Detección de Cambios de Régimen en EUR/USD con Modelos HMM

1. Introducción

El objetivo de este estudio es aplicar **Modelos Ocultos de Markov (HMM)** para identificar regímenes de mercado en el par **EUR/USD intradía**.

Los mercados financieros presentan dinámicas no estacionarias: periodos de baja volatilidad intercalados con episodios de alta volatilidad o tendencias abruptas.

Un HMM permite modelar estos **estados ocultos** y estimar probabilísticamente en qué régimen se encuentra el mercado en cada momento.

1.2. Datos y preprocesado

- Fuente: **Dukascopy EUR/USD**, velas de 15 minutos, periodo **2000–2025**.
- Variables originales: open, high, low, close, volume.
- Features generados (preprocessing.py):
 - Retornos: ret_log.
 - Rangos: range_hl, range_co.
 - Volumen: log_volume.
 - o Indicadores técnicos: rsi_14, macd, macd_signal, adx, ma20_rel, mfi_14.
 - Volatilidad: atr_14, rolling_std_1h (≈1h), rolling_std_1d (≈1 día).
 - Tiempo: hour_sin, hour_cos, dow_sin, dow_cos.
 - Extremos recientes: dist max20, dist min20.
- Preprocesamiento:
 - o (Opcional) winsorización de colas extremas.
 - Estandarización z-score con media y desviación del TRAIN de cada split → evita data leakage.
- Splits:
 - Por tamaño de ventana: típicamente train=200k, val=50k, test=50k observaciones.
 - Opción de ventana deslizante con step_size.

1.3. Metodología – Fase 1 (HMM Gauss)

- Modelo: Gaussian HMM multivariante (hmmlearn).
- Selección de features: manual, probando unos pocos conjuntos:

```
• [ret_log, rolling_std_1h, atr_14]
```

- [rsi_14, macd, macd_signal]
- Configuraciones de entrenamiento:
 - Estados ocultos: 2, 3, 4.
 - Covarianza: full y diag.
 - n_iter=200, seed=42.
- Evaluación:

- o ll_val_per_obs como métrica principal.
- AIC y BIC en TRAIN para penalizar complejidad.
- o Robustez temporal entre splits.
- Interpretabilidad: duración media razonable de los estados y varianza de retornos diferenciada.
- Identificación del estado más volátil: el de máxima var(ret_log).

1.4. Resultados de experimentación

1.4.1 Ranking de configuraciones (Top-K)

Los mejores resultados por ll-val_per_obs_mean (promedio sobre splits) fueron:

Rank	Configuración	Estados	Cov	Features	LL Val/Obs
1	st4_full_rsi_14-macd- macd_signal	4	full	rsi_14, macd, macd_signal	
2	st3_full_rsi_14-macd- macd_signal	3	full	rsi_14, macd, macd_signal	
3	st2_full_rsi_14-macd- macd_signal	2	full	rsi_14, macd, macd_signal	

Fuente: grid_summary.csv con el short-list manual de features.

1.4.2 Visualizaciones clave

- Precio coloreado por estados.
- Probabilidad del estado más volátil.
- Histogramas de duración y matriz de transición.

1.4.3 Estadísticas por estado (ejemplo)

Estado	Count	Duración media (barras)	Var(ret_log)	Interpretación
0	•••	~26	0.75	Tranquilo (baja vol.)
1	•••	~27	0.70	Tranquilo (otra fase)
2	•••	~30	1.55	Volátil alcista/bajista
3	•••	~27	1.60	Volátil alcista/bajista

1.5. Interpretación de resultados

- 2 estados: distingue calma vs turbulencia, útil como filtro de riesgo.
- 3 estados: degenerado (dos estados con duración mediana ≈1 barra).
- 4 estados: la estructura más rica y estable:

- Dos regímenes de baja volatilidad (posibles sesgos alcista/bajista).
- o Dos regímenes de alta volatilidad (alcista/bajista).
- o Duraciones medias ≈6h (en M15).
- o Buena separación de varianzas.
- 4 estados → sobreajuste (AIC/BIC altos, estados redundantes).

1.6. Conclusiones de Fase 1

- Mejor configuración: Gaussian HMM, 4 estados, cov=full, features [rsi_14, macd, macd_signal].
- Descubrimientos:
 - Los regímenes son persistentes, no cambian vela a vela.
 - o La volatilidad es el eje dominante de separación.
- Limitaciones:
 - o Distribución gaussiana sub-modela colas pesadas → outliers mal explicados.
 - o Posible "label switching" entre splits.
 - Estados >4 producen sobreajuste.
- Puente a Fase 2: en Fase 1 la selección de features fue **manual**; en la siguiente se hará de forma **automática** priorizando conjuntos poco correlacionados.

