Introduction to Computational Social Science

Session 5: Network data and analysis

Maximilian Haag Constantin Kaplaner

Geschwister-Scholl-Institute for Political Science

12.12.2022

Room B U103, Tue 14:00–18:00 (bi-weekly)

Today's session

Lecture

(TODO?)

- Basic concepts
- 2 Data collection and storage
- 3 Network measures and models
- 4 Centrality and blockmodeling (TODO?) Network visualization techniques
- Network dynamics
- Applications in Political Science

Lab

(TODO?)

Before we begin

(TODO?) ChatGPT

Introduction & basic terms and concepts

Networks around us

```
(TODO?) Subway map
(TODO?) Friends
(TODO?) its alawys sunny mapped red string ting
(TODO?) Facebook
(TODO?)
```

Introduction to networks in the Social Sciences

• Networks have a long tradition in science, mostly in Physics and Biology

Introduction to networks in the Social Sciences

- Networks have a long tradition in science, mostly in Physics and Biology
- In the Social Sciences, we are often interested in social networks

Shy study networks?

Trend in articles on "Social Network*" topics among all papers indexed in Web of Science Social Science Citation Index, with other keywords for comparison. Source: Light & Moody (2021)

Example overview of types of networked systems

Source: Jilbert (n.d.)

Research questions and goals of network analysis

(TODO?) beginngin of this

https://www.youtube.com/watch?v=O-PF1PyQ8PA

(TODO?) consequences of netowrks

(**TODO?**) prediction of netowkrs? (**TODO?**) is this a thing? borgetti book ch 1

Social Science examples

(TODO?) https://www.youtube.com/watch?v=O-PF1PyQ8PA

Poole and degrees of separation

(TODO?) see examples in Borgatti et al p.1–2 end

A simple network i

A simple network ii

A simple network iii

Nodes and edges

Nodes (also vertices) Entities or units in a network

Nodes and edges

Nodes (also vertices) Entities or units in a network

Edges (also ties, links) Connections between nodes

Nodes and edges

Nodes (also vertices) Entities or units in a network

Edges (also ties, links) Connections between nodes

→ Network

Undirected edges

Directed edges

Typology of relations between nodes

Similarities		Social Relations				Interactions	Flows
Location e.g., Same spatial and temporal space Same clubs Same events etc.	e.g., Same gender Same attitude etc.	Kinship e.g., Mother of Sibling of	Other role e.g., Friend of Boss of Student of Competitor of	Affective e.g., Likes Hates etc.	e.g., Knows Knows about Sees as happy etc.	e.g., Sex with Talked to Advice to Helped Harmed etc.	e.g., Information Beliefs Personnel Resources etc.

A typology of ties studied in social network analysis by Borgatti et al. (2009)

One and two-mode networks

Text messaging among friends

→ one-mode network

One and two-mode networks

Text messaging among friends

→ one-mode network

Hobbies among friends

→ two-mode network

Multiplexity

Unconnected and maximally connected networks

Unconnected network

Unconnected and maximally connected networks

Unconnected network (a)

Maximally connected network

Chains and trees

Levels of analysis: network

Levels of analysis: subgroup

Levels of analysis: triad

Levels of analysis: dyad

Levels of analysis: ego

Levels of analysis: ego and alter

Mechanisms

(TOOD?) where to put

(TODO?) borgetti

Transmission

Adaption

binding

exclusion

centrality → more later

Social Network Theory and measurement

(TODO?) necessary?

(TODO?) https://bookdown.org/omarlizardo/_main/1-3-the-two-faces-of-social-network-analysis.html#the-two-faces-of-social-network-analysis

(TODO?) differentiate between the

(TODO?) Borgetti et al

(TODO?) Borgetti et al Fig. 3

Network data collection and storage

What do we want to know? (Light & Moody, 2021)

Ties (Borgatti et al., 2009)

- social relationships (e.g. friendship, kinship)
- interactions (e.g. sending and receiving messages, sharing resources)
- flows (spread of, e.g. ideas, diseases) → between nodes connected by relation or interaction ties

What do we want to know? (Light & Moody, 2021)

Ties (Borgatti et al., 2009)

- social relationships (e.g. friendship, kinship)
- interactions (e.g. sending and receiving messages, sharing resources)
- flows (spread of, e.g. ideas, diseases) → between nodes connected by relation or interaction ties

Scope

- Local networks (convenience samples)
- Complete / global networks

What do we want to know? (Light & Moody, 2021)

Ties (Borgatti et al., 2009)

- social relationships (e.g. friendship, kinship)
- interactions (e.g. sending and receiving messages, sharing resources)
- flows (spread of, e.g. ideas, diseases) → between nodes connected by relation or interaction ties

Scope

- Local networks (convenience samples)
- Complete / global networks

Complete networks are often unobtainable → Sampling

- Respondent-driven sampling → gain insights in network of hidden populations
- Network scale-up method → estimate the size hidden populations

Boundary specification

Boundary specification problem "In social networks boundaries can often logically extend to every human on the planet." (Light & Moody, 2021)

→ Researchers need to specify the boundaries of the network they want to analyze

How can we collect netowrk data? (adams_strategies_2021?)

