Capital One 2019 Data breach announced on July 29th

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import datetime
   import statsmodels.formula.api as smf
   from yahoo_fin import stock_info as si
   import yfinance as yf
```

```
In [2]: | def get_daily_prices(ticker, start_date, end_date):
            df = si.get data(ticker, interval='1d', start date=start date, end date=end
            df['price'] = df['adjclose']
            df['date'] = df.index
            df['ticker'] = ticker
            df = df[['date', 'price', 'ticker']]
            return df
        def get_prices(tickerlist, start, end):
            df = pd.DataFrame(columns=['date', 'price', 'ticker'])
            for ticker in tickerlist:
                df = pd.concat([df, get daily prices(ticker, start, end)], ignore index
            return df
        def run_diff_in_diff(df, event_date, treated):
            start_date = event_date - datetime.timedelta(days=180)
            df = df[(df['date'] >= start_date) & (df['date'] <= event_date)].copy()</pre>
            df['returns'] = df.groupby('ticker')['price'].pct_change()
            df = df.dropna(subset=['returns']) # Drop rows where 'returns' is NaN
            df.loc[:, 'treated'] = np.where(df['ticker'] == treated, 1, 0)
            df.loc[:, 'post'] = np.where(df['date'] >= event_date, 1, 0)
            df.loc[:, 'treated post'] = df['treated'] * df['post']
            formula = "returns ~ treated + post + treated_post"
            model = smf.ols(formula=formula, data=df).fit()
            return model
        def difference in trends(df, event date, treated):
            start date = event date - datetime.timedelta(days=180)
            df = df[(df['date'] >= start_date) & (df['date'] <= event_date)].copy()</pre>
            # Create the 'returns' column
            df['returns'] = df.groupby('ticker')['price'].pct_change()
            df = df.dropna(subset=['returns']) # Drop rows where 'returns' is NaN
            df.loc[:, 'treated'] = np.where(df['ticker'] == treated, 1, 0)
            df.loc[:, 'trend'] = (event_date - df['date']).dt.days
            df.loc[:, 'treated trend'] = df['treated'] * df['trend']
            formula = "returns ~ treated + trend + treated_trend"
            model = smf.ols(formula=formula, data=df).fit()
            return model
```

```
In [4]:
        prices['returns'] = np.where(prices['ticker'] == prices['ticker'].shift(),
                                    prices['price'] / prices['price'].shift() - 1,
                                    np.nan)
        eventDate = pd.to_datetime('07-30-2019')
        cof=prices[prices['ticker']=='COF']
        spy=prices[prices['ticker']=='SPY']
        bac=prices[prices['ticker']=='BAC']
        usb=prices[prices['ticker']=='USB']
        plt.plot(cof['date'], cof['return'], label='Capital One')
        plt.plot(spy['date'], spy['return'], label='S&P 500')
        plt.plot(bac['date'], bac['return'], label='Bank of America')
        plt.plot(usb['date'], usb['return'], label='US Bank')
        plt.axvline(eventDate, color='black', linestyle='--', linewidth=1, alpha=.5,
        plt.xticks(rotation=30)
        plt.legend(loc="upper left")
        plt.show()
```



```
In [5]: prices['returns'] = np.where(prices['ticker'] == prices['ticker'].shift(),
                                    prices['price'] / prices['price'].shift() - 1,
                                    np.nan)
        eventDate = pd.to_datetime('07-30-2019')
        prices['date'] = pd.to datetime(prices['date'])
        focused_prices = prices[(prices['date'] >= pd.to_datetime('07-01-2019')) & (pl
        cof=focused_prices[focused_prices['ticker']=='COF']
        spy=focused_prices[focused_prices['ticker']=='SPY']
        bac=focused prices[focused prices['ticker']=='BAC']
        usb=focused prices[focused prices['ticker']=='USB']
        plt.plot(cof['date'], cof['return'], label='Capital One')
        plt.plot(spy['date'], spy['return'], label='S&P 500')
        plt.plot(bac['date'], bac['return'], label='Bank of America')
        plt.plot(usb['date'], usb['return'], label='US Bank')
        plt.axhline(y=0, color='black', alpha=.5)
        plt.axvline(eventDate, color='black', linestyle='--', linewidth=1, label = 'Delay'
        plt.xticks(rotation=30)
        plt.legend(loc="lower left")
        plt.show()
```


In [6]: prices['date']>='07-25-2019'].iloc[:10]

Out[6]:

	date	price	ticker	return	returns
141	2019-07-25	87.911079	COF	-0.010524	-0.010524
142	2019-07-26	89.909462	COF	0.022732	0.022732
143	2019-07-29	88.846100	COF	-0.011827	-0.011827
144	2019-07-30	83.611786	COF	-0.058914	-0.058914
145	2019-07-31	84.720993	COF	0.013266	0.013266
146	2019-08-01	83.694283	COF	-0.012119	-0.012119
147	2019-08-02	82.727524	COF	-0.011551	-0.011551
148	2019-08-05	79.753555	COF	-0.035949	-0.035949
149	2019-08-06	81.300400	COF	0.019395	0.019395
150	2019-08-07	80.978127	COF	-0.003964	-0.003964

Estimate Difference-in-Differences Model

