

Rechnernetze Kapitel 3: Link Layer

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2019/2020

Slides are based on:

J. Kurose, K. Ross: Computer Networks - A Top-Down Approach
A. Tanenbaum, D. Wetherall: Computer Networks

Inhalt

- Einführung
- Rahmenbildung, Fehlererkennung
- Ethernet 802.3
- Mehrpunktverbindungen, Vielfachzugriff
- Punkt-zu-Punkt Verbindungen in "fully switched networks"

Terminologie

Ende-zu-Ende Pfad:

- Besteht aus vielen, heterogenen Links.
- Beispiel: Von HTTP Client zu Webserver über WLAN, Ethernet und Mobilfunknetz.

Hosts und Nodes

- Host == Endpunkt eines Ende-zu-Ende Pfades
- Node == Jedes Gerät, das am Netzwerk teilnimmt also Host, Router, Switch, Access Point, usw.

Link

- Verbindet benachbarte "Nodes"
- WLAN, Ethernet, Mobilfunk, (Bluetooth), usw.

Frame

- Nachricht auf Schicht 2
- Frame ist "Briefumschlag" für Schicht 3 Paket.

Link (Schicht 2)

— Ende-zu-Ende Pfad (Schicht 3)

Dienste der Link Layer (dt. "Sicherungsschicht")

Übertragung von Frames zwischen benachbarten Nodes

- Rahmenbildung (engl. Framing)
 - Positionsrichtige Erkennung von Zeichen, Erkennung von Blockbegrenzungen.
 - Frame == Header + Payload
 - Hier Payload == IP Paket
- Vielfachzugriff: Wer darf wann das Medium nutzen?
 - Nötig, falls Mehrpunktmedium
 - Beispiele: WLAN, Satellitennetze, Zugangsnetz bei Kabelanschluss
- Fehlererkennung und -korrektur
 - Umgang mit Bitfehlern auf der Physical Layer.
 - Hinzufügen von Redundanz, um Fehler zu erkennen bzw. zu korrigieren.
- Zuverlässige Datenübertragung ("Reliable Data Delivery")
 - Korrektur von Paketverlusten, korrekten Reihenfolge, Vermeidung von Duplikaten
 - Bei WLAN teilweise, bei Ethernet gar nicht!

Wo implementiert man die Link Layer?

- In allen Nodes
 - Auch Router und Switches!
 - Nicht in Hubs!
- Implementierung der meisten Funktionalität in Hardware
 - Fehlererkennung
 - Rahmenbildung
 - 0 ...
- Network Interface Card (NIC) oder Netzwerkkarte
 - Implementiert große Teile der Link Layer und der Physical Layer (Leitungscodes, etc.).
 - Über Bus mit CPU verbunden.

Inhalt

- Einführung
- Rahmenbildung, Fehlererkennung
- Ethernet 802.3
- Mehrpunktverbindungen und Vielfachzugriff
- Punkt-zu-Punkt Verbindungen in "fully switched networks"

Rahmenbildung (engl. Framing)

- Physical Layer empfängt und sendet Bitstrom.
- Fehlerbehandlung durch Link Layer nur möglich
 - o falls Bits in endliche Sequenzen (= Frame) zerlegt werden.
 - Frame Redundanz hat (z.B. Checksum), siehe n\u00e4chster Abschnitt.

Probleme

- Wie erkennt Empfänger Frameanfang und –ende aus Bitstrom?
- Wie überträgt man beliebige Bit- und Zeichenkombinationen?

Lösungsansätze

- Byte Count
- Byte Stuffing
- Bit Stuffing
- Coderegelverletzungen: Blockbegrenzung durch Verwendung ungültiger Codes in Physical Layer

Byte Count: Längenangabe der Nutzdaten

- Jeder Frame beginnt mit Feld, das Anzahl der enthaltenen Bytes angibt.
- Nachteil: Erneute Synchronisation nach Fehler schwierig bzw. unmöglich!

Byte Stuffing: Steuerzeichen und Zeichenstopfen

- Reserviertes Byte FLAG markiert Frameanfang und -ende
- Mögliches Problem: FLAG kommt in Nutzdaten vor
 - Ausweg: Verwenden eines weiteren reservierten Bytes ESC (=Escape)
- Einfache Synchronisation nach Fehler, aber Overhead!

Bit Stuffing: Begrenzungsfeld und Bitstopfen

- Vorteil: Framelänge muss kein Vielfaches von 8 Bit sein!
- Jeder Frame beginnt mit speziellem, reservierten Bitmuster:
 - Hier im Beispiel: 01111110
- Regeln
 - Beim Senden: Nach 5 1er-Bits wird immer ein 0-Bit eingefügt.
 - Beim *Empfang:* Nach 5 1er Bits wird *immer* ein 0-Bit gelöscht.

