## **Inhaltsverzeichnis**

| 1 Komplexe Zahlen |      |                                                |
|-------------------|------|------------------------------------------------|
|                   | 1.1  | Definition                                     |
|                   | 1.2  | Veranschaulichung                              |
|                   | 1.3  | Rechenregeln in $\mathbb{C}$                   |
|                   | 1.4  | Definition Absolutbetrag                       |
|                   | 1.5  | Rechenreglen für den Absolutbetrag             |
|                   | 1.6  | Darstellung durch Polarkoordinaten             |
|                   | 1.7  | Additionstheoreme der Trigonometrie            |
|                   | 1.8  | geometrische Interpretation der Multiplikation |
|                   | 1.9  | Bemerkung und Definition                       |
|                   | 1.10 |                                                |
|                   | 1.11 | Beispiel                                       |
|                   |      | Bemerkung                                      |
|                   |      |                                                |
| 2                 | Folg | en und Reihen                                  |
|                   | 2.1  | Definition                                     |
|                   | 2.2  | Beispiel                                       |
|                   | 2.3  | Definition                                     |
|                   | 2.4  | Definition                                     |
|                   | 2.5  | Beispiele                                      |
|                   | 2.6  | Satz 9                                         |
|                   | 2.7  | Bemerkung                                      |
|                   | 2.8  | Satz (Rechenregeln für konvergente Folgen)     |
|                   | 2.9  | Satz                                           |
|                   | 2.10 | Bemerkung                                      |
|                   | 2.11 | Definition                                     |

# 1 Komplexe Zahlen

### 1.1 Definition

```
Menge der komplexen Zahlen \mathbb{C} = \{a+bi: a,b \in \mathbb{R}\}
\underline{\operatorname{Addition:}}(a+bi) + (c+di) = (a+c) + (b+d)i
\underline{\operatorname{Multiplikation:}}(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i
(\operatorname{Ausmultiplizieren \ und \ } i^2 = -1 \ \operatorname{beachten})
\mathbb{R} \subset \mathbb{C}
a \in \mathbb{R} : a+0 \cdot i = a
Rein imaginäre Zahlen : bi, b \in \mathbb{R}, (0+bi)
\mathbf{i} \ \underline{\mathbf{imaginäre \ Einheit}}
z = a+bi \in \mathbb{C}
a = \Re(z) \ \operatorname{Realteil \ von \ } z(\operatorname{Re}(z))
b = \Im(z) \ \operatorname{Imaginärteil \ von \ } z(\operatorname{Im}(z))
\bar{z} = a-bi(=a+(-b)i)
Die zu z \ \underline{\mathbf{konjugiert \ komplexe \ Zahl}}
```

## 1.2 Veranschaulichung



Addition entspricht Vektoraddition



# 1.3 Rechenregeln in $\mathbb C$

a) Es gelten alle Rechenregeln wie in  $\mathbb{R}$ . (z.B Kommutativität bzgl.  $+, \cdot : z_1 + z_2 = z_2 + z_1$  und  $z_1 \cdot z_2 = z_2 \cdot z_1$ 

Inversenbildung bzgl. ·:

b)  $z, z_1, z_2 \in \mathbb{C}$ :

$$\begin{split} \frac{\bar{z}}{z_1 + z_2} &= z \\ \frac{z_1 + z_2}{z_1 \cdot z_2} &= \bar{z_1} \cdot \bar{z_2} \end{split}$$

## 1.4 Definition Absolutbetrag

a) Absolutbetrag von  $z = a + bi\mathbb{C}$ :

