

UNIVERSITY OF SOUTHERN CALIFORNIA

A SYSTEM STUDY FOR THE
APPLICATION OF MICROCOMPUTERS
TO RESEARCH FLIGHT TEST TECHNIQUES

Quarterly Interim Status Report
Period 1 December 1982 through 28 February 1983
Grant NSG-4027

National Aeronautics and Space Administration
Ames Research Center
Hugh L. Dryden Flight Test Center
Edwards, CA 92523

Mr. Larry W. Abbott, Contract Officer's Technical Representative

Prepared By

Dr. Richard K. Smyth, Principal Investigator

SR-8302-FTT-512

February 1983

(NASA-CR-169869) A SYSTEM STUDY FOR THE APPLICATION OF MICROCOMPUTERS TO RESEARCH FLIGHT TEST TECHNIQUES Quarterly Interim Status Report, 1 Dec. 1982 - 28 Feb. 1983 (University of Southern California) 149 p G3/60

N83-19487

Unclas 33/60 08976

Table of Contents

- 1.0 INTRODUCTION
- 2.0 AIR DATA SYSTEM (ADS)
- 3.0 ON-BOARD SIMULATOR (OBS)
- 4.0 SPIN WARNING SYSTEM (SWS)
- 5.0 ACTIVITIES PLANNED FOR NEXT QUARTER

APPENDICES

APPENDIX A: On-Board Simulator Team #1, Final Report

APPENDIX B: Spin Warning System Team #1, Final Report

APPENDIX C: Air Data System Software Source Code

APPENDIX D: User's Documentation for System Support Software Tools

APPENDIX E: Listing of the OBS Source Program

1.0 INTRODUCTION

This interim report covers the activities of this Grant NSG-4027 for the third quarter of the grant year which ends 31 May 1983. This third quarter covers the period from 1 December 1982 through 28 February 1983. The following personnel are assigned to the grant research working 1/4-time under the grant funding:

Dr. Richard K. Smyth	Principal Investigator	Effective 1 June 82
Mr. Phillip Chan	Research Assistant	Effective 1 Jan 83
Mr. Fadi J. Kurdahi	Research Assistant	Effective 1 June 82
Mr. David Ho	Research Assistant	Effective 1 Jan 83
Mr. Carposforo Sosa	Research Assistant	Effective 1 June 82
Mr. Jean-Francois Son	ılard Research Assistant	Effective 1 Jan 83

The assignments of the research assistants are as follows:

- (1) Design, Code, & Test Air Data System Software and Investigate Hardware; Carposforo Sosa and Fadi Kurdahi
- (2) Complete Hardware & Software for Spin Warning System Designed by Team #1 Utilizing SC-01 for Voice Generation; Philip Chan
- (3) Complete Software, and Test the On-Board Simulation; Jean-Francios Soulard
- (4) Provide Support in Software Coding, Compilation, and Object Code Loading into 68000 Microcomputer for all the Grant Research Teams; David Ho

In addition to the personnel assigned to the grant, other graduate students taking the EE560L microcomputer research course, and students taking directed research EE590L under Dr. R.K. Smyth, have performed research which have contributed to the grant's technical objectives. The final reports of these student team's research reports are attached as appendices to this Quarterly Interim Status Report. The Graduate Students and their contributions to the grant objectives follow:

1. On-Board Simulator

Team #1 (Report Appendix A)

Mr. Jeffrey Bluen

Mr. Jean-Francios Soulard

Mr. Mehdi Namakian

Mr. Charles Saleh

2. Spin Warning System

Mr. David Barry

Mr. David Ho

Mr. Renshan Tang

Mr. Mohammed Movahed-Ezazi

Team #1* (Report Appendix B)

*used SC-Oll voice generation chip

3. Spin Warning System

Mr. Steve Meier

Mr. Tieh Ku

Mr. Tom Wilkenson

Mr. Dave Adachi

Mr. David Chen

Team #2** (Report due May 83)

**used TI voice generation chip

4. On-Board Simulation

Mr. Jeffrey Bluen (EE590L)

Mr. Horng-Ru Hwang (EE590L)

Team #2 (Report due May 83)

2.0 AIR DATA SYSTEM (ADS)

The ADS equations defined in section 2.4.1 of the Semi-Annual Interim Status Report (30 November 1982) have now been coded, and the cooding for the equations are being tested.

The work on ADS covers two sub-areas: installation of software support tools and implementation of the air data system software. With respect to the first sub-area, during this period we have finished the installation and testing of the software tools resident on the IBM 370/4341 (ECL-VIRGIL). This means that written software for the three areas of research (ADS, SWS, and OBS), can now be tested in the VERSAMODULE-01 system.

Upon completing testing of the M68000 cross-software (Jan 25) we proceeded to continue our work in the air data system. Currently we are in the area of developing software to test each of the 13 implemented ADS equations in order to obtain an estimate of their execution time. These estimates are required to design an appropriate time scheduling.

The progress in the two sub-areas is explained in detail in the following sections.

2.1 Software Support Tools

The system software support tools are applicable to all of the tasks on the grant, although the ADS team is checking out the tools. The following tasks have been completed.

TASK 1: The debugging of the communication software (CMSCPM) that handles file transfers between IBM (VIRGIL) and Computerm (EE560L) has been completed. A short user's guide, describing the use of CMSCPM was written.

TASK 2: Modification of the linker so that it produces a load map of the execution module being generated. A version of this map, displaying the absolute addresses of all the sections comprising the module, is required to

ORIGINAL PAGE IS OF POOR QUALITY

identify the entry point, i.e. the address at which execution starts. This task was achieved by modifying the EXEC (CMS command file) that invokes the linker, inserting new options and the corresponding file definitions.

TASK 3: Test the execution of PASCAL programs in the VERSAMODULE-01. In this respect we encountered two problems:

- (a.) Incorrect loading of the execution module from Computerm into VERSAMODULE-01. The second line of the S-format file, containing the execution module, did not get loaded into the monoboard memory. This file, resident in Computerm, is transferred from the IBM using the utility CMSCPM, already mentioned in Task 1. We compared the files in the two systems and we did not detect any modification caused by transmission errors. We also checked the header of the S-format file and replaced it with others, used for S-format files that are known to load normally. The fault persisted. We have avoided this problem by duplicating the second line using a text editor.
- (b.) Identification of the section in the execution module that contains the entry point. Motorola supplied us with the correct entry point for a module running under EXORMACS but did not give any information for running a program under VERSAMODULE-01. With the aid of the road map, we surveyed each section until we found the correct entry point.

We have now checked the test file supplied by Motorola as well as some preliminary programs used in ADS. So far, we have not encountered any problems regarding their execution in the VERSAMODULE-01.

2.2 Air Data System Software

The 13 ADS equations (table 2-1) have been coded. The ADS equation timing tests (table 2-2) have been completed and the timing procedure software has been written. The data acquisition routines have been completed and the

testing of this software is underway. A potentiometer test fixture is being designed to permit testing of the various ADS algorithms which will emulate the sensor voltage levels with the pots and test for correct computation of the various air data parameters such as Mach number, altitude, etc.

TABLE 2-1

AIR DATA SYSTEM PARAMETER EQUATIONS

(Page 1 of 3)

PTI (TOTAL PRESSURE):

PTI = QCI + PSI

MI (INDICATED MACH NUMBER):

for PTI/PSI <= 1.893

MI = SQRT(5.0) * SQRT(((PTI/PSI) ** (2/7)) -1)

for PTI/PSI > 1.893

x = 1.839371 * (PSI/PTI)

MI = SQRT((Ax - Bx - Cx**2 - Dx**3 - Ex**4 - Fx**5 - Gx**6 - Gx**9) /x)

MINF (FREESTREAM MACH NUMBER)

MINF = MI + DM

DM is an error correction obtained by interpolating in a look-up table

PSINF (FREESTREAM STATIC PRESSURE)

for MINF <=1

PSINF = PTI / ((1 + 0.2 * MINF**2) ** (7/2))

for MINF >1

PSINF = (PTI * A * (1-A)** (5/2) / 0.1839371

where A = 1 / (7 * MINF**2)

QBAR (DYNAMIC PRESSURE)

QBAR = 0.7 * MINF**2 * PSINF)

QCC (CORRECTED AIRSPEED PRESSURE)

QCC = PTI - PSINF

KEAS (KNOTS EQUALIVANT AIRSPEED)

KEAS = MINF * 661.48 * SQRT(PSINF / 2116.22)

KCAS (KNOTS CALIBRATED AIRSPEED)

KCAS = 1479.1 * SQRT ((1 + (QCC / 2116.22) ** (2/7)) -1)

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 2-1 AIR DATA SYSTEM PARAMETER EQUATIONS

(Page 2 of 3)

HP (GEOPOTENTIAL OR PRESSURE ALTITUDE)

let R = PSINF / 2116.22

for R > .223361

HP = 145442 * (R ** .1092632365 - 1)

for $.223361 \Rightarrow R > .0540328$

HP = 164219.39 - 20805.7 * Ln(PSI)

for $.0540328 \Rightarrow R > .00856663$

HP = 710793.96 * A**2 - 645177.17

where A = (.0540328 / R) ** .01463563358

for R <= .00856663

HP = 81660.714 * A**2 - 162928.85

where A = (.00856663 / R) ** .04097977402

AINF (ANGLE OF ATTACK)

let EA = f (MINF)

EA	MINF
.0055	0.0<
.0053	0.2
.0051	0.4
.0044	0.6
.0033	0.8
.0023	0.9
.0	>1.0

AINFF = (1 + EA) * (ALPHA I)

BINF (ANGLE OF SIDESLIP)

BINF = (1 + EB) * (BETA I)

where EP = 0.0

TABLE 2-1

AIR DATA SYSTEM PARAMETER EQUATIONS

(Page 3 of 3)

GAMMA (FLIGHT PATH ANGLE)

GAMMA = THETA - AINF

HDGAMMA (ALTITUDE RATE)

HDGAMMA = 60 * MINF * CS * Sin(GAMMA)

where CS = Speed of sound per 1962 std. atmoshpere

HDOT (ALTITUDE RATE, TIME DERIVATIVE

let HAV(t) = 1/5 HP(t-i);

HDOT(t) = HAV(t) - HAV(t-1) [time interval = 1]

FOTY (FUEL QUANTITY)

FQTY (0) = 304.85 AND FUSED (0) = 0.0

if $FFR(t) \Rightarrow 3.25$ and $FFR(t) \leq 52.0$ then FUSED(t) = FFR(t)

if FFR(t) < 3.75 or FFR(t) > 52.0 then FUSED(t) = FUSED(t) and

FQTY (t) = FQTY (t-1) - FUSED(t)

when TOPOFF = 1 FOTY(t) is reset to 304.85

once LAUNCH = 1 never reset FQTY(t)

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 2-2
TIMING TESTS FOR ADS COMPUTATIONS
(See Table 2-1 for ADS Parameter Equations)

Execution time in milliseconds TEST 2 TEST 1 TEST 3 PARAMETER PARAMETER NAME **AVERAGE** PSINF * Free Stream Static Pressure 85.70 81.33 87.48 84.84 5.115 5.115 5.115 5.115 QBAR Dynamic Pressure 2.07 QCC Corrected Airspeed Pressure 2.13 2.10 2.10 KEAS Knots Equivalent Airspeed 17.58 17.23 17.17 (true) 17.33 KCAS Knots Calibrated Airspeed (indicated) 88.03 90.33 86.71 88.36 HP ** Geopotential or Pressure 170.38 87.12 104.48 Altitude 55.95 14.145 AINF Angle of Attack 14.145 14.145 14.145 GAMMA Flight Path Angle 2.130 2.10 2.055 2.10 HDGAMMA Altitude Rate (Computed for GAMMA) 40.48 39.43 40.48 40.13 3.16 FQTY Fuel Quantity 3.165 3.150 3.150 TOTAL 313.38 426.36 345.50 361.75 3.19/sec 2.35/sec 2.89/sec 2.76/sec MAX ITERATION RATE

SAFE INTERATION RATE 2/sec

^{*} Two equations, selected by freestream Mach No. value

^{**} Four equations, selected by freestream Mach No. value

3.0 ON-BOARD SIMULATOR (OBS)

ORIGINAL PAGE IS OF POOR QUALITY

The student team cited in the introduction and lead by Bluer & Soulard produced a final report on the OBS which is included as Appendix A of this progress report. Messrs. Bluen and Soulard are continuing work on the OBS. Mr. Hwang is providing coding for the aircraft lateral equations of motion (3 degree-of-freedom) using the T-38 aircraft parameters for the equations. He is using the data from a NASA research report written by Mr. Teper of Systems Technology, Inc. (STI) for the equations and parameters. His program will be menu-driven and will permit the selection of various flight conditions to be used. Messrs. Bluen & Soulard will integrate Mr. Hwang's equations and software modules into the overall OBS software.

The modification and improvements to OBS team # 1's project are described below. The system concepts are covered in figures 3-1 through 3-5.

3.1 Implementation of Separate Motions

In the earlier form of this project the line-of-sight and the range between the two planes were generated by programmed functions. This choice implied that the host and the target were not actually moving independently. The new implementation generates separate geometry parameters for both airplanes. These parameters are updated during every time step of the simulation loop. The program calculates the Cartesian coordinates of the two planes (XH and YH for the host and XT and YT for the target) using the velocities (VELOCITY and TVELOCITY respectively) and the turning angles (PSI and PSIT respectively) given by the simulation loop. The variations are first calculated (DELTA-XH, DELTA-YH, DELTA-XT, DELTA-YT) and then added to the old values of the coordinates (XOH, YOH, XOT, YOT). At the beginning of the loop the newly computed values are assigned to the old value variables and the process is started again for the new time step.

In addition, both aircraft use separate simulation loops to generate the turning angle commands.

ORIGINAL PAGE IS OF POOR QUALITY

3.2 New Tracking Procedure

The "prediction" algorithm presented in the former report proved to be inappropriate for the use of the OBS. It has been replaced by a conventional guidance law, called the proportional guidance system, in which the parameters are calculated using actual geometry of the scene (as opposed to "anticipated" position of the target as used in the "prediction" algorithm). The parameters used by the proportional guidance are:

- The line of sight rate, SIGMA
- The guidance factor, LAMBDA
- The guidance gain, GUIDGN

These parameters are calculated with the updated geometry given by the program, that is, passed to the guidance law that generates an optimal command for the host. The pursuit loop can be closed automatically (as is done now) or by an actual pilot using a display screen.

3.3 Providing Target Maneuvers

At the beginning of the simulation, the pilot or the operator is asked the initial geometry of the scene. He must give the coordinates of the target relative to his starting position. The host starting position is taken as the origin of the grid. The target maneuver is detemined by its initial turning angle command, or alternately, can be programmed as a sequence of commands.

3.4 Providing Different Types of Aircraft

Two possibilities are considered:

- Providing fixed pre-defined types, chosen in a menu, or
- Providing ad libitum types under reasonable limits

Choosing pre-defined types could ease the initialization procedure for the user but, on the other hand, ad libitum types allow an infinite range of

(Sst = anticipated Sstick in order to shoot the target next st).

= HOST AIRCRAFT

= TARGET AIRCRAFT

K_T= ANGLE TRACKER GAIN

T= ANGLE TRACKER TIME CONSTANT

PAGE IS

FIGURE 3-5 Flight Path Geometry

rota	stion correspondence	Basic relations
ν _τ Ψ Ψ _τ R	= VELOCITY = TVELOCITY = PSI = TPSI = RANGE = NEWSIGMA	geometry R $\sigma = V \sin(\sigma - \psi) - V_T$ proportional guidance
	·	A = y a

to Man The MAIN SET OF COURTS

ORIGINAL PAGE IS OF POOR QUALITY

aircraft but require more work from the user. An operation manual may be suitable but a decision has not yet been made.

3.5 Proportional Navigtion

Proportional navigation tries to keep the proper lead angle from host to target aircraft always forcing the host line-of-sight rate, $\mathring{\sigma}$, to zero. It determines the host aircraft velocity vector turning rate which is proportional to the line-of-sight rate. The host aircraft velocity heading, $\mathring{\delta}_{\mathsf{H}}$, changes until R $\mathring{\sigma}$ becomes zero. The most important component of this computation is the accurate measurement of the spatial line-of-sight rate.

The aircraft is assumed to have a large accurate antenna used to give line-of-sight information and is assumed to be space stabilized using free gyros. We will further assume that the antenna is slaved to keep its axis perfectly aligned with the gyro axis, so we will not have to model gimbal and torquer dynamics. Initially, no noise on the steering signal is assumed.

The proportional relationship between $\sigma_{\mathbf{H}}$ and $\delta_{\mathbf{H}}$ is constantly readjusted by the closing rate as determined from the changing geometry. The relative velocity is divided by the host aircraft velocity and multiplied by the assumed Λ of 4.0.

> steering gain

 V_R closing rate along R

V_{HR} host aircraft closeing rate along R

σ line-of-sight

η look angle

y velocity vector direction

turning rate

TARGET
AIRCRAFT

REFERENCE

AIRCRAFT

$$\dot{\delta}_{H} = \lambda \dot{\nabla} = \Lambda \dot{\mathcal{L}} \dot{\nabla} = \Lambda \frac{V_{R}}{V_{HR}} \dot{\nabla}$$

$$= \Lambda \left[\frac{V_{H} \cos \gamma - V_{T} \cos A}{V_{H} \cos \gamma} \right]$$

4.0 SPIN WARNING SYSTEM

South the second

Mr. Philip Chan fixed Team #1's breadboard voice generator using the SC-01 chip. During early February he had the breadboard speaking words and phrases using phonemes programmed into the system using a CRT keyboard. He is programming the works and phrases contained in the SWS matrix shown in table 4-1. The phoneme method of generating words used by the SC-01 chip appear to be a flexible and feasible method.

