Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	18 October 2022
Team ID	PNT2022TMID06841
Project Name	Project - Natural Disasters Intensity Analysis and Classification using Artificial Intelligence.
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	5	High	Rahul R, Arrasura Paramesh
Sprint-1	Email Conformation	USN-2	As a user, I will receive confirmation email once I have registered for the application	5	High	Rahul, Jeyaprathap S
Sprint-1	Login	USN-3	As a user, I can log into the application by entering email & password	5	High	Sriram S, Jeyaprathap S
Sprint-1	Design an Web application	USN-4	Design a web application which facilitates the image input.	5	High	Arrasura Paramesh, Rahul R
Sprint-2	Data Collection	USN-4	The data required for building the model has to be collected from mosdac website for training the model.	10	High	Sriram S, Jeyaprathap S
Sprint-2	Image Pre- processing	USN-5	Pre-process the collected data which is downloaded from the website it prevents the unnecessary variance or Bias problem	10	Medium	Rahul R, Arrasura Paramesh
Sprint-3	Model Building	USN-6	Computer Vision Model for tropical cyclone intensity estimation is important so that user can	10	High	Sriram S, Jeyaprathap

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
			send image for prediction			S
Sprint-3	Model Testing	USN-7	Once the model is trained completely, test the model on data that it has not seen before to ensure its performance	10	Medium	Sriram S, Rahul R, Jeyaprathap S
Sprint-4	Building the APIs	USN-6	Building an API's which facilitates the image input to the model running in the server and send back the predicted intensity back to the web page	10	High	Sriram S, Arrasura Paramesh, Rahul R
Sprint-4	Testing	USN-6	Once the web application is built successfully perform series of test on the application to ensure its performance	5	Medium	Arrasura Paramesh, Jeyaprathap
Sprint-4	Deployment	USN-8	Deploy the complete web application into cloud using heroku	5	High	Sriram S, Arrasura Paramesh

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	04 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	11 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	18 Nov 2022

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

A V (Sprint 1) =
$$8/6 = 1$$

A V (Sprint 2) =
$$8/6 = 1$$

A V (Sprint 3) =
$$8/6 = 1$$

A V (Sprint 4) =
$$8/6 = 1$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

