DSC-680-Z1 Research Practicum Exploratory Data Analysis

Project Description

The research practicum involves on-site experiential learning in a research setting. This setting may be in the private or public sector, it may include such locations as education, governmental, non-governmental, or general research organization. The experience must provide students the opportunity to collect and analyze data, consider ethical implications of research, and draw empirically grounded conclusions.

Purpose:

Carry out exploratory data analysis on a set of random sample data extracted for machine learning.

Universtiy Name: Utica College

Course Name: DSC-680-Z1 Research Practicum

Student Name: Henry J. Hu

Program Director Name: Dr. McCarthy, Michael

Runtime Environment: RStudio Programming Language: R

Original Data Frame: 12,705,553 international wires belonging to 139 customers from 3 continents for the entire year of 2020.

Last Update: July 21st, 2021

Clearing R Studio Memory Usage

```
gc()
```

```
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 540758 28.9 1234357 66 621331 33.2
## Vcells 1017933 7.8 8388608 64 1601224 12.3
```

```
rm(list = ls())
```

Time Counter Start

```
start_time <- Sys.time()</pre>
```

Include the knitr package for integration of R code into Markdown

```
knitr::opts_chunk$set(echo = TRUE)
```

All the libraries used in this code

```
library(easypackages)
libraries("caret","caretEnsemble","caTools","class","cluster","data.tree","devtools","doSNOW","dplyr","e1071","factoextra",
"gbm","FNN","FSelector","ggalt","ggforce","ggfortify","ggplot2","gmodels","klaR","lattice","mlbench","modeest","nnet","neura
lnet","outliers","parallel","psych","purrr","readr","rpart","rpart.plot","spatialEco","stats","tidyr","randomForest","ROSE",
"rsample","ROCR","pROC","glmnet","gridExtra","R6","Epi")
```

Import data into RStudio

```
# input_data <- read_delim("Final_cleaned_data.txt", ",", escape_double = FALSE, col_types = cols(</pre>
                TRANSACTION ID = col_character(),
#
                 TRANSACTION TIME = col datetime(),
                TRXN MONTH = col character(),
#
                CLIENT ID = col character(),
                COUNTRY NAME = col character(),
                COUNTRY CODE = col character(),
                CONTINENT NAME = col_character(),
                CONTINENT CODE = col character(),
#
                SWIFT MSG TYPE = col character(),
                AVG TRXN AMT = col double(),
                 TRANSACTION AMOUNT = col double()
#
#
      trim ws = TRUE)
```

Sample data for data exploratory analysis

This sample data is for exploratory data analysis only.

```
# Sample the data
# input data 4M <- input data 4M[sample(nrow(input data), 4000000), ]</pre>
# Write data to storage
# write.table(input data 4M, file="sample df 4M.txt", append = FALSE, sep = "\t", dec = ".", row.names = FALSE, col.names =
 TRUE)
# Load data into data frame
input_data_eda <- read_delim("sample_df_4M.txt", ",", escape_double = FALSE, col_types = cols(</pre>
              TRANSACTION ID = col character(),
              TRANSACTION TIME = col datetime(),
              TRXN MONTH = col character(),
              CLIENT ID = col character(),
              COUNTRY NAME = col character(),
              COUNTRY CODE = col character(),
              CONTINENT_NAME = col_character(),
              CONTINENT CODE = col character(),
              SWIFT MSG TYPE = col character(),
              AVG TRXN AMT = col double(),
              TRANSACTION AMOUNT = col double()
    trim ws = TRUE)
```

