Netzsicherheit

Teil 3: Wireless LAN

Prof. Dr. Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

> Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

Das TCP/IP-Schichtenmodell

- Datentransport wird durch eine Kombination von Protokollen ermöglicht, die sich jeweils um Teilaufgaben kümmern.
- Das TCP/IP-Schichtenmodell beschreibt diese Aufgabenteilung für das Internet.

Gliederung

- 1. Einführung WLAN-Technologie
- 2. WEP: Wired Equivalent Privacy
- 3. What's Wrong With WEP? (Borisov, Goldberg, Wagner)
- 4. Die Stromchiffre RC4
- Key Scheduling Weaknesses in RC4 (Fluhrer, Mantin, Shamir)

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

Netwerkschicht: Ethernet, WLAN & Co

- Übertragungsprotokolle für Teilnetze mit gleicher Technologie
 - Ethernet: ursprünglich Broadcast-Netz
 - PPP: Punkt-zu-Punkt-Verbindung
 - WLAN: Broadcast-Netz
 - DVB: unidirektionales Broadcast-Netz mit Fehlerkorrektur
- Analogien Ethernet WLAN
 - klassisches Ethernet (mit Hubs, ohne Switches): drahtgebundener Broadcast
 - WLAN: funkbasierter Broadcast
 - Datenverkehr kann in beiden Fällen mitgelesen werden (Sniffing, Wardriving)

WLAN: IEEE 802.11

- Erster Standard 1997: IEEE 802.11
 - 2,4 GHz Industry, Scientific an Medical (ISM) Band
 - 1 oder 2 Mbps
 - Frequency Hopping Spread Spectrum oder Direct Sequence Spread Spectrum
- Mittlerweile gibt es IEEE 802.11 a,b,c,d,e,f,g,h,i,j,k,l,m,n
- 2 Modi:
 - Infrastructure: Alle Hosts sind über Access Point verbunden
 - Ad-Hoc: Je zwei Hosts können direkt kommunizieren
- Standard beinhaltet "Wired Equivalent Privacy" (WEP), vollständig gebrochen:
 - Walker (Oct 2000),
 - Borisov, Goldberg, Wagner(Jan 2001),
 - Fluhrer, Mantin, Shamir (Aug 2001)

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

WLAN: Sicherheitsmaßnahmen ohne WEP

- Service Set IDentification (SSID)
 - SSIDs sollen ein Funknetz in logische Einheiten unterteilen
 - Ein Access Point akzeptiert alle Hosts mit vorgegebener SSID
 - SSIDs werden im Klartext übertragen
 - Fazit: Wird als Sicherheitsmaßnahme eingesetzt (Open Systems Authentication), ist aber keine.
- MAC Adress Filtering
 - Für jeden Access Point wird eine Liste mit zugelassenen MAC-Adressen erstellt
 - Schwer zu administrieren
 - MAC Spoofing ist möglich

Gliederung

- 1. Einführung WLAN-Technologie
- 2. WEP: Wired Equivalent Privacy
- 3. What's Wrong With WEP? (Borisov, Goldberg, Wagner)
- 4. Die Stromchiffre RC4
- 5. Key Scheduling Weaknesses in RC4 (Fluhrer, Mantin, Shamir)

WEP (2)

- CRC-Prüfsumme c(M): Einfacher, fehlererkennender Code, kein MAC!
- Die Daten M bilden zusammen mit der CRC-Prüfsumme c(M) den Klartext P = M||c(M)
- Der geheime symmetrische Schlüssel k bildet zusammen mit dem Initialisierungsvektor IV die Eingabe für den RC4-Algorithmus
- RC4 ist eine Stromchiffre, bei der der Schlüsselstrom in 8-Bit-Blöcken erzeugt wird.
 - Der Schlüsselstrom wird mit dem Klartext P bitweise XOR-verknüpft. Das Ergebnis ist der Chiffretext.
- Der Chiffretext wird zusammen mit IV auf dem Funkkanal übertragen.
- Es gibt kein Schlüsselmanagement im WEP-Standard!
 - In der Regel wurden alle Hosts eines WLAN mit demselben RC4-Schlüssel konfiguriert!

