Cylindrical aguifer with polar reduced

BC:
$$q_i = -\kappa \frac{du}{dr}\Big|_{r_p}$$
 $h(l) = h_0$

Nou-dimensionalize:
$$r' = \frac{1}{e}$$
 $h' = \frac{h-ho}{hc}$
substitute: $-\frac{1}{e^2} \frac{1}{r'} \frac{d}{dr'} \left[\frac{1}{e} bkh_e r' \frac{dh'}{dr'} \right] = 0$ $r' \in \left[\frac{r}{e}, 1 \right]$

$$\Rightarrow -\frac{d}{dr} \left[r' \frac{dh'}{dr'} \right] = 0 \qquad r \in [p, 1] \quad p = \frac{r}{2}$$

BC:
$$qi = -k \frac{h_c}{k} \frac{dh'}{dr'} |_{p}$$
 $\Rightarrow -\frac{dh'}{dr'} |_{p} = \frac{qik}{kh_c} \left[h_c = \frac{qik}{k} \right]$

PDE:
$$-\frac{d}{dr}[r'\frac{dh'}{dr'}] = 0$$
 $r'\in[p,1]$ one dimension less $BC: q' = -\frac{dh}{dr}|_{p} = 1$ $h'(1) = 0$ group $p = \frac{r_{p}}{2}$

group
$$p = \frac{r_p}{\ell}$$
 (geometric)

Analytic solution

lutegrate:
$$-r'\frac{dh'}{dr'} = e_1$$

$$-\rho \frac{du}{dr!}\Big|_{\rho} = c_1$$

Neumann BC at
$$r_p$$
: $-p \frac{dl_1}{dr_1}|_p = c_1$ $q' = -\frac{dl_1}{dr_2}|_p = \frac{c_1}{p} = 1$

$$-dh = \rho \frac{dr}{r}$$

$$h' = -\rho \log(r')$$

$$\rho = \frac{\Gamma_{P}}{\ell}$$

$$q' = -\frac{dh'}{dr'} = \frac{\rho}{\Gamma'}$$