Uma proposta de Range min-Max tree k-ária para consultas sobre árvores sucintas

Defesa de TCC

Danyelle da Silva Oliveira Angelo

Orientador: Prof. Me. Daniel Saad Nogueira Nunes

Banca examinadora: Prof. Me. João Victor de Araujo Oliveira e Prof. Dr. Felipe Alves da Louza

Instituto Federal de Brasília, Câmpus Taguatinga

14 de setembro de 2021

Sumário

- Introdução
- 2 Fundamentação teórica
- Proposta
- Resultados
- Trabalhos futuros
- 6 Considerações finais

Sumário

Introdução

Dados nunca dormem

Figura: Infográfico: Data Never Sleeps 8.0

Introdução

Aumento na produção de dados

Figura: Número de usuários conectados à internet

Fonte: Cisco [2020]

Aumento na produção de dados

Figura: Esfera global de dados por ano

Fonte: Reinsel et al. [2018]

Introdução

Segmentação da indústria e Gargalo de Von-Neumann

Figura: Lacuna de desempenho entre processador e memória

Fonte: Patterson et al. [1997]

Introdução

Figura: Hierarquia de memória

Fonte: Dive into Systems [2021]

Solução

- Atuar nos níveis com menor latência;
- Estrutura de dados e compactação de dados:
 - Armazenamento de dados e operações;
 - Compressão de dados clássica vs Estrutura de dados sucintas.
- Árvores: uma das estrutura de dados de maior sucesso.

Sumário

2 Fundamentação teórica

Estrutura de dados sucintas

Estrutura de dados sucintas são uma forma de compressão de dados, e de acordo com Navarro [2016], estas propiciam:

- Representação dos objetos obedecendo o limite da entropia da informação;
- Operações eficientes em questões de tempo e espaço;
- Manipulação de dados em dispositivos com memória limitada;

Vetores de bits - access

Sequência de n elementos sobre o alfabeto $\Sigma = \{0, 1\}$, no qual podem ser realizadas as seguintes operações [Navarro, 2016]:

• access(BV, i): retorna o i-ésimo bit do vetor BV, com $0 \le i < n$;

Exemplo: access(BV, 10)

BV = 101001011011100 1 2 3 4 5 6 7 8 9 10 11 12 13

Vetores de bits - access

Exemplo: access(BV, 10) = 1

Vetores de bits - rank

Sequência de n elementos sobre o alfabeto $\Sigma = \{0, 1\}$, no qual podem ser realizadas as seguintes operações [Navarro, 2016]:

• $rank_v(BV, i)$: seja $v \in \{0, 1\}$, e $0 \le i < n$, retorna o número de ocorrências de v no intervalo BV[0,i].

Exemplo: $rank_0(BV, 8)$

Vetores de bits - rank

Exemplo: $rank_0(BV, 8) = 4$

Vetores de bits - select

Sequência de n elementos sobre o alfabeto $\Sigma = \{0, 1\}$, no qual podem ser realizadas as seguintes operações [Navarro, 2016]:

• $select_v(BV, i)$: dado $v \in \{0, 1\}$ e $i \ge 1$, retorna a posição do i-ésimo bit $v \in BV[0, n-1]$.

Exemplo: $select_1(BV, 8)$

BV = 10100101101110 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Vetores de bits - select

Exemplo: $select_1(BV, 8) = 12$

- Parênteses balanceados (BP);
- Depth-First Unary Degree Sequence (DFUDS);
- Level-order Unary Degree Sequence (LOUDS);

Representação de árvores sucintas via Parênteses Balanceados

0123456789012345678901234567890123456789012345678901

Representação de árvores sucintas via parênteses balanceados

- Sequência de 2n parênteses balanceados;
- Complexidade de espaço 2n bits;
- Através de estruturas auxiliares suporta:
 - findclose(BP,i);
 - findopen(BP,i);
 - excess(BP,i);

Exemplo: excess(BP,6) = -1

BV = 10100101101110 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Representação de árvores sucintas via DFUDS

Representação de árvores sucintas via LOUDS

- Árvore binária completa, baseada em intervalos de tamanho b;
- Cada nó cobre valores de excessos dentro de um intervalo;
- Construção bottom-up;
- Complexidade de espaço igual à $n + O(\frac{n}{h} \log n)$ bits;
- Operações realizadas em tempo $O(\log n)$.

