第七章 非线性控制系统分析

7.1 导论

7.1.1 线性系统与非线性系统

7.1.2 为什么要研究非线性 7.1.3 非线性分类

7.1.4 非线性系统的特有现象 7.1.5 分析工具

7.2 描述函数法

7.2.1 定义 7.2.2 Fourier 级数

7.2.3 描述函数计算 7.2.4 典型描述函数

7.2.5 非线性系统的描述函数分析 7.2.6 小结

7.3 相平面法

7.3.1 导论 7.3.2 相平面的性质

7.3.3 相平面图的绘制 7.3.4 奇点与极限环

7.4 相平面分析

7.4.1 线性系统的分析

7.4.2 非线性系统的分析

7.1 导论

- 7.1.1 线性系统与非线性系统
- 1. 线性系统的主要特点
- 叠加原理

$$c_{1}(t) = f[r_{1}(t)] \Rightarrow c_{1}(t) + c_{2}(t) = f[r_{1}(t) + r_{2}(t)] \\ c_{2}(t) = f[r_{2}(t)] \Rightarrow ac_{1}(t) = f[ar_{1}(t)]$$

- 可用典型的输入获得系统的传递函数
- 分析与设计的数学工具丰富:
 e.g. ODE, Laplace transformation, etc.
- 2. 非线性系统
- 叠加原理不再适用
- 没有统一的方法

7.1.2 为什么要研究非线性

- (1) 实际系统基本都是非线性系统
- 线性系统仅仅是对现实非线性系统某种程度上的近似
- 对于某些系统, 非线性是不能忽略的
- (2) 非线性控制可能取得特殊的效果

7.1.3 非线性分类

- ◆ 固有非线性:
 系统或部件持有,在系统中不可避免
- ◆ 人为非线性: 为改善性能而故意引入
- 1. 连续非线性
- 非线性微分方程

• 系数是系统变量的函数

e.g
$$a_i = y^2$$
 $a_i = x^3$

• 非线性弹簧

$$y = k_1 x + k_2 x^3 \qquad (k_1 > 0)$$

*
$$y = (k_1 + k_2 x^2)x$$

x 具有连续的非线性系数

$$k_2 > 0$$
 (硬弹簧)

 $k_2 < 0$ (软弹簧)

2. 不连续非线性

(1) 饱和 Saturation

(磁放大, 电放大, 伺服电机的功率限制)

♦ 特点:

- 输入大时不能产生足够的输出
- 调整时间 ↑, 动态误差 ↑
- 振荡通常不会太强

(2) 死区 (继电放大器, 执行器) Dead Zone

- ♦ 特点:
- 输入信号小时没有输出
- 导致稳态误差
- 振荡通常削弱

(3) 继电器 Relay

M

◆ 理想继电器

◆ 带死区的继电器

$$\overrightarrow{x} \quad y = \begin{cases}
-M & x \le -a \\
0 & -a < x < a \\
M & x \ge a
\end{cases}$$

- ◆ 特点:
- 快速切换
- 如果使用恰当,可实现快速平滑的调节
- 如果使用不当, 会产生振荡

(4) 滞环 Hysteresis

$$y = \begin{cases} -M & x < a \\ M & x \ge a \end{cases} \text{ for } \dot{x} \ge 0$$

$$y = \begin{cases} M & x > -a \\ -M & x \le -a \end{cases} \text{ for } \dot{x} < 0$$

- ◆ 特点:
- 导致系统响应迟钝
- 导致振荡

(5) 间隙 Backlash

$$y = \begin{cases} k(x+a) & \dot{x} < 0 \\ k(x-a) & \dot{x} \ge 0 \end{cases}$$

- ◆ 特点:
- 操作延迟
- 会引起振荡
- (6) 组合非线性

譬如:摩擦

7.1.4 非线性系统的特有现象

1. 频率-幅值相关性

$$m\ddot{x} + f\dot{x} = -k_1x - k_2x^3$$
 $k_1 > 0$

(1) $k_2 = 0$, 线性弹簧:

● 频率固定的衰减振荡

$$m\ddot{x} + f\dot{x} = -k_1 x - k_2 x^3 \qquad k_1 > 0$$

(2) $k_2 > 0$, 硬弹簧:

● 衰减振荡,频率随幅值减小而减小

(2) $k_2 < 0$, 软弹簧:

● 衰减振荡,频率随幅值减小而增大

2. 跳跃谐振 Jump Resonance

$$m\ddot{x} + f\dot{x} + k_1x + k_2x^3 = p$$
$$k_1 > 0$$

• 施加外力: $p = P \cos \omega t$

(1)
$$k_2 = 0$$

(2)
$$k_2 > 0$$

(3) $k_2 < 0$

3. 自持振荡 Self-sustained Oscillation

- ♦ Van der pol 方程 $m\ddot{x} f(1-x^2)\dot{x} + kx = 0$ (f > 0)

$\Diamond x$ 大

- 阻尼项为正
- 系统消耗能量
- 运动衰减

$\Diamond x /$

- 阻尼项为负
- 系统释放能量
- 运动增强

- ◆ 自持振荡(极限环 Limit Cycle)
- 即使去除外力后,仍存在固定频率和振幅的自持振荡
- 稳定与不稳定极限环
- 同一系统中可能存在多个极限环

4. 分谐波振荡 Subharmonic Oscillations

$$x \longrightarrow NL \longrightarrow y \longrightarrow \omega/k$$

5. 稳定性依赖于初始条件

例 7.1.1 考察如下非线性系统状态的稳定性

$$\dot{x} = -x(1-x)$$

Solution:

- 两个平衡状态: x = 0, x = 1
- 当 $x \neq 0$ 且 $x \neq 1$,有 $\frac{\mathrm{d}x}{x(1-x)} = -\mathrm{d}t$
- 上式积分得

$$\frac{x}{1-x} = Ce^{-t}$$
 $x(t) = \frac{Ce^{-t}}{1 + Ce^{-t}}$

• 若
$$x(0) = x_0 \neq 1$$
 , 则 $C = x_0 / (1 - x_0)$

从而
$$x(t) = \frac{x_0 e^{-t}}{1 - x_0 + x_0 e^{-t}}$$

* $x_0 > 1$:

$$x(t) \rightarrow \infty \text{ as } t \rightarrow \ln \frac{x_0}{x_0 - 1}$$

*
$$x_0 < 1$$
: $x(t) \rightarrow 0$ as $t \rightarrow \infty$

• 结论:

- * x = 0 是稳定的平衡状态
- * x = 1 是不稳定的平衡状态

$$x(t) = \frac{Ce^{-t}}{1 + Ce^{-t}}$$

6. 分叉 Bifurcation

例 7.1.2 无阻尼 Duffing 方程

$$\ddot{x} + ax + x^3 = 0$$

Solution:

- 平衡点的性质可能随a的变化而变化
- ●平衡点的数量也可能随a的变化而变化

$$\ddot{x} + ax + x^3 = 0$$

 $x + x^3 = 0$ x = 0

• a = 1 > 0

$$\ddot{x} + ax + x^3 = 0$$
 $x + x^3 = 0$ $x = 0$

•
$$a = 1 > 0$$

$$x_{\rm e} = 0$$

2020/8/25

TAC (1), Chap.7 NL Systems

$$\ddot{x} + ax + x^3 = 0$$

$$\begin{vmatrix} x^3 - ax + x^3 = 0 \\ \pm 1 \end{vmatrix}$$

•
$$a = -1 < 0$$

•
$$a = -1 < 0$$

$$\ddot{x} + ax + x^3 = 0$$
 $x^3 = x$ $x = \begin{cases} 0 \\ \pm 1 \end{cases}$ $x_e = \pm 1$

2020/8/25

TAC (1), Chap.7 NL Systems

7. 混沌 Chaos

例 7.1.3 考虑如下微分方程

$$\ddot{x} + 0.1\dot{x} + x^5 = 6\sin t$$

● 对于确定性精确模型,通常认为初始条件微小改变会导致输出细微的变化

(实线)

$$x(0) = 2$$

$$\dot{x}(0) = 3$$

(虚线)

$$x(0) = 2.01$$

$$\dot{x}(0) = 3.01$$

- 系统输出相对初始条件的变化极其敏感
- 难以预测初始条件微小变化后的系统输出

- 7.1.5 分析工具
- (1) 线性化
- (2) 描述函数
- (3) 相平面分析
- (4) Lyapunov 第二方法
- (5) 计算机仿真

7.2 描述函数法

7.2.1 定义

◆ 系统结构

- ♦ 假设:
- 大多数线性系统属于低通滤波器
- c 主要包含低频成分

• 非线性环节输入输出间的近似关系

$$\frac{X \sin \omega t}{\text{NL}} Y_1 \sin(\omega t + \varphi_1)$$

 Y_1 :输出基波的振幅

 φ_1 :输出基波的相移

- 从而,NL系统近似为线性系统
- ◆ 描述函数

•
$$\Rightarrow$$
 $x = X \sin(\omega t)$ $N = \frac{Y_1}{X} e^{j\varphi_1}$

• 近似描述非线性特性的函数

7.2.2 Fourier 级数

1. 定义

y(t): 周期为 T 的有界可积函数

(一个周期内极大极小点的数量有限)

$$\begin{aligned} & \text{III} \qquad y(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} [A_n \cos(n\omega t) + B_n \sin(n\omega t)] \\ & = \frac{A_0}{2} + \sum_{n=1}^{\infty} Y_n \sin(n\omega t + \varphi_n) \\ & \omega = \frac{2\pi}{T} \qquad A_n = \frac{1}{\pi} \int_0^{2\pi} y(t) \cos(n\omega t) \, \mathrm{d}(\omega t) \qquad Y_n = \sqrt{A_n^2 + B_n^2} \\ & B_n = \frac{1}{\pi} \int_0^{2\pi} y(t) \sin(n\omega t) \, \mathrm{d}(\omega t) \qquad \varphi_n = \arctan \frac{A_n}{B_n} \end{aligned}$$

