Contents

1. Introduction	2
2. Symmetric key ciphers	2
3. Public key encryption and RSA	3
3.1. Factorisation	5
4. Diffie-Hellman key exchange	6
5. Elliptic curves	8
5.1. Torsion points	11
5.2. Rational points	12
6. Basic coding theory	13
6.1. First definitions	13
6.2. Nearest-neighbour decoding	13
6.3. Probabilities	13
6.4. Bounds on codes	14
7. Linear codes	15
7.1. Finite vector spaces	15
7.2. Weight and minimum distance	15
8. Codes as images	16
8.1. Generator-matrices	16
8.2. Encoding and channel decoding	16
8.3. Equivalence and standard form	16
9. Codes as kernels	17
9.1. Dual codes	17
9.2. Check-matrices	18
9.3 Minimum distance from a check-matrix	19

1. Introduction

- Encryption process:
 - Alice has a message (**plaintext**) which is **encrypted** using an **encryption key** to produce the **ciphertext**, which is sent to Bob.
 - Bob uses a **decryption key** (which depends on the encryption key) to **decrypt** the ciphertext and recover the original plaintext.
 - It should be computationally infeasible to determine the plaintext without knowing the decryption key.

• Caesar cipher:

• Add constant k to each letter in plaintext to produce ciphertext:

ciphertext letter = plaintext letter + $k \mod 26$

• To decrypt,

plaintext letter = ciphertext letter $-k \mod 26$

- The key is $k \mod 26$.
- Cryptosystem objectives:
 - Secrecy: an intercepted message is not able to be decrypted
 - Integrity: it is impossible to alter a message without the receiver knowing
 - Authenticity: receiver is certain of identity of sender
 - Non-repudiation: sender cannot claim they sent a message; the receiver can prove they did.
- **Kerckhoff's principle**: a cryptographic system should be secure even if the details of the system are known to an attacker.
- Types of attack:
 - **Ciphertext-only**: the plaintext is deduced from the ciphertext.
 - **Known-plaintext**: intercepted ciphertext and associated stolen plaintext are used to determine the key.
 - Chosen-plaintext: an attacker tricks a sender into encrypting various chosen plaintexts and observes the ciphertext, then uses this information to determine the key.
 - Chosen-ciphertext: an attacker tricks the receiver into decrypting various chosen ciphertexts and observes the resulting plaintext, then uses this information to determine the key.

2. Symmetric key ciphers

- Converting letters to numbers: treat letters as integers modulo 26, with $A=1, Z=0\equiv 26 \pmod{26}$. Treat string of text as vector of integers modulo 26.
- Symmetric key cipher: one in which encryption and decryption keys are equal.
- **Key size**: log_2 (number of possible keys).
- Caesar cipher is a **substitution cipher**. A stronger substitution cipher is this: key is permutation of $\{a, ..., z\}$. But vulnerable to plaintext attacks and ciphertext-only attacks, since different letters (and letter pairs) occur with different frequencies in English.

- One-time pad: key is uniformly, independently random sequence of integers mod 26, $(k_1, k_2, ...)$, known to sender and receiver. If message is $(m_1, m_2, ..., m_r)$ then ciphertext is $(c_1, c_2, ..., c_r) = (k_1 + m_1, k_2 + m_2, ..., k_r + m_r)$. To decrypt the ciphertext, $m_i = c_i k_i$. Once $(k_1, ..., k_r)$ have been used, they must never be used again.
 - One-time pad is information-theoretically secure against ciphertext-only attack: $\mathbb{P}(M=m\mid C=c)=\mathbb{P}(M=m).$
 - Disadvantage is keys must never be reused, so must be as long as message.
 - Keys must be truly random.
- Chinese remainder theorem: let $m, n \in \mathbb{N}$ coprime, $a, b \in \mathbb{Z}$. Then exists unique solution $x \mod mn$ to the congruences

$$x \equiv a \mod m$$
$$x \equiv b \mod n$$

- Block cipher: group characters in plaintext into blocks of n (the block length) and encrypt each block with a key. So plaintext $p = (p_1, p_2, ...)$ is divided into blocks $P_1, P_2, ...$ where $P_1 = (p_1, ..., p_n), P_2 = (p_{n+1}, ..., p_{2n}), ...$ Then ciphertext blocks are given by $C_i = f(\text{key}, P_i)$ for some encryption function f.
- Hill cipher:
 - Plaintext divided into blocks $P_1, ..., P_r$ of length n.
 - Each block represented as vector $P_i \in (\mathbb{Z}/26\mathbb{Z})^n$
 - Key is invertible $n \times n$ matrix M with elements in $\mathbb{Z}/26\mathbb{Z}$.
 - Ciphertext for block P_i is

$$C_i = MP_i$$

It can be decrypted with $P_i = M^{-1}C$.

- Let $P = (P_1, ..., P_r), C = (C_1, ..., C_r), \text{ then } C = MP.$
- Confusion: each character of ciphertext depends on many characters of key.
- **Diffusion**: each character of ciphertext depends on many characters of plaintext. Ideal diffusion is when changing single character of plaintext changes a proportion of (S-1)/S of the characters of the ciphertext, where S is the number of possible symbols.
- For Hill cipher, ith character of ciphertext depends on ith row of key this is medium confusion. If jth character of plaintext changes and $M_{ij} \neq 0$ then ith character of ciphertext changes. M_{ij} is non-zero with probability roughly 25/26 so good diffusion.
- Hill cipher is susceptible to known plaintext attack:
 - If $P = (P_1, ..., P_n)$ are n blocks of plaintext with length n such that P is invertible and we know P and the corresponding C, then we can recover M, since $C = MP \Longrightarrow M = CP^{-1}$.
 - If enough blocks of ciphertext are intercepted, it is very likely that n of them will produce an invertible matrix P.

3. Public key encryption and RSA

- Public key cryptosystem:
 - Bob produces encryption key, k_E , and decryption key, k_D . He publishes k_E and keeps k_D secret.
 - To encrypt message m, Alice sends ciphertext $c = f(m, k_E)$ to Bob.
 - To decrypt ciphertext c, Bob computes $g(c, k_D)$, where g satisfies

$$g(f(m, k_E), k_D) = m$$

for all messages m and all possible keys.

