

SLIDING CONVOLUTION WENHAO HE Jan 4th 2016

Outline

- Sliding Window Model
- **■** Fully Convolution Network (FCN)
- Densebox
- Applications in scene text detection
- Trend and future
- Brief introduction of BD-IDL

Sliding Window Model

- Given a map of size H×W and a window of size h×w
- Slide the window by stride *s* in both x and y directions
- The intersection region R will output a struct T by a function F. T = F(R)

Sliding Window Model

■ If *T* is a real value, we will get sliding window method in conventional object (text) detection and *T* refers to the object (text) region confidence

Convolution Network

- If *T* is a real value and F is a convolution operation, we will get conventional CNN feature extractor
- If F is conv5×5, then h=w=5 (window size)
- If F is conv5×5, $s=2\rightarrow$ conv3×3, then h=w=5+2×2
- If F is conv5×5, $s=1\rightarrow pool2×2\rightarrow conv3×3$, then h=w=5+5×1
- If F is conv appended by MLP, we will get CNN

- If T is a 3-dim matrix, F is a convolution operation and stride $s=+\infty$, we will get Fully Convolution Network
- **FCN** is proposed for segmentation task
- If the segmentation task deals with N categories, T is a W×H×N matrix
- Each 1×1×N vector of Trefers to the probability of each class for a pixel
- We can also set T to be W×H neglecting probability information

- Pool_N is deconved to fuse with Pool_{N-1}
- Larger N contains more category information (overall level) but loses details (pixel level) and vice versa

- Pool_N is deconved to fuse with Pool_{N-1}
- Larger N contains more category information (overall level) but loses details (pixel level) and vice versa

- NYUDv2
- Containing depth information

■ Sift Flow

	pixel	mean	mean	f.w.
	acc.	acc.	IU	IU
Gupta <i>et al</i> . [14]	60.3	-	28.6	47.0
FCN-32s RGB	60.0	42.2	29.2	43.9
FCN-32s RGBD	61.5	42.4	30.5	45.5
FCN-32s HHA	57.1	35.2	24.2	40.4
FCN-32s RGB-HHA	64.3	44.9	32.8	48.0
FCN-16s RGB-HHA	65.4	46.1	34.0	49.5

	pixel	mean	mean	f.w.	geom.
	acc.	acc.	IU	IU	acc.
Liu et al. [23]	76.7	-	-	-	-
Tighe <i>et al.</i> [33]	-	-	-	-	90.8
Tighe <i>et al</i> . [34] 1	75.6	41.1	-	-	-
Tighe et al. [34] 2	78.6	39.2	-	-	-
Farabet et al. [8] 1	72.3	50.8	-	-	-
Farabet et al. [8] 2	78.5	29.6	-	-	-
Pinheiro et al. [28]	77.7	29.8	-	-	-
FCN-16s	85.2	51.7	39.5	76.1	94.3

- SDS (ECCV 2014)
- Simultaneous Detection and Segmentation
- Not an end to end method

SDS [16]

FCN-8s

Ground Truth

Image

Densebox

- If *T* is a W×H×N struct{*conf*, *bbox*} for FCN structure, we will get Densebox
- Densebox was proposed for detection task, so N=1 and *T.conf* refers to the confidence map and *T.bbox* refers to the bounding boxes
- Actually Densebox differs from FCN in many details
- \Box Dimension of T
- Label design
- Training procedure
- Testing procedure

- Dimension of T
- Suppose the input is a 640×480×3 color image

Model	FCN	Densebox
Input size	640×480×3	640×480×3
Output size	640×480×N	160×120×struct

- Detection task is required less detailed information
- However, Densebox can output a 640×480 struct if we try to get both segmentation and detection information
- □ For human visual system, we do segmentation and detection simultaneous. Multi-task is a trend.

