Chapter 2: Map-Reduce and the New Software Stack

崔金华

邮箱: jhcui@hust.edu.cn

主页: https://csjhcui.github.io/

办公地址: 东湖广场柏景阁1单元1568 室

CONTENTS

- Distribute File System
- Computational Model
- Scheduling and Data Flow
- Refinements

MapReduce

- Much of the course will be devoted to large scale computing for data mining
- Challenges:
 - How to distribute computation?
 - Distributed/parallel programming is hard
- Map-reduce addresses all of the above
 - Google's computational/data manipulation model
 - Elegant way to work with big data

Single Node Architecture

Machine Learning, Statistics

"Classical" Data Mining

Big→ Not Enough!

Motivation: Google Example

- 200亿网页 x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web (unacceptable!)
- Takes even more to do something useful with the data!
- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them

Cluster Architecture

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 100万台 machines, http://bit.ly/Shh0RO

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - 1 Network bottleneck. How do you distribute computation?
 - 2. How can we make it easy to write distributed programs?
 - 3 Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!

Idea and Solution

- Map-Reduce addresses these problems
 - Store data redundantly: Store files multiple times for reliability
 - Bring computation close to data: minimize data movement
 - Simple programming model: Map-Reduce, hide the complexity of distributed programs

Storage Infrastructure

- Problem:
 - If nodes fail, how to store data persistently?
- Answer:
 - Distributed File System:
 - Provides global file namespace
 - E.g., Google GFS; Hadoop HDFS;
- Typical usage pattern
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common

Distributed File System

- Chunk servers
 - File is split into contiguous chunks
 - Typically each chunk is 16-64MB

Don't put all your eggs into one basket.

Distributed File System

- Chunk servers
 - File is split into contiguous chunks
 - Typically each chunk is 16-64MB
 - Each chunk replicated (usually 2x or 3x)
 - Try to keep replicas in different racks

Bring computation directly to the data!

Chunk servers also serve as compute servers

Distributed File System

- Master node
 - a.k.a. Name Node in Hadoop's HDFS
 - Stores metadata about where files are stored
 - Might be replicated
- Client library for file access
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data

Programming Model: MapReduce

- Warm-up task:
 - We have a huge text document
 - Count the number of times each distinct word appears in the file

- Sample application:
 - Analyze web server logs to find popular URLs

Task: Word Count

- Case 1:
 - File too large for memory, but all <word, count> pairs fit in memory
 - Method: HashTable
- Case 2:
 - Even the <word, count> pairs do not fit in memory
 - Count occurrences of words: words(doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

```
words(doc.txt) | sort | uniq -c
```

- Map:
 - Scan input file record at a time
 - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
 - Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

MapReduce: The Map Step

MapReduce: The Reduce Step

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) \rightarrow <k', v'>*
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', $\langle v' \rangle^*$) $\rightarrow \langle k', v'' \rangle^*$
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

MapReduce: Word Counting

Word Count Using MapReduce

```
map(key, value):
// key: document name; value: text of the document
     for each word w in value:
          emit(w, 1)
reduce(key, values):
// key: a word; value: an iterator over counts
     result = 0
     for each count v in values:
           result += v
     emit(key, result)
```

Map-Reduce: Environment

- Map-Reduce environment takes care of:
 - Partitioning the input data
 - Scheduling the program's execution across a set of machines
 - Performing the group by key
 - Handling machine failures
 - Managing required inter-machine communication

Map-Reduce: A diagram

MAP:

Read input and produces a set of key-value pairs

Intermediate

Group by key:

Collect all pairs with same key (Hash merge, Shuffle, Sort, Partition)

Reduce:

Collect all values belonging to the key and output

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures.
 - How to deal with failures?