МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный технический университет»

Кафедра «Вычислительная техника»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ ПО ПРЕДМЕТУ «ДИСКРЕТНАЯ МАТЕМАТИКА»

Волгоград

2015

УДК

Рецензент

канд. техн. наук доцент Андреев А.Е.

Издается по решению редакционно-издательского совета Волгоградского государственного технического университета

Методические указания для выполнения контрольной работы по предмету «Дискретная математика» / сост. О. А. Авдеюк. –Волгоград: ИУНЛ Волг Γ ТУ, 2015. – 32 с.

Методические указания содержат варианты заданий для выполнения самостоятельной работы студентов очного отделения направления подготовки бакалавров «Приборостроение». Набор задач охватывает основные разделы алгебры логики и теории графов. Приведен пример оформления и решения работы.

Сборник предназначен для студентов направления подготовки бакалавров «Приборостроение», а также всех направление, изучающих курсы "Дискретная математика», «Математическая логика».

© Волгоградский государственный технический университет, 2015. © О. А. Авдеюк, 2015.

Учебное издание

Оксана Алексеевна Авдеюк

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ ПО ПРЕДМЕТУ «ДИСКРЕТНАЯ МАТЕМАТИКА»

Темплан 2015 г. Позиция № Подписано в печать Формат Бумага офсетная. Гарнитура Печать офсетная. Усл. Печ. Л. Тираж Заказ

Волгоградский государственный технический университет. 400005, Волгоград, просп. Ленина, 28, корп.1

Отпечатано в типографии ИУНЛ ВолгГТУ Волгоградского государственного технического университета. 400005, Волгоград, ул. Советская, 35, корп.7

1.МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Первая часть контрольной (семестровой) работы предполагает закрепление студентом полученных знаний по разделу "Алгебра логики» и содержит 30 вариантов заданий по 10 задач в каждом, тем самым предусматривается индивидуальная работа студента.

Вторая часть контрольной (семестровой) работы предполагает закрепление студентом полученных знаний по разделу "Теория графов" и содержит 31 вариантов заданий по 10 задач в каждом.

В результате выполнения работ оформляется протоколы в тонкой ученической тетради (12 или 18 листов) по правилу, рассмотренному в нижеследующих примерах. Варианты заданий определяются преподавателем.

Пример оформления титульного листа

Тетрадь

для выполнения контрольной (семестровой) работы по курсу «Дискретная математика».

Вариант 31

Выполнил: студент ФЭВТ ВолгГТУ группы ИИТ-373 Петров В.А.

Дата сдачи работы: 10.12.2014 г.

Проверил:

Баллы:

2. СБОРНИК ЗАДАНИЙ ДЛЯ ПЕРВОЙ ЧАСТИ КОНТРОЛЬНОЙ (СЕМЕСТРОВОЙ) РАБОТЫ ПО РАЗДЕЛУ «Алгебра логики»

2.1. Пример решения и оформления

1. Используя таблицу истинности, установить эквивалентность функций в формуле:

$$X_1 \oplus X_2 = \overline{(\overline{X_1} \vee X_2) \wedge (X_1 \vee \overline{X_2})}.$$

Решение:

Обозначим: $f_1 = X_1 \oplus X_2$

$$f_2 = \overline{X_1} \vee X_2$$
 $f_3 = X_1 \vee \overline{X_2}$ $f_4 = \overline{f_2 \wedge f_3}$

Составим таблицу истинности для правой и левой части функции:

xI	<i>x2</i>	f1	$\overline{x_1}$	f2	$\overline{x_2}$	f3	f4
0	0	0 1 1	1	1	1	1	0
0	1	1	1	1	0	0	1
1	0	1	0	0	1	1	1
1	1	0	0	1	0	1	0

Ответ: Как видно из таблицы, значения правой и левой части равенства действительно совпадают, значит, функции в данной формуле **эквивалентны.**

Ответ: x_1, x_2, x_3 — существенные переменные.

2. Используя основные законы и соотношения алгебры логики, необходимо установить справедливость следующей формулы:

$$x_1x_2 \lor x_1x_2x_3 \lor x_1x_2x_3 \lor x_2x_3 \lor x_1x_3 = x_1 \lor x_2x_3$$

Решение:

Рекомендация: Заданное соотношение необязательно эквивалентно, поэтому необходимо перед выполнением задания проверить истинность согласно задаче № 1.

1. Проверка справедливости заданного соотношения по таблице истинности.

Если равенство неверно, основная часть задачи далее не выполняется.

Иначе

2. Необходимо левую часть равенства привести к правой части равенства.

2.1.
$$x_1x_2 \lor x_1\overline{x_2}x_3 \lor x_1\overline{x_2}x_3 = x_1\overline{x_2}(x_3 \lor x_3) = x_1\overline{x_2}$$
.

2.3.
$$x_1 \vee x_1 \overline{x_3} = x_1 / \text{по формуле поглощения /.}$$

2.4. В результате в левой части равенства имеем: $x_1 \vee x_2 x_3$, что и требовалось доказать.

Ответ: соотношение в данной формуле справедливо.

3. Определить к каким классам (константы нуля, константы единицы, самодвойственных функций, монотонных функций, линейных функций, симметрических функций) относится функция следующего вида:

$$f(x_1,x_2,x_3)=x_1x_2\bigvee\overline{\boldsymbol{x_2}\,\boldsymbol{x_3}}\quad.$$

Решение:

1. Составим таблицу истинности:

$f(x_1,x_2,x_3)$	$\overline{x_2x_2}$	$x_3 & x_2$	$x_1 & x_2$	<i>x</i> ₃	χ.	χ_I
1	1	0	0	0	0	0
1	1	0	0	1	0	0
1	1	0	0	0	1	0
0	1	1	-	1	1	0
1	0	1	0	1	1	0
1	1	0	0	0	0	1
1	1	0	0	1	0	1
1	1	0	1	0	1	1
1	0	1	1	1	1	1

- 2. Т. к. $f(0,0,0) \neq 0$, значит, данная функция **не относится к классу** константы **0**.
- 3. Т. к. f(1,1,1) = 1, значит, данная функция относится к классу константы 1.
- 4. Т. к. f(0,1,1) < f(0,1,0) и f(1,0,0) > f(0,1,1), значит, данная функция не относится к классу монотонных функций.

- 5. Т. к., например, f(0,0,0) = f(1,1,1) или f(0,0,1) = f(1,1,0), то данная функция не относится к классу самодвойственных функций.
- 6. Т. к. не выполняется условие f(0,1,1) = f(1,0,1) = f(1,1,0) / значения соответственно равны 0,1,1/, то данная функция не относится к классу симметрических функций.
- 7. Проверим принадлежность функции к классу линейных функций.

Для этого запишем ее в таком виде:

$$f_1(x_1,x_2,x_3) = C_0 \oplus C_1 \& X_1 \oplus C_2 \& X_2 \oplus C_3 \& X_3.$$

Найдем коэффициенты C_i :

f(0,0,0) = 1 /из таблицы истинности /

$$C_0 \oplus C_1 \& 0 \oplus C_2 \& 0 \oplus C_3 \& 0 = 1$$
, T.O., $C_0 = 1$.

f(1,0,0)=1 / из таблицы истинности /

$$1 \oplus C_1 \& 1 \oplus C_2 \& 0 \oplus C_3 \& 0 = 1$$
, T.O., $C_1 = 0$.

f(0,1,0) = 1/ из таблицы истинности /

$$1 \oplus C_1 \& 0 \oplus C_2 \& 1 \oplus C_3 \& 0 = 1$$
, T.O., $C_2 = 0$.

f(0,0,1) = 1 / из таблицы истинности /

$$1 \oplus C_1 \& 0 \oplus C_2 \& 0 \oplus C_3 \& 1 = 1$$
, t.o., $C_3 = 0$.

Тогда $f_1(x_1,x_2,x_3) = 1$.

Сравним значения функций f и f_1 по таблице истинности:

No	x_1 x_2 x_3	$f(x_1, x_2, x_3)$	$f_{I}(x_{1},x_{2},x_{3})$
0	$0 \ 0 \ 0$	1	1
1	0 0 1	1	1
2	0 1 0	1	1
3	0 1 1	0	1
4	1 0 0	1	1
5	1 0 1	1	1
6	1 1 0	1	1
7	1 1 1	1	1

Т. к. значения функций различны для одинаковых наборов, то данная функция не относится к классу линейных функций.

Ответ: данная функция относится к классу константы 1.

4. Необходимо для данной $\Phi A \Pi$ $f(x_1, x_2, x_3)$ найти ее ДСН Φ ,КСН Φ ,ПСН Φ ,ЭСН Φ ,ИСН Φ , принимающей значение 1 на следующих наборах: **0** , **4**, **6**, **7**.

