House Price Prediction

Advanced Regression technique

Steps involved are:

- 1. Data Understanding
- 2. Data Analysis and Cleaning
- 3. Data Preparation
- 4. Model Building and Evaluation
- 5. Question-Answer

Step 1: Data Understanding

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# ignoring warnings
import warnings
warnings.filterwarnings('ignore')

df = pd.read_csv('train.csv')
```

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence	MiscFeature	MiscVal	MoS
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	

5 rows x 81 columns

df.head()

```
df.shape
(1460, 81)
```

Importing libraries and understanding data set

Step 2: Data Analysis and Cleaning

Dividing the data set into numeric_vars and non_numeric_vars and analysing it separately

Analysing numerical columns

```
numeric_vars = df.select_dtypes(['float64','int64'])
numeric_vars.head()
```

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	 WoodDeckSF	OpenPorch SF	Enc
0	1	60	65.0	8450	7	5	2003	2003	196.0	706	 0	61	
1	2	20	80.0	9600	6	8	1976	1976	0.0	978	 298	0	
2	3	60	68.0	11250	7	5	2001	2002	162.0	486	 0	42	
3	4	70	60.0	9550	7	5	1915	1970	0.0	216	 0	35	
4	5	60	84.0	14260	8	5	2000	2000	350.0	655	 192	84	

5 rows × 38 columns

Numerical column has few categorical data, let's analyse them:

- MSSubClass
- OverallQual
- OverallCond

inferences:

- 1. counts of 20, 60 and 50 MSSubClass are more where
 - 20 = 1-STORY 1946 & NEWER ALL STYLES
 - 60 = 2-STORY 1946 & NEWER
 - 50 = 1-1/2 STORY FINISHED ALL AGES
- 2. mostly the houses have the overall quality between 5-7 where
 - 5 = Average
 - 6 = Above Average
 - 7 = Good
- 3. maximum houses have the overall condition 5
 - 5 = Average

Analysing Sale Price of the houses on the basis of the year it is built

inferences:

· new houses have higher prices

creating column "Age_of_property_in_Years" and dropping YearBuilt, YrSold and MoSold columns

```
numeric_vars['Age_of_property_in_Years'] = numeric_vars['YrSold'] - numeric_vars['YearBuilt']
numeric_vars = numeric_vars.drop(['YearBuilt','YrSold','MoSold'],1)
numeric_vars.head()
```


inferences:

· as the age of the property increases, the price decreases

Finding the percentage of null values in numeric_vars data frame

Id	0.00
MSSubClass	0.00
LotFrontage	17.74
LotArea	0.00
OverallQual	0.00
OverallCond	0.00
YearRemodAdd	0.00
MasVnrArea	0.55
BsmtFinSF1	0.00
BsmtFinSF2	0.00
BsmtUnfSF	0.00
TotalBsmtSF	0.00
1stFlrSF	0.00
2ndFlrSF	0.00
LowQualFinSF	0.00
GrLivArea	0.00
BsmtFullBath	0.00
BsmtHalfBath	0.00
FullBath	0.00
HalfBath	0.00
BedroomAbvGr	0.00
KitchenAbvGr	0.00
TotRmsAbvGrd	0.00
Fireplaces	0.00
GarageYrBlt	5.55
GarageCars	0.00
GarageArea	0.00
WoodDeckSF	0.00
OpenPorchSF	0.00
EnclosedPorch	0.00
3SsnPorch	0.00
ScreenPorch	0.00
PoolArea	0.00
MiscVal	0.00
SalePrice	0.00
Age_of_property_in_Years	0.00
dtype: float64	

dtype: float64

Imputing the missing values with their mean

```
numeric_vars['LotFrontage'] = numeric_vars['LotFrontage'].fillna(numeric_vars['LotFrontage'].mean())
numeric_vars['MasVnrArea'] = numeric_vars['MasVnrArea'].fillna(numeric_vars['MasVnrArea'].mean())
```

deleting unnecessary/redundant columns ('OverallCond','GarageYrBlt','YearRemodAdd')

