Table des matières

Ι	Théorie des distributions	3
1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
2	Les distributions 2.1 Definition 2.2 La structure topologique sur \mathcal{D} . 2.3 Les grands principes 2.4 Les fonctions localement intégrables : distributions régulières	4
3	La dérivation des distributions 3.1 Définition	5 6
II lio	Equations différentielles et intégrales - Produit de convolution - Calcul symbo- que	- 9
1	Préliminaires	9
2	Produit de convolution 2.1 Support d'une fonction :	11
3	Formulaire : Calcul symbolique	12
Η	I Transformation de Fourier	14
1	Rappel: Tranformation de Fourier des fonctions	14
2	Espace \mathcal{S} de Schwarz	16
3	Transformée des distributions 3.1 Recherche d'une définition	17
4	Propriétés de la TF 4.1 Continuité	17 17 18 18 19
5	Transformée de Fourier et convolution	20
IV	V Distributions périodiques - Série de Fourier	22

1	Transformée de Fourier d'une ditribution périodique	23
2	Série de Fourier d'une distribution périodique	24
3	Propriétés des coefficients de Fourier	24

Première partie

Théorie des distributions

L'espace \mathcal{D} 1

L'ensemble \mathcal{D}

C'est l'ensemble des fonctions $\phi: \mathbb{R} \to \mathbb{C}$ qui sont :

- A support compact :

$$\forall \phi \in \mathcal{D}, \ \exists [a, b], \ \phi(x) = 0 \ \forall x \notin [a, b]$$

Les fonctions de \mathcal{D} s'appellent les "fonctions tests". Elles servent à définir chaque distribution, à faire des calculs avec.

La structure topologique sur \mathcal{D}

On dit que ϕ_n converge vers ϕ dans \mathcal{D} et on note

$$\phi_n \xrightarrow{\mathcal{D}} \phi$$

- $\exists [a, b], \forall n, \ \phi_n = 0 \text{ hors de } [a, b] \text{ et } \phi = 0 \text{ hors de } [a, b]$ $\forall k, \phi_n^{(k)} \xrightarrow{CU} \phi^{(k)}$

C'est une notion de convergence très forte.

Ceci constitue "l'espace \mathcal{D} ", espace des fonctions tests. C'est un espace vectoriel.

2 Les distributions

Definition

♦ Définition: Distribution

On appelle distribution toute forme linéaire continue sur \mathcal{D} , ie :

$$T: \mathcal{D} \to \mathbb{C}$$

$$\phi \mapsto T(\phi)$$

- que l'on note (T,ϕ) <u>lineaire</u> : $(T,\alpha\phi_1+\phi_2)=\alpha(T,\phi_1)+(T,\phi_2)$
 - $\overline{\underline{\text{continue}}} : \text{Si } \phi_n \xrightarrow{\mathcal{D}} \phi \text{ alors } (T, \phi_n) \to (T, \phi)$

On note \mathcal{D} ' l'ensemble des distributions.

C'est un espace vectoriel :

$$(T_1 + \lambda T_2, \phi) = (T_1, \phi) + \lambda(T_2, \phi)$$

2.2 La structure topologique sur \mathcal{D}

♦ Définition: Convergence sur D

On dit que " T_n converge vers T au sens des distrubtions" et on note $T_n \xrightarrow{\mathcal{D}'} T$ si et seulement si :

$$\forall \phi \in \mathcal{D}, \ (T_n, \phi) \xrightarrow[n \to +\infty]{} (T, \phi)$$

On définit ainsi "l'espace \mathcal{D} ", espace des distributions.

2.3 Les grands principes

Distribution de Dirac au point a :

$$\delta_a : \mathcal{D} \to \mathbb{C}$$

$$\phi \mapsto (\delta_a, \phi) = \phi(a)$$

$$\delta_a^{(n)}: \mathcal{D} \to \mathbb{C}$$

$$\phi \mapsto (-1)^n \phi^{(n)}(a)$$

La mesure de Radon sur \mathbb{R} : μ mesure sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ tel que $\mu([a, b]) < +\infty$, $\forall a \leq b \in \mathbb{R}$

$$\mu \in \mathcal{D} \mapsto (\mu, \phi) = \int_{\mathbb{R}} \phi d\mu$$

2.4 Les fonctions localement intégrables : distributions régulières

▶ Définition: Espace des fonctions localement intégrables

Noté L^1_{loc} , c'est l'ensemble des fonctions mesurables $f:\mathbb{R}\to\mathbb{C}$ tel que $\forall a\leq b\in\mathbb{R},$

$$\int_{a}^{b} |f(x)| dx < +\infty$$

dans lequel on identifie deux fonctions égales presque partout.

Soit $f \in L^1_{loc},$ on peut lui faire correspondre la distribution définie par :

$$\phi \in \mathcal{D} \to \int_{-\infty}^{+\infty} \phi(x) f(x) dx$$

Notons-la provisioirement T_f :

$$(T_f, \phi) = \int_{-\infty}^{+\infty} \phi(x) f(x) dx$$

tel que:

 $-\phi = 0$ hors de [a,b].

 $- \exists C \text{ tel que } |\phi| \leq C \text{ sur } [a,b] :$

$$\int_{-\infty}^{+\infty} |\phi(x)f(x)| dx \le c \int_{-\infty}^{+\infty} |f(x)| dx < +\infty$$

On vérifie aisément la continuité de T_F sur \mathcal{D} . On a alors le théorème :

⇔ Théorème: Egalité des distributions

$$\forall f, g \in L^1_{loc},$$

$$T_f = T_g \Leftrightarrow f = g \ dans \ L^1_{loc}$$

Ceci permet d'identifier $f \in L^1_{loc}$ et T_f . On notera encore f la distribution T_f . Distributions régulières?

3 La dérivation des distributions

Définition 3.1

🖎 Définition: Dérivée d'une distribution

Soit T une distribution. On appelle dérivée de T (au sens des distriutions) la distribution T' définie par :

$$\forall \phi \in \mathcal{D}, (T', \phi) = -(T, \phi')$$

Remarque:

Toute distribution est encore dérivable.

$$(T^{(k)}, \phi) = (-1)^k (T, \phi^{(k)})$$

$$\hookrightarrow$$
 Théorème: Suites des dérivées
Si $T_n \xrightarrow{\mathcal{D}'} T$ alors $T_n' \xrightarrow{\mathcal{D}'} T'$

Démonstration:

Soit $\phi \in \mathcal{D}$

$$(T'_n, \phi) = -(T_n, \phi') \to -(T, \phi') = (T', \phi)$$

Applications aux séries

Si $(U_n)_n$ est une suite de distributions, soit $S_n = \sum_{k \le n} U_k$. On dit que la série des U_n converge vers S (au sens des distributions) ssi

$$S_n \xrightarrow{\mathcal{D}'} S \in \mathcal{D}'$$
, i.e. :

$$\forall \phi$$
, la série $\sum_{n} (U_n, \phi)$ est convergente et on a $\sum_{n} (U_n, \phi) = (S, \phi)$

On écrit
$$S = \sum_{n} U_n$$
 (ou $S \stackrel{\mathcal{D}'}{=} \sum U_n$)

⇔ Théorème: Dérivation des séries

Si
$$S = \sum_n U_n$$
 alors $S' = \sum_n U'_n$

Démonstration:

La somme des dérivées est la dérivée de la somme (facile à démontrer).

