(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 27.05.1998 Bulletin 1998/22 (51) Int Cl.⁶: **C09D 5/03**, C09D 167/06, C09D 4/06

- (21) Application number: 97310498.7
- (22) Date of filing: 23.12.1997
- (84) Designated Contracting States:
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
 Designated Extension States:
 AL LT LY MK RO SI
- (30) Priority: 26.12.1996 US 780121
- (71) Applicant: MORTON INTERNATIONAL, INC. Chicago, Illinois 60606 (US)
- (72) Inventors:

 Muthlah, Jeno
 Wernersville, Pennsylvania 19565 (US)

- Daly, Andrew T.
- Sinking Spring, Pennsylvania 19608 (US)
- Haley, Richard P.
- Reading, Pennsylvannia 19607 (US)

 Kozlowski, Joseph J.
- Reading, Pennsylvannia 19609 (US)
- Shah, Navin B.
 Sinking Spring, Pennsylvania 19608 (US)
- (74) Representative:
 Bankes, Stephen Charles Digby et al
 BARON & WARREN
 18 South End
 Kensington
 London W8 5BU (GB)

(54) Dual thermal and ultraviolet curable powder coatings

(57) Opaquely pigmented or thick filmed powder coatings for heat sensitive substrates, such as wood, wood composites, for example, medium density filter board, and pleatise, that can be fully cured, sepecially near the substrate, through the incorporation of a dual cure system in the powder comprising a thermal initiator, such as a peroxide, slong with a UV initiator. The UV initiator cures at the substrate. Surprisingly, virtually no pregistion occurs during the heated melt and flow out stap prior to UV curing. Consequently, the hardened film finish formed on the surface shibits exceptional smoothies to

ness which is comparable to that of traditional UV curable powders. The hardened film finish is also bully cured throughout and axhibits exceptional achiesion to the substrate which cannot be achieved with traditional UV curable powders that have been pigmented. Although the dual cure system includes a thermal aspect, these powder coatings are especially suited for coating heat sensitive substrates. The dual thermal and UV curable powders still cure at significantly lower temperatures and significantly faster rates than traditional heat curable powders to make them safe for coating heat sensitive substrates.

EP 0 844 286 A1

Description

Field of the Invention

The present invention relates to powder coatings and more particularly to opaquely pigmented or thick filmed ultraviolat (UV) radiation curable powder coatings that can be cured not only at the surface, but also down through the coating to the substrate. Full cure can be obtained despite the presence of opaque pigments or thick films that normally impede the penetration of radiation in the coating and, consequently, inhibit cure below the surface. This is accomplished by incorporating a thermal initiator in the UV curable powder coatings together with the usual UV initiator. Surprisingly, the presence of a thermal initiator does not detract from the exceptional smoothness of the hardened film finishes. The dual thermal and UV curable powder coatings of the present invention are especially suited for coating over heat sensitive substrates, such as wood and plastic, since these coatings cure at faster speeds and/or lower temperatures, reducing the potentially damaging heat load on the substrate.

Background of the Invention

Powder coatings, which are dry, finely divided, free flowing, solid materials at room temperature, have gained considerable popularity in recent years over liquid coatings for a number of reasons. For one, powder coatings are user and environmentally friendly materials, since they are virusly free of harmful flugfixe organic solvent carriers at are normally present in liquid coatings. Powder coatings, therefore, give off little, if any, volatile materials to the environment when cured. This eliminates the solvent emission problems associated with liquid coatings, such as air pollution and dangers to the health of workers employed in coating operations.

Powder coatings are also clean and convolved to use. They are applied in a clean manner over the substrate, since they are in dry, solid form. The powders are easily swept up in the event of a spill and do not require special cleaning and spill containment supplies, as do liquid coatings. Working hygiene is, thus, improved. No messy liquids are used that adhere to worker's clothes and to the coating equipment, which leads to increased machine downtime and clean up costs.

Powder coatings are essentially 100% recyclable. Over sprayed powders can be fully reclaimed and reachined with the powder feed. This provides very high coating efficienties and also substantially reduces the amount of waste generated. Recycling of liquid coatings during application is not done, which leads to increased waste and hazardous earls referonsel profits.

Despite their many advantages, powder coatings are generally not employed in coating heat sensitive substrates, such as wood and plastic. Heat sensitive substrates demand lower cure temperatures, preferably below 250°F, to avoid significant substrate degradation and/or deformation. Lower cure temperatures are not possible with traditional return temperatures are not possible with traditional powders. Unsuccessful attempts have been made to coat heat sensitive substrates with traditional powders.

For instance, when wood composites, e.g., particle board, fiber board, and other substrates that contain a significant amount of wood, are heated to the high cure temperatures required for traditional powders, the residual moisture and resinous binders present in the wood composites for substrate integrity are caused to invariably evolve from the substrate. Outgassing of the volatiles during curing results in severe bilsters, craters, pinholes, and other surface defects in the hardened film finish. Furthermore, overheating causes the wood composites to become brittle, friable, charred, and otherwise worsened in physical and chemical properties. This is unacceptable from both a film quality and opplied.

Low temperature UV curable powders have recently been proposed for coating heat sensitive substrates. UV curable powders have recently been proposed for coating heat sensitive substrates upon the temperature (T_m) , to sufficiently melt and flow out the powders into a continuous, smooth, molten film over the substrate prior to radiation curing. However, the heat load on the substrate is significantly reduced, since UV powders are formulated to melt and flow out at much lower temperatures than traditional provider coatings, typically on the order of about 200°F. Therefore, UV powders only need to be exposed to enough low temperature heat required to flow out the powders into a smooth moltren film.

Curing or hardening of UV powders is accomplished by exposing the molten film to light from a UV source, such as a mercury UV larmy, which rapidly cures the film. Since the crosslinking reactions are triggered with UV radiation rather than heat, this procedure allows the powder coatings to be cured more quickly and at much lower temperatures than traditional heat curable powders.

Another significant advantage of UV curable powders is that the heated flow out step is divorced from the UV cure step. This anables the UV powders to completely outgas substrate volatiles during flow out and produce exceptionally smooth films prior to the initiation of any curing reactions. Accordingly, the film finishes created with UV powders are known to have extraordinary smoothness.

One drawback is that opaque pigmentation of UV curable powders is known to be problematic. Opaque pigments

inherently absorb, reflect, or otherwise interfere with the teransmittance of UV light through the pigmented coeling, and, because up the present present the present present

EP Publication No. 0 636 669 Az 10 DSM, N.V. dated Feb. 1, 1995 discloses UV or electron beam radiation curable powder coatings which can be applied to heat sensitive substrates, such as wood, e.g. medium density fiber beard, and plastic. The UV powders of EP 0 636 669 Az contain: a) an unsaturated resin from the group of (semi)crystaline or amorphous unsaturated poyelveytesters, unsaturated polyacytester, and mixturest polyacytester steries, mixturest project brend; mixturest polyacytester derived from maleic acid and fumaric acid being especially preferred; b) a crosslinking agent selected from an oligomer of polymer having invel petur fundian polyste functional groups, with invige their functional oligomers being especially preferred, such as divinyl either functionalized urethanes; and, c) a photoinitiator for UV or electron beam cradiation cure, in which the the equivalent ratio of polymer unsaturation to crosslinker unsaturation is preferably 1:1. However, the UV powders of EP 0 636 669 Az are practically limited to being formulated as unpigmented, i.e., clear, coatings, as demonstrated in Example 1. A similar clear coat UV powder based on an unsaturated polysets, and light either ester crosslinker, and a hydroxyletone photoinitiator is disclosed in Example 2 of International Publication No. WO 93/1913 20 to DSM, N.V. dated September 3.0, 1993.

10

40

50

K.M. Biller and B. MacFadden (Herberts Powder Coatlings), UV-Curable Powders: A Marriage Of Compliant Coatlings, Industrial Paint & Powder, pp. 22-25 (July 1989) and K.M. Biller and B. MacFadden (Herberts Powder Coatlings). UV-Curable Powder Coatlings: The Perfect Marriage of Compliant Coatlings, Radiech Noth America 1985 Conference, pp. 437-445 (April 29-May 2, 1996), suggest the incorporation of special solid UV initiators which are designed to activate despite the presence of various pigmentations. Presumably, these special UV initiators have some ability to absorb UV light at wavelengths above the reflectance of the pigments.

F.M. Witt and E.S. do Jong (DSM, N.V.). Powder Coatings On Heat Sensitive Substrates, presented at the DSM, N. serman held in Amsterdam (27-28 March 1995), disclose that some success has been achieved in the laboratory with pigmented UV curable powder coating formulations based on a binder which comprises a blend of: a) an unsaturated polyseter resin, e.g., an unsaturated polyseter derived from maleic acid; and, b) a vinyl ether functionalized polyurathene crosslinking agent. This binder is similar to that described in the aforementioned EP 0 695 699 Az. In these formulations, a special class of UV photoinitiators especially suited for pigmented UV coatings are used, e.g., ble-acylphosphineoxides and a 75/25 blend of a hydroxylsetone (Irgacure 184) and ble-acylphosphineoxide, which is now available as Irgacure 1800 from Cha-Geigy Corporation. Pigmented formulations with varying amounts of pigments between 5 and 20 th, are applied electrostatically to medium density fiber board at a layer thickness of 100 microns. Yet, atthough sufficient hiding is achieved with pigment loadings at 15 km.% and 20 km.% pigment, the pendulum hardness and, consequently, which is undesirable.

