Acidithiobacillus ferrooxidans에 의한 류화광에서 우라니움침출의 운동학

류지수, 현덕호

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《과학연구기관들과 과학자, 기술자들은 우리 나라의 실정에 맞고 나라의 경제발전에 이 바지할수 있는 과학기술적문제를 더 많이 풀어야 하겠습니다.》(《김정일선집》 중보판 제13권 173 폐지)

미생물에 의한 우라니움침출기술은 저품위우라니움광석의 처리에 널리 도입되고있지만[3, 4] 류화광을 대상으로 한 구체적인 연구결과는 적게 발표되였다.

론문에서는 Acidithiobacillus ferrooxidans에 의한 류화광에서의 우라니움침출에 미치는 몇 가지 인자들의 영향을 고찰하고 침출운동학을 론의하였다.

실 험 방 법

우라니움광석시료로는 립도가 $53\sim74\mu\mathrm{m}$ 인 ㄱ지구 류화광을 리용하였으며 침출균주인 $A.\ ferrooxidans$ 는 선행연구[2]에서와 같은것을 리용하였다. 접종액의 균밀도는 10^8 개/mL이고 pH는 1.5이다.

우라니움광석의 미생물침출 A. ferrooxidans접종액에 증류수를 첨가하여 10배로 희석하면서 98% 류산으로 용액의 pH를 1.5로 조절하였다. 이 용액 1L와 우라니움광석시료 200g을 주어진 온도의 항온조속에 설치된 교반탕크에 넣고 공기를 주입하여 통기량을 1vvm으로 보장하면서 주어진 교반속도에서 침출하였다. 그리고 침출과정의 pH변화를 보정하기 위하여일정한 시간간격으로 98% 류산을 첨가하였다.

우라니움광석의 산침출 우라니움광석의 산침출은 선행연구[1]의 방법대로 하였다.

특성량들의 결정 침출액의 pH는 pH메터(《Metrohm 827 pH lab》)로, 침출액속의 우라니움농도는 바나디움산암모니움적정법으로 결정하였다. 그리고 우라니움침출률은 광석시료속의 우라니움량에 대한 침출된 우라니움량의 백분률로 결정하였다.

실험결과 및 해석

1) A. ferrooxidans에 의한 우라니움침출에 미치는 몇가지 인자들의 영향 교반속도의 영향 교반속도와 침출시간에 따르는 우라니움침출률의 변화는 그림 1과 같다. 그림 1로부터 교반속도가 200r/min이상일 때에는 침출속도가 거의나 같으므로 미생물침출을 운동학적구역에서 진행하자면 교반속도가 200r/min이상이여야 한다는것을 알수 있다.

접종량의 영향 접종량과 침출시간에 따르는 우라니움침출률의 변화는 그림 2와 같다.

그림 1. 교반속도와 침출시간에 따르는 우라니움침출률의 변화 1-5는 교반속도가 각각 100, 150, 200, 250, 300r/min

인 경우, 침출온도 30°C, 접종량 10⁷ 개/mL

온도의 영향 침출온도와 침출시간에 따르는 우라 니움침출률의 변화는 그림 3과 같다.

그림 3에서 보는바와 같이 침출초기에는 침출온도가 30℃일 때의 우라니움침출률이 20℃일 때보다 높지만 평형상태에서의 침출률은 거의나 같다. 그러나 침출온도가 10℃일 때에는 평형상태에서도 침출률이 훨씬 낮다.

침출시간 9d, 기타 조건은 그림 3과 같음

그림 2. 접종량과 침출시간에 따르는 우라니움침출률의 변화

1-3은 접종량이 각각 5·10⁶, 10⁷, 2·10⁷ 개/mL 인 경우, 교반속도 200r/min, 침출온도 30℃

그림 3 침출온도와 침출시간에 따르는 우라니움침출률의 변화 1-3은 침출온도가 각각 10, 20, 30℃인 경우, 교반속도 200r/min, 접종량 10⁷ 개/mL

한편 표 1에서 보는바와 같이 침출온도가 20 및 30℃일 때에는 미생물침출법에 의한 침출률의 증가가 명백히 나타나지만 침출온도가 10℃일 때에는 산침출법인 경우보다 침출률에서 큰차이가 나타나지 않는다. 그것은 이 온도조건에서 미생물의 생장이 억제되는 결과로 미생물침출이 거의나 진행되지 못하기때문이다.

