Grammaires non contextuelles

 ER : « notation » pour décrire les chaînes d'un langage

=> spécification d'un langage

- AF: « machines » pour reconnaître les chaînes d'un langage
 - => reconnaissance d'un langage
- grammaires : règles de réécriture pour produire les chaînes d'un langage
 - => génération d'un langage

28

30

Expressivité des grammaires

- Il existe différentes formes de grammaires qui décrivent des classes différentes de langages
- Rappel de la Classification de Chomsky :

Classes de langages	Types de machines	Types de grammaires
Réguliers	Automates finis	Type 3 : régulières
Non contextuels	Automates à pile	Type 2 : non contextuelles
Contextuels		Type 1 : contextuelles
Récursivement énumérables	Machines de Turing	Type 0 : sans restriction

Ce que peut exprimer une grammaire non contextuelle et que ne peuvent pas exprimer les ER ou les AF : la structure récursive des phrases.

Exemple:

si I1 et I2 sont des instructions et E est une expression alors si E alors I1 sinon I2 est une instruction

Inst \rightarrow si Expr alors Instr sinon Instr

=> Les grammaires vont être parfaitement adaptées pour exprimer la syntaxe des langages de programmation

31

Présentation informelle

Les grammaires permettent d'exprimer des définitions récursives

Exemple 1 : L = $\{a^nb^n \mid n \in N\}$

Déf. récursive : base : $\varepsilon \in L$

 $\underline{r\acute{e}cur}$: si $\mathbf{w} \in L$ ($\mathbf{w} = a^k b^k$)

alors $awb \in L$ ($awb = a^{k+1}b^{k+1}$)

Grammaire correspondante :

(1) $\langle mot \rangle \rightarrow \epsilon$

(2) $\langle mot \rangle \rightarrow a \langle mot \rangle b$

32

Exemple 2 : expressions arithmétiques (EA)

formées avec des constantes numériques, les opérateurs + et *, et des parenthèses

· Définition récursive:

base : une constante numérique est une EA

récur : si e1 et e2 sont des EA

alors e1 + e2

e1 * e2

(e1) sont des EA

· Grammaire non contextuelle correspondante :

(1) $\langle expr \rangle \rightarrow const$

(2) $\langle \exp r \rangle \rightarrow \langle \exp r \rangle + \langle \exp r \rangle$

(3) $\langle expr \rangle \rightarrow \langle expr \rangle^* \langle expr \rangle$

(4) $\langle \text{expr} \rangle \rightarrow$ ($\langle \text{expr} \rangle$)

Définition

Une grammaire non contextuelle (GNC) est un quadruplet $G = (V_T, V_N, S, P)$ où

- V_T est un ensemble fini de symboles terminaux (ou alphabet)
- V_N est un ensemble fini de symboles non terminaux, ou catégories syntaxiques
- S ∈ V_N est le symbole non terminal initial (start), ou axiome de la grammaire
- P est un ensemble de productions de la forme A $\to \alpha$ avec A \in V_N et $\alpha \in (V_T \cup V_N)^*$

Abréviation : Un ensemble de règles ayant même tête : $A \rightarrow \alpha_1, \, ..., \, A \rightarrow \alpha_n \text{ peut s'écrire } A \rightarrow \alpha_1 \mid \alpha_2 \mid ... \mid \alpha_n$

24

Exemple: affectation (simplifiée)

```
P = \{ \begin{array}{l} Inst \rightarrow ident \ \text{`:='} \ Expr \\ Expr \rightarrow ident \ | \ nbr \ | \ Expr + Expr \ \} \\ V_T = \{ ident, nbr, :=, + \} \\ V_N = \{ Inst, Expr \} \end{array}
```

Inst ⇒ ident ':=' Expr ⇒ ident ':=' Expr + Expr ⇒ ident ':=' nbr + Expr ⇒ ident ':=' nbr + nbr

S = Inst

35

Langage défini par une grammaire

- C'est l'ensemble des chaînes que l'on peut obtenir à partir du symbole initial en appliquant les règles
- · Principe
 - On part du symbole initial (la chaîne en construction = S)
 - On applique une règle : on remplace la partie gauche de la règle (sa tête) par sa partie droite (son corps) dans la chaîne en construction
 - On continue à appliquer des règles jusqu'à ce que la chaîne ne contienne plus que des symboles terminaux
- Ce processus consistant à appliquer des règles pour construire des chaînes s'appelle dérivation

36

Dérivations

- Si $A \to \beta$ est une production alors on dit que $\alpha_1 A \alpha_2$ se dérive en 1 étape en $\alpha_1 \beta \alpha_2$ ce que l'on note $\alpha_1 A \alpha_2 \to \alpha_1 \beta \alpha_2$
- On étend la relation ⇒ pour exprimer les dérivations en zéro ou plusieurs étapes, ce que l'on note ⇒*

 $\begin{array}{c} \alpha \implies \alpha \\ \text{ se lit} \\ \text{``} \alpha \text{ se d\'erive en 0, 1 ou ++ \'etapes en } \alpha\text{'`} \text{``} \end{array}$

37

Phrases et Langages

- Une chaîne qui peut être dérivée à partir de S est appelée:
 - une phrase si elle est constituée uniquement de symboles terminaux
 - Une protophrase si elle contient au moins un symbole non terminal

Soit $G = (V_T, V_N, S, P)$ une GNC

 Le langage engendré par G, noté L(G), est l'ensemble des chaînes de symboles terminaux ω qui peuvent être dérivées à partir de S:

$$L(G) = \{ \omega \in V_T^* / S \Rightarrow^* \omega \}$$

38

Stratégies de dérivation

À chaque étape de dérivation, il faut faire 2 choix :

- · Quel symbole NT remplacer?
- Une fois choisi le symbole NT, quelle production utiliser?

Une dérivation gauche (resp. droite) est une dérivation où, à chaque étape de dérivation, c'est le symbole non terminal le plus à gauche (resp. droite) qui est remplacé

Si α se dérive en β par une dérivation gauche (resp. droite), on le note $\alpha \Rightarrow_{q} {}^{\star}\beta$ (resp. $\alpha \Rightarrow_{q} {}^{\star}\beta$)

Important : La stratégie de dérivation ne change pas les phrases que l'on peut produire

Arbre d'analyse ou Arbre de dérivation

- C'est une représentation graphique d'une dérivation où on ne précise pas l'ordre de remplacement des symboles non terminaux
- Soit G = (V_T, V_N, S, P) une GNC, un arbre d'analyse pour G est tel que :
 - La racine est le symbole initial S
 - Chaque feuille est soit ε, soit un symbole terminal
 - Chaque nœud interne est un symbole non terminal X et ses fils sont les symboles de la partie droite d'une règle $X \to X_1 X_2 \dots X_n$

Les feuilles de l'arbre, lues de gauche à droite, forment une phrase ω de L(G)

40

- L'ordre de remplacement des symboles NT n'étant pas précisé, un arbre d'analyse peut représenter plusieurs dérivations possibles d'une même chaîne
- Par contre, il représente une unique dérivation gauche (ou droite)
- => Un arbre d'analyse est équivalent à une dérivation gauche :

Un arbre \rightarrow une dérivation gauche unique Une dérivation gauche \rightarrow un arbre unique

Mais il peut arriver qu'une chaîne soit obtenue par ++ dérivations gauches (avoir ++ arbres d'analyse), dans ce cas, la chaîne est dite ambiguë

41

Les formulations suivantes sont équivalentes :

- ω est engendré par G : $\omega \in L(G)$
- Il existe une dérivation pour ω : S ⇒* ω
- Il existe une dérivation gauche pour ω : $S \Rightarrow_{g}^{*} \omega$
- Il existe un arbre d'analyse pour ω

42

Langages non contextuels

 Les langages générés par les GNC sont appelés les langages non contextuels

43

exercice

Pour chacun des langages suivants, donner une grammaire et dire à quelle classe appartient le langage (régulier, non contextuel, ou au delà):

- 1. a*b*
- 2. $\{\omega \in \{a,b\}^* / |\omega|_a \mod 2 = 0\}$
- 3. $\{\omega\omega^R / \omega\in\{a,b\}^*\}$
- 4. $\{a^nb^pc^pd^n / n, p \ge 1\}$
- 5. $\{\omega\omega / \omega \in \{a,b\}^*\}$

44

Construction d'une GNC à partir d'un AF

Soit $M = (\Sigma, Q, q_0, F, \delta)$ un AFD (ou un AFN) On construit $G = (V_T, V_N, S, P)$ une GNC telle que L(G)=L(M):

- $V_T = \Sigma$
- V_N = Q
- S-a
- P est constitué des productions :

$$\begin{aligned} & q_i \rightarrow a \; q_j & & \text{dès que } \delta(q_i, a) = q_j \\ \text{et} & q_i \rightarrow \epsilon & & \text{si } q_i \in \; F \end{aligned}$$