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

Gliederung

- 1. Einführung WLAN-Technologie
- 2. WEP: Wired Equivalent Privacy
- 3. What's Wrong With WEP? (Borisov, Goldberg, Wagner)
- 4. Die Stromchiffre RC4
- Key Scheduling Weaknesses in RC4 (Fluhrer, Mantin, Shamir)

WEP: Keystream Reuse

 Der Schlüsselstrom k_{IV} zur Verschlüsselung von WEP-Paketen hängt nur von dem Schlüssel k und dem IV ab:

$$k_{IV} = RC4(k,IV)$$

- IV wird im Klartext übertragen, k ist fest
- Folgerung 1 (gleicher IV):

Folgerung 2:

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

WEP: Keystream Reuse

 Der Schlüsselstrom k_{IV} zur Verschlüsselung von WEP-Paketen hängt nur von dem Schlüssel k und dem IV ab:

$$k_{IV} = RC4(k,IV)$$

- IV wird im Klartext übertragen, k ist fest
- Folgerung 1 (gleicher IV):

■ Falls $C1 = P1 \oplus k_{IV}$ und $C2 = P2 \oplus k_{IV}$

dann $C1 \oplus C2 = P1 \oplus k_{IV} \oplus P2 \oplus k_{IV} = P1 \oplus P2$

- Es gibt Methoden, um P1 und P2 aus P1 ⊕ P2 zu berechnen.
- Folgerung 2:

WEP: Keystream Reuse

 Der Schlüsselstrom k_{IV} zur Verschlüsselung von WEP-Paketen hängt nur von dem Schlüssel k und dem IV ab:

$$k_{IV} = RC4(k,IV)$$

- IV wird im Klartext übertragen, k ist fest
- Folgerung 1 (gleicher IV):

• Falls $C1 = P1 \oplus k_{IV}$ und $C2 = P2 \oplus k_{IV}$

dann $\texttt{C1} \oplus \texttt{C2} = \texttt{P1} \oplus \texttt{k}_{\texttt{IV}} \oplus \texttt{P2} \oplus \texttt{k}_{\texttt{IV}} = \texttt{P1} \oplus \texttt{P2}$

- Es gibt Methoden, um P1 und P2 aus P1 ⊕ P2 zu berechnen.
- Folgerung 2:
 - Decryption Dictionaries mit 2²⁴ Einträgen für festen Schlüssel k (egal welcher Länge) möglich!

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

WEP: Keystream Reuse (2)

Wann ist Keystream Reuse möglich?

- Annahmen:
 - A: Für jeden Hosts ein eigener Schlüssel
 - B: Nur ein Schlüssel k für das gesamte Netzwerk
- Spätestens nach 2²⁴ Nachrichtenpaketen...
 - A: ... eines Hosts!
 - B: ... des Netzwerks!! Bei einem AP mit 1500 Byte-Paketen und 11 Mbps ist das nach 5 Stunden der Fall. Dann müsste eigentlich der Schlüssel (manuell!) gewechselt werden.
- Mit Wahrscheinlichkeit 1/2 schon nach ca. 5000 Paketen (Geburtstagsparadoxon!)
- Mit noch größerer Wahrscheinlichkeit, wenn ein Gerät nach Reset den IV immer von 0 hochzählt (mehrfach in der Praxis aufgetreten).

WEP: Modifikation von Nachrichten

■ Die CRC-Prüfsumme ist linear, d.h. es gilt

$$c(X \oplus Y) = c(X) \oplus c(Y)$$

- Angriff: Ändere die verschlüsselte Nachricht M zu M'.
 - Berechne $D = M' \ominus M (= M' \oplus M)$
 - Berechne D||c(D)
 - Berechne
 - C' wird vom Empfänger zu M' entschlüsselt

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

WEP: Modifikation von Nachrichten

Die CRC-Prüfsumme ist linear, d.h. es gilt

$$c(X \oplus Y) = c(X) \oplus c(Y)$$

- Angriff: Ändere die verschlüsselte Nachricht M zu M'.
 - Berechne D = $M' \ominus M$ (= $M' \oplus M$)
 - Berechne D||c(D)
 - Berechne C' = C $\oplus D \| c(D)$ = $k_{IV} \oplus M \| c(M) \oplus D \| c(D)$ = $k_{IV} \oplus (M \oplus D) \| (c(M) \oplus c(D))$ = $k_{IV} \oplus M'$ $\| c(M')$
 - C' wird vom Empfänger zu M' entschlüsselt

