Série N°: 2 TD Logique des propositions

Exercice 1 : (FNC,FND) Considérons la fonction booléenne suivante ::

donner la forme normale disjonctive et la forme normale conjonctive de F().

Α	В	С	F(A,B,C)
V	V	V	F
V	V	F	V
V	F	V	V
V	F	F	F
V	V	V	V
V	V	F	F
F	F	V	V
F	F	F	V

Exercice 2 : Soit le système d'axiomes du calcul propositionnel :

- $Ax1: A \rightarrow (B \rightarrow A)$
- Ax2: $(A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- Ax3: $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$
- et la règle du Modus Ponens : si \vdash A et \vdash A \rightarrow B alors \vdash B.

Montrer que l'on a :

$$\frac{A}{B \to A}$$

$$\frac{(A \to B), (B \to C)}{(A \to C)} \qquad \frac{A \to (B \to C)}{B \to (A \to C)}$$

$$\frac{A \to (B \to C)}{B \to (A \to C)}$$

SOLUTION /

a)

$$\frac{\mathbf{A}}{\mathbf{B} \to \mathbf{A}}$$

hypothèse

2.
$$A \rightarrow (B \rightarrow A)$$

Ax1

3. B
$$\rightarrow$$
 A

MP(1,2)

$$\frac{(\mathbf{A} \to \mathbf{B}), (\mathbf{B} \to \mathbf{C})}{(\mathbf{A} \to \mathbf{C})}$$

Transitivité

1.
$$A \rightarrow B$$

2. B
$$\rightarrow$$
 C

hypothèse

hypothèse

3.
$$A \rightarrow (B \rightarrow C)$$

a) + 2.

$$4. (A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

Ax2

$$5.\left((A \to B) \to (A \to C) \right)$$

MP(3, 4).

6.
$$A \rightarrow C$$

MP(1,5).

$$\frac{A \to (B \to C)}{B \to (A \to C)}$$

Permutation

1.
$$A \rightarrow (B \rightarrow C)$$

2.
$$(A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

hypothèse Ax2

3.
$$((A \rightarrow B) \rightarrow (A \rightarrow C))$$

MP (1, 2).

4.
$$B \rightarrow (A \rightarrow B)$$

Ax1

$$5. B \rightarrow (A \rightarrow C)$$

Transitivité (4,3)

Exercice 3 : : En utilisant éventuellement les résultats de l'exercice précédent et du présent, montrer que les formules suivantes sont des théorèmes du C.P :

a)
$$p \rightarrow p$$

b)
$$\neg \neg B \rightarrow B$$

f) $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$

c) B
$$\rightarrow \neg \neg B$$

$$g)\:A\to (\:\neg\:B\to\neg\:(A\to\!B))$$

$$d) \neg A \rightarrow (A \rightarrow B)$$

h)
$$(A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B)$$

e)
$$(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

i)
$$((A \rightarrow B) \rightarrow A) \rightarrow A$$

SOLUTION /

a)
$$\mid p \rightarrow p$$

1.
$$p \rightarrow ((p \rightarrow p) \rightarrow p)$$

$$2.\;(p\to((p\to p)\to p))\to((p\to(p\to p))\to(p\to p))$$

Ax2

3.
$$((p \rightarrow (p \rightarrow p)) \rightarrow (p \rightarrow p))$$

MP(1,2).

4.
$$p \rightarrow (p \rightarrow p)$$

Ax1

5.
$$p \rightarrow p$$

MP(3,4).

b)
$$\vdash \neg \neg B \rightarrow B$$

$$1. \neg \neg B \rightarrow (\neg \neg \neg \neg B \rightarrow \neg \neg B)$$

Ax1

$$2. \; (\neg\neg\neg\neg B \to \neg\neg B) \to (\neg B \to \neg\neg\neg B)$$

Ax3

$$3. \ (\neg B \rightarrow \neg \neg \neg B) \rightarrow (\neg \neg B \rightarrow B)$$

Ax3

$$4. \; (\neg\neg\neg\neg B \rightarrow \neg\neg B) \rightarrow (\neg\neg B \rightarrow B)$$

Transitivité +2. +3.

$$5. \neg \neg B \rightarrow (\neg \neg B \rightarrow B)$$

Transitivité +1.+4.

$$6. (\neg \neg B \rightarrow (\neg \neg B \rightarrow B)) \rightarrow ((\neg \neg B \rightarrow \neg \neg B) \rightarrow (\neg \neg B \rightarrow B))$$

