Wavelets

Jan Kandyba

10. Mai 2022

1 Haar Wavelet

Wir versuchen eine gegebene Funktion zu approximieren. Zuerst durch eine Skallierungsfunktion φ , dann durch ein Wavelet ψ . Nehmen wir folgende Funktionen:

$$\varphi(t) = \begin{cases} 1, & falls \ t \in [0, 1) \\ 0, & sonst \end{cases}, \psi(t) = \begin{cases} 1, & falls \ t \in [0, \frac{1}{2}) \\ -1, & falls \ t \in [\frac{1}{2}, 1) \\ 0, & sonst \end{cases}$$

Nun können wir eine beliebige Funktion f durch Verschiebungen und Skallierungen der Funktion ϕ darstellen. Dabei betrachen wir einen Approximationsfall j, indem wir die approximierende Funktion durch die Mittelwerte, konstant jeweils auf einem Abschnitt von 2^{-j+1} .

Abbildung 1: Approximation von x^2 durch eine Treppenfunktion

2 Signale und Filter

Definition 2.1 (Signalraum). $x = \{x_n\}_{n \in \mathbb{Z}} \subset \mathbb{C}$ ist ein diskretes Signal. Wir verwenden die Energienorm für Signale:

$$||x|| = (\sum_{k \in \mathbb{Z}} |x_k|)^{1/2}$$

Im folgenden werden wir nur Signale mit endlicher Energie betrachten. Dafür definieren wir uns den Raum

$$l^2(\mathbb{Z}) \coloneqq \{x: \mathbb{Z} \to \mathbb{C}: ||x|| < \infty\}$$

Bemerkung. Wir bilden auf \mathbb{C} ab, da wir eine Frequenz in der Form von $r \cdot e^{i\omega x}$, mit r die Amplitude und ω die Frequenz darstellen.

Um mit diesen Signalen zu arbeiten, definieren wir uns Filter als Abbildungen von $l^2(\mathbb{Z})$ auf sich selber, mit der Notation y = Hx, $H: l^2(\mathbb{Z}) \to l^2(\mathbb{Z})$

Beispiel. Ein Besipiel für einen linearen Filter (s. u.) ist der sogenannte Delay-Operator, definiert durch

$$y = D^n x \Leftrightarrow y_k = x_{k-n}$$

Definition 2.2. Ein Filter H ist LTI (Linear, time invariant), falls

- (i) H(x+y) = Hx + Hy
- (ii) H(ax) = aHx
- (iii) H(Dx) = D(Hx)

Bemerkung. Für einen LTI-Filter H gilt $H(D^nx) = D^n(Hx)$

Eine wichtiges Signal ist das sogenannte Impulssignal:

$$\delta_k := \begin{cases} 1, & falls \ k = 0 \\ 0, & sonst \end{cases}$$

Ein beliebiges zeitdisretes Signal lässt sich durch das Impulssignal ausdrücken:

$$x = \sum_{n} x_n D^n \delta$$

Für ein LTI-Filter definieren wir uns die Impusantwort $h \coloneqq H\delta$

Wenden wir nun einen LTI-Filter H auf x an, bekommen wir folgene Umformung:

$$y = Hx \Leftrightarrow y = H(\sum_{n} x_{n} D^{n} \delta) = \sum_{n} x_{n} H(D^{n} \delta)$$
$$= \sum_{n} x_{n} D^{n} h := h * x$$

Mit * als Definition einer Faltung, da mit einsetzen folgendes gilt:

$$y = h * x \Leftrightarrow y_k = \sum_n x_n h_{k-n}$$

Damit können wir jeden LTI-Filter durch eine Folge als seine Impulsantwort definieren.

Definition 2.3. Die zeitdiskrete Fouriertransformation für ein zeitdirkretes Signal x:

$$X(\omega) = \sum_{k=-\infty}^{\infty} x_k e^{-i\omega k}$$

Die Fouriertransformation der Impulsantwort eines LTI-Filters heißt Frequenzantwort. Für den Fall einer konstanten Frequenz als Eingabe, $x_k = e^{i\omega k}$ mit $|\omega| \leq \pi$ gilt:

$$y_k = \sum_n h_n x_{k-n} = \sum_n h_n e^{i\omega(k-n)}$$
$$= e^{i\omega k} \sum_n h_n e^{-i\omega n} = e^{i\omega k} H(\omega)$$

Mit der Schreibweise $H(\omega) = |H(\omega)|e^{i\phi(\omega)}$ folgt

$$y_k = |H(\omega)|e^{i(\omega k + \phi(\omega))}$$

Somit ist die Ausgabe auch eine reine Frequenz, mit der Amplitude $|H(\omega)|$, und der Phasenverschiebung $-\phi(\omega)$. Die Fouriertransformation beschreibt somit durch den Betrag $H(\omega)$, inwiefern der Filter H die Frequenz ω beeinflusst.