Sample data for data for plotting

This sample data is for plotting only.

```
# Sample the data
# input data 100K <- input data 100K[sample(nrow(input data), 100000), ]</pre>
# Write data to storage
# write.table(input data 100K, file="sample df 100K.txt", append = FALSE, sep = "\t", dec = ".", row.names = FALSE, col.name
s = TRUE
# Load data into data frame
input data plot <- read delim("sample df 100K.txt", ",", escape double = FALSE, col types = cols(
              TRANSACTION ID = col character(),
              TRANSACTION TIME = col datetime(),
              TRXN MONTH = col character(),
              CLIENT ID = col character(),
              COUNTRY NAME = col character(),
              COUNTRY CODE = col character(),
              CONTINENT NAME = col character(),
              CONTINENT CODE = col character(),
              SWIFT MSG TYPE = col character(),
              AVG TRXN AMT = col double(),
              TRANSACTION AMOUNT = col double()
    trim ws = TRUE)
```

Descriptive Statistics

These descriptive statistics reveal both the central tendency and dispersion tendency of the sample data for machine learning.

Dimension of data frame

```
dim(input_data_eda)

## [1] 4000000 11
```

Structure of data frame

```
str(input_data_eda)
```

```
## tibble [4,000,000 x 11] (S3: spec tbl df/tbl df/tbl/data.frame)
## $ TRANSACTION ID : chr [1:4000000] "4349182" "4919379" "11969294" "2219769" ...
## $ TRANSACTION TIME : POSIXct[1:4000000], format: "2020-05-06 09:27:19" "2020-05-26 08:16:53" ...
                        : chr [1:4000000] "5" "5" "12" "3" ...
## $ TRXN MONTH
                       : chr [1:4000000] "6249012147" "6249328247" "6249263302" "7116485839" ...
## $ CLIENT ID
## $ COUNTRY NAME
                       : chr [1:4000000] "United States of America" "United Kingdom of Great Britain & Northern Ireland" "U
nited States of America" "United States of America" ...
## $ COUNTRY CODE
                        : chr [1:4000000] "US" "GB" "US" "US" ...
                        : chr [1:4000000] "North America" "Europe" "North America" "North America" ...
## $ CONTINENT NAME
                        : chr [1:4000000] "NN" "EU" "NN" "NN" ...
## $ CONTINENT CODE
                        : chr [1:4000000] "202" "103" "202" "103" ...
   $ SWIFT MSG TYPE
   $ AVG TRXN AMT
                       : num [1:4000000] 12445769 16644115 9503760 29508471 250325 ...
   $ TRANSACTION AMOUNT: num [1:4000000] 1140 10704000 7582 364 6936 ...
   - attr(*, "spec")=
##
     .. cols(
##
         TRANSACTION ID = col character(),
##
         TRANSACTION TIME = col datetime(format = ""),
##
         TRXN MONTH = col character(),
##
         CLIENT ID = col character(),
##
         COUNTRY NAME = col character(),
         COUNTRY CODE = col character(),
##
##
         CONTINENT NAME = col character(),
##
         CONTINENT CODE = col character(),
##
         SWIFT MSG TYPE = col character(),
##
         AVG TRXN AMT = col double(),
##
         TRANSACTION AMOUNT = col double()
##
```

Summary statistics of data frame

```
summary(input_data_eda)
```

```
TRANSACTION ID
                       TRANSACTION TIME
                                                       TRXN MONTH
    Length:4000000
                                                      Length:4000000
##
                       Min.
                               :2020-01-01 00:48:36
    Class :character
                       1st Ou.:2020-03-31 19:10:55
                                                      Class :character
    Mode :character
                       Median :2020-07-05 23:45:40
                                                      Mode :character
##
##
                               :2020-07-05 11:23:41
##
                       3rd Qu.:2020-10-06 02:39:14
##
                       Max.
                               :2020-12-31 21:58:20
                       COUNTRY_NAME
##
    CLIENT_ID
                                           COUNTRY_CODE
                                                              CONTINENT_NAME
    Length:4000000
                       Length:4000000
                                           Length:4000000
##
                                                              Length:4000000
    Class :character
                       Class :character
                                           Class :character
                                                              Class :character
##
    Mode :character
                       Mode :character
                                           Mode :character
                                                              Mode :character
##
##
##
##
    CONTINENT CODE
                       SWIFT MSG TYPE
                                            AVG TRXN AMT
                                                              TRANSACTION AMOUNT
                       Length:4000000
##
    Length: 4000000
                                           Min.
                                                 : 203460
                                                              Min.
                                                                      :0.000e+00
    Class :character
                       Class :character
##
                                           1st Qu.: 1849350
                                                              1st Qu.:5.440e+03
##
    Mode :character
                       Mode :character
                                           Median :10808058
                                                              Median :3.558e+04
##
                                                  :11563745
                                           Mean
                                                                     :1.160e+07
                                                              Mean
##
                                           3rd Ou.:17532995
                                                              3rd Ou.:3.690e+05
##
                                                  :29508471
                                                                      :1.695e+10
                                           Max.
                                                              Max.
```

