeniorCitizen==1, 'Yes', 'No'))) %>%
  clean_names()%>%
  mutate_if(is.character , as.factor) %>%
  na.omit()

glimpse(churn_data)
```

```
## Rows: 7,032
## Columns: 20
## $ gender
                                                       <fct> Female, Male, Male, Female, Female, Male, Fema~
                                                        ## $ senior_citizen
## $ partner
                                                       <fct> Yes, No, No, No, No, No, No, Yes, No, Yes,
## $ dependents
                                                        <fct> No, No, No, No, No, Yes, No, No, Yes, Yes, No, N~
## $ tenure
                                                        <int> 1, 34, 2, 45, 2, 8, 22, 10, 28, 62, 13, 16, 58, 49, ~
                                                        <fct> No, Yes, Yes, No, Yes, Yes, Yes, No, Yes, Yes, Yes, ~
## $ phone_service
                                                        <fct> No phone service, No, No, No phone service, No, Yes,~
## $ multiple_lines
## $ internet_service
                                                        <fct> DSL, DSL, DSL, DSL, Fiber optic, Fiber optic, Fiber ~
                                                        <fct> No, Yes, Yes, Yes, No, No, Yes, No, Yes, Yes, No~
## $ online_security
## $ online_backup
                                                        <fct> Yes, No, Yes, No, No, Yes, No, No, Yes, No, No i~
## $ device_protection <fct> No, Yes, No, Yes, No, Yes, No, No, Yes, No, No, No, No, No i~
## $ tech_support
                                                        <fct> No, No, No, Yes, No, No, No, Yes, No, No, No int~
                                                        <fct> No, No, No, No, No, Yes, Yes, No, Yes, No, No, No in~
## $ streaming_tv
## $ streaming_movies
                                                       <fct> No, No, No, No, Yes, No, No, Yes, No, No, No int~
                                                       <fct> Month-to-month, One year, Month-to-month, One year, ~
## $ contract
## $ paperless_billing <fct> Yes, No, Yes, No, Yes, Yes, Yes, No, Yes, No, Yes, No
                                                       <fct> Electronic check, Mailed check, Mailed check, Bank t~
## $ payment method
```

[1] 7032

4. Explanatory Data Analysis (EDA)

a- distribution of categorical variables

```
churn_percent <- churn_data %>%
  group_by(churn) %>%
  count()%>%
  summarise(percent = n / nrow(churn_data) * 100 )
churn_percent
## # A tibble: 2 x 2
     churn percent
     <fct> <dbl>
##
## 1 No
              73.4
## 2 Yes
              26.6
churn_pie <- churn_percent %>%
  ggplot( aes(x = "", y = percent , fill = churn)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar(theta = "y") +
 theme_void() +
 labs(title = "Percentage Pie Chart") +
  geom_text(aes(label = paste0(churn, "\n", round(percent, 1), "%")),
            position = position_stack(vjust = 0.5))
churn_pie
```

Percentage Pie Chart

• we see that that the majority of customers didn't opt to lay off the services of the company.

```
graph1 <- ggplot(churn_data, aes(x=gender,fill=churn ))+
   geom_bar(color="white")
graph2 <- ggplot(churn_data, aes(x=senior_citizen,fill=churn))+
   geom_bar()
graph3 <- ggplot(churn_data, aes(x=dependents,fill=churn))+
   geom_bar()
graph4 <- ggplot(churn_data, aes(x=partner,fill=churn))+
   geom_bar()
graph2 (graph1,graph2,graph3,graph4,ncol=2)</pre>
```


- customer churn rate is higher within senior citizens than non-senior citizens
- customer churn rate is higher within clients who don't have dependents or partners than those who don't , most likely due to the financial conditions of these clients

```
graph5 <- ggplot(churn_data, aes(x=streaming_tv,fill=churn))+
    geom_bar()
graph6 <- ggplot(churn_data, aes(x=streaming_movies,fill=churn))+
    geom_bar()
graph7 <- ggplot(churn_data, aes(x=contract,fill=churn))+
    geom_bar()
graph8 <- ggplot(churn_data, aes(x=paperless_billing,fill=churn))+
    geom_bar()
grid.arrange(graph1,graph2,graph3,graph4,ncol=2)</pre>
```


- Streaming Services: Customers who use streaming services (e.g., TV, movies) are less likely to churn.
- Phone Services: Phone service alone does not significantly impact churn.

