Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра Автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №1

По дисциплине «ОС Linux» Работа с файловой системой

Студент Чаплыгин И.С.

Группа ПИ-18

Руководитель

Доцент Кургасов В.В.

Липецк 2020г

1. Цель работы

Приобрести опыт работы с файлами и каталогами в ОС Linux, настройки прав на доступ к файлам и каталогам.

- 2. Задание кафедры
- 1) Запустить виртуальную машину с Linux Ubuntu.
- 2) Загрузится пользователем root (sudo su)
- 3) Ознакомиться со структурой системных каталогов ОС Linux на рабочем месте. Изучить стандарт (2.1. Filesystem Hierarchy Standard). Привести в отчете перечень каталогов с указанием их назначения.
- 4) Просмотреть содержимое каталога файлов физических устройств. В отчете привести перечень файлов физических устройств на рабочем месте с указанием назначения файлов.
- 5) Перейти в директорий пользователя root. Просмотреть содержимое каталога. Просмотреть содержимое файла vmlinuz. Просмотреть и пояснить права доступа к файлу vmlinuz
- 6) Создать нового пользователя user
- 7) Создать в директории пользователя user три файла 1.txt, 2.txt и 3.txt, используя команды touch, cat и текстовый редактор (на выбор vi/nano). Просмотреть и пояснить права доступа к файлам. В отчете описать результат
- 8) Изменить права доступа на файл 1.txt в директории пользователя user
- 9) Создать жесткую и символическую ссылки на файл 2.txt. Просмотреть результаты.
- 10) Создать каталог new в каталоге пользователя user.
- 11) Скопировать файл 1.txt в каталог new. Переместить файл 2.txt в каталог new.
- 12) Изменить владельца файла 3.txt и каталога new.
- 13) Удалить файл 1.txt в каталоге new. Удалить каталог new.
- 14) Найти, используя команду find, файл vga2iso (или другой файл по заданию преподавателя).

Оглавление

1. Цель работы	2
2. Задание кафедры	3
3. Выполнение работы	5
3.1 Запустить виртуальную машину с Linux Ubuntu	5
3.2 Загрузится пользователем root (sudo su)	6
3.3 Ознакомиться со структурой системных каталогов ОС Linux на рабоч месте.	
3.4 Просмотреть содержимое каталога файлов физических устройств	9
3.5 Перейти в директорий пользователя root. Просмотреть содержимое каталога.	11
3.6 Создать нового пользователя user	14
3.7 Создать в директории пользователя user три файла	15
3.8 Изменить права доступа на файл 1.txt в директории пользователя user	r. 17
3.9 Создать жесткую и символическую ссылки на файл 2.txt	18
3.10 Создать каталог new в каталоге пользователя user	19
3.11 Копирование и перемещение.	19
3.12 Изменить владельца файла 3.txt и каталога new	20
3.13 Удаление файла и каталога.	21
3.14 Команда «find»	21
4. Вывод	22
5. Контрольные вопросы	23

- 3. Выполнение работы
- 3.1 Запустить виртуальную машину с Linux Ubuntu Для установки ОС и запуска Linux Ubuntu использовалась виртуальная машина VirtualBox.

Рисунок 1 – Запуск виртуальной машины с Linux Ubuntu

3.2 Загрузится пользователем root (sudo su)

Для загрузки пользователя root используется команда «sudo su»

Рисунок 2 – Загрузка пользователя root

3.3 Ознакомиться со структурой системных каталогов ОС Linux на рабочем месте.

Для просмотра списка файлов, находящихся в каталоге, используется команда «ls».

Рисунок 3 – Просмотр файлов в гоот пользователе

bin — основные бинарные файлы программы. Содержит бинарные системные программы, утилиты и командные оболочки, которые обеспечивают минимальный уровень работоспособности системы.

boot – файлы для загрузки ОС. Хранятся образы ядер Linux и файлы менеджеров загрузки.

cdrom – точка монтирования для CD - дисков.

dev – файлы физических устройств.

etc – конфигурационные файлы. Содержит основные конфигурационные файлы ОС и различных программ.

home — домашние каталоги пользователей. Содержит данные пользователей и пользовательские конфигурационные файлы, личную информацию.

lib — основные библиотеки. Предназначена для хранения системных библиотек и компонентов компилятора языка СИ, необходимых для работы программы из директории bin, sbin и ОС в целом.

lost+found — восстановленные файлы. В случае сбоя в работе файловой системы и её проверки при запуске ОС, все найденные поврежденные файлы помещаются в каталог lost+found.

media – точка для автоматического монтирования. Используется для автоматического монтирования различных устройств (CD-ROM, USB – накопители).

mnt — точка для ручного монтирования. Используется для временного ручного монтирования (команда mount).

ppt- вспомогательные пакеты программ. Содержаться подкаталоги для дополнительных пакетов ΠO .

