# **Data Management Report**

**Master Degree in Data Science** 

## Project 1: Querying a database

16 January 2020

- Candidate 1: Christian Riccio P37000002
- Candidate 2: Giacomo Matrone P37000011

# Introduction

The following report comes from an analysis of mock-up database that was downloaded from Oracle.com. The data regards the operativity of a multinational firm that sells world wide computer parts and has different warehouses all over the world. Our analysis has been focused in discovering and exploiting actionable informations about the activity of the firm.

In particular, we discovered the following results:

- The average profit per unit by item category and warehouse's cities;
- · Gross profit mean and variance.

We also created two classes sql\_parser and db\_writer which are specified below and are used to automate:

- · the creation of the tables;
- the insertion of the data.

```
import os
   import re
   import cx_Oracle
   class sql_parser():
       def __init__(self,path):
           self.path = path
       def sql_parse(self,sep,file):
           with open(self.path+sep+file, 'r+') as file:
               data = file.read()
           queries = [re.findall('CREATE .*|Insert .*|ALTER .*|SET DEFINE .*',el)\
                       for el in re.sub('\n|\t| -- fk', ' ',data).split(';')]
           return queries
   class db_writer():
       def __init__(self,host,sid,port,user,password):
           self.host = host
           self.sid = sid
           self.user = user
           self.port = port
           self.password = password
       def db_create_table(self,sql_statement):
           dsn = cx_Oracle.makedsn(self.host,self.port,self.sid)
           connection = cx_Oracle.connect(self.user,self.password, dsn, cx_Oracle.S
   YSDBA)
           cursor = connection.cursor()
           if sql statement.startswith('CREATE TABLE'):
               cursor.execute(sql_statement)
           else:
               raise Exception("Is not a Create table operation")
           connection.close()
In [1]:
import sys
sys.path.append("C:\\Users\\Win\\Desktop\\Riccio_Matrone\\script_python")
```

```
In [4]:
```

```
import cx_Oracle
import pandas as pd
import matplotlib.pyplot as plt
import os
import seaborn as sns
from Parser import sql_parser
from db_ops import db_writer
```

#### In [5]:

```
queries = {file: sql_parser("C:\\Users\\Win\\Desktop\\Riccio_Matrone\\SQL").sql_parse("
\\",file) for file in os.listdir("C:\\Users\\Win\\Desktop\\Riccio_Matrone\\SQL\\")}
```

#### In [8]:

```
queries.keys()
```

## Out[8]:

```
dict_keys(['ot_data_new.sql', 'ot_schema.sql'])
```

## **Connection to the Database**

In this section we define the variables used in order to set the connection to our SQL database, via cx\_Oracle library. We also define a function in order to automate queries execution and we present the results in pandas dataframe format.

#### In [7]:

```
user = "SYS as SYSDBA"
password =
host = '127.0.0.1'
port = '1521'
sid = 'orcl'
conn_str = 'jdbc:oracle:thin:@{0}:{1}:{2}'.format(host,port,sid)
```

#### In [12]:

```
db_constructor = db_writer(host,sid,port,user,password)
#[db_constructor.db_create_table(sql[0]) for sql in queries["ot_schema.sql"] if len(sql)>0]
#[db_constructor.db_insert(sql[0]) for sql in queries["ot_data_new.sql"] if len(sql)>0]
```

#### In [13]:

```
conn_str
```

## Out[13]:

'jdbc:oracle:thin:@127.0.0.1:1521:orcl'

### In [14]:

```
dsn = cx_Oracle.makedsn(host,port,sid)
```

```
In [15]:
dsn
Out[15]:
'(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=127.0.0.1)(PORT=1521))(CONNECT_
DATA=(SID=orcl)))'
In [16]:
connection = cx_Oracle.connect(user,password,dsn,cx_Oracle.SYSDBA)
In [17]:
cursor = connection.cursor()
cx_Oracle trial
Here is performed an example query with cx Oracle library.
In [18]:
query='SELECT * FROM REGIONS'
In [19]:
for row in cursor.execute(query):
    print(row)
(1, 'Europe')
(2, 'Americas')
(3, 'Asia')
(4, 'Middle East and Africa')
In [20]:
cursor.execute(query)
data = cursor.fetchall()
In [21]:
data
Out[21]:
[(1, 'Europe'), (2, 'Americas'), (3, 'Asia'), (4, 'Middle East and Afric
a')]
```

