Analysis of Time Series, L11

Rolf Larsson

Uppsala University

23 april 2025

Today

- 4.3: Periodogram and Discrete Fourier Transform (DFT)
- 4.4: Nonparametric Spectral Estimation
- 4.5: Parametric Spectral Estimation
- Menti

Observations $x_1, ..., x_n$.

Definition (4.1)

The discrete Fourier transform (DFT) is defined as

$$d(\omega_j) = n^{-1/2} \sum_{t=1}^n x_t e^{-2\pi i \omega_j t}, \quad j = 0, 1, ..., n-1,$$

where the frequencies $\omega_j = j/n$ are called the *Fourier* or *fundamental* frequencies.

Inverse DFT

$$x_t = n^{-1/2} \sum_{i=0}^{n-1} d(\omega_i) e^{2\pi i \omega_i t}.$$

Observations $x_1, ..., x_n$, $\omega_j = j/n$.

Definition (4.2)

The *periodogram* is defined as

$$I(\omega_j) = |d(\omega_j)|^2, \quad j = 0, 1, ..., n-1.$$

• Assume $j \neq 0$. It follows that (why?)

$$I(\omega_j) = \sum_{h=-(n-1)}^{n-1} \hat{\gamma}(h) e^{-2\pi i \omega_j h}.$$

• Recall: for the spectral density, we have

$$f(\omega_j) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i \omega_j h}.$$

The periodogram $I(\omega_j)$ is an estimate of the spectral density $f(\omega_j)$. Properties?

- Let $\omega_{j:n}$ be a sequence of fundamental frequencies such that $\omega_{j:n} \to \omega$ as $n \to \infty$.
- Asymptotic unbiasedness: as $n \to \infty$,

$$E\{I(\omega_{j:n})\} \to f(\omega).$$

• Asymptotic distribution: For a linear process, as $n \to \infty$,

$$I(\omega_{j:n}) \xrightarrow{d} \frac{\chi_2^2}{2} f(\omega).$$

• Approximate $1-\alpha$ confidence interval

$$\frac{2I(\omega_{j:n})}{\chi_2^2\left(1-\frac{\alpha}{2}\right)} \le f(\omega) \le \frac{2I(\omega_{j:n})}{\chi_2^2\left(\frac{\alpha}{2}\right)}$$

- Let $\omega_{j:n}$ be a sequence of fundamental frequencies such that $\omega_{j:n} \to \omega$ as $n \to \infty$.
- Asymptotic distribution: For a linear process, as $n \to \infty$,

$$I(\omega_{j:n}) \xrightarrow{d} \frac{\chi_2^2}{2} f(\omega).$$

Hence,

$$\operatorname{var}\{I(\omega_{i:n})\} \to f(\omega)^2 \neq 0.$$

- The periodogram is *not* a consistent estimator of the spectral density!
- The solution is smoothing!

Smoothed periodogram

$$\bar{f}(\omega) = \frac{1}{L} \sum_{k=-m}^{m} I\left(\omega_j + \frac{k}{n}\right),$$

where L=2m+1 and $\omega_j=j/n$ is close to ω .

• For large n,

$$\bar{f}(\omega) \approx \frac{\chi_{2L}^2}{2L} f(\omega).$$

Hence,

$$\operatorname{var}\{\bar{f}(\omega)\} pprox \frac{1}{L} f(\omega)^2 o 0 \quad \text{as } L o \infty.$$

- Dilemma:
 - L large gives small variance, large bias.
 - L small gives small bias, large variance.

For large n,

$$\bar{f}(\omega) \approx \frac{\chi_{2L}^2}{2L} f(\omega).$$

• Approximate $1 - \alpha$ confidence interval

$$\frac{2L\bar{f}(\omega)}{\chi_{2L}^2\left(1-\frac{\alpha}{2}\right)} \le f(\omega) \le \frac{2L\bar{f}(\omega)}{\chi_{2L}^2\left(\frac{\alpha}{2}\right)}.$$

Equivalent to

$$\begin{split} &\log\{\bar{f}(\omega)\} - \log\left\{\frac{\chi_{2L}^2\left(1 - \frac{\alpha}{2}\right)}{2L}\right\} \leq \log\{f(\omega)\} \\ &\leq \log\{\bar{f}(\omega)\} + \log\left\{\frac{2L}{\chi_{2L}^2\left(\frac{\alpha}{2}\right)}\right\}. \end{split}$$

More general:

Smoothed periodogram

$$\hat{f}(\omega) = \sum_{k=-m}^{m} h_k I\left(\omega_j + \frac{k}{n}\right),$$

where $\sum_{k=-m}^{m} h_k = 1$.

