

Claudio Arbib Università di L'Aquila

Ricerca Operativa

Il metodo del simplesso

Sommario

- Notazione
- Basi e soluzioni di base
- Forma canonica
- Teorema 1: criterio di ottimalità
- Teorema 2: criterio di illimitatezza
- Operazione di pivot
- Teorema 3: miglioramento della base corrente
- Schema generale

Notazione

Consideriamo il problema di PL in forma standard

P:
$$\max \quad \mathbf{cx}$$

$$\mathbf{Ax} = \mathbf{b}$$

$$\mathbf{x} \ge \mathbf{0}$$

con \mathbf{c} , $\mathbf{x} \in \mathrm{IR}^n$, $\mathbf{b} \in \mathrm{IR}^m$, $\mathbf{A} \in \mathrm{IR}^{m \times n}$.

Senza perdere in generalità, supponiamo rg(A) = m.

Per ogni $S \subseteq \{1, ..., n\}$ siano:

- $-\mathbf{c}_{S}(\mathbf{x}_{S})$ il sottovettore di \mathbf{c} (di \mathbf{x}) con componenti in S;
- A_S la sottomatrice di A formata dalle colonne a indici in S.

Esempio:
$$S = \{1, 2, 4\}$$

$$- \mathbf{c} = (1, -3, 0, 2), \quad \mathbf{c}_S = (1, -3, 2);$$

$$- \mathbf{A} = \begin{bmatrix} 1 & 2 & -3 & 0 \\ 2 & 0 & 5 & 1 \end{bmatrix} \quad \mathbf{A}_S = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Basi e soluzioni di base

<u>Definizione</u>: Un insieme $B \subseteq \{1, ..., n\}$ è una base per il problema (P) se A_B è non singolare.

L'insieme $N = \{1, ..., n\} - B$ si dice insieme degli indici non di base. Il problema (P) si può riscrivere

$$\mathbf{a}_{B}\mathbf{x}_{B} + \mathbf{c}_{N}\mathbf{x}_{N}$$

$$\mathbf{A}_{B}\mathbf{x}_{B} + \mathbf{A}_{N}\mathbf{x}_{N} = \mathbf{b}$$

$$\mathbf{x}_{B}, \mathbf{x}_{N} \geq \mathbf{0}$$

Invertendo A_B e premoltiplicando si ottiene

$$\mathbf{x}_{B} + \mathbf{c}_{N} \mathbf{x}_{N}$$

$$\mathbf{x}_{B} + \mathbf{A}_{B}^{-1} \mathbf{A}_{N} \mathbf{x}_{N} = \mathbf{A}_{B}^{-1} \mathbf{b}$$

$$\mathbf{x}_{B}, \mathbf{x}_{N} \geq \mathbf{0}$$

Definizione: La soluzione

$$\mathbf{x}_B = \mathbf{A}_B^{-1} \mathbf{b}$$
$$\mathbf{x}_N = \mathbf{0}$$

si dice soluzione di base associata a B. Se in particolare si ha $\mathbf{A}_B^{-1}\mathbf{b} \geq \mathbf{0}$, allora si dirà soluzione di base ammissibile per (P).

Basi e soluzioni di base

Esempio: Nel problema

$$\max 5x_1 - 2x_2 + x_3 + 2x_4$$

$$x_1 + 2x_2 - 3x_3 = 8$$

$$2x_1 + 5x_3 + x_4 = 4$$

$$x_1, \dots, x_4 \ge 0$$

l'insieme $B = \{1, 2\}$ costituisce una base in quanto la matrice

$$\mathbf{A}_B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$$
 è non singolare. Invertendola si ha:

$$\mathbf{A}_{B}^{-1} = -\frac{1}{4} \begin{bmatrix} 0 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{bmatrix}$$

Si ha quindi la soluzione di base ammissibile $\mathbf{x}_N = \mathbf{0}$, $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

<u>Considerazione</u>: L'idea di fondo consiste nel separare la verifica dei vincoli di eguaglianza da quella (più facile) delle clausole di non negatività.

Un problema equivalente

Sostituendo $\mathbf{x}_B = (\mathbf{A}_B^{-1}\mathbf{b} - \mathbf{A}_B^{-1}\mathbf{A}_N\mathbf{x}_N)$ nella funzione obiettivo di (P) e interpretando le \mathbf{x}_B (che sono \geq 0) come slack si ha poi il problema in forma generale

P':
$$(\mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N) \mathbf{x}_N + \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{b}$$
$$\mathbf{A}_B^{-1} \mathbf{A}_N \mathbf{x}_N \leq \mathbf{A}_B^{-1} \mathbf{b}$$
$$-\mathbf{x}_N \leq \mathbf{0}$$

Questo problema (P') è equivalente a (P) nel senso che a ogni soluzione di (P) corrisponde una soluzione di (P') che ha lo stesso valore, e viceversa.

