

2014

CANADIAN INTEGRATED PROGRAM FOR ANTIMICROBIAL RESISTANCE SURVEILLANCE (CIPARS)

ANNUAL REPORT

TO PROMOTE AND PROTECT THE HEALTH OF CANADIANS THROUGH LEADERSHIP, PARTNERSHIP, INNOVATION AND ACTION IN PUBLIC HEALTH.

-Public Health Agency of Canada

Également disponible en français sous le titre :

Rapport annuel du Programme intégré canadien de surveillance de la résistance aux antimicrobiens (PICRA) de 2014

To obtain additional information, please contact:

Public Health Agency of Canada

Address Locator 0900C2

Ottawa, ON K1A 0K9

Tel.: 613-957-2991

Toll free: 1-866-225-0709

Fax: 613-941-5366

TTY: 1-800-465-7735

E-mail: publications@hc-sc.gc.ca

This publication can be made available in alternative formats upon request.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health, 2016

Publication date: September 2016

This publication may be reproduced for personal or internal use only without permission provided the source is fully acknowledged.

Cat.: HP2-4E-PDF

ISSN: 1925-9859

Pub.: 160126

Suggested Citation

Government of Canada. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2014 Annual Report. Public Health Agency of Canada, Guelph, Ontario, 2016.

2014

CANADIAN INTEGRATED PROGRAM FOR ANTIMICROBIAL RESISTANCE SURVEILLANCE (CIPARS)

ANNUAL REPORT

2014 ANNUAL REPORT

EXECUTIVE SUMMARY	II
CONTRIBUTORS TO CIPARS	iv
CHAPTER 1—PROGRAM OVERVIEW	9
ABOUT CIPARS	9
CIPARS OBJECTIVES	9
WHAT'S NEW	10
CIPARS SURVEILLANCE COMPONENTS AND DATA	11
CHAPTER 2—ANTIMICROBIAL RESISTANCE	12
HOW TO READ THIS CHAPTER	12
1. HUMAN SURVEILLANCE	15
2. RETAIL MEAT SURVEILLANCE	41
3. ABATTOIR SURVEILLANCE	73
4. FARM SURVEILLANCE	91
5. SURVEILLANCE OF ANIMAL CLINICAL ISOLATES	118
6. SURVEILLANCE OF FEED AND FEED INGREDIENTS	124
CHAPTER 3—ANTIMICROBIAL USE IN ANIMALS	126
HOW TO READ THIS CHAPTER	126
7. FARM SURVEILLANCE—BROILER CHICKENS	131
8. FARM SURVEILLANCE—GROWER-FINISHER PIGS	164
9. QUANTITIES OF ANTIMICROBIALS DISTRIBUTED FOR SALE FOR USE IN ANIMALS	206
APPENDIX—DESIGN AND METHODS	226
ANTIMICROBIAL RESISTANCE	226
ANTIMICROBIAL USE	249
ANTIMICROBIAL CLASSIFICATION	270
ABBREVIATIONS	273
SUMMARY OF DESIGN AND METHODS CHANGES	275
SLIMMARY OF CIDARS SAMPLES AND DATA FLOW	202

EXECUTIVE SUMMARY

The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) collects, analyses, and communicates trends in antimicrobial use and antimicrobial resistance in selected bacteria from humans, animals, and retail meat across Canada. The bacteria under surveillance are known as enteric bacteria (can be found within or infecting the intestines of people and animals) and can be transmitted between animals and people. Information from CIPARS supports measures to contain the emergence and spread of resistant bacteria among animals, food, and people, with the aim of prolonging the effectiveness of antimicrobials.

Between 2013 and 2014, CIPARS observed decreasing resistance to 3rd generation cephalosporins in *Salmonella* and *E. coli* isolated from chickens at the farm, at slaughter (abattoir) and from the grocery store (retail). CIPARS also noted significant decreases in the number of chicken farms reporting the use of this antimicrobial; ceftiofur was administered to chicks and hatching eggs in 6% of flocks in 2014 compared to 31% in 2013. This trend follows a May 2014 poultry industry-led policy change to eliminate the preventive use of 3rd generation cephalosporins, an antimicrobial class considered highly important to human medicine.

In 2014, the frequency of resistance to ciprofloxacin (an antimicrobial in the fluoroquinolone class, considered highly important to human medicine) in *Campylobacter* from chicken and turkey showed changing regional patterns. For grocery store chicken sampled in regions across Canada, ciprofloxacin resistance in *Campylobacter* remained highest in British Columbia in 2014 (21%), though the proportion of resistant isolates was lower than in 2013 (26%) in that province/region. Retail turkey sampling started in 2013 and ciprofloxacin resistance in *Campylobacter* from this product increased in most regions in 2014. For healthy animals at slaughter, the proportion of *Campylobacter* isolates that were resistant to ciprofloxacin in 2014 was 11% for chicken (significant increase from 4% in 2010), 7% for cattle and 11% for pigs. For broiler chickens on the farm, resistance to ciprofloxacin among *Campylobacter* decreased between 2013 (16%) and 2014 (10%).

Of all the medically important antimicrobials distributed for use in Canada, approximately 82% were intended for production animals, 18% were for humans, less than 1% for companion animals, and less than 1% for crops (as per the 2016 Canadian Antimicrobial Resistance Surveillance System Report (CARSS)—for data on antimicrobials intended for use in humans and comparisons with antimicrobials used in animals/agriculture). Adjusting for underlying populations and weights there was roughly 1.7 times more antimicrobials distributed for use in animals than humans (CARSS). Comparing 2006 to 2014, the total quantities of antimicrobials intended for use in animals (adjusted for populations and weights) were very similar. Seventy-three percent of this total in 2014 included antimicrobial classes also used in human medicine. Most antimicrobials were intended to be administered to animals via feed, a finding which was also reflected in data from sampled broiler chicken and grower-finisher pig farms. For chickens,

90% of sampled flocks reported using antimicrobials. Fewer flocks were medicated at the hatchery in 2014 compared to 2013 and fewer chicks and hatching eggs were exposed to ceftiofur (a 3rd generation cephalosporin). Disease prevention was the most frequently reported reason for antimicrobial use in feed and only 4% of sampled flocks reported using antimicrobials as growth promotants. For pigs, 91% of sampled grower-finisher pig herds reported using antimicrobials. Disease pressures and management practices were significantly different between regions for grower-finisher pig farms and may be reasons for regional differences in antimicrobial use practices.

CIPARS continues to evolve to meet stakeholder needs. To improve efficiency, CIPARS has returned to the release of a single Annual Report. For 2014, integrated findings have been published in the 2016 CARSS Report.

CONTRIBUTORS TO CIPARS

PROGRAM COORDINATORS IN 2014

Rita Finley¹, Rebecca Irwin¹, and Michael Mulvey²

BUDGET AND PROGRAM DEVELOPMENT LEAD

Richard Reid-Smith

SURVEILLANCE COMPONENT LEADS

- Surveillance of Human Clinical Isolates: Michael Mulvey
- Retail Meat Surveillance: Brent Avery
- Abattoir Surveillance: Anne Deckert
- Farm Surveillance: Agnes Agunos, Anne Deckert, Sheryl Gow, and David Léger
- Surveillance of Animal Clinical Isolates: Jane Parmley
- Quantities of Antimicrobials Distributed for Sale for Use in Animals: Carolee Carson

ANTIMICROBIAL RESISTANCE DATA MANAGEMENT LEADS

Brent Avery, Antoinette Ludwig, and Jane Parmley

ANTIMICROBIAL USE DATA MANAGEMENT LEADS

Agnes Agunos, Carolee Carson, Anne Deckert, Sheryl Gow, and David Léger

AUTHOR/ANALYSTS

ANTIMICROBIAL RESISTANCE

Agnes Agunos, Brent Avery, Anne Deckert, Sheryl Gow, David Léger, and Jane Parmley

ANTIMICROBIAL USE

Agnes Agunos, Carolee Carson, Anne Deckert, Sheryl Gow, and David Léger

¹ Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada (PHAC)

² National Microbiology Laboratory, Winnipeg, PHAC.

REPORT PRODUCTION

Michelle Tessier and Virginia Young

LABORATORY COMPONENT LEADS

National Microbiology Laboratory³ @ Guelph

- Salmonella Typing: Linda Cole
- Antimicrobial Susceptibility Testing: Andrea Desruisseau and Chad Gill

National Microbiology Laboratory @ Saint-Hyacinthe

Antimicrobial Susceptibility Testing: Danielle Daignault and Manon Caron

National Microbiology Laboratory @ Winnipeg

- Salmonella Serotyping: Helen Tabor
- Salmonella Phage Typing: Rafiq Ahmed
- Antimicrobial Susceptibility Testing: Michael Mulvey

PROVINCIAL PUBLIC HEALTH LABORATORIES

We gratefully acknowledge the provincial public health laboratories for their longstanding support and for providing data and bacterial isolates for CIPARS:

- British Columbia Public Health Microbiology and Reference Laboratory, Provincial Health Services Authority, British Columbia (Judy Isaac-Renton)
- Provincial Laboratory for Public Health, Alberta (Marie Louie)
- Saskatchewan Laboratory and Disease Control Services (Greg Horsman)
- Cadham Provincial Laboratory, Manitoba (John Wylie)
- Central Public Health Laboratory, Public Health Laboratories Branch, Ontario Ministry of Health and Long-Term Care (Vanessa Allen)
- Laboratoire de santé publique du Québec de l'Institut national de santé publique du Québec (Sadjia Bekal)
- New Brunswick Enteric Reference Centre (Sameh El Bailey)
- Microbiology Laboratory, Queen Elizabeth II Health Sciences Centre, Nova Scotia (David Haldane)
- Laboratory Services, Queen Elizabeth Hospital, Prince Edward Island (Greg German)
- Newfoundland Public Health Laboratory (Sam Ratnam)

³ In 2015, the National Microbiology Laboratory and the Laboratory for Foodborne Zoonoses were combined into a single laboratory, the National Microbiology Laboratory with multiple campuses.

RETAIL MEAT SURVEILLANCE

We would like to extend our thanks to the following organizations for their participation in CIPARS *Retail Meat Surveillance*:

- Centre for Coastal Health
- Agriculture and Agri-Food Canada (Mueen Aslam, Tineke Jones, Cara Service, and Tim McAllister)
- University of Prince Edward Island, Atlantic Veterinary College (J.T. McClure, Carol McClure, Matthew Saab, Cynthia Mitchell, and Anne Muckle)

We also thank the following health unit managers, public health inspectors, and environmental health officers: Ken Adams, Renée Ansel, Lucy Beck, Bob Bell, Blake Gruszie, Kira Jang, Suzanne Lajoie, Edwin MacDougall, Shaun Malakoe, Ron Popoff, Diane Pustina, Doug Quibell, Jennifer Reid, Peter Richter, Torsten Schulz, Lee Siewerda, and Matthew Shumaker.

ABATTOIR SURVEILLANCE

We would like to thank the abattoir operators and the Canadian Food Inspection Agency's regional directors, inspection managers, and on-site staff, for their extensive voluntary participation in CIPARS *Abattoir Surveillance*.

FARM SURVEILLANCE

We are grateful for the efforts and participation of the Alberta Ministry of Agriculture and Rural Development and the Saskatchewan Ministry of Agriculture, as well as the sentinel veterinarians and the producers who participated in *Farm Surveillance* by providing data and enabling collection of samples for bacterial culture.

We would like to acknowledge the following organizations for their contribution to the CIPARS *Farm Surveillance* components:

- Alberta Chicken Producers
- British Columbia Chicken Marketing Board
- Canadian Hatcheries Federation
- Canadian Pork Council and Provincial Pork Boards
- Canadian Poultry and Egg Processors Council
- Chicken Farmers of Canada
- Chicken Farmers of Ontario
- CIPARS Farm Broiler Chicken Industry Antimicrobial Use/Resistance Working Group
- CIPARS Farm Swine Advisory Committees
- Les Éleveurs de volailles du Québec
- Participating veterinarians and producers

PROVINCIAL ANIMAL HEALTH LABORATORIES

We gratefully acknowledge the provincial animal health laboratories for their longstanding support and for providing data and bacterial isolates for CIPARS:

- Animal Health Centre, British Columbia Ministry of Agriculture (Erin Zabek and Nancy DeWith)
- Government of Alberta, Agriculture and Rural Development (Rashed Cassis)
- Saskatchewan Health, Saskatchewan (Paul Levett)
- Veterinary Services Branch Laboratory, Manitoba (Neil Pople)
- The Animal Health Laboratory, University of Guelph, Ontario (Durda Slavic)
- IDEXX Laboratories, Ontario (Hani Dick)
- Direction générale des laboratoires d'expertise du ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (Marie Nadeau)
- Laboratoire d'épidémiosurveillance animale du Québec (Olivia Labrecque)
- Provincial Veterinary Laboratory, Department of Agriculture, Fisheries, and Aquaculture, New Brunswick (Jim Goltz)
- Veterinary Pathology Laboratory, Nova Scotia (Grant J. Spearman)
- Diagnostic Services, Atlantic Veterinary College, Prince Edward Island (Jan Giles)

QUANTITIES OF ANTIMICROBIALS DISTRIBUTED FOR SALE FOR USE IN ANIMALS

We would like to sincerely thank the Canadian Animal Health Institute and their member companies for voluntarily providing the quantities of antimicrobials distributed for sale for use in animals in Canada. We would also like to thank Impact Vet for many ideas for reporting format.

CIPARS would like to thank the small group of volunteer industry and provincial representatives who have participated in active discussions on appropriate denominators for quantities of antimicrobials distributed for use in animals.

OTHER PARTICIPANTS

We gratefully acknowledge the efforts of field workers, laboratory technicians, and data managers for their contributions. The careful collection of samples, processing of isolates, and recording of results are essential to the ongoing success of CIPARS.

We are grateful to the National Antimicrobial Resistance Monitoring System of the United States for sharing information and facilitating harmonization with CIPARS.

We would also like to thank the following individuals and organizations for their contribution to CIPARS in 2014:

Public Health Agency of Canada

Ashleigh Andrysiak, Louise Bellai, Mark Blenkinsop, Gail Christie, Sindy Cleary, Ann-Marie Cochrane, Marie-Claude Deshaies, Logan Flockhart, George Golding, Stefan Iwasawa, Nicol Janecko, Bernard Jackson, Mohamed Karmali, Jasmina Kircanski, Ora Kendall, Lisa Landry, Stacie Langner, Laura Martin, Sarah Matz, Ryan McKarron, Ketna Mistry, Ali Moterassed, Manuel Navas, Linda Nedd-Gbedemah, Derek Ozunk, Ann Perets, Frank Plummer, Frank Pollari, Susan Read, Julie Roy, Sophia Sheriff, Lien Mi Tien, Anatoliy Trokhymchuk, Rama Viswanathan, Victoria Weaver, and Betty Wilkie.

Canadian Food Inspection Agency

David Johnson, Daniel Leclair, Blaise Ouattara, and Marina Steele

Health Canada, Veterinary Drugs Directorate

Xian-Zhi Li and Manisha Mehrotra

Canadian Meat Council

Independent contractors

John Ranson

Ron Templeman

We would like to acknowledge Dr. Richard Reid-Smith, the CIPARS
"Superman"! Thank you Richard for your commitment and hard
work done behind the scenes for this surveillance program. A
special thanks to Dr. Anne Deckert for her outstanding efforts to
make the last stages of this report move forward!

CHAPTER 1—PROGRAM OVERVIEW

ABOUT CIPARS

The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), created in 2002, is a national program dedicated to the collection, integration, analysis, and communication of trends in antimicrobial use (AMU) and resistance (AMR) in selected bacteria from humans, animals, and animal-derived food sources across Canada. This information supports (i) the creation of evidence-based policies for AMU in hospitals, communities, and food-animal production with the aim of prolonging the effectiveness of these drugs and (ii) the identification of appropriate measures to contain the emergence and spread of resistant bacteria among animals, food, and people.

CIPARS continues to evolve to meet stakeholder needs. To enhance the timeliness of reporting, between 2012 and 2014 CIPARS piloted the division of the annual report into separate chapters, with chapters being posted as they were completed. This reporting method did not result in efficiency and CIPARS has returned to the release of a single Annual Report. For 2014, integrated findings will be published in the 2016 Canadian Antimicrobial Resistance Surveillance System Report.

CIPARS OBJECTIVES

- Provide a unified approach to monitor trends in antimicrobial resistance and antimicrobial use in humans and animals.
- Facilitate assessment of the public health impact of antimicrobials used in humans and agricultural sectors.
- Allow accurate comparisons with data from other countries that use similar surveillance systems.

WHAT'S NEW

ANTIMICROBIAL RESISTANCE

- Resistance to kanamycin is no longer reported due to its removal from the Enterobacteriaceae Gram-negative plate (CMV3AGNF). Instead, the range of dilutions for streptomycin was extended to 2 to 64 µg/ml.
- Broiler chicken flocks from Saskatchewan were included in Farm Surveillance.
- In 2014, the Farm Surveillance grower-finisher pig component began reporting regional and national antimicrobial resistance at the farm level
- For Retail Meat Surveillance, data are stratified regionally (British Columbia, Prairies, Ontario, Québec, and the Atlantic region).
- Temporal analysis is truncated to include the last 5 years of data from components presenting regional or provincial data.

ANTIMICROBIAL USE IN ANIMALS

- The Farm Surveillance grower-finisher pig component began reporting regional and national antimicrobial use at the farm level.
- For the 2014 CIPARS Annual Report, the Canadian Animal Health Institute (CAHI) provided quantities of antimicrobials distributed for sale for use in animals stratified by route of administration (feed, water, injection, oral/topical, and intra-mammary). CAHI additionally retrospectively stratified their 2013 data by route of administration.
- The quantities of antimicrobials distributed for use in companion animals were also adjusted by populations and weights (of cats and dogs).

ANTIMICROBIAL USE IN CROPS

 Information on antimicrobials intended for use as pesticides on crops were provided to CIPARS and in 2014, this information will be reported in the 2016 Canadian Antimicrobial Resistance Surveillance System Report.

CIPARS SURVEILLANCE COMPONENTS AND DATA

The current components and data sources for CIPARS are assembled together for analysis and reporting as shown in Figure 1. The top half of the figure includes the antimicrobial resistance components and the antimicrobial use components of CIPARS are along the bottom of the figure. Bringing together all of the data from all the various surveillance components requires organization and flexibility. A detailed description of data sources, information flow and points of integration, analysis and reporting are illustrated in Figure A.8 in Appendix.

Figure 1. Diagram of the CIPARS components, 2014

CHAPTER 2—ANTIMICROBIAL RESISTANCE

HOW TO READ THIS CHAPTER

This chapter highlights the most notable antimicrobial resistance (AMR) findings across the different surveillance components of CIPARS. These findings are presented by component (human, retail, abattoir, farm, clinical animal, and feed and feed ingredients) to facilitate comparison of resistance patterns across humans, different animal species, and bacterial species.

TEMPORAL FIGURES AND DATA TABLES FOR SIGNIFICANCE TESTING

All temporal figures and accompanying data tables presented in this chapter depict the variation in the percentage of isolates that were resistant to select antimicrobials either over all years of surveillance (national data), the last 5 years (components with regional or provincial data) or the year surveillance was implemented in a new component, host species, bacteria or location. Statistical analyses were limited to comparison of 2014 results for selected antimicrobials with: 1) 2013 results, 2) 2010 (or 5 years previous) for components with regional results (e.g., human and retail components) and abattoir (for comparison between components) 3) the first year of surveillance for components (e.g., abattoir component) with national results shown. A 5 year timeframe was selected to facilitate easier reading of temporal figures and supporting tables.

All significant differences identified have been highlighted in blue (or underlined) in data tables underneath the temporal figures. Finally, for all statistical analyses, a *P*-value equal or less than 0.05 was used to indicate a significant difference between years. All statistically significant results are marked by the use of the words "significant" or "significantly" in the text. All other findings presented without this word should be considered as non-statistically significant and should be interpreted with caution.

For Salmonella Heidelberg and Escherichia coli isolates obtained from chicken (abattoir and retail) and human S. Heidelberg isolates, ceftiofur, and ampicillin resistance for 2014 were compared with 2004 and 2006 results. These years were chosen because of changes in ceftiofur use which occurred in early 2005 and in 2007 across the chicken hatcheries in Québec.

For retail chicken, comparisons using those reference years were limited to data for Ontario and Québec only.

For the *Human Surveillance* portion of this report, statistically significant changes with respect to the antimicrobials presented in the temporal figures were only assessed between the current surveillance year (i.e., 2014) and the previous year (i.e., 2013). Additionally, any statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only. Presentation of these results is slightly different than the approach used in the agri-food components of CIPARS (i.e., farm, abattoir and retail components). In the interest of timely reporting, the human data were presented with these slight differences for 2014; however, future reports will present these data in a similar format and overall approach.

For the Farm Surveillance, multiple samples are collected from each herd or flock, therefore, where temporal comparisons are made, the antimicrobial resistance data have been adjusted for clustering within the herd. Farm Surveillance in broiler chickens was implemented in April 2013, thus the temporal figures will not be reported until there are three years of data, but the 2013 and 2014 data are presented in the supporting tables.

Temporal variations in the data from *Surveillance of Animal Clinical Isolates* and *Feed and Feed Ingredients* were not investigated as the number of isolates from passive surveillance are unequal across years and provinces/regions. In addition, temporal figures were not presented if the total number of surveillance years was less than 3 years. In these situations, a bar chart figures with supporting tables were presented instead.

NATIONAL OR PROVINCIAL/REGIONAL PREVALENCE DATA

Data for humans, farm (broiler chickens and grower-finisher pigs) and retail surveillance components are presented at the provincial/regional level. Data for abattoir, animal clinical isolates, and feed and feed-ingredients are presented nationally with no provincial or regional breakdown.

HOW TO READ MINIMUM INHIBITORY CONCENTRATION TABLES

The following information is important for the interpretation of tables presenting results on the distribution of MICs. See how to interpret MIC results (on the next page):

- Roman numerals I to IV indicate the ranking of antimicrobials based on importance in human medicine as outlined by the Health Canada's Veterinary Drugs Directorate
- The unshaded fields indicate the range of concentrations tested for each antimicrobial in the test plate configuration
- Blue numbers indicate the percentage of isolates that were susceptible to the antimicrobial according to the predefined susceptibility breakpoint
- Red numbers indicate the percentage of isolates that were resistant to the antimicrobial according to the predefined resistance breakpoint
- Numbers to the right of the highest concentration in the tested range (i.e., red numbers in shaded fields) represent the percentage of isolates with growth in all

wells of the test plate within the tested range, indicating that the actual MICs were greater than the tested range of concentrations

- Numbers at the lowest concentration in the tested range (i.e., blue numbers at the far left in unshaded fields) represent the percentage of isolates susceptible to the antimicrobial at the indicated or lower concentrations
- Solid vertical lines represent resistance breakpoints
- Dotted vertical lines represent susceptibility breakpoints.
- MIC 50 = MIC at which growth of 50% of isolates was inhibited by a specific antimicrobial
- MIC 90 = MIC at which growth of 90% of isolates was inhibited by a specific antimicrobial
- % R = Percentage of isolates that were resistant to a specific antimicrobial.

Example of how to read a minimum inhibitory concentration table

1. HUMAN SURVEILLANCE

KEY FINDINGS

The Provincial Public Health Laboratories forwarded a total of 4,548 *Salmonella* isolates (161 serovars) to the National Microbiology Laboratory, Public Health Agency of Canada in 2014. Antimicrobial susceptibility testing was performed for 2,668 of these isolates, and the remaining isolates were stored for future susceptibility testing⁴.

SALMONELLA (n = 4,548)

Susceptibility testing was routinely carried out on 7 serovars in 2014: Enteritidis, Heidelberg, Newport, Paratyphi A and B⁵, Typhi, Typhimurium, and 4,[5],12:i:-. There were 3,213 isolates from these 7 serovars, of which 2,668 had susceptibility testing performed. The remaining 1,335 isolates represented 153 other serovars, and susceptibility results were available for 221 of these isolates.

In 2014, as in all years since 2005, Enteritidis was the most common serovar (43%, 1,951/4,548) isolated among all human *Salmonella* infections. Therefore, without considering underreporting, 9.7 illnesses/100,000 people in 2014 were attributable to *Salmonella* Enteritidis (Figure 1.1). *Salmonella* Heidelberg (8%, 379/4,548) and Typhimurium (8%, 357/4,548) were the second and third most common serovars isolated, causing less than 1/5 of the number of cases attributable to Enteritidis.

The proportion of Enteritidis isolates out of all *Salmonella* isolates increased significantly from 2013 to 2014, from 32% (1,175/3,617) to 43% (1,951/4,548) (Figure 1.2), returning to the high rates seen in 2010 and 2011. In contrast, both Heidelberg and Typhimurium continued to decline from 2013 to 2014, following the overall trend seen since 2003 (Figure 1.2).

Salmonella is primarily an enteric pathogen of humans. Isolation from non-enteric samples (e.g., blood and urine) may be indicative of more invasive infections. Eight percent (363/4,548) of isolates were recovered from blood. Typhoidal isolates (Typhi, Paratyphi A and B) accounted for a large proportion of these isolates from blood (38%, 139/363). Recovery from urine occurred for 5% (234/4,548) of isolates. In contrast to isolation from blood, typhoidal isolates accounted for a very small proportion of isolates from urine (1%, 2/234). The proportion of isolates recovered from blood, urine, and other sample types varied by serovars. Figure 1.3 demonstrates the variability of source of infection (e.g., blood, urine, and stool) but only represents those select serovars for which antimicrobial susceptibility testing was completed.

⁵ Although the agri-food sector is not a source of *Salmonella* Typhi, *S.* Paratyphi A, or *S.* Paratyphi B, data for these serovars are also presented because they each cause severe disease in humans.

⁴ Slight differences may be observed in totals in tables and figures due to the staggered nature of the 2014 analysis; however, impact on antimicrobial resistance prevalence is negligible.

Due to the differences in invasiveness and presumably severity of illness, and the potential sources of infections, typhoidal and non-typhoidal *Salmonella* serovars are discussed separately for the following analyses.

NON-TYPHOIDAL SALMONELLA (n = 2,485)

In 2014, 25% (620/2,485) of non-typhoidal isolates were resistant to one or more antimicrobials tested. Fourteen percent (358/2,485) of isolates were resistant to a single antimicrobial, of which 50% (179/358) were resistant to nalidixic acid.

In 2014, a significant increase was observed in resistance to nalidixic acid (9%, 212/2,485) compared to 2013 (5%, 160/2,987) (Figure 1.4). This was likely a result of the increase in Enteritidis human infections that occurred between the two years, as nalidixic acid resistance alone was the most common resistance pattern seen in Enteritidis (when resistance is observed). Significant decreases in resistance among non-typhoidal isolates occurred from 2013 to 2014 for streptomycin (356/2,987, 12% in 2013 to 221/2,485, 9% in 2014), sulfamethoxazole with trimethoprim (88/2,987, 3% in 2013 to 43/2,485, 2% in 2014), and tetracycline (415/2,987, 14% in 2013 to 260/2,485, 11% in 2014).

At the provincial level, a large number of significant changes occurred in resistance from 2013 to 2014 among non-typhoidal Salmonella infections. The majority of the changes involved declines in resistance. In Alberta, a significant reduction in ampicillin resistance was observed. In British Columbia, decreases were documented for tetracycline and sulfamethoxazole with trimethoprim. In Manitoba, streptomycin and tetracycline resistances dropped significantly, and in Nova Scotia, resistance to ampicillin, ceftiofur, streptomycin and tetracycline all dropped significantly from 2013 to 2014. The only significant increases in resistance were for nalidixic acid in Ontario and Québec. The number and proportion of isolates with resistance in 2014 can be found in Table 1.2.

TYPHOIDAL SALMONELLA (n = 183) 6

A total of 183 typhoidal isolates were tested for antimicrobial susceptibility; Typhi (147), Paratyphi A (29) and Paratyphi B (7). A total of 82% (150/183) were resistant to nalidixic acid. Accordingly, the most common resistance pattern in 2014 was of nalidixic acid alone (54%, 99/183) followed by CIP-NAL (12%, 22/183) and AMP-CHL-NAL-STR-SSS-SXT (12%, 22/183).

At the national level, the only significant change in resistance from 2013 to 2014 was a decrease in the proportion of isolates resistant to tetracycline (5% to 1%) (Figure 1.5). No significant changes in the proportion of resistance were seen at the provincial level. Provincial level numbers and proportions of resistance among typhoidal *Salmonella* isolates are reported in Table 1.3.

⁶ Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

ENTERITIDIS (n = 1,211)

Resistance among Enteritidis isolates is driven by the phage types isolated. The most common phage types (PTs) recovered in 2014 were PT 8 (36%, 441/1,211), PT 13 (15%, 183/1,211) and PT 64 (13%, 137/1,211). The proportion of PT 64 isolates has increased dramatically since 2011, the first year when it was reported by the National Enteric Surveillance Program. Between 2013 and 2014, the proportion of PT 64 among all Enteritidis significantly increased from 8% (58/746) to 13% (137/1,211). Similarly, PT 35 was the fifth most common PT identified in 2014 representing 5% (65/1,211) of all isolates. Prior to 2014, PT 35 represented 1% or less of all Enteritidis. Conversely, the proportion of PT 13a isolates over this same time frame declined from 15% (111/746) in 2013 to 11% (132/1,211) in 2014.

In 2014, as in all previous years of surveillance, the majority of Enteritidis isolates were recovered from stool samples (83%, 1,007/1,211) (Figure 1.3). Eight percent of isolates were recovered from blood (98/1,211) and 4% (54/1,211) were recovered from urine (Figure 1.3).

The majority of Enteritidis isolates (83%, 1,001/1,211) were susceptible to all antimicrobials tested. Resistance to nalidixic acid alone (10%, 170/1,211) was the most common antimicrobial resistance pattern, attributable to PT 64 (38%, 66/170) and PT 1 (31%, 53/170). In previous years, isolates resistant to the A2C and/or ACSSuT pattern were observed; however, this pattern was not observed among Enteritidis isolates in 2014. The patterns involving the greatest number of antimicrobials were AMP-NAL-STR-SSS-TET (1 PT 1 in Québec and 1 PT 53 in Ontario) and CIP-NAL-SSS-TET-SXT (1 PT 14b from Ontario, one PT 6a from Ontario, and one atypical PT from Québec).

Significant decreases in resistance between 2013 and 2014 were observed to ciprofloxacin (11/746, 1% in 2013 to 6/1,211, less than 1% in 2014), and tetracycline (3% to 1%) (Figure 1.6 and Table 1.4). At the provincial level, the only significant change in resistance was in Ontario, where resistance to nalidixic acid increased significantly between 2013 and 2014 (14% in 2013, 27/190) to 22% in 2014, 75/338) (Table 1.4).

HEIDELBERG (n = 359)

Similar to Enteritidis, observed resistance among Heidelberg isolates is affected by the circulating phage types. The most common PTs recovered in 2014 were PT 19 (37%, 132/359), PT 29 (22%, 78/359) and PT 10 (6%, 22/359). Phage type 19 continued to decrease in 2014 compared to 2013 and 2012 (47% and 53%, respectively) (data not shown). Phage type 29 decreased from 28% (109/418) in 2013 to 23% (78/359) in 2014. Other PTs making up the top 5 in 2014 were PT 10, PT 19a, and PT 32.

In 2014, 14% of Heidelberg isolates were recovered from blood, and 9% from urine (Figure 1.3), similar to the proportions seen in 2013. Thirty-five percent (127/359) of Heidelberg isolates in 2014 were resistant to one or more antimicrobials, lower than the 41% (170/418) reported in 2013. This was due to increases in PT 10 and PT 19a (data not shown); these PTs were both susceptible to all antimicrobials.

No significant changes in resistance within Heidelberg isolates occurred between 2013 and 2014 at the national or provincial levels (Figure 1.7 and Table 1.5). Resistance to azithromycin or ciprofloxacin were not observed among Heidelberg isolates in 2014.

The most common antimicrobial resistance pattern was A2C-AMP-CRO alone (26%, 95/359). This pattern showed a slight decrease from the percentage observed in 2013 (30%, 126/418). One isolate from British Columbia with an atypical phage type was resistant to 5 classes, with the ACSSuT-GEN resistance pattern.

