Funciones Exponenciales:

Son funciones de la forma $f(x) = a^x$, donde la base a>0 es una constante positiva y a \neq 1.

Todas las funciones exponenciales tienen dominio ($-\infty$; ∞) e imagen (0; ∞), ya que la función exponencial nunca toma el valor 0. Las gráficas siguientes representan funciones exponenciales:

Este tipo de funciones son particularmente importantes en la vida diaria pues representan el incremento poblacional de los seres vivos.

Las funciones exponenciales más utilizadas son:

- a) $y = 10^x$, función exponencial de base 10
- b) $y=e^x$, función exponencial de base ${f e}$

Conceptos importantes sobre la función exponencial

- I. La gráfica de toda función exponencial pasa por el punto (0,1).
- II. El dominio son todos lo números reales $(-\infty, \infty)$.
- III. La imagen son todos los números reales positivos $(0,\infty)$.

NOTA: El dominio para las funciones exponenciales siempre serán todos números reales.

Función exponencial de base 10, en negro, y función exponencial de base e, en gris

Concepto de logaritmo

El logaritmo de un número (x), en una base dada (a), es el exponente al cual se debe elevar la base para obtener dicho número.

$$log_a x = y \qquad \Rightarrow \qquad a^y = x$$
 Con a>0 , a≠1

Logaritmos decimales y neperianos

Los logaritmos decimales tienen base 10. Se representan por log(x). Los logaritmos neperianos (conocidos como logaritmos naturales) tienen base e. Se representan por ln(x)

Funciones logarítmicas:

Son las funciones $f(x) = log_a x$, donde la base (a) es una constante positiva distinta de 1 (a \neq 1). La siguiente figura muestra las gráficas de cuatro funciones logarítmicas con diferentes bases. En cada caso, el dominio es (0; ∞) y la imagen es (- ∞ ; ∞)

Las funciones logarítmicas más utilizadas, al igual que las funciones exponenciales, son las de base 10 y las de base natural:

- a) $y = log_{10}(x)$ función logarítmica de base **10.**
- b) y = ln(x) función logarítmica de base **e**.

Conceptos importantes sobre la función logarítmica

- I. La gráfica de toda función logarítmica pasa por el punto (1,0).
- II. El dominio son todos los números reales positivos $(0, \infty)$.
- III. La imagen son todos los números reales (-∞,∞).

logarítmica de base e, en gris.

Por ejemplo, para hallar el dominio de las siguientes funciones logarítmicas:

a)
$$f(x) = log(5x+3)$$

$$b) f(x) = log(\sqrt{x-1})$$

Tomamos en consideración solo el argumento de la función, que deberá ser mayor que cero:

a)
$$f(x) = log(5x + 3)$$

$$5x + 3 > 0$$

$$5x > -3$$

$$x > \frac{-3}{5}$$

El dominio de la función será:

Dom f=
$$(-3/5; \infty)$$

Y la imagen estará dada por:

Im
$$f = (-\infty; \infty)$$

La gráfica de esta función tendrá una asíntota en x=-3/5:

b)
$$f(x) = log(\sqrt{x-1})$$

$$x - 1 > 0$$

El dominio de la función será:

Dom f=
$$(1; \infty)$$

Y la imagen estará dada por:

Im
$$f = (-\infty, \infty)$$

La asíntota de esta función está en x=1