D'après le théorème précédent, on a directement

$$S_n' = \sum_{k \le n} U_k' \to S'$$

3.2.1 Dérivation dans quelques cas particulier

Soit $f : \mathbb{R} \to \mathbb{C}$, constamment dérivable par morceaux, ayant en tout point des limites à droite et à gauche, n'ayant qu'un nombre fini de discontinuité sur tout intervalle borné.

Soient ... $< x_i < x_{i+1} < ...$

On suppose que sur $]x_i, x_{i+1}[$, f est \mathcal{C}^1

→ Théorème: Dérivées généralisées

Avec les hypothèses et notations précédentes, la dérivée de f au sens des distributions vaut

$$f' = \{f\}' + \sum_{i} \Delta f(x_i) \delta_{x_i}$$

où $\{f\}'$ est la fonction définie pp égale à la dérivée de f au sens des fonctions, et $\Delta f(x_i) = f(x_i^+) - f(x_i^-)$ (saut de f au point x_i)

Démonstration:

Il est clair que $f \in L^1_{loc} \subset \mathcal{D}'$ Soit $\phi \in \mathcal{D}$

$$(f',\phi) = -(f,\phi')$$

$$= -\int_{-\infty}^{+\infty} f(x)\phi'(x)dx$$

$$= -\sum_{i\in\mathbb{Z}} \int_{x_i}^{x_{i+1}} f(x)\phi'(x)dx$$

Sur $[x_i, x_{i+1}]$, on prolonge f par continuité aux points x_i et x_{i+1} par $f(x_i^+)$ et $f(x_{i+1}^-)$

$$(f',\phi) = -\sum_{i \in \mathbb{Z}} [f(x)\phi(x)]_{x_{i}}^{x_{i+1}} + \sum_{i \in \mathbb{Z}} \int_{x_{i}}^{x_{i+1}} \{f\}'(x)\phi(x)dx$$

$$= \int_{-\infty}^{+\infty} \{f\}'(x)\phi(x)dx - \sum_{i \in \mathbb{Z}} f(x_{i+1}^{-})\phi(x_{i+1}) + \sum_{i \in \mathbb{Z}} f(x_{i}^{+})\phi(x_{i})$$

$$= \int_{-\infty}^{+\infty} \{f\}'(x)\phi(x)dx - \sum_{i \in \mathbb{Z}} f(x_{i}^{-})\phi(x_{i}) + \sum_{i \in \mathbb{Z}} f(x_{i}^{+})\phi(x_{i})$$

$$= (\{f\}',\phi) + \sum_{i \in \mathbb{Z}} (f(x_{i}^{+}) - f(x_{i}^{-}))\phi(x_{i+1})$$

$$= (\{f\}',\phi) + \sum_{i \in \mathbb{Z}} (\Delta f(x_{i})\delta_{x_{i}},\phi)$$

Donc la série $\sum \Delta f(x_i)\delta_{x_i}$ converge et on a :

$$f' = \{f\}' + \sum_{i} \Delta f(x_i) \delta_{x_i}$$

Remarque:

Si au point x_i , f n'est pas dérivable, mais est continue, alors $\Delta f(x_i) = 0$. Il n'y a donc par de Dirac au point x_i . En particulier, si f est \mathcal{C}^0 , dérivable par morceaux, f'={f}'

$$f(x) = \begin{cases} x & \text{si} & x < 0 \\ -x & \text{si} & x > 0 \end{cases} \Rightarrow f'(x) = \begin{cases} 1 & \text{si} & x < 0 \\ -1 & \text{si} & x > 0 \end{cases}$$

$$f(x) = \begin{cases} x & \text{si} & x < 0 \\ 1 - x & \text{si} & x > 0 \end{cases} \Rightarrow f'(x) = \delta(x) + \begin{cases} 1 & \text{si} & x < 0 \\ -1 & \text{si} & x > 0 \end{cases}$$

3.2.2 Dérivation des fonctions absolument continues

Soit $f: \mathbb{R} \to \mathbb{C}$

On dit que f est absoluement continue ssi il existe une fonctions $g \in L^1_{loc}$ tel que

$$\forall a \leq b, f(b) - f(a) = \int_a^b g(x)dx$$

On a f absolument continue \Rightarrow f continue, mais cela n'implique pas f dérivable (sauf si g est \mathcal{C}^0).

⇔ Théorème: Dérivabilité au sens des distributions

Sous les mêmes hypothèses et les mêmes notations, on a f dérivable (au sens des distributions) et

$$f'=q$$

⇔ Lemme: Intégration sur un rectangle

Soit

$$f: [a,b]^2 \rightarrow \mathbb{C}$$

 $(x,y) \mapsto f(x,y)$

intégrable sur $[a,b]^2$, alors

$$\int_{a}^{b} \int_{a}^{x} f(x,y)dydx = \int_{a}^{b} \int_{y}^{b} f(x,y)dxdy = I$$

Démonstration (du lemme):

$$\begin{split} I &= \int_a^b \int_a^b f(x,y) \mathbf{1}_{\{a \leq y \leq x \leq b\}} dy dx \\ &= \int_a^b \int_a^b f(x,y) \mathbf{1}_{\{a \leq y \leq x \leq b\}} dx dy \text{(Th\'eor\`eme de Fubini)} \\ &= \int_a^b \int_y^b f(x,y) dx dy \end{split}$$

Démonstration (du théorème):

Soit $\phi \in \mathcal{D}$.

$$(f',\phi) = -(f,\phi')$$

= $-\in_{-\infty}^{+\infty} f(x)\phi'(x)dx$

Soit [a,b] tel que $\phi(x) = 0$ pour $x \neq \in [a,b]$.

Par continuité, on a $\phi(a) = \phi(b) = 0$.

$$(f',\phi) = -\int_{a}^{b} f(x)\phi'(x)dx$$
$$f(x) = f(a) + \int_{a}^{x} g(y)dy$$

donc:

$$(f',\phi) = \int_a^b f(a)\phi'(x)dx - \int_a^b \int_a^x g(y)\phi'(x)dydx$$

$$= -f(a)\underbrace{[\phi(b) - \phi(a)]}_{=0} - \int_a^b \int_y^b g(y)\phi'(x)dxdy$$

$$= -\int_a^b g(y)\int_y^b \phi'(x)dxdy$$

$$= -\int_a^b g(y)(\phi(b) - \phi(y))dy$$

$$= \int_a^b g(y)\phi(y)dy$$

$$= \int_{-\infty}^+ g(y)\phi(y)dy$$

$$= (g,\phi)$$

donc f'=g au sens des distributions.

