Tecnología Digital IV: Redes de Computadoras

Clase 22: Seguridad en Redes de Computadoras - Parte 1

Lucio Santi & Emmanuel Iarussi

Licenciatura en Tecnología Digital Universidad Torcuato Di Tella

10 de junio de 2025

Agenda

- Introducción a la seguridad en redes
- Criptografía
 - Simétrica: DES, AES
 - De clave pública: RSA
- Autenticación e integridad
 - Firmas digitales
 - Funciones de hash criptográficas
 - Certificados
- El protocolo TLS
- Firewalls e IDSs/IPSs

Objetivos

- Comprender los principios básicos de la seguridad en las redes de computadoras
 - Criptografía: sus múltiples usos además de ofrecer confidencialidad
 - Autentiticación
 - Integridad
- Seguridad en la práctica
 - Protocolos seguros en los distintos niveles del stack TCP/IP
 - · Qué es un firewall

Introducción a la seguridad en redes

Principios de la seguridad en redes

Confidencialidad: sólo el emisor y el receptor deben poder entender el contenido de los mensajes intercambiados

- El emisor **encripta** mensajes
- El receptor los desencripta

Autenticación: tanto el emisor como el receptor buscan confirmar la identidad de su interlocutor

Integridad: tanto el emisor como el receptor desean garantizar que los mensajes intercambiados no fueron manipulados en tránsito

Disponibilidad: los servicios deben ser accesibles y estar disponibles para los usuarios

Escenario y actores

- Alice y Bob desean comunicarse de forma segura
- Trudy, con intenciones maliciosas, puede interceptar, eliminar o agregar mensajes
- Terminología conocida y frecuente en el ámbito de la seguridad

Escenario y actores

¿Quiénes pueden adoptar los roles de Alice y Bob en la realidad?

- Navegadores y servidores web (e.g. home banking)
- Notebook uniéndose a una LAN buscando un servidor DHCP
- Servidores DNS
- Routers BGP intercambiando actualizaciones de caminos

• • • •

Actores maliciosos

¿Qué acciones puede llevar adelante Trudy en la realidad?

- Interceptar mensajes (sniffing)
- Inyectar mensajes en la conexión
- Impersonar otros actores (e.g. spoofing de direcciones en los paquetes)
- Tomar control de la conexión eliminando al emisor o al receptor y adoptando dicho rol (hijacking)
- Denegar servicio, prohibiendo que otros usuarios legítimos utilicen el servicio afectado

• • • •

Actores maliciosos - Spoofing

IP Spoofing

El atacante modifica la dirección IP de origen en los paquetes.

Objetivo: engañar al receptor haciéndole creer que el paquete proviene de una fuente confiable.

MAC Spoofing

Falsificación de dirección MAC para **burlar controles de acceso** (como listas blancas en Wi-Fi).

Email Spoofing

Se envía un correo **aparentando venir de una dirección legítima** (ej. un banco).

DNS Spoofing

Responde a una consulta DNS con una dirección falsa para **redireccionar al usuario a un sitio falso**.

Actores maliciosos hijacking (secuestro)

Session hijacking

El atacante roba un **ID** de sesión (como una cookie de autenticación) y toma control de la sesión sin necesidad de autenticarse.

Muy común en conexiones HTTP sin HTTPS.

TCP session hijacking

El atacante adivina o intercepta los números de secuencia de TCP.

Luego envía paquetes falsificados con esas secuencias y desplaza al emisor real.

Puede inyectar comandos, capturar datos o cerrar la sesión.

Wi-Fi hijacking

En redes abiertas, se puede interceptar una conexión e interrumpirla con un ataque DoS, luego suplantar al servidor (Man-in-the-Middle).

Criptografía

Criptografía: escenario y terminología

m: mensaje en texto plano

 $K_A(m)$: texto cifrado (encriptado con la clave K_A)

$$m = K_B(K_A(m))$$

Criptoanálisis - tipos de ataques

- Ataque de texto cifrado Supone que el atacante (Trudy) puede obtener y analizar textos cifrados
- Dos enfoques:
 - Fuerza bruta: explorar todo el espacio de claves
 - Análisis estadístico

- Ataque de texto plano conocido Supone que Trudy dispone del texto plano correspondiente a cierto texto cifrado
- Ataque de texto plano elegido Supone que Trudy puede obtener el texto cifrado de un texto plano a elección (oráculo de encripción)

https://es.wikipedia.org/wiki/Enigma_(m%C3%A1quina) https://www.cinencuentro.com/2015/02/06/resena-de-el-codigo-enigma-the-imitation-game/

Criptografía simétrica

Alice y Bob comparten la misma clave: Ks

¿Cómo hacen Alice y Bob para encriptar el mensaje? ¿Cómo hacen Alice y Bob para acordar una clave?

Esquema de cifrado por sustitución

En esencia, reemplazar una cosa por otra

Cifrado monoalfabético: reemplazar una letra por otra:

```
texto plano: abcdefghijklmnopqrstuvwxyz
texto cifrado: mnbvcxzasdfghjklpoiuytrewq

e.g.: texto plano: aguante td4!
texto cifrado: mzymjuc uv4!
```

Clave de cifrado: mapeo de un conjunto de 26 letras (el alfabeto) a sí mismo

Ejercicio!

