UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2018/1 Prova da área IIA

1 - 6 7 Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Identidades:			
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$		
$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$		
$(a+b)^n = \sum_{j=0}^{\infty} {n \choose j} a^{n-j} b^j, {n \choose j} = \frac{n!}{j!(n-j)!}$			
$\operatorname{sen}(x+y) = \operatorname{sen}(x)\operatorname{cos}(y) + \operatorname{sen}(y)\operatorname{cos}(x)$			
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$			

Propriedades:

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

Séries:
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$\operatorname{senh}(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
$-1 < x < 1, \ m \neq 0, 1, 2, \dots$

Funções especiais:

runções especiais.			
Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$		
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$		
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$		
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$		
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$		

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

Tabela	de	transformadas	de	Laplace:

Tabel	a de transformadas de Laplace:	
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}$ $\frac{1}{s}$ $\frac{1}{s^2}$	1
2	$\frac{1}{a^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	t^{n-1}
		$\frac{(n-1)!}{\sqrt{\pi t}}$
4	$\overline{\sqrt{s}}$,	$\sqrt{\pi t}$
5	$\frac{1}{\sqrt{s}},$ $\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$	e^{at}
8	$\frac{\overline{s-a}}{1}$ $\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$ $\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b} \left(e^{at} - e^{bt} \right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b} \left(ae^{at} - be^{bt} \right)$
13	$\frac{1}{s^2 + w^2}$	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$ \frac{1}{s^2 + w^2} $ $ \frac{s}{s^2 + w^2} $ $ \frac{1}{s^2 - a^2} $ $ \frac{s}{s^2 - a^2} $ $ 1 $	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
0.4	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$	1 (() (12)
24	$(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2} (\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) -$
	(5 200)	$-\cos(at) \operatorname{senh}(at)$]
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^2)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$
	(0 4)	

		15-(22
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0,5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2 + w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 (1.0 ponto) Seja f(t) = (t-1)u(t-2) e g(t) = u(t-1)u(t-5). Assinale as alternativas que indicam respectivamente $\mathcal{L}{f(t)}$ e $\mathcal{L}{g(t)}$:

$$\left(\begin{array}{c} \left(\frac{1}{s^2} - \frac{1}{s}\right) \frac{e^{-2s}}{s} \end{array}\right)$$

$$\left(\right) \frac{e^{-6s}}{s}$$

$$(\)\ \frac{1}{s^2} - \frac{e^{-2s}}{s}$$

$$(X) \frac{e^{-5s}}{s}$$

$$\left(\ \right) \frac{1}{s} + \frac{e^{-2s}}{s^2}$$

$$(\) \frac{e^{-5s}}{s^2}$$

$$(\) \frac{(1-s)e^{-2s}}{s^2}$$

$$(\) \frac{e^{-6s}}{s^2}$$

(X)
$$\frac{(s+1)e^{-2s}}{s^2}$$

$$(\)\ \frac{e^{-s}}{s}$$

• Questão 2 (1.0 ponto) Considere os três gráficos de três funções e suas três transformadas de Laplace

Função I: f(t) = u(t) + u(t-1) + u(t-2) - 3u(t-3)Função II: f(t) = tu(t) + 2(1-t)u(t-1) + tu(t-2)

Função III: f(t) = u(t-1) + u(t-2) - 2u(t-3)

Transformada A: $F(s) = \frac{1 + e^{-s} + e^{-2s} - 3e^{-3s}}{e^{-s} + e^{-2s} - 2e^{-3s}}$ Transformada B: $F(s) = \frac{e^{-s} + e^{-2s} - 2e^{-3s}}{e^{-s} + e^{-2s} - 2e^{-3s}}$

Transformada C: $F(s) = \frac{1 - 2e^{-s} + e^{-2s} + 2se^{-2s}}{c^2}$

Assinale as alternativas que indicam respectivamente a correta relação entre os gráficos e as funções:

• Questão 3 (1.0 ponto) Seja
$$F(s) = \frac{2s}{(s^2+1)^2}$$
 e $f(t) = \mathcal{L}^{-1}\{F(s)\}$. Assinale as alternativas que indicam respectivamente $f(t)$ e $\mathcal{L}\{tf(t)\}$:

$$() \frac{2}{s(s^2+1)^2}$$

$$() 2\cos(t)$$

$$() \frac{2}{(s^2+1)^2}$$

()
$$2\operatorname{sen}(t)\cos(t)$$

$$(s^2+1)^2$$

$$() t \operatorname{sen}(t)$$

$$(\)\ \frac{2-6s^2}{(s^2+1)^4}$$

$$() \sin(t) + 2\cos(t)$$

(X)
$$\frac{6s^2-2}{(s^2+1)^3}$$

$$() 2\cos^2(t)$$

$$() \frac{6s^2-2}{(s^2+1)^2}$$

• Questão 4 (1.0 ponto) Dado que y(t) satisfaz a equação integral dada por:

$$2y(t) + \int_0^t y(\tau)d\tau = 4, \quad \forall t \ge 0.$$

Assinale as alternativas que indicam respectivamente Y(s) e y(t):

(X)
$$Y(s) = \frac{4}{2s+1}$$

()
$$Y(s) = \frac{4}{s+2}$$

()
$$y(t) = 4e^{-t/2}$$

$$(\)\ Y(s) = \frac{2}{2s+1}$$

()
$$y(t) = 2e^{-t}$$

$$(\)\ Y(s) = \frac{2}{}$$

()
$$y(t) = 4e^{-t}$$

()
$$Y(s) = \frac{2}{s+2}$$

()
$$y(t) = 2e^{-2t}$$

()
$$Y(s) = \frac{4s}{2s+1}$$

(X)
$$y(t) = 2e^{-t/2}$$

$$(\)\ Y(s) = \frac{2s}{2s+1}$$

()
$$y(t) = 4e^{-2t}$$

• Questão 5 (1.0 ponto) Dado que y(t) satisfaz a equação diferencial dada por:

$$y'(t) + y(t) = \delta(t-1) + 2\delta(t-3), \quad \forall t \ge 0, \quad y(0) = 0$$

Assinale as alternativas que indicam respectivamente y(t) e y(2): () $y(t)=u(t-1)e^{t-1}+2u(t-3)e^{3-t}$ (X) $y(2)=e^{-1}$

()
$$y(t) = u(t-1)e^{t-1} + 2u(t-3)e^{3-t}$$

$$(X) y(2) = e^{-1}$$

(X)
$$y(t) = u(t-1)e^{1-t} + 2u(t-3)e^{3-t}$$

$$(\)\ y(2) = e^{-1} + 2e^{1}$$

()
$$y(t) = u(t-1)e^{1-t} + 2u(t-3)e^{t-3}$$

$$(\)\ y(2) = e^{-1} - 2e^{1}$$

()
$$y(t) = u(t-1)e^{t-1} + 2u(t-3)e^{t-3}$$

$$(\)\ y(2) = 2e^1$$

()
$$y(t) = u(t-1)e^{1-t} - 2u(t-3)e^{t-3}$$

$$() u(2) = 2e^{-1} + e^{1}$$

()
$$y(t) = u(t-1)e^{1-t} - 2u(t-3)e^{3-t}$$

$$(\)\ y(2) = 2e^{-1} - e^{1}$$

• Questão 6 (1.0 ponto) Dado o sistema massa-mola-amortecedor modelado pela equação a seguir:

$$mx''(t) + \gamma x'(t) + \kappa x(t) = 0$$

onde x(t) representa a posição e $m, \ \gamma$ e κ são constantes positivas. A tranformada de Laplace de x(t) é dada por $X(s)=\frac{2}{s^2+2s+5}$.

Assinale as alternativas que indicam respectivamente o regime de amortecimento e a as condições iniciais:

- () x(0) = 0 e x'(0) = -2
- () Superamortecido () x(0) = 2 e x'(0) = 0
 - $(x_0) = -2 e x'(0) = 0$
- (X) Subamortecido () x(0) = 2 e x'(0) = 2
- () Não amortecido () x(0) = 2 e x'(0) = 2 () x(0) = -2 e x'(0) = -2
- () Não é possível determinar com os dados oferecidos. (X) x(0) = -2 e x'(0) = -2
- Questão 7 (4.0 pontos) As concentrações de três reagentes A, B e C são dadas por x(t), y(t) e z(t), respectivamente. Considere a reação dada por:

$$A \longleftrightarrow B \longleftrightarrow C$$
.

modelada por:

$$x'(t) = -2x(t) + 2y(t) + 6$$

 $y'(t) = 2x(t) - 5y(t)$
 $z'(t) = 3y(t) - 6$

com x(0) = 11, y(0) = 0 e z(0) = 1.

