1. (10 points) (Continuity of the scalar product in the first variable) §10.2, p. 281: #

Let $\{\vec{u}_k\}$ be a sequence in \mathbb{R}^n that converges to the point \vec{u} . Prove that

$$\lim_{k\to\infty}\langle \vec{u}_k, \vec{v}\rangle = \langle \vec{u}, \vec{v}\rangle.$$

Solution Since up and, by the component wise convergence

criterion, ui - ui for i=1, -., n. Then

lim (v v) = lim & yi v

= Zuivi (sum and product rules)

Alternative Solution

(v v)

= $|\langle \vec{v}_h - \vec{u}, \vec{v} \rangle|$ (linearity in the first argument)

≤ || un - ull || vl | (by Cauchy-Schwarz inequality)

As for > 0, | | vy - vi | - 0.

By the sandnich lemma, $\lim |\langle \vec{u}_{k}, \vec{v} \rangle - \langle \vec{u}, \vec{v} \rangle| = 0$

By HW 5, #5, we may remove the absolute value in a limit

Converging to 0, so

or

I

2. (10 points) (Cauchy sequences in \mathbb{R}^n) §10.2, p. 282: #8.

A sequence of points $\{\vec{u}_k\}$ in \mathbb{R}^n is said to be *Cauchy* provided that $\forall \varepsilon > 0, \exists K \in \mathbb{N}$ such that $\forall k, \ell \geq K$,

 $\operatorname{dist}(\vec{u}_k, \vec{u}_\ell) < \varepsilon$.

- (a) Prove that $\{\vec{u}_k\}$ is Cauchy if and only if each component sequence is Cauchy.
- (b) Prove that a sequence in \mathbb{R}^n converges if and only if it is Cauchy. (*Hint*: For sequences of real numbers, this was proved in Section 9.1.)

a) For any u=(u,...,u) in R",

 $|u'| \leq \|u\| = \sqrt{(u')^2 + \dots + (u')^2}.$ $|u' - u'| \leq \|u - u_{\ell}\| = \sqrt{(u'_{\ell} - u'_{\ell})^2 + \dots + (u'_{\ell} - u'_{\ell})^2}$ Suppose {uky is Cauchy in IR". Let E70. Then IK such that Y k, l Z K and Y i=1,...,",

pui-ui = 11 Me-up 1 < E

Hence, fying is Cauchy.

Conversely, suppose this is Cauchy. Let 670,

3 K:EN such that YROZKi, | ui - vi | < E

(X)

1

Choose K = max (K1, --, Kn). Then for all & l Z K,

(x) is true for all i=1,..., n. Hence, & th, l > K,

Num-40 | ≤ \\\ \(\(\(\(\frac{\varphi}{\varphi} \)^2 \\\ \(\(\frac{\varphi}{\varphi} \)^2 \\\ \(\(\frac{\varphi}{\varphi} \) = \varphi.

This implies that tub? is Cauchy.

Д

(b) { \vec{u}_{R}} in IR converges to \vec{u}

iff \(i = 1, ..., n, the ith component up converges to u'

iff \ti=1,...,n, tuis is Couchy in R

iff [un 3 is Cauchy (by part (a)).

- 4. (10 points) (A closed ball is closed)
 - (a) (9 pts)§10.3, p. 288: #3.

Let r be a positive number and define

$$\mathscr{O} = \{ u \in \mathbb{R}^n \mid ||u|| > r \}.$$

Prove that \mathscr{O} is open in \mathbb{R}^n by showing that every point in \mathscr{O} is an interior point of \mathscr{O} . (*Hint*: Draw a picture. For each $u \in \mathscr{O}$, let R = ||u|| - r and prove that $B_R(u) \subset \mathscr{O}$.)

(b) (1 pt) Let r be a positive number and define $F = \{u \in \mathbb{R}^n \mid ||u|| \le r\}$. Prove that F is closed.

Hence, $x \in O$. This proves that $B_R(u) \subseteq O$, so

Д

u is an

5. (10 points) (Closure) §10.3, p. 289, # 12. For a subset A of \mathbb{R}^n , the <i>closure</i> of A,
denoted by clA , is defined by $clA = intA \cup bdA$.
Prove that
(a) $A \subset clA$; (b) $A = clA$ if and only if A is closed in \mathbb{R}^n .
(a) $A \subset dA$
The set A can be decomposed as
A = int A U (An bdA)
because a point of A is either an interior point or a
boundary point. Hence,
A = int A U (AnbaA) < intA U baA = clA.
(a) Alternative Proof. Since A is disjoint from ext A, from
R' = int A u bd A v ext A, we can conclude that
A C int A U ba A = ClA.
(b) A = dA if and only if A is closed in IR?
(⇒) Suppose A = clA = intA U bdA. Since A > bdA,
by Proposition 10.19 (ii) A is closed.
(=) Suppose A is closed. Then A > bd A.
Then A I int A U bd A = dA.
By (a) A < dA. This proves that A = clA.
(b) (⇒) Alternative proof. A = clA iff As = ent A, which
is open by #6 (b). Hence, A is closed.

 (b) Use (a) to show that extA is also an open subset (c) Use (a) and (b) together with the decomposition bdA is a closed subset of Rⁿ. 	
(a) Let us intA. Than = 270 s	uch that $B(u, \varepsilon) \subseteq A$
We need to show that B(u, E	
Let x & B(u, E). Since B(
$\exists 8>0 \text{ such that } B(x,8) \leq 8$	$\beta(u, \varepsilon) \subseteq A$.
Therefore, x is also an interior	
This proves that 13/4E) =	intA;
so int A is open.	(z) ε
(b) By definition, ext A = int (R	`\ A).
By (a), extA is open in R	<u>, </u>
(c) By (10.11), R = int A U &	exitA u bdA.
So $(bdA)^c = intA \cup extA$.	
By (a) and (b), int A and ext A	are both open.
Since the union of open sets is open,	(bdA) is open.
Therefore, bdA is closed.	Д

6. (10 points) (Interior, exterior, and boundary) $\S 10.3,$ p. 289, # 13.

7. (10 points) (**Relatively open sets**) Prove that a set $S \subset A$ is relatively open in A if and only if for every u in S, there is an $\varepsilon > 0$ such that the relatively open ball $B_A(u, \varepsilon)$ is contained in S.

Proof. (=) Suppose S is relatively upon.

Then $S = U \cap A$ for some upon set U in \mathbb{R}^n .

Let $u \in S$. Then $u \in U$. Since U is open, $\exists \ \varepsilon > 0$ such that $B(u, \varepsilon) \subseteq U$. Then $B_A(u, \varepsilon) = B(u, \varepsilon) \cap A \subseteq U \cap A = S$.

F) Suppree $\forall u \in S$, $\exists \xi > 0$ such that $B_A(u, \xi_u) \subseteq S$.

Then $B_A(u, \xi_u) = B(u, \xi_u) \cap A$.

Let $U = \bigcup B(u, \xi_u)$.

Then U is open because it is a union of open balls. $S \subseteq U$ because every $u \in S$ is in $B(u, \xi_u) \subseteq U$.

Since $S \subseteq A$, $S \subseteq U \cap A$.

On the other hand, $U \cap A = (\bigcup B(u, \xi_u)) \cap A$ $= \bigcup (B(u, \xi_u) \cap A)$ $\subseteq S$.

Therefore, $S = U \cap A$, which shows that S is telephorally open in A.