- Computing m from $f(m, k_E)$ should be hard without knowing k_D .
- Converting between messages and numbers:
 - To convert message $m_1m_2...m_r$, $m_i \in \{0,...,25\}$ to number, compute

$$m = \sum_{i=1}^{r} m_i 26^{i-1}$$

- To convert number m to message, add character $m \mod 26$ to message. If m < 26, stop. Otherwise, floor divide m by 26 and repeat.
- Fermat's little theorem: let p prime, $a \in \mathbb{Z}$ coprime to p, then $a^{p-1} \equiv 1 \pmod{p}$.
- Euler φ function:

$$\varphi: \mathbb{N} \to \mathbb{N}, \varphi(n) = |\{1 \le a \le n : \gcd(a, n) = 1\}| = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$$

- $\varphi(p^r) = p^r p^{r-1}$, $\varphi(mn) = \varphi(m)\varphi(n)$ for $\gcd(m, n) = 1$.
- Euler's theorem: if gcd(a, n) = 1, $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- RSA algorithm:
 - k_E is pair (n, e) where n = pq, the **RSA modulus**, is product of two distinct primes and $e \in \mathbb{Z}$, the **encryption exponent**, is coprime to $\varphi(n)$.
 - k_D , the decryption exponent, is integer d such that $de \equiv 1 \pmod{\varphi(n)}$.
 - m is an integer modulo n, m and n are coprime.
 - Encryption: $c = m^e \pmod{n}$.
 - Decryption: $m = c^d \pmod{n}$.
 - It is recommended that n have at least 2048 bits. A typical choice of e is $2^{16} + 1$.
- **RSA problem**: given n = pq a product of two unknown primes, e and $m^e \pmod{n}$, recover m. If n can be factored, the RSA is solved.
- Factorisation problem: given n = pq for large distinct primes p and q, find p and q.
- RSA signatures:
 - Public key is (n, e) and private key is d.
 - When sending a message m, message is **signed** by also sending $s = m^d \mod n$, the **signature**.
 - (m, s) is received, **verified** by checking if $m = s^e \mod n$.
 - Forging a signature on a message m would require finding s with $m = s^e \mod n$. This is the RSA problem.

- However, choosing signature s first then taking $m = s^e \mod n$ produces valid pairs.
- To solve this, (m, s) is sent where $s = h(m)^d$, h is **hash function**. Then the message receiver verifies $h(m) = s^e \mod n$.
- Now, for a signature to be forged, an attacker would have to find m with $h(m) = s^e \mod n$.
- Hash function is function $h : \{\text{messages}\} \to \mathcal{H}$ that:
 - Can be computed efficiently
 - Is **preimage-resistant**: can't quickly find m given h(m).
 - Is collision-resistant: can't quickly find m, m' such that h(m) = h(m').

• Attacks on RSA:

- If you can factor n, you can compute d, so can break RSA (as then you know $\varphi(n)$ so can compute $e^{-1} \mod \varphi(n)$).
- If $\varphi(n)$ is known, then we have pq = n and $(p-1)(q-1) = \varphi(n)$ so $p+q = n \varphi(n) + 1$. Hence p and q are roots of $x^2 (n-\varphi(n)+1)x + n$.

• Known d attack:

- de-1 is multiple of $\varphi(n)$ so $p,q \mid x^{de-1}-1$.
- Look for factor K of de-1 with x^K-1 divisible by p but not q (or vice versa) (equivalently, $(p-1) \mid K$ but $(q-1) \nmid K$).
- Let $de-1=2^r s$, gcd(2,s)=1, choose random $x \bmod n$. Let $y=x^s$, then $y^{2^r}=x^{2^r s}=x^{de-1}\equiv 1 \bmod n$.
- If $y \equiv 1 \mod n$, restart with new random x. Find first occurrence of 1 in $y, y^2, ..., y^{2^r} : y^{2^j} \not\equiv 1 \mod n, \ y^{2^{j+1}} \equiv 1 \mod n$ for some $j \geq 0$.
- Let $a := y^{2^j}$, then $a^2 \equiv 1 \mod n$, $a \not\equiv 1 \mod n$. If $a \equiv -1 \mod n$, restart with new random x.
- Now $n = pq \mid a^2 1 = (a+1)(a-1)$ but $n \nmid (a+1), (a-1)$. So p divides one of a+1, a-1 and q divides the other. So $\gcd(a-1,n), \gcd(a+1,n)$ are prime factors of n.
- **Theorem**: it is no easier to find $\varphi(n)$ than to factorise n.
- **Theorem**: it is no easier to find d than to factor n.
- Miller-Rabin algorithm for probabilistic primality testing of *n*:
 - 1. Let $n-1=2^r s$, gcd(2,s)=1.
 - 2. Choose random $x \mod n$, compute $y = x^s \mod n$.
 - 3. Compute $y, y^2, ..., y^{2^r} \mod n$.
 - 4. If 1 isn't in this list, n is **composite** (with witness x).
 - 5. If 1 is in list preceded by number other than ± 1 , n is **composite** (with witness x).
 - 6. Other, n is **possible prime** (to base x).

• Theorem:

- If n prime then it is possible prime to every base.
- If n composite then it is possible prime to $\leq 1/4$ of possible bases.

In particular, if k random bases are chosen, probability of composite n being possible prime for all k bases is $\leq 4^{-k}$.

3.1. Factorisation

- Trial division algorithm: for p = 2, 3, 5, ... test whether $p \mid n$.
- If $x^2 \equiv y^2 \mod n$ but $x \not\equiv \pm y \mod n$, then x y is divisible by factor of n but not by n itself, so $\gcd(x y, n)$ gives proper factor of n (or 1).
- Fermat's method:
 - Let $a = \lceil \sqrt{n} \rceil$. Compute $a^2 \mod n$, $(a+1)^2 \mod n$ until a square $x^2 \equiv (a+i)^2 \mod n$ appears. Then compute $\gcd(a+i-x,n)$.
 - Works well under special conditions on the factors: if $|p-q| \le 2\sqrt{2}\sqrt[4]{n}$ then Fermat's method takes one step: $x = \lceil \sqrt{n} \rceil$ works.
- **Definition**: an integer is B-smooth if all its prime factors are $\leq B$.
- Quadratic sieve:
 - Choose B and let m be number of primes $\leq B$.
 - Look at integers $x = \lceil \sqrt{n} \rceil + k$, k = 1, 2, ... and check whether $y = x^2 n$ is B-smooth.
 - Once $y_1 = x_1^2 n, ..., y_t = x_t^2 n$ are all B-smooth with t > m, find some product of them that is a square.
 - Deduce a congruence between the squares.
 - Time complexity is $\exp(\sqrt{\log n \log \log n})$.

4. Diffie-Hellman key exchange

- **Primitive root theorem**: let p prime, then there exists $g \in \mathbb{F}_p^{\times}$ such that $1, g, ..., g^{p-2}$ is complete set of residues mod p.
- Let p prime, $g \in \mathbb{F}_p^{\times}$. Order of g is smallest $a \in \mathbb{N}_0$ such that $g^a = 1$. g is **primitive root** if its order is p-1 (equivalently, $1, g, ..., g^{p-2}$ is complete set of residues mod p).
- Let p prime, $g \in \mathbb{F}_p^{\times}$ primitive root. If $x \in \mathbb{F}_p^{\times}$ then $x = g^L$ for some $0 \le L .$ Then <math>L is **discrete logarithm** of x to base g. Write $L = L_g(x)$.

