Superposition in AC circuits

As with other methods of AC circuit analysis, the procedure is identical, except using complex algebra!

> - Important: this method is the only way to analyze circuits with sources with different frequencies.

Power in AC circuits

Consider an arbitrary complex impedance

load impedance

$$Z = R + jX$$
 $|Z| = \int R^2 + x^2$
 $= |Z| \angle \Theta$ $\Theta = \tan^{-1}(\frac{X}{R})$

R - resistive part X - "reactive" part

We have phasor current I

$$\overline{I} = \frac{\sqrt{m} / o^{\circ}}{|z| / \theta} = \frac{\sqrt{m}}{|z|} / \frac{\theta}{|z|}$$

and let $I_m = \frac{V_m}{121}$, so $I = I_m \angle -\theta$

We will investigate four cases:

- 1. A resistor
- 2. Inductor
- 3. Capacitor
- 4. General load.

1. Purely resistive load (x=0)

We have
$$V(t) = V_m \cos(\omega t)$$
 in phase $i(t) = I_m \cos(\omega t)$ $V(t) = Ri(t)$

And power is $P(t) = V(t)i(t) = V_m I_m \cos^2(\omega t)$

Using the identity $Cos^2(x) = \frac{1}{2}[1 + \cos(2x)]$
 $P(t) = \frac{1}{2}V_m I_m [1 + \cos(2\omega t)]$

Paug always positive—

resistor only absorbs power.

Purely inductive $(R = 0, x > 0)$

For the inductor, $Z = i\omega L = \omega L 20^\circ$, so $\theta = 90^\circ$

2. Purely inductive $(R=0, \times > 0)$

For the inductor,
$$Z = j\omega L = \omega L / 20^{\circ}$$
, so $\theta = 90^{\circ}$
 $V(t) = V_{m} \cos(\omega t)$
 $i(t) = I_{m} \cos(\omega t - 90^{\circ}) = I_{m} \sin(\omega t)$

Buer:
$$p(t) = v(t)i(t) = V_m I_m \cos(\omega t) \sin(\omega t)$$

Using the identity $\cos(x) \sin(x) = \frac{1}{2} \sin(2x)$
so $p(t) = V_m I_m \cos(\omega t) \sin(\omega t)$

This is called <u>reactive power</u> - average is zero.