Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра электропривода

Практическая работа N_2 2 по теории устойчивости линейных систем автоматического управления «Звено 2 порядка — моделирование переходных процессов» Вариант N_2 8

Задание.

- 1) Оцените влияние коэффициента усиления k на вид переходного процесса звена 2 порядка. Для этого при неизменных постоянных времени T₁ и T₂ на одном плоттере выведите три графика переходного процесса:
 - а) для заданного коэффициента k,
 - b) для k₁>k,
 - c) для k₂<k.
- 3) Оцените влияние коэффициента усиления T1 на вид переходного процесса. Для этого на одном плоттере выведите три графика:
 - а) для заданного коэффициента Т₁,
 - b) для увеличенного по сравнению с заданием значения T₁,
 - с) для уменьшенного по сравнению с заданием значения T_1 .
- 4) Оцените влияние коэффициента усиления T₂ на вид переходного процесса. Для этого на одном плоттере выведите три графика:
 - а) для заданного коэффициента Т2,
 - b) для увеличенного по сравнению с заданием значения T₂,
 - с) для уменьшенного по сравнению с заданием значения Т2.
 - 5) Повторите п. 1-3 для консервативного звена с параметрами k и T_1 .

Исходные данные для 8 варианта представлены в таблице 1.

Таблица 1- Исходные данные

k	T_1	T_2
17	0,17	8

Решение.

1) Запишем ПФ.

$$W(p) = \frac{k}{T_1^2 p^2 + T_2 p + 1} = \frac{17}{0.17^2 p^2 + 8p + 1}.$$

Имеем инерционное звено.

Переходим в VisSim для моделирования ПП.

Изменим значение k в большую и меньшую сторону. Возьмем k=34 и k=9, далее смоделируем графики ПП, представленные на рисунке 1.

Рисунок 1 – Семейство переходных функций инерционного звена при разных k

Видно, что при росте k, мгновенное значение сигнала в одно и то же время растет. Теперь посмотрим на переходные процессы при изменении T_1 (рисунок 2). Возьмем $T_1 = 5$ и $T_1 = 0.05$.

Рисунок 2 — Семейство переходных функций инерционного звена при разных T_1

Красный и зеленый графики почти совпадают, так как T_1 отличаются всего лишь в 3,4 раз, в то время как T_1 в синем графике отличается от T_1 в исходном красном графике больше, чем в 29 раз. Чем больше T_1 , тем более резче поднимается график ПП. Теперь будем менять T_2 . Возьмем значения 5 и 20 и смоделируем ПП (рисунок 3).

Рисунок 3 — Семейство переходных функций инерционного звена при разных T_2

Видно, что чем больше T_2 , тем более линейной становится график. Теперь надо смоделировать ПП консервативного звена — звена, в котором колебания не затухают, это — идеальное колебательное звено (рисунок 4). В идеальном колебательном звене $T_2 = 0$ и коэффициент затухания равен нулю. Начнем с разных значений k. Возьмем k = 34 и k = 9.

Рисунок 4 — Семейство переходных функций консервативного звена при разных k

Видим, что чем больше k, тем больше амплитуда сигнала, при этом изменение значения k не оказывает влияния на фазу. Теперь изменим T_1 . Возьмем значения 1 и 0,1 и смоделируем графики ПП (рисунок 5).

Рисунок 5 — Семейство переходных функций консервативного звена при разных T

Видим, что чем больше Т, тем больше у нас становится время одного периода и уменьшается частота колебания. А чем меньше Т, тем больше

частота колебаний и тем меньше время периода колебания. При этом амплитуда остается неизменной.