Лабораторная работа №7

1) Тема: Функции. Введение в структуры.

```
8.1)
2) Вычислить минимальное значение (одно) из положительных элементов каждого
из двух массивов чисел M[11] и N[11], в которых могут присутствовать
отрицательные числа.
3)
int Small(int num[11])
{
  int a=num[0];
for (int i=0; i<11;i++)
{
  if (num[i] >= 0)
  {
    if(num[i] < a)
    a=num[i];
     }
return a;
}
```

Имя	Смысл	Тип
Small	Функция, вычисляющая минимальный	<pre>int Small(int num[11]</pre>
	положительный элемент массива	
num[11]	Массив, используемый в функции	Массив элементов типа
		int
a	Значение, выдаваемое функцией	Int
i	Индекс массивов	Int
sM	Минимальное число в М	Int

sN	Минимальное число в N	Int
M[11]	Массив элементов М	Массив элементов типа int
N[11]	Массив элементов N	Массив элементов типа
		int

```
5)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int Small(int num[11])
  int a=num[0];
for (int i=0; i<11;i++)
  if \ (num[i] >= 0) \\
  {
     if(num[i] < a)
     a=num[i];
   }
return a;
main()
int a,i,sM,sN;
int M[11];
int N[11];
for (i=0; i<11;i++)
```

```
scanf("%d", &M[i]);
}
for (i=0; i<11;i++)
{
  scanf("%d", &N[i]);
}
sM=Small(M);
printf("Smallest in M is %d\n",sM);
sN=Small(N);
printf("Smallest in N is %d\n",sN);
return 0;
}
6)
0
1
2
3
4
5
6
7
8
9
10
11
12
54
6
23
67
Smallest in M is 0
Smallest in N is 6
Process returned 0 (0x0)
                                 execution time : 27.405 s
Press any key to continue.
8.2)
2) Вычислить
D = P^3 (a[i][j], b[i][j]) - P(i, j),
```

где
$$\mathbf{i}=[0;4],$$
 $\mathbf{j}=[0;5],$ если
$$P\left(k,h\right)=h\frac{1}{\sqrt{k}}-1\,.$$
 3)
$$D=P^3\left(a[i][j],b[i][j]\right)-P(i,j)\,,$$
 где $i=[0;4],$ $j=[0;5],$ если
$$P\left(k,h\right)=h\frac{1}{\sqrt{k}}-1\,.$$

Имя	Смысл	Тип
P	Функция, вычисляющая	double P(int x, int y)
	значение Р	
X	Переменная функции	Int
y	Переменная функции	Int
Z	Результат функции	Int
i	Индекс элемента массива	Int
j	Индекс элемента массива	Int
A	Массив чисел а	Массив чисел типа int
В	Массив чисел b	Массив чисел типа int
S	Значение выражения	Double
A[i][j]	Элемент Массива а	Int
B[i][j]	Элемент Массива b	Int

```
#include <stdio.h>
#include <stdib.h>
#include <math.h>
double P(int x, int y)
{
    double z;
    z=y*(1/pow(x,1/2))-1;
    return(z);
}
main()
{
int i,j;
```

```
int A[5][6];
int B[5][6];
double S;
printf("Enter matrix A \n");
for(i=0;i<5;i++)
{
  for (j=0;j<6;j++)
  {
     scanf("%d",&A[i][j]);
   }
printf("Enter matrix B \n");
for(i=0;i<5;i++)
  for (j=0;j<6;j++)
     scanf("%d",&B[i][j]);
   }
for (i=0;i<5;i++)
{
  for (j=0;j<6;j++)
  {
     S=pow(P(A[i][j],B[i][j]),3)-P(i,j);
     printf("\ \ P[\%d][\%d]=\%f",i,j,S);
   }
}
return 0;
```

```
Enter matrix A

1

2

3

4

5

6

7

8

9

10

9

8

7

6

5

4

3

2

1

2

3

4

5

6

7

8

9

10

9

8

Finter matrix B
```

```
Enter matrix B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2
27
28
29
30

P[0][0]=1.000000
```

```
P[0][0]=1.000000
P[0][1]=1.000000
P[0][2]=7.000000
P[0][3]=25.000000
P[0][4]=61.000000
P[0][5]=121.000000
P[1][0]=217.000000
P[1][1]=343.000000
P[1][2]=511.000000
P[1][3]=727.000000
P[1][4]=997.000000
P[1][5]=1327.000000
P[2][0]=1729.000000
P[2][1]=2197.000000
P[2][2]=2743.000000
P[2][3]=3373.000000
P[2][4]=4093.000000
P[2][5]=4909.000000
P[3][0]=5833.000000
P[3][1]=6859.000000
P[3][2]=7999.000000
P[3][3]=9259.000000
P[3][4]=10645.000000
P[3][5]=12163.000000
P[4][0]=13825.000000
P[4][1]=1.000000
P[4][2]=17575.000000
P[4][3]=19681.000000
P[4][4]=21949.000000
P[4][5]=24385.000000
Process returned 0 (0x0)
                           execution time : 60.850 s
Press any key to continue.
```

