ACO501: Phase 2/3 Pandas Data Wrangling

Daniel Bihnam

Import packages

assessmentid

formerlybred

recordid

1 2

4

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
```

```
Read in CSV files
         taxonomyData = pd.read_csv('IUCNHierarchyAndExtinction.csv')
         taxonomyData.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 187 entries, 0 to 186
         Data columns (total 23 columns):
               Column
                                         Non-Null Count Dtype
              -----
                                       187 non-null int64
          0
             taxonid
                                      187 non-null int64
187 non-null object
187 non-null object
             assessmentid
          1
             kingdom
          3
             phylum
                                     187 non-null
187 non-null
187 non-null
187 non-null
187 non-null
0 non-null
          4
             class
                                                           object
             order
                                                           object
              family
          6
                                                           object
          7
             genus
                                                           object
                                                           object
             species
             infrarank
                                                           float64
          10 infratype 0 non-null float64
11 subpopulation 0 non-null float64
12 friendly_name 187 non-null object
13 taxonomic_authority 187 non-null object
14 category 187 non-null object
                                                           float64
                                                         float64
          15 criteria
                                       61 non-null
                                                           object
          16 possibly_extinct 187 non-null
                                                           bool
          17 possibly_extinct_wild 187 non-null
                                                           bool
          18 assessmentdate 187 non-null
                                                           object
          19 assessors
                                       187 non-null
                                                           object
                                        187 non-null
          20 evaluators
                                                           object
          21 contributors
                                         75 non-null
                                                           object
          22 facilitators
                                        112 non-null
                                                           object
         dtypes: bool(2), float64(3), int64(2), object(16)
         memory usage: 31.2+ KB
         countryData = pd.read_csv('IUCNSpeciesCountryOccurances.csv')
In [3]:
         countryData.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 17825 entries, 0 to 17824
         Data columns (total 13 columns):
            Column
                                                  Non-Null Count Dtype
         --- ----
                                                  17825 non-null int64
          0
              taxonid
```

17825 non-null int64

17825 non-null int64

17825 non-null int64

countryoccurrencelookup 17825 non-null int64

countryoccurrencelookup_value 17543 non-null object

6	formerlybred_value	52 non-null	object
7	origin	17825 non-null	int64
8	origin_value	17543 non-null	object
9	presence	17825 non-null	int64
10	presence_value	17543 non-null	object
11	seasonality	17825 non-null	int64
12	seasonality_value	6223 non-null	object

Visualize data

dtypes: int64(8), object(5)

memory usage: 1.8+ MB

[4]:	ta	xonomyD	oata.head()						
]:		taxonid	assessmentid	kingdom	phylum	class	order	family	gı
	0	17026	1306343	ANIMALIA	CHORDATA	MAMMALIA	CARNIVORA	OTARIIDAE	Phoca
	1	22103	9356917	ANIMALIA	CHORDATA	MAMMALIA	SIRENIA	TRICHECHIDAE	Triche
	2	10303	43792683	ANIMALIA	CHORDATA	MAMMALIA	SIRENIA	DUGONGIDAE	Hydrodaı
	3	22102	43793736	ANIMALIA	CHORDATA	MAMMALIA	SIRENIA	TRICHECHIDAE	Triche
	4	4162	44199757	ANIMALIA	CHORDATA	MAMMALIA	CETARTIODACTYLA	DELPHINIDAE	Cephalorhyn

5 rows × 23 columns

[5]:	СО	untryDa	ata.head()					
[5]:		taxonid	assessmentid	recordid	countryoccurrencelookup	countryoccurrencelookup_value	formerlybred	for
	0	1793	7636887	7636947	618	NE Niger	0	
	1	1793	7636887	7636951	600	GH Ghana	0	
	2	1793	7636887	7636955	576	AO Angola	0	
	3	1793	7636887	7636959	583	CM Cameroon	0	
	4	1793	7636887	7636963	615	NA Namibia	0	

Create and Process Dataframes

Family

In [6]: #Copy column to new dataframe

