

지난 주차 **복습**

복습하기

운영체제의 개요

- 운영체제의 개념
 - 시스템의 하드웨어를 제어하고 사용자 및 응용 소프트웨어와 상호작용하는 시스템 소프트웨어의 일종
- 운영체제의 사용자 인터페이스 방식
 - CLI, GUI

운영체제 관리

기억장치 관리, 프로세스 관리, 입출력장치 관리, 파일 관리

지난 주차 **복습**

복습하기

운영체제의 분류

 시분할 시스템, 다중 프로그램 시스템, 다중 처리 시스템, 다중 작업, 실시간 처리 시스템, 분산처리 시스템 등

운영체제의 종류

▼ 도스, 윈도우(GUI 방식), 매킨토시 운영체제, 유닉스(Unix), 리눅스(Linux) 등

3] 데이터베이스의 정의 및 특징

♦ 데이터베이스의 정의

데이터베이스

- 관련 있는 데이터의 저장소
- 여러 사람이나 응용시스템에 의해 참조 가능하도록 서로 논리적으로 연관되어 통합 관리되는 데이터의 모임

데이터베이스에 저장된 자료는 데이터를 추가하고, 공유하고, 찾고, 정렬하고, 분류하고, 요약하고, 출력하는 등의 여러 조작을 통하여 정보로 활용될 수 있음

3] 데이터베이스의 정의 및 특징

♦ 데이터베이스의 특징

주요 특징	생용 내용	
통합된 데이터	데이터의 특성, 실체 상호간의 의미 관계와 형식 관계를 기술한 개념적인 구조에 따라서 편성된 데이터의 집합	
관련 있는 데이터	동시에 복수의 적용 업무나 응용 시스템에 대한 데이터의 공급기지로서 공유할 필요가 있는 데이터를 보관, 관리	
중복의 최소화	동일한 내용의 데이터가 중복되어 있지 않아야 하고, 다양한 접근 방식이 마련되어 있어야 하며, 검색이나 갱신이 효율적으로 이루어질 수 있도록 중복을 최소화	
보조기억장치에 저장	자기 디스크나 자기 테이프 등 컴퓨터에서 사용할 수 있는 보조기억 장치에 저장	
무결성	데이터가 정확성을 항상 유지	
동시접근	여러 사람이 동시에 자료에 접근하더라도 문제없이 작업을 수행	
보안 유지	데이터베이스의 관리 및 접근을 효율적으로 관리하여 보안 유지	
장애 회복	문제가 발생하더라도 이전 상태로 복구 가능	THE REAL PROPERTY.

3] 관계형 모델

- ♦ 관계의 구성 요소
 - 관계의 특징
 - ★★ 중복된 튜플은 삽입될 수 없으며, 투플 내의 모든 값은 더 이상 나눌 수 없는 원자 값이어야 함

특징	특징 내용	
속성 이름의 유일성	한 관계에서 속성이름은 유일해야 함	
원자값	튜플 내의 모든 값은 더 이상 나눌 수 없는 원자값이어야 함	
튜플 간의 무순서	관계에서 튜플 간의 순서는 무의미함	
속성 간의 무순서	한 관계에서 속성 간의 순서는 무의미함	
중복 불허	한 관계에서 두 튜플의 속성 값이 모두 같은 것은 불허함	

3] 관계형 모델

- ♦ 관계의 구성 요소

후보키 (Candidate key)

■ 하나의 관계에서 유일성과 최소성 (Minimality)을 만족하는 키

주키 (Primary key)

 관계에서 여러 튜플 중에서 하나의 튜플을 식별하는 역할을 수행

외래키 (Foreign key)

- 어느 관계의 속성들 중에서 일부가 다른 관계의 주키가 될
 때의 키
- 관계와 관계를 서로 연결할 수 있음

3] DBMS의 종류

♦ 데이터베이스 관리시스템(DBMS) 현황

기업	대표 솔루션	특징
오라클	오라클DB	유닉스 환경 관계형DBMS(RDB)
티맥스데이터	티베로	우너천기술을 확보한 국산 DBMS
아마존웹서비스(AWS)	오로라 DB	상용 · 오픈소스 효율성 결합 RDB
마이크로소프트(MS)	SQL 서버	하이브리드형 데이터 플랫폼
IBM	DB2	1983년 발표된 상업용 RDB
구글 클라우드	클라우드 SQL	클라우드 네이티브 RDB
큐브리드	큐브리드 DB	오픈소스 기반 국산 RDB
마리아DB	마리아DB	오픈소스 기반 외산 RDB
몽고DB	몽고DB	오픈소스 기반 외산 NoSQL DB

3] DBMS의 종류 4 ODBC(Open Database Connectivity) ■ 데이터베이스를 사용하기 위한 표준 개방형 응용 프로그램 ■ DBMS의 종류에 관계없이 어떤 응용 프로그램에서나 모두 접근하여 사용할 수 있도록하기 위하여 마이크로소프트에서 개발한 데이터베이스 표준 접근 방법 ■ 마이크로소프트는 DBMS를 위한 미들웨어인 ODBC(Open Database Connectivity) API(Application Programming Interface)를 제공하여 데이터베이스 개발을 더욱 쉽게 가능하게 함 ■ ODBC를 사용하면 여러 종류의 데이터베이스를 함께 사용할 수 있고 기존에 사용하던 데이터베이스를 교체한다 하더라도 응용 시스템을 계속해서 그대로 사용할 수 있어 비용을 절감할 수 있음

정리하기

정리하기

데이터베이스의 개요

- 데이터베이스의 정의
 - 관련 있는 데이터의 저장소로 서로 논리적으로 연관되어 통합 관리되는 데이터의 모임
- 데이터베이스의 특징
 - 통합된 데이터, 중복을 최소화, 무결성, 동시 접근, 보안 유지, 장애 회복 등

정리하기

데이터베이스의 물리적 구조

- 필드
- 레코드
- 파일
- 데이터베이스

정리하기

정리하기

데이터베이스 모델

- 🌶 계층 모델
- 네트워크 모델
- 관계형 모델
 - 모든 데이터를 이차원의 테이블로 표현한 모델
 - 관계는 관계 스키마와 관계 사례로 구성
 - 관계의 구성요소: 속성, 튜플, 키
- 객체-관계형 모델

정리하기

데이터베이스 관리 시스템

- 정의
 - 데이터베이스를 관리하는 소프트웨어객체-관계형 모델
- 구성
 - 저장 관리자, 질의 처리기, DBMS 인터페이스 도구
- 종류
 - 오라클, DB2, MySql, SQL Server, Access 등