TABLE 4-1 STALL WARNING & COMMAND TO RECOVERY

Rate DC ±10	Discrete 1	Discrete 2	Discrete 3	Discrete 1,2,3
	ASYMMETRIC THRUST			
YAW RATE	AB BLOWOUT	AB STALL	MIL STALL	SYMMETRIC THRUST (NO BLOWOUT OR STALL)
Less than 40 ⁰ /sec	"Unload" If IAS < 150 KTS "Left or Right ' (Lighted AB) Engine Mil"	"Unload" "Left or Right (Stalled) Eng Idle" If IAS < 175 KTS "Left or Right (Unstalled) Eng Mil"	"Unload" ' If IAS < 150 & Altitude < 15K "Left or Right Eng ' Idle" (Unstalled Eng)	No Warning
Less than 50 ⁰ /sec but greater than 40 ⁰ /sec	"Unload" "Left or Right Engine Idle"	"Unload" "Both Engines Idle" .	"Unload" "Both Engines Idle"	"Unload"
Greater than 50 ⁰ /sec	"Left or Right (Lighted AB) Engine Mil" "Stick Full Left or Right" "Stick Full Fwd"	"Both Engines Idle" "Stick Full Left or Right" "Stick Full Fwd"	"Both Engines Idle" "Stick Full Left or Right" "Stick Full Fwd"	"Stick Full Left or Right" Push Stick into turn

IAS DC 0-10 ±10

Stick Pos Pitch ±IOU

Roll ±10U

Angle of Attack AOA = Lateral Acceleration

Absence of

 $ALT = \pm 10V$ to 50KUNLOAD = TN g's \rightarrow 1g

IAS = Indicated Airspeed

(in knots)

AOA < -10° and Ay > .1g "Stick Half-Aft and Hold": then; If AOA> O for 5 sec "Recovery Complete".

After any warning from table above:

If Yaw Rate <40°/sec for two second "Center Controls".

Either engine above 1215° (EGT turbine limit temp) for 3 sec "Left" or "Right Engine Off"

If Yaw Rate <30°/sec for two seconds & Airspeed > 120 Kts "Recovery Complete"

5.0 ACTIVITIES PLANNED FOR NEXT (LAST) QUARTER

The Air Data System software should be completed and tested using simulated sensor signals through the analog-to-digital converter card. The ADS software should be available for NASA Dryden to use on their flight simulator by the end of May 1983.

The on-board simulator will integrate the three degree-of-freedom (3 DOF) equations with the intercept algorithms. Emphasis will be placed on generalizing the OBS to tasks other that the air-to-air intercept mission currently programmed.

The Spin Warning System effort being done by the team #2 will provide a final research report to be incorporated in the Grant Final Report produced in May 1983. Mr. Chan will continue working on the Team #1 and will implement the PASCAL-based software on the 68000 microcomputer and integrate the software with the SC-01 voice generator.

APPENDIX A

ON-BOARD SIMULATOR

TEAM #1 FINAL REPORT

ORIGINAL PAGE IS

ON BOARD SIMULATOR

FOR

AIR TO AIR INTERCEPTOR .

PROJECT BY:

Jeffrey Bluen,

Mehdi Namakian,

Charles Saleh,

Jean-Francois Soulard.

INTRODUCTION	1
DESCRIPTION OF ON BOARD SIMULATOR AND AIR TO AIR	
INTERCEPTOR	2
ON BOARD SIMULATOR ARCHITECTURE	5
AIRCRAFT DYNAMICS	7
Basic Equations	10
Study of Turning	11
A Priori Limitations	12
SUMMARY OF THE OBS PARAMETERS	13
BUILDING THE CONTROL LOOP	14
Final 3 - degree-of-freedom configuration	15
Root Locus Hand Calculation	16
TOTAL Control Tool	28
LISTING OF AIRCRAFT 3 DOF SIMULATION	35
TRACKING EQUATIONS	37
Basic Relations	38
Algorithm	40
Examples	41
Limitations	42
EXPLANATION OF ENCOUNTER	44
Engagement Scenario	45
Listing of the Program and results	46
CONCLUSION	59

William A. William

INTRODUCTION

The project presented here is a synthesis of two subjects suitable for EE 560L, the graduate research course for Advanced Microcomputer Applications at the University of Southern California. The two original parts from which this work derives are:

- --- On Board Flight Simulator (Project #13.0)
- --- Air-to-Air Intercept Mode (Project #18.0)

The On Board Simulator part contains a three degree-of-freedom Aircraft Behavior Simulation, providing parameters used by the Interception procedure. These parameters could also be used for verifying closed loop performance before flight.

The Air-to-Air Intercept Mode is a software package integrated in the simulation process that generates a Target motion and performs a tracking procedure that predicts the most likely next target position, for a defined time step. This procedure also updates relative position parameters and gives adequate fire commands. The simulation of the input data, provided by an angle tracker, is done by pre-chosen programmed functions. This allows a wide range of target behavior as well as the full control of it when testing the procedures.

ON BOARD SIMULATOR

Preventing mishaps and saving tremendous amounts of money and time are the motivators for the construction of this 16-bit microcomputer simulation. The immediate benefits are derived from the fact that the On Board Simulator (OBS) is intended to use the existing hardware - aircraft flight computer. It can be easily reprogrammed to simulate different aircraft, and it also uses an inexpensive processor. It can provide parameters to check out the aircraft flight computer as an added side benefit.

The OBS in effect can use part of the host Aircraft's electronics to close the loop for the simulator thus spreading the computing load. A simulator of this type previously required the computing ability of much larger units and so large simulations were built justifying the greater computer expense. With the advent of the small, efficient, and computationally powerful 16-bit microprocessor, a new approach to simulation is possible. It can now execute the requisite equations in a real time sense enabling flight simulation in this hybrid configuration.

The On Board Simulator will be connected to the actual aircraft via the onboard computer and pilot commands. It will receive aircraft flight commands from the pilot, will simulate the aircraft dynamics and return to the aircraft flight computer updated parameters of the vehicle geometry.

Various aerodynamic and geometry equations can be programmed depending upon the type and model of aircraft being modeled.

The proposal to EE 560L included a 3 DOF of aircraft dynamics which would receive information from the pilot joystick as he appraises the engagement geometry seen on his video display. His input was a command to the host aircraft roll rate.

began with the high level language, PASCAL, three degree-of-freedom simulation of the dynamic parameters. The working model was designed and tested and results are included. The remaining step is to download to object code in the Motorola 68000 microcomputer. This has not yet successfully been done because of unavailability of the required software and hardware tools.

A preliminary program designed to test the CRT driver and A/D conversion is also included. It was not fully implemented. (See section on preliminary program.)

AIR-TO-AIR INTERCEPTION

The air-to-air interception procedure was implemented using different modules: a tracking process using both the parameters passed by the simulation and a target motion generator, that could be reprogrammed at one's will. According to the data provided by both the generator and the simulation,

A COMPANIES OF THE STATE OF THE

the next target position of the target is estimated and the optimal next position of the host aircraft is calculated.

ORIGINAL PAGE IS OF POOR QUALITY

 $\left(\delta_{st}^* = \text{anticipated } \delta_{slick} \text{ in order} + coshoot the target next <math>\Delta t$.

AIRCRAFT DYNAMICS

The focus of this project is the simulation of both the Host (H) and the Target (T) planes motions. The Host plane's pilot gives orders to his machine and we had to recreate the response of the instruments and the structure to these commands. That is why we need some fundamental Aircraft Dynamics results.

In this introducing short study, we only try to show very basic data about Aircraft maneuvers and the parameters on which the pilot can act. The equations and their computing are treated in the project.

I. THE PILOT'S COMMANDS:

To control the plane's motion, the pilot has three main mechanisms:

- --- The THROTTLE, commanding the thrust, that is the power given by the engine. For a definite aerodynamic configuration of the plane, at a constant altitude $Z=Z_0$, the throttle commands the speed of the plane.
- --- The stick, commanding the pitch, attack and roll angles by its action on the wing flaps.
- --- The rudder bar, commanding the rudder angle that directly acts on the yaw angle.

These three mechanisms interact very closely, in such a way that it is hard to point out the effect of one of them without looking over the two others. (see Figure 1)

CONTROL UNITS OF A SIMPLE AIRPLANE

ORIGINAL PAGE IS OF POOR QUALITY

BASIC EQUATIONS FOR AIRCRAFT DYNAMICS - CONSTANT ALTITUDE:

Our method of obtaining coordination is based on the fact that for a certain bank angle and true air speed, there is only one value of yaw rate $(\dot{\psi})$ for which coordination can be achieved (refer to objective of the project, Aircraft Dynamics, 2.2).

C(center of the Circle) 110211 = R

 V_m = tangential aircraft velocity

$$F_L$$
 $\sin \phi = m \frac{V_T^2}{R} = m \dot{\psi}^2 R = m V_T \dot{\psi}$

$$F_L \cos \phi = m g \implies tg \phi = \frac{V_T}{g} \dot{\psi} \implies$$

$$\dot{\psi} = \frac{g}{V_{T}}$$
 tg ϕ

Approximation used:

for
$$\phi < 20^{\circ}$$
 tg $\phi \simeq \phi \rightarrow \dot{\psi} \simeq \frac{g}{V_{T}} \phi$

STUDY OF TURNING:

ORIGINAL PAGE IS OF POOR QUALITY,

When a pilot wants his plane to turn, at a constant altitude, he must roll his aircraft. In order to cancel the effect of gravity the centrifugal force should be as shown below:

= roll angle

$$F_C = m w^2 r$$

with

m = mass of the aircraft

w = rotation speed

r = ray of the circle (or part of circle described by the plane)

BASTC EQUATIONS:

$$F_{Ly} = F_{C} \Rightarrow F_{L} \sin \psi = m w^{2} r$$

$$F_L \approx \frac{1}{2} \rho S V^2 C_z$$
, with:

$$F_{Lz} = mg = F_{L} \cos \psi = mg$$

$$\Rightarrow$$
 $F_L = m \frac{g}{\cos \psi} \Rightarrow n_z = \frac{1}{\cos \psi}$

$$\rho$$
 = volumic mass of air at Z=Z_O

$$S = lifting area of the plane$$

A PRIORI LIMITATIONS TO THE STMULATION MODEL:

Within the aerodynamic equations we can see that for a given roll angle, the turning rate is entirely defined.

That is why our model will only consider the roll rate as a variable and our pilot will only use the stick to control his airplane. Note that this is true only because we assume that the host aircraft and target aircraft are co-altitude.

We also have to be aware of the priori limitations existing on a turning manuever. The human body cannot stand more than a limited acceleration, measured in number of G's $(1G = 9.81 \text{ m/s}^2)$. This number is represented in the turning equations by n_z sometimes called the charge factor. In a turning configuration we showed that n_z was equal to $1/\cos\psi$; the following table gives the values of turning angles for different charge number, measured in units of G.

Value of n _z (G's)	Value of the turning angle *
8	84 degrees
7	83 degrees
6	80.5 degrees
5	79.5 degrees
4	77 degrees
3	75.5 degrees

^{*} Note that these angles are lowered by Aerodynamic considerations not taken into account here.

Summary of the OBS

parametres	•	

Lype	designation	symbol	uther usual symbol
Inpul	Lateral stick position	Set	
Data.	True airplane velocity	V	TAS
Output	Roll rate Roll angle Turning rate Turning angle	φ φ ψ γ	P

Important Assumptions

Z = Z : we stay at a constant altitude

 $\alpha = \text{constant} \Rightarrow \frac{\partial C_3}{\partial \alpha} = 0 \Rightarrow C_3 = \text{constant}$

 $\beta = 0$: we turn without stiding.

BUILDING THE CONTROL LOOP:

The pilot acts on the stick by giving it an angular displacement $\delta_{\rm ST}$, that drives the wings ailerons to an angular displacement $\delta_{\rm a}$ that creates a banking moment. This moment is proportional to the rolling acceleration $\ddot{\phi}$, and the diagram leading to $\dot{\phi}$ is the following:

When we have $\dot{\phi}$, we can use the formula: $\dot{\psi} = \frac{g}{V_T} \, \mathrm{tg} \, \phi$, to calculate $\dot{\psi}$. For this, we need first to integrate $\dot{\phi}$ then we assume that $\mathrm{tg}\phi \, {}^{\approx} \, \phi$, which is true for the small angles, and our formula becomes: $\dot{\psi} = \frac{g}{V_T} \, \phi$. The diagram between $\dot{\phi}$ and $\dot{\psi}$ is:

These diagrams do not take into account the delays that can occur in the commands. We tried to figure it by using the following control diagram:

PILOT
$$\xrightarrow{\delta_{ST}}$$
 $\xrightarrow{K_2}$ $\xrightarrow{\phi}$

with the pilot being modelized as:

$$\begin{array}{c|c}
E & K_1 & (T_1S + 1) \\
\hline
T_2S + 1
\end{array}$$

FINAL 3-DOF SIMULATION CONFIGURATION:

This is the final control loop description for the three degree-of-freedom simulation in PASCAL. It has an added rate damping path with gain ${\rm K}_5$ and is shown to be stable in the following root locus analysis. The first order lag acting on the stick command models the time delay in the dynamic reaction of the aircraft to the commanded rolling moment.

The lag was previously placed with the aerodynamics but concern has arisen over the aircraft roll angle during its maneuvers. For accurate modeling and evaluation of possible limiting it was determined that the lag should delay the roll rate and not the turning rate.

In evaluating the roll limiter it is noted that without any limiter on the roll angle it grows to 4.2 radians at time equals 1.5 seconds. This is clearly unrealizeable so a shunt limiter was placed on roll angle limit. Attached plots of heading, roll angle, and roll rate for both unlimited and limited cases clearly depict this situation and solution.

Starting with the system:

In order to determine a suitable gain $(K_1 \bullet K_2)$ a root locus analysis was performed on the open loop transfer function KGH:

$$KGH = \frac{K(S + 2.5)(S + .5)}{S^2(S + 4)(S + 2)}$$

Where

$$\tau_1 = .4$$
 $\tau_2 = .25$
 $\tau_3 = .5$
 $K_4/K_5 = .5$
 $K_4 = 1$
 $V = 200 \text{ m/s}$
 $q = 10 \text{ m/s}^2$

Two methods were used to determine the optimal gain, the first is a hand calculation and the second corraborating analysis was performed using an interactive computer aided design tool called TOTAL which derives from the USAF E_glin base.

$$KGH = \frac{K (S + 2.5) (S + .5)}{S^{2} (S + 4) (S + 2)}$$

Find the root locus asymptates.

$$\overline{OA} = \frac{4+2-(2.5+.5)}{2} = \frac{6-3}{2} = \frac{3}{2}$$

2. Find the root locus "real" value as it crosses the line +j.
The phase angle criterion yields: for (-1+j)

=
$$[90^{\circ} + \tan^{-1}(\frac{.5}{1})] + [\tan^{-1}\frac{1}{1.5}] - 2[135^{\circ}] - [45^{\circ}] - [\tan^{-1}\frac{1}{3}]$$

3. Use the magnitude condition to find K at (l±j)

$$1 = |KGH| \Rightarrow K = \frac{1}{|GH|}\Big|_{S=-1+i}$$

$$K = \frac{(\sqrt{1+1})^2 \sqrt{3^2+1^2} \sqrt{2}}{\sqrt{1+(1.5)^2} \sqrt{1+.5^2}}$$

$$= \frac{2\sqrt{2} \sqrt{10}}{\sqrt{3.25} \sqrt{1.25}}$$

4. To find the roots that correspond to K = 4.44

Choose a value on the real axis and compute its K value.

Say
$$S = -3.5$$

$$K = \frac{(-3.5)^2 (-3.5 + 4) (-3.5 + 2)}{(-3.5 + 2.5) (-3.5 + .5)} = \frac{12.25 (.5) (+1.5)}{(1) (3)} = 3.06$$

This is too small an S value

Say
$$S = -3.0$$

$$K = \frac{(-3.0)^2 (-3.0 + 4.0) (-3.0 + 2.0)}{(-3.0 + 2.5) (-3.0 + .5)} = \frac{9 \cdot 1 \cdot 1}{(.5) (2.5)} = 7.2$$

This is too large an S value

Say S = -3.35

$$K = \frac{(3.35)^2 (+3.35 - 4.0)(3.35 - 2.0)}{(3.35 - 2.5)(3.35 - .5)} = \frac{11.22 (.65)(1.35)}{(.85)(2.85)} = 4.06$$

$$s = -3.3$$

$$K = \frac{(3.3)^2 (-3.3 + 4.0) (3.3 - 2.0)}{(3.3 - 2.5) (3.3 - .5)} = \frac{10.89 (.7) (1.3)}{(.8) (2.8)} = 4.42$$

Trying a similar point for the other pole zero pair which moves an equal distance:

$$s = -1.26$$

$$K = \frac{(1.26)^2 (-1.26 + 4.0) (-1.26 + 2.0)}{(-1.26 + 2.5) (1.26 - .5)} = \frac{1.59 (2.74) (.74)}{(1.24) (.76)} = 3.42$$

$$s = -1.0$$

$$\kappa = \frac{1}{(1.5)} \frac{3}{(.5)} = 4.0$$

$$\frac{.9^2 (3.1) (1.1)}{(1.6) (.4)} = 4.3$$

$$s = -.78$$

$$\frac{.78^{2} (-.78 - 4.0) (-.78 + 2.0)}{(-.78 + 2.5) (-.78 + .5)} = \frac{.608 (3.22) (1.22)}{(1.72) (.28)} = 4.96$$

en gard sampled

YTIJAUO ROSS, 35 ORIGINAL PAGE IS OF POOR QUALITY

Since
$$K_G = \frac{K_1 K_2 g}{V \tau_3 \tau_2}$$

and
$$K_{\mathbf{H}} = K_5$$

If poles are at -3.3, -.9, (1+j) K = 4.44

What is the gain for design?

$$K \quad 4.44 = \frac{\tau_1}{\tau_2 \tau_3} \frac{K_5 K_1 K_2 \ g}{V} \qquad \tau_1 = .4$$

$$= \frac{.4}{.25.5} \frac{2 \ K_1 K_2}{20}$$
10

=
$$.04 \cdot 8 K_1K_2 = .32 K_1K_2$$

$$\frac{4.44}{.32} = K_1 K_2$$

$$13.875 = K_1K_2$$

Checking by plugging in values:

$$G = \frac{\overset{K}{K_1}\overset{\frown}{K_2}g}{V \ S^2} \quad \frac{(\tau_1 \ S + 1)}{(\tau_2 \ S + 1) \ (\tau_3 \ S + 1)} = \frac{\overset{K}{K_1}(S + \frac{1}{\tau_1})}{\tau_3\tau_2(S + \frac{1}{\tau_2}) \ (S + \frac{1}{\tau_3})}$$

$$H = K_5 (S + \frac{K_4}{K_5})$$

$$\frac{4(s)}{4_{C}(s)} = \frac{G}{1 + GH} = \frac{K \tau_{1}(s + \frac{1}{\tau_{1}})}{\tau_{3}\tau_{2}s^{2}(s + \frac{1}{\tau_{1}})(s + \frac{1}{\tau_{2}}) + K \tau_{1}(s + \frac{1}{\tau_{1}}) K_{5}(s + \frac{K_{4}}{K_{5}})}$$

$$= \frac{K \tau_{1} (s + \frac{1}{\tau_{1}})}{\tau_{3}\tau_{2} s^{2} (s^{2} + \frac{1}{\tau_{1}} + \frac{1}{\tau_{2}}) s + \frac{1}{\tau_{1}\tau_{2}} + \underbrace{K K_{5} \tau_{1} (s^{2} + (\frac{1}{\tau_{1}} + \frac{K_{4}}{K_{5}}) s + \frac{K_{4}}{\tau_{1}K^{5}})}_{X}$$

$$= \tau_3 \tau_2 \ S^4 + \tau_3 \tau_2 \left(\frac{1}{\tau_1} + \frac{1}{\tau_2}\right) \ S^3 + \frac{\tau_3}{\tau_1} \ S^2 + \underbrace{K \ K_5 \ \tau_1}_{X} \ S^2 + X \ \left(\frac{1}{\tau_1} \ + \frac{K_4}{K_5}\right) \ X + \frac{X \ K_4}{\tau_1 K_5}$$

$$\Rightarrow$$
 K = $\frac{13.9 \times 10}{200}$ = .695

$$X = K \cdot K_5 \tau_1 = .695 \times (2) \times .4 = .556$$

$$= \frac{\frac{K \tau_{1}}{\tau_{3} \tau_{2}} (S + \frac{1}{\tau_{1}})}{S^{4} + (\frac{1}{\tau_{1}} + \frac{1}{\tau_{2}}) S^{3} + (\frac{\tau_{3}}{\tau_{1}} + K K_{5} \tau_{1}) S^{2} + K K_{5} \tau_{1} (\frac{1}{\tau_{1}} + \frac{K^{4}}{\tau_{5}}) S + K K_{5} \tau_{1} (\frac{K^{4}}{\tau_{1} K_{5}})}$$

$$= \frac{\frac{(.695) (.4)}{(.5) (.25)} S + \frac{1}{.4}}{S^{4} + (\frac{1}{.5} + \frac{1}{.25}) S^{3} + \frac{.5}{.4} + .556}{(.5) (.25)} S^{2} + \frac{.556 (\frac{1}{.4} + .5)}{(.5) (.25)} S + \frac{.556 (\frac{.5}{.4})}{(.5) (.25)}$$

$$= \frac{2.22 (S + \frac{1}{.4})}{S^4 + 6 S^3 + 14.4 S^2 + 13.3 S + 5.56}$$

This is similar to the computer's TOTAL answers.

