Course 04 – Recursion and Algorithm Complexity Lecturer: Contact: Faculty of Computer Science and Engineering Hochiminh city University of Technology

Contents

- 1. Recursion and the basic components of recursive algorithms
- 2. Properties of recursion
- 3. Designing recursive algorithms
- 4. Recursion implementation in C/C++
- 5. Algorithm Efficiency
- 6. Big-O notation
- 7. Problems and common complexities

Recursion and the basic components of recursive algorithms

Recursion

Definition

Recursion is a repetitive process in which an algorithm calls itself.

• Direct : $A \rightarrow A$

• Indirect : $A \rightarrow B \rightarrow A$

Example

Factorial

$$Factorial(n) = \begin{bmatrix} 1 & \text{if } n = 0 \\ n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1 & \text{if } n > 0 \end{bmatrix}$$

Using recursion:

$$Factorial(n) = \begin{bmatrix} 1 & \text{if } n = 0 \\ n \times Factorial(n-1) & \text{if } n > 0 \end{bmatrix}$$

Basic components of recursive algorithms

Two main components of a Recursive Algorithm

- 1. Base case (i.e. stopping case)
- 2. General case (i.e. recursive case)

Example

Factorial

$$Factorial(n) = \begin{bmatrix} 1 & \text{if } n = 0 & \text{base case} \\ n \times Factorial(n-1) & \text{if } n > 0 & \text{general case} \end{bmatrix}$$

Recursion **Factorial: Iterative Solution Algorithm** iterativeFactorial(n) Calculates the factorial of a number using a loop. **Pre:** n is the number to be raised factorially Post: n! is returned - result in factoN i = 1factoN = 1while i < = n dofactoN = factoN * i i = i + 1end return factoN **End** iterativeFactorial

Recursion **Factorial: Recursive Solution Algorithm** recursiveFactorial(n) Calculates the factorial of a number using a recursion. Pre: n is the number to be raised factorially Post: n! is returned if n = 0 then return 1 else return n * recursiveFactorial(n-1) end End recursiveFactorial

Properties of all recursive algorithms

- A recursive algorithm solves the large problem by using its solution to a simpler sub-problem
- Eventually the sub-problem is simple enough that it can be solved without applying the algorithm to it recursively.
 - \rightarrow This is called the base case.

The Design Methodology

Every recursive call must either solve a part of the problem or reduce the size of the problem.

Rules for designing a recursive algorithm

- 1. Determine the base case (stopping case).
- 2. Then determine the general case (recursive case).
- 3. Combine the base case and the general cases into an algorithm.

Limitations of Recursion

• A recursive algorithm generally runs more slowly than its nonrecursive implementation.

• BUT, the recursive solution shorter and more understandable.

Greatest Common Divisor

Definition

$$\gcd(a,b) = \begin{bmatrix} a & if \ b = 0 \\ b & if \ a = 0 \\ \gcd(b, a \bmod b) & otherwise \end{bmatrix}$$

Example

$$gcd(12, 18) = 6$$

 $gcd(5, 20) = 5$

Greatest Common Divisor Algorithm gcd(a, b) Calculates greatest common divisor using the Euclidean algorithm. **Pre:** a and b are integers Post: greatest common divisor returned if b = 0 then return a end if a = 0 then return b end return gcd(b, a mod b) End gcd

Fibonacci Numbers **Algorithm** fib(n) Calculates the nth Fibonacci number. **Pre:** n is postive integer Post: the nth Fibonnacci number returned if n = 0 or n = 1 then return n end return fib(n-1) + fib(n-2)End fib

Fibonacci Numbers

			-		
No	Calls	Time	No	Calls	Time
1	1	< 1 sec.	11	287	< 1 sec.
2	3	< 1 sec.	12	465	< 1 sec.
3	5	< 1 sec.	13	753	< 1 sec.
4	/ 9	< 1 sec.	14	1,219	< 1 sec.
5	15	< 1 sec.	15	1,973	< 1 sec.
6	25	< 1 sec.	20	21,891	< 1 sec.
7	41	< 1 sec.	25	242,785	1 sec.
8	67	< 1 sec.	30	2,692,573	7 sec.
9	109	< 1 sec.	35	29,860,703	1 min.
10	177	< 1 sec.	40	331,160,281	13 min.

The Towers of Hanoi Move disks from Source to Destination using Auxiliary: 1. Only one disk could be moved at a time. 2. A larger disk must never be stacked above a smaller one. 3. Only one auxiliary needle could be used for the intermediate storage of disks. Destination Source **Auxiliary**

The Towers of Hanoi Algorithm move(val disks <integer>, val source <character>, val destination <character>, val auxiliary <character>) Move disks from source to destination. **Pre:** disks is the number of disks to be moved Post: steps for moves printed print("Towers: ", disks, source, destination, auxiliary) if disks = 1 then print ("Move from", source, "to", destination) else move(disks - 1, source, auxiliary, destination) move(1, source, destination, auxiliary) move(disks - 1, auxiliary, destination, source) end return End move

33 / 41

Fibonacci Numbers


```
#include <iostream>
using namespace std;
long fib(long num);
int main () {
  int num;
  cout << "What Fibonacci number do you want to calculate?";</pre>
 cin >> num;
  cout << "The " << num << "the Fibonacci number is: " << fib (num) << endl;</pre>
  return 0;
long fib (long num) {
 if (num == 0 || num == 1)
    return num;
  return fib (num-1) + fib (num-2);
```

The Towers of Hanoi #include <io stream > using namespace std; void move (int n, char source, char destination , char auxiliary); int main () { int num Disks; cout << "Please enter number of disks: ";</pre> cin >> numDisks; cout << "Start Towers of Hanoi" << endl;</pre> move(numDisks, 'A', 'C', 'B'); return 0;

The Towers of Hanoi

Algorithm Efficiency

- A problem often has many algorithms.
- Comparing two different algorithms
- ⇒ Computational complexity: measure of the difficulty degree (time and/or space) of an algorithm.
 - How fast an algorithm is?
 - How much memory does it cost?

