DAWN TO DUSK

All the Polygons You Can Eat

Chris Maughan

Object: Create Scalable Content that Looks High Resolution

We want this model:

To be lit like this

Automatically Create Levels of Detail

From this model:

19k

9k

4k

2k

500

Real World Example

In Wire Frame

What is a Face Normal?

- A vector is normal to a surface when its direction is perpendicular to the plane which contains this surface
- When this vector is equal to 1 unit, the vector is normalized
- The direction the triangle is facing, or the 'up' direction
 Normal

What is a Vertex Normal?

- Summing all the face normal and normalizing the result yields our vertex normal
- This vector is the vertex normal and is used for vertex lighting

Multiple Normals per Vertex

- Sharp edges or borders of smoothing groups do not share normal
 - Mulitiple normals per vertex

Multiple normals on a cube corner

Normals

Normal are interplated across a face

Must still remain normalized ___ Iterated normal

What is a Normal Map?

- A texture map that encodes the normal direction.
- Directions are 3-D vectors encoded in RGB channel
- Map directions [-1,1] to color 0 to 255
- Could use floating point textures, too

Map	to	Color
-1		0
0		128
+1		255

Normals Displayed as Color

These are "object space" normals stored in the texture.

Object Space Normals

- They always point in the same direction, even if the model is deformed
- Arrow is normal stored in the normal map
- Triangle is rotated, but normal does not
- Harder for deformations
 - Light needs to be rotated to account for deformations

Normal Map

For the sphere:

NVIDIA PROPRIETARY

Tangent Space

- Local coordinate system defined per vertex
- Allow relative normals, or normals defined in this local space
- Rotate the light into this space, or the normal into object space
- Coordinate system may be rotated by the deformation
- Tangent space transforms object Space to tangent Space

Normal, tangent and binormal define tangent space matrix

Tangent Space Normals

- Texel normals are relative to the face normal
- The vector (0,0,1) is considered the 'up' direction and coincident with the face normal
- (0,0,1) is stored as color (128,128,255)

How to Create a Normal Map?

Use 2D Images, using the Normal Map Plugin for Photoshop:

Tangent Space Normal Map

For the sphere, the tangent space normal map

Charts

Set of faces bounded by texture seams are grouped into charts. A set of charts is an Atlas

chart

One Chart

- Needs one connected border
- Not required to be flat
- No flipped triangles
- Can be automatically generated

Automatically generated

Reference Model

- High resolution model used as a reference
- Used for:
 - Calculating decal texture coordinates
 - Source of normals
 - Sampled data points

Part of Dawn's wing

Working Model

- Model that is simplified to create LODs
- May be same as reference model or a hand simplified model
- Does not need texture coordinates, these can be automatically generated

or

Same as reference

Manually simplified

Simplification

- Edge collapse method
- removes one or two face

Simplification History

- Edge collapses based on weight
- Three Methods: QEM, Volume and EMIN
- Collapse each edge, one at a time and record all collapses
- Allows undo of collapses
- Assignment to LOD for additional processing
- Option to make a progressive mesh
 - One vertex is collapsed into another during edge collapse

Data Points

- Random sampling of Reference Model to obtain data points
- Used for optimization and EMIN simplification
- Used to fit working model to reference model
- Sampled on edges and surface

Line drawn from sampled data point to surface of working model

Optimization

- Set parameters
- Attempts to achieve a balance between forces
- One solution based on weighting values
- Hugues Hoppe's technique
- Spring based, finds minimum energy
- Based on distance to reference model using sample data points
- May collapse, split or flip edges
- Treats distance to reference model as a spring

Optimize example

Ray Casting

- Using the interpolate normals on the working model, cast a ray to the reference model
- Intersection point is used to calculate the object space normal
- Stored into the normal map
- Optionally rotated into tangent space

Ray Casting Methods

- There are many ways to cast a ray into the reference model
- Two here are
 - Farthest within bounds
 - closest

Ray Casting Methods: Farthest Within Bounds

- Define a distance away from the working model, locate the farthest away
- Both in front and behind face

Ray Casting Methods: Closest

- Take the closest intersection to the face
- Sometimes bounded ray fails

Seam

- Any vertex that shares a position with another vertex and all the attributes do not match
- Discontinuity in color, texture coordinates, normal etc.
- Simplification can try to maintain seam positions

Seams are borders between materials

Attribute Group

A group of faces that are bordered by seams

Attribute Group Matching

- Match Attribute Groups from low res model to reference model
- For Simplification and Normal Map Generation

Sharp Edge

Angle between two faces that exceeds a specified values

Typical values for sharp edge is 140 degrees. 180

is a flat surface.

Sharp edges shown as yellow

Corner Angle

- Angle between two edges on one face
- Small corner angles produce slivers

Corner angle

Boundary

- Edge that has only one face attached
- Defines the perimeter of a model

Boundary shown in green

Bad Geometry: Folded Edges

- Two faces that share an edge
- Coplanar
- Face in opposite directions
- Simplification may have trouble with this

Shared edge between green and blue faces

Bad Geometry

- Three or more face sharing an edge
- Simplification may have trouble with this

Simplification Options

- Attempt to preserve seams, sharp edges or boundaries
- Check topology after collapse so no bad geometry is created
- When edge is collapsed (p2→ p1), placement of p1:
 - Optimal position
 - Any where along edge
 - Endpoints (p1 or p2) or edge midpoint
 - Endpoints only (vertex removal). Can be used if you have weighted vertices

Fitting to a Reference Model

- After simplification, fit all vertices in the working model to the reference model
- Tries to make a better match of low res models to high res models
- Uses sampled data points

Texture Coordinate Generation by Charts

- Each face starts as a chart
- Combine charts until some criteria is met
 - Flatness
 - regular
- Flatten the charts onto a plane
- Reposition so face area is preserved and no flips occur

Atlas Automatically Created for a Sphere

Melody

Links to Related Material

- http://developer.nvidia.com/
- http://research.microsoft.com/~hhoppe/
- http://talika.eii.us.es/~titan/magica/
- http://www.cbloom.com/3d/galaxy3/index.html
- http://mirror.ati.com/developer/index.html
- http://www.okino.com/conv/conv.htm
- http://graphics.cs.uiuc.edu/~garland/research/quadrics.html
- http://gts.sourceforge.net
- http://www.loria.fr/~levy/Papers/2002/s2002_lscm.pdf
- http://deas.harvard.edu/~pvs/research/tmpm/