Решение:

1. Составим таблицу истинности:

$N_{\underline{0}}$	x_1 x_2 x_3	$f(x_1,x_2,x_3)$
0	0 0 0	1
1	0 0 1	0
2	0 1 0	0
3	0 1 1	0
4	1 0 0	1
5	1 0 1	0
6	1 1 0	1
7	1 1 1	1

2. Для получения ДСНФ, ПСНФ используем термы для 1 значений функции:

ДСНФ:
$$f(x_1,x_2,x_3) = \overline{x_1}\overline{x_2}\overline{x_3} \vee x_1\overline{x_2}\overline{x_3} \vee x_1x_2\overline{x_3} \vee x_1x_2x_3$$
.

ПСНФ:
$$f(x_1,x_2,x_3) = \overline{x_1} \overline{x_2} \overline{x_3} \oplus x_1 \overline{x_2} \overline{x_3} \oplus x_1 x_2 \overline{x_3} \oplus x_1 x_2 x_3$$
.

3. Для получения КСНФ, ЭСНФ используем термы для 0 значений функции:

КСНФ:
$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \overline{x_3})(x_1 \lor \overline{x_2} \lor x_3)(x_1 \lor \overline{x_2} \lor \overline{x_3})(\overline{x_1} \lor x_2 \lor \overline{x_3}).$$

ЭСНФ:
$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \overline{x_3}) \approx (x_1 \lor \overline{x_2} \lor x_3) \approx (x_1 \lor \overline{x_2} \lor \overline{x_3}) \approx (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$
.

4. ИСНФ:

4.1. Для получения первой формы **ИСНФ 1** используем термы для 1 значений функции:

$$f(x_1,x_2,x_3) = \overline{x_1 \to x_2} \to \overline{x_3} \lor \overline{x_1 \to x_2} \to \overline{x_3} \lor \overline{x_1 \to x_2} \to \overline{x_3} \to \overline{x_1 \to x_2} \to \overline{x_3} \to \overline{x_1 \to x_2} \to \overline{x_3}.$$

4.2. Для получения второй формы **ИСНФ 0** используем термы для 0 значений функций:

$$f(x_1, x_2, x_3) = (\overline{x_1} \to x_2 \to \overline{x_3})(\overline{x_1} \to \overline{x_2} \to x_3)(\overline{x_1} \to \overline{x_2} \to \overline{x_3})(\overline{x_1} \to \overline{x_2} \to \overline{x_3})(\overline{x_1} \to x_2 \to \overline{x_3})$$

5. Используя метод неопределенных коэффициентов, необходимо найти $MДH\Phi$ функции f(x1,x2,x3), принимающей значение 1 на наборах:

Решение:

1. Составим таблицу истинности:

No	x_1 x_2 x_3	$f(x_1,x_2,x_3)$
0	$0 \ 0 \ 0$	1
1	0 0 1	0
2	0 1 0	0
3	0 1 1	0
4	1 0 0	0
5	1 0 1	1
6	1 1 0	0
7	1 1 1	1

$$K_{1}^{0} \lor K_{2}^{0} \lor K_{3}^{0} \lor K_{12}^{00} \lor K_{13}^{00} \lor K_{23}^{00} \lor K_{123}^{000} = \mathbf{1}$$

$$K_{1}^{0} \lor K_{2}^{0} \lor K_{3}^{1} \lor K_{12}^{00} \lor K_{13}^{01} \lor K_{23}^{01} \lor K_{123}^{001} = 0$$

$$K_{1}^{0} \lor K_{2}^{1} \lor K_{3}^{0} \lor K_{12}^{01} \lor K_{13}^{00} \lor K_{23}^{10} \lor K_{123}^{010} = 0$$

$$K_{1}^{0} \lor K_{2}^{1} \lor K_{3}^{1} \lor K_{12}^{01} \lor K_{13}^{01} \lor K_{23}^{11} \lor K_{123}^{011} = 0$$

$$K_{1}^{1} \lor K_{2}^{0} \lor K_{3}^{1} \lor K_{12}^{10} \lor K_{13}^{10} \lor K_{23}^{11} \lor K_{123}^{00} = 0$$

$$K_{1}^{1} \lor K_{2}^{0} \lor K_{3}^{1} \lor K_{12}^{10} \lor K_{13}^{10} \lor K_{23}^{00} \lor K_{123}^{100} = 0$$

$$K_{1}^{1} \lor K_{2}^{0} \lor K_{3}^{1} \lor K_{12}^{10} \lor K_{13}^{11} \lor K_{23}^{01} \lor K_{123}^{101} = \mathbf{1}$$

$$K_{1}^{1} \lor K_{2}^{1} \lor K_{3}^{0} \lor K_{12}^{11} \lor K_{13}^{10} \lor K_{23}^{10} \lor K_{123}^{110} = 0$$

$$K_{1}^{1} \lor K_{2}^{1} \lor K_{3}^{0} \lor K_{12}^{11} \lor K_{13}^{11} \lor K_{23}^{10} \lor K_{123}^{110} = 0$$

3. Приравняем 0 все коэффициенты при 0 значениях функции:
$$K_1^0 = K_2^0 = K_3^1 = K_{12}^{00} = K_{13}^{01} = K_{23}^{01} = K_{123}^{001} = 0$$

$$K_1^0 = K_2^1 = K_3^0 = K_{12}^{01} = K_{13}^{00} = K_{23}^{10} = K_{123}^{001} = 0$$

$$K_1^0 = K_2^1 = K_3^1 = K_{12}^{01} = K_{13}^{01} = K_{23}^{01} = K_{123}^{010} = 0$$

$$K_1^0 = K_2^1 = K_3^1 = K_{12}^{01} = K_{13}^{01} = K_{23}^{01} = K_{123}^{011} = 0$$

$$K_1^1 = K_2^0 = K_3^0 = K_{12}^{10} = K_{13}^{10} = K_{23}^{00} = K_{123}^{100} = 0$$

$$K_1^1 = K_2^1 = K_3^0 = K_{12}^{11} = K_{13}^{10} = K_{23}^{10} = K_{123}^{100} = 0$$

4. Вычеркнем 0 коэффициенты из коэффициентов при 1 значениях функции:

$$K_{123}^{000} = \mathbf{1}$$

$$K_{13}^{11} \vee K_{123}^{101} = \mathbf{1}$$

$$K_{12}^{11} \vee K_{13}^{11} \vee K_{123}^{111} = \mathbf{1}$$

5. Найдем минимальное покрытие: K_{123}^{000} и K_{13}^{11} ,т. е.

$$f_1(x_1,x_2,x_3) = X_1X_2 \vee X_1X_2X_3.$$

6. Проверка:

No	x_1 x_2 x_3	$f(x_1, x_2, x_3)$	$f_{I}(x_{1},x_{2},x_{3})$
0	$0 \ 0 \ 0$	1	1
1	0 0 1	0	0
2	0 1 0	0	0
3	0 1 1	0	0
4	1 0 0	0	0
5	1 0 1	1	1
6	1 1 0	0	0
7	1 1 1	1	1

Т.к. $f = f_I$, то преобразования выполнены верно.

Ответ:
$$f_1(x_1, x_2, x_3) = x_1 x_2 \vee x_1 x_2 x_3$$
.

6. Используя метод Квайна, необходимо найти МДНФ функции $f(x_1,x_2,x_3)$, принимающей значение 1 на наборах: 2, 3, 4, 5, 7.

Решение:

1. Составим таблицу истинности:

No	x_1 x_2 x_3	$f(x_1,x_2,x_3)$
0	$0 \ 0 \ 0$	0
1	0 0 1	0
2	0 1 0	1
3	0 1 1	1
4	1 0 0	1
5	1 0 1	1
6	1 1 0	0
7	1 1 1	1

2. Выпишем термы для 1 значений функции и склеим все возможные:

9

3. Составим таблицу и найдем минимальное покрытие:

	$\overline{x_1} x_2 \overline{x_3}$	$\overline{x_1} \overline{x_2} \overline{x_3}$	$\overline{x_1}x_2x_3$	$\overline{x_1} \overline{x_2} x_3$	$x_1x_2x_3$
$\overline{x_1}x_2$	+		+		
$\overline{x_1}\overline{x_2}$		+		+	
$X_1X_2X_3$					+

В данном случае все импликанты являются существенными, поэтому

$$f_1(x_1,x_2,x_3) = \overline{X_1 X_2} \ \lor \ X_1 \overline{X_2} \ \lor \ X_1 X_2 X_3.$$

Замечание: Необходимо подробно рассматривать этапы поиска существенных импликант и минимального количества покрывающих импликант (строить минимальную таблицу).