Glimpse of data frame

glimpse(input data eda)

```
## Rows: 4,000,000
## Columns: 11
## $ TRANSACTION ID
                        <chr> "4349182", "4919379", "11969294", "2219769", "85...
## $ TRANSACTION TIME
                        <dttm> 2020-05-06 09:27:19, 2020-05-26 08:16:53, 2020-...
                        <chr> "5", "5", "12", "3", "1", "7", "4", "8", "12", "...
## $ TRXN MONTH
## $ CLIENT ID
                        <chr> "6249012147", "6249328247", "6249263302", "71164...
                        <chr> "United States of America", "United Kingdom of G...
## $ COUNTRY NAME
## $ COUNTRY CODE
                        <chr> "US", "GB", "US", "US", "TH", "SG", "US", "TH", ...
## $ CONTINENT NAME
                        <chr> "North America", "Europe", "North America", "Nor...
## $ CONTINENT CODE
                        <chr> "NN", "EU", "NN", "NN", "AS", "AS", "NN", "AS", ...
## $ SWIFT_MSG_TYPE
                        <chr> "202", "103", "202", "103", "202", "103", "202",...
## $ AVG TRXN AMT
                        <dbl> 12445768.9, 16644115.0, 9503760.4, 29508471.2, 2...
## $ TRANSACTION AMOUNT <dbl> 1139.98, 10704000.00, 7582.00, 363.78, 6935.62, ...
```

Head of data frame

```
head(input data eda)
```

```
## # A tibble: 6 x 11
    TRANSACTION_ID TRANSACTION_TIME
                                        TRXN MONTH CLIENT ID COUNTRY NAME
     <chr>>
                    <dttm>
                                        <chr>
                                                    <chr>
                                                              <chr>>
## 1 4349182
                    2020-05-06 09:27:19 5
                                                    62490121~ United Stat~
## 2 4919379
                    2020-05-26 08:16:53 5
                                                    62493282~ United King~
## 3 11969294
                    2020-12-14 10:07:03 12
                                                    62492633~ United Stat~
## 4 2219769
                    2020-03-05 15:20:16 3
                                                    71164858~ United Stat~
## 5 852566
                    2020-01-29 00:49:09 1
                                                    62491528~ Thailand-Ki~
## 6 6605370
                    2020-07-13 10:05:49 7
                                                    71173215~ Singapore-R~
## # ... with 6 more variables: COUNTRY CODE <chr>, CONTINENT NAME <chr>,
      CONTINENT CODE <chr>, SWIFT MSG TYPE <chr>, AVG TRXN AMT <dbl>,
## #
      TRANSACTION AMOUNT <dbl>
```

