ecalj CMD course menu

Monday 15:00~17:00,17:20~19:20

- LECTURE1: PMT method
 How to solve one-body problem? →PMT= LAPW+LMTO
- LECTURE2: Quasiparticle self-consistent GW method theory and results until now.
 Some kinds of numerical techniques.
- Get Started!
 Install ecalj, and go through "ecalj tutorial".
 Observe how it works.

Tuesday: 9:00~17:20, Wednesday 9:00~10:30 (or to 12:10).

- · ctrl file and output.
- Numerical technique and GWinput.
- Read output (console output, data).
- · Check points (How to get reliable results?)

The PMT method: a new linearized method

PMT = APW + MTO

Muffin-tin

Takao Kotani (tottori-u)

Key point:

- 1. Iteration cycle.
- 2. eigenfunctions are expanded with APWs(augmented plane wave) and MTOs(muffin-tin orbital)

Independent particle picture and total energy

These can be obtained by the density functional theory (DFT) in LDA.

This iteration cycle until converged = total energy minimization

How to represent density and so on in computer?

How to solve it numerically?

Lists of the Full-potential methods

•KKR

•Pseudopotential method

•PAW

•LMTO
•LAPW

Linearized xxx methods

(why do we call them " linearized" method?

→from the view of "exact" APW method)

Finite basis set

Basis set (finite number of basis)

→ We assume eigenfunctions are given as:

$$\psi_p(\mathbf{r}) = \sum_j \alpha_p^j F_j(\mathbf{r}) \quad \left\{ F_j \right\} : j = 1, 2, ...N$$

Hamiltonian
$$H_{ij} = \left\langle F_i \middle| \frac{-\Delta}{2m} + V \middle| F_j \right\rangle$$
,

Overlap matrix $O_{ij} = \left\langle F_i \middle| F_j \right\rangle$

$$(H_{ij} - \varepsilon O_{ij})\alpha^j = 0$$

Finite dimension problem(as the same as LCAO/Gaussian)

How to choose the good basis?

- APW (augmented plane wave)
- MTO (muffin-tin orbital)

are the names of the basis functions. Both of them are made by "augmentation".

My conclusion:

To overcome shortcomings in APW basis and MTO basis, we should use both of <u>APW and MTO together</u>. →this means the PMT method

But wait...

What is the APW and MTO? → next page.

- •Good for localized orbitals such as Cu(3d), O(2p)
- •Not so good for extended states, surface.
- Not systematic

PMT = APW + MTO

T.K and M.van Schilfgaarde

Phys. Rev. B 81, 125117 (2010)

T.K H. Kino, and H.Akai

Supercell calculations from H2 through Kr2.

Almost automatic setting of MTOs with APWs (Energy cutoff 3~4Ry).

J. Phys. Soc. Jpn. 82, 124714, (2013).

Detailed Formulation

J. Phys. Soc. Jpn. 84, 034702 (2015)

Basis function

MT center at \mathbf{R} . Radis R.

-a basis $F_j(\mathbf{r})$ consists of -

$$F_{0i}(\mathbf{r}),$$

 $F_{0j}(\mathbf{r}), \qquad F_{1j}(\mathbf{r}), \qquad F_{2j}(\mathbf{r})$ Envelope function PW or smHankel for $|\mathbf{r}| < R$ Counter part for $|\mathbf{r}| < R$

Augmentation parts

Cutoff: $l \le l_{\max} \sim 4$, Radial-part expansion

$$F_{j}(\mathbf{r}) = F_{0j}(\mathbf{r}) + F_{1j}(\mathbf{r} - \mathbf{R}) - F_{2j}(\mathbf{r} - \mathbf{R})$$

Electron density n(r) and potential V(r) are expanded in a similar manner.

Local orbitals(Io): basis functions which are Non-zero only wihtin MTs.

e.g, see http://www.wien2k.at/lapw/index.html

This is also used together.

		ssian		
		$r_{\rm e}$ (Å)	$D_e(\text{Kcal/mol})$	$\omega_e \ (\mathrm{cm}^{-1})$
$H_2, 2S_z = 0$	PMT	0.749	104.678	4317.959
	PMT(NR)	0.750	104.764	4311.202
	GTO	0.752	104.552	4311.816
$O_2, 2S_z = 2$	PMT	1.218	143.741	1564.787
	PMT(NR)	1.218	144.984	1568.867
	GTO	1.220	-139.815	1554.249
	VASP		143.3	
$Cr_2, 2S_z = 0$	PMT	1.591	32.833	813.296
	PMT(NR)	1.589	30.191	818.483
	GTO	1.595	26.192	808.148
$Fe_2, 2S_z = 6$	PMT	1.977	57.596	397.673
	PMT(NR)	1.991	58.770	386.597
	GTO	2.012	56.902	397.228
$Cu_2, 2S_z = 0$	PMT	2.218	51.169	269.326
	PMT(NR)	2.251	48.503	254.321
	GTO	2.251	48.645	255.768

