CAPÍTULO II- ENERGIA E POTENCIAL ELÉTRICO

- 1. Geralmente, engenheiros e cientistas definem o potencial eléctrico da superfície da terra como zero. Se, em vez disso o potencial da terra fosse definido como 100V, que efeito isso teria nos valores medidos de (a) potencial; (b) diferenças de potencial;
- 2. Num relâmpago típico a diferença de potencial entre uma nuvem e a terra é de $1.0x10^9$ V e a quantidade de carga transferida é de 30C.
 - a) Qual é a variação de energia da carga transferida? ($\Delta U=30\times10^9 J$)
 - b) Se toda essa energia pudesse ser utilizada para acelerar um carro de massa 1000kg, desde o repouso, qual seria a velocidade atingida pelo carro? (v=7746 m/s)
- 3. A distância média entre o electrão e o protão no átomo de H é 5.3×10^{-11} m.
 - a) Calcule o potencial eléctrico à distância $r = 5.3 \times 10^{-11}$ m do protão. (**V=27.17 V**)
 - b) Calcule a energia potencial do sistema protão/electrão do átomo de hidrogénio.(U=4.35×10⁻¹⁸ J)

 Nota: se o electrão do hidrogénio estivesse em repouso, a energia de ionização seria 27.2 eV. O electrão move-se com uma energia cinética 13.6 eV, em consequência a sua energia total é -27.2 + 13.6 = -13.6 eV. Esta é a razão porque é necessária uma energia de 13.6 eV para ionizar um átomo de H.
- 4. Em reacções de fissão nuclear, o urânio 235 (²³⁵U) capta um neutrão e divide-se em 2 núcleos mais leves, normalmente um núcleo de bário (Z(Ba) = 56) e um núcleo de kripton (Z (Kr) = 36). Assuma que ambos os núcleos resultantes são cargas pontuais separadas por 14.6 × 10⁻¹⁵ m. Calcule a energia potencial deste sistema. (~200 MeV)

Nota: A distância 14.6×10^{-15} m corresponde à soma dos raios dos 2 núcleos. Após a fissão os núcleos separam-se rapidamente devido à repulsão electrostática. A energia potencial é transformada em energia cinética e térmica.

- 5. Um positrão possui a mesma carga de um protão, mas a sua massa é igual à de um electrão. Suponha que um positrão percorre uma distância de 5.2 cm, no sentido e direcção do campo, numa região onde existe um campo eléctrico uniforme de 480 V/m.
 - a) Qual a variação da energia potencial do positrão? (ΔU=- 4 ×10⁻¹⁸ J)
 - b) Qual a variação da energia cinética do positrão (ΔE_c= 4 ×10⁻¹⁸ J)
- 6. Solta-se um balão cheio de hélio que possui uma carga $q=-5.5\times10^{-8}$ C, e este sobe verticalmente 520m. Sabendo que geralmente, na atmosfera próxima da superfície terrestre existe um campo eléctrico de cerca de 150~N/C, direccionado para baixo, calcule a diferença de potencial eléctrico do balão entre as duas posições? ($\Delta V = 78~kV$)

DFUM 2011/2012 1

- 7. Considere três pontos, A de coordenadas $x_A=1$, $y_A=4$, B de coordenadas $x_B=1$, $y_B=1$ e C de coordenadas $x_C=4$, $y_C=4$, situados numa região em que existe um campo eléctrico uniforme $\vec{E}=-4\times 10^4~\hat{j}$ (N/C).
 - a) Determine o trabalho realizado pelo campo eléctrico no deslocamento de uma carga de 1C desde A até B e de B até C. (W_{A→B}=12×10⁴ J;W_{B→C}=-12×10⁴ J)
 - b) Determine as diferenças de potencial V_B-V_A , V_B-V_C e V_C-V_A .($V_B-V_A=-12\times10^4$ V; $V_B-V_C=12\times10^4$ V; $V_C-V_A=0$ V)
- 8. Na figura as linhas rectas representam linhas de campo e as curvas, a tracejado, linhas equipotenciais. Quando um electrão se move de A até B o trabalho realizado pelo campo eléctrico é $3.94\times10^{-19} J$. Calcule as diferenças de potencial V_B-V_A , V_C-V_B e V_C-V_A . $(V_B-V_A=2.46\ V\ ;\ V_C-V_B=0V\ ;\ V_C-V_A=2.46\ V\)$

9. Uma partícula de massa m e carga -q é projectada com velocidade v_0 numa região entre duas placas paralelas, como se mostra na figura. A diferença de potencial entre as duas placas é V e a sua separação é d. Calcule a variação de energia cinética da partícula quando atravessa a região entre as placas.

10. Uma partícula carregada (um protão ou um electrão) move-se para a direita, entre duas placas paralelas, com uma velocidade inicial de 90x10³ m/s, conforme se ilustra na figura. As placas encontram-se separadas por uma distância d=2.0 mm e os potenciais das placas são V₁=-70.0 V e V₂=-50.0 V. Verifica-se que a partícula sofre uma desaceleração.

