Indian Institute of Technology Kanpur CS777 Topics in Learning Theory

Scribe: Bhaskar Mukhoty Instructor: Purushottam Kar Date: January 31, 2018

10

Radamacher Complexity

1 Introduction

In the last lecture we have seen that,

$$\mathbb{P}\left(\sup_{S} \left| er_{\mathcal{D}}^{l}[f] - er_{S}^{l}[f] \right| > 2 \cdot L \cdot R_{n}(\mathcal{F}) + \epsilon\right) \le 2 \exp\left(\frac{-n\epsilon^{2}}{2B^{2}}\right)$$
(1)

where $R_n(\mathcal{F})$ is the Radamacher complexity of the function class \mathcal{F} evaluated over sample size n.

$$R_n(\mathcal{F}) \triangleq \underset{S,\hat{\epsilon}_i}{\mathbb{E}} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i f(x_i) \right|$$
 (2)

We are able to handle hinge loss, logistic loss, exponential loss, least square loss, ϵ -insensitive loss, using the Lipchitzness, but we shall not be able to handle, regularization or classification using l^{0-1} -loss which is not Lipchitz

We define empirical Radamacher average of a function class \mathcal{F} w.r.t to sample set $S = \{x_1, x_2, ..., x_n\}$ and a set of radamacher random variables $\{\hat{\epsilon_1}, \hat{\epsilon_2}, ..., \hat{\epsilon_n}\}$ as

$$\hat{R}_{S,\hat{\epsilon}_i}(\mathcal{F}) \triangleq \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i f(x_i) \right|$$
 (3)

Example 10.1. The emperical radamacher average for the set of linear classifiers, \mathcal{W} , would be:

$$\hat{R}_{S,\hat{\epsilon_i}}(\mathcal{W}) = \sup_{w \in \mathcal{W}} \left| \langle \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon_i} x_i, w \rangle \right|$$

Exercise 10.1. Show that $\mathbb{P}(\left|\hat{R}_{S,\hat{\epsilon_i}}(\mathcal{F}) - R_n(\mathcal{F})\right| > \epsilon) \leq 2\exp(-\frac{n\epsilon^2}{2B^2})$ holds whenever $|f(x)| \leq B$ *Hint:* Prove that the function $g:(S,\hat{\epsilon_i}) \mapsto \hat{R}_{S,\hat{\epsilon_i}}(\mathcal{F})$ is stable.

There is an interesting relation between Gaussian and Radamacher complexity as below.

$$R_n(\mathcal{F}) \le G_n(\mathcal{F}) \le \ln(n) R_n(\mathcal{F})$$

where the Gaussian complexity $G_n(\mathcal{F})$, is defined by replacing Radamacher random variables by Gaussian random variables.

If we take expectation on equation (3) over $\{\epsilon_i\}$'s we get Radamacher complexity of the function class w.r.t. sample set S, i.e.

$$R(\mathcal{F}) \triangleq \mathbb{E}_{\hat{\epsilon_i}} \hat{S}_{,\hat{\epsilon_i}}(\mathcal{F}) = \mathbb{E}_{\hat{\epsilon_i}} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right|$$

We can now observe that,

$$R_n(\mathcal{F}) = \underset{S}{\mathbb{E}} R(\mathcal{F}) \le \sup_{S} \underset{S}{R}(\mathcal{F})$$

2 Massart's Finite Class Lemma (MFCL)

The lemma gives bound on $R_n(\mathcal{F})$ when the function class is finite, $|\mathcal{F}| < \infty$. Let, $S \in \mathcal{D}^n$, be a set of *n*-points from the feature space. For any $f \in \mathcal{F}$, we have, $f : (x_1, x_2, ..., x_n) \mapsto (f(x_1), f(x_2), ..., f(x_n)) \in \mathbb{R}^n$. We define, a restriction with respect to S as,

$$\mathcal{A}_S = \{ a \in \mathbb{R}^n : a = (f(x_1), f(x_2), ..., f(x_n)) \text{ for some } f \in \mathcal{F} \}$$

