Assignment #1 ENEL469

1. Consider the following circuit where V_{CC} = 6V, V_{EE} = -6V, α = 0.9917356, R_C = 1k Ω , R_B = 120k Ω , R_E = 1.2k Ω , $V_{CE(Sat)}$ = 0.2V, V_A = 150V, and $|V_{BE(on)}|$ = 0.7V. Determine I_C and V_{CE} .

Soln:

Here,
$$\beta = \alpha/(1 - \alpha) = 120$$

By KVL, $6 + 6 = I_E x R_C + I_B x R_B + V_{BE(on)} + I_E x R_E$

Or, $12 = (\beta + 1) \times I_B \times R_C + I_B \times R_B + 0.7 + (\beta + 1) \times I_B \times R_E$

Or, $I_B = 29.26 \,\mu A$

Thus, $I_C = I_B \times \beta = 3.51 \text{ mA}$

By KVL, $V_{CE} = I_B \times R_B + V_{BE(on)}$ Or, $V_{CE} = 4.21 \text{ V}$

2. Consider the following circuit where V_{CC} = 10V, β = 140, R_C = 1k Ω , R_B = 80k Ω , and R_E = 1k Ω , R_L = 2k Ω , $V_{CE(Sat)}$ = 0.2V, V_A = 150V, and $|V_{BE(on)}|$ = 0.7V. Determine I_C and V_{CE} .

Soln:

By KVL,
$$V_{CC} = I_B \times R_B + V_{BE(on)} + (\beta + 1) \times I_B \times R_E$$

Or, $I_B = 42.08 \, \mu A$

Thus, $I_C = I_B \times \beta = 5.93 \text{ mA}$

Here, the current in R_C will satisfy, $I_{RC} = I_C + I_{RL}$

Thus, $I_{RC} < I_{C}$

Even considering, $I_{RC} = I_C$, V_{CE} becomes, $V_{CE} = -1.86 \text{ V}$.

The above value indicates that the BJT is operating in saturation.

Thus, $V_{CE} = 0.2 V$

To find the collector current let's assume $I_C \approx I_E$ for simplicity. Thus, we can consider the following equivalent circuit.

By KCL (nodal analysis)

$$\frac{V_a - 10}{R_C} + \frac{V_a - 0.2}{R_E} + \frac{V_a}{R_L} = 0$$

$$\frac{V_a - 10}{1000} + \frac{V_a - 0.2}{1000} + \frac{V_a}{2000} = 0$$

Or,
$$V_a = 4.08 \text{ V}$$

Thus,
$$I_C \approx I_E = (V_a - 0.2)/1000$$

Or,
$$I_{C} = 3.88 \text{ mA}$$

3. Consider the following circuit where V_{CC} = 14V, β = 60, R_C = 1k Ω , R_1 = 60k Ω , R_2 = 5k Ω , R_E = 0.5k Ω , $V_{CE(Sat)}$ = 0.2V, V_A = 150V, and $|V_{BE(on)}|$ = 0.7V. Determine I_C and V_{CE} .

VB = VTH - IBRTH = VBE + IERE

VIH = Is PM Let assume operation at in active region.

VTH - TBPTH = VBE + (B+1) IBRE

1.0769 - IBX4615.4 = 0.7 + (bo+1) IBX500

FB = 10,7338 X10-6 A

Ic = BIB = 60 IB = 644.03 x 10-6 A

IE = (B+1) IB = 61 IB = 654.76×10-6A

VE = 500 X IE = 0.327 V

Vc = 14 - 1000 x Ic = 13.356 V

VCE = VC - VE = 13.029 V 7 VCE(Sat)

VB = VE + VBE = 1.027 V

VCB = 12 VC - VB = 12.329 V 70

this confirms that the transistor operates in active region.