Descifrar el siguiente mensaje:

od fodvh pdv glyhuwlgd gh wg4

Un esquema de cifrado más sofisticado

- n cifrados por sustitución, M₁, M₂, ..., Mₙ
- Patrón cíclico:
 - ej., n = 4: M_1, M_3, M_4, M_3, M_2 ; M_1, M_3, M_4, M_3, M_2 ; ...
- Para cada símbolo del texto plano, utilizar el esquema de sustitución subsiguiente conforme al patrón cíclico
 - hola: h de M_1 , o de M_3 , I de M_4 , a de M_3

Clave de cifrado: n cifrados de sustitución + patrón cíclico

Criptografía simétrica: DES

DES: Data Encryption Standard

- Standard de cifrado de EEUU [NIST 1993]
- Clave simétrica de 56 bits; toma textos planos de 64 bits
- Cifrado por bloques (block cipher)

 Cifrado por bloques

 Ejemplo cotidiano de uso de DES: Tarjetas bancarias

 Cifrado por bloques

 Texto
 plano
 plano
 Cifrado
 DES: Tarjetas bancarias

ue 2 lue 3

Clave

ue 1 | ue 2 | ue 3

NIST: Instituto Nacional de Estándares y Tecnología

Criptografía simétrica: DES

DES: Data Encryption Standard

- Standard de cifrado de EEUU [NIST 1993]
- Clave simétrica de 56 bits; toma textos planos de 64 bits
- Cifrado por bloques (block cipher)

Original

Cifrado ECB

Cifrado más seguro

- Supongamos un block cipher A con clave K y un texto plano conformado por n bloques B₁,...,B_n
- El modo **ECB** (*electronic codebook*) encripta cada bloque independientemente de los otros:

En **ECB**, cada bloque se cifra solo, sin memoria del pasado. Es simple, pero **filtra patrones**.

input	output	input	output
000	110	100	011
001	111	101	010
010	101	110	000
011	100	111	001

- El modo **CBC** (*cipher block chaining*) "encadena" los bloques cifrados
- Cada bloque se cifra a partir del XOR entre el cifrado del bloque anterior y el bloque actual:

- El modo CTR (counter) produce un stream de bits cifrados
- Se cifra sucesivamente el valor de una secuencia incremental y se calcula el XOR del valor cifrado obtenido con el bloque correspondiente:

¿Dónde se utiliza el modo CTR?

El modo CTR es muy popular y se utiliza en una amplia variedad de aplicaciones de seguridad, incluyendo:

- •Comunicaciones Seguras: Protocolos como IPsec, SSL/TLS.
- •Almacenamiento de Datos: Cifrado de discos duros y sistemas de archivos.
- •Seguridad IoT: Donde la eficiencia y la paralelización son importantes para dispositivos con recursos limitados.
- •Cifrado en la nube: Para el manejo de grandes volúmenes de datos.

Criptografía simétrica: DES

DES: Data Encryption Standard

- Standard de cifrado de EEUU [NIST 1993]
- Clave simétrica de 56 bits; toma textos planos de 64 bits
- Cifrado por bloques (block cipher)
- Seguridad de DES:
 - En 1999 se logró quebrar una clave por **fuerza bruta** en menos de un día (notar que el espacio de claves es "abordable")
 - No se conocen ataques analíticos buenos
- Puede robustecerse el método vía 3DES: cifrar tres veces con tres claves diferentes

D4 2025 26

AES: Advanced Encryption Standard

- Standard del NIST (reemplazó a DES en noviembre de 2001)
- Procesa datos en bloques de 128 bits
- Emplea claves de 128, 192, ó 256 bits
- Un ataque de fuerza bruta que tome 1 segundo para DES tomaría 149 billones de años para AES

Criptografía de clave pública

Criptografía simétrica

- Necesita que los interlocutores conozcan una clave compartida
- La pregunta es cómo acordar una –particularmente entre interlocutores que "no se conocen"

Criptografía de clave pública

- Adopta un enfoque muy diferente
- Los interlocutores no comparten una clave secreta
- La clave de cifrado es pública (todos la conocen)
- La clave de descifrado es privada (sólo la conoce el receptor del mensaje cifrado)

D4 2025 28

Criptografía de clave pública

Esta idea provocó una revolución en la criptografía –previamente, sólo basada en métodos simétricos

Algoritmos de clave pública

Requerimientos:

- 1 $K_B^{\dagger}(\cdot)$ y $K_B^{-}(\cdot)$ tales que $K_B^{-}(K_B^{\dagger}(m)) = m$
- Dada la clave pública K⁺_B, debe ser computacionalmente inviable derivar la clave privada K⁻_B

RSA: algoritmo de Rivest, Shamir y Adleman

Aritmética modular

- x mod n: el resto de dividir a x por n
- Propiedades:

```
[(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n

[(a \mod n) - (b \mod n)] \mod n = (a-b) \mod n

[(a \mod n) * (b \mod n)] \mod n = (a*b) \mod n
```