2. 性质:

(1)
$$y(t)$$
 — 奇函数
($y(t) = -y(-t)$)

(2)
$$y(t)$$
 — 偶函数
($y(t) = y(-t)$)

$$B_n = 0$$

(3)
$$y(t)$$
 — 半波对称函数

$$(y(\omega t) = -y(\omega t + \pi))$$

$$A_{2k} = 0 \qquad B_{2k} = 0$$

7.2.3 描述函数的计算

- 1. 描述函数的类型
- (1) 非线性为单值、奇函数 (无记忆性)
- 输出: 奇函数
- \mathbf{U} $A_n = 0$

$$Y_1(\omega) = B_1 \sin \omega t$$

(2) 多值非线性

• 输出: 半波对称函数

• 则

$$A_0 = A_{2k} = B_{2k} = 0$$

$$Y_1(\omega) = A_1 \cos \omega t + B_1 \sin \omega t$$

(3) 描述函数的一般形式

• 非线性为单值、过于原点对称

$$N = \frac{B_1}{X}$$

● 滞环、间隙等非线性

$$N = \frac{Y_1}{X} e^{j\varphi_1}$$

2. 描述函数的计算

例 7.2.1 计算兼有死区和饱和的非线性的描述函数

Solution:

(i)
$$\Rightarrow x(t) = X \sin \omega t$$

NL - 对称,无记忆性

⇒输出 - 奇函数

仅需计算 B_1

(ii) 两个重要的角:

- $\alpha_{d} = \arcsin \frac{D}{X}$ $\implies \omega t > \alpha_{d}$ y = k(x - D)
- $\alpha_s = \arcsin \frac{S}{X}$ $\implies \omega t > \alpha_s$ y = k(S - D)

(iii) 计算 B₁

• $B_1 = \frac{1}{\pi} \int_0^{2\pi} y(t) \sin \omega t \, d\omega t$ $= \frac{4}{\pi} \int_0^{\pi/2} y(t) \sin \omega t \, d\omega t$

$$= \frac{4}{\pi} \left[\int_{\alpha_{d}}^{\alpha_{s}} k(X \sin \omega t - D) \sin \omega t \, d\omega t + k(S - D) \int_{\alpha_{s}}^{\pi/2} \sin \omega t \, d\omega t \right]$$

= ...

(Omitted)

$$= \frac{2kX}{\pi} \left[\alpha_{s} - \alpha_{d} - \frac{1}{2} (\sin 2\alpha_{s} - \sin 2\alpha_{d}) + \frac{2S}{X} \cos \alpha_{s} - \frac{2D}{X} \cos \alpha_{d} \right]$$

•
$$\sin \alpha_{\rm d} = \frac{D}{X}$$
 \Rightarrow $\sin 2\alpha_{\rm d} = 2\sin \alpha_{\rm d} \cos \alpha_{\rm d} = 2\frac{D}{X}\cos \alpha_{\rm d} = 2\frac{D}{X}\sqrt{1-\left(\frac{D}{X}\right)^2}$ $\sin \alpha_{\rm s} = \frac{s}{X}$ \Rightarrow $\sin 2\alpha_{\rm s} = 2\frac{s}{X}\cos \alpha_{\rm s} = 2\frac{S}{X}\sqrt{1-\left(\frac{S}{X}\right)^2}$ • 于是 $B_1 = \frac{2kX}{\pi} \left[\alpha_{\rm s} - \alpha_{\rm d} + \frac{1}{2}(\sin 2\alpha_{\rm s} - \sin 2\alpha_{\rm d})\right]$ $= \frac{kX}{\pi} \left[2\alpha_{\rm s} - 2\alpha_{\rm d} + \sin 2\alpha_{\rm s} - \sin 2\alpha_{\rm d}\right]$ (iv) $N = \frac{B_1}{X} = \frac{k}{\pi} \left[2\alpha_{\rm s} - 2\alpha_{\rm d} + \sin 2\alpha_{\rm s} - \sin 2\alpha_{\rm d}\right] = f\left(\frac{S}{X}, \frac{D}{X}\right)$

 $(X \geq S)$

(1) 纯死区

•
$$S \to \infty$$
 (or $X < S$), $\alpha_{_{\mathrm{S}}} = \frac{\pi}{2}$

•
$$S \rightarrow \infty$$
 (or $X < S$), $\alpha_s = \frac{\pi}{2}$
• $N = \frac{k}{\pi} [2\alpha_s - 2\alpha_d + \sin 2\alpha_s]$
 $-\sin 2\alpha_d$

$$= \frac{k}{\pi} \left[\pi - 2\alpha_{\rm d} - \sin 2\alpha_{\rm d} \right]$$

$$=k-$$

$$\frac{2k}{\pi} \left[\arcsin \frac{D}{X} + \frac{D}{X} \sqrt{1 - \left(\frac{D}{X}\right)^2} \right]$$

$$(X \ge D)$$

 $\sin 2\alpha_{\rm s} = 0$

(2) 纯饱和

•
$$D = 0$$
, $\alpha_d = 0$ $\sin 2\alpha_d = 0$

•
$$N = \frac{k}{\pi} \left[2\alpha_{s} - 2\alpha_{d} + \sin 2\alpha_{s} - \sin 2\alpha_{d} \right]$$

$$= \frac{k}{\pi} \left[2\alpha_{s} + \sin 2\alpha_{s} \right]$$

$$= \frac{2k}{\pi} \left[\arcsin \frac{S}{X} + \frac{S}{X} \sqrt{1 - \left(\frac{S}{X}\right)^{2}} \right]$$

$$(X \ge S)$$

7.2.4 典型非线性的描述函数

1. 理想继电器 (开关非线性)

•
$$B_1 = \frac{1}{\pi} \int_0^{2\pi} y(t) \sin \omega t \, d\omega t$$

$$= \frac{2}{\pi} \int_0^{\pi} M \sin \omega t \, d\omega t$$

$$= \frac{2M}{\pi} \int_0^{\pi} \sin \omega t \, d\omega t$$

$$= \frac{2M}{\pi} [-\cos \omega t] \Big|_0^{\pi}$$

$$= \frac{4M}{\pi}$$

$$B_1 = \frac{4M}{\pi}$$

$$\bullet N = \frac{4M}{\pi X}$$

$$\bullet - \frac{1}{N} = - \frac{\pi X}{4M}$$

2. 带滞环的继电器

•
$$x(t) = X \sin \omega t$$

$$\bullet \ y = \begin{cases} -M & 0 \le t < t_1, \\ & t_2 < t \le T \\ M & t_1 < t \le t_2 \end{cases}$$

•
$$\omega t_1 = \arcsin \frac{h}{X}$$

 $\omega t_2 = \arcsin \frac{h}{X} + \frac{\omega T}{2}$
 $= \omega \left(t_1 + \frac{T}{2} \right)$

•
$$N = \frac{4M}{\pi X} e^{-j\arcsin\frac{h}{X}}$$
 $(X \ge h)$

$$= -\frac{\pi X}{4M} (\cos \varphi + j \sin \varphi) = -\frac{\pi X}{4M} \left(\sqrt{1 - \left(\frac{h}{X}\right)^2} + j \frac{h}{X} \right)$$

$$(\varphi = \arcsin(h/X))$$

•
$$\operatorname{Re}\left(-\frac{1}{N}\right) = -\frac{\pi\sqrt{X^2 - h^2}}{4M}$$

$$\operatorname{Im}\left(-\frac{1}{N}\right) = -\frac{\pi h}{4M}$$

$$\frac{-\frac{1}{N}}{X \to \infty}$$

$$X = h_1$$

$$\frac{\pi h_1}{4M}$$

$$X \to \infty$$

$$X = h_2$$

3. 带死区和滞环的继电器

• $x(t) = X \sin \omega t$

$$\bullet y = \begin{cases} 0 & 0 \le t < t_1, \\ t_2 \le t < \frac{\pi}{\omega} + t_1, \\ \frac{\pi}{\omega} + t_2 \le t \le \frac{2\pi}{\omega} \\ M & t_1 \le t < t_2 \\ -M & \frac{\pi}{\omega} + t_1 \le t < \frac{\pi}{\omega} + t_2 \end{cases}$$