4. Consider the following circuit where V_{CC} = 8V, β = 150, R_C = 4k Ω , R_1 = 68k Ω , R_2 = 8k Ω , $V_{CE(Sat)}$ = 0.2V, V_A = 200V, and $|V_{BE(on)}|$ = 0.7V. Determine I_C and V_{CE} .

$$VCE = 0.2V = VC = 8 - 4000 \text{ Ic}$$
 $TC = 1.95 \times 10^{-3} \text{ A}$

- 5. Consider the following circuit where V_{CC} = 12V, β = 60, R_C = 2k Ω , R_1 = 45k Ω , R_2 = 4k Ω , $V_{CE(Sat)}$ = 0.2V, V_A = 200V, and $|V_{BE(on)}|$ = 0.7V. Assume that the maximum and minimum base currents are $I_{B(max)}$ = 150 μ A and $I_{B(min)}$ = 5 μ A. Determine:
 - a) The maximum and minimum values of R_{C} , satisfy the base current limits and the transistor operates in the active region. Assume all other values remain unchanged.
 - b) The maximum and minimum values of R₂, satisfy the base current limits and the transistor operates in the active region. Assume all other values remain unchanged.
 - c) The maximum and minimum values of R₁, satisfy the base current limits and the transistor operates in the active region. Assume all other values remain unchanged.

Soln:

And

With the given values,
$$I_{R2}$$
 = 175 μ A and I_{R1} = 251.1 μ A Thus, I_B = 251.1 - 175.0 = 76.1 μ A And, I_C = 4.57 mA

a) If we change R_{C} only, the base current will not change

$$\begin{array}{ll} \text{Thus,} & R_{\text{C(max)}} = (\text{V}_{\text{CC}} - \text{V}_{\text{CE,sat}})/\text{I}_{\text{C}} \\ \text{Or,} & R_{\text{C(max)}} = 11.8/4.57 \text{ mA} \\ \text{Or,} & R_{\text{C(max)}} = 2.58 \text{ k}\Omega \end{array}$$

 $R_{C(min)} = 0 \Omega$

b) If we change R₂ only (but not to zero), the base current will change but I_{R1} will remain unchanged.

With
$$R_C=2~k\Omega$$
, the maximum collector current is $I_{C(max)}=(V_{CC}-V_{CE,sat})/R_C$ Or, $I_{C(max)}=5.9~mA$ Thus, $I_{B(max)}=98.33~\mu A$. This indicates that for active region operation, the maximum base current should be $98.33~\mu A$. For $I_{B(min)}=5~\mu A$, $R_{2(min)}$ has to be $R_{2(min)}=V_{BE(on)}/[I_{R1}-I_{B(min)}]$ Or, $R_{2(min)}=0.7/(251.1~\mu A-5~\mu A)$ Or, $R_{2(min)}=2.84~k\Omega$ For $I_{B(max)}=98.33~\mu A$, $R_{2(max)}$ has to be $R_{2(max)}=V_{BE(on)}/[I_{R1}-I_{B(max)}]$ Or, $R_{2(max)}=0.7/(251.1~\mu A-98.33~\mu A)$ Or, $R_{2(max)}=4.58~k\Omega$

c) If we change R₁ only, the base current will change but I_{R2} will remain unchanged.

With $R_C = 2 k\Omega$, the maximum collector current is

$$I_{C(max)} = (V_{CC} - V_{CE,sat})/R_C$$

 $R_{2(max)} = V_{BE(on)}/[I_{R1} - I_{B(max)}]$

 $R_{2(max)} = 6.92 \text{ k}\Omega$

 $R_{2(max)} = 0.7/(251.1 \,\mu\text{A} - 150 \,\mu\text{A})$

Or,
$$I_{C(max)} = 5.9 \text{ mA}$$

Or,

Or,

Thus, $I_{B(max)}$ = 98.33 μ A. This indicates that for active region operation, the maximum base current should be 98.33 μ A.

Also, with $R_2 = 4 \text{ k}\Omega$ (given value), $I_{R2} = 0.7/4000 = 175 \mu\text{A}$

For
$$I_{B(min)} = 5 \mu A$$
, $R_{1(max)}$ has to be
$$R_{1(max)} = [V_{CC} - V_{BE(on)}] / [I_{R2} + I_{B(min)}]$$

