Introduction to Data Analytics: Capstone Project Predicting Fuel Economy Using EPA FE Trends Report

Group 3:

Noelle Baker

Brian Link

Edward Katynski

Rong (Tim) Situ

December 17, 2021

\sim		11	
()	utl	lır	
\cup	uι	ш	IC

1. Project Question and Data Set Noelle Baker 2. Initial Data Processing Noelle Baker - Targeted Data Set - Initial Heat Map Rong (Tim) Situ - Initial Factor Reduction - Factor Manipulation 3. Exploratory Data Analysis Edward Katynski - Data Head and Data Types - Check Data Characteristics - Reduced Factor Heat Map - Check Factor Distribution and Outliers - Check FE Relationship with Factors 4. Data Analysis Rong (Tim) Situ - Linear Regression - With All Factors, Forwards, and Backwards - Check Effect of Each Factor on FE **Brian Link** 5. Check Model Fit - Model Evaluation and Validation - Q-Q and Residual Plots 6. Final Results, Conclusions, and Lessons Learned Brian Link

Project Question and Data Set

Can you accurately predict future vehicle fuel economy using past vehicle fuel economy and other vehicle characteristics?

Using a data set gathered by the EPA, we will be exploring fuel economy trends of all light-duty passenger vehicles certified by the EPA.

We will be using these trends to develop a model to predict the fuel economy based on given characteristics.

- Database location: https://www.epa.gov/automotive-trends/explore-automotive-trends-data#DetailedData
- Database contains:
 - Data and characteristics of all vehicles produced and certified since 1975
 - Size: 1782 KB
 - 5170 Data points, 50+ variables
- Data aggregation:
 - Data set aggregated up to the Manufacturer Model Year Regulatory Class (Car or Truck) level
 - Data for individual Models not available in this data set
 - Factors primarily take one of two forms:
 - 1. A fleet average: e.g., Vehicle Weight or Horsepower
 - 2. A percentage of total fleet with that characteristic: e.g., Drivetrain Front or Powertrain Gasoline

Initial Data Processing Confidential Business Information

Targeted Data Set

- Fuel economy has changed in three distinct groups since 1975.
 - 1. 1975 1987: fuel shortage in the U.S. led to demand for more fuel efficient vehicles
 - 2. 1988 2004: fuel economy improvements were stagnant, with no pressure from customers or regulatory agencies
 - 3. 2005 2020: fuel economy improvements forced by new regulations
- 2021 Preliminary Data: we're excluding this data which is preliminary and incomplete.
- Final Data Set = 2005 2020 MY
 - Using data from only the most recent timeframe will provide the most accurate model for future fuel economy performance.

Trends in Fuel Economy and CO₂ emissions since 1975 MY

Initial Heat Map

- Difficult to discern interactions with this many factors.
- Factor reduction based on engineering judgement and knowledge of system would be beneficial.

Initial Factor Reduction

• Excluded variables: Vehicle Type, Production, Production Share, Real World MPG (Composite, City, Hwy), Real World CO2 (Composite, City, Hwy), HP/Engine Displacement, HP/Weight, Ton-MPG, Transmission-Other, Transmission – Manual, Fuel Delivery (Carbureted, Throttle Body Injection), Powertrain (FCEV, CNG, Other), Differentiate Gears (≤4, 5, 6, 7, 8, ≥9)

Factor Manipulation

• Initial factor manipulation needed to prepare data set for analysis

Exploratory Data Analysis Confidential Business Information

Data Head

• Print data head with remaining columns

Observations:

- Data has been reduced to 24 columns
- Manufacturer was categorized and then transformed into two dummy variables: Domestic and European. Asian is not listed (Asian indicated by Domestic = 0 and European = 0)
- Similarly for Reg Class a single dummy variable was created to represent both Car and Truck. A Car is indicated by Truck = 0

MY	MPG	Weight	Footprint	EngDisp	HP	AWD	CVT_Hybrid	PortFuelInj	FuelOther	MultiVlv	VVT	Gears	CVT	AT	PT_PHEV	NotAWD	MFG_Domestic	MFG_European	RegClass_Truck	
0 2013	NaN	NaN	NaN	NaN	NaN	0.00	0.00	0.00	0.00	0.00	0.00	NaN	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
1 2014	NaN	NaN	NaN	NaN	NaN	0.00	0.00	0.00	0.00	0.00	0.00	NaN	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
2 2015	35.27	4000.00	48.55	122.05	240.00	0.00	0.00	0.00	0.00	1.00	1.00	8.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
3 2016	34.79	4000.00	48.56	122.05	240.00	0.00	0.00	0.00	0.00	1.00	1.00	8.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
4 2017	31.25	4000.00	48.56	122.05	240.00	0.00	0.00	0.00	0.00	1.00	1.00	8.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	