46 1323

 ℓ^{\prime}

Men Control Sunch To Grones

OF POUR CUALITY

46 1323

KOE 10 X 10 TO 13 INCH 1 X 10 INCHES KEUFEL & EESER CO MADE IN USA

13.73

1. 10 11.17 11. 4 ESSAR C.

111

ANALYSIS

The user package called TOTAL is an easy way to analyze control loops. One enters in G(s), then H(s) and from there performs requested options interactively.

NET 172040 PLEACE GION ON KWE,LOSO7LA 02/10/20. 00.54.35.

WESTERN CYDERNET CENTER SN105 CY 176 NOS 1.3H/477.769

PACCUORD

PREPER

TERMINAL: 122, TTY

PLEASE CHANCE YOUR CUC SUPPLIED MASSWORD.

RECOVER /SYSTEM: DATCH

#RFL, C.

Ð

NOTICE - PLEASE SEE EXPLAININEWS

******* COLIN USERS *******
QUESTIONS OR PROBLEMS, CONTACT:
CAPT DENNIS DIDALEUSKY
AD/SDES-A (2-5678/2-5669)

The general options categories available are:

S AN INTERACTIVE COMPUTER-AIDED DESIGN PROGRAM GITAL & CONTINUOUS CONTROL SYSTEM ANALYSIS. MTAINS 160 OPTIONS DIVIDED INTO GROUPS OF 10 RDING TO GENERAL APPLICATION.

JONS ENDING IN O LIST THE NEXT TO UPTIONS, A EXAMPLE, OPTION 30 LISTS OPTIONS 30 THRU 39.

THE FOLLOWING ARE THE MALN OPTION GROUPS:

0-9: TRANSFER FUNCTION INPUT OFTIONS

10-19: MATRIX IMPUT OFFICES

20-29: BLOCK DIAGRAM MANIPULATION OPTIONS

30-39: TIME RESPONSE OFTIONS

40-49: ROOT LOCUS OPTIONS

50-59: FREQUENCY RESPONSE OFTIONS

60-69: POLYNOMIAL OPERATIONS

70-79: HATRIX OF SEATIONS

80-89: DIGITIZATION OFFICAS

90-99: OPTIONS OF MARTICULAR INTEREST

100-109: MURE TRANSFER FUNCTION INPUT OFFICES

110-119: MORE MATRIX OFTIONS

120-129: MORE BLOCK DIAGRAM MANIFULATIONS

130-139: STATE TRANSITION SIMULATION OPTIONS

140-149: DOUBLE-PRECISION DISCRETE TRANSFORM OFFILMS

150-159: MULTI-RATE FREQUENCY RESPONSE OPTIONS

The input open loop transfer function is as follows:

```
DIFF GAINAC BERKZOLOK AS
                                        2.000
                       G∆I#=
                              1.000
                      OLIF(S) NUMERATUR
         UI.NFOLY(I)
                                         OLZERO(I)
         2 000 )5#1 2
6,000 )5#k 1
                                -.5000
     (
                                          ) + J( ).
                             ( -2.500
     (
                                          2.500
                                       OLTE(S) DENOMINATUR
        OLDFOLY(I)
I.
                                         OLFOLE(I)
        1.000
                                 Ü.
                 )5** 4
                                           ) + J( 0.
         3.000
                 )S** 3
                                 0.
                                           ) + 1(
                                                  0.
                 )S** 2
                                 -2.000
         8.000
                                           ) + 1(
                                                  0.
       O.
                 )S** 1
                                 -4.000
                                          ) L + (
                                                  O.
       .
                                       OLDK= 1.000
```

and the root locus options are:

```
OPTION :
2 40
 C(0.42)
        THE RECORDS HELLTONS
         THE TRAME OF FOR SHELAKE, TRAMP=SAMPLE TIME FOR Z-PLANE)
 1. 10 .
         LIST OPTIONS
         GLARKAL ROUT LOCUS
 1. 41
 ¥ 42
         ROUT LUCUS WITH A GAIN OF INTEREST
         ROOT LOCUS WITH ZETA (DAMPING RATIO) OF INTEREST
× 43
* 44
         LIST N FUINTS ON A BRANCH OF INTEREST
         LIST ALL POINTS ON A BRANCH OF INTEREST
# 45
 K 46
         LIST LOCUS MUOTS AT A GAIN OF INTEREST
         LIST LOCUS ROOTS AT A ZETA OF INTEREST
 * 47
¥ 48
         PLOT ROUT LOCUS AT USER'S TERMINAL
         LIST CURRENT VALUES OF ALL ROOT LOCUS VARIABLES
水 49
      TYPE: HELP,49 FUR DEFINITION OF ROOT LOCUS VARIABLES
```

A CALCUMP PLOT FOR OPTIONS 41,42,43,4 48 MAY BL OBTAINED BY TYPING: PLOT,41 OR PLOT,42 ETC.

OPTION . ? 41

OPEN-LOUP (OLTF) ROOT LOCUS USING OFFICH (48.1.35)

1 1 19 800 1 P

ORIGINAL PAGE IS OF POOR QUALITY

4	101.1	TS AT .			
	X =	0.	Y	≈	0.
	Χ -	0.	Y	= :	0.
	Χ =	· 2.0000	Y	==	0.
	X ==	-4.0000	Y	==	0.

GAIN CONSTANT (OLNK/OLDK)= 2.0000000

±t:	REG10N		:JABA-MOITAJUDJAD :CAMI. :************************************	CC= DD=	-3.00	TO	BB= 3.	00
1	•				* -	*******	+	#
4:			-	-	* -		+	4
₩.		•••	-		* -		†	#
41·		_	-	-	* * *×		T.	Ŧ
# #:		<u>, </u>			ጥጥ 		т 4	# 1
#			-	••	* -		+	4
. #		-	-	-	**-		+	4
C .	,	***	-	-	*-		+	#
#		-	-	-	**		+	\$
#			-	-	*	, 	}	#
#						**	†	
-10· ±1.			<u>-</u>		,	***	1	ti L
#			-		•	***	+	#
1		_		•••		*		
4		-	**	_	-		* :	7
∦.	++++++	+×*	++++0********	X***	: *F***	(十十十十 ₁)	X++++++	+++
#			_		-	:	* :	ë
#					•••	*	†	ï
1.				•••	-	**	<u>}</u>	1
4		•		•••		* *** •	}	*
4) 4)				•	 	** **	r 1	
#					*:	,, .,.	•	#
#		-	· 	-	**	•	∳	#
41			-		*-		} -	
#		••	-	•••	**-	-	<i>t</i>	#
4)			-		* -	•	ļ .	4
#					- *			
#			-		** -	•	}	\$
11		•			* -		}	#
i.		-			 	•	}· •	H
-			•	-	* - 	;	Γ •	i.
17 11 1	hag granara na na	п.н. в.			* ** *********************************		: kakakakaka	. j
W 1		₽ 4F ∰	**********		* *** * * *	******	*******	. + -

URID SCALF: X-AXIS: 1 INCH- 1.0000 Y-AXIS: 1 INCH- 1.0000 The four branches plotted in the root locus are tabulated enabling choosing a desired gain or damping ratio.

REGION OF CALCULATION REAL! CC = 0.30 TO AA = 1.00 DD---3.00 :LAMI TO BB = 3.00

BRANCH STARTING AT (0.) + 1(0.) TYPE L 10 LIST, 5 TO SKIP, OR \$ TO ABORT :

i..

ORIGINAL PAGE 13 OF POOR QUALITY

GREACH NUMBER

COLCULATION SIEP SIZE = .1000 PRINTING STEP SIZE = .1500

LOCUS REAL	LÜÇUS JMAG	nist to origin	unIN	ZETA	Cu
C ₁	().	.10000000F-02	O.	1.00000	1
.s/ 0047E-01	19664590	.19933076	1.14314	.16358	i)
.1 :: (28	37332331	.39372087	. 53487	.31770	ζ.
.: HUB2	51722892	.58042375	.001806	.45377	C,
. 4. V (27 84	62547910	.76115130	1,29023	.56412	,
140439 384	72527393	• 94409433	1,63649	.34018	0
. 1/530167	.84347115	1.1300369	1.90077	.47197	•
)_1500 0393	-1.0000199	1.3330861	2.11917	.66443	٠,
V 9623588	-1.1770 49	1.5324157	1.42431	.63967	()
1.7534092	-1.3013700	1.77731030	2.73555	.61076	0
1.1127007	1.5550569	1.7121467	3.00171	.50171	٠,
1.1341248	-1.7403210	2.1004321	3.46004	.55423	()
1.2031138	-1.7434155	2.2883203	3.07215	.52770	()
1.0456270	-2.1370304	2.4760026	4.31507	.50300	٥
1.2774370	- 2.3373017	2.4636356	4.79207	.47960	ð
1.3044925	-2.5354671	2.8513671	5.30470	.45750	0
1.3273030	-2.7341506	7.0373270	5.00070	.43674	0
-1.3468247	-2.9332019	3.0078321	6,43387	.41728	$t\rangle$
1.3554344	-3.0323305	3.3217367	J.73920	.40803	Ç
กตบหาก	ARY				

BRANCH STARTING AT (0.) + J(0.)

TYPE 1 TO LIST, S TO SKIP, OR \$ TO ABORT >

TRANCH STARTING AT (-2.) F J(0.) TYPE L TO 1851, S TO SKIP, OR \$ TO ABORT >

BRANCH NUMBER

CALCULATION STEP SIZE = .1000 . PRINTING STEP SIZE = .1500

LOCUS REAL	LOCUS IMAG	DIST TO ORIGIN	CAIN	ZETA	cp
-2.0000000	0.	2.0000000	0.	1.00000	1
1.3000000	0.	1.8000000	.703297	1,00000	0
1.3000000	0.	1.6000000	1.24121	1.00000	0
1.4000000	_	1.4000000	1.54424	1.00000	0
-1.2000000	0.	1.2000000	1.77231	1.00000	0
1.0000000	0.	1.000000	2.00000	1.00000	9
.30000000	0.	.3000000	2.40241	1.00000	₽
	0.	.3000000	4.50947	1.00000	\circ
50000000	0.	.150000000	0.	1.00000	•
BRANCH STARTIN	NG AT (-4.) + J	(0.)			
TYPE L 10 LIST	TU SKIP, O	R \$ TO ABORT >			

CLZERO(I)

BRANCH JUNGER

CALLULATION SHIP STZE --PRINTING STEP SIZE -.1500

LOCUS REAL	LOCUS IMAG.	DIST TO ORIGIN	DAIN	ZETA	cn
1.0000000	0.	4.0000000	> .	1.00000	:
+3000000	O. C. see many	3.8000000	.305874	1.00000	()
3 ,300 0000°	0.	3.400 00 00	1.21619	1.00000	:)
3.4000000%	13 0. 2	J.4000000	1.86023	1.00000	
J.2000000	Ģ.,	3.2000000	2,40063	1.00000	,
J.0000000	0.	3.0000000	3.30000	1.00000	
2.8000000	O •	2.8000000	5.45391	1.00000	
-2.6000000	0.	2.6000000	13.5200	1.00000	Q
2.5000000	0.	2.5000000	٥.	1.00000	•••

Choosing the gain to be 2.2 yields a closed loop transfer function as follows: Note that this matches the hand calculation.

CLOSED-LOOP TRANSFER FUNCTION

CLK= (CLNK/CLDK)= 2.200

CLTF(S) NUMERATOR

T.		CLNFOLY	(1)			CLZERO(I))	
1	(2.200)S** 1	(-2.500) + J(0.)
2	(5.500)		CL	.NK≈ 2.	.200	
			CLTF(S) DENO	MINATOR			
r		CLDPOLY	(I)			CLFOLE(I))	
1	(1.000) 5米米 4	(9089) t d(1.034	>
9	Ċ	4.000)S** 3	(-,9089) L + (1.034)
3	i	12.40)S** 2	(8790) t + (0.)
4	Ċ	13.20)S** 1	(-3.303) t (0.)
5	Ċ	5.500)		CI	INK≈ 1	.000	

The unit step response follows as does the frequency response.

00U-01 2E-01	++++++++		-	1+0+1+49/19 0		+++++++++
%F-01		•	-	0.		-
116 01				Ü .	QRIGINAL	
38-01	+	_	-	Ö	OF POOR	QUALITY
'8E-01	+	_		Ö	•••	-
0E-01	+			0		
4E-01	+		••	Ö	••	Ф1
1401	<u>.</u>			Ō		-
LE-01	+		-	0-		. .
JE-01	+	-	•	0-	_	
SE-01	+			-0		
8E-01	+	<u>.</u> .		0-	-	-
7E-01	+		•	i)		**
1E-01	4	<u> </u>	.	0-	-	-80
2E-01	·			-0		
1E-01	+	<u>. </u>	•	0-	-	-
8E-01	+			0		-
4E-01	+		· ()		
1E-01	}		- 0) -		-
0E+00	+)		
2	+	- - -)' -	-	-
6	+	-)	-	-
1	+		. 0	•	•••	-
8	+	-	· U	• -	**	
8 ,	+		. 0	••		**
0	+		0			
4	+		. 0	-	~	-
1	+	•	· 0	•	mas .	-
2	+	-	. 0		-	-
6	+	-	· O	-	***	-
5	+		0			
3	+		O	•••		-
7	+		· _ O			***
1	†		D	-	~	****
2	+					
1	1	- 0 ··			~	
_	1 .	- O -			-	
4	†			****		
<u>l</u>	↑	- 0 -			-	*
<u>)</u>	†	· - O				.4.
2		···			•••	*
3 1	+ 0 -	-		-	_	- *
i .		*- -			-	- 本 セ
	+ 0 - + 0 -				_	* * -
	, , ,					4. -
, ,	,					
	7 .			•••	- * -*	
2	, . L	_				- O
: , •	▼ -			·· *	, 	- 0
	, 			ጥ 		
, }	r			*		- ()
, ,	, 1	- •·	k	# 		- 0
	•	_ =	*	-		- 0
· }	,				-	- U
•	, <u> </u>		4			0
: -	- L	- # -		•		0
	-	- * 				U

```
FORGULAR ,SIMALMAKATOUT FOUR PUT F
  86568
             有翼型,自动人们的第三节。
  00300
  00100
           CONST
                                            ORIGINAL PAGE IS
              PSIC WO.U#
  00500
              CONSTL =1.0;
  00500
                                            OF POOR QUALITY
              CONCT2 = 13.75;
  02000
              GRAU = 10,0%
  CORRESPOND
              VELUCITY = 200.0;
  00700
              CONST4 - L.O.
  0.1500
  01100
              CONST5 = 2.00;
  01200
              TAU1 = 0.40;
  01300
              TAU2 = 0.256
              TAU3 = 0.50;
  01100
  01500
              TFINAL = 10.0
  01300
              N = 51
  44700
              FUILIM = 1.57;
                                 (* ENTER IN RADIANS *)
  41000
  011100
              WORD = PACKED ARRAY E1..103 OF CHAR;
  0.000
              RANGE = ARRAY [1..4] OF REAL?
  02100
              ABSCISSA " ARRAY [1..1001] OF REAL?
  95500
              ORDINATE - ARRAY [1..1001,1..2] OF REAL?
  02300
  02400
           보수단
  02500
              EPS, LEADX, LEADXD, DELT, DELTD, PHI, PHID, PHIDD, PSI, PSID, T: REAL;
                : ARRAY [1..10] OF REAL;
  02600
              I : ARRAY [1..10,1..2] OF REAL;
  02700
  02800
              RANGE1 : RANGE;
              PLOTESI : ORDINATE ;
  02200
              TIME : ABSCISSA;
  03000
  03100
              IY, P, M : INTEGER;
              IOPT, ICR : INTEGER;
  03200
  03300
              PRINTI : INTEGER;
              X,J,K : INTEGER;
  03400
  03500
              XCH, ICHAR : CHAR;
  03600
              PLOTIME : INTEGER;
  03700
              NLETTERS: INTEGER;
  03800
              TITLE,XWORD,YWORD : WORD;
  03900
              DELTAT : REAL;
              INC : INTEGER;
  04000
  04100
  04200
  04300
  04400
  04500
          BEGIN (* MAIN PROGRAM *)
              TITLE := 'PSI OF A/C';
  04500
  04700
              XWORD := 'TIME
                                    / ý
  04800
              YWORD := 'PSI
                                    / ÿ
  04900
              T := 0.0;
  05000
              LEADXD := 0.0;
              DELTD := 0.0;
  05100
  05200
              PHID := 0.0;
  05300
              PHIDD := 0.0;
              PLOTIME := 1;
  05400
  05500
              PSID :=0.0;
              PRINTI := O;
  05600
 05700
              LEADX := 0.0;
              DELT := 0.0;
 05800
 05900
              PHI := 0.0;
 06000
              NLETTERS := 10;
              XCH := 'X';
 06100
 06200
              IOPT := 0;
              DELTAT := 0.01;
 06300
 06400
             IY :=101;
06500
             P := 18:65
```

