Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Complex Analysis (MTH 403) Hints for Exercise Sheet 7

1. Zeros of analytic functions

Throughout this section, unless otherwise mentioned, U always stands for a region.

- 1.1. Show that H(U) is an integral domain with respect to pointwise addition and multiplication.
- 1.2. Let *U* be an open connected subset of \mathbb{C} and $f \in H(U)$. Assume that for all $z \in U$ there exists $n \ge 0$ such that $f^{(n)}(z) = 0$. What can you conclude about f?
- 1.3. Let $f: \mathbb{D} \longrightarrow \mathbb{C}$. Show that, if f^2 and f^3 both are holomorphic, then so if f.

Hint. Observe that $f = \frac{f^3}{f^2}$ at all points $z \in \mathbb{D}$ such that $f(z) \neq 0$. So zeros are needed to be taken care of.

1.4. (L'Hôpital's rule). Let $U \subseteq_{open} \mathbb{C}$ and $f,g \in H(U)$. Suppose that $z_0 \in U$ is such that on some neighbourhood of z_0 in U, none of f and g vanishes identically, but $\lim_{z \to z_0} f(z) = \lim_{z \to z_0} g(z) = 0$. Show

that $\frac{f(z)}{g(z)}$ approaches to a finite limit or ∞ as $z \to z_0$, and furthermore, $\frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} = \frac{\lim_{z \to z_0} f'(z)}{\lim_{z \to z_0} g'(z)}$.

- 1.5.* Let U be a region in \mathbb{C} . Assume that U is *symmetric* with respect the real axis, i.e., $z \in U \Longrightarrow \overline{z} \in U$. Suppose that $f \in H(U)$ is such that $f(J) \subseteq \mathbb{R}$, for some open interval containied in $U \cap \mathbb{R}$. Show that $f(U \cap \mathbb{R}) \subseteq \mathbb{R}$ and $f(\overline{z}) = \overline{f(z)}$, for all $z \in U$.
- 1.6. Let f be a nonzero entire function such that f(0) = 0 and $f(\mathbb{R}) \subseteq \mathbb{R}$. Show that if the image of the imaginary axis under f is contained in a line, then that line must be either the real axis or the imaginary axis.

Sketch of the solution. Let L be the line containing the image of the imaginary axis. As f(0) = 0, the equation of L must be ax + by = 0, for some $a, b \in \mathbb{R}$. We apply 1.5. to obtain that $f(\overline{z}) = \overline{f(z)}$, for all $z \in \mathbb{C}$. Note that, there exists $t \in \mathbb{R}$ such that $f(it) = x' + iy' \neq 0$, otherwise from Identity theorem f will be constantly zero. Then one has $x' - iy' = \overline{x' + iy'} = \overline{f(it)} = f(-it)$. Hence (x', -y') also satisfies ax + by = 0. From this, it follows that a = 0 or b = 0.

Let $\varphi: \mathbb{C} \longrightarrow \mathbb{C}$. We say that $w \in \mathbb{C}$ is a *period* of φ if $\varphi(w+z) = \varphi(z)$, for all $z \in \mathbb{C}$.

1.7. Let L_1 and L_2 stand for the lines Im z = 0 and $\text{Im } z = \pi$ respectively. Suppose that f is an entire function such that $f(L_j) \subseteq \mathbb{R}$, for j = 1, 2. Show that f is $2\pi i$ -periodic.

Sketch of the solution. From 1.5. we obtain that $f(\bar{z}) = f(z)$, for all $z \in \mathbb{C}$. So, for all $x \in \mathbb{R}$, one has $f(x - \pi i) = f(x + \pi i)$. This shows that $f(z + 2\pi i) - f(z) = 0$, whenever $\text{Im } z = -\pi$. Now from identity theorem, one obtains that $f(z + 2\pi i) - f(z) = 0$ for all $z \in \mathbb{C}$.

