AM213B Assignment #6

Problem 1 (Theoretical)

Consider the Lax-Friedrichs method for the general case (a > 0 or a < 0)

$$u_i^{n+1} = \frac{u_{i+1}^n + u_{i-1}^n}{2} - \frac{ar}{2} \left(u_{i+1}^n - u_{i-1}^n \right), \qquad r = \frac{\Delta t}{\Delta x}$$

<u>Part 1:</u> Carry out von Neumann stability analysis.

Part 2: Use Taylor expansion to find the local truncation error e_i^n .

Convert r back to $\Delta t/(\Delta x)$. Find coefficients of $(\Delta t)^2$, $(\Delta t)(\Delta x)$ and $(\Delta x)^2$ in e_i^n .

<u>Part 3:</u> <u>Answer</u> the two questions below.

For fixed $\frac{\Delta t}{\Delta x} = r$, write $\frac{e_i^n}{\Delta t}$ in terms of Δx only. Do we have $\lim_{\Delta x \to 0} \frac{e_i^n}{\Delta t} = 0$?

For fixed $\frac{\Delta t}{(\Delta x)^2} = c$, write $\frac{e_i^n}{\Delta t}$ in terms of Δx only. Do we have $\lim_{\Delta x \to 0} \frac{e_i^n}{\Delta t} = 0$?

Problem 2 (Theoretical)

Carry out von Neumann stability analysis on each of the methods below

i) the BTCS method for the general case (a > 0 or a < 0)

$$u_i^{n+1} = u_i^n - \frac{ar}{2} \left(u_{i+1}^{n+1} - u_{i-1}^{n+1} \right), \qquad r = \frac{\Delta t}{\Delta x}$$

ii) the implicit upwind method for the case of a > 0

$$u_i^{n+1} = u_i^n - ar(u_i^{n+1} - u_{i-1}^{n+1}), \qquad r = \frac{\Delta t}{\Delta x}$$

Hint: Examine $|1/\rho|^2$.

Problem 3 (Computational)

Use respectively, the first order and the second order numerical differentiations to approximate $\frac{d}{dx}\sin(x)$ at x = 1.45

$$q_1(h) = \frac{\sin(x+h) - \sin(x)}{h}$$

$$q_2(h) = \frac{\sin(x+h) - \sin(x-h)}{2h}$$

Use the exact derivative to calculate the total error of each method

$$E_{T,1}(h) = |q_1(h) - \cos(x)|$$

 $E_{T,2}(h) = |q_2(h) - \cos(x)|$

<u>Use loglog</u> to plot $E_{T,1}(h)$ vs h and $E_{T,2}(h)$ vs h for $h = 10.^(-[1:0.2:14])$.

Plot the two curves in one figure for comparison.

Remark: In the figure, you should see

For each method, the total error attains a minimum at a certain value of *h*.

A higher order method achieves a smaller minimum total error.

Problem 4 (Computational)

Continue with the IBVP in problem 6 of Assignment 5.

$$\begin{cases} u_t = u_{xx}, & x \in (0, L), t > 0 \\ u(x,0) = p(x), & x \in (0, L) \\ u_x(0,t) - \alpha u(0,t) = 0, & u(L,t) = q(t) \end{cases}$$

where L = 2, $\alpha = 0.4$, $p(x) = (1 - 0.5x)^2$, $q(t) = 2\sin^2(t)$.

Use the FTCS method to solve the IBVP to T=3 using $\Delta t=10^{-5}$ and respectively

$$N = 100$$
, $N = 200$, and $N = 400$

Let $u_{\{N=100\}}$ denote the numerical solution of N=100.

 $u_{\text{N=100}}$, $u_{\text{N=200}}$, and $u_{\text{N=400}}$ are represented on different spatial grids.

Use spline in Matlab to map $u_{\{N=100\}}$, $u_{\{N=200\}}$, and $u_{\{N=400\}}$ to grid x=[0:0.002:1]*L.

<u>Plot</u> $(u_{\{N=100\}} - u_{\{N=200\}})$ vs x and $(u_{\{N=200\}} - u_{\{N=400\}})$ vs x at T=3 in one figure.

Remark: We can derive that the error in $u_{\{N\}}$, associated with the spatial discretization, is approximately

$$E(h_1) \approx \frac{u(h_1) - u(h_2)}{1 - \left(\frac{h_2}{h_1}\right)^2} = \frac{u_{\{N\}} - u_{\{2N\}}}{1 - \left(\frac{N - 0.5}{2N - 0.5}\right)^2}$$

Problem 5 (Computational)

Consider the 2D IBVP of the heat equation

$$\begin{cases} u_{t} = u_{xx} + u_{yy}, & (x,y) \in (0,8) \times (0,8), t > 0 \\ u(x,y,0) = f(x,y) \\ u(0,y,t) = g_{L}(y,t), & u(8,y,t) = g_{R}(y,t) \\ u(x,0,t) = g_{B}(x,t), & u(x,8,t) = g_{T}(x,t) \end{cases}$$

where

$$f(x, y) = 0$$

 $g_L(y,t) = -\sin(\pi y/8) \cdot \tanh(2t), \quad g_R(y,t) = -3\sin(\pi y/8) \cdot \tanh(2t)$
 $g_R(x,t) = 0, \quad g_T(x,t) = x(1-x/8) \cdot \tanh(2t)$

Use the 2D FTCS method to solve the IBVP to T = 2.

Use $\Delta x = \Delta y = 0.08$ and $\Delta t = 1.25 \times 10^{-3}$.

<u>Part 1:</u> <u>Plot</u> u(x, 6) vs x at t = 0.1, 0.5, 1, and 2 in one figure.

Part 2: Plot u vs (x, y) at T = 2 as a surface.

<u>Hint:</u> See the sample code on implementing FTCS to solve the 2D heat equation.

Problem 6 (Computational)

Continue with the numerical solution of IBVP in Problem 5.

Use $\Delta x = \Delta y = 0.08$ and $\Delta t = 1.25 \times 10^{-3}$ to solve the IBVP to T = 20.

At each t_n , calculate the maximum of $|u_t|$ over all internal points.

$$E(t_n) = \max_{\substack{1 \le i \le N \\ 1 \le j \le N_y - 1}} \frac{|u_{i,j}^{n+1} - u_{i,j}^n|}{\Delta t}$$

Part 1: Plot E(t) vs t. Use logarithmic scale for E(t) and linear scale for t.

<u>Hint:</u> In Matlab, to find the largest (absolute value) element of matrix B, use max(abs(B), [], 'all');

Part 2: Repeat the simulation using $\Delta x = \Delta y = 0.16$ and $\Delta t = 1.25 \times 10^{-3}$.

Calculate $u_{\{\Delta=0.16\}}$ – $u_{\{\Delta=0.08\}}$ at T=20 at their common grid points.

Plot $(u_{\{\Delta=0.16\}}-u_{\{\Delta=0.08\}})$ vs (x,y) at T=20 as a surface.