Healthcare Analysis using SQL

Contents

Project Summary:	2
Objective:	2
Dataset:	3
Query Analysis and Insights:	4
DEMOGRAPHICS	4
DIAGNOSIS	5
APPOINTMENT TIME DISTRIBUTION	7
COMMON LAB TEST	8
LAB RESULT ANALYSIS	9
PATIENT RISK CATEGORY	10
PATIENT VISIT HISTORY	11
Conclusion	12

Project Summary:

This project focuses on analysing data to address the hospital's concerns regarding resource allocation and the effectiveness of patient care across various departments. The goal is to uncover actionable insights into patient demographics, diagnostic trends, and visit patterns to optimize service delivery.

Objective:

1) What is the demographic profile of the patient population, including age and gender distribution?

Pediatric: less than 18 years old

Adult: Between 18 to 64 years old

Senior: Over 65 years old

- 2) Which diagnoses are most prevalent among patients and how do they vary across the different demographic groups, including gender and age?
- 3) What are the most common appointment times throughout the day, and how does the distribution of appointment times vary across different hours?
- 4) What are the most ordered lab tests?
- 5) Typically, fasting blood sugar levels fall between 70-100 mg/dL. Identify patients whose lab results are outside this normal range to implement early intervention.
- 6) Assess how many patients are considered High, Medium, and Low Risk. High Risk: patients who are smokers and have been diagnosed with either hypertension or diabetes.
- 7) Find out information about patients who had multiple visits within 30 days of their previous medical.

Dataset:

Below are details of the datasets:

- Patients: patient id, patient name, date of birth, gender, address
- Outpatient Visits: visit id, patient id, visit date, name of doctor, reason for visit, diagnosis prescribed medication, smoking status
- Lab Results: result id, visit id, test name, test date, result value
- Hospital Records: patient id, patient name, BMI, family history, days in hospital
- Appointment: visit id, patient id, department name, patient name, appointment time, arrival time, appointment date, admission time

Query Analysis and Insights:

DFMOGRAPHICS

- 1) What is the demographic profile of the patient population, including age and gender distribution?
- Pediatric: less than 18 years old
- Adult: Between 18 to 64 years old
- Senior: Over 65 years old

I grouped the records by Age group and Gender and observed that Adult Females represent the largest segment in the patient dataset, followed by Adult Males.

QUERY & OUTPUT

```
Query4
11
12 • select Tot_Patients, Age_Group, Gender, Count(Patient_Id) as Age_Group_GenderWise_Count
13
     from
14
    ⊖ (
15
         Select Tot_Patients, Patient_Id,Gender,age,Case when age < 18 then 'Pediatric'
             when age between 18 and 64 then 'Adult'
             else 'Senior' end as Age_Group
17
18
         from
19
             Select *, floor(DATEDIFF(CURDATE(), DATE_FORMAT(STR_TO_DATE(date_of_birth, '%d-%m-%Y'), '%Y-%m-%d'))/365) as Age,
20
             count(*) over() as Tot_Patients
21
             from tblPatients
22
         ) as TblResult
23
24
    ) as TblFinal group by Gender, Age_Group, Tot_Patients
25
     order by Age_Group asc, Gender desc;
26
```


DIAGNOSIS

2) Which diagnoses are most prevalent among patients and how do they vary across the different demographic groups, including gender and age?

109 adult females and 25 senior females were left without a diagnosis, while 68 adult males and 51 senior males also had no recorded diagnosis. In addition, the most common diagnosis among adult males and females is diabetes, while respiratory illness is prevalent among seniors.

