CSWG Simulations NIRCam Edition

Jarron Leisenring
University of Arizona

July 19, 2021

Comparison to WebbPSF Defaults

OTE OPDs and PSFs

NIRCam Obs Configuration

- NIRCam Coronagraphy
 - MASK430R + F430M
 - SUB320
 - MEDIUM8, NG=7, NINT=50
 - Exp time ~3600 sec
- G2V source from BOSZ models
 - $T_{eff} = 5777K$
 - $log_g = 4.43$
 - [Fe/H] = 0
 - 2MASS $K_s = 3.27$
- Corresponds to ~100 million ph/sec through F430M bandpass

OTE WFE Comparisons

OTE WFE only – Direct Imaging PSF

OTE WFE Comparisons + Lyot Mask

OTE WFE only — Off-axis Coronagraphic PSFs

OTE WFE only – Occulted PSFs (MASK430R)

Delta WFE components

 The provided Thermal, Frill, and IEC maps are undersampled (100x100) and flipped compared to STATIC_***_INPUT.fits

- Create new OPD at given time step
 - Flip drift components up-down
 - Rebin to 1024x1024
 - Add to static OPD

PSF Differences (WFE Drift of 5.5 nm)

PSF Differences (TA offset of 10 mas)

PSF Differences (TA + WFE drift)

Intermediate Conclusions (MASK430R)

- Delivered OPD maps produce better coronagraphic suppression compared to WebbPSF's *_predicted.fits and *_requirements.fits
 - Should result in improved contrast at <2" by almost a factor of 2 (???)
- WFE Drift vs Target Acquisition offsets
 - TA offsets of 10 mas produce small residual speckle noise compared to WFE Drift of 5.5 nm RMS
 - TA offsets may dominate for small WFE drifts, though
 - Likely depends on mask and filter
- Effects from jitter considered later...

LOS Jitter

- LOS Jitter values correspond to time steps every 37.7 sec
- Jitter should be higher frequency (>1 Hz)
 - Will blur PSFs over an integration time
 - Enough samples over an exposure should also work
- Adopt random jitter draws for each group (1.4 sec)
 - Need $2 \times 50 \times 7 = 700$
 - Delivered LOS_JITTER.fits file does not provide enough independent values
 - Generated appropriately sized random arrays using [2.5, 3.8, 5.8] mas per axis

Observation Simulations

Using delivered OPD files (e.g., STATIC_***_INPUT.fits)

NIRCam Obs Configuration

- NIRCam Coronagraphy
 - MASK430R + F430M
 - SUB320
 - MEDIUM8, NG=7, NINT=50
 - Exp time ~3600 sec
- G2V source from BOSZ models
 - $T_{eff} = 5777K$
 - $log_g = 4.43$
 - [Fe/H] = 0
 - 2MASS $K_s = 3.27$
- Corresponds to ~100 million ph/sec through F430M bandpass

NIRCam Obs Configuration

- NIRCam Coronagraphy
 - MASK430R + F430M
 - SUB320
 - MEDIUM8, NG=7, NINT=50
 - Exp time ~3600 sec
- G2V source from BOSZ models
 - $T_{eff} = 5777K$
 - $log_g = 4.43$
 - [Fe/H] = 0
 - 2MASS $K_s = 3.27$
- Corresponds to ~100 million ph/sec through F430M bandpass

Results – Base Case (<dWFE> = 0.7 nm)

Results – Nominal (<dWFE> = 1.3 nm)

Nominal \triangle WFE; Jitter = 3.8 mas; TA = 8.8 mas

Results – Requirements (<dWFE> = 3.5 nm)

Noise Components

- Want to disentangle contributions from:
 - WFE drift noise
 - Jitter
 - TA offsets
- Calculate RMS of sci-ref differenced images
- Generate contrast curves
- Right: Case of jitter=0, TA=0.

Average OPD drifts (nm RMS)

• Best, Nom, Req = (0.7, 1.3, 3.5)

 $\sigma = 0.212 \, e^{-/sec}$

 $\sigma = 0.120 \, e^{-}/sec$

F430M + MASK430R

 $\sigma = 0.150 \, e^{-}/sec$

F430M + MASK430R

Performance Metrics

- WFE drift, jitter, and TA offset each contribute towards residual speckle noise.
- Add contributions in quadrature.
- Convert noise to contrast.