## **Metadata exploration**

In order to understand metadata, we proceed in investigating cursor.description, which tells us different informations, like:

- · Column name,
- · Variable type,
- · Eventual constraints.

```
In [22]:
```

```
cursor.description
Out[22]:
[('REGION_ID', cx_Oracle.NUMBER, 127, None, 0, -127, 0),
    ('REGION_NAME', cx_Oracle.STRING, 50, 50, None, None, 0)]
In [23]:
regions = pd.DataFrame(cursor.execute(query))
In [24]:
regions
```

#### Out[24]:

|   | 0 | 1                      |
|---|---|------------------------|
| 0 | 1 | Europe                 |
| 1 | 2 | Americas               |
| 2 | 3 | Asia                   |
| 3 | 4 | Middle East and Africa |

## sql\_data function

Our function allows us to perform fast queries whose results are presented in pandas dataframe. Column names are retrived from cursor metadata and are then inserted in the pandas dataframe. This function estabilishes a connection for each call to then close the same. This avoids service hanging.

Why pandas?

Pandas is a python library written in C that allows fast data munging and wrangling.

```
In [25]:
```

```
def sql_data(sql_statement,user,password,host,port,sid,col_names=True):
    dsn = cx_Oracle.makedsn(host,port,sid)
    connection = cx_Oracle.connect(user,password,dsn,cx_Oracle.SYSDBA)
    cursor = connection.cursor()

if col_names:
    cursor.execute(sql_statement)
    col_names = [el[0] for el in cursor.description]
    df = pd.DataFrame(cursor.fetchall(), columns = col_names)

else:
    df = pd.DataFrame(cursor.execute(sql_statement))
    connection.close()
    return df
```

## A first example

Here we run a simple trial of our function and, as you can see, it produces a pandas dataframe with all the data in it. Data comes from our SQL DB and is presented in pandas format.

```
In [26]:
```

```
sql_data('SELECT * FROM REGIONS',user,password,host,port,sid)
```

#### Out[26]:

| REGION_NAME            | REGION_ID |   |
|------------------------|-----------|---|
| Europe                 | 1         | 0 |
| Americas               | 2         | 1 |
| Asia                   | 3         | 2 |
| Middle East and Africa | 4         | 3 |

## Initializing variables

Here we define a list of all the tables' names and then we call SQL data first in a list comprehension and then in a dictionary comprehension. Those allow us to explore faster the database and has been chosen since the dimension of the DB is really small. The dictionary will have as keys the name of single tables of the DB and as values the pandas object obtained via sql function().

```
In [27]:
```