$$|z| = + \underbrace{\sqrt{a^2 + b^2}}_{\in \mathbb{R}, \geq 0}$$

$$|a^2 + b^2 = z \cdot \overline{z}| |z| = + \sqrt{z \cdot \overline{z}}$$

$$|a + bi| \cdot (a - bi) = (a^2 + b^2) + 0i = a^2 + b^2$$

$$|z| = Abstand von z zu 0$$

$$= Länge des Vektors, der z entspricht$$



b) Abstand von  $z_1, z_2 \in \mathbb{C}$ :  $d(z_1, z_2) := |z_1 - z_2|$ 

# 1.5 Rechenreglen für den Absolutbetrag

 $z, z_1, z_2 \in \mathbb{C}$ 

a) 
$$\mid z \mid = 0 \Leftrightarrow z = 0$$

b) 
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

c) 
$$|z_1 + z_2| \le |z_1| + |z_2|$$
  
 $||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$   
 $|-z| = |z|$ 

## 1.6 Darstellung durch Polarkoordinaten

a) Jeder Punkt  $\neq$  (0,0) lässt sich durch seine Polarkoordinaten  $(r,\varphi)$  beschreiben:



$$-r \ge 0, r \in \mathbb{R}$$

 $0 \le \varphi \le 2\pi$ , wird gemessen von der positiven x-Achse entgegen des Uhrzeigersinnes



### Umfang: $2\pi$

 $\varphi$  in Grad  $\hat{=}\frac{2\pi\cdot\varphi}{360}$  im Bogenmaß

Für Punkte mit kartesischen Koordinaten (0,0) werden als Polarkoordinate  $(r,\varphi)$  verwendet.

b) komplexe Zahl z = a + ib

$$r = |z| = +\sqrt{a^2 + b^2}$$

$$a = |z| \cdot \cos(\varphi)$$

$$b = |z| \cdot \sin(\varphi)$$

$$z = |z| \cdot \cos(\varphi) + i \cdot |z| \cdot \sin(\varphi)$$

$$z = |z|(\cdot\cos(\varphi) + i\cdot\sin(\varphi))$$

Darstellung von z durch Polarkoordinate

Beispiel:

a) 
$$z_1 = 2 \cdot (\cos(\frac{\pi}{4}) + i \cdot \sin(\frac{\pi}{4}))$$
  
=  $2 \cdot (0, 5\sqrt{2} + i \cdot 0.5\sqrt{2})$ 

- b)  $z_2 = 2 + i$   $|z_2| = \sqrt{5}$  $z_2 = \sqrt{5} \cdot (\frac{2}{\sqrt{5} + \frac{1}{\sqrt{5}}}i)$  Suche  $\varphi$  mit  $0 \le 2\pi$  mit  $\cos(\varphi) = \frac{2}{\sqrt{5}}, \sin(\frac{1}{\sqrt{5}}z_2 \approx \sqrt{5} \cdot (\cos(0, 46) + i \cdot \sin(0, 46))$
- c) Die komplexen Zahlen von Betrag 1 entsprechen den Punkten auf Einheitskreis:  $\cos(\varphi) + i\sin(\varphi), 0 \le \varphi \le 2\pi$

### 1.7 Additionstheoreme der Trigonometrie

a) 
$$\sin(\varphi + \psi) = \sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi)$$

b) 
$$\cos(\varphi + \psi) = \cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\varphi) \cdot \sin(\psi)$$

### 1.8 geometrische Interpretation der Multiplikation

a) 
$$w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$
  
 $z = |z| \cdot (\cos(\psi) + i \cdot \sin(\psi))$   
 $w \cdot z = |w| \cdot |z| \cdot (\cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\psi)) + i(\sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi))$   
 $w \cdot z = |w \cdot z|(\cos(\varphi + \psi) + i \cdot \sin(\varphi + \psi))$ 



b) 
$$z = i, w = a + ib$$
  
 $i \cdot w = -b \cdot ia$ 

Multiplikation mit i  $\hat{=}$  Drehung um 90°



# 1.9 Bemerkung und Definition

Wir werden später die komplexen Exponentialfunktion einführen.

$$e^z$$
 für alle  $z \in \mathbb{C}$  e = Euler'sche Zahl  $\approx 2,718718...$ 

$$e^{z_1} = cde^{z_2} = e^{z_1 + z_2}, e^{-z} = \frac{1}{e^z}$$
  
Es gilt:  $t \in \mathbb{R} \cdot e^{it} - \cos(t) + i$ .

