Resúmenes Análisis

1. Conjuntos.

Definición (Punto de acumulación). Un punto x en un espacio métrico M es un punto de acumulación de un conjunto $A \subset M$ si todo conjunto abierto U que contiene a x también contiene a algún punto de A distinto de x.

Teorema. Un conjunto $A \subset M$ es cerrado \iff todos los puntos de acumulación de A pertenecen a A.

2. Sucesiones.

Proposición. Una sucesión $\{x_n\}$ en M converge a $x \in M \iff \forall \varepsilon > 0 \ \exists N : k \ge N \implies d(x, x_k) < \varepsilon$

Proposición. $\{v_n\} \to v \in \mathbb{R}^n \iff cada \ sucesión \ de \ coordenadas \ converge \ a \ la \ coordenada \ correspondiente \ de \ v \ como \ una \ sucesión \ en \ \mathbb{R}$

Proposición.

- Un conjunto $A \subset M$ es cerrado $\iff \forall \{x_n\} \subset A$ con $\{x_n\}$ convergente, el límite es un elemento de A.
- Para un conjunto $B \subset M$, $x \in \overline{B} \iff$ existe una sucesión $\{x_n\} \in B$ tal que $\{x_n\} \to x$

Demostración. Demostraremos el primero.

Sea A un conjunto cerrado y $\{x_n\} \to x$. Entonces x es un punto de acumulación de A. x es un punto de acumulación de A, pues cualquier entorno de x contiene algún punto de $\{x_n\} \subset A$. Ahora, como sabemos que A es cerrado si contiene a todos sus puntos de acumulación, A es cerrado y x es un punto de acumulación entonces $x \in A$.

De la misma forma, sea $x \in A$ un punto de acumulación de A y elegimos $\{x_n\} \in B(x, \frac{1}{n}) \cap A$. De esta forma, $\{x_n\} \to x$ (pues $\forall \varepsilon > 0 \ \exists N \geq 1/\varepsilon$ con lo que $k \geq N \implies x_n \in B(x, \varepsilon)$). Así, tenememos una sucesión de elementos de A que converge a un elemento de A, y su límite es un punto de acumulación, por tanto por el teorema anterior, A es cerrado.

Definición (Sucesión de Cauchy). Una sucesión de Cauchy es una sucesión $\{x_n\} \in M$ tal que $\forall \varepsilon > 0 \ \exists N$ tal que si $p, q \geq N$ entonces $d(x_p, x_q) < \varepsilon$. M es completo \iff toda sucesión de Cauchy en M converge a un punto de M.

Proposición. Una sucesión convergente en un espacio normado o métrico está acotada.

Demostración. Sea $\{x_n\} \to x$, sabemos que $\exists N : d(x_n, x) < 1$ si $n \ge N$, así que $x_n \in B(x, 1)$ si $n \ge N$. Basta tomar $R = max\{1, d(x_1, x), ..., d(x_{N-1}, x)\}$ y así $d(x, x_n) \le R \ \forall n$ por lo que $x_n \in B(x, R) \ \forall n$ y así está acotada.

Teorema (Teorema de Bolzano Weierstrass). Sea $\{x_n\}$ una sucesión de \mathbb{R}^N acotada. Entonces existe una sucesión parcial suya $\{x_{\sigma(n)}\}$ convergente.

Demostración. Notaremos $x_n = (x_n^1, \dots, x_n^N)$. Como $\{x_n^1\}$ es acotada en \mathbb{R} , existe $\sigma_1 : \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $\{x_{\sigma_1(n)}^1\}$ es convergente.

Ahora, como $\{x_n^2\}$ es acotada, $\{x_{\sigma_1(n)}^2\}$ también es acotada, y existe $\sigma_2: \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $\{x_{(\sigma_2 \circ \sigma_1)(n)}^2\}$ es convergente.

Procediendo de esta forma con cada componente de x_n , obtenemos $\sigma_1, \ldots, \sigma_N$, y $\{x^1_{\sigma_1(n)}\}, \{x^2_{(\sigma_2 \circ \sigma_1)(n)}\}, \ldots, \{x^N_{(\sigma_N \circ \cdots \circ \sigma_2 \circ \sigma_1)(n)}\}$ sucesiones convergentes en \mathbb{R} . Al ser σ_i estrictamente creciente $\forall i = 1, \ldots, N, \{x^i_{(\sigma_N(n) \circ \cdots \circ \sigma_{i+1} \sigma_i \circ \cdots \circ \sigma_1)(n)}\}$ también es convergente (toda sucesión parcial de una sucesión convergente es convergente).