NEWPORT (n = 201)

Similar to Enteritidis and Heidelberg, resistance among Newport isolates was driven by the proportion of various phage types isolated. In 2014, the most common PT recovered was PT 9 representing 16% (32/201) of all isolates tested in 2014 followed by PT 10 (12%, 24/201) and PT 13 (8%, 16/201). The proportion of PT9 isolates has remained relatively stable since 2007 (data not shown). In contrast, the proportion of PT 10, 13, 14b and 2 (the other top phage types) have been variable during this time frame. Of interest for 2013 to 2014 was the large increase in PT 10 isolates (3% in 2013 to 10% in 2014). Three percent (6/201) of Newport isolates were recovered from blood in 2014, similar to that reported in 2013 (3%, 6/174) (Figure 1.3). Five percent (10/201) of isolates were recovered from urine, which was a decrease from the 7% (12/174) observed in 2013.

The majority of Newport isolates in 2014 were susceptible to all antimicrobials tested (94%, 188/201). This represents an increase compared to 2013 (87%, 152/174) driven by the increase in the proportion of PT 10 isolates, of which 96% (23/24) were susceptible to all antimicrobials tested.

At the national level, a significant decline in the proportion of isolates resistant to streptomycin occurred from 2013 to 2014, with a decline from 9% (16/174) to 3% (7/201) (Figure 1.8). No significant changes in resistance occurred at the provincial level (Table 1.6). Resistance to ciprofloxacin or azithromycin was present among 1% (2/201) and less than 1% (1/201) of Newport isolates, respectively.

The most common antimicrobial resistance pattern observed was A2C-AMP-CRO (2 isolates from Ontario and 1 isolate from New Brunswick). The pattern involving the greatest number of antimicrobials was ACSSuT-AZM-CIP-GEN-NAL-SXT from a PT 14b isolate from Québec.

PARATYPHI A (n = 29) AND PARATYPHI B⁷ (n = 7)

There were 29 Paratyphi A isolates tested in 2014. Eighty-three percent (24/29) and 3% (1/29) were recovered from blood and urine samples, respectively (Figure 1.3). Of the 7 Paratyphi B isolates tested in 2014, none were isolated from blood or urine.

In 2014, 86% (25/29) of Paratyphi A isolates and 14% (1/7) Paratyphi B isolates were resistant to one or more antimicrobials tested. Overall, the only resistance observed among these isolates was to nalidixic acid with or without ciprofloxacin resistance (Figure 1.9 and Table 1.7). Resistance to a variety of antimicrobials in Paratyphi A and B isolates was observed in 2014, including ampicillin, cefoxitin, streptomycin, trimethoprim-sulfamethoxazole, chloramphenicol, sulfisoxazole, and tetracycline.

Resistance to nalidixic acid alone was the most common resistance pattern observed (55%, 20/36). Six isolates Paratyphi A isolates were resistant to both ciprofloxacin and nalidixic acid, which was an increase from 16% (7/43) in 2013 to 21% (6/29) in 2014.

TYPHI (n = 147)

Of the 147 Typhi isolates received in 2014, 77 (113/147) were recovered from blood isolates (Figure 1.3). Eighty four percent (124/147) of Typhi isolates were resistant to one or more antimicrobials tested. Similar to resistance patterns seen in Enteritidis however, the majority of resistance in Typhi isolates was to nalidixic acid; 84% (124/147) of Typhi isolates in 2014 were resistant to nalidixic acid. Fifty-four percent (79/147) were resistant to nalidixic acid alone (Figure 1.10).

The second most common resistance pattern among Typhi isolates in 2014 was AMP-CHL-NAL-STR-SSS-SXT (15%, 22/147), followed by CIP-NAL (11%, 16/147). The patterns involving the greatest number of antimicrobials were AMP-CHL-NAL-STR-SSS-SXT (22 isolates) and CIP-NAL-STR-SSS-TET-SXT (1 isolate). There were no significant changes in resistance at the national or provincial levels between 2013 and 2014 (Table 1.8).

TYPHIMURIUM (n = 355)

Three percent (10/355) of Typhimurium isolates in 2014 were recovered from blood samples, which was within the historical range (low of 10/45, 31% in 2010, high of 16/474, 3% in 2008). The proportion of isolates recovered from urine was also 3% (10/355), similar to 2013 (3%, 11/384)

In 2014, 36% (127/355) of Typhimurium isolates were resistant to one or more antimicrobials tested, a slight increase from that reported in 2013 (33%, 128/384). No significant changes were observed in the proportion of isolates resistant to the individual antimicrobials (Figure 1.11). Less than 1% of isolates were resistant to either ciprofloxacin (3/355) or azithromycin (3/355). No provincial differences were observed between 2013 and 2014 (Table 1.9).

⁷ Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

The most common antimicrobial resistance pattern in 2014 was ACSSuT alone (15%, 53/355), mirroring that observed in 2013 (14%, 53/384). The pattern with the greatest number of antimicrobials was ACSSuT-A2C-CRO-SXT (1 PT 193 from Ontario).

4,[5],12:i:-(n = 138)

Three percent (4/138) of 4,[5],12:i- isolates were recovered from blood and 1% (2/138) from urine in 2014. Both of these values remain within the historical levels observed.

Seventy two percent (100/138) of 4,[5],12:i- isolates in 2014 were resistant to one or more antimicrobials tested. A significant increase occurred in gentamicin resistance from 2013 to 2014 (2%, 4/166 to 7%, 7/138); however, no other significant changes occurred during this time frame at the national or provincial levels (Figure 1.12). Two isolates were resistant to ciprofloxacin (1 isolate in British Columbia and 1 isolate in Québec) in 2014; when previously one other ciprofloxacin-resistant isolate had been observed, in 2012 (Table 1.10). Two isolates with resistance to azithromycin were observed in each of 2013 and 2014.

The most common resistance pattern was AMP-STR-SSS-TET (32%, 44/138); a decline from 36% (60/166) in 2013. The pattern involving the greatest number of antimicrobials was ACSSuT-TIO-CRO-CIP-NAL-SXT from a Québec isolate.

PROPORTIONAL REPRESENTATION OF SALMONELLA SEROVARS

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

Figure 1.2. Proportional representation of human Salmonella isolates, 2003-2014

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

SEROVAR DISTRIBUTION

Other

■Stool

■Blood

11

1013

59

4

267

42

1

128

100% 90% 80% 70% Percentage of isolates 60% 50% 40% 30% 20% 10% 0% Paratyphi A Other Enteritidis Heidelberg 4,[5],12:i:-Typhi Typhimurium Newport serovars and B ■Urine 29 27 2 10 10 20 ■Unknown 105 4 22 3 12 3 26 8

Figure 1.3. Proportion of human Salmonella serovars from all sample sources, 2014

Serovars and number of isolates

0

7

0

30

114

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

0

173

2

184

1

307

10

MULTICLASS RESISTANCE

Table 1.1. Number of antimicrobial classes in resistance patterns of Salmonella from humans, 2014

Number of isolates by Number (%) number of antimicrobial															istant by antimicrobial class and antimicrobial Folate						
Province or region / serovar	of isolates	clas		the reattern	esistance n	Aminogl	ycosides		β-Ι	Lacta	ms		path inhib		Macrolides	Phenicols	Quino	olones	Tetracyclines		
		0	1		4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP	NAL	TET		
British Columbia																					
Enteritidis	162 (55.3)	141	17	4				2	8					3	1	1	1		13		
Heidelberg	40 (13.7)	4	33	3				1						3	3		2	8	36		
Typhi	36 (12.3)	26	1	1	8			7	8	3	3	2	3	9	2	1	7	1			
Typhimurium	20 (6.8)	18	1	1		1		1	2		1		1								
Newport	14 (4.8)	8	5		1	1		2	5	4	4	4	4	1			1				
4,[5],12:i:-	12 (4.1)			10	2	2		10	9					11	1	1	3	1	1		
Paratyphi A and B	9 (3.1)	4	5															2	5		
Total	293 (100)	201	62	19	11	4		23	32	7	8	6	8	27	7	3	14	12	55		
Alberta																					
Enteritidis	133 (52.0)	122	10	1					2		1		1				1		9		
Typhimurium	41 (16.0)	26	7	2	6			12	7	1	1	1	1	13	1		6		1		
4,[5],12:i:-	26 (10.2)	4	10	7	5	5		12	11		1		1	12	2	1	5		1		
Heidelberg	21 (8.2)	13	7	1				1	7	7	7	7	7	1	1						
Typhi	20 (7.8)	9	8		3			3	3					3	3		3	1	11		
Newport	10 (3.9)	8	1		1			1	1	1	1	1	1	1	1		1				
Paratyphi A and B	5 (2.0)		5															1	5		
Total	256 (100)	182	48	11	15	5		29	31	9	11	9	11	30	8	1	16	2	27		
Saskatchewan																					
Enteritidis	81 (63.3)	65	15	1				1	4										13		
4,[5],12:i:-	16 (12.5)	7	4	5				5	6	2	2	2	2	5							
Typhimurium	14 (10.9)	8	3	1	2			5	3					5			2				
Heidelberg	8 (6.3)	5	3						3	1	1	1	1								
Newport	6 (4.7)	5		1				1						1	1						
Typhi	2 (1.6)		2															1	2		
Paratyphi A and B	1 (0.8)		1																1		
Total	128 (100)	90	28	8	2			12	16	3	3	3	3	11	1		2	1	16		
Manitoba																					
Enteritidis	95 (62.9)	81	14						2										12		
Typhimurium	19 (12.6)	13	3	1	2	1		6	1					6	2		2	1	1		
Heidelberg	13 (8.6)	7	4	2				1	6	5	4	4	4	1							
4,[5],12:i:-	11 (7.3)	5	4	2		1		2	4	2	2	2	2	2							
Newport	8 (5.3)	6		1	1	1		2	2	1	1	1	1	2			1				
Paratyphi A and B	4 (2.6)	2	2																2		
Typhi	1 (0.7)	1																			
Total	151 (100)	115	27	6	3	3		11	15	8	7	7	7	11	2		3	1	15		
Ontario																					
Enteritidis	338 (39.3)	260	70	7	1			3	5					6	3	1		4	75		
Typhimurium	164 (19.0)	113	8	12	31	2		45	42	2	1	2	1	40	3		36		3		
Heidelberg	142 (16.5)	93	47	2				4	47	45	45	41	45	2	1		1				
Newport	85 (9.9)	81	3	1				1	2	2	2	2	2	1			1	1			
Typhi	77 (8.9)	9	45	2	21			22	21					22	20		22	9	68		
4,[5],12:i:-	41 (4.8)	12	6	21	2	2		22	19					22	5	1	4				
Paratyphi A and B	14 (1.6)	2	12															3	12		
Total	861 (100)	570	191	45	55	4		97	136	49	48	45	48	93	32	2	64	17	158		

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

Table 1.1. Number of antimicrobial classes in resistance patterns of *Salmonella* from humans, 2014 (cont'd)

11100)	Number of isolates by										Number of isolates resistant by antimicrobial class and antimicrobial										
	No In a see (0/)	number of antimicrobial					Folate														
Province or region / serovar	Number (%) of isolates		ses in				Aminog	lycosides		β-Ι	_acta	ms		patl	nway	Macrolides	Phenicols	Quinc	olones	Tetracyclines	
	UI ISUIALES		р	attern	tern									inhil	oitors						
		0	1	2-3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP	NAL	TET	
Québec																					
Enteritidis	123 (32.0)	92	27	3	1				1	3					3	2			2	26	
Heidelberg	114 (29.7)	67	45	2			2		4	42	40	40	38	40	2	1		1		3	
Typhimurium	60 (15.6)	26	7	7	20		1		25	21	1	1		1	31	5	2	20	1	3	
Newport	56 (14.6)	55				1	1		1	1					1	1	1	1	1	1	
4,[5],12:i:-	22 (5.7)	3	1	15	3		1		16	17		1		1	17	1		3	1	1	
Typhi	7 (1.8)		6		1				1	1					1	1		1		7	
Paratyphi A and B	2 (0.5)	2																			
Total	384 (100)	245	86	27	25	1	5		48	85	41	42	38	42	55	11	3	26	5	41	
New Brunswick																					
Enteritidis	96 (68.1)	87	9																	9	
Heidelberg	21 (14.9)	17	3	1			1		1	3	3	3	3	3	1						
Newport	9 (6.4)	- 8	1							1	1	1	1	1							
Typhimurium	8 (5.7)	5		2	1				2	2					3			1			
4,[5],12:i:-	7 (5.0)	5		2					2	2					2						
Total	141 (100)	122	13	5	1		1		5	8	4	4	4	4	6			1		9	
Nova Scotia																					
Enteritidis	123 (77.8)	102	19	2					1	2						11				19	
Heidelberg	17 (10.8)	13	4				1		1	3	3	3	3	3	1						
Typhimurium	8 (5.1)	- 8																			
Newport	6 (3.8)	6																			
4,[5],12:i:-	2 (1.3)	1	1																		
Paratyphi A and B	1 (0.6)		1																	1	
Typhi	1 (0.6)		1																	1	
Total	158 (100)	130	26	2			1		2	5	3	3	3	3	1	1				21	
Prince Edward Island	```																				
Enteritidis	21 (80.8)	16	4	1						1										4	
Typhimurium	3 (11.5)	2		1						1					1						
4,[5],12:i:-	1 (3.8)	1																			
Newport	1 (3.8)	1																			
Total	26 (100)	20	4	2						2					1					4	
Newfoundland and Labrador	20 (100)	20		<u> </u>																	
Enteritidis	46 (7E 4)	40	6																	6	
	46 (75.4)		1							1	1	4	1	1						0	
Heidelberg	12 (19.7)		1	4	4				2			1	- 1	1	2			4			
Typhimurium	3 (4.9)	1	_	1	1					1	-	_	4					1			
Total Total non-typhoidal Salmonella	61 (100)	52	7 403	123	80	1	23		196	200	122	124	114	124	202	26	9	1	20	6 237	
Total typhoidal Salmonella	2,279 180	1,672 55	403 89	3	33	1	23		33	299 33	3	3	2	124 3	35	36 26	<u>8</u> 1	94 33	20 18	115	
Total typholual Saimonella	180	ວວ	09	J	აა				33	აა	J	3		J	งจ	20		აა	10	119	

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

ANTIMICROBIAL RESISTANCE SUMMARY

Figure 1.4. Temporal variations in resistance of non-typhoidal *Salmonella* from humans, 2003–2014

Year and number of isolates

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Table 1.2. Resistance to antimicrobials among non-typhoidal Salmonella human infections, 2014

_												
					Numbe	r (%) of is	olates r	esistant				Canada
	Antimicrobial	BC	AB	SK	MB	ON	QC	NB	NS	PE	NL	
		n = 263	n = 263	n = 133	n = 157	n = 871	n = 411	n = 141	n = 161	n = 26	n = 59	%
	Amoxicillin-clavulanic acid	7 (3)	11 (4)	3 (2)	8 (5)	55 (6)	43 (10)	4 (3)	3 (2)	0 (0)	1 (2)	6
	Ceftiofur	8 (3)	13 (5)	3 (2)	7 (4)	55 (6)	43 (10)	4 (3)	3 (2)	0 (0)	1 (2)	6
•	Ceftriaxone	8 (3)	13 (5)	3 (2)	7 (4)	55 (6)	43 (10)	4 (3)	3 (2)	0 (0)	1 (2)	6
	Ciprofloxacin	2 (1)	0 (0)	0 (0)	1 (1)	9 (1)	5 (1)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Ampicillin	33 (13)	31 (12)	16 (12)	15 (10)	125 (14)	85 (21)	8 (6)	5 (3)	2 (8)	2 (3)	14
	Azithromycin	3 (1)	1 (0)	0 (0)	0 (0)	3 (0)	3 (1)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Cefoxitin	6 (2)	11 (4)	3 (2)	7 (4)	51 (6)	40 (10)	4 (3)	3 (2)	0 (0)	1 (2)	5
II	Gentamicin	4 (2)	6 (2)	0 (0)	4 (3)	10 (1)	5 (1)	1 (1)	1 (1)	0 (0)	0 (0)	1
	Nalidixic acid	15 (6)	13 (5)	12 (9)	14 (9)	85 (10)	36 (9)	8 (6)	19 (12)	4 (15)	6 (10)	8
	Streptomycin	24 (9)	27 (10)	12 (9)	12 (8)	83 (10)	54 (13)	5 (4)	2 (1)	0 (0)	2 (3)	10
	Trimethoprim-sulfamethoxazole	4 (2)	5 (2)	1 (1)	2 (1)	17 (2)	12 (3)	0 (0)	2 (1)	0 (0)	0 (0)	2
	Chloramphenicol	13 (5)	14 (5)	2 (2)	3 (2)	47 (5)	28 (7)	1 (1)	0 (0)	0 (0)	1 (2)	5
III	Sulfisoxazole	26 (10)	29 (11)	11 (8)	12 (8)	84 (10)	60 (15)	6 (4)	2 (1)	1 (4)	2 (3)	10
	Tetracycline	29 (11)	36 (14)	12 (9)	12 (8)	96 (11)	63 (15)	6 (4)	3 (2)	1 (4)	2 (3)	11
IV												

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Figure 1.5. Temporal variations in resistance of typhoidal Salmonella from humans, 2003–2014

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

Table 1.3. Resistance to antimicrobials among typhoidal Salmonella human infections, 2014

					Num be	r (%) of is	olates r	esistant				Canada
	Antimicrobial	BC	AB	SK	MB	ON	QC	NB	NS	PE	NL	
		n = 49	n = 25	n = 3	n = 5	n = 90	n = 9	n = 0	n = 2	n = 0	n = 0	%
	Amoxicillin-clavulanic acid	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Ceftiofur	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
•	Ceftriaxone	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Ciprofloxacin	10 (20)	2 (8)	1 (33)	0 (0)	12 (13)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	14
	Ampicillin	0 (0)	3 (12)	0 (0)	0 (0)	20 (22)	1 (11)	0 (0)	0 (0)	0 (0)	0 (0)	13
	Azithromycin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Cefoxitin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
II	Gentamicin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Nalidixic acid	41 (84)	16 (64)	3 (100)	2 (40)	79 (88)	7 (78)	0 (0)	2 (100)	0 (0)	0 (0)	82
	Streptomycin	1 (2)	3 (12)	0 (0)	0 (0)	21 (23)	1 (11)	0 (0)	0 (0)	0 (0)	0 (0)	15
	Trimethoprim-sulfamethoxazole	3 (6)	3 (12)	0 (0)	0 (0)	19 (21)	1 (11)	0 (0)	0 (0)	0 (0)	0 (0)	15
	Chloramphenicol	2 (4)	3 (12)	0 (0)	0 (0)	21 (23)	1 (11)	0 (0)	0 (0)	0 (0)	0 (0)	15
III	Sulfisoxazole	3 (6)	3 (12)	0 (0)	0 (0)	21 (23)	1 (11)	0 (0)	0 (0)	0 (0)	0 (0)	16
	Tetracycline	1 (2)	0 (0)	0 (0)	0 (0)	1 (1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1
IV												

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

Figure 1.6. Temporal variations in resistance of Salmonella Enteritidis from humans, 2003–2014

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Table 1.4. Resistance to antimicrobials among human Salmonella Enteritidis infections, 2014

					Numbe	r (%) of is	olates re	esistant				Canada
	Antimicrobial	вс	AB	SK	MB	ON	QC	NB	NS	PE	NL	
		n = 162	n = 133	n = 79	n = 95	n = 338	n = 123	n = 94	n = 123	n = 21	n = 43	%
	Amoxicillin-clavulanic acid	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Ceftiofur	0 (0)	1 (1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
•	Ceftriaxone	0 (0)	1 (1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Ciprofloxacin	0 (0)	0 (0)	0 (0)	0 (0)	4 (1)	2 (2)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Ampicillin	8 (5)	2 (2)	4 (5)	2 (2)	5 (1)	3 (2)	0 (0)	2 (2)	1 (5)	0 (0)	2
	Azithromycin	1 (1)	0 (0)	0 (0)	0 (0)	1 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Cefoxitin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
II	Gentamicin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Nalidixic acid	13 (8)	9 (7)	12 (15)	12 (13)	75 (22)	26 (21)	8 (9)	19 (15)	4 (19)	6 (14)	16
	Streptomycin	2 (1)	0 (0)	1 (1)	0 (0)	3 (1)	1 (1)	0 (0)	1 (1)	0 (0)	0 (0)	< 1
	Trimethoprim-sulfamethoxazole	1 (1)	0 (0)	0 (0)	0 (0)	3 (1)	2 (2)	0 (0)	1 (1)	0 (0)	0 (0)	< 1
	Chloramphenicol	1 (1)	1 (1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
Ш	Sulfisoxazole	3 (2)	0 (0)	0 (0)	0 (0)	6 (2)	3 (2)	0 (0)	0 (0)	0 (0)	0 (0)	1
	Tetracycline	2 (1)	0 (0)	1 (1)	0 (0)	5 (1)	6 (5)	0 (0)	1 (1)	1 (5)	0 (0)	1
IV												

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Figure 1.7. Temporal variations in resistance of Salmonella Heidelberg from humans, 2003–2014

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Table 1.5. Resistance to antimicrobials among human Salmonella Heidelberg infections, 2014

					Numbe	r (%) of is	solates re	esistant				Canada
	Antimicrobial	ВС	AB	SK	MB	ON	QC	NB	NS	PE	NL	
		n = 14	n = 21	n = 8	n = 13	n = 142	n = 111	n = 21	n = 17	n = 0	n = 12	%
	Amoxicillin-clavulanic acid	4 (29)	7 (33)	1 (13)	5 (38)	45 (32)	39 (35)	3 (14)	3 (18)	0 (0)	1 (8)	31
	Ceftiofur	4 (29)	7 (33)	1 (13)	4 (31)	45 (32)	39 (35)	3 (14)	3 (18)	0 (0)	1 (8)	31
•	Ceftriaxone	4 (29)	7 (33)	1 (13)	4 (31)	45 (32)	39 (35)	3 (14)	3 (18)	0 (0)	1 (8)	31
	Ciprofloxacin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Ampicillin	5 (36)	7 (33)	3 (38)	6 (46)	47 (33)	40 (36)	3 (14)	3 (18)	0 (0)	1 (8)	33
	Azithromycin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Cefoxitin	4 (29)	7 (33)	1 (13)	4 (31)	41 (29)	37 (33)	3 (14)	3 (18)	0 (0)	1 (8)	29
II	Gentamicin	1 (7)	0 (0)	0 (0)	0 (0)	0 (0)	2 (2)	1 (5)	1 (6)	0 (0)	0 (0)	1
	Nalidixic acid	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3 (3)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Streptomycin	2 (14)	1 (5)	0 (0)	1 (8)	4 (3)	4 (4)	1 (5)	1 (6)	0 (0)	0 (0)	4
	Trimethoprim-sulfamethoxazole	0 (0)	1 (5)	0 (0)	0 (0)	1 (1)	1 (1)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Chloramphenicol	1 (7)	0 (0)	0 (0)	0 (0)	1 (1)	1 (1)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
III	Sulfisoxazole	1 (7)	1 (5)	0 (0)	1 (8)	2 (1)	2 (2)	1 (5)	1 (6)	0 (0)	0 (0)	2
	Tetracycline	2 (14)	1 (5)	0 (0)	2 (15)	2 (1)	1 (1)	1 (5)	0 (0)	0 (0)	0 (0)	2
IV												

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

50% Percentage of resistant isolates 40% 30% 20% 10% 0% 2003 2004 2006 2007 2008 2010 2011 2005 2009 2012 2013 2014 175 152 142 146 127 177 201 136 135 193 149 174 12.3% 9.8% AMP 12.6% 11.2% 9.2% 4.7% 2.8% 2.2% 3.0% 7.3% 6.0% 4.5%
₩ AZM 0.0% 0.0% 0.0% 2.3% 0.5% 8.5% 8.9% 6.9% -TIO 9.7% 9.2% 3.1% 1.7% 1.5% 3.0% 6.7% 6.0% 3.0% CIP 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.1% 1.0% 2.9% -GEN 0.6% 1.3% 0.7% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0% 1.5% 0.0% NAL 3.4% 4.8% 1.6% 1.1% 0.0% 0.7% 0.0% 2.0% 1.7% 0.5% 1.3% STR 9.7% 11.8% 9.9% 13.0% 8.1% 9.2% 3.5% 4.7% 2.3% 2.9% 4.4% 6.7% 12.6% 12.5% 9.9% 18.5% 4.0% 3.7% 5.9% 8.6% TET 8.7% 9.3% 9.4% 4.0% → SXT 1.1% 1.3% 1.4% 2.1% 2.4% 1.1% 0.7% 0.0% 4.1% 3.4% 2.3% 1.5%

Figure 1.8. Temporal variations in resistance of Salmonella Newport from humans, 2003–2014

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Table 1.6. Resistance to antimicrobials among human Salmonella Newport infections, 2014

					Number	r (%) of is	solates r	esistant				Canada
	Antimicrobial	BC	AB	SK	МВ	ON	QC	NB	NS	PE	NL	
		n = 20	n = 10	n = 6	n = 8	n = 85	n = 56	n = 9	n = 6	n = 1	n = 0	%
	Amoxicillin-clavulanic acid	0 (0)	1 (10)	0 (0)	1 (13)	2 (2)	0 (0)	1 (11)	0 (0)	0 (0)	0 (0)	2
	Ceftiofur	1 (5)	1 (10)	0 (0)	1 (13)	2 (2)	0 (0)	1 (11)	0 (0)	0 (0)	0 (0)	3
•	Ceftriaxone	1 (5)	1 (10)	0 (0)	1 (13)	2 (2)	0 (0)	1 (11)	0 (0)	0 (0)	0 (0)	3
	Ciprofloxacin	0 (0)	0 (0)	0 (0)	0 (0)	1 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	1
	Ampicillin	2 (10)	1 (10)	0 (0)	2 (25)	2 (2)	1 (2)	1 (11)	0 (0)	0 (0)	0 (0)	4
	Azithromycin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Cefoxitin	0 (0)	1 (10)	0 (0)	1 (13)	2 (2)	0 (0)	1 (11)	0 (0)	0 (0)	0 (0)	2
II	Gentamicin	1 (5)	0 (0)	0 (0)	1 (13)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	1
	Nalidixic acid	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Streptomycin	1 (5)	1 (10)	1 (17)	2 (25)	1 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	3
	Trimethoprim-sulfamethoxazole	0 (0)	1 (10)	1 (17)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	1
	Chloramphenicol	0 (0)	1 (10)	0 (0)	1 (13)	1 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	2
Ш	Sulfisoxazole	0 (0)	1 (10)	1 (17)	2 (25)	1 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	2
	Tetracycline	1 (5)	2 (20)	1 (17)	2 (25)	1 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	3
IV												

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Figure 1.9. Temporal variations in resistance of *Salmonella* Paratyphi A and B from humans, 2003–2014

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

Table 1.7. Resistance to antimicrobials among human *Salmonella* Paratyphi A and B infections, 2014

Т					Numbe	r (%) of is	olates re	esistant				Canada
	Antimicrobial	ВС	AB	SK	МВ	ON	QC	NB	NS	PE	NL	
		n = 9	n = 5	n = 1	n = 4	n = 14	n = 2	n = 0	n = 1	n = 0	n = 0	%
	Amoxicillin-clavulanic acid	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Ceftiofur	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
٠	Ceftriaxone	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Ciprofloxacin	2 (22)	1 (20)	0 (0)	0 (0)	3 (21)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	18
	Ampicillin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Azithromycin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Cefoxitin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
II	Gentamicin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Nalidixic acid	5 (56)	5 (100)	1 (100)	2 (50)	12 (86)	0 (0)	0 (0)	1 (100)	0 (0)	0 (0)	73
	Streptomycin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Trimethoprim-sulfamethoxazole	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Chloramphenicol	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
III	Sulfisoxazole	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Tetracycline	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
IV												

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

Figure 1.10. Temporal variations in resistance of Salmonella Typhi from humans, 2003–2014.

Year and number of isolates

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Table 1.8. Resistance to antimicrobials among human Salmonella Typhi infections, 2014

_												
					Numbe	r (%) of is	solates re	esistant				Canada
	Antimicrobial	ВС	AB	SK	MB	ON	QC	NB	NS	PE	NL	
		n = 40	n = 20	n = 2	n = 1	n = 76	n = 7	n = 0	n = 1	n = 0	n = 0	%
	Amoxicillin-clavulanic acid	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Ceftiofur	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
•	Ceftriaxone	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
_	Ciprofloxacin	8 (20)	1 (5)	1 (50)	0 (0)	9 (12)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	13
	Ampicillin	0 (0)	3 (15)	0 (0)	0 (0)	20 (26)	1 (14)	0 (0)	0 (0)	0 (0)	0 (0)	17
	Azithromycin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Cefoxitin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
II	Gentamicin	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0
	Nalidixic acid	36 (90)	11 (55)	2 (100)	0 (0)	67 (88)	7 (100)	0 (0)	1 (100)	0 (0)	0 (0)	84
	Streptomycin	1 (3)	3 (15)	0 (0)	0 (0)	21 (28)	1 (14)	0 (0)	0 (0)	0 (0)	0 (0)	18
	Trimethoprim-sulfamethoxazole	3 (8)	3 (15)	0 (0)	0 (0)	19 (25)	1 (14)	0 (0)	0 (0)	0 (0)	0 (0)	18
	Chloramphenicol	2 (5)	3 (15)	0 (0)	0 (0)	21 (28)	1 (14)	0 (0)	0 (0)	0 (0)	0 (0)	19
III	Sulfisoxazole	3 (8)	3 (15)	0 (0)	0 (0)	21 (28)	1 (14)	0 (0)	0 (0)	0 (0)	0 (0)	19
	Tetracycline	1 (3)	0 (0)	0 (0)	0 (0)	1 (1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1
IV	·											

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Figure 1.11. Temporal variations in resistance of *Salmonella* Typhimurium from humans, 2003–2014

Year and number of isolates

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Table 1.9. Resistance to antimicrobials among human Salmonella Typhimurium infections, 2014

					Numbe	r (%) of is	solates re	esistant				Canada
	Antimicrobial	ВС	AB	SK	MB	ON	QC	NB	NS	PE	NL	
		n = 36	n = 41	n = 14	n = 19	n = 164	n = 59	n = 8	n = 8	n = 3	n = 3	%
	Amoxicillin-clavulanic acid	3 (8)	1 (2)	0 (0)	0 (0)	2 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	2
	Ceftiofur	3 (8)	1 (2)	0 (0)	0 (0)	1 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	2
٠	Ceftriaxone	3 (8)	1 (2)	0 (0)	0 (0)	1 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	2
	Ciprofloxacin	1 (3)	0 (0)	0 (0)	1 (5)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Ampicillin	8 (22)	7 (17)	3 (21)	1 (5)	42 (26)	20 (34)	2 (25)	0 (0)	1 (33)	1 (33)	25
	Azithromycin	1 (3)	0 (0)	0 (0)	0 (0)	0 (0)	2 (3)	0 (0)	0 (0)	0 (0)	0 (0)	< 1
	Cefoxitin	2 (6)	1 (2)	0 (0)	0 (0)	2 (1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2
II	Gentamicin	0 (0)	0 (0)	0 (0)	1 (5)	2 (1)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	1
	Nalidixic acid	0 (0)	1 (2)	0 (0)	1 (5)	3 (2)	3 (5)	0 (0)	0 (0)	0 (0)	0 (0)	2
	Streptomycin	7 (19)	12 (29)	5 (36)	6 (32)	45 (27)	24 (41)	2 (25)	0 (0)	0 (0)	2 (67)	29
	Trimethoprim-sulfamethoxazole	2 (6)	1 (2)	0 (0)	2 (11)	3 (2)	5 (8)	0 (0)	0 (0)	0 (0)	0 (0)	4
	Chloramphenicol	7 (19)	6 (15)	2 (14)	2 (11)	36 (22)	19 (32)	1 (13)	0 (0)	0 (0)	1 (33)	22
III	Sulfisoxazole	9 (25)	13 (32)	5 (36)	6 (32)	40 (24)	30 (51)	3 (38)	0 (0)	1 (33)	2 (67)	31
	Tetracycline	9 (25)	9 (22)	3 (21)	3 (16)	45 (27)	28 (47)	3 (38)	0 (0)	0 (0)	2 (67)	29
I۷	·											

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Figure 1.12. Temporal variations in resistance of Salmonella 4,[5],12:i:- from humans, 2003–2014

Year and number of isolates

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous surveillance year. Statistically significant changes between 2014 and 2013 are highlighted in the text accompanying the temporal figures only.