ргос — файлы ядра и процессов. Содержится информация о системе и выполняющихся процессах.

root – домашний каталог пользователя root.

run — файлы состояния приложений. Позволяет приложениям хранить вспомогательные файлы в которых они нуждаются.

sbin – бинарные файлы для администрирования системы.

srv — данные сервисных служб. Содержит данные для сервисов, предоставляемых системой.

sys — виртуальная файловая система sysfs. Содержит информацию об устройствах, драйверах, ядре ОС.

tmp – временные файлы. Все пользователи имею права чтения и записи, очищается при перезагрузке системы.

usr — пользовательские бинарные файлы, используемые только для чтения. Содержаться файлы, используемые только пользователями, а не самой системой.

var – каталог для часто меняющихся данных. Содержаться журналы ОС, системные log – файлы, cache – файлы.

3.4 Просмотреть содержимое каталога файлов физических устройств.

В ОС Linux все подключаемые к компьютеру устройства, представляются файлами. Физические устройства бывают 2 типов: символьными и блочными.

Взаимодействием с физическими устройствами управляют драйверы устройств, которые встроены в ядро или подключаются к нему как отдельные модули. Для взаимодействия с остальными частями ОС каждый драйвер образует коммуникационный интерфейс, который выглядит как файл. Большинство таких файлов заранее заготовлены и располагаются в каталоге dev.

Для перехода в каталог и просмотра файлов физических устройств используются команды «cd dev» и «ls».

root@kocmos:/# c									
root@kocmos:∕dev									
autofs	i2c-0	ppp	tty1	tty30	tty51	ttyS14	ttyS7	vcsa4	
block	initct1	psaux	tty10	tty31	tty52	ttyS15	ttyS8	vcsa5	
bsg		ptmx	tty11	tty32	tty53	ttyS16	ttyS9	vcsa6	
btrfs-control	kmsg		tty12	tty33	tty54	ttyS17	ttyprintk	vesu	
bus		random	tty13	tty34	tty55	ttyS18		vcsu1	
cdrom	log	rfkill	tty14	tty35	tty56	ttyS19	udmabuf	vcsu2	
char	loop-control	rtc	tty15	tty36	tty57	ttys2	uhid	vcsu3	
console	100p0	rtc0	tty16	tty37	tty58	ttyS20	uinput	vcsu4	
core	loop1	sda	tty17	tty38	tty59	ttyS21	urandom	vcsu5	
cpu_dma_latency	100p2	sda1	tty18	tty39	tty6	ttyS22	userio	vcsu6	
cuse	100p3	sda2	tty19	tty4	tty60	ttyS23	vboxguest		
disk	loop4	sda3	tty2	tty40	tty61	ttyS24	vboxuser	vga_arbiter	
dm-0	100p5	sg0	tty20	tty41	tty62	ttyS25	VCS	vhci	
dri	100p6	sg1	tty21	tty42	tty63	ttyS26	vcs1	vhost-net	
dvd	100p7	shm	tty22	tty43	tty7	ttyS27	vcs2	vhost-vsock	
ecryptfs		snapshot	tty23	tty44	tty8	ttyS28	vcs3	zero	
fb0	mcelog		tty24	tty45	tty9	ttyS29	vcs4	zfs	
fd	mem	sr0	tty25	tty46	ttyS0	ttyS3	vcs5		
full	mqueue	stderr	tty26	tty47	ttyS1	ttyS30	vcs6		
fuse		stdin	tty27	tty48	ttyS10	ttyS31	vcsa		
hpet	nul1	stdout	tty28	tty49	ttyS11	ttyS4	vcsa1		
hugepages	nvram	tty	tty29	tty5	ttyS12	ttyS5	vcsa2		
hwrng	port	tty0	tty3	tty50	ttyS13	ttyS6	vcsa3		
root@kocmos:/dev#									

Рисунок 4 – переход в каталог dev и просмотр файлов.

Console – системная консоль. Т.е. монитор и клавиатура, подключенные к компьютеру.

Fd – файлы дисководов гибких дисков.

Tty – файлы поддержки пользовательских консолей. Обеспечивают работу виртуальных консолей.

