ECON 717A: Problem Set 2

Alex von Hafften

March 6, 2022

1 Write-Up

Problem 0

I drop observations with sample equal to 3. This step dropped 2,490 observations.

Problem 1

I regressed earnings in 1978 on treatment with and without the covariate of age, age squared, education, indicators for black, Hispanic, married, and no degree, and earnings in 1974 and 1975. The treatment effect is \$886.30 without covariates and \$818.70 with covariates with both statistically significant at the 10 percent level. It is important to include covariate even in experimental data because we get a more precise estimate for the treatment effect.

	1) (2)
VARIABLES re	78 re78
	6.3* $818.7*$
(48	8.1) (487.8)
age	-145.9
	(200.8)
age_2	2.799
	(3.246)
educ	206.8
	(165.5)
black	-1,461**
	(734.3)
hisp	100.5
	(958.6)
married	133.9
	(660.0)
nodegree	-405.9
	(752.1)
re74	0.0871
	(0.106)
re75	0.0840
	(0.119)
	0*** 5,649
(27	(3,757)
	722 722
R-squared 0.0	0.045

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Problem 2 I drop observations with sample equal to 1 and treated equal to 1. This step dropped 297 observations.

Problem 3

I define in_control equal to one if sample equals one and zero otherwise. The probit estimation for the propensity scores are the coarse scores and the rich scores are below.

	(1)	(2)
VARIABLES	(1) in_control	(2) in_control
VARIABLES	III_COIIt101	III_COIItIOI
age	0.253***	0.322***
8-	(0.0293)	(0.0316)
age_2	-0.00453***	-0.00548***
W80_2	(0.000493)	(0.000530)
educ	0.0169	0.0178
cauc	(0.0181)	(0.0173)
black	1.990***	1.950***
Diack	(0.0778)	(0.0796)
high	0.973***	0.978***
hisp		
	(0.103) -1.101***	(0.106) -0.909***
married		
1	(0.0826)	(0.0869)
nodegree	1.133***	1.071***
_,	(0.100)	(0.104)
re74		-1.07e-06
		(8.60e-06)
re75		-5.76e-05***
		(9.56e-06)
Constant	-6.358***	-7.108***
	(0.483)	(0.509)
Observations	$16,\!417$	$16,\!417$
Comparison group obs. completely determined	727	1359
Control group obs. completely determined	0	0
Standard errors in parent	theses	

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The completely determined observations are 727 and 1359 comparison group observations that have propensity scores with almost zero.

Problem 4

The table below shows descriptive statistics of pscorea and pscoreb.

	Mean	SD	Min	Median	Max	N
0	0.02	0.07	0.00	0.00	0.69	15,992
1	0.39	0.23	0.00	0.47	0.69	425
Total	0.03	0.09	0.00	0.00	0.69	$16,\!417$
	Mean	SD	Min	Median	N / L	N.T.
	Mean	$^{\rm SD}$	101111	Median	Max	N
0	0.02	0.06	0.00	0.00	0.79	15,992
0						

These descriptive statistics suggest that imposing the common support condition will not drop many observations. For pscorea, the minimum is zero for both groups and the maximum is 0.69 for both groups. This suggests that there are compared observations within the comparison group to the control group. Similarly for pscoreb, the minimum is zero for both groups and the maximum is around 0.8 for both groups. These descriptive statistics suggest that the CPS group is not very comparable to the experimental control group. That is, these descriptive statistics highlight the importance of matching because the control group has a much higher mean propensity score than the comparison group (i.e., 0.39 vs. 0.02 for pscorea and 0.42 vs. 0.02 for proscoreb).

Problem 5

Below are histograms (based on the provided code) for pscorea and pscoreb across the CPS comparison group (i.e., 0) and the experimental control group (i.e., 1) with and without the lowest bin (i.e., pscorex $\in (0.0, 0.05)$). Looking at the first two histograms, most of the comparison group observations have a very low estimated propensity score (confirming the descriptive statistics), so the comparison group is not very comparable to the control group. I added histograms without the lowest bin because many observations in the comparison group have estimated propensity scores of basically zero impairing our ability to evaluate the common support condition. Looking at the second two histograms, the common support condition seems to be well satisfied with comparison group observations at all propensity levels of the control group. These histograms highlight concerns about matching without replacement because the number of observations in the control group with high propensity scores is larger than the number of observations in the comparison group with large propensity scores (i.e. on the right of the graphs the red bars are taller than the blue bars). Matching without replacement would cause these the control group observations to be matched with comparison group observations with significantly lower propensity scores.

Problem 6

Using single nearest neighbor matching without replacement and common support condition, I estimate the non-experimental bias reported in the table below. The non-experimental bias is significant and negative indicating that even after matching observations in the control group that significantly lower earnings in 1978. The non-experimental bias is lower when matching based on the rich propensity scores. No observations are dropped when matching with coarse propensity scores. Seven observations are dropped when matching with fine propensity scores.

	Unmatched	ATT for pscorea	ATT for pscoreb
Difference	-9756.610000000001	-4439.07	-2340.78
SE	470.16	486.48	449.37

Problem 7

Using single nearest neighbor matching with replacement and common support condition, I estimate the non-experimental bias reported in the table below. The non-experimental bias is still significant and negative but it is lower than without replacement. As mentioned in problem 5, this reduction in the non-experimental bias is due the relatively fewer comparison group observations with high propensity scores, so that there's more non-experimental bias when matching without replacement.

