Mechanical systems dynamic with nonlinearities

Deadband

■ mechanical elements in transformers

$$y = \begin{vmatrix} 0 & |x| \le c \\ k(x-c) & x > c \\ k(x+c) & x < -c \end{vmatrix}$$

$$k = tg\alpha$$

Saturation zone

☐ transformers, transistors, amplifiers

$$y = \begin{vmatrix} kx & |x| \le c \\ b & x > c \\ -b & x < -c \end{vmatrix}$$

Deadband and Saturation zone

□ hydrostatic and pneumatic transformer elements

$$y = \begin{vmatrix} -b & x \le -c_2 \\ k(x+c_1) & -c_2 < x < -c_1 \\ 0 & |x| \le c_1 \\ k(x-c_1) & c_1 < x < c_2 \\ b & x \ge c_2 \end{vmatrix}$$

$$k = \frac{b}{c_2 - c_1}$$

Ideal relay

☐ discontinuous switching, delay in switching

$$y = \begin{vmatrix} b & x \ge 0 \\ -b & x < 0 \end{vmatrix}$$

Ideal relay with deadband zone

electromagnetic devices

$$y = \begin{vmatrix} 0 & |x| \le c \\ b & x > c \\ -b & x < -c \end{vmatrix}$$

ITMO UNIVERSITY

Relay with delay

discontinuous switching, delay in switching

ITMO UNIVERSITY

 χ

Relay with delay and deadband zone

discontinuous switching, delay in switching

ITSMOre than a UNIVERSITY

Backlash or dry friction

mechanical gear

GEAR TRAIN

$$y = \begin{vmatrix} k(x-c) & \dot{x} > 0 \\ k(x+c) & \dot{x} < 0 \end{vmatrix}$$

$$k = tg\alpha$$

Friction Nonlinearity

- 1. Static Friction
- 2. Dynamic Friction
- 3. Limiting Friction

The Coulomb friction force model

$$F \begin{cases} \leq \mu_s F_n & \to v = 0 \\ = -\mu_d F_n \operatorname{sgn}(v) & \to v \neq 0 \end{cases}$$

$$F_d = \mu_d F_n$$

$$F_s = \mu_s F_n$$

$$F = -F_d \frac{v}{|v|}$$

The Coulomb friction force model

$$F = -F_d - (F_s - F_d)e^{-c|v|}\operatorname{sgn}(v)$$

Benson exponential friction model

$$F = -F_d \tanh \left(\frac{v}{v_d} \right)$$

Smooth Coulomb friction model

Velocity-based friction model

ITsMOre than a UNIVERSITY

Velocity-based friction model

Karnopp friction model

ITSMOre than a UNIVERSITY

Karnopp friction model

$$F = -\sigma_0 z$$

$$\dot{z} = v \cdot \left(1 - \frac{\sigma_0 z}{F_d} \operatorname{sgn}(v) \right)^{\alpha}$$

The bristle analogy in the Dahl model

LuGre friction model

$$F = \sigma_0 z + \sigma_1 \dot{z} + \sigma_2 z$$

$$\dot{z} = v \cdot \left(1 - \frac{\sigma_0 z}{g(v)} \operatorname{sgn}(v) \right)$$

$$g(v) = F_d + (F_s - F_d)e^{-\left(\frac{v}{v_{Stribeck}}\right)^{\gamma}}$$

$$F = \left(F_d + \left(F_s - F_d\right)e^{-\left(\frac{v}{v_{Stribeck}}\right)^{\gamma}}\right) \operatorname{sgn}(v) + \sigma_2 v$$

Elasto-plastic friction model

$$F = \sigma_0 z + \sigma_1 \dot{z} + \sigma_2 z$$

$$\dot{z} = v \cdot \left(1 - \alpha (z, v) \frac{\sigma z}{g(v)} \operatorname{sgn}(v) \right)$$

ITSMOre than a UNIVERSITY

Elasto-plastic friction model $\alpha(z)$ parameter in case of $\operatorname{sgn}(v) = \operatorname{sgn}(\dot{z})$

$$\alpha(z,v) = \begin{cases} 0 \\ \frac{1}{2} \left(1 + \sin\left(\pi \frac{z - \frac{1}{2}(z_{\text{max}} + z_{ba})}{z_{\text{max}} - z_{ba}} \right) \right) \rightarrow z_{ba} \le \begin{cases} |z| < z_{ba} \\ |z| < z_{\text{max}} \\ |z| \ge z_{\text{max}} \end{cases}$$

$$z_{\text{max}} = \frac{g(v)}{\sigma_0}$$

Otherwise, if $sgn(v) \neq sgn(\dot{z})$ then $\alpha(z,v) = 0$

Stick-slip friction model

ITMO UNIVERSITY

$$F = F_{striction} + F_{sliding}$$

$$F_{striction} = -(1 - \beta)F_{s} \operatorname{sgn}(\Delta)$$

$$step(|x|, x_{0}, h_{0}, x_{1}, h_{1}) = \begin{cases} h_{0} \\ h_{0} + (h_{1} - h_{0})(\frac{x - x_{0}}{x_{1} - x_{0}}) \end{cases}$$