Check Data Types

Observations:

- Data types appropriately defined as either numeric (float64) or categorical (uint8)
- Non-null count is high

Non-null Count (Max = 1245)

<class 'pandas.core.frame.DataFrame'> Int64Index: 1245 entries, 0 to 5140 Data columns (total 24 columns):

#	Column	Non-Null Cou	nt	Dtype
0	MY	1245	non-null	int64
1	MPG	1143	non-null	float64
2	Weight	1143	non-null	float64
3	Footprint	991	non-null	float64
4	EngDisp	1143	non-null	float64
5	HP	1143	non-null	float64
6	AWD	1245	non-null	float64
7	CVT_Hybrid	1245	non-null	float64
8	PortFuelInj	1245	non-null	float64
9	FuelOther	1245	non-null	float64
10	PT_EV	1245	non-null	float64
11	PT_ICE	1245	non-null	float64
12	ISG	1245	non-null	float64
13	CylDeact	1245	non-null	float64
14	MultiVlv	1245	non-null	float64
15	VVT	1245	non-null	float64
16	Gears	1133	non-null	float64
17	CVT	1245	non-null	float64
18	AT	1245	non-null	float64
19	PT_PHEV	1245	non-null	float64
20	NotAWD	1245	non-null	float64
21	MFG_Domestic	1245	non-null	uint8
22	MFG_European	1245	non-null	uint8
23	RegClass_Truck	1245	non-null	uint8
dtyp	es: float64(20), int64(1)), uint8(3)		

Check Data Characteristics

Observations:

- Differences between the means and medians shows some skewness, which will be more apparent in the histograms.
- Data values are in the expected range for these factors.

	MY	MPG	Weight	Footprint	EngDisp	НР	AWD CV	T_Hybrid P	ortFuelInj Fu	uelOther	N	MultiVlv	VVT	Gears	CVT	AT	PT_PHEV	NotAWD MF0	G_Domestic MF0	6_European Reg	Class_Truck
count	1245	1143	1143	991	1143	1143	1245	1245	1245	1245		1245	1245	1133	1245	1245	1245	1245	1245	1245	1245
mean	2013	29.47	4138.19	49.60	182.02	229.54	0.36	0.01	0.60	0.01		0.84	0.79	5.72	0.11	0.13	0.01	0.29	0.25	0.22	0.54
std	4.32	5.70	633.19	5.50	47.14	49.23	0.38	0.03	0.44	0.03		0.33	0.36	1.41	0.26	0.32	0.03	0.40	0.43	0.41	0.50
min	2006	15.41	2997.37	42.56	94.12	131.00	0.00	0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25%	2009	25.17	3626.34	45.84	144.25	187.24	0.00	0.00	0.03	0.00		0.95	0.77	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50%	2013	28.71	4000.00	47.53	171.30	223.73	0.20	0.00	0.90	0.00		1.00	1.00	6.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
75%	2017	33.45	4578.64	51.66	213.26	266.79	0.71	0.00	1.00	0.00		1.00	1.00	6.30	0.00	0.00	0.00	0.72	1.00	0.00	1.00
max	2020	45.55	6668.90	68.43	366.14	379.28	1.00	0.27	1.00	0.21		1.00	1.00	10.00	1.00	1.00	0.28	1.00	1.00	1.00	1.00

Heat Map

- Observations:
- Simplified heat map with reduced number of factors.
- Identify factors which are poor predictors of FE
 - Values near 0 for ISG (stop-start), Fuel Other, CycleDeact, Gears, and MFG_European – expected to drop out of final regression
- Strong predictors are likely to be present in a final regression
 - Values closer to 1 for Weight, Footprint, Engine Displacement

Check Factor Distribution and Outliers

- Histograms of numerical factors
- Observations:
 - Expected left-skewing can be seen in FE (MPG), Weight, Footprint, Engine Displacement, and HP.
 - Other factors with the scale 0 1 (or <1) show percentages of fleet.
 - Factors dominated by 1 show prevalent features like PT_ICE (vehicles with gasoline engines)
 - Factors dominated by 0 show rare factors like PT_PHEV (plug-in hybrid electric vehicles)

Check Fuel Economy Relationship with Factors

- Scatter plots vs. Fuel Economy
- Observations:
 - Examples of 24 remaining factors.
 - Trends can be observed in factors with stronger correlation, both positive and negative.
 - Some factors, with weak correlation, do not have a visible trend.
 - Model Year (below), shows discrete values and a positive correlation.