1.8. Show that a nonconstant entire function can have at most countably many periods.

Sketch of the solution. Enough to show that f has finitely many periods on any compact subset K of \mathbb{C} (why?) Suppose f has infinitely many periods in K. Fix $z \in \mathbb{C}$. Consider the function $g(w) \stackrel{def}{=} f(w+z) - f(z)$, for all $w \in \mathbb{C}$. Then g has infinitely many zeros in K. This implies that $g \equiv 0$. This makes f is constant, which is not possible.

1.9. Let $f, g \in H(\mathbb{D})$ be nowhere vanishing. Assume that $\frac{f'}{f}\left(\frac{1}{n}\right) = \frac{g'}{g}\left(\frac{1}{n}\right)$, for all $n \in \mathbb{N} \setminus \{1\}$. Show that $\frac{f}{g}$ is constant.

Hint. This is a straightforward application of Identity theorem

2. Maximum modulus principle

2.1. Formulate and prove the 'Minimum modulus principle'. Conclude that, for any region U in \mathbb{C} and nonconstant holomorphic function $f: U \longrightarrow \mathbb{C}$, |f| can attain a local minima only at zeros of f.

Statement. Let U be a region in \mathbb{C} and $f \in H(U)$. Let $z_0 \in U$ and r > 0 be such that $\overline{D(z_0; r)} \subseteq U$ and f vanishes nowhere in $D(z_0; r)$. Then

$$|f(z_0)| \ge \min_{t \in [0,2\pi]} |f(z_0 + re^{it}|, \tag{2.1}$$

and equality occurs if and only is f is constant.

Proof. Since f vanishes nowhere in $\overline{D(z_0;r)}$, there exists R > r such that $D(z_0;R) \subseteq U$ and f does not have a zero in $D(z_0; R)$. Restrict f to $D(z_0; R)$ and apply Maximum modulus principle on $\frac{1}{f}$ to obtain that

$$\frac{1}{|f(z_0)|} \le \max_{t \in [0, 2\pi]} \frac{1}{|f(z_0 + re^{it})|}.$$
(2.2)

Now (2.1) is immediate from (2.2). Furthermore, equality occurs in 2.1 if and only if equality occurs in (2.2) if and only if $\frac{1}{f}$ is constant on $D(z_0; R)$ if and only if f is constant on $D(z_0; R)$ if and only if f is constant on U, in view of Identity theorem.

Note to the student. Likewise the Maximum modulus principal, one deduces a couple of corollaries as follows:

Corollary 1. Let U be a region and $f \in H(U)$. Suppose that z_0 is a local minima of f and $f(z_0) \neq 0$. Then f is constant.

Corollary 2. Let U be a bounded region, $f: \overline{U} \longrightarrow \mathbb{C}$ is continuous and $f \in H(U)$. Assume that f does not have a zero in U. Then

$$\min_{z \in \overline{U}} |f(z)| = \min_{z \in \partial U} |f(z)|.$$

The proof of the above corollaries are easy exercises.

Find the maximum and minimum of |f| in each of the following cases:

(a)
$$f: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$$
, $f(z) \stackrel{\text{def}}{=} \frac{z^2}{z+2}$.

(b)
$$f: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$$
, $f(z) \stackrel{\text{def}}{=} z^2 - z$.
(c) $f: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$, $f(z) \stackrel{\text{def}}{=} e^{z^2}$.

(c)
$$f: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$$
, $f(z) \stackrel{\text{def}}{=} e^{z^2}$

(d)
$$f: \{z \in \mathbb{C}: |z|^2 \le 4, \operatorname{Re} z, \operatorname{Im} z \ge 0\} \longrightarrow \mathbb{C}, f(z) \stackrel{\text{def}}{=} ze^z.$$

Sketch of the solution. These are routine computations. Use Maximum (minimum) modulus principle(s).

2.3. Let $n \in \mathbb{N}$ and $P(z) \stackrel{\text{def}}{=} z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ be a polynomial with complex coefficients.

(a) Choose
$$r > 1 + 2|a_0| + a_1 + \cdots + |a_{n-1}|$$
. Show that, for any $t \in [0, 2\pi]$, one has $|P(re^{it})| > |P(0)|$.

