MTH302 Unit 1 (iii)

Mathematical expectation(Mean), Variance, Covariance and Chebyshev's theorem

Mean, or Expected value of r. v. X

Definition 1:

Let X be a random variable with probability distribution f(x). The **mean**, or **expected value**, of X is

$$\mu = E(X) = \sum_x x f(x)$$

if X is discrete, and

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

if X is continuous.

Theorem 1

Let X be a random variable with probability distribution f(x). The expected value of the random variable g(X) is

$$\mu_{g(X)} = E[g(X)] = \sum_{x} g(x)f(x)$$

if X is discrete, and

$$\mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \ dx$$

if X is continuous.

Definition 2

Let X and Y be random variables with joint probability distribution f(x, y). The mean, or expected value, of the random variable g(X, Y) is

$$\mu_{g(X,Y)} = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y)$$

if X and Y are discrete, and

$$\mu_{g(X,Y)} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) \ dx \ dy$$

if X and Y are continuous.

NOTE: In the definition 2 above

(i)

if
$$g(X,Y) = X$$

Then

$$E(X) = \begin{cases} \sum\limits_{x}\sum\limits_{y}xf(x,y) = \sum\limits_{x}xg(x) & \text{(discrete case),} \\ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}xf(x,y)\ dy\ dx = \int_{-\infty}^{\infty}xg(x)\ dx & \text{(continuous case),} \end{cases}$$

where g(x) is the marginal distribution of X

(ii)
$$\text{if } g(X,Y) = \gamma \\ \text{Then}$$

$$E(Y) = \begin{cases} \sum_{y} \sum_{x} y f(x,y) = \sum_{y} y h(y) & \text{(discrete case),} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x,y) \ dx dy = \int_{-\infty}^{\infty} y h(y) \ dy & \text{(continuous case)} \end{cases}$$

where h(y) is the marginal distribution of the random variable Y

Variance of Random Variables X

Definition 3

Let X be a random variable with probability distribution f(x) and mean μ . The variance of X is

$$\sigma^2 = E[(X - \mu)^2] = \sum_x (x - \mu)^2 f(x), \quad \text{if X is discrete, and}$$

$$\sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \ dx, \quad \text{if X is continuous.}$$

The positive square root of the variance, σ , is called the **standard deviation** of X.

Theorem 2

The variance of a random variable X is

$$\sigma^2 = E(X^2) - \mu^2.$$

Theorem 3

Let X be a random variable with probability distribution f(x). The variance of the random variable g(X) is

$$\sigma_{g(X)}^2 = E\{[g(X) - \mu_{g(X)}]^2\} = \sum_x [g(x) - \mu_{g(X)}]^2 f(x)$$

if X is discrete, and

$$\sigma_{g(X)}^2 = E\{[g(X) - \mu_{g(X)}]^2\} = \int_{-\infty}^{\infty} [g(x) - \mu_{g(X)}]^2 f(x) dx$$

if X is continuous.

Covariance of Random Variables

Definition 4

Let X and Y be random variables with joint probability distribution f(x, y). The covariance of X and Y is

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_y) f(x, y)$$

if X and Y are discrete, and

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x, y) \ dx \ dy$$

if X and Y are continuous.

Theorem 4

The covariance of two random variables X and Y with means μ_X and μ_Y , respectively, is given by

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y.$$

Correlation Coefficient

Although the covariance between two random variables does provide information regarding the nature of the relationship, the magnitude of σXY does not indicate anything regarding the strength of the relationship , since σXY is not scale-free. Its magnitude will depend on the units used to measure both X and Y. There is a scale-free version of the covariance called the correlation coefficient that is used widely in statistics.

Definition 5

Let X and Y be random variables with covariance σ_{XY} and standard deviations σ_X and σ_Y , respectively. The correlation coefficient of X and Y is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

Note:

- ρ_{XY} is free of the units of X and Y
- $-1 ≤ ρ_{XY} ≤ 1$
- It assumes a value of zero when $\sigma XY = 0$.
- Where there is an exact linear dependency say $Y \equiv a + bX$,

$$\rho_{XY} = 1 \text{ if } b > 0 \quad \text{and}$$

$$\rho_{XY} = -1 \text{ if } b < 0.$$

Solved Examples

1. (Example for discrete r.v.)

Let X be a random variable with the following probability distribution

$$\begin{array}{c|ccccc} x & -2 & 3 & 5 \\ \hline f(x) & 0.3 & 0.2 & 0.5 \\ \end{array}$$

Find the mean, variance and standard deviation of the random variable X.

Solution:

$$\mu = (-2)(0.3) + (3)(0.2) + (5)(0.5) = 2.5$$
 and $E(X^2) = (-2)^2(0.3) + (3)^2(0.2) + (5)^2(0.5) = 15.5$. So, $\sigma^2 = E(X^2) - \mu^2 = 9.25$ and $\sigma = 3.041$.

2. (Example for cont. r.v.)

For a laboratory assignment, if the equipment is working, the density function of the observed outcome X is

$$f(x) = \begin{cases} 2(1-x), & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find the mean, variance and standard deviation of the random variable X. Solution:

$$E(X) = 2 \int_0^1 x(1-x) \ dx = 2 \left(\frac{x^2}{2} - \frac{x^3}{3}\right) \Big|_0^1 = \frac{1}{3} \text{ and}$$

$$E(X^2) = 2 \int_0^1 x^2(1-x) \ dx = 2 \left(\frac{x^3}{3} - \frac{x^4}{4}\right) \Big|_0^1 = \frac{1}{6}. \text{ Hence,}$$

$$Var(X) = \frac{1}{6} - \left(\frac{1}{3}\right)^2 = \frac{1}{18}, \text{ and } \sigma = \sqrt{1/18} = 0.2357.$$

3. (Example for discrete r.v.)

Let X be a random variable with the following

Let X be a random variable with the following probability distribution

Find mean variance and the standard deviation of the random variable g(X) where $g(X) = (2X + 1)^2$.

Solution:

The probability density function is,

$$\begin{array}{c|cccc} x & -3 & 6 & 9 \\ \hline f(x) & 1/6 & 1/2 & 1/3 \\ \hline g(x) & 25 & 169 & 361 \\ \end{array}$$

$$\mu_{g(X)} = E[(2X+1)^2] = (25)(1/6) + (169)(1/2) + (361)(1/3) = 209.$$

$$\sigma_{g(X)}^2 = \sum_{x} [(2X + 1)^2 - 209]^2 g(x)$$

$$= (25 - 209)^2 (1/6) + (169 - 209)^2 (1/2) + (361 - 209)^2 (1/3) = 14,144.$$
So, $\sigma_{g(X)} = \sqrt{14,144} = 118.9.$

4. (Example for cont. r.v.)

The length of time, in minutes, for an airplane to obtain clearance for takeoff at a certain airport is a random variable Y = 3X - 2, where X has the density function

$$f(x) = \begin{cases} \frac{1}{4}e^{-x/4}, & x > 0\\ 0, & \text{elsewhere.} \end{cases}$$

Find the mean and variance of the random variable Y. Solution:

$$\mu_Y = E(3X - 2) = \frac{1}{4} \int_0^\infty (3x - 2)e^{-x/4} dx = 10.$$
 So $\sigma_Y^2 = E\{[(3X - 2) - 10]^2\} = \frac{9}{4} \int_0^\infty (x - 4)^2 e^{-x/4} dx = 144.$

5. (Example for two rvs with discrete data)

The two random variables X and Y with the following joint probability distribution f(x,y).

			\boldsymbol{x}		
	f(x,y)	0	1	2	h(y)
	0	$\frac{3}{28}$	9 28	$\frac{3}{28}$	$\frac{15}{28}$
\boldsymbol{y}	1	3 28 3 14	9 28 3 14	0	15 28 3 7
	2	28	0	0	$\frac{1}{28}$
g(x)		5 14	$\frac{15}{28}$	$\frac{3}{28}$	1

- (i) Find the covariance of X and Y.
- (ii) Find the correlation coefficient between X and Y

Solution:

(i) Formula to find Cov(X,Y) is

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y$$
.

Where

$$E(XY) = \sum_{x=0}^{2} \sum_{y=0}^{2} xyf(x,y)$$

$$= (0)(0)f(0,0) + (0)(1)f(0,1)$$

$$+ (1)(0)f(1,0) + (1)(1)f(1,1) + (2)(0)f(2,0)$$

$$= f(1,1) = \frac{3}{14}.$$

$$\mu_x = \sum_{x=0}^{2} xg(x) = (0) \left(\frac{5}{14}\right) + (1) \left(\frac{15}{28}\right) + (2) \left(\frac{3}{28}\right) = \frac{3}{4},$$

and

$$\mu_Y = \sum_{y=0}^2 y h(y) = (0) \left(\frac{15}{28}\right) + (1) \left(\frac{3}{7}\right) + (2) \left(\frac{1}{28}\right) = \frac{1}{2}.$$

Therefore,

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y = \frac{3}{14} - \left(\frac{3}{4}\right)\left(\frac{1}{2}\right) = -\frac{9}{56}.$$

(ii) Formula for correlation coefficient

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

$$E(X^2) = (0^2) \left(\frac{5}{14}\right) + (1^2) \left(\frac{15}{28}\right) + (2^2) \left(\frac{3}{28}\right) = \frac{27}{28}$$

and

$$E(Y^2) = (0^2) \left(\frac{15}{28}\right) + (1^2) \left(\frac{3}{7}\right) + (2^2) \left(\frac{1}{28}\right) = \frac{4}{7},$$

$$\sigma_X^2 = \frac{27}{28} - \left(\frac{3}{4}\right)^2 = \frac{45}{112}$$

and

$$\sigma_Y^2 = \frac{4}{7} - \left(\frac{1}{2}\right)^2 = \frac{9}{28}.$$

Therefore, the correlation coefficient between X and Y is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{-9/56}{\sqrt{(45/112)(9/28)}} = -\frac{1}{\sqrt{5}}.$$

6.(Example for two cont. rvs)

A fast-food restaurant operates both a drive through facility and a walk-in facility. On a randomly selected day, let X and Y, respectively, be the proportions of the time that the drive-through and walk-in facilities are in use, and suppose that the joint density function of these random variables is

$$f(x,y) = \begin{cases} \frac{2}{3}(x+2y), & 0 \le x \le 1, \ 0 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the covariance of X and Y.

