Epreuve écrite

Examen de fin d'études secondaires 2004

Section:

B/C

Branche: chimie Nom et prénom du candidat

15 JUIN 2004

(QC = question de cours ; AT = application, transfert ; EN = exercice numérique)

I. Composés halogénés (18 pts.)

1) Etudier le mécanisme de la chloration du nitrobenzène :

a) Préparation du réactif électrophile. (QC:1)

b) Montrer la position du réactif électrophile sur le cycle benzénique par des formes contributives à la mésomérie du nitrobenzène. (QC:3)

c) Substitution par le réactif électrophile et régénération du catalyseur. (AT:3)

2) Le bromure d'hydrogène réagit avec l'alcène suivant :

$$\overset{CH_3-CH_2}{\underset{H_3C}{\smile}}==\overset{H}{\overset{H}{\smile}}$$

a) Trouver le nom de l'alcène en nomenclature Z/E. (AT:1)

b) L'addition du bromure d'hydrogène suit la règle de Markownikoff. Enoncer cette règle. (QC:1) Donner la formule semi-développée et le nom du produit majoritaire. (AT:1)

c) Expliquer l'effet I+ ainsi que son influence sur la stabilité d'un ion carbénium qui se forme lors d'une telle addition. (QC:2)

- 3) Consulter les données suivantes pour identifier un composé organique monochloré saturé A qui renferme encore un autre groupement fonctionnel:
 - le test avec la DNPH est positif,
 - le test de Tollens est positif,
 - l'oxydation ménagée de A en présence du catalyseur cuivre donne un produit B,
 - B fait virer le bleu de bromothymol au jaune,
 - la teneur massique en chlore est 32,75 % pour B,
 - A et B sont optiquement actifs.

a) Trouver la fonction chimique dans A et dans B. (AT:1)

b) Calculer la masse molaire de B ; en déduire la formule développée de B, puis celle de A. Nommer A et B. (EN:3/AT:2)

Epreuve écrite

· · · · · · · · · · · · · · · · · · ·		-	33 CA 3		200
Examen	de	tin	a etudes	secondaires	2004

Section: B/C

Branche: chimie

Nom et prénom du candidat					

II. Composés oxygénés (12 pts.)

- 1) Une des molécules montrées est chirale. Donner une représentation spatiale du couple de ses énantiomères et appliquer la nomenclature CIP. (AT:2)
- 2) Nommer les autres corps montrés. (AT:2)
- 3) Lequel des corps représentés réagit avec la liqueur de Fehling ? Etablir les équations du système rédox en question. (AT:3)
- 4) On fait agir l'oxydant permanganate de potassium en milieu acide sur tous les composés présentés. Donner le nom et la formule semi-développée des produits obtenus <u>lorsqu'il y a réaction</u>. (AT:2)
- 5) Lequel des corps peut se présenter sous forme d'amphion?

 Montrer par des équations chimiques que ce corps peut former deux dipeptides différents avec la cystéine dont la formule chimique est: HS—CH—CH—COOH

 (AT:3)

III. Estérification (13 pts.)

- 1) Etudier l'estérification entre un alcool et l'acide acétique préalablement traité avec le pentachlorure de phosphore. (QC:5)
- 2) Dresser l'équation chimique de l'estérification du propanetriol avec l'acide nitrique. Quelle application importante a le produit ? (sans équation !) (QC:3)
- 3) Pour synthétiser le butanoate d'éthyle (saveur de banane), on fait réagir 1 mole d'acide carboxylique avec 3 moles d'alcool.
 - a) Etablir l'équation chimique de cette estérification. (AT:1)
 - b) L'eau formée est fixée par un déshydratant, à tel point que la quantité en eau sera 0,2 mol à l'équilibre. Sachant que la constante d'équilibre vaut 3, calculer le rendem e_{0} ten ester. (EN:4)

Epreuve écrite

Examen de fin d'études secondaires 2004	1	Nom et prénom du candidat			
Section: B/C	-				
Branche: chimie	11 -				
IV. Cyanure d'hydrogène et titrage 1) Le cyanure d'hydrogène s'additionne aisém a) En établir les équations globales. Quel est l'intérêt pratique de ces réaction b) Expliquer en général, pourquoi les réaction réaliser. (QC:3) 2) Le cyanure d'hydrogène HCN est un poison de vue chimique, sa solution aqueuse est un Si l'on titre 50,0 ml d'une solution aqueuse quel sera le pH: a) après ajout de 8,0 ml de NaOH (aq), b) au point de demi-équivalence, c) au point d'équivalence, d) après ajout de 65,0 ml de NaOH(aq)?	t aux aldéhydes et (QC:2) s d'addition sur le siolent qui bloque la cide très faible avec	groupement carbonyle sont faciles à la chaîne respiratoire. Pourtant du point ce une constante d'acidité très petite.			

