

planetmath.org

Math for the people, by the people.

Heyting algebra

Canonical name HeytingAlgebra
Date of creation 2013-03-22 16:33:03
Last modified on 2013-03-22 16:33:03

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 20

Author CWoo (3771)
Entry type Definition
Classification msc 06D20
Classification msc 03G10

Synonym pseudo-Boolean algebra

Related topic QuantumTopos

Related topic Lattice

Defines Heyting lattice

A Heyting lattice L is a Brouwerian lattice with a bottom element 0. Equivalently, L is Heyting iff it is relatively pseudocomplemented and pseudocomplemented iff it is bounded and relatively pseudocomplemented.

Let a^* denote the pseudocomplement of a and $a \to b$ the pseudocomplement of a relative to b. Then we have the following properties:

- 1. $a^* = a \rightarrow 0$ (equivalence of definitions)
- 2. $1^* = 0$ (if $c = 1 \to 0$, then $c = c \land 1 \le 0$ by the definition of \to .)
- 3. $a^* = 1$ iff a = 0 $(1 = a \to 0$ implies that $c \land a \le 0$ whenever $c \le 1$. In particular $a \le 1$, so $a = a \land a \le 0$ or a = 0. On the other hand, if a = 0, then $a^* = 0^* = 0 \to 0 = 1$.)
- 4. $a \le a^{**}$ and $a^* = a^{***}$ (already true in any pseudocomplemented lattice)
- 5. $a^* \le a \to b$ (since $a^* \land a = 0 \le b$)
- 6. $(a \rightarrow b) \land (a \rightarrow b^*) = a^*$

Proof. If $c \wedge a = 0$, then $c \wedge a \leq b$ so $c \leq (a \to b)$, and $c \leq (a \to b^*)$ likewise, so $c \leq (a \to b) \wedge (a \to b^*)$. This means precisely that $a^* = (a \to b) \wedge (a \to b^*)$.

- 7. $a \to b \le b^* \to a^*$ (since $(a \to b) \land b^* \le (a \to b) \land (a \to b^*) = a^*$)
- 8. $a^* \lor b \le a \to b$ (since $b \land a \le b$ and $a^* \land a = 0 \le b$)

Note that in property 4, $a \leq a^{**}$, whereas $a^{**} \leq a$ is in general not true, contrasting with the equality a = a'' in a Boolean lattice, where ' is the complement operator. It is easy to see that if $a^{**} \leq a$ for all a in a Heyting lattice L, then L is a Boolean lattice. In this case, the pseudocomplement coincides with the complement of an element $a^* = a'$, and we have the equality in property 7: $a^* \vee b = a \rightarrow b$, meaning that the concept of http://planetmath.org/RelativelyPseudocomplementedrelative pseudocomplementation coincides with the material implication in classical propositional logic.

A Heyting algebra is a Heyting lattice H such that \rightarrow is a binary operator on H. A Heyting algebra homomorphism between two Heyting algebras is a lattice homomorphism that preserves 0, 1, and \rightarrow . In addition, if f

is a Heyting algebra homomorphism, f preserves psudocomplementation: $f(a^*) = f(a \to 0) = f(a) \to f(0) = f(a) \to 0 = f(a)^*$. Remarks.

- In the literature, the assumption that a Heyting algebra contains 0 is sometimes dropped. Here, we call it a Brouwerian lattice instead.
- Heyting algebras are useful in modeling intuitionistic logic. Every intuitionistic propositional logic can be modelled by a Heyting algebra, and every intuitionistic predicate logic can be modelled by a complete Heyting algebra.