Problem A. 字符串大师 II

Input file: stdin
Output file: stdout
Time limit: 1 second

Memory limit: 512 megabytes

对于一个字符串 S[1..n] 来说,定义 $border[i] = \max\{k|0 \le k < i, S[1..k] = S[i-k+1..i]\}$ 。比如对于 S=abacabaa,border[1..8]=[0,0,1,0,1,2,3,1]。

定义字符集为 60 的数字串 $G_1=1,G_k=G_{k-1}+k+G_{k-1}(k\geq 2)$,其中"+"表示字符串拼接,当 $k\geq 10$ 时将其作为一个整体而不是两个字符。例如: $G_4=1$ 2 1 3 1 2 1 4 1 2 1 3 1 2 1。

给定 k 和 p, 你的任务是对于 $S = G_k$, 求出 border[p] 的值。

Input

第一行包含一个正整数 $T(1 \le T \le 100000)$, 表示测试数据的组数。

每组数据包含一行两个正整数 $k, p(1 \le k \le 60, 1 \le p < 2^k)$ 。

Output

对于每组数据输出一行一个整数,即 border[p] 的值。

stdin	stdout
5	0
4 1	0
4 2	1
4 3	0
4 4	1
4 5	

Problem B. 超速摄像头

Input file: stdin
Output file: stdout
Time limit: 15 seconds
Memory limit: 512 megabytes

比特镇一共有 n 个路口,编号依次为 1 到 n。这些路口之间通过 n-1 条双向道路连接成了一棵树的结构。任意两点间都有且仅有一条直接或间接到达的路径。

为了建立更好的交通秩序,比特镇计划在某些路口安装超速摄像头,每个路口最多只能安装一个摄像头。同时为了不让人们的神经过于紧张,对于任意两点 u,v 的最短路径 (包括 u 和 v 两点),路径上安装的摄像头总数不能超过 k。

摄像头厂商小 Q 希望在满足以上限制的情况下,在比特镇安装尽可能多的超速摄像头。请写一个程序,帮助小 Q 找到最佳的安装方案。

Input

第一行包含两个正整数 $n, k(1 \le n, k \le 1000000)$, 分别表示点数和上限。

接下来 n-1 行,每行两个正整数 $u_i, v_i (1 \le u_i, v_i \le n, u_i \ne v_i)$,表示一条连接 u_i 和 v_i 的双向树边。

Output

输出一行一个整数,即最多能安装的超速摄像头的数量。

stdin	stdout
5 2	3
1 3	
2 3	
3 4	
4 5	

Problem C. 质数拆分

Input file: stdin

Time limit:

Output file: stdout

Memory limit: 512 megabytes

4 seconds

给定一个正整数 n,求方程 a+b+c+d=n 的解的个数,要求 a,b,c,d 都是质数,其中 a,b,c,d 可以相等。

Input

第一行包含一个正整数 $n(1 \le n \le 150000)$ 。

Output

输出一行一个整数,即解的个数。

stdin	stdout
9	4

Problem D. 航海计划

Input file: stdin

Output file: stdout

Time limit: 15 seconds

Memory limit: 512 megabytes

在比特海上一共有 n 座大陆,编号依次为 1 到 n。航海家小 Q 正位于 1 号大陆上,他计划航行去 n 号大陆。

这些大陆之间通过 m 条单向航线连接,每个大陆最多只会作为 10 条单向航线的起点。第 i 条航线起点为 a_i ,终点为 b_i ,耗费 d_i 天。这意味着如果在第 j 天从 a_i 号大陆出发,那么会在第 $j+d_i$ 天到达 b_i 号大陆。小 Q 可以在任何大陆留宿任意长的时间。但是,一旦选择了某条航线,中途不能取消,也不能改变路线和到达时间。小 Q 也不能选择不存在的航线,因为开辟新航线非常危险。在一开始 (第 1 天),小 Q 位于 1 号大陆。

每座大陆都可能会有一些不太平的时候。具体来说,一共有p段区间,第i段区间发生在 w_i 号大陆上,在第 s_i 到第 k_i 天(包括两端点)都不安全。任何时刻,小Q都不能位于一座不安全的大陆上。不过幸运的是,在第1天,1号大陆是安全的。

请帮助小 Q 找到一个最佳方案, 使得他能尽早到达 n 号大陆。

Input

第一行包含两个正整数 $n, m(2 \le n \le 100000, 1 \le m \le 1000000)$,分别表示大陆的数量和航线的数量。

接下来 m 行,每行三个正整数 $a_i, b_i, d_i (1 \le a_i, b_i \le n, a_i \ne b_i, 1 \le d_i \le 10^9)$,表示一条单向航线。接下来一行包含一个整数 p(0 ,表示不安全的区间数量。

接下来 p 行,每行三个正整数 $w_i, s_i, k_i (1 \le w_i < n, 1 \le s_i \le k_i \le 10^9)$,表示一段不安全区间。同一个大陆上不同区间之间可能有重叠部分。

数据保证在第1天,1号大陆是安全的,且每个大陆最多只会作为10条单向航线的起点。

Output

若找不到可行方案,输出"-1",否则输出一个整数 d,表示最佳方案中在第 d+1 天到达 n 号大陆。

stdin	stdout
5 6	10
1 2 3	
1 4 13	
2 3 1	
2 4 2	
3 2 2	
4 5 1	
5	
1 2 4	
1 8 8	
2 6 7	
2 10 11	
4 6 7	

Problem E. 比例查询

Input file: stdin

Output file: stdout

Memory limit:

Time limit: 8 seconds

给定一个长度为 n 的正整数序列 $a_1, a_2, ..., a_n$, m 次询问 l_i, r_i, b_i 。

512 megabytes

请对于每个询问,判断是否存在两个位置 $x,y(l_i \le x,y \le r_i,x \ne y)$,满足 $\frac{a_x}{a_y} = b_i$ 。