	Unmatched	ATT for pscorea	ATT for pscoreb
Difference	-9756.6100000000001	-3677.03	-1515.99
SE	470.16	934.5	707.62

Problem 8

The standardized differences are in the table below. Conditioning reduces the standardized bias for re74 by 8 percent and for re75 by 34 percent.

	re74	re75
Raw Data	1.26	1.41
Matched by pscoreb using Single Nearest Neighbor	1.16	0.98

Problem 9

Matching using the Gaussian kernel results in larger estimates of the non-experimental bias. As the bandwidth increases, the estimate of the non-experimental bias grows but the SE of the estimate decreases. This is probably due to putting positive weight on the mass of observations in the comparison group with propensity scores around zero.

	Bandwidth $= 0.02$	Bandwidth $= 0.2$	Bandwidth $= 2.0$
Difference	-2349.09	-7043.43	-9772.130000000001
SE	658.53	337.06	289.25

Problem 10

Using local linear matching, the estimates for the non-experimental bias is more-or-less in line with previous estimates for the two smaller bandwidths, but the estimate for the larger bandwidth is opposite sign.

	Bandwidth $= 0.02$	Bandwidth $= 0.2$	Bandwidth $= 2.0$
Difference	-1980.88	-2421.42	993.88
SE	707.62	707.62	707.62

Problem 11

In the table below is a regression with a dummy for in_control. The coefficient estimate is on the low side compared to the other estimates, but it is more-or-less in line with the previous results.

	7.15	
	(1)	
VARIABLES	re78	
$in_control$	-1,853***	
	(343.2)	
age	-235.5***	
	(40.08)	
age_2	1.858***	
	(0.550)	
educ	163.3***	
	(28.53)	
black	-832.4***	
	(193.9)	
hisp	-114.2	
	(213.9)	
married	199.4	
	(150.8)	
nodegree	296.6*	
<u> </u>	(174.3)	
re74	0.291***	
	(0.0152)	
re75	0.471***	
	(0.0153)	
Constant	7,757***	
	(726.7)	
	(.=)	
Observations	16,417	
R-squared	0.483	

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Below is a table of summary statistics of the predicted values split by whether in_control equals one or zero.

	Mean	SD	Min	Median	Max	N
0	14,846.66	6,608.11	241.16	15,369.08	25,559.22	15,992
1	5,090.05	4,227.39	-1,476.13	3,915.22	31,078.45	425
Total	$14,\!594.08$	6,737.87	-1,476.13	$15,\!111.14$	$31,\!078.45$	$16,\!417$

Problem 12

In the table below is a regression the typical covariate but only on the comparison group.

MADIADIDO	(1)
VARIABLES	re78
age	-252.0***
	(40.92)
age_2	2.041***
-	(0.561)
educ	166.6***
	(28.79)
black	-773.9***
	(199.6)
hisp	-168.2
•	(218.9)
married	244.1
	(153.1)
nodegree	330.7*
0	(176.9)
re74	0.299***
10.1	(0.0152)
re75	0.470***
1010	(0.0153)
Constant	7,908***
Constant	(739.7)
	(139.1)
Observations	15,992
R-squared	0.476
	orrors in parentheses

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Below is a table of summary statistics of the predicted values split by whether in_control equals one (out of sample) or zero (in sample). While the mean predicted value is different compared to problem 11, the difference is statistically insignificant.

	Mean	SD	Min	Median	Max	N
0	14,846.66	6,654.46	162.96	15,370.95	25,693.43	15,992
1	6,941.60	$4,\!269.45$	275.72	5,770.59	$33,\!124.62$	425
Total	14,642.01	6,721.77	162.96	$15,\!110.59$	$33,\!124.62$	16,417

Problem 13

The inverse probability weighting estimate for the treatment effect on the treated is -1420.38 without rescaling and -9756.61 with rescaling. In general, these estimates are in line with the previous estimates.

Stata Log File N

<unnamed> name: /Users/vonhafften/Documents/UW Madison/problem_sets/econ_717a/ps2/analysis.smcl log:

smcl log type:

6 Mar 2022, 16:02:41 opened on:

. * ECON 717A: Applied Econometrics

. * Problem set 2

. * Professor: Jeff Smith

. * Alex von Hafften

. * Matching and weighting

. * clear workspace

. clear

. * install user defined functions (if needed)

. ssc install outreg2

checking outreg2 consistency and verifying not already installed...

all files already exist and are up to date.

. ssc install psmatch2

checking psmatch2 consistency and verifying not already installed...

all files already exist and are up to date.

