LIST OF DISTRIBUTIONS

Distribution	Variable Definition	PMF/PDF	E(X)	VAR(X)	MGF
DISCRETE					
1. Uniform ~DU(N)		$\frac{1}{N}I_{\{1,2,\ldots,N\}}(x)$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	$\sum_{j=1}^{N} e^{jt} \frac{1}{N}$
2. Bernoulli ~Be(p)	$X = \begin{cases} 0, & failure \\ 1, & success \end{cases}$	$p^{x}(1-p)^{1-x}I_{\{0,1\}}(x)$	p	p(1-p) = pq	$pe^t + q$
3. Binomial ∼Bi(n,p)	X = number of successes	$\binom{n}{x} p^x (1-p)^{n-x} I_{\{0,1,2,,n\}}(x)$	пр	npq	$(pe^t + q)^n$
4. Hyper- geometric ~Hyp(n,N,K)	X = number of success in the sample	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}I_{\{0,1,2,\dots,min(n,K\}}(x)$	$\frac{nK}{N}$	$\frac{nK}{N}(1-\frac{K}{N})(\frac{N-n}{N-1})$	
5. Poisson $\sim Po(\lambda)$	X = number of occurrences in a time period	$\frac{e^{-\lambda}\lambda^x}{x!}I_{\{0,1,2,\dots\}}(x)$	λ	λ	$\exp\{\lambda(e^t-1)\}$
6. Geometric ~Ge(p)	X = number of failures before the first success	$p(1-p)^x I_{\{0,1,2,\dots\}}(x)$	$\frac{q}{p}$	$\frac{q}{p^2}$	$\frac{p}{(1-qe^t)}$
Geometric by Mendenhall ~Ge(p)	X= number of trials until the first success	$p(1-p)^{x-1}I_{\{1,2,\ldots\}}(x)$	$\frac{1}{p}$	$\frac{1}{p^2}$	$\frac{pe^t}{(1-qe^t)}$
7. Negative Binomial ~NB(r,p)	X = number of failures before the rth success	$\binom{r+x-1}{x} p^r (1-p)^x I_{\{0,1,2,\dots\}}(x)$	$\frac{rq}{p}$	$rac{rq}{p^2}$	$(\frac{p}{1-qe^t})^r$
Negative Binomial by Mendenhall ~NB(r,p)	X= number of trials until the rth success	$\binom{x-1}{r-1} p^r (1-p)^{x-r} I_{\{r+1,r+2,\dots\}}(x)$	$\frac{r}{p}$	$\frac{r}{p^2}$	$(\frac{pe^t}{1 - qe^t})^r$
CONTINUOUS					
1. Uniform ~U(a,b)	X is selected at random from an interval [a,b]	$\frac{1}{b-a}I_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$ $\exp\{\mu t + \frac{1}{2}\sigma^2 t^2\}$
2. Normal $\sim N(\mu, \sigma^2)$		$\frac{1}{\sqrt{2\pi}\sigma}\exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}I_{(-\infty,\infty)}$	μ	σ^2	$\exp\{\mu t + \frac{1}{2}\sigma^2 t^2\}$
3. Exponential $\sim \text{Exp}(\lambda)$	X can be thought of as the waiting time for the next success	$\lambda e^{-\lambda x} I_{[0,\infty)}(x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$, $t < \lambda$
4. Gamma ~Gamma(r,λ)	X can be thought of as the waiting time for the rth success	$\frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x} I_{[0,\infty)}(x)$ Where $\Gamma(r) = (r-1)!$	$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^r$, $t < \lambda$
5. Beta $\sim \text{Beta}(\alpha, \beta)$		$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}I_{0,1}(x)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	