Computing the least commitment action models from observations of plan executions

Diego Aineto¹, Sergio Jiménez¹, Eva Onaindia¹ and , Blai Bonet²

¹Departamento de Sistemas Informáticos y Computación. Universitat Politècnica de València. Valencia, Spain ²Departamento de Computación. Universidad Simón Bolívar. Caracas, Venezuela

{dieaigar,serjice,onaindia}@dsic.upv.es, bonet@usb.ve

Abstract

1 Introduction

2 Background

This section formalizes the models for *classical planning* and for the *observation* of the execution of a classical plan.

2.1 Classical planning with conditional effects

F is the set of *fluents* or *state variables* (propositional variables). A *literal* l is a valuation of a fluent $f \in F$, i.e. either l = f or $l = \neg f$. L is a set of literals that represents a partial assignment of values to fluents, and $\mathcal{L}(F)$ is the set of all literals sets on F, i.e. all partial assignments of values to fluents. A *state* s is a full assignment of values to fluents. We explicitly include negative literals $\neg f$ in states and so |s| = |F| and the size of the state space is $2^{|F|}$.

A planning frame is a tuple $\Phi = \langle F, A \rangle$, where F is a set of fluents and A is a set of actions. An action $a \in A$ is defined with preconditions, $\operatorname{pre}(a) \in \mathcal{L}(F)$, positive effects, $\operatorname{eff}^+(a) \in \mathcal{L}(F)$, and negative effects $\operatorname{eff}^-(a) \in \mathcal{L}(F)$. The semantics of actions $a \in A$ is specified with two functions: $\rho(s,a)$ denotes whether action a is applicable in a state s and $\theta(s,a)$ denotes the successor state that results of applying action a in a state s. Then, $\rho(s,a)$ holds iff $\operatorname{pre}(a) \subseteq s$. And the result of applying a in s is $\theta(s,a) = \{s \setminus \operatorname{eff}^-(a)\}$ $\cup \operatorname{eff}^+(a)\}$.

A planning problem is defined as a tuple $P = \langle F, A, I, G \rangle$, where I is the initial state in which all the fluents of F are assigned a value true/false and G is the goal set. A plan π for P is an action sequence $\pi = \langle a_1, \ldots, a_n \rangle$, and $|\pi| = n$ denotes its plan length. The execution of π in the initial state I of P induces a trajectory $\tau(\pi, P) = \langle s_0, a_1, s_1, \ldots, a_n, s_n \rangle$ such that $s_0 = I$ and, for each $1 \leq i \leq n$, it holds $\rho(s_{i-1}, a_i)$ and $s_i = \theta(s_{i-1}, a_i)$. A trajectory $\tau(\pi, P)$ that solves P is one in which $G \subseteq s_n$.

An action $a_c \in A$ with conditional effects is defined as a set of preconditions $\operatorname{pre}(a_c) \in \mathcal{L}(F)$ and a set of *conditional* effects $\operatorname{cond}(a_c)$. Each conditional effect $C \triangleright E \in \operatorname{cond}(a_c)$ is composed of two sets of literals: $C \in \mathcal{L}(F)$, the *condition*, and $E \in \mathcal{L}(F)$, the effect. An action a_c is applicable in a

state s if $\rho(s, a_c)$ is true, and the *triggered effects* resulting from the action application are the effects whose conditions hold in s:

$$triggered(s, a_c) = \bigcup_{C \rhd E \in \mathsf{cond}(a_c), C \subseteq s} E$$

The result of applying action a_c in state s is $\theta(s, a_c) = \{s \setminus eff_c^-(s, a)\} \cup eff_c^+(s, a)\}$, where $eff_c^-(s, a) \subseteq triggered(s, a)$ and $eff_c^+(s, a) \subseteq triggered(s, a)$ are, respectively, the triggered negative and positive effects.

2.2 The observation model

Given a planning problem $P=\langle F,A,I,G\rangle$, a plan π and a trajectory $\tau(\pi,P)$, we define the *observation of the trajectory* as an interleaved combination of actions and states that represents the observation from the execution of π in P. Formally, $\mathcal{O}(\tau)=\langle s_0^o, a_1^o, s_1^o, s_1^o, \ldots, a_l^o, s_m^o\rangle$, $s_0^o=I$, and:

- The **observed actions** are consistent with π , which means that $\langle a_1^o, \dots, a_l^o \rangle$ is a sub-sequence of π . Specifically, the number of observed actions, l, can range from 0 (fully unobservable action sequence) to $|\pi|$ (fully observable action sequence).
- The **observed states** $\langle s_0^o, s_1^o, \dots, s_m^o \rangle$ is a sequence of possibly *partially observable states*, except for the initial state s_0^o , which is fully observable. A partially observable state s_i^o is one in which $|s_i^o| < |F|$; i.e., a state in which at least a fluent of F is not observable. Note that this definition also comprises the case $|s_i^o| = 0$, when the state is fully unobservable. Whatever the sequence of observed states of $\mathcal{O}(\tau)$ is, it must be consistent with the sequence of states of $\tau(\pi, P)$, meaning that $\forall i, s_i^o \subseteq s_i$. In practice, the number of observed states, τ , range from 1 (the initial state, at least), to $|\tau| + 1$, and the observed intermediate states will comprise a number of fluents between [1, |F|].

