$$y'' + \lambda y = 0$$
, $0 < x < \pi$
 $y'' + \lambda y = 0$, $0 < x < \pi$
 $y(0) = 0$, $y'(\pi) = 0$ $y'(\pi)$
 $y'(0) = 0$, $y'(\pi) = 0$ $y'(\pi)$
 $y'(\pi)$

r + \ = =

$$r^{\prime} = \cdot \Rightarrow r = \cdot \Rightarrow y = c_{1} + c_{1} \times \vdots \qquad \vdots \qquad \lambda = \circ$$

$$y(\circ) = c_1 = \circ$$

$$y'(\pi) = c_1$$

$$\gamma^{r} = -\lambda$$
 \Rightarrow $r = \pm \sqrt{-\lambda}$ \Rightarrow $\gamma = c_1 e^{-\sqrt{-\lambda} x} + c_7 e^{-\sqrt{-\lambda} x}$ $\Rightarrow \lambda < 0$

$$y(\cdot) = c_1 + c_2 = 0$$

$$y'(\pi) = c_1 \sqrt{-\lambda} e \qquad -c_1 \sqrt{-\lambda} e \qquad = c_1 \sqrt{-\lambda} e \qquad +c_1 \sqrt{-\lambda} e \qquad = 0$$

$$C_{(\neq \circ)}$$
 $\Rightarrow e = e \Rightarrow \lambda = \circ$
 \times

$$(x^{2}y^{1} + ny^{1} + \lambda y = 0)$$
 $(x^{2}y^{1} + ny^{1} + \lambda y = 0)$
 $(x^{$

$$Y' + \lambda = 0$$

$$J(1) = c_1 = 0$$

$$J(e) = c_1 = 0$$

$$v = \pm \sqrt{-\lambda} \implies \forall = c_1 |x| \sqrt{-1-x} + c_2 |x| \sqrt{-1-x} : \lambda < 0$$

$$J(1) = c_1 + c_2 = 0$$

$$J(2) = c_1 = c_2 + c_3 = 0$$

$$J(3) = c_1 + c_2 = 0$$

$$J(4) = c_1 + c_2 = 0$$

$$J(5) = c_1 + c_2 = 0$$

$$J(7) = c_1 + c$$

: \(\chi > 0 \)

=
$$c_1 \cos (\sqrt{\lambda} \ln |x|) + c_7 \sin (\sqrt{\lambda} \ln |x|)$$

$$\Rightarrow \sqrt{1} = krc \Rightarrow \lambda = k'rc' \qquad k \in \mathbb{N}$$

$$\Rightarrow C_1 \times C_2 \times C_3 \times C_4 \times C_5 \times C_6 \times C_$$

+Cx (cos (JAlua) + isin (JAlua))

$$= \underbrace{\left(C_1 + C_7\right)}_{c_1} \cos \left(\int_{\Lambda} \ln \alpha \right) + \underbrace{\left(C_7 - C_7\right)_i}_{c_7} \sin \left(\int_{\Lambda} \ln \alpha \right) /$$

$$y'' + \lambda y = 0$$
 $\langle N \leq 1$
 $y'' + \lambda y = 0$ $\langle N \leq 1$
 $y(0) = 0$
 $y(1) + h y'(1) = 0$, $h > 0$ x_{0}
 x_{0}

$$\frac{\alpha_r}{\alpha_r} = 0 \implies \rho = e^\circ = 1$$

$$\frac{\alpha_r}{\alpha_l} = \lambda \implies q = \lambda$$

s = 1

$$\zeta = c_1 e^{\int -\overline{\lambda}} \times c_1 e^{\int -\overline{\lambda}} \times \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

: 140 P

$$Y = \pm i \sqrt{\lambda}$$
 \Longrightarrow $Y = c_1 \cos(\sqrt{\lambda} \pi) + c_1 \sin(\sqrt{\lambda} \pi) : \lambda > 0$

$$C_1 \neq 0 \Rightarrow \sin(\sqrt{1\lambda}) = -h\sqrt{\lambda}\cos(\sqrt{1\lambda})$$