1	271 62	\vdash	11	12
n	闭集		րդ	1里

b.1. 证明多面体 $\{x: Ax \leq b\}, A \in \mathbb{R}^{mn}, b \in \mathbb{R}^m$ 为闭的凸集

b.2. 举例: \mathbb{R}^2 上闭集的凸包不一定是闭的

b.3. 若 $A \in \mathbb{R}^{m \times n}, S \subseteq \mathbb{R}^m$ 为凸集,证明集合 S 在 A 下的原像 $\{x \in \mathbb{R}^n : Ax \in S\}$ 是凸集

b.4. 若 $A \in \mathbb{R}^{m \times n}$, $S \subseteq \mathbb{R}^n$ 为凸集,证明集合 S 在 A 下的像 $\{Ax : x \in S\}$ 是凸集

b.5. 举例:存在 $A \in \mathbb{R}^{m \times n}$ 及闭凸集 $S \subseteq \mathbb{R}^n$,使得 A(S) 不是闭集

b.I 6.2 A 0= Fx: Ax ≤ b3 这两个同学时间独立的同学 Yxy GC, BGT.1] 5= 8(0.0) YU ((xy) = xy=1, x20, y=0) Axeb Ayeb CONVLS) = S(0.0) UR+ MA Ox+(10)y) AX St AX6S = 0 Ax+ (1-0) Ay = 0b+ (1-12)b=b y Ayos 且其合所有點点局 C 设建 DAX+(1-0)Áy 65 A (0x+4-0)y)63 1) Ox+(10)y 50 STATTIBE by B G= EAXIX65) AXGG AYGG Y68 DY (1-15)465 ACDx+(I-D)Y) = DAx+(I-D)AYGG

S=5 (x1, x2)612: 0= x1=1, x6=34

b5 A=(1.2) 2 FIBER A(S) = {X1+2x2 = X1660.17, x63

C. 考虑二仇个司	了八	$x^{\top}A$:	$x + b^{\top}x + c \le 0,$			(1)				
其中 A 为 n	阶对称矩阵,	设 C 为上述不				()				
(a) 证明: 🗎	A 正定时,	C 为凸集;								
	C 和超平面		的交集 $(g \neq 0)$,若	存在 $\lambda \in \mathbb{R}$,	使得 $A + \lambda gg^{\top}$	正定,				
ш. 97	71 H.					_				
			1					扮	的函数	
-			1. 7. 12					12.4	None	
		F	13年10年						1	
(x)	[x]= x]	X+ b xt	· C 是白图	De :	$= \times A \times$	TrixAx)=Tr(Axx) = 4	A, xx'z	
	'		汤别的 C 是占例		7			'		
	+(x) 脉	《好 ≤ ▽	廖是品	於 : [外级					
	9			· /		V				
ſ			X (p	T	(,4	ر کتی ما	1 (1)	٠, ١, ١, ١	F. 12 . 1. 2	,
	a atx +	, hxa to	I I A	+ > ag'	1X+\b'-	Y 2119 1.	XTUS	ひ 国川和ラ	内足这 [3 0C
(D) / YV	1 4 \ '			• 10		V				
		- /	乃外							
			1//							
	 /1.									
c. 多	面 体									
c.1	L. 证明: 🥫	若 $P \subseteq \mathbb{R}^n$ j	为多面体, $A \in$	$\mathbb{R}^{m \times n}$, $\mathbb{R}^{m \times n}$	則 A(P) 为多	3面体,提示	示: 可使用以	以下事实:		
		$P\subseteq\mathbb{R}^{m+n}$	为多面体 ⇒ {	$x \in \mathbb{R}^n : ($	$(x,y) \in P$ for	some $y \in \mathbb{I}$	R ^m } 是多面	体		
c.5	2. 证明若	$Q \subset \mathbb{R}^m$ \mathcal{H}	多面体, $A \in \mathbb{I}$	$\mathbb{R}^{m imes n}$. In	$A^{-1}(Q)$ %3	多面体				
		₩ <u>= </u>	ущт, пс.	, , ,,,	(%) /3:	ущт				
()	176 +	4+ 100	, T B 3 0	4.4						
V-[力物改	联月份白色	生 1 1 1 1 1 2 3 1	T/AP						
6.5	4	۔ مدین	文 13 万是36 10为多同样	fr co	7 balle	7 The sto				
V.2	出心不	少年晚时	的为多国件	127	12 1200	(21917)				
		'								

a. 证明熵函数:

$$f(x) = -\sum_{i=1}^{n} x_i \log(x_i), \quad \text{dom } f = \{x \in \mathbb{R}_{++}^n : \sum_{i=1}^n x_i = 1\}$$

是严格凹的。

b. 若 f 为二次可微函数且 dom f 为凸集,证明 f 为凸函数的充要条件为:

$$(\nabla f(x) - \nabla f(y))^{\top} (x - y) \ge 0, \quad \forall x, y$$

这被称为梯度 ∇f 的单调性。

えかは、 定义g: g(t)=f(x+tiy-x)),tbにり1 g(t)= アf(x+tiy-x)「(y-x)

由 g'(1)-g'(0) >0 且 g'6)_g'(0)=0程

$$(3, \int |y|) = g(1) = g(0) + \int_{0}^{1} g'(0) dv \ge g(0) + g'(0)$$

= $\int |x| + Pf(u)^{T}(y-x)$

$$f(x) = \frac{-e^{x}}{(1+e^{x})^{2}} = \frac{-e^{x}}{(1+e^{x})^{2}} = \frac{-e^{x}}{(1+e^{x})^{2}} = \frac{1}{(1+e^{x})^{2}}$$

$$f(x) = \frac{e^{x}}{(1+e^{x})^{2}} + \frac{1}{(1+e^{x})^{2}}$$

$$f(x) = \frac{1}{(1+e^{x})^{2}} + \frac{1}{(1+e^{x})^{2}}$$

$$f(x) = \frac{1}{(1+e^{x})^{2}} + \frac{1}{(1+e^{x})^{2}}$$

$$f(x) = \frac{1}{(1+e^{x})^{2}} + \frac{1}{(1+e^{x})^{2}} + \frac{1}{(1+e^{x})^{2}}$$

5. 平四: / 用口四数八寸: 心能心均光似小匣。

d. 函数 $f:\mathbb{R}^n\to\mathbb{R}$ 被称为强制的(coercive),如果当 $\|x\|_2\to\infty$ 时,有 $f\to\infty$ 。强制函数的一个关键事实为其可以达到极小值。证明对于一个二次可微的强凸函数是强制的(coercive),并因此可达到极小值。

73 f Fig Hestian Rept to
$$\overrightarrow{P}$$
 for \overrightarrow{P} \overrightarrow{J} \overrightarrow{M} \overrightarrow{M}

5(y)->xo

门有极过