

Mid Term (Odd) Semester Examination October 2024

	Roll no
n	
	Maximum Marks: 50
ns	
	•

Name of the Course and semester: MCA IVth semester

Name of the Paper: Theory of Computation and Compiler Construction

Paper Code: TMC 304

Time: 1.5 hour

Note:

- (i) Answer all the questions by choosing any one of the sub questions
- (ii) Each question carries 10 marks.

Q1.

(10 Marks)

a. What is Finite State Machines? Explain the various notations used during design of FA?

OR

(CO1)

- b. Obtain a DFA to accept strings of a's and b's
 - Having even numbers of a's and odd number of b's.
 - At most two consecutive b's.

Q2.

(10 Marks)

a. Explain the following terms: alphabets, power of an alphabet, Kleene Closure, Kleene plus, strings.(CO1)

OR

b. Convert the following €-NFA to its equivalent DFA.

Q3.

(10 Marks)

a. Convert the following NFA to its equivalent DFA.

(CO1)

Mid Term (Odd) Semester Examination October 2024

OR

b. Find the minimized DFA for the following:

δ 1	0	1.2
3AT	\mathbf{B}_{-}	<u> </u>
-B	A	<u> </u>
$-\mathbf{c}$	D	<u>B</u> _
*D	D	A
E	D	F
F	G	E
G	F	G
H	G	D
1.		

Q4. (10 Marks) (CO2)

a. Define regular expression. Obtain regular expression for the language $L = \{w \mid w \in \{0,1\}^* \text{ with at least three consecutive 0's.}$

OR

b.Obtain a NFA for the regular expressions:

- $(a+b)^*aa(a+b)^*$
- a*+b*+c*0020

a. State and Prove Arden's Theorem.

(10 Marks) (CO2)

b. Define Mealy and Moore machine. Construct a Mealy and Moore Machine which accepts strings of a's and b's and count the number of times the pattern "ab" is presented in the string.