Binarized Neural Network

Knowledge and Data Mining project

Irene Caria Matricola: 2040639

February 22, 2023

Pietro Sittoni Matricola: 2040637

- ► Introduction: Binarized Neural Network
- ► Encoding: input layer and 1 hidden layer
- Binary functions
- Dataset creation
- ► Performances: 1—layer vs 2—layer
- Demo

- ► Introduction: Binarized Neural Network
- ► Encoding: input layer and 1 hidden layer
- Binary functions
- Dataset creation
- ► Performances: 1—layer vs 2—layer
- Demo

- ► Introduction: Binarized Neural Network
- ► Encoding: input layer and 1 hidden layer
- **▶** Binary functions
- Dataset creation
- ► Performances: 1—layer vs 2—layer
- Demo

- ► Introduction: Binarized Neural Network
- ► Encoding: input layer and 1 hidden layer
- ▶ Binary functions
- Dataset creation
- ► Performances: 1—layer vs 2—layer
- Demo

- ► Introduction: Binarized Neural Network
- ► Encoding: input layer and 1 hidden layer
- Binary functions
- ► Dataset creation
- ► Performances: 1—layer vs 2—layer
- Demo

- ► Introduction: Binarized Neural Network
- ► Encoding: input layer and 1 hidden layer
- Binary functions
- ► Dataset creation
- ► Performances: 1—layer vs 2—layer
- Demo

- ▶ The unknown model parameter $w_i \in \{-1, 1\}$
- ▶ The input variables are $x^{(i)}$ for i = 1, ..., m, where each $x^{(i)} = (x_1^{(i)}, ..., x_n^{(i)}) \in \{-1, 1\}^n$
- ► The labels $y^{(i)} = f(x^{(i)})$ for i = 1, ..., m, where $f: \{-1, 1\}^n \longrightarrow \{-1, 1\}$
- ▶ The activation function is $sign(\sum_{i=1}^{n} x_i w_i)$

- ▶ The unknown model parameter $w_i \in \{-1, 1\}$
- ▶ The input variables are $x^{(i)}$ for i = 1, ..., m, where each $x^{(i)} = (x_1^{(i)}, ..., x_n^{(i)}) \in \{-1, 1\}^n$
- ► The labels $y^{(i)} = f(x^{(i)})$ for i = 1, ..., m, where $f: \{-1, 1\}^n \longrightarrow \{-1, 1\}$
- ▶ The activation function is $sign(\sum_{i=1}^{n} x_i w_i)$

- ▶ The unknown model parameter $w_i \in \{-1, 1\}$
- ► The input variables are $x^{(i)}$ for i = 1, ..., m, where each $x^{(i)} = (x_1^{(i)}, ..., x_n^{(i)}) \in \{-1, 1\}^n$
- ► The labels $y^{(i)} = f(x^{(i)})$ for i = 1, ..., m, where $f: \{-1, 1\}^n \longrightarrow \{-1, 1\}$
- ▶ The activation function is $sign(\sum_{i=1}^{n} x_i w_i)$

- ▶ The unknown model parameter $w_i \in \{-1, 1\}$
- ► The input variables are $x^{(i)}$ for i = 1, ..., m, where each $x^{(i)} = (x_1^{(i)}, ..., x_n^{(i)}) \in \{-1, 1\}^n$
- ► The labels $y^{(i)} = f(x^{(i)})$ for i = 1, ..., m, where $f: \{-1, 1\}^n \longrightarrow \{-1, 1\}$
- ▶ The activation function is $sign(\sum_{i=1}^{n} x_i w_i)$

- ▶ The unknown model parameter $w_i \in \{-1, 1\}$
- ► The input variables are $x^{(i)}$ for i = 1, ..., m, where each $x^{(i)} = (x_1^{(i)}, ..., x_n^{(i)}) \in \{-1, 1\}^n$
- ► The labels $y^{(i)} = f(x^{(i)})$ for i = 1, ..., m, where $f: \{-1, 1\}^n \longrightarrow \{-1, 1\}$
- ▶ The activation function is $sign\left(\sum_{i=1}^{n} x_i w_i\right)$

Problem Definition

We can transform this problem into a MAX-SAT.

