Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium Aparatury Automatyzacji							
Numer i temat ćwiczenia: Ćwiczenie 5. Dobór nastaw regulatorów przemysłowych							
Grupa ćwiczeniowa: Wtorek 17:00-19:15, Zespół: 3							
Lp.	Imię i nazwisko	Ocena	Podpis				
1.	Katarzyna Wątorska						
2.	Sonia Wittek						
3.	Karolina Świerczek						
Data wykonania ćwiczenia: 09.04.2019							

1. Uproszczony schemat badanego układu:

Uproszczony schemat połączeń elektrycznych stanowiska z regulatorem EFTRONIK XS został zaprezentowany na rysunku 1. Ponadto dysponowałyśmy oscyloskopem, na którym obserwowałyśmy przebiegi potrzebne do realizacji ćwiczenia.

Rysunek 1: Uproszczony schemat stanowiska z zamkniętym układem regulacji (źródło: instrukcja)

2. Przebieg ćwiczenia:

Wykonanie ćwiczenia rozpoczęłyśmy od ustawienia urządzenia w stan pozwalający na przeprowadzenie strojenia metodą Zieglera-Nicholsa. W tym celu ustawiłyśmy czas zdwojenia T_i oraz czas wyprzedzenia T_d o adresach na regulatorze odpowiednio 4-1-15 oraz 4-1-17 na 0. Poszukiwania odpowiedniej wartości współczynnika wzmocnienia proporcjonalnego K_p rozpoczęłyśmy od ustawienia go na wartość 2.0, czyli pierwsze skrajne wzmocnienie. Podałyśmy także skok zakłócający z nadajnika ANS-11 na 30 sekund. Zaobserwowałyśmy, zgodnie z oczekiwaniami, amplitudę malejącą.

Rysunek 2: Przebieg regulowanej zmiennej dla nastawy $K_p=2.0$,

Następnie ustawiłyśmy K_p na wartość równą 2.6, która według instrukcji powinna stanowić drugie skrajne wzmocnienie, dające w efekcie wykres ze zwiększającą się amplitudą. Tak się jednak nie stało – amplituda w dalszym ciągu malała.

Rysunek 3: Przebieg regulowanej zmiennej dla nastawy $K_p=2.6$

Przystąpiłyśmy zatem do samodzielnej zmiany wartości współczynnika K_p . Przyjmował on kolejno następujące wartości: 2.4, 2.8 (dla której amplituda zaczęła wzrastać) oraz 2.7, którą przyjęłyśmy jako poszukiwane wzmocnienie krytyczne K_{kr} .

Rysunek 4: Przebieg regulowanej wartości dla nastawy $K_p=2.4$

Rysunek 5: Przebieg regulowanej wartości dla nastawy $K_p=2.8$

Rysunek 6: Przebieg regulowanej wartości dla nastawy P=2.7 i podziałki oscyloskopu 10s

Z oscyloskopu odczytałyśmy także wartość okresu oscylacji Tosc, która wynosiła 80 [s].

Następnie, zgodnie z zasadami metody Zieglera-Nicholsa, obliczyłyśmy nowe wartości K_p , T_i oraz T_d :

$$K_p = K_{kr} \cdot 0.6 = 1.62,$$

 $T_i = T_{osc} \cdot 0.5 = 40 [s],$
 $T_d = T_{osc} \cdot 0.125 = 10 [s].$

Po obliczeniu powyższych nastaw wprowadziłyśmy je do pamięci regulatora i zaobserwowałyśmy na rejestratorze odpowiedź zamkniętego układu regulacji na skok zakłócenia o wartości 30% na wejściu obiektu – ponieważ tym razem był to stały skok, to na oscyloskopie można było zobaczyć dostosowanie się regulatora do nowej wartości zadanej.

Rysunek 7: Reakcja regulatora na skok zakłócenia dla nastaw metodą Z-N

Następną częścią ćwiczenia był automatyczny dobór nastaw regulatora metodą Astroma-Hagglunda. W tym celu układ doprowadzony uprzednio do położenia równowagi został poddany procedurze samostrojenia zgodnie z poniższymi parametrami:

Adres	Wartość	Opis
4-1-38	0001	Maksymalny czas trwania 3 etapu identyfikacji, określony przez zastępczą stałą czasową obiektu.
4-1-39	0020	Dopuszczalna amplituda wahań sygnału sterującego.
4-1-40	0050	Dopuszczalny zakres wahań wielkości mierzonej przed eksperymentem (wartość wpisana dzielona przez 10).
4-1-41	0050	Dopuszczalny zakres wahań wielkości mierzonej podczas eksperymentu.
4-1-42	0001	Nastawy wyliczane dla regulatora PID.
4-1-43	0001	Nastawy wprowadzane automatycznie.

Procedura samostrojenia, bez podawania skoku zakłócającego, została uruchomiona przy użyciu regulatora, natomiast na oscyloskopie zaobserwowałyśmy 3 etapy samostrojenia, którymi są:

- 1. Doprowadzenie do stanu równowagi.
- 2. Pomiar poziomu zakłóceń.
- 3. Właściwy eksperyment.

Rysunek 8: Przebieg procedury samostrojenia

Otrzymałyśmy następujące wartości nastaw: $K_p = 1.436$, $T_i = 40.7$, oraz $T_d = 9.769$. Ich porównanie z nastawami otrzymanymi metodą Zieglera-Nicholsa znajduje się poniżej:

Tabela 1. Porównanie nastaw otrzymanych z dwóch metod

Metoda	Kp	T _i [s]	T _d [s]
Zieglera-Nicholsa	1.62	40	10
Samostrojenia	1.436	40.7	9.769

Następnie po odczekaniu na ustabilizowanie się wyjścia obiektu, przebadałyśmy i zarejestrowałyśmy zachowanie układu przy otrzymanych nastawach samostrojeniowych dla stałego skoku zakłócającego o wartości 30%.

Rysunek 9: Reakcja regulatora na skok zakłócający przy nastawach z samostrojenia

3. Wnioski:

Używanie regulatora Eftronik XS podczas ćwiczenia było niewygodne i żmudne, zmiana jednego ustawienia wymagała wielu naciśnięć odpowiednich przycisków, związku z czym trwała długo. Łatwo jest także niechcący wcisnąć złe ustawienia lub nieodpowiedni guzik, o czym przekonałyśmy się w połowie ćwiczenia, i spowodować, że straci się dużo czasu na dochodzenie do tego, co poszło nie tak.

Nastawy otrzymane metodą Z-N okazały się dobrym przybliżeniem nastaw otrzymanych metodą samostrojenia, różnią się one między sobą o ok. 1%. Dla obu tych ustawień regulator dość dobrze radził sobie z ustalaniem wartości zadanej, dla nastaw z samostrojenia proces przebiegał szybciej i dokładniej. Mimo niewielkich różnic pomiędzy wynikiem obu tych metod można zauważyć, że proces dobierania nastaw jest znacznie dłuższy i mniej dokładny dla metody Zieglera-Nicholsa oraz co najważniejsze może spowodować uszkodzenie regulowanego obiektu poprzez wprowadzanie go w oscylacje. Dlatego jeśli jest to możliwe lepiej wybierać samostrojenie.