#### In [28]:

```
all_data = [sql_data("SELECT * FROM %s"%(el),user,password,host,port,sid) for el in tab
le_list]
```

## In [29]:

## all\_data[6]

## Out[29]:

|    | ORDER_ID | CUSTOMER_ID | STATUS   | SALESMAN_ID | ORDER_DATE |
|----|----------|-------------|----------|-------------|------------|
| 0  | 105      | 1           | Pending  | 54.0        | 2016-11-17 |
| 1  | 44       | 2           | Pending  | 55.0        | 2017-02-20 |
| 2  | 5        | 5           | Canceled | 56.0        | 2017-04-09 |
| 3  | 4        | 8           | Shipped  | 59.0        | 2015-04-09 |
| 4  | 2        | 4           | Shipped  | NaN         | 2015-04-26 |
| 5  | 3        | 5           | Shipped  | NaN         | 2017-04-26 |
| 6  | 6        | 6           | Shipped  | NaN         | 2015-04-09 |
| 7  | 7        | 7           | Shipped  | NaN         | 2017-02-15 |
| 8  | 8        | 8           | Shipped  | NaN         | 2017-02-14 |
| 9  | 9        | 9           | Shipped  | NaN         | 2017-02-14 |
| 10 | 11       | 45          | Shipped  | NaN         | 2016-11-29 |
| 11 | 12       | 46          | Shipped  | NaN         | 2016-11-29 |
| 12 | 13       | 47          | Shipped  | NaN         | 2016-11-29 |
| 13 | 32       | 47          | Shipped  | NaN         | 2017-03-09 |
| 14 | 33       | 48          | Shipped  | NaN         | 2017-03-07 |
| 15 | 37       | 52          | Shipped  | NaN         | 2017-02-19 |
| 16 | 45       | 57          | Shipped  | 64.0        | 2017-02-20 |
| 17 | 46       | 58          | Pending  | 62.0        | 2017-02-20 |
| 18 | 69       | 44          | Canceled | 54.0        | 2017-03-17 |
| 19 | 70       | 45          | Canceled | 61.0        | 2017-02-21 |
| 20 | 71       | 46          | Shipped  | 54.0        | 2017-02-21 |
| 21 | 72       | 47          | Shipped  | 64.0        | 2016-02-17 |
| 22 | 73       | 48          | Shipped  | NaN         | 2016-02-17 |
| 23 | 74       | 49          | Shipped  | 64.0        | 2017-02-10 |
| 24 | 75       | 16          | Shipped  | NaN         | 2017-02-10 |
| 25 | 76       | 17          | Shipped  | 55.0        | 2017-02-10 |
| 26 | 86       | 5           | Pending  | 60.0        | 2016-11-30 |
| 27 | 88       | 6           | Shipped  | 61.0        | 2017-11-01 |
| 28 | 98       | 48          | Shipped  | 55.0        | 2017-03-18 |
| 29 | 103      | 17          | Pending  | 64.0        | 2016-02-08 |
| 30 | 104      | 18          | Shipped  | 60.0        | 2017-02-01 |

## Missing values dedection

From an insight of some dataframes, it is possibile to note that some missing values appear (i.e. NaN ). We belive that these values are imputable to:

- · Missing data
- · Erroneous transcription of the DB

As result of what noticed, we had decided to identify, for the orders table, all of these values. The result is presented in the following heatmap, where the white area represents NaN presence:

#### In [30]:

```
n = all_data[6]
plt.figure()
sns.heatmap(n.isnull())
plt.title("Heatmap about NaN")
plt.show()
```



Also, by the execution of the following query, we perform an analysis for counting how many values, inside the orders table, are not affected by this alteration. Obviously, the following query is completely generalizable for each dataframe of the DB.

```
SELECT DISTINCT SALESMAN_ID

COUNT(*)

FROM orders

GROUP BY SALESMAN_ID

HAVING SALESMAN_ID IS NOT NULL
```

## In [31]:

sql\_data("SELECT DISTINCT SALESMAN\_ID, COUNT(\*) FROM orders GROUP BY SALESMAN\_ID HAVING
SALESMAN\_ID IS NOT NULL" ,user,password,host,port,sid)

### Out[31]:

|   | SALESMAN_ID | COUNT(*) |
|---|-------------|----------|
| 0 | 64          | 4        |
| 1 | 59          | 1        |
| 2 | 62          | 1        |
| 3 | 54          | 3        |
| 4 | 56          | 1        |
| 5 | 55          | 3        |
| 6 | 60          | 2        |
| 7 | 61          | 2        |

## In [32]:

```
all_data_dict = {el:sql_data("SELECT * FROM %s"%(el),user,password,host,port,sid) for e
l in table_list}
```

## In [33]:

```
all_data_dict.keys()
```

### Out[33]:

```
dict_keys(['contacts', 'countries', 'employees', 'inventories', 'location
s', 'order_items', 'orders', 'products', 'warehouses'])
```

## In [34]:

all\_data\_dict[list(all\_data\_dict.keys())[1]]

