INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Department of Mathematics Time: 1 hr. Full Marks: 10

Subject: MA10001 Mathematics-I

NAME: SECTION NO:

 $f(x,y) = \begin{cases} \frac{x^2 y^2}{x^4 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$

Is $f_y(x, y)$ is continuous at (0, 0)? (TRUE/FALSE) _____ FALS E

 $g(x,y) = \begin{cases} \frac{x^3 + y^3}{x - y}, & \text{when } x \neq y, \\ 0, & \text{when } x = y. \end{cases}$

Roll No:..... Signature:....

Class Test, 2019 #

[2 MARKS]

[1 MARK]

= -1-40

No. of Students: 1600

Answer all the questions. Fill in the Blanks.

Is g continuous at (0,0)?(TRUE/FALSE)

1. Consider the following function

2. Let

3. Consider the initial value problem $y^2 \frac{dy}{dx} - 19x^2 = 0$, $y(0)$ the value of $y(1)$ =	(-2) = -2. Then
3/11	[1 MARK]
4. The general solution of $(1 + e^{-x}y - xe^{-x}y) dx + (xe^{-x} + xe^{-x}y) dx$	+2) dy = 0 is
$\chi + \chi \bar{e}^{\chi} y + 2y = c$	[2 MARKS]
5. The solution of the initial value problem $6\frac{dy}{dx} = 2y + xy^4$ $\frac{y(x) - 3y}{(x-1) + e^{x}} y(-1) = \frac{-3y}{6}$ 6. The general solution of $y''' - y'' + y' - y = 0$ is $\frac{y(x) - 3y}{(x-1) + e^{x}} y(-1) = \frac{-3y}{(x-1) + e^{x}}$	$\frac{1}{2}, y(0) = -1 \text{ is}$ $\frac{1}{2} \frac{1}{(2-2)^2 3}$ $[2 \text{ MARKS}]$ $[1 \text{ MARK}]$
7. A particular integral of $y'' - 16y = e^{-4x}$ is $-\chi e^{-4x} \times -e^{-4x} $	[1 MARK]

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Department of Mathematics Time: 1 hrs. Full Marks: 10

Subject: MA10001 Mathematics-I

NAME: SECTION NO:

Class Test, 2019##

910 1		,	3 00/11	
		" 10	1 m ·	
A particular	integral of	y'' - 16y =	$=e^{4x}$ is	
x e4x/	5	e4x	(x-)	
18		8	0	0 0

Roll No:..... Signature:.... Answer all the questions. Fill in the Blanks.

1. Consider the following function

No. of Students: 1600

[2 MARKS]

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^4 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Is $f_x(x,y)$ is continuous at (0,0)? (TRUE/FALSE) _ TRUE

2. $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2 + (x^2 - y^2)^2} = \text{Does not exists}$

3. Consider the initial value problem $y^2 \frac{dy}{dx} - 19x^2 = 0$, y(0) = 2. Then the value of y(1) =

[1 MARK]

4. The general solution of $(1 + e^x y + xe^x y)dx + (xe^x + 2)dy = 0$ is

2+22x+24=C

5. The solution of the initial value problem
$$6\frac{dy}{dx} = 2y + xy^4$$
, $y(0) = 1$ is $y(x) = \sqrt[3]{2}/(e+2)^{\frac{1}{3}}$ and $y(-1) = \sqrt[3]{2}/(e+2)^{\frac{1}{3}}$

[2 MARKS]

6. The general solution of y''' + y'' + y' + y = 0 is CIPX + Co Cdx + Co Pina

[1 MARK]

7.

[1 MARK]