Ø	multiply by 5 - x10 ÷ 2
	25 - ×100 - 4
	45 - X 90 - Z
	75 - x 300 -4
	225 - × 900 ÷ 4
	275 - × (100 ÷ 4
	125 - x 500 - 4
	MOUTE OIL OF CONTRACT OF THE OFFICE O
35	
	eg 777×11 = 8547 (775·11 = \$ 54 7)
ø	multiply 7 nos ~ same 1st figures & sum of 2nd figures = 10
	eg 42 x 48 = (4x5) (2xxx) = 2016 (5 fr. 1 no. up).
2	multiply ? nos. w 1st figures =10; last figures are same
	eg.44 x64 = (4x6+4) (4x4) = 286
	(add O B4 UNF) digit if multiplicates of last figures < 10)
	10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10
•	multiply 4 nos. & let nos. = 10, 2nd nos. are same
	$eg \ 46 \times 55 = (4 \times 5 + 5) (6 \times 5) = 2530$
	(add 0 B4 NNA digit if multiplicath <10)
œ	multiplys nos. just over 100
	eq. $(08 \times 109 = (108+9))(9\times8) = 11772$
	9
ь	(X+Y)8=8(8 X8 + 8C7 X7Y) + 8(6 X6Y2 +8(5 X5Y3+8(1XY7+8(0Y

	frime NOS
ø	All prime nos > 2 are odd.
⊕	Defn; tre integer # has 2 diff tre divisors: 1 & itself.
6	Ois an integer & pulme no.; I is not a prime no.
ø	If N is a no. such H = (am)(bn)(cp) _ where a,b,c are prime nos
	no. of divisors of N inc $N = (M+1)(p+1)$
	sumof " " = (am+1-1) x (bn+1-1) x (cp+1-1)
	$(a-1) \qquad (b-1) \qquad (c-1) \qquad \cdots$
	······································
	······································
	Percentages
ø	No. 1×50 then $1 \times 50 \rightarrow \text{Net } \Delta = 1 + \frac{x^2}{100} > 50$
	No. $\uparrow \times 90$ then $\downarrow y90 \longrightarrow \text{Net} \ \Delta = \uparrow \left(x-y-\frac{xy}{100} \right) 90$ if the
	$\frac{1}{\sqrt{1 + \sqrt{2}}}$
	Horder of $1/V$ is Δed , Net $\Delta = 0$ (result unaffected)
	No. 1×90 then 1×90 , Net $\Delta = 1 \times 100$
	100 100 1100 , NOT ALL 1 (XTYT 100)0
	· · · · · · · · · · · · · · · · · · ·
•	
	······································
	······································

	OF
P1 (X1, Y1); P2 (X2) Y2); P3 (X3, Y3)	
Dist 7. $P_1 & P_2 = \sqrt{(X_1 - Y_2)^2 + (Y_1 - Y_2)^2}$	
co-ods of pt. aviding line segment PIPZ in vatio V/s is	*************
$r \times_1 + s \times_1 \qquad r \times_2 + s \times_4$	
rts / rtc	
when r=S, mapt of line PIP2 has co-ods: $\frac{(x_2+x_1)}{2}$, $\frac{(y_2+y_1)}{2}$	
slope m of line $P_1P_2 = \frac{(Y_2 - Y_1)}{(X_2 - X_1)}$	
2 non-vertical lines are parallel if their slopes are parallel .ie mi=r	 γι ₂
" " " " perpendicular " " " have product of -1=	
Aline ic a bisector of another line if it cuts it at 90° & Into 2 equal le	nottus
Line Y=X acts as a mirror images go (X, Y) & (Y, X) & line is perpen	
Avea of $\triangle P_1P_2P_3 = \frac{1}{2} \left[\times_1 (Y_2 - Y_3) + \times_2 (Y_3 - Y_1) + \times_3 (Y_1 - Y_2) \right] $	
Dist of P, (X,Y) from line ax+by+C=O is given by:	
d = [ax, + by, + c]	····
$\sqrt{a^2+b^2}$	
· · · · · · · · · · · · · · · · · · ·	
supe=0	
Y=0	
stope = WAMA= 99012	
X=0	
······································	

Distance	2/speed/	time				
same at	rection: K	ey pt whe	en 1 over	akes orner	: same d	ist wavelled
opp. do	rection: to	otal dist	travelled	= sum of iv	ndv drst av	ravelled.
(both cas	ses apply to	overtakil	ng)			
· vound to	ip: dist to	& fro av	e equal.			
ovejaniše	e data in	boxes 1	oy Dis	T to vows	s represent	ejdo Rvom F
	S	•	T		D	
G	13		X		12 ×	
m	36		7-Y3		36 (x-Y3	•>
			36 (x - Y3		***************************************	
eg. G travi	els at 12mp	n. Mleav	es 20 mil	i later & 7	ravels at	36 MPh
	at dist woul					

Time tares	n by train o	f 0 m to	pacs pole =	time takol	n to travel	l ma
	_					
ivine wicev	n by train of	KM40 pa	ss object i	om= live 1	2110201918 1101	ver (eto)
2 hadies	mov9 (i) Same	o ANOITY	at 11 MIC 2	VIMIC = :rala	NP oppod-	(U-V) m/c
				· · · · · · · · · · · · · · · · · · ·		
	u 11 opp	Ιζ (<i>j jj jj</i>	, 11	11 = (utv) m(s
a 1-0-1/05	A		Q +			
	ABB		<i>r</i> ·			
• •	1: time take					
same dire	ectic: time tai	ken for on	ertaking:	= (a+b)(u-	v) sec.	
*		,			•	
	ar at pts +				s each other	r, After
	ake a sec s			B&A.		
A(c 80e	red: B's spa	eed = ,	JB: NA			
	****** *************************	1				
		***************************************	- *************************************			