We used Python in particular PySAT and RC2 algorithm in order to solve the MAX-SAT problem.

BNN - input layer

This is an example of Binarized Neural Network with the input layer of 10 neurons and 0 hidden layer.

BNN - 1 hidden layer

Here an example of Binarized Neural Network with the input layer of 10 neurons and 1 hidden layer of 5 neurons.

Loss Function

We try to maximize

$$\sum_{i=1}^m y_i o_i,$$

where y_i is the i-th target and o_i is the i-th output of the model.

BNN -Encoding- 1 layer

We use $n \times m$ propositional variables:

$$W_1, \ldots, W_n$$

ii
$$o_1, \ldots, o_m$$

If $x, y \in \{-1, 1\}$ the product is one when x, y have the same sign minus one otherwise.

In propositional logic if we have the i-th entry of the k-th observation the product between W_i and x_i^k is equivalent to $\neg^{x_i^k}W_i = W_i$ when $x_i^k = 1$, $\neg^{x_i^k}W_i = \neg W_i$.

BNN - Encoding - 1 layer

The main idea in order to encode $sign(\sum_i w_i x_i)$ is: the sign is positive if there are at least $\lceil \frac{n}{2} \rceil$ positive terms in the sum so

$$\bigwedge_{\substack{I\subseteq [n]\\|I|=n-\lceil\frac{n}{2}\rceil+1}}\bigvee_{i\in I}\neg^{x_i}W_i, \text{ the negation (in CNF) is:}\\ \bigwedge_{\substack{I\subseteq [n]\\|I|=\lceil\frac{n}{2}\rceil}}\bigvee_{i\in I}\neg\neg^{x_i}W_i.$$

BNN - Encoding - Hard Clause - 1 layer

The hard clause can easily obtain by

$$o_{k} \equiv \bigwedge_{\substack{I \subseteq [n] \\ |I| = n - \lceil \frac{n}{2} \rceil + 1}} \bigvee_{i \in I} \neg^{x_{i}^{k}} W_{i},$$

$$\left(\bigwedge_{\substack{I \subseteq [n] \\ |I| = n - \lceil \frac{n}{2} \rceil + 1}} \bigvee_{i \in I} \neg^{x_{i}^{k}} W_{i} \vee \neg o_{k}\right) \wedge$$

$$\left(\bigwedge_{\substack{I \subseteq [n] \\ |I| = \lceil \frac{n}{2} \rceil}} \bigvee_{i \in I} \neg^{x_{i}^{k}} W_{i} \vee o_{k}\right).$$

BNN - Encoding - Soft Clause - 1 layer

The soft Clause for each observation in the data set are:

$$(o_k, y_k).$$

We try to maximize the number of output that have the same sign of y_k .

BNN - Encoding - Clause - 1 layer

The Clause are:

i
$$(\bigvee_{i\in I}\neg^{x_i^k}W_i\vee\neg o_k,\infty)$$
, for each $I\subseteq [n]$ such that $|I|=n-\lceil\frac{n}{2}\rceil+1$

ii
$$(\bigvee_{i\in I'}\neg\neg^{x_i^k}W_i\vee\neg\neg o_k,\infty)$$
, for each $I^{'}\subseteq [n]$ such that $|I^{'}|=\lceil\frac{n}{2}\rceil$

iii
$$(o_k, y_k)$$
.

$$k = 1, \ldots, m$$

BNN - Encoding - 2 layer

We use $(n + m + 1) \times h + m$ propositional variables:

$$W_1^1, \ldots, W_n^1, W_1^2, \ldots, W_n^h$$

ii
$$\bar{w}_1,\ldots,\bar{w}_h$$

iii
$$H_1^1,\ldots,H_h^1,H_1^2,\ldots,H_h^m$$

iv
$$o_1, \ldots, o_m$$

We encode the product with the element (W_i^j) and the input with the same reasoning as before. But we need to encode the hidden literals with the output weight (\overline{w}_i) .

