Final exam review

Ashwin Bhola

CDS, NYU

Dec 11th, 2019

Announcements

Office Hour: Thursday, 1-2 PM, Room 650, CDS

Monday, 2:30 PM, Open Space, CDS

Final Exam: 17th December, 2 - 3:50 PM

Review

- 1. We are interested in the solution x^* of the least squares problem: $\min_{\mathbf{x} \in \mathbb{R}^n} ||Ax y||^2$, $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, m > n. Suppose it is given to us that $A^T A = I$. If y is orthogonal to Im(A), determine x^*
- 2. Minimize x + y + z subject to $e^{-x} + e^{-y} + e^{-z} = 1$ assuming that this optimization problem has a minimizer
- 3. Which of the following sets S are convex:

1.
$$S = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \le 1\}$$

2.
$$S = \{x \in \mathbb{R}^{2n} \mid \sum_{i=1}^{n} x_i^2 \le \sum_{i=n+1}^{2n} x_i^2 \}$$

4. True or False: h(x) = f(g(x)) is convex if f, g are convex functions

Review

1. Suppose that we are performing PCA on n data points $a_1, ..., a_n \in \mathbb{R}^d$ and keep only the first k < d principal components of each point. We store the dimensionally reduced dataset in a $n \times k$ matrix B, where $B_{i,j}$ is the projection of the point a_i on the j^{th} principal component. Show that the columns of B are orthogonal

Ashwin Bhola (CDS, NYU) DS-GA 1014 Dec 11, 2019

PCA to Autoencoders

$$\min_{\substack{V \in \mathbb{R}^{d \times k} \\ V^T V = I_k}} \Sigma_i \big| |x_i - V V^T x_i| \big|^2$$

PCA to Autoencoders

$$\min_{\substack{V \in \mathbb{R}^{d \times k} \\ V^T V = I_k}} \Sigma_i ||x_i - V V^T x_i||^2$$

PCA to Autoencoders

$$\min_{U,V\in\mathbb{R}^{d\times k}} \Sigma_i \big| |x_i - UV^T x_i| \big|^2$$

Ashwin Bhola (CDS, NYU) DS-GA 1014 Dec 11, 2019