



# SOMADORES DE PALAVRAS BINÁRIAS

### 1 SOMADORES DE BITS

#### 1.1 Somador Parcial

Um somador parcial, ou meio somador, é um circuito que recebe dois bits na entrada, A e B, e retorna na saída a soma binária correspondente, com dois bits: S, que representa o resultado da soma A+B, e  $C_{out}$ , que representa o "vai-um" da soma (carry-out em inglês). Sua tabela verdade é apresentada na Tabela 1.

| entradas |   | saídas                   |   |
|----------|---|--------------------------|---|
| A        | В | $\mathbf{C}_{	ext{out}}$ | S |
| 0        | 0 | 0                        | 0 |
| 0        | 1 | 0                        | 1 |
| 1        | 0 | 0                        | 1 |
| 1        | 1 | 1                        | 0 |

Tabela 1 - Tabela-verdade do somador parcial.

# 1.2 Somador Completo

Um somador completo é um circuito que recebe três bits na entrada, A, B e  $C_{in}$ , (este último é chamado de "vem-um", ou *carry-in* em inglês) e retorna na saída a soma binária correspondente, com dois bits: S, que representa o resultado da soma  $A+B+C_{in}$ , e  $C_{out}$ , que representa o "vai-um" da soma (*carry-out* em inglês). Sua tabela verdade é apresentada na Tabela 2.

| entradas |   |   | saídas |   |
|----------|---|---|--------|---|
| $C_{in}$ | A | В | Cout   | S |
| 0        | 0 | 0 | 0      | 0 |
| 0        | 0 | 1 | 0      | 1 |
| 0        | 1 | 0 | 0      | 1 |
| 0        | 1 | 1 | 1      | 0 |
| 1        | 0 | 0 | 0      | 1 |
| 1        | 0 | 1 | 1      | 0 |
| 1        | 1 | 0 | 1      | 0 |
| 1        | 1 | 1 | 1      | 1 |

Tabela 2 - Tabela-verdade do somador completo.

### 2 SOMADOR DE PALAVRAS BINÁRIAS

A soma de números binários (isto é, de palavras binárias) é realizada de maneira análoga à soma de números decimais.

Imagine, por exemplo, a soma do número decimal  $A_3A_2A_1A_0$ =8397 com o número decimal  $B_3B_2B_1B_0$ =4256. Iniciamos o processo realizando a soma entre os dois dígitos menos significativos,  $A_0$ =7 e  $B_0$ =6. O resultado, 13, pode ser representado por dois dígitos: o resultado  $S_0$ =3 e o "vai-um"  $C_1$ =1. A seguir, somamos o "vem-um" obtido na soma anterior com os dois próximos dígitos, isto é, fazemos  $C_1$ + $A_1$ + $B_1$  = 1+9+5. O resultado, 15, pode novamente ser representado por dois dígitos: o resultado  $S_1$ =5 e o "vai-um"  $C_2$ =1. Somamos então este novo "vem-um" com os dois próximos dígitos, isto é, fazemos  $C_2$ + $A_2$ + $B_2$  = 1+3+2. O resultado, 6, pode mais uma vez ser representado por dois dígitos: o resultado  $S_2$ =6 e o "vai-um"  $C_3$ =0. Finalmente, somamos o "vem-um" obtido na soma anterior com os dois últimos dígitos, isto é, fazemos  $C_3$ + $A_3$ + $B_3$  = 0+8+4. O resultado, 12, também pode ser representado por dois dígitos: o resultado  $S_3$ =2 e o "vai-um"  $C_4$ =1. Entretanto, se o resultado da soma será representado pela palavra  $S_4S_3S_2S_1S_0$ , então podemos afirmar que  $S_4$ = $C_4$ , pois o último "vai-um",  $C_4$ , seria





somado aos zeros à esquerda  $A_4$ =0 e  $B_4$ =0, de modo que, invariavelmente,  $S_4$  =  $C_4$ + $A_4$ + $B_4$  =  $C_4$ . O resultado seria então  $S_4S_3S_2S_1S_0$  = 12653. Este exemplo é ilustrado na Figura 1.



Figura 1 – Soma de números decimais.

Imagine agora a soma do número binário A<sub>3</sub>A<sub>2</sub>A<sub>1</sub>A<sub>0</sub>=1011 (ou 11 em decimal) com o numero binário  $B_3B_2B_1B_0=1001$  (ou 9 em decimal). Iniciamos o processo realizando a soma entre os dois bits menos significativos,  $A_0=1$  e  $B_0=1$ . O resultado, 1+1=2 (ou 10 em binário), pode ser representado por dois bits: o resultado  $S_0$ =0 e o "vai-um"  $C_1$ =1. Note que essa soma, com dois bits de entrada e dois bits de saída, poderia ter sido realizada com um somador parcial. A seguir, somamos o "vem-um" obtido na soma anterior com os dois próximos bits, isto é, fazemos  $C_1+A_1+B_1=1+1+0$ . O resultado, 2 (ou 10 em binário), pode novamente ser representado por dois bits: o resultado  $S_1$ =0 e o "vai-um"  $C_2$ =1. Note que essa soma, com três bits de entrada e dois bits de saída, poderia ter sido realizada com um somador completo. Somamos então este novo "vem-um" com os dois próximos bits, isto é, fazemos  $C_2+A_2+B_2=1+0+0$ . O resultado, 1, pode mais uma vez ser representado por dois dígitos: o resultado  $S_2$ =1 e o "vai-um"  $C_3$ =0. Note que essa soma também poderia ter sido realizada com um somador completo. Finalmente, somamos o "vem-um" obtido na soma anterior com os dois últimos dígitos, isto é, fazemos  $C_3+A_3+B_3=0+1+1$ . O resultado, 2, também pode ser representado por dois bits: o resultado  $S_3=0$  e o "vai-um"  $C_4=1$ . Essa soma também poderia ter sido realizada com um somador completo. Entretanto, se o resultado da soma será representado pela palavra  $S_4S_3S_2S_1S_0$ , então podemos afirmar que  $S_4=C_4$ , pois o último "vai-um",  $C_4$ , seria somado aos zeros à esquerda  $A_4$ =0 e  $B_4$ =0, de modo que, invariavelmente,  $S_4$ =  $C_4+A_4+B_4=C_4$ . O resultado seria então  $S_4S_3S_2S_1S_0=10100$  (ou 20, em decimal). Este exemplo é ilustrado na Figura 2.



Figura 2 – Soma de números binários.

De modo geral, a soma de palavras binárias de 4 bits pode ser representada conforme ilustrado na Figura 3. Note que é possível implementar essa soma usando três somadores completos e um somador parcial. De modo geral, a soma de palavras binárias de n+1 bits pode ser implementada por meio n somadores completos e um somador parcial, conforme ilustrado na Figura 4. O somador parcial pode, se desejado, ser substituído por um somador completo com  $C_{in} = 0$ .







Figura 3 – Soma de palavras binárias de 4 bits. Note que é possível implementar essa soma usando três somadores completos e um somador parcial.



Figura 4 – Diagrama de blocos de um somador de palavras binárias de n+1 bits, implementado usando n somadores completos e um somador parcial.