4. Проверка:

$N_{\underline{0}}$	x_1 x_2 x_3	$f(x_1,x_2,x_3)$	$f_1(x_1,x_2,x_3)$
0	$0 \ 0 \ 0$	0	0
1	0 0 1	0	0
2	0 1 0	1	1
3	0 1 1	1	1
4	1 0 0	1	1
5	1 0 1	1	1
6	1 1 0	0	0
7	1 1 1	1	1

Т. к. $f_I = f$, то преобразования выполнено верно.

Other:
$$f_1(x_1, x_2, x_3) = \overline{X_1} X_2 \ \lor \ X_1 \overline{X_2} \ \lor \ X_1 X_2 X_3$$
.

7.Используя метод Квайна — Мак-Класки, необходимо найти МДНФ функции $f(x_1, x_2, x_3)$, принимающей значение 1 на наборах :

Решение:

1. Составим таблицу истинности:

$N_{\underline{0}}$	x_1 x_2 x_3	$f(x_1,x_2,x_3)$
0	$0 \ 0 \ 0$	0
1	0 0 1	0
2	0 1 0	1
3	0 1 1	1
4	1 0 0	1
5	1 0 1	1
6	1 1 0	1
7	1 1 1	0

2. Составим группы по количеству 1 и выполним необходимые преобразования:

3. Составим таблицу и найдем минимальное покрытие:

	010	100	011	101	110
01-	+		+		
-10	+				+
10-		+		+	
1-0		+			+

Импликанты X_1X_2 и X_1X_2 являются существенными, после вычеркивания соответствующих столбцов и строк остается один непокрытый столбец, который покрывается, например, импликантой X_1X_3 .

Т. о., получаем
$$f_I(x_1,x_2,x_3) = \overline{x_1} x_2 \ \lor \ x_1 \overline{x_2} \ \lor \ x_1 \overline{x_3}$$
 .

4. Проверка:

$N_{\underline{0}}$	x_1 x_2 x_3	$f(x_1,x_2,x_3)$	$f_1(x_1,x_2,x_3)$
0	$0 \ 0 \ 0$	0	0
1	0 0 1	0	0
2	0 1 0	1	1
3	0 1 1	1	1
4	1 0 0	1	1
5	1 0 1	1	1
6	1 1 0	1	1
7	1 1 1	0	0

Т.к. $f_I = f$, то преобразования выполнено верно.

Otbet:
$$f_1(x_1, x_2, x_3) = \overline{X_1} X_2 \ \ \ \ \ \ \ X_1 \overline{X_2} \ \ \ \ \ \ \ X_1 \overline{X_3}$$
.

8. Используя метод диаграмм Вейча, необходимо найти МДНФ функции $f(x_1, x_2, x_3)$, принимающей значение 1 на наборах:

Решение:

1. Составим таблицу истинности:

No	x_1 x_2 x_3	$f(x_1,x_2,x_3)$
0	$0 \ 0 \ 0$	0
1	0 0 1	1
2	0 1 0	1
3	0 1 1	1
4	1 0 0	1
5	1 0 1	1
6	1 1 0	0
7	1 1 1	0

2.

Получаем $f_l(x_1, x_2, x_3) = \overline{X_1 X_2} \ \bigvee \ \overline{X_1 X_3} \bigvee \ X_1 \overline{X_2}$.

3. Проверка:

No	x_1 x_2 x_3	$f(x_1,x_2,x_3)$	$f_1(x_1,x_2,x_3)$
0	$0 \ 0 \ 0$	0	0
1	0 0 1	1	1
2	0 1 0	1	1
3	0 1 1	1	1
4	1 0 0	1	1
5	1 0 1	1	1
6	1 1 0	0	0
7	1 1 1	0	0

Т. к. $f_1 = f$, то преобразования выполнено верно.

Ответ: $f_1(x_1, x_2, x_3) = X_1 X_2 \ \lor \ X_1 X_3 \lor \ X_1 X_2$.

9. Доопределить функцию

$$f(x_1, x_2, x_3, x_4) = (0.1^*, 2^*, 4^*, 6.7^*, 8^*, 9.11^*, 13^*, 14.15^*).$$

Решение:

Составим таблицу истинности:

No	x_1	x_2	x_3	x_4	f	F_{onp}
0	0	0	0	0	1	1
1	0	0	0	1	*	1
2	0	0	1	0	*	0
3	0	0	1	1	0	0
4	0	1	0	0	*	0
5	0	1	0	1	0	0
6	0	1	1	0	1	1
7	0	1	1	1	*	1
8	1	0	0	0	*	1
9	1	0	0	1	1	1
10	1	0	1	0	0	0
11	1	0	1	1	*	0
12	1	1	0	0	0	0
13	1	1	0	1	*	0
14	1	1	1	0	1	1
15	1	1	1	1	*	1

1) доопрделим *=1 и получим минимальный вид функции f

$$\varphi_1(x_1, x_2, x_3, x_4) = \overline{x_2} x_4 \vee \overline{x_2} \overline{x_3} \vee x_2 x_3 \vee x_1 x_4$$

Доопрделим *=0

$$\varphi_0(x_1, x_2, x_3, x_4) = \overline{x_1 x_2 x_3 x_4} \vee \overline{x_1 x_2 x_3 x_4} \vee x_1 \overline{x_2 x_3 x_4} \vee x_1 \overline{x_2 x_3 x_4} \vee x_1 \overline{x_2 x_3 x_4}.$$

Оптимальное доопрделение функций соответствующее минимальному покрытию может быть найдено по методу Квайна.

	$\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}$	$\overline{x_1}x_2x_3\overline{x_4}$	$\overline{x_1} \overline{x_2} \overline{x_3} x_4$	$x_1x_2x_3\overline{x_4}$
$\overline{x_2}x_4$			V	
$\overline{x_2}\overline{x_3}$	V		V	
x_2x_3		V		V
x_1x_4			V	

В результате получится минимальный вид функции вида: $f = \overline{x_2} \overline{x_3} \vee x_2 x_3, \quad \text{ее таблица единичных значений тогда будет:}$ $f = \bigvee_1 (0,1,6,7,8,9,14,15).$

Ответ: $f = \overline{x_2} \, \overline{x_3} \vee x_2 x_3$ (см. таблицу истинности).

10. Найти производную третьего порядка $f(x_1, x_2, x_3) = x_1 x_2 \vee x_1 \overline{x_3}$.

Решение:

$$\frac{\partial f}{\partial x_1} = (x_2 \vee \overline{x_3}) \oplus 0 = x_2 \vee \overline{x_3}.$$

$$\frac{\partial f}{\partial x_2} = (x_1 \vee x_1 \overline{x_3}) \oplus x_1 \overline{x_3} = x_1 x_3.$$

$$\frac{\partial f}{\partial x_3} = (x_1 x_2) \oplus (x_1 x_2 \vee x_1) = x_1 \overline{x_2}.$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{\partial}{\partial x_2} (\frac{\partial f}{\partial x_1}) = \frac{\partial}{\partial x_2} (x_2 \vee \overline{x_3}) = 1 \oplus \overline{x_3} = x_3.$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_3} = \frac{\partial}{\partial x_3} (\frac{\partial f}{\partial x_1}) = \frac{\partial}{\partial x_3} (x_2 \vee \overline{x_3}) = x_1 \oplus 1 = \overline{x_2}.$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_3} = \frac{\partial}{\partial x_3} (\frac{\partial f}{\partial x_2}) = \frac{\partial}{\partial x_2} (x_1 x_3) = x_1.$$

$$\frac{\partial^3 f}{\partial x_1 \partial x_2 \partial x_3} = \frac{\partial}{\partial x_1} (\frac{\partial^2 f}{\partial x_2 \partial x_3}) = \frac{\partial}{\partial x_2} (x_1 x_2) = 1.$$

Ответ:

$$\frac{\partial^3 f}{\partial (x_1, x_2, x_3)} = (x_2 \vee \overline{x_3}) \oplus x_1 x_3 \oplus x_1 \overline{x_2} \oplus x_3 \oplus \overline{x_2} \oplus 1 = \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_1} \overline{x_2} x_3 \vee \overline{x_1} \overline{x_2} x_3 \vee \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_1}$$

2.2. Условия задач и варианты заданий для первой части контрольной (семестровой) работы

Условия задач / общие для всех вариантов/

- 1. Используя таблицу истинности, установить эквивалентность функций в формуле.
- 2. Используя основные законы и соотношения алгебры логики, необходимо установить справедливость следующей формулы.
- 3. Определить к каким классам (константы нуля, константы единицы, самодвойственных функций, монотонных функций, линейных функций, симметрических функций) относится функция следующего вида.
- **4**. Необходимо для данной $\Phi A \Pi f(x_1, x_2, x_3, x_4)$ найти ее ДСНФ, КСНФ, ПСНФ, ЭСНФ, ИСНФ, принимающей значение 1 на следующих наборах.