range min-Max tree binária

Figura: rmM-tree binária com blocos de tamanho 4

rmM-tree: Registros

Valores de excesso Dado um nó v que cobre um intervalo BP[s,e], então:

- R[v].e: excesso total no intervalo R[v].e = excess(e) - excess(s-1).
- R[v].M: excesso máximo no intervalo $R[v].M = \max\{excess(i) - excess(s-1)|s \le i \le e\}.$
- R[v].m: excesso mínimo no intervalo $R[v].m = \min\{excess(i) - excess(s-1)|s \le i \le e\}.$
- ullet R[v].n: número de vezes que o excesso mínimo ocorre no intervalo $R[v].n = |\{BP[i] = R[v].m|s < i < e\}|.$

Nós internos e raíz

R[7].e = R[15].e + R[16].e.R[7].M=max(R[15].M, R[15].e+ R[16].M).R[7].m=min(R[15].m, R[15].e+ R[16].m).R[7].n = R[15].n.

Operações		
fwdsearch(i,d)	bwdsearch(i,d)	minExcess(i,j)
maxExcess(i,j)	minSelectExcess(i,j,t)	minCount(i,j)
enclose(i)	rank_v(i)	select_v(i)
findClose(i)	findOpen(i)	rmq(i,j)
inspect(i)	preRank(i)	postRank(i)
preSelect(i)	postSelect(i)	isLeaf(i)
isAncestor(i,j)	depth(i)	parent(i)

Operações			
firstChild(i)	lastChild(i)	nextSibling(i)	
prevSibling(i)	subtreeSize(i)	levelAncestor(i,d)	
level-next(i)	levelPrev(i)	levelLmost(d)	
levelRmost(d)	lca(i,j)	deepestNode(i)	
degree(i)	child(i,q)	childRank(i)	
leafRank(i)	leafSelect(i)	ImostLeaf(i)	

rmM-tree: operações

Problema 1: Dado um nó codificado em i=1, encontrar o nó codificado em j > i, mais à esquerda de i. Solução:

$$nextSibling(i) = findClose(i) + 1$$

$$findClose(i) = fwdSearch(i, -1)$$

rmM-tree: operações

$$fwdSearch(i,d) = min\{j > i | excess(j) = excess(i) + d\}$$

Problema 1: Computar nextSibling(1).

Figura: Simulação de fwdSearch(1, -1) = 20

rmM-tree: nextSibling

Problema 1: Dado um nó codificado em i = 1, encontrar o nó codificado em j > i, mais à esquerda de i.

$$findClose(1) = fwdSearch(1, -1) = 20$$

$$nextSibling(1) = fwdSearch(1, -1) + 1 = 21$$

rmM-tree: nextSibling

Problema 1: nextSibling(1).

Figura: Árvore de entrada

Aproveitamento de cache

- Expansão da memória principal [Hankins, 2003];
- Dados residindo em memória principal: um novo gargalo;
- Falhas de cache.

Aproveitamento de cache

- Maximização da quantidade de informação em um nó [Hankins, 2003]:
 - Altura da árvore:
 - Linha de cache.
- Fator de ramificação [Rao and Ross, 2000]:
 - Cache Sensitive Tree (CSS-tree);
 - ightharpoonup Cache Sensitive B⁺-Tree (CSB^+ -tree);
 - Árvores B⁺

Sumário

Proposta

Proposta

Características:

- Alto fator de ramificação;
- Maior cobertura de área por nó;
- Cada nó cobre até k intervalos;
- Mesmas definições de registros da estrutura binária;
- Complexidade de tempo e espaço eficientes, usando os mesmos campos defindos por Navarro [2016] em sua estrutura.