```
plot1 <- ggplot(churn_data, aes(x=payment_method,fill=churn))+
   geom_bar()+
   coord_flip()
plot4 <- ggplot(churn_data, aes(x=churn,fill=gender))+
   geom_bar()+
   coord_flip()
grid.arrange(plot1,plot4)</pre>
```


- Electronic Check: Customers using electronic checks have a higher churn rate.
- Automatic Payment: Encouraging automatic payment methods may reduce churn.

Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was

generated.

```
ggplot(data = churn_data, aes(x = churn,fill = internet_service)) +
    geom_bar(stat = "count",position = position_dodge()) +
    geom_text(stat = "count", aes(label = paste( formatC(..count..))),vjust = -0.5 , position = position
    ggtitle("Customer Churn by Internet Services") +
    theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5))

## Warning: The dot-dot notation ('..count..') was deprecated in ggplot2 3.4.0.
## i Please use 'after_stat(count)' instead.
## This warning is displayed once every 8 hours.
```


• clients who opted for the fiber optic service have the highest rate of churn within those who have internet service , indicating their dissatisfaction with the services provided by the company. Although the majority of these clients use this service.

```
ggplot(data = churn_data, aes(x = churn,fill = contract)) +
geom_bar(stat = "count",position = position_dodge())
```


- Contract: Month-to-month contracts have a significantly higher churn rate compared to one-year or two-year contracts.
- Contract Length: Encouraging longer contract commitments may reduce churn

5 - Distribution of numerical variables.

Average Tenure


```
churn_data %>%
  ggplot(aes(x = "", y = tenure, fill = churn)) +
  geom_boxplot() +
  theme_bw() +
  xlab("") +
  ylab("Tenure")
```



```
monthlyCharges_plot <- ggplot(churn_summary, aes(x = churn)) +
   geom_bar(aes(y = mean_monthlyCharges, fill = churn), stat = "identity", alpha = 0.6) +
   geom_text(aes(y = mean_monthlyCharges, label = paste(round(mean_monthlyCharges, 0))),
        size = 3.5, vjust = -0.5) +
   labs(title = "Average Monthly Charges") +
   theme_minimal()

monthlyCharges_plot</pre>
```


Calculate the mean tenure and monthly charges according to churn

```
library(gridExtra)
combined_plots <- grid.arrange(combined_plot, monthlyCharges_plot, ncol = 2)</pre>
```

- The average monthly charges for churn customers are more than no-churn customers.


```
g1 <- churn_data %>%
    ggplot(aes(x=monthly_charges,fill=churn ))+
    geom_histogram(color="red")
g2 <- churn_data %>%
    ggplot(aes(x=total_charges,fill=churn ))+
    geom_histogram(color="white")
g3 <- churn_data %>%
    ggplot(aes(x=tenure,fill=churn ))+
    geom_histogram(color="white")
grid.arrange(g1,g2,g3,ncol=2)

## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

- from the graphs we notice that :
 - Shorter tenure correlates with higher churn rates. New customers are more likely to leave.
 - Customers with longer tenure (e.g., more than 60 months) are loyal and less likely to churn.
 - Higher monthly charges are associated with higher churn rates.