•
$$N = \sqrt{\left(\frac{a_1}{X}\right)^2 + \left(\frac{b_1}{X}\right)^2} e^{\operatorname{jarctan}\frac{a_1}{b_1}}$$

 $(X \ge \Delta + h)$

$$b_1 = \frac{2M}{\pi X} \left[\sqrt{1 - \left(\frac{\Delta - h}{X}\right)^2} + \sqrt{1 - \left(\frac{\Delta + h}{X}\right)^2} \right]$$

or

$$N = \frac{2M}{\pi X} \left(e^{j\theta_2} + e^{-j\theta_1} \right)$$

$$(X \ge \Delta + h)$$

$$\theta_1 = \arcsin \frac{\Delta - h}{X}$$

$$\theta_2 = \arcsin \frac{\Delta + h}{X}$$

$$\bullet \quad -\frac{1}{N} \qquad (X \ge \Delta + h)$$

$$(h = 0.6, M = 1)$$

4. 间隙

• $x(t) = X \sin \omega t$

•
$$x(t) = X \sin \omega t$$

$$\begin{cases} x - h & 0 \le t < \frac{\pi}{2\omega} \\ X - h & \frac{\pi}{2\omega} \le t < t_1 \end{cases}$$
• $y = \begin{cases} x + h & t_1 \le t < \frac{3\pi}{2\omega} \\ h - X & \frac{3\pi}{2\omega} \le t < t_1 + \frac{\pi}{\omega} \end{cases}$

$$\begin{cases} x - h & t_1 + \frac{\pi}{\omega} \le t \le \frac{2\pi}{\omega} \end{cases}$$

•
$$N = \frac{1}{\pi} \left\{ \sqrt{\frac{4h}{X} - \left(\frac{2h}{X}\right)^2} \left(1 - \frac{2h}{X}\right) + \pi - \arccos\left(1 - \frac{2h}{X}\right) \right\}$$

$$+ j \left[\left(\frac{2h}{X}\right)^2 - \frac{4h}{X} \right] \right\}$$

$$(X \ge h)$$

$$|N|$$

$$0 \qquad \frac{h}{Y} \qquad 1.0$$

6. 饱和

非线性环节的串联

$$X \longrightarrow N_1(X) \longrightarrow N_2(Y) \longrightarrow Z$$

• 通常
$$\frac{Z_1}{X} \neq N_2(Y)N_1(X)$$

$$K = K_1 K_2$$

$$\Delta = \Delta_1 + \frac{\Delta_2}{K_1}$$

非线性环节的并联

$$c(x) = y(x) + z(x)$$
$$C_1 = Y_1 + Z_1$$

于是
$$N = \frac{C_1}{X} = \frac{Y_1}{X} + \frac{Z_1}{X} = N_1 + N_2$$

7.2.5 基于描述函数的非线性分析

1. 描述函数法的基础

- 多数对象是低通滤波器
- 回路中主要是低频成分
- 等价框图:

$$1+G(s) = \frac{D(s)+N(s)}{D(s)}$$

(1) Nyquist 准则 (revision)

- $\bullet \ z p_0 = N$
 - z RHP闭环极点的数量
 - p_0 不稳定开环极点的数量
 - $N \longrightarrow G(j\omega)$ 顺时针如围绕 (-1,j0) 点的圈数

• 闭环系统稳定的条件:

 $N = -p_0$: 顺时针绕圈

 $N = p_0$: 逆时针绕圈

(2) 非线性系统的等价闭环频率响应函数

$$\frac{C(j\omega)}{R(j\omega)} = \frac{N(X)G_{p}(j\omega)}{1 + N(X)G_{p}(j\omega)}$$

• 特征方程: $1+N(X)G_p(j\omega)=0$

(3) 稳定性条件

• 假设 $G_p(j\omega)$ 为最小相位系统, i.e. $p_0 = 0$

◆ 通过 N(X)G_p(jω) 判断稳定性

- NG_p(jω) 包围 (-1, j 0) ⇒ 不稳定
- NG_p(jω) 不包围 (-1, j 0) ⇒ 稳定
- NG_p(jω) 穿越 (-1, j 0)) ⇒ 临界稳定
 - * 存在自持振荡
 - !! 然而, X 未知的情况下无法绘制 $N(X)G_p(j\omega)$

$$N(X)G_{p}(j\omega) = -1$$

◆通过 $G_p(j\omega)$ 和 -1/N(X) 判断稳定性

Critically stable

• $G_p(j\omega)$ 穿越 $-1/N \Rightarrow$ 临界稳定 自持振荡

Stable

- $G_p(j\omega)$ 不包围 $-1/N \Rightarrow$ 稳定
- $G_p(j\omega)$ 包围 $-1/N \Rightarrow$ 不稳定

Unstable

3. 自持振荡

- (1) 自持振荡的确定
- $G_p(j\omega)$ 的轨迹与 -1/N 的轨迹相交

• 相交点决定了频率和振幅

 $G_{p}(j\omega)$

(2) 稳定与不稳定的工作点

- a: 不稳定工作点
- * 非线性环节输入的幅值 X = a
- * $G_p(s)$ 包围 -1/N(a)
- * $N(a)G_p(s)$ 包围 -1 + j 0
- b: 稳定工作点
- c: X = c临界稳定工作点

(3) 稳定与不稳定振荡

● A & B: 自持振荡

● C, D, E, F:幅值为 Xs 的振荡

- $C: G_p(j\omega)$ 包围 -1/N
 - -- 不稳定条件: X 增大
 - -- 点 C 将移向点 B
- $D: G_p(j\omega)$ 不包围 -1/N
 - -- 稳定条件: X 减小
 - -- 系统变得更稳定
- $F: G_p(j\omega)$ 包围 -1/N
 - --不稳定条件: X 增大
 - --点 F 将移向点 B
- $E: G_p(j\omega)$ 不包围 -1/N
 - --稳定条件: X 减小
 - --点 E 将移向点 B
- ◆ 结论:
- A − 不稳定的自持振荡
- B 稳定的自持振荡

- (4) 自持振荡的计算
- (i) 图形法
- (ii) 分析法
- 闭环特征方程

$$1 + N(X)G_{p}(j\omega) = 0$$

● 当 N(X) 是实函数时

$$\operatorname{Im} G_{p}(j\omega) = 0 \implies \omega$$

$$\operatorname{Re} G_{p}(j\omega) = -\frac{1}{N(X)}$$

$$\Rightarrow X$$

● 当 N(X) 是复函数时

$$\begin{cases} \operatorname{Im} N(X)G_{p}(j\omega) = 0 \\ \operatorname{Re} N(X)G_{p}(j\omega) = -1 \end{cases}$$
$$\Rightarrow X, \omega$$

例 7.2.2

给定对象如下

$$G_{p}(j\omega) = \frac{K}{j\omega(1+j\omega)(1+0.5j\omega)}$$

死区非线性如下

$$N(X) = k - \frac{2k}{\pi} \left[\arcsin \frac{\Delta}{X} + \frac{\Delta}{X} \sqrt{1 - \left(\frac{\Delta}{X}\right)^2} \right]$$

试确定并分析自持振荡

Solution:

- 系统是否稳定?
- * K≥3 时系统不稳定
- * 存在自持振荡
- 自持振荡是否稳定?
- * 自持振荡不稳定

$$G_{p}(j\omega) = \frac{K}{j\omega(1+j\omega)(1+0.5j\omega)}$$

$$\arg G_{p}(j\omega)$$

$$= -90^{\circ} - \arctan \omega - \arctan(0.5\omega)$$

$$= -180^{\circ}$$

$$0.5\omega^{2} = 1 \qquad \omega = \sqrt{2}$$

$$\left| G_{p}(j\sqrt{2}) \right| = 1$$

$$K = \left| j\sqrt{2}(1+j\sqrt{2})(1+0.5j\sqrt{2}) \right|$$

$$= 3$$

例 7.2.3 给定

$$\ddot{x} + \dot{x} = 1$$
 for $\dot{x} - x > 0$
 $\ddot{x} + \dot{x} = -1$ for $\dot{x} - x < 0$

试利用描述函数法确定并分析自持振荡

Solution:

(i) 绘制闭环系统框图

- 非线性是啥?
- 非线性环节的输入和输出是啥?
- 对象的输入和输出是啥?

$$u = \ddot{x} + \dot{x}$$

(ii) 计算对象的传递函数

$$G_{\rm p}(s) = \frac{C(s)}{U(s)} = \frac{(1-s)X(s)}{(s^2+s)X(s)} = \frac{1-s}{s(s+1)}$$

(iii) 继电器的描述函数

$$N(E) = \frac{4M}{\pi E} = \frac{4}{\pi E}$$

(iii) 稳定性分析

- 闭环系统不稳定
- 自持振荡稳定

(iv) 频率和振幅的计算

$$G_{\mathbf{p}}(s) = \frac{1-s}{s(s+1)}$$

•
$$G_{p}(j\omega) = \frac{1-j\omega}{j\omega(j\omega+1)} = -\frac{2\omega+j(1-\omega^{2})}{\omega(1+\omega^{2})}$$

$$N(E) = \frac{4}{\pi E}$$

•
$$\operatorname{Im}\left[G_{p}(j\omega)\right] = \frac{(1-\omega^{2})}{\omega(1+\omega^{2})} = 0 \implies \omega = 1 \operatorname{rad/s}$$