• Proposition:

- $\bullet \ \ g^{L_g(x)} \equiv x \pmod{p} \ \text{and} \ g^a \equiv x \pmod{p} \Longleftrightarrow a \equiv L_g(x) \pmod{p-1}.$
- $\bullet \ \ L_g(1)=0,\, L_g(g)=1.$
- $\bullet \ \ L_g(xy) \equiv L_g(x) + L_g(y) \pmod{p-1}.$
- $\bullet \ \ L_g(x^{-1}) = -L_g(x) \ (\mathrm{mod} \ p-1).$
- $L_g(g^a \mod p) \equiv a \pmod{p-1}$.
- h is primitive root mod p iff $L_g(h)$ coprime to p-1. So number of primitive roots mod p is $\varphi(p-1)$.
- Discrete logarithm problem: given p, g, x, compute $L_g(x)$.
- Diffie-Hellman key exchange:
 - Alice and Bob publicly choose prime p and primitive root $g \mod p$.
 - Alice chooses secret $\alpha \mod (p-1)$ and sends $g^{\alpha} \mod p$ to Bob publicly.
 - Bob chooses secret $\beta \mod(p-1)$ and sends $g^{\beta} \mod p$ to Alice publicly.
 - Alice and Bob both compute shared secret $\kappa = g^{\alpha\beta} = (g^{\alpha})^{\beta} = (g^{\beta})^{\alpha} \mod p$.
- Diffie-Hellman problem: given $p, g, g^{\alpha}, g^{\beta}$, compute $g^{\alpha\beta}$.

- If discrete logarithm problem can be solved, so can Diffie-Hellman problem (since could compute $\alpha = L_q(g^a)$ or $\beta = L_q(g^\beta)$).
- Elgamal public key encryption:
 - Alice chooses prime p, primitive root g, private key $\alpha \mod (p-1)$.
 - Her public key is $y = g^{\alpha}$.
 - Bob chooses random $k \mod (p-1)$
 - To send message m (integer mod p), he sends the pair $(r, m') = (g^k, my^k)$.
 - To decrypt message, Alice computes $r^{\alpha} = g^{\alpha k} = y^k$ and then $m'r^{-\alpha} = m'y^{-k} = mg^{\alpha k}g^{-\alpha k}m$.
 - If Diffie-Hellman problem is hard, then Elgamal encryption is secure against known plaintext attack.
 - Key k must be random and different each time.
- Decision Diffie-Hellman problem: given g^a, g^b, c in \mathbb{F}_p^{\times} , decide whether $c = g^{ab}$.
 - This problem is not always hard, as can tell if g^{ab} is square or not. Can fix this by taking g to have large prime order $q \mid (p-1)$. p = 2q + 1 is a good choice.
- Elgamal signatures:
 - Public key is (p, g), $y = g^{\alpha}$ for private key α .
 - Valid Elgamal signature on $m \in \{0,...,p-2\}$ is pair $(r,s), \ 0 \le r,s \le p-1$ such that

$$y^r r^s = g^m \pmod{p}$$

- Alice computes $r = g^k$, $k \in (\mathbb{Z}/(p-1))^{\times}$ random. k should be different each time.
- Then $g^{\alpha r}g^{ks} \equiv g^m \mod p$ so $\alpha r + ks \equiv m \pmod{p-1}$ so $s = k^{-1}(m \alpha r) \mod p 1$.
- Elgamal signature problem: given p, g, y, m, find r, s such that $y^r r^s = m$.
- Discrete logarithm problem: given prime p, primitive root $g \mod p$, $x \in \mathbb{F}_p^{\times}$, calculate $L_q(x)$.
- Baby-step giant-step algorithm for solving DLP:
 - Let $N = \lceil \sqrt{p-1} \rceil$.
 - Baby-steps: compute $g^j \mod p$ for $0 \le j < N$.
 - Giant-steps: compute $xg^{-Nk} \mod p$ for $0 \le k < N$.
 - Look for a match between baby-steps and giant-steps lists: $q^j = xq^{-Nk} \Longrightarrow x = q^{j+Nk}$.
 - Always works since if $x = g^L$ for $0 \le L < p-1 \le N^2$, L can be written as j + Nk with $j, k \in \{0, ..., N-1\}$.
- Index calculus method for solving DLP $x = g^L$:
 - Fix smoothness bound *B*.
 - Find many multiplicative relations between B-smooth numbers and powers of $g \mod p$.
 - Solve these relations to find discrete logarithms of primes $\leq B$.
 - For i = 1, 2, ... compute $xg^i \mod p$ until one is B-smooth, then use result from previous step.

• Pohlig-Hellman algorithm computes discrete logarithms mod p with approximate complexity $\log(p)\sqrt{\ell}$ where ℓ is largest prime factor of p-1, so is fast if p-1 is B-smooth. Therefore p is chosen so that p-1 has large prime factor, e.g. choose Germain prime p=2q+1, with q prime.

5. Elliptic curves

- Definition: abelian group (G, \circ) satisfies:
 - Associativity: $\forall a, b, c \in G, a \circ (b \circ c) = (a \circ b) \circ c$.
 - Identity: $\exists e \in G : \forall g \in G, e \times g = g$.
 - Inverses: $\forall g \in G, \exists h \in G : g \circ h = h \circ g = e$
 - Commutativity: $\forall a, b \in G, a \circ b = b \circ a$.
- **Definition**: $H \subseteq G$ is **subgroup** of G if (H, \circ) is group.
- To show H is subgroup, sufficient to show $g, h \in H \Rightarrow g \circ h \in H$ and $h^{-1} \in H$.
- Notation: for $g \in G$, write [n]g for $g \circ \cdots \circ g$ n times if n > 0, e if n = 0, $[-n]g^{-1}$ if n < 0.
- Definition: subgroup generated by g is

$$\langle g \rangle = \{ [n]g : n \in \mathbb{Z} \}$$

If $\langle g \rangle$ finite, it has **order** n, and g has **order** n. If $G = \langle g \rangle$ for some $g \in G$, G is **cyclic** and g is **generator**.

- Lagrange's theorem: let G finite group, H subgroup of G, then $|H| \mid |G|$.
- Corollary: if G finite, $g \in G$ has order n, then $n \mid |G|$.
- **DLP for abelian groups**: given G a cyclic abelian group, $g \in G$ a generator of $G, x \in G$, find L such that [L]g = x. L is well-defined modulo |G|.
- **Definition**: let (G, \circ) , (H, \bullet) abelian groups, **homomorphism** between G and H is $f: G \to H$ with

$$\forall g,g' \in G, \quad f(g \circ g') = f(g) \bullet f(g')$$

Isomorphism is bijective homomorphism. G and H are **isomorphic**, $G \cong H$, if there is isomorphism between them.

