

Satellite Navigation Laboratory SoSe 2022 Lab6. Tracking

Young-Hee Lee

younghee.lee@tum.de

Institute for Communications and Navigation, TUM Institute of Communications and Navigation, DLR OP

Jul. 12. 2022 (Tuesday)

Recap:

- HW2 of Lab5
 - Q: Why N, not 2N?

Parameter setting for acquisition:

- The number of samples per integration interval $N = T_{CO} \cdot f_s$ [samples/interval]
- The number of bins for the code-phase offset search $m = 1023 \cdot T_c/\Delta \tau$
- The number of bins for the Doppler shift search $n=2\omega_{D,max}/\Delta\omega_D+1$, where $\omega_D=2\pi f_D$
- A: Nyquist frequency
 - Sampling frequency should be at least 2f
 - = We can sample the signals with max. fs/2 when using fs
 - Thus,
 - N is correct no matter what fs is.
 - You need to check if our signal's frequency smaller than fs/2? (if the sampling frequency is properly set)

Overview

- Acquisition
 - PRN known / Code phase offset & Doppler shift estimated

Overview

- Acquisition
 - PRN known / Code phase offset & Doppler shift estimated
- Instead of repeating acquisition,
 - Track the code phase & Doppler shift of the signals
 - Keep the errors ~ 0
 - Estimate the phase offset for Precise Point Positioning (PPP)

Tracking loop

Similar to the feedback control loop

Tracking loop

- Similar to the feedback control loop
 - Discriminator: Compute the errors using the correlations
 - Filter: Compute the control input for the plants
 - Plant: Generate the outputs (code replicas, carrier reference signals) using the parameters changed by the control input

Correlator

Assuming acquisition was successful (del-tau, del-fD ~ 0)

$$\tilde{Z} = \tilde{S} + \tilde{\eta}.$$

- The prompt correlator: $\tilde{Z}_P = \tilde{S}_P + \tilde{\eta}_P \cong \sqrt{P_{rcv}} D \exp(j\Delta\theta) R(\Delta\tau) + \tilde{\eta}_P$
- The Early correlator: $\tilde{Z}_E = \tilde{S}_E + \tilde{\eta}_E \cong \sqrt{P_{rcv}} D \exp(j\Delta\theta) R(\Delta\tau dT_c/2) + \tilde{\eta}_E$
- The Late correlator: $\tilde{Z}_L = \tilde{S}_L + \tilde{\eta}_L \cong \sqrt{P_{rcv}} D \exp(j\Delta\theta) R(\Delta\tau + dT_c/2) + \tilde{\eta}_L$

$$R(\Delta \tau) = \frac{1}{T_{CO}} \int_0^{T_{CO}} x(t - \tau) x(t - \hat{\tau}) dt.$$

Correlator

Assuming acquisition was successful (del-tau, del-fD ~ 0)

$$\tilde{Z} = \tilde{S} + \tilde{\eta}.$$

- The prompt correlator: $\tilde{Z}_P = \tilde{S}_P + \tilde{\eta}_P \cong \sqrt{P_{rcv}} D \exp(j\Delta\theta) R(\Delta\tau) + \tilde{\eta}_P$
- The Early correlator: $\tilde{Z}_E = \tilde{S}_E + \tilde{\eta}_E \cong \sqrt{P_{rcv}}D\exp(j\Delta\theta)R(\Delta\tau dT_c/2) + \tilde{\eta}_E$
- The Late correlator: $\tilde{Z}_L = \tilde{S}_L + \tilde{\eta}_L \cong \sqrt{P_{rcv}} D \exp(j\Delta\theta) R(\Delta\tau + dT_c/2) + \tilde{\eta}_L$

$$R(\Delta \tau) = \frac{1}{T_{CO}} \int_0^{T_{CO}} x(t - \tau) x(t - \hat{\tau}) dt.$$

Discriminator:

- Correlators (measurements) → Errors
- Different Disc. for DLL & PLL will be discussed

