

74H1G66

SINGLE BILATERAL SWITCH

- HIGH SPEED: $t_{PD} = 4$ ns (TYP.) at $V_{CC} = 5V$
- LOW POWER DISSIPATION:
 $I_{CC} = 1 \mu A$ (MAX.) at $T_A = 25^\circ C$
- HIGH NOISE IMMUNITY:
 $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (MIN.)
- LOW "ON" RESISTANCE
 $R_{ON} = 50\Omega$ (TYP.) AT $V_{CC}=9V$ $I_{I/O}=100\mu A$
- SINE WAVE DISTORTION
0.042% (TYP.) AT $V_{CC}=4V$ $f=1KHz$
- WIDE OPERATING VOLTAGE RANGE:
 V_{CC} (OPR) = 2V to 12V

DESCRIPTION

The 74H1G66 is an high-speed CMOS SINGLE BILATERAL SWITCH fabricated in silicon gate C^2MOS technology. It has high speed

performance combined with true CMOS low power consumption.

The C input is provided to control the switch; the switch is ON when the C input is held high and off when C is held low.

PIN CONNECTION AND IEC LOGIC SYMBOLS

SC12320

LC13690

LOGIC DIAGRAM

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	I/O	Independent Input/Output
2	O/I	Independent Output/Input
4	C	Enable Input (Active HIGH)
3	GND	Ground (0V)
5	V _{cc}	Positive Supply Voltage

TRUTH TABLE

CONTROL	SWITCH FUNCTION
H	ON
L	OFF

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{cc}	Supply Voltage	-0.5 to +13	V
V _I	DC Input Voltage	-0.5 to V _{cc} + 0.5	V
V _{i/o}	DC Input/Output Voltage	-0.5 to V _{cc} + 0.5	V
I _{IK}	Control Input DC Diode Current	± 20	mA
I _{IOK}	Input/Output DC Diode Current	± 20	mA
I _O	DC Output Source Sink Current Per Output Pin	± 25	mA
I _{CC} or I _{GND}	DC V _{cc} or Ground Current	± 50	mA
P _D	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

(*) 500mW: ≈ 65 °C derate to 300 mW by 10 mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2.0 to 12	V
V _I	Input Voltage (Control)	0 to V _{CC}	V
V _{i/o}	Input/Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-40 to +85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2V V _{CC} = 4.5V V _{CC} = 6V V _{CC} = 10V	0 to 1000 ns 0 to 500 ns 0 to 400 ns 0 to 250 ns

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions		Value					Unit	
		V _{CC} (V)		T _A = 25 °C			-40 to 85 °C			
				Min.	Typ.	Max.	Min.	Max.		
V _{IH}	High Level Input Voltage	2.0		1.5			1.5		V	
		4.5		3.15			3.15			
		9.0		6.3			6.3			
		12.0		8.4			8.4			
V _{IL}	Low Level Input Voltage	2.0				0.5		0.5	V	
		4.5				1.35		1.35		
		9.0				2.7		2.7		
		12.0				3.6		3.6		
R _{ON}	ON Resistance	4.5	V _I = V _{IH} V _{I/O} = V _{CC} to GND I _{I/O} ≤ 1mA		96	170		200	Ω	
		9.0			55	85		100		
		12.0			45	80		90		
		4.5	V _I = V _{IH} V _{I/O} = V _{CC} or GND I _{I/O} ≤ 1mA		70	100		130		
		9.0			50	75		95		
		12.0			45	70		90		
I _{OFF}	Input/Output Leakage Current (SWITCH OFF)	12.0	V _O S = V _{CC} to GND V _I S = V _{CC} to GND V _I = V _{IL}			±0.1		±1.0	μA	
I _{IZ}	Switch Input Leakage Current (SWITCH ON, OUTPUT OPEN)	12.0	V _O S = V _{CC} to GND V _I = V _{IH}			±0.1		±1.0	μA	
I _{IN}	Control Input Current	6.0	V _I = V _{CC} to GND			±0.1		±1.0	μA	
I _{CC}	Quiescent Supply Current	6.0	V _I = V _{CC} or GND			1		10	μA	
		9.0				4		40		
		12.0				8		80		

