Model Tuning

Recap from Under the Hood

Problem setting

```
. X\\ = \text{features}\\. y\\ = \text{target} =\\ h(X,\beta) + error\\. h\\ = \text{hypothesis function (Linear, Logistic Regression, etc.)}
```

Parameters of the model:

 β

- computed automatically during .fit()
- by minimizing $L(\beta)$

Hyperparameters of the model (chosen manually)

```
Loss Function L
(MSE, Log-Loss, etc.)
loss parameters (learning_rate, eta0, etc.)
solver = method used to minimize L
('newton', 'sgd', etc.)
model specificities ('n_neighbors', 'kernel', etc.)
and more
```

Plan

- 1. Model Complexity
- 2. Regularization
- 3. Model Tuning: Grid Search & Random Search
- 4. Support Vector Machines (Margin Classifiers)
- 5. Kernel Tricks

The Tuning Stage

1. Model Complexity

Let's remember Linear Regression:

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

? What about non-linear behavior as below?

f we add a new transformed feature

we have a better fit (in red)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \ldots + \epsilon$$

 \ref{Y} We could engineer very complex features: $X^3, X^6, (X_1^2 * X_2^5), \ldots$

$$X^3, X^6, (X_1^2 * X_2^5), \dots$$

Our \mathbb{R}^2

will keep increasing with every additional feature!

We just solved Data Science!

```
In [ ]: def train_best_model_ever(X,y):
    while True:
        model = LinearRegression()
        model.fit(X, y)
        if calculate_r2(model, X, y) < 0.9999999:
            X = add_more_crazy_features(X)
        else:
        return model</pre>
```

Overfitting and Underfitting

What's wrong with the first model? With the third?

- The first one does not capture all the information in the data (high bias model)
- The third one finds signals that aren't there (noise); it will not generalize well to new data points (high variance model)

The Bias-Variance Tradeoff

One of the most important concepts in Data Science!

Look at what happens in reality when measuring the error on an unseen test set:

 $TotalError = \frac{Bias^2}{} + Variance + IrreducibleError$

Great read (http://scott.fortmann-roe.com/docs/BiasVariance.html)

? How do we find the optimal model complexity?

The one that minimizes the **test error** on an unseen dataset

Don't have time to try many models?

Use **learning curves** to at least diagnose the only one you have!

! Data Leakage Reminder !

Always diagnose your model using a validation set!

Cross-validate instead of using a single holdout validation set to generalize better!

Solutions for Overfitting

Simplify your model relative to your data

- · Get more observations
- Feature selection (manual or automated (https://scikit-learn.org/stable/modules/feature_selection.html))
- Dimensionality reduction (Unsupervised Learning)
- Early stopping (Deep Learning)
- Regularization of your Loss function

2. Regularization

Regularization means adding a **penalty term** to the Loss that **increases** with β

$$RegularizedLoss = Loss(X, y, \beta) + Penalty(\beta)$$

Penalizes large values for

 β_i

Forces model to shrink certain coefficients or even select less features

Prevents overfitting

 \hat{y}

The two most famous Regularization penalties are:

$$Ridge(X, y, \beta) = \underbrace{\sum_{i=0}^{n-1} (y_i - (\beta_0 + \beta_1 x_1 + \dots \beta_p x_p))^2}_{Loss(X, y, \beta)} + \frac{\alpha}{\sum_{j=1}^{p} \beta_j^2}$$

$$Lasso(X, y, eta) = \underbrace{\sum_{i=0}^{n-1} (y_i - (eta_0 + eta_1 x_1 + \dots eta_p x_p))^2}_{Loss(X, y, eta)} + \frac{oldsymbol{lpha}}{a} \sum_{j=1}^p |a_j|$$

! Warning !

When regularizing a Regression with a L2 penalty or with a L1 penalty:

We regularize

$$\beta_1,\ldots,\beta_p$$

• We do NOT regularize the intercept

 β_0

- Keep in mind that Ridge reduces the influence of features with a non-significant coefficient
- Keep in mind that Lasso shrinks them to zero
- But

 β_0

is not associated with any feature!

New hyper-parameter

 α

- · Dictates how much the model is regularized
- Large

 α

values force model complexity to decrease

→ variance,

bias

The sum starts from j = 1, we do **not** penalize the intercept coefficient

Comparing Ridge vs. Lasso?

