本章重难点梳理

温故才能更知新,下面让我们来快速回顾一下本章的内容,为更好的学习后面的内容,打好基础吧。

特征工程的重要性

- 特征工程可以使得机器学习模型更好的达到效果

- 推荐系统常用的特征

- 用户行为信息
- 属性、标签信息
- 用户关系信息
- 内容信息
- 上下文信息

- 原始特征的不足

- 不属于统一量纲
- 信息冗余
- 存在非定量的定性特征
- 存在缺失值

- 特征工程的常见处理方法

- 标准化
 - 较适合本身就呈现正态分布的数据(如价格)
 - 对异常值不敏感
- 归一化
 - 适合本身分布不确定的数据(如哑编码后端分类数据)
 - 对异常值较为敏感
- 二值化
 - 将定性特征转化为定量特征
- 哑编码
 - 将离散属性分类特征转化为0、1向量
- 缺失值补全
 - 常用补0、平均值、中位数等方法

- Apache Spark

- 开源的分布式计算框架
 - 计算速度快:相对于Hadoop有最多100倍的提升
 - 强大的缓存设计: 通过简单的接口提供内存+硬盘缓存
 - 部署灵活: 支持YARN, k8s等集群管理工具
 - 实时性高: 提供专门针对流计算的工具
 - 通用性高: 提供多种语言API以及各种业务抽象
- RDD
 - Resilient Distributed Dataset
 - Resilient: 良好的容错性和错误自动恢复能力
 - Distributed: 天生的分布式
 - Dataset: 对用户提供统一的、分布透明的编程接口

- 行为数据采集

- 用户与产品交互时产生的数据,如点赞、收藏、浏览
- 通常由客户端埋点上传
- 为何使用Kafka处理行为数据?
 - 解耦: 消息生产者和消费者可以互相独立工作
 - 拓展性: 应对用户量快速扩张可以高效扩容
 - 削峰填谷: 在活动期间有效保障流量平稳分发
 - 异步通信:适合处理行为数据
- Kafka核心概念
 - Broker: 集群中的服务器
 - Topic: 消息的逻辑类别
 - Partition: topic下的物理存储单元
 - Producer\Consumer: 消息生产、消费者
 - Consumer Group: 消费者群组