

<u>Help</u> s

sandipan_dey >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>MO Index</u>

☆ Course / 11 Nonlinear Differential Equations and Ro... / 11.3 Root finding for nonlinear ...

Next >

Previous

Discussions

All posts sorted by recent activity

11.3.1 Newton's method for systems

☐ Bookmark this page

MO2.10

We can also use Newton's method for problems with systems of equations (i.e. M>1). A system of nonlinear equations is of the form

$$r_i\left(x_0,\ldots,x_{M-1}
ight)=0, \qquad i=0,\ldots,M-1.$$

We take the same number of equations and unknowns, so that we may be in a situation where there is one solution (rather than a continuum of solutions or no solution at all.) Whether the system has zero, one or several solutions is still a question that needs to be addressed separately. The shorthand notation for the system is $\underline{r}(\underline{x}) = 0$

By analogy with the 1D case we perform a Taylor expansion about \underline{x}^k :

$$\underline{r}\left(\underline{x}^{k} + \Delta \underline{x}\right) pprox \underline{r}\left(\underline{x}^{k}\right) + \nabla \underline{r}\left(\underline{x}^{k}\right) \Delta \underline{x}$$

The gradient $abla \underline{r}$ is known as the Jacobian. It is an M imes M matrix that we will refer to symbolically as J . Note that the (i,j) element of J is:

$$J_{i,j} = \frac{\partial r_i}{\partial x_j} \tag{11.8}$$

Continuing with the derivation of Newton's method for a system, we set the Taylor series approximation to zero to find Δx :

$$\underline{r}\left(\underline{x}^{k}
ight)+J\left(\underline{x}^{k}
ight)\Delta\underline{x}=0\Rightarrow J\left(\underline{x}^{k}
ight)\Delta\underline{x}=-\underline{r}\left(\underline{x}^{k}
ight)$$

which is a system of linear equations that must be solved for each iteration. And finally, we update $oldsymbol{x^k}$ by

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Blog

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>