Yelp Rating Prediction

Minmin Zhu	mz2656@columbia.edu
Yaxin Wang	yw3042@columbia.edu
Tianze Yue	ty2369@columbia.edu
Zonghao Li	zl2613@columbia.edu
Jiaxi Wu	jw3588@columbia.edu

Executive Summary

Thesis

Apply machine learning method to predict user ratings for each restaurant

Recommend restaurants with high rating prediction

Presented by: Minmin Zhu (mz2656)

Data Overview

Data Source

Yelp Dataset Challenge

Data Process

- Select Las Vegas as target city

 focus on restaurants located
 in the city
- Select core users with more than 500 reviews

Data Structure

Predict rating of "?" in data matrix

Rating	Restaurant	Restaurant	Restaurant	Restaurant
	001	002	003	004
User 001	4	?	?	5
User 002	4.5	3.5	4.5	?
User 003	?	2.5	?	?
User 004	?	4	?	4
User 005	3.5	3	?	4.5
User 006	?	?	4	5

Model Overview

Baseline

 $\frac{1}{2}$ (average user rating + average restaurant rating)

Machine Learning Model

Collaborative Filtering Model

Cosine similarity

Text Based Regression Model

TF-IDF(term frequency–inverse document frequency) + Cosine similarity + OLS

Hybrid KNN Model

TF-IDF + Cosine similarity + KNN(K-nearest neighbors) + Cross-validation

ML Statistical Value-add

- Collaborative Filtering Model and Hybrid KNN Model outperform industry baseline
- Hybrid KNN Model has lowest MSE
- Make more accurate user ratings prediction

Business Understanding

Business reference baseline

WHAT INDUSTRY DOES

For the baseline recommendation system, we first compute the average rating of each user and each restaurant.

 $ar{r}_u^U$: the average rating user has given

 \overline{r}_b^B : the average rating the restaurants has received

Prediction: Average over the average rating of u and b, $\hat{r}_{ub} = (\bar{r}_u^U + \bar{r}_b^B)/2$

WHAT WE DO

Machine Learning Techniques

- Text-based Filtering
- Collaborative Filtering
- Hybrid

Presented by: Yaxin Wang (yw3042)

ML statistical value-add

Collaborative Filtering

Predict using User to User Similarity

Assumption: Similar Users have similar

Text Based Filtering

Match features of User with features of Restaurant

- Extract features from reviews written by a specific user Get how often these features were mentioned from the
- reviews for a specific business. By comparing the frequency of these words, we could

match up customers and businesses by similarities.

Presented by: Yaxin Wang (yw3042)

Yelp tends to recommend restaurants to users based on Distance, Prices and other single factors.

- Predict the rating of a restaurant given by a specific user based on User's Preference.
- Build models using Machine Learning Techniques.
- Optimize models to make accurate prediction.
- Sort restaurants by ratings given by user customized rating criteria.
- Recommend restaurants with highest ratings to user.

Data Understanding

Independent, Dependent and Control Variables

5,200,000 user reviews, information on 174,000 businesses

- Dependent Variable: New rating (rating of business that user never been to)
- Independent Variables: Existing rating and review text
- Filtering Variables: city, business_review_count, user_review_count, categories

Why do not contains user features age and gender:

- Not enough user features in dataset
- Not predictive for different business

Independent and Dependent Variables

A	В	С	D	E	F	G	H	+		
user_id	business_id	stars		business_review_count	categories	user_review_count	text			
uEvusDwoSymbJJ0auR3muQ	pH0BLkL4cbxKzu471VZnuA		3 Ahwatuke		Dentists;General De		1 live very ne	ar wanting to		
Dgx185t0xrXT8nboVCNBqA	U9aA5H13y7t9xWnoQslV0Q		4 McMurra		Hair Stylists;Hair Sa		1ve eaten h	ere a côtible		
WPI2gULxrrh_GoypMzHF-A	yfxDa8RFOvJPQh0rNtakHA		3 Phoenix		Departments of Mo		sóme or my	airimenas		
ugk0g6vyv2XavpoTaJSy6A	aT_SsfZ6GQgJGyulv1Hapw		5 Tempe		Sporting Goods;Sho)	2 1 work'nere	at the note		
Kp5KHBSmV-Htc9NeSjJfPA	44kd3YdkhXj5XiSPs5XNjQ		4 Cuyahoga		American (New);Nig			-		
awQhT121Pe0R33sukfTyuA YE54kKTuqJJPNYWIKIpOEQ	ahSFUPojs9X3-1jP-QPb-w 364hhL5st0LV16UcBHRJ3A		5 Stuttgart		Real Estate Services		5 I have only t	an OK		
8ZryN_S-n48g6rsa3W3QtQ	xVEtGucSRLk5pxxN0t4i6g		3 Las Vegas 3 Las Vegas		Shopping;Sporting		2 Lam not a s	la li con ala		
ZmWLeLU_bGrNiqBVAGo-eg	rioQ_p2pILNbJ4Xp5jW6-Q		5 Wexford		Coffee & Tea;lce Cr		C C	fals said for		
GF-UBIwA0gEcUbAkve6s3A	MgYYYNA-ZYvV-1w5qcmMoA		4 Henderso		Automotive:Auto D		on paper to	IIS IS A	Metadata	
2nE0zU6y_F7gkwHi3yL6cQ	cYwJA2A6I12KNkm2rtXd5g		4 Houston		Breakfast & Brunch		0 The food wa		IVICLUUULU	
YdFcEQaOCef-ojBAJ7Mxjg	QJR4qBUHegWEozSQrGmBPw		5 Chandler	23	Local Services;Self S		7 The food is			
ZIIZhI7xT9gztKRIWk8Uvg	YnmtUJGqQlQL9tz1MRyfqA		4 Markham	38	3	/autalala			Decemention	DotoTom
bLbSNkLggFnqwNNzzq-ljw	Fi-2ruy5x600SX4avnrFuA		3 Homestea			/ariable			Descreption	DataType
8Aq_UdlsrjhBwGWb_U-xRA	LtXy1VinKWfuLFslVarKRw		2 Charlotte		<u>'</u>					Chuin a
4ljzfbO7XKFNWWVufHNhww	eoHdUeQDNgQ6WYEnP2aiRw		2 Toronto	12		user_id			user's ID	String
YMgZqBUAddmFErxLtCfK_w	GHS1rVjO-RMcRB6WJLpCDQ		4 Peoria	20) 				husinasala ID	Chuin a
0zDHiDbj79uBOy3OAcE25A	g8OnV26ywJlZpezdBnOWUQ		3 Sun Prairi			isiness_id			business's ID	String
25NDIYy0wzjq7mh3liCp0Q	k8BqCejnaMlw7aoVthvqyw		5 Goodyear	65)	ratings		;	star of business given by user	Numeric
						city			city of business	String
					husines	s_review_	count	tota	al number of reviews of business	Numeric
							_oount	1010		
					С	ategories			category tags of business	String
					user_	review_co	ount	t	otal number of reviews of user	Numeric
						text		revi	ew text of business given by user	String

Data Preparation Techniques

- Select the business with three conditions: its city label is "Las Vegas", its category contains several key words such as "restaurant", "food" and its review count is larger than 500
- 2. Select the user whose review count is larger than 500
- 3. Extract the review and rating data of by business and user lists. The first three steps greatly reduce sparsity
- 4. Construct a data matrix with the business ID list as column name and user ID list as row names.
- It contains 420 columns and 3730 rows.

Presented by: Tianze Yue (ty2369)

Matrix Sparsity: 98% to 72%

If not, we need to use 2% data to predict 98%, which will lead to poor prediction result. In this way, we can reduce around 25% MSE.

user_ID	business_ID	rating	Deting	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant
User 001	Restaurant 001	4	Rating	001	002	003	004	005
User 001	Restaurant 004	5	User 001	4	NA	NA	5	NA
User 002	Restaurant 001	4.5	User 002	4.5	3.5	4.5	NA	2
User 002	Restaurant 002	3.5	User 003	NA	2.5	NA	NA	1
User 002	Restaurant 003	4.5	User 004	NA	4	NA	4	NA
User 003	Restaurant 002	2	User 005	3.5	3	NA	4.5	NA
User 003	Restaurant 005	1	User 006	NA	NA	4	5	3

Sampling / Other Key Tasks

- Divide the review data set into 25% hold-out set and 75% training set.
- Text data processing: Feature extraction

Converting text data into a matrix of TF-IDF (term frequency-inverse document frequency) features. These features make it possible to implement new machine learning techniques.