Así, tomando $\sigma = \sigma_1 \circ \cdots \circ \sigma_N$, $\{x_{\sigma(n)}\}$ es convergente.

Proposición.

- (i) Toda sucesión convergente en un espacio métrico es una sucesión de Cauchy.
- (ii) Una sucesión de Cauchy en un espacio métrico debe estar acotada.
- (iii) Si una subsucesión de una sucesión de Cauchy converge a x, entonces la sucesión converge a x.

Teorema (\mathbb{R}^n es completo). Una sucesión $x_n \in \mathbb{R}^n$ converge a un punto de $\mathbb{R}^N \iff$ es una sucesión de Cauchy

Demostración.

 \Rightarrow

Dado $\varepsilon > 0$, existe $m \in \mathbb{N}$ tal que si $n \ge m$ entonces $d(x_n, x) < \frac{\varepsilon}{2}$, y si $p, q \ge m$ entonces $d(x_p, x_q) \le d(x_p, x) + d(x, x_q) < \varepsilon$

 \Leftarrow

Como $\{x_n\}$ es de Cauchy, $\{x_n^i\}$ es de Cauchy $\forall i=1,\ldots,N$ (porque $|x_n^i-x_m^i|\leq |x_n-x_m|$). $\implies \{x_n^i\}\to x^i$ es convergente, por ser $\mathbb R$ completo. Luego $\{x_n\}$ es convergente.

3. Conjuntos compactos y conexos.

Definición (Compacto). Un subconjunto A de un espacio métrico M es compacto si todo recubrimiento abierto de A contiene un subrecubrimiento finito.

Definición (Otra definición de compacto.). Sea $A \subset X$ con X espacio métrico.

A es compacto
$$\iff \forall \{x_n\} \subset A \ \exists \{x_{\sigma(n)}\}\ \text{parcial de } \{x_n\}\ \text{con } \{x_{\sigma(n)}\} \to x \in A$$

Teorema (Teorema de Heine-Borel). Un conjunto $A \subset \mathbb{R}^n$ es compacto \iff es cerrado y acotado.

Demostración.

 \Rightarrow

Suponemos que $A \subset \mathbb{R}^n$ es compacto. Entonces, por su definición, $\forall \{x_n\} \subset A \ \exists \{x_{\sigma(n)}\}\$ parcial de $\{x_n\}$ con $\{x_{\sigma(n)}\} \to x \in A$. Supongamos que A no está acotado. Entonces, $\forall n \in \mathbb{N}, \ \exists a_n \in A: \ |a_n| \geq n$, por lo que $\{a_n\}$ no converge y por tanto $\sigma(n) \geq n \implies \{a_{\sigma(n)}\}$ no converge, por lo que A está acotado.

Supongamos ahora que $\{x_n\} \to x \implies \exists \{x_{\sigma(n)}\} \to x \in A$, y como sabemos que si una sucesión es convergente todas sus parciales convergen al mismo límite, entonces eso implica que $\{x_n\} \to x \in A$ por lo que toda sucesión converge a un punto de A, y así A es cerrado.

Supongamos ahora que A es cerrado y acotado. Sea $\{x_n\}$ una sucesión cualquiera de puntos de A.

Como A es acotado, entonces $\exists R > 0: A \subset B(0,R)$. Además, como $\{x_n\} \subset A \ \forall n \implies |x_n| < R \ \forall n \in \mathbb{N}$, así $\{x_n\}$ es acotada.

Como $\{x_n\}$ es acotada, por el teorema de Bolzano Weierstrass, $\exists \sigma : \mathbb{N} \to \mathbb{N}$ estrictamente creciente con $\{x_{\sigma(n)}\} \to x \in \mathbb{R}^n$, y como $\{x_{\sigma(n)}\}$ es una subsucesión de puntos de A que converge a x y el conjunto A es cerrado, entonces el límite de esta sucesión está en A, es

decir:

$$\{x_{\sigma(n)}\} \to x \in A$$

Por lo que tenemos la definición de conjunto compacto.

Definición (Función continua). Una aplicación $f:A\to M$ es continua si $\{x_n\}\to x \implies \{f(x_n)\}\to f(x)$ para toda sucesión x_n convergente a un punto de A con $x_n\in A$

Proposición (Caracterización de continuidad). $Sea \emptyset \neq A \subseteq \mathbb{R}^N, \ y \ f : A \longrightarrow \mathbb{R}^M.$ Entonces:

$$f$$
 es continua en $a \iff \forall \{x_n\} \subseteq A$ con $\{x_n\} \to a \Rightarrow \{f(x_n)\} \to f(a)$.