The MFCL lemma states that,

$$R(\mathcal{F}) \le \frac{c}{n} \sqrt{2 \lg |\mathcal{A}_S|} \tag{4}$$

Since, each function in $f \in \mathcal{F}$ has only one evaluation for the set points $(x_1, x_2, ..., x_n)$, we have, $|\mathcal{A}_S| \leq |\mathcal{F}|$

We can now re-define

$$R(\mathcal{F}) = \mathbb{E} \sup_{\hat{\epsilon}_i} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i) \right| = \mathbb{E} \sup_{\hat{\epsilon}_i} \left| \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i a_i \right|$$

We would use Cramer-Chernoff to get a bound on the radacher average:

$$\begin{split} \exp(s \underset{\hat{\epsilon}_i}{\mathbb{E}} \sup \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i a_i) \\ &\leq \underset{\hat{\epsilon}_i}{\mathbb{E}} \exp(s \sup_{a \in \mathcal{A}_S} \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i a_i) \quad \text{[Jensen's Inequality]} \\ &= \underset{\hat{\epsilon}_i}{\mathbb{E}} \sup_{a \in \mathcal{A}_S} \exp(\frac{s}{n} \sum_{i=1}^n \hat{\epsilon}_i a_i) \quad \text{[Monotonicity of exponential]} \\ &= \underset{\hat{\epsilon}_i}{\mathbb{E}} \sup_{a \in \mathcal{A}_S} \prod_{i=1}^n \exp(\frac{s \hat{\epsilon}_i a_i}{n}) \\ &\leq \underset{\hat{\epsilon}_i}{\mathbb{E}} \sum_{a \in \mathcal{A}_S} \prod_{i=1}^n \exp(\frac{s \hat{\epsilon}_i a_i}{n}) \\ &= \sum_{a \in \mathcal{A}_S} \prod_{i=1}^n \exp(\frac{s \hat{\epsilon}_i a_i}{n}) \\ &= \sum_{a \in \mathcal{A}_S} \prod_{i=1}^n \exp(\frac{s^2 a_i^2}{2n^2}) \\ &= \sum_{a \in \mathcal{A}_S} \exp(\frac{s^2}{2n^2} \sum_{i=1}^n a_i^2) \\ &= \sum_{a \in \mathcal{A}_S} \exp(\frac{s^2 \|a\|_2^2}{2n^2}) \\ &= |\mathcal{A}_S| \exp(\frac{s^2 c^2}{2n^2}) \quad \text{where, } \sup_{a \in \mathcal{A}_S} \|a\|_2 = c \end{split}$$

Taking log both sides we have,

$$R(\mathcal{F}) \le \frac{1}{s} \lg |\mathcal{A}_S| + \frac{sc^2}{2n^2}$$

Differentiating R.H.S w.r.t. s and setting it to zero, we have,

$$-\frac{1}{s^2} \lg |\mathcal{A}_S| + \frac{c^2}{2n^2} = 0$$
$$s^2 = \frac{2n^2}{c^2} \lg |\mathcal{A}_S|$$
$$s = \frac{n}{c} \sqrt{2 \lg |\mathcal{A}_S|}$$

So that,

$$R_{S}(\mathcal{F}) \leq \frac{1}{s} \lg |\mathcal{A}_{S}| + \frac{sc^{2}}{2n^{2}}$$

$$= \frac{c}{n} \frac{\lg |\mathcal{A}_{S}|}{\sqrt{2 \lg |\mathcal{A}_{S}|}} + \frac{c^{2}}{2n^{2}} \frac{n}{c} \sqrt{2 \lg |\mathcal{A}_{S}|}$$

$$= \frac{c}{n} \sqrt{\frac{\lg |\mathcal{A}_{S}|}{2}} + \frac{c}{n} \sqrt{\frac{\lg |\mathcal{A}_{S}|}{2}}$$

$$= \frac{c}{n} \sqrt{2 \lg |\mathcal{A}_{S}|}$$

3 Applications of MFCL

3.1 Sparse Models

Let \mathcal{F} be a linear class of sparse models, i.e.

$$\mathcal{F} = \{x \mapsto \langle w, x \rangle : \|w\|_0 \le s, \|w\|_\infty \le t\} \quad \text{where} \quad w, x \in \mathbb{R}^d, \quad \|x\|_\infty \le r$$

The above assumptions implies, $||w||_1 \leq st$.

