Fourth Mandatory Assignment

IN4060

March 13, 2025

2 Entailment

2.1 sim:Marge rdf:type foaf:Person

The statement sim: Marge rdf:type foaf:Person entails the following:

- 1. fam:hasSpouse rdfs:range foaf:Person . P
- 3. sim: Marge rdf:type foaf: Person . rdfs3, 1, 2

Pattern[1]	If S contains	then S RDFS entails recognizing D
rdfs3	aaa rdfs:range xxx . yyy aaa zzz .	zzz rdf:type xxx .

2.2 fam:hasSister rdfs:subPropertyOf fam:isRelativeOf

The statement fam:hasSister rdfs:subPropertyOf fam:isRelativeOf entails because, fam:hasSister \subseteq fam:hasSibling \subseteq fam:isRelativeOf as proven below:

- 1. fam:hasSister rdfs:subPropertyOf fam:hasSibling . P
- 2. fam:hasSibling rdfs:subPropertyOf fam:isRelativeOf . P
- 3. fam:hasSister rdfs:subPropertyOf fam:isRelativeOf . rdfs5, 1, 2

Pattern[1]	If S contains	then S RDFS entails recognizing D
rdfs5	xxx rdfs:subPropertyOf yyy . yyy rdfs:subProperyOf zzz .	xxx rdfs:subPropertyOf zzz .

2.3 sim: Marge rdf: type fam: Woman

Based on the provided RDF graph, we cannot prove the statement sim:Marge rdf:type fam:Woman because even though we know that Lisa has two parents and her father is Homer, who is married to Marge; that does not prove that Lisa has a female parent or that Homer's spouse is a wife.

2.4 sim:Herb rdf:type fam:Man

The statement sim: Herb rdf: type fam: Man entails because:

- 1. fam:hasBrother rdfs:range fam:Man . P
- yyy aaa zzz 2. _:2 fam:hasBrother sim:Herb . P
- 3. sim:Herb rdf:type fam:Man . rdfs3, 1, 2

Pattern[1]	If S contains	then S RDFS entails recognizing D
rdfs3	aaa rdfs:range xxx . yyy aaa zzz .	$zzz \; \mathtt{rdf:type} \; xxx \; .$

2.5 sim:Lisa fam:isRelativeOf sim:Homer

The statement $sim:Lisa\ fam:isRelativeOf\ sim:Homer\ entails\ because,$ fam:hasFather \subseteq fam:hasParent \subseteq fam:isRelativeOf\ as\ proven\ below:

- 1. fam:hasFather rdfs:subPropertyOf fam:isRelativeOf . P
- 2. sim:Lisa fam:hasFather sim:Homer . P
- 3. sim:Lisa fam:isRelativeOf sim:Homer . rdfs7, 1, 2

This works because fam:hasFather is a sub-property to fam:isRelativeOf:

- 1. fam:hasFather rdfs:subPropertyOf fam:hasParent . P
- 2. fam:hasParent rdfs:subPropertyOf fam:isRelativeOf .- P
- 3. fam:hasFather rdfs:subPropertyOf fam:isRelativeOf . rdfs5, 1, 2

Pattern[1]	If S contains	then S RDFS entails recognizing D
rdfs5	xxx rdfs:subPropertyOf yyy . yyy rdfs:subProperyOf zzz .	xxx rdfs:subPropertyOf zzz .
rdfs7	$aaa \ {\tt rdfs:subPropertyOf} \ bbb$. $xxx \ aaa \ yyy$.	xxx bbb yyy .

2.6 sim:Lisa fam:hasMother sim:Marge

The statement sim:Lisa fam:hasMother sim:Marge does not entail because according to the provided RDF graph, Lisa has two parents, but does not specify that one of them is a woman or a mother.

2.7 sim:Patty rdf:type foaf:Person

We already know that:

- 1. _:1 fam:hasSister sim:Patty .
- 2. fam:hasSister rdfs:subPropertyOf fam:hasSibling .
- 3. fam:isRelativeOf rdfs:range foaf:Person .

Therefore, the statement sim:Patty rdf:type foaf:Person entails because:

Starting with the rdfs5 pattern:

- 1. fam:hasSister rdfs:subPropertyOf fam:hasSibling . P
- 2. fam:hasSibling rdfs:subPropertyOf fam:isRelativeOf . P
- 3. fam:hasSister rdfs:subPropertyOf fam:isRelativeOf . rdfs5, 1, 2

This proves that we can replace _:1 fam:hasSister sim:Patty . with _:1 fam:isRelativeOf sim:Patty ., which we use with the rdfs3 pattern:

- 1. fam:isRelativeOf rdfs:range foaf:Person . P
- yyy aaa zzz 2. _:1 fam:isRelativeOf sim:Patty . P
- 3. sim:Patty rdf:type foaf:Person . rdfs3, 1, 2

Pattern[1]	If S contains	then S RDFS entails recognizing D
rdfs3	$aaa \ {\tt rdfs:range} \ xxx$. $yyy \ aaa \ zzz$.	zzz rdf:type xxx .
rdfs5	xxx rdfs:subPropertyOf yyy . yyy rdfs:subProperyOf zzz .	xxx rdfs:subPropertyOf zzz .

2.8 _:a fam:hasParent _:b . _:b fam:hasSister sim:Patty .

The statement is satisfactory due to blank node equivalence as illustrated in the RDF graph:

- 1. $\sin: Lisa fam: has Parent ::b$
- 2. $\underline{:}^{b}$ 1 fam:hasSister sim:Patty .

In other words, it entails without the use of RDFS patterns.

2.9 _:d fam:hasBrother _:e . _:d fam:hasBrother _:f .

If the statement _:d fam:hasBrother _:e . _:d fam:hasBrother _:f . is entailed or not cannot be proved by RDFS rules, because the RDF graph illustrates:

- $\frac{.:d}{1.}$ 1. _:2 fam:hasBrother sim:Herb .
- $\frac{..d}{2}$ 2. _:2 fam:hasBrother sim:Herb

There is no rule that says if a person has a brother they must have multiple brothers. We know from the RDF graph that a blank node resource has a brother sim:Herb, but no sub-property or domain/range rule can generate a second brother triple out of nowhere.

References

[1] Patrick Hayes, Florida IHMC, and Peter Patel-Schneider (eds.) RDF 1.1 Semantics. World Wide Web Consortium. [Online; accessed 13-March-2025]. Feb. 2014. URL: https://www.w3.org/TR/rdf11-mt/#patterns-of-rdfs-entailment-informative.