

Regressão e redes neurais rasas

Juvenal J. Duarte

Multilayer Perceptron (MLP)

Introdução

Juvenal J. Duarte

Redes Neurais Artificiais (RNAs)

1940 – O surgimento dos primeiros computadores dá início a busca pelos primeiros modelos matemáticos do sistema nervoso.

1943 – Proposta de um neurônio artificial por McCulloch e Pitts, mostrando que funções complexas podiam ser modeladas por redes de neurônios simples.

1958 – Primeira RNA proposta por Rosenblatt: o perceptron. Nessa rede foi proposta um dos primeiros algoritmos de aprendizado. Estudos posteriores demonstraram que o modelo possuia desempenho limitado apenas a dados linearmente separáveis.

1989 – Segundo Cybenko uma rede com uma camada intermediária pode representar qualquer função continua, com duas camadas intermediárias qualquer função.

O Perceptron

O Perceptron

O Perceptron

O perceptron, um único neurônio, possui as mesmas características de um classificador por regressão logística.

E se estendermos a arquitetura do classificador para multiplos perceptrons interconectados?

O Multilayer Perceptron

A arquitetura de Redes Neurais Artificiais (RNA) é organizada em múltiplos neurônios distribuídos em camadas.

O Multilayer Perceptron: Arquitetura

Camada de entrada:

Cada neurônio na camada de entrada representa um atributo no dataset.

Camada(s) intermediárias:

Pode ter tantos neurônios e camadas quanto desenvolvedor desejar. Quanto maior a arquitetura, mais complexa é a função de decisão/regressão.

Camada de saída:

O(s) neurônio(s) na camada de saída aprensentam a predição da rede. Usa-se um neurônio para problemas binários ou um neurônio por classe para classificação multi-classe (One Hot Encoding).

O Multilayer Perceptron: Arquitetura

Camada de entrada:

Cada neurônio na camada de entrada representa um atributo no dataset.

Camada(s) intermediárias:

Pode ter tantos neurônios e camadas quanto desenvolvedor desejar. Quanto maior a arquitetura, mais complexa é a função de decisão/regressão.

Camada de saída:

O(s) neurônio(s) na camada de saída aprensentam a predição da rede. Usa-se um neurônio para problemas binários ou um neurônio por classe para classificação multi-classe (One Hot Encoding).

neurônios não possuem peso ou

ativação (nada é calculado!).

Redes Neurais Artificiais

Poder de representatividade

Juvenal J. Duarte

O Multilayer Perceptron: Interpretação

Visão Computacional: Interpretação

Curiosidade:

Comparação de funções de decisão, manual do SKLearn

Multilayer Perceptron (MLP)

Funcionamento

Juvenal J. Duarte

O Multilayer Perceptron: Fluxo

O ciclo de feed forward e backpropagation se repete por tantas épocas quanto parametrizadas.

O Multilayer Perceptron: Propagação

Feed Forward

O algoritmo de Feed Forward propaga os valores de entrada por cada um dos neurônios, camada por camada

O Multilayer Perceptron: Propagação

1. Associa cada um dos valores da camada de entrada à pesos e computa a ativação de cada um dos neurônios da segunda camada.

O Multilayer Perceptron: Propagação

2. Associa cada uma das ativações da camada anterior à pesos e computa a ativação da camada de saída.

O Multilayer Perceptron: Retro-Propagação

Tem como objetivo corrigir os erros cometidos pela rede através do ajuste dos pesos intermediários.

O algoritmo Backpropagation propaga o erro verificado nos outputs nos sentido contrário da rede, ajustando cada um de seus pesos.

O Multilayer Perceptron: Retro-Propagação

1. Calcula o gradiente em relação a cada um dos pesos conectados diretamente a camada de saida, atualizando-os em seguida.

