Esame di Ricerca Operativa del 20/12/13

(Cognome)	(Nome)	(Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max 9 x_1 + 4 x_2 \\ -3 x_1 + 5 x_2 \le 12 \\ 3 x_1 + x_2 \le 6 \\ -x_1 - 2 x_2 \le 12 \\ 3 x_1 - x_2 \le 6 \\ -5 x_1 - 2 x_2 \le 20 \\ -2 x_1 - 3 x_2 \le 26 \end{cases}$$

Base	Soluzione di base	Ammissibile	
		(si/no)	(si/no)
$\{1, 2\}$	x =		
$\{1, 6\}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{3,5}					
2° iterazione						

Esercizio 3. Una ditta utilizza un cargo per il trasporto di 3 prodotti P1, P2 e P3. Il cargo ha tre scompartimenti per il carico: A,B,C. La seguente tabella mostra i limiti in peso e spazio degli scompartimenti.

	capacità di peso (tonn)	capacità di spazio (m^3)
Α	23	5000
В	15	8000
С	12	5000

La seguente tabella mostra per ogni prodotto la quantità massima (in tonn) di merce da caricare e il volume occupato.

	peso (tonn)	volume occupato $(m^3/tonn)$
P1	20	200
P2	14	280
P3	12	250

Sapendo che il profitto ottenuto dal trasporto di una tonnellata di merce è di 300 Euro/tonn per P1, 340 Euro/tonn per P2 e 250 Euro/tonn per P3, determinare come distribuire la merce negli scompartimenti per massimizzare il profitto.

COMANDI DI M	
C=	
A —	1-
A=	b=
A o a =	hog-
Aeq=	beq=
lb=	ub=
10	

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (3,2) (3,5)				
(3,7) (4,3) (6,7)	(4,6)	x =		
(1,2) (2,5) (3,2)				
(4,3) $(5,7)$ $(6,7)$	(1,4)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (1,4) (3,2) (3,7) (4,6) (5,7)	
Archi di U	(2,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 9 \ x_1 + 6 \ x_2 \\ 13 \ x_1 + 11 \ x_2 \ge 69 \\ 9 \ x_1 + 17 \ x_2 \ge 49 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a)	Calcolare una	valutazione	inferiore del	valore ottimo	risolvendo il	rilassamento	continuo.
----	---------------	-------------	---------------	---------------	---------------	--------------	-----------

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$v_S(P) =$$

c) Calcolare un taglio di Gomory.

$$r =$$
 taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	44	21	50	21
2		12	51	25
3			9	29
4				21

a)	Trovare una	valutazione	inferiore de	l valore	ottimo	calcolando	il	4-albero	di costo	minimo
----	-------------	-------------	--------------	----------	--------	------------	----	----------	----------	--------

4-albero: $v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo: $v_S(P) =$

c) Applicare il metodo del $Branch\ and\ Bound$, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili $x_{24},\,x_{23},\,x_{34}$.

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max 9 x_1 + 4 x_2 \\ -3 x_1 + 5 x_2 \le 12 \\ 3 x_1 + x_2 \le 6 \\ -x_1 - 2 x_2 \le 12 \\ 3 x_1 - x_2 \le 6 \\ -5 x_1 - 2 x_2 \le 20 \\ -2 x_1 - 3 x_2 \le 26 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
$\{1, 2\}$	x = (1, 3)	SI	NO
$\{1, 6\}$	y = (-1, 0, 0, 0, 0, -3)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	${3, 5}$	(-2, -5)	$\left(0,\ 0,\ -\frac{1}{4},\ 0,\ -\frac{7}{4},\ 0\right)$	3	8	1
2° iterazione	{1, 5}	(-4, 0)	$\left(\frac{2}{31},\ 0,\ 0,\ 0,\ -\frac{57}{31},\ 0\right)$	5	$31, \frac{93}{2}$	2

Esercizio 3.

