Data Exploration

Nikolina Lalic, Elias Bürger, Niklas Angert, Matthias Gander **Team Attempt**

Annotator agreement

- **Ideal:** most mass in the last bin (e.g. empty)
- Actual: big uncertainty (e.g. tawowl1)
- → Agreement is class dependent
- → Might be a useful (indirect: e.g. make sample frequency dependent on agreement) training parameter
- → Some birds may be easier to distinguish
- → Diagrams do not tell us about random chance of agreement

% of annotators agreeing with label

Label characteristics

```
('comcuc', 691)
('cowpig1', 1598)
('eucdov', 1083)
('eueowl1', 685)
('grswoo', 548)
('tawowl1', 804)
```

- Number of calls, mean and variance are computed
- Number of annotated calls: eueowl1 lowest, grswoo - highest
- Intra-class variance: cowpig1 high, comcuc low
- Inter-class variance: grswoo low

Feature characteristics

- Calculate the Pearson Correlation
 coefficient between all features
- Visualize them in a heatmap
- Areas of high correlation highlighted in red
- Negative correlation highlighted in blue
- Typically feature groups share high correlation
 - Raw_melspect_mean (top left corner)
 - cln_melspect_mean and cln_melspect_std

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

Feature characteristics

- To illustrate the difference of feature correlation between birds we show the correlation heatmap for two different birds split along the diagonal
- Top half: grswoo
- Bottom half: comcuc

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

Correlation

Feature/Label agreement

- Calculate the Pearson Correlation
 coefficient between Labels and Features
- Rank them from best to worst
- Highest coefficient → good feature to do
 Classification with (depending on Class/Bird)
- Different birds need different features to do Classification, so we need to calculate this for each bird independently

Class 1

Highest correlation		
<pre>cln_contrast_mean_3:</pre>	0.6925317556411079	Feature:537
<pre>cln_melspect_mean_9:</pre>	0.6688152653571825	Feature: 291
raw_melspect_std_8:	0.6539925851966788	Feature:84
<pre>cln_melspect_std_8:</pre>	0.6481760752549925	Feature:350
raw_contrast_std_3:	0.6389625666737243	Feature: 278
raw_contrast_mean_3:	0.6361956393552644	Feature: 271
<pre>cln_melspect_mean_10:</pre>	0.6300679170590937	Feature: 292
raw_melspect_mean_9:	0.6258599465179724	Feature:25
<pre>cln_melspect_mean_8:</pre>	0.6182878006430244	Feature: 290
cln_contrast_std_3:	0.6155290093619367	Feature:544

Class 2

Highest correlation		
raw_contrast_mean_3:	0.7285215322298139	Feature: 271
raw_melspect_mean_6:	0.6433970111529351	Feature:22
cln_melspect_mean_6:	0.6396913678055655	Feature: 288
cln_contrast_mean_3:	0.6331997796142523	Feature:537
cln_melspect_mean_5:	0.6206590039520823	Feature: 287
raw_melspect_mean_5:	0.615191561711744	Feature:21
cln_melspect_mean_7:	0.6150777626772981	Feature: 289
raw_melspect_mean_7:	0.609734786261283	Feature:23
cln_melspect_mean_4:	0.5675091346737678	Feature: 286
cln melspect mean 8:	0.5295964256185339	Feature: 290

Feature/Label agreement

- As an **Example** we look at the best feature from the previous slide. To visualize this we take a 20 second fragment of the **comcuc** and visualize the feature over time.
- Green marks the time frames when the bird is heard.
- We can see that everytime there is a **spike** in the feature value, the **bird is heard**.

Consequences

- We know more about the dataset itself (e.g. it's distribution)
- We got a better idea about which features are useful for classification
- We know more details about the birds (e.g. the length of a bird call) which could also be useful for classification later
- We could now clean up the dataset by **excluding features** that don't provide any useful information in order to **deal with less data**
- Different species share a lot of features that are highly correlating with the label, single features don't provide enough information for classification