Intermediate statistics: introduction

Frank Edwards

1/25/2019

School of Criminal Justice, Rutgers - Newark

Basics

Contact: frank.edwards@rutgers.edu

Office hours: email for appointments

Course webpage and syllabus:

https://f-edwards.github.io/intermediate_stats/

Slack: https://ru-intermed-stats.slack.com/messages

Introductions: What are you planning to do with statistical models?

Before we begin

Remember: All models are wrong, some are useful.

 How to explore, visualize, and model diverse kinds of data with an emphasis on generalized linear models

- How to explore, visualize, and model diverse kinds of data with an emphasis on generalized linear models
- How to program in R

- How to explore, visualize, and model diverse kinds of data with an emphasis on generalized linear models
- · How to program in R
- Developing a workflow for producing replicable quantitative social science

- How to explore, visualize, and model diverse kinds of data with an emphasis on generalized linear models
- · How to program in R
- Developing a workflow for producing replicable quantitative social science
- Some advanced topics that are relevant for the kinds of data we're dealing with in the course, subject to class interest

Quick assessment of where we're at with programming

```
for(i in 1:10){
  print(i^2)
}
```

```
a<-c(1, 2, 3)
b<-c(2, 3, 4)
a*b
```

```
whatsitdo<-function(x){
   a<-min(x)
   return(1/a)
}
z<-c(4,5,6)
whatsitdo(z)</pre>
```

5. Explain what z is and what m1 is

```
y<-c(1,2,3,4,5)
x<-c(3,4,5,6,7)
z<-solve(t(x)%*%x)%*%t(x)%*%y
m1<-lm(y~x)
```

Self assessment:

Were these problems easy? Hard? Completely foreign? Which parts were most unfamiliar?

Self assessment:

Were these problems easy? Hard? Completely foreign? Which parts were most unfamiliar?

Question for the class:

Would it be helfpul to cover basic programming concepts (i.e. functions, loops)?

Self assessment:

Were these problems easy? Hard? Completely foreign? Which parts were most unfamiliar?

Question for the class:

Would it be helfpul to cover basic programming concepts (i.e. functions, loops)? Using the tidyverse packages?

Self assessment:

Were these problems easy? Hard? Completely foreign? Which parts were most unfamiliar?

Question for the class:

Would it be helfpul to cover basic programming concepts (i.e. functions, loops)? Using the tidyverse packages? Using RMarkdown?

Self assessment:

Were these problems easy? Hard? Completely foreign? Which parts were most unfamiliar?

Question for the class:

Would it be helfpul to cover basic programming concepts (i.e. functions, loops)? Using the tidyverse packages? Using RMarkdown?

Review the syllabus

https://f-edwards.github.io/intermediate_stats/

How I will run seminars

· Basic statistical theory

How I will run seminars

- Basic statistical theory
- · Applied data analysis and modeling in R

Expectations

• Bring a laptop: we will be writing code in class

Expectations

- Bring a laptop: we will be writing code in class
- Make space for everyone: respect varying levels of comfort with statistics and programming

Expectations

- Bring a laptop: we will be writing code in class
- Make space for everyone: respect varying levels of comfort with statistics and programming
- Come prepared and complete assignments on time

1. Explore and visualize data

- 1. Explore and visualize data
- 2. Fit models

- 1. Explore and visualize data
- 2. Fit models
- 3. Assess model fit

- 1. Explore and visualize data
- 2. Fit models
- 3. Assess model fit
- 4. Interpret and describe results through simulation

The Generalized Linear Model

The linear model

We know we can model data as:

$$y = \beta_0 + \beta_1 x_1 \cdots \beta_n x_n + \varepsilon$$

The linear model

We know we can model data as:

$$y = \beta_0 + \beta_1 x_1 \cdots \beta_n x_n + \varepsilon$$

Or, more succinctly:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

The linear model

We know we can model data as:

$$y = \beta_0 + \beta_1 x_1 \cdots \beta_n x_n + \varepsilon$$

Or, more succinctly:

$$y = X\beta + \varepsilon$$

Where the likelihood for the outcome conditional on the data takes the form:

$$Y|X \sim Normal(\mu, \sigma^2)$$

Generalzing the linear model

The linear model:

$$Y|X \sim Normal(\mu, \sigma^2)$$

Can be written as a more general formulation for a likelihood function f

$$Y|X \sim f(\mu, \sigma^2)$$

Generalzing the linear model

The linear model:

$$Y|X \sim Normal(\mu, \sigma^2)$$

Can be written as a more general formulation for a likelihood function f

$$Y|X \sim f(\mu, \sigma^2)$$

Now we can extend the (very) useful linear model to data with discrete outcomes

Generalizing the linear model

A linear predictor η :

$$\eta = \mathsf{X}\beta$$

Generalizing the linear model

A linear predictor η :

$$\eta = X\beta$$

A link function g

$$g(\mathit{E}(\mathit{Y}|\mathit{X})) = \eta$$

Generalizing the linear model

A linear predictor η :

$$\eta = X\beta$$

A link function g

$$g(\mathit{E}(\mathit{Y}|\mathit{X})) = \eta$$

A mean expectation $\mathit{E}(\mathit{Y}|\mathit{X}) = \mu$

$$\mu = g^{-1}(\eta)$$

From OLS to GLM

OLS:

$$\mathbf{Y}|\mathbf{X} \sim \mathbf{Normal}(\mu,\sigma^2)$$

GLM, for a likelihood function f with parameters θ :

$$Y|X \sim f(\theta)$$

• Binary data: linear probability (Normal/Gaussian) and logistic models

- Binary data: linear probability (Normal/Gaussian) and logistic models
- · Categorical data: Multinomial model

- · Binary data: linear probability (Normal/Gaussian) and logistic models
- · Categorical data: Multinomial model
- · Count data: Poisson and negative binomial models

- · Binary data: linear probability (Normal/Gaussian) and logistic models
- · Categorical data: Multinomial model
- · Count data: Poisson and negative binomial models
- · Positive continuous data: Gamma model

Getting started: software

Required installations

All software we are using is free and open source.

Install R:

https://cran.r-project.org/

Install RStudio:

https://www.rstudio.com/products/rstudio/download/

Recommended software: Git and GitHub

Git and GitHub are powerful tools for backing up and sharing your research.

All course materials, source code, and most of my research are hosted on GitHub (https://github.com/f-edwards).

Install Git:

https://git-scm.com/

Set up a GitHub account:

https://github.com/

Using GitHub for social science:

https://happygitwithr.com/

Recommended software: LaTeX

MEXis a powerful typesetting tool that works well with RMarkdown. It makes very attractive academic papers and slides.

Install it here: Install TexLive:

https://tug.org/texlive/acquire-netinstall.html

Questions so far?

Break

Returning to the linear model

What do we know about the linear regression model?

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\boldsymbol{\varepsilon} \sim \mathit{Normal}(\mathbf{0}, \sigma^2)$$

Review

1. What forms can y take?

Review .

- 1. What forms can y take?
- 2. What assumptions does the linear regression model require?

1. Validity of data relative to the research question

- 1. Validity of data relative to the research question
- 2. Additive, linear functional form

- 1. Validity of data relative to the research question
- 2. Additive, linear functional form
- 3. Independent errors

- 1. Validity of data relative to the research question
- 2. Additive, linear functional form
- 3. Independent errors
- 4. Equal variance of errors

- 1. Validity of data relative to the research question
- 2. Additive, linear functional form
- 3. Independent errors
- 4. Equal variance of errors
- 5. Normality of errors

- 1. Validity of data relative to the research question
- 2. Additive, linear functional form
- 3. Independent errors
- 4. Equal variance of errors
- 5. Normality of errors

Let's analyze some data?

Two ways to access course data

- All data is accessible through the the course website (see the data link, or data folder on the GitHub page)
- Recommended approach: In a terminal (terminal.app on mac, Git Bash on windows):

git clone

https://github.com/f-edwards/intermediate_stats.git

Before beginning your work each session, pull updates I've pushed to the repo with:

git pull

Now you have an intermediate_stats folder with all code, slides, and data. Data is in intermediate_stats/data

```
#library(tidyverse)
### directly from the web
cj_budgets<-read_csv("https://github.com/f-edwards/intermediate_
### from a project directory root
#setwd("C:/intermediate_stats") # set working directory
#cj_budgets<-read_csv("./data/revenue_dat.csv")</pre>
```

About the data

Data are for an ongoing research project I'm working on. It's real, and can be a bit messy!

It documents police involved deaths, demographics, and local government budgets at the county-level for two time periods, 2007-11 and 2012-16.

Datasets used include Fatal Encounters, American Community Survey, Annual Survey of State and Local Government Finance, and Uniform Crime Reports.

Full code for the project is up at:

https://github.com/f-edwards/police-mort-revenue

merge.r contains the code to make this merged file from a variety of source files (available if you want the raw data).

