

Computational Complexity Theory

Lecture 6: Ladner's theorem (contd.);
Relativization

Indian Institute of Science

Recap: Class co-NP and EXP

Definition. A language $L \subseteq \{0,1\}^*$ is in co-NP if there's a *poly-time TM* M and a poly function psuch that

$$x \in L$$
 $\forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1$

Definition.

Recap: Diagonalization

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - 1. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.
 - Every string represents some TM, and every TM can be represented by <u>infinitely many</u> strings.

Recap: Time Hierarchy Theorem

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n). log f(n) = o(g(n)).
```

- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Recap: Ladner's theorem

- **Definition.** A language L in NP is NPintermediate if L is neither in P nor NPcomplete.
- Theorem. (Ladner) If $P \neq NP$ then there is an NP-intermediate language.

Proof. Let H: N N be a function.

Let $SAT_H = \{\Psi 0 1 : \Psi \in SAT \text{ and } |\Psi|\}$

=Hmy}ould be defined in such a way that SAT_H is NPintermediate

(assuming $P \neq NP$)

Recap: Properties of H

Theorem. There's a function H→ N N such that

1. H(m) is computable from m in O(m3) time

2. $SAT_H \in P$ $H(m) \leq C$ (a constant)

3. If $SAT_H \notin P$ then H(m) with m

Recap: Proof of Ladner's theorem

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - ightharpoonup On input ϕ , find $m = |\phi|$.
 - \geq Compute H(m)mand construct the string $\phi 0 1$
 - Check if 0 1 belongs to SAT_H length at most m + 1 + m^c

Recap: Proof of Ladner's theorem

```
P \neq NP
```

- Suppose SAT_H is NP-complete. Then Hom) with m.
- - \geq On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
 - \geq Compute H(m) and check if $k = m^{H(m)}$.
 - W.l.o.g. $n^c = |f(\phi)| \ge m^{2c}$ $\sqrt{n} \ge m$

Recap: Proof of Ladner's theorem

```
P \neq NP
```

- Suppose SAT_H is NP-complete. Then Hom) with m.
- - \geq On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
 - \geq Compute H(m) and check if $k = m^{H(m)}$.

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is ≥ m.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose length is < m (say, log m).

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is $\geq m$.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose length is < m (say, log m).
- Construction. H(m) is the smallest k < log log m s.t.
 - M_k decides membership of <u>all</u> length up to log m strings x in SAT_H within k.|x|^k time.
 - 2. If no such k exists then H(m) = log log m.

- Observation. The value of H(m) determines membership in SAT_H of strings whose length is ≥ m.
- Therefore, it is OK to define H(m) based on strings in SAT_H whose length is < m (say, log m).
- Homework. Prove that H(m) is computable from m in O(m³) time.

- Claim. If $SAT_H \in P$ then $H(m) \le C$ (a constant).
- Proof. There is a poly-time M that decides membership of every x in SAT_H within c.|x|^c time.

- ightharpoonup aim. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- Proof. There is a poly-time M that decides membership of every x in SAT_H within c.|x|c time.

- As M can be represented by infinitely many strings, there's an $\alpha \geq c$ s.t. M = M_{α} decides membership of every x in SAT_H within $\alpha . |x|^{\alpha}$ time.
- So, for every m satisfying $\alpha < \log \log m$, $H(m) \leq \alpha$.

- P. If $H(m) \leq C$ (a constant) then SAT_H
- Proof. There's a $k \le C$ s.t. H(m) = k for infinitely many m.

- P. If $H(m) \leq C$ (a constant) then SAT_H
- Proof. There's a $k \le C$ s.t. H(m) = k for infinitely many m.

• Pick any $x \in \{0,1\}^*$. Think of a large enough m s.t. $|x| \le \log m$ and H(m) = k.

- eaim. If $H(m) \leq C$ (a constant) then $SAT_H \in P$.
- Proof. There's a $k \le C$ s.t. H(m) = k for infinitely many m.

- Pick any $x \in \{0,1\}^*$. Think of a large enough m s.t. $|x| \le \log m$ and H(m) = k.
- This means x is correctly decided by M_k in $k.|x|^k$ time. So, M_k is a poly-time machine deciding SAT_H .

Integer factoring.

```
FACT = \{(N, U): \text{ there's a prime } \leq U \text{ dividing } N\}
```

• Claim. FACT \in NP \cap co-NP

So, FACT is NP-complete if and only if NP = co-NP.

Integer factoring.

```
FACT = \{(N, U): \text{ there's a prime } \leq U \text{ dividing } N\}
```

- Claim. FACT \in NP \cap co-NP
- Proof. FACT ∈ NP : Give p as a certificate.
 The verifier checks if p is prime (AKS test),
 p ≤ U and p divides N.

Integer factoring.

FACT = $\{(N, U): \text{ there's a prime } \leq U \text{ dividing } N\}$

- Claim. FACT ∈ NP ∩ co-NP
- Proof. FACT ∈ NP : Give complete prime factorization of N as a certificate. The verifier checks if none of the prime factors is ≤ U.

Integer factoring.

