

Probabilidade e inferência estatística com R - Módulo 3

Prof. Suellen Teixeira Zavadzki de Pauli

Objetivos

- Compreender os conceitos de correlação e regressão;
- Avaliar a correlação entre variáveis por meio de gráficos e teste;
- Estimar e visualizar um modelo de regressão;
- Interpretar coeficientes de regressão e estatísticas no contexto de problemas reais;
- Compreender os conceitos da Análise de Variância.

Correlação e Regressão Linear Simples

 Em determinadas situações, estamos interessados em descrever a relação entre duas variáveis ou até predizer o valor de uma a partir da outra.

• Exemplos:

- \circ Qual o peso de determinado indivíduo se sabemos que a altura dele é X?
- \circ Qual o consumo de combustível, em litros, dado que o carro percorreu uma distância de X km?
- Qual a relação entre a renda semanal de uma família e as despesas de consumo?

Renda x Despesas

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	S	<u>(S)</u>
FAMÍLIA 2	S S S	S S
FAMÍLIA 3	\$ \$ \$ \$ \$ \$	S S S

Renda x Despesas

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	S	<u>(S)</u>
FAMÍLIA 2	\$ \$ \$ \$	S S
FAMÍLIA 3	\$ \$ \$ \$ \$ \$ \$	S S S
FAMÍLIA 4	S S S	S S S

Renda x Despesas

	RENDA	DESPESAS
FAMÍLIA 1	<u>\$</u>	<u>(5)</u>
FAMÍLIA 2	\$ \$ \$	S S
FAMÍLIA 3	\$ \$ \$ \$ \$	S S S
FAMÍLIA 4	S S S	S S S
FAMÍLIA 5	S S	(\$)

Renda x Despesas

	RENDA	DESPESAS				
FAMÍLIA 1	\$ 5	<u>(S)</u>				
FAMÍLIA 2	\$ \$ \$ \$	S S				
FAMÍLIA 3	\$ \$ \$ \$ \$ \$	\$ \$ \$				
FAMÍLIA 4	S S S	S S S				
FAMÍLIA 5	S S	<u>S</u>				
FAMÍLIA 6	S S S S	S S S				

Renda x Despesas

Renda x despesas

Renda x despesas

"All models are wrong but some are useful"

George Box

- Estudar a relação linear entre duas variáveis quantitativas:
 - Explicitando a forma dessa relação: regressão
 - É indispensável identificar qual variável é a variável dependente.
 - Quantificando a força ou o grau dessa relação: **correlação**
 - ullet Não é necessário identificar qual variável é a variável dependente, pois queremos estudar o grau de relacionamento entre as variáveis X e Y , ou seja, uma medida de covariabilidade entre elas.
 - A correlação é considerada como uma medida de influência mútua entre variáveis, por isso não é necessário especificar quem influencia e quem é influenciado.

Diagrama de dispersão

• Os dados para a análise de regressão e correlação simples são da forma:

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$$

- Com base no conjunto de dados é possível construir um diagrama de dispersão, o qual deve exibir uma tendência linear para que se possa usar a regressão linear;
- ullet Com isso podemos decidir impiricamente se um relacionamento linear entre X e Y pode ser assumido;
- É possível verificar se o grau de relacionamento linear entre as variáveis é forte ou fraco.

Diagrama de dispersão

Coeficiente de correlação linear

O grau de relação entre duas variáveis pode ser medido através do coeficiente de correlação linear (r), dado por

$$r = rac{\sum_{i=1}^{n} x_i y_i - n ar{x} ar{y}}{\sqrt{(\sum_{i=1}^{n} x_i^2 - n ar{x}^2)(\sum_{i=1}^{n} y_i^2 - n ar{y}^2)}}$$

onde $-1 \le r \le 1$;

- r=1: relação linear perfeita positiva entre X e Y;
- r=0: inexistência de relação linear entre X e Y;
- ullet r=-1: relação linear perfeita negativa entre X e Y;
- r>0: relação linear positiva entre X e Y;
- r < 0: relação linear negativa entre X e Y;

Coeficiente de determinação

- Existem muitos tipos de associações possíveis, e o coeficiente de correlação avalia o quanto uma nuvem de pontos no gráfico de dispersão se aproxima de uma reta;
- ullet O coeficiente de determinação (r^2) é o quadrado do coeficiente de correlação, por consequência;

$$0 \le r^2 \le 1$$

- ullet O r^2 nos dá a porcentagem de variação em Y que pode ser explicada pela variável independente X.
- ullet Quanto mais próximo de 1, maior é a explicação da variável Y pela variável X.

