Higher Rank Abelian Smooth Action with Hyperbolicity (Spring 2022, Disheng Xu)

Ajorda Jiao

Contents

1	May 13	1
2	May 20	3
3	June 3	4

§1 May 13

For classical dynamical systems, we consider about discrete dynamics or flows. It consists of a space X and a family of maps $X \to X$,

$$\{f^{(n)}: n \in \mathbb{Z}\}$$
 or $\{f^t: t \in \mathbb{R}\},$

satisfying the group conditions.

We will consider a more general settings: an abelian group action on X. The settings are

- \bullet X a manifold.
- A family of maps $\{f^t \in \text{Homeo}(X) : t \in \mathbb{Z}^l\}$, satisfies $f^t \circ f^s = f^{t+s}$.

Or, we can rewrite the second condition as a group homomorphism

$$\alpha: \mathbb{Z}^l \to \operatorname{Homeo}(X).$$

Example 1.1

A non-invertible example, i.e. α is just a semi-group homomorphism

$$\alpha: \mathbb{N}^2 \to C^0(\mathbb{T}, \mathbb{T}), \quad (m, n) \mapsto (\times 2)^m (\times 3)^n.$$

Furstenberg showed that the orbit of this action is either finite or dense. This is an example of a hyperbolic setting.

1 May 13 Ajorda's Notes

Example 1.2

Let R_{α} be the α -rotation on \mathbb{T} . We can consider the action

$$\alpha: (m,n) \to \operatorname{Homeo}(\mathbb{T}), \quad (m,n) \to R_{\alpha}^m R_{\beta}^n.$$

This is an example of a non hyperbolic setting.

Remark 1.3 — Fayad-Kanin showed that if $f, g : \mathbb{T} \to \mathbb{T}$, $R(f) = \alpha, R(g) = \beta$ and (α, β) satisfies some number-theoretic conditions, then $\exists \varphi \in C^{\infty}(\mathbb{T}, \mathbb{T})$ such that $\varphi \circ f \circ \varphi^{-1} = R_{\alpha}$ and $\varphi \circ g \circ \varphi^{-1} = R_{\beta}$.

For a hyperbolic setting, we consider a baby case. Let $A \in \mathrm{SL}(n,\mathbb{C})$ be a diagonalizable matrix, assume

$$A \sim egin{bmatrix} \lambda_1 & & & \ & \lambda_2 & & \ & \ddots & & \ & & \lambda_n \end{bmatrix},$$

and $|\lambda_j| \neq 1$ for every j, then we call A to be a **hyperbolic matrix**. Let $\sigma_j = \log |\lambda_j|$, then "hyperbolicity" means $\sigma_j \neq 0$.

Example 1.4

 $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \cap \mathbb{T}^2$, a classical Anosov map.

Proposition 1.5 (C^0 -Rigidity of Anosov Map)

For an Anosov map $f \in \mathrm{Diff}^\infty(X)$, if another map $g \in \mathrm{Diff}^\infty(X)$ is C^1 -closed to f, then $\exists h \in \mathrm{Homeo}(X)$ such that $h \circ g \circ h^{-1} = f$.

Remark 1.6 — In general, the regularity of h cannot be C^1 . Because a C^1 conjugacy preserves the derivates of fixed points.

Question 1.7. If we have higher rank action with at least one Anosov element, can we have the similar result?

Example 1.8

A baby case: for f_1, f_2 commutes with each other, consider the action

$$\alpha: \mathbb{Z}^2 \to \mathrm{Diff}^{\infty}(\mathbb{T}^2), \quad (m,n) \to f_1^m f_2^n.$$

Assume there exists $(m, n) \in \mathbb{Z}^2$ such that $f_1^m f_2^n$ is Anosov. Then we perturb (f_1, f_2) to $(\widetilde{f}_1, \widetilde{f}_2)$ a little bit such that $\widetilde{f}_1 \widetilde{f}_2 = \widetilde{f}_2 \widetilde{f}_1$ still holds. Then there exists h such that $h\widetilde{f}_1 h^{-1} = f_1$ and $h\widetilde{f}_2 h^{-1} = f_2$.

2

2 May 20 Ajorda's Notes

Question 1.9. Can the conjugate h be more regular?

It is easy to construct a counter example such that h could not be C^1 . For example, we can regard a \mathbb{Z}^1 -action as a "degenerated" \mathbb{Z}^2 -action.

Example 1.10

Let $T_A, T_B : \mathbb{T}^2 \to \mathbb{T}^2$ be two hyperbolic matrices. We consider

$$\alpha:(m,n)\to T^m_{A\times\mathrm{Id}}T^n_{\mathrm{Id}\times B},$$

a \mathbb{Z}^2 -action on \mathbb{T}^2 . The conjugate h in general still cannot be C^1 .