We assume a bijective monotone mapping between actions/states of trajectories and observations [Ramírez and Geffner, 2009], thus also granting the inverse consistency relationship (the trajectory is a superset of the observation). Therefore, transiting between two consecutive observed states in $\mathcal{O}(\tau)$ may require the execution of more than a single action $(\theta(s_i^o, \langle a_1, \dots, a_k \rangle) = s_{i+1}^o$, where $k \geq 1$ is unknown but finite. In other words, having $\mathcal{O}(\tau)$ does not imply knowing the actual length of π .

2.3 Conformant planning

3 Learning the least commitment action models from observations

3.1 The learning task

3.2 The hypothesis space

STRIPS action schemata provide a compact representation for specifying classical planning models. A STRIPS action schema ξ is defined by four lists: A list of parameters $pars(\xi)$, and three list of predicates (namely $pre(\xi)$, $del(\xi)$ and $add(\xi)$) that shape the kind of fluents that can appear in the preconditions, negative effects and positive effects of the actions induced from that schema.

Definition 1 (Comparable STRIPS action schemata)

Two STRIPS schemata ξ and ξ' are **comparable** iff $pars(\xi) = pars(\xi')$, i.e, both share the same list of parameters.¹

For instance, the stack (?v1, ?v2) and unsstack (?v1, ?v2) schemata from a four operator blocksworld [Slaney and Thiébaux, 2001] are comparable while stack (?v1, ?v2) and pickup (?v1) are not. Last but not least, we say that two STRIPS models $\mathcal M$ and $\mathcal M'$ are comparable iff there exists a bijective function $\mathcal M \mapsto \mathcal M^*$ that maps every action schema $\xi \in \mathcal M$ to a comparable schemata $\xi' \in \mathcal M'$ and vice versa.

Let be Ψ the set of *predicates* that shape the propositional state variables F, and a list of *parameters* $pars(\xi)$. The set of elements that can appear in $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of the STRIPS action schema ξ is given by FOL interpretations of Ψ over the parameters $pars(\xi)$. We denote this set of FOL interpretations as $\mathcal{I}_{\Psi,\xi}$.

Despite any element of $\mathcal{I}_{\Psi,\xi}$ can *a priori* appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of schema ξ , the space of possible STRIPS schemata is constrained by a set $\mathcal C$ that includes:

- Syntactic constraints. STRIPS constraints require $del(\xi) \subseteq pre(\xi), \ del(\xi) \cap add(\xi) = \emptyset$ and $pre(\xi) \cap add(\xi) = \emptyset$. Considering exclusively these syntactic constraints, the size of the space of possible STRIPS schemata is given by $2^{2\times |\mathcal{I}_{\Psi,\xi}|}$.
- Domain-specific constraints. One can introduce domain-specific knowledge to constrain further the space of possible schemata. For instance, in a blocksworld one can claim that $on(v_1, v_1)$ and $on(v_2, v_2)$ will not appear in any of these lists because of the semantic of the on predicate that codes which block is in top of other block.

Definition 2 (Well-defined STRIPS action schemata)

