Khôlles de Mathématiques - Semaine 18

Hugo Vangilluwen, Kylian Boyet

20 Février 2024

1 L'ensemble des nombres premiers est infini

Démonstration. Notons l'ensemble des nombres premiers $\mathcal{P} = \{n \in \mathbb{N} \mid |\mathcal{D}(n) \cup \mathbb{N}| = 2\}$ Par l'absurde, supposons que \mathcal{P} est fini.

Posons
$$m = 1 + \prod_{p \in \mathcal{P}} p \in \mathbb{N}$$
.

Posons $m=1+\prod_{p\in\mathcal{P}}p\in\mathbb{N}.$ Comme $2\in\mathcal{P},\,m\geqslant 2.$ Donc m admet un diviseur premier, $\exists q\in\mathcal{P}:q\mid m.$ Donc $q\wedge m=q.$

Par ailleurs,
$$m=1+q\left(\prod_{\substack{p\in\mathcal{P}\\p\neq q}}p\right)$$
. Donc $m-q\left(\prod_{\substack{p\in\mathcal{P}\\p\neq q}}p\right)=1$. D'après le théorème de Bézout,

 $q \wedge m = 1$.

Donc q = 1 ce qui est une contradiction avec $q \in \mathcal{P}$.

2 Caractérisation de la valuation p-adique

Soit $n \in \mathbb{N}^*, p \in \mathcal{P}, k_0 \in \mathbb{N}$.

$$\nu_p(n) = k_0 \iff \exists m \in \mathbb{Z} : \begin{cases} n = p^{k_0} m \\ m \land p = 1 \end{cases}$$
 (1)

 $D\acute{e}monstration. \implies \text{Supposons que } \nu_p(n) = k_0.$

Par définition de la valuation p-adique, $p^{\nu_p(n)} \mid n$ donc $p^{k_0} \mid n$. Notons $m \in \mathbb{Z}$ le quotient de la division euclidienne de n par p^{k_0} . Nous avons $n = p^{k_0}m$.

Comme $m \wedge p \in \mathcal{D}(p) \cap \mathbb{N}$, $m \wedge p \in \{1, p\}$. Par l'absurde, supposons que $m \wedge p = p$.

$$p \mid m \implies \exists m' \in \mathbb{Z} : m = pm'$$

$$\implies \exists m' \in \mathbb{Z} : n = pp^{k_0}m' = p^{k_0+1}m'$$

$$\implies k_0 + 1 \in \{k \in \mathbb{N} \mid p^k \mid n\}$$

$$\implies k_0 + 1 \leqslant \max\{k \in \mathbb{N} \mid p^k \mid n\} = \nu_p(n) = k_0$$

Ce qui est une contradiction donc $m \wedge p = 1$.

$$\iff$$
 Supposons $\exists m \in \mathbb{Z} : \begin{cases} n = p^{k_0} m \\ m \land p = 1 \end{cases}$

 $\iff \text{Supposons } \exists m \in \mathbb{Z} : \begin{cases} n = p^{k_0} m \\ m \wedge p = 1 \end{cases}$ Par définition de la valuation p-adique, $p^{\nu_p(n)} \mid n \text{ donc } p^{\nu_p(n)} \mid p^{k_0} m$. Or $m \wedge p = 1 \text{ donc } m \wedge p^{\nu_p(n)} = 1$ 1. D'après le théorème de Gauss, $p_{\nu_p(n)} \mid p^{k_0}$. Donc $\exists \alpha \in \mathbb{Z} : \alpha p_{\nu_p(n)} = p^{k_0}$

$$\begin{split} \alpha p_{\nu_p(n)} &= p^{k_0} \implies p^{k_0} - \alpha p_{\nu_p(n)} = 0 \\ &\implies p^{k_0} \left(1 - \alpha p^{\nu_p(n) - k_0} \right) = 0 \text{ car } k_0 \leqslant \nu_p(n) \\ &\implies \alpha p^{\nu_p(n) - k_0} = 1 \text{ car } \mathbb{Z} \text{ est intègre} \\ &\implies p^{\nu_p(n) - k_0} \in \mathcal{D}(1) \cap \mathbb{N} \\ &\implies p^{\nu_p(n) - k_0} = 1 \\ &\implies \nu_p(n) - k_0 = 0 \\ &\implies \nu_p(n) = k_0 \end{split}$$

3 Caractérisation de a|b par les valuations p-adiques et preuve de leur propriété de morphisme.

$$\forall (a,b) \in \mathbb{Z}^2, \ a|b \iff \forall p \in \mathcal{P}, \ \nu_p(a) \leqslant \nu_p(b)$$
 (2)

Démonstration. Premièrement, montrons que la valuation p-adique est un morphisme de (\mathbb{Z}^*, \times) dans $(\mathbb{N}, +)$.