. ssc install texdoc

checking texdoc consistency and verifying not already installed...

all files already exist and are up to date.

checking stddiff consistency and verifying not already installed all files already exist and are up to date.
. * change working directory
. cd "/Users/vonhafften/Documents/UW Madison/problem_sets/econ_717a/ps2/" /Users/vonhafften/Documents/UW Madison/problem_sets/econ_717a/ps2
. * open dataset
. use "Economics 717 Spring 2022 NSW Data.dta"

. \star problem $\#0$ - drop observation from the PSID

. drop if sample == 3 (2,490 observations deleted)

. st problem #1 - treatment effect from experimental data

. gen age_2 = age^2
. regress re78 treated, robust

. ssc install stddiff

722 3.30 0.0698 0.0049 6242	interval]	1844.649 5634.709
	[95% conf. interval]	-72.04111 4545.388
Number of obs F(1, 720) Prob > F R-squared Root MSE	P> t	00
	ф	1.82
	Robust std. err.	488.1385
ion	Robust Coefficient std. err.	treated 886.3038 488.1385 1.82 0.07 _cons 5090.048 277.426 18.35 0.00
Linear regression		treated cons

. outreg2 using table_1, tex(frag) replace
table_1.tex
dir : seeout

regress re78 treated age age_2 educ black hisp married nodegree re74 re75, robust

. regress re/o treated age age_2 educ black hisp married nodegree re/4 re/5, robust	age_2 educ	prack ni	sp married i	lodegree re	/4 re/5, rob
Linear regression			Number of obs	= sqo	722
			F(10, 711)	=	2.75
			Prob > F	II	0.0025
			R-squared	II	0.0454
			Root MSE	II	6152.3
re78 Coefficient	Robust	+	 		[05% conf interwal]
< !	!				
treated 818.7003	487.8295	1.68	1.68 0.094 -	-139.0582	1776.459
age -145.9217	200.7603	-0.73	0.468	-540.0755	248.2322
age_2 2.799479	3.245728	0.86	0.389	-3.57288	9.171837

interval]	1776.459	248.2322	9.171837	531.642	-19.57563	1982.44	1429.726	1070.646
[95% conf. interval]	-139.0582	-540.0755	-3.57288	-118.0195	-2902.947	-1781.474	-1161.908	-1882.464
P> t	0.094	0.468	0.389	0.212	0.047	0.917	0.839	0.590
сţ	1.68	-0.73	0.86	1.25	-1.99	0.10	0.20	-0.54
Robust std. err.	487.8295	200.7603	3.245728	165.4509	734.3153	958.5652	660.0178	752.0756
 re78 Coefficient	818.7003	-145.9217	2.799479	206.8112	-1461.261	100.4831	133.9094	-405.909
re78	treated	age	age_2	educ	black	hisp	married	nodegree

log likelihood = -917.8945Iteration 6:

Probit regression	sion				Number of obs = 16,417 LR chi2(7) = 2109.00	= 16,417 = 2109.00	
					Prob > chi2	0.0000 =	
Log likelihood = -917.8945	1 = -917.8945				Pseudo R2	= 0.5346	
in_control	in_control Coefficient	Std. err.	N	P> z	[95% conf. interval]	interval]	
age	. 2532387	.0293232	8.64	000.0	.1957664	.3107111	
age_2	0045319	.0004929	-9.19	0.000	0054981	0035658	
ednc	0168833	.0180737	0.93	0.350	0185405	.052307	
black	1.989908	.0778422	25.56	0.000	1.83734	2.142476	
hisp	. 9732994	.1033626	9.45	0.000	.7707124	1.175886	
married	-1.101057	.0826205	-13.33	0.000	-1.26299	9391236	
nodegree	1.132688	.1004559	11.28	0.000	.9357984	1.329578	
cons_	-6.358	.4834229	-13.15	0.000	-7.305492	-5.410509	

Note: 727 failures and 0 successes completely determined.

. outreg2 using table_3, tex(frag) replace addstat(Comparison group obs. completely determined, e(N_cdf), Control group obs. completely de table_3.tex

dir : seeout

. predict pscorea, pr

. probit in_control age age_2 educ black hisp married nodegree re74 re75

log likelihood = -862.49864 log likelihood = -862.48901 log likelihood = -1134.7468log likelihood = -901.47114-864.6975 log likelihood = -1972.3937log likelihood = -862.48901log likelihood = Iteration 0: Iteration 1: Iteration 3: Iteration 4: Iteration 5: Iteration 2: Iteration 6: Number of obs = 16,417Probit regression

og likelihood	Log likelihood = -862.48901				LR chi2(9) Prob > chi2 Pseudo R2	= 2219.81 = 0.0000 = 0.5627
in_control	in_control Coefficient Std. err.	Std. err.	N	z P> z	[95% conf.	[95% conf. interval]
์	.3224723	.031638	10.19 0.000	000.0	.2604629	.3844817
age_2	0054825	.0005302	-10.34 0.000	0.000	0065216	0044433
	71071	07001			710007	1000

in_control	Coefficient	Std. err.	N	P> z	[95% conf. interval]	interval]
age	.3224723	.031638	10.19	0.000	. 2604629	.3844817
age_2	0054825	.0005302	-10.34	0.000	0065216	0044433
educ	0178156	.0182703	0.98	0.330	0179934	.0536247
black	1.950403	.0795723	24.51	0.000	1.794444	2.106362
hisp	9775352	.1061721	9.21	0.000	.7694418	1.185629
married	9090639	.086934	-10.46	0.000	-1.079451	7386764
nodegree	1.071194	.1039852	10.30	0.000	.8673865	1.275001
re74	-1.07e-06	8.60e-06	-0.12	0.901	0000179	.0000158
re75	0000576	9.56e-06	-6.03	0.000	0000764	0000389
cons	-7.108113	.5090983	-13.96	0.000	-8.105928	-6.110299

Note: 1359 failures and O successes completely determined.