6. the relationship between Churn and the numerical variables.

```
churn_data %>%
  ggplot(aes(x = "", y = tenure, fill = churn)) +
  geom_boxplot() +
  theme_bw() +
  xlab("") +
  ylab("Tenure")
```



```
churn_data %>%
  ggplot(aes(x = "", y = monthly_charges, fill = churn)) +
  geom_boxplot() +
  theme_bw() +
  xlab("") +
  ylab("Monthly Charges")
```



```
churn_data %>%
  ggplot(aes(x = "", y = total_charges, fill = churn)) +
  geom_boxplot() +
  theme_bw() +
  xlab("") +
  ylab("Total Charges")
```


Data Preprocessing

treating the target variables

```
churn_data <- churn_data %>% mutate(churn= as.factor(ifelse(churn=="Yes",1,0)))
head(churn_data)%>%
  gt() %>%
  gt_theme_excel()
```

gender	senior_citizen	partner	dependents	tenure	phone_service	multiple_lines	internet_service	online_
Female	No	Yes	No	1	No	No phone service	DSL	ľ
Male	No	No	No	34	Yes	No	DSL	Y
Male	No	No	No	2	Yes	No	DSL	Υ
Male	No	No	No	45	No	No phone service	DSL	Υ
Female	No	No	No	2	Yes	No	Fiber optic	1
Female	No	No	No	8	Yes	Yes	Fiber optic	1

Spliting the data

```
set.seed(123)
churn_split <-initial_split(churn_data,</pre>
                            prop = 0.8,
                            strata ="churn" )
churn_train <- training(churn_split)</pre>
churn_test <- testing(churn_split)</pre>
churn_split
## <Training/Testing/Total>
## <5625/1407/7032>
recipe
rec_churn <- recipe(churn~.,churn_train)</pre>
churn rec <- rec churn %>%
 step_normalize(all_numeric_predictors()) %>%
 step_dummy(all_nominal_predictors()) %>%
 prep()
 churn_rec
##
##
## -- Inputs
## Number of variables by role
## outcome:
## predictor: 19
##
## -- Training information
## Training data contained 5625 data points and no incomplete rows.
##
## -- Operations
## * Centering and scaling for: tenure and monthly_charges, ... | Trained
## * Dummy variables from: gender, senior_citizen, partner, ... | Trained
```

- baking the data in the recipe

```
churn_train_process <-bake(churn_rec,churn_train)
head(churn_train_process)%>%
  gt() %>%
  gt_theme_excel()
```

tenure	$monthly_charges$	$total_charges$	churn	${\rm gender_Male}$	senior_citizen_Yes	partner_Yes	dependent
-1.27844131	-1.1692918	-0.9943489	0	0	0	1	
0.06459603	-0.2662516	-0.1744290	0	1	0	0	
0.51227514	-0.7544265	-0.1959229	0	1	0	0	
-0.91215840	-1.1726240	-0.8744020	0	0	0	0	
-0.79006410	-0.4995092	-0.7485030	0	1	0	1	
1.04135046	1.1799455	1.4972878	0	1	0	1	

• setting the engine to:

##1- logistic regression

```
logic_specification <- logistic_reg() %>%
set_engine("glm") %>%
set_mode("classification")
```

• model training

```
logit_fit <- logic_specification %>%
fit(churn ~. , churn_train_process)
```

• baking the testing data

```
test_train_process <-bake(churn_rec,churn_test)
head(test_train_process)%>%
  gt() %>%
  gt_theme_excel()
```

$monthly_charges$	total_charges	churn	gender_Male	senior_citizen_Yes	partner_Yes	dependents
0.8050672	-0.1480191	0	1	0	0	
1.3282307	0.3354940	1	0	0	1	
-0.2929096	0.5303277	0	1	0	0	
-1.5325072	-0.8634236	0	1	0	0	
1.2915759	1.2129954	1	1	0	0	
-1.5041831	-0.9183377	0	1	0	1	
	0.8050672 1.3282307 -0.2929096 -1.5325072 1.2915759	$\begin{array}{ccc} 0.8050672 & -0.1480191 \\ 1.3282307 & 0.3354940 \\ -0.2929096 & 0.5303277 \\ -1.5325072 & -0.8634236 \\ 1.2915759 & 1.2129954 \\ \end{array}$	$\begin{array}{ccccccc} 0.8050672 & -0.1480191 & 0 \\ 1.3282307 & 0.3354940 & 1 \\ -0.2929096 & 0.5303277 & 0 \\ -1.5325072 & -0.8634236 & 0 \\ 1.2915759 & 1.2129954 & 1 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