QUERY

```
Select row_number() over(order by Gender asc,Age_Group asc,Diagnosis asc) as Sno, Gender,Age_Group,Diagnosis,
Count(*) as Patient Count
from
   Select Gender as Gender, Case when age < 18 then 'Pediatric'
        when age between 18 and 64 then 'Adult'
        else 'Senior' end as Age_Group,
        case OV.Diagnosis when' then 'No Diagnosis' else OV.Diagnosis end as Diagnosis
    from
        Select *, floor(DATEDIFF(CURDATE(), DATE FORMAT(STR TO DATE(date of birth, '%d-\m-\mathbb{V}'), '\mathbb{V}-\mathbb{M}-\mathbb{M}'))/365)
        from tblPatients
    ) as TblResult
   inner join tbloutpatientvisits OV
    on TblResult.Patient Id = OV.Patient Id
) as TblFinal
group by Gender,Age_Group,Diagnosis
order by Gender asc, Age Group asc, Diagnosis asc
```

OUTPUT

FEMALE DISTRIBUTION

Sno	Gender	Age_Group	Diagnosis	Patient_Count
1	Female	Adult	Allergic Reaction	2
2	Female	Adult	Common Cold	3
3	Female	Adult	Diabetes	21
4	Female	Adult	Food Poisoning	1
5	Female	Adult	Hyperlipidemia	7
6	Female	Adult	Hypertension	13
7	Female	Adult	Hypothyroid	3
8	Female	Adult	Migraine	5
9	Female	Adult	Mild Concussion	1
10	Female	Adult	Muscle Injury	12
11	Female	Adult	No Diagnosis	113
12	Female	Adult	Respiratory Illness	12
13	Female	Adult	Respiratory infection	2
14	Female	Pediatric	Bronchiolitis	3
15	Female	Pediatric	Common Cold	2
16	Female	Pediatric	Ear Infection	4
17	Female	Pediatric	Gastroenteritis	1
18	Female	Pediatric	No Diagnosis	14
19	Female	Pediatric	Respiratory infection	2
20	Female	Pediatric	Strep Throat	1
21	Female	Senior	Common Cold	1
22	Female	Senior	Diabetes	1
23	Female	Senior	Mild Concussion	2
24	Female	Senior	Muscle Injury	2
25	Female	Senior	No Diagnosis	21

MALE DISTRIBUTION

esult Grid		Filter Rows:		Export:	Wrap Cell Content:
Sno	Gender	Age_Group	Diagnosis		Patient_Count
25	Female	Senior	No Diagnosis		21
26	Female	Senior	Respiratory Illness		4
27	Male	Adult	Allergic Reaction		5
28	Male	Adult	Common Cold		4
29	Male	Adult	Diabetes		11
30	Male	Adult	Hyperlipidemia		2
31	Male	Adult	Hypertension		9
32	Male	Adult	Migraine		3
33	Male	Adult	Muscle Injury		8
34	Male	Adult	No Diagnosis		71
35	Male	Adult	Respiratory Illness		6
36	Male	Pediatric	Bronchiolitis		3
37	Male	Pediatric	Common Cold		3
38	Male	Pediatric	Ear Infection		2
39	Male	Pediatric	Gastroenteritis		2
40	Male	Pediatric	No Diagnosis		3
41	Male	Pediatric	Strep Throat		2
42	Male	Senior	Allergic Reaction		1
43	Male	Senior	Diabetes		4
44	Male	Senior	Hypertension		1
45	Male	Senior	Migraine		1
46	Male	Senior	Mild Concussion		1
47	Male	Senior	Muscle Injury		2
48	Male	Senior	No Diagnosis		48
sult 39	<				

APPOINTMENT TIME DISTRIBUTION

3) What are the most common appointment times throughout the day, and how does the distribution of appointment times vary across different hours?

The late morning to early afternoon period, specifically between 9 AM and 12 PM, has the highest volume of appointments, with a noticeable peak at 12 PM. Patients tend to schedule more appointments between 9 AM and 12 PM, with the peak occurring at 12 PM.

QUERY & OUTPUT

```
*/
select row_number() over() as Sno, HOUR(STR_TO_DATE(appointment_time, '%1:%i%p')) AS Appointment_time,
    Count(Visit_Id) as Appointee_count
from tblappointmentanalysis
group by HOUR(STR_TO_DATE(appointment_time, '%1:%i%p'))
order by HOUR(STR_TO_DATE(appointment_time, '%1:%i%p'))
```


COMMON LAB TEST

4) What are the most common lab tests?

The top three lab tests performed are Chloride, Fasting Blood Sugar, ALT, and Thyroid Stimulating Hormone.

