Category Theory Cheat Sheet

Category

A category consists of the following,

- Objects: A,B,C,...
- Arrows/Morphisms: f,g,h,...
- For each f there exists, dom(f), cod(f) called domain and codomain of f. We write $f: A \to B$ to indicate A = dom(f) and B = cod(f).
- Given $f:A\to B$ and $g:B\to C$ there exists, $g\circ f:A\to C$ called the *composite* of f and g.
- For each A, there exists $1_A: A \to A$ called the *identity arrow* of A.
- Arrows should also satisfy the following,
 - Associativity: $h \circ (g \circ f) = (h \circ g) \circ f$, for all $f: A \to B, g: B \to C, h: C \to D$.
 - Unit: $f \circ 1_A = f = 1_B \circ f$, for all $f : A \to B$.

Functor

For categories C, D we define a functor $F: C \to D$ to be a a mapping of objects and arrows to objects and arrows, such that

- $F(f:A \rightarrow B) = F(f):F(A) \rightarrow F(B)$
- $F(1_a) = 1_{F(A)}$
- $F(g \circ f) = F(g) \circ F(f)$.

Isomorphism

In any category \mathbb{C} , an arrow $f: A \to B$ is called an **isomorphism** if there exists an arrow $g: B \to C$ s.t. $g \circ f = 1_A$ and $f \circ g = 1_B$. We say, $g = f^{-1}$. And that $A \cong B$, i.e., A is isomorphic to B.

Monoid

A set M with binary operation \cdot is called a **monoid** if it is associative and has an identity

- A monoid can be understood as a single element category.
- $\operatorname{Hom}_{\mathbf{C}}(C,C)$ forms a monoid under composition.
- A monoid with existence of inverses is a group.
- Cayley's theorem: Every group G is isomorphic to a group of permutations.

Constructions on categories

- **Product category:** The product of two categories \mathbb{C} and \mathbb{D} written as $\mathbb{C} \times \mathbb{D}$ has objects of the form (C, D) for $C \in \mathbb{C}$ and $D \in \mathbb{D}$, and arrows of the form $(f, g) : (C, D) \to (C', D')$ for $f : C \to C' \in \mathbb{C}$ and $g : D \to D' \in \mathbb{D}$.
- Composition and units are defined componentwise.
- Opposite/Dual category: For category C its opposite category C^{op} has the same objects as C but an arrow $f: C \to D$ in C^{op} is an arrow $f: D \to C$ in C.

Constructions on categories contd.

• Arrow category: For category \mathbb{C} its arrow category \mathbb{C}^{\rightarrow} has the arrows of \mathbb{C} as objects and an arrow g from $f:A\to B$ to $f':A'\to B'$ in \mathbb{C}^{\rightarrow} is the following commutative square

$$\begin{array}{ccc}
A & \xrightarrow{g_1} & A' \\
f \downarrow & & \downarrow f' \\
B & \xrightarrow{g_2} & B'
\end{array}$$

where g_1, g_2 are arrows in \mathbb{C} , i.e. an arrow is a pair of arrows $g = (g_1, g_2)$ s.t. $g_2 \circ f = f' \circ g_1$. The identity of an object $f : A \to B$ is the pair $(1_A, 1_B)$ and composition is componentwise.

• Slice category: For category C its slice category over $C \in C$ denoted as C/C. it contains objects as all arrows in C who map to C. And arrows in C/C are arrows between the dom of the object arrows, i.e., a as seen below.

- The prototypical example is that of a slice of an element in a poset category being the principal ideal.
- Co-slice category: Denoted as C/\mathbb{C} is the dual of a slice category with objects as arrows mapping from C.

Free monoid

For a set A a word over A is any finite sequence of its elements.

The **Kleene closure** of A is defined to be the set of all words over A denoted as A^* . With the binary operation of concatenation A^* forms a monoid and is called the **free monoid** on A.

