Control multiarticular

- En ocasiones la suposición de que el par τ_p (influencia del resto de las articulaciones sobre el control de una articulación) no es válida (accionamientos sin reductor, velocidades elevadas)
- Se debe entonces considerar al sistema como multivariable y acoplado
- Elevada complejidad
- Técnicas más extendidas:
 - Desacoplamiento por inversión del modelo/par calculado
 - Técnicas de control adaptativo
 - · Planificación de ganancias
 - Con modelo de referencia (MRAC)
 - Par calculado adaptativo

Desacoplamiento por inversión del modelo

Como en el caso monoarticular, se utiliza la prealimentación con el modelo inverso para cancelar la dinámica (y así desacoplarla)

Si el modelo es: $\tau = \mathbf{D}(q)\ddot{\mathbf{q}} + \mathbf{H}(q,\dot{q}) + \mathbf{C}(q) + \mathbf{F}_{v}\dot{\mathbf{q}} + \tau_{e}$ Junto con la constante de par del motor K

Se desacopla prealimentando con: $(\mathbf{D}(q)\ddot{\mathbf{q}}_d + \mathbf{F}_v\dot{\mathbf{q}}_d + \mathbf{H}(q,\dot{q}) + \mathbf{C}(q))\mathbf{K}^{-1}$

Algoritmo de Control

Equivalencia con el FF en monoarticular

Monoarticular J,B,C,K

Efecto del desacoplamiento por inversión del modelo

Par de mando a la salida de los motores

$$\tau = \left[\left(\mathbf{D}(q)s^2 + \mathbf{F}_{v}s \right) \mathbf{K}^{-1} \mathbf{q}_d + \left(\mathbf{H}(q, \dot{q}) + \mathbf{C}(q) \right) \mathbf{K}^{-1} \right] \mathbf{K}$$

Modelo (uso del par)

$$\tau = \mathbf{D}(q)\ddot{\mathbf{q}} + \mathbf{H}(q,\dot{q}) + \mathbf{C}(q) + \mathbf{F}_{\mathbf{v}}\dot{\mathbf{q}} + \tau_{e}$$

Efecto del desacoplamiento por inversión del modelo

Par de mando a la salida de los motores

$$\tau = \left[\left(\mathbf{D}(q)s^2 + \mathbf{F}_{v}s \right) \mathbf{K}^{-1} \mathbf{q}_d + \left(\mathbf{H}(q, \dot{q}) + \mathbf{C}(q) \right) \mathbf{K}^{-1} \right] \mathbf{K}$$

$$\tau = \mathbf{D}(q)\ddot{\mathbf{q}} + \mathbf{H}(q,\dot{q}) + \mathbf{C}(q) + \mathbf{F}_{\mathbf{v}}\dot{\mathbf{q}} + \tau_{e}$$

Igualando ambas:

$$(\mathbf{D}(q)s^{2} + \mathbf{F}_{v}s)\mathbf{q}_{d} = (\mathbf{D}(q)s^{2} + \mathbf{F}_{v}s)\mathbf{q} + \tau_{e} \Rightarrow$$

$$\Rightarrow \mathbf{q} = \mathbf{q}_{d} - \frac{1}{(\mathbf{D}(q)s + \mathbf{F}_{v})s}\tau_{e}$$

En ausencia de perturbación externa (τ_e), la trayectoria real q y la deseada q_d coinciden, quedando el sistema desacoplado.