Álgebra Universal e Categorias

Exercícios - Folha 8 —

51. Considere o reticulado $\mathcal{N}_5=(N_5;\wedge,\vee)$ representado pelo diagrama de Hasse seguinte

(a) Mostre que o reticulado das congruências de \mathcal{N}_5 pode ser representado pelo diagrama de Hasse

- (b) A álgebra \mathcal{N}_5 é congruente-modular? Justifique.
- (c) Justifique que \mathcal{N}_5 é uma álgebra diretamente indecomponível e subdiretamente irredutível.
- 52. Mostre que toda a cadeia é um reticulado diretamente indecomponível.
- 53. Represente a cadeia de 3 elementos como um produto subdireto de álgebras subdiretamente irredutíveis.
- 54. Seja \mathcal{A} uma álgebra e $\theta \in \operatorname{Con}(\mathcal{A})$. Mostre que a álgebra \mathcal{A}/θ é simples se e só se θ é maximal em $\operatorname{Con}(\mathcal{A})$.
- 55. Mostre que, para cada operador $O \in \{H, S\}$, IO = OI.

$$[SI = IS]$$

Pretende-se provar que, para qualquer classe de álgebras \mathbf{K} , $SI(\mathbf{K}) = IS(\mathbf{K})$.

Seja $\mathbf K$ uma classe de álgebras. Comecemos por mostrar que $IS(\mathbf K)\subseteq SI(\mathbf K)$. Seja $\mathcal A=(A;F)$ uma álgebra de tipo (O,τ) tal que $\mathcal A\in IS(\mathbf K)$. Então $\mathcal A=\alpha(\mathcal B)$, para alguma álgebra $\mathcal B\in S(K)$ e algum isomorfismo $\alpha:\mathcal B\to\mathcal A$. Como $\mathcal B\in S(\mathbf K)$, tem-se $\mathcal B\le \mathcal C$, para alguma álgebra $\mathcal C\in \mathbf K$. Pretendemos mostrar que $\mathcal A\in SI(\mathbf K)$. Admitamos, sem perda de generalidade, que $A\cap C=\emptyset$ (se $A\cap C\ne\emptyset$, considerase uma álgebra $\mathcal C'=(C';G)$ isomorfa a $\mathcal C$ e tal que $C'\cap A=\emptyset$). Consideremos $D=A\cup (C\setminus B)$ e a aplicação $\delta:C\to D$ defnida por

$$\delta(c) = \left\{ \begin{array}{ll} \alpha(c) & \text{ se } c \in B \\ c & \text{ se } c \in C \setminus B \end{array} \right.$$

A aplicação δ é uma bijeção. Seja $\mathcal{D}=(D;(f^{\mathcal{D}})_{f\in O})$ a álgebra de tipo (O,τ) onde, para cada cada símbolo $f\in O_n, f^{\mathcal{D}}:D^n\to D$ é a função definida por

$$f^{\mathcal{D}}(d_1,\ldots,d_n) = \delta(f^{\mathcal{C}}(\delta^{-1}(d_1),\ldots,\delta^{-1}(d_n)).$$

A aplicação δ é um isomorfismo de $\mathcal C$ em $\mathcal D$. Além disso, a álgebra $\alpha(\mathcal B)$ é uma subálgebra de $\mathcal D$. Assim, uma vez que $\mathcal A=\alpha(\mathcal B)$, $\alpha(\mathcal B)\leq \mathcal D$, $\mathcal D\cong \mathcal C$ e $\mathcal C\in \mathbf K$, concluímos que $\mathcal A\in SI(\mathbf K)$. Logo, $IS(\mathbf K)\subseteq SI(\mathbf K)$. Mostremos agora que $SI(\mathbf K)\subseteq IS(\mathbf K)$. Seja $\mathcal A\leq \mathcal B$, para alguma álgebra $\mathcal B\in \mathbf I(K)$. Uma vez que $\mathcal B\in I(\mathbf K)$, tem-se $\mathcal B=\alpha(\mathcal C)$, para alguma álgebra $\mathcal C\in \mathbf K$ e algum isomorfismo $\alpha:\mathcal C\to \mathcal B$. Atendendo a que $\alpha:\mathcal C\to \mathcal B$ é um isomorfismo, $\alpha^{-1}:\mathcal B\to \mathcal C$ é também um isomorfismo. Como $\mathcal A$ é uma subálgebra de

 \mathcal{B} , $\alpha^{-1}(\mathcal{A})$ é uma subálgebra de \mathcal{C} . Então, como $\alpha(\alpha^{-1}(\mathcal{A})) = \mathcal{A}$, tem-se $\mathcal{A} \in IS(\mathbf{K})$.