Für den Mittelungsfilter

$$h_k = \begin{cases} 1/2, & falls \ k = 0, 1 \\ 0, & sonst \end{cases}, y_k = \sum_n h_n x_{k-n} = \frac{x_k + x_{k-1}}{2}$$

gilt $|H(\omega)| = \cos(\frac{\omega}{2})$, $|\omega| < \pi$. Wie auf Abbildung 2 zu sehen, werden hohe Frequenzen mit einem Faktor von fast 0 multipliziert, wohingegen niedrige Frequenzen mit einem Faktor nahe 1 skalliert werden. So einen Filter nennen wir $Tiefpa\beta filter$. Bei einem gegensätzlichen Verlauf sprechen wir von einem $Hochpa\beta filter$.

3 Multiskalenanalyse

Zuerst einigen wir uns auf die folgende Fouriertransformation:

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

Unser Ziel ist es nun eine numerisch Stabile Basis des unendlich-dimensionalen Vektorraumes $L^2(\mathbb{R})$ zu konstruieren. Dazu definieren wir den Begriff der Riesz-Basis.

Abbildung 2: Die Frequenzantwort des Mittelungsfilters

Definition 3.1. $\{\varphi_k\}_k$ eine Basis von $V \subset L^2(\mathbb{R})$ eine Riesz-Basis, falls $\exists A, B \in \mathbb{R}$, mit

$$f = \sum_{k} c_k \varphi_k \Rightarrow A||f||^2 \le \sum_{k} |c_k|^2 \le B||f||^2$$

Bemerkung. Für eine Approximation $\tilde{f}=\sum_k \tilde{c_k}\varphi_k$ für $f=\sum_k c_k\varphi_k$ gilt:

$$A||f - \tilde{f}||^2 \le \sum_k c_k - \tilde{c_k} \le B||f - \tilde{f}||^2$$

Somit folgen für kleine Fehler in der Approximation auch kleine Fehler in den Koeffizienten.

Nun verstetigen wir den Begriff des Signals, und betrachten nun funktionen.

Definition 3.2. Der Raum, indem alle unsere Signale enthalten sind ist

$$L^{2}(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{C} : \int_{-\infty}^{\infty} |f|^{2} dt < \infty \}$$

mit der Norm

$$||f|| = (\int_{-\infty}^{\infty} |f|^2 dt)^{1/2}$$

und des daraus induzierten Skalarproduktes

$$\langle f, g \rangle \coloneqq \int_{-\infty}^{\infty} f \overline{g} \, dt$$

Nun führen wir die Multiskalenanalyse ein:

Definition 3.3. Eine Familie von Unterräumen $\{V_j\}_{j\in\mathbb{Z}}$ von $L^2(\mathbb{R})$ heißt Multiskalenanalyse (MSA), falls

(i)
$$V_j \subset V_{j+1} \ \forall \ j \in \mathbb{Z}$$

- (ii) $f(t) \in V_i \Leftrightarrow f(2t) \in V_{i+1} \ \forall \ j \in \mathbb{Z}$
- (iii) $\bigcup_{j} V_{j}$ dicht in $L^{2}(\mathbb{R})$
- (iv) $\bigcap_i V_j = \{0\}$
- (v) Es existiert eine Skalierungsfunktion $\varphi \in V_0$, mit $\{\varphi(t-k)\}_{k \in \mathbb{Z}}$ Orthonormalbasis, Riesz-Basis von V_0 , mit $\int_{\mathbb{R}} \varphi(t) dt = 1$

Mit Punkt (ii) folgt, dass für ein V_i die Familie $\{\varphi_{i,k}\}_k$ eine Basis bildet, mit

$$\varphi_{j,k}(t) \coloneqq 2^{j/k} \varphi(2^j t - k)$$

Bemerkung. Der Vorfaktor von $2^{j/k}$ ist notwendig, damit $||\varphi_{j,k}|| = ||\varphi||$ gilt.

Die Multiskalenanalyse ist also eine Familie von Detailräumen. Mit jedem weiteren Index werden die Signale besser approximiert. Durch Punkt (iii) bekommen wir später im Grenzübergang eine Basis von $L^2(\mathbb{R})$.