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	Work & Time	· · · · · · · · · · · · · · · · · · ·				
9	Pipe A canfi	ll a tank iù z n	vs & Pipe B empty	it in y ws. If worn pipes		
	are open, to	unic will be filled	in ( <del>ky)</del> hrs			
•			. but due to reak, d			
	Time talcer	n by leak to empt	y astern = tyxs l	IrC		
	Dilution / n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······································			
	and the second s	ing production to the section of the behavior of the section of th		······································		
SP	(701) (amt	1) + (702)(av	$ut_z$ ) = $90_T$ (amt 1	$L + amt_2$		
ø		ame x	20	= -total		
	1	<b>5</b> 0	(0	500		
	2	X	30	30x		
	mixture.	2450	20	20 (X+SO)		
		.'. 500 +	302 = 20(x+50	>)		
ø	( Diff /. Wea	ker & desired )(an	1tw) = (diff 1. strong	yev & desired Xamts)		
	A: QUANTE	t Di admino				
8	_	J Ni; streng				
		N2 , (VI)		)		
	Mean swength $V_m = (V_1N_1 + V_2N_2)/(N_1+N_2)$ $\frac{N_1}{N_2} = (V_2-V_m)/(V_m-V_1)$					
				$m-V_1$ )( $V_3-V_m$ );( $V_2-V_m$ )		
				(Vm-V		
o	Vessel contain	SA to ETINN M 21	B. X UNITS are taken	1 out & replaced by		
	i	only. This is don				
	.; Awt	of A 18ft / Amt of a	A = (1 - 7)	<u>(n</u> )		
				·····		
•				n out & replaced by		
		only. This is done	- 10			
	Am-	t of A left = M	LI-mJ			

# **Squares and Cubes**

	Number (x)	Square ( x ² )	Cube $(x^3)$	
- 22 2×11	1	1	1	NZ = 1.4
• T= 22 = 2×11 =	2	4	8	NZ = 1.4 N3 = 1.7
` '	2 3	9	27	N3 = ( +
	4	16	64	
	4 5	25	125	
	6	36	216	
	7	49	_	
	8	64	-	
	9	81	-	
	10	100	-	
	11	121	<u>.</u>	
	12	. 144	-	
	13	169	_	
	14	196	-	
	15	225	-	
	16	256	-	
	17	289		
	18	324		
	19	361		
	21	441		
	22	484		
	23	529		
	24	576		
	25	625		
	30	900.		

## Fractions and Percentage:

i centuge.		
Fraction	Decimal	Percentage
1/2	0.5	50
1/3	0.33	33 1/3
2/3	0.66	66 2/3
1/4	0.25	25
3/4	0.75	75
1/5	0.2	20
2/5	0.4	40
3/5	0.6	60
4/5	0.8	80
1/6	0.166	16 2/3
5/6	0.833	83 2 / 3
1/8	0.125	121/2
3/8	0.375	37 1 / 2
5/8	0.625	62 1 / 2
718	0.875	871/2
49	111.0	( )

-	
<b>T</b>	$ X-3  \Rightarrow  X-3  = X-3 \text{ when } x > 3$
	= -(x-3) when $x < 3$
	Can also turnic of it as distance of x from 3.
-	
	x+1 + x-3 =6 - 4 possible supparios. Took at critical Pts.
	critical pts are -1 & 3 D D D D D D CENAVIOL
٠.	3
	2(x=3)
	when $\times < -1$ , $(x+1)$ is $-ve$ :. $-(x+1) - (x-3) = 6$ ; $e \times = -2$
	well t x-Z is Z-1
	when $-1 < x < 3$ , $(x+1)$ is the, $(x-3)$ is the
	(x+1)-(x-3)=6 in $(x-3)=6$ in $(x-3)=6$
	when x>3, (x+1) is the, (x-3) the (x+1) +(x-3) =6
	$\therefore x = 4$ evec $++ x = 4x$ is $> 3$
,	
	RULES
	1) cannot multiply / avride by avanable undess you know è sign.
	2) cannot square root/ square both sides ie x>y \$x2>xy2
	3) (X+Y) < (X1+1Y)
	······································
	· ····································
	······································
	······································

ø	Calculating value of expression "5x+64" us value of unichowns
	X&Y in 5x +6Y.
ø	Backsolving: start & (E) & work to (A) for choices & variables
	For anc. in more concrete values, start with (c) then decide it ans shid be
	vigger ie (D) or (E), or smaller ie (A) or (B).
ø	Picks nos: try all possible choices: the, -ve, o, fractions.
	-2, -1, -0.5, 0, 0.5, 1, 2.
۵	purchase price + mict value
0	12mh to 12 noon does not mention days in between - assumpts 1
46	$x_5=a\lambda_5$ + $x_5>\lambda_5$ note must if $x=\lambda=0$
	······································
	······································

Н	ighest power of 6 H divides 20! completely.
A)	Find prime factors of 6 ie 2×3.
B)	consider largest prime factor lè 3
c)	$\frac{20}{3} = 6$ $\frac{20}{9} = 2$
	: 88 completely divides 20
OR	
	$= 3', 3' \times 2, 3^2, 3 \times 4, 3 \times 5, 3^2 \times 2.$ count \( \tilde{e} \) no. of 3's = 8
	68 complétely anicles 20.
	······································

### **COUNTING, PERMUTATIONS AND COMBINATIONS**

### **MULTIPLICATION PRINCIPLE**

Consider the 3 letter words that can be made from the letters WORD if no letter is repeated. These can be listed by means of a tree diagram.

