

RFM products are now Murata products.

RO3115

417.5 MHz **SAW** Resonator

- Ideal for LO in 418 MHz Superheterodyne Receivers with 500 kHz IF
- Very Low Series Resistance
- **Quartz Stability**
- · Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RO3115 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of oscillators operating at approximately 417.5 MHz. The RO3115 is designed for IC-based 418 MHz superhet receivers with 500 kHz IF (Philips UAA3201T). Applications include remote-control and wireless security receivers operating in the United Kingdom underDTI MPT 1340 and in the USA under FCC Part 15.

Absolute Maximum Ratings

Abootato maximum Natingo						
Rating	Value	Units				
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm				
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC				
Case Temperature	-40 to +85	°C				

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25 °C)	Absolute Frequency	f _C	2 2 4 5	417.425		417.575	MHz
	Tolerance from 417.500 MHz	Δf_{C}	2, 3, 4, 5			±75	kHz
Insertion Loss		IL	2, 5, 6		1.1	1.5	dB
Quality Factor	Unloaded Q	Q _U	F 6 7		12000		
	50 Ω Loaded Q	Q_L	5, 6, 7		1200		
Temperature Stability	Turnover Temperature	T _O		10	20	40	°C
	Turnover Frequency	f _O	6, 7, 8		f _c -0.4		kHz
	Frequency Temperature Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1		≤10		ppm/yr
DC Insulation Resistance bet	DC Insulation Resistance between Any Two Pins		5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			10.6		Ω
	Motional Inductance	L _M	5, 7, 9		49.3		μH
	Motional Capacitance	C _M			2.9		fF
	Pin 1 to Pin 2 Static Capacitance	Co	5, 6, 9		2.2		pF
	Transducer Static Capacitance	C _P	5, 6, 7, 9		2.0		pF
Test Fixture Shunt Inductance	e	L _{TEST} 2, 7 65 nH		nH			
Lid Symbolization (in Addition	n to Lot and/or Date Codes)	RFM RO3115					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The center frequency, f_C, is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, $L_{\mbox{\scriptsize TEST}}$, is tuned for parallel resonance with C_O at f_C Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is less than the resonator f_C. One or more of the following United States patents apply: 4,454,488 and
- 4,616,197 and others pending.
- Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment
- Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- The design, manufacturing process, and specifications of this device are subject to change without notice.

- Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- Turnover temperature, T_{O} , is the temperature of maximum (or turnover) frequency, f_{O} . The nominal frequency at any case temperature, T_{C} , may be calculated from: $f = f_O [1 - FTC (T_O - T_C)^2]$. Typically, oscillator T_O is 20°C less than the specified resonator T_O.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance $C_{\rm O}$ is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_O.

Discontinued

Electrical Connections

This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.

Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground

Typical Test Circuit

The test circuit inductor, $\rm L_{TEST}$, is tuned to resonate with the static capacitance, $\rm C_O$ at $\rm F_C$.

Electrical Test:

Power Test:

Typical Application Circuits

Typical Low-Power Transmitter Application:

Typical Local Oscillator Application:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millim	neters	Inches		
Dimensions	Min	Max	Min	Max	
Α		9.40		0.370	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		