

Méthodes d'évaluation

3

- □ Evaluations ponctuelles
 - Participation d'utilisateurs représentatifs des utilisateurs finaux
 - □ Différentes étapes de conception
 - □ Différents niveaux d'évaluation
 - Qualitatif/quantitatif
- Questionnaires
- □ Interviews et démos

Importance de l'évaluation

2

- Retour qualitatif
 - Au plus tôt dans le processus de développement (dans le cadre de la CCU)
 - Evaluations informelles (petit nombre de participants)
 - Evaluations formelles (grand nombre de participants)
- Résultats quantitatifs
 - Evaluation finale
 - Démontrer qu'une interface est meilleure qu'une autre par exemple

Méthodes d'évaluation

- Evaluation heuristique
 - Evaluation séparée par plusieurs experts qui évaluent en appliquant un ensemble d'heuristiques et de guides de conception
 - □ Manque de guide de conception et d'heuristiques en 3D
- Cognitive walktrough: évaluation d'une interface en considérant plusieurs tâches de base qu'un utilisateur exécuterait
 - Evaluer la capacité de l'interface à réaliser chaque tâche de base
 - □ Utile pour les utilisateurs débutants

Méthodes d'évaluation

5

- □ Expériences contrôlées
 - □ Choix d'un petit nombre de facteurs dont on veut mesurer les effets
 - Choix de mesures
 - Construction d'un plan expérimental
 - □ Choix d'un ou plusieurs groupes d'utilisateurs

Variable indépendante

7

- Une variable indépendante est une variable qui est manipulée à travers la conception de l'expérience
- Ex: périphérique, type de retour, apparence d'un bouton, mise en page, sexe, âge, expertise, etc.
- Les termes variable indépendante et facteur sont synonymes
- □ "Indépendant" signifie "indépendant des participants"

Participants

6

- Les gens qui participent à une expérience sont appelés "participants"
- □ Eviter d'utiliser le terme "sujet"
- Utiliser le terme participant pour toute référence explicite à l'expérience (ex:, "tous les participants ont obtenu un taux d'erreur important...")
- Les commentaires généraux ou les conclusions peuvent utiliser d'autres termes: "ces résultats suggèrent que les utilisateurs ont moins de chances de ..."

Condition de test

- Les valeurs prises par une variable indépendante sont les conditions de test (niveaux)
- Donner des noms à la fois aux variables indépendantes (facteurs) et aux conditions de test (niveaux)
- □ Ex:

Facteurs	Niveaux
Périphérique	Souris, trackball, joystick
Type de retour	audio, tactile, retour de force
Tâche	Pointage, dragging
Visualisation	2D, 3D, animée

Variable dépendante

- Une variable dépendante est une variable représentant les mesures ou observations d'une variable indépendante
- Ex: temps de réalisation, vitesse, précision, taux d'erreur, nombre de touches appuyées, vitesse d'apprentissage, etc.
- Donner un nom pour la variable dépendante avec les unités
- "Dépendant" signifie "dépendant des participants"
- Exemples:
 - Temps de réalisation (ms), vitesse (mots par minute, nb de sélections par minute, etc), taux d'erreur (%) ...

Variable de contrôle

44

- □ Nombre moyen d'images par seconde
- □ Latence moyenne
- □ Retard du réseau
- Distorsion optique
- □ ...

Variable de contrôle

10

- Conditions ou facteurs qui (a) peuvent influencer une variable dépendante, mais (b) qui ne sont pas étudiés et dont on peut s'accommoder d'une certaine façon
- Une façon de les contrôler est de les traiter comme des variables de contrôle
- Une variable de contrôle est gardée constante d'un test à l'autre
- Ex:, éclairage d'une pièce, bruit de fond, température
- L'inconvénient est d'avoir trop de variables de contrôle qui rendent l'expérience moins généralisable (cad., applicable à d'autres situations)

Variable aléatoire

- □ Au lieu de contrôler tous les facteurs, certains peuvent varier de manière aléatoire
- □ De tels facteurs sont des variables aléatoires
- Plus de variabilité est introduite dans les mesures (---), mais les résultats sont plus généralisables (++ +)

Variable de confusion

13

- □ Une variable qui varie systématiquement avec une variable indépendante est une variable de confusion
- Ex: Si trois périphériques sont toujours testés dans le même ordre, la performance des participants peut s'améliorer avec l'entraînement; ex., de la 1ère à la 2^{nde} condition, et de la 2^{nde} à la 3^e condition; par conséquent "l'apprentissage" est une variable de confusion (parce qu'elle varie systématiquement avec le "périphérique")

