# La phylogénie des images dans les réseaux sociaux

Noé LE PHILIPPE

Équipe ICAR - William Puech

14 juin 2016

## Sommaire

- Introduction
- 2 Notre approche
- Résultats
- 4 Conclusion

Introduction Notre approche Résultats Conclusion

# Le sujet de stage

#### Le sujet

La phylogénie des images dans les réseaux sociaux

#### Définition

"La phylogenèse ou phylogénie est l'étude des relations de parenté entre êtres vivants." — Wikipedia

## Les applications

Réduire le nombre de versions de la même image pour optimiser l'espace de stockage

Suivre l'évolution et la diffusion d'images sur les réseaux sociaux

Détecter l'altération d'images

## **Définitions**

### Near-Duplicate Image (NDI)

Une image  $I_n$  est le near-duplicate [1] d'une image  $I_m$  si :

$$I_n = T(I_m), T \in \mathcal{T}$$

où  ${\mathcal T}$  est un ensemble de transformations autorisées

Dans le cas général,

$$\mathcal{T} = \{\textit{resampling}, \textit{cropping}, \textit{affine warping}, \\ \textit{color changing}, \textit{lossy compression}\}$$

mais dans le cadre du stage,  $\mathcal{T} = \{lossy\ compression\}$ 

1. joly2007content.

Introduction Notre approche Résultats Conclusion

## **Définitions**

## Image Phylogeny Tree (IPT)

C'est l'arbre retraçant la parenté des images



Introduction Notre approche Résultats Conclusion

## Image phylogeny tree



Deux parties importantes lors de la reconstruction de l'arbre phylogénétique :

Correctement identifier la racine

• Estimer au mieux l'arborescence

## Sommaire

- Introduction
- 2 Notre approche
- Résultats
- 4 Conclusion

# Matrice de parenté

#### Matrice binaire de taille $n \times n$

### Construction de l'arbre à partir de la matrice



| (0) | A rhre | do | phyl | ogénie |
|-----|--------|----|------|--------|

| -     | $I_0$ | $I_1$ | $I_2$ | $I_3$ | $I_4$ |
|-------|-------|-------|-------|-------|-------|
| $I_0$ | -     | 0     | 0     | 0     | 0     |
| $I_1$ | 0     | -     | 0     | 1     | 1     |
| $I_2$ | 1     | 1     | -     | 1     | 1     |
| $I_3$ | 0     | 0     | 0     | -     | 0     |
| $I_4$ | 0     | 0     | 0     | 0     | _     |

(b) Matrice de parenté

Introduction Notre approche Résultats Conclusion

# Notre approche

#### Marqueur

Caractéristique de l'image qui indique qu'une certaine opération a été effectuée et qui va se transmettre aux enfants

#### Fonction de négation

 $f(I_m, I_n)$  est une fonction qui pour tout couple d'images  $(I_m, I_n)$  détecte à chaque fois qu'il est présent un marqueur visible dans une image et pas dans l'autre, et donc prouve qu'il n'y a pas de relation de parenté entre  $I_m$  et  $I_n$ .

#### Théorème

Pour tout couple d'images  $(I_m, I_n)$  d'un ensemble de near-duplicates, s'il n'existe pas de marqueur prouvant que  $I_m$  n'est pas le parent de  $I_n$ , alors il y a une relation parent-enfant entre  $I_m$  et  $I_n, I_m \to I_n$ .

## Schéma de notre approche



Introduction Notre approche Résultats Conclusion

# Extraction de la période

#### Qu'est ce que la période

Delta entre chaque pic de l'autocorrélation



## Extraction de la période

| 9  | 6  | 5  | 9  | 13 | 22 | 22 | 31 |
|----|----|----|----|----|----|----|----|
| 6  | 6  | 8  | 10 | 14 | 16 | 28 | 0  |
| 8  | 7  | 9  | 13 | 20 | -1 | 0  | 0  |
| 8  | 9  | 12 | 19 | -1 | -1 | 0  | 0  |
| 10 | 12 | -1 | 31 | 30 | 0  | 0  | 0  |
| 12 | 13 | 28 | 30 | 0  | 0  | 0  | 0  |

Figure – Exemple de table de quantification retournée par l'estimation de la période,  $\widehat{q}(u, v)$ .