WEP: Modifikation von Nachrichten (2)

Anwendungen:

- Verschlüsselung beliebiger Nachrichten an Empfänger:
 - Sende bekannten Plaintext P=M||c(M) an den Empfänger (z.B. eine SPAM-Mail)
 - Zeichne das verschlüsselte Paket, insbesondere den IV, auf
 - Modifiziere P zu beliebigem P' und sende das Paket
 - Funktioniert, weil alte IVs weiter verwendet werden dürfen ohne Alarm auszulösen
- Entschlüsselung durch IP Redirection
 - Modifiziere die IP-Adresse IP_{original} in M (teilweise oder ganz bekannt) in IP_{Angreifer}. AP entschlüsselt, Firewalls lassen IP von innen nach außen durch
 - Problem: Prüfsummen in IP- und TCP-Header

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

WEP: Modifikation von Nachrichten (2)

Anwendungen:

- Entschlüsselung durch IP Redirection
 - Problem: Prüfsummen in IP- und TCP-Header
 - Prüfsumme des Originalpakets ist bekannt: ✓
 - Differenz der Prüfsummen kann mit großer W. geraten werden
 - Ändere anderes Headerfeld so ab, dass die Prüfsumme gleich bleibt
- TCP-Ack-Attacke
 - Ändere ein paar Bits in M ab
 - Wenn TCP-Prüfsumme weiterhin korrekt, wird ein kurzes ACK gesendet (sonst: "silently discard packet")
 - Dies liefert Information über den Klartext

Gliederung

- 1. Einführung WLAN-Technologie
- 2. WEP: Wired Equivalent Privacy
- 3. What's Wrong With WEP? (Borisov, Goldberg, Wagner)
- 4. Die Stromchiffre RC4
- Key Scheduling Weaknesses in RC4 (Fluhrer, Mantin, Shamir)

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4

- Ron Rivest 1987
- geheim bis 1994
- Besteht aus zwei Phasen
 - In der Key Setup-Phase (KSA) wird mit Hilfe des Schlüssels ein interner Startzustand aus den 2⁸! ≈ 2¹⁷⁰⁰ möglichen Zuständen ausgewählt
 - In der Ausgabephase (PRGA) werden aus dem Startzustand Nachfolgezustände generiert und dabei jeweils ein Byte ausgegeben.

RC4

KSA(K)

Initialization (N=28):

For
$$i = 0 ... N-1$$

 $S[i] = i$
 $j = 0$

Scrambling

For
$$i = 0 ... N-1$$

 $j = j + S[i] + K[i \mod L]$
Swap(S[i] , S[j])

PRGA(K)

Initialization:

$$i = 0$$

$$j = 0$$

Generation Loop

$$i = i+1$$

 $j = j + S[i]$
Swap(S[i] , S[j])
Output $Z = S[S[i] + S[j]]$

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4 mit bekanntem IV

- Idee: Beobachte nur das 1. Byte der Ausgabe von PRGA
- Dieses Byte wird aus dem Startzustand wie folgt erzeugt:
 - i = 0+1 = 1
 - j = 0 + S[1] =: X
 - Swap(S[1], S[X])
 - Output Z = S[S[1] + S[X]]
- Fazit: Wenn wir den Wert der Speicherstellen 1 (=X) und X (=Y) kennen,

RC4 mit bekanntem IV

- Idee: Beobachte nur das 1. Byte der Ausgabe von PRGA
- Dieses Byte wird aus dem Startzustand wie folgt erzeugt:
 - i = 0+1 = 1
 - j = 0 + S[1] =: X
 - Swap(S[1], S[X])
 - Output Z = S[S[1] + S[X]]
- Fazit: Wenn wir den Wert der Speicherstellen 1 (=X) und X (=Y) kennen, dann ist das erste ausgegebene Byte des Schlüsselstroms (=Z) der Wert an der Speicherstelle X+Y.
- Ziel: Wert an Speicherstelle X+Y liefert uns Informationen zum nächsten Schlüsselbyte

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

Gliederung

- 1. Einführung WLAN-Technologie
- 2. WEP: Wired Equivalent Privacy
- 3. What's Wrong With WEP? (Borisov, Goldberg, Wagner)
- 4. Die Stromchiffre RC4
- 5. <u>Key Scheduling Weaknesses in RC4 (Fluhrer, Mantin, Shamir)</u>

Ziel: Berechne den geheimen Schlüssel Byte für Byte

- Annahme:
 - Die ersten Bytes K[3], ..., K[A+2] des geheimen Schlüssels sind bereits berechnet,
 - gesucht ist K[A+3]
- Suche WEP-Pakete mit IVs der Form

(A+3, N-1, X)

für ca. 60 verschiedene Werte von X.

