

Rec'd PCT/PTO 10 AUG 2005
10/519621

<110> DESNOYERS, LUC
FILVAROFF, ELLEN

<120> Methods and Compositions for Modulating and Detecting
WISP Activitiy

<130> P1918R1

<140> US 10/519,621
<141> 2004-12-28

<150> US 60/392,652
<151> 2002-06-29

<150> US 60/408,739
<151> 2002-09-06

<160> 20

<210> 1
<211> 367
<212> PRT
<213> Homo sapiens

<400> 1
Met Arg Trp Phe Leu Pro Trp Thr Leu Ala Ala Val Thr Ala Ala
1 5 10 15
Ala Ala Ser Thr Val Leu Ala Thr Ala Leu Ser Pro Ala Pro Thr
20 25 30
Thr Met Asp Phe Thr Pro Ala Pro Leu Glu Asp Thr Ser Ser Arg
35 40 45
Pro Gln Phe Cys Lys Trp Pro Cys Glu Cys Pro Pro Ser Pro Pro
50 55 60
Arg Cys Pro Leu Gly Val Ser Leu Ile Thr Asp Gly Cys Glu Cys
65 70 75
Cys Lys Met Cys Ala Gln Gln Leu Gly Asp Asn Cys Thr Glu Ala
80 85 90
Ala Ile Cys Asp Pro His Arg Gly Leu Tyr Cys Asp Tyr Ser Gly
95 100 105
Asp Arg Pro Arg Tyr Ala Ile Gly Val Cys Ala Gln Val Val Gly
110 115 120
Val Gly Cys Val Leu Asp Gly Val Arg Tyr Asn Asn Gly Gln Ser
125 130 135
Phe Gln Pro Asn Cys Lys Tyr Asn Cys Thr Cys Ile Asp Gly Ala
140 145 150
Val Gly Cys Thr Pro Leu Cys Leu Arg Val Arg Pro Pro Arg Leu
155 160 165
Trp Cys Pro His Pro Arg Arg Val Ser Ile Pro Gly His Cys Cys
170 175 180

Glu	Gln	Trp	Val	Cys	Glu	Asp	Asp	Ala	Lys	Arg	Pro	Arg	Lys	Thr
				185					190				195	
Ala	Pro	Arg	Asp	Thr	Gly	Ala	Phe	Asp	Ala	Val	Gly	Glu	Val	Glu
				200					205			210		
Ala	Trp	His	Arg	Asn	Cys	Ile	Ala	Tyr	Thr	Ser	Pro	Trp	Ser	Pro
				215					220			225		
Cys	Ser	Thr	Ser	Cys	Gly	Leu	Gly	Val	Ser	Thr	Arg	Ile	Ser	Asn
				230					235			240		
Val	Asn	Ala	Gln	Cys	Trp	Pro	Glu	Gln	Glu	Ser	Arg	Leu	Cys	Asn
				245					250			255		
Leu	Arg	Pro	Cys	Asp	Val	Asp	Ile	His	Thr	Leu	Ile	Lys	Ala	Gly
				260					265			270		
Lys	Lys	Cys	Leu	Ala	Val	Tyr	Gln	Pro	Glu	Ala	Ser	Met	Asn	Phe
				275					280			285		
Thr	Leu	Ala	Gly	Cys	Ile	Ser	Thr	Arg	Ser	Tyr	Gln	Pro	Lys	Tyr
				290					295			300		
Cys	Gly	Val	Cys	Met	Asp	Asn	Arg	Cys	Cys	Ile	Pro	Tyr	Lys	Ser
				305					310			315		
Lys	Thr	Ile	Asp	Val	Ser	Phe	Gln	Cys	Pro	Asp	Gly	Leu	Gly	Phe
				320					325			330		
Ser	Arg	Gln	Val	Leu	Trp	Ile	Asn	Ala	Cys	Phe	Cys	Asn	Leu	Ser
				335					340			345		
Cys	Arg	Asn	Pro	Asn	Asp	Ile	Phe	Ala	Asp	Leu	Glu	Ser	Tyr	Pro
				350					355			360		
Asp	Phe	Ser	Glu	Ile	Ala	Asn								
				365										