3.2.3 CNS de convergence

⇔ Théorème: CNS pour qu'une suite (resp série) de distribution converge : (admis)

Soit $(T_n)_n$ une suite de distributions.

$$(T_n)_n$$
 converge $\Leftrightarrow \forall \phi \in \mathcal{D}, (T_n, \phi)$ converge
$$\sum_n (T_n)_n \text{ converge} \quad \Leftrightarrow \quad \forall \phi \in \mathcal{D}, \sum_n (T_n, \phi) \text{ converge}$$

Deuxième partie

Equations différentielles et intégrales - Produit de convolution - Calcul symbolique

1 Préliminaires

Rappel:

Si $T \in \mathcal{D}'$, T' est définie par

$$\forall \phi \in \mathcal{D}, (T', \phi) = -(T, \phi')$$

⇔ Théorème: Dérivée nulle

$$T' = 0 \Leftrightarrow \exists c \in \mathbb{C}; T = c$$

Démonstration:

Si T=c, $\forall \phi \in \mathcal{D}$:

$$(T',\phi) = (0,\phi) = 0$$

donc T'=0

Si T'=0 :

Si $\phi \in \mathcal{D}$ et si $\phi = \psi'$ avec $\psi \in \mathcal{D}$:

$$(T, \phi) = (T, \psi') = -(T', \psi) = -(0, \psi) = 0$$

Soit $\phi \in \mathcal{D}$ Soit $\theta \in \mathcal{D}$ tel que $\int_{-\infty}^{+\infty} \theta(x) dx = 1$.

Considérons $\phi(x) - \theta(x) \int_{-\infty}^{+\infty} \phi(u) du = \alpha(x), \ \alpha \in \mathcal{D}$

Soit $\psi(x) = \int_{-\infty}^{x} \alpha(u) du$.

$$\psi'(x) = \alpha(x), \ \mathcal{C}^{\infty}, \ \operatorname{donc} \ \psi \mathcal{C}^{\infty}$$

Soit [a,b] tel que $\alpha = 0$ hors de [a,b]

Si x<a, $\psi(x)=0$

Si x>b,
$$\psi(x) = \int_{-\infty}^{b} \alpha(v)dv = \int_{-\infty}^{+\infty} \alpha(v)dv$$

$$= \int_{-\infty}^{+\infty} \phi(v)dv - \int_{-\infty}^{+\infty} \theta(v) \int_{-\infty}^{+\infty} \phi(u)dudv$$

$$= \int_{-\infty}^{+\infty} \phi(v)dv - \underbrace{\int_{-\infty}^{+\infty} \theta(v)dv}_{=1} \int_{-\infty}^{+\infty} \phi(u)du$$

$$= 0$$

Donc ψ est nulle hors de [a,b], donc $\psi \in \mathcal{D}$ et $\psi' = \alpha$. $Donc(T, \alpha) = 0$

Or,
$$(T, \alpha)$$
 = $(T, \phi - \theta \times \int_{-\infty}^{+\infty} \phi(u) du)$
= $(T, \phi) - \underbrace{(T, \theta)}_{c} \int_{-\infty}^{+\infty} \phi(u) du$
= $(T, \phi) - (c, \phi)$
= 0
 $\Leftrightarrow (T, \phi) = (c, \phi)$

i.e T=c

2 Produit de convolution

Rappel:

Soient 2 fonctions f et g mesurables. On dit que f et g sont convolables ssi

$$h(u) = \int_{-\infty}^{+\infty} |f(u)|g(x-u)|du < \infty$$
 pour presque tout x

et alors, on définit f * g comme la fonction définie pp par :

$$f * g(x) = \int_{-\infty}^{+\infty} f(u)g(x - u)du$$

On a vu que si $f, g \in L^1$, alors f * g existe et $\in L^1$

Cherchons une généralisation de la définition de la convolution aux distributions.

Prenons par exemple $f, g \in L^1 \subset L^1_{loc} \subset \mathcal{D}'$ Soit $\phi \in \mathcal{D}$.

$$(f * g, \phi) = \int_{-\infty}^{+\infty} f * g(x)\phi(x)dx$$
$$= \iint_{\mathbb{D}^2} f(u)g(x-u)\phi(x)dudx$$

Fubini? ϕ est bornée, \leq c.

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |f(u)| |g(x-u)| |\phi(x)| du dx \leq c \int_{-\infty}^{+\infty} |f(u)| \int_{-\infty}^{+\infty} |g(x-u)| dx_{y=x-u} du$$

$$\leq c \int_{-\infty}^{+\infty} |f(u)| du \int_{-\infty}^{+\infty} |g(y)| dy < \infty$$

On peut donc inverser l'ordre d'intégration :

$$(f * g, \phi) = \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(u) \underbrace{g(x - u)}_{v = x - u} \phi(x) dx \right] du$$
$$= \int_{-\infty}^{+\infty} f(u) \left[\int_{-\infty}^{+\infty} g(v) \phi(v + u) dv \right] du$$
$$= \int \int_{\mathbb{R}^2} f(u) g(v) \phi(u + v) du dv(*)$$

On se retrouve sur \mathbb{R}^2 .

 $\mathcal{D}(\mathbb{R}^2)$: ensemble des fonctions de $\mathbb{R}^2 \to \mathbb{R}$, \mathcal{C}^{∞} à support compact.

 $\mathcal{D}'(\mathbb{R}^2)$: ensemble des fonctions linéaires continues sur $\mathcal{D}(\mathbb{R}^2)$

Produit tensoriel de 2 distributions

Si S et T sont 2 distributions sur \mathbb{R} , on définit une distribution sur \mathbb{R}^2 , $S \otimes T$, par :

$$\forall \phi \in \mathcal{D}(\mathbb{R}^2), (S \otimes T, \psi) = (S_x, (T_y, \psi(x, y))) = (T_y, (S_x, \psi(x, y)))$$

L'idée:

Si S et T sont 2 distributions (sur \mathbb{R}), on souhaite définir S*T par :

$$\forall \phi \in \mathcal{D}, (S * T, \phi) = S_x \otimes T_y, \phi(x+y)) = (S_x, (T_y, \phi(x+y)))$$

Problème:

 $\psi(x,y) = \phi(x+y)$ n'est pas à support compact. $(T_y,\phi(x+y))$ est bien définie. C'est une fonction qui dépend de $x:\psi(x)=(T_y,\phi(x+y))$

 ψ est $\mathcal{C}^{\infty},$ mais elle n'est en général pas à support borné. D'où le problème.

Chaque distribution a un domaine de définition qui est propre, et dans lequel \mathcal{D} est inclu.

Il suffit donc que $\psi \in \mathcal{D}(S)$

Il nous faut donc bien redéfinir la notion de support.

2.1 Support d'une fonction:

Soit $f: \mathbb{R} \to \mathbb{C}$.

Le support de f est l'adhérence de l'ensemble :

$${x|f(x) \neq 0}$$

$$y \in \operatorname{Supp}(f) \Leftrightarrow \forall \varepsilon > 0, \exists x; \ |x - y| < \varepsilon \text{ et } f(x) \neq 0$$

 $y \notin \operatorname{Supp}(f) \Leftrightarrow \exists \varepsilon > 0; \forall x, \ |x - y| < \varepsilon \Rightarrow f(x) = 0$

2.2 Support d'une distribution

Soit $T \in \mathcal{D}'$

$$y \in \operatorname{Supp}(T) \iff \forall \varepsilon > 0, \exists \phi \in \mathcal{D}; \ \operatorname{Supp}(\phi) \subset]y - \varepsilon, y + \varepsilon[\ \operatorname{et} \ (T, \phi) \neq 0$$

 $y \notin \operatorname{Supp}(T) \iff \exists \varepsilon > 0; \forall \phi \in \mathcal{D}, \operatorname{Supp}(\phi) \subset]y - \varepsilon, y + \varepsilon[\Rightarrow f(x) = 0$

Théorème: Théorème de prolongement

Soient $T \in \mathcal{D}'$ et $\psi \mathcal{C}^{\infty}$

Si Supp(T) \cap Supp(ψ) est bornée alors (T, ψ) est bien défini.