This counter example is a non degenerated \mathbb{Z}^2 -action, but is somehow not "genuinely higher rank". So, we need a "genuinely higher rank assumption".

Question 1.11. Let $\alpha_0: \mathbb{Z}^2 \to \mathrm{SL}(d,\mathbb{Z}) \subset \mathrm{Diff}^{\infty}(\mathbb{T}^d)$ be an action such that there exists $(m,n), \, \alpha_0(m,n)$ is Anosov (i.e. a hyperbolic matrix). Then for a C^1 -perturbation α of α_0 , $\alpha: \mathbb{Z}^2 \to \mathrm{Diff}^{\infty}(\mathbb{T}^d)$, can we show that $\exists h \in \mathrm{Diff}^{\infty}(\mathbb{T}^d)$ such that $h \circ \alpha \circ h^{-1} = \alpha_0$?

To avoid the rank-one case, we need an additional assumption.

"Totally ergodic ergodic assumption": $\forall (m,n) \neq (0,0), \alpha_0(m,n)$ is ergodic with respect to the Lebesgue measure on \mathbb{T}^d .

§2 May 20

Conjecture 2.1 (\mathbb{Z}^l version of Karok-Spatzier's Conjecture)

Let $\alpha: \mathbb{Z}^l \to \mathrm{Diff}^\infty(M)$ be an action such that there exists $a \neq 0 \in \mathbb{Z}^l$, $\alpha(a)$ is Anosov. Then under some suitable "higher rank" assumption (no rank-one factor), α is C^∞ conjugate to an "algebraic-defined" model.

As a contrast, we consider a famous conjecture of Smale and Borel in the case of rank-one.

Conjecture 2.2 (Smale-Borel)

If f is Anosov, then f is C^0 -conjugate to a \mathbb{T}^d automorphism.

This conjecture in general is **False**, for Borel have constructed an Anosov diffeomorphism on a nil-manifold. Later, there has been constructed an example of Anosov diffeomorphism on an infra-nil-manifold.

Theorem 2.3 (Franks-Manning)

Suppose $f \in \text{Diff}^1(M)$ is Anosov, where M is a nil-manifold. Then f is C^0 -conjugate to an affine map on M.

Corollary 2.4

Assume $f, g \in \text{Diff}^1(M)$ are Anosov, where M is a nil-manifold. Then there exists $h \in \text{Homeo}(M)$ such that $hfh^{-1} = f_0, hgh^{-1} = g_0$ where f_0, g_0 are affine maps on M.

Theorem 2.5 (Hertz-Z.Wang, 2014)

Consider the action $\alpha : \mathbb{Z}^k \to \operatorname{Diff}^{\infty}(\mathbb{T}^d)$ which is homotopic to $\alpha_0 : \mathbb{Z}^k \to \operatorname{GL}(d, \mathbb{Z})$, if α is Anosov (in the sense that $\exists a \in \mathbb{Z}^k \setminus \{0\}$, $\alpha(a)$ is Anosov). Assume that $\exists \mathbb{Z}^2 \subseteq \mathbb{Z}^k$ such that $\alpha_0|_{\mathbb{Z}^2}$ is totally ergodic, then α is C^{∞} -conjugate to an affine action.

Theorem 2.6 (Fisher-Kalinin-Spatzier, 2013)

The same result (as Theorem 2.5) holds under a stronger assumption that α has "many" Anosov elements.

Weyl Chamber picture

The Lyapunov exponent for a matrix is $\sigma_i = \log |\lambda_i|$, where λ_i is an eigenvalue of A. Then

$$A \sim \begin{bmatrix} \Box & & & \\ & \Box & & \\ & & \ddots & \\ & & & \Box \end{bmatrix},$$

where each \square is a block with all the same eigenvalues. Then we can get a coarse decomposition of \mathbb{R}^d corresponding to different Lyapunov exponents. Denotes this splitting by

$$\mathbb{R}^d = V_1 \oplus V_2 \oplus \cdots \oplus V_r,$$

then V_i is A-invariant. Moreover, for every B commutes with A, B also preserves each V_i . Hence for a \mathbb{Z}^k action of $\mathrm{GL}(d,\mathbb{Z})$, we can split \mathbb{R}^d into a direct sum of finite many subspaces $\{V_i\}$. Such that, for every $A \in \alpha(\mathbb{Z}^k)$, $A|_{V_i}$ has a constant Lyapunov exponent. Then we can define the **Lyapunov functionals** $\lambda_i : A \mapsto \sigma(A|_{V_i})$, these functionals will induce linear functionals $\mathbb{Z}^k \to \mathbb{R}$.

