VNA 基础知识介绍

入门手册

矢量网络分析仪或 VNA 是一种重要的测试仪器,在它的帮助下,数以万计的现代化无线技术才成为可能。今天,VNA 正广泛用于各种 RF 和高频应用中。在设计应用中,工程师使用仿真技术来减少实体原型设计次数,加快产品开发周期。VNA 用来验证这些设计仿真。在制造应用中,工程师基于一套特定的指标来组装和测试 RF 元器件。VNA 用来迅速准确地验证这些RF 元器件的性能。

本文讨论了为什么要使用 VNA, VNA 与其他 RF 测试设备相比所拥有的独特特点。我们将定义 S 参数、基本 VNA 测量,以及在评估被测器件或 DUT 时怎样最有效地利用这些指标。我们将考察各种 VNA 校准技术,说明 VNA 用户校准怎样帮助实现最佳的精度。最后,我们将考察典型的 VNA 测量,如扫频测量、时域测量、扫描功率测量,怎样使用这些测量,以及其重要意义。

目录

矢量网络分析仪概述	3
谁需要 VNA	4
基本 VNA 操作	6
主要指标	6
VNA 与频谱分析仪比较	8
了解S参数	9
测量误差类型	11
校准技术	12
什么是用户校准	12
VNA 校准方法	
校准标准	14
典型的 VNA 测量	15
扫频测量	15
时域测量	16
扫描功率测量	16
测试多端口元件	17
小结	18

非用于测量 WiFi 网络

非用干驱动测试 移动电话网络

非用于计算机 网络或云端

图 1. 当前有各种各样的网络,每种网络都有自己的网络分析仪。本文中讨论的矢量网络分析仪用于不同类型的网络,并在 这些网络存在很久之前就已经存在了。

矢量网络分析仪概述

今天, "网络分析仪"一词用来描述各种"网络"所 使用的工具(图1)。例如,大多数人目前都有一部在 3G 或 4G"网络"上运行的手机。此外,大多数家庭、 办公室和商业场所都有 Wi-Fi 或无线局域网"网络"。 另外, 许多计算机和服务器是在"网络"中设置的, 这些网络会连接到云端。对每个"网络",都有特定 的网络分析仪工具, 用来检验性能, 映射覆盖区域, 识别问题区域。

但是,本文中讨论的网络分析仪用于一种不同的网络 类型,在上述网络存在很久之前就已经存在了。第一 台 VNA 是在 1950 年前后问世的, 定义为用来测量电 气网络的网络参数的一种仪器(图2)。事实上,可以 说 VNA 已经使用了很多年,正是在 VNA 的帮助下, 所有上述网络才成为可能。从手机网络到 Wi-Fi 网络、 到计算机网络、再到云端, 当前所有最常用的技术网 络都是因为 60 多年前发明的第一台 VNA 才变成可能。

图 2. 矢量网络分析仪或 VNA 在 20 世纪 50 年代问世, 目前 在世界各地仍在广泛使用。

圖 3. VNA 使大多数现代技术成为可能。

谁需要 VNA

所有无线解决方案都有发射机和接收机,每个里面 都含有许多 RF 和微波元件,这不仅包括智能手机和 WiFi 网络, 还包括联网的汽车和物联网器件。此外, 当今的计算机网络当它在 RF 和微波频率上传送信号 时,会在非常高的频率上运行。图 3 显示了 VNA 帮 助实现当今各种应用的实例。

VNA 用来测试元件指标, 检验设计仿真, 确保系统及 其元件正确运行。研发工程师和制造测试工程师通常 会在产品开发的各个阶段使用 VNA。元件设计人员需 要检验各种元件的性能,如放大器、滤波器、天线、 电缆、混频器等。系统设计人员需要验证元件指标, 确保系统性能以满足子系统规范和系统规范。生产线 使用 VNA 确保所有产品满足规范, 然后才能出货给 客户使用。在某些情况下, VNA 甚至用于现场操作, 检验和调试已经部署的 RF 和微波系统。