The state of the powder coating art, therefore, is that opaquely pigmented or thick filmed UV curable powder coatings cannot be fully cured with UV light.

U.S. Pat. 4,753,817 to Melwiner et al. discloses opaquely pigmented liquid UV radiation curable coatings for application to wood, wood-like materials and films of plastic. Such rigimented liquid UV paints are made by incorporating hydroperoxide thermal initiators alongside the UV photoinitiators in liquid resins derived from copolymerizable monomer/rese air-drying unsaturated polyesters. The inclusion of the hydroperoxides in the liquid UV formulation is said to improve the cure at the lower leyers of the costing that can not be penetrated by UV tradiation but to the opacity of the pigments. The liquid paints also contain other essential ingredients not found in powder coatings, including plasticized colloidal cotton, e.g., nitrocalluloses, siccatives to promote air-drying, and also vostilatio organic solvents to adjust the processing viscosity for liquid applications, e.g., lotuene, xylene, isopropanol, and butyl acetate. These pigmented UV liquids are first applied to the substrate in liquid form, ext pregelled at temperatures of 120°F to 175°F, and the hardened under UV radiation. There is nothing in Melwarer et al. that provides any indication that solid compositions could be made that are suitable as powder coatings.

In addition, the liquid UV coatings of Meixmer et al. have a number of other shortcomings. For example, the UV liquids contain organic solvents, which generate physiologically and environmentally harmful solvent emissions during drying. As previously mentioned, powder coatings are essentially solventless and nonpoliting substances. The UV liquids also have pot itives only up to 5 hours, which is rather short. This would not be a suitable system for a powder coating which must not advance for several weeks at room temperature, especially in a reclaim powder coating booth. Also, cure for the Meixner et al. system occurs between 120 and 175°F. At such temperatures, significant preplottion or even curing during extrusion would result with a powder coating, which, in turn, would cause processing difficulties as the powder would take as et in the extruder, skading to excessive extruder downtime and expensive clean out can

The UV liquids are based on lower molecular weight polyseter resins, which are highly reactive liquids at room temperature that cure without crosslinkers. Typical polyseter powder coatings require resins with higher molecular weights or higher 1 g is for the material to remain solid at room temperature, which tends to reduce the reactivity of the resin and require a crosslinker. Also, the UV liquids containing lower molecular weight species would be expected to transport more readily into biological tissues. If improperly handled, the highly reactive UV liquids could be transported through the skin of an individual and poisonously affect physiological functions. The use higher molecular weights species in powder coatings reduces handling problems and reduces the risk of invasion into biological itsues.

Moreover, the liquid UV coatings of Melxner et al. do not require an initial melt and flow out step in order to form a smoth film over the substrate, as required with UV powders, since these coatings are liquids at room temperature and inherently flow out as smooth films when poured. Therefore, incorporation of a thermally activated peroxide cure component in a fiquid UV coating is not problematic from a film quality standpoint. However, the inclusion of a thermal peroxide cure component in a UV powder coating would be expected to produce ceatings having poor flow out behavior and, consequently, poor film qualities. Conventional visidom would load one to expect that the addition of a thermal surface roughness, such as orange peelor low gloss, in the hardened film finish, detrimentally affecting the film quality and assthate appearance of the coating. Bisteric, craters, pinholes, and other surface detects would also be expected to be visually evident on the surface of the hardened film. Additionally, significant progelation in the extruder during mit blending the powder ingredients would be expected when using a thermal intitator, causing processing difficulties as the powder blend would begin to cure and take a set in the extruder, which would lead to considerable extruder down time and increased clean out costs.

What is needed is an opaquely pigmented and/or thick filmed UV curable powder coating composition that is suitable for coating heat sensitive substrates, especially wood, wood composites, and plastic, and that can be fully cured through the incorporation of a thermal initiator alongside the usual UV initiator without detracting from the exceptional smoothness of the hardened film finite.

Summary of the Invention

20

25

50

It is an object of this invention, therefore, to provide an opequely pigmented or thick filmed powder coalings that can be fully cured upon exposure to UV radiation despite the presence of opeque pigments and/or thick films, both of which normally inhibit cure in the coaling, through the incorporation of a "dual" cure system, i.e., combination thermal initiation and UV photionitiation, in the powders, wherein the UV initiatior cures the surface, while the thermal initiation cures the lower layers near the substrate, yet without detracting from the exceptional smoothness of the hardened film finish obtained on the surface.

It is another object of this invention to provide dual thermal and UV curable powder coatings that have exceptional smoothness comparable to traditional UV powder coatings.

It is still another object of this invention to provide dual thermal and UV curable powder coatings that have improved through cure properties, including improved adhesion to the substrate, compared to traditional UV curable powder coatings.

It is yet another object of this invention to provide dual thermal and UV curable powder coalings that have relatively low cure temperatures and/or rapid cure speeds for safe curing on heat sensitive substrates without damaging or worsering the substrate.

The present inventors have discovered that the use of dual cure initiators, i.e., a UV initiator along side a thermal initiator, in the powder ocentings will give not only excellent surface curs to the film finish, but also superior through cure in the film down to the underlying substrate, while still obtaining exceptional smoothness and desired glossiness in the surface finish. It is quite surprising that the cured powder coating of this invention remains so smooth. Convention wisdom would lead one to expect that the addition of a thermal cure component to UV curable powders would cause pregelation during the melt and flow out step and, in turn, cause oruginess on the surface, such as orange peel or up gloss. Surprisingly, the hardened film finishes produced from powder coatings of this invention are at least as exceptionally smooth as those produced from traditional UV curable powders, while also bein full vivered throughout.

The invention resides in a dual thermal and ultraviolet curable powder ocating composition, which is a composition solid particulate form that is a blend of: a) an unsaturated resi selected from unsaturated polypreties, and polypreties, and polypreties, and polypreties, and polypreties, and polypreties groups, and mixtures thereof; o) a polopreties polypreties, activated free radical generating compounds; d) a thermal initiator selected from thermally activated free radical generating compounds, and more polypreties, and polypreties, and polypreties, and polypreties, and polypreties, and mixtures thereof; and, f) optional catalyst, wherein the composition can be fully cured, both on the surface and throughout, on a heat sensitive substrate upon exposure of sufficient heat to met land flow out the powder into a smooth mother fill mad to activate the thereof.

component of the cure, followed by exposure of the molten film to sufficient UV radiation to activate the ultraviolet component of the cure and to form a fully cured smooth hardened film.

The various objects, features and advantages of this invention will become more apparent from the following description and appended claims.

Detailed Description of the Preferred Embodiments of the invention

Throughout this specification, all parts and percentages specified herein are by weight unless otherwise stated.

Rase Resins

The dual, thermal and UV, curable powder coatings of this invention are primarily based on unsaturated film-forming polymer resins, such as unsaturated polyester resins, unsaturated polyacrylate or polymethacrylate resins, and/or

The unsaturated polyester resins useful herein are ethylenically unsaturated condensation reaction products of one or more aliphatic or cycloaliphatic di- or polytunctional alcohols, or mixtures thereof, and one or more aliphatic yeloaliphatic, or aromate di- or polytunctional carboxylic acids, or mixtures thereof. The carboxylic acids can also be used in their corresponding anhydride form. Corresponding lower alkanol esters are also useful for esterification. Small amounts of monofunctional atlachols and monofunctional carboxylic acids or esters thereof may be present for polyester chain termination purposes. Although unsaturation may be supplied by the alcohol, typically the acid is unsaturated and the alcohol is saturated. Saturated acids can also be present to reduce the density of ethylenic unsaturation in the polyester.

Examples of suitable unsaturated di- and polyfunctional carboxylic acids that are useful herein include mateic anhydride, lumaric acid, citraconic anhydride, it aconic acid, endo-cis-bicylco(2,2,1)-5-heptene-2,3-dicarboxylic acid, 4-5,8,7,7-hexabirobicylco(2,2,1)-5-heptene-2,3-dicarboxylic acid, chieracide acid, messaconic acid, dimeric methacylic acid, and methylbicyclo(2,2,1)-heptene-2,3-dicarboxylic acid. Maleic anhydride, fumaric acid or mixtures thereof are most preferred. It should be understood that whether acids, anhydrides, or lower alkanol esters are listed here, any of these forms are contemplated for use herein.

