CH1202: Lab Report III

Determination of the pK_{ln} value of an acid-base indicator by spectrophotometric method

ABHISRUTA MAITY

21MS006

am21ms006@iiserkol.ac.in

Indian Institute of Science Education and Research, Kolkata Mohanpur, West Bengal, 741246, India

Contents

1 Brief Theory and Equation 1
2 Dataset 2
3 Plots 3
4 Results 3

§1 Brief Theory and Equation

Most of the acid-base indicator are technically weak acid (represented as HIn). In some solutions, it dissociates:

$$HIn \rightleftharpoons H^+ + In^-$$

which yields the Henderson-Hasselbalch equation:

$$pH = pK_{\text{In}} + \log \frac{[\text{In}^-]}{[\text{HIn}]}$$

Now to determine the ratio of $\frac{[In^-]}{[HIn]}$, we use spectrophotometry. We are acquainted with Beer's law:

$$A = \epsilon c l$$

where A is the absorbance of the solution, ϵ being one of the intrisic property of the solution called the molar attenuation coefficient. We will find A at different pH, which we lead to $pK_{\rm In}$ through Henderson-Hasselbalch equation. This requires a trick of using conservation of mass (since, $m_{\rm H^+} \ll m_{\rm HIn}$, we have $m_{\rm HIn} \simeq m_{\rm In}^-$), as stated through the following equation (details were avoided):

$$[HIn] = \frac{A' - A}{\epsilon l}$$

Lab Report III 2 Dataset

and

$$[\operatorname{In}^{-}] = \frac{A}{\epsilon l}$$

plugging these back into the Henderson-Hasselbalch equation yields:

$$pH = pK_{\rm In} + \log \frac{A}{A' - A} \tag{*}$$

where A' is the absorbance of solution when HIn and In⁻ both are present in the solution and in equilibrium, while A denotes the absorbance of solution only In⁻ is present in the solution. The equation (\star) is the working formula for this experiment.

§2 Dataset

Sl. No.	Vol. of Oxalic acid (mL)	Burette reading (mL)			Avg. Vol. (mL)	Strength of NaOH (N)
		Initial	Final	Difference		
1	10	0	10	10		
2	10	0	10.2	10.2	10.1	0.5
3	10	0	10.1	10.2		

Table 1: Standardization of NaOH solution with Oxalic acid

Sl. No.	Vol. of Acetic acid (mL)	Burette reading (mL)			Avg. Vol. (mL)	Strength of Acetic acid (N)	
		Initial	Final	Difference			
1	10	0	10	10			
2	10	11	20.9	9.9	9.9	0.5	
3	10	0	9.9	9.9			

Table 2: Standardization of Acetic acid solution using standardized NaOH

Lab Report III 4 Results

Test	Vol. of 0.4 N Acetic acid (mL)	Vol. of 0.4 N NaOH (mL)	Vol. of water (mL)	pH (expt.)	A	$\lambda = \frac{A}{A' - A}$	$\log(\lambda)$
1	5	0.5	4.5	3.72	0.0783	0.1218	-0.9144
2	5	1.5	3.5	4.27	0.2469	0.5221	-0.2835
3	5	2.5	2.5	4.63	0.3934	1.2001	0.0792
4	5	3.5	1.5	4.99	0.5168	2.5284	0.4028
5	5	4.5	0.5	5.57	0.7144	105.0588	2.0214
6	0	2.5	7.5	A' = 0.7212			

Table 3: Spectrophotometric data

§3 Plots

Figure 1: Fitting the experimented data

§4 Results

From the above graph, by finding the y-intercept of the line we got by fitting (linear-regression) is $pK_{\text{In}} = 4.48$, with a fitting error in intercept = 2.26%.