Tutorial: "Simplificación de Diagramas de Bloques"

Asignatura: Teoría de Control

Docente: Ing. Aquino, Dominga Concepción Alumno: Núñez, Juan Francisco Martín

Introducción:

Estimado lector, en este manual "**How To**", se verá paso a paso la simplificación de un diagrama de bloques hasta obtener la función de transferencia total del sistema. Recuerde que en Teoría de Control la *función de transferencia* es el cociente entre la señal de salida y la señal de entrada.

Recursos necesarios para la resolución del problema:

• Tabla con las Reglas del Álgebra de Diagrama de Bloques.

Ejercicio:

Dado el siguiente diagrama de bloques, simplificar y obtener la función de transferencia total del sistema:

Tips:

Para simplificar:

- Tener en cuenta que la señal de entrada a cada bloque debe ser la misma.
- Empezar por las más intuitivas.
- Luego de realizar el paso anterior, desdoblar todos los sumadores posibles.
- Si la expresión del contenido de un bloque es muy compleja, se recomienda renombrarla por una letra que no se haya utilizado anteriormente a los fines de evitar confusiones.

Resolución:

Se marcará con un rectángulo rojo las simplificaciones a realizar, y con un círculo naranja la operación de desdoblar un sumador de tres entradas en dos sumadores de dos entradas, además se indicará cada operación con un número para identificarla unívocamente.

Paso 1:

Para resolver 1 y 5 aplicamos la regla n° 5 de la tabla:

Para resolver 2 y 3 aplicamos la regla n° 2 de la tabla:

Para resolver 6 aplicamos la regla n° 5 de la tabla, pero en lugar de tener G₂ tenemos 1:

Para resolver 4 aplicamos la regla n° 4 de la tabla:

Paso 2:
Ahora con el diagrama más simple volvemos a ver qué se puede simplificar.

Ahora vamos a operar con 7, 8, 9 y 10.

Para resolver **7** aplicamos la regla n° 5 de la tabla:

Para resolver 9 y 10 aplicamos la regla n° 4 de la tabla:

Para resolver 8 aplicamos la regla n° 13 de la tabla:

Paso 3:
Con el diagrama resultante del paso n° 2 volvemos a realizar el mismo procedimiento.

Para resolver 11 aplicamos la regla n° 4 de la tabla:

Para resolver 12 primero renombramos el bloque de la retroalimentación, y luego aplicamos la regla n° 13 de la tabla:

Paso 4:

Con el diagrama resultante del paso n° 3 volvemos a realizar el mismo procedimiento.

Para resolver 13 aplicamos la regla n° 13 de la tabla y renombraremos las expresiones de los bloques:

RENOMBRANDO:

$$B = [G_2/(1+H_1G_2)].(G_1+G_5)$$

 $R = (1-H_7).H_6$

Para resolver **14** aplicamos la regla n° 2 de la tabla:

Paso 5:
Con el diagrama resultante del paso n° 4 volvemos a realizar el mismo procedimiento.

Para resolver 15 aplicamos la regla n° 8 de la tabla:

Paso 6:

Con el diagrama resultante del paso n° 5 volvemos a realizar el mismo procedimiento.

Para resolver 16 aplicamos la regla n° 5 de la tabla, pero en lugar de tener G₂ tenemos 1:

Para resolver 17 aplicamos la regla n° 4 de la tabla:

Paso 7: Con el diagrama resultante del paso n° 6 volvemos a realizar el mismo procedimiento.

Para resolver 18 renombramos la retroalimentación y aplicamos la regla n° 13 de la tabla:

Paso 8:

Con el diagrama resultante del paso n° 7 volvemos a realizar el mismo procedimiento.

Para resolver 19 renombramos las expresiones de los siguientes bloques, y aplicamos la regla n° 4 de la tabla:

RENOMBRANDO:
E = B/(1+R.B)
$F = D/(1+H_5.G_6.D)$
G = G ₆ +1

Paso 9: Con el diagrama resultante del paso n° 8 volvemos a realizar el mismo procedimiento.

Para resolver 20 aplicamos la regla n° 5 de la tabla:

Paso 10:

Con el diagrama resultante del paso nº 9 volvemos a realizar el mismo procedimiento.

21

Para resolver 21 renombramos $J = [E.F.G+(G_7+G_8)]$, y aplicamos la regla n° 13 de la tabla:

Después de resolver 21 llegamos a la función de transferencia del sistema.

Función de Transferencia:

$$\frac{C(s)}{R(s)} = \frac{J}{(1 + H_8.J)}$$