Table 1.10. Resistance to antimicrobials among human Salmonella 4,[5],12:i:- infections, 2014

					Numbe	r (%) of is	solates re	esistant				Canada
	Antimicrobial	ВС	AB	SK	МВ	ON	QC	NB	NS	PE	NL	
		n = 12	n = 26	n = 16	n = 11	n = 41	n = 22	n = 7	n = 2	n = 1	n = 0	%
	Amoxicillin-clavulanic acid	0 (0)	0 (0)	2 (13)	2 (18)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2
	Ceftiofur	0 (0)	1 (4)	2 (13)	2 (18)	0 (0)	1 (5)	0 (0)	0 (0)	0 (0)	0 (0)	3
•	Ceftriaxone	0 (0)	1 (4)	2 (13)	2 (18)	0 (0)	1 (5)	0 (0)	0 (0)	0 (0)	0 (0)	3
	Ciprofloxacin	1 (8)	0 (0)	0 (0)	0 (0)	0 (0)	1 (5)	0 (0)	0 (0)	0 (0)	0 (0)	2
	Ampicillin	9 (75)	11 (42)	6 (38)	4 (36)	19 (46)	17 (77)	2 (29)	0 (0)	0 (0)	0 (0)	52
	Azithromycin	1 (8)	1 (4)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3
	Cefoxitin	0 (0)	0 (0)	2 (13)	2 (18)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2
II	Gentamicin	2 (17)	5 (19)	0 (0)	1 (9)	2 (5)	1 (5)	0 (0)	0 (0)	0 (0)	0 (0)	9
	Nalidixic acid	1 (8)	1 (4)	0 (0)	0 (0)	0 (0)	1 (5)	0 (0)	0 (0)	0 (0)	0 (0)	3
	Streptomycin	10 (83)	12 (46)	5 (31)	2 (18)	22 (54)	16 (73)	2 (29)	0 (0)	0 (0)	0 (0)	54
	Trimethoprim-sulfamethoxazole	1 (8)	2 (8)	0 (0)	0 (0)	5 (12)	1 (5)	0 (0)	0 (0)	0 (0)	0 (0)	8
	Chloramphenicol	3 (25)	5 (19)	0 (0)	0 (0)	4 (10)	3 (14)	0 (0)	0 (0)	0 (0)	0 (0)	13
III	Sulfisoxazole	11 (92)	12 (46)	5 (31)	2 (18)	22 (54)	17 (77)	2 (29)	0 (0)	0 (0)	0 (0)	56
	Tetracycline	12 (100)	22 (85)	7 (44)	4 (36)	28 (68)	19 (86)	2 (29)	1 (50)	0 (0)	0 (0)	74
IV	-											

Province abbreviations are defined in the Appendix.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

MINIMUM INHIBITORY CONCENTRATIONS

See how to interpret the minimum inhibitory concentration tables in the section "How to Read this Chapter".

Table 1.11. Distribution of minimum inhibitory concentrations among non-typhoidal *Salmonella* from humans, 2014

	Antimicrobial		Perce	ntiles	0/ D						D	istributi	ion (%)	of MICs	s (µg/m	L)					
	Antimicropiai	n	MIC 50	MIC 90	% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	> 256
	Amoxicillin-clavulanic acid	2,485	≤ 1	8	5.4							75.6	11.5	0.6	4.0	2.9	1.5	3.9			
	Ceftiofur	2,485	1	1	5.5				0.0	0.2	6.8	84.5	2.9	0.0	0.1	5.4					
•	Ceftriaxone	2,485	≤ 0.25	≤ 0.25	5.5					93.4	1.0	0.1		0.1	0.2	3.0	1.6	0.4	0.3		
	Ciprofloxacin	2,485	≤ 0.015	0.06	0.7	57.9	31.4	1.0	1.2	4.2	3.6	0.3	0.2	0.0	0.1						
	Ampicillin	2,485	≤ 1	> 32	13.0							55.5	30.5	1.0	0.0	0.0	0.1	12.9			
	Azithromycin	2,485	4	8	0.4								11.4	63.8	23.3	1.1	0.4				
	Cefoxitin	2,485	2	4	5.1							2.9	74.2	16.3	1.0	0.5	1.6	3.4			
II	Gentamicin	2,485	0.50	1	1.2					27.0	60.6	10.4	0.5	0.2	0.0	0.2	1.1				
	Nalidixic acid	2,485	4	8	8.5							0.1	15.9	71.8	2.2	1.4	1.1	7.4			
	Streptomycin	2,485	8	≤ 32	8.9								26.3	22.3	22.9	16.1	3.6	2.0	6.9		
	Trimethoprim-sulfamethoxazole	2,485	≤ 0.12	≤ 0.12	1.7				92.4	5.5	0.3		0.0	0.0	1.7						
	Chloramphenicol	2,485	8	8	4.4								0.1	19.3	75.3	0.9		4.4			
Ш	Sulfisoxazole	2,485	64	128	9.4											5.7	29.1	40.1	15.3	0.4	9.4
_	Tetracycline	2,485	≤ 4	32	10.5									89.5		0.0	2.0	8.5			
IV	•																				

Table 1.12. Distribution of minimum inhibitory concentrations among typhoidal *Salmonella* from humans, 2014

Table 1.13. Distribution of minimum inhibitory concentrations among *Salmonella* Enteritidis from humans, 2014

	Antimicrobial		Perce	ntiles	% R						D	istribut	ion (%)	of MICs	ω (μg/m	L)					
	Antimicrobiai	n	MIC 50	MIC 90	% K	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	> 256
	Amoxicillin-clavulanic acid	1,211	≤ 1	2	0.0							78.0	19.7	0.2	2.0	0.2					
	Ceftiofur	1,211	1	1	0.1					0.1	0.7	94.9	4.3			0.1					
•	Ceftriaxone	1,211	≤ 0.25	≤ 0.25	0.1					98.8	1.0	0.2						0.1			
	Ciprofloxacin	1,211	0.03	0.25	0.5	37.8	44.7	1.2	2.1	7.7	5.9	0.2	0.3								
	Ampicillin	1,211	2	2	2.2							43.2	52.9	1.6	0.1		0.1	2.1			
	Azithromycin	1,211	4	8	0.2								16.0	70.3	12.8	0.7	0.2				
	Cefoxitin	1,211	2	4	0.0							0.2	8.08	18.2	0.7	0.2					
II	Gentamicin	1,211	0.50	0.50	0.0					48.3	45.7	5.8	0.2								
	Nalidixic acid	1,211	4	> 32	15.2								8.3	72.1	2.9	1.5	2.1	13.0			
	Streptomycin	1,211	2	4	0.7								53.9	41.6	3.1	0.5	0.2		0.7		
_	Trimethoprim-sulfamethoxazole	1,211	≤ 0.12	≤ 0.12	0.6				97.4	1.8	0.1		0.1		0.6						
	Chloramphenicol	1,211	8	8	0.2									24.5	74.7	0.6		0.2			
III	Sulfisoxazole	1,211	64	128	1.0											7.4	24.4	42.9	23.7	0.6	1.0
_	Tetracycline	1,211	≤ 4	≤ 4	1.3									98.7				1.3			
IV																					

Table 1.14. Distribution of minimum inhibitory concentrations among *Salmonella* Heidelberg from humans, 2014

	Antimicrobial	n	Perce	ntiles	% R						D	istribut	ion (%)	of MICs	ω (μg/m	L)					
	Antimiciobiai		MIC 50	MIC 90	/0 K	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	> 256
	Amoxicillin-clavulanic acid	359	≤ 1	> 32	30.1							66.6	1.4		1.4	0.6	7.8	22.3			
	Ceftiofur	359	1	> 8	29.8					0.3	14.2	55.4	0.3		0.3	29.5					
•	Ceftriaxone	359	≤ 0.25	32	29.8					69.4	0.8			0.3	1.1	17.8	7.8	1.4	1.4		
	Ciprofloxacin	359	≤ 0.015	0.03	0.0	89.4	9.2	0.6			0.8										
	Ampicillin	359	≤ 1	> 32	32.0							63.8	3.9	0.3				32.0			
	Azithromycin	359	8	8	0.0								0.6	48.2	49.3	1.9					
	Cefoxitin	359	2	> 32	28.1							8.9	55.2	5.6	0.6	1.7	10.0	18.1			
II	Gentamicin	359	0.50	1	1.4					5.6	76.0	16.4	0.3	0.3			1.4				
	Nalidixic acid	359	4	4	0.8								11.4	85.8	1.7	0.3		0.8			
	Streptomycin	359	16	≤ 32	3.9										17.5	61.3	17.3	1.1	2.8		
	Trimethoprim-sulfamethoxazole	359	≤ 0.12	≤ 0.12	0.8				98.6	0.6					0.8						
	Chloramphenicol	359	8	8	0.8									2.8	95.8	0.6		0.8			
Ш	Sulfisoxazole	359	32	64	2.5											9.7	59.3	27.9	0.6		2.5
	Tetracycline	359	≤ 4	≤ 4	2.5									97.5				2.5			
IV				•																	

Table 1.15. Distribution of minimum inhibitory concentrations among *Salmonella* Newport from humans, 2014

Table 1.16. Distribution of minimum inhibitory concentrations among *Salmonella* Paratyphi A and B from humans, 2014

Table 1.17. Distribution of minimum inhibitory concentrations among *Salmonella* Typhi from humans, 2014

	Antimicrobial		Perce	ntiles	% R						D	istributi	ion (%)	of MICs	s (μg/m	L)					
	Antimicropiai	n	MIC 50	MIC 90	% K	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	> 256
	Amoxicillin-clavulanic acid	147	≤ 1	8	0.0							81.6	2.0	0.7	14.3	1.4					
	Ceftiofur	147	0.50	1	0.0					2.0	49.0	47.6	1.4								
•	Ceftriaxone	147	≤ 0.25	≤ 0.25	0.0					98.6	1.4										
	Ciprofloxacin	147	0.25	1	12.9	11.6		1.4	8.2	43.5	22.4	4.1			8.8						
	Ampicillin	147	≤ 1	> 32	16.3							80.3	2.7	0.7				16.3			
	Azithromycin	147	4	8	0.0								11.6	69.4	16.3	2.7					
	Cefoxitin	147	4	8	0.0							17.0	17.0	31.3	34.0	0.7					
II	Gentamicin	147	≤ 0.25	0.50	0.0					57.1	42.9										
	Nalidixic acid	147	> 32	> 32	84.4								9.5	4.1	2.0			84.4			
	Streptomycin	147	16	> 64	17.7										22.4	52.4	7.5	0.7	17.0		
	Trimethoprim-sulfamethoxazole	147	≤ 0.12	> 4	17.7				81.0		0.7	0.7			17.7			•			
	Chloramphenicol	147	8	> 32	18.4								0.7	30.6	50.3			18.4			
Ш	Sulfisoxazole	147	64	> 256	19.0											2.7	32.0	33.3	11.6	1.4	19.0
_	Tetracycline	147	≤ 4	≤ 4	1.4									98.6				1.4			
I۷																					

Table 1.18. Distribution of minimum inhibitory concentrations among *Salmonella*Typhimurium from humans, 2014

Table 1.19. Distribution of minimum inhibitory concentrations among *Salmonella* 4,[5],12:i:-from humans, 2014

2. RETAIL MEAT SURVEILLANCE

KEY FINDINGS

BEEF

ESCHERICHIA COLI (n = 460)

As in previous years, overall resistance levels of Category I β -lactams (amoxicillin-clavulanic acid, ceftriaxone, and ceftiofur) remained low in beef *E. coli* isolates in 2014. In fact, the only province/region where Category I β -lactam resistance was observed in 2014 was British Columbia (2%, 1/43) and the Atlantic region (2%, 2/114) (Table 2.1) compared to 2013 where low levels of Category 1 β -lactam resistance were seen in most provinces/regions. In contrast with recent years, no *E. coli* isolates from beef were resistant to all 7 classes of antimicrobials tested (Table 2.1). No ciprofloxacin resistance was observed among *E. coli* isolated from ground beef.

CHICKEN

SALMONELLA (n = 343)

Across all provinces/regions sampled, the top 3 chicken *Salmonella* serovars were Heidelberg, Enteritidis and Kentucky as in previous years although the ranking of the second and third most common serovars does vary from year to year. Regional differences in serovar distribution were observed in 2014 with Enteritidis being the most common serovar in the western Canadian provinces/regions of British Columbia (72%, 26/36) and the Prairies (51%, 41/81) unlike Ontario, Québec, and the Atlantic region where the most common serovar was Heidelberg (40%, 30/75; 34%, 31/92 and 58%, 34/59, respectively) (Table 2.2). Unlike previous recent years, where little to no Enteritidis was recovered in Ontario and Québec, Enteritidis was recovered in both Ontario (11%, 8/75) and Québec (3%, 3/92) in 2014.

All Enteritidis isolates were susceptible to all antimicrobials tested in 2014. In 2014, no ciprofloxacin resistance was observed and a single isolate of Heidelberg from the Atlantic region was resistant to nalidixic acid (Table 2.2). Across all provinces/regions sampled, resistance levels of Category I β -lactams (amoxicillin-clavulanic acid, ceftriaxone, and ceftiofur) (21%, 72/343) remained similar to levels in 2013 (25%, 65/264) (Figure 2.2). Resistance to ceftriaxone was significantly lower (6%, 2/36) in 2014 than 2013 (33%, 11/33) and 2010 (25%, 14/56) in British Columbia (Figure 2.2). Resistance to ceftriaxone was significantly lower (27%,

20/75) in 2014 than 2004 (46%, 25/54) in Ontario (Figure 2.2). Resistance to ceftriaxone was significantly higher (27%, 25/92) in 2014 than 2006 (9%, 3/33) in Québec (Figure 2.2)⁸.

ESCHERICHIA COLI (n = 619)

Resistance levels of Category I β -lactams (amoxicillin-clavulanic acid, ceftriaxone, and ceftiofur) were lower compared to those in 2013 across all provinces/regions sampled (Figure 2.3). Resistance to ceftriaxone was significantly lower in 2014 (11%, 16/144) than 2013 (24%, 27/114), 2010 (24%, 24/100), 2006 (28%, 42/152) and 2004 (24%, 36/150) in Ontario (Figure 2.3) 10 . Resistance to ceftriaxone was significantly lower in 2014 (18%, 23/128) than 2010 (31%, 43/138) and 2004 (40%, 63/158) but was significantly higher than 2006 (7%, 9/135) in Québec (Figure 3) 10 . Resistance to gentamicin was significantly higher in 2014 (29%, 37/128) than 2010 (18%, 25/138) in Québec (Figure 2.3).

CAMPYLOBACTER (n = 277)

In 2014, no significant increases or decreases in ciprofloxacin resistance were observed. Ciprofloxacin resistance remained highest in British Columbia in 2014 (21%, 9/43) across provinces/regions sampled although this was lower compared to 2013 (26%, 15/57). The province/region with the second highest levels (12%) of ciprofloxacin resistance were Ontario (9/76) and the Prairies (8/67) (Figure 2.4). Telithromycin resistance was relatively low (less than 4%) in *Campylobacter* isolates across all provinces/regions sampled in 2014 with the exception of the Atlantic region (11%, 4/37); this finding is comparable to 2013 (10%, 5/52) (Figure 2.4). Resistance to azithromycin was significantly higher in 2014 (11%, 4/37) than 2010 (0%, 0/68) in the Atlantic region (Figure 2.4).

PORK

ESCHERICHIA COLI (n = 323)

In 2014, Category I β -lactam ceftriaxone and ceftiofur resistance levels in pork *E. coli* isolates remained stable at low (5%, 15/323) and somewhat similar levels compared to 2013 (3%, 6/221) (Figure 2.5). One isolate from each of the Atlantic region (1%, 1/70) and Québec (2%, 1/49) were resistant to azithromycin (Table 2.5).

TURKEY

SALMONELLA (n = 182)

The distribution of *Salmonella* serovars varied greatly by province in the third full year of retail surveillance of ground turkey (Table 2.6). No ciprofloxacin or nalidixic acid resistance was

⁸ Additional temporal analyses for ampicillin and ceftiofur/ceftriaxone were conducted for *Salmonella* isolates from Ontario and Québec. These 2 antimicrobials, provinces, and years (2004 and 2006) were selected due to a change in ceftiofur use practices by Québec chicken hatcheries in early 2005 and in 2007 (start and end of the voluntary period of withdrawal). Significant differences ($P \le 0.05$) observed between the current year results and additional reference year results were reported in temporal tables.

observed (Table 2.6). Category I β -lactam (amoxicillin-clavulanic acid, ceftriaxone, and ceftiofur) resistance levels in turkey *Salmonella* isolates were quite variable ranging from a low of 0% in the Prairies (0/44) to a high of 22% (11/51) in Québec (Table 2.6). Resistance to ceftriaxone and ampicillin was significantly higher in 2014 (8%, 3/40 and 15%, 6/40, respectively) than 2013 (38%, 11/29; 52%, 15/29, respectively) in Ontario (Figure 2.6).

ESCHERICHIA COLI (n = 561)

Ciprofloxacin resistance was observed in turkey *E. coli* isolates from Québec (2%, 2/118) and a single isolate from the Prairies (1%, 1/103) and the Atlantic region (less than 1%, 1/133) (Table 2.7). This is the first time that ciprofloxacin resistance has been observed in turkey *E. coli* isolates to-date (2012 to 2014) although it has been observed in other meat and poultry products in the past. Nalidixic acid resistance was observed in Québec (3%, 3/118), Prairies (2%, 2/103), Ontario (less than 1%, 1/143), and the Atlantic region (less than 1%, 1/133) (Table 2.7). In 2014, resistance levels of Category I β -lactams (amoxicillin-clavulanic acid, ceftriaxone, and ceftiofur) in turkey *E. coli* isolates ranged from less than 1% (1/143) in Ontario to 8% (5/64) in British Columbia (Table 2.7). One isolate from each of the Prairies and Atlantic region was resistant to 6 antimicrobial classes with the following patterns respectively: A2C-AMP-AZM-CRO-CHL-CIP-NAL-SSS-TET-SXT and ACSSuT-CIP-NAL-SXT.

CAMPYLOBACTER (n = 82)

At the time of release of this report, *Campylobacter* speciation results for the Atlantic region were unavailable. These results will be released once available.

Six of 28 isolates (21%) from Ontario and 1/5 (20%) isolates in Québec were resistant to telithromycin in 2014 (Table 2.8). Ciprofloxacin resistance was observed across all provinces/regions sampled with 32% (9/28) of isolates from British Columbia, 20% (1/5) isolate from Québec, 17% (2/12) isolates from the Prairies, and 14% (4/28) of isolates from Ontario (Table 2.8).

MULTICLASS RESISTANCE

Table 2.1. Number of antimicrobial classes in resistance patterns of Escherichia coli from beef, 2014

Province or region	Number (%)	nun	nber	of ant	olates imicro	bial	Aminogly	rosidas	Nun		of iso		resist	ant by a Fola pathy	te	nicrobial class			Tetracyclines
r rovince or region	of isolates	cias		n the patte	resista rn	ance	74111110giy	0031403		ρ.	uotu			inhibit		Macronacs	1 Heriicois	Quilloiones	retracyclines
		0	1	2-3	4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP NAL	TET
British Columbia	43 (9.3)	39	2	2				1	1	1	1	1	1						4
Prairies	97 (21.1)	76	9	11	1		1	8	2					9	2		2	1	19
Ontario	121 (26.3)	99	7	6	9		1	11	5					12	3		8	2	21
Québec	85 (18.5)	63	10	6	6			7	4					9	7		8	1	21
Atlantic	114 (24.8)	84	17	8	5		1	9	13	16	2	3	2	10	4		3	2	13

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 2.2. Number of antimicrobial classes in resistance patterns of Salmonella from chicken, 2014

				of isolates by			Nun	nber	of isol	ates	resis	tant by antin Folate	nicrobial clas	s and antimi	crobial	
Province or region / serovar	Number (%) of isolates		ses ir	n the resistance	Aminogl	ycosides		β-Ι	_acta	ms		pathway inhibitors	Macrolides	Phenicols	Quinolones	Tetracycline
		0		2-3 4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS SXT	AZM	CHL	CIP NAL	TET
British Columbia																
Enteritidis	26 (72.2)	26														
Kentucky	5 (13.9)			5		5	1	1	1	1	1					5
Schwarzengrund	2 (5.6)	2														
Hartford	1 (2.8)	1														
Heidelberg	1 (2.8)		1				1	1	1	1	1					
Orion var. 15+	1 (2.8)	1														
Total	36 (100)	30	1	5		5	2	2	2	2	2					5
Prairies																
Enteritidis	41 (50.6)	41														
Kentucky	9 (11.1)	3	2	4		4	3	3	3	3	3					4
Schwarzengrund	9 (11.1)	9														
Infantis	3 (3.7)	2	1				1	1	1	1	1					
Thompson	3 (3.7)	1	1	1		2						1				
Braenderup	2 (2.5)	2										•				
Hadar	2 (2.5)			2		2										2
Typhimurium	2 (2.5)	1	1				1	1	1	1	1					
Less common serovars	10 (12.3)	9	1				1	1	1	1	1					
Total	81 (100)	68	6	7		8	6	6	6	6	6	1				6
Ontario	81 (100)	00				•		•	-		•	-				
Heidelberg	30 (40.0)	11	16	3	2	3	17	17	17	17	17	2				
Thompson	12 (16.0)		10	3			- 17	- 17	17	-17	17					
Kentucky	11 (14.7)	1		10	1	10	1	1	1	1	1	1				10
Enteritidis	8 (10.7)	8		10		10										10
	, ,			4								4				4
Typhimurium Hadar	4 (5.3)			2		2						4				2
	2 (2.7)			1 1	2	2	1	1	1	1	1	2		1		1
Infantis	2 (2.7)															
Less common serovars	6 (8.0)	2	40	3 1 23 2	6	4	20	1 20	1 20	1 20	1 20	3		2		3
Total Québec	75 (100)	34	16	23 2	0	21	20	20	20	20	20	12				20
	24 (22.7)	-11	20				20	20	20	20	20					
Heidelberg	31 (33.7)	11		00		40	20	20	20							
Kentucky	22 (23.9)	1	1	20	1	19	5	5	5	5	5					20
Thompson	19 (20.7)	18		1	1	1						11				
Give	4 (4.3)	4														
Hadar	4 (4.3)	1		3		3										3
Enteritidis	3 (3.3)	3														
Typhimurium	2 (2.2)			2	1							2				2
Less common serovars	7 (7.6)	6		1		1										11
Total	92 (100)	44	21	27	2	24	25	25	25	25	25	3				26
Atlantic	04 / ::									4.5						
Heidelberg	34 (57.6)		19				18	18	18	18	18				1	
Thompson	8 (13.6)	8														
Kentucky	7 (11.9)		1	6		6	11	1	1	1	1					7
Enteritidis	4 (6.8)	_ 4														
6,7:-:1,5	2 (3.4)	2														
Less common serovars	4 (6.8)	3		1	1	1	1									
Total	59 (100)	32	20	7	1	7	20	19	19	19	19				1	7

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 2.3. Number of antimicrobial classes in resistance patterns of *Escherichia coli* from chicken, 2014

	Number (%)				olates				Nun	nber	of iso	lates	resist		antimate	nicrobial class			
Province or region	of isolates	clas		n the i	resist m	ance	Aminogly	ycosides		β-Ι	_acta	ms			way itors	Macrolides	Phenicols	Quinolones	Tetracyclines
		0	1	2-3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP NAL	TET
British Columbia	65 (10.5)	12	19	18	16		7	27	45	31	31	30	30	22	5		4	3	23
Prairies	109 (17.6)	42	12	45	10		11	33	43	21	22	21	18	32	8		4	6	45
Ontario	144 (23.3)	35	20	71	17	1	28	65	47	16	16	16	15	56	13		9	4	81
Québec	128 (20.7)	16	21	68	23		37	61	55	20	23	20	21	75	27		10	1	75
Atlantic	173 (27.9)	49	28	64	31	1	36	76	70	31	28	29	26	72	31	1	11	4	84

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

The Atlantic region includes New Brunswick, Nova Scotia, and Prince Edward Island.

Table 2.4. Number of antimicrobial classes in resistance patterns of *Campylobacter* from chicken, 2014

					plates by	Nı	umber of iso	lates resistant by	/ antimi	crobial	class and a	ntimic	obial	
Province or region / species	Number (%) of isolates		ses ir		esistance	Aminoglycosides	Ketolides	Lincosamides	Macr	olides	Phenicols	Quino	olones	Tetracyclines
		0	1	2-3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
British Columbia														
Campylobacter jejuni	37 (86.0)	26	6	5								6	6	10
Campylobacter coli	5 (11.6)	2	2	1								2	2	2
Campylobacter spp.	1 (2.3)		1									1	1	
Total	43 (100)	28	9	6								9	9	12
Prairies														
Campylobacter jejuni	59 (88.1)	27	28	4								4	4	32
Campylobacter coli	8 (11.9)	1	6	1								4	4	4
Total	67 (100)	28	34	5								8	8	36
Ontario														
Campylobacter jejuni	71 (93.4)	36	27	8			1	1	2	2		7	7	33
Campylobacter coli	5 (6.6)	2	3									2	2	1
Total	76 (100)	38	30	8			1	1	2	2		9	9	34
Québec														
Campylobacter jejuni	51 (94.4)	25	19	7			2	3	7	7		2	2	23
Campylobacter coli	3 (5.6)		3											3
Total	54 (100)	25	22	7			2	3	7	7		2	2	26
Atlantic					·	_								
Campylobacter spp.	37 (100)	15	17	4	1		4	2	4	4		2	2	20
Total	37 (100)	15	17	4	1		4	2	4	4		2	2	20

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

At the time of release of this report, Campylobacter speciation results for the Atlantic region were unavailable.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 2.5. Number of antimicrobial classes in resistance patterns of *Escherichia coli* from pork, 2014

	Number (%)			r of is					Nun	nber (of isol	ates	resist		antimate	nicrobial class			
Province or region	of isolates	clas		n the patter		ance	Aminogly	/cosides		β-Ι	_acta	ns			way itors	Macrolides	Phenicols	Quinolones	Tetracyclines
		0	1	2-3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP NAL	TET
British Columbia	29 (9.0)	17	4	6	2		1	6	6	3	3	3	3	7	3		2		5
Prairies	48 (14.9)	27	8	10	3			7	8	3	3	3	3	9	1		3		18
Ontario	127 (39.3)	48	20	38	21		2	37	36	3	3	3	3	40	13		16	3	72
Québec	49 (15.2)	25	9	9	5	1	2	10	10	4	4	4	3	9	5	1	1		24
Atlantic	70 (21.7)	30	18	19	3		1	10	20	9	2	2	2	12	7	1	1		26

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 2.6. Number of antimicrobial classes in resistance patterns of Salmonella from turkey, 2014

				of isolates by			Nun	nber	of iso	lates	resis		icrobial class	s and antimio	crobia		
Province or region /	Number (%)			of antimicrobial	Aminoa	lycosides		R	Lacta	me		Folate pathway	Magyalidas	Dhaniaala	Ouin	alonos	Tetracycline
serovar	of isolates	cias		the resistance pattern	Ailillog	iyoosides		P	Lacta	1113		inhibitors	Waci Ollues	FILETITICOIS	Quin	Dionics	тепасусии
		0		2-3 4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS SXT	AZM	CHL	CIP	NAL	TET
British Columbia																	
Enteritidis	10 (32.3)	10															
Hadar	6 (19.4)	1		5	1	5	1										5
Liverpool	6 (19.4)	6															
Reading	3 (9.7)	3															
Heidelberg	2 (6.5)		2				2	2	2	2	2						
Schwarzengrund	2 (6.5)	2															
Agona	1 (3.2)			1			1		1		1	1					1
Johannesburg	1 (3.2)			1	1	1						1					1
Total	31 (100)	22	2	7	2	6	4	2	3	2	3	2					7
Prairies																	
Reading	14 (31.8)	10	1	3		2						3		1			3
Enteritidis	6 (13.6)	6															
Hadar	4 (9.1)			4		4	2										4
Heidelberg	4 (9.1)	4															
Schwarzengrund	3 (6.8)	2		1	1	1						1					
4,[5],12:i:-	2 (4.5)			1 1	2	2	2					2					1
Muenchen	2 (4.5)	1		1		1						1					1
Newport	2 (4.5)	1		1	1	1	1										1
Alachua	1 (2.3)																
Rough:e,h:1,5	1 (2.3)																
Livingstone	1 (2.3)		1														1
Livingstone var. 14+	1 (2.3)	1															
Saintpaul	1 (2.3)		1														1
Senftenberg	1 (2.3)			1	1		1										
Worthington	1 (2.3)			1		1						1					1
Total	44 (100)	27	3	13 1	5	12	6					8		1			13
Ontario																	
Heidelberg	9 (22.5)	4	2	3	2	2	4	3	3	3	3						3
Agona	6 (15.0)	6															
Enteritidis	3 (7.5)	3															
Muenchen	3 (7.5)		1	2	1	2						2					2
Saintpaul	3 (7.5)	3															
Schwarzengrund	3 (7.5)			3	2	3						3					2
Hadar	2 (5.0)			2		2	1										2
Montevideo	2 (5.0)	1		1	1	1	1										
Muenster	2 (5.0)																
Reading	2 (5.0)																
Thompson	2 (5.0)																
Give	1 (2.5)																
Orion var. 15+ 34+	1 (2.5)			1		1											1
Ouakam	1 (2.5)		1		1	1											
Total	40 (100)	24	4	12	7	12	6	3	3	3	3	5					10

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 2.6. Number of antimicrobial classes in resistance patterns of *Salmonella* from turkey, 2014 (cont'd)

Province or region /	Number (%)				olates by imicrobial			Nun				resist	Folate	nicrobial clas			
serovar	of isolates	clas		n the i patter	resistance n	Aminogly	ycosides		β-Ι	_acta	ms		pathway inhibitors	Macrolides	Phenicols	Quinolones	Tetracyclines
		0	1	2-3	4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS SXT	AZM	CHL	CIP NAL	TET
Québec																	
Schwarzengrund	14 (27.5)	5	1	8		1	3						8				9
Heidelberg	8 (15.7)	4	2	2		1	1	3	3	3	3	3	1				1
Brandenburg	4 (7.8)		4					4	4	4	4	4					
Muenchen	4 (7.8)	2		2			1						2				2
Worthington	4 (7.8)	1	1	2				2	2	2	2	2					3
Agona	3 (5.9)	2		1				1	1	1	1	1	1				1
Albany	2 (3.9)			2		2		2		1		1					1
Enteritidis	2 (3.9)	2															
Saintpaul	2 (3.9)	1		1		1	1	1									1
Senftenberg	2 (3.9)	1		1		1		1									
Typhimurium	2 (3.9)			1	1	1	1	1					2 1		1		2
Less common serovars	4 (7.8)	2	1	1		1	1										1
Total	51 (100)	20	9	21	1	8	8	15	10	11	10	11	14 1		1		21
Atlantic																	
Heidelberg	8 (50.0)	6		2		1	1	2	1	1	1	1	1				1
Albany	3 (18.8)		2	1		3		1		1		1					
Hadar	1 (6.3)			1			1										1
Kentucky	1 (6.3)	1															
Muenchen	1 (6.3)			1			11						11				1
Schwarzengrund	1 (6.3)	1															
Senftenberg	1 (6.3)		1			1											
Total	16 (100)	8	3	5		5	3	3	1	2	1	2	2				3

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

The Atlantic region includes New Brunswick, Nova Scotia, and Prince Edward Island.

