Exercises: Judson 11.7, 11.11, 11.17, 11.18, 11.19

Due date: Friday, 11/21

- **11.7** In the group \mathbb{Z}_{24} , let $H = \langle 4 \rangle$ and $N = \langle 6 \rangle$.
 - (a) List the elements in HN (we usually write H+N for these additive groups) and $H\cap N$.
 - (b) List the cosets in HN/N, showing the elements in each coset.
 - (c) List the cosets in $H/(H \cap N)$, showing the elements in each coset.
 - (d) Give the correspondence between HN/N and $H/(H\cap N)$ described in the proof of the Second Isomorphism Theorem.

11.11	homomorphism generator of th	on a	cyclic	group	is com	pletely	determined	by	its

11.17 If H and K are normal subgroups of G and $H \cap K = \{e\}$, prove that G is isomorphic to a subgroup of $G/H \times G/K$.

11.18 Let $\phi: G_1 \to G_2$ be a surjective group homomorphism. Let H_1 be a normal subgroup of G_1 and suppose that $\phi(H_1) = H_2$. Prove or disprove that $G_1/H_1 \cong G_2/H_2$.

11.19 Let $\phi:G\to H$ be a group homomorphism. Show that ϕ is one-to-one if and only if $\phi^{-1}(e)=\{e\}.$