Ax2

7.
$$((\neg \neg B \rightarrow \neg \neg B) \rightarrow (\neg \neg B \rightarrow B)) MP + 5. + 6.$$

8.
$$\neg B \rightarrow \neg B$$
 théorème 1) Exo 11

9.
$$\neg\neg B \rightarrow B MP + 7. + 8.$$

c)
$$\mid B \rightarrow \neg \neg B$$

1.
$$\neg\neg\neg B \rightarrow \neg B$$

théorème b)

$$2.\; (\neg\neg\neg B \to \neg B) \to (B \to \neg\neg B)$$

3. B
$$\rightarrow \neg \neg B$$

$$MP + 1. + 2.$$

d)
$$\vdash \neg A \rightarrow (A \rightarrow B)$$

 $1. \neg A \rightarrow (\neg B \rightarrow \neg A)$ Ax1
 $2. (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$ Ax3
 $3. \neg A \rightarrow (A \rightarrow B)$ Transitivité + 1. + 2.

e)
$$\displayline (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

1. $\neg B \rightarrow \neg A$ hypothèse

2. $\neg B \rightarrow A$ hypothèse

3. $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$ Ax3

4. $A \rightarrow B$ MP + 1. + 3.

5. $\neg B \rightarrow B$ Transitivité + 2. + 4.

6. $\neg B \rightarrow (B \rightarrow \neg (\neg B \rightarrow A))$ théorème d)

7. $(\neg B \rightarrow (B \rightarrow \neg (\neg B \rightarrow A))) \rightarrow ((\neg B \rightarrow B) \rightarrow (\neg B \rightarrow A)))$ Ax2

8. $(\neg B \rightarrow B) \rightarrow (\neg B \rightarrow A)$ MP + 6. + 7.

9. $\neg B \rightarrow \neg (\neg B \rightarrow A)$ MP + 5. + 8.

10. $(\neg B \rightarrow A) \rightarrow B$ MP + 9. + 10.

12. B MP + 2. + 11.

On a donc montré $(\neg B \rightarrow \neg A)$, $(\neg B \rightarrow A) \rightarrow B$; en appliquant deux fois le

théorème de déduction on obtient $\vdash (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$.

f)
$$\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

1. $A \rightarrow B$ hypothèse
2. $B \rightarrow \neg \neg B$ théorème c)
3. $A \rightarrow \neg \neg B$ Transitivité + 1. + 2.
4. $\neg \neg A \rightarrow A$ théorème b)
5. $\neg \neg A \rightarrow \neg \neg B$ Transitivité + 3. + 4.
6. $(\neg \neg A \rightarrow \neg \neg B) \rightarrow (\neg B \rightarrow \neg A)$ Ax3
7. $\neg B \rightarrow \neg A$ MP + 5. + 6.

On a donc montré $(A \to B) \models (\neg B \to \neg A)$; en appliquant le théorème de déduction on obtient le théorème $\models (A \to B) \to (\neg B \to \neg A)$.

g)
$$\vdash A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$$

1. $(A \rightarrow B) \rightarrow (A \rightarrow B)$ théorème a)
2. $A \rightarrow (A \rightarrow B) \rightarrow B)$ Permutation + 1.
3. $((A \rightarrow B) \rightarrow B) \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$ théorème f)
4. $A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$ Transitivité + 2. + 3.

de déduction on obtient $\vdash (A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B)$.

i)
$$\crite{ (A
ightharpoonup B)
ightharpoonup A)
ightharpoonup A}$$
1. $(A
ightharpoonup B)
ightharpoonup A$ hypothèse
2. $((A
ightharpoonup B)
ightharpoonup (-A
ightharpoonup (A
ightharpoonup B))$ théorème f)
3. $\neg A
ightharpoonup (A
ightharpoonup B)
ightharpoonup ((-A
ightharpoonup (A
ightharpoonup B))
ightharpoonup A)$ théorème e)
5. $(\neg A
ightharpoonup (A
ightharpoonup B))
ightharpoonup A$ hypothèse
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
5. $(\neg A
ightharpoonup (A
ightharpoonup B))
ightharpoonup A$ hypothèse
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))
ightharpoonup A$ hypothèse
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))
ightharpoonup A$ hypothèse
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$ théorème e)
1. $(\neg A
ightharpoonup (A
ightharpoonup B))$

Page 4 sur 4