

2

Docket No. USF-T150CX
Serial No. 09/955,174RECEIVED
CENTRAL FAX CENTER
JUL 11 2006In the Claims

Claims 1-37 (Cancelled)

Claim 38 (Previously presented): A method for reducing SHIP-1 function in human or mouse hematopoietic cells, comprising administering to the hematopoietic cells an efficacious amount of an interfering RNA specific for SHIP-1 mRNA present in the hematopoietic cells, wherein the interfering RNA reduces SHIP-1 expression within the hematopoietic cells.

Claim 39 (Previously presented): The method of claim 38, wherein the interfering RNA is administered to human hematopoietic cells.

Claim 40 (Previously presented): The method of claim 38, wherein the hematopoietic cells are natural killer (NK) cells.

Claim 41 (Previously presented): The method of claim 38, wherein said administering comprises administering a vector comprising a polynucleotide encoding the interfering RNA.

Claim 42 (Previously presented): The method of claim 41, wherein the vector is complexed with a liposome.

Claim 43 (Previously presented): The method of claim 41, wherein the vector is a plasmid.

Claim 44 (Previously presented): The method of claim 41, wherein the vector is a viral vector.

Claim 45 (Cancelled)

Claim 46 (Previously presented): A method for suppressing rejection of a transplant in a human or mouse, comprising administering to the human or mouse an efficacious amount of an interfering RNA specific for SHIP-1 mRNA present in hematopoietic cells of the human or mouse, wherein the interfering RNA reduces SHIP-1 expression within the hematopoietic cells.

Claim 47 (Previously presented): The method of claim 46, wherein the transplant is a bone marrow allograft, a solid organ allograft or xenotransplant, or an MHC disparate marrow graft having an MHC disparity of 1, 2, 3 or more allelic mismatches.

Claim 48 (Previously presented): The method of claim 46, wherein the human or mouse has cancer, autoimmune disease, HIV/AIDS, a genetic deficiency, or a combination of any of the foregoing.

Claim 49 (Previously presented): The method of claim 46, wherein the human or mouse is in need of a histo-incompatible organ transplant, and further comprising the step of administering to the human or mouse an allogeneic bone marrow transplant.

Claim 50 (Previously presented): The method of claim 46, wherein the interfering RNA is administered to the human or mouse prior to the transplant.

Claim 51 (Previously presented): The method of claim 46, wherein the interfering RNA is administered to the human or mouse at the time of the transplant or subsequent to the transplant.

Claim 52 (Previously presented): The method of claim 46, wherein the interfering RNA is administered to a human.

Claim 53 (Previously presented): The method of claim 46, wherein said administering comprises administering a vector comprising a polynucleotide encoding the interfering RNA.

Claim 54 (Previously presented): The method of claim 53, wherein the vector is complexed with a liposome.

Claim 55 (Previously presented): The method of claim 53, wherein the vector is a plasmid.

Claim 56 (Previously presented): The method of claim 53, wherein the vector is a viral vector.

Claim 57 (Previously presented): A method for suppressing graft-versus-host disease in a human or mouse having or in need of a transplant, comprising administering to the human or mouse an efficacious amount of an interfering RNA specific for SHIP-1 mRNA present in hematopoietic cells of the human or mouse, wherein the interfering RNA reduces SHIP-1 expression within the hematopoietic cells.

Claim 58 (Previously presented): The method of claim 57, wherein the transplant is a bone marrow allograft, a solid organ allograft or xenotransplant, or a MHC disparate marrow graft having an MHC disparity of 1, 2, 3 or more allelic mismatches.

Claim 59 (Previously presented): The method of claim 57, wherein the human or mouse has cancer, autoimmune disease, HIV/AIDS, a genetic deficiency, or a combination of any of the foregoing.

Claim 60 (Previously presented): The method of claim 57, wherein the interfering RNA is administered to the human or mouse prior to the transplant.

Claim 61 (Previously presented): The method of claim 57, wherein the interfering RNA is administered to the human or mouse at the time of the transplant or subsequent to the transplant.

Claim 62 (Previously presented): The method of claim 57, wherein the interfering RNA is administered to a human.

Claim 63 (Previously presented): The method of claim 57, wherein said administering comprises administering a vector comprising a polynucleotide encoding the interfering RNA.

Claim 64 (Previously presented): The method of claim 63, wherein the vector is complexed with a liposome.

Claim 65 (Previously presented): The method of claim 63, wherein the vector is a plasmid.

Claim 66 (Previously presented): The method of claim 63, wherein the vector is a viral vector.

Claim 67 (Previously presented): A composition comprising an interfering RNA specific for human or mouse SHIP-1 mRNA present in hematopoietic cells, in a pharmaceutically acceptable carrier.

Claim 68 (Previously presented): The composition of claim 67, wherein the SHIP-1 mRNA is human SHIP-1 mRNA.

