Chemistry Ib

Sarah Reisman
301B Schlinger Laboratory
x6044
reisman@caltech.edu

Geoff Blake
MOSH Office (on Olive walk)
gab@gps.caltech.edu

chem web. caltech. edn/chemlab

Course website: http://cheml.che.caltech.edu/

Syllabus: All the important details
You must hand in all work to pass the course!

Textbooks:

Oxtoby, Gillis & Campion "Principles of Modern Chemistry" Roberts & Caserio "Basic Principles of Organic Chemistry" http://authors.library.caltech.edu/25034/

Chemistry Ib - Calendar

Week	Monday	Tuesday	Thursday	Friday
	7-Jan-2012 (First Lecture) SER	8-Jan-2012 SER	10-Jan SER	11-Jan
Week 1	Organic Structures and Naming	Organic Structures and Naming	Functional Groups and Dipoles	PS1 Due (4PM)
	PS1 Out	Conjugation and Aromaticity		PS2 Out
	14-Jan SER	15-Jan SER	17-Jan GAB	18-Jan
Week 2	Introduction to Organic Reactions	Introduction to Organic Reactions	Introduction to spectroscopy	PS2 Due (4PM)
	Curved Arrows PS1 Out	Nucleophiles and Electrophiles		PS3 Out
	21-Jan	22-Jan GAB	24-Jan GAB	25-Jan
Week 3	MLK Day	Vibrational spectroscopy	Optical spectroscopy	Quiz 1 Out (4PM), PS4 Out
	(No Class)			PS3 Due (4PM)
	28-Jan GAB	29-Jan GAB	31-Jan GAB	1-Feb
Week 4	NMR spectroscopy	Kinetic theory	Ideal gases	PS4 Due (4PM)
		Quiz 1 Due (8 PM)		PS5 Out
	4-Feb GAB	5-Feb GAB	7-Feb GAB	8-Feb
Week 5	Thermodynamics: 1st law	Reversible/irreversible	Entropy and the 2nd law	Midterm Out (4PM)
		processes		PS5 Due (4PM)
	11-Feb GAB	12-Feb GAB	14-Feb GAB	15-Feb
Week 6	Spontaneous processes	Equilibrium and free energy	Acids and bases	PS6 Out
		Midterm Due (8PM)		
	18-Feb	19-Feb SER	21-Feb GAB	22-Feb
Week 7	President's Day	Organic Acids and Bases	Thermo. of oxidation-	Quiz 2 Out (4PM), PS7 Out
	(No Class)		reduction reactions	PS6 Due (4PM)
	25-Feb SER	26-Feb SER	28-Feb SER	1-Mar
Week 8	Kinetics	Kinetics	Addition of Organometallic	PS7 Due (4PM)
	OGC: 18	Quiz 2 Due (8PM)	Reagents to the Carbonyl	PS8 Out
	4-Mar SER	5-Mar SER	7-Mar SER	8-Mar
Week 9	Nucleophilic Substitution at the	The Polyketide Synthesis	Peptide Synthesis and Proteins	
	Carbonyl	and 6-deoxyerythronolide B		
	11-Mar DEMO DAY	12-Mar SER (last lecture)	14-Mar	15-Mar
Week 10		Polymerization Reactions	13-Mar End of Term	
			PS8 Due (Wed 3/13, 4PM)	
Week 11	18-Mar	19-Mar	21-Mar	- 7-
	Final Out (12 PM)		Final Exam Due (Wed 3/20, 4 PM)	

Learning and Studying Chemical Reactions

Chemical reactions – the key to making STUFF

- Chemical reactions of organic molecules
- Arrow pushing a formalism for thinking about reaction mechanisms
- Spectroscopy how do we detect molecules and determine their structures or their energies?
- Gas laws how do molecules behave in an ideal state? How do they behave when they interact?
- Thermodynamics, enthalpy, entropy, and equilibria why do reactions "go"?
- Kinetics how fast is a given chemical reaction? What governs the rate?

Carbons form bonds through sp³, sp², and sp hybridized orbitals (remember Ch I a)

methane (CH_4)

- tetrahedral carbon
- sp³ hybridized
- \bullet $\sigma_{\text{C-H}}$ bond

important numbers:

bond angle: 109.5° C-C bond length: 1.54 f C-H bond length: 1.09 f H 109.5°

H's are at the vertices of a tetrahedron

H

H

Antibording

orbital

remember, for each bonding orbital, there is an antibonding orbital (LCAO)

ethane (C_2H_6)

- \bullet C–C single bond, $\sigma_{\text{C-C}}$ bond
- generic name: alkane

• alkanes have free rotation around C-C and C-H bonds

for a refresher on chemical bonding and molecular structure, read Chapter 3 of OGC

Representing Molecular Structures

Chemists have many different ways of representing the same structure.

carbons are at the

vertices

"wedges and dashes" we will use these frequently

the omitted for dority

"skeleton"

H's are assumed.

to fill the carbon valence,

carbons at each vaceney

I will mainly use the steeleton version and wedge and dash.

Naming Organic Compounds: Hydrocarbons

Saturated hydrocarbons: alkanes consisting of carbon and hydrogen.

- generic formula: C_nH_{2n+2}
- prefix indicates number of carbons in longest chain
- Chains with no branches are "normal" alkanes, e.g. *n*-hexane

$$H_3C-CH_3$$
 H_3C CH_3 Me Me

normal alkanes - each carbon is attached one after another in a straight chain

			substituent
# carbons	n-alkane	name	name
I	CH ₄	methane	methyl
2	C_2H_6	ethane	ethyl
3	C_3H_8	propane	propyl
4	C₄H ₁₀	butane	butyl
5	C_5H_{12}	pentane	pentyl
6	C ₆ H ₁₄	hexane	hexyl
7	C ₇ H ₁₆	heptane	heptyl
8	C ₈ H ₁₈	octane	octyl
9	C ₉ H ₂₀	nonane	nonyl
10	C ₁₀ H ₂₂	decane	decyl
20	C ₂₀ H ₄₄	eicosane	eicosyl

Naming Organic Compounds: Hydrocarbons

Saturated hydrocarbons: alkanes consisting of carbon and hydrogen.

Constitutional Isomers: molecules with the same molecular formula but different connectivity of atoms

• term first proposed by J.J. Berzelius in 1832 to describe compounds with the same composition but different physical properties

Naming Branched Alkanes

- Identify the parent hydrocarbon (the longest straight chain)
- Number the carbons of the parent hydrocarbon, minimizing the sum of the substituent #'s
- List the sidechain fragments in alphabetical order, use numbers to indicate position attached to main chain

4-isopropyl-2-methyl heptane

common alkyl substituents:

Conformations of Alkanes

Conformational isomers: two isomers of a molecule which differ only in the spatial arrangement of the atoms; conformations can be interconverted by rotation about single bonds.

 Not all conformations are created equal 3x 1 kcal /nol = + 3 kcal /mol. eclipsed 180 dihedral angle Staggered Staggered eclipsed Staggered How big is 3 kcal/mol? Rate constant at 298 k for rotation 120°c = 6 × 10 s calculated from half-life of a staggered Arrhenius egn $k = Ae^{-Ea/RT}$ conformer $t_{1/2} = 10$ picoskconds

unimplecular processes