Linear Regression with All Factors

- First, divide data set into 'test' and 'train' sets in order to verify the final model.
- Next, create a model with all 23 independent variables, and with Fuel Economy as the response variable
- Effect of each factor on FE: (P)
 - 17 factors show significance at 0.05
 - 7 factors fail to show significance at 0.05 level:
 - AT, Fuel Other, HP, ISG, MFG_European, PT_EV, and PT_PHEV
- Model Fit: (R-squared)
 - The model fit is very good at 92.4%
- Next: determine if backwards and forwards regressions show similar results, eliminating the 6 factors not shown as significant here.

7								
OLS	Regression	on Results						
	Dep. Varia	able:	MF	PG	R-squ	ared:	0.924	
	Mo	odel:	OI	_S Ad	j. R-squ	ared:	0.922	
	Met	hod: Le	east Squar	es	F-stat	istic:	351.8	
		Date: Thu,	16 Dec 20	21 Prob	(F-stati	stic):	0.00	
	Т	ime:	16:44:	44 Lo	g-Likelih	ood: -1	277.1	
No.	Observati	ons:	6	86		AIC:	2602.	
	Df Residi	uals:	6	62		BIC:	2711.	
	Df Mo	odel:		23				
Cov	ariance T	уре:	nonrobu	ıst				
		coef	std err	t	P> t	[0.025	5 0.9	75]
						•		•
li	ntercept	-618.4419	57.380	-10.778	0.000	-731.110	-505.	774
	AT	-0.1995	0.227	-0.879	0.380	-0.645	5 0.	246
	AWD	-0.6337	0.278	-2.282	0.023	-1.179	9 -0.	880
	CVT	3.0130	0.333	9.045	0.000	2.359	3.	667
CVT	_Hybrid	14.9988	3.752	3.998	0.000	7.632	2 22.	366
c	ylDeact	1.4875	0.384	3.873	0.000	0.733	3 2.	242
	EngDisp	-0.0325	0.006	-5.753	0.000	-0.044	l -0.	021
F	ootprint	0.1110	0.029	3.859	0.000	0.055	5 0.	168
	.104	0.0545	4.00=	0.000	0.400	F / 0		004
Fu	elOther	2.9547	4.297	0.688	0.492	-5.482	2 11.	391
	Gears	-0.2157	0.075	-2.859	0.004	-0.364	-0.	068
	μр	0.0000	0.004	4.000	0.054	0.044		000
	HP	-0.0082	0.004	-1.929	0.054	-0.016	0.	000

	coef s	td err	t	P> t	[0.025	0.975]
ISG	0.6146	0.378	1.624	0.105	-0.129	1.358
MFG_Domestic	-0.7759	0.224	-3.470	0.001	-1.215	-0.337
MFG_European	-0.4759	0.358	-1.331	0.184	-1.178	0.226
MY	0.3373	0.028	11.934	0.000	0.282	0.393
MultiVlv	-2.0774	0.569	-3.652	0.000	-3.194	-0.961
NotAWD	0.7049	0.212	3.321	0.001	0.288	1.122
PT_EV	21.8344	11.994	1.820	0.069	-1.717	45.386
PT_ICE	-8.9953	3.687	-2.440	0.015	-16.234	-1.756
PT_PHEV	2.3405	2.890	0.810	0.418	-3.334	8.015
PortFuelInj	-1.3194	0.255	-5.178	0.000	-1.820	-0.819
RegClass_Truck	-1.1002	0.259	-4.253	0.000	-1.608	-0.592
VVT	1.4225	0.370	3.839	0.000	0.695	2.150
Weight	-0.0041	0.000	-10.782	0.000	-0.005	-0.003
Omnibus:	5.620	Durbin-V	Vatson:	1.885	5	
Prob(Omnibus):	0.060	Jarque-Be	ra (JB):	7.397		
Skew:	0.018	Pr	ob(JB):	0.0248	3	
Kurtosis:	3.507	Со	nd. No.	4.41e+06	6	

Forward Linear Regression - Results

 Use Forward Regression strategy on the training data set to add factors, one at a time, until reaching the significance level of 0.05