Datenbits 011011111111111111111101010

Übertragene Bits (nach Stuffing)

Stuffed bits

Übung: Bit Stuffing

- Wie lautet die Bitsequenz nach Bit-Stuffing?
 - 01000111 11100011 11100000 01111110

Publikums-Joker: Link Layer

2 Network-Layer Pakete (z.B. IP Pakete) seien gleich groß aber inhaltlich unterschiedlich. Auf der Link-Layer wird Bit Stuffing verwendet.

Welche Aussage ist *falsch*?

- A. Bit Stuffing ist auf der Netzwerkkarte (NIC) implementiert.
- B. Die dazugehörigen Frames haben verschiedene Checksums.
- Das Propagation Delay beim Senden ist für beide Pakete gleich groß.
- D. Beim Senden der IP Pakete sind die dazugehörigen Frames gleich groß.

Umgang mit Bitfehlern

Ursachen für Bitfehler: Rauschen, Dämpfung, Verzerrung, usw.

Grundidee

- Rahmenbildung (engl. "Framing")
- Redundanz (z.B. Prüfsumme über Frames)

Fehlerkorrektur durch Redundanz

- Benötigt viel Redundanz
- Üblich bei nicht "wiederholbaren" Medien (CD, RAM, etc.), nicht bei TCP/IP

Fehlererkennung durch Redundanz

- Fehler wird nur erkannt, aber nicht behoben.
- Maßnahmen:
 - Ethernet 802.3: Keine Retransmission. Wiederanforderung des fehlerhaften Blocks möglicherweise nur durch TCP, falls Timeout eintritt.
 - WLAN 802.11: Aktive Wiederanforderung des fehlerhaften Blocks durch Link Layer (=Active Repeat Request)

Allgemeiner Ansatz

Bezeichner

- Error Detection und Correction Bits
- D: Nutzdaten, die durch Fehlerbehandlung abgesichert werden

Ansätze

- Paritätsbits
- Checksumme
 - IP, TCP
- CyclicRedundancyCheck (CRC)
 - Ethernet, WLAN

EDC == EDC'?

Checksumme (in IP und TCP Header)

Idee: "Addition"

- Betrachte Bits in Gruppen von 16-Bit Wörter
- Summiere alle 16-Bit Wörter unter Berücksichtigung des Übertrags
- 1er-Komplement des Ergebnisses ist die Checksum

Überprüfung beim Empfänger relativ einfach

- Addiere alle übertragenen Wörter UND Checksum
- Ergebnis muss aus lauter 1er Bits bestehen, sonst Fehler

1. Wort 2. Wort					0												
Übertrag	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1
Summe		1	0	1	1	1	0	1	1	1	0	1	1	1	1	0	0
Checksum					0												

Inhalt

- Einführung
- Rahmenbildung, Fehlererkennung
- Ethernet 802.3
- Mehrpunktverbindungen, Vielfachzugriffs
- Punkt-zu-Punkt Verbindungen in "fully switched networks"

Ethernet

- Dominierende LAN Technologie
- Netzwerkkarten sind preiswert (< 3 Euro)
- Geschwindigkeiten nahmen ständig zu: 10 Mbps 10 Gbps

Ethernet Schema von Metcalf

MAC Adresse

- Adresse der Link Layer
 - Identifiziert Nachbarn, wichtig vor allem bei Mehrpunktverbindungen.
 - Nur lokal gültig (LAN, WLAN).
- Jedes Interface eines Hosts / Routers hat eigene MAC Adresse
 - Ein Gerät kann also mehrere MAC Adressen haben.
- Ethernet und WLAN: 48 Bit
 - Teils fest mit Netzwerkkarte verknüpft
 - Manchmal per SW änderbar
 - Beispiel: 1A-2F-BB-76-09-AD
 - Broadcast-Adresse: FF-FF-FF-FF-FF

Hexadezimal (jede Nummer repräsentiert 4 Bits)

- Adressen werden durch IEEE zugewiesen
 - Hersteller kaufen Adressräume

LAN Adressen

Jede Netzwerkkarte muss eindeutige MAC Adresse haben!

Ethernet 802.3 Frames

<i>type</i>									
preamble	dest address	source address		data (payload)	CRC				

Präambel

- Zu Beginn: 7mal 10101010, dann 1mal 10101011
- Synchronisation von Sender- und Empfänger, Start des Frames.