Tail of data frame

```
tail(input_data_eda)
```

```
## # A tibble: 6 x 11
    TRANSACTION ID TRANSACTION TIME
                                        TRXN MONTH CLIENT ID COUNTRY NAME
     <chr>>
                    <dttm>
                                        <chr>
                                                    <chr>>
                                                              <chr>>
## 1 6560650
                    2020-07-10 10:07:13 7
                                                   71162836~ United Stat~
## 2 3676899
                    2020-04-16 11:30:26 4
                                                    62492633~ United Stat~
## 3 11499663
                    2020-11-30 18:41:51 11
                                                   71164908~ United Stat~
## 4 10673342
                    2020-11-06 07:17:52 11
                                                   62494104~ Thailand-Ki~
## 5 150403
                    2020-01-07 09:07:17 1
                                                   62492050~ Taiwan
## 6 11149693
                    2020-11-20 11:41:15 11
                                                   71162836~ United King~
## # ... with 6 more variables: COUNTRY CODE <chr>, CONTINENT NAME <chr>,
      CONTINENT CODE <chr>, SWIFT MSG TYPE <chr>, AVG TRXN AMT <dbl>,
      TRANSACTION_AMOUNT <dbl>
```

Segegrate and prepare data for plotting

```
input data plot$TRANSACTION AMOUNT=input data plot$TRANSACTION AMOUNT/1000
input data plot <- input data plot %>%
  mutate(MONTH TEXT = case when(
    endsWith(TRXN MONTH, "1") ~ "Jan",
    endsWith(TRXN MONTH, "2") ~ "Feb",
    endsWith(TRXN MONTH, "3") ~ "Mar",
    endsWith(TRXN MONTH, "4") ~ "Apr",
    endsWith(TRXN MONTH, "5") ~ "May",
    endsWith(TRXN MONTH, "6") ~ "Jun",
    endsWith(TRXN MONTH, "7") ~ "Jul",
    endsWith(TRXN MONTH, "8") ~ "Aug",
    endsWith(TRXN MONTH, "9") ~ "Sep",
    endsWith(TRXN MONTH, "10") ~ "Oct"
    endsWith(TRXN MONTH, "11") ~ "Nov",
    endsWith(TRXN MONTH, "12") ~ "Dec"
    ))
NN 103 df <- input data plot[input data plot$CONTINENT CODE == 'NN' & input data plot$SWIFT MSG TYPE== '103',]
NN 103 df$TRXN MONTH = as.integer(NN 103 df$TRXN MONTH)
NN 103 df <- NN 103 df[order(NN 103 df$TRXN MONTH),]
glimpse(NN 103 df)
```

```
## Rows: 14,929
## Columns: 12
## $ TRANSACTION ID
                      <chr> "353396", "785734", "967771", "926613", "42307",...
## $ TRANSACTION TIME
                      <dttm> 2020-01-13 12:53:36, 2020-01-27 09:02:04, 2020-...
## $ TRXN_MONTH
                       <chr> "6249091671", "7116485839", "7116485839", "71164...
## $ CLIENT ID
                       <chr> "United States of America", "United States of Am...
## $ COUNTRY NAME
## $ COUNTRY CODE
                       <chr> "US", "US", "US", "BM", "US", "US", "US", "US", ...
## $ CONTINENT NAME
                       <chr> "North America", "North America", "North America...
                      <chr> "NN", "NN", "NN", "NN", "NN", "NN", "NN", "NN", ...
## $ CONTINENT CODE
                      <chr> "103", "103", "103", "103", "103", "103", "103", ...
## $ SWIFT MSG TYPE
## $ AVG TRXN AMT
                       <dbl> 23712557, 23712557, 23712557, 23712557, 23712557...
## $ TRANSACTION AMOUNT <dbl> 1.464654e+06, 1.054991e+02, 8.206400e+02, 2.6375...
## $ MONTH TEXT
                      <chr> "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "...
```