Examples of suitable saturated diacids or polyacids that are useful herein in combination with a substantial proportion of an unsaturated diacid, include tetrachtorophihalic acid, tetrabromophihalic acid, acid, pithalic arrivaride, acid, acid, tetrahydrophihalic acid, isophihalic acid, treephihalic acid, trimelitic acid, azolaic acid, sebacic acid, direlytiterephthalate, dimethylisophihalate, succinic acid, dodecanedicarboxylic acid, hexahydrophihalic acid, hexacorootahydromethanonaphihalene dicarboxylic acid, malonic acid, glutaric acid, oxalic acid, pimelic acid, suberic acid, and pyrometitic arrhydride.

Examples of suitable monoacids that can be used herein to terminate the polyester chain, include linoleic acid, linolenic acid, geranic acid, dehydrogeranic acid, sorbic acid, heplatini-1,3-5-ene-1-carboxylic acid, nonatetra-1,3-5-ene-1-carboxylic acid, their fatty acids of vegetable oils, abletic acid, mahacrylic acid, and, benzoic acid.

Examples of suitable dicis useful herein include ethylene glycol, diethylene glycol, 1; 12-propylene glycol, 1; 3-propylene glycol, 1; 4-propylene glycol, 1; 4-

Examples of polyols having 3 or more hydroxyl functional groups that are useful herein in small amounts to form branched polyesters, include glycerol, trimethylolpropane, pertearythicit, ally ether polyols, polyalkylene glycol ethers. 1,11-trimethyloi ethene, sorbidio, mannibid, diglycorol, and dipentiarythirid.

Instead of or in addition to the alcohol, spoxy compounds, such as ethylene oxide and propylene oxide, can be used. Proparation of the unsaturated polyester can be carried out with standard techniques well known in the art. For instance, a two step process may be employed. In the first step, saturated or unsaturated glycols and acids are heated in the presence of an esterification catalyst, such as a tin catalyst, e.g., monobutyl tin oxide, stannous octoate, and monobutyl tin disturate, or acid catalyst, e.g., proluene sulfonic acid, metanea sulfonic acid, and sulfuric acid, at about 40°F to 480°F for about 2 to 24 hours under nitrogen sparge and reacted to a given acid number or hydroxyl number while accilecting water formed by esterification. The resultant esterified prepolymer is accided to about 320°F to 360°C solony 30°C yolo loss is measured by refractive index and the lost glycol is added, if needed. Then, in the second step, unsaturated or saturated glycols and acids are charged to the reaction vessel again under nitrogen sparge. The reaction mixture is heated to about 350°F to 450°F for about 2 to 8 hours and reacted to a given acid number, viscosily and amount of

water, if appropriate. The resultant resin is then inhibited with hydroquinone or other substituted phenolic derivative inhibitor.

Unsaturated polyseters resins can also be prepared in a single step by heating saturated and unsaturated polycarboxylic acids with polyois and esterification catalyst, such as stannous oxide, under nitriogen sparage to about 320°F to 480°F for about 1 to 24 hours. The water of esterification is collected to measure the reaction. The glycol loss is again measured and glycol is added, if needed. The reaction is run to the appropriate acid or hydroxyl number and viscositiv

The unsaturated polyester resins can be crystalline, (semi)crystalline, or amorphous. Crystalline and (semi)crystalline unsaturated polyesters are generally preferred over amorphous unsaturated polyesters, since stable powder coatings with lower melt viscosit and better flow can be prepared more assily therefrom.

It is known in the art that certain monomers used in the polycondensation reactions impart crystallinity to the unsaturated polyseters. For example, diffydric alcohol monomers that are known to promote crystallinity include eth-ylene glycol, 1,4-butenedol, neopentyl glycol, and crydohoxanedimethanol. Dicarboxylic acid monomers that are known to promote crystallization include trephthatia earlied and crydohoxaned ricarboxylic acid

The preferred uncenturated polyeote self-uncentual behave a long shell life without cold flow at temperature austhantially above room temperature up to about 120°F and have a glass transition temperature (T_m) centle temperature (T_m) below the desired flow temperature required for preservation of heat sensitive substrates, preferably between about 150°F and about 250°F.

15

The preferred unsaturated polyesters have a molecular weight ranging between about 400 and about 10,000, more typically about 800 and about 6,800, and, preferably, between about 2,000 and about 4,500,

The unsaturated polyesters preferably have a degree of unsaturation between about 2 and about 20 wt. % unsaturation, and, preferably, between about 4 and about 10 wt.% unsaturation.

Whether the polyester is carboxylic acid-functionalized or hydroxyl-functionalized depends upon the ~COOH/-OH molar ratio of the monomer mix. If the unsaturated polyester is hydroxyl-functionalized, then the hydroxyl number of the polyester is generally between about 5 and about 100, and, preferably, between about 9 and about 50. If the unsaturated polyester is acid-functionalized, then the acid number of the polyester is generally between about 4 and about 50, and, preferably between about 9 and about 50, and, preferably between about 9 and about 50.

Preferably, the unsaturated polyesters are solid resins at room temperature or above, so that they can be easily formulated into nonsintering powders. If the resins are liquids, they should be converted to powder form and, thus, be counted as a solid by absorption onto inert silica-type filter materials, such as furned silica, before use, as is well known in the art

Exemplary unsaturated polyester formulations useful herein are further specified in the working examples.

The unsaturated acrylate and methacylate resins useful herein include polymers containing unreacted acrylate or methacylate groups in he main chain or side chain. The unsaturated acrylate or methacylate polymers are the reaction products of one or more solid functional polymers having reactive functional groups with one or more co-polymerszable monomers having co-reactive functional groups applied for earlier groups with a functional groups of the polymer, with at least one of the functional polymer or co-polymerszable monomer also containing an acrylate or meth-acrylate polymer obtained in the adoresaid reaction may be an acrylated opoxy, acrylated urethane, acrylated polyether, or acrylated polyester resin, or their corresponding methacrylated polymers.

The polymers containing unreacted acrylate or methacrylate groups in the side chains can propared by standard techniques well known in the art. For instance, a two step process may be employed, in the first step, a solid functional polymer is formed using standard polymerization techniques. For example, the polymer formed in step one can be a functionalized acrylate or methacrylate polymer.

Statistic monomers which are commonly used to form the backbone of such functionalized acytate and methacytate polymers, include mainly acytate, entering the networks, include mainly acytate, entering the networks and include mainly acytate, include mainly methacytate, include mainly acytate, include mainly acytate, include mainly acytate, include mainly acytate, and the like. In addition, suitable amounts of functional monomers are copolymerized during polymerization to obtain the functionalized polymer. Add-functional acytate or mather-cytate polymers can be formed from acd-functional monomers, such as acytic acid and methacytic acid. Hydroxyl-functional acytate or methacytate polymers can be formed from phydroxyl-functional monomers, such as 2-hydroxypertyl methacytate, 2-hydroxypercyl methacytate, 3-hydroxypercyl methacytate, 3-hydroxypercyl-actinate/bushcaytate, 3-hydroxypercyl-actinate/bushcaytate, 3-hydroxypercyl-actinate/bushcaytate, 3-hydroxypercyl-actinate/bushcaytate, 3-hydroxypercyl-actinate/bushcaytate, 3-hydroxypercyl-actinate/bushcaytate-functional polymers can also be formed from isocyanate functional monomers, such as meta-sopropenyl-actinate/bushcaytate-functional polymers

The functional polymers formed in step one that will be reacted with bi-functional acrylate or methacrylate monomers can also be other types of solid resins, other than acrylates or methacrylates, having acid, hydroxyl, epoxy or

isocyanate functional groups, for example, epoxidized bisphenol A resins or acid, hydroxyl, or isocyanate functionalized polyester resins.

In the second step, a reaction is carried out between the unreacted functional groups of the solid functional polymer formed in step one with a co-polymerizable monomer having both a co-reactive functional group capable of reacting with the reactive functional groups of the functional polymer and an unsaturated acrylate or methacrylate group available for final curing of the resin. Any one of the functionalized acrylate or methacrylate monomers listed above can serve as this bi-functional co-polymerizable monomer.

The reaction is carried out by dissolving the above formed solid functional polymer in an appropriate solvent for the polymer, such as buly lacetate, and then adding the bifunctional eco-polymerizable monomer having pendent acrylate or methacrylate unsaturated groups in a stepwise manner at elevated temperatures between, for example about 150°F and 300°F, until substantial completion of the reaction. This reaction can also be done without solvent by heating the reactions above their mething points. For example, in the second step an acid-functional acrylate or methacrylate polymer can be reacted with a compound having an epoxy group, such as an epoxy-containing acrylate or methacrylate monomer, ag., glycidyl methacrylate, to form a methacrylate polyyeter. An isocypanet-functional polymer, ag., pl., MIN, can likewise be reacted with a hydroxy-functional acrylate or methacrylate monomer, such as 2-hydroxyethyl methacrylate, to form a profylate or methacrylate.

