BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公表特許公報(A)

(11)特許出顧公表番号 特表2000-514136 (P2000-514136A)

(43)公表日 平成12年10月24日(2000.10.24)

(51) Int.Cl.		識別記号	Γİ	•	テーマコード(参考)
C 2 3 C	16/50		C 2 3 C 1	16/50	В
H01J	37/32		H01J 3	37/32	
H01L	21/205		H01L 2	21/205	

審查請求 未請求 予備審查請求 有 (全30頁)

		審査請求	杉間求 予備審査開求 有 (全30貝)
(21)出願番号 (86) (22)出願日 (85)翻訳文提出日 (86)国際出願番号	特題平10-504108 平成9年6月2日(1997.6.2) 平成10年12月21日(1998.12.21) PCT/US97/09028		ラム リサーチ コーポレイション アメリカ合衆国 カリフォルニア州 94538-6470 フレモント,クッシング パークウェイ 4650
(87)国際公開番号 (87)国際公開日 (31)優先権主張番号 (32)優先日	WO98/00576 平成10年1月8日(1998.1.8) 08/672,315 平成8年6月28日(1996.6.28)	(72)発明者	マクミリン, プライアン アメリカ合衆国 カリフォルニア州 94538 フレモント, ガラウデッド ドラ イブ 39469 アパートメント 110
(33)優先権主張国	米国 (US)	(72)発明者	グエン, ホーン アメリカ合衆国 カリフォルニア州 94506 デンビル, ベント オーク コー ト 50
		(74)代理人	弁理士 大塚 康徳 (外1名) 最終頁に続く

(54) 【発明の名称】 高密度プラズマ化学蒸着装置および方法

(57)【要約】

化学蒸着装置のような処理に用いるプラズマ処理システ ムであって、プラズマ処理チャンパ(140)と、前記 処理チャンパ内で基板 (120) を支持する基板支持体 (130) と、前配基板支持体に対向する内側表面を有 し、前記処理チャンパ壁を形成する誘電体(155) と、処理ガスを前記チャンパに前記基板に向けて供給し するガス供給部と、前記誘電体を通じてチャンパ内にR Fエネルギーを誘導結合させ、前配処理ガスをプラズマ 状態に励起する、平面コイル (150) のようなRFエ ネルギー源を有する。前記ガス供給部は、数種類のガス あるいは混合ガスをチャンパ内に供給する第一ガスリン グ(170)と第二ガスリング(160)を含んでもよ い。前記ガス供給部は更に、前記第一ガスリングに連結 した注入器 (180) を含み、前記注入器はガスをチャ ンパ内に基板に向けて注入する。前記プラズマ処理シス テムは、処理中に第一ガスリングを冷却する冷却機構を 含んでもよい。

FIG. 2a

【特許請求の範囲】

1. プラズマ処理システムであって、

プラズマ処理チャンバと、

前記処理チャンパ内で基板を支持する基板支持体と、

前記基板支持体に対向する内側表面を有する、前記処理チャンパ壁を形成する 誘電体と、

処理ガスを前記チャンバに供給するための穴を有し、前記穴の少なくとも何個 かが前記基板の露出表面に対し急角度で交差するガス注入軸に沿って前記処理ガ スを注入するように設けられたガス供給手段と、

前記基板を処理するために、前記誘電体を通じチャンパ内にRFエネルギーを 誘導結合させ、前記処理ガスをプラズマ状態に励起するRFエネルギー源とを有 することを特徴とする。

- 2. 前記システムは化学蒸着システム、あるいはプラズマエッチングシステムであることを特徴とする請求項1に記載のシステム。
- 3. 前記RFエネルギー源は平面あるいは非平面コイルを含むことを特徴とする請求項1に記載のシステム。
- 4. 前記ガス供給手段は、プラズマエッチング処理、ストリッピング処理、あるいはクリーニング処理のため、ハロゲンガス及び/又は酸素含有ガスを供給することを特徴とする請求項2に記載のシステム。
- 5. 前記ガス供給手段は、少なくとも多少のガスあるいは混合ガスが前記基板に向けて供給されるように、ガスあるいは混合ガスを前記チャンバに供給する第 一ガスリングを含むことを特徴とする請求項1に記載のシステム。
- 6. 前記ガス供給手段は更に、追加のガスあるいは混合ガスを前記チャンバに

供給する第二ガスリングを含むことを特徴とする請求項5に記載のシステム。

7. 前記ガス供給手段は前記第一ガスリングに連結する注入器を更に含み、前記注入器は、少なくとも多少の前記ガスあるいは混合ガスが前記基板に向けられるように、ガスあるいは混合ガスを前記チャンバに注入することを特徴とする請求項5に記載のシステム。