dim(NN_103_df)

```
## [1] 14929 12
```

```
NN_202_df <- input_data_plot[input_data_plot$CONTINENT_CODE =='NN' & input_data_plot$SWIFT_MSG_TYPE=='202',]
NN_202_df$TRXN_MONTH = as.integer(NN_202_df$TRXN_MONTH)
NN_202_df <- NN_202_df[order(NN_202_df$TRXN_MONTH),]
glimpse(NN_202_df)</pre>
```

```
## Rows: 32,884
## Columns: 12
## $ TRANSACTION ID
                      <chr> "989201", "112754", "561048", "129326", "509303"...
## $ TRANSACTION TIME
                      <dttm> 2020-01-31 14:41:07, 2020-01-06 11:30:29, 2020-...
## $ TRXN_MONTH
                       <chr> "7116490843", "6249263302", "7116490843", "71164...
## $ CLIENT ID
                       <chr> "United States of America", "United States of Am...
## $ COUNTRY NAME
                       <chr> "US", "US", "US", "US", "US", "US", "US", "US", ...
## $ COUNTRY CODE
## $ CONTINENT NAME
                       <chr> "North America", "North America", "North America...
                      <chr> "NN", "NN", "NN", "NN", "NN", "NN", "NN", "NN", ...
## $ CONTINENT CODE
## $ SWIFT MSG TYPE
                       <chr> "202", "202", "202", "202", "202", "202", "202", ...
## $ AVG TRXN AMT
                       <dbl> 9597325, 9597325, 9597325, 9597325, 9597325, 959...
## $ TRANSACTION AMOUNT <dbl> 0.15373, 49.95204, 13.27744, 4.94025, 400.06200,...
## $ MONTH TEXT
                      <chr> "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "...
```