Universal mapping property (UMP) of free monoid: Let M(A) be the free monoid on a set A. There is a function $i:A\to |M(A)|$, and given any monoid N and any function $f:A\to |N|$, there is a unique monoid homomorphism $\overline{f}:M(A)\to N$ s.t. $|\overline{f}|\circ i=f$.

$$\begin{array}{ccc}
M(A) & |M(A)| \xrightarrow{|\overline{f}|} |N \\
\downarrow \overline{f} & \downarrow \uparrow \\
N & A
\end{array}$$

A* has the UMP of the free monoid on A.

Free category

A directed graph G "generates" a free category $\mathbf{C}(G)$ whose objects are the vertices of the graph and its arrows are paths. Composition of arrows is defined as concatenation of paths.

UMP of C(G) There is a graphic homomorphism $i: G \to |\mathbf{C}(G)|$, and given any category **D** and any graph homomorphism $h: G \to |\mathbf{D}|$, there is a unique functor $\overline{h}: \mathbf{C}(G) \to \mathbf{D}$ with $\overline{h} \circ i = h$.

$$\mathbf{C}(G) \qquad |\mathbf{C}(G)| \xrightarrow{|\overline{h}|} |\mathbf{D}| \\
\downarrow^{\overline{h}} \qquad \downarrow^{h} \qquad \downarrow^{h} \\
\mathbf{D} \qquad G$$

Small categories

A category is called **small** if it has a small set of objects and arrows. (i.e., not classes). It is called large otherwise.

A category \mathbf{C} is **locally small** if for all objects $X,Y \in \mathbf{C}$, the collection $\operatorname{Hom}_{\mathbf{C}}(X,Y) = \{ f \in \mathbf{C}_1 \mid f : X \to Y \}$ is a small set.

Types of morphisms

Monomorphism: In any category \mathbb{C} , an arrow $f:A\to B$ is called a monomorphism (monic), if for any $g,h,:C\to A,fg=fh\implies g=h.$

$$C \xrightarrow{g \atop h} A \xrightarrow{f} B$$

Epimorphism: In any category **C**, an arrow $f: A \to B$ is called an epimorphism (epic), if for any $i, j: B \to D$ if $i = jf \implies i = j$.

$$A \xrightarrow{f} B \xrightarrow{j} D$$

- We say, $f:A\rightarrowtail B$ if f is a monomorphism and $f:A\twoheadrightarrow B$ if f is an epimorphism.
- Every isomorphism is both a monomorphism and an epimorphism. The converse need not be true.
- A **split** mono (epi) is an arrow $m: A \to B$ with a left (right) inverse r. The inverse arrow r is called the **retraction**, m is called a *section* of r and A is called a **retract** of B.

Initial and terminal objects

An object $0 \in \mathbf{C}$ is **initial** if for any object $C \in \mathbf{C} \exists !$ morphism $0 \to C$. An object $1 \in \mathbf{C}$ is **terminal** if for any object $C \in \mathbf{C} \exists !$ morphism $C \to 1$. Initial and terminal objects are unique up to isomorphism.

Generalized elements

For an object $A \in \mathbf{C}$ arbitrary arrows $x : X \to A$ are called the **generalized** elements of A with stage of definition given by X.

Product of objects

In any category \mathbf{C} , a product diagram for the objects A,B consists of an object P and arrows

$$A \stackrel{p_1}{\longleftarrow} P \stackrel{p_2}{\longrightarrow} B$$

satisfying the following UMP. Given any diagram of the form

$$A \xleftarrow{x_1} X \xrightarrow{x_2} B$$

there exists a unique arrow $u: X \to P$, making the following diagram commute

The product P is unique up to isomorphism.

Categories with products

A category which has a product for every pair of objects is said to have **binary products**.

A category is said to have **all finite products**, if it has a terminal object and all binary products.

A category has all small products if every set of objects has a product.

Covariant representable functor

The functor $\operatorname{Hom}(A, -) : \mathbf{C} \to \mathbf{Sets}$ is called a covariant representable functor (for some object $A \in \mathbf{C}$).

For a category with products a covariant representable functor preserves products.

Duality

If any statement about categories holds for all categories then so does the dual statement.