Adressen

- Jeweils 6 Byte Sende- und Empfänger MAC Adresse
- In der Regel: Netzwerkkarte leitet empfangenen Frame nur an Betriebssystem weiter, falls Dest. MAC der eigenen MAC entspricht. Ausnahmen:
 - Dest. MAC ist FF:FF:FF:FF:FF
 - Promiscuous Mode

Type

- 2 Byte → spezifiziert Art des Netzwerkprotokolls
- IPv4=0x0800, IPv6=0x86DD, ...

CRC

4 Byte

Ethernet 802.3: Eigenschaften

- Verbindungslos
 - Kein Verbindungsaufbau vor Datenaustausch
- Keine zuverlässige (reliable) Verbindung
 - Verlust von Frames möglich
 - Absicherung muss durch höhere Schichten erfolgen.
- Vielfachzugriff
 - Nur bei Broadcast: Unslotted CSMA/CD mit Binary Backoff, siehe später.
- Unterstützt verschiedene Übertragungsmedien
 - Beispiel: 100BASE-SX, 100BaseTX

Publikums-Joker: MAC Adressen

Welche der folgenden Aussagen ist *falsch*? (Annahme: alle Geräte sind ans Internet angebunden und haben ausschließlich Ethernet Interfaces)

- A. Ein klassischer Router hat mehrere MAC Adressen.
- B. Ein klassischer Switch hat mehrere MAC Adressen.
- Ein Host kann mehr als 1 MAC Adresse haben.
- Die MAC Adresse lässt sich teils leicht per SW ändern.

Inhalt

- Einführung
- Rahmenbildung, Fehlererkennung
- Ethernet 802.3
- Mehrpunktverbindungen, Vielfachzugriff
- Punkt-zu-Punkt Verbindungen in "fully switched networks"

Zwei Arten von "Links"

Link: Kommunikation zwischen benachbarten Hosts, Routern und Switches

Punkt-zu-Punkt

- 2 kommunizierenden Nodes haben einen eigenen dedizierten Link für jede Richtung.
- Beispiel: Ethernet LAN, das nur Switches verwendet und PPP für SONET und DSL

Mehrpunktverbindungen

- > 2 kommunizierende Nodes teilen sich einen Link.
- WLAN 802.11, Bluetooth 802.15, altes Ethernet (Hub), Last Mile bei Kabelnetz

Geteilte Leitung Klassisches Ethernet

Geteiltes HF 802.11

Geteiltes HF (Satellit)

Menschen auf einer Party (geteilte Musik)

Vielfachzugriff (engl. Media Access)

Wer darf wann senden?

- Annahmen
 - Geteilter Broadcastkanal
 - Interferenz == Kollision falls mehrere Stationen gleichzeitig senden.
- Multiple Access Control
 - Verteilter Algorithmus, der entscheidet, wann Host senden darf
 - Entscheidung muss "inband" getroffen werden (kein extra Kanal)
- Anforderungen (Annahme: Link hat Kapazität R)
 - Nur 1 Host möchte senden → Host sendet mit Rate R!
 - M Hosts senden → Jeder Host bekommt Rate R/M ("Fairness")
 - Dezentral ohne koordinierende Station
 - Einfach zu implementieren

Klassifizierung von Multiple Access Control (MAC)

Multiplexverfahren

- Zeit-, Frequenzmultiplexverfahren
- Jeder Sender darf nur zu bestimmter Zeit, mit einer bestimmten Frequenz senden.
- Bereits behandelt, siehe Physical Layer.

Im Folgenden behandelt

Random Access Verfahren

- Kanal wird nicht "aufgeteilt", Kollisionen werden zugelassen
- Mechanismen, um sich von Kollisionen zu erholen
- Schwerpunkt dieses Abschnitts!

Token-Verfahren (nicht behandelt)

- Kollisionen werden grundsätzlich verhindert.
- Nur wer Token hat darf auf Kanal zugreifen

Random Access Verfahren

- Kollision wird zugelassen
 - Falls >2 Stationen senden, tritt Kollision auf
- Zu lösen ist:
 - Wie erkennt man Kollision?
 - Wie reagiert man auf eine Kollision?
 - Erneutes Übertragen solange bis Erfolg.
 - Ggfs. zufällige Wartezeit, um weitere Kollisionen zu verhindern.

