AP Calculus Homework 14

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write π instead of 3.14.

Questions with a * are optional. Questions with ** are optional and more challenging.

1. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

a)
$$\int_{2}^{3} \frac{1}{\sqrt{3-x}} dx$$

b)
$$\int_{-2}^{14} \frac{1}{\sqrt[4]{x+2}} dx$$

a)
$$\int_{2}^{3} \frac{1}{\sqrt{3-x}} dx$$
 b) $\int_{-2}^{14} \frac{1}{\sqrt[4]{x+2}} dx$ c) $\int_{6}^{8} \frac{1}{(x-6)^{3}} dx$

d)
$$\int_0^3 \frac{1}{x^2 - 6x + 5} dx$$
 e) $\int_{-1}^0 \frac{e^{1/x}}{x^3} dx$ f) $\int_0^2 z^2 \ln z dz$

e)
$$\int_{-1}^{0} \frac{e^{1/x}}{x^3} dx$$

f)
$$\int_0^2 z^2 \ln z dz$$

$$g) \int_0^1 \frac{\ln x}{\sqrt{x}} dx$$

2. Find the area of the region.

a)
$$y = \sin x$$
, $y = e^x$, $x = 0$, $x = \pi/2$ b) $y = x$, $y = x^2$

b)
$$y = x$$
, $y = x^2$

c)
$$y = 1/x$$
, $y = 1/x^2$, $x = 2$

c)
$$y = 1/x$$
, $y = 1/x^2$, $x = 2$ d) $y = \tan x$, $y = 2\sin x$, $-\pi/3 \le x \le \pi/3$

e)
$$y = \sqrt{x}, \ y = \frac{1}{2}x, \ x = 9$$

3. Use Calculus to find the area of the triangle with the given vertices.

$$(0,0), (2,1), (-1,6)$$

4. Evaluate the integral and interpret it as the area of a region.

$$\int_0^{\pi/2} |\sin x - \cos 2x| dx$$

5. Find the values of c such that the area of the region bounded by the parabolas $y = x^2 - c^2$ and $y = c^2 - x^2$ is 576.

6. The are of the region enclosed by the graph of $y = x^2 + 1$ and the line y = 5 is

(A)
$$\frac{14}{3}$$

(B)
$$\frac{16}{3}$$

(A)
$$\frac{14}{3}$$
 (B) $\frac{16}{3}$ (C) $\frac{28}{3}$ (D) $\frac{32}{3}$ (E) 8π

(D)
$$\frac{32}{3}$$

1

- 7. What is the area of the region between the graphs of $y = x^2$ and y = -x from x = 0to x = 2?

- (A) $\frac{2}{3}$ (B) $\frac{8}{3}$ (C) 4 (D) $\frac{14}{3}$ (E) $\frac{16}{3}$