Accelerating the calculation of correlation functions in redstar

Eloy Romero ¹, Jie Chen ¹, Robert Edwards ¹, Jefferson Lab ¹

Correlation functions evaluation

Context:

- Evaluation of Lattice Quantum Chromodynamics (LQCD) correlation functions coming from the integration over the fermionic quark fields
- Large number of graphs to evaluate especially for multi-hadron systems
- Each graph involves the contraction of many 2D (for mesons) and 3D (for baryons) tensors when using *distillation*

Impact:

- First three-body scattering amplitude computation directly from LQCD
- First calculations of an exotic meson decay estimating mass and branching fraction
- Relevant for on-going Jefferson Lab GlueX experiment

Examples

■ The correlation functions f_i are the result of the addition of tensor contractions that results in a single complex number

$$f_i = \sum_j f_{i,j}, \text{ where } f_{i,j} = \prod_k M_{I(i,j,k)}^{(i,j,k)} \in \mathbb{C}$$

Examples:

$$f_0 = M_{0,1}^{(0,0,0)} M_{0,1}^{(0,0,1)} + M_{0,1}^{(0,1,0)} M_{1,2}^{(0,1,1)} M_{2,0}^{(0,1,2)}$$

$$f_1 = M_{0,1,2}^{(1,0,0)} M_{0,3}^{(1,0,0)} M_{1,2,3}^{(1,0,0)}$$

- The $M_{I(i,j,k)}^{(i,j,k)}$ are distillation objects, that is, mesons, baryons, perambulators and generalized perambulators
- Mesons, perambulators and generalized perambulators have two distillation dimensions and two spin dimensions, while baryons have three of each

Implementation description

- Many multi-tensor contractions with common sub-expressions
- \blacksquare 2D and 3D tensors of dimension size \approx 100s
- Main GPU kernel:
 - Permutation of tensors
 - Contract two tensors at a time with batched GEMM
- All input tensors and the temporary tensors may not fit on a single GPU device
- Developed heuristics to:
 - Plan the contractions minimizing the maximum memory footprint
 - Eliminate redundant CPU/GPU memory transfers
 - Handle GPU memory oversubscription via smart eviction
 - Split the contractions among several GPUs minimizing communications
- Multiplatform implementation: CPU, NVIDIA GPUs, AMD GPUs, Intel GPUs (in progress)

Recent GPU optimizations

- Remove many host-device synchronizations
- Reduce by orders of magnitude the amount and volume of memory copies between device and host
- Incorporate heuristics to batch the contractions in a way that minimizes memory footprint
- Optimize functions managing baryons, the largest tensors on our runs

Test

- roper:
 - Main product: $M_{0,1,2}$ $M_{3,4,5}$ $M_{0,3}$ $M_{1,5}$ $M_{2,4}$
 - Tensor dimensions: 0, ..., 5 have size 128×2
- nucleon 3 pt:
 - Main product:

 $M_{0,1,2}$ $M_{3,4}$ $M_{5,6,7}$ $M_{0,5}$ $M_{1,3}$ $M_{2,6}$ $M_{4,7}$

- Tensor dimensions: 0, 1, 2 and 5, 6, 7 have size 64×2 , and 3, 4 has size 64×4
- Timings on a single AMD M250 device:

	Number	of $M_{I(i,j,k)}^{(i,j,k)}$	Read			Speedup from
Test	Total	Unique	from disk	TFLOPs	Time	prev. version
roper	1k	334	1 TiB	514	207 s	100x
nucleon 3 pt	71M	2k	1.8 TiB	1,100	900 s	200x

