

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, 5 V, and 15 V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Outputs in phase with inputs
- Logic and power ground +/- 5 V offset.
- Internal 540 ns deadtime
- Lower di/dt gate driver for better noise immunity

Description

The IRS2308/IRS23084 are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input

Packages

Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Deadtime (ns)	Ground Pins	Ton/Toff (ns)	
2106	HIN/LIN	no	none	СОМ	220/200	
21064	TIIIN/LIIN	110	none	Vss/COM		
2108	HIN/LIN	ves	Internal 540	COM	220/200	
21084	HIIN/LIIN	yes	Programmable 540 - 5000	Vss/COM	220/200	
2109	IN/SD	ves	Internal 540	COM	750/200	
21094	114/30	yes	Programmable 540 - 5000	Vss/COM	730/200	
2304	HIN/LIN	yes	Internal 100	COM	160/140	
2308	HIN/LIN	yes	Internal 540	СОМ	220/200	

is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating absolute voltage		-0.3	625	
٧s	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	v
Vcc	Low side and logic fixed supply voltage	logic fixed supply voltage		25	\ \ \
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN & LIN)		V _{SS} - 0.3	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25 °C	(8 lead PDIP)	_	1.0	10/
U ' U	Tackage power dissipation & TA = 120 0	(8 lead SOIC)	_	0.625	W
Rth, _{IA}	Thermal resistance, junction to ambient	(8 lead PDIP)	_	125	°C/W
IXIIJA	Thermal resistance, junction to ambient	(8 lead SOIC)	_	200	J 0/W
TJ	Junction temperature	_	150		
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating supply absolute voltage	V _S + 10	V _S + 20		
Vs	High side floating supply offset voltage	Note 1	600		
VHO	High side floating output voltage	Vs	V _B	V	
Vcc	Low side and logic fixed supply voltage	10	20		
V _{LO}	Low side output voltage	0	Vcc		
V _{IN}	Logic input voltage	СОМ	V _{CC}		
T _A	Ambient temperature	-40	125	°C	

Note 1: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25 °C, DT = V_{SS} unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	220	300		Vs = 0 V
toff	Turn-off propagation delay	_	200	280		V _S = 0 V or 600 V
MT	Delay matching ton - toff	_	0	46		
tr	Turn-on rise time	_	100	220		V _S = 0 V
tf	Turn-off fall time	_	35	80	ns	VS-0 V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO)	400	540	680		
MDT	Deadtime matching = DTLO-HO - DTHO-LO	_	0	60		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, DT= V_{SS} and V_{A} = 25 °C unless otherwise specified. The V_{IL} , V_{IH} , and V_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: HIN and LIN. The V_{O} , V_{O} , and V_{O} 0 parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions	
VIH	Logic "1" input voltage for HIN & LIN	2.5	_	_		10.1/100.1/	
V _{IL}	Logic "0" input voltage for HIN & LIN	_	_	0.8	V	$V_{CC} = 10 \text{ V to } 20 \text{ V}$	
V _{OH}	High level output voltage, V _{BIAS} - V _O	-	0.05	0.2	V	I _O = 2 mA	
V _{OL}	Low level output voltage, VO	-	0.02	0.1		10 = 2 IIIA	
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600 V	
I _{QBS}	Quiescent V _{BS} supply current	20	60	150	μA	V _{IN} = 0 V or 5 V	
lacc	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	VIN = 0 V 01 3 V	
I _{IN+}	Logic "1" input bias current	-	5	20		HIN = 5 V, LIN = 5 V	
I _{IN-}	Logic "0" input bias current	_	1	2	- μA	HIN = 0 V, LIN = 0 V	
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	9.8			
V _{BSUV+}	threshold	0.0	0.9	9.0			
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative going	7.4	8.2	9.0	V		
V _{BSUV} -	threshold	7.4	0.2	9.0			
Vccuvh	Hysteresis	0.3	0.7				
V _{BSUVH}	nysteresis	0.3	0.7	_			
lo	Output high chart circuit pulsed current	97	290			$V_O = 0 V$,	
I _{O+}	Output high short circuit pulsed current	97	290	_	mA	PW ≤ 10 µs	
l _{O-}	Output low short circuit pulsed current	250	600	. _	'''^	V _O = 15 V,	
10-	Caspat for offort offour pulsor outfort	200				PW ≤ 10 µs	

Functional Block Diagram

Lead Definitions

Symbol	Description
HIN	Logic input for high side gate driver output (HO), in phase
LIN	Logic input for low side gate driver output (LO), in phase
V _B	High side floating supply
НО	High side gate driver output
Vs	High side floating supply return
Vcc	Low side and logic fixed supply
LO	Low side gate driver output
COM	Low side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Deadtime Waveform Definitions

500 Turn-On Delay Time (ns) 400 Max. 300 Тур. 200 100 0 10 12 14 16 18 20 V_{BIAS} Supply Voltage (V)

Figure 4A. Turn-On Time vs. Temperature

Figure 4B. Turn-On Time vs. Supply Voltage

Figure 5A. Turn-Off Propagation Delay vs. Temperature

Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage

500 Turn-On Rise Time (ns) 100 300 Max. 300 Тур. L 0 0 0 10 12 14 16 18 20 V_{BIAS} Supply Voltage (V)

Figure 6A. Turn-On Rise Time vs. Temperature

Figure 6B. Turn-On Rise Time vs. Supply Voltage

Figure 7A. Turn-Off Fall Time vs. Temperature

Figure 7B. Turn-Off Fall Time vs. Supply Voltage

1000 800 Max. Deadtime (ns) Тур. 600 Min. 400 200 10 12 14 16 18 20 V_{BIAS} Supply Voltage (V)

