Mean-reversion strategy Quantitative Finance (28E35600)

Jaakko Wallenius

5/4/2020

Content

- Strategy: Buy the losers
- Algorithm
- Substitution

 Long-short strategies
- Backtesting
- Risk analysis
- Summary

Strategy: Buy the losers

- The strategy I developed was motivated by empirical observation: stocks that have lost a lot of their value in the previous month tend to mean-revert
- The ideology of the strategy is converse to the commonly known quant strategy: Buy winners, sell losers (momentum)
 - This maybe the best explanation why the strategy seems to work!
- Other rationale for the strategy:
 - Investor overreaction
 - Buying losers is uncomfortable
 - Crowding out of the converse strategy

Algorithm: Investment universe

- I use CRSP Monthly Stock data (1999/01-2019/12). The data is retrieved from Wharton Research Data Services (WRDS).
- Factors (asset pricing model regressions) are from Kenneth French's webpage (https://mba.tuck.dartmouth.edu/pages/faculty/ ken.french/data_library.html).
- The data is **filtered by market value (ME)** to ensure applicability for a significant asset manager. For each month the smallest 10% by lagged ME (ME_{t-1}) is filtered out of the data.
- As a result of the adjustments and filtering we have restricted investment universe compared to whole CRSP dataset. In the sample period 1999/01-2019/11 this leads somewhat higher return for the "market portfolio" of the universe. Also the restricted universe is more volatile.

Algorithm

- Sort investment universe into K portfolios by lagged return RET_{t-1} (in ascending order)
 - Sorting is based on breakpoints (sample K-quantiles)
 - We have set of portfolios $\{P_1, P_2, ..., P_K\}$
 - P₁ is the portfolio (set of stocks) with the worst performance in the previous month (so called **losers**)
 - P_K is the set of **winner** stocks
- 2 Buy portfolio P_1 (losers)
 - The positions are equally-weighted
- After month of holding, sell the portfolio and go back to 1. step

Algorithm: 5-Quantile performance

Figure: Cumulative returns (log scale) of 5-Quantile mean reversion portfolios. 1-Quantile portfolio is named "Losers" (stocks with the worst performance in the last month). Similarly 5-Quantile portfolio is "Winners" (stocks with the best performance in the last month). Portfolios are rebalanced monthly and equally weighted. Portfolios are monitored from 1999/01 to 2019/12 using restricted CRSP data as the investment universe. Universe ew is the equally weighted market portfolio of the investment universe.

Jaakko Wallenius Mean-reversion strategy 5/4/2020

6 / 17

Algorithm: K-Quantile loser performance

Figure: Cumulative returns (log scale) of K-Quantile partition loser portfolios, K = 5, 10, 20, 50. Portfolios are rebalanced monthly and equally weighted. *Universe ew* is the equally weighted market portfolio of the investment universe.

Long-short strategies

- Two long-short strategies are formed
 - 20-Quantile long-short: $P_1 P_{19}$
 - 50-Quantile long-short: $P_1 P_{47}$
- These motivated by the observation that the winner portfolio is not worst performing, but a portfolio small distance behind the winner portfolio
- As a general rule, a long-short strategy from K-Quantile mean-reversion portfolios could be formed as:

$$P_1 - \#(P_K)$$

$$\#(P_K) = \lceil K \cdot 0.95 \rceil$$

Long-short strategies: Barplots

Figure: Monthly mean returns of 20-Quantile mean-reversion portfolios. Best returning portfolio (Losers) has monthly mean return of 2.52%. The worst returning portfolio (19th-quantile) has monthly mean return of 0.82%.

Long-short strategies: Barplots

Figure: Monthly mean returns of 50-Quantile mean-reversion portfolios. Best returning portfolio (Losers) has monthly mean return of 3.29%. The worst returning portfolio (46th-quantile) has monthly mean return of 0.71%.

Backtesting

Table: Periodic performance of selected *K*-Quantile mean-reversion portfolios. The backtesting sample (21 years, 252 months) is partitioned into 7 3-year sub-periods. The monthly mean return (%) of portfolios for the periods.

