INFRARED RADIANCE IN THE MESOSPHERE AND LOWER THERMOSPHERE: WHAT'S "UP" AND WHY BOTHER?

Artem Feofilov

December, 6, 2011, Ecole Polytechnique

Overview

- Object of study: Mesosphere/Lower Thermosphere (MLT)
- Mechanisms of infrared radiance formation in MLT
- Non-local thermodynamic equilibrium (non-LTE)
- Non-LTE models for CO₂, O₃, H₂O
- Radiative cooling/heating of MLT
- Infrared observations of the MLT area
- Mesospheric temperature and polar mesospheric clouds
- MLT and satellite observations of the lower atmosphere

Why bother?

- MLT is a "gateway" between the lower atmosphere and space.
- MLT is sensitive to solar influence and to the radiance coming from below. - -
- Anthropogenic changes in greenhouse gases may change this input.
- Noctilucent clouds observed in polar MLT in the summer time are very sensitive to temperature changes and there are debates on their role as a "miner's canary" for global changes.
- MLT area absorption and emission in molecular bands affects the atmospheric observations of other areas.

Object of Study: IR radiance in MLT

Energy Exchange Between Atmospheric Molecules

Formulation of the Problem

- Infrared radiance absorption/emission corresponds to vibrational excitation/de-excitation of the molecules.
- To estimate the energetic characteristics of the given area or to interpret the infrared observations in MLT one needs to know the vibrational levels populations.

BUT !!!

- In the upper atmosphere the collisions between the molecules are **not** frequent and the populations are **not** defined by local temperature.
- Breakdown of Local Thermodynamic Equilibrium (LTE).
- Special methodology is applied (non-LTE modeling).

LTE and non-LTE: two-level atom

LTE and non-LTE

$$\begin{cases} (\underbrace{A_{21} + B_{21}\overline{J}}_{R_{21}} + C_{21}) & n_2 = (\underbrace{B_{12}\overline{J}}_{R_{12}} + C_{12}) & n_1 \\ R_{21} & R_{12} \end{cases}$$

$$n_1 + n_2 = n$$

Otherwise - non-LTE!!! J is non-local

Non-LTE populations: vibrational temperatures

$$\frac{n_l}{n_0} = \frac{g_l}{g_0} \cdot e^{-(E_l - E_0)/kT_{vib}}$$

 $T_{vib}=T_{kin}$: LTE $T_{vib}\neq T_{kin}$: non-LTE

Cooling/heating rates

Radiative cooling/heating = radiative flux divergence

in W/m^3 :

$$H(z) = \frac{1}{4\pi} \int_{\Omega - \infty}^{+\infty} \mu \frac{dI_{\mu\nu}(z)}{dz} d\nu$$

in K/day:

$$h(z) = H(z) \cdot \frac{24 \cdot 60 \cdot 60}{C_p(z)\rho(z)}$$

CO_2 , O_3 , and H_2O : three most "interesting" atmospheric molecules

- The vibrational levels of all 3 molecules are in non-LTE in MLT.
- $CO_2(15 \mu m)$ is the main cooler in MLT.
- $O_3(9.6 \mu m)$ is the second in importance.
- O_3 and O_2 photolysis in UV forms $O(^1D)$, $O(^3P)$ and electronically and vibrationally excited O_2 coupled with H_2O .
- H_2O <u>rotational</u> band is the third in importance. However, the non-LTE model is still required for the H_2O retrievals from the 6.3 µm radiance measurements.

Five test atmospheric models: temperature profiles

Five test atmospheric models: volume mixing ratios

Non-LTE calculations: ALI-ARMS research code

Vibrational levels and transitions for CO₂

$CO_2(v_2)$ levels pumping and quenching

$$CO_2(\nu_2) + O(^3P) \xleftarrow{k_{VT}} CO_2(\nu_2 + 1) + O(^3P)$$

$$CO_2(\nu_2 + 1) \rightarrow CO_2(\nu_2) + h\nu(667cm^{-1})$$

$CO_2(v_2)$ -O quenching rate coefficient, $k_{VT}(CO_2$ -O)