```
In [7]: treated = 'COF'
model = run_diff_in_diff(prices, event_date, treated)
print(model.summary())
```

=======================================		OLS Regres				
==						
Dep. Variable: 28		returns	R-square	ed:		0.0
Model: 25		OLS	Adj. R-s	squared:		0.0
Method:	L	east Squares	F-statis	stic:		9.4
28 Date:	Sat,	15 Jun 2024	Prob (F-	statistic)	:	3.81e-
06 Time:		12:04:17	Log-Like	elihood:		303
4.8 No. Observations	s:	992	AIC:			-606
<pre>2. Df Residuals:</pre>		988	BIC:			-604
2. Df Model:		3				
Covariance Type		nonrobust				
====						
975]	соет	std err	τ	P> T	[0.025	0.
Intercept 0.002	0.0009	0.000	2.202	0.028	9.28e-05	
treated 0.003	0.0008	0.001	0.756	0.450	-0.001	
post 0.009	0.0010	0.004	0.224	0.823	-0.008	
treated_post 0.038		0.012	-5.041	0.000	-0.086	-
======================================	======	79.277	Durbin-W		=======	1.9
97		73.277				
Prob(Omnibus): 24		0.000	Jarque-E	Bera (JB):		406.2
Skew:		0.083	Prob(JB)	:		6.16e-
89 Kurtosis:		6.131	Cond. No).		3

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The -0.0616 treated post indicates the event is resposible for about a 6% drop in market price

Test Validation Assumptions

Assumption 1: There is no difference in trend prior to the event

OLS Regression Results

```
In [8]: placebo_date = event_date - datetime.timedelta(days=1)
    treated='COF'

    test_trend_model = difference_in_trends(prices, placebo_date, treated)
    print(test_trend_model.summary())
```

=======================================	:=======:	========	=======		:=======	
Dep. Variable:	:	returns	R-squared	1:		0.0
02 Model:		OLS	Adj. R-so	quared:		-0.0
01						
Method:	Le	east Squares	F-statist	ic:		0.73
67 Date:	Ca+	15 Jun 2024	Doob (E.c	·+>+ic+ic)·		0.5
30	Sat,	15 Jun 2024	P1.00 (F-S	statistic).		0.5
Time:		12:04:18	Log-Likel	ihood:		303
2.5			-			
No. Observatio	ons:	992	AIC:			-605
7. Df Residuals:		988	BIC:			-603
7.		366	DIC.			-003
Df Model:		3				
Covariance Typ	e:	nonrobust				
========		========	=======			
====	coef	std err	+	P> +	[0.025	
0.975]	2021	Jed ell		17 6	[0.023	
Total cont	0.0016	0 001	2 120	0.024	0 000	
Intercept 0.003	0.0016	0.001	2.128	0.034	0.000	
treated	0.0007	0.002	0.302	0.763	-0.004	
0.005						
trend 8e-06	-9.187e-06	7.47e-06	-1.229	0.219	-2.39e-05	5.4
treated_trend	1.732e-06	2.11e-05	0.082	0.935	-3.98e-05	4.3
2e-05						
=======================================		========	=======	:=======		=====
Omnibus:		77.697	Durbin-Wa	ntson:		1.9
95						
Prob(Omnibus):	:	0.000	Jarque-Be	era (JB):		391.3
97		0.074	D., - l. (3D) .			1 00-
Skew: 85		0.074	Prob(JB):			1.02e-
Kurtosis:		6.074	Cond. No.			63
8.						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Here the treated trend value is extremely close to 0 and even has a p-value of 0.85 so it is not even close to statistically significant. ie. In the pre period there is no real difference in trend and so no reason to believe that it would change afterwards

Assumption 2: The model is not biased (estimates close to zero when no effect)