• Re
$$\left[G_{p}(j1)\right]$$

= $-\frac{2+j(1-1)}{1(1+1)} = -1$

•
$$\operatorname{Re}\left[G_{p}(j1)\right] = -\frac{1}{N(E)}$$

$$1 = \frac{\pi E}{4} \quad \Rightarrow \quad E = \frac{4}{\pi} = 1.2733$$

$$\dot{x} - x = e = E \sin \omega t$$

(v) X 的振幅

求
$$x$$
解的微分方程,得 $X = \frac{2\sqrt{2}}{\pi} = 0.900$

x 的时间响应

dx/dt 的时间响应

$$x(0) = 0, \dot{x}(0) = 0$$

2.6 小结

- (1) 描述函数法
- 稳定性分析
- 无法暂态分析

(2) 描述函数法是近似法

- $G_p(j\omega)$ 必须是低通滤波器
- $G_p(j\omega)$ 与 -1/N 正交,结果分析越准确
- (3) 输入为正弦信号时分析越准确
- 其他输入信号,需重新定义描述函数
- (4) 描述函数法分析的难度和准确度主要依赖于 非线性环节的复杂性

7.3 相平面

- 7.3.1 导论
- 1. 描述函数法的局限性
- 近似法
- 适用于简单非线性
- 不能获取时间响应
- 不适合非周期输入
- 2. 相平面

$$\ddot{x} + f(x, \dot{x}) = 0$$
 (*)

- x 和 x
 - 一 相变量
- 相平面

$$\ddot{x} + f(x, \dot{x}) = 0$$
 (*)

3. 相平面图

•
$$\Rightarrow x_1 = x, x_2 = \dot{x}$$

• 式 (*) 变为:
$$\frac{dx_1}{dt} = x_2$$
 $\frac{dx_2}{dt} = -f(x, \dot{x}) = -f(x_1, x_2)$

• 对于二阶时不变系统

$$\frac{dx_1}{dt} = f_1(x_1, x_2)$$
 $\frac{dx_2}{dt} = f_2(x_1, x_2)$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t} = f_2(x_1, x_2)$$

• 相平面上的一条轨迹

$$\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)} \text{ with } (x_{10}, x_{20})$$

$$\Rightarrow x_2 = \varphi(x_1)$$

with
$$(x_{10}, x_{20})$$

$\dot{x}(x_2)$ $x_2 = \varphi(x_1)$

◆ 相平面图

一组
$$(x_{10}, x_{20}) \Rightarrow$$
 一簇轨迹

♦ 普通点 Ordinary point

• **在** (x_1, x_2)

$$\frac{dx_2}{dx_1} = a : 点 (x_1, x_2)$$
 沿轨迹的运动方向

- *a* 是确定值⇒ 在该点的运动方向唯一
- 始于普通点的轨迹在普通点附近唯一确定

♦ 奇点 Singular point

若在
$$(x_1, x_2)$$
 $f_1(x_1, x_2) = f_2(x_1, x_2) = 0$ 则 $\frac{dx_2}{dx_1} = \frac{0}{0}$

- 轨迹的斜率(即运动方向)是一个不确定值
- 离开该点或到达该点的轨迹无数条
- 奇点是平衡点 $(\dot{x}_1 = 0, \dot{x}_2 = 0)$
- 孤立(Isolated) 奇点
 - * 在其邻域中不存在其他奇点

例 7.3.1 确定如下系统的奇点

$\ddot{x} + x = 0$

Solution:

• 令 $x_1 = x$, $x_2 = \dot{x}$,则 $\frac{\mathrm{d}x_1}{\mathrm{d}t} = \dot{x} = x_2 \qquad \frac{\mathrm{d}x_2}{\mathrm{d}t} = \ddot{x} = -x = -x_1$ $\Rightarrow (x_1 = 0, x_2 = 0)$ 是平衡点

•
$$\frac{dx_2}{dx_1} = -\frac{x_1}{x_2}$$
 $\Rightarrow (x_1 = 0, x_2 = 0)$ 是奇点,而且是唯一奇点

NB: 系统运动是无阻尼振荡, 其相轨迹为 $\dot{x}^2 + x^2 = R^2$

例 7.3.2 确定如下系统的奇点

$$\ddot{x} + \dot{x} = 0$$

Solution:

$$\bullet \frac{\mathrm{d}x_2}{\mathrm{d}x_1} = -\frac{x_2}{x_2}$$

⇒ 所有满足 $x_2 = 0$ 的点都是奇点 i.e. x_1 轴上的所有点均为奇点

NB: 由质点-阻尼器系统,运动方程如下

$$x(t) = [x(0) + \dot{x}(0)] - \dot{x}(0)e^{-t}$$

7.3.2 相平面的性质

1. 上半平面与下半平面的运动方向

• 上半平面

$$\dot{x} > 0$$

$$\Rightarrow x \uparrow$$

• 下半平面

$$\dot{x} < 0$$

$$\Rightarrow x \downarrow$$

例 7.3.3 确定如下系统的奇点并绘制相平面图

$$\ddot{x} + \dot{x} + x = 0$$

Solution:

• \diamondsuit $x_1 = x, x_2 = \dot{x}$, \emptyset

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x} \qquad \frac{\mathrm{d}x_2}{\mathrm{d}t} = \frac{\mathrm{d}\dot{x}}{\mathrm{d}t} = \ddot{x} = -(\dot{x} + x) \qquad \frac{\mathrm{d}x_2}{\mathrm{d}x_1} = \frac{\ddot{x}}{\dot{x}} = -\frac{\dot{x} + x}{\dot{x}}$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}x_1} = \frac{\ddot{x}}{\dot{x}} = -\frac{\dot{x} + x}{\dot{x}}$$

(i) 当 $\dot{x} = 0$ 且 $x \neq 0$ $\frac{\mathrm{d}x_2}{\mathrm{d}x_1} = -\frac{x}{0} \to \infty$

• 所有穿越 x 轴的相轨迹均与 x 轴垂直

$$\frac{\mathrm{d}x_2}{\mathrm{d}x_1} = \frac{\ddot{x}}{\dot{x}} = -\frac{\dot{x} + x}{\dot{x}}$$

(ii) 当
$$\dot{x} = 0$$
 且 $x = 0$
$$\frac{\mathrm{d}x_2}{\mathrm{d}x_1} = -\frac{0}{0}$$

• 原点是奇点

(iii)
$$\ddot{x} + \dot{x} + x = 0$$
 的相平面图

NB: 对于所有的二阶系统 $\ddot{x} + f(x, \dot{x}) = 0$

(ii) 当相轨迹穿越 x 轴时一定与 x 轴垂直

2. 相平面图的对称性

$$\ddot{x} = \frac{\mathrm{d}\dot{x}}{\mathrm{d}t} = \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} \cdot \dot{x}$$

$$\frac{\mathrm{d}\dot{x}}{\mathrm{d}x} = \frac{\ddot{x}}{\dot{x}}$$

• $\ddot{x} + f(x, \dot{x}) = 0$ 改写如下:

$$\dot{x} \cdot \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} = -f(x, \dot{x})$$

$$\frac{\mathrm{d}\dot{x}}{\mathrm{d}x} = -\frac{f(x,\dot{x})}{\dot{x}}$$

(1) 关于 x 轴对称的情况

• $f(x,\dot{x})$ 是 \dot{x} 的偶函数

$$A: \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} = -\frac{f(x, \dot{x})}{\dot{x}} = a$$
$$B: \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} = -\frac{f(x, -\dot{x})}{-\dot{x}} = -a$$

(2) 关于
$$\dot{x}$$
 轴对称的情况

$$\frac{\mathrm{d}\dot{x}}{\mathrm{d}x} = -\frac{f(x,\dot{x})}{\dot{x}}$$

• $f(x,\dot{x})$ 是 x 的奇函数

$$A: \frac{d\dot{x}}{dx} = -\frac{f(x, \dot{x})}{\dot{x}} = a$$

$$B: \frac{d\dot{x}}{dx} = -\frac{f(-x, \dot{x})}{\dot{x}} = -a$$

(3)关于原点对称的情况

$$A: \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} = -\frac{f(x, \dot{x})}{\dot{x}} = a$$

$$B: \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} = -\frac{f(-x, -\dot{x})}{-\dot{x}} = a$$

$$\ddot{x} = \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}\dot{x}$$

7.3.3 相平面图的绘制

1. 解析法

例 7.3.4 绘制如下系统的相平面图

$$\ddot{x} + \omega^2 x = 0$$

Solution:

• 利用
$$\ddot{x} = \dot{x} \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}$$
 , 得
$$\dot{x} \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} + \omega^2 x = 0$$

$$\dot{x}\mathrm{d}\dot{x} + \omega^2 x\mathrm{d}x = 0$$

● 等幅振荡

例 7.3.5 绘制如下系统的相平面图

$$\ddot{x} = -M$$
 $x(0) = x_0$ $\dot{x}(0) = 0$

Solution:

• 由
$$\ddot{x} = -M$$
 , 得
$$\dot{x} = -Mt + C_1$$

$$x = -\frac{1}{2}Mt^2 + C_1t + C_2$$

• 根据初始条件 \Rightarrow $C_1 = 0, C_2 = x_0$ $\dot{x} = -Mt$ $x = -\frac{1}{2}Mt^2 + x_0$

i.e.
$$x = -\frac{1}{2M}\dot{x}^2 + x_0$$

or
$$\dot{x}^2 = 2M(x_0 - x) = -2M(x - x_0)$$

2. 图解法

(1) 等倾线法 isocline method

◆ 等倾线

$$\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)} = \alpha$$

$$\downarrow f_2(x_1, x_2) = \alpha f_1(x_1, x_2)$$

$$x_2 = \varphi(x_1, \alpha)$$

• 对于 $x_2 = \varphi(x_1, \alpha)$ 上的点,所有轨迹经过时的斜率均为 α

i.e. 运动方向相同

• $x_2 = \varphi(x_1, \alpha)$ 称为等倾线

♦ 方向场

一组不同的 α 值 \Rightarrow 一组不同的等倾线

• 所有这些等倾线给出了轨迹切线的方向场

例 7.3.6 利用等倾线法绘制如下系统的相平面图

Solution:

$$\ddot{x} + 2\zeta\omega\dot{x} + \omega^2 x = 0$$

系统方程改写如下

$$\dot{x}\frac{\mathrm{d}\dot{x}}{\mathrm{d}x} + 2\zeta\omega\dot{x} + \omega^2 x = 0$$

(i) 绘制等倾线

假设
$$\zeta = 0.5$$
 且 $\omega = 1$
$$(\ddot{x} + \dot{x} + x = 0)$$
 $\Rightarrow \dot{x} = \frac{-1}{1+\alpha}x$

$$\dot{x} = \frac{-1}{1+\alpha}x$$

$$\bullet \quad \alpha = 0 \implies \dot{x} = -x$$

$$\bullet \quad \alpha = \infty \quad \Rightarrow \quad \dot{x} = 0$$

•
$$\alpha = -1$$
 $\dot{x}/x = -1/0$
 $\Rightarrow x = -(1+\alpha)\dot{x} = 0$

•
$$\alpha = -2 \implies \dot{x} = x$$

$$\bullet \quad \alpha = -4 \quad \Rightarrow \quad \dot{x} = \frac{1}{3}x$$

(ii) 等倾线上绘制短线段表示方向场

(iii) 从普通点开始绘制相轨迹

(2) delta 法

- 相轨迹被视为中心在 x 轴上的一组相连的圆弧
- 运动方程写成如下形式

$$\ddot{x} = -f(\dot{x}, x)$$
 $f(\dot{x}, x)$ 连续单值函数

• 运动方程改写如下

$$\ddot{x} + \omega^2 x = -f(\dot{x}, x) + \omega^2 x$$
令 $\delta = \frac{-f(\dot{x}, x) + \omega^2 x}{\omega^2}$
则,在 (\dot{x}_1, x_1) 附近 $\delta_1 = \delta(\dot{x}_1, x_1) \approx \text{const}$

• (\dot{x}_1, x_1) 附近的运动方程

$$\ddot{x} + \omega^2 x = \omega^2 \delta_1$$

$$\ddot{x} + \omega^2 (x - \delta_1) = 0$$

• 其解为

$$\dot{x}^2 + \omega^2 (x - \delta_1)^2 = A^2$$

• 在归一化的相平面上

$$\left(\frac{\dot{x}}{\omega}\right)^2 + (x - \delta_1)^2 = B^2$$

• P点附近的圆弧是以 $(\delta_1,0)$ 为中心的圆的一部分,半径为

$$|PQ| = \sqrt{(\dot{x}_1/\omega)^2 + (x_1 - \delta_1)^2}$$

$$|PQ| = \sqrt{(\dot{x}_1/\omega)^2 + (x_1 - \delta_1)^2}$$

例 7.3.7 采用 δ 法绘制如下系统的相平面图

$$\ddot{x} + 2\zeta\omega\dot{x} + \omega^2 x = 0$$

Solution:

(i) 改写方程
$$\ddot{x} + \omega^2 x = -2\zeta\omega\dot{x}$$
 令 $\delta = \frac{-2\zeta\omega\dot{x}}{\omega^2} = -2\zeta\frac{\dot{x}}{\omega}$ i.e. $\left(\frac{\dot{x}}{\omega}\right)^2 + (x - \delta)^2 = R^2$

(ii) 对于点 (x_1, \dot{x}_1)

$$R_{1} = \sqrt{\left(\frac{\dot{x}_{1}}{\omega}\right)^{2} + \left(x_{1} + \frac{2\zeta\dot{x}_{1}}{\omega}\right)^{2}}$$

$$\delta_{1} = -\frac{2\zeta\dot{x}_{1}}{\omega}$$

$$R_1 = \sqrt{\left(\frac{\dot{x}_1}{\omega}\right)^2 + \left(x_1 + 2\zeta \frac{\dot{x}_1}{\omega}\right)^2}$$
$$= \sqrt{y^2 + \left(x_1 + 2\zeta \delta_1\right)^2}$$

$$\delta_1 = -2\zeta \frac{\dot{x}_1}{\omega}$$
$$= -2\zeta y$$

3. 计算机仿真 (MATLAB)

- ♦ Van de Pol 方程 $m\ddot{x} f(1-x^2)\dot{x} + kx = 0$ 其中 m = 1, f = 1, k = 1
- $\Rightarrow x_1 = x, x_2 = \dot{x}$, $\iiint \dot{x}_1 = x_2 \dot{x}_2 = (1 x_1^2)x_2 x_1$
- ♦ 模型文件: model.m

```
function [sys,x0] = model(t,x)

sys=[x(2);(1-x(1)*x(1))*x(2)-x(1)];
```

♦ 仿真程序: simu.m

```
[t,x]=ode45('model',[0,20],[3;4])
plot(x(:,1),x(:,2),'-b');
```

其中: ode45 - 仿真程序的名称 'model'- 模型函数的名称 [0,20]- 仿真的时间间隔 [3,4] - 初始条件

◊仿真结果

7.3.4 奇点和极限环

1. 奇点

• 满足如下条件的点

$$\frac{dx_1}{dt} = f_1(x_1, x_2) = 0 \qquad \frac{dx_2}{dt} = f_2(x_1, x_2) = 0$$

•
$$\frac{\mathrm{d}x_2}{\mathrm{d}x_1} = \frac{0}{0}$$
 \Rightarrow 运动不能由 $\frac{\mathrm{d}x_2}{\mathrm{d}x_1}$ 确定

2. 奇点的性质

- ◆ 运动方程线性化(假设奇点在原点)
- 在原点附近Taylor 级数展开

$$\frac{dx_1}{dt} = a_1 x_1 + b_1 x_2 \qquad \frac{dx_2}{dt} = a_2 x_1 + b_2 x_2$$

• $\Leftrightarrow x = x_1, \mathbb{N}$

$$\dot{x} = \dot{x}_1 = a_1 x_1 + b_1 x_2 = a_1 x + b_1 x_2
\ddot{x} = \ddot{x}_1 = a_1 \dot{x} + b_1 \dot{x}_2 = a_1 \dot{x} + b_1 (a_2 x_1 + b_2 x_2)
= a_1 \dot{x} + b_1 a_2 x + b_1 b_2 x_2$$

曲于
$$\dot{x} = a_1 x + b_1 x_2$$
, $b_1 x_2 = \dot{x} - a_1 x$
 $\ddot{x} = a_1 \dot{x} + b_1 a_2 x + b_2 (\dot{x} - a_1 x)$
 $= (a_1 + b_2) \dot{x} + (b_1 a_2 - b_2 a_1) x$

$$\ddot{x} = (a_1 + b_2)\dot{x} + (b_1a_2 - b_2a_1)x$$

• 于是 $\ddot{x} + a\dot{x} + bx = 0$ 其中 $a = -(a_1 + b_2)$, $b = a_1b_2 - a_2b_1$

• 特征方程 $\lambda^2 + a \lambda + b = 0$ 的根如下

$$\lambda_{1,2} = \frac{-a \pm \sqrt{a^2 - 4b}}{2}$$

- * 假设 $\lambda_1 \neq 0$ 且 $\lambda_2 \neq 0$
- 线性化后的模型可用于讨论原非线性系统的性质

$$\frac{dx_1}{dt} = a_1 x_1 + b_1 x_2 \qquad \frac{dx_2}{dt} = a_2 x_1 + b_2 x_2$$

NB: 可采用状态空间法直接计算特征根

♦ 奇点的分类

(2) 不稳定的焦点

(1) 稳定的焦点 Stable focus

(3) 稳定的节点 Stable node

- 斜率为 λ_1 , λ_2 的直线是相轨迹
- 斜率为 λ_1 , λ_2 的直线是分隔线
- 若 $|\lambda_1| < |\lambda_2|$,所有相轨迹趋于斜率为 λ_1 的分隔线

