Term Rewriting Meets Theorem Proving

Adam Koprowski

Eindhoven University of Technology Department of Mathematics and Computer Science

> 31 May 2007 Prose

Outline

- CoLoR
 - Background: termination of rewriting
 - Motivation
 - CoLoR architecture
 - History
 - Overview
 - Related work
 - Certified competition
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities

Outline

- CoLoR
 - Background: termination of rewriting
 - Motivation
 - CoLoR architecture
 - History
 - Overview
 - Related work
 - Certified competition
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{rcl} 0+y & = & y \\ s(x)+y & = & s(x+y) \end{array}$$

Example (Computing with plus

Now let us do some some maths... how about $2 + 2^{\circ}$

Definitio

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc} 0+y & \to & y \\ s(x)+y & \to & s(x+y) \end{array}$$

Example (Computing with plus

Now let us do some some maths... how about 2 + 2

Definitio

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0))) \rightarrow s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0))))$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0))) \rightarrow s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0))))$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0))) \rightarrow s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0))))$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$\begin{array}{l} s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0))) \rightarrow \\ s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0)))) \end{array}$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$egin{aligned} s(s(0)) + s(s(0)) &
ightarrow s(s(0) + s(s(0))))
ightarrow s(s(0+s(s(0)))) &
ightarrow s(s(s(s(0)))) \end{aligned}$$

Definition

Example (Plus)

Let's define plus in Peano arithmetic.

$$\begin{array}{ccc}
0+y & \to & y \\
s(x)+y & \to & s(x+y)
\end{array}$$

Example (Computing with plus)

Now let us do some some maths... how about 2 + 2?

$$egin{aligned} s(s(0)) + s(s(0)) &
ightarrow s(s(0) + s(s(0)))
ightarrow s(s(s(s(0))))
ightarrow s(s(s(s(0)))) \end{aligned}$$

Definition

- is undecidable.
- is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex.

- is undecidable.
- is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex.

- is undecidable.
- is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex.

- is undecidable.
- is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex.

- is undecidable.
- is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex.

- is undecidable.
- is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex.

- is undecidable.
- is an important topic in term rewriting.
- Many methods exist and new ones are constantly being developed.
- Recently the emphasis is on automation.
- There exists a number of tools for proving termination.
- Stimulated by an annual termination competition.
- Tools (and proofs that they produce) are getting more and more complex.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, dots),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, dots),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, dots),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, dots),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Certification of results of termination provers.
- Common proof format for termination provers:
 - common tools (proof presentation, manipulation, dots),
 - control language for provers (integration of tools)
- Extension of proof assistance kernels.

- Possibility: certification of tools source code.
 - ⇒ difficult, tool dependent, extra work with every change, ...
- CoLoR approach:
 - TPG: common format for termination proofs
 - Tools output proofs in TPG format
 - CoLoR: a Cog library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

- Possibility: certification of tools source code.

 ⇒ difficult, tool dependent, extra work with every change, . . .
- CoLoR approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

- Possibility: certification of tools source code.
 - ⇒ difficult, tool dependent, extra work with every change, ...
- CoLoR approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

- Possibility: certification of tools source code.
 - ⇒ difficult, tool dependent, extra work with every change, ...
- CoLoR approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

- Possibility: certification of tools source code.
 - ⇒ difficult, tool dependent, extra work with every change, ...
- CoLoR approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

- Possibility: certification of tools source code.
 - ⇒ difficult, tool dependent, extra work with every change, ...
- CoLoR approach:
 - TPG: common format for termination proofs.
 - Tools output proofs in TPG format.
 - CoLoR: a Coq library of results on termination.
 - Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoR architecture overview

CoLoR architecture overview

CoLoR architecture overview

- Project started (Blanqui)
- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004

March 2005

July 2006

May 2007

June 2007

- Project started (Blanqui)
- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004

March 2005

July 2006

Vlay 2007

lune 2007

- Project started (Blanqui)
- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004

March 2005

July 2006

May 2007

lune 2007

- Project started (Blanqui)
- First release
- First certified proofs
- First certification workshop
- First certified competition

March 2004

March 2005

July 2006

May 2007

une 2007

History

Project started (Blanqui)

First release

First certified proofs

First certification workshop

First certified competition

March 2004

March 2005

July 2006

May 2007

June 2007

Termination criteria:

- matrix interpretations [Koprowski, Zantema]
- dependency graph cycles [Blanqui]
- higher-order recursive path ordering [Koprowskij
- recursive path ordering [Coupet-Grimal, Delobel]
- multiset ordering [Koprowski]
- polynomial interpretations [Hinderer]

Transformation techniques:

- dependency pairs [Blanqui]
- rule elimination [Blanqui]
- arguments filtering [Blanquij
- conversion from algebraic to varyadic terms [Blanqui]

Termination criteria:

- matrix interpretations [Koprowski, Zantema]
- dependency graph cycles [Blanqui]
- higher-order recursive path ordering [Koprowski]
- recursive path ordering [Coupet-Grimal, Delobel]
- multiset ordering [Koprowski]
- polynomial interpretations [Hinderer]

• Transformation techniques:

- dependency pairs [Blanqui]
- rule elimination [Blanqui]
- arguments filtering [Blanqui]
- conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski]
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski]
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski]
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

- 42.000 lines of code.
- half of the size of Cog standard library.
- 5% of Cog contribs.

