Machine Learning

Non-parametric Regression: k-NN Method and its variants. Bias-Variance trade-off for k-NN Regression. Mean (Absolute) Test Error.

Aleksandr Petiushko

ML Research

Content

• Non-parametric Regression

Content

- Non-parametric Regression
- 2 k-NN Regression: Mean (Absolute) Test Error

Content

- Non-parametric Regression
- & k-NN Regression: Mean (Absolute) Test Error
- Bias-Variance trade-off for k-NN Regression

2 / 13

• The main disadvantage of parametric models is that it is necessary to have a parametric model to describe the dependency

- The main disadvantage of parametric models is that it is necessary to have a parametric model to describe the dependency
- If it is impossible to select an adequate model, it makes sense to use non-parametric regression methods

A. Petiushko k-NN Regression 3 / 13

- The main disadvantage of parametric models is that it is necessary to have a parametric model to describe the dependency
- If it is impossible to select an adequate model, it makes sense to use non-parametric regression methods

Assumption

Close objects correspond to close answers

The simplest model

We approximate the desired dependence by a constant in some neighborhood

1https://en.wikipedia.org/wiki/Kernel_regression

The simplest model

We approximate the desired dependence by a constant in some neighborhood

Nadaraya-Watson kernel regression¹

If there are several objects from the training sample in the vicinity of the point, then it is reasonable to use the weighted average as a prediction of the algorithm

$$a(x) = \frac{\sum_{i} y_i \omega_i(x)}{\sum_{i} \omega_i(x)},$$

where $\omega_i(x) = K_h(x, x_i)$, a function K_h is called a **kernel** with smoothing window width h.

1https://en.wikipedia.org/wiki/Kernel_regression

A. Petiushko k-NN Regression 4 / 13

k-NN Regression: simplest prediction method

The simplest model: let us use $\omega_i(x) = \frac{1}{k}$ for the k-NN method.

k-NN Regression: simplest prediction method

The simplest model: let us use $\omega_i(x) = \frac{1}{k}$ for the k-NN method.

k-NN Regression prediction

Let us have for every x_0 k nearest neighbors (x_1, \ldots, x_k) with the ground truth labels (y_1, \ldots, y_k) . Then the Nadaraya-Watson kernel regression formula will transform into the following:

$$a(x_0) = \frac{1}{k} \sum_{i=1}^{k} y_i$$

A. Petiushko k-NN Regression 5

k-NN Regression: simplest prediction method

The simplest model: let us use $\omega_i(x) = \frac{1}{k}$ for the k-NN method.

k-NN Regression prediction

Let us have for every x_0 k nearest neighbors (x_1, \ldots, x_k) with the ground truth labels (y_1, \ldots, y_k) . Then the Nadaraya-Watson kernel regression formula will transform into the following:

$$a(x_0) = \frac{1}{k} \sum_{i=1}^k y_i$$

Note: It means we are just averaging the labels of k nearest neighbors.

Examples of more complicated Kernels

•
$$K_h(x,x_i) = K(\frac{||x-x_i||}{h})$$

²https://en.wikipedia.org/wiki/Kernel_(statistics)

A. Petiushko k-NN Regression 6 / 13

Examples of more complicated Kernels

- $K_h(x,x_i) = K(\frac{||x-x_i||}{h})$
- Typical Examples: ²

²https://en.wikipedia.org/wiki/Kernel_(statistics)

A. Petiushko k-NN Regression 6 / 13

Examples of more complicated Kernels

- $K_h(x,x_i) = K(\frac{||x-x_i||}{h})$
- Typical Examples: ²

²https://en.wikipedia.org/wiki/Kernel_(statistics)

A. Petiushko

k-NN Regression

• Suppose that we have L test points (x_1^t, \ldots, x_L^t) with the corresponding ground truth labels (y_1^t, \ldots, y_L^t)

- Suppose that we have L test points (x_1^t, \ldots, x_L^t) with the corresponding ground truth labels (y_1^t, \ldots, y_I^t)
- For every test point $x_j^t, j = 1, \dots, L$ our k-NN Regression algorithm returns k nearest points (x_1^j, \ldots, x_h^j) with the corresponding labels (y_1^j, \ldots, y_h^j)

- Suppose that we have L test points (x_1^t, \ldots, x_L^t) with the corresponding ground truth labels (y_1^t, \ldots, y_I^t)
- For every test point $x_i^t, j = 1, \dots, L$ our k-NN Regression algorithm returns k nearest points (x_1^j, \ldots, x_h^j) with the corresponding labels (y_1^j, \ldots, y_h^j)
- But how to calculate the mean test error in this case?

