13

VARIABLES ALÉATOIRES

Résumé

Dans ce chapitre, nous améliorons notre formalisme pour décrire des événements probabilistes à l'aide des variables aléatoires et nous introduisons, l'espérance, l'un des outils les plus importants de toute la théorie des probabilités.

On se restreint à des expériences aléatoires sur un univers Ω fini.

1 Notions de variables aléatoires

1.1 Variable aléatoire réelle

Définition

Une **variable aléatoire réelle** X est une **fonction** définie sur Ω , à valeurs dans \mathbf{R} , de telle sorte que tout élément de Ω est associé à un unique nombre réel.

Exemples ► On lance une pièce de monnaie (équilibrée ou non) 10 fois à la suite et on note *X* le nombre de piles. *X* est une variable aléatoire réelle.

▶ Un professeur tire au sort un élève dans une classe de 32 élèves où chaque élève dispose de son propre numéro compris entre 1 et 32.

On note X le numéro de l'élève tiré au sort : c'est une variable aléatoire réelle.

Remarques Pour une même expérience aléatoire, on peut définir différentes variables aléatoires. On aurait pu définir Y le nombre de faces dans le premier exemple donné précédemment. Ainsi, on aurait eu X + Y = 10.

▶ On peut définir des événements à partir d'une variable aléatoire X comme $\{X = a\}$ correspondant aux issues telles que X prenne la valeur a ou $\{X > a\}$ correspondant aux issues telles que X prenne des valeurs strictement supérieures à a.

▶ La probabilité de ces événements sera notée $\mathbb{P}(X = a)$ et $\mathbb{P}(X > a)$.

1.2 Loi de probabilité

Définition

Donner la **loi de probabilité** d'une variable aléatoire X, c'est donner la probabilités de tous les événements $\{X = a\}$ définis par X.

On la présente usuellement sous forme de tableau où x_i sont les valeurs prises par X et p_i les probabilités $\mathbb{P}(X = x_i)$.

x_i	x_1	x_2	•••	x_n	
p_i	$\mathbb{P}(X=x_1)$	$\mathbb{P}(X=x_2)$	• • • •	$\mathbb{P}(X=x_n)$	

Exemple Une station de lavage automobile a constaté que, parmi ses clients :

- ▶ 90% lavent la carrosserie de leur voiture;
- ▶ 30% nettoient l'intérieur de leur voiture;
- ▶ 20 en % lavent la carrosserie et nettoient l'intérieur de leur voiture.

Le coût du lavage de la carrosserie est de 5€, celui du nettoyage de l'intérieur est de 2€.

On note *X* la variable aléatoire modélisant la dépense, en euro, d'un client de la station choisi au hasard.

x_i	2	5	7
p_i	$\mathbb{P}(X=2)$	$\mathbb{P}(X=5)$	$\mathbb{P}(X=7)$

On sait déja que $\mathbb{P}(X=7)=0,2$. De plus, il y a 10 % des clients qui nettoient l'intérieur sans laver la carrosserie, c'est-à-dire, $\mathbb{P}(X=2)=0,1$. Enfin, 70 % des clients lavent la carrosserie sans nettoyer l'intérieur donc $\mathbb{P}(X=5)=0,7$.

x_i	2	5	7	
p_i	0,1	0,7	0,2	

Propriété

La somme des probabilités p_i est égale à 1. Autrement dit, $\sum_{i=1}^{n} \mathbb{P}(X = x_i) = 1$

Exemple On vérifie bien dans l'exemple de la laverie que 0.1 + 0.7 + 0.2 = 1.

1.3 Espérance

Définition | Espérance

L'**espérance** de la variable aléatoire X est le nombre réel $\mathbb{E}[X]$ défini par :

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{P}(X = x_i) \times x_i = p_1 x_1 + p_2 x_2 + \dots + p_n x_n.$$

Remarque $\mathbb{E}[X]$ peut être vu comme une « **moyenne probabiliste** ». En effet, on peut définir la moyenne d'une série statistique par la formule $\overline{x} = \sum_{i=0}^{n} f_i x_i$ où les f_i sont les fréquences.

Exemple Revenons à l'exemple de la laverie et calculons $\mathbb{E}[X]$.

x_i	2	5	7	
p_i	0,1	0,7	0,2	

On a:

$$\mathbb{E}[X] = 0.1 \times 2 + 0.7 \times 5 + 0.2 \times 7 = 5.1.$$

Ainsi, les clients dépensent en moyenne 5€10.

