$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$
$\tau_{1^{^{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} + \alpha$

 $r_5\,\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\theta\kappa\lambda}+r_5\,\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda}-r_5\,\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\kappa\lambda\theta}+2\,r_5\,\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-$

 $_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda}+t_{1}\;\omega_{\kappa\alpha}^{\;\;\;\alpha}\,\partial^{\kappa}f_{\prime}^{\prime}$

 $^{\theta}$ - $^{\frac{1}{2}}t_1 \partial^{\alpha}f_{\kappa\theta} \partial^{\kappa}f_{\alpha}^{\ \ \theta}$ - $^{\frac{1}{2}}t_1 \partial^{\alpha}f^{\lambda}_{\kappa}$

 $-t_1\;\omega_{,}^{\alpha\prime}\;\omega_{\kappa\alpha}^{\;\;\kappa}-t_1\;\omega_{,}^{\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+f^{\alpha\beta}\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}-r_5\,\partial_{,}\omega^{\kappa\lambda}_{\;\;\kappa}\,\partial_{,}\omega_{,}^{\;\;\alpha}+$

Lagrangian density

(No massless particles)

 $\frac{2}{3}r_2\,\partial^\beta\omega^{\theta\alpha}_{\kappa}\partial_\theta\omega^{\kappa}_{\beta} - \frac{1}{3}r_2\,\partial_\theta\omega^{\kappa}_{\beta}\partial_\kappa\omega^{\alpha\beta\theta}_{\beta} - \frac{2}{3}r_2\,\partial_\theta\omega^{\kappa}_{\beta}\partial_\kappa\omega^{\theta\alpha\beta}_{\beta} -$

_	$\sigma_0^{\#1}$	$ au_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

0

0

0

 $\bar{\it l} \; k \, t_1$

0

0

0

 $_{\kappa}^{-r_5}\partial_{\theta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}$

 $\omega_{1^{-}\alpha}^{\#2} f_{1^{-}\alpha}^{\#1} f_{1^{-}}^{\#2}$

 $\omega_{1^{-}}^{\#1}{}_{\alpha}$

 $\omega_{1}^{\#1}{}_{\alpha\beta} \quad \omega_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta}$

 $_{\alpha}^{}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}\,r_{2}\,\partial_{\kappa}\omega^{\alpha\beta\theta}\,\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}\,r_{2}\,\partial_{\kappa}\omega^{\theta\alpha\beta}\,\partial^{\kappa}\omega_{\alpha\beta\theta} -$

 $\frac{1}{2}t_1 \partial_k f^{\lambda}_{\ \theta} \partial^k f_{\lambda}^{\ \theta} - t_1 \partial^{\alpha} f^{\lambda}_{\ \alpha} \partial^k f_{\lambda k} + \frac{1}{3}r_2 \partial_k \omega^{\alpha\beta\theta} \partial^k \omega_{\alpha\beta\theta} + \frac{2}{3}r_2$ $\frac{2}{3}r_2 \partial^{\beta} \omega_{\alpha}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} + \frac{2}{3}r_2 \partial^{\beta} \omega_{\lambda}^{\ \lambda\alpha} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta\kappa}_{\kappa}$

 $_{\kappa}^{}\partial^{\kappa}f_{\lambda\alpha}^{}+\frac{1}{2}\,t_{1}^{}\partial_{\kappa}f_{\beta}^{\lambda}\partial^{\kappa}f_{\beta}^{}+$

 $'_{\kappa} + \frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa}$

 $k'_{\kappa} - t_1 \omega_{i\lambda}^{\lambda} \partial^{\kappa} f'_{\kappa}$

 $t_1 \omega_{'\alpha}^{\alpha} \partial^{\kappa} f'_{\kappa}$

 $_{\lambda}^{\prime}\partial^{\kappa}f^{\prime}_{\prime}+2t_{1}\;\omega_{\prime\kappa\theta}\;\partial^{\kappa}f^{\prime\theta}-$

 $t_1 \omega_{\kappa\lambda}^{\ \lambda} \partial^{\kappa} f'_{\ \prime} + 2 t_1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{\ \prime} - t_1 \partial_{\kappa} f^{\lambda}_{\ \prime}$

	#	1	1	3	3	3	2
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha == 0$		$+\bar{l}k\sigma_1^{\#2}{}^{\alpha\beta}$	$-2ik\sigma_{2+}^{\#1}\alpha\beta==0$

0	0	0	0	0	0	0			
0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath}kt_1$			
$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0			
$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0		$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$
$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$
$-\alpha\beta$	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$1 + \alpha$	2 †α	$_{1}+_{\alpha}$	$f_{1}^{\#2} +^{\alpha}$	$f_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$
$\omega_1^{\#1}$ 1	$\omega_1^{\#2}$ -	$f_1^{\#1}$	$\omega_{1^{\bar{-}}}^{\#1}$	$\omega_{1}^{\#2}$.	$f_{1}^{\#1}$	f_1^*	$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0

$\omega_{0}^{\#1}$	-t ₁	-1 V 2 K E ₁	0
	$\omega_{0}^{#1} + \zeta_{0}^{#1} + \zeta_{0}^{#1}$	/ ₀ + 1 f ₀ + †	$\omega_{0}^{\#1} +$
$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0

 $\sigma_2^{\#1} + \alpha^{\beta}$

 $\sigma_{2}^{\#1} +^{\alpha\beta\chi}$

 $\tau_2^{\#1} \dagger^{\alpha\beta}$

0

0

 $-2 k^2 t_1$

0

0

0

0

0

0

0

 $i\sqrt{2} kt_1$

 $f_{0}^{\#1}$

Total #:

 $\omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

0

<u>t</u>1 2

	Massive particle			
? /	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		

	Massive particle			
?	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		