

8.
$$\begin{bmatrix} 1 & 1 & 5 & 0 \\ 0 & 1 & 9 & 0 \\ 0 & 7 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 5 & 0 \\ 0 & 1 & 9 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 5 & 0 \\ 0 & 1 & 9 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -5r_3 & -5r_3 & -9r_3 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

35.
$$\begin{bmatrix} 1 & -3 & 5 & 9 \\ 0 & 2 & -3 & h \\ -3 & 5 & -9 & k \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 5 & 9 \\ 0 & 2 & -3 & h \\ 0 & -4 & 6 & k+3g \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 5 & 9 \\ 0 & 2 & -3 & h \\ 0 & 2 & -3 & h \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 5 & 9 \\ 0 & 2 & -3 & h \\ 0 & 0 & 2 & -3 & h \end{bmatrix} \xrightarrow{REF.}$$

$$\begin{bmatrix} 1 & -3 & 5 & 9 \\ 0 & 2 & -3 & h \\ 0 & 0 & 0 & k+3g + 2h \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 5 & 9 \\ 0 & 2 & -3 & h \\ 0 & 0 & 0 & k+3g + 2h \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 5 & 9 \\ 0 & 2 & -3 & h \\ 0 & 0 & 0 & k+3g + 2h \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 5 & 9 \\ 0 & 2 & -3 & h \\ 0$$

2.	a) [1 1 0 1]
	All leading nonzero terms are 1'5 & have no other non-zero terms above them
	b) [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	All leading non zerot terms are 1's & have no other non-zero terms above thou
	() [1 0 0 0] 1 0 0 0 — NOT even REF 0 [1 0 0] 0 0 1 1]
	All leading nonzero terms are NOT strictly to the right of previous nonzero leading terms
	d) O LI I I I -> REF. 0 0 2 2 2 0 0 0 0 3 NOT RREF. 0 0 0 0 0 0

23.
$$\begin{cases} x_1 + hx_2 = 2 \\ 4x_1 + 8t_2 = R. \end{cases}$$

$$\frac{1}{4} + 8t_2 = R.$$

$$\therefore \mathcal{L} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\Rightarrow \quad \chi_1 = 2. \quad \mathcal{L} \quad 0 = 0.$$
Hence, χ_2 is a free variable

have

h=2.

thus

2=8

TRFINITE SOLUTIONS

If each column is a variable / inknown, and each now corresponds to an equation 41 represented by the Augmented matrix $A = \begin{bmatrix} a_{21} & a_{22} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{mn} & b_{m} \end{bmatrix}$ it has n co-efficients in each aquation.

Les mequations. a so called "undetermined system" If given that A is consistent,
the system can be either
having unique solitions.
having infintely-many solutions By definition, if the system has a unique solution there must be a RREF

where all columns of R are pivot columns. 1.e. R must only have leading non-zero entires to the right of other non-zero leading entires above it. Those leading ordines must be the only non-zon Only in thier column. $*\rightarrow$ Not a matrix for conditions in the question $q_{1}, q_{2}, q_{3} \neq 0$

There is hence I non-pivotal column where the last unknown would have to fit in, making atteast 1 variable indepens dependent & causing the system to have INFINITE SOLUTIONS atteast of one of the two have to be dependent! Herro an untetermined system, i.e. a system with more equations that when way that is consistent will have

INFINITELY MANY SOLUTIONS