Table 2.7. Number of antimicrobial classes in resistance patterns of *Escherichia coli* from turkey, 2014

	Number (%)				olates imicro				Nun				resist	Fol	ate	nicrobial class				
Province or region	of isolates	clas		n the patter	resist: 'n	ance	Aminogly	cosides/		β-L	_acta	ns		path inhib	way itors	Macrolides	Phenicols	Quino	olones	Tetracyclines
		0	1	2-3	4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP	NAL	TET
British Columbia	64 (11.4)	29	6	21	8		11	25	22	5	5	6	4	14	5		3			28
Prairies	103 (18.4)	33	14	42	13	1	21	40	34	4	3	4	3	32	6	1	5	1	2	61
Ontario	143 (25.5)	42	22	61	18		28	45	47	1	1	1	1	52	14		5		1	96
Québec	118 (21.0)	37	24	39	17	1	18	39	34	5	6	5	6	44	13		4	2	3	70
Atlantic	133 (23.7)	23	36	55	19		24	49	50	6	5	5	4	47	15		6	1	1	96

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 2.8. Number of antimicrobial classes in resistance patterns of *Campylobacter* from turkey, 2014

					olates by	Nu	mber of iso	lates resistant by	/ antimi	crobia	l class and a	ntimic	robial	
Province or region / species	Number (%) of isolates		ses ii		resistance	Aminoglycosides	Ketolides	Lincosamides	Macr	olides	Phenicols	Quino	olones	Tetracyclines
		0	1	2-3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
British Columbia														
Campylobacter jejuni	22 (78.6)	11	5	6								7	7	10
Campylobacter coli	6 (21.4)	1	5									2	2	3
Total	28 (100)	12	10	6								9	9	13
Prairies														
Campylobacter jejuni	9 (75.0)	3	6											6
Campylobacter coli	3 (25.0)		2	1					1	1		2	2	2
Total	12 (100)	3	8	1					1	1		2	2	8
Ontario														
Campylobacter jejuni	20 (71.4)	2	15	3								4	4	17
Campylobacter coli	8 (28.6)	2		5	1		6	4	6	6				3
Total	28 (100)	4	15	8	1		6	4	6	6		4	4	20
Québec														
Campylobacter jejuni	5 (100)	2	2	1			1	1	1	1		1	1	1
Total	5 (100)	2	2	1		•	1	1	1	1		1	1	1
Atlantic	•					•								
Campylobacter spp.	9 (100)	4	4	1								1	1	5
Total	9 (100)	4	4	1		•					•	1	1	5

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

At the time of release of this report, *Campylobacter* speciation results for the Atlantic region were unavailable.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

The Atlantic region includes New Brunswick, Nova Scotia, and Prince Edward Island.

.

TEMPORAL ANTIMICROBIAL RESISTANCE SUMMARY

Figure 2.1. Temporal variations in resistance of *Escherichia coli* isolates from beef, 2010–2014

Number of isolates, year, and province/region

Province / region		Britis	h Col	ım bia	à		Р	rairie	S			(Ontari	0			C	uébe	С			A	\tlanti	С	
Year	'10	'11	'12	'13	'14	'10	'11	'12	'13	'14	'10	'11	'12	'13	'14	'10	'11	'12	'13	'14	'09		'11	'13	'14
Number of isolates	64	57	76	47	43	107	54	80	59	97	123	161	110	106	121	101	91	107	79	85	135	126	110	81	114
Antim icrobial																									
Ampicillin	6%	4%	7%	13%	2%	4%	0%	3%	7%	2%	4%	4%	8%	7%	4%	3%	7%	3%	6%	5%	6%	2%	1%	4%	11%
Ceftriaxone	0%	2%	1%	9%	2%	0%	0%	1%	2%	0%	0%	1%	0%	1%	0%	1%	1%	0%	1%	0%	2%	1%	0%	2%	2%
Gentamicin	0%	2%	0%	6%	0%	0%	0%	0%	0%	1%	2%	1%	2%	2%	1%	1%	1%	0%	0%	0%	0%	0%	0%	1%	1%
Nalidixic acid	2%	2%	1%	2%	0%	0%	0%	0%	2%	1%	3%	1%	2%	0%	2%	1%	1%	3%	1%	1%	0%	0%	1%	0%	2%
Streptomycin	8%	5%	21%	13%	2%	6%	4%	9%	10%	8%	11%	9%	19%	12%	9%	8%	5%	6%	11%	8%	7%	2%	3%	7%	8%
Tetracycline	16%	9%	36%	21%	9%	14%	11%	18%	22%	20%	18%	28%	30%	24%	17%	15%	11%	15%	19%	25%	19%	12%	11%	16%	11%
Trimethoprim-																									
sulfamethoxazole	0%	0%	3%	2%	0%	0%	0%	0%	2%	2%	6%	2%	7%	2%	2%	1%	2%	2%	1%	8%	2%	2%	1%	2%	4%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas); the referent years for the Atlantic region were aligned with the other provinces/regions to standardize results. The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Due to unforeseen and lengthy delays in retail sampling in the Atlantic region in 2012, data are not presented for this year in the interest of precision.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 2.2. Temporal variations in resistance of Salmonella isolates from chicken, 2010–2014

Additional temporal analyses for ampicillin and ceftiofur/ceftriaxone were conducted for *Salmonella* isolates from Ontario and Québec. These 2 antimicrobials, provinces, and years (2004 and 2006) were selected due to a change in ceftiofur use practices by Québec chicken hatcheries in early 2005 and in 2007 (start and end of the voluntary period of withdrawal). Significant differences ($P \le 0.05$) observed between the current year results and additional reference year results are indicated by underlined numbers.

Due to unforeseen and lengthy delays in retail sampling in the Atlantic region in 2012, data are not presented for this year in the interest of precision.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 2.3. Temporal variations in resistance of Escherichia coli isolates from chicken, 2010–2014

Additional temporal analyses for ampicillin and ceftiofur/ceftriaxone were conducted for *E. coli* isolates from Ontario and Québec. These 2 antimicrobials, provinces, and years (2004 and 2006) were selected due to a change in ceftiofur use practices by Québec chicken hatcheries in early 2005 and in 2007 (start and end of the voluntary period of withdrawal). Significant differences ($P \le 0.05$) observed between the current year results and additional reference year results are indicated by underlined numbers.

Due to unforeseen and lengthy delays in retail sampling in the Atlantic region in 2012, data are not presented for this year in the interest of precision.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 2.4. Temporal variations in resistance of Campylobacter isolates from chicken, 2010–2014

6% 3% 3%

2% 1%

5%

2% 4%

0%

0%

10% 11%

Due to unforeseen and lengthy delays in retail sampling in the Atlantic region in 2012, data are not presented for this year in the interest of precision.

Although routine retail surveillance began in the Atlantic region in 2008, no results are displayed for that year due to concerns regarding harmonization of laboratory methods.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

0% 4%

0% **0%**

0%

0% 0% 0% **0%** 0%

Telithromycin

Tetracycline

Figure 2.5. Temporal variations in resistance of Escherichia coli isolates from pork, 2010–2014

Province / region		Britis	h Col	um bia	a .		Р	rairie	s			C	ntari	0			C	uébe	С			A	\tlanti	С	
Year	'10	'11	'12	'13	'14	'10	'11	'12	'13	'14	'10	'11	'12	'13	'14	'10	'11	'12	'13	'14	'09		'11	'13	'14
Number of isolates	31	49	41	38	29	17	10	26	30	48	84	155	86	102	127	47	122	46	52	49	81	71	95	55	70
Antim icrobial																									
Ampicillin	23%	16%	20%	11%	21%	18%	0%	19%	13%	17%	11%	21%	29%	21%	28%	21%	35%	20%	27%	20%	12%	23%	26%	20%	29%
Ceftriaxone	13%	4%	10%	8%	10%	0%	0%	4%	3%	6%	2%	4%	2%	3%	2%	6%	4%	0%	0%	8%	0%	3%	4%	2%	3%
Gentamicin	0%	4%	2%	3%	3%	0%	0%	0%	0%	0%	1%	1%	0%	3%	2%	0%	4%	7%	0%	4%	2%	3%	2%	0%	1%
Nalidixic acid	3%	0%	2%	0%	0%	0%	0%	0%	0%	0%	1%	1%	0%	2%	2%	0%	0%	2%	2%	0%	1%	1%	0%	0%	0%
Streptomycin	6%	18%	12%	11%	21%	18%	10%	19%	10%	15%	17%	17%	30%	17%	29%	23%	23%	35%	12%	20%	25%	15%	36%	20%	14%
Tetracycline	32%	29%	24%	24%	17%	35%	60%	35%	37%	38%	33%	38%	58%	37%	57%	34%	58%	48%	44%	49%	48%	59%	58%	40%	37%
Trimethoprim- sulfamethoxazole	0%	4%	2%	3%	10%	0%	10%	8%	7%	2%	5%	6%	5%	6%	10%	11%	15%	11%	12%	10%	7%	13%	14%	9%	10%

Due to unforeseen and lengthy delays in retail sampling in the Atlantic region in 2012, data are not presented for this year in the interest of precision.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

→ Ampicillin Ceftriaxone --- Gentamicin 90% Nalidixic acid Streptomycin 80% Tetracycline -Trimethoprim-sulfamethoxazole Percentage of isolates resistant 70% 60% 50% 40% 30% 20% 10% 0% 51 51 16 27 36 31 18 28 44 44 29 40 58 18 '13 '14 '12 '13 '14 '12 '13 '14 '12 '13 '14 '13 '14 '12 British Columbia Québec Atlantic

Figure 2.6. Temporal variations in resistance of Salmonella isolates from turkey, 2012-2014

Province / region	Britis	h Colu	ımbia	Р	rairies	S		Ontario		(Québe	C	Atla	ntic
Year	'12	'13	'14	'12	'13	'14	'12	'13	'14	'12	'13	'14	'13	'14
Number of isolates	27	36	31	18	28	44	44	29	40	51	58	51	18	16
Antimicrobial														
Ampicillin	37%	17%	13%	11%	21%	14%	25%	52%	15%	39%	19%	29%	39%	19%
Ceftriaxone	37%	14%	10%	6%	4%	0%	20%	38%	8%	29%	17%	22%	17%	13%
Gentamicin	0%	8%	6%	17%	18%	11%	7%	10%	18%	2%	16%	16%	22%	31%
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Streptomycin	48%	33%	19%	50%	21%	27%	20%	31%	30%	29%	26%	16%	44%	19%
Tetracycline	52%	36%	23%	67%	25%	30%	18%	34%	25%	24%	38%	41%	39%	19%
Trimethoprim-														
sulfamethoxazole	0%	0%	0%	0%	0%	0%	2%	0%	0%	4%	2%	2%	0%	0%

For the temporal analyses by province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year (grey areas). Although temporal data are shown for most regions in 2012, 2013 represents the first year that retail turkey data were available in all regions and is therefore considered the first referent year. The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

Due to unforeseen and lengthy delays in retail sampling in the Atlantic region in 2012, data are not presented for this year in the interest of precision.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

--- Ampicillin Ceftriaxone -Gentamicin 90% Nalidixic acid Streptomycin 80% -Tetracycline Trimethoprim-sulfamethoxazole Percentage of isolates resistant 70% 60% 50% 40% 30% 20% 10% 0% 151 170 101 67 81 62 103 119 143 107 118 106 133 '13 '14 '12 '13 '14 '12 '13 '14 '12 '13 '14 '13 '14 '12 British Columbia **Prairies** Ontario Québec Atlantic

Figure 2.7. Temporal variations in resistance of Escherichia coli isolates from turkey, 2012–2014

Number of	isolates, vear	. and provi	nce/reaion

Province / region	Britis	h Colu	ımbia	F	rairies	S	C	Ontario)	C	Québe	С	Atla	ntic
Year	'12	'13	'14	'12	'13	'14	'12	'13	'14	'12	'13	'14	'13	'14
Number of isolates	101	67	64	81	62	103	151	119	143	170	107	118	106	133
Antim icrobial														
Ampicillin	31%	28%	34%	25%	26%	33%	30%	25%	33%	38%	32%	29%	42%	38%
Ceftriaxone	14%	4%	8%	4%	3%	3%	9%	3%	1%	11%	7%	5%	3%	4%
Gentamicin	7%	13%	17%	14%	10%	20%	15%	11%	20%	9%	15%	15%	15%	18%
Nalidixic acid	2%	3%	0%	2%	2%	2%	1%	1%	1%	0%	0%	3%	3%	1%
Streptomycin	46%	31%	39%	44%	34%	39%	34%	30%	31%	36%	36%	33%	36%	37%
Tetracycline	47%	42%	44%	52%	45%	59%	59%	66%	67%	58%	64%	59%	65%	72%
Trimethoprim-														
sulfamethoxazole	3%	4%	8%	1%	6%	6%	8%	9%	10%	12%	9%	11%	8%	11%

For the temporal analyses by province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year (grey areas). Although temporal data are shown for most regions in 2012, 2013 represents the first year that retail turkey data were available in all regions and is therefore considered the first referent year. The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

Due to unforeseen and lengthy delays in retail sampling in the Atlantic region in 2012, data are not presented for this year in the interest of precision.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 2.8. Temporal variations in resistance of Campylobacter isolates from turkey, 2012–2014

Province / region	Britis	h Colu	ım bia	P	rairies	S		Ontario			Québe	C	Atla	ntic
Year	'12	'13	'14	'12	'13	'14	'12	'13	'14	'12	'13	'14	'13	'14
Number of isolates	33	28	28	6	5	12	20	27	28	15	16	5	26	9
Antimicrobial														
Azithromycin	0%	0%	0%	0%	0%	8%	10%	4%	21%	0%	0%	20%	31%	0%
Ciprofloxacin	21%	32%	32%	17%	20%	17%	0%	0%	14%	0%	13%	20%	4%	11%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	12%	0%
Telithromycin	0%	0%	0%	0%	0%	0%	10%	4%	21%	0%	0%	20%	31%	0%
Tetracycline	36%	43%	46%	67%	80%	67%	75%	67%	71%	73%	56%	20%	35%	56%

For the temporal analyses by province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year (grey areas). Although temporal data are shown for most regions in 2012, 2013 represents the first year that retail turkey data were available in all regions and is therefore considered the first referent year. The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

Due to unforeseen and lengthy delays in retail sampling in the Atlantic region in 2012, data are not presented for this year in the interest of precision.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

MINIMUM INHIBITORY CONCENTRATIONS

See how to interpret the minimum inhibitory concentration tables in the section "How to Read this Chapter".

Table 2.9. Distribution of minimum inhibitory concentrations among *Escherichia coli* from beef, 2014

Australian Island	Barriaga da arian		Perce	ntiles	0/ B						D	istribut	ion (%)	of MICs	s (µg/m	L)					
Antim icrobial	Province/region	n	MIC 50	MIC 90	% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	> 256
Amoxicillin-																					
clavulanic acid	British Columbia	43	4	4	2.3							2.3	34.9	55.8	4.7			2.3			
	Prairies	97	4	4	0.0							4.1	34.0	55.7	6.2						
	Ontario	121	4	4	0.0							1.7	43.8	45.5	9.1						
	Québec	85	4	4	0.0							10.6	35.3	45.9	8.2						
	Atlantic	114	4	32	14.0							5.3	26.3	48.2	6.1		10.5	3.5			
Ceftiofur	British Columbia	43	0.50	0.50	2.3				9.3	39.5	48.8					2.3					
	Prairies	97	0.50	0.50	0.0				6.2	37.1	53.6	3.1									
	Ontario	121	0.50	0.50	0.0				9.1	33.9	55.4	1.7									
1	Québec	85	0.25	0.50	0.0				9.4	43.5	44.7	2.4									
	Atlantic	114	0.50	0.50	1.8				4.4	36.8	53.5	3.5		l	J	1.8			-		
Ceftriaxone	British Columbia	43	≤ 0.25	≤ 0.25	2.3					97.7						2.3					
	Prairies	97	≤ 0.25	≤ 0.25	0.0					100.0											
	Ontario	121	≤ 0.25	≤ 0.25	0.0					100.0											
	Québec	85	≤ 0.25	≤ 0.25	0.0					100.0											
	Atlantic	114	≤ 0.25	≤ 0.25	1.8				š	93.0	1.8	2.6	0.9	l		1.8					
Ciprofloxacin	British Columbia	43	≤ 0.015		0.0	97.7	2.3														
	Prairies	97	≤ 0.015		0.0	97.9	1.0			1.0											
	Ontario	121	≤ 0.015		0.0	96.7	1.7		0.8	0.8											
	Québec	85	≤ 0.015		0.0	96.5	2.4				1.2										
	Atlantic	114	≤ 0.015		0.0	93.9	4.4		<u> </u>	1.8							_				
Ampicillin	British Columbia	43	2	4	2.3							14.0	58.1	25.6				2.3			
	Prairies	97	2	4	2.1							13.4	63.9	19.6	1.0			2.1			
	Ontario	121	2	4	4.1							14.9	59.5	20.7	0.8			4.1			
	Québec	85	2	4	4.7							23.5	44.7	27.1				4.7			
	Atlantic	114	2	32	11.4							9.6	44.7	26.3		7.9	4.4	7.0			
Azithromycin	British Columbia	43	4	8	0.0							2.3	2.3	51.2	44.2						
	Prairies	97	4	8	0.0							1.0	10.3	41.2	44.3	3.1					
	Ontario	121	4	8	0.0						0.8	1.7	3.3	50.4	43.0	0.8					
	Québec	85	4	8	0.0						1.2		11.8	45.9	37.6	3.5					
II	Atlantic	114	4	16	0.0							0.9	7.9	45.6	31.6	14.0					
Cefoxitin	British Columbia	43	4	8	2.3							2.3	30.2	55.8	9.3			2.3			
	Prairies	97	4	8	0.0							2.1	34.0	53.6	9.3	1.0					
	Ontario	121	4	8	0.0							0.8	24.8	59.5	13.2	1.7					
	Québec	85	4	8	0.0							3.5	27.1	55.3	11.8	2.4					
	Atlantic	114	4	4	2.6							3.5	27.2	60.5	5.3	0.9		2.6			
Gentamicin	British Columbia	43	1	2	0.0						34.9	53.5	11.6								
	Prairies	97	1	1	1.0						39.2	54.6	4.1		1.0	1.0					
	Ontario	121	1	1	0.8						36.4	58.7	4.1				8.0				
	Québec	85	1	1	0.0					1.2	36.5	61.2	1.2								
	Atlantic	114	1	1	0.9						47.4	47.4	4.4				0.9				

Table 2.9. Distribution of minimum inhibitory concentrations among *Escherichia coli* from beef, 2014 (cont'd)

Antimicrobial	Danish and to a single		Percer	ntiles	0/ D					D	istribut	ion (%)	of MICs	s (μg/m	L)					
Antimicrobiai	Province/region	n	MIC 50	MIC 90	% R	≤ 0.015 0.0	3 0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	> 256
Nalidixic acid	British Columbia	43	2	2	0.0					4.7	18.6	74.4	2.3							
	Prairies	97	2	2	1.0					3.1	20.6	71.1	4.1				1.0			
	Ontario	121	2	2	1.7						16.5	78.5	3.3				1.7			
	Québec	85	2	2	1.2					2.4	25.9	65.9	4.7			1.2				
	Atlantic	114	2	2	1.8					1.8	22.8	68.4	5.3				1.8			
Streptomycin	British Columbia	43	8	16	2.3							2.3	18.6	65.1	11.6			2.3		
	Prairies	97	8	16	8.2								14.4	64.9	11.3	1.0	5.2	3.1		
II	Ontario	121	8	≤ 32	9.1								19.0	61.2	7.4	3.3	8.0	8.3		
	Québec	85	8	≤ 32	8.2								23.5	60.0	5.9	2.4	4.7	3.5		
	Atlantic	114	8	16	7.9								19.3	63.2	8.8	0.9	1.8	6.1		
Trimethoprim-																				
sulfamethoxazole	British Columbia	43	≤ 0.12	≤ 0.12	0.0			100.0												
	Prairies	97	≤ 0.12	≤ 0.12	2.1			96.9	1.0					2.1						
	Ontario	121	≤ 0.12	≤ 0.12	2.5			97.5						2.5						
	Québec	85	≤ 0.12	≤ 0.12	8.2			91.8						8.2						
	Atlantic	114	≤ 0.12	0.25	3.5			85.1	9.6	1.8				3.5						
Chloramphenicol	British Columbia	43	8	8	0.0							7.0	27.9	65.1						
	Prairies	97	8	8	2.1							4.1	35.1	53.6	5.2	1.0	1.0			
	Ontario	121	8	16	6.6							6.6	32.2	50.4	4.1		6.6			
	Québec	85	8	16	9.4							7.1	24.7	52.9	5.9	4.7	4.7			
	Atlantic	114	8	8	2.6							4.4	43.0	49.1	0.9	ļ	2.6			
Sulfisoxazole	British Columbia	43	≤ 16	32	0.0										86.0	11.6	2.3			
III	Prairies	97	≤ 16	32	9.3										80.4	10.3				9.3
	Ontario	121	≤ 16	32	9.9										84.3	5.8				9.9
	Québec	85	≤ 16	> 256	10.6										70.6	15.3	2.4		1.2	10.6
	Atlantic	114	≤ 16	64	8.8										75.4	5.3	9.6	0.9		8.8
Tetracycline	British Columbia	43	≤ 4	≤ 4	9.3								90.7		4.7		4.7			
	Prairies	97	≤ 4	> 32	19.6								77.3	3.1	3.1	3.1	13.4			
	Ontario	121	≤ 4	> 32	17.4								79.3	3.3	1.7	3.3	12.4			
	Québec	85	≤ 4	> 32	24.7								72.9	2.4	4.7	3.5	16.5			
	Atlantic	114	≤ 4	32	11.4								85.1	3.5	0.9	1.8	8.8			
IV																				

Table 2.10. Distribution of minimum inhibitory concentrations among *Salmonella* from chicken, 2014

Antim icrobial	Province/region	n	Percei MIC 50		% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	istribut 1	ion (%) 2	of MICs	s (µg/m 8	L) 16	32	64	128	256 > 2
Amoxicillin- clavulanic acid	British Columbia	36	≤ 1	≤ 1	5.6							94.4					2.8	2.8		
ciavulariic aciu	Prairies	81	≤ 1	2	7.4							88.9	3.7				1.2	6.2		
	Ontario	75	≤ 1	> 32	26.7							73.3					2.7	24.0		
	Quebec	92	≤ 1	> 32	27.2							72.8					9.8	17.4		
	Atlantic	59	≤ 1	> 32	32.2							66.1				1.7	8.5	23.7		
Ceftiofur	British Columbia	36	1	1	5.6						30.6	63.9				5.6				
	Prairies	81	1	2	7.4					4.0	17.3	71.6	3.7			7.4				
	Ontario Quebec	75 92	1	> 8 > 8	26.7 27.2					1.3 1.1	40.0 41.3	32.0 29.3	1.1			26.7 27.2				
	Atlantic	59	1	>8	32.2					1.7	40.7	25.4	1.1			32.2				
Ceftriaxone	British Columbia	36	≤ 0.25	≤ 0.25	5.6					94.4		20			2.8	2.8				
	Prairies	81	≤ 0.25	≤ 0.25	7.4					92.6						6.2		1.2		
	Ontario	75	≤ 0.25	16	26.7					73.3						22.7	4.0			
	Quebec	92	≤ 0.25	16	27.2					72.8					4.3	15.2	7.6			
~ "	Atlantic	59	≤ 0.25	16	32.2				1	67.8		1		ļ	1.7	27.1	3.4			
Ciprofloxacin	British Columbia	36	≤ 0.015	0.03	0.0	69.4	30.6	0.5												
	Prairies Ontario	81 75	≤ 0.015 ≤ 0.015	0.03	0.0	72.8 85.3	24.7 14.7	2.5												
	Quebec	92	≤ 0.015	0.03	0.0	83.7	15.2	1.1												
	Atlantic	59	≤ 0.015	≤ 0.015	0.0	93.2	5.1	1.7												
Ampicillin	British Columbia	36	≤ 1	≤ 1	5.6							91.7	2.8			1		5.6		
	Prairies	81	≤ 1	2	7.4							80.2	9.9	1.2	1.2			7.4		
	Ontario	75	≤ 1	> 32	26.7							72.0	1.3					26.7		
	Quebec	92	≤1	> 32	27.2							71.7	1.1					27.2		
A zithrom (oir	Atlantic	59 36	≤1 4	> 32	33.9							64.4	1.7	62.0	12.0	į		33.9		
Azithromycin	British Columbia Prairies	36 81	4	8	0.0								22.2 6.2	63.9 53.1	13.9 40.7					
	Ontario	75	4	8	0.0							2.7	9.3	45.3	38.7	4.0				
	Quebec	92	4	8	0.0					1.1	1.1	1.1	5.4	53.3	35.9	2.2				
	Atlantic	59	4	8	0.0							1.7	3.4	62.7	30.5	1.7				
Cefoxitin	British Columbia	36	2	4	5.6							11.1	75.0	8.3			5.6			
	Prairies	81	2	4	7.4							3.7	74.1	12.3	1.2	1.2	4.9	2.5		
	Ontario	75	2	32	26.7							10.7	54.7	8.0			20.0	6.7		
	Quebec	92	2	32	27.2							13.0	57.6	2.2			22.8	4.3		
Contominin	Atlantic	59	2 0.50	> 32	32.2 0.0					38.9	1.7 52.8	33.9 8.3	23.7	6.8	1.7	ĺ	22.0	10.2		
Gentamicin	British Columbia Prairies	36 81	0.50	0.50 0.50	0.0					33.3	56.8	9.9								
	Ontario	75	0.50	1	8.0					25.3	62.7	4.0				1.3	6.7			
	Quebec	92	0.50	0.50	2.2					27.2	66.3	4.3				1.1	1.1			
	Atlantic	59	0.50	1	1.7					22.0	66.1	10.2					1.7			
Nalidixic acid	British Columbia	36	4	4	0.0							2.8	38.9	52.8	5.6					
	Prairies	81	4	4	0.0								29.6	64.2	6.2					
	Ontario	75	4	4	0.0							1.3	32.0	62.7	4.0					
	Quebec	92	4	4	0.0							4.3	31.5	62.0	2.2			4.7		
Strontomyoin	Atlantic British Columbia	59 36	4	4 64	1.7 13.9							3.4	40.7 27.8	54.2 38.9	44.4	5.6	2.8	1.7	20	
Streptomycin	Prairies	81	8	≤ 32	9.9								12.3	37.0	11.1 18.5	21.0	1.2	11.1	2.8 8.6	
	Ontario	75	16	> 64	28.0								1.3	12.0	30.7	25.3	2.7	5.3	22.7	
	Quebec	92	16	> 64	26.1									5.4	30.4	32.6	5.4	12.0	14.1	
	Atlantic	59	16	64	11.9								1.7	10.2	35.6	35.6	5.1	8.5	3.4	
Trimethoprim-	Delate Colonia	00			^ ^				400.0											
sulfamethoxazole	British Columbia	36 81	≤ 0.12	≤ 0.12	0.0				100.0											
	Prairies Ontario	81 75	≤ 0.12 ≤ 0.12	≤ 0.12 ≤ 0.12	0.0				97.3	2.7										
	Quebec	92	≤ 0.12	≤ 0.12	0.0				100.0	2.1										
	Atlantic	59	≤ 0.12	≤ 0.12	0.0				100.0											
Chloramphenicol	British Columbia	36	8	8	0.0									41.7	58.3	1				
	Prairies	81	8	8	0.0								1.2	30.9	64.2	3.7				
	Ontario	75	8	8	2.7								1.3	40.0	56.0			2.7		
	Quebec	92	8	8	0.0								5.4	44.6	50.0					
Cultinguar - !-	Atlantic	59	8	8	0.0								6.8	37.3	55.9	10.4	I	44.4	2.0	1
Sulfisoxazole	British Columbia Prairies	36 81	32 32	64	0.0											19.4	66.7	11.1	2.8	
	Prairies Ontario	81 75	32	64 > 256	1.2 16.0											17.3 42.7	70.4 34.7	11.1 6.7		1
	Quebec	92	32	> 256	3.3											42.7	48.9	5.4		3
	Atlantic	59	32	32	0.0											44.1	50.8	5.1		
Tetracycline	British Columbia	36	≤ 4	> 32	13.9									80.6	5.6]		13.9		
÷	Prairies	81	≤ 4	≤ 4	7.4									92.6	1			7.4		
	Ontario	75	≤ 4	> 32	26.7									73.3			1.3	25.3		
	Quebec	92	≤ 4	> 32	28.3									71.7	1		1.1	27.2		
	Atlantic	59	≤ 4	> 32	11.9									88.1	i	1		11.9		

Table 2.11. Distribution of minimum inhibitory concentrations among *Escherichia coli* from chicken, 2014

Antim icrobial	Province/region	n	Percei MIC 50		% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	istribut 1	ion (%) 2	of MIC:	s (µg/m 8	L) 16	32	64	128	256	> 25
Amoxicillin- clavulanic acid	British Columbia	65	8	32	47.7							3.1	15.4	18.5	15.4		44.6	3.1			
	Prairies	109	4	32	19.3							0.9	27.5	32.1	16.5	3.7	19.3				
	Ontario	144	4	32	11.1							3.5	27.1	38.2	19.4	0.7	10.4	0.7			
	Québec	128	4	32	15.6							2.3	25.0	32.0	21.9	3.1	13.3	2.3			
Ceftiofur	Atlantic British Columbia	173 65	4	32 > 8	17.9 46.2					13.8	24.6	2.3 4.6	22.5 9.2	40.5 1.5	15.6 30.8	1.2 15.4	12.1	5.8			
	Prairies	109	0.50	8	16.5				2.8	22.9	51.4	2.8		3.7	9.2	7.3					
	Ontario	144	0.50	8	10.4				1.4	31.9	54.2	1.4		0.7	6.3	4.2					
	Québec	128	0.50	8	16.4				8.0	35.2	46.1			1.6	10.2	6.3					
Ceftriaxone	Atlantic British Columbia	173 65	0.50	8 16	15.0 47.7				0.6	38.7 40.0	42.2 1.5	1.7 7.7	0.6 3.1	1.2 1.5	8.1 16.9	6.9 27.7	1.5				
Certilaxone	Prairies	109	≤ 0.25	16	20.2					78.0	1.5	1.8	3.1	1.5	9.2	9.2	0.9		0.9		
	Ontario	144	≤ 0.25	8	11.1					88.9					4.9	5.6	0.7				
	Québec	128	≤ 0.25	16	18.0					81.3	8.0				7.0	7.8	2.3		8.0		
	Atlantic	173	≤ 0.25	16	16.2					82.1	1.7	ı		0.6	4.0	11.0	0.6				
Ciprofloxacin	British Columbia Prairies	65 109	≤ 0.015 ≤ 0.015	≤ 0.015 ≤ 0.015	0.0	90.8 91.7	3.1 1.8		0.9	3.1 4.6	3.1 0.9										
	Ontario	144		≤ 0.015	0.0	95.8	1.4		0.9	2.1	0.9										
	Québec	128	≤ 0.015	≤ 0.015	0.0	98.4				0.8	0.8										
	Atlantic	173	≤ 0.015	≤ 0.015	0.0	95.4	2.3		0.6	1.7											
Ampicillin	British Columbia	65	> 32	> 32	69.2							3.1	24.6	3.1				69.2			
	Prairies Ontario	109 144	4	> 32 > 32	39.4 32.6							9.2 9.0	35.8 38.2	15.6 19.4	0.7		0.7	39.4 31.9			
	Québec	128	4	> 32	43.0							12.5	28.9	14.8	0.7		0.7	43.0			
	Atlantic	173	4	> 32	40.5							12.1	27.2	20.2			0.6	39.9			
Azithromycin	British Columbia	65	4	8	0.0								9.2	55.4	35.4						
	Prairies	109	4	8	0.0								9.2	62.4	23.9	4.6					
	Ontario	144	4	8 8	0.0				0.7			0.7 0.8	8.3 8.6	50.0 50.0	37.5 39.1	2.8					
	Québec Atlantic	128 173	4	8	0.6							0.6	9.8	63.0	24.9	1.6 1.7	0.6				
Cefoxitin	British Columbia	65	8	> 32	46.2								7.7	33.8	10.8	1.5	3.1	43.1			
	Prairies	109	4	> 32	19.3							0.9	16.5	46.8	16.5		1.8	17.4			
	Ontario	144	4	32	11.1								16.0	59.7	13.2		1.4	9.7			
	Québec Atlantic	128 173	4	> 32 > 32	15.6								18.8	50.8 58.4	14.1	8.0	2.3	13.3 14.5			
Gentamicin	British Columbia	65	1	> 32 16	16.8 10.8						20.0	52.3	17.9 7.7	56.4	6.9 9.2	3.1	7.7	14.5			
	Prairies	109	1	16	10.1					0.9	26.6	61.5	0.9			0.9	9.2				
	Ontario	144	1	> 16	19.4						29.2	47.9	2.8	0.7		4.2	15.3				
	Québec	128	1	> 16	28.9						20.3	47.7	1.6	8.0	0.8	6.3	22.7				
Nalidixic acid	Atlantic British Columbia	173 65	1 2	> 16 4	20.8						31.2 1.5	45.1 24.6	2.3 63.1	0.6 4.6	1.5	4.6	16.2	4.6			
Nalidixic acid	Prairies	109	2	4	5.5						1.5	22.9	66.1	5.5	1.5		0.9	4.6			
	Ontario	144	2	2	2.8						2.1	27.8	63.9	3.5			0.7	2.1			
	Québec	128	2	2	0.8						8.0	35.2	57.8	4.7		8.0		0.8			
	Atlantic	173	2	2	2.3							24.9	71.1	1.7			١	2.3			
Streptomycin	British Columbia Prairies	65 109	8	> 64 > 64	41.5 30.3									15.4 25.7	38.5 33.0	1.5 6.4	3.1 4.6	10.8 11.0	30.8 19.3		
	Ontario	144	≤ 32	> 64	45.1								0.7	11.1	31.3	4.9	6.9	20.8	24.3		
	Québec	128	≤ 32	> 64	47.7									9.4	24.2	5.5	13.3	20.3	27.3		
Tribunally and 1	Atlantic	173	16	> 64	43.9									15.0	31.8	4.6	4.6	15.6	28.3		
Trimethoprim- sulfamethoxazole	British Columbia	65	≤ 0.12	0.25	7.7				84.6	7.7					7.7						
	Prairies	109	≤ 0.12	0.50	7.3				85.3	4.6	2.8				7.3						
	Ontario	144	≤ 0.12	0.25	9.0				81.3	9.0	0.7			0.7	8.3						
	Québec	128	≤ 0.12	> 4	21.1				64.1	10.2	1.6	3.1			21.1						
Chloramphenicol	Atlantic British Columbia	173 65	≤ 0.12 8	> 4	17.9 6.2				72.8	4.6	2.9	1.2	0.6 3.1	41.5	17.9 46.2	3.1		6.2			
Giloramphenicol	Prairies	109	8	8	3.7								3.7	30.3	60.6	3.1 1.8		3.7			
	Ontario	144	8	8	6.3								5.6	34.7	51.4	2.1	1.4	4.9			
	Québec	128	8	16	7.8								1.6	24.2	64.1	2.3	2.3	5.5			
	Atlantic	173	4	8	6.4								1.2	52.6	37.6	2.3	1.7	4.6			
Sulfisoxazole	British Columbia	65	≤ 16	> 256	33.8											63.1	3.1				33.
	Prairies Ontario	109 144	≤ 16 ≤ 16	> 256 > 256	29.4 38.9											61.5 52.8	9.2 7.6	0.7			29. 38.
	Québec	128	> 256	> 256	58.6											36.7	3.9	0.8			58.
	Atlantic	173	≤ 16	> 256	41.6											52.0	5.8	0.6			41.
Tetracycline	British Columbia	65	≤ 4	> 32	35.4									61.5	3.1		1.5	33.8			
	Prairies	109	≤ 4	> 32										58.7			4.6	36.7			
	Ontario Québec	144 128	32 > 32	> 32 > 32	56.3 58.6									43.8 41.4			7.6 4.7	48.6 53.9			
	Atlantic	173	> 32 ≤ 4	> 32	48.6									51.4		0.6	6.9	41.0			

