Карточка-задание к лабораторной работе «Исследование биполярного транзистора в ключевом режиме»

Ф. и. о	Myseur T.	t. Pummonob C.	B
Группа	016-81	Дата / 3.08.202 г.	

13.04,22

1	Снять зависимости	$_{a}(E_{6}), t_{6}(E_{6}), t_{6}(E_{6}) \Pi$	ри Е _е =-15 В. U.=- <i>е</i>	5 B R.=3 KOM
4 .	CHAID SUBHEHMOCH			J D. IN J NOW.

E ₆ , B	13. МКС	t _ф , мкс	t _c , MKC	t _p , мкс
0	0,6	0,2	3	1,4
2	0,6	0,25	2,2	1,2
4	0.6	0,26	1,8	1,1
6	0.6	0.28	1,4	1
8	0,6	0.32	1,5	0,9
10	0.6	633	1,45	0,8
12	0,6	0,34	1,25	0,77
14	0,6	0, 36	1,1	0,65

2. Снять зависимости $t_{\phi}(E_{\kappa})$, $t_{c}(E_{\kappa})$, $t_{p}(E_{\kappa})$ при E_{6} =15 B, U_{u} =-6 B, R_{κ} =3 кОм.

	Ψ(-π/)	c(~K); ch(~K)b	-0 $ 0$ 0 0	-) K
-E _κ , B	t₃, мкс	t_{ϕ} , мкс	t _c , мкс	t _p , мкс
2	904	0,1	1	0,9
4	0,09	0,14	0,95	0,8
6	0,04	0,18	0,75	0,77
8	0,04	0.12	0, 7	0.7
10	0,04	0,26	0,65	0,65.
12	0,09	0,28	0,6	0,6
14	0,09.	0,32	0,59	0,57

3. Снять зависимости $t_{\phi}(R_{\kappa})$, $t_{c}(R_{\kappa})$, $t_{p}(R_{\kappa})$ при E_{κ} =-15 B, E_{δ} =12 B, U_{μ} =-6 B

Rκ	t ₃ , MKC	tф, мкс	t _c , мкс	t _p , мкс
620 Ом	0,04	9,8	1,5	9,4
3 кОм	0,6	0,39	1,25	0,77.
100 кОм	0,06	0,16	4.8	61

4. Снять зависимости $t_0(U_0)$, $t_0(U_0)$, $t_0(U_0)$ при E_v =-15 B, E_0 =4 B, R_v =3 кОм.

T. CHAID SUBME	minocin to Cuj, t	C(On), th(On) 11pm	D_K 13 D , D_0 1	D, TCK 5 KOM.
-U _и , В	t ₃ , MKC	t _ф , мкс	t_c , MKC	t _p , мкс
2	0,08	1	2	0,5
4	0,08	0,85	1,95	0,495
6	0,08	0,75.	1,75	0,49
8	0.08	0,55	1,6	0,48
10	0,08	95	1,5	0,46

ЛАБОРАТОРНАЯ РАБОТА № 4

ИССЛЕДОВАНИЕ БИПОЛЯРНОГО ТРАНЗИСТОРАВ РЕЖИМЕ ПЕРЕКЛЮЧЕНИЯ

<u>Цель работы:</u> исследование импульсных свойств биполярного транзистора, определение их зависимостей от режима работы транзистора.

Задание и порядок выполнения работы

1. Начертить схему для исследования транзистора в режиме переключения (рис. 6, а) с указанием полярности включения приборов и источников питания, указать типы измерительных приборов.

Рис. 6. Схема для исследования биполярного транзистора в режиме переключения (а); временные диаграммы работы транзисторного ключа и правила определения параметров выходного импульса (б)

