1/7

Γ

FIG. 1

FIG. 2

Г

FIG. 3B

FIG. 3A FIG. 3D

FIG. 4B

FIG. 4C

FIG. 4A

FIG. 4D

4/7

FIG. 5C

 Γ

FIG. 5A

FIG. 5D

 Γ

Thermal Conductivity Average vs. Number of MLI Layers

Effective Thermal Conductivity of Nomex Honeycomb Panels with Multilayer Insulation, Compared to Aerogel or Instill and to a Vacuum Test

FIG. 6

Effective Thermal Conductivity of Aluminum Honeycomb Panels with Multilayer Insulation, Compared to Aerogel or Instill

FIG. 7

FIG. 8 COMPAF	COMPARISON OF HEAT TRA	TRANSFER RATES FOR VARIOUS HONEYCOMB CELL CONDITIONS	ARIOUS HONEYCOME	3 CELL CONDITI	IONS Some some some some some some some some s	. 0	Γ
Configuration	804 — Wall Heat Transfer	806 — Air Heat Transfer	808———————————————————————————————————	Total	812 — Effective Thermal Conductivity	ermal	
	BTU/ft ² -hr	BTU/ft -hr	BTU/ft -hr	BTU/ft -hr	BTU-in/ft -hrF	M-W/m-K	
1" Thick Honeycomb Not Evacuated	3.33	8.1	20.44	31.8	0.662	95.5	
1" Thick Honeycomb Evacuated	3.33	approx. 0	20.44	23.77	0.495	71.3	
Two 1/2" Thick Honeycomb Cores, Each Vacuum Seated in MLI With	5, 0.39	approx. 0	1.58	1.98	0.04125	5.94	-
1 Layer MLI in Between (5 total) Emissivity=0.6, Shape Factor=0.35).35	(0:	(0.35/0.5)(0.6/0.9)(1/(5+1)20.44	(5+1)20.44			7/7
Two 1/2" Thick Honeycomb Cores, Each Vacuum Seated in MLI With	s, 0.39	approx. 0	3.4067	3.797	0.079	11.38	
1 Layer MLI in Between (5 total) Emissivity=0.9, Shape Factor=0.5).5		(1/(5+1)20.44	4			
Three 1/2" Thick Honeycomb Cores, Each Vacuum Seated in MLI With	res, 0.208	approx. 0	0.303	0.511	0.000895	1.52	
1 Layer MLI in Between (8 total) Emissivity=0.3, Shape Factor=0.2	2	(0.2	(0.2/0.5)(0.3/0.9)(1/(8+1)20.44	+1)20.44			

Note: Cell wall width = 0.5, Wall Thickness = 0.05, Thermal Conductivity of Cell Material = 0.05 BTU/ft 2 -hr. Shape factor is 0.5 for a single cell, 0.35 for two offset cells, and 0.2 for three offset cells. Emissivity is estimated to be 0.9 for the face sheet material and cell. Alternatively, when vacuum sealed in MLI, emissivity is estimated to be 0.6 for an improved face sheet material for two cores, and 0.3 for three cores.