Solution:

$$\begin{array}{l} g(x) = \frac{2}{3} \int_0^1 (x+2y) \ dy = \frac{2}{3} (x+1), \ \text{for} \ 0 < x < 1, \ \text{so} \ \mu_X = \frac{2}{3} \int_0^1 x(x+1) \ dx = \frac{5}{9}; \\ h(y) = \frac{2}{3} \int_0^1 (x+2y) \ dx = \frac{2}{3} \left(\frac{1}{2} + 2y\right), \ \text{so} \ \mu_Y = \frac{2}{3} \int_0^1 y \left(\frac{1}{2} + 2y\right) \ dy = \frac{11}{18}; \ \text{and} \\ E(XY) = \frac{2}{3} \int_0^1 \int_0^1 xy(x+2y) \ dy \ dx = \frac{1}{3}. \\ \text{So,} \ \sigma_{XY} = E(XY) - \mu_X \mu_Y = \frac{1}{3} - \left(\frac{5}{9}\right) \left(\frac{11}{18}\right) = -0.0062. \end{array}$$

(Here μ_x and μ_y can also be calculated directly with double integral)

7. The fraction X of male runners and the fraction Y of female runners who compete in marathon races are described by the joint density function

$$f(x,y) = \begin{cases} 8xy, & 0 \le y \le x \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- (i) Find the covariance of X and Y.
- (ii) Find the correlation coefficient between X and Y

Solution:

(i)

We first compute the marginal density functions. They are

$$g(x) = \begin{cases} 4x^3, & 0 \le x \le 1, \\ 0, & \text{elsewhere,} \end{cases}$$

and

$$h(y) = \begin{cases} 4y(1-y^2), & 0 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

From these marginal density functions, we compute

$$\mu_X = E(X) = \int_0^1 4x^4 \ dx = \frac{4}{5} \text{ and } \mu_Y = \int_0^1 4y^2 (1 - y^2) \ dy = \frac{8}{15}.$$

From the joint density function given above, we have

$$E(XY) = \int_0^1 \int_y^1 8x^2y^2 \ dx \ dy = \frac{4}{9}.$$

Then

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y = \frac{4}{9} - \left(\frac{4}{5}\right) \left(\frac{8}{15}\right) = \frac{4}{225}.$$

(ii)

$$E(X^2) = \int_0^1 4x^5 \ dx = \frac{2}{3} \text{ and } \quad \mu_X = E(X) = \int_0^1 4x^4 \ dx = \frac{4}{5}$$

$$\sigma_X^2 = \frac{27}{28} - \left(\frac{3}{4}\right)^2 = \frac{45}{112}$$

$$E(Y^2) = \int_0^1 4y^3 (1-y^2) \ dy = 1 - \frac{2}{3} = \frac{1}{3}, \text{ and } \mu_Y = \int_0^1 4y^2 (1-y^2) \ dy = \frac{8}{15}.$$

$$\sigma_Y^2 = \frac{4}{7} - \left(\frac{1}{2}\right)^2 = \frac{9}{28}.$$

Therefore, the correlation coefficient between X and Y is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{-9/56}{\sqrt{(45/112)(9/28)}} = -\frac{1}{\sqrt{5}}.$$

(Chebyshev's Theorem)

(Chebyshev's Theorem) The probability that any random variable X will assume a value within k standard deviations of the mean is at least $1 - 1/k^2$. That is,

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}.$$

Also,

$$\mathbf{P}(|\mathbf{X} - \boldsymbol{\mu}| \ge k\sigma) < \frac{1}{k^2}$$

Example

A random variable X has a mean $\mu = 8$, a variance $\sigma^2 = 9$, and an unknown probability distribution. Find

- (a) P(-4 < X < 20),
- (b) $P(|X 8| \ge 6)$.

Solution: (a) $P(-4 < X < 20) = P[8 - (4)(3) < X < 8 + (4)(3)] \ge \frac{15}{16}$. (b) $P(|X - 8| \ge 6) = 1 - P(|X - 8| < 6) = 1 - P(-6 < X - 8 < 6)$ $= 1 - P[8 - (2)(3) < X < 8 + (2)(3)] \le \frac{1}{4}.$

[(b) can also be done using alternative inequality as discussed in the class]

Ex.

A random variable X has a mean $\mu = 10$ and a variance $\sigma_2 = 4$. Using Chebyshev's theorem, Find

- (a) P(|X − 10| ≥ 3);
- (b) P(|X-10|<3);
- (c) P(5 < X < 15);
- (d) the value of the constant c such that

$$P(|X - 10| \ge c) \le 0.04.$$