Digital Audio

The mystery behind sampling and reconstruction

Spring 2019 - Audio Tech Talk Series
January 22, 2019

What is audio?

©2011. Dan Russell

Analog Audio

Digital Audio

Sampling Theorem

Sampling Theorem

A continuous time signal (analog) can be completely represented by its samples and can be recovered back when the sampling frequency $\mathbf{f_s}$ is greater than or equal to the twice the highest frequency component $\mathbf{f_m}$ of the signal. i.e.

 $f_s \ge 2 * f_m$

Examples

- Human speech (100 Hz 4,000 Hz)
- Music (20 Hz 20,000 Hz)
- Temperatue sensor (~0 Hz 0.25 Hz)

Reconstruction

There is only ONE bandlimited signal that fits the sampled points.

Caveats

- Sampled signal MUST be bandlimited -> Aliasing
- Finite bit depth (e.g. 16 bits) -> Quantization noise

Pulse Code Modulation (PCM)

Sampling Rate and Bit Depth

Bit depth = number of discrete levels -> **Dynamic range**Sampling rate = number samples per second -> **Bandwidth**

Sampling Rate

▶ 0:00 / 0:14 **●**

 $f_s = 44.1 \text{ kHz} -> f_m = 22.05 \text{ kHz}$

► 0:00 / 0:14 **←**

 $f_s = 22.05 \text{ kHz} -> f_m = 11.025 \text{ kHz}$

▶ 0:00 / 0:14 **●**

 $f_s = 11.025 \text{ kHz} -> f_m = 5.5125 \text{ kHz}$

Aliasing

Anti-Aliasing Filters

1 kHz + 8 kHz @ 16bit 44.1 kHz

1 kHz + 8 kHz @ 16bit 11.025 kHz

1 kHz + 8 kHz @ 16bit 11.025 kHz (No Anti-Aliasing filter)

▶ 0:00 / 0:14 **●**

 $f_s = 22.05 \text{ kHz} -> f_m = 11.025 \text{ kHz}$

▶ 0:00 / 0:14 **● ♦**

 f_s =22.05 kHz -> f_m =11.025 kHz (no anti-aliasing filter)

Bit Depth

Difference between 16 bit and 8 bit (with dither)

▶ 0:00 / 0:14 **● ♦**

Difference between 16 bit and 8 bit (no dither)

Quantization Noise

Dither

1 kHz sine wave @ 16 bit 44.1 kHz

1 kHz sine wave @ 8 bit 44.1 kHz (with dither)

1 kHz sine wave @ 8 bit 44.1 kHz (no dither)

Analog comparison

Format	Dynamic range	Effective Bit Depth
Cassette	40 dB	6 bits
Vinyl	60 dB	10 bits
Reel-to-Reel	80 dB	13 bits
CD	96 dB	16 bits
HD Audio	144 dB	24 bits

^{*} These are estimates -> analog hardware performance varies

Further Reading

- Sigma-Delta converter (PDM)
- Error-correction codes (EFM, Reed-Solomon, etc.)
- Perceptual Audio Coding (MP3, AAC, etc.)
- Relevant ECE Courses
 - ECE 3300: Signals & Systems
 - ECE 4270: Communcation Systems
 - ECE 3170: Random Signal Analysis
 - ECE 4670: Digital Signal Processing

Next Talk - February 5

Spectral Analysis

Decomposing audio with algorithms