ŁAŃCUCHY MARKOWA

Aleksander Obuchowski

Ciąg zdarzeń losowych

Prawdopodobieństwo przyszłych akcji nie zależy od kroków, które doprowadziły do obecnego stanu

Losowanie bez zwracania

Łańcuch Markowa

Losowanie ze zwracaniem

Proces stochastyczny

Własność Markowa

 $P(x_n = i_n | x_{n-1} = i_{n-1}) = P(x_n = i_n | x_0 = i_0, x_1 = i_1, ..., x_{n-1} = i_{n-1})$

$$\frac{1}{1}$$

 $P(x_n = deszcz | x_{n-1} = deszcz) = \frac{2}{3}$

$$1$$

$$P(x_n = slonce | x_{n-1} = slonce) = 0$$

$$P(x_n = slonce | x_{n-1} = deszcz) = \frac{1}{3}$$

 $P(x_n = deszcz | x_{n-1} = slonce) = 1$

Obliczanie prawdopodobieństwa

$$P(x_n = slonce | x_{n-1} = slonce) = 0$$

$$P(x_n = slonce | x_{n-1} = deszcz) = \frac{1}{3}$$

$$P(x_n = deszcz | x_{n-1} = slonce) = 1$$

$$P(x_n = deszcz | x_{n-1} = deszcz) = \frac{2}{3}$$

Macierz przejścia

Wielostopniowa macierz przejścia

$$P(A \rightarrow C) = P(A \rightarrow B) \times P(B \rightarrow C)$$

$$P(\frac{x_{n+2} = slonce}{x_n = slonce}) = P(\frac{x_{n+1} = slonce}{x_n = slonce}) \times P(\frac{x_{n+2} = slonce}{x_{n+1} = slonce}) + P(\frac{x_{n+1} = deszcz}{x_n = slonce}) \times P(\frac{x_{n+2} = slonce}{x_{n+1} = deszcz})$$

$$0$$

$$\frac{1}{3}$$

$$\frac{2}{3}$$

$$\begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 0 \times 0 + \frac{1}{3} \times 1 & 1 \times 0 + \frac{2}{3} \times 1 \\ 0 \times \frac{1}{3} + \frac{1}{3} + \frac{2}{3} & 1 \times \frac{1}{3} + \frac{2}{3} \times \frac{2}{3} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}^2 = \begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{9} & \frac{7}{9} \end{bmatrix}$$

Podpowiadanie tekstu

Tekst jako ciąg zdarzeń losowych

róże są czerwone fiołki są niebieskie

róże są czerwone fiołki są niebieskie

Losowanie ważone

Pętle

W ryj dać mogę dać

dać mogę dać mogę dać mogę dać...

Przewidywanie cen akcji

Page Rank

$$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} & \frac{3}{4} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}^{1000} \approx \begin{bmatrix} 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} & \frac{3}{4} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}^{1000} \approx \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} & \frac{3}{4} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}^{1001} \approx \begin{bmatrix} 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \\ 0.2 & 0.1 & 0.4 & 0.3 \end{bmatrix}$$

Dziękuję za uwagę