Desta forma, provámos que SI = IS.

$$[HI = IH]$$

Seja $\mathcal{A} \in IH(\mathbf{K})$. Então $\mathcal{A} = \alpha(\mathcal{B})$, para alguma álgebra $\mathcal{B} \in H(\mathbf{K})$ e algum isomorfismo $\alpha: \mathcal{B} \to \mathcal{A}$. Como $\mathcal{B} \in H(K)$, então $\mathcal{B} = \delta(\mathcal{C})$, para alguma álgebra $\mathcal{C} \in \mathbf{K}$ e algum epimorfismo $\delta: \mathcal{C} \to \mathcal{B}$. Assim, $\mathcal{A} = \alpha(\delta(\mathcal{C})) = (\alpha \circ \delta)(\mathcal{C})$. Como $\mathcal{C} \in \mathbf{K}$ e $\alpha \circ \delta$ é um homomorfismo, então $\mathcal{A} \in H(\mathbf{K})$. Uma vez que $id_{\mathcal{C}}(\mathcal{C}) = \mathcal{C}$, segue que $\mathcal{A} = (\alpha \circ \delta)(id_{\mathcal{C}}(\mathcal{C}))$. Assim, considerando que $id_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$ é um isomorfismo de \mathcal{C} em \mathcal{C} , tem-se $\mathcal{A} \in HI(\mathbf{K})$. Logo $IH(\mathbf{K}) \subseteq HI(\mathbf{K})$.

Mostremos agora que $HI(\mathbf{K})\subseteq IH(\mathbf{K})$. Seja $\mathcal{A}\in HI(\mathbf{K})$. Então $\mathcal{A}=\alpha(\mathcal{B})$, para alguma álgebra $\mathcal{B}\in I(\mathbf{K})$ e algum epimorfismo $\alpha:\mathcal{B}\to\mathcal{A}$. Como $\mathcal{B}\in I(K)$, então $\mathcal{B}=\delta(\mathcal{C})$, para alguma álgebra $\mathcal{C}\in \mathbf{K}$ e algum isomorfismo $\delta:\mathcal{C}\to\mathcal{B}$. Assim, $\mathcal{A}=\alpha(\delta(\mathcal{C}))=(\alpha\circ\delta)(\mathcal{C})$. Como $\mathcal{C}\in \mathbf{K}$ e $\alpha\circ\delta$ é um homomorfismo, tem-se $\mathcal{A}\in H(\mathbf{K})$. Como $id_A(\mathcal{A})=\mathcal{A}$, segue que $\mathcal{A}=id_A((\alpha\circ\delta)(\mathcal{C}))$. Então, considerando que $id_A:A\to A$ é um isomorfismo de \mathcal{A} em \mathcal{A} , conclui-se que $\mathcal{A}\in IH(\mathbf{K})$). Logo $HI(\mathbf{K})\subseteq IH(\mathbf{K})$.

56. Mostre que os operadores S, I, H e IP são idempotentes.

$$[S^2 = S]$$

Pretendemos provar que $S^2=S$, ou seja, pretende-se mostrar que, para toda a classe de álgebras \mathbf{K} , $SS(\mathbf{K})=S(\mathbf{K})$.

Seja $\mathbf K$ uma classe de álgebras. Uma vez que, para qualquer operador $O \in \{S, H, I, P, P_s\}$ e para qualquer classe de álgebras $\mathbf K'$, tem-se $\mathbf K' \subseteq O(\mathbf K')$, vem que $S(\mathbf K) \subseteq S(S(\mathbf K)) = SS(\mathbf K)$.