• Fundamental theorem of finite abelian groups: let G finite abelian group, then there exist unique integers $2 \le n_1, ..., n_r$ with $n_i \mid n_{i+1}$ for all i, such that

$$G \simeq (\mathbb{Z}/n_1) \times \cdots \times (\mathbb{Z}/n_r)$$

In particular, G is isomorphic to product of cyclic groups.

• **Definition**: let K field, char(K) > 3. An **elliptic curve** over K is defined by the equation

$$y^2 = x^3 + ax + b$$

where $a, b \in K$, $\Delta_E := 4a^3 + 27b^2 \neq 0$.

• Remark: $\Delta_E \neq 0$ is equivalent to $x^3 + ax + b$ having no repeated roots (i.e. E is smooth).

- **Definition**: for elliptic curve E defined over K, a K-point (point) on E is either:
 - A normal point: $(x,y) \in K^2$ satisfying the equation defining E.
 - The **point at infinity** \overline{O} which can be thought of as infinitely far along the yaxis (in either direction).

Denote set of all K-points on E as E(K).

- Any elliptic curve E(K) is an abelian group, with group operation \oplus is defined as:
 - We should have $P \oplus Q \oplus R = \overline{O}$ iff P, Q, R lie on straight line.
 - In this case, $P \oplus Q = -R$.
 - To find line ℓ passing through $P = (x_0, y_0)$ and $Q = (x_1, y_1)$:
 - If $x_0 \neq x_1$, then equation of ℓ is $y = \lambda x + \mu$, where

$$\lambda = \frac{y_1 - y_0}{x_1 - x_0}, \quad \mu = y_0 - \lambda x_0$$

Now

$$y^{2} = x^{3} + ax + b = (\lambda x + \mu)^{2}$$

$$\implies 0 = x^{3} - \lambda^{2} x^{2} + (a - 2\lambda \mu)x + (b - \mu^{2})$$

Since sum of roots of monic polynomial is equal to minus the coefficient of the second highest power, and two roots are x_0 and x_1 , the third root is $x_2 = \lambda^2 - x_0 - x_1$. Then $y_2 = \lambda x_2 + \mu$ and $R = (x_2, y_2)$.

• If $x_0 = x_1$, then using implicit differentiation:

$$y^{2} = x^{3} + ax + b$$

$$\Rightarrow \frac{dy}{dx} = \frac{3x^{2} + a}{2y}$$

- and the rest is as above, but instead with $\lambda = \frac{3x_0^2 + a}{2y_0}$.

 Definition: **group law** of elliptic curves: let $E: y^2 = x^3 + ax + b$. For all normal points $P = (x_0, y_0), Q = (x_1, y_1) \in E(K)$, define
 - \overline{O} is group identity: $P \oplus \overline{O} = \overline{O} \oplus P = P$.
 - If $P = -Q =: (x_0, -y_0), P \oplus Q = \overline{O}.$
 - Otherwise, $P \oplus Q = (x_2, -y_2)$, where

$$\begin{split} x_2 &= \lambda^2 - (x_0 + x_1), \\ y_2 &= \lambda x_2 + \mu, \\ \lambda &= \begin{cases} \frac{y_1 - y_0}{x_1 - x_0} & \text{if } x_0 \neq x_1 \\ \frac{3x_0^2 + a}{2y_0} & \text{if } x_0 = x_1 \end{cases}, \\ \mu &= y_0 - \lambda x_0 \end{split}$$

$$\mu = y_0 - \lambda x_0$$

- Example:
 - Let E be given by $y^2 = x^3 + 17$ over \mathbb{Q} , $P = (-1, 4) \in E(\mathbb{Q})$, $Q = (2, 5) \in E(\mathbb{Q})$. To find $P \oplus Q$,

$$\lambda = \frac{5-4}{2-(-1)} = \frac{1}{3}, \quad \mu = 4 - \lambda(-1) = \frac{13}{3}$$

So
$$x_2=\lambda^2-(-1)-2=-\frac{8}{9}$$
 and $y_2=-(\lambda x_2+\mu)=-\frac{109}{27}$ hence

$$P \oplus Q = \left(-\frac{8}{9}, -\frac{109}{27}\right)$$

To find [2]P,

$$\lambda = \frac{3(-1)^2 + 0}{2 \cdot 4} = \frac{3}{8}, \quad \mu = 4 - \frac{3}{8} \cdot (-1) = \frac{35}{8}$$

so
$$x_3 = \lambda^2 - 2 \cdot (-1) \frac{137}{64}$$
, $y_3 = -(\lambda x_3 + \mu) = -\frac{2651}{512}$ hence

$$[2]P = (x_3, y_3) = \left(\frac{137}{64}, -\frac{2651}{512}\right)$$

• Hasse's theorem: let $|E(\mathbb{F}_p)| = N$, then

$$|N - (p+1)| \le 2\sqrt{p}$$

- Theorem: $E(\mathbb{F}_p)$ is isomorphic to either \mathbb{Z}/k or $\mathbb{Z}/m \times \mathbb{Z}/n$ with $m \mid n$.
- Elliptic curve Diffie-Hellman:
 - Alice and Bob publicly choose elliptic curve $E(\mathbb{F}_p)$ and $P \in \mathbb{F}_p$ with order a large prime n.
 - Alice chooses random $\alpha \in \{0, ..., n-1\}$ and publishes $Q_A = [\alpha]P$.
 - Bob chooses random $\beta \in \{0, ..., n-1\}$ and publishes $Q_B = [\beta]P$.
 - Alice computes $[\alpha]Q_B = [\alpha\beta]P$, Bob computes $[\beta]Q_A = [\beta\alpha]P$.
 - Shared key is $K = [\alpha \beta]P$.
- Elliptic curve Elgamal signatures:
 - Use agreed elliptic curve E over \mathbb{F}_p , point $P \in E(\mathbb{F}_p)$ of prime order n.
 - Alice wants to sign message m, encoded as integer mod n.
 - Alice generates private key $\alpha \in \mathbb{Z}/n$ and public key $Q = [\alpha]P$.
 - Valid signature is (R,s) where $R=(x_R,y_R)\in E\big(\mathbb{F}_p\big),\ s\in\mathbb{Z}/n,$ $[\widetilde{x_R}]Q\oplus [s]R=[m]P.$
 - To generate a valid signature, Alice chooses random $0 \neq k \in \mathbb{Z}/n$ and sets R = [k]P, $s = k^{-1}(m \widetilde{x_R}\alpha)$.
 - k must be randomly generated for each message.
- Baby-step giant-step algorithm for elliptic curve DLP: given P and $Q = [\alpha]P$, find α :
 - Let $N = \lceil \sqrt{n} \rceil$, n is order of P.
 - Compute P, [2]P, ..., [N-1]P.
 - Compute $Q \oplus [-N]P$, $Q \oplus [-2N]P$, ..., $Q \oplus [-(N-1)N]P$ and find a match between these two lists: $[i]P = Q \oplus [-jN]P$, then [i+jN]P = Q so $\alpha = i+jN$.
- For well-chosen elliptic curves, the best algorithm for solving DLP is the baby-step giant-step algorithm, with run time $O(\sqrt{n}) \approx O(\sqrt{p})$. This is much slower than the index-calculus method for the DLP in \mathbb{F}_p^{\times} .

