AD-A036 222

DAYTON UNIV OHIO RESEARCH INST
A PRIMARY AUDITORY NEPVE MODEL • (U)
OCT 76 D G LEET
UNCLASSIFIED

Local Primary Auditory Nepve Model • (U)
OCT 76 D G LEET
ORIGINAL PRIMARY AUDITORY NEPVE MODEL • (U)
OCT 76 D G LEET
OCT 76 D G

AMRL-TR-76-84

A PRIMARY AUDITORY NERVE MODEL

UNIVERSITY OF DAYTON RESEARCH INSTITUTE DAYTON, OHIO 45469

OCTOBER 1976

Approved for public release; discribution unlimited

COPY AVAILABLE TO DDG BUES NOT PERMIT FULLY LEGIBLE PRODUCTION

AEROSPACE MEDICAL RESEARCH LABORATORY AEROSPACE MEDICAL DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation what-soever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from Aerospace Medical Research Laboratory. Additional copies may be purchased from:

> National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Documentation Center should direct requests for copies of this report to:

Defense Documentation Center Cameron Station Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

AMRL-TR-76-84

The experiments reported herein were conducted according to the "Guide for the Care and Use of Laboratory Animals," Institute of Laboratory Animal Resources, National Research Council.

The voluntary informed consent of the subjects used in this research was obtained as required by Air Force Regulation 80-33.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

m Ciri

UNCLASS		
	ATION OF THIS PAGE (When Date Entered)	READ INSTRUCTIONS
	PORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
AMRL TR-76	84 14 UDR	I-78-76-17
A Primary	Auditory Nerve Model.	Final Report 75 Mar 01 - 76 Jan 30
7. AUTHOR(s)		PERFORMING ORG. REPORT NUMBER CONTRACT OR GRANT NUMBER(*)
(16) Duane G./Le	et	(S) F33615-75-C-5098
University 300 College Dayton, Ohi		10. PROGRAM ELEMENT, PROJECT, TASK ARE TOORK UNIT DEERS 61102F 7232 02 15
Aerospace Medi Medical Divisi	FFICE NAME AND ADDRESS ical Research Laboratory, Aeros ion, Air Force Systems Command, son Air Force Base, Ohio 45433	13. NUMBER OF PAGES
	ENCY NAME & ADDRESS(II different from Controlli	ing Office) 15. SECURITY CLASS. (OT MASSES
Any alluming		Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	or public release; distrib	oution unlimited
9 Final	rept. 1 Mar	75-30 Jan 76.
SUPPLEMENTARY	y NOTES	onclisia: cheanan di lin aroli
19. KEY WORDS (Cont.)	inue on reverse side if necessary and identify by bi	lock number)
Bionics Auditory Sy Primary Aud Cochlea Syncoder	Speech Neurocyber litory Nerve	rnetics
the primary of an elect ROC COC and and BSS. P	r auditory nerve has been ronic analog device devel a pair of components sim rocedures have been devel	from the middle ear through developed. It is comprised oped by James C. Rock called ulated in FORTRAN called TM

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20 (Continued)

Five different parameter value sets were used to provide the five different model candidates to be compared with a 1263 Hz CF primary auditory neuron of a guinea pig. Pure-tone and speech-like stimuli originally presented to the neuron were presented to each of the five models. Selection of the best model was based on a qualitative evaluation of PIH shapes and a quantitative analysis of the number of peaks that matched between corresponding model and neuron PIHs.

The best model was presented with several more pure-tone and speech-like stimuli previously presented to the neuron. Corresponding vowel-PIHs of the model and neuron generated from the responses to these stimuli were compared using the fraction of misplaced peaks metric. Using benchmark values obtained by comparing different neuron vowel-PIHs generated from responses to approximately the same intensity, it was determined that the model produced vowel-PIHs that fell within the benchmark for six or seven of the ten vowel sounds used.

It was found that the peaks in stimulus zero-crossing interval histograms could be used to predict the peak occurrences in model and neuron vowel PIHs. The prediction was more accurate for the model than for the neuron. It was also more accurate for those vowels that have formants close to the characteristic frequency of the neuron.

cont

Information generated from study of this and future versions of the model will be incorporated into the development of speech recognition systems based upon the performance characteristics of the auditory nervous system. Such systems would be a valuable tool to the Air Force in the fields of intelligence, communications and man-machine interface.

SUMMARY

A model of the peripheral auditory system, up to and including the primary auditory nerve, is in an advanced stage of development. The model is comprised of an analog electronic device, the ROC COC Analog Cochlea, that simulates the temporal and relative magnitude transform of the middle and inner ear, and a FORTRAN program system that simulates the primary auditory nerve and the absolute magnitude transform of the entire peripheral auditory system.

The ROC COC's middle ear circuit is an active bandpass filter with a center frequency of about 1.8 kHz and a bandwidth of about 3 kHz. The ROC COC's cochlea section is a transmission line comprised of a cascade of lowpass filters. Each filter is tapped to provide an output voltage analogous to the displacement at a point on the cochlea's basilar membrane.

The model of the primary auditory nerve is called the Basic Stochastic Syncoder. It is a binary threshold device with the threshold function $F(i\Delta) = \varphi + \theta \exp \left[B \cdot (j-1)\Delta \right]$, where B is a random variable called the decay rate, with probability density function pg(.), j is the time interval when the syncoder last fired, Δ is the sample interval, and φ and θ are parameters. The threshold function is compared at each time interval with the syncoder's summation potential $q(i\Delta) = \min\{\alpha_X \cdot x(i\Delta - \tau_X\Delta), q_{max}\}$, where x(.) is the syncoder's stimulus and q_{max} , α_X , and τ_X are parameters. At any sample interval, except those falling within the syncoder's absolute refractory period, the syncoder will generate a one response if the threshold function value is not greater than the summation potential value:

 $Y(i\Delta) = \begin{cases} 1 & \text{iff } q(i\Delta) \ge F(i\Delta) \text{ and } i-j > \rho/\Delta \\ 0 & \text{otherwise} \end{cases}$

where is the absolute refractory period. At that instant the threshold function is reset to its maximum value, a new decay rate value B is chosen according to $p_B(.)$, and the threshold function begins its decay.

In earlier neurophysiological experiments, pure-tone stimuli and reach-like stimuli comprised of sequences of five vowel sounds were presented to the middle ear of guinea pigs and the response of the primary auditory neurons recorded. These data are the standard of comparison for the model's development and verification.

Both theoretical and empirical studies of the model's behavioral characteristics were performed. From these studies procedures were developed for estimating the model's parameter values from the available neurophysiological data. Five different parameter value sets were used to provide five different model candidates for comparison with a 1263 Hz CF primary neuron. Pure-tone and speech-like stimuli originally presented to the neuron were presented to each of the five models. Selection of the best model was based on a qualitative evaluation of PIH shapes and a quantitative analysis of the number of peaks that matched between corresponding model and neuron vowel - Pulse Interval Histograms. (A vowel-PIH is a Pulse Interval Histogram constructed from the segment of responses corresponding to a single vowel in the stimulus.)

The best model was presented with several more pure-tone and speech-like stimuli previously presented to the neuron. Corresponding vowel-PIHs of the model and neuron generated from the responses to these stimuli were compared using a "fraction of misplaced peaks" metric. Using benchmark values obtained by comparing different neuron vowel-PIHs generated from responses to approximately the same intensity, it was determined that the model produced vowel-PIHs that fell within the benchmark for six or seven of the ten vowel sounds used.

In a future report the data presented in this report, especially the data on vowel-PIH shape presented in Section 8.7, will be used to supplement an analysis of the neuron and model POHs in order to modify the model to provide a better fit to the neural data.

Information generated from study of this and future versions of the model will be incorporated into the development of speech recognition systems based upon the performance characteristics of the auditory nervous system. Such systems would be a valuable tool to the Air Force in the fields of intelligence, communications and man-machine interface.

PREFACE

This is the final report on work performed under Contract F33615-75-C-5098, "Signal Processing in the Auditory Nervous System", University of Dayton Research Institute (UDRI), Dayton, Ohio; Dr. Duane G. Leet, Principal Investigator.

The entire program was conducted in support of Project No. 7232, "Application of Basic Biological Principles and Mechanisms to Operations and Design of Air Force Systems," Task 723202, "Physical and Physiological Mechanism Involved in the Reception of Acoustic Energy" administered by the Neurophysiology Branch of the 6570th Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio. The period covered 1 March 1975 to 30 January 1976. Dr. Thomas J. Moore was the initiator and monitor of this research.

The author expresses his sincere appreciation to Dr. Moore for his invaluable assistance and suggestions, and to Dr. J. Ryland Mundie for his advice and encouragement throughout the project.

The contractor's report number is UDRI-TR-76.17.

TABLE OF CONTENTS

Section		Page
1	BACKGROUND	15
2	THE MODEL	16
3	EXPERIMENTAL PROTOCOL	23
4	BEHAVIORAL CHARACTERISTICS OF A BASIC STOCHASTIC SYNCODER	24
	 4. 1 Response to a Constant Stimulus 4. 2 Response to a Step Stimulus 4. 3 Response to a Sinusoidal Stimulus 	24 24 27
5	MODEL PARAMETER ESTIMATION	29
	 5.1 Introduction 5.2 BSS Parameter Estimation 5.3 Transducer Module Transfer Function Estimation 	29 31 33
6	A MODEL OF A MEDIUM CF NEURON	35
	 6.1 Five Alternative Models 6.2 The Behavior of the Models 6.3 Performance Criteria for Selecting the Best Model 6.4 The Best Model 	35 41 47 65
7	AN INTENSITY SERIES GENERATED BY THE MODEL	74
8	A COMPARISON OF MODEL AND NEURON RESPONSES TO SPEECH-LIKE STIMULI	
	 8.1 Pulse Occurrence Histograms 8.2 Vowel Pulse Interval Histograms 8.3 Peak Occurrence Tables 8.4 Stimulus Zero-Crossing Interval Histograms 8.5 A Comparison of SIHs and Corresponding Vowel PIHs 8.6 Verification of the Model using the "Fraction of Misplaced Peaks" Metric 	79 79 79 147 147 147
9	8.7 Vowel PIH Shape Comparison REFERENCES	169 183
7	REF ERENCES	103

LIST OF FIGURES

Figure		Page
1	A Block Diagram of the Primary Auditory Nerve Model.	16
2	The Magnitude Transfer Function of the Middle Ear Circuit on the ROC COC Cochlear Filter.	17
3	The Analog Cochlea Circuit Schematic.	18
4	The ROC COC Pass-Bands.	19
5	The ROC COC Signal Delay from Input to Channel.	20
6	The Cochlear Surface Generated by the ROC COC Filter in Response to Stimulus 4B of the Glot-1 Stimulus Set.	21
7	The Basic Stochastic Syncoder.	22
8	The POH and the PIH Constructed from the Responses of a BSS to 100 Presentations of a Constant Stimulus.	25
9	The Step Stimulus.	26
10	The POH and Normalized PIH of a BSS: 100 Presentations of a Step Stimulus Beginning at 20 msec and Ending at 120 msec.	28
11	The POH and Normalized PIH Computed from the BSS's Responses to 100 Presentations of a 1 kHz Sinusoid.	30
12	Pulse Interval Histogram Constructed by Summing the Pulse Interval Histograms Created from the 130 to 200 msec Segment of the Responses of Runs 18 through 24 of Experiment 710827/11.	36
13	Four Attempts to Fit the Approximate PIH of Figure 12.	37
14	Threshold Functions for the Five Models of the Medium CF Neuron 710827/11.	38
15	The TM Transfer Functions for the Five Models of the Medium CF Neuron 710827/11.	39
16	Pulse Occurrence Histograms Computed from the Responses to 100 Presentations of a 63 dB Attenuation, 1263 Hz Pure Tone Presented in a 10-90-10 Trapezoidal Envelope.	42
17	Pulse Occurrence Histograms Computed from the Responses to 100 Presentations of a 50 dB Attenuation, 1263 Hz Pure Tone	44
18	Presented in a 10-90-10 Trapezoidal Envelope.	44
10	Demonstration of the Source of the Modulation in Simulation POHs When the Model's Stimulus is a 1263 Hz Tone Sampled	46

Figure	1	Page
19	Pulse Interval Histograms Computed from the Tone-On Segments of Responses to 100 Presentations of a 63 dB Attenuation, 1263 Hz Pure Tone.	48
20	Pulse Interval Histograms Computed from the Tone-On Segments of Responses to 100 Presentations of a 50 dB Attenuation, 1263 Hz Pure Tone.	50
21	(a) The Response of ROC COC Channel 20 to Stimulus 3B.(b) The POH Constructed from Neuron 710827/11's Responses	52
	to 100 Presentation of Stimulus 3B. (c) The POH Constructed from Model 03/31/76.3's Responses to 100 Presentations of the ROC COC Channel 20 Response to Stimulus 3B.	52 52
22	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the / ɔ/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB Attenuation.	54
23	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /r/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB Attenuation.	56
24	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /i/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB Attenuation.	58
25	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /o/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB Attenuation.	60
26	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the $/\partial/$ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB Attenuation.	62
27	The Pulse Occurrence Histogram (Left) and the Pulse Interval Histogram of the Spontaneous Activity of Model 03/31/76.3.	64
28	Pulse Occurrence and Pulse Interval Histograms Computed from 100 Presentation of a 1263 Hz Pure Tone with a 10-90-10 Trapezoidal Envelope and a Magnitude of 30 dB Attenuation (a) and (b) are from Neuron 710827/11, (c) and (d) are from Model 03/31/76.3.	
	AND THE PERSON OF THE PERSON O	75

Figure		Page
29	Pulse Occurrence and Pulse Interval Histograms Computed from 100 Presentation of a 1263 Hz Pure Tone with a 10-90-10 Trapezoidal Envelope and a Magnitude of 35 dB Attenuation (a) and (b) are from Neuron 710827/11, (c) and (d) are from Model 03/31/76.3.	76
30	Pulse Occurrence and Pulse Interval Histograms Computed from 100 Presentation of a 1263 Hz Pure Tone with a 10-90-10 Trapezoidal Envelope and a Magnitude of 40 dB Attenuation (a) and (b) are from Neuron 710827/11, (c) and (d) are from Model 03/21/76	
31	03/31/76.3. Pulse Occurrence and Pulse Interval Histograms Computed from 100 Presentation of a 1263 Hz Pure Tone with a 10-90-10 Trapezoidal Envelope and a Magnitude of 55 dB Attenuation (a) and (b) are from Neuron 710827/11, (c) and (d) are from Model 03/31/76.3.	77
32	 (a) The Response of ROC COC's Channel 20 to Stimulus 3A, with a Magnitude of 10 dB Attenuation. (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 6) to 100 Presentations of the Stimulus 	80
	 in (a). (c) The POH Constructed from the Responses of Model 04/05/76.4 (Run 1) to 100 Presentations of the Stimulus in (a). 	80
33	 (a) The Response of ROC COC's Channel 20 to Stimulus 3B, with a Magnitude of 10 dB Attenuation. (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 7) to 100 Presentations of the Stimulus 	82
	in (a). (c) The POH Constructed from the Responses of Model 03/31/76.3 (Run 4) to 100 Presentations of the Stimulus in (a).	82 82
34	(a) The Response of ROC COC's Channel 20 to Stimulus 4A,	
	with a Magnitude of 40 dB Attenuation. (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 8) to 100 Presentations of the Stimulus	84
	in (a). (c) The POH Constructed from the Responses of Model 04/15/76.3 (Run 1) to 100 Presentations of the Stimulus	84
	in (a). The state of the state	84

Figure			Page
35	(a)	The Response of ROC COC's Channel 20 to Stimulus 4B, with a Magnitude of 40 dB Attenuation.	86
	(b)	The POH Constructed from the Responses of Neuron 710827/11 (Run 9) to 100 Presentations of the Stimulus in (a). The POH Constructed from the Responses of Model 04/12/76.3 (Run 1) to 100 Presentations of the Stimulus	86 86
26		in (a).	00
36	(a)	with a Magnitude of 10 dB Attenuation.	88
	(b)	The POH Constructed from the Responses of Neuron 710827/11 (Run 14) to 100 Presentations of the Stimulus in (a).	88
	(c)	The POH Constructed from the Responses of Model	
		04/12/76.3 (Run 2) to 100 Presentations of the Stimulus in (a).	88
37	(a)	The Response of ROC COC's Channel 20 to Stimulus 7B, with a Magnitude of 10 dB Attenuation.	90
	(b)	The POH Constructed from the Responses of Neuron 710827/11 (Run 15) to 100 Presentations of the Stimulus in (a).	90
	(c)	The POH Constructed from the Responses of Model 04/15/76.3 (Run 2) to 100 Presentations of the Stimulus in (a).	90
38	(a)	with a Magnitude of 20 dB Attenuation.	92
	(b)	The POH Constructed from the Responses of Neuron 710827/11 (Run 16) to 100 Presentations of the Stimulus	92
	(c)	in (a). The POH Constructed from the Responses of Model 04/05/76.4 (Run 2) to 100 Presentations of the Stimulus in (a).	92
39	(a)	The Response of ROC COC's Channel 20 to Stimulus 8B,	
	(b)	with a Magnitude of 20 dB Attenuation. The POH Constructed from the Responses of Neuron 710827/11 (Run 17) to 100 Presentations of the Stimulus	94
	(c)	in (a). The POH Constructed from the Responses of Model	94
		04/05/76.4 (Run 3) to 100 Presentations of the Stimulus in (a).	94

Figure		Page
40	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /r/ Vowel Segment.	96
41	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /r/ Vowel Segment.	98
42	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /æ/ Vowel Segment.	100
43	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /æ/ Vowel Segment.	102
44	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /ɔ/ Vowel Segment.	104
45	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /o/ Vowel Segment.	106
46	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /a/ Vowel Segment.	108
47	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /a/Vowel Segment.	110
48	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /I/Vowel Segment.	112
49	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /I/Vowel Segment.	114
50	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /C/Vowel Segment.	116
51	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the $\langle E \rangle$ Vowel Segment.	118
52	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /u/ Vowel Segment.	120
53	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /u/ Vowel Segment.	122
54	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /ə/ Vowel Segment.	124
55	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /ə/ Vowel Segment.	126

Figure		Page
56	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /i/ Vowel Segment.	128
57	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /i/ Vowel Segment.	130
58	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /o/ Vowel Segment.	132
59	Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /o/ Vowel Segment.	134
60	Average Fraction of Misplaced Peaks for Ten Vowels for both the Neuron and the Model, Neuron 710827/11, Model 03/31/76.3.	168

LIST OF TABLES

Table		Page
1	BSS Parameters for the Five Models of a Medium CF	
	Neuron 710827/11	40
2	Model Ranks Based on 63 dB Tone Only	67
3	Model Ranks Based on 50 dB Tone Only	67
4	Peak Occurrence Table for Vowel /ɔ/	68
5	Peak Occurrence Table for Vowel /r/	69
6	Peak Occurrence Table for Vowel /i/	70
7	Peak Occurrence Table for Vowel /o/	71
8	Peak Occurrence Table for Vowel /a/	72
9	Summary of Rank for Five Models	73
10	Log of Neuron-Model Run Pairs	136
11	Peak Occurrence Table, Vowel /r/	137
12	Peak Occurrence Table, Vowel /æ/	138
13	Peak Occurrence Table, Vowel /5/	139
14	Peak Occurrence Table, Vowel /a/	140
15	Peak Occurrence Table, Vowel /I/	141
16	Peak Occurrence Table, Vowel /E/	142
17	Peak Occurrence Table, Vowel /u/	143
18	Peak Occurrence Table, Vowel /a/	144
19	Peak Occurrence Table, Vowel /i/	145
20	Peak Occurrence Table, Vowel /o/	146
21	Stimulus Zero-Crossing Intervals Table Vowel /r/	148
22	Stimulus Zero-Crossing Intervals Table Vowel /æ/	149
23	Stimulus Zero-Crossing Intervals Table Vowel /ɔ/	150
24	Stimulus Zero-Crossing Intervals Table Vowel /a/	151
25	Stimulus Zero-Crossing Intervals Table Vowel /I/	152
26	Stimulus Zero-Crossing Intervals Table Vowel /E/	153
27	Stimulus Zero-Crossing Intervals Table Vowel /u/	154

LIST OF TABLES (Continued)

