计算方法

对 象: 本科生

主讲人: 聂玉峰

2011年8月30日

课程简介

- 教材:数值方法简明教程 高等教育出版社 2011
- •参考书:
 - Numerical AnalysisSpringer-Verlag R. Kress
 - Introduction to Numerical Analysis
 Springer-Verlag J. Stoer R. Bulirsch
 - 数值分析(第四版),清华大学出版社 李庆杨等

• 作业:

- 作业集 (A, B)
- 封建湖,车刚明,计算方法典型题分析解集(第三版),西北工业大学出版社,**2001**
- 封建湖,聂玉峰,王振海,数值分析导教导学导考 (第二版),西北工业大学出版社,**2006.7**

课堂要求

- 手机关机;
- 课堂上严禁小声讨论;
- 上课期间,不明白可以随时提问,问问题时不 需要站起来,不需要举手,只需要大声些;

第一章 绪 论

内容提要

误差与算法

绝对误差(限)

吴差{度量{相对误差(限)

有效数字

传播 一元函数 多元函数

数值方法的收敛性 算法{数值方法的稳定性 算法设计要点

一、引言

非线性方程的近似求解方法; 线性代数方程组的求解方法; 函数的插值近似和数据的拟合近似; 积分和微分的近似计算方法; 常微分方程初值问题的数值解法; 矩阵特征值与特征向量的近似计算方法;

1 算法的基本特点

构造性

有限输入数据

算 法

有限输出数据

有限时间: 截断误差 有限空间: 舍入误差

可靠性: 收敛性

稳定性

算法效率,收敛速度

2 误差举例

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots$$
, $e_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$, $e_n - e$

$$e^* - e = (e^* - e_n) + (e_n - e)$$

舍入误差

截断误差

|

3 算法效率举例

● 秦九韶算法(公元1202-1261)

$$a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

$$= (((\underline{a_4 x + a_3})x + a_2)x + a_1)x + a_0$$

$$s = a_n$$

$$t = a_{n-k}$$
 $S = Sx + t$ $(k = 1, 2, \dots, n)$

$$3^{16} = 3^8 * 3^8 = 3^4 * 3^4 * 3^8 = 3^2 * 3^2 * 3^4 * 3^8$$
$$= 3 * 3 * 3^2 * 3^4 * 3^8$$

$$s = x$$

$$s = s \cdot s$$

4 算法应用状态

数值分析研究对象以及解决问题方法的广泛适用性,著名流行软件如Maple、Matlab、Mathematica等已将其绝大多数内容设计成函数,简单调用之后便可以得到运行结果。

