

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCISE160503502

FCC REPORT

(BLE)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 15.6 inches Android touch LCD Media Player

Model No.: DT156-AC4-1080, 502-1596ATATM

FCC ID: 2AB6ZDT156-AC4-1080

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Jun.,2016

Date of Test: 12 Jun., to 14 Jun., 2016

Date of report issued: 16 Jun., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Jun., 2016	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMBA-V2) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Tested by: 16 Jun., 2016

Test Engineer

Reviewed by: Date: 16 Jun., 2016

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3		TENTS	
4		Γ SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT ANDMODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TEST	FRESULTS ANDMEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED PEAKOUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	Power Spectral Density	15
	6.6	BAND EDGE	16
	6.6.1	Conducted Emission Method	16
	6.6.2	Radiated Emission Method	17
	6.7	Spurious Emission	22
	6.7.1	Conducted Emission Method	22
	6.7.2	Radiated Emission Method	23
7	TEST	SETUP PHOTO	28
8	FUT	CONSTRUCTIONAL DETAILS	29

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMBA-V2.

Test according to ANSI C63.4:2014 and ANSI C63.10:2013

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address of Manufacturer/ Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	15.6 inches Android touch LCD Media Player
Model No.:	DT156-AC4-1080, 502-1596ATATM
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.0 dBi
AC Adapter:	Model: PS24A120K2000UD Input: AC100-240V 50/60Hz 1.0A Output: DC 12.0V, 2000mA
Remark:	Model No.: DT156-AC4-1080, 502-1596ATATM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model Number for customer and for HUNG WAI.

Page 5 of 29

Project No.:CCISE1605035

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCISE160503502

5.3 Test environment andmode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017	
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.0 dBi.

Project No.:CCISE1605035

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.4:2014	ANSI C63.4:2014			
TestFrequencyRange:	150 kHz to 30MHz	150 kHz to 30MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Francisco (MIII)	Limit (d	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulator				
	50ohm/50uH coupling im 2. The peripheral devices through a LISN that provided with 50ohm termination. test setup and photograp 3. Both sides of A.C. ling interference. In order to positions of equipment	 through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted 			
Test setup:	Refero	Reference Plane			
	AUX Equipment E. Test table/Insulation place. Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	U.T EMI Receiver	er — AC power		
Test Instruments:	Refer to section 5.7 for details	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Neutral:

Trace: 9 Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 EUT

Model Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu√	<u>dB</u>	
0.180	36.38	0.17	10.77	47.32	54.50	-7.18	Average
0.185	49.55	0.16	10.77	60.48	64.24	-3.76	QP
0.220	37.14	0.16	10.76	48.06	52.83	-4.77	Average
0.235	43.96	0.16	10.75	54.87	62.26	-7.39	QP
0.235	32.15	0.16	10.75	43.06	52.26	-9.20	Average
0.280	38.16	0.16	10.74	49.06	60.81	-11.75	QP
0.345	28.09	0.16	10.73	38.98	49.09	-10.11	Average
0.360	37.45	0.16	10.73	48.34	58.74	-10.40	QP
0.360	28.90	0.16	10.73	39.79	48.74	-8.95	Average
0.435	36.89	0.16	10.73	47.78	57.15		
0.454	27.15	0.16	10.74	38.05	46.80	-8.75	Average
0.686	32.83	0.17	10.77	43.77	56.00	-12.23	QP
	MHz 0.180 0.185 0.220 0.235 0.235 0.236 0.345 0.360 0.360 0.435 0.454	Freq Level MHz dBuV 0.180 36.38 0.185 49.55 0.220 37.14 0.235 43.96 0.235 32.15 0.280 38.16 0.345 28.09 0.360 37.45 0.360 28.90 0.435 36.89 0.454 27.15	Freq Level Factor MHz dBuV dB 0.180 36.38 0.17 0.185 49.55 0.16 0.220 37.14 0.16 0.235 43.96 0.16 0.235 32.15 0.16 0.280 38.16 0.16 0.280 38.16 0.16 0.360 37.45 0.16 0.360 28.90 0.16 0.360 28.90 0.16 0.435 36.89 0.16 0.454 27.15 0.16	MHz dBuV dB dB 0.180 36.38 0.17 10.77 0.185 49.55 0.16 10.77 0.220 37.14 0.16 10.76 0.235 43.96 0.16 10.75 0.235 32.15 0.16 10.75 0.280 38.16 0.16 10.74 0.360 37.45 0.16 10.73 0.360 28.90 0.16 10.73 0.435 36.89 0.16 10.73 0.454 27.15 0.16 10.74	MHz dBuV dB dB dBuV 0.180 36.38 0.17 10.77 47.32 0.185 49.55 0.16 10.77 60.48 0.220 37.14 0.16 10.76 48.06 0.235 43.96 0.16 10.75 54.87 0.235 32.15 0.16 10.75 43.06 0.280 38.16 0.16 10.74 49.06 0.345 28.09 0.16 10.73 38.98 0.360 37.45 0.16 10.73 48.34 0.360 28.90 0.16 10.73 39.79 0.435 36.89 0.16 10.73 47.78 0.454 27.15 0.16 10.74 38.05	MHz dBuV dB dB dBuV dBuV 0.180 36.38 0.17 10.77 47.32 54.50 0.185 49.55 0.16 10.77 60.48 64.24 0.220 37.14 0.16 10.76 48.06 52.83 0.235 43.96 0.16 10.75 54.87 62.26 0.235 32.15 0.16 10.75 43.06 52.26 0.280 38.16 0.16 10.74 49.06 60.81 0.345 28.09 0.16 10.73 38.98 49.09 0.360 37.45 0.16 10.73 38.79 48.74 0.435 36.89 0.16 10.73 47.78 57.15 0.454 27.15 0.16 10.74 38.05 46.80	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dBuV dB dB dB dBuV dB dB

