Table of contents

Outline

Case-contro methods

assumption

inference for the odds ratio

Lecture 24

Ciprian M Crainiceanu

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

December 13, 2013

Table of contents

Outlin

Case-contro methods

assumption

Exact inference for the odds ratio

- 1 Table of contents
- 2 Outline
- 3 Case-control methods
- 4 Rare disease assumption
- 5 Exact inference for the odds ratio

Outline

methods

Exact inference for the odds ratio

- Odds ratios for retrospective studies
- Odds ratios approximating the prospective RR
- 3 Exact inference for the odds ratio

assumption Exact

inference for the odds ratio

Case-control methods

	Lung	cancer	
Smoker	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

- Case status obtained from records
- Cannot estimate P(Case | Smoker)
- Can estimate *P*(Smoker | Case)

Case-control methods

assumption

Exact inference for the odds ratio

Continued

• Can estimate odds ratio b/c

$$\frac{Odds(case \mid smoker)}{Odds(case \mid smoker^c)}$$

$$= \frac{Odds(smoker \mid case)}{Odds(smoker \mid case^c)}$$

C - case, S - smoker

$$\frac{Odds(case \mid smoker)}{Odds(case \mid smoker^c)}$$

$$= \frac{P(C \mid S)/P(\bar{C} \mid S)}{P(C \mid \bar{S})/P(\bar{C} \mid \bar{S})}$$

$$= \frac{P(C,S)/P(\bar{C},S)}{P(C,\bar{S})/P(\bar{C},\bar{S})}$$

$$= \frac{P(C,S)/P(\bar{C},\bar{S})}{P(C,\bar{S})P(\bar{C},\bar{S})}$$

Exchange C and S and the result is obtained

Outline

Case-control methods

Exact inference for the odds ratio

- Sample *OR* is $\frac{n_{11}n_{22}}{n_{12}n_{21}}$
- Sample OR is unchanged if a row or column is multiplied by a constant
- Invariant to transposing
- Is related to RR

Case-control methods

assumption

inference for the odds ratio

$$OR = \frac{P(S \mid C)/P(\bar{S} \mid C)}{P(S \mid \bar{C})/P(\bar{S} \mid \bar{C})}$$

$$= \frac{P(C \mid S)/P(\bar{C} \mid \bar{S})}{P(C \mid \bar{S})/P(\bar{C} \mid \bar{S})}$$

$$= \frac{P(C \mid S)}{P(C \mid \bar{S})} \frac{P(\bar{C} \mid \bar{S})}{P(\bar{C} \mid \bar{S})}$$

$$= RR \times \frac{1 - P(C \mid \bar{S})}{1 - P(C \mid \bar{S})}$$

• OR approximate RR if $P(C \mid \bar{S})$ and $P(C \mid S)$ are small (or if they are nearly equal)

assumption

Exact inference for the odds ration

Rare disease assumption

	Dis	ease	
Exposure	Yes	No	Total
Yes	9	1	10
No	1	999	1000
	10	1000	1010

- Cross-sectional data
- $P(\hat{D}) = 10/1010 \approx .01$
- $\hat{OR} = (9 \times 999)/(1 \times 1) = 8991$
- $\hat{RR} = (9/10)/(1/1000) = 900$
- D is rare in the sample
- D is not rare among the exposed

- OR = 1 implies no association
- OR > 1 positive association
- OR < 1 negative association
- For retrospective CC studies, OR can be interpreted prospectively
- For diseases that are rare among the cases and controls, the OR approximates the RR
- Delta method SE for log OR is

$$\sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

Table of contents

Outlin

methods

Rare disease

assumption

Exact inference for the odds ratio

	Lung	cancer	
Smoker	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

1

$$\hat{OR} = \frac{688 \times 59}{21 \times 650} = 3.0$$

•
$$\hat{SE}_{\log \hat{OR}} = \sqrt{\frac{1}{688} + \frac{1}{650} + \frac{1}{21} + \frac{1}{59}} = .26$$

•
$$CI = \log(3.0) \pm 1.96 \times .26 = [.59, 1.61]$$

• The estimated odds of lung cancer for smokers are 3 times that of the odds for non-smokers with an interval of $[\exp(.59), \exp(1.61)] = [1.80, 5.00]$

¹Data from Agresti, Categorical Data Analysis, second edition

assumption Exact

inference for the odds ratio

Exact inference for the OR

	Lung	cancer	
Smoker	Cases	Controls	Total
Yes	688	650	1338
No	21	59	80
	709	709	1418

- X the number of smokers for the cases
- Y the number of smokers for the controls
- Calculate an exact CI for the odds ratio
- Have to eliminate a nuisance parameter

Exact

inference for the odds ratio

Notation

- logit(p) = log{p/(1 p)} is the log-odds
 Differences in logits are log odds ratios
- $logit{P(Smoker | Case)} = \delta$
 - $P(\mathsf{Smoker} \mid \mathsf{Case}) = e^{\delta}/(1+e^{\delta})$
- $logit{P(Smoker | Control)} = \delta + \theta$
 - $P(\mathsf{Smoker} \mid \mathsf{Control}) = e^{\delta + \theta} / (1 + e^{\delta + \theta})$
- θ is the log-odds ratio
- δ is the nuisance parameter

Outline

Rare disease

Exact inference for the odds ratio

• X is binomial with n_1 trials and success probability $e^{\delta}/(1+e^{\delta})$

• Y is binomial with n_2 trials and success probability $e^{\delta+\theta}/(1+e^{\delta+\theta})$

$$P(X = x) = {n_1 \choose x} \left\{ \frac{e^{\delta}}{1 + e^{\delta}} \right\}^{x} \left\{ \frac{1}{1 + e^{\delta}} \right\}^{n_1 - x}$$
$$= {n_1 \choose x} e^{x\delta} \left\{ \frac{1}{1 + e^{\delta}} \right\}^{n_1}$$

methods

Rare disease assumption

Exact inference for the odds ratio

$$P(X = x) = \begin{pmatrix} n_1 \\ x \end{pmatrix} e^{x\delta} \left\{ \frac{1}{1 + e^{\delta}} \right\}^{n_1}$$

$$P(Y = z - x) = \binom{n_2}{z - x} e^{(z - x)\delta + (z - x)\theta} \left\{ \frac{1}{1 + e^{\delta + \theta}} \right\}^{n_2}$$
$$P(X + Y = z) = \sum P(X = u)P(Y = z - u)$$

$$P(X = x \mid X + Y = z) = \frac{P(X = x)P(Y = z - x)}{\sum_{u} P(X = u)P(Y = z - u)}$$

assumption Exact

inference for the odds ratio

Non-central hypergeometric distribution

$$P(X = x \mid X + Y = z; \theta) = \frac{\binom{n_1}{x} \binom{n_2}{z - x} e^{x\theta}}{\sum_{u} \binom{n_1}{u} \binom{n_2}{z - u} e^{u\theta}}$$

- \bullet θ is the log odds ratio
- This distribution is used to calculate exact hypothesis tests for $H_0: \theta = \theta_0$
- Inverting exact tests yields exact confidence intervals for the odds ratio
- Simplifies to the hypergeometric distribution for $\theta = 0$