

Non-blocking Large-scale Automata Processing on GPUs

Session 9A: 12:00 PM, May 1 ASPLOS 2024

<u>Tianao Ge¹</u>, Tong Zhang², Hongyuan Liu¹

¹HKUST(GZ), ²Samsung Electronics

SAMSUNG

Automata Processing

Ruleset

Detection

Data Analytics

Machine Learning

Bioinformatics

Automata are Scaling Up

- In the network intrusion detection systems
 - the size of ruleset has increased by 90% from 2017 to 2023.
 - new rules are released everyday.

Outline

- Automata Overview
- Challenges on GPUs
 - GPU Threads Underutilization
 - Redundant Computations
 - Poor Data Locality
- ngAP: Non-blocking Automata Processing
- Evaluation

Parallelism in Automata Processing

Parallelism in Automata Processing

Prior Works on GPUs

Blocking Automata Processing (BAP):

Threads Underutilization

Redundant Computations

The repeated matches between pattern prefixes and always-active states are **redundant**.

Poor Data Locality

The mapping between threads and states switches frequently.

Key Idea: Non-blocking Processing

Blocking Automata Processing (one symbol in one iteration)

Non-blocking Automata Processing (multiple symbol in one iteration)

Basic Design of ngAP

Opt#1 - Prefetching Always-Active States

Prefetching significantly increase the number of elements coexisting in the worklist.

Opt#2 - Prefix Memoization

Redundant Work

Redundant matches for prefixes are transformed into table lookups.

Opt#3 - Work Privatization

HKUST

ngAP: Put it All Together

Methodology

Methods

- GPU
 - ngAP
 - Parameters: ngAP-default, ngAP-best
 - Optimizations: ngAP+O¹, ngAP+O², ngAP+O³
 - NFA-CG [PPoPP'12]
 - GPU-NFA [ASPLOS'20]
 - AsyncAP [SIGMETRICS'23]
- CPU
 - HyperScan [NSDI'2019]

Configuration

- o NVIDIA RTX 3090
- Intel Xeon 4214R CPU
- o 128 GB memory
- o GCC 9.5 and CUDA 12.0

Benchmarks

20 applications from AutomataZoo [IISWC'2018],
 ANMLZoo [IISWC'2016], and Regex [IISWC'2008]

Suite	Application	Abbr.
AutomataZoo	APPRNG4	APR
	Brill	Brill
	CRISPR_CasOFFinder	CRP1
	CRISPR_CasOT	CRP2
	ClamAV	CAV
	EntityResolution	ER
	Hamming_N1000_l18_d3	HM
	Levenshtein_l19d3	LV
	Protomata	Pro
	RandomForest_20_400_200	RF
	SeqMatch_BIBLE_w6_p6	SM
	Snort	Snort
	YARA	YARA
ANMLZoo	Dotstar	DS
	PowerEN	PEN
Regex	Bro217	Bro
	ExactMatch	EM
	Ranges1	Ran1
	Ranges05	Ran5
	TCP	TCP

Evaluation - Overall Performance

Compared GPU baseline, ngAP achieves an average speedup of $7.9\times$, with a peak of up to $901\times$, across 20 applications.

Compared CPU baseline (*Hyperscan*), ngAP achieves an average speedup of 11.5×10^{-5} .

Evaluation - Performance Breakdown

The three optimizations based on ngAP significantly improve the performance by 1.9x, 7x and 7.7x.

Conclusion

- Key Insight: "one-symbol-at-a-time" serializes the execution!
- ngAP: Non-blocking Automata Processing
 - Prefetching Always-Active States
 - Prefix Memoization
 - Work Privatization
- 7.9× to 901× throughput speedup

<u>Tianao Ge</u> (tge601@connect.hkust-gz.edu.cn),
Tong Zhang, Hongyuan Liu

