

Deep robot path planning from demonstrations for breast cancer examination

TAROS 2021

Introduction

Number of Cases in 2020, Worldwide:

Total: 19 292 789

Prevention Methods:

Strengths of the Existing Methods

Self Palpation

Breast Palpation (BP)
is the easiest,
effective and most
widely used early
cancer detection.

Clinical Palpation

Experts palpation comes with expert techniques and knowledge that may not be achieved with self palpation.

Mammography

Reduces the risk of dying from breast cancer. Reduces the risk of having to undergo chemotherapy

Weaknesses of the Existing Methods

Self Palpation

Due to lack of patients' expertise in palpation, self-examination has become ineffective across societies.

Clinical Palpation

Subjects are reluctant to be examined by human experts, Detection precision depends on the examiner's expertise.

Mammography

"Dense" breasts, which are at higher risk of cancer, appear opaque on mammograms, making interpretation more difficult. Also expensive.

How to learn a path for a successful breast examination

Data Collection Set-up

Deep Learning from Demonstration

What to learn

- Examine the entire surface.
- Follow a path.

Deep Learning from Demonstration

Data-set Acquisition

- Leader-follower impedance control (see the paper for details) to palpate the silicon phantom.
- 31 Demonstrations
- Fixed Phantom
- 1 Operator

Deep Learning from Demonstration

Data-set Acquisition

Deep Model Implementation

Deep Model Implementation

Structures

Data Pre-Processing

- Variants of RNN
- Sequential Input/Output [samples, time steps, features]
- A NN for each coordinates

Introduction

Methodology

Deep Model Implementation

- Layer* = GRU, TCN, RNN, LSTM
- 15 Epochs
- Mean Absolute Error Loss
- Adam Optimizer

X and Y Model

Z Model

Introduction Methodology Results Conclusion

12

Results

D<u>on</u>e

Implementation of a **teleoperation control** with **force feedback** for palpation.

First **TCN network** implementation for a **full path prediction** starting from few initial points (We observed TCN could outperforms other network architecture).

Limitation

- The dimensions predicted differ from the real ones.
- Lack of Generalization and possibility of models overfitting.

Current/Future Work

Model prediction improvements:

- Using a Silicon Breast Phantom for Data Collection.
- Using Deep ProMP for end-to-end path planning for generalization.

Reproducibility

https://github.com/imanlab/artemis_dpd

Thank you for your attention!