dim(NN_202_df)

```
## [1] 32884 12
```

```
EU_103_df <- input_data_plot[input_data_plot$CONTINENT_CODE =='EU' & input_data_plot$SWIFT_MSG_TYPE=='103',]
EU_103_df$TRXN_MONTH = as.integer(EU_103_df$TRXN_MONTH)
EU_103_df <- EU_103_df[order(EU_103_df$TRXN_MONTH),]
glimpse(EU_103_df)</pre>
```

```
## Rows: 15,578
## Columns: 12
## $ TRANSACTION ID
                      <chr> "924027", "19395", "834920", "628924", "489264",...
## $ TRANSACTION TIME
                      <dttm> 2020-01-30 17:07:01, 2020-01-02 10:15:51, 2020-...
## $ TRXN MONTH
                       <chr> "6249340315", "7117258150", "7116378678", "62492...
## $ CLIENT ID
## $ COUNTRY NAME
                       <chr> "Switzerland-Swiss Confederation", "United Kingd...
## $ COUNTRY CODE
                      <chr> "CH", "GB", "PL", "AT", "CH", "BE", "CH", "CH", ...
## $ CONTINENT NAME
                      <chr> "Europe", "Europe", "Europe", "Europe"...
                      <chr> "EU", "EU", "EU", "EU", "EU", "EU", "EU", "EU", "EU", ...
## $ CONTINENT CODE
## $ SWIFT_MSG_TYPE
                      <chr> "103", "103", "103", "103", "103", "103", "103", ...
## $ AVG TRXN AMT
                      <dbl> 16936752, 16936752, 16936752, 16936752, 16936752...
## $ TRANSACTION AMOUNT <dbl> 178399.99643, 94.90825, 1969.67872, 1.01909, 329...
                      <chr> "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "...
## $ MONTH TEXT
```

```
dim(EU 103 df)
```

```
## [1] 15578     12
```

```
EU_202_df <- input_data_plot[input_data_plot$CONTINENT_CODE =='EU' & input_data_plot$SWIFT_MSG_TYPE=='202',]
EU_202_df$TRXN_MONTH = as.integer(EU_202_df$TRXN_MONTH)
EU_202_df <- EU_202_df[order(EU_202_df$TRXN_MONTH),]
head(EU_202_df)</pre>
```

```
## # A tibble: 6 x 12
    TRANSACTION ID TRANSACTION TIME
                                        TRXN MONTH CLIENT ID COUNTRY NAME
##
    <chr>
                    <dttm>
                                             <int> <chr>
                                                             <chr>>
## 1 306731
                    2020-01-10 14:31:11
                                                 1 71160051~ United King~
## 2 189192
                    2020-01-08 07:14:06
                                                 1 71165081~ Russian Fed~
## 3 531583
                    2020-01-17 07:41:42
                                                 1 62493403~ Russian Fed~
## 4 937894
                                                 1 62490579~ United King~
                    2020-01-31 06:02:45
## 5 275764
                    2020-01-10 04:13:11
                                                 1 62492099~ Turkey-Repu~
## 6 189175
                    2020-01-08 07:13:29
                                                 1 62493403~ United King~
## # ... with 7 more variables: COUNTRY_CODE <chr>, CONTINENT_NAME <chr>,
      CONTINENT CODE <chr>, SWIFT MSG TYPE <chr>, AVG TRXN AMT <dbl>,
## #
      TRANSACTION AMOUNT <dbl>, MONTH TEXT <chr>>
```

```
dim(EU_202_df)
```

```
## [1] 7953 12
```

```
AS_103_df <- input_data_plot[input_data_plot$CONTINENT_CODE =='AS' & input_data_plot$SWIFT_MSG_TYPE=='103',]
AS_103_df$TRXN_MONTH = as.integer(AS_103_df$TRXN_MONTH)
AS_103_df <- AS_103_df[order(AS_103_df$TRXN_MONTH),]
glimpse(AS_103_df)
```

```
## Rows: 9,438
## Columns: 12
                      <chr> "182191", "338418", "953572", "230977", "622333"...
## $ TRANSACTION ID
                      <dttm> 2020-01-08 02:17:23, 2020-01-13 09:06:06, 2020-...
## $ TRANSACTION TIME
## $ TRXN MONTH
                       ## $ CLIENT ID
                       <chr> "6249328247", "7116290066", "7116516010", "62493...
                       <chr> "China-People's Republic of", "China-People's Re...
## $ COUNTRY NAME
                      <chr> "CN", "CN", "IN", "SG", "AE", "SG", "CN", "KR", ...
## $ COUNTRY CODE
## $ CONTINENT NAME
                       <chr> "Asia", "Asia", "Asia", "Asia", "Asia", "Asia", ...
                      <chr> "AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS", ...
## $ CONTINENT_CODE
## $ SWIFT MSG TYPE
                      <chr> "103", "103", "103", "103", "103", "103", "103", ...
## $ AVG TRXN AMT
                       <dbl> 10319555, 10319555, 10319555, 10319555, 10319555...
## $ TRANSACTION AMOUNT <dbl> 17.57240, 89200.00000, 73.46510, 2083.53360, 142...
                       <chr> "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", ...
## $ MONTH TEXT
```

```
dim(AS_103_df)
```

```
## [1] 9438 12
```

```
AS_202_df <- input_data_plot[input_data_plot$CONTINENT_CODE =='AS' & input_data_plot$SWIFT_MSG_TYPE=='202',]
AS_202_df$TRXN_MONTH = as.integer(AS_202_df$TRXN_MONTH)
AS_202_df <- AS_202_df[order(AS_202_df$TRXN_MONTH),]
glimpse(AS_202_df)
```

```
## Rows: 19,218
## Columns: 12
## $ TRANSACTION ID
                      <chr> "236101", "555817", "51989", "142674", "49311", ...
## $ TRANSACTION TIME
                      <dttm> 2020-01-09 09:02:07, 2020-01-17 14:06:30, 2020-...
## $ TRXN MONTH
                       <chr> "6249012147", "7116048654", "6249307755", "62493...
## $ CLIENT ID
                       <chr> "China-People's Republic of", "Singapore-Republi...
## $ COUNTRY NAME
## $ COUNTRY_CODE
                       <chr> "CN", "SG", "CN", "CN", "TW", "VN", "CN", "CN", ...
## $ CONTINENT NAME
                       <chr> "Asia", "Asia", "Asia", "Asia", "Asia", "Asia", ...
                      <chr> "AS", "AS", "AS", "AS", "AS", "AS", "AS", ...
## $ CONTINENT CODE
                      <chr> "202", "202", "202", "202", "202", "202", "202", ...
## $ SWIFT MSG TYPE
## $ AVG TRXN AMT
                       <dbl> 250325.2, 250325.2, 250325.2, 250325.2, 250325.2...
## $ TRANSACTION AMOUNT <dbl> 6.57961, 181.25518, 5.63030, 0.81955, 12.00632, ...
## $ MONTH TEXT
                      <chr> "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "...
```

```
dim(AS_202_df)
```

```
## [1] 19218 12
```