Input

第一行包含两个正整数 $n, m(2 \le n, m \le 100000)$, 分别表示序列长度以及询问个数。

第二行包含 n 个正整数 $a_1, a_2, ..., a_n (1 \le a_i \le 100000)$, 表示序列中的每个数。

接下来 m 行,每行三个正整数 $l_i, r_i, b_i (1 \le l_i < r_i \le n, 2 \le b_i \le 100000)$,依次表示每个询问。

Output

对于每个询问输出一行,若存在满足条件的两个位置,输出"Yes",否则输出"No"。

stdin	stdout
4 2	Yes
5 8 3 9	No
3 4 3	
1 4 6	

Problem F. 糖果商店

Input file: stdin
Output file: stdout
Time limit: 15 seconds
Memory limit: 512 megabytes

小 Q 知道小 T 非常喜欢吃糖果,准备购买一些糖果作为礼物送给小 T。

在糖果商店里一共有n种糖果,编号依次为1到n,第i种糖果的重量为 w_i ,美味度为 v_i ,每种糖果的数量都是无限的。

每次小 Q 可以选定一种糖果 i,然后选定一个整数 j,将 j 颗第 i 种糖果打包成一盒。为了防止盒子过空,商店规定 j 至少为 l_i 。

小 Q 的礼物包含若干盒种类可能不同的糖果,重量为所有糖果的重量之和,价值是所有糖果的美味度之和。他把这些盒子按照一定顺序从下到上叠起来,每次叠上一盒糖果时,这盒糖果会压住下方 (不包括本身) 的所有糖果,假设下方有总重量为 $sum(sum \geq 1)$ 的糖果,则会使礼物的最终价值减少 d_{sum} 。

请写一个程序,帮助小Q准备出价值最高的礼物。当然,小Q可以不买任何糖果,此时价值为0。

Input

第一行包含两个正整数 $n, m(1 \le n \le 100, 1 \le m \le 100000)$,表示糖果的种类数以及总重量的上限。 第二行包含 m 个整数 $d_1, d_2, ..., d_m (0 \le d_i \le 10^9)$,表示叠糖果对礼物价值的损耗。

接下来 n 行, 每行三个正整数 $w_i, v_i, l_i (1 \le w_i, l_i \le m, 1 \le v_i \le 10^9)$, 依次描述每种糖果。

Output

输出一行 m 个整数, 其中第 i 个整数表示礼物总重量不超过 i 时价值的最大可能值。

stdin	stdout
3 6	3 6 9 16 30 32
1 0 0 0 2 0	
5 30 1	
1 4 4	
1 3 1	

Problem G. 最长公共子序列

Input file: stdin
Output file: stdout
Time limit: 1 second

Memory limit: 512 megabytes

一个字符串 S 的子序列是指从 S 中删除若干项 (可以不删,也可以全删完),然后将剩下的字符按照原顺序从左往右顺次连接得到的字符串。

两个字符串 S 和 T 的最长公共子序列是指最长的字符串 P,满足 P 既是 S 的子序列,又是 T 的子序列。

给定一个长度为 n 的小写字母构成的字符串 S,请找到一个长度同样为 n 的小写字母构成的字符串 T,使得 S 和 T 的最长公共子序列最短。

Input

包含一行一个小写字母构成的字符串 $S(1 \le |S| \le 1000000)$ 。

Output

输出一行一个整数,即你找到的T与S的最长公共子序列的长度。

stdin	stdout
abc	0

Problem H. 路径统计

Input file: stdin

Output file: stdout

Time limit: 35 seconds

Memory limit: 512 megabytes

给定一棵 n 个点的树,编号依次为 1 到 n,任意两点之间有且仅有一条直接或间接路径。

令 S(u,v) 表示在树上 u 到 v 的唯一最短路径上,所有点 (包括 u 和 v) 的编号组成的集合。

请写一个程序,统计有多少个正整数对 (u,v) 满足 $1 \le u \le v \le n$,且将 S(u,v) 从小到大排序后,相邻两个数的差值恰好为 1。

Input

第一行包含一个正整数 $n(1 \le n \le 250000)$,表示点数。

接下来 n-1 行,每行两个正整数 $u_i, v_i (1 \le u_i, v_i \le n, u_i \ne v_i)$,表示一条连接 u_i 和 v_i 的双向树边。

Output

输出一行一个整数,即满足条件的点对 (u,v) 的数量。

stdin	stdout
3	5
1 2	
1 3	

Problem I. 最远点对

Input file: stdin
Output file: stdout
Time limit: 25 seconds
Memory limit: 512 megabytes

在平面上有 n 个点,编号依次为 1 到 n,第 i 个点坐标为 (x_i,y_i) 。

m 次询问,每次给定两个正整数 $l_i, r_i (1 \le l_i < r_i \le n)$,请找到两个点 $a, b(l_i \le a, b \le r_i)$,使得它们的欧几里得距离最大。

Input

第一行包含两个正整数 $n, m(2 \le n, m \le 120000)$, 分别表示点数和询问数。

接下来 n 行,每行两个正整数 $x_i, y_i (1 \le x_i, y_i \le 10^9)$,分别表示每个点的坐标。不同点的坐标可能相同。数据保证所有 x_i 和 y_i 都是在 $[1, 10^9]$ 里等概率随机选取的。

接下来 m 行,每行两个正整数 $l_i, r_i (1 \le l_i < r_i \le n)$,依次表示每个询问。

Output

对于每个询问输出一行一个整数,即你找到的点对的距离的平方。

stdin	stdout
5 3	20
1 3	20
2 1	13
4 5	
5 2	
3 5	
1 5	
2 3	
3 5	