- Pollard's p-1 algorithm to factorise n=pq:
 - Choose smoothness bound *B*.
 - Choose random $2 \le a \le n-2$. Set $a_1 = a$, i = 1.
 - Compute $a_i = a_{i-1}^i \mod n$. Find $d = \gcd(a_i 1, n)$. If 1 < d < n, we have found a nontrivial factor of n. If d = n, pick new a and retry. If d = 1, increment i by 1 and repeat this step.
 - A variant is instead of computing $a_i = a_{i-1}^i$, compute $a_i = a_{i-1}^{m_{i-1}}$ where $m_1, ..., m_r$ are the prime powers $\leq B$ (each prime power is the maximal prime power $\leq B$ for that prime).
 - The algorithm works if p-1 is B-powersmooth (all prime power factors are $\leq B$), since if b is order of $a \mod p$, then $b \mid (p-1)$ so $b \mid B!$ (also $b \mid m_1 \cdots m_r$). If the first i for which i! (or $m_1 \cdots m_i$) is divisible by d and order of $a \mod q$, then $a_i 1 = a^{i!} 1 \mod n$ is divisible by both p and q, so must retry with different a.
- Let $n=pq,\ p,q$ prime, $a,b\in\mathbb{Z},\ \gcd(4a^3+27b^2,n)=1$. Then $E:y^2=x^3+ax+b$ defines elliptic curve over \mathbb{F}_p and over \mathbb{F}_q . If $(x,y)\in\mathbb{Z}/n$ is solution to $E \bmod n$ then can reduce coordinates $\bmod p$ to obtain non-infinite point of $E(\mathbb{F}_p)$ and $\bmod q$ to obtain non-infinite point of $E(\mathbb{F}_q)$.
- **Proposition**: let $P_1, P_2 \in E \mod n$, with

$$(P_1 \bmod p) \oplus (P_2 \bmod p) = \overline{O}$$

$$(P_1 \bmod q) \oplus (P_2 \bmod q) \neq \overline{O}$$

Then $gcd(x_1 - x_2, n)$ (or $gcd(2x_1, n)$ if $P_1 = P_2$) is factor of n.

- **Lenstra's algorithm** to factorise *n*:
 - Choose smoothness bound B.
 - Choose random elliptic curve E over \mathbb{Z}/n with $\gcd(\Delta_E, n) = 1$ and P = (x, y) a point on E.
 - Set $P_1 = P$, attempt to compute P_i , $2 \le i \le B$ by $P_i = [i]P_{i-1}$. If one of these fails, a divisor of n has been found (by failing to compute an inverse mod n). If this divisor is trivial, restart with new curve and point.
 - If i = B is reached, restart with new curve and point.
 - Again, a variant is calculating $P_i=[m_i]P_{i-1}$ instead of $[i]P_{i-1}$ where $m_1,...,m_r$ are the prime powers $\leq B$
- Lenstra's algorithm works if $|E(\mathbb{Z}/p)|$ is *B*-powersmooth but $|E(\mathbb{Z}/q)|$ isn't. Since we can vary E, it is very likely to work eventually.
- Running time depends on p (the smaller prime factor):

$$O\!\left(\exp\!\left(\sqrt{2\log(p)\log\log(p)}\right)\right)$$

Compare this to the general number field sieve running time:

$$O\left(\exp\left(C(\log n)^{1/3}(\log\log n)^{2/3}\right)\right)$$

5.1. Torsion points

- **Definition**: let G abelian group. $g \in G$ is a **torsion** if it has finite order. If order divides n, then [n]g = e and g is n-torsion.
- Definition: *n*-torsion subgroup is

$$G[n] \coloneqq \{g \in G : [n]g = e\}$$

• **Definition**: **torsion subgroup** of G is

$$G_{\text{tors}} = \{g \in G : g \text{ is torsion}\} = \bigcup_{n \in \mathbb{N}} G[n]$$

- Example:
 - In \mathbb{Z} , only 0 is torsion.
 - In $(\mathbb{Z}/10)^{\times}$, by Lagrange's theorem, every point is 4-torsion.
 - For finite groups G, $G_{tors} = G = G[|G|]$ by Lagrange's theorem.

5.2. Rational points

- Note: for elliptic curve $E: y^2 = x^3 + ax + b$ over \mathbb{Q} , can assume that $a, b \in \mathbb{Z}$.
- Nagell-Lutz theorem: let E elliptic curve, let $P=(x,y)\in E(\mathbb{Q})_{\mathrm{tors}}$. Then $x,y\in\mathbb{Z}$, and either y=0 (in which case P is 2-torsion) or $y^2\mid \Delta_E$.
- Corollary: $E(\mathbb{Q})_{\text{tors}}$ is finite.
- Example: can use Nagell-Lutz to show a point is not torsion.
 - P = (0,1) lies on elliptic curve $y^2 = x^3 x + 1$. $[2]P = (\frac{1}{4}, -\frac{7}{8}) \notin \mathbb{Z}^2$. Then [2]P is not torsion, hence P is not torsion. So $E(\mathbb{Q})$ contains distinct points ..., $[-2]P, -P, \overline{O}, P, [2]P, ...$, hence E has infinitely many solutions in \mathbb{Q} .
- Mazur's theorem: let E be elliptic curve over \mathbb{Q} . Then $E(\mathbb{Q})_{\text{tors}}$ is either:
 - cyclic of order $1 \le N \le 10$ or order 12, or
 - of the form $\mathbb{Z}/2 \times \mathbb{Z}/2N$ for $1 \leq N \leq 4$.
- **Definition**: let $E: y^2 = x^3 + ax + b$ defined over \mathbb{Q} , $a, b \in \mathbb{Z}$. For odd prime p, taking reductions \overline{a} , \overline{b} mod p gives curve over \mathbb{F}_p :

$$\overline{E}: y^2 = x^3 + \overline{a}x + \overline{b}$$

This is elliptic curve if $\Delta_E \not\equiv 0 \mod p$, in which case p is **prime of good reduction** for E.

• **Theorem**: let $E: y^2 = x^3 + ax + b$ defined over \mathbb{Q} , $a, b \in \mathbb{Z}$, p be odd prime of good reduction for E. Then $f: E(\mathbb{Q})_{\text{tors}} \to \overline{E}(\mathbb{F}_p)$ defined by

$$f(x,y)\coloneqq (\overline{x},\overline{y}),\quad f(\overline{O})\coloneqq \overline{O}$$

is injective (note $x, y \in \mathbb{Z}$ by Nagell-Lutz).

