«Билеты по алгему» мфти

Муниров Султан

Лето 2025

Билет №1

1. **Теория:** Норма в линейном пространстве. Норма оператора. Вычисление многочлена и аналитической функции от линейного преобразования.

2. Задача: Есть некий оператор f. Известно, что $f^2 = E$. Доказать, что $\mathrm{Ker}(f-E) \oplus \mathrm{Ker}(f+E) = V$. (все решение заключается в применении теоремы о взаимнопростых делителях аннулирующего многочлена)

Билет №2

- 1. Теория: Аннулирующий и минимальный многочлен. Связь минимального с ЖНФ.
- 2. Задача: Ортогонализовать базис $(1, x 1, x^2 + 1)$ в пространстве многочленов степени не выше 2 методом Грама-Шмидта. Скалярное произведение это интеграл от 0 до 1 fg dx.

Билет №3

- 1. Теория: Закон инерции, метод Якоби.
- 2. Задача: Построить матрицу линейного оператора $\phi: \mathbb{R}^3 \to \mathbb{R}^3$, если известно, что $v_1 = (1,0,1)^T$ собственный вектор с собственным значением $\lambda_1 = 2, \ v_2 = (0,1,1)^T$ собственный вектор с $\lambda_2 = -1$, и $v_3 = (1,1,0)^T$ собственный вектор с $\lambda_3 = 3$.

Билет №4

- 1. **Теория:** Эрмитовы формы и квадратичные формы в эрмитовом пространстве, их связь. Закон инерции эрмитовых форм, Критерий Сильвестра.
- 2. Задача: Привести к ОНБ из собственных векторов симметричную матрицу, заданную в ОНБ.

Билет №5

- 1. **Теория:** Приведение квадратичной формы в пространстве со скалярным произведением к главным осям. Одновременное приведение пары квадратичных форм к диагональному виду.
- 2. Задача: Необходимое и достаточное условие ортогональности подматрицы ортогональной матрицы.

Лето 2025 М Φ ТИ 2

Билет №6

- 1. Теория: Лемма Даламбера, основная теорема алгебры.
- 2. Задача: Является ли биортогональное преобразование $f(x,y) = n \cdot \operatorname{tr}(xy) \operatorname{tr}(x) \operatorname{tr}(y)$ для матриц $n \times n$ а) симметричным б) невырожденным.

Билет №7

- 1. **Теория:** Унитарные преобразования, их свойства. Канонический вид унитарного преобразования.
- 2. Задача: Привести пример n-мерного пространства для которого неверно, что $V = \operatorname{Ker} f + \operatorname{Im} f$ (например, производная многочленов n-ой степени).

Билет №8

- 1. **Теория:** Ортогональное дополнение к подпространству. Задача об ортогональной проекции и ортогональной составляющей. Процедура ортогонализации Грама-Шмидта. Объем параллелепипеда.
- 2. Задача: Даны две квадратичные формы в \mathbb{R}^3 : $q_1(x) = x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 2x_1x_3 2x_2x_3$ $q_2(x) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2$. Найти невырожденное линейное преобразование, приводящее обе формы одновременно к диагональному виду (каноническому виду для q_2 и диагональному для q_1).

Билет №9

- 1. **Теория:** Тензоры, операции над ними (свёртка, перестановка индексов). Симметричные и кососимметричные тензоры. Операторы симметрирования и альтернирования, их свойства.
- 2. Задача: Найти полярное разложение A = UP (где U ортогональная, P симметричная положительно полуопределенная) для матрицы $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Билет №10

1. **Теория:** Корневое подпространство линейного оператора. Свойства корневых подпространств. Разложение пространства в прямую сумму корневых подпространств (случай, когда характеристический многочлен линейного оператора раскладывается на линейные множители).

2. Задача: Найти при каких p квадратичная форма положительно/отрицательно определена (дана как многочлен) 3×3 . Матрица — что-то типа $\begin{pmatrix} 1 & 2 & p/2 \\ 2 & p & 1 \\ p/2 & 2 & 1 \end{pmatrix}$.

Билет №11

- 1. **Теория:** Билинейные функции. Координатная запись билинейной функции. Матрица билинейной функции и ее изменение при замене базиса. Ортогональное дополнение к подпространству относительно симметричной (кососимметричной) билинейной функции и его свойства.
- 2. Задача: Дан оператор из $\mathbb{R}[x]$ степени не больше 3. Исследовать на диагонализируемость. Вроде $\phi(f) = (x^2 + x + 1)f''(x) + (x + 1)f'(x) + f(x)$.

Билет №12

- 1. **Теория:** Билинейные симметричные и квадратичные функции и их связь. Поляризационное тождество. Метод Лагранжа.
- 2. Задача: Найти жорданову нормальную форму и жорданов базис для оператора, заданного матрицей $A = \begin{pmatrix} 3 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

Билет №13

- 1. **Теория:** Линейная независимость собственных векторов, имеющих попарно различные собственные значения. Алгебраическая и геометрическая кратности собственного значения. Условия диагонализируемости линейного оператора.
- 2. Задача: Квадратичная форма $q(x_1, x_2, x_3) = x_1^2 4x_1x_2 + 2x_1x_3 + 5x_2^2 6x_2x_3 + 3x_3^2$. Привести ее к каноническому виду методом Лагранжа. Найти невырожденное линейное преобразование координат, приводящее форму к этому виду. Указать положительный и отрицательный индексы инерции.

Билет №14

1. **Теория:** Жорданова диаграмма. Построение ЖД без поиска базиса. Теорема о единственности ЖНФ с точностью до перестановки клеток.