Null – все данные, записанные в это устройство, удаляются. Чтение этого устройства вернет ЕОF состояние.

Loop – петлевые устройства, обеспечивающие доступ к открытым файлам в виде блоков. Используются для установки образов дисков.

Random – предоставляет интерфейс к системному генератору случайных чисел.

3.5 Перейти в директорий пользователя root. Просмотреть содержимое каталога.

Перейдем в директорий пользователя root. Для этого введем команду «cd», с помощью которой автоматически перейдем в домашний каталог пользователя root. Введем команду «ls -a» для просмотра всех файлов, включая скрытые, находящихся в каталоге.

Рисунок 5 — переход в директорий пользователя root .bash history — хранит историю команд bash пользователя root.

.bashrc – похоже на .bash_profile, только исполняется для интерактивных оболочек, не авторизующих пользователя.

.local – каталог, в котором хранятся пользовательские данные.

.profile – системный файл инициализации для входа в оболочку.

.ssh – сетевой протокол, используется для удаленного управления ОС и передачи файлов.

snap – переносимые приложения. Развертка и управление пакетами. Перейдем в каталог boot для просмотра файла vmlinuz

```
root@kocmos:/# ls
bin cdrom etc lib lib64 lost+found mnt proc run snap swap.img tmc
boot dev home lib32 libx32 medda opt root sbin srv sys usr
root@kocmos:/boot# ls
System.map-5.4.0-48-generic config-5.4.0-48-generic initrd.img lost+found vmlinuz.old
config-5.4.0-48-generic initrd.img.old vmlinuz
root@kocmos:/boot#

lost+found vmlinuz.old
wmlinuz
vmlinuz-5.4.0-48-generic
root@kocmos:/boot#
```

Рисунок 6 – переход в каталог boot

Для просмотра подробной информации и прав доступа к файлу введем команду «ls -al»

Рисунок 7 – вывод подробной информации о файлах

Как можно увидеть, права доступа на файл vmlinuz имеет вид: «lrwxrwxrwx».

- 1) Первый символ «l» обозначает тип данных файла, где vmlinuz это символическая ссылка.
- 2) У всех символических ссылок права доступа одинаковы, поэтому перейдем к файлу исходному, на который указывает ссылка vmlinuz 5.4.0 48 generic. Данный файл имеет права доступа: «-rw-----», которое обозначает, что только гоот пользователь имеет право читать файл (символ r) и производить изменение и удаление (символ w).

3.6 Создать нового пользователя user.

Для создания нового пользователя используется команда «adduser имя пользователя».

```
Adding user 'user1' ...
Adding new group 'user1' (1001) ...
Adding new group 'user1' (1001) with group 'user1' ...
Creating home directory '/home/user1' ...
Copying files from '/etc/ske1' ...
New password:
Retype new password updated successfully
Changing the user information for user1
Enter the new value, or press ENTER for the default
Full Name []: Ivan
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] Y
root@kocmos:/# _
```

Рисунок 8 – Создание нового пользователя

3.7 Создать в директории пользователя user три файла. После создания файлов пол, переходим в домашний каталог пользователя user1 и создаем текстовые файлы.

```
root@kocmos:/# adduser user1
Adding new group 'user1' (1001) ...
Adding new user 'user1' (1001) with group `user1' ...
Creating home directory 'zhome/user1' ...
Copying files from 'zetz/skel' ...
New password:
Retype new password:
password:
password updated successfully
Changing the user information for user1
Enter the new value, or press ENTER for the default
    Full Name []: Ivan
    Room Number []:
    Home Phone []:
    Home Phone []:
    Other []:
    Is the information correct? [Y/n] Y
root@kocmos:/# ib
bin cdrown etc lib lib64 lost+found mnt proc run snap swap.img tmmg var
boot dev home lib52 libx32 media opt root sbin srv sys usr
root@kocmos:/# do home
root@kocmos:/home# ls
kocmonavtik user1
root@kocmos:/home# duser1
root@kocmos:/home# duser1# cat >2.txt
test file^C
root@kocmos:/home/user1# cat >2.txt
test file^C
root@kocmos:/home/user1#
```

Рисунок 9 – Создание текстового файла командой «touch» и «cat» Для создания файла с помощью текстового редактора nano, напишем команду «nano 3.txt».

Рисунок 10 — Создание файла текстовым редактором nano Для сохранения файла, нажимаем комбинацию клавиш «Ctrl+O».

