

Roydon Au | Michelle Chung | Paul Low | Luo Yiying | Timothy Chang

Content Outline

01 Case Justification

05 Approach 1

02 Problem Statement

06 Approach 2

03 Business Opportunity

07 Live Demonstration

04 Target Outcomes

108 Improvements & Conclusion

What is LOS?

Case Justification

Key Implications of Inaccurate LOS

Clinical

Impaired clinical capabilities
Resources inefficiency

2 Financial

Stagnancy of patient throughput Slower revenue & wasted opportunities 3 Operational

Inefficient patient intake
Delayed Procedures
Lesser available wards

Experiential

Compromise patient experiences Increase in the risk of infections 5 Health

Insufficient LOS
Unnecessarily long LOS

Introduction

Case Justification

- One of the worst healthcare systems in the world
- Lowest government funding in the world for health
- Far behind in technology

Raw Information

- Raw and disorganized Information
- No in-built system to guide doctors

- Inadequate Human Resource
- Poor Resource Allocation
- Poor Healthcare Infrastructure

Root Cause

- Wide range of data that doctors are unable to process
- Uninformed and Inaccurate Prescription of LOS

3

Problem Statement

Root Cause

- Wide range of information for doctors to process
- Doctors neglect the efficient management of hospital resources when assessing a patient's needs

Introduction

Better Resource Allocation

Enhanced Inpatient Experience

Reduce wastage of resources

Better manpower allocation

Better Quality of Service

Greater Patient Flow & Reduce Waiting Time

Minimised Risk of Spread

How Might We?

Target 1

Develop a system to assist doctors in prescribing LOS consistently & accurately?

Target 2

Determine the most significant actionable areas for Hospital Management to directly reduce unnecessary LOS?

Prescribe LOS consistently & accurately

Who is the target audience?

Doctors who prescribe inpatient stay to patients

What is the solution?

- Accurate Machine Learning-Generated Predictions of LOS to guide doctors' decisions
- Interactive Hospital Management Dashboard for comprehensive overview of data

What is the impact?

- 1 Minimize under / over-prescription of LOS
- 2 Efficient macro-managing of inpatient stay

Approach 1: Consistent & Accurate LOS Prediction

Predictive Modelling Approach

Approach 1: Consistent & Accurate LOS Prediction

Comparison of Predictive Models

Live Demonstration

Model	Normalised RMSE	
MARS Degree 1 (Original Dataset)	7.484%	
MARS Degree 2 (Original Dataset)	6.877%	
MARS Degree 1 (Log Dataset)	12.918%	
MARS Degree 2 (Log Dataset)	11.657%	

Model	Normalised RMSE
CART Optimal Max Depth 7 (Original Dataset)	6.776%
CART Optimal Max Depth 9 (Log Dataset)	12.243%

Model	Normalised RMSE
Random Forest Optimized Model (Original Dataset)	6.757%
Random Forest Optimized Model (Log Dataset)	11.377%

Model	Normalised RMSE
MARS, Degree 2 with Original Dataset	6.877%
CART, Max Depth of 7 with Original Dataset	6.776%
Random Forest with Original Dataset	6.757%

Evaluation of Model

Prediction Accuracy

Explainability

Ease of Implementation

Model	Normalised RMSE
MARS, Degree 2 with Original Dataset	6.877%
CART, Max Depth of 7 with Original Dataset	6.776%
Random Forest with Original Dataset	6.757%

• All models perform better than accuracy benchmark of 9.524%

2 Overprediction / Underprediction

Model	Overprediction (%)	Underprediction %
MARS, Degree 2 with Original Dataset	55.536%	44.464%
CART, Max Depth of 7 with Original Dataset	59.112%	40.887%
Random Forest with Original Dataset	64.375%	35.615%

Underprediction holds a greater implication than overprediction

•	Ease	of	underst	anding	of	the	mode	1
---	------	----	---------	--------	----	-----	------	---

Model	Prediction Time
MARS, Degree 2	0.03992 s
CART, Max Depth of 7	0.04991 s
Random Forest	35.686 s

Have a minimal impact in a clinical situation

Approach 1: Consistent & Accurate LOS Prediction

Interactive Dashboards for Doctors

Dashboard

Use Cases

Support doctor's decision making beyond numerical predictions by CART

Non-Technical Overview of Patient Status

- Length of Inpatient Stay
- Surgical Procedures
- Severity of Illness

Improvements

Discharge or Transfer Plans

Reference when making Ward Rounds

Live Demonstration

Who is the target audience?