• prediction

```
churn_pred <- predict(logit_fit, test_train_process)</pre>
    churn_pred
    ## # A tibble: 1,407 x 1
          .pred_class
    ##
          <fct>
    ##
       1 1
        2 1
    ##
        3 0
    ##
        4 0
    ##
    ##
       5 0
    ## 6 0
    ## 7 0
    ## 8 0
    ## 9 1
    ## 10 1
    ## # i 1,397 more rows
churn_test_proc_results <- test_train_process %>%
     dplyr::bind_cols(churn_pred)
churn_test_proc_results
## # A tibble: 1,407 x 32
       tenure monthly_charges total_charges churn gender_Male senior_citizen_Yes
##
##
                       <dbl>
                                    <dbl> <fct>
                                                    <dbl>
                                                                           <dbl>
## 1 -0.424
                                    -0.148 0
                       0.805
                                                            1
                                                                               0
##
   2 -0.180
                       1.33
                                     0.335 1
                                                            0
                                                                               0
## 3 1.20
                      -0.293
                                     0.530 0
                                                                               0
                                                            1
## 4 -0.668
                      -1.53
                                    -0.863 0
                                                                               0
## 5 0.675
                       1.29
                                     1.21 1
                                                                               0
                                                            1
## 6 -0.831
                       -1.50
                                    -0.9180
                                                           1
                                                                               0
## 7 -1.28
                      -1.49
                                    -0.999 0
                                                           1
                                                                               0
## 8 -1.28
                      -0.656
                                    -0.988 0
                                                           1
                                                                               1
## 9 0.0646
                       1.38
                                     0.557 1
                                                                               0
                                                            1
## 10 -0.871
                        1.10
                                    -0.520 1
                                                                               0
## # i 1,397 more rows
## # i 26 more variables: partner_Yes <dbl>, dependents_Yes <dbl>,
## #
      phone_service_Yes <dbl>, multiple_lines_No.phone.service <dbl>,
## #
      multiple_lines_Yes <dbl>, internet_service_Fiber.optic <dbl>,
## #
      internet_service_No <dbl>, online_security_No.internet.service <dbl>,
## #
      online_security_Yes <dbl>, online_backup_No.internet.service <dbl>,
## #
       online_backup_Yes <dbl>, device_protection_No.internet.service <dbl>, ...
  • evaluation of the model
yardstick::accuracy(churn_test_proc_results,churn,.pred_class)
## # A tibble: 1 x 3
##
     .metric .estimator .estimate
##
     <chr>
             <chr>
                            <dbl>
## 1 accuracy binary
                           0.807
```

```
##2- KNN(K-nearest neighbors)
```

• set the specification:

```
knn_spec <- nearest_neighbor() %>%
set_engine("kknn") %>%
set_mode("classification")
```

• set the model:

```
knn_fit <- knn_spec %>%
fit(churn ~. , churn_train_process)
```