Es gilt:  $t \in \mathbb{R}$  :  $e^{it} = \cos(t) + i \cdot \sin(t)$ 

Jede komplexe Zahl lässt sich schreiben  $z = r \cdot e^{i \cdot \varphi}, r = |z|, \varphi$  Winkel  $r \cdot (\cos(\varphi) + i\sin(\varphi))$  ist Polarform von z.

z=a+biist kartesische Form von z.  $\bullet(r,\varphi)$  Polarkoordinaten  $|e^{i\varphi}|=+\sqrt{\cos^2(\varphi)+\sin^2(\varphi)}=1$   $e^{i\varphi}, 0\leq\varphi\leq 2\pi, \text{ Punkte auf dem Einheitskreis.}$   $e^{i\pi}=-1$   $e^{i\pi}+1=0$  Eulersche Gleichung

#### 1.10 Satz

Sei  $w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) \in \mathbb{C}$ 

- a) Ist  $m \in \mathbb{Z}$ , so ist  $w^m = |w|^m \cdot (\cos(m \cdot \varphi) + i \cdot \sin(m \cdot \varphi))$  $(m < 0 : w^m = \frac{1}{w^{[m]}}), w \neq 0$
- b) Quadratwurzeln
- c) Ist  $n \in \mathbb{N}, w \neq 0$ , so gibt es genau n<br/> n-te Wurzeln von w:  $\sqrt[n]{w} = + \sqrt[n]{|w|} \cdot (\cos(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n}) + i\sin(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n})), n \in \mathbb{N}, k \in \{0, \dots, n-1\}$

Beweis. a) richtig, wenn m = 0, 1  $m \ge 2$ . Folgt aus  $(\star)$  m = -a:  $w^{-1} = \frac{1}{w} = \frac{1}{|w|^2 \cdot (\cos^2(\varphi) + i \cdot \sin^2(\varphi))} \cdot |w| \cdot \cos(\varphi) - \sin(\varphi)$   $= \frac{1}{w} = \frac{1}{midw| \cdot (\cos^2(\varphi) + i \cdot \sin^2(\varphi))} \cdot |w| \cdot \cos(\varphi) - \sin(\varphi)$  $= \frac{1}{|w|} \cdot (\cos(-\varphi + i \cdot \sin(-\varphi)) = |w|^{-1} \cdot (\cos(-\varphi) + \sin(-\varphi))$ 

## 1.11 Beispiel

Quadratwurzel aus i:

$$|i| = 1$$

Nach 1.10 b):  $\sqrt{i} = \pm(\cos(\frac{\pi}{4} + i \cdot \sin(\frac{\pi}{4})))$ =  $\pm(\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i)$ 

## 1.12 Bemerkung

Nach 1.10 hat jedes Polynom

$$x^n - w \ (w \in \mathbb{C})$$

eine Nullstelle in  $\mathbb{C}$  (sogar n verschiedene wenn  $w \neq 0$ )

Es gilt sogar : Fundamentalsatz der Algebra

(C. F. Gauß1777-1855)

Jedes Polynom  $a_n x^n + \ldots + a_0$ 

mit irgendwelchen Koeffizienten:  $a_n \dots a_0 \in \mathbb{C}$  hat Nullstelle in  $\mathbb{C}$ 

# 2 Folgen und Reihen

#### 2.1 Definition

Sei  $k \in \mathbb{Z}$ ,  $A_k := \{m \in \mathbb{Z} : m > k\}$   $(k = 0A_0 \in \mathbb{N}_0, k = 1, A_n \in \mathbb{N})$  $Abbildunga : A \Rightarrow \mathbb{R}(oder\mathbb{C})$  
$$m \Rightarrow a_n$$

heißt  $\underline{\text{Folge}}$  reeller Zahlen

$$(a_k, a_{k-1} \ldots)$$

Schreibweise:

 $(a_m)_{m>k}$  oder einfach  $(a_m)$ 

 $a_m$  heißt <u>m-tes Glied</u> der Folge, m <u>Index</u>

## 2.2 Beispiel

b) 
$$a_n = n$$
 für alle  $n > 1$   $(1,2,3,4,5,6,7,8,9,10,...)$ 

c) 
$$a_n = \frac{1}{n}$$
  
 $(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$ 

d) 
$$a_n \frac{(n+1)^2}{2^n}$$
  $(2, \frac{9}{4}, 2, \frac{25}{16}, \ldots)$ 

e) 
$$a_n = (-1)^n$$
  
 $(-1, 1, -1, 1, -1, 1, \ldots)$ 

f) 
$$a_n = \frac{1}{2}a_{n_1} = \frac{1}{a_{n-1}}$$
 für  $n \ge 2, a_1 = 1$   $(1, \frac{3}{2}, \frac{17}{12}, \dots)$ 

g) 
$$a_n = \sum_{i=1}^n \frac{1}{i}$$
  
 $(1, \frac{3}{2}, \frac{11}{6}, \dots)$ 

h) 
$$a_n = \sum_{i=1}^n (-1)^i \cdot \frac{1}{i}$$
  
 $(-1, \frac{-1}{2}, -\frac{-5}{6}, \dots)$ 

## 2.3 Definition

Eine Folge  $(a_n)_{n>k}$  heißt beschränkt, wenn die Menge der Folgenglieder beschränkt ist. D.h.  $\exists D > 0 : -D \le a_n \le D$  für alle n > k.



### 2.4 Definiton

Eine Folge  $(a_n)_{n\geq k}$  heißt konvergent gegen  $\varepsilon\in\mathbb{R}$  (konvergent gegen  $\varepsilon$ ), falls gilt:  $\forall \varepsilon>0 \exists n(\varepsilon)\in\mathbb{N} \forall n\geq n(\overline{\varepsilon}): |a_n-c|<\varepsilon$   $c=\lim_{n\to\infty}a_n$  (oder einfach  $c=\lim a_n$ ) c heißt Grenzwert (oder Limes) der Folge  $(a_n)$  (Grenzwert hängt nicht von endlich vielen Anfangsgliedern ab (der Folge)) Eine Folge die gegen 0 konvertiert, heißt Nullfolge

### 2.5 Beispiele

- a)  $r \in \mathbb{R} : a_n = r$  für alle  $n \ge 1$  (r, r, ...)  $\lim_{n \to \infty} = r$   $|a_n - r| = 0$  für alle nFür jedes  $\varepsilon > 0$  kann man  $n(\varepsilon) = 1$  wählen
- b)  $a_n = n$  für alle  $n \ge 1$ Folgte ist nicht beschränkt, konvergiert nicht.
- c)  $a_n = \frac{1}{n}$  für alle  $n \ge 1$   $(a_n)$  ist Nullfolge. Sei  $\varepsilon > 0$  beliebig. Suche Index  $n(\varepsilon)$  mit  $|a_n - o| < \varepsilon$  für alle  $n \ge n(\varepsilon)$  D.s. es muss gelten.  $\frac{1}{n} < \varepsilon$  für alle  $n \ge n(\varepsilon)$  Ich brauche :  $\frac{1}{n(\varepsilon)} < 3$  Ich brauche  $n(\varepsilon) > \frac{1}{\varepsilon}$  Aus Mathe I folgt, dass solch ein  $n(\varepsilon)$  existiert. z.B  $n(\varepsilon) - \lceil \frac{1}{2} \rceil + 1 > \frac{1}{\varepsilon}$  Dann:  $|a_n - 0| < \frac{1}{n} < \varepsilon$  für alle  $n \ge n(\varepsilon)$
- d)  $a_n = \frac{3n^2+1}{n^2+n+1}$  für lle  $n \ge 1$ Behauptung:  $\lim_{n \to \infty} a_n = 3$   $|a-3| = |\frac{3n^2+1}{n^2+n+1} - 3| = |\frac{3n^2+1-3(n^2+n+1)}{n^2+n+1}|$   $= |\frac{-3n-2}{n^2+n+1}| = \frac{3n+2}{n^2+n+1}$ Sei  $\varepsilon > 0$ . Benötigt wird  $n(\varepsilon) \in \mathbb{N}$  mit  $\frac{3n+2}{n^2+n+1} < \varepsilon$  für alle  $n > n(\varepsilon)$ .

