OQMSBS - Lab Assignment 1

Michael Sullivan

2025-01-20

```
#Reading in and checking the coffee data
survey_df <- read.csv("GACTT_RESULTS_ANONYMIZED_HW1.csv")</pre>
print(head(survey_df,6))
##
     submission_id zip
                                     age gender cups cups_num
                                           <NA> <NA>
## 1
            gMR291 <NA> 18-24 years old
## 2
            BkPN0e <NA> 25-34 years old
                                           <NA> <NA>
                                                            NA
## 3
            W5G8jj <NA> 25-34 years old
                                           <NA> <NA>
                                                            NA
## 4
            4xWgGr <NA> 35-44 years old
                                           <NA> <NA>
                                                            NA
## 5
            QD27Q8 <NA> 25-34 years old
                                           <NA> <NA>
                                                            NA
## 6
            VOLPeM <NA> 55-64 years old
                                           <NA> <NA>
                                                            NA
##
                                                                 home_brew party
## 1
                                                                      <NA>
                                                                             <NA>
                              Pod/capsule machine (e.g. Keurig/Nespresso)
## 2
                                                                             <NA>
## 3
                                                       Bean-to-cup machine
                                                                             <NA>
## 4
                                 Coffee brewing machine (e.g. Mr. Coffee)
                                                                             <NA>
                                                                             <NA>
## 6 Pod/capsule machine (e.g. Keurig/Nespresso), Espresso, French press
                                                                             <NA>
print(tail(survey_df,4))
        submission_id
                                                            cups cups_num
                         zip
                                          age gender
## 3277
               42EpEY 91505 25-34 years old
                                                <NA> More than 4
## 3278
               g5ggRM 60131 18-24 years old
                                                Male
                                                               1
## 3279
               rlgbDN 2351 25-34 years old
                                                Male
                                                                         2
## 3280
               OEGYe9 32765 25-34 years old Female
                                                                         1
##
                    Espresso, Bean-to-cup machine, Cold brew, French press, Pour over
## 3277
## 3278 Espresso, Pod/capsule machine (e.g. Keurig/Nespresso), Instant coffee, Other
## 3279
## 3280
                                              Pour over, French press, Espresso, Other
##
           party
## 3277
            <NA>
## 3278 Democrat
## 3279 Democrat
## 3280 Democrat
print(sapply(survey_df,class))
```

```
## submission_id
                           zip
                                                     gender
                                                                     cups
                                         age
     "character"
##
                   "character"
                                 "character"
                                               "character"
                                                              "character"
##
       cups num
                   home brew
                                       party
##
       "integer"
                   "character"
                                 "character"
survey_df$party <- factor(survey_df$party, levels = c("Democrat", "Republican", "Independent", "No affi</pre>
#Plotting a histogram of cups/day by political party
ggplot(survey_df, aes(x = cups_num, fill = party)) +
 geom_histogram(position = position_dodge(width = 0.9, preserve = "single"),
                 binwidth = 1.
                 color = "black") +
  scale_x_continuous(
   breaks = seq(0, 5, by = 1),
   labels = seq(0, 5, by = 1)
 ) +
  scale_fill_manual(
   values = c("Democrat" = "blue",
               "Republican" = "red",
               "Independent" = "green",
               "No affiliation" = "orange")
 ) +
 labs(title = "Histogram of Cups of Coffee Per Day by Political Party",
       x = "Number of Cups Per Day",
       y = "Responses",
       fill = "Political Party") +
  theme_minimal()
```



```
#Reading in, cleaning, and merging geographic data
zip_df <- read.csv("zip_code_database.csv")
survey_df$zip <- as.integer(survey_df$zip)
joined_df <- left_join(survey_df,zip_df, by = "zip")
print(sum(!(joined_df$zip %in% zip_df$zip)))</pre>
```

