

E-COMMERCE CUSTOMER CHURN PREDICTION & ANALYSIS

By:

- Dicky Ardi

TABLE OF CONTENTS

O1 Data Understanding

O2 Data Preprocessing

03 Exploratory Data Analysis

04 Modeling

05 Business Insight & Recommendation

BUSINESS OBJECTIVES

- Get a prediction system that can be used to find out which customers will churn and which factors that affect.
- Predict which customers will churn, and provide recommendations to the marketing team to marketing strategies in an effort to avoid losses in the form of losing customers.

Dataset

- Source: Ecommerce Customer Churn Analysis and Prediction from Kaggle
- Data as of: 26 January 2021
- Number of rows (Customers): 5630 rows

Features

- 1. PreferredLoginDevice
- 2. PreferredPaymentMode 11. SatisfactionScore
- 3. Gender
- 4. PreferedOrderCat
- 5. MaritalStatus
- 6. CityTier
- 7. Tenure
- 8. OrderCount
- 9. DaySinceLastOrder

- 10. NumberOfDeviceRegistered
- 12. NumberOfAddress
- 13. Complain
- 14. CashbackAmount
- 15. WarehouseToHome
- 16. HourSpendOnApp
- 17. Average Cashback per Order
- 18. OrderAmountHikeFromlastYear

Algorithm Machine learning

- 1. Logistic Regression
- 2. Decision Tree
- 3. KNeighbors
- 4. AdaBoost
- 5. CatBoost

01 DATA UNDERSTANDING

Dataset

Columns	Description	Data Types	s Remarks	
CustomerID	Unique number for customer for identification.	Numerical	Min: 50001	Mean : 52815 Median : 52815
Churn	0 : Customer who don't churn. 1 : Customer already churned.	Numerical	2 unique va	lues Yes and No
Tenure	Tenure of customer in organization.	Numerical	Min : 0 Max: 61	Mean : 10.18 Median : 9
PreferredLoginDevice	Preferred login device of customer.	Categorical	Mobile Ph	ue values : one, Computer, Phone
CityTier	Column about city tier.	Numerical	Min:1 Max:3	Mean : 1.65 Median : 1
WarehouseToHome	Distance in between warehouse to home of customer.	Numerical	Min : 5 Max: 127	Mean : 15.63 Median : 14
PreferredPaymentMode	Preferred payment method of customer.	Categorical	Debit Card Wallet, UPI	que values: l, Credit Card, E , COD, CC, Cash Delivery
Gender	Gender of customer.	Categorical	2 unique values Female and Gender	
HourSpendOnApp	Number of hours spend on mobile application or website.	Numerical	Min : 0 Max: 5	Mean : 2.93 Median : 3
NumberOfDeviceRegistered	Total number of deceives is registered on particular customer	Numerical	Min : 1 Max: 6	Mean : 3.68 Median : 4
PreferedOrderCat	Preferred order category of customer in last month.	Categorical	6 unique values: Laptop & Accessory, Mobile Phone, Fashion, Mobile, Grocery, Others	
SatisfactionScore	Satisfactory score of customer on service.	Numerical	Min:1 Max:5	Mean: 3.06 Median: 3
MaritalStatus	Marital status of customer.	Categorical		ue values : ingle, Divorced
NumberOfAddress	Total number of added added on particular customer.	Numerical	Min : 1 Max: 22	Mean : 4.21 Median : 3
Complain	0 : Customer who have never complained in the last month. 1 : Customers who have complained in the last month.	Numerical	2 unique values Yes and No	
OrderAmountHikeFromlastYear	Percentage increases in order from last year.	Numerical	Min : 11 Max: 26	Mean : 15.70 Median : 15
CouponUsed	Total number of coupon has been used in last month.	Numerical	Min : 0 Max: 16	Mean : 1.75 Median : 1
OrderCount	Total number of orders has been places in last month.	Numerical	Min : 1 Max: 16	Mean : 3 Median : 2
DaySinceLastOrder	Day Since last order by customer.	Numerical	Min : 0 Max: 46	Mean : 4.54 Median : 3
CashbackAmount	Average cashback in last month.	Numerical	Min : 0 Max: 324.9	Mean : 177.22 Median : 163.28

03

Distribution of Numerical variables

Distribution of Numerical variables

The distribution of numeric variables tends to **right skewed**

02 DATA PREPROCESSING

Missing Values

Percentage of Missing Values

Description

- There are **8 features** that have missing values.
- The percentage of missing data in the range of 4,46% 5,45%

Handling Missing Value

• Based on data, the distribution of data on numeric variables is **right skewed**, so we use the **median** to impute the missing value.