- A tabela a seguir relaciona as distâncias percorridas por carros (km) e seus consumos de combustível (litros), em uma amostra de 10 carros novos.
 - Calcule o coeficiente de correlação linear e o coeficiente de determinação.
 - Faça um diagrama de disperção.

Distância	20.00	60.00	15.00	45.00	35.00	80.00	70.00	73.00	28.00	85.00
Consumo	1.33	5.45	1.66	3.46	2.92	6.15	4.11	5.00	2.95	6.54

Consumo x Distância

- A tabela a seguir relaciona os pesos de carros (t) e o rendimento de combustível (em km/l), para uma amostra de 10 carros.
 - Calcule o coeficiente de correlação linear e o coeficiente de determinação.
 - Faça um diagrama de disperção.

Peso	1.32	1.59	1.27	1.99	1.13	1.54	1.36	1.5	1.27	1.09
Rendimento	13.18	11.45	12.33	10.63	13.18	12.33	11.90	11.9	11.90	14.00

Peso x Rendimento

Teste para o coeficiente de correlação

- Usualmente definimos o coeficiente de correlação para uma amostra, pois desconhecemos esse valor para a população.
- Uma população que tenha duas variáveis não correlacionadas pode produzir uma amostra com coeficiente de correlação diferente de zero.
- ullet Para testar se uma amostra foi colhida de uma população para a qual o coeficiente de correlação entre duas variáveis é nulo, precisamos obter a distribuição amostral da estatística r .

Teste para o coeficiente de correlação

- Seja ho o verdadeiro coeficiente de correlação populacional desconhecido. Seja ho o verdadeiro coeficiente de correlação populacional desconhecido.
- Para testar se o coeficiente de correlção populacional é igual a zero, realizamos um teste de hipótese com

$$H_0:
ho = 0$$

$$H_1:
ho
eq 0$$

A estatística de teste utilizada é

$$t_{calc} = r \sqrt{rac{n-2}{1-r^2}}$$

que tem distribuição t de Student com n-2 graus de liberdade.

Teste para o coeficiente de correlação

Procedimentos gerais

- Hipóteses $H_0:
 ho=0, H_1:
 ho
 eq 0$
- ullet Nível de significância lpha
- ullet Verificar a região de rejeição com base no nível de significância t_{crit} , com n-2 graus de liberdade
- Calculo da estatística do teste sob a hipótese nula

$$t_{calc} = r \sqrt{rac{n-2}{1-r^2}}$$

• Rejeitar a hipótese nula se a estatística de teste calculada estiver dentro da região de rejeição ou $|t_{calc}|$ > $|t_{crit}|$

Exercício 1 - continuação

Com base nas informações do exercício 1, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.95$$

Exercício 1 - continuação

Com base nas informações do exercício 1, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.95$$

$$t_{calc} > t_{crit}$$

Rejeitamos a hipótese nula de que não há correlação entre as variáveis, com 95% de confiança.

Exercício 2 - continuação

Com base nas informações do exercício 2, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = 0.85$$

Exercício 2 - continuação

Com base nas informações do exercício 2, realize o teste de hipótese para o coeficiente de correlação ρ , usando um nível de 5% de significância.

$$r = -0.85$$

$$t_{calc} = -4.563861$$
 $|t_{calc}| > |t_{crit}|$

Rejeitamos a hipótese nula de que não há correlação entre as variáveis, com 95% de confiança.

Exercício 1 - continuação

 Construa um gráfico no qual seja possível visualizar os valores das duas variáveis no eixo y.

Correlação x Causalidade?

Taxa de divórcio no Maine se correlaciona com o consumo per capita de margarina

Fonte: https://www.tylervigen.com/spurious-correlations

Correlação x Causalidade?

As importações de petróleo bruto dos EUA da Noruega se correlacionam com motoristas mortos em colisão com trem ferroviário

Fonte: https://www.tylervigen.com/spurious-correlations

Correlação x Causalidade?