Solution It is says to see that if |x| > n then 2|x| + |x| + |

Solution. It is easy to see that, if |z| > r, then $2|a_0| + |a_1||z| + \cdots + |a_{n-1}||z|^{n-1} < (2|a_0| + |a_1| + \cdots + |a_{n-1}||z|^{n-1} < |z|^n$. From this it now follows that, whenever |z| > r,

$$|P(z)| \ge |z|^n - \left(|a_{n-1}z^{n-1} + \dots + a_1z + a_0|\right)$$

$$\ge |z|^n - \left(|a_{n-1}||z|^{n-1} + \dots + |a_1||z| + |a_0|\right)$$

$$> |a_0|.$$

- (b) Using Minimum modulus principle, show that *P* must have a zero.
- (c) Conclude the Fundamental theorem of algebra.

Note to the student. The above exercise yields another proof of the Fundamental theorem of algebra.

2.4.* (a) Let $U \subseteq \mathbb{C}$ be a bounded region and $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous functions on \overline{U} converging uniformly on ∂U . Show that, if each $f_n \in H(U)$, then $\{f_n\}_{n=1}^{\infty}$ converges uniformly on \overline{U} .

Hint. Let $z \in U$. From Maximum modulus principle, one observes that, for all $m, n \in \mathbb{N}$,

$$|f_n(z) - f_m(z)| \le \max_{w \in \overline{U}} |f_n(w) - f_m(w)|.$$

From this, follows that $\{f_n\}_{n=1}^{\infty}$ is uniformly Cauchy on \overline{U} , hence uniformly convergent.

(b) Find all functions $f: \partial \mathbb{D} \longrightarrow \mathbb{C}$ such that there is a sequence of polynomials $\{P_n\}_{n=1}^{\infty}$ which converges uniformly to f (on $\partial \mathbb{D}$).

Hint. It follows from 2.4.a that there exists a continuous $g: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$ such that $g \in H(\mathbb{D})$ and $g|_{\partial\mathbb{D}} = f$. Conversely, let $g: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$ be continuous and $g \in H(\mathbb{D})$. For each $n \in \mathbb{N}$, consider $g_n(z) = g\left(\frac{n}{n+1}z\right)$, for all $z \in D\left(0; \frac{n+1}{n}\right)$. Clearly all g_n 's are holomorphic. Now for any $n \in \mathbb{N}$, choose a Taylor polynomial P_n such that $|P_n(z) - g_n(z)| < \frac{1}{n}$, for all $z \in \overline{\mathbb{D}}$. Using the uniform continuity of g, show that $\{P_n\}_{n=1}^{\infty}$ which converges uniformly to g on $\overline{\mathbb{D}}$.

- 2.5. Let $U \subseteq \mathbb{C}$ be as above in 2.4.a and $f : \overline{U} \longrightarrow \mathbb{C}$ be continuous and holomorphic on U. Show the following:
 - (a) If f is nonconstant and |f| is constant on ∂U , then f must have a zero in U.
 - (b) if $f \equiv 0$ on ∂U then f must be identically zero everywhere.
 - (c) If f is real valued on ∂U , then f is constant. What if f assumes purely imaginary values on ∂U ?

Hint. If f is real valued on ∂U , then $|\exp(-if)| \equiv 1$ on ∂U . Then $\exp(-if)$ must be constant, otherwise it would have a zero in U. Now use connectedness of U to conclude from this that f is constant. Similar argument works if f assumes purely imaginary values on ∂U .

(d) If $U = \mathbb{D}$, |f(z)| > 1 whenever |z| = 1, and f(0) = i, then f has a zero on \mathbb{D} .

Hint. Assume that f does not have a zero in \mathbb{D} . Then from Muminum modulus principle, one has $1 = |f(0)| \ge \min_{|z|=1} |f(z)| > 1$, which is absurd.

2.6. Let $U \subseteq_{open} \mathbb{C}$ and $f \in H(U)$ be nonconstant. Can Re f and Im f have local maxima or minima? **Hint.** *Consider* exp f *and* exp(if)

2.7. Show that, for any finite subset $\{a_1, \ldots, a_n\}$ of the unit circle, $\max_{|z|=1} |z-a_1| \ldots |z-a_n| \ge 1$.

