Machine Learning, Machine Learning (extended)

6 – Supervised Learning: Instance-based Classification Kashif Rajpoot

k.m.rajpoot@cs.bham.ac.uk
School of Computer Science
University of Birmingham

Outline

- Supervised learning
- Instance based learning
- k-nearest neighbour (kNN) classification
- Distance measure
- Difficulties with kNN
- How to choose k?
- Distance-weighted kNN

Supervised learning

- Regression
 - Minimised loss (e.g. least squares)
 - Maximum likelihood
- Classification
 - Generative (e.g. Bayesian)
 - Instance-based (e.g. k-NN)
 - Discriminative (e.g. SVM)

Classification

- ullet A set of N objects with attributes x_n
- Each object has an associated target label t_n
- Binary classification

$$t_n \in \{0,1\} \text{ or } t_n \in \{-1,1\}$$

Multi-class classification

$$t_n \in \{1, 2, \dots, C\}$$

• Classifier learns from $x_1, x_2, ..., x_N$ and $t_1, t_2, ..., t_N$ so that it can later classify x_{new}

Instance-based supervised learning

- There is no 'training' involved
 - Stores all 'training' samples
- Non-probabilistic classification
 - Look at nearest instances from the past examples to determine target labels (discrete or real-valued) of new unseen samples
 - k-nearest neighbour (kNN) classification
- Suitable for binary or multi-class classification

- Store all N 'training' samples represented by attributes $x_1, x_2, ..., x_N$ and labels $t_1, t_2, ..., t_N$
- Choose parameter k
 - i.e. number of nearest neighbours to consider for assigning target label to a new test sample x_{new}
- For discrete labels, classify a new test sample x_{new} :
 - Find k nearest (closest) training samples/instances
 - Find the most common class (label) out of these k neighbours
 - Assign this class to x_{new}
 - In case of a tie, assign randomly from tied classes

- Training algorithm
 - Store all training instances $(x_1, x_2, ..., x_N)$ and $t_1, t_2, ..., t_N$ as training_examples
- Classification algorithm
 - Given a test instance x_{new} to be classified:
 - Let $x_1, x_2, ..., x_k$ denote the k nearest instances to x_{new} from the training_examples
 - Let $t_1, t_2, ..., t_k$ denote the labels of k nearest instances to \mathbf{x}_{new}
 - Assign target label t_{new} to x_{new} as below:

$$t_{new} = \underset{c \in \{1,2,\dots,C\}}{\operatorname{argmax}} \sum_{i=1}^{k} \delta(c, t_i)$$

where $\delta(c, t_i) = 1$ if $c = t_i$, or $\delta(c, t_i) = 0$ otherwise

- For discrete labels, classify a new test sample x_{new} as below:
 - Find k nearest (closest) training samples/instances
 - Find the most common class (label) out of these k neighbours
 - Assign this class to x_{new}
 - In case of a tie, assign randomly from tied classes
- k = 3

- For real-valued target labels, classify a new test sample x_{new} as below:
 - Find k nearest (closest) training samples/instances
 - Find the average of k nearest target labels

$$t_{new} = \frac{1}{k} \sum_{i=1}^{k} t_i$$

• Assign this target label to x_{new}

Regression?

Distance measure

- To determine the nearest neighbours, a distance measure is required
 - kNN algorithm is flexible to use any distance measure
 - Thus, kNN can be used for any data type (images, text, audio, etc.) for which distance measure is available

Euclidean distance

$$D_e(\boldsymbol{p}, \boldsymbol{q}) = \sqrt{\sum_{i=1}^d (\boldsymbol{p}_i - \boldsymbol{q}_i)^2}$$

Manhattan distance

$$D_m(\boldsymbol{p},\boldsymbol{q}) = \sum_{i=1}^d |\boldsymbol{p}_i - \boldsymbol{q}_i|$$

