Combinatorial Selection and Least Absolute Shrinkage via the CLASH Algorithm

Anastasios Kyrillidis and Volkan Cevher

{anastasios.kyrillidis,volkan.cevher}@epfl.ch

Laboratory for Information and Inference Systems LIONS/EPFL

http://lions.epfl.ch/

Problem statement

Underdetermined linear regression:

$$u = \Phi x^* + \varepsilon$$
,

- **Goal**: find signal x^* that generated the measurements u.
- **Difficulties:** $M < N \rightarrow$ Non-trivial nullspace of $\Phi \rightarrow$ ill-posed problem.
- Main assumption: x^* is K-sparse (i.e., $x^* \in \Sigma_K$) for K < M.

"Natural" criteria:

minimize
$$\|x\|_0$$

subject to $u = \Phi x$
where $\|x\|_0 = \#\{x_i \neq 0, i = 1, ..., N\}$.

"Natural" criteria:

minimize
$$\|x\|_0$$

subject to $u = \Phi x$
where $\|x\|_0 = \# \{x_i \neq 0, i = 1, ..., N\}$.
NP-hard [Natarajan'95]

"Natural" criteria:

where $||x||_0 = \# \{x_i \neq 0, i = 1, ..., N\}.$

NP hard [Natarajan'95] ← Not with the RIP assumption!

Restricted Isometry Property (RIP) [Candes & Tao.'06]

 Φ satisfies the RIP with constant δ_K iff

$$(1 - \delta_K) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta_K) \|x\|_2^2,$$

is satisfied for any $x \in \Sigma_K$

"Natural" criteria:

minimize
$$||x||_0$$

subject to $u = \Phi x$

where
$$||x||_0 = \#\{x_i \neq 0, i = 1, ..., N\}.$$

• What people usually use: Convex criteria...

...instead of: Combinatorial/non-convex criteria

 Does Lasso "know" that we are looking for a K-sparse solution?

 Does Lasso "know" that we are looking for a K-sparse solution? No.

Feasible Solution Candidate Set:

$$[(\textbf{A}),\,\ldots\,,\,(\textbf{C})].$$

 Does Lasso "know" that we are looking for a K-sparse solution? No.

Feasible Solution Candidate Set:

$$[(A), \ldots, (C)].$$

Can Lasso exploit discrete models?

 Does Lasso "know" that we are looking for a K-sparse solution? No.

Feasible Solution Candidate Set:

$$[(A),\ldots,(C)].$$

 Does Lasso "know" that we are looking for a K-sparse solution? No.

Feasible Solution Candidate Set:

$$[(A), \ldots, (C)].$$

Can Lasso exploit discrete models? Well, ...
 Maybe ⇒ Convexify discrete structure and regularize Ω(x) [Jenatton et al.'10]:

minimize
$$\|u - \Phi x\|_2 + \tau \Omega(x)$$
.

But, is it intuitive to construct Ω(x)?

 Does Lasso "know" that we are looking for a K-sparse solution? No.

But, is it intuitive to construct Ω(x)?
 Generally, No.

Feasible Solution Candidate Set:

$$[(A), \ldots, (C)].$$

O&A

Does Lasso "know" that we are looking for a K-sparse solution? No.

Feasible Solution Candidate Set:

$$[(A), \ldots, (C)].$$

Can Lasso exploit discrete models? Well, ... Maybe ⇒ Convexify discrete structure and regularize $\Omega(x)$ [Jenatton et al.'10]:

minimize
$$\|u - \Phi x\|_2 + \tau \Omega(x)$$
.

But, is it intuitive to construct $\Omega(x)$? Generally, No.

However, due to convexification, Lasso is easier to analyze!

What is this presentation about?

• New hybrid optimization framework.

New model-based projection framework.

 New algorithm: Combinatorial selection and Least Absolute SHrinkage (CLASH).

Our proposal:

minimize
$$||u - \Phi x||_2$$

CLASH: subject to
$$||x||_0 \le K$$

$$||x||_1 \le \lambda$$

Our proposal:

minimize
$$\|u - \Phi x\|_2$$

CLASH: subject to $\|x\|_0 \le K$
 $\|x\|_1 \le \lambda$

But, wait a moment...

Our proposal:

minimize
$$\|u - \Phi x\|_2$$

CLASH: subject to $\|x\|_0 \le K$
 $\|x\|_1 \le \lambda$

Our perspective: "redundancy" helps.

Our proposal:

minimize
$$||u - \Phi x||_2$$

CLASH: subject to $||x||_0 \le K$

 $||x||_1 \le \lambda$

• Our perspective: "redundancy" helps.

