Feuille d'exercices no 18 : polynômes

Exercice 1. Les familles suivantes sont-elles génératrices de $\mathbb{R}_2[X]$?

$$\mathcal{F}_1 = (1 + X^2, 1 + X, -X + X^2)$$
 $\mathcal{F}_2 = (1 + X^2, 1 + X, -X - X^2)$

Exercice 2. Soit $Q_0 = 3$, $Q_1 = 2X$, $Q_2 = X^3 + X$, $Q_3 = X^3$, et $Q_4 = X^2 + 1$.

- 1. Dans $\mathbb{K}_3[X]$ la famille $(Q_k)_{0 \le k \le 4}$ est-elle libre? génératrice? une base?
- 2. Peut-on en extraire une base de $\mathbb{K}_3[X]$?

Exercice 3. Soient a et b distincts dans \mathbb{K} et, pour $k \in \{0,1,2\}$, $Q_k = (X-a)^k (X-b)^{2-k}$. Montrer que (Q_0, Q_1, Q_2) est une base de $\mathbb{K}_2[X]$.

Exercice 4. Soit $E = \{P \in \mathbb{R}_4[X] \mid P(2) = 0\}$. Montrer que E est un espace vectoriel puis en déterminer une base.

Exercice 5. Soit $E = \mathbb{R}_2[X]$. On considère F l'ensemble des polynômes de E qui ont 0 pour racine, et G l'ensemble des polynômes de E qui ont 1 comme racine au moins double. Montrer que $E = F \oplus G$.

Exercice 6. Faire la division euclidienne de A par B dans les cas suivants $(m, q \in \mathbb{N}^*)$.

1.
$$A = X^4 + 3X - 2$$
 et $B = X + 2$

4.
$$A = X^6 + 5X^4 - 2X + 3$$
 et $B = X^3 + 2X + 1$

2.
$$A = X^3 + 1$$
 et $B = X$

5.
$$A = X^3 + X^2$$
 et $B = X + 1 + i$

3.
$$A = X^3$$
 et $B = X^5 + 2$

6.
$$A = X^{mq}$$
 et $B = X^m - 1$

Exercice 7. Calculer la limite suivante : $\lim_{x\to -1} \frac{x^3 + x^2 - x - 1}{x^3 - 3x - 2}$.

Exercice 8. Soit $n \in \mathbb{N}^*$. Déterminer l'ordre de multiplicité de 1 comme racine de : $Q(X) = X^{2n+1} - (2n+1)X^{n+1} + (2n+1)X^n - 1.$

Exercice 9.

- 1. Montrer que $P = (X-2)^{2n} + (X-1)^n 1$ est divisible par $Q = X^2 3X + 2$, pour tout $n \in \mathbb{N}^*$.
- 2. Montrer que le polynôme $P = nX^{n+1} (n+1)X^n + 1$ est un multiple de $(X-1)^2$, pour tout $n \in \mathbb{N}^*$.

Exercice 10. Montrer que les racines complexes des polynômes suivants sont simples.

1.
$$P(X) = X^5 + X + 4$$

$$2. \ Q(X)=X^n-X+1 \ (n\geqslant 2)$$

3.
$$R_n(X) = \sum_{k=0}^n \frac{X^k}{k!} \ (n \ge 2)$$

Exercice 11. Factoriser en produit de polynômes irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$:

1.
$$P = X^5 + 32$$

3.
$$P = X^3 + 2X^2 + 2X + 1$$
 5. $P = X^{2n} - 2X^n \cos t + 1$

$$5 P = X^{2n} - 2X^n \cos t + 1$$

2.
$$P = X^4 + X^3 + X^2 + X + 1$$
 4. $P = X^6 + 2X^4 + 2X^2 + 1$

4.
$$P = X^6 + 2X^4 + 2X^2 + 1$$

Exercice 12. Soit $P = X^3 - X^2 + \lambda$, où $\lambda \in \mathbb{C}$.

Déterminer λ pour que P ait une racine double; factoriser alors P.

Exercice 13. Déterminer $\lambda \in \mathbb{C}$ pour que le polynôme $P = X^3 - 6X^2 + 11X + \lambda$ ait deux racines dont la différence est 2; factoriser alors P.

Exercice 14. Factoriser le polynôme $P = X^4 - 5X^3 + 9X^2 - 15X + 18$, sachant que deux de ses racines ont pour produit 6.

Exercice 15. Soit $P = X^3 - aX^2 + bX - c$, et α, β, γ les racines de P dans \mathbb{C} .