. outreg2 using table_3, tex(frag) append addstat(Comparison group obs. completely determined, e(N_cdf), Control group obs. completely det

dir : seeout table_3.tex

. predict pscoreb, pr

. * problem #4 - compare pscorea and pscoreb descriptive statistics

. est clear

. estpost tabstat pscorea, by(in_control) c(stat) stat(mean, sd, min, median, max, count)

Summary statistics: mean sd min p50 max count

for variables: pscorea

by categories of: in_control

e(count)		16417
e(max)	.687208	.687208
e(p50)	.0001069	.0001121
e(min) e(p	.0654307 9.79e-13 .0001069 .230529 .0000756 .4716014	9.79e-13
e(sd)	.0654307	.0949319
rol e(mean)	119	0260134
in_control		ı OL

. esttab, cells("mean(fmt(%13.2fc)) sd(fmt(%13.2fc)) min(fmt(%13.2fc)) p50(fmt(%13.2fc)) max(fmt(%13.2fc)) count(fmt(%13.0fc))") nonumber

	Mean SD Min Median Max N	SD	Min	Median	Max	N
0	0.02	0.07	00.0	00.0	69.0	15,992
1	0.39	0.23	00.00	0.47	0.69	425
Total	0.03	0.09	0.00	0.00	0.69	16,417

. esttab using "table_4a.tex", replace cells("mean(fmt(%13.2fc)) sd(fmt(%13.2fc)) min(fmt(%13.2fc)) p50(fmt(%13.2fc)) max(fmt(%13.2fc)) (output written to table_4a.tex)

. est clear

. estpost tabstat pscoreb, by(in_control) c(stat) stat(mean, sd, min, median, max, count)

Summary statistics: mean sd min p50 max count

for variables: pscoreb

by categories of: in_control

			ı
e(count)	15992	425	16417
e(max)	.7886285	.8024473	.8024473
e(p50)	.0000677	.4634333	
e(min)	2.08e-16	1.64e-06	2.08e-16
e(sd)	.0642919	. 2459295	.0990717
e(mean)	.0154465	.4248305	1 .0260445
in_control		1 -	

	Mean	SD	Min	Median	Max	N
0	0.02 0.06 0.00 0.00 0.79 15,992	90.0	0.00	0.00	0.79	15,992
1	0.42	0.25	0.00	0.46	08.0	425
Total	0.03	0.10	0.00	00.00	0.80	16,417

. esttab using "table_4b.tex", replace cells("mean(fmt(%13.2fc)) sd(fmt(%13.2fc)) min(fmt(%13.2fc)) p50(fmt(%13.2fc)) max(fmt(%13.2fc)) (output written to table_4b.tex)

* problem #5 - histograms

* create bins based on pscorea and pscoreb

. egen binsa=cut(pscorea), at(0(.05)1) icodes

. egen binsb=cut(pscoreb), at(0(.05)1) icodes

. * histogram of pscorea

. graph bar (count) pscorea, over(in_control) over(binsa, label(nolab)) asyvars title("Histogram of pscorea")

. graph export figure_5a.png, replace

file /Users/vonhafften/Documents/UW Madison/problem_sets/econ_717a/ps2/figure_5a.png saved as PNG format

. * histogram of pscoreb

. graph bar (count) pscoreb, over(in_control) over(binsb, label(nolab)) asyvars title("Histogram of pscoreb")

- file /Users/vonhafften/Documents/UW Madison/problem_sets/econ_717a/ps2/figure_5b.png saved as PNG format . graph export figure_5b.png, replace
- . * histogram of pscorea wo lowest bin
- . graph bar (count) pscorea if binsa > 0, over(in_control) over(binsa, label(nolab)) asyvars title("Histogram of pscorea wo lowest bin")
- . graph export figure_5a_2.png, replace

file /Users/vonhafften/Documents/UW Madison/problem_sets/econ_717a/ps2/figure_5a_2.png saved as PNG format

- . * histogram of pscoreb wo lowest bin
- . graph bar (count) pscoreb if binsb > 0, over(in_control) over(binsb, label(nolab)) asyvars title("Histogram of pscoreb wo lowest bin")
- . graph export figure_5b_2.png, replace

file /Users/vonhafften/Documents/UW Madison/problem_sets/econ_717a/ps2/figure_5b_2.png saved as PNG format

.

* problem #6 - Nearest neighbor wo replacement

. global table_number = (

. est clear

. eststo: psmatch2 in_control, noreplacement outcome(re78) pscore(pscorea) neighbor(1) common

S.E. T-stat	-20.75	-9.12
Ω Ξ.	470.155617 -20.75	486.482153
Controls Difference	re78 Unmatched 5090.0482 14846.6596 -9756.61142	9529.11811 -4439.06991 486.482153
rols	14846.6596	9529.11811
Sample Treated Cont:	5090.0482	ATT 5090.0482
Sample	Unmatched	ATT
Variable		

Note: S.E. does not take into account that the propensity score is estimated.