Loop filter

- Errors => Control inputs of the plants (Osc./Code gen.)
- e.g. 2nd order filter

$$F(z) = 2\zeta\omega_{n} + \frac{\omega_{n}^{2}T_{CO}z^{-1}}{1 - z^{-1}} = \frac{Y}{X}$$

$$\Leftrightarrow Y(1 - z^{-1}) = [2\zeta\omega_{n}(1 - z^{-1}) + \omega_{n}^{2}T_{CO}z^{-1}]X$$

$$\Leftrightarrow Y - z^{-1}Y = 2\zeta\omega_{n}X + (\omega_{n}^{2}T_{CO} - 2\zeta\omega_{n})z^{-1}X$$

$$\Leftrightarrow Y_{k} - Y_{k-1} = 2\zeta\omega_{n}X_{k} + (\omega_{n}^{2}T_{CO} - 2\zeta\omega_{n})X_{k-1}$$

$$\Leftrightarrow Y_{k} = 2\zeta\omega_{n}X_{k} + (\omega_{n}^{2}T_{CO} - 2\zeta\omega_{n})X_{k-1} + Y_{k-1}$$

Loop filter

- Errors => Control inputs of the plants (Osc./Code gen.)
- e.g. 2nd order filter

$$F(z) = 2\zeta\omega_{n} + \frac{\omega_{n}^{2}T_{CO}z^{-1}}{1 - z^{-1}} = \frac{Y}{X}$$

$$\Leftrightarrow Y(1 - z^{-1}) = [2\zeta\omega_{n}(1 - z^{-1}) + \omega_{n}^{2}T_{CO}z^{-1}]X$$

$$\Leftrightarrow Y - z^{-1}Y = 2\zeta\omega_{n}X + (\omega_{n}^{2}T_{CO} - 2\zeta\omega_{n})z^{-1}X$$

$$\Leftrightarrow Y_{k} - Y_{k-1} = 2\zeta\omega_{n}X_{k} + (\omega_{n}^{2}T_{CO} - 2\zeta\omega_{n})X_{k-1}$$

$$\Leftrightarrow Y_{k} = 2\zeta\omega_{n}X_{k} + (\omega_{n}^{2}T_{CO} - 2\zeta\omega_{n})X_{k-1} + Y_{k-1}$$

- Bigger ζ (blue) \to Smaller overshoot, but slower response (longer settling time)
- Wider filter bandwidth (blue) \rightarrow Shorter settling time, but lower robustness to noise

- Coherent DLL
 - The carrier phase is locked (del-theta~0)
 - Navigation bits D are known
 - => Track the changes of the code-phase offset (Control the code gen.)
 - e.g. Coherent early-minus-late discriminator

$$L_{\tau}(\Delta \tau, d) = \frac{1}{2} (I_E - I_L) + \varepsilon_{\tau}$$

$$= \frac{1}{2} \left[R \left(\Delta \tau - \frac{dT_c}{2} \right) - R \left(\Delta \tau + \frac{dT_c}{2} \right) \right] + \varepsilon_{\tau}.$$

- Coherent DLL
 - The carrier phase is locked (del-theta~0)
 - Navigation bits D are known
 - => Track the changes of the code-phase offset (Control the code gen.)
 - e.g. Coherent early-minus-late discriminator

$$L_{\tau}(\Delta \tau, d) = \frac{1}{2} (I_E - I_L) + \varepsilon_{\tau}$$

$$= \frac{1}{2} \left[R \left(\Delta \tau - \frac{dT_c}{2} \right) - R \left(\Delta \tau + \frac{dT_c}{2} \right) \right] + \varepsilon_{\tau}.$$

- HW1: Small & large d?
 - Large d (black):
 - Wide valid range
 - Can deal with more dynamics signals
 - Small d (blue):
 - More robust to the discriminator errors

HW2: How to normalize the E-L discriminator?

The normalized coherent early-late discriminator:

$$l_{\text{E-L}} = \frac{1}{2} \frac{I_{\text{E}} - I_{\text{L}}}{I_{\text{P}}}$$

Proof: Assuming $\Delta \tau \sim 0$, the early-late discriminator can be linearized as

$$L_{\text{E-L}} = \sqrt{P_{rcv}} \frac{\Delta \tau}{T_c} + \varepsilon_{\tau} = I_{\text{P}} \frac{\Delta \tau}{T_c} + \varepsilon_{\tau}.$$

Therefore, the normalized coherent early-late discriminator is

$$l_{\text{E-L}} = \frac{L_{\text{E-L}}}{I_{\text{P}}} = \frac{1}{2} \frac{I_{\text{E}} - I_{\text{L}}}{I_{\text{P}}}$$