Soient de tels entiers relatifs a, b.

$$\exists \ m,n \in (\mathbb{Z}^*)^2 \ : \ \left(\left(a=p^{\nu_p(a)}m\right) \ \land \ \left(m \land p=1\right)\right) \ \land \ \left(\left(b=p^{\nu_p(b)}n\right) \ \land \ \left(n \land p=1\right)\right),$$

donc $ab = p^{\nu_p(a) + \nu_p(b)} mn$ et $mn \wedge p = 1$, par la réciproque de la caractérisation des valuations p-adiques :

$$\nu_n(ab) = \nu_n(a) + \nu_n(b).$$

Prouvons le sens réciproque de la susdite caractérisation. Supposons le membre de droite. D'après le théorème de décomposition en facteurs premiers,

$$|b| = \prod_{p \in \mathcal{P}} p^{\nu_p(b)} = \prod_{p \in \mathcal{P}} p^{\nu_p(a)} (p^{\nu_p(b) - \nu_p(a)}) = \prod_{p \in \mathcal{P}} p^{\nu_p(a)} \prod_{p \in \mathcal{P}} p^{\nu_p(b) - \nu_p(a)} = |a| \prod_{p \in \mathcal{P}} p^{\nu_p(b) - \nu_p(a)},$$

la première manipulation se justifie par hypothèse et la seconde peut se justifier par le calcul. Ainsi, |a|||b| donc a|b.

Prouvons le sens direct. Supposons le membre de gauche.

Soit $p \in \mathcal{P}$. Il existe $k \in \mathbb{Z}$ tel que ak = b car a|b. Ainsi,

$$\nu_p(b) = \nu_p(ak) = \nu_p(a) + \nu_p(k) \geqslant \nu_p(a).$$

Ce qui suffit.

4 Expression du pgcd et du ppcm à partir des décomposition en facteurs premiers de a et b.

Le pgcd comme produit des p à la puissance du minimum des ν_p et le ppcm comme le produit des p à la puissance du maximum des ν_p .

$$a \wedge b = \prod_{p \in \mathcal{P}} p^{\min(\nu_p(a), \nu_p(b))}$$

$$a \vee b = \prod_{p \in \mathcal{P}} p^{\max(\nu_p(a), \nu_p(b))}$$
(3)

Démonstration. Prouvons la formule du pgcd et déduisons-en la formule du ppcm. Soient $(a,b) \in (\mathbb{Z}^*)^2$ Soit $n \in \mathcal{P}$. Il faut et il suffit de montrer que $\nu_n(a \wedge b) = m^n$

Soient $(a,b) \in (\mathbb{Z}^*)^2$. Soit $p \in \mathcal{P}$. Il faut et il suffit de montrer que $\nu_p(a \wedge b) = \min(\nu_p(a), \nu_p(b))$ pour obtenir le résultat. On a $a \wedge b | a$ et $a \wedge b | b$ donc d'après la caractérisation de la divisibilité par les valuations p-adiques, $\nu_p(a \wedge b) \leq \nu_p(a)$ et $\nu_p(a \wedge b) \leq \nu_p(b)$ donc $\nu_p(a \wedge b) \leq \min(\nu_p(a), \nu_p(b))$. Posons $m = \min(\nu_p(a), \nu_p(b))$. On a

$$|a| = \prod_{q \in \mathcal{P}} q^{\nu_q(a)} = p^m \left((p^{\nu_p(a) - m}) \prod_{q \in \mathcal{P} \setminus \{p\}} q^{\nu_q(a)} \right),$$

car par définition, $m \leq \nu_p(a)$, donc $p^m|a$, on montrerait de même que $p^m|b$, donc par définition, $p^m|a \wedge b$, donc une nouvelle fois en appliquant la caractérisation de la divisibilité par les valuations p-adiques, $m \leq \nu_p(a \wedge b)$. Finalement, $\nu_p(a \wedge b) = m$. On en déduit la formule du ppcm :

$$|a||b| = (a \wedge b)(a \vee b) \implies a \vee b = \prod_{p \in \mathcal{P}} p^{\nu_p(a) + \nu_p(b) - \min(\nu_p(a), \nu_p(b))} = \prod_{p \in \mathcal{P}} p^{\max(\nu_p(a), \nu_p(b))}$$

5 Pour p premier, $(a+b)^p \equiv a^p + b^p \mod p$, en déduire le petit Th. de Fermat (2 versions), expression du résultat dans $\mathbb{Z}/p\mathbb{Z}$.

