Chap 11 : Corps des réels

I. Corps des rationnels

 $(a,b) \sim (c,d) \Leftrightarrow ad = bc$

Corps de fractions : $(a,b) \in \mathbb{K}$: $(a,b) = \{(x,y) \in A, (a,b) \sim (x,y)\}$

 $\overline{(a,b)} + \overline{(c,d)} = \overline{(ad+bc,bd)}$ $\overline{(a,b)} \times \overline{(c,d)} = \overline{(ab,cd)}$

 $(\mathbb{Q},+,\times)$ unique corps de fraction contenant \mathbb{Z}

≤ ordre total sur ℚ

Une partie majorée de $\mathbb Q$ n'a pas forcément de plus grand élément

Une partie majorée de \mathbb{Q} n'a même pas forcément de borne supérieure : $\{r \in \mathbb{Q}, r^2 \leq 2\}$

 \mathbb{N}, \mathbb{Z} et \mathbb{Q} sont archimédiens : $\forall a \in A, \forall \varepsilon \in A_{\perp}, \exists n \in \mathbb{N}, n\varepsilon > a$

II. Corps des réels

 $\mathbb R$ unique corps : Contenant ()

Totalement ordonné

Archimédien

Vérifiant la propriété de la borne supérieure

Constructions: Suites de Cauchy ou Coupures de Dedekind

 $||x| - |y|| \le |x + y| \le |x| + |y|$

Toute partie majorée de \mathbb{R} admet une borne supérieure

$$A \subset \mathbb{R} \quad M = \sup(A) \Leftrightarrow \begin{cases} M \text{ majore } A \\ \forall m \in \mathbb{R}, m < M \Rightarrow \exists a \in A, a > m \end{cases} \Leftrightarrow \begin{cases} \forall a \in A, a \leq M \\ \forall \varepsilon > 0, \exists a \in A, M - \varepsilon \leq a \end{cases}$$

III. Partie entière et applications

$$\forall x \in \mathbb{R}, \exists ! n \in \mathbb{Z} \text{ tq } n \leq x < n+1$$

$$n = E(x) = |x|$$

 $\textbf{Preuve}: (x \in \mathbb{R}_+) \quad A = \{k \in \mathbb{N}, k \leq x\} \quad \mathbb{R} \text{ archi} \Rightarrow \exists n_0 \ / \ n_0 \times 1 > x \qquad \quad n_0 \text{ maj A} \Rightarrow \texttt{n +gd elt}: \mathsf{OK}$

 $x \mapsto E(x)$ croissante

$$E(x+n) = E(x) + n$$

$$n \le x \Longrightarrow n \le E(x)$$

 \mathbb{Q} est dense dans \mathbb{R} : $\forall (a,b) \in \mathbb{R}^2, \exists r \in \mathbb{Q}, \ a < r < b$

 $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R}

Preuve: utiliser $a - \sqrt{2}$ (a rationnel)

IV. Intervalles

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$

 $[a,b] = \{x \in \mathbb{R}, a \le x \le b\} \qquad (a,b) \in \mathbb{R}^2$

 $]a,b[=\{x \in \mathbb{R}, a < x < b\} \qquad (a,b) \in \overline{\mathbb{R}}^2$

Convexe de \mathbb{R}^n : $A \subset \mathbb{R}^n$ est convexe si, pour tout $(M,N) \in A^2$, $[M,N] \in A$ $(\forall t \in [0,1], tM + (1-t)N \in A)$

Convexe de \mathbb{R} : $a \le b \ [a,b] = \{(1-t)a + tb, \ t \in [0,1]\}$

Preuve: $a \le b \Rightarrow (1-t)a \le (1-t)b \Rightarrow (1-t)a + tb \le b$ | $x \in [a,b]$ $t = \frac{x-a}{b-a}$

Les parties convexes (non vides) de $\mathbb R$ sont des intervalles

Preuve : $(x, y) \in [a, b]$ $a \le x \le (1-t)x + ty \le ty \le b$

A convexe, $\beta = \sup(A)$ $\alpha = \min(A)$ Au cas par cas

 $x \in [\alpha, \beta] \Rightarrow \alpha \le x \le \beta \Rightarrow x = (1-t)\alpha + t\beta \Rightarrow x \in A$

 $A \subset \mathbb{R} \ \forall (a,b) \in \mathbb{R}^2, a < b, \exists x \in]a,b[\cap A]$

 $\Leftrightarrow \forall a \in \mathbb{R}, \forall \varepsilon > 0, \exists x \in A, |x - a| < \varepsilon$

Preuve : $\exists x \in A, x] a - \varepsilon, a + \varepsilon [$ $\varepsilon = \frac{b - a}{2}, \alpha = \frac{b + a}{2} \quad]a, b [=] \alpha - \varepsilon, \alpha + \varepsilon [$