2. Задача: Ортогональный оператор ϕ в \mathbb{R}^3 задан в ортонормированном базисе матрицей $A=\begin{pmatrix}2&-1&2\\2&2&-1\\-1&2&2\end{pmatrix}$. Найти ортонормированный базис, в котором матрица этого оператора имеет канонический вид (блочно-диагональный с блоками вращения и ± 1).

Билет №15

- 1. **Теория:** Положительно определенные квадратичные функции. Критерий Сильвестра. Кососиметрические билинейные функции, приведение их к каноническому виду.
- 2. Задача: Найти жорданову нормальную форму и жорданов базис для оператора, заданного

матрицей:
$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$$
.

Билет №16

- 1. Теория: Неприводимые многочлены. Основная теорема арифметики для многочленов.
- 2. **Задача:** Дана квадратичная форма в ОНБ. Найти ОНБ в котором она будет иметь диагональный вид. Квадратичная форма: $3x_1^2 + 8x_1x_2 8x_1x_3 8x_2x_3 7x_2^2 + 3x_3^2$.

Билет №17

- 1. **Теория:** Инвариантные подпространства. Собственные векторы и собственные значения. Характеристический многочлен и его свойства. Инвариантность следа и определителя матрицы оператора.
- 2. Задача: Дана симметричная билинейная форма $f(x,y) = x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 x_3y_3$. Доказать, что если f(a,a) = 0 для некоторого ненулевого вектора $a \in \mathbb{R}^3$, то это не означает, что форма не является положительно полуопределенной (привести пример такого a, если возможно, или объяснить почему невозможно). Проверить форму на положительную полуопределенность.

Билет №18

1. **Теория:** Ортонормированные базисы и ортогональные (унитарные) матрицы. Существование ортонормированного базиса в пространстве со скалярным произведением. Изоморфизм евклидовых и эрмитовых пространств. Канонический изоморфизм евклидова пространства и сопряженного к нему.

2. **Задача:** В эрмитовом пространстве оператор удовлетворяет $\phi^3 - 5\phi^2 + 6\phi = 0$. ϕ унитарен? ϕ диагонализируем?

Ответ: ну минимальный многочлен делит этот, там простые корни $\Leftrightarrow \phi$ диагонализируем. Он не унитарен, т.к. в диагональном виде у него могут быть только числа 0, 2 или $3 \Rightarrow$ определитель $\not\equiv 1 \pmod{\text{модулю}}$.

Билет №19

- 1. **Теория:** Циклические подпространства. Теорема о нильпотентном операторе. Жорданова нормальная форма и жорданов базис линейного оператора. (Теорема существования жорданова базиса).
- 2. Задача: Пусть q квадратичная функция на V, $\dim V = n$. Известно, что знаки её угловых миноров чередуются: $D_1 > 0, D_2 < 0, D_3 > 0$, и т.д. Какую максимальную размерность может иметь подпространство U, на котором q отрицательно определена?

Билет №20

- 1. **Теория:** Евклидовы и эрмитовы пространства. Матрица Грама системы векторов, ее свойства, неравенства КБШ и треугольника.
- 2. Задача: Пусть $M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. На пространстве вещественных матриц 2×2 задано отображение $\phi(X) = (M \cdot X)^T X \cdot M^T$. а) Доказать, что ϕ является линейным оператором. б) Найти матрицу этого оператора в базисе $E_{11}, E_{12}, E_{21}, E_{22}$ (матричные единицы). в) Найти его собственные значения и, если возможно, собственные векторы.

Билет №21

- 1. **Теория:** Преобразования, сопряжённые к ним. Существование и единственность, свойства. Теорема Фредгольма.
- 2. Задача: $\text{Exp}\begin{pmatrix} 6 & 5 \\ -4 & -6 \end{pmatrix}$.

Билет №22

1. **Теория:** Полярное разложение линейного оператора. Единственность полярного разложения невырожденного оператора.

2. Задача: Найти наибольший общий делитель многочленов $f(x) = x^4 + x^3 + 2x^2 + x + 1$ и $g(x) = x^3 - x^2 - x - 2$ в кольце $\mathbb{Q}[x]$ и выразить его линейно через f(x) и g(x).

Билет №23

- 1. **Теория:** Самосопряженное линейное преобразование. Свойства самосопряженных преобразований. Основная теорема о самосопряженных операторах (существование ортонормированного базиса из собственных векторов).
- 2. Задача: Найти матрицу ортогонального проектирования на пространство, заданное системой: $x_1 + x_2 = 0$ $x_3 4x_4 = 0$.

Билет №24

- 1. **Теория:** Тензоры (p, q). Тензорное произведение тензоров. Координатная запись тензоров, изменение координат при переходе от одного базиса к другому. Тензорный базис.
- 2. Задача: $\phi: V \to V$ линейный оператор, $q \in Q(V)$ квадратичная форма. Оператор ϕ^+ такой, что $(\phi^+q)(x) = q(\phi(x))$. а) Доказать, что ϕ^+ линейный оператор Q(V). б) Доказать, что ϕ^+ невырожден тогда и только тогда, когда ϕ невырожден.

Билет №25

- 1. **Теория:** Линейные рекурренты. Общий вид линейной рекурренты над произвольным полем (случай, когда характеристический многочлен раскладывается на линейные множители).
- 2. Задача: Найти остаток от деления многочлена на x(x-2)(x-4), если даны остатки от деления на x(x-2) и (x-2)(x-4).

Билет №26

- 1. **Теория:** Корни многочлена, теорема Безу, кратные корни, теорема о них, формальная производная.
- 2. Задача: Докажите, что всякий многочлен степени n с $HT(p) = (-1)^n$ является характеристическим для некоторой матрицы $M_n(\mathbb{R})$.

Лето 2025 МФТИ 7