CS480 – Introduction to Artificial Intelligence

TOPIC: FIRST ORDER LOGIC

REPRESENTATION

CHAPTER: 8

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- Propositional logic is not very expressive
- Consider the following English sentence
 - "Squares adjacent to pits are breezy"
- o How do you represent this in propositional logic?
 - $B_{1.1} \Leftrightarrow P_{1.2} \vee P_{2.1}$
 - $B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$
 - $B_{3,1} \Leftrightarrow \dots$
 - •
 - $B_{1,2} \Leftrightarrow \dots$
 - ...

FIRST-ORDER LOGIC (FOL)

- Built around *objects* and *relationships*
- Can express facts and rules about *some* or *all* of the objects in the universe
 - Enables to represent general rules

FIRST-ORDER LOGIC (FOL)

- First-order logic models the world in terms of
 - **Objects**, which are things with individual identities
 - **Relations** that hold among sets of objects and properties of objects that distinguish them from other objects
 - **Functions**, which are a subset of relations where there is only one "value" for any given "input"

• Examples:

- **Objects**: Students, lectures, companies, cars ...
- **Relations**: Brother-of, bigger-than, outside, part-of, has-color, occursafter, owns, visits, precedes, ... and unary relations (properties): blue, oval, even, large, ...
- **Functions**: father-of, best-friend, second-half, one-more-than ...

SYNTAX

- 1. Symbols
- 2. Terms
- 3. Atomic Sentences
- 4. Complex Sentences

SYMBOLS

- o Quantifier → ∀ | ∃
- \circ Constant \rightarrow A | X_1 | John | ...
- \circ Variable \rightarrow a | x | s | ...
- o Predicate → True | False | Loves | SisterOf | ...
- o Function → Mother | One-more-than | ...

SENTENCE

- \circ Sentence \rightarrow
 - AtomicSentence
 - ComplexSentence
- \circ AtomicSentence \rightarrow
 - Predicate
 - Predicate(Term, ...)
 - Term = Term

TERM

- \circ Term \rightarrow
 - Function(Term, ...)
 - Constant
 - Variable

COMPLEX SENTENCE

- \circ ComplexSentence \rightarrow
 - ¬ Sentence
 - Sentence \(\simes \) Sentence
 - Sentence \vee Sentence
 - Sentence \Rightarrow Sentence
 - Sentence ⇔ Sentence
 - Quantifier Variable, ... Sentence

ALL IN ONE PAGE

- o Sentence → AtomicSentence | ComplexSentence
- AtomicSentence → Predicate | Predicate(Term, ...) | Term = Term
- \circ ComplexSentence \rightarrow
 - ¬ Sentence
 - Sentence \(\times \) Sentence
 - Sentence v Sentence
 - Sentence ⇒ Sentence
 - Sentence ⇔ Sentence
 - Quantifier Variable, ... Sentence
- \circ Term \rightarrow Function(Term, ...) | Constant | Variable
- Quantifier $\rightarrow \forall \mid \exists$
- Constant \rightarrow A | X_1 | John | ...
- Variable \rightarrow a | x | s| ...
- Predicate → True | False | Loves | SisterOf | ...
- Function \rightarrow Mother | One-more-than | ...
- Operator precedence: \neg , =, \wedge , \vee , \Rightarrow , \Leftrightarrow

QUANTIFIERS

Universal quantification

- $\forall x \ P(x)$ means that P holds for all values of x in the domain associated with that variable
- E.g., $\forall x \text{ Dolphin}(x) \Rightarrow \text{Mammal}(x)$

Existential quantification

- $\exists x \ P(x)$ means that P holds for some value of x in the domain associated with that variable
- E.g., $\exists x \text{ Mammal}(x) \land \text{LaysEggs}(x)$
- Permits one to make a statement about some object without naming it

Universal Quantification

- Universal quantifiers are often used with "implies" to form rules
 - $\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)$
- Beware of using \forall with \land :
 - $\forall x \operatorname{King}(x) \wedge \operatorname{Person}(x)$
 - What's wrong with this sentence?

EXISTENTIAL QUANTIFICATION

- Existential quantifiers are often used with ∧:
 - $\exists y \text{ Crown}(y) \land \text{OnHead}(y, \text{John})$
- Beware of using \exists with \Rightarrow :
 - $\exists y \text{ Crown}(y) \Rightarrow \text{OnHead}(y, \text{John})$
 - What's wrong with this sentence?

QUANTIFIER SCOPE

- Switching the order of universal quantifiers does not change the meaning:
 - $\forall x \ \forall y \ P(x,y) \Leftrightarrow \forall y \ \forall x \ P(x,y)$
- Similarly, you can switch the order of existential quantifiers:
 - $\exists x \exists y \ P(x,y) \Leftrightarrow \exists y \ \exists x \ P(x,y)$
- Switching the order of universals and existential *does* change the meaning:
 - $\forall x \, \exists y \, \text{Loves}(x,y)$
 - Everyone loves someone
 - $\exists y \ \forall x \ \text{Loves}(x,y)$
 - Someone is loved by everyone

Connections Between \forall and \exists

- We can relate sentences involving ∀ and ∃ using De Morgan's laws:
 - $\bullet \forall x \ P(x) \Leftrightarrow \neg \exists x \ \neg P(x)$
 - For all x, P(x) is true \Leftrightarrow It is not the case that there is an x where P(x) is not true
 - $\bullet \ \forall x \neg P(x) \Leftrightarrow \neg \exists x \ P(x)$
 - $\circ \neg \forall x \ P(x) \Leftrightarrow \exists x \neg P(x)$
 - $\circ \neg \forall x \neg P(x) \Leftrightarrow \exists x P(x)$

TRANSLATING ENGLISH INTO FOL

- All smart students are hard-working
 - $\forall x \ (\operatorname{Smart}(x) \land \operatorname{Student}(x)) \Rightarrow \operatorname{HardWorking}(x)$
- No smart student is hard-working
 - $\neg \exists x \, \text{Smart}(x) \land \text{Student}(x) \land \text{HardWorking}(x)$
 - $\forall x \, (\operatorname{Smart}(x) \wedge \operatorname{Student}(x)) \Rightarrow \neg \operatorname{HardWorking}(x)$
 - Show that the two above are logically equivalent

NONE, AT LEAST ONE, AT MOST ONE, EXACTLY ONE

- o Bill has no sister
 - $\neg \exists x \text{ SisterOf}(x, \text{Bill})$
- Bill has at least one sister (Bill has a sister)
 - $\exists x \text{ SisterOf}(x, \text{Bill})$
- Bill has at most one sister
 - $\forall x, y \text{ SisterOf}(x, \text{ Bill}) \land \text{ SisterOf}(y, \text{ Bill}) \Rightarrow x = y$
- Bill has exactly one sister
 - $\exists x \text{ (Sister}(x, \text{Bill)} \land \forall y \text{ (Sister}(y, \text{Bill)} \Rightarrow x=y))$
- Bill has at least two sisters
 - $\exists x,y \text{ SisterOf}(x, \text{Bill}) \land \text{SisterOf}(y, \text{Bill}) \land \neg(x=y)$

NEXT

• Chapter 9: inference in FOL