Chapter 1

Commutative Rings

Definition 1.1 — .

$$A^{\times} := \{ a \in A \mid \exists b \in A : a \cdot b = 1 \}$$
 (1.1)

is the group of units in A.

Example 1.2. Consider the ring $(\mathbb{Z}, +, \cdot)$.

- 1. $\mathbb{Z}^{\times} = \{-1, 1\}.$
- 2. $ZD(\mathbb{Z}) = \{0\}.$
- 3. $Nil(\mathbb{Z}) = \{0\}.$

 \mathbb{Z} is therefore an integral domain and is reduced.

Example 1.3. Consider an arbitary field \mathbb{K} as a ring.

- 1. $\mathbb{K}^{\times} = \{-1, 1\}.$
- 2. $ZD(\mathbb{K}) = \{0\}.$
- 3. $Nil(\mathbb{Z}) = \{0\}.$

All fields are therefore an integral domain and are reduced.

Example 1.4. Consider the set of all continuous real-valued functions defined on the real numbers $C(\mathbb{R})$ with the operations of addition and multiplication.

1.
$$(C(\mathbb{R}))^{\times} = ???$$

Example 1.5. Consider $\mathbb{Z}[c]$ with $c \in \mathbb{C}$.

- 1. $(\mathbb{Z}[c])^{\times} = \{-1, 1\}.$
- 2. $ZD(\mathbb{Z}[c]) = \{0\}.$
- 3. $Nil(\mathbb{Z}[c]) = \{0\}.$

Lemma 1. 1. $(A \setminus ZD(A), \cdot)$ is a semigroup containing A^{\times} .

- 2. For $a \in A \setminus ZD(A)$ and $b_1, b_2 \in A$ with $a \cdot b_1 = a \cdot b_2$ one can clear, so we have $b_1 = b_2$.
- 3. Nil(A) is an ideal in A.
- 4. The set $A_{red} := A / Nil(A)$ is a reduced ring.
- 5. $\{0\} \subseteq Nil(A) \subseteq ZD(A) \subseteq A \setminus A^{\times}$

Proof. 1. Consider $(A \setminus ZD(A), \cdot)$. The associativity of the multiplication is inherited from A, hence the only thing to show is that the operation is well-defined. Let $a, b \in ZD(A)$, then there is a $x \in ZD(A)$ such that $x \cdot a = 0$. We have

$$x \cdot a = 0 \iff x \cdot a \cdot b = 0. \tag{1.2}$$

This means that $a \cdot b \in \mathrm{ZD}(A)$ or in other words the set is closed under multiplication.

Now let $u \in A^{\times}$ be an unit, hence we have $u \cdot u^{-1} = 1$ for some $u^{-1} \in A^{\times}$. Assume $u \in ZD(A)$. Then, there is a $x \in ZD(A)$ with $x \neq 0$ such that $x \cdot u = 0$. We have

$$u \cdot u^{-1} = 1 \iff x \cdot u \cdot u^{-1} = x \tag{1.3}$$

$$\iff 0 \cdot u^{-1} = x \tag{1.4}$$

$$\iff 0 = x. \tag{1.5}$$

This is a contradiction with the assumption $x \neq 0$.

2.

Definition 1.6 — .

Two integers a and b are coprime if the only positive integer that is a divisor of both of them is 1. Equivalently, their greatest common divisor is 1.

Two ideals \mathfrak{a}_1 and \mathfrak{a}_2 in A are called coprime if $\mathfrak{a}_1 + \mathfrak{a}_2 = A$.

Proposition 1.

Exercise 1.7. 1. $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$.

2. $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$.

Proof. 1. Fix an $a \in \mathfrak{a}$. We want to show that $a \in (\mathfrak{a} : \mathfrak{b}) = \{ x \in A \mid x\mathfrak{b} \subseteq \mathfrak{a} \}$ or in other words $a\mathfrak{b} \subseteq \mathfrak{a}$. For all $b \in \mathfrak{b}$ we have $a \cdot b \in \mathfrak{a}$, therefore, $a\mathfrak{b} \subseteq \mathfrak{b}$. Conclude $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$.

Exercise 1.8. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and unit is a unit.

Proof. Let $x \in \text{Nil}(A)$. Since the nilradical is the intersection of all prime ideals, we have $x \in \mathfrak{p}$ for all $\mathfrak{p} \in \text{Spec}(A)$. All prime ideals are contained in some maximal ideal \mathfrak{m} , therefore, we have $x \in \text{Jac}(A)$. It follows that $1 - xy \in A^{\times}$ for all $y \in A$. Choose y = -1 and conclude 1 + x is a unit.

Exercise 1.9. Let A be a ring and let A[X] be the ring of polynomials in an indeterminate X with coefficients in A. Let

$$f = a_0 + a_1 X + a_2 X^2 + \ldots + a_n x^n \in A[X].$$
(1.6)

Prove that

1. f is a unit in A[X] if and only if a_0 is a unit in A and a_1, \ldots, a_n are nilpotent.

Exercise 1.10 (Robert's Lemma). Let $a \in A$ and $b \in ZD(A) \cup \{0\}$ and $a + b \in A^{\times}$, then $a \in A^{\times}$.

Chapter 2

Modules

Definition 2.1 — A-module.

Modules are the generazation of vector spaces. While vector spaces are defined over a field, modules are over a ring. Modules is also a generalization of abelian groups.

An A-module is an abelian group (M,+), together with a map $A \times M \longrightarrow M$, given by $(a,m) \mapsto a \cdot m$, satisfying for all $m, m_1, m_2 \in M$ and all $a, a_1, a_2 \in A$ the following:

Definition 2.2 — A-submodules.

Definition 2.3 — A-module homomorphism.

A-module homomorphism or A-linear maps are structure perserving maps between two A-modules.

Proposition 2 (Hom(M, N) is an A-module).

Proposition 3 (Quotient with submodule forms an module). Let M be an A-module an N its submodule. Then M/N is an A-module.

Proposition 4. Let M be an A-module and $\mathfrak{a} \subseteq A$ an ideal with am = 0 for all $a \in \mathfrak{a}$, then M is a an $A/_{\mathfrak{a}}$ -module by means of $(a + \mathfrak{a})m := am$ (for $m \in M$, $a \in A$).

Theorem 2.4 (Isomorphism Theorems). Let M and N be A-modules, S and T submodules of M, and φ : $M \longrightarrow N$ be a module homomorphism. Then:

1.
$$M / ker(\varphi) \cong im(\varphi)$$
.

2.
$$(S+T)/S \cong S/(S\cap T)$$
.

3. If
$$T \subseteq S \subseteq M$$
, then $M/T/S/T \cong M/S$.

Definition 2.5 — .

For a ring A and an index set I put

$$A^{(I)} := \{ f : I \longrightarrow A \mid f(i) = 0 \text{ for almost all } i \in I \}.$$

$$(2.1)$$

Theorem 2.6 (Nakayama's Lemma). Let A be a ring, \mathfrak{a} be an ideal in A, and M a finitely-generated module over A. If $\mathfrak{a}M = M$, then there exists an $x \in A$ with $x \equiv 1 \mod \mathfrak{a}$, such that xM = 0.