МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ІКНІ Кафедра **ПЗ**

3BIT

до лабораторної роботи N_2 6 **3 дисципліни:** "Архітектура комп'ютера" **на тему:** "Програмування арифметичного співпроцесора мікропроцесорів x86"

Лектор:
доц. каф. ПЗ
Крук О.Г.

Виконав:
ст. гр. ПЗ-22
Солтисюк Д.А.

Прийняв:
доц. каф. ПЗ
Крук О.Г.

«______ 2022 р.

Σ=______

Львів – 2022

Тема роботи: Програмування арифметичного співпроцесора мікропроцесорів x86.

Мета роботи: розвинути навики складання програми для арифметичного співпроцесора мовою асемблера для обчислення математичного виразу, відтранслювати і виконати в режимі відлагодження програму, складену відповідно до свого варіанту, обчислити заданий вираз в програмі мовою С та порівняти результати.

Варіант: 22

22
$$\frac{|c*c+d*a| - \sqrt{47*a+7.6}}{6.9*d + \frac{c}{8.1} - 9.7*a}$$
 a = 9.8 c=8.5 d=2.3

Теоретичні відомості

Арифметичний процесор або співпроцесор - це цифровий пристрій, призначений для апаратного виконання арифметичних операцій над дійсними (з плаваючою комою) числами. Наявність співпроцесора дозволяє значно прискорити роботу програм, що виконують обчислення з високою точністю, тригонометричні розрахунки та опрацювання інформації, яка повинна бути подана у вигляді дійсних чисел. В перших моделях мікропроцесорів Intel співпроцесора не було, він виготовлявся у вигляді окремої інтегральної мікросхеми і входив в склад комп'ютерів як опція. Починаючи з моделі і486DX співпроцесор розміщується на тому ж кристалі, що і основний процесор.

Співпроцесор має вісім 80-розрядних регістрів R0 - R7 для зберігання чисел з плаваючою комою, організованих у вигляді кільцевого стека. Номер регістра, який на даний момент перебуває на вершині стека, вказується в 3-бітовому полі ТОР, що міститься в слові стану. При написанні програм, в яких використовуються команди з плаваючою комою, до вершини стека можна звернутися за допомогою операнда ST(0) (або просто ST). В командах можна також використовувати відносні до вершини стека операнди ST(1) ... ST(7). Абсолютні імена регістрів типу R0, R1, ... R7 використовувати не можна.

При виконанні команд з плаваючою комою їх операнди зберігаються в десятибайтових регістрах у розширеному форматі з подвійною точністю. При збереженні результату арифметичної операції в пам'яті співпроцесор автоматично перетворює його з розширеного формату в ціле або довге ціле число, а також в коротке або довге дійсне число.

Основний процесор і співпроцесор можуть обмінюватися значеннями з плаваючою комою тільки через оперативну пам'ять. Тому перед викликом команди співпроцесора її операнд завжди повинен міститися в пам'яті. При цьому співпроцесор завантажує число з пам'яті в свій стек регістрів і виконує над ним арифметичну операцію.

Мнемоніки команд з плаваючою комою завжди починаються з літери F/f, щоб їх можна було відрізнити від інших команд основного процесора. Друга

літера в мнемоніці (зазвичай це B/b або I/i) визначає спосіб інтерпретації операнда, що міститься в пам'яті. Літера B свідчить про те, що оператор поданий в двійково-десятковому коді (Binary-Coded Decimal, або BCD). Літера I говорить про те, що оператор поданий у вигляді цілого значення. Якщо ці літери не вказані, то передбачається, що оператор міститься в пам'яті в одному з форматів чисел із плаваючою комою. До прикладу, команда FBLD оперує з двійково-десятковими числами (BCD-числами), команда FILD - з цілими числами, а FLD - з дійсними, поданими в форматі з плаваючою комою.

У командах з плаваючою комою можна вказати максимум два оператори, причому один з них - це ім'я одного з регістрів з плаваючою комою. Безпосередньо задані операнди не використовуються. Як операнди не можна також використовувати імена регістрів загального призначення основного процесора, таких як АХ або ЕВХ. Не дозволені також операції типу "пам'ятьпам'ять".

Індивідуальне завдання

- 1. Складіть програму обчислення виразу за допомогою команд співпроцесора для WINDOWS.
- 2. Перевірте результат роботи асемблерної програми, порівнявши його з результатом програми мовою Сі.
- 3. У звіті наведіть текст програми, копії вікон з результатами.
- 4. Зробіть висновки про виконану роботу.

22
$$\frac{|c*c+d*a| - \sqrt{47*a+7.6}}{6.9*d + \frac{c}{8.1} - 9.7*a}$$
 a = 9.8 c=8.5 d=2.3

Хід виконання

- 1. Склав програму обчислення виразу за допомогою команд співпроцесора.
- 2. Склав програму обчислення виразу на мові Сі.
- 3. Перевірив результат роботи асемблерної програми порівнявши його з результатом програми мовою Сі.

⊕ RES -0.936159372 float

Результат роботи програми на мові Асемблера

The result is: -0.936159

Результат роботи програми на мові С

Код програми на мові Асемблера

```
; vim: ft=masm
.686
.model flat,stdcall
.stack
.data
A REAL4 9.8
B REAL4 8.5; C variable
D REAL4 2.3
C1 REAL4 47.0
C2 REAL4 7.6
C3 REAL4 6.9
C4 REAL4 8.1
C5 REAL4 9.7
TOP REAL4 ?
BOT REAL4 ?
RES REAL4 ?
.code
main:
finit
fld D
fmul A ; st0 = D * A
fmul B ; st0 = C * C, st1 = D * A
fadd
fabs; st0 = abs(C * C + D * A)
fld C1; st0 = C1, st1 = abs(C * C + D * A)
fmul A ; st0 = C1 * A, st1 = abs(C * C + D * A)
fadd C2 ; st0 = C1 * A + C2, st1 = abs(C * C + D * A)
fsqrt; st0 = sqrt(C1 * A + C2), st1 = abs(C * C + D * A)
fsubp
fst TOP
fld D
fmul C3
fld B
fdiv C4
fld C5
fmul A
fsubp
faddp
fst BOT
fld TOP
fdiv BOT
fst RES
RET
END main
```

Код програми на мові С

Висновки

На цій лабораторній роботі я розвинув навики складання програми для арифметичного співпроцесора мовою асемблера для обчислення математичного виразу, відтранслював і виконав в режимі відлагодження програму, складену відповідно до свого варіанту, відлагодив та перевірив виконання тесту.