Out[]:

	age	sex	bmi	bp	s1	s2	s3	s4	
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.01
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.06
2	0.085299	0.050680	0.044451	-0.005670	-0.045599	-0.034194	-0.032356	-0.002592	0.00
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.02
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.03

6/2/25, 11:51 PM 05-ML_05-Model-Tuning

```
In [ ]: | y.head()
Out[]: 0
              151.0
               75.0
         2
              141.0
         3
              206.0
         4
              135.0
         Name: target, dtype: float64
```

Always scale your features before regularization to penalize each

 β_i

fairly

(already scaled here)

```
In [ ]: from sklearn.linear_model import Ridge, Lasso, LinearRegression
        linreg = LinearRegression().fit(X, y)
        ridge = Ridge(alpha=0.2).fit(X, y)
        lasso = Lasso(alpha=0.2).fit(X, y)
        coefs = pd.DataFrame({
            "coef linreg": pd.Series(linreg.coef , index = X.columns),
            "coef ridge": pd.Series(ridge.coef , index = X.columns),
            "coef lasso": pd.Series(lasso.coef , index= X.columns)})\
        coefs\
            .map(lambda x: int(x))\
            .style.map(lambda x: 'color: red' if x == 0 else 'color: black')
```

Out[]:

	coef_linreg	coef_ridge	coef_lasso
age	-10	7	0
sex	-239	-182	-75
bmi	519	457	511
bp	324	284	234
s1	-792	-48	0
s2	476	-78	0
s3	101	-189	-170
s4	177	119	0
s5	751	400	450
s6	67	97	0

What happens when alpha increases?

- Increasing α in Ridge will only shrink parameters toward 0
- Increasing α in Lasso can shrink parameters to 0 (natural feature selector)

ElasticNet = Lasso & Ridge Weighted Average

Which features are penalized?

```
In [ ]: # Let's check the p-values of our features before regularization
import statsmodels.api as sm

ols = sm.OLS(y, sm.add_constant(X)).fit()
ols.summary()
```

Out[]: OLS Regression Results

De	:	target			R-squared:	0.518	
	l:	OLS			. R-squared:	0.507	
	I: L	Least Squares			F-statistic:	46.27	
Date:		: Thu,	Thu, 09 Feb 2023		Prob (F-statistic):		3.83e-62
Time:) :	23:59:47		Log	_J -Likelihood:	-2386.0
No. Ob	s:	442			AIC:	4794.	
Di	s:	431			BIC:	4839.	
	Df Mode	l:	10				
Covariance Type:		:	nonrobust				
	coef	f std	err	t	P> t	[0.025	0.975]
const	152.1335	5 2.5	576	59.061	0.000	147.071	157.196
age	-10.0099	59.7	749	-0.168	0.867	-127.446	107.426
sex	-239.8156	61.2	222	-3.917	0.000	-360.147	-119.484
bmi	519.8459	66.5	533	7.813	0.000	389.076	650.616
bp	324.3846	65.4	122	4.958	0.000	195.799	452.970
s1	-792.1756	416.6	680	-1.901	0.058	-1611.153	26.802
s2	476.7390	339.0	030	1.406	0.160	-189.620	1143.098
s3	101.0433	3 212.	531	0.475	0.635	-316.684	518.770
s4	177.0632	2 161.4	476	1.097	0.273	-140.315	494.441
s 5	751.2737	7 171.9	900	4.370	0.000	413.407	1089.140
s6	67.6267	65.9	984	1.025	0.306	-62.064	197.318
Omnibus: 1		1.506	D	urbin-W	atson:	2.029	
Prob(Omnibus):		0.471	.471 Jarque-Bera (JB):			1.404	
						0.496	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 227.

