Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Вычислительные сети и контроль безопасности в компьютерных сетях»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Сканирование и анализ сетевого трафика»

	Выполнили:			
Чу Ван Д	оан, студент группы N3347			
	Joan Joan Joan Joan Joan Joan Joan Joan			
	(подпись)			
Чан Бао Л	инь, студент группы N3346			
	(подпись)			
	Проверил:			
Савков Сергей Витальевич, инженер факультета БИТ				
	(отметка о выполнении)			
	(подпись)			

Санкт-Петербург 2025 г.

Содержание

Содержание	2
Введение	
1. Задание	4
2. Ход работы	4
2.1. Установка инструментов	4
2.1.1. tcpdump	4
2.1.2. Wireshark	4
2.2. Сканирование трафика с помощью tcpdump	5
2.3. Сканирование трафика с помощью Wireshark	8
2.4. Проверьте IP-адреса источника и назначения для поиска	11
2.5. Анализ полученных результатов с помощью tcpdump	12
2.6. Анализ полученных результатов с помощью Wireshark	12
2.7. Сравнение Wireshark и tcpdump	13
Заключение	14

Введение

Цель работы – Изучить инструменты сканирования сетевого трафика, такие как tcpdump и Wireshark.

Для достижения поставленной цели необходимо решить следующие задачи:

- ознакомится с назначением и возможностями следующих инструментов: tcpdump, Wireshark;
- установить на физическую или виртуальную машину указанные инструменты;
- выполнить сканирование трафика в соответствии с вариантом и сохранить дамп трафика; изучить использование фильтров Wireshark;
- результаты выполнения работы оформить в виде отчета.
- 3/ПК с ОС Kali Linux или другой версией Debian-based или другого дистрибутива Linux, допускается использование виртуальной машины.

1. Залание

- Вариант 4: звонок в Telegram
- выполнить сканирование трафика с помощью tcpdump;
- дополнительное: выполнить сканирование трафика при помощи Wireshark и сравнить полученные дампы трафика.

2. Ход работы

2.1. Установка инструментов

2.1.1. tcpdump

- tcpdump это мощный инструмент командной строки в Linux, который используется для перехвата (захвата) сетевых пакетов. Он помогает системным администраторам и инженерам по сетям анализировать, отслеживать и устранять проблемы в сетевом трафике.
- Применение tcpdump:
 - Мониторинг сети отслеживание активности и анализа трафика.
 - Безопасность выявление подозрительных или вредоносных данных.
 - Диагностика сетевых проблем анализ соединений между клиентом и сервером.
 - Анализ пакетов в Wireshark сохранение и глубокий анализ сетевых пакетов.

```
(chu® chu)-[~]
$ sudo apt install tcpdump
Reading package lists ... Done
Building dependency tree ... Done
Reading state information ... Done
tcpdump is already the newest version (4.99.4-3).
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
```

Рисунок 1 – tcpdump

2.1.2. Wireshark

 Wireshark — это мощный анализатор сетевых протоколов (network protocol analyzer), который позволяет перехватывать, исследовать и анализировать пакеты в сети в режиме реального времени. Это популярный инструмент среди сетевых инженеров, специалистов по кибербезопасности и системных администраторов для диагностики сети, мониторинга трафика и обнаружения проблем с безопасностью.

- Применение Wireshark:

- Мониторинг сетевого трафика просмотр и анализ передаваемых данных.
- Диагностика сетевых проблем выявление ошибок соединения между клиентом и сервером.
- Обнаружение атак анализ DDoS, Man-in-the-Middle (MITM) и других вредоносных действий.
- Проверка безопасности данных анализ шифрования и утечек информации.
- Измерение производительности сети выявление задержек и узких мест в передаче данных.

```
(chu® chu)-[~]
$ sudo apt install wireshark
Reading package lists ... Done
Building dependency tree ... Done
Reading state information ... Done
wireshark is already the newest version (4.2.0-1).
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
```

Рисунок 2 – wireshark

2.2. Сканирование трафика с помощью tcpdump.

- Запуск программы tcpdump для сканирования трафика показаны на рисунке 3. Мы запишем результаты в файл telegram tcpdump.pcap.

```
(chu® chu)-[~/Desktop]
$ sudo tcpdump -w telegram_tcpdump.pcap
[sudo] password for chu:
tcpdump: listening on eth0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
```

Рисунок 3 - Запуска tcpdump

- Затем мы открываем браузер Firefox и ищем сайт Telegram.

