Task 1

Perform the process of encode / modulate / transmit HEX characters over a transmit channel with Gaussian noise addition / demodulation / decoding for a random data file size of 3000 HEX characters as below:

The character space is as follows:

Compare the error rate of the above-mentioned characters (expressed in%) of transmitting 3000 HEX characters obtained at the output of this process for 16-QAM modulation, assuming for SNR in the range of 2, up to 30 dB. Graph the results of the message transmission error rate for all tasks using the script lab1.m

Readings

- 1. https://en.wikipedia.org/wiki/Quadrature amplitude modulation
- 2. https://www.mathworks.com/help/comm/gs/examine-16-gam-using-matlab.html

Solution hint

You can use the function:

- rng Controls the random number generation.
- randi Generates a random binary data stream.
- bi2de Converts the binary signal to an integer-valued signal.
- qammod Modulates using 16-QAM.
- comm. AWGNChannel Impairs the transmitted data using AWGN.
- awgn Add white Gaussian noise to signal
- scatterplot Creates constellation diagrams.
- gamdemod Demodulates using 16-QAM.
- de2bi Converts the integer-valued signal to a binary signal.
- biterr Computes the system BER.

```
Here, you will find a solution hint:
```

```
%% generate n-random characters
n = 500;
x = randi(n,1,16); % input signal
%% QAM modulation
y = qammod(x,16); % signal generation for QAM16 modulation
snrVal = 30;
y noise = awgn(y, snrVal, 'measured'); % add white Gaussian Noise SNR 30 dB, SNR, ang. signal-to-noise ratio) - a
measure that compares the level of the useful signal (information) to the level of background noise (unwanted
signal, expressed in the decibel [dB] unit)
%% demodulation
z = qamdemod(y_noise,16); % signal demodulation-> output signal
%% data visualization as a scatter plot -> https://en.wikipedia.org/wiki/Quadrature amplitude modulation
sy = scatterplot(y,1,0,'b*');
hold on;
scatterplot(y_noise,1,0,'g.',sy);
legend('Signal Constellation', 'Received Signal');
hold off;
%% error calculation
Error1 = z-x; % non zero is error
In order to get information about a given function you should use
help function_name
In order to obtain a vector with the calculated Error1 for different snrVal values you should use a loop:
snrVal = [0:5:30];
% snrVal = [-30:5:0]; % a vector with negative values
for i = 1:length(snrVal)
 y_noise (i) = awgn(y, snrVal(i), 'measured');
    z(i) = qamdemod(y noise(i), 16);
 error1(i) = z(i) - x;
end
In order to visualize the data in a plot, please use plot function
figure, %it opens the graphical window
plot(snrVal,error1,'r-') %where plot(vector of X,vector of Y, line style)
title('error of QAM16'); %create title of plot
xlabe('SNR value'); %create name of X vector
ylabel('error in [%]'); % create name of Y vector
```

In order to present two plots in one figure window, please use:

plot(x1,y1,'r-',x2,y2,'g--');