variabili decisionali	modello
$x_{i,j}= { m tonnellate\ di\ prodotto\ i}$ immagazzinato nello scompartimento j; i= 1,2,3; j=A,B,C	$\begin{cases} \max & 300 \ (x_{1A} + x_{1B} + x_{1C}) \\ +340 \ (x_{2A} + x_{2B} + x_{2C}) \\ +250 \ (x_{3A} + x_{3B} + x_{3C}) \end{cases} \\ x_{1A} + x_{1B} + x_{1C} \le 20 \\ x_{2A} + x_{2B} + x_{2C} \le 14 \\ x_{3A} + x_{3B} + x_{3C} \le 12 \\ x_{1A} + x_{2A} + x_{3A} \le 23 \\ x_{1B} + x_{2B} + x_{3B} \le 15 \\ x_{1C} + x_{2C} + x_{3C} \le 12 \\ 200 \ x_{1A} + 280 \ x_{2A} + 250 \ x_{3A} \le 6000 \\ 200 \ x_{1B} + 280 \ x_{2B} + 250 \ x_{3B} \le 8500 \\ 200 \ x_{1C} + 280 \ x_{2C} + 250 \ x_{3C} \le 5000 \\ x_{i,j} \ge 0 \end{cases}$

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (3,2) (3,5)				
(3,7) $(4,3)$ $(6,7)$	(4,6)	x = (7, 0, 0, 0, -12, 3, 0, -14, 10, 0, 8)	NO	SI
(1,2) (2,5) (3,2)				
(4,3) (5,7) (6,7)	(1,4)	$\pi = (0, 3, 0, -8, 6, 11, 14)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) $(1,4)$ $(3,2)$ $(3,7)$ $(4,6)$ $(5,7)$	(1,2) (1,4) (3,2) (3,7) (4,6) (5,7)
Archi di U	(2,5)	(2,5)
x	(0, 1, 6, 7, 2, 0, 4, 0, 2, 4, 0)	(1, 0, 6, 7, 1, 0, 4, 0, 2, 4, 0)
π	(0, 6, 3, 7, 1, 16, 9)	(0, 3, 0, 7, -2, 16, 6)
Arco entrante	(1,2)	(2,5)
ϑ^+,ϑ^-	6, 1	2 , 1
Arco uscente	(1,3)	(3,2)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	iter	4	iter	: 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		3		5		7		4	1	(5
nodo 2	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 3	5	1	5	1	5	1	5	1	5	1	5	1	5	1
nodo 4	19	1	19	1	19	1	19	1	19	1	19	1	19	1
nodo 5	$+\infty$	-1	9	2	8	3	8	3	8	3	8	3	8	3
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	25	4	25	4
nodo 7	$+\infty$	-1	$+\infty$	-1	19	3	18	5	18	5	18	5	18	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	4, 5	, 7	4,	7	4	:	(5	(Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	5	(0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0)	5
1 - 2 - 5 - 7	5	(5, 5, 0, 5, 0, 0, 5, 0, 0, 5, 0)	10
1 - 4 - 6 - 7	8	(5, 5, 8, 5, 0, 0, 5, 0, 8, 5, 8)	18
1 - 4 - 3 - 5 - 7	3	(5, 5, 11, 5, 0, 3, 5, 3, 8, 8, 8)	21

Taglio di capacità minima: $N_s = \{1,2\}$ $N_t = \{3,4,5,6,7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 9 \ x_1 + 6 \ x_2 \\ 13 \ x_1 + 11 \ x_2 \ge 69 \\ 9 \ x_1 + 17 \ x_2 \ge 49 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{69}{11}\right)$$
 $v_I(P) = 38$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,7)$$

c) Calcolare un taglio di Gomory.

$$\begin{vmatrix} r = 2 \\ r = 4 \end{vmatrix}$$

$$12 x_1 + 10 x_2 \ge 63$$

$$6 x_1 + 5 x_2 \ge 32$$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	44	21	50	21
2		12	51	25
3			9	29
4				21

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,3)(1,5)(2,3)(3,4)(4,5)$$
 $v_I(P)=84$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo:
$$2 - 3 - 4 - 5 - 1$$
 $v_S(P) = 107$

c) Applicare il metodo del Branch and Bound, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{23} , x_{34} .