CLASH geometry:

 \approx

Our proposal:

minimize
$$||u - \Phi x||_2$$

CLASH: subject to
$$||x||_0 \le K$$

 $||x||_1 \le \lambda$

- It turns out CLASH...
 - Fixes the scale of the infinite-extended union of subspaces $\Sigma_{\mathcal{K}}$ using $\ell_1\text{-norm}.$
 - Reduces the cardinality of the candidate solution set.
 - 3 Exploits geometry ℓ_1/ℓ_2 -norm interplay.
 - Exploits combinatorics exact support selections.

Our proposal:

minimize $||u - \Phi x||_2$

CLASH: subject to $||x||_0 \le K$

 $||x||_1 \le \lambda$

• Our perspective: "redundancy" helps.

- It turns out CLASH.
 - Fixes the scale of the infinite-extended union of subspaces Σ_K using ℓ_1 -norm.
 - Reduces the What's most important?
 - Exploits geometry ℓ_1/ℓ_2 -norm interplay
 - Exploits combinatorics exact support selections.

 $x: ||x||_1 \le 2,$ $\{x: ||x||_1 \le 2\}$

Our proposal:

minimize $||u - \Phi x||_2$

CLASH: subject to $||x||_0 \le K$

 $||x||_1 \leq \lambda$

Our perspective: "redundancy" helps.

- It turns out CLASH.
 - Fixes the scale of the infinite-extended union of subspaces Σ_K using ℓ_1 -norm.
 - Reduces the What's most important?
 - Exploits geometry ℓ_1/ℓ_2 -norm interplay
 - Exploits combinatorics exact support selections.

 $\{x : ||x||_1 \le 2, \\ ||x||_0 \le 1 \}$

 ${X: ||X||_1}$

We can further leverage signal structure!

Structure signal models

- Simple sparsity model Σ_K: only K out of N coordinates nonzero.
- Combinatorial sparsity model Σ_{Mκ}: reduced set of subspaces.

Combinatorial sparsity model (CSM) [Baraniuk et al'10]

We define a CSM as

$$\mathcal{M}_K = \{\mathcal{S}_m : \forall m, \; \mathcal{S}_m \subseteq \mathcal{N}, \; |\mathcal{S}_m| \leq K\}, \; |\mathcal{M}_K| \leq \binom{N}{K}$$

with sparsity K as a collection of index subsets S_m .

General cluster model:

Example: clustered signals

Rooted-connected tree model:

(K, C)-clustered model:

Our proposal:

minimize
$$||u - \Phi x||_2$$

CLASH: subject to $||x||_0 \le K$

 $||x||_1 \le \lambda$

Our perspective: "redundancy" helps.

CLASH geometry:

Non-convex projection onto M_K:

$$\mathcal{P}_{\mathcal{M}_K}(x) = \mathop{\text{argmin}}_{w \in \mathbb{R}^N} \{ \|w - x\|_2^2 : \mathop{\text{supp}}(w) \in \Sigma_{\mathcal{M}_K} \}$$

Main difficulty: find the support pattern.

Non-convex projection onto M_K:

$$\mathcal{P}_{\mathcal{M}_K}(x) = \underset{w \in \mathbb{R}^N}{\operatorname{argmin}} \{ \|w - x\|_2^2 : \operatorname{supp}(w) \in \Sigma_{\mathcal{M}_K} \}$$

- Main difficulty: find the support pattern.
- Desired: project in polynomial or pseudo-polynomial time.

Non-convex projection onto M_K:

$$\mathcal{P}_{\mathcal{M}_K}(x) = \operatorname*{argmin}_{w \in \mathbb{R}^N} \{ \|w - x\|_2^2 : \operatorname{supp}(w) \in \Sigma_{\mathcal{M}_K} \}$$

- . Main difficulty: find the support pattern.
- Desired: project in polynomial or pseudo-polynomial time.
- Key observation #1: Modularity of Euclidean projections onto CSMs

$$\begin{aligned} \operatorname{supp}\left(\mathcal{P}_{\mathcal{M}_{K}}(x)\right) &= \operatorname{supp}\left(\underset{w \in \mathbb{R}^{N}: \operatorname{supp}(w) \in \Sigma_{\mathcal{M}_{K}}}{\operatorname{argmin}} \left\{ \|w - x\|_{2}^{2} \right\} \right) \\ &= \underset{\mathcal{S}: \mathcal{S} \in \Sigma_{\mathcal{M}_{K}}}{\operatorname{argmin}} \left\{ \|(x)_{\mathcal{S}} - x\|_{2}^{2} \right\} \\ &= \underset{\mathcal{S}: \mathcal{S} \in \Sigma_{\mathcal{M}_{K}}}{\operatorname{argmax}} \left\{ \|x\|_{2}^{2} - \|(x)_{\mathcal{S}} - x\|_{2}^{2} \right\} \\ &= \underset{\mathcal{S}: \mathcal{S} \in \Sigma_{\mathcal{M}_{K}}}{\operatorname{argmax}} \sum_{i \in \mathcal{S}} |x_{i}|^{2} \\ &\triangleq \underset{\mathcal{S}: \mathcal{S} \in \Sigma_{\mathcal{M}_{K}}}{\operatorname{argmax}} F(\mathcal{S}, x) \end{aligned}$$

