ABHISEK DAS

+(91) 7278650267 \diamond Kolkata, West Bengal, India

E-mail ♦ LinkedIn ♦

EDUCATION

Bachelor of Technology (Computer Science), West Bengal University of Technology

2010 - 2014

SKILLS

AI Skills Machine Learning, Deep Learning, NLP, LLM, Time Series Analytics, EDA

Languages Python, C, C++, Java

Libraries Numpy, Scipy, Pandas, Matplotlib, Scikit-learn, Seaborn, Keras, Tensorflow, LangChain

Cloud Technologies AWS

EXPERIENCE

Data Scientist

Oct 2019 - Present

Tata Consultancy Services (Innovation Labs)

Kolkata, India

- Unsupervised Remaining Useful Life (RUL) Prediction of engines
 - Training data is divided into healthy and non-healthy parts and used to train an LSTM Encoder-Decoder model for a machine's life-cycle.
 - The model is then applied to the full dataset, generating high error values for unhealthy parts and low error values for healthy parts. These errors are reverse-normalized to assign a Health-Index (HI) between 0 and 1. Comparing the error of a new test instance with previous HI values estimates the Remaining Useful Life (RUL), leading to 25 % reduction in operational expenses.
- Estimation & Causal Analysis of Engine Failure of leading US Manufacturer
 - Used **Fuzzy based approach** for augmenting the existing dataset
 - Applied Deep Learning and machine learning techniques such as LSTM and RFC to estimate actual failure dates of engines with ~ 80 % accuracy
 - Used Explainable AI (XAI) library such as Lime on the datasets to find out leading causes of failure.
 - Collaborated with on-site client team members to collect, process and present the data to all the stakeholders.
 Received appreciation from CIO of client.

Jr. Data Scientist

Tata Consultancy Services (Innovation Labs)

Sept 2015 - Oct 2019

Kolkata, India

- Unsupervised Clustering of sensors based on time series data similarity for leading hardware manufacturing giant
 - Delivered a working PoC solution for unsupervised clustering of 700+ sensors based on time series data to remove redundancy.
 - Applied Pattern Recognition techniques like SAX is used to encode the time series data.
 - Dynamic Programming based **Longest Common Subsequence (LCS)** approach is then used based on some threshold to identify the similar sensors and put them into respective clusters.
- Unsupervised identification of loops in flight paths of aerial vehicle engine by UK manufacturing giant
 - Loops in flight paths create operational overheads for airline operators. Thus, a need to identify loops in flight paths was required by customer to increase fuel efficiency.
 - Used SAX encoding on derived features to encode the input data consisting of 5000+ source-destination pair of airports. Used Google Maps API for validating the output of our approach and presenting our results. Our analysis helped reduce client's operational expenditures by 30 %. Received appreciation from all stakeholders of the project.
- Building analytics capability to existing IoT platform.
- Contributed towards writing wrapper classes for different analytics algorithm like SVM, RFC, LSTM Encoder-Decoder, etc. and packaged it into libraries.
- Built unit test cases with sample codes and documentation of the libraries. Followed best practices while writing the codes and documentation.