## Formal Language Selected Homework Chapter 4.3

2. Prove the following generalization of the pumping lemma, which includes Theorem 4.8 as well as Exercise 1 as special cases.

If L is regular, then there exists an m, such that the following holds for every sufficiently long  $w \in L$  and every one of its decompositions  $w = u_1vu_2$ , with  $u_1, u_2 \in \Sigma^* \mid \sigma \mid \geq m$ . The middle string v can be written as v = xyz, with  $|xy| \leq m, |y| \geq 1$ , such that  $u_1xy^izu_2 \in L$  for all i = 0, 1, 2, ...

4. Prove that the following languages are not regular.

(a) 
$$L = \{a^n b^l a^k : k \ge n+l\}.$$

(b) 
$$L = \{a^n b^l a^k : k \neq n + l\}.$$

(c) 
$$L = \{a^n b^l a^k : n = l \text{ or } l \neq k\}.$$

$$(d) L = \{a^n b^l : n \le l\}.$$

(e) 
$$L = \{w : n_a(w) \neq n_b(w)\}.$$

**5.** (a) Given m, pick  $w = a^m b^m a^{2m}$ . The string y must then be  $a^k$  and the pumped strings will be

$$w_i = a^{m+(i-1)k} b^m a^{2m}$$
.

If we take  $i \geq 2$ , then m + (i - 1) k > m, and then  $w_i$  is not in L.

- (e) It does not seem easy to apply the pumping lemma directly, so we proceed indirectly. Suppose that L were regular. Then by the closure of regular languages under complementation,  $\overline{L}$  would also be regular. But  $\overline{L} = \{w : n_a(w) = n_b(w)\}$ , which, as is easily shown, is not regular. By contradiction, L is not regular.
- (d) Criven m, pick  $w = a^m b^m$ . The string y must then be  $a^k$  and  $w_i = a^{m+(\lambda-1)K} b^m$ . But  $w_z = a^{m+K} b^m$  is not in L.

5. Determine whether or not the following languages on  $\Sigma = \{a\}$  are regular.

- (a)  $L = \{a^n : n \ge 2, \text{ is a prime number}\}.$
- (b)  $L = \{a^n : n \text{ is not a prime number}\}.$ 
  - (c)  $L = \{a^n : n = k^3 \text{ for some } k \ge 0\}.$
- (d)  $L = \{a^n : n = 2^k \text{ for some } k \ge 0\}.$

Prove or disprove the following statement: If  $L_1$  and  $L_2$  are nonregular languages, then  $L_1 \cup L_2$  is also nonregular.

5. (a) Take p to be the smallest prime number greater or equal to mand choose  $w = a^p$ . Now y is a string of a's of length k, so that

$$w_i = a^{p+(i-1)k}.$$

If we take i-1=p, then p+(i-1)k=p(k+1) is composite and  $w_{p+1}$  is not in the language. (b)(d) in next page.

14. The proposition is false. As a counterexample, take  $L_1 = \{a^nb^m : n \leq m\}$  and  $L_2 = \{a^nb^m : n > m\}$ , both of which are nonregular. But  $L_1 \cup L_2 = L(a^*b^*)$ , which is regular.

Sol. 5.(b) L= {an: n is not a prime number}

L is not regular.

: If L is reglar,  $L = \lambda \cup \{a^n: n \text{ is prime}\}$ will be regular. But by (a), we can prove L is not.

(d). Given m, pick 5 as smallest integer s.t.  $2 \ge m$  consider  $w_i = a^{2^3 + (\lambda - 1)K}$ , where  $y = a^K$ , k > 1,  $k \le m$ .

But  $w_2 = a^{2^3 + k}$  cannot be in L.

15. Consider the languages below. For each, make a conjecture whether or not it is regular. Then prove your conjecture.

(a) 
$$L = \{a^n b^l a^k : n + l + k > 5\}.$$

(b) 
$$L = \{a^n b^l a^k : n > 5, l > 3, k \le l\}.$$

(c) 
$$L = \{a^n b^l : n/l \text{ is an integer}\}.$$

(d) 
$$L = \{a^n b^l : n + l \text{ is a prime number}\}.$$

(e) 
$$L = \{a^n b^l : n \le l \le 2n\}.$$



- 15. (a) The language is regular. This is most easily seen by splitting the problem into cases such as l = 0, k = 0, n > 5, for which one can easily construct regular expressions.
  - (b) This language is not regular. If we choose  $w = aaaaaab^m a^m$ , our opponent has several choices. If y consists of only a's, we use i = 0 to violate the condition n > 5. If the opponent chooses y as consisting of b's, we can then violate the condition  $k \le l$ .

## (e) L= {a^b}: n < l < zn} is not regular.

Given m, choose w=ambm and w=am-kbm &L

17. Let  $L_1$  and  $L_2$  be regular languages. Is the language  $L = \{w : w \in L_1, w^R \in L_2\}$  necessarily regular?

17. L is regular. We see this from  $L = L_1 \cap L_2^R$  and the known closures for regular languages.

(Skip 19. 21, 25.