INDEX

Experiment No.	Experiment Name	Page No.
01.	Explain and implement Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) using MATLAB.	
02.	Let $x(n) = \{1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1\}$. Determine and Plot the following sequences, $x(n) = 2x (n-5) - 3x (n+4)$.	
03.	Write a MATLAB Program to perform following operation (i) Sampling. (ii) Quantization. (iii) Coding.	
04.	Determine and plot the following sequences- x(n) = 2δ (n+2) - δ (n-4), Where -5 \leq n \leq 5.	
05.	Plot following signal operations using user defined function (i) Addition. (ii) Folding.	
06.	Plot following signal operations using user defined function (i) Signal Multiplication. (ii) Signal Shifting.	
07.	Using MATLAB to Plot the Fourier Transform of a Time Function the aperiodic pulse shown below- X(t)	
08.	To find the amplitude spectrum of the two frequency signal: $x(t) = \cos(2\pi 100t) + \cos(2\pi 500t)$ and also find approximate the Fourier Transform Integral for $0 \le f \le 800$ Hz.	
09.	Explain and generate sinusoidal wave with different frequency using MATLAB.	
10.	Explain and generate sinusoidal wave with different frequency using MATLAB- (i) The unit sample sequence. (ii) The unit step signal. (iii) The unit ramp signal.	