Definición (Conjunto convexo). Un conjunto $A \subseteq \mathbb{R}^N$ se dice *convexo* si $\forall x, y \in A$ se tiene que el segmento de extremos x e y está incluido en A. En otras palabras:

$$A\ convexo \iff [x,y] = \{tx + (1-t)y:\ t \in [0,1]\} \subseteq A.$$

Definición (Poligonalmente conexo). Un conjunto $A \subseteq \mathbb{R}^N$ se dice *poligonalmente conexo* si $\forall x, y \in A$ existe una poligonal que los une y no se sale de A. En otras palabras: A poligonalmente conexo $\iff \exists \{x = a_0, a_1, \dots, a_k = y\} \subseteq A$ tal que:

$$\bigcup_{i=1}^{k} [a_{i-1}, a_i] \subseteq A.$$

Definición (Conjunto arco-conexo). Un conjunto $A \subseteq \mathbb{R}^N$ se dice arco-conexo(conexo por arcos) si $\forall x, y \in A$ existe un camino incluido en A que los une. En otras palabras, A es conexo $por arcos \iff \exists \varphi : [a, b] \longrightarrow \mathbb{R}^N$ continua verificando:

$$\varphi(a) = x; \quad \varphi(b) = y; \quad \varphi([a, b]) \subseteq A.$$

Definición (Conjunto no conexo). Decimos que un conjunto $A \in \mathbb{R}^N$ es *NO conexo* si existen U, V abiertos en \mathbb{R}^N tales que:

$$U \cap A \neq \emptyset$$
; $V \cap A \neq \emptyset$; $A \subseteq U \cup V$; $A \cap U \cap V = \emptyset$.

Nota. La misma definición se aplica para un espacio topológico (X, τ) .

Definición (Conjunto conexo). Un conjunto $A \subseteq \mathbb{R}^N$ se dice conexo si no es no conexo. Equivalentemente, $\forall U, V$ abiertos en \mathbb{R}^N tales que $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $A \subseteq U \cup V$, se tiene que forzosamente $A \cap U \cap V \neq \emptyset$.

Teorema. Los conjuntos conexos por arcos en \mathbb{R} son convexos.

Demostración. Sean x, y dos puntos de A. Suponemos $x \leq y$ (si fuera al revés, cambiamos los nombres).

Como A es arco conexo $\Longrightarrow \exists \varphi : [a,b] \to \mathbb{R}$ continua con $\varphi(a) = x$, $\varphi(b) = y$ y $\varphi([a,b])$ es un intervalo por el teorema del valor intermedio en R.

Ahora,
$$\forall \alpha, \beta \in \varphi([a,b])$$
 con $\alpha \leq \beta \implies [\alpha,\beta] \subseteq \varphi([a,b])$ y así tenemos $\varphi(a), \varphi(b) \in \varphi([a,b]) \implies [\varphi(a),\varphi(b)] = [x,y] \subseteq \varphi([a,b]) \subseteq A$

4. Funciones continuas

Definición (Límite). Supongamos que x_0 es un punto de acumulación de A. Decimos que $b \in N$ es el límite de f en x_0 , denotado por:

$$\lim_{x \to x_0} f(x) = b$$

Si $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que} \ \forall x \in A \ \text{que sea distinto de} \ x_0 \ \text{y} \ d(x_0, x), \ \text{entonces} \ d'(f(x), b) < \varepsilon$

Definición (Función continua). Una función $f: A \to B$ es continua en un punto x_0 de su dominio $\iff \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x \in A$ que cumpla que $d(x, x_0) < \delta \implies d'(f(x), f(x_0)) < \varepsilon$

Teorema. Sea $f: A \to B$ continua y $K \subset A$ conexo. Entonces, f(K) es conexo. Análogamente, si K es arco-conexo, entonces, f(K) es arco-conexo.

Teorema (Teorema de Weierstrass). Sea $f: A \to B$ continua y $K \subset A$ un compacto. Entonces, f(K) es compacto.

Demostración. Sea $\{y_n\} \subseteq f(K)$ una sucesión cualquiera en f(K). Para demostrar que f(K) es compacto debemos demostrar que $\{y_n\}$ tiene una subsucesión convergente a algún punto de f(K). Sea $y_n = f(x_n)$ con $x_n \in K$, por ser A compacto $\{x_n\}$ tiene una subsucesión $\{x_{\sigma(n)}\}$ convergente a un $a \in K$. Por lo tanto, $\{f(x_{\sigma(n)})\}$ convergente a un $f(a) \in f(K)$, siendo $\{f(x_{\sigma(n)})\}$ una subsucesión de $\{f(x_n)\}$, es decir, de $\{y_n\}$.