<210> 2
 <211> 2830
 <212> DNA
 <213> Homo sapiens

<400> 2
 cccacgcgtc cgctgggccc agctcccccg agaggtggtc ggatcctctg 50
 ggctgctcggtc tcgatgcctg tgccactgac gtccaggcat gaggtggttc 100
 ctgccctggatcgatgcgtc agtgcacagca gcagccgcca gcaccgtcct 150
 ggcacggcc ctctctccag cccctacgac catggacttt actccagctc 200
 cactggagga cacccctca cgcccccata tctgcaagtgc gccatgtgag 250
 tgcccgccat ccccaccccg ctgccccgtc ggggtcagcc tcacatcaca 300
 tggctgtgatc tgctgttgc tgcgttgc gcaacttgaa gacaactgca 350
 cggaggctgc catctgtgac ccccacccgg gcctctactg tgactacagc 400
 ggggaccggcc cgaggtacgc aataggatgt tggtcacagg tggtcggtgt 450

gggctgcgtc ctggatgggg tgcgtacaa caacggccag tccttccagc 500
ctaactgcaa gtacaactgc acgtgcatcg acggcgcggt gggctgcaca 550
ccactgtgcc tccgagtgcg ccccccgct ctctggtgcc cccacccgct 600
gcgcgtgagc atacctggcc actgctgtga gcagtggta tgtgaggacg 650
acgccaagag gccacgcaag accgcacccc gtgacacagg agccttcgtat 700
gctgtgggtg aggtggaggc atggcacagg aactgcatacg cctacacaag 750
cccctggagc cttgctcca ccagctgcgg cctgggggtc tccactcgga 800
tctccaatgt taacgcccag tgctggcctg agaagagag ccgcctctgc 850
aacttgcggc catgcgtatgt ggacatccat acactcatta aggcagggaa 900
gaagtgtctg gctgtgtacc agccagagggc atccatgaac ttcacacttg 950
cgggctgcat cagcacacgc tccttatcaac ccaagtactg tggagttgtc 1000
atggacaata ggtgctgcat cccctacaag tctaagacta tcgacgtgtc 1050
cttccagtgt cctgatgggc ttggcttctc ccgcaggcgt ctatggatta 1100
atgcctgctt ctgtaacctg agctgttagga atcccaatga catcttgct 1150
gacttggaat cctaccctga cttctcagaa attgccaact aggcagggcac 1200
aaatcttggg tcttggggac taacccaatg cctgtgaagc agtcagccct 1250
tatggccaat aactttcac caatgaggcct tagttaccct gatctggacc 1300
cttggcctcc atttctgtct ctaaccattc aaatgacgccc tggatggct 1350
gctcaggccc atgctatgag ttttctcatt gatatcattc agcatctact 1400
ctaaagaaaa atgcctgtct ctagctgttc tggactacac ccaaggctga 1450
tccagccttt ccaagtcact agaagtctg ctggatcttgc cctaaatccc 1500
aagaaatgga atcaggtaga ctttaatat cactaatttc ttcttagat 1550
gccaaaccac aagactctt gggccattc agatgaatag atggaatttg 1600
gaacaataga ataatctatt atttggagcc tgccaagagg tactgtaatg 1650
ggttaattctg acgtcagcgc accaaaacta tcctgattcc aaatatgtat 1700
gcacctcaag gtcataaac accaaaacta tcctgattcc aaatatgtat 1750
ttttgatttt taatggaaag ttgtatccat taacctggc attgttgagg 1800
ttaagtttct cttcacccct acactgtgaa gggtacagat taggtttgtc 1850
ccagtcagaa ataaaaatttgc ataaacattc ctgttgatgg gaaaagcccc 1900
cagttaatac tccagagaca gggaaaggc agcccatattc agaaggacca 1950
attgactctc acactgaatc agctgctgac tggcaggcgtt ttggcaggtt 2000
ggccaggcgtc ttccttgaat cttccctt gtccctgcttgc gttcatagg 2050

aattggtaag gcctctggac tggcctgtct ggcccccgtag agtggtgccc 2100
tggaacactc ctctactctt acagagcctt gagagaccca gctgcagacc 2150
atgccagacc cactgaaatg accaagacag gttcaggtag gggtgtgggt 2200
caaaccaaga agtgggtgcc cttggtagca gcctgggggtg acctcttagag 2250
ctggaggctg tgggactcca ggggcccccg tggcaggac acatctattg 2300
cagagactca tttcacagcc tttcggtctg ctgaccaa at ggccagttt 2350
ctggtaggaa gatggaggtt taccagtgtt ttagaaacag aaatagactt 2400
aataaaggtt taaagctgaa gaggttgaag ctaaaaggaa aaggttgg 2450
ttaatgaata tcaggctatt atttattgtt ttagaaaaat ataatattt 2500
ctgttagaat tcttttattt agggcctttt ctgtgccaga cattgctctc 2550
agtgcattgc atgtatttagc tcactgaatc ttcacgacaa tggtgagaag 2600
ttcccattat tatttctgtt cttacaaatg tgaaacggaa gctcatagag 2650
gtgagaaaac tcaaccagag tcacccagtt ggtgactggg aaagtttagga 2700
ttcagatcga aattggactg tcttataac ccatatttc cccctgtttt 2750
tagagcttcc aaatgtgtca gaataggaaa acattgcaat aaatggctt 2800
atttttaaa aaaaaaaaaa aaaaaaaaaa 2830

