Assignment Project Exam Help

https://powceder.com

Add WeChat powcoder
Data Types & EDA

HARVARD UNIVERSITY

Agenda

Start	End	Item
		Week 2 Review
	As	signment Project Exam Help
		https://powcoder.com

Add WeChat powcoder

- "C_mapping_inR.R"
- "D_R objects.R"
- "E_EDA work.R"

Agenda

Start	End	Item
		Data For Modeling
		Data Mining Workflows
		Data Modification & Preprocessing
	As	signments Enginate Ersam Help
		Housekeeping, Reading & Homework https://powcoder.com

Add WeChat powcoder

Data Structure for Analysis & Modeling

Often the 1st Column is a unique identifier but the identifier could also be a row attribute (not actually a vector)

name	mfr	t G C 1	D ries p	a i₽1	at l	sodin	160	t _{rbo} F	swars 1	otass F	via nas	ne f	weight	cups	rating
100%_Bran	N		5 70	4		130	10	5	71 CU 6	280	25	9	3 1	1 0.33	
100%_Natural_Bran	Q	С	120	3	5	15	2	8	8	135	0	3	3 1	1 1	1 33.98368
All-Bran	К	С	70	4	1	260	9	7	5	320	25	3	3 1	0.33	59.42551
All-Bran_with_Extra_Fiber	К	С	50	4	// 0	140	14	8	C	330	25	3	3 1	0.5	93.70491
Almond_Delight	R	С	110) S 2	7100	200	CO(1)	C 114	CO	m^-	25	3	3 1	0.75	34.38484
Apple_Cinnamon_Cheerios	G	С	110	2	'P	180	1.5	10.5	10	70	25	1	. 1	0.75	29.50954
Apple_Jacks	К	С	110	2	C	125	1	11	14	30	25	2	2 1	1 1	1 33.17409
Basic_4	G	С	130	3	2	210	2	18	8	100	25	3	1.33	0.75	37.03856
Bran_Chex	R	С	A 90	1 72	T 7 _ 1	1200	4	15	6	1 125	25	1	. 1	0.67	49.12025
Bran_Flakes	Р	С	A (9)		V e	2.0	7T 16		VCG		25	3	3 1	0.67	53.31381
Cap'n'Crunch	Q	С	120	1	2	220		12	12	35	25	2	2 1	0.75	18.04285

Generally we will use data frames to avoid complexity but you will be exposed to other data types.

HARVARD UNIVERSITY

Data Structure for Analysis & Modeling

Informative features are usually independent & do not lend information to other rows (auto-correlation). Can be called informative columns, independent variables, or features. Remember in a DF, these can be mixed with decimals, integers, factors, strings, T/F.

		Ass	ignı	ne	nt	Pro	jec	t E	xai	m l	Hel	p			
name	mfr	type	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	rating
100%_Bran	N	С	70	4	:	130	10	5	5 6	280	25	;	3 :	1 0.3	3 68.40297
100%_Natural_Bran	Q	С	120	3	, ,	5 15	2		8	3 135	5 0	(3 :	1	1 33.98368
All-Bran	К	С	htto	^ C •4	//17/		\sim	Δr	CO	320	25	:	3 :	1 0.3	3 59.42551
All-Bran_with_Extra_Fiber	К	С	11650		7 D	\mathbf{V}_{40}	$\mathbf{v}\mathbf{O}\mathbf{Q}$		CO	330	25		3 :	1 0.	5 93.70491
Almond_Delight	R	С	110	2		2 200	1	14	8	3	25		3 :	1 0.7	5 34.38484
Apple_Cinnamon_Cheerios	G	С	110	2	2	180	1.5	10.5	10	70	25	:	. :	1 0.7	5 29.50954
Apple_Jacks	К	С	110	2	(125	1	11	14	1 4 30	25	2	2	1	1 33.17409
Basic_4	G	С	Ae		λ/Δ	210	at 12	113	ICC)de	25		3 1.33	3 0.7	5 37.03856
Bran_Chex	R	С	1 1 4	U 2	V C	200	at 🏌	JU Y	VC		25		. :	1 0.6	7 49.12025
Bran_Flakes	Р	С	90	3	(210	5	13	3 5	190	25	;	3 :	1 0.6	7 53.31381
Cap'n'Crunch	Q	С	120	1	2	2 220	0	12	12	2 35	5 25	2	2 :	1 0.7	5 18.04285

Generally we will use data frames to avoid complexity but you will be exposed to other data types.

HARVARD UNIVERSITY

Data Structure for Analysis & Modeling

If we are doing supervised learning, there is a dependent variable.