- 8. 前記注入器は前記基板外縁付近あるいは外側に位置することを特徴とする 請求項7に記載のシステム。
- 9. 前記注入器は、前記基板の露出表面に対し15度を越える角度でチャンバ内に前記ガスあるいは混合ガスを注入し、及び/又は、前記注入器はガスあるいは混合ガスから複数のガス流を、お互いに基板上の領域で重なり合うように形成することを特徴とする請求項7に記載のシステム。
- 10. 前記第一ガスリングは片持ち梁により支持されていることを特徴とする請求項5に記載のシステム。
- 11. 処理中、前記第一ガスリングを冷却する冷却機構を更に備えることを特徴とする請求項5に記載のシステム。
- 12. 前記冷却機構は、基板処理中の過熱を防ぐために、非導電性の冷却液を供給する手段を備えることを特徴とする請求項11に記載のシステム。
- 13. 前記注入器は、少なくとも多少のガスあるいは混合ガスを音速又は超音速で注入することを特徴とする請求項7に記載のシステム。
- 14. 前記ガス供給手段はシリコン含有ガスを供給し、基板をプラズマガスに接触させ、各基板上にシリコン含有層を蒸着することにより、処理チャンパ内で

前記基板を連続的に処理することを特徴とする請求項1に記載のシステム。

- 15. 前記穴の数個が、基板の露出表面に交差しないような方向に処理ガスを供給することを特徴とする請求項1に記載のシステム。
- 16. 基板上に層を蒸着する方法であって、

処理チャンバ内の基板支持体上に基板を配置し、特に処理チャンバ壁を形成する誘電体の内側表面が基板支持体に対向しており、

穴のあいたガス供給手段から前記処理チャンバに処理ガスを供給し、特に前記 穴の内の少なくとも数個がガス注入軸に沿って前記処理ガスを注入し、前記注入 軸は前記基板の露出表面に対し急角度で交差しており、

前記誘電体を通じてチャンバ内にRFエネルギーを誘導結合させることによって、前記処理ガスをプラズマ状態に励起し、特に前記処理ガスは、物質層が前記露出表面に蒸着されるように、基板の露出表面とプラズマ位相反応することを特

徴とする。

- 17. 前記ガス供給工程は、第一ガスリングから少なくとも多少のガスあるいは混合ガスを供給する工程を含み、少なくとも多少の前記ガスあるいは混合ガスは、前記基板に向けられていることを特徴とする請求項16に記載の方法。
- 18. 前記ガス供給工程は、追加のガスあるいは混合ガスを第二ガスリングから供給する工程を更に含むことを特徴とする請求項17に記載の方法。
- 19. 注入器が前記第一ガスリングに連結されており、前記注入器は少なくとも多少の前記ガスあるいは混合ガスを前記チャンバ内に前記基板に向けて供給することを特徴とする請求項17に記載の方法。
- 20. 前記注入器は前記基板外縁付近あるいは外側に位置することを特徴とする請求項19に記載の方法。
- 21. 前記注入器は、前記基板の露出表面に対し15度を越える角度で、チャンパ内に少なくとも多少の前記ガスあるいは混合ガスを注入することを特徴とする請求項19に記載の方法。
- 22. 前記処理ガスは、平面コイル型のRFアンテナによって励起されることを特徴とする請求項16に記載の方法。
 - 23. 前記処理ガスは、非平面コイル型のRFアンテナによって励起されることを特徴とする請求項16に記載の方法。
- 24. 前記第一ガスリングは片持ち梁により支持されており、前記方法は、処理中、前記第一ガスリングを冷却する工程を更に含むことを特徴とする請求項17に記載の方法。
- 25. 前記冷却工程は、基板処理中に第一ガスリングが過熱するのを防ぐために、非導電性の冷却液を、第一ガスリングに接触した熱伝達領域内を通過させる工程を含むことを特徴とする請求項24に記載の方法。
- 26. 前記基板に蒸着された前記物質層はシリコン含有層を含むことを特徴と する請求項22に記載の方法。
- 27. 基板をプラズマガスに接触させることにより、処理チャンバ内で前記基板が連続的に処理されることを特徴とする請求項16に記載の方法。

28. 前記穴の数個は、基板の露出表面に交差しないような方向に処理ガスを供給することを特徴とする請求項16に記載の方法。

【発明の詳細な説明】

高密度プラズマ化学蒸着装置および方法

技術分野

本発明は、高密度プラズマ化学蒸着反応装置において反応物質を基板に供給するシステム及び方法に関するものであり、特に本発明は、高密度プラズマ化学蒸着反応装置内で基板を処理する際、ガス注入系を介して反応物質を集中的に基板に向けて供給するとともに、ガス注入機器を熱制御するためのシステム及び方法に関するものである。

背景技術

真空処理チャンバは、処理ガスを真空チャンバに供給し、そのガスに高周波フィールドを印加することによって基板上に原料を化学蒸着(CVD)する際に一般的に用いられる。集積回路処理のためのガス分配システムが数多く知られているが、大多数の公知システムはプラズマエッチング、あるいはプラズマCVD(PECVD)用に設計されている。従来のガス分配システムでは、典型的には、反応物質を比較的低い流量で供給する。基板上に均一に分配されるよう、シャワーヘッド式ガス注入系及び拡散搬送系が共通して用いられている。