Kurtosis: 2.726

In []: coefs_with_p_value

Out[]:

	coef_linreg	coef_ridge	coef_lasso	p-values (%)
age	-10.009866	7.728551	0.000000	86
sex	-239.815644	-182.946743	-75.612133	0
bmi	519.845920	457.176049	511.404133	0
bp	324.384646	284.516603	234.508645	0
s1	-792.175639	-48.471100	-0.000000	5
s2	476.739021	-78.867888	-0.000000	16
s3	101.043268	-189.672329	-170.214828	63
s4	177.063238	119.682742	0.000000	27
s5	751.273700	400.706510	450.678492	0
s6	67.626692	97.378604	0.224852	30

Regularization tends to penalize features that are not statistically significant

Conclusions

- Fragularize when you think you are overfitting (e.g. Learning Curves not converging)
- Ridge when you believe all coefficients may have an impact
- Lasso as a feature selection tool (much better for interpretability!)
- Regularization is almost always appropriate
 - Ridge is often turned on by default in most Machine Learning models
 - You just have to tune the regularization parameter

3. Model Tuning

? How to choose the best hyper-parameters (e.g. alpha)

The Grid Search Method

Explores different hyperparameter value combinations to find the combination which optimizes performance

Grid Search

```
Pseudocode
Hyperparameter_One = [a, b, c]
Hyperparameter_Two = [x, y, z]
```


- 1. Hold out a validation set (never use the test set for model tuning!)
- 2. Select which grid of values of hyper-parameters to try out
- 3. For each combination of values, measure your performance on the validation set
- 4. Select hyper-parameters that produce the best performance

Let's (manually) fine-tune a linear model with ElasticNet ((https://scikit- learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html) regularization

```
In [ ]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2
0, random_state=1)
```

```
In [ ]: # Select hyperparam values to try
        alphas = [0.01, 0.1, 1] # L1 + L2
        l1 ratios = [0.2, 0.5, 0.8] # L1 / L2 ratio
        # create all combinations [(0.01, 0.2), (0.01, 0.5), (...)]
        import itertools
        hyperparams = itertools.product(alphas, 11 ratios)
In [ ]: # Train and CV-score model for each combination
        from sklearn.linear model import ElasticNet
        from sklearn.metrics import r2 score
        from sklearn.model selection import cross val score
        for hyperparam in hyperparams:
            alpha = hyperparam[0]
            11 ratio = hyperparam[1]
            model = ElasticNet(alpha=alpha, 11 ratio=11 ratio)
            r2 = cross val score(model, X train, y train, cv=5).mean()
            print(f"alpha: {alpha}, l1 ratio: {l1 ratio}, r2: {r2}")
        alpha: 0.01, l1_ratio: 0.2, r2: 0.3097093011229858
        alpha: 0.01, 11 ratio: 0.5, r2: 0.36553389455838525
        alpha: 0.01, l1_ratio: 0.8, r2: 0.44169590096847555
        alpha: 0.1, l1_ratio: 0.2, r2: 0.04607452785123458
        alpha: 0.1, l1_ratio: 0.5, r2: 0.08029085880552811
        alpha: 0.1, 11 ratio: 0.8, r2: 0.1778184138979217
        alpha: 1, 11 ratio: 0.2, r2: -0.021420175696800325
        alpha: 1, l1_ratio: 0.5, r2: -0.019482185329917502
        alpha: 1, 11 ratio: 0.8, r2: -0.0114266833108428
```

Grid Search CV

- 1. Randomy split your training set into k folds of same size
- 2. Make fold #1 a val_set, train model on other k-1 folds & mesure val_score
- 3. Make fold #2 a val_set and repeat
- 4. ...
- 5. Compute average val_score over all folds
- This is your cross-validated score for one given set of hyper-parameters
 - Repeat for each value of hyper-param to test
 - Save the test set for final evaluation only (AFTER hyper-params are chosen)

Welcome to Sklearn <u>GridSearchCV</u> (https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSea

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.htm

```
In [ ]: from sklearn.model_selection import GridSearchCV
        # Train/Test split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.
        20, random state=1)
        # Instantiate model
        model = ElasticNet()
        # Hyperparameter Grid
        grid = {
             'alpha': [0.01, 0.1, 1],
             'll ratio': [0.2, 0.5, 0.8]
        }
        # Instantiate Grid Search
        search = GridSearchCV(
            model,
            grid,
            scoring = 'r2',
            cv = 5,
            n jobs=-1 # parallelize computation
         )
        # Fit data to Grid Search
        search.fit(X train, y train);
In [ ]: # Best score
        search.best score
        # Best Params
        search.best params
        # Best estimator
        search.best estimator
Out[ ]:
                       ElasticNet
```

ElasticNet(alpha=0.01, 11 ratio=0.8)