Árvore de entrada

0123456789012345678901234567890123456789012345678901

Proposta

Figura: rmM-tree 4-ária com blocos de tamanho 4

rmM-tree k-ária: Registros

Nós internos e raíz

$$\begin{split} R[0][1].M = & max(R[2][0].M, \\ & R[2][0].e + R[2][1].M, \\ & R[2][0].e + R[2][1].e + R[2][2].M, \\ & R[2][0].e + R[2][1].e + R[2][2].e + \\ & R[2][3].M) \\ & = max(2,2,2,0) = 2; \end{split}$$

rmM-tree k-ary: Operações

Tabela: Operações suportadas pela rmM-tree binária e rmM-tree-kária

Operação	rmM-tree binária	rmM-tree k-ária
fwdSearch(i,d)	✓	✓
bwdSearch(i,d)	✓	✓
minExcess(i,j) / maxExcess(i,j)	✓	Х
minCount(i,j)	✓	Х
minSelectExcess(i,j,t)	✓	Х
enclose(i)	✓	✓
rmq(i,j) / rMq(i,j)	✓	Х
$rank_1(i) \ / \ rank_0(i)$	✓	✓
$select_1(i) \ / \ select_0(i)$	✓	✓

Tabela: Operações suportadas pela rmM-tree binária e rmM-tree-kária

Operação	rmM-tree binária	rmM-tree k-ária
preRank(i)/postRank(i)	✓	✓
preSelect(i)/postSelect(i)	✓	✓
isLeaf(i)	✓	✓
isAncestor(i,j)	✓	✓
depth(i)	✓	✓
parent(i)	✓	✓
firstChild(i) / lastChild(i)	✓	✓
child(i,t)	✓	Х
<pre>nextSibling(i) / prevSibling(i)</pre>	✓	✓

rmM-tree k-ary: Operações

Tabela: Operações suportadas pela rmM-tree binária e rmM-tree-kária

Operação	rmM-tree binária	rmM-tree k-ária
subtreeSize(i)	√	✓
levelAncestor(i,d)	✓	✓
levelNext(i) / levelPrev(i)	✓	✓
levelLeftMost(d) / levelRightMost(d)	✓	✓
lca(i,j)	✓	X
deepestNode(i)	✓	X
degree(i)	✓	X
childRank(i)	✓	X
leafRank(i)/leafSelect(i)	✓	✓
${\sf leftMostLeaf(i)/rightMostLeaf(i)}$	✓	✓

Proposta

rmM-tree k-ary: operações

Problema: Dado um nó codificado em i=1, encontrar o nó codificado em j > i, mais à esquerda de i. Solução:

$$nextSibling(i) = findClose(i) + 1$$

 $findClose(i) = fwdSearch(i, -1)$

rmM-tree k-ary: nextSibling

Problema: Computar nextSibling(1).

Figura: Simulação de fwdSearch(1, -1) = 20 em uma rmM-tree 4-ária

rmM-tree k-ary: nextSibling

Problema: Dado um nó codificado em i=1, encontrar o nó codificado em j>i, mais à esquerda de i. Solução:

$$findClose(1) = fwdSearch(1, -1) = 20$$

 $nextSibling(1) = fwdSearch(1, -1) + 1 = 21$

rmM-tree k-ary: nextSibling

Solução: nextSibling(1).

Figura: Árvore de entrada

Problema: Computar nextSibling(1).

Figura: Simulação de fwdSearch(1, -1) = 20 usando a rmM-tree binária 49 de 65

Sumário

4 Resultados

Hardware

Arquitetura: x86

Processador: Intel Xeon Gold 5120

• Frequência máxima: 3,20 GHz

Threads por core: 2

Cores: 28

Cache L1: 896 KiB
 Cache L2: 28 MiB

• Cache L3: 38.5 MiB

Cache LS. 30.3 Milb

Memória RAM total: 527,03 Gb

Base de dados

Tabela: Conjunto de dados usados nos testes experimetais, retirados de Fuentes [2016].

Conjunto de dados	Tamanho (MB)	Quantidade de parênteses	Tamanho da árvore representada
Complete tree (ctree)	18	2.147.483.644	1.073.741.822
DNA	135	1.154.482.174	577.241.087
Proteins (prot)	82	670.721.006	335.36203
Wikipedia (wiki)	13	498.753.914	249.376.957

Experimentos

- Implementação: rmM-tree binária e rmM-tree k-ária;
- Validação das respostas;
- Testes de desempenho.


```
147
      TEST F(RMMTreeFixtureTest, bwdSearch findOpen){
          for(int i=0:i<argsFindOpen.size():i++){</pre>
148
              EXPECT EO(t->findOpen(argsFindOpen[i]).bps->find open(argsFindOpen[i])) << "Resposta errada ao cal
149
150
151
152
      TEST F(RMMTreeFixtureTest, bwdSearch enclose){
153
154
          int k=0:
          for(int i=0:i<(t->size)/2:i++){
155
              k = rand()%(t->size):
156
157
              EXPECT EQ(t->enclose(k), bps->enclose(k)) << "Resposta errada ao calcular o enclose de i=" << k;
158
159
```

