Universität Augsburg

Institut für Mathematik

Seminar, "ausarbeitung"

zu einem Vortrag im Seminar Spieltheorie und Approximationsalgorithmen im SS 2016 zum Thema

Capacitated Vehicle Routing with Non-Uniform Speeds

Zusammengestellt: Lukas Graf Betreut von:
M. Sc. Manuel Surek,
Prof. Dr. Tobias Harks

1 Problemübersicht

Metrisches TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion $d:E\to\mathbb{R}$
- Lsgen: Tour τ durch ganz V
- **Ziel:** Minimiere $d(\tau)$

Homogenes TSP:

- Vollständiger Graph G = (V, E)
- \bullet Metr. Abstands funktion $d:E\to\mathbb{R}$
- Startpunkt $s \in V$
- \bullet k Fahrzeuge
- **Ziel:** Minimiere $\max d(\tau_i)$

Heterogenes TSP:

- Vollständiger Graph G = (V, E)
- \bullet Metr. Abstands funktion $d:E\to\mathbb{R}$
- Startpunkt $s \in V$
- k Fahrzeuge mit Geschw. $(\lambda_i)_{i=1}^k$
- Lsgen: Touren (τ_i) , die bei s beginnen und gemeinsam ganz V abdecken
- **Ziel:** Minimiere max $\frac{d(\tau_i)}{\lambda_i}$

CVRP:

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion $d:E\to\mathbb{R}$
- Startpunkt/Depot $s \in V$
- \bullet Bedarfe $(q_v)_{v\in V}$ und KapazitätQ
- Lsgen: Tour (τ) , die bei s beginn alle Bedarfe erfüllen nie mehr als Q Elemente transportiert
- **Ziel:** Minimiere $\max d(\tau_i)$

Homogenes CVRP:

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion $d:E\to\mathbb{R}$
- Startpunkt/Depot $s \in V$
- Bedarfe $(q_v)_{v \in V}$
- k Fahrzeuge mit einheitlicher Kapazität Q
- Lsgen: Touren (τ_i) , die bei s beginnen, gemeinsam alle Bedarfe erfüllen, wobei kein Fahrzeug jemals mehr als Q Elemente transportiert
- **Ziel:** Minimiere $\max d(\tau_i)$

Heterogenes CVRP:

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion $d:E\to\mathbb{R}$
- Startpunkt/Depot $s \in V$
- Bedarfe $(q_v)_{v \in V}$
- k Fahrzeuge mit Geschw. $\{\lambda_i\}$ und einheitlicher Kapazität Q
- Lsgen: Touren (τ_i) , die bei s beginnen, gemeinsam alle Bedarfe erfüllen, wobei kein Fahrzeug jemals mehr als Q Elemente transportiert
- Ziel: Minimiere max $\frac{d(\tau_i)}{\lambda_i}$

2 Algorithmus für HetTSP

Algorithm 1 HetTSP-Approx

```
1: procedure Hett\overline{\mathrm{SP}(G=(V,E),\,d:E\to\mathbb{R}_{>0})}
        Rate M mit \frac{M}{2} \leq \text{OPT} \leq M
         \mathcal{H} := (H_i)_{i>0} \leftarrow \text{Level-Prime } (G,d)
3:
              // {\cal H} erfüllt: Wurzel-Blatt Pfade haben aufsteigende Knoten-Level
                                 und \forall i : \sum_{j>i} d(H_j) \leq 8M \sum_{j>i-1} 2^j \mu_j (wenn M korrekt geraten)
         \mathcal{T} := (\mathcal{T}_i)_{i>0} \leftarrow \text{Decomposition } (\mathcal{H})
4:
              //\mathcal{T} ist (6,40)-zuweisbarer Wald
         (x_{ij}) \leftarrow \text{FractionalAssignment} (\mathcal{T})
5:
         (\tau_i) \leftarrow \text{RoundingAssignment}(x_{ij})
6:
              //\mathcal{T} ist (\alpha, \beta)-zuweisbar \Rightarrow (\tau_i) ist (4\alpha + 2\beta)-approx.
         return (\tau_i)
8: end procedure
```

Satz 2.1 (Theorem 1.1 in $[G\emptyset+10]$). Algorithmus 1 ist ein $\mathcal{O}(1)$ -approximativer Algorithmus für HETTSP.

2.1 Level-Prime

Algorithm 2 Level-Prime

```
1: procedure Level-Prime G = (V, E), d : E \to \mathbb{R}_{\geq 0}

2: V_0 := \{v \in V \mid d(s, v) \leq M\}, \quad V_i := \{v \in V \mid 2^{i-1}M < d(s, v) \leq 2^iM\}

3: for i \geq 0 do H_i \leftarrow Minimaler Spannbaum auf G[V_{\leq i}]/V_{\leq i} end for

4: return (H_i)_{i\geq 0}

5: end procedure
```

Lemma 2.2 (Theorem 3.3 in $[G\emptyset+10]$). Ein von Algorithmus 2 gefundener Baum $(H_l)_{l\geq 0}$ erfüllt:

- Die Knoten-Level entlang jedes Wurzel-Blatt-Pfades sind monoton wachsend.
- $\forall k \geq 0 : \sum_{l \geq k} d(H_l) \leq 8 \cdot \text{MST}(G/V_{\leq k})$

Korollar 2.3 (Korollar 3.5 in $[G\emptyset+10]$). Ein von Algorithmus 2 gefundener Baum $(H_l)_{l\geq 0}$ erfüllt:

- Die Knoten-Level entlang jedes Wurzel-Blatt-Pfades sind monoton wachsend.
- $\forall k \geq 1 : \sum_{l>k} d(H_l) \leq 8 \cdot \sum_{l>k} 2^l \mu_l$

2.2 Decomposition-Algorithmus

Algorithm 3 Decomposition

- 1: **procedure** DECOMPOSITION((\mathcal{H})) 2: $\mathcal{S}_0 := \{H_0\}$, $\mathcal{S}_i := \text{Zerl. von } \mathcal{H} \cap E_i \text{ in B\"{a}ume mit genau einer Kante nach } V_i$ 3:
- 4: **return** $(\mathcal{T}_i)_{i\geq 0}$
- 5: end procedure

Definition 2.4 (Definition 3.1 in $[G\emptyset+10]$). Ein Wald $\mathcal{T} = \bigcup_{l\geq 0} \mathcal{T}_l$ aus Bäumen mit Wurzel s heißt (α, β) -zuweisbar, wenn gilt:

- Für alle $T \in \mathcal{T}_l$ gilt: $d(T) \leq \alpha 2^l M$ d.h. ein Baum aus \mathcal{T}_l kann mit Geschw. 2^l in $\mathcal{O}(\alpha M)$ besucht werden.
- Für alle $k \geq 1$ gilt: $\sum_{l>k} d(\mathcal{T}_l) \leq \beta M \sum_{l\geq k} 2^l \mu_l$ d.h. die Fahrzeuge mit Geschw. $\geq 2^k$ können den Wald $\mathcal{T}_{>k}$ in $\mathcal{O}(\beta M)$ besuchen.

Lemma 2.5 (Lemma 3.11 in $[G\emptyset+10]$). Die von Algorithmus 3 bestimmte Zerlegung $\mathcal{T}=(\mathcal{T}_i)_{i\geq 0}$ ist (6,40)-zuweisbar.

2.3 Assignment-Algorithmen

Algorithm 4 Fractional Assignment

1: procedure FractionalAssignment((\mathcal{T}))
2:
3: return (x_{ij}) 4: end procedure

Proposition 2.6 (Seite 54 (?) in [Coo+11]).

Algorithm 5 RoundingAssignment

```
1: \mathbf{procedure} ROUNDINGASSIGNMENT((x_{ij}))

2: 3: \mathbf{return} (\tau_i)

4: \mathbf{end} \mathbf{procedure}
```

Proposition 2.7 (Theorem 1 in [LST90]).

Lemma 2.8 (Lemma 3.2 in $[G\emptyset+10]$). Gegeben einen (α,β) -zuweisbaren Wald, liefern Algorithmus 4 und Algorithmus 5 eine $(4\alpha+2\beta)$ -approximative Lösung für HETTSP.

3 Algorithmus für HetCVRP

Satz 3.1 (Theorem 4.1 in $[G\emptyset+10]$). Es gibt eine $\mathcal{O}(1)$ -approximationserhaltende Reduktion von HETCSP auf HETCVRP.

Literatur

- [Coo+11] W.J. Cook u. a. Combinatorial Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley, 2011. ISBN: 9781118031391. URL: https://books.google.de/books?id=tarLTNwM3gEC.
- [Gø+10] Inge Li Gørtz u. a. "Capacitated Vehicle Routing with Non-Uniform Speeds". In: CoRR abs/1012.1850 (2010). URL: http://arxiv.org/abs/1012.1850.
- [LST90] Jan Karel Lenstra, David B. Shmoys und Éva Tardos. "Approximation algorithms for scheduling unrelated parallel machines". In: *Mathematical Programming* 46.1 (1990), S. 259–271. ISSN: 1436-4646. DOI: 10.1007/BF01585745. URL: http://dx.doi.org/10.1007/BF01585745.