There are:

4 ways of choosing the 1st letter 3 ways of choosing the 2nd letter 2 ways of choosing the 3rd letter number of words =  $4 \times 3 \times 2 = 24$ 

This is an illustration of the *multiplication principle* ie. if several operations are carried out in a certain order, then the number of ways of performing all the operations is the product of the numbers of ways of performing each operation. It ways to order a set of objects.

The principle is equivalent to filling in pigeonholes:



Note: 1st operation should finish 184 2nd operation starts

### **ADDITION PRINCIPLE**

Consider the 3 letter words starting <u>or</u> finishing with O that can be made from the letters WORD if no letter is repeated. Now words starting or finishing with O are *mutually exclusive* ie. they do not overlap. Therefore we can find the number starting with O and the number finishing with O and add the two numbers.

## starting with O

1st letter 2nd letter 3rd letter

1 x 3 x 2 = 6

#### finishing with O

1st letter 2nd letter 3rd letter

3 x 2 x 1 = 6

number of words starting or finishing with O = 6 + 6 = 12

This is an illustration of the *addition principle* ie. if two operations are mutually exclusive (ie. they do not overlap), then the number of ways of performing one operation <u>or</u> the other is the sum of the numbers of ways of performing each operation.

#### **FACTORIAL NOTATION**

In applying the multiplication principle, factorial notation can be useful eg. the number of 6 letter words that can be made from the letters FACTOR is  $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$ .

Note: 0! = 1! = 1 $4! = 4 \times 3 \times 2 \times 1$ 

### "TOGETHER" ARRANGEMENTS

In this type of problem, we need to count arrangements where some of the objects must remain together. The multiplication principle applies and we use a "treat as one" technique.

Eg. 3 science, 4 mathematics and 5 history books are arranged on a shelf. How many arrangements are possible if the books from each subject are to be together?

treat the books for each subject as one book: number of arrangements = 3!

Note: 1st operate sould fourth

number of ways of arranging the science books = 3! number of ways of arranging the mathematics books = 4! number of ways of arranging the history books = 5!

total number of arrangements = 3! x 3! x 4! x 5! = 103680

### ARRANGEMENTS INVOLVING IDENTICAL OBJECTS

Consider the number of arrangements of the letters EMPLOYEE. If all 8 letters were different, then the number of arrangements would be 8! but this number involves counting arrangements more than once. Eg. The 8! arrangements includes 6 versions of EEEMPLOY:

$$E_1E_2E_3$$
 MPLOY  
 $E_1E_3E_2$  MPLOY  
 $E_2E_1E_3$  MPLOY  
 $E_2E_3E_1$  MPLOY  
 $E_3E_1E_2$  MPLOY

 $E_3 E_1 E_2 \text{ MPLOY}$ 

Similarly every arrangement occurs 6 times in the total of 8! (6 is the number of arrangements of the 3 E's ie. 3!).

number of distinct arrangements =  $\frac{8!}{3!}$  = 6720

This idea can be extended to problems where more than one type of object is repeated: number of distinct arrangements of the letters MISSISSIPPI =  $\frac{11!}{4!4!2!}$  = 34650

### **CIRCULAR ARRANGEMENTS**

Consider the different arrangements when 4 people sit in a circle. There are 3! arrangements (not 4! as might be expected) as it does not matter where the first object is placed.

In general, n objects can be arranged in a circle in (n-1)! ways. (when documed and a subdocument are diff)

if sum  $e = \frac{(n-1)!}{2}$ 



#### PERMUTATIONS AND COMBINATIONS

Choosing objects from a collection of different objects can be done in several ways. Two particular ways are given the names permutation and combination.

Choosing r objects without repetition from n different objects such that order matters is called a permutation and the number of such permutations is denoted by  ${}^{n}P_{r}$ .

Choosing r objects without repetition from n different objects such that order does not matter is called a *combination* and the number of such combinations is denoted by  ${}^{n}C_{r}$ .

#### Example of permutations:

How many ways can a committee of 3 be selected from 7 people A,B,C,D,E,F,G so that there is a president, a vice-president and a secretary? Using the multiplication principle:

NB. Permutation problems are usually best done using the multiplication principle rather than permutation notation.

#### Example of combinations:

How many ways can a committee of 3 be selected from 7 people A,B,C,D,E,F,G so that each member of the committee is equal? The number of permutations 210 is too large because every combination occurs 6 times in the 210 permutations. Eg. The following 6 permutations each give rise to the same combination (6 is the number of arrangements of 3 objects ie. 3!):

ABC ACB BAC BCA CAB CBA
$$\therefore {}^{7}C_{3} = \frac{7 \times 6 \times 5}{3!} = \frac{7!}{3!4!} \text{ and in general } {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

#### SPECIAL COMBINATIONS

Choosing 7 from 7 so that order does not matter can only be done 1 way:

$$\therefore$$
  ${}^{7}C_{7} = 1$  and in general  ${}^{n}C_{n} = 1$ 

Choosing 0 from 7 so that order does not matter can only be done 1 way:

$$C_0 = 1$$
 and in general  ${}^nC_0 = 1$ 

This leads to the conclusion that 0! must be given the value 1 because  ${}^{7}C_{7} = \frac{7!}{7!0!} = 1$ .