This is the outcome and is "dependent" on the informative columns. An analysis with this vector can be binary, classification, or predictive.

name	mfr 🖊		eris pot	eat	Podlin	iect	rbo F su	ars 1 _p	tass T		her	weight	cups	rating
100%_Bran	N A	COOT	5 70	4	1 130	10	5	6	280	25	3	1	0.33	
100%_Natural_Bran	Q	С	120	3	5 15	2	8	8	135	0	3	1	1 1	33.9836
All-Bran	К	С	70	4	1 260	9	7	5	320	25	3	1	0.33	59.4255
All-Bran_with_Extra_Fiber	К	С	1 50	4 / /	0 140	14	8	0	330	25	3	1	L 0.5	93.7049
Almond_Delight	R	С		S 2 / 1			e^{1} 14	COT	\mathbf{n}	25	3	1	0.75	34.3848
Apple_Cinnamon_Cheerios	G	С	110	2 7	2 180	1.5	10.5	10	70	25	1	1	0.75	29.5095
Apple_Jacks	К	С	110	2	0 125	1	11	14	30	25	2	1	. 1	33.1740
Basic_4	G	С	130	3	2 210	2	18	8	100	25	3	1.33	0.75	37.0385
Bran_Chex	R	С	A 9¶ 1	12 7	1 1200	4	15	6	1 125	25	1	1	0.67	49.1202
Bran_Flakes	Р	С	A_{9}	W	C d 20	at 10	\mathbf{OW}	CA		25	3	1	0.67	53.3138
Cap'n'Crunch	Q	С	120	1	2 220		12	12	35	25	2	1	0.75	18.0428

Generally we will use data frames to avoid complexity but you will be exposed to other data types.

HARVARD UNIVERSITY

Agenda

Start	End	Item
		Data For Modeling
		Data Mining Workflows
		Data Modification & Preprocessing
	As	signments Enginate Erram Help
		Housekeeping, Reading & Homework https://powcoder.com

Add WeChat powcoder

Modeling Process

SEMMA (from SAS) In this course... In this course, most data sets are 1. Sample curated for you. 2. Explore ignment Project Fart afrypul Leurs e analysis you perform basic exploratory data analysis (EDA) https://powcodata.cleanup, Dimension Reduction, Feature Engineering & Feature Enrichment ld WeChat Regression legistic Regression, KNN, 4. Model Decision Trees, Random Forest etc. There are many ways to evaluate a 5. Assess model. We will cover specific KPI and business implications.

The first day we discussed data mining and structure. Week 2 was devoted to basics of R then how to sample, explore and visualize data. Now we will modify data for modeling!

2022/11/23 Kwartler CSCI 96 14 FAR'

In addition to SEMMA, Data Mining (from the book)

- 1. Define/understand purpose
- 2. Obtain data (may involve random sampling)
- 3. Explored steam the property of the second statement of the second statement of the second second
- 4. Reduce the data; if supervised DM, partition it
- 5. Specify task thas if paws, whitemy, etc.)
- 6. Choose the techniques (regression, CART, neural networks, etc.) de WeChat powcoder
- 7. Iterative implementation and "tuning"
- 8. Assess results compare models
- 9. Deploy best model

The book's process is excellent but is focused largely on the modeling process not how the process is part of a business context or if the effort doesn't require a model.

2022/11/23 Kwartler CSCI 96 9 HARVARI UNIVERSITY

Data Mining in a Complete Business Workflow

Iterative Business Data Mining Project Life Cycle

- 1. Problem Formulationttps://powcoder.com
- 2. Define data requirements
- 3. Explore the data 3. Explore the data Add WeChat powcoder
 4. Perform Analysis & Create Project Artifacts
- 5. Asses/Adjust the Project Artifacts
- 6. Communicate Results
- 7. Document to make it repeatable
- 8. Deploy & Monitor

In this view the steps of a project are not solely for modeling, more iterative and not in isolation because the results are communicated to stakeholders.

What is a model?

An model is a set of rules governing actions or phenomena.

- Empirical Support without math
 - Your brain: Assignment Project
 Algo#1: "fur ey, tail ey,
 - Algo#1: "fur" = Y, Stail" = Y, "claws" = Y, "meow" = Y therefore high probability that ps cat powcoder.com
 - Algo#2: "another meme"=Y, "short & bald professor ** The transfer of the professor trying to hard to be cool"

Algorithms or mental models of reality can be correct or lead you to incorrect assumptions.

HARVARD UNIVERSITY

What is a model?

A model is a set of rules governing actions or phenomena.

Empirical Support w/math

• The way you instruct the rules to be constructed is the algorithm (KNN, RF, LogReg etc)

• Computers can learn https://powcoder.com/representations of phenomena

Add WeChat powcoder

Just like mental algorithms, the observations we give a mathematical algorithm which result in a final model (set of rules) can lead to correct or incorrect assumptions. "Garbage in...Garbage out."

HARVARD UNIVERSITY

Vocabulary

What is a model?

What is an algorithm?

A set of rulesignyerning oject The method you choose actions, or describing https://powcoder.com phenomena.

to construct the model

Some representation of reality The way you expect to learn about powers of the control of the co

The algorithm produces the model.