A idade da miss America correlaciona-se com assassinatos por vapor, vapores quentes e objetos quentes

Fonte: https://www.tylervigen.com/spurious-correlations

Matriz de correlação

Base de dados mtcars

```
###
                          cyl
                                     disp
                                                  hp
                                                           drat
               mpg
         1.0000000 - 0.8521620 - 0.8475514 - 0.7761684 0.6811719
   mpg
  cyl
        -0.8521620   1.0000000   0.9020329   0.8324475   -0.6999381
   disp -0.8475514 0.9020329
                               1.0000000 0.7909486 -0.7102139
                               0.7909486 1.0000000 -0.4487591
  hp
        -0.7761684
                    0.8324475
  drat
         0.6811719 - 0.6999381 - 0.7102139 - 0.4487591 1.0000000
```


- A análise de regressão estuda a relação entre uma variável chamada de variável dependente Y e outras variáveis chamadas variáveis independentes X;
- A relação entre Y e X é representada por um \mathbf{modelo} , que associa a variável $\mathbf{variável}$ dependente com as variáveis $\mathbf{variáveis}$ independentes;
 - Variável dependente: Variável que desejamos predizer ou explicar
 - Variável independente: Variável usada para explicar a variável dependente

- A análise de regressão é usada para:
 - Predizer valores de uma variável dependente baseado no valor de ao menos uma variável independente;
 - Explicar o impacto de mudanças em uma variável independente na variável dependente

- Regressão Linear Simples
- Regressão Linear Múltipla

• Como utilizar a regressão linear para prever valores de uma variável dependente $m{Y}$ com base em informações de uma variável independente $m{X}$?

ullet Na prática, procura-se uma função de X que explique Y, ou seja,

$$X;Y o Y\simeq f(X)$$

• Essa relação, em geral, não é perfeita, ou seja, existem erros associados.

- Uma das preocupações estatísticas ao analisar dados é a de criar modelos do fenômeno em observação;
- As observações frequentemente estão misturadas com variações acidentais ou aleatórias;
- Assim, é conveniente supor que cada observação é formada por duas partes: uma previsível (ou controlada) e outra aleatória (ou não previsível), ou seja

$$(observa$$
çã $o) = (previsível) + (aleat\'orio)$

- A parte previsível incorpora o conhecimento sobre o fenômeno, e é usualmente expressa por uma função matemática com parâmetros desconhecidos.
- As observações frequentemente estão misturadas com variações acidentais ou aleatórias.
- A parte aleatória deve obedecer algum modelo de probabilidade
- Com isso, o trabalho é produzir estimativas para os parâmetros desconhecidos, com base em amostras observadas.

Regressão Linear Simples

$$(observa$$
çã $o) = (previs$ í $vel) + (aleat$ ó $rio)$

Matemáticamente, podemos escrever

$$y_i = heta + e_i$$

- y_i = observação i;
- θ = efeito fixo, comum a todos os indivíduos
- e_i = efeito risidual da observação i, pode ser considerado como o efeito resultante de várias características que não estão explícitas no modelo

Renda x Despesas

Considerando que as despesas médias da população é de μ =2.2, então a despesa de cada pessoa y_i pode ser descrita pelo seguinte modelo:

$$y_i = 2.2 + e_i$$

onde $heta=\mu$, e cada e_i determinará as despesas de cada pessoa, em função de diversos fatores como: renda, idade, país, . . . , ou seja

$$e_i = f(Renda, idade, pa$$
í $s\dots)$

Ou seja, à medida que relacionamos as despesas com outras variáveis, ganhamos informação e diminuimos o erro.

Renda x despesas

• Como as despesas dependem da renda de maneira linear, podemos então aprimorar o modelo anterior incorporando essa informação.

• Como as despesas dependem da renda de maneira linear, podemos então aprimorar o modelo anterior incorporando essa informação.

Renda x despesas

Regressão Linear Simples

Um modelo linear entre duas variáveis X e Y é definido matematicamente como uma equação com dois parâmetros desconhecidos,

$$Y = \beta_0 + \beta_1 X$$

Sendo assim, o modelo anterior onde conheciamos só a média μ ,

$$y_i = \mu + e_i$$

pode ser reescrito como

$$y_i = eta_0 + eta_1 Renda + e_i$$

Note que o erro deve diminuir, pois agora

$$e_i = f(idade, pa$$
í $s, \dots)$

ou seja, incorporamos uma informação para explicar o peso, que antes estava inserida no erro.

