

CLAIMS

1. A method of determining error magnitudes in Reed-Solomon
2 decoding, wherein a vector of v syndromes E_i and v error locations l_i are
determined from a received codeword, and error magnitudes e_{l_i} at the v error
4 locations can be determined from the equation $E_i = \sum_{j=1}^v e_{l_j} a^{l_j}$, where a is a
primitive of the codeword, comprising the steps of:
6 triangularizing a $v \times v$ Vandermonde matrix of the elements a^{l_j} to generate
elements of a matrix \mathbf{V} ;
8 generating a syndrome vector \mathbf{W} of syndromes E_i , adjusted for the
triangularization of matrix \mathbf{V} ;
10 generating a solution to an equation of a form $\mathbf{Vx} \mathbf{M} = \mathbf{W}$, where \mathbf{M} is a
vector of the error magnitudes e_{l_i} and \mathbf{Vx} is a vector of matrix \mathbf{V} , having a single
12 unknown error magnitude;
substituting to create other equations of the form $\mathbf{Vx} \mathbf{M} = \mathbf{W}$ having a single
14 unknown that can be solved for a respective error magnitude.

2. The method of claim 1 wherein said triangularizing step comprises
the step of recursively generating vectors of \mathbf{V} .

3. The method of claim 2 wherein said recursively generating step
comprises the steps of:
setting a first vector $\mathbf{V}(1)$ of matrix \mathbf{V} ; and
4 generating subsequent vectors n , $2 \leq n \leq v$, as:
$$\mathbf{V}(n) = (\mathbf{V}(1) + R(\mathbf{A}(n-1))_{v-n+1})\mathbf{V}(n-1)$$

6 where $\mathbf{A}(n)$ is equal to a^{l_n} and $R(\mathbf{A}(n))_m$ is a vector having $\mathbf{A}(n)$ replicated
 m times.

4. The method of claim 3 wherein said step of setting the first vector

2 comprises setting the first vector $\mathbf{V}(1)$ to $\{A(1) \ A(2) \ \dots \ A(v)\}$.

5. The method of claim 1 wherein said step of generating a syndrome

2 vector comprises the step of recursively generating elements of \mathbf{W} .

6. The method of claim 5 wherein said step of recursively generating

2 elements of \mathbf{W} comprises the steps of:

for each element $\mathbf{W}(n)$:

4 generating a vector $T(n)=R(A(n))_m*T(n-1) + T(n-1)<<1$, where

5 $R(A(n))_m$ is a vector having $A(n)$ replicated m times and is $T(n-1)<<1$ is a previous
6 value of T , left-shifted and right-filled with a "0";

8 generating a vector $U(n)=T(n-1)*\{E(n) \ E(n-1) \ \dots \ E1\}$ and

computing $\mathbf{W}(n)$ as the sum of the elements of $U(n)$.

7. A method of Reed-Solomon decoding, comprising the steps of:

2 generating a vector of v syndromes E_i from a received codeword;

4 generating v error locations l_j from the received codeword,

6 determining error magnitudes e_{l_j} at the v error locations from the

equation $E_i = \sum_{j=1}^v e_{l_j} a^{l_j}$, where a is a primitive of the codeword by:

6 triangularizing a $v \times v$ Vandermonde matrix of the elements a^{l_j} to
8 generate elements of a matrix \mathbf{V} ;

10 generating a syndrome vector \mathbf{W} of syndromes E_i , adjusted for the
triangularization of matrix \mathbf{V} ;

12 generating a solution to an equation of a form $\mathbf{V}x \ \mathbf{M}=\mathbf{W}$, where \mathbf{M}
is a vector of the error magnitudes e_{l_j} and $\mathbf{V}x$ is a vector of matrix \mathbf{V} , having a
single unknown error magnitude,

substituting to create other equations of the form $\mathbf{V}x \mathbf{M}=\mathbf{W}$ having
14 a single unknown that can be solved for a respective error magnitude..

8. The method of claim 7 wherein said triangularizing step comprises
2 the step of recursively generating vectors of \mathbf{V} .

9. The method of claim 8 wherein said recursively generating step
2 comprises the steps of:

setting a first vector $\mathbf{V}(1)$ of matrix \mathbf{V} ; and
4 generating subsequent vectors n , $2 \leq n \leq v$, as:

$$\mathbf{V}(n)=(\mathbf{V}(1) + R(\mathbf{A}(n-1))_{v-n+1})\mathbf{V}(n-1)$$

6 where $\mathbf{A}(n)$ is equal to a^l and $R(\mathbf{A}(n))_m$ is a vector having $\mathbf{A}(n)$ replicated
 m times.

