Zadania zamkniete

Zad.1R. (2 pkt)

Funkcja $f(x) = x^2 + px + r$ przyjmuje najmniejszą wartość w punkcie x = -1, a odległość między jej miejscami zerowymi wynosi 6. Wówczas:

A.
$$p = 1, r = -2$$

B.
$$p = 2, r = -8$$

A.
$$p = 1, r = -2$$
 B. $p = 2, r = -8$ **C.** $p = -1, r = 2$ **D.** $p = 2, r = 3$

D.
$$p = 2, r = 3$$

Zad.2R. (2 pkt)

W ciągu arytmetycznym $a_1, a_2, \ldots, a_n, a_{n+1}, \ldots$ dane są $a_1 = 2, a_n = 5$ oraz suma $S_n = a_1 + a_2 + \dots + a_n = 24, 5$. Wtedy suma $S_{2n} = a_1 + a_2 + \dots + a_{2n}$ jest równa:

Zad.3R. (2 pkt)

Jeżeli $\operatorname{ctg} \alpha = 3$, to $\cos 2\alpha$ jest równy:

A.
$$\frac{4}{5}$$

B.
$$\frac{7}{8}$$
 C. $\frac{3}{5}$ D. $\frac{7}{16}$

C.
$$\frac{3}{5}$$

D.
$$\frac{7}{16}$$

Zad.4R. (2 pkt)

Wielomian $x^4 + 16$ jest podzielny przez wielomian:

A.
$$x + 2$$

B.
$$x^2 + 4$$

C.
$$x^2 - 2\sqrt{2}x + 4$$

B.
$$x^2 + 4$$
 C. $x^2 - 2\sqrt{2}x + 4$ **D.** $x^2 + 2\sqrt{2}x - 4$

Zad.5R.(2 pkt)

Niech $\log_2 3 = a$. Wówczas $\log_{\sqrt{6}} 2 \cdot \log_{\sqrt{3}} 6$ jest równe:

A.
$$\frac{4}{a}$$

$$\mathbf{B.} \; \frac{a}{a+1}$$

A.
$$\frac{4}{a}$$
 B. $\frac{a}{a+1}$ C. $1+\frac{1}{a}$ D. $\frac{a}{2}$

$$\mathbf{D.} \ \frac{a}{2}$$

Zad.6R. (2 pkt)

Granica ciągu $a_n = \frac{1+4+7+\cdots+(3n-2)}{2+4+\cdots+2n}$ jest równa:

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{2}$$

A.
$$\frac{1}{4}$$
 B. $\frac{1}{2}$ C. 1 D. $\frac{3}{2}$

Zad.7R. (2 pkt)

Ze zbioru cyfr {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} losujemy (bez zwracania) dwie cyfry. Prawdopodobieństwo, że ich iloczyn jest podzielny przez 8 jest równe:

A.
$$\frac{1}{3}$$

B.
$$\frac{19}{45}$$

B.
$$\frac{19}{45}$$
 C. $\frac{19}{90}$ D. $\frac{6}{15}$

D.
$$\frac{6}{15}$$

Zad.8R.(2 pkt)

Punkty A(-1,-3) i B(1,3) są dwoma wierzchołkami trójkąta równobocznego. Wówczas: trzecim wierzchołkiem tego trójkąta leżącym w drugiej ćwiartce układu współrzędnych jest:

A.
$$C(-3,1)$$

B.
$$C\left(-\frac{5}{2}, \frac{1}{2}\right)$$

A.
$$C(-3,1)$$
 B. $C\left(-\frac{5}{2},\frac{1}{2}\right)$ **C.** $C(-3\sqrt{3},\sqrt{3}),$ **D.** $C(-2\sqrt{3},2)$

D.
$$C(-2\sqrt{3}, 2)$$