Resta provar que $SS(\mathbf{K}) \subseteq S(\mathbf{K})$. Seja $\mathcal{A} \in SS(\mathbf{K})$. Então $\mathcal{A} \leq \mathcal{B}$, para alguma álgebra $\mathcal{B} \in S(\mathbf{K})$. Como $B \in S(\mathbf{K})$, tem-se $B \leq \mathcal{C}$, para alguma álgebra $\mathcal{C} \in \mathbf{K}$. Por conseguinte, $\mathcal{A} \leq \mathcal{C}$, para alguma álgebra $\mathcal{C} \in \mathbf{K}$. Assim, $\mathcal{A} \in S(\mathbf{K})$.

Desta forma, provámos que $SS(\mathbf{K}) = S(\mathbf{K})$.

$$[(IP)^2 = IP]$$

Pretendemos mostrar que, para qualquer classe de álgebras \mathbf{K} , $IPIP(\mathbf{K}) = IP(\mathbf{K})$.

Seja $\mathbf K$ uma classe de álgebras. Uma vez que, para qualquer operador $O \in \{S, H, I, P, P_s\}$ e para qualquer classe de álgebras $\mathbf K'$, tem-se $\mathbf K' \subseteq O(\mathbf K')$, vem que $IP(\mathbf K) \subseteq IPIP(\mathbf K)$.

Resta mostrar que $IPIP(\mathbf{K}) \subseteq IP(\mathbf{K})$. Considerando que $PI \leq IP$, tem-se $IPIP \leq IIPP$. Então, como I é idempotente, segue que $IPIP \leq IPP$. Assim, para provar que $IPIP(\mathbf{K}) \subseteq IP(\mathbf{K})$, basta mostrar que $IPP(\mathbf{K}) \subseteq IP(\mathbf{K})$.

Seja $\mathbf K$ uma classe de álgebras. Se $\mathcal A \in IPP(\mathbf K)$, tem-se $\mathcal A = \alpha(\mathcal B)$ para alguma álgebra $\mathcal B \in PP(\mathbf K)$ e algum isomorfismo $\alpha: \mathcal B \to \mathcal A$. Como $\mathcal B \in PP(\mathbf K)$, tem-se $\mathcal B = \prod_{i \in I} \mathcal C_i$ onde, para todo $i \in I$, $\mathcal C_i \in P(\mathbf K)$. Considerando que $\mathcal C_i \in P(\mathbf K)$, tem-se $\mathcal C_i = \prod_{j \in J} D_{(i,j)}$ onde, para todo $i \in I$ e $j \in J$, $\mathcal D_{(i,j)} \in \mathbf K$. Assim,

$$\mathcal{B} = \prod_{i \in I} \left(\prod_{j \in J} \mathcal{D}_{(i,j)} \right).$$

A correspondência

$$\delta: \prod_{k \in I \times J} D_k \to \prod_{i \in I} \left(\prod_{j \in J} D_{(i,j)} \right)$$

definida por

$$(\delta(d)(i))(j) = d((i,j))$$

é um isomorfismo de \mathcal{D} em $\prod_{i \in I} \left(\prod_{j \in J} \mathcal{D}_{(i,j)} \right)$.

Assim, $\mathcal{A}=(\alpha\circ\delta)(\prod_{k\in I\times J}\mathcal{D}).$ Como α e δ são isomorfismos, $\alpha\circ\delta$ é um isomorfismo. Então, como $\prod_{k\in I\times J}\mathcal{D}_k\in P(\mathbf{K})$, tem-se $\mathcal{A}\in IP(\mathbf{K})$.

Logo, $IPP \leq IP$. Portanto, $IPIP \leq IP$.

57. Mostre que HS, HIP e SIP são operadores de fecho em classes de álgebras do mesmo tipo.

Mostremos que HIP é um operador de fecho. Pretendemos mostrar que, para quaisquer classes de álgebras \mathbf{K}_1 e \mathbf{K}_2 :

- (1) $\mathbf{K}_1 \subseteq HIP(\mathbf{K}_1)$;
- (2) $(HIP)^2(\mathbf{K}_1) \subseteq HIP(\mathbf{K}_1)$;
- (3) $\mathbf{K}_1 \subseteq \mathbf{K}_2 \Rightarrow HIP(\mathbf{K}_1) \subseteq HIP(\mathbf{K}_2)$.

