Ngày: 19/10/2021

LUYỆN TẬP MỘT SỐ KIẾN THỨC VỀ PHÂN LOẠI HỆ THỐNG DỰA TRÊN ĐÁP ỨNG XUNG, BIỂU DIỄN HỆ THỐNG DỰA TRÊN PHƯƠNG TRÌNH VI PHÂN/SAI PHÂN, SƠ ĐỒ KHỐI

Phân loại hệ thống dựa trên quan hệ vào/ra

<u>Bài 1</u>: Bảng sau chứa quan hệ vào/ra của một số hệ thống tương tự và rời rạc, hãy trả lời có/không vào các đặc tính tương ứng, không xét các ô gạch chéo.

	Properties					
y(t), y[n]	Memoryless	Linear	Time-Invariant	Causal	Invertible	Stable
$\mathbf{(a)} \ (2 + \sin t)x(t)$						
(b) $x(2t)$						
$(\mathbf{c}) \sum_{k=-\infty}^{\infty} x[k]$						
$(\mathbf{d}) \sum_{k=-\infty}^{n} x[k]$						
$(\mathbf{e}) \frac{dx(t)}{dt}$						
(f) $\max\{x[n], x[n-1] $ $\ldots, x[-\infty]\}$,					

Bài 2: Cho hệ thống:

Với

H:
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$
 (an integrator),
G: $y(t) = x(2t)$,

- a) Xác định H-1, G-1
- b) Xác định F⁻¹ theo H⁻¹ và G⁻¹

Bài 3: Cho hệ thống tuyến tính với lối vào và lối ra tương ứng như sau:

Output y[n]

Cho tín hiệu lối vào hệ thống:

- a) Biểu diễn $x_4(n)$ dưới dạng tổ hợp tuyến tính của $x_1(n), x_2(n)$ và $x_3(n)$
- b) Sử dụng tính chất tuyến tính của hệ thống, xác định tín hiệu lối ra $y_4(n)$ tương ứng với tín hiệu vào $x_4(n)$.
- c) Từ các cặp lối vào lối ra, xác định hệ thống là bất biến hay không?

<u>Bài 4</u>: Xác định lối ra y(n) hệ thống có tín hiệu lối vào x(n) và đáp ứng xung h(n) trong hai trường hợp sau:

Bài 5: Xác định lối ra y(t) hệ thống có tín hiệu lối vào x(t) và đáp ứng xung h(t) trong ba trường hợp sau:

b)

h(t)

c)

h(t)

Bài 6: Cho hệ thống tuyến tính bất biến, lối vào x(n), đáp ứng xung h(n).

a) Tính và phác họa đáp ứng của hệ thống (lối ra) khi $x(n) = \delta(n-n_0)$ với $n_0 > 0$ và $h(n) = \left(\frac{1}{2}\right)^n u(n)$

- b) Tính và phác họa đáp ứng của hệ thống (lối ra) khi x(n)=u(n) và $h(n)=\left(\frac{1}{2}\right)^nu(n)$
- c) Tính và phác họa đáp ứng của hệ thống (lối ra) khi $x(n) = \left(\frac{1}{2}\right)^n u(n)$ và h(n) = u(n) (ngược với trường hợp b)

<u>Bài 7</u>: Cho hệ thống tuyến tính bất biến có đáp ứng xung $h(t) = e^{-\frac{t}{2}}u(t)$.

a) Xác định lối ra tương ứng với các lối vào sau:

b) Tìm biểu diễn của $x_2(t)$ dưới dạng $x_1(t)$. Sử dụng tính chất tuyến tính, bất biến của hệ thống, xác định biểu diễn của $y_2(t)$ dưới dạng $y_1(t)$. Sử dụng $y_1(t)$, nghiệm lại $y_2(t)$ được tính ở phần (b) so với $y_2(t)$ được tính ở phần (a).