• prediction:

```
knn_churn_pred <- predict(knn_fit, test_train_process)
knn_churn_pred</pre>
```

```
## # A tibble: 1,407 x 1
##
      .pred class
##
      <fct>
## 1 1
## 2 1
## 3 0
## 4 0
## 5 1
## 6 0
## 7 1
## 8 1
## 9 1
## 10 1
## # i 1,397 more rows
```

```
## # A tibble: 1,407 x 32
##
       tenure monthly_charges total_charges churn gender_Male senior_citizen_Yes
##
        <dbl>
                        <dbl>
                                      <dbl> <fct>
                                                        <dbl>
                                                                           <dbl>
                                     -0.148 0
## 1 -0.424
                        0.805
                                                                               0
                                                            1
## 2 -0.180
                                     0.335 1
                                                            0
                                                                               0
                       1.33
## 3 1.20
                       -0.293
                                      0.530 0
                                                                               0
                                                            1
## 4 -0.668
                       -1.53
                                     -0.863 0
                                                            1
                                                                               0
## 5 0.675
                                                                               0
                       1.29
                                      1.21 1
                                                            1
## 6 -0.831
                       -1.50
                                     -0.918 0
                                                            1
                                                                               0
## 7 -1.28
                       -1.49
                                     -0.999 0
                                                            1
                                                                               0
## 8 -1.28
                       -0.656
                                     -0.988 0
                                                            1
                                                                               1
## 9 0.0646
                                                                               0
                       1.38
                                     0.557 1
                                                            1
## 10 -0.871
                        1.10
                                     -0.520 1
                                                                               0
## # i 1,397 more rows
```

```
## # i 26 more variables: partner_Yes <dbl>, dependents_Yes <dbl>,
## # phone_service_Yes <dbl>, multiple_lines_No.phone.service <dbl>,
## # multiple_lines_Yes <dbl>, internet_service_Fiber.optic <dbl>,
## # internet_service_No <dbl>, online_security_No.internet.service <dbl>,
## # online_security_Yes <dbl>, online_backup_No.internet.service <dbl>,
## # online_backup_Yes <dbl>, device_protection_No.internet.service <dbl>, ...
```

• evaluation of the model

```
yardstick::accuracy(knn_churn_test_results,churn,.pred_class)
```

3. Decision Tree

```
decision_spec <- decision_tree() %>%
set_engine("rpart") %>%
set_mode("classification")
```

set the model:

training the model

```
decision_fit <- decision_spec %>%
  fit(churn ~. , churn_train_process)
```

prediction

```
decision_churn_pred <- predict(decision_fit, test_train_process)
head(decision_churn_pred)%>%
  gt() %>%
  gt_theme_excel()
```

$\ pred_class$
0
0
0
0
0
0

```
decision_churn_test_results <- test_train_process %>%
     dplyr::bind_cols(decision_churn_pred)
head(decision_churn_test_results)%>%
    gt() %>%
    gt_theme_excel()
```

tenure	monthly_charges	total_charges	churn	gender_Male	senior_citizen_Yes	partner_Yes	dependents
-0.4237812	0.8050672	-0.1480191	0	1	0	0	
-0.1795926	1.3282307	0.3354940	1	0	0	1	
1.2041429	-0.2929096	0.5303277	0	1	0	0	
-0.6679698	-1.5325072	-0.8634236	0	1	0	0	
0.6750675	1.2915759	1.2129954	1	1	0	0	
-0.8307622	-1.5041831	-0.9183377	0	1	0	1	

accuracy

```
yardstick::accuracy(decision_churn_test_results,churn,.pred_class)
```

4. Random Forest

setting the model

```
rand_forest_spec <- rand_forest() %>%
set_engine("ranger") %>%
set_mode("classification")
```

training the model

```
random_fit <- rand_forest_spec %>%
  fit(churn ~. , churn_train_process)
```

prediction

```
random_churn_pred <- predict(random_fit, test_train_process)</pre>
random_churn_pred
## # A tibble: 1,407 x 1
      .pred_class
##
      <fct>
##
  1 0
## 2 1
## 3 0
## 4 0
## 5.0
## 6 0
## 7 0
## 8 1
## 9 0
## 10 1
## # i 1,397 more rows
```

new_churn_data <- read_xlsx("C:\\Users\\Hp\\Desktop\\Machine Learning\\Customer Churn\\new_customers_da