Examen de fin d'études secondaires 2004

B/C Section:

Branche: chimie

Nom et prénom du candidat

Corrige

I. Composés halogénés (18 pts.)

b) livre p. 45 en haut NOZ x)

QC:1 QC:3 ARCE4 ARCE3+HCL H

AT:3

AT:1

QC:1

AT: 1

6)
$$\frac{M(ce)}{M(B)} = \frac{35,5 \text{ g·moe}^{-1}}{X} = \frac{32,75}{100}$$

$$M(B) = X = \frac{100}{32,75} \cdot 35,5 g \cdot mse^{-1} = 108,4 g \cdot mse^{-1}$$

formule générale de B: Cl-Cn Him-COOH

$$14n = 27,9$$

$$n = 1$$

AT: 2

et cys-Gey

Examen de fin d'études secondaires 2004

Section: B/C

Branche: chimie

Nom et prénom du candidat

Corrigé

- 1) livre p. 73-74
- 2) livre p. 59

3) a)
$$cH_3 - cH_2 - cH_2 - c^{0}_{0-H} + H - 0 - cH_2 - cH_3$$
ac. butansique éthanse
$$= cH_3 - cH_2 - cH_2 - c - 0 - cH_2 - cH_3 + H_2 O$$

b) à l'équilibre:
$$m(acide) = 1-x mol$$

$$m(alcool) = 3-x mol$$

$$m(ester) = x mol$$

$$m(ear) = 0,2 mol$$

$$K_{c} = \frac{n(ester) \cdot n(eou)}{n(acide) \cdot n(elcool)} = \frac{x \cdot 0.2}{(1-x)(3-x)} = 3$$

$$0.2x = 3(3-x-3x+x^{2})$$

$$-3x^{2} + 12.2x - 9 = 0$$

$$X_1 = 0,968$$
 ($X_2 = 3,098 > m_0 (aleove) \rightarrow chim. impossible!)

rendement = $\frac{m(ester, obstern)}{m(ester, max.)} = \frac{0,968 \, mol}{1,0 \, mol} = 0,968 (= 96,8\%)$$

QC:5

QC:3

AT: 1

EN:4

Examen de fin d'études secondaires 2004

Section: B/C

Branche: chimie

Nom et prénom du candidat

Corrige

(17 pts.)

IV. Cyanure d'hydrogène et titrage

1) a) livre p. 64

6) livre 3) /p.62

2) a) n (NaOH) ajouté = K.V=0,1 mol.e-1.8.10-3l=8.10-4 mol

n (NaCN) formé = 8.10-4 mol

n (HCN) au début = 20. V = 0,1 mol·l-1.50-10-3/ = 5.10-3 mest

n (HCN) restaut = 5.10-3-8.10-4 = 4,2.10-3 mee

pH = pKa + log m(NacN) = 9,31 + log 8.10-4 = 8,59

6) pH=pKa = 9,31

c) au pt. d'équivaence: pH de la base faible Na CN

 $x^{2} + K_{b}x - K_{b}c = 0$ avec $K_{b} = 2.042.10^{-5}$ $c = [Nach] = \frac{m}{V_{tot}} = \frac{5.10^{-3} \text{mod}}{9.12} = 0.05 \frac{mod}{c}$

(x1=-0,001)

X2 = 0,001 = [OH]

POH= 3

PH = M

m (NaOH) ajouté = c.V = 0,1 mol. l-1.65.10-3 l = 6,5.10-3 mol d) pH d'une 6 ase forte m (NaOH) en excès = 6,5.10-3-5.10-3=1,5.10-3 mod

 $[OH] = \frac{m(NoOH) \text{ excès}}{V_{tot}} = \frac{1.5 \cdot 10^{-3} \text{ mol}}{M5 \cdot 10^{-3} \text{ e}} = 0.013 \text{ mol} \cdot e^{-1}$

100H = 1,89

10H = 12,11

QC:2

QC!3

EN:4

EN:1

EN: 4

EN:3