Folha 10A – Séries Numéricas (parte I).

1. Diga se cada umas das seguintes séries é convergente ou divergente (em caso de convergência, determine, se possível, a soma da série):

(a)
$$1^2 + 2^2 + 3^2 + 4^2 + \cdots$$
;

(b)
$$\sum_{n=0}^{+\infty} 3^{-(5n+1)}$$
;

(b)
$$\sum_{n=0}^{+\infty} 3^{-(5n+1)}$$
; (c) $\sum_{n=1}^{+\infty} \frac{2^n + 3^n}{6^n}$.

2. Verifique que cada uma das seguintes expressões representa uma série telescópica, estude a sua natureza e determine, se possível, a soma da série:

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 2n}$$
;

(b)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)}$$
.

3. Estude a natureza das séries com as seguintes sucessões geradoras:

(a)
$$u_n = \frac{n}{n+1}$$
, $\forall n \in \mathbb{N}$;

(a)
$$u_n = \frac{n}{n+1}$$
, $\forall n \in \mathbb{N}$; (b) $w_n = \operatorname{sen}\left(\frac{n\pi}{2}\right)$, $\forall n \in \mathbb{N}$.

4. Estude a natureza das séries numéricas dadas por:

(a)
$$\sum_{n=0}^{+\infty} \frac{n}{\sqrt{n^4 + n^2 + 1}}$$
;

(b)
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n};$$

(c)
$$\sum_{n=0}^{+\infty} \frac{e^n}{n!};$$

(d)
$$\sum_{n=0}^{+\infty} e^n \left(\frac{n}{n+1}\right)^n.$$

5. Seja $(u_n)_n$ uma sucessão de termos positivos. Conclua, justificando, que:

(a) a série
$$\sum_{n=1}^{+\infty} (1+u_n)$$
 é divergente;

(b) se $(u_n)_n$ é decrescente então a série $\sum_{n=1}^{+\infty} \frac{1}{n+u_n}$ é divergente;

(c) se
$$\lim_{n} (n u_n) = +\infty$$
 então a série $\sum_{n=1}^{+\infty} u_n$ é divergente;

(d) se
$$\lim_{n} (n^2 u_n) = 0$$
 então a série $\sum_{n=1}^{+\infty} u_n$ é convergente.