- No exemplo anterior, notamos que Despesas é uma variável dependente (linearmente) da Renda.
- A análise de regressão é a técnica estatística que analisa as relações existentes entre uma única variável dependente, e uma ou mais variáveis independentes.
- O objetivo é estudar as relações entre as variáveis, a partir de um modelo matemático, permitindo estimar o valor de uma variável a partir da outra.
 Exemplo: sabendo a renda podemos determinar a despesa de uma família, se conhecemos os parâmetros do modelo anterior.

- Em uma análise de regressão linear consideraremos apenas as variáveis que possuem uma relação linear entre si.
- Uma análise de regressão linear múltipla pode associar k variáveis independentes (X) para "explicar" uma única variável dependente (Y),

$$Y = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \ldots + \beta_k * X_k + e$$

ullet Uma análise de regressão linear simples associa uma única variável independente (X) com uma variável dependente (Y),

$$Y = \beta_0 + \beta_1 * X_1 + e$$

• Dados n pares de valores, $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$, se for admitido que Y é função linear de X pode-se estabelecer uma regressão linear simples, cujo modelo estatístico é

$$Y_i = \beta_0 + \beta_1 * X_i + e_i, i = 1, 2, \dots, n$$

onde,

- Y é variável resposta
- X é variável explicativa
- ullet eta_0 é o intercepto da reta (valor de Y quando X=0)
- β_1 é o coeficiente angular da reta (efeito de X sobre Y)
- ullet $e \sim N(0,\sigma^2)$ é o resíduo

Devemos estimar os parâmetros de eta_0 e eta_1

- eta_0 representa o ponto onde a reta corta o eixo Y (na maioria das vezes não possui interpretação prática)
- eta_1 representa a variabilidade em Y causada pelo aumento de uma unidade em X. Além disso,
- ullet $eta_1>0$ 0 mostra que com o aumento de X, também há um aumento em Y,
- ullet $eta_1=0$ mostra que não há efeito de X sobre Y
- ullet $eta_1 < 0$ mostra que com a aumento de X, há uma diminuição em Y

Renda x despesas

 Como através de uma amostra obtemos uma estimativa da verdadeira equação de regressão, denominamos

$${\hat Y}_i={\hateta}_0+{\hateta}_1*X_i+e_i, i=1,2,\ldots,n$$

• ou seja, \hat{Y}_i é o valor estimado de Y_i , através das estimativas de β_0 e β_1 , que chamaremos de $\hat{\beta}_0$ e $\hat{\beta}_1$. Para cada valor de Y_i , temos um valor \hat{Y}_i estimado pela equação de regressão,

$$Y_i = \hat{Y}_i + e_i,$$

Portanto, o erro (ou desvio) de cada observação em relação ao modelo adotado será

$$e_i = Y_i - \hat{Y_i}$$
 $e_i = Y_i - (eta_0 + eta_1 X_i)$

Devemos então adotar um modelo cujos parâmetros β_0 e β_1 tornem esse diferença a menor possível. Isso equivale a minimizar a soma de quadrados dos resíduos (SQR), ou do erro,

$$SQR = \sum_{i=1}^n [Y_i - (eta_0 + eta_1 X_i)]^2.$$

O método de minimizar a soma de quadrados dos resíduos é denominado de métodos mínimos quadrados. Para se encontrar o ponto mínimo de uma função, temos que obter as derivadas parciais em relação a cada parâmetro,

$$rac{\partial SQR}{\partial eta_0} = 2 \sum_{i=1}^n [Y_i - (eta_0 + eta_1 X_i)](-1)$$

$$rac{\partial SQR}{\partialeta_1} = 2\sum_{i=1}^n [Y_i - (eta_0 + eta_1 X_i)](-X_i)$$

e igualar os resultados a zero

$$\hat{eta}_0 = rac{\partial SQR}{\partial eta_0} = 0$$

$$\hat{eta_1} = rac{\partial SQR}{\partial eta_1} = 0$$

• Dessa forma, chegamos às estimativas de mínimos quadrados para os parâmetros eta_0 e eta_1 :

$$\hat{eta}_1 = rac{\sum_{i=1}^n x_i y_i - nar{x}ar{y}}{\sum_{i=1}^n x_i^2 - nar{x}^2}$$

$$\hat{eta_0} = ar{y} - \hat{eta_1}ar{x}$$

onde

$$ar{y} = rac{1}{n} \sum_{i=1}^n ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