Repairs containing acylate or methacylate groups in the main chain can be prepared by reacting epoxy-, carboxyl-, hydroxyl-, or isocyante-containing resins with bi-functional scrylate or methacylate monomers having functional groups co-reactive with the advressid functionalities. For example, an epoxy-functional polymer, such as polyglycidy inathacylate or epoxidized bisphenol A resin, can be reacted with a monomer having said group, such as acrylic acid or methacylic acid, in this reaction, the heat must be closely monitored to assure that the acrylic acid does not polymer. In addition, an acid-functional polyester, such as one prepared from neopentyl glycol, eliquic acid acid in acid-functional polyester with a polymer deviate acid soft polymer glycol, acid pic acid acid sophthalic acid, can be reacted with a bi-functional acrylate or methacylate compound having spoxy groups, such as glycityl methacrylate. Also of note is the reaction of acrylic or methacylic acid with an alcohol or hydroxyl functional polyster acid acylate functionality.

The unsaturated group left in the polymer for final curing of the powder coating need not be an acrylate or methacylate group, although an unsaturated acrylate or methacrylate unsaturation is most preferred. It is also possible to form other solid resins having allyl, viryl, viryl ether, and styrl functionalities. For example, a hydroxyl functional polyester resin, such as one made with neopentyl glycol, 1,4-cyclohexene dimethanol, terephthalic acid and adipicacid, can be reacted with TMI, to form a styrl-functional resin.

The unsaturated acrylated or methacrylated polymer would be used similarly to the unsaturated polyester resin in this portion of the formulation. The T_g molecular weight, and % unsaturation range would be similar to that used for the unsaturated polyesters. The % unsaturation in this case will be governed by the amount of acrylate or methacrylate in the polymer. Whereas the % unsaturation in the polyester is governed by the maleic or furnaric content of polyester.

The acrylate or methacrylate polymer resins are capable of crosslinking without an additional crosslinking agent, although crosslinkers may be used with such formulations.

Prieferably, the unsaturated polyacrylate and polymethacrylate resins are solids at room temperature or above, so that they can be easily formulated into nonsintering powders if the resins are liquids, they should be convented to provide form and, thus, be counted as a solid, by absorption onto inert silica-type filler materials, such as furmed silica, before use, as is well known in the art.

Exemplary unsaturated acrylate or methacrylate polymer formulations useful herein are further specified in the working examples.

Crosslinkers

The unsaturated polyester resins useful herein work best in combination with co-polymerizable second resins having ethylenic unsaturation part and preferably having two sites of unsaturation per molecule. These second resins are used in the composition as crosslinkers for the base resin. Most preferred is a predominance of monomers or preporters that are solid at room temperature or above, so that they can be easily formulated into nonsitinaring powders.

The co-polymerizable second resins or crosslinkers useful herein are preferably oligomers or polymers having which services or methacrylate, or allyl ester groups, with an oligomer or polymer having vinyl ether groups being most preferred.

The co-polymerizable second resins having vinyl either groups are preferably composed of vinyl either functionalized urethanes, for example, a divinyl either urethane based on the reaction product of a discoyanate, such as hexamethylene discoyanate, and a hydroxyl-functional winyl either, such as hydroxyl-functional vinyl either. Such as hydroxyl-functional vinyl either sinclude hydroxyl-functional vinyl eithers include hydroxyl-functional vinyl either and trimethylene glycol monovinyl either. Other suitable discoyanates include isophorone discoyanate, methyl-enediscoyanate, hydroxyl-functional vinyl either and trimethylenediscoyanate, hydroxyl-functional vinyl either and trimethylenediscoyanate, hydroxyl-functional vinyl either and vinyl-functional vinyl either and vinyl-functional vinyl either and vinyl-functional vinyl either and vinyl-functional vinyl-funct

enebiscyclohavy isocyanate, toluene discovanate, 1,2-diphenylanate, aidiscovanate, 1,3-diphenylopane discovpanate, included and the discovanate properties of the discovanate properties of the discovanate prepolarymers and teptoymers. Functional prepolarymers and teptoymers functional prepolarymers and teptotional properties of the discovanate properties of the discovanates, such as urethane trimers, uretdiones, isocyanurates, and biurets can also be used.

The functionalized vinyl ethers can be obtained in a conventional manner. For example, vinyl ether urethanes are usually prepared by reacting a hydroxyl-functional vinyl ether with a multi-functional isocyanate-containing monomer or polymer in solvent, such as methylene chioride, under a nitrogen atmosphere, at temperatures between about armitional 125°C. Additional reference can be made to U.S. Pat. 4,751,273 to Lapin et al. for the preparation of vinyl ether functionalized urethanes, which disclosure is incorporated by reference herein in its entirely examples of vinyl ether urethanes are sold under the trade names Uralac resins by DSM Resins and Vectomer Oligomers and Diluents by Allicd Sional.

Proferably, viryl either urethane prepolymers that are non-crystalline solids at room temperature or higher are used so that they can easily be formulated rino non-sintering powders. These one-crystallic solid materials can be obtained by reacting a non-crystallizing discoyanate monomer, such as isophorone discoyanate with a crystallizing of non-crystallizing polyol, such an expently glycol, and then reacting the isocyanate uniter adduct obtained with a hydroxy viryl either, such as 4-hydroxybutyl viryl either, or otherwise by reacting a non-crystallizing aliphatic polyisocyanate, such as isophorone discoyanate trimer, with a hydroxy viryl either, such as 4-hydroxybutyl viryl either. The reactions are typically carried under a nitrogen atmosphere, in the presence of in catalyst, such as citually either the reactions are typically carried under a nitrogen atmosphere, in the presence of in catalyst, such as citually either urethanes, powder coatings based on the same exhibit improved lets/bility and achiesen to the substrate after curing. Also, such higher molecular weight materials are relatively safer to handle and have lower toxicities than traditional viryl either urethane curing agents. For a further description of such non-crystallian soid viryl either ureng agents, reference can be made to the U.S. Patent Application of Navin B. Shah and Andrew T. Daly entitled *Solid Viryl Either Terminated Urethane Curing Agent*, life this same day withich disclosure is incorporated by reference herein in its entitiven in its entities.

The co-polymerizable second resins having acrylate or methacrylate groups are preferably composed of dimethacrylate functionalized unchanes, for example, based on discoyanate, such as haxanediscoyanate, and a hydroxylfunctional methacrylate, such as hydroxyethyl methacrylate. Other iscoyantes can be used as well such as those listed above. In addition, other suitable hydroxyl-functional methacrylates include hydroxyropyl methacrylate and other hydroxy alxyl methacrylates. This material can be reacted the same as the viryl ethers above.

The co-polymerizable second resins having allyl ester groups are preferably composed of hydroxy functional allyl ester, for example, based on the seterification reaction product of ally lacthod and pithalic anhydride, which forms clailly inhihalate. Examples of suitable allyl functionalized oligomers, include diallyl phthalate prepolymers, po-diallyl phthalate prepolymers, po-diallyl phthalate prepolymers, or diallyl maleate, triallyl cyanurate, diallyl chlorendate methacrylamide, and theilylisocyanurate.

If the co-polymerizable second resin is a liquid or a sticky powder and is used in sufficient quantities that the resultant melt biended powder coating composition is not adequately free flowing, then this coreactant can be absorbed on an inert filler, such as furned silica, and thus be counted as a solid within the preferred scope of this invention. Except in small quantities up to about 5 wt. % of the powder coating composition, these liquids species are much less preferred than solid co-reactants due to s intelling problems.

The relative amounts of unsaturated polymer base resin to unsaturated oppolymerizable second resin provided in the powder coating compositions of this invention depend in part on the choice of materials. For instance, when the resin is an unsaturated polyester and the second resin crosslinker is a virily after functionalized compound, the equivalent ratio of polyester unsaturation to virily efter unsaturation is between about 90.1 and about 10.90, and, preferably about 95.50. When the resin is an unsaturated polyester unsaturation to reside runsaturation 19 and about 10.90 and about 10.90 and preferably between about 70.30 and about 95.5. When the resin is a scrylate or methacrylate polymer, it is preferred to not use a crosslinker.

Exemplary crosslinker formulations useful herein are further specified in the working examples.

UV Photoinitiators

30

UV photoinitators that are incorporated in the powder coeting compositions to impart a radiation activated, rapid, and low temperature cure to the powder are well known in the art. Examples of suitable photoinitators, which are known as alpha cleavage free radical photoinitators, include benzoin and its derivatives, for example, benzoin others, such as isobuty benzoin either and benzyi kelals, such as benzyi dimethy letal, 2-ryidors/2-methyl-i-phenyipropan-1-one and 4-(2-ryidorsyethory) phenyl-2-hydroxy-2-propyl ketone. Others include sopty phosphines, such as 2-46-timenthy/benzoyl diphenylphosphine oxide. Anyl ketones can also be used, such as 1-hydroxy-cyclohexyl phenyl ketone. 2-benzyil-2-dimethyly-amin-1-one, 2-dimethysy-2-phenylselot-phenone, mixture of

benzophenone and 1-hydroxycyclohexyl phenyl ketone, perfluorinated diphenyl titanocene, and 2-methyl-1-(4-(methylthiophenyl)-2-(4-morpholinyl))-1-propanone.