_)

```
M : # | ;
          <u>08800</u>
                                             36
                     FOR K; "1 TO 4 DO
         06/00
                                                      ORIGINAL PAGE IS
                         RANGELEKI := 0.0;
         06000
                                                     OF POOR QUALITY
                     PSI := 0.0;
         06900
                      WHILE T <= TFINAL DO
         97000
                      BEGIN
         07100
                         (* SET THE DERIVATIVE EQUALISMS *)
         07200
                         EPS : PSIC - CONST4*PSI-COADELLERSIGE
         07300
                         LEADXO := (EPS#CONST1- LEAD > / CAU2)
         07400
                         DELT :- LEADX !LEADXD*TAULF
         07500
                         PHILDD := (DELT*CONST2-PHID) (11033)
         07600
                         PSID := (ORAV/VELOCITY) *PHLF
         07700
         07800
                         (* SHUNT LIMITS THE AIRCRAFT ROLL AND NOT A)
         07900
                         IF (PHIXPHID > 0.0) AND CASSCORI) FROITHIM) THEN PHID : TO.0
         08000
: }
         08100
         08200
                         (% ACSION %)
         08000
                         IC1,13 := LEADX ;
         08400
                         IC1,23 := LEADXD ;
         08500
                         IC2,13 := DELT ;
         08300
                         IC2,23 := DELTD ;
         08700
                         IE3,13 := PHID;
         00030
                         IC3,2] := PHIDD;
         08900
1)
                         [[4,1] := PHI ;
         J9000
                         IE4,2] := PHID;
         09100
                         IC5,13 := PSI ;
         09200
                         PLOTPSICPLOTIME, 1] := PSI;
         09300
                         IC5,21 := FSID ;
         09400
         09500
                         (* INTEGRATION *)
         09600
                        FOR J := 1 TO N DO
         09700
                           OCUJ:= ICU,13 + ICU,23 KDELTAT;
         J9800
( )
         09900
                         (* REASSIGNMENT *)
         10000
                        LEADX := 0[1];
         10100
\pm
                        PHID:= 0[3];
         10200
                        PHI := 0[4];
         10300
                        PSI := 0[5];
         10400
         10500
                        (* PRINT OUT THE PARAMETERS EVERY (DELTAT#25) INTEGRATIONS
         10900
          *)
                        PRINTI := PRINTI + 1;
         10700
                        IF PRINTI = 1 THEN
         10800
                        BEGIN
         10900
         11000
                            WRITELNS
. 3
                           FOR X := 1 TO N DO
         11100
         11200
                                   WRITELN(T, ICX, 13, ICX, 23, OCX3);
                           WRITELN;
         11300
         11400
                           PRINTI:= PRINTI - 25;
         11500
                        END;
                        TIMECPLOTIME: := T;
         11600
                        PLOTIME := PLOTIME + 1 ;
         11700
         11800
                        T := T + DELTAT;
         11900
                     END;
         12000
                     ICHAR := 'X';
                     INC := 1;
         12100
                     WRITELN('SUCCESS');
         12200
         12300 .
                 END.
()
```

TRACKING, EQUATIONS

1. POSITION PARAMETERS:

Let V_m be the speed of the projectile fired on the pursuing host aircraft. The time taken to reach the target plane is $T = V_m/R$. During this amount of time the target plane moves of an angle δ equal to $\dot{\psi}_T.T$. That means that the projectile must be fired before $\psi_T \approx \psi_H$, exactly when $\sigma = \delta$. If we assume that a tracking system capable of giving the angular position of the target plane relatively to the host plane is available, the angular speed $\dot{\psi}_T$ can be computed as: $\dot{\psi}_T(t) = \frac{\psi_T(t+\Delta t) - \psi_T(t)}{\Delta t}$ for every step of time Δt .

2. BASIC RELATIONS:

ORIGINAL PAGE IS OF POOR QUALITY

In order to shoot the target as soon as possible, that is the next step of time, the next value of $\psi_{\rm H},$ must be:

$$\psi_{H}(t + \Delta t) - \psi_{H}(t) = \dot{\psi}_{H}(t) \times \Delta t$$

$$\begin{split} \psi_{\mathrm{H}}(\mathsf{t} + \Delta \mathsf{t}) &= \psi_{\mathrm{T}}(\mathsf{t} + \Delta \mathsf{t}) - \delta = \psi_{\mathrm{T}}(\mathsf{t}) + \dot{\psi}_{\mathrm{T}}(\mathsf{t}) \times \Delta \mathsf{t} - \delta \\ \\ \dot{\psi}_{\mathrm{H}}(\mathsf{t} + \Delta \mathsf{t}) &= \frac{\psi_{\mathrm{H}}(\mathsf{t} + \Delta \mathsf{t}) - \psi_{\mathrm{H}}(\mathsf{t})}{\Delta \mathsf{t}} \end{split}$$

We now need to generate a sequence of target positions, that is create the functions R and $\psi_{\mathbf{m}^*}$. Two ways were discussed:

- --- generating $\psi_{_{\mathbf{T}}}$ using the host plane parameters: the behavior of the target is conditioned by the behavior of the chaser. This is an approach very close to reality.
- --- programming functions $\psi_{\mathbf{m}}$ and R in an appropriate way. We assume that the planes are similar in performance, particularly in speed, so that the range between them can only differ of R of a small value $\Delta R.~\psi_{\mathbf{T}}$ must be a continuous function from TR $^+$ ——————————(O, 2 Π). The end of fight is determined by T_{max} , that in real case can be interpreted as a fuel shortage.

The last option was chosen for our project, because it allows us to implement easily (change of function) a different target behavior.

CALCULATION ALGORITHM

BEGIN..

END;

 $\delta(t) \leftarrow \delta(t + \Delta t)$

EXAMPLES OF TARGET MOTION GENERATION

$$\psi_{T}(t) = 2 \pi \cos 2 \pi t / t_{max}$$

$$2 \pi \sin 2 \pi t / t_{max}$$

$$2 \pi \left(\frac{t}{t_{max}}\right)^{2}$$

..... (must be continued)

$$R(t) = R(\psi(t)) = \begin{cases} -\psi_{T}(t) \\ a \ e \end{cases}$$
 (ellipse)
$$a \ (1 + \cos\psi) \qquad (cardioid)$$

$$a = constant$$

$$\cdot \cdot \cdot$$
(must be continued)

 $\Delta R(t)$ = periodic or aleatory function giving small values (max \simeq 10% . R). (Must not be continued as it is a small value)

LIMITATIONS

In order to stay close to reality, we introduced the following limitations: The host plane turning rate cannot be greater than (/20) radians/s, that is 9 degrees per second; the initial value of the target turning rate is set to 0.01 radians/s, that is 0.57 degrees per second.

CORRESPONDENCE ALGORITHM PROGRAM:

Algorithm	Program
$\psi_{f T}^{}(t)$	OPSIT
R	RANGE
$\dot{\psi}_{ m T}$ (t + Δ t)	NPSIT
δ	DELTA
Δt	DELTAT
$\dot{\psi}_{ m H}$ (t + Δ t)	HPSID
ψ _H (t)	PSI
ψ _H (t + Δt)	EXPPSI

A CARROLL MASS

ORIGINAL PAGE IS OF POOR QUALITY

In the computation of the tracking equations and anticipation parameters, converging results have been obtained with basic versions.

The "fire" order will be displayed each time ψ_H - ψ_T (= δ .

Different test cases and air fight scenarios have been programmed and the results are satisfactory (fire orders displayed within 10 seconds—see listings attached).

on the graph , the positions of the host and the target airplanes are plotted . Each number on the points represents a time step . The + marks are the series of predicted tracking angles placed with the base of the next attaching the arrow of the previous tracking vector . This allows us to see that the series of optimal angles are drawing a curve looking like the target trajectory . This is a verification of the tracking angle generation procedure . The points 6,7,8,9 of the host plane trajectory show the optimal angle relative to the actual position of the plane . This is the real case.

For each position of the aircraft the procedure gives the optimal angle the pilot has to command in order to shoot the target as soon as possible. As we can see on the graph, this command makes the plane point directly to the target.

The firing condition is determined by a "window" of + or - delta, delta being the lead angle depending on the range between the planes and the missile velocity.

ORI	GINAL	PAG	E IS	3. .
• 1 • . 1	POOR	1 ! '		1 11 1
	i [1.1; 1.]			

R = 1000. (1 + 0s uf.)

(f Erscking angles accumulated)

non corrected host (response to step in put)

 $\frac{\eta}{1} = 2\pi - 2\pi \cos 2\pi \frac{\omega}{\epsilon}$

PPS SCENERIO

LOB FHCT35 Rea #3576 for NETLFT Cate 1:-Jec-82 18:26:56 JOB PHCT3E Reg #3576 for NETLFT Cate 18-Dec-82 EEEEE ₿ EEEE BEE E FHCT35 Reg #3576 for NETLFT Cate 18-Dec-82 18:27:02 Monitor LOB PHCT35 Reg. #3576 for NETLFT Cate 16-Cac-82 18:27:02 Monitor for NETLET Õ PPPF P FPPP C Õ COC 333 555 SSSS PHCT35 Reg #3576 for NETLFT Cate 18-Dec-82 18:27:02 PHC135 Fea #3576 for NETLFT PHOT35 Rea #3576 for NEILFT Cate 18-Dec-82 18:27:02 \$\$\$\$ \$ \$ CGGG RFFR Ŭ 9999 В ttt E SSS # # 8 t t t t e e e

File: PS:<SPOCL>PFOT35.PAS.1/USER:BLUEN/COPIES:1/LIMIT:59/FGFM:NCKMAL/FILL:AS

SSSS

6

```
012145616901214561851121456189(121416189112145618511234561851123456185012
      EPHCT
                                                                                      Recording iritiated
                                                                                                                                                                                                                                                                                                                                                                                                 Sat 18-Cec-82 4:0 YJ
      [Link from BLUEN, TTY 30]
   TOFS-20 Commanc processor 4(560) aly SIMOLPAS PROGRAM SIMODOF (INPUT, CUTPUT);
 CONST = 0.5;

CONST = 1.0; 75;

CONST = 1.0; 75;

GRAV = 10.0; CD.0;

CONST = 2.0; 0;

CONST = 2.0; 0;

TAU1 = 0.40;

TAU2 = 0.25;

TAU3 = 0.50;

TAU3 = 10.0;

TAU3 = 1.57;

FINAL = 1.57;

FINAL = 1.57;

FILLIF = 1.57;

FI
                                                                                                                                                                                                                                                                     (* ENTER IN FACIANS *)
VAR
                                     EPS.LEADX.LEADXD.CLLT.DELTD.FHI.FHID.FHICC.FSI.HSID.T: REAL;
C: ARRAY [1..10] OF REAL;
I: ARRAY [1..10.1..2] OF REAL;
FRINTI: INTEGER;
X-J,K: INTEGER;
XCH.ICHAR: CHAR;
R,CELTAT: FEAL;
INC: INTEGER;
CPSIT.NPSIT.RANGE.PSITD.CELTA.EXPPSI.HFSIC.EXFFHI.FPFID: REAL;
FFSICNAX: FEAL;
                                GIN (* MAIN FROGRAP *)

I := C.0;

LEADXC := C.0;

CLLTC := 0.0;

FHID := C.0;

FHID := 0.0;

FRINTI := 0.0;

 BEGIN (* MAIN FROGRAN *)
                                     LHICETYTZETFINAETOT
                                                                                                                                                                                                                                                                                                                                                                                                                                            MAIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LCOF
```

```
##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN;

##ITELN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    . PSI ) ;
         HPSIC:= (EXFFSI - PSI ) / CELTAT;
HRITELN;
HHILE ABS(HFSIC) > HFSICMAX CC
HPSIC:= (HFSICMAX + HFSIC / ABS(HFSIC));
HRITELN ( * ZSTIMATED HOST TURNING RATE : * ,
HRITELN;
             (*----GENERATION OF THE MOTION OF THE TARGET PLANE
         NPSIT:= 2*FI - ( 2*PI*CCS(2*FI*(T+CELTAT)/TF1NAL));
HRITELN ( * ANTICIFATED TARGET LINE OF SIGHT * , NFSIT
HRITELN;
      EXPPHI:= HPSID*VELCCITY/GRAV;
HPHIC:= (EXFFHI-PHI)/CELTAT;
PSITC:= (APSIT-OPSIT)/CELTAT;
CELTA:= ABS(F3ITC*MISSLV/R);
LRITELN (*ANTICIPATED TOLERANCE
LRITELN (*CPSIT:= NPSIT;
                                                                                                                                                                                                                                                                                        (* EXFECTED VALUE OF FFI *)
(* COMMAND TO BE GENERATED *)
(* TURNING MATE OF THE TARGET *)
(* NEW ANGLE OF FIRING *)
CELTA ANGLE = *, CELTA);
                                                                                                                                                                                                                                                                                                     (* KEASSIGNMENT
                                (* ASSIGN *)

![1,1] = LEAD x

![1,2] = LCAD x

![2,1] = CELY

![2,2] = CELY

![2,2] = FFIO;

![3,1] = FFIO;

![3,2] = FFIO;
![4,1] = FFI;
![4,2] = FFIC;
                                                                                               E LÉADX;
                                                                                                                      CELT:
CELT:
FHID:
FHID:
```

\$

```
[5,1]
               INTEGRATION *)
F J := 1 10 N CC
CCJ::= ICJ,1: +
                                         + ILJ,2]*[ELT41;
           (* REASSIGNMENT *)

LEADX := CC1];

PHID:= CC3];

PHI := CC4];

PSI := CC5];
           (* PRINT GUT THE FARAMETERS EVERY (CELTAT*25) INTEGRATIONS *)
PRINTI := FFINII + 1;
IF FRINTI = 1 THEN
BEGIN
WRITELN;
FOR X := 1 TO N DO
WRITELN;
WRITELN;
LRITELN;
LRITELN;
HCS1 ALHCHAETER:
                 WRITELN;
                                                                          HCST AIRCHAFT 1) ;
                              WRITELA('EXFPSI = ',EXFPSI,'
                                                                                          +FSIC = '+FSID);
                 WRITELN;
                             WRITELA(*EXPPHI = *,EXPPHI, * WRITELA; WRITELA;
                                                                                          +++IC = *,+F+IO);
                 WRITELN ( * WRITELN ;
                                                                                 TARGET ()
                              WRITELA(PPSITD = ",FSITD);
WRITELA("NFSIT = ",NFSIT);
                WRITELN;
WRITELN;
WRITELN;
PRINTI:= PRINTI - 25;
           ENC;
T := T + CELTAT;
      END:
LRITELN( SLCCESS );
EGGGG.
aEx SIMGL.PAS
LINK: Loacing
ELNK*CT SIM3DO execution
INFUT :
OUTFUT :
CINFUT, and with "Z: ]
              Loacing
SIM3D0 execution]
TIME STEF :
                             0.0000002+00---
RANCE =
                         1.8775838+03
ACTUAL FOST TURNING FNGLE :
                                                                                0.Cu(600E+0C
EXPECTED TURNING ANGLE :
```

```
5.01CCCOE JI
   ESTIMATED HOST TURNING RATE :
                                        1.5707562-01
  ANTICIFATED TARGET LINE OF SIGHT
                                         1.239 £48E- C2
 ANTICIPATED TOLERANCE CELTA ANGLE =
                                            2.5569646+00
     0.000000E+00
0.000000E+00
                      C. 000000F+00
                                       2.000C00E+0U
                                                        2.000CCCF-01
                      E-C00000E-01
                                                        8.0000000E-01
2.20000F-00
                                       0.00000000+00
     C. CCOOOOC+00
C. COOOOOC+00
                                       2.20000000+01
                                       C. ULUCUBE+OU
                                                        O.OCOCCOE+OO
     0.0000000+00
                                       O.GOCCOCE+OU
                                                        C.OCCCCE+00
                        HOST AIRCRAFT
EXFFSI =
              5.01000E-01
                                FFSID = "
                                             1.570/96E-01
              3.1415920+00
EXFFHI =
                                FFFIC =
                                             3-1415528+01
                            TARGET
PSITD =
            -4.676(158+00
NFSIT =
             1.2358488-02
  4
                 1.00((005-(1----
TIME STEF :
RANGE =
               1.559923E+03
ACTUAL HOST TURNING ANGLE :
                                               0.00000E+0C
EXFECTED TURNING ANGLE :
                                       -4.75203CE-U1
<<... FIRE *** FIRE*** FIRE *****>>>
  ESTIMATED HOST TURNING RATE :
                                      -1.570796E-U1
 ANTICIPATED TARGET LINE OF SIGHT
                                         4.954481E-02
ANTICIPATED TOLERANCE CELTA ANGLE =
                                            1.8573881-01
TIME STEF: 2.00((COE-(1----
RANGE =
               1.958773E+03
ACTUAL HOST TURNING ANGLE :
                                               C. OUCC80E+0C
EXFECTED TURNING ANGLE :
```

9.669114E 2

<---- FIRE *** FIRE*** FIRE ***..>>

ESTIMATED HOST TURNING RATE: 1.570756E-U1
ANTICIFATED TARGET LINE OF SIGHT 1.112924E-01

ANTICIPATED TOLERANCE DELTA ANGLE = 3.0892/3E-01

TIME STEF: 3.00 CC00E-C1------

RANGE = 1.553813E+03

AGTUAL HOST TURNING ANGLE: 1.100CD0E-03

EXPECTED TURNING ANGLE: 14730355E-U1

ESTIMATED HOST TURNING RATE : 1.570796E-U1

ANTICIFATED TARGET LINE OF SIGHT 1.973977E-C1

ANTICIPATED TOLERANCE CELTA ANGLE = 4.318626E-01

TIME STEF: 4.00(G00E-(1-----

RANCE = 1.980580E+03

ACTUAL HOST TURNING ANGLE: 4.015000E-03.