圖 4. 可以使用 VNA 检验元件级、子系统级和系统级性能。

例如,图 4 显示了一个 RF 系统前端,以及怎样使用 VNA 测试系统的不同元器件。对天线来说,必需了解 天线转换空中信号的效率如何。正如我们后面解释的 那样,这要使用 VNA 测量天线的回波损耗或 VSWR 来确定。

看一下图 4 的右侧,上混频器接收 IF 信号,使用振荡器 (VCO) 混频,生成 RF 信号。信号转换到新频率的

情况如何?是否生成了任何不想要的信号?驱动混频器时最有效的功率电平是多少?可以使用 VNA 回答这些问题。

从系统设计角度看,有多少信号通过 RF 电路板流出天线? 在接收侧,双工器隔离发送信号与接收信号的效果如何? 所有这些问题都可以使用 VNA 回答。

图 5. VNA 同时包含一个激励源和多个接收机,为评估 DUT 提供了非常准确的闭环。

基本 VNA 操作

VNA 的一个独特特点是,它同时包含一个源端(用来生成已知的激励信号)和一套接收机(用来确定被测器件或 DUT 由这个激励源引起的变化)。图 5 突出介绍了 VNA 的基本操作。为简单起见,它显示了源端来自端口 1,但当今大多数 VNA 是多路径仪器,可以为任一端口提供激励信号。

激励信号注入 DUT, VNA 既测量输入侧反射的信号, 又测量传送到 DUT 输出侧的信号。VNA 接收机测量 得到的信号,把它们与已知的激励信号进行对比。然 后由内部或外部 PC 处理测得的结果,发送到显示画 面。

市场上有各种不同的 VNA,每个 VNA 都有不同数量的端口以及激励信号经过的路径。在 1 端口 VNA 中,DUT 连接到图 5 的输入侧,只测量反射的信号。在 2 端口 1 路径 VNA 中,可以测量反射的信号和发送的信号 (S11 和 S21),但 DUT 必须在物理上反置,然后测量反向参数 (S22 和 S12)。在 2 端口 2 路径 VNA 中,

DUT 可以连接到任一方向任一端口,因为仪器能够 反转信号,所以可以测量两个端口上的反射 (S11 和 S22) 以及前向和反向传输 (S21 和 S12)。

主要指标

在确定对 VNA 的需求时,应考虑几个关键指标。 VNA 指标很多,但可以使用四个顶级指标来引导选型 过程,那就是频率范围、动态范围、轨迹噪声和测量 速度。

频率范围是要考虑的第一个、也是最关键的指标(图6a)。对这个指标,通常来说不仅要考虑当前的需求,还要考虑潜在的未来需求。此外,尽管所有 DUT 的工作频率都是一定的,但对某些 DUT,你可能还要考虑它们的谐波频率。有源器件如放大器、转换器和混频器,可能需要在工作频率 2~5 倍的谐波频率上进行测试。另外可能还要在传输频带的谐波上测试滤波器和双工器。你可能需要更高的频率范围,但要注意,最大频率范围是 VNA 成本高低的主要因素。

图 6. 可以使用 VNA 最优指标,迅速确定应用要求的仪器等级。

动态范围是在指定频率范围上可以测量的从最大值到 最小值的衰减范围(图 6b)。根据 DUT 期望的性能, 你要确保最大 DUT 衰减幅度指标至少要比 VNA 动态 范围指标低 3~6 dB。当前大多数 VNA 提供了非常好 的动态范围 (~ 120 dB),对许多应用已经足够了。某 些超高性能元件可能要求更贵的 VNA 解决方案。

轨迹噪声测量,有多少随机噪声是由 VNA 产生并传 送到测量中。它一般为几毫 dB (0.001 dB)。轨迹噪 声在确定某些元件的精度中可能是一个关键因素(图 6c),如滤波器滤波通带中可以接受的纹波。如果你

