Cuff-Less High-Accuracy Calibration-Free Blood Pressure Estimation Using Pulse Transit Time

Mohamad Kachuee, Mohammad Mahdi Kiani, Hoda Mohammadzade, Mahdi Shabany

Department of Electrical Engineering
Sharif University of Technology

Outline

- Motivation
- Backgrounds
- Methodology
- Results
- Conclusion

Motivation

- Hypertension (High Blood Pressure)
 is the second factor of cardiovascular
 disease
- 9.4 million death reported because of hypertension [1]

Traditional Measurement Method

- Inflatable Cuff
 - Inconvenient
 - Prevents continuous measurements
 - Makes stress and systematic error
 - As shared by many people isn't hygienic

Physical Background [2]

- Vessel like an elastic pipe
- Pulse Wave Velocity (PWV):

$$PWV = \sqrt{\frac{E.t}{2.R.\rho}}$$

- R: inner radios of vessel
- ρ : blood density
- t: vessel thickness
- E: young's modulus

Physical Background[2]

- $E \propto e^{\alpha P}$
 - α: constant
 - P: blood pressure (BP)

$$\bullet PWV = \frac{d_{h,p}}{PTT}$$

- $^{\circ} d_{h,p}$: distance from heart to a specific peripheral
- PTT: Pulse transit time from heart to peripheral

Goal: A Calibration-Free Method

- Challenge: Calibration is needed as its parameters is individual dependent
- Our solution:
 - Extracting features from vital signals
 - Exploiting learning algorithms

Individual Independent

Methodology:

Methodology

- Database: PhysioNet MIMIC II [3]
 - Thousands vital signals of ICU patient.
 - Sampled at 125 Hz with at least 8 bit accuracy.
- Preprocessing:
 - Step I: Smoothing signals with averaging filter
 - Step II: Removing irregular values (recording error)
 - Step III: Removing unacceptable heart rates
 - Step IV: Removing discontinued signals
 - Step V: Removing highly altered PPG signals

Signals

- Inputs:
 - Electrocardiogram (ECG)
 - Photopletysmograph (PPG)
- Targets:
 - Diastolic blood pressure (DBP)
 - Mean arterial pressure (MAP)
 - Systolic blood pressure (SBP)

Feature Extraction:

- PTT features:
 - Time between ECG R-peak and PPG (photopletysmograph) points
- Heart rate

Features Extraction:

PPG features [4]:

•
$$AI = \frac{Diastolic\ peak}{Systolic\ peak}$$

- LASI: time between systolic and diastolic peaks
- Inflection Point Areas: areas
 under PPG waveform between
 selected points (S1, S2, S3, S4)

Partitioning

- In total 4254 records:
 - 60% as training
 - 20% as validation
 - 20% as test

- a) DBP histogram
- b) SBP histogram

Machine Learning

- Studied algorithms:
 - Regularized Linear Regression (RLR)
 - Artificial Neural Networks (ANN)
 - Support Vector Machine (SVM)
- Evaluation:
 - Mean Absolute Error (MAE)
 - Standard Deviation (STD)

Results

	DP		MAP		SP	
Algorithm	MAE (mmHg)	STD (mmHg)	MAE (mmHg)	STD (mmHg)	MAE (mmHg)	STD (mmHg)
RLR _{LF}	7.24	9.23	9.34	11.79	14.73	18.47
RLR _{PF}	7.42	10.02	8.50	10.91	14.46	18.17
ANN	6.86	8.96	8.84	11.24	13.78	17.46
SVM	6.34	8.45	7.52	9.54	12.38	16.17

SVM with RBF kernel for better performance in non linearity in higher BP

Results (BHS)

British Hypertension Society (BHS) standard

		$\geq 5mmHg$	$\geq 10mmHg$	$\geq 15mmHg$
	Diastolic	51.2%	78.9%	93.6%
Our result	Mean Pressure	44.7%	71.6%	86.7%
	Systolic	28.8%	51.5%	69.5%
внѕ	Grade A	60%	85%	95%
	Grade B	50%	75%	90%
	Grade C	40%	65%	85%

Result (histogram)

Histograms of estimation error on 904 subjects:

Diastolic error histogram from SVM

Systolic error histogram from SVM

Conclusion

- Compared to previous works:
 - Bigger dataset
 - Calibration free
 - Acceptable estimation accuracy
- BP continuous monitoring is reachable with our method
- We established BP estimation model based on physiological parameter and machine learning
- In BHS standard, our system satisfied the grade B in DBP and the grade C in the MAP estimation.

Future work

- Inclusion of additional informative features
 - Age
 - Height
 - Weight
- Implementation of a smart health based on the proposed algorithm

References

[1] World Health Organization, "World Health Statistics 2014", 2014.

[2] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark, J. Mietus, G. Moody, C. Peng and H. Stanley, "Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals," Circulation, vol. 101, no. 23, pp. 215–220, 2000.

[3] H. Gesche, D. Grosskurth, G. Kuchler and A. Patzak, "Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method," European journal of applied physiology, vol. 112, no. 1, pp. 309–315, 2012.

[4] M. Elgendi, "On the analysis of fingertip photoplethysmogram signals," Current cardiology reviews, vol. 8, no. 1, p. 14, 2012.

Thank you!

