mit 13 was and 2 HW-15 and 10 me multiple at judior 1 5.7) given, $f(x) = \int a + bx^2$, $o \ne x \ne 1$ (9-1)(9-1) [0) 92, otherwise -1 THE MANDENON AT LE SOLD from property of density function, to philiabology lated with worth (x) > One for all xx = service (x-M) therefore, $\int (a+b)c^2 dx = 1$ $\int (a+bx^2)dx = 1$ ax+ bxe3 21

from expectation weget $E(x) = \int \chi(a+bx^2) dx = 3$ $\frac{ax^{2} + bx^{4}}{2} = \frac{3}{4}$ $\frac{\alpha}{2} + \frac{b}{4} - \frac{3}{5}$ $\frac{a+b}{2} = \frac{16}{5} = \frac{2}{3}$ Now, eq. 1) - eq. (2); we get (b - b 2) 1 = 1 + 6 0 and 10 0 miles 1 1 (0) $\frac{251 \cdot 1 - b}{01 - 16} = \frac{-1}{6} \cdot \frac{1}{5} \cdot \frac{1}{02} = \frac{1}{1012 \times 19}$ b=6 6 - (01<x)9 Substitute b= 6/5 in (D) 31 extracul 7 (d $\frac{\alpha = 1 - 62}{5} = \frac{3}{5}$ Therefore, a=6 & b=3

ut P(X>50) be the probability of howing a rainfall 5.16) greater than so inches in a year. So, it can be written in standard normal variable as P(Z>50-M) given, µ=40, 19 00 =4 So, P(2> 50-40) P(Z>2.5) => 1-P(Z = 2.5) from the z-table = 1-0.9938. P(7>2.5) = 0.00621 The probability that it will take over 10 yes before a year occus having a rainfall over 50 inches is given as: = probability that there is no rainfall of over so inches over next 10 years. = (1-0.00621) x to material - U=036. Mall 1 Market = 0.9396. Her, the assumption made is that all the years have independent rounfall.

5.21) given, M=71, 52 = 6.25 (024) 5 = 2.5 6.2" dall = (6x12+2)+me and most be = 74 inches 4 = 19 Probability of 25 year old men are over 6'2" tall is given by P(X>6'2") = P(X>74) writing it in Standard normal Vasiable, P(Z)7+4=1 P(Z)X-M)=P(Z>74-71) 2.5) $\frac{3P(Z>6)}{2P(Z>1.2)} = P(Z>1.2)$ 120 N = AltitoP(Zn 51.2) mon by port acounts) = 10 the 2 mily - 0.88493 + 1 + 11/dologo = = 0.11507 year 1997 word whom Hence, Percentage of 25 year old men are over 6'2" tall is 11.5%. The probability of men in the 6 footer club are over 6'5" is given by P(x>6'5") = P(x>77 inches) have indopedint mandell

 $P(Z \times X - M) = P(Z \times 77-71)$ $= P(Z \times 3.4)$ $= 1 - P(Z \leftarrow 2.4)$ = 1 - 0.99180 = 0.0082Hence, the perantage of man in the 6-footer club.
are tally then 6 feet 5 inches is 0.82%

5.32)	given, (1=1: <) = (1-x < 5) 9
	6
	from the property of moneyless property of
	exponential function. we know
	$f(x) = e^{-\lambda x}$
	The second seems to be a second seems of the last
Autor	a) Probability that a repairement 2 hours is
	given by P(X>2) = 1-P(X L 2)
	$= 1 - (1 - e^{-1})$
	- 12 = P/2 = P/3 = P/3 = 11)
1	= 0.3679 mouth (EEE)
-	- P(2>6) - T(2>1)
<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	b) The conditional probability that a repair take
	at least 10hrs, given that its duration
	exceeds 9 hours
	P(X>10 X >9) - P(X >10)
	P(X > 9)
- A C	from Memory dess property
	$P(X \ge 10 \mid X \ge 9) = P(X \ge 1)$
	P(XZI) = e1/2x1
. F B	$= e^{-0.5}$
	= 0.6065

5.40) given, X is a random variable following uniform distribution with parameter a and I ut 'y' is the random variable & it is defined as $\lambda = e_{x}$ The CDF of Y's Fy(y) = P(YEY) successfor i = P(ex < y) = P(ln(ex) < ln(y)) = p(xlne) < ln(y)) - P(x \le ln(y)) limits of 'x' is . O L X L Y x=0 > Y=e => Y=1 X=1 => Y=e' => Y=e. limits of Y' is 1242e. Now, differentiate CDF to get PDF wirit 'y' $f_{x}(sc) = F_{x}(J_{n}(y))$ = fx (ln(y)) d (ln(y)) = fx (ln(4)) (1) = fx (ln(4))

100	But fx (ln(y)) =1 become x ~ U(on)	-
	1 bordo altrono de las restadirticiós	1
NO.	So, the PDF of Yi	114
	Y9 = V	1
	> fx(y)= //y= 1 14420 10 700 197	
	(N=100=; otherwise	
	a) ((1) - 40) ml.) 7. 30 mm. 2 hours	
	dipolal a condixon a - pixa	
	(10) nd 2 x) 9-1-(1-e)	