# Estimation du facteur de qualité : estimation primaire

### Estimation primaire

Calcul de distance entre  $\widehat{q}(u, v)$  et table(i)

#### Avantage

Donne directement  $Q_f$ 

#### Inconvénients

- Lent
- Imprécise

## Estimation du facteur de qualité : estimation primaire



## Estimation du facteur de qualité : estimation secondaire

#### Estimation secondaire

Utilisation des formules

## Avantages

- Rapide
- Précise

#### Inconvénients

 $Q_f$  est nécessaire pour calculer  $Q_f$ 

Si 
$$Q_f < 50$$
  $Q_s = 5000/Q_f$  sinon  $Q_s = 200 - (Q_f \times 2)$  (1)

$$q(u, v) = \frac{(base(u, v) \times Q_s) - 50}{100}$$
 avec  $1 \le q(u, v) \le 255$  (2)

#### Estimation des ancêtres

Comparaison des images deux à deux

Filtrage des images ne pouvant pas être un ancêtre

Décision binaire

# Points clés de notre approche

Réduction d'un problème de reconstruction d'un arbre de phylogénie à un problème de négation de parenté

Facilement extensible

## Sommaire

- Introduction
- 2 Notre approche
- Résultats
- 4 Conclusion

# Arbres complets

Une très bonne estimation du  $Q_f$ 

Des métriques proches de 100%

La précision baisse quand la taille de l'arbre augmente

# Arbres complets

| Dataset<br>Métrique                  | 15 images | 25 images | 50 images |
|--------------------------------------|-----------|-----------|-----------|
| Erreur moyenne d'estimation de $Q_f$ | 0.42      | 0.64      | 0.83      |
| Sur-estimation moyenne de $Q_f$      | 1.61      | 1.86      | 1.94      |
| Sous-estimation moyenne de $Q_f$     | 1.07      | 2.12      | 6.68      |
| roots                                | 95.83     | 88.88     | 84.72     |
| edges                                | 99.70     | 99.24     | 98.97     |
| leaves                               | 99.59     | 99.15     | 98.74     |
| ancestry                             | 99.44     | 96.88     | 96.96     |

## Arbres avec une image manquante

Mauvaise estimation de la racine

Bonne estimation du reste de l'arbre

Notre méthode ne détecte que le parent

# Arbres avec une image manquante

| Dataset<br>Métrique | 15 images | 25 images | 50 images |
|---------------------|-----------|-----------|-----------|
| roots               | 69.60     | 33.33     | 49.01     |
| edges               | 88.86     | 92.40     | 95.07     |
| leaves              | 91.30     | 93.00     | 94.72     |
| ancestry            | 78.06     | 82.22     | 88.21     |

# Arbre avec des images en couleur

Aucune adaptation de notre implémentation

Utilisation du canal de luminance

De très bons résultats

# Arbre avec des images en couleurs

| Dataset<br>Métrique                  | 15 images | 25 images | 50 images |
|--------------------------------------|-----------|-----------|-----------|
| Erreur moyenne d'estimation de $Q_f$ | 1.15      | 1.29      | 1.42      |
| Sur-estimation movenne de $Q_{\ell}$ | 1.85      | 2.70      | 2.64      |
| Sous-estimation moyenne de $Q_f$     | 2.97      | 3.79      | 4.94      |
| roots                                | 93.94     | 81.82     | 87.88     |
| edges                                | 99.35     | 98.61     | 99.38     |
| leaves                               | 99.62     | 98.66     | 99.78     |
| ancestry                             | 98.79     | 94.13     | 98.82     |

## Sommaire

- Introduction
- 2 Notre approche
- Résultats
- 4 Conclusion

## Conclusion - perspectives

Une méthode prometteuse

Trouver d'autres marqueurs

Traiter tous les cas de la compression JPEG

Ne pas se limiter à la compression

# Conclusion - perspectives

# Des questions?