Pràctica 3: Velocitat límit amb F(t).

Guillem Fígols, Adrià Vilanova (T1)

5 de novembre de 2019

Q1. [3 punts] Ompliu la taula següent amb els valors experimentals per a l'alçada z, la mitjana del temps de caiguda t_1 , i el temps de pas, t_2 . Sabent la distància que separa les barreres fotoelèctriques en cada cas, calculeu les velocitats instantànies finals, v.

z(cm)	$t_1(s)$	t_2 (s)	$v(\mathrm{cm/s})$	$\delta(v)$	z (cm)	t_1 (s)	t_2 (s)	v (cm/s)	$\delta(v)$
5	0.720	1.349	7.41	0.15	5	0.248	0.467	21.4	0.4
10	1.386	1.355	7.38	0.15	10	0.497	0.474	21.1	0.4
20	2.667	1.370	7.30	0.15	20	0.944	0.471	21.2	0.4
30	3.877	1.366	7.32	0.15	30	1.405	0.481	20.8	0.4
40	5.367	1.405	7.12	0.14	40	1.917	0.466	21.5	0.4
50	6.494	1.442	6.93	0.14	50	2.364	0.470	21.3	0.4
60	8.019	1.428	7.00	0.14	60	2.784	0.468	21.4	0.4
70	9.425	1.404	7.12	0.14	70	3.320	0.487	20.5	0.4
80	10.719	1.448	6.91	0.14	80	3.778	0.480	20.8	0.4
90	12.296	1.429	7.00	0.14	90	4.327	0.475	21.1	0.4
100	13.357	1.377	7.26	0.15	100	4.754	0.476	21.0	0.4

Taula 1: Barra A - Coure.

Taula 2: Barra B - Alumini.

z (cm)	t_1 (s)	t_2 (s)	v (cm/s)	$\delta(v)$	z (cm)	$t_1 \; ({\bf s})$	t_2 (s)	v (cm/s)	$\delta(v)$
5	0.225	0.442	22.6	0.5	5	0.178	0.120	83	2
10	0.425	0.435	23.0	0.5	10	0.245	0.108	93	2
20	0.942	0.443	22.6	0.5	20	0.326	0.091	110	2
30	1.600	0.597	16.8	0.3	30	0.354	0.073	137	3
40	1.778	0.483	20.7	0.4	40	0.494	0.079	127	3
50	2.275	0.434	23.0	0.5	50	0.539	0.080	125	3
60	2.982	0.501	20.0	0.4	60	0.697	0.078	128	3
70	3.930	0.558	17.9	0.4	70	0.696	0.079	127	3
80	4.967	0.454	22.0	0.4	80	0.793	0.075	133	3
90	4.871	0.461	21.7	0.4	90	0.857	0.077	130	3
100	5.166	0.491	20.4	0.4	100	0.901	0.073	137	3

Taula 3: Barra C - Llautó.

Taula 4: Barra D - Acer inoxidable.

NOTA: La incertesa de la mesura de z és de $\pm 0.5\,\mathrm{cm}$ i la de t_1 i t_2 és de $\pm 10^{-3}\,\mathrm{s}$ (la resolució del cronòmetre). A més, $\delta(v) = \frac{\delta(s)}{t} + \frac{\delta(t)}{s}$, on s és la separació entre les dues barreres.

Q2. [1.5 punts] Per al conjunt de resultats obtinguts amb la barra A (de coure), representeu gràficament l'alçada, z, en funció del temps de caiguda, t_1 . Feu l'ajust lineal $h = m_A \cdot t + n_A$ triant el rang de punts adient perquè el comportament sigui lineal. Veient els resultats obtinguts quin tipus de moviment creus que descriu millor el comportament de l'imant? A quina magnitud física correspon el valor de la constant m_A ? Doneu el valor de la velocitat límit v_A .

Figura 1: Gràfica de les dades que mostra la relació entre l'alçada inicial (h) i el temps de caiguda (t_1) a la barra de coure, i una aproximació lineal a les dades.

