Feuille d'exercices 26 : Déterminants

1 Déterminant d'une matrice carrée

Exercice 1. Calculer le déterminant des matrices $A = \begin{pmatrix} 0 & -1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 8 \end{pmatrix}$.

Exercice 2. Soit $x \in \mathbb{R}$, on considère le déterminant suivant :

$$D(x) = \begin{vmatrix} 1 & x^2 - 3 & -1 \\ 2 & 2 & -2 \\ 3 & 3 & -x^2 + 6 \end{vmatrix}.$$

- 1. Donner quatre racines évidentes de D.
- 2. Montrer que D est une fonction polynomiale dont on déterminera le degré.
- 3. En déduire une factorisation de D(x).

Exercice 3. Calculer le déterminant de la matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ où :

$$\forall i, j \in [1, n], a_{i,j} = \min(i, j).$$

Exercice 4. Soient $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n \in \mathbb{K}$. Calculer :

$$\begin{vmatrix} a_1 & a_2 & \dots & a_n \\ a_1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_2 \\ a_1 & \dots & a_1 & a_1 \end{vmatrix}.$$

Exercice 5. Pour tout $n \in \mathbb{N}$ et $p \geq 2$, on note $\Delta_{n,p}$ le déterminant d'ordre p suivant :

$$\Delta_{n,p} = \begin{vmatrix} 1 & \binom{n}{1} & \dots & \binom{n}{p-1} \\ 1 & \binom{n+1}{1} & \dots & \binom{n+1}{p-1} \\ \vdots & \vdots & & \vdots \\ 1 & \binom{n+p-1}{1} & \dots & \binom{n+p-1}{p-1} \end{vmatrix}$$

où l'on a posé : $\forall k \in \mathbb{N}^*, \ \binom{0}{k} = 0.$

Montrer, en effectuant des opérations sur les colonnes que pour $p \in \mathbb{N}^*$, $n \in \mathbb{N}$, $\Delta_{n,p} = \Delta_{n+1,p}$. En déduire la valeur de $\Delta_{n,p}$.

Exercice 6. Soit $n \geq 2$. Soit $a \in \mathbb{R}$. On pose $M_n(a) = \begin{pmatrix} a & 1 & \dots & 1 & 1 \\ 1 & a & \dots & 1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & \dots & a & 1 \\ 1 & 1 & \dots & 1 & a \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}) \text{ et } \Delta_n(a) = \det(M_n(a)).$

- 1. Calculer $\Delta_n(a)$.
- 2. Déterminer une condition nécessaire et suffisante sur a pour que la matrice $M_n(a)$ soit inversible.

Exercice 7. Soit $n \ge 3$. Soient $a_1, \ldots, a_n \in \mathbb{R}$. Calculer $\begin{vmatrix} \cos(a_1 + a_1) & \cos(a_1 + a_2) & \ldots & \cos(a_1 + a_n) \\ \cos(a_2 + a_1) & \cos(a_2 + a_2) & \ldots & \cos(a_2 + a_n) \\ \vdots & & \vdots & & \vdots \\ \cos(a_n + a_1) & \cos(a_n + a_2) & \ldots & \cos(a_n + a_n) \end{vmatrix}$.

Exercice 8. Soient $n \in \mathbb{N}^*$, soient $A \in GL_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$.

Montrer qu'il existe $\varepsilon > 0$ tel que :

$$\forall x \in \mathbb{R}, |x| < \varepsilon \Rightarrow A + xB \in GL_n(\mathbb{R}).$$

Exercice 9. Soient $n \in \mathbb{N}^*$, et $A \in \mathcal{M}_n(\mathbb{R})$ une matrice antisymétrique. Montrer que si n est impair, la matrice A n'est pas inversible.

Exercice 10. Déterminer les déterminants de :

1.
$$\begin{pmatrix} 2 & 1 & 1 \\ 0 & 5 & -2 \\ 1 & -3 & 4 \end{pmatrix}$$
 2.
$$\begin{pmatrix} 5 & 0 & -2 \\ 1 & 2 & 1 \\ -3 & 1 & 4 \end{pmatrix}$$

Exercice 11. Soit $a,b,c\in\mathbb{R}$. Déterminer les déterminants de :

1.
$$\begin{pmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{pmatrix}$$
 2. $\begin{pmatrix} 1 & 1 & 1 \\ a+b & b+c & a+c \\ ab & bc & ca \end{pmatrix}$

Exercice 12. Déterminer les $\lambda \in \mathbb{C}$ pour lesquels la matrice $M(\lambda)$ est inversible, où :

$$M(\lambda) = \begin{pmatrix} 3 - \lambda & -1 & 1 \\ 7 & -5 - \lambda & 1 \\ 6 & -6 & 2 - \lambda \end{pmatrix}.$$

Exercice 13. Soit $n \in \mathbb{N}^*$ et soit $a, b \in \mathbb{K}$. Calculer $D_n = \det(M_n)$ où $M_n = (m_{i,j})_{i,j \in [1,n]} \in \mathcal{M}_n(\mathbb{K})$ vérifie :

$$\forall i, j \in [\![1,n]\!], \ m_{i,j} = \left\{ \begin{array}{ll} a+b & \text{si } i=j \\ a & \text{si } j=i+1 \\ b & \text{si } i=j+1 \\ 0 & \text{sinon.} \end{array} \right.$$

Exercice 14. Soient $a_1, \ldots, a_n \in \mathbb{K}$. Montrer que :

$$V(a_1,..a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i).$$

Ce déterminant est appelé déterminant de Vandermonde.

Exercice 15.

Soit $n \geq 2$. On pose :

$$M_n = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & -1 \\ 1 & \dots & \dots & \dots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

On pose $\Delta_n = \det(M_n)$.

Déterminer une relation de récurrence entre Δ_n et Δ_{n+1} et en déduire la valeur de Δ_n en fonction de n.

Exercice 16. Soient $a, b \in \mathbb{R}$. Soit $n \in \mathbb{N}^*$, soit $M_n \in \mathcal{M}_{2n}(\mathbb{R})$ telle que :

$$M_n = \begin{pmatrix} a & 0 & \dots & \dots & 0 & b \\ 0 & a & 0 & 0 & b & 0 \\ \vdots & 0 & a & b & \vdots & 0 \\ \vdots & 0 & b & a & \vdots & \vdots \\ 0 & b & 0 & 0 & a & 0 \\ b & 0 & \dots & \dots & 0 & a \end{pmatrix}$$

Montrer que :

$$\det(M_n) = (a^2 - b^2)^n.$$

Exercice 17. Calculer det A où $A = (|i-j|)_{i,j \in [1,n]}$.

Exercice 18 (Déterminant de Van der Monde). Soient $a_1, \ldots, a_n \in \mathbb{K}$. On note :

$$V(a_1, \dots, a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{vmatrix}.$$

On se propose de calculer ce déterminant d'une autre manière qu'à l'exercice 14. Soit $x \in \mathbb{R}$, considérons :

$$V(a_1, \dots, a_{n-1}, x) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \dots & a_{n-1}^{n-1} \\ 1 & x & x^2 & \dots & x^{n-1} \end{vmatrix}$$

- 1. Justifier que $P: x \mapsto V(a_1, \ldots, x)$ est une fonction polynomiale
- 2. Déterminer la factorisation de P(X) dans $\mathbb{K}[X]$.
- 3. Conclure.

Exercice 19. Soit $n \in \mathbb{N}^*$, et $a_1, ..., a_n \in \mathbb{C}$.

Le déterminant $\begin{vmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ a_n & a_1 & a_2 & \dots & a_{n-1} \\ & \ddots & \ddots & & & \\ & a_2 & a_3 & \dots & a_n & a_1 \\ L'objectif de l'evergice est de calculer un te$

est appelé déterminant circulant.

L'objectif de l'exercice est de calculer un tel déterminant.

On pose : $\omega = e^{i\frac{2\pi}{n}}$.