Prova de (1): Para qualquer operador $O \in \{S, H, I, P, P_s\}$ e para qualquer classe de álgebras \mathbf{K}' , tem-se $\mathbf{K}' \subseteq O(\mathbf{K}')$. Logo, para qualquer classe de álgebras \mathbf{K}_1 , tem-se $\mathbf{K}_1 \subseteq P(\mathbf{K}_1)$, $P(\mathbf{K}_1) \subseteq IP(\mathbf{K}_1)$ e $IP(\mathbf{K}_1) \subseteq HIP(\mathbf{K}_1)$. Assim, $\mathbf{K}_1 \subseteq HIP(\mathbf{K}_1)$.

Prova de (2): Para qualquer classe de álgebras \mathbf{K}_1 , tem-se

$$HIPHIP(\mathbf{K}_1) \stackrel{(i)}{\subseteq} HIHPIP(\mathbf{K}_1) \stackrel{(ii)}{=} HHIPIP(\mathbf{K}_1) \stackrel{(iii)}{=} HIPIP(\mathbf{K}_1) \stackrel{(iv)}{=} HIP(\mathbf{K}_1).$$

(i)
$$PH \le HP$$
; (ii) $HI = IH$; (iii) $H^2 = H$; (iv) $(IP)^2 = IP$.

Prova de (3): Para qualquer operador $O \in \{S, H, I, P, P_s\}$ e para quaisquer classes de álgebras K e K',

$$\mathbf{K} \subseteq \mathbf{K}' \Rightarrow O(\mathbf{K}) \subseteq O(\mathbf{K}').$$

Assim, para quaisquer classes de álgebras \mathbf{K}_1 e \mathbf{K}_2 , tem-se

$$\mathbf{K}_1 \subseteq \mathbf{K}_2 \quad \Rightarrow \quad P(\mathbf{K}_1) \subseteq P(\mathbf{K}_2) \\ \Rightarrow \quad IP(\mathbf{K}_1) \subseteq IP(\mathbf{K}_2) \\ \Rightarrow \quad HIP(\mathbf{K}_1) \subseteq HIP(\mathbf{K}_2).$$

De (1), (2) e (3), conclui-se que HIP é um operador de fecho.

58. Mostre que $SH \neq HS$, $PS \neq SP$, $PH \neq HP$.

$$[SH \neq HS]$$

Como $SH \leq HS$, temos de provar que $HS \nleq SH$. Sendo assim, tem de se provar que existe uma classe de álgebras \mathbf{K} tal que $HS(\mathbf{K}) \nsubseteq SH(\mathbf{K})$.

Seja $\mathbf{K}=\{Q\}$ com $Q=(\mathbb{Q};+^Q,\cdot^Q,-^Q,0^Q,1^Q)$, onde $+^Q$, \cdot^Q , $-^Q$ são as operações usuais em $\mathbb{Q},\,0^Q=0$ e $1^Q=1$. Se \mathcal{B} é uma álgebra homomorfa de Q, então \mathcal{B} é uma álgebra isomorfa a Q ou é uma álgebra trivial. Assim,

$$H(\{Q\}) = I(\{Q\}) \cup \{\mathcal{B} = (B; F) \mid \mathcal{B} \text{ é uma álgebra do mesmo tipo da álgebra } Q \in |B| = 1\}.$$

Consideremos as álgebras

$$\mathcal{Z} = (\mathbb{Z}; +^{\mathcal{Z}}, \cdot^{\mathcal{Z}}, -^{\mathcal{Z}}, 0^{\mathcal{Z}}, 1^{\mathcal{Z}})$$
, onde $+^{\mathcal{Z}}, \cdot^{\mathcal{Z}}, -^{\mathcal{Z}}$ são as operações usuais em $\mathbb{Z}, 0^{\mathcal{Z}} = 0$ e $1^{\mathcal{Z}} = 1$

e

$$\mathcal{Z}_2 = (\mathbb{Z}_2; +^{\mathcal{Z}_2}, \cdot^{\mathcal{Z}_2}, -^{\mathcal{Z}_2}, 0^{\mathcal{Z}_2}, 1^{\mathcal{Z}_2}), \text{ onde } +^{\mathcal{Z}_2}, \cdot^{\mathcal{Z}_2}, -^{\mathcal{Z}_2} \text{ são as operações usuais em } \mathbb{Z}_2, 0^{\mathcal{Z}_2} = \overline{0} \text{ e } 1^{\mathcal{Z}_2} = \overline{1}.$$