6/2/25, 11:51 PM 05-ML_05-Model-Tuning

- - Limitations of Grid Search:
 - · Computationally costly
 - The optimal hyperparameter value can be missed
 - · Can overfit hyperparameters to the training set if too many combinations are tried out for too small a dataset

Random Search

Randomly explore hyperparameter values from:

- A hyperparameter space to randomly sample from
- · The specified number of samples to be tested

Grid Search

Pseudocode Hyperparameter One = [a, b, c] Hyperparameter Two = [x, y, z]

Random Search

Pseudocode Hyperparameter One = random.num(range) Hyperparameter Two = random.num(range)

Hyperparameter 1

Sklearn's RandomizedSearchCV

```
In [ ]: from sklearn.model_selection import RandomizedSearchCV
        from scipy import stats
        # Instantiate model
        model = ElasticNet()
        # Hyperparameter Grid
        grid = {'l1 ratio': stats.uniform(0, 1), 'alpha': [0.001, 0.01, 0.1,
        11}
        # Instantiate Grid Search
        search = RandomizedSearchCV(
            model,
            grid,
            scoring='r2',
            n_iter=100, # number of draws
            cv=5, n jobs=-1
        )
        # Fit data to Grid Search
        search.fit(X train, y train)
        search.best estimator
Out[ ]:
                               ElasticNet
        ElasticNet(alpha=0.001, 11 ratio=0.7098199517233674)
```

Choose hyperparameter probability distribution wisely

Can be generated with scipy.stats.distributions (https://docs.scipy.org/doc/scipy/reference/stats.html)

```
In []: from scipy import stats

plt.figure(figsize=(5, 3))

dist = stats.norm(10, 2) # if you have a best guess (say: 10)

dist = stats.randint(1,100) # if you have no idea
dist = stats.uniform(1, 100) # same

dist = stats.loguniform(0.01, 1) # Coarse grain search

r = dist.rvs(size=10000) # Random draws
plt.hist(r);
```


loguniform is great for coarse-grain search across several orders of magnitude

```
e.g. loguniform(0.01, 1) search over[ 10^{-2} , $10^{-1}\, , $10^0\,
```


Doc (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loguniform.html)

RandomizedSearch vs GridSearch

- ** Randomized Search:
 - · Less typing, if you want to try many values
 - Control for the number of combinations to try & time spent searching
 - · Useful when some hyper-parameters are more important than others

In any case:

Always start with a coarse grain approach (can use Grid or RandomSearch)

Then afterward, fine-tune your search

FIT = finding the best **PARAMETERS** that minimize the **LOSS**

FINE-TUNE = finding the best **HYPERPARAMETERS** that maximize **PERFORMANCE METRICS**

4. Support Vector Machines (SVMs)

What's a good decision boundary for classification?

Infinite number of potential decision boundaries that separate the classes ("hyperplanes")

- The hyperplane that generalizes best to unseen data is the one that is furthest from all the points (maximizes the **margin**)
- The points on the margin boundary are called **support vectors**
- Finding them is a convex optimization problem (one single best solution)
- --> Maximum Margin Classifier algorithm
- When would such a model be problematic?
 - · Max Margin is super sensitive to outliers
 - It overfits to the training data

For **generalization** purposes, we may want to allow some points to be **inside** the margin, or even **on the other side** of the decision boundary:

Soft Margin Classifier

) they lie on the wrong side of the margin

```
Allows a few points to be misclassified but with a penalty( \xi ) Penalty for how "far" (
```

The **Hinge Loss** is the penalty applied to each point on the wrong side

- The deeper a point lies within the margin, the higher the loss
- The penalty is linear, like MAE

? How strong should the penalty be for wrongly classified datapoints?

How steep should the hinge loss be?

 \leftrightarrow

How narrow should the margin be?

Tradeoff between classifying training data well and generalizing to new data

Bias vs. Variance tradeoff again!

