# Lecture 13: Non-monotonic reasoning

## Dragan Doder

Methods in Al Research



- ► Commonsense reasoning ⇒ jumping to conclusions
  - ► The concert is scheduled for March 12th
  - ► I have the ticket

- ► Commonsense reasoning ⇒ jumping to conclusions
  - ► The concert is scheduled for March 12th
  - ► I have the ticket
  - ► Therefore, I will attend the concert on March 12th

- ► Commonsense reasoning ⇒ jumping to conclusions
  - ► The concert is scheduled for March 12th
  - ► I have the ticket
  - ► Therefore, I will attend the concert on March 12th
  - ightharpoonup Pandemic  $\Rightarrow$  I will not attend the concert on March 12th

- ► Commonsense reasoning ⇒ jumping to conclusions
  - ► The concert is scheduled for March 12th
  - ► I have the ticket
  - ▶ Therefore, I will attend the concert on March 12th
  - ▶ Pandemic ⇒ I will not attend the concert on March 12th
- ► Non-monotonicity some conclusions are retracted after receiving new information

## What is non-monotonicity?

## Monotonicity

**M** If 
$$KB \models \alpha$$
, then  $KB \cup \{\beta\} \models \alpha$ 

### Monotonicity:

- consequences are robust under the addition of information
- ▶  $KB \subseteq KB' \Rightarrow Conseq(KB) \subseteq Conseq(KB')$

# What is non-monotonicity?

## Monotonicity

**M** If 
$$KB \models \alpha$$
, then  $KB \cup \{\beta\} \models \alpha$ 

## Monotonicity:

- consequences are robust under the addition of information
- ▶  $KB \subseteq KB' \Rightarrow Conseq(KB) \subseteq Conseq(KB')$

A non-monotonic consequence relations violates monotony. Usually denoted by  ${\stackrel{\blacktriangleright}{\sim}}$ 

## What is non-monotonicity?

## Monotonicity

 $\mathbf{M} \quad \text{ If } \mathit{KB} \models \alpha \text{, then } \mathit{KB} \cup \{\beta\} \models \alpha$ 

## Monotonicity:

- consequences are robust under the addition of information
- ▶  $KB \subseteq KB' \Rightarrow Conseq(KB) \subseteq Conseq(KB')$

A non-monotonic consequence relations violates monotony. Usually denoted by  $\sim$ 

Two restricted variants of monotonicity:

## Cautious monotonicity

**CM** If  $KB \sim \alpha$  and  $KB \sim \beta$ , then  $KB \cup \{\beta\} \sim \alpha$ 

## Rational monotonicity

**RM** If  $KB \sim \alpha$  and  $KB \not\sim \neg \beta$ , then  $KB \cup \{\beta\} \sim \alpha$ 

| Tweety |  |  |
|--------|--|--|
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |

## **Tweety**

KB: "Tweety is a bird"

 $\alpha$ : "Tweety flies"

 $KB \sim \alpha$ 

## **Tweety**

KB: "Tweety is a bird"

 $\alpha$ : "Tweety flies"

 $KB \sim \alpha$ 

 $\beta$ : "Tweety is a penguin"

 $KB \cup \{\beta\} \not \sim \alpha$ 

### Nixon Diamond

- ► Quakers are pacifists
- ► Republicans are not pacifists

### **Nixon Diamond**

- ► Quakers are pacifists
- ► Republicans are not pacifists
- Nixon is both a quaker and a republican

(Richard Milhous Nixon – the 37th president of US)

### Nixon Diamond

- ► Quakers are pacifists
- ► Republicans are not pacifists
- Nixon is both a quaker and a republican (Richard Milhous Nixon − the 37th president of US)
- ► Is Nixon a pacifist?

- particular predicates are assumed to be "as false as possible"
  - ► false for every object *except* those for which they are known to be true
- ▶  $Bird(x) \land \neg Abnormal_1(x) \rightarrow Flies(x)$

- particular predicates are assumed to be "as false as possible"
  - false for every object except those for which they are known to be true
- ▶  $Bird(x) \land \neg Abnormal_1(x) \rightarrow Flies(x)$ 
  - We assume  $\neg Abnormal_1(Tweety)$ , if we do not already know that  $Abnormal_1(Tweety)$  holds
  - ► In that case, we can derive Flies(Tweety)
  - but the conclusion no longer holds if Abnormal<sub>1</sub>(Tweety) is asserted