需要特定的性能来确定经过滤波器的信号精度,那么 新增的 VNA 轨迹噪声可能是其中一个因素。

最后,测量速度也是要考虑的一个指标(图 6d)。测量 速度是指执行一次扫描或测量所用的时间。对大批量 制造应用,这可能是最关键的要求。如果你考察的是 智能手机中使用的元件,那么每年制造的元件数量可 能会以几十亿计。缩短超大批量的测试时间对这种元 件的成功至关重要。但是,对许多研发和小批量生产 应用, VNA 测量速度并不是问题。

网络分析仪 频谱分析仪 Port 2 Port 1 DUT • 包含源端和接收机 • 包含接收机 • 使用已知的激励源 • 测量未知信号 • 2通道或以上 • 单诵道 • 比率测量 • 没有比率测量 • 提供高级校准, 准确度较高 • 校准功能有限,准确度较低 • 限于模拟信号和脉冲式信号 • 特别适合数字调制信号

表 1. VNA 与频谱分析仪对比。

VNA 与频谱分析仪对比

某些设计工程师以前可能有过使用 VNA 或频谱分析 仪的经验,有些则对 RF 测试感到陌生,对 VNA 或频谱分析仪都不熟。VNA 和频谱分析仪是两种最常用的 RF 测试仪器。那么网络分析仪与频谱分析仪有什么 差异呢?什么时候需要其中一种仪器,什么时候同时需要这两种仪器呢?表 1 比较了 VNA 与频谱分析仪。

首先,必需考虑你要测量哪类信号。在测量数字调制的信号时,最好选择频谱分析仪。如果你的目标是测量 Wi-Fi 和 LTE 信号的性能,那么只有频谱分析仪才能完成这些测量。

如前所述,VNA 同时包含着源端和接收机,能够使用已知的激励信号来激励 DUT,使用多台接收机测量其响应。VNA 可以有多条通道和多个端口,其接收机可以同时测量 DUT 的输入和输出。

频谱分析仪一般用来测量已知的信号,可以是天线空中传送的信号,也可以是元件输出的信号。它们一般是单通道仪器,一次只能测量 DUT 的一个输出。另外,VNA 测量的不是信号,而是无源器件或有源器件本身的 RF 特点。

由于拥有已知激励源和多台接收机,VNA 可以同时准确测量 DUT 的幅度特性和相位特性。这些矢量信号可以全面表征器件特性。通过使用矢量误差校正技术,还可以实现更高的精度和动态范围。这种独特的用户校准功能允许 VNA 消除电缆、转接头和夹具的影响,我们后面将讨论这种功能。

某些频谱分析仪提供了内置跟踪源(SA w/TG),实现的功能在很大程度上与 VNA 相同。从本质上看,VNA 的工作方式与内置跟踪源的频谱分析仪是一样的。这两种仪器解决方案之间的关键差别在于,VNA 能够使用多台接收机测量比率指标;内置跟踪源的频谱分析仪则更适合 1 端口反射测量,另外还能进行误差校正。但在使用内置跟踪源的频谱分析仪进行传输测量时,测量精度不如 VNA。正如我们后面讨论的那样,这在很大程度上是因为只有 VNA 才能全面实现 2端口误差校正。此外,绝大部分内置跟踪源的频谱分析仪没有显示相位数据,而这一功能在许多 RF 测试应用中非常关键。

图 7. 了解 S 参数。

了解S参数

一般来说,我们很难在高频率时测量电流或电压,因 此我们要测量散射参数或S参数。这些参数用来表征 RF 元件或元件网络的电气属性或性能,与我们熟悉 的测量(如增益、损耗和反射系数)有关。如果你想 了解怎样使用 VNA 表征 DUT, 那么先必需了解 S 参 数的基础知识。图 7 简单介绍了 S 参数。

先从外部图开始, VNA 一般有两个或两个以上的端口, 简单地连接到 DUT,可以直接连接,也可以使用电缆 和转接头。这些端口贴有标签,在本例中是端口1和 端口2。