Sum of vembination of a distinct tunings =  $2^n$  eg. Door can be opened to code of 5 buttons 1/2/3,4/5. code can be press4 (button, or 2,3,4,5. How many codes are there? = 25-1 (1 because not press4 any, 360=1)

#### COMBINATIONS - INCLUSIONS / EXCLUSIONS

Consider the number of ways a committee of 3 can be selected from 7 people A,B,C,D,E,F,G (order does not matter) if:

B must be included (select 2 from A,C,D,E,F,G)

D must be excluded (select 3 from A,B,C,E,F,G)

C and E cannot be chosen together

 ${}^{6}C_{3}$   ${}^{5}C_{3}+{}^{5}C_{2}+{}^{5}C_{2}$ 

What is the justification for the last answer?

### CHOOSING SETS OF OBJECTS WITH DISTINCT SUBSETS

In these problems, find the number of ways of choosing each subset and then use the multiplication principle. Eg. 6 people are chosen (order does not matter) from 5 Queenslanders, 4 Tasmanians and 3 Victorians:

#### 2 from each state are chosen:

number of ways of choosing 2 Queenslanders =  5C_2 

number of ways of choosing 2 Tasmanians =  4C_2 

number of ways of choosing 2 Victorians =  3C_2 

total number of ways =  ${}^5C_2 \times {}^4C_2 \times {}^3C_2$ 

#### at least 3 Queenslanders are chosen:

number of ways of choosing 3 Queenslanders and 3 others =  ${}^5C_3 \times {}^7C_3$ 

number of ways of choosing 4 Queenslanders and 2 others =  ${}^5C_4 \times {}^7C_2$ 

number of ways of choosing 5 Queenslanders and 1 others =  ${}^5C_5 \times {}^7C_1$ 

total number of ways =  ${}^{5}C_{3} \times {}^{7}C_{3} + {}^{5}C_{4} \times {}^{7}C_{2} + {}^{5}C_{5} \times {}^{7}C_{1}$ 

#### at least one Queenslander is chosen:

number of ways of choosing without restrictions =  ${}^{12}C_6$ 

number of ways of choosing with no Queenslanders =  ${}^{7}C_{6}$ 

total number of ways =  ${}^{12}C_6 - {}^7C_6$ 

#### PASCAL'S TRIANGLE

Suppose that you start from the top of the triangular arrangement of spaces shown on the attached sheet.

In each space, write the number of shortest possible routes to that space. These numbers form Pascal's triangle.

Can you see the pattern which takes you from one row to the next? Justify this pattern in terms of the shortest route problem.



The shortest route problem can be used to explain why each row can be written as combinations eg. the last row is:

$8C_8$
  8C_7   8C_6   8C_5   8C_4   8C_3   8C_2   8C_1   8C_0 

Each number in Pascal's triangle (except those on the outside) can be found by adding the pair of numbers immediately above. This recurrence relationship can be written as:

$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

As well as justifying this recurrence relationship in terms of the shortest route problem, it can be derived in other ways:

- algebraically by writing  ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$  etc.
- by considering the selection of r objects from two collections collection A containing n objects and collection B containing one object.

Consider sloping rows of Pascal's triangle. In turn, they give:

- ones {1,1,1,1,1,...}
- natural numbers {1,2,3,4,5,...}
- triangle numbers {1,3,6,10,15,...}
- tetrahedral numbers {1,4,10,20,35,...}

What is the connection between natural numbers, triangle numbers and tetrahedral numbers? How do triangle numbers and tetrahedral numbers get their names? What is the n th triangle number and the n th tetrahedral number as a combination? Write these combinations as algebraic expressions in n.

#### **BINOMIAL THEOREM**

Consider the binomial expansion:

The number of  $x^5y^3$  in the expansion is the same as the number of ways of selecting 5 x's from the 8 available ie.  8C_5 . This leads to the *binomial theorem* for binomial expansions  $(x+y)^n$  where n is a positive integer. The theorem gives the coefficients as combinations. Eg. for n=8:

$$(x + y)^{8}$$

$$= {}^{8}C_{8} x^{8} + {}^{8}C_{7} x^{7} y + {}^{8}C_{6} x^{6} y^{2} + {}^{8}C_{5} x^{5} y^{3} + {}^{8}C_{4} x^{4} y^{4} + {}^{8}C_{3} x^{3} y^{5} + {}^{8}C_{2} x^{2} y^{6} + {}^{8}C_{1} x y^{7} + {}^{8}C_{0} y^{8}$$

$$= x^{8} + 8x^{7} y + 28x^{6} y^{2} + 56x^{5} y^{3} + 70x^{4} y^{4} + 56x^{3} y^{5} + 28x^{2} y^{6} + 8x y^{7} + y^{8}$$

From the earlier work on Pascal's triangle, we can also say that the coefficients of a binomial expansion are given by the appropriate row of Pascal's triangle. Substituting x = y = 1 in the binomial theorem shows that the sums of the rows of Pascal's triangle are powers of 2.