Petit Th. de Fermat :

(i) $\forall a \in \mathbb{Z}, \ a^p \equiv a \mod p$ $\forall x \in \mathbb{Z}/p\mathbb{Z}, \ x^p = x$

 $\begin{array}{ccc} (ii) \ \forall a \in \mathbb{Z}, \ p \not | a, & \Longrightarrow & a^{p-1} \equiv 1 \mod p \\ \forall x \in \mathbb{Z}/p\mathbb{Z}, \ x^{p-1} = 1 \end{array}$

 $D\acute{e}monstration$. Soient a,b de tels entiers relatifs et soit p un nombre premier. Calculons,

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k = a^p + b^p + \sum_{k=1}^{p-1} \binom{p}{k} a^{p-k} b^k \equiv a^p + b^p \mod p,$$

car $\forall k \in [1, p-1], \ p|\binom{p}{k}$ (élémentaire), d'où le résultat. Dans $\mathbb{Z}/p\mathbb{Z}$, ce résultat s'énonce comme suit :

$$\forall (x,y) \in \mathbb{Z}/p\mathbb{Z}^2, (x+y)^p = x^p + y^p.$$

En guise d'application, démontrons le petit Th. de Fermat énoncé plus haut. Démonstration du (i). Considérons le prédicat $\mathcal{P}(\cdot)$ défini sur \mathbb{N} par :

$$\mathcal{P}(a)$$
: " $a^p \equiv a \mod p$ ".

Initialisation : Pour a = 0, rien à faire, donc $\mathcal{P}(0)$ est vrai.

Hérédité : Soit $a \in \mathbb{N}$ tel que $\mathcal{P}(a)$. Calculons,

$$(a+1)^p \equiv a^p + 1 \mod p \stackrel{\mathcal{P}(a)}{\equiv} a + 1 \mod p,$$

donc $\mathcal{P}(a+1)$ vrai.

Par Th. de récurrence sur \mathbb{N} , $\mathcal{P}(a)$ est vrai pour tout $a \in \mathbb{N}$.

Il faut maintenant étendre le résultat à \mathbb{Z} . Soit $p \in \mathcal{P} \setminus \{2\}$, ainsi p est impair. Soit $a \in \mathbb{Z} \setminus \mathbb{N}$. Calculons,

$$a^p \equiv (-|a|)^p \mod p \equiv -|a|^p \mod p \stackrel{\text{Th. de Fermat}}{\equiv} -|a| \mod p \equiv a \mod p.$$

Si $p=2,\ a^2\equiv |a|^2\mod 2\equiv |a|\mod 2\equiv -|a|\mod 2\equiv a\mod 2$. Le (ii), soit $a\in\mathbb{Z}$ tel que $p\not|a$.

$$(p \nmid a) \land (p \in \mathcal{P}) \implies p \land a = 1,$$

d'après le (i), $p|a^p-a \implies p|a(a^{p-1}-1) \stackrel{\text{Th. de Gauss}}{\Longrightarrow} p|a^{p-1}-1 \implies a^{p-1} \equiv 1 \mod p$. Les écritures dans $\mathbb{Z}/p\mathbb{Z}$ ne posent pas de problème.s, ce qui conclut.

6 $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

Démonstration. Montrons le sens réciproque, supposons $n \in \mathcal{P}$. Soit $x \in \mathbb{Z}/n\mathbb{Z}$ tel que $x \neq \overline{0}$.

 $\exists a \in [0, p-1]$: $c = \overline{a}$, I = [0, p-1] étant un système de représentant des classes.

Comme $a \in I$, $n \not | a$, or $n \in \mathcal{P}$, donc $n \land a = 1$. Par Bezout, il existe $u, v \in \mathbb{Z}^2$ tels que au + nv = 1, donc u est l'inverse de a modulo n donc $a \in \mathbb{Z}/n\mathbb{Z}^\times$, dès lors, tout élément non nul de $\mathbb{Z}/n\mathbb{Z}$ est inversible, or c'est un anneau commutatif, donc c'est un corps.

Montrons le sens direct en raisonnant par contraposition, supposons $n \notin \mathcal{P}$.

Comme n n'est pas premier et est plus grand que 2, il admet un diviseur, d, dans $I \setminus \{0,1\} = J$. Notons d' le quotient de la division euclidienne de n par d, on a alors a = dd' et $d' \in J$. Donc $\overline{dd'} = \overline{0}$ et comme $d, d' \in J$, on a $d, d' \neq 0$, donc \overline{d} est un diviseur de zéro de $\mathbb{Z}/n\mathbb{Z}$, donc \overline{d} est un élément non nul de $\mathbb{Z}/n\mathbb{Z}$ non inversible, donc $\mathbb{Z}/n\mathbb{Z}$ n'est pas un corps. En contraposant ce que nous venons de démontrer on a le résulat. Ce qui conclut.

Les éléments inversibles d'un anneau A forment un groupe multiplicatif noté (A^{\times}, \times)

Démonstration. Soit $(A, +, \times)$ un anneau.