Рисунок 4 - Поиск сайта Telegram

- Затем мы входим в Telegram, отсканировав QR-код.

Рисунок 5 - Вход в Telegram

Рисунок 6 - Интерфейс Telegram после входа

- Отправка и получение сообщений для одного пользователя

Рисунок 7 - Отправка сообщения

Рисунок 8 - Получение сообщения

После выполнения всех шагов мы остановили tcpdump с помощью Ctrl + C.

Рисунок 9 - Завершение процесса сканирования трафика

2.3. Сканирование трафика с помощью Wireshark.

- Запускаем сканирование при помощи wireshark

Рисунок 10 - Запуска Wireshark

- Мы продолжаем выполнять шаги так же, как при захвате с помощью tcpdump.

Рисунок 11 - Интерфейс Telegram после входа

Рисунок 12 - Отправка сообщения

Рисунок 13 - Получение сообщения

- Затем мы закрываем браузер Firefox и останавливаем захват сетевого трафика в Wireshark.

Рисунок 14 - Анализ трафика (Wireshark)

2.4. Проверьте ІР-адреса источника и назначения для поиска.

- Мы используем команду ifconfig, чтобы просмотреть адрес сетевого интерфейса. Здесь мы видим, что адрес 10.0.2.15 является IP-адресом машины на сетевом интерфейсе eth0.

```
chu@chu: ~/Desktop
File Actions Edit View Help
rw-r-r-- 1 tcpdump tcpdump 15010446 Feb 16 04:45 teleram_tcpdump.pcap-
(chu⊕ chu)-[~/Desktop]
$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
         inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
         inet6 fd00::a00:27ff:fe5a:5ff0 prefixlen 64 scopeid 0×0<global>
inet6 fe80::a00:27ff:fe5a:5ff0 prefixlen 64 scopeid 0×20<link>
inet6 fd00::f3f6:dfc0:d362:d321 prefixlen 64 scopeid 0×0<global>
         ether 08:00:27:5a:5f:f0 txqueuelen 1000 (Ethernet)
RX packets 27924 bytes 25775361 (24.5 MiB)
         RX errors 0 dropped 0 overruns 0 frame 0
TX packets 14668 bytes 1953715 (1.8 MiB)
         TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
         inet 127.0.0.1 netmask 255.0.0.0
         inet6 ::1 prefixlen 128 scopeid 0×10<host>
         loop txqueuelen 1000 (Local Loopback)
         RX packets 24 bytes 1240 (1.2 KiB)
         RX errors 0 dropped 0 overruns 0
         TX packets 24 bytes 1240 (1.2 KiB)
         TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рисунок 15 - ІР-адрес машины

- Далее мы используем nslookup, чтобы найти IP-адрес веб-сайта Telegram.
- Мы получаем IP-адрес Telegram: 149.154.167.99

Рисунок 16 - IP-адрес Telegram

2.5. Анализ полученных результатов с помощью tcpdump

- Мы читаем последние 20 строк файла

Рисунок 17 - Содержимое файла telegram tcpdump.pcap

- Мы нашли полный процесс трехстороннего рукопожатия TCP. Мы обнаружили пакеты SYN, отправленные с машины 10.0.2.15 на 149.154.167.99.

Рисунок 18 - Поиск процесса тройного рукопожатия (Three-way Handshake)

2.6. Анализ полученных результатов с помощью Wireshark

- Мы использовали фильтр: ip.addr==149.154.167.99 и увидели процесс трехстороннего рукопожатия TCP (TCP 3-Way Handshake) между нашим компьютером (10.0.2.15) и сервером Telegram (149.154.167.99).

∏ ig	o.addr==149.154.167.99				
No.	Time	Source	Destination	Protocol	Length Info
	159 9.452334863	10.0.2.15	149.154.167.99	TCP	54 47946 → 443 [ACK] Seq=1 Ack=1 Win=64240 Len=0
	160 9.453744260	10.0.2.15	149.154.167.99	TLSv1.3	571 Client Hello (SNI=web.telegram.org)