- 5. Используя метод неопределенных коэффициентов, необходимо найти МДНФ функции $f(x_1,x_2,x_3)$, принимающей значение 1 на наборах.
- 6. Используя метод Квайна, необходимо найти МДНФ функции $f(x_1,x_2,x_3,x_4)$, принимающей значение 1 на наборах.
- 7. Используя метод Квайна- Мак Класки , необходимо найти $MДН\Phi$ функции $f(x_1,x_2,x_3,x_4)$, принимающей значение 1 на наборах .
- 8. Используя метод диаграмм Вейча, необходимо найти МДНФ функции $f(x_1, x_2, x_3, x_4)$, принимающей значение 1 на наборах.
 - **9**. Доопределить функцию $f(x_1, x_2, x_3, x_4)$.
 - 10. Найти производную третьего порядка $f(x_1, x_2, x_3)$.

Варианты заданий для первой части контрольной (семестровой) работы

Вариант 1

1. $\overline{\left(\overline{x_2x_3} \approx x_1\overline{x_2}\right)} \downarrow x_3 \rightarrow \overline{x_2x_1} = \left[\left(x_2\overline{x_3} \downarrow x_1\overline{x_2}\right) \middle| \overline{x_3}\right] \overline{\left|\overline{x_2x_1}\right|}.$

2.
$$(\chi_1 \downarrow \chi_2) \approx ((\chi_1 \approx \overline{\chi_2}) \lor (\overline{\chi_1} | \chi_2)) = \overline{\chi_2} \chi_1$$
.

3.
$$f(x_1, x_2, x_3) = \overline{x_1 | x_2} \rightarrow (x_1 x_2 \approx x_3)$$
.

4.0, 2, 4, 6, 8, 9, 11, 12, 14, 15.

5. *0*, *2*, *4*, *6*.

6. 1, 2, 6, 7, 9, 12, 13.

7. 1, 6, 7, 8, 9, 10, 11, 12, 13.

8. 3, 8, 9, 10, 12, 13, 15.

9. 1, 6*, 7, 8, 9*, 10, 11*, 12, 13.

10. $f(\chi_1, \chi_2, \chi_3) = (\chi_1 \chi_2 \approx \chi_3)$.

Вариант 3

1.
$$\left[\left(\overline{X_1} \to \overline{X_2}\right) \lor \left(\overline{X_2} \downarrow X_1\right)\right] \oplus \overline{X_3} = \overline{X_1} \approx X_2$$
.

$$2.\left\lceil \left(\chi_1\vee\chi_2\right)\oplus \left(\chi_1\approx \left(\overline{\chi_1}\approx\overline{\chi_2}\right)\right)\right\rceil\oplus 1=\chi_1\left|\overline{\chi_2}\right.$$

 $3. f(x_1, x_2, x_3) = (x_1 \downarrow \overline{x_2}) | \overline{x_3}.$

4. 4, 6, 8, 9, 11, 12.

5. *0*, *1*, *3*, *4*.

6. 1, 2, 3, 7, 11, 13, 14, 15.

Вариант 2

$$\frac{1}{(\overline{X_1} \approx X_2)(\overline{X_1} \to X_2)} \to [(X_1 \approx X_2)(X_2)] = [(X_1|X_2) \oplus (\overline{X_1}|X_2)] \approx X_1.$$

$$2 \cdot \left(x_1 \oplus \overline{x_2} \right) \left| \left(\left(x_1 \approx x_2 \right) \downarrow \left(\overline{x_1} | x_2 \right) \right) = \overline{\overline{x_1} \rightarrow \overline{x_2}} \vee \left(\overline{x_1} \rightarrow \overline{x_2} \right)$$

3.
$$f(\chi_1, \chi_2, \chi_3) = \overline{\chi_1 \chi_2} \approx \overline{\chi_3 \chi_1}$$
.

4.0, 1, 2, 6, 7, 8, 12, 13, 14.

5. *1*, *3*, *5*, *7*.

6. *2*, *3*, *5*, *6*, *10*, *11*, *14*, *15*.

7. 3, 6, 7, 8, 10, 11, 14.

8. 0, 5, 8, 9, 10, 12, 13, 15.

9. **0**, **5**, **8**, **9**, **10***, **12***, **13***, **15***.

 $10. f(\chi_1, \chi_2, \chi_3) = \overline{\chi_1 \chi_2} \vee \overline{\chi_3 \chi_1}.$

Вариант 4

1.
$$\left[\left(\overline{\chi_1\chi_2\downarrow\overline{\chi_3}}\right)\downarrow\chi_1\right]\downarrow\chi_2=\chi_1\chi_2.$$

$$2 \cdot \left(\overline{x_1} x_2 \vee x_3\right) \to \left[\overline{x_1} \downarrow \overline{x_3}\right] = \left[\left(\overline{x_1} \to \overline{x_2}\right) \middle| \overline{x_3}\right] \to \left[\overline{\overline{x_2} \to x_1} \to \left(x_1 \downarrow \overline{x_2}\right) \middle| x_3\right]$$

$$3. f(x_1, x_2, x_3) = (\overline{x_1 \approx \overline{x_2}}) \approx x_3.$$

4. 0, 1, 2, 3, 6, 12.

5. **2**, **3**, **6**, **7**.

6. 2, 3, 4, 5, 10, 12, 13, 15.

7. 6, 8, 9, 12, 13, 14.

8. 0, 8, 10, 11, 13, 15.

9. 1, 2, 3, 7*, 11*, 13*, 14, 15*.

10. $f(\chi_1, \chi_2, \chi_3) = (\chi_1 \downarrow \overline{\chi_2})$.

Вариант 5

$$1 \cdot \overline{\left(\chi_{1}\chi_{3} \oplus \overline{\chi_{2}}\right)\left(\overline{\chi_{3}} \to \chi_{1}\right)} \approx \chi_{2} = \chi_{1} \left| \overline{\chi_{3} \downarrow \overline{\chi_{2}}} \right|.$$

$$2. \left(\left[\left(\overline{x_1} \downarrow x_2\right) \to \overline{x_3}\right] \oplus \left[\left.x_1 \middle| \left(x_2 \middle| \overline{x_3}\right)\right]\right) \oplus 1 = \left(\left.x_1 \overline{x_2} \middle| x_3\right) \approx \left(\overline{x_1} \lor x_2 \overline{x_3}\right) \cdot \right.$$

$$3. f(x_1, x_2, x_3) = (x_1 \overline{x_2} | x_3) \approx (\overline{x_1} \vee x_2 \overline{x_3}).$$

4. 0, 6, 10, 14.

5. **0**, **1**, **2**, **5**, **6**, **7**.

6. 2, 4, 6, 9, 10, 11, 12, 13.

7. 5, 6, 7, 8, 9, 13, 14.

8. 2, 3, 7, 8, 10, 11, 12, 15.

9. 2, 3, 7, 8, 10*, 11*, 12, 15*.

10. $f(x_1, x_2, x_3) = (x_1 x_2 | x_3)$.

Вариант 7

$$1 \cdot \left\lceil \overline{x_1 \overline{x_2} x_3} \oplus \left(\overline{x_3} \overline{x_1} \vee x_1 x_2 x_3 \right) \right\rceil \oplus 1 = \left[x_1 \to \left(\overline{x_2} | x_3 \right) \right] \approx \left[\left(\overline{x_1} \oplus \overline{x_3} \right) \downarrow x_1 \overline{x_2} \right]$$

$$2\cdot (\overline{x_1}x_2\downarrow x_3)|(x_1\overline{x_2}\downarrow \overline{x_3})=(\overline{\overline{x_1}x_2}|\overline{x_3})\rightarrow (x_2\downarrow \overline{x_1}x_2)\cdot$$

$$3. f(x_1, x_2, x_3) = \overline{x_1 \rightarrow (x_2|x_3)}.$$

4. 0, 1, 4, 5, 7, 9.

5.0,1,2,3,4.

6. 0, 2, 3, 5, 7, 8, 10, 11, 15.

7. 2, 3, 5, 6, 7, 8, 10, 12, 14.

8. 0, 4, 5, 7, 8, 10, 11, 13, 15.

9. 0, 2, 3*, 5, 7*, 8, 10*, 11, 15.

10. $f(x_1, x_2, x_3) = \overline{x_1(x_2|x_3)}$.