10. The method of claim 9 wherein said step of setting the first vector
2 comprises setting the first vector $\mathbf{V}(1)$ to $\{\mathbf{A}(1) \ \mathbf{A}(2) \ \dots \ \mathbf{A}(v)\}$.

11. The method of claim 7 wherein said step of generating a syndrome
2 vector comprises the step of recursively generating elements of \mathbf{W} .

12. The method of claim 7 wherein said step of recursively generating
2 elements of \mathbf{W} comprises the steps of:

for each element $\mathbf{W}(n)$:

4 generating a vector $T(n)=R(\mathbf{A}(n))_n*T(n-1) + T(n-1)<<1$, where
R($\mathbf{A}(n)$) $_m$ is a vector having $\mathbf{A}(n)$ replicated m times and is $T(n-1)<<1$ is a previous
6 value of T , left-shifted and right-filled with a “0”;

8 generating a vector $U(n)=T(n-1)*\{\mathbf{E}(n) \ \mathbf{E}(n-1) \ \dots \ \mathbf{E}1\}$ and
computing $\mathbf{W}(n)$ as the sum of the elements of $U(n)$.

13. A Reed-Solomon decoder comprising:

2 circuitry for generating a vector of v syndromes E_i from a received
codeword;

4 circuitry for generating v error locations l_j from the received codeword,

circuity for determining error magnitudes e_{l_j} at the v error locations

6 from the equation $E_i = \sum_{j=1}^v e_{l_j} a^{l_j}$, where a is a primitive of the codeword by the
operations of:

8 triangularizing a $v \times v$ Vandermonde matrix of the elements a^{l_j} to
generate elements of a matrix \mathbf{V} ;

10 generating a syndrome vector \mathbf{W} of syndromes E_i , adjusted for the
triangularization of matrix \mathbf{V} ;

12 generating a solution to an equation of a form $\mathbf{Vx} \mathbf{M} = \mathbf{W}$, where \mathbf{M}
is a vector of the error magnitudes e_{l_j} and \mathbf{Vx} is a vector of matrix \mathbf{V} , having a
14 single unknown error magnitude;

 substituting to create other equations of the form $\mathbf{Vx} \mathbf{M} = \mathbf{W}$ having

16 a single unknown that can be solved for a respective error magnitude.

14. The Reed-Solomon decoder of claim 13 wherein said circuitry for

2 determining error magnitudes comprises circuitry for recursively generating
vectors of \mathbf{V} .

15. The Reed-Solomon decoder of claim 14 wherein said circuitry for

2 recursively generating vectors comprises circuitry for:

 setting a first vector $\mathbf{V}(1)$ of matrix \mathbf{V} ; and

4 generating subsequent vectors n , $2 \leq n \leq v$, as:

$$\mathbf{V}(n) = (\mathbf{V}(1) + R(\mathbf{A}(n-1))_{v-n+1})\mathbf{V}(n-1)$$

6 where $A(n)$ is equal to a^l and $R(A(n))_m$ is a vector having $A(n)$ replicated
m times.

16. The Reed-Solomon decoder of claim 15 wherein said circuitry for
2 determining error magnitudes sets the first vector $\mathbf{V}(1)$ to $\{A(1) \ A(2) \ \dots \ A(v)\}$.

17. The Reed-Solomon decoder of claim 13 wherein said circuitry for
2 determining error magnitudes generates a syndrome vector by recursively
generating elements of \mathbf{W} .

18. The Reed-Solomon decoder of claim 13 wherein said circuitry for
2 generating error magnitudes recursively generates elements of \mathbf{W} by:

for each element $\mathbf{W}(n)$:

4 generating a vector $T(n)=R(A(n))_n*T(n-1) + T(n-1)<<1$, where
R($A(n)$)_m is a vector having $A(n)$ replicated m times and is $T(n-1)<<1$ is a previous
6 value of T , left-shifted and right-filled with a "0";

8 generating a vector $U(n)=T(n-1)*\{E(n) \ E(n-1) \ \dots \ E1\}$ and
computing $\mathbf{W}(n)$ as the sum of the elements of $U(n)$.