## Out[34]:

|    | COUNTRY_ID | COUNTRY_NAME             | REGION_ID |
|----|------------|--------------------------|-----------|
| 0  | AR         | Argentina                | 2         |
| 1  | AU         | Australia                | 3         |
| 2  | BE         | Belgium                  | 1         |
| 3  | BR         | Brazil                   | 2         |
| 4  | CA         | Canada                   | 2         |
| 5  | СН         | Switzerland              | 1         |
| 6  | CN         | China                    | 3         |
| 7  | DE         | Germany                  | 1         |
| 8  | DK         | Denmark                  | 1         |
| 9  | EG         | Egypt                    | 4         |
| 10 | FR         | France                   | 1         |
| 11 | IL         | Israel                   | 4         |
| 12 | IN         | India                    | 3         |
| 13 | IT         | Italy                    | 1         |
| 14 | JP         | Japan                    | 3         |
| 15 | KW         | Kuwait                   | 4         |
| 16 | ML         | Malaysia                 | 3         |
| 17 | MX         | Mexico                   | 2         |
| 18 | NG         | Nigeria                  | 4         |
| 19 | NL         | Netherlands              | 1         |
| 20 | SG         | Singapore                | 3         |
| 21 | UK         | United Kingdom           | 1         |
| 22 | US         | United States of America | 2         |
| 23 | ZM         | Zambia                   | 4         |
| 24 | ZW         | Zimbabwe                 | 4         |

## **PRODUCT NAME summary**

We used pandas.Series().value counts() method to understand how many times the single products repeat in the data frame resulting from the following query:

```
SELECT *
   FROM products
       INNER JOIN inventories
           ON products.PRODUCT_ID = inventories.PRODUCT_ID
```

As we can see the result gives us the absolute frequency of the single product name repetition.

#### In [35]:

```
sql_data("SELECT * FROM products INNER JOIN inventories ON products.PRODUCT_ID = invent
ories.PRODUCT_ID ",user,password,host,port,sid).loc[:,"PRODUCT_NAME"].value_counts()
```

#### Out[35]:

```
G.Skill Ripjaws V Series
                                    58
Corsair Vengeance LPX
                                    40
G.Skill Trident Z
                                    38
Corsair Dominator Platinum
                                    28
Kingston
                                    20
                                    . .
MSI X299 GAMING PRO CARBON AC
                                    1
SanDisk SDSSDHII-480G-G25
                                     1
MSI X99A XPOWER GAMING TITANIUM
                                     1
ASRock EP2C612 WS
                                     1
Western Digital WDS256G1X0C
```

Name: PRODUCT\_NAME, Length: 173, dtype: int64

## Joining data

We then joined data in order to obtained a bigger picture of the available DB, by executing the query:

```
SELECT *
    FROM products
        INNER JOIN inventories
            ON products.PRODUCT ID = inventories.PRODUCT ID
                WHERE PRODUCT NAME
                    LIKE '%Xeon%'
```

With this query we combined informations from products with the inventories. This allows us to link further up to location and countries, as it will be seen in the next steps. Please notice that we restricted, for this example purpose, the result only to Xenon processors.

#### In [36]:

sql\_data("SELECT \* FROM products INNER JOIN inventories ON products.PRODUCT\_ID = invent
ories.PRODUCT\_ID WHERE PRODUCT\_NAME LIKE '%Xeon%'",user,password,host,port,sid).head()

### Out[36]:

|   | PRODUCT_ID | PRODUCT_NAME                            | DESCRIPTION                    | STANDARD_COST | LIST <sub>.</sub> |
|---|------------|-----------------------------------------|--------------------------------|---------------|-------------------|
| 0 | 228        | Intel Xeon E5-<br>2699 V3<br>(OEM/Tray) | Speed:2.3GHz,Cores:18,TDP:145W | 2867.51       | :                 |
| 1 | 228        | Intel Xeon E5-<br>2699 V3<br>(OEM/Tray) | Speed:2.3GHz,Cores:18,TDP:145W | 2867.51       | :                 |
| 2 | 2          | Intel Xeon E5-<br>2697 V4               | Speed:2.3GHz,Cores:18,TDP:145W | 2144.40       | :                 |
| 3 | 2          | Intel Xeon E5-<br>2697 V4               | Speed:2.3GHz,Cores:18,TDP:145W | 2144.40       | :                 |
| 4 | 2          | Intel Xeon E5-<br>2697 V4               | Speed:2.3GHz,Cores:18,TDP:145W | 2144.40       | :                 |
|   |            |                                         |                                |               |                   |
| 4 |            |                                         |                                |               | <b>&gt;</b>       |

## **Null value search**

We have also performed a brief search about NULL values in employees table, in phone column. Our discovery was pretty obvious. As you might have guessed, there are no missing values.

