

Enhancing Content Using Amazon Al

Julien Simon, AI Evangelist, EMEA @julsimon http://medium.com/@julsimon

November 20, 2017

Dog or Muffin?

Confidenc e	Labels
99.2%	Animal Dog Chihuahua
98.6%	Food Dessert Muffin
97.9%	Collage

Word or Logo?

Algorithm	Viability
OCR	Are you feeling lucky?
Perceptual Hash	Not a chance
Deep Logo Analysis	Bingo

Artificial Intelligence: design software applications which exhibit human-like behavior, e.g. speech, natural language processing, reasoning or intuition

Machine Learning: teach machines to learn without being explicitly programmed

Deep Learning: using neural networks, teach machines to learn from data where features cannot be explicitly expressed

The Rise of Deep Learning

The 10,000ft Intro to Deep Learning

Application Components

Task

Identify a Face Training

10-100M images

Network

~ 10 layers

1B parameters

Learning

~ 30 Exaflops

~ 30 GPU days

© 2016 NVIDIA

AWS Services & Partners

The Amazon Al Stack

Choosing the right Instance Type for Al

P3: Distributed Training

NVIDIA V100 GPUs

C5: Inference
Intel Skylake CPUs

X1: AI/ML/DL at scale

128 vCPUs, 3,904 GiB RAM

F1: FPGA acceleration

Xilinx Ultrascale Plus, 6,800 engines

					PU
Instance Name	GPU Count	vCPU Count	Memory	Network	EBS
p3.xlarge	1	8	61 GiB	~10Gbps	1.5 Gbps
p3.8xlarge	4	32	244 GiB	10Gbps	7Gbps
p3.16xlarge	8	64	488 GiB	25Gbps	14Gbps

P3 Instances Provide up to **1 Petaflop** of mixed precision performance, and 125 Teraflops of single precision floating point

Why is this Important?

Amazon EC2 Compute & EBS block storage supports second-level billing. Combined with EC2 SPOT Fleet, this provides a up to ~90% cost savings over on-demand.

Deep Learning Compute

- One-click launch
- Single node or distributed
- CPU, GPU, FPGA
- NVIDIA & Intel libraries
- Anaconda Data Science Platform
- Python w/ AI/ML/DL libraries

- Expedia have over 10M images from 300,000 hotels
- Using great images boosts conversion
- Using Keras and EC2 GPU instances, they fine-tuned a pre-trained Convolutional Neural Network using 100,000 images
- Hotel descriptions now automatically feature the best available images

CONDÉ NAST

- 17,000 images from Instagram
- 7 brands
- Deep Learning model pre-trained on ImageNet
- Fine-tuning with TensorFlow and EC2 GPU instances
- Additional work on color extraction

	Chanel	Coach	Gucci	Marc Jacobs	Kate Spade	No Handbag	Prada	Vuitton
Chanel	0.83	0.00	0.01	0.02	0.00	0.00	0.00	0.01
Coach	0.01	0.85	0.00	0.05	0.05	0.01	0.04	0.03
Gucci	0.01	0.00	0.85	0.02	0.00	0.01	0.01	0.02
Marc Jacobs	0.00	0.03	0.01	0.78	0.00	0.01	0.03	0.00
Kate Spade	0.00	0.01	0.01	0.01	0.87	0.00	0.00	0.00
No Handbag	0.09	0.06	0.08	0.09	0.04	0.97	0.04	0.09
Prada	0.03	0.03	0.02	0.03	0.01	0.00	0.85	0.01
Vuitton	0.01	0.00	0.00	0.02	0.00	0.01	0.01	0.81

Real-Time Pose Estimation

https://github.com/dragonfly90/mxnet_Realtime_Multi-Person_Pose_Estimation

Generative adversarial networks

these faces are not real, they have been generated!

https://github.com/tkarras/progressive_growing_of_gans

Building A Deep Learning Pipeline in the Cloud

Large Scale Document Analysis

- NLP Topic Modeling @ Clemson University
- 533,560 Documents, 32,551,540 Words
- 1.1 million vCPUs over ~3hrs
- EC2 Spot, Single AWS Region
- SLURM scheduler overlay virtual workflow automation
- Per second billing for EBS & EC2

17 years of computer science journal abstracts and full text papers from the NIPS (Neural Information Processing Systems) Conference (2,484 documents and 3,280,697 words)

Deep Learning (& AI) for Media

Amazon Rekognition

Deep learning-based image recognition service Search, verify, and organize millions of images

Deterministic Response Time ~500ms Object & Scene Detection ~1.5s Search for 1mil Face Collection

Building Rich Metadata Indexes using Rekognition

https://aws.amazon.com/solutions/case-studies/cspan/

Amazon Rekognition Helps Marinus Analytics Fight Human Trafficking

Marinus Analytics provides law enforcement with tools, founded in artificial intelligence, to turn big data into actionable intelligence. The Marinus flagship software, Traffic Jam, is a suite of tools for use by law enforcement agencies on sex trafficking investigations.

Metadata Enrichment using Amazon Rekognition

Service Enhancement using Amazon Lex + Polly

Key Takeaways

- Building your own Deep Learning infrastructure is hard and costly
- Managed services can be used to eliminate 'undifferentiated heavy lifting', allowing for niche Al focus
- Al for media is a cross-functional tech undertaking
- Many traditional 'in the cloud' paradigms map to deep learning
- Al technology provides opportunities to enhance existing media services
- Utilize compute diversification across GPU, CPU & FPGA, combined with Object Storage (S3) & Fractional Billing (SPOT)

Thank You!

Julien Simon, AI Evangelist, EMEA @julsimon http://medium.com/@julsimon