Для просмотра прав доступа, введем «ls -l»

```
root@kocmos:/home/user1# ls -l
total 8
-rw-r--r- 1 root root 0 Oct 8 09:01 1.txt
-rw-r--r- 1 root root 11 Oct 14 09:21 2.txt
-rw-r--r- 1 root root 7 Oct 8 09:08 3.txt
root@kocmos:/home/user1#
```

Рисунок 11 – Просмотр прав доступа txt файлов

Как можно увидеть, права доступа имеют вид «-rw-r--r-». Это значит, что владелец файлов может читать и изменять их. Остальные пользователи могут только прочитать данные файлы.

3.8 Изменить права доступа на файл 1.txt в директории пользователя user. Для изменения прав доступа используется команда «chmod wxp имя файла», где wxp — это 3 символа для указания права доступа, которое даем или отнимаем у определенных групп пользователей или владельца файла.

```
root@kocmos:/home/user1# ls =1
total 8
-rw-r--r-= 1 root root 0 Oct 8 09:01 1.txt
-rw-r--r-= 1 root root 11 Oct 14 09:21 2.txt
-rw-r--r-= 1 root root 7 Oct 8 09:08 3.txt
root@kocmos:/home/user1# chmod a+w 1.txt
root@kocmos:/home/user1# ls =1
total 8
-rw-rw-rw= 1 root root 0 Oct 8 09:01 1.txt
-rw-r--- 1 root root 11 Oct 14 09:21 2.txt
-rw-r--r-= 1 root root 7 Oct 8 09:08 3.txt
root@kocmos:/home/user1# _
```

Рисунок 12 – Изменение прав доступа у файла 1.txt

В данном случае, использовали конкретную команду «chmod a+w 1.txt», где «а» — это все типы пользователей, «+» - предоставление права, «w» - право записи.

3.9 Создать жесткую и символическую ссылки на файл 2.txt. Для создания ссылок используют команду «ln опция источник ссылки файл ссылки», где опция имеет 6 вариаций:

- 1) -d разрешить создавать жесткие ссылки для директорий суперпользователю;
- 2) -f удалять существующие ссылки;
- 3) -і спрашивать нужно ли удалять существующие ссылки;
- 4) -Р создать жесткую ссылку;
- 5) -г создать символическую ссылку с относительным путем к файлу;
- 6) -s создать символическую ссылку.

```
root@kocmos:/home/user1# ls -l
total 8
-rw-r--r-- 1 root root 0 Oct 8 09:01 1.txt
-rw-r-r-- 1 root root 11 Oct 14 09:21 2.txt
-rw-r--r-- 1 root root 7 Oct 8 09:08 3.txt
root@kocmos:/home/user1# chmod a+w 1.txt
root@kocmos:/home/user1# ls -l
total 8
-rw-rw-rw- 1 root root 0 Oct 8 09:01 1.txt
-rw-r--r-- 1 root root 11 Oct 14 09:21 2.txt
-rw-r--r-- 1 root root 7 Oct 8 09:08 3.txt
root@kocmos:/home/user1# ln -s 2.txt 2Links.txt
root@kocmos:/home/user1# ln -P 2.txt 2LinkH.txt
root@kocmos:/home/user1# ls -l
total 12
-rw-rw-rw- 1 root root 0 Oct 8 09:01 1.txt
-rw-r--r-- 2 root root 11 Oct 14 09:21 2.txt
1 row-rw-rw- 2 root root 11 Oct 14 09:21 2.txt
1 rwxrwxrwx 1 root root 5 Oct 14 10:43 2LinkH.txt
1 rwxrwxrwx 1 root root 7 Oct 8 09:08 3.txt
root@kocmos:/home/user1# cat 2LinkS.txt
File test2
root@kocmos:/home/user1# cat 2LinkH.txt
File test2
root@kocmos:/home/user1# ls
1.txt 2.txt 2LinkH.txt 2LinkS.txt 3.txt
root@kocmos:/home/user1# ls
1.txt 2.txt 2LinkH.txt 2LinkS.txt 3.txt
root@kocmos:/home/user1# _
```

Рисунок 13 – Создание жесткой и символической ссылки файла 2.txt

Символическая ссылка похожа на обычный ярлык. Она содержит адрес нужного файла. При попытке открыть такую ссылку, то открывается целевой файл или папка.

Жесткая ссылка - является другим именем для исходного файла. После создания такой ссылки её невозможно отличить от исходного имени файла. Удаление файла по любому из его имен уменьшает на единицу количество ссылок, и окончательно файл будет удален только тогда, когда это количество станет равным нулю.