```
FACT = \{(N, U): \text{ there's a prime } \leq U \text{ dividing } N\}
```

• Factoring algorithm. Dixon's randomized algorithm factors an n-bit number in $exp(O(\sqrt{n} \log n))$ time.

Power & limits of diagonalization

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using</u> only the two features of diagonalization.

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using</u> only the two features of diagonalization.

• Definition: Let L ⊆ {0,1}* be a language. An oracle TM M^L is a TM with a special query tape and three special states q_{query}, q_{yes} and q_{no} such that

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only the</u> two features of diagonalization.
- Definition: Let $L \subseteq \{0,1\}^*$ be a language. An oracle TM M^{\perp} is a TM with a special query tape and three special states q_{query} , q_{yes} and q_{no} such that whenever the machine enters the q_{query} state, it immediately transits to q_{yes} or q_{no} depending on whether the string in the query tape belongs to L. (M^{\perp} has oracle access to L)

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using</u> only the two features of diagonalization.

 Think of physical realization of M^L as a device with access to a subroutine that decides L. We don't count the time taken by the subrouting query

Decider for L

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.

- Think of physical realization of M^L as a device with access to a subroutine that decides L.
 We don't count the time taken by the subroutine.
- The transition table of M^{\perp} doesn't have any rule of the kind (q_{query}, b) (q, c, L/R).

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.
- Think of physical realization of M^L as a device with access to a subroutine that decides L. We don't count the time taken by the subroutine.
- We can define a nondeterministic Oracle TM similarly.

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only the</u> two features of diagonalization.
- Important note: Oracle TMs (deterministic/nondeterministic) have the same two features used in diagonalization: For any fixed L ⊆ {0,1}*,
- 1. There's an efficient universal TM with oracle access to L,
 - 2. Every M^L has infinitely many representations.

Relativization

Complexity classes using oracles

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.

• Definition: Let L ⊆ {0,1}* be a language. Complexity classes PL, NPL and EXPL are defined just as P, NP and EXP respectively, but with TMs replaced by oracle TMs with oracle access to L in the definitions of P, NP and EXP respectively.

Complexity classes using oracles

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.

• Definition: Let L ⊆ {0,1}* be a language. Complexity classes PL, NPL and EXPL are defined just as P, NP and EXP respectively, but with TMs replaced by oracle TMs with oracle access to L in the definitions of P, NP and EXP respectively.
SAT ∈ PSAT

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.

- Observation: Let $L \subseteq \{0,1\}^*$ be an arbitrarily fixed language. Owing to the 'Important note', the proof of $P \neq EXP$ can be easily adapted to prove $P^{\perp} \neq EXP^{\perp}$ by working with TMs with oracle access to L.
- We say that the $P \neq EXP$ result <u>relativizes</u>.

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using</u> only the two features of diagonalization.

Observation: Let L ⊆ {0,1}* be an arbitrarily fixed language. Owing to the 'Important note', any proof/result that uses only the two features of diagonalization relativizes.

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.

- Is is true that
- either $P_{\perp} = NP_{\perp}$ for every $L \subseteq \{0,1\}^*$,
- or $P^{\perp} \neq NP^{\perp}$ for every $L \subseteq \{0,1\}^*$?

Theorem (Baker-Gill-Solovay): The answer is No. Any proof of P = NP or $P \neq NP$ must not relativize.

- Like in the proof of $P \neq EXP$, can we use diagonalization to show $P \neq NP$?
- The answer is No, if one insists on <u>using only</u> the two features of diagonalization.

- Is is true that
- either $P_{\perp} = NP_{\perp}$ for every $L \subseteq \{0,1\}^*$,
- or $P \neq NP$ for every $L \subseteq \{0,1\}$ *?

Theorem (Baker-Gill-Solovay): The answer is No. Any proof of P = NP or $P \neq NP$ must not relativize.

- Theorem: There exist languages A and B such that PA = NPA but $PB \neq NPB$.
- Proof: Using diagonalization!

- Theorem: There exist languages A and B such that PA = NPA but $PB \neq NPB$.
- Proof: Let $A = \{(M, x, 1^m): M \text{ accepts } x \text{ in } 2^m \text{ steps}\}.$
- A is an EXP-complete language under polytime Karp reduction.

- Then, $P^A = EXP$.
- Also, NPA = EXP. Hence PA = NPA.

- Theorem: There exist languages A and B such that PA = NPA but $PB \neq NPB$.
- Proof: Let $A = \{(M, x, 1^m): M \text{ accepts } x \text{ in } 2^m \text{ steps}\}.$
- A is an EXP-complete language under polytime Karp reduction.

- Then, $P^A = EXP$.
- Also, NPA = EXP. HemsenPtexp ≥ Ptexp ≥ P

- Theorem: There exist languages A and B such that $P^A = NP^A$ but $P^B \neq NP^B$.
- Proof: For any language B let $L_B = \{1^n : \text{there's a string of length in B}\}.$
- Observe, $L_B \in NP^B$ for any B. (Guess the string, check if it has length n, and ask oracle B to verify membership.)

- Theorem: There exist languages A and B such that PA = NPA but $PB \neq NPB$.
- Proof: For any language B let $L_B = \{1^n : \text{there's a string of length in B}\}.$
- Observe, $L_B \in NP^B$ for any B.

• We'll construct B (using diagonalization) in such a way that $L_B \notin P_B$, implying $P_B \neq NP_B$.