	161 9.453981162	149.154.167.99	10.0.2.15	TCP	60 443 → 47946 [ACK] Seq=1 Ack=518 Win=65535 Len=0
	162 9.456357162	149.154.167.99	10.0.2.15	TCP	60 443 → 47930 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
	163 9.456398229	10.0.2.15	149.154.167.99	TCP	54 47930 → 443 [ACK] Seq=1 Ack=1 Win=64240 Len=0
	164 9.457952337	10.0.2.15	149.154.167.99	TLSv1.3	571 Client Hello (SNI=web.telegram.org)
	165 9.458164096	149.154.167.99	10.0.2.15	TCP	60 443 → 47930 [ACK] Seq=1 Ack=518 Win=65535 Len=0
	166 9.555701073	10.0.2.15	149.154.167.99	TCP	74 47954 - 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=2651903202 TSecr=0 WS=128
	167 9.567842002	149.154.167.99	10.0.2.15	TLSv1.3	1282 Server Hello, Change Cipher Spec, Application Data
	168 9.567866865	10.0.2.15	149.154.167.99	TCP	54 47946 → 443 [ACK] Seq=518 Ack=1229 Win=63856 Len=0
	169 9.568610814	149.154.167.99	10.0.2.15	TCP	4150 443 → 47946 [PSH, ACK] Seq=1229 Ack=518 Win=65535 Len=4096 [TCP segment of a reassembled PDU]
	170 9.568625341	10.0.2.15	149.154.167.99	TCP	54 47946 → 443 [ACK] Seq=518 Ack=5325 Win=61920 Len=0
	171 9.568763906	149.154.167.99	10.0.2.15	TLSv1.3	427 Application Data, Application Data, Application Data
	172 9.568772567	10.0.2.15	149.154.167.99	TCP	54 47946 → 443 [ACK] Seq=518 Ack=5698 Win=63360 Len=0
	173 9.579266359	149.154.167.99	10.0.2.15	TLSv1.3	1282 Server Hello, Change Cipher Spec, Application Data
	174 9.579289546	10.0.2.15	149.154.167.99	TCP	54 47930 → 443 [ACK] Seq=518 Ack=1229 Win=63856 Len=0
	175 9.579907502	149.154.167.99	10.0.2.15	TCP	2922 443 → 47930 [PSH, ACK] Seq=1229 Ack=518 Win=65535 Len=2868 [TCP segment of a reassembled PDU]
	176 9.579921190	10.0.2.15	149.154.167.99	TCP	54 47930 - 443 [ACK] Seq=518 Ack=4097 Win=63360 Len=0
	177 9.580809013	149.154.167.99	10.0.2.15	TLSv1.3	1655 Application Data, Application Data, Application Data
	178 9.580824378	10.0.2.15	149.154.167.99	TCP	54 47930 → 443 [ACK] Seq=518 Ack=5698 Win=63360 Len=0
	181 9.669249303	149.154.167.99	10.0.2.15		60 443 → 47954 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
	182 9.669283665	10.0.2.15	149.154.167.99		54 47954 → 443 [ACK] Seq=1 Ack=1 Win=64240 Len=0
	183 9.670533545	10.0.2.15	149.154.167.99	TLSv1.3	571 Client Hello (SNI=web.telegram.org)
	4040 070070070	440 454 407 00	40 0 0 45	TAR	00 440 47054 [404] 0 4 4 [

Рисунок 19 - Поиск процесса тройного рукопожатия (Three-way Handshake)

2.7. Cpaвнение Wireshark и tcpdump

Критерий	Wireshark	tepdump
Интерфейс	Графический (GUI)	Командная строка (CLI)
Удобство	Интуитивно понятный интерфейс	Требуются знания команд
Функционал	Визуализация данных, фильтрация, статистика	Выводит "сырые" пакеты
OC	Windows, Linux, macOS	Linux, Unix, macOS, Windows (WSL)
Формат Открывает и редактирует рсар файлов		В основном для захвата трафика

- ➡ Если нужен удобный анализатор выбирайте Wireshark.
- ➡ Если нужен быстрый анализ в терминале используйте tcpdump.

Заключение

Было выполнено сканирование сетевого трафика в соответствии с вторым вариантом с помощью инструментов tcpdump и Wireshark. Было изучено использование фильтров Wireshark.

Это позволили получить навыки анализа сетевого трафика.