the most accurate model is that of logical regresion with 0.8066809

6-new_customers_data

```
new_churn_data
## # A tibble: 50 x 20
##
      customerID gender SeniorCitizen Partner Dependents tenure PhoneService
##
      <chr>
                <chr>
                              <dbl> <chr>
                                             <chr>
                                                         <dbl> <chr>
                                   1 No
## 1 25795
                Male
                                             No
                                                            51 Yes
## 2 10860
                Male
                                   1 Yes
                                             Yes
                                                            61 No
## 3 86820
                Male
                                   0 Yes
                                                            57 Yes
                                             No
## 4 64886
                Female
                                   1 Yes
                                             Yes
                                                            51 Yes
## 5 16265
                Male
                                   1 Yes
                                             Yes
                                                            11 No
## 6 92386
                Female
                                   1 Yes
                                             No
                                                            38 No
## 7 47194
                Male
                                   0 Yes
                                                             1 Yes
                                             No
## 8 97498
                                                             2 Yes
                Female
                                   0 No
                                             No
## 9 54131
                Male
                                   0 Yes
                                             No
                                                            55 No
## 10 70263
                Female
                                   0 Yes
                                             No
                                                            58 No
## # i 40 more rows
## # i 13 more variables: MultipleLines <chr>, InternetService <chr>,
      OnlineSecurity <chr>, OnlineBackup <chr>, DeviceProtection <chr>,
      TechSupport <chr>, StreamingTV <chr>, StreamingMovies <chr>,
## #
      Contract <chr>, PaperlessBilling <chr>, PaymentMethod <chr>,
      MonthlyCharges <dbl>, TotalCharges <dbl>
```

taking a look at the data

glimpse(new_churn_data)

```
## Rows: 50
## Columns: 20
                                                                             <chr> "25795", "10860", "86820", "64886", "16265", "92386",~
## $ customerID
## $ gender
                                                                             <chr> "Male", "Male", "Female", "Male", "Female", "~
## $ SeniorCitizen
                                                                             <dbl> 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,~
                                                                             <chr> "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "No",~
## $ Partner
                                                                             <chr> "No", "Yes", "No", "Yes", "Yes", "No", "No
## $ Dependents
                                                                             <dbl> 51, 61, 57, 51, 11, 38, 1, 2, 55, 58, 1, 1, 53, 0, 18~
## $ tenure
## $ PhoneService
                                                                            <chr> "Yes", "No", "Yes", "Yes", "No", "No", "Yes", "Yes", ~
                                                                            <chr> "No", "Yes", "No phone service", "Yes", "Yes", "No", ~
## $ MultipleLines
## $ InternetService <chr> "DSL", "Fiber optic", "No", "DSL", "DS
                                                                             <chr> "No", "No internet service", "Yes", "Yes", "Yes", "No~
## $ OnlineSecurity
                                                                             <chr> "No", "No internet service", "No", "Yes", "No", "Yes"~
## $ OnlineBackup
## $ DeviceProtection <chr> "No", "No", "Yes", "No internet service", "No", "No",~
## $ TechSupport
                                                                             <chr> "No", "No", "No internet service", "Yes", "No interne~
                                                                             <chr> "No internet service", "No internet service", "No", "~
## $ StreamingTV
## $ StreamingMovies <chr> "Yes", "Yes", "No", "Yes", "No internet service", "No~
                                                                             <chr> "Two year", "Month-to-month", "Two year", "Two year", "
## $ Contract
## $ PaperlessBilling <chr> "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "~
                                                                             <chr> "Electronic check", "Electronic check", "Mailed check~
## $ PaymentMethod
## $ MonthlyCharges
                                                                             <dbl> 31.96, 19.71, 53.48, 77.54, 57.67, 62.22, 109.12, 53.~
## $ TotalCharges
                                                                             <dbl> 5459.98, 726.82, 7589.16, 7999.04, 547.59, 2417.82, 7~
```