Example: Matroid structured sparse models:

$$\mathcal{M} := \left(\mathcal{N}, \mathcal{I} \subseteq 2^{\mathcal{N}}\right), \; \mathcal{N} = \{1, \dots, N\}$$

where: $i. \mathcal{N}$: ground set, $ii. \mathcal{T}$: base set.

- Given a matroid \mathcal{M} and $F(\mathcal{S}, x) = \sum_{i \in \mathcal{S}} |x_i|^2$, greedy basis algorithm efficiently solves matroid constrained problems.
- Highlight: Uniform Matroid $\mathcal{M}_K^U \longrightarrow \mathcal{I} = \{\mathcal{S} : \mathcal{S} \subseteq \mathcal{N}, |\mathcal{S}| \leq K\}.$

$$\operatorname{supp}\left(\mathcal{P}_{\mathcal{M}_{K}^{U}}(x)\right) = \underset{\mathcal{S}: \mathcal{S} \in \mathcal{M}_{K}^{U}}{\operatorname{argmax}} \, F(\mathcal{S}, x) = \operatorname{supp}\left(\underbrace{\underset{y: y \in \Sigma_{K}}{\operatorname{argmin}} \|x - y\|_{2}^{2}}\right)$$
Hard thresholding

Example: Matroid structured sparse models:

$$\mathcal{M} := \left(\mathcal{N}, \mathcal{I} \subseteq 2^{\mathcal{N}}\right), \; \mathcal{N} = \{1, \dots, N\}$$

where: $i. \mathcal{N}$: ground set, $ii. \mathcal{T}$: base set.

• Given a matroid \mathcal{M} and $F(\mathcal{S}, x) = \sum_{i \in \mathcal{S}} |x_i|^2$, greedy basis algorithm efficiently solves matroid constrained problems.

Intersections of matroids

The intersection of the uniform matroid with any other matroid defines a new matroid.

- Graphic matroid → Spanning tree sparsity.

Non-convex projection onto M_K:

$$\mathcal{P}_{\mathcal{M}_K}(x) = \underset{w \in \mathbb{R}^N}{\operatorname{argmin}} \{ \|w - x\|_2^2 : \operatorname{supp}(w) \in \Sigma_{\mathcal{M}_K} \}$$

- . Main difficulty: find the support pattern.
- Desired: project in polynomial or pseudo-polynomial time.
- Key observation #2:

Integer LP nature of $\mathcal{P}_{\mathcal{M}_{\mathcal{K}}}$

The support index set of $\mathcal{P}_{\mathcal{M}_K}$ can be equivalently found using following integer linear program (ILP):

$$\underset{\substack{z:z_i \in \{0,1\},\\ \text{supp}(z) \in \Sigma_{\mathcal{M}_K}}}{\operatorname{argmin}} \left\{ \mathbf{w}^T z : \mathbf{w}_i = -|\mathbf{x}_i|^2 \right\} \right),$$

where z_i , (i = 1, ..., n), are support indicator variables.

Example: Linear support constraints:

Example: neuronal spike model

$$z \in \{0,1\}^N$$
: binary support variables

$$z_1 + z_2 + \ldots + z_N \le K$$

 $z_1 + z_2 + \ldots + z_{\Delta} \le 1$
 $z_2 + z_3 + \ldots + z_{\Delta+1} \le 1$

 $z_{N-\Delta+1} + z_{N-\Delta+2} + \ldots + z_N \le 1$

 $z_{N-\Delta+1}+z_{N-\Delta+2}+\ldots+z_N \leq 1$

[Hedge et al.'09]

Example: Linear support constraints:

Definition

$$\Sigma_{\mathcal{M}_K} = \bigcup_{\forall z \in \mathfrak{Z}} \operatorname{supp}(z)$$
, where $\mathfrak{Z} := \{z_i \in \{0,1\} : Az \leq b\}$,

where [A; b] is an integral matrix, and the first row of A is all 1's and $b_1 = K$.