Sei  $\varepsilon > 0$ . Benötigt wird  $n(\varepsilon) \in \mathbb{N}$  mit  $\frac{3n+2}{n^2+n+1} \le \frac{5n}{n^2} = \frac{5}{n}$ Wähle  $n(\varepsilon)$  so, dass  $n(\varepsilon) > \frac{5}{\varepsilon}$ Dann gilt für alle  $n \ge n(\varepsilon)$ .  $|a_n - 3| = \frac{3n+2}{n^2+n+1} \le \frac{5}{n} \le \frac{5}{n(\varepsilon)} < \frac{5\varepsilon}{5} = \varepsilon$ Für alle  $n \ge n(\varepsilon)$ 

e)  $a_n=(-1)^n$  beschränkte Folge  $-1\le a\le 1$  konvergiert nicht. Sei  $c\in\mathbb{R}$  beliebig, Wähle  $\varepsilon=\frac12$ 



$$2=|a_n-a_{n+1}|\leq |a_n-c|+|c-a_{n+1}|<\frac{1}{2}+\frac{1}{2}=\underline{1}$$
WIDERSPRUCHSYMBOL EINSETZEN

#### **2.6 Satz**

Jede konvergente Folge ist beschränkt. (Umkehrung nicht:  $2.5_{e}$ )

Beweis. Sei  $c = \lim a_n$ , wähle  $\varepsilon = 1$ , Es existiert  $n(1) \in \mathbb{N}$  mit  $|a_n - c| < 1$  für alle  $n \ge n(1)$ Dann ist  $|a_n| = |a_n - c + c| \le |a_n - c| + |c| < 1 + |c|$  für alle  $n \ge n(1)$   $M = \max\{|a_k|, |a_{k+1}|, \dots, |a_{n(1)-1}|, 1 + |c|\}$ Dann:  $|a_n| \le M$  für alle  $n \ge k$  $-M \le a_n \le M$ 

## 2.7 Bemerkung

- a)  $(a_n)_{n\geq 1}$  Nullfolge  $\Leftrightarrow (|a_n|)_{n\geq 1}$  Nullfolge  $(|a_n-0|=|a_n|-||a_n|-0|)$
- b)  $\lim_{n\to\infty} a_n = c \Leftrightarrow (a_n-c)_{n\geq k}$  ist Nullfolge  $\Leftrightarrow (|a_n-c|)_{n\geq k}$  ist Nullfolge

# 2.8 Satz (Rechenregeln für konvergente Folgen)

Seien  $(a_n)_{n\geq k}$  und  $(b_n)_{n\geq k}$  konvergente Folgen,  $\lim a_n=c, \lim b_n=d$ .

- a)  $\lim |a_n| = |c|$
- b)  $\lim(a_n \pm b_n) = c \pm d$
- c)  $\lim(a_n \cdot b_n) = c \cdot d$ insbesondere  $\lim(r \cdot b_N) = r \cdot \lim b_n = r \cdot d$  für jedes  $r \in \mathbb{R}$ .
- d) Ist  $b_n \neq 0$  für alle  $n \geq k$  und ist  $d \neq 0$ , so  $\lim(\frac{a_n}{k_n}) = \frac{c}{d}$
- e) Ist  $(b_n)$  Nullfolge,  $b_n \neq 0$  für alle  $n \geq k$ , so konvergiert  $(\frac{1}{b_n} \text{ <u>nicht!})$ .</u>
- f) Existiert  $m \ge k$  mit  $a_n \le b_n$  für alle  $n \ge m$ , so ist  $c \le d$ .
- g) Ist  $(c_n)_{n\geq k}$  Folge und existiert  $m\geq k$  mit  $0\leq c_n\leq a_n$  für alle  $n\geq m$  und ist  $(a_n)$  eine Nullfolge, so ist auch  $(c_n)$  eine Nullfolge.
- h) Ist  $(c_n)_{n\geq l}$  beschränkte Folge und ist  $(a_n)_{n\geq k}$  Nullfolge, so ist auch  $(c_n\cdot a_n)_{n\geq k}$  Nullfolge.  $c_n$  muss nicht konvergieren!