TF-IDF	hot	seafood	ramen	cheap	pasta
User 001	22.67	7.83	13.03	26.72	2.95
User 002	35.80	20.73	30.25	44.00	49.39
User 003	44.16	3.69	29.03	22.82	30.02
User 004	26.37	39.76	29.59	0.95	44.94
User 005	42.66	19.41	40.48	34.01	9.26

TF-IDF	hot	seafood	ramen	cheap	pasta
Restaurant 001	47.66	45.37	29.94	10.07	3.97
Restaurant 002	10.59	5.67	31.92	23.22	4.37
Restaurant 003	29.00	44.80	5.52	27.95	37.73
Restaurant 004	16.08	3.16	15.78	14.79	25.84
Restaurant 005	40.82	8.59	36.74	38.26	4.55

______ Data Modeling

Data Modeling

Baseline Model: Average of user rating and business rating

Rating	Restaurant 001	Restaurant 002	Restaurant 003	Restaurant 004
User 001	4	5	X	3
User 002	4	5	2	
User 003	3	3.5		
User 004	2		4	4

Data Modeling

Collaborative Filtering Model: Calculate similarities between users and

Rating	Restaurant 001	Restaurant 002	Restaurant 003	Restaurant 004
User 001	4	5	X	3
User 002	4	5	2	
User 003	3	3.5		
User 004	2		4	4

Data Modeling

Text Based Regression Model: Extract features from reviews and calculate similarity

TF-IDF	hot	seafood	ramen	cheap	pasta
User 001	22.67	7.83	13.03	26.72	2.95
User 002	35.80	20.73	30.25	44.00	49.39
User 003	44.16	3.69	29.03	22.82	30.02
User 004	26.37	39.76	29.59	0.95	44.94
User 005	42.66	19.41	40.48	34.01	9.26

Data Modeling

Hybrid KNN Model: Combine features extracted from TFIDF matrix with KNN method

- Comparing to Collaborative Filtering: similarity matrix is less sparse
- Comparing to Text Based Model: more available data for prediction

	Baseline	Collaborati ve	Text	KNN
MSE	0.8787	0.7691	1.3856	0.6281

5 Technical Appendix

Variable and Parameter Selection

- Variable/Feature selection in text analysis
 Delect function words such as "a, the, we, and"
 Use meaningful words as features such as "seafood, hot, cheap, parking space"
- KNN parameterUse 10 folds cross-validation

Collaborative Filtering

Step 1: Compute cosine similarity for user i and user j.

$$S_{ij}^{U} = \sin(X_i^{U}, X_j^{U}) = \frac{(X_i^{U})^{\mathrm{T}} X_j^{U}}{\|X_i^{U}\|_2 \|X_j^{U}\|_2}$$

 Step 2: Predict rating by weighted-average of the ratings from all users.

$$\hat{r}_{ub} = \bar{r}_u + \frac{\sum_i S_{ui}^U (X_{ib} - \bar{r}_i^U)}{\sum_i |S_{ui}^U|}$$

Text-based Model

- Step 1: Concatenate all the reviews written by a specific user and all the reviews for a specific business.
- Step 2: Extract user and restaurant features by creating TF-IDF matrix.
- Step 3: Calculate the user-business cosine similarities.
- Step 4: Fit a simple linear regression model of similarities depending on available ratings.
- Step 5: Predict missing ratings based on similarities.

Hybrid KNN Model

- Step 1: Extract user features by creating TF-IDF matrix.
- Step 2: Calculate the cosine similarities for user i and j and used as correlation distance
- Step 3: Find Cluster $N_K(x)$ which contains the nearest K users of user x
- Step 4: Calculate mean rating within cluster as prediction

$$\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$$