LAGRANGE'S BHAIYA

If the equation $ax^2 + bx + c = 0$ has two positive and real roots, then prove that the equation $ax^2 + (b+6a)x + (c+3b) = 0$ has at least one positive real root.

Let f(x) and g(x) be differentiable functions such that $f'(x) g(x) \neq f(x) g'(x)$ for any real x. Show that between any two real solutions of f(x) = 0, there is at least one real solution of g(x) = 0.

Using Lagrange's mean value theorem prove that $|\cos a - \cos b| \le |a - b|$.

If the function $f(x) = x^3 - 6x^2 + ax + b$ defined on [1, 3] satisfies the Rolle's theorem for $c = \frac{2\sqrt{3} + 1}{\sqrt{3}}$, then find the values of a and b.

Let f(x) = (x-a)(x-b)(x-c), a < b < c, show that f'(x) = 0 has two roots one in (a, b) and the other in (b, c).

Show that between any two roots of $e^{-x} - \cos x = 0$, there exists at least one root of $\sin x - e^{-x} = 0$.

Let P(x) be a polynomial with real coefficients Let $a, b \in R$, a < b, be two consecutive roots of P(x). Show that there exists c such that $a \le c \le a$ and P'(c) + 100 P(c) = 0.

re Gussa dilane ke liye"

If water is poured into an inverted hollow cone whose semi-vertical angle is 30°, show that its depth (measured along the axis) increases at the rate of 1 cm/s. Find the rate at which the volume of water increases when the depth is 24cm.

Let P(x) be a polynomial with real coefficients. Let $a, b \in R, a < b$, be two consecutive roots of P(x). Show that there exists c such that $a \le c \le b$

A horse runs along a circle with a speed of 20 km/h. A lantern is at the centre of the circle. A fence is along the tangent to the circle at the point at which the horse starts. Find the speed with which the shadow of the horse moves along the fence at the moment when it covers 1/8 of the circle in km/h is

ROLL'S & LAGRANGE'S BHAYA K

- 1. Find the condition if the equation $3x^2 + 4ax + b = 0$ has at least one root in (0, 1).
- 2. Find c of Lagrange's mean value theorem for the function $f(x) = 3x^2 + 5x + 7$ in the interval [1, 3].
- 3. Let f(x) and g(x) be differentiable for $0 \le x \le 2$ such that f(0) = 2, g(0) = 1 and f(2) = 8. Let there exist a real number c in [0, 2] such that f'(c) = 3g'(c), then find the value of g(2).
- 4. Prove that if $2a_0^2 < 15a$, all roots of $x^5 a_0x^4 + 3ax^3 + bx^2 + cx + d = 0$ cannot be real. It is given that $a_0, a, b, c, d \in \mathbb{R}$.
- 5. If f(x) is continuous in [a, b] and differentiable in (a, b), then prove that there exists at least one $c \in (a, b)$

such that
$$\frac{f'(c)}{3c^2} = \frac{f(b) - f(a)}{b^3 - a^3}$$
.

Scree 6. Using Lagrange's mean value theorem, prove that

$$\frac{b-a}{b} < \log\left(\frac{b}{a}\right) < \frac{b-a}{a}$$
, where $0 < a < b$.

7. Let f(x) and g(x) are two functions which are defined and differentiable for all $x \ge x_0$. If $f(x_0) = g(x_0)$ and f'(x) > g'(x) for all $x > x_0$, then prove that f(x) > g(x) for all $x > x_0$.

(lar