7-2: Diving Deeper with SVD

Introduction

- Last time: introduced matrix factorization
 - Singular Value Decomposition
- This video: details on how SVDs work
 - Algebraic understanding
 - Dealing with missing data
 - Updating with new data

The Algebra of an SVD

- Rating matrix M decomposes to $U\Sigma V^T$
- U, V orthogonal
 - translate vectors into & out of low-dim space
- Σ diagonal matrix of singular values
- Truncate: keep k 'most important' dimensions (highest singular values)
 - Best rank-k approximation (by RMSE/Frobenius norm)
 - de-noises the data

Computing an SVD

- Well-known algorithms in many linear algebra packages
 - Matlab
 - LINPACK
 - ARPACK
- Very slow

Missing Data

- SVD formulation (and many solvers) assume matrix is complete
 - But if it's complete, don't need recommender
- What to do with missing values?
 - 'Impute' assume they are a mean
 - Normalize data first assume they are 0
 - Next lecture: ignore them

Adding New Data (folding in)

- New user joins the system and rates some items
 - They weren't in last night's model build
- Vector spaces to the rescue!
 - Multiply user rating vector by item-feature matrix
 - This gives you user-feature vector

General SVD Practice

- Build models regularly
- Fold-in user's current ratings for live recommendation
- Impute means or pre-normalize data to handle missing data
 - Pre-normalizing lets you use standard sparse matrix and vector arithmetic

7-2: Diving Deeper with SVD

= UEVT mxk U-user-feature matrix) nxk V-item-feature matrix Lorthoganal kxk & - weights diagonal only keep k largest Pai = Ewas of Vis - best rank-k approx. by global RMSE Z=UEVT Ja = EVT GT