Given a set of predicates Ψ , a list of action parameters $pars(\xi)$, and set of FOL constraints C, ξ is a well-defined STRIPS action schema iff its three lists $pre(\xi) \subseteq \mathcal{I}_{\Psi,\xi}$, $del(\xi) \subseteq \mathcal{I}_{\Psi,\xi}$ and $add(\xi) \subseteq \mathcal{I}_{\Psi,\xi}$ only contain elements in $\mathcal{I}_{\Psi,\xi}$ and they satisfy all the constraints in C.

```
(:action editable inc-x
:precondition
   (and (or (not (pre_xcoord_v1_inc-x)) (xcoord ?v1))
        (or (not (pre_xcoord_v2_inc-x)) (xcoord ?v2))
        (or (not (pre_ycoord_v1_inc-x)) (xcoord ?v1))
                 (pre_ycoord_v2_inc-x)) (xcoord ?v2))
                 (pre_q0__inc-x)) (q0))
        (or (not (pre_q1__inc-x)) (q1)))
                 (pre_next_v1_v1_inc-x)) (next ?v1 ?v1)))
            (not
                 (pre_next_v1_v2_inc-x))
                                          (next ?v1 ?v2)))
        (or (not (pre next v2 v1 inc-x)) (next ?v2 ?v1)))
        (or (not (pre_next_v2_v2_inc-x)) (next ?v2 ?v2))))
  :effect (and
      (when (del xcoord v1 inc-x) (not (xcoord ?v1)))
      (when (del_xcoord_v2_inc-x)
                                   (not
      (when (del_ycoord_v1_inc-x) (not
                                        (xcoord ?v1))
      (when (del ycoord v2 inc-x) (not (xcoord ?v2)))
            (del_q0__inc-x) (not (q0)))
      (when
            (del_q1\underline{\quad}inc-x) (not (q1)))
            (del next v1 v1 inc-x) (not
                                         (next ?v1 ?v1)))
      (when
            (del_next_v1_v2_inc-x) (not
                                         (next ?v1 ?v2)))
      (when
                                         (next ?v2 ?v1)))
      (when
            (del next v2 v1 inc-x)
                                    (not
            (del_next_v2_v2_inc-x) (not (next ?v2 ?v2)))
      (when (add xcoord v1 inc-x) (xcoord ?v1))
            (add_xcoord_v2_inc-x)
      (when
            (add_ycoord_v1_inc-x)
                                   (xcoord ?v1)
            (add_ycoord_v2_inc-x)
      (when
                                   (xcoord ?v2))
      (when (add_q1\underline{_inc-x}) (q1))
      (when
            (add_next_v1_v1_inc-x) (next ?v1 ?v1))
            (add_next_v1_v2_inc-x)
                                    (next ?v1 ?v2))
      (when (add_next_v2_v1_inc-x) (next ?v2 ?v1))
      (when (add_next_v2_v2_inc-x) (next ?v2 ?v2)))
```

Figure 1: Editable version of the inc-x(?v1,?v2) schema for robot navigation in a $n \times n$ grid.

We say a planning model \mathcal{M} is well-defined if all its STRIPS action schemata are well-defined.

3.3 A propositional encoding for STRIPS action schema

Given a STRIPS action schema ξ , a propositional encoding for the *preconditions*, *negative* and *positive* effects of that schema can be represented with fluents of the kind $[pre|del|add]_e_\xi$ such that $e \in \mathcal{I}_{\Psi,\xi}$ is a single element from the set of interpretations of predicates Ψ over the corresponding variable names Ω_{ξ} . Figure ?? shows the propositional encoding for the six action schema defined in Figure ??.

The interest of having a propositional encoding for STRIPS action schema is that, using *conditional effects*, it allows to compactly define *editable actions*. Actions whose semantics is given by the value of the $[pre|del|add]_e_{-\xi}$ fluents at the current state. Given an operator schema $\xi \in \mathcal{M}$ its *editable* version is formalized as:

$$\begin{split} \operatorname{pre}(\operatorname{editable}_{\xi}) = & \{\operatorname{pre_e_\xi} \implies e\}_{\forall e \in \mathcal{I}_{\Psi, \xi}} \\ \operatorname{cond}(\operatorname{editable}_{\xi}) = & \{\operatorname{del_e_\xi}\} \rhd \{\neg e\}_{\forall e \in \mathcal{I}_{\Psi, \xi}}, \\ & \{\operatorname{add_e_\xi}\}\} \rhd \{e\}_{\forall e \in \mathcal{I}_{\Psi, \xi}}. \end{split}$$

Figure 1 shows the PDDL encoding of the *editable* inc-x(?v1,?v2) schema for robot navigation in a $n \times n$ grid (Figure ??). Note that this editable schema, when the fluents of Figure ?? hold, behaves exactly as defined in Figure ??.

¹In STRIPS models, $pars(\xi) = pars(\xi')$ implies the number of parameters must be the same. For other planning models that allow object typing, the equality implies that parameters share the same type

3.4 Learning the least commitment models with conformant planning

- 4 Evaluation
- 5 Conclusions

References

[Ramírez and Geffner, 2009] Miquel Ramírez and Hector Geffner. Plan recognition as planning. In *International Joint conference on Artifical Intelligence, (IJCAI-09)*, pages 1778–1783. AAAI Press, 2009.

[Slaney and Thiébaux, 2001] John Slaney and Sylvie Thiébaux. Blocks world revisited. *Artificial Intelligence*, 125(1-2):119–153, 2001.