

The QFTK team

Robert de Keijzer
Jasper van de Kraats
Zhichao Guo
Swantje Kastrup
Ed Kuijpers
María Gragera Garcés
Vesna Manojlovic

Sustainability

- Ecological impacts
 - materials
 - energy consumption
 - recycling
- Social, ethical and legal impacts

Quantum internet

Hardware:

- Quantum computers
- Quantum key distribution systems
- Quantum repeaters / routers

Network:

- Congestion & Delay
- Processing within control plane
- Synchronization

The PMMMF framework

Power Density

Materials

Maintenance

Modularity

Quantum Computation Power Density

Rydberg Atom System Power Efficient & Modular

- ☐ Alkali / Alkaline-Earth
- ☐ Laser Optical Tweezers
- ☐ High-Fidelity
- ☐ Room Temperature

PMMMF System of QC sustainability

Quantum Key Distribution Networks

Vast amount of different technologies

- Define classes of systems that can be compared
- Possible metric:

secret key rate vs. power consumption on pre-defined distance

Conclusion

- Standardization: Factors that influence sustainability
- Early consideration of the environmental and social impacts of the hardware

THANK YOU TO THE QIH TEAM

As a team we would like to acknowledge RIPE community, the QIH organizers and our employers, for the opportunity to create this body of work.