On note ε ' l'ensemble des distributions à support compact. Si S ou $T \in \varepsilon$ ' alors S*T est bien défini et S*T=T*S.

2.3 Element neutre : la dirac

$$(\delta * T, \phi) = (\delta_x, (T_y, \phi(x+y)))$$
$$= (T_y, \phi(0+y))$$
$$= (T_y, \phi(0+y))$$

D'où $T * \delta = \delta * T = T$.

2.3.1 Dérivation :

$$\delta' * T = T'$$

$$(T * \delta', \phi) = (T_y, (\delta'_x, \phi(x+y)))$$

$$= (T_y, -(\delta_x, \phi'(x+y)))$$

$$= (T_y, -\phi'(y))$$

$$= (T', \phi)$$

Par généralisation : $\delta^{(k)} * T = T^{(k)}$ D'où les opérateurs différentiels :

$$a_n T^{(n)} + \dots + a_1 T' + a_0 T = (a_n \delta^{(n)} + \dots + a_0 \delta) * T$$

❖ Définition: Distributions à support borné à gauche

Notons \mathcal{D}_g' l'ensemble des distributions dont le support est borné à gauche.

$$T \in \mathcal{D}'_g \Leftrightarrow \exists a; \operatorname{Supp}(T) \subset [a, +\infty[$$

et \mathcal{D}'_+ le sous-ensemble des distributions à support dans $[0,+\infty[.$

riangleq Théorème: Convolution sur \mathcal{D}_q'

La convolution est bien définie sur \mathcal{D}'_g et :

$$S, T \in \mathcal{D}'_q \Rightarrow S * T$$
 est bien définie

- * est une loi interne :
 - Elle est associative
 - Elle a un élément neutre
 - Elle est commutative
 - Elle est distributive

On dit que $(\mathcal{D}'_q, +, \cdot, *)$ est une algèbre unitaire, associative et commutative. Ceci permet de définir le calcul symbolique.

Remarque:

* n'est pas forcément associative (mais elle l'est par théorème sur \mathcal{D}'_q)

Formulaire: Calcul symbolique 3

1 Formule: On change de notation :

- * se note comme la multiplication

- δ ' se note p Si T se note F(p), alors T^{*-1} se note $\frac{1}{F(p)}$. On peut alors appliquer les règles de calcul habituelles.

$\frac{1}{p-\lambda}$	$He^{\lambda t}$
$\frac{1}{p^2+\omega^2}$	$H\frac{\sin(\omega t)}{\omega}$
$\frac{p}{p^2+\omega^2}$	$H\cos(\omega t)$
$\frac{1}{p^2-\omega^2}$	$H\frac{\sinh(\omega t)}{\omega}$
$\frac{p}{p^2-\omega^2}$	$H \cosh(\omega t)$
$\frac{1}{(p-a)(p-b)}$	$H^{\frac{e^{bt}-e^{at}}{b-a}}$
$\frac{1}{(p-\lambda)^n}$	$H_{\frac{t^{n-1}}{(n-1)!}}e^{\lambda t}$
$\frac{1}{p^n}$	$H_{\frac{t^{n-1}}{(n-1)!}}$

- On transforme l'équation pour qu'elle soit dans \mathcal{D}'_+ . On obtient X.
- On replace X dans l'équation du début. On factorise par les dérivés de Dirac avec la convoluée.
- On résout l'équation égal à Dirac pour trouver l'inverse.
- On revient à l'équation de départ. On peut résoudre le problème.

Pensez à :

$$Hf * Hg(t) = H(t) \int_0^t f(u)g(t-u)du$$

$lue{E}$ Exemple : Formule de Taylor

Retrouvez la formule de Taylor avec reste intégral, en dérivant n fois Hf et en applicquant le calcul symbolique

$$(Hf)^{(n)} = f(0)\delta^{(n-1)} + f'(0)\delta^{(n-2)} + \dots + f^{(n-1)}(0)\delta + Hf^{(n)}$$

= $\delta^{(n)} * Hf$

Ecriture symbolique:

$$\begin{array}{rcl} p^n Hf & = & f(0)p^{n-1} + f'(0)p^{n-2} + \ldots + f^{(n-2)}(0)p + f^{(n-1)}(0) + Hf^{(n)} \\ \Rightarrow Hf & = & f(0)\frac{1}{p} + f'(0)\frac{1}{p^2} + \ldots + f^{(n-1)}(0)\frac{1}{p^n} + Hf^{(n)}\frac{1}{p^n} \end{array}$$

$$\frac{\text{Traduction pour } t \ge 0:}{\frac{1}{(p-\lambda)^k} \leftrightarrow H \frac{t^{k-1}}{(k-1)!} e^{\lambda t}}$$

$$f(t) = f(0) + f'(0)t + \dots + f^{(n-1)}(0)\frac{t^{n-1}}{(n-1)!} + \int_0^t f^n(u)\frac{(t-u)^{n-1}}{(n-1)!}du$$

Troisième partie

Transformation de Fourier

Rappel: Tranformation de Fourier des fonctions 1

Soit $f \in L^1(\mathbb{R}), f : \mathbb{R} \to \mathbb{C}$.

La transformée de Fourier de f est la fonction \hat{f} définie par :

$$\forall \nu \in \mathbb{R}, \ \hat{f}(\nu) = \int_{-\infty}^{+\infty} f(x)e^{-2i\pi\nu x}dx$$

La transformée de Fourier est l'application :

$$f \in L^1 \xrightarrow{\mathcal{F}} \mathcal{F}(f) = \hat{f}$$

I Propriété: De la transformée de Fourier

- \mathcal{F} est linéaire : $\forall (\alpha, \beta) \in \mathbb{C}^2$, $\mathcal{F}(\alpha f + \beta g) = \alpha \mathcal{F}(f) + \beta \mathcal{F}(g)$ - $\forall f \in L^1$, \hat{f} est continue - Si $f \ \mathcal{C}^k$ et $f', f'', ..., f^{(k)} \in L^1$, alors : $\exists c_k : |\hat{f}(\nu)| < \frac{c_k}{c_k}$

$$\exists c_k; \ |\hat{f}(\nu)| \le \frac{c_k}{(1+|\nu|)^k}$$

– Si f et $x^k f \in L^1$ alors $\mathcal{F}(f)$ est \mathcal{C}^k

Si f et $f' \in L^1$ alors $f(x) \xrightarrow[x \to +\infty]{} 0$

Démonstration:

Si on prend f > 0.

