Algorithm Analysis

Time Complexity

Real Time:

To analyze the real time complexity of a program we need to determine two numbers for each statement in it:

- amount of time a single statement will take.
- No. of times it is executed.
- Product of these two, will be the total time taken by the statement.

First no. depends upon the machine and compiler used, hence the real time complexity is machine dependent.

Frequency count

 To make analysis machine independent it is assumed that every instruction takes the same constant amount of time for execution.

 Hence the determination of time complexity of a program is the matter of summing the frequency counts of all the statements.

Linear loop

- 1 i=12 Loop(I <= 1000)
 - 1 application code
 - 2 |=| + 1

The body of the loop is repeated 1000 times.

- 1 I = 1
- 2 Loop (I <= 1000)
 - 1 Application code
 - 2 |=|+2

For this the code time is proportional to n

Logarithm Loops

Multiply loops

- 1 | I = 1
- 2 Loop (I <1000)1 application code
 - 2 | | = i*2

code

$$F(n) = [\log n]$$

Divide loops

- 1 I = 1000
- $2 \qquad loop(i>=1)$
 - 1 application
 - 2 I=I/2

$$F(n) = [\log n]$$

Nested loop- linear logarithmic

```
1 | = 1
• 2 loop(l \le 10)
          loop(j < = 10)
           1 application code
           j = j *2
    3 | 1 = 1 + 1
  F(n) = [n log n]
```

Dependent Quadratic

```
1 | 1 = 1
 2 loop (I < = 10)
        i = 1
     2 \qquad loop(j <= i)
            1 application code
            j = j + 1
            I = I + 1
no of iterations in the body of the inner loop is
 1 + 2 + 3 + 4 + \dots + 10 = 55 I.e. n(n + 1)/2
```

On an average = (n+1/)2 thus total no of iterations = n (n+1)/2

Quadratic

$$F(n) = n^2$$

Insertion Sort

```
Freq.
1 for j \leftarrow 2 to length[A]
                                                n
2 do key \leftarrow A[j]
                                               n-1
* insert A[j] into sorted array
    * sequence A[1...j-1]
         I \leftarrow j-1
                                               n-1
       while I> 0 and A[I] > key
                                              \sumt_{i}
             Do A[I+1] \leftarrow A[I]
                                       \sum (t_i-1)
5
             I \leftarrow I-1
   A[I+1] \leftarrow key
                                               n-1
T(n) = c_1 n + c_2 (n-1) + c_3(n-1) + c_4 \sum_i t_i +
  c_5 \sum (t_i-1) + c_6 \sum (t_i-1) + c_7 (n-1)
```

```
line pseudocode cost times
1 // At start, the singleton sequence A[1] is trivially sorted c<sub>1</sub> = 0
2 for j = 2 to n c<sub>2</sub> n
3 // Insert A[j] into the sorted sequence A[1..(j to a do line)
4 do key = A[j] c<sub>4</sub> n - 1
```

i = j - 1

6 // let tj be the number of times the following //while-loop is tested for the value j
$$c_6 = 0$$

7 while (i > 0 and A[j] > key)
$$c_7$$
 $\sum_{j=2}^{\infty} t_j$

8 do A[i+1] = A[i]
$$c_8 \sum_{j=2}^{n} (t_{j}-1)_{j=2}^{n}$$

10
$$A[i + 1] = key$$
 c_{10} $n - 1$

Worst/ best/average cases

- Worst case is the longest running time for any input of size n
- O-notation represents upper bound l.e. an upper bound for worst case.
- Best case is the input data set that results in best possible performance. You cannot do better. This is lower bound.
- Average case is the average performance

Big O notation

• Informally, Time to solve a problem of size, n, T(n) is $O(\log n)$

$$\leftarrow T(n) = c \log_2 n$$

- Formally:
 - O(g(n)) is the set of functions, f, such that f(n) < c g(n)

for some constant, c > 0, and n > N

ie for sufficiently large *n*

 Alternatively, we may write and say

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \leq c$$

g is an upper bound for f

- A non negative function T(n) is said to be O(f(n)) provided there exists a constant c>0 and an integer n₀ > 0 such that
- $T(n) \le c$. f(n) for all integer $n > n_0$
- Consider 1/3 n² 5n
- The dominating term is n²
- Therefore it should be of O(n²)
- Given a positive constant c, a positive integer n₀ to be found such that
- $1/3 n^2 5 n \le c n^2$

- Dividing the inequality throughout by n²
- $1/3 5/n \le c$

- Therefore if $n_0 \ge 1$, choosing $c \ge 1/3$ the inequality will never be violated
- Hence the expression is indeed of O(n²)

- Suppose $T(n) = 1/3 n^3 + \frac{1}{2} n^2 + \frac{1}{6} n^2$
- So T(n) is of order(1/3n³) which can be proved as follows
- 1/3 $n^3 + \frac{1}{2}$ $n^2 + \frac{1}{6}$ $n \le c \frac{1}{3}$ n^3
- $1/3 + 1/(2n) + 1/(6n^2) \le c/3$
- Inequality is valid for case c ≥3 and integers n ≥ 1

- O(g)
 - the set of functions that grow no faster than g.
- g(n) describes the worst case behaviour of an algorithm that is O(g)