然后我们看一下内部图。评估多端口网络特点的常用 作法,是使用入射波作为每个端口的激励源,测量得 到的发射波, 其可以是从应用功率的端口反射出来的, 也可以是经器件传送到其余端口上的。一般来说,进 入网络或 DUT 的波称为入射波,从网络或 DUT 发出 的波称为反射波, 但每个波都可能由来自其他端口的 反射和传输组合而成。

入射波标为 a,, 反射波标为 b,, 其中 n 是端口号码。 a和b这两种波都是相量,在网络端口指定端子上都 有幅度和相位。

两个 VNA 端口连接器中,每个后面都是一个定向耦 合器(图7中的绿框)。这些定向耦合器把已知激励 信号传送到 DUT 的任意一侧 (a1 或 a2)。

首先,一部分激励信号会作为基准信号。S 参数是来 自各个端口的信号相对于这个基准信号的比。同时, 部分激励信号在进入 DUT 时会被反射 (b₁)。把接收机 连接到 VNA 内部的端口 1, 可以测量被反射的输入信 号部分。进入 DUT 的输入信号部分在传送时一般会 产生幅度和相位变化。从端口2发出的部分信号通过 端口 2 上的 VNA 接收机来测量 (b₂)。

必需指出,由于VNA是一种双向仪器,因此端口2 也可能是已知激励信号发出的地方(在本例中是 a。). 测量流程与反向流程相同。

上面我们了解了 VNA 的运行方式,现在把内部图转 换成 S 参数原理图。通过使用 a (入射)波和 b (反射)波,可以使用一套公式表征线性网络或 DUT, 用所 有端口上的入射波描述每个端口的反射波。在这些情 况下表征网络的常数称为S参数。

在前向中,如图7所示,端口1发送a,信号,对应 负载应用到端口 2, 在负载上得到反射信号为零 (a。 = 0)。S₁₁ 对应端口 1 的反射系数或者 b₁ 与 a₁ 的比。 S₂₁ 是经过 DUT 的传输系数, 是 b2 与 a₁ 的比。

在反向中,端口2发送 a。信号,对应负载应用到端口 1 ($a_1 = 0$)。 S_{22} 对应端口 2 上的反射系数,或 b_2 与 a_2 的比。S₁₂是通过 DUT 的反向传输系数,是 b₁与 a₂ 的比。

注意在S参数术语中, Syx 中第二个数字(x)表示发 起端口,第一个数字则是目的端口(v)。在理论上,S 参数原理可以应用到拥有无限数量的端口的网络中。 例如, 4端口 VNA拥有16个S参数: S₁₁, S₁₂, S₁₃, S₁₄, S₂₁ … S₄₄。所有这些 S 参数都采用相同的 原理,是每个指定端口之间的比。

图 8. VNA 测量误差类型。

测量误差类型

在使用 VNA 进行任何测量前,必须先校准 VNA,以 减少可能影响测量的误差。在校准 VNA 之前,我们 首先要了解测量误差,因为并不是所有误差都能通过 校准达到最小。

测量误差分为几种主要类型(图8),包括系统误差、 随机误差和漂移误差。系统误差是测试设备或测试设 置中的不理想特点,一般是可以预测的,比如输出功 率变化或 VNA 接收机在频率范围内的频响纹波。RF 电缆的功率损耗也同样重要,这些电缆把 DUT 连接 到 VNA 上, 其功率损耗会随着频率提高。由于这些 误差是可以预测的,是设备中的不理想特点,因此通 过用户校准,很容易就能消除这些误差。

第二种测量误差来源是由随机误差导致的。这种误差 由测试设备或测试设置发射的噪声引起, 会随着时间 变化。这种误差量非常重要,因为即使在执行了用户 校准之后,它仍会保留在实测结果中,而且它决定着 测量中能够实现的精度水平。我们前面讨论的轨迹噪 声就是一种随机误差。

第三种误差来源是漂移误差,这种误差与测量期间的 漂移有关。在执行用户校准后,这些误差是测试设备 和测试设置中发生的变化,比如设置环境的温度波动、 湿度波动和机械运动。有时我们会使用控温控湿的房 间,来减少测量期间的漂移误差。测试设置在测量期 间的漂移量决定着测试设置所需的重新校准频次。