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4 mit IV vor dem geheimen Schlüssel

Ziel: Berechne den geheimen Schlüssel Byte für Byte

- Annahme:
 - Die ersten Bytes K[3], ..., K[A+2] des geheimen Schlüssels sind bereits berechnet,
 - gesucht ist K[A+3]
- Suche WEP-Pakete mit IVs der Form

Länge des Arrays

für ca. 60 verschiedene Werte von X.

Da wir jetzt die ersten A+3 Schlüsselbytes

kennen, können wir KSA von RC4 bis zu einem gewissen Punkt nachvollziehen.

• KSA Schritt 0: i = 0, j = 0+S[0]+K[0] = A+3

A+3	N-1	Χ	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
0	1	2	3	 	A+2	A+3	

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4 mit IV vor dem geheimen Schlüssel

• KSA Schritt 0: i = 0, j = 0+S[0]+K[0] = A+3

A+3	N-1	X	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
A+3	1	2	3	 	A+2	0	

• KSA Schritt 0: i = 0, j = 0+S[0]+K[0] = A+3

A+3	N-1	Χ	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
A+3	1	2	3	 	A+2	0	

• KSA Schritt 1: i = 1, j = (A+3)+S[1]+K[1] = A+3+1+N-1 = A+3

A+3	N-1	Х	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
A+3	1	2	3	 	A+2	0	

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4 mit IV vor dem geheimen Schlüssel

• KSA Schritt 0: i = 0, j = 0+S[0]+K[0] = A+3

A+3	N-1	Χ	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
A+3	1	2	3	 	A+2	0	

• KSA Schritt 1: i = 1, j = (A+3)+S[1]+K[1] = A+3+1+N-1 = A+3

A+3	N-1	Х	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
A+3	0	2	3	 	A+2	1	

KSA Schritt 2: i=2, j=(A+3)+S[2]+K[2]=A+3+2+X

A+3	N-1	Х	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
A+3	0	2	3	 	A+2	1	

KSA Schritt 3 bis A+2:

- J enthält jetzt den (zufälligen, aber bekannten) IV-Wert X, daher können alle weiteren Swap-Operationen als zufällig angesehen werden.
- Nach Schritt A+2 kennt der Angreifer den Wert j_{A+2} und die genauen Werte der Permutation S_{A+2}[0], ..., S_{A+2}[N-1]
- Wenn S_{A+2}[0] ≠ A+3 und S_{A+2}[1] ≠ 0, also nicht mehr mit dem Bild oben übereinstimmen, wird die Berechnung abgebrochen und der IV verworfen.

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4 mit IV vor dem geheimen Schlüssel

KSA Schritt 2: i=2, j=(A+3)+S[2]+K[2]=A+3+2+X

A+3	N-1	Х	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
A+3	0	A+5+X	3	 	A+2	1	

KSA Schritt 3 bis A+2:

- J enthält jetzt den (zufälligen, aber bekannten) IV-Wert X, daher können alle weiteren Swap-Operationen als zufällig angesehen werden.
- Nach Schritt A+2 kennt der Angreifer den Wert j_{A+2} und die genauen Werte der Permutation S_{A+2}[0], ..., S_{A+2}[N-1]
- Wenn S_{A+2}[0] ≠ A+3 und S_{A+2}[1] ≠ 0, also nicht mehr mit dem Bild oben übereinstimmen, wird die Berechnung abgebrochen und der IV verworfen.