こういった公知システムでは、例えば密封処理や誘電性物質による金属間ギャップ充填処理といった、高密度プラズマ化学蒸着(HDPCVD)処理のための最適化が行われていない。シランやシラン基物質、例えばSiH3、SiH2、SiH等は高い粘着係数を持つため、HDPCVDでは、シラン族等の反応物質を基板上へ集中的に供給することが重要である。シランを基板上に優先的に導くことにより、基板の堆積速度が最大限に増し、反応装置内の様々な表面への成膜が最小限に抑えられるため効果的である。

HDPCVDにおいてシランを効果的に利用するには、反応ガスを基板上のすぐ近くから、高流量でしかも均一に供給する必要があり、そうすることで均一で 品質の高い膜を高速度で堆積することができる。シャワーヘッドシステムを基板 の近くに設置すると、プラズマ内のイオン拡散範囲を制限してプラズマと蒸着の

均一性を損なう恐れがあるため、理想的ではない。拡散システムは、処理中の基

板以外の表面に反応物質を蒸着させるため、HDPCVDに適していない。基板以外の表面への蒸着は、反応ガスを非効率的に使用することとなり、所望の堆積速度と基板処理量を達成するのにより高い流量が必要になる。より高い流量の反応ガスを用いることは、余分なガスを必要とし、処理チャンバ内の低圧を維持するための注入量を増加させる必要があるためコストがかかる。更に、チャンバ内における基板以外の表面への蒸着は、膜とチャンバ内側表面の膨張差による微粒子の問題(剥離)につながり、壁の状態が変わることにより処理が変化してしまう。その結果、チャンバ内の堆積物を取り除くためにチャンバを頻繁にクリーニングすることになるため、さらに基板の処理量が低下することになる。

ガス注入口からプラズマ処理チャンパにガスを供給する、プラズマエッチングシステムが提案されている。図1に示すように、このシステムは、チャンパ140内でプラズマを発生させるプラズマ源110と、基板支持体130上の基板120を処理するために処理ガスを処理チャンパ140に供給するガス注入口が連結したガスリング167によって構成されている。このようなシステムはさらにガスリング160を含んでもよい。従来は、処理ガスを基板120上に集中させることによって、こういったシステムにおける堆積速度を高めていた。典型的には、ガスリング167から基板120までの距離を変えることによって行われていた。処理ガスが基板中心の上方領域に集中すればするほど、最高堆積速度は速くなる。残念なことに、基板の中心付近に処理ガスを集中させる際、基板の外側の堆積速度は中心ほど上がらない可能性があり、蒸着均一性を低下させる恐れがある。

従って、HDPCVDのために最適化された、堆積速度と蒸着均一性を向上させるためのガス分配システムが必要性とされる。

発明の開示

本発明は、均一で高流量の反応ガスを優先的に基板表面上に集中して供給する HDPCVD用ガス供給システムを提供し、これにより基板上の堆積速度を最大 にし、チャンパ内におけるクリーニングの必要性を最小限に抑えることを目的と

する。また本発明の他の目的は、チャンパ内側表面の剥離を最小限に抑え、注入

機器内の熱分解に起因する粒子形成を最小限にすることでチャンパ内の粒子数を減らすために、ガス注入機器を熱制御することである。また、さらに本発明の他の目的は、従来のガス供給システムよりも、堆積速度と蒸着均一性とを向上させることである。

本発明の一態様によれば、基板を処理するプラズマ処理システムを提供する。このプラズマ処理システムは、プラズマ処理チャンバと、前記処理チャンバ内で基板を支持する基板支持体と、前記基板支持体に対向する内側表面を有し、前記処理チャンバ壁を形成する誘電体と、処理ガス(一種類以上の反応ガス及び/又は一種類以上の不活性ガス等)を前記チャンバ内そして基板に向けて供給するためのガス供給手段と、前記誘電体を通じてチャンバ内にRFエネルギーを誘導結合させ、前記処理ガスをプラズマ状態に励起するRFエネルギー源とを有することを特徴とする。前記ガス供給手段は、注入器を含む、あるいは含まない、一以上のガスリングを有し、前記注入器は、少なくとも多少の処理ガスが前記基板の露出表面に交差するように、ガスを処理チャンバ内に注入する。処理中に前記ガス供給手段を冷却するための冷却機構を設けて、ガスリング表面の膜の剥離を最小限に抑え、処理ガスの熱分解を引き起こす恐れのある過熱を防ぐようにしてもよい。

また、本発明の他の態様によれば、基板を処理する方法を提供する。この方法は、誘電体の内側表面が処理チャンパ壁を形成し、且つ基板支持体に対向した処理チャンパ内の基板支持体上に基板を配置する工程と、前記処理チャンパに処理ガスを供給する工程と、前記誘電体を通じてチャンパ内にRFエネルギーを誘導結合させることによって、前記処理ガスをプラズマ状態に励起する工程とを含む。基板をプラズマガスに接触させることにより、処理チャンパ内で基板が連続的に処理されるようにしてもよい。少なくとも多少の処理ガスが基板に向けて供給されるように、処理ガスをチャンパ内に注入してもよい。更に、剥離を最小限にし過熱を防ぐため、ガス供給機器を処理中冷却するようにしてもよい。