			Total		15,992	425		16,417	
psmatch2:	Common	support	On suppor	+	15,992	425	+	16,417	
_	psmatch2:	Treatment	assignment	+	Untreated	Treated	+	Total	(est1 stored)

. global att_coarse = r(att)

. global att_coarse_se = r(seatt)

. esttab, se

-9756.6*** (470.2) re78 (1) _treated

14846.7*** (75.65) cons_

16417

* p<0.05, ** p<0.01, *** p<0.001 Standard errors in parentheses

. global unm_coef = r(coefs)[1, 1]

. global unm_se = r(coefs)[1, 2]

ä
commo
$\overline{1}$
or(
zhb
eig
) ne:
reb
C03
(ps
score(
SC
_
re78)
) L
ОШО
utc
t O
emen.
cen
pla
nore
ğ
ontrol, n
ontr
00
in.
atch2
atc
psma

S.E. T-stat	-20.75	17.0
S. Э.	470.155617	007600:6##
Sample Treated Controls Difference S.E.	14846.6596 -9756.61142 470.155617 7408-17564 -3240-78116 440-360786	- 4040.70110
Controls	14846.6596	# 100 / T : 00 / F / F F F F F F F F F
Treated	re78 Unmatched 5090.0482	0##60:000
e Sample T	Unmatched	- + + + + + + + + + + + + + + + + + + +
Variable	re78	A11 000/00010444

Note: S.E. does not take into account that the propensity score is estimated.

Total	15,992	16,417
_	ļ — — ļ	<u> </u>
: Common Sort On suppor	15,992	16,410
Cc ort On		
psmatch2: Common support Off suppo On supp	0 2	7
ps Off		
	 	-
psmatch2: Treatment assignment	Untreated Treated	Total

. global att_fine = r(att)

. global att_fine_se = r(seatt)

. . texdoc do table_maker . global unm_coef = round(\$unm_coef, 0.01)

. global unm_se = round(%unm_se, 0.01)

. global att_coarse = round(\$att_coarse, 0.01)

. global att_fine = round(\$att_fine, 0.01)

```
. local row1 = "Difference & \sum coef & att_coarse & att_fine \
                                                                                                                                                                                                                                                                                 . local row2 = "SE & $unm_se & $att_coarse_se & $att_fine_se \\"
. global att_fine_se = round($att_fine_se, 0.01)
                                                                                                       . global table_name = "table_$table_number.tex"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (texdoc output written to table_6.tex)
                                                                                                                                                                                                                                                                                                                                                                                                                         (texdoc output file is table_6.tex)
                                                                                                                                                                                                                                                                                                                                                                                        . texdoc init $table_name, replace
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  . texdoc append_snippet 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      . texdoc append_snippet 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          . texdoc write 'row1'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . texdoc write 'row2'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               . texdoc close
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       end of do-file
```

. * problem #7 - nearest neighbor w replacement

. global att_coarse_se = round(\$att_coarse_se, 0.01)

. global table_number = 7

. est clear

. eststo: psmatch2 in_control, outcome(re78) pscore(pscorea) neighbor(1) common

S.E. T-stat	-20.75
S. Е.	470.155617 -20.75 934.497524 -3.93
Variable Sample Treated Controls Difference S.E. T-stat	re78 Unmatched 5090.0482 14846.6596 -9756.61142 470.155617 -20.7 ATT 5090.0482 8767.08057 -3677.03237 934.497524 -3.9
Controls	14846.6596 8767.08057
Treated	hed 5090.0482 ATT 5090.0482
Sample	Unmatched ATT
Variable	

Note: S.E. does not take into account that the propensity score is estimated.

| psmatch2:

Total	15,992 425	16,417
Common support On suppor	15,992 425	16,417
psmatch2: Treatment assignment	Untreated Treated	Total

(est1 stored)

. global att_coarse = r(att)

. global att_coarse_se = r(seatt)

. esttab, se

(1)

re78	-9756.6*** (470.2)	14846.7*** (75.65)	16417
	treated	cons	 - - - - - - - -

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001</pre>

. global unm_coef = r(coefs)[1, 1]

. global unm_se = r(coefs)[1, 2]

. psmatch2 in_control, outcome(re78) pscore(pscoreb) neighbor(1) common

S.E. T-stat	-20.75	-2.14
Ω .Ε	470.155617	707.616814
Controls Difference	Unmatched 5090.0482 14846.6596 -9756.61142 470.155617 -20.7	-1515.99407
Controls	14846.6596 -9756.61142	6583.38855
Treated	re78 Unmatched 5090.0482	ATT 5067.39448
Sample	Unmatched	ATT
	re78	

Note: S.E. does not take into account that the propensity score is estimated.

psmatch2: | psmatch2: Common

		Total	15,992	425	16,417
		_ {	<u> </u>	_	<u> </u>
	support	On suppor	15,992	418	16,410
	Idns	oddns jjO	0	7	7
_	_		ļ _	_	
	Treatment	assignment	Untreated	Treated	Total

. global att_fine = r(att)

```
. global att_fine_se = r(seatt)
```

. texdoc do table_maker

. global unm_coef = round(\$unm_coef, 0.01)

. global unm_se = round(\$unm_se, 0.01)

. global att_coarse = round(\$att_coarse, 0.01)

. global att_fine = round(\$att_fine, 0.01)

. global att_coarse_se = round(\$att_coarse_se, 0.01)

. global att_fine_se = round(\$att_fine_se, 0.01)

. . global table_name = "table_\$table_number.tex" . local row1 = "Difference & %unm_coef & %att_coarse & %att_fine \\"

. local row2 = "SE & \$unm_se & \$att_coarse_se & \$att_fine_se \\"