On note M la matrice associée au déterminant précédent, et :

$$U = \begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ 1 & \omega & \dots & \dots & \omega^{n-1} \\ 1 & \omega^2 & \dots & \dots & \omega^{2(n-1)} \\ \vdots & \vdots & & & \vdots \\ 1 & \omega^{n-1} & \dots & \dots & (\omega^{n-1})^{n-1} \end{pmatrix}$$

- 1. Donner la valeur de det(U), et en déduire que U est inversible.
- 2. Former soigneusement le produit matriciel MU. En observant les colonnes de MU, donner la valeur de det(MU) en fonction de det(U). Indication : Pour tout p ∈ [1,n], on note [MU]_p la p-ème colonne de MU et U_p la p-ème colonne de U. Montrer que pour tout p ∈ [1,n], il existe α_p ∈ ℂ tel que [MU]_p = αU_p (on déterminera la valeur de α_p). Utiliser ensuite la linéarité par rapport à chacune des colonnes du déterminant pour exprimer det(MU) en fonction de det(U).
- 3. En déduire la formule $det(M) = \prod_{k=0}^{n-1} \left(a_1 + \omega^k a_2 + \dots + \omega^{k(n-1)} a_n \right)$.

2 Déterminant d'une famille de vecteurs

Exercice 20. Soient $P_1 = 1 + X - X^2$, $P_2 = 3 - X + 5X^2$ et $P_3 = -1 + 2X + 3X^2$. La famille (P_1, P_2, P_3) est-elle une base de $\mathbb{R}_2[X]$?

Exercice 21. Soient $e_1 = (1 + i, 1, i)$, $e_2 = (i, -1, 1 - i)$, $e_3 = (-2 + i, 0, -i)$. La famille (e_1, e_2, e_3) est-elle une base de \mathbb{C}^3 ?

Exercice 22. Soit $u_1 = (1, 2, 3)$ et $u_2 = (1, 1, 1)$ deux vecteurs de \mathbb{R}^3 . On note $\mathcal{P} = \text{Vect}(u_1, u_2)$. Soit $u = (x, y, z) \in \mathbb{R}^3$. Prouver que $u \in \mathcal{P}$ si et seulement si x - 2y + z = 0.

Exercice 23. Soient $(z_0, z_1, ..., z_n)$ n+1 nombres complexes 2 à 2 distincts. Montrer que la famille $((X-z_0)^n, (X-z_1)^n, ..., (X-z_n)^n)$ est une base de $\mathbb{C}_n[X]$.

3 Déterminant d'un endomorphisme

Exercice 24. Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$. Quelle sont les valeurs possibles pour le déterminant de $f \in \mathcal{L}(E)$ vérifiant $f^3 + 2f = 0$?

Exercice 25. Soient E un \mathbb{K} -espace vectoriel de dimension finie, et f un endomorphisme de E tel que : $f^2 = -id_E$. Montrer que E est de dimension paire.

Exercice 26.

Soit f l'endomorphisme de \mathbb{R}^4 canoniquement associé à :

$$A = \frac{1}{2} \begin{pmatrix} 5 & -3 & 3 & -3 \\ -1 & 3 & 1 & -1 \\ 1 & -1 & 5 & 1 \\ -1 & 1 & -1 & 7 \end{pmatrix}.$$

- 1. On pose $u_1 = (1, 1, 0, 0)$, $u_2 = (0, 1, 1, 0)$, $u_3 = (0, 0, 1, 1)$ et $u_4 = (-1, 0, 0, 1)$. Montrer que $\mathcal{B} = (u_1, u_2, u_3, u_4)$ est une base de \mathbb{R}^4 .
- 2. Déterminer $B = Mat_{\mathcal{B}}(f)$.
- 3. Déterminer $\det B$, $\det f$ et $\det A$.

Exercice 27. Soit φ l'application qui, à tout polynôme réel P de degré inférieur ou égal à 2, associe Q défini par :

$$\forall x \in \mathbb{R}, \ Q(x) = \int_{x}^{x+1} P(t)dt.$$

Montrer que $\varphi \in \mathcal{L}(\mathbb{R}_2[X])$ et calculer $\det(\varphi)$.

Exercice 28. Soit $A \in \mathcal{M}_2(\mathbb{K})$. Montrer que l'application :

$$u_A: \mathcal{M}_2(\mathbb{K}) \to \mathcal{M}_2(\mathbb{K}), \quad M \mapsto AM$$

est un endomorphisme de $\mathcal{M}_2(\mathbb{K})$. Montrer que $\det(u_A) = (\det(A))^2$.