- Suppose that we have L test points (x_1^t,\ldots,x_L^t) with the corresponding ground truth labels (y_1^t,\ldots,y_L^t)
- For every test point $x_j^t, j = 1, ..., L$ our k-NN Regression algorithm returns k nearest points $(x_1^j, ..., x_k^j)$ with the corresponding labels $(y_1^j, ..., y_k^j)$
- But how to calculate the mean test error in this case?

k-NN Regression: Mean Test Error

• For each test point calculate the prediction of the algorithm: $a(x_j^t) = \frac{1}{k} \sum_{i=1}^k y_i^j$

A. Petiushko k-NN Regression 7

- Suppose that we have L test points (x_1^t, \ldots, x_L^t) with the corresponding ground truth labels (y_1^t, \ldots, y_L^t)
- For every test point $x_j^t, j=1,\ldots,L$ our k-NN Regression algorithm returns k nearest points (x_1^j,\ldots,x_k^j) with the corresponding labels (y_1^j,\ldots,y_k^j)
- But how to calculate the mean test error in this case?

k-NN Regression: Mean Test Error

- For each test point calculate the prediction of the algorithm: $a(x_j^t) = \frac{1}{k} \sum_{i=1}^k y_i^j$
- ② Calculate the average error: $Err_1(a) = \frac{1}{L} \sum_{j=1}^{L} |a(x_j^t) y_j^t|$

A. Petiushko k-NN Regression 7 /

- Suppose that we have L test points (x_1^t, \ldots, x_L^t) with the corresponding ground truth labels (y_1^t, \ldots, y_L^t)
- For every test point $x_j^t, j = 1, ..., L$ our k-NN Regression algorithm returns k nearest points $(x_1^j, ..., x_k^j)$ with the corresponding labels $(y_1^j, ..., y_k^j)$
- But how to calculate the mean test error in this case?

k-NN Regression: Mean Test Error

- For each test point calculate the prediction of the algorithm: $a(x_j^t) = \frac{1}{k} \sum_{i=1}^k y_i^j$
- ② Calculate the average error: $Err_1(a) = \frac{1}{L} \sum_{j=1}^{L} |a(x_j^t) y_j^t|$

Note: It means we are just averaging the absolute error for every point-wise prediction across the test set.

101481471471

A. Petiushko k-NN Regression 7 / 13

Reminder: bias-variance tradeoff

Definitions

Let $y = y(x) = f(x) + \varepsilon$ be the target dependence, where f(x) is the deterministic function, $\varepsilon \sim N(0, \sigma^2)$ and a(x) is the machine learning algorithm.

Reminder: bias-variance tradeoff

Definitions

Let $y = y(x) = f(x) + \varepsilon$ be the target dependence, where f(x) is the deterministic function, $\varepsilon \sim N(0, \sigma^2)$ and a(x) is the machine learning algorithm.

$$E(y-a)^{2} = \sigma^{2} + variance(a) + bias^{2}(f, a)$$

A. Petiushko k-NN Regression

Bias and Variance of k-NN Regression

Bias

$$bias^{2}(f, a) = (E(f(x_{0}) - a(x_{0})))^{2} = \left(f(x_{0}) - \frac{1}{k} \sum_{i=1}^{k} f(x_{i})\right)^{2}$$

Bias and Variance of k-NN Regression

Bias

$$bias^{2}(f, a) = (E(f(x_{0}) - a(x_{0})))^{2} = \left(f(x_{0}) - \frac{1}{k} \sum_{i=1}^{k} f(x_{i})\right)^{2}$$