但由于实际问题的具体特征、复杂性,以及算法自身的适用范围决定了应用中必须选择、设计适合于自己特定问题的算法,因而掌握数值方法的思想和内容是至关重要的。

二、误差的度量与传播

- 误差度量
 - 绝对误差
 - 相对误差
 - 有效数字
- 误差传播
 - 初值误差传播

1 误差度量: 绝对误差

• 绝对误差定义: 近似值——真值

$$x^* - x =: e(x^*)$$

如果正数 $\varepsilon = \varepsilon(x^*)$ 是绝对误差绝对值的上界,即

$$\left| e^* \right| = \left| x^* - x \right| \le \varepsilon ,$$

则称 ε 为 x^* 近似x的一个绝对误差限。

Remark: 实际计算中所要求的误差,是指估计一个 尽可能小的绝对误差限。

1 误差度量: 相对误差

定义 设 x^* 是对准确值 $x(\neq 0)$ 的一个近似,称

$$e_r(x^*) = \frac{x^* - x}{x} = \frac{e(x^*)}{x}$$

为 x^* 近似 x 的相对误差。

$$e_r(x^*) - \frac{e(x^*)}{x^*} = O((e_r^*)^2)$$

相对误差限

相对误差限:数值 $e(x^*)$ 的上界,记为 $\varepsilon_r(x^*)$

相对误差限也可以通过 $\varepsilon_r(x^*) = \varepsilon(x^*)/|x^*|$ 来计算

Remark: 当要求计算相对误差,实际上是指估计一个尽可能小的相对误差限。

1 误差度量:有效数字

定义 1.3 设量 x 的近似值 x^* 有如下标准形式

$$x^* = \pm 10^m \times 0.\underline{a_1 a_2 \cdots a_n \cdots a_p}$$

= $\pm (a_1 \times 10^{m-1} + a_2 \times 10^{m-2} + \dots + a_n \times 10^{m-n} + \dots + a_p \times 10^{m-p})$

其中 $\{a_i\}_{i=1}^p \subset \{0,1,\dots,9\}$ 且 $a_1 \neq 0$,m为近似值 x^* 的量级. 如果使不等式

$$\left| x^* - x \right| \le \frac{1}{2} \times 10^{m-n}$$

成立的最大整数为 n,则称近似值 x^* 具有 n 位有效数字,它们分别是 a_1 、 a_2 、... 和 a_n . 特别地,如果有 n = p,即最后一位数字也是有效数字,则称 x^* 是有效数.

例 1.1 设量 $x = \pi$ 有近似值 $x_1^* = 3.141$, $x_2^* = 3.142$. 试回答这两个近似值分别有几位有效数字,它们是有效数吗?

$$|x - x_1^*| = 0.00059 \dots \le 0.005 = \frac{1}{2} \cdot 10^{1-3}$$

3位有效数字,非有效数

$$|x - x_2^*| = 0.00040 \dots \le 0.0005 = \frac{1}{2} \cdot 10^{1-4}$$

4位有效数字,有效数

注1: 有效数的误差限是末位数单位的一半,可见有效数本身就体现了误差界。

注2: 对真值进行四舍五入得到有效数。

注3: 从实验仪器所读的近似数(最后一位是估计位) 不是有效数,估计最后一位是为了确保对最后一位 进行四舍五入得到有效数。

例 从最小刻度为厘米的标尺读得的数据123.4cm是为了得到有效数123.cm,读得数据156.7cm是为了得到有效数157.cm。

2. 误差传播: 初值误差传播

- 概念:近似数参加运算后所得值一般也是近似值,含有误差,将这一现象称为误差传播。
- 误差传播的表现:
 - 算法本身可能有截断误差;
 - 初始数据在计算机内的浮点表示一般有舍入误差;
 - 每次运算一般又会产生<mark>新的舍入误差</mark>,并传播以前各步已 经引入的误差;
 - <mark>误差有正有负</mark>,误差积累的过程一般包含有误差增长和误差相消的过程,并非简单的单调增长;
 - 运算次数非常之,不可能人为地跟踪每一步运算。

初值误差传播(续)

- 初值误差传播:假设每一步都是准确计算,即不考虑 截断误差和数据表示引入的舍入误差,仅研究初始数据的误差传播规律。
 - 研究方法:
 - 泰勒 (Taylor) 方法 复习公式
 - n元函数
 - 二元函数(算术运算)
 - 一元函数(计算函数值的条件数)

对于函数 $y = f(x_1, x_2, \dots, x_n)$ 有近似值 $y^* = f(x_1^*, x_2^*, \dots, x_n^*)$, 利用在点 $(x_1^*, x_2^*, \dots, x_n^*)$ 处的 Taylor(泰勒)公式

$$e(y^*) = y^* - y \approx \sum_{i=1}^n f_i(x_1^*, \dots, x_n^*)(x_i^* - x_i)$$

$$= \sum_{i=1}^{n} f_i(x_1^*, \dots, x_n^*) e(x_i^*)$$

Taylor formula

$$e_r(y^*) = \frac{e(y^*)}{y^*} \approx \sum_{i=1}^n f_i(x_1^*, \dots, x_n^*) \frac{x_i^*}{y^*} \frac{e(x_i^*)}{x_i^*}$$

