The Möbius function of generalized subword order

Peter McNamara Bucknell University (2012/2013 at Trinity College Dublin)

> Joint work with: Bruce Sagan Michigan State University

30th July 2012

Slides and full paper (*Adv. Math.*) available from www.facstaff.bucknell.edu/pm040/

Outline

- Generalized subword order and related posets
- Main result
- Applications

Motivation: Wilf's question

Pattern order: order permutations by pattern containment.

e.g.,
$$132 \le 516423$$

Motivation: Wilf's question

Pattern order: order permutations by pattern containment.

e.g.,
$$132 \le 516423$$

Wilf (2002): What can be said about the Möbius function $\mu(\sigma, \tau)$ of the pattern poset?

Motivation: Wilf's question

Pattern order: order permutations by pattern containment.

e.g.,
$$132 \le 516423$$

Wilf (2002): What can be said about the Möbius function $\mu(\sigma, \tau)$ of the pattern poset?

- Sagan & Vatter (2006)
- Steingrímsson & Tenner (2010)
- Burstein, Jelínek, Jelínková & Steingrímsson (2011) Still open.

Our focus: a different poset's Möbius function; tangentially related to Wilf's question.

Our focus: a different poset's Möbius function; tangentially related to Wilf's question.

2 partial orders.

1. Subword order.

 A^* : set of finite words over alphabet A. $u \le w$ if u is a subword of w, e.g., $\frac{342}{3} \le \frac{313423}{3}$.

2. An order on compositions.

 $(a_1,a_2,\ldots,a_r)\leq (b_1,b_2,\ldots,b_s)$ if there exists a subsequence $(b_{i_1},b_{i_2},\ldots,b_{i_r})$ such that $a_j\leq b_{i_j}$ for $1\leq j\leq r$.

e.g. $22 \le 412$.

2. An order on compositions.

 $(a_1,a_2,\ldots,a_r)\leq (b_1,b_2,\ldots,b_s)$ if there exists a subsequence $(b_{i_1},b_{i_2},\ldots,b_{i_r})$ such that $a_j\leq b_{i_j}$ for $1\leq j\leq r$.

e.g. $22 \le 412$.

Composition order \cong pattern order on *layered* permutations $412 \leftrightarrow 4321576$

2. An order on compositions.

$$(a_1,a_2,\ldots,a_r)\leq (b_1,b_2,\ldots,b_s)$$
 if there exists a subsequence $(b_{i_1},b_{i_2},\ldots,b_{i_r})$ such that $a_j\leq b_{i_j}$ for $1\leq j\leq r$.

e.g. 22 < 412.

Composition order ≅ pattern order on *layered* permutations

Generalized subword order interpolates between these two partial orders.

Generalized subword order interpolates between these two partial orders.

P: any poset.

 P^* : set of words over the alphabet P.

Generalized subword order interpolates between these two partial orders.

P: any poset.

 P^* : set of words over the alphabet P.

Main Definition. $u \le w$ if there exists a subword $w(i_1)w(i_2)\cdots w(i_r)$ of w of the same length as u such that

$$u(j) \leq_P w(i_j)$$
 for $1 \leq j \leq r$.

Generalized subword order interpolates between these two partial orders.

P: any poset.

 P^* : set of words over the alphabet P.

Main Definition. $u \le w$ if there exists a subword $w(i_1)w(i_2)\cdots w(i_r)$ of w of the same length as u such that

$$u(j) \leq_P w(i_j)$$
 for $1 \leq j \leq r$.

Example 1. If P is an antichain, $u(j) \leq_P w(i_j)$ iff $u(j) = w(i_j)$.

Gives subword order on the alphabet P, e.g., $342 \le 313423$.

Main Definition. $u \le w$ if there exists a subword $w(i_1)w(i_2)\cdots w(i_r)$ of w of the same length as u such that

$$u(j) \leq_P w(i_j)$$
 for $1 \leq j \leq r$.

Example 2. If P is the chain below, $u(j) \leq_P w(i_j)$ iff $u(j) \leq w(i_j)$ as integers.