Figure 8A. Deadtime vs. Temperature

Figure 8A. Deadtime vs. Supply Voltage

Figure 9B. Logic "1" Input Voltage vs. Supply Voltage

4 (2) 96 (2) 10 12 14 16 18 20 V_{BIAS} Supply Voltage (V)

Figure 10A. Logic "0" Input Voltage vs. Temperature

Figure 10A. Logic "0" Input Voltage vs. Supply Voltage

Figure 11A. High Level Output Voltage vs. Temperature

Figure 11A. High Level Output Voltage vs. Supply Voltage

Figure 12A. Low Level Output Voltage vs. Temperature

Figure 12B. Low Level Output Voltage vs. Supply Voltage

Figure 13A. Offset Supply Leakage Current vs. Temperature

Figure 13A. Offset Supply Leakage Current vs. Supply Voltage

300 240 VBs Supply Current (µA) 180 120 Max. Тур 60 Min. 0 10 18 12 14 16 20 V_{BS} Supply Voltage (V)

Figure 14A. V_{BS} Supply Current vs. Temperature

Figure 14B. V_{BS} Supply Current vs. Supply Voltage

Figure 15A. V_{CC} Supply Current vs. Temperature

Figure 14B. V_{CC} Supply Current vs. Supply Voltage

50 Logic "1" Input Current (μA) 40 30 Max. 20 10 Тур. 0 10 12 14 16 18 20 V_{CC} Supply Voltage (V)

Figure 16A. Logic "1" Input Current vs. Temperature

Figure 16B. Logic "1" Input Current vs. Supply Voltage

Figure 17A. Logic "0" Input Current vs. Temperature

Figure 17B. Logic "0" Input Current vs. Supply Voltage

11 Vcc UVLO Threshold (-) (V) 10 9 Max. 8 Тур. 7 Min. 6 -50 -25 0 25 50 75 100 125 Temperature (°C)

Figure 18. V_{CC} Undervoltage Threshold (+) vs. Temperature

Figure 19. V_{CC} Undervoltage Threshold (-) vs. Temperature

Figure 20. V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 21. VBS Undervoltage Threshold (-) vs. Temperature

500 Output Source Current (mA) 400 300 200 Тур. 100 Max. 0 10 12 14 16 18 20 V_{BIAS} Supply Voltage (V)

Figure 22A. Output Source Current vs. Temperature

Figure 22B. Output Source Current vs. Supply Voltage

Figure 23A. Output Sink Current vs. Temperature

Figure 23B. Output Sink Current vs. Supply Voltage

Figure 24. Maximum V_S Negative Offset vs. Supply Voltage

Figure 25. IRS2308 vs. Frequency (IRFBC20), ${\rm R}_{\rm cate}\!\!=\!\!33\,\Omega,\,{\rm V}_{\rm CC}\!\!=\!\!15\,{\rm V}$

Figure 26. IRS2308 vs. Frequency (IRFBC30), $R_{qate}\!\!=\!\!22\,\Omega,\,V_{CC}\!\!=\!\!15\,V$

Figure 27. IRS2308 vs. Frequency (IRFBC40), $R_{\text{nate}}\!\!=\!\!15\,\Omega,\,V_{\text{CC}}\!\!=\!\!15\,V$

Figure 28. IRS2308 vs. Frequency (IRFPE50), $R_{\text{oate}} \!\!=\!\! 10\,\Omega,\, V_{\text{CC}} \!\!=\!\! 15\,\text{V}$

Figure 29. IRS2308S vs. Frequency (IRFBC20), $R_{\text{tate}} \!\!=\!\! 33\,\Omega,\, V_{\text{CC}} \!\!=\!\! 15\,\text{V}$

Figure 30. IRS2308S vs. Frequency (IRFBC30), $R_{\text{cate}} \!\!=\!\! 22\Omega, \, V_{\text{CC}} \!\!=\!\! 15 \text{ V}$

Figure 31. IRS2308S vs. Frequency (IRFBC40), $R_{\text{trate}} \!\!=\! 15\,\Omega,\, V_{\text{CC}} \!\!=\! 15\,V$

Figure 32. IRS2308S vs. Frequency (IRFPE50), R_{trate} =10 Ω , V_{CC} =15 V

Case outlines

International TOR Rectifier

IRS2308(S)PbF

Tape & Reel 8-Lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN							
	M e	tric	lm p	erial			
Code	Min	Max	Min	Max			
Α	7.90	8.10	0.311	0.318			
В	3.90	4.10	0.153	0.161			
С	11.70	12.30	0.46	0.484			
D	5.45	5.55	0.214	0.218			
E	6.30	6.50	0.248	0.255			
F	5.10	5.30	0.200	0.208			
G	1.50	n/a	0.059	n/a			
Н	1.50	1.60	0.059	0.062			

	REEL	DIMENSIONS	FOR	8SOICN
--	------	------------	-----	--------

	Metric Impe		erial	
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2308PbF 8-Lead SOIC IRS2308SPbF 8-Lead SOIC Tape & Reel IRS2308STRPbF

The SOIC-8 is MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com http://www.irf.com/>

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 6/16/2006