Advanced Controls Using WPILib

Tyler Veness

Target zone 6 ball autonomous

System overview

Controls engineering in FRC

- Modeling equations representing how the robot behaves
- Localization where the robot is in 2D
- Motion planning planning how to get from here to there consistently
- Control actually getting there
- WPILib has features to make these easier!

Modeling

- What?
 - Equations that take in voltage and output sensor measurements over time
- Why?
 - More accurate drivetrain simulations
 - Controller autotuning with minimal trial and error

Modeling

- System identification
 - Use measured data from encoders and gyroscope to make a model that fits
- frc-characterization
 - Gathers data to make a feedforward model
 - https://docs.wpilib.org/en/stable/docs/software/wpilib-tools/robot-characterization/
- LinearSystemId functions
 - Makes a more general dynamical model for control later

Localization

- Use external measurements to obtain robot's position and heading on the field
- Why?
 - Dead reckoning with encoders alone accumulates error
 - If you can measure it, you can compensate for it with a controller

Localization

- DifferentialDriveOdometry class
 - Inputs: wheel encoders, gyroscope heading
 - Outputs: Robot position and heading
 - https://docs.wpilib.org/en/stable/docs/software/kinematics-an d-odometry/differential-drive-odometry.html
- DifferentialDrivePoseEstimator class
 - Drop-in replacement for odometry class that incorporates vision measurements
 - Compensates for CV pipeline delays!
 - https://docs.wpilib.org/en/latest/docs/software/advanced-cont rols/state-space/state-space-pose_state-estimators.html

Motion planning

- Why?
 - Smooth, predictable motion over time
 - Only change the setpoint as fast as the system is able to physically move
 - Allows better open-loop control

Figure 15.1: Trapezoidal profile

Figure 15.2: S-curve profile

- TrapezoidProfile class
 - https://docs.wpilib.org/en/stable/docs/software/advanced-con trol/controllers/trapezoidal-profiles.html
- ProfiledPIDController class
 - https://docs.wpilib.org/en/stable/docs/software/advanced-control/controllers/profiled-pidcontroller.html

- Degrees of freedom for drivetrain are x and y axes
- Trajectory includes:
 - X-Y path
 - Wheel velocities

- TrajectoryGenerator class
 - https://docs.wpilib.org/en/latest/docs/software/examples-tutorials/trajectory-tutorial/index.html
 - https://docs.wpilib.org/en/latest/docs/software/advanced-cont rols/trajectories/troubleshooting.html

Control

- Why?
 - Make robot respond how we want it to
 - Automate robot maneuvers
 - Make robot robust to disturbances and uncertainty

Feedforward controllers

- Plant inversion
 - We know how the system behaves and how we want it to behave, so find a voltage that makes it behave that way
 - SimpleMotorFeedforward, ElevatorFeedforward, etc.
 - https://docs.wpilib.org/en/stable/docs/software/advanced-control/controllers/feedforward.html
- Unmodeled dynamics
 - Gravity compensation, gearbox friction

Feedback controllers

- Ramsete
 - Nonlinear control law for field position
 - RamseteController class or RamseteCommand class
- PID controller
 - Commanded by Ramsete to go to wheel velocities
 - PIDController class or PIDSubsystem/PIDCommand
- Linear-quadratic regulator
 - P controller, but with gains chosen by math
 - LinearQuadraticRegulator class
 - Can use the model we got from frc-characterization!

More resources

- WPILib projects
 - https://github.com/wpilibsuite/allwpilib
- WPILib documentation
 - https://docs.wpilib.org/en/stable/
- My book on controls engineering in FRC
 - https://controls-in-frc.link/