$$H_j^k \equiv \overline{W}_j$$

BNN - Encoding - Hard Clause - 2 layer

The hard clause can easily derive from

$$H_{j}^{k} \equiv \bigwedge_{\substack{I \subseteq [n] \\ |I| = n - \lceil \frac{n}{2} \rceil + 1}} \bigvee_{i \in I} \neg^{x_{i}^{k}} W_{i}^{j},$$

$$\bigwedge_{\substack{I \subseteq [n] \\ |I| = n - \lceil \frac{n}{2} \rceil + 1}} \bigvee_{i \in I} \neg^{x_{i}^{k}} W_{i}^{j} \vee \neg H_{j}^{k} \bigwedge$$

$$\bigwedge_{\substack{I \subseteq [n] \\ |I| = \lceil \frac{n}{2} \rceil}} \bigvee_{i \in I} \neg^{-x_{i}^{k}} W_{i}^{j} \vee H_{j}.$$

BNN - Encoding - Hard Clause - 2 layer

$$o_{k} \equiv \bigwedge_{\substack{I \subseteq [h] \\ |I| = n - \lceil \frac{h}{2} \rceil + 1}} \bigvee_{j \in J} (\overline{w}_{j} \equiv H_{j}^{k}),$$

$$\left(\bigwedge_{\substack{I \subseteq [h] \\ |I| = h - \lceil \frac{h}{2} \rceil + 1}} \bigvee_{j \in J} ((\overline{w}_{j} \vee \neg H_{j}^{k} \vee \neg o_{k}) \wedge (\neg \overline{w}_{j} \vee H_{j}^{k} \vee \neg o_{k})) \right) \wedge$$

$$\wedge \left(\bigwedge_{\substack{I \subseteq [h] \\ |I| = \lceil \frac{h}{2} \rceil}} \bigvee_{j \in J} ((\neg \overline{w}_{j} \vee \neg H_{j}^{k} \vee o_{k}) \wedge (\overline{w}_{j} \vee H_{j}^{k} \vee o_{k})) \right).$$

Then using the distributive property of the \land and \lor we obtain the remaining hard clause.

BNN - Encoding - Soft Clause - 2 layer

The soft clause are equal to the previous case (o_k, y_k)

Majority function

$$f(x) = \begin{cases} 1 & \text{if } sum(x) \ge 0, \\ -1 & \text{otherwise} \end{cases}$$

Majority function

$$f(x) = \begin{cases} 1 & \textit{if sum}(x) \ge 0, \\ -1 & \textit{otherwise} \end{cases}$$

XOR function

$$f(x) = \begin{cases} 1 & \text{if #1 in x is odd,} \\ -1 & \text{otherwise} \end{cases}$$

Majority function

$$f(x) = \begin{cases} 1 & \text{if } sum(x) \ge 0, \\ -1 & \text{otherwise} \end{cases}$$

XOR function

$$f(x) = \begin{cases} 1 & \text{if #1 in x is odd,} \\ -1 & \text{otherwise} \end{cases}$$

Parity function

$$f(x) = \begin{cases} 1 & \text{if #1 in x is even,} \\ -1 & \text{otherwise} \end{cases}$$

Majority function

$$f(x) = \begin{cases} 1 & \text{if } sum(x) \ge 0, \\ -1 & \text{otherwise} \end{cases}$$

XOR function

$$f(x) = \begin{cases} 1 & \text{if #1 in x is odd,} \\ -1 & \text{otherwise} \end{cases}$$

Parity function

$$f(x) = \begin{cases} 1 & \text{if #1 in x is even,} \\ -1 & \text{otherwise} \end{cases}$$

Inner product function

$$f(x) = \begin{cases} 1 & \textit{if prod}(x) = 1, \\ -1 & \textit{otherwise} \end{cases}$$

Majority function

$$f(x) = \begin{cases} 1 & \textit{if sum}(x) \ge 0, \\ -1 & \textit{otherwise} \end{cases}$$

$$f(x) = \begin{cases} 1 & \text{if #1 in x is odd,} \\ -1 & \text{otherwise} \end{cases}$$

Parity function

Inner product function

$$f(x) = \begin{cases} 1 & \text{if #1 in x is even,} \\ -1 & \text{otherwise} \end{cases}$$

$$f(x) = \begin{cases} 1 & \textit{if prod}(x) = 1, \\ -1 & \textit{otherwise} \end{cases}$$

We also implemented a random function which assigns randomly a value in $\{-1,1\}$.