We are interested in solving:

$$\begin{aligned} \operatorname{supp}\left(\mathcal{P}_{\Sigma_{\mathcal{M}_{K}}}(x)\right) &= \operatorname{supp}\left(\underset{y:y \in \Sigma_{\mathcal{M}_{K}}}{\operatorname{argmin}} \|x - y\|_{2}^{2}\right) \\ &= \operatorname{supp}\left(\operatorname{argmin}_{z}\left\{\sum_{i} - |x_{i}|^{2} z_{i}: \ z_{i} \in \{0, 1\}, \ Az \leq b\right\}\right) \end{aligned}$$

Lemma [Nemhauser & Wosley'99]

Linear programming can exactly solve the linear-support constrained integer linear programming when A is totally unimodular, i.e., the determinant of each square submatrix of A is $\{0,\pm 1\}$.

Non-convex projection onto M_K:

$$\mathcal{P}_{\mathcal{M}_K}(x) = \underset{w \in \mathbb{R}^N}{\operatorname{argmin}} \{ \|w - x\|_2^2 : \operatorname{supp}(w) \in \Sigma_{\mathcal{M}_K} \}$$

- Main difficulty: find the support pattern.
- Desired: project in polynomial or pseudo-polynomial time.
- Key observation #3:

Polynomial time modular ϵ -approximation property

A CSM has the PMAP $_{\epsilon}$ with constant ϵ , if the modular subset selection problem or the ILP admit an ϵ -approximation scheme with polynomial or pseudo-polynomial time complexity as a function of N, $\forall x \in \mathbb{R}^N$, i.e.,

$$F(\widehat{S}_{\epsilon}; x) \ge (1 - \epsilon) \max_{S \in \Sigma_{\mathcal{M}_K}} F(S; x).$$

Example: Multi-knapsack instances:

- Knapsack
 - Multi-knapsack constraints
 - Weighted multi-knapsack constraints
- Pairwise overlapping groups
 - Quadratic binary program. with cardinality constraints.

Pairwise overlapping groups

$$\max_{\mathcal{S}: \ \mathcal{S} \in \Sigma_{\mathcal{M}_{K}}} F(\mathcal{S}, x) = -\min \left\{ \sum_{i > j} \|(x)g_{i} \cap g_{j}\|_{2}^{2} z_{i} z_{j} - \sum_{i} \|(x)g_{i}\|_{2}^{2} z_{i} : \sum_{i} z_{i} \leq G \right\}$$

The CLASH algorithm

Combinatorial selection

convex geometry

Structure sparsity + $PMAP_{\epsilon}$

CLASH pseudocode and approximation guarantees

- Algorithm code @ http://lions.epfl.ch/CLASH
 - Active set expansion via selection
 - @ Greedy descend
 - Combinatorial selection
 - **4** De-bias with convex (ℓ_1 -norm) constraint

Theorem

Let $x^* \in \mathbb{R}^N$ and $u = \Phi x^* + \varepsilon$. Define the signal-to-noise ratio of x^* as SNR $= \frac{\|x^*\|_2}{\sqrt{f(x^*)}}$. Then, the i-th iterate x_i of CLASH satisfies the following recursion

$$\frac{\|x_{i+1} - x^*\|_2}{\|x^*\|_2} \le \rho \frac{\|x_i - x^*\|_2}{\|x^*\|_2} + \text{SNR terms}.$$

For $\epsilon=0$, when $\delta_{3K}<0.3658$, the iterations are contractive (i.e., $\rho<1$).

Examples - simple sparsity model

0.2

8.6

0.8

(b) Simple sparsity

Figure: Median values of signal error $\|\hat{x} - x^*\|_2$. 500 Monte Carlo iterations. $N = 800, \ M = 240, \ K = 89$ and $\|\varepsilon\|_2 = 0.05$ (left column) and $N = 800, \ M = 250, \ K = 93$ in noiseless $\|\varepsilon\|_2 = 0$ (right column) setting.

1.4

1.2

0.8

(a) Simple sparsity

0.4

8.6

1.4

1.2

Examples - structured models

8.4

0.6

0.8

(b) TU model

Figure: Median values of signal error $\|\hat{x} - x^*\|_2$. Bottom row: 100 Monte Carlo iterations. N = 500, M = 125, K = 50. The (K, C)-clustered sparsity model (left column) has C = 5.

1.4

1.2

0.6

0.8

(a) (K, C)-clustered sparsity

8.4

1.4

1.2

Conclusions

- The CLASH algorithm:
 - Regression framework where combinatorial + convex geometry interface for interpretable solutions.
 - 2 Special case: $\lambda \to \infty \Rightarrow$ model-CS.
- PMAP_ε property:
 - Inherent difficulty in combinatorial selection.
 - ② Beyond simple selection models: algorithmic definition of sparsity for various models.
 - 3 Provable solution quality and runtime bounds.
- Future work: other norms/constraints...