Table		Page
28	Stimulus Zero-Crossing Intervals Table Vowel /a/	155
29	Stimulus Zero-Crossing Intervals Table Vowel /i/	156
30	Stimulus Zero-Crossing Intervals Table Vowel /o/	157
31	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /r/to Model 03/31/76.3	158
32	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /æ/ to Model 03/31/76.3	158
33	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /5/ to Model 03/31/76.3	159
34	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /a/ to Model 03/31/76.3	159
35	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /I/to Model 03/31/76.3	160
36	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /E/ to Model 03/31/76.3	160
37	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /u/ to Model 03/31/76.3	161
38	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /ə/ to Model 03/31/76.3	161
39	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /i/to Model 03/31/76.3	162
40	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /o/ to Model 03/31/76.3	162
41	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /r/ to Neuron 710827/11	163
42	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /æ/ to Neuron 710827/11	163
43	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel 5/to Neuron 710827/11	164
44	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /a/to Neuron 710827/11	164
45	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /I/to Neuron 710827/11	165

LIST OF TABLES (Continued)

Table		Page
46	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /£/ to Neuron 710827/11	165
47	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /u/ to Neuron 710827/11	166
48	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /ə/to Neuron 710827/11	166
49	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /i/to Neuron 710827/11	167
50	SIH Peak Locations and PIH Peak Locations and Ranks for the Four Presentations of the Vowel /o/ to Neuron 710827/11	167
51	Comparison of Vowel PIH's in Two Runs of the same Stimulus and Intensity, Neuron 710827	170
52	Comparison of Peaks in Model and Neuron /r/- PIHs using the Fraction of Misplaced Peaks Metric	171
53	Comparison of Peaks in Model and Neuron /æ/- PIHs using the Fraction of Misplaced Peaks Metric	171
54	Comparison of Peaks in Model and Neuron /ɔ/- PIHs using the Fraction of Misplaced Peaks Metric	172
55	Comparison of Peaks in Model and Neuron /a/- PIHs using the Fraction of Misplaced Peaks Metric	172
56	Comparison of Peaks in Model and Neuron /I/- PIHs using the Fraction of Misplaced Peaks Metric	173
57	Comparison of Peaks in Model and Neuron /E/ - PIHs using the Fraction of Misplaced Peaks Metric	173
58	Comparison of Peaks in Model and Neuron /u/- PIHs using the Fraction of Misplaced Peaks Metric	174
59	Comparison of Peaks in Model and Neuron /ə/- PIHs using the Fraction of Misplaced Peaks Metric	174
60	Comparison of Peaks in Model and Neuron /i/- PIHs using the Fraction of Misplaced Peaks Metric	175
61	Comparison of Peaks in Model and Neuron /o/- PIHs using the Fraction of Misplaced Peaks Metric	175
62	/r/ - PIH Shape Comparison	177

LIST OF TABLES (Continued)

Table		Page
63	/æ/ - PIH Shape Comparison	177
64	/o/ - PIH Shape Comparison	178
65	/a/ - PIH Shape Comparison	178
66	/I/ - PIH Shape Comparison	179
67	/E/ - PIH Shape Comparison	179
68	/w/ - PIH Shape Comparison	180
69	/ə/ - PIH Shape Comparison	180
70	/i/ - PIH Shape Comparison	181
71	/o/ - PIH Shape Comparison	181

SECTION 1

BACKGROUND

Since early in 1960 the Aerospace Medical Research Laboratories has studied the information processing characteristics of the auditory system. In the period from 1965 to 1972, single unit studies of guinea pig primary auditory nerve were performed. A wide range of stimuli were used, including pure tones, speech, and synthetic speech-like sounds. Analysis of these data, collectively called the VIII Nerve Data Base, contributed to the development of an electronic analog model of the middle and inner ear called the ROC COC (Mundie et al., 1974). In a concurrent project, a neural model called the syncoder was developed and its behavior studied for a variety of stimuli (Mundie, 1969; Ziskin, 1971; Zellmer, 1972; Rock, 1973; Miller, 1974). These two projects have led to a partly qualitative, partly quantitative model of the primary auditory nerve (Mundie et al., 1974). This study extends these results by presenting a totally quantitative model and comparing PIHs computed from the model's responses to tone and speech-like stimuli to corresponding neuron PIHs.

SECTION 2

THE MODEL

The block diagram for the Primary Auditory Nerve Model is shown in Figure 1. Both the middle ear and analog cochlea components of the model are realized by an electronic analog device called the ROC COC Cochlear Filter, which was developed by James C. Rock. In this model, input voltage is equivalent to pressure at the tympanic membrane. The ROC COC's middle ear circuit is an active bandpass filter with the Bode magnitude function shown in Figure 2. The analog cochlea section of the ROC COC is a transmission line comprised of a cascade of lowpass filters whose schematic is shown in Figure 3. Note that each filter, or channel, is tapped to provide an output voltage analogous to the displacement at a point on the cochlea's basilar membrane. The effective magnitude Bode function from the ROC COC's input to a channel output is that of an asymmetrical bandpass filter, with the low frequency skirt having a 6 dB/octave slope and the high frequency skirt having a 100 dB/octave slope. The channel electronically closest to the ROC COC input, channel 1, corresponds to the basal end of the cochlea and has the highest peak frequency; the channel electronically furthest from the ROC COC input, channel 48, corresponds to the apical end of the cochlea and has the lowest peak frequency. Figure 4 shows the peak frequency and 6 dB down points for each of the 48 channels. It should be noted that each channel has been tuned to provide a maximum gain of one from ROC COC input to channel output.

Figure 1. A Block Diagram of the Primary Auditory Nerve Model. The Middle Ear and Analog Cochlea Components are Realized by a Cochlear Filter. TM is the Transducer Module. BSS is the Basic Stochastic Syncoder.

As with the cochlea, a signal introduced at the ROC COC's input requires a significant amount of time to travel to any given channel, with the circuit components selected to approximate the times found in the cochlea (See Mundie et al., (1974) for details). Figure 5 shows this channel versus

Figure 2. The Magnitude Transfer Function of the Middle Ear Circuit on the ROC COC Cochlear Filter.

Figure 3. The Analog Cochlea Circuit Schematic. From Mundic et al., (1974), page 294

delay characteristics for the ROC COC. An important consequence of this delay is the ability of ROC COC to store about 1.75 cycles of signal within it, regardless of signal frequency.

The overall response of the ROC COC to a speech-like signal is illustrated in Figure 6. Note the higher frequency components of the signal are extracted by the low-numbered channels, while the lower frequency components are extracted by the high-numbered channels. Also note the signal delay.

The TM component is a generally nonlinear transformation from stimulus magnitude to the internal coordinate system of the following BSS component. It is not intended to represent any one structure within the auditory system, such as the hair cell. It is, in fact, the model's fudge factor. Subsequent discussion will describe how the TM transfer function is determined.

The Basic Stochastic Syncoder, or BSS, is formally defined in Figure 7. As a binary threshold device, it compares values of a threshold function, in this case exponentially decaying, against values of a stimulus driven function, here called the summation potential. Whenever the threshold function value becomes less than or equal to the summation potential value, the syncoder generates a 1 at its output.* Then the threshold function is reset to an initial value and begins decaying again. The syncoder is stochastic because each time the threshold function is reset a new decay rate is chosen according to the decay rate density function $p_{\rm B}(.)$. The BSS is an attempt to model the processing characteristics of the bipolar primary auditory neuron.

^{*}This is not strictly true for the BSS. It has an absolute refractory period, ρ , after each pulse is generated, during which it can not generate another pulse regardless of the summation potential magnitude.

Figure 4. The ROC COC Pass-Bands.

Figure 5. The ROC COC Signal Delay from Input to Channel.

Figure 6. The Cochlear Surface Generated by the ROC COC Filter in Response to Stimulus 4B of the Glot-1 Stimulus Set. Channel 1 on this Plot Corresponds to Channel 2 of the ROC COC, Channel 2 Corresponds to ROC COC's Channel 4, Channel 3 Corresponds to ROC COC's Channel 6, and so on. Note that Channel 5 was not Functional.

Summation Potential

$$q(i\Delta) = \min \left\{ a_x \cdot x (i\Delta - \tau_x \Delta), q_{max} \right\}$$

where

a is the "stimulus gain"

x is the "stimulus"

is the "stimulus port delay"

Δ is the "sampling interval"

q is the summation potential maximum value

i is an integer denoting the progression of time.

Threshold Function

$$F(i\Delta) = \phi + \theta \cdot \exp[B \cdot (j - i)\Delta]$$

where

φ is the "threshold function baseline"

θ is the "threshold function maximum"

B is the "decay rate" random variable with probability density function p_B(.)

j is the time interval when the syncoder last fired

Encoder Function

$$Y(i \Delta) = \begin{cases} 1 & \text{iff } q(i\Delta) \geq F(i\Delta) \text{ and } i-j \geq \rho / \Delta \\ 0 & \text{otherwise} \end{cases}$$

where

ρ is the "refractory period" (msec)

Figure 7. The Basic Stochastic Syncoder.

SECTION 3

EXPERIMENTAL PROTOCOL

The actual model verification was preceded by an intensive study of the behavioral characteristics of the BSS and related syncoders. Some pertinent results of this study are presented in Section 4. From this study procedures were developed for estimating the values of the model's parameters. These procedures are summarized in Section 5.

The verification procedure has been divided into four phases, with each phase examining the model's simulation capability in progressively greater detail. This report describes the results of the second phase.

In Phase 1, a model of a relatively high characteristic frequency (2700 Hz) neuron was developed that simulates the neuron's pure tone behavior. This phase provided a coarse verification of the model, since the frequency is high enough that the stimulus appears to the neuron or syncoder to be a step function rather than a pure tone. *

In Phase 2 a model was developed for a medium characteristic frequency neuron (1263 Hz). The development procedure was comprised of several iterations of the basic model development cycle: parameter value assignment, simulation, parameter value modification based on the results of previous simulations. A subset of the tonal and speech-like stimuli originally used on the neuron were presented to each iteration of the model. At the end of each development cycle, the model's PIHs were compared to those of the neuron using semi-quantitative metrics developed specifically for this purpose. New parameter values were selected based on all the previous iterations. After five cycles the best model was selected and the remaining stimuli originally presented to the neuron were presented to it. The PIHs of the neuron and the model were then compared.

Phase 2, which is presented in Sections 6 through 8, represents the next level of resolution in the verification procedure, since the frequency of a tonal stimulus is high enough to provide a good theoretical approximation to a step function and yet the PIH does have a periodic structure, with the period the same as the stimulus period.*

^{*}Section 4 provides the justification for this statement.

SECTION 4

BEHAVIORAL CHARACTERISTICS OF A BASIC STOCHASTIC SYNCODER

4.1 RESPONSE TO A CONSTANT STIMULUS

It will be helpful to precede the discussion of the model's parameter estimation procedures with a description of the BSS's responses to some common stimuli.

Recall that the threshold function of a BSS is

$$F(i\Delta) = \phi + \theta \exp(B(j-i)A)$$

If the stimulus is a constant, x, the summation potential will be a constant and the syncoder will fire whenever

$$\alpha_{x} \times \geq \phi + \theta \exp(B(j-i)\Delta)$$

The greater-than relation is required because the discrete time domain is used. (Digitizing time introduces an error into all these calculations proportional to the sample interval.)

Assuming the equality holds for development purposes, the interpulse intervals will be given by

$$i\Delta = -\frac{1}{B} \ln \left(\frac{\alpha_x x - \phi}{\theta} \right)$$

The density function of interpulse intervals, $p_I(.)$, which is just the normalized PIH constructed from the responses of the BSS to a number of presentations of the stimulus, can be obtained from the decay rate density function through the transformation

$$p_{I}(i\Delta) \simeq p_{B}(-\frac{1}{B} \ln (\frac{\alpha_{x} \times -\phi}{\theta}))$$

Again, the approximation sign must be introduced because time is discrete here. Note that it is also possible to obtain $p_B(.)$ from $p_I(.)$. Figure 8 is an example of the POH and PIH constructed from the responses of a BSS to a constant stimulus.

4.2 RESPONSE TO A STEP STIMULUS

The standard step stimulus is sketched in Figure 9. Referring to this figure, the behavior has been partioned into the following five time periods:

FIGURE POH FOR BASSETT. J . 03/31/76.3. 1.

Figure 8. The POH and the PIH Constructed from the Responses of a BSS to 100 Presentations of a Constant Stimulus. The BSS had a Threshold Function $F(i\triangle) = 271.23 \exp{(B(j-i)\triangle)}$. The Stimulus Magnitude was 60.46. The Density Function $p_B(.)$ is that of Model 03/31/76.3 in Figure 13.

Figure 9. The Step Stimulus.

In regions T_1 and T_5 , the BSS's response will be the same as its response to a constant stimulus of magnitude m_1 . In the continuous time domain, the normalized PIH will be

$$p_I(t) = p_B(-\frac{1}{B} \ln \frac{\alpha_x m_1 - \phi}{\theta})$$

Again, if time is discrete, the probability will be given only at integer multiples of the same interval, and it will be only an approximation, with error proportional to the sample interval. The BSS's behavior in region T_3 will also be that of a constant stimulus, this time with magnitude m_2 . The continuous time domain PIH will be

$$p_{I}(t) = p_{B}(-\frac{1}{B} \ln \frac{\alpha_{x} m_{2} - \phi}{\theta})$$

The average interpulse interval in region T_3 will be less than the average interpulse interval in regions T_1 and T_5 .

The behavior in regions T_2 and T_4 are not easily described quantitatively. Qualitatively, a large peak of activity will occur at $t = t_{on}$. If this peak is large enough, the activity immediately after t_{on} , as seen in the POH, will be suppressed. In both cases the height of the peak and the length of the suppression will be directly proportional to the difference between m_2 and m_1 .

An example of the POH and PIH computed from the responses of a BSS to 100 presentations of a step stimulus is shown in Figure 10.

If the stimulus has a finite slope at $t_{\rm on}$ and $t_{\rm off}$, giving it a trapezoidal shape, the BSS's behavior in regions T_2 and T_4 will be modified somewhat: the peak in the POH at $t_{\rm on}$ will not be as sharp, and the suppression of activity will not be as strong. Section 7 contains an example of an intensity series based on trapezoidal stimuli.

4.3 RESPONSE TO A SINUSOIDAL STIMULUS

If the stimulus to a BSS is a sinusoid, the summation potential will also be a sinusoid of the same frequency, say Asin ω t. Suppose the syncoder has fired during the sample interval j. The syncoder's threshold function will reset at that time and begin decaying again with a decay rate B; selected according to the decay rate density function $p_B(.)$. The first time ia the stochastic syncoder can fire is when the threshold function has decayed to A. Furthermore, the syncoder must fire within one period $T = 2\pi/\omega$ of ia, since the sinusoid will have a value A sometime during that period, and the threshold function is a monotonically decreasing function. As a matter of fact, at the most the threshold function will have decayed to a value

$$\theta \exp((i-j) \triangle B_i) \cdot (1-\exp(-2\pi B_i/\omega))$$

below that at iA.

If the frequency of the sinusoid is high enough, the normalized PIH constructed from the responses of the stochastic syncoder will have an envelope that is approximately the same shape as that constructed from the responses of the syncoder to a step of the same magnitude. Within this envelope, the PIH will be periodic, with a period equal to that of the sinusoid. There are

FIGURE POH FOR LEET. 0 . 03/31/76.6. 2.

Figure 10. The POH and Normalized PIH of a BSS: 100 Presentations of a Step Stimulus Beginning at 20 msec and Ending at 120 msec. The Average Interpulse Interval is 12.0 msec on 1169 Pulses.

two nonquantitative qualifiers in this statement: 'high enough' and 'approximately the same shape as'. The function

$$\frac{.01}{A} \stackrel{\frac{2\pi}{\omega}}{=} ^{B}_{m}$$

where B_m is the maximum decay rate possible for the syncoder, can be used as a measure of the difference between the shape of the envelope of the sinusoid's normalized PIH and the shape of the normalized PIH of a step with the same magnitude.

Figure 11 is the POH and normalized PIH computed from the responses of a BSS to a 1 kHz sinusoid beginning at 20 msec and ending at 120 msec. Note that both histograms have an envelope shape similar to that generated by a step stimulus. The interval between the peaks in both histograms is 1 msec, the period of the stimulus.

SECTION 5

MODEL PARAMETER ESTIMATION

5.1 INTRODUCTION

There are multiple sources of error associated with any procedure developed for estimating the parameter values of any neural model. A list that does not exhaust the possibilities is

- (1) sampling error
- (2) measurement error in the data acquisition system
- (3) drifting system parameters
- (4) neuron to neuron variation in parameters
- (5) preparation to preparation variation in parameters.

In addition, the available neurophysiological data places restrictions on the nature of the parameter value estimation procedures. For instance, the only system measurements permitted are at the input to the middle ear and at the output of the primary auditory neuron. Furthermore, all stimuli must be time varying; constant stimuli, which are convenient for determining the BSS's parameter values, are not permitted.

The following subsections detail practical procedures for estimating the model's parameter values, procedures that attempt to minimize the estimation error and yet conform to the restrictions placed on them by the neurophysiological data. The next section applies these procedures to the data from a particular neuron.

FIGURE POH FOR LEET. 0 . 03/31/76.6. 1.

Figure 11. The POH and Normalized PIH Computed from the BSS's Responses to 100 Presentations of a 1 kHz Sinusoid.

5.2 BSS PARAMETER ESTIMATION

The procedure for estimating the parameter values of the BSS when it is embedded in the environment of primary auditory nerve is summarized in Procedure A. Referring to Figure 7, the parameter values and functions to be estimated are ϕ , $\alpha_{\rm x}$, $\tau_{\rm x}$, θ , ρ , and $p_{\rm B}(.)$. All but $p_{\rm B}(.)$ and θ can be assigned values without resorting to further measurement: ϕ and $\alpha_{\rm x}$ can be assigned values of zero and one respectively, since their true values can be absorbed into the TM transfer function: $\tau_{\rm x}$ is assigned a value of zero because it is not of immediate interest: ρ is assigned a value of 1 msec.

To justify the technique in Procedure A for estimating θ , consider the continuous time argument first. If a constant stimulus x_1 is presented to an isolated BSS, the PIH constructed from the responses will be a projection of the domain of $p_B(.)$ into the time dimension using the transformation

$$t = -\frac{1}{B} \ln \frac{x_1}{\theta} .$$

A second constant stimulus x_2 , different from x_1 , will produce a second transformation

$$t = -\frac{1}{B} \ln \frac{x_2}{\theta} .$$

For the particular case of $B = B_{avg}$, the average decay rate, the times can be measured experimentally as the average interpulse intervals t_1 and t_2 respectively, giving the following two equations:

$$t_1 = -\frac{1}{B_{avg}} \ln \frac{x_1}{\theta}$$

$$t_2 = -\frac{1}{B_{avg}} \ln \frac{x_2}{\theta}$$

The function $\theta e^{-B_{avg}t}$ can be approximated by the function $\frac{1}{t}$ over some interval of t that depends on B. * $x = \frac{1}{t}$ will be used here and correction for error will be made in the TM transformation.

^{*}The approximation turns out to be quite a good one for the values of Bavg that have been determined from the experimental data. For instance, for a neuron with $f(t) = 232 \exp(-0.081 \cdot t)$ the percent was no greater than $5 \times 10^{-3}\%$ in the operating range of the neuron.

PROCEDURE A

BSS PARAMETER ESTIMATION IN AN AUDITORY SYSTEM ENVIRONMENT

0. ASSUMPTIONS:

$$\mathbf{a.} \quad \phi = 0$$

b.
$$\alpha_x = 1$$

d.
$$\rho = 1 \text{ msec.}$$

e. The PIH of a primary auditory nerve's spontaneous activity is known. The average interpulse interval for this PIH is t_s.

1. DETERMINE θ

Obtain the average interpulse interval t_{m} from the PIH of the primary auditory nerve's response to a high frequency pure tone. The higher the frequency the better the estimate. Compute:

(A.1)
$$B_{avg} = \frac{\ln(t_s/t_m)}{t_s - t_m}$$

(A.2)
$$\theta = t_s^{-1} \exp(B_{avg} \cdot t_s)$$

2. DETERMINE PB(.)

Normalize the spontaneous activity PIH to create the density function $p_s(.)$, whose domain is time. Compute:

(A.3)
$$p_{\mathbf{B}}(B) = p_{\mathbf{s}} \left(-\frac{1}{i \Delta} \ln \frac{1}{t_{\mathbf{s}} \theta} \right)$$

Forcing $x_1 = 1/t_1$ and $x_2 = 1/t_2$ and solving for B_{avg} and θ :

$$B_{avg} = \frac{\ln(t_1/t_2)}{t_1 - t_2}$$

$$\theta = \frac{1}{t_1} \exp(B_{avg} \cdot t_1) .$$

Making time discrete complicates the argument by introducing an error into the estimates of t_1 and t_2 proportional to the width of the sample interval. For the case where the BSS is in the primary auditory nerve environment additional error is introduced, since a high frequency sinusoid must be substituted for one of the constant stimuli. (The spontaneous activity can be used for the other stimulus.) The error will be proportional to the sinusoid's period.