- 1. Exprimer en fonction de a, b, c les nombres $S_n = \alpha^n + \beta^n + \gamma^n$, où $n \in \{1, 2, -1, -2\}$.
- 2. Résoudre dans \mathbb{C} le système : $\begin{cases} \alpha + \beta + \gamma = 3 \\ \alpha^2 + \beta^2 + \gamma^2 = 1 \\ \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\alpha^2} = 1 \end{cases}$

Exercice 16. Trouver tous les polynômes $P \in \mathbb{C}_3[X]$ tels que P(1) = P'(1) = 0, P(0) = 1, P(2) = 5.

Exercice 17. Existe-t-il $P \in \mathbb{C}[X]$ tel que $\forall x \in \mathbb{R}$:

- 1. $P(x) = \cos x$?
- 2. $P(x) = e^x$?

Exercice 18. Déterminer tous les $P \in \mathbb{C}[X]$ tels que :

1.
$$P + P' = X$$

3.
$$(X+4)P(X) = XP(X+1)$$
 5. $P(X^2) = P(X)^2$

5.
$$P(X^2) = P(X)^2$$

2.
$$P(X) = P(X+1)$$

4.
$$P'$$
 divise P

Exercice 19. On définit par récurrence la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ par : $\begin{cases} P_0 = 1 ; P_1 = X \\ \forall n \in \mathbb{N}^*, P_{n+1} = 2XP_n - P_{n-1} \end{cases}$

- 1. Calculer P_2 et P_3 .
- 2. Déterminer le degré et le coefficient dominant de P_n pour $n \in \mathbb{N}^*$.
- 3. Montrer que $\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \quad P_n(\cos x) = \cos(nx).$
- 4. Montrer que P_n est scindé sur $\mathbb{R}[X]$ et donner ses racines.

Exercice 20. Soit $A = \begin{pmatrix} 7 & 5 \\ -6 & -4 \end{pmatrix}$.

- 1. Calculer $A^2 3A + 2I_2$.
- 2. Déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 3. En déduire A^n .

Pour s'entrainer

Exercice 21. Soit $P = X^5 - 3X^4 + 5X^3 - 5X^2 + 3X - 1$ et $\omega = e^{i\frac{\pi}{3}}$.

- 1. Montrer que ω est racine de P et donner son ordre de multiplicité.
- 2. Factoriser P dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

Exercice 22. Soient m et n dans \mathbb{N}^* . On note (q,r) le couple quotient/reste de la division euclidienne de m par n.

- 1. Montrer que le reste de la division euclidienne de $X^m 1$ par $X^n 1$ est $X^r 1$.
- 2. En déduire une condition nécessaire et suffisante portant sur n et m pour que $X^n 1$ divise $X^m 1$ dans $\mathbb{C}[X]$.

Exercice 23. Factoriser $(X+1)^n - (X-1)^n$ dans $\mathbb{C}[X]$ et en déduire pour $p \in \mathbb{N}^*$ la valeur de $\prod_{k=1}^p \cot \left(\frac{k\pi}{2p+1}\right)$.

Exercice 24. Résoudre les systèmes :
$$(S_1)$$
 $\begin{cases} a+b+c=2 \\ abc=-\frac{1}{2} \\ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2} \end{cases}$ (S_2) $\begin{cases} a+b+c=2 \\ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2} \\ a^2+b^2+c^2=\alpha \end{cases}$ où $\alpha \in \mathbb{R}$

Exercice 25. Soit f la fonction définie (et \mathcal{C}^{∞}) sur \mathbb{R} par $f(x) = \frac{1}{1+x^2}$.

- 1. Montrer que, $\forall n \in \mathbb{N}$, $f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^{n+1}}$, où P_n est un polynôme dont on précisera le degré. on donnera également une relation entre P_{n+1} , P_n et P'_n .
- 2. Calculer P_1 , P_2 et P_3 , et déterminer leur racines (si possible).
- 3. En appliquant la formule de Leibniz à l'égalité $(1+x^2)f(x)=1$, montrer que

$$\forall n \ge 1$$
, $P_{n+1}(x) + 2(n+1)xP_n(x) + n(n+1)(1+x^2)P_{n-1}(x) = 0$.

- 4. En déduire que $P'_{n}(x) = -n(n+1)P_{n-1}(x)$.
- 5. Les polynômes P_n peuvent-ils avoir des racines réelles multiples?

Exercice 26. Soit f la fonction définie sur \mathbb{R} par $f(x) = (1 - x^2)^n$, où n est un entier naturel non nul. Montrer que $f^{(n)}$ est un polynôme de degré n admettant exactement n racines simples réelles comprises entre -1 et 1.

Exercice 27. On considère la matrice
$$A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$$
.

- 1. Déterminer un polynôme de degré 2 annulant la matrice A.
- 2. En déduire que A est inversible et calculer son inverse (sans faire le pivot de Gauss).
- 3. En utilisant les racines du polynôme trouvé à la question 1, déterminer le reste de la division euclidienne de X^n par ce polynôme, pour un entier $n \ge 2$.
- 4. En déduire la valeur de A^n .