トマトの検出と収量予測

2024/8/09

Identifying tomatoes and determining ripeness

Identifying tomatoes and determining ripeness

- First Subgoal create a base model to detect the tomato fruits
- Second Subgoal Image pre-processing and fine-tuning of hyperparameters
- Third Subgoal Count the tomatoes from video material
- ..
- Final Goal Determine ripeness

YOLO - You only look once

- **Single Pass Detection** YOLO detects objects in one pass, unlike traditional methods that use region proposals followed by classification.
- speeding up the process and enabling real-time object detection.
- **Grid Division** The input image is divided into an S×S grid, with each cell responsible for detecting objects whose centers fall within the cell.

YOLO - You only look once

- **Bounding Box Prediction** Each grid cell predicts bounding boxes, including coordinates (center x, center y, width w, height h), and a confidence score for each box.
- Class Probability Each grid cell also predicts the probability of the object class within that cell.
- **Combined Output** Final predictions combine class probabilities and bounding box confidence scores, with Non-Maximum Suppression (NMS) removing duplicates.

Segmentation

- Pixel-Level Classification Segmentation involves classifying each pixel in an image into predefined categories, providing detailed object boundaries.
- instance segmentation allowing it to not only detect objects but also accurately segment them from the background
- Use in my Application object recognition of the tomates for more precise localization than bounding boxes.
- Output Format The result is a mask over the image, where each pixel is labeled with its corresponding class, highlighting the specific regions of interest.

YOLOv8-seg

- Supports multiple tasks, including object detection and instance segmentation making it a flexible choice for diverse computer vision applications.
- Combined Detection and Segmentation Heads Separate heads for bounding boxes and segmentation masks to ensure precise instance segmentation.
- Improved Training Techniques Utilizes advanced data augmentation, regularization, and loss functions are used to optimize both detection and segmentation tasks.

YOLOv8

Model	size (pixels)	mAP ^{box} 50-95	mAP ^{mask} 50-95	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B)
YOLOv8n- seg	640	36.7	30.5	96.1	1.21	3.4	12.6
YOLOv8s- seg	640	44.6	36.8	155.7	1.47	11.8	42.6
YOLOv8m- seg	640	49.9	40.8	317.0	2.18	27.3	110.2
YOLOv8I- seg	640	52.3	42.6	572.4	2.79	46.0	220.5
YOLOv8x- seg	640	53.4	43.4	712.1	4.02	71.8	344.1

Dataset - annotated Images

- Expanded from 80 images to 240 images through augmentation techniques.
- Tomatoes are classified into four degrees of ripeness.
- Only tomatoes in the main area are labeled to ensure accurate detection.
- Small dataset used for faster training.

Augmentation and Regularization

- Dropout: "drops out" neurons during training to prevent overfitting -> redundancy
- Weight Decay: Punishment for large weights in the model to prevent overfitting
- Batch Normalization: Normalizes layer inputs during training, speeding up convergence and stabilizing learning.
- Data Augmentation: Enhances training by creating varied versions of images

Flip Horizontal	Edit
Rotation Between -15° and +15°	Edit
Shear ±10° Horizontal, ±10° Vertical	Edit
Saturation Between -25% and +25%	Edit
Brightness Between -15% and +15%	Edit
Blur Up to 2.5px	Edit
Bounding Box: 90° Rotate Clockwise, Counter-Clockwise	▲ Edit

Training and Choice of Hyperparameters

- Image Size (imgsz=640) Input images are resized to 640x640 pixels for consistent model processing
- Batch Size (batch=8) Model trained using batches of 8 images at a time
- Adam Optimizer YoloV8 adapts the learning rate during training with Adam, starting at
 Ir0=0.0001
- **Training Configuration** Trained over 100 epochs with early
- stopping after 15 epochs of no improvement (patience of 15)

metrics for evaluating the model

- mAP (mean Average Precision): Measures the average precision across all classes
- **IoU** (Intersection over Union): measuring accuracy of the bounding boxes and segmentation.
- **Precision:** proportion of true positive predictions out of all positive predictions made
- Recall: Reflects the proportion of true positives identified out of all actual positives, showing how well the model detects objects.

inference step

- **Inference** The model performs object detection on each frame of the video
- IoU (Intersection over Union) Threshold: Determines the minimum overlap required between the predicted and ground truth bounding boxes
- Confidence Score Threshold: Sets the minimum confidence level for the model to consider a prediction as valid

YOLOv8-seg

raw image:

pretrained:

trained:

Count the tomatoes from video material

- **tracking algorithm** Implemented SORT (Simple Online and Realtime Tracking) to count detected objects.
- **Initialization:** Start tracking when objects are detected.
- Prediction: Use Kalman filters to predict the next position of each object.
- **Update:** Associate new detections with existing tracks using the Hungarian algorithm.
- **Counting:** Maintain a count of objects based on their tracked IDs.

Tracking Algorithm - SORT

- Max Age Maximum number of frames a track can be inactive before it is considered lost.
- Min Hits Minimum number of consecutive frames a detection must be present to initiate a new track.
- **IoU** Used to determine if a detection is considered a match

Final Goal

- Final Goal Utilize regression analysis to predict the remaining time until tomato ripeness
- Addressing Inaccuracies additional features to improve prediction accuracy
- Training data structure color, size and other relevant attributes
- Output will be the estimated remaining time until the ripeness