(4) 不稳定的节点

• 若 $|\lambda_1| < |\lambda_2|$, Ce^{λ_t} 将随时间 t 的增加而主导

(5) 中心点 Centre

(6) 鞍点 Saddle point

3. 极限环 Limit Cycles

● 定义: 相平面上的一条封闭、孤立的曲线

例 7.3.8 绘制如下系统的相平面图

Solution:

$$\ddot{x} + 0.5\dot{x} + 2x + x^2 = 0$$

(i) 标准形式

• $x_1 = x, x_2 = \dot{x}$,

$$\dot{x}_1 = \dot{x} = x_2 = f_1(x_1, x_2)$$

$$\dot{x}_2 = \ddot{x} = -0.5\dot{x} - 2x - x^2 = -2x_1 - 0.5x_2 - x_1^2 = f_2(x_1, x_2)$$

(ii) 确定奇点

$$\dot{x}_1 = x_2 = 0$$
 $\dot{x}_2 = -2x_1 - 0.5x_2 - x_1^2 = 0$

• 奇点为

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \begin{cases} x_1 = -2 \\ x_2 = 0 \end{cases}$$
 等价于
$$\begin{cases} x = 0 \\ \dot{x} = 0 \end{cases} \begin{cases} x = -2 \\ \dot{x} = 0 \end{cases}$$

- ◆ 点 (0,0)
- 在 (0,0) 点线性化

$$\frac{\partial f_1}{\partial x_1} \Big|_{\substack{x_1 = 0 \\ x_2 = 0}} = 0 \qquad \frac{\partial f_1}{\partial x_2} \Big|_{\substack{x_1 = 0 \\ x_2 = 0}} = 1 \qquad a_1 = 0, b_1 = 0$$

$$\frac{\partial f_2}{\partial x_1} \Big|_{\substack{x_1 = 0 \\ x_2 = 0}} = (-2 - 2x_1) \Big|_{\substack{x_1 = 0 \\ x_2 = 0}} = -2 \qquad \frac{\partial f_2}{\partial x_2} \Big|_{\substack{x_1 = 0 \\ x_2 = 0}} = -0.5$$

• 线性化后的方程

生化后的方程
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -2x_1 - 0.5x_2 \end{cases}$$
 i.e.
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x} \\ \frac{\mathrm{d}\dot{x}}{\mathrm{d}t} = -2x - 0.5\dot{x} \end{cases}$$

 $f_1 = x_2$ $f_2 = -2x_1 - x_1^2 - 0.5x_2$

 $a_2 = -2, b_2 = -0.5$

$$\ddot{x} + 0.5\dot{x} + 2x + x^2 = 0$$

* 由于 $a_1 = 0, b_1 = 1, a_2 = -2, b_2 = -0.5$,则

$$\begin{aligned} -(a_1 + b_2) &= 0.5 \\ a_1 b_2 - b_1 a_2 &= 2 \end{aligned} \Rightarrow \ddot{x} + 0.5 \dot{x} + 2x = 0$$

* 特征方程

$$\lambda^2 + 0.5\lambda + 2 = 0$$

 $\lambda_{1,2} = -0.25 \pm j1.987$

● 结论: (0,0) 是稳定的焦点

$$\ddot{x} + 0.5\dot{x} + 2x + x^2 = 0$$

◆ 点 (-2,0)

* 类似可得

$$\ddot{y} + 0.5\dot{y} - 2y = 0$$
$$\lambda^{2} + 0.5\lambda - 2 = 0$$
$$\lambda_{1.2} = 1.186, -1.686$$

● 结论: (-2,0)是鞍点

(iv) 真实的相平面图

$$\ddot{x} + 0.5\dot{x} + 2x + x^2 = 0$$

$$\ddot{x} = \frac{\mathrm{d}\dot{x}}{\mathrm{d}x}\dot{x} = \alpha\dot{x}$$

NB: 等倾线法绘制如下

• 等倾线如下

$$\frac{-0.5\dot{x} - 2x - x^2}{\dot{x}} = \alpha \qquad \dot{x} = -\frac{(x+1)^2}{\alpha + 0.5} + \frac{1}{\alpha + 0.5}$$

● 经过点 (-2,0) 和点 (0,0)的抛物线

• $\alpha = 0$ 对应的等倾线

7.4 相平面分析

◆ 一些非线性系统由分片(区)线性模型描述

$$\ddot{x} + \dot{x} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

• 如何对线性系统分析?

7.4.1 线性系统分析

例 7.4.1 试确定如下二阶系统的相轨迹

Solution:

● 基本方程:

$$\frac{C(s)}{R(s)} = \frac{K}{Ts^2 + s + K} \implies T\ddot{c} + \dot{c} + Kc = Kr$$

$$\frac{E(s)}{R(s)} = \frac{Ts^2 + s}{Ts^2 + s + K} \implies T\ddot{e} + \dot{e} + Ke = T\ddot{r} + \dot{r}$$

$$T\ddot{c} + \dot{c} + Kc = Kr$$
 $T\ddot{e} + \dot{e} + Ke = T\ddot{r} + \dot{r}$

(i) 阶跃响应

$$r(t) = R \cdot 1(t)$$
 \Rightarrow $\dot{r} = \ddot{r} = 0$

$$T\ddot{c} + \dot{c} + Kc = KR$$

$$T\ddot{e} + \dot{e} + Ke = 0$$

• 对于误差方程

$$\begin{cases} T\ddot{e} + \dot{e} + Ke = 0 \\ e(0) = R, \ \dot{e}(0) = 0 \end{cases}$$

$$x_1 = e, x_2 = \dot{e}$$

令
$$x_1 = e, x_2 = \dot{e}$$

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = \dot{e} & = x_2 \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = \dot{e} = -\frac{\dot{e}}{T} - \frac{K}{T}e = -\frac{x_2}{T} - \frac{K}{T}x_1 \end{cases}$$
* 春占

* 奇点

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$
 i.e.
$$\begin{cases} e = 0 \\ \dot{e} = 0 \end{cases}$$

$$T\ddot{e} + \dot{e} + Ke = 0$$

● (0,0) 的性质

$$T\lambda^2 + \lambda + K = 0$$

若 1-4*KT*< 0 ⇒ 稳定的焦点

若 1-4*KT* ≥ 0 ⇒ 稳定的节点

• 对于输出方程

$$\begin{cases} T\ddot{c} + \dot{c} + Kc = KR \\ c(0) = 0, \ \dot{c}(0) = 0 \end{cases}$$

* 奇点

$$\begin{cases} x_1 = R \\ x_2 = 0 \end{cases}$$
 i.e.
$$\begin{cases} c = R \\ \dot{c} = 0 \end{cases}$$

* (R,0)的性质

若
$$1-4KT<0$$
 若 $1-4KT ≥ 0$ ⇒ 稳定的焦点 ⇒ 稳定的节点

⇒ 稳定的焦点 ⇒ 稳定的节点

$$T\ddot{c} + \dot{c} + Kc = Kr$$
 $T\ddot{e} + \dot{e} + Ke = T\ddot{r} + \dot{r}$

(ii) 斜坡响应

$$r = Vt + R$$
 $\dot{r} = V, \ddot{r} = 0$

$$T\ddot{c} + \dot{c} + Kc = KVt + KR$$

$$T\ddot{e} + \dot{e} + Ke = V$$

● 对于误差方程

$$\begin{cases} T\ddot{e} + \dot{e} + Ke = V \\ e(0) = R, \ \dot{e}(0) = V \end{cases}$$

* 奇点
$$e = \frac{V}{K}, \dot{e} = 0$$

* 奇点的性质

-- 坐标变换: $x = e - \frac{V}{K}$

$$T\ddot{e} + \dot{e} + Ke = V$$
 \Rightarrow $T\ddot{x} + \dot{x} + Kx = 0$

$$x(0) = e(0) - \frac{V}{K} = R - \frac{V}{K}$$
 $\dot{x}(0) = \dot{e}(0) = V$

$$\begin{cases} T\ddot{x} + \dot{x} + Kx = 0\\ x(0) = R - \frac{V}{K}, & \dot{x}(0) = V \end{cases}$$

$$\begin{cases} T\ddot{e} + \dot{e} + Ke = V \\ e(0) = R, \ \dot{e}(0) = V \end{cases}$$

$$e = \frac{V}{K}, \ \dot{e} = 0$$

-- 奇点的性质

若 1-4KT < 0

⇒稳定的焦点

若 1–4*KT* ≥ 0 ⇒ 稳定的节点

例 7.4.2 绘制如下系统的相平面图

Solution:

$$T\ddot{e} + \dot{e} = P$$

Solution

(i) 当
$$P = 0$$
 $T\ddot{e} + \dot{e} = 0$

$$T\dot{e}\frac{\mathrm{d}\dot{e}}{\mathrm{d}e} + \dot{e} = 0$$

$$\frac{\mathrm{d}\dot{e}}{\mathrm{d}\dot{e}} = -\frac{\dot{e}}{\mathrm{Tr}}$$

• 若 $\dot{e} = 0$

连续的奇点 $\dot{e}=0$

• 若 $\dot{e} \neq 0$,则 $\frac{d\dot{e}}{de} = -\frac{1}{T}$

• 相平面图

NB: 没有e!项

(i) 当
$$P \neq 0$$

$$T\ddot{e} + \dot{e} = P$$

$\dot{x}_1 = \dot{e} = x_2$ $\dot{x}_2 = \ddot{e} = \frac{P - x_2}{T}$

• 没有奇点

$$\frac{\mathrm{d}\dot{e}}{\mathrm{d}e} = \frac{P - \dot{e}}{T\dot{e}} = \alpha \qquad \dot{e} = \frac{P}{1 + \alpha T}$$

$$\dot{e} = \frac{P}{1 + \alpha T}$$

$$\ddot{e} = \frac{\mathrm{d}\dot{e}}{\mathrm{d}e}\dot{e} = \alpha\dot{e}$$

⇒ 一组平行线

$$\bullet P > 0$$

*
$$\alpha = 0 \implies \dot{e} = P$$

*
$$\dot{e} = P$$
 是一条相轨迹

* 等倾线法绘制相平面图

$$\dot{e} = \frac{1}{1}$$

$$*\dot{e} = P$$
 是分界线、所有相轨迹的渐近线

◆ 已讨论过的二阶系统

$$\ddot{x} + \dot{x} + x = P$$

$$\ddot{x} + \dot{x} = P \begin{cases} = 0 & \textbf{7.3.2} \\ \neq 0 & \textbf{7.4.2} \end{cases}$$

$$\ddot{x} + x = 0$$

$$\ddot{x} = M$$

$$\dot{x} + x = P$$

7.4.2 非线性系统分析

1. 分片分析

◆ 示例

$$f(\ddot{x}, \dot{x}, x) = u = \begin{cases} M & \text{for } x > 0 \\ -M & \text{for } x < 0 \end{cases}$$

2. 实奇点和虚奇点

◆ 示例

令区域I的运动方程为 $f(\ddot{x},\dot{x},x)=M$

 P_{11} 和 P_{12} 是该运动方程的奇点

例 7.4.3 绘制如下系统的相平面图

Solution:

• 系统方程:

$$\frac{C(s)}{M(s)} = \frac{K}{s(Ts+1)}$$

$$T\ddot{c} + \dot{c} = Km$$

$$e = r - c \qquad c = r - e$$

$$\dot{c} = \dot{r} - \dot{e} \qquad \ddot{c} = \ddot{r} - \ddot{e}$$

$$T\ddot{e} + \dot{e} = T\ddot{r} + \dot{r} - Km$$

$$m = \begin{cases} e & \text{for } |e| > e_0 \\ ke & \text{for } |e| < e_0 \end{cases}$$

- 在 e-ė 平面:
 - 3 区域
 - 2 不同方程

(i) 阶跃响应

$$r(t) = 1(t) \qquad \dot{r} = 0, \, \ddot{r} = 0$$

$$\begin{cases} T\ddot{e} + \dot{e} + Ke = 0 & \text{Areas I and III} \\ T\ddot{e} + \dot{e} + kKe = 0 & \text{Area II} \end{cases}$$

$$e(0) = E_0 = 1, \, \dot{e}(0) = 0$$

- 奇点: $e = 0, \dot{e} = 0$
- * 区域II的实奇点
- * 区域I和III的虚奇点

$$T\ddot{e} + \dot{e} = T\ddot{r} + \dot{r} - Km$$

$$m = \begin{cases} e & \text{for } |e| > e_0 \\ ke & \text{for } |e| < e_0 \end{cases}$$

● 奇点的性质:

$$T\ddot{e} + \dot{e} + Ke = 0$$
 Areas I and III
 $T\ddot{e} + \dot{e} + kKe = 0$ Area II

假设
$$1-4kKT=0$$

由于 $k<1$,则 $1-4KT<0$

* 小幅误差:
$$|e| < e_0$$

$$T\ddot{e} + \dot{e} + kKe = 0$$

$$\Rightarrow (0,0)$$
 稳定的节点

* 大幅误差:
$$|e| > e_0$$

 $T\ddot{e} + \dot{e} + Ke = 0$
 $\Rightarrow (0,0)$ 稳定的焦点

$$\begin{cases} T\ddot{e} + \dot{e} + Ke = 0 & \text{Areas I and III} \\ T\ddot{e} + \dot{e} + kKe = 0 & \text{Area II} \end{cases}$$

- 相轨迹
- * 令 A $(E_0,0)$ 是初始点
- *对A而言,(0,0)是稳定的焦点

$$T\ddot{e} + \dot{e} + Ke = 0$$
 Areas I and III
 $T\ddot{e} + \dot{e} + kKe = 0$ Area II

• 相轨迹

- * $令 A (E_0,0)$ 是初始点
- *对A而言,(0,0)是稳定的焦点
- *对B而言,(0,0)是稳定的节点
- *对C而言,(0,0)是稳定的焦点
- * 对D而言, (0,0)是稳定的节点

$$T\ddot{e} + \dot{e} + Ke = 0$$
$$1 - 4KT < 0$$

- 特点: 加速调节
- * 当回路中信号强度大时
- -- 原点是稳定的焦点, 运动呈现处欠阻尼特性

-- 误差快速下降

$$T\ddot{e} + \dot{e} + Ke = 0$$
$$1 - 4KT < 0$$

- * 当回路中信号强度小时
- -- 原点是稳定的节点, 运动呈现处临界阻尼特性

$$T\ddot{e} + \dot{e} + kKe = 0$$
$$1 - 4kKT = 0$$

$$T\ddot{e} + \dot{e} = T\ddot{r} + \dot{r} - Km$$

$$m = \begin{cases} e & \text{for } |e| > e_0 \\ ke & \text{for } |e| < e_0 \end{cases}$$

(ii) 斜坡响应

$$r(t) = R + Vt$$
 $\dot{r} = V$, $\ddot{r} = 0$

$$\begin{cases} T\ddot{e} + \dot{e} + Ke = V & \text{Areas I and III} \\ T\ddot{e} + \dot{e} + kKe = V & \text{Area II} \\ e(0) = R, \dot{e}(0) = V \end{cases}$$

- 奇点
- * 区域 Ⅱ:

区域 II: * **区域 I, III:**
$$P_{\text{II}}: e = \frac{V}{kK}, \dot{e} = 0 \qquad P_{\text{I}}: e = \frac{V}{K}, \dot{e} = 0$$

$$P_{\rm I}: e = \frac{V}{K}, \dot{e} = 0$$

* $|P_{\rm II}| > |P_{\rm I}|$

- 奇点的性质
- * 假设 1-4kKT = 0

 P_{Π} : 稳定的节点 P_{Γ} : 稳定的焦点

* P_{I} 和 P_{II} 的位置依赖于参数 k, K, V

(A) $V < kKe_0$

● 奇点的性质:

$$P_{\text{II}}$$
: $e = \frac{V}{kK} < e_0$:实奇点

$$P_{\rm I}: e = \frac{V}{K} < ke_0 < e_0$$
 : 虚奇点

$$\ddot{e} + \dot{e} + 4e = 0.04$$

 $\ddot{e} + \dot{e} + 0.25e = 0.04$

• 相轨迹

$$\Rightarrow$$
 $T = 1, K = 4, k = 0.0625, e_0 = 0.2$

$$r(t) = 0.3 + 0.04t$$

则
$$V < kKe_0 = 0.05$$

$$P_{\rm II}: e = \frac{V}{kK} = 0.16$$

$$P_{\rm I}: e = \frac{V}{K} = 0.01$$

- * 对A而言: P- 稳定焦点
- * 对B而言: P₁₁-- 稳定节点
- 特点: e_{ss}=P_{II}

(B) $kKe_0 < V < Ke_0$

● 奇点的性质:

$$P_{\text{II}}: e = \frac{V}{kK} > e_0$$
 :虚奇点

$$P_{\rm I}: e = \frac{V}{K} < e_0$$
 :虚奇点

$$\ddot{e} + \dot{e} + 4e = 0.4$$

 $\ddot{e} + \dot{e} + 0.25e = 0.4$

• 相轨迹

$$\Rightarrow$$
 $T = 1, K = 4, k = 0.0625, e_0 = 0.2$

$$r(t) = 0.4t$$

$$0.05 = kKe_0 < V < Ke_0 = 0.8$$

$$P_{\rm II}: e = \frac{V}{kK} = 1.6$$

$$P_{\rm I}: e = \frac{V}{K} = 0.1$$

* 对A & C而言: P₁₁-- 稳定节点

- * 对B & D而言: P₁ - 稳定焦点
- 特点: e_{ss} = e₀

● 斜坡输入下误差的时间响应 -- 高频振荡

(C)
$$V > Ke_0$$

● 奇点的性质:

$$P_{\text{II}}: e = \frac{V}{kK} > \frac{V}{K} > e_0$$
 : 虚奇点

$$P_{\rm I}: e = \frac{V}{K} > e_0$$
:实奇点

$$\ddot{e} + \dot{e} + 4e = 1.2$$

 $\ddot{e} + \dot{e} + 0.25e = 1.2$

• 相轨迹

*
$$\Rightarrow$$
 $T = 1, K = 4, k = 0.0625, e_0 = 0.2$

$$r(t) = 1.2t$$

则
$$V > Ke_0 = 0.8$$

$$P_{\rm II}: e = \frac{V}{kK} = 4.8$$

$$P_{\rm I}: e = \frac{V}{K} = 0.3$$

* 对A & C而言:

 P_{Π} - 稳定节点

* 对B & D而言:

P₁ -- 稳定焦点

● 特点:

$$e_{ss} \uparrow \Leftarrow e_{ss} = P_{I}$$

 $t_{s} \uparrow$ (长时间振荡)

• 阶跃输入

e A(0,0.4) ●斜坡输入/中V -0.2 O P_I C II III III

● 斜坡输入/小Ⅴ

2020/8/25

TAC(1), Chap.7 NL Systems

例 7.4.4 绘制如下系统的相平面图

$$m = \begin{cases} M_0 & e > e_1 \\ 0 & -e_0 < e \le e_1 \\ -M_0 & e \le -e_0 \end{cases} \quad \text{for } \dot{e} > 0$$

$$m = \begin{cases} M_0 & e > e_0 \\ 0 & -e_1 < e \le e_0 \\ -M_0 & e \le -e_1 \end{cases} \quad \text{for } \dot{e} \le 0$$

$$m = \begin{cases} M_0 & e > e_0 \\ 0 & -e_1 < e \le e_0 \\ -M_0 & e \le -e_1 \end{cases}$$
 for $\dot{e} \le 0$

Solution:

• 系统方程:

$$\frac{C(s)}{M(s)} = \frac{K}{s(Ts+1)}$$

$$T\ddot{c} + \dot{c} = Km$$

$$e = r - c, c = r - e$$

$$\dot{c} = \dot{r} - \dot{e}, \ddot{c} = \ddot{r} - \ddot{e}$$

$$T\ddot{e} + \dot{e} = T\ddot{r} + \dot{r} - Km$$

● 在 e-ė 平面:

3区域,3不同方程

$$T\ddot{e} + \dot{e} = T\ddot{r} + \dot{r} - Km$$

(i) 阶跃响应

$$r(t) = R \cdot 1(t), \ \dot{r} = 0, \ \ddot{r} = 0$$
 $T\ddot{e} + \dot{e} = -Km$ (没有 e)
 $e(0) = R, \ \dot{e}(0) = 0$

$$\begin{cases} T\ddot{e} + \dot{e} = KM_0 & \text{Area I} \\ T\ddot{e} + \dot{e} = 0 & \text{Area II} \\ T\ddot{e} + \dot{e} = -KM_0 & \text{Area III} \end{cases}$$

● 奇点:

* Area II: 连续奇点*e*-轴

* Area I, III: 没有奇点

-- Areas I & Ⅲ 渐近线:

-- Area I: $\dot{e} = KM_0$

-- Area III: $\dot{e} = -KM_0$

轨迹

* 大 e₀ / 小 KM₀

* 小 e₀ / 大 KM₀

e.g.
$$T = 1$$
, $KM_0 > 7$, $e_1 = 2$, $e_0 = 1$, $R = 4$

$T\ddot{e} + \dot{e} = T\ddot{r} + \dot{r} - Km$

(ii) 斜坡响应

$$r(t) = Vt, \dot{r} = V, \ddot{r} = 0$$

$$T\ddot{e} + \dot{e} = V - Km$$

$$e(0) = 0, \dot{e}(0) = V$$

I
$$e_0$$
 III e_0 e_1 $m = -M_0$ $m = M_0$

$$\begin{cases} T\ddot{e} + \dot{e} = V + KM_0 & \text{Area I} \\ T\ddot{e} + \dot{e} = V & \text{Area II} \\ T\ddot{e} + \dot{e} = V - KM_0 & \text{Area III} \end{cases}$$

(A)
$$V > KM_0$$

- 没有奇点
- 相平面图

(B)
$$V = KM_0$$

$T\ddot{e} + \dot{e} = \begin{cases} V + KM_0 \\ V \\ V - KM_0 = 0 \end{cases}$

- * 连续奇点 *e*-轴 Area Ⅲ
- 相平面图

(C)
$$V < KM_0$$

- * 没有奇点
- 相平面图

e.g.
$$T = 1, V = 1, KM_0 > 1.5, e_1 = 2, e_0 = 1, R = 4$$

- 形成极限环的情况
- (i) 不稳定实奇点和稳定虚奇点 (ii) 两个不稳定区域相邻

 $P_{\rm I}$: 不稳定实奇点

P_{II}: 稳定虚奇点

• 极限环的判断和计算

$$x_{1c} = x_{1a}$$
 $x_{2c} = x_{2a}$ ⇒ 极限环

例 7.4.5 利用相平面法分析系统的极限环

$$\ddot{x} + \dot{x} = 1$$

$$\ddot{x} + \dot{x} = 1 \qquad (\dot{x} - x > 0)$$

$$\ddot{x} + \dot{x} = -1$$

$$\ddot{x} + \dot{x} = -1 \qquad (\dot{x} - x < 0)$$

Solution:

(i) 奇点

$$\ddot{x} + \dot{x} = P \qquad (P \neq 0)$$

$$(P \neq 0)$$

• 没有奇点

$$\ddot{x} + \dot{x} = 1$$

(ii) 相平面图

- 区域 ẋ > x
- * 相轨迹的渐近线: $\dot{x}=1$
- * 等倾线:

$$\ddot{x} + \dot{x} = 1$$

$$\downarrow \downarrow$$

$$\dot{x} \frac{\mathrm{d}\dot{x}}{\mathrm{d}x} + \dot{x} = 1$$

则
$$\dot{x}(1+\alpha)=1$$

i.e
$$\dot{x} = \frac{1}{1+\alpha}$$

$$\ddot{x} + \dot{x} = -1$$

- 区域 x̄ < x
- * 相轨迹的渐近线: $\dot{x} = -1$

* 等倾线:

$$\dot{x} = \frac{-1}{1+\alpha}$$

◇相平面图

- 极限环可能存在
- 若存在,则关于原点对称

(iii) 极限环的频率和振幅

• 区域 $\dot{x} > x$

出发点 A:

$$x(0) = -a \qquad \dot{x}(0) = -a$$

终止点 B:

$$\ddot{x} + \dot{x} = 1$$

$$s^{2}X(s) - sx(0) - \dot{x}(0) + sX(s) - x(0) = \frac{1}{s}$$

$$s^{2}X(s) - s(-a) - (-a) + sX(s) - (-a) = \frac{1}{s}$$

$$(s^{2} + s)X(s) + 2a + as = \frac{1}{s}$$

$$(s^2 + s)X(s) + 2a + as = \frac{1}{s}$$

$$X(s) = \frac{1 - 2as - as^{2}}{s^{2}(s+1)}$$

$$= \frac{1}{s^{2}} - \frac{2a+1}{s} + \frac{a+1}{s+1}$$

$$x(t) = t - 2a - 1 + (a+1)e^{-t}$$

$$\dot{x}(t) = 1 - (a+1)e^{-t}$$

确定终止时间 t₁终止点 B:

$$x(t_1) = a$$
 $\dot{x}(t_1) = a$
 $\Rightarrow a = t_1 - 2a - 1 + (a+1)e^{-t_1}$
 $\Rightarrow a = 1 - (a+1)e^{-t_1}$

$$t_1 = 4a$$
 $e^{-4a} = \frac{1-a}{1+a} \implies t_1 = 3.83$
 $a = 0.9575$

$$a = t_1 - 2a - 1 + (a + 1)e^{-t_1}$$

 $a = 1 - (a + 1)e^{-t_1}$

$x(\theta), \dot{x}(\theta)$ -a $x(0), \dot{x}(0)$ -a

● 频率:

$$T = 2t_1 = 7.66 \text{ sec}$$

 $\omega = 0.820 \text{ rad/s}$

● 振幅:

相轨迹与x-轴垂直, $\dot{x}(\theta) = 0$ 时运动幅值最大

$$x(t) = t - 2a - 1 + (a+1)e^{-t} | \dot{x}(t) = 1 - (a+1)e^{-t}$$

$$\dot{x}(t) = 1 - (a+1)e^{-t}$$

$$1 - (a+1)e^{-\theta} = 0$$

$$\psi \quad e^{-\theta} = \frac{1}{a+1} = \frac{1}{1.9575}$$

$$\theta = 0.6717$$

$$x(\theta) = \theta - 2a - 1 + (a+1)e^{-\theta}$$

$$= -1.2433$$

X = 1.2433

(iv) 对比

	DF	PP	Simu(Appr)
T	6.28	7.66	7.65
X	0.90	1.243	1.241

§7.5 小结

	DF法	PP分析
方法	等价线性化	图形法
对象复杂性	√	1 st & 2 nd order system
非线性复杂性	×	Piecewise linearity
时间响应	×	√
稳定性分析	√	√
极限环分析	√	√
准确性	×	√

End of Chapter 7