Hydrogen abstraction free radical type photointistors can be used in combination with the above or alone such as Michief's kation (4.4*-blastinytamino benzophenone). Michief's eithyl kotone (4.4*-blastinytamino benzophenone eithyl kotone), benzophenone, thioxanthone, anthroquinone, d.f-camphorquinone, ethyl d.f-camphorquinone, ketocoumanin, anthreene, or derivatives teneral, and the like.

Gationic polymerization, especially with vinyl ether containing crosslinkers, can proceed via cationic ourse using cationic photoinitations. Alejor classes of cationic photoinitations are dispridonium estals and copper sprengists, such as diphanyl iodonium hexaflucroprate, proceeding the processing of the processing

Preferably, the photoinitiators used herein are solids. If liquid initiators are used, however, preferably they are asorbed on solid carriers, such as furned silica, prior to incorporation in the powder coating compositions of this invention.

In general, the amount of photoinitiator used in the powder coating composition of the present invention ranges between about 0.t and 10 parts per hundred resin (phr), and preferably between about 1 and 5 phr.

Exemplary photoinitiator formulations useful herein are further specified in the working example.

Reference can also be made to EP 0 636 669 A2 to DSM, N.V. for further examples of the aforementioned base resins, crosslinkers, and photointitiators, which disclosure is incorporated by reference herein in its entirety.

Thermal initiators

The thermal initiations useful in the powder coating compositions of this invention are free radical generating compounds, preferable peroxides initiately peroxides, and are initiations. Examples of suitable peroxide initiations, include disciply peroxides, used as 2-4-dictorobenzyl peroxide, discontancyl peroxide, decancyl peroxide, lauroyl peroxide, succinic acid peroxide, acetyl peroxide, benzoyl peroxide, and discobutypl peroxides, acetyl alloyled peroxides, such as acetyl cyclohexysultonyl peroxide, dialityl peroxydicarbonates, acetyl peroxy discarbonate, and dicyclohexyleperoxy discarbonate, and dicyclohexyleperoxy discarbonate, and dicyclohexyleperoxy discarbonate, peroxy seters, such as a splan-currylperoxy neodecances, alpha-currylperoxy pivaliate, 1-armyl neodecances, t-armylperoxy peroxy peroxy peroxy peroxy discarbonate, and peroxy peroxy

and 22-azona-(2-misny)outyronitrial); court-jereoxyriaeuse adei, 1,1-a-dit-dutylperoxy), 3,5-f-limethylcylchoxane, peroxy esters, such as 0,0-f-butyl-o-leopyrou promoperoxy carbonate, 1,5-dimethyl-2,5-dil(benzoylperoxy) carbonate, 0,0-f-butyl-o-(2-dilybenzoy) peroxylc parbonate, 0,0-f-butyl-o-(2-dilybenzy)-monoperoxy carbonate, 1-butylperoxy abenzate, 6-f-butylperoxy carbonate, 1-butylperoxy abenzate, 6-f-butylperoxy polityleneroxy zero-tate, 1-butylperoxy peroxide, 2,5-dimethyl-2,5-di(-butylperoxy)-butyleneroxy)-butyleneroxy peroxide, such as 2,5-dihydroparoxy)-2,5-dimethyl-1-bexane, 1-butyl-4-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-3,5-dily-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, and 1,1-di-f-butyl-peroxy)-abenzate, 1-di-f-butyl-peroxy)-abenzate, and 1,1-di-f-butyl-peroxy)-abenzate, and 1,1-di-f-butyl-peroxy)-abenzate, and 1,1-di-f-butyl-peroxy)-abenzate.

Also included are o,o'-t-alkyl-o-alkylmonoperoxy carbonates, such as o,o'-t-butyl-o-isopropylmonoperoxy carbonate, p,p'oxybis(benzene sulfonyl) hydrazide, and accelerated azocarbonamide.

Preferably, the thermal initiators used herein are solids. If liquid initiators are used, however, preferably they are absorbed on solid carriers, such as furned silica, prior to incorporation in the powder coating compositions of this invention.

In general, the amount of thermal initiator used in the powder coating composition of the present invention ranges between about 0.1 and about 10 phr, and, preferably, between about 1 and about 6 phr.

Exemplary thermal initiator formulations useful herein are further specified in the working examples.

Catalysts

It sometimes may be desirable to include a catalyst in the powder coatings to increase rate of crosslinking, catalysts, metal compounds based on a faity acid or of imay incorporated in the powders. Examples of suitable metals are obstit, manganese, lead, copper, and vanadium. Cobali-containing compounds, especially obstit acids, for example, cobalt ocidate, cobalt needscannate, cobal needscannate, are preferred. The metal-

containing compounds provide improved cure, especially in thermal peroxide initiated cure systems. Through a redox process, the metal catalyst send to decompose hydroperoxides created by oxygen inhibition near the coating surface. Amines, such as, for example, dimethylaniline, may also be used as the catalyst.

Such compounds, if used, are preferably employed in amounts of less than about 1.0 phr, and typically in the range between about 0.1 and about 0.5 phr.

Opacifiers

The powder coating compositions of this invention can be opsolited or pigmented without driminishing the through cure properties. Examples of suitable pigments useful herein, include cations black. Shepard black No. 1, Italanium dioxide white, chromium oxide green, zinc oxide, iron oxide yellowe, reds, browns and blacks, such as ferrite yellow oxide, ferric oxides, raw sienns and burnt sienns, lead chromate, copper philadiontinile blue, phihalocygnamine blues and greens, ultimarine blue, foliuline red, parachlor red, cadmium reds and yellows, phihalocygnamine blues and greens, iron blues, organic marcons, and the like. Especially useful are lower reflecting pigments such as aneatase titanium dioxide, zinc suffide, and the mixed metal oxide opigments, such as manganese ferrite black, chromium green black hermatite, oxbalt aluminate blue spinel, copper chromite black spinel, and sodium alumina suflositicate. Also possible with this technology are metallics made with alumium, mica, or brass.

Fillers may also be used to opacify or lower the gloss of the powder coaling without diminishing the through cure properties. Examples of suitable fillers useful herein, include silica, such as fumed silica, glass frit, flour, calcium carbonate, barium suiflate, mica, armmonium chloride, armmonium bromide, boric acid, artimony tinoxide, fumed alumina, clays such as kaolin, china clay, tale, lithopone, zinc suiffice, lead titenate, zirconium oxide, white lead, barium oxide, calcium oxide or tydroxide, magesium oxide or tydroxide, chalk, absetsos, ceramic, hollow glass, resin microspheres, pear lessence, barytes, diatomaceous earth, aluminum trihydrate, onyx flour, calcium sificate, mixed silicates, and the fixe.

In general, the amount of pigments, fillers and opacifiers used in the powder coating composition of the present invention ranges between about 0.1 and about 10.0 hr, and, preferably, between about 1 and 60 phr. However, loadings can vary depending on the desired opacity of the dry film.

Other ingredients

25

20

85

In addition to the aforementioned components, the powder coating composition of this invention may also contain content coating additives, such as gloss control aids, powder flow aids, leveling agents, dispersants, anticratering agents, stabilizes and other standard materials.

Gloss control agents such as polyethylene waxes, oxidized polyethylenes, polyamides, teflons, polyamides may be used in a formulation to adjust or obtain a lower gloss coating.

Preferred powder flow aids that may be employed in the powder coating of this invention are acrylic or silicone flow aids, which are composed of acrylic or silicone resens, respectively. The acrylic resina are generally floutist which have been converted to powder form by absorption onto silica-type materials. An example of an acrylic flow aid is sold under the trade name Resitiow PS7 by Estron Chemical, which is a 2-proparoic acid, ethyl seter polymer. Examples of other suitables early tile was der ace prictive resis sold under the stade name BYR S2 and BYR S00 BYR Chemise. When used, the powder flow aid is generally provided in an amount between about 0.1 and about 6 phr, and, preferably, between about 0.7 and about 1.5 phr, in the thermosetting powder coating compositions of this invention.

Dy flow additives are normally employed, such as furmed silica or alumina oxide, to reduce the tendency to cake or block during transportation or use. An example of a furmed silica is sold under the trade name Cab-O-Sil by Cabol Corporation. An example or an aluminum oxide is sold under the trade name Aluminum Oxide C by Degussa Corporation. When used, the dry flow additive is generally provided in an amount between about 0.05 and about 0.5 phr, and, preferably, between about 0.1 and about 0.3 phr.

Outgassing or anticratering aids can be used in these formulations to reduce or eliminate bubbles or trapped gas from the substacle or coating. Pipical outgassing aids incluids, benoincy (2-hydrovy,1-2-dipheny)ethernone) and its analogs, and plasticizers, such as low molecular weight phenoxies and phihalates. When used, the outgassing aid is generally provided in an emount between about 0.1 and about 15 phr, and, preferably, between about 1 and about 5 phr.

UV stabilizers are also commonly used to improve weathering, such as UV absorbers and hindered amine- or hindered phenol-like sitabilizers. When used, the UV stabilizers are generally provided in an amount between about 0.1 and about 3 phr. and, preferably, between about 1 and about 2 phr.

