计算语言学

2017211382 陈璐 交叉研 17

1. Zipf 定律曲线生成

1) 统计已人工分词的语料库中所有词的**词频**,并按词频由高到低进行排序, 生成文件"1.txt"。生成的统计结果前 20 个如下图。

```
2 的──34476
3 .
      35983
       23116
5 在
       12022 ⊮
 6 了
       11557
7 和-
       310919
      ⇒9819
8 是
9 "-
      37970
10 "──7943
11 -
       ₹7335
12 为-
       4747
13 有
       4641
14 )
       4317
15
       4317
16 不
       4095
17 对-
      3800
18 上-
      3795
19 中──3699
20 中国→3358
```

2) 基于该词频表,利用 Excel 生成 Zipf 定律的曲线图,生成文件"2.jpeg"。如下图所示。

利用 Excel 分别求出 log(rank)和 log(frequency),在对二者做散点图,得出上图。可以从图中曲线看出,曲线呈现极大的规律性,斜率逼近-1,几乎是一条 45 度角的直线。这是因为 rank * frequency 接近一个常数。这说明一个词的出现次数跟它的等级序号成反比。

在 EXCEL 中算出 rank * frequency 如下图

38	工作	2412	91656
39	将	2410	93990
40	地	2374	94960
41	以	2362	96842
42	企业	2329	97818
43	新	2245	96535
44	大	2244	98736
45	记者	2143	96435
46	国家	2046	94116
47	从	2033	95551
48	我们	2027	97296
49	两	1952	95648
50	>>	1940	97000
51	«	1940	98940
52	都	1908	99216
53	一个	1889	100117
54	我	1802	97308
55	1月	1781	97955
56	建设	1744	97664
57	问题	1712	97584
58	着	1683	97614
59	来	1620	95580
60	市场	1614	96840
61	已	1609	98149
62	全国	1593	98766
63	人民	1579	99477
64	并	1573	100672
65	把	1563	101595
66	还	1553	102498

上图第一列是 rank, 第二列是词, 第三列是 frequency, 第四列是 rank 和 frequency 的乘积。rank 和 frequency 的乘积接近 C= 100000. 经过统计得到整个《人民日报》的语料单词个数为 N = 1120721, N / 10 约等于 C

2. 基于 n-gram 的句子概率计算

分别使用 unigram 和 bigram 计算以下两个句子的概率

- 扶贫 开发 工作 取得 很 大 成绩 (句子1)
- 扶贫 开发 工作 得到 很 大 成绩 (句子 2)
- <BOS> 扶贫 开发 工作 取得 很 大 成绩 (<句子 1a)
- <BOS> 扶贫 开发 工作 得到 很 大 成绩 (<句子 2a)
- <BOS> 扶贫 开发 工作 取得 很 大 成绩 <EOS> (句子 1b)
- <BOS> 扶贫 开发 工作 得到 很 大 成绩 <EOS> (句子 2b)

生成文件"3.txt",格式如下:

- 第一行输出句子 1 的 unigram 句子概率,并分别输出每个 unigram 的概率。
- 第二行输出句子 1 的 bigram 句子概率,并分别输出每个 bigram 的条件概率。
- 第三行输出句子 1a 的 bigram 句子概率,并补充输出与<BOS>相关的 bigram 条件概率。

- 第四行输出句子 1b 的 bigram 句子概率,并补充输出与<BOS>和<EOS>相关的 bigram 条件概率。
- 对句子 2 同上依次处理。
- 行内以 tab 分隔, 概率输出取 log(10 为底)结果, 小数点后保留 6 位。 第一列是句子概率, 后面是单词的 unigram 或者 bigram 的概率

```
-3.489591
-0.991705
                                                       -3.364652
-2.207724
                                                                                  -2.667120
-1.919979
                                                                                                              -3.284575
-2.463893
                                                                                                                                                                      -2.698475
-2.204895
-0.734686
                                                                                                                                                                                                  -3.687770
 14.012473
-14.113166
-14.793653
-22.474899
-14.406595
                           -3.590284
                                                                                                              -1.919979
                                                                                                                                          -2.463893
-2.463893
-3.089503
-0.734686
                                                                                                                                                                                                 -2.204895
                                                       -0.991705
                                                                                   -2.207724
                                                                                                                                                                      -0.734686
-0.734686
-2.698475
-2.204895
-0.734686
                                                      -0.991705
-3.364652
                                                                                  -2.207724
-2.667120
                                                                                                              -1.919979
-3.477789
                                                                                                                                                                                                 -2.204895
-3.687770
                           -3.590284
                                                                                                                                                                                                                             -0.680487
                           -0.991705
                                                                                                              -2,094588
                                                       -2,207724
                                                                                   -2.683407
-14.507289
                           -3.590284
                                                       -0.991705
                                                                                   -2.207724
                                                                                                              -2.683407
                                                                                                                                          -2.094588
                                                                                                                                                                                                  -2.204895
                                                                                                                                                                                                                              -0.680487
```