Report No: CCISE160503502

Trace: 11

CCIS Shielding Room

Site Condition

: FCC PART15 B QP LISN LINE : 15.6" Android touch LCD Media Player : DT156-AC4-1080 EUT

Model

Test Mode : BLE mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

CMALK	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>d</u> B	dBu₹	dBu₹	<u>dB</u>	
1	0.171	47.86	0.26	10.77	58.89	64.90	-6.01	QP
2	0.180	37.33	0.26	10.77	48.36	54.50	-6.14	Average
3	0.226	43.27	0.26	10.75	54.28	62.61	-8.33	QP
4	0.226	33.46	0.26	10.75	44.47	52.61	-8.14	Average
4 5 6 7 8 9	0.240	29.26	0.26	10.75	40.27	52.08	-11.81	Average
6	0.279	34.03	0.26	10.74	45.03	60.85	-15.82	QP
7	0.358	25.46	0.26	10.73	36.45	48.78	-12.33	Average
8	0.360	32.95	0.26	10.73	43.94	58.74	-14.80	QP
9	0.449	34.62	0.27	10.74	45.63	56.89	-11.26	QP
10	0.449	26.71	0.27	10.74	37.72	46.89	-9.17	Average
11	0.535	22.87	0.27	10.76	33.90	46.00	-12.10	Average
12	7.100	31.58	0.53	10.80	42.91	60.00	-17.09	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted PeakOutput Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2014 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

Page 13 of 29

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2014 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.5 Power Spectral Density

FCC Part15 C Section 15.247 (e)
ANSI C63.4:2014 and KDB558074
8dBm
Spectrum Analyzer E.U.T Non-Conducted Table
Ground Reference Plane
Refer to section 5.7 for details
Refer to section 5.3 for details
Refer to FCC ID: 2AB6Z-1859ATMBA-V2

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2014 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2						

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		
Test Method:	ANSI C63.4:202				
TestFrequencyRange:	2.3GHz to 2.5GHz				
Test site:	Measurement D	Distance: 3m			
Receiver setup:					
riosolvoi sotapi	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	7 10010 10112	Peak	1MHz	10Hz	Average Value
Limit:	Freque	encv	Limit (dBuV	/m @3m)	Remark
		•	54.0		Average Value
	Above 1		74.0		Peak Value
Test setup:	the ground todetermine The EUT wantenna, wantenna, wantenna, wantenna and the ground Both horizon make the numbers and to find the numbers and the nu	at a 3 meter can be the position of the position of the position of the position of the position and height is varied and vertical and vertical and vertical and vertical and vertical and the rotatable of the position level of the position level of the position would be reportant and the position level of the position level of the position level of the position would be reportant and margin would	amber. The table the highests away from ted on the to ied from one he maximum al polarization was turned from the ied from the ied was turned from the ied ied. Otherwip bere-tested ied specified	able was root radiation. The interfer op of a variate meter to for value of the ons of the art to heights from 0 degreeak Detect old Mode. The was arranged to he was estopped art is sone by one andthen representation.	e 0.8 meters above tated 360 degrees ence-receiving ble-height antenna our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 es to 360 degrees Function and so 10dB lower than and the peak values esions that did not using peak, quasi-ported in a data
	EUT 3m Turn Table 1.5	4m	Antenna Horn Ante Spectrum Analyzer Amplif	enna	
Test Instruments:	Refer to section	5.7 for details			
Test mode:	Refer to section	5.3 for details			
Test results:	Passed				

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition EUT

: DT156-AC4-1 rest mode : BLE-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: MT REMARK :

Huni:55%

1 2

Freq		Antenna Factor					
MHz	dBu∜		 <u>dB</u>	dBuV/m	dBuV/m	dB	 -
2390.000 2390.000			0.00 0.00				

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model Test mode : BLE-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	— <u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Test channel: Highest

Horizontal:

Site 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 : BLE-H Mode Condition

