Area by Rectangular Approximation Method

Date_____ Period____

For each problem, approximate the area under the curve over the given interval using 3 left endpoint rectangles.

2)
$$y = -\frac{3}{7}$$
; $[-\frac{7}{2}, -2]$
 $\frac{7}{2}$ $6/7$ $\frac{1}{2}$ $(\frac{6}{7} + 1 + \frac{6}{5}) = \frac{107}{70}$
 $-\frac{3}{7}$ $6/5$ $= 1.52857$
 $-\frac{3}{7}$ $\frac{3}{7}$

For each problem, approximate the area under the curve over the given interval using 4 left endpoint rectangles.

3)
$$y = -\frac{5}{x}$$
; [-4, -2]
 $\frac{\times}{-H}$ $\frac{7}{5/H}$ $\frac{533}{168} = 3.17261$
 $\frac{7}{2}$ $\frac{10}{7}$
 $\frac{7}{2}$ $\frac{5}{3}$
 $\frac{5}{2}$ $\frac{2}{2}$
 $\frac{5}{2}$ $\frac{5}{2}$

4)
$$y = -\frac{x^2}{2} + x + 5$$
; [-2, 2]

For each problem, approximate the area under the curve over the given interval using 3 right endpoint rectangles.

5)
$$y = -\frac{x^2}{2} - x + 5$$
; $[-\frac{1}{2}, 1]$

6)
$$y = -x^2 + 13$$
; $[-\frac{5}{2}, -1]$

$$\frac{127}{8} = 15.875$$

For each problem, approximate the area under the curve over the given interval using 5 right endpoint rectangles.

7)
$$y = x^2 - 2x + 3$$
; $[-\frac{3}{2}, 1]$

8)
$$y = -\frac{x^2}{2} + 6$$
; $[-\frac{5}{2}, 0]$

$$\frac{35}{4} = 8.75$$

$$\frac{105}{8} = 13.125$$

For each problem, approximate the area under the curve over the given interval using 4 midpoint rectangles.

9)
$$y = \frac{x^2}{2} + x + 1$$
; [-5, -3]
$$\frac{165}{160} = 10.3125$$

10)
$$y = x^2 + 2x + 4$$
; $[-4, -2]$

$$\frac{117}{8} = 14.625$$

For each problem, approximate the area under the curve over the given interval using 5 midpoint rectangles.

11)
$$y = \frac{4}{x}$$
; $[2, \frac{9}{2}]$

12)
$$y = \frac{x^2}{2} - x + 2$$
; $[-\frac{1}{2}, 2]$

For each problem, approximate the area under the curve over the given interval using 4 inscribed rectangles.

13)
$$y = -x^2 - 2x + 11$$
; $[-2, 2]$

$$[-2,-1] [-1,0] [0,1] [1,2]$$

$$[1] + 11 + 8 + 3$$
33

14)
$$y = \frac{3}{x}$$
; [1,3] [1,3] [32,2] [52,52] [52,3] $\frac{57}{2} = 2.85$

For each problem, approximate the area under the curve over the given interval using 4 circumscribed rectangles.

15)
$$y = x^2 + 2x + 4$$
; $[-3, -1]$

39

 $= 9.75$
 $= 2 \cdot (7 + 5.25 + 4 + 3.25)$

16)
$$y = -\frac{4}{x}$$
; $[-6, -2]$ $[-6, -3][-5, -4][-4, -3][-3, -2]$

$$\frac{77}{15} = 5./3333$$