Table 2.12. Distribution of minimum inhibitory concentrations among *Campylobacter* from chicken, 2014

Antimicrobial	Species	Province / region	n	Percei	ntiles MIC 90	% R	< 0.040	0.022	0.064	0.425	D 0.25	istribut 0.5	ion (%)	of MICs	s (µg/ml	L) 8	16	32 64	> 64
Ciprofloxacin	Campylobacter coli	British Columbia	5	0.125	8	40.0	≤ 0.016	0.032	0.064	60.0	0.25	0.5	1	2	4	40.0	16	32 64	> 64
Ciprofloxacin	Campylobacter coli	Prairies	8	8	16				12.5	37.5						37.5	12.5		
Ciprofloxacin	Campylobacter coli	Ontario	5	0.125	16	40.0				60.0						20.0	20.0		
Ciprofloxacin	Campylobacter coli	Québec	3	0.064	0.125	0.0			66.7	33.3									
Ciprofloxacin Ciprofloxacin	Campylobacter coli Campylobacter jejuni	Atlantic British Columbia	0 37	0 0.125	0 16	0.0 16.2			27.0	56.8						5.4	10.8		
Ciprofloxacin	Campylobacter jejuni	Prairies	59	0.125	0.125	6.8			28.8	62.7	1.7					3.4	3.4		
Ciprofloxacin	Campylobacter jejuni	Ontario	71	0.125	0.25	9.9		1.4	42.3	39.4	7.0					4.2	5.6		
Ciprofloxacin	Campylobacter jejuni	Québec	51	0.125	0.25	3.9			41.2	43.1	11.8					3.9			
Ciprofloxacin	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Ciprofloxacin	Campylobacter spp.	British Columbia	1	4	4	100.0									100.0				
Ciprofloxacin	Campylobacter spp.	Prairies	0	0	0	0.0													
Ciprofloxacin Ciprofloxacin	Campylobacter spp. Campylobacter spp.	Ontario Québec	0	0	0	0.0													
. Ciprofloxacin	Campylobacter spp.	Atlantic	37	0.125	0.25	5.4		2.7	24.3	45.9	21.6						5.4		
Telithromycin	Campylobacter coli	British Columbia	5	0.25	0.25	0.0				20.0	80.0				'				
Telithromycin	Campylobacter coli	Prairies	8	2	4	0.0					50.0			37.5	12.5				
Telithromycin	Campylobacter coli	Ontario	5	0.5	1	0.0				20.0	20.0	20.0	40.0						
Telithromycin	Campylobacter coli	Québec	3	0.5	2	0.0					33.3	33.3		33.3					
Telithromycin	Campylobacter coli	Atlantic British Columbia	0 37	0 0.5	0	0.0				5.4	8.1	64.9	18.9	2.7					
Telithromycin Telithromycin	Campylobacter jejuni Campylobacter jejuni	Prairies	59	0.5	1	0.0				1.7	10.2	50.8	35.6	1.7					
Telithromycin	Campylobacter jejuni	Ontario	71	0.5	1	1.4				4.2	14.1	52.1	21.1	5.6		1.4	1.4		
Telithromycin	Campylobacter jejuni	Québec	51	0.5	4	3.9					17.6	51.0	13.7	5.9	3.9	3.9	3.9		
Telithromycin	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Telithromycin	Campylobacter spp.	British Columbia	1	0.25	0.25	0.0					100.0								
Telithromycin	Campylobacter spp.	Prairies	0	0	0	0.0													
Telithromycin Telithromycin	Campylobacter spp. Campylobacter spp.	Ontario Québec	0	0	0	0.0													
Telithromycin	Campylobacter spp.	Atlantic	37	1	16	10.8				2.7	10.8	21.6	43.2	10.8			10.8		
Azithromycin	Campylobacter coli	British Columbia	5	0.064	0.064	0.0		40.0	60.0										
Azithromycin	Campylobacter coli	Prairies	8	0.064	0.25	0.0		37.5	25.0	25.0	12.5								
Azithromycin	Campylobacter coli	Ontario	5	0.064	0.064	0.0			100.0										
Azithromycin	Campylobacter coli	Québec	3	0.064	0.125	0.0		33.3	33.3	33.3									
Azithromycin Azithromycin	Campylobacter coli Campylobacter jejuni	Atlantic British Columbia	0 37	0.032	0 0.064	0.0		73.0	24.3	2.7									
Azithromycin	Campylobacter jejuni	Prairies	59	0.032	0.064	0.0	1.7	45.8	49.2	3.4									
Azithromycin	Campylobacter jejuni	Ontario	71	0.032	0.064	2.8	2.8	53.5	39.4	1.4									2.8
Azithromycin	Campylobacter jejuni	Québec	51	0.032	> 64	13.7	3.9	51.0	31.4										13.7
Azithromycin	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Azithromycin	Campylobacter spp.	British Columbia	1	0.064	0.064	0.0			100.0										
Azithromycin	Campylobacter spp.	Prairies	0	0	0	0.0													
Azithromycin Azithromycin	Campylobacter spp. Campylobacter spp.	Ontario Québec	0	0	0	0.0													
Azithromycin	Campylobacter spp.	Atlantic	37	0.064	> 64	10.8		16.2	62.2	10.8									10.8
Clindamycin	Campylobacter coli	British Columbia	5	0.125	0.25	0.0				60.0	40.0								
Clindamycin	Campylobacter coli	Prairies	8	0.25	1	0.0				37.5	25.0	12.5	25.0						
Clindamycin	Campylobacter coli	Ontario	5	0.25	0.25	0.0				20.0	80.0								
Clindamycin	Campylobacter jejuni	Québec	3	0.125	4	0.0				66.7					33.3				
Clindamycin Clindamycin	Campylobacter jejuni	Atlantic British Columbia	0 37	0 0.125	0 0.25	0.0			16.2	67.6	10 5	2.7							
Clindamycin	Campylobacter jejuni Campylobacter jejuni	Prairies	59	0.125	0.25	0.0			22.0	59.3	13.5 18.6	2.1							
II Clindamycin	Campylobacter jejuni	Ontario	71	0.125	0.25	1.4		4.2	22.5	57.7	11.3		1.4		1.4	1.4			
Clindamycin	Campylobacter jejuni	Québec	51	0.125	4	5.9			21.6	49.0	17.6				5.9	5.9			
Clindamycin	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Clindamycin	Campylobacter spp.	British Columbia	1	0.125	0.125	0.0				100.0									
Clindamycin	Campylobacter spp.	Prairies	0	0	0	0.0													
Clindamycin Clindamycin	Campylobacter spp. Campylobacter spp.	Ontario Québec	0	0	0	0.0													
Clindamycin	Campylobacter spp. Campylobacter spp.	Atlantic	37	0.125	4	5.4			16.2	48.6	24.3				5.4	5.4			
Erythromycin	Campylobacter coli	British Columbia	5	0.25	0.25	0.0				. 5.0	100.0				,		l l		
Erythromycin	Campylobacter coli	Prairies	8	0.5	2	0.0				12.5	37.5	12.5	25.0	12.5					
Erythromycin	Campylobacter coli	Ontario	5	0.25	0.5	0.0					60.0	40.0							
Erythromycin	Campylobacter coli	Québec	3	0.25	1	0.0					66.7		33.3						
Erythromycin	Campylobacter coli	Atlantic	0	0	0	0.0				- 4	75.7	10.5	- 4						
Erythromycin Erythromycin	Campylobacter jejuni Campylobacter jejuni	British Columbia Prairies	37 59	0.25 0.25	0.5 0.5	0.0				5.4 6.8	75.7 57.6	13.5 33.9	5.4 1.7						
Erythromycin	Campylobacter jejuni	Ontario	71	0.25	0.5	2.8				11.3	70.4	12.7	2.8						2.8
Erythromycin	Campylobacter jejuni	Québec	51	0.25	> 64	13.7					56.9	23.5	5.9						13.7
Erythromycin	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Erythromycin	Campylobacter spp.	British Columbia	1	0.5	0.5	0.0						100.0							
Erythromycin	Campylobacter spp.	Prairies	0	0	0	0.0													
Erythromycin	Campylobacter spp.	Ontario	0	0	0	0.0													
Erythromycin Erythromycin	Campylobacter spp.	Québec Atlantic	0 37	0	0	0.0				27	22.4	27.0	16.2						10.9
Erythromycin	Campylobacter spp.	Atlantic	3/	0.5	> 64	10.8				2.7	32.4	37.8	16.2						10.8

Speciation data for the Atlantic region were not available at the time of report release.

Table 2.12. Distribution of minimum inhibitory concentrations among *Campylobacter* from chicken, 2014 (cont'd)

Antimicrobial	Species	Province / region	n	Percen		% R					tributi	ion (%)	of MIC:	s (µg/m	L)				
		British Columbia	5	MIC 50 1	MIC 90	0.0	≤ 0.016 0.032 (0.064	0.125	0.25	20.0	80.0	2	4	8	16	32	64	> 64
Gentamicin Gentamicin	Campylobacter coli Campylobacter coli	Prairies	8	1	2	0.0					12.5	75.0	12.5						
Gentamicin	Campylobacter coli	Ontario	5	1	2	0.0					12.5	80.0	20.0						
Gentamicin	Campylobacter coli	Québec	3	1	2	0.0					33.3	33.3	33.3						
Gentamicin	Campylobacter coli	Atlantic	0	0	0	0.0					33.3	33.3	33.3						
Gentamicin	Campylobacter jejuni	British Columbia	37	1	1	0.0					16.2	81.1	2.7						
Gentamicin	Campylobacter jejuni	Prairies	59	1	2	0.0					5.1	81.4	13.6						
Gentamicin	Campylobacter jejuni	Ontario	71	1	1	0.0					9.9	88.7	1.4						
Gentamicin	Campylobacter jejuni	Québec	51	1	1	0.0					5.9	88.2	5.9						
Gentamicin	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Gentamicin	Campylobacter spp.	British Columbia	1	1	1	0.0						100.0							
Gentamicin	Campylobacter spp.	Prairies	0	0	0	0.0													
Gentamicin	Campylobacter spp.	Ontario	0	0	0	0.0													
Gentamicin	Campylobacter spp.	Québec	0	0	0	0.0													
Contomicin	Campylobacter spp.	Atlantic	37	1	1	0.0				2.7	21.6	75.7							
Nalidixic acid	Campylobacter coli	British Columbia	5	8	> 64	40.0								40.0	20.0		į.	20.0	20.0
Nalidixic acid	Campylobacter coli	Prairies	8	64	> 64	50.0								25.0	25.0		1	25.0	25.0
Nalidixic acid	Campylobacter coli	Ontario	5	8	> 64	40.0								40.0	20.0				40.0
Nalidixic acid	Campylobacter coli	Québec	3	≤ 4	8	0.0								66.7	33.3		1		
Nalidixic acid	Campylobacter coli	Atlantic	0	0	0	0.0													
Nalidixic acid	Campylobacter jejuni	British Columbia	37	≤ 4	> 64	16.2								62.2	21.6		1		16.2
Nalidixic acid	Campylobacter jejuni	Prairies	59	≤ 4	8	6.8								81.4	11.9				6.8
Nalidixic acid	Campylobacter jejuni	Ontario	71	≤ 4	8	9.9								74.6	15.5		1		9.9
Nalidixic acid	Campylobacter jejuni	Québec	51	≤ 4	8	3.9								68.6	27.5		1		3.9
Nalidixic acid	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Nalidixic acid	Campylobacter spp.	British Columbia	1	> 64		100.0											1		100.0
Nalidixic acid	Campylobacter spp.	Prairies	0	0	0	0.0											1		
Nalidixic acid	Campylobacter spp.	Ontario	0	0	0	0.0											1		
Nalidixic acid	Campylobacter spp.	Québec	0	0	0	0.0											1		
Nalidixic acid	Campylobacter spp.	Atlantic	37	≤ 4	8	5.4								62.2	32.4				5.4
Florfenicol	Campylobacter coli	British Columbia	5	1	2	0.0						80.0	20.0						
Florfenicol	Campylobacter coli	Prairies	8	1	2	0.0						75.0	25.0						
Florfenicol	Campylobacter coli	Ontario	5	1	1	0.0						100.0							
Florfenicol	Campylobacter coli	Québec	3	1	1	0.0					33.3	66.7							
Florfenicol	Campylobacter coli	Atlantic	0	0	0	0.0													
Florfenicol	Campylobacter jejuni	British Columbia	37	1	1	0.0					13.5	83.8	2.7						
Florfenicol	Campylobacter jejuni	Prairies	59	1	1	0.0					15.3	81.4	3.4						
Florfenicol	Campylobacter jejuni	Ontario	71	1	1	0.0				1.4	15.5	78.9	4.2						
Florfenicol	Campylobacter jejuni	Québec	51	1	1	0.0					17.6	76.5	5.9						
Florfenicol	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Florfenicol	Campylobacter spp.	British Columbia	1	0.5	0.5	0.0					100.0								
Florfenicol	Campylobacter spp.	Prairies	0	0	0	0.0													
Florfenicol	Campylobacter spp.	Ontario	0	0	0	0.0													
Florfenicol	Campylobacter spp.	Québec	0	0	0	0.0													
III Florfenicol	Campylobacter spp.	Atlantic	37	1	2	0.0					10.8	70.3	18.9						
"Tetracycline	Campylobacter coli	British Columbia	5	0.25	64	40.0				60.0								40.0	
Tetracycline	Campylobacter coli	Prairies	8	64	> 64	50.0				37.5		12.5						12.5	37.5
Tetracycline	Campylobacter coli	Ontario	5	0.25	> 64	20.0				60.0	20.0								20.0
Tetracycline	Campylobacter coli	Québec	3	> 64	> 64	100.0												33.3	66.7
Tetracycline	Campylobacter coli	Atlantic	0	0	0	0.0													
Tetracycline	Campylobacter jejuni	British Columbia	37	0.5	64	27.0			29.7	18.9	21.6	2.7					2.7	24.3	
Tetracycline	Campylobacter jejuni	Prairies	59	32	> 64	54.2			15.3	28.8			1.7			1	5.1	20.3	28.8
Tetracycline	Campylobacter jejuni	Ontario	71	1	> 64	46.5		1.4	26.8	15.5	2.8	7.0					7.0	16.9	22.5
Tetracycline	Campylobacter jejuni	Québec	51	0.5	> 64	45.1			23.5	25.5	3.9			2.0				15.7	29.4
Tetracycline	Campylobacter jejuni	Atlantic	0	0	0	0.0													
Tetracycline	Campylobacter spp.	British Columbia	1	0.125	0.125	0.0			100.0										
Tetracycline	Campylobacter spp.	Prairies	0	0	0	0.0													
	Campylobacter spp.	Ontario	0	0	0	0.0													
Tetracycline																			
Tetracycline Tetracycline	Campylobacter spp.	Québec	0	0	0	0.0													1

Speciation data for the Atlantic region were not available at the time of report release.

Table 2.13. Distribution of minimum inhibitory concentrations among *Escherichia coli* from pork, 2014

Antim icrobial	Province/region		Percei MIC 50		% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	istribut 1	ion (%) 2	of MICs 4	s (µg/m 8	L) 16	32	64	128	256	> 25
Amoxicillin-	B 10 1 11					_ 0.010	0.00	0.00	0.12	0.23	0.5					<u>.</u> _		<u> </u>	120		> 25
clavulanic acid	British Columbia Prairies	29 48	4	32 8	10.3 6.3							6.9 4.2	31.0 39.6	44.8 35.4	6.9 12.5	2.1	10.3 4.2	2.1			
	Ontario	127	4	8	2.4							3.9	26.8	40.2	26.8		2.4				
	Québec	49	4	8	8.2							6.1	36.7	36.7	12.2		6.1	2.0			
	Atlantic	70	4	32	12.9							1.4	21.4	41.4	20.0	2.9	10.0	2.9			
Ceftiofur	British Columbia	29	0.50	8	10.3				3.4	24.1	58.6	3.4			10.3						
	Prairies	48	0.25	0.50	6.3				2.1	52.1	37.5	2.1				6.3					
	Ontario Québec	127 49	0.50 0.50	0.50 1	2.4 6.1				3.1 4.1	37.0 42.9	56.7 42.9	0.8 2.0		2.0	1.6 4.1	0.8 2.0					
	Atlantic	70	0.50	0.50	2.9				1.4	37.1	55.7	2.9		2.0	1.4	1.4					
Ceftriaxone	British Columbia	29	≤ 0.25	8	10.3				1.4	86.2	3.4	2.0			6.9	3.4					
	Prairies	48	≤ 0.25	≤ 0.25	6.3					93.8						6.3					
	Ontario	127	≤ 0.25	≤ 0.25	2.4					97.6					8.0	1.6					
	Québec	49	≤ 0.25	≤ 0.25	8.2					91.8				2.0	2.0	2.0	2.0				
	Atlantic	70	≤ 0.25	≤ 0.25	2.9					91.4	2.9	2.9			1.4		1.4				
Ciprofloxacin	British Columbia	29	≤ 0.015	≤ 0.015	0.0	96.6	3.4														
	Prairies Ontario	48 127		≤ 0.015 ≤ 0.015	0.0	100.0 95.3	0.8	0.8	1.6	1.6											
	Québec	49		≤ 0.015	0.0	93.9	4.1	2.0	1.0	1.0											
	Atlantic	70	≤ 0.015	≤ 0.015	0.0	98.6	1.4														
Ampicillin	British Columbia	29	2	> 32	20.7							13.8	51.7	13.8				20.7			
	Prairies	48	2	> 32	16.7							12.5	50.0	14.6	4.2	2.1	ĺ	16.7			
	Ontario	127	4	> 32	28.3							9.4	40.2	21.3	0.8			28.3			
	Québec	49	2	> 32	20.4							16.3	42.9	18.4	2.0			20.4			
A - lab - a - a - a - la	Atlantic	70	4	> 32	28.6							5.7	34.3	17.1	2.9	11.4	2.9	25.7			
Azithromycin	British Columbia	29 48	4	8	0.0							2.1	10.4	51.7	41.4	6.9					
	Prairies Ontario	127	4	8	0.0							2.1	6.3	50.0 49.6	35.4 40.9	2.1 3.1					
	Québec	49	4	8	2.0								6.1	57.1	34.7	0.1	2.0				
	Atlantic	70	4	16	1.4								10.0	42.9	32.9	12.9	1.4				
Cefoxitin	British Columbia	29	4	> 32	10.3								17.2	62.1	10.3			10.3			
	Prairies	48	4	8	6.3							4.2	33.3	47.9	6.3	2.1		6.3			
	Ontario	127	4	8	2.4							1.6	28.3	55.9	10.2	1.6	8.0	1.6			
	Québec	49	4	16	8.2						2.0		24.5	53.1	10.2	2.0	2.0	6.1			
Gentamicin	Atlantic British Columbia	70 29	4	4	2.9 3.4						27.6	1.4 65.5	34.3 3.4	57.1	4.3		1.4 3.4	1.4			
Gentamicin	Prairies	48	1	1	0.0					4.2	35.4	56.3	2.1	2.1			3.4				
	Ontario	127	1	1	1.6					4.2	27.6	63.0	7.9	2			1.6				
	Québec	49	1	1	4.1					2.0	36.7	53.1	4.1			2.0	2.0				
	Atlantic	70	1	1	1.4					1.4	47.1	42.9	7.1				1.4				
Nalidixic acid	British Columbia	29	2	2	0.0							20.7	79.3								
	Prairies	48	2	2	0.0							31.3	64.6	4.2							
	Ontario	127	2	2	2.4							26.8	63.8	7.1			8.0	1.6			
	Québec Atlantic	49 70	2	4	0.0						1.4	28.6 34.3	61.2 58.6	8.2 5.7	2.0						
Streptomycin	British Columbia	29	8	64	20.7						1.4	34.3	36.6	13.8	44.8	20.7	ı	13.8	6.9		
Circpioniyoni	Prairies	48	8	64	14.6								2.1	14.6	41.7	18.8	8.3	8.3	6.3		
	Ontario	127	16	> 64	29.1									10.2	37.8	17.3	5.5	8.7	20.5		
	Québec	49	8	> 64	20.4									16.3	42.9	14.3	6.1	4.1	16.3		
	Atlantic	70	8	64	14.3								١.	18.6	45.7	12.9	8.6	5.7	8.6		
Trimethoprim-	Dritioh Calimahia	20	- C 10		10.0				06.0	2.4					10.2						
sulfamethoxazole	British Columbia Prairies	29 48	≤ 0.12 ≤ 0.12	> 4 ≤ 0.12	10.3 2.1				86.2 93.8	3.4 4.2					10.3 2.1						
	Ontario	127	≤ 0.12	≥ 0.12 > 4	10.2				81.1	7.9	0.8				10.2						
	Québec	49	≤ 0.12	> 4	10.2				87.8	2.0	0.0				10.2						
	Atlantic	70	≤ 0.12	> 4	10.0				74.3	14.3		1.4			10.0						
Chloramphenicol	British Columbia	29	8	16	6.9									31.0	55.2	6.9	6.9				
	Prairies	48	8	16	6.3								8.3	25.0	56.3	4.2	2.1	4.2			
	Ontario	127	8	32	12.6								1.6	28.3	53.5	3.9	5.5	7.1			
	Québec	49	8	8	2.0								6.1	36.7	53.1	2.0	۱	2.0			
Sulfisoxazole	Atlantic British Columbia	70 29	8 ≤ 16	8 > 256	1.4 24.1								4.3	44.3	44.3	5.7 65.5	1.4				24
	Prairies	48	≤ 16	> 256	18.8											75.0	6.3				18
	Ontario	127	≤ 16	> 256	31.5											62.2	5.5	0.8			31
	Québec	49	≤ 16	> 256	18.4											69.4	12.2	0.0			18
	Atlantic	70	≤ 16	> 256	17.1											64.3	5.7	10.0	2.9		17
Tetracycline	British Columbia	29	≤ 4		17.2									82.8				17.2			
	Prairies	48	≤ 4	> 32	37.5									62.5			2.1	35.4			
	Ontario	127	32	> 32	56.7									43.3			7.1	49.6			
	Québec	49	≤ 4	> 32										51.0			4.1	44.9			
	Atlantic	70	≤ 4	> 32	37.1									62.9		l	5.7	31.4			

Table 2.14. Distribution of minimum inhibitory concentrations in Salmonella from turkey, 2014

			B	111								' = 4 = 1h = = 4	·-·· (0/)	- f MIO						
Antim icrobial	Province/region		Percer MIC 50	MIC 90	% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	istribut 1	ion (%) 2	of MICs	ε (μg/m) 8	L) 16	32	64	128	256 > 2
Amoxicillin-							0.00	0.00	<u> </u>	0.20	<u> </u>									200 72
clavulanic acid	British Columbia Prairies	31 44	≤ 1 ≤ 1	4	6.5 0.0							77.4 68.2	9.7 18.2	3.2 4.5	3.2 4.5	4.5		6.5		
	Ontario	40	≤1	16	7.5							85.0	10.2	4.5	2.5	5.0	2.5	5.0		
	Québec	51	≤ 1	> 32	19.6							66.7	3.9		7.8	2.0	2.0	17.6		
	Atlantic	16	≤ 1	8	6.3							81.3			12.5			6.3		
Ceftiofur	British Columbia	31	1	2	9.7						6.5	80.6	3.2		3.2	6.5				
	Prairies	44	1	2	0.0						27.3	50.0	18.2	4.5						
	Ontario Québec	40 51	1	1 > 8	7.5 21.6						25.0 21.6	67.5 54.9	2.0			7.5 21.6				
	Atlantic	16	1	>8	12.5					6.3	12.5	68.8	2.0			12.5				
Ceftriaxone	British Columbia	31	· ≤ 0.25	≤ 0.25	9.7					90.3	.2.0	00.0			3.2	3.2	3.2			
	Prairies	44	≤ 0.25	≤ 0.25	0.0					100.0										
	Ontario	40	≤ 0.25	≤ 0.25	7.5					92.5						2.5	5.0			
	Québec	51	≤ 0.25	32	21.6					78.4						7.8	11.8		2.0	
O'	Atlantic	16	≤ 0.25	64	12.5	00.0	40.4	0.0		87.5		ı '						6.3	6.3	
Ciprofloxacin	British Columbia Prairies	31 44	≤ 0.015 ≤ 0.015	0.03	0.0	80.6 61.4	16.1 22.7	3.2 13.6	2.3											
	Ontario	40	≤ 0.015	0.00	0.0	80.0	20.0	13.0	2.0											
	Québec	51	≤ 0.015	0.03	0.0	86.3	13.7													
	Atlantic	16	≤ 0.015	≤ 0.015	0.0	100.0														
Ampicillin	British Columbia	31	≤ 1	> 32	12.9							80.6	3.2	3.2]			12.9		
	Prairies	44	≤ 1	> 32	13.6							63.6	6.8	15.9				13.6		
	Ontario	40 51	≤ 1 < 1	> 32	15.0							82.5 66.7	2.5					15.0		
	Québec Atlantic	51 16	≤ 1 ≤ 1	> 32 > 32	29.4 18.8							66.7 81.3	3.9					29.4 18.8		
Azithromycin	British Columbia	31	≤ 1 4	> 32	0.0							01.0	9.7	67.7	19.4	3.2		10.0		
	Prairies	44	4	16	0.0					2.3		2.3	6.8	43.2	27.3	18.2				
	Ontario	40	8	8	0.0					2.5			7.5	37.5	47.5	5.0				
	Québec	51	8	8	0.0							2.0	5.9	37.3	47.1	7.8				
	Atlantic	16	4	8	0.0							6.3	12.5	43.8	37.5					
Cefoxitin	British Columbia	31	2	16	6.5								54.8	32.3		6.5		6.5		
	Prairies Ontario	44 40	2	16 8	0.0 7.5							11.4 7.5	50.0 57.5	20.5 22.5	5.0	18.2	2.5	5.0		
	Québec	51	2	> 32	19.6							3.9	51.0	23.5	2.0		5.9	13.7		
	Atlantic	16	2	8	6.3						6.3	12.5	50.0	18.8	6.3			6.3		
Gentamicin	British Columbia	31	0.50	2	6.5					25.8	51.6	9.7	3.2		3.2		6.5			
	Prairies	44	0.50	16	11.4					22.7	63.6		2.3			2.3	9.1			
	Ontario	40	0.50	> 16	17.5					15.0	57.5	5.0	2.5		2.5		17.5			
	Québec	51	0.50 1	16	15.7					17.6	56.9	7.8	2.0			5.9	9.8			
Nalidixic acid	Atlantic British Columbia	16 31	4	> 16 4	31.3 0.0					6.3	43.8	18.8	35.5	58.1	6.5	6.3	25.0			
Tanastio dola	Prairies	44	4	8	0.0							2.3	22.7	52.3	22.7					
	Ontario	40	4	4	0.0							2.5	20.0	75.0	2.5					
	Québec	51	4	4	0.0								45.1	54.9						
	Atlantic	16	4	4	0.0						6.3		37.5	56.3						
Streptomycin	British Columbia	31	16	> 64	19.4								16.1	12.9	19.4	32.3		6.5	12.9	
	Prairies Ontario	44 40	16 8	> 64	27.3								9.1	9.1	25.0	25.0	4.5	11.4	15.9	
	Ontario Québec	40 51	8 16	> 64 64	30.0 15.7								2.0	10.0 5.9	42.5 25.5	15.0 33.3	2.5 17.6	20.0 9.8	10.0 5.9	
	Atlantic	16	16	64	18.8								2.0	6.3	25.0	43.8	6.3	18.8	0.5	
Trimethoprim-																				
sulfamethoxazole	British Columbia	31	≤ 0.12	≤ 0.12	0.0				100.0											
	Prairies Ontorio	44	≤ 0.12	≤ 0.12	0.0				100.0	2.5										
	Ontario Québec	40 51	≤ 0.12 ≤ 0.12	≤ 0.12 ≤ 0.12	0.0 2.0				97.5 96.1	2.5 2.0					2.0					
	Atlantic	16	≤ 0.12	≤ 0.12	0.0				100.0	2.0										
Chloramphenicol	British Columbia	31	8	8	0.0									29.0	67.7	3.2				
	Prairies	44	8	16	2.3								2.3	20.5	56.8	18.2	2.3			
	Ontario	40	8	8	0.0								2.5	22.5	72.5	2.5				
	Québec	51	8	8	2.0								0.0	23.5	74.5			2.0		
Sulficovazala	Atlantic	16 31	8 32	8	0.0								6.3	18.8	75.0	12.0	64.5	16.1		1
Sulfisoxazole	British Columbia Prairies	31 44	32	64 > 256	6.5 18.2											12.9 13.6	64.5 52.3	16.1 15.9		1
	Ontario	40	32	> 256	12.5											17.5	62.5	7.5		1
	Québec	51	32	> 256	27.5											21.6	41.2	7.8	2.0	2
	Atlantic	16	32	> 256	12.5											37.5	37.5	12.5		1
Tetracycline	British Columbia	31	≤ 4	> 32	22.6									77.4				22.6		
	Prairies	44	≤ 4	> 32	29.5									70.5			4.5	25.0		
	Ontario	40	≤ 4	> 32	25.0									75.0				25.0		
	Québec	51	≤ 4	> 32	41.2									58.8		l		41.2		
	Atlantic	16	≤ 4	> 32	10.0									81.3				18.8		

Table 2.15. Distribution of minimum inhibitory concentrations in *Escherichia coli* from turkey, 2014