図面の簡単な説明

図1は従来のプラズマ処理システムを示す図である。

図2a、図2bは本発明の第一実施例に係るプラズマ処理システムを示す図である。

図3 a、図3 b は、それぞれ図2 a、図2 b に示すプラズマ処理システムにおいて、注入器の放射状の配置と注入方向とを変更することによって得られる効果を示す実験データである。

図4は、本発明に係るプラズマ処理システムに流れ込む典型的なガス流線を示した図である。

図5は本発明に係る基板上に向けて噴射されたガスの典型的な流れ方向を質的に示した図である。

図6は本発明の第二実施例に係るプラズマ処理システムを示す図である。

図7は本発明の第三実施例に係るプラズマ処理システムを示す図である。

図8a-図8dは、本発明に係るプラズマ処理システムに用いられる典型的な 注入器の詳細図である。

図9a-図9c及び図10a-図10cは、本発明に係る典型的な注入器とガスリングの詳細図である。

図11は本発明に係る典型的な注入器の詳細図である。

発明を実施するための最良の形態

図2a、図2bは本発明の第一実施例に係るプラズマ処理システムを示す。図2a、図2bにおいて、基板120を処理するプラズマ処理システムは、基板支持体130と基板支持体を含む処理チャンバ140によって構成されている。基板120としては、例えば、直径4インチ、6インチ、8インチ、12インチの半導体ウェハーや、フラットパネル表示装置用のガラス基板等がある。基板支持体130は、例えば高周波(RF)バイアスされた電極を含んでもよい。基板支持体130は処理チャンバ140の底壁から支持してもよいし、処理チャンバ140の側壁から伸びた片持ち梁により支持しても良い。基板120は機械的または静電的に電極130に固定するのがよい。処理チャンバ140として、例えば真空チャンバを採用するのがよい。

処理対象である基板は処理チャンバ140に挿入される。処理チャンバ内にお

いて、処理ガスを高密度プラズマ状態に励起することにより基板が処理される。エネルギー源はチャンバ内での高密度の(例えば10¹¹~10¹²ions/cm³)プラズマを維持する。例えば、図2a、図2bに示す平面型マルチターンコイルのようなアンテナ150、あるいは非平面型マルチターンコイル、あるいは適切な高周波(RF)ソース及び適切な高周波(RF)インピーダンス整合回路から電力供給された他の形をしたアンテナが、高周波(RF)エネルギーをチャンバ内に誘導結合させて高密度プラズマを与える。しかし、プラズマは例えばECR、平行平板、ヘリコン、ヘリカル共鳴器等の他のソースによって発生させることもできる。チャンバ内を所望の圧力(例えば、5Torィ未満、好ましくは1~100mTorr)に維持するため、適切な真空ポンプをチャンバに設けてもよい。アンテナ150と処理チャンバ140内部との間には、図2a及び図2bに示すように均一の厚みをもった平面型誘電体窓155のような誘電体窓、または非平面型誘電体窓が設けられており、処理チャンバ140上部に真空壁を形成している。

処理ガスをチャンバに供給するガス供給部は、誘電体窓155の下に設けられた第一ガスリング170を含む。このガスリング170は、基板の上に位置するチャンバハウジングに機械的に取り付けられる。ガスリング170は、例えばアルミニウム又は陽極酸化したアルミニウムで形成される。

また、ガス供給部は、誘電体窓155の下に設けらたれた第二ガスリング16 Oを含む。処理ガスは、ArやO2のような一種類以上のガスを含み、第二ガスリング160の穴を通ってチャンバ140に供給される。第二ガスリング160としては、適切なものであればどのようなガスリングを用いてもよい。第二ガスリング160は、図2aに示すように、アルミニウムまたは陽極酸化したアルミニウムで形成された任意の仕切り165を隔ててガスリング170の上に配置される。あるいは、図示されていないが、第二ガスリング160を、ガスリング170の下の、ガスリング170と基板120との間に配置してもよい。あるいは、図2bに示すように、ArとO2をチャンバ床につなげたガスリング162の穴から供給するようにして、仕切り165で誘電体窓155と第一ガスリング1

Oとを分離してもよい。

ガス供給部は、例えばSiH4等の処理ガスあるいはSiF4やTEOS等のシリコン含有関連ガスと言った処理ガスの少なくともいくらかを基板120に導く為に、第一ガスリング170に連結した複数の着脱可能な注入器180を更に含んでもよい。これらのガスは、注入器180から注入口187を通じて基板に供給される。さらに、反応ガスを第一ガスリング170の穴を通じて供給してもよい。この注入器は、アルミニウム、陽極酸化したアルミニウム、石英、Al2〇3のようなセラミックス等の適当な物質で形成すればよい。図2aと図2bでは注入器が2つ示されているが、注入器はいくつ用いてもよい。例えば、注入器を第一ガスリング170の各穴に接続してもよい。200mmの基板に対し、8から32個の注入器を直径200mmから210mmのガスリング170に用いるのが好ましい。

