Northeastern University, Department of Mathematics

MATH 5110: Applied Linear Algebra and Matrix Analysis.

• Instructor: **He Wang** Email: he.wang@northeastern.edu

§1. Linear system and Gaussian elimination over fields

Topics: 1. Linear system; 2. Sets, groups, fields and more; 3. Gaussian elimination.

1. Background:

Definition 1. (1) A linear equation in variables x_1, x_2, \ldots, x_n is of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b.$$

 $\underline{a}_1x_1 + \underline{a}_2x_2 + \cdots + \underline{a}_nx_n = b.$ Here, $a_1, a_2, \ldots, a_n \in \mathbb{R}$ (or a field \mathbb{F}) are **coefficients**.

(2) A system of linear equations (or linear system) is a collection of linear equations in the same variables.

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
 \vdots & \vdots & \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

Matrix/vector notation:

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Goal: Find the set of all solutions.

Method: Gauss-Jordan elimination (Gaussian elimination).

Theorem 2. A linear system (matrix equation $A\vec{x} = \vec{b}$) has either no solution, or exactly one solution, or infinitely many solutions.

$J = \langle \chi \in \mathbb{R} \mid \mathcal{L} \rangle$ 2. Sets and functions

Definition 3. A set S is a well-defined unordered collection of distinct elements.

Non-well-defined example, (Russell' s paradox):

 $S = \{x \mid x \notin x\}$, i.e., set of all sets that are not members of themselves.

The teacher that teaches all who don't teach themselves.

A teacher A (A Not teach A

Review of set operations:

- Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Complement of $A \subset S$, $A^c = \{x \in S \mid x \notin A\}$
- (Cartesian) Product $X \times Y = \{(x, y) \mid x \in (X), y \in (Y)\}$

Definition 4. A function(map) f between two sets A and B is a rule

$$f:A\to B$$

sending $(every)'' a \in A$ to an element $f(a) \in B$.

f(a,)=b,

Definition 5. Let $f: A \to B$ be a function.

(1) f is called injective (one-to-one), if $f(x) = f(y) \implies x = y$

- (2) f is called surjective (onto), if $\forall b \in B$, $\exists x \in A$ \underline{st} . f(x) = b
- (3) f is called **bijective**, if f is cun, and in

Consider a function $f: A \to B$ and the equation f(x) = b for every $b \in B$.

Proposition 6.

- me solution.
- 10054 one solution.
- one. solution.

Proposition 12. A map $T: V \to W$ is bijective if and only if it is invertible.

3. Algebraic objects: Set \rightarrow Monoid \rightarrow Group \rightarrow Ring \rightarrow Field

Definition 13. A binary operation on a set S is

Definition 14. A monoid is a set M with a binary operation $*: M \times M \to M$ satisfying two axioms:

(1) (Identity)
$$\exists e \in M$$
 s.t. $e * m = m$ and $m * e = m$. for any $m \in M$,

$$(2) \text{ (Associativity)} \qquad \alpha * (b * c) = (a * b) * c \qquad \text{for any a, b, c } \in \mathcal{M}.$$

Proposition 15. Identity is unique in a monoid.

Ex! {2x2 mainles} Suppose of two identition e and e' $\rho = \ell * \ell' = e$ *= produce

Definition 16. A monoid (M, *) is called a **commutative** (or abelian), if

Definition 17. A group is a monoid (G, *) satisfies

(3) (Inverse)
$$+ 9 \in G$$
, $\exists h \in G$ s.t. $3*h = h*3 = e$ identity.

Proposition 18. In a group G, inverse is unique in for any $g \in G$.

Definition 20. A ring R is called a **commutative** if $\forall a, b \in R, a \cdot b = b \cdot a$.

and (b+c). $a=b\cdot a+c\cdot a$

(Denote e_{i} as 1 in commutative ring.)

Example 21. Integers \mathbb{Z} is a commutative ring.

Example 22. Set of all polynomials $\mathbb{R}[t]$ with sum and product is a commutative ring.

Example 23. Set of all polynomials $\mathbb{R}[x_1, x_2, \dots, x_n]$ is a commutative ring.

Example 24.
$$(2\mathbb{Z})$$
 is a ring without identity. $(2\mathbb{Z})$ is a ring without identity. $(2\mathbb{Z})$ is a ring without identity. $(2\mathbb{Z})$ is a ring without identity.

$$\mathbb{Z}_{6} = \{ [0], [1], [2], [5], [4], [5] \}$$

$$[0] := \{ 0, \pm 6, \pm 12, \dots \} = 0 + 6\mathbb{Z}$$

$$[1] := \{ 1, \pm 6, \pm 12, \dots \} = 1 + 6\mathbb{Z}$$

$$[5] := \{ 5, 5 \pm 6, \dots \} = 5 + 6\mathbb{Z}$$

Definition 25. A field \mathbb{F} is a commutative ring $(\mathbb{F}, \stackrel{1}{+}, \stackrel{1}{\cdot})$ such that

(5) any non-zero element has a multiplicative inverse.

Remark: $(F - \{0\}, \cdot)$ are abelian groups.

For $n > 0 \in \mathbb{Z}$ let $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\}$ =the set of congruence classes modulo n.

Proposition 26. $(\mathbb{Z}_n, +, \times)$ is a commutative ring.

Example 27.
$$\mathbb{Z}_2$$
 is a field. $Q = [O] := \{O, \pm 2, \cdots\}$

$$|A = [O] := \{ \pm 1, \pm 7, \cdots \} \quad |A = [$$

Example 28. \mathbb{Z}_6 is not a field. (Reason [2] has no multiplicative inverse.)

Proposition 29. \mathbb{Z}_n is a field if and only if n = p is a prime number.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields. Remark: \mathbb{Q} is the smallest field containing \mathbb{Z} .

In our class, we will focus on fields \mathbb{R} , \mathbb{C} , (and \mathbb{Z}_p).

The idea of group and field was created by Évariste Galois (1811 – 1832).

Function between algebraic objects:

"good" map

Definition 30. A **homomorphism** $f: A \to B$ between any two algebraic objects is a function preserving all operations, i.e.,

$$f(\underline{x *_{A} y}) = f(x) * f(y) \text{ for any } x, y \in A$$

For ring with identity, we also need the homomorphism sends identity to identity.

Definition 31. (1) An injective homomorphism is called **monomorphism**.

- (2) A surjective homomorphism is called an **epimorphism**.
- (3) A function $f: A \to B$ is called **isomorphism**, if it is monomorphism and epimorphism. In this case, we consider A and B are the "same". (Terminology first by Nicolas Bourbaki (1934-))

https://en.wikipedia.org/wiki/Nicolas_Bourbaki

Further extended reading: 1. Classification finite fields. 2. Classification of finite abelian groups. 3. "Classification of finite groups".

Go back to matrix $[A \mid b]$.

The leftmost nonzero entry of a row is called **leading entry** (or **pivot**).

Definition 32. A matrix is in row-echelon form (ref) if

- (1.) All entries in a column below a leading entry are zeros.
- (2.) Each row above it contains a leading entry further to the left.

A matrix is in **reduced row-echelon form** (rref), if it satisfies (1) (2) and

- (3.) The leading entry in each nonzero row is 1.
- (4.) All entries in a column above a leading entry are zeros.

Condition 2 implies that all zero rows are at the bottom of the matrix.

One example of \mathbf{ref} , (\blacksquare : non-zero number, * any number) and one example of \mathbf{rref}

$$\mathbf{ref} = \begin{bmatrix} \blacksquare & * & * & * & * & * \\ 0 & 0 & \blacksquare & * & * & * \\ 0 & 0 & 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \cdots \longrightarrow \qquad \mathbf{rref} = \begin{bmatrix} 1 & * & 0 & 0 & 0 & * \\ 0 & 0 & 1 & 0 & 0 & * \\ 0 & 0 & 0 & 1 & 0 & * \\ 0 & 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Examples.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 1 & 0 & 5 \end{bmatrix}, \quad \begin{bmatrix} 0 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 & 4 & 0 \\ 0 & 0 & 1 & 7 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Elementary Row Operations:

- (1.) Scaling: Multiply a row R_i by a nonzero scalar $k \neq 0$.

 (2.) Replacement: Replace a row R_i by adding a multiple of another row kR_j .
- (3.) Interchange: Interchange two rows. $R_i \Leftrightarrow R_i$

Elementary row operations do not change solutions of the linear system.

Theorem 33. Using the elementary row operations, one can change a matrix to a reduced row-echelon form.

Proof. Gauss-Jordan elimination:

1. Begin with the leftmost nonzero column.

2. Select a nonzero entry as a pivot, and interchange its row to the first row.

- 3. Use ERO to create zeros in all positions below the pivot.
- 4. Omit the first row and repeat this process.
- 5. Repeat the process until the last nonzero row.
- 6. Scale all pivots to 1's.
- 7. Beginning with the **rightmost** pivot and working upward and to the left. \Box

Theorem 34. A matrix A has a unique reduced row echelon form ref(A).

$$A=\begin{bmatrix}123\\456\end{bmatrix}\xrightarrow{R_1 \oplus R_2}\begin{bmatrix}456\\123\end{bmatrix}=B$$

Definition 35. If $A \xrightarrow{ERO} \cdots \xrightarrow{ERO} B$, then A is called **row-equivalent** to B.

Proposition 36. Row-equivalent is an equivalent relation.

Proof. 1. (reflexive) $A \sim A$

2. (symmetric) A~B \Rightarrow B~A

3. (transitive) $A \sim B$ $B \sim C \implies A \sim C$

Theorem 37. A linear system $[A|\vec{b}]$ is inconsistent (no solution) if and only if $rref([A|\vec{b}])$ has a row

$$[0\ 0\ 0\ \dots\ 0\ |\ 1\].$$

If a linear system is consistent, it has either

- a unique solution (no free variables), or
- infinitely many solutions (at least one free variable).

$$Z_{10}$$
 (1) (1) (1)