• Effect of each factor on FE: (P)

- 17 factors are added until the loop reaches the factor PT_PHEV (with P > 0.05) and stops
- These factors align with those that showed significance in the full regression model
- Model Fit: (R-squared)
 - The model fit is also very good at 92.3%

OLS Regression	on Results					
Dep. Varia	able:	M	PG	R-squ	ared: 0	.923
М	odel:	0	LS Ad	j. R-squ	ared: 0	.921
Met	hod: Le	east Squa	res	F-stat	istic: 4	46.2
ι	Date: Thu,	16 Dec 20	21 Prob	(F-stati	stic):	0.00
Т	ime:	16:44	46 Lo	g-Likelih	nood: -12	81.9
No. Observati	ions:	6	86		AIC: 2	602.
Df Resid	uals:	6	67		BIC: 2	688.
Df Me	odel:		18			
Covariance T	уре:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]
	COEI	Stu en	•	F> 4	[0.025	0.975]
const	-663.9746	51.664	-12.852	0.000	-765.418	-562.531
Weight	-0.0042	0.000	-12.420	0.000	-0.005	-0.004
Weight	0.0042	0.000	12.420	0.000	0.000	0.004
MY	0.3603	0.026	13.953	0.000	0.310	0.411
PT_ICE	-9.8787	1.748	-5.651	0.000	-13.311	-6.446
_						
сут	3.1653	0.323	9.799	0.000	2.531	3.800
PortFuelInj	-1.2224	0.244	-5.009	0.000	-1.702	-0.743
CVT_Hybrid	14.7107	2.733	5.383	0.000	9.344	20.077
AWD	-0.6247	0.274	-2.281	0.023	-1.162	-0.087
НР	-0.0080	0.004	-2.259	0.024	-0.015	-0.001
CylDeact	1.5386	0.378	4.074	0.000	0.797	2.280
EngDisp	-0.0335	0.005	-7.401	0.000	-0.042	-0.025

	coef st	d err	t P	'> t	[0.025	0.975]
RegClass_Truck	-1.0226	0.254	-4.020	0.000	-1.522	-0.523
Footprint	0.1217	0.027	4.463	0.000	0.068	0.17
VVT	1.3569	0.361	3.761	0.000	0.648	2.06
MultiVlv	-2.0644	0.522	-3.953	0.000	-3.090	-1.039
NotAWD	0.7194	0.206	3.499	0.000	0.316	1.12
MFG_Domestic	-0.6242	0.188	-3.323	0.001	-0.993	-0.25
Gears	-0.1976	0.074	-2.680	0.008	-0.342	-0.05
PT_PHEV	1.2485	2.623	0.476	0.634	-3.902	6.399
Omnibus:	5.176	Durbir	n-Watson	: '	1.933	
Prob(Omnibus):	0.075	Jarque-	Bera (JB)	: (5.671	
Skew:	-0.005		Prob(JB)	: 0.	0356	
Kurtosis:	3.483		Cond. No	. 3.96	e+06	

Backward Linear Regression - Results

 Use Backward Regression strategy on the training data set to remove factors, one at a time, until reaching the significance level of 0.05

• Effect of each factor on FE: (P)

- Factors are removed until only 16 remain
- This regression included one fewer factor than the forward regression, excluding HP.

• Model Fit: (R-squared)

• This model fit is excellent as well, at 92.3%

OLS Regr	ession Re	sults					
Dep.	Variable:		MF	PG	R-squ	ared: 0	.923
	Model:		O	LS Ad	lj. R-squ	ared: 0	.921
	Method:	Le	east Squar	res	F-stat	istic: 4	99.1
	Date:	Thu,	16 Dec 20	21 Prob	(F-stati	stic):	0.00
	Time:		16:44:	46 Lo	g-Likelih	100d: -12	84.6
No. Obse	rvations:		6	86		AIC: 2	603.
Df Re	esiduals:		6	69		BIC: 2	680.
	of Model:			16			-
Covarian	ce Type:		nonrob	ust			
		coef	std err	t	P> t	[0.025	0.975]
cor	n st -663	.0111	51.466	-12.883	0.000	-764.065	-561.957
,	MY 0	.3606	0.026	14.025	0.000	0.310	0.411
Weig	g ht -0	.0045	0.000	-14.151	0.000	-0.005	-0.004
Footpr	int 0	.1133	0.027	4.239	0.000	0.061	0.166
EngDi	sp - 0	.0382	0.004	-9.457	0.000	-0.046	-0.030
AV	VD -0	.8185	0.261	-3.136	0.002	-1.331	-0.306
CVT_Hyb	rid 15	.5474	2.476	6.280	0.000	10.687	20.408
PortFuel	lnj -1	.0951	0.238	-4.599	0.000	-1.563	-0.628
PT_I	CE -10	.0901	1.693	-5.961	0.000	-13.414	-6.766
CylDea	act 1	.5798	0.378	4.180	0.000	0.838	2.322
MultiN	√lv -2	.4421	0.497	-4.912	0.000	-3.418	-1.466