注入器180は基板120の平面の上方に位置しており、その注入口は基板から適切な距離、例えば3センチメートルから10センチメートル離れて設置される。好適な実施形態によれば、注入器は基板の内側や、基板外縁付近または基盤外縁から例えば0から5センチメートル外側に離れて設置される。これにより、粒子の断片が注入器から基板上に剥がれ落ちて、基板を汚すことがなくなる。注入器は全て同じ長さでよいし、あるいは堆積速度と均一性を高めるために異なる長さのものを組み合わせてもよい。注入器の向きは、少なくとも注入器の何本かが基板の露出表面に交差する方向に処理ガスを注入するように配置されている。

基板への処理ガス供給を主に拡散に頼っている従来のガス注入系の設計に対し、本発明の一実施例に係る注入器は、急角度で基板の露出表面に交差する方向に処理ガスを注入するよう配置されている。注入角度又は注入軸は、基板の水平面から約15度から90度未満の範囲がよく、好ましくは15度から45度である。図11に示すように、注入角度又は注入軸は、注入器の軸に沿っていてもよいし、あるいは注入器の軸に対し90度の角度まで傾けてもよい。注入器の注入口の直径は0.010から0.060インチの範囲がよく、好ましくは0.020から0.040インチがよい。注入器180の中空コア部には、注入口187の直径の約2倍の大きさに穴をあけ、音波流が注入器の中核部でなく、確実に注入

ロで

起るようにしてもよい。 SiH_4 の流量は200mmの基板では $25\sim300s$ ccmが好ましいが、より大きい基板の場合はこれより多い量でよい。

注入口が狭く、注入器が少なく、SiH₄の流量が多い為に、ガスリング17 0とチャンパ内部との間に高い差圧が生じる。例えば、ガスリングにおける圧力が1Torrより大きく、チャンパ内部の圧力が約10mTorrの時、差圧は約100:1となる。これにより、注入器の注入口で音波流が詰まってしまう。 注入出口で超音波流を与えるよう、注入器内側にも穴を設けてもよい。

SiH₄を音速で注入すると、プラズマが注入器に入り込むのを抑制することになる。この設計により、プラズマ誘導により引き起こされるSiH₄の分解を防ぎ、これにより、ガスリング内や注入器の延長管内でアモルファスシリコン残留物が形成されるのを防ぐ。

本実施形態では、処理中にチャンバ壁とガスリングの温度を好ましくは約100°C未満に抑えるために、対流冷却と放射冷却とを組み合わせて用いても良い。又は、好ましくは-20°Cから100°Cの流体をチャンバ内に循環させて、チャンバ壁とガスリングの温度をコントロールしてもよい。ガスリングの温度は通常100°C未満に維持されているものであるので、ガスリング内ではSiH4の熱分解は見られない。更に、ガスリングは効果的に電気的接地がなされ、金属チャンバに囲まれているため、ガスリング内でプラズマ発生を妨げるような強い電界は、ガスリング内に存在しない。

従来のガス分配システムと比較すると、本実施例に係るプラズマ処理システムは、シリコン含有処理ガスを基板上方に集中させ、この処理ガスを基板の特定の領域上に優先的に導くことにより、堆積速度を高め、基板の均一性を向上させる。以下に、本発明に係るプラズマ処理システムの性能が向上したことを示す実験データと、関連する理論的背景を簡単に説明する。

図3 a は、ガス注入器が基板に対して異なる位置に配置されているプラズマ処理システムにおける2つの典型的なSiO2蒸着特性を示す。これらのデータは、最適化されていない第一ガスリング170を用いて、同じ蒸着条件下(プラズ

マ源の電力=2000Watt、電極パイアス電力=2000Watt、SiH 4流量=180sccm、O2流量=300sccm、圧力12mTorr、基板

平面に対し22.5度の下方向注入角度)で得られたものである。ケース1(白 抜き四角形)は、注入器180(周囲に等間隔で16個設置されている)の注入口が基板外縁から外側に約0.5cm離れた所に位置する場合の実験データを示しており、ケース2(白抜き三角形)は、注入口187が基板外縁から外側に約2cm離れた所に位置する場合の実験データを示している。この両方の例において、注入口187は基板120の上方、約5センチメートルの所に位置している。(一般的には、本発明に係るプラズマ処理システムでは、注入口187の垂直位置が基板120の上方に数センチメートルあるいはそれ以上離れている限り、垂直位置よりも注入口の放射位置の方が堆積速度にはるかに大きな影響を与える。)