	Periods						FS	
Portfolio	.09:01	,02,01	* ,05. [.] 01	, '08',7	,11,12	3,74,76	,17,70	,99,19
50-Q Losers 20-Q Losers 50-Q Long-short 20-Q Long-short Universe ew	6.86 4.87 5.74 3.83 1.54	5.24 4.30 3.42 2.59 1.90	1.11 0.63 0.69 0.20 0.55	6.57 4.40 5.88 3.61 1.03	1.74 1.57 0.52 0.19 1.49	0.62 0.77 0.39 0.64 0.67	0.87 1.11 0.46 0.86 0.91	3.29 2.52 2.44 1.70 1.16

- The results are robust
 - ullet when restricting the investment universe to largest 70% by lagged market value (ME_{t-1})
 - when using return data which does not include distribution to the shareholders (RETX instead of RET)

Backtesting: sampled time serieses

Figure: **50-Quantile Losers and Winners, time series sampled**. Time serieses of portfolio returns are sampled for all sub-time serieses of 36-month (3-year) periods. Black line indicates the average path.

Risk analysis: metrics

Table: **Risk metrics of the selected portfolios**. The metrics are calculated from the full backtesting sample (1999/01-2019/12) using monthly returns. See the report for further definitions of the metrics. Blue indicates maximum of all the portfolios studied. Red indicates minimum of all the portfolios studied.

	ii.	; <i>k</i>	Jeviation Sharpe	ratio	ratio Sortino	ratio Nax drai	wdown
Portfolio	Volatilit	Semi-	Sharpe	ratio NAR	Sortine	Max a.	min
50-Q Losers	13.58	6.13	0.231	6.17	0.536	-59.79	-27.29
20-Q Losers	11.68	5.99	0.203	4.71	0.421	-59.57	-26.40
50-Q Long-short	10.49	4.41	0.219	3.77	0.553	-47.60	-24.85
20-Q Long-short	8.51	3.93	0.183	2.34	0.433	-40.64	-20.69

13 / 17

Risk analysis: α s

Table: Asset pricing monthly α s of selected portfolios. The regression are calculated from the full backtesting sample (1999/01-2019/12) using monthly returns. (***), (**) and (*) indicate statistical significance on levels 0.01, 0.05 and 0.1, respectively.

Portfolio	CAPM alpha	FF-3 alpha olo	CAR-A alpha	EF.5 alphaolo
50-Q Losers	2.0 (***)	1.9 (***)	2.44 (***)	2.75 (***)
20-Q Losers	1.33 (***)	1.24 (***)	1.67 (***)	1.92 (***)
50-Q Long-short	1.81 (***)	1.82 (***)	2.34 (***)	2.51 (***)
20-Q Long-short	1.14 (**)	1.16 (**)	1.59 (***)	1.7 (***)

4□ > 4□ > 4 = > 4 = > = 99

14 / 17

Risk analysis: drawdown plots

Figure: **50-Quantile Losers underwater drawdown plot**. Red line indicates the rolling-max drawdown. Shaded periods are recessions/economic downturns (Mar 2001- Nov 2001 and Dec 2007- June 2009).

Risk analysis: drawdown plots

Figure: 50-Quantile Long-short strategy underwater drawdown plot. Red line indicates the rolling-max drawdown. Shaded periods are recessions/economic downturns (Mar 2001- Nov 2001 and Dec 2007- June 2009).

Mean-reversion strategy

Summary

- 50-Quantile Losers and 50-Quantile Long-short perform very well in the backtesting sample
 - 50-Quantile Losers grow by factor of 481.67 during 1999/01-2019/12 (28.04 when the universe is ME restricted to 70% largest)
 - 50-Quantile Long-short grow by factor of 138.25 (9.53)
- 50-Quantile Losers and 50-Quantile Long-short produce significant alpha w.r.t. all common asset pricing models in the full backtesting sample (1999/01-2019/12)
- In risk-return terms 50-Quantile Losers and 50-Quantile Long-short are best portfolios of the study