Teorema. Sean M,N,P espacios métricos y supongamos que $f:A\subset M\to N$ y $g:B\subset N\to P$ son transformaciones continuas tales que $f(A)\subset B$. Entonces, $g\circ f:A\subset M\to P$ es continua.

Teorema (Teorema del máximo-mínimo). Sea (M,d) un espacio métrico, $A \subset M$ y $f: A \to \mathbb{R}$ una función continua. Sea $K \subset A$ un conjunto compacto. Entonces f está acotada en K, es decir: $B = \{f(x) : x \in K\} \subset \mathbb{R}$ es un conjunto acotado. Además, existen

puntos $x_0, x_1 \in K$ tales que $f(x_0) = \inf(B)$ y $f(x_1) = \sup(B)$. Decimos que $\sup(B)$ es el máximo de f en K e $\inf(B)$ el mínimo de f en K.

Teorema (Teorema de los valores intermedios). Sean M un espacio métrico, $A \subset M$ $y \ f : A \to \mathbb{R}$ continua. Supongamos que $K \in A$ es conexo y que $x,y \in K$. Para cada número $c \in \mathbb{R}$ tal que f(x) < cf(y) existe un punto $z \in K : f(z) = c$

4.1. Continuidad uniforme

Definición (Uniformemente continua). Sean (M,d) y (N,p) espacios métricos, $A \subset M$, $f: A \to N$ y $B \subset A$. Decimos que f es uniformemente continua en el conjunto B si $\forall \varepsilon > 0 \; \exists \delta > 0: \; x,y \in B \; \; y \; \; d(x,y) < \delta \implies p(f(x),f(y)) < \varepsilon$

Teorema (Teorema de la continuidad uniforme. Teorema de Heine-Cantor.). Sean $f: A \to N$ continua y $K \subset A$ un compacto. Entonces, f es uniformemente continua en K.

Demostración. La condición para la continuidad uniforme es la siguiente:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A : d(x, y) < \delta \implies d(f(x), f(y)) < \varepsilon$$

Vamos a proceder por reducción al absurdo, para lo cual negamos esta condición:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x, y \in A : d(x, y) < \delta \land d(f(x), f(y)) > \varepsilon_0$$

Tomamos este ε_0 , lo que nos da, para cada $\delta > 0$, un par de puntos x e y que cumplen la propiedad expresada arriba. Tomamos $\delta = \frac{1}{n} \ \forall n \in \mathbb{N}$. Esto nos da dos sucesiones $\{x_n\}$ e $\{y_n\}$ tales que

$$d(x_n, y_n) < \frac{1}{n} \wedge d(f(x_n), f(y_n)) \ge \varepsilon_0$$

Por ser A compacto, el teorema de Bolzano-Weierstrass nos da dos sucesiones parciales $\{x_{n_k}\}$ a x_0 e $\{y_{n_k}\}$ a y_0 . Por tanto:

$$d(x_{n_k}, y_{n_k}) < \frac{1}{n_k} \wedge d(f(x_{n_k}), f(y_{n_k})) \ge \varepsilon_0$$

Sin embargo, $\{x_{n_k}\}$ e $\{y_{n_k}\}$ convergen al mismo punto (por converger su distancia a cero), y como f es continua, esta proposición no puede ser verdadera. Hemos llegado por tanto a una contradicción, luego f debe ser uniformemente continua.

5. Transformaciones diferenciables

Definición (Diferenciable). Una transformación $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable en $x_0 \in A$ si existe una transformación lineal, denotada $Df(x_0): \mathbb{R}^n \to \mathbb{R}^m$ llamada diferencial de f en x_0 tal que:

$$\lim_{x \to x_0} \frac{||f(x) - f(x_0) - Df(x_0)(x - x_0)||}{||x - x_0||} = 0$$

Donde $Df(x_0)(x-x_0)$ es el valor de la aplicación lineal aplicada al vector $(x-x_0)$.

Equivalentemente, podemos decir que $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que si} \ x \in A \ y \ ||x - x_0|| < \delta$ entonces:

$$||f(x) - f(x_0) - Df(x_0)(x - x_0)|| \le \varepsilon ||x - x_0||$$

Teorema (Matriz jacobiana de f). Sea $A \subset \mathbb{R}^n$ un conjunto abierto $y \ f : A \to \mathbb{R}^m$ es diferenciable en A. Entonces, las derivadas parciales $\frac{\partial f_j}{\partial x_i}$ existen y la matriz de la transformación lineal Df(x) con respecto de las bases canónicas en \mathbb{R}^n $y \ \mathbb{R}^m$ es:

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_i} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

donde cada derivada parcial se evalua en $x = (x_1, ..., x_n)$. Esta matriz es la matriz jacobiana de f.