Probability can be studied in conjunction with set the particularly useful in analysis.

The probability of a certain event occurring, for exam The probability of a different event occurring can be Inde . events P(AAB) = P(A)P(B)

$$P(A) + P(B) - P(A \land B) = P(A \lor B)$$

 $P(A \cap B)$  represents the probability of A AND B occur probability of A OR B occurring.



## Mutual Exclusive Events - not independent

Events A and B are mutually exclusive if they have no events in common. In other words, if A occurs B cannot occur and vice-versa. On a Venn Diagram, this would mean that the circles representing events A and B would not overlap.

If, for example, we are asked to pick a card from a pack of 52, the probability that the card is red is ½. The probability that the card is a club is ¼. However, if the card is red it can't be a club. These events are therefore mutually exclusive.

If two events are mutually exclusive,  $P(A \cap B) = 0$ , so

$$P(A) + P(B) = P(A \cup B) : Add(A) on kull$$

## Independent Events - Not mutually exhibite

Two events are independent if the first one does not influence the second. For example, if a bag contains 2 blue balls and 2 red balls and two balls are selected randomly, the events are:

- a) independent if the first ball is replaced after being selected
- b) not independent if the first ball is removed without being replaced. In this instance, there are only three balls remaining in the bag so the probabilities of selecting the various colours have changed.

Two events are independent if (and only if):

 $P(A \cap B) = P(A)P(B)$ 

This is known as the multiplication law.

## **Conditional Probability**

Conditional probability is the probability of an event occurring, given that another event has occurred. For example, the probability of John doing mathematics at A-Level, given that he is doing physics may be quite high. P(A|B) means the probability of A occurring, given that B has occurred. For two events A and B,

$$P(A \land B) = P(A|B)P(B)$$

and similarly 
$$P(A \cap B) = P(B|A)P(A)$$
.

If two events are mutually exclusive, then P(A|B) = 0.

For independent events, 
$$P(B|A) = P(B)$$
  
 $P(A|B) = P(A)$ 

Bayers Theorem => 
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$



Avea =  $\pi r^2$ 

- Circumference = 2TTV

(X2, Y2)

-tangent

- Eq. of circle:  $(X-X_1)^2 + (Y-Y_1)^2 = r^2$  given  $(X_1, Y_1)$  incentre & r:  $(X-X_3)(X-X_2) + (Y-Y_3)(Y-Y_2) = 0$  given line  $(X_2, Y_2) - (X_3)$ 

- Eqn of tangent:  $X \cdot X_4 + Y \cdot Y_4 + r^2$  given and  $x^2 + y^2 = r^2$ - condition for y = mx + c to be tangent to circle  $x^2 + y^2 = r^2$  is:  $c^2 = r^2(1+m^2)$ 

- 2 airdes will touch / intersect each other if distance it centres a is such the

R-r ≤ d ≤ R+r where R & r are € 2 vadii

Avea chiele 1 =  $\left(\frac{\text{Radius}_1}{\text{Radius}_2}\right)^2$ 

- Avc length =  $\left(\frac{x}{360}\right) 2\pi r$ 

Avea of sector =  $(\frac{\times}{360}) \pi r^2$ 

- Equal chords are equidistant from centre



-civile's diameter = square's diagonal

- if sin O such I side is diameter, siste



Radius of circumcivale of  $\triangle = \frac{2}{3}$  (neight of  $\triangle$ )

Arc AB = Arc BC = Arc AC

Math B - Lesson Page

# **Angles Formed by Radii, Chords, Tangents, Secants**



# Formulas for Working with Angles in Circles

(Intercepted arcs are arcs "cut off" or "lying between" the sides of the specified angles.)

There are basically five circle formulas that you need to remember:



## 1. Central Angle:

A central angle is an angle formed by two intersecting radii such that its vertex is at the center of the circle.

Central Angle = Intercepted Arc

<a href="#"><AOB</a> is a central angle.

Its *intercepted arc* is the minor arc from A to B.  $m < AOB = 80^{\circ}$ 



## 2. Inscribed Angle:

An inscribed angle is an angle with its vertex "on" the circle, formed by two intersecting chords.

Inscribed Angle = 
$$\frac{1}{2}$$
 Intercepted Arc

ABC is an inscribed angle.
Its intercepted arc is the minor arc from A to C.  $m < ABC = 50^{\circ}$ 



## 3. Tangent Chord Angle:

An angle formed by an intersecting tangent and chord has its vertex "on" the circle.

Tangent Chord Angle = 
$$\frac{1}{2}$$
 Intercepted Arc

<ABC is an angle formed by a tangent and chord. Its *intercepted arc* is the minor arc from A to B.  $m < ABC = 60^{\circ}$ 



# 4. Angle Formed Inside of a **Circle by Two Intersecting Chords:**

When two chords intersect "inside" a circle, four angles are formed. At the point of intersection, two sets of vertical angles can be seen in the corners of the X that is formed on the picture. Remember: vertical angles are equal.

Angle Formed Inside by Two Chords =

$$\frac{1}{2}$$
 **Sum** of Intercepted Arcs

Once you have found ONE of these angles, you automatically know the sizes of the other three by using your knowledge of vertical angles (being equal) and adjacent angles forming a straight line (adding to 180).



<BED is formed by two intersecting chords.