Quasiparticle self-consistent GW Takao kotani (tottori university)

- Mean field theory.What the eigenvalue means?
- GW, and QSGW method Minimum and previous results.

Mean field theory gives independent-particle picture

- · Hartree-Fock theory
- · Density functional theory

Eigenvalues and Eigenfuncitons $\{\varepsilon_i, \psi_i(\mathbf{r})\}$ are determined by minimization of $\mathbf{E}[\{\psi_i(\mathbf{r})\}, n_i]$

The minimization determines

 $n_i = 1 \text{ for } \varepsilon_i < \varepsilon_{\text{FERMI}} \quad \text{(occupied states)}$ $n_i = 0 \text{ for } \varepsilon_i > \varepsilon_{\text{FERMI}} \quad \text{(unoccupied states)}$

Janak(Koopman's) theorem

$$\frac{\partial E}{\partial n_i} = \varepsilon_i$$

GW method and QSGW method

Why QSGW?

We need good independent particle picture in order to calculate linear responses (magnetic optical, transport...). H0 (eigenvalue and eigenfunctions) are required.

- * Band gap, Effective mass
- * Relative position of levels. LUMO—HOMO, Fermi energy...

Molecule on top of metal.

(preparation) What is Green's function?

Example: Laplace eq. $\Delta \phi = \rho(\mathbf{r})$

$$\Delta \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|} = \delta(\mathbf{r} - \mathbf{r}')^{2}$$

$$G_0 = \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|} \longrightarrow$$

$$\phi(\mathbf{r}) = \int G_0(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}') d\mathbf{r}'$$

$$G_{0} = \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|} \qquad \Rightarrow \qquad \phi(\mathbf{r}) = \int G_{0}(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}') d\mathbf{r}'$$

$$H_{0} = -\frac{\nabla^{2}}{2m} + V_{\text{eff}}(\mathbf{r}, \mathbf{r}') \qquad \left(i\frac{\partial}{\partial t} - H_{0}\right) \varphi(\mathbf{r}, t) = F(\mathbf{r}, t)$$

$$\left(i\frac{\partial}{\partial t} - H_0\right)G_0 = \delta(t - t')\delta(\mathbf{r} - \mathbf{r}')$$

$$\Rightarrow$$
 $G_0 = \frac{1}{i\frac{\partial}{\partial t} - H_0} = \frac{1}{\omega - H_0}$ (note boundary condition)

Note: $G_0 = G_0$ electron + G_0 hole

Many-body perturbation theory(picture)

The many-body Hamiltonian is decomposed to

 $H=H_0$ + Vee + residual term

. H_0 is despribed by G_0

Many electrons are interacting each other. Add electrons and holes, and observe this afterwards.

Time axis

polarization

External field

27

GW is based on the "RPA total energy"

We start from
$$H_{LDA} \rightarrow \{\varepsilon_i, \psi_i(\mathbf{r})\}$$

$$E = E_{0k} + E_{0ext} + E_{H} + E_{X} + E_{C}$$

$$=\sum_{i}^{\text{occ.}}\left\langle \varphi_{i}\left|\frac{-\Delta}{2m}\right|\varphi_{i}\right\rangle +\sum_{i}^{\text{occ.}}\left\langle \varphi_{i}\left|V_{\text{ext}}(\mathbf{r})\right|\varphi_{i}\right\rangle +E_{\text{H}}+E_{\text{X}}+E_{\text{C}}$$

$$E_{i} = \frac{\partial E}{\partial n_{i}} = \left\langle \varphi_{i}(\mathbf{r}) \middle| \frac{-\Delta}{2m} + V_{\text{ext}} + V_{\text{H}} + \Sigma(\varepsilon_{i}) \middle| \varphi_{i}(\mathbf{r}) \right\rangle$$

$$= \varepsilon_{i} + \left\langle \varphi_{i}(\mathbf{r}) \middle| \left(\Sigma(\varepsilon_{i}) - V_{\text{XC}}^{\text{LDA}} \right) \middle| \varphi_{i}(\mathbf{r}) \right\rangle$$

