Introducción Estadística Computacional

Juan Zamora Osorio juan.zamora@pucv.cl

Instituto de Estadística Pontificia Universidad Católica de Valparaíso

28 de agosto de 2023

Filosofía / Epistemología

- ¿Lo que sucede en el mundo depende del azar?
- ▶ ¿Qué es el azar?

Ejemplos

- Un juego de azar.
- Máquinas de azar.
- Cuánto demora en responder una consulta web.
- ► El clima de mañana.
- Cuántas unidades de un producto se venden a través de un sitio web.
- Si un estudiante llega a la clase o no.
- Foto astronómica de estrellas lejanas.
- Partículas observadas en acelerador de partículas.

Filosofía / Epistemología

- ¿Lo que sucede en el mundo depende del azar?
- ▶ ¿Qué es el azar?

Pregunta

L'Cuál es la diferencia entre azar, aleatorio y estocástico?

Pregunta

Les la diferencia entre azar, aleatorio y estocástico?

Etimología

- ➤ Azar (castellano): De azzahr, juego de dados, y éste del árabe zahr, usado como dado y que significa literalmente flores.
- Aleatorio (latín): De alea, suerte, usado como sinónimo de juego de azar.
- Estocástico (griego): De stokhastikos, apuntar a un blanco, conjeturar, a su vez de stokhos, el objetivo apuntado.

Pregunta

L'Cuál es la diferencia entre azar, aleatorio y estocástico?

Entre dados y dardos

La diferencia no es solo una letra *r*, sino una concepción de mundo diferente.

Probabilidades

Origen: Carneades, siglo II a.C.

- Escéptico: No es posible conocer algo absolutamente.
- Propone que toda decisión (jurídica / política) tiene incertidumbre.
- Para funcionar de manera práctica, asignar un valor de verdad a las afirmaciones, asociado a seguridad que sujeto tiene de afirmación.

Probabilidades

Teoría de Probabilidades

➤ Se interpreta como la modelación matemática del azar, ella debe dar cuenta del conocimiento acumulado por sobre los fenómenos del azar y sus leyes. La noción de probabilidad está subordinada a una determinada aproximación a los fenómenos del azar.

Actual: Andréi Kolmogórov (1930)

Teoría basada en el c explica al menos las t contextos. latemático de medida, que as leyes del azar en diferentes

Probabilidades – Leyes del azar

Ley de los grandes números

Modelo matemático para comportamiento del promedio, permite construir visión frecuentista de la probabilidad.

Ley del comportamiento de las fluctuaciones

► Estudio de las fluctuaciones de las pequeñas variaciones y sus correspondientes modelos matemáticos referidos a diferentes versiones del teorema del límite central.

Ley de la complejidad

La complejidad de todo sistema dinámico aumenta en el curso de su evolución (Boltzmann).

¿Qué es la estadística?

Varias definiciones

- Cómo opinar y tomar decisiones bajo la presencia de incertidumbre.
- Ciencia y arte de tomar decisiones basadas en evidencia cuantitativa.
- Colección de métodos que nos ayudan a describir, resumir, interpretar y analizar datos.

► Sin incertidumbre, ¿hay necesidad de métodos estadísticos?

¿Qué es la estadística?

Historia

- Proviene de la ciencia política de recolectar datos para describir poblaciones, negocios, etc. para administrar un estado.
- Siglo XIX se amplía para diseñar y análizar experimentos en agricultura.
- Siglo XX se amplía a industrias.
- Siglo XXI: ciencia de datos.

¿Dónde se utiliza?

- Casi en todas las áreas del conocimiento que recolectan e interpretan datos.
- Transformar datos en información.

Estadística y computación

Estadística y computación

Computación

- Procesar dichos datos y extraer valor es fundamental.
- Volumen requiere algoritmos y competencias en computación.
- Algoritmos probabilísticos.

Gran diferencia

- Aprender a vivir con datos que tienen errores.
- El conocimiento estadístico es fundamental.

Estadística

Matemáticas

- ► En matemáticas muchos problemas tienen una respuesta única y en que estamos todos de acuerdo.
- ► ¡Se requieren supuestos que pueden llegar a conclusiones diferentes!

Otras disciplinas - "Arte"

- Parte del trabajo es identificar el problema para poder usar las herramientas matemáticas.
- ► Se requiere conocer el área de estudio.
- Experiencia y creatividad.

Estadistica

Comunicación

- Cómo presentar resultados a clientes.
- Cómo comunicar incertidumbre.
- Cómo comunicar riesgo.

Ciencia de datos (data science)

Intersección multidisciplinaria

- Computación y aprendizaje automático (Machine Learning).
- Estadística.
- Dominio de aplicación.

Análisis estadístico

Partes

- Recolección de datos.
- Administración de los datos.
- Aplicación de procedimientos estadísticos.
- Interpretación de los resultados.

Este curso

- Nos concentraremos en las dos últimas.
- ¡Todas son importantes!

Análisis estadístico

Tipos

- ► Descriptivo.
- ► Predictivo.
- ► Causalidad.

Análisis estadístico

Tipos

- ► Descriptivo.
- ► Predictivo.
- ► Causalidad.

Probabilidades e inferencia estadística

Probabilidades

¿Dado un proceso que genera datos, cuáles son las propiedades que observaremos?

Inferencia estadística

▶ ¿Dadas las observaciones, qué podemos decir sobre el proceso que genera los datos?

Enlaces útiles – Conjuntos de datos

Internacionales

- ► Kaggle: https://www.kaggle.com/datasets.
- Google: https://datasetsearch.research.google.com/.
- ► Google: https://www.google.com/publicdata.
- ▶ UCI: https://archive.ics.uci.edu/ml/datasets.php.

Enlaces útiles – Conjuntos de datos

Nacionales

- ► Instituto Nacional de Estadísticas: https://ine.cl/.
- Dirección Meteorológica de Chile: https://climatologia.meteochile.gob.cl/.
- ▶ Banco Central: https://www.bcentral.cl/inicio.
- ► Centro Sismológico Nacional: https://www.sismologia.cl/index.html.
- ► Infraestructura de Datos Geoespaciales de Chile: https://www.ide.cl/.
- Estadísticas Servicio de Impuestos Internos: https://www.sii.cl/destacados/ogp/index.html.
- ▶ Biblioteca del Congreso Nacional: https://www.bcn.cl/leychile/.
- Coordinador Eléctrico Nacional: https://www.coordinador.cl/.
- Energía Maps: https://energiamaps.cne.cl/.

Enlaces útiles – Libros

- ► Information theory, inference and learning algorithms. Cambridge university press, 2003. David J. C. MacKay.
- Probability & Statistics for Engineers & Scientists. Pearson Education, 2012. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye.
- Probability & Statistics for Engineering and the Sciences. Cengage Learning, 2015. Jay L. Devore.
- ► Introduction to Statistics and Data Analysis. Springer, 2016. Christian Heumann, Michael Schomaker Shalabh.
- Probability and Statistics for Computer Science. UK: Springer International Publishing, 2018. David Forsyth.

Enlaces útiles

- Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC, 2018. Richard McElreath.
- ▶ Applied Multivariate Statistical Analysis. Springer Nature, 2019. Wolfgang Karl Härdle, Léopold Simar.

Otros cursos

- Probabilidad y Estadística USM. Ronny Vallejos. https://www.youtube.com/playlist?list=PLRdsr8w_wLNzYYSYP6bvf1p30mo27X9q-.
- Pensamiento estadístico. Felipe Bravo-Marquez. https://github.com/dccuchile/CC6104.