

Estimating the Effect of Discretion in Public Spending on Government Performance

Evidence from Brazilian Municipalities

Andre Assumpcao Ciro Biderman George Avelino

UNC-Chapel Hill, FGV-EAESP, FGV-EAESP

Apr 4th, 2018

Motivation

Developing countries spend **US\$820bn**¹ per year on goods and services supplied by the private sector. Governments purchase medical supplies, school material, and construction services used to implement public policies.

▶ Participants

Constituents thus have an interest not only on **what** goods and services governments are purchasing but also **how** governments are procuring such items.

¹Estimate based on 2017 World Bank data.

Research Question

Does the imposition of harder, stricter procurement rules for government expenditure reduce corruption and misallocation of public resources?

Context

Random sample of 14,518 federal transfers to 1,139 Brazilian municipalities between 2004-2010:

- 9,593 transfers used for public procurement;
- 4,925 transfers used for paying wages, keeping programs running, etc.

Hypotheses

- 1. The imposition of harder, stricter procurement rules for public spending **reduces** corruption.
- 2. The imposition of harder, stricter procurement rules for public spending **reduces** the misallocation of public resources.

Findings

- 1. Stricter procurement rules have **no effect** on corruption.
- 2. Stricter procurement rules have only a limited effect on mismanagement.

Empirical Strategy

Regression discontinuity (RD) design where the application of procurement rules follows a strict monetary schedule established by Law 8,666/93.

Figure 1: Law 8,666/93

By looking at federal transfers whose values fall in the vicinities of the discontinuities in procurement rules, we identify the **causal effect** of discretion on government performance.

Outcomes

The Office of the Comptroller-General (CGU) ran a random audit program of Brazilian municipalities expenditures between 2003 and 2015, which we use to code corruption and misallocation indicators serving as outcome variables in this project (Ferraz and Finan, 2008; 2011).

- Binary: whether the transfer contains evidence of corruption or mismanagement;
- Share: how many of each transfer's records are corruption or mismanagement-related;
- Amount: how much money was potentially lost to corruption or mismanagement.

In total, my preferred estimation yields 6 (outcomes) \times [2 (purchases cutoffs) + 3 (works cutoffs) + 3 (pooled cutoffs)] = 48 parameter estimates.

	G			10		2-4
		uption Outc			anagement (
						Indicator III
	(Binary)	(Share)	(Amount)	(Binary)	(Share)	(Amount)
Variable:	(1)	(2)	(3)	(4)	(5)	(6)
			Purchases	s Estimates		
Proc. Category 1	0.117	0.037	234	0.049	-0.006	64
	(0.095)	(0.055)	(442)	(0.078)	(0.081)	(648)
	[n = 2098]	[n=2087]	[n = 1934]	[n=2129]	[n=2097]	[n = 1924]
Proc. Category 2	-0.034	0.032	2,827	-0.100*	-0.055	-4,524
	(0.067)	(0.048)	(3,838)	(0.059)	(0.059)	(4,748)
	[n = 2686]	[n = 2106]	[n = 2058]	[n = 2553]	[n = 2328]	[n = 2261]
			Works	Estimates		
Proc. Category 1	-0.210	-0.039	61	-0.416**	-0.291*	-4,611*
	(0.143)	(0.078)	(1,482)	(0.190)	(0.178)	(2,802)
	[n = 330]	[n = 362]	[n = 314]	[n = 485]	[n = 485]	[n = 423]
Proc. Category 2	0.043	0.009	537	0.016	-0.006	-726
	(0.102)	(0.058)	(8,614)	(0.079)	(0.076)	(11,265)
	[n = 1185]	[n=1014]	[n = 1050]	[n = 944]	[n = 858]	[n = 892]
Proc. Category 3	0.043	0.158	221478	0.171	-0.077	-88,510
	(0.307)	(0.183)	(281,249)	(0.212)	(0.251)	(340,566)
	[n = 313]	[n = 228]	[n = 205]	[n = 51]	[n = 157]	[n = 276]
			Pooled 1	Estimates		
Proc. Category 1	-0.025	-0.054*	-425	0.098*	0.091*	-114
	(0.058)	(0.033)	(291)	(0.054)	(0.050)	(451)
	[n = 2256]	[n = 2263]	[n = 1964]	[n = 1977]	[n = 2019]	[n = 1905]
Proc. Category 2	-0.018	0.009	1,344	-0.064	-0.040	-572
	(0.043)	(0.030)	(3,078)	(0.044)	(0.041)	(3,486)
	[n = 3767]	[n = 2896]	[n = 2846]	[n = 2460]	[n = 2436]	[n = 4584]