We would need Holder's inequality which states, Now,

$$R(\mathcal{F}) = \underset{\hat{\epsilon}_{i}}{\mathbb{E}} \sup_{w \in \mathcal{W}} \left| \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i} \langle w, x_{i} \rangle \right|$$

$$= \underset{\hat{\epsilon}_{i}}{\mathbb{E}} \sup_{w \in \mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i} \langle w, x_{i} \rangle \qquad [\text{since, } \hat{\epsilon}_{i} \in \{-1, 1\} \iff -\hat{\epsilon}_{i} \in \{-1, 1\}]$$

$$= \underset{\hat{\epsilon}_{i}}{\mathbb{E}} \sup_{w \in \mathcal{W}} \left| w \cdot \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i} x_{i} \right) \right|_{1} \qquad [\circ \text{ denotes element-wise or Hadamard product}]$$

$$\leq \underset{\hat{\epsilon}_{i}}{\mathbb{E}} \sup_{w \in \mathcal{W}} \left\| w \right\|_{1} \left\| \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i} x_{i} \right\|_{\infty} \qquad [\text{H\"{o}lder's Inequality}]$$

$$\leq st \underset{\hat{\epsilon}_{i}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i} x_{i} \right\|_{\infty}$$

$$= st \underset{\hat{\epsilon}_{i}}{\mathbb{E}} \sup_{j \in [d]} \left| \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i} x_{i}^{j} \right|$$

Consider the set $A = \{j \in [d] : (x_1^j, x_2^j, ..., x_n^j)\}$, so that,

$$R(A) = \mathbb{E} \sup_{\hat{\epsilon}_i} \left| \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i x_i^j \right|$$

$$\leq \frac{c}{n} \sqrt{2 \lg |\mathcal{A}|}$$

$$= \frac{r\sqrt{n}}{n} \sqrt{2 \lg d}$$

where $c = ||x^j||_2 \le \sqrt{nr^2} = r\sqrt{n}$ and $|\mathcal{A}| = d$ Hence,

$$\underset{S}{R(\mathcal{F})} \le srt\sqrt{\frac{2\lg d}{n}} \tag{5}$$

3.2 Covering Number and Radamacher Average

Let $\mathcal{F}, \mathcal{C}_{\epsilon}$ be function classes defined over the set \mathcal{X} , where \mathcal{C}_{ϵ} is a ϵ -covered of \mathcal{F} . That is, $\forall f \in \mathcal{F}, \exists g \in \mathcal{C}_{\epsilon}$, such that $\forall x \in \mathcal{X}, |f(x) - g(x)| \leq \epsilon$.

First we will show,

$$R_n(\mathcal{F}) \le \epsilon + R_n(\mathcal{C}_{\epsilon})$$
 (6)

Let, $\epsilon_i \in \{-1, 1\}$ is radamacher random variable, then

$$\left| \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right| = \left| \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) - \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) + \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$

$$\leq \left| \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) - \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right| + \left| \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$

$$= \left| \sum_{i=1}^{n} \epsilon_{i} (f(x_{i}) - g(x_{i})) \right| + \left| \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$

$$\leq \sum_{i=1}^{n} \left| \epsilon_{i} (f(x_{i}) - g(x_{i})) \right| + \left| \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$

$$= \sum_{i=1}^{n} \left| \epsilon_{i} \right| \left| (f(x_{i}) - g(x_{i})) \right| + \left| \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$

$$= n\epsilon + \left| \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$

$$= n\epsilon + \left| \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$

$$[|\epsilon_{i}| = 1, |f(x) - g(x)| \leq \epsilon]$$

So that,

$$\left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right| \leq \epsilon + \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$
or,
$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right| \leq \epsilon + \sup_{g \in \mathcal{C}_{\epsilon}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right|$$
or,
$$\mathbb{E} \sup_{S, \epsilon_{i}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right| \leq \epsilon + \mathbb{E} \sup_{S, \epsilon_{i}} \left| \frac{1}{g \in \mathcal{C}_{\epsilon}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} g(x_{i}) \right| \quad [\text{ if } X \leq Y \text{ then } \mathbb{E}[X] \leq \mathbb{E}[Y]]$$

which implies equation (6).