Geometry of CLASH: convex scale + simple sparsity

Simple sparsity selection $+ \qquad \Rightarrow \qquad \begin{array}{c} \mathcal{P}_{\Sigma_K}(x) = \operatorname{argmin}_{\|y\|_0 \leq K} \|x - y\|_2^2 \\ + \\ \operatorname{Least Absoulute Shrinkage} \qquad \qquad \mathcal{P}_{\lambda}(x) = \operatorname{argmin}_{\|y\|_1 \leq \lambda} \|x - y\|_2^2 \end{array}$

Geometry of CLASH: convex scale + structure sparsity

Structure sparsity selection
+
Least Absoulute Shrinkage

$$\mathcal{P}_{\Sigma_{\mathcal{M}_{K}}}(x) = \underset{\parallel y \parallel_{0} \leq K}{\operatorname{argmin}}_{\parallel y \parallel_{0} \leq K} \|x - y\|_{2}^{2}$$

$$+$$

$$\mathcal{P}_{\lambda}(x) = \underset{\parallel y \parallel_{1} \leq \lambda}{\operatorname{argmin}}_{\parallel y \parallel_{1} \leq \lambda} \|x - y\|_{2}^{2}$$

Geometry of CLASH: convex scale + structure sparsity

Structure sparsity selection Least Absoulute Shrinkage
$$\Rightarrow \begin{array}{c} \mathcal{P}_{\Sigma_{\mathcal{M}_{K}}}(x) = \operatorname{argmin}_{\|y\|_{0} \leq K} \|x - y\|_{2}^{2} \\ \mathcal{P}_{\lambda}(x) = \operatorname{argmin}_{\|y\|_{1} \leq \lambda} \|x - y\|_{2}^{2} \end{array}$$

Recently: Sparse (structured) projections onto the simplex, ℓ_1 -, ℓ_2 -, and ℓ_∞ -norm balls [Kyrillidis et al.'12].

Toy example setting:

- Facts:

Toy example setting:

- Facts:
 - **1** For clarity, $\varepsilon = 0$.

• Toy example setting [Tibshirani'96]:

- Facts:
 - **1** For clarity, $\varepsilon = 0$.
 - $||x^*||_1 = 2, ||x^*||_0 = 1.$
- Lasso formulation:

minimize
$$||u - \Phi x||_2$$

subject to
$$||x||_1 < \lambda$$

Toy example setting [Tibshirani'96]:

- Facts:
 - **1** For clarity, $\varepsilon = 0$.
- Lasso formulation:

minimize
$$||u - \Phi x||_2$$

subject to $||x||_1 \le 2$

• Assume we know apriori:

$$\lambda = \|\mathbf{x}^*\|_1.$$

Toy example setting [Tibshirani'96]:

- · Facts:
 - **1** For clarity, $\varepsilon = 0$.
 - $||x^*||_1 = 2, ||x^*||_0 = 1.$
- Lasso formulation:

minimize
$$||u - \Phi x||_2$$

subject to $||x||_1 < 2$

• Assume we know apriori:

$$\lambda = \|\mathbf{x}^*\|_1.$$

Feasible Solution Candidate Set: $[(A), \dots, (C)]$.

Toy example setting [Tibshirani'96]:

- Facts:
 - **1** For clarity, $\varepsilon = 0$.
 - $||x^*||_1 = 2, ||x^*||_0 = 1.$
- Lasso formulation:

minimize
$$||u - \Phi x||_2$$

subject to $||x||_1 = 2$

• Assume we know apriori:

$$\lambda = \|\mathbf{x}^*\|_1.$$

• For basic solutions: $||x||_1 = 2$.

Feasible Solution Candidate Set: $\{(A), (C)\}.$

Toy example setting [Needell et al.'08, Dai et al.'09]:

Facts:

Greedy formulation:

minimize
$$\|u - \Phi x\|_2$$

subject to $\|x\|_0 \le K := 1$

Assume we know apriori:

$$K=\|x^*\|_0.$$

Feasible Solution Candidate Set: $\{(A), (B)\}.$

Some intuition - CLASH

Toy example setting:

Facts:

① For clarity, $\varepsilon = 0$.

CLASH formulation:

minimize $\|u - \Phi x\|_2$ subject to $\|x\|_1 = 2$ $\|x\|_0 \le 1$

Feasible Solution Candidate Set: $\{(A)\}$.