- ► Set a random seed
- Given the dimensions $m \times n$, we randomly generate m observations with n values in $\{-1,1\}$
- ► For each observation we calculate the corresponding label by applying one of the binary functions shown before (Majority, XOR, Parity, Inner product, Random)
- ► Split in train and test sets

- Set a random seed
- ▶ Given the dimensions $m \times n$, we randomly generate m observations with n values in $\{-1,1\}$
- ► For each observation we calculate the corresponding label by applying one of the binary functions shown before (Majority, XOR, Parity, Inner product, Random)
- ► Split in train and test sets

- Set a random seed
- ▶ Given the dimensions $m \times n$, we randomly generate m observations with n values in $\{-1,1\}$
- ► For each observation we calculate the corresponding label by applying one of the binary functions shown before (Majority, XOR, Parity, Inner product, Random)
- ► Split in train and test sets

- Set a random seed
- ▶ Given the dimensions $m \times n$, we randomly generate m observations with n values in $\{-1,1\}$
- ► For each observation we calculate the corresponding label by applying one of the binary functions shown before (Majority, XOR, Parity, Inner product, Random)
- ► Split in train and test sets

Pie charts - balance or unbalanced data?

Note: these pie charts refer to training labels of 22 observations (see next slide)

BNN - Performance - 1-layer vs 2-layer (n = 5)

► The following table summarizes the train and test performances of both 1-layer and 2-layer BNN with dimension n = 5

BNN type	Hidden dim	Binary f	Train dim	Test dim	Train acc	Test acc
1—layer	0	majority	(22, 5)	(10, 5)	1.0	1.0
2—layer	5	majority	(22, 5)	(10, 5)	1.0	1.0
1—layer	0	XOR	(22, 5)	(10, 5)	0.81	0.8
2—layer	5	XOR	(22, 5)	(10, 5)	1.0	1.0
1—layer	0	parity	(22, 5)	(10, 5)	0.81	0.8
2—layer	5	parity	(22, 5)	(10, 5)	1.0	1.0
1—layer	0	inner product	(22, 5)	(10, 5)	0.81	0.8
2—layer	5	inner product	(22, 5)	(10, 5)	1.0	1.0
1—layer	0	random	(22, 5)	(10, 5)	0.72	0.6
2—layer	5	random	(22, 5)	(10, 5)	$0.8\overline{63}$	0.6

BNN - Performance - 1-layer (n = max)

▶ BNN perfomance - only input layer with the maximum dimension *n* of the dataset

Binary f	Train dim	Test dim	Train acc	Test acc
majority	(44, 20)	(20, 20)	1.0	1.0
XOR	(44, 20)	(20, 20)	0.8863	0.65
parity	(44, 20)	(20, 20)	0.8636	0.45
inner product	(44, 20)	(20, 20)	0.863	0.45
random	(44, 20)	(20, 20)	0.81	0.25

BNN - Performance - 2-layer (n = max)

▶ BNN performance - with 1 hidden layer of 10 neurons and the maximum dimension *n* of the dataset

Binary f	Train dim	Test dim	Train acc	Test acc
majority	(89, 15)	(39, 15)	1.0	0.743589
XOR	(89, 15)	(39, 15)	1.0	0.871794
parity	(89, 15)	(39, 15)	1.0	0.769230
inner product	(89, 15)	(39, 15)	1.0	$0.\overline{871794}$
random	(89, 15)	(39, 15)	0.83	0.4

DEMO

In the Python code, we will show the implementation of the BNN with 1 and 2 layer, using different binary functions and dataset dimensions.

https://colab.research.google.com/drive/ 1IhwUSa4mlCOJPS7gfna3hRF61_Jvc4Ns

Thanks for the attention!