Embedding Vectors

Jeff Allard

Lead Data Scientist

5/3 Bancorp

About

- Highly effective in several domains e.g. Natural Language Processing (Word2Vec)
- Finding more applications across machine learning problems generally

An Embedding Vector is simply a series of numbers that attempts to encode latent features of an object

- A word / sentence
- A customer
- A movie
-

Canonical Example of Text Encoding

- Traditionally, models, say text classification, utilized a bag of words approach
 - "Cat": [0,0,0...,0,0,1,0,0,....0] (length = size of vocabulary) where the vector is sparse all zeros except for position "i" which represents "cat"
 - "Pet": [0,0,1...,0,0,0,0,0,....0] (length = size of vocabulary) where the vector is sparse all zeros except for position "j" which represents "pet" (i <>j)
- Lots of problems:
 - Very large sparse vectors are hard to work with in downstream algorithms
 - Related words encoded orthogonally
 - Need for heuristics such as word stemming, stop word removal, user maintained dictionaries of synonyms / domain specific words etc
- Variants such as TFIDF suffer same weakness

Solution: Word2Vec

- Originally published by Google researcher in 2013
- Many variants and subsequent alternatives
- The basic idea:
 - Represent a word as as dense vector
 - "Cat" = [0.2,-1.25,-0.0256,...0.45]
- Benefits
 - Size of the vector is much smaller than Bag-of-Words (e.g. 200)
 - Related words are similar in vector space terms (e.g cosine similarity)

Word2Vec: Basic Idea of Skip-gram method

- Window through a corpus
- Select a word (e.g. quick)
- Predict the likelihood that another word (e.g. fox) is within the context of the word -- context here is a window size of
- Train a neural network with positive and randomly chosen negative examples
- The weights from a shallow net are the vectors for a given word
- Words with similar context will have learned representations that are similar
 - E.g. Cat and Pet, Smart and Intelligent

Word2Vec

- Intuitively....the elements of a vector describe concepts or characteristics of a term
 - E.g. One element of "King" may describe the strength of "gender"
 - Found that simple operations on these vectors displayed deeper concepts

- If we take the vector for "king", subtract the vector for "man" and add the vector of "woman", the resulting vector will be the closest to....the vector for queen (cosine similarity)
 - King man removes the male gender component from the concept of monarch

Word2Vec

- [0.5,0.2] [0.3,0.4] = [0.2,-0.2] (Man - Woman)
- [0.5,0.7] [0.2,-0.2] = [0.3,0.9] (King + (Man - Woman)) ~ Queen

Word2Vec

Closing Thoughts

- Intuitively the components of the vectors are concepts or mixtures of concepts
- In practice not always interpretable
- The vector dimension is often chosen empirically
- Easy to train vectors on your own domain if you have enough data, else use pre-trained ones (e.g. trained on massive corpus like wikipedia) and fine tune them (transfer learning) for your task

Entity Embeddings

- Generalization Not just for words or text
- A word is just a some token, so extend this idea to things like
 - Customer IDs
 - Movie IDs
 - Zip codes
 - 0
- Being used for state of the art predictive models
 - Allows use of high cardinality nominal variables like a customers census tract
 - Even used for lower cardinality variables like a customers State (replacing dummy variables)

Application : Recommendation Engines

Automatic and a second	9	ser Latent Factors	Us
User ID	#3	#2	#1
0	0.74757374	-0.6265794545	0.8949101073
1	0.312756333	0.8636220878	0.7947220104
2	0.081368916	0.8342031778	-0.2558703818
3	0.962063664	-0.5790454715	0.940665854
4	0.432131189	0.9514060606	0.9222317515
5	-0.50570987	0.1530153498	0.8462968955
6	0.756643752	0.1472382755	0.1811727399

User Factor #1: How much the user likes action movies?

Movie Factor #3: How much action the movie has?

Mo			
#1	#2	#3	Movie ID
0.8239053285	0.8610092645	0.083420775	0
0.3149946319	0.2860168437	0.179063335	1
0.528859128	-0.8185830713	-0.519957348	2
-0.3441695914	0.1525521576	0.133796819	3
0.851516663	-0.2228508417	0.227523797	4

Demo

- Highly effective deep learning model for recommending items to Pintrest users
- Using only user and item IDs
- Training from scratch with gradient descent
- Keras and Tensorflow

GITHUB ADDRESS