- Non-coherent DLL
 - The carrier phase is not locked (del-theta is not ~ 0)
 - e.g. DLL discminators and their normalized versions
 - Non-coherent early-minus-late power: $\frac{1}{2} \left[(I_E^2 + Q_E^2) (I_L^2 + Q_L^2) \right]$
 - Quasi-coherent dot product power: $\frac{1}{2} \Big[(I_E I_L)I_P + (Q_E Q_L)Q_P \Big]$
 - Non-coherent early-minus-late envelope: $\frac{1}{2} \left[\sqrt{I_E^2 + Q_E^2} \sqrt{I_L^2 + Q_L^2} \right]$

$$l_{\text{E-L power}} = \frac{1}{2} \frac{(I_{\text{E}}^2 + Q_{\text{E}}^2) - (I_{\text{L}}^2 + Q_{\text{L}}^2)}{(I_{\text{E}}^2 + Q_{\text{E}}^2) + (I_{\text{L}}^2 + Q_{\text{L}}^2)} \cdot (2 - d)$$

$$l_{\text{Dot product}} = \frac{1}{4} \left[\frac{I_{\text{E}} - I_{\text{L}}}{I_{\text{P}}} + \frac{Q_{\text{E}} - Q_{\text{L}}}{Q_{\text{P}}} \right]$$

$$l_{\text{E-L envelope}} = \frac{1}{2} \frac{\sqrt{I_{\text{E}}^2 + Q_{\text{E}}^2} - \sqrt{I_{\text{L}}^2 + Q_{\text{L}}^2}}{\sqrt{I_{\text{E}}^2 + Q_{\text{E}}^2} + \sqrt{I_{\text{L}}^2 + Q_{\text{L}}^2}} \cdot (2 - d)$$

- Assuming
 - The code phase delay is locked (del-tau~0)
 - Navigation bits D are unknown
 - => Track the changes of the carrier phase (Control the oscillator)

- HW3: The properties of the PLL disc. ?
 - Data bits are unknown

- HW3: The properties of the PLL disc. ?
 - Data bits are unknown
 - => Disc. should be insensitive to the data bits
 - $=> \overline{L_{\theta}(\Delta \theta)} = L_{\theta}(\Delta \theta + n\pi), \ n \in \mathbb{Z}.$

- HW3: The properties of the PLL disc. ?
 - Data bits are unknown
 - => Disc. should be insensitive to the data bits

$$=> L_{\theta}(\Delta \theta) = L_{\theta}(\Delta \theta + n\pi), n \in \mathbb{Z}.$$

e.g. Tangent discriminator

$$L_{\rm atan} = {\rm atan} \left(Q_{\rm P}/I_{\rm P} \right)$$

$$I_{P}(\Delta \tau, \Delta \phi) = \mathcal{A} \cdot R(\Delta \tau) \cos(\Delta \theta)$$
$$Q_{P}(\Delta \tau, \Delta \phi) = \mathcal{A} \cdot R(\Delta \tau) \sin(\Delta \theta)$$

Note that we need to use **atan** instead of atan2 here

- atan(y/x): [-pi/2, +pi/2]
- atan2(y,x): close to -pi, and pi
 e.g. x=1, y=0.01
- atan(y/x)=-0.57deg
- atan(y,x) =179.43deg

• HW4: How to normalize the Costas disc. ?

$$L_{\rm IQ} = \frac{I_{\rm P} \cdot Q_{\rm P}}{I_{\rm P}^2 + Q_{\rm P}^2}.$$

- HW5: Estimate the navigation bit D using MAP
 - If DLL and PLL are locked => del-tau~0 & del-theta~0

$$=>I_{\mathrm{P}} \approx \sqrt{P_{rcv}}D + \eta_{\mathrm{I}}$$

- If the integration interval of correlation is 1ms
 - => 20 samples = 20ms = 1 bit duration
 - => Navigation bit can be estimated using MAP with 20 inphase samples

$$D^* = \operatorname*{argmax}_{D} P(D = \pm 1|I_{P}).$$

HW5: Estimate the navigation bit D using MAP

$$D^* = \operatorname*{argmax}_D P(D = \pm 1|I_P).$$

Bayesian theorem

$$\underbrace{P(D = \pm 1|I_{P})}_{\text{a posteriori}} = \underbrace{P(I_{P}|D = \pm 1)}_{\text{likelihood}} \times \underbrace{P(D = \pm 1)}_{\text{a priori}}$$