- So $E(\mathbb{Q})_{\text{tors}}$ can be thought of as subgroup of $E(\mathbb{F}_p)$ for any prime p of good reduction, so by Lagrange's theorem, $|E(\mathbb{Q})_{\text{tors}}|$ divides $|E(\mathbb{F}_p)|$.
- Mordell's theorem: if E is elliptic curve over \mathbb{Q} , then

$$E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text{tors}} \times \mathbb{Z}^r$$

for some $r \geq 0$ the rank of E. So for some $P_1, ..., P_r \in E(\mathbb{Q})$,

$$E(\mathbb{Q}) = \{n_1P_1 + \dots + n_rP_r + T : n_i \in \mathbb{Z}, T \in E(\mathbb{Q})_{\mathrm{tors}}\}$$

 $P_1, ..., P_r, T$ are **generators** for $E(\mathbb{Q})$.

6. Basic coding theory

6.1. First definitions

- Definition:
 - Alphabet A is finite set of symbols.
 - A^n is set of all lists of n symbols from A these are words of length n.
 - Code of block length n on A is subset of A^n .
 - Codeword is element of a code.

Definition[If |A| = 2, codes on A are **binary** codes. If |A| = 3, codes on A are **ternary codes**. If |A| = q, codes on A are **q-ary** codes. Generally, use $A = \{0, 1, ..., q - 1\}$.]

Definition. Let $x = x_1...x_n, y = y_1...y_n \in A^n$. Hamming distance between x and y is number of indices where x and y differ:

$$d:A^n\times A^n\to\{0,...,n\},\quad d(x,y)\coloneqq |\{i\in[n]:x_i\neq y_i\}|$$

So d(x, y) is minimum number of changes needed to change x to y. If x transmitted and y received, then d(x, y) symbol-errors have occurred.

Proposition. Let x, y words of length n.

- $0 \le d(x,y) \le n$.
- $d(x,y) = 0 \iff x = y$.
- d(x, y) = d(y, x).
- $\forall z \in A^n, d(x,y) \le d(x,z) + d(z,y).$

Definition. Minimum distance of code C is

$$d(C) := \min\{d(x, y) : x, y \in C, x \neq y\} \in \mathbb{N}$$

Notation. Code of block length n with M codewords and minimum distance d is called (n, M, d) (or (n, M)) code. A q-ary code is called an $(n, M, d)_q$ code.

Definition. Let $C \subseteq A^n$ code, x word of length n. A **nearest neighbour** of x is codeword $c \in C$ such that $d(x,c) = \min\{d(x,y) : y \in C\}$.

6.2. Nearest-neighbour decoding

Definition. Nearest-neighbour decoding (NND) means if word x received, it is decoded to a nearest neighbour of x in a code C.

Proposition. Let C be code with minimum distance d, let word x be received with t symbol errors. Then

- If $t \leq d-1$, then we can detect that x has some errors.
- If $t \leq \left| \frac{d-1}{2} \right|$, then NND will correct the errors.

6.3. Probabilities

Definition. q-ary symmetric channel with symbol-error probability p is channel for q-ary alphabet A such that:

- For every $a \in A$, probability that a is changed in channel is p.
- For every $a \neq b \in A$, probability that a is changed to b in channel is

$$\mathbb{P}(b \text{ received} \mid a \text{ sent}) = \frac{p}{q-1}$$

i.e. symbol-errors in different positions are independent events.

Proposition. Let c codeword in q-ary code $C \subseteq A^n$ sent over q-ary symmetric channel with symbol-error probability p. Then

$$\mathbb{P}(x \text{ received} \mid c \text{ sent}) = \left(\frac{p}{q-1}\right)^t (1-p)^{n-t}, \text{ where } t = d(c,x)$$

Example. Let $C = \{000, 111\} \subset \{0, 1\}^3$.

x	t = d(000, x)	chance 000 received as x	chance if $p = 0.01$	NND decodes correctly?
000	0	$(1-p)^3$	0.970299	yes
100	1	$p(1-p)^2$	0.009801	yes
010	1	$p(1-p)^2$	0.009801	yes
001	1	$p(1-p)^2$	0.009801	yes
110	2	$p^2(1-p)$	0.000099	no
101	2	$p^2(1-p)$	0.000099	no
011	2	$p^2(1-p)$	0.000099	no
111	3	p^3	0.000001	no

Corollary. If $p < \frac{q-1}{q}$ then P(x received | c sent) increases as d(x,c) decreases.

Remark. By Bayes' theorem,

$$\mathbb{P}(c \text{ sent} \mid x \text{ received}) = \frac{\mathbb{P}(c \text{ sent and } x \text{ received})}{\mathbb{P}(x \text{ received})} = \frac{\mathbb{P}(c \text{ sent})\mathbb{P}(x \text{ received} \mid c \text{ sent})}{\mathbb{P}(x \text{ received})}$$

Proposition. Let C be q-ary (n, M, d) code used over q-ary symmetric channel with symbol-error probability p < (q-1)/q, and each codeword $c \in C$ is equally likely to be sent. Then for any word x, $\mathbb{P}(c \text{ sent } | x \text{ received})$ increases as d(x, c) decreases.

6.4. Bounds on codes

• Proposition (singleton bound): for q-ary code (n, M, d) code, $M \leq q^{n-d+1}$.

Definition. Code which saturates singleton bound is called **maximum distance** separable (MDS).

Example. Let C_n be binary repetition code of block length n,

$$C_n := \{\underbrace{00...0}_{n}, \underbrace{11...1}_{n}\} \subset \{0,1\}^n$$

 C_n is $(n,2,n)_2$ code, and $2=2^{n-n+1}$ so C_n is MDS code.

Definition. Let A be alphabet, |A| = q. Let $n \in \mathbb{N}$, $0 \le t \le n$, $t \in \mathbb{N}$, $x \in A^n$.

• Ball of radius t around x is

$$S(x,t) := \{ y \in A^n : d(y,x) \le t \}$$

• Code $C \subseteq A^n$ is **perfect** if

$$\exists t \in \mathbb{N} : A^n = \coprod_{c \in C} S(c,t)$$

where \coprod is disjoint union.

Example. For $C = \{000, 111\} \subset \{0, 1\}^3$, $S(000, 1) = \{000, 100, 010, 001\}$ and $S(111, 1) = \{111, 011, 101, 110\}$. These are disjoint and $S(000, 1) \cup S(111, 1) = \{0, 1\}^3$, so C is perfect.

Example. Let $C = \{111, 020, 202\} \subset \{0, 1, 2\}^3$. $\forall c \in C, d(c, 012) = 2$. So 012 is not in any S(c, 1) but is in every S(c, 2), so C is not perfect.