13

Don't be Dale!

Force stakeholders to agree on a problem, plan and output. Put together a plan, adjust the plan as needed...but have a plan!!

HARVARD UNIVERSITY

Common Pitfalls

When modeling avoid multi-collinearity (more on that later)

O Don't measure things twice, like Fahrenheit and Celsius in the same data set

Assignmentde standout integrans hural pehavior

 Customers filling out surveys are already self selecting & therefore piased compared to all customers https://powcoder.com an improvement plan may leave

voluntarily rather than get fired. Data may record them as

Add We colong triby baxing out that may mask the real issue

- Beware of perfection
 - O Perfectly aligned analyses and SME expectations seldom occur
 - O Model perfection likely means you have an error (data integrity)
- Beware of data leak & misunderstanding of the project!
 - O Predicting hospital readmissions: use historical record of whether a person dies in the hospital...so obviously they wouldn't readmit.

15

Agenda

Start	End	Item
		Data For Modeling
		Data Mining Workflows
		Data Modification & Preprocessing
	As	signments Engineta Erram Help
		Housekeeping, Reading & Homework https://powcoder.com

Add WeChat powcoder

Modeling Process

SEMMA (from SAS)

In this course...

1. Sample

In this course, most data sets are curated for you.

2. Explore ignment Project Fart afryour telepse analysis you perform basic exploratory data analysis (EDA)

3. Modify

WCO Data cleanup, Dimension Reduction, Feature Engineering & Feature Enrichment

4. Model

Add WeChat Regression legistic Regression, KNN, Decision Trees, Random Forest etc.

5. Assess

There are many ways to evaluate a model. We will cover specific KPI and business implications.

Often data is sampled from a large database so you can more quickly explore, apply methods and prototype before reassessing on full data.

PreProcessing

Many algorithms cannot accept the data directly. Thus you must preprocess your data before training.

Common Pre-Processing **Common Pre-Processing** Categoric Assignment Project Examulatel pvariables

- https://powcodereatoith Missing **Dummy Variables**
- **Outlier Detection Binning Low Frequency Levels**
- Changing to Numeric for Ordin We Chat powereder Deal with Missing Levels

2022/11/23

The book does these steps in a traditional manner but we will use an easier method called variable treatment (vtreat). Review the book if you want to see the manual methods.

Always "1 Less than the State of Nature"

2 States of Nature = 1 Light Switch or "dummy variable" Olember de de de de de de de lumn where dog = 1, cat=0

https://powcoder.com If the column has a 0 then its definitely a

Represent non-numeric information as light switches.

19

Always "1 Less than the State of Nature"

• Dog, Cat, Fish: Column A dog =1, cat=0,

ps://powcogep@opmn B dog=0, cat=1, fish=0.

If both columns are 0 then by default, this is WeChathe ame information as the row having a fish.

Represent non-numeric information as light switches.

20

Dummy Variables represent category levels as 1/0 within new vectors. For some approaches, this lets the algorithm understand the information.

Consider this data:

CU74E430 Female Manager CU25E466 Female Teacher

				•	
CuID	Gender	Profession	Affiliation	* * 7 /	
CU43E439		Nurse	tps://po	W	
CU36E506			Independent		
CU91E65	Female	ManagerA	Republicae	Cha	at
CU17E255	Male	Student	Democrat		
CU27E792	Female	Executive			

Republican

Democrat

21

Dummy Variables represent category levels as 1/0 within new vectors. For some approaches, this lets the algorithm understand the information.

Assignment Project Exam Help Consider this data:

CuID	Gender	Profession	Affiliation
CU43E439	Male	Nurse	Affiliațion DS Democrat
CU36E506			Independent
CU91E65	Female		Republicae (
CU17E255	Male	Student	Democrat
CU27E792	Female	Executive	
CU74E430	Female	Manager	Republican
CU25E466	Female	Teacher	Democrat

You wouldn't use the ID var for training telephore has 2 levels

Profession has 5 levels

that powered that 3 levels & missing

Always make dummy variables "1 less than the state of the data nature"

Consider this data:

	CuID	Gender	Profession	Affiliation	
	CU43E439	Male	Nurse	Democrat	
	CU36E506	Male	Teacher	Independent	
٨	CU91E65	Female 📆	Manager	Republican	<u> </u>
AS	signm	Malel	Student CCL	Permocratin H	erb
	CU27E792	Female	Executive		_
	CU74 <mark>E</mark> 430	Female	Manager	Republican	
	CU25 146 10 S	Feynal O	WIGODE	Men Oca M	

CuID	GenderMale	Profession_Nurse	Profession_Teacher	Profession_Manager	vcoder Profession_student	Affiliation_D		Affiliation _Missing
CU43E439	1	1	0	0	0	1	0	0
CU36E506	1	0	1	0	0	0	1	0
CU91E65	0	0	0	1	0	0	0	0
CU17E255	1	0	0	0	1	1	0	0
CU27E792	0	0	0	0	0	0	0	1
CU74E430	0	0	0	1	0	0	0	0
CU25E466	0	0	1	0	0	1	0	0

A light switch has 2 states, on/off, yet you only need 1 switch. The same is true as more levels are added, you don't need one for each level.

