Introduction To Trigonometry

Trigonometric Ratios

Opposite & Adjacent Sides in a Right Angled Triangle

In the $\triangle ABC$ right-angled at B, BC is the side opposite to $\angle A$, AC is the hypotenuse and AB is the side adjacent to $\angle A$.

Trigonometric Ratios

For the right $\triangle ABC$, right angled at $\angle B$, the trigonometric ratios of the $\angle A$ are as follows:

$$sin A = \frac{opposite \ side}{hypotenuse} = \frac{BC}{AC}$$

$$cos A = \frac{adjacent \ side}{hypotenuse} = \frac{AB}{AC}$$

$$tan A = \frac{opposite \ side}{adjacent \ side} = \frac{BC}{AB}$$

$$cosec A = \frac{hypotenuse}{opposite \ side} = \frac{AC}{BC}$$

$$sec A = \frac{hypotenuse}{adjacent \ side} = \frac{AC}{AB}$$

$$cot A = \frac{adjacent \ side}{adjacent \ side} = \frac{AB}{AC}$$

Visualisation of Trigonometric Ratios Using a Unit Circle

Draw a circle of unit radius with the origin as the centre. Consider a line segment OP joining a point P on the circle to the centre which makes an angle θ with the x-axis. Draw a perpendicular from P to the x-axis to cut it at Q.

•
$$sin\theta = \frac{PQ}{QP} = \frac{PQ}{1} = PQ$$

•
$$sin\theta = \frac{PQ}{OP} = \frac{PQ}{1} = PQ$$

• $cos\theta = \frac{OQ}{OP} = \frac{OQ}{1} = OQ$
• $tan\theta = \frac{PQ}{OQ} = \frac{sin\theta}{cos\theta}$
• $cosec\theta = \frac{OP}{PQ} = \frac{1}{PQ}$
• $sec\theta = \frac{OP}{OQ} = \frac{1}{OQ}$
• $cot\theta = \frac{OQ}{PQ} = \frac{cos\theta}{sin\theta}$

•
$$tan\theta = \frac{PQ}{QQ} = \frac{sin\theta}{cos\theta}$$

•
$$cosec\theta = \frac{OP}{PQ} = \frac{1}{PQ}$$

•
$$sec\theta = \frac{OP}{OQ} = \frac{1}{OQ}$$

•
$$cot\theta = rac{OQ}{PQ} = rac{cos heta}{sin heta}$$

Visualisation of Trigonometric Ratios Using a Unit Circle

Relation between Trigonometric Ratios

- $cosec\theta = \frac{1}{sin\theta}$
- $sec\theta = \frac{1}{\cos\theta}$
- $tan\theta = \frac{sin\theta}{cos\theta}$ $cot\theta = \frac{cos\theta}{sin\theta} = \frac{1}{tan\theta}$

Trigonometric Ratios of Specific Angles

Range of Trigonometric Ratios from 0 to 90 degrees

For $0^{\circ} \leq \theta \leq 90^{\circ}$,

- $0 \le sin\theta \le 1$
- $0 \le cos\theta \le 1$
- $0 \le tan\theta < \infty$

- $1 \leq sec\theta < \infty$
- $0 \le \cot \theta < \infty$
- $1 \leq cosec\theta < \infty$

 $tan\theta$ and $sec\theta$ are not defined at 90°. $cot\theta$ and $cosec\theta$ are not defined at 0°.

Variation of trigonometric ratios from 0 to 90 degrees

As θ increases from 0° to 90°

- $sin\theta$ increases from 0 to 1.
- $cos\theta$ decreases from 1 to 0.
- $tan\theta$ increases from 0 to ∞ .
- $cosec\theta$ decreases from ∞ to 1.
- $sec\theta$ increases from 1 to ∞ .
- $\cot \theta$ decreases from ∞ to 0.

Standard values of Trigonometric ratios

$\angle A$	0°	30	45°	60°	90°
sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$Not\ defined$
$cosec\ A$	$Not\ defined$	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$sec\ A$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	$Not\ defined$
cot A	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Trigonometric Ratios of Complementary Angles

Complementary Trigonometric ratios

If θ is an acute angle, its complementary angle is $90^{\circ} - \theta$. The following relations hold true for trigonometric ratios of complementary angles.

- $sin(90^{\circ} \theta) = cos\theta$
- $cos(90^{\circ} \theta) = sin\theta$
- $tan(90^{\circ} \theta) = cot\theta$
- $cot(90^{\circ} \theta) = tan\theta$
- $cosec(90^{\circ} \theta) = sec\theta$

Trigonometric Identities

Trigonometric Identities

- $sin^2\theta + cos^2\theta = 1$
- $1 + cot^2\theta = coesc^2\theta$
- $1 + tan^2\theta = sec^2\theta$