VACACIONES DIVERTIÚTILES

ASOCIACIÓN EDUCATIVA SACO OLIVEROS

Chapter 5

4TH
SECONDA
RY

SISTEMA DE ECUACIONES LINEALES

ALGEBRA

indice

01. MotivatingStrategy >

 \bigcirc

02. HelicoTheory

03. HelicoPractice

04. HelicoWorshop

 \bigcirc

Historia

Los sistemas de ecuaciones lineales fueron ya resueltos por los babilonios, los cuales llamaban a las incógnitas con palabras tales como longitud, anchura, área, o volumen, sin que tuvieran relación con problemas de medida. Un ejemplo tomado de una tablilla babilónica plantea la resolución de un sistema de ecuaciones en los siguientes términos: 1/4 anchura + longitud = 7 manos longitud + anchura = 10 manos También resolvían sistemas de ecuaciones, donde alguna de ellas era cuadrática. Los griegos también resolvían algunos sistemas de ecuaciones, pero uti1izando métodos geométricos. Thymaridas (400 a. de C.) había encontrado una fórmula para resolver un determinado sistema de n ecuaciones con n incógnitas. Diophante resuelve también problemas en los que aparecían sistemas de ecuaciones, pero transformándolos en una ecuación lineal. Los sistemas de ecuaciones aparecen también en los documentos indios. No obstante, no llegan a obtener métodos generales de resolución, sino que resuelven tipos especiales de ecuaciones. El libro El arte matemático, de un autor chino desconocido (siglo III a. de C.), contiene algunos problemas donde se resuelven ecuaciones. En ellos encontramos un esbozo del método de las matrices para resolver sistemas de ecuaciones lineales. Uno de dichos problemas equivale a resolver un sistema de tres ecuaciones lineales por dicho método matricial.

MOTIVATING STRATEGY

Material Digital

Resumen

- Definición
- Métodos de Solución
- Estudio de las Soluciones

HELICO THEORY

SISTEMA DE ECUACIONES LINEALES

Sea:

$$ax + by = c$$

$$mx + ny = p$$

Donde:

x e y son las incógnitas a, b, c, m, p, q son coeficientes

Métodos de Resolución

Reducción

Resolver:

$$\begin{cases}
5x + y = 17 \\
2x - y = 4
\end{cases}$$

$$7x = 21$$

$$x = 3$$

Reemplazamos en cualquiera de las 2 ecuaciones del Sistema, elegiremos la primera ecuación

$$5(3) + y = 17$$

$$y = 2$$

Por lo tanto:

$$C.S. = \{ 3; 2 \}$$

Sustitución

Resolver:

$$\begin{cases} x + 2y = 9 & \dots (1) \\ x + y = 7 & \dots (2) \end{cases}$$

En (1) despejamos x

$$x = 9 - 2y$$

Sustituimos en la ecuación (2)

$$(9-2y)+y=7$$

$$(9 - y) = 7$$

$$y=2$$
 $x=5$

Por lo tanto:

$$C.S. = \{ 5; 2 \}$$

Estudio de las Soluciones

Sea:

$$ax + by = c$$
$$mx + ny = p$$

Sistema Compatible

Determinado (Solución Única)

$$\left(\frac{a}{m}\neq\frac{b}{n}\right)$$

Sistema Compatible
Indeterminado (Soluciones Infinitas)

$$\frac{a}{m} = \frac{b}{n} = \frac{c}{p}$$

Sistema Incompatible o Inconsistente (No existe Solución)

$$\frac{a}{m} = \frac{b}{n} \neq \frac{c}{p}$$

 \bigcirc

Problema 01

Problema 02

Problema 03

Problema 04

Problema 05

Siendo:

$$x + y = 6 \dots (1)$$

$$y + z = 5 \dots (2)$$

$$x + z = 9 \dots (3)$$

Hallar el valor de:

$$(x+y)^{(z-2)}$$

Sumamos todas las ecuaciones

$$x + y = 6$$

$$y + z = 5$$

$$x + z = 9$$

$$2(x + y + z) = 20$$

 $x + y + z = 10 \dots (4)$

Reemplazamos (1) en (4)

$$6+z=10 \quad \triangleright \quad z=4$$

Nos piden:

$$(x+y)^{(z-2)}$$

$$(6)^{(4-2)}$$

$$(6)^{(2)}$$

Halle el valor de x si:

$$\int 3(x-y) - x = 4 \dots (1)$$

$$5x - 2y = -1 \dots (2)$$

Primero reducimos la ecuación (1)

$$3x - 3y - x = 4$$

$$\int 2x - 3y = 4 \dots (1)$$

$$5x - 2y = -1 \dots (2)$$

Ahora procederemos a eliminar y para poder encontrar el valor de x

Problema 03

Halle el valor de 2x - y; si:

$$\frac{x-1}{y} = 1 \dots (1)$$

$$\frac{y+2}{x} = \frac{5}{6} \dots (2)$$

$$\frac{y+2}{x} = \frac{5}{6}$$
 ... (2)