Powder Preparation

The powder coatings of this invention are prepared by conventional techniques employed in the powder coatings

art. Typically, the components of the powder coating formulation are thoroughly blended together by medium to high intensity mixing until the mature is homogeneous and day, and then mell blended, preferably in an axtruder. Any in-gredients which are liquid at the mixing temperature can ceptionally be absorbed onto a day substrate which may constitute one of the other ingredients of the mixture. Mell blending is generally carried out in the temperature range of between about 180°F and about 250°F, and, preferably, between about 180°F and about 250°F, with careful control of the axtruder temperature to minimize any curing and epidation from taking place in the extruder. Extrusion with a supercritical fluid, such as supercritical TO2, may be desirable with provider containing crystalline materials. The extruded composition, usually in sheet form after cooling substantially to room temperature, is broken into chips and then ground in a mill to a powder, which carefully controlling the temperature between about 160°F (appenic) and about 50°F, and, preferably, between about 0°F and about 75°F, and then subsequently screened to achieve the desired powder particle size of about 30 microns.

The prepared powder coatings of this invention axhibit the following properties: long shell life at temperatures preferably to 1 about 90°F; ability to flow out a relatively low temperatures preferably between about 10°F and about 25°F; relatively low flow viscosity; ability to be fully cured throughout, especially at the lower layers near the substrate, despite the presence of capacine pigments or thick films, ability to form exceptionally smooth films having the desired glossiness despite the presence of a thermal initiator, rapid cure; together with desirable other properties, such as good floxibility, archesion, hardness, scratch resistance, etc.

Coating Method

First, the powder coatings of this invention are applied in dry, free flowing, solid powder form over the substrate to be coated. Preferably, powders are sprayed onto the substrate by well known electrostatic powder spray techniques, such as corneal discharee or thoselectric electrostatic spray techniques.

Next, the powders are exposed to only enough heat to melt, level and flow out the powders into a continuous molten film having the desired smoothness, and activate the thermal component of the cure. Heating may take place in either infrared (IR) or convection overs, or a combination of both.

The applied powders of this invention become motion at sufficiently tow temperatures and form smooth films at very rapid speeds, so as not to cause damage to a heat sensitive substrate. The powder flow temperature is relatively tow, proferably between about 5 and about 150 seconds for the powder to adequately flow out as a smooth, continuous, uniform, motion film over the substrate. The flow viscosity is also sufficiently tow, for example, between about 100 and 4,000 cone and plate, which allows the powder to have good flow out behavior on heating to result in smooth coatings. Sufficient outgassing of substrate voiaties simultaneously occurs during the flow out step to eliminate surface defects, such as bitters and pin holes. The reduced temperature cure of these powders also helps eliminate outgassing, especially in procus metal substrates, such as cost alluminum and zinc, and also in heat sensitive substrates, such as vioat sulminum and zinc, and also in heat sensitive substrates, such as vioat and such as constitutions.

While the powder coatings are molten, the films are exposed to a UV light source, such as medium pressure mercury vapor lamps or gallium lamps, for example, Fusion H-, D-and/or V-lamps, to activate the ultraviolat component of the cure and to rapidly cure the films into smooth hardoned filnshes. Electron beam realistion can be used as well.

Upon exposure to UV radiation, the molten films are rapidly hardened between about 1 millisecond and about 10 seconds, and, preferably, less than about 3 seconds. The hardened dry film finishes formed on the substrate preferably have a thickness of between about 0.5 and about 25 mils, and, more preferably, between about 1 and about 10 mils. UV hardened thicker films, e.g., more than 2 mils, can be formed with a single cost which has not heretofore been cossible.

Thick films and pigmented films can be essentially fully cured as well as thin and clear films using the powder coatings of this invention, resulting from the presence of a thermal initiator in the coating.

Despite the presence of the thermal initiator, the hardened film finishes produced from the powder coalings of this invention surprisingly have substantially the same exceptional smoothness as that of standard UV curable powder coalings. The powder coating film finish gives of the appearance of being a plastic coaling or farminate.

The surprising finding is that the thermal initiator, such as a peroxide, improves through cure and adhesion to the substrate without impairing the flow out behavior and without detracting from the smoothness and desired glossiness of the cure of lim.

The powder coatings of the present invention are found to be particularly useful when applied to heat sensitive substrates, such as wood, wood composites, and plastic, due to the low temperature and rapid cure aspects of these coatings. Using the alcreasal heating and UV curing techniques, it is possible to limit the thermal load on the substrate to acceptable levels for heat sensitive substrates, so as not to cause embrittlement, loss of integrity, deformation, and other damage to the physical and/or chemical properties of the heat sensitive substrates.

However, it should be understood that the invention is not limited to heat sensitive substrates, and the powder coatings of this invention can form the same smooth hardened film finishes on heat resistant substrates, such as metal,

as well. Exemplary substrates that can be coated with the powder coatings of this invention are listed hereinbelow.

Heat Sensitive Substrates

5 Examples of suitable heat sensitive substrates useful herein, rictude wood, such as hardwood, hard board, farminated barmoon, wood composites, such as particle board, ledicitically conductive particle board, ledicities density fiber board, masonite board, sensities the substrates had contain a significant amount of wood. Any of these wood based substrates may be filled or primed with materials, such as UN floulds, powder primers, or solvent for waterborne coatings to improve smoothness and reduce film builds. The wood substrates are typically used in kitchen achiefly such solvent for waterborne coatings to improve smoothness and reduce film builds. The wood substrates are typically used in kitchen achiefly such solvent for waterborne coatings to make the provided for the p

Other heat sensitive substrates are plastics, such as ABS, PPC, SMC, polybefins, acrylics, nyfons and other copolymers which usually will warp or outgas when coated and heated with radictional heat cursible powders. The plastics are typically used in automotive parts. Sill other heat sensitive substrates include paper, cardboard, and compositives and components with a heat sensitive aspect, and the like.

Heat Resistant Substrates

Examples of suitable heat resistant substrates, include metal, such as steel and other alloys, which are typically used for building panels, rebars, pipelines, cold coil aprings, and steel strapping. Other heat resistant substrates, include class, ceramic for ceramic lies, carbon and graphite.

The invention will be further clarified by a consideration of the following specific examples which are intended to be purely exemplary of the invention.

Example 1

25

30

Preparation of Pigmented Polyester/Vinyl Ether Powder Coating With Dual Thermal and UV Cure

The ingredients listed below in Table 1A were compounded as described to form a pigmented powder coating of this invention having a dual cure, thermal and UV, aspect.

Comparative Example 1

Preparation of Pigmented Polyester/Vinyl Ether Powder Coating With UV Cure Only

35 The ingredients listed below in Table 1A were compounded as described to form a pigmented powder coating having a UV cure aspect only.

Table 1A

Ingredients	Phr			
	Exemple 1	Comp. Ex. 1		
DRY BLEND UNTIL HOMOGENEOUS				
XP 3125 Unsaturated Polyester ¹	80	80		
ZW 3307 Vinyl Ether ²	20	20		
Lucerin TPO Photoinitiator ³	2	2		
rgacure 184 Photoinitiator	1	1		
Resiftow P67 Acrylic Flow Aid ⁵	1.5	1.5		

acid, and 1,6-hexanediol, and that is commercially available from DSM Reshis.

2XW 3307 Vinyl Ether is a solid, divinyl ether functionalized urethane crossfinker resin that is believed to be derived from derived from hexamethylene

discoyante and 4-hydroxybutyl vinyl ether, and that is commercially available from DSM Resins.

³Lucerin TPO Photoinitiator is a 2.4.6-trimethylben zoyldiphenyl phosphine oxide that is commercially available from BASF.
⁴Irgacure 184 Photoinitiator is an aryl ketone, 1-hydroxycyclohexyl phenyl ketone, that is commercially available from Ciba Additives.

Sesillow PS7 Acrylic Flow Aid is a polyacrylate, which is a 2-propenoic acid ethyl ester polymar that is commarcially available from Estron Chemical.

Toble 14 (continued)

Ingredients	Phr		
	Exemple 1	Comp. Ex. 1	
	DRY BLEND UNTIL HOMOGE	NEOUS	
Lupersol 230XL Peroxide ⁶	2	0	
TiPure R-902 Titanium Dioxide7	25	25	
Total	131.5	129.5	
CHARGE TO EXTRUDER AND E	KTRUDE TO SHEETS		
MELT TEMPERATURE = 200°F			
AIR COOL AND BREAK INTO CH	IPS		
CHARGE TO MILL AND GRIND T	O POWDER AT HIGH SPEED		
SCREEN TO -140 MESH			

Eupersol 230XL Peroxide is a peroxy ketal, 1, 1bis(t-butylperoxy)3,3,5-trimethylcyclohexane on an inert filler at 40% active ingredient that is commercially available from Elf Atochem.