Variance

$$Variance(a) = D\left(\frac{1}{k}\sum_{i=1}^{k}y(x_i)\right) = \frac{1}{k^2}D\left(\sum_{i=1}^{k}y(x_i)\right) =$$

$$= \frac{1}{k^2}D\left(\sum_{i=1}^{k}(f(x_i) + \varepsilon_i)\right) = \frac{1}{k^2}D\left(\sum_{i=1}^{k}f(x_i)\right) + \frac{1}{k^2}D\left(\sum_{i=1}^{k}\varepsilon_i\right) =$$

$$= 0 + \frac{1}{k^2}k\sigma^2 = \frac{\sigma^2}{k}$$

A. Petiushko k-NN Regression 9 / 13

$$Error(x_0) = E(a(x_0) - f(x_0))^2 = \left(f(x_0) - \frac{1}{k} \sum_{i=1}^k f(x_i)\right)^2 + \frac{\sigma^2}{k} + \sigma^2$$

$$Error(x_0) = E(a(x_0) - f(x_0))^2 = \left(f(x_0) - \frac{1}{k} \sum_{i=1}^k f(x_i)\right)^2 + \frac{\sigma^2}{k} + \sigma^2$$

 \bullet Higher k, lower variance

$$Error(x_0) = E(a(x_0) - f(x_0))^2 = \left(f(x_0) - \frac{1}{k} \sum_{i=1}^k f(x_i)\right)^2 + \frac{\sigma^2}{k} + \sigma^2$$

- Higher k, lower variance
- \bullet Higher k, higher bias

$$Error(x_0) = E(a(x_0) - f(x_0))^2 = \left(f(x_0) - \frac{1}{k} \sum_{i=1}^k f(x_i)\right)^2 + \frac{\sigma^2}{k} + \sigma^2$$

- Higher k, lower variance
- \bullet Higher k, higher bias

Note: Under "reasonable assumptions" the bias of the 1-NN estimator vanishes entirely as the size of the training set approaches infinity

A. Petiushko k-NN Regression 10 / 13

Mandatory external links to read

- Read the Introduction to K-Nearest Neighbor (kNN) algorithm for the Regression task
 - ▶ Main <u>source</u>, more thorough explanation, and rigorous algorithm <u>overview</u>.
 - ▶ A video covering a practical example.

• The main advantage of non-parametric regression is the absence of assumptions about the form of the dependence model,

A. Petiushko k-NN Regression 12 / 13

- The main advantage of non-parametric regression is the absence of assumptions about the form of the dependence model,
- The method has a large number of variations to customize,

A. Petiushko k-NN Regression 12 / 13

- The main advantage of non-parametric regression is the absence of assumptions about the form of the dependence model,
- The method has a large number of variations to customize,
 - ▶ Metric learning (e.g., l_* -metric variations),

- The main advantage of non-parametric regression is the absence of assumptions about the form of the dependence model,
- The method has a large number of variations to customize,
 - ▶ Metric learning (e.g., l_* -metric variations),
 - \triangleright Number of nearest neighbors k,

- The main advantage of non-parametric regression is the absence of assumptions about the form of the dependence model,
- The method has a large number of variations to customize,
 - ▶ Metric learning (e.g., l_* -metric variations),
 - \triangleright Number of nearest neighbors k,
 - ▶ Weights in the weighted version of the method,

- The main advantage of non-parametric regression is the absence of assumptions about the form of the dependence model,
- The method has a large number of variations to customize,
 - ▶ Metric learning (e.g., l_* -metric variations),
 - \triangleright Number of nearest neighbors k,
 - ▶ Weights in the weighted version of the method,
 - ► Smoothing window width;
- To compute the k-NN Regression Prediction we are averaging the nearest neighbors labels,

A. Petiushko k-NN Regression 12 / 13

- The main advantage of non-parametric regression is the absence of assumptions about the form of the dependence model,
- The method has a large number of variations to customize,
 - ▶ Metric learning (e.g., l_* -metric variations),
 - \triangleright Number of nearest neighbors k,
 - ▶ Weights in the weighted version of the method,
 - ► Smoothing window width;
- To compute the k-NN Regression Prediction we are averaging the nearest neighbors labels,
- To compute the k-NN Regression Mean (Absolute) Test Error we are averaging the absolute error for every point-wise prediction across the test set.

A. Petiushko k-NN Regression 12 / 13

Thank you!