Primero reducimos las ecuaciones

$$x-1=y \qquad \dots (1)$$

$$x-1=y$$
 \Rightarrow $x-y=1$...(1) \Rightarrow $2(-6)-(-7)$ $6y+12=5x$ \Rightarrow $6y-5x=-12$...(2) \Rightarrow $-12+7$

Ahora procederemos a eliminar x para poder encontrar el valor de y

$$...(1)x5$$
 $\Rightarrow 5x - 5y = 5$

...(1)x5
$$5x - 5y = 5$$

...(2)x1 $6y - 5x = -12$ +

$$y = -7$$

Reemplazamos en (1)

$$x - (-7) = 1$$

$$x = -6$$

Resolución

Nos piden 2x - y

$$-12 + 7$$

CLAVE

Alicia va a comprar artículos a una tienda de fantasía y decide comprar, pulseras y aretes.

- ➤ Si adquiere 4 pulseras y 3 aretes, pagaría S/29.
- ➤ Si adquiere 2 pulseras y 1 arete, pagaría S/13.

¿Cuánto pagará por 1 pulsera y 1 arete?.

Sea:

- ✓ El precio unitario de la "a" soles
- ✓ pulsera: "b" soles

Ahora planteamos el problema:

$$4a + 3b = 29 \dots (1)$$

$$2a + 1b = 13 \dots (2)$$

Ahora procederemos a eliminar b para poder encontrar el valor de a

a = 5

Nesoluci

Reemplazaremos en (2):

$$2a + 1b = 13$$

$$2(5) + 1b = 13$$

$$b = 3$$

- El precio unitario de la "5" soles
- pulsera: El preció unitario del arete: "3" soles

Por lo tanto Alicia pagará por 1 pulsera

y 1 arete S/8

CLAVE (E

El área a pintar de una pared es 2xy u². Si los valores de x e y están en el sistema de ecuaciones siguiente

$$\int x - y = 15...(1)$$

$$\sqrt{x} + \sqrt{y} = 5...(2)$$

Calcular el área a pintar en u²

En la ecuación (1) aplicamos la identidad notable Diferencia de Cuadrados

$$x - y = 15 \qquad (\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) = 15$$

Luego

$$\sqrt{x} + \sqrt{y} = 5$$

$$\sqrt{x} - \sqrt{y} = 3$$

$$2\sqrt{x}=8$$

$$\sqrt{x} = 4$$

$$x = 16$$

Reemplazamos en (1)

$$16 - y = 15$$

$$y = 1$$

Nos piden 2xy

Problemas Propuestos

Problema 07

Problema 08

Problema 10

HELICO TALLER

Si el Sistema

$$(a+4)x + (b+1)y = 24$$

$$(a-2)x + (b-3)y = 8$$

es compatible indeterminado, calcule a+b.

A) 3

B) 4

C) 5

D) 10

E) 15

Problema 07

Si el Sistema

$$(2+m)x + 4y = 9$$

$$(1+2m)x + 5y = 7$$

es incompatible, halle el valor de m.

A) 1

B) 2

D) 4

E) 1/2

C) 3

 \bigcirc

tiene como solución x=3; y=2.

 $\begin{cases} (a+b)x + (a-b)y = 15 \\ (2a-3b)x - (2a-5b)y = 12 \end{cases}$

Halle el valor de a - b en:

A) -9

B) -8

C) -10

D) 9

E) 8

Julia pregunta por 2 artículos a y b para comprar y recibe la siguiente información:

- ➢ Si adquiere 5 artículos a y 4 artículos, b tendría que pagar S/48.
- Si adquiere 3 artículos a y 2 artículos, b tendría que pagar S/28.

¿Cuánto pagaría por 2 artículos a y 1 artículo b?

- A) S/14
- B) S/16
- C) S/18

- D) S/20
- E) S/22

En la granja del señor Manuel hay gallinas, pavos y cerdos; se sabe que entre gallinas y pavos se cuentan 8 animales, entre pavos y cerdos se cuentan 13 animales, entre gallinas y cerdos se cuentan 11 animales.

Calcule la diferencia de cerdos y gallinas.

A) 1

B) 2

C) 3

D) 4

E) 5