Structuro

	Terms	44%
0	Data structures	29%

- Termination criteria 17%
- Mathematical structures

Coq constructs

Inductive definitions	38
Recursive functions	116

- Non-recursive definitions
- Lemmas and theorems

- 42.000 lines of code.
- half of the size of Coq standard library.
- 5% of Cog contribs.

Structure

Terms

	Data structures	29%
	Termination criteria	17%
	Mathematical structures	10%

Coq constructs

Recursive functions		Inductive definitions	38
	•	Recursive functions	116

Non-recursive definitionsLemmas and theorems

ms 2170

- 42.000 lines of code.
- half of the size of Cog standard library.
- 5% of Cog contribs.

Terms

TOTALO	7770
Data structures	29%
Termination criteria	17%
Mathematical structures	10%

	Inductive definitions	38
•	Recursive functions	116

- Non-recursive definitions
- Lemmas and theorems

- 42.000 lines of code.
- half of the size of Cog standard library.
- 5% of Cog contribs.

Lemmas and theorems

Structure:

Terms

Termination criteria	17%
Mathematical structures	10%
Coq constructs:	
 Inductive definitions 	38
Recursive functions	116
Non-recursive definitions	560

44%

12/30

- 42.000 lines of code.
- half of the size of Cog standard library.
- 5% of Cog contribs.

Structure:

Terms

Data structures	29%
Termination criteria	17%
 Mathematical structures 	10%

Coq constructs

 Inductive definitions 	38
 Recursive functions 	116
Non requirily definitions	560

Lemmas and theorems

- 42.000 lines of code.
- half of the size of Coq standard library.
- 5% of Coq contribs.

Structure:

Terms

Data structures	29%
Termination criteria	17%

Mathematical structures

Coq constructs

Inductive definitions	38
Recursive functions	116

Non-recursive definitions

Lemmas and theorems

44%

Size of Co on

- 42.000 lines of code.
- half of the size of Coq standard library.
- 5% of Cog contribs.

Structure:

Tormo

• 1611113	44 /0
 Data structures 	29%
 Termination criteria 	17%
 Mathematical structures 	10%

	Inductive definitions	38
•	Recursive functions	116

110/

- 42.000 lines of code.
- half of the size of Coq standard library.
- 5% of Cog contribs.

Structure:

Terms	44%
Data structures	29%
 Termination criteria 	17%
 Mathematical structures 	10%

Coq constructs:

 Inductive definitions 	38
 Recursive functions 	116

- Non-recursive definitions
- Lemmas and theorems

- 42.000 lines of code.
- half of the size of Coq standard library.
- 5% of Cog contribs.

Structure:

• Terms	4470
Data structures	29%
 Termination criteria 	17%
 Mathematical structures 	10%

Coq constructs:

Tarma

Inductive definitions	38

- Recursive functions 116

Lemmas and theorems

110/

- 42.000 lines of code.
- half of the size of Coq standard library.
- 5% of Cog contribs.

Structure:

• Terms	44%
Data structures	29%
 Termination criteria 	17%
 Mathematical structures 	10%

Coq constructs:

ooq oonstracto.	
Inductive definitions	38
 Recursive functions 	116
 Non-recursive definitions 	560

Lemmas and theorems

- 42.000 lines of code.
- half of the size of Coq standard library.
- 5% of Cog contribs.

Structure:

Terms	44%
Data structures	29%
 Termination criteria 	17%
 Mathematical structures 	10%

Coq constructs:	
 Inductive definitions 	38
 Recursive functions 	116
 Non-recursive definitions 	560

Lemmas and theorems

Related work

CoLoR project
 Authors: Blanqui, . . .

Tool: TPA, ...

Proof assistant: Coq

A3PAT project

Authors: Contejean, ...

Tool: CiME

Proof assistant: Coq

Isabelle/HOL termination checker

Authors: Bulwahn, Krauss, Nipkow, ...

Tool: T_TT

Proof assistant: Isabelle/HOL

Related work

CoLoR project

Authors: Blanqui, ...

