CLAIMS

[1] A compound represented by formula [1]
[Formula 1]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{6}
 X^{7}
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

5

(wherein X¹, X², X³, X⁴, X⁵, X⁶, X७, X³, X³, X¹, X¹¹, X¹², X¹³, and X¹⁴ represent fluorine, hydrogen, a substituted or unsubstituted C¹-8 alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X³ is bonded to X¹¹ to form a monocyclic or condensed polycyclic or condensed polycyclic hydrocarbon group)

wherein the groups in at least one pair selected from the group consisting of the pair X^5 and X^{14} , the pair X^6 and X^{13} , and the pair X^7 and X^{12} are both fluorine.

20 [2] A compound represented by formula [2] [Formula 2]

$$X^{3}$$
 X^{4}
 F
 F
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}

(wherein X¹, X², X³, X⁴, X⁸, X⁹, X¹⁰, and X¹¹ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted annotation or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group).

[3] Formula [3] [Formula 3]

5

10

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{1}
 X^{14}
 X^{12}
 X^{11}
 X^{10}

(wherein X¹, X², X³, X⁴, X⁵, X⁷, X⁸, X⁹, X¹⁰, X¹¹, X¹², and X¹⁴ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group).

[4] Formula [4]

[Formula 4]

$$X^{3}$$
 X^{4}
 F
 X^{6}
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X¹, X², X³, X⁴, X⁶, X⁸, X⁹, X¹⁰, X¹¹, and X¹³
5 represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group,
10 or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group).

15 [5] A method of producing a compound represented by
formula [13]
[Formula 7]

(wherein X¹, X², X³, X⁴, X⁸, X⁹, X¹⁰, and X¹¹ represent
20 fluorine, hydrogen, a substituted or unsubstituted C₁₋₈
alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted

or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group), comprising the step of

producing a compound represented by formula [13] by reacting a compound represented by formula [11]

10 [Formula 5]

5

(wherein X¹, X², X³, and X⁴ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group) with a compound represented by formula [12]

[Formula 6]

(wherein X⁸, X⁹, X¹⁰, and X¹¹ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group) in the presence of a Lewis acid.

- [6] The production method according to claim 5, wherein the Lewis acid comprises aluminum chloride.
- [7] A method of producing a compound represented by
 15 formula [14]

[Formula 9]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [13]), comprising the step of

producing a compound represented by formula [14] by reacting a compound represented by formula [13]

[Formula 8]

(wherein X¹, X², X³, X⁴, X⁸, X⁹, X¹⁰, and X¹¹ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group agent.

[8] A method of producing a compound represented by formula [15]

15 [Formula 11]

5

10

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [13]), comprising the step of

producing a compound represented by formula [15] by
20 reacting a compound represented by formula [13]
[Formula 8]

(wherein X¹, X², X³, X⁴, X⁸, X⁹, X¹⁰, and X¹¹ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded hydrocarbon group) with a fluorinating agent.

[9] A method of producing a compound represented by formula [14]

15 [Formula 13]

5

10

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [15]), comprising the step of

producing a compound represented by formula [14] by
20 reacting a compound represented by formula [15]
[Formula 12]

(wherein X¹, X², X³, X⁴, X⁸, X⁹, X¹⁰, and X¹¹ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

[10] A method of producing a compound represented by formula [16]

15 [Formula 15]

5

10

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [13]), comprising the step of

producing a compound represented by formula [16] by
20 reacting a compound represented by formula [13]
[Formula 14]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

[11] The production method according to any of claims 7 to 15 10, wherein the fluorinating agent comprises sulfur tetrafluoride.

[12] A method of producing a compound represented by formula [2]

[Formula 17]

$$X^{3} \xrightarrow{X^{4}} F F F X^{8} X^{9}$$

$$X^{2} \xrightarrow{X^{1}} F F F X^{11} X^{10}$$

$$[2]$$

20

5

10

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [14]), comprising the step of

producing a compound represented by formula [2] by reacting a compound represented by formula [14]
[Formula 16]

(wherein X¹, X², X³, X⁴, X⁸, X⁹, X¹⁰, and X¹¹ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic

[13] A method of producing a compound represented by formula [2]

[Formula 19]

$$X^{3}$$
 X^{4}
 F
 F
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}

20 (wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [16]), comprising the step of

producing a compound represented by formula [2] by

reacting a compound represented by formula [16] [Formula 18]

(wherein X¹, X², X³, X⁴, X³, X³, X¹, and X¹¹ represent
5 fluorine, hydrogen, a substituted or unsubstituted C¹-8
alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X³ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group and polycyclic hydrocarbon group) with a reducing agent.

