Maintenance Scheduling System

Christian Brunbjerg Jespersen

Technical University of Denmark

January 1, 1980

Agenda

- ► Introduction to Maintenance Scheduling
- ► Architecture of a Scheduling System
- Possible Contributions to Operation Research

$\underset{a}{\mathsf{Mathematical}} \ \mathsf{Notation} \colon \mathsf{Sets}$

 $A_{b,c}^m(t,x,y)$

▶ a: set element

A: set itself

b: set element from set B

c: set element from set C

m: model formulation m

t: time

x: value of decision variable from a different model

y: value of decision variable from a different model

Mathematical Notation: Parameters

 $name_of_parameter_{a,b}(t, x, y)$

- parameters are functions of set elements and input parameters
- ▶ a: set element from A
- b: set element from B
- t: time
- x: value of decision variable from another model
- y: value of decision variable from another model

Mathematical Notation: Variables

$x_{a,b}^m(t)$

- variables are functions of set elements, specified model, and time
- x: decision variable
- a: set element from A
- b: set element from B
- m: specifying the model
- t: time
- Notice: decision variables cannot depend on other decision variables as it would make them belong to the same model.

Strategic

Tactical

Meta variables:	
$s \in S$	(1)
$\alpha(au)$	(2)
$ au \in [0,\infty]$	(3)
Minimize:	
$\sum_{\alpha \in O(\tau,\alpha(\tau))} \sum_{d \in D(\tau)} tactical_value_{do}(\tau) \cdot \beta_{do}(\tau) + \sum_{r \in R(\tau)} \sum_{d \in D(\tau)} tactical_penalty \cdot \mu_{rd}(\tau)$	(4)
Subject to:	
$\sum_{o \in O(\tau, \alpha(\tau))} \mathit{work}_o(\tau) \cdot \beta_{do}(\tau) \leq \mathit{tactical_resource}_{\mathit{dr}}(\tau) + \mu_{\mathit{rd}}(\tau) \forall d \in \mathit{D}(\tau) \forall r \in \mathit{R}(\tau)$	(5)
$latest_finish_o(au)$	
$\sum_{d = \textit{earliest_start.}(\tau)} \sigma_{do}(\tau) = \textit{duration}_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(6)
$\sum_{\sigma_{d',o}(\tau) = duration_o(\tau)} \sigma_{d',o}(\tau) = duration_o(\tau) \cdot \eta_{do}(\tau) \forall o \in O(\tau,\alpha(\tau)) \forall d \in D(\tau)$	(7)
$ d^* \in D_{\operatorname{duration}_0(\tau)}(\tau) = \operatorname{duration}_0(\tau) \cdot \eta_{\operatorname{do}}(\tau) \forall \sigma \in O(\tau, \alpha(\tau)) \forall \sigma \in D(\tau) $	(7)
$ \frac{1}{\log O(\tau, \alpha(\tau))} \eta_{dO}(\tau) = 1, \forall d \in D(\tau) $	
$\sum_{d \in D(\tau)} d \cdot \sigma_{\text{dol}}(\tau) + \Delta_{\text{o}}(\tau) = \sum_{d \in D(\tau)} d \cdot \sigma_{\text{do2}}(\tau) \forall (\text{o1}, \text{o2}) \in \textit{finish_start}_{\text{o1}, \text{o2}}$	(8)
$\sum_{d \in \mathcal{D}(\tau)} d \cdot \sigma_{do1}(\tau) = \sum_{d \in \mathcal{D}(\tau)} d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in \textit{start_start}_{o1, o2}$	(9)
$\beta_{do}(\tau) \leq number_o(\tau) \cdot operating_time_o \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$	(10)
$eta_{do}(au) \in \mathbb{R} \qquad \forall d \in D(au) \forall o \in O(au, lpha(au))$	(11)
$\mu_{rd}(\tau) \in \mathbb{R}$ $\forall r \in R(\tau)$ $\forall d \in D(\tau)$	(12)
$\sigma_{\textit{do}}(\tau) \in \{0,1\} \qquad \forall \textit{d} \in \textit{D}(\tau) \forall \textit{o} \in \textit{O}(\tau,\alpha(\tau))$	(13)
$\eta_{do}(\tau) \in \{0,1\}$ $\forall d \in D(\tau)$ $\forall o \in O(\tau, \alpha(\tau))$	(14)
$\Delta_o(\tau) \in \{0, 1\} \forall o \in O(\tau, \alpha(\tau))$	(15)

Supervisor

 $\rho_a(\tau) \in [lower \ activity \ work_a(\tau), work_a(\tau)] \quad \forall a \in A(\tau, \alpha(\tau))$

Meta variables: $z \in Z$ (16) $\alpha(\tau)$ (17) $\theta(\tau)$ (18)(19) $\tau \in [0, \infty]$ Maximize: $\sum \quad \sum \ \, \textit{supervisor_value}_{\mathsf{at}}(\tau, \lambda_{\mathsf{t}}(\tau), \Lambda_{\mathsf{t}}(\tau)) \cdot \gamma_{\mathsf{at}}(\tau)$ (20)Subject to: $\sum_{\mathbf{a} \in A_{\mathbf{o}}(\tau,\alpha(\tau))} \rho_{\mathbf{a}}(\tau) = \mathit{work}_{\mathbf{o}}(\tau) \quad \forall \mathbf{o} \in \mathit{O}(\tau,\alpha(\tau))$ (21) $\sum_{\mathbf{t} \in T(\tau)} \sum_{\mathbf{a} \in A_0(\tau, \alpha(\tau))} \gamma_{\mathbf{a}\mathbf{t}}(\tau) = \phi_{\mathbf{o}}(\tau) \cdot \mathit{number}_{\mathbf{o}}(\tau) \quad \forall \mathbf{o} \in O(\tau, \alpha(\tau))$ (22) $\sum_{\mathbf{o} \in O_{\mathbf{w}}(\tau, \alpha(\tau))} \phi_{\mathbf{o}}(\tau) = |O_{\mathbf{w}}(\tau, \alpha(\tau))| \quad \forall \mathbf{w} \in W(\tau, \alpha(\tau))$ $\sum_{\mathbf{a} \in A_{\sigma}(\tau, \alpha(\tau))} \gamma_{\mathbf{a}\mathbf{t}}(\tau) \leq 1 \quad \forall \mathbf{o} \in O(\tau, \alpha(\tau)) \quad \forall \mathbf{t} \in T(\tau)$ (24) $\gamma_{st}(\tau) \le feasible_{st}(\theta(\tau)) \quad \forall o \in O(\tau, \alpha(\tau)) \quad \forall t \in T(\tau)$ (25) $\gamma_{\mathsf{at}}(\tau) \in \{0,1\} \quad \forall \mathsf{o} \in \mathit{O}(\tau,\alpha(\tau)) \quad \forall \mathsf{t} \in \mathit{T}(\tau)$ (26)

Operational

Meta variables:	
$t \in T(au)$	(28)
$\alpha(\tau)$	(29)
$\gamma(\tau)$ $ au \in [0, \infty]$	(30) (31)
$\sum_{a \in A(\tau, \gamma_1(\tau))} \sum_{k \in K(\gamma} \delta_{ak}(\tau)$	(32)
Subject to:	
$\sum_{k \in K(\gamma(\tau))} \delta_{ak}(\tau) \cdot \pi_{ak}(\tau) = \textit{activity_work}_{a}(\tau, \rho(\tau)) \cdot \theta (\tau) \forall a \in A(\tau, \gamma_{t}(\tau))$	(33)
$\lambda_{a21}(\tau) \geq \Lambda_{a1/ast(a1)}(\tau) + preparation_{a1,a2} \forall a1 \in A(\tau, \gamma_t(\tau)) \forall a2 \in A(\tau, \gamma_t(\tau))$	(34)
$\lambda_{ak}(\tau) \ge \Lambda_{ak-1}(\tau) - constraint_limit \cdot (2 - \pi_{ak}(\tau) + \pi_{ak-1}(\tau))$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(35)
$\delta_{ak}(\tau) = \Lambda_{ak}(\tau) - \lambda_{ak}(\tau) \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(36)
$\lambda_{ak}(\tau) \ge event_{ie} + duration_{ie} - constraint_limit \cdot (1 - \omega_{akie}(\tau))$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(37)
$\Lambda_{ak}(\tau) \le event_{ie} + constraint_limit \cdot \omega_{akie}(\tau)$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(38)
$\lambda_{a1}(\tau) \ge time_window_start_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(39)
$\Lambda_{alast(a)}(\tau) \leq time_window_finish_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(40)
$\pi_{ak}(\tau) \in \{0,1\}$ $\forall a \in A(\tau, \gamma_t(\tau))$ $\forall k \in K(\gamma(\tau))$	(41)
$\lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(42)
$\Lambda_{ak}(\tau) \in [\mathit{availability_start}(\tau), \mathit{availability_finish}(\tau)]$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(43)
$\delta_{\mathit{ak}}(\tau) \in [0, \mathit{work}_{a_to_o(a)}(\tau)] \forall \mathit{a} \in \mathit{A}(\tau, \gamma_t(\tau)) \forall \mathit{k} \in \mathit{K}(\gamma(\tau))$	(44)
$\omega_{\mathit{akie}}(\tau) \in \{0,1\} \forall \mathit{a} \in \mathit{A}(\tau,\gamma_\mathit{t}(\tau)) \forall \mathit{k} \in \mathit{K}(\gamma(\tau)) \forall \mathit{i} \in \mathit{I}(\tau) \forall \mathit{e} \in \mathit{E}(\tau)$	(45)
$\theta_{a}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_{t}(\tau))$	(46)

Architecture

Architecture

- 1. Reactive Versus Static Constraints
- 2. Dynamic
- 3. Business
- 4. Technical
- 5. Academic

Dynamic versus Static Models

- Mathematical models guide direction but does not provide direct solutions.
- ► Static solutions are rarely fully executable.
- Dynamic models are less constrained and ensure a contained optimal solution.
- Remember: The real optimal solution is ever knowable at time

The Story of Zaabalawi

Quality of Solutions

