CH₃

Hooke's Law

$$\sigma = E\varepsilon$$

• E: the modulus of elasticity of Youngs' modulus, which has the stress units

Poison Ratio

$$\nu = -\frac{\varepsilon'}{\varepsilon}$$

- ν : Poison Ratio
- ε : axial strain
- ε' : lateral strain

Shear Stress

the stress component that act in the plane of the sectioned area

Average Bearing Stress

$$\sigma_b = rac{F_b}{A_b}$$

- F_b : bearing force
- A_b : bearing area

Average Shear Stress at Section

$$au_{aver} = rac{V}{A}$$

- ullet V: internal shear force at section determined from equations of equilibrium
- A: area of section

Single Shear

Double Shear

$$V = rac{F}{2}$$

- Positive strain is when the angle between two positive faces is reduced
- Negative strain is when the angle between two positive faces is increased

Hooke's Law for Shear

$$au = G \gamma$$
 $G = rac{E}{2(1+
u)}$

• *G*: shear modulus of elasticity

Allowable Stresses and Allowance Loads

When designing a structural member or mechanical element, the design interest is **strength**, that is *the capacity of the object to support or transmit loads*

• factor of safety (F.S.)

$$n = \frac{Actual \; Strength}{Required \; Strength}$$

• allowable strength

$$\sigma_{\rm allow} = \frac{\sigma_Y}{n_1}$$

$$\tau_{\text{allow}} = \frac{\tau_Y}{n_2}$$

- σ_Y and τ_Y are yield stresses
- n_1 and n_2 are the corresponding factors of safety.

Design for Axial Loads and Direct Shear

• determine the area of section subjected to a normal force

$$A = rac{P}{\sigma_{allow}}$$

• determine the area of section subjected to a shear force

$$A = rac{V}{ au_{allow}}$$