. texdoc init \$table_name, replace

(texdoc output file is table_7.tex)

. texdoc append_snippet 2

. texdoc write 'row1'

. texdoc write 'row2'

. texdoc append_snippet 3

. texdoc close

(texdoc output written to table_7.tex)

end of do-file

. * problem #8 - standardized differences

. * raw data

. stddiff re74 re75, by(in_control)

	1.26323
ontrol=1 SD or (%) Std	
in_cc	3672
or N	3027
rol=0	9569.8
SD or (%)	9270.4
in_control=0	e74 14017
Mean or N SD	e75 13651
	14 14

. * rich pscore nearest neighbor - re74

. psmatch2 in_control, outcome(re74) pscore(pscoreb) neighbor(1) common

-22.15re74 Unmatched | 3672.48515 14016.8007 -10344.3156 467.066411

-1.16
638.936788
-741.260515
4475.24661
3733.9861
ATT

Note: S.E. does not take into account that the propensity score is estimated.

. * rich pscore nearest neighbor - re74 $\,$

. psmatch2 in_control, outcome(re75) pscore(pscoreb) neighbor(1) common

-0.98	562.743993	ATT 3077.36881 3629.42503 -552.056218 562.743993 -0.9	3629.42503	ATT 3077.36881	ATT	
-23.53	451.	-10624.1204		re75 Unmatched 3026.68274	Unmatched	
S.E. T-stat	Э.	Controls Difference	Controls	Sample Treated	Sample	Variable

Note: S.E. does not take into account that the propensity score is estimated.

		01.10	
	Total	15,992	16,417
	-		_
ommon t	suppo On suppor	15,992 418	16,410
ch2: Cor support	9		
psmatch2: Common support	oddns	0 4	7
ğ	0ff :		
psmatch2: Treatment	assignment	Untreated Treated	Tot

. * problem #9 - gaussian kernel matching

. global table_number = 9

rah) hwidth(0.02) common

14th(0.02)	S.E. T-stat	-20.75
wa (delosed)e	Ω Э.	470.155617 658.531426
norman) pscor	Controls Difference	14846.6596 -9756.61142 7416.48625 -2349.09177
уегиет суре	Controls	14846.6596 7416.48625
onrcome(re/o)	Treated	hed 5090.0482 ATT 5067.39448
croi, kernei	Sample	re78 Unmatched 5090.0482 ATT 5067.39448
psmarcnz in_control, kernel outcome(re/o) kerneltype(normal) pscore(pscoreb) bwiatn(0.02)	Variable	

Note: S.E. does not take into account that the propensity score is estimated.

. global att_low = r(att)

. global att_low_se = r(seatt)

. psmatch2 in_control, kernel outcome(re78) kerneltype(normal) pscore(pscoreb) bwidth(0.2) common

S.E. T-stat	-20.75
S. Е.	470.155617 -20.75 337.0603 -20.90
Controls Difference	re78 Unmatched 5090.0482 14846.6596 -9756.61142 470.155617 -20.75 ATT 5067.39448 12110.8234 -7043.42897 337.0603 -20.90
Controls	14846.6596 12110.8234
Treated	hed 5090.0482 14846.6596 -9756.61142 ATT 5067.39448 12110.8234 -7043.42897
Sample	Unmatched ATT
Variable Sample Treated Controls Difference S.E. T-sta	

Note: S.E. does not take into account that the propensity score is estimated.

		Total	15,992	425	16,417
: Common	support	On suppor	15,992	418	16,410
psmatch2: Common	Idns	Off suppo On suppor	0	7	
psmatch2:	Treatment	assignment	Untreated	Treated	

. global att_med = r(att)

. global att_med_se = r(seatt)

. psmatch2 in_control, kernel outcome(re78) kerneltype(normal) pscore(pscoreb) bwidth(2.0) common

S.E. T-stat	-20.75
S. Э.	470.155617 -20.75 289.251216 -33.78
Controls Difference	re78 Unmatched 5090.0482 14846.6596 -9756.61142 ATT 5067.39448 14839.5273 -9772.13283
Controls	14846.6596 14839.5273
Treated	hed 5090.0482 ATT 5067.39448
e Sample	Unmatched ATT
Variable Sample Treated Controls Difference S.E. T-stat	re78

Note: S.E. does not take into account that the propensity score is estimated.

| psmatch2: | psmatch2: Common | Treatment | support | Total | assignment | Off suppo On suppor | Total | Total | Untreated | 0 15,992 | 15,992 | Treated | 7 418 | 425

Total | 7 16,410 | 16,417

. global att_hi = r(att)

. global att_hi_se = r(seatt)

. texdoc do table_maker_2

. global att_low = round(\$att_low, 0.01)

. global att_med = round(\$att_med, 0.01)

. global att_hi = round(\$att_hi, 0.01)

. . global att_low_se = round(\$att_low_se, 0.01) . global att_med_se = round(\$att_med_se, 0.01)

. global att_hi_se = round(\$att_hi_se, 0.01)

. . global table_name = "table_\$table_number.tex" . local row1 = "Difference & att_low & att_med & att_hi \\"

. local row2 = "SE & \$att_low_se & \$att_med_se & \$att_hi_se \\"

. texdoc init \$table_name, replace

(texdoc output file is table_9.tex)

. texdoc append_snippet 2

. texdoc write 'row2'

. texdoc write 'row1'

. texdoc append_snippet 3

(texdoc output written to table_9.tex) . texdoc close

end of do-file

. * problem #10 - local linear matching

. global table_number = 10

. psmatch2 in_control, llr outcome(re78) pscore(pscoreb) bwidth(0.02) common

S.E. T-stat	-20.75 -2.80
Ω .н	.155
Variable Sample Treated Controls Difference S.E. T-stat	14846.6596 -9756.61142 7048.27098 -1980.8765
Controls	14846.6596 7048.27098
Sample Treated	I
Sample	Unmatched ATT
Variable	

Note: S.E. does not take into account that the propensity score is estimated.