Вариант 9

$$1 \cdot \left[\left(\overline{(\chi_1 \downarrow \chi_2)} | \chi_3 \right) \to \chi_1 \right] \lor \overline{\chi_2 \chi_3} = \left(\chi_2 \approx \chi_3 \right) \lor \overline{\chi_1 \to \overline{\chi_3}} \lor \overline{\chi_1} \cdot$$

$$2 \cdot \left[\left(\overline{\chi_{\scriptscriptstyle 1}} \to \overline{\chi_{\scriptscriptstyle 2}} \right) \vee \left(\overline{\chi_{\scriptscriptstyle 2}} \downarrow \chi_{\scriptscriptstyle 1} \right) \right] \oplus \overline{\chi_{\scriptscriptstyle 3}} = \overline{\chi_{\scriptscriptstyle 2}} \approx \chi_{\scriptscriptstyle 3} \cdot$$

 $3. f(\chi_1, \chi_2, \chi_3) = \overline{\chi_1 \chi_2 \downarrow \chi_3} \downarrow \chi_1.$

4. 1, 2, 4, 7, 8, 11, 13, 14.

5. *1*, *2*, *4*.

6. 0, 1, 2, 3, 8, 9, 10, 11, 14, 15.

7. 1, 2, 5, 7, 8, 12, 13, 14.

8. 2, 4, 7, 9, 10, 14, 15.

9. 0, 1, 2, 3, 8*, 9, 10, 11*, 14, 15*.

7. **6**, **7**, **8**, **10**, **11**, **13**.

8. 1, 2, 3, 12, 13, 14, 15.

9. 1, 2, 3, 12, 13*, 14, 15*.

10. $f(x_1,x_2,x_3) = (\overline{x_1x_2})$.

Вариант 6

$$1 \cdot \overline{\left[x_{1}x_{2}x_{3} \to \overline{x_{2}x_{3}}\right] \left(\overline{x_{1}} \approx \overline{x_{2}}\right)} = \overline{\left(\overline{x_{1}}|x_{2}\right)} \left(\overline{x_{1}} \approx \overline{x_{2}}\right) \to \left(\overline{x_{1}} \downarrow x_{2}\right).$$

$$2\cdot \left(\overline{x_1} \to x_2\right) \vee \left(\overline{x_1} \approx x_2\right) \vee \left(x_3 \oplus \overline{x_2}\right) = \left(\overline{x_1} | x_2\right) \to x_1 x_2.$$

$$3. f(\chi_1, \chi_2, \chi_3) = (\overline{\chi_1} \chi_2 \downarrow \chi_3) \overline{\chi_2}.$$

4. 1, 5, 6, 7, 8, 14.

5. 3, 4, 7.

6. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

7. 2, 4, 5, 6, 8, 11, 12, 14.

8. 0, 4, 6, 7, 8, 10, 13, 15.

9. *0*, *4*, *6*, *7*, *8**, *10*, *13**, *15*.

10. $f(\chi_1, \chi_2, \chi_3) = (\overline{\chi_1 \chi_2} \downarrow \chi_3)$.

Вариант 8

$$1\cdot \left(\overline{x_1}x_2\vee x_3\right) \to \left\lceil \overline{\left(\overline{x_2}\approx x_1\right)}\downarrow \overline{x_3}\right\rceil = \left\lceil \left(\overline{x_1}\vee \overline{x_2}\right)\left|\overline{x_3}\right| \to \left\lceil \overline{\overline{x_2}\downarrow x_1}\to \left(x_2\downarrow \overline{x_1}\right)\right\rceil$$

$$2 \cdot \left[\left(\chi_1 \approx \chi_2 \right) \to \chi_3 \right] \downarrow \left(\chi_1 \chi_2 \chi_3 \oplus 1 \right) = \overline{\chi_1 \to \left(\chi_2 \mid \chi_3 \right)} \cdot$$

$$3. f(x_1, x_2, x_3) = \overline{x_1} \overline{x_2} \vee x_3 \vee \overline{x_3} x_1.$$

4. *6*, *7*, *8*, *9*, *10*, *11*.

5. *1*, *2*, *5*, *7*.

6. *0*, *3*, *7*, *8*, *11*, *13*, *14*, *15*.

7. 2, 3, 4, 5, 12, 13, 14.

8. 0, 4, 5, 6, 7, 14, 15.

9. *0*, *3*, *7*, *8*, *11*, *13**, *14*, *15**.

10. $f(\chi_1, \chi_2, \chi_3) = \overline{\chi_1 \chi_2} \vee \chi_3$.

Вариант 10

$$1 \cdot \overline{\left(\chi_{1} \to \overline{\chi_{2}}\right) \to \left[\left(\chi_{3} \oplus \overline{\chi_{1}}\right) \oplus 1\right] \to \chi_{3} \chi_{4}} = \left(\chi_{1} \chi_{2} \lor \left(\chi_{3} \approx \overline{\chi_{1}}\right)\right) \left(\chi_{3} | \chi_{4}\right).$$

2.
$$\overline{|x_1x_2x_3 \rightarrow \overline{x_1x_3}| |(\overline{x_1} \approx \overline{x_2})|} = \overline{(\overline{x_1}|x_2)|x_3} \downarrow \overline{(\overline{x_1} \downarrow \overline{x_2})} \rightarrow (x_1 \downarrow x_2)$$

$$3. f(\chi_1, \chi_2, \chi_3) = \chi_1 \chi_2 \chi_3 \rightarrow \overline{\chi_1 \chi_3}.$$

4. *3,5,6, 7*.

5. 0, 1, 2, 3, 4, 5, 6.

6. *4*, *6*, *7*, *8*, *9*, *10*, *14*, *15*.

7. 1, 5, 6, 7, 8, 9, 10, 15.

8. 0, 3, 7, 8, 9, 10, 11, 12, 15.

9. 1, 5*, 6, 7, 8, 9*, 10, 15.

10.
$$f(\chi_1, \chi_2, \chi_3) = \overline{\chi_1 \chi_2 \downarrow \overline{\chi_3}}$$
.

$$1 \cdot \left(\chi_1 \chi_2 \vee \overline{\chi_3} \right) \downarrow \left(\overline{\chi_4} \approx \left(\overline{\chi_1} | \overline{\chi_2} \right) \right) = \left(\overline{\chi_1} \chi_2 \downarrow \overline{\chi_3} \right) \downarrow \left(\overline{\chi_4} \downarrow \left(\overline{\overline{\chi_1} \downarrow \overline{\chi_2}} \right) \downarrow \chi_4 \downarrow \left(\overline{\chi_1} \downarrow \overline{\chi_2} \right) \right) \cdot$$

2.
$$\overline{\left[\left(\overline{x_1x_2}\downarrow\overline{x_3}\right)\downarrow_{x_1}\right]}\downarrow_{x_2}=\overline{\left[\left[\left(x_1|x_2\right)\&x_3\right]|\overline{x_1}\right)|x_2}.$$

3.
$$f(\chi_1, \chi_2, \chi_3) = \chi_1 \downarrow \overline{\chi_3} \lor \overline{\chi_2}$$
.

10.
$$f(\chi_1, \chi_2, \chi_3) = \chi_1 \vee \overline{\chi_3} \vee \overline{\chi_2}$$
.

Вариант 13

$$1 \cdot \left(x_1 \oplus \overline{x_2}\right) \left| \left(\left(x_1 \approx x_2\right) \left(\overline{x_1} \mid x_2\right)\right) = \overline{\overline{x_1} \rightarrow \overline{x_2}} \vee \left(\overline{x_1} \rightarrow \overline{x_2}\right) \cdot$$

$$3. f(x_1, x_2, x_3) = \overline{x_3 x_1} \rightarrow x_2 \overline{x_1}.$$

10.
$$f(\chi_1, \chi_2, \chi_3) = \overline{\chi_3 \chi_1 \vee \chi_2 \chi_1}$$
.

Вариант 15

1.
$$(x_1 \downarrow x_2) \sim ((x_1 \sim \overline{x_2}) \vee (\overline{x_1} \mid x_2)) = \overline{x_2} \overline{x_1}$$
.

$$2. x_1 \downarrow x_2 \sim x_3 \rightarrow (\overline{x_1} \oplus x_2) = \overline{x_1 x_2 \rightarrow x_3} \vee \overline{x_3 \rightarrow x_1 x_2} \vee (x_1 \sim x_2) \qquad 2. (\overline{x_1 x_2 \rightarrow x_3}) \vee (\overline{x_1} \rightarrow x_2 x_3) \vee (\overline{x_1} \oplus x_2) \vee \overline{x_3} = (x_1 \downarrow \overline{x_2}) \downarrow \left[(\overline{x_2} \downarrow \overline{x_3}) \downarrow \overline{x_3} \right] \vee (\overline{x_1} \rightarrow x_2 x_3) \vee (\overline{x_1} \rightarrow x_1 x_3) \vee (\overline{x_1} \rightarrow x_2 x_3) \vee (\overline{x_1} \rightarrow x_1 x_3) \vee (\overline{x_1} \rightarrow x_2 x_3) \vee (\overline{x_1} \rightarrow x_1 x_3) \vee (\overline{x_1} \rightarrow x_2 x_3) \vee (\overline{x_1} \rightarrow x_1 x_3) \vee (\overline{x$$

3.
$$f(x_1, x_2, x_3, x_4) = \overline{x_1 | x_2} \downarrow (x_3 \downarrow x_4)$$
.

