## Chapter 5

## 模 II: 自由与诺特模

定义 5.1 <u>诺特(Notherian)</u> 模:  $M \in R - \mod, S_1, \dots, S_n, \dots$  是 M 的子模且  $S_1 \subseteq \dots \subseteq S_n \subseteq \dots$ ,若  $\exists K \in \mathbb{Z}^+$ , s.t.  $S_K = S_{K+1} = \dots$ , 则称 M 满足升链条件 (A.C.C.), 称满足 ACC 的模为诺特模.

定理 5.1 (课本定理5.7): (1)  $M \in R - \mod$  为诺特模  $\iff M$  的子模是有限生成的.

(2) R 是诺特环  $\iff$  R 的理想都是有限生成的.

```
证: (1) "\Longrightarrow": 设 S \in M 的子模. 若 S = \{0\}, 则 S = \langle \langle 0 \rangle \rangle 显然有限生成,
```

若  $S \neq \{0\}$ , 则  $\exists 0 \neq v_1 \in S$ , 令  $S_1 = \langle \langle v_1 \rangle \rangle \subseteq S$ ,

若  $S_1 = S$ , 则 S 有限生成,

若  $S_1 \neq S$ , 则  $\exists v_2 \in S - S_1$ , 令  $S_2 = \langle \langle v_1, v_2 \rangle \rangle \subseteq S$ , 则  $S_1 \subseteq S_2 \subseteq S$ ,

若  $S_2 = S$ , 则 S 有限生成,

若  $S_2 \neq S$ , 则  $\exists 0 \neq v_3 \in S - S_2$ , 令  $S_3 = \langle \langle v_1, v_2, v_3 \rangle \rangle \subseteq S$ , 则  $S_1 \subseteq S_2 \subseteq S_3 \subseteq S$ ,

若  $S_3 = S$ , 则 S 有限生成,

若  $S_3 \neq S$ , 则  $\exists 0 \neq v_4 \in S - S_3$ , 令  $S_4 = \langle \langle v_1, v_2, v_3, v_4 \rangle \rangle \in S$ , 则  $S_1 \subseteq S_2 \subseteq S_3 \subseteq S_3 \subseteq S_4 \subseteq S$ ,

. . .

以此类推, 得  $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq \cdots$ ,

:: S 满足 ACC,  $:: \exists K \in \mathbb{Z}^+$ , s.t.  $S_K = S_{K+1} = \cdots = S = \langle \langle v_1, \cdots, v_n \rangle \rangle$ , 故 S 有限生成.

"=": 取 M 的任一子模升链  $S_1 \subset \cdots \subset S_n \subset \cdots$ , 则  $S = \cap_{i \in J} S_i$  是 M 的子模,

: M 的子模是有限生成的, : S 必然是有限生成, 故设  $S = \langle \langle v_m, \cdots, v_m \rangle \rangle$ ,

 $\forall K = 1, \dots, m, u_k \in S = \bigcup_{i \in J} S_i \Longrightarrow \exists i_k \in J, \text{ s.t. } u_k \in S_{i_k},$ 

令  $K = \max\{i_1, \dots, i_m\}$ , 则由升链的性质,  $u_1, \dots, u_m \in S_K$ 

 $\Longrightarrow S_K = S$ , 故升链必终止于  $S_K$ .

综上, 得证.

**例 5.1:**  $:: \mathbb{Z}$  的任意理想均有单个元素生成, 具体地说,  $I \in \mathbb{Z}$  的理想, 则  $I = \langle n \rangle$ , 其中 n 为 I 中的最小整数,  $:: \mathbb{Z}$  是诺特环.

**例 5.2:**  $F[x] = \{\sum_{i=0}^{n} a_i x^i \mid a_i \in F, n \in \mathbb{Z}\}, I \in F[x]$  的理想, 则  $I = \langle f(x) \rangle$ , 其中  $\deg f(x) \in I$  中最小的<sup>1</sup>, 故

 $<sup>^{1}</sup>$ 多项式间的除法: 若  $\deg g(x) \geq \deg f(x)$ , 则  $\exists q(x), r(x) \in F[x]$ , s.t. g(x) = q(x)f(x) + r(x) 且 (r(x) = 0 或  $0 < \deg r(x) < \deg f(x)$ )

 $(F[x], +, \cdot)$  是诺特环.

