# Predicting Home Listing Prices in Vermont

Andrew Smith

### Goals

- Understand features that contribute to home listing prices in Vermont
  - A tool for real estate investors to identify undervalued properties
  - A tool for agents to guide their clients
  - Guide home remodelling (i.e. how much will the new bathroom increase the home price



## **Tools**

**Web Scraping** 









## Data Sources & Data Description

- Data sources:
  - All VT single-family homes for sale on Zillow (729 total)
  - County level median income from the *U.S Dept. of Housing and Urban Development*
  - Created County to Zip Code Crosswalk
- Variables Scraped from Zillow:
  - Dependent variable:
    - Listing Price
  - Features (11):
    - Number of Bedrooms
    - Number of Bathrooms
    - Year Built
    - Lot Size (sq ft.)
    - View Description
    - On Waterfront
    - House Style
    - New Construction
    - Garage Spaces
    - Zip Code
    - County Median Family Income
    - Zip Code





# Exploratory Data Analysis: Categorical Variables

#### Listing Price (\$M) vs. View Type

#### Listing Price (\$M) vs. Waterfront





• Other categorical variables (year built, new construction, house style) had limited visual correlation

# Exploratory Data Analysis: Continuous Variables

#### **Listing Price (\$M) vs. Number of Bedrooms**

## Listing I free (\$\pi\text{in}) vs. Ivamber of Beardonic



#### Listing Price (\$M) vs. Number of Bathrooms



- Homes with a larger number of bedrooms and bathrooms and throws off a second order or linear relationship; many of these homes are older larger homes and an interaction term with these variables helps, but ultimately still renders them to have minimal impact on the model

# Simple Initial Models: Square Footage

#### **Listing Price (\$M) vs. Square Feet**



#### Results (SF)

$$R^2 = 0.24$$

SF coefficient = 384

#### Results (SF<sup>3</sup>)

$$R^2 = 0.34$$

 $SF^3$  coefficient = 0.04

Results are validation scores

## **Utilizing Lasso**

• Due to a small dataset, a Lasso cross-validation was unable to effectively regularize the model; however, it was used to help suggest key interaction terms for the next iteration of the model



On Waterfront (Yes / No)

Bathrooms X Year Built

Home Square Feet X lot size (sq ft.) ^ 2

View Description (Yes / No)

Home Square Feet ^ 3

Bathrooms ^ 3

On Waterfront **X** Home Square Feet

On Waterfront X Bedrooms

View Description **X** Bathrooms

Home Square Feet X lot size (sq ft.) ^ 2

On Waterfront **X** View Description

Zip Code



Median Family Income

**Number of Garages** 

House Style

**New Construction** 

## Best model results

#### Results

 $R^2 = 0.55$ 

RMSE = 313,308

Coefficients: model has become too complex to interpret easily





# Model Weakness / Next Steps

- Some measure of quality / last renovation
  - Residuals show that homes of lower quality with limited renovations are overvalued due to a high square footage for instance
    - Achieved through machine learning on photos to determine quality or scraping a new website
- More data points for effective regularization
  - Would try for the last few years of data / 3,000 + data points
- Better screening of single family homes
  - Various inns (marketed as SF homes) were included and had high residuals
- Better screening of "waterfront"

## Final Conclusions

 SF and on waterfront hold the largest impact on house price, but are likely subject to large variation in prices depending on home quality