$$f(x) - f(0) = \int_0^x f'(t)dt$$

Or, $f' \in L^1$, donc :

$$\int_0^x f'(t)dt \xrightarrow[x \to +\infty]{} \int_0^{+\infty} f'(t)dt < +\infty$$

Donc $\exists l \in \mathbb{C}; \ f(x) \xrightarrow[x \to +\infty]{} l$. Montrons que $l = 0 \ |f(x)| \to l$. $\exists a; \forall u \geq a, \ |f(u)| \geq \frac{|l|}{2}$. Donc :

$$\int_0^{+\infty} |f(u)| du \geq \int_a^{+\infty} |f(u)| du \geq \int_a^{+\infty} \frac{|l|}{2} du = \frac{|l|}{2} \times \infty$$

Or, $\int_0^{+\infty} |f(u)| du < \infty$, donc |l| = 0. (de même quand $x \to -\infty$)

Démonstration (de la propriété 1):

Si f et $f' \in L^1$:

$$\mathcal{F}(f')(\nu) = \int_{-\infty}^{+\infty} f'(x)e^{-2i\pi\nu x} dx$$

$$= \left[\underbrace{f(x)}_{\to 0} \underbrace{e^{-2i\pi\nu x}}_{\text{module 1}}\right]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} f(x)(-2i\pi\nu)e^{-2i\pi\nu x} dx$$

$$= 2i\pi\nu \mathcal{F}(f)(\nu)$$

$$|\mathcal{F}(f)(\nu)| \le \int_{-\infty}^{+\infty} |f(x)| dx = ||f||_{1}$$

$$|2i\pi\nu||\mathcal{F}(f)(\nu) = |\mathcal{F}(f')(\nu)| \le ||f'||_{1}$$

D'où $(1+|\nu|)|\mathcal{F}(f)(\nu)| \leq \underbrace{||f||_1 + \frac{||f'||_1}{2\pi}}_{=c_1}$ ce qui nous donne :

$$|\mathcal{F}(f)(\nu)| \le \frac{c_1}{1 + |\nu|}$$

Donc vrai pour k = 1.

Pour k quelconque : $f, f', ..., f^{(k)} \in L^1$. Par récurrence, on a :

$$\mathcal{F}(f^{(k)})(\nu) = (2i\pi\nu)^k \mathcal{F}(f)(\nu)$$
$$(2\pi)^k |\mathcal{F}(f)(\nu)| \le (2\pi)^k ||f||_1$$
$$|2i\pi\nu|^k |\mathcal{F}(f)(\nu)| \le ||f^{(k)}||_1$$

D'où:

$$|\mathcal{F}(f)(\nu)| \leq \frac{||f||_1 + \frac{||f^{(k)}||_1}{(2\pi)^k}}{1 + |\nu|^k}$$

I Formule:

Si
$$f$$
 et $f' \in L^1$

$$\mathcal{F}(f')(\nu) = 2i\pi\nu\mathcal{F}(f)(\nu)$$

Démonstration (de la démonstration 2):

On utilise le théorème de dérivation :

$$-\nu \mapsto f(x)e^{-2i\pi\nu x} \text{ est dérivable}$$

$$-\frac{\partial}{\partial\nu}(f(x)e^{-2i\pi\nu x}) = -2i\pi x f(x)e^{2i\pi\nu x}$$

$$\text{Or, } \left|\frac{\partial}{\partial\nu}(f(x)e^{-2i\pi\nu x})\right| = 2\pi |xf(x)| \in L^1$$

Donc $\mathcal{F}(f)$ est dérivable, et :

$$\mathcal{F}'(f)(\nu) = \int_{-\infty}^{+\infty} -2i\pi x f(x) e^{-2i\pi\nu x} dx$$
$$= \mathcal{F}(-2i\pi\nu x f)(\nu) \text{ qui est } \mathcal{C}^0$$

Si $1 \le j \le k$:

$$\int_{-\infty}^{+\infty} |x^{j} f(x)| dx = \int_{-1}^{1} |x^{j} f(x)| dx + \int_{|x|>1} |x^{j} f(x)| dx$$

$$\leq \int_{-1}^{1} |f(x)| dx + \int_{|x|>1} |x^{k} f(x)| dx < \infty$$

donc $x^j f \in L^1 \ \forall 1 \leq j \leq k$ Le résultat s'ensuit par récurrence.

2 Espace S de Schwarz

C'est l'ensemble des fonctions $\phi: \mathbb{R} \to \mathbb{C}$ vérifiant :

- $-\phi$ est \mathcal{C}^{∞}
- $-\forall k, \ \phi^{(k)}$ décroit à l'infini plus vite que toute puissance de $\frac{1}{x}$, ie :

$$\forall k, \forall l, x^l \phi^{(k)}(x) \xrightarrow[x \to +\infty]{} 0$$

Espace topologique:

 $\phi_n \xrightarrow{\mathcal{S}} \phi$ si et seulement si :

$$\forall k, l, |x^l| |\phi_n^{(k)} - \phi^{(k)}| \xrightarrow{CU} 0$$

Remarque: $\mathcal{D} \subset \mathcal{S}$ et $\phi_n \xrightarrow{\mathcal{D}} \phi \Rightarrow \phi_n \xrightarrow{\mathcal{S}} \phi$

→ Théorème: Stabilité par la transformation de Fourier

L'une des propriété essentielle de $\mathcal S$ est qu'il est stable par la transformation de Fourier, ie :

$$\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$$

$$\phi \in \mathcal{S} \mapsto \mathcal{F}(\phi) \in \mathcal{S}$$

(Résulte des deux résultats précédents)

3 Transformée des distributions

3.1 Recherche d'une définition

Soit $f \in L^1$ alors $\mathcal{F}(f)(\nu)$ est \mathcal{C}^0 , bornée, donc $\mathcal{F}(f)(\nu) \in L^1_{loc} \subset \mathcal{D}'$ Soit $\phi \in \mathcal{D}$.

$$\begin{split} (\mathcal{F}(f),\phi) &= \int_{-\infty}^{+\infty} \mathcal{F}(f)(\nu)\phi(\nu)d\nu \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x)e^{-2i\pi\nu x}\phi(\nu)dxd\nu \end{split}$$

Par Fubini (on peut le vérifier) :

$$= \iint_{\mathbb{R}^2} f(x)e^{-2i\pi\nu x}\phi(\nu)d\nu dx$$
$$= (f, \mathcal{F}(\phi))$$

D'où:

$$\forall f \in L^1, \forall \phi \in \mathcal{D}, (\mathcal{F}(f), \phi) = (f, \mathcal{F}(\phi))$$

On a envie de le définir pour tout $T \in \mathcal{D}'$. On peut montrer que ϕ et $\mathcal{F}(\phi) \in \mathcal{D} \Leftrightarrow \phi = 0$ Il faut montrer que le domaine de définition de T contient \mathcal{S} . Ceci amène aux distributions tempérées.

