Série d'exercices :Les fonctions

Exercice 1:

f est la fonction définie sur \mathbb{R} par $f: x \longmapsto 2x^2$.

- a) Calculer les images par f des réels 0; $\sqrt{2}$ et -4.
- b) Vérifier que $\sqrt{2}$ et $-\sqrt{2}$ ont pour image 4.
- c) Pourquoi -4 n'est-il l'image d'aucun réel? **Exercice 2:**

Soit la fonction f définie sur \mathbb{R} par f(x) = (x-3)(x+1)

- 1/ Quelles sont les images par f de 2 et de -10?
- 2/ Quels sont les antécédents de 0 par f?
- 3/ Les points de coordonnées (-1; 3), (0; -3) et (1; 0)sont-ils des points de la représentation graphique de f?

Exercice 3:

f est la fonction définie sur \mathbb{R} par: f: x \longrightarrow x² + 3x + 1

- a) Calculer les images par f des réels 0; 1; $-\sqrt{3}$ et $\frac{1}{3}$.
- b) Trouver tous les réels qui ont pour image 1 par f. **Exercice 4:**
- a) Quel est l'ensemble de définition de la fonction $x \mapsto x^2$?
- b) Quel est le réel pour lequel on ne peut pas calculer ? Donner alors l'ensemble de définition

de la fonction $x \mapsto \frac{1}{x}$.

c) Quels sont les réels pour lesquels on peut calculer x? Donner alors l'ensemble de définition de la fonction $x \mapsto \sqrt{x}$.

Exercice 5:

Soit f la fonction représentée ci-contre.

- 1. Donner l'ensemble de définition,
- 2. a) Lire l'image de 3 par f; f(1); f(-4); f(-2) et f(5).
 - b) Lire les antécédents de 7 par f.
 - c) Lire les antécédents de 0 par f.

Exercice 6:

On a représenté ci-contre :

- la droite d'équation $y \neq x$,
- la courbe représentative d'une fonction f définie sur [1; 8].

(Les questions posées seront résolues par lecture graphique).

1. Répondre par vrai ou faux aux questions suivantes :

nº	Affirmation	vrai ou-faux
1.	1 a pour image 0 par la fonction f	
2.	0 a pour image 1 par la fonction f	
3.	7 est un antécédent de 4 par la fonction f	
4.	3 est un antécédent de 4 par la fonction f	
5.	f(3) = 4	
6.	f(2) = 5	
7.	f(3) > f(5)	
8.	2,5 a trois antécédents par la fonction f	1
9.	0,5 a un seul antécédent par la fonction f	
10.	L'équation $f(x) = 3$ a au moins une solution dans	
	l'intervalle [1;8]	
11.	L'équation $f(x) = x$ a au moins une solution dans	
	l'intervalle [1;8]	$\overline{}$
12.	f est croissante sur l'intervalle [1;8]	
13.	Si x appartient à l'intervalle [4; 5], alors $f(x) \le x$	
14.	Si a et b appartiennent à l'intervalle [3 ; 5] et si a >b,	
	alors $f(a) < f(b)$	

2. Résoudre graphiquement l'inéquation : f(x) - f(3) > 0. On donnera la solution sous forme d'un intervalle.

Exercice 7:

Soit la fonction numérique définie par $f(x) \neq x^2 - 3x + 2$ sur I = [-2; 5].

1/ Compléter le tableau de valeurs suivant :

X	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5	3	3,5) 4	4,5	5
f(x								/						

- 2/ Placer les points de coordonnées (x; f(x)) dans un repère $(O; \vec{1}; \vec{j})$ en prenant comme unité 1 cm. Tous ces points appartiennent à la représentation graphique de f. La tracer en joignant ces points.
- 3/ Déterminer le minimum de la fonction fainsi que la valeur pour laquelle il est atteint.
- 4/ Résoudre graphiquement l'inéquation $f(x) \le 0$

Exercice 8:

On donne le tableau de variation d'une fonction f définie sur l'intervalle [-5; 7].

X ^	\-5	/-4	2	3	7
variation de f	-2		× 3 <	~ ₀ _	-1

- 1. Dessiner une courbe susceptible de représenter la fonction f.
- 2. Combien de solutions à l'équation f(x) = 0? Donner ces solutions.
- 3. Indiquer le signe de f(x).

Exercice 9:

On considère la fonction f définie sur l'intervalle [-5;5] par $f(x) = \frac{\sqrt{x^2+2}}{x^2+4}$ Compléter un tableau donnant les images par f (arrondies à 10^{-2} près) des réels allant de -5 à 5 par pas de 0,5. Placer les points correspondants dans un repère $(O;\vec{1};\vec{j})$ puis tracer la représentation graphique de f.

