Un correcteur orthographique efficace

Un correcteur orthographique efficace Comment cela peut-il être mis en oeuvre ?

Paul IANNETTA

- 1 Comparaison de mots
 - La distance de Levenshtein
- 2 La méthode naïve
 - Le principe
- 3 Une première amélioration
 - Les filtres de Bloom
- 4 De nouvelles idées
 - Les BK-Tree
 - Les automates de Levenshtein
- 5 Quelques chiffres
- 6 Quelques idées pour faire encore mieux

Définition (Distance de Levenshtein)

La distance de Levenshtein \mathcal{L} est une application de $\mathcal{A}^* \times \mathcal{A}^* \longmapsto \mathbb{N}$ définie par :

$$\begin{split} \mathcal{L}(w_1,w_2) &= \min(\quad c + \mathcal{L}(w_1',w_2'), \quad \text{substitution} \\ &\quad 1 + \mathcal{L}(w_1,w_2'), \quad \text{ajout} \\ &\quad 1 + \mathcal{L}(w_1',w_2) \quad \text{suppression} \\) \end{split}$$

Avec $w_1 = aw_1'$, $w_2 = bw_2'$ et c = 0 si a = b ou 1 sinon.

Proposition

Complexité temporelle : $\mathcal{L}(w_1, w_2) \in \mathcal{O}(|w_1||w_2|)$

Théorème

Le couple $(\mathcal{A}^*,\mathcal{L})$ est un espace métrique.

Démonstration

- Positivité : $\mathcal{L}(w_1, w_2) > 0$
- Séparation : $\mathcal{L}(w_1, w_2) = 0 \Longrightarrow w_1 = w_2$
- Symétrie : $\mathcal{L}(w_1, w_2) = \mathcal{L}(w_2, w_1)$
- Inégalité triangulaire : $\mathcal{L}(w_1, w_3) \leq \mathcal{L}(w_1, w_2) + \mathcal{L}(w_2, w_3)$

Le cas d'égalité a lieu si $w_2 = w_1$ ou $w_2 = w_3$.

L'autre cas se prouve par récurrence sur la longueur de w_2 que l'on note $n=|w_2|$.

Pour n=0, c'est vrai : $\mathcal{L}(w_1,w_3) \leq |w_1| + |w_3|$

Soit $n \in \mathbb{N}$ tel que l'inégalité triangulaire soit vraie.

$$\mathcal{L}(w_1, w_2) + \mathcal{L}(w_1, w_3) = \mathcal{L}(w_1, w_2') + \mathcal{L}(w_2', w_3)$$

 $\geq \mathcal{L}(w_1, w_3)$

L'inégalité triangulaire est vraie pour tout $w_2 \in \mathcal{A}^*$.

```
Un correcteur orthographique efficace

Comparaison de mots

La distance de Levenshtein
```

```
1 #define MAX LEN 42
   #define min3(a,b,c) ((a)<(b)?((a)<(c)?(a):(c)):((b)<(c)?(b):(c)))
4
   int
   levenshtein (char * src, char * dst) {
6
        int dist[MAX LEN + 1][MAX LEN + 1] = \{0\};
7
       int i, j, len src, len dst;
8
9
       len src = strlen(src);
       len_dst = strlen(dst);
10
11
12
       for (i = 0 ; i < MAX LEN ; ++i)
13
            dist[i][0] = i;
14
       for (i = 0 ; j < MAX LEN ; +++j)
15
            dist[0][i] = i;
16
17
       for (i = 0 ; i < len src ; ++i)
18
            for (j = 0 ; j < len dst ; ++j) {
19
20
                dist[i + 1][i + 1] = min3(
21
                                          dist[i][j + 1] + 1,
22
                                          dist[i + 1][j] + 1,
                                          dist[i][j] + (src[i] != dst[j])
23
24
                                      );
25
26
27
       return dist[len src][len dst];
28
```

Un correcteur orthographique efficace
La méthode naïve
Le principe

Il s'agit de calculer la distance de Levenshtein d'un mot avec tous les autres mots du dictionnaire.

Avantage:

■ Mise en oeuvre aisée et rapide

Inconvénient:

■ Cette méthode est très lente en raison d'un grand nombre de calculs.

Objectifs: Limiter les accès au dictionnaire.

Définition (Filtre de Bloom)

Un filtre de Bloom est un vecteur ligne à valeurs dans $\mathbb{Z}/2\mathbb{Z}$.

Principe de construction :

- lacktriangle La longueur du vecteur vaut m.
- Il utilise k fonctions de hachage. $(h_i: \mathcal{A}^* \longrightarrow \mathbb{N})$
- \blacksquare Il représente n éléments.

Théorème

La probabilité d'obtenir un faux positif est de l'ordre de $(1-e^{-\frac{kn}{m}})^k$.

Démonstration

On suppose qu'une fonction de hashage donne un nombre entre 0 et m de manière équiprobable.