EXPECTED TURNING ANGLE:

ESTIMATED HOST TURNING RATE : 1.570796E-U1

ANTICIPATED TARGET LINE OF SIGHT 3.075207E-01

ANTICIPATED TOLERANCE CELTA ANGLE = 5.560140E-01

TIME STEF: 5.00000F=C1-----

RANGE = 1.9530 & 7E+03

ACTUAL FOST TURNING ANGLE: 9-218000E-03

EXFE ED TURNING ANGLE : 4.176439E-U1

ESTIMATED HOST TURNING RATE : 1.5707968-U1

ANTICIPATED TARGET LINE OF SIGHT 4.4122702-01

ANTICIPATED TOLERANCE CELTA ANGLE = 6.8458946-01

TIME STEF : 6.00 (COUE-(1-----

RANGZ = 1.9(4228E+03

AGTUAL HOST TURNING ANGLE: 1.697718E-02

EXFECTEE TURNING ANGLE:

ESTIMATED HOST TURNING RATE : 1.570796E-U1

ANTICIPATED TARGET-LINE OF SIGHT 5.9798508-01

ANTICIPATED TOLERANCE CELTA ANGLE = 6.2323USE-01

TIME STEF: 7.00 CC00 E-C1------

RANGE = 1.826469E+03

ACTUAL HOST TURNING ANGLE: 2.759279E-U2

EXFECTED TURNING ANGLE:
7.547509E-U1

<<...** FIRE *** FIRE*** FIRE ***..>>

ESTIMATED HOST TURNING RATE : 1.570796E-U1

ANTICIPATED TARGE, LIAF OF SIGHT 7.771875E-01

ANTICIPATED TOLERANCE CELTA ANGLE = 5.8111998-01

TIME STEF: 8.00((COE-C1-----

RANGE = 1.7128898+03

ACTUAL HOST TURNING ANGLE : 3.7H CR 41E-02

EXF. JED TURNING ANGLE : <-..*** FIRE *** FIRE*** FIRE ***..>> ESTIMATED HOST TURNING RATE : 1.5707566-01 ANTICIPATED TARGET LINE OF SIGHT 9.761160E-01 1. 1730 59E+80 ANTICIPATED TOLERANCE CELTA ANGLE := ` TIME STEF : 9.00((005-(1-RANGE = 1.5E8586E+03 AGTUAL FOST TURNING ANGLE : 4.808C35E-02 · EXFECTED TURNING ANGLE : 1.175044E+U0 <<...*** FIRE *** FIRE*** FIRE *****>> ESTIMATED HOST TURNING RATE : 1.5707966-01 1.199981E+00 ANTICIFATED TARGET LINE OF SIGHT ANTICIPATED TOLERANCE CELTA ANGLE = 1.4235016+00 TIME STEF : 1.00CCOOE+CO--RANGE = 1.3623766+03ACTUAL HOST TURNING ANGLE : 5-8352291-02 EXPECTED TURNING ANGLE : 1.421846E+U0 <<...*** FIRT *** FIRE ***.>> ESTIMATED HOST TURNING RATE : 1.5707562-01 ANTICIPATED TARGET LINE OF SIGHT 1.4419072+00 ANTICIPATED TOLERANCE CELTA ANGLE = 1.7757668+00

TIME STEF : 1.10 CC00 E+ 0 C----

RANGE = 1.128533E+03

ACTUA FOST TURNING ANGLE :

E.8 7423E-02

EXFECTED TURNING ANGLE :

1.68383328+00

<<... FIRE *** FIRE *** FIRE ***. >>

ESTIMATED HOST TURNING RATE : 1.570796E-UT

ANTICIPATED TARGET LINE OF SIGHT 1.702939E+CO

ANTICIPATED TCLERANCE CELTA ANGLE =

2.3130242+60

TIME STEF: 1.20(00001+00---

RANGE = 8.662413E+02

ACTUAL HOST TURNING ANGLE :

7.889617E-02.

EXPECTED TURNING ANGLE :

1.963972E+00

ESTIMATED HUST TURNING RATE :

1.5707965-01

ANTICIPATED TARGET LINE OF SIGHT

1.982048E+00

ANTICIPATED TOLERANCE CELTA ANGLE =

TIME STEF: 1.30(0002+00-----

RANGE = 6.0(2433E+02

ACTUAL HOST TUFNING ANGLE :

E.9168116-02

EXPECTED TURNING ANGLE :

2.261156E+U0

<<...** FIRZ *** FIRE*** FIRE ***..>>

ESTIMATED HOST TURNING RATE : 1.570796E-U1

ANTICIFATED TARGET LINE OF SIGHT 2.278131E+CO

ANTICIPATED TOLERANCE CELTA ANGLE = 4.932718E+00

TIME STEF: 1.400000E+00---

RANGE =

3.5019602+02

ACTUAL HOST TURNING ANGLE : 5.5 COEE -02 EXPECTED TURNING ANGLE : .. 2.574214E+U0 <-... FIRE *** FIRE *** FIRE ***..>> ESTIMATED HOST TURNING RATE : 1.570796E-u1 ANTICIFATED TARGET LINE OF SIGHT - 2.590020E+CO ANTICIPATED TOLERANCE CELTA ANGLE = £.906285£+00 TIME STEF : 1.50(600E+66-----RANGE = 1.4829868+02 ACTUAL HOST TURNING ANGLE : 1.097120E-C1 EXPECTED TUANING ANGLE : ----> - 2.901909E+U0 ESTIMATED HOST TURNING RATE : 1.570796E-U1 ANTICIFATED TARGET LINE OF SIGHT .2.916484E+00 ANTICIPATED TOLEPANCE CELTA ANGLE = 2.2014U0E+01 TIME STEF : -1.60 G000 E+ C0---RANGE = 2.5230(5E+01 ACTUAL HOST TURNING ANGLE : 1.1958352-01 EXPECTED TURNING ANGLE : 3.242945E+U0 ESTIMATED HUS? TUPNING RATE : 1.570796E-U1 ANTICIPATED TARGET LINE OF SIGHT 3.Luc2362+CO ANTICIPATED TOLERANCE CELTA ANGLE = 1.346614t+02

TIME STEF: 1.70(000E+CC----

ACTUAL HOST TURNING ANGLE :

1.3025558-01

EXFECTED TURNING ANGLE :

3.5959878+00

<...*** FIRE *** FIRE*** FIRE ***..>>

ESTIMATED HOST PURNING RATE : 1.5707965-01

ANTICIPATED TARGET LINE OF SIGHT

3.00/5332+00

AMTICIPATED TOLERANCE CELTA ANGLE = 5.357749E+02

TIME STEF : 1.600000E+00-----

 $RANGE = 1 \cdot C \in 78 C2E + 02$

ACTUAL FOST TURNING ANGLE :

1.4052/86-01

EXPECTED TURNING ANGLE :

3-555630E+00

<<...* FIRE *** FIRE*** FIRE ***..>>

ESTIMATED HOST TURNING RATE :

1.5707968-01

ANTICIPATED TARGET LINE OF SIGHT 3.9701886+00

ANTICIPATED TCLERANCE CELTA ANGLE = 3.392533c+01

TIME STEF: 1.90 C000 E+ C0-----

3-2408 635+02

ACTUAL HOST TURNING ANGLE :

1.5079988-01

EXPECTED TURNING ANGLE :

4.332443E+00

<<... FIRE *** FIRE *** FIRE ***...

ESTIMATED HOST TURNING RATE : 1.570/966-01

ANTICIPATED TARGET LINE OF SIGHT

4.341572E+00

ANTICIPATED TOLERANCE CELTA ANGLE =

1.1459:42+01

TIME STEF: 2.00 (000 C+ C0-----

1.5707566-01

5.4956906+00

2. £181 × 6£ + 0 C

RANGE 6.376226E+02 ACTUAL HOST TURNING ANGLE : . EXFECTED TURNING ANGLE : 4.712955E+UD <<--+* FIRE *** FIRE*** FIRE ***->> ESTIMATED HOST TURNING RATE : 1.570796E-U1 ANTICIPATED TARGET LINE OF SIGHT 4.7206185+00 ANTICIPATED TOLERANCE CELTA ANGLE = 5.544617L+00 TIME STEF : 2-10(G00E+G0-+-RANGE = 1.0082292+03ACTUAL HOST TURNING ANGLE : 1.7134362-01 EXPECTED TURNING ANGLE : 5.0996642+00 <<--** FIRE *** FIRE*** FIRE ***...)> ESTIMATED HOST TURNING RATE : 1.570756E-U1 ANTICIPATED TARGET LINE OF SIGHT 5.1058310+00 ANTICIPATED TOLERANCE CELTA ANGLE = 3. £20691E+00 TIME STEF : 2.20 CO 00 E+ CO----RANGE = 1.383369E+03 ACTUAL FOST TURNING ANGLE : 1.8161565-01 EXFECTED TURNING ANGLE : 5.451044E+00

TIME STEF : 2.30(000E+00-----

ESTIMATED HOST TURNING RATE :

ANTICIPATED TOLERANCE CELTA ANGLE =

ANTICIPATED TARGET LINE OF SIGHT

RANGE -= 1.7(56226+03

ACTUAL HOST TURNING ANGLE: 100 1

1.91 66755-01

EXFECTED TURNING ANGLE :

5 . E855 45E + u 0

ESTIMATED HOST TURNING RATE :

1.570756E-U1

ANTICIPATED TARGET LINE OF SIGHT

5. £886575+00

ANTICIPATED TOLERANCE CELTA ANGLE =

2.303953E+00

TIME STEF :

2.40 (CCOE+ CO-----

RANGE =

1.9231786+03

ACTUAL FOST TURNING ANGLE :

2.021595E-01

EXPECTED TURNING ANGLE :

6.2816252+00

ESTIMATED HOST TURNING RATE :

1.570796E-01

ANTICIPATED TARGET LINE OF SIGHT

6.283181E+00

ANTICIPATED TOLERANCE CELTA ANGLE =

2.0514166+00

TIME STEF :

2.50(000]+60-----

RANGE =

2.0000 COE+03

ACTUAL HOST TURNING ANGLE :

2-1245142-01

EXPECTED TURNING ANGLE :

3.945217E-U1

ESTIMATED HOST TURNING THE :

1,5707965-01

ANTICIPATED TARGET LINE OF SIGHT

6.617706E+CO

ANTICIPATED TOLERANCE CELTA ANGLE =

1.572621E+00

2.500000E+00 2.500000E+00 2.50000E+00 2.50000E+00 2.50000E+00

1.073179E-01 6.6716945-02 -1.027524E-01 0.0000000000000 9.7542668-02 6.6716945-02

C. 000000E+00 2.054388E+00 2.124314E-01

1.489708E+0U C.COCCOCE+0U

1.469706E-01 2.054368F+00 2.227033F-01

1.0271945-01

CONCLUSION

We have successfully demonstrated the ability of the On Board Simulator and Tracking Procedure in high level PASCAL code. The implementation details have yet to be completely worked out.

The On Board Simulator was tested using a step input and studying its response. The aircraft turning time constant is 4.4 seconds and damping ratio is .65, which provided satisfactory results. The final simulator will fly at a velocity of 1000 feet per second and have a maximum bank angle of 82.8 degrees for an 8g turn (without aerodynamic limitation).

The angle tracking is done relative to an inertial reference angle stored in the host aircraft's reference system. Quick encounters are simulated by inputting a programmed target maneuver into the host aircraft's field of view.

A more accurate tracking method could be developed by following the host and target aircraft separately in an inertal grid and computing relative information from the inertial systems. This would allow longer time engagements.

The On Board Simulator would not be easily upgraded from its present 3 degrees-of-freedom. This would require additional graphics on the screen display and would require much additional work on generating relative dynamics.

APPENDIX B

SPIN WARNING SYSTEM

TEAM #1 FINAL REPORT

Aircraft Spin Warning System Using Voice Generation Techniques

Presented to

Professor Smyth

Department of Electrical Engineering

University of Southern California

Submitted by

David Barry

David Lan Ho

Renshan Tang

Mohammad H. Movahed-Ezazi

Advanced Microcomputer Based Design

EE 560L

December 31, 1982

Table of Contents

Chapte	Pa	ge
I.	SYSTEM DESCRIPTION	1
	•	1 1 4
II.	SOFTWARE DEVELOPMENT	6
	B. Abstract Data Structure	6 8 .1 .3 !3
III.	HARDWARE DEVELOPMENT 2	:6
	-	6 6 6
IV.	RESULTS / CONCLUSIONS 3	O
		0

Extra Straight SMRCE

I. System Description

A. Purpose

The objective of the project is to design a microprocessor based Aircraft Spin Warning System which periodically
samples the assymetric thrust and yaw rate of an airplane and
then issues voice synthesized warnings and/or suggestions to
the pilot of how to response to the situation.

The system is to meet the requirements set forth in the June-August 1982 status report of the system study for the Application of Microcomputers to Research Flight Test Techniques, as summarized in table 1 of the paper (included in this report in Figure 1).

Such a system is expected to aid the pilot in recovery from spins and high speed departures which occur during flight tests of aircraft at flight boundary limits.

B. Type of Microcomputer to be Used

Our SWS design is based around the Motorola MC68000 16-bit microprocessor, implemented on a M68KVMOlAZ monoboard microcomputer. Since the SWS is a real time application where computing speed is critical, a very fast microprocessor must be selected. The advanced contemporary design, 8-MHZ clock

ASYMMETRIC THRUST	SYMMETRIC THRUST (NO BLOWOUT OR STAIL)	No Warning	"Unload"	"Stick Full Left, or Right"
	MIL STALL	"Unload" If IAS < 150 & Altitude < 15K "Left or Right Eng Idle" (Unstalled Eng)	"Unload" "Botn Engines Idle"	"Both Engines Idle" "Stick Full Left or Right" "Stick Full Fwd"
	AB STALL	"Unload" "Left or Right (Stalled) Eng Idle" If IAS < 175 KTS "Left or Right (Undtalled) Eng Mil"	"Unload" "Both Engines Idle"	"Both Engines Idle" "Stick Full Left or Right" "Stick Full Fwd"
	AB BLOWOUT	"Unload" If IAS < 150 KTS "Left or Right (Lighted AB) Engine Mil"	"Unload" "Left or Right Engine Idle"	"Left or Right (Lighted AB) Engine Mil" "Stick Full Left or Right" "Stick Full Fwd"
	YAW RATE	Less than 40 ⁰ /sec	Less than 50°/sec but greater than 40°/sec	Greater than 500/sec

After any warning from table above:

If Yaw Rate < 30 $^{\circ}/$ sec for 2 seconds and Airspeed > 120 KTS "Recovery Complete". If Yaw Rate $< \mu_0^{\circ}/\text{sec}$ for two seconds "Center Controls".

AOA < -10° and AY > .1g "Stick Half-Aft and Hold": then;

If AOA > 0 for 5 sec "Recovery Complete".

If Temperature > 1215°C for 3 sec "Left or Right Eng Off".

ORIGINAL PAGE IS OF POOR QUALITY

Table 1. Logic Table

Figure 1. System Block Diagram

rate, and 16-bit word width all contribute to fast processing times and make the MC68000 a good choice for this application.

Convenient I/O and bus structures provide additional advantages that simplify and smooth system design and integration since we have access to peripheral devices with compatable I/O buses.

C. Selection of Speed Synthesizer Device

The SWS project is a developmental project and so requires versatile design features to allow for the many design changes that always occur during the development of a system. This is the main reason behind the selection of the SCOl from the various voice synthesis products on the market. The phoneme based SCOl allows us to speak any word desired, and easily accomodates any changes in the future. LPC based speech methods provide better voice quality, but have restricted and unversatile vocabularies and are much more expensive. The SCOl, on the other hand, has been on the market for a couple of years and has well documented dictionaries and application articles making it a clear choice for a short term, low budget project.

D. Voice Synthesis Design Description

The block diagram of the voice synthesis design is shown in Figure 1 . The one byte of discrete data, seven

channels of ADC data, and PTM timer are controlled by the input interface. The two byte output data (phoneme and pitch) is transferred to SCOl voice synthesizer via the output interface as well as to the hexadecimal LED Display for test of the data.

The software moniter aircraft parameters from the ADC and discrete input register, analyzes these parameters and then, if necessary, sends voice synthesizer to speak out the required message.

The functional details of the modules and their design are described in the next two chapter.

II. Software Development

A. General Description

As indicated in Table 1, there are a total of 14 sentences to be spoken in various cases. These sentences are 'UNLOAD', 'LEFT-ENG-MIL', 'RIGHT-ENG-MIL', 'LEFT-ENG-IDLE', 'RIGHT-ENG-IDLE', 'BOTH-ENG-IDLE', 'STICK-FULL-LEFT'. 'STICK-FULL-RIGHT', 'STICK-FULL-FWD', 'CENTER-CONTROLS', 'RECOVERY-COMPLETE', 'STICK-HALF-AFT-AND-HOLD', 'LEFT-ENG-OFF', 'RIGHT-ENG-OFF'. 'In some conditions, depending on input values received from ADC channels, up to 3 sentences need to be spoken. Each sentence may contains 8 to 26 phonemes. For each phonemes, the SCOl takes an average of 100 ms to complete its speech synthesis process. Therefore, in some cases, the time consumed to speak three sentences may take more than 2 seconds. Two seconds is a large amount time for computer busy waiting for phoneme output. Note that another requirement in Table 1 is to keep sensing each ADC channel to determine if the situation has changed or not. The sensing rate should be much less than 2 seconds. It is obvious that there are two requirements to be performed: (1) the software has to keep sensing ADC channels while the SCOl is speaking some sentences. (2) a real time clock is necessary to count the actual time that the temperature exceeded the temperature tolerance limit or for how longer the YAW RATE has recovered to its normal condition, etc.

Therefore, a program 'VOICE' and a subprogram 'SMALLMOUTH' are implemented to solve the above requirements. The program 'VOICE' is used to dump sentences in an output buffer, the subprogram SMALLMOUTH will send all phoneme and

pitchcodes from the output buffer to the SCOl via 2 8-bit ports for voice synthesis. These two programs interleave the CPU by timer and parallel port interrupt. The data structure for the sentence table and buffers are shown in Figure Each buffer is a record which contains a bufferfull flag, along with 50 phoneme codes and 50 pitch codes. The program VOICE contains a procedure SET-SENTENCE-TABLE which stores the phoneme and pitch symbols of all sentences. Then VOICE sets up the timer clock, senses ADC channels when timer interrupts arrive, and then according to the ADC channel value, decides which sentences are to be spoken and dumps them into output-buffer. The subprogram will send phoneme and pitch codes from the outputbuffer to the SCOl and wait for the phoneme to finish its sound generation. After a phoneme code has completed its sound generation process in the SCO1, the SCO1 will send back a parallel port interrupt request to execute the subprogram SMALLMOUTH again and get next phoneme and pitch code.