Imbalance Data

Description

- The proportion for the minority class is 20.2%.
- The degree of imbalance in the **mild** category.

Why downsampling?

- To maintain data purity.
- The level of imbalance is **still at a low**.

Scalling

There are a lot of outliers in the data, therefore we are using **Robust Scaler** to scale the data, which is more resistant to outliers.

Feature Engineering

Use **One Hot Encoding** for selected column

Features	After Encode						
PreferredLoginDevice	Mobile_Phone	Computer	Phone				
PreferredPaymentMode	Debit Card	Credit Card	E_Wallet	UPI	COD	CC	Cash on Delivery
Gender	Female	Male					
PreferedOrderCat	Laptop & Accesory	Mobile Phone	Fashion	Mobile	Grocery	Others	
MaritalStatus	Married	Single	Divorced				

03 EXPLORATORY DATA ANALYSIS

Correlation

All features are correlated weakly to each other

- 0.8

-0.6

- -0.4

- -0.6

• Highest correlation for CouponUsed and OrderCount at 0.75

 This indicates that customers who complained in the last month tend to be disloyal.

Otherwise,
 customers who do
 not complain tend
 to be loyal.

- Based on the ratio per order category, customers who ordered Mobile
 Phone & Mobile are indicated to be disloyal.
- Customers who ordered Grocery indicated to be loyal.

Insight

- Customers who have a longer tenure & get more average cashback tend to be loyal.
- Otherwise, Customers
 who have a short tenure
 & get less average
 cashback tend to be
 disloyal.

04 MODELING

ML Comparison - Classifier

CatboostClassifier outperformed all other ML models by AUC and Recall-score.

Model	Accuracy (train)	Accuracy (val)	Precision (train)	Precision (val)	Recall (train)	Recall (val)	F1 (train)	F1 (val)	roc_auc (train)	roc_auc (val)
LogisticRegression	0,828494	0,812001	0,821895	0,805198	0,838713	0,824521	0,830186	0,814257	0,90242	0,891793
DecisionTreeClassifier	1	0,844989	1	0,825804	1	0,874704	1	0,849426	1	0,844998
KNeighborsClassifier	0,871537	0,783653	0,849149	0,769757	0,903697	0,808757	0,875515	0,788482	0,941767	0,856254
AdaBoostClassifier	0,862963	0,825866	0,86072	0,821752	0,866098	0,832485	0,863383	0,827066	0,940366	0,906306
CatBoostClassifier	0,986478	0,907649	0,979216	0,899419	0,994063	0,918221	0,986578	0,908687	0,999156	0,959595

But we prefer **logistic regression** because it is more familiar to us. And tend not to overfitting like other models(DecisionTree, KNN, and CatBoost).

Description:

- Accuracy is percentage prediction were correct.
- AUC (Area Under the Curve) means model has a good measure of separability if it has AUC near to 1.
- Recall is actual positive rate.
- **Precision** is predicted positive rate.
- **F1-Score** combines Recall and Precision to one performance matrix.