$k_{VT}\{CO_2-O\}\ [cm^3s^{-1}]$	Reference	Comments
$3-30 \times 10^{-14}$	Crutzen (1970)	First guess
2.4×10^{-14}	Taylor (1974), Center (1973)	Laboratory measurements
5.0×10^{-13}	Sharma and Nadille (1981)	Atmospheric retrieval
1.0×10^{-12}	Gordiets et al. (1982)	Numerical experiment
2.0×10^{-13}	Kumer and James (1983)	Atmospheric retrieval
2.0×10^{-13}	Dickinson (1984); Allen (1980)	Laboratory measurements
5.2×10^{-12}	Stair et al. (1985)	Atmospheric retrieval
3.5×10^{-12}	Sharma, (1987)	Atmospheric retrieval
$3-9 \times 10^{-12}$	Sharma and Wintersteiner (1990)	Atmospheric retrieval
1.5×10^{-12}	Shved et al. (1991)	Laboratory measurements
1.3×10^{-12}	Pollock et al. (1993)	Laboratory measurements
5.0×10^{-12}	Ratkowski et al. (1994)	Atmospheric retrieval
5.0×10^{-13}	Lilenfeld (1994)	Laboratory measurements
1.5×10^{-12}	Vollmann and Grossmann (1997)	Atmospheric retrieval
1.4×10^{-12}	Khvorostovskaya et al. (2002)	Laboratory measurements
1.8×10^{-12}	Castle et al. (2006)	Laboratory measurements
6.0×10^{-12}	Gusev et al. (2006)	Atmospheric retrieval
1.5×10^{-12}	Huestis et al. (2008)	Recommended value

- $k_{VT}(CO_2$ -O) is **crucial** for estimating the h(z) in MLT and for T(z) retrievals from the 15 μ m radiance.
- However, there's a factor of 4 difference between the lab and atmospheric measurements (see table).
- The next slide shows the effect of $k_{VT}(CO_2-O)$ on the $CO_2(v_2)$ levels

$CO_2(v_2=1)$ and $CO_2(v_2=2)$ levels populations

Note two sets of curves calculated for two values of $CO_2(v_2)$ -O quenching rate coefficient

CO₂ cooling/heating rates

Note two sets of curves calculated for two values of $CO_2(v_2)$ -O quenching rate coefficient

$k_{VT}(CO_2-O)$ retrieved from overlapping satellite and lidar measurements

Possible explanation: in the real atmosphere the oxygen atoms are "non-thermal" or "hot" serving as an additional source of $CO_2(v_2)$ excitation

O₃ levels and transitions

Non-LTE effects in O₃

O₃ cooling/heating rates

O_2/O_3 photolysis products

H₂O levels and transitions

H₂O cooling/heating rates in rotational and vibrational bands

MLT observations from space

The SABER Instrument Aboard the TIMED Satellite

TIMED: Thermosphere, Ionosphere, Mesosphere Energetics & Dynamics

Mission launched on December 7, 2001 Data available since January 25, 2002 4 instruments:

GUVI, SEE, TIDI, SABER

Latitudinal coverage

Example of an orbit

The SABER Instrument Aboard the TIMED Satellite

SABER: Sounding of the Atmosphere Using Broadband Emission Radiometry

SABER instrument:

- Designed to study the Mesosphere and Lower Thermosphere (MLT)
- Limb scanning infrared radiometer (~10-100 km, ~2 km footprint)
- 10 broadband channels (1.27-17 μm)
- Products: kinetic temperature, CO₂, O₃, H₂O, NO, O₂, OH, O, H

General approach to X(z) retrieval: forward fitting

Peculiarities of the non-LTE temperature retrievals: V-V exchange between isotopes

Peculiarities of the non-LTE H_2O retrievals: proper taking into account pumping from $O_2(X,v=1)$

Polar mesospheric clouds and P, T, H₂O

Picture taken by Martin Koitmäe on the 26.07.09, at 58°N, 25°E, Soomaa National Park, Estonia

A simplified model of PMC formation

OSIRIS PMC brightness vs integrated L_{frost}

PMC brightness correlated with H₂O VMR in and below the cloud

Upper atmosphere affecting lower atmosphere measurements

HIPWAC measurements of Martian atmosphere in nadir mode (ground observations of Mars)

Contribution of various atmospheric layers to the 959cm⁻¹ emission line

Conclusions

- MLT is the area sensitive both to solar variability and the influence of the lower atmosphere.
- Three main contributors to MLT radiative balance are CO₂, O₃, and H₂O.
- Infrared emissions can provide the information about P,T, and a number of gaseous components in MLT.
- Estimating the infrared emissions in the MLT requires accounting for non-LTE effects.
- The calculated non-LTE populations of the vibrational levels are sensitive to numerous sources and sinks of energy some of which are poorly known.
- Non-LTE emissions are to be taken into account when the line-of-sight of a given instrument passes through the corresponding atmospheric layers.