Álgebra Linear e Geometria Analítica

Conjunto dos Números Complexos (Revisão)

LEI e LSIRC

2023/2024

Introdução

- Leonhard Euler (1707-1783) introduziu o conceito de quantidade imaginária para representar $\sqrt{-1}$.
- $i = \sqrt{-1}$ é a unidade imaginária.
- € é conjunto dos números complexos.
- $\mathbb{C} = \mathbb{R} \cup \{\text{imaginário}\}.$
- $\{imaginário\} = \mathbb{C} \setminus \mathbb{R}$.

Forma algébrica

Definição

Seja $z \in \mathbb{C}$ um número complexo. A sua forma algébrica (cartesiana ou retangular) é definida por:

$$z = a + bi$$

onde $a, b \in \mathbb{R}$ e *i* designa a unidade imaginária.

Definição

Diz-se que z é um número imaginário puro se a=0 e $b\neq 0$. Por outro lado, se b=0 então z é um número real.

Igualdade

Definição

Dois números complexos são iguais, se e só se, têm partes reais e imaginárias iguais, isto é:

$$a + bi = c + di \Leftrightarrow a = c \land b = d$$
.

Conjugado

Definição

Chama-se conjugado de um número complexo z = a + bi ao número complexo $\bar{z} = a - bi$, isto é, aquele que tem a mesma parte real e parte imaginária simétrica.

Propriedades

Seja $z \in \mathbb{C}$ um número complexo.

- \bullet $\bar{z} = z$ se e só se $z \in \mathbb{R}$, isto é, só os números reais são conjugados de si próprios.
- $\bar{z} = z$, isto é, todo o número complexo é conjugado do seu conjugado.

Adição de números complexos

Definição

Sejam $z_1 = a + bi$ e $z_2 = c + di$ dois números complexos com a, b, c e $d \in \mathbb{R}$. A adição de dois números (ou mais) complexos é ainda um número complexo em que a parte real é a adição das partes reais, e a parte imaginária é a adição das partes imaginárias, ou seja:

$$z_1 + z_2 = (a+c) + (b+d)i$$
.

Subtração de números complexos

Definição

Sejam $z_1 = a + bi$ e $z_2 = c + di$ dois números complexos com a, b, c e $d \in \mathbb{R}$. A subtração de z_1 por z_2 não é mais que a soma de z_1 com o simétrico de z_2 , ou seja:

$$z_1-z_2=z_1+(-z_2)=(a-c)+(b-d)i.$$

Multiplicação de números complexos

Definição

Sejam $z_1 = a + bi$ e $z_2 = c + di$ dois números complexos com a, b, c e $d \in \mathbb{R}$. A multiplicação de dois números complexos procede-se como se estivéssemos a multiplicar dois números reais, aplicando a propriedade distributiva da multiplicação em relação à adição algébrica e tendo em conta que $i^2 = -1$, isto é:

$$z_1 \times z_2 = (ac - bd) + (ad + bc)i$$
.

Divisão de números complexos

Definição

Sejam $z_1=a+bi$ e $z_2=c+di$ dois números complexos com a,b,c e $d\in\mathbb{R}.$ Tem-se que:

$$\frac{z_1}{z_2} = \frac{z_1 \times \bar{z}_2}{z_2 \times \bar{z}_2} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$

Inverso de um número complexo

Definição

Seja $z = a + bi \in \mathbb{C}$. O inverso de z que se representa por z^{-1} , é determinado da sequinte forma:

$$z^{-1} = \frac{1}{z} = \frac{a - bi}{(a + bi)(a - bi)} = \frac{a - bi}{a^2 + b^2}.$$

Potência de base i e expoente $n \in \mathbb{Z}$

Definição

Sabendo que $i^4 = 1$ tem-se que:

$$i^n = i^{4q+r} = (i^4)^q \times i^r = i^r$$
,

 $n \in \mathbb{Z}$, $q \in r$ é o quociente e o resto da divisão de n por 4.

Exemplos

$$i^{16} = (i^4)^4 \times i^0 = i^0 = 1.$$

 $i^{17} = (i^4)^4 \times i^1 = i.$
 $i^{18} = (i^4)^4 \times i^2 = -1.$

Scilab

adição	+
subtração	-
multiplicação	*
divisão	/
potenciação	^
unidade imaginária	% i

Tabela: Operadores aritméticos

a + bi	complex(a,b)
conjugado	conj(x)
parte real	real(x)
parte imaginária	imag(x)
módulo	abs(x)

Tabela: Funções matemáticas