ケース1の場合、全体的な堆積速度は10800オングストローム/分であり、ケース2の9200オングストローム/分よりも速い。これは、ケース1では、シリコン含有処理ガスが基板中心の上部により集中しているからである。しかし、ケース1では堆積速度が増加する代わりに均一性が低下しており、ケース2の4.1%に対して、ケース1では8.1%(1σ)となっている。基板中心部上またはその上方にシリコン含有処理ガスをより集中させると、基板の外側(放射)領域における堆積速度は、中心部における堆積速度と同じ比率で増加しない。一方、注入口187をもっと外側に配置すると、全体的な堆積速度は低下するが均一性は向上する。したがって、基板に対し注入角度を一定(この場合22.5度)にするためには、注入先の放射位置を変化させることにより、堆積速度と均一性のどちらかを取ることになる。

しかしながら、ガスリング170のガス注入方向に関しては、基板の特定領域上に優先的に処理ガスを導くよう、各注入器について最適化できる。例えば、ガスリング170をケース1用に最適化する場合、基板外縁のすぐ内側の基板表面上にシリコン含有ガスを優先的に導くよう、注入角度を調節することができる。これにより、基板上の部分的な堆積速度を上昇させることになり、均一性の向上

につながる。

図3bは実験データであり、ある与えられた注入位置に対して適切な注入角度 を選択することにより、本実施例に係るプラズマ処理システムの堆積速度と均一

性の最適化が可能であることを示している。図3bに示すデータは、同じ蒸着条件下で(プラズマ源の電力=2500watt、電極バイアス電力=2000Watt、SiH4流量=250sccm、O2流量=350sccm、圧力14mTorr)、同じ注入位置で(16個の注入器が周囲に等間隔で設置され、基板から約2センチメートル外側で約6センチメートル上方の位置に設けられている)、ガスリング170を用いて得られたものである。ケース3(白抜き円)では注入角度が0度(基板と平行)であり、ケース4(黒べた四角形)では注入角度が下方向(基板方向)に30度であった。ケース3では、堆積速度は10800オングストローム/分で均一性は5.3%であり、基板の外縁で堆積速度が最低だった。図3bに示す結果と同様に、ケース3の均一性は、注入位置を基板からより外側に移動することによって向上させることが可能である。しかしまた、そうすることにより堆積速度が著しく低下してしまう(図3aでは、均一性はおよそ2倍になったが堆積速度は15%低下した)。注入角度をケース4のように下方向30度に調整すると、全体的におよそ同程度の堆積速度を維持しながら、基板の外側領域での蒸着が増加し、均一性が2.5%向上する。

この例は、堆積速度を低下させることなく蒸着均一性を向上させるという、本 発明に係るプラズマ処理システムがもたらす予測できなかった効果を示した。こ れは、半導体処理における基板の処理量増加に大いに活用することができる。

本実施例に係るプラズマ処理システムでは、典型的なHDPCVD条件下で、拡散させるのではなく、むしろ指向性を持って均一にSiH4の流束を基板上に供給する。これによりほとんどの場合、 $1\sigma < 3\%$ という一定の蒸着均一性が生まれる。これは、基板上の各点における注入器の流束総量がほぼ等しくなるように、個々の注入スプレーを注意深く重ねあわせることにより達成できる。

基板中心部近くの堆積速度を著しく減少させることなく、基板の外縁近くの堆積速度を増加させるための理論的な根拠は下記の記述から明らかである。典型的

には、連続流量の限界点で音波ノズルからの自由噴流膨張が起こり、これがバレル衝撃/マッハディスクの形成による制限膨張を引き起こす。このように膨張が抑制された状態では、比較的少数の注入器による基板上への均一な流東分配を達成することは期待できない。しかし本発明によれば、噴流及びチャンバ周囲の密

度が非常に低いので、噴流が自由分子流状態へと急速に遷移する。

自由分子流状態では、噴流が非常に希薄になるため衝撃構造が形成されないので、噴流は効果的な凍結(一定)温度と速度で単純にプラントルーマイヤ膨張することになる。図2は注入器からのガス噴流の典型的な流れを流線で示す。図2の膨張状況では、流線は点源から放射線状に広がっているように見える。噴流密度は、各流線に沿って点源からの距離の二乗に反比例して低下する。それぞれの流線間(極角度Θ)の密度の差は、極座標Rとはほぼ無関係である。したがって、例えば、直径 0.020インチの注入口をもつ16個の注入器から、典型的な流量である200sccmのSiH4を圧力10mTorrのチャンバに、ガスリング圧3.9Torrで注入した場合、円錐膨張の開先角度は約150度である。この膨張は発散が少ないため、純粋な分子吹き出しによるコサイン分配というよりも、平行分配に近い。

中心線の密度は、噴流出口からの距離の二乗に従って低下する。すなわち、部分ガス密度 ρ は、

- (1) ρ (R, θ =0) α (ρ (R=0, θ =0)) / R² で表される。この時、Rと θ は噴流出口を中心とした極座標であり、 θ =0が噴流軸として定義されている。また、このような膨張における密度は、c o s $^2\theta$ に応じて低下する。すなわち
- (2) ρ (R, Θ) = ρ (R, O) cos² (π Θ /2 ϕ) この時 ϕ は、注入されるガスの比熱率に依存する実験に得られる定数である。例えば、窒素の場合 ϕ =1.66である。式1と式2を組み合わせると、噴流出口からの距離が噴流直径の数倍を超えた辺りから、速度が一定となることが分り、これにより、膨張中の流束 J は、位置の関数として次のように与えられる。
- (3) $J_{SiH4}(R, \theta) = constant \rho(R, \theta)$

