Лекция 2

РАЗМЕРНОСТЬ И БАЗИС ЛИНЕЙНОГО ПРОСТРАНСТВА

Говорят, что линейное пространство V имеет размерность n, если в пространстве V существует n линейно независимых векторов, а любая система из n+1 вектора линейно зависима.

Определение. Размерность линейного пространства — это наибольшее число линейно независимых векторов в этом пространстве.

Обозначение. dim V — размерность линейного пространства V.

Первое определение базиса

Определение. Пусть V-n-мерное линейное пространство. Базисом $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\} \subset V$ называется любая система из n линейно независимых векторов в этом пространстве.

Пример. В линейном пространстве матриц размера $2 \times 2 - \mathbb{R}^{2 \times 2}$ рассмотрим векторы (матрицы):

$$\bar{e}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \bar{e}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \bar{e}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}; \bar{e}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Векторы \bar{e}_1 , \bar{e}_2 , \bar{e}_3 , \bar{e}_4 — линейно независимы, т.к.

$$\lambda_1 \bar{e}_1 + \lambda_2 \bar{e}_2 + \lambda_3 \bar{e}_3 + \lambda_4 \bar{e}_4 = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_4 \end{pmatrix} = O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \Leftrightarrow \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$$

Любые 5 матриц размера 2 × 2 линейно зависимы

$$\Rightarrow$$
 dim $\mathbb{R}^{2 imes2}=4$ и $\mathcal{B}=\{ar{e}_1,ar{e}_2,ar{e}_3,ar{e}_4\}$ – базис

Пример. В линейном пространстве многочленов степени $\leq 2 - P_2 = \{p(t) = at^2 + bt + c; a, b, c \in \mathbb{R}\}$ рассмотрим многочлены: $t^2, t, 1$ — линейно независимы, т.к.

$$\lambda_1 t^2 + \lambda_2 t + \lambda_3 \cdot 1 = 0 \Leftrightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$$

Любые 4 многочлена линейно зависимы

$$\Rightarrow$$
 dim $P_2 = 3$ и $\mathcal{B} = \{t^2, t, 1\}$ – базис

Пример. В линейном пространстве $\mathbb{R}^n - n$ -мерном пространстве арифметических векторов рассмотрим векторы:

$$\bar{e}_1 = (1, 0, ..., 0)$$
 $\bar{e}_2 = (0, 1, ..., 0)$
...
 $\bar{e}_n = (0, 0, ..., 1)$

 $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n\}$ — линейно независима, т.к. линейная комбинация этих векторов с коэффициентами $\lambda_1, \lambda_2, \dots, \lambda_n$ представляет собой арифметический вектор $(\lambda_1, \lambda_2, \dots, \lambda_n)$, который равен $\bar{o} = (0, \dots, 0) \Leftrightarrow \lambda_i = 0, \ i = 1, 2, \dots, n$.

Любые n + 1 векторов линейно зависимы.

 \Rightarrow dim $\mathbb{R}^n=n$ и $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\ldots,\bar{e}_n\}$ — базис в пространстве \mathbb{R}^n

Теорема. (О разложении вектора по базису).

Пусть V — линейное пространство и $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ — базис в V. Тогда любой вектор $\bar{u} \in V$ есть линейная комбинация векторов базиса, т.е. $\forall \ \bar{u} \in V \ \exists \ \text{числа}\ x_1, x_2, ..., x_n \ \text{такие}, \ \text{что}\ \bar{u} = x_1 \bar{e}_1 + x_2 \bar{e}_2 + \cdots + x_n \bar{e}_n$ (2.1) и разложение (2.1) единственно.

Доказательство.

1) Докажем существование разложения (2.1)

Возьмем любой вектор $\bar{u} \in V$. Рассмотрим систему векторов $\Sigma = \{\bar{u}, \bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$. Система Σ состоит из n+1 вектора. Т.к. dim V=n, то Σ — линейно зависима, т.е. существует нетривиальная линейная комбинация

$$\lambda_0 \bar{u} + \lambda_1 \bar{e}_1 + \lambda_2 \bar{e}_2 + \dots + \lambda_n \bar{e}_n = \bar{o} \quad (2.2),$$

где хотя бы один из коэффициентов λ_0 , λ_1 , λ_2 , ... , λ_n отличен от нуля.