• Solution? Regularization

Regularization hyperparameter C

Strength of the penalty applied on points located on the wrong side of the margin

- The higher C, the stricter the margin
- A "maximum margin classifier" has $C = +\infty$
- The smaller C , the softer the margin, the more it is regularized
- $\begin{array}{c} \bullet \quad \text{C is similar to} \\ 1/\\ \text{in Ridge} \end{array}$

sklearn implementation

```
In []: from sklearn.svm import SVC
svc = SVC(kernel='linear', C=10)

# equivalent but with SGD solver
from sklearn.linear_model import SGDClassifier
svc_bis = SGDClassifier(loss='hinge', penalty='12', alpha=1/10)
```

Warning: All support vector models require scaling

(Bonus) SVM Regressors

The trick is to reverse the objective:

- Classification: fit the largest possible street between two classes
- Regression: fit as many points as possible within the street
- Width of the street controlled by an additional hyperparam epsilon

from sklearn.svm import SVR regressor = SVR(epsilon=0.1, C=1, kernel='linear')

5. SVM Kernels (Keep for Recap (1))

Fitting a $Linear\ SVM$ is finding the best vector w

- whose direction uniquely determines the decision boundary hyperplane (orthogonal)
- which minimizes the sum of hinge losses for outliers

What about this?

Not linearly separable!

We could add a new feature $Z=\left(X^2+Y^2
ight)$

In a higher dimension, the data becomes linearly separable again!

Data in R^3 (separable)

1.4

1.2

1.0

0.6

0.4

0.2

-1.0

0.5

0.0

YLabel

0.5

1.0

1.0

0.5

X Label

What we just did is a **feature mapping**

 ϕ

from 2D to 3D

$$\phi(egin{bmatrix} x_1 \ x_2 \end{bmatrix}) = egin{bmatrix} x_1 \ x_2 \ x_1^2 + x_2^2 \end{bmatrix}$$

More precisely, a polynomial mapping of degree d=2

Problem: we have increased the dimensionality of our feature space!

Running an expensive SVM in higher dimensions can become extremely intensive

6/2/25, 11:51 PM 05-ML_05-Model-Tuning

The Kernel Trick 🥠

Instead of explicitly creating all the new features, smart people came up with a very clever "trick":

• Each time the loss function is calculated, it calculates a sort of similarity $K(\mathbf{a})$

between all pairs of data points, called a Kernel

- Two points with large a similarity would be classified similarly
- We can **simulate** feature mapping by wisely replacing the Kernel of the Loss Function
- Much more computationally efficient

Read more (https://xavierbourretsicotte.github.io/Kernel_feature_map.html)

List of SVM Kernels

kernel specifies the type of feature mapping to be used to make data linearly separable again

- linear
- poly (of dimension d)
- rbf (radial basis function (https://en.wikipedia.org/wiki/Radial_basis_function) of coef gamma)
- sigmoid (of coef gamma)

C is the strength of the cost associated with the wrong classification

5.2 Kernel details

a) Linear Kernel

This is the hypothesis function $h_{\mathbf{w}}(X)$ of a Linear SVM

$$h_{\mathbf{w}}(X) = \left\{ egin{array}{ll} 0 ext{ if } \mathbf{w}^T \mathbf{x} & < -1 \ 1 ext{ if } \mathbf{w}^T \mathbf{x} & \geq 1 \end{array}
ight.$$

 $\stackrel{{\rm {\it d}}}{=}$ We say that the ${\rm \bf Kernel}$ of Linear the SVM is $K({\bf a}$

 $K(\mathbf{a}$

 $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100$

a to the decision boundary hyperplane

b) Polynomial Kernel (order 2)

 $K(\mathbf{a}$

Polynomial Kernel order of d

 $K(\mathbf{a}$

The polynomial kernel also allows fitting non-linear regressions very easily

regressor = SVR(epsilon=0.1, C=1, kernel='poly', degree=2)

Source: <u>Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow</u> (https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/)

c) The RBF Kernel (aka Gaussian)

support of the distance between the two points a and be a support of the distance between the two points a and be

$K(\mathbf{a}$

Similarity between two datapoints is "gaussian"

Two points far away from one another are exponentially more likely to be different.

acts as a myopia factor.

Increasing

makes model overfit

Recommended reads

- 👺 Hands-on Machine Learning with Sklearn (2020), Chapter 5 SVM Section "under the hood"
- Kernels explained (https://xavierbourretsicotte.github.io/Kernel_feature_map.html) (Math)
- SVM vs Logistic Regression (http://www.cs.toronto.edu/~kswersky/wp-content/uploads/svm vs Ir.pdf) (Math)

Your turn! 🚀