CAPE Lab

Assignment 4

Name: Aditya Deep

Roll No: 22CH10003

Group No: 5

Date: 7 Feb 2025

Assignment 4

<u>**Objective:**</u> Numerical solution of Ordinary Differential Equation: Boundary Value Problem

Consider the steady-state heat transfer in a fin of uniform cross-section as shown below. The thermophysical properties of the fin material are constant. Find the temperature along the length of the fin T(x) using

- (a) Finite Difference Method (write your own code)
- (b) Shooting Method (write your own code)
- (c) MATLAB function bvp4c

The following BVP represents the governing equation for the fin.

$$\frac{d^2T}{dx^2} - \beta(T - T_{\infty}) = 0$$
, $T(x = 0) = T_0$, $T(x = L) = T_L$

<u>Given</u>: $T_0 = 100$, $T_L = 30$, $T_{\infty} = 30$, L = 2, $\beta = 1.5$ (in appropriate units)

1. Finite Difference Method

Algorithm:

- 1. Discretization:
 - Divide the interval [0,L] into N equal steps with step size $\Delta x = \frac{L}{N}$.
 - Approximate derivatives using central difference formulas:

$$rac{d^2T}{dx^2}pproxrac{T_{i+1}-2T_i+T_{i-1}}{\Delta x^2}$$

Substituting this into the equation gives:

$$rac{T_{i+1}-2T_i+T_{i-1}}{\Delta x^2}-eta(T_i-T_\infty)=0$$

- 2. Set Up a Linear System:
 - Rewrite as a system of equations for each grid point i (excluding boundary points).
 - Use matrix methods (Ax = b) to solve for T.
- 3. Solve the System:
 - Use MATLAB's \ operator or linsolve() to find the temperature distribution.

MATLAB Code

```
% Coefficients for finite difference scheme
A = zeros(N, N);
b = zeros(N, 1);

% Boundary conditions
A(1,1) = 1;
b(1) = T0; % T(0) = T0

A(N,N) = 1;
b(N) = TL; % T(L) = TL

% Finite Difference Method for interior points
for i = 2:N-1
    A(i, i-1) = 1/dx^2;
    A(i, i) = -2/dx^2 - beta;
    A(i, i+1) = 1/dx^2;
    b(i) = -beta * T_inf;
end
```

```
% Solve the linear system
T = A \ b;

disp(table(x', T, 'VariableNames', {'x', 'T'}));

% Plot the results
figure;
plot(x, T, '-o', 'LineWidth', 1.5);
xlabel('x (length of fin)');
ylabel('Temperature T(x)');
title('Temperature Distribution Along the Fin');
grid on;
```

RESULT

x	T
0	100
0.22222	83.072
0.44444	70.076
0.66667	60.048
0.88889	52.246
1.1111	46.091
1.3333	41.129
1.5556	36.991
1.7778	33.371
2	30

2. Shooting Method

Algorithm:

1. Convert to First-Order ODEs: Define variables:

$$y_1 = T, \quad y_2 = \frac{dT}{dx}$$

Rewrite as a system:

$$rac{dy_1}{dx} = y_2$$
 $rac{dy_2}{dx} = eta(y_1 - T_\infty)$

- 2. Guess Initial Slope $y_2(0)$ (Shooting Parameter):
 - We know $T(0) = T_0$, but $y_2(0)$ is unknown.
 - Solve the IVP using an ODE solver (ode45) with an initial guess for $y_2(0)$.
- 3. Adjust $y_2(0)$ Using Root-Finding:
 - Compute T(L) from the solution.
 - Adjust $y_2(0)$ using **Newton's method** (or fsolve) to satisfy $T(L) = T_L$.

MATLAB Code

```
clc; clear; close all;

% constants
T0 = 100;
TL = 30;
T_inf = 30;
L = 2;
beta = 1.5;

% Define ODE as a system of first-order equations
odefun = @(x, y) [y(2); beta * (y(1) - T_inf)];

% Define shooting function to match boundary condition at x = L
shootingFunc = @(s) ode45(odefun, [0, L], [T0; s]); % Solve ODE
residualFunc = @(s) shootingFunc(s).y(1, end) - TL; % Residual at x = L
```

```
% Solve for correct initial slope using fzero
s_correct = fzero(residualFunc, 0);

% Solve ODE with correct slope
[x, y] = ode45(odefun, linspace(0, L, 100), [T0; s_correct]);

disp(table(x, y(:,1), 'VariableNames', {'x', 'T'}));

% Plot the results
figure;
plot(x, y(:,1), 'r*', 'LineWidth', 1.5);
xlabel('x (length of fin)');
ylabel('Temperature T(x)');
title('Temperature Distribution Using Shooting Method');
grid on;

% Display results
disp('Temperature distribution along the fin:');
disp(table(x, y(:,1), 'VariableNames', {'x', 'T'}));
```