校准技术

什么是用户校准

在 RF 和微波测试设备中, VNA 拥有独特的校准技术。 VNA 与其他 RF 和微波测试设备一样,都进行了出厂 校准,通常都要求每年进行检查,确保正常运行,但 VNA 拥有额外的"用户校准"功能。可以在测量前由 用户进行校准。图 9 显示了出厂校准和用户校准的不 同参考面。

出厂校准涵盖测试端口连接器上的 VNA 性能。仪器 性能基于一个满足规定参数集(频率、功率等)的输 入信号。在 VNA 中,它不仅要校准到从接收机角度 能够准确测量,还要进行出厂校准,确保正确规范 和运行 VNA 发出的已知激励信号。基本上、它保证 了输出信号满足规范,输入信号准确表示。这种出厂 校准与内置跟踪源的频谱分析仪上执行的出厂校准类 似。

在相同的仪器内部设置已知的激励源和接收机,为 VNA 提供了一种独特的能力,即执行额外的"用户 校准"。如前所述, VNA 测量幅度和相位, 也就是 说,用户校准会执行矢量误差校正。这使得 VNA 成 为市场上最准确的 RF 测试仪器之一。通过用户校准, VNA 消除了 DUT 连接中使用的电缆、转接头及大多 数项目的影响。通过消除附件的影响,用户校准可以 精确测量单独的 DUT 性能。设计人员可以更好地了 解 DUT 放入子系统时的性能。

图 9. VNA 同时提供了出厂校准和用户校准。

图 10. VNA 校准方法。

VNA 校准方法

我们已经了解了用户校准在消除测量误差中的重要作 用,现在讨论不同的用户校准方法。VAN有许多不同 的校准方法, 你需要的复杂度取决于要求的精度, 甚 至可能取决于你的预算(图 10)。在本节中,我们将 考察部分比较常用的方法。

最简单的方法是响应校准。这种方法快速简便,但准 确度要低于其他方法。例如,如果你只要求 S11 或反 射测量,那么可以使用开路或短路测量测试设置响应。 如果只需要 S21 或传输测量,那么可以只使用直传标 准。响应校准操作简便,视你需要的精度,可能已经 足够了。

另一种方法是2端口1路径方法,这种方法比较准确, 连接数量要少于2端口2路径校准。这种方法特别适 合 S 参数数量有限的情况 (如 S11, S21, a2=0)。在这 种情况下, VNA 只从端口 1 传送信号。它的好处是校 准过程中连接数量较少。

2端口2路径校准基本与2端口1路径校准相同,但 在端口2一侧增加了开路短路负载测量。这种方法提 供了准确的全部 S 参数测量功能, 其缺点是要求进行 许多连接, 而新增的步骤可能会导致流程误差, 因为 你需要多次测量和更换标准。

最后是电子校准方法。你只需连接电子校准标准, VNA 会为 S11、S21、S12 和 S22 执行简单、快速、 异常准确的校准,所有这些都使用一套连接。这种简 单的连接方式具有重要意义,因为它减少了校准过程 中插入错误标准的几率。一般来说, 电子校准标准是 成本最高的校准方法。但是,它们增加了巨大的价值, 因为它们大大简化了校准过程,同时提供了异常准确 的结果。

校准标准

视校准方法类型,用户校准中使用的 VNA 校准标准 分成多种类型。最常用的校准标准集称为短路、开路、 负载和直传(SOLT)。VNA 用户校准使用这些已知的 标准进行,包括短路电路、开路电路、精密负载(通 常为50欧姆)和直传连接。如果校准标准的连接器 类型和性别与 DUT 相同,那么最好使用这种方法。 DUT 或校准标准是校准测量中唯一的变化。

遗憾的是,我们不可能制作完美的校准标准,短路电 路一直有某些电感,开路电路一直有一些边缘电容。 VNA 存储与特定校准套件有关的数据, 自动校正这些 不理想特点。特定校准套件的标准定义取决于 VNA 的频率范围。在某些校准套件中, 头式连接器上的数 据与孔式连接器上的数据不同,因此在校准前,用户 可能要指明 VNA 用户接口内部的连接器性别。