In particolare:

- una soluzione ottima di (P') corrisponde a una soluzione ottima di (P).
- (P) è illimitato superiormente se e solo se anche (P') lo è.

Riprendiamo il problema

$$\max 5x_1 - 2x_2 + x_3 + 2x_4$$

$$x_1 + 2x_2 - 3x_3 = 8$$

$$2x_1 + 5x_3 + x_4 = 4$$

$$x_1, \dots, x_4 \ge 0$$

in cui, come già visto, l'insieme $B = \{1, 2\}$ costituisce una base:

$$\mathbf{A}_{B}^{-1} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{bmatrix} \quad \mathbf{A}_{N} = \begin{bmatrix} -3 & 0 \\ 5 & 1 \end{bmatrix} \quad \mathbf{A}_{B}^{-1} \mathbf{A}_{N} = \begin{bmatrix} \frac{5}{2} & \frac{1}{2} \\ -1\frac{1}{4} & -\frac{1}{4} \end{bmatrix} \quad \mathbf{A}_{B}^{-1} \mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Si ricava $(\mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N) = -(17 \ 1)$. Moltiplicando poi la prima disequazione per 2 e la seconda per 4, il problema si riscrive

max
$$-17x_3 - x_4 + (5 -2) \begin{bmatrix} 2 \\ 3 \end{bmatrix} = -17x_3 - x_4 + 4$$

$$5x_3 + x_4 \le 4$$

$$-11x_3 - x_4 \le 12$$

$$x_3, x_4 \ge 0$$

e ammette la soluzione $x_3 = x_4 = 0$ di valore 4.

Forma canonica

P':
$$\max (\mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N) \mathbf{x}_N + \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{b}$$
$$\mathbf{A}_B^{-1} \mathbf{A}_N \mathbf{x}_N \leq \mathbf{A}_B^{-1} \mathbf{b}$$
$$-\mathbf{x}_N \leq \mathbf{0}$$

può riscriversi

$$\max \quad \mathbf{c}_{N} \mathbf{x}_{N} + d' \\ \mathbf{A}_{N} \mathbf{x}_{N} \leq \mathbf{b}' \\ \mathbf{x}_{N} \geq \mathbf{0}$$

con
$$\mathbf{c}_{N}' = \mathbf{c}_{N} - \mathbf{c}_{B} \mathbf{A}_{B}^{-1} \mathbf{A}_{N}$$

 $\mathbf{b}' = \mathbf{A}_{B}^{-1} \mathbf{b},$
 $\mathbf{A}_{N}' = \mathbf{A}_{B}^{-1} \mathbf{A}_{N}$ $d' = \mathbf{c}_{B} \mathbf{A}_{B}^{-1} \mathbf{b}$

e si dirà in forma canonica se $\mathbf{b}' \geq \mathbf{0}$.

Il vettore $\mathbf{c}_N' = \mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N$ si dice vettore dei costi ridotti.

Lo scalare $d' = \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{b}$ è pari al costo della soluzione associata alla base B.

Riassumendo

Supponendo di disporre di una base ammissibile *B*, possiamo raccogliere i dati del problema (P) o del suo equivalente (P') in una tabella canonica

Riprendendo il problema

Teorema 1

<u>Criterio di ottimalità</u>: Sia $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b}$, $\mathbf{x}_N = \mathbf{0}$ una soluzione di base ammissibile per (P).

Se
$$\mathbf{c}_N' = (\mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N) \leq \mathbf{0}$$
, allora $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ è ottima.

<u>Dimostrazione</u>: Per il Teorema di Dualità Forte **x** è ottima se e solo se esiste una **y** soluzione di

$$\begin{array}{ccc} \text{D)} & \min & \mathbf{yb} \\ & \mathbf{yA} \geq \mathbf{c} \end{array}$$

tale che yb = cx.

Sia
$$\mathbf{y} = \mathbf{c}_B \mathbf{A}_B^{-1} \in \mathbb{R}^m$$
. Si ha

$$\mathbf{y}\mathbf{A}_B = \mathbf{c}_B\mathbf{A}_B^{-1}\mathbf{A}_B = \mathbf{c}_B \geq \mathbf{c}_B$$
 (ovviamente).

$$\mathbf{y}\mathbf{A}_N = \mathbf{c}_B\mathbf{A}_B^{-1}\mathbf{A}_N \geq \mathbf{c}_N \text{ (per ipotesi)}.$$

Quindi y è ammissibile per (D)

Inoltre
$$\mathbf{c}\mathbf{x} = \mathbf{c}_B \mathbf{x}_B + \mathbf{c}_N \mathbf{x}_N = \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{b} + \mathbf{c}_N \cdot \mathbf{0} = \mathbf{y}\mathbf{b}$$
. Quindi $\mathbf{x} \stackrel{\triangleright}{\mathbf{e}}$ ottima per (P).