Its intercepted arcs are  $\widehat{BD}$  and  $\widehat{CA}$ . [Note: the intercepted arcs belong to the set of vertical angles.]

$$m \le BED = \frac{1}{2}(70 + 170) = \frac{1}{2}(240) = 120^{\circ}$$

also,  $m < CEA = 120^{\circ}$  (vetical angle) m < BEC and  $m < DEA = 60^{\circ}$  by straight line.

## 5. Angle Formed Outside of a Circle by the Intersection of: "Two Tangents" or "Two Secants" or "a Tangent and a Secant".

The formulas for all THREE of these situations are the same: Angle Formed Outside =  $\frac{1}{2}$  **Difference** of Intercepted Arcs

(When subtracting, start with the larger arc.)

## **Two Tangents:**

<ABC is formed by two tangents intersecting outside of circle O.

The *intercepted arcs* are minor arc AC and major arc AC. These two arcs together comprise the entire circle.

$$m \le ABC = \frac{1}{2}(260 - 100) = 80^{\circ}$$



Special situation for this set up: It can be proven that <ABC and central <AOC are supplementary. Thus the angle formed by the two tangents and its first intercepted arc also add to 180°.

## **Two Secants:**

<ACE is formed by two secants intersecting outside of circle O.

The intercepted arcs are minor arcs BD and AE.

$$m < ACE = \frac{1}{2}(80 - 20) = 30^{\circ}$$



## a Tangent and a Secant:

<ABD is formed by a tangent and a secant intersecting outside of circle O.</p>

The intercepted arcs are minor arcs AC and AD.

$$m < ABD = \frac{1}{2}(100 - 30) = 35^{\circ}$$









Copyright ©2001-2006 Oswego City School District Regents Exam Prep Center

- volume = AB . BC . CD

-volume = AB. BC.CD - surface area = 2.AB.CD + 2.BC.CD + 2AB.BC

PUSIM

- volume = base area . neight



- surface area = 2 (base area) + (perimeter of base)

cylinder

- volume = TTV2 h



-surface area = 2TTrh

pyramid

- volume = = (base)(hetgnt).

- Surface area = Base area + Sum of areas of all A faces.

cones

- volume = = to Tr2h

- surface area = TTr2+ TTr

sphere

- volume = 4 Tr3

- surface area = 4TTr2

- Diagonal = NZ AB
- Diagonals bisect



- Avea = TTV1 2

Rectangle



- Diagonals bisect

Pavallelogram



- Avea = Dc. h
- Penimeter = 2AB + 2BC
  - opp sides & opp & are equal
  - opp sides are parallel.

Rnombus

- _ Area = AC. BD
- Perimeter = 4AC

   Diagonals bisect & intersect at 90°
  - All Xs & sides are equal.

Trapezoid

- Perimeter.

- Area = \(\frac{1}{2}\) (height - sum of parallel sides)











similar As: correspond & are equal.

sides are proportional.

areas are in proportion: (ratio of cowesponds lengths)2



$$-4z^{2} = xy^{2} + xz^{2}$$

$$-(YX-YZ) < XZ < (YX+YZ)$$

- largest & opp largest side; same w smallest

- every a was at least 2 acute as



- bisector of every 4 is be to opp side & bisects it - AB = \frac{1}{2} YZ

- XY = XZ = YZ (equilateral  $\Delta$ )

- ABC = AYC = BCZ = XAB

- Area of  $XYZ = \sqrt{3} \cdot YZ'$ 

$$-XC = \sqrt{YZ^2 + (\frac{4Z}{2})^2}$$

$$= \sqrt{3} + \frac{7}{2}$$

= 
$$\sqrt{S(S-XY)(S-XZ)(S-YZ)}$$
 where  $S = \frac{XY+XZ+YZ}{Z}$ 

=> sum of 2 angles = 3rd angle.

# Polygons

- · Measure of  $X = 180 \frac{360}{n}$  where n = 10.04 sides of polygon.
- · sum of int. 4s = 180(n-2)
- no. of diagonals =  $\frac{1}{2}$  to (n-3)
- no. of triangles = n-2
- · area = ±n sin 360 sz where s= length fr. centre to corner

clocks 
$$|x| = |\frac{60H - 11M}{2}|$$
 where  $H = value$  of min hand.

- $\rightarrow p(not A) = 1 p(A)$
- · P(ANB) < P(A)

P(AUB) > P(A)

P(AMB) < P(AUB)

P(AUB) > P(A) + P(B)



Grp, + Grp2 + Neither - Both = Total.



P(AUBUC) = P(A) + P(B) + P(C) - P(ANB) - P(BNC) - P(ANC) + P(AUBUC)

• No. of ppl in 1 set = P(A) + P(B) + P(C) - 2P(ANB)-2P(BNC)

+3P (AN BNC)

LOND OFFPI IN 2 sets = P(ANB) + P(ANC)+P(BNC)

-3P(A MBAC)

- · No of ppl in 3 sets = P(ANBAC)
- · No of opt in 2 or = P(ANB) + P(ANC)+P(BNC)

  more sets = -2P(ANBAC)

$$P(E) = \frac{n(E)}{n(S)}$$
 ie event total.

eg. pvob. H 2 cards drawn out of 52 cards wout vaplacement are 0s  $= \frac{4p_2}{52p_3}$ 

ig if letters triangle are rearranged randomly, what is a prob the

eg. Pr (S cointosses) to get 2 T & 3 H.

$$=\frac{5!}{2! \ 3!} \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}\right) = \frac{5}{16}.$$

eg. Pr (no. amongst let 1000 integers is divisible by &) = Y&.

set theory

. . Union: A { 1,23 B { 3,43

AUB = { 1,2,3,43

· Intersection: ANB = {2} imen A {1,23 B {2,3,4}

SD of Prob.

