

FIGURE 1

FIGURE 2

FIGURE 13, 54

FIGURE 2

FIGURE 35

FIGURE 4.6

0.0062500" 82x85x960

FIGURE 6A

FIGURE 5/7

000260-002260-844222-9600

FIGURE / 8

$$140 \left\{ \begin{array}{l} d_{a lk} \frac{\partial u_k}{\partial t} - \frac{\partial}{\partial x_j} \left(c_{lkji} \frac{\partial u_k}{\partial x_i} + \alpha_{lkj} u_k - \gamma_{lj} \right) + \beta_{lki} \frac{\partial u_k}{\partial x_i} + \alpha_{lk} u_k = f_l \\ n_j \left(c_{lkji} \frac{\partial u_k}{\partial x_i} + \alpha_{lkj} u_k - \gamma_{lj} \right) + q_{lk} u_k = g_l - h_{ml} \lambda_m \\ h_{ml} u_l = r_m \end{array} \right. \quad \begin{array}{l} \Omega \\ \partial\Omega \\ \partial\Omega \\ \partial\Omega \end{array} \quad \begin{array}{l} 142 \\ 146a \\ 146b \\ 144 \end{array}$$

FIGURE / 9

$$150 \left\{ \begin{array}{l} d_{a lk} \frac{\partial u_k}{\partial t} + \frac{\partial \Gamma_{lj}}{\partial x_j} = F_l \\ -n_j \Gamma_{lj} = G_l + \frac{\partial R_m}{\partial u_l} \lambda_m \\ 0 = R_m \end{array} \right. \quad \begin{array}{l} \Omega \\ \partial\Omega \\ \partial\Omega \end{array} \quad \begin{array}{l} 152 \\ 154a \\ 154b \end{array} \quad 154$$

Figure 10

$$\begin{cases}
 \gamma_{ij} = \Gamma_{ij} & f_I = F_I \\
 c_{ikji} = -\frac{\partial \Gamma_{ij}}{\partial \left(\frac{\partial u_k}{\partial x_i} \right)} & \alpha_{Ikj} = -\frac{\partial \Gamma_{ij}}{\partial u_k} \\
 \\
 \beta_{Ikj} = -\frac{\partial F_I}{\partial \left(\frac{\partial u_k}{\partial x_i} \right)} & a_{Ik} = -\frac{\partial F_I}{\partial u_k} \\
 \\
 g_I = G_I & r_I = R_I \\
 q_{Ik} = -\frac{\partial G_I}{\partial u_k} & h_{Ik} = -\frac{\partial R_I}{\partial u_k}
 \end{cases}$$

FIGURE 11

240

$$\left\{ \begin{array}{l} \Gamma_{lj} = -c_{lkji} \frac{\partial u_k}{\partial x_i} - \alpha_{lkj} u_k + \gamma_{lj} \\ F_l = f_l - \beta_{lki} \frac{\partial u_k}{\partial x_i} - \sigma_{lk} u_k \\ G_l = g_l - q_{lk} u_k \\ R_m = r_m - h_{ml} u_l \end{array} \right.$$

FIG 12

$$\left\{ \begin{array}{l} \int_{\Omega} \left(\left(c_{lkji} \frac{\partial u_k}{\partial x_i} + \alpha_{lkj} u_k \right) \frac{\partial v}{\partial x_j} + \left(d_{al k} \frac{\partial u_k}{\partial t} + \beta_{lki} \frac{\partial u_k}{\partial x_i} + \alpha_{lk} u_k \right) v \right) dx + \\ \int_{\partial\Omega} q_{lk} u_k v ds = \int_{\Omega} \left(\gamma_{lj} \frac{\partial v}{\partial x_j} + f_l v \right) dx + \int_{\partial\Omega} (g_l - h_m l \lambda_m) v ds \\ \int_{\partial\Omega} \mu h_m k u_k ds = \int_{\partial\Omega} \mu r_m ds \end{array} \right.$$

FIG 13

$$\begin{aligned} & \int_{\Omega} \left(\Gamma_{ij} \frac{\partial v}{\partial x_j} + F_I v - d_{ilk} \frac{\partial u_k}{\partial t} v \right) dx + \int_{\partial\Omega} \left(G_I + \frac{\partial R_m}{\partial u_l} \lambda_m \right) v ds = 0 \\ & \underbrace{\int_{\partial\Omega} R_m \mu ds = 0}_{\text{boundary condition}} \end{aligned}$$

FIG 14

$$30^4 U_k(x) = \sum_{I=1}^{N_p} U_{I,k} \phi_I(x), \quad \Lambda_m(x) = \sum_{K=1}^{N_e} \sum_{L=1}^n \Lambda_{K,L,m} \psi_{K,L}(x)$$