Langages réguliers et langages non contextuels

- Pour tout AF, on peut construire une GNC qui génère le même langage
 - => Les GNC sont au moins aussi puissantes que les AF
- · Mais sont-elles plus puissantes que les AF?
 - => <u>Oui</u>, car il existe des langages non contextuels (pour lesquels il existe une GNC) qui ne sont pas réguliers (pour lesquels il n'existe pas d'ER ou d'AF)

Exemple: $L = \{a^nb^n \mid n \in N\}$

il existe une GNC pour L, mais il n'existe pas d'ER ni d'AF

=> Les langages réguliers sont un sous-ensemble strict des langages non contextuels

Les différentes formes de grammaires

- Les grammaires régulières (type 3) ont des règles de la forme A \rightarrow aB ou A \rightarrow a ou A \rightarrow ϵ
- * Les grammaires non contextuelles (type 2) ont des règles de la forme A $\rightarrow \alpha$
- Les grammaires contextuelles (type 1) ont des règles de la forme α → β avec α≠ε et |α| ≤ |β|
- Les grammaires contextuelles sans restriction (type 0) ont des règles de la forme $\alpha \to \beta$ avec $\alpha \neq \epsilon$

47

2nde phase de la compilation : reconnaissance des « phrases »

Exemple de règles exprimant la syntaxe d'un langage de programmation :

Prog: program ident;

Liste déclarations

begin Suite_instructions end

Déclaration:

Déclaration_procédure

- ou Déclaration_fonction
- ou Déclaration_variable

Instruction:

Instruction_affectation

- ou Instruction_conditionnelle
- ou Instruction_tant_que
- ou begin Suite_instructions end

Etc...

40

Syntaxe et grammaires

- La syntaxe d'un programme peut être décrite par une grammaire non contextuelle
- Avantages :
 - Spécification formelle précise, et facile à comprendre
 - Possibilité (souvent, mais pas toujours) de construire automatiquement un analyseur syntaxique efficace
 - Met en évidence la structure du langage, utile pour la traduction en du code correct et pour la détection d'erreurs
 - Peut facilement être complétée quand le langage évolue
- Attention: certaines choses ne peuvent pas être exprimées avec les GNC, par ex. qu'un identificateur doit être déclaré avant d'être utilisé.

L'analyseur syntaxique · Schéma général Unités lexicales Arbre Texte Analyseur Analyseur lexical syntaxique syntaxique source attributs Table des symboles · Ses tâches Vérifier que la suite d'unités lexicales fournie par l'analyseur lexical peut être engendrée par la grammaire - Produire l'arbre d'analyse qui spécifie la structure grammaticale du programme - Signaler les erreurs 51

3 types généraux d'analyseurs syntaxiques

- · Problématique :
 - $\;$ On a : $\;$ une suite d'unités lexicales ω
 - une grammaire G
 - But : déterminer si ω peut être engendré par G et construire l'arbre d'analyse
- Méthodes de construction de l'arbre : 3 types
 - Méthodes universelles (tous types de grammaires NC)
 Mais inefficaces
 - Méthodes descendantes : construction de l'arbre de haut en bas
 => utilisées pour implémentation manuelle d'AS
 - Méthodes ascendantes: construction de l'arbre de bas en haut
 => utilisées par les outils de construction automatique d'AS

Ces 2 derniers types de méthodes ne fonctionnent que sur des sousclasses de grammaires

53

grammaires non contextuelles et analyse syntaxique

- Une grammaire NC : $G = (V_T, V_N, S, P)$ où
 - V_T: vocabulaire terminal (alphabet)
 ici, V_T est l'ensemble des UL retournées par l'AL
 - V_N: vocabulaire non terminal
 - S : axiome de la grammaire
 - ici, S engendre tous les programmes bien formés du langage
 - − P : ensemble de règles de la forme $X \to \alpha$ où $X \in V_N$ et $\alpha \in (V_T \cup V_N)^*$
- On va voir quelques propriétés et quelques transformations de grammaires utiles pour l'analyse syntaxique

54

Grammaires ambiguës

- Une grammaire est ambiguë s'il existe ω ∈ L(G) qui admet plusieurs arbres d'analyse
- Problème pour l'AS: l'arbre, en donnant la structure d'une phrase, donne des indications sur sa signification. Une phrase qui admet plusieurs arbres va donc avoir plusieurs significations possibles.
- Difficultés
 - il n'existe pas d'algo général pour déterminer si une grammaire est ambiguë ou non
 - Il n'existe pas d'algo général pour supprimer les ambiguïtés
 - Pire, certains langages NC n'admettent que des GNC ambiguës
- Rem: Yacc accepte des grammaires ambiguës (On ajoute des règles pour lever les ambiguïtés).
- Mais, d'une façon générale, les grammaires ambiguës sont proscrites.

