

Grado en Ingeniería Informática

Curso 2020/2021

Teoría Avanzada de la Computación

Máquinas de Turing

Autores:

Iván Miguelez García Alba Reinders Sánchez Alejandro Valverde Mahou 100383387 100383444 100383383

Índice

1.	Palí	dromos I
	1.1.	MT Determinista de 1 cinta
		I.1.1. Implementación Propuesta
		I.1.2. Determinación del Peor Caso
		I.1.3. Simulación con Diferentes Tamaños
		I.1.4. Cálculo de $T(n)$
	1.2.	MT Determinista de 2 cintas
		I.2.1. Implementación Propuesta
		I.2.2. Determinación del Peor Caso
		I.2.3. Simulación con Diferentes Tamaños
		I.2.4. Cálculo de $T(n)$
	1.3.	MT No Determinista de 2 cintas
		I.3.1. Implementación Propuesta
		I.3.2. Determinación del Peor Caso
		I.3.3. Simulación con Diferentes Tamaños
		I.3.4. Cálculo de $T(n)$
	Sum	de enteros en base UNO
	2.1.	MT Determinista de 1 cinta
		2.1.1. Implementación Propuesta
		2.1.2. Determinación del Peor Caso
		2.1.3. Simulación con Diferentes Tamaños
		2.1.4. Cálculo de $T(n)$
	2.2.	MT Determinista de 2 cintas
		2.2.1. Implementación Propuesta
		2.2.2. Determinación del Peor Caso
		2.2.3. Simulación con Diferentes Tamaños
		2.2.4. Cálculo de $T(n)$
	2.3.	Evaluación de la mejora obtenida con la MT de 2 cintas

1. Palíndromos I

1.1. MT Determinista de 1 cinta

1.1.1. Implementación Propuesta

Figura 1: MT Determinista 1 cinta - Palíndromos

1.1.2. Determinación del Peor Caso

El peor caso ocurre cuando la entrada es palíndromo con cardinalidad par. Las palabras son de tamaño n=2k, según el espacio definido donde está contenido el conjunto de palíndromos. Cada recorrido completo de la cinta comprueba dos símbolos. Se recorren más símbolos cuando la palabra introducida es un palíndromo, ya que si no lo es, la máquina deja de recorrer la cinta.

Entrada	Pasos	Palíndromo
aaaa	15	SÍ
aabb	9	NO
aabbaa	28	SÍ
aabaaa	27	NO
babaaa	13	NO

Tabla 1: Peor caso

UC3M 3 de 9

1.1.3. Simulación con Diferentes Tamaños

Entrada	Tamaño	Pasos
λ	0	1
aa	2	6
abba	4	15
abaaba	6	28
ababbaba	8	45
ababaababa	10	66

Tabla 2: Diferentes tamaños

1.1.4. Cálculo de T(n)

N	0	2	4	6	8	10
Pasos	1	6	15	28	45	66
Diferencia 1		5	9	13	21	25
Diferencia 2		4	4	4	4	
Diferencia 3			0	0		

Tabla 3: Diferencias finitas

Dado que en la Diferencia 2 se encuentran valores constantes, es una ecuación de segundo grado:

$$T(n) = an^2 + bn + c$$

Despejando sus valores se obtiene:

$$T(0) = c = 1$$

$$T(2) = 4a + 2b + c = 6$$

$$T(4) = 16a + 4b + c = 15$$

$$a = \frac{1}{2}, \quad b = \frac{3}{2}, \quad c = 1$$

La complejidad de esta máquina de Turing es:

$$T(n) = \frac{1}{2}n^2 + \frac{3}{2}n + 1$$

Por tanto el valor de T(10) es:

$$T(10) = \frac{1}{2}10^2 + \frac{3}{2}10 + 1 = 50 + 15 + 1 = 66$$

1.2. MT Determinista de 2 cintas

1.2.1. Implementación Propuesta

UC3M 4 de 9

Figura 2: MT Determinista de 2 cintas - Palíndromos

1.2.2. Determinación del Peor Caso

En este caso, todos los ejemplos del mismo tamaño tardan lo mismo, independientemente de si son palíndromos o no.