summary(new churn data)

```
##
     customerID
                          gender
                                           SeniorCitizen
                                                            Partner
##
   Length:50
                       Length:50
                                                  :0.00
                                           Min.
                                                          Length:50
   Class : character
                       Class :character
                                           1st Qu.:0.00
                                                          Class : character
##
   Mode :character
                       Mode :character
                                           Median:0.00
                                                          Mode :character
##
                                           Mean
                                                  :0.42
##
                                           3rd Qu.:1.00
##
                                           Max.
                                                  :1.00
##
     Dependents
                                        PhoneService
                                                           MultipleLines
                           tenure
##
   Length:50
                       Min.
                             : 0.00
                                        Length:50
                                                           Length:50
                       1st Qu.:16.50
                                        Class : character
                                                           Class : character
##
   Class : character
##
   Mode :character
                       Median :38.00
                                        Mode :character
                                                           Mode : character
##
                       Mean
                              :36.58
##
                       3rd Qu.:56.75
##
                       Max.
                               :72.00
                                           OnlineBackup
##
   InternetService
                       OnlineSecurity
                                                              DeviceProtection
##
   Length:50
                       Length:50
                                           Length:50
                                                              Length:50
##
   Class :character
                       Class :character
                                           Class :character
                                                               Class : character
##
   Mode :character
                       Mode :character
                                           Mode :character
                                                              Mode :character
##
##
##
##
   TechSupport
                       StreamingTV
                                           StreamingMovies
                                                                 Contract
## Length:50
                       Length:50
                                           Length:50
                                                              Length:50
  Class : character
                       Class :character
                                           Class :character
                                                               Class : character
## Mode :character
                       Mode :character
                                           Mode :character
                                                              Mode : character
```

```
##
##
##
  PaperlessBilling PaymentMethod
                                       MonthlyCharges
                                                        TotalCharges
##
## Length:50
                     Length:50
                                       Min.
                                             : 19.71
                                                       Min.
                                                              : 192.2
## Class :character Class :character
                                       1st Qu.: 35.31
                                                       1st Qu.:2242.4
## Mode :character Mode :character
                                       Median : 54.17
                                                       Median :3961.3
                                                       Mean :3993.4
                                       Mean : 59.24
##
##
                                        3rd Qu.: 79.96
                                                       3rd Qu.:5577.1
##
                                       Max. :116.74
                                                       Max. :8567.9
```

cleaning the data

```
new_churn_data <- new_churn_data %>%
    select(-customerID) %>%
    mutate(SeniorCitizen = as.factor(ifelse(new_churn_data$SeniorCitizen==1, 'Yes', 'No'))) %>%
    clean_names()%>%
    mutate_if(is.character , as.factor) %>%
    na.omit()
head(new_churn_data)%>%
    gt() %>%
    gt_theme_excel()
```

gender	senior_citizen	partner	dependents	tenure	phone_service	multiple_lines	internet_service	online
Male	Yes	No	No	51	Yes	No	DSL	
Male	Yes	Yes	Yes	61	No	Yes	Fiber optic	No inte
Male	No	Yes	No	57	Yes	No phone service	No	
Female	Yes	Yes	Yes	51	Yes	Yes	DSL	
Male	Yes	Yes	Yes	11	No	Yes	DSL	
Female	Yes	Yes	No	38	No	No	DSL	

spliting the data

```
## <Training/Testing/Total>
## <40/10/50>
```

baking the data

```
new_churn_train_process <-bake(churn_rec,new_churn_train)
head(new_churn_train_process) %>%
  gt() %>%
  gt_theme_excel()
```

tenure	monthly_charges	total_charges	gender_Male	senior_citizen_Yes	partner_Yes	dependents_Yes
0.4308789	-0.6911137	-0.03487974	1	1	1	0
-0.9121584	0.5904702	0.23122992	1	0	0	1
0.2680865	-0.3358957	0.38790377	1	1	1	0
-0.5458755	-0.9786870	1.59544096	1	0	1	1
1.0006524	-0.3818808	2.33855162	1	0	1	0
1.4483315	-1.0469982	0.44216976	1	0	1	0

predictions

```
new_churn_pred <- predict(logit_fit, new_churn_train_process)

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from rank-deficient fit; attr(*, "non-estim") has doubtful cases

head(new_churn_pred)%>%
   gt() %>%
   gt() %>%
   gt_theme_excel()
```

results

```
new_churn_results <- new_churn_train_process %>%
    dplyr::bind_cols(new_churn_pred)
```