Ch.10, Sec.01 - Bartle & Sherbert. Real Analysis

Mostafa Touny

January 10, 2024

Contents

Problems	2
1	. 3
2	. 3

Problems

1

 \mathbf{a}

By definition of a gauge, we have

$$t_i - \delta(t_i) \le x_{i-1}$$
$$x_i \le t_i + \delta(t_i)$$

Implying,

$$x_i - x_{i-1} \le t_i + \delta(t_i) - x_{i-1}$$

 $-t_i + \delta(t_i) \ge -x_{i-1}$

Concluding for all $i \in \{1, 2, \dots, n\}$,

$$x_i - x_{i-1} \le t_i + \delta(t_i) - t_i + \delta(t_i)$$

$$< 2\delta(t_i)$$

b

Clearly $x_i - x_{i-1} \le 2\delta^*$ for all $i \in \{1, 2, ..., n\}$. Then $\max\{x_i - x_{i-1}\} = ||\dot{p}|| \le 2\delta^*$.

 \mathbf{c}

 $\max\{x_i - x_{i-1}\} \le \delta_* = \inf\{\delta(t)\}.$ Then $x_i - x_{i-1} \le \delta_*$

$$x_i \le \delta(t_i) + x_{i-1}$$

$$\le \delta(t_i) + t_i \quad \text{by def } x_{i-1} \le t_i$$

Analogously,

$$x_{i-1} \ge -\delta_*(t_i) + x_i$$

 $\ge -\delta_*(t_i) + t_i$ by def $x_i \ge t_i$

Therefore, $[x_{i-1}, x_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$, i.e Q is δ -fine.

 \mathbf{d}

2

 \mathbf{a}

Observe for interval $[x_{i-1}, x_i]$ for any partition,

$$[x_{i-1}, x_i] \cap [x_{j-1}, x_j] = \begin{cases} [x_{i-1}, x_i] & i = j \\ \{x_i\} & j = i+1 \\ \{x_{i-1}\} & j = i-1 \\ \phi & \text{otherwise} \end{cases}$$

It is easy to see considering any third interval containing a point x, necessarily implies two intervals share an intermediary point, violating the partitioning condition.

b

Yes. For example, on [0,1], we have the partition:

$$([0, 1/4], 1/4),$$

$$([1/4, 1/2], 1/4),$$

$$([1/2, 3/4], 3/4),$$

$$([3/4, 1], 3/4)$$