第九章 蜗杆传动

◆本章学习目标

蜗杆传动的类型、特点;主要参数和几何尺寸;失效形式、 常用材料及精度;圆柱蜗杆传动的设计;效率、润滑及热平衡 计算;蜗杆蜗轮的结构。

◆本章学习要求

掌握: 蜗杆传动的基本参数,蜗杆传动的受力分析和承载 能力计算。

了解:蜗杆传动的类型、特点;主要失效形式及材料;效率、润滑;蜗杆蜗轮结构。

9.1 概述

作用: 用于传递交错轴之间的回转运动和动力。 蜗杆主动、蜗轮从动。 $\sum = 90^{\circ}$

9.1.1 蜗杆传动的类型

蜗杆 { 圆柱蜗杆(a) ← 环面蜗杆(b) 使面蜗杆(c)

阿基米德蜗杆 渐开线蜗杆 法向直廓蜗杆 圆弧圆柱蜗杆

- (1) 阿基米德蜗杆----端面上的齿廓曲线为阿基米德螺旋线。 难以用砂轮磨削出精确齿形,故传动精度和传动效率较低。
- (2) 渐开线蜗杆----端面上的齿廓曲线为渐开线。可以磨削, 故传动精度和传动效率较高,适用于成批生产。

蜗杆----左旋、右旋(常用)、单头、多头(齿数)

9.1.2 蜗杆传动的特点

蜗杆传动的优点:

- 1)传动比大,结构紧凑。一般 $i_{12}=10$ \sim 40 ,传递运动可达1000。
- 2)传动平稳,振动小、噪声低。
- 3)具有自锁性。

蜗杆传动的缺点:

- 1)传动效率低,一般0.7~0.8。
- 2)成本较高。

9.2 普通圆柱蜗杆传动的主要参数和几何尺寸

9.2.1 蜗杆传动的主要参数

中间平面---蜗杆和蜗轮啮合时,通过蜗杆轴线并垂直于蜗轮轴线的平面。在中间平面内,蜗轮蜗杆相当于齿轮齿条啮合。

1. 模数m和压力角 α

正确啮合条件是中间平面内参数分别相等:

$$m_{a1}=m_{t2}=m$$
 $\alpha_{a1}=\alpha_{t2}=\alpha=20$
 $\gamma=\beta$

2. 蜗杆的导程角 γ 、蜗杆分度圆直径 d_1 和蜗杆直径系数q

蜗杆的导程角y--分度圆上的螺旋线切线与垂直于螺纹轴线的 平面的夹角。

将分度圆柱展开得:

$$tg\gamma = S/\pi d_1 = z_1 p_{a1}/\pi d_1 = mz_1/d_1$$

加工时滚刀直径等参数与蜗杆分度圆直径等参数相同,为了限制滚刀的数量,国标规定分度圆直径只能取标准值,并与模数相配。

定义:
$$q=d_1/m$$

q 为蜗杆直径系数

$$tg\gamma = mz_1/d_1 = z_1/q$$

表1蜗杆分度圆直径与其模数的匹配标准系列

m	$\mathbf{d_1}$	m	d ₁	m	\mathbf{d}_1	m	$\mathbf{d_1}$
1	18		(22.4)		40	6.3	(80)
1.25	20	2.5	28 (35.5)	4	(50) 71		112
	22.4		45		/1		(63)
1.6	20 28	3.15	(28)	5	(40) 50	8	80 (100)
	(18)	3.13	35.5 (45) 56		(63) 90		140
2	22.4 (28) 35.5	4	(31.5)	6.3	(50) 63	10	(71) 90

摘自GB10085-88,括号中的数字尽可能不采用

3. 蜗杆头数z, 蜗轮齿数z₂和传动比 i

蜗杆头数云: 即螺旋线的数目。

蜗杆转动一圈,相当于齿条移动z₁个 齿,推动蜗轮转过z₁个齿。

传动比:
$$i = \frac{n_1}{n_2} = \frac{z_2}{\overline{z_1}} = \frac{d_2}{d_1 tg\gamma}$$

若想得到大i,可取: $z_1=1$,但传动效率低。

蜗轮齿数:
$$\mathbf{z}_2 = i \mathbf{z}_1$$
 \mathbf{z}_2 一般取28~80

z,过大 → 蜗轮尺寸↑ → 蜗杆长度↑

→刚度、啮合精度↓

9.2.2 蜗杆传动的几何尺寸计算

	计 算 公 式			
11 14	蜗杆	蜗 轮		
蜗杆中圆直径,蜗轮分度圆直径	$d_1 = mq$	$d_2=mz_2$		
齿顶高	$h_a=m$	$h_a=m$		
齿根高	$d_f = 1.2m$	$d_f = 1.2m$		
蜗杆齿顶圆直径,蜗轮喉圆直径	$d_{a1}=m(q+2)$	$d_{a2} = m(z_2 + 2)$		
齿根圆直径	$d_{fl}=m(q-2.4)$	$d_{f2}=m(z_2-2.4)$		
蜗杆轴向齿距、蜗轮端面齿距	$p_{a1}=p_{t2}=p_x=\pi m$			
顶隙	c=0.2 m			
中心距	$a=0.5(d_1+d_2) m=0.5m(q+z_2)$			