Definición (Gradiente (caso $f: A \to \mathbb{R}$)). En el caso de que $f: A \to \mathbb{R}$, entonces Df(x) es una matriz $1 \times n$. El vector cuyas componentes son iguales a las de Df(x) se denomina gradiente de f y se denota ∇f .

$$\nabla f = (\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n})$$

Teorema. Sean $A \subset \mathbb{R}^n$ un conjunto abierto $y \ f : A \subset \mathbb{R}^n \to \mathbb{R}^m$. Si $f = (f_1, ..., f_m)$ y cada $\frac{\partial f_j}{\partial x_i}$ existe y es continua en A, entonces f es diferenciable en A

Definición (**Derivada direccional**). Las derivadas parciales de una función miden su variación en las direcciones paralelas a los ejes. Las derivadas direccionales hacen lo mismo en otras direcciones.

Sea f una función escalar definida en un entorno de $x_0 \in \mathbb{R}^n$ y sea $e \in \mathbb{R}^n$ un vector unitario, entonces:

$$\frac{d}{dt}f(x_0 + te)|_{t=0} = \lim_{t \to 0} \frac{f(x_0 + te) - f(x_0)}{t}$$

es la derivada direccional de f en x_0 en la dirección e.

Se puede afirmar que la derivada direccional en la dirección de e es igual a $Df(x_0)(e)$. Se suele notar $D_e f(x)$.

Proposición (Regla de la cadena). Sea $A \subset \mathbb{R}^n$ abierto $y \ f : A \to \mathbb{R}^m$ diferenciable en $x_0 \in A$. Sean $B \subset \mathbb{R}^n$ abierto $y \ f(A) \subset B \ y \ g : B \to \mathbb{R}^p$ diferenciable en $f(x_0)$. Entonces, la composición $g \circ f$ es diferenciable en $x_0 \ y$

$$D(g \circ f)(x_0) = Dg(f(x_0)) \circ Df(x_0)$$

Teorema (Teorema del valor medio).

(i) Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$ diferenciable en un abierto $A. \forall a, b \in A$ tales que el segmento de recta que une a con b esté en A, existe un punto c en ese segmento tal que:

$$f(b) - f(a) = Df(c)(b - a)$$

(ii) Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ diferenciable en el conjunto abierto A. Supongamos que el segmento de recta que une x e y está contenido en A y $f = (f_1, ..., f_m)$. Entonces, existen puntos $c_1, ..., c_m$ en ese segmento tales que:

$$f_i(y) - f_i(x) = Df_i(c_i)(y - x)$$
 $i = 1, ..., m$

Demostración. Lo vamos a hacer para una función $f:A\subset\mathbb{R}^n\to\mathbb{R}$ y lo aplicamos luego a cada coordenada de f.

Consideremos la función $h:[0,1] \to \mathbb{R}$ definida por $h(t) = f((1-t)a + tb) \ \forall t \in [0,1]$ es continua en [0,1] y por la regla de la cadena es derivable en [0,1] con:

$$h'(t) = Df((1-t)a + tb)(b-a)$$

. El TVM para funciones de \mathbb{R} en \mathbb{R} nos da un $t_0 \in]0,1[$ tal que:

$$f(b) - f(a) = h(1) - h(0) = h'(t_0) = Df((1 - t_0)a + t_0b)(b - a)$$

Si tomamos $c = (1 - t_0)a + t_0b \in [a, b]$ obtenemos el c que buscábamos.

Teorema (Matriz Hessiana). Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$ dos veces diferenciable en el conjunto abierto A. Entonces, la matriz $D^2 f(x): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ en la base canónica está dada por:

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

donde cada derivada parcial está evaluada en el punto $x = (x_1, ..., x_n)$

Proposición. Si $f: A \to \mathbb{R}^m$ es dos veces diferenciable en el conjunto abierto A con $D^2f(x)$ continua $\forall x \in A$, entonces $D^2f(x)$ es simétrica $\forall x \in A$, es decir:

$$\frac{\partial^2 f_k}{\partial x_i \partial x_j} = \frac{\partial^2 f_k}{\partial x_j \partial x_i}$$

Teorema (Teorema de Taylor. Caso n=1). Sea $A \subseteq \mathbb{R}^n$ abierto, $a \in A$ y $f : A \to \mathbb{R}$ con $f \in C^2(A)$. Entonces, $\forall x \in A \exists c \text{ comprendido entre } x \text{ y a tal que:}$

$$f(x) = f(a) + \frac{Df(a)(x-a)}{1!} + \frac{(x-a)^t Hf(c)(x-a)}{2!}$$

Donde (x-a) es un vector columna.