### In [37]:

```
sql_data(" SELECT * FROM employees WHERE PHONE IS NULL",user,password,host,port,sid)
Out[37]:
```

EMPLOYEE\_ID FIRST\_NAME LAST\_NAME EMAIL PHONE HIRE\_DATE MANAGER\_ID JC

## Job title mapping

Here is presented the list of unique job titles avaiable in employees table.

#### In [38]:

sql\_data("SELECT DISTINCT JOB\_TITLE FROM employees ORDER BY JOB\_TITLE DESC",user,passwo
rd,host,port,sid,col\_names=True)

### Out[38]:

|   | JOB_TITLE            |
|---|----------------------|
| 0 | Stock Manager        |
| 1 | Stock Clerk          |
| 2 | Shipping Clerk       |
| 3 | Sales Representative |
| 4 | Sales Manager        |
| 5 | Purchasing Clerk     |
| 6 | Programmer           |
| 7 | Marketing Manager    |
| 8 | Accountant           |

# **General analysis**

From this point onward, we present our analysis on the database. We, as illustrated below, create first a unique dataframe whose columns give us informations about:

- The product (PRODUCT\_ID, PRODUCT\_NAME, DESCRIPTION, etc.),
- · The inventory (units in storage or price etc.),
- · The warehouse,
- The geographical dislocation.

The query launched is the following:

```
FROM products

INNER JOIN inventories

ON products.PRODUCT_ID = inventories.PRODUCT_ID

INNER JOIN warehouses

ON inventories.WAREHOUSE_ID=warehouses.WAREHOUSE_ID

INNER JOIN locations

ON warehouses.LOCATION_ID=locations.LOCATION_ID

INNER JOIN countries

ON locations.COUNTRY_ID = countries.COUNTRY_ID
```

## In [39]:

sql\_data("SELECT \* FROM products INNER JOIN inventories ON products.PRODUCT\_ID = invent
ories.PRODUCT\_ID INNER JOIN warehouses ON inventories.WAREHOUSE\_ID=warehouses.WAREHOUSE
\_ID INNER JOIN locations ON warehouses.LOCATION\_ID=locations.LOCATION\_ID INNER JOIN cou
ntries ON locations.COUNTRY\_ID = countries.COUNTRY\_ID", user, password, host, port, sid)

### Out[39]:

|                         | PRODUCT_ID | PRODUCT_NAME                   | DESCRIPTION                                             | STANDARD_COST L |
|-------------------------|------------|--------------------------------|---------------------------------------------------------|-----------------|
| 0                       | 210        | Intel Core i9-<br>7900X        | Speed:3.3GHz,Cores:10,TDP:140W                          | 855.82          |
| 1                       | 211        | Intel Xeon E5-<br>2650         | Speed:2.0GHz,Cores:8,TDP:95W                            | 869.03          |
| 2                       | 212        | Intel Xeon E5-<br>2680 V4      | Speed:2.4GHz,Cores:14,TDP:120W                          | 1365.13         |
| 3                       | 214        | Intel Core i7-<br>5960X        | Speed:3.0GHz,Cores:8,TDP:140W                           | 865.59          |
| 4                       | 216        | MSI GTX 1080 TI<br>LIGHTNING X | Chipset:GeForce GTX 1080<br>Ti,Memory:11GBCore Cl       | 742.94          |
|                         |            |                                |                                                         |                 |
| 1107                    | 201        | Kingston                       | Speed:DDR3-1600,Type:240-pin DIMM,CAS:11Module          | 566.98          |
| 1108                    | 203        | Kingston                       | Speed:DDR3-1333,Type:240-pin DIMM,CAS:9Module:          | 556.84          |
| 1109                    | 204        | G.Skill Ripjaws V<br>Series    | Speed:DDR4-3200,Type:288-pin DIMM,CAS:15Module          | 546.64          |
| 1110                    | 205        | G.Skill Trident X              | Speed:DDR3-3100,Type:240-pin DIMM,CAS:12Module          | 507.32          |
| 1111                    | 207        | PNY VCQM6000-<br>PB            | Chipset:Quadro<br>M6000,Memory:12GBCore<br>Clock:988MHz | 2505.04         |
| 4440 rouge v 24 columns |            |                                |                                                         |                 |