- O(g)
 - the set of functions that grow no faster than g.
- g(n) describes the worst case behaviour of an algorithm that is O(g)
- Two additional notations
- $\Omega(g)$
 - the set of functions, f, such that

for some constant, c, and n > N

g is a lower bound for f

- O(g)
 - the set of functions that grow no faster than g.
- g(n) describes the worst case behaviour of an algorithm that is O(g)
- Two additional notations
- $\Omega(g)$
 - the set of functions, f, such that

$$f(n) > c g(n)$$

for some constant, c, and n > N

bound f

 $\bullet \ \Theta(g) = O(g) \cap \Omega(g)$

Set of functions growing at the same rate as g

- Constant factors may be ignored
 - $\forall k > 0, kf \text{ is } O(f)$

- Constant factors may be ignored
 - $\forall k > 0, kf \text{ is } O(f)$
- Higher powers grow faster
 - n^r is $O(n^s)$ if $0 \le r \le s$

- Constant factors may be ignored
 - $\forall k > 0, kf \text{ is } O(f)$
- Higher powers grow faster
 - n^r is $O(n^s)$ if $0 \le r \le s$
- ← Fastest growing term dominates a sum
 - If f is O(g), then f + g is O(g) $eg \quad an^4 + bn^3 \quad \text{is} \quad O(n^4)$

- Constant factors may be ignored
 - $\forall k > 0, kf \text{ is } O(f)$
- Higher powers grow faster
 - n^r is $O(n^s)$ if $0 \le r \le s$
- ← Fastest growing term dominates a sum
 - If f is O(g), then f + g is O(g) $eg \quad an^4 + bn^3 \quad \text{is} \quad O(n^4)$
- ←Polynomial's growth rate is determined by leading term
 - If f is a polynomial of degree d, then f is $O(n^d)$

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1$ and $k \ge 0$ eg n^{20} is $O(1.05^n)$

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1$ and $k \ge 0$ eg n^{20} is $O(1.05^n)$
- Logarithms grow more slowly than powers
 - $\log_b n$ is $O(n^k) \forall b > 1$ and k > 0eg $\log_2 n$ is $O(n^{0.5})$

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1$ and $k \ge 0$ eg n^{20} is $O(1.05^n)$
 - Logarithms grow more slowly than powers
 - $\log_b n$ is $O(n^k) \forall b > 1$ and k > 0eg $\log_2 n$ is $O(n^{0.5})$ Important!

- All logarithms grow at the same rate
 - $\log_b n$ is $O(\log_d n) \ \forall \ b, \ d > 1$

- All logarithms grow at the same rate
 - $\log_b n$ is $O(\log_d n) \forall b, d > 1$
- Sum of first $n r^{th}$ powers grows as the $(r+1)^{th}$ power

•
$$\sum_{k=1}^{n} k^r$$
 is $\Theta(n^{r+1})$

$$eg \quad \sum_{k=1}^{n} i = \frac{n(n+1)}{2} \quad \text{is } \Theta(n^2)$$

Polynomial and Intractable Algorithms

- Polynomial Time complexity
 - An algorithm is said to be polynomial if it is $O(n^d)$ for some integer d
 - Polynomial algorithms are said to be efficient
 - They solve problems in reasonable times!

- Intractable algorithms
 - Algorithms for which there is no known polynomial time algorithm
 - We will come back to this important class later in the course

Analysing an Algorithm

Simple statement sequence

```
s_1; s_2; .... ; s_k
```

- O(1) as long as k is constant
- Simple loops

```
for(i=0;i< n;i++) { s; } where s is O(1)
```

- Time complexity is n O(1) or O(n)
- Nested loops

• Complexity is n O(n) or $O(n^2)$

Analysing an Algorithm

Loop index doesn't vary linearly

```
h = 1;
while ( h <= n ) {
    s;
    h = 2 * h;
}</pre>
```

- h takes values 1, 2, 4, ... until it exceeds n
- There are $1 + \log_2 n$ iterations
- Complexity $O(\log n)$

Analysing an Algorithm

Loop index depends on outer loop index

```
for(j=0;j<n;j++)
for(k=0;k<j;k++){
    s;
}</pre>
```

- Inner loop executed
 - 1, 2, 3,, n times

$$\Sigma i = \frac{n(n+1)}{2}$$

$$i=1 \qquad 2$$

$$\therefore \text{ Complexity } O(n^2)$$

U

Distinguish this case where the iteration count
increases (decreases) by a
constant $\leftarrow O(n^k)$ from the previous one where it changes by a factor $\leftarrow O(\log n)$

Seven categories of algorithm efficiency

efficiency	Big O
Logarithmic	O(log n)
Linear	O(n)
Linear logarithmic	O(n log n)
Quadratic	O(n ²)
Polynomial	O(n ^k)
Exponential	O(c ⁿ)
Factorial	O(n!)

- Q1 Find functions f and g such that
- (i) f is (g)
- (ii) f is not Θ (g)
- (iii) f(n) > g(n) for infinitely many n.

- Let us take $G(n) = \frac{1}{2}$ for all n
- F(n) be a function with values in(0,1) close to 1.
- F(n) = sin(n) or
- F(n) = 1/n if n is perfect square and 1 otherwisw.