Final Project

- 依據Michael Jackson的Black & White影片,實作全班同學的人臉轉換 Morphing Video.
- 作業要求
 - 拍攝上、下、左、右轉身動作影片上傳Youtube
 - Morphing自己的影片 & 下一位學號順序同學的影片
- •程式要求:請以Matlab實作下列功能
 - 特徵點標記 (使用Label Me)
 - 計算三角片 mesh
 - 對每一個三角片做image warping,完成整張影像的 image morphing
 - 對於兩段影片進行morphing
 - 將morphing結果製作動畫 (Matlab)

Final Project

- 繳交時間:
 - 12/18(三)上傳個人影片
 - 背景白色牆面
 - 肩膀頸部區間保持肉色
 - Follow Black & White影片動作
 - 01/13(一) 程式、報告與成果繳交

Affine Transformations

Affine Transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} I & t \end{bmatrix}_{2 imes 3} \end{array}$	2	orientation $+ \cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t\end{array} ight]_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR \mid t\end{array}\right]_{2 \times 3}$	4	angles +···	\Diamond
affine	$\left[egin{array}{c} A \end{array} ight]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Figure 2.4: Basic set of 2D planar transformations

Geometric transformations

- Geometric transformations will map points in one space to points in another: (x',y',z') = f(x,y,z).
- These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.
- We'll focus on transformations that can be represented easily with matrix operations.
- We'll start in 2D...

Representation

• We can represent a **point**, p = (x,y), in the plane

• as a column vector
$$\begin{bmatrix} x \\ y \end{bmatrix}$$

• as a row vector $\begin{bmatrix} x & y \end{bmatrix}$

Representation, cont.

• We can represent a **2-D transformation M** by a matrix

$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

• If **p** is a column vector, *M* goes on the left:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• If **p** is a row vector, M^T goes on the right:

$$\mathbf{p}' = \mathbf{p}\mathbf{M}^{\mathrm{T}}$$

$$\begin{bmatrix} x' & y' \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

• We will use **column vectors**.

Two-dimensional transformations

• Here's all you get with a 2 x 2 transformation matrix **M**:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• So:
$$x' = ax + by$$
$$y' = cx + dy$$

• We will develop some intimacy with the elements a, b, c, d...

Identity

- Suppose we choose a=d=1, b=c=0:
 - Gives the **identity** matrix:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{aligned} x' &= ax + by \\ y' &= cx + dy \end{aligned}$$

• Doesn't move the points at all

Scaling

- Suppose b=c=0, but let a and d take on any positive value:
- ippose b=c=0, one of Gives a scaling matrix: $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$
 - Provides **differential (non-uniform) scaling** in x and y:

$$\begin{bmatrix} x & 0 \\ 0 & 2 \end{bmatrix} \qquad x' = ax$$

$$y' = dy$$

$$\begin{bmatrix} y' = dy \end{bmatrix}$$

Reflection

• Suppose b=c=0, but let either a or d go negative.

Shear

- Now leave a=d=1 and experiment with b
- The matrix

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

gives:

Rotation

• From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

Linear transformations

• The unit square observations also tell us the 2x2 matrix transformation implies that we are representing a point in a new coordinate system:

$$\mathbf{p'} = \mathbf{Mp} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = [\mathbf{u} \quad \mathbf{v}] \cdot \begin{bmatrix} x \\ y \end{bmatrix} = x \cdot \mathbf{u} + y \cdot \mathbf{v}$$

- where $\mathbf{u} = [a \ c]^{\mathrm{T}}$ and $\mathbf{v} = [b \ d]^{\mathrm{T}}$ are vectors that define a new **basis** for a **linear space**.
- The transformation to this new basis is a **linear transformation**.

Limitations of the 2 x 2 matrix

- A 2 x 2 linear transformation matrix allows
 - Scaling
 - Rotation
 - Reflection
 - Shearing

$$\mathbf{p'} = \mathbf{Mp}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Affine transformations

- In order to incorporate the idea that both the basis and the origin can change, we augment the linear space **u**, **v** with an origin **t**.
- Note that while **u** and **v** are **basis vectors**, the origin **t** is a **point**.
- We call **u**, **v**, and **t** (basis and origin) a **frame** for an **affine space**.
- Then, we can represent a change of frame as:

$$\mathbf{p'} = x \cdot \mathbf{u} + y \cdot \mathbf{v} + \mathbf{t}$$

• This change of frame is also known as an affine transformation.

Homogeneous Coordinates

• To represent transformations among affine frames, we can loft the problem up into 3-space, adding a third component to every point:

$$\mathbf{p'} = x \cdot \mathbf{u} + y \cdot \mathbf{v} + 1 \cdot \mathbf{t} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{t} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• How to write the linear system? How many corresponding pairs we need to solve the linear system?