Uma vez que $\mathcal{Z} \in S(\{Q\})$ e $\mathcal{Z}_2 \in H(\{\mathcal{Z})\}$, tem-se $\mathcal{Z}_2 \in HS(\{Q\})$. No entanto, $\mathcal{Z}_2 \notin SH(\{Q\})$ (se $\mathcal{C} \in SH(\{Q\})$, então \mathcal{C} é uma álgebra trivial ou é uma álgebra infinita).

Logo $HS(\mathbf{K}) \nsubseteq SH(\mathbf{K})$.

$$[PS \neq SP]$$

Uma vez que $PS \leq SP$, tem de se provar que $SP \nleq PS$, ou seja, é necessário mostrar que existe uma classe de álgebras \mathbf{K} tal que $SP(\mathbf{K}) \nsubseteq PS(\mathbf{K})$.

Seja
$$\mathbf{K}=\{\mathbf{2}\}$$
 onde $\mathbf{2}=(\{a,b\};\wedge,\vee)$ é o reticulado representado por

O reticulado $R_1 = \mathbf{2} \times \mathbf{2}$ a seguir representado

é um elemento de $P(\mathbf{K})$. Assim, o reticulado R_2 representado por

é um elemento de $SP(\mathbf{K})$.

O reticulado R_2 não é um elemento de $PS(\mathbf{K})$. De facto, se $R' = (R'; \wedge^{R'}, \vee^{R'})$ é um elemento de $S(\mathbf{K})$, então $|R'| \in \{1,2\}$. Logo, para todo $R'' = (R''; \wedge^{R''}, \vee^{R''}) \in PS(\mathbf{K})$, tem-se $|R''| = 2^{|I|}$, para algum conjunto I.

Logo $SP(\mathbf{K}) \nsubseteq PS(\mathbf{K})$.

59. Mostre que, se G é a classe dos grupos abelianos, então HS(G) = SH(G).

Todo o sugbrupo de um grupo abeliano é um grupo abeliano e todo o grupo é um subgrupo de si mesmo. Assim, $S(\mathbf{G}) = \mathbf{G}$.

Todo o grupo abeliano é imagem epimorfa de si mesmo e toda a imagem epimorfa de um grupo abeliano é um grupo abeliano. Logo $H(\mathbf{G}) = \mathbf{G}$.

Portanto,

$$HS(\mathbf{G}) = H(S(\mathbf{G})) = H(\mathbf{G}) = \mathbf{G} = S(\mathbf{G}) = (S(H(\mathbf{G}))) = SH(\mathbf{G}).$$

60. Sejam \mathcal{A}_1 , \mathcal{A}_2 , ..., \mathcal{A}_n álgebras do mesmo tipo. Prove que $V(\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n) = V(\mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_n)$.

Sejam
$$V_1 = V(A_1, A_2, ..., A_n)$$
 e $V_2 = V(A_1 \times A_2 \times \cdots \times A_n)$.

Por definição, V_1 é a menor variedade que contém $\{\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\}$. Então, como $\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\in V_1$ e V_1 é fechada para a formação de produtos diretos, tem-se $\mathcal{A}_1\times\mathcal{A}_2\times\ldots\times\mathcal{A}_n\in V_1$. Mas V_2 é a menor variedade que contém $\{\mathcal{A}_1\times\mathcal{A}_2\times\cdots\times\mathcal{A}_n\}$, pelo que $V_2\subseteq V_1$.

Por outro lado, V_2 é a menor variedade que contém $\{\mathcal{A}_1 \times \mathcal{A}_2 \times \ldots \times \mathcal{A}_n\}$. Então, como V_2 é fechada para a formação de imagens homomorfas vem que, para todo $i \in \{1,2,\ldots,n\}$, $p_i(\mathcal{A}_2 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_n) = \mathcal{A}_i \in V_2$. Como $\{\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\}\subseteq V_2$ e V_1 é a menor variedade que contém $\{\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\}$, conclui-se que $V_1\subseteq V_2$.

Logo $V_1 = V_2$.