

ShrishamraoPatil (Yadravkar) Educational & Charitable Trust's

Sharad Institute of Technology

College of Engineering, Yadrav (Ichalkaranji)

Department of Mechanical Engineering

Α

PROJECT REPORT

ON

"Experimental Investigation of Fluid Elastic Instability In Square Finned Tube Array Subjected To Air Cross Flow"

SUBMITTED BY

PRN No	StudentName
51631720181161280003	MR. RUTURAJ SUBHASH CHOUGULE
51631720181161280007	MR. VISHWAJEET BABGONDA PATIL
51631720181161280022	MR. MANTHAN SUNIL PATIL
51631720181161210100	MR. SANGRAM RAJGONDA PATIL

UNDER THE GUIDANCE OF

Mr. P. H. YADAV

ShriShamraoPatil (Yadravkar) Educational & Charitable Trust's

Sharad Institute of Technology, College of Engineering, Yadrav (Ichalkaranji)

Certificate

This is to certify that the project report entitled

"Experimental Investigation of Fluid Elastic Instability In Square Finned Tube Array Subjected To Air Cross Flow"

Is submittedby

StudentName:

MR. RUTURAJ SUBHASH CHOUGULE MR. VISHWAJEET BABGONDA PATIL MR. MANTHAN SUNIL PATIL

 $MR.\ SANGRAM\ RAJGONDA\ PATIL$

In partial fulfilment of the Project for the Bachelor of Technology has been completed under our guidance. To the best of our knowledge & belief, the matter included in it, is their genuine work.

Date:

Place: Ichalkaranji

GUIDE HOD PRINCIPAL

Mr. P.H.YADAV Dr. P. M. Bhagwat Dr.S.A. Khot

SITCOE, YADRAV SITCOE, YADRAV SITCOE, YADRAV

Acknowledgement

With a sense of regard and gratitude to our project, we would like to thank our guide Mr. P.H. Yadav for his guidance, interest and constructive suggestion during the study course. This project would not have been possible without his support and help. Wethankhimforhisvaluable and immense knowledge and timely help, which made this, project a reality. We would also like to thank our H.O.D. Dr. P. M. Bhagwat.

We express our sincere gratitude to our Principal **Dr. S.A. Khot** and our college for providing us with a platform to excel in life.

We are very thankful to those who helped us directly & indirectly to carry out this Project.

DECLARATION

We undersigned hereby declare that the project entitled "EXPERIMENTAL INVESTIGATION OF FLUID ELASTIC INSTABILITY IN SQUARE FINNED TUBE ARRAY SUBJECTED TO AIR CROSS FLOW" is original work prepared by us under the guidance of **Mr. P.H. Yadav.**

The empirical finding in this report is based on data collected by us. The matter presented in this report is not copied from any other source.

ThisworkishumblydedicatedtoDR.BABASAHEBAMBEDKARTECHNOLOGICAL UNIVERSITY during year 2020-2021 as under the subject of Final year project for the award of degree Bachelor ofTechnology.

Date:

Place: Ichalkaranji

Roll No	Student Name	Sign
51631720181161280003	MR. RUTURAJ SUBHASH CHOUGULE	
51631720181161280007	MR. VISHWAJEET BABGONDA PATIL	
5163172018116128022	MR. MANTHAN SUNIL PATIL	
51631720181161210100	MR. SANGRAM RAJGONDA PATIL	

INDEX

Sr.	No.	Content	Page No.
1.		Introduction	1
	1.1	General	1
	1.2	Relevance	4
	1.3	Objectives	5
	1.4	Methodology and Action plan	6
2.		Literature Review	7
	2.1	Present Theories and Practices	7
3.		Design and Modification In Test Setup	11
	3.1	Experimental Facility Available	11
	3.2	Experimental Setup	12
4.		Free Vibration Testing	16
	4.1	Data Acquisition System	16
	4.2	Free Vibration Analysis	18
	4.3	Determination of Damping Ratio	19
5.		Experiment in Air Cross Flow	21
	5.1	Experimental Procedure	21
	5.2	Measurement Methodology	21
6.		Result	25
7.		Conclusion And Future Scope	30
8.		References	31
9.		Appendices	32

List of Figures

Sr. No.	Fig. No.	Figure Name	Page No.
1.	3.1	Schematic of Wind Turbine	11
2.	3.2	Modification in Wind Turbine	13
3.	3.3	Tube Array Configuration	14
4.	3.4	Arrangement of tubes during the experimentation across the flow	15
5.	4.1	Setup of Data Acquisition System	16
6.	4.2	Experimental Setup For Free Vibration Testing	18
7.	4.3	Frequency spectrum of natural frequency for 3mm 9 fpi	19
8.	5.1	Frequency spectrum of forced vibration for 3mm 9 fpi	21
9.	6.1	Graph of Amplitude vs. Gap velocity for all tubes	27
10.	6.2	Graph of Amplitude Ratio vs. Reduced velocity for all tubes	28
11.	6.3	Connors instability map	29

List of Table

Sr. No.	Table no.	Table Name	Page No.
1.	3.1	Specification of Wind Turbine	11
2.	4.1	Specification of Accelerometer	17
3.	4.2	Specification of Data Acquisition System	17
4.	4.3	Specification of Tube Array	19
5.	4.4	Result of free vibration testing & logarithmic decrimental for free vibration testing	20
6.	5.1	Results of free vibration testing & logarithmic decrimental for forced vibration testing	22
7.	5.2	Results of Effective diameter and Total mass	23
8.	5.3	Results of Amplitude in mm and Amplitude ratio	23
9.	6.1	Results of Plain tube array	25
10.	6.2	Results of 3mm 3fpi tube array	25
11.	6.3	Results of 3mm 9fpi tube array	26
12.	6.4	Results of 6mm 3fpi tube array	26
13.	6.5	Results of 6mm 9fpi tube array	27
14.	6.6	Instability parameters of all tube arrays	28

Abstract

The effect of tube geometry like fin height and fin density on fluid elastic instability is examined experimentally using a normal square finned tube array with a P/D ratio 1.78. Flowinduced vibration is common cause of failure in shell and tube heat exchanger, and it may result substantial harm to the heat exchanger as well as significant financial loss. There are different mechanisms for flow induced vibration out of which fluid elastic instability and vortex shedding are the most sever due to their sudden occurrence and high amplitude vibration. Different parameters affect the tube vibration when the tube array subjected to air cross flow. In this experimentation the effect of fin height and fin density are examined for fluid elastic instability. Experimentation was performed to measure critical velocity at fluid elastic instability for plain and finned tubes for 3mm 3fpi (3mm fin height and 3mm fin density) 3mm 9fpi, 6mm 3fpi and 6mm 9fpi arrays. All this tube arrays with cantilever end condition and with a constant pitch ratio subjected to air cross flow was considered. Testing was done with gradually increasing air flow rate from 1m³/hr and increases up to 30m³/hr to obtain fluid elastic instability. The relationship between the critical velocity at fluid elastic instability and the mass damping parameter was investigated using Connor's equation. The amplitude response of vibration concerning the change in velocity shows that the addition fin height and fin density, affects the fluid elastic instability. A small peak before the occurrence of fluid elastic instability was observed. This may be due to vortex shedding which further required to be verified using the strouhal number.