1. Continuity at a Point A function f(x) is said to be continuous at a point x = a, if

Left hand limit of f(x) at (x = a) =Right hand limit of f(x) at (x = a) =Value of f(x) at (x = a)

i.e. if at x = a LHL = RHL = f(a) where, LHL = $\lim_{x \to a^{-}} f(x)$ and RHL = $\lim_{x \to a^{+}} f(x)$ **NOTE** To evaluate LHL of a function f(x) at (x = a), put x = a - h and to find RHL, put x = a + h.

2. Continuity in an Interval A function y = f(x) is said to be continuous in an interval (a, b), where a < b if and only if f(x) is continuous at every point in that interval.

- (i) Every identity function is continuous.
 - (ii) Every constant function is continuous.
 - (iii) Every polynomial function is continuous.
 - (iv) Every rational function is continuous.
 - (v) All trigonometric functions are continuous in their domain.

Standard Results of Limits

(i)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

(ii)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

(iii)
$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

(iv)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

(v)
$$\lim_{x\to\infty} \frac{1}{x^p} = 0, p \in (0, \infty)$$

(v)
$$\lim_{x \to \infty} \frac{1}{x^p} = 0, p \in (0, \infty)$$
 (vi) $\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$

(vii)
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$$

(viii)
$$\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1$$

(x)
$$\lim_{x\to 0} (1+x)^{1/x} = e$$

(xi)
$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$
 (xii) $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$

(xiii) $\lim_{x \to \infty} \sin x = \lim_{x \to \infty} \cos x = \text{lies between} - 1 \text{ to } 1.$

5. Algebra of Continuous Functions

- I. Suppose f and g are two real functions, continuous at real number c. Then,
 - (i) f + g is continuous at x = c. (ii) f g is continuous at x = c.
 - (iii) $f \cdot g$ is continuous at x = c. (iv) cf is continuous, where c is any constant.
 - (v) $\left(\frac{f}{g}\right)$ is continuous at x = c, [provided $g(c) \neq 0$]
- II. Suppose f and g are two real valued functions such that $(f \circ g)$ is defined at c. If g is continuous at c and f is continuous at g (c), then $(f \circ g)$ is continuous at c.
- III. If f is continuous, then |f| is also continuous.

1. Differentiability A function f(x) is said to be differentiable at a point x = a, if

Left hand derivative at (x = a) = Right hand derivative at (x = a)

i.e. LHD at (x = a) = RHD (at x = a), where

Right hand derivative, $Rf'(a) = \lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$

Left hand derivative, $Lf'(a) = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$

NOTE Every differentiable function is continuous but every continuous function is not differentiable.

Differentiation The process of finding derivative of a function is called differentiation.

3. Rules of Differentiation

- (i) Sum and Difference Rule Let $y = f(x) \pm g(x)$. Then, by using sum and difference rule, it's derivative is written as $\frac{dy}{dx} = \frac{d}{dx} f(x) \pm \frac{d}{dx} g(x)$.
- (ii) **Product Rule** Let y = f(x) g(x). Then, by using product rule, it's derivative is written as $\frac{dy}{dx} = \left[\frac{d}{dx} (f(x)) \right] g(x) + \left[\frac{d}{dx} (g(x)) \right] f(x).$
- (iii) Quotient Rule Let $y = \frac{f(x)}{g(x)}$; $g(x) \neq 0$, then by using quotient rule, it's derivative is written as

$$\frac{dy}{dx} = \frac{g(x) \times \frac{d}{dx} [f(x)] - f(x) \times \frac{d}{dx} [g(x)]}{[g(x)]^2}.$$

Second order Derivative It is the derivative of the first order derivative.

i.e.
$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

7. Some Standard Derivatives

(i)
$$\frac{d}{dx}(\sin x) = \cos x$$

(iii)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

(v)
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

(vii)
$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$$

(ix)
$$\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1+x^2}$$

(xi)
$$\frac{d}{dx}$$
 (cosec⁻¹ x) = $\frac{-1}{x\sqrt{x^2 - 1}}$

(xiii)
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

(xv)
$$\frac{d}{dx}(e^x) = e^x$$

(xvii)
$$\frac{d}{dx}(a^x) = a^x \log_e a, a > 0$$

(ii)
$$\frac{d}{dx}(\cos x) = -\sin x$$

(iv)
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

(vi)
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

(viii)
$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$$

(x)
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

(xii)
$$\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1+x^2}$$

(xiv)
$$\frac{d}{dx}$$
 (constant) = 0

(xvi)
$$\frac{d}{dx}(\log_e x) = \frac{1}{x}, x > 0$$

(iv) Chain Rule Let y = f(u) and u = f(x), then by using chain rule, we may write

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
, when $\frac{dy}{du}$ and $\frac{du}{dx}$ both exist.

4. Logarithmic Differentiation Let $y = [f(x)]^{g(x)}$

So by taking log (to base e) we can write Eq. (i) as $\log y = g(x) \log f(x)$. Then, by using chain rule

$$\frac{dy}{dx} = [f(x)]^{g(x)} \left[\frac{g(x)}{f(x)} f'(x) + g'(x) \log f(x) \right]$$

5. Differentiation of Functions in Parametric Form

A relation expressed between two variables x and y in the form x = f(t), y = g(t) is said to be parametric form with t as a parameter, when

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$$
 (whenever $\frac{dx}{dt} \neq 0$)

...(i)

NOTE dy/dx is expressed in terms of parameter only without directly involving the main variables x and y.

- 8. Rolle's Theorem Let $f:[a,b] \to R$ be continuous on [a,b] and differentiable on (a,b) such that f(a) = f(b), where a and b are some real numbers. Then, there exists at least one number c in (a,b) such that f'(c) = 0.
- 9. Mean Value Theorem Let $f:[a,b] \to R$ be continuous function on [a,b] and differentiable on (a,b). Then, there exists at least one number c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

NOTE Mean value theorem is an expansion of Rolle's theorem.

10. Some Useful Substitutions for Finding Derivatives

Expression

(i) $a^2 + x^2$

(ii)
$$a^2 - x^2$$

(iii)
$$x^2 - a^2$$

(iv)
$$\sqrt{\frac{a-x}{a+x}}$$
 or $\sqrt{\frac{a+x}{a-x}}$

(v)
$$\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}$$
 or $\sqrt{\frac{a^2 + x^2}{a^2 - x^2}}$

Substitution

$$x = a \tan \theta$$
 or $x = a \cot \theta$

$$x = a \sin \theta$$
 or $x = a \cos \theta$

$$x = a \sec \theta$$
 or $x = a \csc \theta$

$$x = a\cos 2\theta$$

$$x^2 = a^2 \cos 2\theta$$