Al fer la regressió amb gnuplot, a més de donar-nos els valors dels coeficients de la regressió $h = m_A \cdot t + n_A$, també ens dona les incerteses de cadascun d'ells:

$$\begin{cases} m_A = 7.42 \pm 0.06 \text{ cm s}^{-1} \\ n_A = 0.3 \pm 0.5 \text{ s} \end{cases}$$

Així doncs, si n_A fos 0 (cosa possible ja que està dins de l'interval que ens marca la incertesa), estaríem en la situació en què $h = m_A \cdot t \implies \frac{h}{t} = m_A$ (observem que la magnitud m_A té unitats de velocitat). Es pot interpretar que aquesta expressió ens diu que la relació entre l'alçada que recorre l'imant i el temps que triga en recórrer-la és constant i, per tant, el moviment que descriu és un Moviment Rectilini Uniforme (MRU).

El fet que el moviment és un MRU es pot explicar pel fet que l'imant, a la barra A, arriba a la velocitat límit molt ràpidament, i com (per definició) quan s'arriba a la velocitat límit la velocitat es manté constant, en efecte descriu un MRU.

Per tant, hem trobat que la velocitat límit és $v_A = m_A = 7.42 \pm 0.06 \text{ cm s}^{-1}$

Q3. [1.5 punts] Representeu ara les dades de les alçades z, en funció del temps de caiguda, t_1 , obtingudes de la barra B. Feu el corresponent ajust lineal $h = m_B \cdot t + n_B$ i doneu el valor de la velocitat límit v_B .

Figura 2: Gràfica de les dades que mostra la relació entre l'alçada inicial (h) i el temps de caiguda (t_1) a la barra d'alumini, i una aproximació lineal a les dades.

En aquest cas obtenim els següents coeficients per la regressió lineal $h = m_B \cdot t + n_B$:

$$\begin{cases} m_B = 21.05 \pm 0.06 \text{ cm s}^{-1} \\ n_B = 0.05 \pm 0.4 \text{ s} \end{cases}$$

En aquest cas, fent els mateixos càlculs que abans, $v_B = 21.05 \pm 0.06 \text{ cm s}^{-1}$

Q4. [1.5 punts] Finalment repetiu l'apartat anterior amb les dades obtingudes amb la barra C i doneu el valor de la velocitat límit v_C .

Figura 3: Gràfica de les dades que mostra la relació entre l'alçada inicial (h) i el temps de caiguda (t_1) a la barra de llautó, i una aproximació lineal a les dades.

Amb la barra C, per algun motiu, hem obtingut les dades bastant poc alineades i, per tant, menys correlacionades que abans. Per tal d'intentar solventar això, a l'hora de fer la regressió només hem considerat els punts experimentals amb ' t_1 's grans i que aparentment no presenten una gran desviació respecte de la llei que haurien d'estar complint, que hauria de ser com la dels dos apartats anteriors.

Fet això, hem obtingut els següents coeficients per la regressió $h = m_C \cdot t + n_C$:

$$\begin{cases} m_C = 18.4 \pm 0.5 \text{ cm s}^{-1} \\ n_C = 1 \pm 1 \text{ s} \end{cases}$$

De totes formes, podem observar que les incerteses per ambdós coeficients són bastant grans.

En aquest cas, la velocitat límit és
$$v_C = 18.4 \pm 0.5 \; \mathrm{cm \, s^{-1}}$$

Q5. [1.5 punts] Per a la barra D, d'acer inoxidable, representeu les velocitats instantànies finals en funció del temps de caiguda. Identifiqueu sobre la gràfica en quin rang s'hauria d'observar un moviment uniformement accelerat i en quin un moviment uniforme. Estimeu el valor de la velocitat límit v_D .

Figura 4: Gràfica de les dades que mostra la relació entre la velocitat instantània final (v) i el temps de caiguda transcorregut (t_1) a la barra d'acer inoxidable, i una aproximació a les dades.

En plotejar les dades, veiem que en l'interval [0,0.4] de temps, la velocitat va augmentant a un ritme que sembla lineal, el que vol dir que l'acceleració és constant i per tant que el moviment és un Moviment Rectilini Uniformement Accelerat (MRUA).

Per altra banda, es pot veure que en l'interval [0.5,1] la velocitat més o menys s'estabilitza, perquè el valor de la velocitat no varia molt. Per tant, com en aquest interval la velocitat és aproximadament constant, es pot suposar que el moviment que té lloc en l'interval $[0.5,\infty)$ és, com a aproximació de primer ordre, un MRU.

