10.10.2.4

Question: Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Solution:

Input parameters	Description	Value
0	Center	0
r	Radius	1
θ_1	$\angle MOA$	127°
θ_2	$\angle MOB$	$ heta_2^\circ$

Table 1: Table of input parameters

Input parameters	Description	Value
u	Vector	-O
A	Point	$\begin{pmatrix} \cos \theta_1 \\ \sin \theta_1 \end{pmatrix}$
В	Point	$\begin{pmatrix} \cos \theta_2 \\ \sin \theta_2 \end{pmatrix}$
m_1	Direction vector of one tangent	$\begin{pmatrix} -\cos\theta_1 \\ -\sin\theta_1 \end{pmatrix}$
$\mathrm{m_2}$	Direction vector of another tangent	$\begin{pmatrix} -\cos\theta_2 \\ -\sin\theta_2 \end{pmatrix}$

Table 2: Table of output parameters

To find the angle θ_2 ,

$$OA = OB \tag{1}$$

$$\theta_2 - \theta_1 = 180^{\circ}$$
 (2)
 $\theta_2 = 307^{\circ}$ (3)

$$\theta_2 = 307^{\circ} \tag{3}$$

Angle between these two tangents is

$$\cos \theta = \frac{\mathbf{m_1}^{\top} \mathbf{m_2}}{||\mathbf{m_1}|| ||\mathbf{m_2}||}$$

$$or, \theta = \pi$$
(4)

$$or, \theta = \pi$$
 (5)

Therefore, the two tangents are parallel to each other.

Figure 1: