Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних

алгоритмів»

Варіант 15

Виконав студент	111-12, Кириченко Владислав Сергиович
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота № 6

Назва роботи: Дослідження рекурсивних алгоритмів **Мета**:дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 15

Умова задачі:

Обчислити добуток елементів арифметичної прогресії, що зростає: початкове значення -2, кінцеве -30, крок -4

Постановка задачі:

Нам дані значення першого та останнього елемента арифметичної прогресії, та значення кроку. Результатом буде значення добутку усіх елементів цієї прогресії.

Побудова математичної моделі:

Складемо таблицю змінних:

Змінна	Тип	Ім'я	Призначення
перший елемент	цілочисельний	a	Початкові дані
арифметичної			
прогресії			
останій елемент	цілочисельний	aEnd	Початкові дані
арифметичної			
прогресії	•	.1	п
крок	цілочисельний	d	Початкові дані
арифметичної			
прогресії	·	Guda4E1	П
формальний	цілочисельний	firdstEl	Проміжкове значення
параметр(перший елемент			
арифметичної			
прогресії)			
формальний	цілочисельний	lastEl	Проміжкове значення
параметр(останій	цілочисслыни	iusiLi	промижкове значения
елемент			
арифметичної			
прогресії)			
формальний	цілочисельний	step	Проміжкове значення
параметр(крок	·	1	1
арифметичної			
прогресії)			
результат роботи	цілочисельний	r	Результат
програми			·
результат роботи	цілочисельний	rFunc	Результат(підпрограмма)
підпрогрмамми			

3. Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізація отримання значення добутку усіх елементів ціїє прогресії(r)

Псевдокод (основна прогрма):

Крок 1.

початок

введення *a,aEnd,d*<u>знаходження значення змінної r</u>
виведення r
кінець

Крок 2.

початок

введення *a,aEnd,d r* = seqProduct(*a,aEnd,d*)

виведення *r*кінець

Псевдокод(підпрогрма):

Крок 1.

функція seqProduct(firdstEl,lastEl,step) початок

введення *firdstEl,lastEl,step*<u>перевірка чи *firdstEl==lastEl*</u>
обрахування *rFunc*повернути *r*кінець

```
функція seqProduct(firdstEl,lastEl,step)
початок
  введення firdstEl,lastEl,step
  якщо firdstEl==lastEl
          T0
           повернути firdstEl
  все якщо
  обрахування rFunc
  повернути rFunc
кінець
Крок 3.
функція seqProduct(firdstEl,lastEl,step)
початок
  введення firdstEl,lastEl,step
  якщо firdstEl==lastEl
          T0
           повернути firdstEl
  все якщо
  rFunc= firdstEl*seqProduct(firdstEl+step,lastEl,step)
  повернути rFunc
кінець
Блок схема:
Основна програма
```

Крок 1 Крок 2

Підпрограма

4. Код програми(С++)

5.Перевірка алгоритму

Блок	Дія
	Початок
1	Введення
	a =2, aEnd =30, step =4
2	r = seqProduct(firdstEl=2,lastEl=30,step=4)
3	початок дії підпрограми seqProduct(firdstEl=2,lastEl=30,step=4)
4	firdstEl==lastEl - false
5	3більшення стеку «Енга» бида ЕП*s as P nady at (6, 20, 4).
	rFunc= firdstEl*seqProduct(6,30,4);
6	firdstEl==lastEl - false

збільшення стеку rFunc= firdstEl*seqProduct(10,30,4);
firdstEl==lastEl - false
збільшення стеку rFunc= firdstEl*seqProduct(14,30,4);
firdstEl==lastEl - false
збільшення стеку rFunc= firdstEl*seqProduct(18,30,4);
firdstEl==lastEl - false
збільшення стеку rFunc= firdstEl*seqProduct(22,30,4);
firdstEl==lastEl - false
збільшення стеку rFunc= firdstEl*seqProduct(26,30,4);
firdstEl==lastEl - false
збільшення стеку rFunc= firdstEl*seqProduct(30,30,4);
firdstEl==lastEl - true
повернути 30
зменшення стеку
повернути rFunc=780
зменшення стеку

23	повернути rFunc=17160
24	зменшення стеку
25	повернути rFunc=308880
26	зменшення стеку
27	повернути rFunc=4324320
28	зменшення стеку
29	повернути rFunc=43243200
30	зменшення стеку
31	повернути rFunc=259459200
32	зменшення стеку
33	повернути rFunc=518918400
34	кінець виконання підпрограми
	r = 518918400
	виведення 518918400

Висновок - Було досліджено особливості роботи рекурсивних алгоритмів та набуто практичних навичок їх використання під час складання програмних специфікацій підпрограм.