Tool: TPA, ...

Proof assistant: Coq

A3PAT project

Authors: Contejean, ...

Tool: CiME

Proof assistant: Coq

Isabelle/HOL termination checker

Authors: Bulwahn, Krauss, Nipkow, ...

Tool: T_TT

Proof assistant: Isabelle/HOL

Related work

CoLoR project

Authors: Blanqui, ...

Tool: TPA, ...

Proof assistant: Coq

A3PAT project

Authors: Contejean, ...

Tool: CiME

Proof assistant: Coq

Isabelle/HOL termination checker

Authors: Bulwahn, Krauss, Nipkow, ...

Tool: T_TT

Proof assistant: Isabelle/HOL

- In the termination competition this year a new "certified" category introduced.
- Participants:
 - CiME + A3PAT
 - TPA + CoLoR
 - T_TT₂ + CoLoR
- Many questions remain, like
 - Who's the winner?
 - Competition VS Cooperation

- In the termination competition this year a new "certified" category introduced.
- Participants:
 - CiME + A3PAT
 - TPA + CoLoR
 - T_TT₂ + CoLoR
- Many questions remain, like
 - Who's the winner?
 - Competition VS Cooperation

- In the termination competition this year a new "certified" category introduced.
- Participants:
 - CiME + A3PAT
 - TPA + CoLoR
 - T_TT₂ + CoLoR
- Many questions remain, like
 - Who's the winner?
 - Competition VS Cooperation

- In the termination competition this year a new "certified" category introduced.
- Participants:
 - CiME + A3PAT
 - TPA + CoLoR
 - T_TT₂ + CoLoR
- Many questions remain, like
 - Who's the winner?
 - Competition VS Cooperation

- In the termination competition this year a new "certified" category introduced.
- Participants:
 - CiME + A3PAT
 - TPA + CoLoR
 - T_TT₂ + CoLoR
- Many questions remain, like
 - Who's the winner?
 - Competition VS Cooperation

Termination competition

Termination competition

Termination competition

Outline

- CoLoF
 - Background: termination of rewriting
 - Motivation
 - CoLoR architecture
 - History
 - Overview
 - Related work
 - Certified competition
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities

Example

z086.trs

$$a(a(x)) \rightarrow c(b(x)), \quad b(b(x)) \rightarrow c(a(x)), \quad c(c(x)) \rightarrow b(a(x))$$

Matrix interpretation for z086.trs

$$a(x) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$b(x) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$c(x) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Example

z086.trs

$$a(a(x)) \rightarrow c(b(x)), \quad b(b(x)) \rightarrow c(a(x)), \quad c(c(x)) \rightarrow b(a(x))$$

Matrix interpretation for z086.trs

$$a(x) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

$$b(x) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$c(x) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Example ctd.

Termination proof for z086.trs

$$a(a(x)) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$c(b(x)) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Example ctd.

Termination proof for z086.trs

$$a(a(x)) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$c(b(x)) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \rightarrow A$ is *monotone* with respect to a binary relation \triangleright on A if

$$a_i \triangleright a'_i \implies [f](a_1,\ldots,a_i,\ldots a_n) \triangleright [f](a_1,\ldots,a'_i,\ldots,a_n).$$

Definition

Given a relation \triangleright on A we define its extension to a relation on terms as:

$$s \rhd_{\mathcal{T}} t \equiv \forall \alpha : \mathcal{X} \to A, [s, \alpha] \rhd [t, \alpha]$$

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \rightarrow A$ is *monotone* with respect to a binary relation \triangleright on A if

$$a_i \triangleright a'_i \implies [f](a_1,\ldots,a_i,\ldots a_n) \triangleright [f](a_1,\ldots,a'_i,\ldots,a_n).$$

Definition

Given a relation \triangleright on A we define its extension to a relation on terms as:

$$s \rhd_{\mathcal{T}} t \equiv \forall \alpha : \mathcal{X} \to \mathcal{A}, [s, \alpha] \rhd [t, \alpha]$$

Definition (A weakly monotone Σ -algebra)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that

- > is well-founded;
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

Definition (An extended monotone Σ -algebra)

An extended monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ in which moreover for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Definition (A weakly monotone Σ -algebra)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that

- > is well-founded;
- \bullet > \cdot \gtrsim \subseteq >;
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

Definition (An extended monotone Σ -algebra)

An extended monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ in which moreover for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

ℓ ≥_T r for every rule ℓ → r in R ∪ S and
 ℓ >_T r for every rule ℓ → r in R'.

