File Organization

B-Trees I

Reminder

- Final exam
 - The date for the Final has been decided:
 - Saturday, November 16th
 - -8am-10am
 - -01-2000

Project Notes

- Change your generic solver?
 - Don't forget to change your Clock and Farmer problem as well.
- Memory Management
 - Using purify
 - Add to Makefile:
 - CCC = purify CC
 - Or better yet, create a file header.mak
 - Workshop $% \left(1\right) =\left(1\right) +\left(1\right)$
- Parking Lot Problem: due Nov 11th

New plan

Today: Exam / Files 2Thursday: Files 3

· Monday: Ethics

Tuesday: Final ReviewThen we are done!

Before we start

- Multidimensional Arrays
 - C++ does support multidimensional arrays, however, using them can be troublesome.

Multidimensional Arrays

· Ways to declare

```
int **foo;  // array of pointers to int
foo = new int * [20];
for (i = 0; i < 20; i++) foo[i] = new int
[10];</pre>
```

foo[3][5] is the same as (foo[3])[5]

Must delete each foo[i] when done.

Multidimensional Arrays

- C++ does support
 - -int [20][10]
 - However, dimensions must be known at compile time.
 - Must pass at least 1 dimension when passing to functions.

Multidimensional Arrays

· Using vectors or deques

```
using namespace std;

typedef deque<int> Decker;

typedef deque<Decker> DoubleDecker;

int main (int argc, char *argv[]) {

   Decker D (10);

   DoubleDecker DD (20, D);

   DD[3][4] = 10;
```

Before we start

• Any questions

File Organization

- How to find stuff in a file
 - Improve access time by imposing a defined structure on a file
 - Database applications
 - Advanced searching strategies

Going up a level

- The OS must also:
 - Organize it's file system for maximum performance (I.e. low access time)
 - File System
- If the file is a searchable database
 - This optimization can be improved by imposing an additional structure on a file.

Terminology

- Record
 - Collection of data pertaining to one entity
 - E.g. Employee
 - Each record consists of a number of data fields.
 - Files are composed of a collection of records.
- Kev
 - Field within a record upon which a search is made

Organization Strategies

- · Sequential
- Indexed
- Hashing
- · Tree-based Organization

Recall from CS2

- · Binary Search Tree
 - Efficient storage for search / retrieval of "sortable" data.
 - Basic idea
 - Left subtree contains nodes with data less than data at node
 - Right subtree contains nodes with data greater than data at node

Binary Search Trees

• Branching can also imply ordering of node data

Binary Search Trees

- Searches using binary trees can be done in O(log n) time.
- However, to achieve this, trees must be balanced.
 - Consider:

Binary Search Trees

- Balanced trees
 - A binary tree is <u>perfectly balanced</u> if the number of nodes in the left and right subtrees is no more than 1 for each node.
 - Difficult to insert into a perfectly balanced tree and maintain it's "perfect" status
 - A binary tree is <u>height balanced</u> if the height of the left and right subtrees of every node (at each level) differs by no more than one.
 - Height balancing is easier to achieve than perfect balancing

Multiway Search Trees

- A generalization of binary search trees
- Each node has at most m children
- If a node has k children, it has k-1 keys
- The tree is ordered

Multiway Search Trees

B-trees

- A B-Tree (of order m) is a multiway search tree with:
 - All leaves at the same level
 - Each interior node has between m and m/2 nonempty children
 - Each leaf node holds between m/2 to m 1 keys
 - The root has between 2 and m non-empty children

B-Trees (order 3)

B-trees

- For simplicity we say nodes have pointers and keys.
- Since they are to used for file indexing:
 - Nodes contain key / file location pairs
 - Trees are sorted on key values.

We'll stop here

- Thursday:
 - B-Tree insertion and deletion