Evaluate the structure of the data

A tibble: 6 x 33

<chr> <chr>

head(cj_budgets)

##

##

#

```
## 1 2007-2011 01
                  001
                                 3 4.97e7
                                              2101800
## 2 2007-2011 01 005
                                 1 2.86e7 1037880.
## 3 2007-2011 01 007
                                 0 1.30e7
                                                80600
## 4 2007-2011 01 009
                                 0 3.66e7 1703760
## 5 2007-2011 01 011
                                 0 1.09e7
                                                    0
## 6 2007-2011 01
                    013
                                 1 3.05e7
                                               487320
## # ... with 26 more variables: exp_welfare <dbl>, rev_tot <dbl
     rev_fines <dbl>, rev_gen_ownsource <dbl>, rev_int_gov <db
## #
     rev_prop_tax <dbl>, rev_tax <dbl>, pop_tot <dbl>,
## #
     pop_pct_men_15_34 <dbl>, pop_wht <dbl>, pop_blk <dbl>, po
## #
## #
     pop_api <dbl>, pop_lat <dbl>, pop_pct_pov <dbl>,
```

pop_pct_deep_pov <dbl>, pop_med_income <dbl>, pop_pc_income

<chr>

year_range fips_st fips_cnty deaths exp_tot exp_correction

<dbl> <dbl>

<dbl>

Evaluate the structure of the data

```
nrow(cj_budgets)
## [1] 4286
table(cj_budgets$year_range)
##
## 2007-2011 2012-2016
##
        2308
                  1978
```

Evaluate the structure of the data

names(cj_budgets)

```
"fips_cnty"
##
   [1] "year_range"
                             "fips_st"
   [4] "deaths"
                             "exp_tot"
                                                  "exp correction"
##
    [7] "exp_police"
                             "exp_welfare"
                                                 "rev tot"
##
## [10] "rev_fines"
                             "rev_gen_ownsource" "rev_int_gov"
## [13] "rev prop tax"
                             "rev tax"
                                                  "pop tot"
                                                 "pop_blk"
## [16] "pop_pct_men_15_34" "pop_wht"
## [19] "pop_ami"
                             "pop_api"
                                                 "pop_lat"
## [22] "pop pct pov"
                             "pop pct deep pov"
                                                  "pop_med_income"
## [25] "pop_pc_income"
                             "violent.yr"
                                                  "property.yr"
## [28] "murder.yr"
                             "ft sworn"
                                                  "cbsa"
## [31] "metroname"
                             "dissim bw"
                                                  "dissim wl"
```

Descriptives

```
summary(cj_budgets$pop_pct_deep_pov)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.04553 0.06285 0.06884 0.08442 0.27901
```

Visualize the distribution of a variable

Call individual variables (columns) in a data frame with \$, like \texttt{USArrests\$Murder}

qplot(cj_budgets\$pop_pct_deep_pov)

Visualize a bivariate relationship

Fitting a linear model

Display the model fit

summary(model_1)

```
##
## Call:
## lm(formula = pop_pct_deep_pov ~ I(pop_blk/pop_tot), data = cj
##
## Residuals:
##
        Min
               1Q Median 3Q
                                              Max
## -0.079709 -0.019343 -0.004579 0.013753 0.217773
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0591712 0.0005603 105.61 <2e-16 ***
## I(pop_blk/pop_tot) 0.0977188 0.0030884 31.64 <2e-16 ***
## ---
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
## Signif. codes:
##
```

Display the model fit (nicer)

library(broom)

2 I(pop blk/pop tot)

0.0977 0.00309

31.6 1.22e-197

Visualize the model fit

Visualize the model fit (against the data)

0.1 -

0.0 -

```
sd_outcome<-sd(cj_budgets$pop_pct_deep_pov)</pre>
plot_dat<-data.frame(resid = model_1$residuals, yhat = model_1$f</pre>
ggplot(plot_dat, aes(y = resid, x = yhat)) +
  geom_point() +
  geom hline(yintercept = sd outcome, lty=2) + geom hline(yinter
 0.2 -
```

Can we fit a better model?

Homework programming prep

Needed concepts / syntax

HW 1 asks you to apply some basic programming, data wrangling, and data visualization to common linear regression challenges.

- · Reading data
- Loops
- Lists
- Matrix and data frame indexing
- dplyr::mutate
- ggplot2
- RMarkdown

HW tips

- Work together!
- · Check the Wickham text from the syllabus or other online R courses
- · Google it: StackOverflow will become your best friend
- · Accept that this is hard and you will probably struggle with it