[1] 117

```
#Reading in and cleaning election data
election_df <- read.csv("election_2024.csv")</pre>
int_{columns} \leftarrow c(2,3,5,6,8,9,11)
pct columns \leftarrow c(4,7,10)
election_df[,int_columns] <- sapply(election_df[,int_columns], function(x) as.integer(gsub(",","",x)))</pre>
election_df[,pct_columns] <- sapply(election_df[,pct_columns], function(x) (1/100)*as.numeric(gsub("%",
election_df[is.na(election_df)] <- 0</pre>
#Cleaning up the states and giving them the same labels
election_df <- election_df[!election_df$state %in% c("CD-1","CD-2","CD-3"),]
state_names <- c(</pre>
  "Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado",
  "Connecticut", "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
  "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana",
  "Maine", "Maryland", "Massachusetts", "Michigan", "Minnesota",
  "Mississippi", "Missouri", "Montana", "Nebraska", "Nevada",
  "New Hampshire", "New Jersey", "New Mexico", "New York", "North Carolina",
  "North Dakota", "Ohio", "Oklahoma", "Oregon", "Pennsylvania",
  "Rhode Island", "South Carolina", "South Dakota", "Tennessee",
 "Texas", "Utah", "Vermont", "Virginia", "Washington",
  "West Virginia", "Wisconsin", "Wyoming", "District of Columbia"
state_abbreviations <- c(</pre>
  "AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "FL", "GA", "HI", "ID",
  "IL", "IN", "IA", "KS", "KY", "LA", "ME", "MD", "MA", "MI", "MN",
       "MO", "MT", "NE", "NV", "NH", "NJ", "NM", "NY", "NC",
 "OH", "OK", "OR", "PA", "RI", "SC", "SD", "TN", "TX", "UT", "VT",
 "VA", "WA", "WV", "WI", "WY", "DC"
state_abr_df <- data.frame(state = state_names, abr = state_abbreviations)</pre>
election_df$state_abr <- sapply(election_df$state, function(x) state_abr_df$abr[state_abr_df$state == x
survey_election_df <- left_join(election_df, survey_state, by = "state_abr")</pre>
#Plotting vote share against survey results for party affiliation and for coffee consumption
ggplot(data = filter(survey_election_df, num_responses > 25), aes(x = pct_dem, y = harris_votes_share))
  geom_point(color = "blue", size = 2, alpha = 0.7) +
 labs(
   title = "Comparison of Surveyed Party Affiliation and Vote Share",
    x = "Percent Democrat",
    y = "Harris Vote Share",
    caption = "Only observations with >25 responses in the survey"
  theme minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    axis.title = element_text(size = 12),
```

```
axis.text = element_text(size = 10)
)
```

Comparison of Surveyed Party Affiliation and Vote Share

Only observations with >25 responses in the survey

```
ggplot(data = filter(survey_election_df, num_responses > 25), aes(x = avg_cups, y = harris_votes_share)
geom_point(color = "blue", size = 2, alpha = 0.7) +
labs(
   title = "Comparison of Surveyed Coffee Consumption and Vote Share",
   x = "Average Number of Cups Per Day",
   y = "Harris Vote Share",
   caption = "Only observations with >25 responses in the survey"
) +
theme_minimal() +
theme(
   plot.title = element_text(hjust = 0.5, size = 16),
   axis.title = element_text(size = 12),
   axis.text = element_text(size = 10)
)
```

Comparison of Surveyed Coffee Consumption and Vote Share

Only observations with >25 responses in the survey

```
ggplot(data = filter(survey_election_df, num_responses > 25), aes(x = avg_cups, y = trump_votes_share))
geom_point(color = "red", size = 2, alpha = 0.7) +
labs(
   title = "Comparison of Surveyed Coffee Consumption and Vote Share",
   x = "Average Number of Cups Per Day",
   y = "Trump Vote Share",
   caption = "Only observations with >25 responses in the survey"
) +
theme_minimal() +
theme(
   plot.title = element_text(hjust = 0.5, size = 16),
   axis.title = element_text(size = 12),
   axis.text = element_text(size = 10)
)
```

Comparison of Surveyed Coffee Consumption and Vote Share

Only observations with >25 responses in the survey

```
ggplot(data = filter(survey_election_df, num_responses > 25), aes(x = avg_cups, y = other_votes_share))
geom_point(color = "darkgreen", size = 2, alpha = 0.7) +
labs(
    title = "Comparison of Surveyed Coffee Consumption and Vote Share",
    x = "Average Number of Cups Per Day",
    y = "Other Vote Share",
    caption = "Only observations with >25 responses in the survey"
) +
theme_minimal() +
theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    axis.title = element_text(size = 12),
    axis.text = element_text(size = 10)
)
```

Comparison of Surveyed Coffee Consumption and Vote Share

Only observations with >25 responses in the survey

write.xlsx(survey_election_df, file = "overview_hw1.xlsx")

Visual examination of the scatterplots showing the relationship between surveyed coffee consumption and vote share indicates that there is no meaningful relationship between these two variables. For every category of vote share it is the case that there is no observable trend related to the average number of cups per day.