- Assuming a priori is constant, MAP \rightarrow ML

$$D^* = \underset{D}{\operatorname{argmax}} P(D = \pm 1|I_{P})$$
$$= \underset{D}{\operatorname{argmax}} P(I_{P}|D = \pm 1)$$

- HW5: Estimate the navigation bit D using MAP
 - Assuming that the noise of the inphase samples ~ Gaussian

$$P(I_{P,k}|D = \pm 1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(I_{P,k} - \sqrt{P_{rcv}}D)^2}{20^2}\right).$$

- HW5: Estimate the navigation bit D using MAP
 - Assuming that the noise of the inphase samples ~ Gaussian

$$P(I_{P,k}|D = \pm 1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(I_{P,k} - \sqrt{P_{rcv}}D)^2}{20^2}\right).$$

$$\sum_{k=1}^{20} -\frac{(I_{P,k} - \sqrt{P_{rcv}}1)^2}{20^2} \underset{D = -1}{\overset{D = +1}{\geq} \sum_{k=1}^{20}} -\frac{(I_{P,k} - \sqrt{P_{rcv}}(-1))^2}{20^2}$$

$$\sum_{k=1}^{20} I_{P,k}^2 - 2I_{P,k} + P_{rcv} \underset{D = -1}{\overset{D = +1}{\leq} \sum_{k=1}^{20}} I_{P,k}^2 + 2I_{P,k} + P_{rcv}$$

$$D = -1 \underset{k=1}{\overset{D = +1}{\leq} \sum_{k=1}^{20}} I_{P,k} + 2I_{P,k} + P_{rcv}$$

$$D = -1 \underset{k=1}{\overset{D = +1}{\leq} \sum_{k=1}^{20}} I_{P,k} \underset{k=1}{\overset{D = +1}{\leq} \sum_{k=1}^{20}} 0$$

Lab Schedule

	Tag	Datum 🔼	von 🛦	bis	Ort A T	Ereignis T	Termintyp	Info	Lerneinheit 🝸
Standardgruppe Hinweis: Auf Datum klicken, um Einzeltermin zu verschieben. In der Spalte Serie auf S klicken, um Terminserie zu verschieben.									
	Di	03.05.2022	10:00	11:00	N2409, Seminarraum (0104.02.409)	Abhaltung	fix	0	Kick-off meeting
	Di	10.05.2022	10:00	14:00	N2407B, Praktikum (0104.02.407B)	Abhaltung	fix	0	Lab1. Receiver Positioning
	Di	24.05.2022	11:30	15:30	N2407B, Praktikum (0104.02.407B)	Abhaltung	fix	0	Lab2. Satellite Position
	Di	31.05.2022	10:00	14:00	N2407B, Praktikum (0104.02.407B)	Abhaltung	fix	0	Lab3. Pseudorange Corrections
	Di	14.06.2022	10:00	14:00	N2407B, Praktikum (0104.02.407B)	Abhaltung	fix	0	Lab4. Differential Positioning
	Di	28.06.2022	10:00	14:00	N2407B, Praktikum (0104.02.407B)	Abhaltung	fix	0	Lab5. Acquisition
	Di	12.07.2022	10:00	14:00	N2407B, Praktikum (0104.02.407B)	Abhaltung	fix	0	Lab6. Tracking
-0-	Di	-1 9. 0 7. 2 0 22	1 0: 0 0—	1 4: 0 0-	N2407B, Praktikum (0104.02.407B)	-A b haltung-	-f ix — — —	-0-	Left over — — —

Final exam - Time slots

Aug. 2, Tuesday, 2022

Time	Student
09:00-09:30	Alberto Arana Ragel
09:30-10:00	Peng Xie
10:00-10:30	Break
10:30-11:00	Alvaro Pérez-Lozao Alonso
11:00-11:30	Yiming Wei
11:30-12:00	Jonathan Klesse
12:00-12:30	Break
12:30-13:00	Break
13:00-13:30	Akhil Nahar
13:30-14:00	Fahri Mert Ünsal