AGH, WIET	Laboratorium – elementy	Kierunek : EiT
	elektroniczne	
Nr ćwiczenia:	Temat:	Ocena:
4	Złączowy tranzystor polowy	
Data wykonania: 28.04.2022	Imię i nazwisko: Hubert Mąka, Jakub Wojtycza	

5.1

Wnioski:

Otrzymane charakterystyki są zgodne z charakterystykami z noty katalogowej. Można zaobserwować odcięcie tranzystora dla Ugs = -3,5V

Uwaga: Pomarańcz →dla Uds = 6V Niebieski →dla Uds = 1V

Z wykresu odczytaliśmy dokładnie i przybliżone szukane wartości które są następująco :

	Dla Uds = 6V	Dla Uds = 1V
Up(oszacowane)	-3,5 [V]	-3,5[V]
Idss(oszacowane)	10 [mA]	5 [mA]
Up(dokładne)	3,6 [V]	3,6 [V]
Idss(dokładne)	9,784 [mA]	4,937 [mA]

Wnioski:

Charakterystyki zgadzają się z notami katalogowymi. Tranzystory typu JFET są tranzystorami dla których prąd zmienia się od 0 do Idss, gdzie Idss to punkt przecięcia z osią OY a Id=0 to punkt przecięcia z osią OX.

Wnioski:

Wyznaczyliśmy parametr a stycznej do wykresu, który jest transkonduktancją.

Z funkcji sqrt(Id) wyznaczyliśmy parametry Idss i Up tranzystora.

5.2

Ugs [V]	gm(Ugs) [A/V]
0	0,0054
-0,2	0,0052
-0,4	0,0049
-0,6	0,0047
-0,8	0,0045
-1	0,0043
-1,2	0,0042
-1,4	0,0041
-1,6	0,0041
-1,8	0,0041
-2	0,0041
-2,2	0,0041
-2,4	0,0042
-2,6	0,0043
-2,8	0,0045
-3	0,0047
-3,2	0,0049
-3,4	0,0052
-3,6	0,0054

Uwaga: Wartość gm nie jest dokładnie równa jednej wartości z powodu nieidealności przyrządów i układu pomiarowego, ale zmienia się w pomijalnym zakresie więc można przyjąć jej wartość uśrednioną.

gm (uśrednione) [A/V]

→ 0,0046

Wnioski:

Ze zmierzonych parametrów za pomocą wzorów obliczyliśmy transkonduktancje dla tranzystora JFET, która w uśrednieniu wyszła 0,0046 [A/V]

5.3

Dla R = 1000 [Ohm]

rd
0,001
0,001
0,001
0,001
0,001
0,001
0,001

delta Uds [V]
33
34,8
38,1
42,8
49,8
53
54

delta Id [mA]	
0,000033	
0,0000348	
0,0000381	
0,0000428	
0,0000498	
0,000053	
0,000054	

Wnioski:

Wyznaczyliśmy rezystancję wyjściową tranzystora JFET z definicji $R_{DS}=rac{dU_{DS}}{dI_{D}}$

Korzystając z opornika wpiętego szeregowo i mierząc dzięki niemu zmianę prądu. Uzyskany wynik rezystancji wyjściowej jest równy 0,001 Ohma.