COMS W4701: Artificial Intelligence

Lecture 17: Hidden Markov Models

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Markov chains

Hidden Markov models

State estimation (filtering): Forward algorithm

Temporal Reasoning

- Scenario: An agent's state changes over time, but not directly observable
- Belief state: A random variable X_t representing the agent's current state, along with a probability distribution over the state space
- A probabilistic *transition model* describes how X_t is derived from past states

• We will be interested in looking at how X_t changes over time, possibly incorporating sensor information

Markov Chains

- Markov chain: A sequence of RVs $X_1, X_2, ...,$ s.t. X_t only depends on X_{t-1}
- Parameters: Initial state $P(X_1)$, transition model $P(X_t|X_{t-1})$
- If $|X_t| = n$, we have n^2 different $P(x_t|x_{t-1})$ transition probabilities
- Define a $n \times n$ transition matrix T, where $T_{ij} = P(X_t = j \mid X_{t-1} = i)$

$$T = \begin{bmatrix} P(X_t = 1 \mid X_{t-1} = 1) & \cdots & P(X_t = n \mid X_{t-1} = 1) \\ \vdots & \ddots & \vdots \\ P(X_t = 1 \mid X_{t-1} = n) & \cdots & P(X_t = n \mid X_{t-1} = n) \end{bmatrix}$$

• Sum of each row $\sum_{j} T_{ij} = \sum_{j} P(X_t = j \mid X_{t-1} = i) = 1$

Markov Assumption

• Markov assumption: X_t is independent of all past states given X_{t-1}

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_3 \coprod X_1 \mid X_2$$

$$X_1 \coprod X_1, \dots, X_{t-2} \mid X_{t-1} \longrightarrow X_4 \coprod X_1, X_2 \mid X_3 \longrightarrow X_4 \coprod X_1 \longrightarrow X_4 \longrightarrow X_4 \coprod X_1 \longrightarrow X_4 \coprod X$$

Chain rule for joint distribution can be greatly simplified!

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$
$$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$

Example: Markov Chains

rain sun
$$P(X_1) = \begin{pmatrix} 0.8 & 0.2 \end{pmatrix} \qquad T = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.9 \end{pmatrix} \text{ rain sun}$$

- $P(X_2 = rain) = \sum_{x_1} P(x_1) P(X_2 = rain | x_1) = 0.8(0.7) + 0.2(0.1) = 0.58$
- $P(X_2 = sun) = \sum_{x_1} P(x_1) P(X_2 = sun | x_1) = 0.8(0.3) + 0.2(0.9) = 0.42$
- Alternatively, can compute $P(X_2) = P(X_1)T$, $P(X_3) = P(X_2)T$, ..., $P(X_t) = P(X_{t-1})T$
- More generally, $P(X_t) = P(X_1)T^{t-1}$

Stationary Distributions

- Observation: $\pi = (.25 ..75)$ satisfies $\pi = \pi \cdot T$
- π is an eigenvector of T^{\top} corresponding to eigenvalue 1
- π is a **stationary distribution** of this transition matrix

$$T = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.9 \end{pmatrix}$$

- All transition matrices have at least one stationary distribution
- Find the appropriate eigenvector π of T^{\top} and rescale as $\pi/\sum_i \pi_i$ to ensure that the vector sum is 1

Some Markov chains may have multiple stationary distributions

Markov Chain Applications

- Bioinformatics, population dynamics, epidemic modeling
- Thermodynamics, statistical mechanics, chemical reaction modeling
- Queuing theory, income and market modeling, game modeling

- Speech recognition and text generation, n-gram models
 - Unigram model: $P(word_t = i)$, bigram model: $P(word_t = i \mid word_{t-1} = j)$
- Web browsing: PageRank algorithm to determine webpage traffic
 - Model probabilities of navigating to existing outgoing link or arbitrary webpage

Hidden Markov Models

- With Markov chains, we do not directly observe the state
- Now let's suppose we can observe indirect evidence of states

■ Hidden Markov model: A Markov process with hidden states X_t and observable evidence variables E_t

- Initial belief state: $P(X_1)$
- Transition model: $P(X_t|X_{t-1})$
- Observation model: $P(E_t|X_t)$

Example: Weather HMM

X_{t-1}	X_t	$P(X_t X_{t-1})$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

X_t	E_t	$P(E_t X_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Conditional Independences

Markov chain independences:

$$X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$$

- A state is conditionally independent of past states and evidence given preceding state: $X_t \perp \!\!\! \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1}$
- An observation is conditionally independent of past states and evidence given current state: $E_t \perp \!\!\! \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_t$

Joint Distribution

General joint distribution:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1) \prod_{t=2}^T P(X_t|X_{t-1})P(E_t|X_t)$$

- Marginal or smaller joint distributions can be found by summing out RVs
- For certain computations we don't even need the entire joint distribution!