Claim 69 (Previously presented): A composition comprising a vector in a pharmaceutically acceptable carrier, wherein said vector comprises a polynucleotide encoding an interfering RNA specific for human or mouse SHIP-1 mRNA present in hematopoietic cells.

Claim 70 (Previously presented): The composition of claim 69, wherein the SHIP-1 mRNA is human SHIP-1 mRNA.

Claim 71 (Previously presented): The composition of claim 69, wherein the vector is complexed with a liposome.

Claim 72 (Previously presented): The composition of claim 69, wherein the vector is a plasmid.

Claim 73 (Previously presented): The composition of claim 69, wherein the vector is a viral vector.

Claim 74 (Previously presented): A method for reducing SHIP-1 function in human or mouse hematopoietic cells, comprising administering to the hematopoietic cells an efficacious amount of a nucleic acid molecule that hybridizes *in vitro* under conditions of stringency with human or mouse SHIP-1 mRNA, wherein the nucleic acid molecule hybridizes *in vivo* with SHIP-1 mRNA present in the hematopoietic cells, whereby the nucleic acid molecule reduces SHIP-1 expression within the hematopoietic cells.

Claim 75 (Previously presented): The method of claim 74, wherein the nucleic acid molecule is an RNA molecule.

Claim 76 (Previously presented): The method of claim 74, wherein the hematopoietic cells are human cells.

Claim 77 (Previously presented): A method for suppressing rejection of a transplant in a human or mouse, comprising administering to the human or mouse an efficacious amount of a nucleic acid molecule that hybridizes *in vitro* under conditions of stringency with human or mouse SHIP-1 mRNA, wherein the nucleic acid molecule hybridizes *in vivo* with SHIP-1 mRNA present in hematopoietic cells of the human or mouse, whereby the nucleic acid molecule reduces SHIP-1 expression within the hematopoietic cells.

Claim 78 (Previously presented): The method of claim 77, wherein the nucleic acid molecule is an RNA molecule.

Claim 79 (Previously presented): The method of claim 77, wherein the nucleic acid molecule is administered to a human.

Claim 80 (Previously presented): A method for suppressing graft-versus-host disease in a human or mouse having or in need of a transplant, comprising administering to the human or mouse an efficacious amount of a nucleic acid molecule that hybridizes *in vitro* under conditions of stringency with human or mouse SHIP-1 mRNA, wherein the nucleic acid molecule hybridizes *in vivo* with SHIP-1 mRNA present in hematopoietic cells of the human or mouse, whereby the nucleic acid molecule reduces SHIP-1 expression within the hematopoietic cells.

Claim 81 (Previously presented): The method of claim 80, wherein the nucleic acid molecule is an RNA molecule.

Claim 82 (Previously presented): The method of claim 80, wherein the nucleic acid molecule is administered to a human.

Claim 83 (Previously presented): A composition comprising a nucleic acid molecule in a pharmaceutically acceptable carrier, wherein said nucleic acid molecule hybridizes *in vitro* under conditions of stringency with human or mouse SHIP-1 mRNA, and wherein said nucleic acid molecule hybridizes *in vivo* with SHIP-1 mRNA present in human or mouse hematopoietic cells and thereby reduces SHIP-1 expression.

Claim 84 (Previously presented): The composition of claim 83, wherein said nucleic acid molecule is an RNA molecule.

Claim 85 (Previously presented): The composition of claim 83, wherein the SHIP-1 mRNA is human SHIP-1 mRNA.

Claim 86 (Previously presented): A composition comprising a vector in a pharmaceutically acceptable carrier, wherein said vector comprises a nucleic acid molecule encoding an RNA molecule that hybridizes *in vitro* with SHIP-1 mRNA, and wherein said RNA molecule hybridizes *in vivo* with SHIP-1 mRNA present in human or mouse hematopoietic cells and thereby reduces SHIP-1 expression.

Claim 87 (Previously presented): The composition of claim 86, wherein the SHIP-1 mRNA is human SHIP-1 mRNA.

Claims 88-89 (Cancelled)

Claim 90 (New): A method for reducing SHIP-1 function in human or mouse hematopoietic cells, comprising administering to the human or mouse hematopoietic cells an efficacious amount of a means for inhibiting SHIP-1 function, wherein the means for inhibiting SHIP-1 function interferes with translation of SHIP-1 RNA within the hematopoietic cells.

Claim 91 (New): A method for suppressing rejection of a transplant in a human or mouse, comprising administering to the human or mouse an efficacious amount of a means for inhibiting SHIP-1 function, wherein the means for inhibiting SHIP-1 function interferes with translation of SHIP-1 RNA within hematopoietic cells of the human or mouse.

Claim 92 (New): A method for suppressing graft-versus-host disease in a human or mouse having or in need of a transplant, comprising administering to the human or mouse an efficacious amount of a means for inhibiting SHIP-1 function, wherein the means for inhibiting SHIP-1 function interferes with translation of SHIP-1 RNA within hematopoietic cells of the human or mouse.