The program VOTCE is classifed under the following headings: (1) Initialization procedures. These include the procedures to set up the sentence table, to set up the real-time interrupt clock, to set initial conditions and allow interrupts. (2) a MAIN body. This includes a procedure NEW-CASE which resets software message flags, two external procedures GET-DISCRETE and GET-VALUE to get the discrete values from parallel port #2 and get YAW RATE, ALTITUDE, IAS, AOA,AY, AIRSPEED and TEMPERATURE from ADC channels. After obtaining those ADC values, procedure MAIN which contains many CASE blocks, will select the sentences to be spoken, a procedure BIGMOUTH-SPEAK will copy those sentences from the sentence table into buffers in translation-queue.

A procedure SPEAK is responsible for dumping the sentence buffers in the translation-queue into the output buffer. An external function OUTPUT-BUFFER-EMPTY will check the buffer-full flag of both output buffers. If any of the output buffers are empty, the procedure LOAD-OUTPUT-BUFFER will load a sentence buffer from translation-queue into the output buffer. The way to load a sentence buffer to the output buffer is as following: First find which of the sentence buffers in the translationqueue needs to be dumped, then convert the phoneme and pitch in the sentence buffer to ASCII code, then an external procedure DUMP will dump the phoneme and pitch codes into the output buffer. After the whole sentence is loaded into the output buffer, an external procedure MARK-OUTPUT-BUFFER-FULL will set the buffer-full flag of the output buffer and also wakes up the subprogram SMALLMOUTH. The subprogram SMALLMOUTH will send the phoneme and pitch codes from the output buffer one by one to the SCOl for voice synthesis.

After the procedure SPEAK dumps all the sentences into the output buffer, the program VOICE completes its job in this time frame and then the program goes into an external procedure HALT. The procedure HALT has a loop body. The CPU will keep looping in this loop body until the next timer interrupt comes.

B. Abstract Data Structure

An abstract data type is given as follows:

Abstract Data Type

Sentence-buffer = Record

Buffer-full flag
Phoneme symbol array [1 .. 50]
Pitch symbol array [1 .. 50]

End

Translation queue = Array [0 ..2] of sentence buffer.

ORIGINAL PAGE IS

Output-Buffer = Record

Buffer-full flag
ASCII phoneme code [1 .. 50]
Pitch code [1 .. 50]

End

Abstract Program Structure

Declare

VOICE (ϕ) \longrightarrow OUTPUTBUFFER SMALLMOUTH (OUTPUTBUFFER) \longrightarrow Voice generation

Begin

When timer-interrupt comes

do VOICE

When parallel port interrupt comes do SMALLMOUTH

End

Program VOICE

Begin

INITIALIZATION;

Repeat

MAIN (* Get ADC value, decide sentences *)

SPEAK (* Dump sentence to output buffer *)

HALT (* Wait for next timer interrupt *)

Until FOREVER (* or turned off *)

End

Subprogram SMALLMOUTH

Begin

Declare Waked up

if output buffer is empty

then return interrupt

else

send out pitch code
send out phoneme code
increase pointer

endif

End

C. Implementation

The first level of the abstract data structure implementation contains four procedures: INITIALIZATION, MAIN, SPEAK, and HALT. The process SMALLMOUTH is also implemented. The SMALLMOUTH contains a set of instruction to send out phoneme and pitch codes to the parallel port for the SCOl to speak. This subprogram is called up by a parallel port interrupt or a trap from VOICE. SMALLMOUTH send out the next phoneme along with pitch data, then returns control to VOICE. Under normal conditions, no warning signal need be generated. VOICE finds nothing to speak, then resets the runningflag and halts. SMALLMOUTH recognizes the situation from the runningflag and halts also. The whole system is in an inactive situation, only the procedure VOICE will be called by the timer every half second. If the situation does not require a voice message, the system becomes inactive again.

A more detailed description of the different levels of implementation is shown in Figure 2 and the attached program listing.

Figure 3. Software Implementation

D. Detail Explanation of Each Procedure

1. Program VOICE.

The program VOICE will dump the sentence need to be spoken into outputbuffer as follow:

- Step 1. a) initialize the timer clock as 0.5 second by calling external procedure SET-REALTIME-INTERRUPT.
 - b) set a look up sentence table by calling internal procedure SET-SENTENCE-TABLE.
 - c) set initial condition for variables by calling internal procedure SET-INITIAL-CONDITION.
 - d) allow interrupts by calling external procedure ALLOW-INTERRUPTS.
- Step 2. a) initialize a new case condition when a new timer interrupt comes by calling internal procedure NEW-CASE.
 - b) get the value of discrete by calling external procedure GET-DISCRETE.
 - c) get value of YAW RATE, ALTITUDE, IAS, AIRSPEED, AOA, TEMP.
 find the sentence and pass this sentence as a parameter to internal procedure BIGMOUTH-SPEAK and load the sentence into a sentence buffer in the translation-queue by calling this procedure.
- Step 3. dump all the sentence buffers into output buffer.
- Step 4. wait for next timer interrupt.
- Step 5. go to step 2.
- Step 6. end.

2. Procedure INITIALIZATION

This procedure sets the initial conditions such as sentence table, PTM clock rate, etc. This procedure will be executed only when the system is turned on.

Step 1. set realtime interrupt.

Step 2. set sentence table.

Step 3. set initial condition

Step 4. allow interrupts.

3. Procedure SET-REALTIME-INTERRUPT

This routine sets the cascading timeout interrupt of the MC6840 PTM, connect 03 to C2 and get realtime interrupt from timer #2. It also sets the realtime interrupt clock from clock #1 of PTM. The timer will wake the procedure MAIN every half second, get ADC value, and decide what sentences are required to speak.

4. Procedure SET-SENTENCE-TABLE

This procedure sets up a sentence table where all phoneme and pitch symbol are stored in 14 SOUND-BUFFER as a look up table.

5. Procedure SET-INITIAL-CONDITION

This routine sets the initial condition for variables TEMP-COUNT, COUNT-30, COUNT-40, and flags such as WARNINGFLAG, FOUND, etc.

- Step 1. reset all software synchronization flags
- Step 2. call external procedure MEMORYINITIALIZATION to initialize the variables and flags in assembly part of the programs.

6. Procedure ALLOW-INTERRUPTS

When power is turned on, all interrupts are disabled. This assembly routine store a \$0480 in the control register of M68K000 versa system which will enable the timer and parrallel port interrupt. Also, this routine store autovector addresses for timer interrupt, parrallel port interrupt, and trap #6.

7. Procedure MEMORYINITIALIZATION

This routine is called by the procedure of SET-INITIAL-CONDITION to reserve block space in memory for output buffers. It also clear buffer-full flags of output buffers, set ARBIT point to the buffer #0, declare that the subprogram SMALLMOUTH in not running.

- Step 1. a) ARBIT: reserve one byte for ARBIT, ARBIT point to the output buffer is dumping.
 - b) SLEEP: reserve one byte for SLEEP, SLEEP flag to indicate the SMALLMOUTH is not active.
 - c) BFOFUL: reserve one byte for BFOFUL, BFOFUL flag to indicate that buffer 0 is full.
 - d) BF1FUL: reserve one byte for BF1FUL, BF1FUL flag to indicate that buffer 1 is full.
 - e) BUFO: reserve 50 word to store phoneme and pitch codes.
 - f) BUF1: reserve 50 word to store phoneme and pitch codes.
 - g) QUEPTR: reserve one byte for QUEPTR, QUEPTR point to the offset in output-buffer is speaking.
- Step 2. ARBIT #0: set ARBIT to point to outputbuffer #0.
- Step 3. SPK #0: set speak point to output buffer #0.
- Step 4. QUEPTR #0: point to the first word in output buffer.
- Step 5. SLEEP #1: declare that the SMALLMOUTH is not active.
- Step 6. BFOFUL #0: reset buffer-full flag of output buffer #0
- Step 7. BF1FUL #0: reset buffer-full flag of output buffer #1.
- Step 8. End.

8. Procedure MAIN

The procedure MAIN will get input conditions such as YAWRATE, AOA, TEMPERATURE, IAS, AIRSPEED, AY, ALTITUDE, from ADC channels and decide which sentences need to be spoken. Then copy the sentences from the sentence table into buffers in translation-queue. Another procedure SPEAK will move the sentences in these buffers into an outbuffer which is located at some relocatable address in memory. Then the subprogram SMALLMOUTH will move each phoneme and pitch codes to the SCOL.

- Step 1. declare new case.
- Step 2. get DISCRETE.
- Step 3. get value of
 - a. IAS.
 - b. AIRSPEED.
 - c. AOA.
 - d. AY.
 - e. TEMPERATURE.
 - f. YAWRATE.
 - g. ALTITUDE.
- Step'4. determine YAWRATE is positive or negative.
- Step 5. if TEMPERATURE > 1215°C for 3 second, BIGMOUTH speak 'LEFT OR RIGHT ENG OFF'.
- Step 6. if AOA < -10° and AY > .1g, BIGMOUTH speak 'STICK HALF AFT AND HOLD'.
 then if AOA > 0 for 5 second, BIGMOUTH speak 'RECOVERY COMPLETE'.
- Step 7. if warning flag = true
 then begin if YAWRATE < 40°/sec for 2 seconds,
 BIGMOUTH speak 'CENTER CONTROLS'.
 if YAWRATE < 30°/sec for 2 seconds,
 and AIRSPEED > 120 KTS, BIGMOUTH
 speak 'RECOVERY COMPLETE'.

end

Y 3 19 US BEST HE Y 3 19 US HOORIGINAL PAGE IS OF POOR QUALITY

Step 8. if any condition in Table 1 occured, then BIGMOUTH speak sentences according Table and set warning flag.

9. Procedure NEW CASE

This procedure initialize a new case condition when a new timer interrupt comes.

- Step 1. reset all buffer-full flag in three sentence table of translation queue.
- Step 2. call procedure MEMORY-RESET to initialize a new case condition in assembly part, also clear interrupt flags.

10. Procedure MEMORY-RESET

This procedure will be merged in the procedure of NEW-CASE to reset the initial condition and forget the old sentence in the buffer when a new case happens. It first clears the interrupt request flag and then allows all timer to operation mode by writting #0 in control register 1 (CR20 = 0). Next, it clears PTM status register by clearing interrupt request flag. It continue by reading timer #2 counter, then by testing ARBIT which is pointer to one of the output buffers, then it clears the output buffer which ARBIT is pointing to. It returns after reseting port interrupt flag.

11. Function GET-DISCRETE: integer

This function get the value of discrete from parallel port and return the value as an integer.

12. Function GET-VALUE

The function GET-VALUE converts the variable name to channel number, gets the ADC value from the forward function ADC, then returns the channel value to the specified variable.

- Step 1. convert variable name to channel number.
- Step 2. get ADC value from the according channel.

13. Function ADC

The function ADC will return the ADC value from the specified channel.

- Step 1. set address of base, control register, MSB and LSB.
- Step 2. load control register to slect channel number.
- Step 3. initial conversion.
- Step 4. wait until ready.
- Step 5. move MSB to data register #0.
- Step 6. shift data register #0 left 8 bit.
- Step 7. move LSB to data register #0.
- Step 8. arithmetic shift data register #0 right 4 bit to get 2's implement value.
- Step 9. store data register #0 to functional value return address.
- Step 10. return.

14. Procedure BIGMOUTH-SPEAK

This procedure gets a sentence name from the procedure MAIN, then copies the sentence from sentence table into a sentence buffer in translation queue.

- Step 1. copy sentence from sentence table to sentence buffer which is pointed by NEXTEMPTYBUFFER.
- Step 2. set NEXTEMPTYBUFFER point to the next sentence buffer.

15. Procedure COPY

This procedure copies each phoneme and pitch symbol from one sentence is sentence table to a sentence buffer in translation-queue. After all phoneme and pitch symbol are copied, the buffer-full flag of the sentence buffer is set.

16. Procedure SPEAK

This procedure sends out sentences from translation queue to output buffer whenever the output buffer is empty. After all sentences have been sent out, the queue is empty.

- Step 1. find if any one output buffer is empty.
- Step 2. then load output buffer
- Step 3. if translation queue is not empty, go Step 1.

17. Function OUTPUT-BUFFER-EMPTY: boolean

This function responds with a boolean value to indicate if there is an empty output buffer. If it finds an empty output buffer, it returns a function value of true. This function starts by finding if ARBIT points to BUF1 or BUF0. The next stepis to find out if the buffer-full flag of either BUF0 or BUF1 is set. If it is not set then it returns the value of true.

18. Procedure LOAD-OUTPUT-BUFFER

This procedure dumps the sentence from the translationqueue into output buffer, each phoneme and pitch symbol will be converted into ASCII code and then dumped into the output buffer.

- Step 1. find next sentence-buffer ready to speak.
- Step 2. a) convert phoneme code.
 - b) convert pitch code.
- Step 3. dump to output buffer.
- Step 4. mark output buffer full.
- Step 5. reset the buffer-full flag of the sentence buffer.

19. Function CONVERT-PHONEME-CODE

This function convert phoneme symbols into ASCII code before dumping them into the output buffer.

20. Function CONVERT-PITCH-CODE

This function converts pitch codes from decimal to octal before the pitch is dumped into output buffer. The first digit in decimal form will send to SCOl for pitch control. The next two digits will be used as frequency control for the SCOl clock input.

21. Procedure DUMP

This procedure dumps pitch and phoneme codes into the empty output buffer at the offset location INT. The pitch code is dumped in the lower byte, the phoneme is dumped in the higher byte of the word. The procedure starts by getting the offset INT, pitch code and phoneme code. Then it test ARBIT to see which buffer it is pointing to. If it is pointing to BUF1 then load buffer #1 and if it is pointing to buffer #0 then load buffer #0.

- Step 1. a) get offset INT.
 - b) get pitch code
 - c) get phoneme code.
- Step 2. test ARBIT.
- Step 3. if ARBIT = 1, goto step 5.
- Step 4. load base address of BUFO to register A2, goto step 6.
- Step 5. load base address of BUF1 to register A2.
- Step 6. a) move pitch code to buffer.
 - b) move phoneme code to buffer.
- Step 7. end.

22. Procedure MARK-OUTPUT-BUFFER-FULL

This procedure is called at end of the procedure of LOAD-OUTPUT-BUFFER when the whole sentence in translation buffer have been dumped into output buffer. The buffer-full flag of the output buffer which is pointed by the ARBIT will be set. Then, this procedure will check the flag SLEEP to determine that if

the subprogram SMALLMOUTH is in active or not. If the SLEEP flag is set, go trap #6 to wake the subprogram which will send phoneme and pitch codes to parallel port #1.

23. Function QUEUE-EMPTY: boolean

This function checks the three sentence buffers in the translation-queue. If all buffers in the queue are empty, it returns a true variable.

24. Procedure HALT

After execution is completed, this procedure is called in the main program that cause the main program to become idle. It first resets the interrupt request flag to wait for next timer interrupt. Then, it keep checking to see if there is an interrupt from the timer and then it exits after timer interrupt and it also sets the flag after the timer interrupt arrives.

- Step 1. reset flag to wait for timer interrupt.
- Step 2. test'timer has interrupted ?'
- Step 3. if timer has not interrupted go to step 2.
- Step 4. a) exit after timer interrupt.
 - b) set flag.
- Step 5. return from interrupt.
- Step 6. end.

25. Subprogram SMALLMOUTH

This subprogram is initialized by parallel port interrupt or trap #6. The parallel port #1 is used to output phoneme and pitch codes. When a phoneme is completely spoken by the SCO1, the SCO1 returns an interrupt request via the lower byte of #1 parallel port. It will initialize this subprogram to send out the next phoneme and pitch. Another chance to execute this subprogram is after a sentence is dumped into an output buffer,

the procedure MARK-OUTPUT-BUFFER-FULL will check the flag SLEEP and generate a #6 trap which autovector address is the starting address of SMALLMOUTH. After a sentence is completely sent out from output buffer to SCOl, the flag SPK is changed to indicate that another output buffer is the next to be send out.

E. Flowchart

ORIGINAL PAGE IS

ORIGINAL PAGE IS OF POOR QUALITY

F. Code Generation

The software including all assembly and pascal routine, was developed and debugged on the TOP2O system. Next, all the assembly and pascal routines were transferred to IBM 4341 system by operator of the USC Engineering Computer Lab. The purpose of transferring our software from TOP2O to IBM 4341 system was to sue the MC68000 support software package on IBM system to get the object codes for all assembly and pascal routine and link them together.

a. MC68000 Support Software Package.

This package can be used as a powerful software development tool for MC68000 based system. The package utilities enable the production of relocatable machine code for the Motorola MC68000 microprocessor. The source code can be written in pascal or the assembly language of the microprocessor. A linkage editor can create execution modules in which library functions can be selectively included. The package provides libraries for floating point operations as well as for runtime routines for three popular MC68000 based configurations including versamodule, the one used for this project.

The support software is designed to operate in a host system. In this case, the host is an IBM 4341 called VIRGIL.

VIRGIL is part of the USC Engineering Computer Lab. It has 8 mega bytes of main memory and it runs under CMS (conversational machine system).

b. Pascal Cross Compiler

Processes pascal programs and produces relocatable code that can be subsequently linked with other modules. The compiler works in two stages. The first one, phase 1, checks the syntax and semantics of the source code and produces and intermediate pcode file. The second stage, phase 2, processes this intermediate code and produces a relocatable and position independent object code module.

c. M68000 Cross Macro Assembler

It processes 68000 assembly language files and produces object code files that can be subsequently linked with other files.

After using the linker to produce the complete and final object code package, the code was down loaded to the lab's computerm computer (an Intel 8085 based CP/M microcomputer) Finally, the code is dumped into the 68000 for execution.

ORIGINAL PAGE IS

III. Hardware Development

A. MC68000 System:

The MC68000 monoboard system with the PTM has the following capability: (1) Vector Interrupt Handler. (2) Programmable Timer module which enables the real time interrupt and adjustable pitch control for SCOl Voice Synthesizer. (3) The processor instruction set provides software interlocks for processes to interleave the CPU. Trap instruction and TAS (test and set) are useful for multiprocess communication that support modern structured programming techniques.

B. Input Interface

Yawrate, Altitude, IAS, AY, Airspeed, AOA and Temperature are transferred via the M68MM15A 16 channel high-level A/D module. The 68000 processor also gets the discrete signals from the #2 parallel port without handshaking.