- particular predicates are assumed to be "as false as possible"
  - false for every object except those for which they are known to be true
- ▶  $Bird(x) \land \neg Abnormal_1(x) \rightarrow Flies(x)$ 
  - We assume  $\neg Abnormal_1(Tweety)$ , if we do not already know that  $Abnormal_1(Tweety)$  holds
  - ► In that case, we can derive Flies(Tweety)
  - but the conclusion no longer holds if Abnormal<sub>1</sub>(Tweety) is asserted
- ▶ an example of *model preference* logic
  - one model is preferred to another if it has fewer abnormal objects

### **Nixon Diamond**

Republican(Nixon)  $\land$  Quaker(Nixon) Republican(x)  $\land \neg$ Abnormal<sub>2</sub>(x)  $\rightarrow \neg$ Pacifist(x) Quaker(x)  $\land \neg$ Abnormal<sub>3</sub>(x)  $\rightarrow$  Pacifist(x)

### **Nixon Diamond**

```
Republican(Nixon) \land Quaker(Nixon)
Republican(x) \land \negAbnormal<sub>2</sub>(x) \rightarrow \negPacifist(x)
Quaker(x) \land \negAbnormal<sub>3</sub>(x) \rightarrow Pacifist(x)
```

- two preferred models:
  - $ightharpoonup m_1$ : Abnormal<sub>2</sub>(Nixon) and Pacifist(Nixon) hold and
  - ▶  $m_2$ : Abnormal<sub>3</sub>(Nixon) and ¬Pacifist(Nixon) hold

### **Nixon Diamond**

```
Republican(Nixon) \land Quaker(Nixon)
Republican(x) \land \negAbnormal<sub>2</sub>(x) \rightarrow \negPacifist(x)
Quaker(x) \land \negAbnormal<sub>3</sub>(x) \rightarrow Pacifist(x)
```

- two preferred models:
  - $ightharpoonup m_1$ : Abnormal<sub>2</sub>(Nixon) and Pacifist(Nixon) hold and
  - $ightharpoonup m_2$ : Abnormal<sub>3</sub>(Nixon) and  $\neg Pacifist(Nixon)$  hold
- ► a variant prioritized circumscription
  - ▶ giving priority to religious beliefs ⇒ Abnormal<sub>3</sub> minimized
  - conclusion: Pacifist(Nixon)

# Default logic

# Default logic

► Default rules:

$$P: J_1, \ldots, J_n/C$$

- $\triangleright$  P prerequisite, C conclusion,  $J_i$  justifications
- ightharpoonup if P, then infer C, unless some  $J_i$  can be proven false
- Example:

ightharpoonup Bird(x) is true and Flies(x) is consistent with what is inferred, then Flies(x) may be concluded by default

### **Nixon Diamond**

Republican(Nixon)  $\land$  Quaker(Nixon) Republican(x):  $\neg Pacifist(x)/\neg Pacifist(x)$ Quaker(x): Pacifist(x)/Pacifist(x)

- extension a maximal set of consequences of the theory
  - ▶ if we apply one rule first, we extend KB in a way that another rule can be blocked
- Nixon Diamond has two extensions

### **Nixon Diamond**

Republican(Nixon)  $\land$  Quaker(Nixon) Republican(x):  $\neg Pacifist(x)/\neg Pacifist(x)$ Quaker(x): Pacifist(x)/Pacifist(x)

- extension a maximal set of consequences of the theory
  - ▶ if we apply one rule first, we extend *KB* in a way that another rule can be blocked
- Nixon Diamond has two extensions

## What follows from a default theory:

- Sceptical consequences formulas that are contained in every extension
- Credulous consequences formulas that are contained in some extension



# Argumentation-based approach to NMR

- 1. Formalize the problem: build a knowledge base KB and a rule base R
- 2. Construct arguments and attacks (ASPIC+)
- 3. Calculate extensions (choose a semantics S)
- 4. Derive conclusions of *justified* arguments

# Argumentation-based approach to NMR

- 1. Formalize the problem: build a knowledge base KB and a rule base R
- 2. Construct arguments and attacks (ASPIC+)
- 3. Calculate extensions (choose a semantics S)
- 4. Derive conclusions of justified arguments
  - ightharpoonup lpha is sceptically S—acceptable if and only if all S—extensions contain an argument with conclusion lpha
  - ightharpoonup lpha is credulously S—acceptable if and only if at least one S—extension contains an argument with conclusion lpha

- ► Birds fly
- ► Penguins don't fly

- ► Birds fly
- ► Penguins don't fly
- ▶ ...but also: penguins are exceptions for the first rule

- ► Birds fly
- ► Penguins don't fly
- ...but also: penguins are exceptions for the first rule



- Birds fly
- Penguins don't fly
- ...but also: penguins are exceptions for the first rule



- $\triangleright$  One extension:  $\{a, c\}$
- ightharpoonup Conclusion of c accepted  $\Rightarrow$  Tweety does not fly!