$$= \sum_{i=1}^{n} f_i(x_1^*, \dots, x_n^*) \frac{x_i^*}{y^*} e_r(x_i^*)$$

对于一元函数 y = f(x), 有初值误差传播近似计算公式

$$e(y^*) \approx f'(x^*)e(x^*)$$

$$e_r(y^*) \approx f'(x^*) \frac{x^*}{y^*} e_r(x^*)$$

例 1.2 试建立函数 $y = f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$ 的绝对误差 (限)、相对误差的近似传播公式,以及 $\left\{x_i^*\right\}_{i=1}^n$ 同号时的相对误差限传播公式.

$$e(y^*) \approx \sum_{i=1}^n f_i(x_1^*, x_2^*, \dots, x_n^*) e(x_i^*) = \sum_{i=1}^n e(x_i^*)$$

$$e_r(y^*) \approx \sum_{i=1}^n f_i(x_1^*, x_2^*, \dots, x_n^*) \frac{x_i^*}{y^*} e_r(x_i^*) = \sum_{i=1}^n \frac{x_i^*}{y^*} e_r(x_i^*)$$

$$\left| e(y^*) \right| \approx \left| \sum_{i=1}^n e(x_i^*) \right| \leq \sum_{i=1}^n \left| e(x_i^*) \right| \leq \sum_{i=1}^n \varepsilon(x_i^*)$$
 $\varepsilon(y^*) \approx \sum_{i=1}^n \varepsilon(x_i^*)$

$$\mathcal{E}_{r}(y^{*}) \approx \frac{\sum_{i=1}^{n} \mathcal{E}(x_{i}^{*})}{\left|y^{*}\right|} = \sum_{i=1}^{n} \left|\frac{x_{i}^{*}}{y^{*}}\right| \mathcal{E}_{r}(x_{i}^{*}) \leq \max_{1 \leq i \leq n} \mathcal{E}_{r}(x_{i}^{*}) \sum_{i=1}^{n} \left|\frac{x_{i}^{*}}{y^{*}}\right|$$
$$= \max_{1 \leq i \leq n} \mathcal{E}_{r}(x_{i}^{*}) \sum_{i=1}^{n} \frac{x_{i}^{*}}{y^{*}} = \max_{1 \leq i \leq n} \mathcal{E}_{r}(x_{i}^{*})$$

例题 1.3

例 1.3 使用足够长且最小刻度为 1mm 的尺子,量得某桌面 长 的 近 似 值 $a^* = 1304.3 \ mm$, 宽 的 近 似 值 $b^* = 704.8 \ mm$ (数据的最后一位均为估计值). 试求桌子面积近似值的绝对误差限和相对误差限.

长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故 有误差限

$$\varepsilon(a^*) = 0.5 \, mm, \quad \varepsilon(b^*) = 0.5 \, mm$$

面积 S = ab,由式(1.7)得到近似值 $S^* = a^*b^*$ 的绝对误差近似为 $e(S^*) \approx b^*e(a^*) + a^*e(b^*)$

进而有绝对误差限

$$\varepsilon(S^*) \approx |b^*| \varepsilon(a^*) + |a^*| \varepsilon(b^*)$$
= 704.8×0.5+1304.3×0.5 = 1004.55

相对误差限

$$\varepsilon_r(S^*) \approx \frac{\varepsilon(S^*)}{S^*} = \frac{1004.55}{1304.3 \times 704.8} \approx 0.0011 = 0.11\%$$