10.
$$f(x_1, x_2, x_3) = \overline{x_1 | x_2} \downarrow x_3$$
.

10.
$$f(\chi_1, \chi_2, \chi_3) = \chi_1 \chi_2 \chi_3$$
.

Вариант 12

$$1 \cdot (x_1 x_2 \downarrow x_3) \lor (\overline{x_1} x_3 | x_2) \lor (\overline{x_1} x_2 \downarrow \overline{x_3}) = \overline{x_1 \downarrow (x_2 | x_3)}.$$

2.
$$(\overline{(x_1 \approx x_2)(x_1 \rightarrow x_2)} \rightarrow [(x_1 \approx x_2)(x_1 \downarrow x_2)] = (x_1|x_2)(\overline{x_1}|x_2)(x_1 \downarrow x_2)$$

$$3. f(x_1, x_2, x_3) = (x_1 \approx x_2) | (\overline{x_2} \approx \overline{x_3}).$$

10.
$$f(x_1, x_2, x_3) = (x_1x_2)|(\overline{x_2}\overline{x_3}).$$

Вариант 14

$$1\cdot \left(\overline{x_1x_2x_3} \to \overline{x_1}\right) \oplus x_1 \approx \overline{x_2} \approx \overline{x_3} = x_3 \left(x_1 \approx x_2\right) \vee \overline{x_3} \left(\overline{\left(x_1 \downarrow \overline{x_2}\right) \downarrow \left(\overline{x_1} \downarrow x_2\right)}\right) \oplus x_1$$

$$2 \cdot \overline{\left(\overline{x_2 x_3} \approx x_1 \overline{x_2}\right) \downarrow x_3} \rightarrow \overline{x_2} x_1 = \left[\left(x_2 \overline{x_3} \downarrow x_1 \overline{x_2}\right) \middle| \overline{x_3}\right] \overline{\left|\overline{x_2} x_1\right|} \cdot$$

$$3 \cdot f(x_1, x_2, x_3) = \overline{x_3}(\overline{x_1} \rightarrow x_2 x_3) \vee \overline{x_2}$$

10.
$$f(\chi_1, \chi_2, \chi_3) = \overline{\chi_3}(\overline{\chi_1} \rightarrow \chi_2 \chi_3)$$
.

Вариант 16

$$1\cdot_{\left(\chi_{1}^{\infty}\times\chi_{2}\right)\oplus\left\lceil\left(\overline{\chi_{2}}\to\chi_{1}\right)\downarrow\overline{\chi_{1}}\right\rceil=\left(\chi_{1}\oplus\chi_{2}\right)\oplus1\oplus\left(\overline{\chi_{2}\overline{\chi_{1}}\oplus\overline{\chi_{2}}\oplus\chi_{1}\chi_{2}}\right)}\cdot$$

$$2 \cdot \left(\overline{\chi_1 \chi_2 \to \overline{\chi_3}} \right) \vee \left(\overline{\chi_1} \to \chi_2 \chi_3 \right) \vee \left(\overline{\chi_1 \oplus \chi_2} \right) \vee \overline{\chi_3} = \left(\chi_1 \downarrow \overline{\chi_2} \right) \downarrow \left[\left(\overline{\chi_2} \downarrow \overline{\chi_3} \right) \downarrow \overline{\chi_3} \right]$$

3.
$$f(x_1,x_2,x_3) = \overline{(x_1|x_2)|(x_2|x_3)}$$
.

10.
$$f(x_1, x_2, x_3) = \overline{(x_1|x_2)}$$
.

1.
$$((x_1 \to x_2) \to ((x_1 \overline{x_2}) \oplus (x_1 \sim \overline{x_2}))) = x_1 \oplus x_2$$
.

$$2.\left[(\overline{x_1{\vee}x_2})\oplus\overline{x_1}\right]\to\overline{x_2}\downarrow x_1=\overline{x_2x_1}\ .$$

3.
$$f(x_1, x_2, x_3) = (\overline{x_1} \sim x_2) \& x_3$$
.

10.
$$f(x_1, x_2, x_3) = \overline{(x_1 \lor x_2) \& x_3}$$
.

Вариант 19

$$1.(\overline{x_1} \to x_2) \lor (\overline{x_1} \lor x_2) \lor (x_1 \oplus \overline{x_2}) = \overline{(x_1 \downarrow x_2)} \to x_1 x_2$$

$$2.(x_1x_2\vee \overline{x_3})\downarrow \overline{(x_4\sim \overline{(x_1\downarrow x_2)})}=\overline{(x_1x_2\downarrow \overline{x_3})}\downarrow (\overline{x_4}\downarrow \overline{(\overline{x_1}\downarrow \overline{x_2})})\downarrow (x_4\downarrow (\overline{x_1}\downarrow \overline{x_2}))$$

3.
$$f(x_1, x_2, x_3) = x_1 x_2 \overline{x_3} \vee \overline{x_1 x_2 x_3}$$
.

10.
$$f(x_1, x_2, x_3) = x_1 x_2 \vee \overline{x_1 x_2 x_3}$$
.

Вариант 21

1.
$$(x_1 \sim x_2) \oplus [(\overline{x_2} \to x_1) \downarrow \overline{x_1}] = (x_1 \oplus x_2) \oplus 1 \oplus (\overline{x_1} x_2 \oplus \overline{x_2} \oplus x_1 x_2)$$

$$2.\,(\overline{x_1} \to x_2) \vee (\overline{x_1} \vee x_2) \vee (x_1 \oplus \overline{x_2}) = \overline{(x_1 \!\!\downarrow\!\! x_2)} \to x_1 x_2$$

3.
$$f(x_1, x_2, x_3) = [(x_2 \overline{x_3} \downarrow x_1 \overline{x_2}) \mid \overline{x_3}] \mid \overline{\overline{x_2}x_1}$$
.

10.
$$f(x_1, x_2, x_3) = \overline{x_1 x_2 \rightarrow x_3}$$
.

Вариант 18

1.
$$([(\overline{x_1} \downarrow x_2) \to \overline{x_3}] \oplus [x_1 \mid (\overline{x_2} \mid \overline{x_3})]) \oplus 1 = (x_1 \overline{x_2} \mid x_3) \sim (\overline{x_1} \vee x_2 \overline{x_3})$$
.

$$2.\,(x_1x_3\oplus\overline{x_2})(\overline{x_3}\to x_1)\sim x_2=x_1\mid \overline{(x_3\sqrt{x_2})}\,.$$

3.
$$f(x_1, x_2, x_3) = (x_1 \overline{x_2} \oplus x_3) \downarrow x_3$$
.

10.
$$f(x_1, x_2, x_3) = (x_1 \overline{x_2} \oplus x_3)$$
.

Вариант 20

1.
$$[\overline{(x_1 \lor x_2)} \oplus \overline{x_1}] \rightarrow \overline{x_2} \downarrow x_1 = \overline{x_2} \overline{x_1}$$
.

$$2.\overline{(x_1 \! \to \! \overline{x_2}) \! \to \! [(x_3 \oplus \overline{x_1}) \oplus 1] \! \to \! x_3 x_4} = (x_1 x_2 \vee (x_3 \sim \overline{x_1}))(x_1 \mid x_4) \,.$$

3.
$$f(x_1, x_2, x_3) = x_1 x_2 \vee \overline{x_1} x_3 \vee x_2 x_3$$
.

10.
$$f(x_1, x_2, x_3) = x_1 x_2 \vee \overline{x_1} x_3$$
.

Вариант 22

$$1.\overline{(x_1x_2\to\overline{x_3})}\vee(\overline{x_1}\to x_2x_3)\vee\overline{(x_1\oplus x_2)}\vee\overline{x_3}=(x_1\downarrow\overline{x_2})\downarrow[(\overline{x_2}\downarrow\overline{x_3})\downarrow\overline{x_3}]$$

$$2.\overline{[x_1\overline{x_2}x_3}\oplus(\overline{x_3}\overline{x_1}\vee x_1x_2x_3)]\oplus 1=[x_1\to(\overline{x_2}\downarrow x_3)]\sim [(\overline{x_1}\oplus\overline{x_3})]\downarrow x_1\overline{x_2}]$$

3.
$$f(x_1, x_2, x_3) = (\overline{x_1} \vee \overline{x_2})(x_1 \vee x_2)x_3$$
.

10.
$$f(x_1, x_2, x_3) = (\overline{x_1} \vee \overline{x_2})(x_1 \vee x_2)$$
.

