

Single Phase Converters

- The basic rectifier principles are understood from the operation of single phase circuits.
- The emphasis will be on physical understanding not on the detailed analysis.
- First consider a simple half wave rectifier circuit with resistive load.

Half-Wave Rectifier

Resistive Load

- The load voltage is nearly same as the source voltage during positive half cycle.
- ➤ The current is also sinusoidal during positive half cycle.
- During negative half cycle, the diode is reverse biased the load current is zero, source current is zero and the load voltage is also zero.

Half wave Rectifier

Inductive Load

- For inductive load, the current will keep on flowing even if the source voltage is negative.
- This is due to the stored energy in the inductor.
- When the source voltage reverses its polarity, the inductor becomes a source and the polarityy of this source is so that it will keep the current flowing in the same direction.
- When the stored energy is release the diode current will reduced to zero and the diode is reverse biased.
- During a part of the negative cycle, the load voltage will follow the source voltage.

Half wave Rectifier

Inductive Load with Freewheeling Diode

- The addition of diode D₂ permits the load current to be continuous and prevents V_L from going negative.
- When D₁ is off, D₂ allows the energy in the circuit to maintain continuity by providing a path through which the inductor current can free wheel.
- Diode D₂ is known as free-wheel diode, by-pass, fly-back, catch diode or commutation diode.

Half wave Rectifier

Inductive Load with Freewheeling Diode

- The addition of diode D₂ permits the load current to be continuous and prevents V₁ from going negative.
- When D₁ is off, D₂ allows the energy in the circuit to maintain continuity by providing a path through which the inductor current can free wheel.
- Diode D₂ is known as free-wheel diode, by-pass, fly-back, catch diode or commutation diode.

9

Half wave Rectifier

Highly Inductive Load with Freewheeling Diode

- If we assume that the inductor is very large approaching infinity, the load current will become constant without any fluctuations.
- ➤ The Green line shows v_s, Black is the load voltage, blue is the load current and yellow is the source current.
- ➤ It can be observed that the source current is unidirectional step waveform.

1-Φ Bridge Rectifier

- > AC source current contain no DC component.
- ➤ For same AC source voltage, the full wave rectifier produces an average output voltage twice that of the half-wave circuit with free-wheeling diode.
- ➤ The half-wave rectifier with free wheeling diode serves as the basic building block for the bridge circuit and in this context the circuit is sometimes called a half-bridge.

1-Φ Bridge Rectifier

- ➤ The source currents *i_{s1}* and *i_{s2}* contain DC components, however, the total source current for the full-bridge circuit does not contain any DC components.
- ➤ The reason is that the source current in the bridge is sum of the two source currents, which have DC components of equal magnitude but of opposite polarity.
- \triangleright As the load is highly inductive, the load current i_L is constant.

1-Φ Bridge Rectifier

- > During positive half cycle, i_L is supplied by D1 and D4, therefore, $i_s = i_L$.
- ➤ During negative half cycle, i_L is supplied by D2 and D3, therefore, $i_s = -i_L$.
- Therefore the source current will have a square wave shape with zero DC component.

15

Analysis of 1-Φ Converter

Power Transfer From Mains

Consider that a Single Phase Bridge rectifier is connected to the mains supply an it draws a non-sinusoidal current from the mains.

The average or mean output Voltage is

$$V_{mean} = \frac{1}{\pi} \int_{0}^{\pi} V_{s} \sin \omega t d\omega t$$

(1)

$$V_{mean} = \frac{2V_s}{\pi}$$

(2)

The average load current is

$$I_L = \frac{V_{mean}}{R} = \frac{2V_s}{\pi R}$$

(3)