1.7. Próximos pasos

- Fase 2: ampliar experimentación con subconjuntos de features poco correlacionados (selección automática).
- Fase 3: repetir configuraciones con HMM Student-t para robustez frente a colas pesadas.
- Fase 4: migrar a HSMM (Hidden Semi-Markov Models) para modelar duraciones explícitas de regímenes.

2.1. Metodología – Fase 2 (HMM Gauss con diferentes features (poco correlacionados + selección automática))

Objetivo. Construir y evaluar subconjuntos de features (subsets) que sean informativos para cambios de régimen y poco redundantes entre sí. Esta fase sustituye la elección manual de Fase 1 por una búsqueda sistemática de combinaciones plausibles y un filtro de correlación intra-subset.

Evaluación de cada subconjunto/subset.

Antes de entrenar: filtro intra-subset por correlación $|p| \ge 0.85$, eliminando la feature con menor puntuación de relevancia (no se toca el DataFrame global, solo el subset).

Después de entrenar (con experiment_hmm.py):

Métrica principal: Il_val_per_obs_mean (validación).

Penalización de complejidad: AIC_mean, BIC_mean.

Estabilidad/interpretabilidad (con evaluate_hmm.py):

Duraciones medianas por estado (evitar degeneración L≈1).

Matriz de transición con diagonales altas.

Separación por var(ret_log) entre estados (estado "volátil" bien diferenciado).

Criterio final. Elegimos los Top-K subsets por Il_val_per_obs_mean. Empates se resuelven con BIC_mean (menor es mejor) y sanidad de estados (duraciones razonables y separación clara).

2.2 Selección automática de subsets y filtrado de features por correlación

Métricas para decidir si un subset es "bueno"

• Previo a entrenar:

Relevancia media de sus features (ej. suma de MI).

Diversidad (baja correlación intra-subset).

Post-entrenar:

Il_val_per_obs_mean alto.

AIC/BIC más bajos que otros.

Estados con duraciones >2–3 barras y transiciones persistentes.

Separación clara de volatilidad/retornos entre estados.

Flujo automático de selección de subsets

- Calcular relevancia de cada feature
- Usa un proxy de régimen (volatilidad futura, retornos siguientes) y mide:
- Mutual Information (MI) o correlación absoluta con el proxy.
- Esto te da un ranking global de features (las más "informativas" sobre dinámicas futuras arriba).
- Generar candidatos de subsets
- Construyes automáticamente subsets de 3–5 features tomando las Top-N del ranking.

Si un feature actual (ej. RSI, log_volume) tiene alta correlación o alta información mutua con un proxy de régimen futuro, significa que ese feature contiene información que ayuda a anticipar o explicar cambios de régimen.

Ejemplo:

rolling_std_1h tendrá alta correlación con la volatilidad futura rv_1h.

rsi_14 puede correlacionarse con el retorno futuro.

log_volume con ambos, ya que picos de volumen anticipan volatilidad.

Esto nos da una forma no supervisada pero guiada de rankear features:

- Ejemplo: todas las combinaciones posibles de 3 features entre las 10 mejores (eso son 120 subsets).
- Filtro de correlación intra-subset
- Para cada subset candidato:
- · Calcula matriz de correlación entre sus features.
- Si algún par tiene |p| > 0.85, elimina la menos relevante (según ranking inicial).
- Si el subset se queda con features → se descarta.
- Resultado: un conjunto de subsets filtrados y diversos.
- Deduplicación y poda
- Quita duplicados.
- Si hay demasiados subsets, conserva solo los Top-M según un criterio rápido (ej. suma de MI de las features del subset).

Evaluación con el modelo

- Pasas todos esos subsets a experiment_hmm.py.
- Se entrenan los HMM y se comparan por Il_val_per_obs_mean, AIC/BIC, estabilidad de estados.

2.3 Resultados de experimentación

Una vez generadaos los subsets, ejecutamos experiment_hmm.py:

"python.exe "e:/Tradingg Bot/MM-Algo-Trading_BOT/v6/Market-Master-Algorithmic-Trading-System/MODELOS/AI/HMM/experiment_hmm.py" --feature-sets fs_phase2.json --states-list "2,3,4" -- keep-top-k 10"

- 3.1. Metodología Fase 3 (HMM t-student)
- 3.2 Resultados usando los mismos subconjuntos de features que en fase 2
- 4. Metodología Fase 4 (HSMM)