	coef st	td err	t	P> t	[0.025	0.975]
VVT	1.2734	0.359	3.547	0.000	0.569	1.978
Gears	-0.2678	0.067	-3.987	0.000	-0.400	-0.136
сут	3.1113	0.323	9.633	0.000	2.477	3.746
NotAWD	0.6859	0.205	3.354	0.001	0.284	1.087
MFG_Domestic	-0.6629	0.187	-3.542	0.000	-1.030	-0.295
RegClass_Truck	-0.8316	0.241	-3.454	0.001	-1.304	-0.359
Omnibus:	6.959	Durbin	-Watson	: 1	.929	
Prob(Omnibus):	0.031	Jarque-E	Bera (JB)	: 9	.334	
Skew:	0.071	ı	Prob(JB)	: 0.00	940	
Kurtosis:	3.554	c	Cond. No	. 3.93e	+06	

Check Model Fit Confidential Business Information

Model Evaluation and Validation

- Both Forward and Backward models have similar fits.
- Backwards model is simpler, with 1 fewer factor, so we choose this
 one for further validation.

Find MAE, MSE, RMSE and MAPE

• MAE is 1.21 | MSE is 2.48 | RMSE is 1.57 | MAPE is 306.92

Check model assumptions using Q-Q Plot and Residuals Plot

- Q-Q
 - Compares the actual FE values with the predicted values to determine the probability that they have the same distribution.
 - This plot confirms the two data sets are very well matched, following the 1:1 line, with some deviation at the extremes.
- Residual Plot
 - · Checks to see:
 - 1. if the residuals show a random distribution, indicating a linear regression is appropriate for this data set.
 - 2. or if there is a pattern in the residuals, indicating a different type of fit may be more appropriate.
 - This residual plot shows a random distribution --> linear regression is appropriate.

Model Evaluation and Validation

Check for model overfitting

Run test data set through hard-coded backwards elimination model

Training vs. Test Set Data Results

- Histograms of the 'test' and 'train' sets (to the right) show similar near-normal distributions
- A scatter plot, below, of the paired data (Actual and Predicted FE) are well matched for the 'test' and 'train' datasets

Results / Conclusion Confidential Business Information

Final Results, Conclusions, and Lessons Learned

- Data set preparation is critical to producing a good model.
 Preparing a data set that contains missing values and superfluous columns can occupy a large portion of the project time.
- Data at the vehicle model level (e.g. Sonata) would have provided a more accurate tool to predict fuel economy – aggregation at the fleet level loses specificity and dampens the results.
- The full linear regression, backwards regression, and forwards regressions all produced well-fit models. The backwards regression contained the least factors and was therefore the best choice for predicting fuel economy.
- The final model selected had 16 factors that were significant predictors of FE
- The goodness of model fit was confirmed using the Q-Q plot and Residual plot.

Significant Predictors of Fuel Economy

Appendix A: Python Code Base

```
#!/usr/bin/env python
# coding: utf-8
### Group Project: EPA FE Analysis and Prediction
# ### Context:
#### Objective:
# * To identify the different factors that affect fuel economy in surveyed vehicles
# * To make a model to predict if an employee will attrite or not
# ### Dataset :
# The data contains (**replace** - demographic details), (**replace** - work-related metrics) and (**replace** - attrition flag).
# MY: Vehicle Model Year
# MPG: Miles per Gallon ()
# Weight: Vehicle Weight in Ibs
# Footprint: Vehicle footprint in Square Feet
# EngDisp: Engine displacement in CC
# HP: Horsepower
# AWD: Percentage of Fleet with All Wheel Drive Capability
# CVT Hybrid: Percentage of hybrid fleet with CVT
# PortFuelInj: Percentage of fleet with PFI
# FuelOther: Percentage of fleet with alternative fuel
```

** Scroll in presentation mode or by editing TextBox object**