ECE/MATH 520, Spring 2008

Exam 1: Due Session 15

Solutions (version: March 25, 2008, 11:21) 75 mins.; Total 50 pts.

1. (10 pts.) Consider the problem

$$\begin{array}{ll} \text{maximize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in \Omega, \end{array}$$

where $\Omega \subset \{ \boldsymbol{x} \in \mathbb{R}^2 : x_1 > 0, x_2 > 0 \}$ and $f : \Omega \to \mathbb{R}$ is given by $f(\boldsymbol{x}) = \log(x_1) + \log(x_2)$ with $\boldsymbol{x} = [x_1, x_2]^\top$, where "log" represents natural logarithm. Suppose that \boldsymbol{x}^* is an optimal solution. Answer each of the following questions, showing complete justification.

- **a.** Is it possible that x^* is an interior point of Ω ?
- **b.** At what point(s) (if any) is the second-order necessary condition satisfied?

Ans.: a. We have $\nabla f(\boldsymbol{x}^*) = [1/x_1^*, 1/x_2^*]^T$. If \boldsymbol{x}^* were an interior point, then $\nabla f(\boldsymbol{x}^*) = \mathbf{0}$. But this is clearly impossible. Therefore, \boldsymbol{x}^* cannot possibly be an interior point.

b. We have $F(x) = -\text{diag}[1/x_1^2, 1/x_2^2]$, which is negative definite everywhere. Therefore, the second-order necessary condition is satisfied everywhere. (Note that because we have a maximization problem, *negative* definiteness is the relevant condition.)

2. (10 pts.) Derive a one-dimensional search (minimization) algorithm based on quadratic fit with only objective function values. Specifically, derive an algorithm that computes $x^{(k+1)}$ based on $x^{(k)}$, $x^{(k-1)}$, $x^{(k-2)}$, $f(x^{(k)})$, $f(x^{(k-1)})$, and $f(x^{(k-2)})$. Hint: To simplify, use the notation $\sigma_{ij} = (x^{(k-i)})^2 - (x^{(k-j)})^2$ and $\delta_{ij} = x^{(k-i)} - x^{(k-j)}$. You

Hint: To simplify, use the notation $\sigma_{ij} = (x^{(k-i)})^2 - (x^{(k-j)})^2$ and $\delta_{ij} = x^{(k-i)} - x^{(k-j)}$. You might also find it useful to experiment with your algorithm by writing a MATLAB program (this is optional). Note that three points are needed to initialize the algorithm.

Ans.: The quadratic function that matches the given data $x^{(k)}$, $x^{(k-1)}$, $x^{(k-2)}$, $f(x^{(k)})$, $f(x^{(k-1)})$, and $f(x^{(k-2)})$ can be computed by solving the following three linear equations for the parameters a, b, and c:

$$a(x^{(k-i)})^2 + bx^{(k-i)} + c = f(x^{(k-i)}), \quad i = 0, 1, 2.$$

Then, the algorithm is given by $x^{(k+1)} = -b/2a$ (so, in fact, we only need to find the *ratio* of a and b). With some elementary algebra (e.g., using Cramer's rule without needing to calculate the determinant in the denominator), the algorithm can be written as:

$$x^{(k+1)} = \frac{\sigma_{12}f(x^{(k)}) + \sigma_{20}f(x^{(k-1)}) + \sigma_{01}f(x^{(k-2)})}{2(\delta_{12}f(x^{(k)}) + \delta_{20}f(x^{(k-1)}) + \delta_{01}f(x^{(k-2)}))}$$

where $\sigma_{ij} = (x^{(k-i)})^2 - (x^{(k-j)})^2$ and $\delta_{ij} = x^{(k-i)} - x^{(k-j)}$.

3. (20 pts.) Consider the two sequences $\{x^{(k)}\}$ and $\{y^{(k)}\}$ defined iteratively as follows:

$$oldsymbol{x}^{(k+1)} = aoldsymbol{x}^{(k)} \ oldsymbol{y}^{(k+1)} = (oldsymbol{y}^{(k)})^b$$

where $a \in \mathbb{R}$, $b \in \mathbb{R}$, 0 < a < 1, b > 1, $\boldsymbol{x}^{(0)} \neq \boldsymbol{0}$, $\boldsymbol{y}^{(0)} \neq \boldsymbol{0}$, and $|\boldsymbol{y}^{(0)}| < 1$.

- a. Derive a formula for $x^{(k)}$ in terms of $x^{(0)}$ and a. Use this to deduce that $x^{(k)} \to 0$.
- b. Derive a formula for $y^{(k)}$ in terms of $y^{(0)}$ and b. Use this to deduce that $y^{(k)} \to 0$.
- c. Find the order of convergence of $\{x^{(k)}\}$ and the order of convergence of $\{y^{(k)}\}$.
- d. Calculate the smallest number of iterations k such that $|x^{(k)}| \le c|x^{(0)}|$, where 0 < c < 1. Hint: The answer is in terms of a and c. You may use the notation $\lceil z \rceil$ to represent the smallest integer not smaller than z.
- e. Calculate the smallest number of iterations k such that $|\mathbf{y}^{(k)}| \le c|\mathbf{y}^{(0)}|$, where 0 < c < 1.
- f. Compare the answer of part e with that of part d, focusing on the case where c is very small.

Ans.: a. We have

$$\mathbf{x}^{(k)} = a\mathbf{x}^{(k-1)}$$

$$= a \cdot a\mathbf{x}^{(k-2)}$$

$$= a^2\mathbf{x}^{(k-2)}$$

$$\vdots$$

$$= a^k\mathbf{x}^{(0)}$$

Because 0 < a < 1, we have $a^k \to 0$, and hence $\boldsymbol{x}^{(k)} \to 0$.

b. Similarly, we have

$$egin{array}{lcl} m{y}^{(k)} & = & (m{y}^{(k-1)})^b \ & = & ((m{y}^{(k-2)})^b)^b \ & = & (m{y}^{(k-2)})^{b^2} \ & dots \ & dots \ & = & (m{y}^{(0)})^{b^k}. \end{array}$$

Because $|\boldsymbol{y}^{(0)}| < 1$ and b > 1, we have $b^k \to \infty$ and hence $\boldsymbol{y}^{(k)} \to 0$.

c. The order of convergence of $\{\boldsymbol{x}^{(k)}\}$ is 1 because

$$\lim_{k \to \infty} \frac{|\boldsymbol{x}^{(k+1)}|}{|\boldsymbol{x}^{(k)}|} = \lim_{k \to \infty} a = a,$$

and $0 < a < \infty$.

The order of convergence of $\{\boldsymbol{y}^{(k)}\}$ is b because

$$\lim_{k \to \infty} \frac{|y^{(k+1)}|}{|y^{(k)}|^b} = \lim_{k \to \infty} 1 = 1,$$

and $0 < 1 < \infty$.

- d. Suppose $|\boldsymbol{x}^{(k)}| \leq c|\boldsymbol{x}^{(0)}|$. Using part a, we have $a^k \leq c$, which implies that $k \geq \log(1/c 1/a)$. So the smallest number of iterations k such that $|\boldsymbol{x}^{(k)}| \leq c|\boldsymbol{x}^{(0)}|$ is $\lceil \log(1/c 1/a) \rceil$ (the smallest integer not smaller than $\log(1/c 1/a)$).
- e. Suppose $|\boldsymbol{y}^{(k)}| \leq c|\boldsymbol{y}^{(0)}|$. Using part b, we have $|\boldsymbol{y}^{(0)}|^{b^k} \leq c|\boldsymbol{y}^{(0)}|$. Taking logs (twice) and rearranging, we have

$$k \ge \frac{1}{\log(b)} \log \left(1 + \log \left[\frac{1}{c} - \frac{1}{|\boldsymbol{y}^{(0)}|} \right] \right).$$

Denote the right-hand side by z. So the smallest number of iterations k such that $|\mathbf{y}^{(k)}| \leq c|\mathbf{y}^{(0)}|$ is $\lceil z \rceil$.

- f. Comparing the answer in part e with that of part d, we can see that as $c \to 0$, the answer in part d is $\Omega(\log(1/c))$, whereas the answer in part e is $O(\log\log(1/c))$. Hence, in the regime where c is very small, the number of iterations in part d (linear convergence) is (at least) exponentially larger than that in part e (superlinear convergence).
- **4.** (10 pts.) Consider the following simple modification of the quasi-Newton family of algorithms. In the quadratic case, instead of the usual quasi-Newton condition $\boldsymbol{H}_{k+1}\Delta\boldsymbol{g}^{(i)}=\Delta\boldsymbol{x}^{(i)},$ $0 \leq i \leq k, k \leq n-1$, suppose there are scalars ρ_1, ρ_2, \ldots such that $\boldsymbol{H}_{k+1}\Delta\boldsymbol{g}^{(i)}=\rho_i\Delta\boldsymbol{x}^{(i)},$ $0 \leq i \leq k, k \leq n-1$.

Is it true that an algorithm satisfying the modified condition above is a conjugate direction algorithm? Justify your answer fully.

Hint: Formulate a precise claim that you can prove.

Ans.: The answer is yes. To show this, we will prove the following precise statement: In the quadratic case (with Hessian Q), suppose that $H_{k+1}\Delta g^{(i)}=\rho_i\Delta x^{(i)}$, $0\leq i\leq k,\,k\leq n-1$. If $\alpha_i\neq 0,\,0\leq i\leq k$, then $d^{(0)},\ldots,d^{(k+1)}$ are Q-conjugate.

We proceed by induction. We begin with the k=0 case: that $d^{(0)}$ and $d^{(1)}$ are Q-conjugate. Because $\alpha_0 \neq 0$, we can write $d^{(0)} = \Delta x^{(0)}/\alpha_0$. Hence,

$$\begin{split} \boldsymbol{d}^{(1)\top} \boldsymbol{Q} \boldsymbol{d}^{(0)} &= -\boldsymbol{g}^{(1)\top} \boldsymbol{H}_1 \boldsymbol{Q} \boldsymbol{d}^{(0)} \\ &= -\boldsymbol{g}^{(1)\top} \boldsymbol{H}_1 \frac{\boldsymbol{Q} \Delta \boldsymbol{x}^{(0)}}{\alpha_0} \\ &= -\boldsymbol{g}^{(1)\top} \frac{\boldsymbol{H}_1 \Delta \boldsymbol{g}^{(0)}}{\alpha_0} \\ &= -\boldsymbol{g}^{(1)\top} \frac{\rho_0 \Delta \boldsymbol{x}^{(0)}}{\alpha_0} \\ &= -\rho_0 \boldsymbol{g}^{(1)\top} \boldsymbol{d}^{(0)}. \end{split}$$

But $\boldsymbol{g}^{(1)\top}\boldsymbol{d}^{(0)}=0$ as a consequence of $\alpha_0>0$ being the minimizer of $\phi(\alpha)=f(\boldsymbol{x}^{(0)}+\alpha\boldsymbol{d}^{(0)})$. Hence, $\boldsymbol{d}^{(1)\top}\boldsymbol{Q}\boldsymbol{d}^{(0)}=0$.

Assume that the result is true for k-1 (where k < n-1). We now prove the result for k, that is, that $\boldsymbol{d}^{(0)}, \dots, \boldsymbol{d}^{(k+1)}$ are \boldsymbol{Q} -conjugate. It suffices to show that $\boldsymbol{d}^{(k+1)\top}\boldsymbol{Q}\boldsymbol{d}^{(i)} = 0, \ 0 \le i \le k$. Given $i, \ 0 \le i \le k$, using the same algebraic steps as in the k=0 case, and using the assumption that $\alpha_i \ne 0$, we obtain

$$egin{aligned} oldsymbol{d}^{(k+1) op}oldsymbol{Q}oldsymbol{d}^{(i)} &= -oldsymbol{g}^{(k+1) op}oldsymbol{H}_{k+1}oldsymbol{Q}oldsymbol{d}^{(i)} \ &dots &= -
ho_ioldsymbol{g}^{(k+1) op}oldsymbol{d}^{(i)}. \end{aligned}$$

Because $\boldsymbol{d}^{(0)},\dots,\boldsymbol{d}^{(k)}$ are \boldsymbol{Q} -conjugate by assumption, we conclude from the expanding subspace lemma (Lemma 10.2) that $\boldsymbol{g}^{(k+1)\top}\boldsymbol{d}^{(i)}=0$. Hence, $\boldsymbol{d}^{(k+1)\top}\boldsymbol{Q}\boldsymbol{d}^{(i)}=0$, which completes the proof.