Chapter 3 Notes

John J Li *

February 9, 2021

^{*}notes from "How to Prove It" by Daniel J. Velleman

Contents

1	Clas	ss Notes	2
	1.1	Example	2
	1.2	Example	2
	1.3	Example	2
		1.3.1 Additional	2
	1.4	Example	3
	1.5	Example	3
	1.6	Example	3

1 Class Notes

Proof by contradiction:

The aim is to show that a statement r is true. The method is to show that an implication $\neg r \to F$ is true for some statement F which is false.

1.1 Example

Let A,B,C be sets and $A \setminus B \in C$. Show that if $x \in A \setminus C$ then $x \in B$.

Proof. By contradiction: Suppose $x \in A \setminus C$ and $x \notin B$, then $x \in A$ and $x \notin C$ and $x \notin B$. Thus $x \in A$ and $x \notin B$ and $x \notin C$. Therefore $x \in A \setminus B$ and $x \notin C$. Since $A \setminus B \in C$, $x \in C$ and $x \notin C$, which is a contradiction. \square

1.2 Example

Let $x, y \in \mathbb{R}$. Show that if $x^2 + y = 13$ and $y \neq 4$ then $x \neq 3$

Proof. Indirectly.

Suppose x=3, we will show that $x^2+y\neq 13$ or y=4. Suppose $x^2+y=13$. Then $3^2+y=13$, y=4.

Contradiction.

Suppose $x^2 + y = 13$ and $y \neq 4$ and x = 3. Then 9 + y = 13 and $y \neq 4$. Therefore y = 4 and $y \neq 4$, which is a contradiction.

1.3 Example

Let $n \in \mathbb{Z}$. Show that if n is even then n^2 is even.

Proof. Suppose n is even. Then n=2k for some integer k. Then $n^2=4k^2=2(2k^2)$ and $2k^2\in\mathbb{Z}$. Therefore n^2 is even.

1.3.1 Additional

Show that if n^2 is even then n is even.

Proof. Suppose n is not even. Since $n \in \mathbb{Z}$, n is odd.

Then n = 2k + 1 for some $k \in \mathbb{Z}$ and $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ and $2k^2 + 2k \in \mathbb{Z}$ Thus n^2 is odd.

1.4 Example

 $\sqrt{2}$ is irrational

Proof. By contradiction. Suppose $\sqrt{2}$ is rational. Then $\sqrt{2} = \frac{p}{q}$ for some integers p,q where $q \neq 0$ and $\frac{p}{q}$ is reduced (p,q have no common factors).

Then $\sqrt{2}\dot{q}=p$ and so $2q^2=p^2$ (*). From (*) p^2 is even. Then, by the previous fact, p is even. Thus p=2k for some integer k.

Thus in (*) we have $2q^2 = (2k)^2$; $2q^2 = 4k^2$; $q^2 = 2k^2$. Therefore q^2 is even, and so q is even. And so p,q are both even and $\frac{p}{q}$ is reduced which is a contradiction.

1.5 Example

Let A,B be sets. Show that if $A \wedge B = A$ then $A \in B$ $(A \in B \equiv \forall x \, x \in A, x \in B)$

Proof. Let $x \in A$. Since $A = A \cap B$, $x \in A \cap B$. Thus $x \in A$ and $x \in B$. In particular $x \in B$.

1.6 Example

Let $x \in \mathbb{R}$. Show that if x > 0 then there is $y \in \mathbb{R}$ y(y+1) = x. $\forall x(x > 0 \rightarrow \exists yy(y+1) = x)$

Proof. Let x>0. Consider $y=\frac{-1+\sqrt{1+4x}}{2}$ Then $y\in\mathbb{R}$ because x>0 and $y(y+1)=(\frac{-1+\sqrt{1+4x}}{2})(\frac{-1+\sqrt{1+4x}}{2}+1)=$