- a) A partícula carregada é um protão ou um electrão?
- b) Qual a velocidade da partícula quando atinge a placa 2? (v=6.53x10⁴ m/s)
- 11. Numa dada região do espaço actua um campo eléctrico uniforme de (2kN/C) na direcção x. Uma carga puntiforme Q =3 C é solta, em repouso na origem.
 - a) Calcule a energia cinética da carga quando passa na posição X = 4m. ($E_c = 24 \times 10^{-3}J$)
 - b) Qual é a variação de energia potencial entre os pontos x = 0 e x = 4m? ($\Delta U = -24 \times 10^{-3} J$)
 - c) Qual é a diferença de potencial entre os pontos x = 0 e x = 4m ? ($\Delta v = 8 \times 10^3 v$)

DFUM 2011/2012 2

- 12. Um campo eléctrico uniforme tem o sentido do semi-eixo negativo xx'. As coordenadas dos pontos a e b são respectivamente (2m, 0) e (6m, 0).
 - a) A diferença de potencial (V_b-V_a) é positiva ou negativa? $(V_B-V_A>0)$
 - b) Se o módulo de (V_b-V_a) for 10^5 V, qual é o módulo E do campo eléctrico? (E=25×10³ N/C)
- 13. Uma esfera de raio $60~\rm cm$ tem o seu centro na origem. Sobre o "equador" da esfera, espaçadas entre si de 60° estão $6~\rm cargas$ de $3\mu C$.
 - a) Qual é o potencial eléctrico na origem? (V =2.46×10⁵ V)
 - b) Qual é o potencial eléctrico no "polo norte" da esfera' (V =1.9×10⁵ V)
- 14. Calcular a energia potencial electrostática de um sistema constituído por quatro cargas puntiformes, colocadas nos vértices de um quadrado de *4 m* de lado, nas seguintes situações:
 - a) Todas as cargas têm um valor de $+2\mu$ C. (U=48.7×10⁻³ J)
 - b) Uma das cargas é negativa (-2 μ C) e as outras três são positivas (+2 μ C). (U=0)
- 15. Duas cargas de 2 μ C estão colocadas em dois pontos, conforme se mostra na figura, e uma carga de prova positiva $q=1.28\times10^{-18}$ C, na origem.

- a) Qual é a força resultante exercida sobre q pelas duas cargas de 2 μ C? ($F_R=0$)
- b) Caracterize o campo eléctrico, originado pelas duas cargas de 2 μ C, na origem? ($E_R=0$)
- c) Qual é o potencial V provocado pelas duas cargas de 2µC, na origem? (V=45×10³ V)
- 16. Duas cargas iguais $q=2.0\mu C$ estão separadas por uma distância d=2cm como está indicado na figura seguinte. Determine:

- a) a energia potencial do sistema de cargas; (U=1.8 J)
- b) o potencial eléctrico no ponto C; (V=2.54×106 V)
- c) o trabalho a realizar para trazer uma terceira carga c (idêntica às anteriores) do infinito até C. (**W=5.1 J**)
- d) a energia potencial do sistema de três cargas. (U=6.9 J)

- 17. Duas cargas q_1 = -2e e q_2 = +2e estão fixas em dois pontos, conforme se ilustra na figura. O ponto P encontra-se localizado a uma distância d_1 =4.0 m da carga 1 e a d_2 =2.0 m da carga 2.
- q_1 q_2
- a) Qual o potencial do ponto P? (7.192x10⁻¹⁰ V)
- b) Qual o trabalho realizado para trazer uma terceira carga q_3 = +2e do infinito até o ponto P? (2.30x10⁻²⁸ J)
- c) Qual a energia potencial do sistema de três cargas. (2.43x10⁻²⁹ J)
- 18. Um campo eléctrico é criado, ajustando uma ddp entre 2 placas paralelas distanciadas 5 cm (As placas são superfícies equipotenciais). Qual a ddp necessária para criar um campo eléctrico com a intensidade de 100 N/C? (v= 5 v)

- 19. Uma carga de $+10^{-8}$ C está uniformemente distribuída sobre uma casca esférica condutora de raio externo igual a 12cm.
 - a) Qual é o módulo do campo eléctrico na face interna e na face externa da superfície? (E=0; E=6.25×10³ V/m)
 - b) Qual é o potencial eléctrico na face interna e na face externa da superfície? (v=750 v)
 - c) Qual é o módulo do potencial eléctrico no centro da casca? Qual é o campo eléctrico nesse ponto? (V=750 V; E=0)
- 20. Um plano infinito tem a densidade superficial de carga de $3.5\mu\text{C/m}^2$. Qual é o afastamento entre duas superfícies equipotenciais cujos potenciais tenham 100V de diferença? (d=0.5 mm)

DFUM 2011/2012 4