· X1, X2, X3... Xn are n draws fr. random sample

(a) mean =  $\frac{\text{Sum}(x_1...x_n)}{n}$ 

(b) variance = h[(x,-m)2+(x2-m)2+...(xn-m)2]

(c) sq. =  $V^{(V_2)}$ 

Binomial Probability.

when n: total no. of trials P(x=r) prqn-r. nCr

r: no. of successes

p = prob. of success

q=prob. of tallure

Distributing mings amongst partitions

Distributing in things among r partitions = r"

•				
			•.	
	•			

•			
			v.
		•	

. - 5 boys & 5 girls stand in a line such 4 no 2 girls stand next to each other. In how many ways can & time be tormed?

6×51×51

- cg. how many permutat s for get e next to each other in square. = 5!·2=240 ie ge suar + eq suar.
- · when in dice (n>1) are volled simultaneously, no of outcomes in which all is dice show è same no. = 6, invespective of value of n.
- · when n coins (n>1) are tossed simultaneously, no of outcomes in which all numer turn up as H/T = 1, invespective of value of tr.
- · choose 35 & 1J out of 65 & 4J howmany sets of 35 & 1J are there Aus: 6C3.4C1
- · Choose ethner 3R or 3B when tak? A types out of 4R JUB Lout replacement: 4C3.4C1.2

ti replacement:

	4		
			•
•			
			•
			·
			•
		•	
		·	
•			



eg. Ratio of m: wis 5:4. If 9 more women jain, vario is 10:11.
How many women were there originally

$$\frac{5x}{4x+9} = \frac{10}{11} \implies x = 6$$

inverse proportionality: 2 variables are inversely proportional when the increase in value of 1 causes a proportional decrease in value of other.

## Conversion

16 ounces = Ipound.

2000 pounds = 1 tou

2 cups = 1 pint

2 pirits = 1 quart

4 quarts = 1 gallon

12 inches = 1 foot

3 feet = 1 yard

1,760 yards = 1 mile

5,280 feet = 1 mile.

coins

I wruled = 5¢

1 dime = 104

I quarter = 25¢

1 naff = 50¢

1 dollar = 100 t

· convert coin gras into value (fr. no.).

number a quarters total. 20-0

value. 10D 25(20-D) 305.

# inequalities Absolute

- Remember + x/= by re no. changes & stopn!

-|a+b| < |c+d|

(a+b)2 < (c+d)2

- 1 < |x+3 | < 5

-1 < x+3 < 1 & -5 < x+3 < 5.

- 1 < b => a>b eg (3)x < 100 ie 2x > 100

eg. use limits to work out qus: x2<2x< \p , x>0.

 $x^{2} < 2 \times \Rightarrow \times < 2$   $2 \times < \frac{1}{2} \Rightarrow \times < \frac{1}{2}$   $x^{2} < \frac{1}{2} \Rightarrow \times < 1$   $x^{2} < \frac{1}{2} \Rightarrow \times < 1$ 

## *fates*

## Inverse variation

$$Population_{1} = \frac{P \cdot 100 \cdot 100 \cdot 100}{(100 - x)(100 - y)(100 - z)}$$

$$Populat^{2} 4 = P \cdot (100 - X) (100 - Y) (100 - Z)$$

- · Ave speed = Total Dist Total Time.
  - Equal Dist; Diff speed -> Ave speed = 2ab (navmonic mean)
- Diff Dist; Equal Time -> Ave speed = 9+6

## MONK

- · Fixedjob, ++== = where ras are rates per 1 piece of work for A&B persons separately. t is combined rate when working together.
- A:BX:Y (work) + ; + (wark rate)

Y: x ( distributes of wages)

- · if "a" men of "b" women can do a piece of work in x days, together, they can first in (abx) days for millinen & "in" nomes. (can be derived).
- · If A is x times more efficient than B, & born can finish work in y days together, Time taken by  $A \Rightarrow y = (x+1)$ ,  $B \Rightarrow y(x+1)$
- · HAS B an Anish & work in x & ax days respectively, i.e. A is ax more efficient than B, working together they can finish in (xy) days
- . If A & B works together can complete work in x days; B alone in y days, Aglone can complete in xy days.

# Exponentials

$$\cdot x^a \cdot x^b = x^{(a+b)}$$

$$\cdot (x^{a})^{b} = x^{ab}$$

· every no. raised to power of S has no itself as MNA digit

# Roots

$$\frac{X \sqrt{Y}}{W \sqrt{Z}} = \frac{X}{W} \sqrt{\frac{Y}{Z}}$$

· consider both + roots of NX

# Difference in squares

• eg. 
$$x^{22} - y^{18} = (x'' + y^9)(x'' - y^9)$$
  
 $\frac{3}{\sqrt{6} + \sqrt{5}} = \frac{3(\sqrt{6} - \sqrt{5})}{(\sqrt{6} + \sqrt{5})(\sqrt{6} - \sqrt{5})}$   
 $= \frac{3(\sqrt{6} - \sqrt{5})}{1}$ 

Patios

Patios

Carter

Catche

(b+d+f...)

