

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

VALIDAÇÃO DOS CÁLCULOS E RELATÓRIOS MAC015 - Resistência dos Materias

Júlia Zoffoli Caçador 202365520B

Robert Gonçalves Vieira de Souza 202365505B

Rubia Danielle Viol 202365515B

Link para o Google Colab

Juiz de Fora, 2025

Sumário

1	Obs	ervações
2	Que	stão 1
	2.1	Cargas Pontuais e Carregamentos Retangulares
		Carregamentos Triangulares
	2.3	Carregamentos Trapezoidais
	2.4	Funç $ ilde{ ilde{a}}$ o calcular_esforcos_internos
		2.4.1 Objetivo
		2.4.2 Entradas
		2.4.3 Processamento
		2.4.4 Saídas
		2.4.5 Observações

1 Observações

Para a validação da rotina computacional gerada, foi usado o software FTool para comparar os resultados.

2 Questão 1

2.1 Cargas Pontuais e Carregamentos Retangulares

Figura 1: Estrutura Gerada.

Figura 2: Esforço Cortante obtido através do FTool

Figura 3: Momento Fletor obtido através do FTool.

Figura 4: Resultado obtido pela rotina desenvolvida.

2.2 Carregamentos Triangulares

Figura 5: Estrutura Gerada.

Figura 6: Esforço Cortante obtido através do FTool

Figura 7: Momento Fletor obtido através do FTool.

Figura 8: Resultado obtido pela rotina desenvolvida.

2.3 Carregamentos Trapezoidais

Figura 9: Estrutura Gerada.

Figura 10: Esforço Cortante obtido através do FTool

Figura 11: Momento Fletor obtido através do FTool.

Figura

12: Resultado obtido pela rotina desenvolvida.

2.4 Função calcular_esforcos_internos

2.4.1 Objetivo

A função calcular_esforcos_internos calcula os esforços internos (esforço cortante V e momento fletor M) em uma viga em função da posição x.

2.4.2 Entradas

A função recebe os seguintes parâmetros:

- x: Posição ao longo da viga onde os esforços internos serão calculados.
- lista_carregamentos_pontuais: Lista de cargas pontuais aplicadas na viga. Cada carga possui:
 - Intensidade (fy).
 - Posição de aplicação (posicao).
- lista_carregamentos_distribuidos: Lista de cargas distribuídas aplicadas na viga. Cada carga distribuída possui:
 - Tipo (Retangular, Triangular ou Trapézoidal).
 - Intervalo de aplicação (p = [a, b]).
 - Intensidade (w ou w1 e w2 para cargas triangulares/trapézoidais).
- lista_apoios: Lista de apoios da viga. Cada apoio possui:
 - Reação (fy).
 - Posição (posicao).
- solucao: Dicionário contendo as reações de apoio calculadas previamente.

2.4.3 Processamento

A função realiza os seguintes cálculos:

- Contribuição dos apoios:
 - Para cada apoio, adiciona a reação ao esforço cortante V e ao momento fletor M usando a função de Heaviside para considerar a posição.
- Contribuição das cargas pontuais:

— Para cada carga pontual, subtrai sua contribuição ao esforço cortante V e ao momento fletor M usando a função de Heaviside.

• Contribuição das cargas distribuídas:

- Para cargas retangulares:
 - * Calcula a contribuição ao esforço cortante e ao momento fletor no intervalo de aplicação.
- Para cargas triangulares ou trapezoidais:
 - * Calcula a intensidade da carga no ponto x e sua contribuição ao esforço cortante e ao momento fletor.

2.4.4 Saídas

A função retorna:

- V: Esforço cortante na posição x.
- M: Momento fletor na posição x.

2.4.5 Observações

- A função de Heaviside é utilizada para garantir que as contribuições dos esforços sejam consideradas apenas após a posição de aplicação das cargas ou reações.
- A função é flexível e suporta diferentes tipos de carregamentos distribuídos (retangulares, triangulares e trapezoidais).