3.10 Создать каталог new в каталоге пользователя user. Для создания каталога используется команда «mkdir имя каталога».

```
root@kocmos:/home/user1# mkdir new
root@kocmos:/home/user1# ls
1.txt 2.txt 2LinkH.txt <mark>2LinkS.txt</mark> 3.txt new
root@kocmos:/home/user1#
```

Рисунок 14 – Создание нового каталога

3.11 Копирование и перемещение.

Для копирования файла используется команда «ср имя_файла имя каталога»

Для перемещения файла используется команда «mv имя_файла имя_каталога»

```
root@kocmos:/home/user1# mkdir new
root@kocmos:/home/user1# ls
1.txt 2.txt 2LinkH.txt 2LinkS.txt 3.txt new
root@kocmos:/home/user1# cp 1.txt new
root@kocmos:/home/user1# mv 2.txt new
root@kocmos:/home/user1# ls
1.txt 2LinkH.txt 2LinkS.txt 3.txt new
root@kocmos:/home/user1# cd new
root@kocmos:/home/user1/new# ls
1.txt 2.txt
root@kocmos:/home/user1/new# _
```

Рисунок 15 – Копирование и перемещение файлов

Как можно увидеть, после перемещения файла 2.txt символическая ссылка 2LinkS.txt перестала работать, т.к. адрес файла изменился.

3.12 Изменить владельца файла 3.txt и каталога new. Для изменения владельца файла или каталога, используется команда «chown новый владелец файл/каталог».

Рисунок 16 – Изменение владельца файла и каталога

3.13 Удаление файла и каталога.

Для удаления файла используется команда «rm файл». Если файл находится не текущем каталоге, то прописать путь к файлу.

Для удаления каталога используется команда «rm -r имя_каталога».

```
root@kocmos:/home/user1# rm new/1.txt
root@kocmos:/home/user1# cd new
root@kocmos:/home/user1/new# ls
2.txt
root@kocmos:/home/user1/new# cd ..
root@kocmos:/home/user1# rm new
rm: cannot remove 'new': Is a directory
root@kocmos:/home/user1# rm -r new
root@kocmos:/home/user1# ls
1.txt 2LinkH.txt 2LinkS.txt 3.txt
root@kocmos:/home/user1#
```

Рисунок 17 – Удаление файла и каталога.

3.14 Команда «find»

Поиск производится командой «find опция файл»

```
root@kocmos:/# find –name 1.txt
./home/user1/1.txt
root@kocmos:/#
```

Рисунок 18 – Поиск файла

4. Вывод

В ходе выполнения лабораторной работы ознакомились со структурой каталогов. Приобрели навыки работы в терминале Linux. Научились создавать новые файлы и каталоги, понимать назначения прав доступа и изменять их.

- 5. Контрольные вопросы
- 1. Файловая система это часть операционной системы, которая обеспечивает чтение и запись файлов. Файловая система устанавливает физическую и логическую структуру файлов, правила их создания и управления ими, а также сопутствующие данные файла и идентификацию.
- 2. Права доступа к файлам одна из самых важных функций безопасности Linux. Каждый файл имеет три категории пользователей:
 - 1) Владелец создатель файла или установленный владельцем.
 - 2) Группа группа пользователей, существующая в системе и привязанная к файлу, но только одна группа.
 - Остальные все остальные пользователи.
 Каждой категории пользователей настраивается права доступа: чтение, запись и выполнение.
- 3. Жесткие ссылки похожи на копирование файла, но это не так. При создании жесткой ссылки, создается дополнительный указатель на существующий файл. Жесткие ссылки работают только в пределах одной файловой системы. Так же нельзя ссылаться на каталоги. Имеют тот же индексный дескриптор (incode) и набор разрешений как у исходного файла. Разрешения на ссылку изменяются при изменении разрешения файла. Имеется возможность перемещать, переименовывать и удалять файл без вреда ссылке.
- 4. Команда «find» служит для поиска файлов и каталогов. Её можно использовать для поиска файлов по разрешениям, владельцам, группам, типу, дате создания и другим подобным критериям.

5. ls – список файлов в директории;

cd – переход между директориями;

rm – удаление файла;

rmdir – удаление каталога;

mv – перемещение файла;

ср – копирование файла;

mkdir – создание каталога;

ln – создание ссылки;

chmod – изменение прав доступа;

touch – создание пустого файла;