15 [14] The production method according to claim 12 or 13, wherein the reducing agent comprises zinc, iron, copper, nickel, palladium, or a combination thereof.

[15] A compound represented by formula [13]
[Formula 20]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent

20

fluorine, hydrogen, a substituted or unsubstituted C_{1-8}

alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X³ is bonded to X¹0 to form a monocyclic or condensed polycyclic hydrocarbon group).

10 [16] A compound represented by formula [14] [Formula 21]

(wherein X¹, X², X³, X⁴, X⁸, X⁹, X¹⁰, and X¹¹ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group).

[17] A compound represented by formula [15]

25 [Formula 22]

5

15

20

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group allowed.

[18] A compound represented by formula [16] [Formula 23]

15

20

5

10

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or

different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

5 [19] A method of producing a compound represented by formula [22]

[Formula 25]

$$X^3$$
 X^4
 X^5
 X^7
 X^8
 X^9
 X^2
 X^1
 X^{14}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

monocyclic or condensed polycyclic hydrocarbon group and/or X9 is bonded to X10 to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

[20] A method of producing a compound represented by formula [23]

[Formula 27]

5

10

$$X^3$$
 X^4
 X^5
 X^7
 X^8
 X^9
 X^2
 X^1
 X^{14}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

(wherein X¹, X², X³, X⁴, X⁵, X⁷, X⁸, X⁹, X¹⁰, X¹¹, X¹², and X¹⁴
represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted naphthacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or

X⁹ is bonded to X¹⁰ to form a monocyclic or condensed
polycyclic hydrocarbon group) with a fluorinating agent.
[21] A method of producing a compound represented by
formula [22]

5 [Formula 29]

[Formula 28]

10

(wherein X¹, X², X³, X⁴, X⁵, X³, X³, X³, X³, X¹o, X¹¹, X¹², and X¹⁴
are defined as for formula [23]), comprising the step of
 producing a compound represented by formula [22] by
reacting a compound represented by formula [23]

(wherein X¹, X², X³, X⁴, X⁵, X⁻, X³, X³, X³, X¹o, X¹¹o, X¹¹o, X¹²o, and X¹⁴ represent fluorine, hydrogen, a substituted or unsubstituted C¹-8 alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X³ is bonded to X¹o to form a monocyclic or condensed

polycyclic hydrocarbon group) with a fluorinating agent.

[22] The production method according to any of claims 19 to

21, wherein the fluorinating agent comprises sulfur

tetrafluoride.

5 [23] A method of producing a compound represented by formula [3]

[Formula 31]

$$X^{4}$$
 X^{5} F F X^{7} X^{8} X^{9} X^{10} X^{14} Y^{15} Y^{10} Y^{10} Y^{10} Y^{10} Y^{10} Y^{10} Y^{10} Y^{10} Y^{10} Y^{10}

monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group) with a reducing agent.

[24] The production method according to claim 23, wherein the reducing agent comprises zinc, iron, copper, nickel, palladium, or a combination thereof.

[25] A compound represented by formula [22]
[Formula 32]

5

(wherein X¹, X², X³, X⁴, X⁵, X⁷, X⁸, X⁹, X¹⁰, X¹¹, X¹², and X¹⁴ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed
20 polycyclic hydrocarbon group).

[26] A compound represented by formula [23] [Formula 33]

(wherein X¹, X², X³, X⁴, X⁵, X², X³, X³, X³, X¹o, X¹¹o, X¹¹o, X¹²o, and X¹⁴o represent fluorine, hydrogen, a substituted or unsubstituted C¹o. a alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X³ is bonded to X¹o to form a monocyclic or condensed polycyclic hydrocarbon group).

[27] A method of producing a compound represented by formula [32]

15 [Formula 35]

20

$$X^{3}$$
 X^{4}
 F
 F
 X^{6}
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X¹, X², X³, X⁴, X⁶, X⁶, X⁶, X⁰, X¹¹, and X¹³ are
defined as for formula [31]), comprising the method of
 producing a compound represented by formula [32] by
reacting a compound represented by formula [31]
[Formula 34]

$$X^3$$
 X^4
 X^6
 X^8
 X^9
 X^1
 X^1
 X^1
 X^1
 X^1
 X^2
 X^3
 X^4
 X^4
 X^6
 X^6
 X^8
 X^9
 X^1
 X^1
 X^1
 X^1
 X^1

(wherein X¹, X², X³, X⁴, X⁶, X⁶, X⁶, X⁰, X¹¹, x¹¹, and X¹³
represent fluorine, hydrogen, a substituted or
unsubstituted C¹-₀ alkyl group, a substituted or