Sketch of the solution. This is a straightforward application of Maximum modulus principle.

2.8. (a) Let U be a bounded region in \mathbb{C} and $f \in H(U)$. Suppose that, for every $\{z_n\}_{n=1}^{\infty}$ in U converging to a point of ∂U , $f(z_n) \xrightarrow[n \to \infty]{} 0$. Then show that $f \equiv 0$ on U.

Sketch of the solution. Let $\mu \stackrel{def}{=} \{|f(z)| : z \in U\}$. Note that μ can be $+\infty$. Then there exists a sequence $\{z_n\}_{n=1}^{\infty}$ in U such that $|f(z_n)| \xrightarrow[n\to\infty]{} \mu$. Now choose a convergent subsequence, say $\{z_{n_k}\}_{k=1}^{\infty}$, converging to z_0 . If $z_0 \in U$, then $f(z_0) = \lim_{k\to\infty} |f(z_{n_k})| = \mu$ and hence z_0 will be point of maximum. Hence f is constant, say c. Consequently, for every $\{w_n\}_{n=1}^{\infty}$ in U converging to a point of ∂U , $f(w_n) \xrightarrow[n\to\infty]{} c$. This shows that c = 0. So we now assume that $z_0 \in \partial U$. Since $\lim_{k\to\infty} |f(z_{n_k})| = \mu$, it follows that $\mu = 0$. This forces $f \equiv 0$.

- (b)* Let $U \stackrel{\text{def}}{=} \mathbb{D}$ in 2.8.a. Suppose that the hypothesis is weakened as follows: for every $\{z_n\}_{n=1}^{\infty}$ in \mathbb{D} converging to a point of an arc $\{e^{it}: \alpha \leq t \leq \beta\}$, where $\alpha < \beta$, $f(z_n) \xrightarrow[n \to \infty]{} 0$. Show that one can arrive at the same conclusion, i.e., $f \equiv 0$ on \mathbb{D} .
- (c) Conclude that if $f: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$ is continuous and holomorphic on \mathbb{D} and vanishes identically on an arc of the boundary, then $f \equiv 0$.
- 2.9.* Suppose that $f \in H(\mathbb{D})$ is such that f(0) = 0 and $\forall z \in \mathbb{D}$, $|f(z)| \le 1$. Show that, if f has any other fixed point different from 0 then it must be the identity function.

Hint. Consider the following function:

$$g(z) \stackrel{def}{=} \begin{cases} \frac{f(z)}{z} & if \ z \neq 0 \\ f'(0) & if \ z = 0. \end{cases}$$

Then g is holomorphic. Use Maximum modulus principle to show that $|g(z)| \le 1$ for all $z \in \mathbb{D}$, and from this show that $g \equiv 1$ on \mathbb{D} .

- 2.10. Let $f : \mathbb{D} \longrightarrow \mathbb{C}$ be holomorphic.
 - (a) Show that there exists $\{z_n\}_{n=1}^{\infty}$ in \mathbb{D} such that $|z_n| \xrightarrow[n \to \infty]{} 1$ and $\{f(z_n)\}_{n=1}^{\infty}$ is convergent.

Hint. Enough to work with the case f is nonconstant and has finitely many zeros in \mathbb{D} (why?) Then dividing it by a suitable polynomial, we may further assume that f is zero-free (Why would this not make any loss in generality?). For each $n \in \mathbb{N}$, let $M_n \stackrel{def}{=} \min_{|w| = \frac{n}{n+1}} |f(w)|$. Now choose z_n such that $|z_n| = \frac{n}{n+1}$ and $|f(z_n)| = M_n$. Since f is nonconstant, clearly $\{|f(z_n)|\}_{n=1}^{\infty}$ is a decreasing sequence. Choose a convergent subsequence of $\{f(z_n)\}_{n=1}^{\infty}$.