Antim icrobial	Province/region	n	Percei		% R	< 0.045	0.03	0.00	0.12	0.25		istribut 1		of MICs			22	C4	120 25	6 . 36
Amoxicillin-			MIC 50	MIC 90		≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128 25	6 > 25
clavulanic acid	British Columbia	64	4	16	7.8								25.0	37.5	26.6	3.1	7.8			
	Prairies	103	4	8	3.9							1.0	35.0	33.0	24.3	2.9	2.9	1.0		
	Ontario	143	4	8	0.7							2.8	29.4	35.7	28.7	2.8	0.7			
	Québec	118	4	8	4.2							3.4	23.7	39.8	27.1	1.7	4.2			
Ceftiofur	Atlantic British Columbia	133 64	4 0.50	8 1	4.5 6.3				1.6	28.1	59.4	2.3 3.1	31.6	34.6 1.6	24.1 1.6	3.0 4.7	4.5			
Certiorui	Prairies	103	0.50	0.50	2.9				2.9	43.7	49.5	3.1	1.0	1.0	1.0	1.9				
	Ontario	143	0.50	0.50	0.7				2.8	32.2	63.6	0.7			0.7					
	Québec	118	0.50	0.50	5.1					34.7	59.3	0.8			4.2	0.8				
	Atlantic	133	0.50	0.50	3.0				2.3	38.3	54.9	8.0	,	8.0	8.0	2.3				
Ceftriaxone	British Columbia	64	≤ 0.25	≤ 0.25	7.8					92.2					1.6	3.1	3.1			
	Prairies	103	≤ 0.25	≤ 0.25	2.9					96.1			1.0			1.9	1.0			
	Ontario Québec	143 118	≤ 0.25 ≤ 0.25	≤ 0.25 ≤ 0.25	0.7 5.1					99.3 94.9					4.2	0.7		0.8		
	Atlantic	133	≤ 0.25	≤ 0.25	3.8					95.5	0.8			0.8	4.2	3.0		0.0		
Ciprofloxacin	British Columbia	64	≤ 0.015		0.0	96.9	3.1			00.0	0.0	l '	•	0.0		0.0				
•	Prairies	103	≤ 0.015		1.0	98.1				1.0					1.0					
	Ontario	143	≤ 0.015	≤ 0.015	0.0	98.6	0.7			0.7										
	Québec	118	≤ 0.015	≤ 0.015	1.7	95.8	1.7			8.0					1.7					
	Atlantic	133	≤ 0.015	≤ 0.015	0.8	99.2									0.8					
Ampicillin	British Columbia	64	4	> 32	34.4							7.8	31.3	26.6				34.4		
	Prairies Ontario	103 143	2	> 32 > 32	33.0 32.9							12.6 12.6	43.7 39.9	10.7			1	33.0 32.9		
	Ontario Québec	118	2	> 32	28.8							6.8	39.9 44.9	14.7 18.6	0.8		1	28.8		
	Atlantic	133	2	> 32	37.6							6.8	44.4	11.3	5.0		1	37.6		
Azithromycin	British Columbia	64	4	8	0.0								17.2	45.3	35.9	1.6				
	Prairies	103	4	8	1.0							1.0	19.4	55.3	22.3	1.0	1.0			
	Ontario	143	4	8	0.0							0.7	11.9	48.3	37.8	1.4				
	Québec	118	4	8	0.0							1.7	13.6	55.1	26.3	3.4				
	Atlantic	133	4	8	0.0							8.0	18.8	50.4	30.1	3				
Cefoxitin	British Columbia	64	4	8	9.4							4.0	23.4	48.4	18.8	1	3.1	6.3		
	Prairies Ontario	103 143	4	8 8	3.9 0.7							1.0	26.2 21.7	48.5 65.0	19.4 11.9	1.0 0.7		3.9 0.7		
	Québec	118	4	8	4.2							0.8	18.6	61.9	12.7	1.7	1.7	2.5		
	Atlantic	133	4	8	3.8							1.5	33.1	53.4	8.3		0.8	3.0		
Gentamicin	British Columbia	64	1	> 16	17.2						26.6	46.9	3.1		6.3	1.6	15.6			
	Prairies	103	1	> 16	20.4						31.1	43.7	1.0	1.0	2.9	6.8	13.6			
	Ontario	143	1	> 16	19.6					0.7	32.9	41.3	2.8		2.8	3.5	16.1			
	Québec	118	1	> 16	15.3						33.9	47.5	1.7	8.0	0.8	5.1	10.2			
Malidicia asid	Atlantic	133	1	> 16	18.0					8.0	36.8	42.1	0.8		1.5	4.5	13.5			
Nalidixic acid	British Columbia Prairies	64 103	2	2	0.0 1.9						1.6 1.0	29.7 43.7	68.8 51.5	1.9				1.9		
	Ontario	143	2	2	0.7						1.0	29.4	67.1	2.8				0.7		
	Québec	118	2	2	2.5							24.6	68.6	4.2				2.5		
	Atlantic	133	2	2	0.8						1.5	29.3	66.2	2.3				0.8		
Streptomycin	British Columbia	64	8	> 64	39.1									18.8	32.8	4.7	4.7	12.5	26.6	
	Prairies	103	16	> 64	38.8									21.4	27.2	6.8	5.8	16.5	22.3	
	Ontario	143	8	> 64	31.5									17.5	36.4	3.5	11.2	14.7	16.8	
	Québec	118	8	> 64	33.1									22.9	30.5	4.2	9.3	14.4	18.6	
Trimethoprim-	Atlantic	133	8	> 64	36.8								l	15.8	34.6	6.8	6.0	12.8	24.1	
sulfamethoxazole	British Columbia	64	≤ 0.12	≤ 0.12	7.8				90.6	1.6					7.8					
	Prairies	103	≤ 0.12	0.25	5.8				89.3	4.9					5.8					
	Ontario	143	≤ 0.12	1	9.8				83.2	5.6	0.7	0.7			9.8					
	Québec	118	≤ 0.12	> 4	11.0				78.8	7.6	8.0	1.7			11.0					
	Atlantic	133	≤ 0.12	> 4	11.3				81.2	6.0	8.0	8.0			11.3					
Chloramphenicol	British Columbia	64	8	8	4.7								4.7	32.8	57.8	4.0		4.7		
	Prairies Ontario	103 143	8	8	4.9								2.9 1.4	35.9 37.1	55.3 53.8	1.0		4.9		
	Ontario Québec	118	8	8 8	3.5 3.4								1.4	37.1 48.3	53.8 43.2	4.2 3.4	1	3.5 3.4		
	Atlantic	133	8	8	4.5								3.8	44.4	47.4	1		4.5		
Sulfisoxazole	British Columbia	64	≤ 16	> 256	21.9											70.3	7.8			21.
	Prairies	103	≤ 16	> 256												61.2	5.8	1.9		31.
	Ontario	143	≤ 16	> 256	36.4											54.5	9.1			36.
	Québec	118	32	> 256	37.3											46.6	14.4	1.7		37.
	Atlantic	133	≤ 16	> 256	35.3											59.4	5.3			35.
	British Columbia Prairies	64	≤ 4	> 32	43.8									56.3			1.6	42.2		
Tetracycline		103	> 32	> 32										40.8 32.2	0.7	0.7	5.8	53.4		
Tetracycline			~ 22	~ 22	67 1															
Tetracycline	Ontario	143	> 32 32	> 32 > 32											0.7	0.7	14.0 20.3	52.4 39.0		
Tetracycline			> 32 32 32	> 32 > 32 > 32	59.3									40.7 27.8	0.7	2.3	20.3 21.8	39.0 48.1		

Table 2.16. Distribution of minimum inhibitory concentrations in *Campylobacter* from turkey, 2014

													_							
Antimicrobial	l Species	Province / region		Percer MIC 50		% R	< 0.04	. 0.000	0.004	0.435			ion (%)	of MICs	s (µg/m					
Ciprofloxacin	Campylobacter coli	British Columbia	6	0.125	MIC 90	33.3	≥ 0.016	0.032	0.064 50.0	0.125 16.7	0.25	0.5	1	2	4	8	16 16.7	32 16.7	64	> 64
Ciprofloxacin	Campylobacter coli	Prairies	3	8	16	66.7			50.0	33.3						33.3	33.3	10.7		
Ciprofloxacin	Campylobacter coli	Ontario	8	0.25	0.25	0.0				25.0	75.0									
Ciprofloxacin	Campylobacter coli	Québec	0	0	0	0.0														
Ciprofloxacin	Campylobacter coli	Atlantic	0	0	0	0.0														
Ciprofloxacin	Campylobacter jejuni	British Columbia	22	0.125	8	31.8			22.7	45.5						27.3	4.5			
Ciprofloxacin	Campylobacter jejuni	Prairies	9	0.064	0.125	0.0			66.7	33.3										
Ciprofloxacin	Campylobacter jejuni	Ontario	20	0.125	8	20.0			40.0	35.0	5.0					15.0	5.0			
Ciprofloxacin	Campylobacter jejuni	Québec	5	0.064	16	20.0			60.0		20.0						20.0			
Ciprofloxacin Ciprofloxacin	Campylobacter jejuni	Atlantic British Columbia	0	0	0	0.0														
Ciprofloxacin	Campylobacter spp. Campylobacter spp.	Prairies	0	0	0	0.0														
Ciprofloxacin	Campylobacter spp.	Ontario	0	0	0	0.0														
Ciprofloxacin	Campylobacter spp.	Québec	0	0	0	0.0														
Ciprofloxacin	Campylobacter spp.	Atlantic	9	0.125	16	11.1			33.3	55.6							11.1			
Telithromycin	Campylobacter coli	British Columbia	6	1	8	0.0					50.0		16.7		16.7	16.7				
Telithromycin	Campylobacter coli	Prairies	3	2	2	0.0					33.3			66.7						
Telithromycin	Campylobacter coli	Ontario	8	16	16	75.0								25.0			75.0			
Telithromycin	Campylobacter coli	Québec	0	0	0	0.0														
Telithromycin	Campylobacter coli	Atlantic	0	0	0	0.0														
Telithromycin	Campylobacter jejuni	British Columbia	22	0.5	1	0.0	l				18.2	59.1	22.7							
Telithromycin	Campylobacter jejuni	Prairies	9	0.5	1	0.0	1				33.3	33.3	33.3							
Telithromycin Telithromycin	Campylobacter jejuni	Ontario	20	0.5	1	0.0	l				20.0	55.0	20.0	5.0			20.0			
Telithromycin Telithromycin	Campylobacter jejuni Campylobacter jejuni	Québec Atlantic	5 0	0.5 0	16 0	20.0	l				20.0	60.0					20.0			
Telithromycin	Campylobacter spp.	British Columbia	0	0	0	0.0	l													
Telithromycin	Campylobacter spp.	Prairies	0	0	0	0.0	l													
Telithromycin	Campylobacter spp.	Ontario	0	0	0	0.0														
Telithromycin	Campylobacter spp.	Québec	0	0	0	0.0														
Telithromycin	Campylobacter spp.	Atlantic	9	0.5	1	0.0					33.3	22.2	44.4							
Azithromycin	Campylobacter coli	British Columbia	6	0.064	0.25	0.0		50.0	16.7	16.7	16.7									
Azithromycin	Campylobacter coli	Prairies	3	0.125	> 64	33.3		33.3		33.3										33.3
Azithromycin	Campylobacter coli	Ontario	8	> 64	> 64	75.0			25.0											75.0
Azithromycin	Campylobacter coli	Québec	0	0	0	0.0														
Azithromycin	Campylobacter coli	Atlantic	0	0	0	0.0														
Azithromycin	Campylobacter jejuni	British Columbia	22	0.032	0.064	0.0	4.5	59.1	36.4	00.0										
Azithromycin	Campylobacter jejuni	Prairies	9	0.032	0.125	0.0		55.6	22.2	22.2										
Azithromycin	Campylobacter jejuni Campylobacter jejuni	Ontario Québec	20 5	0.064	0.064 > 64	0.0 20.0		50.0 80.0	50.0											20.0
Azithromycin Azithromycin	Campylobacter jejuni	Atlantic	0	0.032	0	0.0		80.0												20.0
Azithromycin	Campylobacter spp.	British Columbia	0	0	0	0.0														
Azithromycin	Campylobacter spp.	Prairies	0	0	0	0.0														
Azithromycin	Campylobacter spp.	Ontario	0	0	0	0.0														
Azithromycin	Campylobacter spp.	Québec	0	0	0	0.0														
Azithromycin	Campylobacter spp.	Atlantic	9	0.064	0.064	0.0		11.1	88.9											
Clindamycin	Campylobacter coli	British Columbia	6	0.25	0.5	0.0				50.0	33.3	16.7								
Clindamycin	Campylobacter coli	Prairies	3	0.5	4	0.0				33.3		33.3			33.3					
Clindamycin	Campylobacter coli	Ontario	8	8	8	50.0					25.0				25.0	50.0				
Clindamycin	Campylobacter jejuni	Québec	0	0	0	0.0														
Clindamycin	Campylobacter jejuni	Atlantic	0	0	0	0.0														
Clindamycin	Campylobacter jejuni	British Columbia	22	0.125	0.125	0.0			9.1	86.4	4.5									
Clindamycin II Clindamycin	Campylobacter jejuni Campylobacter jejuni	Prairies Ontario	9 20	0.125 0.125	0.25 0.25	0.0			11.1 20.0	55.6 65.0	33.3 15.0									
Clindamycin	Campylobacter jejuni Campylobacter jejuni	Québec	20 5	0.125	16	20.0			20.0	60.0	10.0					l	20.0			
Clindamycin	Campylobacter jejuni	Atlantic	0	0.123	0	0.0			20.0	00.0						l	20.0			
Clindamycin	Campylobacter spp.	British Columbia	0	0	0	0.0										l				
Clindamycin	Campylobacter spp.	Prairies	0	0	0	0.0														
Clindamycin	Campylobacter spp.	Ontario	0	0	0	0.0										l				
Clindamycin	Campylobacter spp.	Québec	0	0	0	0.0										l				
Clindamycin	Campylobacter spp.	Atlantic	9	0.125	0.25	0.0			11.1	55.6	33.3									
Erythromycin	Campylobacter coli	British Columbia	6	0.5	4	0.0					50.0	16.7		16.7	16.7			ł		
Erythromycin	Campylobacter coli	Prairies	3	1	64	33.3					33.3		33.3					l	33.3	
Erythromycin	Campylobacter coli	Ontario	8	> 64	> 64	75.0						12.5	12.5					ł		75.0
Erythromycin	Campylobacter coli	Québec	0	0	0	0.0												ł		
Erythromycin	Campylobacter coli	Atlantic	0	0	0	0.0				12.0	04.0	4.5						ł		
Erythromycin	Campylobacter jejuni	British Columbia	22	0.25	0.25	0.0				13.6	81.8	4.5						l		
Erythromycin	Campylobacter jejuni Campylobacter jejuni	Prairies Ontario	9 20	0.25 0.25	0.5 0.5	0.0				11.1 15.0	66.7 55.0	22.2 25.0	5.0					ł		
	Campylobacter jejuni	Québec	20 5	0.25	> 64	20.0				13.0	80.0	20.0	5.0					ł		20.0
Erythromycin Erythromycin		~ucoco	9			0.0					00.0							i		20.0
Erythromycin		Atlantic	Ω	Λ																
Erythromycin Erythromycin	Campylobacter jejuni Campylobacter spp.	Atlantic British Columbia	0	0	0	0.0												l		
Erythromycin Erythromycin Erythromycin	Campylobacter jejuni																			
Erythromycin Erythromycin	Campylobacter jejuni Campylobacter spp.	British Columbia	0	0	0	0.0														
Erythromycin Erythromycin Erythromycin Erythromycin	Campylobacter jejuni Campylobacter spp. Campylobacter spp.	British Columbia Prairies	0	0	0	0.0														

Speciation data for the Atlantic region were not available at the time of report release.

Table 2.16. Distribution of minimum inhibitory concentrations in *Campylobacter* from turkey, 2014 (cont'd)

Antimicrobial	Species	Province / region	n	Percen	tiles MIC 90	% R	≤ 0.016 0.032 0.064	0.125	Distrib	ution (%)	of MIC	s (µg/m	L)	16	32	64	> 64
Gentamicin	Campylobacter coli	British Columbia	6	1	1	0.0		0.120	0.25 0.5	100.0				10	- 3Z	- 04	- J 04
Gentamicin	Campylobacter coli	Prairies	3	1	1	0.0				100.0			l				
Gentamicin	Campylobacter coli	Ontario	8	1	1	0.0			12.5				l				
Gentamicin	Campylobacter coli	Québec	0	0	0	0.0											
Gentamicin	Campylobacter coli	Atlantic	0	0	0	0.0											
Gentamicin	Campylobacter jejuni	British Columbia	22	1	2	0.0			4.5	81.8	13.6						
Gentamicin	Campylobacter jejuni	Prairies	9	1	1	0.0			22.2	77.8							
Gentamicin	Campylobacter jejuni	Ontario	20	1	1	0.0			10.0	90.0							
Gentamicin	Campylobacter jejuni	Québec	5	1	1	0.0				100.0							
Gentamicin	Campylobacter jejuni	Atlantic	0	0	0	0.0											
Gentamicin	Campylobacter spp.	British Columbia	0	0	0	0.0											
Gentamicin	Campylobacter spp.	Prairies	0	0	0	0.0						1					
Gentamicin	Campylobacter spp.	Ontario	0	0	0	0.0											
Gentamicin	Campylobacter spp.	Québec	0	0	0	0.0											
Gentamicin	Campylobacter spp.	Atlantic	9	1	1	0.0			44.4	55.6							
Nalidixic acid	Campylobacter coli	British Columbia	6	≤ 4	> 64	33.3						66.7	•				33.3
Nalidixic acid	Campylobacter coli	Prairies	3	64	64	66.7							33.3			66.7	
Nalidixic acid	Campylobacter coli	Ontario	8	8	8	0.0						50.0	50.0				
Nalidixic acid	Campylobacter coli	Québec	0	0	0	0.0											
Nalidixic acid	Campylobacter coli	Atlantic	0	0	0	0.0											
Nalidixic acid	Campylobacter jejuni	British Columbia	22	≤ 4	> 64	31.8						59.1	9.1				31.8
Nalidixic acid	Campylobacter jejuni	Prairies	9	≤ 4	≤ 4	0.0						100.0					
Nalidixic acid	Campylobacter jejuni	Ontario	20	≤ 4	> 64	20.0						70.0	10.0				20.0
Nalidixic acid	Campylobacter jejuni	Québec	5	8	> 64	20.0						40.0	40.0				20.0
Nalidixic acid	Campylobacter jejuni	Atlantic	0	0	0	0.0											
Nalidixic acid	Campylobacter spp.	British Columbia	0	0	0	0.0									1		
Nalidixic acid	Campylobacter spp.	Prairies	0	0	0	0.0											
Nalidixic acid	Campylobacter spp.	Ontario	0	0	0	0.0											
Nalidixic acid	Campylobacter spp.	Québec	0	0	0	0.0											
Nalidixic acid	Campylobacter spp.	Atlantic	9	≤ 4	> 64	11.1						77.8	11.1				11.1
Florfenicol	Campylobacter coli	British Columbia	6	1	2	0.0				83.3	16.7					•	
Florfenicol	Campylobacter coli	Prairies	3	1	1	0.0				100.0							
Florfenicol	Campylobacter coli	Ontario	8	1	1	0.0				100.0							
Florfenicol	Campylobacter coli	Québec	0	0	0	0.0											
Florfenicol	Campylobacter coli	Atlantic	0	0	0	0.0								1			
Florfenicol	Campylobacter jejuni	British Columbia	22	1	1	0.0			18.2	81.8				1			
Florfenicol	Campylobacter jejuni	Prairies	9	1	2	0.0				88.9	11.1						
Florfenicol	Campylobacter jejuni	Ontario	20	1	1	0.0			10.0								
Florfenicol	Campylobacter jejuni	Québec	5	1	1	0.0				100.0							
Florfenicol	Campylobacter jejuni	Atlantic	0	0	0	0.0											
Florfenicol	Campylobacter spp.	British Columbia	0	0	0	0.0											
Florfenicol	Campylobacter spp.	Prairies	0	0	0	0.0											
Florfenicol	Campylobacter spp.	Ontario	0	0	0	0.0											
Florfenicol	Campylobacter spp.	Québec	0	0	0	0.0											
III Florfenicol	Campylobacter spp.	Atlantic	9	1	1	0.0				100.0							
Tetracycline	Campylobacter coli	British Columbia	6	> 64	> 64	50.0			16.7 16.7								50.0
Tetracycline	Campylobacter coli	Prairies	3	> 64	> 64	66.7			33.3						1		66.7
Tetracycline	Campylobacter coli	Ontario	8	0.5	> 64	37.5			62.5						1		37.5
Tetracycline	Campylobacter coli	Québec	0	0	0	0.0									1		
Tetracycline	Campylobacter coli	Atlantic	0	0	0	0.0									1		
Tetracycline	Campylobacter jejuni	British Columbia	22	1	> 64	45.5			31.8 13.6	9.1					4.5	27.3	13.6
Tetracycline	Campylobacter jejuni	Prairies	9	> 64	> 64	66.7		11.1	11.1	11.1						11.1	55.6
Tetracycline	Campylobacter jejuni	Ontario	20	> 64	> 64	85.0		10.0	5.0					1	1	15.0	70.0
Tetracycline	Campylobacter jejuni	Québec	5	0.25	> 64	20.0		20.0	40.0 20.0								20.0
Tetracycline	Campylobacter jejuni	Atlantic	0	0.23	0	0.0		20.0	.0.0 20.0								
Tetracycline	Campylobacter spp.	British Columbia	0	0	0	0.0									1		
Tetracycline	Campylobacter spp.	Prairies	0	0	0	0.0											
Tetracycline	Campylobacter spp.	Ontario	0	0	0	0.0								l			
Tetracycline	Campylobacter spp.	Québec	0	0	0	0.0											
ronacycline	Campylobacter spp.	Atlantic	9	> 64	> 64	55.6		11.1	33.3						1		55.6
Tetracycline																	

Speciation data for the Atlantic region were not available at the time of report release.

RECOVERY RESULTS

Table 2.17. Retail Meat Surveillance recovery rates, 2003–2014

CIPARS Component /	Province / region	Year	Percentage (%) of isolates recovered and number of isolates recovered / number of samples						submitted	
Animal species			Escherichia coli		Salmon	ella	Campylobacter		Enterococcus	
Beef	British Columbia	2005	93%	27/29						
		2007	79%	49/62						
		2008	77%	88/115						
		2009	71%	79/112						
		2010	51%	64/125						
		2011	53%	57/107						
		2012	60%	76/126						
		2013	47%	40/85						
		2014	43%	43/100						
	Prairies	2005	79%	120/151						
		2006	76%	123/161						
		2007	78%	118/151						
		2008	76%	134/177						
		2009	83%	135/163						
		2010	80%	107/134						
		2011 ^a	75%	54/72						
		2012	75%	80/107						
		2013	53%	48/90						
		2014	53%	97/184						
	Ontario	2003	66%	101/154	2%	2/84	3%	2/76	91%	69/76
		2004	80%	190/237						
		2005	81%	184/227						
		2006	81%	189/235						
		2007	71%	184/227						
		2008	78%	185/236						
		2009	79%	195/248						
		2010	69%	123/177						
		2011	73%	161/222						
		2012	63%	110/176						
		2013	58%	104/180						
		2014	51%	121/236						
	Québec	2003	57%	84/147	0%	0/33	0%	0/33	80%	28/35
		2004	56%	137/245						
		2005	56%	126/225						
		2006	50%	109/215						
		2007	68%	147/216						
		2008	59%	126/214						
		2009	54%	108/201						
		2010	46%	102/223						
		2011	45%	91/204						
		2012	51%	107/219						
		2013	42%	74/175						
		2014	41%	85/207						
	Atlantic	2004	67%	16/24						
		2007	52%	16/31						
		2008	70%	39/56						
		2009	69%	137/200						
		2010	69%	126/183						
		2011	58%	110/191						
		2012 ^d	50%	24/48						
		2013	58%	83/143						
		2014	57%	118/207						

See corresponding footnotes at the end of the table.

Table 2.17. Retail Meat Surveillance recovery rates, 2003–2014 (cont'd)

CIPARS Component /	Province / region	Year	Percentage (%) of isolates	recovered a	nd number of	isolates reco	vered / numb	er of samples	submitted
Animal species			Escherich	nia coli	Salmo	nella	Campylo	bacter	Enterod	coccus
Chicken	British Columbia	2005	95%	19/20	13%	5/39	69%	27/39	100%	20/20
		2007	98%	42/43	22% ^b	18/81	35%	28/80	100%	34/34
		2008	90%	70/78	32%	47/145	34%	50/145	100%	78/78
		2009	95%	70/74	40%	59/146	53%	78/146	97%	72/74
		2010	89%	75/84	34%	56/166	42%	70/166		
		2011	96%	70/73	45%	64/143	50%	71/143		
		2012	99%	82/83	32%	53/166	44%	73/166		
		2013	95%	57/60	24%	28/118	42%	50/118		
		2014	98%	65/66	27%	36/133	32%	43/133		
	Prairies	2005	98%	81/83	14%	21/153	37%	53/145	98%	83/85
		2006	98%	85/86	16%	25/153	33%	51/155	98%	85/87
		2007	97%	75/77	31% ^b	43/141	35%	49/141	100%	77/77
		2008	99%	91/92	40%	64/161	25%	41/161	100%	92/92
		2009	98%	90/92	47%	71/150	32%	48/150	100%	92/92
		2010	90%	71/79	32%	42/132	28%	37/132		
		2011 ^a	97%	38/39	40%	29/73	34%	25/73		
		2012	94%	67/71	33%	46/140	29%	40/140		
		2013	97%	58/60	32%	38/120	20%	24/120		
		2014	97%	109/112	36%	81/222	30%	67/222		
	Ontario	2003	95%	137/144	16%	27/167	47%	78/166	99%	143/144
	Ontario	2004	95%	150/158	17%	54/315	45%	143/315	100%	158/158
		2005	95%	145/153	9%	26/303	40%	120/303	99%	150/152
		2006	97%	152/156	12%	36/311	34%	104/311	98%	154/156
		2007	98%	157/161	54% ^b	172/320	37%	117/320	100%	161/161
		2007	96%	150/156	45%	139/311	39%	121/311	99%	154/156
		2009	95%	155/164	43%	142/328	31%	101/328	100%	164/164
		2010	86%		39%	90/232		64/232	100 /6	104/104
				100/116			28%			
		2011	93%	137/147	40%	119/294	24%	71/293		
		2012	92%	107/116	44%	102/232	39%	87/226		
		2013	93%	110/118	39%	89/231	35%	83/234		
		2014	92%	144/157	24%	75/312	25%	78/312	4.5.50	105/105
	Québec	2003	89%	112/126	16%	29/171	55%	94/170	100%	125/125
		2004	96%	157/161	17%	53/320	50%	161/322	100%	161/161
		2005	95%	142/149	9%	26/300	34%	103/299	100%	150/150
		2006	94%	135/144	12%	33/288	35%	100/288	100%	144/144
		2007	90%	129/144	40% ^b	113/287	21%	59/287	99%	143/144
		2008	91%	131/144	42%	120/287	19%	54/287	100%	144/144
		2009	94%	126/134	39%	105/267	20%	52/266	99%	132/134
		2010	93%	138/148	39%	116/296	21%	63/296		
		2011	99%	134/136	37%	100/272	21%	57/272		
		2012	95%	133/140	38%	106/280	28%	78/274		
		2013	90%	105/117	37%	89/243	23%	55/243		
		2014	93%	129/138	33%	92/276	20%	54/276		
	Atlantic	2004	100%	13/13	4%	1/25	40%	10/25	100%	13/13
		2007 ^c	91%	29/32	22% ^b	7/32				
		2008 ^c	68%	38/56	22%	12/56				
		2009 ^c	94%	187/199	49%	97/199	29%	57/199		
		2010	93%	176/190	41%	77/190	37%	70/190		
		2011	89%	171/192	28%	53/192	30%	57/192		
		2012 ^d	96%	46/48	23%	11/48	21%	10/48		
					_0,0					
		2013	92%	133/144	31%	44/144	47%	67/144		

See corresponding notes at the end of the table.

Table 2.17. Retail Meat Surveillance recovery rates, 2003–2014 (cont'd)

CIPARS Component /	Province / region	Year	Percentage (%) of isolate	s recovered ar	nd number of	isolates recov	ered / numbe	r of samples	submitted
Animal species			Escherich	nia coli	Salmo	nella	Campylob	acter	Enteroc	occus
Pork	British Columbia	2005	31%	10/32						
		2007	29%	23/79	1%	1/79				
		2008	30%	44/148	2%	3/148				
		2009	26%	38/145	1%	2/145				
		2010	19%	31/166	1%	2/167				
		2011	27%	49/180	2%	3/180				
		2012	25%	41/167	0%	0/167				
		2013	28%	33/118	0%	0/118				
		2014	22%	29/131	2%	2/132				
	Prairies	2005	30%	48/162						
		2006	30%	49/165	2%	3/134				
		2007	25%	38/154	2%	3/154				
		2008	23%	41/176	1%	1/176				
		2009	18%	29/164	0%	0/164				
		2010	12%	17/142	1%	1/142				
		2011 ^a	11%	10/90	1%	1/90				
		2012	19%	26/140	1%	2/141				
		2013	24%	28/119	3%	3/120				
		2014	22%	48/223	1%	3/223				
	Ontario	2003	58%	90/154	1%	1/93	0%	0/76	87%	66/76
		2004	71%	198/279						
		2005	59%	179/303						
		2006	59%	182/311	< 1%	1/255				
		2007	54%	172/320	2%	6/319				
		2008	50%	155/312	2%	7/310				
		2009	41%	136/328	2%	8/327				
		2010	38%	84/224	0%	0/224				
		2011	42%	155/371	2%	6/370				
		2012	37%	86/231	2%	5/231				
		2013	43%	100/233	1%	3/232				
	-	2014	41%	127/312	2%	6/312				
	Québec	2003	42%	61/147	3%	1/32	9%	3/32	82%	28/34
		2004	38%	109/290						
		2005	26%	79/300						
		2006	20%	57/287	0%	0/232				
		2007	22%	64/287	1%	3/288				
		2008	21%	60/287	2%	5/286				
		2009	15%	41/268	1%	3/268				
		2010	16%	47/296	1%	4/296				
		2011	32%	122/387	4%	17/387				
		2012	16%	46/279	3%	8/279				
		2013	20%	48/239	<1%	1/239				
		2014	18%	49/276	<1%	2/276				
	Atlantic	2004	58%	14/24						
		2007	39%	13/31	3%	1/30				
		2008	30%	17/56	2%	1/56				
		2009	41%	82/200	3%	5/199				
		2010	39%	74/190	4%	8/190				
		2011	43%	95/223	3%	7/221				
		2012 ^d	25%	12/48	0%	0/48				
		2013	40%	57/143	1%	2/142				
		2014	41%	86/209	6%	13/208				

See corresponding notes at the end of the table.

CIPARS Province / region Campylobacte British Columbia 8/71 24% Turkey 2011 59/61 11% 17/71 97% 101/104 33/153 2012 18% 27/153 22% 30/115 25/115 2013 98% 59/60 26% 22% 64/66 31/122 28/122 2014 97% 25% 23% Prairies 2011a 100% 10/10 2/10 10% 1/10 20% 2012 91% 81/89 14% 18/128 6/128 5% 25/107 4/105 2013 90% 56/62 23% 4% 2014 93% 103/111 22% 44/196 7% 13/196 Ontario 2011 95% 162/171 14% 27/191 18/191 2012 97% 152/156 20% 44/223 9% 20/223 '28/228 2013 95% 115/121 12% 12% 27/227 2014 92% 143/156 13% 40/310 9% 28/310 Québec 2011 91% 138/152 17% 27/163 10% 16/163 2012 96% 170/178 21% 51/246 6% 15/246 2013 89% 98/110 32% 57/177 9% 16/178 86% 119/138 19% 51/262 5/262 2014 2% Atlantic 2013 85% 107/126 19% 24/126 23% 29/124 143/187 2014 76% 23/187 15/185 12% 8%

Table 2.17. Retail Meat Surveillance recovery rates, 2003–2014 (cont'd)

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e., grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e., grey-shaded areas with no data).

The Prairies is a region including the province of Alberta and Saskatchewan.

The Atlantic region includes New Brunswick, Nova Scotia, and Prince Edward Island.

^a In 2011, due to an unforeseeable pause in retail sampling in Saskatchewan of approximately 3 months, the expected number of samples was not met and thus, results for this province for this year should be interpreted with caution.

^b Enhancement to the *Salmonella* recovery method yielded higher recovery rates from retail chicken in 2007 than in prior years.

^c For the Atlantic region, recovery results are not presented for *Campylobacter* in 2007 and 2008 as well as for *Enterococcus* in 2007, 2008, and 2009 due to concerns regarding harmonization of laboratory methods.

^d Due to an unforeseeable pause in retail sampling in the Atlantic region from April through December in 2012, the expected number of samples was not achieved and thus, results for this region in 2012 are not representative and potentially lack the precision necessary to be included as regular surveillance data. For this reason, these data are not presented anywhere else in this report.