Intra vs. inter Sujets

15

- Question: Lors de la conception d'une expérience, vaut-il mieux utiliser des facteurs intra-sujets ou inter-sujets?
- □ Réponse: Ca dépend!
- □ Discussion:
 - Parfois un facteur doit être inter-sujets (e.g., sexe, age)
 - Parfois un facteur doit être intra-sujets (e.g., session, bloc)
 - □ Parfois on a le choix. Dans ce cas, il faut faire un compromis
 - Avantage intra-sujets: la variance due aux pré-dispositions des participants est normalement la même dans toutes les conditions (cf. inter-sujets)
 - Avantage inter-sujets: évite les phénomènes d'interférences (ex: utiliser deux claviers avec une organisation différente des touches)

Intra-sujets, Inter-sujets

14

- L'administration des niveaux d'un facteur est soit intra ou inter-sujets
- Si chaque participant est testé sur chacun des niveaux, le facteur est dit intra-sujets
- Si chaque participant est testé sur seulement un niveau, le facteur est dit inter-sujets. Dans ce cas, des groupes séparés de participants sont utilisés dans chaque conditions.
- Les termes "mesures répétées" et "intra-sujets" sont synonymes.

Plan d'expérience

- Le plan d'expérience fait référence à l'organisation des facteurs, niveaux, procédures ... dans une expérience
- □ Exemple:
 - "Plan 3 x 2 intra-sujets" correspond à une expérience avec deux facteurs, ayant 3 niveaux dans le premier, et 2 niveaux dans le second. Il y 6 conditions de test au total. Chacun des facteurs est intra-sujets signifiant que tous les participants testent toutes les conditions
- □ Note: Une conception mixte est aussi possible
 - Dans ce cas, les niveaux d'un facteur sont administrés à tous les participants (intra-sujets) alors que les niveaux d'un autre facteur sont administrés à des groupes différents (intersujets).

Contre balancement

17

- Pour une conception intra-sujets, la performance des participants peut s'améliorer avec l'entraînement d'une condition de test à une autre.
- Pour compenser, l'ordre de présentation des conditions est contre-balancé.
- Les participants sont divisés en groupes, et un ordre différent est administré à chacun des groupes
- L'ordre suit un carré latin

Analyse statistique

19

- □ Statistiques descriptives
- Exemple
 - La performance de 12 participants a été mesurée pour 2 périphériques (souris et tablette)
 - □ Plusieurs mesures de performance ont été réalisées
 - Chaque mesure de performance est une variable dépendante
 - □ Une des variables est le temps de réalisation (T)
 - La variable indépendante est le périphérique

Carré latin

18

- La caractéristique définissant un carré latin est que chaque condition apparaît seulement une fois dans chaque ligne et colonne.
- □ Ex:

Carré latin 3 X 3

Α	В	С	
В	С	Α	
С	Α	В	

Carré latin 4 X 4

Α	В	С	D
В	С	D	Α
С	D	Α	В
D	Α	В	С

Carré latin 4 X 4 balancé

Α	В	С	D
В	D	Α	С
D	С	В	Α
С	Α	D	В

Note: Dans un carré latin balancé chaque condition précède et suit chaque autre condition un nombre égal de fois

Statistiques Descriptives

	1-
Participant	Souris
P1	1.81
P2	2.36
P3	2.6
P4	2.02
P5	2.02
P6	1.7
P7	2.39
P8	1.46
P9	2.03
P10	1.97
P11	2.23
P12	1.31
Moyenne	1.99
Ecart type	0.38

Evaluations comparatives

21

- □ Le résultat précédent, seul, n'est pas très intéressant
- L'objectif est souvent de comparer une ou plusieurs conditions
- Les conditions sont les niveaux de la variable indépendante
- □ Dans l'exemple, la variable indépendante est "Périphérique" et les niveaux sont "Souris" vs. "Tablette"

Hypothèse nulle

23

- Déclarer comme "hypothèse statistiquement nulle" quelque chose qui est logiquement l'opposé de ce que l'on croit.
- □ Appeler cette hypothèse H0
- □ Montrer à partir des données que H0 est fausse, et doit être rejetée
- □ En rejetant *H0*, on confirme ce en quoi on croit

Evaluations comparatives

22

		Т	(s)
Participant	Souris		Tablette
P1 P2		1.81	1.9
		2.36	2.17
P3		2.6	2.47
P3 P4 P5 P6 P7		2.02	2.03
P5		2.02	2.03
P6		1.7	2.12
P7		2.39	2.5
P8		1.46	1.89
P9		2.03	2.13
P10		1.97	2.02
P11		2.23	2.55
P12		1.31	1.54
Moyenne		1.99	2.11
Ecart-type		0.38	0.29

Les études comparatives sont plus intéressantes mais est-ce que ce résultat est plus intéressant?