HARVARD UNIVERSITY

Always make dummy variables "1 less than the state of the data nature"

Dummy Data:

CuID	GenderMale	Profession_Nurse	Profession_Teacher	Profession_Manager	Profession_Student	Affiliation_D		Affiliation _Missing
CU43E439	1	1	0	0	0	1	0	0
CU36E506	1	0	1	0	0	0	1	0
CU91E65	0	A\(\circ\)	nment	roject F	xam He	n 0	0	0
CU17E255	1		0		1	1 1	0	0
CU27E792	0	0	0	0	0	0	0	1
CU74E430	0	0	0 //	1 1	0	0	0	0
CU25E466	0	0	ITTDS://DC	owcoder.	com	1	0	0

Applying Judgment:

CulD	GenderMale	Add Profession_LowCount	WeChat Profession_Teacher	DOWCOC Profession_Manager	er Affiliation_D	Affiliation_MissingOther
CU43E439	1	1	0	0 1		0
CU36E506	1	0	1	1 0		1
CU91E65	0	0	0	1	0	0
CU17E255	1	1	0	0	1	0
CU27E792	0	0	0	0	0	1
CU74E430	0	0	0	1	0	0
CU25E466	0	0	1	0	1	0

Never throw the "kitchen sink" at an algo, exercise your problem knowledge to reduce the number of vectors.

HARVARD UNIVERSITY

Numeric Variables

Numeric variables need to be examined, corrected and missing flags need to be created.

Consider this data:

Assignment Project Exam Help

Model	mpg	cyl	disp	hp	drat	wt	qsec	
Mazda RX4	21	6	160	110	3.9	2.62		
Mazda RX4 Wag	21	6	160	-110	lųρ	S2.875	1 2 02	/
Datsun 710	122.8	NA	108			2.32		
Hornet 4 Drive	21.4	6	258	110	308	3 215	19.44	
Hornet Sportabout	18.7	8	?	175	3.15	3.44	17.02	l
Valiant	18.1	6	225	105	2.76	NA	20.22	
Duster 360	14.3	8	360	245	3.21	3.57	15.84	
Merc 240D	24.4	4	146.7	62	3.69	3.19		
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	

Its unlikely a car has 122mpg der com 110 horsepower!

Missing values are blank, NA, and "?"

Outlier Numeric Variables

Outliers can be removed or the values can be replaced with imputation.

Consider this data:

Model	100 IO C	ابرم	مره ا	مأما	المراد		er 100	
	mpg	Cyl	CHAPTE C	PO1	91Pm	e nt	diag.)
Mazda RX4	21	6	455 160	140	3.9	2.62		٠.
Mazda RX4 Wag	21	6	160	-110	3.9	2.875	17.02	
Datsun 710	122.8	NA	108	73	\$.β 5	2/32)(b) (t	7 (
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	
Hornet Sportabout	18.7	8	?	175	3.15	3.44	17.02	
Valiant	18.1	6	225	1 /	e 70	NAV	20.21	1
Duster 360	14.3	8	360	245	3.21	3.57	15.84	
Merc 240D	24.4	4	146.7	62	3.69	3.19		
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	

Drop a row if:

You have many other records for

ect Exiam Help

• The record contains multiple integrity issues

Impute (use a method to change the at pawcoder

- Hotdeck choose a random value in the vector say 19.2
- Mean Imputation mean avg of vector
- Median Imputation median avg
- Train an algorithm to fill in the values (KNN)

HARVARD UNIVERSITY

Detecting Outliers

- An outlier is an observation that is "extreme", being distant from the rest of the data (definition of "distant" is deliberately vague) Assignment Project Exam Help
- Outliers can have disproportionate influence on models
- An important step in data pre-processing/EDA is detecting outliers
- Once detected, domain knowledge is required to determine if it is an error, or truly extreme.
 - Correct them to a more normal (avg) value?
 - Remove the record altogether?

Detecting Outliers

 In some contexts, finding outliers is the purpose of the DM exercise (airport security screening). This is called "anomaly detection" Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Missing Numeric Variables

Imputation is a best practice over to fill in for missing numeric values. Usually start with an easy method like median or hotdeck.

