VE311 Electronic Circuit Homework 5

Due: December 6th

Note:

- 1) Please use A4 size paper or page.
- 2) Please clearly state out your final result for each question.
- 3) Please attach the screenshot of Pspice simulation result if necessary.

Question 1. Differential Amplifier Circuits 1

[20pts] For a differential amplifier circuits shown below, assume that I_1 and I_{SS} are ideal and λ , $\gamma > 0$, determine the value of V_{out1}/V_{in} and V_{out2}/V_{in} .

We apply small signal analysis to this question, for M_2 since we replace both I_1 and I_SS with open-circuit, V_{out2} would always be 0. Then $V_{out2}/V_{in} = 0$.

As for M_1 , the following equation could be established using small signal analysis:

$$\frac{\frac{V_{out1}}{r_{o1}} + g_{m1}V_{in1} = 0}{\frac{V_{out1}}{V_{in}} = -g_{m1}r_{o1}}$$

Question 2. Differential Amplifier Circuits 2

[40pts] Calculate the differential voltage gain of the circuits shown below. Assume perfect symmetry and $\lambda > 0$. You may need to compute the gain as $A_v = -G_m R_{out}$. Hint: use half circuit and R_{SS} can be divided into $\frac{R_{SS}}{2}$ in your half circuit.

First, apply half circuit method:

: the circuit can be simpify as a CS stage with source degeneration:

$$V_{in} = \frac{V_{pD}}{V_{out}} = \frac{R_{s} + r_{03} + g_{m_{3}} r_{03} R_{s}}{R_{sout}} = \frac{(R_{s} + r_{03} + g_{m_{3}} r_{03} R_{s}) || (\frac{R_{ss}}{2} + r_{01} + g_{m_{1}} r_{01} \frac{R_{ss}}{2})}{R_{ss}}$$

$$G_{m} = \frac{2g_{m_{1}}}{R_{ss}} (\frac{1}{g_{m_{1}}} || r_{01} || \frac{R_{ss}}{2})$$

$$\therefore A_{v} = -G_{m} \cdot R_{out} = \frac{-2g_{m_{1}}}{R_{ss}} \left(\frac{1}{g_{m_{1}}} || r_{0}|| || \frac{R_{ss}}{2} \right) \cdot (R_{s} + r_{03} + g_{m_{3}} r_{02} R_{s}) || \left(\frac{R_{ss}}{2} + r_{01} + g_{m_{1}} r_{0} || \frac{R_{ss}}{2} \right)$$

Question 3. Differential Amplifier with PSPICE Simulation

[40pts] For the circuit shown below, use NMOS SPICE model except for $\lambda = 0, \eta = 0$

- (a) For $V_{DD} = 5V$, $V_{in,CM} = 2.2V$, $V_C = 1.2V$, $R = 5k\Omega$, $(\frac{W}{L})_1 = (\frac{W}{L})_2 = \frac{50\mu m}{2\mu m}$, $(\frac{W}{L})_3 = \frac{100\mu m}{2\mu m}$, what are the values for A_{DM} and A_{CM} ?
- (b) Plot $(V_{out1} V_{out2})$ as a function of $(V_{in1} V_{in2})$ from -4 V to 4 V (i.e. $\frac{v_d}{2}$ from -2 V to 2 V). Confirm whether A_{DM} in (a) is consistent with the simulation result here. (Hint: To generate both $\frac{v_d}{2}$ and $-\frac{v_d}{2}$, you may need to use a Voltage Controlled Voltage Source(VCVS). You can find it in Pspice component)
- (c) Plot $V_{out,CM}$ as a function of $V_{in,CM}$ from 0 V to 5 V, while $v_d = 0$. Confirm whether A_{CM} in (a) is consistent with the simulation result here.

NMOS Model

LEVEL = 1 VTO = 0.7 GAMMA = 0.45 PHI = 0.9

NSUB = 9e+14 LD = 0.08e-6 UO = 350 LAMBDA = 0.1

TOX = 9e-9 PB = 0.9 CJ = 0.56e-3 CJSW = 0.35e-11

MJ = 0.45 MJSW = 0.2 CGDO = 0.4e-9 JS = 1.0e-8

(a). Since M_3 could be treat as an ideal current source in this case, $I_{SS} = \frac{1}{2} \mu_n C_{ox} (\frac{W}{L_{eff}})_3 (V_c - V_{th})^2 = 9.12 \times 10^{-4} A$

$$I_{SS} = \frac{1}{2} \mu_n C_{ox} (\frac{W}{L_{eff}})_3 (V_c - V_{th})^2 = 9.12 \times 10^{-4} A$$

Then,

$$A_{DM} = -g_{m1,2}R_D = -9.12, A_{CM} = 0$$

Simulation for (b) and (c) are shown below.