55

Suppression des ambiguïtés

- On peut souvent réécrire une grammaire ambiguë pour éliminer les ambiguïtés, mais il n'existe pas de méthode systématique
- Exemple : expressions arithmétiques
 - On veut :
 - Priorité de * sur +
 - · Associativité à gauche des opérateurs
 - On réécrit la grammaire de façon à
 - Dériver en 1er les opérateurs de plus faible priorité
 - Avoir toujours, à droite d'un opérateur, une expression de priorité supérieure

56

Récursivité à gauche

- Une grammaire est récursive à gauche si \exists $A \in V_N$ t.q. \exists dérivation $A \Rightarrow^+ A \alpha$ où $\alpha \in (V_N \cup V_T)^*$
- Les méthodes d'analyse descendante ne fonctionnent pas avec ce type de grammaires
- Il existe un algo général pour éliminer la récursivité à gauche

Suppression de la récursivité directe

Récursivité directe : on a des règles de la forme

$$A \to A\alpha \mid \beta$$

On peut les transformer en :

$$A \rightarrow \beta A'$$

 $A' \rightarrow \alpha A' \mid \epsilon$

• Cas général (en supposant qu'aucun des α_i n'est ϵ)

- Grouper toutes les A-productions comme suit :

$$\begin{array}{l} A \rightarrow A\alpha_1 \mid ... \mid A\alpha_n \mid \beta_1 \mid ... \mid \beta_p \\ \text{où les } \beta_i \text{ne commencent pas par A} \end{array}$$

- Remplacer ces A-productions par :

$$\begin{aligned} A &\rightarrow \beta_1 A' \mid ... \mid \beta_p A' \\ A' &\rightarrow \alpha_1 A' \mid ... \mid \alpha_n A' \mid \epsilon \end{aligned}$$

58

Suppression de toutes les récursivités à gauche

Récursivité indirecte : plusieurs étapes de dérivations sont nécessaires pour obtenir $A \Rightarrow^+ A\alpha$

 Il existe un algo pour éliminer toutes les récursivités à gauche d'une grammaire (non étudié ici)

59

Factorisation à gauche

Autre transformation des grammaires utile pour obtenir des grammaires adaptées à l'analyse descendante

- · Algo: soit une grammaire G
 - Pour chaque non terminal A de G
 - Trouver le plus long préfixe α commun à plusieurs alternatives
 - Si α≠ε

alors Remplacer toutes les A-productions $A \to \alpha \beta_1 \mid ... \mid \alpha \beta_n \mid \gamma$

où $\gamma représente toutes les alternatives ne commençant pas par <math display="inline">\alpha$

$$\begin{array}{ccc} \text{Par} & \text{A} \rightarrow \alpha \text{A'} \mid \gamma \\ & \text{A'} \rightarrow \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n \\ \text{où A' est un nouveau NT} \end{array}$$

 On répète cette opération jusqu'à ce qu'aucune des alternatives d'un même NT n'ait de préfixe commun

60

Symboles effaçables

- X est effaçable ssi X ⇒ ε
- Algo pour déterminer les symboles effaçables d'une grammaire G :
- S'il y a une règle X → ε alors X est effaçable
- S'il y a une règle $X \to Y_1Y_2...Y_n$ et tous les Y_i sont effaçables alors X est effaçable
- On répète l'opération jusqu'à ce qu'on ne puisse plus rien ajouter
- Rem : évidemment, ε est effaçable !

61

Grammaires propres

- Une grammaire propre est une grammaire dans laquelle tout symbole de $V_N \cup V_T$ apparaît dans au moins une dérivation d'une phrase du langage
- $\Rightarrow \textbf{Interdit tout symbole inaccessible ou improductif}$
- Un symbole est inaccessible s'il ne figure dans aucune protophrase de G
- Un symbole A est improductif s'il n'existe pas de dérivation A ⇒* α avec α ∈ V_T*