בדידה \sim נטלי שלום \sim חזרה על מבחן הבית

שחר פרץ

2024 ליולי

שלה: נניח שהשערת הרצף נכונה. (כלומר, 2^{\aleph_0} היא העוצמה הקטנה בויותר שגדולה מ־ (\aleph_0) . הוכיחו/הפריכו: קיימת חלוקה Π של .a $\Pi = \mathbb{R}$ \mathbb{R} \mathbb{R} \mathbb{R} . $\Pi = \mathbb{R}$

הוכחה. נפריך. לפי השערת הרצף, מתקיים $|\Pi| \leq \aleph_0$ מתקיים $|X| \leq |\Pi|$. אז:

$$|\mathbb{R}| = \left| \bigcup_{X \in \Pi} X \right| \le \aleph_0$$

לפי איחוד לכל היותר בן מנייה של קבוצות לכל היותר בנות מנייה הוא לפחות בן מנייה.

 $X\in\Pi, |X|=2^{\aleph_0}$ ולכל , $|\Pi|=2^{\aleph_0}$ שאלה: הוכיחו קיום חלוקה Π של של שלה. b

 $\Pi=\{A_r\mid r\in\mathbb{R}\}$ החלוקה $A_r=f[\{r\} imes\mathbb{R}]$, $f:\mathbb{R}\in\mathbb{R}$ נגדיר לכל $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ החלוקה. לכן קיים זיווג $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ נגדיר לכל H=[R]. נוכיח ש־H=[R] חלוקה. אונים חלוקה, אונים זיווג H=[R] לכן קיים זיווג H=[R]

- $f(\langle r,0
 angle)\in \mathcal{G}$ נראה \mathcal{G} , נראה \mathcal{G} , נראה \mathcal{G} , נראה \mathcal{G} , מתקיים, \mathcal{G} , מתקיים, \mathcal{G} , פונקציה ובפרט יחס מלא, ולכן קיים \mathcal{G} , מתקיים, \mathcal{G} , מתקיים, מתקיים,
 - . ניעזר בהכלה דו־כיוונית: $igcup \Pi = \mathbb{R}$
 - . $\bigcup_{r\in\mathbb{R}}A_r\subseteq\mathbb{R}$ גם ולכן אם $A_r=f[\{r\} imes\mathbb{R}]$, $r\in\mathbb{R}$ לכל
- $f(\langle a,b
 angle)=x$ כך ש־ $x\in R$ כך ש־ $x\in R$ כך אז קיים $x\in R$ כך ש־ $x\in R$ כך ש־ $x\in R$ ניקח $x\in R$ יהי $x\in R$ כך ש־ $x\in R$ כך ש־ $x\in R$ ניקח $x\in R$ יהי $x\in R$ או $x\in R$ כך ש־ $x\in R$ כך ש־ $x\in R$
 - ירות בזוגות: יהיו $A_{r_1}
 eq A_{r_2}$ להוכיח, נרצה להוכים, אז ניקח ש־ $r_1, r_2 \in \mathbb{R}$ יהיו יהיו •

$$x \in A_{r_1} = f[\{r_1\} \times \mathbb{R}] \implies \exists b_1 \in \mathbb{R}. x = f(\langle r_1, b_1 \rangle)$$

עד כה, Π חלוקה. נוכיח את הטענות שנותרו.

- זיווג, ולכן $A_{r_1} \neq A_{r_2}$ ולכן $A_{r_1} \neq A_{r_2}$ זרות ולא ריקות ובפרט נובע A_{r_1}, A_{r_2} שונים, A_{r_1}, A_{r_2} שונים, A_{r_1}, A_{r_2} שונים, A_{r_1}, A_{r_2} שונים, A_{r_2} שונים, A_{r_1} שונים, A_{r_2} שונים, A_{r_1} שונים, A_{r_2} שונים, A_{r_1} שונים, A_{r_2} שונים, A_{r_2} שונים, A_{r_1} שונים, A_{r_2} שונים, $A_{$
- לפרט עוד) איווג בין R לכל אי $r\in\mathbb{R},$ איי ועל. במבחן לפרט עוד) יייע ועל. במבחן לפרט אייע איווג בין $\lambda x\in\mathbb{R}.f(\langle r,x\rangle)$, הפונקציה $\lambda x\in\mathbb{R}.f(\langle r,x\rangle)$ הפונקציה ולכן אייע ועל. במבחן לפרט עוד) ולכן אייע ועל. במבחן לפרט עוד
 - .c שאלה ברמה קצת יותר גבוהה ממבחן. שאלה: נגדיר יחס שקילות מעל $\mathbb{R} o \mathbb{R}$

$$S = \{\langle f, g \rangle \in (\mathbb{R} \to \mathbb{R})^2 \colon |\{x \in \mathbb{R} \mid f(x) \neq g(x)\}| < \aleph_0\}$$

