Appl. No. 09/986,636 Amdt. Dated December 9, 2003 Reply to Office Action of September 10, 2003

Amendments to the Specification:

Please replace paragraph [0032], with the following amended paragraph:

Since the reaction in the reactor 20 is exothermic, necessary cooling means has to be provided. Generally, cooling tubes can be provided within the reactor 20 in which a cooling fluid flows through. As shown in figure 1, in the present invention, the coolant for the hydrogen generation reaction can be water or other commonly used coolants for the fuel cell stack 3. Coolant enters the reactor 20 via a coolant inlet thereof from the coolant line 13a, flows through the coolant tubes in the reactor 20 and leaves the reactor 20 via a coolant outlet, taking away the heat generated in the reactor 20. Then the coolant returns to a coolant storage tank 4 at the coolant line 13b and is circulated to the fuel cell stack 3. Generally, a heat exchanger 14 is provided in the coolant line 13 before or after the coolant reaches the fuel cell stack 3 to maintain the coolant at a low temperature. Then the coolant flows through the fuel cell stack 3 and then into the reactor 20 and continues to circulate in the coolant loop. The heat exchanger 14 can in principle be located at any location in the coolant lamploop.

Please replace paragraph [0035], with the following amended paragraph:

In order to further ensure that the system works properly under_low temperature, the coolant in the present invention can also be used to heat the system. In this situation, another heat exchanger 14a may be added in the coolant line 13 between the fuel cell stack 3 and the reactor 20 so that the coolant can be further heated after it leaves the fuel cell stack 3. The heated coolant in turn heats the reactor 20 to facilitate the hydrogen generation reaction.