Remarque Soient *a* et *b* deux réels. On peut définir Y=aX+b comme étant la variable aléatoire vérifiant la loi de probabilité suivante.

y_i	$ax_1 + b$	$ax_2 + b$	•••	$ax_n + b$	
$\mathbb{P}(Y=y_i)$	p_1	p_2	• • • •	p_n	

Théorème | Linéarité de l'espérance

Soient a et b deux réels. On a :

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b.$$

Exemple Une station de lavage concurrente propose une tarification à moitié prix (lavage à $2 \in 50$ et nettoyage à $1 \in 6$) mais demande $2 \in 6$ pour entrer dans la station. On considère que les habitudes des clients sont les mêmes que pour la station précédente.

On note Y la variable aléatoire modélisant la dépense d'un client tiré au sort dans cette deuxième station de lavage.

Ainsi, $Y = \frac{1}{2}X + 2$ de loi de probabilité suivante.

y_i	3	4,5	6,5
p_i	0,1	0,7	0,2

$$\mathbb{E}[Y] = \frac{1}{2}\mathbb{E}[X] + 2 = \frac{1}{2} \times 5, 1 + 2 = 4,55$$

Les clients dépensent donc en moyenne moins dans cette deuxième station.

2 Loi de Bernoulli et loi binomiale

Définition | Épreuve de Bernoulli

Une **épreuve de Bernoulli** est une expérience aléatoire à deux issues, qu'on nomme **succès** et **échec**.

La probabilité du succès est usuellement notée p.

Remarque Si X est la variable aléatoire égale à 1 en cas de succès et 0 en cas d'échec. X suit une loi de Bernoulli de paramètre p.

x_i	0	1	
$\mathbb{P}(X=x_i)$	1-p	p	

Exemple Le lancer d'une pièce de monnaie (équilibrée ou non) est une épreuve de Bernoulli.

Définition | Loi binomiale

L'enchaînement de n épreuves de Bernoulli de paramètre p, identiques et indépendantes, est un **schéma de Bernoulli** de paramètres n et p.

Si on note X la variable aléatoire qui compte le nombre de succès, X suit une **loi binomiale** de paramètres n et p.

Exemple On propose une carte de fidélité à tous les clients qui passent à la caisse d'un magasin.

On suppose que chaque client a une probabilité égale à 0,23 d'accepter la carte de fidélité et que les clients ne s'influencent pas entre eux.

Si 150 clients passent à la caisse un jour, le nombre X de cartes distribuées à la fin de la journée suit une loi binomiale de paramètres 150 et 0,23

Propriété | Espérance

Si X suit une loi binomiale de paramètres n et p, alors :

$$\mathbb{E}[X] = np$$
.

Exemple Dans l'exemple précédent, X a pour espérance $150 \times 0,23 = 34,5$. C'est-à-dire qu'on peut espérer avoir distribué environ 34 cartes de fidélité dans la journée.

3 Coefficients binomiaux

Définitions

▶ Soit $n \in \mathbb{N}^*$.

On appelle **factorielle** n le nombre $n! = 1 \times 2 \times \cdots \times n$.

Par convention, 0! = 1.

Le nombre de combinaisons de k éléments parmi n éléments, noté $\binom{n}{k}$ et luest :

$$\frac{n!}{k!(n-k)!}$$

xt

Propriétés

$$\blacktriangleright \binom{n}{0} = \binom{n}{n} = 1$$

$$\blacktriangleright \binom{n}{1} = \binom{n}{n-1} = n$$

$$\blacktriangleright \binom{n}{k} = \binom{n}{n-k}$$

Théorème | Formule de Pascal

Soit $1 \le k \le n$.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Remarque Avec les résultats précédents, nous pouvons calculer tous les coefficients binomiaux de proche en proche.

Nous allons le faire grâce au célèbre **triangle de Pascal** qui représente les coefficients binomiaux $\binom{n}{k}$.

n^{k}	0	1	2	3	4	5	
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
:	:						٠

La construction se fait ligne par ligne et on obtient les coefficients du dessous par addition des deux supérieurs comme indiqués sur le tableau précédent.

Théorème | Probabilités des issues

Soit X qui suit une loi binomiale de paramètres n et p. Pour tout k entier dans [0; n]:

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$