Chapter 2. Network Models

- Layered Tasks
- 2. The OSI Model
- 3. Layers in the OSI Model
- 4. TCP/IP Protocol Suite
- 5. Addressing

Layered Model: Sending a Letter

The parcel is carried from the source to the destination.

OSI Model

• ISO is the organization. OSI is the model

Interaction between layers in the OSI model

Layer and interface

An exchange using the OSI

• Encapsulation with header and possibly trailer

Physical Layer

- The physical layer is responsible for movements of individual bits from one hop (node) to the next
- Mechanical and electrical specification, the procedures and functions

Physical Layer: Duties

- Physical characteristics of interfaces and media
- Representation of bits
 - Encoded into signals electrical or optical
- Data rate
- Synchronization of bits
- Line configuration
- Physical topology
- Transmission mode

Data Link Layer

- The data link layer is responsible for moving frames from one hop (node) to the next
- Transform the physical layer to a reliable (error-free) link

Data Link Layer: Duties

- Framing
- Physical addressing
- Flow control
- Error control
- Access control

Hop-to-Hop Delivery

Network Layer

• The network layer is responsible for the delivery of packets from the source host to the destination host

Network Layer: Duties

Logical addressing and routing

Transport Layer

• The transport layer is responsible for delivery of a message from one process to another

Transport Layer: Duties

- Service-point (port) addressing
- Segmentation and reassembly
- Connection control
- Flow control
- Error control

Reliable Process-to-Process Delivery of a Message

Session Layer

 Session layer is responsible for dialog control and synchronization

Presentation Layer

 Presentation layer is responsible for translation, compression, and encryption

Application Layer

 Application layer is responsible for providing services to the user

Application Layer: Services

- Network virtual terminal
- Mail services
- File transfer, access, and management
- Directory services

Summary of Layers

TCP/IP and OSI Model

Application	Applications							
Presentation	SMTP	FTP	НТТР	DNS	SNMP	TELNET		
Session								
Transport	SCTP TCP					UDP		
Network (internet)	ICMP	IGMP		IP		RARP	ARP	
Data link Physical	Protocols defined by the underlying networks (host-to-network)							

TCP/IP Protocol Suite

- Host-to-network : Physical and data link layer
 - No specific protocol
- Network layer
 - IP(Internet Protocl), ARP(Address Resolution Protocol), RARP(Reverse ARP), ICMP(Internet Control Message Protocol), IGMP(Internet Group Message Protocol)
- Transport layer
 - TCP(Transmission Control Protocol), UDP(User Datagram Protocol), SCTP(Stream Control Transmission Protocol),
- Application Layer
 - Combined session, presentation, and application layers

Addressing

- Four levels of addresses in TCP/IP protocols
- Physical (link), logical (IP, network), port, and specific addresses

Relationship of Layers and Addresses

Physical Address

• A node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link (bus topology LAN). As the figure shows, the computer with physical address 10 is the sender, and the computer with physical address 87 is the receiver.

07:01:02:01:2C:4B

A 6-byte (12 hexadecimal digits) physical address.

Logical (IP) Address

The physical addresses will change from hop to hop, but the logical addresses usually remain the same

Port Address

• The physical addresses change from hop to hop, but the logical and port addresses usually remain the same

Specific Address

- Some application have user-friendly addresses that are designed for that specific address
- Example 1: e-mail address: nayeema.cse@diu.edu.bd
 - Defines the recipient of an e-mail
- Example 2: URL (Universal Resource Locator): www.cse.univdhaka.edu
 - Used to find a document on the WWW

Assignments

Problems: 16 - 21, 23- 28.