		pixel std at	0.5" <r<2" (<="" th=""><th>(counts/sec</th><th>:)</th><th></th><th colspan="5">Contrast at 1" (mags)</th><th></th><th></th><th colspan="5">Contrast loss (relative to best) at 1"</th></r<2">	(counts/sec	:)		Contrast at 1" (mags)							Contrast loss (relative to best) at 1"				
	Jitter		TA Offset	(mas)			Jitter	TA Offset (mas)						Jitter	TA Offset (mas)			
	(mas)	0	6.3	8.8	12.5		(mas)	0	6.3	8.8	12.5			(mas)	0	6.3	8.8	12.5
Best Case	0	0.02	0.08	0.12	0.20	Best Case	0	16.3	14.8	14.4	13.8	E	Best Case	0	-1.95	-0.44	0.00	0.55
0.7 nm RMS	2.5	0.06	0.12	0.15	0.21	0.7 nm RMS	2.5	15.2	14.4	14.2	13.8	C	0.7 nm RMS	2.5	-0.75	0.00	0.24	0.61
	3.8	0.15	0.15	0.16	0.21		3.8	14.2	14.2	14.1	13.8			3.8	0.24	0.24	0.31	0.61
	5.8	0.17	0.17	0.18	0.23		5.8	14.0	14.0	14.0	13.7			5.8	0.38	0.38	0.44	0.71
Nominal	0	0.03	0.09	0.13	0.20	Nominal	0	15.9	14.7	14.3	13.8	1	Nominal	0	-1.51	-0.31	0.09	0.55
1.3 nm RMS	2.5	0.10	0.12	0.15	0.21	1.3 nm RMS	2.5	14.6	14.4	14.2	13.8	1	1.3 nm RMS	2.5	-0.20	0.00	0.24	0.61
	3.8	0.16	0.17	0.18	0.23		3.8	14.1	14.0	14.0	13.7			3.8	0.31	0.38	0.44	0.71
	5.8	0.17	0.18	0.19	0.24		5.8	14.0	14.0	13.9	13.6			5.8	0.38	0.44	0.50	0.75
Requirements	0	0.08	0.12	0.15	0.22	Requirements	0	14.8	14.4	14.2	13.7	F	Requirements	0	-0.44	0.00	0.24	0.66
3.5 nm RMS	2.5	0.11	0.14	0.17	0.23	3.5 nm RMS	2.5	14.5	14.2	14.0	13.7	3	3.5 nm RMS	2.5	-0.09	0.17	0.38	0.71
	3.8	0.16	0.17	0.18	0.23		3.8	14.1	14.0	14.0	13.7			3.8	0.31	0.38	0.44	0.71
	5.8	0.22	0.23	0.25	0.30		5.8	13.7	13.7	13.6	13.4			5.8	0.66	0.71	0.80	0.99

Performance Metrics

		pixel std at	0.5" <r<2" (<="" th=""><th>counts/sec</th><th>:)</th><th></th><th colspan="5">Contrast at 1" (mags)</th><th></th><th></th><th colspan="5">Contrast loss (relative to best) at 1"</th></r<2">	counts/sec	:)		Contrast at 1" (mags)							Contrast loss (relative to best) at 1"				
	Jitter		TA Offset ((mas)			Jitter		t (mas)			Jitt	er	TA Offset (mas)				
	(mas)	0	6.3	8.8	12.5		(mas)	0	6.3	8.8	12.5		(m	as) (6.3	8.8	12.5	
Best Case	0	0.02	0.08	0.12	0.20	Best Case	0	16.3	14.8	14.4	13.8	Best Cas	:	-1.95	-0.44	0.00	0.55	
0.7 nm RMS	2.5	0.06	0.12	0.15	0.21	0.7 nm RMS	2.5	15.2	14.4	14.2	13.8	0.7 nm l	MS	2.5 -0.75	0.00	0.24	0.61	
	3.8	0.15	0.15	0.16	0.21		3.8	14.2	14.2	14.1	13.8			0.24	0.24	0.31	0.61	
	5.8	0.17	0.17	0.18	0.23		5.8	14.0	14.0	14.0	13.7			5.8 0.38	0.38	0.44	0.71	
Nominal	0	0.03	0.09	0.13	0.20	Nominal	0	15.9	14.7	14.3	13.8	Nomina		0 -1.5:	-0.31	0.09	0.55	
1.3 nm RMS	2.5	0.10	0.12	0.15	0.21	1.3 nm RMS	2.5	14.6	14.4	14.2	13.8	1.3 nm l	MS	-0.20	0.00	0.24	0.61	
	3.8	0.16	0.17	0.18	0.23		3.8	14.1	14.0	14.0	13.7			0.33	0.38	0.44	0.71	
	5.8	0.17	0.18	0.19	0.24		5.8	14.0	14.0	13.9	13.6			5.8 0.38	0.44	0.50	0.75	
Requirements	0	0.08	0.12	0.15	0.22	Requirements	0	14.8	14.4	14.2	13.7	Require	ents	-0.44	0.00	0.24	0.66	
3.5 nm RMS	2.5	0.11	0.14	0.17	0.23	3.5 nm RMS	2.5	14.5	14.2	14.0	13.7	3.5 nm l	MS	-0.09	0.17	0.38	0.71	
	3.8	0.16	0.17	0.18	0.23		3.8	14.1	14.0	14.0	13.7			0.33	0.38	0.44	0.71	
	5.8	0.22	0.23	0.25	0.30		5.8	13.7	13.7	13.6	13.4			5.8 0.66	0.71	0.80	0.99	

Conclusions (MASK430R)

- The simulated WFE drifts ([0.7, 1.3, 3.5] nm RMS) have a minimal impact on the contrast relative to jitter and TA offsets.
 - Low RMS of static OPD (compared to WebbPSF defaults)
 - Small timescales probed (sci=1hr, ref=1hr)
 - Assumed symmetric pitch angles for sci and ref slew (eg., +10 deg then -10 deg), which minimizes average drifts between the two observations.
- Jitter
 - For Nominal TA pointing, the range of jitter values (2.5-5.8 mas) produces a contrast difference of ~0.25 mag at 1".
- Target Acquisition Offsets
 - For Nominal Jitter, contrast difference across TA: TA[12.5] TA[6.3] = 0.4 mag

To-Do

- Same analysis for different M210R and M335R
- Try the WebbPSF OPDs
- Distribute TA offsets between science and reference
- Implement SGD and PCA analysis
- Same output between simulations
 - Run both NIRCam and MIRI sims through something like pyKLIP
 - Same visualizations