Esercizi svolti

- 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari AND, OR, NOT.
- a) F=X(Y+Z)

b) $F = \overline{X} + \overline{Y} \overline{Z}$

- 2. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari NOR e NOT.
- a) $F = \overline{\overline{X} + (\overline{Y} + \overline{Z})}$

b)
$$F = \overline{\overline{X} + \overline{Y}} + \overline{\overline{X} + \overline{Z}}$$

- 3. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari NAND e NOT.
- a) $F = \overline{X(\overline{Y}\overline{Z})}$ $F = \overline{X(\overline{Y}\overline{Z})} \Rightarrow F = \overline{X(\overline{\overline{Y}\overline{Z}})}$

4. Data la rete logica di figura ricavare le corrispondenti funzioni combinatorie in forma minima

5. Dimostrare per manipolazione algebrica la proprieta' del consenso T11': .

6. Dato un segnale a 4 bit (con ultimo bit di parità) indicare la tabella di verità di una rete logica che verifichi se la parità e' corretta e costruire la corrispondente mappa di Karnaugh.

Mappa di Karnaugh

Tabella di verita'

E	Χo	X_1	X_2	Р
0 1 1 0 0 1 1 0 0 1 1 0 0	X ₀ 0 1 0 1 0 1 0 1 0 1 0 1	0 0 1 1 0 0 1 1 0 0 1 1 1 0 0	X ₂ 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1
1	1	0	0	0
1	0	1	0	0
0	1	1	0	0
1	0	0	1	0
0	1	0	1	0
0	0	1	1	0
1	1	1	1	0
1	0	0	0	1
0	1	0	0	1
0	0	1	0	1
1	1	1	0	1
0	0	0	1	1
1	1	0	1	1
1	0	1	1	1
0	1	1	1 1	1

7. Full Adder: Ricavare la tabella di verità e le mappe di Karnaugh per una rete logica che effettua l'addizione ad un bit con riporto in ingresso ed in uscita.

Descrizione:

La somma tra numeri binari e' effettuata da reti logiche denominate half adder e full adder. Tali reti operano su parole ad 1 bit. Interconnettendo tra loro piu' reti si ottengono circuiti logici in grado di operare con parole ad n bit.

Half adder (mezzo sommatore) ad un bit (effettua la somma tra due parole ad i bit)

Half Adder							
aį	bi	Si	Ci				
0	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1				

Blocco funzionale e tabella di verità'

Diagramma dei tempi e mappe di Karnaugh

Full adder

(sommatore completo) ad un bit (effettua la somma tra due parole ad un bit, tiene conto del riporto precedente)

Blocco funzionale e tabella di verità'

	Full Adder								
a _i	bi	Cin _{i-1}	Souti	Couti					
0	0	0	0	0					
0	0	1	1	0					
0	1	0	1	0					
0	1	1	0	1					
1	0	0	1	0					
1	0	1	0	1					
1	1	Ó	Ó	1					
1	1	1	1	1					

Diagramma dei tempi e mappe di Karnaugh

8. Data la rete di figura ricavare la funzione logica in forma algebrica. Semplificare la funzione combinatoria.

Altro modo:

9. Semplificare per manipolazione algebrica la seguente espressione booleana.

10. Verificare che le seguenti espressioni risultano duali:

11.Ricavare la funzione logica in forma algebrica e semplificare applicando i teoremi dell'algebra booleana.

$$Y = \overline{(\overline{A+C} + \overline{A} + \overline{B})} (BC + \overline{B} \, \overline{C} + AB + \overline{A} \, \overline{B})$$

$$Y = \overline{(\overline{A+C} + \overline{A} + \overline{B})} + \overline{(BC + \overline{B} \, \overline{C} + AB + \overline{A} \, \overline{B})}$$

$$Y = \overline{(\overline{A+C})} (\overline{\overline{A} + \overline{B}}) + \overline{(BC + \overline{B} \, \overline{C})} (\overline{AB + \overline{A} \, \overline{B}})$$

$$Y = (A+C)(\overline{A} + \overline{B}) + \overline{(BC + \overline{B} \, \overline{C})} (\overline{AB + \overline{A} \, \overline{B}})$$

$$Y = (A+C)(\overline{A} + \overline{B}) + \overline{BC} \, \overline{B} \, \overline{C} \, \overline{AB} \, \overline{AB}$$

$$Y = (A+C)(\overline{A} + \overline{B}) + \overline{(B+C)} (\overline{B} + \overline{C}) (\overline{A} + \overline{B}) (\overline{A} + \overline{B})$$

$$Y = A \, \overline{A} + A \, \overline{B} + C \, \overline{A} + C \, \overline{B} + (\overline{B} + \overline{C}) (\overline{B} + \overline{C}) (\overline{A} + \overline{B}) (\overline{A} + \overline{B})$$

$$Y = A \, \overline{B} + C \, \overline{A} + C \, \overline{B} + (\overline{B} + \overline{C}) (B + C) (\overline{A} + \overline{B}) (A + B)$$

$$Y = A \, \overline{B} + C \, \overline{A} + C \, \overline{B} + (\overline{B} + \overline{C}) (B + C) (\overline{A} + \overline{B}) (A + B)$$

$$Y = A \overline{B} + C \overline{A} + C \overline{B} + (\overline{B}C + \overline{C}B)(\overline{A}B + \overline{B}A)$$

$$Y = A \overline{B} + C \overline{A} + C \overline{B} + \overline{B} C \overline{A} B + \overline{B} C \overline{B} A + \overline{C} B \overline{A} B + \overline{C} B \overline{B} A$$

$$Y = A \overline{B} + C \overline{A} + C \overline{B} + \overline{A} B \overline{B} C + A \overline{B} C + \overline{A} B \overline{C} + A B \overline{B} \overline{C}$$

$$Y = A \overline{B} + C \overline{A} + C \overline{B} + A \overline{B} C + \overline{A} B \overline{C}$$

Assorbimento 2:

$$Y = A \overline{B} + C \overline{A} + C \overline{B} + \overline{A} B \overline{C}$$

T8"
$$X + \overline{X}Y = X + Y$$

$$Y = A \overline{B} + \overline{A} (C + B \overline{C}) + C \overline{B}$$

$$T8$$
" $X(\overline{X}+Y)=XY$

$$Y = A \overline{B} + \overline{A} (C + B) + C \overline{B}$$

$$Y = A \overline{B} + \overline{A} C + \overline{A} B + C \overline{B}$$

 $Y = A \overline{B} + \overline{A} C + \overline{B} C + \overline{A} B$

T11', consenso :
$$XY + \overline{X}Z + YZ = XY + \overline{X}Z$$

$$Y = A \overline{B} + \overline{A} C + \overline{A} B$$

$$Y = A \overline{B} + \overline{A} B + \overline{A} C$$

Forma minima

 $Y = A \oplus B + \overline{A} C$