- Beispiele von Random Access Verfahren
 - Slotted ALOHA, Unslotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA (WLAN)

Carrier Sense Multiple Access (CSMA)

- Häufig wird die Zeit in Slots unterteilt.
- Carrier Sensing == Mitlauschen auf dem Kanal.
 - Falls Kanal frei: Übertragung beginnen.
 - Falls Kanal belegt: Verschiebe Übertragung.
- □ *Kollisionen* (=2 Stationen senden gleichzeitig).
 - Sind grundsätzlich möglich.
 - Bei Erkennen von Kollisionen erneute Übertragung.
 - Wie können Kollisionen erkannt werden?
 - Durch Mitlauschen des Senders, z.B. altes Ethernet (CSMA/CD)
 - Ausbleibendes ACK signalisiert dem Sender, dass Empfänger Paket nicht erhalten hat.
- Varianten falls Kanal belegt:
 - 1-persistent: Sende, sobald Kanal wieder frei wird.
 - p-persistent. Sende im nächsten Slot mit der Wahrscheinlichkeit p falls Kanal frei ist
 - Non-persistent: Warte eine zufällig Zeit und prüfe erneut ob Kanal frei ist

CSMA/CA bei WLAN 802.11: Konzept

Carrier Sensing

Höre das Medium vor dem Senden ab.

Congestion Avoidance (CA)

- Versuche Kollisionen soweit als möglich zu vermeiden.
- Dennoch: Kollisionsbehandlung notwendig.

Binary (exponential) Backoff

- Nach der m. Kollision, wähle zufällig ein K aus {0,1,2, ..., 2^m-1}.
- Warte dann K Zeitslots, bevor erneut ein Sendeversuch gestartet wird.
- Zufall hilft, eine erneute gleichzeitige Übertragung zu vermeiden.
- Längere Wartezeiten wahrscheinlich, falls hintereinander wiederholt Kollisionen auftreten.
- Problem: Bei WLAN ist das Erkennen von Kollisionen schwierig.
 - WLAN ist *halbduplex*
 - Meist kein Mithören während des Sendens implementiert, da empfangenes Signal sehr schwach im Vergleich zu gesendetem Signal.
 - WLAN Stationen können sich nicht alle gegenseitig hören.
 - Hidden Station Problem (siehe n\u00e4chste Folie)

Hidden Station Problem

- Versteckte Station: A kann Mitbewerber C nicht hören
 - A und C senden gleichzeitig → Kollision bei B
- Mögliche Ursachen:
 - C zu weit von A entfernt oder Hindernis zwischen A und C.
- Eigentlich müssen Kollisionen beim Empfänger erkannt werden.

CSMA/CA Algorithmus

Sender (bei Sendewunsch)

- Frei: Kanal mind. für Zeitspanne DIFS frei
 - Sende kompletten Frame (ohne Carrier Sense)
- Belegt: Kanal gerade belegt.
 - Bereits hier Exponential Backoff
 - Unterschied zu CSMA/CD!
 - Höre Kanal ständig ab, dekrementiere Timer nur während Zeiten, in denen Kanal frei.
 - Erneute Übertragung wenn Timer ausläuft
- Falls kein ACK eintrifft
 - Gehe in "Belegt"-Fall
 - Vergrößere ggfs. Backoff Intervall.

Empfänger

 Bestätigt Datenempfang durch ACK nach Zeitspanne SIFS (=Kollisionserkennung beim Empfänger)

SIFS kürzer als DIFS: Priorisierung von ACKs!

CSMA/CA: Beispiel

- Zufällige Wartezeiten auch ohne Kollision
 - Wenn Carrier Sense bei Sendewunsch ergibt, dass Kanal gerade belegt.
- Backoff Timer zählt nur runter, wenn Kanal auch wirklich frei.
- □ Bleiben ACKs aus → Retransmissions (hier nicht gezeichnet)

Quelle: Tanenbaum

Publikumsjoker

- Vermeidet CSMA/CA Kollisionen im Hidden Station Problem immer?
 - A = JA
 - B = NEIN

Inhalt

- Einführung
- Rahmenbildung, Fehlererkennung
- Ethernet 802.3
- Mehrpunktverbindungen, Vielfachzugriff
- Punkt-zu-Punkt Verbindungen in "fully switched networks"

Zwei Arten von "Links"

Punkt-zu-Punkt

- 2 kommunizierenden Nodes haben einen eigenen dedizierten Link für jede Richtung.
- Beispiel: Ethernet LAN, das nur Switches verwendet und PPP für SONET und DSL

Mehrpunktverbindungen

- > 2 kommunizierende Nodes teilen sich einen Link.
- WLAN 802.11, Bluetooth 802.15, Klassisches Ethernet (Hub), Last Mile bei Kabelnetz

Autonegotiation: Ethernet Host erkennt, ob andere Hosts am Medium sind

Weitere Infos (hier nicht behandelt): https://de.wikipedia.org/wiki/Autonegotiation