2) A. ferrooxidans에 의한 우라니움침출의 운동학

운동학모형의 확정 A. ferrooxidans에 의한 우라니움침출의 운동학모형을 확정하기 위하여 선행연구[1]에서와 마찬가지로 다음과 같이 2개의 확산률속모형(식 (1)과 (2))과 2개의 반응률속모형(식 (3)과 (4))을 선정하였다.

$$[1-(1-R)^{1/3}]^2 = k_1 t$$
 (확산률속1모형) (1)

$$1 - \frac{2}{3}R - (1 - R)^{2/3} = k_2 t \qquad (확산률속2모형)$$
 (2)

$$3[1-(1-R)^{1/3}] = k_3 t$$
 (압축핵모형) (3)

$$[-\ln(1-R)]^{1/2} = k_1 t \quad (핵의 생성 및 성장모형) \tag{4}$$

여기서 R는 시간에 따르는 반응물의 변화률로서 침출률의 1/100과 같은 값을 가지며 $k_i(i=1, 2, 3, 4)$ 는 우라니움침출반응의 겉보기속도상수이다.

A. ferrooxidans에 의한 우라니움침출에서 운동학모형들의 적용결과는 그림 4와 같다.

그림 4. A. ferrooxidans에 의한 우라니움침출에서 운동학모형들의 적용결과 ¬) 확산률속1모형, ∟) 확산률속2모형, □) 압축핵모형, □) 핵의 생성 및 성장모형, 1-3은 침출온도가 각각 10, 20, 30℃인 경우

그림 4에서 보는바와 같이 압축핵모형에서 선형성이 비교적 잘 만족된다. 이로부터 A. ferrooxidans에 의한 우라니움침출이 압축핵모형에 따르는 반응률속과정이라는것을 알수 있다.

표 2. 압축핵모형과 아레니우스방정식에 기초하여 결정한 우라니움침출반응의 겉보기속도상수와 활성하에네르기

-			
	침출온도/℃	$k_{ eq}/\mathrm{d}^{-1}$	$\Delta E^{\neq}/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$
	30	0.414 5	
	20	0.219 6	43.1
	10	0.123 6	
		•	-

압축핵모형과 아레니우스방정식에 기초하여 결정한 우라니움침출반응의 활성화에네르기는 43.1kJ/mol로서(표 2) 화학반응과정의 활성화에 네르기범위에 있다. 그것은 미생물의 작용에 의 하여 광석에서의 류화물결정파괴가 촉진되는 결 과로 내부확산속도가 빨라지기때문이라고 본다.

산침출과 미생물침출에서 운동학의 비교 산침

출법과 미생물침출법에 의한 우라니움침출과정의 운동학적특성은 표 3과 같다.

표 3에서 보는바와 같이 산침출법에서는 내부확산과정이 률속단계로 되지만 미생물침 출법에서는 화학반응과정이 률속단계로 된다.

결정한 운동학모형들에 기초하여 침출온도가 30℃일 때 침출률이 90%이상으로 되는 침출시간을 계산한 결과에 의하면 산침출과 미생물침출에서 각각 14.8. 4.7일이며 침출률이 95%

표 3. 산침출법과 미생물침출법에 의한 우라니움침출과정의 운동학적특성

	산침출법[1]	미생물침출법
운동학모형	$1 - \frac{2}{3}R - (1 - R)^{2/3} = 3.72 \cdot 10^{2} \exp\left(-\frac{2.34 \cdot 10^{4}}{RT}\right)t$	$3[1-(1-R)^{1/3}] = 1.09 \cdot 10^7 \exp\left(-\frac{4.31 \cdot 10^4}{RT}\right)t$
률속단계	내부확산과정	화학반응과정
$\Delta E^{\neq}/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	23.4	43.1

이상으로 되는 침출시간은 각각 18.5, 5.6일로서 미생물침출속도가 산침출속도에 비하여 매우 빠르다.

맺 는 말

- 1) Acidithiobacillus ferrooxidans로 류화광에서 우라니움을 침출할 때 교반속도 200r/min, 접종량 10⁷ 개/mL, 침출온도 30℃, 침출시간 9일인 조건에서의 침출률은 97.3%이다.
- 2) Acidithiobacillus ferrooxidans에 의한 류화광에서의 우라니움침출과정은 압축핵모형에 따르는 반응률속과정이며 침출반응의 활성화에네르기는 43.1kJ/mol이다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 62, 5, 94, 주체105(2016).
- [2] 김일성종합대학학보(자연과학), 61, 2, 98, 주체104(2015).
- [3] Abhilash et al.; Energy Procedia, 7, 158, 2011.
- [4] Abhilash et al.; Bioresource Technology, 128, 619, 2013.

주체108(2019)년 1월 5일 원고접수

Kinetics of Uranium Leaching from Sulfide Ore by Acidithiobacillus ferrooxidans

Ryu Ji Su, Hyon Tok Ho

The leaching process of uranium from sulfide ore by *Acidithiobacillus ferrooxidans* depends on the shrinking core model. The activation energy of leaching reaction is 43.1kJ/mol.

Key words: uranium, leaching kinetics