Figura: Testes unitários para as operações findopen e enclose

Experimentos: desempenho

```
116
117
      static void BM Parent k(benchmark::State& st){
118
          for(auto :st){
              for(int i=0; i < args par openII.size();i++){</pre>
119
                  t->parent(args par openII[i]);
120
121
122
123
124
      BENCHMARK(BM Parent k);
125
126
      static void BM SubTreeSize k(benchmark::State& st){
          for(auto :st){
127
              for(int i=0; i < args par open.size();i++)</pre>
128
                  t->subtreeSize(args par open[i]);
129
130
131
132
      BENCHMARK(BM SubTreeSize k);
```

Figura: Testes de desempenho para as operações parent e subtreeSize

Resultados

Tabela: Tempo (ns) médio de operações sobre o conjunto de dados Complete tree (ctree)

Operação	Binária	4-ária	8-ária	16-ária
fwdSearch	261,58	325,06	317,77	318,34
bwdSearch	1679,19	3200,95	4032,87	6027,23
findClose	334.38	399,62	396,91	394,57
findOpen	381,89	443,55	443,54	439,59
enclose	325,01	375,02	377,77	373,34
isAncestor	237,69	264,61	267,17	266,70
parent	327,19	377,9	378,63	372,16
subTreeSize	352,38	417,97	418,75	417,01
nextSibling	264,41	288,8,78	287,45	289,87

Resultados

Tabela: Tempo (ns) médio de operações sobre o conjunto de dados Complete tree (ctree)

Operação	Binária	4-ária	8-ária	16-ária
prevSibling	240,24	266,53	268,30	265,65
lastChild	395,22	436,02	437,15	436,34
levelNext	366,81	452,55	450,61	442,64
levelAncestor	882,93	1656,51	2089,76	3113,49
postRank	177,92	176,93	174,66	184,18
postSelect	844,9	911,84	919,35	372,16

Fundamentação teórica Proposta **Resultados** Trabalhos futuros Considerações finais Referências

Resultados

Figura: Tempo médio para 3.000.000 requisições sobre o conjunto de dados Complete tree (ctree)

Sumário

Trabalhos futuros

Trabalhos futuros

- Redução do tempo das operações da rmM-tree;
- Implementar demais operações para a rmM-tree k-ária;
- Monitorar uso da cache;
- Impacto da proposta em diferentes ambientes.

Sumário

6 Considerações finais

Considerações finais

- Resultados;
- rmM-tree binária;
- rmM-tree k-ária.

Referências

Cisco. Cisco annual internet report (2018–2023). Cisco, 2020.

- LLC Dive into Systems. The memory hierarchy.

 https://diveintosystems.org/book/C11-MemHierarchy/
 mem_hierarchy.html, 2021. Online; acesso em 13 de set. de 2021.
- Domo. Data never sleeps 8.0. https: //www.domo.com/learn/infographic/data-never-sleeps-8, 2020. Online; acesso em 05 de set. de 2021.
- G. Fuentes, J. e Navarro. Parênteses balanceados. http: //www.inf.udec.cl/~jfuentess/datasets/parentheses.php, 2016. Online; acesso em 24 de ago. de 2021.
- J. M. Hankins, R. A. e Patel. Effect of node size on the performance of cache-conscious b+-trees. volume 29, pages 475–476. ACM SIGMETRICS international conference, 2003.

Referências

- G. Navarro. Compact data structures:a practical approach. Sheridan Books, Inc. New York, NY, USA, 1 edition, 2016.
- David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm. Kimberly Keeton, Christoforos Kozyrakis, I Thomas, and Katherine Yelick. A case for intelligent ram: Iram. 03 1997.
- Jun Rao and Kenneth A. Ross. Making b+- trees cache conscious in main memory. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, page 475–486, New York, NY, USA, 2000. Association for Computing Machinery.
- D. Reinsel, J. Gantz, and J. Rydning. The digitization of the world, from edge to core. International Data Corporation (IDC), 1 2018.

Obrigada pela atenção!

Perguntas