

Multiple Variables : Combinatorial Testing

Equivalence Partitioning = 1-wise:

3 test cases. e.g.: (a,k,p)

In between:

2-wise (pairwise)

9 test cases

All combinations

= Cartesian product = 3-wise:

 $3 \times 3 \times 3 = 27$ test cases

Pairwise combinatorial testing

- Pairwise combination (instead of exhaustive)
 - Generate combinations that efficiently cover all pairs (triples,...) of classes
 - Rationale: most failures are triggered by single values or combinations of a few values. Covering pairs (triples,...) reduces the number of test cases, but reveals most faults
- Generalized: *t*-wise testing
 - 2- wise = pairwise

• 1-wise testing.

each variable X,Y,Z has each possible value at least *once*

	X	Y	Z
test case 1	0	0	0
test case 2	1	1	1

 $X :: Bool \longrightarrow X :: Bool \longrightarrow Z ::$

• 2-wise testing = pairwise:

each pair of variables (X,Y), (X,Z), (Y,Z) has each possible pair of values at least once

X :: Bool →Y :: Bool →Z :: Bool →

• 3-wise testing:

each triple of possible values occurs at least once

	X	Y	Z
tc 1	0	0	0
tc 2	0	0	1
tc 3	0	1	0
tc 4	0	1	1
tc 5	1	0	0
tc 6	1	0	1
tc 7	1	1	0
tc 8	1	1	1

X::Bool	\longrightarrow	
Y:: Bool	\longrightarrow	
<i>Z</i> :: Bool	\longrightarrow	

2-wise testing = pairwise:

each pair of variables (X,Y), (X,Z), (Y,Z) has each possible pair of values at least *once*

	Χ	Y	Z	
tc 1	0	0	0	
tc 2	0	0	1	
tc 3	0	1	0	
tc 4	0	1	1	
tc 5	1	0	0	
tc 6	1	0	1	
tc 7	1	1	0	
tc 8	1	1	1	

2-wise testing = pairwise:
 each pair of variables
 (W,X), (W,Y), W,Z), (X,Y), (X,Z), (Y,Z)
 has each possible pair of values at least once

Tools: e.g., http://www.pairwise.org/

Example: Display Control

No constraints reduce the total number of combinations 432 (3x4x3x4x3) test cases if we consider all combinations

Display Mode	Language	Fonts	Color	Screen size
full-graphics	English	Minimal	Monochrome	Hand-held
text-only	French	Standard	Color-map	Laptop
limited- bandwidth	Spanish	Document- loaded	16-bit	Full-size
	Portuguese		True-color	

Pairwise combinations: 17 test cases

Language	Color	Display Mode	Fonts	Screen Size	
English	Monochrome	Full-graphics	Minimal	Hand-held	
English	Color-map	Text-only	Standard	Full-size	
English	16-bit	Limited-bandwidth	-	Full-size	
English	True-color	Text-only	Document-loaded	Laptop	
French	Monochrome	Limited-bandwidth	Standard	Laptop	
French	Color-map	Full-graphics	Document-loaded	Full-size	
French	16-bit	Text-only	Minimal	-	
French	True-color		-	Hand-held	
Spanish	Monochrome	-	Document-loaded	Full-size	
Spanish	Color-map	Limited-bandwidth	Minimal	Hand-held	
Spanish	16-bit	Full-graphics Standard		Laptop	
Spanish	True-color	Text-only	-	Hand-held	
Portuguese	-	-	Monochrome	Text-only	
Portuguese	Color-map	-	Minimal	Laptop	
Portuguese	16-bit	Limited-bandwidth	Document-loaded	Hand-held	
Portuguese	True-color	Full-graphics	Minimal	Full-size	
Portuguese	True-color	Limited-bandwidth	Standard	Hand-held	

Adding constraints

Simple constraints
 example: color monochrome not compatible
 with screen laptop and full size
 can be handled by considering the case in
 separate tables

Example: Monochrome only with hand-held

Display Mode	Language	Fonts	Color	Screen size
full-graphics	English	Minimal	Monochrome	Hand-held
text-only	French	Standard	Color-map	
limited- bandwidth	Spanish	Document- loaded	16-bit	
	Portuguese		True-color	

Display Mode	Language	Fonts	Color	Screen size
full-graphics	English	Minimal		
text-only	French	Standard	Color-map	Laptop
limited- bandwidth	Spanish	Document- loaded	16-bit	Full-size
SOFTWARE TESTING AND ANALYSIS	Portuguese		True-color	

MC/DC Coverage

Compound conditions: Exponential complexity

(((a || b) && c) || d) && e

	· ·	((()))		11 327	
Test	a	b	С	d	е
Case	_		_		_
(1)	Т	_	Т	_	Т
(2)	F	Т	Т	_	Т
(3)	Т	_	F	T	Т
(4)	F	Т	F	Т	Т
(5)	F	F	_	Т	Т
(6)	Т	_	Т	_	F
(7)	F	Т	Т	_	F
(8)	Т	_	F	Т	F
(9)	F	Т	F	Т	F
(10)	F	F	_	T	F
(11)	Т	_	F	F	_
(12)	F	Т	F	F	_
(13)	F	F	_	F	_

Modified condition/decision (MC/DC)

- Motivation: Effectively test important combinations of conditions, without exponential blowup in test suite size
 - "Important" combinations means: Each basic condition shown to independently affect the outcome of each decision

• Requires:

- For each basic condition C, two test cases,
- values of all *evaluated* conditions except C are the same
- compound condition as a whole evaluates to *true* for one and *false* for the other

MC/DC Coverage

 $(x \wedge y) \vee z$

X	Y	Z	(X	
0	0	0	0	
0	0	1	1	
0	1	0	0	X
0	1	1	1	
1	0	0	0	YZ
1	0	1	1	Z
1	1	0	1	X
1	1	1	1	

MC/DC: linear complexity

N+1 test cases for N basic conditions

	(((a	a b)	&& C)	d)	&& e	
Test	a	b	С	d	е	outcome
Case						
(1)	true	false	true	false	true	true
(2)	false	true	true	false	true	true
(3)	true	false	false	true	true	true
(6)	true	false	true	false	false	false
(11)	true	false	false	false	true	false
(13)	false	false	true	false	true	false

- Red values independently affect the output of the decision
- Green values are don't care for the output Required by the RTCA/DO-178B standard