Un élément inversible (ou unité) est un élément de A symétrisable pour la loi \times . Posons l'ensemble des éléments inversibles $A^{\times} = \{a \in A \mid \exists b \in A : a \times b = b \times a = 1_A\}.$

★ Montrons que la LCI × se restreint bien à A^{\times} en un LCI $\times_{A^{\times}}$. Soient $(a_1, a_2) \in A^{\times 2}$. Par défintion de A^{\times} , $\exists (b_1, b_2) \in A^2 : a_1 \times b_1 = b_1 \times a_1 = 1_A$ et $a_2 \times b_2 = a_1 \times a_2 \times a_2 = a_2 \times a_1 = a_2 \times a_2 \times a_2 \times a_2 = a_2 \times a_2$ $b_2 \times a_2 = 1_A$.

$$(a_1 \times a_2) \times (b_2 \times b_1) = a_1 \times \underbrace{a_2 \times b_2}_{\text{loi associative}} \times b_1 = a_1 \times b_1 = 1_A$$
$$(b_2 \times b_1) \times (a_1 \times a_2) = b_2 \times \underbrace{b_1 \times a_1}_{\text{loi associative}} \times a_2 = b_2 \times a_2 = 1_A$$

$$(b_2 \times b_1) \times (a_1 \times a_2) = b_2 \times \underbrace{b_1 \times a_1}_{=1_A} \times a_2 = b_2 \times a_2 = 1_A$$

Donc $(a_1 \times a_2) \in A^{\times}$.

- \star La loi \times est associative donc la loi \times_{A^\times} l'est aussi.
- * 1_A vérifie $1_A \times 1_A = 1_A$ donc $1_A \in A^{\times}$.

De plus, $\forall a \in A^{\times}, 1_A \times_{A^{\times}} a = a \times_{A^{\times}} 1_A = a$ donc $\times_{A^{\times}}$ admet 1_A comme élément neutre.

* Soit $a \in A^{\times}$. Par définition de A^{\times} , $\exists b \in A : a \times b = b \times a = 1_A$. D'où $b \in A^{\times}$. En pensant les égalités ci-dessus dans A^{\times} ,

$$a \times_{A^{\times}} b = b \times_{A^{\times}} a = 1_A$$

Donc a est inversible dans A^{\times} .

Ainsi, $(A^{\times}, \times_{A^{\times}})$ est un groupe.

8 L'image directe par un morphisme d'anneau d'un sousanneau de l'anneau de départ est un sous anneau de l'anneau d'arrivée. De même pour l'image réciproque.

Démonstration. Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux et $f: A \to B$ un morphisme d'anneau. Soit A' un sous-anneau de A. Montrons que f(A') est un sous-anneau de B.

- * Par définition de $f, f(A') \subset B$ et $(B, +, \times)$ est un anneau.
- * Soient $(u,v) \in f(A')^2$. Alors $\exists (a,b) \in A'^2 : f(a) = u$ et f(b) = v. f est un morphisme d'anneau donc un morphisme de groupe de (A, +) dans (B, +) donc

$$u - v = f(a) - f(b) = f(a - b)$$

Comme A' est un sous-anneau, $a - b \in A'$. Donc $u - v \in f(A')$.

De même, f est un morphisme d'anneau donc un morphisme de monoïde de (A, \times) dans (B, \times) donc

$$u \times v = f(a) \times f(b) = f(a \times b)$$

Comme A' est un sous-anneau, $a \times b \in A'$. Donc $u \times v \in f(A')$.

 \star f est un morphisme d'anneau donc $1_B=f(1_A)$. Or A' est un sous-anneau donc $1_A\in A'$. D'où

Soit B' un sous-anneau de B. Montrons que $f^{-1}(B')$ est un sous-anneau de A.

- * Par définition de $f, f^{-1}(B') \subset A$ et $(A, +, \times)$ est un anneau.
- * Soient $(a,b) \in f^{-1}(B')^2$. f est un morphisme d'anneau donc un morphisme de groupe de (A,+)dans (B, +) donc

$$f(a-b) = \underbrace{f(a)}_{\in B'} - \underbrace{f(b)}_{\in B'} \in B'$$

Donc $a - b \in f^{-1}(B')$.

De même, f est un morphisme d'anneau donc un morphisme de monoïde de (A, \times) dans (B, \times) donc

$$f(ab) = \underbrace{f(a)}_{\in B'} \underbrace{f(b)}_{\in B'} \in B'$$

Donc $ab \in f^{-1}(B')$.

 \star f est un morphisme d'anneau donc $1_B=f(1_A).$ Or B' est un sous-anneau donc $1_B\in B'.$ D'où $1_A\in f^{-1}(B').$