

VinMin = 3.0V VinMax = 4.2V Vout = 12.0V Iout = 2.0A Device = TPS61088RHLR Topology = Boost Created = 2018-07-30 07:36:41.784 BOM Cost = \$4.28 BOM Count = 18

Total Pd = 2.04W

WEBENCH® Design Report

Design: TPS61088RHLR TPS61088RHLR 3.0V-4.2V to 12.00V @ 2.0A

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbst	MuRata	GRM155R61C104KA88D Series= X5R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
2.	Ccomp	MuRata	GRM033R71C122KA01D Series= X7R	Cap= 1.2 nF ESR= 1.0 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
3.	Ccomp2	MuRata	GRM1555C1E510JA01D Series= C0G/NP0	Cap= 51.0 pF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
4.	Cin	MuRata	GRM32ER61C476ME15L Series= X5R	Cap= 47.0 uF ESR= 3.037 mOhm VDC= 16.0 V IRMS= 4.59346 A	2	\$0.39	1210_280 15 mm ²
5.	Cin2	MuRata	GRM155R60J104KA01D Series= X5R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 6.3 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
6.	Cout	TDK	C2012X5R1V226M125AC Series= X5R	Cap= 22.0 uF ESR= 2.05 mOhm VDC= 35.0 V IRMS= 4.5559 A	3	\$0.38	0805 7 mm ²
7.	Css	AVX	08055C822KAT2A Series= X7R	Cap= 8.2 nF ESR= 87.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
8.	Cvcc	Kemet	C0603C225K8PACTU Series= X5R	Cap= 2.2 uF ESR= 1.0 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.04	0603 5 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9. L1	Bourns	SRP6540-1R5M	L= 1.5 μH DCR= 10.0 mOhm	1	\$0.56	SRP6540 83 mm ²
10. Rcomp	Yageo	RC0201FR-0744K2L Series= ?	Res= 44.2 kOhm Power= 50.0 mW Tolerance= 1.0%	1	\$0.01	0201 2 mm ²
11. Rfbb	Yageo	RT0805BRD0792KL Series= RT0805	Res= 92.0 kOhm Power= 125.0 mW Tolerance= 0.1%	1	\$0.05	0805 7 mm ²
12. Rfbt	Vishay-Dale	CRCW0402825KFKED Series= CRCWe3	Res= 825.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
13. Rlim	Yageo	RC0201FR-07105KL Series=?	Res= 105.0 kOhm Power= 50.0 mW Tolerance= 1.0%	1	\$0.01	0201 2 mm ²
14. Rt	Vishay-Dale	CRCW0402232KFKED Series= CRCWe3	Res= 232.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
15. U1	Texas Instruments	TPS61088RHLR	Switcher	1	\$1.60	RHL0020A 25 mm ²

Operating Values

Ope	Operating values						
#	Name	Value	Category	Description			
1.	Cin IRMS	744.681 mA	Current	Input capacitor RMS ripple current			
2.	Cout IRMS	3.691 A	Current	Output capacitor RMS ripple current			
3.	IC lpk	9.765 A	Current	Peak switch current in IC			
4.	lin Avg	8.68 A	Current	Average input current			
5.	L lpp	2.58 A	Current	Peak-to-peak inductor ripple current			
6.	BOM Count	18	General	Total Design BOM count			
7.	FootPrint	196.0 mm ²	General	Total Foot Print Area of BOM components			
8.	Frequency	591.716 kHz	General	Switching frequency			
9.	Mode	BOOST CCM	General	PWM/PFM Mode			
10.	Pout	24.0 W	General	Total output power			
11.	Total BOM	\$4.28	General	Total BOM Cost			
12.	Cross Freq	12.934 kHz	Op Point	Bode plot crossover frequency			
13.	Duty Cycle	76.321 %	Op Point	Duty cycle			
14.	Efficiency	92.164 %	Op Point	Steady state efficiency			
15.	Gain Marg	-12.696 dB	Op Point	Bode Plot Gain Margin			
16.	IC Tj	80.682 degC	Op Point	IC junction temperature			
17.	ICThetaJA	38.8 degC/W	Op Point	IC junction-to-ambient thermal resistance			
18.	IOUT_OP	2.0 A	Op Point	lout operating point			
19.	Low Freq Gain	87.175 dB	Op Point	Gain at 1Hz			
20.	Phase Marg	60.021 deg	Op Point	Bode Plot Phase Margin			
21.	VIN_OP	3.0 V	Op Point	Vin operating point			
22.	Vout Actual	12.001 V	Op Point	Vout Actual calculated based on selected voltage divider resistors			
23.	Vout Tolerance	3.633 %	Op Point	Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable			
24.	Vout p-p	63.034 mV	Op Point	Peak-to-peak output ripple voltage			
25.	Cin Pd	842.084 µW	Power	Input capacitor power dissipation			
26.	Cout Pd	9.307 mW	Power	Output capacitor power dissipation			
27.	Coutx Pd	0.0 W	Power	Output capacitor_x power loss			
28.	IC Pd	1.306 W	Power	IC power dissipation			
29.	L Pd	723.858 mW	Power	Inductor power dissipation			
30.	Total Pd	2.041 W	Power	Total Power Dissipation			

Design Inputs

#	Name	Value	Description
1.	lout	2.0	Maximum Output Current
2.	VinMax	4.2	Maximum input voltage
3.	VinMin	3.0	Minimum input voltage
4.	Vout	12.0	Output Voltage
5.	base_pn	TPS61088	Base Product Number
6.	source	DC	Input Source Type
7.	Ta	30.0	Ambient temperature

Design Assistance

1. TPS61088 Product Folder: http://www.ti.com/product/TPS61088: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.