本试卷适应范围 2014级本科所有

南京农业大学试题纸

课程类型: 必修 试卷类型: A 2014-2015 学年 2 学期

专业 课程 高等数学(下) 班级 学号 姓名 成绩 一、填空题(每题4分,共5题,共20分) 1、若平面 5x-3y+4z+3=0 与平面 λx-3y+4z-7=0 相垂直,则 λ=2、设 $z = x^2 - y^2$,则 $\frac{\partial^2 z}{\partial x \partial y} =$ _____. 3、交换二次积分的次序 $\int_{0}^{1} dy \int_{0}^{y^{2}} f(x,y) dx =$ ______. 4、函数 $f(x,y) = 4(x-y) - x^2 - y^2$ 在_______点处取得极大值. 5、微分方程 y'' + 2y' + y = 0 的通解为 . . . 二、选择题(每题4分,共5题,共20分) 1、下列方程中,表示母线与 v 轴平行的柱面的是) (A) $y = x^2 + z^2$: (B) $x^2 + y^2 + z^2 = 2$: (C) $x = x^2 - z^2$: (D) x - y + 2z = 02、设 $z = x^y$,则 $\frac{\partial z}{\partial x}\Big|_{(e,1)} =$ $(C) \frac{1}{}$ (A) 0 (B) 1 (D) e3、设 D 是 xoy 平面上以 (0,0) ,(1,1) ,(1,-1) 为顶点的三角形区域, D_1 为 D 在第一象限 的部分,则 $\iint (x^2y + x\cos y)dxdy$ 等于 () (A) $4 \iint_{D_1} (x^2y + x\cos y) dx dy;$ (B) $2 \iint_{D_1} x^2y dx dy;$ (C) $2 \iint_{D} x\cos y dx dy$ (D) 04、下面四个选项中,对级数 $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{n}$ 的敛散性描述正确的是

A. 该级数绝对收敛 B.该级数条件收敛 C. 该级数发散 D. 无法判断敛散性

5、微分方程
$$\frac{dy}{dx}$$
 = 1 + sinx 满足初始条件 $y(0)$ = 2 的特解是 ()

A.
$$y = x + \cos x + 1$$

B.
$$y = x + \cos x + 2$$

C.
$$y = x - \cos x + 2$$

D.
$$y = x - \cos x + 3$$

三、计算题(1-7题,每题6分,第8题,8分,共50分)

1、已知
$$z = x^2 \cos y$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$;

- 2、求函数 $z = x^2 \ln(x^2 + y^2)$ 在点 $M_0(2,1)$ 处的全微分 $dz|_{M_0}$ 。
- 3、计算二重积分 $\iint_D (x+y)d\sigma$, 其中 D: $x^2 + y^2 \le 2y$;
- 4、计算二重积分 $\iint_{D}\sin(y^{2})d\sigma$, 其中 D 是由 y=x,y=1,x=0 围成的区域;
- 5、计算 $I = \iint\limits_{\Omega} z \, \mathrm{d}V$, 其中 Ω 是由旋转抛物面 $x^2 + y^2 = 2z$ 与平面 z = 2 所围成的区域;
- 6、设 \sum 为上半球面 $z = \sqrt{4 x^2 y^2} (z \ge 0)$, 则求曲面积分 $\iint_{\Sigma} (x^2 + y^2 + z^2) ds$ 。
- 7、证明曲线积分 $\int_{(1,0)}^{(2,1)} (2xy-y^4+3)dx+(x^2-4xy^3)dy$ 与路径无关,并计算积分值.
- 8、求下列曲面积分:
- (1) $I = \iint_{\Sigma} (x+1)dydz + ydzdx + dxdy$,其中 \sum : 平面x + y + z = 1在第一卦限部分,法向量指向原点:

(2)
$$I = \iint_{\Sigma} (x - y) dy dz + (x + y) dz dx + z^2 dx dy$$
, \sum : 锥面 $z = \sqrt{x^2 + y^2}$ 被 $z = 1$, $z = 2$ 所截部分的外侧。

四、证明题(每题5分,共2题,共10分)

1、已知
$$f_n(x)$$
 满足 $f'_n(x) = f_n(x) + x^{n-1}e^x$ (n 为正整数), $f_n(1) = \frac{e}{n}$, 求函数项级数

$$\sum_{n=1}^{\infty} f_n(x)$$
 的和。

2、设曲线 L 是正向圆周 $(x-a)^2 + (y-a)^2 = 1$, $\varphi(x)$ 是连续的正函数,证明:

$$\oint_{L} \frac{x}{\varphi(y)} dy - y\varphi(x) dx \ge 2\pi.$$

答案及提示:

-. 1.-5 2.0 3.
$$\int_0^1 dx \int_{\sqrt{x}}^1 f(x, y) dy$$
 4. $(-2, 2)$ 5. $(C_1 + C_2 x) e^{-x}$.

二. CBCBD

$$\equiv . 1. \frac{\partial z}{\partial x} = 2x \cos y; \frac{\partial z}{\partial y} = -x^2 \sin y; \frac{\partial^2 z}{\partial x \partial y} = -2x \sin y.$$

2.
$$dz\Big|_{M_0} = \left(4\ln 5 + \frac{16}{5}\right)dx + \frac{8}{5}dy$$
.

3.
$$\pi$$
. 4. $\frac{1}{2}(1-\cos 1)$. 5. $\frac{16\pi}{3}$.

6.
$$32\pi$$
. 7. 5. 8. (1) $-\frac{4}{3}$; (2) $-\frac{17}{6}\pi$.

$$\square. \quad (1) \quad \sum_{n=1}^{\infty} f_n(x) = e^x \ln(1-x), \quad x \in [-1, 1).$$

(2) 用格林公式, 对称性.