1. Das 2. Newtonsche Gesetz: Ausrechnen und umformen. Die Formel für die Kraft, die nötig ist um eine Masse m mit einer Beschleunigung a zu beschleunigen ist

$$F = m \cdot a$$

- (a) Was für eine Kraft braucht man um eine Masse von $m=2\,\mathrm{kg}$ mit $a=3\,\frac{\mathrm{m}}{\mathrm{s}}$ zu beschleunigen? **Achtung Einheiten!**
- (b) Lösen Sie nach m auf. Berechnen Sie die Masse eines Körpers (Dings), der von einer Kraft $F=6\,\mathrm{N}$ auf eine Beschleunigung von $a=3\,\frac{\mathrm{m}}{\mathrm{s}^2}$ gebracht wird. **Achtung Einheiten!**
- (c) Lösen Sie nach a auf. Berechnen Sie die Beschleunigung, die eine Masse $m=2\,\mathrm{kg}$ durch eine Kraft $F=6\,\mathrm{N}$ erfährt. Achtung Einheiten!
- (d) Vervollständigen Sie die Tabelle. Achten Sie auf das Vorzeichen. Achten Sie auf die Einheiten. Geben Sie den vollständigen Rechenweg an.

	Beschleunigung	Masse	Kraft
	$a=3rac{m}{s^2}$	$m=2\mathrm{kg}$	F = 6 N
a	$a=3rac{m}{s^2}$	$m=1200\mathrm{kg}$	
b		$m=1,2\mathrm{kg}$	$F = -44 \mathrm{N}$
С	$a=9.81\tfrac{m}{s^2}$	$m=3\mathrm{kg}$	
d	$a = -18 \frac{m}{s^2}$		F = -3 N