In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv(r'C:\Users\user\Downloads\11_winequality-red.csv')
df
```

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	i
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

In [3]:

```
df.head(10)
```

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	1
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	1
4											•

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [5]:

df.describe()

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total : di
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.4
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.8
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.0
4							•

In [6]:

df.columns

Out[6]:

In [7]:

sns.pairplot(df)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x1dc3c24f490>

In [8]:

```
sns.distplot(df['pH'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]:

<AxesSubplot:xlabel='pH', ylabel='Density'>

In [9]:

sns.displot(df["pH"])

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x1dc37480340>

In [10]:

In [11]:

```
sns.heatmap(df1.corr())
```

Out[11]:

<AxesSubplot:>

In [12]:

In [13]:

```
from sklearn.model_selection import train_test_split
```

In [14]:

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [15]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)#ValueError: Input contains NaN, infinity or a value too large for
```

Out[15]:

LinearRegression()

```
In [16]:
```

```
print(lr.intercept_)
```

[-60.44143358]

In [17]:

```
coef= pd.DataFrame(lr.coef_)
coef
```

Out[17]:

```
        0
        1
        2
        3
        4
        5
        6
        7

        0
        -0.095235
        -0.02507
        -0.054099
        -0.025459
        -0.456016
        0.001445
        -0.000719
        64.227282
        -0.0924
```

In [18]:

```
print(lr.score(x_test,y_test))
```

0.6906683679483773

In [19]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[19]:

<matplotlib.collections.PathCollection at 0x1dc44c1c9d0>

In [20]:

```
lr.score(x_test,y_test)
```

Out[20]:

0.6906683679483773

```
In [21]:
lr.score(x_train,y_train)
Out[21]:
0.703243766350664
In [22]:
from sklearn.linear_model import Ridge,Lasso
In [23]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[23]:
Ridge(alpha=10)
In [24]:
rr.score(x_test,y_test)
Out[24]:
0.5200743893210129
In [25]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[25]:
Lasso(alpha=10)
In [26]:
la.score(x_test,y_test)
Out[26]:
-2.672632216116355e-05
```

Elastic Net

```
In [27]:
from sklearn.linear_model import ElasticNet
en = ElasticNet()
en.fit(x_train,y_train)
Out[27]:
ElasticNet()
```

```
In [28]:
```

print(en.coef_)

[-0. 0. -0. -0. -0. 0. -0. -0. -0. 0. -0.]

In [29]:

print(en.intercept_)

[3.31135836]

In [30]:

prediction=en.predict(x_test)
print(prediction)

```
[3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
```

```
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836 3.31135836
3.31135836 3.31135836 3.31135836 3.31135836 3.31135836]
```

In [31]:

```
print(en.score(x_test,y_test))
```

-2.672632216116355e-05

Evaluation Metrics

```
In [32]:
from sklearn import metrics
In [33]:
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
Mean Absolute Error: 0.12136729222520108
In [34]:
print("Mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
Mean Squared Error: 0.024956623578158078
In [35]:
print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

Root Mean Squared Error: 0.15797665516828135