Results

10

15

30

40

The powdor coating compositions listed in Table 1A were electrostatically sprayed with a tribo guin to about 3 to 6 mils on respective ½" particle boards. The boards were heated with quartz IRI amps for about 30 sec. to about 250°F in order to form a molten film. Next, the boards were immediately conveyed through a UV source and cured by exposure to UV rediation, first with a V-lamp and then with a H-lamp, at about 30 ft.min. for about one second. The cured powder ceatings were then subjected to performance tests with the test results listed below in Table 1 st.

Table 18

Test	Result	
	Example 1	Comp. Ex. 1
Cross Hatch Adhesion	3B/4B	0B/1B
Appearance	Moderate Orange Peel	Moderate Orange Peel
Outgassing	None	Slight
Solvent Resistance (50 Double Rubs)	No Effect	No Effect
Pencil Hardness Mar	3H	F

Example 2

Preparation of Pigmented Polyester/Allyl Ester Powder Coating With Dual Thermal and UV Cure

The ingredients listed below in Table 2A were compounded as described to form a pigmented powder coating of this invention having a dual cure, thermal and UV, aspect.

Comparative Example 2

Preparation of Pigmented Polyester/Aliyi Ester Powder Coating With Peroxide Cure Only

The ingredients listed below in Table 2A were compounded as described to form a pigmented powder coating having a thermal peroxide cure aspect only.

⁷ TiPure R-902 is a white titanium dioxide pigment that is commercially available from Du Pont.

Table 24

Ingredients		Phr		
	Example 2	Comp. Ex. 2		
DRY I	BLEND UNTIL HOMOGENEOU	IS		
licester 275 Unsaturated Polyester ¹	80	80		
so Diallyl Phthalate ²	20	20		
Resiflow P67 Acrylic Flow Aid	1.5	1.5		
Benzoin ³	0.8	0.8		
upersol 231 Peroxide ⁴	3	3		
Benzyl Dimethyl Ketal Photoinitiator ⁵	2	0		
FiPure R-902 Titanium Dioxide	20	20		
Total	127.3	125.3		
CHARGE TO EXTRUDER AND EXTRUDE	TO SHEETS			
MELT TEMPERATURE = 180°F				
AIR COOL AND BREAK INTO CHIPS				
CHARGE TO MILL AND GRIND TO POWE	DER AT HIGH SPEED			
SCREEN TO -140 MESH				

Results

The powder coating compositions listed in Table 2A were electrostatically sprayed with a tribo gun on respective 1/2" medium density fiber boards preheated using infrared lamps to about 200°F to 250°F. The boards were post heated with quartz IR lamps for up to 2 minutes at about 300°F for the peroxide sample only in order to melt and cure the powder and for about 30 sec. at about 300°F for the dual cure sample in order to initiate thermal cure and form a molten film. After flow out, the dual cure sample was immediately cured by exposure to UV radiation, first with a V-lamp and then with a H-lamp, at about 30 ft./min. for about one second. The cured powder coatings were subjected to performance tests with the test results listed below in Table 2B.

Table 2B				
Test	Result			
	Exemple 2	Comp. Ex. 2		
Cross Hatch Adhesion	5B	5B		
Appearance	Moderate Orange Peel	Moderate Orange Peel		
MEK Resistance (50 Double Rubs)	5 No Effect	3 Moderate Rub Off		
Poncil Hardness Mar	Н	н		

Example 3

50

Preparation of Pigmented Acrylated Epoxy Powder Coating With Dual Thermal and UV Cure

The ingredients listed below in Table 3A were compounded as described to form a pigmented powder coating of

with 7% unsaturation and an acid number of 35, and that is commercially available from Pioneer Plastics ²ISO Dially! Phthalate is an ally! eater functional crosslinking agent that is commercially available from GCA Chemical.

³Benzoin ie e degasseing end anti-cratering egent that is commercially available from Estron Chemicals.

4Lupersol 231 Peroxide is a peroxy ketal, 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohaxane, thet is commercially available from Elf Atochem.

⁵Benzyl Ketal Dimethyl Ketal Photoinitiator ie a benzyl ketal UV initiator that is commercially available from Ciba Additives.

this invention having a dual cure, thermal and UV, aspect.

Comparative Example 3

Preparation of Pigmented Acrylated Epoxy Powder Coating With Peroxide Cure Only

The ingredients listed below in Table 3A were compounded as described to form a pigmented powder coating having a thermal peroxide cure aspect only.

Table 3A

Ingredients Phr		
	Example 3	Comp. Ex. 3
DRY BLEND UNTIL HON	MOGENEOUS	
Pro 1723 Unsaturated Polyacrylate ¹	100	100
Lupersol 231XL Peroxide	5.0	5.0
TiPure R-960 Titanium Dioxide	20	20
Resiflow P67 Acrylic Flow Aid	1.4	1.4
Benzoin	0.8	0.8
Benzyl Dimethyl Ketal Photoinitiator	2.0	0
Total	129.2	127.2
CHARGE TO EXTRUDER AND EXTRUDE TO SHEETS		
MELT TEMPERATURE = 180°F		
AIR COOL AND BREAK INTO CHIPS		
CHARGE TO MILL AND GRIND TO POWDE	R AT HIGH SPE	D
SCREEN TO -140 MESH		

Pro 1723 Polyacrtyate is a solid epoxy acrylate resin that is available from Sartomer Company.

Results

10

15

20

25

The powder coating compositions isled in Table 3A were electrostatically sprayed with a tribo gun on respective Windown density fiber boards preheated using infrared lamps to about 20°F to 25°F. The coated boards were post heated with quart. Fil lamps for up to 2 minutes at about 300°F for the peractice sample only in order to met and cure the powder and for about 30 sec. at about 300°F for the dual cure sample in order to initiate thermal cure and form a motion film. After flow out, the dual cure sample was then cured immediately by exposure to UV radiation, first with a V-lamp and then with a H-lamp at 30 ft./min. for about one second. The cured powder coatings were subjected to performance tests with the test results listed below in Table 38.

Table 3B

Test	Result		
	Example 3	Comp. Ex. 3	
Gross Hatch Adhesion	48	3B	
Appearance	Slight Orange Peel	Slight Orange Peel	
MEK Resistance (50 Double Rubs)	5 No Effect	2 Heavy Rub Off	
Pencil Hardness Mar	Н	В	

Example 4

Preparation of Solid Vinyl Ether Functionalized Urethane Crosslinker

222 grams (2.0 eq.) of isophonon diisocyanate was weighed in a 0.5 liter kettle, fitted with a sirrer and nitrogen sparge. Heating and stirring was started with nitrogen flow of 30 m/min in the presence of citouylin ciliaurate catalyst. When the temperature reached 75°C, 52 grams of neopenity glycot (1.0 eq.) was added over seweral hours. The exotherm was kept below 100°C. The adduct has a free isocyanate content of 15.6% (15.3% theoretical). At this point, 116 grams (1.0 eq.) of hydroxybuj vinyl either was added taken care not to let the siotherm exceed 10°C. After the addition was complete, the mixture was sirred until the free isocyanate content was below 0.3%. The non-crystallizing, amorphous solid reaction procluct was the discharged, cooled, and ground into powder.

Example 5

5 Preparation of Solid Vinvi Ether Functionalized Urethane Crosslinker

118 grams (1.0 eq.) of hydroxybulyi vinyl ether was charged in a 0.5 filer reaction kattle, fitted with a silrer and nitrogen sparge. 116 grams (1.0 eq.) of losphornoe discovanate trimer was added alowly to the kuttle with gentle stirring. After addition, stirring was continued with moderate heat applied (maximum temperature not to exceed 60°C) until all of the isophornor discovanate trimer had dissolved. The temperature was then raised slowly to 100°C and the reaction mixture was allowed to react for 2-3 hours. At this point, the temperature was lowered to 70-75°C and tin catalyst was actioned. Care was taken to control the exotherm below 110°C. Mixing was continued until life free % NCO was below 0.5%. Finally the non-crystallizing, amorphous solid reaction product was discharged, cooled, ground, and then packaged.

Example 6

25

35

40

45

50

55

Preparation of Pigmented Polyester/Vinyl Ether Powder Coating With Dual Thermal and UV Cure

The ingredients listed below in Table 6A were compounded as described to form a pigmented powder coating of this invention having a dual cure, thermal and UV, aspect.

Toble 64

Ingredients	Phr	
	Example 6	
DRY BLEND UNTIL HOMOGE	NEOUS	
XP 3125 Unsaturated Polyester	80	
Vinyl Ether Crosslinker (Example 4)	20	
Lucerin TPO Photoinitiator	2.0	
Irgacure 184 Photoinitiator	1.0	
Lupersol 231XL Peroxide	2.0	
Resiflow P-67 Acrylic Flow Aid	2.0	
TiPure R-902 Titanium Dioxide	25	
CHARGE TO EXTRUDER AND EXT	RUDE	
MELT TEMPERATURE = 180°F		
AIR COOL AND BREAK INTO CHIPS		
CHARGE TO MILL AND GRIND TO	POWDER	
SCREEN TO -140 MESH		

Results

The powder coating listed in Table 6A was electrostatically sprayed with a tribo gun on a 1/2" medium density fiber board preheated using infrared lamps to about 200°F to 250°F. The coated board was post heated with quartz IR lamps at about 400°F for about 40 seconds in order to form a molten film. The molten coating was then cured immediately by exposure to UV radiation, first with a V-lamp and then with a H-lamp at 20 ft./min. for about one second. The cured powder coating was subjected to performance tests with the test results listed below in Table 6B. Due to the polymeric nature of the vinyl ether urethane crosslinkers, this powder coating had better flexibility which resulted in improved adhesion to the substrate after curing.