5 unsubstituted phenyl group, a substituted or unsubstituted
naphthyl group, a substituted or unsubstituted anthracenyl
group, a substituted or unsubstituted naphthacenyl group,
or a substituted or unsubstituted pentacenyl group, and may
be the same or different; or X² is bonded to X³ to form a

10 monocyclic or condensed polycyclic hydrocarbon group and/or
X⁰ is bonded to X¹⁰ to form a monocyclic or condensed
polycyclic hydrocarbon group) with a fluorinating agent.
[28] A method of producing a compound represented by
formula [33]

15 [Formula 37]

20

$$X^{3}$$
 X^{4}
 X^{6}
 X^{6}
 X^{7}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X¹, X², X³, X⁴, X⁶, X⁶, X⁶, X⁰, X¹¹, and X¹³ are
defined as for formula [31]), comprising the method of
 producing a compound represented by formula [33] by
reacting a compound represented by formula [31]
[Formula 36]

$$X^3$$
 X^4
 X^6
 X^8
 X^9
 X^1
 X^1
 X^1
 X^1
 X^1
 X^1
 X^2
 X^3
 X^4
 X^4
 X^6
 X^6
 X^8
 X^9
 X^1
 X^1
 X^1
 X^1
 X^1
 X^1
 X^2
 X^3
 X^4
 X^4
 X^4
 X^6
 X^6
 X^6
 X^8
 X^9

(wherein X¹, X², X³, X⁴, X⁶, X⁶, X⁶, X⁰, X¹¹, and X¹³
represent fluorine, hydrogen, a substituted or
unsubstituted C¹-₀ alkyl group, a substituted or

5 unsubstituted phenyl group, a substituted or unsubstituted
naphthyl group, a substituted or unsubstituted anthracenyl
group, a substituted or unsubstituted naphthacenyl group,
or a substituted or unsubstituted naphthacenyl group,
or a substituted or unsubstituted pentacenyl group, and may
be the same or different; or X² is bonded to X³ to form a

10 monocyclic or condensed polycyclic hydrocarbon group and/or
X⁰ is bonded to X¹⁰ to form a monocyclic or condensed
polycyclic hydrocarbon group) with a fluorinating agent.
[29] A method of producing a compound represented by
formula [32]

15 [Formula 39]

20

$$X^{3}$$
 X^{4}
 F
 F
 X^{6}
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X¹, X², X³, X⁴, X⁶, X⁶, X⁶, X⁰, X¹¹, and X¹³ are
defined as for formula [33]), comprising the method of
 producing a compound represented by formula [32] by
reacting a compound represented by formula [33]
[Formula 38]

$$X^{3}$$
 X^{4}
 X^{6}
 X^{6}
 X^{7}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted 5 naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a 10 monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent. [30] The production method according to any of claims 27 to 29, wherein the fluorinating agent comprises sulfur tetrafluoride. 15

[31] A method of producing a compound represented by formula [4]

[Formula 41]

$$X^{3}$$
 X^{4}
 F
 X^{6}
 F
 X^{8}
 X^{9}
 X^{2}
 X^{1}
 F
 X^{13}
 F
 X^{11}
 X^{10}
 X^{10}

20 (wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} are defined as for formula [32]), comprising the method of producing a compound represented by formula [4] by

reacting a compound represented by formula [32] [Formula 40]

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} 5 represent fluorine, hydrogen, a substituted or unsubstituted C1-8 alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may 10 be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a reducing agent. [32] The production method according to claim 31, wherein 15 the reducing agent comprises zinc, iron, copper, nickel, palladium, or a combination thereof. [33] A compound represented by formula [31]

$$X^3$$
 X^4
 X^6
 X^8
 X^9
 X^2
 X^1
 X^{10}
 X^{13}
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} represent fluorine, hydrogen, a substituted or

[Formula 42]

20

unsubstituted C_{1-8} alkyl group, a substituted or

unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group).

10 [34] A compound represented by formula [32] [Formula 43]

5

$$X^{3}$$
 X^{4}
 F
 F
 X^{6}
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X¹, X², X³, X⁴, X⁶, X⁸, X⁹, X¹⁰, X¹¹, and X¹³ represent fluorine, hydrogen, a substituted or unsubstituted C₁₋₈ alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X² is bonded to X³ to form a monocyclic or condensed polycyclic hydrocarbon group and/or X⁹ is bonded to X¹⁰ to form a monocyclic or condensed polycyclic hydrocarbon group).