# Your Knowledge Graph Embeddings are Secretly Circuits ... and You Should Treat Them as Such

*Lorenzo Loconte*University of Bari, Italy

**Robert Peharz**TU Graz, Austria

**Antonio Vergari** University of Edinburgh, UK







#### From KGE models ...

A Knowledge Graph Embedding (KGE) model defines a scoring function  $\phi$  on triples such that

$$\phi(s, p, o) \propto \log \Pr(s, p, o)$$

thus being an Energy-Based Model (EBM). Popular KGE models such as CP, RESCAL and TuckER define  $\phi$  as

$$egin{aligned} \phi_{\mathsf{CP}}(s,p,o) &= \langle \mathbf{e}_s, \mathbf{w}_p, \mathbf{e}_o 
angle &= \sum_{i=1}^R e_{si} w_{pi} e_{oi} \ \\ \phi_{\mathsf{RESCAL}}(s,p,o) &= \mathbf{e}_s^T \mathbf{W}_p \mathbf{e}_o \ \\ \phi_{\mathsf{Tucker}}(s,p,o) &= \mathcal{T} \times_1 \mathbf{e}_s \times_2 \mathbf{w}_p \times_3 \mathbf{e}_o \end{aligned}$$

KGE models have several shortcomings:

1. Exact probabilistic inference is impractical e.g.  $\mathcal{Z} = \sum_{s \in \mathcal{E}} \sum_{p \in \mathcal{R}} \sum_{o \in \mathcal{E}} \exp \phi(s, p, o)$ 

requires 
$$10^{19}$$
 evaluations of  $\phi$  for Freebase [3]

- 2. No efficient way of sampling new triples
- 3. Learning by maximum-likelihood is not supported
- 4. No principled probabilistic complex query answering e.g. "Which drugs interact with proteins associated with the diseases  $d_1$  or  $d_2$ ?"

### ...to probabilistic circuits

KGE models based on tensor factorizations can be cast to *Probabilistic Circuits* [1] modeling a probability distribution over triples in two ways:

Monotonic Restriction  $\rightarrow$  restrict the embeddings and additional parameters to be non-negative [2];

**Non-monotonic Squaring**  $\rightarrow$  square non-monotonic circuits, without additional constraints [4].





**RESCAL** 



CP, DistMult, RESCAL, TuckER encode tensor factorizations that define scoring functions that can be readily represented as tractable computational graphs with input, product and weighted sum units, called *circuits*.



## The perks

By doing so, we obtain tractable generative KGE models encoding a probability distribution over triples. This enables:

- 1. Efficient and exact probabilistic inference
  - e.g. computing  ${\mathcal Z}$  in a single feedforward pass
- 2. Efficient way of sampling of new triples
  - via ancestral or inverse transform sampling
- Learning by Maximum Likelihood Estimation and with composite objectives e.g.  $\mathcal{L}_{\text{1vsALL}} + \mathcal{L}_{\text{MLE}}$
- 4. Principled and probabilistic way to answer complex queries

Preliminary experiments with CP show that its generative counterparts can be as expressive (but come with the above perks!)

| Dataset | Model  | 1vsAll              |                     | MLE                 |                     | 1vsAll+MLE          |                     |
|---------|--------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|         |        | MRR                 | Hits@1              | MRR                 | Hits@1              | MRR                 | Hits@1              |
| Nations | СР     | 0.793 ±0.004        | 0.679 ±0.008        | _                   | _                   | _                   | _                   |
|         | CP+    | 0.801 ±0.004        | 0.695 ±0.007        | 0.788 ±0.004        | 0.683 ±0.007        | 0.795 ±0.007        | 0.692 ±0.012        |
|         | $CP^2$ | 0.796 ±0.003        | 0.700 ±0.004        | 0.801 ±0.004        | 0.698 ±0.007        | <b>0.809</b> ±0.001 | <b>0.706</b> ±0.001 |
| UMLS    | СР     | <b>0.954</b> ±0.003 | <b>0.916</b> ±0.006 | _                   | _                   | _                   | _                   |
|         | CP+    | 0.856 ±0.005        | 0.762 ±0.008        | 0.850 ±0.004        | 0.750 ±0.007        | 0.856 ±0.005        | 0.761 ±0.009        |
|         | $CP^2$ | 0.927 ±0.001        | 0.881 ±0.002        | 0.898 ±0.002        | 0.810 ±0.004        | 0.897 ±0.001        | 0.808 ±0.002        |
| Kinship | СР     | 0.858 ±0.002        | 0.773 ±0.003        | _                   | <u> </u>            | <u> </u>            | _                   |
|         | CP+    | 0.725 ±0.002        | 0.603 ±0.004        | 0.735 ±0.003        | 0.615 ±0.004        | 0.728 ±0.005        | 0.605 ±0.007        |
|         | $CP^2$ | 0.872 ±0.002        | 0.800 ±0.004        | <b>0.891</b> ±0.002 | <b>0.829</b> ±0.003 | <b>0.889</b> ±0.001 | <b>0.827</b> ±0.002 |

#### References

- [1] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. *Probabilistic Circuits:*A Unifying Framework for Tractable Probabilistic Modeling. Tech. rep. 2020.
- 2] Alexis de Colnet and Stefan Mengel. "A Compilation of Succinctness Results for Arithmetic Circuits". In: *arXiv preprint arXiv:2110.13014* (2021).
- [3] Maximilian Nickel et al. "A Review of Relational Machine Learning for Knowledge Graphs". In: *IEEE* 104.1 (2016), pp. 11–33.
- [4] Antonio Vergari et al. "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries". In: arXiv preprint arXiv:2102.06137 (2021).