Exercice 10:

On considère les fonctions numériques f et g définies par : $f(x) = -x^2 + 2x$ et g(x) = 2x - 1

- 1/ a) Donner une table de valeurs de f pour x allant de -2 à 3.
- b) Tracer sur un même graphique (unité 1 cm ou 1 carreau) les courbes représentatives de f et g que l'on notera C_f et C_g.
- 2/ Résoudre graphiquement en expliquant :
 - a) l'équation : f(x) = g(x).
 - b) l'inéquation : f(x) < 0.
- 3/ Déterminer graphiquement le maximum de la fonction f.

Exercice 11:

Dans cet exercice, f(x) est définie par une expression algébrique. Dans chaque cas, préciser l'ensemble de définition de f.

- a) $f(x) = 2x^{2} + 1$ b) $f(x) = \frac{1}{2x} + 3x$ c) $f(x) = \frac{1}{x 1}$ d) $f(x) = 2\sqrt{x} + 1$ e) $f(x) = \frac{1}{(x 4)(x + 1)}$ f) $f(x) = \frac{x}{(x 1)^{2}}$ g) $f(x) = \frac{-2}{x^{2} + 1}$ h) $f(x) = \frac{x}{x^{2} 1}$

Exercice 12:

Déterminer si les fonctions f suivantes définies sur l'ensemble D sont paires, impaires ou ni l'un ni l'autre.

- a) D = [-3; 3] $f(x) = \frac{x^2 + 1}{x^2 + 2}$ b) D = [-3; 5]

- e) D = \mathbb{R} f(x) = $\sqrt{x^2 + 1}$ f) D = \mathbb{R}

- g) D = $\mathbb{R}\setminus\{-1; 1\}$ $f(x) = \frac{1}{1-x} + \frac{1}{1+x}$

Exercice 13:

Pour chacune des courbes ci-dessous, indiquer si c'est celle d'une fonction, et dans ce cas, préciser son ensemble de définition.

Exercice 14:

ABC est un triangle isocèle en A avec : AB = AC = 10 cm. H est le pied de la hauteur issue de A. On se propose d'étudier les variations de l'aire du triangle lorsqu'on fait varier la longueur x (en cm) du côté [BC].

- 1. a) Calculer la valeur exacte de l'aire de ABC lorsque x = 5, puis lorsque x = 10.
- b) Peut-on avoir x = 30? Pourquoi? Dans quel intervalle varie x?
- 2. a) Exprimer AH en fonction de x.
 - b) On désigne par f(x) l'aire de ABC. Démontrer que : $f(x) = \frac{x}{4} \sqrt{400 x^2}$
- c) Calculer f(x) pour chacune des valeurs entières de x prises dans [0, 20]. arrondir les résultats au

dixième et les présenter dans un tableau.

d) Dans un repère orthogonal bien choisi, placer les points de coordonnées (x; f(x)) du tableau précédent. puis construire la courbe représentative de f.

Exercice 15:

ABCD est un trapèze rectangle de base AD = 6 cm, CB = 2 cm, de hauteur AB = 4 cm. H est le projeté orthogonal de C sur [AD]. Un point M décrit le segment [AB] et on pose AM = x. La parallèle à (AD) passant par M coupe [CD] en N et la parallèle à (AB) passant par N coupe [AD] en P.

- 1. a) Démontrer que le triangle CHD est un triangle rectangle isocèle.
 - b) Démontrer que AMNP est un rectangle et NPD un triangle rectangle isocèle.
- 2. On appelle f(x) l'aire du rectangle AMNP lorsque x décrit l'intervalle [0; 4].
 - a) Montrer que f(x) = x(6 x) et vérifier que $f(x) = 9 (x 3)^2$.
 - b) Compléter le tableau suivant :

b) completel le	tubicuu st					
longueur AM, x	0	1	2	2,5 3	4	
aire de AMNP,				/ / /		
f(x)						

3. Le graphique ci-contre est la courbe représentative de la fonction f:x → f(x) sur l'intervalle [0;4].
Par lecture graphique, répondre aux questions suivantes :

- a) Lorsque AM = $\frac{1}{4}$ AD, quelle est l'aire de AMNP?
- b) Pour quelle position de M l'aire du rectangle AMNP semble-t-elle maximale?
- c) Sur quel segment faut-il choisir le point M pour que l'aire du rectangle soit supérieure ou égale à 8 cm² ?
- d) Vérifier qu'il existe deux points M pour lesquels l'aire du rectangle est égale à $\frac{17}{2}$ cm².
- 4. Répondre aux questions suivantes en choisissant pour f(x) l'expression la mieux adaptée.
 - a) Démontrer que $f(x) \le 9$. Peut on affirmer cette fois que l'aire du rectangle est maximal lorsque x = 3? Quelle est la nature de AMNP lorsque x = 3?
 - b) Démontrer que l'aire du rectangle AMNP est égale à $\frac{17}{2}$ cm² lorsque $x = \frac{6 \sqrt{2}}{2}$ ou $\frac{6 + \sqrt{2}}{2}$.

