Real Analysis I: Assignment 5

Chris Hayduk

October 10, 2019

Problem 1.

Suppose $f : \mathbb{R} \to \mathbb{R}$. If f is continuous at a point $x \in \mathbb{R}$, then $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$.

Thus, for a given ϵ , the region of continuity around x is $(x - \delta, x + \delta)$.

For each $x \in \mathbb{R}$ where f is continuous, let $\epsilon = \frac{1}{n} \ \forall n \in \mathbb{N}$. Then the δ neighborhoods around each x will be shrinking in size as well.

Let x_i be the ith continuous point of f and let $O_n = \bigcup_{i=1}^{\infty} (x_i - \delta, x_i + \delta)$ for the δ corresponding to $\epsilon = \frac{1}{n}$. Then, each O_n is a union of open sets and thus is open as well.

It is clear from the construction of each δ neighborhood that, as $n \to \infty$, we have $\epsilon, \delta \to 0$.

Thus, if we take a specific point of continuity x_k , we have that for some δ , $x_k \in (x_k - \delta, x_k + \delta)$ for all choices of ϵ by definition. However, we can make δ arbitrarily small through our choice of ϵ , so for any $x_k \pm c$, we can choose an *epsilon* such that $x_k \pm c \not\in (x_k - \delta, x_k + \delta)$. Hence, we have that x_k is in every O_n , but no other point contained in all of its delta neighborhoods is.

As a result, we have that $A = \bigcap_{i=1}^{\infty} O_i$ is the set of all points at which f is continuous.

Now, from the above, we have defined each O_n as a countable union of open sets, so each O_n is open. In addition, there are a countable number of sets O_n . Thus, A is a countable intersection of open sets and, hence, A is G_{δ} .

Problem 2.

We have that $m^*A = \inf_{A \subset \cup I_n} \sum l(I_n)$.

Let $B = \{I_n : n \in \mathbb{N}\}$ be the open cover consisting of open intervals that satisfies $\inf_{A \subset \cup I_n} \sum l(I_n)$.

Since B is a collection of open sets, it is an open cover for itself. Moreover, for an open set $I_k \in B$, let I_{k_n} be an open cover for I_k composed of open intervals. By the triangle inequality, we have that $l(I_k) \leq \sum l(I_{k_n})$.

Now let $O = \cup I_n$ such that $I_n \in B$. Since B is an open cover for A, we have that $A \subset O$. In addition, we have,

$$m^*O = \sum_{n} l(I_n), \ I_n \in B$$
$$= m^*A$$

Hence, we can clearly see that $m^*O \leq m^*A + \epsilon$ for any choice of $\epsilon > 0$.

Now let $G = \cap \mathscr{C}$, where \mathscr{C} is the collection of all open covers for A consisting solely of open intervals. Then G is the smallest such open cover for A and, as a result, $A \subset G$. In addition, since each set contained in \mathscr{C} is open, we have that G is a G_{δ} set.

Since G is the smallest open cover consisting of intervals for A, and G is an open set consisting of open intervals, we have that $m^*G = l(G)$ and,

$$m^*A = \inf_{A \subset \cup I_n} \sum l(I_n)$$
$$= l(G)$$
$$= m^*G$$

Problem 3.

a) Let A be measurable and let $y \in \mathbb{R}$. Assume A + y is also measurable. Then,

$$m^*A = \inf_{A \subset \cup I_n} \sum_{n} l(I_n)$$
$$= \inf_{n} \sum_{n} l(a_n, b_n)$$
$$= \inf_{n} \sum_{n} (b_n - a_n)$$

If we take A + y, we can also shift each I_n by y, preserving the status of $\cup I_n$ as an open cover for A + y. This is true because, if $x \in A$, x is in some $I_k = (a_k, b_k) \subset \cup I_n$. Hence, $a_k < x < b_k$. This implies that $a_k + y < x + y < b_k + y$ and thus $x \in (a_k + y, b_k + y)$. As a result, we have,

$$m^*(A+y) = \inf_{A \subset \cup I_n + y} \sum_{k \in I} l(I_n + y)$$

= $\inf \sum_{k \in I} l(a_{n_k} + y, b_{n_k} + y)$
= $\inf \sum_{k \in I} (b_{n_k} + y - a_{n_k} - y)$
= $\inf \sum_{k \in I} (b_{n_k} - a_{n_k})$

Thus, outer measure is translation invariant.

b) Let E be a measurable set, let $y \in \mathbb{R}$, and let A be any set. Since E is measurable, we have

$$m^*(A) = m^*(A \cap E) + m^*(A \cap \tilde{E})$$

In addition, since m^* is translation invariant, this yields,

$$m^{*}(A) = m^{*}(A - y) = m^{*}((A - y) \cap E) + m^{*}((A - y) \cap \tilde{E})$$

$$= m^{*}(((A - y) \cap E) + y) + m^{*}(((A - y) \cap \tilde{E}) + y)$$

$$= m^{*}(A \cap (E + y)) + m^{*}(A \cap (\tilde{E} + y))$$

$$= m^{*}(A \cap (E + y)) + m^{*}(A \cap (\tilde{E} + y))$$

Thus, E + y satisfies the definition of measurability and hence is measurable.

Problem 4.

Suppose $m^*A=0$ and B is measurable. Let I_{n_A} be an open cover consisting of open intervals for A and I_{n_B} be the same for B. Then,

$$m^*(A \cup B) = \inf \sum l(I_n)$$

$$= \inf \sum l((I_{n_A} \cup I_{n_B}))$$

$$= \inf \sum [l(I_{n_B}) + l(I_{n_A} \setminus I_{n_B})]$$

$$= m^*(B) - m^*(A \setminus B)$$

Removing elements from A will only introduce the possibility of smaller open covers for the new set $A \setminus B$. Thus, $m^*(A \setminus B) \le m^*(A) = 0$. Furthermore, we know that outer measure is non-negative, so $m^*(A \setminus B) = 0$.

Thus, we have,

$$m^*(A \cup B) = m^*(B) - m^*(A \setminus B)$$

= $m^*(B) - 0 = m^*(B)$

Thus, if $m^*A = 0$, then $m^*(A \cup B) = m^*B$.