Homogeneous coordinates

This allows us to perform translation as well as the linear transformations as a matrix operation:

$$\mathbf{p'} = \mathbf{M_T} \mathbf{p} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x & x \\ 0 & 1 & t_y & y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$x' = x + t_{x}$$
$$y' = y + t_{y}$$

Image Warping

Image Warping

- Moving pixels of image
 - Mapping
 - Resampling

Mapping

Define transformation

Describe the destination (x,y) for every location (u,v) in the source (or vice-versa, if invertible)

Example Mappings

- Scale by factor.
 - ∘ x = factor * u
 - ∘ y = factor * v

Example Mappings

Rotate by
 ⊕ degrees:

x = ucos
 · vsin

∘ y = usin⊕ + vcos⊕

Rotate 30

Other Mappings

Any function of u and v:

- $\circ x = f_x(u,v)$
- $y = f_y(u, v)$

Fish-eye

"Swirl"

"Rain"

Image Warping Implementation I

Forward mapping:

```
for (int u = 0; u < umax; u++) {
  for (int v = 0; v < vmax; v++) {
    float x = f_x(u,v);

    Decide the position

    float y = f_v(u,v);
    dst(x,y) = src(u,v); \leftarrow Decide the color
            (u,v)
                               Destination image
             Source image
```

Forward Mapping

Iterate over source image

Forward Mapping - NOT

Iterate over source image

Forward Mapping - NOT

Image Warping Implementation II

 Reverse mapping: (Backward mapping) for (int x = 0; x < xmax; x++) { for (int y = 0; y < ymax; y++) { float $u = f_{v}^{-1}(x,y)$; float $v = f_v^{-1}(x,y)$; dst(x,y) = src(u,v);

Source image

Destination image

Reverse Mapping

- Iterate over destination image
 - Must resample source
 - May oversample, but much simpler!

Overview

- Mapping
 - Forward
 - Reverse

» Resampling

- Point sampling
- Triangle filter
- Gaussian filter

Point Sampling

- Take value at closest pixel:
 - int iu = trunc(u+0.5);
 - \circ int iv = trunc(v+0.5);
 - o dst(x,y) = src(iu,iv);

This method is simple, but it causes aliasing

Triangle Filtering

- Bilinearly interpolate four closest pixels
 - a = linear interpolation of src(u₁, v₂) and src(u₂, v₂)
 - b = linear interpolation of src(u₁, v₁) and src(u₂, v₁)
 - dst(x,y) = linear interpolation of "a" and "b"

Gaussian Filtering

- Compute weighted sum of pixel neighborhood:
 - Weights are normalized values of Gaussian function

Filtering Methods Comparison

- Trade-offs
 - Aliasing versus blurring
 - Computation speed

Point

Bilinear

Gaussian

Image Warping Implementation

Reverse mapping:

```
for (int x = 0; x < xmax; x++) {
  for (int y = 0; y < ymax; y++) {
    float u = f_x^{-1}(x,y);
    float v = f_v^{-1}(x,y);
    dst(x,y) = resample_src(u,v,w);
```

Source image

Destination image

Example: Rotate

Rotate (src, dst, theta):

```
for (int x = 0; x < xmax; x++) {
  for (int y = 0; y < ymax; y++) {
     float u = x*\cos(-\Theta) - y*\sin(-\Theta);
     float \mathbf{v} = \mathbf{x} \cdot \sin(-\Theta) + \mathbf{y} \cdot \cos(-\Theta);
     dst(x,y) = resample src(u,v,w);
```

$$x = u\cos\Theta - v\sin\Theta$$

 $y = u\sin\Theta + v\cos\Theta$

Example: Fun

Swirl (src, dst, theta):

```
for (int x = 0; x < xmax; x++) {
   for (int y = 0; y < ymax; y++) {
     float u = rot(dist(x,xcenter)*theta);
     float v = rot(dist(y,ycenter)*theta);
     dst(x,y) = resample_src(u,v,w);
   }
}</pre>
```


Summary

- Mapping
 - Forward
 - Reverse
- Resampling
 - Point sampling
 - Triangle filter
 - Gaussian filter

Reverse mapping is simpler to implement

Different filters trade-off speed and aliasing/blurring

Fun and creative warps are easy to implement!

Michael Jackson's MTV "Black or White"

- The goal is to synthesize a fluid transformation from one image to another.
- Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.

image #1

dissolving

image #2

Artifacts of cross-dissolving

- Why ghosting?
- Morphing = warping + cross-dissolving

```
shape color (geometric) (photometric)
```


Face averaging by morphing

丹尼爾克雷夫、魯柏葛林特、艾瑪華森

克里夫歐文、休傑克曼、伊旺麥奎格

create a morphing sequence: for each time t

- 1. Create an intermediate warping field (by interpolation)
- 2. Warp both images towards it
- 3. Cross-dissolve the colors in the newly warped images

An ideal example (in 2004)

t=0

t=0.75

t=1

Warp specification

- How can we specify the warp
 - Specify corresponding points

Solution: convert to mesh warping

- 1. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
- 2. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping

Creating and Editing Delaunay Triangulations

- x = rand(10,1);
- y = rand(10,1);
- dt = delaunayTriangulation(x,y)
- triplot(dt);

Transition control

Multi-source morphing