Algorithm Efficiency

General format

efficiency =
$$f(n)$$

n is the size of a problem (the key number that determines the size of input data)

Linear Loops


```
for (i = 0; i < 1000; i++)
// application code</pre>
```

The number of times the body of the loop is replicated is 1000.

$$f(n) = n$$

$$f(n) = n/2$$

Logarithmic Loops

Multiply loops

```
i = 1
while (i <= n)
   // application code
   i = i x 2
end while</pre>
```

Divide loops

```
i = n
while (i >= 1)
    // application code
    i = i / 2
end while
```

$$f(n) = \log_2 n$$

Nested Loops

Iterations = Outer loop iterations × Inner loop iterations

Example

```
i = 1
while (i <= n)
    j = 1
    while (j <= n)
        // application code
        j = j * 2
    end while
    i = i + 1
end while</pre>
```

$$f(n) = n \log_2 n$$

Quadratic Loops

Example

```
i = 1
while (i <= n)
    j = 1
    while (j <= n)
        // application code
        j = j + 1
    end while
    i = i + 1
end while</pre>
```

$$f(n) = n^2$$

Dependent Quadratic Loops

Example

```
i = 1
while (i <= n)
    j = 1
    while (j <= i)
        // application code
        j = j + 1
    end while
    i = i + 1
end while</pre>
```

$$1 + 2 + \ldots + n = n(n + 1)/2$$

Asymptotic Complexity

- Algorithm efficiency is considered with only big problem sizes.
- We are not concerned with an exact measurement of an algorithm's efficiency.
- Terms that do not substantially change the function's magnitude are eliminated.

Big-O notation

The formal Definition of Big-O

 $f \in O(g)$ if and only if $\exists c \in R^+$, $n_0 \in R$ such that $n \ge n_0$, $f(n) \le cg(n)$

We are only interested in the most reduced upper bound. For example, instead of saying that f is in O(g) where $g(x)=5x^2+x$, we would say that f is in O(g) where $g(x)=x^2$. Why?

Big-O notation

Example

$$f(n) = c.n \to f(n) \in O(n)$$

 $f(n) = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2} \to f(n) \in O(n^2)$

- Set the coefficient of the term to one.
- Keep the largest term and discard the others.

Some example of Big-O:

$$\log_2 n$$
, n , $\log_2 n$, n^2 , ... n^k ... 2^n , $n!$

Standard Measures of Efficiency

Efficiency	Big-O	Iterations	Est. Time
logarithmic	$O(\log_2 n)$	14	microseconds
linear	O(n)	10 000	0.1 seconds
linear log	$O(n \log_2 n)$	140 000	2 seconds
quadratic	O(n ²)	10000 ²	15-20 min.
polynomial	$O(n^k)$	10000^{k}	hours
exponential	$O(2^n)$	210000	intractable
factorial O(n!)		10000!	intractable

Assume instruction speed of 1 microsecond and 10 instructions in loop.

$$n = 10000$$

Big-O Analysis Examples

Algorithm addMatrix(val matrix1<matrix>, val matrix2<matrix>, val size<integer>, ref matrix3<matrix>)

Add matrix1 to matrix2 and place results in matrix3

Pre: matrix1 and matrix2 have data size is number of columns and rows in matrix

Post: matrices added – result in matrix3 r=1

```
while r < = size do
   c = 1
   while c < = size do
      matrix3[r, c] = matrix1[r, c] + matrix2[r, c]
      c = c + 1
   end
   r = r + 1
end
```

return matrix3

End addMatrix

Time Costing Operations

- The most time consuming: data movement to/from memory/storage.
- Operations under consideration:
 - Comparisons
 - Arithmetic operations
 - Assignments

The Towers of Hanoi

Complexity

$$T(n) = 1 + 2T(n - 1)$$

=> $T(n) = 1 + 2 + 2^2 + ... + 2^{n-1}$
=> $T(n) = 2^n - 1$
=> $T(n) = O(2^n)$

• With 64 disks, total number of moves:

$$2^{64} - 1 \approx 2^4 \times 2^{60} \approx 2^4 \times 10^{18} = 1.6 \times 10^{19}$$

• If one move takes 1s, 2^{64} moves take about 5×10^{11} years (500 billions years).

Binary search

Recurrence EquationAn equation or inequality that describes a function in terms of its value on smaller input.

$$T(n) = 1 + T(n/2) \Rightarrow T(n) = O(\log_2 n)$$

Binary search • Best case: when the number of steps is smallest. T(n) = O(1)• Worst case: when the number of steps is largest. $T(n) = O(\log_2 n)$ • Average case: in between. $T(n) = O(\log_2 n)$

Sequential search

8 5 21 2 1 13 4 34 7 18

- Best case: T(n) = O(1)
- Worst case: T(n) = O(n)
- Average case: $T(n) = \sum_{i=1}^{n} i p_i$ p_i : probability for the target being at a[i]

$$p_i = 1/n \to T(n) = (\sum_{i=1}^n i)/n = O(n(n+1)/2n) = O(n)$$

Quick sort

19	8	3	15	28	10	22	4	12	83
2.4	J 16		9/1	1	7-1	1	1/0	1	7

Recurrence Equation

$$T(n) = O(n) + 2T(n/2)$$

- Best case: $T(n) = O(n \log_2 n)$
- Worst case: $T(n) = O(n^2)$
- Average case: $T(n) = O(n \log_2 n)$