Hypothèse nulle

24

L'hypothèse nulle est rejetée ou non

		Etat du	monde		
		H0	H1		
Décision	НО	Acceptation correcte	Erreur de type II β		
Decision	H1	Erreur de type I α	Rejet correct		

ANOVA

25

- C'est le principal outil statistique utilisé dans le domaine de l'interaction homme-machine pour évaluer des expériences
- Utilisé pour répondre à des questions du type "Estce que le temps pour accomplir telle tâche varie différemment suivant le type de technique d'interaction utilisé?"

Conditions d'utilisation

27

- □ Indépendance des données
- Distributions normales
- □ Homogénéité des variances

Plan expérimental

26

Facteur 1 (ex: Périphérique): 2 niveaux (e.g. souris and tablette)

Facteur 2 (ex: Bloc): 4 niveaux

Facteur 3 (ex: ID): 4 niveaux

ANOVA avec un facteur intra-sujets

- Exemple
 - Apparence d'une icône avec 2 niveaux: naturel et abstrait
 - Mesure du temps de sélection (secondes)
 - □ 10 participants

ANOVA avec un facteur intra-sujet

29

Participant	Naturel	Abstrait
P1	656	702
P2	259	339
P3	612	658
P4	609	645
P5	1049	1129
P6	1135	1179
P7	542	604
P8	495	551
P9	905	893
P10	715	803
Moyenne	697.7	750.3
Ecart-type	265.13	258.75

Mauchly's Test of Sphericity

						Epsilon ^a	
ithin Subjects Effect	Mauchly's W	Approx. Chi-Square	df	Sig.	Greenhous e-Geisser	Huynh-Feldt	Lower-bound
	1.000	.000	0		1.000	1.000	1.000
sts the null hypothes	is that the error	covariance mat	ix of the orth	onormalized :	transformed de	pendent variabl	es is

Tests the null hypothesis that the error covariance matrix of the orthonormalized transform proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

o.

Within Subjects Design: T

ANOVA avec un facteur intra-sujet

31

□ Retour à l'exemple précédent

Tests of Within-Subjects Effects

						Epsion*	
Within Subjects Effect	MacNO W	Approx. Chi-Souane	a	Sio	Greenhous e-Geisser	Hayab-Feld	Lowerboan
Tests the rull hypothes	1,000 s that the expor-	(0) (markete pat		cometes			

		Type III Sum				
Source		of Squares	df	Mean Square	F	Sig.
T	Sphericity Assumed	.088	1	.088	4.510	.057
	Greenhouse-Geisser	.088	1.000	.088	4.510	.057
	Huynh-Feldt	.088	1.000	.088	4.510	.057
	Lower-bound	.088	1.000	.088	4.510	.057
Error(T)	Sphericity Assumed	.214	11	.019		
	Greenhouse-Geisser	.214	11.000	.019		
	Huynh-Feldt	.214	11.000	.019		
	Lower-bound	.214	11.000	.019		

F_{1.11} = 4.51 p=0.057

p-value > 0.05 pas d'effet significatif sur le temps. Peut-on conclure qu'il n'y a pas de différence entre les deux périphériques?

ANOVA avec un facteur intra-sujet

30

Tests of Within-Subjects Effects

Measure:	MT					
		Type III Sum				
Source		of Squares	df	Mean Square	F	Sig.
Т	Sphericity Assumed	13833.800	1	13833.800	33.359	.000
	Greenhouse-Geisser	13833.800	1.000	13833.800	33.359	.000
	Huynh-Feldt	13833.800	1.000	13833.800	33.359	.000
	Lower-bound	13833.800	1.000	13833.800	33.359	.000
Error(T)	Sphericity Assumed	3732.200	9	414.689		
	Greenhouse-Geisser	3732.200	9.000	414.689		
	Huynh-Feldt	3732.200	9.000	414.689		
	Lower-bound	3732.200	9.000	414.689		

Effet significatif $F_{1,9}$ = 33.36 p < 0.0001 de l'apparence de l'icône sur le temps d'acquisition.\

Nombre de degrés de liberté (nb de niveaux -1), (nb de niveaux -1) x (nb de participants -1)

Si p < 0.05, il y a 95% de chances que la différence observée n'est pas due au hasard

Analyse de puissance

32

- La puissance, qui varie entre 0 et 1, est la capacité à détecter un effet, s'il existe
- Plus elle est proche de 1, plus l'expérience a de chances de détecter un effet
- Puissance > .80 est généralement considéré comme acceptable; i.e., si p est significatif et Puissance > .80, il y a de fortes chances que l'effet existe vraiment.

Tableau ANOVA pour Technique

| Curseurs | Sujet | S

Tableau ANOVA pour Technique

Exp. Périph.

 Sujet
 d1
 2294
 -2.09
 Valeur de F
 Valeur de P
 Landod
 Pulsance

 Catégorie pour Technique
 1
 0.088
 0.088
 4.510
 0.0572
 4.510
 482

 Catégorie pour Technique * Sujet
 11
 2.14
 0.019
 0.019
 0.0572
 4.510
 482

Analyse de puissance

33

 Augmenter la puissance de l'analyse en augmentant le nombre de participants

ANOVA avec un facteur inter-sujets

3:

- □ Exemple:
 - □ Tester si une interface ou une technique d'interaction fonctionne mieux avec les gaucher ou les droitiers (ou hommes vs femmes)
 - 2 groupes de participants sont nécessaires: 5 gauchers (G) et
 5 droitiers (D)
 - La variable indépendante est la latéralité avec 2 niveaux, Gauche et Droite
 - La variable dépendante est le temps (secondes) pour accomplir la tâche.

Conception intra vs. inter sujets

37

- Intra-sujets: 2 fois plus puissant avec 2 fois moins de participants (si 2 niveaux)...
- □ ... mais demande 2 fois plus de temps
- Quand c'est possible, la conception intra-sujets est préférée pour les groupes de petite taille

ANOVA avec un facteur intra-sujets et un facteur intersujets

39

AllOVA Table for Completion Time (s)							
	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Power
Group	1	67744.800	67744.800	.466	.5142	.466	.091
Subject(Group)	8	1163747.200	145468.400				
Icon Type	1	13833.800	13833.800	30.680	.0005	30.680	.999
Icon Type * Group	1	125 000	125,000	277	6128	277	074

- Pas d'effet de groupe significatif ($F_{1,8} = 0.466$, ns)
- □ Pas d'interaction significative Type d'icône x Groupe (F1,8 = 0.277, ns)
 - □ → pas de transfert d'apprentissage asymétrique

ANOVA avec un facteur intra-sujets et un facteur intersujets

38

- Exemple: Contrôler si le contre-balancement annule les effets d'apprentissage
- □ Retour sur l'exemple des icônes abstraites et concrètes
- □ L'ordre a été contrebalancé entre les sujets

ANOVA avec deux facteurs intra-sujets

40

- □ Exemple: 2 facteurs
 - □ Périphérique P1, P2
 - □ Bloc B1, B2, B3, B4

Facteur 1 (Périphérique): 2 niveaux

Facteur 2 (Bloc): 4 niveaux

ANOVA avec deux facteurs intra-sujets

41

- □ Effet significatif principal: Périphérique ou/et Bloc
 - □ e.g. Effet significatif entre P1 et P2
 - On peut trouver une différence significative entre les blocs mais sans pouvoir conclure sur l'effet d'apprentissage
 - Pour connaître l'histoire complète: Etudier l'interaction Périphérique x Bloc

ANOVA avec deux facteurs intra-sujets et un facteur inter-sujets

43

- □ Même conception que précédemment
- Facteur inter-sujets: contre-balancement des périphériques

Interaction

42

Effet significatif du périphérique

Aussi...

- □ 4 facteurs...
- □ ... n facteurs

Coder l'expérience

45

- □ Toujours enregistrer les données brutes!
 - Evite les erreurs
 - □ Evite les oublis

Présence

47

- □ ((feeling of being there))
- □ Comment la mesurer?
- □ échelle de 1 à 100
- questionnaire
- réactions des utilisateurs suite à l'apparition d' événements
- □ tests de mémoire

Questionnaires

46

- Retour qualitatif
- □ Utiles à tous les stades de conception
- Connaître la facilité d'utilisation d'un produit, le degré de fatigue...
- □ Critères 3D:
 - présence
 - confort utilisateur

Confort

- simulator sickness
- □ similaire au mal des transports
- défaut de correspondance entre différentes informations qui arrivent au cerveau
- □ effets secondaires dans le monde réel
- □ Fatigue des bras, mains et yeux
- Utilisation de questionnaires

Construction de questionnaires

49

- □ Les questions doivent s'enchaîner logiquement
- Les réponses à une question ne doivent pas être influencées par les précédentes
- L'enchaînement doit aller du général au particulier et rester logique

Echelle de Likert

51

- □ La personne indique son degré de satisfaction pour une question sur une échelle
- □ L'échelle comporte 5 ou 7 niveaux
- □ Echelle bipolaire
- □ Possibilité de comparer des techniques

Réponses

50

- □ Sur une échelle: Echelle de Likert
- □ Questions fermées : oui/non, QCM
- Questions ouvertes

Types de questions

- □ Evaluer la facilité d'utilisation de la souris:
 - 1. Très difficile
 - 2. Difficile
 - 3. Normal
 - 4. Facile
 - 5. Très facile

Echelle de Likert: analyse des réponses

53

- Analyse séparée des réponses ou regroupement par sommation
- Analyse séparée: pas possible d'utiliser une ANOVA
 Tests non-paramétriques
- □ Regroupement: possibilité d'utiliser une ANOVA

Exercice

54

 Proposez un plan expérimental pour comparer les techniques de ray-casting et de main virtuelle.