记点 $(x_1^*, x_2^*, \dots, x_n^*)$ 为 \mathbf{p}^* ,点 (x_1, x_2, \dots, x_n) 为 \mathbf{p} ,n元泰勒公式

$$f(p) = f(p^*) + \frac{1}{1!} \Big[f_1(p^*)(x_1 - x_1^*) + \dots + f_n(p^*)(x_n - x_n^*) \Big] +$$

$$\frac{1}{2!} \Big[f_{11}(p^*)(x_1 - x_1^*)^2 + \dots + f_{1n}(p^*)(x_1 - x_1^*)(x_n - x_n^*) + \\
+ f_{21}(p^*)(x_2 - x_2^*)(x_1 - x_1^*) + \dots + f_{2n}(p^*)(x_2 - x_2^*)(x_n - x_n^*) + \\
+ \dots \\
+ f_{n1}(p^*)(x_n - x_n^*)(x_1 - x_1^*) + \dots + f_{nn}(p^*)(x_n - x_n^*)^2 \Big] \\
+ \dots$$

建立公式

三、数值试验与算法性能比较

例 1.4 对于表达式 $\frac{1}{x} - \frac{1}{x+1}$ 和 $\frac{1}{x(x+1)}$,在计算过程中保留

7 位有效数字,研究对不同的 x,两种计算公式的计算精度的 差异.

算法 1:
$$y_1(x) = \frac{1}{x} - \frac{1}{x+1}$$

算法 2:
$$y_2(x) = \frac{1}{x(x+1)}$$

选取点集 $\{\pi^i\}_{i=1}^{30}$ 中的点作为x

算法设计时, 避免相近数相减

•当|x|>>1时

$$\sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}} \quad \ln(x - \sqrt{x^2 - 1}) = -\ln(x + \sqrt{x^2 - 1})$$

$$\ln(x+1) - \ln x = \ln \frac{x+1}{x}$$

•当|x|<<1时

$$1 - \sqrt{1 - x^2} = \frac{x^2}{1 + \sqrt{1 - x^2}}$$

$$\sin x - x = \frac{x^3}{3!} - \frac{x^5}{5!} + \cdots$$

$$\arctan x - x = -\frac{x^3}{3} + \frac{x^5}{5} - \cdots$$

例1.5 试用不同位数的浮点数系统求解如下线性方程组

$$\begin{cases} 0.00001x_1 + 2x_2 = 1\\ 2x_1 + 3x_2 = 2 \end{cases}$$

算法 1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的 x_1 的系数为零,这时可解出 x_2 ; 其次将 x_2 带入第一个方程,进而求得 x_1 (高斯消元法). 当用 4 位和 7 位尾数的浮点运算实现该算法,分别记之为算法 1a 和算法 1b.

算法 2 首先交换两个方程的位置,其次按算法 1 计算未知数 (选主元的高斯消元法). 当用 4 位和 7 位尾数的浮点运算实现该算法,分别记之为算法 2a 和算法 2b.

精确解为 $x_1 = 0.25000187...$, $x_2 = 0.49999874...$ 对例 1.5 用不同算法的计算结果比较

例 1.5	x_1^*	$\varepsilon_r(x_1^*)$	x_2^*	$\varepsilon_r(x_2^*)$
算法 1a	0.0000	0.10×10^{1}	0.5000	0.25×10^{-7}
算法 2a	0.2500	0.75×10^{-7}	0.5000	0.25×10^{-7}
算法 1b	0.2600000	0.40×10^{-1}	0.4999987	0.10×10^{-6}
算法 2b	0.2500020	0.50×10^{-8}	0.5000000	0.25×10^{-7}

$$\frac{-2}{0.00001} \times 2 + 3 = -0.4 \times 10^6 + 0.3 \times 10^1 = -0.4 \times 10^6 + 0.000003 \times 10^6$$

$$\frac{-2}{0.00001} \times 1 + 2 = -0.2 \times 10^6 + 0.2 \times 10^1 = -0.2 \times 10^6 + 0.000002 \times 10^6$$

$$\begin{cases} 0.1 \times 10^4 x_1 + 0.2 \times 10^1 x_2 = 0.1 \times 10^1 \\ -0.4 \times 10^6 x_2 = -0.2 \times 10^6 \end{cases}$$