Per calcular la velocitat límit s'ha fet una regressió no lineal de les dades (descartant un punt que queda massa lluny) mitjançant el mètode de mínims quadrats al programa gnuplot. Segons la teoria, la fòrmula de la velocitat depenent del temps que hauria de seguir l'imant és: $v(t) = \frac{mg}{b} \left[1 - e^{-\frac{b}{m}t} \right]$.

Per tant, s'ha agafat com a funció aproximant la funció $v(t) = \alpha[1 - e^{-\beta t}]$, amb paràmetres α, β . Com el mètode numèric d'aproximació de la funció que utilitzem és un mètode iteratiu, s'ha hagut de provar amb diversos valors inicials d' α i β propers a la solució esperada perquè el mètode convergís. Els coeficients que hem trobat que aproximen millor la funció aproximant al nostre conjunt de dades amb norma L_2 discreta són:

$$\begin{cases} \alpha = 133.8 \pm 1.6 \text{ cm s}^{-1} \\ \beta = 5.2 \pm 0.3 \text{ s}^{-1} \end{cases}$$

Per tant, ara podem calcular la velocitat límit de la següent forma:

$$v_D = \lim_{t \to \infty} v(t) = \lim_{t \to \infty} \alpha [1 - e^{-\beta t}] = \alpha = 133.8 \pm 1.6 \text{ cm s}^{-1}$$

Q6. [1 punt] Doneu les velocitats límit obtingudes de cada barra i obteniune el coeficient de fregament b per a cadascuna d'elles. Feu una representació del coeficient de fregament en funció de la resistivitat de la barra (vegeu els valors a la taula següent) en una gràfica doble logarítmica. Quina llei creieu que pot descriure la dependència del coeficient de fregament amb la resistivitat del metall implicat? ($m = 16.6 \pm 0.1 \text{ g}, g = 981 \pm 10 \text{ cm s}^{-1}$)

Segons la teoria i com hem pogut veure a l'apartat anterior, $v_l = \frac{mg}{b}$. Aleshores:

$$b = \frac{mg}{v_l}$$

A més,
$$\delta(b) = \varepsilon_b \cdot b = (\varepsilon_m + \varepsilon_g + \varepsilon_{v_L})b = \left(\frac{\delta(m)}{m} + \frac{\delta(g)}{g} + \frac{\delta(v_L)}{v_L}\right)b \approx \left(0.016 + \frac{\delta(v_L)}{v_L}\right)\frac{16284.6}{v_L}$$
.

Amb tot això, podem omplir la taula:

Barra	A	В	C	D
$v_l ({\rm cm s^{-1}})$	7.42 ± 0.06	21.05 ± 0.06	18.4 ± 0.5	133.8 ± 1.6
$b (\mathrm{kg} \mathrm{s}^{-1})$	2190 ± 50	774 ± 14	890 ± 40	122 ± 3
Resistivitat $(10^{-16} \Omega\mathrm{cm})$	1.7	4.0	5.5	40

Fem el plot de les parelles (b, ρ) :

Figura 5: Gràfica de les dades que mostra la relació entre la resistivitat (ρ) i el coeficient de fregament (b).

Els coeficients de la regressió $b(\rho) = \alpha \cdot \rho^{\beta}$ són:

$$\begin{cases} \alpha = 3600 \pm 500 \text{ kg s}^{-1} \\ \beta = -0.95 \pm 0.17 \end{cases}$$

Així doncs, faria la hipòtesi que $\beta=-1$ i diria que la llei que descriu la dependència entre ρ i b és:

$$b \cdot \rho = \alpha$$
 const.

Observació sobre la pràctica: Només hem utilitzat una mesura per cada barra i alçada perquè, tot i que estàvem prenent dues mesures de cada, en mig de l'experiment una de les barreres va deixar de funcionar correctament i parava el cronòmetre inconsistentment. És per això que no vam tenir temps de repetir les segones mesures a totes les barres, i vam decidir utilitzar-ne només una. A més, és possible que detectéssim aquesta inconsistència després que ja s'estigués produint, i per tant que algunes de les dades preses tinguin un error bastant gran. Si aquest és el cas, disculpeu les molèsties.