FIG 15

$$\begin{aligned} & \int_{\tau} \left(c_{lkji} U_{I,k} \frac{\partial \phi_I}{\partial x_i} + \alpha_{lkj} U_{I,k} \phi_I \right) \frac{\partial \phi_J}{\partial x_j} dx + \\ & \int_{\tau} \left(d_{a lk} \frac{\partial U_{I,k}}{\partial t} \phi_I + \beta_{lk i} U_{I,k} \frac{\partial \phi_I}{\partial x_i} + \alpha_{lk} U_{I,k} \phi_I \right) \phi_J dx + \\ & \int_{\partial \tau} q_{lk} U_{I,k} \phi_I \phi_J ds = \int_{\tau} \left(\gamma_{lj} \frac{\partial \phi_J}{\partial x_j} + f_l \phi_J \right) dx + \\ & \int_{\partial \tau} (g_l - h_m l \Lambda_{K,L,m} \Psi_{K,L}) \phi_J ds \end{aligned}$$

FIG 16

$$\int_{\partial\Omega} h_{m,k} U_{I,k} \phi_I \Psi_{K,L} ds = \int_{\partial\Omega} r_m \Psi_{K,L} ds$$

FIG 17

$$\begin{aligned} \mathcal{B}^2 & \left\{ \int_{\Omega} \left(\Gamma_{ij} \frac{\partial \phi_j}{\partial x_i} + F_I \phi_J - d_{ilk} \frac{\partial u_k}{\partial t} \phi_j \right) dx + \int_{\partial\Omega} \left(G_I + \frac{\partial R_m}{\partial u_l} \Lambda_{K,L,m} \Psi_{K,L} \right) \phi_j ds = 0 \right. \\ & \left. \int_{\partial\Omega} R_m \Psi_{K,L} ds = 0 \right. \end{aligned}$$

FIG 18

$$\begin{aligned}
 D A_{(J, l), (I, k)} &= \int_{\tau} d_{a_{lk}} \phi_I \phi_J dx \\
 C_{(J, l), (I, k)} &= \int_{\tau} c_{lkji} \frac{\partial \phi_I}{\partial x_i} ? \frac{\partial \phi_J}{\partial x_j} dx \\
 A L_{(J, l), (I, k)} &= \int_{\tau} \alpha_{lkj} \phi_I ? \frac{\partial \phi_J}{\partial x_j} dx \\
 B E_{(J, l), (I, k)} &= \int_{\tau} \beta_{lki} \frac{\partial \phi_I}{\partial x_i} \phi_J dx \\
 A_{(J, l), (I, k)} &= \int_{\tau} \sigma_{lk} \phi_I \phi_J dx \\
 Q_{(J, l), (I, k)} &= \int_{\partial \tau} q_{lk} \phi_I \phi_J ds \\
 G A_{(J, l)} &= \int_{\tau} \gamma_{lj} \frac{\partial \phi_J}{\partial x_j} dx \\
 F_{(J, l)} &= \int_{\tau} f_l \phi_J dx \\
 G_{(J, l)} &= \int_{\partial \tau} g_l \phi_J ds \\
 H_{(K, L, m), (J, k)} &= \int_{\partial \tau} h_{mk} \phi_I \Psi_{K, L} ds \\
 R_{(K, L, m)} &= \int_{\partial \tau} r_m \Psi_{K, L} ds
 \end{aligned}$$

00000000000000000000000000000000

FIG 19

$$\begin{aligned} n_2 \mathcal{V}^0 & \left\{ \begin{array}{l} DA \frac{\partial U}{\partial t} + (C + AL + BE + A + Q)U + H^T \Lambda = GA + F + G \\ HU = R \end{array} \right. \end{aligned}$$

FIG 20

$$\left. \begin{array}{l} \gamma^V \\ \hline DA \frac{\partial U}{\partial t} + H^T \Lambda = GA + F + G \\ R = 0 \end{array} \right\}$$

FIG 21

$$32^4 \left\{ \begin{array}{l} J(U^{(k)}) \Delta U^{(k)} = -\rho(U^{(k)}) \\ U^{(k+1)} = U^{(k)} + \lambda_k \Delta U^{(k)} \end{array} \right.$$

006260 84252960

FIGURE 22

FIGURE 23

The class hierarchy of FEMLAB

பிள்ளை 24

Figure 25

2-D Physics Application Modes

Application mode	Class name	Parent class
AC Power Electromagnetics	f1pdeac	f1pdec2d
Conductive Media DC	f1pdedc2d	f1pdedc
Diffusion	f1pdedf2d	f1pdef
Electrostatics	f1pdees2d	f1pdees
Magnetostatics	f1pdems2d	f1pdems
Heat Transfer	f1pdeht2d	f1pdeht
Incompressible Navier-Stokes	f1pdens2d	f1pdens
Structural Mechanics, Plane Stress	f1pdeps	f1pdec2d
Structural Mechanics, Plane Strain	f1pdepn	f1pdec2d

