## Volatility is rough, isn't it?

Dmitry Sotnikov

Vega Institute

August 2022



## What does it mean to be rough?

#### Definition

Fractional Brownian motion (fBM) Hurst parameter  $H \in (0,1)$  is a process with the following properties:

- 1.  $W_0^H = 0$ ,  $\mathbb{E}[W_t^H] = 0$ ,  $t \ge 0$ .
- 2.  $\text{Law}(W_{t+s}^H W_s^H) = \text{Law}(W_t^H) stationary increments.$
- 3.  $W^H$  is Gaussian and  $\mathbb{E}(W_t^H)^2 = |t|^{2H}, \quad 0 < H \le 1.$
- 4.  $W^H$  has continues trajectories.

#### Definition

Rough volatility model is a model based on fBM with  $H < \frac{1}{2}$ .



# Why volatility may be rough?



Fig. 1: S&P 500 realized volatility.

# Why volatility may be rough?



Fig. 2: S&P 500 log-volatility increments.

#### Conclusion

Gaussian process is an adequate model for log-volatility.



# Why volatility may be rough? m-estimator<sup>1</sup>

fBM property:

$$\mathbb{E}|W_{t+\Delta}^H - W_t^H|^q = K_q \Delta^{qH}.$$

Sample estimate for q-th moment

$$m(q, \Delta) = \frac{1}{N} \sum_{k=1}^{N} \left| \log(\sigma_{k\Delta}) - \log(\sigma_{(k-1)\Delta}) \right|^{q} \approx K_{q} \Delta^{qH}$$

and double linear regression

$$\log m(q, \Delta) = b + \zeta_q \log \Delta, \quad \zeta_q = \hat{H}q.$$

give us m-estimator  $\hat{H}$ .

 $<sup>^1{\</sup>rm Gatheral,\,J.,\,Jaisson,\,T.,\,\&}$ Rosenbaum, M. (2014). Volatility is rough. Available at SSRN.

## Why volatility may be rough?



Fig. 3: m-estimator for market data.  $\hat{H} = 0.15$ 

## Hypothesis (gfBM)

Market volatility is a geometric fractional Brownian motion

$$\sigma_t = \exp\{\nu W_t^H\}, \quad H \approx 0.15, \quad \nu > 0.$$

# Realized volatility

We assume the following price dynamics

$$dS_t = \sigma_t S_t \, dB_t, \quad S_0 = s_0.$$

#### Problem

Volatility  $\sigma_t$  is **not directly observable** in the market.

Daily  $realized \ volatility$  given m price process observations a day is an estimate

$$\hat{\sigma}_t = \sqrt{\sum_{j=1}^m \left| \log S_{t+\frac{j}{m}} - \log S_{t+\frac{j-1}{m}} \right|^2} \approx \sigma_t, \quad t = 1, \dots, N.$$

We also introduce the *microstructure noise* 

$$\varepsilon_t = \log \sigma_t - \log \hat{\sigma}_t, \quad t = 1, \dots N.$$

### Microstructure noise



Fig. 4: Microstructure noise for gBM instantaneous volatility  $\sigma_t = \exp\{\nu W_t\}$  with  $\nu = 0.02, \ m = 78, \ \sigma_0 = e^{-7.2}$ .

#### Microstructure noise



Fig. 5: Microstructure noise for gfBM instantaneous volatility  $\sigma_t = \exp\{\nu W_t^H\}$  with H = 0.1,  $\nu = 0.5$ , m = 78,  $\sigma_0 = e^{-7.2}$ .

### Microstructure noise



Fig. 6: Sample variances of  $\Delta \log \sigma_t$  for instantaneous, realized and corrupted by white noise volatility processes.

#### Microstructure noise $\neq$ white noise

For rough trajectories the effect of microstructure noise is opposite to the one of white noise.

## The notion of roughness

### But what is *roughness*?

There exist many definitions of roughness, but we can divide them into two categories:

- ▶ Definitions based on the properties of continuous paths, such as fractional dimension, variation, Hölder regularity e.t.c. We will call it *roughness in a wide sense*. An important advantage of such definitions is model independence.
- ▶ However, one can use properties of fBM, such as self-similarity, implicitly assuming that it takes place for all rough processes. Such notion of roughness we will call roughness in a narrow sense.

### OUOU process

Double Ornstein-Uhlenbeck process (OUOU) is a solution of

$$\begin{cases} dY_t = -\lambda_Y (Y_t - \mu) dt + \sigma_Y dB_t, \\ dX_t = -\lambda_X (X_t - Y_t) dt + \sigma_X dW_t. \end{cases}$$



Fig. 7: OUOU volatility process.



## Roughness estimators



Fig. 8: fgBM with H = 0.05 and H = 0.15.

## Roughness estimators



Fig. 9: fgBM with H=0.5 and OUOU.

### Market ACF



Fig. 10: ACF of  $\Delta \log \hat{\sigma}_t$  and  $(\Delta \log \hat{\sigma}_t)^2$  for market data.

### What do we know about market volatility?

- ▶ The observed process is a realized volatility.
- $\triangleright$  The estimation of H is 0.152.
- ▶ Autocorrelation  $Corr((\Delta \log \hat{\sigma}_t)^2, (\Delta \log \hat{\sigma}_{t+1})^2) = 0.238.$
- ▶ The variance  $\operatorname{Var} \left[ \Delta \log \hat{\sigma}_t \right]$  is equal to 0.119.

#### Statistic

Given H we can estimate  $\nu$  and sample the trajectory  $\hat{\sigma}_t$ . Then we can use m-estimator to obtain  $\hat{H}$  and calculate the autocorrelation  $\hat{\rho} = \operatorname{Corr}((\Delta \log \hat{\sigma}_t)^2, (\Delta \log \hat{\sigma}_{t+1})^2)$ .



Fig. 11: The distribution of the statistic  $(\hat{H}, \hat{\rho})$ 

#### Conclusions

- 1. Microstructure noise  $\neq$  Gaussian white noise for rough gfBM (H < 0.2).
- To claim that volatility is rough one should use notion of roughness in a wide sense and take in account microstructure noise.
- 3. The considered estimators fail to estimate roughness correctly for several reasons: microstructure noise, low sampling frequency, narrow sense notion of roughness.
- 4. Instantaneous volatility is not gfBM, but this model reproduces well some market volatility properties.

### References

- Cont, R., & Das, P. (2022). Rough volatility: fact or artefact?. arXiv preprint arXiv:2203.13820.
- Fukasawa, M., Takabatake, T., & Westphal, R. (2019). Is volatility rough?. arXiv preprint arXiv:1905.04852.
- Gatheral, J., Jaisson, T., & Rosenbaum, M. (2014). Volatility is rough. Available at SSRN.
- Mandelbrot, B. (1967). How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156, 636-638. doi: 10.1126/science.156.3775.636
- Rogers, L.C.G. (2019). Things we think we know. Preprint.