15,992 Total 16,417 16,410 | assignment | Off suppo On suppor | 15,992 psmatch2: Common support psmatch2: | Total Treatment | Untreated Treated

. global att_low = r(att)

. global att_low_se = r(seatt)

. psmatch2 in_control, llr outcome(re78) pscore(pscoreb) bwidth(0.2) common

S.E. T-stat	-20.75
З. Е.	470.155617 707.616814
Controls Difference	14846.6596 -9756.61142 470.155617 7488.81187 -2421.41739 707.616814
Controls	14846.6596 7488.81187
Treated	re78 Unmatched 5090.0482 ATT 5067.39448
Sample	Unmatched ATT
Variable Sample Treated Controls Difference S.E.	re78 Unmatched 5090.0482 14846.6596 -9756.61142 470.155617 -20.75 ATT 5067.39448 7488.81187 -2421.41739 707.616814 -3.42

Note: S.E. does not take into account that the propensity score is estimated.

Total 15,992 16,417 16,410 | assignment | Off suppo On suppor | 418 15,992 psmatch2: Common support psmatch2: | Total | Treatment | Treated | Untreated |

. global att_med = r(att)

. global att_med_se = r(seatt)

-20.75 T-stat S.E. 707.616814 470.155617 993.875888 Difference -9756.61142 Controls 14846.6596 4073.51859 re78 Unmatched | 5090.0482 ATT | 5067.39448 Variable Sample | Treated

. psmatch2 in_control, llr outcome(re78) pscore(pscoreb) bwidth(2.0) common

Note: S.E. does not take into account that the propensity score is estimated.

psmatch2: Common psmatch2: |

support Treatment |

Total assignment | Off suppo On suppor |

	15,999 42	16,417
+	15,992 418	16,410
		<i>b</i>
+	Untreated Treated	Total

. $global att_hi = r(att)$

. global att_hi_se = r(seatt)

. texdoc do table_maker_2

. global att_low = round(\$att_low, 0.01)

. global att_med = round(\$att_med, 0.01)

. global att_hi = round(\$att_hi, 0.01)

. global att_low_se = round(\$att_low_se, 0.01)

. global att_med_se = round(\$att_med_se, 0.01)

. global att_hi_se = round(\$att_hi_se, 0.01)

. global table_name = "table_\$table_number.tex"

. local row1 = "Difference & \$att_low & \$att_med & \$att_hi \\"

. local row2 = "SE & \$att_low_se & \$att_med_se & \$att_hi_se \\"

(texdoc output file is table_10.tex) . texdoc init \$table_name, replace

texdoc append_snippet 2	
. texdoc write 'row1'	
. texdoc write 'row2'	
. texdoc append_snippet 3	
. texdoc close (texdoc output written to table_10.tex)	
end of do-file	
***************************************	***************
. * problem #11 - linear regression of in_control	
**************************************	*************
. regress re78 in_control age age_2 educ black hisp marr	educ black hisp married nodegree re74 re75, robust
Linear regression F(10, 16406) Prob > F R-squared Root MSE	cobs = 16,417 106) = 1816.18 = 0.0000 1 = 0.4834 = 6967
Robust 	[95% conf. interval]

. outreg2 using table_11a, tex(frag) replace

table_11a.tex

dir : seeout

. predict y_hat_11

(option xb assumed; fitted values)

. est clear

. estpost tabstat y_hat_11, by(in_control) c(stat) stat(mean, sd, min, median, max, count)

Summary statistics: mean sd min p50 max count

for variables: y_hat_11

by categories of: in_control

+				(ned)a	e(max) 	e(count)
_ 0	14846.66	6608.113	6608.113 241.1631 15369.08	15369.08	25559.22	15992
П	5090.048	4227.391	4227.391 -1476.131	3915.223	31078.45	425
+	+		6737 . 868 - 1476 . 131 15111 . 14 31078 . 45	15111.14	31078.45	16417

. esttab, cells("mean(fmt(%13.2fc)) sd(fmt(%13.2fc)) min(fmt(%13.2fc)) p50(fmt(%13.2fc)) max(fmt(%13.2fc)) count(fmt(%13.0fc))") nonumber

	Mean	SD	Min	Median	Max	N
0	14,8	1.		15,369.08	25,559.	15,992
	5,090.05	4,227.39	-1,476.13	3,915.22	31,078.45	425
Total	14,594.08	6,737.87	-1,476.13	15,111.14	31,078.45	16,417

. esttab using "table_11b.tex", replace cells("mean(fmt(%13.2fc)) sd(fmt(%13.2fc)) min(fmt(%13.2fc)) p50(fmt(%13.2fc)) max(fmt(%13.2fc)) (output written to table_11b.tex)

