1.判断题

1.1

 $A = \{1\}$, $B = \emptyset$, $C = \{2\}$

(2) 为真,证明如下: 任取 $\langle x, y \rangle$, $\langle x, y \rangle \in A \times (B \cap C) \Leftrightarrow x \in A \land y \in B \cap C$ $\Leftrightarrow x \in A \land y \in B \land y \in C \Leftrightarrow (x \in A \land y \in B) \land (x \in A \land y \in C)$ $\Leftrightarrow \langle x, y \rangle \in A \times B \land \langle x, y \rangle \in A \times C \Leftrightarrow \langle x, y \rangle \in (A \times B) \cap (A \times C)$

- (3) 为真,令 A=Ø即可.
- (4) 为假,反例如下: $A = \emptyset$.

1.2

- (2) R 仅具有反自反性和对称性.
- (3) R 仅具有自反性和对称性.
- (4) R 仅具有反自反性和反对称性.
- (5) R 仅具有对称性.

3. 简答题

3.1

- 4.23 (1) 关系图如图 4.6 所示.
- (2) 是等价关系. 等价类是 $[1]=[3]=[5]=\{1,3,5\}$, $[2]=[4]=\{2,4\}$.

3.2

. B 的上界为 12,最小上界也是 12;B 的下界为 1,最大下界也是 1. $\forall \langle a,b \rangle \in A \times B$, $aRa \land bSb \Rightarrow \langle a,b \rangle T \langle a,b \rangle$ $T \neq b \in B$

4. 证明题

4.1 和 4.2

4.3 (1) 任取 $\langle x, y \rangle$,则 $\langle x, y \rangle \in A \times C \Leftrightarrow x \in A \land y \in C \Rightarrow x \in B \land y \in D \Leftrightarrow \langle x, y \rangle \in B \times D$ (2) 不正确. 反例: $A = \emptyset$, $B = D = \{1\}$, $C = \{2\}$.

4.3

42. $\forall x, x \in A \Rightarrow \langle x, x \rangle \in R \Rightarrow \langle x, x \rangle \in R \land \langle x, x \rangle \in R \Rightarrow \langle x, x \rangle \in T$, T 是自反的. $\forall x, y \in A$, $\langle x, y \rangle \in T \Leftrightarrow \langle x, y \rangle \in R \land \langle y, x \rangle \in R$ $\Rightarrow \langle y, x \rangle \in R \land \langle x, y \rangle \in R \Rightarrow \langle y, x \rangle \in T$ T 是对称的. $\forall x, y, z \in A, \langle x, y \rangle \in T \land \langle y, z \rangle \in T$ $\Leftrightarrow \langle x, y \rangle \in R \land \langle y, x \rangle \in R \land \langle y, z \rangle \in R \land \langle z, y \rangle \in R$ $\Leftrightarrow \langle x, y \rangle \in R \land \langle y, z \rangle \in R \land \langle z, y \rangle \in R \land \langle y, x \rangle \in R$ $\Leftrightarrow \langle x, z \rangle \in R \land \langle z, x \rangle \in R \Rightarrow \langle x, z \rangle \in T$ T 是传递的.

4.4

9. (1) $\forall x, x \in A \Rightarrow xRx \Leftrightarrow xSx, S$ 是自反的. $\forall x, y \in A, xSy \land ySx \Leftrightarrow yRx \land xRy \Rightarrow x = y, S$ 是反对称的. $\forall x, y, z \in A, xSy \land ySz \Leftrightarrow yRx \land zRy \Rightarrow zRy \land yRx \Rightarrow zRx \Rightarrow xSz, S$ 是传递的.