Precalculus Homework Lecture 3

- 1. Use the known values of $\sin 30^\circ$, $\cos 30^\circ$, $\sin 45^\circ$, $\cos 45^\circ$, $\sin 60^\circ$, $\cos 60^\circ$, ..., the angle sum formulas and the cofunction identities to find an exact value (using radicals) for the trigonometric function.
 - (a) The six trigonometric functions of $105^{\circ} = 45^{\circ} + 60^{\circ}$:
 - $\sin{(105^{\circ})}$.
 - $\cos{(105^{\circ})}$. Should your answer be a positive or a negative number?
 - $\tan (105^{\circ})$.
 - $\cot (105^{\circ})$.
 - $\sec{(105^{\circ})}$.
 - csc (105°).

- (b) The six trigonometric functions of $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$:
 - $\sin\left(\frac{\pi}{12}\right)$.
 - $\cos\left(\frac{\pi}{12}\right)$. Should $\sin\left(\frac{\pi}{12}\right)$ be larger or smaller than $\cos\left(\frac{\pi}{12}\right)$?
 - $\tan\left(\frac{\pi}{12}\right)$.
 - $\cot\left(\frac{\pi}{12}\right)$.
 - $\sec\left(\frac{\pi}{12}\right)$.
 - $\csc\left(\frac{\pi}{12}\right)$.
- 2. Simplify to a trigonometric function of the angle θ . The answer key has not been proofread, use with caution.
 - (a) $\sin\left(\frac{\pi}{2} \theta\right)$.
 - (b) $\cos\left(\frac{13\pi}{2} \theta\right)$.
 - (c) $\tan (\pi \theta)$
 - (d) $\cot\left(\frac{3\pi}{2} \theta\right)$
 - (e) $\csc\left(\frac{3\pi}{2} + \theta\right)$
- 3. Problems 3.c and 3.d are considered challenge problems and will not be tested/quizzed upon. Using the power-reducing formulas, rewrite the expression in terms of first powers of the cosines and sines of multiples of the angle θ .
 - (a) $\sin^4 \theta$.
 - (b) $\cos^4 \theta$.
 - (c) $\sin^6 \theta$.
 - (d) $\cos^6 \theta$.
- 4. Use the sum-to-product formulas to find all solutions of the trigonometric equation in the interval $[0, 2\pi)$.

Please note that typing a query such as "solve($\sin(x)+\sin(3x)=0$)" at www.wolframalpha.com will provide you with a correct answer and a function plot.

- (a) $\sin(x) + \sin(3x) = 0$.
- (b) $\cos(x) + \cos(-3x) = 0$.
- (c) $\sin(x) \sin(3x) = 0$.
- (d) $\cos(2x) \cos(3x) = 0$.