临界区和临界资源

在一段时间内只允许一个进程访问的资源, 称为临界资源。

进程是对正在运行程序的一次抽象。有时进程必须相互作用,这种相互作用会导致竞争条件, 为了避免竞争条件,OS 引进了临界区的概念,它是满足如下条件的一段代码: 在这段代码 中某一时刻只有一个进程访问共享区域

(C) 是操作系统中最重要、最基本的概念之一,它是系统分配资源的基本单位,是一 个具有独立功能的程序段对某个数据集的一次执行活动。

A. 程序

B. 作业 C. 进程

D. 线程

下面 (A) 算法不是进程调度算法。

A.LRU

B.FCFS

C.SJF

D.HPF

现有三个作业同时到达,每个作业的计算时间均为2小时,它们在一台处理机上按单道方式 运行,则平均周转时间为(C)

A.2 小时

B.3 小时 C.4 小时 D.6 小时

进程控制块是描述进程状态和特性的数据结构,一个进程(D)。

A.可以有多个进程控制块

B.可以和其他讲程共用一个讲程控制块

C.可以没有进程控制块

D.只能有惟一的进程控制块

多个进程可以对应于同一个程序,且一个进程也可以执行多个程序。

系统处于不安全状态也可能不会产生死锁。

什么是多道程序技术? 在 OS 中引入该技术, 带来哪些好处?

答: 多道程序设计技术是指在内存中同时放若干个作业, 并使它们共享系统的资源, 同时 运行的技术。(2分)在OS中引入多道程序设计技术带来以下好处:(3分)

- (1) 提高 CPU 的利用率。
- (2) 可提高内存和 I/O 设备的利用率。
- (3) 增加系统的吞吐量。

2. 进程与程序的关系和区别是什么?

进程和程序是既有联系又有区别的两个概念: (1分)

- (1) 程序是指令的集合,静态概念;进程是程序在处理机上的一次执行过程,动态概念。
- (2) 程序是长期存在的,进程有生命周期,有创建、活动、消亡。(1分)
- (3) 程序仅是指令的有序集合;而进程则由程序、数据和进程控制块组成。(1分)
- (4) 进程与程序之间不是一一对应的,即同一程序同时运行于若干不同的数据集合上,它 将属于若干个不同的进程; 而一个进程可以执行多个程序。(1分)
- 3. 什么是原语? 进程控制的主要原语有哪些?

记录型信号量的物理意义是当信号量值大于零时表示可用资源数,当信号量值小于零时,其 绝对值表示阳塞讲程数。

在多道程序系统中,进程之间存在两种不同的制约关系是: 互斥与同步。

(D) 是一种只能进行 P 操作和 V 操作的特殊变量。

A.调度 B.进程

C.同步

D.信号量

9. 任何两个并发进程之间(D)。

A.一定存在互斥关系

B.一定存在同步关系

C.一定彼此独立无关

D.可能存在同步或互斥关系

信号量的初值不能为负数。

操作系统中引入线程概念的主要目的是什么?

答:操作系统中引入线程的目的是为了提高系统效率(1分),提高系统资源利用率(1分), 减少程序并发执行时所付出的时空开销(1分),使操作系统具有更好的并发性(1分)。 (全对加1分)。

- 2. 进程有无如下状态转换? 为什么?
- (1) 就绪一运行; (2) 阻塞一运行; (3) 就绪一阻塞。

- (1) 有,就绪状态通过调度程序可直接转换到运行状态。(1分)
- (2)没有,阻塞状态不能直接转换到运行状态,正确的转换是阻塞一就绪一运行。(2分)
- (3)没有,就绪状态不能直接转换到阻塞状态,正确的转换是就绪一运行一阻塞。(2分)

现代操作系统的两个基本特征是并发性和共享性。还有虚拟性和异步性。 产生死锁的四个必要条件是: 互斥条件、请求和保持条件、不剥夺条件、环路等待条件。

信号量是一种只能执行P和V操作的变量。

程序运行时,独占系统资源,只有程序本身能改变系统资源状态,这是指(D)。

A. 程序顺序执行的再现性

B. 并发程序失去再现性

C. 并发程序失去封闭性

D. 程序顺序执行的封闭性

解决死锁的途径是(D)。

A. 立即关机排除故障

B. 立即关机再重新开机

C. 不要共享资源,增加独占资源 D. 设计预防死锁,运行检测并恢复

进程 P1 使用资源情况: 申请资源 S1…申请资源 S2, …释放资源 S1; 进程 P2 使用资源情 况:申请资源 S2, ···申请资源 S1, ···释放资源 S2, 系统并发执行进程 P1, P2, 系统将 (B)_°

A. 必定产生死锁 B. 可能产生死锁 C. 不会产生死锁 D. 无法执行

操作系统在控制和管理进程过程中,涉及到(D)这一重要数据结构,这是进程存在的唯 一标志。

A. FCB B. FIFO C. FDT

D. PCB

要求进程一次性申请所需的全部资源,是破坏死锁必要条件中的哪一条(B)。

A. 互斥

B. 请求与保持 C. 不剥夺 D. 循环等待

进程控制块的作用是什么?它主要包括哪几部分内容?