Best Parameter Hyperparameter Tuned for the Model Logistic Regression

Parameters

```
Out[43]: GridSearchCV(cv=5,
                       estimator=Pipeline(steps=[('full_pipeline',
                                                   ColumnTransformer(transformers=[('ctg_transformer',
                                                                                     OneHotEncoder(),
                                                                                     ['PreferredLoginDevice',
                                                                                      'PreferredPaymentMode',
                                                                                      'Gender',
                                                                                      'PreferedOrderCat',
                                                                                      'MaritalStatus']),
                                                                                    ('num_transformer',
                                                                                     RobustScaler(),
                                                                                     ['CityTier',
                                                                                      'NumberOfDeviceRegistered',
                                                                                      'SatisfactionScore',
                                                                                      'NumberOfAddress',
                                                                                      'CashbackAmount',
                                                                                      'HourSpendOnApp',
                                                                                      'Tenure',
                                                                                      'OrderAmountHikeFromlastYear',
                                                                                      'OrderCount',
                                                                                      'DaySinceLastOrder',
                                                                                      'avg cashbk per order',
                                                                                      'Complain'])])),
                                                 ('log_reg', LogisticRegression())]),
                       n jobs=-1,
                       param_grid={'log_reg__C': [1, 2, 4, 8, 10, 20, 30, 40],
                                   'log_reg__penalty': ['none', 'l1', 'l2', 'elasticnet'],
                                   'log_reg__solver': ['newton-cg', 'lbfgs', 'liblinear',
                                                        'sag', 'saga']},
                       scoring='recall')
```

Best Parameters

```
Out[42]: Pipeline(steps=[('full_pipeline',
                           ColumnTransformer(transformers=[('ctg_transformer',
                                                             OneHotEncoder(),
                                                             ['PreferredLoginDevice',
                                                              'PreferredPaymentMode',
                                                              'Gender', 'PreferedOrderCat',
                                                              'MaritalStatus']),
                                                            ('num_transformer',
                                                             RobustScaler(),
                                                             ['CityTier',
                                                              'NumberOfDeviceRegistered',
                                                              'SatisfactionScore',
                                                              'NumberOfAddress',
                                                              'CashbackAmount',
                                                               'WarehouseToHome',
                                                              'HourSpendOnApp', 'Tenure',
                                                              'OrderAmountHikeFromlastYear',
                                                              'OrderCount',
                                                              'DaySinceLastOrder',
                                                              'avg cashbk per order',
                                                              'Complain'])])),
                          ('log reg',
                           LogisticRegression(C=1, penalty='l1', solver='liblinear'))])
```


AUC - Logistic Regression

The model is good at **differentiate** which **will churn** and which will **not churn**

AUC - Score = 0.88

Classification Report -Logistic Regression

	precision	recall	f1-score	support
0	0.95	0.80	0.87	936
1	0.45	0.81	0.58	190
accuracy			0.80	1126
macro avg	0.70	0.81	0.73	1126
weighted avg	0.87	0.80	0.82	1126

From the tuning results, a **recall** score on the testing set is **80%**.

Confusion Matrix - Logistic Regression

We've got:

- 151 for True Positive, that means 151 customers who were predicted to churn, actually will churn
- 39 for False Negative, that means that 39 customers who were predicted not to churn, actually will churn.
- **753 for True Negative,** that means that 753 customers who are predicted to not churn, actually will not churn.
- 183 for False Positive, that means that 183 customers who are predicted to churn, actually will not churn.

Feature Importance

Negative Class:

- Tenure features has **greatly affect** of **negative class.**
- Laptop & Accessory features has affect of negative class.

Positive Class:

- Others features has **greatly affect** of **positive class**.
- Complain features has **affect** of **negative class**.

05 BUSINESS INSIGHT & RECOMMENDATION

Key Finding

- Customers who **ordered laptop & accessories product categories** in last month tend to be more **loyal**.
- Customers who have a longer tenure & get more average cashback tend to be loyal.
- Customers who have a **short tenure & get less average cashback** tend to be **disloyal**.
- Customers who ordered Mobile Phone & Mobile are indicated to be disloyal.
- Customers who **ordered Groceries** indicated to be **loyal**.
- Customers who complained in the last month tend to be disloyal.
- Based on data from www.statista.com, "Average value of daily customer transaction" each customer has a value of Rp. 300,000.00. And if we assume that the cost of the promotion spends the marketing cost of Rp. 300/customer. Based on our calculations, the company can prevent an income loss of Rp. 34.099.500.

Provide promos coupons to customers who are predicted

Recomendation

- Give **promo** coupons to customers with a short tenure, which is between numbers 0 2. And the average cashback is between 0 125
- Improve the quality of service to customers.

to churn.

Reference

https://www.kaggle.com/ankitverma2010/ecommerce-customer-churn-analysis-and-prediction

https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data

https://www.statista.com/statistics/1242651/indonesia-average-daily-e-commerce-transaction-value/

THANK YOU!