3.2 Espace des distributions tempérées

C'est l'espace \mathcal{S}' des formes linéaires continues sur \mathcal{S}

$$T: \mathcal{S} \rightarrow \mathbb{C}$$
 $\phi \mapsto (T, \phi)$

Linéaire : $(T, \alpha \phi + \beta \psi) = \alpha(T, \phi) + \beta(T, \psi)$ Continue : $\phi_n \xrightarrow{\mathcal{S}} \phi \Rightarrow (T, \phi_n) \to (T, \phi)$

Avec la notion de convergence :

$$T_n \xrightarrow{\mathcal{S}} T \Leftrightarrow \forall \phi \in \mathcal{S}, \ (T_n, \phi) \to (T, \phi)$$

On a $\mathcal{S}' \subset \mathcal{D}'$ (car $\mathcal{D} \subset \mathcal{S}$)

3.3 Transformée de Fourier des distributions tempérées

Soit $T \in \mathcal{S}'$ alors $\mathcal{F}(T) \in \mathcal{S}'$ et :

$$\forall \phi \in \mathcal{S}, (\mathcal{F}(T), \phi) = (T, \mathcal{F}(\phi))$$

4 Propriétés de la TF

4.1 Continuité

1 Propriété: Continuité de la TF

 $\mathcal{F}: \mathcal{S}' \to \mathcal{S}'$ est continue

Démonstration :

Soit T et T_n deux distributions de \mathcal{S}' tel que $T_n \to T$

$$\phi \in \mathcal{S}, \ (\mathcal{F}(T_n), \phi) = (T_n, \mathcal{F}(\phi)) \to (T, \mathcal{F}(\phi)) = (\mathcal{F}(T), \phi)$$

A Définition: Distribution produit

Si $T \in \mathcal{D}'$, $\rho : \mathbb{R} \to \mathbb{C}$ \mathcal{C}^{∞} , on définit ρT par :

$$\forall \phi \in \mathcal{D}, (\rho T, \phi) = (T, \rho \phi)$$

il Propriété: Transformée de la dérivée

Si
$$T \in \mathcal{S}'$$
, $\mathcal{F}(T')(\nu) = 2i\pi\nu\mathcal{F}(T)(\nu)$

Démonstration:

Soit $\phi \in \mathcal{S}$.

$$(\mathcal{F}(T')_{\nu},\phi(\nu)) = (T'_{x},\mathcal{F}(\phi)(x))$$

$$= -(T_{x},\mathcal{F}'(\phi)(x))$$
On a vu que $\mathcal{F}'(\phi)(x) = \mathcal{F}(-2i\pi\nu\phi)(x)$

$$= -(T_{x},\mathcal{F}(-2i\pi\nu\phi)(x))$$

$$= (\mathcal{F}(T)_{\nu},\underbrace{2i\pi\nu}_{\mathcal{C}^{\infty}}\phi(\nu))$$

$$= (2i\pi\nu\mathcal{F}(T)_{\nu},\phi(\nu))$$

4.2 Translation

♣ Définition: Translation d'une distribution

$$(T_{x-a}, \phi(x)) = (T_x, \phi(x+a))$$

⇔ Théorème: Transformée d'une distribution translatée

$$\mathcal{F}(T_{x-a})_{\nu} = e^{-2i\pi\nu a} \mathcal{F}(T_x)_{\nu}$$

Démonstration:

$$(\mathcal{F}(T_{x-a})_{\nu}, \phi(\nu)) = (T_{x-a}, \mathcal{F}(\phi)(x)) = (T_x, \mathcal{F}(\phi)(x+a))$$

$$\operatorname{Or}, \mathcal{F}(\phi)(x+a) = \int_{-\infty}^{\infty} \phi(x)e^{-2i\pi\nu(x+a)}dx$$

$$= \int_{-\infty}^{\infty} e^{-2i\pi\nu a}\phi(x)e^{-2i\pi\nu x}dx$$

$$= \mathcal{F}[e^{-2i\pi\nu a}\phi](x)$$

$$\operatorname{D'où}: (\mathcal{F}(T_{x-a})_{\nu}), \phi(\nu)) = (\mathcal{F}(T)_{\nu}, \underbrace{e^{-2i\pi\nu a}}_{\mathcal{C}^{\infty}}\phi(\nu))$$

$$= (e^{-2i\pi\nu a}\mathcal{F}(T)_{\nu}, \phi(\nu))$$

4.3 Quelques calculs importants

\Rightarrow Théorème: f_{α}

Soit $\alpha > 0$ et $f_{\alpha}(x) = e^{-\alpha x^2} \in \mathcal{S}$. Alors :

$$\mathcal{F}(f_{\alpha})(\nu) = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\pi^2}{\alpha}\nu^2}$$

En particulier, $\mathcal{F}(f_{\pi}) = f_{\pi}$

Rappel:

$$\mathcal{F}(\delta_a) = e^{-2i\pi\nu a}$$

(Démonstration assez simple)

riangle Théorème: Transformée de 1

$$\mathcal{F}[1] = \delta$$

Démonstration:

$$\mathcal{F}[1'] = \mathcal{F}[0] = 0 = 2i\pi\nu\mathcal{F}[1]$$

Posons $T = \mathcal{F}[1] \in \mathcal{S}'$. On a $\nu T = 0$. Ceci équivaut à $\exists x \in \mathbb{C}, \ T = c\delta$. Reste à calculer c. Considérons $\phi = f_{\pi}$.

$$(\mathcal{F}[1], f_{\pi}) = (1, \mathcal{F}(f_{\pi}))$$

$$= (1, f_{\pi})$$

$$= (\mathcal{F}(\delta), f_{\pi})$$

$$= (\delta, \mathcal{F}(f_{\pi}))$$

$$= (\delta, f_{\pi})$$

$$= f_{\pi}(0)$$

$$= 1$$

Or,

$$(\mathcal{F}(1), f_{\pi}) = (c\delta, f_{\pi}) = cf_{\pi}(0) = c$$

D'où $c=1\,$

Formule de réciprocité de Fourier

On définit $\mathcal{F}^*: \mathcal{S}' \to \mathcal{S}'$ par :

$$\mathcal{F}^*(T)_{\nu} = \mathcal{F}(T)_{-\nu}$$

Si $f \in L^1$,

$$\mathcal{F}^*(f)(\nu) = \int_{-\infty}^{+\infty} f(x)e^{2i\pi\nu x} dx = \mathcal{F}(f)(-\nu)$$

Si T est une distribution :

$$T_{-x}, \phi(x)) = (T_x, \phi(-x))$$

Et plus généralement :

$$\lambda \neq 0, (T_{\lambda x}, \phi(x)) = \frac{1}{|\lambda|} \left(T_x, \phi\left(\frac{x}{\lambda}\right) \right)$$

$\mathcal{F}: \mathcal{S}' \to \mathcal{S}'$ est bijective et $\mathcal{F}^{-1} = \mathcal{F}^*$ ie :

$$T = \mathcal{F}^*[\mathcal{F}[T]] = \mathcal{F}[\mathcal{F}^*[T]]$$

Démonstration:

Soit $\phi \in \mathcal{S}$. On pose $\hat{\phi}(x) = \mathcal{F}(\phi)(x) \in \mathcal{S} \ (\subset L^1)$

$$\mathcal{F}[\hat{\phi}](a) = \int_{-\infty}^{+\infty} \hat{\phi}(\nu) e^{2i\pi\nu a} d\nu$$

$$= \int_{-\infty}^{+\infty} e^{2i\pi\nu a} \mathcal{F}[\phi](\nu) d\nu$$

$$= \int_{-\infty}^{+\infty} 1 \times \mathcal{F}[\phi_{x+a}](\nu) d\nu$$

$$= (1, \mathcal{F}(\phi_{x+a}))$$

$$= (\mathcal{F}(1), \phi(x+a))$$

$$= (\delta, \phi(x+a))$$

$$= \phi(a)$$

Donc $\mathcal{F}^*[\mathcal{F}[\phi]] = \phi$

Soit $T \in \mathcal{S}', \ \phi \in \mathcal{S}$

$$\begin{aligned} (\mathcal{F}^*[\mathcal{F}[T]], \phi) &= & (\mathcal{F}[T], \mathcal{F}^*[\phi]) \\ &= & (T, \mathcal{F}[\mathcal{F}^*[\phi]]) \\ &= & (T, \phi) \end{aligned}$$

5 Transformée de Fourier et convolution

On a vu : $f, g \in L^1 \Rightarrow f * g$ existe $\in L^1$

$$\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$$

De même que f*g n'existe pas nécessairement lorsque $f,g\in L^1_{loc}$, S*T n'existe pas nécessairement losque $S,T\in\mathcal{S}'$ **Problème :** Si S*T existe et $\in \mathcal{S}'$, que dire de $\mathcal{F}(S*T)$? On aimerait avoir :

$$\mathcal{F}(S * T) = \mathcal{F}(S) \times \mathcal{F}(T)$$

En général, on ne peut pas définir le produit de deux distributions. On sait le faire, par exemple, lorsque S et T sont des fonctions de L^1_{loc} ou lorsque S ou T est une fonction \mathcal{C}^{∞} .

Par contre, tout marche très bien lorsque S ou T est une distribution à support compact.

⇒ Théorème:

Si S est une distribution à support compact, alors $\mathcal{F}(S)$ est une fonction \mathcal{C}^{∞} donnée par :

$$\mathcal{F}(S)(\nu) = (S_x, e^{-2i\pi\nu x})$$

→ Théorème: Transformation de la convolution de distribution

Si S est une distribution à support compact et $T \in \mathcal{S}'$ alors :

1. $S*T \in \mathcal{S}'$

2.
$$\mathcal{F}(S * T) = \underbrace{\mathcal{F}(S)}_{\mathcal{C}^{\infty}} \underbrace{\mathcal{F}(T)}_{\in \mathcal{S}'}$$

Démonstration:

1) admis 2)

$$(\mathcal{F}(S*T),\phi(\nu)) = (S*T,\mathcal{F}(\phi))$$

$$= (S_x,(T_y,\mathcal{F}(\phi(x+y))))$$

$$\operatorname{Or}, \mathcal{F}(\phi(x+y)) = \int_{\mathbb{R}} \phi(\nu)e^{-2i\pi\nu(x+y)}d\nu$$

$$= \int_{\mathbb{R}} e^{-2i\pi\nu x}\phi(\nu)e^{-2i\pi\nu y}d\nu$$

$$= \mathcal{F}\left[e^{2i\pi\nu x}\phi(\nu)\right](y)$$

$$\operatorname{D'où}: (\mathcal{F}(S*T),\phi(\nu)) = (S_x,(T_y,\mathcal{F}\left[e^{2i\pi\nu x}\phi(\nu)\right](y)))$$

$$= (S_x,(\mathcal{F}[T]_{\nu},e^{2i\pi\nu x}\phi(\nu)))$$

$$= (S_x\otimes\mathcal{F}(T)_{\nu},e^{2i\pi\nu x}\phi(\nu))$$

$$= (\mathcal{F}[T]_{\nu},(S_x,e^{2i\pi\nu x})\phi(\nu))$$

$$= (\mathcal{F}[T]_{\nu},\mathcal{F}[S]_{\nu}\phi(\nu))$$

$$= (\mathcal{F}[S]_{\nu}\mathcal{F}[T]_{\nu},\phi(\nu))$$

Quatrième partie

Distributions périodiques - Série de Fourier

♦ Définition: Distribution périodique

Soit $T \in \mathcal{D}'$. On dit que T est périodique, de période τ , si et seulement si

$$T_{x+\tau} = T_x$$

ie:

$$\forall \phi \in \mathcal{D}, (T_{x+\tau}, \phi(x)) = (T_x, \phi(x-\tau)) = (T_x, \phi(x))$$

♦ Définition: Peigne de Dirac

$$a > 0, \Delta_a = \sum_{n \in \mathbb{Z}} \delta_{na}$$

→ Théorème: Distribution périodique

Soit T une distribution périodique de période τ , alors il existe K distribution à support compact $(K \in \varepsilon')$ tel que :

$$T = K * \Delta_{\tau}$$

Démonstration:

Longue et chiante

Soit $T \in \mathcal{D}'$ de période τ . Comme $K \in \epsilon'$ et $\Delta_{\tau} \in \mathcal{S}'$ donc $T \in \mathcal{S}'$. On a :

$$\mathcal{F}[T]_{\nu} = \mathcal{F}[K * \Delta_{\tau}]_{\nu}$$
$$= \hat{K}(\nu) \times \mathcal{F}[\Delta_{\tau}]_{\nu}$$

 \hat{K} est connue (dépend de T). Il reste à calculer $\mathcal{F}[\Delta_{\tau}]$

⇔ Théorème:

$$\mathcal{F}[\Delta_a] = \frac{1}{a} \Delta_{\frac{1}{a}}$$

Démonstration:

 $\delta_a * \delta_b = \delta_{a+b}$, donc $\delta_a * \Delta_a = \Delta_a$.

Donc

$$\mathcal{F}[\delta_a * \Delta_a] = \mathcal{F}[\delta_a] \mathcal{F}[\Delta_a] = e^{-2i\pi\nu a} \mathcal{F}[\Delta_a] = \mathcal{F}[\Delta_a]$$

D'où

$$\underbrace{(1 - e^{-2i\pi\nu a})}_{q(\nu)} \mathcal{F}[\Delta_a]_{\nu} = 0$$

Or, on peut montrer que si g(x) C^{∞} , avec $g(a) \neq 0$, $g'(a) \neq 0$ et $g(x) \neq 0$ $\forall x \neq a$ alors:

$$g(x)T = 0 \Leftrightarrow \exists c \in \mathbb{C}; \ T = c\delta$$

Ici, la fonction $g(\nu)$ a pour racines les nombres $\frac{k}{a}$, $k \in \mathbb{Z}$ et $g'\left(\frac{k}{a}\right) \neq 0$ On fait le même raisonnement autour de chaque point $\frac{k}{a}$ et on a :

$$g(\nu)T = 0 \Leftrightarrow \exists (c_k)_{k \in \mathbb{Z}} T = \sum_{k \in \mathbb{Z}} c_k \delta_k a$$