2) Вычислить

$$R=f(n\cdot m,k)+f^2(n\cdot k,n)-f^3(m,n)\,,$$
 при $k=3.6,\,m=2.2,\,n=5$ если
$$f(a,b)=\sin^2(\log_{10}(a\cdot b))+\frac{1}{\sqrt{a^2+b^2}}\,.$$

$$R=f(n\cdot m,k)+f^2(n\cdot k,n)-f^3(m,n)\,,$$
 при $k=3.6,\,m=2.2,\,n=5$ если
$$f(a,b)=\sin^2(\log_{10}(a\cdot b))+\frac{1}{\sqrt{a^2+b^2}}\,.$$

Имя	Смысл	Тип
f	Функция, рассчитывающая f	double f(double x, double
		y)
X	Переменная функции	double
y	Переменная функции	double
Z	Значение функции	double
z 1	Переменная функции	double
z2	Переменная функции	double
z 3	Переменная функции	double
z4	Переменная функции	double
z5	Переменная функции	double
k	Константы	double
m	Константы	double
n	Константы	double
1	Промежуточная переменная	double
p	Промежуточная переменная	double
g1	Промежуточная переменная	double
g2	Промежуточная переменная	double
g3	Промежуточная переменная	double
S	Значение выражения	double

```
#include <stdio.h>
#include <stdio.h>
#include <math.h>

double f(double x, double y)

{
    double z,z1,z2,z3,z4,z5;
    z1=logf(x*y);
    z2=sinf(z1);
    z3=pow(z2,2);
    z4=x*x+y*y;
    z5=sqrtf(z4);
    z=z3+(1/z5);
    return(z);
}
```

```
main()
double k,m,n,l,p,g1,g2,g3;
double S;
S=0;
printf("Enter k, m and n \n");
scanf("%f",&k);
scanf("%f",&m);
scanf("%f",&n);
printf("Well, here we go again \n");
l=n*m;
p=n*k;
g1=f(1,k);
g2=f(p,n);
g3=f(m,n);
S=g1+pow(g2,2)-pow(g3,3);
printf("\n P=\% f",S);
return 0;
}
6)
Enter k, m and n
2.2
Well, here we go again
 P=-1.#IND00
Process returned 0 (0x0)
                              execution time : 8.357 s
 Press any key to continue.
```

8.4)

2) Определить среднее значение для элементов, находящихся ниже побочной диагонали матрицы S[5][5].

```
for (i=0;i<5;i++)
{
    for(j=0;j<5;j++)
    {
        if (i>=j)
        {
            a+=S[i][j];
           b+=1;
        }
    }
}
L=a/b;
4)
```