Gives composition order, e.g. $22 \le 412$.

Key example

Example 3.
$$P = \Lambda$$

e.g. $11 \le 333$ but $11 \not\le 222$.

Key example

e.g. $11 \le 333$ but $11 \not\le 222$. The interval [11, 333] in P^* :

Key example

e.g. $11 \le 333$ but $11 \le 222$. The interval [11, 333] in P^* :

Definition from Sagan & Vatter (2006); appeared earlier in context of well quasi-orderings [Kruskal, 1972 survey].

Möbius function results

Björner (1998): Möbius function of subword order.

Möbius function results

- ▶ Björner (1998): Möbius function of subword order.
- Sagan & Vatter (2006): Möbius function of composition order.

In fact, Möbius function when *P* is any rooted forest:

Includes antichains and chains.

Möbius function results

- Björner (1998): Möbius function of subword order.
- Sagan & Vatter (2006): Möbius function of composition order.

In fact, Möbius function when *P* is any rooted forest:

Includes antichains and chains.

▶ Sagan & Vatter (2006): when $P = \Lambda$, conjecture that $\mu(1^i, 3^j)$ equals certain coefficients of Chebyshev polynomials of the first kind.

Tomie (2010): proof using methods not easily extendable.

Our first goal: a more systematic proof.

 P_0 : P with a bottom element 0 adjoined.

 μ_0 : Möbius function of P_0 .

Theorem. Let P be a poset so that P_0 is locally finite. Let u and w be elements of P^* with $u \le w$. Then

$$\mu(u,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + 1 & \text{if } \eta(j) = 0 \text{ and} \\ & w(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

where the sum is over all embeddings η of u in w.

 P_0 : P with a bottom element 0 adjoined.

 μ_0 : Möbius function of P_0 .

Theorem. Let P be a poset so that P_0 is locally finite. Let u and w be elements of P^* with $u \le w$. Then

$$\mu(u,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + 1 & \text{if } \eta(j) = 0 \text{ and} \\ & w(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

where the sum is over all embeddings η of u in w.

Example. Calculate $\mu(11,333)$ when $P = \Lambda$.

 P_0 : P with a bottom element 0 adjoined.

 μ_0 : Möbius function of P_0 .

Theorem. Let P be a poset so that P_0 is locally finite. Let u and w be elements of P^* with $u \le w$. Then

$$\mu(u,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + \mathbf{1} & \text{if } \eta(j) = 0 \text{ and} \\ w(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

where the sum is over all embeddings η of u in w.

Example. Calculate $\mu(11,333)$ when $P = \Lambda$.

 P_0 : P with a bottom element 0 adjoined.

 μ_0 : Möbius function of P_0 .

Theorem. Let P be a poset so that P_0 is locally finite. Let u and w be elements of P^* with $u \le w$. Then

$$\mu(u,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + \mathbf{1} & \text{if } \eta(j) = 0 \text{ and} \\ w(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

where the sum is over all embeddings η of u in w.

Example. Calculate $\mu(11,333)$ when $P = \Lambda$.

Theorem. Let P be a poset so that P_0 is locally finite. Let u and w be elements of P^* with $u \le w$. Then

$$\mu(u,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + 1 & \text{if } \eta(j) = 0 \text{ and} \\ & w(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

where the sum is over all embeddings η of u in w.

Theorem. Let P be a poset so that P_0 is locally finite. Let u and w be elements of P^* with $u \le w$. Then

$$\mu(u,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + 1 & \text{if } \eta(j) = 0 \text{ and} \\ & w(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

where the sum is over all embeddings η of u in w.

A more extreme example. Calculate $\mu(\emptyset, 33333)$ when $P = \Lambda$.

The interval $[\emptyset, 33333]$ in P^* has 1906 edges!

Theorem. Let P be a poset so that P_0 is locally finite. Let u and w be elements of P^* with $u \le w$. Then

$$\mu(u,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + \mathbf{1} & \text{if } \eta(j) = 0 \text{ and} \\ & w(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

where the sum is over all embeddings η of u in w.