This is one-shot GW

$$\begin{split} & \text{Historically, } E_i = \varepsilon_{\hat{\boldsymbol{i}}} + \left\langle \varphi_{\hat{\boldsymbol{i}}}(\mathbf{r}) \middle| \left(\Sigma(E_{\hat{\boldsymbol{i}}}) - V_{\text{XC}}^{\quad \text{LDA}} \right) \middle| \varphi_{\hat{\boldsymbol{i}}}(\mathbf{r}) \right\rangle, \\ & (\text{but } E_i = \varepsilon_{\hat{\boldsymbol{i}}} + \left\langle \varphi_{\hat{\boldsymbol{i}}}(\mathbf{r}) \middle| \left(\Sigma(\varepsilon_{\hat{\boldsymbol{i}}}) - V_{\text{XC}}^{\quad \text{LDA}} \right) \middle| \varphi_{\hat{\boldsymbol{i}}}(\mathbf{r}) \right\rangle \text{is better})^{28} \end{split}$$

How to determine better H_0 ?

$$E_{i} = \frac{\partial E}{\partial n_{i}} = \left\langle \varphi_{i}(\mathbf{r}) \middle| \frac{-\Delta}{2m} + V_{\text{ext}} + V_{\text{H}} + \Sigma(\varepsilon_{i}) \middle| \varphi_{i}(\mathbf{r}) \right\rangle$$

$$\frac{\delta E_{i}}{\delta \varphi_{i}} = 0 \quad \rightarrow \left(\frac{-\Delta}{2m} + V_{\text{ext}} + V_{\text{H}} + \Sigma(\varepsilon_{i}) \right) \left| \varphi_{i}(\mathbf{r}) \right\rangle = \varepsilon_{i} \left| \varphi_{i}(\mathbf{r}) \right\rangle$$

 $\Sigma(\mathbf{r}, \mathbf{r}', \omega) \rightarrow \omega$ -independent $V_{xc}(\mathbf{r}, \mathbf{r}')$

$$H_0 = \frac{-\Delta}{2m} + V_{\text{ext}} + V_{\text{H}} + V_{\text{xc}}(\mathbf{r}, \mathbf{r}') \rightarrow \Sigma(\mathbf{r}, \mathbf{r}', \omega)$$
An average procedure

 An average procedure -(not shown here)

Non-local potential term (as Fock exchange term) is important.

I. Localized electrons ← LDA+U type effect

(Onsite non-locality. self-interaction included).

It can break time-reversal symmetry → No orbital moment.

II. Extended electrons ← GW type effect for semiconductor.

Important to describe band gap. Off-site non-locality.

(required to distinguish "bonding orbital"

and "anti-bonding" orbitals.) →next page

Schematic explanation on off-site exchange

square of them are the same.

$$\langle \psi_{\text{bonding}} | V(r) | \psi_{\text{bonding}} \rangle = \langle \psi_{\text{anti-bonding}} | V(r) | \psi_{\text{anti-bonding}} \rangle.$$

→Local potential can not distinguish LUMO and HOMO.

Physics in QSGW

LDA(GGA) → homogeneous gas OK! (Physics) (chemistry) Hartree-Fock → H-atom OK!

"True results" may be between its middle;

- → Hybrid methd (B3LYP, HSE...) $\frac{1}{4} \times HF + \frac{3}{4} \times LDA$
- •Problem: the mixing ratio may be dependent on materials.

-QSGW: Instead of bare Coulmb v,

- we use "Dynamically Screened Coulom interaction W".
- W is determined self-consistently simultaneously.

Independent-particle theory where we take into account the charge fluctuation at the RPA self-consistently.

Impact ionization rate(auger process)

Fermi's Golden rult → transition rate. Sum up for all final states. Matrix element of transition is

<1,3 | electron-electron interaction | 4,2>

(Energy conservation and Momentum conservation)

summary

- Mean field theory and excitation energy LDA, Hartree-Fock and QSGW Janak theorem, finite vs.infinite system
- RPA total energy QSGW method
- Some Results
 Band gap, GaAs and Na, Cu
 NiO, Spin Wave, ZnO, LaMnO3,
 InAs (impact ionization), YH3, CuGaSe2,PdO
 - How QSGW works for atoms and molecules?
 See F.Bruneval J.Chem.Phys 136,194107(2012)