Summary of Analysis

Changjae Lee 1

June 27, 2024

 $^{^{1}}$ email: toposless@gmail.com

Contents

Ι	Meausre and Integration					
1	Mea	asures	3			
	1.1	Abstract Measures	3			
		1.1.1 σ -algebras	3			
		1.1.2 measurable spaces	3			
	1.2	Outer Measures	3			

iv CONTENTS

Part I Meausre and Integration

Chapter 1

Measures

1.1 Abstract Measures

1.1.1 σ -algebras

Definition 1. Consider a collection $\mathcal{M} \subset \mathcal{P}X$ s.t.

- $X \in \mathcal{M}$
- $E \in \mathcal{M} \Rightarrow X \setminus E \in \mathcal{M}$
- $(E_{\alpha})_{\alpha \in I} \in \mathcal{M} \Rightarrow \bigcup_{\alpha \in I} E_{\alpha} \in \Sigma$

 \mathcal{M} is called an **algebra** on X if I is finite, and \mathcal{M} is called σ -algebra on X if I is countably infinite.

1.1.2 measurable spaces

Definition 2. A *measure* on X is a function $\mu : \mathcal{M} \to [0, \infty]$ s.t.

- $\mu(\varnothing) = 0$
- $(E_j)_1^{\infty}$ disjoint sets of $\mathcal{M} \Rightarrow \mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$

1.2 Outer Measures

Definition 3. An *outer measure* on a nonempty set X is a function μ^* : $\mathcal{P}X \to [0, \infty]$ s.t.

•
$$\mu^*(\varnothing) = 0$$

- $A \subset B \Rightarrow \mu^*(A) \leq \mu^*(B)$
- $\mu^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{1}^{\infty} \mu^*(A_j)$

Index

algebra, 3 $$\sigma$-algebra, 3$

measure, 3 outer measure, 3