A more extreme example. Calculate $\mu(\emptyset, 33333)$ when $P = \Lambda$.

The interval $[\emptyset, 33333]$ in P^* has 1906 edges!

Theorem. Let P be a poset so that P_0 is locally finite. Let u and w be elements of P^* with $u \le w$. Then

$$\mu(u,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + \mathbf{1} & \text{if } \eta(j) = 0 \text{ and} \\ w(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

where the sum is over all embeddings η of u in w.

A more extreme example. Calculate $\mu(\emptyset, 33333)$ when $P = \Lambda$.

The interval $[\emptyset, 33333]$ in P^* has 1906 edges!

A word or two about the proof

Forman (1995): discrete Morse theory.

Babson & Hersh (2005): discrete Morse theory for order complexes.

Determine which maximal chains are "critical." Each critical chain contributes +1 or -1 to the reduced Euler characteristic / Möbius function.

Take-home message? If the usual methods for determining Möbius functions don't work, try DMT.

Not an easy proof: 14 pages with examples. One subtlety: DMT doesn't give us everything; also utilize classical Möbius function techniques.

Application 1. Möbius function of subword order (Björner).

$$\underbrace{ \left(\begin{array}{c} \\ \\ \\ \end{array} \right) }_{\mu(u,\,w)} = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{c} \mu_0(\eta(j),\,w(j)) + 1 & \text{if } \eta(j) = 0 \text{ and} \\ w(j-1) = w(j), \\ \mu_0(\eta(j),\,w(j)) & \text{otherwise}, \end{array} \right.$$

Application 1. Möbius function of subword order (Björner).

$$1) \underbrace{ 2 }_{\mu(u,\,w)} \underbrace{ 3 }_{\mu(u,\,w)} = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),\,w(j)) + 1 & \text{if } \eta(j) = 0 \text{ and} \\ \mu_0(\eta(j),\,w(j)) & \text{otherwise,} \end{array} \right.$$

e.g.,
$$\mu$$
(23, 23313) $w=23313$ $\eta=20003$

Application 1. Möbius function of subword order (Björner).

$$1) \underbrace{2}_{\eta(u,w)} \underbrace{3}_{\mu(u,w)} = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{ll} \mu_0(\eta(j),w(j)) + 1 & \text{if } \eta(j) = 0 \text{ and} \\ \mu_0(\eta(j),w(j)) & \text{w}(j-1) = w(j), \\ \mu_0(\eta(j),w(j)) & \text{otherwise}, \end{array} \right.$$

e.g.,
$$\mu$$
(23, 23313)
$$\begin{aligned} \textit{w} &= \texttt{23313} \\ \eta &= \texttt{20003} \end{aligned}$$
 (1)(-1)

Application 1. Möbius function of subword order (Björner).

 $\eta = 20003$

(1)(-1)(-1+1)

Application 1. Möbius function of subword order (Björner).

$$1) \underbrace{ 2 }_{\eta(u,w)} \underbrace{ 3 }_{\eta(u,w)} = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{l} \mu_0(\eta(j),w(j)) + 1 \\ \mu_0(\eta(j),w(j)) \end{array} \right. \quad \text{if } \eta(j) = 0 \text{ and } \\ w(j-1) = w(j), \\ \text{otherwise}, \end{array}$$

e.g.,
$$\mu$$
(23, 23313)
$$\begin{aligned} & \textit{w} = \texttt{23313} \\ & \textit{\eta} &= \texttt{20003} \\ & \textit{(1)(-1)(-1+1)(-1)(1)=0} \end{aligned}$$

Application 1. Möbius function of subword order (Björner).

$$\underbrace{ \left(\begin{array}{c} 2 \\ 0 \end{array} \right) }_{\mu(u,\,w)} = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{c} \mu_0(\eta(j),\,w(j)) + \mathbf{1} \\ \mu_0(\eta(j),\,w(j)) \end{array} \right. \quad \text{if } \eta(j) = 0 \text{ and } \\ w(j-1) = w(j), \\ \text{otherwise},$$

e.g.,
$$\mu$$
(23, 23313)
$$\begin{aligned} w &= 23313 \\ \eta &= 20003 \end{aligned}$$

$$(1)(-1)(-1+1)(-1)(1)=0$$

$$w = 23313$$

 $\eta = 20300$

Application 1. Möbius function of subword order (Björner).