图 11. 校准标准通常包括短路、开路、负载和直传。

可以通过多种不同的方式,在物理上实现校准标准(图 12)。首先问世的是各个单独的机械标准,每个标 准都单独制造和表征。各个标准提供了完美的精度, 为各种测试设置提供了非常高的灵活度。

各个机械标准

4合1机械标准

图 12. VNA 校准标准类型。

目前,市场上出现了4合1机械校准套件,把开路、 短路、负载和直传整合到一个机械设备中。如前所述, 还有使用电脑和 USB 驱动的自动电子校准标准。这 些设备提供了自动校准功能,把校准工作精简到一套 连接,准确度非常高,不易出现人为错误。

图 13. VNA 执行传输测量和反射测量。

典型的 VNA 测量

VNA 执行两类测量: 传输测量和反射测量(图 13)。传输测量把 VNA 的激励信号传送通过 DUT,然后在另一侧由 VNA 接收机测量信号。最常见的传输 S 参数测量是 S_{21} 和 S_{12} (对 2 端口以上为 Sxy)。扫描功率测量是传输测量的一种形式,传输测量的部分其他实例有增益、插入损耗/相位、电气长度/延迟和群延迟。相比之下,反射测量中测量的是 DUT 上入射的 VNA 激励信号部分,而不是传送通过 DUT 的信号部分。反射测量则测量的是由于反射而返回到源端的信号。最常见的反射 S 参数测量是 S^{11} 和 S_{22} (对 2 端口以上为 S_{22})。

扫频测量

扫频测量特别实用,因为它在用户规定的一套频率和 步进点上扫描内部源。可以进行各种测量,包括 S 参 数、各个入射波和反射波 (如 a₁, b₂)、幅度、相位等。 图 14 是无源滤波器的扫频传输测量实例。这类滤波器 测量显示了在传过元件时信号发生的情况。S₂₁ 测量指 明其 6 dB 响应确定的通带带宽性能,另外显示了相对 于 60 dB 下降指标的带阻性能。然后可以把实测结果 与滤波器设计目标进行对比,或者从系统设计人员角 度与滤波器制造商的指标进行对比。

图 14. 无源滤波器扫频传输测量实例。

扫频测量还可以测量 DUT 上入射的激励信号的反射, 但是反射是相对干通过 DUT 传输而言的。这些 S11 (或 Sxx) 测量允许用户检查 DUT 的性能,并与技术数 据进行对比,比如 DUT 可以是天线、滤波器或双工器。 图 15 是天线回波损耗测量实例。注意在天线传输频 带中,大多数信号被传输了,因此在反射测量结果中 能看见有一个零。

图 15. 天线的扫频反射测量实例。

时域测量

某些 VNA 能够使用反向傅立叶变换,把扫频测量转 换到时域中。通过这种方式,时域显示在时域中,可 以使用 VNA 检测信号传讨 DUT 时的阻抗不匹配或断 点位置,找到电缆和连接中的问题。

对时域测量,分辨两个信号的能力与测量的频宽成反 比。因此、频宽越宽、VNA 分辨相距很小的两个断点 的能力越强。最大频宽由用户设置,可以用 VNA 的 频率范围或 DUT 的实际带宽确定。

频域中收集的数据并不是连续的, 而是数量有限的离 散频率点。这会导致时域数据在频率采样间隔的倒数 之后重复。这种信号称为假信号。必需正确设置频率 采样间隔,以准确测量要求的距离,在假信号发生前 评估 DUT 的性能。

图 16 使用 VNA 测量了带有多个转接头的电缆。这可 能是从基站子系统敷设到天线的一条基站电缆。时域 测量确定到不同转接头的物理距离或电缆中的潜在断 点,帮助定位问题区域或故障。