Correção dos pesos

Backpropagation

O Multilayer Perceptron: Retro-Propagação

2. Propaga o erro para a camada anterior à de saída, ajustando seus respectivos pesos.

Multilayer Perceptron (MLP)

Formulação Matemática

Juvenal J. Duarte

Notação

Variável, quando maiúscula com a seta sobreposta indica vetor/matriz, quando minúscula sem seta indica escalar.

O valor sobreposto entre colchetes, represetado por l, indica a camada da rede.

O valor abaixo da variável, representado por k, faz referência ao neurônio da camada em questão.

O Multilayer Perceptron: definições

Quais as variáveis que temos por neurônio?

```
\vec{A}^{[l-1]}: entradas vindas dos neurônios da camada anterior. Quando
       l=0, representa os valores de cada um dos atributos de entrada.
  z_{k}^{[l]}: agregação linear do neurônio k na camada l.
  a_k^{[l]}: saída do neurônio k na camada l.
   b_k^{[l]}: bias usado no neurônio k, camada l.
 \overrightarrow{W}_{\nu}^{[l]}: vetor de pesos para cada uma das saidas camada l-1,
        usado no neurônio k.
```


O Multilayer Perceptron: definições

Comparativo com a regressão logística

$$\vec{A}^{[l-1]}: \ \vec{X}$$

$$z_k^{[l]}: \ \vec{X} \times \vec{\beta} + \alpha$$

$$a_k^{[l]}: \ \hat{y} = \text{sigmoid}(z_n^{[l]}) = \text{sigmoid}(\vec{X} \times \vec{\beta} + \alpha)$$

$$\vec{W}_k^{[l]}: \ \vec{\beta}$$

$$b_k^{[l]}: \ \alpha$$

Notação: exercício

Onde se encontra $a_1^{[2]}$ no diagrama ao lado?

Notação: exercício

Onde se encontra $a_1^{[2]}$ no diagrama ao lado?

Definições:

Um único neurônio

Definições:

Um único neurônio

Pelas vantagens do cálculo vetorial, as variáveis são definidas por camadas e não por neurônio.

O Multilayer Perceptron: feed-forward

O Multilayer Perceptron: feed-forward

Feed-forward:

Exemplo de notação

Arquitetura =
$$[4, 5, 1]$$

L = 3
$$n^0 = 4$$
; $n^1 = 5$; $n^2 = 1$

Linhas de dados

$$m = 200$$

Feed-forward: Cálculo Vetorial

Feed-forward: Cálculo Vetorial

Feed-forward: Cálculo Vetorial

Entrada

Camada intermediária

Saída

Exercício: dimensões de dados

Calcule o valor esperado para as dimenssões de cada uma das variáveis, para cada um dos exemplos, para cada uma das camadas:

 $W^{[l]}$.shape = ? $A^{[l-1]}$.shape = ? $Z^{[l]}$.shape = ? $A^{[l]}$.shape = ?

Exemplo 1 Exemplo 2 Exemplo 3

Multilayer Perceptron (MLP)

Funções de ativação

Juvenal J. Duarte

Porque usar uma função de ativação?

Exemplo 1: sem ativação

$$f(x) = 3x + 1$$

$$g(x) = x + 5$$

$$h(x) = f(x) + g(x) = 4x + 6$$

Exemplo 2: com ativação

$$f(x) = \frac{1}{1 + e^{-(3x+1)}}$$

$$g(x) = \frac{1}{1 + e^{-(x+5)}}$$

$$h(x) = f(x) + g(x) = \frac{1}{1 + e^{-(3x+1)}} + \frac{1}{1 + e^{-(x+5)}}$$

Porque usar uma função de ativação?

Exemplo 1: sem ativação

Exemplo 2: com ativação

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Leaky/Parametric Rectified Linear Unit (ReLU)

Problemas comuns: Sigmoid / Função logística: - Não centrada em zero - Aprendizado lento quando |X| é alto - Computacionalmente cara Rectified Linear Unit (ReLU) - Neurônios desativados quando entradas < 0

Funções de ativação: Sigmoid Vs ReLU

A derivada da função nestas regiões é praticamente zero, logo as atualizações dos pesos pelo gradiente é praticamente nenhuma.