Предположим, что $\lambda_0=0 \ \Rightarrow \lambda_1 \bar{e}_1 + \lambda_2 \bar{e}_2 + \cdots + \lambda_n \bar{e}_n = \bar{o}$

Но \bar{e}_1 , \bar{e}_2 , ..., \bar{e}_n — линейно независимы

$$\Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0 \Rightarrow$$
 противоречие и $\lambda_0 \neq 0$

Из равенства (2.2) получим:

$$ar{u}=-rac{\lambda_1}{\lambda_0}ar{e}_1-rac{\lambda_2}{\lambda_0}ar{e}_2-\cdots-rac{\lambda_n}{\lambda_0}ar{e}_n= \ =x_1ar{e}_1+x_2ar{e}_2+\cdots+x_nar{e}_n \ -$$
 разложение (2.1)

2) Докажем единственность разложения (2.1)

Пусть существуют два различных разложения:

$$\bar{u} = x_1 \bar{e}_1 + x_2 \bar{e}_2 + \dots + x_n \bar{e}_n$$
 (2.1)

И

$$\bar{u} = y_1 \bar{e}_1 + y_2 \bar{e}_2 + \dots + y_n \bar{e}_n$$
 (2.3)

Вычитаем из равенства (2.1) равенство (2.3):

$$\bar{o} = (x_1 - y_1)\bar{e}_1 + (x_2 - y_2)\bar{e}_2 + \dots + (x_n - y_n)\bar{e}_n$$
 (2.4)

Т.к. \bar{e}_1 , \bar{e}_2 , ..., \bar{e}_n — линейно независимы, то линейная комбинация (2.4) тривиальна

$$\Rightarrow x_1 - y_1 = 0, x_2 - y_2 = 0, ..., x_n - y_n = 0$$

 $\Rightarrow x_1 = y_1, x_2 = y_2, ..., x_n = y_n \Rightarrow$ противоречие

⇒ разложения (2.1) единственно

ч.т.д.

3амечание. Числа $x_1, x_2, ..., x_n$ называются координатами вектора \bar{u} в базисе \mathcal{B} .

Обозначение. Если $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ — базис в V, то

$$\bar{u} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\mathcal{B}} \Leftrightarrow \bar{u} = x_1 \bar{e}_1 + x_2 \bar{e}_2 + \dots + x_n \bar{e}_n$$

Пусть V — линейное пространство и $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n\}$ — базис в V.

Теорема. Если
$$\bar{u}=\begin{pmatrix} x_1\\x_2\\ \vdots\\x_n\end{pmatrix}_{\mathcal{B}}$$
 и $\bar{v}=\begin{pmatrix} y_1\\y_2\\ \vdots\\y_n\end{pmatrix}_{\mathcal{B}}$, то
$$\bar{u}+\bar{v}=\begin{pmatrix} x_1+y_1\\x_2+y_2\\ \vdots\\x_n+y_n\end{pmatrix}_{\mathcal{B}}$$
 и $\lambda\bar{u}=\begin{pmatrix} \lambda x_1\\\lambda x_2\\ \vdots\\\lambda x_n\end{pmatrix}_{\mathcal{B}}$

Доказательство.

$$\bar{u} = \sum_{i=1}^{n} x_i \bar{e}_i; \quad \bar{v} = \sum_{i=1}^{n} y_i \bar{e}_i$$

$$\Rightarrow \bar{u} + \bar{v} = \sum_{i=1}^{n} x_i \bar{e}_i + \sum_{i=1}^{n} y_i \bar{e}_i = \sum_{i=1}^{n} (x_i + y_i) \bar{e}_i$$

$$\Rightarrow \bar{u} + \bar{v} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}_{\mathcal{B}}$$

Аналогично для $\lambda \bar{u}$:

$$\lambda \bar{u} = \lambda \sum_{i=1}^{n} x_i \bar{e}_i = \sum_{i=1}^{n} \lambda x_i \bar{e}_i \quad \Rightarrow \lambda \bar{u} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}_{\mathcal{E}}$$

ч.т.д.

Линейное подпространство

Определение. Подмножество $M \subset V$ называется линейным подпространством линейного пространства V, если оно само является линейным пространством относительно операции сложения элементов и умножения элемента на число.