QUERY & OUTPUT

```
5 • WITH CTE_LABResults
 6
     AS
 7 ♀ (
           select count(*) as Test_Count,Test_Name
 8
           from tbllabresults
10
           group by Test_Name
11
12
      select row_number() over(order by test_count desc) as Sno, Test_Count,Test_Name
13
14
      from CTE LABResults
                         Export: Wrap Cell Content: 1A
Result Grid Filter Rows:
  Sno Test_Count Test_Name
             Chloride
 2 42 Fasting Blood Sugar
    40
             Thyroid Stimulating Hormone
 4 40 ALT
     39
             White Blood Cells
 6 37 Uric Acid
     35
             Hemoglobin A1C
 8 35
           C-Reactive Protein
             HDL Cholesterol
 10 29
          Creatinine
```

LAB RESULT ANALYSIS

5) Typically, fasting blood sugar levels fall between 70-100 mg/dL. Identify patients whose lab results are outside this normal range to implement early intervention.

These patients have fasting blood sugar levels outside the normal range and may benefit from further evaluation and early intervention to manage their blood sugar levels.

High Risk: patients who are smokers and have been diagnosed with either hypertension or diabetes.

Medium Risk: patients who are non-smokers and have been diagnosed with either hypertension or diabetes.

Low Risk: patients who do not fall into the High or Medium Risk categories. This includes patients who are not smokers and do not have a diagnosis of hypertension or diabetes.

QUERY & RESULT

```
-- 5) Typically, fasting blood sugar levels fall between 70-100 mg/dL.

Identify patients whose lab results are outside this normal range to implement early intervention.

*/

use Capstoneprojects;
select * from tbllabresults;
select * from tblpatients;
select * from tblhospitalrecords;

select row_number() over(order by p.patient_id) as Sno,p.patient_id,
    P.Patient_name,result_value
from tblpatients P
inner join tbloutpatientvisits OV on P.patient_Id = OV.patient_Id
inner join tbllabresults lr on Lr.Visit_id = OV.Visit_Id
where lr.test_name = 'Fasting Blood Sugar'
and result_value < 70 or result_value > 100
```

Sno	patient id	Patient name	result value
10	521009	Jose Gonzalez	110
11	521011	Amelia Thomas	111.47
12	521011	Amelia Thomas	112
13	521012	Erin White	110
14	521013	Alexander Perez	55.87
15	521016	Noah Walker	110
16	521018	Mia Turner	102
17	521018	Mia Turner	102
18	521020	Matthew Mart	113
19	521021	Olivia Scott	102
20	521021	Olivia Scott	107.99
21	521022	Brittany White	102
22	521022	Brittany White	109
23	521024	Liam Baker	131
24	521024	Liam Baker	124.81

PATIENT RISK CATEGORY

6) Assess how many patients are considered High, Medium, and Low Risk.

There are 21 high-risk patients who are smokers and have been diagnosed with either Hypertension or Diabetes. Identifying these patients is crucial to provide them with appropriate treatment.

QUERY & RESULT

PATIENT VISIT HISTORY

7) Find out information about patients who had multiple visits within 30 days of their previous medical visit

- Identify those patients
- Date of initial visit
- Reason for the initial visit
- Readmission date
- Reason for readmission
- Number of days between the initial visit and readmission
- Readmission visit recorded must have happened after the initial visit

This analysis enables hospitals to pinpoint patients at risk for readmission, helping them enhance post-discharge care, minimize avoidable readmissions, and refine clinical protocols. Additionally, it highlights instances where the diagnosis from the initial visit may have had an adverse effect, leading to the need for readmission.

QUERY & RESULT

Conclusion:

This analysis provides a comprehensive understanding of the patient population by demographic factors such as age and gender, offering insights into the prevalence of various diagnoses across different groups. It also identifies common appointment times, helping optimize scheduling, and highlights the most ordered lab tests, aiding in resource allocation. Additionally, by assessing fasting blood sugar levels, the hospital can take early intervention measures for patients outside the normal range. The risk categorization (High, Medium, and Low) allows for targeted healthcare strategies, while tracking patients with multiple visits within 30 days can help improve post-discharge care and reduce readmission rates.

By:

Manikantan Database - MySql