1.
$$f(x_1, x_2, x_3) = [\overline{(x_1 x_2 \sqrt{x_3})} \downarrow x_1] \downarrow x_2$$
.

$$2.\left(x_{1}\sim x_{2}\right)\oplus\left[\left(\overline{x_{2}}\rightarrow x_{1}\right)\downarrow\overline{x_{1}}\right]=\left(x_{1}\oplus x_{2}\right)\oplus1\oplus\overline{\left(\overline{x_{1}}x_{2}\oplus\overline{x_{2}}\oplus x_{1}x_{2}\right)}$$

3.
$$f(x_1, x_2, x_3) = [(x_1x_2 \downarrow \overline{x_3}) \downarrow x_1] \downarrow x_2$$
.

10.
$$f(x_1, x_2, x_3) = x_1 x_2 \overline{x_3} \vee \overline{x_1 x_2 x_3}$$
.

Вариант 25

1.
$$[(x_1 \lor x_2) \oplus (x_1 \multimap (\overline{x_1} \multimap \overline{x_2}))] \oplus 1 = x_1 \mid \overline{x_2}$$

$$2. \ (\overrightarrow{x_1} \rightarrow x_2) \vee (\overrightarrow{x_1} \vee x_2) \vee (x_1 \oplus \overline{x_2}) = \overline{(x_1 {\downarrow} x_2)} \rightarrow x_1 x_2$$

3.
$$f(x_1, x_2, x_3) = (\overline{x_1} \lor x_2)(x_1 \lor \overline{x_2}) \sim \overline{x_3}$$
.

10.
$$f(x_1, x_2, x_3) = (\overline{x_1} \lor x_2)(x_1 \lor \overline{x_3})$$
.

Вариант 27

1.
$$[(x_1 \lor x_2) \oplus (x_1 \sim (\overline{x_1} \sim \overline{x_2}))] \oplus 1 = x_1 \mid \overline{x_2}$$

2.
$$((x_1 \to x_2) \to ((x_1 \overline{x_2}) \oplus (x_1 \sim \overline{x_2}))) = x_1 \oplus x_2$$
.

3.
$$f(x_1, x_2, x_3) = (x_1 \oplus x_2) \approx (x_3 \downarrow \overline{x_1 x_2})$$
.

10.
$$f(x_1, x_2, x_3) = (x_2 \sim x_3) \vee \overline{x_1 \rightarrow x_3}$$
.

Вариант 24

$$1. (\overline{x_1} x_2 \downarrow x_3) \mid (x_1 \overline{x_2} \to \overline{x_3}) = (\overline{\overline{x_1} x_2} \mid x_3) \to (x_2 \downarrow \overline{x_1} x_3)$$

2.
$$(xy \downarrow z) \lor (\overline{xz} \mid y) \lor (\overline{xy} \to \overline{z}) = \overline{x \downarrow (y|z)}$$
.

3.
$$f(x_1, x_2, x_3) = \overline{x_1 x_2 \rightarrow x_3} \lor \overline{x_3 \rightarrow x_1 x_2}$$
.

10.
$$f(x_1, x_2, x_3) = \overline{x_1 x_2 \rightarrow x_3}$$
.

Вариант 26

$$1. (\overline{x_1} \to x_2) \vee (\overline{x_1} \vee x_2) \vee (x_1 \oplus \overline{x_2}) = \overline{(x_1 \downarrow x_2)} \to x_1 x_2$$

2.
$$[\overline{(x_1 \lor x_2)} \oplus \overline{x_1}] \rightarrow \overline{x_2} \downarrow x_1 = \overline{x_2} \overline{x_1}$$
.

3.
$$f(x_1, x_2, x_3) = x_1 x_2 \overline{x_3} \vee \overline{x_1 x_2 x_3}$$
.

10.
$$f(x_1, x_2, x_3) = \overline{x_1 x_2} \overline{x_3} \vee \overline{x_1 x_2 x_3}$$
.

Вариант 28

1.
$$(xy \downarrow z) \lor (\bar{x}z \mid y) \lor (\bar{x}y \to \bar{z}) = x \downarrow (y|z)$$

$$2.\left[(x_1\vee x_2)\oplus (x_1\sim (\overline{x_1}\sim \overline{x_2}))\right]\oplus 1=x_1\mid \overline{x_2}\ .$$

3.
$$f(x_1, x_2, x_3) = \overline{[(x_1 x_2 \sqrt{x_3}) \sqrt{x_1}]} \downarrow x_2$$
.

10.
$$f(x_1, x_2, x_3) = (x_1 \oplus x_2)(x_3 \downarrow \overline{x_1} \overline{x_2})$$
.

1.
$$[(\overline{x_1 \lor x_2}) \oplus \overline{x_1}] \to \overline{x_2} \downarrow x_1 = \overline{x_2 x_1}$$
.

2.
$$((x_1 \rightarrow x_2) \rightarrow ((x_1 \overline{x_2}) \oplus (x_1 \sim \overline{x_2}))) = x_1 \oplus x_2$$
.

3.
$$f(x_1, x_2, x_3) = x_1 x_2 \overline{x_3} \vee \overline{x_1 x_2 x_3}$$
.

10.
$$f(x_1, x_2, x_3) = (x_1 x_2)(x_3 \downarrow \overline{x_1 x_2})$$
.

Вариант 30

1.
$$((x_1 \to x_2) \to ((x_1 \overline{x_2}) \oplus (x_1 \sim \overline{x_2}))) = x_1 \oplus x_2$$
.

2.
$$\left[\left(\overline{x_1x_2}\downarrow\overline{x_3}\right)\downarrow x_1\right]\downarrow x_2=x_1x_2.$$

3.
$$f(x_1, x_2, x_3) = \overline{(x_1|x_2) \approx x_3} \rightarrow (\overline{x_1} \oplus x_2)$$
.

10.
$$f(\chi_1, \chi_2, \chi_3) = \overline{(\chi_1|\chi_2)\chi_3}$$
.

3. СБОРНИК ЗАДАНИЙ ДЛЯ ПЕРВОЙ ЧАСТИ КОНТРОЛЬНОЙ (СЕМЕСТРОВОЙ) РАБОТЫ ПО **РАЗДЕЛУ** «Дискретная

математика»

3.1. Пример решения и оформления

Задание

Дано:

Задание 1.

Задать граф следующими способами: перечислением, матрицами смежности и инцидентности.

Решение:

Перечисление:

Множество вершин: $X = \{x1, x2, x3, x4, x5\}$. Множество связей: $V = \{x4, x1, x2, x3, x4, x5\}$. $\{x4, x1, x2, x3, x4, x5\}$

Множество изолированных вершин: пусто.

Матрица инцидентности:

	V1	V2	V3	V4	V5	V6	V7
X1	-1	-1	0	0	0	0	0
X2	0	1	1	1	0	0	0
X3	0	0	0	-1	-1	-1	0
X4	1	0	-1	0	1	0	1
X5	0	0	0	0	0	1	-1

Матрица смежности:

	X1	X2	X3	X4	X5
X1	0	0	0	0	0
X2	1	0	1	1	0
X3	0	0	0	0	0
X4	1	0	1	0	1
X5	0	0	1	0	0

Задание 2.

Определить следующие основные характеристики графа: число ребер и дуг; число вершин; коэффициент связности графа; степени всех вершин; цикломатическое число графа.

Решение:

Число ребер -0; дуг -7.

Число вершин – 5.

Коэффициент связности графа - 1.

Степени всех вершин:

	X1	X2	X3	X4	X5
Полустепень исхода	0	3	0	3	1
Полустепень захода	2	0	3	1	1
Степень	2	3	3	4	2

Цикломатическое число графа = (число связей — число вершин) + коэффициент связности. Т.е. 7-5+1=3; цикломатическое число равно 3.

Задание 3.

Определить, является ли данный граф:

- планарным или плоским графом (обосновать ответ и выполнить обратное преобразование);
- двудольным графом (обосновать ответ и, если необходимо, то достроить до двудольного графа);
- деревом (обосновать ответ и, в случае циклического графа, привести один из вариантов основного дерева);
- псевдографом или мультиграфом, или простым графом (обосновать ответ и выполнить необходимые преобразования).

Решение:Данный граф <u>является</u> **плоским**, поскольку все его связи пересекаются только в вершинах. Преобразуем данный граф в планарный граф:

Данный граф <u>не является</u> **двудольным**, поскольку содержит циклы нечетной длины (например, x4-x3-x5-x4), и поэтому множество его вершин нельзя разделить на две части.

