(2)

(4)

MATHEMATIK FÜR PHYSIKER 1 Aufgabenblatt 12

Abgabe: 25.01.2022 bis 15:00 Uhr in der Übungsgruppe. **Bitte in 2-3er Gruppen abgeben**.

Hausaufgaben (20 Punkte)

A12.1 i) Sei $w \in \mathbb{R}^n$ und |w| = 1. Zeigen Sie, dass die Abbildung

$$P: \mathbb{R}^n \to span(w), \qquad v \mapsto \langle v, w \rangle w$$

linear ist (2)

ii) Zeigen Sie, dass für $\alpha \in [0, 2\pi]$ die Abbildung

$$R_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2, \quad \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \mapsto \begin{pmatrix} v_1 \cos \alpha - v_2 \sin \alpha \\ v_1 \sin \alpha + v_2 \cos \alpha \end{pmatrix}$$

linear ist.

A12.2 Es seien U, V, W K-Vektorräume und $L, T : V \to W$ und $S : U \to V$ seien linear.

a) Zeigen Sie, dass für $\mu, \lambda \in \mathbb{K}$ die Abbildung

$$\lambda L + \mu T : V \to W, \qquad v \mapsto \lambda L v + \mu T v$$

linear ist (2)

- b) Zeigen Sie, dass die Abbildung $T \circ S : U \to W$ linear ist. (2)
- c) Seien \mathcal{B} und \mathcal{C} Basen von V und W. Zeigen Sie

$$(T+L)_{\mathcal{B}}^{\mathcal{C}} = T_{\mathcal{B}}^{\mathcal{C}} + L_{\mathcal{B}}^{\mathcal{C}}.$$

A12.3 Verwenden Sie das aus dem Skript bekannte Gram-Schmidt-Orthonormalisierungs Verfahren um (4)

$$b_1 := \frac{\sqrt{3}}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

zu einer Orthonormalbasis des \mathbb{R}^3 zu vervollständigen.

A12.4 Es sei $\mathcal{E} = \{e_1, e_2, e_3\}$ die Standardbasis des \mathbb{R}^3 , eine weitere Basis des \mathbb{R}^3 ist gegeben durch $\mathcal{B} = \{b_1, b_2, b_3\}$, wobei

$$b_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, b_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Schließlich sei $L: \mathbb{R}^3 \to \mathbb{R}^3$ die lineare Abbildung, die durch

$$e_1 \mapsto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, e_2 \mapsto \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_3 \mapsto \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}.$$

gegeben ist (Die Vektoren sind bzgl. der Basis \mathcal{E} zu lesen).

Berechnen Sie die folgenden Darstellungsmatrizen

$$(L)^{\mathcal{E}}_{\mathcal{E}}, \quad (L)^{\mathcal{E}}_{\mathcal{B}}, \quad (L)^{\mathcal{B}}_{\mathcal{E}}, \quad (L)^{\mathcal{B}}_{\mathcal{B}}$$

A12.5 Es seien V, W \mathbb{K} -Vektorräume. Weiter sei $L: V \to W$ linear.

i) Zeigen Sie, dass

$$Kern(L) := \{ v \in V : Lv = 0 \}$$

ein Untervektorraum von V ist.

(2)

ii) Zeigen Sie, dass

$$Bild(V) = \{Lv : v \in V\}$$

ein Untervektorraum von W ist. .

(2)

A12.6 (Bonus) Es sei $f:\mathbb{R}\to\mathbb{R}$ stetig und für alle $x,y\in\mathbb{R}$ gelte

$$f(x+y) = f(x) + f(y).$$

Zeigen Sie, dass f \mathbb{R} -linear ist.

Hinweis: Zeigen Sie zunächst, dass alle Abbildungen mit f(x+y) = f(x) + f(y) Q-linear sind. (4) Folgern sie dann die \mathbb{R} -linearität.