Entrada	Pasos	Palíndromo
aaaa	15	SÍ
aabb	15	NO
aabbaa	21	SÍ
aabaaa	21	NO
babaaa	21	NO

Tabla 4: Peor caso

1.2.3. Simulación con Diferentes Tamaños

	1	
Entrada	Tamaño	Pasos
λ	0	4
aa	2	9
abba	4	15
abaaba	6	21
ababbaba	8	27
ababaababa	10	33

Tabla 5: Diferentes tamaños

1.2.4. Cálculo de T(n)

N	0	2		4		6		8		10
Pasos	3	9		15		21		27		33
Diferencia 1		6		6		6		6		6
Diferencia 2			0		0		0		0	

Tabla 6: Diferencias finitas

UC3M 5 de 9

Dado que en la Diferencia 1 se encuentran valores constantes, es una ecuación de primer grado:

$$T(n) = an + b$$

Despejando sus valores se obtiene:

$$T(0) = b = 3$$
$$T(2) = 2a + b = 9$$

$$a = 3, b = 3$$

La complejidad de esta máquina de Turing es:

$$T(n) = 3n + 3 = 3(n+1)$$

Por tanto el valor de T(10) es:

$$T(10) = 3(10+1) = 33$$

1.3. MT No Determinista de 2 cintas

1.3.1. Implementación Propuesta

Figura 3: MT No Determinista de 2 cintas - Palíndromos

1.3.2. Determinación del Peor Caso

En este caso, todos los ejemplos del mismo tamaño tardan lo mismo, independientemente de si son palíndromos o no. Por ese motivo no es necesario realizar la comprobación para determinar el peor caso.

1.3.3. Simulación con Diferentes Tamaños

1.3.4. Cálculo de T(n)

Nota: Para poder aceptar lambda es necesario utilizar una regla especializada, que hace que no se cumplan las diferencias finitas, añadiendo un paso más. Para el cálculo de T(n) se ignora este primer caso.

Dado que en la *Diferencia 1* se encuentran valores constantes, es una ecuación de primer grado:

$$T(n) = an + b$$

UC3M 6 de 9

Entrada	Tamaño	Pasos
λ	0	2
aa	2	3
abba	4	5
abaaba	6	7
ababbaba	8	9
ababaababa	10	11

Tabla 7: Diferentes tamaños

N	0	2		4		6		8		10
Pasos	2	3		5		7		9		11
Diferencia 1		1		2		2		2		2
Diferencia 2			1		0		0		0	

Tabla 8: Diferencias finitas

Despejando sus valores se obtiene:

$$T(2) = 2a + b = 3$$

$$T(4) = 4a + b = 5$$

$$a = 1, b = 1$$

La complejidad de esta máquina de Turing es:

$$T(n) = n + 1 \forall n > 0$$

Por tanto el valor de T(10) es:

$$T(10) = 10 + 1 = 11$$

UC3M 7 de 9

2. Suma de enteros en base UNO

2.1. MT Determinista de 1 cinta

2.1.1. Implementación Propuesta

Figura 4: MT Determinista de 1 cinta - Suma de enteros en base UNO

2.1.2. Determinación del Peor Caso

En este problema el peor caso se encuentra cuando la parte izquierda de la suma está vacía y la parte derecha tiene todos los '1'. Esto se debe a que por cada '1' en la parte derecha, la máquina de Turing tiene que recorrer la tira entera hasta la izquierda.

Entrada	Pasos	Resultado
1\$11	28	111
11\$1	19	111
111\$	10	111
\$111	37	111

Tabla 9: Peor caso

2.1.3. Simulación con Diferentes Tamaños

Entrada	Tamaño	Pasos
\$	1	4
\$1	2	11
\$11	3	22
\$111	4	37
\$1111	5	56

Tabla 10: Diferentes tamaños

UC3M 8 de 9

2.1.4. Cálculo de T(n)

N	1	2	3	4	5
Pasos	4	11	22	37	56
Diferencia 1		7	11	15	19
Diferencia 2		4	4	4	
Diferencia 3			0	0	

Tabla 11: Diferencias finitas

Dado que en la Diferencia 2 se encuentran valores constantes, es una ecuación de segundo grado:

$$T(n) = an^2 + bn + c$$

Despejando sus valores se obtiene:

$$T(1) = a + b + c = 4$$

$$T(2) = 4a + 2b + c = 11$$

$$T(3) = 9a + 3b + c = 22$$

$$a = 2, \quad b = 1, \quad c = 1$$

La complejidad de esta máquina de Turing es:

$$T(n) = 2n^2 + n + 1$$

Por tanto el valor de T(10) es:

$$T(10) = 2 * 10^2 + 1 * 10 + 1 = 200 + 10 + 1 = 211$$

2.2. MT Determinista de 2 cintas

- 2.2.1. Implementación Propuesta
- 2.2.2. Determinación del Peor Caso
- 2.2.3. Simulación con Diferentes Tamaños
- 2.2.4. Cálculo de T(n)

2.3. Evaluación de la mejora obtenida con la MT de 2 cintas

UC3M 9 de 9