NOIP 提高组模拟赛

by wzy

题目名称	物理课	数学课	地理课
英文名称	physics	math	geography
源文件	physics.cpp/pas/c	math.cpp/pas/c	geography.cpp/pas/c
输入文件	physics.in	math.in	geography.in
输出文件	physics.out	math.out	geography.out
时间限制	1s	2s	2s
内存限制	128MB	512MB	512MB
题目类型	传统	传统	传统
比较方式	全文比较(忽略行末空格和文末空行)		
C++编译命令	g++ -o -lm		
C 编译命令	gcc -o -lm		
pascal 编译命令	fpc		

物理课(physics)

题目描述

wzy 正在上物理课!他发现了一个完全不会的题目:caoxia 在一个奇妙的星球上(重力加速度为g)踢了一只猫,猫飞起的路线与地面夹角为 θ (角度制),初速度为v,猫非常地开心,所以每次落地后会自己反弹,但反弹后速度会乘以一个常数 $d(0 \le d < 1)$ 。请问猫最后的落点离起点多远?(猫飞行时方向不会改变,飞行过程中不计空气阻力与摩擦力,所有数值单位均为国际标准单位制)

输入格式

从 physics.in 读入数据。

第一行一个数T,代表有T组数据。接下来T行每行 4 个浮点数,分别为 θ ,v,d,g,保留到小数点后两位。

输出格式

输出答案到 physics.out。

共T行,每行一个浮点数表示猫离起点的距离,四舍五入到5位小数。

输入输出样例

样例输入#1	样例输出#1
3	13.33333
45 10 0.5 10	0.92330
3.44 2.35 0.77 1.76	0.11493
2.33 2.33 0.78 9.8	
样例输入#2(对应 subtask1)	样例输出#2
见 example\physics\physics2.in	example\physics\physics2.out
样例输入#3(对应 subtask2)	样例输出#3
见 example\physics\physics3.in	example\physics\physics3.out

样例解释

对于第一个样例,如图所示,最终猫会停留在($\frac{40}{3}$,0),距离原点距离约为 13.33333.

物理大佬请无视下面这句话……

提示:对于垂直速度为v的物体将在飞行 $^{\sharp}$ 的时间后到达最高点,速度分解使用平行四边形定则。

数据范围及约定

subtask1 : 50pts, d = 0.

subtask2 : 50pts, $0 \le v \le 1,000$, $0 < g \le 1,000$, $0 \le d < 1$, $0 < \theta < 90$, $T \le 50,000$.

(泉心出题人没有构造坑人数据,不会卡精度的, 只要你相信我)

P.S.这道题可能违背一些物理常识,但是有(chu)一(ti)些(ren)原(tai)因(cai),就凑合着当水题做吧。

数学课(math)

题目描述

wzy 又来上数学课了······ 虽然他很菜,但是数学还是懂一丢丢的。老师出了一道题,给定一个包含n个元素的集合 $P=\{1,2,3,\ldots,n\}$,求有多少个集合 $A\subseteq P$,满足任意 $x\in A$ 有 $2x\notin A$,且对于A在P中的补集B,也满足任意 $x\in B$ 有 $2x\notin B$ 。

wzy 花费了 1E100 天终于算出来了这个答案,但是可恶的 caoxia 居然又加了一个条件!他要求 A的大小恰好为m,这样又有多少个A呢?

这回 wzy 真的不会了,他找到了你,希望能够得到帮助。由于答案太大,你只需要输出答案 mod 10000019即可。

输入格式

从 math.in 读入数据。

第一行两个数,为n,q。接下来q行每行一个数m,询问大小为m的A一共有多少个。

输出格式

输出答案到 math.out。

共q行, 每行一个数, 表示方案数mod 10000019.

输入输出样例

样例输入#1	样例输出#1
3 3	0
0	2
1	2
2	
样例输入#2	样例输出#2
100 4	2085406
45	6657572
50	7844331
60	0
70	
样例输入#3(对应 subtask1)	样例输出#3
见 example\math\math3.in	见 example\math\math3.out
样例输入#4(对应 subtask2)	样例输出#4

见 example\math\math4.in	见 example\math\math4.out

样例解释

对于第一个样例, $P = \{1,2,3\}$,A可以选 $\{1\}$, $\{2\}$, $\{1,3\}$, $\{2,3\}$,大小为 1 的两种,大小为 2 的也有两种。对于第二个样例,我想到了一个绝妙的解释,可惜这里写不下。

数据范围及约定

subtask1 : 20pts, $n, m, q \le 20$.

subtask2 : 30pts, $n, m, q \le 5,000$.

subtask3: 30pts, $n, m \le 10,000,000, q \le 100,000$.

subtask4 : 20pts, $n, m \le 10^{18}, q \le 100,000$.

地理课(geography)

题目描述

地理课上,老师给出了一个巨大的地图,由于世界日新月异,会有一些道路在某一时刻被删除, 也会有一些道路在某一时刻被修建。这里的道路均为双向的。

老师认为,有一些城市被分在了一个连通块中可以相互到达,而有一些城市不能够相互到达。 而他想知道,每个时刻所有连通块大小的乘积是多少?

wzy 看到这个地图的时候就蒙了,还好那只上天的喵及时帮助了他。现在他把这个一点的地图 拿过来给你,想试试看你能不能求出来。由于答案可能很大,输出乘积mod 10⁹ + 7即可。

输入格式

从 geography.in 读入数据。

第一行两个数n, m, 表示有n个点, m个时刻。接下来m行每行三个数, 要么是1 u v, 要么是2 u v, 分别表示添加一条无向边和删除一条无向边。

输出格式

输出答案到 geography.out。

共m行,每行一个数表示连通块大小乘积mod 1,000,000,007。

输入输出样例

样例输入#1	样例输出#1
5 6	2
113	3
123	3
112	6
1 4 5	5
134	6
2 3 4	
样例输入#2(对应 subtask1)	样例输出#2
见 example\geography\geography2.in	见 example\geography\geography2.out
样例输入#3(对应 subtask2)	样例输出#3
见 example\geography\geography3.in	见 example\geography\geography3.out

样例解释

上面是每个时刻操作后的图。乘积分别为:

 $2 \times 1 \times 1 \times 1 = 2$, $3 \times 1 \times 1 = 3$, $3 \times 1 \times 1 = 3$, $3 \times 2 = 6$, 5, $3 \times 2 = 6$.

数据范围及约定

subtask1:30pts, $n \le 1,000, m \le 2,000$. subtask2:20pts, 满足没有删除操作。

subtask3:50pts, $n,m \le 100,000$.保证没有重边自环,不会删除不存在的边。