6. Máximos y mínimos

Definición. Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$ donde A es abierto. Si existe un entorno de $x_0 \in A$ en el que $f(x_0)$ es máximo, es decir si $f(x_0) \geq f(x) \ \forall x$ en el entorno, entonces x_0 es un punto de máximo local y $f(x_0)$ es un máximo local de f. Análogamente se define un mínimo local de f. Un punto es extremo si es un máximo o un mínimo local de f. Un punto x_0 es un punto crítico si f es diferenciable en ese punto y $Df(x_0) = 0$.

Teorema.

- (i) Si $f: A \subset \mathbb{R}^n \to \mathbb{R}$ es una función C^2 definida en un abierto A y x_0 es un punto crítico de f tal que $H_{x_0}(f)$ es definida negativa, entonces f tiene un máximo local en x_0 .
- (ii) Si f tiene un máximo local en x_0 , entonces $H_{x_0}(f)$ es semidefinida negativa.

Para el caso del mínimo, reemplazamos negativa por positiva. La matriz hessiana, es la vista anteriormente.

7. Clasificación de matrices según su signo

Si A_k es el determinante del menor de orden K de una matriz A, entonces:

- A es definida positiva $\iff A_k > 0 \ \forall k$
- A es definida negativa \iff $A_k > 0$ si K es par y $A_k < 0$ si K es impar.

8. Teorema de la función Inversa

Teorema (Teorema de la función inversa. Caso general.). Sea $A \subset \mathbb{R}^n$ abierto, $a \in A$ y $f : A \to \mathbb{R}^n$ de clase 1. Si $Df(a) : \mathbb{R}^n \to \mathbb{R}^n$ es invertible

 $\implies \exists U \subset A \text{ abierto } y \; \exists V \text{ abierto en } \mathbb{R}^n \text{ tales que } a \in U, \; f(a) \in V \; y \; f|_U : U \to V \text{ es biyectiva, } y \text{ por tanto existe la inversa de la función } g = (f|_U)^{-1} : V \to U \text{ es de clase 1 } y \text{ además:}$

$$Dg(f(a)) = (Df(a))^{-1}$$

Además, decir que Df(a) es invertible es lo mismo que decir que $det(Jf(a)) \neq 0$ Y decir que $Dg(f(a)) = (Df(a))^{-1}$ es lo mismo que decir $Jg(f(a)) = (Jf(a))^{-1}$

9. Teorema de la función implícita

Teorema (Teorema de la función implícita). Sea $A \subset \mathbb{R}^n \times \mathbb{R}^m$ abierto y no vacío. Sea $F: A \to \mathbb{R}^n$ una función de clase 1. Fijando un $(x_0, y_0) \in A$ tal que $F(x_0, y_0) = 0$. Si:

$$\det \begin{pmatrix} \frac{\partial F_1}{\partial x_1}(x_0, y_0) & \cdots & \frac{\partial F_1}{\partial x_n}(x_0, y_0) \\ \cdots & \cdots \\ \frac{\partial F_n}{\partial x_1}(x_0, y_0) & \cdots & \frac{\partial F_n}{\partial x_n}(x_0, y_0) \end{pmatrix} \neq 0$$

Entonces, existe U un entorno abierto de x_0 en \mathbb{R}^n y también existe V un entorno abierto de y_0 en \mathbb{R}^m tal que $U \times V \subset A$ y $\forall y \in V$ $\exists ! x \in U : F(x,y) = 0$

10. Teorema de Lagrange.

Teorema. Sean $\emptyset \neq A \subset \mathbb{R}^N$ un abierto, $f \in C^1(A, \mathbb{R})$, $g_1, \ldots, g_k \in C^1(A, \mathbb{R})$ (k restricciones). Llamo $S = \{x \in A : g_1(x) = \cdots = g_k(x) = 0\}$ y supongo $1 \leq k < N$.

Sea $a \in S$ tal que f presenta un mínimo (respectivamente máximo) relativo condicionado a S. Entonces $\exists \lambda_0, \ldots, \lambda_k \in \mathbb{R}$ que verifican:

(i)
$$(\lambda_0, ..., \lambda_k) \neq (0, ..., 0), \ \lambda_0 \geq 0$$

(ii)
$$\lambda_0 \frac{\partial f}{\partial x_j}(a) + \sum_{i=1}^k \lambda_i \frac{\partial g_i}{\partial x_j} = 0 \quad \forall j = 1, \dots, N$$

Si, además r(Jg(a)) = k, donde $g = (g_1, \dots, g_k) : A \to \mathbb{R}^k$ entonces puedo escoger $\lambda_0 = 1$.