#### Beweis. Exemplarisch:

b) Sei  $\varepsilon > 0$ . Dann existiert  $n_1(\frac{\varepsilon}{2})$  und  $n_2(\frac{\varepsilon}{2})$  und  $|a_n - c| < \frac{\varepsilon}{2}$  für alle  $n \ge n_1(\frac{\varepsilon}{2})$   $|b_n - d| < \frac{\varepsilon}{2}$  für alle  $n \ge n_2(\frac{\varepsilon}{2})$  Suche  $n(\varepsilon) = \max(n_1(\frac{\varepsilon}{2}, n_2(\frac{\varepsilon}{2}))$  Dann gilt für alle  $n > n(\varepsilon)$ :  $|a_n + b_n - (c + d)| = |(a_n - c) + (b_n - d)| \le |a_n - c| + |b_n - d| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ 

f) Angenommen c>d. Setze  $\delta=c-d>0$ Es existiert  $\tilde{m}\geq m$  mit  $|c-a_n|<\frac{\delta}{2}$ und  $|b_n-d|<\frac{\delta}{2}$  für alle  $n\geq \tilde{m}$ . Für diese n gilt:  $0<\delta\leq \delta+b_n-a_n=c-d+b_n-a_n\geq 0$  nach Voraussetzung  $=|c-a_n-d+b_n|\leq |c-a_n|+|d-b_n|$   $\leq \frac{\delta}{2}+\frac{\delta}{2}=\delta$  WIDERSPRUCHSZEICHEN EINFUGEN

### 2.9 Satz

- a)  $0 \le q \le 1$  Dann ist  $(q^n)_{n \ge 1}$  Nullfolge
- b) Ist  $m \in \mathbb{N}$ , so ist  $\left(\left(\frac{1}{n^m}\right)_{n \geq 1}$  Nullfolge.
- c) Sei  $0 \le q < 1, m \in \mathbb{N}$ Dann ist  $(n^m \cdot q^n)_{n \ge 1}$  Nullfolge
- d) Ist  $r>1, m\in\mathbb{N},$  so ist  $(\frac{n^m}{r^n})_{r>1}$  eine Nullfolge
- e)  $P(x) = a_m \cdot x^m + \dots a_0, a_i \in \mathbb{R}, a_m \neq 0$   $Q(x) = b_e \cdot x^e + \dots b_0, b_i \in \mathbb{R}, b_e \neq 0$ Sei  $Q(n) \neq 0$  für alle  $n \geq k$ .
  - Ist m > e, so ist  $\frac{P(n)}{Q(n)}$  nicht konvergent
  - Ist m = e, so ist  $\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \frac{a_m}{b_e} = \frac{a_m}{b_m}$
  - Ist m < l, so  $\operatorname{ist}(\frac{P(n)}{Q(n)})$  ein Nullfolge
- a) Sei  $0 \leq q \leq 1$  Dann ist  $(q^n)_{n \geq}$ eine Nullfolge

Beweis. a) Richtig für q > 0. Sei jetzt q > 0. Sei  $\varepsilon > 0$ . Mathe I: Es gibt ein  $n(\varepsilon) \in \mathbb{N}$  mit  $q^{n(\varepsilon)} < \varepsilon$ . Für alle  $n \ge n(\varepsilon)$  gilt:  $|q^n - o| = q^n < q^{n(\varepsilon)} < \varepsilon$ .

