Laboratory Five — Transient Response

Rishabh Shah 4655 4192

Partner: Matthew Remillard

November 17, 2017

Pre-Lab

Ι

a

$$\tau = RC = 1k\Omega \cdot 0.1 \times 10^{-6} = 1 \times 10^{-4}s$$

b

$$\begin{split} v_0 &= 1V \\ v_R(t) &= 1 - v_c(t) \\ v_c(t) &= v_0(1 - e^{\frac{-t}{\tau}} = 1 - e^{\frac{0.001}{0.0001}} = 1V \end{split}$$

Element	$v_{PPK}(V)$
$v_{C,PPK}$	1
$v_{R,PPK}$	1

Table 1: Data for Pre-Lab 1b

 \mathbf{c}

We can assume the circuit reaches steady state because there are more than five time constants in that time period.

\mathbf{d}

The capacitor must charge, so v_c increases with time. As this occurs, the voltage across the resistor must drop, as $v_0 = v_R + v_c$.

II

a

 v_c charges when $v_0 = 1V$ and discharges when $v_0 = 0V$. Since $v_0 = v_R + v_c$, v_R is 1 when v_c is 0 and v_R is 0 when v_c is 1.

 \mathbf{b}

$$\begin{aligned} v_c(t) &= 1 - e^{\frac{0.001}{0.0001}} = 1V \\ v_0 &= v_R + v_c \end{aligned}$$

Element	$v_{PPK}(V)$
$\overline{v_{C,PPK}}$	1
$v_{R,PPK}$	2

Table 2: Data for Pre-Lab 2b

III

а

$$v_c(t) = 1 - e^{\frac{-2.5 \times 10^{-4}}{0.0001}} = 0.918V$$

The time constant has increased by a factor of 2.5, which means the circuit has not reached steady state.

b

 $f_{max}=1000Hz$ The circuit has not reached steady state because five time constants have not passed.

IV

 $\omega_0 = 422.577$

 \mathbf{b}

Resistance $(k\Omega)$	Damping Factor α (s^{-1})	Decay Time $5/\alpha$ (s)	$\omega_d \; (\mathrm{rad/s})$	f_d (kHz)
0.5	2500	$\frac{1}{500}$	422569	2.37×10^{-6}
1	50000	$\frac{1}{10000}$	419608	2.38×10^{-6}
8.45	422500	$\frac{1}{84500}$	8066	1.24×10^{-4}
25	1250000	$\frac{1}{250000}$	N/A	N/A

Table 3: Data for Pre-Lab 4b

$$R = \frac{2L}{\sqrt{LC}} = 8451\Omega$$

Lab Data

Series RC

Element	Measured Value
R_1	985.92Ω
C	101.5nF

Table 4: Measured values for circuit elements

Figure 1: Plot of RC circuit measuring V_R

Figure 2: Plot of RC circuit measuring V_c

Nonzero DC Offset

Figure 3: Plot of RC circuit, 0.5V offset measuring V_R

Figure 4: Plot of RC circuit, 0.5V offset measuring V_c

Frequency Response

Figure 5: Plot of RC circuit, 2kHz measuring V_R

Figure 6: Plot of RC circuit, 2kHz measuring V_c

First Order OP Amp Circuit

Element	Measured Value
R_1	985.92Ω
R_2	981.50Ω
R_3	987.64Ω
C	101.5nF

Table 5: Measured values for circuit elements

Figure 7: Plot of first order op amp circuit, 20% duty cycle, $100\mathrm{Hz}$

Figure 8: Plot of first order op amp circuit, 20% duty cycle, $500\mathrm{Hz}$

Figure 9: Plot of first order op amp circuit, 20% duty cycle, $10\mathrm{kHz}$

Figure 10: Plot of first order op amp circuit, 50% duty cycle, $100\mathrm{Hz}$

Figure 11: Plot of first order op amp circuit, 50% duty cycle, $500\mathrm{Hz}$

Figure 12: Plot of first order op amp circuit, 50% duty cycle, $10\mathrm{kHz}$

Series RLC Circuit — Underdamped Response, $R=1k\Omega$

Element	Measured Value
Combined Resistance	990.57Ω
C	575pF
T_1	$17\mu s$
L	10.30mH
L_R	23.94Ω

Table 6: Measured values for circuit elements

Parameter	Calculated Value
$f_{d,1}$	58823.5294Hz

Table 7: Calculated $f_{d,1}$

Figure 13: Plot of Series RLC Circuit — Underdamped Response, $R=1k\Omega$

Series RLC Circuit — Underdamped Response, Minimum Response

Element	Measured Value
Combined Resistance	1.186Ω
C	575pF
T_1	$17\mu s$
L	10.30mH
L_R	23.94Ω

Table 8: Measured values for circuit elements

Parameter	Calculated Value
$f_{d,1}$	58823.5294Hz

Table 9: Calculated $f_{d,1}$

Figure 14: Plot of Series RLC Circuit — Underdamped Response, Minimum Response

Series RLC Circuit — Critically Damped Response

Element	Measured Value
Combined Resistance	$4.6208k\Omega$
C	575pF
L	10.30mH
L_R	23.94Ω

Table 10: Measured values for circuit elements

Figure 15: Plot of Series RLC Circuit — Critically Damped Response

Series RLC Circuit — Overdamped Response

Element	Measured Value
Combined Resistance	$0.12726M\Omega$
C	575pF
L	10.30mH
L_R	23.94Ω

Table 11: Measured values for circuit elements

Figure 16: Plot of Series RLC Circuit — Overdamped Response

Post-Lab

Series RC Circuit

Zero DC Offset

 $\begin{array}{l} V_{C,PPK,Calculated} = 0.99995V \\ V_{C,PPK,Measured} = 0.99698V \\ PercentageError = \frac{|measured-calculated|}{calculated} = \frac{|0.99698-0.99995|}{0.99995} = 0.297\% \\ \text{These values are very close.} \end{array}$

Nonzero DC Offset

$$\begin{split} V_{C,PPK,Measured,ZeroOffset} &= 0.99698V \\ V_{C,PPK,Measured,NonZeroOffset} &= 1.04523V \\ V_{C,PPK,Measured,ZeroOffset} &= 1.82915V \\ V_{R,PPK,Measured,NonZeroOffset} &= 1.90955V \end{split}$$
 The waveforms shapes are the same, except the values are shifted by 0.5V.

Frequency Response

 $\begin{array}{l} V_{C,PPK,Calculated} = 0.91777 \\ V_{C,PPK,Measured} = 0.82814 \\ PercentageError = \frac{|measured-calculated|}{calculated} = \frac{|0.82814-0.91777|}{0.91777} = 9.766\% \\ \text{These values are similar, but differ due to experimental errors.} \end{array}$

First Order Op Amp Circuit

Dont know

Series RLC Circuit

```
R = 1k\Omega
```

```
\begin{array}{l} f_{calculated,ideal} = 50000 Hz \\ f_{calculated,real} = 49705.8252 Hz \\ f_{measured} = 58823.5294 Hz \\ PercentageError_{ideal} = \frac{|measured-calculated|}{calculated} = \frac{|58823.5294-50000|}{50000} = 17.65\% \\ PercentageError_{real} = \frac{|measured-calculated|}{calculated} = \frac{|58823.5294-49705.8252|}{49705.8252} = 18.34\% \\ T_{calculated,ideal} = 20 \mu s \\ T_{calculated,real} = 20.1184 \mu s \\ T_{measured} = 17 \mu s \\ PercentageError_{ideal} = \frac{|measured-calculated|}{calculated} = \frac{|17-20|}{20} = 15\% \\ PercentageError_{real} = \frac{|measured-calculated|}{calculated} = \frac{|17-20.1184|}{20.1184} = 15.50\% \\ The difference between $\omega_d$ and $\omega_0$ is dont know} \end{array}
```

Critically Damped Response

Dont know

Maximally Damped Response

The circuit does reach a new DC steady state during each half period of the square wave.