Таблица 1

E ₆ , B	t _ф , мкс	t _c , MKC	t _p , MKC
0	W //	<u>, , , , , , , , , , , , , , , , , , , </u>	,
2			
4			
6			
8			
10			
12			
14			
2. Зависимостн	$t_{\phi}(E_{\kappa}), t_{c}(E_{\kappa}), t_{p}(E_{\kappa})$	при E ₆ =15 В, U _н =-	6 B, R _к =3 кОм
-Е _к , В	t _ф , мкс	t _c , MKC	t _p , MKC
2	•		
4			
6			
8			
10			
12			
14			
3. Зависимост	ь $t_{\phi}(R_{\kappa})$, $t_{c}(R_{\kappa})$, $t_{p}(R_{\kappa})$	E_{κ} при E_{κ} = -15 B, E_{6} =	=12 B, U _H =-6 B
R _K	t_{Φ} , мкс	t _c , MKC	t _p , мкс
620 Om			
620 Ом 3 кОм 100 кОм			
620 Ом 3 кОм 100 кОм	$t_{\phi}(U_{\scriptscriptstyle H}),t_{\scriptscriptstyle C}(U_{\scriptscriptstyle H}),t_{\scriptscriptstyle D}(U_{\scriptscriptstyle H})$) при Е _к =-15 В, Е ₆ =	=4 В, R _к =3 кОм
620 Ом 3 кОм 100 кОм . Зависимость	$t_{\Phi}(U_{\scriptscriptstyle H}),t_{\scriptscriptstyle C}(U_{\scriptscriptstyle H}),t_{\scriptscriptstyle D}(U_{\scriptscriptstyle H})$ $t_{\scriptscriptstyle \Phi},$ мкс) при E _к =-15 B, E ₆ = t _c , мкс	=4 B, R _к =3 кОм t _p , мкс
620 Ом 3 кОм 100 кОм			
620 Ом 3 кОм 100 кОм 3 ависимость -U _и , В			

2. Собрать схему измерений (рис. 6, а). Импульс отрицательной полярности длительностью 10 мкс с выхода генератора импульсов подается на базу транзистора и одновременно на вход канала А осциллографа АСК-1022. Выходной импульс ключа подается на канал В. Импульс синхронизации с генератора подается на вход "Х" осциллографа, работающего в режиме внешней синхронизации. Импульс с выхода генератора на вход исследуемой схемы подается с задержкой, которая подбирается в ходе эксперимента так, чтобы на экране осциллографа достаточно хорошо просмат-

ривался передний фронт импульса с выхода исследуемой схемы. Правила измерения времен фронта t_{ϕ} и спада t_{c} импульса иллюстрируются рис. 6, б. Результаты эксперимента заносятся в таблицу 1.

Для повышения точности измерений следует использовать вспомога-Для повышения точности измерений следует использовать вспомогательную разметку на экране осциллографа (уровни 0, 10, 90 и 100%). Для этого, перемещая изображение импульса по вертикали, установить вершину выходного импульса на уровень 100 % (переключатель входа должен находиться в положении DC). Установить такую цену деления по вертикали (положение переключателя В/дел.), чтобы начало импульса было ниже уровня 0 %. Медленно вращая регулятор «Var» (соосный с переключателем В/дел.) из крайнего правого положения влево и тем самым плавно меняя масштаб по вертикали, установить начало импульса на уровень 0 %. После этого измерение t_ф, t_p и t_c можно выполнять по уровням 10 – 90 % на экране осциллографа. Кроме того, для повышения точности измерений, особенно t_ф, можно использовать режим дополнительной растяжки осциллограммы по времени (выдвинутая ручка перемещения осциллограммы по горизонтали <POZITION>), в этом режиме цена деления по времени уменьшается в 10 раз.

- 3. Снять зависимости t_{φ} , t_{p} и t_{c} выходного импульса от величины напряжения смещения на базе E_{cm} при напряжении питания E_{n} =-15 B, амплитуде входного импульса U_{u} =-6 B. Величину E_{cm} изменять в пределах от 0 до 14 B с шагом 2 B.
- 4. Снять зависимости t_{φ} , t_{p} и t_{c} выходного импульса от величины напряжения коллекторного питания E_{κ} при E_{cm} =12 B, U_{u} =-6 B. Величину E_{κ} изменять в пределах от 0 до -14 B с шагом 2 B.
- 5. Снять зависимости t_{φ} , t_p и t_c от величины сопротивления R_{κ} при E_n =-15 B, E_{c_M} =12 B, U_{ν} =-6 B.
- 6. Снять зависимости t_{φ} , t_p и t_c выходного импульса от амплитуды входного импульса $U_{\text{и}}$ при $E_{\text{см}}{=}4$ B, $E_{\text{n}}{=}{-}15$ B, $R_{\text{к}}{=}3$ кОм. Амплитуду импульсов изменять от -2 до -8 B с шагом 2 B.

Содержание отчета

Отчет по лабораторной работе должен содержать:

1) название и цель работы;

2) схемы проведения измерений с указанием типов измерительных приборов;

3) результаты измерений;

4) выводы по результатам работы.