. * problem #12 - linear regression of in_control out-of-sample

. regress re78 age age_2 educ black hisp married nodegree re74 re75 if in_control == 0, robust

0.0000 0.4758 2869 15,992 1896.13 II II II П Number of obs F(9, 15982) R-squared Prob > F Root MSE Linear regression

[95% conf. interval]	2553 -171.8417	3257 3.139785	1584 223.0382	.022 -382.7364	3642 260.9074	9513 544.2398	9642 677.3497	2690069 .3287317
% 6]	-332.2553	.9418257	110.1584	-1165.022	-597.3642	-55.9513	-15.99642	. 2690
P> t	000.0	000.0	0.000	000.0	0.442	0.111	0.062	0.000
сţ	-6.16	3.64	5.79	-3.88	-0.77	1.59	1.87	19.62
Robust std. err.	40.9195	.5606718	28.7942	199.5513	218.9343	153.1012	176.8639	.015235
 re78 Coefficient	-252.0485	2.040805	166.5983	-773.8793	-168.2284	244.1442	330.6767	. 2988693
re78	age	age_2	educ	black	hisp	married	nodegree	re74

.5000173	9358.194	
.4399004	6458.53	
000.0	10.69 0.000	
30.65 0.000	10.69	
.0153351	739.6679	
.4699589	7908.362	
re75	_cons	

. outreg2 using table_12a, tex(frag) replace

table_12a.tex

dir : seeout

. predict y_hat_12

(option xb assumed; fitted values)

. est clear

. estpost tabstat y_hat_12, by(in_control) c(stat) stat(mean, sd, min, median, max, count)

Summary statistics: mean sd min p50 max count

for variables: y_hat_12

by categories of: in_control

e(count)	15992	16417))
e(max)	25693.43	33124.62	
e(b20)	15370.95) - - - - - - - - - - - - - - - - - - -
e(min)	162.9647	162.9647	
e(sd)	6654.46	6721,768) - - ! !
e(mean)	14846.	14642.01	
in_control		Total 14642.01 6721.768 162	

. esttab, cells("mean(fmt(%13.2fc)) sd(fmt(%13.2fc)) min(fmt(%13.2fc)) p50(fmt(%13.2fc)) max(fmt(%13.2fc)) count(fmt(%13.0fc))") nonumber

		Mean SD	Min		Median	N
	14,	6,654.46	162.96	1	25,693.43	15,992
	6,941.60	4,269.45	275.72	5,770.59	33,124.62	425
otal	14,642.01	6,721.77	162.96	15,110.59	33,124.62	16,417

. esttab using "table_12b.tex", replace cells("mean(fmt(%13.2fc)) sd(fmt(%13.2fc)) min(fmt(%13.2fc)) p50(fmt(%13.2fc)) max(fmt(%13.2fc))

```
Max
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Min
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Std. dev.
                                  . * problem #13 - inverse probability weighting
                                                                                                                                                                                                                                                                                                                                                                                                                          . * get unconditional probability of treatment
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Mean
                                                                                                                                                                                                                                                                                                                                                                                                                                                             . scalar p_hat = n_1/(n_0 + n_1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     . gen y_d = re78 * in_control
                                                                                                                                                                                                                                                                         . * get number of untreated
                                                                                                                                                                                                                                                                                                              . count if in_control == 0 15,992
                                                                                                                                                             . count if in_control == 1 425
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ops 0
                                                                                                                           . * get number of treated
                                                                                                                                                                                                                    . scalar n_1 = r(N)
                                                                                                                                                                                                                                                                                                                                                                   . scalar n_0 = r(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          . summarize y_d
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Variable |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    . * get y * d
```

(output written to table_12b.tex)

y_d | 16,417 131.7701 1223.885 0 39483.53

. $scalar y_d_sum = r(sum)$

. * get second term wo rescaling

. gen wo_rescale = $(1 - p_hat) / p_hat * pscoreb * re78 * (1 - in_control)/(1 - pscoreb)$

. summarize wo_rescale

. scalar wo_rescale_sum = r(sum)

* get second term w rescaling

. gen rescaling = pscoreb * $(1-in_control)/(1-pscoreb)$

. summarize rescaling

Max 3.731006 Min Std. dev. .1427705 Mean .0237833 16,417 ops 0 rescaling | Variable

. scalar rescaling = $1/n_0$ * r(sum)

. gen w_rescale = $(1/rescaling) * pscoreb * re78 * (1 - in_control)/(1-pscoreb)$ (425 missing values generated)

. summarize w_rescale

Max 25564.67 0 Min Std. dev. 9647.391 Mean 14846.66 ops 0 15,992 w_rescale | Variable

. $scalar w_rescale_sum = r(sum)$

. * treatment effect on treated ipw w and wo rescaling

. display $1/n_1\ *\ y_d_sum\ -\ 1/n_0\ *\ wo_rescale_sum\ -1420.3787$

. display 1/n_1 * y_d_sum - 1/n_0 * w_rescale_sum -9756.6114

. log close

<unnamed> name:

/Users/vonhafften/Documents/UW Madison/problem_sets/econ_717a/ps2/analysis.smcl log:

smcl

6 Mar 2022, 16:03:56 log type: