NYC Transportation Domain

KAVYA RAO B

- Data Set: NYC Traffic Collisions
- Problem Statement: Analyze NYC Collision(Accident) data set using Pandas and Numpy
 - 1. Clean data, remove Null values
 - 2. Drop the unwanted columns
 - 3. Divide the data set based on the year
 - 4. Analyze fatalities based on Borough
 - 5. Analyze fatalities based on Month
 - 6. Analyze fatalities based on Time (24 Hours)
 - 7. Plot graphs.
 - 8. Apply Polynomial Regression to the Accident data set
- Apply Polynomial regression to predict Person Injuries

Data SetUp

Read CSV File.
Remove unwanted columns and rename them.
Drop Null values

Divide data by Year

```
In [3]: data_2012 = data[data.DATE_TIME.dt.year==2012]
  data_2013 = data[data.DATE_TIME.dt.year==2013]
  data_2014 = data[data.DATE_TIME.dt.year==2014]
  data_2015 = data[data.DATE_TIME.dt.year==2015]
```

For each year Find fatalities based on – BOROUGH, MONTH, TIME

```
In [ ]: data_2012_borough = data_2012.groupby(data.BOROUGH).sum().sort(['NUMBER_OF_PERSONS_KILLED','NUMBER_OF_PEDESTRIANS_INJURED'])
    data_2013_borough = data_2013.groupby(data.BOROUGH).sum().sort(['NUMBER_OF_PERSONS_KILLED','NUMBER_OF_PEDESTRIANS_INJURED'])
    data_2014_borough = data_2014.groupby(data.BOROUGH).sum().sort(['NUMBER_OF_PERSONS_KILLED','NUMBER_OF_PEDESTRIANS_INJURED'])
    data_2015_borough = data_2015.groupby(data.BOROUGH).sum().sort(['NUMBER_OF_PERSONS_KILLED','NUMBER_OF_PEDESTRIANS_INJURED'])
```

In [11]: data_2015_borough

Out[11]:

	ZIP_CODE	LATITUDE	LONGITUDE	NUMBER_OF_PERSONS_INJURED	NUMBER_OF_PERSONS_KILLED	NUMBER_OF_
BOROUGH						
STATEN ISLAND	58615046	230809.497599	-421558.138122	1412	11	209
MANHATTAN	387638357	1576351.058076	-2860539.275847	5895	20	2037
BRONX	201480011	786688.286172	-1422826.756528	5099	25	1236
QUEENS	438513159	1571316.884946	-2849057.384436	9424	45	1742
BROOKLYN	518460182	1878887.958159	-3417547.823545	12408	56	2671

Data by Month

```
In [23]: data_2012_month = data_2012.groupby(data_2012.DATE_TIME.dt.month).sum()[['NUMBER_OF_PERSONS_INJURED','NUMBER_OF_PERSONS_KILLED']]
data_2013_month = data_2013.groupby(data_2013.DATE_TIME.dt.month).sum()[['NUMBER_OF_PERSONS_INJURED','NUMBER_OF_PERSONS_KILLED']]
data_2014_month = data_2014.groupby(data_2014.DATE_TIME.dt.month).sum()[['NUMBER_OF_PERSONS_INJURED','NUMBER_OF_PERSONS_KILLED']]
data_2015_month = data_2015.groupby(data_2015.DATE_TIME.dt.month).sum()[['NUMBER_OF_PERSONS_INJURED','NUMBER_OF_PERSONS_KILLED']]
```

In [28]: data_2014_month

Out[28]:

	NUMBER_OF_PERSONS_INJURED	NUMBER_OF_PERSONS_KILLED
DATE_TIME		
1	2987	17
2	2325	8
3	2901	13
4	3068	18
5	3399	18
6	3769	16
7	3458	23
8	3353	12
9	3299	19
10	3652	12
11	3248	16
12	3170	11

Analysis: During the colder months people probably take public transport and avoid walking/cycling.

Data by Hour

```
In [26]: data_2012_hour = data_2012.groupby(data_2012.DATE_TIME.dt.hour).sum()[['NUMBER_OF_PERSONS_INJURED','NUMBER_OF_PERSONS_KILLED']]

data_2013_hour = data_2013.groupby(data_2013.DATE_TIME.dt.hour).sum()[['NUMBER_OF_PERSONS_INJURED','NUMBER_OF_PERSONS_KILLED']]

data_2014_hour = data_2014.groupby(data_2014.DATE_TIME.dt.hour).sum()[['NUMBER_OF_PERSONS_INJURED','NUMBER_OF_PERSONS_KILLED']]

data_2015_hour = data_2015.groupby(data_2015.DATE_TIME.dt.hour).sum()[['NUMBER_OF_PERSONS_INJURED','NUMBER_OF_PERSONS_KILLED']]
```

	NUMBER_OF_PERSONS_INJURED	NUMBER_OF_PERSONS_KILLED
DATE_TIME		
0	919	6
1	667	10
2	554	1
3	463	3
4	501	5
5	457	5
6	614	1
7	984	3
8	1848	4
9	1597	10
10	1341	4
11	1428	4

12	1622	5
13	1845	4
14	2126	5
15	2144	5
16	2502	7
17	2465	17
18	2410	11
19	1954	15
20	1788	6
21	1567	9
22	1383	8
23	1059	9

Graph of Number_of_persons_injured for 3 years

Graph of Number_of_persons_injured for 3 years

Number of Cyclists Injured each hour

Analysis: 4PM to 8PM is not the best time for Cyclists

Regression Analysis

- A statistical process of establishing a relationship between the variables.
- Relationship between the independent variable 'x' and dependent variable 'y' is calculated as a nth degree polynomial.

Consider a relation between the Number of years of Education and the wages per hour.

Wages/Hour	Years_Of_Ed ucation
15	10
10	5
12	6
16	14
30	25
45	30
33	29

Years_of_Education

Wages/Hour	Years_Of_Ed ucation
15	10
10	5
12	6
16	14
30	25
45	30
33	29

Years_of_Education

Least square Method Algorithm

Step 1: Calculate the mean of the x-values and the mean of the y-values.

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\overline{Y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

Step 2: The following formula gives the slope of the line of best fit:

$$m = \frac{\sum_{i=1}^{n} \left(x_i - \overline{X}\right) \left(y_i - \overline{Y}\right)}{\sum_{i=1}^{n} \left(x_i - \overline{X}\right)^2}$$

Step 3: Compute the *y*-intercept of the line by using the formula:

$$b = \overline{Y} - m\overline{X}$$

Step 4: Use the slope m and the y-intercept b to form the equation of the line.

Each point has coordinates (X, Y).

We read through all the points in the set and calculate the following:

Count = the number of points

SumX = sum of all the X values

SumY = sum of all the Y values

SumX2 = sum of the squares of the X values

SumXY = sum of the products X*Y for all the points

Now we can find the slope M and Y-intercept YInt of the line we want:

XMean = SumX / Count

YMean = SumY / Count

Slope = (SumXY - SumX * YMean) / (SumX2 - SumX * XMean) YInt = YMean - Slope * Xmean

The equation for the line is:

Y = *Slope* * *X* + *YInt*

Conclusions

- Regression Analysis on historic data set (20 years)
- Clustering gone wrong
- Divide data into train test and validation test
- Better graphical representation
- Analyze based on criteria like reason for collision, contributing factors.
- ▶ Do more analysis on GPS coordinates.

Reference:

- http://www.enlistq.com/analyzing-nyc-traffic-data-using-pandas/
- http://blog.minitab.com/blog/adventures-in-statistics/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit
- https://www.youtube.com/watch?v=aq8VU5KLmkY
- https://www.youtube.com/watch?v=k OB1tWX9PM
- https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9ginx95
- https://realpython.com/blog/python/analyzing-obesity-in-england-with-python/
- https://www.researchgate.net/post/Whats the difference between training se t and test set
- http://faculty.cs.niu.edu/~hutchins/csci230/best-fit.htm
- http://hotmath.com/hotmath_help/topics/line-of-best-fit.html
- http://www.efunda.com/math/leastsquares/lstsqrmdcurve.cfm

Thank You