Label design

□ FCN

Densebox

- Training procedure
- □ FCN
- Single task
- Softmax loss for per pixel
- Densebox
- ROI is cropped out as a positive sample
- Each bounding box size is normalized
- Too big or small ones are negative
- Multi-task: detection and regression
- Detection: Hinge loss
- Regression: Euclidean loss

- Training procedure
- Hard negative sampling
- Rank the scores of negative regions by descend order
- □ The high score negative regions are hard to classify
- Ignore the backward gradient from low score negative region

- Testing procedure
- □ FCN
- Directly output a W×H×N matrix
- Densebox
- Multi-scale
- Output confidence and a bounding box for each pixel (Densebox)
- NMS to mine the dense boxes

Math Expression recognition

- Adopt Densebox structure
- Comparison with traditional model
- Auto cut torching part
- Using context → log or 10g
- Auto combine multi-parts → to =

Math Expression recognition

- Details
- How many tasks should we use

Fraction line (exaggerated Width/Height ratio)

- Scene text detection is a very typical problem
- A specific area for object detection and recognition
- Scales and transformation of text vary much
- Text line detection requires sequence learning
 (In my view, we need recognition result to refine text line)

LEVEL 3

LEVEL 2

- Proposal based method
- Classify MSER proposals lose too much context information
- Recently, methods like fast-RCNN and faster-RCNN using context features are popular

- Proposal based method
- Classify MSER proposals lose too much context information
- Recently, methods like fast-RCNN and faster-RCNN using context features are popular (CNN features of the whole image are extracted beforhand)

- Sliding window method
- Boosting methods
- Densebox is a specific sliding window model by the our defination
- Actually fast-RCNN and faster-RCNN methods can also be regarded as a special sliding window model for certain regions (MSER regions)

- How many types of information should and could we get?
- Single letter's bounding box
- Single letter's rotation
- Single letter's category
- Single letter's segmentation [Text attention CNN]

- Pair part between letters : Text Line
- Text line is arranged in such format:
 A-B-A-B-A (A: single word, B: pair part)

Two schemes

- Pure detection
- We also use category information for each letter as one of the multitasks, but pay less attention for the accuracy
- We do not use recognition result to refine text line

- End to end system for both detection and recognition
- Sequence learning should be taken into consideration
- Refine single letter and text line detection result

Trend and future

- End to end system
- Extract all useful features simultaneously if possible (CNN features)
- Multi-task output
- Human detect text by multiple perspectives
- If we only do detection task, we can only know a approximate position
- Once we know more details, more tasks (recognition, segmentation) are used

Trend and future

- Generative model
- It is not related much with text detection but also promising
- Two perspectives for generative model
- From probabilistic way $\rightarrow p_{data}(\mathbf{x})$
- From generaing way \rightarrow find x s.t. $p_{data}(\mathbf{x}) = p$
- Generative Adversarial Nets

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

Unsupervised Representation Learning with Deep Convolutional

Generative Adversarial Networks

Trend and future

- Unsupervised and semi-supervised learning
- How to build a 'good' model with less data
- Supervised data driven is not a merit for deep learning
- It is not an elegent way using large human-labeling data for training
- Less training data and synthetic data are recommended

Baidu IDL

- Deep learning as the base
- Mainly focus on research
- \square Research : Project pprox 7 : 3
- OCR, Face, Deep learning (Paddle), Auto-driving, CV etc.
- About 100+ people
- OCR group: 2 detection, 3 recognition, 1 project, 1 manager
- Abundant hardware source
- Usually there are 4 K40 I can use
- Enough servers for CPU work (Synthetic data generating)

Baidu IDL

- OCR
- □ Research : Following the latest big ideas. Detection: Fast-RCNN.
 - Recognition: RNN, CTC
- □ Project : Bank card, ID card, driving card, receipts etc.
- Work report per week at Saturday
- Group meeting per week at Monday
- Paper sharing meeting at Saturday
- From arxiv
- Clear plans and deadlines
- Daily report
- Frequent paper sharing on Baidu-Hi

What I have learned

- Technique is only one part
- We are already late, but not too late
- How many papers should I read
- How fast should I realize an idea
- Good research habit
- Daily plan
- Weekly plan
- Deadline
- More communication
- Know what others are doing
- More idea sharing

THANKS!

Any questions?