定义 5.2 主理想:由一个元素生成的诺特环.

定理 5.2 (课本定理5.7): R 为有单位元的交换环, 则 R 是诺特环  $\iff$  R 上的有限生成模都是诺特模.

上述定理意味着有限生成的性质对诺特环是遗传的.

证: "←=":  $R \in R$  — mod 且  $R = \langle \langle 1 \rangle \rangle$ ,故 R 为诺特环. "→": 取 R 上的有限生成模  $M = \langle \langle v_1, \cdots, v_n \rangle \rangle \in R$  — mod ,  $M = \{\sum_{i=1}^n r_i v_i \mid r_i \in R\}$ . 定义映射  $\tau : R^n \to M$ ,  $(r_1, \cdots, r_n) \mapsto \sum_{i=1}^n r_i u_i$ .

- (1)  $:: \tau(r(r_1, \dots, r_n) + t(l_1, \dots, l_n)) = \tau(rr_1 + tl_1, \dots, rr_n + tl_n) = \sum_{i=1}^n (rr_i + tl_i) u_i = r \sum_{i=1}^n r_i u_i + t \sum_{i=1}^n l_i u_i = r \tau(r_1, \dots, r_n) + t \tau(l_1, \dots, l_n), \therefore \tau \in \mathbb{R}^n$  到 M 上的模同态.
- (2)  $\because \forall (r_1, \dots, r_n), \exists \sum_{i=1}^n r_i u_i, \therefore \tau$  满射.
- $\Longrightarrow \tau$  满同态.

设  $S \in M$  的任一子模, 则  $\tau^{-1}(S) \in R^n$  的子模, 且  $\tau$  满同态,  $\tau(\tau^{-1}(S)) = S$ .

【思路】根据定理 5.2, 要证 M 诺特, 即证 M 的子模 S 有限生成, 于是先证  $R^n$  的子模有限生成, 从而  $R^n$  诺特, 进而利用引理 5.1 得 S 有限生成.

数学归纳法: 当 n=1 时, R 诺特  $\Longrightarrow R^n$  诺特.

假设当 n=k 时,  $R^k$  诺特, 则当 n=k+1 时, 要证  $R^{k+1}$  诺特, 即证  $R^{k+1}$  的子模有限生成.

取 I 为  $R^{n+1}$  子模, 取  $I_1 = \{(0, \dots, 0, a_{k+1}) \mid \exists a_1, \dots, a_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}) \in I\}, I_2 = \{(a_1, \dots, a_k, 0) \mid \exists a_k \in R, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}) \in I\}.$ 

 $\forall (0, \cdots, 0, a_{k+1}), (0, \cdots, 0, b_{k+1}) \in I_1, \exists a_1, \cdots, a_k, b_1, \cdots, b_k \in R, \text{ s.t. } (a_1, \cdots, a_k, a_{k+1}), (b_1, \cdots, b_k, b_{k+1}) \in I,$ 

:: I 是子模,  $:: \forall r, t \in R, r(a_1, \dots, a_k, a_{k+1}) + t(b_1, \dots, b_k, b_{k+1}) = (ra_1 + tb_1, \dots, ra_k + ta_k) \in I \Longrightarrow r(0, \dots, 0, a_{k+1}) + t(0, \dots, 0, b_{k+1}) = (0, \dots, 0, ra_{k+1} + tb_{k+1}) \in I_2$ , 故  $I_1$  为  $R^{k+1}$  的子模.