$$1) \underbrace{ 2 \qquad 3}_{\mu(u,\,w) = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{l} \mu_0(\eta(j),\,w(j)) + 1 \\ \mu_0(\eta(j),\,w(j)) \end{array} \right. }_{\text{otherwise,}} \text{ if } \eta(j) = 0 \text{ and } w(j-1) = w(j), \\ \mu_0(\eta(j),\,w(j)) \text{ otherwise,}$$

e.g.,
$$\mu$$
(23, 23313)
$$\begin{aligned} w &= 23313 \\ \eta &= 20003 \end{aligned}$$

$$(1)(-1)(-1+1)(-1)(1)=0$$

$$w = 23313$$

 $\eta = 20300$
 $(1)(-1)(1)(-1)(-1)$

Application 1. Möbius function of subword order (Björner).

$$\underbrace{1}_{\mu(u,\,w)} = \sum_{\eta} \prod_{1 \leq j \leq |w|} \left\{ \begin{array}{l} \mu_0(\eta(j),\,w(j)) + 1 \\ \mu_0(\eta(j),\,w(j)) \end{array} \right. \quad \text{if } \eta(j) = 0 \text{ and } \\ \mu_0(\eta(j),\,w(j)) \quad \text{otherwise,}$$

e.g.,
$$\mu$$
(23, 23313)
$$\begin{aligned} & \textit{w} = \texttt{23313} \\ & \textit{\eta} &= \texttt{20003} \\ & \textit{(1)(-1)(-1+1)(-1)(1)=0} \end{aligned}$$

$$w = 23313$$

 $\eta = 20300$
 $(1)(-1)(1)(-1)(-1)$

$$\mu(u, w) = (-1)^{|w|-|u|} (\# \text{ normal embeddings}).$$

More applications

Application 2. Rederive Sagan & Vatter result for μ when P is a rooted forest.

Application 3. In particular, rederive Sagan & Vatter result for μ of composition order.

More applications

Application 2. Rederive Sagan & Vatter result for μ when P is a rooted forest.

Application 3. In particular, rederive Sagan & Vatter result for μ of composition order.

Application 4. Rederive Tomie's result for $\mu(1^i, 3^j)$ when $P = \Lambda$.

$$\mu(1^{i}, 3^{j}) = [x^{j-i}]T_{i+j}(x)$$
 for $0 \le i \le j$

where $T_n(x)$ is the Chebyshev polynomial of the first kind.

More applications

Application 2. Rederive Sagan & Vatter result for μ when P is a rooted forest.

Application 3. In particular, rederive Sagan & Vatter result for μ of composition order.

Application 4. Rederive Tomie's result for $\mu(1^i, 3^j)$ when $P = \Lambda$.

$$\mu(1^{i}, 3^{j}) = [x^{j-i}]T_{i+j}(x)$$
 for $0 \le i \le j$

where $T_n(x)$ is the Chebyshev polynomial of the first kind.

Application 5. Tomie's results for augmented Λ .

A topological application

Application 6. Suppose $rk(P) \le 1$. Then any interval [u, w] in P^* is

- shellable:
- ▶ homotopic to a wedge of $|\mu(u, w)|$ spheres, all of dimension rk(w)-rk(u)-2.

Open problem. What if $rk(P) \ge 2$?

Summary

- Generalized subword order interpolates between subword order and an order on compositions.
- ► For any *P*, simple formula for the Möbius function of *P**.
- Proof primarily uses discrete Morse theory.
- Formula implies all previously proved cases.

Summary

- Generalized subword order interpolates between subword order and an order on compositions.
- ► For any *P*, simple formula for the Möbius function of *P**.
- Proof primarily uses discrete Morse theory.
- Formula implies all previously proved cases.

[\emptyset , 33333] when $P = \lambda$