§3 June 3

Today, we are going to show the idea of the proof of Theorem 2.6. For a references, for example, see here.

Consider actions

$$\alpha_0: \mathbb{Z}^2 \to \operatorname{Aut}(\mathbb{T}^d), \quad \alpha: \mathbb{Z}^2 \to \operatorname{Diff}^1(\mathbb{T}^d)$$

which are homotopic. Assume that for every $a \neq \text{Id}$, $\alpha_0(a)$ is ergodic. We want to show under some conditions ("many Anosov elements"), α is C^{∞} -conjugate to α_0 .

Aim 3.1. Find a way to state the "many Anosov elements" condition formally.

Recall the Lyapunov functionals introduced in last lecture. It corresponds to a Lyapunov (or Oseledec) decomposition $\mathbb{R}^d = \bigoplus_{i=1}^k V^i$, such that for every $v \neq 0 \in V^i$,

$$\lim_{n \to \infty} \frac{1}{n} \log \|\alpha_0(na)v\| = \lambda_i(a).$$

Now we introduce the **Weyl chamber picture**. Consider the kernel of each λ_i , which is a line in \mathbb{Z}^2 . Then these lines divide the plane into several connected components. Each connected component is called a **Weyl chamber**. Let \mathscr{C} be a Weyl chamber, then the signs of $\lambda_i(a)$'s are the same for every $a \in \mathscr{C}$. Hence for each Weyl chamber \mathscr{C} , we can use k signs $(\operatorname{sgn} \lambda_1(a), \dots, \operatorname{sgn} \lambda_k(a)), a \in \mathscr{C}$, to denote it.

Weyl chamber picture for non-linear settings

Recall Oseledec's theorem. For the case of \mathbb{Z}^1 -action, let

$$f:(X,\mu)\to(X,\mu)$$

be a ergodic maps. Let

$$F: X \times \mathbb{R}^d \to X \times \mathbb{R}^d, \quad (x, v) \mapsto (f(x), F_x v)$$

be a linear cocycle over f, where $F_x \in \mathrm{GL}(d,\mathbb{R})$ for every $x \in X$ and

$$\int_X ||F_x|| \mathrm{d}\mu(x) < \infty.$$

Oseledec's theorem tells us there exists an $(\mu$ -a.e.) F-invariant splitting of $X \times \mathbb{R}^d = \bigoplus V_x^i$ and k Lyapunov exponents $\lambda_1 > \lambda_2 > \cdots > \lambda_k$ such that

$$\lim_{n \to \infty} \frac{1}{n} \log ||F_x^n v|| = \lambda_i, \quad \forall v \in V_x^i \setminus \{0\}.$$

For a \mathbb{Z}^2 -action case, let

$$f_{(m,n)}:(X,\mu)\to (X,\mu),\quad (m,n)\in\mathbb{Z}^2$$

be ergodic maps satisfying group conditions. Let

$$\{F_{(m,n,x)} \in \mathrm{GL}(d,\mathbb{R}) : (m,n,x) \in \mathbb{Z}^2 \times X\}$$

be a family of linear maps satisfying the cocycle condition

$$F_{(m+m',n+n',x)} = F_{(m',n',f_{m,n}(x))} \circ F_{(m,n,x)}.$$

Then there exists linear functions $\lambda_i: \mathbb{Z}^2 \to \mathbb{R}$ and a splitting

$$\mathbb{R}^d = \bigoplus V^i_{(m,n,x)}, \quad (m,n,x) \in \mathbb{Z}^2 \times X.$$

which is $(\mu$ -a.e.) cocycle-invariant. Such that for μ - a.e. $x \in X$, for every $(m, n) \in \mathbb{Z}^2$,

$$\lim_{l \to \infty} \frac{1}{l} \log \|F_{(lm,ln,x)}v\| = \lambda_i(m,n), \quad \forall v \in V^i_{(m,n,x)} \setminus \{0\}.$$

In our case, we will consider the derivative cocyle, i.e. $f_{(m,n)} = \alpha(m,n)$ and $F_{(m,n,x)} = D_x f_{(m,n)}$. Then there is a μ -a.e. defined α -invariant measurable splitting $T\mathbb{T}^d = \bigoplus V^i$, and each V^i corresponds to a Lyapunov functional $\lambda_i : \mathbb{Z}^2 \to \mathbb{R}$. Besides, we can define the Weyl chamber picture similarly.