```
numeric_vars = numeric_vars.drop(['OverallCond','GarageYrBlt','YearRemodAdd'], axis = 1)
numeric_vars.head()
```

analysing basement area

Since "BsmtFinSF2" shows no variance therefore dropping this column

```
numeric_vars = numeric_vars.drop(['BsmtFinSF2'], axis = 1)
```

analysing how basement area is affecting the sale price of the houses

Analysing few continuous variables

Dropping the column "LowQualFinSF" as it has no value to the data set

Analysing these variables on the basis of Sales price

Analysing the columns with the sale price having following meanings:

· BsmtFullBath: Basement full bathrooms

· BsmtHalfBath: Basement half bathrooms

FullBath: Full bathrooms above grade

· HalfBath: Half baths above grade

Dropping columns "BsmtFullBath" and "BsmtHalfBath" as it is adding less value to the data set

Analysing the columns with the sale price having following meanings:

- · TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)
- · Fireplaces: Number of fireplaces
- · GarageCars: Size of garage in car capacity
- · GarageArea: Size of garage in square feet

Dropping "Fireplaces" and "GarageCars"

Analysing columns which has following meanings:

- · WoodDeckSF: Wood deck area in square feet
- · OpenPorchSF: Open porch area in square feet
- · EnclosedPorch: Enclosed porch area in square feet
- · 3SsnPorch: Three season porch area in square feet
- · ScreenPorch: Screen porch area in square feet
- · PoolArea: Pool area in square feet

Dropping (EnclosedPorch, 3SsnPorch, ScreenPorch and PoolArea) because of their low variance

Dropping "MiscVal", "Id" and few redundant variables like "BedroomAbvGr" and "KitchenAbvGr"

Checking correlations

There seem to be no variables which are highly correlated

one	MSSubClass ·	- 1	-0.36	-0.14	0.033	0.023	-0.07	-0.14	-0.24	-0.25	0.31	0.075	0.13	0.18	0.04	-0.099	-0.013	-0.0061	-0.084	-0.029
ons	LotFrontage ·	-0.36	1	0.31	0.23	0.18	0.22	0.12	0.36	0.41	0.072		0.18	0.048	0.32	0.32	0.077	0.14	0.33	-0.12
	LotArea -	-0.14	0.31	1	0.11	0.1	0.21	-0.0026	0.26	0.3	0.051	0.26	0.13	0.014	0.19	0.18	0.17	0.085	0.26	-0.015