3. ABATTOIR SURVEILLANCE

KEY FINDINGS

BEEF CATTLE

ESCHERICHIA COLI (n = 141)

In 2014, there were no ceftiofur-resistant isolates (Table 3.1). One isolate (1%) was resistant to 6 antimicrobials (ACSSuT-SXT). No isolates were resistant to Category I antimicrobials (Table 3.1).

CAMPYLOBACTER (n = 121)

The proportion of *Campylobacter* isolates resistant to ciprofloxacin was 1% (1/105) in 2006 and 7% (9/121) in 2014, however this difference was not statistically significant (Figure 3.2).

CHICKENS

SALMONELLA (n = 103)

Recovery of *Salmonella* in chickens continued to decline to 15% (103/684) from a peak of 28% (234/851) in 2008. This was similar to levels from the first 3 years of the program (2003 to 2005) (Table 3.17).

In 2014, Enteritidis isolates remained susceptible (Table 3.3). The proportion of Kentucky isolates resistant to 2 to 3 classes of antimicrobials increased from 68% (27/40) in 2013 to 89% (25/28) in 2014 (Table 3.3).

The proportion of isolates resistant to ceftriaxone was significantly lower in 2014 (12%) (12/103) than in 2004 (22%, 31/142) and 2010 (32%, 46/142) (Figure 3.3). The proportion of isolates resistant to ampicillin was significantly higher in 2003 (25%, 32/126) and 2010 (37%, 52/142) than in 2014 (12%, 12/103) (Figure 3.3). Conversely, the proportion of isolates resistant to tetracycline was significantly higher in 2014 (41%, 42/103) than in 2003 (19%, 24/126) (Figure 3.3).

Seven isolates (7%) were resistant to 7 antimicrobials. This included 6 Kentucky isolates with an A2C-AMP-CRO-STR-TET pattern and 1 Typhimurium isolate with an A2C-AMP-CRO-SSS-TET pattern.

ESCHERICHIA COLI (n = 170)

In 2014, 1 isolate (1%) was resistant to 6 classes of antimicrobials (Table 3.4). The proportion of isolates resistant to trimethoprim-sulfamethoxazole was significantly higher in 2014 (21%, 35/170) than in 2010 (10%, 12/119) and 2003 (8%, 12/153) (Figure 3.4). The proportion of isolates resistant to tetracycline was significantly lower in 2014 (57%, 97/170) than in 2003 (69%, 106/153) (Figure 3.4).

...working towards the preservation of effective antimicrobials for humans and animals...

Sixteen percent (27/170) of isolates were resistant to ceftriaxone in 2014 and this proportion was significantly lower than the proportion observed in 2010 (38%, 45/119) (Figure 3.4). The proportion of isolates resistant to ampicillin was significantly lower in 2014 (39%, 67/170) than in 2010 (53%, 63/119).

One isolate (1%) was resistant to 10 antimicrobials (ACSSuT-A2C-CRO-GEN) and 5 isolates (3%) were resistant to 9 antimicrobials [ACSSuT-A2C-CRO (2 isolates), A2C-AMP-CRO-CHL-SSS-SXT-TET (1 isolate), A2C-AMP-CRO-GEN-STR-SSS-TET (1 isolate), ACSSuT-TIO-CRO-CIP-NAL (1 isolate)].

```
CAMPYLOBACTER (n = 188)
```

The proportion of isolates resistant to ciprofloxacin was significantly higher in 2014 (11%, 20/188) than in 2010 (4%, 4/111) (Figure 3.5).

PIGS

```
SALMONELLA (n = 158)
```

The proportion of isolates resistant to ceftiofur remained the same as in 2013 at 3% (5/181 in 2013 and 5/158 in 2014) (Figure 3.6). One 6,7,14:-:1,w isolate (1%, 1/158) was resistant to 10 antimicrobials (ACSSuT-A2C-CRO-SXT).

```
ESCHERICHIA COLI (n = 161)
```

In 2014, 1 isolate (1%, 1/161) was resistant to 11 antimicrobials (A2C-AMP-AZM-CRO-GEN-STR-SSS-SXT-TET).

```
CAMPYLOBACTER (n = 236)
```

There were no notable findings to report in 2014.

MULTICLASS RESISTANCE

Table 3.1. Number of antimicrobial classes in resistance patterns of *Escherichia coli* from beef cattle, 2014

		Nu	mbei	rofis	olates	by			Number of isol	ates resis	tant by antin	nicrobial class	s and antimi	crobia		
Animal species	Number of isolates		nber ses i	of ant	imicro resist	obial	Aminogl	ycosides	β-Lactar	ns	Folate pathway inhibitors	Macrolides	Phenicols	Quin	olones	Tetracyclines
		0	1	2–3	4–5	6–7	GEN	STR	AMP AMC CRO	FOX TIO	SSS SXT	AZM	CHL	CIP	NAL	TET
Beef cattle	141	97	24	14	6			15	7		15 4		5		1	44

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance in human medicine, respectively.

Table 3.2. Number of antimicrobial classes in resistance patterns of *Campylobacter* from beef cattle, 2014

Species	Number (%) of isolates	num	nber (ses ii	of isolates by of antimicrobial of the resistance pattern	Nu Aminoglycosides		lates resistant by						Tetracyclines
		0	1	2-3 4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
Campylobacter jejuni	77 (63.6)	31	41	5							5	5	46
Campylobacter spp.	27 (22.3)	13	7	7		1	1	1	1		4	9	10
Campylobacter coli	17 (14.0)	8	8	1								1	9
Total	121 (100)	52	56	13		1	1	1	1		9	15	65

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance in human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

Table 3.3. Number of antimicrobial classes in resistance patterns of Salmonella from chickens, 2014

Serovar	Number (%) of isolates	nun	nber (ses i	of ant	olates by imicrobial resistance	Aminogly	/cosides	Nun		of iso _acta		resist	tant by antim Folate pathway inhibitors	nicrobial class			Tetracyclines
		0	1		4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS SXT	AZM	CHL	CIP NAL	TET
Enteritidis	29 (28.2)	29															
Kentucky	28 (27.2)	2	1	25			25	7	7	7	7	7					25
Heidelberg	12 (11.7)	8	4					4	4	4	4	4					
Typhimurium	7 (6.8)	1	1	5				1	1	1	1	1	5				6
Hadar	3 (2.9)			3			3										3
Infantis	3 (2.9)	3															
Livingstone	3 (2.9)		2	1			1						1				3
Thompson	3 (2.9)	3															
Less common serovars	15 (14.6)	9	6				1										5
Total	103 (100)	55	14	34			30	12	12	12	12	12	6				42

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 3.4. Number of antimicrobial classes in resistance patterns of *Escherichia coli* from chickens, 2014

		Nu	mbe	of is	olates	s by			Nun	nber (of iso	lates	resist	tant by	/ antim	nicrobial class	s and antimi	crobia		
Animal species	Number of isolates	nun clas	ses i	of ant n the i patter	esist	obial ance	Aminogl	ycosides		β-L	_acta	ms		patl	late nway oitors	Macrolides	Phenicols	Quino	olones	Tetracyclines
		0	1	2-3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP	NAL	TET
Chickens	170	40	23	75	31	1	27	83	67	27	27	26	25	78	35		8	2	11	97

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Table 3.5. Number of antimicrobial classes in resistance patterns of *Campylobacter* from chickens, 2014

Species	Number (%) of isolates	num	nber (ses ii	of anti		Nu Aminoglycosides		lates resistant by						Tetracyclines
				2-3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
Campylobacter jejuni	121 (64.4)	62	50	9				1	3	3		9	9	55
Campylobacter spp.	40 (21.3)	22	9	9			3	2	4	4		6	6	14
Campylobacter coli	27 (14.4)	13	12	1	1		1	2	2	2		5	5	8
Total	188 (100)	97	71	19	1		4	5	9	9		20	20	77

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance in human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

Table 3.6. Number of antimicrobial classes in resistance patterns of Salmonella from pigs, 2014

		Nu	mber	of is	olates by			Num	ıber (of iso	ates	resist	ant by	antim	nicrobial class	and antimi	crobial	
	Number (%)				imicrobial								Fol	ate				
Serovar	of isolates	clas	ses ii	n the r	esistance	Aminogly	cosides		β-I	_acta	ms			way	Macrolides	Phenicols	Quinolones	Tetracyclines
	or isolates			patter	n								inhib	itors				
		0	1	2-3	4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP NAL	TET
Derby	43 (27.2)	7	11	20	5		23	8	3	3	3	3	24	1				33
Typhimurium	26 (16.5)	4	1	8	13	1	19	16					21	3		11		19
Bovismorbificans	15 (9.5)	12	1	1	1		2	2					2					2
Brandenburg	7 (4.4)	3	3		1		1	1					1			1		3
Infantis	7 (4.4)	5	1	1				1					1	1				2
Schwarzengrund	6 (3.8)	2	1	3		1	3						2					4
Ohio	5 (3.2)	5																
London	4 (2.5)	3	1										1					
Uganda	4 (2.5)	3		1			1						1					11
Worthington	4 (2.5)	2	1	1				1	1	1	1	1	1	1				1
Less common serovars	37 (23.4)	22	3	7	5	1	11	7	1	1	1	1	9	1		5		14
Total	158 (100)	68	23	42	25	3	60	36	5	5	5	5	63	7		17		79

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 3.7. Number of antimicrobial classes in resistance patterns of Escherichia coli from pigs, 2014

		Nu	mbei	r of is	olates	s by			Nun	nber (of iso	ates	resist	ant by	antin	nicrobial class	s and antimi	crobia	ı	
Animal species	Number of isolates	nun clas	ses i	of ant n the patter	resist	obial tance	Aminogl	ycosides		β-Ι	₋acta	ms		patl	ate way oitors	Macrolides	Phenicols	Quin	olones	Tetracyclines
		0	1	2–3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP	NAL	TET
Pigs	161	20	42	81	18		2	51	57	3	3	3	3	68	19	1	28			119

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Table 3.8. Number of antimicrobial classes in resistance patterns of Campylobacter from pigs, 2014

Species	Number (%) of isolates	nun	nber (ses i	of anti		Nu Aminoglycosides		lates resistant by						Tetracyclines
		0	1	2-3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
Campylobacter coli	202 (85.6)	28	52	52	70		84	98	106	106		23	23	157
Campylobacter spp.	33 (14.0)	5	5	11	12		17	17	20	20		2	5	25
Campylobacter jejuni	1 (0.4)		1											1
Total	236 (100)	33	58	63	82		101	115	126	126		25	28	183

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

TEMPORAL ANTIMICROBIAL RESISTANCE SUMMARY

Figure 3.1. Temporal variations in resistance of *Escherichia coli* isolates from beef cattle, 2003–2014

Number of isolates and year

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Number of isolates	153	167	122	150	188	176	119	77	139	165	64	141
Antim icrobial												
Ampicillin	3%	7%	2%	5%	3%	1%	2%	1%	1%	1%	6%	5%
Ceftriaxone	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Gentamicin	0%	1%	0%	0%	1%	0%	3%	0%	1%	1%	2%	0%
Nalidixic acid	1%	1%	0%	0%	0%	0%	0%	0%	0%	1%	3%	1%
Streptomycin	14%	10%	8%	9%	12%	15%	18%	5%	7%	7%	11%	11%
Tetracycline	29%	25%	22%	30%	36%	38%	30%	14%	28%	27%	27%	31%
Trimethoprim-												
sulfamethoxazole	1%	1%	0%	1%	0%	0%	1%	0%	0%	0%	5%	3%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years, the first year of surveillance, and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 3.2. Temporal variations in resistance of *Campylobacter* isolates from beef cattle, 2006–2014

Number of isolates and year

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014
Number of isolates	105 ^a	73	128	86	37	108	59	152	121
Antimicrobial								•	•
Azithromycin	0%	0%	0%	0%	0%	0%	0%	0%	1%
Ciprofloxacin	1%	1%	2%	1%	3%	1%	5%	5%	7%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%
Telithromycin	0%	0%	0%	0%	0%	0%	0%	0%	1%
Tetracycline	46%	66%	66%	52%	51%	57%	61%	63%	54%

^a This number of isolates includes isolates from the end of year 2005 (n = 23).

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years, the first year of surveillance, and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 3.3. Temporal variations in resistance of Salmonella isolates from chickens, 2003–2014

Number	Oī	isolates	and	vear

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Number of isolates	126	142	199	187	206	234	230	142	140	126	107	103
Antimicrobial												
Ampicillin	25%	27%	18%	16%	18%	16%	31%	37%	36%	24%	21%	12%
Ceftriaxone	6%	22%	13%	10%	12%	12%	23%	32%	31%	20%	19%	12%
Gentamicin	5%	1%	2%	2%	0%	0%	1%	1%	0%	0%	1%	0%
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%
Streptomycin	24%	12%	14%	35%	37%	40%	41%	30%	44%	39%	41%	29%
Tetracycline	19%	15%	21%	37%	44%	41%	37%	31%	44%	40%	39%	41%
Trimethoprim-												
sulfamethoxazole	1%	0%	1%	1%	0%	0%	0%	1%	1%	2%	2%	0%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years, the first year of surveillance, and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Additional temporal analyses for ampicillin and ceftiofur/ceftriaxone were conducted for *Salmonella* isolates from Ontario and Québec. These 2 antimicrobials and years (2004 and 2006) were selected due to a change in ceftiofur use practices by Québec chicken hatcheries in early 2005 and in 2007 (start and end of the voluntary period of withdrawal). Significant differences ($P \le 0.05$) observed between the current year results and additional reference year results are indicated by underlined numbers.

Figure 3.4. Temporal variations in resistance of Escherichia coli isolates from chickens, 2003–2014

Number of isolates and year

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Number of isolates	153	130	220	167	180	170	171	119	164	173	174	170
Antimicrobial			-	-							•	-
Ampicillin	41%	43%	38%	43%	39%	36%	43%	53%	40%	39%	39%	39%
Ceftriaxone	20%	28%	24%	23%	26%	23%	31%	38%	21%	18%	21%	16%
Gentamicin	15%	12%	11%	8%	11%	8%	12%	10%	13%	13%	11%	16%
Nalidixic acid	4%	3%	5%	4%	2%	4%	5%	4%	5%	8%	4%	6%
Streptomycin	52%	53%	43%	34%	40%	44%	45%	50%	50%	50%	45%	49%
Tetracycline	69%	55%	58%	51%	57%	51%	44%	52%	52%	51%	49%	57%
Trimethoprim-												
sulfamethoxazole	8%	12%	9%	10%	4%	12%	9%	10%	15%	15%	18%	21%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years, the first year of surveillance, and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Additional temporal analyses for ampicillin and ceftiofur/ceftriaxone were conducted for *E. coli* isolates from Ontario and Québec. These 2 antimicrobials and years (2004 and 2006) were selected due to a change in ceftiofur use practices by Québec chicken hatcheries in early 2005 and in 2007 (start and end of the voluntary period of withdrawal). Significant differences ($P \le 0.05$) observed between the current year results and additional reference year results are indicated by underlined numbers.

Figure 3.5. Temporal variations in resistance of *Campylobacter* isolates from chickens, 2010–2014

Number	of	iso	lates	and	year

Year	2010	2011	2012	2013	2014
Number of isolates	111	117	155	138	188
Antim icrobial					
Azithromycin	6%	4%	6%	5%	5%
Ciprofloxacin	4%	9%	7%	14%	11%
Gentamicin	0%	0%	0%	0%	0%
Telithromycin	4%	2%	5%	4%	2%
Tetracycline	47%	39%	49%	39%	41%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first year of surveillance and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 3.6. Temporal variations in resistance of Salmonella isolates from pigs, 2003–2014

Number of isolates and year

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Number of isolates	391	269	212	145	105	151	147	182	165	157	181	158
Antim icrobial												
Ampicillin	18%	13%	13%	19%	29%	28%	20%	24%	21%	22%	22%	23%
Ceftriaxone	0%	0%	0%	1%	1%	1%	0%	3%	1%	2%	3%	3%
Gentamicin	2%	2%	0%	1%	6%	1%	1%	2%	1%	1%	2%	2%
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Streptomycin	34%	26%	30%	30%	45%	44%	39%	37%	38%	36%	33%	38%
Tetracycline	45%	42%	44%	48%	55%	58%	46%	48%	48%	45%	49%	50%
Trimethoprim-												
sulfamethoxazole	2%	5%	2%	6%	6%	7%	3%	6%	4%	6%	7%	4%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years, the first year of surveillance, and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 3.7. Temporal variations in resistance of Escherichia coli isolates from pigs, 2003–2014

Number	of	isolates	and	vear
HUILIDE	v	ISUIALES	anu	y cai

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Number of isolates	153	142	163	114	93	150	160	199	190	184	171	161
Antim icrobial									-			
Ampicillin	35%	30%	35%	35%	37%	33%	33%	37%	37%	36%	39%	35%
Ceftriaxone	0%	0%	1%	0%	1%	1%	1%	2%	2%	2%	1%	2%
Gentamicin	3%	1%	1%	2%	0%	2%	2%	0%	1%	1%	3%	1%
Nalidixic acid	1%	0%	1%	0%	0%	1%	0%	0%	1%	0%	1%	0%
Streptomycin	40%	39%	39%	26%	33%	35%	47%	36%	30%	40%	40%	32%
Tetracycline	82%	71%	75%	83%	75%	85%	77%	72%	75%	84%	74%	74%
Trimethoprim-												
sulfamethoxazole	14%	5%	10%	18%	12%	13%	12%	14%	12%	14%	11%	12%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years, the first year of surveillance, and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 3.8. Temporal variations in resistance of Campylobacter isolates from pigs, 2012–2014

Number of	isolates	and	year
-----------	----------	-----	------

Year	2012	2013	2014
Number of isolates	287	254	236
Antimicrobial			
Azithromycin	53%	48%	53%
Ciprofloxacin	10%	13%	11%
Gentamicin	0%	0%	0%
Telithromycin	45%	39%	43%
Tetracycline	76%	78%	78%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first year of surveillance and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

MINIMUM INHIBITORY CONCENTRATIONS

See how to interpret the minimum inhibitory concentration tables in the section "How to Read this Chapter".

Table 3.9. Distribution of minimum inhibitory concentrations among *Escherichia coli* from beef cattle, 2014

Table 3.10. Distribution of minimum inhibitory concentrations among *Campylobacter* from beef cattle, 2014

Table 3.11. Distribution of minimum inhibitory concentrations among *Salmonella* from chickens, 2014

Table 3.12. Distribution of minimum inhibitory concentrations among *Escherichia coli* from chickens, 2014

Table 3.13. Distribution of minimum inhibitory concentrations among *Campylobacter* from chickens, 2014

A 4		Consiss		Perce	ntiles	0/ D					D	istribut	ion (%)	of MICs	s (μg/m	L)				
Antii	microbial	Species	n	MIC 50	MIC 90	% R	≤ 0.016	0.032	0.064	0.125	0.25	0.5	1	2	4	8	16	32	64	> 64
Ciprofl	loxacin	Campylobacter coli	27	0.125	8	18.5			29.6	48.1	3.7					14.8	3.7			
Ciprofl	loxacin	Campylobacter jejuni	121	0.125	0.25	7.4			18.2	64.5	9.9					5.0	2.5			
Ciprofl	loxacin	Campylobacter spp.	40	0.125	8	15.0			22.5	62.5						7.5	7.5			
Telithre	omycin	Campylobacter coli	27	0.25	2	3.7				3.7	48.1	11.1	18.5	14.8			3.7			
Telithre	omycin	Campylobacter jejuni	121	0.5	1	0.0				0.8	9.9	41.3	38.8	7.4		1.7				
Telithre	omycin	Campylobacter spp.	40	0.5	1	7.5					17.5	47.5	27.5				7.5			
Azithro	omycin	Campylobacter coli	27	0.064	0.125	7.4		29.6	48.1	14.8										7.4
Azithro	omycin	Campylobacter jejuni	121	0.064	0.064	2.5	2.5	38.8	48.8	6.6	8.0									2.5
Azithro	omycin	Campylobacter spp.	40	0.064	> 64	10.0	2.5	35.0	52.5											10.0
Clinda	mycin	Campylobacter coli	27	0.25	1	7.4				40.7	44.4	3.7	3.7			7.4				
Clinda	mycin	Campylobacter jejuni	121	0.125	0.25	0.8			18.2	60.3	18.2	8.0			1.7	8.0				
Clinda	mycin	Campylobacter spp.	40	0.125	4	5.0		2.5	20.0	50.0	17.5				5.0	2.5	2.5			
Erythre	omycin	Campylobacter coli	27	0.25	2	7.4				7.4	51.9	18.5	11.1	3.7					3.7	3.7
II Erythro	omycin	Campylobacter jejuni	121	0.25	1	2.5				6.6	57.0	24.0	9.9					8.0		1.7
Erythre	omycin	Campylobacter spp.	40	0.25	64	10.0				7.5	57.5	25.0							2.5	7.5
Genta	micin	Campylobacter coli	27	1	1	0.0						18.5	81.5							
Genta	micin	Campylobacter jejuni	121	1	1	0.0						7.4	87.6	5.0						
Genta	micin	Campylobacter spp.	40	1	1	0.0					2.5	37.5	60.0							
Nalidix	ic acid	Campylobacter coli	27	≤ 4	> 64	18.5									59.3	18.5	3.7		3.7	14.8
Nalidix	ic acid	Campylobacter jejuni	121	≤ 4	8	7.4									68.6	24.0				7.4
Nalidix	ic acid	Campylobacter spp.	40	≤ 4	> 64	15.0									70.0	15.0				15.0
Florfer	nicol	Campylobacter coli	27	1	2	0.0						7.4	81.5	11.1						
Florfer	nicol	Campylobacter jejuni	121	1	1	0.0						11.6	80.2	8.3						
III Florfer	nicol	Campylobacter spp.	40	1	1	0.0						20.0	77.5	2.5						
Tetrac	ycline	Campylobacter coli	27	0.25	> 64	29.6				11.1	40.7	14.8	3.7						3.7	25.9
Tetrac	ycline	Campylobacter jejuni	121	0.5	> 64	45.5				21.5	21.5	8.3	1.7	1.7			8.0	4.1	14.9	25.6
Tetrac	ycline	Campylobacter spp.	40	0.25	64	35.0				22.5	42.5					<u> </u>		10.0	20.0	5.0
IV																				

Table 3.14. Distribution of minimum inhibitory concentrations among *Salmonella* isolates from pigs, 2014

Table 3.15. Distribution of minimum inhibitory concentrations among *Escherichia coli* isolates from pigs, 2014

Table 3.16. Distribution of minimum inhibitory concentrations among *Campylobacter* from pigs, 2014

RECOVERY RESULTS

Table 3.17. Abattoir Surveillance recovery rates, 2002–2014

CIPARS								
Component/	Year	Percentage ((%) of isolates	recovered	and number of	isolates reco	vered / numbe	r of samples submitt
Animal species		Escheric	hia coli	Salm	onella	Campylo	bacter	Enterococcus
Beef cattle	2002	97%	76/78	1%	3/78			
	2003	97%	155/159	<1%	1/114			
	2004	98%	167/170					
	2005	97%	122/126			66%	23/35	
	2006	100%	150/150			36%	31/87	
	2007	99%	188/190			39%	75/190	
	2008	97%	176/182			71% ^a	129/182	
	2009	94%	119/126			68%	86/126	
	2010	97% ^b	77/79			53% ^b	37/70	
	2011	99%	139/141			77%	108/141	
	2012	99%	165/166			92%	152/166	
	2013	100% ^b	59/59			92% ^b	54/59	
	2014	99%	141/142			87%	123/142	
Chickens	2002	100%	40/40	13%	25/195			
	2003	97%	150/153	16%	126/803			
	2004	99%	130/131	16%	142/893			
	2005	99%	218/220	18%	200/1,103			
	2006	100%	166/166	23%	187/824			
	2007	99%	180/181	25%	204/808			
	2008	99%	170/171	28%	234/851			
	2009	100%	171/171	27%	230/851			
	2010	99%	119/120	24%	142/599	19%	111/599	
	2011	99%	164/166	20%	140/701	17%	117/696	
	2012	100%	173/173	18%°	126/684	23%	155/685	
	2013	99%	171/172	16%	105/672	21%	137/662	
	2014	100%	170/170	15%	103/684	27%	187/683	
Pigs	2002	97%	38/39	27%	103/385			
J	2003	98%	153/155	28%	395/1,393			
	2004	99%	142/143	38%	270/703			
	2005	99%	163/164	42%	212/486			
	2006	98%	115/117	40%	145/359			
	2007	98%	93/95	36%	105/296			
	2008	100%	150/150	44%	151/340			
	2009	98%	160/163	45%	147/327			
	2010	98%	199/203	44%	182/410			
	2011	99%	190/191	43%	165/382			
	2012	100%	184/184	42%	157/370	78%	289/370	
	2012	99%	166/168	52%	171/330	76%	237/314	
	2013	99%	161/162	49%	158/325	73%	237/314	

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e., grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e., grey-shaded areas with no data).

^a Implementation of a new *Campylobacter* recovery method in 2008 in abattoir beef cattle isolates.

^b In 2010 and 2013, the number of samples received from abattoir beef cattle was much lower than anticipated due to substantial drop in submissions related to unavoidable operational issues at 2 major participating abattoirs.

^c Decreased prevalence in chickens and one non-compliant plant (lack of sampling) resulted in a shortfall of *Salmonella* isolates from chickens.

4. FARM SURVEILLANCE

KEY FINDINGS

GROWER-FINISHER PIGS

SALMONELLA (n = 147)

The recovery rate of *Salmonella* increased on a national basis from 19% (99/534) in 2013 to 26% (147/570) in 2014 (Table 4.17). There was an increase between 2013 and 2014 in Ontario from 26% (43/168) to 41% (67/162) and in Québec from 17% (23/138) to 26% (40/156).

The 2 most common serovars regardless of region were Derby and Typhimurium (Table 4.1). Nationally, resistance to either ceftriaxone, ceftiofur or amoxicillin-clavulanic acid was less than or equal to 5%. No isolates were resistant to more than 5 classes of antimicrobials and no isolates were resistant to the quinolones (Table 4.1). One Derby isolate from Ontario was resistant to 8 antimicrobials (A2C-AMP-CRO-STR-SSS-TET) and 4 antimicrobial classes.

Tetracycline resistance in Ontario and Québec have been steadily rising since 2010 and 2011, respectively.

ESCHERICHIA COLI (n = 1,672) 9

Recovery of *E. coli* was stable at greater than or equal to 99% on both a national and regional basis (Table 4.17).

Nationally, resistance to either ceftriaxone, ceftiofur or amoxicillin-clavulanic acid was less than or equal to 2%. No isolates were resistant to ciprofloxacin but 5 (less than 1%) were resistant to more than 5 classes of antimicrobials; 1 from the Prairies and 4 from Québec (Table 4.2). The isolate from the Prairies was ACSSuT-A2C-AZM-CRO-SXT resistant. The 4 isolates from Québec had the following patterns: ACSSuT-GEN-NAL-SXT (2 isolates), ACSSuT-AZM-GEN-SXT (1 isolate) and ACSSuT-A2C-AZM-CRO-SXT (1 isolate).

A decline in tetracycline resistance in E. coli in both the Prairies and Québec was noted.

-

⁹ Up to 3 generic *E. coli* isolates per positive sample were kept for analysis. The expected number of total isolates was 1,698 (566 x 3) but only 1,672 isolates were collected for antimicrobials susceptibility testing leaving a difference of 26 isolates. The number of isolates recovered through *Farm Surveillance* was much higher than through other surveillance components. The reason for collecting a larger number of isolates in *Farm Surveillance* is to ensure adequate power to investigate the association between antimicrobial resistance and antimicrobial use.

BROILER CHICKENS¹⁰

SALMONELLA (n = 285)

Placement (n = 36)

Overall, *Salmonella* was recovered from 12% (36/291) of chick placement samples (chick pads or environmental swabs). This level was relatively lower compared to 2013 (22%, 51/235) and was noted in all provinces/regions sampled (Table 4.18). Across all provinces/regions sampled, the top 3 *Salmonella* serovars were Enteritidis, Kentucky, and Agona (Table 4.3). No Heidelberg was isolated. Provincial differences in serovar distribution were noted with Enteritidis being the most common serovar in British Columbia (89%, 16/18 isolates) and the Prairies (71%, 5/7) whereas Kentucky was the most common serovar in Québec (89%, 8/9) (Table 4.3). Enteritidis was the top serovar detected from the 2 types of chick placement samples: chick pads (61%, 17/28 isolates) and environmental swabs (50%, 4/8) (Table 4.4). Eighty-one percent (17/21) of the Enteritidis were isolated from chick pad samples but all the isolates, including the 4 from the environment, were susceptible to all antimicrobials tested (Table 4.4).

No ciprofloxacin or nalidixic acid resistance was observed in any serovar.

Only 6% (2/36) of all the chick placement isolates were resistant to ceftriaxone and all other β -lactam antimicrobials (Figure 4.3); these 2 isolates were chick pad samples (Kentucky) from Québec. No isolates were resistant to more than or equal to 4 classes of antimicrobials.

Pre-harvest (n = 249)

The overall recovery rate of *Salmonella* of broiler chicken samples was 44% (249/564). This rate was relatively lower than the previous year (59%, 229/388). Across all provinces/regions sampled, the top 3 *Salmonella* serovars were Kentucky, Enteritidis, and Schwarzengrund (Table 4.7). No Enteritidis was recovered in Ontario. Regional differences in serovar distribution were observed with Enteritidis (62%, 46/74) being the most common serovar in British Columbia, Schwarzengrund (28%, 15/54) in the Prairies, and Kentucky in Ontario (29%, 12/42) and Québec (66%, 52/79).

All of the Enteritidis isolates were also susceptible to all antimicrobials tested.

No ciprofloxacin or nalidixic acid resistance was observed in any serovar (Table 4.7).

Across all provinces/regions sampled, ceftriaxone resistance was 12% (31/249), this was lower by 10% compared to 2013 (22%, 53/229). Provincial differences in ceftriaxone resistance were also observed: British Columbia (14%, 11/74), Prairies (4%, 2/54), Ontario (5%, 2/42), and Québec (20%, 16/79) (Figure 4.7). Overall, 12% (31/249) of isolates were resistant to most of the β -lactams (amoxicillin-clavulanic acid, ceftriaxone, cefoxitin, and ceftiofur) but a slightly higher proportion (13%, 33/249) of isolates was resistant to ampicillin (Table 4.7). Only 1 isolate (less than 1%) was resistant to 4 classes of antimicrobials.

¹⁰ One hundred and forty-three flocks from 141 different farm premises across 4 poultry producing provinces/regions (British Columbia, Prairies, Ontario, and Québec) were enrolled in 2014, 58 flocks (41%) were also sampled at chick placement.

...working towards the preservation of effective antimicrobials for humans and animals...

ESCHERICHIA COLI (n = 795) 11

Placement (n = 234)

Overall, *E. coli* was recovered from 80% (234/291) of the samples. Nalidixic acid resistance was noted in 6% (10/163) of chick pads isolates and 1% (1/71) environmental isolates. Provincial/regional differences in the proportion of ceftriaxone resistant isolates were observed: British Columbia (33%, 19/57), Prairies (13%, 6/46), Ontario (12%, 8/65), and Québec (37%, 24/66) (Figure 4.5). Sample type differences in the proportion of ceftriaxone resistance were also noted: chick pads (30%, 49/163) versus environmental (11%, 8/71) (Figure 4.6).

The proportion of *E. coli* resistant to β -lactam antimicrobials varied depending on the antimicrobial (ampicillin [49%, 113/234], amoxicillin-clavulanic acid and cefoxitin [23%, 53/234], ceftriaxone [25%, 57/234], cefoxitin [23%, 53/234], and ceftiofur [24%, 56/234]) (Table 4.5). This variation was consistently noted in both chick pad and environmental samples (Table 4.6).

Only 1 isolate (less than 1%), from a chick pad sample from British Columbia, was resistant to 6 classes of antimicrobials. Forty-seven isolates (20%) were resistant to 4 to 5 classes of antimicrobials (Table 4.5 and Table 4.6).

Pre-harvest (n = 561)

Ninety-nine percent (561/564) of *E. coli* isolates were recovered from pooled fecal/caecal specimens. Only 1 chicken *E. coli* isolate (less than 1%), recovered from British Columbia, was resistant to ciprofloxacin (Table 4.8). Resistance to azithromycin was detected in 2% of *E. coli* isolates from Ontario (3/166) and less than 1% (1/132) from Québec (Table 4.8). As in placement, resistance to nalidixic acid was noted in 5% (25/561) of isolates: British Columbia (9%, 10/116), Prairies (7%, 11/147), Ontario (2%, 3/166), and Québec (2%, 2/132) (Figure 4.8).