<210> 3
<211> 440
<212> DNA
<213> Homo sapiens

<400> 3
gaattcacca tgaggtggtt cctgccctgg acgctggcag cagtgacagc 50
agcagccgcc agcacccgtcc tggccacggc cctctctcca gcccctacga 100
ccatggactt tactccagct ccactggagg acacctcctc acgcccccaa 150
ttctgcaagt ggccatgtga gtgcccggca tccccacccc gctgcccgt 200
gggggtcagc ctcacacag atggctgtga gtgctgtaa atgtgcgcctc 250
agcagcttgg ggacaactgc acggaggctg ccatctgtga cccccaccgg 300
ggcctctact gtgactacag cggggaccgc ccgaggtacg caataggagt 350
gtgtgcacag gcccggcac accaccatca ccatcaccat cactaagtga 400
ggccgcatacg ataactgatc cagtgtgtc gaattaattc 440

<210> 4
<211> 340
<212> DNA
<213> Homo sapiens

<400> 4
gaattcacca tgaggtggtt cctgccctgg acgctggcag cagtgacagc 50

agcagccgcc agcacccgtcc tggccactgc agtggtcggt gtgggctgcg 100
tcctggatgg ggtgcgctac aacaacggcc agtccttcca gcctaactgc 150
aagtacaact gcacgtgcat cgacggcgcg gtgggctgca caccactgtg 200
cctccgagtg cgccccccgc gtctctggtg ccccccaccccg cggcgcgtga 250
gcataacctgg ccactgctgt gagcagtggg tatgtgcggc cgcacaccac 300
catcaccatc accatcacta agtgaggccg catagataac 340

<210> 5
<211> 321
<212> DNA
<213> Homo sapiens

<400> 5
gaattcacca tgaggtggtt cctgcccctgg acgctggcag cagtgacagc 50
agcagccgcc agcacccgtcc tggccactgc agcatggcac aggaactgca 100
tagcctacac aagcccttgg agcccttgct ccaccagctg cggcctgggg 150
gtctccactc ggatctccaa tggtaacgcc cagtgctggc ctgagcaaga 200
gagccgcctc tgcaacttgc ggccatgcga tgtggacatc catacactca 250
ttaaggcggc cgcacaccac catcaccatc accatcacta agtgaggccg 300
catagataac tgatccagtg t 321

<210> 6
<211> 442
<212> DNA
<213> Homo sapiens

<400> 6
gaattcacca tgaggtggtt cctgcccctgg acgctggcag cagtgacagc 50
agcagccgcc agcacccgtcc tggccactgc aggaaagaag tgtctggctg 100
tgtaccagcc agaggcatcc atgaacttca cacttgcggg ctgcatcagc 150
acacgctcct atcaacccaa gtactgtgga gtttgcattgg acaataggtg 200
ctgcattcccc tacaagtcta agactatcga cgtgtccttc cagtgtcctg 250
atgggcttgg cttctccgc caggtcctat ggattaatgc ctgcttctgt 300
aacctgagct gtaggaatcc caatgacatc tttgctgact tggaaatccta 350
ccctgacttc tcagaaaattg ccaacgcggc cgcacaccac catcaccatc 400
accatcacta agtgaggccg catagataac tgatccagtg tg 442

<210> 7
<211> 619
<212> DNA
<213> Homo sapiens

<400> 7
gaattcacca tgaggtggtt cctgcccctgg acgctggcag cagtgacagc 50

agcagccgcc agcacccgtcc tggccacggc cctctctcca gcccctacga 100
ccatggactt tactccagct ccactggagg acaccccttc acgcccccaa 150
ttctgcaagt ggccatgtga gtgcccggca tccccacccc gctgcccgt 200
gggggtcagc ctcatcacag atggctgtga gtgctgtaa atgtgcgctc 250
agcagcttgg ggacaactgc acggaggctg ccatactgtga cccccaccgg 300
gcctctact gtgactacag cggggaccgc ccgaggtacg caataggagt 350
gtgtgcacag gtggtcggtg tgggctgcgt cctggatggg gtgcgtaca 400
acaacggcca gtccttccag cctaactgca agtacaactg cacgtgcattc 450
gacggcgccgg tgggctgcac accactgtgc ctccgagtgc gccccccg 500
tctctggtgcc cccccccgc ggcgctgag catacctggc cactgctgt 550
agcagtggtt atgtgcggcc gcacaccacc atcaccatca ccatactaa 600
gtgaggccgc atagataac 619

