

TAREA 4: Grape Loop

Manuel González † , Pablo Gómez † , Ayrton Morrison † y Emmanuel Velásquez †

[†]Universidad de Magallanes

Este informe fue compilado el 7 de diciembre de 2024

Resumen

Keywords:

■ Índice

1	Introducción	2
2	Objetivo principal	2
3	Planteamiento del desarrollo del proyecto	3
4	Implementación	4
5	Gestión del equipo de trabajo	5
6	Posibles Mejoras a futuro	6
7	Ejemplo de uso	7
8	Conclusiones	8

1. Introducción

La presente tarea tiene como propósito consolidar los conocimientos adquiridos mediante el diseño e implementación de un sistema práctico. En esta ocasión, el proyecto se centra en el desarrollo de una red social simulada, un entorno que permitirá implementar y evaluar diversos algoritmos de recomendación y técnicas relacionadas con redes sociales. Este entorno incluye el uso de estructuras de datos avanzadas como grafos y listas enlazadas, integrando también algoritmos como PageRank y la similitud de Jaccard. El propósito general es simular un sistema que permita realizar recomendaciones basadas en la importancia y similitud de nodos en una red, promoviendo la personalización de las interacciones y resolviendo desafíos técnicos relacionados con la gestión dinámica de datos en estructuras complejas.

2. Objetivo principal

El objetivo principal es diseñar e implementar un sistema funcional que permita gestionar perfiles de usuario, conexiones entre ellos y operaciones asociadas como publicaciones, búsquedas y recomendaciones. Este proyecto busca aplicar conceptos fundamentales de estructuras de datos y algoritmos avanzados para resolver problemas reales relacionados con la gestión y optimización de redes sociales simuladas.

3. Planteamiento del desarrollo del proyecto

El desarrollo de este proyecto se centra en la implementación de una red social simulada basada en grafos. Los nodos representan perfiles de usuario y los bordes, sus conexiones (seguidores y seguidos). Los algoritmos principales empleados incluyen:

- 1.- PageRank adaptado: Utilizado para medir la importancia de cada nodo en el grafo, considerando tanto enlaces entrantes como salientes.
- 2.- Similitud de Jaccard: Implementado para calcular la semejanza entre los intereses o conexiones de diferentes usuarios.
- 3.- Recomendaciones personalizadas: Basadas en conexiones compartidas entre usuarios y análisis de interacciones.

El proyecto incorpora una estructura modular, separando tareas como el almacenamiento de datos en archivos, la simulación de conexiones entre usuarios y el cálculo dinámico de métricas para optimizar el rendimiento.

4. Implementación

La implementación se desarrolla en etapas:

- 1.- Estructuras de datos:
- Uso de grafos para modelar las relaciones entre usuarios. Implementación de listas enlazadas y tablas hash para gestionar datos asociados a cada usuario.
- 2.- Algoritmos:
- Adaptación del algoritmo PageRank a la red social para calcular la influencia de los usuarios. Cálculo de la similitud de Jaccard para sugerencias basadas en intereses comunes.
- 3.- Manejo de datos:
- Almacenamiento estructurado en directorios para cada usuario. Archivos separados para guardar seguidores, seguidos y datos generales de los usuarios.
- 4.- Generadores dinámicos:
- Creación automática de usuarios y simulación de publicaciones. Opcionalmente, integración con un generador de contenido basado en GPT para enriquecer los mensajes.
- 5.- Interfaz de interacción:
- Implementación en Python para manejar la creación, modificación y búsqueda de usuarios. Ejecución a través de parámetros para una interacción dinámica.

5. Gestión del equipo de trabajo

El equipo de trabajo está compuesto por los siguientes integrantes: Ayrton Morrison, Emmanuel Velásquez, Manuel González y Pablo Gómez. Los integrantes del equipo se devidieron en dos: Equipo de programación y equipo de documentacion.

6. Posibles Mejoras a futuro

En esta sección se describen algunas posibles mejoras que se podrían implementar en el futuro para optimizar y ampliar el proyecto:

- Optimización del rendimiento: Revisar y mejorar el código para reducir el tiempo de ejecución y el uso de recursos.
- Ampliación de funcionalidades: Añadir nuevas características que puedan ser útiles para los usuarios, basadas en el feedback recibido.
- Mejora de la documentación: Asegurarse de que toda la documentación esté actualizada y sea fácil de entender para nuevos desarrolladores.
- Pruebas automatizadas: Implementar un conjunto completo de pruebas automatizadas para garantizar la estabilidad y la calidad del código.
- Interfaz de usuario: Mejorar la interfaz de usuario para hacerla más intuitiva y fácil de usar.
- Seguridad: Revisar y mejorar las medidas de seguridad para proteger los datos y la integridad del sistema.

7. Ejemplo de uso

8. Conclusiones