C. Output Interface

Phoneme and pitch codes (two bytes) are transferred from the 68000 system to the SCOl Voice Synthesizer utilizing the 16bit capability of the parallel port. Design and layout of both the discrete fetch and Voice Synthesizer was completed as the attached schematic figure. The driver IS244 receives the

phoneme code from lower byte of parallel port #1. These phoneme lines will be pulled up by a 4.7K resistor array, then sent to the CMOS SCOl device and to the displays. A strobe signal from pin PlCA2 of the parallel port interface will initiate the voice conversion. After the phoneme has completed, the SCOL will request the next phoneme code via PlCAl vector interrupt request. MC68COO system also provide a 2Mhz clock from PTM #3 output line to the 7497 Binary Rate Multiplier for pitch control. A 8-bit pitch control code will be provided by the upper byte of parallel port #1, which will be latched by IS374 D-type transparent latches. Two MSB bits are sent to the SCOl for direct pitch control. The LSB 6 bits sent to the Binary Rate Multiplier will be able to adjust the SCOl input clock rate from 30K hz up to 2M hz which will provide a minor adjustment of pitch control. An amplifier LM386 will provide audio amplification to drive a speaker. A 10K ohm potentiometer provides volume control.

			Jl			
	1	2	3	L	5	
17	6	7	8	9	10	J2
	16	15	12	13	1)†	

Figure 4. Board Layout

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5. External Hardware Block Diagram

ORIGINAL PAGE IS OF POOR QUALITY

IV. Results / Conclusions

A. Test Setup

For test purposes, a modification of the routine to obtain data from the ADC board was made. Instead, switches on the external hardware board were used to simulate certain combinations of aircraft parameters. The switch pattern was input through the discrete data input port, and the system responds to this input.

To initiate the system testing, a small assembly language test routine was used to test out the interface between the 68000 and the external hardware board. This routine sent the word "unload" continuously to the SCOl display devices, and provide valuable in trouble shooting the interface.

B. Results / Problems Encountered

Successful operation of the system was never achieved.

The last of a series of problems encountered was the inability

of the linkage editor to provide the start address of the loaded

object code.

We were able to get the small test routine to get the system to speak "unload" for a short time, but then the SCOl failed for no apparent reason.

Work yet to be completed includes determining the start

address of the run-time package, system software checkout, voice pitch control adjustments, and system integration testing with sensors providing the ADC inputs.

Section many and

Votrax'

A Division of Federal Screw Works 500 Stephenson Highway Troy, Michigan 48084

SC-01 SPEECH SYNTHESIZER DATA SHEET

Votrax® CMOS Phoneme Speech Synthesizer

GENERAL DESCRIPTION

The SC-01 Speech Synthesizer is a completely self-contained solid state device. This single chip phonetically synthesizes continuous speech, of unlimited vocabulary, from low data rate inputs. Figure 1.

Speech is synthesized by combining phonemes (the building blocks of speech) in the appropriate sequence. The SC-01 Speech Synthesizer contains 64 different phonemes which are accessed by a 6-bit code. It is the proper sequential combination of these phoneme codes that creates continuous speech.

The SC-01 Speech Synthesizer is cost-effective, consumes minimal power and enables in-house product development without vendor dependency. Signals from the SC-01 are applied to an audio output device to amplify and distribute the synthesized speech. See Figure 2.

Figure 1. Votrax® SC-01 Speech Synthesizer

FEATURES

ORIGINAL PAGE IS OF POOR QUALITY

- Single CMOS chip
- 70 bits per second
- 22 pin package
- 9 ma. current drain
- Wide voltage supply range
- Latched 5V. compatible inputs
- Digital pitch level inputs
- Automatic inflection
- On-chip master clock circuit
- Optional external master clock
- Variety of voice effects
- Sound effects
- Customer product security

Phonome GBITS
PO-P5 MCX
Phonome Cade

II-42

SC-01

Latch (1)
Phonome Cade

Arkinewisign/
Request
New
Phonome Data

Vg

Arkinewisign/
Request

Arkinewisign/
Req

Figure 2. SC-01 Flow Diagram

The design of the equipment specified herein is proprietary. Rights for the reproduction and distribution of the data contained herein are granted except for the manufacture and reproduction of the subject equipment.

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation.

PHYSICAL DESCRIPTION

The SC-01 Speech Synthesizer is a 22 pin Large Scale Integrated Circuit which contains all the circuitry necessary to generate phonetically synthesized speech. The SC-01 is fabricated using CMOS technology, which offers high input impedance and low power drain

ELECTRICAL DESCRIPTION

The SC-01 Speech Synthesizer is a program-compatible with existing Votrax® phoneme synthesizers. It requires 70 bits of data per second for continuous speech production. The 6-bit phoneme codes are 5 volt logic compatible and are latched for data bus applications. A phoneme-construction algorithm and filters, within the chip, create the synthesized audio output.

ORIGINAL PAGE IS OF POOR QUALITY

PHONEME DESCRIPTION

Table 1 lists the 64 phonemes produced by the SC-01. Each phoneme code is accompanied by its symbol, average duration time, and an example. The underlined segments of the example word demonstrate the phoneme use, i.e., sound to be pronounced.

Table 2 subdivides the 64 phoneme symbols into seven categories. Each category represents a different production feature. The first six categories are characterized by voiced, fricative (expired voice), and nasal sounds. The seventh category is characterized by phonemes with no sound output

PHONEME PROGRAMMING

Manual Operations: Votrax® maintains a library of phonetically programmed words. Reference to this library and programming manuals will aid in word synthesis.

Automatic Operations: Votrax® can supply a micro-computer system for automatic conversion of English text into phoneme sequences. This system is particularly useful for in-house vocabulary development and product security Contact Votrax® for further information.

Figure 3 SC-01 Footprint and Outline Dimensions

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation

Table 1 Phoneme Chart

Phoneme Code	Phoneme Symbol	Duration (ms)	Example Word
00	EH 3	59	jacket
Ø1	EH2	71	enlist
02	EH1	121	heavy
03	PA@	47	no sound
04	DT	47	butte <i>r</i>
Ø5	A2	71	made
06	A1	103	made
07	ZH	90	azure
Ø8	AH2	71	honest
09	13	55	inhibit
ØA	12	80	inhibit
ØB	11	121	inhibit
ØC	M	103	mat
ØD	N	80	sun
ØE	8 .	71	bag
ØF	V	71	van
10	CH*	71	chip
11	SH	121	shop
12	Z	71	200
13	AW1	146	lawful
14	NG	121	thing
15	AHI	146	father
16	001	103	looking
17	00,	185	book
18	L,	103	land .
19	κ	80	tri <u>ck</u>
1A	1.	47	<u>j</u> u <u>dg</u> e
18	H	71	<u>h</u> ello
1C	G	71	get
1D	F	103	fast
16	D	55	paid
1F	\$	90	pa <u>ss</u>

Phoneme Code	Phoneme Symbol	Duration (ms)	Example Word
20 21 22 23 24	Α	185	d <u>ay</u>
21 }	AY	65	d <u>ay</u>
22 }	Y1	80	<u>y</u> ard
23 🖟	UH3	47	missi <u>o</u> n
24	AH	250	wōb
25	Р	103	p <u>a</u> st
26	· 0	185	cold
27	1	185	pin
28 '	U	185	move
29	Y	103	any
2A	T	71	tap
2B	R	90	red
2C	Ε	185	m <u>ee</u> t
2D .	.W.	80	<u>w</u> in
2E	ĄE	185	d <u>a</u> d
2F	AE1	103	<u>a</u> fter
30	AW2	90	salty
31	UH2	71	about
32	UH1	103	uncle
33	UH	185	cñb
34	02	80	f <u>o</u> r
35	01	121	aboard
36	ΙU	59	λ'oπ
37	U1	90	λöπ
38	THV	80	<u>th</u> e
39	TH	71	<u>th</u> ın
3A	ER	146	pîrq
3B	EH	185	get
3C	E1	121	be
3D	AW	250	call
3E	PA1	185	no sound
3F	STOP	47	no sound

/T/ must precede /CH/ to produce CH sound.

/D/ must precede /J/ to produce J sound.

Table 2. Phoneme Categories According to Production Features

Vo	iced				'Voiced' Fricat.	'Voiced' Stop	Fricative Stop	Fricative	Nasal	No Sound
E	EH	AE .	UH	001	Z	В	T	S	M	PAØ
E1	EH1	AE1	UH1	R	ZH	D	DT	SH	N	PA1
Y	EH2	AH	UH2	ER	J	G	κ	CH	NG	STOP
Y1	EH3	AH1	UH3	L	V		P	TH		
1	Α	AH2	0	IU	THV			F		
11	A1	AW	01	U				Н		
12	A2	AW1	02	U1						
13	AY	AW2	00	W						

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation.

Phoneme 6-Bit Selection Code (PG-PS): Data input is to six pins. Latching is controlled by the strobe (STB) signal.

Strobe (STB): Latching occurs on rising edge of strobe signal.

Inflection Level Setting (11, 12) Instantaneously sets pitch level of voiced phonemes

Acknowledge/Request (A/R): Acknowledges receipt of phoneme data (signal goes from high to low one master clock cycle following active edge of STB signal). Also indicates timing out of old phoneme concurrent with request for new phoneme data (signal goes from low to high)

NOTE

If external phoneme timing is desired, phoneme requests can be ignored. However, best speech is realized with internal timing.

Master Clock Resistor-Capacitor (MCRC): This input determines the internal master clock frequency. Select R-C values for 720 kHz to achieve standard phoneme timing. Connect this input to MCX when using internal clock, ground when using external clock.

Varying clock frequency varies voice and sound effects. As clock frequency decreases, audio frequency decreases and phoneme timing lengthens. Figures 6 and 7 illustrate manual and DAC (Digital to Analog Converter) voice variation schematics, respectively.

Master Clock External (MCX): Allows control by an external clock signal.

NOTE

Ground MCRC during MCX operation.

Audio Output (AO): Supplies analog signal to audio output device.

Audio Feedback (AF): Used with Class A or Class B transistor audio amplifiers for added stability.

Class B (CB): Current source for Class B transistor audio amplifier.

Table 3. Timing Specifications

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
Input Setup Time (P _i to STB)	τ_{s}	450			NS
Input Hold Time (P _I to STB)	T _H	•			NS
Rise Time of STB Edge (.8V to 4V)	T _{RS}			100	NS
A/R Width (A/R Connected to STB) +	TARW	1	1.3	2	μs
STB Width	T _{SW}	200			NS
STB Low*	T_{SL}	•			NS
Propagation Delay (STB to A/R after TARW)	TDAR			500	NS
A/R Rise Time (Capacitive load = 3@pf)	TRAR			108	NS
A/R Fall Time (Capacitive load = 3@pf)	T _{FAR}			199	NS
Time from A/R Request to STB Service)	TARS	0	i	500	μs
Time of Phoneme Duration *	T _{PH}	47	197	250	MS

⁺ Dependent on Master Clock frequency 720kHz

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation

比别一

^{*} Strobe must remain low (72x Master Clock Period) before rising edge

Figure 5. SC-01 Block Diagram

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation.

Figure 6. Variable Voice by Potentiometer Control

Figure 7. Variable Voice by DAC Current Injection

TYPICAL APPLICATIONS

General: The SC-01 Speech Synthesizer is easily designed into systems ranging in complexity from ROM/counters to microprocessor controllers.

Single Message System: See Figure 8. When the counter is released (START is TRUE), the message is clocked out of the ROM by the A/R signal. The system must be stopped when DONE is TRUE. Note. When using A/R field to STB, connect a .01 uf capacitor to TP3 to insure power up reset of SC-01.

NOTE

Data at address 0 must be a pause phoneme code.

Multiple Message, Fixed Block Size: See Figure 9. Message address block is loaded into the counter. The message is then clocked out of the ROM by the A/R signal.

NOTE

Message Block = 2ⁿ maximum.

Multiple Message, Variable Block Size: See Figure 10. The microprocessor loads phonemes into a data bus. The A/R signal generates an interrupt request for each new phoneme.

CONNECTING THE AUDIO OUTPUT DEVICE

Audio Output: The AO signal has a maximum peak to peak volt age swing of .26 times Vp, depending upon the phoneme selected, and the AO signal is D.C. biased

Class A Amplifier: See Figure 11. For a single transistor amplifier, the selection of R, C, or R_s values depends upon the value of Vp and the desired audio level.

Figure 8. Single Message System

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation

Figure 9. Multiple Message, Fixed Block Size

Class B Amplifier: See Figure 12. A current source (CB) is required for this push-pull amplifier.

NOTE

Minimum power is consumed when speech is inactive. When $Vp = \pm 12.0$ volts and $R_s = 40$ ohms, the bias current drain is approximately 3.5 milliamps.

Controlling Audio Output Power: See Figure 13. A resistor or potentiometer from the speaker to ground can be used to control the audio output power.

Figure 10. Multiple Message, Variable Block Size

Figure 11. Class A Amplifier

Figure 12. Class B Amplifier*

Figure 13. Controlling Audio Output Power

*For Class 8 Amplifier: (β) x (R_s min.) = 81.6 x (Vp) where β is beta or current gain of transistor. The AO line is protected by an internal series current limiting resistor of 90 ohms maximum. If more current is required of the SC-01, then the above formula indicates distortion will occur.

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation.

CHARACTERISTIC .	MIN	MAX	UNIT
Output Voltage (AH Phoneme)	.18 × Vp	.26 x Vp	Vp-p
Output Bias Current ** (.6V < CB < Vp)	3.5	7.3	mA

ELECTRICAL CHARACTERISTICS: To = @ to 70°C, Vp = 7 to 14 VDC

CHARAG	CTERISTIC	MIN	TYP	MAX	UNIT
Digital Input Impedance		1 meg			Ohm
Input Capacitance (P _I , ST	B)			3	pf
Input Capacitance (I1, I2	, MCX)			8	pf
Digital Input Logic "0" (except 11, 12, MCX)	V _G - 0 .5		V _G + 08	V _{DC}
Digital Input Logic "0"	(MCX)			V _G + 10	V_{DC}
Digital Input Logic "Ø"	(11, 12)			2 x Vp	V_{DC}
Digital Input Logic "1" (e	except (1, [2, MCX)	V _G + 4 Ø		Vp • Ø5	V_{DC}
Digital Input Logic "1" (I	1, (2)	.8 × Vp			V _{DC}
Digital Input Logic "1" (I	MCX)	4.6			V _{DC}
Digital Output Logic "0"	(I sink = Ø.8mA)			V _G +Ø.5	v_{DC}
Digital Output Logic "1"	(1 source = Ø.5mA)	Vp-Ø.5			v_{DC}
Power Supply Current	Vp = 9V		9.1		mA
	Vp = 9V**		11	18	mA
	Vp = 14V**		18	27	mA
*Master Clock Frequency			720K		Hz
MCX Input Duty Cycle		60.40		40 :60	%
Master Clock Resistor Vali	ue (MCRC)***	6.5k			Ohm
Master Clock Capacitor Ve	alue (MCRC)***			300	pf

^{*}Variable

Note TP1, TP2 must be left open for normal operation.

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation

^{**}With CB, AF, AO connected for Class B audio amplifier (see APPLICATION NOTES)

^{***}Frequency of Master Clock ~ 1.25 / RC

ABSOLUTE MAXIMUM RATINGS *

RATING	SYMBOL	VALUE	UNIT
Power Supply Voltage	ν _α ,	20	V _{DC}
Power Dissipation at 25°C	Pom	650	mW
Derating Above 25°C	ender and a second	5	mW∵°C
Operating Ambient Temperature	T _o	0 to 70	°C
Storage Temperature	TSTG	55 to 125	°C
Input Voltage	VINM	-0.5 to Vp+0 5	V _{DC}
DC Current Max, Above Vp+Ø.5V	INM	1 Ø	ma
Lead Temperature (soldering 10 sec.)	Τ _ι	300	°C

^{*} Operation above these limits could damage the device.

NORMAL OPERATING CONDITIONS: $7v \le Vp \le 14v$, $0^{\circ}C \le T_0 \le 70^{\circ}C$

Votrax® reserves the right to alter its product line at any time, or change specifications or design without notice and without obligation.

*

** PROGRAM TEST1

DC. L

DC.B

127

************ *

THE PROGRAM TEST1 OUTPUT A SENTENCE "UNLOAD" TO SC01 WITHOUT USING INTERRUPT AND TIMMER.

```
SECTION
                              9
                             $F70021
$F70025
PHNPOT
                                             PORT #1 LOVER BYTE
              EQU
PITPOT
PHNCTP
PITCTR
              EÕU
EÕU
EÕU
                                             PORT #1 UPPER
PORT #1 LOWER
                                                     # 1
                                                                      BYTE
                                                                              CONTROL REGISTER
                              $F70024
$FF
                                              PORT #1 UPPER BYTE CONTROL REGISTER
LATCH
              EÕU
                             TABLE2 PITPOT
#0 PITCTR
#LATCH PITCTR
#0 PITCTR
              MOVE.B
START
                                                                    SEND OUT PITCH CODE
              MOVE.B
                                                                    SEND OUT LATCH SIGNAL
              MOVE. B
             CLR.L
CLR.L
CLR.L
                              D<sub>0</sub>
                              D1
D2
                              #TABLE1, A2
#TABLE3, A4
              MOVEA. T.
                                                                    SET BASE ADDRESS OF TABLE1 SET BASE ADDRESS OF TABLE2
              MOVEA. L
                             SPEAK
#570, D2
#1, D2
COUNT
              BRA.S
                                                                    SET INSIDE LOOP COUNT INERT LOOP BODY
              MOVE
LOOP
COUNT
              SUBQ
              PNE.S
SUBQ
                             COUNT
#1,D1
LOOP
O(A2,D0),PHNPOT
#0,PHNCTR
#LATCH,PHNCTR
#0,PHNCTR
O(A4,D0),D1
#'?',O(A2,D0)
EXIT
#1,D0
LOOP
START
                                                                    KEEP LOOPING
             BNE.S
MOVE.B
SPEAK
              MOVE.B
              MOVE - B
              MOVE B
              MOVE.B
             CMPI.B
BEO.S
ADDQ
                                                                                   ORIGINAL PAGE 13
                                                                                   OF POOR QUALITY
              BRA
                             START
2MX57
EXIT
              BRA
             DC DC
TABLE 1
                             $1E
                             $5B
TABLE2
TABLES
             DC
                              103
```

FILE: TESTV5	ASM	A	VM/SP CONVERSATIONAL	MONITOR SYSTEM
DC.L DC DC.B	103 121 90 55		·	

APPENDIX C

AIR DATA SYSTEM

SOFTWARE SOURCE CODE

FILE: EQU3

END.

```
PROGRAM NCH;
FUNCTION MI (PTI, PSI : REAL) : REAL;
CONST A, B, C, D, E, F, G;
VAR X: REAL;
BEGIN
    X:= PTI/PSI;
    IF X <= 1.893 THEN
        MI := SQRT(5.0) *SQRT(((PTI/PSI) **(2/7)) -1)
        ELSE
    MI := ((A*X-B*X-C*X*X-D*(X**3)-E*(X**4)-F*(X**5)-G*(X**6)-G*(X**9))/X);
END:
BEGIN
END.
```

A 1

FPSINF := PTI*A*exp(2.5*ln(1-A))/0.1839371;

PASCAL

FILE: EQUS PASCAL A1

VM/SP CONVERSATIONAL MONITOR SYSTEM

VM/SP CONVERSATIONAL MONITOR SYSTEM

SUBPROGRAM QUCC:
FUNCTION FQCC (PTI, PSINF: REAL): REAL;
BEGIN
FQCC:= PTI-PSINF;
END.