Geteilte Leitung Klassisches Ethernet

Geteiltes HF 802.11

Geteiltes HF (Satellit)

Menschen auf einer Party (geteilte Musik)

Switched Ethernet

- Hub: Alle Leitungen sind quasi miteinander verbunden
 - Eine einzige Kollisionsdomäne (== Bereich, in dem nur 1 Host gleichzeitig sprechen darf)
 - Es muss CSMA/CD verwendet werden.
- □ Switch: Isoliert jeden Port in eine eigene Kollisionsdomäne
 - Bei Vollduplex-Kabeln: Kein CSMA/CD nötig!
- Hinweis: Nicht verwechseln mit Broadcastdomäne
 - == Reichweite eines Ethernet Broadcast-Frames (FF:FF:FF:FF:FF)

Quelle: https://www.elektronikkompendium.de/sites/net/140618 1.htm

Switched Ethernet: Das "moderne" Ethernet

- Jeder Host direkt mit Switch-Port verbunden.
 - Jedes Kabel ist ein Punkt-zu-Punkt Netz
 - Keine Kollisionen möglich, falls Vollduplex.
 - Kein CSMA/CD nötig

- Aufgaben von Switches
 - Zwischenspeichern von Frames
 - Weiterleiten von Frames
- Hinweis. Gleichzeitige Übertragung von A zu A' und B zu B' möglich

Switch mit 6 Interfaces (1,2,3,4,5,6)

Ethernet Switch

Arbeitet auf Link Layer

- Empfang, Zwischenspeicherung und Weiterleitung von Ethernet Frames
- Untersucht MAC Adresse der ankommenden Frames und leitet Frame selektiv nur an "richtigen" Port weiter.
- Klassischer Link-Layer Switch hat keine IP Adresse!

Transparenz

Ethernet Hosts merken nichts von Anwesenheit eines Switches

Plug-and-Play

- Selbstlernend
- Switches müssen nicht konfiguriert werden

Switch: Forwarding

- Zu welchen Ports muss Frame weitergeleitet werden?
 - Nachschlagen in Forwardingtabelle
- Einträge der Forwardingtabelle:
 - MAC des Zielhosts
 - Port des Zielhosts
 - Time-to-Live (TTL): nach bestimmter
 Zeit wird Eintrag gelöscht
- Switches sind selbstlernend
 - Jeder empfangene Frame wird untersucht und für den Aufbau der Forwardingtabelle verwendet.
 - Ankommender Frame: Eintragen von Port und MAC des Senders

MAC Adr	Port	TTL
Α	1	60

Switch: Lernalgorithmus und Forwarding

Bei Empfang eines Frames

- Switch merkt sich Eingangsport und MAC Adresse des Senders
 - Eintrag in Switch Forwarding Tabelle
- Nachschlagen ob Eintrag für MAC Zieladresse bereits in Forwarding Tabelle:
 - Falls Eintrag vorhanden: Ermitteln des Zielports
 - Falls Zielport == Quellport: Frame verwerfen
 - Sonst: Leite Frame an entsprechenden Zielport weiter
- Sonst: Fluten
 - Weiterleiten an alle Hosts mit Ausnahme des Senders.

Switch: Forwarding Beispiel

- Zielport A' unbekannt
 - Fluten
- Zielport A bekannt:
 - Leite Frame nur an entsprechenden Port weiter

MAC addr	interface	TTL
Α	1	60
A'	4	60

Forwarding Tabelle (zunächst leer)

Publikums-Joker: Switches

Ein Host sendet an einen Switch mit *n* > 1 Ports einen korrekten, sinnvollen Ethernet Frame. Welche der folgenden Fälle ist *nicht möglich?* (Annahme: Keinerlei Firewalls!)

- A. Er leitet Frame an keinen Port weiter.
- Er leitet Frame an 1 Port weiter.
- c. Er leitet Frame an *n-1* Ports weiter.
- D. Er leitet Frame an alle Ports weiter.

Inhalt

- Einführung
 - Network Interface Cards (NIC)
- Rahmenbildung
 - Byte Count, Byte Stuffing, Bit Stuffing
- Fehlererkennung und Fehlerkorrektur
 - Parität, Checksumme, CRC
- Ethernet 802.3
 - Frameformat, MAC Adressen
- Broadcast Networks: Problem des Vielfachzugriffs
 - ALOHA, CSMA, CSMA/CD, CSMA/CA, TokenRing
- Switched Networks (dt. vermittelte Netze)
 - Hub vs. Switch, Forwarding, Lernalgorithmus