ここで、JSiH4はSiH4の流束を示す。

図5は、均一なSiH4の流束をいかに基板上に導くかを質的に示した図である。図5において、噴流の中心線に沿って基板上の点Aに当たる流束が、所望の流束であるとする。軸からずれた点Bでは、軸と噴流との放射距離が短くなっているが、噴流中心線との流線角は大きくなっている。従ってRとΘに依存する流束は相補的であり、これにより均一性の高い流束となる。言い換えれば、短縮された放射距離が噴流束を増加させ、増加した流線角度Θが流束を減少させる。軸からずれた点Cでは、点Aに対する放射位置も流線角も両方増加している。これは、基板中心におけるある注入器からの流束を減少させるが、基板外縁にある他の、例えば15個の注入器から噴出されるスプレー円錐を重ね合わせることによって相殺できる。基板上の他の地点についても同様の観測ができる。各噴流が大きく円錐状に膨張することにより、さらに均一性が高まる。

上記の単純な分析は、気相衝突を考慮していない。平均自由行程が約1cmであれば、 SiH_4 分子が基板に達する前に何回かの気相衝突が起こることが予想される。この衝突で指向性をもつ SiH_4 の流束が少々拡散するが、噴流は純粋な拡散ソースに比べてはるかに優れた指向特性を維持する。拡散的ではなく、むしろ指向性をもつという本発明に係るプラズマ処理システムの性質が、部分的堆積速度を高めることになる。

図6は本発明の第二実施例に係るプラズマ処理システムを示す。図6のプラズマ処理システムは図2aに示したものと同様であるが、図6の第一ガスリング170は片持ち梁により支持されており、水冷式であることが異なる。本実施例によれば、反応ガスは任意の方向に向けられたガスリング170の穴から供給される。好ましくは、ガスリングの穴のうちいくつかは、堆積速度を高めるために基板に向けてある。

ガスリング170は、図6に示す二つの独立した溶接管185、あるいは二重管構造を用いて水冷される。又はガスリング170の周りに、不図示の水冷管をらせん状に巻き付けてもよい。水冷却により、ガスリングの剥離を最小限留めるよう熱制御すると共に、高密度プラズマ暴露によるガスリングの過熱を防ぐ。

更に、放射冷却により、チャンバ壁とガスリングの温度を制限し熱分解を防ぐ ようにしてもよい。

図7は本発明の第三実施例に係るプラズマ処理システムを示す。図7によると、プラズマ処理システムは、片持ち梁により支持された水冷ガスリング170と 注入器180を含むようにしてもよい。ガスリング170はチャンパ床から支持 してもよい。

本実施例では、反応ガスは第一実施例で説明した方法と同様にして基板に注入される。放射冷却により、チャンバ壁とガスリングの温度を制限してもよい。更に、下側のガスリングは第二実施例で説明したような方法で水冷却してもよい。 従って第三実施例によれば、均一で指向性をもった基板上での蒸着が可能であり、ガスリングの剥離を最小限にとどめるようガス注入機器を熱制御できる。

図8a-8dは本発明に係るプラズマ処理システムの典型的な注入器を示す詳細図である。説明を簡単にするため、プラズマ処理システムの一部、例えばアンテナ150やガスリング160、170等の構成要素は図示されていない。図8aと8cは、基板120に対する注入器180の向きを示した例である。図8aでは、注入器180は基板120の平行面に対し約45度に設置されている。図8cでは、最適とは言えないが、他の例として注入器180は基板120の平行面に対し90度に設置されている。図示されていないが、注入軸(つまりガス流入方向)は、基板120の平行面に対し15度から45度が好ましい。

図8bと8dは、それぞれ図8aと8cに示す注入器180の詳細図である。 図8bと8dに示すように、注入器の中核部は注入口187の直径よりも大きい 。これにより、音波流が注入器の中核部内でなく、必ず注入口で起こる。

図9a-9cと図10a-10cは、本発明に係る典型的な注入器とガスリングを示す詳細図である。図9aは、ガスリング160と170及び注入器180の上面図である。図9bは、ガスリング160と170及び注入器180の底面図である。図9cは注入器180を上から見た詳細図である。

同様に、図10aと10bは、ガスリング160と170及び注入器180の 上面図と底面図である。図10cは、注入器180を上から見た詳細図である。 図10a、10b、10cは図9a、9b、9cと各々似ているが、下側のガス リング170のガス放出口の形が異なっている。