74H1G66

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

Symbol	Parameter	Test Condition		Value					Unit	
		V_{CC} (V)		$T_A = 25^\circ\text{C}$			$-40 \text{ to } 85^\circ\text{C}$			
				Min.	Typ.	Max.	Min.	Max.		
Φ_{IO}	Phase Difference Between Input and Output	2.0			10	50		65	ns	
		4.5			4	10		15		
		9.0			3	8		13		
		12.0			3	7		10		
t_{PZL} t_{PZH}	Output Enable Time	2.0	$R_L = 1 \text{ k}\Omega$		18	100		125	ns	
		4.5			8	20		25		
		9.0			6	12		22		
		12.0			6	12		18		
t_{PLZ} t_{PHZ}	Output Disable Time	2.0	$R_L = 1 \text{ k}\Omega$		20	115		145	ns	
		4.5			10	23		29		
		9.0			8	20		25		
		12.0			8	18		22		
	Maximum Control Input Frequency	2.0	$R_L = 1 \text{ k}\Omega$ $C_L = 15 \text{ pF}$ $V_{OUT} = 1/2V_{CC}$		30				MHz	
		4.5			30					
		9.0			30					
		12.0			30					
C_{IN}	Input Capacitance				5	10		10	pF	
$C_{I/O}$	Switch Terminal Capacitance				6				pF	
C_{IOS}	Feed Through Capacitance				0.5				pF	
C_{PD}	Power Dissipation Capacitance (note 1)				15				pF	

1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(\text{opr})} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

ANALOG SWITCH CHARACTERISTICS ($GND = 0 \text{ V}$, $T_A = 25^\circ\text{C}$)

Symbol	Parameter	Test Condition			Value	Unit
		V_{CC} (V)	V_{IN} (Vp-p)			
	Sine Wave Distortion (THD)	4.5	4	$f_{IN} = 1 \text{ KHz}$ $R_L = 10 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	0.05	%
		9.0	8		0.04	
f_{MAX}	Frequency Response (Switch ON)	4.5	Adjust f_{IN} voltage to Obtain odBm at V_{OS} . Increase f_{IN} Frequency until dB Meter reads -3dB $R_L = 50\Omega$, $C_L = 10 \text{ pF}$		200	MHz
		9.0			200	
	Feedthrough Attenuation (Switch OFF)	4.5	V_{IN} is centered at $V_{CC}/2$. Adjust input for 0dBm $R_L = 600\Omega$, $C_L = 50 \text{ pF}$, $f_{IN} = 1 \text{ MHz}$ sine wave		-60	dB
		9.0			-60	
	Crosstalk (Control Input to Signal Output)	4.5	$R_L = 600\Omega$, $C_L = 50 \text{ pF}$, $f_{IN} = 1 \text{ MHz}$ sine wave ($t_r = t_f = 6 \text{ ns}$)		60	mV
		9.0			100	

SWITCHING CHARACTERISTICS TEST CIRCUIT

 t_{PLZ} , t_{PHZ} , t_{PZL} , t_{PZH} .

CROSSTALK (control to output)

BANDWIDTH AND FEEDTHROUGH ATTENUATION

GND (V_{SS})C_{I-O} C_{I/O}GND (V_{SS})

MAXIMUM CONTROL FREQUENCY

CHANNEL RESISTANCE (R_{ON})

I_{cc} (Opr.)

SOT23-5L MECHANICAL DATA						
DIM.	mm			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	0.90		1.45	35.4		57.1
A1	0.00		0.15	0.0		5.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
C	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	2.60		3.00	102.3		118.1
E1	1.50		1.75	59.0		68.8
L	0.35		0.55	13.7		21.6
e		0.95			37.4	
e1		1.9			74.8	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

<http://www.st.com>