This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

(Original) A compound of formula I or II:

$$R^{3}$$
 R^{4}
 R^{1}
 CH_{3}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{1}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{4}

in which

R¹ is an N-protecting group or a peptide;

R² is CHCH₃0Ac or CHR⁵R⁶ in which R⁵ is hydrogen and R⁶ is OAc, CONH₂, SBn₃

265130_3.DOC

CO2R7 or CH2CO2R7 in which R7 is a carboxyl protecting group; and

or CHR5R6 in which R5 is as defined above and R6 is OAc, SBn, CONHTrt,

CO₂R⁷, CHCO₂R⁷, CH₂CH₃ or CH=CH₂ in which R⁷ is as defined above, R⁸ is a histidine protecting group and R⁹ is a phenol protecting group;

 R^4 is hydrogen or R^4 is methyl when R^3 is OAc;

 R^3 together with R^4 forms cyclopentyl; or

 R^2 and R^3 independently represent optionally protected amino acid side chains selected from:

$$HO_2C$$
 HO_2C
 HO_2C

salts, hydrates, solvates, derivatives, tautomers and/or isomers thereof.

2. (Original) A compound according to claim 1, which is selected from:

ΙΙj

in which R1 is as defined in claim 1.

- 3. (Currently amended) A process for preparing the compound of formula I as defined in claim 1 or claim 2 which comprises reductive cleavage of the compound of formula II as defined in claim 1 or claim 2.
- 4. (Original) A process according to claim 3 in which the reductive cleavage employs trifluoroacetic acid (TFA) as the acid and triethylsilane (Et₃SiH) as the reductant.
- 5. (Currently amended) A process for preparing the compound of formula I or II as defined in claim 1 or claim 2 when

R¹ is an N-protecting group or a peptide;

R² is CHCH₃OAc or CHR⁵R⁶ in which R⁵ is hydrogen and R⁶ is OAc, CONH₂, SBn,

$$HO_2C$$
 HN Me NH_2 NH_2 NH_2 NH_2 HO_2C NH_2 NH

 $\mathrm{CO_2R}^7$ or $\mathrm{CH_2CO_2R}^7$ in which R^7 is a carboxyl protecting group; and

or CHR⁵R⁶ in which R⁵ is as defined above and R⁶ is OAc, SBn, CONHTrt,

CO₂R⁷ CHCO₂R⁷, CH₂CH₃ or CH=CH₂ in which R⁷ is as defined above, R⁸ is a histidine protecting group and R⁹ is a phenol protecting group;

R⁴ is hydrogen or R⁴ is methyl when R³ is OAc;

R³ together with R⁴ forms cyclopentyl; which comprises the steps of:

NH₂

(a) converting a compound of formula III

$$H_2N$$
— CH — CO_2H

in which

R²_a is CHOHMe or CHR⁵R⁶_a in which R is as defined above and R⁶_a is OH, SH,

CONH₂,

in which R⁸ is as defined above,

$$HO_2C$$
 HN Me N N N N

$$NH_2$$
 NH_2
 CO_2H
 NH_3
 H_2N
 CO_2H

CO₂H or CH₂CONH₂ or salts thereof into a compound of formula IV

IV

in which

R_b is an N-protecting group;

R_b is CHOAcMe or CHR⁵R_b in which R⁵ is as defined above and R_b is OAc, SBn, SMe, CONHR b in which R b is as defined above,

CO²H or CH₂CO₂H;

- (b) oxazolidination of the compound of formula IV to form the compound of formula II; and
- (c) reductive cleavage of the compound of formula II to form the compound of formula I.
- 6. (Original) A process according to claim 5, in which the conversion step (a) results in the protection of the amino group on the compound of formula III to produce the compound of formula IV.
- 7. (Currently amended) A process according to claim 5 or claim 6, in which the oxazolidination step (b) uses a formaldehyde source in an organic solvent.

- 8. (Original) A process according to claim 7, in which the formaldehyde source is paraformaldehyde and paratoluenesulphonic acid (TsOH).
- 9. (Currently amended) A process according to claim 7 or claim 8, in which the organic solvent is benzene or toluene.
- 10. (Currently amended) Use of the compound of formula I or II defined in claim 1 or claim 2 in the synthesis of peptides.
- 11. (Currently amended) A peptide which includes the compound of formula I or II as defined in claim 1 or claim 2.
 - 12. (Original) A peptide according to claim 11, which is a dipeptide.
- 13. (Original) A peptide according to claim 12, in which the dipeptide is of the formula V

in which

 R^1 and R^2 are as defined in claim 1 or claim 2, R' is an optionally protected amino acid side chain and R is H or a carboxyl-protecting group.

- 14. (Currently amended) A kit for use in synthesising peptides which comprises
- (a) at least one compound of formula I or formula II as defined in claim 1 or claim 2 or peptide as defined in any one of claims 11 to 13; and
- (b) optionally at least one other N-methyl amino acid, its precursor oxazolidinones, an optionally substituted amino acid, or protected forms thereof,

said compounds, N-methyl amino acids, oxazolidinones and/or amino acids being held separately.

- 15. (New) A kit for use in synthesising peptides which comprises
- (a) peptide as defined in claim 11; and
- (b) optionally at least one other N-methyl amino acid, its precursor oxazolidinones, an optionally substituted amino acid, or protected forms thereof,

said compounds, N-methyl amino acids, oxazolidinones and/or amino acids being held separately.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.