• Luego, $(a \mod n)^d \mod n = a^d \mod n$

• Ejemplo: x = 14, n = 10, d = 2 $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$ $x^d = 14^2 = 196$; $x^d \mod 10 = 6$

RSA: conceptos preliminares

- Mensaje: secuencia de bits
- Dicha secuencia puede representarse unívocamente como un número entero
- Luego, en RSA, cifrar un mensaje equivale a cifrar un número Ejemplo:
 - m = 10010001 → este mensaje se representa unívocamente como el número decimal 145
 - Para cifrar m, se encripta el número correspondiente dando lugar a un nuevo número –el texto cifrado

RSA: cifrado y descifrado

- 0. Dadas las claves (n,e) y (n,d),
- 1. Para *cifrar* el mensaje *m (< n)*, calcular

$$c = m^e \mod n$$

2. Para descifrar el patrón de bits c, calcular

$$m = c^d \mod n$$

$$m = (\underbrace{m^e \bmod n})^d \bmod n$$

Teorema de Euler

Teorema chino del resto

D4 2025 33

RSA: ejemplo

- Supongamos que tomamos p = 5 y $q = 7 \rightarrow n = 35$ y z = 24
- Supongamos que elegimos e = 5 (e y z son coprimos)
- Podemos instanciar d = 29 ($\rightarrow ed$ -1 es divisible por z)
- Luego,

descifrado:
$$c c^d m = c^d mod n$$

RSA: generación de claves

- 1. Elegir dos números primos p, q grandes (e.g. de 1024 bits)
- 2. Calcular n = pq, z = (p-1)(q-1)
- 3. Elegir e < n de modo tal que no posea factores comunes con z (e y z se dicen **coprimos**)
- 4. Elegir d de modo tal que ed-1 sea divisible por z (es decir, ed mod z = 1)
- 5. La clave **pública** es el par (n,e); la **privada**, el par (n,d)

Demostrando que RSA funciona

- Para ver que el método es correcto, debemos comprobar que $c^d \mod n = m$, con $c = m^e \mod n$
- Necesitamos el teorema de Euler: para cualquier a coprimo con n, $a^{\varphi(n)} = 1 \mod n$, siendo $\varphi(n)$ la función phi de Euler
- Vale que $\varphi(n) = \varphi(pq) = (p-1)(q-1) = z$
- Luego,

$$c^{d} \bmod n = (m^{e} \bmod n)^{d} \bmod n$$

$$= m^{ed} \bmod n$$

$$= m^{(zk+1)} \bmod n$$

$$= (m^{zk} m) \bmod n$$

$$= (m^{z} \bmod n)^{k} * m \bmod n$$
teo. Euler \longrightarrow = m mod n (si m no es coprimo con n: usar teorema chino del resto)

RSA: otra propiedad importante

$$\underbrace{K_{B}^{-}(K_{B}^{+}(m)) = m = K_{B}^{+}(K_{B}^{-}(m))}$$

emplear primero la clave pública y luego la privada emplear primero la clave privada y luego la pública

Esta propiedad es importante para las firmas digitales

RSA: otra propiedad importante

Se demuestra fácilmente a partir de las propiedades de la aritmética modular:

```
(m^e \mod n)^d \mod n = m^{ed} \mod n
= m^{de} \mod n
= (m^d \mod n)^e \mod n
```

Seguridad de RSA

- Dada una clave pública (n, e), ¿cuán difícil es computar d?
- Necesitamos factorizar n (i.e. encontrar sus factores primos)
 - Problema computacionalmente difícil
 - No existen hasta ahora algoritmos tradicionales de tiempo polinomial para factorizar números suficientemente grandes (a excepción de algoritmos cuánticos –el algoritmo de Shor)
 - Los semiprimos (producto de dos primos) con factores de tamaño similar suelen ser más difíciles de factorizar (porque tienen factores grandes)

RSA en la práctica

- La exponenciación (modular) en RSA es costosa
- Los algoritmos simétricos (como AES) permiten encriptar considerablemente más rápido
- En la práctica, la criptografía de clave pública se utiliza para establecer una conexión segura y derivar una clave compartida de sesión para cifrar los datos posteriores con un método simétrico

Demo!

- Veamos cómo podemos implementar (de forma rudimentaria)
 RSA en Python mediante <u>sage</u>:
 - ¿Cómo elegimos p, q y e?
 - ¿Cómo calculamos d?
 - ¿Cómo podemos operar con tiras de bytes arbitrarias?
 - ¿Qué ocurre si el mensaje a encriptar termina siendo más grande que el módulo n?

1D4 2025 4

Demo!

- Ahora veamos cómo encriptar con AES utilizando la librería <u>PyCryptodome</u>:
 - ¿Cómo configuramos el modo de encripción?
 - ¿Qué pasa si encriptamos 8 bytes en modo CBC?
 - ¿Qué pasa si los encriptamos en modo CTR?