```
In [9]: placebo_date = event_date - datetime.timedelta(days=1)
    treated='COF'

placebo_model = run_diff_in_diff(prices, placebo_date, treated)
    print(placebo_model.summary())
```

		OLS Regres	sion Resul	ts		
=======================================	=======	========	=======		=======	======
Dep. Variable: 05		returns	R-square	d:		0.0
Model:		OLS	Adj. R-s	quared:		0.0
02				4		
Method: 00	L	east Squares	F-statis	tic:		1.7
Date:	Sat,	15 Jun 2024	Prob (F-	statistic):		0.1
65	•		,	ŕ		
Time:		12:04:18	Log-Like	lihood:		303
4.0 No. Observation	· c •	992	AIC:			-606
 0. 		332	AIC.			000
Df Residuals:		988	BIC:			-604
0.		2				
Df Model: Covariance Type	·•	3 nonrobust				
=========	: • :========	=========	=======	========	=======	:======
====						
	coef	std err	t	P> t	[0.025	0.
975]						
Intercept	0.0009	0.000	2.281	0.023	0.000	
0.002						
treated	0.0009	0.001	0.788	0.431	-0.001	
0.003	-0.0076	0.004	-1.770	0.077	-0.016	
post 0.001	-0.0076	0.004	-1.//0	0.077	-0.010	
treated_post	-0.0059	0.012	-0.485	0.628	-0.030	
0.018						
==========	=======	========	=======	========	=======	======
== Omnibus:		78.529	Durbin-W	latson:		1.9
81		70.323	Dui Diii-W	14 (3011)		1.7
Prob(Omnibus):		0.000	Jarque-B	era (JB):		401.2
18						
Skew:		0.070	Prob(JB)	:		7.53e-
88 Kurtosis:		6.112	Cond. No			3
4.4		0.112	Conu. No	•		ر
=========	:======	========	=======	========		======

==

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Again we get a treated post near 0 and a p value still no where near .05 and so not stastically significant

```
In [11]: df = pd.DataFrame({'betas':betas, 'pvalues':pvalues})
print(display(df.describe()))
```

	betas	pvalues
count	664.000000	664.000000
mean	0.000692	0.646151
std	0.010636	0.261996
min	-0.025293	0.000011
25%	-0.004635	0.486030
50%	0.000642	0.720415
75%	0.005038	0.860783
max	0.056549	0.998293

None

```
In [12]: #Not Working
print("Share of pvalue < 0.5: {:.2f}%".format(100 * len(df[df['pvalues'] < 0.!))
Share of pvalue < 0.5: 27.71%</pre>
```

```
Out[13]: 0.025 -0.019087
0.975 0.016195
```

Name: betas, dtype: float64

In [13]: df['betas'].quantile([0.025,0.975])

```
In [14]: quantile_2_5 = df['betas'].quantile(0.035)
    quantile_97_5 = df['betas'].quantile(0.975)
    model_est = model.params['treated_post']

plt.hist(df['betas'], bins=10, alpha=0.7)
    plt.axvline(quantile_2_5, color='black', linestyle='--', linewidth=1, label = plt.axvline(quantile_97_5, color='black', linestyle='--', linewidth=1, label = plt.axvline(model_est, color='red', linestyle='--', linewidth=1, label = 'Ever plt.legend(loc='upper right')
    plt.show()
```


In [15]: tickers = yf.Tickers("COF BAC USB C JPM WFC") cofEarnings = tickers.tickers['COF'].get_earnings_dates(limit=50) bacEarnings = tickers.tickers['BAC'].get_earnings_dates(limit=150) usbEarnings = tickers.tickers['USB'].get earnings dates(limit=60) cEarnings = tickers.tickers['C'].get_earnings_dates(limit=85) jpmEarnings = tickers.tickers['JPM'].get_earnings_dates(limit=137) wfcEarnings = tickers.tickers['WFC'].get_earnings_dates(limit=75) earningsList = [cofEarnings, bacEarnings, usbEarnings, cEarnings, jpmEarnings for company in earningsList: company.dropna(inplace=True) company.index = company.index.date company.drop_duplicates(inplace=True) company['Date'] = company.index company.reset index(inplace=True) company.drop(columns=["index"], inplace=True) company['Date']=pd.to_datetime(company['Date']) company['Month'] = company['Date'].dt.to_period('M') company.drop('Date', axis=1, inplace=True) company['Month'] = company['Month'].dt.to_timestamp() common_months = set(wfcEarnings['Month']) for earnings in earningsList[1:]: common_months &= set(earnings['Month']) filtered earnings = [] for earnings in earningsList: filtered_earnings.append(earnings[earnings['Month'].isin(common_months)]) cofEarnings, bacEarnings, usbEarnings, cEarnings, jpmEarnings, wfcEarnings = **jpmEarnings**

Out[15]:

	EPS Estimate	Reported EPS	Surprise(%)	Month
1	4.11	4.44	0.0792	2024-04-01
2	3.06	2.80	-0.0850	2024-03-01
3	3.32	3.04	-0.0850	2024-01-01
4	3.96	4.50	0.1371	2023-10-01
5	4.00	4.98	0.2465	2023-07-01
6	3.41	4.32	0.2664	2023-04-01
7	3.07	3.56	0.1614	2023-01-01
8	2.88	3.36	0.1656	2022-10-01
9	2.88	2.76	-0.0425	2022-07-01
10	2.69	2.76	0.0267	2022-04-01
11	3.01	3.33	0.1057	2022-01-01

plt.legend()
plt.show()

In []:	:	