		uption Outc			anagement (
	Indicator I	Indicator II	Indicator III	Indicator I	Indicator II	Indicator III	
	(Binary)	(Share)	(Amount)	(Binary)	(Share)	(Amount)	
Variable:	(1)	(2)	(3)	(4)	(5)	(6)	
			Purchases	s $Estimates$			
Proc. Category 1	0.117	0.037	234	0.049	-0.006	64	
	(0.095)	(0.055)	(442)	(0.078)	(0.081)	(648)	
	[n = 2098]	[n = 2087]	[n = 1934]	[n = 2129]	[n = 2097]	[n = 1924]	
Proc. Category 2	-0.034	0.032	2,827	-0.100*	-0.055	-4,524	
	(0.067)	(0.048)	(3,838)	(0.059)	(0.059)	(4,748)	
	[n = 2686]	[n = 2106]	[n = 2058]	[n = 2553]	[n = 2328]	[n = 2261]	
			Works	Estimates			
Proc. Category 1	-0.210	-0.039	61	-0.416**	-0.291*	-4,611*	
	(0.143)	(0.078)	(1,482)	(0.190)	(0.178)	(2,802)	
	[n = 330]	[n = 362]	[n = 314]	[n = 485]	[n = 485]	[n = 423]	
Proc. Category	0.040	0.000	F 0.75	0.010	0.000	#0.0	
	-0.416	5**	-0.29	1^*	-4,611*		
	(0.10		(O 1 =		/0		
Proc. Category	(0.19)	10)	(0.17)	(8)	(2,	802)	
	[n = 4]	105]	ſ.,	1051	[49.2]	
	[n = 4]	180]	[n=4]	[664	$\lfloor n =$	= 423]	
Proc. Category 1	-0.025	-0.054*	-425	0.098*	0.091*	-114	
	(0.058)	(0.033)	(291)	(0.054)	(0.050)	(451)	
	[n = 2256]	[n = 2263]	[n = 1964]	[n = 1977]	[n = 2019]	[n = 1905]	
Proc. Category 2	-0.018	0.009	1,344	-0.064	-0.040	-572	
	(0.043)	(0.030)	(3.078)	(0.044)	(0.041)	(3,486)	
	,	[n = 2896]	. , ,	, ,	[n = 2436]		

Mismanagement Binary

Figure 4: Outcome 1

Interpretation: imposing stricter rules on bureaucrats when hiring private contractors in public works projects reduces the probability of finding mismanagement problems in these projects by **41.9 percentage points**.

Mismanagement Share

Figure 5: Outcome 2

Interpretation: imposing stricter rules on bureaucrats when hiring private contractors in public works projects reduces the share of mismanagement problems found by auditors by **29.1 percentage points**.

Mismanagement Amount

Figure 6: Outcome 3

Interpretation: imposing stricter rules on bureaucrats when hiring private contractors in public works projects reduces the amount lost to mismanagement by **R\$4,611** (**\$1,155** using the current exchange rate).

Results are robust!

- 1. We run covariate balance tests across cutoffs and include covariates in regressions.
- 2. We try different models (linear vs. quadratic, non-parametric RD).
- 3. We use robust standard errors, clustered at the municipal level, and health, education, and auditing fixed effects.
- 4. We run the McCrary (2008) test for manipulation of the running variable and throw away the last cutoff in the goods/services procurement type.
- 5. Optimal bandwidth selection comes from Calonico, Cattaneo, and Titiunik (2015), but we also run our local (quadratic) regressions at smaller bandwidths.
- 6. There are two falsification tests showing that our significant mismanagement effects are not spurious. . .

Is this result spurious? Using **fake purchases** cutoffs for works transfers, the answer is **no**.

