

Loan Status Prediction

By: Mashael Alsalhi

Introduction

Banks run into losses when a customer doesn't pay their loans on time. Because of this, every year, banks have losses, and this also impacts the country's economic growth to a large extent.

In this Dataset, we look at various attributes such as credit score, annual income, years of employment and try to train the classifier to predict if the loan would be paid or not.

Process modeling

Data

The dataset contains of 100514 observations and 19 features, After cleaning the observations 89593 and 16 features

Column name	Column type	
0 Loan ID	object	
1 Customer ID	object	
2 Loan Status	object	
3 Current Loan Amount	float64	
4 Term	object	
5 Credit Score	float64	
6 Annual Income	float64	
7 Years in current job	object	
8 Home Ownership	object	
9 Purpose	object	
10 Monthly Debt	float64	
11 Years of Credit History	float64	
12 Months since last delinquent	float64	
13 Number of Open Accounts	float64	
14 Number of Credit Problems	float64	
15 Current Credit Balance	float64	
16 Maximum Open Credit	float64	
17 Bankruptcies	float64	
18 Tax Liens	float64	

Models

XGBClassifier

RandomForest Classifier

LogisticRegression

Metrics

01 Recall

$$Recall = \frac{True\ positives}{Actual\ positives}$$

$$Precision = \frac{(True positives)}{Predicted positives}$$

02 Precision 03 F1 score

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}}$$

Results

Summary

Model	Recall	Precision	F1 score
XGB	98.1%	79.4%	87.8%
XGB with under- sampling	67.6%	85.6%	75.9%
Random Forest	99%	79.1%	87.9%
LogisticRegression	71.7%	84.4%	77.6%

XGB

XGB with under sampling

Random Forest

LogisticRegression

Demo

Conclusions and Future Work

Appendix

Appendix

- Dataset : <u>Bank Loan Status Dataset | Kaggle</u>
- GitHub : <u>MashaelAlsalhi/T5_Loan-Status_Prediction (github.com)</u>

Thank You