```
family = taxonomyData[['family']].copy()
         #Rename column
         family = family.rename(columns = {'family': 'fName'})
         family.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 187 entries, 0 to 186
         Data columns (total 1 columns):
            Column Non-Null Count Dtype
                     187 non-null
             fName
                                    object
         dtypes: object(1)
         memory usage: 1.6+ KB
 In [7]: #Drop duplicates
         family = family.drop_duplicates()
         family.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 16 entries, 0 to 168
         Data columns (total 1 columns):
          # Column Non-Null Count Dtype
         --- ----- ------- -----
            fName
                     16 non-null
                                    object
         dtypes: object(1)
         memory usage: 256.0+ bytes
         Genus
         #Copy columns to new dataframe
 In [8]:
         genus = taxonomyData[['family', 'genus']].copy()
         #Rename columns
         genus = genus.rename(columns = {'family': 'fName', 'genus': 'gName'})
         genus.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 187 entries, 0 to 186
         Data columns (total 2 columns):
          # Column Non-Null Count Dtype
             -----
          0
            fName 187 non-null
                                    object
          1 gName 187 non-null
                                    object
         dtypes: object(2)
         memory usage: 3.0+ KB
 In [9]: #Drop duplicates
         genus = genus.drop_duplicates()
         genus.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 82 entries, 0 to 183
         Data columns (total 2 columns):
            Column Non-Null Count Dtype
            fName 82 non-null object gName 82 non-null object
          0
          1
         dtypes: object(2)
         memory usage: 1.9+ KB
         Species
In [10]: #Copy columns to new dataframe
```

species = taxonomyData[['taxonid', 'species', 'friendly_name', 'category', 'genus']].cop

species = species.rename(columns = {'taxonid': 'taxonID', 'species': 'sName',

#Rename columns

```
'friendly_name': 'friendlyName', 'genus': 'gName'})
         species.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 187 entries, 0 to 186
         Data columns (total 5 columns):
                     Non-Null Count Dtype
             Column
          0 taxonID 187 non-null int64
1 sName 187 non-null object
2 friendlyName 187 non-null object
          3 category 187 non-null object
4 gName 187 non-null object
         dtypes: int64(1), object(4)
         memory usage: 7.4+ KB
         #Drop duplicates
In [11]:
         #species = species.drop_duplicates()
         #species.info()
         #No duplicates were found
         Country
In [12]: #Copy columns to new dataframe
         country = countryData[['taxonid', 'countryoccurrencelookup_value']].copy()
         #Rename columns
         country = country.rename(columns = {'taxonid': 'taxonID'})
         country.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 17825 entries, 0 to 17824
         Data columns (total 2 columns):
            Column
                                             Non-Null Count Dtype
         --- ----
                                             -----
                                             17825 non-null int64
          0
            taxonID
          1 countryoccurrencelookup_value 17543 non-null object
         dtypes: int64(1), object(1)
         memory usage: 278.6+ KB
In [ ]: #Split country column into its abbreviation and full name
         country[['countryAbbr', 'countryName']] = country['countryoccurrencelookup_value'].str.s
         #Drop original combined country column
         country.drop('countryoccurrencelookup_value', axis=1, inplace=True)
         country.info()
         #Drop rows with missing countries
In [ ]:
         country = country.dropna(subset = ['countryAbbr', 'countryName'])
         country.info()
         #One taxonID can have many location
In [24]:
         #Drop duplicates with non-unique combination of all columns
         country = country.drop_duplicates(subset=['taxonID', 'countryAbbr', 'countryName'],
                                           keep='first')
         country.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 6572 entries, 0 to 17824
         Data columns (total 3 columns):
          # Column Non-Null Count Dtype
         --- ----
                          -----
                         6572 non-null int64
          0
            taxonID
            countryAbbr 6572 non-null object
          1
          2 countryName 6572 non-null
                                           object
```

dtypes: int64(1), object(2)
memory usage: 205.4+ KB

Save Dataframes as CSV Files

```
In [25]: family.to_csv('family.csv', index = False)
   genus.to_csv('genus.csv', index = False)
   species.to_csv('species.csv', index = False)
   country.to_csv('country.csv', index = False)
```

Import Queried Data

```
In [26]: threatenedData = pd.read_csv('threatenedFamilies.csv')
    threatenedData.head(15)
```

Out[26]:		fName	$threatened {\bf Species Count}$
	0	OTARIIDAE	5
	1	BALAENOPTERIDAE	3
	2	DELPHINIDAE	8
	3	PHOCIDAE	4
	4	DUGONGIDAE	1
	5	MUSTELIDAE	13
	6	INIIDAE	1
	7	ODOBENIDAE	1
	8	PHOCOENIDAE	3
	9	TRICHECHIDAE	3
	10	BALAENIDAE	2
	11	PHYSETERIDAE	1
	12	ZIPHIIDAE	1

Pie Chart Visualization

```
#Get values from dataframe
In [27]:
         familyNames = threatenedData['fName']
         threatenedSpeciesCount = threatenedData['threatenedSpeciesCount']
         #Plot pie chart
         plt.pie(threatenedSpeciesCount, labels = familyNames,
                  startangle = 90, counterclock = False,
                 autopct='%1.1f%%', pctdistance=0.85, colors = plt.cm.tab20.colors,
                 textprops = {'fontsize' : 7})
         #Plot legeng
         plt.legend(familyNames, loc = 'center right',
                   bbox_to_anchor=(1.7, 0.5), fontsize=8)
         #Add information to the plot
         plt.title('Number of Threatened Species per Family')
         #Show plot
         plt.show()
```

Number of Threatened Species per Family