Donc $\mathcal{F}[\Delta_a] = \sum_{k \in \mathbb{Z}} c_k \delta_{\frac{k}{a}}$

$$\begin{split} \mathcal{F}[\Delta_a]_{\nu} &= & \mathcal{F}[\sum_{k \in \mathbb{Z}} \Delta_{ka}]_{\nu} \\ &= & \sum_{k \in \mathbb{Z}} \mathcal{F}[\delta_{ka}]_{\nu} \\ &= & \sum_{k \in \mathbb{Z}} e^{-2i\pi\nu ka} : \text{de période } \frac{1}{a} \end{split}$$

Donc $\mathcal{F}[\Delta_a] * \delta_{\frac{1}{a}} = \mathcal{F}[\Delta_a] = \sum c_k \delta_{\frac{k+1}{a}}$ D'où $\forall k, c_k = c_{k+1}$, donc $\mathcal{F}[\Delta_a] = c \Delta_{\frac{1}{a}}$

Pour calculer c, on utilise f_{α} en prenant $\alpha = \pi a^2$.

$$\hat{f}_{\pi a^{2}}(x) = \sqrt{\frac{\pi}{\pi a^{2}}} e^{-\frac{\pi^{2}}{\pi a^{2}}x^{2}}$$

$$= \frac{1}{a} e^{-\frac{\pi}{a^{2}}x^{2}}$$

$$(\mathcal{F}[\Delta_{a}], f_{\pi a^{2}}) = (\Delta_{a}, \hat{f}_{\pi a^{2}}) = \sum_{k \in \mathbb{Z}} \frac{1}{a} e^{-\pi k^{2}}$$

$$(c\Delta_{\frac{1}{a}}, f_{\pi a^{2}}) = c \underbrace{\sum_{k \in \mathbb{Z}} e^{-\pi a^{2}}}_{\neq 0}$$

D'où $c = \frac{1}{a}$

1 Transformée de Fourier d'une ditribution périodique

Soit T de période τ . On a vu que si ρ est \mathcal{C}^{∞} :

$$\rho \delta_a = \rho(a) \delta_a$$

Donc:

$$\mathcal{F}[T] = \sum_{k \in \mathbb{Z}} \frac{1}{\tau} \frac{\hat{K}(\nu)}{c^{\infty}} \delta_{\frac{k}{\tau}}$$
$$= \sum_{k \in \mathbb{Z}} \frac{1}{\tau} \hat{K}\left(\frac{k}{\tau}\right) \delta_{\frac{k}{\tau}}$$

Posons $c_k = \frac{1}{\tau} \hat{K} \left(\frac{k}{\tau} \right)$

⇒ Théorème:

Ces coefficients c_k sont les seuls coefficients α_k tels que $\mathcal{F}[T] = \sum_{k \in \mathbb{Z}} \alpha_k \delta_{\frac{k}{\tau}}$

Ce sont les coefficient de Fourier de T. Ils ne dépendent pas du $K \in \epsilon'$ choisi dans la décomposition $T = K * \Delta_{\tau}$.

Remarque : Comme $\mathcal{F}[T]$ est exprimé par des Dirac, on dit que T est à spectre discret.

Démonstration:

$$\mathcal{F}[T] = \sum \alpha_k \delta_{\frac{\underline{k}}{\underline{k}}} = \sum c_k \delta_{\frac{\underline{k}}{\underline{k}}}.$$

Soit k fixé. Soit
$$\phi \in \mathcal{D}$$
 tel que $\phi\left(\frac{k}{\tau}\right) = 1$ et $\phi = 0$ hors de $\left[\frac{k-\frac{1}{2}}{\tau}, \frac{k+\frac{1}{2}}{\tau}\right]$.

Alors $(\mathcal{F}[T], \phi) = \alpha_k = c_k$

Remarque : Si $T = f \in L^1_{loc}$, de période τ :

On a vu qu'on pouvait prendre $k=f1_{[0,\tau[},$ d'où $\hat{K}(\nu)=\int_0^\tau f(x)e^{-2i\pi\nu x}dx.$

$$c_k(f) = \frac{1}{\tau} \hat{K} \left(\frac{k}{\tau} \right) = \frac{1}{\tau} \int_0^{\tau} f(x) e^{-2i\pi \frac{k}{\tau} x} dx$$

2 Série de Fourier d'une distribution périodique

Soit T de période τ . On a :

$$\mathcal{F}[T] = \sum_{k \in \mathbb{Z}} c_k(T) \delta_{frack\tau}$$

D'après la formule (linéaire!) de réciprocité :

$$T = \mathcal{F}^* \left(\sum_{k \in \mathbb{Z}} c_k(T) \delta_{frack\tau} \right)$$
$$= \sum_{k \in \mathbb{Z}} c_k(T) \mathcal{F}^* \left[\delta_{\frac{k}{\tau}} \right]_{\nu}$$
$$= \sum_{k \in \mathbb{Z}} c_k(T) e^{-\frac{2i\pi kx}{\tau}}$$

- 1. Toute distribution périodique est la somme (dans \mathcal{S}' de sa série de Fourier.
- 2. Les $c_k(T)$ sont les seuls coefficients α_k tels que $T = \sum_{k \in \mathbb{Z}} a_k e^{-\frac{2i\pi kx}{\tau}}$

Démonstration:

$$\mathcal{F}[T] = \sum \alpha_k \mathcal{F}[e^{-\frac{-2i\pi kx}{\tau}}] = \sum \alpha_k \delta_{\frac{k}{\tau}}$$

On a donc $\alpha_k = c_k, \ \forall k \in \mathbb{Z}$

3 Propriétés des coefficients de Fourier

Soit T de période τ . Alors

$$c_k(T') = \frac{2i\pi k}{\tau} c_k(T)$$

Démonstration :
$$T = \sum c_k(T)e^{-\frac{-2i\pi kx}{\tau}}$$

$$T' = \left(\sum c_k(T)e^{-\frac{-2i\pi kx}{\tau}}\right)'$$

$$= \sum c_k(T)\left(e^{-\frac{-2i\pi kx}{\tau}}\right)'$$

$$= \sum c_k(T)\frac{2i\pi k}{\tau}e^{-\frac{-2i\pi kx}{\tau}}$$

$$= \sum c_k(T')e^{-\frac{-2i\pi kx}{\tau}}$$

Par unicité des coefficients :

$$c_k(T') = \frac{2i\pi k}{\tau} c_k(T)$$

Si $\sum_{k\in\mathbb{Z}} |c_k(T)| < \infty$ alors la série $\sum c_k(T)e^{-\frac{-2i\pi kx}{\tau}}$ est normalement convergente donc définit une fonction \mathcal{C}^0 , et donc T est une fonction \mathcal{C}^0 de période τ (ou égale presque partout à une telle fonction)

Notons $L^p(\tau) = \{ f \in L^p_{loc}$ de période $\tau \}$ dans lequel on identifie deux fonctions égales presque partout.

La "théorique classique" n'utilise que $L^2(\tau)$. On a $L^2(\tau) \subset L^1(\tau)$. Si $f \in L^1(\tau)$,

$$f = \sum_{k \in \mathbb{Z}} c_k(f) e^{-\frac{-2i\pi kx}{\tau}}$$

avec

$$c_k(f) = \frac{1}{\tau} \int_0^{\tau} f(x) e^{-\frac{-2i\pi kx}{\tau}} dx$$