<210> 8
<211> 885
<212> DNA
<213> Homo sapiens

<400> 8
gaattcacca tgaggtggtt cctgcccctgg acgctggcag cagtgacagc 50
agcagccgcc agcacccgtcc tggccacggc cctctctcca gcccctacga 100
ccatggactt tactccagct ccactggagg acaccccttc acgcccccaa 150
ttctgcaagt ggccatgtga gtgcccggca tccccacccc gctgcccgt 200
gggggtcagc ctcatcacag atggctgtga gtgctgtaa atgtgcgctc 250
agcagcttgg ggacaactgc acggaggctg ccatactgtga cccccaccgg 300
gcctctact gtgactacag cggggaccgc ccgaggtacg caataggagt 350
gtgtgcacag gtggtcggtg tgggctgcgt cctggatggg gtgcgtaca 400
acaacggcca gtccttccag cctaactgca agtacaactg cacgtgcattc 450
gacggcgccgg tgggctgcac accactgtgc ctccgagtgc gccccccg 500
tctctggtgcc cccccccgc ggcgctgag catacctggc cactgctgt 550
agcagtggtt atgtgaggac gacgccaaga gcccacgcaa gaccgcaccc 600
cgtgacacag gagccttcga tgctgtgggt gaggtggagg catggcacag 650
gaactgcata gcctacacaa gccccctggag cccttgcgtcc accagctgcg 700
gcctgggggt ctccactcggt atctccaatg ttaacgcccgt 750
gagcaagaga gccgcctctg caacttgcgg ccatacgatg tggacatcca 800
tacactcatt aaggcggccg cacaccacca tcaccatcac catcactaag 850

tgaggccgca tagataactg atccagtgtg ctgga 885

<210> 9
<211> 1014
<212> DNA
<213> Homo sapiens

<400> 9
gaattcacca tgaggtggtt cctgccctgg acgctggcag cagtgacagc 50
agcagccgccc agcaccgtcc tggccacggc cctctctcca gcccctacga 100
ccatggactt tactccagct ccactggagg acacctcctc acgcccccaa 150
ttctgcaagt ggccatgtga gtgcccggca tccccacccc gctgcccgt 200
gggggtcagc ctcatcacag atggctgtga gtgctgtaaatgtgcgctc 250
agcagcttgg ggacaactgc acggaggctg ccatctgtga ccccccacccgg 300
ggcctctact gtgactacag cggggaccgc ccgaggtacg caataggagt 350
gtgtgcacag gtggtcgggt tgggctgagc cctggatggg gtgcgcata 400
acaacggcca gtccttccag cctaactgca agtacaactg cacgtgcata 450
gacggcgccgg tgggctgcac accactgtgc ctccgagtgc gccccccgcg 500
tctctggtgc ccccacccgc ggcgctgag catacctggc cactgctgtg 550
agcagtgggt atgtctgcag gcagggaaaga agtgtctggc tgtgtaccag 600
ccagaggcat ccatgaactt cacacttgcg ggctgcatca gcacacgctc 650
ctatcaaccc aagtactgtg gagtttgcatttggacaatagg tgctgcatcc 700
cctacaagtc taagactatc gacgtgtcct tccagtgtcc tcatgggctt 750
ggcttctccc gccaggtcct atggattaat gcctgcttct gtaacctgag 800
ctgttaggaat cccaatgaca tctttgtga cttggaaatcc tacccctgact 850
tctcagaaat tgccaaacgcg gccgcacacc accatcacca tcaccatcac 900
taagtgaggc cgcatagata actgatccag tggctggaa ttaattcgct 950
gtctgcgagg gccagctgtt ggggtgagta ctccctctca aaagcgggca 1000
tgacttctgc gcta 1014