Exercício 1 continuação

- A tabela a seguir relaciona as distâncias percorridas por carros (km) e seus consumos de combustível (litros), em uma amostra de 10 carros novos.
 - \circ Estime os parâmetros \hat{eta}_0 e \hat{eta}_1
 - Interprete o resultado
 - Trace o modelo linear aproximado,
 - Faça uma predição do consumo de combustível para uma distância de 37.00
 km

Distância	20.00	60.00	15.00	45.00	35.00	80.00	70.00	73.00	28.00	85.00
Consumo	1.33	5.45	1.66	3.46	2.92	6.15	4.11	5.00	2.95	6.54

Exercício 1 continuação

• $\beta_0 = 0.57 \ \mathrm{e} \ \beta_1 = 0.066$

Consumo x Distância

Exercício 2 continuação

- A tabela a seguir relaciona os pesos de carros (t) e o rendimento de combustível (em km/l), para uma amostra de 10 carros.
 - \circ Estime os parâmetros \hat{eta}_0 e \hat{eta}_1
 - Interprete o resultado
 - Trace o modelo linear aproximado,
 - o Faça uma predição do rendimento de combustível para um carro de 1.75t

Peso	1.32	1.59	1.27	1.99	1.13	1.54	1.36	1.5	1.27	1.09
Rendimento	13.18	11.45	12.33	10.63	13.18	12.33	11.90	11.9	11.90	14.00

Exercício 2 continuação

- $\beta_0 = 16.68 \,\mathrm{e}\, \beta_1 = -3.13$
- Para 1.75t o rendimento previsto é de 11.20

- Existem situações nas quais um pesquisador deseja comparar mais do que dois grupos experimentais com relação a uma variável quantitativa.
- Exemplos:
 - Comparar a idade de pacientes entre três grupos de risco (baixo, médio, alto);
 - Comparar a quantidade de glucose produzida por diferentes tipos de enzimas;
 - Comparar o consumo de combustível de 3 tipos de carros, marcas diferentes.

- ullet Seria possível realizar vários testes t entre os grupos, comparando-os dois a dois.
 - \circ Se houvesse 3 grupos, por exemplo (A, B e C), haveria três testes t de comparações entre as médias, sendo estes: μ_A vs μ_B , μ_A vs μ_C e μ_B vs μ_C ;
 - \circ Pensando na comparação de quatro grupos (A, B, C e D), haveria seis testes t de comparações entre as médias, pois tem-se $C_{4,2}$, sendo estes: μ_A vs μ_B , μ_A vs μ_C , μ_A vs μ_D , μ_B vs μ_C , μ_B vs μ_D e μ_C vs μ_D ;

- ullet O número de testes aumenta conforme o número de grupos aumenta. Para k grupos há $C_{k,2}$ k comparações;
- A realização de todas as comparaçõoes dois a dois é estatisticamente incorreta.
- O teste t foi delineado para que, em um mesmo experimento, sejam comparadas as médias de A com apenas outra, B, com probabilidade α de se concluir, incorretamente, por uma diferença que não existe. Porém, se forem feitas mais comparações envolvendo a média A, a probabilidade de um erro deste tipo passa a ser maior do que α .

- O procedimento correto para se evitar o aumento no nível global de significância do experimento consiste em aplicar a técnica de Análise de Variância (ANOVA).
- O método compara todas as médias em um único teste e visa a identificar a exist^encia de ao menos uma diferença entre grupos, se alguma existir.

$$H_0: \mu_1 = \mu_2 = \mu_3 = \ldots = \mu_k$$

 H_1 : Ao menos uma média difere das demais

- Se o resultado for significativo e deseja-se saber qual média difere das demais, é possível aplicas técnicas existentes de comparações múltiplas entre as médias.
- É possível identificar quais as populções são diferentes entre si, mantendo controlado o nível de significância do teste.
- Análise de Variância compara a variabilidade entre as médias amostrais dos grupos e a variação dentro dos grupos.