 $|\underbrace{(\mathbb{R} o \mathbb{R})/S}_B|$ מצאו את

ימי בונים בי

 $.2^{\aleph}$ הוכחה. נוכיח שהעוצמה היא

- $|(\mathbb{R} o \mathbb{R})/S| = |A| \le |\mathbb{R} o \mathbb{R}|$ כזו, נקבל מערכת נציגים של $\lambda a \in A.[a]_S$ היא זיווג. לכן, אם נקבע $\lambda a \in A.[a]_S$ הפונקציה א $\lambda a \in A.[a]_S$ הפונקציה א $\lambda a \in A.[a]_S$ היא זיווג. לכן, אם נקבע $\lambda a \in A.[a]_S$ הפונקציה א $\lambda a \in A.[a]_S$ היא זיווג. לכן, אם נקבע מערכת נציגים של $\lambda a \in A.[a]_S$ הפונקציה א $\lambda a \in A.[a]_S$ היא זיווג. לכן, אם נקבע מערכת נציגים של $\lambda a \in A.[a]_S$ הפונקציה א $\lambda a \in A.[a]_S$ היא זיווג.
 - $:(\mathbb{R} o \mathbb{R}) o B$ נמצא פונקציה חח"ע \geq

$$H = \lambda g \in \mathbb{R} \to \mathbb{R}.[f_a]_S$$

כמה הערות: (ה"מטרה": להגדיר את f_g באופן כזה שלכל $\mathbb{R} \to \mathbb{R}$ שונות, יתקיים $\{f_{g_1}(x) \neq f_{g_2}(x) | = \aleph\}$ כמה הערות: (ה"מטרה": להגדיר את f_g באופן כזה שלכל R_Π הוא היחס המושרה של החלוקה (תזכורת: בהינתן II חלוקה של II חלוקה של II הוא היחס השיקלות המושרה מ־II הוא II הו

: נבחר: $arphi\colon\Pi o\mathbb{R}$ קיים $|\Pi|=$, קיים שר עד מסעיף ליווג. נבחר של פלימת חלוקה של עד שקיימת חלוקה של פליג.

$$f_q := \lambda t \in \mathbb{R}.g(\varphi([t]_{R_{\Pi}}))$$

נוכיח כמה טענות שנדרשות מאיתנו:

אז $g_1(r) \neq g_2(r)$ כך ש" $(g_1(r) \neq g_2(r) \neq g_2(r) \neq g_2(r) \neq g_2(r) \neq g_2(r) \neq g_2(r) \neq g_2(r)$ אז קיים $G_1(r) \neq g_2(r) \neq g$

 $Q4 \dots \dots (2)$

 $|X|
eq \aleph_0$ נגדיר לכסון ש"ט הוכיחו $X = \{f \in \mathbb{N} o \mathbb{N} \mid \forall n \in \mathbb{N}. f(n^2) = f(n)\}$ נגדיר

 $.|\mathbb{P}|=\aleph_0$ ומתקיים, ומתקיים \mathbb{P} קבוצת הראשוניים, ואיווג $F\colon \mathbb{P}\to X$ זיווג שיש איווג נניח הוכחה.

$$g=\lambda n\in\mathbb{N}. \begin{cases} F(p)(n)+1 & \exists p\in\mathbb{P}.\exists k\in\mathbb{N}_+.p^k=n\\ 0 & \text{else} \end{cases}$$

. נוכיח. $\forall p \in \mathbb{P}. g \neq F(p)$, $g \in X$ צ.ל.:

. נפלג למקרים. $g(n^2)=g(n)$ נוכיח $n\in\mathbb{N}$ יהי

אז: $\exists p \in \mathbb{P}. \exists k \in \mathbb{N}_+. n = p^k$ אז: 1

$$g(n^2) = F(p)(n^2) + 1 = F(p)(n) + 1 = g(n)$$

$$F(p) \in X, \ n = p^k, n^2 = p^{2k}$$
 در

 $g(n^2) = 0 = g(n)$ אחרת: גם n, n^2 גם את הקיימים את התנאי, ולכן .2

• לא הוכחנו בכיתה.