Lemma. Let |A| = q, $x \in \mathbb{A}^n$, then

$$|S(x,t)| = \sum_{k=0}^{t} {n \choose k} (q-1)^k$$

Example. Let $C = \{111, 020, 202\} \subset \{0, 1, 2\}^3$, so q = 3, n = 3. So $|S(x,1)| = \binom{3}{0} + \binom{3}{1}(3-1) = 7$, $|S(x,2)| = \binom{3}{0} + \binom{3}{1}(3-1) + \binom{3}{2}(3-1)^2 = 19$. But $|\{0,1,2\}|^3 = 27$ and $7 \nmid 27$, $19 \nmid 27$, so $\{0,1,2\}^3$ can't be partially balls of either size. So C can't be perfect. |S(x,3)| = 27, but then C must contain only one codeword to be perfect, and |S(x,0)| = 1, but then $C = A^n$ to be perfect. These are trivial, useless codes.

• Proposition (Hamming/sphere-packing bound): q-ary (n, M, d) code satisfies

$$M\sum_{k=0}^{t} {n \choose k} (q-1)^k \le q^n$$
, where $t = \left\lfloor \frac{d-1}{2} \right\rfloor$

Corollary. Code saturates Hamming bound iff it is perfect.

7. Linear codes

7.1. Finite vector spaces

Definition. Linear code of block length n is subspace of \mathbb{F}_q^n .

Example. Let $x = (0, 1, 2, 0), y = (1, 1, 1, 1), z = (0, 2, 1, 0) \in \mathbb{F}_3^4$. $C_1 = \{x, y, 0\}$ is not linear code since e.g. $x + y = (1, 2, 0, 1) \notin C_1$. $C_2 = \{x, z, 0\}$ is linear code.

Notation. Spanning set of S is $\langle S \rangle$.

Proposition. If linear code $C \subseteq \mathbb{F}_q^n$ has $\dim(C) = k$, then $|C| = q^k$.

Definition. A q-ary [n, k, d] code is linear code: a subspace of \mathbb{F}_q^n of dimension k with minimum distance d. Note: a q-ary [n, k, d] code is a q-ary $[n, q^k, d)$ code.

7.2. Weight and minimum distance

Definition. Weight of $x \in \mathbb{F}_q^n$, w(x), is number of non-zero entries in x:

$$w(\mathbf{x}) = |\{i \in [n] : x_i \neq 0\}|$$

Lemma. $\forall x, y \in \mathbb{F}_q^n$, d(x, y) = w(x - y). In particular, w(x) = d(x, 0).

Proposition. Let $C \subseteq \mathbb{F}_q^n$ linear code, then

$$d(C) = \min\{w(c) : c \in C, c \neq 0\}$$

Remark. To find d(C) for linear code with q^k words, only need to consider q^k weights instead of $\binom{q^k}{2}$ distances.

8. Codes as images

8.1. Generator-matrices

Definition. Let $C \subseteq \mathbb{F}_q^n$ be linear code. Let $G \in M_{k,n}(\mathbb{F}_q)$, $f_G : \mathbb{F}_q^k \to \mathbb{F}_q^n$ be linear map defined by $f_G(x) = xG$. Then G is **generator-matrix** for C if

- $C = \operatorname{im}(f) = \{xG : x \in \mathbb{F}_q^k\} \subseteq \mathbb{F}_q^n$.
- The rows of G are linearly independent.

i.e. G is generator-matrix for C iff rows of G form basis for C (note $xG = x_1g_1 + \cdots + x_kg_k$ where g_i are rows of G).

Remark. Given linear code $C = \langle \boldsymbol{a}_1, ..., \boldsymbol{a}_m \rangle$, a generator-matrix can be found for C by constructing the matrix A with rows \boldsymbol{a}_i , then performing elementary row operations to bring A into RREF. Once the m-k bottom zero rows have been removed, the resulting matrix is a generator-matrix.

Example. Let $C = \langle \{(0,0,3,1,4), (2,4,1,4,0), (5,3,0,1,6)\} \rangle \subseteq \mathbb{F}_7^5$.

$$A = \begin{bmatrix} 2 & 4 & 1 & 4 & 0 \\ 5 & 3 & 0 & 1 & 6 \\ 0 & 0 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{A_{12}(1)} \begin{bmatrix} 2 & 4 & 1 & 4 & 0 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{A_{14}(4)} \begin{bmatrix} 1 & 2 & 4 & 2 & 0 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{A_{21}(3), A_{23}(4)} \begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So $G = \begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 0 & 0 & 1 & 5 & 6 \end{bmatrix}$ is generator matrix for C and $\dim(C) = 2$.

8.2. Encoding and channel decoding

8.3. Equivalence and standard form

Definition. Codes C_1 , C_2 of block length n over alphabet A are **equivalent** if we can transform one to the other by applying sequence of the following two kinds of changes to all the codewords (simultaneously):

- Permute the n positions.
- In a particular position, permuting the |A| = q symbols.

Proposition. Equivalent codes have the same parameters (n, M, d).

Definition. Linear codes $C_1, C_2 \subseteq \mathbb{F}_q^n$ are **monomially equivalent** if we can obtain one from the other by applying sequence of the following two kinds of changes to all codewords (simultaneously):

- Permuting the n positions.
- In particular position, multiply by $\lambda \in \mathbb{F}_q^{\times}$.

If only the first change is used, the codes are **permutation equivalent**.

Definition. $P \in M_n(\mathbb{F}_q)$ is **permutation matrix** if it has a single 1 in each row and column, and zeros elsewhere. Any permutation of n positions of row vector in \mathbb{F}_q^n can be described as right multiplication by permutation matrix.

Proposition. Permutation matrices are orthogonal: $P^T = P^{-1}$.

Proposition. Let $C_1, C_2 \subseteq \mathbb{F}_q^n$ linear codes with generator matrices G_1, G_2 . Then if $G_1 = G_2 P$ for permutation matrix P, then C_1 and C_2 are permutation equivalent.

Definition. $M \in M_m(\mathbb{F}_q)$ is **monomial matrix** if it has exactly one non-zero element in each row and column.

Proposition. Monomial matrix M can always be written as M = DP or M = PD' where P is permutation matrix and D, D' are diagonal matrices. P is **permutation** part, D and D' are diagonal parts of M.

Example.

$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Proposition. Let $C_1, C_2 \subseteq \mathbb{F}_q^n$ be linear codes with generator-matrices G_1, G_2 . Then if $G_2 = G_1M$ for some monomial matrix M, then C_1 and C_2 are monomially equivalent.

Definition. Let $C \subseteq \mathbb{F}_q^n$ linear code. If $G = (I_k \mid A)$, with $A \in M_{k,n-k}(\mathbb{F}_q)$, is generator-matrix for C, then G is in **standard form**.