If 
$$\frac{a}{b} = \frac{c}{d}$$

$$\frac{a}{c} = \frac{d}{d}$$

$$\frac{a}{c} = \frac{d}{d}$$

$$\frac{a}{c} = \frac{d}{d}$$

$$\frac{a+b}{b} = \frac{(c+d)}{d}$$

$$\frac{a+b}{a-b} = \frac{(c+d)}{d}$$

$$\frac{a+b}{a-b} = \frac{(c+d)}{d}$$

compound interest.

Money gets doubled in 79r yrs

i.e.  $P(1+\frac{r}{100})^{N} = 2P$ when N = 70/r

## Profa (Loss

- SP of 2 avaricles are equal; 1 sold at TI of P70, other at loss of P90. 2 trades  $\Rightarrow$  Net  $\Delta = loss <math>\frac{P^2}{100}$ %. (because costs are diff)
- . cost of 2 articles equal; 1 sold at  $\pi$  of P90, other at loss of P90. 2 mades  $\Rightarrow$  Net  $\Delta = 0$  (no  $\pi/\log s$ ).

# consecutive numbers

- * Are of consecutive nos = smallest no. + largest no.
  - are of even no of concernme nos & integer
  - 11 11 odd 11 11 4 -11 = odd integer
- · Sum of wusefully nos = average x no of terms

- · No. of terms in series = largest no. smallest no. + 1
- $\cdot 1 + 2 + 3 \dots + n = \frac{n(n+1)}{3}$
- -sum of squares of let is natural nos =  $\frac{n(n+1)(2n+1)}{n}$
- -sum of cubes of 1st n natural nos =  $\left[\frac{n(n+1)}{2}\right]^2$
- sum of 1st n odd nos
- sum of 1st is even nos
- $= n^2$  ie. 2n+1, 2n+3, 2n+5 ....
- = N(N+1) (6. 2n, 2n+2, 2n+4-...
  - If his even,
  - no. of oddleven nos.-fr.1-n=1/2
  - Fricoad, nos fr.1-  $n = \frac{(n+1)}{2}$  in over it it it is  $\frac{2}{2}$
- non term: Tn = a + (n-1)d- Sum of n terms:  $Sn = \frac{n}{2} \left[ 2a + (n-1)d \right]$
- a: 1st term; d: common diff
- If a, b, c are consecutive terms in an AP, 2b = a+c

· AP

- of GP muterm:  $Tn = a [r^{n-1}]$  if r > 1- sum of n terms:  $Sn = a [r^{n-1}]$  if r > 1
  - = a [ 1-rn-1] + r<1
  - sum of infinal terms; Soo = a r r r < 1
  - If a,b,c are 3 consecutive infegers in  $a \in P$ ,  $b^2 = ac$

# Remainders

- · x r Z ie. X is multiple of Y+Z Y > Z always to get remainder of Z
- · Remainder: + Remainder: Divisor = Remainder 3.
- . How many nos, up to 100 are divisible by 6? 100 = 16 r 4 -: 16 nos. within 100 allisable by 6.
- · If Ediff 1. largest & smallest arisov of a no. is X, no. is X+1
- · Eg if S&t are the integers such it S/t=64-12, which would be ER when S/t? → 36 = 64.12 => S=64t+ 120t => Fort to be an integer, 5.100/12 must be ove.

# CINOVACTEMSTICS

Even + Even = Even

= Even odd + odd

= odd. Even + odd

= Even Even x Even

= Odd. odd x odd

= Even. Even x odd

- · If a-b = odd = ) a+b = odd.
- · antbn (atb) if n is odd.

* (atb) if n is even.

· an-bn = (a-b) if n is odd leven = (a+b) if n is even.

# Romainders

- $\frac{a^n}{a+1}$  if n=odd, r=a n=even, r=1
- · (a+1)" always r=1
- · when a no. is successively divided by 2 divisors, d. & d2, and 2 remainders 1, & v2 are obtained, the remainder H will be obtained by Eldt of di & dz 15 given by dirztri, where di & dz are in assend 7 order respectively & v. & vz è respective remainders

## MULTIPLES

· 2 : last digit is even

3 : sum of digits is multiple of 3

4: last 2 digits is multiple of 4

5 : last digit is 5 or 0

6: sum of digits is multiple of 3 + last digit is even

9: sum of digits is multiple of 9

10: last dight is O

12: sum of digits is multiple of 3 + last 2 digits is multiple of 4

- · If 2x is multiple of y, 2x/y is an integer
- * If P = pat of 1st x integers, multiples of P must have some prime factors as P. Nos. not multiples of P will have nos. It are not prime factors of P.
- · pat of any 3 consecutive integers is alwaible by 6 (or 2 and 3)
- · square of any even no amsible by 4

11 11 11 odd 11 11 11 gives remainable of 1

- · any perfect square can be represented in a form 4n or 4n+1
- . 7: Double last digit & subtract fr. no. If and is divisible by 7 (inc 0) then no. is also
- · 8: If last 3 digits form no divisible by E, then no TE also
- · 11 : Alt add & subtract digits fr. left to vight. If result(inco) is dir. by (1), no. it also. Eq 387421 ie 3-8+7-4+2-1=?
  - 13: Delete & last digit from & no, then subvact 9x & deleted digit from & remainif no. If what is left is div by 13, 20 is & org. no.