ESTRUCTURAS DE DATOS

TIPOS ABSTRACTOS DE DATOS ARBORESCENTES

El TAD Árbol Binario

Manuel Montenegro Montes Departamento de Sistemas Informáticos y Computación Facultad de Informática – Universidad Complutense de Madrid

Árboles binarios

- Un árbol binario es un árbol de aridad 2.
- Cada nodo tiene 2 hijos, algunos de los cuales pueden ser vacíos.

Definición inductiva de un árbol binario

Caso base: Un grafo sin nodos es un árbol vacío.

• Caso recursivo: Si t_1 y t_2 son árboles binarios, y x es un elemento, entonces lo siguiente es un árbol binario:

Si t_1 o t_2 son vacíos, no existen aristas desde x hacia ellos.

Definición inductiva de un árbol binario

- Un árbol binario T es un conjunto finito tal que:
 - $T = \emptyset$, o bien
 - $T = \{x\} \ \uplus \ T_1 \ \uplus \ T_2$, donde $T_1 \ y \ T_2$ son árboles.

x es la raíz,

 T_{i} es el subárbol izquierdo, y

 T_2 es el subárbol derecho.

Operaciones en el TAD Árbol Binario

- Constructoras:
 - Crear un árbol vacío: create_empty.
 - Crear una hoja: create_leaf.
 - Crear un árbol a partir de una raíz y dos hijos: create_tree.
- Observadoras:
 - Determinar si el árbol es vacío: empty.
 - Obtener la raíz si el árbol no es vacío: root.
 - Obtener el hijo izquierdo, si existe: left.
 - Obtener el hijo derecho, si existe: right.

Operaciones constructoras

```
{ true }

create_empty() \rightarrow (T: ArBin)

{ T = - }

{ true }

create_leaf(x: Elem) \rightarrow (T: ArBin)

{ T = \mathbf{x} }
```

$$\left\{ T_1 = t_1 \qquad T_2 = t_2 \right\}$$

 $create_tree(T_1: ArBin, x: Elem, T_2: ArBin) \rightarrow (T: ArBin)$

$$T = \mathbf{x}$$

$$t_1$$

Operaciones observadoras

left(T: ArBin) → (T': ArBin)

$$\left\{ T' = t_1 \right\}$$

 $right(T: ArBin) \rightarrow (T': ArBin)$

$$\begin{cases} T' = t_2 \end{cases}$$

Operaciones observadoras

 $root(T: ArBin) \rightarrow (e: elem)$

$$\{e = X\}$$