• 尽可能避免用绝对值较大的数除以绝对值较小的数

• 尽可能避免大数吃小数

合理安排量级相差很大的数之间的运算次序,尽可能避免大数"吃掉"小数。

》例 987654321.+
$$\sum_{k=1}^{1000000} \mathcal{S}_k$$
 $(0 < \mathcal{S}_k \le 1)$

方法1: 987654321.+
$$\delta_1$$
+ δ_2 +···+ $\delta_{1000000}$

方法2: 987654321.+(
$$\delta_1 + \delta_2 + \cdots + \delta_{1000000}$$
)

方法3: 987654321.+
$$\left(\sum_{i=1}^{1000} \delta_i + \dots + \sum_{i=999000}^{10000000} \delta_i\right)$$

例 1.6 计算积分 $I_n = \int_0^1 \frac{x^n}{x+5} dx$ 有递推公式

$$I_n = \frac{1}{n} - 5I_{n-1} \ (n = 1, 2, \cdots)$$
, 已知 $I_0 = \ln \frac{6}{5}$. 采用 IEEE

双精度浮点数,分别用如下两种算法计算 I_{30} 的近似值.

算法1 取 I_0 的近似值为 $I_0^* = 0.18232155679395$ 按递推公式 $I_n^* = \frac{1}{n} - 5I_{n-1}^*$ 计算 I_{30}^*

算法 2
$$\frac{1}{6 \times (39+1)} = \int_0^1 \frac{x^{39}}{6} dx < I_{39} < \int_0^1 \frac{x^{39}}{5} dx = \frac{1}{5 \times (39+1)}$$
 取 I_{39} 的近似值为
$$I_{39}^* = \frac{1}{2} \left(\frac{1}{240} + \frac{1}{200} \right) \approx 0.004583333333333$$

接递推公式
$$I_{n-1}^* = \frac{1}{5} \left(\frac{1}{n} - I_n^* \right)$$
 计算 I_{30}^*

表 1.2 例 1.6 的计算结果

	算法 1			算法 2	
n	I_n^*	$\left {I}_{n}^{*}-{I}_{n} ight $	n	I_n^*	$\left I_{n}^{*}-I_{n}\right $
1	8.8392e-002	1.9429e-016	39	4.5833e-003	3.9959e-004
2	5.8039e-002	9.8532e-016	38	4.2115e-003	7.9919e-005
3	4.3139e-002	4.9197e-015	37	4.4209e-003	1.5984e-005
4	3.4306e-002	2.4605e-014	36	4.5212e-003	3.1967e-006
5	2.8468e-002	1.2304e-013	35	4.6513e-003	6.3935e-007
6	2.4325e-002	6.1520e-013	34	4.7840e-003	1.2787e-007
•••			33	4.9255e-003	2.5574e-008
25	1.1740e+001	1.1734e+001	32	5.0755e-003	5.1148e-009
26	-5.8664e+001	5.8670e+001	31	5.2349e-003	1.0230e-009
27	2.9336e+002	2.9335e+002	30	5.4046e-003	2.0459e-010
28	-1.4667e+003	1.4668e+003			
29	7.3338e+003	7.3338e+003			
30	-3.6669e+004	3.6669e+004			

图 1.3 例 1.6 用不同算法计算结果的误差绝对值的对数图

选用数值稳定的算法

$$I_n^* = \frac{1}{n} - 5I_{n-1}^*$$

$$|I_n^* - I_n| \approx 5 |I_{n-1}^* - I_{n-1}| \approx 5^2 |I_{n-2}^* - I_{n-2}| \approx \cdots \approx 5^n |I_0^* - I_0|$$

$$I_{n-1}^* = \frac{1}{5} \left(\frac{1}{n} - I_n^* \right)$$

$$\left|I_{n}^{*}-I_{n}\right| \approx \left|I_{n+1}^{*}-I_{n+1}\right|/5 \approx \left|I_{n+2}^{*}-I_{n+2}\right|/5^{2} \approx \cdots \approx \left|I_{n+m}^{*}-I_{n+m}\right|/5^{m}$$