The technique in Procedure A for estimating the decay rate density function follows directly from the fact that in the model spontaneous activity is generated by having the TM generate a constant output when it has no input. As demonstrated previously, the PIH constructed from the responses of the BSS to a constant stimulus has the same shape as $p_B(.)$. It is only necessary to transform the time domain to the decay rate domain using A. 3.

5.3 TRANSDUCER MODULE TRANSFER FUNCTION ESTIMATION

The purpose of the Transducer Module, or TM, is to transform the coordinate system of the stimulus space as seen at the middle ear into the coordinate system used by the BSS following the TM. The stimulus space at the middle ear is two dimensional. One dimension is stimulus pressure, measured in units of dB attenuation from 100 dB SPL; the other is time. The response space of the TM is one dimensional, with units of sec-1.

Procedure B outlines the procedure for obtaining the TM transfer function. Step 2 is necessary to correct for the 1/t approximation made in estimating the θ parameter value. This step estimates the transfer function for rarefaction. Step 3 is an attempt to estimate the transfer function for condensation, since such values are not available from neurophysiological data.

Figure 15 is a complete estimate constructed using this procedure. Note that the condensation side of the abscissa in the figure is a reflection of the rarefaction side. The y axis is the locus for the spontaneous activity.

PROCEDURE B

ESTIMATION OF TRANSDUCER MODULE TRANSFORMATION

- 1. Obtain an intensity series on the primary auditory neuron.
- 2. Plot stimulus intensity in dB attenuation from 100 dB SPL (domain) against $\theta \cdot \exp(-B_{avg} \cdot t_{avg})$, where t_{avg} is the average interpulse interval for each stimulus magnitude used.
- 3. Reflect the above curve, which is the positive portion of the transfer function, across the ordinate and then across the line parallel to the abscissa and through the range value associated with spontaneous activity.

SECTION 6

A MODEL OF A MEDIUM CF NEURON

6.1 FIVE ALTERNATIVE MODELS

Phase 2 of the verification procedure requires the development of a model for a neuron with a characteristic frequency of around 1 kHz. This frequency optimizes the criterion that it be high enough to introduce little error into the TM estimation procedure, Procedure B, and yet low enough to provide structure to the PIHs. A search was made of the VIII Nerve Data Base for a neuron satisfying these requirements:

- (1) The neuron has a CF of around 1 kHz.
- (2) An intensity series exists.
- (3) Responses to speech or speech-like stimuli exist.
- (4) There is a run of spontaneous activity.
- (5) The neuron is a displacement following neuron.

This last requirement was imposed because it was found in some preliminary experiments that some neurons do not follow basilar membrane displacement as predicted by the Cochlear Filter. Instead, they seem to follow the membrane's velocity. It was decided to avoid this added complication during the first two phases of the model's verification.

Unfortunately, a neuron with all of the above requirements could not be found. The best data available, and the neuron selected for model development, 710827/11, * lacked a spontaneous activity record and some important values in the intensity series. To circumvent the lack of a spontaneous activity record, the brief periods of spontaneous activity following the responses to the pure tones were added together to give the approximate PIH shown in Figure 12.

Five different models were developed from four different attempts to approximate the neuron's true spontaneous PIH with several points and a linear interpolation between the points. In Figure 13, the four approximations are juxtaposed with the curve of Figure 12. For each model, the several selected points were supplied to the computer program TDENFCN,** which used Procedure A to generate a p_B(.) and one of the sets of syncoder parameters listed in Table 1. Threshold functions for each of the five models, computed using the average decay rate, are plotted for comparison in Figure 14. Figure 15 shows the TM transfer functions for the models which were computed using Procedure B.

^{*}The neuron was recorded on August 27, 1971, and was the eleventh neuron recorded that day.

^{**}A user's manual for each of the programs used in the simulation effort is included in (Leet, 1976) as the Appendix.

Figure 12. Pulse Interval Histogram Constructed by Summing the Pulse Interval Histograms Created from the 130 to 200 msec Segment of the Responses of Runs 18 through 24 of Experiment 710827/11. The Sample Intervals are 1 msec.

Figure 13. Four Attempts to Fit the Approximate PIH of Figure 6.1. The Ordinate is an Arbitrary Unitless Scale.

Figure 14. Threshold Functions for the Five Models of the Medium CF Neuron 710827/11. These were Constructed Using the Average Decay Rate, B_{avg} , and θ Values Listed in Table 1.

Figure 15. The TM Transfer Functions for the Five Models of the Medium CF Neuron 710827/11. The Symbol Key is the Same as Figure 13.

TABLE 1
BSS PARAMETERS FOR THE FIVE MODELS
OF A MEDIUM CF NEURON 710827/11

	3/20/76.3	3/22/76.3	3/24/76.3	3/31/76.3
Low Avg. Interpulse Int.	6.89	6.89	6.89	6.89
High Avg. Interpulse Int.	17.47	19.53	17.20	16.54
θ	266.0	256.1	267.5	271.23
Bavg	.0879	.0824	.0888	.0908

6.2 THE BEHAVIOR OF THE MODELS

A total of 24 runs were recorded on neuron 710827/11, including an intensity series of 63, 60, 55, 50, 45, 40, 35, and 30 dB attenuation and a number of runs where the neuron was responding to stimuli from the Glot-1 Stimulus Set. The two magnitudes of the 1263 Hz tone stimulus that produced the smallest and largest average interpulse intervals in the neuron's intensity series, 63 and 50 dB attenuation, and a representative Glot-1 stimulus, 3B at a magnitude of 10 dB attenuation, were chosen as the stimulus subset used to select the best model from the five candidates.

The pure tones were presented to the neuron and the models in a 10-90-10 trapezoidal envelope: zero for a short period of time, rising linearly to full magnitude in 10 msec, remaining at full magnitude for 90 msec, decaying linearly back to zero magnitude in 10 msec, and remaining at zero after that. For the model, the pure tones were generated by the MAKSTIM program. This program also generated the TM responses.

The BSS simulations were performed by the BSSSIM program. The SIMHIS7 program was used to generate the POHs and PIHs from the responses produced by BSSSIM. The SIMHIS6 program was used to generate the corresponding POHs and PIHs from the neural data.

Figures 16 and 17 present the POHs computed from the responses of two of the models to the tones juxtaposed with the corresponding neuron POHs. Two differences between the models' and the neuron's POHs are evident. The explanations for these differences reveal the impact digitization will have on the interpretation of the model's behavior. The first difference is that the peaks in the model POH's are much sharper during the tone. The proposed explanation for this is that the neuron computes on an analog signal, and this signal and/or the neuron's threshold function contains a small amount of noise; enough noise to cause a + 1 time bin error in the time of pulse occurrence from stimulus presentation to stimulus presentation. It is expected that, at least during the first two phases of the model's verification, the error introduced into the analyses by ignoring this noise will be insignificant.

The second difference between the models' and the neuron's POHs is that the models' POHs are modulated, with the low points in the activity being 19.6 msec apart. This is caused by a peculiar relationship between the frequency of the stimulus, the sampling rate, and the transfer characteristics of the Transducer Module. Figure 18 demonstrates this relationship. In Figure 18(a), the 1263 Hz sinusoid is sampled in such a way that one of the sampled values (bars) occurs just at its positive peak. The TM transforms these sample interval values as shown in column (a) of Figure 18(c). Note that there is one relatively large magnitude in the cycle. In Figure 18(b), on the other hand, the sampling is performed one-quarter cycle later. Such a situation will occur 19.6 msec after the previous one. The TM transforms the sample values marked by the bars in this figure to the sample values shown in column (b) of Figure 18(c). There is no large magnitude in this cycle. In fact, the activity of the syncoder will be at the spontaneous level.

Text continues on page 47

- Figure 16. Pulse Occurrence Histograms Computed from the Responses to 100 Presentations of a 63 dB Attenuation, 1263 Hz Pure Tone Presented in a 10-90-10 Trapezoidal Envelope.
 - (a) Neuron 710827/11, Run 24.
 - (b) Model 03/20/76.3.
 - (c) Model 03/31/76.3.

love accomming a select to be they repeated and to will include the

FIGURE POH FOR BASSETT.J . 03/31/76.3. 2. (C)

- Figure 17. Pulse Occurrence Histograms Computed from the Responses to 100 Presentations of a 50 dB Attenuation, 1263 Hz Pure Tone Presented in a 10-90-10 Trapezoidal Envelope.
 - (a) Neuron 710827/11, Run 11.
 - (b) Model 03/20/76.3.
 - (c) Model 03/31/76.3.

FIGURE POH FOR 710827 . 11.. 18. (a)

FIGURE POH FOR BRSSETT.J . 03/31/76.3. 3.

FIGURE FOR FOR BROSETT. J . 09/20/76.3, 3. (C)

TM RESPONSE VALUES

Sample Interval	<u>a</u>	<u>b</u>
. 1	83	60
2	60	60
3	40	60
4	60	60
	(c)	

Figure 18. Demonstration of the Source of the Modulation in Simulation POHs when the Model's Stimulus is a 1263 Hz
Tone Sampled at 0.2 msec Intervals.

Figures 19 and 20 present the PIHs computed from the tone-on-segments of the responses of the models juxtaposed with the corresponding neuron PIHs.

The Glot-1 stimulus presented to the models was 3B. This speech-like sound is comprised of the concatenation of approximately 40 msec segments of the spoken vowels $/ \circ / , / r / , / i / , / o / ,$ and $/ \circ / .$ For simulation, 3B was passed through ROC COC and the response of channel 20, which has a peak frequency of 1111 Hz, was chosen as the stimulus to the TM. Figure 21 presents this response juxtaposed with the POH constructed from the responses of the neuron to 100 presentations of 3B at an intensity of 10 dB attenuation. Note that the POH generally follows the displacement of the ROC COC channel 20 response. * Figure 21 also presents the POH of the 03/31/76.3 model generated using the same stimulus.

For each model and for the neuron, PIHs were constructed from the segments of the responses corresponding to each of the vowels. These PIHs are juxtaposed by vowel in Figures 22 through 26.

The POH and PIH computed from the spontaneous activity of the 03/31/76.3 model is shown in Figure 27.

6.3 PERFORMANCE CRITERIA FOR SELECTING THE BEST MODEL

A semiquantitative procedure, Procedure C, has been developed for use in deciding which of the five models provides the best fit to neuron 710827/11's behavior. The procedure relies on subjective judgment to provide the initial partition of the models into better-fit and poorer-fit groups. The better-fit group is then ranked using performance criteria taken from a summary of the PIHs called the Peak Occurrence Table. Generally this table has a column for each PIH being compared; in this case one column for the neuron and one column for each model. Table 4 is an example. The rows are associated with interpulse intervals. For each PIH, an entry is made in the row associated with each interpulse interval where a peak occurs in the PIH. A peak is defined as any change from positive to negative slope in the PIH. The entry made is the probability of that peak and its two immediately adjacent sample intervals (the error of the data acquisition system is +1 sample interval):

$$p_{peak}(i) = p_{PIH}(i-1) + p_{PIH}(i) + p_{PIH}(i+1)$$

where p_{PIH}(.) is the normalized PIH and i is the sample interval in which the peak occurred. Where the peak is more than one sample interval wide, the peak is defined to occur in the interpulse interval with the largest probability is computed above.

^{*}The correlation is improved by correcting the POH for an approximately 0.2 msec per 40 msec clock error in the data.

of Responas to 100 Presentations of a 63 dB Attenuation, 1263 Hz Pulse Interval Histograms Computed from the Tone-On Segments

Pure Tone.

(a) Neuron 710827/11, Run 24,

(c) Model 03/22/76.3.

(b) Model 03/20/76.3.

(d) Model 03/24/76.3.

(e) Model 03/24/76.5.

of Responses to 100 Presentations of a 50 dB Attenuation, 1263 Hz Figure 20. Pulse Interval Histograms Computed from the Tone-On Segments

(a) Neuron 710827/11, Run 18.

Pure Tone.

(b) Model 03/20/76.3.(c) Model 03/22/76.3.

(d) Model 03/24/76.3.

(e) Model 03/24/76.5.

Figure 21.

- (a) The Response of ROC COC Channel 20 to Stimulus 3B. Magnitude Units have no Significance.
- (b) The POH Constructed from Neuron 710827/11's Responses to 100 Presentation of Stimulus 3B.
- (c) The POH Constructed from Model 03/31/76.3's Responses to 100 Presentations of the ROC COC Channel 20 Response to Stimulus 3B.

FIGURE TH STIMULUS FOR 36 . 10.

FIGURE POH FOR 710827 . 11.. 7

FIGURE POH FOR BASSETT.J . 03/31/76.3. 4

(c)

Figure 22. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /ɔ/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB Attenuation.

(a) Neuron 710827/11.

(b) Model 03/20/76.3.

(c) Model 03/22/76.3. (d) Model 03/24/76.3.

(e) Model 03/24/76.5.

Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /r/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB Figure 23.

Attenuation.

(a) Neuron 710827/11.

(b) Model 03/20/76.3.

(c) Model 03/22/76.3.

(d) Model 03/24/76.4.

(e) Model 03/24/76.5.

Figure 24. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /i/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB

Attenuation.

(a) Neuron 710827/11.

(b) Model 03/20/76.3.

(c) Model 03/22/76.3.

(d) Model 03/24/76.3.

(e) Model 03/24/76.5.

Figure 25. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /o/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB

(a) Neuron 710827/11.

Attenuation.

(b) Model 03/20/76.3.

(c) Model 03/22/76.3. (d) Model 03/24/76.3.

(e) Model 03/24/76.5.

Figure 26. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /a/ Vowel within the 3B Stimulus Presented at an Intensity of 10 dB

Attenuation,

(a) Neuron 710827/11.

(c) Model 03/22/76.3.

(b) Model 03/20/76.3.

(d) Model 03/24/76.3.

(e) Model 03/24/76.5.

FIGURE POH FOR BASSETT.J . 03/31/76.3. 1.

Figure 27. The Pulse Occurrence Histogram (Top) and the Pulse Interval Histogram of the Spontaneous Activity of Model 03/31/76.3.

One performance criterion is to count the number of matching peaks in each model, where a peak in a model PIH is said to match a peak in the neuron PIH if the peaks occur within one sample interval of each other. The model with the most number of matching peaks receives the highest rank (1), the model with the next highest number of matching peaks receives the next highest rank (2), and so on.

Any ties in this procedure are resolved by the second performance criterion. For each model, and for each matching peak, the absolute value of the difference between the $p_{peak}(i)$ value of the model and the neuron is divided by the $p_{peak}(i)$ value of the model to give the fraction error in the probability of occurrence of that peak. These values are added for each model involved in the tie and the model with the lowest total value is given the highest rank.

6.4 THE BEST MODEL

Procedure C was used to select the best model from the five models whose behavior was presented in Section 6.2. For the tone behavior, since all the peaks of the models and the neuron matched, the selection procedure is a mix of subjective judgment and quantitative measure of the fraction error in the peaks. Tables 2 and 3 summarize the results of the analysis: 03/31/76.3 and 03/24/76.5 were ranked 1 and 2 in both cases, with 03/20/76.3 and 03/24/76.3 tied for third position.

Peak Occurrence Tables, Tables 4 through 8, were constructed for each of the vowel sounds presented to the models and the neurons. These were used in Procedure C to produce the rankings summarized in Table 9. It is clear from this table that model 03/31/76.3 is the best model.

PROCEDURE C SELECT THE BEST MODEL

- 1. Do the following for each vowel-PIH and tone-on segment PIH:
 - a. Select two or three models that, by eyeball judgment, fit the corresponding neuron PIH better than the others.
 - b. Rank these models according to the number of peaks that match (occur within one sample interval of each other).
 The one(s) with the greatest number of matching peaks is (are) assigned the highest rank.
 - c. Resolve any ties in (b) by computing the total fraction error in probability at a matching peak which is given by:

probability associated with peak in neuron PIH - probability
associated with peak in model PIH
probability associated with peak in neuron PIH

The model with the lowest total error receives the highest rank.

For each model, add up the ranks for each vowel and tone-on segment PIH. The best model is the one with the lowest total score.

TABLE 2
MODEL RANKS BASED ON 63 dB TONE ONLY

Rank	Model
1	03/31/76.3
2	03/24/76.5
3	03/20/76.3
4	03/22/76.3
5	03/24/76.3

TABLE 3
MODEL RANKS BASED ON 50 dB TONE ONLY

Rank	Model
1	03/31/76.3
2	03/24/76.5
3	03/24/76.3
4	03/20/76.3
5	03/22/76.3

The second of th

TABLE 4

PEAK OCCURRENCE TABLE FOR VOWEL />/
(Stimulus 3B, 10 dB Attenuation; Vowel Located in First Position)

Interpulse Interval	Neuron 710827/11/7	3/20/76.3	3/22/76.3	3/24/76.3	3/24/76.5	3/31/76.
1.2						
1.4	.270					
1.6		.093	. 102	. 107	.083	.071
1.8						
2.0		. 106	.088			.094
2.2				.087	.070	
2.4	. 112					
2.6						
2.8			The Life			
3.0		. 100	.078			
3.2	3.3HO.33K	er die de d	DATE ARE	Divine a Lui	. 105	.075
3.4						
3.6	.091	.053		. 136		
3.8			.074		.093	. 121
4.0						
4.2		E 185 MEE 129				
4.4						
4.6						
4.8	. 082	ELATINGUE				
5.0		.066			.064	.096
5.2		13/20/702	بد ـ	.085		
5.4		e development	.076			
5.6		0.000 (0.00)				.060
5.8			.052			
6:0						
6.2	.046					

Average	4.38	6.74	7.30	6.56	6.73	6.63
Number Pulses	842	452	421	484	464	.481
Number Matching Peaks	5	3	2	3	4	3

TABLE 5

PEAK OCCURRENCE TABLE FOR VOWEL /r/
(Stimulus 3B, 10 dB Attenuation; Vowel Located in Second Position)

Interpulse Interval	Neuron 710827/11/7	3/20/76.3	3/22/76.3	3/24/76.3	3/24/76.5	3/31/76.3
1.2					ake - I	
1.4						
1.6	. 159	124	. 145			. 110
1.8		. 142	0.00	. 106	. 127	
2.0						0.3
2.2				.076		5.5
2.4	. 118	.070	.053		.066	.076
2.6						
2.8					YED	
3.0						
3.2	.098	. 119				
3.4			. 105	. 157	. 129	. 129
3.6						
3.8					.114	
4.0		.070	.084	.064		.078
4.2	.052	also de		10		
4.4			5.20			
4.6	.081					
4.8						0.00
5.0	Annual Section	.064	.072	.058	.075	.072
5.2						
5.4				112	- boogs - 1	
5.6	. 059	140	ESE VI		.071	.055
5.8		.051	.044	.072	CEU.	
6.0		E01-1			1/12	
			ine o	20	4144	
					010	

Average	6.07	6.43	6, 84	6.79	6.49	6.51
Number Pulses	572	513	475	498	534	527
Number Matching Peaks	6	5	5	5	4	5

TABLE 6

PEAK OCCURRENCE TABLE FOR VOWEL /i/
(Stimulus 3B, 10 dB Atenuation; Vowel Located in Third Position)

Interpulse Interval	Neuron 710827/11/7	3/20/76.3	3/22/76.3	3/24/76.3	3/24/76.5	3/31/76.3
1.0						
1.2	.048					.028
1.4		.051				
1.6			W1	.043	.071	.054
1.8	.069		.050			
2.0						
2.2		.071			.057	.049
2.4	0.00		.073	.089	3/3	
2.6		.048				
2.8	.037			.070		
3.0						
3.2				. 135	200	
3.4	0.00	. 207	01		. 155	
3.6	.026		. 146			. 153
3.8				.078		
4.0				And the second		
4.2	.032					.062
4.4		.064		.049		
4.6			.053		.038	
4.8					1.74	
5.0						.031
5.2	800, 11	100		3-20	.046	100
5.4						.036
5.6	.064	.043				
5.8			. 053	.041	.041	.044
6.0	.053	818	lett .	120. 1		8
6.8		.064	.064			0
7.0	. 111			. 103	. 109	.098
7.2		.051	.076			
7.4	.079					

Average	8.46	6.21	6.99	6.34	6.37	6.34
Number Pulses	189	392	342	370	368	386
Number Matching Peaks	9	7	5	6	4	7

TABLE 7

PEAK OCCURRENCE TABLE FOR VOWEL /o/
(Stimulus 3B, 10 dB Attenuation; Vowel Located in Fourth Position)

Interpulse Interval	Neuron 710827/11/7	3/20/76.3	3/22/76.3	3/24/76.3	3/24/76.5	3/31/76.3
1.2	2 35 40 E LE		SECTION SECTION	01/08 X () + X	60 (80 %) 20 (80 %)	
1.4	.089					
1.6						
1.8		. 141	. 129	. 142	. 140	. 121
2.0	.079					
2.2	ran I	Mary .				
2.4	.099					
2.6						.054
2.8	EAST TO SE		150	.080		
3.0			.082		.055	
3.2		. 104			795	
3.4		STUDENT OF THE STATE OF	201	.080		
3.6	.091	.088	.088		.089	. 100
3.8		3.05	500	.084		
4.0		.075				
4.2		Marie Salar	.073	30.	1996	. 063
4.4						
4.6	.058	.079		.080	.078	.090
4.8						
5.0			.054			
5.2						
5.4						
5.6	.083				.051	. 029
5.8						
6.0				110		
			arm 1			

Average	6.51	6.47	6.74	6.30	6.35	6.56
Number Pulses	496	453	441	464	472	479
Number					\$65	200
Matching Peaks	6	3	2	3	4	5

TABLE 8

PEAK OCCURRENCE TABLE FOR VOWEL /ə/
(Stimulus 3B, 10 dB Attenuation; Vowel Located in Fifth Position)

Interpulse Interval	Neuron 710827/11/7	3/20/76.3	3/22/76.3	3/24/76.3	3/24/76.5	3/31/76.3
1.0						.019
1.2	.074					
1.4						
1.6		.114	. 105	.120	.081	.063
1.8	.095					
2.0						.082
2.2		000	.061	.060	.063	
2.4	250					
2.6	. 107			SOLE SOLE		
2.8		.081	. 105	. 102	. 147	. 136
3.0	180		800		1660	
3.2		285	.099	. 105	. 144	. 123
3.4				arn .		
3.6	.070	.085	e va	.081		
3.8						
4.0		PP II				
4.2			.064	.078	.069	.076
4.4						
4.6	.045	.088			.072	
4.8				.072		
5.0	.033					
5.2						.044
5.4						
5.6		.075				No. of the latest of the lates
5.8			.076			.051
6.0	.074			.075	.094	

Average	6.49	6, 29	6.21	5.67	5.72	6.11
Number Pulses	243	307	314	334	320	316
Number Matching	7	4	3	5	4	5
Peaks						

TABLE 9
SUMMARY OF RANK FOR FIVE MODELS

	3/20/76.3	3/24/76.5	3/31/76.3
63 dB tone	3	2	oe 6 to 1000 to be
50 dB tone	3	2	ndh ad dhe san 104 an <mark>1</mark> -, mhasa
/5/	2	1	3 3 4 4 4 4
/r/	1	3	2
/i/	2	3	A
/0/	3	2	1
/9/	1	3	2
	button .	Crosses Pall a se	of a media end il
Total Rank	15	16	11

SECTION 7

AN INTENSITY SERIES GENERATED BY THE MODEL

Model 03/31/76. 3 was presented with four different intensities of the 1263 Hz tone, with the stimulus structure being the same as described in the previous section. The POHs and PIHs computed from the Model's* responses to these tones are juxtaposed in Figures 28 through 31 with POHs and PIHs computed from the Neuron's responses to the same tones.

The following comparisons suggest that the Model performs well in simulating the Neuron. (All the following statements take into account the digitization errors introduced into the modeling effort.):

- (1) The Neuron and Model PIH shapes are similar.
- (2) The total number of pulses produced during the tone-on portion of the stimuli are close. About a 10% error is noted.
- (3) The POHs are similar except in length of the suppression of activity following the tone.

^{*}In the remainder of this report, Model with a capital "M" will refer specifically to model 03/31/76.3; Neuron with a capital "N" will refer to neuron 710827/11.

Pulse Occurrence and Pulse Interval Histograms Computed from 100 Presentation of a 1263 Hz Pure Tone with a 10-90-10 Trapezoidal Envelope and a Magnitude of 30 dB Attenuation (a) and (b) are from Neuron 710827/11, (c) and (d) are from Model 03/31/76, 3. Figure 28.

Figure 29. Pulse Occurrence and Pulse Interval Histograms Computed from 100 Presentation of a 1263 Hz Pure Tone with a 10-90-10 Trapezoidal Envelope and a Magnitude of 35 dB Attenuation (a) and (b) are from Neuron 710827/11, (c) and (d) are from Model 03/31/76.3.

Figure 30. Pulse Occurrence and Pulse Interval Histograms Computed from 100 Presentation of a 1263 Hz Pure Tone with a 10-90-10 Trapezoidal Envelope and a Magnitude of 40 dB Attenuation (a) and (b) are from Neuron 710827/11, (c) and (d) are from Model 03/31/76, 3.

Figure 31. Pulse Occurrence and Pulse Interval Histograms Computed from 100 Presentation of a 1263 Hz Pure Tone with a 10-90-10 Trapezoidal Envelope and a Magnitude of 55 dB Attenuation (a) and (b) are from Neuron 710827/11, (c) and (d) are from Model 03/31/76.3.

SECTION 8

A COMPARISON OF MODEL AND NEURON RESPONSES TO SPEECH-LIKE STIMULI

8.1 PULSE OCCURRENCE HISTOGRAMS

Model 03/31/76. 3 was presented with the Glot-1 Stimuli listed in Table 10. Each of the eight pairs of Model and Neuron runs was comprised of 100 presentations of a stimulus. The stimuli, Neuron POHs and Model POHs are presented in Figure 32 through 39. Note that both the Neuron and Model POHs follow the displacement of the stimulus, with most of the activity occurring where the stimulus just crosses the time axis going positive. Also note that the model consistently has a large peak of activity before the start of the sound segment of the stimulus. This is due to a noise artifact on the representation of the stimulus seen by the model.

8.2 VOWEL PULSE INTERVAL HISTOGRAMS

For each run of the model and neuron, segment PIHs were constructed from those portions of the responses corresponding to each vowel segment in the stimulus. In the following discussion, such PIHs will be called vowel PIHs in general and a "vowel-name" followed by "PIH" in particular (e.g., /r/-PIH). They are presented in Figures 40 through 49 organized by vowel, with the Neuron vowel PIH on the left and the corresponding Model vowel PIH on the right in each figure. Note that there are four vowel PIHs for each vowel, corresponding to the fact that within the eight stimuli each vowel occurs four times. Also note that each vowel was presented twice at an intensity of 10 dB attenuation, and once each at intensities of 20 dB and 40 dB attenuation.

8.3 PEAK OCCURRENCE TABLES

Peak Occurrence Tables, Tables 11 through 20, have been constructed in order to facilitate the comparison of peak locations and magnitudes in comparable Neuron and Model vowel PIHs. These tables were constructed using the procedure outlined in Section 6.3. Only peaks occurring in an interpulse interval below 7.0 msec were included, since most of the interesting structure in the PIH takes place at interpulse intervals of less than 7.0 msec.

Ancillary information provided in the Peak Occurrence Tables include the intervals over which the vowel extends in the stimulus, the average interpulse interval, the total number of interpulse intervals, the stimulus the vowel is located in, the position of the vowel within the stimulus, and the stimulus intensity, in dB attenuation.

Text continues on page 147

Figure 32.

- (a) The Response of ROC COC's Channel 20 to Stimulus 3A, with a Magnitude of 10 dB Attenuation.
- (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 6) to 100 Presentations of the Stimulus in (a).
- (c) The POH Constructed from the Responses of Model 04/05/76.4 (Run 1) to 100 Presentations of the Stimulus in (a).

FIGURE TH STIMULUS FOR 33A OFFINING INTERVALS 1 TO 888

10.

(a)

FIGURE POH FOR 710827 . 11.. 6.

(b)

FIGURE POH FOR BRSSETT.J . 04/05/76.4. 1.

Figure 33.

- (a) The Response of ROC COC's Channel 20 to Stimulus 3B, with a Magnitude of 10 dB Attenuation.
- (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 7) to 100 Presentations of the Stimulus in (a).
- (c) The POH Constructed from the Responses of Model 03/31/76.3 (Run 4) to 100 Presentations of the Stimulus in (a).

FIGURE TH STIMULUS FOR 38 . 10

FIGURE FOH FOR 710827 . 11.. 7

(b)

FIGURE POH FOR BASSETT .. . 03/31/76.3. 4

Figure 34.

- (a) The Response of ROC COC's Channel 20 to Stimulus 4A, with a Magnitude of 40 dB Attenuation.
- (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 8) to 100 Presentations of the Stimulus in (a).
- (c) The POH Constructed from the Responses of Model 04/15/76.3 (Run 1) to 100 Presentations of the Stimulus in (a).

FIGURE TH STIMULUS FOR 4A DEFINING INTERVALS 1 TO 888

10.

(a)

FIGURE POH FOR 71082

. 11.. 8.

(b)

FIGURE POH FOR BASSETT.J . 04/15/76.3.

Figure 35.

- (a) The Response of ROC COC's Channel 20 to Stimulus 4B, with a Magnitude of 40 dB Attenuation.
- (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 9) to 100 Presentations of the Stimulus in (a).
- (c) The POH Constructed from the Responses of Model 04/12/76.3 (Run 1) to 100 Presentations of the Stimulus in (a).

FIGURE TH STIMULUS FOR 4

10.

(a)

FIGURE POH FOR 710827 . 11.. 9.

(b)

FIGURE POH FOR BESSETT.J . 04/12/76.3. 1.

Figure 36.

- (a) The Response of ROC COC's Channel 20 to Stimulus 7A, with a Magnitude of 10 dB Attenuation.
- (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 14) to 100 Presentations of the Stimulus in (a).
- (c) The POH Constructed from the Responses of Model 04/12/76.3 (Run 2) to 100 Presentations of the Stimulus in (a).

FIGURE TH STIMULUS FOR 78 DEFINING INTERVALS 1 TO 800

(a)

FIGURE POH FOR 710827 . 11.. 14.

(b)

FIGURE POH FOR BASSETT. J . 04/12/76.3. 2

Figure 37.

- (a) The Response of ROC COC's Channel 20 to Stimulus 7B, with a Magnitude of 10 dB Attenuation.
- (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 15) to 100 Presentations of the Stimulus in (a).
- (c) The POH Constructed from the Responses of Model 04/15/76.3 (Run 2) to 100 Presentations of the Stimulus in (a).

FIGURE TH STIMULUS FOR 78 DEFINING INTERVALS 1 TO 999

(a)

FIGURE POH FOR 710827 . 11. 15

(b)

FIGURE POH FOR BASSETT, J . 04/15/76.3. 2.

Figure 38.

- (a) The Response of ROC COC's Channel 20 to Stimulus 8A, with a Magnitude of 20 dB Attenuation.
- (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 16) to 100 Presentations of the Stimulus in (a).
- (c) The POH Constructed from the Responses of Model 04/05/76.4 (Run 2) to 100 Presentations of the Stimulus in (a).

DAYTON UNIV OHIO RESEARCH INST A PRIMARY AUDITORY NEPVE MODEL.(U) AD-A036 222 F/G 6/16 OCT 76 D G LEET UDRI-TR-76-17 F33615-75-C-5098 UNCLASSIFIED AMRL-TR-76-84 NL 2 OF 2 AD A036222 B. W. 此此 她 Se Se END DATE FILMED

20.00 20.00 40.00 60.00 100.00 120.00 140.00 160.00 200.0

FIGURE TH STIMULUS FOR BR

10.

(a)

FIGURE POH FOR 710827 . 11. 1

(b)

FIGURE POH FOR BASSETT.J . 04/05/76.4. 2.

Figure 39.

- (a) The Response of ROC COC's Channel 20 to Stimulus 8B, with a Magnitude of 20 dB Attenuation.
- (b) The POH Constructed from the Responses of Neuron 710827/11 (Run 17) to 100 Presentations of the Stimulus in (a).
- (c) The POH Constructed from the Responses of Model 04/05/76.4 (Run 3) to 100 Presentations of the Stimulus in (a).

OURE TH STIMULIS FOR DE 10. FINING INTERVALE 1 TO DOS

FIGURE POH FOR 710827 . 11.. 17.

(b)

FIGURE POM FOR BASSETT.J . DA/DE/78 4. 9

Figure 40. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /r/ Vowel Segment.

- (a) From Neuron 710827/11, Run 7.
- (b) From Model 03/31/76.3, Run 03/31/76.3/4.
- (c) From Neuron 710827/11, Run 14.
- (d) From Model 03/31/76.3, Run 04/12/76.3/2.

In (a) and (b) the stimulus is 3B, presented at an intensity of 10 dB attenuation. /r/ is located in the second position of this stimulus, approximately in sample intervals 234 through 450. In (c) and (d) the stimulus is 7A, presented at an intensity of 10 dB attenuation. /r/ is located in the third position of this stimulus, approximately in sample intervals 459 through 672.

(c)

(d)

(b)

- Figure 41. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /r/ Vowel Segment.
 - (a) From Neuron 710827/11, Run 16.
 - (b) From Model 03/31/76.3, Run 04/05/76.4/2.
 - (c) From Neuron 710827/11, Run 9.
 - (d) From Model 03/31/76.3, Run 04/12/76.3/1.

In (a) and (b) the stimulus is 8A, presented at an intensity of 20 dB attenuation. /r/ is located in the fourth position of this stimulus, approximately in sample intervals 632 through 862. In (c) and (d) the stimulus is 4B, presented at an intensity of 40 dB attenuation. /r/ is located in the third position of this stimulus, approximately in sample intervals 368 through 600.

.34 NUMBER OF INTERVALS = 412

(b)

(c)

(d)

Figure 42. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /æ/ Vowel Segment.

- (a) From Neuron 710827/11, Run 6.
- (b) From Model 03/31/76.3, Run 04/05/76.4/1.
- (c) From Neuron 710827/11, Run 15.
- (d) From Model 03/32/76.3, Run 04/15/76.3/2.

In (a) and (b) the stimulus is 3A, presented at an intensity of 10 dB attenuation. /æ/ is located in the third position of this stimulus, approximately in sample intervals 395 through 618. In (c) and (d) the stimulus is 7B, presented at an intensity of 10 dB attenuation. /æ/ is located in the first position of this stimulus, approximately in sample intervals 14 through 234.

(c)

Figure 43. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /æ/ Vowel Segment.

- (a) From Neuron 710827/11, Run 17.
- (b) From Model 03/31/76.3, Run 04/05/76.3/1.
- (c) From Neuron 710827/11, Run 8.
- (d) From Model 03/31/76.3, Run 04/15/76.3/1.

In (a) and (b) the stimulus is 8B, presented at an intensity of 20 dB attenuation. /æ/ is located in the third position of this stimulus, approximately in sample intervals 454 through 674. In (c) and (d) the stimulus is 4A, presented at an intensity of 40 dB attenuation. /æ/ is located in the fifth position of this stimulus, approximately in sample intervals 880 through 999.

(d)

(b)

Figure 44. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /ɔ/ Vowel Segment.

- (a) From Neuron 710827/11, Run 7.
- (b) From Model 03/31/76.3, Run 03/31/76.3/4.
- (c) From Neuron 710827/11, Run 14.
- (d) From Model 03/31/76.3, Run 04/12/76.3/2.

In (a) and (b) the stimulus is 3B, presented at an intensity of 10 dB attenuation. /o/ is located in the first position of this stimulus, approximately in sample intervals 15 through 233. In (c) and (d) the stimulus is 7A, presented at an intensity of 10 dB attenuation. /o/ is located in the first position of this stimulus, approximately in sample intervals 12 through 237.

)

(b)

(d)

(c)

Figure 45. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the / ɔ/ Vowel Segment.

- (a) From Neuron 710827/11, Run 16.
- (b) From Model 03/31/76.3, Run 04/05/76.4/2.
- (c) From Neuron 701827/11, Run 9.
- (d) From Model 03/31/76.3, Run 04/12/76.3/1.

In (a) and (b) the stimulus is 8A, presented at an intensity of 20 dB attenuation. /ɔ/is located in the fifth position of this stimulus, approximately in sample intervals 869 through 999. In (c) and (d) the stimulus is 4B, presented at an intensity of 40 dB attenuation. /ɔ/ is located in the fifth position of this stimulus, approximately in sample intervals 806 through 999.

(c)

Figure 46. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /a/ Vowel Segment.

- (a) From Neuron 710827/11, Run 17.
- (b) From Model 03/31/76.3, Run 04/05/76.4/3.
- (c) From Neuron 710827/11, Run 8.
- (d) From Model 03/32/76.3, Run 04/15/76.3/1.

In (a) and (b) the stimulus is 8B, presented at an intensity of 20 dB attenuation. /a/ is located in the second position of this stimulus, approximately in sample intervals 213 through 453. In (c) and (d) the stimulus is 4A, presented at an intensity of 40 dB attenuation. /a/ is located in the third position of this stimulus, approximately in sample intervals 450 through 667.

Figure 47. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /a/ Vowel Segment.

- (a) From Neuron 710827/11, Run 17.
- (b) From Model 03/31/76.3, Run 04/05/76.4/3.
- (c) From Neuron 710827/11, Run 8.
- (d) From Model 03/31/76.3, Run 04/15/76.3/1.

In (a) and (b) the stimulus is 8B, presented at an intensity of 20 dB attenuation. /a/ is located in the second position of this stimulus, approximately in sample intervals 213 through 453. In (c) and (d) the stimulus is 4A, presented at an intensity of 40 dB attenuation. /a/ is located in the third position of this stimulus, approximately in sample intervals 450 thorugh 667.

(b)

(a)

Figure 48. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /I/ Vowel Segment.

- (a) From Neuron 710827/11, Run 6.
- (b) From Model 03/31/76.3, Run 04/05/76.4/1.
- (c) From Neuron 710827/11, Run 14.
- (d) From Model 03/31/76.3, Run 04/12/76.3/2.

In (a) and (b) the stimulus is 3A, presented at an intensity of 10 dB attenuation. /I/ is located in the first position of this stimulus, approximately in sample intervals 14 through 215. In (c) and (d) the stimulus is 7A, presented at an intensity of 10 dB attenuation. /I/ is located in the second position of this stimulus, approximately in sample intervals 238 through 458.

- Figure 49. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /I/Vowel Segment.
 - (a) From Neuron 710827/11, Run 17.
 - (b) From Model 03/31/76.3, Run 04/05/76.4/3.
 - (c) From Neuron 710827/11, Run 9.
 - (d) From Model 03/31/76.3, Run 04/12/76.3/1.

In (a) and (b) the stimulus is 8B, presented at an intensity of 20 dB attenuation. /I/is located in the fifth position of this stimulus, approximately in sample intervals 854 through 999. In (c) and (d) the stimulus is 4B, presented at an intensity of 40 dB attenuation. /I/is located in the fourth position of this stimulus, approximately in sample intervals 601 through 805.

- Figure 50. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /E/ Vowel Segment.
 - (a) From Neuron 710827/11, Run 6.
 - (b) From Model 03/31/76.3, Run 04/05/76.4/1.
 - (c) From Neuron 710827/11, Run 15.
 - (d) From Model 03/31/76.3, Run 04/15/76.3/2.

In (a) and (b) the stimulus is 3A, presented at an intensity of 10 dB attenuation. /E/ is located in the fifth position of this stimulus, approximately in sample intervals 841 through 999. In (c) and (d) the stimulus is 7B, presented at an intensity of 10 dB attenuation. /E/ is located in the fifth position of this stimulus, approximately in sample intervals 895 through 999.

(b)

- Figure 51. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the \mathcal{E} Vowel Segment.
 - (a) From Neuron 710827/11, Run 17.
 - (b) From Model 03/31/76.3, Run 04/05/76.4/3.
 - (c) From Neuron 710827/11, Run 8.
 - (d) From Model 03/31/76.3, Run 04/15/76.3/1.

In (a) and (b) the stimulus is 8B, presented at an intensity of 20 dB attenuation. $/\mathcal{E}/$ is located in the first position of this stimulus, approximately in sample intervals 14 through 212. In (c) and (d) the stimulus is 4A, presented at an intensity of 40 dB attenuation. $/\mathcal{E}/$ is located in the first position of this stimulus, approximately in sample intervals 15 through 225.

FIGURE 710827 . 11.. 17.
DEFINING INTERVALS 14 TO 212
AVERAGE = 6.70 NUMBER OF INTERVALS = 405

(a)

P.I. NORMAL I ZED 90.00 5.00 INTERPULSE BASSET 10.00 15.00 INTERVAL. MSEC 20.00 FIGURE BASSETT.J. 04/15/76.3. 1.
DEFINING INTERVALS 14 TO 225

AVERAGE = 6.55 NUMBER OF INTERVALS = 471

(c)

- Figure 52. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /u/ Vowel Segment.
 - (a) From Neuron 710827/11, Run 6.
 - (b) From Model 03/31/76.3, Run 04/05/76.4/1.
 - (c) From Neuron 710827/11, Run 14.
 - (d) From Model 03/31/76.3, Run 04/12/76.3/2.

In (a) and (b) the stimulus is 3A, presented at an intensity of 10 dB attenuation. /u/ is located in the second position of this stimulus, approximately in sample intervals 216 through 394. In (c) and (d) the stimulus is 7A, presented at an intensity of 10 dB attenuation. /u/ is located in the fourth position of this stimulus, approximately in sample intervals 673 through 849.

Figure 53. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /u/ Vowel Segment.

- (a) From Neuron 710827/11, Run 17.
- (b) From Model 03/31/76.3, Run 04/05/76.4/3.
- (c) From Neuron 710827/11, Run 9.
- (d) From Model 03/31/76.3, Run 04/12/76.3/1.

In (a) and (b) the stimulus is 8B, presented at an intensity of 20 dB attenuation./u/is located in the fourth position of this stimulus, approximately in sample intervals 675 through 853. In (c) and (d) the stimulus is 4B, presented at an intensity of 40 dB attenuation./u/is located in the second position of this stimulus, approximately in sample intervals 189 through 367.

Figure 54. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /ə/ Vowel Segment.

- (a) From Neuron 710827/11, Run 7.
- (b) From Model 03/31/76.3, Run 03/31/76.3/4.
- (c) From Neuron 710827/11, Run 15.
- (d) From Model 03/31/76.3, Run 04/15/76.3/2.

In (a) and (b) the stimulus is 3B, presented at an intensity of 10 dB attenuation. /ə/is located in the fifth position of this stimulus, approximately in sample intervals 850 through 999. In (c) and (d) the stimulus is 7B, presented at an intensity of 10 dB attenuation. /ə/is located in the fourth position of this stimulus, approximately in sample intervals 668 through 894.

(b)

FIGURE BRSSETT.J. 04/15/76.3. 2.
DEFINING INTERVALS 668 TO 894
AVERAGE = 6.76 NUMBER OF INTERVALS = 512

- Figure 55. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /ə/ Vowel Segment.
 - (a) From Neuron 710827/11, Run 16.
 - (b) From Model 03/31/76.3, Run 04/05/76.4/2.
 - (c) From Neuron 710827/11, Run 8.
 - (d) From Model 03/31/76.3, Run 04/15/76.3/1.

In (a) and (b) the stimulus is 8A, presented at an intensity of 20 dB attenuation. /ə/ is located in the first position of this stimulus, approximately in sample intervals 12 through 232. In (c) and (d) the stimulus is 4A, presented at an intensity of 40 dB attenuation. /ə/ is located in the second position of this stimulus, approximately in sample intervals 226 through 449.

(b)

FIGURE BRSSETT.J. 04/15/76.3.1
DEFINING INTERVALS 226 TO 449
RVERAGE = 6.85 NUMBER OF INTERVALS

Figure 56. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /i/Vowel Segment.

- (a) From Neuron 710827/11, Run 7.
- (b) From Model 03/31/76.3, Run 03/31/76.3/4.
- (c) From Neuron 710827/11, Run 14.
- (d) From Model 03/31/76.3, Run 04/12/76.3/2.

In (a) and (b) the stimulus is 3B, presented at an intensity of 10 dB attenuation. /i/ is located in the third position of this stimulus, approximately in sample intervals 460 through 640. In (c) and (d) the stimulus is 7A, presented at an intensity of 10 dB attenuation. /i/is located in the fifth position of this stimulus, approximately in sample intervals 850 through 999.

FIGURE 710827 . 11.. 7.
DEFINING INTERVALS 460 TO 640
RVERAGE = 8.46 NUMBER OF INTERVALS = 189

(a)

(b)

FIGURE 710827 . 11.. 14.

DEFINING INTERVALS 850 TO 999

AVERAGE = 8.78 NUMBER OF INTERVALS = 111

(c)

NORMAL IZED 8 I 0 5.00 INTERPULSE FIGURE BASSETT.J. 04/12/76.3. 2.
DEFINING INTERVALS 650 TO 999

RVERAGE = 6.59 NUMBER OF INTERVALS = 299

- Figure 57. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /i/ Vowel Segment.
 - (a) From Neuron 710827/11, Run 16.
 - (b) From Model 03/31/76.3, Run 04/05/76.4/2.
 - (c) From Neuron 710827/11, Run 9.
 - (d) From Model 03/31/76.3, Run 04/12/76.3/1.

In (a) and (b) the stimulus is 8A, presented at an intensity of 20 dB attenuation. /i/ is located in the third position of this stimulus, approximately in sample intervals 451 through 631. In (c) and (d) the stimulus is 4B, presented at an intensity of 40 dB attenuation. /i/ is located in the third position of this stimulus, approximately in sample intervals 12 through 188.

(b)

(c)

Figure 58. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /o/ Vowel Segment.

- (a) From Neuron 710827/11, Run 7.
- (b) From Model 03/31/76.3, Run 03/31/76.3/4.
- (c) From Neuron 710827/11, Run 15.
- (d) From Model 03/31/76.3, Run 04/15/76.3/2.

In (a) and (b) the stimulus is 3B, presented at an intensity of 10 dB attenuation. /o/ is located in the fourth position of this stimulus, approximately in sample intervals 641 through 849. In (c) and (d) the stimulus is 7B, presented at an intensity of 10 dB attenuation. /o/ is located in the second position of this stimulus, approximately in sample intervals 235 through 449.

(b)

133

- Figure 59. Pulse Interval Histograms Constructed from Responses to 100 Presentations of the /o/Vowel Segment.
 - (a) From Neuron 710827/11, Run 16.
 - (b) From Model 03/31/76.3, Run 04/05/76.4/2.
 - (c) From Neuron 710827/11, Run 8.
 - (d) From Model 03/31/76.3, Run 04/15/76.3/1.

In (a) and (b) the stimulus is 8A, presented at an intensity of 20 dB attenuation. /o/is located in the second position of this stimulus, approximately in sample intervals 233 through 450. In (c) and (d) the stimulus is 4A, presented at an intensity of 40 dB attenuation. /o/ is located in the fourth position of this stimulus, approximately in sample intervals 668 through 879.

(b)

TABLE 10 LOG OF NEURON-MODEL RUN PAIRS

STIMULUS							RUN	
ID	Vowel Sequence					Intensity	Model	Neuron
3A	/1/	/u/	/ae/	/a/	181	10	04/05/76.4/1	6
3B	101	/r/	/i/	101	/e/	10	03/31/76.3/4	7
4A	121	/ə/	/a/	101	/ae/	40	04/15/76.3/1	8
4B	/i/	/u/	/r/	/1/	101	40	04/12/76.3/1	9
7A	101	/1/	/r/	/u/	/i/	10	04/12/76.3/2	14
7B	/æ/	101	/a/	/ə/	131	10	04/15/76.3/2	15
8A	/9/	101	/i/	/r/	101	20	04/05/76.4/2	16
8B	181	/a /	/ae/	/u/	/1/	20	04/05/76.4/3	17

TABLE 11
PEAK OCCURRENCE TABLE, VOWEL /ṛ/

Interpulse Interval	710827/11 Run 7	03/31/76. 3 Run 4	710827/11 Run 14	04/12/76.3 Run 2	710827/11 Run 16	04/05/76. 4 Run 2	710827/11 Run 9	04/12/76. 3 Run 1
1.0						. 002		
1.2							. 158	.013
1.4	The second second							
1.6	. 159	. 110	. 046			. 087	. 159	
1.8				. 085	. 049			. 087
2.0								
2.2	2013						A STATE OF THE STA	
2.4	. 118	. 076	. 072	. 057	. 092	. 053		. 057
2.6						and the second	. 097	
2.8				. 030				. 032
3.0			. 058		The state of			
3.2	. 098						.068	
3.4		. 129		. 121	.061			. 106
3.6						. 140		
3.8							.048	
4.0		. 078	. 092	. 087	. 075			. 081
4.2	. 052					. 078		
4.4								
4.6	. 081		. 053		. 066			.038
4.8							. 052	.050
5.0		.072	. 065	. 072	. 061		.032	. 076
5. 2						. 070		.0.0
5.4							. 056	
5.6	. 059	. 055	. 048	.064	. 061		.050	. 063
5.8						. 055		. 505
6.0	Borney Company							
6.2			. 046					.034
6.4	.047			. 017	. 056		.047	. 554
6.6		.034						
6.8	Anna C		. 029			. 032		. 038
7.0				. 038			.045	.000
7.2						150		

No. Sample Intervals	226	226	214	214	231	231	233	233
Average	6, 07	6.51	7, 34	6.93	7.34	6. 80	4.69	6.78
Number Intervals	572	527	414	472	412	527	805	528
Vowel Location	3B(2)	3B(2)	7A(3)	7A(3)	8A(4)	8A(4)	4B(3)	4B(3)
Intensity	10	10	10	10	20	20	40	40

TABLE 12
PEAK OCCURRENCE TABLE, VOWEL /æ/

Interpulse Interval	710827/11 Run 6	04/05/76.4 Run 1	710827/11 Run 15	04/15/76.3 Run 2	710827/11 Run 17	04/05/76.4 Run 3	710827/11 Run 8	04/15/76. Run 1
1.0								
1.2				***			. 123	. 101
1.4	.085	.081	. 109	.008	.024	. 057		
1.6								
1.8							024	
2.0	.049						.036	024
2.2								.034
2.4	000	. 118	A STATE OF THE STATE OF	. 153	075	101	. 118	. 115
2.6	.085			. 155	.075	. 151	. 110	. 115
2.8			. 151					
3.0						The second second	.021	
3.2							.021	. 063
3.4	.087		. 123		.094			.003
3.6				120	.094	200	. 169	. 183
3.8		. 110		. 125		. 399	. 109	. 103
4.0	.061	042			.028			
4.2		.043			.026			
4.4	035			.043				
	.035		. 099	.043				
4.8	. 068	.079	.099		.085	.090	. 123	. 120
5.2	.008	.079		.076	.005	.090	. 123	. 120
5.4				.010	EL HOUSE			
5.6			.033					
5.8			,033				.041	
6.0					.066			
6.2	.052			. 069	.000		.046	
6.4	.052	.079	.089	,		.098		.067
6.6	,045	,	,			,	.031	
6.8				The state of the s				
7.0								

No. Sample Intervals	224	224	221	221	221	221	120	120
Average	7.06	6,43	5.46	6.47	7.41	6, 48	5. 29	5.66
Number Intervals	425	534	677	510	195	208	424	509
Vowel Location	3A(3)	3A(3)	7B(1)	7B(1)	8B(3)	8B(3)	4A(5)	4A(5)
Intensity	10	10	10	10	20	20	40	40

TABLE 13
PEAK OCCURRENCE TABLE, VOWEL / 9/

Interpulse Interval	710827/11 Run 7	3/31/76.3 Run 4	710827/11 Run 14	4/12/76.3 Run 2	710827/11 Run 16	04/05/76.4 Run 2	710827/11 Run 9	4/12/76.: Run 1
1.0			A revenue	Charles Let	Cak her			
1.2	and some	The second second						The same of the same of
1.4	. 270				.040		. 120	.047
1.6		.071	. 155	.077		. 112		
1.8							A. V. 685. 13	
2.0		.094	A CONTRACTOR			.089		. 171
2.2							.045	
2.4	. 112		. 100	. 069				
2.6					.080		,023	
2.8								
3.0								.061
3. 2		.075		. 087		.070		
3,4							The state of the	. 108
3.6	.091		. 117	. 119		. 143	.090	
3.8		. 121						. 123
4.0					. 100			
4.2				.040		.031		
4.4							The street of	
4.6			.040		A CONTRACTOR OF			B AR
4.8	. 082							
5.0		.096	. 082				.060	.059
5.2					.095	.097		.057
5.4				. 102	The state of the s			. 052
5.6		.060	Harry March					.032
5.8					.065			. 042
6.0			Marie Sala			.027		.012
6.2	.046		.063		.060			Marie Andrew
6.4								.027
6.6					.050		.023	.021
6.8		.048	The same of					. 057
7.0				1 - 1 - 1 - 1		Mary Charles	.023	.057

No. Sample Intervals	218	218	226	226	137	137	194	194
Average	4. 38	6.63	5. 23	6,60	7.11	6.28	9. 10	7.26
Number Intervals	842	481	742	519	200	258	133	407
Vowel Location	3B(1)	3B(1)	7A(1)	7A(1)	8A(5)	8A(5)	4B(5)	4B(5)
Intensity	10	10	10	10	20	20	40	40

TABLE 14
PEAK OCCURRENCE TABLE, VOWEL /a/

Interpulse Interval	710827/11 Run 6	04/05/76.4 Run 1	710827/11 Run 15	04/15/76, 3 Run 2	710827/11 Run 17	04/05/76.4 Run-3	710827/11 Run 8	04/15/76. S Run 1
1.0								
1.2	. 062					. 048	. 098	
1.4		. 058		. 078	.016			. 059
1.6						. 055		
1.8			. 053					
2.0	. 062						. 065	
2.2		. 058	. 045	. 072	. 075			
2.4	. 059							. 098
2.6		. 087	Burger St.	. 082		. 123		
2.8	. 077		. 064				. 079	
3.0					. 096			
3. 2					The Lates	190		
3.4		AFIRST COL						
3.6							.071	
3.8	.074	. 121		. 099	. 087			. 111
4.0			. 095			. 093	. 084	
4.2								
4.4								
4.6					. 078	.039		W 15 18 10 1
4.8	.065	. 087	. 095	.068			. 084	. 093
5.0					. 064			200
5.2						.053		.063
5.4				.052				
5.6	.056	.020						
5.8			. 062		.068		. 044	
6.0	.067			.029				
6.2	And the second				. 066			
6.4		. 052		.035		. 052		
6.6							.033	
6.8	.036		. 033					
7.0		.019		.027	.064			

No. Sample Intervals	222	222	218	218	241	241	218	218
Average	7.61	6.94	7,45	6.61	6.66	6.68	6. 16	6, 85
Number Intervals	338	481	419	485	561	562	478	460
Vowel Location	3A(4)	3A(4)	7B(3)	7B(3)	8B(2)	8B(2)	4A(3)	4A(3)
Intensity	10	10	10	10	20	20	40	40

TABLE 15
PEAK OCCURRENCE TABLE, VOWEL /I/

Interpulse Interval	710827/11 Run 6	04/05/76.4 Run 1	710827/11 Run 14	4/12/76/3 Run 3	710827/11 Run 17	04/05/76.4 Run 3	710827/11 Run 9	4/12/76/3 Run 1
1.0		. 009		. 010				
1.2	. 079						. 068	
1.4								
1.6				. 042				
1.8								. 090
2.0	. 164		.080					
2.2		. 102		. 130	.034	. 169	.040	
2.4			. 080					
2.6			- A		. 059	. 061	.011	
2.8	. 066	. 037						
3.0			.051					
3. 2	. 068							
3.4			. 046				.034	100
3.6						A CANADA		1.3
3.8	. 115		. 068		.076			. 172
4.0								
4.2	. 092	. 133	. 094	. 138		. 140	. 023	
4.4								
4.6					. 034		. 023	
4.8				A STATE OF THE				
5.0	. 047		.041					
5. 2		. 022			. 067			
5.4			. 046					
5.6							. 034	
5.8	. 066	. 098			.034		The section of	. 101
6.0			. 068	. 092				
6, 2					. 025	. 076	. 023	
6.4		8,6						.071
6.6				.021	.017	. 054		
6.8	.015	.022						
7.0			.041	.019	. 101			

No. Sample Intervals	202	202	221	221	147	147	205	205
Average	5.06	6.64	7.59	6.90	7.52	6. 32	10. 39	7.07
Number Intervals	617	459	413	478	119	278	177	424
Vowel Location	3A(1)	3A(1)	7A(2)	7A(2)	8B(5)	8B(5)	4B(4)	4B(4)
Intensity	10	10	10	10	20	20	40	40

TABLE 16
PEAK OCCURRENCE TABLE, VOWEL /E/

Interpulse Interval	710827/11 Run 6	04/05/76. 4 Run 1	710827/11 Run 15	04/15/76.3 Run 2	710827/11 Run 17	04/05/76. 4 Run 3	710827/11 Run 8	04/15/76.: Run 1
1.0								
1.2								
1.4	. 122		. 043				. 054	
1.6		. 122			. 057			. 064
1.8				. 183		. 151		
2.0			. 069		. 059			. 059
2.2		1000					. 060	
2.4								The state of
2.6	100	. 009						
2.8	. 052		. 096	.011	. 057			. 023
3.0							. 042	
3.2		. 116				. 118		. 138
3.4	. 058			. 204	. 077			
3.6		. 131				. 130		. 151
3.8			. 086		.074			
4.0		. 021		. 043				
4.2								
4.4	. 047							. 034
4.6				. 075			. 054	
4.8		. 086			. 072			
5.0						. 104		
5. 2	. 064	. 104	. 103	. 108			E man	. 093
5.4				2,118,118,118	. 062		. 030	
5.6	1							
5. 8	. 064		. 052	. 016			. 048	
6.0					.047			
6.2	The same of the sa		. 052		15 M			
6.4		.045						
6.6				. 043		. 069		
6.8		.060	. 043		. 089			. 108
7.0				. 059		. 066	. 054	

No. Sample Intervals	159	159	105	105	199	199	211	211
Average	7.26	6, 23	6. 81	5, 26	6. 70	6.64	9.62	6.55
Number Intervals	172	336	116	186	405	423	167	471
Vowel Location	3A(5)	3A(5)	7B(5)	7B(5)	3A(5)	3A(5)	4A(1)	4A(1)
Intensity	10	10	10	10	20	20	40	40

TABLE 17
PEAK OCCURRENCE TABLE, VOWEL /u/

Interpulse Interval	710827/11 Run 6	04/05/76.4 Run 1	710827/11 Run 14	4/12/76 Run 3	710827/11 Run 17	04/05/76.4 Run 3	710827/11 Run 9	4/12/76.1 Run 3
1.0		. 003		. 003		. 003		
1. 2							. 083	
1.4	. 052							
1.6	Variation .			1000				
1.8			. 064				. 083	
2.0	.079							. 109
2.2				. 127	. 061	. 125	. 083	
2.4	. 079	. 196	. 036					. 182
2.6				. 161		. 128		
2.8	.070						.060	
3.0		700		The Contract of	. 056			
3.2				. 025		. 045	.048	
3.4								
3.6	.061		. 060		. 041	. 003		
3.8							. 065	
4.0								
4.2	. 076				. 066		The state of the s	
4.4								
4.6		. 126		. 144			THE PARTY	
4.8			. 108		. 066	. 148		. 187
5.0		. 090		. 132			. 024	
5.2	. 052							. 083
5.4			. 056	100			.018	
5.6		.014		. 011				. 003
5.8			The state of the s		. 041	.011	. 030	
6.0	. 044	. 006		. 008			s is to the said	
6.2			. 064		.046		. 054	
6.4	. 035							
6.6		The state of	500000000000000000000000000000000000000					
6.8	. 050			-		.061	.042	
7.0			. 044	1	.081			
7.2				. 090				. 138

No. Sample Intervals	179	179	177	177	179	179	179	179
Average	6, 61	6.91	7. 84	6, 53	8. 75	6, 85	8. 37	6.78
Number Intervals	343	357	250	355	197	359	168	385
Vowel Location	3A(2)	3A(2)	7A(4)	7A(4)	8B(4)	8B(4)	4B(2)	4B(2)
Intensity	10	10	10	10	20	20	40	40

TABLE 18
PEAK OCCURRENCE TABLE, VOWEL /ə/

. 074	. 019		. 032			Run 8	Run 1
					. 010		
. 095				.017		. 134	
. 095		. 017					
. 095	. 063		, 086		. 075		
				. 055		. 134	
	. 082	. 027	, 088		. 097		.078
					Established N		
. 107		. 086					
	. 135		. 070	. 105	Variable Control	. 065	. 086
					. 097		4
	. 123						. 070
			. 078		. 089	. 051	
. 070		. 081		. 115			. 053
		100					. 064
	. 076	. 081			. 050		2000
			. 084	. 076		. 058	. 101
. 045		100					
					. 075		
. 033							
	.044	. 073		. 072			. 053
			. 051		. 044	. 049	
			***				. 043
	. 051	***	. 045			. 058	
. 074		. 000		***	. 067		
. 062		044		.088			.041
. 062	1 000	.004	STATE OF THE STATE OF				A STATE OF
	,035			450			
				.057	022		. 056
			62 .064	62 .064	.064	.088	62 .035 .064 .057

No. Sample Intervals	150	150	235	235	221	221	223	223
Average	6. 49	6.11	7.62	6.76	6. 18	6.71	5, 83	6. 85
Number Intervals	243	316	409	412	581	496	567	486
Vowel Location	3B(5)	3B(5)	7B(4)	7B(4)	8A(1)	8A(1)	4A(2)	4A(2)
Intensity	10	10	10	10	20	20	40	40

TABLE 19
PEAK OCCURRENCE TABLE, VOWEL /i/

Interpulse Interval	710827/11 Run 7	3/31/76.3 Run 4	710827/11 Run 14	4/12/76/3 Run 2	710827/11 Run 16	04/05/76. 4 Run 2	710827/11 Run 9	4/12/76/3 Run 1
1.0								
1, 2	.048	. 028		. 033			.078	
1.4					.012	. 034		.019
1.6		. 054		. 037	E FEBRUARY			
1.8	. 069				. 024	.071	.049	
2.0			.018					
2.2	4.1	. 049				. 055		
2.4				. 067	. 042		. 020	
2.6			.018			. 063		. 092
2.8	. 037		Part Annual				. 087	
3.0					.018			
3. 2								
3.4						. 118		. 095
3.6	. 026	. 153	. 009	. 197			.078	
3.8						. 100		
4.0					.012			
4. 2	. 032	. 062					, 029	
4.4								. 046
4.6				. 027			. 049	
4.8 5.0 5.2	1							
5.0		. 031		. 040			.010	
5.2								
5.4		. 036	. 054	. 040		. 087	. 029	
5.6	. 064							
5.8		. 044						
6.0	. 053		.018			. 026		. 122
6.2				.017	.097		. 068	
6.4	. 023		Mary Inch					
6.6					.073	.018	. 029	
6.8		ALC: Y'C.						10 th 1 1 1 1 1 1
7.0	. 111	.098			.097		. 058	

No. Sample Intervals	181	181	150	150	181	181	177	177
Average	8, 46	6.34	8. 78	6, 59	10.28	6.68	8. 22	7.96
Number Intervals	189	386	m	299	165	380	103	262
Vowel Location	3B(3)	3B(3)	7A(5)	7A(5)	8A(3)	8A(3)	4B(1)	4B(1)
Intensity	10	10	10	10	20	20	40	40

TABLE 20
PEAK OCCURRENCE TABLE, VOWEL /o/

Interpulse Interval	710827/11 Run 7	3/31/76.3 Run 4	710827/11 Run 15	04/15/76.3 Run 2	710827/11 Run 16	04/05/76.4 Run 2	710827/11 Run 8	04/15/76. Run 1
1.0						. 002		
1.2							. 053	
1.4	. 089		. 022	. 037				. 054
1.6					.028			
1.8		. 121	. 044				. 026	
2.0	.079					. 116		. 059
2.2				. 083	.091			
2.4	. 099		. 087				. 035	
2.6		. 054				. 063		. 061
2.8								
3.0			The state of		. 042		. 044	
3. 2				. 077		. 053		
3.4			. 117					
3.6	. 091	. 100		. 102	. 097			. 111
3.8						. 097	. 061	
4.0					. 053			
4. 2		, 063						
4.4			. 087					
4.6	. 058	. 090		2-11		.074		. 072
4.8				.087			. 009	
5.0								
5.2						. 036		.030
5.4							. 026	
5.6	. 083	. 029		. 050				. 059
5.8			. 061		. 072			
6.0						. 034	. 009	
6.2			. 039		. 066			.041
6.4		.071				.071	. 053	
6.6	. 030			. 069				
6.8			. 041		. 047			.074
7.0								
7.2								

No. Sample Intervals	209	209	215	215	218	218	212	212
Average	6.51	6.56	7.22	6.66	7.65	7.01	11.21	7.07
Number Intervals	496	479	412	481	361	476	114	460
Vowel Location	3B(4)	3B(4)	7B(2)	7B(2)	8A(2)	8A(2)	4A(4)	4A(4)
Intensity	10	10	10	10	20	20	40	40

8.4 STIMULUS ZERO-CROSSING INTERVAL HISTOGRAMS

Early in the modeling effort it became clear that the model usually produces pulses corresponding in time to the point where the stimulus crosses the time axis going positive. This suggests that peaks in the Model's PIHs, and hopefully the Neuron's too, should occur at the permutations of the intervals between these stimulus zero-crossing points. This observation has lead to the development of the Stimulus Zero-Crossing Interval Histogram or SIH. The sequence of intervals between zero-crossing points was generated for each vowel within a digitized stimulus. For example, (1.4, 1.2, 1.2, 1.4, 0.8, ...). A histogram is constructed by tallying the intervals taken one at a time, summed two at a time, in the manner (1.4 + 1.2), (1.2 + 1.2), (1.2 + 1.2)1.4), (1.4 + 0.8), ..., summed three at a time, in the manner (1.4 + 1.2 + 1.4)1.2), (1.2 + 1.2 + 1.4), (1.2 + 1.4 + 0.8), ..., and so on. These histograms are presented in Tables 21 through 30 for each of the four presentations of the ten vowels. Note the differences in the SIHs of the four presentations of a given vowel. This demonstrates the inherent digitization error in the stimulus generation procedure, since the four presentations are supposed to have exactly the same analog waveform.

8.5 A COMPARISON OF SIHs AND CORRESPONDING VOWEL PIHs

In this section tables are presented that provide the basis for a quantitative verification of the empirical observation that "the Model usually produces pulses corresponding in time to the point were the stimulus crosses the time axis going positive." If this statement is true, then it follows that peaks in the SIH should coincide with peaks in the corresponding vowel PIH.

Tables 31 through 50 were constructed to test this hypothesis. In each of these tables are four major columns, one for each presentation of a vowel. Each major column has two subcolumns. The left-hand subcolumn is labeled "SIH", and contains an "X" in the rows corresponding to the intervals where peaks occurred in the SIH. The right-hand subcolumn is labeled "PIH", and contains a number in the rows corresponding to the intervals where peaks occurred in the vowel PIH, as entered in the Peak Occurrence Tables. The number is the rank of the peak, where the rank is according to the size of the peaks in the Peak Occurrence Tables. A rank of 1 corresponds to the largest peak. This ranking, along with the column labeled "Number of PIH Peaks in this Interval," will be used in a later analysis.

An SIH peak and a peak in a corresponding vowel PIH are said to match if they fall within one sample interval of each other. The total number of peaks that don't match between an SIH and a comparable vowel PIH divided by the total number of peaks in the two histograms is the fraction of misplaced peaks for that pair. This computation is averaged over the four SIH-vowel PIH pairs associated with each vowel to give the average fraction of misplaced peaks. Each of these values is plotted in Figure 60 by vowel and according to whether the vowel PIH was from the Model or the Neuron. The vowels are arranged on a scale that measures the distance from the Neuron's characteristic frequency to the vowel formant closest to it.

Text continues on page 169

TABLE 21
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL /ṛ/

		ST	IMULJS	
INTERVAL	38	7A	8 A	48
.2	0	0	0	0
.4	0	0	0	0
.6	0	0	0	0
. 8	3	3	3	2
.4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8	1	1	1	0 0 2 0 0 3 10 9 0 0 6 0 0 2 4 8 3 2 5 3
1.2	0	1 2 12 9 0	0	0
1.4	5 11	2	2 13	3
1.6	11	12	13	10
1.8	9	9	10	9
2.0	0	0	0	0
2.2	1	0	0	0
2.4	7	8	8	6
2.6	0	0	0	0
2.8	0	Carried 1 and and	0	0
3.0	1	0	0	2
3.2	9	5	5 12	4
3.4	6	11	12	8
3.6	4	5 11 2 1	3	3
3.8	2	1	1	2
4.0	9	6	5	5
4.2	. 1	5	6	3
4.4	0	0	0	3
4.4	0	10 and 1 to 1800	0	0 0 3 5
4.8	1	1 7	1	3
5.0	10		7	5
5.0 5.2 5.4 5.6	4	5	7	4
5.4	2	0	0	1
5.6	6	5	4	6
5.8	7	9	10	5
6.0	1	2	2	2
6.0	0	THE 1 COURT	0	5 2 0
6.4	0	0 2 6	0	0
6.6	7	2	2	5
6.8 7.0	7 3 0	6	8	5 2 0
7.0	0	0	0	0
				Mary and Mary Co.

antibus, restrict a la seba a ban son de ar con de la la company elques, elemente de la la company estado con con la la la la la company el la company el

TABLE 22
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL /æ/

		ST	IMULUS	
INTERVAL	3.4	78	88	4A
• 2	0	0		
.4	1	G	0	0
• 5	1	0	0	0
. 8	1	0	1	0
1.0	0	0	0	0
1.2	25	21 13	22	13
1.4	9	13	11	4
1.6	1	0	C	1
1.8	1	0	C	0
2.0	0	0	1	0
2.2	1	0	0	0
2.4	16	12 17	12	3
2.6	16	17	18	7
2.8	2	4	2	2
3.0	1	0	0	2
3.2	0	0	1	0
3.4	1	Û	0	0
3.6	9	6	4	4
3.8	19	16	21	8
4.0	4	9	6	4
4.2	2	1	0	0
4.4	0	G	0 1	0
4.5	0	0	0	0
4.8	5	3	2	2
5.0	18	11	12	4 0 0 2 7 5
5.2	9	13	16	5
5.4	2	4	0	1
5.6	0	0	1	0
5.8	0	G	Ü	0
6.)	3	0	0	1
6.2	10	8	6	4
6.4	10 12	14	20	7
6.5	1	7	3	2
5.8	0	1	9 6	0
7.0	0 5	0	G	0

TABLE 23
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL />/

		STI	MULUS	
INTERVAL	3B	7A	8 A	4B
.2	0	0	0	
. 4		0	0	0
.4 .6 .8 1.0 1.2 1.4	0 2 2 0 0 5		1	0
. 8	2	3	2	0
1.0	0	1 3 0	0	0
1.2	0	û	G	0
1.4	5	4	3	8
1.6	14	16	9	7
1.8	0	0	0	i
2.0	5	5	3	4
1.8 2.0 2.2 2.4 2.6	14 0 5 6 2	5 3 5 0	1 2 0 3 9 0 3 3 2	0
2.4	2	5	2	3
2.6	0	0	0	1
2.8	0	0	0	2
2.8 3.0 3.2 3.4 3.6 3.0 4.0 4.6 4.6 5.0 5.4 5.6 5.6 5.6 6.0	0 5 4 3 9 8 2 0 0 0	4	0 3 3 1 5 6 1	0 8 7 1 4 0 3 1 2 3 0 5 5 5 7 0 0
3.2	4	6	3	0
3.4	3	6 3 7 7 5	1	5
3.6	9	7	5	5
3.8	8	7	6	3
4.0	2	5	1	5
4.2	0	0	0	9
4.4	0	0	0	0
4.6	0	0	0	0
4.8	0	0		3
5.0	8	7	4	6
5.2	8	8	5	0 3 6 1 8 0 1 3
5.4	6	6 2 5 3 0	4	8
5.6	2	2	0	0
5.8	4	5	4	1
6.0	2	3	1	3
6.2	0	0	0	0
6.4	0	0 7	0	4
6.5	8	7	4	1
6.8	8 6 2 4 2 0 0 8 3	3	2 2	4 1 1 3
7.0	2	4	5	3

TABLE 24
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL /a/

		ST	IMULJS	
INTERVAL	3A	78	88	44
.2		0		0
.4	0	0	0	0
.6	0	0	0	
.8	0	0	2	0
1.0	9	8	2 7	9
.8 1.0 1.2	9 13 9 3 0 1	14	15 12 3 0	9
1.4	9	8	12	5
1.6	3	4	3	2
1.8	0	0	0)
2.0	1	2	1	3
2.2	9	8	11	6
2.4	4	6	4	1
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0	14 5 0	0 2 8 6 8 7 2 3 5 5 7 9 3 1	14	0 9 9 5 2 1 3 6 1 7
2.8	5	7	6	7
3.0	0	2	2 1 7 7	0
3.2	4 2 8 9 7 3 0 3 8 10 5	3	1	4 1 4 7 7
3.4	2	5	7	1
3.6	8	5	7	4
3.8	9	7	7	7
4.0	7	9	11 3	7
4.2	3	3	3	0 2 7
4.6	0	1	1	0
4.6	3	4	2	2
4.8	8	8	11	7
4.8 5.0 5.2 5.4 5.6	10	6	5	9 0 3 1 1 10 2
5.2	5	7	11	3
5.4	4	3	4	3
5.6	0	2	2	1
5.8	3	4	0	1
6.0	6	3	6	10
6.0	10	11	14	2
6.4	7	6	5	3
6.4	0 3 6 10 7 3 1	6 7 3 2 4 3 11 6 4 2	5	1 0
6.8 7.0	1	5	1	1
7.0	0	0	0	0

TABLE 25
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL /I/

		SI	IMULUS	
INTERVAL .2 .4	3A	74	83	48
.2	0	0	0	
.4	0	0	٥	0
. 6	1	1	2	0
.8	3	4	2	0
1.0	1	0	0	0
.6 .8 1.0 1.2	0 3	0 3 1 4 7 9 0 5 0 0 9 1 3 3 6 7 3	0 0 2 2 0 1 2 2 4 7 9 2 2 0 0 1 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 3 13
1.4	3	3	2	0
1.6	3	1	2	0
1.8	4	4	4	3
2.0	8	7	7	13
2.2	6	9	9	4
2.4	6 2 2 1	0	2	0
2.6	2	5	2	0
2.8	1	0	0	0 0 0 0 0 0 1
3.0 3.2	0	0	0	0
3.2	0	0	1	0
3.4	3 2 5 7	1	1	0
3.6	2	3	3	0
3.8	5	3	0	1
4.0	7	6	10	14
4.2	6	7	8	4
4.4	0	3	1	0
4.6	4		2	0
4.8	1	1 0	2	0
5.0	0	0	0	0
5.2	0	0	1 2 2 0 0 1 2 2	0
5.4	1	0	1	0
5.6	4	4	5	0
5.8	5	1 7 6	2	1
6.0	7	7	8	12
6.2	3	6	6	5
6.4	7 3 2 4	4		0 0 0 0 0 0 1 12 5 0
6.6	4	1	2 2 0	0
6.8	1 0	0	2	0
7.0	0	0	0	0

TABLE 26
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL / E/

		ST	IMULUS	
INTERVAL	3A	73	83	44
• 2	0	0	0	0
.4	0	C	0	0
.6	0	0 0	0 0 0 0	0
. 8	0	0	0	0
1.0	0	0	0	0
.8 1.0 1.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 7 2 2 0 0 0 0	0	0
1.4	0	0	0	1
1.5	13	7	14	14
1.3	3	2	4	6
2.0	2	2	4	2
1.4 1.5 1.3 2.0 2.2 2.4	0	0	0	1
2.4	0	0	0	0
2.6	0	0	0	0
2.8	0	0	S	0
2.6 2.8 3.0 3.2	0	0	0 0 8 5 6 2 0	0
3.2	8	2	8	9
3.4 3.6	5	4	5	7
3.6	3	4	6	6
3.8	1	0	2	1
4.0	0	0	0	0
4.2	0	1 1 1	0	9
4.4	0	0	0	0
4.0	0	0	0	0
4.8	4	0	4	4
4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4	5	0	4	7
5.2	5	4	7 5 0 0	9
5.4	2	1 0 0 0	5	2
5.6	0	0	0	9
5.8	0	0	0	0
6.3	0	G	0	0
6.2	0	0	0	0
6.4	0 0 5	Û	0 1 3	1
6.6		2	3	4
6.6 6.8 7.0	7 3	2 2 4	7	0 0 0 0 0 1 1 6 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.0	3	4	8	4

TABLE 27
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL /u/

		STI	MULUS	
INTERVAL	34	7 A	88	48
.2	0	0	0	0
• 4	3	4	2	0
•6	1	0	1	0
. 8	0	0	0	0
1.0	0	0	0	0
1.2	0	0	0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
1.4	0	0	0	0
1.6	0	0	0	0
1.8	1	1	0	0
2.0	4	2	1	0
1.8 2.0 2.2	5	1 2 7 5 8	8	0 2 3
2.4	5	5	3	3
2.6	8	8	7	0
2.8	0	0	2	0
3.0 3.2 3.4	0	0	0	0
3.2	0	0	0	0
3.4	0		0	0
3.6	0	0	0	0
3.8	0	0	0	0
4.0	0	0	0	0
4.2	1	1 1	0	1
4.4	2	1	0	0
4.6	9	8	6	0
4.8	5	4	6	3
5.0 5.2	1 2 9 2 7	7	4	1 0
5.2	1	1	4	
5.4	0	0	0	0
5.6	0	0	0	0
5.8	0	0	0	0
6.0	0	0	0	0
6.0	0 0 1 3 2	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
6.4	1	1	0	0 1 0
6.6	3		0	1
6.8	5	2	2	0
7.0	5	2	2	1

TABLE 28
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL /ə/

		ST	MULUS	
INTERVAL	38	78	84	44
.2	0			
.4	0	0 0 2 2 6 7	0	0 0 0 0 0
.6	3	2	1	0
.8	0	2	1	0
1.0	3	6	4	0
1.0	5	7	6	1
1.4	0 3 5 2 10	4	6 3 9 5	4
1.6	10	12	9	10
1.8	4	5	5	0
1.8 2.0 2.2 2.4		12 5 5	4	3
2.2	3	4	4	5
2.4	G	0	0	1
2.6	1 3 0 1 7	3	3	3
2.8	7	5	3	1
2.8 3.0	5	12	0 3 3 7 6 3	4
3.2	4	5	6	5
3.4	1	3	3	J
3.4 3.6	1 4 2 2 3	4 0 3 5 12 5 3 5 4 1 7	4	4 10 0 3 5 1 1 4 5 3 8 1 0 8 1 2 3
3.8	2	4	4	1
4.0	2	1	0	0
4.2	3	7		2
4.4	4	5	6 5 3	3
4.6	5	7	3	4
4.6	4 5 3 0 3 2	6 1 5 4 3 5 11 5 2	6	0
5.0 5.2 5.4	0	1	6 1 3 5 2 5 8	0
5.2	3	5	3	8
5.4	2	4	5	1
5.6	3	3	2	3
5.8	4	5	5	3
6.0	6	11	8	2
6.2	3	5	2	0
6.4	0	2		0
6.6	1	0	0	3
6.8	1	5	2	4 0 0 8 1 3 3 2 0 0 3 6 0
7.0	3	5	4	0

TABLE 29
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL /i/

		STI	MULUS	
INTERVAL	38	74	8 A	48
.2	0	0	C	0
.4	0	0	0	0
• 6	0	0	3	0
.6 .8	0	0	0	0
1.0	1	0	0	0
1.2	0	2	0	0
1.4	4	0 0 2 2 0	4	0 0 0 0 0 0 0 1 4 1 3 0 0
1.0	0		e	0
1.8	0	0	0	0
2.0	0	0	0	3
2.2	2 3	0 2 1	0	0
2.4	3	2	4	0
2.6	0		0	0
2.8	0	0	0	0
3.0	0	1 2 1	0	0/
3.2	3	2	0	1
3.4	3	1	5	4
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8	3 3 1 3	0 3	0	1
3.8		3	4	3
4.0	0	0	0	0
4.2	0	û 2 2	0	0
4.4	0	2	0	0
4.6	2 2 0	2	0	0
4.8	2	0	4	0
5.0	0	0	0	0
5.2	0	0	0	0
5.4	1 2 2 0	0 1 2 0	0	0
5.6	2	1	0	0
5.8	2	2	4	0
6.0	0	C	0	0
4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4		0	0	0
6.4	1	0	0	0
6.6	0	0	0	
6.8	0 2 5	0 2 5	0	0 3
7.0	5	5	0	3

TABLE 30
STIMULUS ZERO-CROSSING INTERVALS TABLE VOWEL /o/

THEFT			STIMULUS	
INTERVAL	38	73	8 A	4A
•2	0	7	C	0
.4	0	0	0	0
.6	0	0	0	0
.8	0	0	0	0
1.0	0	1	1	0
1.2	4	3 2	4	0 2
1.6	3	2	0	2
1.5	1	4	5	4
1.8	11	9	10	1
2.0	4	6	5	1 9
2.4	0	0	0	0
2.6	3	0	0	0
2.8	1	2	1	9 0 1 3
3.0	4	3	4	3
3.0 3.2	ō	3	4	0
3.4	4	2	C	0
3.6	6	6	0	4
3.8	4	6	10	7
4.0	Ö	1	0	0
4.2	0	0	0	0
4.4	3	2	å	0
4.6	5	5	5	3
4.8	4	5	8	2
5.0	0	5	ŏ	5
5.2	4	1	Ō	ō
5.4	1	5	5	2
5.6	4	4	5	2
5.8	0	1	0	0
6.0	0	0	0	0
6.2	3	1	Ō	5
6.4	9	7	5	5
6.6	0	5	8	2
6.8	4	3	4	2 2 1
7.0	4	0	0	1
1 0 1 0				

TABLE 31
SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /r/ TO MODEL 03/31/76.3

Interval	Number of PIH Peaks	03/31/76.3/4		04/12/76.3/2		04/05/76.4/2		04/12/76.3/1	
	In This Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	1								11
1.6	2	X	2	X	1	X	2	X	
1.8	1 2 2 4 2	104			3	12,000			6
2.4	4	X	4	X X	6 8	X	6	X	6
2.8	2			X	8				10
3.2	0	X	1.1						
3.4	3		1	X	1	X		X	1
3.6	1						1		
4.0	1 3	X	3	X	2			X	3
4.2	1			V 1-4		X	3		
4.6	0					Edward I			7
5.0	3	X	5	X	4	X		X	4
5.2	1					X	4		
5.6	3		6		5			X	5
5.8	1	X		X		x	5		
6.2	1								9
6.4	1				9				
6.6	1	X	7					X	
6.8	2			X		X	7		7
7.0	1				7				
		0.0			0.40.00				

TABLE 32

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /æ/ TO MODEL 03/31/76.3

Interval	Number of PIH Peaks			04/15/76.3/2		04/05/76.4/3		04/15/76.3/1	
- 1	In This Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	1	x		x		x		x	4
1.4	3		3		3		5		
2.0	0	2				X	100		
2.2	1	6							7
2.4	3	X	1		1			x	
3.2	1 0	x		x	1	X	1		3
3.4	1				1 - 3	^			6
3, 8	1	x	2	x	2	x	2	x	6
4.2	1		6						
4.4	0					x			
4.6	1				6				
5.0	3	x	4				4	x	2
5.2	1		-	x	4	X			
5. 6 6. 2					7 5	X			
6.4	3	x	4	x		x	3	x	5
		^		^		•		•	
				1 m					
		OG IT		1					
							1		
		E TEN				100			
						10			
	100			1 E					

TABLE 33

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL / D/ TO MODEL 03/31/76. 3

Interval	Number of PIH Peaks	3/31/76.3/4		4/12/76.3/2		4/05/76.4		4/12/76.3/1	
	In This Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.4	1							x	7
1.6	3	X	5 3	X	4	x	2		
2.0	3		3	X		X	4	X	3
2.2		x				X			
2.4	1			X	5			X	
3.0	1	X				X		X	4
3.2	3		4	X	3	X	5	1000	
3.4	1							X	2
3.6	2 2	X		X	1		1	X	
3.8	2		1	X		X			1
4.0					-			x	
4.2	2 2				6		6		
5.0		X	2					x	5
5.2	1	X		X		X	3		
5.4	2		- Wat W		2			x	6
5.6	1		6						
5.8	1	X	- 7	X		X			8
6.0	1						7	X	
6.4	1							X	9
6.6		X		X		X			
6.8	1		7				1		

TABLE 34

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /a/ TO MODEL 03/31/76.3

Interval	Number of PIH Peaks In This	04/05/76.4/1		04/15/76.3/2		04/05/76.4/3		04/15/76.3/1	
	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	1	x		x		x	6	x	
1.4	3		5		3				6
1.6	1			A			3		
2.2	2	x	5	X	4	x		x	
2.4	1		W - S						2
2.6	3	X	2	x	2	x	1	x	
2.8	0		14.4					x	
3.2	0	X		10 PM				X X X	100
3.8	3	X	1		1			x	1
4.0	1			x		x	2 7	x	
4.6	1						7		P.A.L.
4.8	3	100	2	x	5	X			3
5.0	0	X			100			X	
5.2	2			X		X	4		5
5.4	1	P. P. V			6			X	
5.6	1								7
5.8	0			x					
6.0	2		4	27700	8			X	Contract of the
6.2	1	X		X		X			4
6.4	3		7		7		5		
6.6	0							X	
6.6	0							x	

TABLE 35

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /I/ TO MODEL 03/31/76. 3

Interval	Number of PIH Peaks			04/12/76.3/2		04/05/76.4/3		04/12/76.3/1	
	In This Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.4	0			x					
1.6	1				4				
1.8	1								3
2.0	0 3	X						X	
2.2	3		2	x	2	X	1 4		
2.6	0			X			4		
2.8	1	100	4						
3.4	0	X		100		2 1-1			1
3.6	0					X			
3.8	1			7.3					1
4.0	1 0 3	X				X		X	
4.2			1	X X	1	100	2		
4.6	0 0 1	X		X		X X			
4.8	0					X			
5.2			5						
5.6	0 2 1			X					
5.8	2		3						2
6.0		x		X	3	X		X	
6.2	1						3		
6.4	1 2								4
6.6	2	x			5		5		
6.8	1		5	х					1
7.0	1				6				

TABLE 36

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /E/ TO MODEL 03/31/76.3

Number of PIH Peaks	04/05/76,4/1		04/15/76, 3/2		04/05/76.4/3		04/15/76.3/1	
In This Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
2	x	2	x		x		x	5
		1		2		1	4	
1								6
1		9						
1	1.7			9		1		8 2
3	X	3	817	U-57. 4	X	3	X	2
1			X	1				
3		1	X		X	2		1
1				6				
1	1	8	2					
1			40.5					7
1	1			4				10
1		5						
1	X		X			4		28
3	X	4	X	3	X		X	4
1				8				
1		7	35.14					
2				6		5		
2	X	6					X	3
2			X	5	X	6		
	PIH Peaks In This Interval 2 2 1 1 1	PIH Peaks 04/05 In This Interval SIH 2	PH Peaks In This In This Interval SIH PIH 2	PIH Peaks In This Interval SIH PIH SIH 2	PIH Peaks In This Interval 04/05/76, 4/1 04/15/76, 3/2 Interval SIH PIH SIH PIH 2 X 2 X 2 1 9 9 9 9 3 X 3 X 1 3 1 X 6 1 1 8 4 4 4 1 5 X 3 4 4 1 X 4 X 3 8 1 X 4 X 3 8 1 X 4 X 3 8 1 X 4 X 3 8 2 X 6 6 6 6	PIH Peaks In This Interval 04/05/76, 4/1 04/15/76, 3/2 04/05/16, 3/2	PIH Peaks In This Interval 04/05/76, 4/1 04/15/76, 3/2 04/05/76, 4/3 04/05/76, 4/3 04/05/76, 4/3 04/05/76, 4/3 04/05/76, 3/2 04/05/76, 4/3 04/05/76, 4/3 04/05/76, 3/2 04/05/76, 4/3 04/05/76, 3/2 04/05/76, 4/3 04/05/76, 4/3 PIH SIH PIH SIH	PIH Peaks In This Interval 04/05/76, 4/1 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 04/05/76, 4/3 04/15/76, 3/2 X

TABLE 37

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /u/ TO MODEL 03/31/76. 3

Interval	Number of PIH Peaks In This	04/05/76.4/1		4/12/76.3/2		04/05/76.4/3		4/12/76.3/1	
	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
2.0	1								3
2.2	2			x	4	X	3		1
2.4	2 2 2 2		1					x	2
2.6	2	x		x	1 5	x	2		
3.2	2	No. of the last			5		5 7	The state of	
3.6	1						7		
4. 2								X	
4.6	2 2 2	X	2	X	2	X			
4.8	2					X	1	x	1
5.0	2	x	3	X	3				
5.2	1								4
5.6	3		4		6				5
5.8	1	4.					6		
6.0	2	100	5		7				
6.6		x						x	
6.8	1			X		x	4		

TABLE 38

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /9/ TO MODEL 03/31/76.3

Interval	Number of PIH Peaks In This		6.3/4	4/15/7	6,3/2	04/05/	76.4/2	04/15	/76.3/1
	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.0	3		8		9	1	9		181
1.2		x		x	1	x			
1.6	3	x	5	X	2	X	4	x	
2.0	3 4		5		2		1	-	3
2. 2		x						x	1
2.8	3	x	1		5	F 1 - 1		100	2
3.0	1			x		x	1		
3.2	2		2					x	1 4
3.4	2		13	A Story C	4		3		
3.6	1	x	13	X		X		x	7
3.8	0					X X			
1.0	1	18 10		100		X			5
4.2	2		4	X			7		
4.4	2				3				1 1
4.6	0	x		X		1		x	
4.8	1					X	4		
5. 2	2	x	7	X		6.1	12.1	x	7
5.4	2				6	X	8		No.
5.6	1					1	1	x	9
5.8	2		6		7			X	100
6.0	1	x	116	X		x	6		Similar Single
6.2	1		103				19	1	10
6.4	0	18 19				x			1 3 4
6.6	1				8	13.		17.00	
6.8	to in the said	No.	A STATE OF			1 100	Contract out	X	Constitution of
7.0								100	6

TABLE 39

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /i/ TO MODEL 03/31/76.3

	In This Interval	SIH	PIH	4/12/76.3/2		04/05/76.4		4/12/76.3/1	
1.4	,		FIR	SIH	PIH	SIH	PIH	SIH	PIH
1.4			9		7				
	2 2 2 1	x		x		x	1		6
	2		4	X	6				
1.8	1						1		i
2. 2	2		5			4.50			
2.4	1	x		x	3	x	The state of		
2.6	2			19.					4
3.2	2 0 2 2	x	1	x					
3.4	2	X				x	x		3
3.6	2		1		1				
3.8	i	x		x		x	X		
4.2	1		3						
4.4	1			x					5
4.6	1	x		X	8	15000			
4.8	0	X	1			x			
5.0	0 2 3		8 7		4				
5.4	3		7		4				
5.6	0	x							
5.8	1	x	6	x		X			
6.0	2								2
6.2				1	9				
6.4	0	x	10			TV.			
6.6	1								
6.00									

TABLE 40

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /o/ TO MODEL 03/31/76.3

Interval	Number of PIH Peaks In This	3/31/76.3/4		04/15/76.3/2				04/15/76.3/	
l march	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.0	1		1 380		Tall Me		9	11/1/17	
1.2	0	x		x		x			
1.4	2			1	7				7
1.6	0	1 1						x	
1.8	1	x	1	x	1	x		- 1	
2.0	2						1	x	5
2.2	1		1000		3	1			1
2.6	3	x	6				5	15 1	4
2.8	0			x	10.00	x		x	-
3.0	0	x		X		X			100
3.2	2				4		6		- 3-5
3.6	3	x	2	x	1	x		x	1 1
3.8	1	3		X			2	0. "	
4.2	1	4	5						C. Park
4.6	3	x	3	x			3	1.9	3
4.8	1			x	2	x		x	
5.2	2	x					7		9
5.4	0			x		x	13 1	3.00	
5.6	3	x	7		6	X		x	5
6.0	1						8		
6.2	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					x	8
6.4	2	x	4	x	LE S	1	4		1
6.6	1				5	x	45		
6.8	1	2 7 5				1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	131
7.0	0	1.5 6						7	2

TABLE 41

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /r/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This			710827/11/14		710827/11/16		710827/11/9	
	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	1								2
1.6	3	x	1	x	1 7	x		x	1
1.8	1						8		
2.4	3	x	2	X	2	x	8	x	
2.6	1					- 1 9			3
2.8				x					1
3.0	1				4		14.18.19		
3.2	2	X	3						4
3.4	1			X	N. Pro	X	4	X	
3.8	1								7
4.0	2	X		X	1		2	X	
4. 2	1		6			X			
4.6	3	10 - 10	4		5		3		
4.8	1								6
5.0	2	x		X	3	X	4	X	
5.2			1 1 5 2			X			
5.4	1								5
5.6	3		5		6		4	X	
5.8		X		X		X			
6.2	1	The last			7				
6.4	3		7			Table 1	7		8
6.6		x						x	
6.8				x	9	X		N. C.	

TABLE 42

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /æ/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This		/11/6	710827	/11/15	710827	/11/17	710827/11/8	
	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	1	x		x		x	35-18	x	1 2
1.4	3		2		3		6		
2.0	2		7	1 × 1	8.10	x			7
2.4	0	x		1 1 1				X	
2.6	3	X	2	X		X	3		4
2.8	1				1				
3. 2	1	200	1			X	1-57		9
3.4	2	State State	1		2			1	
3.6	1	W 13					1		
3.8	1	X	1 1 1	X	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X	1000	X	1
4.0	1		5						
4.2	1	100					5		
4.4	0			2010		X			
4.6	1		9		9 3 1		3.5		
4.8	1		1 2 5	1 3	4				
5.0	3	x	4				2	x	2
5.2	0	100		X		X			
5.6	0		1. 30			X	103		Y T
5.8	1						1.33		6
6.0	1	6 1 - SE					4		
6.2	2	BUR.	6						5
6.4	1	X		X	5	X	7.5	x	
6.6	2		8		1000				8

TABLE 43

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL / >/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This	710827	/11/7	710827	/11/14	710827/11/16		710827/11/9	
	Interval	SIH	РІН	SIH	PIH	SIH	РІН	SIH	PIH
1.4	3		1				7	x	1
1.6	1	x	1,000	X	1				1
2.0			1 1 1 1 1	X X				x	
2.2	1	x	1						4
2.4	2 2	1 12	2	X	3	100 (5.1)		X	1
2.6	2			1			3		5
3.0		x						x	1
3. 2				x		A E B			
3.4	The state of the s		1					x	
3.6	3	x	3	x		2	27.3	X	2
3.8				X			P. T. W.		1 "
4.0	1						1	x	18.
4.6	1		4.19			6			
4.8	1		4						
5.0	2	x						x	3
5. 2	1	x		x			2		,
5.4		(5) (5) (b)						x	013
5.8	1	x		x			4		
6.0		7				25 TAJ		x	
6.2	3		5			5	5		To be
6.4								x	
6.6	2	x		x			6		6

TABLE 44

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /a/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This		7/11/6	71082	7/11/15	710827/11/17		710827/11/8	
	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	2	x	4	x					
1.4	1	•	1	1 ^		x		x	1
1.8	1				5		8		
2.0	2 2		14		1 3				
2. 2	2	x		x	6	x			6
2.4			6	1 ^	1 0	^		x	
2.6	0	x	1	x		x			
2.8	3		1	1	3	^	1	X	
3.0	1				1				
3. 2	0	x					1	x	
3.6	1							^	5
3.8	2	x	2			0.00	2		1 3
4.0	2			x	1	x	-	X	2
4.6	1			1		^	3	1 ^	1 4
4.8	3		3	x		x	,		2
5.0	1	x		-		^	7	x	1
5.2	0			x		x	100	1 ^	
5.4	0			"		^		x	- 15
5.6	1 3		7					^	Burg
5.8				x	4		5	135- 65	7
6.0	0							x	1
6.2	1	x		x		x	6	-	1
6.6	1							x	8
6.8	1		8	100	7		Part No.	"	

TABLE 45

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /I/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This		/11/6	710827	/11/14	710827	/11/17	710827/11/9	
	Interval	SIH.	PIH	SIH	PIH	SIH	РІН	SIH	PIH
1.2	2		3						1
1.4				x					
2.0	2	x	1		2			X	1
2.2	2 2 1 2			X		X	5		2
2.4	1				2				
2.6	2		80.77	X			4	1	8
2.8	1		5						1
3.0	1				6				
3. 2	1		4				1		
3.4	2	x			8		1		3
3.6						X			1
3.8	3		2	100	4		2		1000
4.0		X				X		X	1
4. 2	2 2			x	1				5
4.6	2	x		X		X	5		5
4.8					CA. 3-44	X			
5.0	2		7		9				
5.2	1				1		3		
5.4	1				6				1
5.6	1			X				1	3
5.8	2		5				5	1	1
6.0		x		X	4	X		x	1 .
6.2	2						8	1	5
6.6	1	x					9	1	1
6.8	1 2		8	X			1		1
7.0	2		100		9		1		1

TABLE 46

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /E/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This	710827	/11/6	710827/	11/15	710827	/11/17	710827/11/	
	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.4	2		1		7				2
1.6	1	x		X		x	7	x	1
2.0	2				4		6		1
2.2	1	3 PA (1
2.8	3		6		2		7		
3.0	1								6
3. 2	0 2 0	x			1 × × ×	x	1 2 3 3	X	
3.4	2	F	4	X			2		
3.6	0			X		X			130
3.8	2				3		3		1
4.4	1		7			100			1
4.6								100	2
4.8				1			4		
5. 0 5. 2	0	X	2	X					1.0
5.4	2 2	^	1 "	1 ^	1	X	5	x	
5.8	1 2		1 2		5		,		5
6.0	1	L.	1 .				9		1 "
6.2	1				5		,		1
6.8	2	x			5 7		1	x	183
7.0	2		14					-	2
				100			100		180
									A
							T DEV		100

TABLE 47
SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR
THE FOUR PRESENTATIONS OF THE VOWEL /u/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This	710827	/11/6	710827/11/14		710827/11/17		710827/11/9	
	Interval	SIH	PIH	SIH	РІН	SIH	PIH	SIH	PIH
1, 2	1								1
1.4	1		6						1
1.8	2				2			1	1
2.0	1		1						1
2.2	2 2			X		X	4		1
2.4	2		2		7			X	1
2.6	The second	X		X		X			1
2.8	1		4						5
3.0	1		1	1			5		
3.2	1								7
3.6	3		5		4		7		1
3.8	1 2		1	1					1 4
4.2	2		2				2	X	
4.6		x	1	X		X			1
4.8	2				1	X	2	X	1
5.0	1	x		x					10
5.2	1		6						1
5.4	2			1	5				111
5.8	2		1				7		19
6.0	1		9					100	1
6.2	2 1 1 2 2 1 2		1	1	2				16
6.4	2		10		1		6		1
6.6		x	1					x	
6.8	2 2		8	X		To the same			8
7.0	2				6		1	10000	

TABLE 48

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /9/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This		/11/7	7/0827	/11/15	710827	/11/16	71082	7/11/8
	Interval	SIH.	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	3	x	3	x		x	8		1
1.4	1				8				1
1.6	0	x		l x		x	1.00	x	
1.8	3		2				7		1
2.0	1				7				1
2.2	0	x						x	
2.6	2		1		1				1
2.8	2	X					2		3
3.0	0			x		X			
3. 2	0							x	
3.4	1								7
3.6	3	X	5	X	2	x	1	x	
3.8	0			1 10 11		X	123.		
4.2	1	No. of the same		X	2	X			
4.4	2						4	10 m	4
4.6	1	x	7	X				x	
4.8	0	1-11-01				X		100	
5. 2	3	x	8	X	4		5	x	
5.4						x			8
5.6	0	EA Value						X	1
5.8	1			1		91-04		X	4
6.0	3	x	3	x	5	x	3		1.00
6.2	0	F. Tayl	Stage of the	100			ME STI	PA FR	The sale
6.4	2	Mill of	6		6	x	CANADA CA	S CONTRACTOR	
6.8	1					75.03	6	x	
7.0	1	18-27	ALTERNATION OF THE						6

TABLE 49

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /i/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This	710827	/11/7	710827	/11/14	710827	/11/16	710827	/11/9
	Interval	SIH.	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	2		5	x					2
1.4	1	x		X		x	7	13.5	
1.8	3		2		N. C.		5		6
2.0	1				3				
2.4	2	x		X		X	4		11
2.6	1 1				3				1
2.8	2		6						1
3.0	1						6		
3. 2	0	X	1	X	100				1
3.4	0	X X	. 2.1			X		X	
3.6	3		8		6				2
3.8	0	X		X	7	x		x	1
4.0	1		18.0				7		1
4.2	2		7						8
4.4	0			X					
4.6	1	X X	3.30	X					6
4.8	0	x	A SUK			X			1
5.0	1								12
5.4	2		THE STATE OF	1	1				8
5.6	1	x	3		1000				
5.8	0	X		x		X		1000	
6.0	2		4		3				
6.2	2						1		4
6.4	0	X	100					A Comment	
6.6	1		1925				3		8 5
7.0	4	23/1-139	1				1		5

TABLE 50

SIH PEAK LOCATIONS AND PIH PEAK LOCATIONS AND RANKS FOR THE FOUR PRESENTATIONS OF THE VOWEL /o/ TO NEURON 710827/11

Interval	No. of Peak Occurrence In This	710827	/11/7	710827	/11/15	710827	/11/16	710827	/11/8
g lesk	Interval	SIH	PIH	SIH	PIH	SIH	PIH	SIH	PIH
1.2	1	x		x	Territoria.	x			2
1.4	2		3		8		1		
1.6	1		A tell				8	X	4
1.8	2	X		X	5	X			6
2.0	1		5	100	1000			X	
2.2	1	DE 18			4 104 15		2	27	
2.4	3		1	60	2				5
2.6	0	X	1000		100			W. Car	
2.8	0		11.5	X	75.	X		X	
3.0	2	X		X	1331	X	7	A . 32	4
3.4	1				1			- 1000	
3.6	2	X	2	X	N.V.	x	1	X	
3.8	1		DESTRUCTION OF	X	VIE S				1
4.4	2				2		5		
4.6	1	X	6	X					
4.8	1			X		X		X	8
5. 2	0	X							
5.4	1			x		X		Lane I	6
5.6	1	X	4			X		X	100
5.8	2		Section 1		4		3	2413101	0.43
6.0	1	100				DE 1			8
6.2	2	100			7		4	X	
6.4	1	x	251	x					2
6.6	1		7	Pe INVI		x			
6.8	2	10.00		1	6		6		300
7.0	0		6111						

-	AVERAGE FRACTION	VERAGE FRACTION OF MISPLACED PEAKS
- CHEL	NEURON	MODEL
111	0.15	0.07
1	0.29	91.0
/c/	0.29	0.12
181	0.24	0.05
11	0.31	0.25
/3/	0.34	0.28
/n/	0.43	0.37
1	91.0	0.18
/!/	0.55	0.35
/0/	0.22	0.13

Figure 60. Average Fraction of Misplaced Peaks for Ten Vowels for both the Neuron and the Model, Neuron 710827/11, Model 03/31/76.3.

The following general rules can be deduced from the figure and the fraction of misplaced peaks computations:

- (1) The SIH is a predictor of vowel PIH peaks. Accuracy ranges from 0% to 57% misplaced peaks.
- (2) The accuracy of the prediction is inversely related to the distance from the Neuron's characteristic frequency to the vowel formant closest to it.
 - (3) The SIH is a more accurate predictor of Model vowel PIHs.

8.6 VERIFICATION OF THE MODEL USING THE "FRACTION OF MIS-PLACED PEAKS" METRIC

An eyeball correlation of the comparable vowel PIHs of the Neuron and the Model leaves one with the impression that there are differences between them. But there are also differences between Neuron vowel PIHs generated from the Neuron's responses to stimuli of the same intensity. The question addressed in this section is: Are the differences between the comparable Neuron and Model vowel PIH pairs no greater than the differences between Neuron vowel PIH pairs generated from the Neuron's responses to stimuli of the same intensity? An affirmative answer to this question is a verification of the model.

The metric used to measure differences between vowel PIHs is the fraction of misplaced peaks, which is defined as the ratio of the number of peaks that do not match in the vowel PIH pair and the total number of peaks. All peaks must occur at an interpulse interval of 7 msec or less. A match is defined as in the previous section.

The Peak Occurrence Tables were used to generate the fraction of misplaced peaks for Neuron - Neuron pairs for those runs were the vowels were presented at equal intensity (the two 10 dB runs). The calculations are presented in Table 51. The calculations for the fraction of misplaced peaks for the Neuron-Model vowel PIH pair comparison are presented in Tables 52 through 61.

If the Neuron-Neuron fraction of misplaced peaks values are used as the benchmarks, the vowels /r/, /æ/, /I/, /E/, /u/, and /ə/ have at least one vowel PIH that can not be distinguished from the comparable Neuron vowel PIH. /o/ also has some very low values, even though they are not less than the /o/ benchmark. The Model can, therefore, be considered at least partially validated for six or seven of the ten vowels.

8.7 VOWEL PIH SHAPE COMPARISON

The Peak Occurrence Tables reveal that the probability associated with coincident peaks of comparable Neuron vowel PIH pairs can vary by 50% or more, even for those pairs that were generated from responses to the same stimulus at the same intensity. Tables 52 through 61 were created to quantify this observation. The description for the procedure used to create these tables will be in terms of the vowel /r/.

Text continues on page 176

TABLE 51

COMPARISON OF VOWEL PIHS IN TWO RUNS OF THE SAME STIMULUS AND INTENSITY, NEURON 710827

1	- A	ACTION	Number	r Peaks	Number	Number Mismatched	Fraction Mismatched
Vowel	Run A	Run B	Run A	Run B	Matching Peaks	Peaks	Peaks
/r/	7	14	7	. 8	7	1	0.07
/ae /	6	15	9	5	5	4	0.29
/5/	7	14	5	6	6	0	0.00
/a/	6	15	8	7	7		0.07
/1/	6	14	9	10	8	3	0.16
/8/	6	15	7	8	5	5	0.33
/u/	6	14	11	7	8	3 12 2	0.17
/ə/	7	15	8	8	7	2	0.13
/i /	7	14	9	6	6	3	0.20
101	7	15	7	8	7	1	0.07

TABLE 52

COMPARISON OF PEAKS IN MODEL AND NEURON
/r/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

Run	Model Run	Total Number Peaks	Number Matching Peaks	Fraction Mismatched Peaks
7	03/31/76.3/4	14	6	0.14
14	04/12/76.3/2	18	8	0.11
16	04/05/76.4/2	15	6	0.20
9	04/12/76.3/1	19	9	0.10

TABLE 53

COMPARISON OF PEAKS IN MODEL AND NEURON

/æ/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

	05/76.4/1	.15	6	0,20
				0.20
15 04/	15/76.3/2	12	4	0.33
17 04/	05/76.4/3	11	4	0.27
8 04/	15/76.3/1	16	7	0.06

TABLE 54

COMPARISON OF PEAKS IN MODEL AND NEURON
/º/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

Neuron Run	Model Run	Total Number Peaks	Number Matching Peaks	Fraction Mismatched Peaks
7	03/31/76.3/4	12	3	0.50
14	04/12/76.3/2	12	3	0.50
16	04/05/76.4/2	14	5	0.36
9	04/12/76.3/1	17	7	0.24

TABLE 55

COMPARISON OF PEAKS IN MODEL AND NEURON
/a/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

Run	Model Run	Total Number Peaks	Number Matching Peaks	Fraction Mismatched Peaks
6	04/05/76.4/1	16	7	0. 19
15 .	04/15/76.3/2	16	6	0.25
17	04/05/76.4/3	16	6	0.31
8	04/15/76.3/1	15	5	0.40

TABLE 56

COMPARISON OF PEAKS IN MODEL AND NEURON
/I/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

	05/76.4/1	16	7	0.13
14 04/1				
	12/76.3/2	17	5	0.47
17 04/0	05/76.4/3	14	4	0.43
9 04/	12/76.3/1	12	2	0.67

TABLE 57

COMPARISON OF PEAKS IN MODEL AND NEURON

/E/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

Neuron Run	Model Run	Total Number Peaks	Number Matching Peaks	Fraction Mismatched Peaks
6	04/05/76.4/1	16	6	0.31
15	04/15/76.3/2	17	7	0.29
17	04/05/76.4/3	15	7	0.20
8	04/15/76.3/1	15	7 0,000 0000	0.13

TABLE 58

COMPARISON OF PEAKS IN MODEL AND NEURON /u/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

61.3		Peaks	Peaks	Fraction Mismatched Peaks
6	04/05/76.4/1	16	3	0.63
14	04/12/76.3/2	16	8	0.13
17	04/05/76.4/3	16	6	0.25
9	04/12/76.3/1	17	6	0.41

TABLE 59

COMPARISON OF PEAKS IN MODEL AND NEURON />/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

Neuron Run	Model Run	Total Number Peaks	Number Matching Peaks	Fraction Mismatched Peaks
7	03/31/76.3/4	17	7 37	0.24
15	04/15/76.3/2	16	7.48.45(8)	0.13
16	04/05/76.4/2	18	9	0.06
8	04/15/76.3/1	18	8	0.17

COMPARISON OF PEAKS IN MODEL AND NEURON
/i/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

TABLE 60

Neuron Run	Model Run	Total Number Peaks	Number Matching Peaks	Fraction Mismatched Peaks
7	03/31/76.3/4	18	7	0.22
14	04/12/76.3/2	15	5	0.33
16	04/05/76.4/2	18	7	0.22
9	04/12/76.3/1	18	6	0.33

TABLE 61

COMPARISON OF PEAKS IN MODEL AND NEURON
/o/-PIHS USING THE FRACTION OF MISPLACED PEAKS METRIC

Neuron Run	Model Run	Total Number Peaks	Number Matching Peaks	Fraction Mismatched Peaks
7	03/31/76.3/4	14	6	0.14
15	04/15/76.3/2	15	6	0.27
16	04/05/76.4/2	17	6	0.29
8	04/15/76.3/1	18	8	0.11

The "Number of PIH Peaks in this Interval" column of Tables 31 and 41 was examined for one of the following situations:

- (1) an entry of 4;
- (2) an entry of 3, with an adjacent interpulse interval (adjacent in terms of sample interval) having an entry of 1 or more. All four runs must contain peaks in these intervals.
- (3) An entry of 2, with an adjacent interpulse interval having an entry of two or more. All four runs contain peaks in these intervals.
- (4) An entry of 2, with the two accent interpulse intervals have an entry of one or more. All four runs must contain peaks in these intervals.

The range of interpulse intervals for either the Model (Tab's 31) or the Neuron (Table 42) that satisfy any one of these conditions are entered a the "Interpulse Intervals" column of Table 62. Entries are made in the Neuron or Model columns according to whether the corresponding interpulse interval range was obtained from Table 31 or Table 41. The mean and standard deviation entries are obtained by computing those statistics on the ranks of the peaks contained in the interpulse interval range of the appropriate table.

Tables 62 through 71 provide a quantitative description of the variation in shape, on a Neuron to Neuron, Model to Model, and Model to Neuron basis, of the four vowel PIH's associated with each vowel.

For the Neuron to Neuron comparison, the number of interpulse interval ranges associated with the Neuron is directly proportional to the similarity in the shape of the vowel PIHs. Furthermore, the standard deviation values indicate the degree of variability in the rank of the peaks occurring in the interpulse interval ranges. Similar statements can be made for the Model to Model comparison. Reflection on these values led to the conclusion that there is considerable variation in the shapes of the Neuron vowel PIHs for a single vowel and generally less variation in the shapes of the Model vowel PIHs. Therefore, a metric for validation based on PIH shape was not feasible.

For the Model to Neuron comparison, the number of interpulse interval ranges that overlap between the two cases can be used to indicate the degree of Model-Neuron Vowel PIH similarity. The means can be compared to determine the shape variation between Neuron and Model PIHs. For instance, the /r/-vowel PIHs of the Model have more strength around the 3.4 to 4.2 msec range of interpulse intervals than the /r/-vowel PIHs of the Neuron and less strength in the 2.4 to 2.6 msec range.

These tables will be used extensively in the next phase of the modeling effort.

Text continues on page 182

TABLE 62 /r/-PIH SHAPE COMPARISON

		Neuron		Model
Interpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
1.6 - 1.8	4.25	3.77	2.25	0.50
2.4			5.50	1.00
2.4 - 2.6	2.00	0.82		
3.0 - 3.4	3.75	0,50		
3.4 - 3.6	7.6		1.00	0.00
3.8 - 4.2	4.00	2.94		
4.0 - 4.2			2.50	0.58
4.6 - 4.8	4.50	1.29		
5.0 - 5.2			4. 25	0.50
5.4 - 5.6	5.00	0.82		
5.6 - 5.8			5, 25	0.50
6.4	7.25	0.50		
6.6 - 7.0			7.00	0.00

TABLE 63

/æ/-PIH SHAPE COMPARISON

		Neuron		Model
rpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
.2 - 1.4	3. 25	1. 89	3.75	0.96
.4 - 2.6			1.50	1.00
.6 - 2.8	2.50	1.29		
.4 - 3.8	1.25	0.50		
3.8			1.75	0.50
.8 - 5.0	3.00	1. 15		
.0 - 5.2			3.50	1,00
.0 - 6.4	5.00	0.82		1.6943
.2 - 6.4		8.4	4. 25	0.96

TABLE 64
/>/-PIH SHAPE COMPARISON

		Neuron		Model
nterpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
1.2 - 1.4		10 mg 4 l	5.00	1.41
2.0 - 2.2	5.00	1. 15	307	Factor No.
2.4 - 2.6			1.75	0.50
2.8 - 3.0	2.25	1.50		3.4-1.6
3.8 - 4.0	1.75	0.50	1.25	0.50
4.6 - 4.8	2.25	0.96	4.25	2.22
5.6 - 5.8	5.75	1.50		
6.2 - 6.4			5.75	1.50
6.6 - 7.0	7.67	0.58		
4.0				

/a/-PIH SHAPE COMPARISON

		Neuron		Model
nterpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
1.4 - 1.6	2.50	3.00	4.50	2.08
2.0			3.30	0.58
2.4 - 2.6	3, 25	1.26	46.5	
3.0 - 3.2			4.00	0.82
3.6	2.50	0.58		
3.6 - 3.8			1.00	0.00
4.8 - 5.2	3. 25	0.96		Part of the
5.0 - 5.4		55.0	3.60	1. 82
6.2	5.00	0.00		8.3 - 5.0

TABLE 66
/I/-PIH SHAPE COMPARISON

		Neuron		Model
nterpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
2.0 - 2.2	2.75	1.71		engleret jako menu
2.2			1.67	0.58
3.8	2.67	1. 15		
4.2	100		1.33	0.58
5.8 - 6.2	5.00	0.82	2.75	0.50
6.4 - 6.8			4.75	0.50
				10-14

TABLE 67
/E/-PIH SHAPE COMPARISON

		Neuron	Model	
nterpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
1.4 - 1.6	4. 25	3. 20		
1.6 - 1.8			2.50	1.73
2.8 - 3.0	5, 25	2.22		
3.2			2.67	0.58
3.4 - 3.6	1.25	0.50		
5.0 - 5.2			3.75	0.50
5.2 - 5.4	3.75	2.75		0.0 -0.3
5.8 - 6.0	5.25	2. 87		
6.8 - 7.0	3,50	2.65	5.00	1.41
				No. of the second
			27.8	
			93 .5	28+24

TABLE 68 /u/-PIH SHAPE COMPARISON

		Neuron		Model
nterpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
1.8 - 2.0	1.33	0.58		
2.0 - 2.2	2.00	1.73		
2.2 - 2.4			2.50	1.29
3.6 - 3.8	5.00	1.41	-	
4.8 - 5.0	3.75	4. 19	2.25	1. 50
5.2 - 5.4	7.67	3.06		
5.6 - 5.8			6.25	0.96
6.2 - 6.4	7.50	4. 36		
6.8 - 7.0	6.00	3.56		
7.2			3.75	0.96

TABLE 69
/ ə/-PIH SHAPE COMPARISON

		Neuron		Model
nterpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
1.0		F 1	8.67	0.58
1.2 - 1.4	5.00	3.56		
1.6			3.67	1.53
1.8 - 2.0	4. 25	3.20		
2,0			2.00	1. 15
2.6 - 2.8	1.75	0.96		5.8 + 8.8
2.8 - 3.0		5 5 5	2.25	1. 89
3, 2 - 3, 4			3.25	0.96
3.4 - 3.6	3.75	2.75		
4.2 - 4.4			3.75	2.50
4.2 - 4.6	4. 25	2.06		
5.2 - 5.4	6. 25	2.06	7.00	0.82
5.8 - 6.0	3.75	0.96		

TABLE 70
/i/-PIH SHAPE COMPARISON

		Neuron		Model
Interpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
1.2 - 1.6		reduction in	6.00	1.63
1.8 - 2.0	4,00	1, 83		
2.2 - 2.6			4.50	1.29
3.4 - 3.6			1.50	1.00
3.6	5.33	3.06	al.	COSCI SVIJETO.
5.4		SEPARATE PARTITION	4.67	2.08
5.8 - 6.2	10.50		6.50	3.32
6.0 - 6.2	3.00	1.41		manuación es
7.0 - 7.2	2, 25	1.89	2.25	1.26
uer en en en de de de de Stanton garde fi		ngoni garangi d ngo thogatal o		an of all set
e esti con mouse il	4000	ne photoletic is		e ut zikowani.
100 A 100 A 100 A				print on sections.
ar contract for				10515

TABLE 71
/o/-PIH SHAPE COMPARISON

		Neuron		Model
nterpulse Intervals	Mean	Standard Deviation	Mean	Standard Deviation
2.2 - 2.4	2,50	1.73		
2.6			4.67	1.53
3.4 - 3.8	1, 25	0.50		
3.6 - 3.8			1.33	0,58
4.6 - 4.8			2, 50	0,58
5.6	21267		5.67	1.53
6.2 - 6.6			5.00	1.41
sola to reach a	5,10.17.18	ti al visvieumb		od Rin est.

The "Number of PIH Peaks in this Interval" column of Tables 31 and 41 was examined for one of the following situations:

- (1) an entry of 4;
- (2) an entry of 3, with an adjacent interpulse interval (adjacent in terms of sample interval) having an entry of 1 or more. All four runs must contain peaks in these intervals.
- (3) An entry of 2, with an adjacent interpulse interval having an entry of two or more. All four runs contain peaks in these intervals.
- (4) An entry of 2, with the two adjacent interpulse intervals have an entry of one or more. All four runs must contain peaks in these intervals.

The range of interpulse intervals for either the Model (Table 31) or the Neuron (Table 42) that satisfy any of these conditions are entered in the "Interpulse Intervals" column of Table 62. Entries are made in the Neuron or Model columns according to whether the corresponding interpulse interval range was obtained from Table 31 or Table 41. The mean and standard deviation entries are obtained by computing those statistics on the ranks of the peaks contained in the interpulse interval range of the appropriate table.

Tables 62 through 71 provide a quantitative description of the variation in shape, on a Neuron to Neuron, Model to Model, and Model to Neuron basis, of the four vowel PIH's associated with each vowel.

For the Neuron to Neuron comparison, the number of interpulse interval ranges associated with the Neuron is directly proporational to the similarity in the shape of the vowel PIHs. Furthermore, the standard deviation values indicate the degree of variability in the rank of the peaks occurring in the interpulse interval ranges. Similar statements can be made for the Model to Model comparison. Reflection on these values led to the conclusion that there is considerable variation in the shapes of the Neuron vowel PIHs for a single vowel and generally loss variation in the shapes of the Model vowel PIHs. Therefore, a metric for validation based on PIH shape was not feasible.

For the Model to Neuron comparison, the number of interpulse interval ranges that overlap between the two cases can be used to indicate the degree of Model-Neuron Vowel PIH similarity. The means can be compared to determine the shape variation between Neuron and Model PIHs. For instance, the /r/-vowel PIHs of the Model have more strength around the 3.4 to 4.2 msec range of interpulse intervals than the /r/-vowel PIHs of the Neuron and less strength in the 2.4 to 2.6 msec range.

These tables will be used extensively in the next phase of the modeling effort.

REFERENCES

- Stewart, J. L. (1972), "A Theory and Physical Model for Cochlear Mechanics", Acta Oto-Laryngologica, Supplement 294, 1972.
- Mundie, J. R., J. C. Rock, and A. J. Goldstein (1974), "Signal Processing Principles Revealed by an Auditory System Model", in Proceedings of the 5th Congress of the Deutsche Gesellschaft für Kgbernetik held at Nuremberg, March 28-30, pp 292-307.
- Rock, J. C. (1973), Recursive Plane Analysis: Its Application to the Study of Phase-Locking in Non-Uniform Signal Dependent Sampling Techniques, AMRL-TR-72-34 (AD 756 918), Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.
- Ziskin, M. and J. R. Mundie (1971), Encoding Function of Syncoders, AMRL-TR-70-119 (AD 724 072), Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.
- Zellmer, R. B. (1972), "An Investigation of the Syncoder as a Pulse-Interval Processing Device", Masters Thesis, Air Force Institute of Technology.
- Miller, John H. (1974), "Investigation of the Effects of Noise on the Encoding Function of a Syncoder", Masters Thesis, Air Force Institute of Technology.
- Mundie, J. R. (1969), "Neural Calculus" in <u>Biocybernetics of the Central Nervous System.</u> Lorne D. Proctor, Ed., Little, Brown, & Co., Boston.
- Cashin, J. C., Jr. and D. G. Leet (1976), "The Glot-1 Stimulus Set", UDRI-TR-76-07, University of Dayton Research Institute, Dayton, Ohio.
- Leet, D. G. (1976), "A Primary Auditory Nerve Model" UDRI-TR-76-17, University of Dayton Research Institute, Dayton, Ohio.