Figure 7: Mismanagement Binary Placebo 1

Isn't this a feature of those transfers rather than a feature of procurement? Using **non-procurement** transfers, the answer is also **no**.

Figure 8: Mismanagement Binary Placebo 2

Scientific Contribution

- 1. No evidence that lower discretion in public spending reduces corruption.
- 2. **Limited welfare effect:** A back-of-the-envelope calculation shows limited effect of restricting procurement: Law 8,666/93 prevents only 5.98% of all observed misallocation of resources.
- Top-down legislation is ineffective: legislation to limit discretion becomes meaningless with inflation and when bureaucrats adjust behavior to procurement rules.
- 4. Not discussed in this presentation... but we have also developed a text analysis algorithm to read in each transfer and assign it to procurement types (in appendix).

Thank you!

Andre Assumpcao
Ph.D. Candidate
Department of Public Policy
The University of North Carolina at Chapel Hill
https://aassumpcao.github.io

Supplemental Material

Summary Statistics

Panel A: Service Order Level								
	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max	
Amount (in R\$)	9,593	449,858	3,060,374	65	36,000	204,721	236,198,658	
Infraction Count	9,593	2.398	2.172	0	1	3	18	
Corruption Indicator I (Binary)	9,593	0.398	0.489	0	0	1	1	
Corruption Indicator II (Share)	9,593	0.195	0.294	0	0	0.3	1	
Corruption Indicator III (Amount)	9,593	125,695	954,252	0	0	29,427	49,282,832	
Mismanagement Indicator I (Binary)	9,593	0.746	0.435	0	0	1	1	
Mismanagement Indicator II (Share)	9,593	0.619	0.407	0	0	1	1	
Mismanagement Indicator III (Amount)	9,593	268,168	2,618,568	0	0	122,000	236,198,658	

Figure 9: Panel A: Variables at the Service Order Level

Summary Statistics

Panel B: Municipal Level

	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Urban Population (Share)	1,139	0.642	0.221	0.042	0.476	0.826	1
Female (Share)	1,139	0.505	0.015	0.461	0.495	0.512	0.658
Illiteracy Rate	1,139	0.168	0.099	0.016	0.083	0.254	0.428
GDP per capita	1,139	11,890	11,696	2,463	5,046	14,749	153,770
Gini Index	1,139	0.512	0.066	0.318	0.469	0.555	0.783
Human Development Index	1,139	0.654	0.072	0.469	0.592	0.714	0.862
Poverty Rate	1,139	0.250	0.184	0.003	0.078	0.404	0.755
Presence of AM Radio	1,139	0.237	0.425	0	0	0	1
Education Council Established	1,139	0.781	0.413	0	1	1	1
Health Council Established	1,139	0.969	0.173	0	1	1	1
Seat of Judiciary Branch	1,139	0.514	0.500	0	0	1	1
Vote Margin	1,139	0.168	0.188	0.0003	0.047	0.211	1
Mayor Reelection Rate	1,139	0.293	0.451	0	0	1	1

Sources: CGU, CEPESP-FGV, IBGE, and TSE. Panel A contains variables measured at the service order level coded by CEPESP-FGV straight out of CGU audit reports, including the six corruption and mismanagement outcomes. Panel B contains covariates at the municipal level measured in 2010 by the Brazilian Office of Statistics (IBGE) and electoral data from the Electoral Court (TSE) for municipal elections in 2000, 2004, and 2008. 1.8% of the two election covariates had missing values and were recoded to the overall mean as per Donald Green's lab Statement of Purpose.

Covariate Balance Tests

	Purc	hases		Works		
$Municipal\ Variables:$	Cutoff 1	Cutoff 2	Cutoff 1	Cutoff 2	Cutoff 3	
Urban Population (Share)	0.756	0.775	0.297	0.702	0.617	
Female (Share)	0.281	0.078*	0.005***	0.857	0.157	
Illiteracy Rate	0.159	0.169	0.220	0.140	0.949	
GDP	0.284	0.140	0.995	0.721	0.502	
Gini Index	0.153	0.163	0.071*	0.712	0.457	
Human Development Indicator	0.105	0.205	0.227	0.107	0.826	
Poverty Rate	0.079*	0.109	0.454	0.097*	0.679	
Presence of AM Radio	0.799	0.359	0.002***	0.315	0.388	
Education Council Established	0.430	0.301	0.056*	0.275	0.523	
Health Council Established	0.844	0.274	0.648	0.469	0.160	
Seat of Judiciary Branch	0.002***	0.004***	0.158	0.516	0.400	
Vote Margin	0.815	0.918	0.728	0.242	0.900	
Mayor Reelection Rate	0.785	0.332	0.726	0.745	0.250	
Sample Size (Below; Above)	(363; 835)	(877; 555)	(70; 177)	(406; 238)	(33; 15)	