1112 rows × 21 columns

• |

In the following example, we explore the managed orders from warehouses, in order to obtain details about their status.

```
SELECT WAREHOUSE_NAME,
    COUNT(STATUS)
       AS number_orders,
      STATUS
      FROM
 (SELECT *
     FROM (
        orders
             INNER JOIN order_items
                ON orders.ORDER_ID = order_items.ORDER_ID
             INNER JOIN inventories
                 ON order_items.PRODUCT_ID=inventories.PRODUCT_ID
             INNER JOIN warehouses
                 ON inventories.WAREHOUSE_ID=warehouses.WAREHOUSE_ID
             INNER JOIN locations
                 ON warehouses.LOCATION_ID=locations.LOCATION_ID
           ))
           WHERE
               STATUS='Shipped'
           GROUP BY
               (WAREHOUSE_NAME, STATUS)
```

#### In [41]:

sql\_data(" SELECT WAREHOUSE\_NAME, COUNT(STATUS) AS number\_orders, STATUS FROM( SELECT \*
FROM (orders INNER JOIN order\_items ON orders.ORDER\_ID = order\_items.ORDER\_ID INNER JOI
N inventories ON order\_items.PRODUCT\_ID=inventories.PRODUCT\_ID INNER JOIN warehouses ON
inventories.WAREHOUSE\_ID=warehouses.WAREHOUSE\_ID INNER JOIN locations ON warehouses.LOC
ATION\_ID=locations.LOCATION\_ID)) WHERE STATUS='Shipped' GROUP BY(WAREHOUSE\_NAME,STATU
S)" ,user,password,host,port,sid)

### Out[41]:

|   | WAREHOUSE_NAME      | NUMBER_ORDERS | STATUS  |
|---|---------------------|---------------|---------|
| 0 | Southlake, Texas    | 15            | Shipped |
| 1 | Toronto             | 49            | Shipped |
| 2 | Sydney              | 108           | Shipped |
| 3 | Mexico City         | 45            | Shipped |
| 4 | Bombay              | 71            | Shipped |
| 5 | Beijing             | 95            | Shipped |
| 6 | San Francisco       | 88            | Shipped |
| 7 | New Jersey          | 21            | Shipped |
| 8 | Seattle, Washington | 59            | Shipped |

## Average profit calculation

We grouped all the data retrived from the former query, in order to calculate the average profit by CITY and CATEGORY ID . The query we launched is the following:

We finally use the pandas.Series().replace() function in order to map the CATEGORY\_ID column from integer to a string containing an acronymic description.

## In [42]:

sql\_data("SELECT CITY,CATEGORY\_ID, AVG(LIST\_PRICE-STANDARD\_COST) AS avg\_profit FROM (SE
LECT \* FROM products INNER JOIN inventories ON products.PRODUCT\_ID = inventories.PRODUC
T\_ID INNER JOIN warehouses ON inventories.WAREHOUSE\_ID=warehouses.WAREHOUSE\_ID INNER JO
IN locations ON warehouses.LOCATION\_ID=locations.LOCATION\_ID INNER JOIN countries ON lo
cations.COUNTRY\_ID = countries.COUNTRY\_ID) GROUP BY (CITY, CATEGORY\_ID) ",user,password
,host,port,sid).replace({1:"CPU",2:"GPU",4:"MoBo",5:"HDD/RAM"})

