Układy Sterowania Optymalnego

Politechnika Poznańska Instytut Automatyki i Robotyki

ĆWICZENIE 5

Dobór optymalnych nastaw regulatora PID

Celem ćwiczenia jest zaznajomienie z problemem doboru nastaw regulatora PID pozwalających na optymalizację wybranego kryterium jakości sterowania. W ramach zajęć student utrwali wiedzę na temat znanych technik doboru parametrów regulatora PID oraz samodzielnie przeprowadzi proces strojenia sterownika.

W ramach przygotowania do ćwiczenia należy:

- \rightarrow Przypomnieć wiadomości z zakresu:
 - analizy układów liniowych,
 - struktury i strojenia regulatora PID.

1 Wprowadzenie

Regulator PID jest jednym z podstawowych rozwiązań stosowanych w dziedzinie automatyki. Zyskał on szczególne uznanie wśród praktyków ze względu na intuicyjną konstrukcję, łatwość implementacji i prostotę działania. Na podstawie pomiaru sygnału wyjściowego z układu pozwala on wyznaczyć sygnał sterujący zapewniający zbieżność błędu sterowania, przy czym ewolucja błędu sterowania wynika z kompromisu między szybkością zbieżności, a oscylacyjnością przebiegu.

Niech dany będzie dynamiczny układ liniowy w postaci

$$\dot{x} = Ax + Bu,
y = Cx,$$
(1)

gdzie x jest wektorem stanu, u wektorem sygnałów sterujących, natomiast A oraz B stanowią odpowiedni macierz stanu oraz macierzy wejścia. Wartość y jest skalarnym wyjściem układu. Sterownik PID mający zapewnić zbieżność sygnału wyjściowego y do pewnej wartości pożądanej y_d przyjmuje dla takiego układu postać

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{d}{dt} e(t), \qquad (2)$$

gdzie $e = y_d - y$, natomiast k_p, k_i, k_d stanowią dodatnie wzmocnienia regulatora. Alternatywnie równanie (2) może zostać wyrażone w postaci

$$u(t) = k_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{d}{dt} e(t) \right), \tag{3}$$

gdzie $T_i = \frac{k_p}{k_i}$ jest stałą całkowania, natomiast $T_d = \frac{k_d}{k_p}$ jest stałą różniczkowania. Układ regulacji ze sterownikiem PID został w sposób schematyczny przedstawiony na Rys. 1. Dobór parame-

Rysunek 1: Schemat blokowy układu z regulatorem PID.

trów k_p, k_d oraz k_i regulatora przeprowadzany jest często w sposób empiryczny. Metodą prób i błędów dobiera się zestaw nastaw umożliwiający uzyskanie satysfakcjonującej jakości regulacji w konkretnym rozważanym przypadku. Z tego powodu regulator PID często nie zapewnia zadowalającej odporności na zewnętrzne zaburzenia lub zmiany warunków pracy.

2 Zastosowanie

W celu zilustrowania działania regulatora PID rozważyć można prosty układ elektryczny przedstawiony na Rys. 2. Przyjęto następujące wartości parametrów $R_1 = 2\Omega, R_2 = 5\Omega, C_1 = 0.5F$,

Rysunek 2: Układ elektryczny

 $L_1=2\mathrm{H}, L_2=0.5\mathrm{H}.$ Przyjmując wektor zmiennych stanu w postaci $x=\begin{bmatrix}i_2&i_1&v_1\end{bmatrix}^T$ uzyskuje się reprezentację w przestrzeni zmiennych stanu

$$\dot{x} = \begin{bmatrix} -\frac{R_2}{L_2} & 0 & -\frac{1}{L_2} \\ 0 & -\frac{R_1}{L_1} & \frac{1}{L_1} \\ \frac{1}{C_1} & -\frac{1}{C_1} & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{1}{L_1} \\ 0 \end{bmatrix} u. \tag{4}$$

Przyjęcie prądu i_2 jako sygnału wyjściowego pozwala zapisać

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x. \tag{5}$$

- **2.1** Przygotować funkcję model(x,t) implementującą model dynamiki układu otwartego zgodnie z równaniem (4). Funkcja powinna przyjmować na wejściu stan układu x oraz aktualną chwilę czasu t.
- **2.2** Przeprowadzić symulację odpowiedzi obiektu na wymuszenie skokowe w czasie $t \in (0, 5)$ s wykorzystując funkcję odeint. Wykreślić przebieg sygnału wyjściowego.
- Zmodyfikować funkcję model(x,t) tak, by sygnał wejściowy wyznaczany był zgodnie z algorytmem regulatora PID danym równaniem (2). W celu implementacji regulatora konieczne jest rozszerzenie stanu x w funkcji model(x,t) o dodatkową zmienną reprezentującą całkę błędu regulacji. Pochodną błędu regulacji w danej chwili czasu wyznaczyć można wprost z ostatniego wiersza równania (4).

2.4 Przyjąć wartość zadaną $y_d = 3$ i przeprowadzić symulację układu zamkniętego dla różnych wartości nastaw regulatora zaczynając od $k_p = 1, k_d = 0, k_i = 0$. Zbadać wpływ poszczególnych nastaw na przebieg odpowiedzi układu.

3 Strojenie metodą Zieglera-Nicholsa

W celu uproszczenia procesu strojenia regulatora PID w literaturze zaproponowano liczne metody doboru nastaw k_p, k_d oraz k_i . Jedną z pierwszych i najbardziej rozpoznawalnych metod strojenia regulatora jest metoda Zieglera-Nicholsa. Dobór nastaw według tej metody oparty jest na odnalezieniu krytycznej wartości wzmocnienia k_p dla której układ znajduje się na granicy stabilności (tj. wykazuje niegasnące oscylacje o stałej amplitudzie). Rzeczywiste wartości nastaw dobiera się następnie na podstawie odnalezionej wartości krytycznej. Procedura strojenia zgodnie z metodą Zieglera-Nicholsa jest następująca.

- 1. Przyjąć zerowe wartości wszystkich nastaw regulatora.
- 2. Stopniowo zwiększać wzmocnienie k_p aż do osiągnięcia przez układ granicy stabilności.
- 3. Wartość wzmocnienia dla której układ znajduje się na granicy stabilności oznaczyć jako k_u , okres oscylacji oznaczyć jako T_u .
- 4. Przyjąć nastawy wybranego typu regulatora zgodnie z Tabela 1.

Regulator	k_p	k_i	k_d
P	$0.5k_u$	-	-
PΙ	$0.45k_u$	$0.54k_uT_u^{-1}$	-
PD	$0.8k_u$	-	$0.1k_uT_u$
PID	$0.6k_u$	$1.2k_uT_u^{-1}$	$0.075k_uT_u$

Tabela 1: Dobór nastaw regulatora PID według metody Zieglera-Nicholsa.

3.1 Przeprowadzić proces strojenia regulatora PID zgodnie z regułą Zieglera-Nicholsa. Zapisać uzyskane wartości nastaw regulatora.

4 Optymalizacja kryterium regulacji

Empiryczny dobór nastaw regulatora lub jego strojenie w oparciu o metodę Zieglera-Nicholsa pozwala uzyskać satysfakcjonującą jakość regulacji, jednak w wielu zastosowaniach pożądane jest ilościowe określenie skuteczności regulacji. W tym celu stosuje się tzw. całkowe kryteria regulacji pozwalające określić miarę błędu regulacji. Do najczęściej stosowanych kryteriów regulacji zalicza się następujące wskaźniki.

• Integral Squared Error - kryterium kładące większą wagę na błędy o większej wartości

$$I_{ISE} = \int_0^t e^2(t) dt \tag{6}$$

• Integral of Time multiplied by Squared Error - kryterium kładące większą wagę na błędy o wiekszej wartości występujące w końcowej fazie regulacji

$$I_{ITSE} = \int_0^t te^2(t) dt \tag{7}$$

• Integral Absolute Error - kryterium kładące równą wagę na błędy każdej wartości

$$I_{IAE} = \int_0^t |e(t)| \ dt \tag{8}$$

• Integral of Time multiplied by Absolute Error - kryterium kładące większą wagę na błędy występujące w końcowej fazie regulacji

$$I_{ITAE} = \int_0^t t |e(t)| dt \tag{9}$$

Ponadto, w rozważaniach nad optymalizacją jakości regulacji często stosuje się kryterium w postaci

$$I_{OPT} = \int_0^t e^2(t) + u^2(t) dt, \tag{10}$$

którego minimalizacja zapewnia utrzymanie kompromisu między kompensacją błędu regulacji, a zapobieganiem nadmiernemu wzrostowi wartości sygnałów sterujących.

- 4.1 Zmodyfikować kod symulacji tak, by wyznaczyć wartości wszystkich całkowych kryteriów regulacji. Wyznaczanie całki można przeprowadzić online poprzez dalsze rozszerzanie stanu x lub poprzez zsumowanie próbek symulacji po zakończeniu eksperymentu.
- **4.2** Wyznaczyć wartości kryteriów całkowych dla nastaw uzyskanych metodą Zieglera-Nicholsa.
- 4.3 Empirycznie dobrać nastawy regulatora które można uznać za optymalne w kontekście minimalizacji kryterium I_{ISE} oraz I_{OPT} . Zwrócić uwagę na wpływ minimalizacji sygnału sterującego w drugim przypadku.

Rozwiązania

Wyznaczenie dynamiki układu z Rys. 2. Pamiętając, że $u_L=L\frac{d}{dt}i_L$ oraz $i_C=C\frac{d}{dt}v_C$ zapisać można

$$v_{1} = -i_{2}R_{2} - L\frac{d}{dt}i_{2}$$

$$v_{1} = -u_{1} + i_{1}R_{1} + L_{1}\frac{d}{dt}i_{1}$$

$$C_{1}\frac{d}{dt}v_{1} = i_{2} - i_{1}.$$
(11)

Dla takiego systemu wzmocnienie krytyczne $k_u\approx75.5, T_u\approx\frac53$, co wg. metody Zieglera-Nicholsa prowadzi do nastaw $k_p\approx45.3, k_i\approx54.36, k_d\approx9.4375$.