- 1) 两句子之间概率进行比较
 - i. $P_{unigram}(S_1) > P_{unigram}(S_2)$
 - ii. $P_{bigram}(S_1) > P_{bigram}(S_2)$
 - iii. $P_{bigram}(S_{1a}) > P_{bigram}(S_{2a})$
 - iv. $P_{bigram}(S_{1b}) > P_{bigram}(S_{2b})$

可以看出句子1比句子2是更常用。

log[P_{s1,bigram}(取得|工作)] = -1.919979

log[P_{s2.bigram}(得到|工作)] = -2.667120

两个句子的不同之处在于"工作取得"和"工作得到",由上面的 log 概率可以看出"工作取得"更加常用。在日常用语中也的确是"工作取得"使用频率更高

2) 两句子内 bigram 和 unigram 概率进行比较

$$\begin{aligned} & \log[\mathsf{P}_{\mathsf{bigram}}(\mathsf{S}_1) \ / \ \mathsf{P}_{\mathsf{unigram}}(\mathsf{S}_1)] = \log[\mathsf{P}_{\mathsf{bigram}}(\mathsf{S}_1)] - \log[\mathsf{P}_{\mathsf{unigram}}(\mathsf{S}_1)] \approx 8.27 \\ & \log[\mathsf{P}_{\mathsf{bigram}}(\mathsf{S}_2) \ / \ \mathsf{P}_{\mathsf{unigram}}(\mathsf{S}_2)] = \log[\mathsf{P}_{\mathsf{bigram}}(\mathsf{S}_2)] - \log[\mathsf{P}_{\mathsf{unigram}}(\mathsf{S}_2)] \approx 8.07 \end{aligned}$$

bigram 比 unigram 精确很多。bigram model 比 unigram model 可以更有效地刻画一句话

3) 两句子内 bigram 之间概率进行比较

对于 P_{bigram}(S₁)、P_{bigram}(S_{1a})、P_{bigram}(S_{1b})的乘项逐步递增。句子 1a 相较于句子 1 将句首考虑进来,句子 1b 相较于句子 1a 进一步考虑了句尾。由于增加了乘项,算出来的句子概率相应变得小一些,句子 bigram 概率还在同一量级内,但是这样计算句子得能更加精准。可以说考虑的元素越多,对句子的刻画会更佳精确,对句子的刻画能力更强。

4) unigram 和 bigram 的空间大小进行比较

Unigram 空间大小:55411

Bigram 空间大小:457709

Bigram 空间大小几乎是 unigram 空间大小的平方,

5) 下面给出我对各个概率的计算方式

i. 对句子 1 的 unigram 句子概率

$$P_{unigram}(s1) = P(扶贫) * P(开发) * P(工作) * P(取得) * P(很) * P(大)$$
 * $P(戍๑)$

ii. 对句子 1 的 bigram 句子概率

$$P_{bigram}(s1) = P(扶贫) * P(开发|扶贫) * P(工作|开发) * P(取得|工作)$$

$$* P(\mathcal{U}|\mathfrak{U}\mathcal{U}) * P(\mathcal{U}|\mathcal{U}) * P(\mathcal{U}|\mathcal{U})$$

iii. 对句子 1a 的 bigram 句子概率

$$P_{bigram}(s1a) = P(扶贫| < BOS >) * P(开发|扶贫) * P(工作|开发)$$

* $P(取得|工作) * P(很| 取得) * P(大| 很) * P(成绩|大)$

iv. 对句子 1b 的 bigram 句子概率

$$P_{bigram}(s1b) = P(扶贫| < BOS >) * P(开发|扶贫) * P(工作|开发) * P(取得|$$

工作) * $P(\mathcal{U}|\mathcal{U}) * P(\mathcal{U}|\mathcal{U}) * P(\mathcal{U}|$

句子2 概率计算方式相仿