MA4702. Programación Lineal Mixta. 2020.

Profesor: José Soto Auxiliar: Diego Garrido Fecha: 30 de abril de 2020.

Dualidad

	min	max	
Restricciones	$\geq b_i$	≥ 0	Variables
	$\leq b_i$	≤ 0	
	$=b_i$	Libre	
Variables	≥ 0	$\leq c_j$	Restricciones
	≤ 0	$\geq c_j$	
	Libre	$=c_j$	

Primal/Dual	Optimo finito	No acotado	Infactible
Optimo finito	Posible	Imposible	Imposible
No acotado	Imposible	Imposible	Posible
Infactible	Imposible	Posible	Posible

1. Lema de Farkas

Pruebe otras versiones del lema de Farkas:

a)
$$\{Ax = b, x \ge 0\} \ne \emptyset \iff \{A^T y \le 0, b^T y > 0\} = \emptyset$$

b)
$$\{Ax \le 0, \ x \ge 0, \ c^T x > 0\} \ne \emptyset \iff \{A^T y \ge c, \ y \ge 0\} = \emptyset$$

2. Dualidad y relajación Lagrangeana

Consideré el siguiente problema primal:

$$\begin{aligned} & \min \ c^T x \\ & \text{s.a.} \ Ax \leq b \\ & x \geq 0 \end{aligned}$$

Demuestre que la mejor cota (cota inferior más cercana al valor óptimo del primal) lagrangeana del primal es su dual. Hint: Escriba la relajación lagrangeana del primal e imponga condiciones sobre los multiplicadores para que sea una cota inferior distinta de $-\infty$.

3. Maximum Flow Problem

Considere el grafo dirigido G(V, E), el objetivo del problema de flujo máximo es enviar la mayor cantidad de flujo desde un nodo s a un nodo t, donde los arcos tienen capacidades positivas $c = (c_e)_{e \in E}$.

- a) Formule el PL y obtenga su dual
- b) Obtenga el dual usando relajación lagrangeana

4. Teorema Carathéodory

Sea $P \subset \mathbb{R}^n$ un politopo y $W = \{x^1, \dots, x^k\}$ sus puntos extremos.

- a) Demuestre que P = conv(W).
- b) Muestre que todo elemento de P puede ser expresado como una combinación convexa de a lo más n+1 puntos extremos. Hint: planteé el poliedro asociado a un punto cualquiera de P.