Coproducts

A diagram $A \xrightarrow{q_1} Q \xleftarrow{q_2} B$ is a coproduct of A and B if for any Z and $A \xrightarrow{z_1} Z \xleftarrow{z_2} B$ there is a unique $u: Q \to Z$ making the diagram commute.

$$A \xrightarrow[q_1]{z_1} Z \xrightarrow[u]{z_2} A \xrightarrow[q_2]{z_1} Q \xleftarrow[q_2]{z_2} A$$

Equalizers

In some category C given the following diagram

$$A \xrightarrow{f} B$$

We say an **equalizer** of f,g consists of an object E and an arrow $e:E\to A$ universal such that

$$f \circ e = g \circ e$$

i.e., for any $z:Z\to A$ with $f\circ z=g\circ z,$ there exists a unique $u:Z\to E$ with $e\circ u=z$

$$E \xrightarrow{e} A \xrightarrow{f} B$$

$$\downarrow u \downarrow \qquad \qquad \downarrow z \qquad \qquad \downarrow Z$$

- Equalizers are monic.
- It is analogous to the notion of a kernel.

Coequalizers -

In some category \mathbf{C} given the following diagram

$$A \xrightarrow{f} B$$

We say a **coequalizer** of f,g consists of an object Q and an arrow $q:B\to Q$ universal such that

$$q \circ f = q \circ g$$

i.e., for any $z:B\to Z$ with $z\circ f=z\circ g,$ there exists a unique $u:Q\to Z$ with $u\circ q=z$

$$A \xrightarrow{f} B \xrightarrow{q} Q$$

- Coequalizers are epic.
- It is analogous to the notion of a quotient.

Groups in a category

A group $(Group(\mathbf{C}))$ can be defined over a category \mathbf{C} .

$$G \times G \xrightarrow{m} G \xleftarrow{i} G$$

Where the arrows obey the following, m is associative, u is a unit, and i is an inverse for m, i.e. the following diagrams commute

$$(G \times G) \times G \xrightarrow{\cong} G \times (G \times G)$$

$$\downarrow 1 \times m$$

$$G \times G$$

$$\downarrow G \times G$$

$$\downarrow 1 \times m$$

$$\downarrow 1 \times$$

• A homomorphism $h: G \to H$ of groups in a category ${\bf C}$ is an arrow such that, h preserves m, u, i, i.e. the following diagrams commute.

• The objects in the category of groups (i.e. $Group(\mathbf{Grp})$) are abelian groups.

Congruence

A **congruence** on a category is a equivalence relation on arrows $(f \sim g)$ s.t.

- $f \sim g \implies \operatorname{dom}(f) = \operatorname{dom}(f)$ and $\operatorname{cod}(f) = \operatorname{cod}(g)$.
- $f \sim g \implies bfa \sim bga$

Let C_0, C_1 denote the class of objects and arrows for a category \mathbf{C} . Then a **congruence category** \mathbf{C}^{\sim} is defined as follows,

- $(\mathbf{C}^{\sim})_0 = \mathbf{C}_0$
- $(\mathbf{C}^{\sim})_1 = \{\langle f, g \rangle | f \sim g\}$
- $\tilde{1}_C = \langle 1_C, 1_C \rangle$
- $\langle f', g' \rangle \circ \langle f, g \rangle = \langle f'f, g'g \rangle$

$$\mathbf{C}^{\sim} \xrightarrow{p_1 \atop p_2} \mathbf{C}$$

We define the **quotient category** of the congruence as the coequalizer, i.e,

$$\mathbf{C}^{\sim} \xrightarrow{\stackrel{p_1}{\longrightarrow}} \mathbf{C} \xrightarrow{\pi} \mathbf{C}/\sim$$

Finitely presented category

Consider the free category $\mathbf{C}(G)$ on a finite graph G. And the finite set of relations Σ to be relations of the form $(g_1 \circ \cdots \circ g_n) = (g'_1 \circ \cdots \circ g'_m)$ for $g_i \in G$ and $dom(g_n) = dom(g'_m)$ and $cod(g_1) = cod(g'_1)$. Let \sim_{Σ} be the smallest congruence $g \sim g'$ if $g = g' \in \Sigma$. We call the quotient by this congruence to be a fintely presented category.

