RFD3055LE, RFD3055LESM, RFP3055LE

Data Sheet

January 2002

11A, 60V, 0.107 Ohm, Logic Level, N-Channel Power MOSFETs

These N-Channel enhancement-mode power MOSFETs are manufactured using the latest manufacturing process technology. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits.

Formerly developmental type TA49158.

Ordering Information

PART NUMBER	PACKAGE	BRAND
RFD3055LE	TO-251AA	F3055L
RFD3055LESM	TO-252AA	F3055L
RFP3055LE	TO-220AB	FP3055LE

NOTE: When ordering, use the entire part number. Add the suffix, 9A, to obtain the TO-252 variant in tape and reel, e.g. RFD3055LESM9A.

Features

- 11A, 60V
- $r_{DS(ON)} = 0.107\Omega$
- Temperature Compensating PSPICE® Model
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-220AB

JEDEC TO-251AA

JEDEC TO-252AA

RFD3055LE, RFD3055LESM, RFP3055LE

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

RFD3055LE, RFD3055LESM,		
RFP3055LE	UNITS	
60	V	
60	V	
±16	V	
11	Α	
Refer to Peak Current Curve		
Refer to UIS Curve		
38	W	
0.25	W/oC	
-55 to 175	°C	
300	°C	
260	°C	
	RFP3055LE 60 60 ±16 11 Refer to Peak Current Curve Refer to UIS Curve 38 0.25 -55 to 175	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V		60	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		1	-	3	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 55V, V _{GS} = 0V	$V_{DS} = 55V, V_{GS} = 0V$ $V_{DS} = 50V, V_{GS} = 0V, T_{C} = 150^{\circ}C$		-	1	μΑ
		$V_{DS} = 50V, V_{GS} = 0V,$			-	250	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±16V		-	-	±100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 8A, V _{GS} = 5V (Figure 11)		-	-	0.107	Ω
Turn-On Time	ton	$V_{DD} \approx 30V, I_D = 8A,$ $V_{GS} = 4.5V, R_{GS} = 32\Omega$ (Figures 10, 18, 19)		-	-	170	ns
Turn-On Delay Time	t _d (ON)			-	8	-	ns
Rise Time	t _r			-	105	-	ns
Turn-Off Delay Time	t _d (OFF)			-	22	-	ns
Fall Time	t _f			-	39	-	ns
Turn-Off Time	tOFF			-	-	92	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 10V	$V_{DD} = 30V, I_D = 8A,$	-	9.4	11.3	nC
Gate Charge at 5V	Q _{g(5)}	V _{GS} = 0V to 5V		-	5.2	6.2	nC
Threshold Gate Charge	Q _{g(TH)}			-	0.36	0.43	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 14)		-	350	-	pF
Output Capacitance	Coss			-	105	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	23	-	pF
Thermal Resistance Junction to Case	$R_{ heta JC}$			-	-	3.94	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-220AB		-	-	62	°C/W
		TO-251AA, TO-252AA		-	-	100	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 8A		-	1.25	V
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 8A$, $dI_{SD}/dt = 100A/\mu s$		-	66	ns

NOTES:

- 2. Pulse Test: Pulse Width \leq 300ms, Duty Cycle \leq 2%.
- 3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current Capability Curve (Figure 5).

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. NORMALIZED TRANSIENT THERMAL IMPEDANCE

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

FIGURE 5. PEAK CURRENT CAPABILITY

Typical Performance Curves Unless Otherwise Specified (Continued)

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING

FIGURE 8. TRANSFER CHARACTERISTICS

FIGURE 10. SWITCHING TIME vs GATE RESISTANCE

FIGURE 7. SATURATION CHARACTERISTICS

FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 17. UNCLAMPED ENERGY WAVEFORMS

Test Circuits and Waveforms (Continued)

FIGURE 18. SWITCHING TEST CIRCUIT

FIGURE 19. RESISTIVE SWITCHING WAVEFORMS

FIGURE 20. GATE CHARGE TEST CIRCUIT

FIGURE 21. GATE CHARGE WAVEFORMS

PSPICE Electrical Model .SUBCKT RFD3055LE 2 1 3: rev 1/30/95 CA 12 8 3.9e-9 CB 15 14 4.9e-9 CIN 6 8 3.25e-10 DBODY 7 5 DBODYMOD LDRAIN DBREAK 5 11 DBREAKMOD **DPLCAP** DRAIN DPLCAP 10 5 DPLCAPMOD 10 RLDRAIN EBREAK 11 7 17 18 67.8 ≥RSLC1 **DBREAK** 51 EDS 14 8 5 8 1 RSLC2 ≥ EGS 13 8 6 8 1 **ESLC** ESG 6 10 6 8 1 11 EVTHRES 6 21 19 8 1 **EVTEMP 20 6 18 22 1** 50 DBODY RDRAIN <u>6</u> 8 **EBREAK ESG** IT 8 17 1 **EVTHRES** 16 21 19 8 **MWEAK** LDRAIN 2 5 1.0e-9 **EVTEMP LGATE** LGATE 1 9 5.42e-9 **RGATE** GATE 18 22 d₽ LSOURCE 3 7 2.57e-9 MMED 20 MSTR RLGATE MMED 16 6 8 8 MMEDMOD LSOURCE MSTRO 16 6 8 8 MSTROMOD CIN SOURCE MWEAK 16 21 8 8 MWEAKMOD 8 **RSOURCE** RBREAK 17 18 RBREAKMOD 1 **RLSOURCE** RDRAIN 50 16 RDRAINMOD 3.7e-2 ٥ S2A S1A RGATE 9 20 3.37 **RBREAK** 12 F RLDRAIN 2 5 10 15 13 8 14 13 **RLGATE 1 9 54.2 BLSOURCE 3 7 25.7** S1B RVTEMP o S2B RSLC1 5 51 RSLCMOD 1e-6 13 RSLC2 5 50 1e3 CB 19 CA IT 14 RSOURCE 8 7 RSOURCEMOD 2.50e-2 RVTHRES 22 8 RVTHRESMOD 1 VBAT 8 <u>5</u> EGS **EDS** RVTEMP 18 19 RVTEMPMOD 1 8 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD **RVTHRES** S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*30),3))} .MODEL DBODYMOD D (IS = 1.75e-13 RS = 1.75e-2 TRS1 = 1e-4 TRS2 = 5e-6 CJO = 5.9e-10 TT = 5.45e-8 N = 1.03 M = 0.6) .MODEL DBREAKMOD D (RS = 6.50e-1 TRS1 = 1.25e-4 TRS2 = 1.34e-6) .MODEL DPLCAPMOD D (CJO = 3.21e-10 IS = 1e-30 N = 10 M = 0.81) .MODEL MMEDMOD NMOS (VTO = 2.02 KP = .83 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.37) .MODEL MSTROMOD NMOS (VTO = 2.39 KP = 14 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.78 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.7 RS = 0.1)

```
.MODEL RBREAKMOD RES (TC1 = 1.06e-3 TC2 = 0)
MODEL RDRAINMOD RES (TC1 = 1.23e-2 TC2 = 2.58e-5)
.MODEL RSLCMOD RES (TC1 = 0 TC2 = 0)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -2.19e-3 TC2 = -4.97e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.6e-3 TC2 = 1e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4 VOFF= -2.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF= -4)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= 0)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF= -0.5)
```

FNDS

For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} EnSigna™ MicroFET™ TruTranslation™ QT Optoelectronics™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

RFP3055LE_Q RFP3055LE