La probabilité qu'un bit soit à 1 est $\frac{1}{m}$ et celle qu'il soit à 0 est de $1-\frac{1}{m}$. Or, on utilise k fonctions de hashage que l'on applique à n éléments. Cette probabilité devient donc $\left(1-\frac{1}{m}\right)^{kn}$.

La probabilité d'avoir un faux positif est donc de :

$$\left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k = \left(1 - \left(1 - \frac{\frac{kn}{m}}{kn}\right)^{kn}\right)^k {\underset{k \stackrel{\sim}{n_{\infty}}}{\sim}} \left(1 - e^{-\frac{kn}{m}}\right)^k$$

Définition (Burkhard-Keller Trees)

Les BK-Trees sont des arbres n-aires à valeurs dans un espace métrique. Ils vérifient la propriété suivante :

Tous les mots d'un sous-arbre sont à la même distance de la racine du sous-arbre au sens de la distance de Levenshtein.

dict = {a, art, ami, amical, artiste, b, beau, bien}.

```
Un correcteur orthographique efficace

De nouvelles idées

Les BK-Tree
```

```
LIST NAME(string)
   bk tree search (const char * word, int range, struct bk tree * tree) {
3
       LIST NAME(string) res = NULL;
4
        int dist, i;
5
6
        if (!tree) return NULL;
7
8
        dist = levenshtein (word, tree->word);
9
10
        if (dist <= range)</pre>
11
            LIST CONS(char *, string, tree->word, res);
12
13
        for (i = 0 : i < NB SONS : ++i) {
            int son dist = tree->sons[i].dist:
14
15
            if (dist - range <= son dist && son dist <= dist + range) {</pre>
16
                LIST NAME(string) tmp = NULL;
17
18
                tmp = bk tree search(word, range, tree->sons[i].son);
19
20
                if (!res) res = tmp;
21
                else LIST CONCAT(char *, string , res , tmp);
            }
22
23
24
25
        return res;
26
```

Démonstration (Preuve de correction)

Un raisonnement par récurrence montre que ce parcours en profondeur de l'arbre termine effectivement.

Montrons pour cela que les sous-arbres éludés ne contenaient pas de potentiels candidats.

On cherche les mots à une distance inférieure ou égale à r d'un mot w.

Soit $\mathfrak{M}(A)$ l'ensemble des mots contenus dans l'arbre A.

Soit $d = \mathcal{L}(w, A.mot)$.

Soit A_1 un sous-arbre de A tel que :

$$\forall m \in \mathfrak{M}(A_1), \ \mathcal{L}(m, A.mot) = d + r + 1.$$

$$\forall m \in \mathfrak{M}(A_1), \ d+r+1 = \mathcal{L}(m, A.mot)$$

$$\forall m \in \mathfrak{M}(A_1), \ d+r+1 \leq \mathcal{L}(m, w) + \mathcal{L}(w, A.mot)$$

$$\forall m \in \mathfrak{M}(A_1), \ \mathcal{L}(m, w) \ge r + 1$$

$$\operatorname{Si}\,\mathcal{L}(m,A.mot)=d-(r+1),\ |\mathcal{L}(a.mot,w)-\mathcal{L}(w,m)|\leq \mathcal{L}(a.mot,m).$$

Définition (Automate de Levenshtein)

L'automate de Levenshtein d'un mot est un automate qui reconnait seulement les mots ayant une distance de Levenshtein inférieure ou égale à un entier n fixé.

$$\mathsf{Lev}_n(m) = \{ w \in \mathcal{A}^* : \mathcal{L}(m, w) \le n \}$$

Les automates de Levenshtein

dict = {a, art, ami, amical, artiste, b, beau, bien}.

Nombre de mots du dictionnaire : 324 476 mots.

	Filtre de Bloom	BK-Tree	Naïve
Création	0 s	5 s	-
Place	(300 Ko) Paramétrable	150 Mo	-
Recherche et suggestions (mots/s)			
$\mathcal{L} = 1$	-	1000 - 10000	1
$\mathcal{L}=2$	-	100 - 1000	"
$\mathcal{L}=3$	-	75 - 100	"
$\mathcal{L}=4$	-	30 - 40	"

Modifier la fonction de distance :

- Transposition.
- Lettres adjacentes sur un clavier.
- Lettres ayant des prononciations similaires.

Réduire la taille du dictionnaire pour les automates de Levenshtein :

■ Utilisation d'un graphe acyclique orienté PATRICIA.

dict = {a, art, ami, amical, artiste, b, beau, bien}.

- Compilateurs, techniques, principes et outils. 2e édition
- Wikipédia (Angaise et Française) :
 - Distance de Levenshtein.
 - Filtre de Bloom.
- Nick's Blog (blog.notdot.net) Damn Cool Algorithms :
 - Levenshtein Automata
 - BK-Trees