Table 6B

Tests	Properties
MEK Rubs (50 Double Rubs)	No Effect
Cross Hatch Adhesion	3B
Hardness Mar	нв
Pencil Gloss, 20°/60°	38/86

Example 7

Preparation of Pigmented Crystalline Polyester/Vinyl Ether Powder Coating With Dual Thermal and UV Cure

The ingredients listed below in Table 7A were compounded as described to form a pigmented powder coating of this invention having a dual cure, thermal and UV, aspect.

Table 7A

	Ingredients	· Phr				
30		Example 7				
	DRY BLEND UNTIL HOMOGENEOUS					
	Picester 313 Unsaturated Polyester ¹	80				
	ZW-3307P Vinyl Ether Crosslinker ²	20				
35	Lucerin TPO Photoinitiator	2.0				
	Irgacure 184 Photoinitiator	1.5				
	Lupersol 231 XL Peroxide Initiator	2.0				
40	Resillow P-67 Acrylic Flow Aid	1.4				
	TiPure R-902 Titanium Dioxide	25				
	CHARGE TO EXTRUDER AND					
45	EXTRUDE WITH SUPERCRITICAL CO2					
45	MELT TEMPERATURE = 180°F					
	AIR COOL AND BREAK INTO CHIPS					
	CHARGE TO MILL AND GRIND TO POWDER					
50	SCREEN TO -140 MESH					

Pioester 313 Unsaturated Polyester is e solid crystalline unsaturated polyester resin that is believed to be derived from ethylene glycol and fumark

Results

55

The powder coating listed in Table 7A was electrostatically sprayed with a tribo gun on a steel panel and heated

²ZW-3307P Vinyl Ether Crosslinker is a solid crystalline vinyl ether functionalized urethane crosslinker that is derived from 4-hydroxybutyl vinyl ether and 1,6-hexamethylene disocyanate, and that is commercially available from DSM Resine.

with quartz IR lamps at about 400°F for about 50 seconds in order to flow out the powder into a molten film. With crystalline materials, flow out tends to be better which promotes semonther coalings. After flow out, the panels were immediately passed under a 600 watt VH VI kimp at 20 thm in for about one second to complete the cure. The cured powder coaling was then subjected voter than 100°F and 100°F

Table 7B

Tests	Properties		
MEK Rubs (50 Double Rubs) No Effect			
Cross Hatch Adhesion 1B			
Pencil Hardness, Mar 5H			
Taber Abrasion, Loss (mgs.)	gs.) 23.9		
Appearance	Moderate Orange Pee		
Gloss, 20°/60° 55/85			

Claims

25

.24

40

50

- A dual thermal and ultraviolet curable powder coating composition, which is a composition in solid particulate form that comprises a blend of:
 - a) a film-forming base resin;
 - b) a second resin co-polymerizable with said base resin;
 - c) a photoinitiator; and
 - d) a thermal initiator,

in which said composition is curable, both on the surface and through, when exposed to sufficient thermal and then UV radiation.

- A dual thermal and ultraviolet curable powder coating composition, which is a film-forming composition in solid particulate form that comprises a blend of:
 - a) an unsaturated resin selected from unsaturated polyesters, unsaturated polyacrylates, unsaturated polymethacrylates, and mixtures thereof:
 - b) a second co-polymerizable resin having a functional group selected from vinyl ether, acrylate, methacrylate, and allyl ester groups, and mixtures thereof;
 - c) a photoinitiator; and,
 - d) a thermal initiator.
- A composition according to claim 2, in which said unsaturated resin is an unsaturated polyester resin derived from maleic or fumaric acid, or anhydrides thereof.
- Á composition according to claim 2 or claim 3 in which said unsaturated resin is a non-crystalline, semi-crystalline, or crystalline solid.
 - A composition according to any preceding claim in which said second co-polymerizable resin is a vinyl ether functionalized urethane prepolymer.
 - A composition according to claim 5, in which said second co-polymerizable resin is a non-crystalline solid derived from isophorone diisocyanate, neopentyl glycol, and 4-hydroxybutyl vinyl ether.
- A composition according to claim 5, in which said second co-polymerizable resin is a non-crystalline solid derived from isophorone diisocyanate trimer and 4-hydroxybutyl vinyl ether.
 - 8. A dual thermal and ultraviolet curable powder coating composition, which is a film-forming composition in solid particulate form that comprises a blend of:

- a) an unsaturated resin selected from unsaturated polyacrylates, unsaturated polymethacrylates, and mixtures thereof:
- c) a photoinitiator, and,
- d) a thermal initiator.
- in which said composition is curable, both on the surface and through, when exposed to sufficient thermal and then UV radiation.
- 9. A composition according to any preceding claim which further comprises:
 - e) an opacifier selected from pigments, fillers, and mixtures thereof.
- A composition according to any preceding claim which further comprises:
- 15 f) a catalyst.

35

40

- 11. A composition according to claim 10 wherein the catalyst (f) is a metal compound based on a fatty acid or oil.
- 12. A composition according to claim 11 wherein the catalyst (f) is a cobalt compound selected from cobalt octoate, cobalt neodecanoate, cobalt naphthenate and cobalt octadecanoate.
- A composition according to any preceding claim in which said thermal initiator is selected from peroxide and azo compounds
- 5 14. A composition according to any preceding claim which is curable, both on the surface and through, upon exposure to sufficient heat to melt and flow out said prowder composition to a smooth motine film and activate the threat component of the cure, followed by exposure of the molten film to sufficient UV radiation to activate the ultraviolet component of the cure and form a fully cured hardened flow.
- 30 15. A method of producing a fully cured film of a radiation curable powder coating on a substrate, which comprises:
 - a) electrostatically applying a radiation curable powder coating composition over a substrate, said composition being in solid particulate form that comprises a blend of:
 - i) a film-forming base resin,
 - ii) optional second resin co-polymerizable with said base resin,
 - iii) a photoinitiator,
 - iv) a thermal initiator, and
 - v) optional opacifier selected from pigments and fillers;
 - b) applying sufficient heat to said powder coating to melt and flow out said coating into a smooth molten film and activate the thermal component of the cure; and,
 - c) applying sufficient ultraviolet radiation to said molten film to activate the ultraviolet component of the cure

 and form a fully cured, both on the surface and through, hardened film finish.
 - 16. A method according to claim 15, in which said substrate is a heat sensitive substrate.
 - 17. A method according to claim 16, in which said heat sensitive substrate is selected from wood and plastic materials.
- 50 18. A substrate having a powder coating composition according to any of claims 1 to 14 coated and cured thereon.
 - 19. A coated substrate according to claim 18, in which said substrate is a heat sensitive substrate.
- 20. A coated substrate according to claim 19, in which said heat sensitive substrate is selected from wood and plastic materials.

EUROPEAN SEARCH REPORT

Application Number EP 97 31 0498

Category	Citation of document with in of relevant pass	dication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	DE 42 28 401 A (BAS	F LACKE + FARBEN)	1-3,9, 10, 13-15,18	C09D5/03 C09D167/06 C09D4/06
	* abstract * * column 3, line 32	-40 +		
	* column 5, line 2-	9 * - column 6, line 4 *	1	i
	* column 6, line 21	-26 *	1	
	* column 6, line 46	-58 *	1	
A,D	EP 0 636 669 A (DSM)	1-20]
	* claims *		1.	1
A,D	WO 93 19132 A (DSM)		1-5, 9-13.	
			18-20	
	* whole document *		1	1
A	EP 0 739 922 A (UCE + page 6, line 35-4		1,15,18	
A	DE 42 28 514 A (HOE		1-3.	TECHNICAL FIELDS SEARCHED (InLCI.6)
^		cnsi)	18-20	C09D
	* abstract * * column 6, line 23	-31 *		CO8F
A	EP 0 582 909 A (BA)		1-3.	
А			15-20	1
	* page 2, line 32-5 * page 4, line 37-5	1 *	İ	
	* page 5, line 13-1	6 *	1	
	1		}	1
	1		1	1
				1
			1	
	The present search report has	has down up for all claums	4	}
	Place of search	Date of completion of the search		Exemples
	THE HAGUE	2 March 1998	Gii	ard, Y
	CATEGORY OF CITED DOCUMENTS	E : earlier patent o	iple underlying the locument, but pub	Invention lahed on, or
Y Pa	riticularly relevant of taken stone riticularly relevant of combined with end current of the same category	ther O document ote	date d in the application for other research	
A tec	chnological background on-written disclosure	& : member of the	same patent fami	
P:let	fermediale document	document		