 $\forall (a_1, \dots, a_k, 0), (b_1, \dots, b_k, 0) \in I_2, \exists a_{k+1}, b_{k+1}, \text{ s.t. } (a_1, \dots, a_k, a_{k+1}), (b_1, \dots, b_k, b_{k+1}) \in I$ 

 $\therefore I$  是子模,  $\therefore \forall r, t \in R, r(a_1, \dots, a_k, a_{k+1}) + t(b_1, \dots, b_k, b_{k+1}) = (ra_1 + tb_1, \dots, ra_k + ta_k) \in I \Longrightarrow r(a_1, \dots, a_k, 0) + t(b_1, \dots, b_k, 0) = (ra_1 + tb_1, \dots, ra_k + tb_k, 0) \in I_2$ , 故  $I_2$  为  $R^{k+1}$  的子模.

令  $J_1 = \{a_{k+1} \mid (0, \dots, 0, a_{k+1}) \in I_1\}$ ,  $J_2 = \{(a_1, \dots, a_k) \mid (a_1, \dots, a_k) \in I_2\}$ , 易证  $J_1$  是 R 的子模,  $J_2$  是  $R^k$  的子模.

 $\therefore R, R^k$  诺特,  $\therefore J_1, J_2$  有限生成, 设  $J_1 = \langle \langle g_1, \cdots, g_m \rangle \rangle$ ,  $J_2 = \langle \langle f_1, \cdots, f_n \rangle \rangle$ , 其中  $g_1 \in R$ ,  $f_i \in R^k$ .

于是  $\forall i = 1, \dots, m, (0, \dots, 0, g_i) \in I_1$ , 由  $I_1$  的定义,  $\exists g_{i_1}, \dots, g_{i_k} \in R$ , s.t.  $\bar{g}_i \equiv (g_{i_1}, \dots, g_{i_n}, g_i) \in I$ ,

又有  $\bar{f}_i = (f_i, 0)$ ,

 $\forall r = (r_1, \dots, r_k, r_{k+1}) \in I, \ \mathbb{M} \ (0, \dots, 0, r_{k+1}) \in I_1, \ \mathbb{M} \ r_{k+1} \in J_1 = \langle \langle g_1, \dots, g_m \rangle \rangle,$ 

于是  $r_{k+1} = \sum_{i=1}^{m} \alpha_i g_i$ ,  $(h,0) \equiv r - \sum_{i=1}^{m} \alpha_i \bar{g}_i = (*, \cdots, *, 0) \in I$ , 从而  $(h,0) \in I_2$ ,  $h \in J_2$ , 设  $h = \sum_{i=1}^{n} \beta_i f_i$ 

 $\Longrightarrow r = \sum_{i=1}^m \alpha_i \bar{g}_i + \sum_{i=1}^n \beta_i \bar{f}_i$ , 故 I 由  $\bar{g}_1, \dots, \bar{g}_m, \bar{f}_1, \dots, \bar{f}_n$  生成  $\Longrightarrow R^{k+1}$  诺特  $\Longrightarrow R^n$  诺特  $\forall n \Longrightarrow S = \tau(\tau^{-1}(S))$  有限生成.

引理 5.1:  $\tau: M \to N$  满同态, 则 M 有限生成  $\Longrightarrow N$  有限生成, 即有限生成模的满同态像有限生成.

证: : M 有限生成, ::设  $M = \langle \langle v_1, \cdots, v_n \rangle \rangle = \{\sum_{i=1}^n r_i v_i \mid r_i \in R\},$  $:: \tau$  满同态,  $:: N = \operatorname{Im} \tau = \{\tau(u) \mid u \in M\} = \{\tau(u) \mid u = \sum_{i=1}^n r_i v_i, r_i \in R\} = \{\tau(\sum_{i=1}^n r_i v_i) \mid r_i \in R\} = \{\sum_{i=1}^n r_i \tau(v_i) \mid r_i \in R\} = \langle \langle \tau(v_1), \cdots, \tau(v_n) \rangle \rangle,$ 故 N 有限生成.

定理 5.3 <u>Hilbert 基本定理(课本定理5.9)</u>: R 是诺特环  $\Longrightarrow$   $R[x] \equiv \{\sum_{i=0}^n r_i x^i \mid r_i \in R, n \in \mathbb{Z}^+\}$  诺特.