Figure 26

PDE Application Modes

Application mode	Class name	Parent class
Coefficient PDE model, n variables	f1pdec2d(n)	f1pdec(n)
General PDE model, n variables	f1pdeg2d(n)	f1pdeg(n)

Suj

Suj

Application Object Properties

Property name	Description	Data type
dim	Names of the dependent variables	Cell array of strings
form	PDE form	String (coefficient/general)
name	Application name	String
parent	Parent class names	String, cell array of strings, or the empty matrix
sdim	Names of the independent variables (space dimensions)	Cell array of strings
submode	Name of current submode	String (std/wave)
tdiff	Time differentiation flag	String (on/off)

FIGURE 27

510

```

function obj = myapp()
%MYAPP Constructor for a FEMLAB application object.

S12 obj.name = 'My first FEMLAB application';
obj.parent = 'flpdeht2d';

% MYAPP is a subclass of FLPDEHT2D:
p1 = flpdeht2d;
obj = class(obj,'myapp',p1);
set(obj,'dim',default_dim(obj));    FIGURE 28

```

Physics Modeling Methods

Function	Purpose
appspec	Return application specifications.
bnd_compute	Convert application-dependent boundary conditions to generic boundary coefficients.
default_bnd	Default boundary conditions.
default_dim	Default names of dependent variables.
default_equ	Default PDE coefficients/Material parameters.
default_init	Default initial conditions.
default_sdim	Default space dimension variables.
default_var	Default application scalar variables.
dim_compute	Return dependent variables for an application.
equ_compute	Convert application-dependent material parameters to generic PDE coefficients.
form_compute	Return PDE form.
init_compute	Convert application-dependent initial conditions to generic initial conditions.
posttable	Define assigned variable names and post-processing information.

FIGURE 29

ଫିଲେ କାମ କରିବାର ଏକ ଉପର୍ଯ୍ୟାମ କାଣ୍ଡିଗି

ଫିଲେ କାମ କରିବାର
ଏକ ଉପର୍ଯ୍ୟାମ କାଣ୍ଡିଗି

$$532 \int_{E_z} \Delta E_z + (2\pi i k)^2 E_z = 0$$

$$532 - \left[k = \frac{1}{\lambda} = \frac{f}{c} \right]$$

$$534 - \left[\vec{n} \cdot (\nabla E_z) + 2\pi i k_x E_z = 4\pi i k_x \sin\left(\frac{\pi}{d}(y-y_0)\right) \right]$$

$$536 - \left[k^2 = k_x^2 + k_y^2 \right]$$

$$538 - \left[k_x = \sqrt{\frac{1}{\lambda^2} - \frac{1}{(2d)^2}} \right]$$

$$540 - \left[\vec{n} \cdot (\nabla E_z) + 2\pi i k_x E_z = 0 \right]$$

$$542 - \left[E_z = 0 \right]$$

$$544 - f_c = \frac{c}{2d}$$

FIGURE 3)

550

```

function obj = flwaveguide(varargin)
%FLWAVEGUIDE Constructor for a Waveguide application object.

obj.name = 'In-Plane Waveguide';
obj.parent = 'flpdeac';

% FLWAVEGUIDE is a subclass of FLPDEAC:
p1 = flpdeac;
obj = class(obj,'flwaveguide',p1);
set(obj,'dim',default_dim(obj));

```

FIGURE 32

550

fem.user fields	
Field	Description
geomparam	1-by-2 structure of geometry parameters.
entrybnd	Index to the entry boundary.
exitbnd	Index to the exit boundary.
freqs	Frequency vector

FIGURE 33

fem.user fields

Field	Description
startpt	Index of the lower left corner point of the waveguide.
type	Type of waveguide. ('straight' or 'elbow')

554

FIGURE 34

geomparam fields

Field	Description	Defaults for elbow	Defaults for straight
entrylength	Length of the entrance part of the waveguide.	0.1	0.1
exitlength	Length of the exit part of the waveguide.	0.1	Not used
radius	Outer radius of the waveguide bend.	0.05	Not used
width	Width of the waveguide.	0.025	0.025
cavityflag	Turn resonance cavity <i>on</i> or <i>off</i> .	0	0
cavitywidth	Width of the resonance cavity.	0.025	0.025
postwidth	Width of the protruding posts.	0.005	0.005
postdepth	Depth of the protruding posts.	0.005	0.005

554

FIGURE 35