$(x_0, h_0, x_1, h_1) =$	
$(h_1 - h_0) \left(\frac{x - x_0}{x_1 - x_0} \right)^2 \left(3 - 2 \left(\frac{x - x_0}{x_1 - x_0} \right) \right) \longrightarrow x_0 < \begin{cases} 1 & \text{if } x = x_0 \\ 1 & \text{if } x = x_0 \end{cases}$	$x \le x_0$ $x_0 < x < x_1$ $x \ge x_1$

 x_0

State	Sliding	Stiction
v	$ v > v_t$	$0 \le v \le v_t$
β	1	$step(v , -v_t, -1, v_t, 1)$
F_{s}	0	$\operatorname{step}(F_{\mathcal{S}} , -\Delta_{\max}, -F_{\mathcal{S}}, \Delta_{\max}, F_{\mathcal{S}})$
F_d	F_d	$step(F_d , -v_t, -F_d, v_t, F_d)$
F	$F_{sliding}$	$F_{stiction} + F_{sliding}$

Behaviour of the step function $y = step(|x|, x_0, h_0, x_1, h_1)$

Gonthier friction model

$$F_{br} = \sigma_0 z + \sigma_1 \dot{z}$$

$$\dot{z} = s\dot{z}_{st} + (1-s)\dot{z}_{sl}$$

$$s = e^{-v^2/v_{Stribeck}^2}$$

$$\begin{cases} \dot{z}_{st} = v \\ \dot{z}_{sl} = \frac{1}{\sigma_1} F_c - \frac{\sigma_0}{\sigma_1} z \end{cases}$$

Model of mass block traveling on a belt and model of contact surfaces as bristles with variation of true contact area from the beginning A-A to the end B-B of dwell-time interval.

Gonthier friction model

$$F_c = F_d \cdot dir(v, v_t)$$

$$dir(v, v_t) = \begin{cases} \frac{v}{|v|} & \rightarrow |v| \ge v_t \\ \frac{v}{v_t} \left[\frac{3|v|}{2v_t} - \frac{1}{2} \left(\frac{|v|}{v_t} \right)^3 \right] \rightarrow |v| < v_t \end{cases}$$

$$F_{\text{max}} = F_d + (F_s - F_d) s_{dw}$$

$$\dot{s}_{dw} = \begin{cases} \frac{1}{\tau_{dw}} \left(s - s_{dw}\right) \rightarrow \left(s - s_{dw}\right) \geq 0 \\ \frac{1}{\tau_{br}} \left(s - s_{dw}\right) \rightarrow \left(s - s_{dw}\right) < 0 \end{cases}$$

$$) < 0 \qquad \tau_{br} = \frac{\sigma_1}{\sigma_0}$$

Gonthier friction model

$$F_{\text{max}} = -\text{sat}(F_{br}, F_{\text{max}}) - \sigma_{2}v$$

$$\text{sat}(F_{br}, F_{\text{max}}) = \begin{cases} F_{br} & \rightarrow |F_{br}| \leq F_{\text{max}} \\ \frac{F_{br}}{|F_{br}|} F_{\text{max}} & \rightarrow |F_{br}| > F_{\text{max}} \end{cases}$$

Summary of model parameters and state variables

Model	Parameters	State variable
Coulomb	F_d, v_d	
Velocity based	F_d, F_s, v_d, v_s	
Karnopp	F_d, F_s, v_d	
Stick-slip	$F_d, F_s, v_t, \Delta_{max}$	
Dahl	F_d , σ_0 , α	\boldsymbol{z}
LuGre	F_d , F_s , σ_0 , σ_1 , σ_2 , $v_{Stribeck}$, γ	\boldsymbol{z}
Elasto-plastic	F_d , F_s , σ_0 , σ_1 , σ_2 , $v_{Stribeck}$, γ , z_{ba}	\boldsymbol{z}
Gonthier	F_d , F_s , σ_0 , σ_1 , σ_2 , $v_{Stribeck}$, v_t , τ_{dw}	z, s_{dw}

ITsMOre than a UNIVERSITY

ITSMOre than a UNIVERSITY

model of friction

Frictional model recognizing the Stribeck effect

Models of friction force versus angular velocity.

(left) Static, Coulomb and viscous friction model.

(right) Negative viscous, Coulomb and viscous friction model (Stribeck).

ITMO UNIVERSITY

Typical compensation techniques for Coulomb friction and viscous damping

(a) Hysteretic effects of dry friction: contact compliance, (b) frictional memory and (c) non-reversible friction characteristic

General bearing types

ITSMOre than a UNIVERSITY

Rolling bearings and their sources of friction

$$F = F_{rf} + F_{sl} + F_{seal} + F_{drag}$$

IT;MOre than a UNIVERSITY

$$\omega_R = \omega_A \cos \varepsilon_A$$

$$\omega_B = \omega_A \sin \varepsilon_A$$

$$\varepsilon = \frac{\omega_B}{\omega_R}$$
$$\tan \varepsilon = 0$$

Kinematics of an angular contact ball bearing, in general

$$\varepsilon = \frac{\omega_B}{\omega_R}$$

Kinematics for high-speed with outer ring ball guidance in angular contact ball bearings with ceramic balls (top) compared to standard steel balls (bottom)

ITsMOre than a UNIVERSITY

Standard Bearing

ITMO UNIVERSITY

Hybrid Bearing

Schematic representation of film thickness

Two-mass wind turbine model

Wind speed profile of 20 m/s mean value

Converting transfer function to state space

$$\frac{d^{n}y}{dt^{n-1}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + ... + a_{1}\frac{dy}{dt} + a_{0}y = b_{0}u$$

X₁=y

take

X₂=y

derivative

X₃=y

X₃=y

X₄=y

X₅=y

X₇=y

X₈=y

X₈=y

X₈=y

X₈=y

(5' + 20 s² + 10 s² + 7 s + 1000) ((s) = 100. R(s)

dif. equat = fourte [t]

$$c^{4} + 20 c^{3} + 10 c^{2} + 1 c^{4} + 100 c = 100 r$$
 $x_{1} = c$
 $x_{2} = c$
 $x_{2} = c$
 $x_{3} = c = x_{3}$
 $x_{3} = c = x_{4}$
 $x_{4} = c$
 $x_{5} = c$
 $x_{7} = c$
 $x_{1} = c$
 $x_{1} = c$
 $x_{2} = c$
 $x_{3} = c$
 $x_{4} = c$
 $x_{5} = c$
 $x_{5} = c$
 $x_{5} = c$
 $x_{7} = c$
 $x_{1} = c$
 $x_{1} = c$
 $x_{2} = c$
 $x_{3} = c$
 $x_{4} = c$
 $x_{4} = c$
 $x_{5} = c$
 $x_{1} = c$
 $x_{2} = c$
 $x_{3} = c$
 $x_{4} = c$
 $x_{5} = c$
 $x_{4} = c$
 $x_{5} =$

ki.

Converting state space to transfer function

$$\overline{\chi}(s) = (s\overline{1} - \overline{A})^{-1} \overline{3}\overline{U}(s)$$

take laplace of \overline{Q}
 $\overline{V}(s) = \overline{C} \overline{\chi}(s)$
 $\overline{V}(s) = \overline{C} \overline{\chi}(s)$
 $\overline{V}(s) = \overline{C} \overline{\chi}(s)$
 $\overline{V}(s) = \overline{C} \overline{\chi}(s)$
 $\overline{U}(s) = \overline{C} \overline{U}(s)$
 $\overline{U}(s) = \overline{C} \overline{U}(s)$
 $\overline{U}(s) = \overline{C} \overline{U}(s)$

$$\overline{G}(s) \stackrel{=}{\rightarrow} G(s) \cdot u(s) \stackrel{=}{\rightarrow} \overline{V}(s)$$

$$\frac{\tilde{y}(s)}{\tilde{y}(s)} = \tilde{C}(s) = \tilde{$$

example: find TF

$$G(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{s}{s^2 + 3s + 2} \\ \frac{-2}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{s^2 + 3s + 2} \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{s^2 + 3s + 2} \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2 + 3s + 2}$$

$$G(s) = \begin{bmatrix} 1 & 0 \\ \frac{5+3}{s^2 + 3s + 2} \end{bmatrix} = \frac{1}{3^2$$

augue

Test 4

system with two masses, two springs, a damper, and two forces, as shown

Your HDU number.....

Your Name.....

1) The equations of motion

ADD your answer

2) The state-space equations

(can be developed from these with the states being the original coordinates as well as their derivatives - in other words, the positions and velocities of the masses.)

ADD your answer

3) Matrices C and D. Choose the outputs to be the position of each mass. (Note that the third and fourth states are the velocity of mass 1 and mass 2, respectively.)

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
 = ADD your answer

Thank you!

www.ifmo.ru

ITSMOre than a UNIVERSITY