Hospital management

What is the solution?

- To prepare an accurate CART model with significant actionable variables
- Use of Dashboard to enhance explainability Identify potential bottle necks

What is the impact?

- Helps identify specific target areas to rectify
- Ensures efficient resource allocation & faster decision making

Paul Low

Variable Importance

Directs hospitals to channel resources towards significant actionable areas to reduce unnecessary LOS

Medical + Administrative Variables

	Feature_Importance
Administrative_Delay	0.668621
Severity_of_Illness	0.119980
APR_Medical_Surgical_Description_Surgical	0.104354
APR_Risk_of_Mortality	0.041229
APR_Medical_Surgical_Description_Medical	0.016504
Patient_Disposition_Home or Self Care	0.010561
Patient_Disposition_Skilled Nursing Home	0.008066
Payment_Typology_1_Medicare	0.007202
Patient_Disposition_Home w/ Home Health Services	0.006695
Payment_Typology_1_Medicaid	0.006291

Most significant variable in predicting the LOS

Top 3 problems: Paper-based, Analogue data & Information collection methods

Serve as a pivotal cause of Administrative Delay

Variable Importance

Actionable Variables

RMSE	
Model with all predictors	6.776%
Model with the subset of predictors	7.408%

Feat	ure_Importance	1
Administrative_Delay	0.974970	Administrative Delay
Admission_Deposit	0.012506	Admission_Deposit
Age	0.007073	Age Visitors with Patient
Visitors_with_Patient	0.003200	Extra_Rooms_in_Hospital
Ward_Type_Q	0.001252	Ward_Type_R Ward_Type_Q
Ward_Type_S	0.000511	
Ward_Type_T	0.000282	Ward_Type_P Ward_Type_T
Ward_Type_R	0.000131	Ward_Type_U
Available_Extra_Rooms_in_Hospital	0.000076	
Ward_Type_P	0.000000	Random Forest Feature Importance
Ward_Type_U	0.000000	

Feature Importance across CART and Random Forest are consistent

- **Administrative Delay** is still the most significant variable
- Other variables also play a role in influencing LOS

Interactive Dashboard for Hospital Management

Live Demonstration

Dashboard

Use Cases

Non-Technical Overview of Facilities

- Mode of Payment
- Availability of Extra Rooms
- Department

Relevant Information for potential bottlenecks and target areas (Administrative delay)

Objective:

User-Friendly Interface for Consolidated **Facilities Information**

Possible recommendation from Dashboard Findings

Spread of Patients within Wards

Observation

Patients are not split according to the severity

Disorganized management process

Better segmentation of their patients to prevent prolonged length of stay

Inefficiencies in Transfer Processes

Observation

High delays in discharging of patients

Increase unnecessary stay in hospital

Implementation of a shared discharge plan to enhance communication among caregivers

Limitations	Elaboration
Limited data on higher LOS	 Data imbalance Collect more data with patients of higher stay Creating separate models for different severity types
Limited Qualitative Predictors	 Some predictors were left out in our machine learning approach A time series forecast for patient inflow would value add to a hospital management's decision making
Limited Information	 Limited information for some factors Unable to analyze factors in greater detail
Manpower	 Our solution facilitates the planning and allocation of resources by hospital management Limited by the amount of resources hospitals can work with

Improvements

Conclusion

In all..

Problem Statement

Analytics Solution

Recommendations

Inaccurate Prescription of LOS is detrimental to patients and hospitals

- 1 ML Model (CART) for consistent and accurate LOS prediction
- Interactive Dashboard for monitoring of significant actionable areas

- Improve segmentation of patients to prevent prolonged length of stay
- 2 Shared Discharge Plan

Thank you

The lower the number of available rooms per ward, the higher the average administrative delay.

The plot of average of Length of Stay for Available Extra Rooms in Hospital.

The greater the number of available rooms per ward, the lower the average length of stay

Section 9.2.1 in written report (Help doctors understand vacancy to prevent overcrowding in wards)

Before After

Section 9.2.1 in written report (Help doctors understand severity spread of patients in different wards)

Section 9.2.2 and 9.2.3 in written report
(Help hospital management identify high LOS/Delay, eg ward U highest LOS/Delay
Further prevents bottlenecks)

Section 9.2.2 in written report

(Help hospital management target patient related processes with high LOS/Delay, EG: Discharge to skilled nursing home has highest LOS/Admin Delay)

Section 10.1 in written report (Similar severity spread within different ward types which could prolong LOS)