## Out[42]:

|    | CITY                | CATEGORY_ID | AVG_PROFIT |
|----|---------------------|-------------|------------|
| 0  | Beijing             | МоВо        | 81.213750  |
| 1  | South San Francisco | МоВо        | 79.647308  |
| 2  | Bombay              | GPU         | 296.841176 |
| 3  | Seattle             | GPU         | 296.841176 |
| 4  | Toronto             | HDD/RAM     | 104.290000 |
| 5  | Bombay              | МоВо        | 107.395625 |
| 6  | South San Francisco | CPU         | 178.253103 |
| 7  | Toronto             | CPU         | 320.910000 |
| 8  | Sydney              | HDD/RAM     | 118.736023 |
| 9  | Sydney              | МоВо        | 80.598780  |
| 10 | Mexico City         | МоВо        | 55.031875  |
| 11 | Beijing             | GPU         | 296.841176 |
| 12 | Bombay              | CPU         | 222.014500 |
| 13 | Bombay              | HDD/RAM     | 146.770526 |
| 14 | South San Francisco | GPU         | 285.349737 |
| 15 | South San Francisco | HDD/RAM     | 123.507381 |
| 16 | South Brunswick     | GPU         | 296.841176 |
| 17 | Seattle             | HDD/RAM     | 146.770526 |
| 18 | Seattle             | CPU         | 165.228214 |
| 19 | Mexico City         | CPU         | 320.910000 |
| 20 | Southlake           | GPU         | 296.841176 |
| 21 | Mexico City         | GPU         | 296.841176 |
| 22 | Mexico City         | HDD/RAM     | 89.927857  |
| 23 | Beijing             | CPU         | 222.014500 |
| 24 | Southlake           | CPU         | 119.275000 |
| 25 | Seattle             | МоВо        | 122.572222 |
| 26 | Toronto             | GPU         | 285.349737 |
| 27 | Sydney              | CPU         | 229.842195 |
| 28 | Sydney              | GPU         | 285.349737 |
| 29 | Beijing             | HDD/RAM     | 116.928125 |
| 30 | South Brunswick     | CPU         | 320.910000 |
| 31 | Toronto             | МоВо        | 55.031875  |

## **Bonus analysis**

In the end, we give an insight about gross income distribution by category, by executing the following query:

As it is possible to notice, the CPU and GPU show the greatest mean gross income and has the greatest variability. The query relates order\_items with products tables.

#### In [43]:

```
sql_data("SELECT CATEGORY_ID, avg(QUANTITY*UNIT_PRICE) AS avg_gross_income, variance(QU
ANTITY*UNIT_PRICE) AS var_gross_income FROM (SELECT * FROM ORDER_ITEMS LEFT JOIN produc
ts ON order_items.PRODUCT_ID=products.PRODUCT_ID ) GROUP BY CATEGORY_ID", user, password,
host,port,sid).replace({1:"CPU",2:"GPU",4:"MoBo",5:"HDD/RAM"})
```

### Out[43]:

## CATEGORY\_ID AVG\_GROSS\_INCOME VAR\_GROSS\_INCOME

| 0 | CPU     | 126050.270629 | 6.126451e+09 |
|---|---------|---------------|--------------|
| 1 | GPU     | 131309.720190 | 1.106244e+10 |
| 2 | МоВо    | 35640.711232  | 4.530642e+08 |
| 3 | HDD/RAM | 53209.737034  | 3.150839e+09 |

Here, the above query has been modified in order to obtain informations about the maximum income due by each product. The request pass trough the following query:

```
SELECT CATEGORY_ID, max(QUANTITY*UNIT_PRICE) AS max_gross_income
FROM
(SELECT *
          FROM ORDER_ITEMS
                LEFT JOIN products
                ON order_items.PRODUCT_ID=products.PRODUCT_ID )
GROUP BY CATEGORY_ID
```

## In [44]:

sql\_data("SELECT CATEGORY\_ID, max(QUANTITY\*UNIT\_PRICE) AS max\_gross\_income FROM (SELECT
\* FROM ORDER\_ITEMS LEFT JOIN products ON order\_items.PRODUCT\_ID=products.PRODUCT\_ID ) G
ROUP BY CATEGORY\_ID", user, password, host, port, sid).replace({1:"CPU",2:"GPU",4:"MoBo",5:
"HDD/RAM"})

## Out[44]:

|   | CATEGORY_ID | MAX_GROSS_INCOME |
|---|-------------|------------------|
| 0 | CPU         | 328038.42        |
| 1 | GPU         | 600155.00        |
| 2 | МоВо        | 120521.73        |

603023.32

HDD/RAM

## In [ ]:

3