Имя	Смысл	Тип
i	Индекс Элемента массива	Int
j	Индекс Элемента массива	Int
a	Промежуточная переменная	Int
b	Промежуточная переменная	Int
L	Среднее значение	Double
S	Матрица	Массив элементов типа int
S[i][j]	Элемент матрицы	Int

```
5)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
main()
{
  int i,j,a,b;
  double L;
  int S[5][5];
  a=0;
  b=0;
```

```
printf("Enter matrix S \ ");
for (i=0;i<5;i++)
{
  for (j=0;j<5;j++)
  {
     scanf("\%d\n",\&S[i][j]);
   }
}
printf("Well, here we go again \n");
for (i=0;i<5;i++)
{
  for(j=0;j<5;j++)
     if (i>=j)
     {
       a+=S[i][j];
       b+=1;
     }
L=a/b;
printf("%f",L);
return 0;
}
```

```
Enter matrix S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0

Well, here we go again

15.000000

Process returned 0 (0x0) execution time : 23.944 s
```

2) Даны две квадратные матрицы A и B размером $N \times N$ каждая. Напечатать ту из них, которая имеет минимальный «след» (т.е. сумму элементов главной диагонали). Математически это обозначается Tr(A) (англ. - trace) или Sp(A) (нем. - spur). При решении создать функцию для нахождения следа матрицы и функцию печати матрицы.

```
3)
int Tr(int x, int y, int z)
{
   if (x==y)
   {
     return z;
   }
   else{
```

```
return 0;
}
}
```

Имя	Смысл	Тип
Tr	Функция, заменяющая элемент массива	int Tr(int x, int y, int z)
X	Переменная функции	int
y	Переменная функции	int
Z	Значение, возвращённое функцией	int
**S	Матрица 1	Массив элементов типа
		int
**F	Матрица 2	Массив элементов типа
		int
i	Индекс элемента массива	int
j	Индекс элемента массива	int
a	Промежуточная переменная	int
b	Промежуточная переменная	int
N	Размер матрицы	int
TS	След матрицы S	int
TF	След матрицы F	int
S[i][j]	Элемент матрицы 1	int
F[i][j]	Элемент матрицы 2	int

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int Tr(int x, int y, int z)

{
    if (x==y)
    {
       return z;
    }
    else{
    return 0;
    }
}
```

```
}
main()
int **S=NULL;
int **F=NULL;
int i,j,a,b,N,TS,TF;
a=0;
b=0;
TS=0;
TF=0;
scanf("%d",&N);
S=(int**) malloc(N*sizeof(int*));
for (i=0;i<N;i++)
  S[i]=(int*)malloc(N*sizeof(int));
}
F=(int**) malloc(N*sizeof(int*));
for (i=0;i<N;i++)
{
  F[i]=(int*)malloc(N*sizeof(int));
}
printf("Enter matrix S\n");
for (i=0;i<N;i++)
  for (j=0;j< N;j++)
    scanf("%d",&S[i][j]);
   }
printf("Enter matrix F\n");
```

```
for (i=0;i<N;i++)
  for (j=0;j< N;j++)
  {
     scanf("%d",&F[i][j]);
   }
}
printf("Well, here we go again \n");
for (i=0;i<N;i++)
{
  for (j=0;j< N;j++)
     a=Tr(i,j,S[i][j]);
     TS+=a;
   }
for (i=0;i<N;i++)
  for (j=0;j< N;j++)
  {
     b=Tr(i,j,F[i][j]);
     TF+=b;
   }
if (TF<TS)
 for (i=0;i<N;i++)
  for (j=0;j< N;j++)
  {
```

```
printf("%d",F[i][j]);
  }
}
}
else
  for (i=0;i<N;i++)
{
  for (j=0;j< N;j++)
    printf("%d",S[i][j]);
  }
}
}
return 0;
}
6)
2
Enter matrix S
Enter matrix F
Well, here we go again
Process returned 0 (0x0) execution time : 8.130 s
Press any key to continue.
```