Subobjects

A subobject for some $X \in \mathbf{C}$ is a monomorphism into X.

• Arrows between subobjects of the same X are arrows in the slice category of X. So collection of subobjects form a category with a preorder (with inclusion) we call $\mathrm{Sub}_{\mathbf{C}}(X)$

Pullback

In a category C a pullback of arrows f, g with the same image

is the pair of universal arrows p_1, p_2 such that $fp_1 = gp_2$ (i.e. u unique below)

- P is often denoted as $A \times_C B$. Rephrased in terms of products the pullback can be considered as a subobject of $A \times B$ determined as the equalizer of projection maps composed with f, g. Every category with products and equalizers has pullbacks defined like this and vice versa.
- For two pullback squares side by side sharing a morphism the larger rectangle forms a pullback square too.
- The pullback of a commutative triangle is also a commutative triangle by the above point.
- Pullbacks define a functor between slice categories, for fixed $f: A \to B$ $f^*: \mathbf{C}/B \to \mathbf{C}/A$ defined as $(D \xrightarrow{\alpha} B) \mapsto (A \times_B D \xrightarrow{\alpha^*} A)$ is functorial.
- This pullback functor makes the following diagram commute,

where f^{-1} is the restriction of f^* .

- A category with pullbacks and terminal objects \iff it has finite products and equalizers

Diagram

For categories \mathbf{J} , \mathbf{C} a **diagram** of type \mathbf{J} in \mathbf{C} is a functor $D: \mathbf{J} \to \mathbf{C}$ where \mathbf{J} admits an indexing. This is a formalization of the notion of 'diagram' we use intuitively. It can be thought of as the image of \mathbf{J} in \mathbf{C} , the actual stucture of \mathbf{J} is largely irrelevant.

For example,

Cone

Given \mathbf{J}, \mathbf{C} and a diagram of type \mathbf{J} in \mathbf{C} , $D : \mathbf{J} \to \mathbf{C}$ we define a **cone** to the diagram D for an object (vertex) C of \mathbf{C} and family of arrows $c_j : C \to D_j$ for all $j \in \mathbf{J}$ such for $\alpha : i \to j$ the following commute,

Furthermore we can have a morphism between cones in the natural way $\vartheta:(C,c_i)\to(C',c_i')$ making every such triangle commute,

This lets us define a category of cones into D denoted as $\mathbf{Cone}(D)$. Its dual is called a cocone.

Comma category

We define the **comma category** $(S \downarrow T)$ categories $\mathbf{A}, \mathbf{B}, \mathbf{C}$ which are related as $\mathbf{A} \xrightarrow{S} \mathbf{C} \xleftarrow{T} \mathbf{B}$. With objects as 3-tuples $(A, B, h), A \in \mathbf{A}, B \in \mathbf{B}, (h : S(A) \to T(B)) \in \mathbf{C}$ and arrows between them defined naturally as follows, all (f,g) for $f: A \to A', g: B \to B'$ such that the following commutes,

A cone can alternatively be understood as a comma category $(\Delta \downarrow D)$, for the diagram D as a functor from $\Delta : C \to \operatorname{Fun}(\mathbf{J}, \mathbf{C})$ sometimes denoted as C^J . Fun(\mathbf{J}, \mathbf{C}) is the functor category which is defined later.

Defined as sending $\Delta(C): \mathbf{J} \to \mathbf{C}$ which just maps C to C. This functor is usually called the **diagonal functor**.

Limit

Given a diagram $D : \mathbf{J} \to \mathbf{C}$ its **limit** is a terminal object in **Cone**(D), denoted as $p_i : \lim_{\leftarrow_i} D_i \to D_i$.

If **J** is finite the limit is called a finite limit.

• A category has finite limits \iff it has finite products and equalizers (and so pullbacks and terminal objects.)

A functor F is said to **preserve limits** of type J if $F(\lim_{\leftarrow} D_j) \cong \lim_{\leftarrow} F(D_j)$. Such a functor is called continuous.

 $\bullet\,$ Representable functors in locally small categories are continuous.