	OverallQual ·	0.033	0.23	0.11	1	0.41	0.24	0.31						0.27			0.24	0.31	0.79	-0.57
	MasVnrArea -	0.023	0.18	0.1	0.41	1	0.26	0.11	0.36	0.34	0.17	0.39	0.28	0.2	0.28		0.16	0.12	0.48	-0.31
	BsmtFinSF1 ·	-0.07	0.22	0.21	0.24	0.26	1	-0.5			-0.14	0.21	0.059	0.0043	0.044	0.3	0.2	0.11	0.39	-0.25
	BsmtUnfSF ·	-0.14	0.12	-0.0026	0.31	0.11	-0.5	1	0.42	0.32	0.0045	0.24	0.29	-0.041	0.25	0.18	-0.0053	0.13	0.21	-0.15
	TotalBsmtSF -	-0.24	0.36	0.26		0.36			1	0.82	-0.17		0.32	-0.049	0.29		0.23	0.25	0.61	-0.39
	1stFIrSF ·	-0.25				0.34	0.45	0.32	0.82	1	-0.2		0.38	-0.12		0.49	0.24	0.21	0.61	-0.28
	2ndFlrSF -	0.31	0.072	0.051	0.3	0.17	-0.14	0.0045	-0.17	-0.2	1	0.69		0.61		0.14	0.092	0.21	0.32	-0.012
	GrLivArea ·	0.075	0.37	0.26		0.39	0.21	0.24			0.69	1	0.63	0.42	0.83		0.25	0.33	0.71	-0.2
	FullBath ·	0.13	0.18	0.13	0.55	0.28	0.059	0.29	0.32	0.38			1	0.14			0.19	0.26	0.56	-0.47
	HalfBath -	0.18	0.048	0.014	0.27	0.2	0.0043	-0.041	-0.049	-0.12		0.42	0.14	1	0.34	0.16	0.11	0.2	0.28	-0.24
To	otRmsAbvGrd -	0.04	0.32	0.19		0.28	0.044	0.25	0.29		0.62	0.83		0.34	1	0.34	0.17	0.23	0.53	-0.097
	GarageArea ·	-0.099	0.32	0.18	0.56		0.3	0.18	0.49		0.14			0.16	0.34	1	0.22	0.24	0.62	-0.48
,	WoodDeckSF ·	-0.013	0.077	0.17	0.24	0.16	0.2	-0.0053	0.23	0.24	0.092	0.25	0.19	0.11	0.17	0.22	1	0.059	0.32	-0.22
•	OpenPorchSF -	-0.0061	0.14	0.085	0.31	0.12	0.11	0.13	0.25	0.21	0.21	0.33	0.26	0.2	0.23	0.24	0.059	1	0.32	-0.19
	SalePrice ·	-0.084	0.33	0.26	0.79	0.48	0.39	0.21	0.61	0.61	0.32	0.71	0.56	0.28	0.53	0.62	0.32	0.32	1	-0.52
Age_of_prope	erty_in_Years	-0.029	-0.12	-0.015	-0.57	-0.31	-0.25	-0.15	-0.39	-0.28	-0.012	-0.2	-0.47	-0.24	-0.097	-0.48	-0.22	-0.19	-0.52	1
		SubClass -	tFrontage -	LotArea -	verallQual -	ssVnrArea -	smtFinSF1 -	smtUnfSF -	talBsmtSF -	1stFIrSF -	2ndFlrSF -	GrLivArea -	FullBath -	HalfBath -	nsAbvGrd -	rageArea -	odDeckSF -	enPorchSF -	SalePrice -	' in Years -

Checking outliers

700000 LotArea has few 600000 outliers which will not affect our analysis therefore 400000 we can keep it and move ahead with that 200000

Analysing non-numerical columns