- a) (1.5) Encontre expressões para X(s), Y(s) e Z(s).
- b) (1.5) Encontre x(t), y(t) e z(t).
- c) (0.5) Encontre o ponto de equilíbrio dado por:

$$x_{eq} = \lim_{t \to \infty} x(t)$$

$$y_{eq} = \lim_{t \to \infty} y(t)$$

$$z_{eq} = \lim_{t \to \infty} z(t)$$

d) (0.5) Esboce os gráficos de x(t), y(t) e z(t).

Solução a): Aplicamos a transformada de Laplace no sistema e usamos as propriedades 1 e 2 para obter:

$$sX - 11 = -2X + 2Y + \frac{6}{s}$$

 $sY = 2X - 5Y$
 $sZ - 1 = 3Y - \frac{6}{s}$.

Para calcular X(s), Y(s) e Z(s), precisamos resolver o sistema:

$$(s+2)X - 2Y = 11 + \frac{6}{s}$$
$$-2X + (s+5)Y = 0$$
$$-3Y + sZ = 1 - \frac{6}{s}.$$

As duas primeiras equação permite-nos calcular X e Y. Começamos multiplicando a segunda equação por $\frac{s+2}{2}$ e somando a primeira:

$$\left(\frac{(s+5)(s+2)}{2} - 2\right)Y = 11 + \frac{6}{s}.$$

Agora, multiplicamos por dois e temos:

$$((s+5)(s+2)-4)Y = 22 + \frac{12}{s}.$$

Resolvemos o lado esquerdo e obtemos

$$(s^2 + 7s + 6) Y = 22 + \frac{12}{s}$$
.

ou

$$(s+1)(s+6)Y = 22 + \frac{12}{s}$$
.

Assim, calculamos Y:

$$Y = \frac{22}{(s+1)(s+6)} + \frac{12}{s(s+1)(s+6)}$$
$$= \frac{22s+12}{s(s+1)(s+6)}.$$

Voltamos a segunda equação do sistema para calcular X:

$$X = \frac{(s+5)Y}{2}$$

$$= \frac{(s+5)}{2} \frac{22s+12}{s(s+1)(s+6)}$$

$$= \frac{(11s+6)(s+5)}{s(s+1)(s+6)}$$

$$= \frac{11s^2+61s+30}{s(s+1)(s+6)}.$$

A última equação nos dá Z:

$$Z = \frac{3Y}{s} + \frac{1}{s} - \frac{6}{s^2}$$

$$= \frac{3}{s} \frac{22s + 12}{s(s+1)(s+6)} + \frac{1}{s} - \frac{6}{s^2}$$

$$= \frac{66s + 36}{s^2(s+1)(s+6)} + \frac{1}{s} - \frac{6}{s^2}$$

$$= \frac{66s + 36 + s(s+1)(s+6) - 6(s+1)(s+6)}{s^2(s+1)(s+6)}$$

$$= \frac{66s + 36 + s^3 + 7s^2 + 6s - 6s^2 - 42s - 36}{s^2(s+1)(s+6)}$$

$$= \frac{s^2 + s + 30}{s(s+1)(s+6)}$$

Solução b): Precisamos fazer frações parciais para cada uma das expressões:

$$Y = \frac{22s+12}{s(s+1)(s+6)} = \frac{2}{s} + \frac{2}{s+1} - \frac{4}{s+6},$$

$$X = \frac{11s^2 + 61s + 30}{s(s+1)(s+6)} = \frac{5}{s} + \frac{4}{s+1} + \frac{2}{s+6}$$

$$Z = \frac{s^2 + s + 30}{s(s+1)(s+6)} = \frac{5}{s} - \frac{6}{s+1} + \frac{2}{s+6}.$$

As transformadas inversas são dadas pelos itens 1 e 7 da tabela:

$$y(t) = 2 + 2e^{-t} - 4e^{-6t},$$

$$x(t) = 5 + 4e^{-t} + 2e^{-6t}$$

е

$$z(t) = 5 - 6e^{-t} + 2e^{-6t}.$$

Solução c):

$$max_{eq} = \lim_{t \to \infty} x(t) = 5$$

$$y_{eq} = \lim_{t \to \infty} y(t) = 2$$

$$z_{eq} = \lim_{t \to \infty} z(t) = 5$$

$$z_{eq} = \lim_{t \to \infty} z(t) = 5$$

Solução d):