ORIGINAL PAGE IS

FILE: EQU6 PASCAL A1

VM/SP CONVERSATIONAL MONITOR SYSTEM

subPROGRAM KNOTS; FUNCTION FKEAS (MINF, PSINF: REAL): REAL; BEGIN FKEAS := MINF*661.48*SQRT(PSINF/2116.22); END.

FILE: EQU7

PASCAL A1

VM/SP CONVERSATIONAL MONITOR SYSTEM

subprogram Calspeed: FUNCTION FKCAS (QCC:REAL):REAL; BEGIN FKCAS := 1479.1*SQRT(exp(0.28571*ln(1+QCC/2116.22))-1); END.

A 1

FILE: EQU8 PASCAL

VM/SP CONVERSATIONAL MONITOR SYSTEM

Subprogram GEO;
FUNCTION FHP (PSINF, PSI: REAL): REAL;
VAR A, R: REAL;
BEGIN
R:=PSINF/2116.22;
IF R > 0.223361 THEN FHP:=145442*(exp(0.1902632365*ln(r))-1)
ELSE IF R > 0.0540328 THEN FHP:=164219-20805*LN(PSI)
ELSE BEGIN
A:=exp(0.01463563358*ln(0.0540328/R));
IF R > 0.00856663 THEN FHP:=710794*A*A-645177
ELSE BEGIN
A:=exp(0.04097977*ln(0.00856663/R));
FHP:=81660.7*A*A-162928.8;
END
END;

```
ADSTIM ASM
                    FADI KURDAHI AND CARPO SOSA

**
THESE ROUITNES ARE USED TO MEASURE THE EXECUTION TIME*
OF EQUATIONS IMPLEMENTED IN ADS. THE TIMMING IS DONE*
IN THE FOLLOWING MANNER:

**
    WRITTEN BY
*
    PURPOSE
*
*
    ROUTINE SETIME
                    PURPOSE
*
    FORMAT
    METHOD
******
                                      MSB BUFFER REGISTER (WRITE ADDRESS)
LSB BUFFER REGISTER (READ ADDRESS)
WRITE TIMER # 3 LATCHES
WRITE TIMER # 2 LATCHES
READ TIMER # 3 COUNTER
WRITE CONTROL REGISTER # 3 (CR20=0)
WRITE CONTROL REGISTER # 2
WRITE CONTROL REGISTER # 2
WRITE CONTROL REGISTER # 2
CONTINUOUS MODE CODE
SINGLE SHOT MODE CODE
                        $F70009
$F7000F
$F7000F
$F7000B
$F7000D
           EQU
EQU
EQU
MSBBUF
LSBBUF
T3LTCH
T2LTCH
T3CONT
           EQU
           E QU
E QU
                        $F70001
$F70003
CNTRL3
CNTRL2
                        $F70001
CNTRL 1
                        ŠŠÒ.
T3MODE
           ĒÕŪ
TZMODE
                        $A 0
           EQU
           XDEF
                        SETIME
           SECTION
           EQU
MOVE. L
MOVE. B
SETIME
                        (A7), A4
#T3MODE, CNTRL3
#1, CNTRL2
#0, CNTRL1
#$FF, MSBBUF
#$FF, T3LTCH
           MOVE. B
           MOVE.B
           MOVE. B
           MOVE. B
           JMP
           ****************
   ROUTINE READTIM
*
                                                                                        ±
I. 1
           EOU
           XDEF
                        READTIM
           SECTION
           EQU
MOVE. L
READTIM
                        12 (A5) ,- (A7)
A6, #-L1
A6, 12 (A5)
                                                              ORIGINAL PAGE IS
           LINK
           MOVEL L
                                                              OF POOR QUALITY
```

FILE: ADSTIM ASM A

VM/SP CONVERSATIONAL MONITOR SYST

CLR.L MOVE.B	D1 T3CONT,D1 #8,D1
LSL MOVE.B	#O,UI I.SRRIIF.D1
MOVE. L	LSBBUF, D1 D1, 12 (A6)
UNLK	A 6
MOVE- L	(A7) + , 12 (A5)
RTS END	
444	

APPENDIX D

USER'S DOCUMENTATION
FOR SYSTEM SUPPORT SOFTWARE TOOLS

Communication between COMPUTERM (EE-560L) and USC-ECL (Engr. Computer Lab)

I. - Network Description:

The COMPUTERM system can be connected to three different systems of the USU-ECL network. This connection allow a COMPUTERM user to work interactively with EUL and transfer files to COMPUTERM.

Ine COMPUTERM has one of its UART's connected to a 300 bps modem that links this micro computer to the USC-ECL Micom port selector. This selector routes connection to one of the nine systems available at this network. Currently, the lab has access to the following systems:

* ECLA: POP/10 computer running under TOPS/20 operating system. It has two accounts available for lab use:

account: sosa

password: ask instructor

account: kurdahi

password: ask instructor

* GUMBY: PDP/10 computer running under TOPS/20 operating system.

account: smyth

password: #E560L

* VIRGIL: IBM 370 series 4341 running under CMS operating system.

account: smyth

password: EE560

The following diagram describes the interconnection between the lab and USC-ECL:

YELLOW OF POOR QUALITY

II. - CPM communication utilities:

- * TALK : Program talk.com. Allow interactive communication with any of the ECL-systems mentioned above.
- * TOPCPM : Program topopm.com. Allows text file transfer from ECLA or GUMBY (TOPS/20) to COMPUTERM.
- * CMSCPM: Program cascpm.com. Allows file transfer from VIRGIL (CMS) to CUMPUTERM. File transfer is limited to S-record files only. S-record is a file format created by Motorola and used to allow easy inter-computer transportation of object code for their microprocessors.

III. - How to establish connection:

- 1.- Boot COMPUTERM system and turn on modem on auto-answer mode.
- 2.- Dial to ECL: 743-5030 or 743-7646. If you are on campus omit dialing the prefix 743.
- 5.- Invoke the program TALK.COM, as soon as the carrier is detected by the modem: A>TALK
- 4.- Wait for five seconds and then hit <CR>. The following message will be prompted:

 USC-ECL Micom port selector.

 Which cystim?
- 5.- At this point, you should select your system typing IBM, GUMBY or ECLA.
- 5.- System identification will be prompted indicating that you can now logon to the account. The ECL-TUPS/20 and ECL-IBM/CMS manuals provide a description of the main commands available in these operating systems.
- 7.- At any point you can go back to CPM by typing control-tilde (ctrl-").
 This will not discennect you from ECL. Communication can be reestablished by invoking TALK.COM.

s.- Whin you are done, logoff, return to CPM (ctrl-") and turn modem off.

IV. - file transfer to COMPUTERM:

Refer to the documents:

- * Communication between COMPUTERM and IBM 370/4341 (ECL-VIRGIL).
- * Communication between COMPUTERM and PDP/10 (ECLA or GUMBY).

ORIGINAL PAGE IS
OF POOR QUALITY

Communication between COMPUTERM and IBM 370/4341 (ECL-VIRGIL):

- * This process requires two programs: TALK.COM and CMSCPM.COM
- * To set the connection between the two systems follow the following steps:
 - 1.- Plug and turn modem on and dial 5030 or 7646.
 - 2. On CPM: execute TALK.COM

4>TALK

this will cause a virtual attachment of your terminal to the MICOM port selector. When you select ISM and you are asked about your terminal type, you should answer DM1520. If you want to return to CPM, type ctrl-". This will hot log you off nor detach you from the system. Communication can be set again by repeating step 2.

- 3. When you are done, log off trom VIRGIL and return to CPM using ctrl-". Unplug the modem.
- ** File transfer is limited only to one direction, VIRGIL -> COMPUTERM and can only be used with S-format record files with less than 48K bytes. The steps that must be followed are:
 - 1.- Set communication between the two system using the procedure described above.
 - 2.- When you are ready to transfer the file, return to CPM and execute TOPCPM.COM:

A>TOPCPM XX destination_file_in_CPM 4>TOPCPM XX 3:TEST.03J

This will reconnect the two systems in the same way as TALK.COM does. If by some reason you have to return to CPM before step 3, do it in the usual manner (ctrl-").

3.- On CMS: type the CLEAR key and execute the EXEC file CMSCPM EXEC:

> ORIGINAL PAGE IS OF POOR QUALITY

CMSCPM source_frlename_in_CMS
CMSCPM TEST

the file extension CBJCT is assumed, ie, TEST stands for TEST OBJCT. The file will be typed to the screen as it gets copied. The process is slow because every time that the screen is filled, VIRGIL waits 40 seconds before continuing the transfer. At the end a message will be displayed and control will be passed to CPM. If you notice that the program shows abnormal behavior or you want to abort it, you should press the RESET button in the COMPUTERM box. Then reboot CPM and use TALK.COM to retry or logoff.

- 4.- Use TALK.COM to continue or to logoff from VIRGIL.
- 5.- If your CMS file exceeds 43K bytes. You should split your file in a number of files with a permissible size for transfer. To reconstruct the file on CPM use the PIP.COM utility:

A>PIP Big_File=Small_File_1,...,SmallFile_n
A>PIP A:TEST.03J=8:TEST1.0BJ,TEST2.0BJ,A:TEST3.0BJ

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX E

LISTING OF THE OBS SOURCE PROGRAM

```
PRIGRAM SIMSDIF(IMPUL+)UTPUT);
00131
 00203
003333
60433
                                   COVST
 00500
                                                03 VST1 =1.2;
03 VST2 = 13.75;
G3 V = 10.3;
00533
00733
09900
                                                /E_)CITY = 2) ). );
TVELOCITY = 200.0;
C) VST4 = 1.0;
C) VST5 = 2.0;
00911
01333
01133
01233
                                                TAU1 = 0.43;
TAU2 = 0.25;
01303
01403
                                                 TINA_ = 23.3;
01533
01500
                                                 PHILIM = 10.0;
V = 5;
01703
 01333
                                                374) = 57.3;
GJID3V = 1.0;
 01900
 02000
ŭŽĮŽŽ
                                                  CAPLAMBDA = 4.9 ;
 02200
02333
                                    VAR
02433
                                                RANGE, ETA, A, RELRO, LAMPDA, GAMMADO, GAMMAH, GAMMAF : REAL; KF, YT, XH, FH, XCT, YOT, XOH, YOH, DELTAXT, DELTAYF : REAL; DELTAKH, DELTAFH, NEWSIGMA, DEDSIGMA : REAL; SIGMAD : REAL;
02500
02500
02700
ĎŽĖŠŠ
                                               (:: VARIABLE NAMES SCAPTING WITH C REFER TO THE TARGET *)

[: Pariable Names Scapting With C Refer to the target *)

[: Pariable Names Scapting With C Refer to the target *)

[: Pariable Names Scapting With C Pariable to the target *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABLE TO THE TARGET *)

[: VARIABLE NAMES SCAPTING WITH C PARIABL
02933
03300
 03133
 03203
0333)
 03133
 03500
 03533
 03703
 03200
 63933
 04001
 04100
 04233
 04303
 04403
 04500
                                    BESIA (* MAIN PROGRAM *)
 04500
 04703
 04333
                                                 T:= 3.3;
LIM3X3 := 3.3;
T_IA3XD := 3.3;
04900
 05030
                                                ):LTD := 0.0;
T):_T) := 0.0;
PHID := 0.0;
PHID := 0.0;
 05100
  95203
  05333
 05463
  05500
                                                 05533
  05700
  05300
                                                  PRINTI := Ji
  05900
                                                  LEADX := 0.0;
T.EADX := 0.0;
T.EADX := 0.0;
  06000
  05100
  05203
```

ORIGINAL PAGE IS

06300

07133 07135

07110

07333 07403 08333

08133

09203 UF311

08400

Darba

08303

09003

09130

09233

07400

09633

09700

09333

09900

10000

10203 10300 10403

10500

13333

10709 10300 13333

11000

1123) 11300

12405 12413 12533 12533

```
T) = T := 0.0;
TPHI := 0.0;

DELFAT := 0.15;

PSIT := 27).)/CRAD;

PSI := 90.0/CRAD;

SIGMAD := 0.0; (* LINE OF SIGHT +)

XT := 2000.0;
ŶŢ := 5000.0;
1:4513MA := AR : TAN(Y[/XT)-PSI;
314141 := 30.7/3540;

GA4441 := 270.0/3740;

ARIFELN (* 04 30

WRIFELT;
                            ON BOARD AIR FO AIR INTERCEPTION SIMULATOR! );
KH := 0.0
 YH := 0.0 : (* [NITIAL POSITION OF THE HOST IS 0.0 *)
(/::DMPJTATE) N ) = THE INITIAL LIVE OF SIGHT +)
    ARIFELN CY ENIFIAL LINE OF SIGHT ======> *.NEWSIGMA) ;
             SEMULATION AND BUIDANCE LOOP
WHILE (T C= TFINAL) DC BESIN
      (* INITIALIZATION WITHIN THE LOOP *)
             IX =: TOX
             XĎ4 := X4 :
             YOH := YH ;
             DEDSIGNA := VEWSIGMA ;
     (* GUIDANCE LAT CALCULATION *)
                  := SORT ( SOR(MOT. (D1) - SOR: MOT. MOH) ) ;
    EFA := 314414+ VEVSIGMA;
     A := GANNAT - VEASIGMA
     RELPO := (1.) - ((TVELOCITY-DOS(A))/(VELOCITY+COS(ETA)));
ANDA := DAPLAMADA + RELPO ;
BAMADO := LAMBDA + SIGMA) ;;
      PSIC := GAAMADD + GUIDGY :
      (* SET THE DERIVATIVE EQUATIONS *)

ED3 := PS[0-10NS[4+PSI-0]NS[5+PSI];
[EPS := TPSI0 + DONST4+TPDI + DONST5+TPSID ; (* TARGET *)
[LEADXD := ([EPS+CONST1 + T_EA)()/TAU2; (* TARGET *)
LEADXD := ([EPS+C)NST1 + LEADX)/TAU2;
[DELT := [LEAD( + TLEADX) * FAJ1;
DELT := LEAD( + LEADXD+TAJ1;
PHID := DELT+CONST2;
[PHID := DELT+CONST2;
[PHID := [DELT * CONST2;
[+ SHJVI _IMIT THE AIRCRIFT *OLL ANG_E *)
[= (PHI+PHID > 0.0) AND (ABS(PHI) > PHILIM) THEN PHID := 0.0;

    (*.SHJNT LI4IF THE TARGET AIRCRAFT *)
IF(TP4IDFFP4I > 0.0) AND ( \AS(TP4 > PHILIM) THEN TP4ID:=0.0;
PSIDD := ((GRAVIVELDCITY)*P4I*PSID)*/
FPSIDD := ((GRAVIVELDCITY)*/PAI*PSID)*/
IRCANTAGE
```

ORIGINAL PAGE IS OF POOR QUALITY

: :

į ':

.

```
12733
12400
12900
13000
13005
13233
13301
1340)
13435
13501
13703
13300
13903
14331
14133
1420)
14300
14400
14500
14533
14703
14333
14903
15000
15100
15203
153))
15433
15500
155))
15703
15300
1593)
15000
15133
15203
15303
15490
15533
16500
15777
15300
16900
17000
17133
17203
1730)
17400
17500
17533
17700
17333
17903
18000
โล้เวิว
13203
13433
18500
1351)
19529
```

```
ALROPLETS
                                                                                                                                              GRID GEOMETRY
 (+
 DELTAXT := TVI_COITY + DELTAT + COS(PSIT);
DELTAYT := TVELOCITY + DELTAT + SIN(PSIT);
                                              := KOT + DELTANT
(T
                                                           YOT + DELTAYT
                                                          VELOCITY + DELEAT + COS(PSI);
VELOCITY + STLEAT + SIN(PSI);
X)+ + DELTAX+ ;
 ( 1
                                                           Y) + CELTAYH ;
 YH
(* ASSIBN *)
i[1:1] := -EADK;
FI[1:1] := T-EADK;
I[1:2] := -EADKD;
I[1:2] := -EADKD;
I[1:2] := -EADKD;
I[2:1] := -EADKD;
I[2:1] := -EADKD;
I[2:1] := -EADKD;
I[2:1] := -EADKD;
I[1:2:1] := -EADKD;
I[1:2:1] := -EADKD;
I[1:2:1] := -EADKD;
I[1:2:1] := -EADKD;
I[1:3:1] :=
  TI[3,1] := TOHI ;
[[3,2] := P4[] ;
fī.5,2] := f>SID ;
  (* IVIESPATION *)
 (* REASSIS NMENT +D
EADX := DIII;
[LEADX := DTIII;
 PHI := 3[3];

[PHI := 3[3];

PSID := 3[3];

[PSID := 3[5];

[PSI := 3[5];

[PSI := 3[5];
  (* PPINT DUT THE PARAMETERS EVERY (DELTAT*25) INTEGRATIONS *)
PRINTI := PRINTI + 1;
IF PRINTI = L THIN
BEGIN
                   `WPITE_N(*FARGIT X,Y,PSI*,KF,YT,PSIT CRAD);
WRITELN(*HOST X,Y,PSI*,KH,YH,PSI*CRAD);
WRITELN(*HOST SIGMA,GA4M(6P)FC)MMAND*,NIWSIGMA+CRAD,FAMMAH+CRAD,PSIC+CRAD);
```

• . ~ •

ORIGINAL PAGE IS

F-4