EUT

Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
	2483.500 2483.500									

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Site Condition

EUT

Model Test mode : BLE-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

1 2

3 <u>0</u> 0		Antenna				Limit			
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu₹	—dB/m	₫₿	₫₿	dBuV/m	dBuV/m	<u>dB</u>		_
2483.500		70 O 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1		0.00					
2483,500	11.75	23, 711	6. 85	11. 1111	42, 30	54. 1111	-11.70	Average	

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2014 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
Took In ohm was only	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

Project No.:CCISE1605035

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.20	9 and 15.205						
Test Method:	ANSI C63.4:202	14							
TestFrequencyRange:	9KHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:									
	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak		300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		Peak	1MHz	10Hz	Average Value				
Limit:	Fraguenav		Limit (dDu)//m	@2m)	Domark				
	Frequency 30MHz-88MHz		Limit (dBuV/m 40.0	<u>(</u> ((3111)	Remark Quasi-peak Value				
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH		46.0		Quasi-peak Value				
	960MHz-1GHz		54.0		Quasi-peak Value				
	Above 1GHz		54.0		Average Value				
			74.0		Peak Value				
Test Procedure:	the ground todetermine 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the make the make to find the make the make to find the make to find the make to find the make to find the make the limitspe of the EUT have 10dB	at a 3 meter e the position was set 3 meter was set 3 meter was set 3 meter was an a height is various and verne asurement. Suspected en henthe antend the rotatable maximum reas eceiver system and width with sion level of the cified, then to wouldbe representation.	camber. The of the highes neters away funted on the to varied from ore the maximutical polarizations was tuned from was tuned from was set of Maximum Hotels and could be ported. Otherwood bere-tested	table was a tradiation. Trom the interpretation of a variance meter to the interpretation of the interpretatio	ole 0.8 meters above rotated 360 degrees atterference-receiving lable-height antenna of four meters above of the field strength, antenna are set to arranged to its worst is from 1 meter to 4 rees to 360 degrees detect Function and was 10dB lower than and the peak values missions that did not be using peak, quasi-reported in a data				

Below 1GHz

Horizontal:

Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL 15.6 Android touch LCD Media Player Condition

EUT

: DT156-AC4-1080 Model Test mode : BLE mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Viki REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	−dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	44.275	44.49	17.52	1.28	29.87	33.42	40.00	-6.58	QP
2	191.745	52.72	9.79	2.81	28.89	36.43	43.50	-7.07	QP
3	211.527	52.43	10.78	2.86	28.76	37.31	43.50	-6.19	QP
4	350.477	51.43	14.16	3.10	28.56	40.13	46.00	-5.87	QP
1 2 3 4 5	537.589	43.61	17.79	3.82	29.06	36.16	46.00	-9.84	QP
6	807.429	41.57	20.66	4.33	28.17	38.39	46.00	-7.61	QP

Vertical:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 Condition

EUT

Model Test mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki

REMARK

THUTT									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu∇	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	46.340	45.11	17.08	1.28	29.85	33.62	40.00	-6.38	QP
2	191.745	50.96	9.79	2.81	28.89	34.67	43.50	-8.83	QP
3	280.024	48.13	12.20	2.89	28.48	34.74	46.00	-11.26	QP
4	352.943	48.79	14.22	3.10	28.57	37.54	46.00	-8.46	QP
5 6	494.199	44.09	16.72	3.57	28.94	35.44	46.00	-10.56	QP
6	807.429	44.52	20.66	4.33	28.17	41.34	46.00	-4.66	QP

Above 1GHz

Test channel:		Lo	west	Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	44.41	31.53	10.57	40.24	46.27	74.00	-27.73	Vertical
4804.00	45.04	31.53	10.57	40.24	46.90	74.00	-27.10	Horizontal

Test channel:		Lo	west	Le	Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.64	31.53	10.57	40.24	38.50	54.00	-15.50	Vertical
4804.00	36.27	31.53	10.57	40.24	38.13	54.00	-15.87	Horizontal

Test channel:		Mi	iddle	Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.21	31.58	10.66	40.15	47.30	74.00	-26.70	Vertical
4884.00	44.74	31.58	10.66	40.15	46.83	74.00	-27.17	Horizontal

Test channel:		М	iddle	Level:		A	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	36.28	31.58	10.66	40.15	38.37	54.00	-15.63	Vertical
4884.00	35.11	31.58	10.66	40.15	37.20	54.00	-16.80	Horizontal

Test channel:		Hiç	ghest	Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.54	31.69	10.73	40.03	47.93	74.00	-26.07	Vertical
4960.00	46.09	31.69	10.73	40.03	48.48	74.00	-25.52	Horizontal

Test channel:		Hiç	ghest	Level:		A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.93	31.69	10.73	40.03	38.32	54.00	-15.68	Vertical
4960.00	36.86	31.69	10.73	40.03	39.25	54.00	-14.75	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366