Nota. Demostraremos el teorema para el caso en el que f presente un mínimo relativo. Para la prueba con máximo en lugar de mínimo, basta aplicar el resultado a -f.

Demostración (método de penalización).

f presenta un mínimo relativo en a condicionado a S, luego

$$\exists \varepsilon_0 > 0 \text{ tal que } B(a, \varepsilon_0) \subseteq A \text{ y } f(a) \leq f(x) \ \forall x \in B(a, \varepsilon_0) \cap S$$

Paso 1

Afirmamos que $\forall \varepsilon \in (0, \varepsilon_0) \ \exists M > 0 \ \text{tal que}$

$$f(x) + |x - a|^2 + M \sum_{i=1}^{k} g_i(x)^2 > f(a) \ \forall x \text{ tal que } |x - a| = \varepsilon$$

Para probarlo, supongamos lo contrario. Entonces

$$\exists \varepsilon > 0 \ \forall M > 0 \ \exists x \in A : |x - a| = \varepsilon \ y \ f(x) + |x - a|^2 + M \sum_{i=1}^{k} g_i(x)^2 \le f(a)$$

Tomando $M = n \in \mathbb{N}$,

$$\exists x_n \in A \text{ t.q. } \begin{cases} |x_n - a| = \varepsilon \\ f(x_n) + |x_n - a|^2 + n \sum_{i=1}^k g_i(x_n)^2 \le f(a) \end{cases}$$

 $\{x_n\}$ está acotada, pues $|x_n - a| = \varepsilon \quad \forall n \in \mathbb{N}$. Luego existe $\{x_{\sigma(n)}\}$ sucesión parcial de $\{x_n\}$ tal que $\{x_{\sigma(n)}\} \to x^*$, y se verifica que $|x^* - a| = \varepsilon \ (|x^* - a| = \lim |x_{\sigma(n)} - a| = \varepsilon)$.

Reescribiendo tenemos que

$$f(x_n) + |x_n - a|^2 - f(a) \le -n \sum_{i=1}^k g_i(x_n)^2$$
 (1)

Dividiendo por -n y tomando para cada n $\sigma(n)$:

$$\frac{f(x_{\sigma}(n))}{-\sigma(n)} + \frac{\varepsilon^2}{-\sigma(n)} - \frac{f(a)}{-\sigma(n)} \ge \sum_{i=1}^k g_i(x_{\sigma(n)})^2$$

Y tomando límites:

$$0 \ge \sum_{i=1}^{k} g_i(x^*) \implies g_i(x^*) = 0 \quad \forall i = 1, \dots, k \implies x^* \in S$$

Es decir, $x^* \in B(a, \varepsilon_0) \cap S \implies f(x^*) \ge f(a)$ (*). Sabemos que

$$f(x_{\sigma(n)}) \le f(a) - \varepsilon^2 - \underbrace{n \sum_{i=1}^k g_i(x_{\sigma(n)})^2}_{\ge 0 \text{ por } (1)}$$

Luego,

$$f(x_{\sigma(n)}) \le f(a) - \varepsilon^2 \implies f(x^*) \le f(a) - \varepsilon^2 < f(a)$$

lo cual es una contradicción con (*), por lo que queda probado el paso 1.

Paso 2

Veamos que $\forall \varepsilon \in (0, \varepsilon_0) \ \exists x^{\varepsilon} \in A$ que verifica que $|x - a| < \varepsilon \ y \ \exists (\lambda_0^{\varepsilon}, \dots, \lambda_k^{\varepsilon}) \in \mathbb{R}^{k+1}$ tal que

$$\begin{cases} |(\lambda_0^{\varepsilon}, \dots, \lambda_k^{\varepsilon})| = 1 \\ \lambda_0^{\varepsilon} \left[\frac{\partial f}{\partial x_j}(x^{\varepsilon}) + 2(x_j^{\varepsilon} - a_j) \right] + \sum_{i=1}^k \lambda_i^{\varepsilon} \frac{\partial g_i}{\partial x_j}(x^{\varepsilon}) = 0 \quad \forall j = 1, \dots, N \end{cases}$$

Recordemos: $f(a) = f(a) + |a - a|^2 + M \sum_{i=1}^{k} g_i(a)^2$ (porque $a \in S$).

