Entropic Lower Bounds for Sorting

"I play K. 330 slowly and evenly, as if X-raying a mollusc. — Glenn Gould"
— Sam Tenka

The n lg n lower bound on comparison sorts allures me with its beauty. It goes like this: to identify a total order on a size-n set is to distinguish between n! possibilities. Each interesting query to \leq has two possible outcomes and hence yields at most one bit of information. A sorting algorithm based only on comparisons thus requires at least $\lg(n!) \sim n \lg n$ many queries; merge sort realizes this bound.¹

This note discusses some lower bounds for related problems.

¹ We consider complexities up to \sim , where f \sim g means $\lim f/g = 1$. We thus attend to constants but not to lower order terms. Here, $\lg = \log_2$.

Counting Queries

Decision Trees

The concept of *decision trees* abstracts our notion of algorithm to a level convenient for information-theoretic reasoning. An algorithm's complexity is then its height as a tree. We'll rely only on an intuitive understanding of such algorithms and their complexity; still, to fix terminology we give a formal definition here. We consider the problem of implementing a map $\text{TASK}: \mathcal{X} \to \mathcal{Z}$ in terms of queries — labeled by $q \in \mathcal{Q}$ — whose meanings are defined by $\text{ASK}: \mathcal{Q} \to \mathcal{X} \to \mathcal{A}$. (We'll consider only finite $\mathcal{X}, \mathcal{Q}, \mathcal{A}, \mathcal{Z}s$ and surjective TASKs.) For a fixed problem (TASK, ASK), an algorithm of complexity c is a pair $(\text{NEXT}: \mathcal{A}^* \to \mathcal{Q}, \text{READ}: \mathcal{A}^{\times c} \to \mathcal{Z})$ that is correct on all inputs:

$$(\operatorname{task}(x), x) = ((\operatorname{read} \times \operatorname{id}_{\mathcal{X}}) \circ \operatorname{body}^{\circ c}) \ ([], x)$$

$$\operatorname{body} \ (\ell, x) = (\operatorname{push} \ \ell \ (\operatorname{ask} \ (\operatorname{next} \ \ell) \ x), x)$$

Here, $\mathcal{A}^{\star} = \bigsqcup_{n} \mathcal{A}^{\times n}$ is the type of \mathcal{A} -valued lists; its constructors are $[]: \mathcal{A}^{\star}$ (the empty list) and PUSH: $\mathcal{A}^{\star} \to \mathcal{A} \to \mathcal{A}^{\star}$.

We're interested in lower bounds on c for various problems. For example, we may model comparison sorting as the problem of computing the identity function ${\tt TASK} = {\sf id}_{\mathcal X}$ on the set $\mathcal X$ of total orders on a size-n set $\mathcal S$ by querying ${\tt ASK} : (\mathcal S^2 \setminus \mathcal S^2)$

diagonal) $\to \mathcal{X} \to \{\text{less,more}\}$. As another example, the field of *communication complexity* studies problems where TASK: Alice \times Bob $\to 2$ is a joint predicate and ASK: $(2^{\text{Alice}} \sqcup 2^{\text{Bob}}) \to \mathcal{X} \to 2$ is the canonical evaluation map.

A Basic Bound

Recall the n lg n argument we started with. We isolate its essence as follows. A probability distribution on $\mathcal X$ induces (via TASK) a distribution on $\mathcal Z$ and (for any fixed algorithm of complexity c) on $\mathcal Q^c$, $\mathcal A^c$. Let's abuse notation by writing T for the evident random variable of type T; for instance, $H(\mathcal Z)$ is the Shannon entropy of the random variable z = TASK(x). When we choose $\mathcal X$'s distribution so that $\mathcal Z$'s distribution is uniform, the data processing inequality immediately gives the following complexity bound:

Lemma (Counting Bound). $c \lg |\mathcal{A}| \ge H(\mathcal{A}^c) \ge H(\mathcal{Z}) = \lg |\mathcal{Z}|$.

As is usual, each problem we consider is actually part of a natural-number indexed family of problems and thus induces a sequence $(c_n : n \in \mathbb{N})$ of complexities. We study these sequences up to the preorder $f \lesssim g$ defined by $\lim f/g \leq 1$. With this in mind, we plug in $|\mathcal{X}| = |\mathcal{Z}| = n!$ and $|\mathcal{A}| = 2$ to recover the $c \gtrsim n \lg n$ bound for comparison-based identification of total orders.

The counting bound gives some interesting results for related identification (i.e., $TASK = id_{\chi}$ problems:

Puzzle (Merge). Let's merge two sorted lists of sizes m, n with $1 \ll k \ll n$. More precisely, we fix $\mathcal{S} = [k] \sqcup [n]$, set \mathcal{X} to the set of total orders on \mathcal{S} that restrict to the standard orders on [k], [n], and let ASK compare distinct pairs in \mathcal{S}^2 . Show that $c \gtrsim n \lg(n/k)$ and that this bound is achieved. For example, if $k \sim n/\lg n$, then $c \sim n \lg \lg n / \lg n$ is optimal — strictly better than the "zip" or "search" strategies! This win-win prefigures *fractional cascading*.

Puzzle (Ballots). Let's sort potentially tied elements. So $\mathcal X$ contains the ballots (a.k.a.: total preorders) on $\mathcal S$ that have k equivalence classes. Here, ASK maps to {less, tied, more}. The counting bound says $c \gtrsim n \lg k / \lg 3$. Improve this bound to $c \gtrsim n \lg k$ and show that the latter is tight. Hint: a routine transformation gives for any complexity-c' algorithm a complexity- $c \leq c'$ algorithm that for any x makes fewer than n queries answered by "tied".

Examples in Communication

Communicating an Equality.

Communicating a Comparison.

Convex Cohorts

Distinct Elements

Strictly Orderable.

Counterfeit Coins. We have n coins, some of which may be counterfeit. Not all of the coins are counterfeit. The counterfeit coins weigh $1 + \varepsilon$ while the ordinary coins weigh 1 for $\varepsilon < 1/n$. We have a balance that tells us for any two subsets of the n coins which, if any, is heavier. In how few comparisons may determine whether or not there are any counterfeit coins?

Now $\mathcal{X}=2^n\setminus [n]$ and task x indicates whether or not \mathcal{X} is empty. Now $\mathcal{Q}=\sum_k \binom{n}{k}^2$ and ask $(\mathfrak{a},\mathfrak{b})$ x indicates whether or not $|x\cap\mathfrak{a}|=|x\cap\mathfrak{b}|$. What sorts of lower bounds on c can we come up with?

Range

Minimum.

Range.

Constraints of no Consequence

Length

Bits

problem	counting	lower	upper	direct
Merge			n lg lg n/lg n	
Ballots			$n \lg n/2$	
Strictly			n lg n	
Counterfeit			2lgn/lglgn	
Minimum			n	
Range			3n/2	
Length			$(\lg n)^2/2$	
Bits			$O(n \lg \lg n)$	
Strictly Counterfeit Minimum Range Length			$n \lg n$ $2 \lg n / \lg \lg n$ n $3n/2$ $(\lg n)^2/2$	