# System P

ightharpoonup Classical logic:  $\alpha \models \beta$  iff all models of  $\alpha$  are also models of  $\beta$ 

- lackbox Classical logic:  $\alpha \models \beta$  iff all models of  $\alpha$  are also models of  $\beta$
- ▶ Idea:  $\alpha \vdash \beta$  iff all most normal (preferred) models of  $\alpha$  are also models of  $\beta$

- lacktriangle Classical logic:  $lpha \models eta$  iff all models of lpha are also models of eta
- ▶ Idea:  $\alpha \vdash \beta$  iff all most normal (preferred) models of  $\alpha$  are also models of  $\beta$

## For example:

$$\emph{m}_1$$
 :  $\emph{p}=\emph{r}=\emph{true}$ ;  $\emph{q}=\emph{false}$ 

$$m_2$$
:  $p = q = true$ ;  $r = false$ 

$$m_1 < m_2 - m_1$$
 is preferred

- lackbox Classical logic:  $lpha \models eta$  iff all models of lpha are also models of eta
- ▶ Idea:  $\alpha \vdash \beta$  iff all most normal (preferred) models of  $\alpha$  are also models of  $\beta$

For example:

$$m_1: p = r = true; q = false$$

$$m_2$$
:  $p = q = true$ ;  $r = false$ 

$$m_1 < m_2 - m_1$$
 is preferred

Then:

$$\triangleright p \land q \not \sim r$$

# System P – The core properties of non-monotonic reasoning

REF 
$$\alpha \sim \alpha$$
 [reflexivity]

LLE  $\frac{\models \alpha \leftrightarrow \beta \quad \alpha \vdash \gamma}{\beta \vdash \gamma}$  [left logical equivalence]

RW  $\frac{\models \alpha \rightarrow \beta \quad \gamma \vdash \alpha}{\gamma \vdash \beta}$  [right weakening]

CUT  $\frac{\alpha \land \beta \vdash \gamma \quad \alpha \vdash \beta}{\alpha \vdash \gamma}$ 

OR  $\frac{\alpha \vdash \gamma \quad \beta \vdash \gamma}{\alpha \lor \beta \vdash \gamma}$  [cautious monotonicity]

## Characterization result

## Preferential structure S:

- ightharpoonup a set of states  $\Omega$  (the sets contain models)
- lacktriangle an irreflexive, transitive relation < on  $\Omega$

## Characterization result

## Preferential structure 5:

- ightharpoonup a set of states  $\Omega$  (the sets contain models)
- ightharpoonup an irreflexive, transitive relation < on  $\Omega$
- ▶ Each S defines one relation  $\succ_S$
- $ightharpoonup \alpha \sim_S \beta$  iff  $\beta$  holds in all <-minimal models of  $\alpha$

## Characterization result

### Preferential structure *S*:

- ightharpoonup a set of states  $\Omega$  (the sets contain models)
- ightharpoonup an irreflexive, transitive relation < on  $\Omega$
- ▶ Each S defines one relation  $\succ_S$
- $ightharpoonup \alpha \sim_{\mathcal{S}} \beta$  iff  $\beta$  holds in all <-minimal models of  $\alpha$

## Theorem (KLM '90)

A consequence relation  $\vdash$  satisfies System P iff  $\vdash \vdash \vdash \vdash_S$  for some preferential structure S.

# Rational consequence relations

► Rational relation = System P + RM

$$\mathsf{RM} \qquad \frac{\alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma \hspace{0.2em} \alpha \hspace{0.2em}\bowtie\hspace{0.58em}\mid\hspace{0.58em} \neg \beta}{\alpha \wedge \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma},$$

# Rational consequence relations

► Rational relation = System P + RM

$$\mathsf{RM} \qquad \frac{\alpha \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma \hspace{0.2em} \alpha \hspace{0.2em}\bowtie\hspace{0.58em}\mid\hspace{0.58em} \neg \beta}{\alpha \wedge \beta \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \gamma},$$

 Characterized by ranked structures= preferential structures + modularity