Inference

- Inference tasks compute belief states or hidden states given evidence
- Filtering (state estimation): Find $P(X_t \mid e_{1:t})$
 - Estimate the belief state, given a sequence of past observations
- **Decoding**: Find $\operatorname{argmax}_{x_{1:t}} P(x_{1:t} \mid e_{1:t})$
 - Find the *sequence* of hidden states that best explains given observations
- Smoothing: Find $P(X_k \mid e_{1:t})$, for $1 \le k < t$
 - Use both past and future evidence to smooth a belief state

Example: Weather HMM

- Want to find $P(X_1|e_1) = \frac{P(X_1,e_1)}{P(e_1)}$
- $P(e_1)$ is a *constant* for all values of X_1 since e_1 is already observed (fixed)!

$$P(X_1|e_1) \propto P(X_1, e_1) = P(e_1|X_1) * P(X_1)$$

= $(0.1 \quad 0.8) * (0.5 \quad 0.5) = (0.05 \quad 0.4)$

$$P(X_1|e_1) = \frac{P(X_1, e_1)}{P(e_1)} = \frac{(0.05 \quad 0.4)}{0.05 + 0.4}$$
$$= (0.11 \quad 0.89)$$

-U

State Estimation

• In a Markov chain, we obtained $P(X_{t+1})$ from $P(X_t)$ by multiplication with transition probabilities

• We just showed how to obtain $P(X_{t+1}|e_{t+1})$ from $P(X_{t+1})$ by multiplication with observation probabilities, followed by normalization

- To efficiently solve the state estimation problem of finding $P(X_{t+1}|e_{1:t+1})$, we need to show how to perform these steps starting from $P(X_t|e_{1:t})$
- (To simplify calculations, we will work primarily with $P(X_t, e_{1:t})$)

Forward Algorithm

• Given $P(x_t, e_{1:t})$: Conditional independence

$$\sum_{x_t} P(X_{t+1} \mid x_t, e_{t:t}) P(x_t, e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t, e_{1:t}) = P(X_{t+1}, e_{1:t})$$

- So we have $P(X_{t+1}, e_{1:t}) = P(X_t, e_{1:t}) \cdot T$ (same as Markov chains)
- Product rule: $P(e_{t+1} \mid X_{t+1}, e_{1:t})P(X_{t+1}, e_{1:t}) = P(X_{t+1}, e_{1:t+1})$ Conditional independence
- So $P(X_{t+1}, e_{1:t+1}) = P(X_{t+1}, e_{1:t}) * O_{t+1}$, where $O_{t+1} = P(e_{t+1} \mid X_{t+1})$ is a vector of observation probabilities and * is an elementwise product

Forward Algorithm

• Given: $\alpha_0 = P(X_0)$, or if starting with $\alpha_1 = P(X_1)$, skip the first "elapse time" step and start by observing evidence e_1

$$\alpha_t = P(X_t, e_{1:t})$$

- For each timestep *t*:
 - Elapse time:

$$\alpha'_{t+1} = \alpha_t T$$

$$\alpha'_{t+1} = P(X_{t+1}, e_{1:t})$$

$$\alpha_{t+1} = P(X_{t+1}, e_{1:t+1})$$

• Observe evidence
$$e_{t+1}$$
: $\alpha_{t+1} = \alpha'_{t+1} * O_{t+1}$

Normalize (as needed):

$$P(X_{t+1}|e_{1:t+1}) = \alpha_{t+1}/\sum \alpha_{t+1}$$

Example: Weather HMM

$$T = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix} + r \\ + r & -r$$

Suppose
$$\alpha_0 = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

$$O_1 = O_3 = {0.1 \choose 0.8}$$

$$O_2 = \binom{0.9}{0.2}$$

$$\alpha_1' = \alpha_0^\mathsf{T} T = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

$$\alpha_2' = \alpha_1^\mathsf{T} T = \begin{pmatrix} .155 \\ .295 \end{pmatrix}$$

$$\alpha_3' = \alpha_2^\mathsf{T} T = \begin{pmatrix} .115 \\ .083 \end{pmatrix}$$

$$\alpha_1 = \alpha_1' * O_1 = \begin{pmatrix} 0.05 \\ 0.4 \end{pmatrix}$$

$$\alpha_2 = \alpha_2' * O_2 = \begin{pmatrix} .1395 \\ .059 \end{pmatrix}$$

$$\alpha_3 = \alpha_3' * O_3 = \begin{pmatrix} .0115 \\ .0664 \end{pmatrix}$$

$$P(X_1|e_1) = \binom{0.11}{0.89}$$

$$P(X_2|e_{1:2}) = \binom{.703}{.297}$$

$$P(X_3|e_{1:3}) = \binom{.148}{.852}$$

Summary

- Temporal models are used to track partially observable environments
- Maintain and update belief states (probability distributions)

- Markov chains may have stationary distributions or steady state behavior
- Inference in HMMs compute hidden information given observed information

 State estimation: Forward algorithm iteratively computes the current state distribution given evidence to date