Mit Punkt (i) folgt, dass $\varphi \in V_1$. Damit ist φ auch folgendermaßen darstellbar:

$$\varphi(t) = 2\sum_{k} h_{k}\varphi(2t - k)$$

Durch Anwendung der kontinuierlichen Fouriertransformation bekommen wir mit den üblichen Rechenregeln:

$$\hat{\varphi}(\omega) = 2\sum_{k} h_{k} \mathcal{F} \varphi(2t - k)$$

$$= 2\left(\sum_{k} h_{k} e^{-i\frac{\omega}{2}k}\right) \cdot \hat{\varphi}\left(\frac{\omega}{2}\right) \frac{1}{2}$$

$$= H\left(\frac{\omega}{2}\right) \hat{\varphi}\left(\frac{\omega}{2}\right)$$

mit $H(\omega) := \sum_{k} h_k e^{i\omega k}$

Mit Punkt (v) folgt auch $\hat{\varphi}(0) = 1$, und damit $H(0) = \sum_k h_k = 1$. Man kann auch mit der Orthogonalität der Basen zeigen, dass $\{\varphi_{j,k}\}_k$ auch $H(\pi) = 0$ gelten muss. Damit wäre H ein Tiefpaßfilter.

Lemma 3.4 (Allgemeine Skallierungsgleichung). Es gilt

$$\varphi_{j,k} = \sqrt{2} \sum_{l} h_l \varphi_{j+1,l+2k}$$

Beweis. Per Definition gilt:

$$\varphi_{j,k}(t) = 2^{j/2} \varphi(2^{j}t - k)$$

$$\stackrel{3.4}{=} 2 \cdot 2^{j/2} \sum_{l} h_{l} \varphi(2^{j+1}t - 2k - l)$$

$$= \sqrt{2} \sum_{l} h_{l} \varphi_{j+1,l+2k}$$

4 Wavelets

Nun definieren wir uns die Komplementärräume zu einer MSA.

Definition 4.1. Für $\{V_j\}_j$ eine MSA ist ψ ein Wavelet, falls $\psi(t-k)$ eine Orthonormalbasis, Riesz-Basis von W_0 , mit W_0 der Komplementärraum von V_0 in V_1 , also $V_1 = V_0 \oplus W_0$. Außerdem soll gelten

$$\int_{-\infty}^{\infty} \psi(t) \, dt = 0 \tag{1}$$

Analog definieren wir uns

$$\psi_{i,k}(t) := 2^{j/2} \psi(2^j t - k)$$

Auch hier gilt, dass $\{\psi_{j,k}\}_k$ eine Basis von W_j ist. Damit gilt, dass $\psi \in V_1$, mit

$$\psi(t) = 2\sum_{k} g_k \varphi(2t - k)$$

Analog zu oben folgern wir

$$\hat{\psi}(\omega) = G(\frac{\omega}{2})\hat{\varphi}(\frac{\omega}{2})$$

mit

$$G(\omega) = \sum_{k} g_k e^{-ik\omega}$$

Durch Gleichung 1 folgt $\hat{\psi}(0) = 1$ $\hat{\varphi}(0) = 0$, und damit $G(0) = \sum_k g_k = 0$. Durch die Orthogonalität kann man auch hier zeigen, dass G(1) = 1. Damit ist G ein Hochpaßfilter.

5 Die Fast Forward Wavelet Transformation

Ziel dieser Transformation ist es bei gegebener Detailschärfer (hier Koeffizienten aus einem Raum V_j) die Koeffizienten aus den gröberen Räumen zu berechnen. Hierbei nehmen wir als Koeffizienten die Projektion einer funktion $f \in L^2(\mathbb{R})$ auf den Raum $V_j + 1$, also mit $s_{j+1,k} = \langle f, \varphi_{j+1,k} \rangle$:

$$\sum_{k} s_{j+1,k} \varphi_{j+1,k} = \sum_{k} s_{j,k} \varphi_{j,k} + \sum_{k} \omega_{j,k} \psi_{j,k}$$

Durch Skallarmultiplikation auf beiden Seiten bekommen wir für ein $l \in \mathbb{Z}$ fix.:

$$\sum_{k} s_{j+1,k} \langle \varphi_{j+1,k}, \varphi_{j,l} \rangle = \sum_{k} s_{j,k} \langle \varphi_{j,k}, \varphi_{j,l} \rangle + \sum_{k} \omega_{j,k} \langle \psi_{j,k}, \varphi_{j,l} \rangle$$
$$s_{j,l} = \sum_{k} s_{j+1,k} \langle \varphi_{j+1,k}, \varphi_{j,l} \rangle$$

Durch $\varphi_{j,k} = \sqrt{2} \sum_{l} h_{l} \varphi_{j+1,l+2k}$ folgt:

$$\langle \varphi_{j+1,l}, \varphi_{j,k} \rangle = \sqrt{2} \sum_{m} h_m \langle \varphi_{j+1,l}, \varphi_{j+1,m+2k} \rangle = \sqrt{2} h_{l-2k}$$

Somit gilt:

$$s_{j,k} = \sqrt{2} \sum_{l} s_{j+1,l} h_{l-2k}$$

Literatur

[1] Jöran Bergh, Fredrik Ekstedt, Martin Lindberg (1999) Wavelets mit Anwendungen in Signal- und Bildverarbeitung