Let, $|f(x)| \leq B$, which implies $|g(x)| \leq B$, as we can always find, $C_{\epsilon} \subseteq \mathcal{F}$. Since, $R(C_{\epsilon}) \leq \frac{B}{n} \sqrt{2 \lg |C_{\epsilon}|}$, we have, $R_n(C_{\epsilon}) = \frac{\mathbb{E}R(C_{\epsilon})}{S} \leq \frac{B}{n} \sqrt{2 \lg |C_{\epsilon}|}$.

So that,

$$R_n(\mathcal{F}) \leq \epsilon + R_n(\mathcal{C}_{\epsilon})$$

 $\leq \epsilon + \frac{B}{n} \sqrt{2 \lg |\mathcal{C}_{\epsilon}|}$
 $\leq \epsilon + \frac{B}{n} \sqrt{2 d \lg(1 + \frac{2B}{\epsilon})}$ [for linear models of 2-norm at most B]

In general we can write,

$$R_n(\mathcal{F}) \le \inf_{\alpha} \{ \alpha + \frac{B}{n} \sqrt{2 \lg N_{\mathcal{X}}(\mathcal{F}, \alpha)} \}$$
 (7)

3.3 Classification

Let, $\mathcal{F} \subseteq \{-1,1\}^{\mathcal{X}}$, is evaluated using l^{0-1} loss, which is non-Liptchitz. Then we can prove the following using Mc'Diarmid inequality and boundedness of loss-function.

$$\mathcal{P}_{S}(\sup_{f \in \mathcal{F}} \left| er_{D}^{0-1}[f] - er_{S}^{0-1}[f] \right| > 2R_{n}(l^{0-1} \circ \mathcal{F}) + \epsilon) \le 2\exp(\frac{-n\epsilon^{2}}{2})$$
 (8)

Although, l^{0-1} is non-lipchitz, we can have the following inequality:

$$R_n(l^{0-1} \circ \mathcal{F}) \le \frac{1}{2} R_n(\mathcal{F})$$

Definition 10.1. (Restriction of \mathcal{F} to \mathcal{A}): Let $\mathcal{F} \subseteq \{-1,1\}^{\mathcal{X}}$ be a function class and $\mathcal{A} = \{x_1, x_2, ... x_n\} \subset \mathcal{X}$. The restriction of \mathcal{F} to \mathcal{A} is the set of possible functions in \mathcal{F} , from \mathcal{A} to $\{-1,1\}$. That is,

$$\mathcal{F}_{\mathcal{A}} = \{ (f(x_1), f(x_2), ..., f(x_n)) : f \in \mathcal{F} \}$$

Each function in the restriction is a vector $\{-1,1\}^n$ Shalev-Shwartz and Ben-David (2014)

Definition 10.2. (Shattering:) A function class \mathcal{F} shatters a finite set $\mathcal{A} \subset \mathcal{X}$, if the restriction $\mathcal{F}_{\mathcal{A}}$, has all the possible function from \mathcal{A} to $\{-1,1\}$. That is, $|\mathcal{F}_{\mathcal{A}}| = 2^{|\mathcal{A}|}$

Definition 10.3. (Growth Function:) The growth of a function class \mathcal{F} , denoted by $\Pi_n(\mathcal{F})$: $\mathbb{N} \to \mathbb{N}$, is defined as:

$$\Pi_n(\mathcal{F}) = \max_{\mathcal{A} \subset \mathcal{X}, |\mathcal{A}| = n} |\mathcal{F}_{\mathcal{A}}| \tag{9}$$

We would always have, $\Pi_n(\mathcal{F}) \leq 2^n$ By definition we can see,

$$R_n(\mathcal{F}) \le \frac{c}{n} \sqrt{2 \lg \Pi_n(\mathcal{F})} = \sqrt{\frac{2 \lg \Pi_n(\mathcal{F})}{n}}$$
 since, $c = \max_{a \in \mathcal{A}} \|a\|_2 = \sqrt{n}$

In the next lecture, we would get a useful bound on the radamacher complexity of \mathcal{F} using upper bound on the growth function.

References

Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.