図11は、本発明に係る典型的な注入器の詳細図である。図11は、例えばインチ単位を用いて、注入器180の典型的な寸法を示す。図11に示すように、注入口187から注入される角度は、注入軸に対して0度から90度の範囲である。図8bと8dにも示したが、図11から明らかなように、注入器180の中核部は、注入器の注入口187の直径よりも大きい。これにより、音波流が注入器の中核部内でなく、必ず注入口で起こる。説明のため、注入器180の典型的な寸法を図9に示す。しかし、本発明の注入器はこの寸法に限るものではない。注入器は、その応用形態に応じて所望の寸法を選べる。

上記のガス注入システムは、高密度プラズマCVDシステムに関して説明したが、例えばエッチングなど他の処理にも採用できる。例えば、アルミニウムの塩素エッチングといった、主として化学エッチングシステムである、半導体応用分野におけるプラズマエッチングに用いてもよい。

本発明の動作について、その原理と好適な実施形態と態様について上記のように説明した。しかし、本発明は以上説明した特定の実施形態によって限定されて解釈されるものではない。従って、上述の実施形態は、本発明を限定するというより説明するためのものとみなすべきであり、次に示す請求の範囲によって定義される本発明の範囲から逸脱することなく当業者によって、それら実施形態における種々の変形例や態様が可能であることが認識されるべきである。

【図1】

FIG. 1

【図2a】

FIG. 2a

【図2】

[図4]

【図5】

【図3】

異なる注入器の位置における堆積速度の比較

FIG. 3a

ガム注入比較 (0°対下方向30°)

FIG. 8b

FIG. 8c

FIG. 8d

[図9]

FIG. 9a

FIG. 9b

【図10】

FIG. 10a

FIG. 10b

FIG. 11.

【国際調査報告】

INTERNATIONAL SEARCH REPORT al Application No PCT/US 97/09028 A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 C23C16/50 H01J37/32 C23C16/44 . According to International Patent Classification (IPC) or to both national chambication and IPC B. FIELDS SEARCHED Minimum documentation warched (classification system followed by classification symbols) IPC 6 C23C HD1J Decumentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data have consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* US 5 522 934 A (SUZUKI AKIRA ET AL) 4 1-3.16, X June 1995 17 see column 10, line 58 - column 11, line 20; figures 12,13 EP 0 709 875 A (APPLIED MATERIALS INC) 1 1-3,16, X May 1996 see column 4, line 41 - column 5, line 19; figures 1,2 EP 0 520 519 A (APPLIED MATERIALS INC) 30 December 1992 11,12, A 24,25 see page 17, line 41 - page 18, line 11 EP 0 641 013 A (APPLIED MATERIALS INC) 1 13 Α March 1995 see column 8. line 8 - column 10. line 24: claims 1,14,15; figure 6 X Patent family members are listed in annex. Further documents are based in the continuation of box C. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to anderstand the practiple or theory underlying the invention. "A" document defining the general state of the art which is not considered to be of particular relevance. "H" earlier document but puddished on or after the international filing date "X" document of persicular relevance, the claimed invention camot be considered rovel or cannot be considered to motive as inventive dry when the document is taken alone "I." document which may throw doubts no priority claim(s) or which it cited to establish the publication date of another citizen or other special reason (as specified) common to particular relevance, the claimed inventors cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person delited document referring to an oral discloture, tim, exhibition or other means m the art. discurrent published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of mailing of the externational search report Date of the actual completion of the international search 30.09.97 16 September 1997 Name and mailing address of the ISA Authorized officer Figropean Pacest Office, P.D. 5313 Patentian 2 NJ. 2240 IIV Ripwik Tel. (131-70) 340-3016 Fax (131-70) 340-3016 Patterson, A

Form PCT/SA/218 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern. sal Application No PCT/US 97/09028

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5522934 A	04-06-96	JP 8017748 A JP 8013169 A	19-01-96 16-01-96
EP 0709875 A	01-05-96	US 5597439 A JP 8239775 A	28-01-97 17-09-96
EP 0520519 A	30-12-92	JP 5206072 A US 5556501 A US 5574410 A US 5572170 A US 5392018 A EP 0552490 A EP 0552491 A	13-08-93 17-09-96 12-11-96 05-11-96 21-02-95 28-07-93 28-07-93
EP 0641013 A	01-03-95	US 5614055 A EP 0794553 A JP 7169703 A	25-03-97 10-09-97 04-07-95

Form PCT-8SA-210 (patent (smily anner) (July 1992)

フロントページの続き

EP(AT, BE, CH, DE, (81) 指定国 DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), OA(BF, BJ, CF , CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP(GH, KE, LS, MW, S D, SZ, UG), EA(AM, AZ, BY, KG, KZ , MD, RU, TJ, TM), AL, AM, AT, AU , AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, G B, GE, GH, HU, IL, IS, JP, KE, KG , KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, N O, NZ, PL, PT, RO, RU, SD, SE, SG , SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU

(72)発明者 パーンズ,マイケル アメリカ合衆国 カリフォルニア州 94123 サンフランシスコ,ベイ ストリート 1762

(72)発明者 パーニー,ブッチ アメリカ合衆国 カリフォルニア州 94588 プレザントン,レジェンシー ド ライブ 8045

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items check	ed:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.