```
non_numeric_vars = df.select_dtypes(exclude = ['float64','int64'])
non_numeric_vars.head()
```

Finding missing value if any

MSZoning	0.00
Street	0.00
Alley	93.77
LotShape	0.00
LandContour	0.00
Utilities	0.00
LotConfig	0.00
LandSlope	0.00
Neighborhood	0.00
Condition1	0.00
Condition2	0.00
BldgType	0.00
HouseStyle	0.00
RoofStyle	0.00
RoofMatl	0.00
Exterior1st	0.00
Exterior2nd	0.00
MasVnrType	0.55
ExterQual	0.00
ExterCond	0.00
Foundation	0.00
BsmtQual	2.53
BsmtCond	2.53
BsmtExposure	2.60
BsmtFinType1	2.53
BsmtFinType2	2.60
Heating	0.00
HeatingQC	0.00
CentralAir	0.00
Electrical	0.07
KitchenQual	0.00
Functional	0.00
FireplaceQu	47.26
GarageType	5.55
GarageFinish	5.55
GarageQual	5.55
GarageCond	5.55
PavedDrive	0.00
PoolQC	99.52
Fence	80.75
MiscFeature	96.30

Deleting columns having more than 45% missing data

```
non_numeric_vars = non_numeric_vars.drop(['Alley','FireplaceQu','PoolQC','Fence','MiscFeature'], axis = 1)
```

Imputing NaN values with their mode

inferences:

- MSzoning is mostly Residential Low Density(RL)
- · Streets are generally Paved
- · LotShape are Regular
- · LandContour are nearly Flat or Leveled
- · All Public Utilities are present
- · Mostly it is Inside LotConfig
- · Slopes are gentle
- · Neighborhood are North Ames, College Creek and Old Town
- · Conditions are generally normal
- Building type are mostly Single-family Detached
- · House Styles are generally 1 story and 2 story
- · Most of the Roof Style are Gable
- Exterior covering are mostly Vinyl Siding
- Exterior quality is average
- Exterior condition is average
- Type of Foundation are Poured Contrete and Cinder Block
- Basement condition are average
- There is no any basement exposure
- · Basements are generally unfinished
- · Heating is Gas forced warm air furnace type
- · Heating quality and condition are excellent
- Central air conditioning is present
- · Standard Circuit Breakers & Romex electrical system
- Kitchen quality is average

- · Paved driveway is present
- Garage has average quality and are attached but unfinished

Dropping few redundant/unnecessay variables like "Functional" and "GarageQual"

Step 3: Data Preparation

Merging numerical and non-numerical columns

```
housing = numeric_vars.join(non_numeric_vars)
```

```
housing.columns
```

Separating housing data set into independent (X) and dependent (y) variables

X = housing.drop('SalePrice',1)
X.head()

	MSSubClass	LotFrontage	LotArea	OverallQual	MasVnrArea	BsmtFinSF1	BsmtUnfSF	TotalBsmt\$F	1stFIr\$F	2ndFlr\$F	 HeatingQC	CentralAir	Electrica
(60	65.0	8450	7	196.0	706	150	856	856	854	 Ex	Υ	SBrl
1	20	80.0	9600	6	0.0	978	284	1262	1262	0	 Ex	Υ	SBrl
2	60	68.0	11250	7	162.0	486	434	920	920	866	 Ex	Υ	SBrl
3	70	60.0	9550	7	0.0	216	540	756	961	756	 Gd	Υ	SBrl
4	60	84.0	14260	8	350.0	655	490	1145	1145	1053	 Ex	Υ	SBrl

5 rows × 54 columns

y = housing['SalePrice']
y.head()

: 0 208500

1 181500

2 223500

3 140000

4 250000

Name: SalePrice, dtype: int64

Creating dummy variables for categorical data

converting categorical variables (MSSubClass, OverallQual, FullBath, HalfBath, TotRmsAbvGrd) to object type for creating dummy variables

X[['MSSubClass','OverallQual','FullBath','HalfBath','TotRmsAbvGrd']] = X['MSSubClass','OverallQual','FullBath','HalfBath','TotRmsAbvGrd']] = X['MSSubClass','OverallQual','FullBath','HalfBath','TotRmsAbvGrd']] = X['MSSubClass','OverallQual','FullBath','HalfBath','TotRmsAbvGrd']] = X['MSSubClass','OverallQual','FullBath','HalfBath','TotRmsAbvGrd']] = X['MSSubClass','OverallQual','FullBath','HalfBath','TotRmsAbvGrd']] = X['MSSubClass','OverallQual','FullBath','HalfBath','NotRmsAbvGrd']] = X['MSSubClass','OverallQual','FullBath','MalfBath','NotRmsAbvGrd']] = X['MSSubClass','OverallQual','MSBath','MSBath','MSBath','MSBath','NotRmsAbvGrd']] = X['MSSubClass','OverallQual','MSBath','MS

convert into dummies housing_dummies = pd.get_dummies(X_categorical, drop_first=True) housing dummies.head() MSZoning_FV MSZoning_RH MSZoning_RL MSZoning_RM Street_Pave LotShape_IR2 LotShape_IR3 LotShape_Reg LandContour_HLS LandContour_Low

5 rows x 225 columns

Deleting variables from "X" data frame having more than 80% correlation