RESULT

x	T	0.34343 75.509
		0.36364 74.358
		0.38384 73.233
0	100	0.40404 72.135
0.020202	98.263	0.42424 71.062
0.040404	96.568	0.44444 70.015
0.060606	94.914	0.46465 68.992
0.080808	93.3	0.48485 67.993
0.10101	91.724	0.50505 67.018
0.12121	90.186	0.52525 66.065
0.14141	88.685	0.54545 65.134
0.16162	87.22	0.56566 64.225
0.18182	85.79	0.58586 63.336
0.20202	84.394	0.60606 62.468
0.22222	83.031	0.62626 61.62
0.24242	81.701	0.64646 60.791
0.26263	80.403	0.66667 59.981
0.28283	79.135	0.68687 59.19
0.30303	77.897	0.70707 58.416
0.32323	76.689	0.72727 57.66

0.74747	56.92
0.76768	56.197
0.78788	55.491
0.80808	54.799
0.82828	54.123
0.84848	53.462
0.86869	52.815
0.88889	52.182
0.90909	51.563
0.92929	50.957
0.94949	50.363
0.9697	49.782
0.9899	49.214
1.0101	48.657
1.0303	48.111
1.0505	47.576
1.0707	47.053
1.0909	46.539
1.1111	46.036
1.1313	45.543
1.1515	45.059
1.1515	45.059
1.1515 1.1717	45.059 44.584
1.1515 1.1717 1.1919	45.059 44.584 44.119
1.1515 1.1717 1.1919 1.2121	45.059 44.584 44.119 43.662
1.1515 1.1717 1.1919 1.2121 1.2323	45.059 44.584 44.119 43.662 43.213
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525	45.059 44.584 44.119 43.662 43.213 42.772
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727	45.059 44.584 44.119 43.662 43.213 42.772 42.34
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131 1.3333	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496 41.086
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131 1.3333 1.3535	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496 41.086 40.681
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131 1.3333 1.3535 1.3737	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496 41.086 40.681 40.284
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131 1.3333 1.3535 1.3737 1.3939	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496 41.086 40.681 40.284 39.893
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131 1.3333 1.3535 1.3737 1.3939 1.4141	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496 41.086 40.681 40.284 39.893 39.507
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131 1.3333 1.3535 1.3737 1.3939 1.4141 1.4343	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496 41.086 40.681 40.284 39.893 39.507 39.128
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131 1.3333 1.3535 1.3737 1.3939 1.4141 1.4343 1.4545	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496 41.086 40.681 40.284 39.893 39.507 39.128 38.754 38.386 38.022
1.1515 1.1717 1.1919 1.2121 1.2323 1.2525 1.2727 1.2929 1.3131 1.3333 1.3535 1.3737 1.3939 1.4141 1.4343 1.4545 1.4747	45.059 44.584 44.119 43.662 43.213 42.772 42.34 41.914 41.496 41.086 40.681 40.284 39.893 39.507 39.128 38.754 38.386

1.5354	37.31
1.5556	36.961
1.5758	36.616
1.596	36.275
1.6162	35.938
1.6364	35.605
1.6566	35.275
1.6768	34.948
1.697	34.624
1.7172	34.303
1.7374	33.985
1.7576	33.669
1.7778	33.356
1.798	33.044
1.8182	32.734
1.8384	32.426
1.8586	32.12
1.8788	31.815
1.899	31.51
1.9192	31.207
1.9394	30.905
1.9596	30.603
1.9798	30.301
2	30
2	30

2.MATLAB function 'bvp4c'

Algorithm:

- 1. Convert to First-Order ODEs:
 - Same transformation as in the Shooting Method:

$$\frac{dy_1}{dx} = y_2, \quad \frac{dy_2}{dx} = \beta(y_1 - T_\infty)$$

- 2. Define the Boundary Conditions:
 - $y_1(0) = T_0, y_1(L) = T_L.$
- 3. Provide an Initial Guess:
 - Define a rough estimate for $y_1(x)$ and $y_2(x)$, often a linear function.
- 4. Solve Using byp4c:
 - MATLAB refines the solution iteratively.