Note. Not every linear code has generator-matrix in standard form.

Proposition. Every linear code is permutation equivalent to a linear code with generator-matrix in standard form.

Example. Let $C_1 \subseteq \mathbb{F}_7^5$ have generator matrix $G_1 = \begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 0 & 0 & 1 & 5 & 6 \end{bmatrix}$. Then applying permutation matrix

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow G_1 P = \begin{bmatrix} 1 & 0 & 2 & 3 & 4 \\ 0 & 1 & 0 & 5 & 6 \end{bmatrix} = (I_2 \mid A)$$

9. Codes as kernels

9.1. Dual codes

Definition. Let $C \subseteq \mathbb{F}_q^n$ linear code. **Dual** of C is

$$C^{\perp} \coloneqq \left\{ \boldsymbol{v} \in \mathbb{F}_q^n : \forall \boldsymbol{u} \in C, \boldsymbol{v} \cdot \boldsymbol{u} = 0 \right\}$$

Proposition. If G is generator matrix for linear code C then

$$C^\perp = \{\boldsymbol{v} \in \mathbb{F}_q^n : \boldsymbol{v}G^T = \boldsymbol{0}\} = \ker(f_{G^T})$$

where $f_{G^T}: \mathbb{F}_q^n \to \mathbb{F}_q^k$, $f(x) = xG^T$ is linear map.

Proposition. Let $C \subseteq \mathbb{F}_q^n$ linear code. Then C^{\perp} is also linear code and $\dim(C) + \dim(C^{\perp}) = n$.

Proposition. Let $C \subseteq \mathbb{F}_q^n$ linear code, then $(C^{\perp})^{\perp} = C$.

Proof. Show
$$\dim\left(\left(C^{\perp}\right)^{\perp}\right) = \dim(C)$$
 and $C \subseteq \left(C^{\perp}\right)^{\perp}$.

Proposition. Let $C \subseteq \mathbb{F}_q^n$ have generator-matrix in standard form, $G = (I_k \mid A)$, then $H = (-A^T \mid I_{n-k})$ is generator-matrix for C^{\perp} .

Proof. Show
$$\forall y \in \mathbb{F}_q^{n-k}$$
, $yH \in C^{\perp}$, let $f_H(y) = yH$ so $\operatorname{im}(f_H) \subseteq C^{\perp}$ and show $\operatorname{dim}(\operatorname{im}(f_H)) = \operatorname{dim}(C^{\perp})$.

Proposition. Let G be generator matrix of $C \subseteq \mathbb{F}_q^n$, let $P \in M_n(\mathbb{F}_q)$ permutation matrix such that $GP = (I_k \mid A)$ for some $A \in M_{k,n-k}(\mathbb{F}_q)$. Then $H = (-A^T \mid I_{n-k})P^T$ is generator matrix for C^{\perp} .

Proof. Similar to previous proposition, use that $P^T = P^{-1}$.

Algorithm. To find basis for dual code C^{\perp} , given generator matrix $G = (g_{ij}) \in M_{k,n}(\mathbb{F}_q)$ for C in RREF:

- 1. Let $L = \{1 \le j \le n : G \text{ has leading 1 in column } j\}$.
- 2. For each $1 \leq j \leq n, j \notin L$, construct v_j as follows:
 - 1. For $m \notin L$, mth entry of v_j is 1 if m = j and 0 otherwise.
 - 2. Fill in the other entries of \boldsymbol{v}_{j} (left to right) as $-g_{1j},...,-g_{kj}$.
- 3. The n-k vectors \boldsymbol{j} are basis for C^{\perp} .

Example. Let $C \subseteq \mathbb{F}_5^7$ be linear code with generator-matrix

$$G = \begin{bmatrix} 1 & 2 & 0 & 3 & 4 & 0 & 0 \\ 0 & 0 & 1 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

Then $L = \{1, 3, 6\}.$

- $\bullet \ v_2 = (3,1,0,0,0,0,0)$
- $\bullet \ v_4=(2,0,4,1,0,0,0)$
- $\bullet \ v_5 = (1,0,3,0,1,0,0)$
- $\bullet \ v_7 = (0,0,2,0,0,1,1)$
- So generator matrix for C^{\perp} is

$$H = \begin{bmatrix} 3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 1 \end{bmatrix}$$

9.2. Check-matrices

Definition. Let C be $[n,k]_q$ code, assume there exists $H \in M_{n-k,n}(\mathbb{F}_q)$ with linearly independent rows, such that

$$C = \left\{ oldsymbol{v} \in \mathbb{F}_q^n : oldsymbol{v} H^t = oldsymbol{0}
ight\}$$

Then H is **check-matrix** for C.

Proposition. If code C has generator-matrix G and check-matrix H, then C^{\perp} has check-matrix G and generator-matrix H.

Proof. Use <u>Proposition 9.1.2</u> to show G is check-matrix for C^{\perp} . Show rows of H form basis for C^{\perp} .

Remark. We can use above algorithm for the $G \longleftrightarrow H$ algorithm: obtain a generator-matrix for C from a check-matrix for C, or vice versa.

9.3. Minimum distance from a check-matrix

Lemma. Let C be $[n,k]_q$ code, $C=\left\{\boldsymbol{x}\in\mathbb{F}_q^n:\boldsymbol{x}A^T=\boldsymbol{0}\right\}$ for some $A\in M_{m,n}\left(\mathbb{F}_q\right)$. The following are equivalent:

- There are d linearly dependent columns of A.
- $\exists c \in C : 0 < w(c) \le d$.

Proof.

- \implies : use definition of linear dependence, construct a word c with d at most non-zero symbols, based on the definition. Show that $cA^T = 0$.
- \Leftarrow : use non-zero entries of c as coefficients for linear dependence between d corresponding columns of A.

Example. Let $C = \{x \in \mathbb{F}_7^5 : xA^T = \mathbf{0}\}$ where

$$A = \begin{bmatrix} 3 & 1 & 1 & 4 & 1 \\ 2 & 2 & 5 & 1 & 4 \\ 6 & 3 & 5 & 0 & 2 \end{bmatrix} \in M_{3,5}(\mathbb{F}_7)$$

We have $(0,1,2,0,4)A^T = \mathbf{0}$. So $(0,1,2,0,4) \in C$, so C has codeword of weight 3. Also, 1(1,2,3) + 2(1,5,5) + 4(1,2,4) = (0,0,0) so A has 3 linearly independent columns.

Theorem. Let $C = \{x \in \mathbb{F}_q^n : xA^T = \mathbf{0}\}$ for some $A \in M_{m,n}(\mathbb{F}_q)$. Then there is a linearly dependent set of d(C) columns of A, but any set of d(C) - 1 columns of A is linearly independent.

Proof. Use <u>Proposition 7.2.3</u> and above lemma.