Drop a row if:

You have many other records for

Model	mpg A	ignme	nt Dr	010
Mazda RX4	AS	igiline		Oje
Mazda RX4 Wag	21	0		
Datsun 710	20.1	https:	//nov	100
Hornet 4 Drive	21.4	nulps.	//pov	
Hornet Sportabout	18.7			
Valiant	18.1	Add '	WeCl	hat
Duster 360	14.3	0		Ide
Merc 240D	24.4	0		
Merc 230	22.8	0		
Merc 280	19.2	0		

ect **恒热的 Help** • The record contains multiple integrity

der.com

Impute (use a method to change the party)coder

- Hotdeck
- Mean
- Median
- Algorithm (KNN)

HARVARD UNIVERSITY

Original Data

Imputation through domain expertise can be VERY time consuming but is sometimes worth it though not often.

Model	mpg	cyl	disp	hp	drat	wt	qsec	
Mazda RX4	21	6	160	110	3.9	2.62		
Mazda RX4 Wag	21	6	160	-110	3.9	2.875	17.02	
Datsun 710	122.8	NΑ	_ 108	93	3.85	2.32	18.61	\sim
Hornet 4 Drive	21.4		7578		3.58	3.215	49.44	
Hornet Sportabout	18.7	8	?	175	3.15	3.44	17.02	
Valiant	18.1	6	225	105	2.76	NA	20.22	
Duster 360	14.3	8	360	1244) \$2,1/	//DE	W .84	\mathbf{O}
Merc 240D	24.4	4	146.7	62	3.69	3.19		
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	
Merc 280	19.2	6	167.6	4123	(3.92	V324	Ima	t

Drop a row if:

You have many other records for

Etraining Help

The record contains multiple integrity issues der.com

Impute (use a method to change the owiepder

- Hotdeck
- Mean
- Median
- **Algorithm** (KNN)

Missing Numeric Variables

Imputation through domain expertise can be VERY time consuming but is sometimes worth it though not often.

Consider this data:

Model	mpg	cyl	dep c	hp _O 1	drata	M tnt	q :e	iect Exan
Mazda RX4	21	6	160	140	3.9	2.62	17.02	ject Exan
Mazda RX4 Wag	21	6	160	110	3.9	2.875	17.02	
Datsun 710	20.1	8	108	93	\$.65	2/32	1661	codouteous
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	
Hornet Sportabout	18.7	8	146.7		3.15		17.02	440
Valiant	18.1	6	225	104	e 76	3.13	26.2 h	
Duster 360	14.3	8	360	245	3.21	3.57	15.84	Mazda h
Merc 240D	24.4	4	146.7	62	3.69	3.19	22.9	• 146.7 is
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	

ect Exam Help

(Impute(Ose)a method to change the value):

- t[•]powookselike a data entry issue & other Mazda has 110.
 - 146.7 is the average etc

Missing Flags

Add missing indicator dummy variables similar to the categorical exercise.

Consider this data:

Model	mpg	cyl	SS1g	nm np	ent	Proj	ect]	mixsing MPG	mis <mark>lir</mark> g Cyl	missing Disp	Adjust_ HP	missing WT	missing QSec
Mazda RX4	21	6	160	110	3.9	2.62	17.02	0	0	0	0	0	1
Mazda RX4 Wag	21	6	146	tt119	·/319	Q.875	017.02	r.e01	\mathbf{n}^{0}	0	1	0	0
Datsun 710	20.1	. 8	108	93	3.85	2.32	18.61		1	0	0	0	0
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	0	0	0	0	0	0
Hornet Sportabout	18.7	8	146,	C17 5	3 /18	Cha	t 100	weo	der	1	0	0	0
Valiant	18.1	6	225	105	2.76	3.15	20.22		0	0	0	1	0
Duster 360	14.3	8	360	245	3.21	3.57	15.84	0	0	0	0	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.19	22.9	0	0	0	0	0	1
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	0	0	0	0	0	0
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	0	0	0	0	0	0

Feature Engineering- Still Pre-Processing!!

Once you have your data identified, collected and organized, you may want to create new vectors using existing data to aid the analysis.

Feature engineering or "feature crossing" is the act of using existing data to form new data inputs for analysis. For example, dividing one data point by another to derive a new data point.

HARVARD UNIVERSITY

What is Feature Engineering?

Using qualitative or technical expertise to derive new features for machine learning.

Example
Predict basketball team wins:

ssignment Prajectate xam Help

Total Rebounds (2017-18): 2749

Total Games: 56 WCOGEL.COM LBJ triple doubles: 1

Add WeChat powcoder

Engineered

Name	Value	Туре	Reasoning
Rebounds per Game	41	Technical	Simple ratio of two team level stats
Percent of Games that Lebron James has a "triple double"	10/56 = 17.8%	Qualitative	Capturing information about the best player's performance e.g. getting double digit stats in 3 of assists, blocks, points, rebounds, or steals

HARVARD
UNIVERSITY

Why is Feature Engineering Effective?