Definimos $F(x) := f(x) + |x - a|^2 + M \sum_{i=1}^k g_i(x)^2 \in \mathcal{C}^1$. Por el teorema de Weierstrass, $\exists \min_{\bar{B}(a,\varepsilon)} F \implies \exists x^{\varepsilon} \in \bar{B}(a,\varepsilon)$ tal que

$$F(x^{\varepsilon}) = \min_{\bar{B}(a,\varepsilon)} F\left(\leq \underbrace{F(a)}_{=f(a)} \underbrace{\langle F \upharpoonright_{\partial B(a,\varepsilon)} (x)}_{\text{Paso 1}} \implies x^{\varepsilon} \in B(a,\varepsilon) \text{ (es interior)} \right)$$

Por tanto x^{ε} es un mínimo relativo de F en $B(a, \varepsilon)$, que es un abierto, luego

$$\frac{\partial F}{\partial x_i}(x^{\varepsilon}) = 0 < \forall j = 1, \dots, N$$

Y vemos que por el paso 1, además:

$$\left[\frac{\partial f}{\partial x_j}(x^{\varepsilon}) + 2(x_j^{\varepsilon} - a_j)\right] + \sum_{i=1}^k M2g_i(x^{\varepsilon}) \frac{\partial g_i}{\partial x_j}(x^{\varepsilon}) = 0 \quad \forall j = 1, \dots, N$$

Ahora ajustamos las constantes, dividiendo por el módulo del vector de los candidatos a

$$\lambda_i$$
, que es $\sqrt{\frac{1}{\lambda_0} + \sum_{i=1}^k 4M^2 g_i(x^{\varepsilon})^2} (\lambda_i \text{ son los candidatos}).$

$$\frac{1}{\sqrt{1+\sum_{i=1}^{k}4M^{2}g_{i}(x^{\varepsilon})^{2}}}\left(\frac{\partial f}{\partial x_{j}}(x^{\varepsilon})+2(x_{j}^{\varepsilon}-a_{j})\right)+\sum_{i=1}^{k}\frac{M2g_{i}(x^{\varepsilon})}{\sqrt{1+\sum_{i=1}^{k}4M^{2}g_{i}(x^{\varepsilon})^{2}}}\frac{\partial g_{i}}{\partial x_{j}}(x^{\varepsilon})=0 \quad \forall j=1,\ldots,N$$

Ahora, escogemos $\lambda_0^{\varepsilon} = \frac{1}{\sqrt{1 + \sum_{i=1}^k 4M^2 g_i(x^{\varepsilon})^2}}, \ \lambda_i^{\varepsilon} = \frac{M2g_i(x^{\varepsilon})}{\sqrt{1 + \sum_{i=1}^k 4M^2 g_i(x^{\varepsilon})^2}} \quad \forall i = 1, \dots, k \text{ y se verifica que } |(\lambda_0^{\varepsilon}, \dots, \lambda_k^{\varepsilon})| = 1, \text{ y además } \lambda_0^{\varepsilon} > 0.$

Conclusión.

Escojo $\varepsilon = \frac{\varepsilon_0}{n}, \ n \in \mathbb{N} - \{1\} \stackrel{\text{Paso } 2}{\Longrightarrow} \exists (\lambda_0^n, \dots, \lambda_k^n) \text{ tales que}$

(i)
$$|x^n - a| < \frac{\varepsilon_0}{n}$$

(ii)
$$|(\lambda_0^n, \dots, \lambda_k^n)| = 1, \ \lambda_0^n > 0$$

(iii)
$$\lambda_0^n \left[\frac{\partial f}{\partial x_j}(x^n) + 2(x_j^n - a_j) \right] + \sum_{i=1}^k \lambda_i^n \frac{\partial g_i}{\partial x_j}(x^n) = 0 \quad \forall j = 1, \dots, N$$

Ahora, por (i), $\{x^n\} \to a$. En (ii) tenemos una sucesión acotada de vectores $\exists \{(\lambda_0^{\sigma(n)}, \dots, \lambda_k^{\sigma(n)})\} \to (\lambda_0, \dots, \lambda_k)$ con módulo 1 y $\lambda_0 \ge 0$.

En (iii) reescribo sustituyendo n por $\sigma(n)$:

$$\lambda_0^{\sigma(n)} \left[\frac{\partial f}{\partial x_j} (x^{\sigma(n)}) + 2(x_j^{\sigma(n)} - a_j) \right] + \sum_{i=1}^k \lambda_i^{\sigma(n)} \frac{\partial g_i}{\partial x_j} (x^{\sigma(n)}) = 0 \quad \forall j = 1, \dots, N$$

Y tomando límites:

$$\lambda_0 \left[\frac{\partial f}{\partial x_j}(a) + 0 \right] + \sum_{i=1}^k \lambda_i \frac{\partial g_i}{\partial x_j}(a) = 0 \quad \forall j = 1, \dots, N$$

Donde $(\lambda_0, \dots, \lambda_k) \neq (0, \dots, 0)$, porque $|(\lambda_0, \dots, \lambda_k)| = 1$. Queda probada la primera afirmación del teorema.