

Quiz #6

Monday, March 25 2018

Duration: 25 min
NAME:
Please write clearly and properly.
Explain your answers appropriately.

Problem	Grade
1	
Total	

Problem 1 (~ 12 points.).

Consider the function f of two variables defined by:

$$f(x,y) = \frac{x^2}{4} + \frac{y^2}{9} \ .$$

(11	What is the domai	n of definition of f	9
((1)	what is the domai	ii oi deiiiiidoii oi j	

	 	,

(2)	What is the equation of the graph of f ? What kind of surface is this?
	You may refer to the table on the last page of this quiz.

(3) Let P be the point with coordinates $(0,3)$ in level curve of f through P . What is this cur	

(4)) Compute the gradient $\vec{\nabla} f(x, y)$ for any (x, y) . Compute $\vec{\nabla} f(P)$ (where P is the point introduced in the previous question). Draw the vector $\vec{\nabla} f(P)$ on your previous sketch.
(5)	 Find unit vectors \$\vec{u}\$, \$\vec{v}\$, \$\vec{w}\$ in the \$xy\$-plane such that, at the point \$P\$: \$\vec{u}\$ gives the direction of maximal rate of increase for \$f\$ (steepest ascent). \$\vec{v}\$ gives the direction of maximal rate of decrease for \$f\$ (steepest descent). \$\pm \vec{w}\$ gives the direction of no change for \$f\$ (zero directional derivative).

	Compute the directional derivatives $D_{\vec{u}}f(P)$, $D_{\vec{v}}f(P)$ and $D_{\vec{w}}f(P)$.
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\nabla f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\nabla f(P)$. Is this expected?
(7)) What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\nabla f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\nabla f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\nabla f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\nabla f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\nabla f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\vec{\nabla} f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\vec{\nabla} f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\nabla f(P)$. Is this expected?
(7)	What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\vec{\nabla} f(P)$. Is this expected?
(7)) What is the tangent line to the level curve through P ? Find a vector that gives the direction of this line. Check that it is orthogonal to $\vec{\nabla} f(P)$. Is this expected?

Table 12.1 Name	Standard Equation	Features	Graph
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	All traces are ellipses.	Graph z c
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z = z_0 > 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.	
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z=z_0$ are ellipses for all z_0 . Traces with $x=x_0$ or $y=y_0$ are hyperbolas.	
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z=z_0$ with $ z_0 > c $ are ellipses. Traces with $x=x_0$ and $y=y_0$ are hyperbolas.	z x x x
Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z=z_0 \neq 0$ are ellipses. Traces with $x=x_0$ or $y=y_0$ are hyperbolas or intersecting lines.	z d
Hyperbolic paraboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.	Z