• Example of $\{h_k\}$:

• Smoothed periodogram, where $\sum_{k=-m}^{m} h_k = 1$,

$$\hat{f}(\omega) = \sum_{k=-m}^{m} h_k I\left(\omega_j + \frac{k}{n}\right),$$

- Assume that if $n, m \to \infty$ such that $\frac{m}{n} \to 0$, then $\sum_{k=-m}^{m} h_k^2 \to 0$.
- If so, then as $n \to \infty$,

$$E\left\{\hat{f}(\omega)\right\} o f(\omega)$$

and

$$\hat{f}(\omega) \approx \frac{\chi_{2L_h}^2}{2L_h} f(\omega), \quad L_h = \left(\sum_{k=-m}^m h_k^2\right)^{-1}.$$

• With $h_k = 1/L$, we have $\sum_{k=-m}^m h_k^2 = 1/L$ and $L_h = L$.

Smoothed periodogram

$$\hat{f}(\omega) = \sum_{|k| \le m} h_k I(\omega_j + k/n)$$

• Inserting $I(\omega) = \sum_{|h| < n} \hat{\gamma}(h) e^{-2\pi i \omega h}$ with $\omega = \omega_i + k/n$ yields (why?)

$$\hat{f}(\omega) = \sum_{h} g(h/n)\hat{\gamma}(h)e^{-2\pi i\omega_{j}h},$$

where $g(h/n) = \sum_{|k| \le m} h_k e^{-2\pi i k h/n}$.

Suggests estimators of the form

$$\tilde{f}(\omega) = \sum_{|h| < r} w(h/r)\hat{\gamma}(h)e^{-2\pi i\omega h}.$$

• The function w(x) is called the *lag window*.

- The lag window $w(\cdot)$ has to satisfy
 - (i) w(0) = 1,
 - (ii) $|w(x)| \le 1$ and w(x) = 0 for |x| > 1,
 - (iii) w(x) = w(-x).
- Example of w(x):

The smoothing window

$$W_r(\omega) = \sum_{|h| \le r} w(h/r)e^{-2\pi i\omega h}.$$

Inversion formula (not in the book)

$$w(h/r) = \int_{-1/2}^{1/2} W_r(\omega) e^{2\pi i \omega h} d\omega.$$

- Corresponds to $g(h/n) = \sum_{|k| \le m} h_k e^{-2\pi i k h/n}$, i.e $W_r(\omega)$ is the "continuous counterpart" of h_k .
- $W_r(\omega)$ "smooths over frequencies" and w(x) "smooths over lags".

Default in R: The sinc lag window, Daniell smoothing window (here r = 3)

$$w(x) = \frac{\sin(\pi x)}{\pi x}, \qquad W_r(\omega) = \left\{ \begin{array}{ll} r, & |\omega| \leq 1/(2r), \\ 0, & \text{otherwise.} \end{array} \right.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□P

Unemployment, quarterly data (period length 4, and maybe 40).

> spec.pgram(uq)

Ragged!

(Observe the log scale on the y axis and the 95% c.i. lenght in blue.)

> spec.pgram(uq,spans=2)

More smooth! (And shorter 95% c.i. lenght.)

> spec.pgram(uq,spans=4)

> spec.pgram(uq,spans=6)

Unemployment, monthly data (period length 12, and maybe 120).

> spec.pgram(u)

> spec.pgram(u,spans=4)

Peaks at multiples of $1/12 \approx 0.08$ and one at about $1/120 \approx 0.008$.

Period length 10 or 11.

> spec.pgram(s)

> spec.pgram(s,spans=4)

> spec.pgram(s,spans=8)

Maybe the smoothing is good enough. Main peaks at 0.1 and 0.2. Peak at around 0.01 maybe because of a 100 year period?

> spec.pgram(s,spans=12)

• AR(p): $\phi(B)x_t = w_t$, i.e.

$$x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t.$$

Spectral density

$$f(\omega) = \frac{\sigma_w^2}{|\phi(e^{-2\pi i\omega})|^2}.$$

- Idea: Fit an AR(p) model to data and estimate $f(\omega)$ by inserting the parameter estimates.
- The order p may be found by minimizing AIC.
- In R: spec.ar(x)
- Approximate 1α confidence interval (as $n, p \to \infty$, $p^3/n \to 0$)

$$\frac{\hat{f}(\omega)}{1+\sqrt{\frac{2p}{n}}z_{\alpha/2}}\leq f(\omega)\leq \frac{\hat{f}(\omega)}{1-\sqrt{\frac{2p}{n}}z_{\alpha/2}}.$$

For the quarterly unemployment series (the upper figure is the non parametric estimate with spans=4):

For the monthly unemployment series (the upper figure is the non parametric estimate with spans=4):

For the sunspot series (the upper figure is the non parametric estimate with spans=8):

Comparing to the spectral density for the estimated ARIMA(3,0,0) \times (0,0,1)₁₀ model (too smooth?):

News of today

- The periodogram
 - definition
 - asymptotic distribution
 - non consistency
- Non parametric spectral estimation
 - smoothing the periodogram
 - confidence interval
 - the lag window
 - the smoothing window
- Parametric spectral estimation
 - Fitting an AR model
 - confidence interval

