

Python for Machine Learning II

link.jpw.info/6

Course Announcements

Project

Milestone 1 due 3/27

• Submit Methodology draft to Canvas

Code Demos next week

 Indicate preferred presentation date on Teams Spreadsheet

Project Check-Ins 4/1, 4/3

Indicate date on Team Spreadsheet

Assignments

Assignments 1, 2 graded

No more assignments for a while!

After Spring Break:

Assignment 3 due 4/17 ML Pipeline

Assignment 4 due 4/24 Al Ethics & Policy

The "Data Science Process" (Pt. II)

Explore

- **Get & import** your data
- **Understand** the data's structure,
- **Exploratory Data Analysis**
 - relationships are

Transform

- Clean the data
- **Feature** Extraction

Apply

- Train model on
- **Cross-validate** on
- **Evaluate** results

But First...

Part 0

What Are Data?

0. Storing Data

What are data?

- Data are information
- Data are information structured in a consistent manner

Tables consist of arrays and associated labels

	Name	Dog?	Breed	Energy
0	Alfie	True	Labrador Retriever	9
1	Babbles	False	Domestic Short Hair	4
2	Banjo	True	Cattle Dog	10
3	Clay	True	German Pointer	7
4	Cookie	False	Domestic Short Hair	2
5	Milky Way	False	Domestic Short Hair	6
6	Moondust	True	Terrier	5
7	Oli	True	Beagle	3
8	Sam	True	Pit Bull	6
9	Pumpkin	False	Domestic Short Hair	5

0. Storing Data

Are tables necessary?

- We're dealing with a lot of data
- We can leverage **consistency in** data structure

Part 1

Arrays and Tensors

Arrays and Tensors

numpy arrays

Store values of the same type

Can handle arbitrary sizes and dimensions

scalar → array

np.array([...])

Operations are **fast (ish)**

torch tensors

Store values of the same type

Can handle **arbitrary sizes** and dimensions

> everything is a tensor

torch.tensor([...])

Parallelize computations on a GPU (super fast!)

Arrays and Tensors

Part 2

sklearn and pytorch

sklearn

Most (if not all) sklearn ML models follow this structure:

model = MLModel(hyperparameters) initialize [82] lr_model = LogisticRegression(max_iter=1000) model.fit(X_train, y_train) train lr_model.fit(X, y) LogisticRegression LogisticRegression(max_iter=1000) model.predict(X_test) test model.score(X_test, y_test) evaluate

pytorch

Create custom neural networks with pytorch

```
extend nn.Module
                 class NeuralNetwork(nn.Module)
                      def init (self):
                          super().__init__()
                          self.flatten = nn.Flatten()
                          self.linear_relu_stack = nn.Sequential(
                                                                          feedforward network
                              nn.Linear(28*28, 512),
                              nn.ReLU().
connect layers with
                              nn.Linear(512, 512),
linear weight matrix
                              nn.ReLU()
                                                               add activation functions
                              nn.Linear(512, 10),
                      def forward(self, x):
                          x = self.flatten(x)
                          logits = self.linear_relu_stack(x)
                          return logits
                  model = NeuralNetwork()
```

Part 3

Hugging Face

use the transformers library!

PYTHON FOR ML

Questions?