Name, I.D. #, and Date: _____

Instructions: Attempt each exercise and show your work. You can attach pages to your submission. Submit this part of homework 2 with the additional parts of homework 2 on Monday, February 17. You may want to make copies of your work.

Definition

Let Y denote any RV. The cumulative distribution function of Y, denoted by $F_Y(y)$, is given by

$$F_Y(y) = P(\{Y \le y\})$$
 and $-\infty < y < \infty$.

Properties of a cumulative distribution function

If $F_Y(y)$ is a cumulative distribution function, then

$$\lim_{y\to-\infty}F_Y(y)=0$$

$$\lim_{y\to\infty}F_Y(y)=1$$

3 $F_Y(y)$ is a nondecreasing function of y.

(If y_1 and y_2 are any values such that $y_1 < y_2$ then $F_Y(y_1) \le F_Y(y_2)$)

Definition

The probability density function for the RV Y denoted by $f_Y(y)$ is given by $f_Y(y) = \frac{dF_Y(y)}{dy}$.

Properties of s density function

If $f_Y(y)$ is a density function then

1 $f_Y(y) \ge 0$ for any value of y.

$$2 \int_{-\infty}^{\infty} f_Y(y) dy = 1$$

If the RV Y has a density function $f_Y(y)$ and $a \le b$ then the probability that Y falls in the interval [a, b] is

$$P(\{a \le Y \le b\}) = \int_a^b f_Y(y) dy$$

$$f_Y(y) = \begin{cases} cy, & 0 \le y \le 2\\ 0, & \text{elsewhere.} \end{cases}$$

a.) Find the value of c that makes $f_Y(y)$ a probability density function.

b.) Find $F_Y(y)$

c.) Graph both $f_Y(y)$ and $F_Y(y)$.

d.) Use $F_Y(y)$ to find $P(\{1 \le Y \le 2\})$.

e.) Use $f_Y(y)$ and geometry (the area of a triangle) to find $P(\{1 \le Y \le 2\})$.