Collection via

Primary sources

• Survey / Interviews

Secondary sources

• Information on individuals (e.g. archival sources)

Hybrid sources

Sensor data / digital trace data / metadata

Surveys / Interviews i

Name generators

• Example: "Who do you contact if you get stuck with your work?"

Surveys / Interviews i

Name generators

- Example: "Who do you contact if you get stuck with your work?"
- General Social Survey: "From time to time, most people discuss important matters with other people. Looking back over the last six months, who are the people with whom you discussed matters important to you?" → can be used to identify alters of an ego

Surveys / Interviews i

Name generators

- Example: "Who do you contact if you get stuck with your work?"
- General Social Survey: "From time to time, most people discuss important matters with other people. Looking back over the last six months, who are the people with whom you discussed matters important to you?" → can be used to identify alters of an ego
- → The exact name generator is determined by the research question

Surveys / Interviews ii (adams_strategies_2021?)

Name interpreters

Determine

- attributes of the nominated alters
- details of the relationship
- strength or frequency of relationship

Digital trace data / metadata

Information on networks from

- Monitoring of behavior (e.g. sensor data, app use log)
- Digital trace data (e.g. interaction on social media)
- Metadata (e.g. who cites whom, who follows whom)

Ethics (adams_strategies_2021?)

Data collection

- Anonymity / Confidentiality → Problem: anonymized data can be used to deduct identities
- Informed consent
- Active consent / opt-out in population studies

Ethics (adams_strategies_2021?)

Data collection

- Anonymity / Confidentiality → Problem: anonymized data can be used to deduct identities
- Informed consent
- Active consent / opt-out in population studies

Analysis

- Network visualization can reveal identities
- Balance between benefit and harm (e.g. infectious disease tracing)
- Network analysis use in business and management to assess performance

How to store network data?

How to store network data?

Adjacency matrices

Undirected

Undirected, binary

	a	b	с	d	e
a		1			
b	1		1		
c		1		1	1
d			1		1
			1	1	

How to store network data?

Adjacency matrices

Undirected

(a)

Undirected, binary

Directed

(a)

Undirected, binary

	a	b	с	d	e
a		1			
b	1		1		
с		1		1	1
d			1		1
e			1	1	

Source (both): Light & Moody (2021)

(TODO?) potentially extend after labn / praxctice?

(TODO?) adjacency img fig 2.1 from

https://academic-oup-com.emedien.ub.uni-muenchen.de/edited-volume/34294/chapter/290739653 (TODO?)

(TODO?) borgetto book evtl?

(**TOOD?**) matrices and graphs (**TOOD?**) what we have used so far pgrpahs,

Network measures and models

(**TODO?**) for each measure give operationalization and exmaples why they might be useful

(TODO?) graphs (OTOD?) grpahs have mathematical properties

(TODOOpen?) and closed networks borgetti - Open - Closed

(TOOD?) While social relationships differ from interactions conceptually, they also differ in the approaches taken for their analyses—for example, between models that focus on more stable relationships (e.g., exponential random graph models or stochastic actor-based models) versus those that focus on the sequential structural patterns among more momentary interactions (e.g., relational event models).

(TODO?)

https://academic-oup-com.emedien.ub.uni-muenchen.de/edited-volume/34294/chapter/290739653#342494672

blockmodeling

(TODO?) https://en.wikipedia.org/wiki/Blockmodeling

Centrality

(TODO?) Borgatti et all fig. 2

(TODO?)

Distance

(TODO?)

Other models and features

(TODO?) stuff we do not consider e.g. over time etc

(TOOD?) consider theory together with measurement?

Network visualization techniques

Why do we visualize networks?

(TODO?) https://www.youtube.com/watch?v=lnLW6ITFY3M beginning

Limits of visualization

(TODO?)

51

Network dynamics

(TODO?) dynamic networks?

Networks, Political Science and CSS

55

Where does computation come in?

(**TODO?**) https://academic-oup-com.emedien.ub.uni-muenchen.de/edited-volume/34294/chapter/290739997

Next session (TODO?)

Lab

References

Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network Analysis in the Social Sciences. *Science*, 323(5916), 892–895.

https://doi.org/10.1126/science.1165821

Jilbert, O. L. and I. (n.d.). Social Networks: An Introduction.

Light, R., & Moody, J. (2021). Introduction. In R. Light & J. Moody (Eds.), *The Oxford Handbook of Social Networks* (p. 0). Oxford University Press.

https://doi.org/10.1093/oxfordhb/9780190251765.013.1

Appendix i