MATLAB Code

```
clc; clear; close all;
 %constants
 T0 = 100;
 TL = 30;
 T_inf = 30;
 L = 2;
 beta = 1.5;
 % Define the system of first-order ODEs
 odefun = @(x, y) [y(2); beta * (y(1) - T_inf)];
 % Define boundary conditions
 bcfun = @(ya, yb) [ya(1) - T0; yb(1) - TL];
 % Initial mesh points
 xmesh = linspace(0, L, 10);
% Initial guess for the solution as a function handle
y_guess = @(x) [T0 + (TL - T0) * x / L; 0]; % Linear guess for T(x) and 0 slope
% Generate initial solution structure using bypinit
solinit = bvpinit(xmesh, y_guess);
```

```
% Solve the boundary value problem
sol = bvp4c(odefun, bcfun, solinit);

% Extract refined solution
x = linspace(0, L, 100); % Refined x-mesh
y = deval(sol, x); % Evaluate the solution

% Plot the results
figure;
plot(x, y(1,:), 'go', 'LineWidth', 1.5);
xlabel('x (length of fin)');
ylabel('Temperature T(x)');
title('Temperature Distribution Using bvp4c');
grid on;

% Display results
disp('Temperature distribution along the fin:');
disp(table(x', y(1,:)', 'VariableNames', {'x', 'T'}));
```

RESULT

x	T	0.32323	76.689
		0.34343	75.509
		0.36364	74.357
0	100	0.38384	73.233
0.020202	98.263	0.40404	72.135
0.040404	96.568	0.42424	71.062
0.060606	94.914	0.44444	70.015
0.080808	93.299	0.46465	68.992
0.10101	91.723	0.48485	67.993
0.12121	90.185	0.50505	67.018
0.14141	88.684		
0.16162	87.219	0.52525	66.065
0.18182	85.79	0.54545	65.134
0.20202	84.394	0.56566	64.224
0.22222	83.031	0.58586	63.336
0.24242	81.701	0.60606	62.468
0.26263	80.402	0.62626	61.62
0.28283	79.135	0.64646	60.791
0.30303	77.897	0.66667	59.981
0.32323	76.689	0.68687	59.19

0.70707	58.416	1.3737	40.284
0.72727	57.66	1.3939	39.893
0.74747	56.92	1.4141	39.507
0.76768	56.197	1.4343	39.128
0.78788	55.49	1.4545	38.754
0.80808	54.799	1.4747	38.386
0.82828	54.123	1.4949	38.022
0.84848	53.462	1.5152	37.664
0.86869	52.815	1.5354	37.31
0.88889	52.182	1.5556	36.961
0.90909	51.563	1.5758	36.616
0.92929	50.957	1.596	36.275
0.94949	50.363	1.6162	35.938
0.9697	49.782	1.6364	35.605
0.9899	49.213	1.6566	35.275
1.0101	48.656	1.6768	34.948
1.0303	48.111	1.697	34.624
1.0505	47.576	1.7172	34.303
1.0707	47.053	1.7374	33.985
1.0909	46.54	1.7576	33.669
1.1111	46.036	1.7778	33.356
1.1313	45.543	1.798	33.044
1.1515	45.059	1.8182	32.734
1.1717	44.584	1.8384	32.426
1.1919	44.119	1.8586	32.12
1.2121	43.662	1.8788	31.815
1.2323	43.213	1.899	31.51
1.2525	42.772	1.9192	31.207
1.2727	42.34	1.9394	30.905
1.2929	41.914	1.9596	30.603
1.3131	41.497	1.9798	30.301
1.3333	41.086	2	30
1.3535	40.682	_	

Finite Difference	Shooting	bvp4c
Converts BVP into algebraic equations	Converts BVP to IVP, solves using ode45	Uses collocation and adaptive refinement
Simple and direct	Works well for simple cases	Most efficient and stable
Requires fine grid for accuracy	Needs iterative root- finding	More complex to set up
time taken = 0.0019	time taken = 0.0171	time taken = 0.0061