Riprendendo il problema

La soluzione
$$x_3 = x_4 = 0$$

 $x_1 = 4$

$$x_2 = 12$$

è ottima sia per P' che per P

> valore della f.o. nella soluzione di base (cambiato di segno)

Teorema 2

<u>Criterio di illimitatezza</u>: Sia $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b}$, $\mathbf{x}_N = \mathbf{0}$ una soluzione di base ammissibile per (P).

Se $\exists k \in \mathbb{N}: c_k' > 0$ e $\mathbf{A}_k' \leq \mathbf{0}$, allora (P) è illimitato superiormente.

<u>Dimostrazione</u>: Anzitutto (P) è illimitato superiormente sse lo è (P').

Ma per il Teorema Fondamentale della Programmazione Lineare, (P') è illimitato superiormente se esiste $\mathbf{d} \in \operatorname{rec}(P')$ tale che $\mathbf{cd} > 0$. Ora si ha

$$rec(P') = \{\mathbf{u} \in IR^n : \mathbf{A}'\mathbf{u} \leq \mathbf{0}, \mathbf{u} \geq \mathbf{0}\}\$$

Evidentemente, $\mathbf{d} = \mathbf{e}_k \in \operatorname{rec}(\mathbf{P}')$. Infatti

$$\mathbf{A}'\mathbf{e}_k = \mathbf{A}_k' \leq \mathbf{0}$$
 (per ipotesi)
 $\mathbf{c}'\mathbf{e}_k = c_k' > 0$ (per ipotesi).

Quindi (P') è illimitato superiormente.

Modifiche alla tabella canonica

La tabella canonica **T** può essere modificata con operazioni di combinazione lineare delle righe ottenendo una tabella che rappresenti un problema equivalente a (P).

$$\mathbf{T'} = \begin{bmatrix} \mathbf{c}_N' + \mathbf{w} \mathbf{A}_N' & \mathbf{0} + \mathbf{w} & -d' + \mathbf{w} \mathbf{b}' \\ \mathbf{A}_N' & \mathbf{I} & \mathbf{b}' \ge \mathbf{0} \end{bmatrix}$$

Sia $\mathbf{w} \in \mathbb{R}^m$. Allora si può sommare la riga $\mathbf{w}(\mathbf{A}_N', \mathbf{I}, \mathbf{b}')$

- a qualsiasi equazione di T (righe da 1 a m)
- alla riga $(\mathbf{c}_N', \mathbf{0}, -d')$ (riga 0).

Infatti
$$\mathbf{c}_N' \mathbf{0} + \mathbf{0}\mathbf{x}_B + d' + \mathbf{w}(\mathbf{0}) = d', \forall (\mathbf{x}_B, \mathbf{x}_N) \text{ di base}$$

Operazione di pivot

L'operazione di *pivot* consiste nel combinare linearmente le righe di **T** in modo da ottenere una colonna unitaria in posizione prestabilita. k: colonna di *pivot*

Operazione di pivot

Per eseguire un'operazione di *pivot* basta:

- 1. scegliere un elemento di pivot a_{hk} ' $\neq 0$
- 2. dividere la riga h per a_{hk} , ottenendo a_{hk} = 1
- 3. sottrarre alla generica riga i la riga h così ricavata moltiplicata per a_{ik} , ottenendo a_{ik} " = 0 b_i " = b_i ' b_h ' a_{ik} ' / a_{hk} '
- 4. sottrarre alla riga 0 la riga h così ricavata moltiplicata per c_k , ottenendo $c_k = 0$ $-d = -d b_h c_k / a_{hk}$

1. Scegliere un elemento di pivot a_{hk} '

1	-3	6	0	0	0	2
3	2	-1	0	0	1	2
1	0	4	1	0	0	3
0	5	-2	0	1	0	1

2. Dividere la riga 2 per a_{23}

$\begin{bmatrix} 3 & 2 & -1 & 0 & 0 & 1 & 2 \\ 1 & 0 & 4 & 1 & 0 & 0 & 3 \\ 0 & 5 & 0 & 1 & 0 & 1 \end{bmatrix}$	1	-3	6	0	0	0	2
	3	2	-1	0	0	1	2
	1	0	4	1	0	0	3
	0	5	-2	0	1	0	1