Using qualitative or technical expertise to derive new features for machine learning.

f (Modeling Results)=the Algo+Parameters+Data provided Assignment Project Exam Help

https://powcoder.com

- Better features means flexibility.
 - less than optimal models can elittly iew good regult powcoder
- Betters features means simpler models.
 - less than optimal parameters can still yield good results
- Better features means better results.
 - "The algorithms we used are very standard for Kagglers. We spent most of our efforts in feature engineering." Xavier Conort describing his winning "Flight Quest" submission
 - Way to differentiate & squeeze out more accuracy

Example Feature Engineering Methods

- •library(vtreat)
 - Automatic variable treatment functions
- •library(acepack)
 - · Alternating Assignment Project Exameliappe tance
- Hand-Coded Variable https://powcoder.com
 - •Subject Matter Experts tell you which variables to interact Add WeChat powcoder
- Dimension Reduction PCA
 - Principle component analysis

Grey not covered but if interested can share code

Variable Treatment: library(vtreat)

Vtreat automates some data cleaning, imputation and engineers specific response encoded variables.

Assignment Project Exam Help

Step 3

https://powcoder.com

> dTrainN x z y 1 a 1 0 2 a 2 0 3 a 3 0 4 a 4 1 5 b 5 0 6 b NA 1 7 b 7 1

Add ment NeChat powco depure" Data into a treated Modeling Matrix designTreatmentsN(...)

Step 2

"Design Treatment" - Categorical or Numeric

Step 1

Organize a Informative Data

Vtreat adjusts data in many ways.

Action	Туре	Description
Imputation	Cleaning	Na, Nan, Inf replacement
Imputation Indicator	Cleaning	Append a binary column as imputation flag
Dummy Variables	Cleaning	Create dummy variables for categorical variables
Constant Attribute Suppression ASS	game	ntoProjecto Exam Help
Level Deviation –"cat_D"	Engineering	A "deviation fact" about a categorical level. Tells us if 'y' is concentrated or diffuse when conditioned on the observed level of the original categorical variable.
Level Prevalence- "cat_P"	Parity is	A proalty can be a properly and the original level was rare or common.
Estimated Single Variable Effects –	Engineering	A single variable Bayesian model of the change in logit-odds in outcome from mean
"cat_B" = categorical outcome w/Bayesian	Auu	A single variable regression model of the difference in outcome expectation conditioned on the observed value of the original variable.
"cat_N" = numeric outcome w/Regression		
Rare Cats*	Engineering	For categorical levels below a frequency threshold, pool different levels into a common "rare-level" variable

Mean Imputation - PreProcessing

Most of the time we will use vtreat to clean data...its faster and easier.

Vtreat Actions	Common Name
NA, NAN, and Infinity replaced with mean	Mean imputation

- When a numeric Ausigniment Projecta by came the degorical variables
 - Replace that value with the

mean average https://powcoder.com

Missing Flags- PreProcessing

Vtreat Actions	Common Name
Indicator	Missing indicator

- When a numeric value is missing
 Add a missing
 When a factor level is missing
 Add a missing
 Project

https://powcoder.com

Dummy Variables - PreProcessing

Vtreat Actions	Common Name
Indicator variables	Dummy variable

Not applicable for numeric values • For each factor level, will create

Assignment Projectment Project

Beware! Since some algorithms don't care, vtreat will return ALL dummy variables and not drop one to represent all 0s.

Vtreat Engineered CAT Variables Example

Non-Informative Check

Vtreat Actions	Common Name
Constant/Near Constant	Suppress uninformative variables

> dTrainN x z y 1 a 2.4 0 2 a 2.4 0 3 c 2.4 0 4 a 2.4 1 5 b 2.4 0 6 b 2.4 1 7 c 2.4 1

Assignment Project Exam Help

Vtreat summary

Original Data

Design a Treatment Plan

Apply the plan to the original and test sets

Get data ready for modeling

Assignment Project Exam Help

When specifying a plan you need to pass in:

- The Data https://powcoder.com
 The column names of informative variables.
- The name of the Y w Response Variable

Best Practices:

Almost always drop cat_D variables

When possible design a treatment plan on separate data than the training & test sets Review the output to ensure coherence, its not a free automated lunch!

REVIEW: Informative Variables

Vtreat needs these names

	I	Ass	ign	me	nt]	Proj	ect	E	kai	n I	Hel	p			
name	mfr	type	calories	protein	fat	sodium fi	ber carl	oo su	ıgars	potass	vitamins	shelf	weight	cups	rating
100%_Bran	N	С	70)	4	1 130	10	5	6	280	25	3	3	1 0.3	3 68.40297
100%_Natural_Bran	Q	С	120		3 , ,	5 15	2	8	8	135		3	3	1	1 33.98368
All-Bran	К	С	htt	nc.	4//17/		$\bigcirc \emptyset$	1 77	$^{\circ}$	320	25	3	3 :	1 0.3	3 59.42551
All-Bran_with_Extra_Fiber	К	С		\mathbf{po}	4 / P	V Y ₄₀		∠		330	25	3	3 :	1 0.	5 93.70491
Almond_Delight	R	С	110		2 2	2 200	1	14	8		25	3	3 :	1 0.7	5 34.38484
Apple_Cinnamon_Cheerios	G	С	110)	2	2 180	1.5	10.5	10	70	25	1	. :	1 0.7	5 29.50954
Apple_Jacks	К	С	110	4 •	2(125	1	11	14	3 0	25	2	2 :	1	1 33.17409
Basic_4	G	С		ld \	λ/ρ	200	it po	118 /			25	3	1.33	3 0.7	5 37.03856
Bran_Chex	R	С	1 1 4	J U		1 200	יון וו	\mathcal{I}_{5}	VV	4 425	25	1	. :	1 0.6	7 49.12025
Bran_Flakes	P	С	90)	3 (210	5	13	5	190	25	3	3 :	1 0.6	7 53.31381
Cap'n'Crunch	Q	С	120)	1 :	2 220	0	12	12	35	25	2	2 :	1 0.7	5 18.04285

REVIEW: Outcome/Target Variable

Vtreat needs this name as the outcome.

		•		-			_			- 4				
name	mfr	tyGe C	Gris pot	ent	sod in fib	C drb	o siya	r <mark>s 1</mark> p	tass vi	ai <mark>tiri</mark> ş Îhe	f we	eight	cups	rating
100%_Bran	N	C	70	4	1 130	10	5	6	280	25	3	1	0.33	68.40297
100%_Natural_Bran	Q	С	120	3	5 15	2	8	8	135	0	3	1	1	33.98368
All-Bran	К	С	70	4	1 260	9	7	5	320	25	3	1	0.33	59.42551
All-Bran_with_Extra_Fiber	К	С	50	4 / /	0 140	14	8	0	330	25	3	1	0.5	93.70491
Almond_Delight	R	С	nting	1°2//10	(1) V26(C)	014	14	On	n	25	3	1	0.75	34.38484
Apple_Cinnamon_Cheerios	G	С	110	2 /	2 180	1.5	10.5	10	70	25	1	1	0.75	29.50954
Apple_Jacks	К	С	110	2	0 125	1	11	14	30	25	2	1	1	33.17409
Basic_4	G	С	130	3	2 210	2	18	8	100	25	3	1.33	0.75	37.03856
Bran_Chex	R	С	A 91 1	12 7	1 200	4	15	6	1 125	25	1	1	0.67	49.12025
Bran_Flakes	Р	С	A_{Θ}	We	202	T 19()W (A A	25	3	1	0.67	53.31381
Cap'n'Crunch	Q	С	120	1	2 220		12	12	35	25	2	1	0.75	18.04285

HARVARD UNIVERSITY

SME - Factor Level Interactions

Domain Specific Knowledge can be applied to factors to create new variables.

With factors, you combine by concatenating the levels, capturing the information contained in both levels such as "bald" "male" to "bald_male"

HARVARD UNIVERSITY

SME - Numeric Interactions

Domain Specific Knowledge can be applied to numeric variables to create new variables.

If we believe x2 & x3

-0.8585351 -11.31116

0.7912153 -13.02964

Х3

In sports, variables like "turnovers per game" are expert led engineered variables. "per" is interaction through division of two seasonal level statistics.

X1

HARVARD UNIVERSITY

-0.114289842

-0.107193180

-0.050375619

-0.183169438

0.004520334

Div. New

Var

Then interacting them with simple operators

Such as subtraction or division may help the

11.439347

10.124465

13.934819

10.452620

13.820857

10 -0.05889832

Example Data w/Numeric Vectors

1.41036156 -0.9008710 -12.3402

2.07185790 -0.8585351 -11.31116

0.7912153 -13.02964

Feature Enrichment

When training a model you can

Add more training records Project Exam

• Find more rowsttps://powcoder.com

OR

Add more information

Find more columns!

Why is Feature Enrichment Effective?

Using qualitative or technical expertise to derive new features for machine learning.

f (Modeling Results)=the Algo+Parameters+Data provided Assignment Project Exam Help

https://powcoder.com

- Better features means flexibility.
 - less than optimal models can elittly iew good regult powcoder
- Betters features means simpler models.
 - less than optimal parameters can still yield good results
- Better features means better results.
 - "The algorithms we used are very standard for Kagglers. We spent most of our efforts in feature engineering." Xavier Conort describing his winning "Flight Quest" submission
 - Way to differentiate & squeeze out more accuracy

Data Enrichment aids Model Performance

Feature Enrichment is the act of adding new information to your dataset. You are enriching your existing data, often with public or 3rd party data.

There are limits to what an organization has internally for data.

Companies exist solely to enrich data sources.

HARVARD UNIVERSITY

An example of Data Enrichment

An organization may collect some information about employees during interactions.

https://www.cbinsights.com/research/what-is-psychographics/

Modeling with Feature Enrichment is Widespread

Used social media information of individual and friends to model voting tendencies

Cambridgassignment Project Exam Help Analytica

https://powcoder.com

Add WeChat powcoder
Uses 3rd party data to predict if a household member has diabetes for marketing.

Most consumers are not aware the type and amount of data that is available about them.

Left Join

Assignment Project Exam Help

https://powcoder.com
instruments
Add WeChat powcoder

Return all rows from x where there are matching values in y, and all columns from x and y. If there are multiple matches between x and y, all combination of the matches are returned.

HARVARD UNIVERSITY

Right Join

Assignment*Project*Exam Help

https://powcoder.com
instruments
Grades

Add WeChat powcoder

Return all rows from y, and all columns from x and y. Rows in y with no match in x will have NA values in the new columns. If there are multiple matches between x and y, all combinations of the matches are returned.

HARVARD UNIVERSITY

55

Inner Join

Assignment*Project*Exam Help

https://powcoder.com
instruments Grades

Add WeChat powcoder

Return all rows from x where there are matching values in y, and all columns from x and y. If there are multiple matches between x and y, all combination of the matches are returned.

HARVARD UNIVERSITY

Full Join

Assignment*Project* Exam Help

https://powcoder.com
instruments
Grades
Add WeChat powcoder

Return all rows and all columns from both x and y. Where there are not matching values, returns NA for the one missing.

HARVARD UNIVERSITY

57

Open A_Joins.R

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Agenda

Start	End	Item
		Review in Context
		Data Mining Workflows
		Data Modification & Preprocessing
	As	signments Enginate Erram Help
		Housekeeping, Reading & Homework https://powcoder.com

Add WeChat powcoder

2022/11/23 Kwartler CSCI S-96

Meet Donor Bureau

HARVARD UNIVERSITY

Company Overview

- Founded in 2011
 - DonorBureau spun out of a direct mail agency
- Works with non-profits to optimize their direct mail fundraising

https://powcoder.com

- Data Stats:
 - 900M past mail transactions powcoder
 - 140M past donations
 - 40M individuals

Modeling Problem

- Two modeling problems
 - What acquisition targets should NOT get mail?
 - What donor cultivation targets should get mail?
- Acquisition modeling
 Drop bottom 20% of list to be mailed

 - Goal is to have the top 80% gross twice as much as the bottom 20%
- Cultivation modeling! WeChat powcoder
 - Add names to the monthly 10k piece cultivation mailings
 - Find 2k additional names per month to mail from a 40k donor file

Let's Practice

Open B_DataPreProcessingEngineering:

Variable	Description	Variable	Description				
rowID	Appended Row ID - noninformative	HV	Avg Home Value in potential donor's neighborhood in hundreds of dollars.				
uniqueID	Unique Identifier – noninformative	Icmed	Median Income in potential donor's neighborhood in hundreds of dollars.				
Zip	Zip code group tangyignment	Project E	Xa Finil Licensin potential donor's neighborhood in hundreds of dollars.				
Homeown	Y/N if they own a hom	1045					
er	https://po	owcoder.	% earning less than \$15K in potential donor's Geigh Rarhood.				
NUMCHLD	Number of children in house	NUMPROM	Lifetime # of promotions received to date				
Income	Household Income Add We	Chratepov	V Colorcians of lifetime gifts to date.				
Gender	M/F	MAXRAMNT	Dollar amount of largest gift to date.				
\\/oolth	Maalth rating uses madian family	LASTGIFT	Dollar amount of most recent gift.				
Wealth	Wealth rating uses median family income and population statistics from	TOTALMONTHS	Number of months from last donation				
	each area to index relative wealth within each state. The segments are	TIMELAG	Number of months between first and second gift.				
	denoted 0-9, with 9 being the highest	AVGGIFT	Average dollar amount of gifts to date.				
	wealth group and zero being the lowest. Each rating has a different	Y1_Donation	Y/N did they donate				
	meaning within each state.	Y2_DonatedAmt	Dollar Amt of donation				

Agenda

Start	End	Item
		Review in Context
		Data Mining Workflows
		Data Modification & Preprocessing
	As	signments Enginate Erram Help
		Housekeeping, Reading & Homework https://powcoder.com

Add WeChat powcoder

Housekeeping, Reading & Homework

- Keep posting Piazza questions
- Make sure you can knit and submit correctly, better to solve it now than struggle all semester

Assignment Project Exam Help

Chapter 6

https://powcoder.com

Add WeChat powcoder

- Week 2 HW script...moved out, see Canvas for adjusted date
- OKCupid Case <u>DUE (see syllabus)</u>
 - All files including slides, code (if applicable) & video

HARVARD
UNIVERSITY

2022/11/23 Kwartler CSCI S-96