<210> 10
<211> 904
<212> DNA
<213> Homo sapiens

<400> 10
gaattcacca tgaggtggtt cctgccctgg acgctggcag cagtgacagc 50
agcagccgccc agcaccgtcc tggccacggc cctctctcca gcccctacga 100
ccatggactt tactccagct ccactggagg acacctcctc acgcccccaa 150
ttctgcaagt ggccatgtga gtgcccggca tccccacccc gctgcccgt 200

gggggtcagc ctcatcacag atggctgtga gtgctgtaag atgtgcgctc 250
agcagcttgg ggacaactgc acggaggctg ccatctgtga cccccaccgg 300
ggcctctact gtgactacag cggggaccgc ccgaggtacg caataggagt 350
gtgtgcgcat gctgtgggtg aggtggaggc atggcacagg aactgcata 400
cctacacaag cccctggagc cttgctcca ccagctgccc cctgggggtc 450
tccactcgga tctccaatgt taacgcccag tgctggcctg agcaagagag 500
ccgcctctgc aacttgcggc catgcgtatgt ggacatccat acactcatta 550
aggcagggaa gaagtgtctg gctgtgtacc agccagagggc atccatgaac 600
ttcacacttg cgggctgcat cagcacacgc tccttatcaac ccaagtactg 650
tggagtttgc atggacaata ggtgctgcat cccctacaag tctaagacta 700
tcgacgtgtc cttccagtgt cctgatgggc ttggcttctc ccgccagggtc 750
ctatggatta atgcctgctt ctgtAACCTG agctgttagga atcccaatga 800
catcttgct gacttggaat cctaccctga cttctcagaa attgccaacg 850
cgcccgacaca ccaccatcac catcaccatc actaagttag gcccgcata 900
taac 904

```
<210> 11  
<211> 922  
<212> DNA  
<213> Homo sapiens
```

<400> 11
gaattcacca tgaggtggtt cctgcccctgg acgctggcag cagtgacagc 50
agcagccgcc agcaccgtcc tggccactgc agtggtcggt gtgggctgcg 100
tcctggatgg ggtgcgctac aacaacggcc agtccttcca gcctaactgc 150
aagtacaact gcacgtgcat cgacggcgcg gtgggctgca caccactgtg 200
cctccgagtg cgccccccgc gtctctggtg cccccaccccg cggcgcgtga 250
gcataacctgg ccactgctgt gagcagtggg tatgtgagga cgacgccaag 300
aggccacgca agaccgcacc ccgtgacaca ggagccttcg atgctgtggg 350
tgaggtggag gcatggcaca ggaactgcat agcctacaca agcccttggg 400
gcccttgctc caccagctgc ggcctgggg tctccactcg gatctccaat 450
gttaacgccc agtgcgtggcc tgagcaagag agccgcctct gcaacttgcg 500
gccatgcgat gtggacatcc atacactcat taaggcaggg aagaagtgtc 550
tggctgtgta ccagccagag gcatccatga acttcacact tgccggctgc 600
atcagcacac gctccttatca acccaagtac tgtggagttt gcatggacaa 650
taggtgctgc atcccttaca agtctaagac tatcgacgtg tccttccagt 700

gtcctgatgg gcttggcttc tccccccagg tcctatggat taatgcctgc 750
ttctgttaacc tgagctgttag gaatcccaat gacatcttg ctgacttgga 800
atcctaccct gacttctcag aaattgccaa cgccggccgca caccaccatc 850
accatcacca tcactaagtg aggccgcata gataactgat ccagtgtgct 900
ggaattaatt cgctgtctgc ga 922

<210> 12
<211> 19
<212> DNA
<213> Mus musculus

<400> 12
ggctgccatc tgtgaccca 19

<210> 13
<211> 21
<212> DNA
<213> Mus musculus

<400> 13
cataggacct gccgggagaa a 21

<210> 14
<211> 19
<212> DNA
<213> Mus musculus

<400> 14
gccgtggcag tcctgaggg 19

<210> 15
<211> 21
<212> DNA
<213> Mus musculus

<400> 15
cagcacccggg cattgacgtt a 21

<210> 16
<211> 21
<212> DNA
<213> Mus musculus

<400> 16
tggagaaaaaa tggccgctac a 21

<210> 17
<211> 20
<212> DNA
<213> Mus musculus

<400> 17
tgggggtgctc ttctcgatgg 20

<210> 18
<211> 21
<212> DNA
<213> Mus musculus

<400> 18
ggacaaaatcg gccacgtaca t 21

<210> 19
<211> 19
<212> DNA
<213> Mus musculus

<400> 19
cttgctccat cgggtctgc 19

<210> 20
<211> 42
<212> PRT
<213> Homo sapiens

<400> 20
Glu Gln Trp Val Cys Glu Asp Asp Ala Lys Arg Pro Arg Lys Thr
1 5 10 15

Ala Pro Arg Asp Thr Gly Ala Phe Asp Ala Val Gly Glu Val Glu
20 25 30

Ala Trp His Arg Asn Cys Ile Ala Tyr Thr Ser Pro
35 40