	Em cada nível do fator há uma amostra de observações				
	NÍVEL 1	NÍVEL 2		NÍVEL K	
	y_{11}	y ₂₁		y_{k1}	
	<i>y</i> ₁₂	y ₂₂		y_{k2}	
	:	:		:	
	y_{1n_1}	y_{2n_2}		y_{kn_k}	
VIédias	$ar{\mathcal{Y}}_{1.}$	ӯ _{2.}		$\bar{\mathcal{Y}}_{k}$.	
Variância	$\sigma_{1.}^2$	$\sigma_{2.}^2$		$\sigma_{k.}^2$	

- Quando temos diferentes populações, podemos calcular diferentes tipos de medidas de variância:
 - A variação dos valores dos indivíduos em torno das médias populacionais (variância dentro dos grupos);
 - A variação das médias populacionais em torno da média global (variância entre os grupos).
- Se a variabilidade dentro das k diferentes populações for pequena comparada com a variabilidade entre suas respectivas médias, isto sugere que as médias populacionais são diferentes.

	Em cada nível do fator há uma amostra de observações			
	NÍVEL 1	NÍVEL 2		NÍVEL K
	<i>y</i> ₁₁	y_{21}		y_{k1}
	y ₁₂	y ₂₂		y_{k2}
	÷	i		:
	y_{1n_1}	y_{2n_2}		y_{kn_k}
Médias	<u></u> у _{1.}	$\overline{\mathcal{y}}_{2.}$		$ar{\mathcal{Y}}_k$.
Variância	$\sigma_{1.}^{2}$	$\sigma_{2.}^{2}$		σ_{k}^2
	1-1	1		

• Primeiro deve-se encontrar, com um conjunto de k populações, a medida de variabilidade das observações individuais em torno de suas médias populacionais.

$$s_d^2 = rac{\sum_{i=1}^k \sum_{i=j}^{n_k} (x_{ij} - ar{x}_i)^2}{n-k}$$

ullet Esta quantidade é a média ponderada das k variâncias amostrais.

Em cada nível do fator há uma amostra de observações

	NÍVEL 1	NÍVEL 2	•••	NÍVEL K
	y ₁₁	y ₂₁		y_{k1}
	y ₁₂	y ₂₂		y_{k2}
	÷	:		•
	\mathcal{Y}_{1n_1}	y_{2n_2}		\mathcal{Y}_{kn_k}
Médias	\bar{y}_{1} .	\bar{y}_2 .		$\overline{\mathcal{Y}}_k$.
Variância	$\sigma_{1.}^2$	$\sigma_{2.}^2$		$\sigma_{k.}^2$

- Precisamos de uma expresão que estime a variação das médias em torno da média global, ou seja, a variância "entre grupos".
- ullet Com $ar{x}_j$ sendo a média amostral do grupo j e $ar{ar{x}}$ a média global das n observações, tem-se

$$ar{ar{x}} = rac{n_1ar{x}_1 + n_2ar{x}_2 \ldots n_kar{x}_k}{n_1 + n_2 + \ldots n_k}$$

A variância entre os grupos é dada por

$$s_e^2 = rac{n_1 (ar{x}_1 - ar{ar{x}})^2 + n_2 (ar{x}_2 - ar{ar{x}})^2 + \ldots + n_k (ar{x}_k - ar{ar{x}})^2}{k-1}$$

- Agora que temos as estimativas das variâncias, gostarímos de responder a seguinte questão: as m´edias amostrais variam em torno da média global mais do que as observaçõeses individuais variam em torno das médias amostrais?
- Se sim, isto implica que as correspondentes m´edias populacionais são diferentes.
- ullet Com H_0 sendo verdadeira, a variabilidade entre as médias dos grupos deve ser pequena
- Para testar a hipótese nula que as médias populacionais são idênticas, usamos a seguinte estatística de teste

$$F=rac{s_e^2}{s_d^2}$$

- Sob a hipótese nula, tanto s_e^2 quanto s_d^2 estimam a variância comum σ^2 e F é próximo de 1.
- Se existe uma diferença entre as populações, então a variância entre os grupos é maior que a variância dentro dos grupos, e F é maior que 1.
- ullet Sob H0, a razão F tem uma distribuição F com k-1 e n-k graus de liberdade

Homocedasticidade

- Homocedasticidade é o termo para designar variância constante dos erros experimentais ε_i para observações distintas.
 - Gráfico de resíduos;
 - Testes estatísticos.

$$H_0:\sigma_1^2=\sigma_2^2=\sigma_3^2=\ldots=\sigma_n^2$$

 H_1 : pelo menos uma das variâncias difere das demais

• Teste de Bartlett é um dos mais populates.

