Diagnosis of Operational Failures in the SITM of Cartagena Diagnóstico de las Fallas Operativas del SITM en Cartagena

Alexander Sánchez González * Amparo Hazbun Martinez † Maria Mercedes Romero Racine ‡ Misael Jose Pastrana Fuentes §

2025-04-17

Abstract

Background:

Aims: Jorge Luis Villalba

Methods:

Results:

Conclusions:

Keywords: Colombia, méxico, word 3, word 4, word 5, word 6.

Resumen

Antecedentes:

Objetivos:

Método:

Resultados:

Conclusión:

Palabras clave: Colombia, méxico, word 3, word 4, word 5, word 6.

^{*}Universidad Tecnológica de Bolívar, Colombia, e-mail: sancheza@utb.edu.co, ID: T00054514 †Universidad Tecnológica de Bolívar, Colombia, e-mail: ahazbun@utb.edu.co, ID: T000XXXXX †Universidad Tecnológica de Bolívar, Colombia, e-mail: mracine@utb.edu.co, ID: T000XXXXX

[§]Universidad Tecnológica de Bolívar, Colombia, e-mail: pastranam@utb.edu.co, ID: T000XXXXX

1. Introduction

Distribution that, as in the preceding mode, can be distinguished by the occurrence probability allocated to the three scenarios. This paper presents an analysis of the distribution of the sample proportion and the difference in sample proportions [1] taken from a randomly generated population textit Mi rosoft.

2. Data

Distribution that, as in the preceding mode, can be distinguished by the occurrence probability allocated to the three scenarios [2]. This paper presents an analysis of the distribution of the sample pro portion and the difference in sample proportions taken from a randomly generated population textit Mi rosoft [4, pág 21].

Ejemplo de ecuación 1

$$\int x^3 dx = \frac{x^4}{4} + C \tag{1}$$

3. Materials and Methods

Figura 1: Villalba

4. Results and Discussion

Distribution that, as in the preceding mode, can be distinguished by the occurrence probability allocated to the three scenarios.

This paper presents an analysis of the distribution of the sample pro

Ejemplo de ecuación 2

$$\alpha = P(\text{``Error tipo I"})$$

$$\alpha = P(\text{"Rechazar} H_0\text{"}|\text{"}H_0\text{es verdadera"})$$

$$\alpha = P(|\frac{\bar{x} - \theta_0}{\sigma/\sqrt{n}}| > c|\theta = \theta_0)$$

$$\alpha = P(|Z| > c) \text{ con } Z \sim \mathcal{N}(0, 1).$$

Ejemplo de gráfica 1

Figura 2: ggplot

Ejemplo de tabla 1

Tabla 1: Datos de pobreza en Colombia en 2010 y 2011.

	Pob1	Pob2	Pobext1	Pobext2	Gini1	Gini2
	2010	2011	2010	2011	2010	2011
Pasto	43,2	40,6	11,7	8,8	52,3	52,2
Montería	39,7	37,5	6,7	6,5	52,5	53,0
Barranquilla	39,5	34,7	7,4	5,3	49,7	47,2
Cúcuta	39,3	33,9	8,4	5,7	47,9	47,1
Cartagena	34,2	$33,\!4$	6,2	4,7	48,9	48,8
Cali	26,1	25,1	6,4	5,2	52,9	50,4
Villavicencio	25,4	23,0	4,8	4,02	46,7	46,7
Ibagué	26,6	22,0	4,3	2,7	49,5	44,9
Pereira	26,8	21,6	3,8	2,2	45,6	45,1
Manizales	23,8	19,2	4,7	2,3	49,5	47,1
Medellín	22,0	19,2	5,6	4,0	$53,\!8$	50,7
Bogotá	15,5	13,1	2,6	2,0	52,6	52,2
Bucaramanga	10,9	10,7	1,2	1,1	45,0	44,9

Ejemplo de tabla 2

Tabla 2: marco de datos

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

5. Conclusion and Recommendations

Acknowledgments

Appendix A. Dataset link

References

- [1] Referencia número uno.
- [2] Referencia número dos.
- [3] Referencia número tres.
- [4] BAZARAA, M.S., J.J. JARVIS y H.D. SHERALI, *Programación lineal y flujo en redes*, segunda edición, Limusa, México, DF, 2004.