Pie Chart

North America has the most number of wire tranfers.

```
## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
```


Bar Plot

These bar plots reveal the average monthly transaction amounts for each cohort of continent, SWIFT message type and month.

North America MT103 Monthly Average Transaction Amount

North America MT202 Monthly Average Transaction Amount

Europe MT103 Monthly Average Transaction Amount

Europe MT202 Monthly Average Transaction Amount


```
AS_103_df$MONTH_TEXT <- factor(AS_103_df$MONTH_TEXT, levels=unique(AS_103_df$MONTH_TEXT))

ggplot(AS_103_df, aes(x = MONTH_TEXT, y = TRANSACTION_AMOUNT)) +

geom_bar(stat = "summary", fun = "mean", fill='#5DADE2', color="#000000") +

ggtitle("Asia MT103 Monthly Average Transaction Amount") +

xlab("Month") +

ylab("Average Transaction Amount (Thousands)") +

theme(axis.text=element_text(size=10),

    axis.title = element_text(size=10),

    plot.title = element_text(hjust = 0.5, size=15, face="bold"),

    legend.key.size = unit(1, "line"))
```

Asia MT103 Monthly Average Transaction Amount

Is the data normally distributed?

```
library(ggplot2)
input data eda <- input data eda %>%
  mutate(MONTH TEXT = case when(
    endsWith(TRXN MONTH, "1") ~ "Jan",
    endsWith(TRXN_MONTH, "2") ~ "Feb",
    endsWith(TRXN MONTH, "3") ~ "Mar",
    endsWith(TRXN MONTH, "4") ~ "Apr",
    endsWith(TRXN MONTH, "5") ~ "May",
    endsWith(TRXN MONTH, "6") ~ "Jun",
    endsWith(TRXN MONTH, "7") ~ "Jul",
    endsWith(TRXN MONTH, "8") ~ "Aug",
    endsWith(TRXN MONTH, "9") ~ "Sep",
    endsWith(TRXN MONTH, "10") ~ "Oct",
    endsWith(TRXN MONTH, "11") ~ "Nov",
    endsWith(TRXN MONTH, "12") ~ "Dec"
    ))
input data eda$TRXN MONTH = as.integer(input data eda$TRXN MONTH)
input data eda <- input data eda[order(input data eda$TRXN MONTH),]</pre>
input data eda$MONTH TEXT <- factor(input data eda$MONTH TEXT, levels=unique(input data eda$MONTH TEXT))
input data eda$TRANSACTION AMOUNT=input data eda$TRANSACTION AMOUNT/1000
options(repr.plot.width = 15, repr.plot.height = 10)
ggplot(input data eda, aes(x = MONTH TEXT, y = TRANSACTION AMOUNT)) +
geom_bar(stat = "summary", fun = "mean", fill='#5DADE2', color="#000000") +
ggtitle("Monthly Average Transaction Amount") +
xlab("Month") +
vlab("Transaction Amount (Thousands)") +
theme(axis.text=element text(size=10),
      axis.title = element text(size=10),
      plot.title = element text(hjust = 0.5, size=15, face="bold"),
      legend.key.size = unit(1,"line"))
```

Monthly Average Transaction Amount

Process Runtime

```
end_time <- Sys.time()
end_time - start_time</pre>
```

Time difference of 42.80462 secs