PDB The protein data bank

Thomas Hamelryck

thamelry@binf.ku.dk

BIO/DIKU, University of Copenhagen

November 2019

What is the PDB?

- www.rcsb.org
- Large repository of protein structures since 1971
 - 4 letter identifiers, eg. 1PTC or 1FAT
- 157.935 structures (Nov. 2019) and growing quickly
 - Highly redundant
 - 45.612 distinct protein sequences at 50% identity
- Mainly X-ray crystallography and NMR (12%)
- Advanced querying
- Freely available
- World-wide collaboration
 - Most scientific journals demand PDB submission

Exercise: Lysozyme

- Lysozyme work in groups of 2
 - a. Find all structures of Lysozyme. How many structures?
 - b. What is the highest resolution structure?
 - c. You obtained a lot of structures. Let's use "Advanced search".
 - d. Narrow down using "Macromolecular name"
 - e. Narrow down knowing that lysozyme is approximately 130 amino acids in length (say, between 110-140).
 - f. Narrow down using X-ray resolution (say, maximum 2Å).
 - g. Remove structures with 95% similarity.
 - h. How many structures are left? What do you conclude given the numbers?

PDB files

- Each structure is the outcome of an experiment and is given a unique 4 letter ID code (the PDB identifier).
 - Download the PDB file for 2PTC

PDB header

- Title, references, authors, experimental method and details, ligands, missing atoms
- Resolution, R-factor
- Secondary structure
 - Helices, sheets, disulfide bridges

HELIX	1	H1	SE	ER E		164	ILE	E	176	1SNGL	ALPHA	TURN,	REST	IRREG.		13
HELIX	2	H2	LY	/S E	2	230	VAL	Ε	235	5CONT:	IGUOUS	WITH	H3			6
HELIX	3	H3	SE	ER E	2	236	ASN	Ε	245	1CONT:	IGUOUS	WITH	H2			10
HELIX	4	H4	SE	ER I		47	GLY	I	56	1						10
SHEET	1	S1	2	ALA	I	16	ALA	I	25	0						
SHEET	2	S1	2	GLY	I	28	GLY	Ι	36	-1						
SSBOND	1	CYS	Ε	22	2	CY	YS E	1	57					1555	1555	2.03
SSBOND	2	CYS	E	42	2	C	YS E	ļ	58					1555	1555	2.03

PDB header

- Symmetry transformations
 - o REMARK 300, 350
 - Rotations and translations
- Asymmetric unit
 - Describes the smallest structure to which symmetry operations can be applied to generate the crystal repeating unit.
- Biological assembly
 - The quaternary structure.
 - The assembly that is believed to be the functional form of the molecule.

Exercise 2: Biological assembly

- For proteins 2HHB, 1HHO and 1HV4, determine how the asymmetric unit and biological assembly relate to each other.
 - Use the visualization box on the left.
 - Try the 3D view.

Coordinate data

Protein atoms

	Atom		Res C Res			Coordin	ates		Occupancy		
	number	Name	type	9	number	X	У	Z		B-factor	Element
ATOM	1	N	ILE	E	16	18.871	65.715	12.731	1.00	21.86	N
ATOM	2	CA	ILE	E	16	19.782	64.969	13.587	1.00	21.86	С
ATOM	3	C	ILE	E	16	21.173	64.987	12.945	1.00	21.86	С
ATOM	4	0	ILE	E	16	21.316	64.450	11.815	1.00	21.86	0
ATOM	5	CB	ILE	E	16	19.336	63.476	13.649	1.00	21.86	С
ATOM	6	CG1	ILE	E	16	17.903	63.230	14.154	1.00	18.04	С
ATOM	7	CG2	ILE	E	16	20.336	62.527	14.373	1.00	18.04	С
ATOM	8	CD1	ILE	E	16	17.785	63.415	15.666	1.00	18.04	С
ATOM	9	N	VAL	E	17	22.160	65.538	13.640	1.00	21.82	N
ATOM	10	CA	VAL	E	17	23.595	65.525	13.234	1.00	21.82	С

Coordinate data

- HETATMS (ligands, covalently bonded groups)
- Waters

HETATM 2086 CA	CA E 462	6.326	59.439	2.555	0.50 14.17	CA
HETATM 2087 0 HETATM 2088 0	HOH E 402	21.349	65.697	21.825	1.00 15.66 1.00 17.85	0
HETATM 2089 0	HOH E 403	19.871	75.111	18.175	1.00 17.40	0

Exercise - coordinate data

- Chain identifiers for multiple chains
 - O How many chains in 2PTC?
 - O What are they?
- Occupancy is less than 1.0 when multiple conformations are present
 - What is the occupancy of the calcium ion and why?
- Residue numbers of chain E start at 16
 - Why are the first 15 missing?
- How many HETATMS are there and what do they belong to?

PDB Footer

- Connectivity data
 - Within non-standard (HET) residues.
 - From non-standard (HET) residues to standard residues.
 - Disulphide bridges.
- What do the last 2 connect lines below describe?

```
CONECT 2038 1872

CONECT 2070 1673

CONECT 2086 385 397 421 461

CONECT 2086 2131 2169
```

Structure quality

- Resolution
- Refinement (R-factor)
- B-factors (temperature factors)
- Model geometry

Structure quality - resolution

Resolution

- Measures the amount of information collected in a crystallography experiment.
- The higher the resolution (lower Å), the higher the accuracy of the atomic positions.

Structure quality - refinement

- Refinement (R-factor)
 - Measures how well the structure fits the experimental X-ray data.
 - The lower the R-factor, the better the fit.
 - Free R-factor: uses cross validation
 - Well-refined protein structures have R-factors < 20%.

 $\mathbf{R} = \frac{\sum ||\mathbf{F}_{obs}| - |\mathbf{F}_{calc}||}{\sum |\mathbf{F}_{obs}|}$

0.6: Very bad

0.5: Bad

0.4: Recoverable

R values: 0.2: Good for Protein

0.05: Good for small organic models

0.0: Perfect

Structure quality - B factors

- B-factors or temperature factors
 - High B-factors (> 80) might indicate highly disordered parts of the structure or even error in the model.

Structure quality - Model geometry

- Model geometry
 - Bond distances
 - Bond angles
 - Dihedral angles
 - Ramachandran plot.

Exercise: structure quality

- Find 2DN1 and 5VMM
 - O What are these structures?
- Assess the quality of each structure
 - Resolution
 - R-factor
 - B-factors
 - Ramachandran plot
- Are both high quality structures?

PDB & Biopython

- Download PDB file 1FAT with Biopython's Bio.pdb.
- Code:

```
from Bio.PDB import *

pdbl = PDBList()

pdbl.retrieve_pdb_file('1FAT')
```

Assignment

- Pick (any) 3 consecutive letters from your first or last name and look up the corresponding PDB file.
 - o For example, I could pick 1THO, 1HOM, 1MAS or 1RYC etc.
- Briefly describe the structure (biology, ligands, experimental method etc.)
- Discuss structure quality.
- Discuss content of biological and asymmetric unit. Are they the same?
- Make two pictures of the content of the PDB file, with suitable captions.
- Submit as a PDF file.