Melhorias na função ReLU

Juvenal J. Duarte

Se analisada como um todo, a saída da rede neural artificial nada mais é que uma função composta, recursiva pelas camadas da rede. Se chamamos a última camada simplesmente de $f_1^{[L]}(x)$, esta função é uma composição de todas as funções da camada anterior $f_1^{[L-1]}(x)\cdots f_k^{[L-1]}(x)$, que por sua vez dependem são composições das funções da camada anterior $f_1^{[L-2]}(x)\cdots f_k^{[L-2]}(x)$. A recursão segue até a camada de entrada, onde os valores são pré estabelecidos e não calculados.

Derivadas (iteração reversa nas camadas)

camada saída

$$\frac{\partial J}{\partial A^L} \quad \frac{\partial A^L}{\partial Z^L} \frac{\partial Z^L}{\partial A^{L-1}} \quad \frac{\partial A^{L-1}}{\partial Z^{L-1}} \frac{\partial Z^{L-1}}{\partial A^{L-2}} \quad \frac{\partial A^{L-2}}{\partial Z^{L-2}} \frac{\partial Z^{L-2}}{\partial A^{L-3}}$$

$$\overrightarrow{dW}^L$$
 \overrightarrow{dB}^L

$$\begin{array}{ccc}
\overrightarrow{dW}^{L} & \overrightarrow{dW}^{L-1} & \overrightarrow{dW}^{L-2} \\
\overrightarrow{dB}^{L} & \overrightarrow{dB}^{L-1} & \overrightarrow{dB}^{L-2}
\end{array}$$

primeira camada

$$\dots \frac{\partial A^1}{\partial Z^1} \frac{\partial Z^1}{\partial A^0}$$

$$\overrightarrow{dW}^1$$
 \overrightarrow{dB}^1

entrada

$$A^0 = \vec{X}$$

Derivadas (iteração reversa nas camadas)

camada saída

$$\frac{\partial J}{\partial A^L} \quad \frac{\partial A^L}{\partial Z^L} \frac{\partial Z^L}{\partial A^{L-1}}$$

$$\overrightarrow{dW}^L$$
 \overrightarrow{dB}^L

$$\frac{dW^{L-1}}{d\vec{B}^{L-1}}$$

Resumindo:

- A perda (loss) é calculada a partir da predição da última camada, A^L .
- $\frac{\partial J}{\partial A^L} \quad \frac{\partial A^L}{\partial Z^L} \quad \frac{\partial Z^L}{\partial A^{L-1}} \quad \frac{\partial A^{L-1}}{\partial Z^{L-1}} \quad \frac{\partial Z^{L-1}}{\partial Z^{L-2}} \quad \frac{\partial A^{L-2}}{\partial Z^{L-2}} \quad \frac{\partial A^{L-2}}$
 - A^{L-1} é calculado aplicando a função de ativação sobre Z^{L-1} .
 - \overrightarrow{dW}^L = $\overrightarrow{dW}^{L-1}$ = $\overrightarrow{dW}^{L-1}$ = $\overrightarrow{dW}^{L-1}$ e calculado aplicando a rangas de daragas asua Z^{L-1} mais o bias Z^{L-1}

Obtendo recursivamente as derivadas parciais através da decomposição da função é possível saber quanto cada componente contribuiu para o erro auferido!!!

Tantas derivadas para...

$$\overrightarrow{W}^{[l]} = \overrightarrow{W}^{[l]} - learning_{rate} * \overrightarrow{dW}^{[l]}$$

$$\overrightarrow{B}^{[l]} = B^{[l]} - learning_{rate} * \overrightarrow{dB}^{[l]}$$

...atualizar cada um dos pesos da rede, em cada camada.