(b)* Assume that f is nonconstant. Show that there are sequences $\{z_n\}_{n=1}^{\infty}$ and $\{w_n\}_{n=1}^{\infty}$ in \mathbb{D} such that $|z_n|, |w_n| \xrightarrow[n \to \infty]{} 1$, both $\{f(z_n)\}_{n=1}^{\infty}$ and $\{f(w_n)\}_{n=1}^{\infty}$ are convergent but limits are not equal.

Hint. Let $\{z_n\}_{n=1}^{\infty}$ be as obtained in 2.10.a. If necessary, subtracting a constant from f we may assume that $f(z_n) \xrightarrow[n \to \infty]{} 0$. Passing through a subsequence if needed, we may further assume

that $\{|z_n|\}_{n=1}^{\infty}$ is strictly increasing. Now, for each $n \in \mathbb{N}$, consider $M_n \stackrel{def}{=} \max_{|w|=|z_n|} |f(w)|$. What can you say about the sequence $\{M_n\}_{n=1}^{\infty}$? For n sufficiently large, find b_n with $|w_n| = |z_n|$ such that $|f(w_n)| = M_1$. Now choose a convergent subsequence of $\{w_n\}_{n=1}^{\infty}$.

2.11. Let P(z) and Q(z) be nonconstant complex polynomials of the same degree. Assume that there exists r > 0 such that |P(z)| = |Q(z)|, whenever |z| = r, and all zeros of P(z) and Q(z) lie in D(0; r). Show that there exists $\lambda \in S^1$ such that $P(z) = \lambda Q(z)$, for all $z \in \mathbb{D}$.

- 3. Open mapping theorem
- 3.1. Prove that there cannot exist bijective holomorphic map from the punctured disc $\mathbb{D}\setminus\{0\}$ to the annulus $A(1,2) \stackrel{\text{def}}{=} \{z \in \mathbb{C} : 1 < |z| < 2\}.$

I at $U \in \mathbb{C}$ be a region and $f \in H(U)$ be nonconstant. Deduce from Open manning theorem to

3.2. Let $U \subseteq \mathbb{C}$ be a region and $f \in H(U)$ be nonconstant. Deduce from Open mapping theorem that neither |f| nor Re f nor Im f can have a local maxima.

Hint. Suppose that |f| has a local maxima, say z_0 . Then there exists r > 0 such that $D(z_0; r) \subseteq U$ and $\forall z \in D(z_0; r), |f(z)| \leq |f(z_0)|$. From Open mapping theorem, it follows that, there exists some $\rho > 0$ such that $D(f(z_0); \rho) \subseteq f(D(z_0; r))$. Now show that there exists $w \in D(f(z_0); \rho)$ such that $|w| > |f(z_0)|$, which leads to a contradiction. Similar argument works for Re f and Im f.

3.3. Let $U, V \subseteq \mathbb{C}$ be open and connected and $f \in H(U)$ be such that $f(U) \subseteq V$. If the inverse image of every compact subset of V under f is compact, then show that f(U) = V. Does the above statement remain true if holomorphic is replaced by continuous in the hypothesis?

Solution. We first show that f has to be nonconstant. If f is constant, say α , then $f^{-1}(\{\alpha\}) = U$, which is not possible as $f^{-1}(\{\alpha\})$ is supposed to be compact. From Open mapping theorem, one has f(U) open. Hence it now requires to show that f(U) is closed in V. Let $w \in V$ be a limit point of f(U). It follows that there exists a sequence $\{z_n\}_{n=1}^{\infty}$ in U such that $f(z_n) \xrightarrow[n \to \infty]{} w$. Consider the set

 $K \stackrel{def}{=} \{f(z_n) : n \in \mathbb{N}\} \cup \{w\}$. Clearly K is compact, whence $f^{-1}(K)$ will be compact. Since $\{z_n\}_{n=1}^{\infty}$ is a sequence in K, it has a convergent subsequence, say $\{z_{n_k}\}_{k=1}^{\infty}$, converging to $z_0 \in K$. From this we obtain that $f(z_0) = w$.