- b) 2.5.c):  $\frac{1}{n_{n\geq 1}}$  Nullfolge Beh. folgt mit 2.8.c)
- c) Richtig für q = 0. Sei jetzt q > 0.  $\underbrace{1.\text{Fall}:}_{q} \text{ m} = 1$   $\underbrace{\frac{1}{q} = 1 + t, t > 0}_{q}.$

$$(t+1)^n = 1 + nt + \frac{n(n+1)}{2}t^2 > \frac{n(n-1)}{2}t^2 \text{ für alle } n \geq 2$$

$$q^n = \frac{1}{(1+t)^n} < \frac{2}{n(n-1)t^2}$$

$$0 \leq n \cdot q^n < \frac{2}{(n-1)t^2} \Leftarrow \text{ Nullfolge } 2.5\text{e}), 2.8\text{e})$$
Nach 2.9g) ist  $(n \cdot q^n)_{n \geq q}$  Nullfolge, also auch  $(n \cdot q^n)_{n \geq 1}$ .
$$\frac{2.\text{Fall}:}{2} m > 1.$$
Setze  $0 < q' = \sqrt[n]{q} \in \mathbb{R}$ 

$$n^m \cdot q^n = n^m \cdot (q')^n)^m)^n$$

$$= (n \cdot (q')^n)^m)^n = 1 \text{anwenden}$$

$$0 < q' < 1$$

$$(n^m + q^n)_{n \geq 1}$$
 Nullfolge noch Fall  $m = 1$  und 2.8e)

d) Folgt aus c) und  $q = \frac{1}{r}$ 

e) Ist 
$$m \leq l$$
, so ist  $\frac{P(n)}{Q(n)} = \frac{n^m (a_m + a_{m-1} \cdot \frac{1}{n} + \dots + a_1 \cdot \frac{1}{n^{m-1}} + a_0 \cdot \frac{1}{n^m})}{n^l (b_l + b_{l-1} \cdot \frac{1}{n} + \dots + b_1 \cdot \frac{1}{n^{l-1}} + b_0 \cdot \frac{1}{n^l})} = \frac{1}{n^{l-m}} \cdot \frac{I}{II}$ 

$$(I) \longrightarrow a_m, (II) \longrightarrow b_l \frac{(I)}{(II)} \Rightarrow \frac{a_m}{b_l}$$
 $n < l, \frac{1}{n^{l-m}}$  Nullfolge
$$\frac{P(n)}{Q(n)} \Rightarrow 0 \cdot \frac{a_m}{b_l}$$
 $m > l$ :
Beh. folgt aus Fall  $m < l$  und 2.8e).

## 2.10 Bemerkung

Betrachte Bijektionsverfahren, der Zahl  $x \in \mathbb{R}$  bestimmt.

Betrachte Bijektionsveriahren, der Zahl 
$$x \in \mathbb{R}$$
 bes $a_0 \leq a_1 \leq a_2 \leq \dots$   $b_0 \geq b_1 \geq b_2 \geq \dots$   $a_n \leq x \leq b_n$   $0 < b_n - a_n = \frac{b_0 - a_0}{2^n}$   $0 \leq |x - a_n| \leq b_n - a_n = \frac{b_0 - a_n}{2} \Leftarrow \text{Nullfolge (2.9b)}$   $2.8e)(|x - a_n|) \text{ Nullfolge.}$   $2.7e)$ :  $\lim_{n \to \infty} a_n = x$  Analog:  $\lim_{n \to \infty} b_n = x$ 

2.9 d) e) sind Beispiele für asymptotischen Vergleich von Folgen

### 2.11 Definition

a) Eine Folge  $(a_n)_{n\geq k}$  heißt strikt positiv, falls  $a_n>0$  für alle  $n\geq k$ . Sei im Folgenden  $(a_n)_{n>k}$  eine strikt positive Folge.

b) 
$$\mathbb{O}(a_n) = \{(b_n)_{n \geq k} : \text{ist beschränkt}\}\$$
  
=  $\{(b_n)_{n \geq k} \exists C > 0 \text{ mit } |b_n| \leq C \cdot a_n\}$ 

c) 
$$\rtimes(a_n) = \{b_n\} - n \ge k : (\frac{b_n}{a_n} \text{ist Nullfolge}\}\$$
  
 $(b_n) \in \lessapprox$