December 6, 2021 CE 40-695

Time: 20 mins

Name: Std. Number:

Quiz 5 (Gaussian processes)

Questions

1. Let $\{X(t), t \in \mathbb{R}\}$ be a Gaussian process with covariance function $R_x(\tau)$, let's define the process $\{Y(t)\}$ as below:

$$Y(t) = X(t) - 0.4X(t-2)$$

- (a) (4 points) Compute covariance function for Y(t) process. Is it stationary?
- (b) (2 points) Is Y(t) a Gaussian process?
- 2. Assume that K_1 and K_2 kernels be represented as $K_i(x,y) = \Phi_i(x)^T \Phi_i(y)$ for i = 1, 2 where Φ_i is a mapping that maps input onto higher dimensional sapce. Then K_1 and K_2 are valid kernels.
 - (a) (4 points) Find Φ_3 so that we can have $K_3(x,y) = K_1(x,y).K_2(x,y) = \Phi_3(x)^T \Phi_3(y)$ (it means that multiplication of two valid kernels is a valid kernel).
 - (b) (3 points) Find Φ_4 so that we can have and $K_4(x,y) = cK_1(x,y) = \Phi_4(x)^T \Phi_4(y), c > 0$
 - (c) (7 points) Assume that we know $K_5(x,y) = K_1(x,y)^n$ is valid kernel. proof that $K(x,y) = e^{K_1(x,y)}$ is valid kernel.

(Hint: use Taylor expansion)