Indian Institute of Technology Bombay

MA 106 LINEAR ALGEBRA

Spring 2021 SRG/DP

Common Quiz 1

Date: March 24, 2021 Max. Marks: 10

Time: 8.30 AM - 9.15 AM

1. Consider the 4×5 matrix

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 & a \\ 1 & 1 & 5 & 2 & b \\ 1 & 2 & 8 & 4 & 12 \\ 3 & 4 & 18 & 8 & 27 \end{bmatrix},$$

where a and b denote the last two digits of your roll number (e.g., if your roll number is 200010059, then a = 5 and b = 9). Determine:

(i) The row canonical form of A.

(ii) The nullity of A.

[3 marks]

2. Let r_1, \ldots, r_6 denote the last six digits of your roll number (so that r_6 is the last digit, r_5 the second last digit, and so on). Consider the matrices

$$\mathbf{a} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{bmatrix}, \quad \mathbf{b} = [r_6 \ r_5 \ r_4 \ r_3 \ r_2 \ r_1] \quad \text{and} \quad \mathbf{A} = \mathbf{ab}.$$

of sizes 6×1 , 1×6 , and 6×6 , respectively. Compute the rank of **A** and write down a basis for the column space of **A**. [3 marks]

3. Let V denote the subspace of $\mathbb{R}^{1\times 4}$ spanned by $\mathbf{a}_1, \mathbf{a}_2$ and \mathbf{a}_3 , where

$$\mathbf{a}_1 = \begin{bmatrix} -1 & 0 & 1 & 2 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 3 & 4 & -2 & 5 \end{bmatrix}, \quad \text{and} \quad \mathbf{a}_3 = \begin{bmatrix} 1 & 4 & 0 & 9 \end{bmatrix}.$$

Find the dimension of V. Further let \mathbf{A} be the 3×4 matrix whose row vectors given by $\mathbf{a}_1, \mathbf{a}_2$ and \mathbf{a}_3 , and let \mathbf{c} be the 3×1 column vector

$$\mathbf{c} = \left[\begin{array}{c} 0 \\ a \\ b \end{array} \right],$$

where a and b denote the last two digits of your roll number (e.g., if your roll number is 200010059, then a = 5 and b = 9). Then determine if the linear system $\mathbf{A}\mathbf{x} = \mathbf{c}$ has (i) no solution, (ii) unique solution, or (iii) infinitely many solutions. [4 marks]