Coding Theory: Problems 3

- 1. You showed in problem set 2 that E_n , the set of even weight binary vectors of length n, is a subspace of \mathbb{Z}_2^n . Hence E_n is a binary linear code. What are the parameters [n, k, d] of E_n ? Write down a generator matrix for E_n in standard form.
- 2. Let C be a binary linear [8, k, 3]-code. Given that $A_2(8, 3) = 20$, find an upper bound on k, the dimension of C. Construct a code which attains this upper bound.
- 3. Let C be the 3-ary linear code generated by

$$G = \left[\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right].$$

What is |C|? List the codewords of C and hence compute its minimum distance. Is C perfect?

4. Let C be the binary linear code generated by

$$G = \left[\begin{array}{cccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{array} \right].$$

Find a generator matrix in standard form for the same code C.

5. Construct standard arrays for the binary linear codes C_1 , C_2 generated by

$$G_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \qquad G_2 = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

- (a) Using C_2 with coset decoding,
 - i. decode received vectors 11111 and 01011,
 - ii. give an example of 2 errors occurring and being corrected,
 - iii. give an example of 2 errors occurring and **not** being corrected.
- (b) Assume each code is transmitted down a binary symmetric channel with symbol error probability p=0.01. Since both these codes are linear, the word error probability is independent of the codeword transmitted. Compute $P_{\rm err}(C_1)$ and $P_{\rm err}(C_2)$.
- (c) If C_2 is used only for error **detection**, what is the probabilty P_{undetec} that any transmitted codeword will be received with undetected errors, under the assumption of part (b)?
- 6. Let C be a **perfect** binary linear [7,4,d]-code. Deduce what d is. Assume C is transmitted down a binary symmetric channel with symbol error probability p=0.01. Calculate the word error probability of the code $P_{\rm err}(C)$.

1