Then $SN(R_{top}/S)$ implies $SN((R \cup R')_{top}/S)$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in R',

Then $SN(R_{top}/S)$ implies $SN((R \cup R')_{top}/S)$.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation ≫, such that

```
⇒ ⊆ ><sub>T</sub> and
⇒ is decidable
similarly for ≥
```

• The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation ≫, such that

```
≫ ⊆ ><sub>T</sub> and
≫ is decidable
similarly for ≥
```

• The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation >>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and
 - >> is decidable
 - similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation >>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and
 - >> is decidable
 - similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

Formalization of matrices

- ullet Matrices are formalized as a functor taking as an argument the semi-ring of coefficients ${\cal R}$ and providing a structure of matrices of arbitrary sizes with coefficients in ${\cal R}$ and
- a number of basic operations over matrices such as:

$$[\cdot], \quad M_{i,j}, \quad M+N, \quad M*N, \quad M^T, \ldots$$

- and a number of basic properties such as:
 - M + N = N + M.
 - M * (N * P) = (M * N) * P
 - monotonicity of *
 -

Formalization of matrices

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients $\mathcal R$ and providing a structure of matrices of arbitrary sizes with coefficients in $\mathcal R$ and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M.
 - M*(N*P) = (M*N)*P
 - monotonicity of *
 - .

Formalization of matrices

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients $\mathcal R$ and providing a structure of matrices of arbitrary sizes with coefficients in $\mathcal R$ and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M * (N * P) = (M * N) * P
 - monotonicity of *
 - ...

- \bullet $A = \mathbb{Z}$,
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

- \bullet $A = \mathbb{Z}$.
- $\bullet > = >_{\mathbb{Z}}, \gtrsim = \geq_{\mathbb{Z}},$
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- \bullet > $_{\mathcal{T}}$ not decidable (positiveness of polynomial) heuristics required.

- \bullet $A = \mathbb{Z}$.
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- ullet >_T not decidable (positiveness of polynomial) heuristics required.

- \bullet $A = \mathbb{Z}$.
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- \bullet >_T not decidable (positiveness of polynomial) heuristics required.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \ge .

- fix a dimension d,
- $A = \mathbb{N}^d$.
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \ge .

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- ullet >_T and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \ge .

Matrix interpretations in the setting of monotone algebras

- fix a dimension d,
- $A = \mathbb{N}^d$.
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

Practicalities

Formalization size (LOC):

• Monotone algebras:	351
Matrices:	642
Matrix interpretations:	673
Polynomial interpretations in MA setting:	116

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:

• matrix interpretations: 237

polynomial and matrix interpretations:

Verification time: AVG: 5sec. MAX: 75sec
 Certificate size: AVG: 25kB MAX: 437kk

Proof steps: AVG: 5 MAX: 29

polynomial and matrix interpretation in the DP setting:

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:	
-----------------------------	--

167

matrix interpretations:

237

polynomial and matrix interpretations:

1/5

Certificate size:

AVG: 25kB.

/IAX: 75sec. /IAX: 437kB

Proof steps:

AVG: 5

MAX: 29

polynomial and matrix interpretation in the DP setting:

3/5

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:	167
---	-----

- matrix interpretations: 237
- polynomial and matrix interpretations: 275
 - Verification time: AVG: 5sec. MAX: 75sec
 Certificate size: AVG: 25kB. MAX: 437kE
 - Proof steps: AVG: 5 MAX: 29
- polynomial and matrix interpretation in the DP setting:

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:	167
---	-----

- matrix interpretations:polynomial and matrix interpretations:
 - Verification time: AVG: 5sec. MAX: 75sec.
 Certificate size: AVG: 25kB. MAX: 437kB
 - Proof steps: AVG: 5 MAX: 29
- polynomial and matrix interpretation in the DP setting:

237

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:	167
---	-----

- matrix interpretations: 237polynomial and matrix interpretations: 275
 - Verification time: AVG: 5sec. MAX: 75sec.
 Certificate size: AVG: 25kB. MAX: 437kB
 - Proof steps: AVG: 5 MAX: 29
- polynomial and matrix interpretation in the DP setting:

the firm and the Property of the Alberta

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

o polynomial interpretations:	167
matrix interpretations:	237

polynomial and matrix interpretations:

Verification time: AVG: 5sec. MAX: 75sec.Certificate size: AVG: 25kB. MAX: 437kB

• Proof steps: AVG: 5 MAX: 29

polynomial and matrix interpretation in the DP setting:

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:	167
matrix interpretations:	237

polynomial and matrix interpretations:

275 MAX: 75sec.

Verification time:Certificate size:

AVG: 5sec. M AVG: 25kB. M

MAX: 437kB

Proof steps:

AVG: 5

MAX: 29

• polynomial and matrix interpretation in the DP setting:

Figure: Before

Figure: Now

The end

http://color.loria.fr

Thank you for your attention.