Cosine angle

$$D_c(\boldsymbol{p}, \boldsymbol{q}) = \cos^{-1} \left(\frac{\sum_{i=1}^d \boldsymbol{p}_i \boldsymbol{q}_i}{\sqrt{\sum_{i=1}^d \boldsymbol{p}_i^2} \sqrt{\sum_{i=1}^d \boldsymbol{q}_i^2}} \right) / \pi$$

- Line indicates decision boundary
- Noisy data

(a) Decision boundary when K = 1

(b) Decision boundary when K=5

- Binary classification
 - 50 training samples vs 20 training samples
- Suitable value of k regularizes boundary and thus avoids over-fitting

(a) Decision boundary when K = 5

(b) Decision boundary when K = 39

Boundary regularization

Boundary regularization

Difficulties with kNN

- Class imbalance: uneven number of objects in each class
 - Small classes will 'disappear' with increase in k value
 - Example: 5 training samples from class 1 and 100 training samples from class 2
 - For $k \ge 11$, class 1 'disappears'
- How do we choose k?
 - Depends on data
 - Cross-validation
- Computational cost for classification can be high
 - Computation takes place at the time of classification
 - Calculates the distance of a test sample from all training samples
- There may be irrelevant attributes amongst the attributes

How to choose k?

- Cross-validation
 - Split the data
 - Use some for training, some for testing
 - Need a measure of 'goodness' or 'accuracy' or 'error'
 - Determine percentage misclassification error
 - Find k that minimises misclassification error

How to choose k?

- Cross-validation
 - 10 fold CV repeated 100 times to remove the effect of cross-validation partitioning bias

(a) Binary classification dataset. Note the class inbalance: the grey squares class has fewer members than the white circles

(b) Average cross-validation error as K is increased

Characteristics of instance-based learning

- Instance-based learner is a lazy learner
 - It does all the work when the test sample is presented
- In contrast, eager learner builds a parameterized model from training samples, in advance of being presented with a test sample
- Instance-based learner produces local approximation to the target function
 - Finds a different approximation with each test instance

When to consider kNN?

- Not too many attributes (about 20)
- Lots of training data
- Advantages
 - Training is super fast
 - It can learn complex target functions
 - Doesn't loose information

Distance-weighted kNN

- How about weighting nearest neighbours more strongly than the farthest neighbours in determining the target label t_{new} ?
- Classification algorithm
 - Given a test instance x_{new} to be classified:
 - Let $x_1, x_2, ..., x_k$ denote the k nearest instances to x_{new} from the training_examples
 - Let $t_1, t_2, ..., t_k$ denote the labels of k nearest instances to $oldsymbol{x}_{new}$
 - Assign target label t_{new} to x_{new} as below:

$$t_{new} = \underset{c \in C}{\operatorname{argmax}} \sum_{i=1}^{\kappa} w_i \delta(c, t_i)$$

where
$$w_i = \frac{1}{D(x_i, x_{new})}$$

Distance-weighted kNN

- This opens up the possibility to use all training samples as neighbours rather than only k neighbours
- As a result, the classifier becomes a global function approximation method
 - In contrast, typical kNN is a local function approximation method

Summary

- Instance-based classification
- Fast 'learning'
- Simple setup
- Distance measure choice is flexible
- k is the only parameter that needs tuning
- Class imbalance in data needs consideration

Exercise (ungraded)

• Assume a Boolean target function (i.e. binary classifier) and a two dimensional instance space. Determine how the kNN would classify the test instances x_p and x_q for k=1, k=3 and k=5.

Exercise (ungraded)

• In the diagram below, the numbers refer to the values taken by a real-valued target function. Calculate the values predicted for the target function at the test points x_p and x_q by kNN, with k=1, k=3, and k=5.

Exercise (ungraded)

- Try MATLAB code knnexample.m (from FCML book website)
- Try MATLAB code knncv.m (from FCML book website)

Author's material (Simon Rogers)

Thankyou