9.3 蜗杆传动的失效形式、材料和精度

9.3.1 蜗杆传动的滑动速度

由相对运动原理可知:

$$\overrightarrow{v_s} = \overrightarrow{v_1} + \overrightarrow{v_2}$$

作速度向量图,得:

$$v_{S} = \sqrt{v_{2}^{2} + v_{1}^{2}}$$

$$= v_{1} / \cos \gamma$$

$$v_{2} = v_{1} tg \gamma$$

9.3.2 蜗杆传动的失效形式

1.失效形式

蜗杆传动的失效形式主要有齿面胶合、磨损和点蚀。

齿面胶合多发生在润滑或散热条件不良的蜗轮上; 蜗轮齿的磨损 多发生在开式或润滑密封不良的闭式传动中; 点蚀多发生在闭式 传动的蜗轮齿面上。

2.设计准则

闭式蜗杆传动按蜗轮轮齿的齿面接触疲劳强度进行设计计算,按齿根弯曲疲劳强度校核,并进行热平衡验算;开式蜗杆传动,按保证齿根弯曲疲劳强度进行设计。

9.3.3 蜗杆传动的材料

蜗轮齿圈采用青铜:减摩、耐磨性、抗胶合。 蜗杆采用碳素钢与合金钢:表面光洁、硬度高。

9.4 圆柱蜗杆传动设计

9.4.1 蜗杆传动的受力分析

1. 受力分析

法向力 F_n 可分解为三个分力:

圆周力: F_t 轴向力: F_a 径向力: F_r

且有如下关系:

$$\begin{cases} F_{t1} = -F_{a2} & = 2T_{1} / d_{1} \\ F_{a1} = -F_{t2} & = 2T_{2} / d_{2} \\ F_{r1} = -F_{r2} & = F_{t2} t g \alpha \end{cases}$$

式中: T_1 、 T_1 分别为作用在蜗杆与

蜗轮上的扭矩。 $T_2 = T_1 i \eta$

力的方向和蜗轮转向的判别:

 F_t ——"主反从同": 主动蜗杆的圆周力 F_{t1} 的方向与其圆周速度方向相反,从动蜗轮的圆周力 F_{t2} 的方向与圆周速度方向相同;

 F_r ——指向轴线;

 F_{a1} ——蜗杆左(右)手螺旋定则,根据蜗杆旋向伸左手或右手,握住蜗杆轴线,四指代表蜗杆转向,大拇指所指代表蜗杆所受轴向力 F_{a1} 的方向, F_{t2} 的方向与 F_{a1} 相反, F_{t2} 的方向即为蜗轮的转向。

2.计算载荷

$$F_{ca} = KF_n$$

K为载荷系数,一般取 $K=1.1\sim1.3$,当载荷变化大,蜗轮圆周速度高时,取大值。

9.4.2 齿面接触疲劳强度计算

参考斜齿轮的齿面接触疲劳强度计算,得出蜗轮齿面接触疲劳强度校核公式:

$$\sigma_H = 500 \sqrt{\frac{KT_2}{d_1 d_2^2}} = 500 \sqrt{\frac{KT_2}{m^2 d_1 z_2^2}} \le [\sigma_H] MPa$$

设计公式:

$$m^2 d_1 \ge \left(\frac{500}{z_2 [\sigma_H]}\right)^2 K T_2$$

设计时可按 m^2d_1 值由表1确定模数m和分度圆直径 d_1 。

9.4.3 蜗轮齿弯曲疲劳强度计算

参考斜齿轮圆柱齿轮的计算公式求蜗轮齿根的弯曲应力, 其强度校核公式为:

$$\sigma_F = \frac{1.64KT_2}{m^2 d_1 z_2} Y_F Y_{\gamma} \le [\sigma_F]$$

设计公式:

$$m^2 d_1 \ge \frac{1.64 K T_2 Y_F Y_{\gamma}}{Z_2[\sigma_F]}$$

蜗轮轮齿弯曲强度所限定的承载能力,大都超过齿面点蚀 和热平衡计算所限定的承载能力,一般不作计算。

9.5 蜗杆传动的效率、润滑和热平衡计算

9.5.1 蜗杆传动的效率

闭式蜗杆传动的效率包括三部分: 啮合摩擦损耗的效率、轴承摩擦损耗的效率、搅油损耗的效率。

总效率:
$$\eta = \eta_1 \eta_2 \eta_3$$

蜗杆主动时,总效率计算公式为:

$$\eta = (0.95 \sim 0.97) \frac{tg\gamma}{tg(\gamma + \rho_{\nu})}$$

y为蜗杆导程角;

 ρ_{v} 为当量摩擦角;

9.5.2 蜗杆传动的润滑

目的: 1) 提高效率; 2) 降低温升, 防止磨损和胶合

闭式蜗杆传动一般采用油池或喷油润滑。滑动速度 $V_s>4$ m/s时,采用上置式蜗杆,蜗轮带油润滑;若 $V_s>10\sim15$ m/s,应采用压力喷油润滑。

开式蜗杆传动采用粘度高的润滑油和润滑脂。

9.5.3 蜗杆传动的热平衡计算

由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内,油温升高,润滑失效,导致轮齿磨损加剧,甚至出现胶合。因此,对连续工作的闭式蜗杆传动必须进行热平衡计算

对闭式传动,热量由箱体散逸,要求箱体与环境温差:

$$t = \frac{1000P_1(1-\eta)}{\alpha_t A} + t_0 \leq [t]$$

如t>80°时,可采取冷却措施:

- 1)增加散热面积----加散热片;
- 2)提高表面传热系数----加风扇、冷却水管、循环油冷却。

本章重要知识点

- ◆普通圆柱蜗杆传动的主要参数、正确啮合的条件和几何尺寸计算
- ◆蜗杆传动的滑动速度;蜗杆传动的失效形式; 蜗杆传动的材料和精度
- ◆圆柱蜗杆传动设计:
 - 1.受力分析