Linearization

2-6.1 Linearization of Functions of One Variable

$$f(x(t)) = f(\overline{x}) + \left(\frac{df}{dx}\Big|_{\overline{x}}\right)(x(t) - \overline{x})$$

This is the basic linearization formula.

$$\overline{x} = cte$$

The right hand side of the equation is linear in the variable x(t)

Figure 2-6.1 The linear approximation is the tangent to the nonlinear function at the base point \overline{x} .

Taylor serie:

$$f(x(t)) = f(a) + \left(\frac{\frac{dx(t)}{dt}\Big|_{t=a}}{1!}\right)(x-a) + \left(\frac{\frac{d^2x(t)}{dt^2}\Big|_{t=a}}{2!}\right)(x-a)^2 + \dots$$

A es el punto alrededor donde se realizaraá la linealización

2-6.9. The linear approximation is a straight line passing through the point $[\bar{x}, f(\bar{x})]$ with slope $df/dx I_{\bar{x}}$. This line is by definition the tangent to f(x) at \bar{x} . Note that the difference between the nonlinear function and its linear approximation is small near the base point \bar{x} and becomes larger the farther x(t) is from \bar{x} . The width of the range in which the linear approximation is accurate depends on the function. Some functions are more curved than others and thus have a narrower range over which the linear approximation is accurate.

It is important to realize that what affects the parameters of the transfer function of a linearized system is the slope, $df/dxl_{\bar{x}}$, not the value of the function itself, $f(\bar{x})$. This will become obvious when we show how to apply the linearization technique to non-linear differential equations. The following example illustrates the application of the linearization formula.

Example

Linearize the arrhenius equation for the temperature dependence of chemical reaction rate coefficients. For a reaction with a coefficient $k(\overline{T}) = 100 \left[s^{-1}\right]$ and an energy of activation $E = 22,000 \left[\frac{kcal}{kmole}\right]$, estime the error in the slope of the function in the range $\pm 10 \left[°C\right]$ around $\overline{T} = 300°C_{(573K)}$

Apply the linearization formula, Eq. 2-6.9, to Eq. 2-6.6.

$$k(T) = k_0 e^{-\frac{E}{RT}}$$

Linearization:

$$k(T) \approx k(\overline{T}) + \left(\frac{d[k(T)]}{dT}\right|_{T=\overline{T}} \left(T - \overline{T}\right)$$

$$\frac{dk}{dT}\Big|_{\overline{T}} = \frac{d\left[k_0 e^{-\frac{E}{RT}}\right]}{dT}\Big|_{T=\overline{T}} = k_0 e^{-\frac{E}{R\overline{T}}} \frac{E}{R\overline{T}^2} = k(\overline{T}) \frac{E}{R\overline{T}^2}$$

$$R = 1.987 \left[\frac{kcal}{kmole - k}\right]$$

$$k(300) = 100$$

$$\frac{dk}{dT}\Big|_{300^{\circ}C} = (100) \frac{22,000}{1.987(300 + 273)^2} = 3.37$$

And the line approximation of the fuction is:

$$k(T) \approx k(\overline{T}) + k(\overline{T}) \frac{E}{R\overline{T}^2} (T - \overline{T})$$

$$k(T) \approx 100 + 3.37(T - 300)$$
 recta tangente al punto T testada.

		Linear	Original	Absolute	Relative
		approximation		error	error
T=290°C	$k(290) \approx 100 + 3.37(290 - 300)$	66.3	70.95	6.55%	4.65
T=300°C	$k(300) \approx 100 + 3.37(300 - 300)$	100	100	0	0
T=310°C	$k(310) \approx 100 + 3.37(310 - 300)$	133.7	139.3	4.020%	5.6%

However, the error of 35% in the parameters is usually satisfactory for many control system calculations.