讲程控制块的作用是使一个在多道程序环境下不能独立运行的程序(含数据)成为一 个能独立运行的基本单位,一个能与其它进程并发执行的进程。也就是说,操作系统是根 据进程控制块 PCB 来对并发执行的进程进行控制和管理的。 PCB 是进程存在的惟一标 志。

在进程控制块中,主要包括下述四个方面用于描述和控制进程运行的信息:

在两道环境下有四个作业,已知它们进入系统的时间、估计运行时间,系统分别采用短作业 优先作业调度算法(可抢占式)和最高响应比优先调度算法(可抢占式),分别给出这四个 作业的执行时间序列,并计算出平均周转时间及带权平均周转时间。

作业	进入时间	估计运行时间(分钟)
JOB1	10: 00	30
JOB2	10: 05	20
JOB3	10: 10	5
JOB4	10: 20	10

系统采用短作业优先调度:

作业	进入时	估计运行时	开 始	结束时	周转时间	带权周
	间	间(分钟)	时间	间	(分钟)	转时间
JOB1	10: 00	30	10: 00	11: 05	65	2.167
JOB2	10: 05	20	10: 05	10: 25	20	1
JOB3	10: 10	5	10: 25	10: 30	20	4
JOB4	10: 30	10	10: 30	10: 40	20	2
作业的	周转时间	125	9.167			

系统采用高响应比作业优先调度:

作业	进入时	估计运行时	开 始	结束时	周转时间	带权周
	间	间(分钟)	时间	间	(分钟)	转时间
JOB1	10: 00	30	10: 00	10: 30	30	1
JOB2	10: 05	20	10: 35	10: 55	50	2.5
JOB3	10: 10	5	10: 30	10: 35	25	5
JOB4	10: 30	10	10: 55	11: 05	35	3.5
作业的周转时间: 35 带权周转时间: 3					140	12

进程的三个基本状态是执行态、就绪态和阻塞态。

用户和操作系统之间的接口可分为命令接口、程序接口(系统调用)和图形图象接口三类。

解决死锁的办法有: 预防死锁、避免死锁、检测死锁、解除死锁。 两个或两个以上程序在计算机系统中同处于开始和结束之间的状态,这就称为并发。

在一段时间内只允许一个进程访问的资源, 称为(C)。

A. 共享资源 B. 临界区 C. 临界资源 D. 共享区

在单一处理器上,将执行时间有重叠的几个程序称为(C)。

A. 顺序程序 B. 多道程序 C. 并发程序 D. 并行程序

管道通信是以(B)进行写入和读出。

A. 消息为单位 B. 自然字符流 C. 文件 D. 报文

现代操作系统的两个基本特征是(C)和资源共享。

- A. 多道程序设计
- B. 中断处理
- C. 程序的并发执行 D. 实现分时与实时处理

已经获得除 CPU 以外的所有所需资源的进程处于(B)状态。

- A. 运行状态
- B. 就绪状态
- C. 自由状态
- D. 阻塞状态

为了对紧急进程或重要进程进行调度,调度算法采用(C)。

- A. 先进先出调度算法 B. 短执行优先调度
- C. 优先级调度 D. 轮转法

可以资源有序分配的方法(A))死锁。

A. 预防

- B. 检测
- C. 解除 D. 避免

什么是进程?什么是线程?进程与线程有何区别?

进程是具有独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配 和度的独立单位。线程有时称轻量级进程,进程中的一个运行实体,是一个 CPU 调度单 位,资源的拥有者还是进程或称任务。

进程和线程的不同之处可从以下四个方面比较:

- (1) 调度:线程作为调度的基本单位,同进程中线程切换不引起进程,当不同进程的线 程切换才引起进程切换;进程作为拥有资源的基本单位。
- (2) 并发性: 一个进程间的多个线程可并发。
- (3) 拥有资源:线程仅拥有隶属进程的资源;进程是拥有资源的独立单位。
- (4) 系统开销: 进程大; 线程小。

若信号量 S 的初值为 3, 且有 4 个进程共享某临界资源,则 S 的取值范围是[-1]<S<[3]。

批处理操作系统的主要缺点是(B)。

- A. CPU 利用率不高 B. 失去了跟用户的交互性
- C. 不具备并行性 D. 以上都不是

从用户的观点看,操作系统是(C)。

- A. 控制和管理计算机资源的软件 B. 合理地组织计算机工作流程地软件
- C. 用户与计算机之间的接口 D. 由若干层次的程序组成的有机体

在引入线程的操作系统中,(B)是资源分配的基本单位,(D)是处理机进行 独立调度的基本单位。

A. 程序 B. 进程 C. 作业 D. 线程

与实时操作系统相比,分时操作系统具有较强的(A)

- A. 交互性 B. 及时性 C. 可靠性 D. 并发性

以下关于进程的描述错误的是(A)

- A. 同一个程序在不同的数据集合上操作属于同一进程
- B. 一个进程可以执行不同程序段
- C. 多个进程可以使用同一程序代码
- D. 进程是程序的一次动态执行过程

既考虑了作业等待时间,又考虑了作业执行时间的调度算法是(A)

- A. 最高响应比优先 B. 优先级调度 C. 短作业优先 D. 先来先服务

在(B)情况下,一定会发生进程调度。

- A. 某一进程正在访问某一临界资源。
- B. 某一进程在执行时,缺乏资源而进入等待状态。
- C. 某一进程在执行时,另一进程进入就绪队列。
- D. 某一进程在执行时候,另一就绪状态的进程被挂起。

已经获得除 CPU 以外的所有所需资源的进程处于(B)状态。

- A. 运行状态 B. 就绪状态 C. 挂起状态 D. 阻塞状态

设系统中有 N(N>2)个进程,则系统中最不可能的是有(B)进程处于死锁状态。

- A. 0 B. 1 C. 2 D. $M(2 \le M \le N)$

某计算机系统中有8台打印机,有K个进程竞争使用,每个进程最多需要3台打印机。该系 统可能会发生死锁的 K 的最小值是 4.

在一个分时操作系统中, 进程状态可能出现如下图所示的五种变化, 请分别例举产生每种状 态变迁的一种具体原因。

