In class work **4** has questions **1** through **1** with a total of **6** points. Turn in your work at the end of class *on paper*. This assignment is due *Tuesday 5 September 13:20*.

- 1. Define a region Q of the xy plane by $Q = \{(x, y) \mid 0 \le y \le 1 |x|, -1 \le x \le 1\}$.
- (a) Sketch the region *Q* in the xy plane.

(b) Make a conjecture about the location of the centroid of Q. Of course $\overline{x} \le 107$ and $\overline{y} \le 107$ is a conjecture, but try for something more specific.

Solution: The region q is symmetric with respect to the y axis. Surely this means that $\overline{x} = 0$.

The triangle is bottom heavy, so the y coordinate of the center of should be less than 1/2.

(c) Use junior high math (no calculus) to find area(Q).

Solution: area(Q) = $\frac{1}{2}$ base × height = 1.

(d) Solve $M\overline{x} = \int_{-1}^{1} x(1-|x|) dx$, where M is the area of Q, for \overline{x} . To evaluate the definite integral $\int_{-1}^{1} x(1-|x|) dx$, use a fact about the integral of an odd function over a symmetric interval.

Solution: The integrand is odd and the interval is symmetric. So $\overline{x} = 0$. To show that the integrand is odd, we need to show that y = x(1 - |x|) and -y = (-x)(1 - |x|) are semantically the same. We have

$$[-y = (-x)(1 - |-x|)] \equiv [-y = (-x)(1 - |x|)]$$
 (simplify absolute value)

$$\equiv [y = x(1 - |x|)]$$
 (multiply by -1)

(e) Solve $M\overline{y} = \frac{1}{2} \int_{-1}^{1} (1 - |x|)^2 dx$, where M is the area of Q, for \overline{y} . To do this, use the fun fact that $\int |x| dx = \frac{1}{2} x |x|$.

Solution:

$$M\overline{y} = \frac{1}{2} \int_{-1}^{1} (1 - |x|)^{2} dx,$$
 (given)

$$= \frac{1}{2} \int_{-1}^{1} 1 - 2|x| + |x|^{2} dx,$$
 (expand)

$$= \frac{1}{2} \int_{-1}^{1} 1 - 2|x| + x^{2} dx,$$
 (simplify $|x|^{2}$)

$$= \frac{1}{2} \left(x - x|x| + \frac{1}{3} x^{3} \Big|_{x=-1}^{x=1},$$
 (FTC)

$$= \frac{1}{2} \left(1 - 1 + \frac{1}{3} \right) - \frac{1}{2} \left(-1 + 1 - \frac{1}{3} \right),$$
 (paste)

$$= \frac{1}{2}.$$
 (arithmetic)

Since M = 1, we have $\overline{y} = \frac{1}{3}$.