2. Dividere la riga 2 per a_{23}

1	-3	6	0	0	0	2
3	2	-1	0	0	1	2
1/4	0	1	1/4	0	0	3/4
0	5	-2	0	1	0	1

3. Sottrarre alla riga 1 la riga 2 moltiplicata per a_{13} '

1	-3	6	0	0	0	2
13/4	2	0	1/4	0	1	11/4
1/4	0	1	1/4	0	0	3/4
0	5	-2	0	1	0	1

+1

3. Sottrarre alla riga 3 la riga 2 moltiplicata per a_{33} '

1	-3	6	0	0	0	2
13/4	2	0	1/4	0	1	11/4
1/4	0	1	1/4	0	0	3/4
1/2	5	0	1/2	1	0	5/2

+2

4. Sottrarre alla riga 0 la riga 2 moltiplicata per c_3 '

13/4 2 0 1	11/4
<u>-6</u>	3/4
1/2 5 0 1/2 1 0	5/2

Colonna entrata in base

Colonna uscita dalla base

Teorema 3

<u>Miglioramento base corrente</u>: Sia $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b}$, $\mathbf{x}_N = \mathbf{0}$ una soluzione di base ammissibile per (P).

Se
$$\exists h \in R, k \in N: c_k' > 0$$
 e $a_{hk}' > 0$, allora (P) ammette una base B' associata a una soluzione non peggiore di quella associata a B .

<u>Dimostrazione</u>: Senza perdere di generalità, sia *h* tale che

$$b_h/a_{hk} \leq b_i/a_{ik} \qquad \forall i \in R: a_{ik} > 0$$

Eseguendo un'operazione di pivot su a_{hk} si ottiene una nuova base ammissibile B'.

Inoltre il valore della soluzione associata a B' è

$$d'' = d' + b_h c_k / a_{hk} \ge d'$$

$$\ge 0 > 0 > 0$$

Metodo del Simplesso

FASE I

 Individuare una base ammissibile B (base corrente) e costruire la tabella canonica T

FASE II

- 1. Se $\mathbf{c}' \leq \mathbf{0}$, la base corrente è ottima (Teorema 1)
- 2. Se $c_k' > 0$ e $\mathbf{A}_k' \leq \mathbf{0}$, (P) è illimitato (Teorema 2)
- 3. Se c_k ' > 0 e a_{hk} ' > 0 con b_h ' / a_{hk} ' $\leq b_i$ ' / a_{ik} ' per ogni riga i tale che a_{ik} ' > 0, allora eseguire un' operazione di pivot su a_{hk} ' e aggiornare la base corrente (Teorema 3)

Diagramma di flusso

P:
$$\max 3x_1 + 2x_2$$

 $4x_1 + 5x_2 \le 20$
 $3x_1 + 2x_2 \ge 6$
 $-x_1 + x_2 \le 1$
 $x_2 \ge 0$

Problema equivalente in forma standard:

S:
$$\max$$
 $3u_1 - 3w_1 + 2x_2$ $4u_1 - 4w_1 + 5x_2 + z_1 = 20$ $-3u_1 + 3w_1 - 2x_2 + z_2 = -6$ $-u_1 + w_1 + x_2 + z_3 = 1$ $u_1, w_1, x_2, z_1, z_2, z_3 \ge 0$

Applicazione del simplesso

u_1	w_1	\mathcal{X}_2	z_1	\mathcal{Z}_2	Z_3	
3	- 3	2	0	0	0	0
4	- 4	5	1	0	0	20
3	-3	2	0	-1	0	6
_1	1	1	0	0	1	1

La tabella non è canonica

Si può renderla canonica eseguendo un'operazione di pivot su quest'elemento La tabella risultante è

u_1	w_1	x_2	z_1	\mathcal{Z}_2	z_3	
0	0	0	0	1	0	-6
0	0	7/3	1	4/3	0	12
1	-1	2/3	0	-1/3	0	2
0	0	5/3	0	-1/3	1	3

(in verde le colonne in base)

1^a iterazione

costo ridotto positivo

u_1	\boldsymbol{w}_1	x_2	z_1	z_2	\mathcal{Z}_3	
Ö	0	0	0	(1)	0	-6
0	0	7/3	1	4/3	0	12
1	-1	2/3	0	-1/3	0	2
0	0	5/3	0	-1/3	1	3

Elemento di pivot

Colonna di pivot

Pivot

u_1	w_1	\mathcal{X}_2	z_1	\mathcal{Z}_2	Z_3	
0	0	0	0	1	0	-6
0	0	7/3	1	4/3	0	12
1	-1	2/3	0	-1/3	0	2
0	0	5/3	0	-1/3	1	3

Tabella risultante

costi ridotti $\leq 0 \Rightarrow$ soluzione ottima

u_1	\boldsymbol{w}_1	\mathcal{X}_2	z_1	z_2	Z_3	
0	0	-7/4	-3/4	0	0	-15
0	0	7/4	3/4	1	0	9
1	- 1	5/4	1/4	0	0	5
0	0	9/4	1/4	0	1	6

nuova base

La soluzione ottima