- Em um experimento deseja-se verificar se há diferença entre as práticas parentais com relação a três grupos de crianças.
 - Grupo 1: crianças com síndrome de down;
 - Grupo 2: crianças com síndrome de down em que os pais recebem orientção sobre práticas parentais para este grupo especial;
 - Grupo 3: crianças sem síndrome de down.
- Para medir as práticas parentais há um instrumento psicológico que gera um escore em que os resultados estão guardados na variável PP.


```
bartlett.test(mod$res~dados$Grupo)
```

```
##
## Bartlett test of homogeneity of variances
##
## data: mod$res by dados$Grupo
## Bartlett's K-squared = 2.0255, df = 2, p-value = 0.3632
```



```
## Peso Industria
## 1 27.42 A
## 2 30.34 A
## 3 30.75 A
## 4 27.26 A
## 5 26.74 A
## 6 28.23 A
```



```
bartlett.test(mod$res~data$Industria)
```

```
##
## Bartlett test of homogeneity of variances
##
## data: mod$res by data$Industria
## Bartlett's K-squared = 0.9788, df = 2, p-value = 0.613
```

Normalidade ou Gaussianidade

- Visualização gráfica
- Testes estatísticos:
 - Há diversos testes, um dos mais utilizados: Teste de Shapiro Wilk

 $H_0: ext{Os dados seguem uma distribuição Normal}$

 H_1 : Os dados não seguem uma distribuição Normal

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (x_{ij} - \bar{x})^2$$

SOMA DE QUADRADOS TOTAL

N-1

$$S_T^2 = \frac{SQT}{N-1}$$

$$\sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} (x_{ij} - \bar{x})^2 = \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} (x_{ij} - \bar{x}_i)^2 + \sum_{i=1}^{\kappa} n_i (\bar{x}_i - \bar{x})^2$$

SOMA DE QUADRADOS RESIDUAL

N-K

$$S_R^2 = \frac{SQR}{N-K}$$

$$+ \sum_{i=1}^{\kappa} n_i (\bar{x}_i - \bar{\bar{x}})^2$$

SOMA DE QUADRADOS **ENTRE AMOSTRAS**

K-1

$$S_E^2 = \frac{SQE}{K-1}$$

Fonte de variação

FONTE DE VARIAÇÃO	SQ	GL	S^2	F_{calc}
ENTRE	$SQE= \sum_{i=1}^k n_i (\bar{x}_i - \bar{\bar{x}})^2$	K-1	$S_E^2 = \frac{SQE}{K-1}$	$\frac{S_E^2}{S_R^2}$
RESIDUAL	SQR= $\sum_{i=1}^{k} \sum_{j=1}^{n} (x_{ij} - \bar{x}_i)^2$	N-K	$S_R^2 = \frac{SQR}{N - K}$	
TOTAL	SQT= $\sum_{i=1}^{k} \sum_{j=1}^{n} (x_{ij} - \bar{x})^2$	N-1		

Teste F

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$

 H_1 : Pelo menos umas das médias μ_i é diferente das demais

$$H_0:\sigma_E^2 = \sigma_R^2$$

 $H_1:\sigma_E^2 > \sigma_R^2$

SE

$$F_{calc} = \frac{S_E^2}{S_R^2} > F_{tab} = F_{k-1;N-k;\alpha}$$
 ENTÃO,

$$F_{tab} = F_{k-1;N-k;\alpha}$$

PELO MENOS UMA DAS MÉDIAS É DIFERENTE

$$X \sim F_{m,n}$$

 $P(X > F_{m,n,\alpha}) = \alpha$

m - graus de liberdade do numerador

n - graus de liberdade do denominador