By Franks-Manning's theorem, α conjugates to an affine action. By passing to a finite index subgroup if necessary, we can assume that it conjugates an action on $\operatorname{Aut}(\mathbb{T}^d)$. That is, there exists a bi-Hölder map h such that $h \circ \alpha_0 \circ h^{-1} = \alpha$ (α_0 is the linear model of α). Then $\nu = h_*(\operatorname{Leb}_{\mathbb{T}^d})$ is an α -invariant ergodic measure on \mathbb{T}^d .

Now, we need the "many Anosov" condition: for every Weyl chamber \mathscr{C} of linear action α_0 , there exists $a \in \mathscr{C}$ such that $\alpha(a)$ is Anosov.

Proposition 3.2

For (α, ν) , it has exactly the same Weyl chamber picture as the linear model (α_0, Leb) .

Note that $\alpha_0(a)$ is a Anosov iff $a \notin \bigcup \ker \lambda_i$. Moreover, we can show that

Proposition 3.3

 $\alpha(a)$ is Anosov iff $\alpha_0(a)$ is Anosov.

Explanation. We have found sufficiently many Anosov elements a_1, a_2, \dots, a_s (each Weyl chamber of α_0 has at least one). We consider the stable/unstable foliation of each $\alpha(a_i)$.

Fact 3.4. If a_i, a_j in the same Weyl chamber, then they share the same $\mathcal{W}^{u/s}$.

Fact 3.5. Each $W_{a_i}^{u/s}$ is invariant under \mathbb{Z}^2 -action α .

Fact 3.6. Any non-trivial intersection $\bigcap_{i \in \mathscr{A}} \mathcal{W}_{a_i}^{u/s}$ is α -invariant.

Let W^1, W^2, \dots, W^n be (the finest) non-trivial intersections of these stable/unstable manifolds. Let $E^i = TW^i$. Then $T\mathbb{T}^d = \bigoplus E^i$, which is a splitting possibly coarser than the Oseledec's splitting. Moreover, we can show that

Fact 3.7. Each E^i has the form $\bigoplus_{\lambda_j:\exists c>0,\lambda_j=c\lambda}V^j$ for a fixed Lyapunov functional λ .

Roughly speaking, this splitting is the finest splitting such that: for every E^i , for every $a \in \mathbb{Z}^2 \setminus \bigcup \ker \lambda_j$, $\alpha(a)$ contracts or expands E^i simultaneously. We call E^i the **coarse** Lyapunov distribution and \mathcal{W}^i the coarse Lyapunov foliation.

Fact 3.8. $h: \mathcal{W}_{\alpha_0}^i \to \mathcal{W}_{\alpha}^i$.

Then for every $a \notin \bigcup \ker \lambda_j$, let ν be an $\alpha(a)$ -invariant ergodic measure. Note that the Lyapunov exponents of $\alpha_0(a)$ on $\mathcal{W}^i_{\alpha_0}$ are bounded away from zero. Applying Pesin theory and the conjugacy is bi-Hölder, we can show that the Lyapunov exponents of $(\alpha(a), \nu)$ have the same sign and are bounded away from zero on each \mathcal{W}^i_{α} . It follows that $\alpha(a)$ is uniformly contracting or expanding along each \mathcal{W}^i_{α} , hence $\alpha(a)$ is Anosov. \square

Aim 3.9. To show h is C^{∞} .

Idea Try to apply the philosophy Journé lemma (see here).

Proposition 3.10 (A regularity result)

Let $u \in L^1(\mathbb{T}^d)$ and $\mathcal{W}^1, \dots, \mathcal{W}^k$ be strongly absolutely continuous foliations with C^{∞} leaves. If for every $\varepsilon > 0$ small enough,

$$|\langle D_{\mathcal{W}^i}^{\alpha}u,\varphi\rangle| \leqslant C(\alpha,\varepsilon) \|\varphi\|_{\varepsilon}, \quad \forall i, \forall \varphi \in C^{\infty}(\mathbb{T}^d),$$

where $\|\cdot\|_{\varepsilon}$ is the ε -Hölder norm $\|\varphi\|_{\varepsilon} \coloneqq \sup \frac{|\varphi(x) - \varphi(y)|}{d(x,y)^{\varepsilon}} + \|\varphi\|_{\infty}$. Then u is C^{∞} .

Aim 3.11. To estimate $|\langle D_{\mathcal{W}^i}^{\alpha}(h-\mathrm{Id}), \varphi \rangle|$.

We need a dynamical view to show this fact. More precisely, α -action is exponentially mixing with respect to $h_*(\mathrm{Leb}_{\mathbb{T}^d})$.