```
['1stFlrSF',
 'MSZoning RM',
 'Neighborhood Somerst',
 'HouseStyle 2Story',
 'RoofStyle_Hip',
 'Exterior2nd CBlock',
 'Exterior2nd CmentBd',
 'Exterior2nd HdBoard',
 'Exterior2nd MetalSd',
 'Exterior2nd VinylSd',
 'Exterior2nd Wd Sdng',
 'MasVnrType None',
 'ExterQual TA',
 'ExterCond TA',
 'BsmtQual TA',
 'KitchenQual TA',
 'GarageType Detchd',
 'GarageCond TA',
 'SaleCondition Partial',
 'MSSubClass 45',
 'MSSubClass 80',
 'MSSubClass 90',
 'MSSubClass 190',
 'FullBath 2']
```

Variables to drop

Feature Scaling

```
# scaling the features
from sklearn.preprocessing import scale
# storing the column names of X dataframe in cols
cols = X.columns
X = pd.DataFrame(scale(X))
X.columns = cols
X.columns
Index(['LotFrontage', 'LotArea', 'MasVnrArea', 'BsmtFinSF1', 'BsmtUnfSF',
       'TotalBsmtSF', '2ndFlrSF', 'GrLivArea', 'GarageArea', 'WoodDeckSF',
       'TotRmsAbvGrd 4', 'TotRmsAbvGrd 5', 'TotRmsAbvGrd 6', 'TotRmsAbvGrd 7',
       'TotRmsAbvGrd 8', 'TotRmsAbvGrd 9', 'TotRmsAbvGrd 10',
       'TotRmsAbvGrd 11', 'TotRmsAbvGrd 12', 'TotRmsAbvGrd 14'],
      dtype='object', length=214)
```

Splitting data set into train and test set

```
# split data set into test and train
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.8, test_size = 0.2, random_state = 100)
```

Step 4: Model Building and Evaluation

Ridge regression or L2 regularization

Finding optimum value of alpha for Ridge regression

choosing alpha = 20 as the optimum value, this is the place where train and test error are not much after alpha = 20, the "Negative Mean Absolute Error" is increasing gradually \P

Metrics (r2_score)

```
# model with optimal alpha
# Ridge regression
from sklearn import metrics
lm = Ridge(alpha=20)
lm.fit(X_train, y_train)

# predict
y_train_pred = lm.predict(X_train)
print(metrics.r2_score(y_true=y_train, y_pred=y_train_pred))
y_test_pred = lm.predict(X_test)
print(metrics.r2_score(y_true=y_test, y_pred=y_test_pred))
```

- 0.9220215210903048
- 0.8276104632713882

Lasso Regression or L1 regularization

Finding optimum value of alpha for Lasso Regresion

choosing alpha = 500 as here the "Negative Mean Absolute Error" is minimum for the test train and also error is not increasing much for the train set

Step 5: Question-Answer

Question 1: Which variables are significant in predicting the price of a house?

According to Lasso regression:

some of the top variables help in predicting the price of the houses are:

- Condition 2
- Age_of_property_in_Years
- 3. MSSubClass
- 4. BsmtFinType2
- 5. HeatingQC
- RoofMatl
- 7. GrLivArea
- 8. OverallQual
- 9. SaleType
- 10. TotalBsmtSF

According to Ridge regression:

some of the top variables help in predicting the price of the houses are:

- 1. Condition2
- Age_of_property_in_Years
- MSSubClass
- BsmtFinType2
- HeatingQC
- 6. RoofMatl
- 7. GrLivArea
- 8. OverallQual
- 9. SaleType
- 10. TotalBsmtSF

Question 2: How well those variables describe the price of a house?

The coefficients involved for the variables are :

```
    Condition2_PosN = -17032.076
    Age_of_property_in_Years = -8914.617
    MSSubClass_160 = -3746.124
    BsmtFinType2_Unf = -2838.422
    HeatingQC_TA = -2834.721
    RoofMatl_CompShg = 78180.62
    GrLivArea = 28156.106
    OverallQual_9 = 13730.175
    SaleType_New = 8708.97
    TotalBsmtSF = 8044.272
```

Question 3: Determine the optimal value of lambda for ridge and lasso regression

For Ridge regression the optimal value of lambda is 20

For Lasso regression the optimal value of lambda is 500