Замечание. Подмножество $M \subset V$ есть линейное подпространство в линейном пространстве V тогда и только тогда, когда

- 1) $\forall \bar{a}, \bar{b} \in M \Rightarrow \bar{a} + \bar{b} \in M$
- 2) $\forall \lambda \in \mathbb{R}$ и $\forall \bar{a} \in M \Rightarrow \lambda \bar{a} \in M$

Замечание. Подмножество *M* ⊂ *V* есть линейное подпространство в линейном пространстве *V* тогда и только тогда, когда $\forall \ \bar{a}, \bar{b} \in M$ и $\forall \ \alpha, \beta \in \mathbb{R} \Rightarrow \alpha \bar{a} + \beta \bar{b} \in M$

Линейная оболочка

Пусть $\Sigma = \{\bar{u}_1, \bar{u}_2, ..., \bar{u}_m\}$ — система векторов линейного пространства V.

Определение. Линейной оболочкой системы векторов $\Sigma = \{\bar{u}_1, \bar{u}_2, ..., \bar{u}_m\}$ называется множество всевозможных линейных комбинаций этих векторов.

Обозначение. $L(\bar{u}_1,\bar{u}_2,\ ...,\bar{u}_m)$ — линейная оболочка системы векторов $\Sigma=\{\bar{u}_1,\bar{u}_2,\ ...,\bar{u}_m\}.$

Таким образом,

$$L(\bar{u}_1, \bar{u}_2, \dots, \bar{u}_m) = \{\bar{u} = \lambda_1 \bar{u}_1 + \lambda_2 \bar{u}_2 + \dots + \lambda_m \bar{u}_m; \lambda_i \in \mathbb{R}; i = 1, \dots, m\}$$

Теорема. Если $\bar{u}_1, \bar{u}_2, ..., \bar{u}_m$ — векторы линейного пространства V, то $L(\bar{u}_1, \bar{u}_2, ..., \bar{u}_m)$ является линейным подпространством пространства V.

Теорема вытекает из определения линейного подпространства.

Теорема. Размерность линейного подпространства не превосходит размерности пространства. Линейное подпространство той же размерности, что и все пространство, совпадает с пространством.

Доказательство.

Первая часть формулировки теоремы очевидна.

Пусть M — линейное подпространство в линейном пространстве V $\Rightarrow M \subset V$.

Пусть $\dim M = \dim V = n$.

Возьмем в M линейно независимую систему векторов $\Sigma = \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$. Система векторов Σ является базисом для обоих пространств M и V.

$$\Rightarrow \ \forall \bar{u} \in V \Rightarrow \bar{u} = x_1 \bar{e}_1 + x_2 \bar{e}_2 + \dots + x_n \bar{e}_n \Rightarrow \ \bar{u} \in M$$
$$\Rightarrow V \subset M \Rightarrow M = V$$

ч.т.д.

Теорема. Если
$$\bar{x} = \lambda_1 \bar{u}_1 + \lambda_2 \bar{u}_2 + \dots + \lambda_m \bar{u}_m$$
, то $L(\bar{x}, \bar{u}_1, \bar{u}_2, \dots, \bar{u}_m) = L(\bar{u}_1, \bar{u}_2, \dots, \bar{u}_m)$.

Доказательство.

Очевидно, что
$$L(\bar{u}_1, \bar{u}_2, \dots, \bar{u}_m) \subset L(\bar{x}, \bar{u}_1, \bar{u}_2, \dots, \bar{u}_m)$$
 $\forall \bar{v} \in L(\bar{x}, \bar{u}_1, \bar{u}_2, \dots, \bar{u}_m) \Rightarrow$ $\Rightarrow \bar{v} = \alpha_0 \bar{x} + \alpha_1 \bar{u}_1 + \alpha_2 \bar{u}_2 + \dots + \alpha_m \bar{u}_m =$ $= \alpha_0 (\lambda_1 \bar{u}_1 + \lambda_2 \bar{u}_2 + \dots + \lambda_m \bar{u}_m) +$ $+ \alpha_1 \bar{u}_1 + \alpha_2 \bar{u}_2 + \dots + \alpha_m \bar{u}_m =$ $= \beta_1 \bar{u}_1 + \beta_2 \bar{u}_2 + \dots + \beta_m \bar{u}_m \in L(\bar{u}_1, \bar{u}_2, \dots, \bar{u}_m)$ $\Rightarrow L(\bar{x}, \bar{u}_1, \bar{u}_2, \dots, \bar{u}_m) \subset L(\bar{u}_1, \bar{u}_2, \dots, \bar{u}_m)$ $\Rightarrow L(\bar{x}, \bar{u}_1, \bar{u}_2, \dots, \bar{u}_m) = L(\bar{u}_1, \bar{u}_2, \dots, \bar{u}_m)$

ч.т.д.