Notes: we used the Calonico et al. (2015) bandwidths calculated in table 6. In total, there are 36 unique bandwidths from the combinations across procurement type, outcome, and cutoff. We narrow down to one single bandwidth per procurement type and cutoff by focusing only on the most important outcome, performance indicator I, such as we had done for table 5. We compute the bandwidth for both the corruption and the mismanagement version of indicator I and use the smaller bandwidth across the two for robustness purposes, as we want like to narrow down on the samples across cutoffs as much as possible.*pc.41.**pc.05.***pc.01

Bandwidth Tests

		Corr	Corruption Outcomes			agement Ou	tcomes
		Indicator I	Indicator II	Indicator III	Indicator I	Indicator II	Indicator III
Purchases	Cutoff 1	26,564	26,327	22,671	27,393	26,554	22,364
	Cutoff 2	45,854	35,566	$34,\!547$	43,431	39,460	38,455
	Cutoff 3	323,425	281,940	289,857	205,542	213,622	226,386
	Cutoff 1	29,960	33,076	28,276	43,876	44,177	38,117
Works	Cutoff 2	74,779	65,067	67,447	60,251	55,164	56,915
	Cutoff 3	1,001,774	862,717	825,342	340,947	739,532	956,064
	Cutoff 1	23,987	24,116	18,606	18,852	19,546	17,728
Pooled	Cutoff 2	51,276	39,937	39,263	33,164	32,725	60,868
	Cutoff 3	287,165	304,498	323,916	356,322	362,109	245,302

Notes: These are the Cattaneo et al. (2016, 2018) optimal, data-driven bandwidth sizes, regardless of whether the multiple cutoffs are cumulative or not. We use the average across purchases and works bandwidths for RD manipulation and covariate balance tests.

Figure 12: Bandwidth Tests

RD Graphs

Figure 13: RD Graphs

Is this result spurious? Using **fake purchases** cutoffs for works transfers, the answer is **no**.

Mismanagement Share

Figure 14: Mismanagement Share Placebo 1

Is this result spurious? Using **fake purchases** cutoffs for works transfers, the answer is **no**.

Mismanagement Amount

Figure 15: Mismanagement Amount Placebo 1

Isn't this a feature of those transfers rather than a feature of procurement? Using **non-procurement** transfers, the answer is also **no**.

Mismanagement Share

Figure 16: Mismanagement Share Placebo 2

Isn't this a feature of those transfers rather than a feature of procurement? Using **non-procurement** transfers, the answer is also **no**.

Mismanagement Amount

Figure 17: Mismanagement Amount Placebo 2

Cost-Benefit Analysis

Cost	Type	Avg. Loss (in R\$)	# Obs.	Total (in R\$)
Corruption	Purchases	2,491	1,934	4,818,570
Mismanagement	Purchases	10,659	1,924	20,508,793
Corruption	Works	2,871	314	901,789
Mismanagement	Works	10,529	423	4,454,134
		Total	Cost (A)	30,683,288
Benefits				
Works	Mismanagement	-4,611	423	-1,950,453
		Total Be	enefit (B)	-1,950,453
$Welfare\ Effects$				
A - B	Total Cost (in	R\$) in the absence of	of Benefit	$32,\!633,\!741$
$100 \times B/(A-B)$		% Cost F	Reduction	5.98
$A_{works} - B$	Works Cost (in	R\$) in the absence of	of Benefit	7,306,377
$100 \times B/(A_{works} - B)$		% Works Cost F	Reduction	26.69

Figure 18: Back-of-the-envelope Calculation