Mathematics

Zhang En-Yao

September 10, 2024

Contents

L	Pair	S	5
	1.1	Function	5

4 CONTENTS

Chapter 1

Pairs

1.1 Function

Notion. Summary

Function Structures: Domain, Range, Restriction, Extension.

Function Operators: Equivalent, Inverse, Composition. Function Instances: Injective, Invertable, Compatible. Function Generalizations: Index System of Sets.

Definition. Function

A binary relation F is a function if and only if for every a from dom F there is exactly one b such that aFb. This unique b is called the value of F at a. F(a) is not defined if $a \notin domainF$.

Note. A binary relation F is called a function (or mapping, correspondence) if aFb_1 and aFb_2 imply $b_1 = b_2$ for any a, b_1 , and b_2 .

Note. Function is a procedure, a rule, assigning to any object a from the domain of the function a unique object b, the value of the function at a.

Note. A function represents a special type of relation, a relation where every object a from the domain is related to precisely one object in the range, namely, to the value of the function at a.

Proposition 1.1.1.

Let F and G be functions. F = G if and only if $\operatorname{dom} F = \operatorname{dom} G$ and F(x) = G(x) for all $x \in \operatorname{dom} F$.

Proof. The Axiom of Extensionality.

Definition.

Let F be a function and A and B sets.

- 1. F is a function on A if dom F = A.
- 2. F is a function into B if ran $F \subseteq B$.
- 3. F is a function onto B if ran F = B.
- 4. The restriction of the function F to A is the function $F \upharpoonright A = \{ (a, b) \in F \mid a \in A \}$.
- 5. If G is a restriction of F to some A, we say that F is an extension of G.

Note. Concepts of domain, range, image, inverse image, inverse, and composition can be applied to functions.

Proposition 1.1.2.

Let f and g be functions. Then $g \circ f$ is a function, $g \circ f$ is defined at x if and only if f is defined at x and g is defined at f(x).

- 1. $\operatorname{dom}(g \circ f) = \operatorname{dom} f \cap f^{-1}[\operatorname{dom} g]$.
- 2. $(g \circ f)(x) = g(f(x))$ for all $x \in \text{dom}(g \circ f)$.

Proof. Obviously.

Definition. Invertiable

A function f is invertible if f^{-1} is a function.

Proposition 1.1.3.

If f is a function, its inverse f^{-1} is a relation, but it may not be a function.

Proof. Obviously.

1.1. FUNCTION 7

Definition.

A function f is called one-to-one or injective if $a_1 \in \text{dom } f$, $a_2 \in \text{dom } f$, and $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$. In other words if $a_1 \in \text{dom } f$, $a_2 \in \text{dom } f$, and $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

Note. A one-to-one function attains different values for different elements from its

Proposition 1.1.4.

A function is *invertible* if and only if it is *one-to-one*.

Proof. Let f be invertible; then f^{-1} is a function.

Proposition 1.1.5.

If f is invertible, then f^{-1} is also invertible.

$$Proof. (f^{-1})^{-1} = f.$$

Definition.

Function f and g are called compatible if f(x) = g(x) for all $x \in \text{dom } f \cap \text{dom } g$.

Definition.

A set of functions F is called a compatible system of functions if any two functions f and g from F are compatible.

Proposition 1.1.6.

Functions f and g are compatible if and only if $f \cup g$ is a function. Functions f and g are compatible if and only if $f \upharpoonright (\operatorname{dom} f \cap \operatorname{dom} g) = g \upharpoonright (\operatorname{dom} f \cap \operatorname{dom} g)$.

Proof. Obviously.

Theorem 1.1.1.

If F is a compatible system of functions, the $\bigcup F$ is a function with dom($\bigcup F$) = $\bigcup \{ \text{dom } f \mid f \in F \}$. The function $\bigcup F$ extends all $f \in F$.

Proof. Obviously.

Definition.

Let A and B be sets. The set of all functions on A into B is denoted B^A .

Proposition 1.1.7.

 B^A exists.

Proof.
$$B^A \subseteq \mathcal{P}(A \times B)$$
.

Definition. Indexed System of Sets

Let $S = \langle S_i \mid i \in I \rangle$ be a function with domain I, the values S_i are arbitrary sets. We call the function $\langle S_i \mid i \in I \rangle$ an indexed system of sets, whenever we wish to stress that the values of S are sets.

Definition. be Indexed by

 $A = \{ S_i \mid i \in I \} = \operatorname{ran} S$, where S is a function on I.

Proposition 1.1.8.

$$\bigcup A \text{ and } \bigcap A \text{ were defined for any system of sets } A(A \neq \emptyset \text{ in case of intersection}).$$

$$\bigcup A = \bigcup \{ S_i \mid i \in I \} = \bigcup_{i \in I} S_i; \bigcap A = \bigcap \{ S_i \mid i \in I \} = \bigcap_{i \in I} S_i.$$

Property 1.1.1.

Every system of sets A can be indexed by a function.

Proof. Obviously.
$$\Box$$

Definition. Product of the Indexed System

Let
$$S = \langle S_i \mid i \in I \rangle$$
 and f be a function on I . $\prod S = \{ f \mid \forall i \in I (f_i \in S_i) \}$

Proposition 1.1.9.

$$\prod_{i \in I} S_i \ exists.$$

Proof.
$$\prod_{i \in I} S_i \subseteq \mathcal{P}((I \times \bigcup_{i \in I} S_i))$$

Definition. Exponentiation of Sets

If the indexed system S is such that $S_i = B$ for all $i \in I$, then $\prod_{i \in I} S_i = B^I$

Note. The "exponentiation" of sets is related to "multiplication" of sets in the same way as similar operations on numbers are related.