Определение. Система $\Sigma = \{\bar{u}_1, \bar{u}_2, ..., \bar{u}_m\}$ называется системой образующих линейного пространства V, если ее линейная оболочка совпадает с пространством: $L(\bar{u}_1, \bar{u}_2, ..., \bar{u}_m) = V$.

Теорема. (Теорема Штейница).

Пусть $\Sigma = \{\bar{u}_1, \bar{u}_2, \dots, \bar{u}_m\}$ — система образующих линейного пространства V и $\Sigma_1 = \{\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n\}$ — линейно независимая система в пространстве V. Тогда

- 1) $m \ge n$
- 2) какие-то n векторов системы Σ можно заменить на векторы системы Σ_1 так, что полученная система останется системой образующих пространства V.

Теорема. Любая линейно независимая система образующих линейного пространства V является его базисом.

Доказательство.

Пусть $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ — линейно независимая система образующих пространства V. Покажем, что dim V = n.

В пространстве V существует n линейно независимых векторов. Покажем, что любые n+1 векторов линейно зависимы.

Берем любую систему из n+1 вектора $\Sigma = \{\bar{u}_1, \bar{u}_2, \dots, \bar{u}_{n+1}\}.$ Предположим, что Σ — линейно независима.

Но т.к. $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\dots,\bar{e}_n\}$ — система образующих пространства $V\Rightarrow$ по теореме Штейница $n\geq n+1$

- \Rightarrow противоречие $\Rightarrow \Sigma$ линейно зависима
- \Rightarrow dim V=n и $\mathcal{B}=\{ar{e}_1,ar{e}_2,\ ...,ar{e}_n\}$ базис в V

ч.т.д.

Второе определение базиса

Определение. $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\dots,\bar{e}_n\}$ — базис в линейном пространстве V, если

- 1) $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ линейно независима;
- 2) $L(\mathcal{B})=V$, т.е. $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\dots,\bar{e}_n\}$ система образующих пространства V.

Определение базиса, удобное для решения задач

Oпределение. $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\dots,\bar{e}_n\}$ — базис в линейном пространстве V, если

- 1) \bar{e}_1 , \bar{e}_2 , ..., \bar{e}_n линейно независимы;
- 2) $\forall \ \bar{x} \in V \Rightarrow \bar{x} = x_1 \bar{e}_1 + x_2 \bar{e}_2 + \dots + x_n \bar{e}_n$.

Пример. Пусть $\mathbb{R}^{2\times 2}$ — линейное пространство матриц размера 2×2 . Пусть $M\subset \mathbb{R}^{2\times 2}$, где $M=\left\{X=\begin{pmatrix} a & b \\ c & a+b+c \end{pmatrix}; a,b,c\in \mathbb{R}\right\}$. Доказать, что M — линейное подпространство в пространстве $\mathbb{R}^{2\times 2}$. Найти базис и размерность пространства M.

Решение.

1) Докажем, что M — линейное подпространство в $\mathbb{R}^{2\times 2}$.

Пусть
$$X = \begin{pmatrix} a & b \\ c & a+b+c \end{pmatrix}$$
; $Y = \begin{pmatrix} a_1 & b_1 \\ c_1 & a_1+b_1+c_1 \end{pmatrix}$

Тогда $\forall X,Y \in M$ и $\forall \alpha,\beta \in \mathbb{R} \ \Rightarrow \alpha X + \beta Y \in M$

- \Rightarrow M линейное подпространство в пространстве $\mathbb{R}^{2\times2}$.
 - 2) Найдем базис и размерность пространства М.

$$X = \begin{pmatrix} a & b \\ c & a+b+c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

а) Рассмотрим векторы (матрицы):

$$\begin{split} \bar{e}_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \bar{e}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}; \bar{e}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \\ & \lambda_1 \bar{e}_1 + \lambda_2 \bar{e}_2 + \lambda_3 \bar{e}_3 = \\ &= \lambda_1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \\ &= \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_1 + \lambda_2 + \lambda_3 \end{pmatrix} = O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0 \end{split}$$

- \Rightarrow $ar{e}_1$, $ar{e}_2$, $ar{e}_3$ линейно независимы
- б) $\forall X \in M \Rightarrow X = a\bar{e}_1 + b\bar{e}_2 + c\bar{e}_3$

$$\Rightarrow \mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\} - \text{базис в } M$$

$$\Rightarrow \dim M = 3$$