Для того, чтобы преобразовать граф в двудольный, необходимо, например, заменить ребро V3 на два ребра V3-1 и V3-2 с добавлением вершины X2_4 и ребро V6 — на V6-1 и V6-2 с добавлением вершины X3_5. В результате данного преобразования исходного графа все циклы в графе будут иметь четную длину, тогда множество вершин можно следующим образом разделить на две доли (1 и 2 — это номер доли):

Данный граф <u>не является</u> **деревом**, поскольку он содержит циклы. Приведем пример остова данного графа:

V2,V3,V4,V6 – ветви, V1,V5,V7 – хорды.

Данный граф является простым, поскольку не содержит петли, изолированные вершины и кратные связи.

Преобразуем данный граф в мультиграф:

Преобразуем исходный граф в псевдограф:

Привести пример подграфа, частичного графа и частичного подграфа.

Решение:

Задание 5.

Произвести реберную и вершинную раскраски графа с определением вершинного и реберного хроматического числа.

Решение: Необходимо исходить из того, что граф называется правильно раскрашенным, если его смежные вершины(связи) раскрашены в разные цвета.

Примечание: Обозначим цвета через числа натурального ряда. Номер рядом с каждой вершиной (связью) обозначает определенный цвет.

Вершинная раскраска:

Хроматическое число равно 3.

Задание 6.

Упорядочить граф матричным способом и построить порядковую функцию, функцию Гранди.

Решение: В основе алгоритма упорядочивания лежит матрица смежности.

	X1	X2	X3	X4	X5
X1	0	0	0	0	0
X2	1	0	1	1	0
X3	0	0	0	0	0
X4	1	0	1	0	1
X5	0	0	1	0	0
Λ0	0	3	0	3	1
Λ1	*	1	*	1	0
Λ2	*	1	*	0	*
Λ3	*	0	*	*	*

Изоморфный упорядоченный граф выглядит следующим образом:

Функция Гранди:

Порядковая функция:

Задание 7.

Определить метрические характеристики графа: диаметр, радиус, эксцентриситет каждой вершины, центральные вершины.

Решение:

1. Определим расстояние между всеми парами вершин:

$$\begin{split} d(x_1, x_2) &= 1 \\ d(x_1, x_3) &= 2 \quad d(x_2, x_3) = 1 \\ d(x_1, x_4) &= 1 \quad d(x_2, x_4) = 1 \quad d(x_3, x_4) = 1 \\ d(x_1, x_5) &= 2 \quad d(x_2, x_5) = 2 \quad d(x_3, x_5) = 1 \quad d(x_4, x_5) = 1 \;. \end{split}$$

- 2. Определим диаметр как $d(G) = \max d(x_i, x_j)$: d(G) = 2.
- 3. Определим эксцентриситет каждой вершины:

$$\mathbf{r}(\mathbf{x}_1) = 2 \ \mathbf{r}(\mathbf{x}_2) = 2 \ \mathbf{r}(\mathbf{x}_3) = 2 \ \mathbf{r}(\mathbf{x}_4) = 1 \ \mathbf{r}(\mathbf{x}_5) = 2$$
.

- 4. Определим радиус графа как $r(G) = \min r(x_i) : r(G) = 1$.
- 5. Определим центральные вершины: х₄.

Задание 8.

Используя метод Магу, определить совокупность максимальных внутренне устойчивых множеств вершин, семейство минимальных внешне устойчивых множеств вершин заданного графа, а также ядро графа.

Решение:

1. Определим совокупность максимальных внутрение устойчивых множеств вершин[3]:

Примечание: Y'i – отрицание Yi, опустим символ &.

(используя (10.6) из пособия [3])

$$\equiv$$
 Y'1 Y'3Y'4 \vee Y'2Y'4Y'5 \vee Y'2Y'3Y'4 \vee Y'1 Y'2Y'3Y'5 .

Следовательно, искомыми внутренне устойчивыми множествами вершин данного орграфа являются $U1 = \{x_2, x_5\}$, $U2 = \{x_1, x_3\}$, $U3 = \{x_1, x_5\}$, $U4 = \{x_4\}$ при этом U1, U2, U3 - являются максимальными.

2. Определим совокупность минимальных внешне устойчивых множеств [3]:

$$\&_{i=1,n}(Yi \lor \lor_{aij=1} Yj) = Y1 (Y2 \lor Y1 \lor Y3 \lor Y4) Y3 (Y4 \lor Y3 \lor Y5 \lor Y1)$$
 (Y5 \lor Y3) \equiv (используя закон поглощения, равносильности (10.6) из пособия [3]) \equiv Y1Y3.

Следовательно, искомым минимальным внешне устойчивым множеством данного графа являются множество $\{x_1, x_3\}$.

3. Определим ядро графа:

Поскольку множество $\{x_1,x_3\}$ одновременно является минимальным внешне устойчивым и максимальным внутренне устойчивым, то оно является **ядром**.

Задание 9.

Определить, является ли граф эйлеровым. Если — да, то указать эйлеров путь, если — нет, то применяя минимальное количество известных операций на графах, преобразовать данный граф до эйлерова графа.

Решение:

Граф называется эйлеровым, если содержит замкнутый эйлеров цикл, для этого степени исхода каждой вершины должны быть равны степеням захода каждой вершины.

Данный граф <u>не является</u> эйлеровым, поскольку не выполняется условие равенства степеней захода и исхода каждой вершины (см. задание 2).

Преобразуем данный граф в эйлеров граф:

Задание 10.

Определить, является ли граф гамильтоновым (направление связей не учитывать). Если — да, то указать гамильтонов маршрут, если — нет, то, применяя минимальное количество известных операций на графах, преобразовать данный граф в гамильтонов граф.

Решение:

Граф называется гамильтоновым, если содержит замкнутый гамильтоновый цикл (проходит все вершины графа однократно).

Данный граф является гамильтоновым. Действительно:

3.2. Условия задач и варианты заданий для второй части контрольной (семестровой) работы

Условия задач / общие для всех вариантов/

- 1. Задать граф следующими способами: перечислением, матрицами смежности и инцидентности.
 - 2. Определить следующие основные характеристики графа: число ребер и дуг; число вершин;коэффициент связности графа;степени всех вершин;цикломатическое число графа.
 - 3. Определить, является ли данный граф:
 - планарным или плоским графом (обосновать ответ и выполнить обратное преобразование);
 - двудольным графом (обосновать ответ и, если необходимо, то достроить до двудольного графа);
 - деревом (обосновать ответ и, в случае циклического графа, привести один из вариантов основного дерева);
 - псевдографом или мультиграфом, или простым графом (обосновать ответ и выполнить необходимые преобразования).
 - 4. Привести пример подграфа, частичного графа и частичного подграфа.

- 5. Произвести реберную и вершинную раскраски графа с определением вершинного и реберного хроматического числа.
- 6.Упорядочить граф матричным способом и построить порядковую функцию, функцию Гранди.
- 7. Определить метрические характеристики графа: диаметр, радиус, эксцентриситет каждой вершины, центральные вершины.
- 8. Используя метод Магу, определить совокупность максимальных внутрение устойчивых множеств вершин, семейство минимальных внешне устойчивых множеств вершин заданного графа, а также ядро графа.
- 9.Определить, является ли граф эйлеровым. Если да, то указать эйлеров путь, если нет, то, применяя минимальное количество известных операций на графах, преобразовать данный граф до эйлерова графа.
- 10.Определить, является ли граф гамильтоновым(направление связей не учитывать). Если да, то указать гамильтонов путь, если нет, то, применяя минимальное количество известных операций на графах, преобразовать данный граф в гамильтоновый граф.

Варианты заданий для второй части контрольной (семестровой) работы

4. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. *Авдеюк, О.А.* Математическая логика. Конспект лекций для студентов заочного отделения : учеб. пособие / Авдеюк О.А.; ВолгГТУ. Волгоград, 2011. 60 с.
- 2. *Авдеюк, О.А.* Теория графов. Конспект лекций для студентов заочного отделения : учеб. пособие / Авдеюк О.А.; ВолгГТУ. Волгоград, 2011. 76 с.
- 3. *Муха, Ю.П.* Дискретная математика: конспект лекций: учеб. пособие / Муха Ю.П., Авдеюк О.А.; ВолгГТУ. 2-е изд., стер. Волгоград: РПК "Политехник", 2007. 103 с.
- 4. *Муха, Ю.П.* Математическая логика и теория алгоритмов: учеб. пособие / Муха Ю.П., Авдеюк О.А.; ВолгГТУ. 2-е изд., стер. Волгоград: РПК "Политехник", 2007. 92 с.
- 5. Основы дискретной математики : учеб. пособие / Симонов Б.В., Тарасова И.А., Симонова И.Э., Авдеюк О.А.; ВолгГТУ. Волгоград, 2013. 63 с.
- 6. Элементы теории графов. Теория и практика : учеб. пособие / Симонов Б.В., Авдеюк О.А., Симонова И.Э., Тарасова И.А.; ВолгГТУ. Волгоград, 2014. 80 с.