图 16. VNA 以数学方式把扫频测量转换到时域。可以使用 这一测量来定位线路中的阻抗不匹配或问题。

扫描频率测量

VNA 还可以扫描激励信号的输出功率,而不是扫描频 率。对这些测量, 频率保持不变, 输出功率会在规定 的功率范围内逐渐递增。这是放大器常用的测量,先 从低功率开始,然后以几分之一dB的步进逐渐提高 功率。

在放大器的线性区域, 在输入功率提高时, 输出功率 会成比例提高。放大器输出偏离线性预期 1dB 的点称 为 1 dB 压缩点 (图 17)。在放大器达到压缩点时,其 不再能像以前那样提高输出功率。对要求放大器线性 性能的应用,这一测量有助干确定该指标。

图 17. 通常在放大器上进行功率扫描测量。

测试多端口元件

当前许多元件都有两个以上的端口(图 18)。它们可 能有一个输入和多个输出,或反之。比较复杂的元件 可能有多个输入和多个输出。如果端口之间的相互影 响不是问题,那么仍可以使用一系列2端口测量测试 其中部分元件。

图 18. 当前许多元件有两个以上的端口。

在需要测量多个端口之间的相互影响时, 你可能要使 用多端口 VNA。真正的多端口测量将测量 N² 个 S 参数, 要求拥有 N 个端口的 VNA, 其中 N 等于 DUT 的端口 数。S 参数并不只是 S₁₁、S₂₁、S₁₂ 和 S₂₂, 还包括 S₄₁ 或 S43 或 S10 110。真正的多端口 VNA 可能会为每个端 口提供一个激励信号。多端口误差校正会消除测量的 系统误差, 但要求复杂的校准过程, 其中必须把校准 标准连接到所有可能的端口组合上。

小结

现在,我们很容易理解为什么 VNA 帮助许多现代技 术成为可能。通过为被测器件或 DUT 提供已知的激 励信号,并使用多台接收机测量响应, VNA 形成了一 个闭环,可以非常准确地测量元件的电气幅度和相位 响应。由于其独特的用户校准功能, VNA 是市场上 最精确的 RF 测试仪器之一。通过减少电缆、转接头 和其他测试辅助装置的影响,它可以审慎地隔离 DUT 性能。

VNA 可以测试元件指标,检验设计仿真。由于这种准 确的表征能力,系统工程师可以研究电路或系统级设 计,从设计阶段到制造阶段,确保一切满足预期。

泰克官方微信

如需所有最新配套资料,请立即与泰克本地代表联系!

或登录泰克公司中文网站: www.tek.com.cn

泰克中国客户服务中心全国热线: 400-820-5835

泰克科技(中国)有限公司

上海市浦东新区川桥路1227号

邮编: 201206

电话: (86 21) 5031 2000 传真: (86 21) 5899 3156

泰克成都办事处

成都市锦江区三色路38号 博瑞创意成都B座1604

邮编: 610063

电话: (86 28) 6530 4900 传真: (86 28) 8527 0053

泰克北京办事处

北京市海淀区花园路4号 通恒大厦1楼101室

邮编: 100088

电话: (86 10) 5795 0700 传真: (86 10) 6235 1236

泰克西安办事处

西安市二环南路西段88号 老三届世纪星大厦26层C座

邮编:710065

电话: (86 29) 8723 1794 传真: (86 29) 8721 8549

泰克上海办事处

上海市长宁区福泉北路518号

9座5楼

邮编: 200335

电话: (86 21) 3397 0800 传真: (86 21) 6289 7267

泰克武汉办事处

武汉市洪山区珞喻路726号 华美达大酒店702室

邮编: 430074

电话: (86 27) 8781 2760

泰克深圳办事处

深圳市深南东路5002号

信兴广场地王商业大厦3001-3002室

邮编: 518008

电话: (86 755) 8246 0909 传真: (86 755) 8246 1539

泰克香港办事处

香港九龙尖沙咀弥敦道132号 美丽华大厦808-809室

电话: (852) 2585 6688 传真: (852) 2598 6260

WWW.TEK.COM.CN 为您提供更多宝贵资源。