• KSA Schritt A+3: i = A+3, $j_{A+3} = j_{A+2} + S_{A+2}[A+3] + K[A+3]$

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4 mit IV vor dem geheimen Schlüssel

- KSA Schritt A+3: i = A+3, $j_{A+3} = j_{A+2} + S_{A+2}[A+3] + K[A+3]$
 - $\bullet \ \ \, \text{Angreifer kennt} \ \, j_{\text{A+2}}, \, S_{\text{A+2}}[0], \, ..., \, S_{\text{A+2}}[\text{A+3}], \, ..., \, S_{\text{A+2}}[\text{N-1}]$

- KSA Schritt A+3: i = A+3, $j_{A+3} = j_{A+2} + S_{A+2}[A+3] + K[A+3]$
 - Angreifer kennt j_{A+2} , $S_{A+2}[0]$, ..., $S_{A+2}[A+3]$, ..., $S_{A+2}[N-1]$
 - Falls der Angreifer S_{A+3}[A+3]=S_{A+2}[j_{A+3}] kennen würde:
 - Könnte er diesen Wert in S_{A+2}[0], ..., S_{A+2}[N-1] suchen und daraus j_{A+3} bestimmen.
 - Dann ist $K[A+3] = j_{A+3} j_{A+2} S_{A+2}[A+3]$
 - Frage: Wann ist das der Fall?

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4 mit IV vor dem geheimen Schlüssel

- Wann kennt ein Angreifer S_{A+2}[j_{A+3}]?
- Z.B. wenn die Elemente S[0]=A+3, S[1]=0 und S[A+3] von den nachfolgenden (N-1-A-3) Swap-Operationen nicht verändert werden.

- Wann kennt ein Angreifer S_{A+2}[j_{A+3}]?
- Z.B. wenn die Elemente S[0]=A+3, S[1]=0 und S[A+3] von den nachfolgenden (N-1-A-3) Swap-Operationen nicht verändert werden.
 - Denn dann gilt im 1. Schritt von PRGA(K):
 i = 0+1, j = 0+S[1]=0,
 z = S[S[1]+S[0]] = S[0 + A+3] = S[A+3] = S_{A+2}[j_{A+3}]
 - Dies ist für jeden passenden IV mit W. \approx 0,05 der Fall, nach ca. 60 passenden IVs ist die W. > 0,5.

A+3	N-1	Х	K[3]	 	K[A+2]	K[A+3]	
0	1	2		 	A+2	A+3	
A+3	0	S _{A+2} [2]	S _{A+2} [3]	 		$S_{A+2}[j_{A+3}]$	

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

RC4 mit IV vor dem geheimen Schlüssel

Zusammenfassung des Angriffs:

- Bedingt durch die 802.11-Codierung ist das erste Byte des Klartextes eines WEP-Pakets immer bekannt
- Der Angriff von Fluhrer et. al. kann daher durchgeführt werden.
- Komplexität wächst nur linear mit der Schlüssellänge
- Implementiert in zahllosen Wardriving-Tools: http://www.wardrive.net/wardriving/tools/

Ausblick 1: Die Unsicherheit von WEP

Erste Gegenmaßnahme der Hersteller: Filtern der "weak IVs", d.h. der IV-Werte, die für den oben beschriebenen Angriff verwendet werden.

- KoreK (2004):
 - Statistische Angriffe auf WEP, die keine "weak IVs" mehr brauchen
 - Reduktion der Framezahl auf 500.000
- Klein (2007):
 - Statistischer Angriff auf WEP ohne "weak IVs" anhand "ähnlicher" Schlüssel
- Tews, Weinmann, Pyshkin (2007):
 - Variante des Angriffs von Klein, alle Schlüsselbytes werden parallel berechnet; aktiver Angriff, 85.000 Pakete

Jörg Schwenk Lehrstuhl für Netz- und Datensicherheit

Ausblick 2: WPA 1/2

Temporal Key Integrity Protocol (TKIP):

- RC4 mit 48 Bit IV und insgesamt 128 Bit Schlüssellänge
- Ersatz der CRC-Prüfsumme durch MAC auf Basis der Chiffre Michael:
 Nur 20 Bit Sicherheit, heuristische Gegenmaßen erforderlich

Counter-Mode/CBC-MAC Protocol (CCMP): AES

- AES im Counter Mode
- 128-Bit-MAC auf Basis von AES-CBC, nur 64 Bit werden übertragen

Für beide Verfahren gibt es die beiden Key Agreement-Klassen:

- Pre-Shared Key (PSK)
- Extensible Authentication Protocol (EAP) / RADIUS: Intensive Standardisierung, auch unsichere Verfahren, aber auch SSL/TLS