SCHOOL OF C		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING		
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name		Dr. Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	21-08-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable to Batches	23CSBTB33	

Assignment Number: 3

Q. No.	Question	Expected Time to complete
1	Problem 1: Titanic Assignment Survival Prediction	

Problem Statement:

Titanic dataset predicts survival. LIME explains individual outcomes.

Tasks:

- 1. Load Titanic dataset
- 2. Train Gradient Boosting
- 3. Apply LIME
- 4. Visualize probabilities
- 5. Write analysis

Deliverables:

- Code
- Outputs
- Report 200 words
- 2 Assignment Problem 2: Diabetes Prediction

Problem Statement:

Diabetes dataset predicts diabetic vs non-diabetic. LIME highlights medical risk factors.

Tasks:

- 1. Load Diabetes dataset
- 2. Train Logistic Regression
- 3. Explain with LIME
- 4. Visualize contributions
- 5. Interpret results

Deliverables:

- Code
- Outputs
- Medical interpretation