Or,
$$R_{1(max)} = 62.78 \text{ k}\Omega$$

For
$$I_{B(max)} = 98.33 \ \mu\text{A}, \ R_{1(min)} \ \text{has to be} \ R_{1(min)} = [V_{CC} - V_{BE(on)}] \ / \ [I_{R2} + I_{B(max)}]$$
 (i.e., active region operation)
$$R_{1(min)} = 41.34 \ k\Omega$$
 For $I_{B(max)} = 150 \ \mu\text{A}, \ R_{1(min)} \ \text{has to be} \ R_{1(min)} = [V_{CC} - V_{BE(on)}] \ / \ [I_{R2} + I_{B(max)}]$ (the transistor is in saturation though)
$$R_{1(min)} = [V_{CC} - V_{BE(on)}] \ / \ [I_{R2} + I_{B(max)}]$$
 Or,
$$R_{1(min)} = 34.77 \ k\Omega$$

6. Consider the following circuit where V_{CC} = 20V, β = 100, $V_{CE(Sat)}$ = 0.2V, V_A = 230V, $|V_{BE(on)}|$ = 0.7V. Design the circuit (Determine R_1 , R_2 , R_C , and R_E) so that the transistor operates at V_{CE} = 6V and I_C = 2.5mA. Given that R_C = R_E and I_{R2} = 2 I_B .

Soln:

$$I_E = I_C x (\beta+1)/\beta = 2.525 \text{ mA}$$

By KVL,
$$V_{CC} = I_C \times R_C + V_{CE} + I_E \times R_E$$
 Or,
$$V_{CC} = I_C \times R_C + V_{CE} + I_E \times R_C$$
 Or,
$$20 = 2.5 R_C + 6 + 2.525 \times R_C$$
 Or,
$$R_C = 2.786 \text{ k}\Omega$$
 And
$$R_E = 2.786 \text{ k}\Omega$$
 Here,
$$I_B = I_C / \beta = 25 \text{ }\mu\text{A}$$
 Thus,
$$I_{R2} = 50 \text{ }\mu\text{A}$$
 And,
$$I_{R1} = 50 \text{ }\mu\text{A} + 25 \text{ }\mu\text{A} = 75 \text{ }\mu\text{A}$$
 Thus,
$$R_2 = \left[V_{BE(on)} + I_E \times R_E\right] / I_{R2}$$
 Or,
$$R_2 = 154.7 \text{ k}\Omega$$
 Also,
$$R_1 = \left[V_{CC} - I_{R2} \times R_2\right] / I_{R1}$$
 Or,
$$R_1 = 12.265 / 75 \text{ }\mu\text{A}$$
 Or,
$$R_1 = 163.53 \text{ k}\Omega$$

7. Design the following circuit so that the transistors operate at I_{C1} = 2mA, I_{C2} = 2mA, I_{C3} = 4mA, V_1 = 2V, V_2 = -3V, and V_3 = 0V. Also given that V_{CC} = 10V, V_{EE} = -10V, β = ∞ (i.e., ignore base currents), $V_{CE(Sat)}$ = 0.2V, V_A = 300V, and $|V_{BE(on)}|$ = 0.7V.

Soln:

$$R_1 = (V_{CC} - V_1) / I_{C1}$$

Or, $R_1 = 4 k\Omega$

Again, $R_2 = (0 - 0.7 - V_{EE}) / I_{E1}$

Or, $R_2 = (0 - 0.7 + 10) / I_{E1}$

Or, $R_2 = 9.3 / 2 \text{ mA}$

Or, $R_2 = 4.65 \text{ k}\Omega$

Solving for R3

$$R_3 = [V_{CC} - V_{B1E2(on)} - V_1] / I_{E2}$$

Or, $R_3 = [10 - 0.7 - 2) / 2 \text{ mA}$

Or, $R_3 = 3.65 kΩ$

Solving for R4

$$R_4 = [V_2 - V_{EE}] / I_{C2}$$

Or, $R_4 = [-3 + 10) / 2 \text{ mA}$

Or, $R_4 = 3.5 \text{ k}\Omega$

Solving for R5

$$R_5 = [V_{CC} - V_3] / I_{C3}$$

Or, $R_5 = 2.5 \text{ k}\Omega$

Solving for R6

$$R_6 = [V_2 - V_{BE3(on)} - V_{EE}] / I_{E3}$$

Or, $R_6 = 6.3/4 \text{ mA}$

Or, $R_6 = 1.575 \text{ k}\Omega$