104-26

問題文

アゴニストの用量-反応曲線が低用量側にあるほど値が大きいのはどれか。1つ選べ。

- 1. ED 50
- 2. LD ₅₀
- 3. K_D
- 4. pA₂
- 5. pD₂

解答

5

解説

選択肢 1.2 ですが

試験動物や試験細胞の半数に目的の薬理作用が現れる用量を50%有効量と呼びます。 ED $_{50}$ (effective dose 50%) と表します。「目的の薬理作用」が「死亡」である時を特に LD $_{50}$ (lethal dose 50%) と表します。これらの値は、用量一反応曲線が低用量側にあれば、 値が小さくなります。よって、選択肢 1,2 は誤りです。

選択肢 3 ですが

 K_D は解離定数です。 $AB \rightleftarrows A + B$ の平衡定数です。 [A] [B] / [AB] です。 用量一反応曲線が低用量側にあるのであれば、低濃度で十分結合すると考えられます。 ABが「薬物一受容体」、Aが薬物、Bが受容体と考えれば、 5ょうと B 050%が薬物と結合している時、[AB] = 0.5[B] なので、代入すれば K_D = 2[A] です。 「用量一反応曲線が低用量側」 = 「低濃度で十分結合」なので、50% 結合時点での [A] が小さいと考えられます。すると K_D も小さくなります。よって、選択肢 3 は誤りです。

選択肢 4 ですが

pA₂は競合的拮抗薬の効力を表します。 具体的には「作動薬の用量 – 反応曲線を 2 倍高濃度側に平行移動させるのに要する、競合的拮抗薬のモル濃度の、負の対数値」です。 本問の 「アゴニストの用量 – 反応曲線が低用量側」にあるとは、 「アゴニストと受容体の親和性が高い」と解釈できます。

すると、用量一反応曲線を高濃度側に平行移動させるためには、 競合的拮抗薬のモル濃度はより大きい必要があります。 (イメージとしては、すぐくっついちゃう2人を引き離すためには、相当多くの人が必要、というイメージです。) ーlog()の、() の部分が大きくなると、全体の値は小さくなります。

具体的に考えると、 $-\log_{10} 10$ と、 $-\log_{10} 100$ は、それぞれ-1, -2 となります。()の中身が大きいほうが、小さい値になっていることがわかるのではないでしょうか。よって、選択肢 4 は誤りです。

選択肢 5 ですが

 $pD_2 = -log(ED_{50})$ です。この定義は基礎知識です。 これにより ED_{50} が小さいほど、 pD_2 は大きくなります。選択肢 1,2 の解説で触れたように、用量一反応曲線が低用量側にあれば、 ED_{50} は 値が小さくなります。つまり、 pD_2 は大きくなります。

以上より、正解は5です。