Across all provinces/regions, although not significant, resistance to ceftriaxone decreased from 32% (123/385) in 2013 to 24% (135/561) in 2014 (Figure 4.8). Provincial/regional differences in ceftriaxone resistance were also observed but there was a relatively lower proportion of isolates resistant compared to 2013: British Columbia (51%, 59/116), Prairies (31%, 44/147), Ontario (11%, 18/166), and Québec (11%, 15/132) (Figure 4.8). As in chick placement, the proportion of $\it E. coli$ isolate resistant to $\it B$ -lactam antimicrobials varied depending on the antimicrobial (ampicillin [46%, 259/561], amoxicillin-clavulanic acid, ceftriaxone, cefoxitin [24%, 127/561], and ceftiofur [23%, 127/561]) (Table 4.8).

Only 2 isolates (less than 1 %) were resistant to 6 to 7 classes of antimicrobials. Eighty-five isolates (15%) were resistant to 4 to 6 classes of antimicrobials (Table 4.8).

¹¹ Consisted of normal avian gut, environmental commensals, and avian pathogenic *E. coli* responsible for yolksacculitis and septicemic diseases. As in other components, isolates were not further characterized.

...working towards the preservation of effective antimicrobials for humans and animals...

CAMPYLOBACTER (n = 93)

Placement (n = 0)

Campylobacter was not isolated from the chick placement samples because of well documented/reported challenges in recovering the organism from chicks or newly cleaned barn environment.

Pre-harvest (n = 93)

Sixteen percent (93/564) of isolates were recovered from pooled fecal samples; a slightly lower recovery rate than in 2013 (20%, 81/388).

Resistance to nalidixic acid and ciprofloxacin decreased from 16% (16/81) in 2013 to 9% (9/93) in 2014. The resistant isolates were collected in British Columbia (29%, 7/26) and Ontario (5%, 2/35) (Figure 4.9). Two telithromycin resistant isolates (9%, 2/21) and 3 azithromycin and erythromycin resistant isolates (12%, 3/21) were collected in Québec; no isolates from this province were resistant to nalidixic acid or ciprofloxacin.

No isolates were resistant to greater than 4 classes of antimicrobials.

MULTICLASS RESISTANCE

Table 4.1. Number of antimicrobial classes in resistance patterns of Salmonella from pigs, 2014

										_								
		Nic	ımbor	of ice	olates by			Nu	ımber	of iso	olates	resis	tant by	antimio	crobial class a	nd antimicr	obial	
Province or region /	Number (%)				imicrobial								Fol					
serovar	of isolates				resistance	Aminogl	ycosides		β-L	actan	15		path	way	Macrolides	Phenicols	Quinolones	Tetracyclin
				patter	n								inhib	itors				
		0	1	2–3	4–5 6–7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP NAL	TET
Prairies																		
Derby	9 (22.5)	_1_	2	6			6						6					8
Typhimurium	7 (17.5)	1_	1		5		5	6					5			5		5
Uganda	5 (12.5)	_ 5																
Infantis	3 (7.5)	_ 3																
Schwarzengrund	3 (7.5)				3		3	3					3					3
10:l,z13:-	2 (5.0)	_ 2																
6,7:-:l,w	2 (5.0)			1	1		1	2		2			2	2				1
Worthington	2 (5.0)	_1_	1					1										
Bovismorbificans	1 (2.5)	_1																
Give	1 (2.5)	_1_																
4,12:l,v:-	1 (2.5)		1															1
4,[5],12:i:-	1 (2.5)	1																
6,7:b:-	1 (2.5)	1																
Manhattan	1 (2.5)	1																
Putten	1 (2.5)	1																
Total	40 (100.0)	19	5	7	9		15	12		2			16	2		5		18
Ontario																		
Derby	23 (34.3)	1	9	12	1		13	1	1	1	1	1	13					22
Typhimurium	16 (23.9)		2	4	10		12	12					14			10		16
4,[5],12:i:-	10 (14.9)		1		9		9	9					9	4		3		10
Livingstone	8 (11.9)		8															8
Anatum var. 15+	2 (3.0)		2															2
Less common serovars	8 (11.9)	5	2		1	1	1	1					1	1	1			3
Total	67 (100.0)	6	24	16	21	1	35	23	1	1	1	1	37	5	1	13		61
Québec																		
Typhimurium	12 (30.0)	2	2		8	1	4	8					8	4	4	3		10
Derby	8 (20.0)		4	4			4						4					8
Brandenburg	6 (15.0)	2	4					4	4	4	4	4						
4,[5],12:i:-	5 (12.5)			1	4		4	5					4					5
10:e,h:-	2 (5.0)			2		2	2	2										2
Infantis	2 (5.0)	2																
Ohio	2 (5.0)	1			1		1	1					1			1		1
4,12:-:1,2	1 (2.5)				1		1	1					1	1		1		1
Rough-O:r:-	1 (2.5)				1		1	1					1	1				1
Schwarzengrund	1 (2.5)	1																
Total	40 (100.0)	8	10	7	15	3	17	22	4	4	4	4	19	6	4	5		28
National																		
Derby	40 (27.2)	2	15	22	1		23	1	1	1	1	1	23					38
Typhimurium	35 (23.8)	3	5	4	23	1	21	26					27	4	4	18		31
4,[5],12:i:-	16 (10.8)	1	1	1	13		13	14					13	4		3		15
Livingstone	8 (5.4)		8															8
Brandenburg	6 (4.1)	2	4					4	4	4	4	4						
Infantis	6 (4.1)																	
Uganda	5 (3.4)	5																
Schwarzengrund	4 (2.7)	1			3		3	3					3					3
Ohio	3 (2.0)	1			2	1	2	2					2	1	1	1		2
Worthington	3 (2.0)	2	1			•		1							•	· ·		
•				_	3	2	5									1		10
Less common serovars	21 (14.3)	10	5	3			5	6		2			4	4				

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Table 4.2. Number of antimicrobial classes in resistance patterns of Escherichia coli from pigs, 2014

Province or region	Number (%) of isolates	nun	nber (ses i	of ison of antion of antion of antion of antion of the reported in the report of the r	micro esista	bial	Aminogly	/cosides	Nun		of isol		resist	Fol	ate way	icrobial class				Tetracyclines
		0	1	2-3	4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP	NAL	TET
Prairies	735	222	146	268	98	1		195	201	9	9	9	8	260	60	2	126		4	440
Ontario	478	44	101	232	101		19	146	220	11	10	11	10	230	81	6	105			409
Québec	459	55	111	214	75	4	5	166	159	13	15	13	15	206	83	4	79		2	368
National	1,672	321	358	714	274	5	24	507	580	33	34	33	33	696	224	12	310		6	1,217

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Table 4.3. Number of antimicrobial classes in resistance patterns of *Salmonella* from chicks and barn environment at placement, by province/region, 2014

			mber of isolates b			Nur	nber	of iso	lates	resist		nicrobial class	s and antimi	icrobial	
Province or region / serovar	Number (%) of isolates		ber of antimicrob ses in the resistar pattern		oglycosides		β-Ι	_acta	ms		Folate pathway inhibitors	Macrolides	Phenicols	Quinolones	Tetracyclines
		0	1 2-3 4-5 6	6–7 GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS SXT	AZM	CHL	CIP NAL	TET
Bristish Columbia															
Enteritidis	16 (88.9)	16													
Braenderup	1 (5.6)		1	1	1						1				
Kentucky	1 (5.6)	1													
Total	18 (100)	17	1	1	1						1				
Prairies															
Enteritidis	5 (71.2)	5													
Mbandaka	1 (14.3)	1													
Montevideo	1 (14.3)	1													
Total	7 (100)	7													
Ontario															
Agona	1 (50.0)	1													
Muenchen	1 (50.0)		1		1						1				1
Total	2 (100)	1	1		1						1				1
Québec															
Kentucky	1 (11.1)		8			2	2	2	2	2					8
Agona	8 (88.9)		1								1				1
Total	9 (100)		9			2	2	2	2	2	1				9
National															
Enteritidis	21 (58.3)	21													
Kentucky	9 (25.0)	1	8		8	2	2	2	2	2					8
Agona	2 (5.5)	1	1		1						1				1
Braenderup	1 (2.8)		1	1	1						1				
Mbandaka	1 (2.8)	1													
Montevideo	1 (2.8)	1													
Muenchen	1 (2.8)		1		1						1				1
Total	36 (100)	25	11	1	11	2	2	2	2	2	3				10

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 4.4. Number of antimicrobial classes in resistance patterns of *Salmonella* from chicks and barn environment at placement, 2014

			nber of isolates by			Nun	nber	of iso	lates	resis	tant by antim	nicrobial clas	s and antimi	crobial	
Sample type / serovar	Number (%) of isolates		ber of antimicrobial es in the resistance pattern		ycosides			Lacta			pathway inhibitors	Macrolides			Tetracyclines
		0	1 2-3 4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS SXT	AZM	CHL	CIP NAL	TET
Chick pad															
Enteritidis	17 (60.7)	17													
Kentucky	7 (25.0)		7		7	2	2	2	2	2					7
Agona	1 (3.6)		1		1						1				1
Braenderup	1 (3.6)		1	1	1						1				
Mbandaka	1 (3.6)	1													
Montevideo	1 (3.6)	1													
Total	28 (100)	19	9	1	9	2	2	2	2	2	2				8
Environmental															
Enteritidis	4 (50.0)	4													
Kentucky	2 (25.0)	1	1		1										1
Agona	1 (12.5)	1													
Muenchen	1 (12.5)		1		1						1				1
Total	8 (100)	6	2		2						1				2
All sample types															
Enteritidis	21 (58.3)	21													
Kentucky	9 (25.0)	1	8		8	2	2	2	2	2					8
Agona	2 (5.5)	1	1		1						1				1
Braenderup	1 (2.8)		1	1	1						1				
Mbandaka	1 (2.8)	1													
Montevideo	1 (2.8)	1													
Muenchen	1 (2.8)		1		1						1				1
Total	36 (100)	25	11	1	11	2	2	2	2	2	3				10

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Table 4.5. Number of antimicrobial classes in resistance patterns of *Escherichia coli* from chicks and barn environment at placement, by province, 2014

Province or region	Number (%) of isolates	nun	nber (ses ii	of ison of anti on the r	micro esist	bial	Aminogly	ycosides	Nur		of isc		resis	Fo path	y antin late nway bitors	nicrobial clas			Tetracyclines
		0	1	2-3	4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP NAL	TET
British Columbia	57 (24.4)	11	10	28	7	1	12	27	27	18	19	18	18	18	2		1	7	31
Prairies	46 (19.7)	10	9	23	4		10	15	20	6	6	6	6	15	5		1	2	28
Ontario	65 (27.8)	22	11	24	8		19	17	23	8	8	8	8	23	6		2		31
Québec	66 (28.1)	7	6	25	28		32	39	43	21	24	21	24	43	11		11	2	52
National	234 (100)	50	36	100	47	1	73	98	113	53	57	53	56	99	24		15	11	142

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 4.6. Number of antimicrobial classes in resistance patterns of *Escherichia coli* from chicks and barn environment at placement, 2014

	Number (%)			r of isc					Nun	nber	of iso	lates	resist		antimate	nicrobial class	and antimi	crobia		
Sample type	of isolates	clas		n the r patteri		tance	Aminogly	ycosides		β-Ι	_acta	ms			nway pitors	Macrolides	Phenicols	Quin	olones	Tetracyclines
		0	1	2–3	4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP	NAL	TET
Chick pad	163 (69.7)	27	51	72	40	1	62	71	87	47	49	47	48	78	14		12		10	103
Environmental	71 (30.3)	23	8	33	7		11	27	26	6	8	6	8	21	10		3		1	39
Total	234 (100)	50	36	100	47	1	73	98	113	53	57	53	56	99	24		15		11	142

See notes at Table 4.4.

Table 4.7. Number of antimicrobial classes in resistance patterns of *Salmonella* from chickens at pre-harvest, 2015

	C Harv	/														
		Nu	mber	of isolates by			Nur	mber	of iso	lates	resist		nicrobial cla	ss and antim	icrobial	
Province or region /	Number (%)			of antimicrobial								Folate				
serovar	of isolates	clas		n the resistance	Aminog	lycosides		β-	Lacta	ims		pathway inhibitors	Macrolides	S Phenicols	Quinoione	es Tetracyclines
		0	1	pattern 2-3 4-5 6-7	GEN	STR	AME	P AMC	CPO	FOY	TIO	SSS SXT	AZM	CHL	CIP NA	L TET
British Columbia		U		2-3 4-3 0-7	GLIV	JIK	AIVIT	AIVIC	CKC	IOX	ПО	333 341	AZIVI	CITE	CIF NA	L 1L1
Enteritidis	46 (62.2)	46														
Kentucky	16 (21.6)	2	6	8		8	9	9	9	9	9					8
Cubana	3 (4.1)															
8,20:-:z6	3 (4.1)			3		3	2	2	2	1	1					3
Liverpool	3 (4.1)	3		<u> </u>												
Less common serovars	3 (4.1)	1		2		2						2				2
Total	74 (100)	55	6	13		13	11	11	11	10	10	2				13
Prairies	(,															
Schwarzengrund	15 (27.8)	15														
Enteritidis	10 (18.5)															
Kentucky	6 (11.1)			2		2	1	1	1	1	1					2
Montevideo	5 (9.3)															
8,20:-:z6	4 (7.4)			4		4										4
Infantis	4 (7.4)	4														
Agona	3 (5.6)	3														
Less common serovars	7 (12.9)	5	1	1	1	1	1	1	1	1	1	1				
Total	54 (100)	46	1	7	1	7	2	2	2	2	2	1				6
Ontario																
Kentucky	12 (28.6)	1	1	10	2	11						2				10
Heidelberg	9 (21.4)	9														
Typhimurium var. 5-	5 (11 .9)			5								5				5
Agona	4 (9.5)	4														
Muenchen	4 (9.5)	1		3	1	2						3				3
Senftenberg	3 (7.1)	3														
4,5,12:i:-	2 (4.8)		2				2	2	2	2	2					
Montevideo	1 (2.4)	1														
Oranienburg	1 (2.4)	1														
Ouakam	1 (2.4)		1													1
Total	42 (100)	20	4	18	3	13	2	2	2	2	2	10				19
Québec																
Kentucky	52 (65.8)		1	50 1	1	48	12	11	11	10	11	2 1				52
Heidelberg	7 (8.9)	2	4	1			5	4	4	4	4	1 1				
Schwarzengrund	5 (6.4)			5		1						5				5
Hadar	4 (5.1)			4		4										4
Agona	3 (3.8)			3		1						3				3
Enteritidis	2 (2.5)															
Tennessee	2 (2.5)															
Less common serovars	4 (5.1)	1		3		1	1	1	1	1	1	1 1				3
Total	79 (100)	7	5	66 1	1	55	18	16	16	15	16	12 3				67
National																
Kentucky	86 (34.5)		8	70 1	3	69	22	21	21	20	21	4 1				72
Enteritidis	58 (23.3)															
Schwarzengrund	20 (8.0)			5		11						5				5
Heidelberg	16 (6.4)		4	1			5	4	4	4	4	1 1				
Agona	10 (4.0)	_7_		3		1						3				3
8,20:-:z6	7 (2.8)			7		7	2	2	2	1	1					7
Montevideo	6 (2.4)	6														
Typhimurium var. 5-	5 (2.0)	24	4	5		40	4	4		4		5				5
Less common serovars	41 (16.5)	24	4	13	2 	10 88	4	31	4 31	4	4 30	7 1 25 3				13
Total	249 (100)	128	16	104 1	5	88	33	31	31	29	30	25 3				105

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 4.8. Number of antimicrobial classes in resistance patterns of *Escherichia coli* from chickens at pre-harvest, 2014

Province or region	Number (%) of isolates	nun	nber (ses i	of ison of ant of the o	imicr resist		Aminogl	ycosides	Nun		of iso _acta		resist	Fol path	antin ate way itors					Tetracyclines
		0	1	2-3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP	NAL	TET
British Columbia	116 (20.6)	17	43	38	17	1	18	39	78	60	59	60	57	32	3		2	1	10	44
Prairies	147 (26.2)	45	37	48	17		18	36	57	44	44	44	39	39	5		5		11	69
Ontario	166 (29.6)	43	34	64	25		25	63	75	19	18	19	17	60	32	3	8		3	83
Québec	132 (23.6)	20	14	71	26	1	37	80	49	13	15	13	14	84	55	1	12		2	78
National	561 (100)	125	128	221	85	2	98	218	259	136	136	136	127	215	95	4	27	1	26	274

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 4.9. Number of antimicrobial classes in resistance patterns of *Campylobacter* from chicken at pre-harvest, 2014

					olates by	Nı	ımber of iso	lates resistant by	/ antimi	crobial	class and a	ntimicı	robial	
Province or region / species	Number (%) of isolates		ses ii		resistance	Aminoglycosides	Ketolides	Lincosamides	Macr	olides	Phenicols	Quino	olones	Tetracyclines
		0	1	2-3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
British Columbia														
Campylobacterjejuni	26 (100)	9	10	7								7	7	17
Total	26 (100)	9	10	7								7	7	17
Prairies														
Campylobacterjejuni	11 (100)	6	5											5
Total	11(100)	6	5											5
Ontario														
Campylobacter coli	5(14.3)	3	2											2
Campylobacter jejuni	30 (85.7)	22	6	2								2	2	8
Total	35 (100)	25	8	2								2	2	10
Québec														
Campylobacter jejuni	21 (100)	7	12	2			2		3	3				11
Total	21 (100)	7	12	2			2		3	3				11
National														
Campylobacter coli	5 (5.4)	3	2											2
Campylobacter jejuni	88 (94.6)	44	33	11			2		3	3		9	9	41
Total	93 (100)	47	34	11	•		2		3	3		9	9	43

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

TEMPORAL ANTIMICROBIAL RESISTANCE SUMMARY

Figure 4.1. Temporal variations in resistance of Salmonella isolates from pigs, 2010–2014

Number of isolates, year, and province/region

Province / region			Prairie					Ontario				C	Québe		
Year	'10	'11	'12	'13	'14	'10	'11	'12	'13	'14	'10	'11	'12	'13	'14
Number of isolates	22	17	43	33	40	36	34	31	43	67	43	26	19	23	40
Antimicrobial															
Ampicillin	0%	53%	24%	25%	28%	23%	45%	13%	44%	39%	42%	10%	28%	51%	56%
Ceftriaxone	0%	7%	6%	6%	6%	8%	8%	0%	5%	1%	3%	0%	0%	9%	5%
Gentamicin	0%	0%	2%	5%	0%	0%	0%	0%	2%	1%	0%	10%	0%	0%	8%
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Streptomycin	14%	41%	22%	37%	35%	73%	69%	63%	63%	53%	44%	12%	50%	49%	49%
Tetracycline	59%	47%	46%	36%	46%	55%	75%	79%	86%	91%	45%	44%	66%	67%	73%
Trimethoprim-sulfamethoxazole	5%	12%	6%	6%	6%	0%	8%	0%	9%	11%	6%	19%	5%	11%	18%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Figure 4.2. Temporal variations in resistance of Escherichia coli isolates from pigs, 2010–2014

Number of isolates, year, and province/region

Province / region			rairie					Ontario					Québe		
Year	'10	'11	'12	'13	'14	'10		'12	'13	'14	'10	'11	'12	'13	'14
Number of isolates	686	657	695	657	735	491	510	500	502	478	496	500	358	414	459
Antimicrobial															
Ampicillin	26%	25%	28%	29%	27%	33%	29%	37%	36%	46%	30%	42%	29%	28%	35%
Cefriaxone	< 1%	< 1%	2%	2%	1%	< 1%	2%	5%	< 1%	2%	< 1%	1%	1%	2%	3%
Gentamicin	< 1%	0%	0%	0%	0%	0%	1%	< 1%	2%	4%	3%	2%	2%	2%	1%
Nalidixic acid	< 1%	0%	0%	< 1%	< 1%	< 1%	0%	< 1%	0%	0%	1%	< 1%	< 1%	1%	< 1%
Streptomycin	28%	32%	38%	27%	26%	33%	31%	48%	36%	30%	40%	37%	49%	42%	36%
Tetracycline	66%	63%	66%	64%	60%	77%	83%	84%	88%	85%	87%	88%	87%	79%	80%
Trimethoprim-sulfamethoxazole	7%	6%	8%	8%	8%	11%	10%	11%	13%	17%	18%	25%	20%	22%	18%

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

ANTIMICROBIAL RESISTANCE SUMMARY

Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Categorization of antimicrobials based on their importance in human medicine Ciprofloxacin Ampicillin ■British Columbia (n = 18) ■ Prairies (n = 7) Azithromycin ■Ontario (n = 2) Cefoxitin ■Québec (n = 9) ■National (n = 36) Gentamicin Nalidixic acid Streptomycin Trimethoprim-sulfamethoxazole Chloramphenicol Sulfisoxazole Tetracycline \geq 0% 20% 40% 60% 80% 100%

Figure 4.3. Resistance of Salmonella isolates from chicks at placement, by province/region, 2014

Percentage	of isolates	resistant and	1 95% confidence	interval

Province / region	Nati	onal	British Columbia		Prairies		Ontario		Québec	
Year	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Number of isolates	51	36	17	18	10	7	13	2	11	9
Antimicrobial										
Ampicillin	29%	6%	18%	0%	35%	0%	58%	0%	0%	31%
Ceftriaxone	29%	6%	18%	0%	35%	0%	58%	0%	0%	31%
Gentamicin	2%	3%	0%	6%	0%	0%	8%	0%	0%	0%
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Streptomycin	41%	38%	28%	6%	35%	0%	39%	50%	71%	75%
Tetracycline	46%	33%	28%	0%	35%	0%	39%	50%	71%	75%
Trimethoprim-sulfamethoxazole	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

This figure summarizes the proportion (percentage adjusted to account for multiple samples per flock) of isolates resistant to a specific antimicrobial at chick placement by province/region for the 2014 sampling year. The table summarizes 2013 to 2014 results.

For the temporal analyses by province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Categorization of antimicrobials based on their importance in human medicine □ Chick pad (n = 28) Ciprofloxacin ■Environmental (n = 8) Ampicillin ■ All sample types (n = 36) Azithromycin Cefoxitin Gentamicin Nalidixic acid Streptomycin Trimethoprim-sulfamethoxazole Chloramphenicol Sulfisoxazole Tetracycline \geq 0% 20% 40% 60% 80% 100%

Figure 4.4. Resistance of Salmonella isolates from chicks and barn environment at placement, 2014

Percentage of isolates res	sistant and 95% confidence interval
----------------------------	-------------------------------------

Sample type	Chick pad		Enviro	nmental	All sample types		
Year	2013	2014	2013	2014	2013	2014	
Number of isolates	42	36	9	8	51	36	
Antim icrobial							
Ampicillin	26%	8%	33%	0%	29%	6%	
Ceftriaxone	26%	8%	33%	0%	29%	6%	
Gentamicin	2%	4%	0%	0%	2%	3%	
Nalidixic acid	0%	0%	0%	0%	0%	0%	
Streptomycin	38%	41%	44%	33%	41%	38%	
Tetracycline	43%	35%	44%	33%	46%	33%	
Trimethoprim-sulfamethoxazole	0%	0%	0%	0%	0%	0%	

This figure summarizes the proportion (percentage adjusted to account for multiple samples per flock) of isolates resistant to a specific antimicrobial at chick placement by sample type for the 2014 sampling year. The table summarizes 2013 to 2014 results by sample type.

Figure 4.5. Resistance of *Escherichia coli* isolates from chicks at placement, by province/region, 2014

Percentage of isolates	resistant and 95	% confidence interval
------------------------	------------------	-----------------------

Province / region	Nati	onal	British Columbia		Prairies		Ontario		Québec	
Year	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Number of isolates	191	234	43	57	31	46	64	65	53	66
Antimicrobial										
Ampicillin	60%	49%	76%	49%	81%	43%	50%	36%	46%	65%
Ceftriaxone	39%	25%	67%	33%	68%	13%	19%	12%	21%	37%
Gentamicin	30%	31%	14%	22%	39%	22%	25%	28%	44%	49%
Nalidixic acid	3%	4%	2%	11%	7%	4%	2%	0%	4%	3%
Streptomycin	34%	42%	21%	47%	33%	33%	28%	26%	53%	60%
Tetracycline	59%	60%	44%	53%	59%	61%	61%	47%	66%	79%
Trimethoprim-sulfamethoxazole	13%	10%	7%	3%	6%	11%	16%	9%	20%	16%

The figure above summarizes the proportion (percentage, adjusted to account for multiple samples per flock) of isolates resistant to a specific antimicrobial at chick placement by province/region for the 2014 sampling year. The table summarizes 2013 to 2014 results.

For the temporal analyses by province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 4.6. Resistance of Escherichia coli isolates from chicks at placement, 2014

Doroontogo	of icolates	reciptont and OE0	6 confidence interval

Sample type	Chick pad		Environ	nmental	All sample types		
Year	2013	2014	2013	2014	2013	2014	
Number of isolates	129	163	62	71	191	234	
Antim icrobial							
Ampicillin	65%	54%	49%	37%	60%	49%	
Ceftriaxone	44%	30%	25%	11%	38%	25%	
Gentamicin	35%	38%	19%	15%	30%	31%	
Nalidixic acid	4%	6%	2%	1%	3%	4%	
Streptomycin	35%	44%	32%	38%	34%	42%	
Tetracycline	61%	63%	53%	55%	59%	60%	
Trimethoprim-sulfamethoxazole	14%	8%	11%	14%	13%	10%	

The figure above summarizes the proportion (percentage, adjusted to account for multiple samples per flock) of isolates resistant to a specific antimicrobial at chick placement by sample type for the 2014 sampling year. The table summarizes 2013 to 2014 results by sample type.

Figure 4.7. Resistance of Salmonella isolates from chickens at pre-harvest, 2014

			_							
Province / region	Nati	onal	British (Columbia	Pra	iries	On	tario	Qué	ébec
Year	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Number of isolates	229	249	68	74	24	54	65	42	72	79
Antim icrobial										
Ampicillin	23%	13%	18%	14%	37%	4%	44%	5%	4%	22%
Ceftriaxone	22%	12%	18%	14%	32%	4%	43%	5%	4%	20%
Gentamicin	0%	2%	0%	0%	0%	2%	0%	8%	1%	1%
Nalidixic acid	1%	0%	5%	0%	0%	0%	0%	0%	0%	0%
Streptomycin	37%	34%	14%	18%	45%	14%	41%	27%	52%	67%
Tetracycline	37%	41%	14%	18%	35%	13%	37%	41%	59%	83%
Trimethonrim-sulfamethovazole	3%	1%	0%	0%	0%	0%	10/2	0%	0%	10/2

The figure above summarizes the proportion (percentage, adjusted to account for multiple samples per flock) of isolates resistant to a specific antimicrobial at pre-harvest by province/region for the 2014 sampling year. The table summarizes 2013 to 2014 results.

For the temporal analyses by province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

Figure 4.8. Resistance of Escherichia coli isolates from chickens at pre-harvest, 2014

Percentage of isolates	resistant	and 95%	confidence	interval	(2014)
------------------------	-----------	---------	------------	----------	--------

Province / region	Nati	onal	British (Columbia	Prai	iries	On	tario	Qué	bec
Year	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Number of isolates	385	561	94	116	60	147	120	166	111	132
Antimicrobial										
Ampicillin	61%	46%	88%	67%	68%	39%	49%	45%	48%	37%
Ceftriaxone	32%	24%	63%	51%	47%	31%	14%	11%	17%	11%
Gentamicin	13%	17%	8%	16%	10%	12%	10%	15%	23%	28%
Nalidixic acid	4%	5%	10%	9%	8%	7%	2%	2%	1%	2%
Streptomycin	48%	39%	38%	34%	52%	25%	37%	38%	65%	61%
Tetracycline	50%	49%	40%	38%	53%	47%	46%	50%	60%	59%
Trimethoprim-sulfamethoxazole	21%	17%	5%	3%	7%	3%	23%	19%	41%	42%

The figure above summarizes the proportion (percentage, adjusted to account for multiple samples per flock) of isolates resistant to a specific antimicrobial at pre-harvest by province/region for the 2014 sampling year. The table summarizes 2013 to 2014 results.

For the temporal analyses by province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

Figure 4.9. Resistance of Campylobacter isolates from chickens at pre-harvest, 2014

Province / region	Nati	onal	British C	Colum bia	Pra	iries	Ont	ario	Qué	bec
Year	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Number of isolates	81	93	27	26	15	11	20	35	19	21
Antimicrobial										
Azithromycin	0%	3%	0%	0%	0%	0%	0%	0%	0%	12%
Ciprofloxacin	16%	9%	30%	29%	0%	0%	20%	5%	5%	0%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Telithromycin	0%	2%	0%	0%	0%	0%	0%	0%	0%	9%
Tetracycline	59%	46%	44%	64%	60%	40%	55%	28%	83%	59%

The figure above summarizes the proportion (percentage, adjusted to account for multiple samples per flock) of isolates resistant to a specific antimicrobial at pre-harvest by province/region for the 2014 sampling year. The table summarizes 2013 to 2014 results.

For the temporal analyses by province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

MINIMUM INHIBITORY CONCENTRATIONS

See how to interpret the minimum inhibitory concentration tables in the section "How to Read this Chapter".

Table 4.10. Distribution of minimum inhibitory concentrations among Salmonella from pigs, 2014

Antimicrobial	Province/region	n	Percen MIC 50	ntiles MIC 90	% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	istribut 1	ion (%) 2	of MICs	ε (μg/m 8	L) 16	32	64	128 25	i6 > 256
Amoxicillin-																				
clavulanic acid	Prairies	40	≤ 1	8	0.0							67.5	2.5	5.0	15.0	10.0				
	Ontario	67	≤ 1	16	1.5							64.2	1.5	10.4	10.4	11.9		1.5		
	Québec	40	4	16	10.0							45.0		7.5	15.0	22.5		10.0		
	National	147	≤ 1	16	3.4							59.9	1.4	8.2	12.9	14.3		3.4		
Ceftiofur	Prairies	40	1	1	0.0						30.0	60.0	5.0	5.0						
	Ontario	67	1	1	1.5						19.4	76.1	3.0			1.5				
	Québec	40	1	1	10.0						10.0	80.0				10.0				
	National	147	1	1	3.4						19.7	72.8	2.7	1.4	ļ	3.4				
Ceftriaxone	Prairies	40	≤ 0.25	≤ 0.25	5.0					95.0				5.0						
	Ontario	67	≤ 0.25	≤ 0.25	1.5					98.5							1.5			
	Québec	40	≤ 0.25	≤ 0.25	10.0					90.0						10.0				
	National	147	≤ 0.25	≤ 0.25	4.8				,	95.2		ì		1.4		2.7	0.7			
Ciprofloxacin	Prairies	40	≤ 0.015	≤ 0.015	0.0	92.5	7.5		1											
	Ontario	67	≤ 0.015	0.03	0.0	74.6	25.4		1											
	Québec	40	≤ 0.015	0.03	0.0	70.0	27.5	2.5												
	National	147	≤ 0.015	0.03	0.0	78.2	21.1	0.7	<u> </u>											
Ampicillin	Prairies	40	≤ 1	> 32	30.0							65.0	5.0					30.0		
	Ontario	67	1	> 32	34.3							58.2	7.5				l	34.3		
	Québec	40	> 32	> 32	55.0							45.0						55.0		
	National	147	≤ 1	> 32	38.8							56.5	4.8					38.8		
Azithromycin	Prairies	40	4	8	0.0								12.5	42.5	40.0	5.0				
	Ontario	67	4	8	1.5								9.0	55.2	34.3		1.5			
	Québec	40	8	16	10.0								2.5	37.5	47.5	2.5	10.0			
	National	147	4	8	3.4								8.2	46.9	39.5	2.0	3.4			
Cefoxitin	Prairies	40	2	4	0.0							5.0	45.0	50.0						
	Ontario	67	4	8	1.5							4.5	44.8	40.3	9.0			1.5		
	Québec	40	4	4	10.0							5.0	40.0	45.0			2.5	7.5		
	National	147	4	4	3.4							4.8	43.5	44.2	4.1		0.7	2.7		
Gentamicin	Prairies	40	0.5	1	0.0					2.5	77.5	20.0								
	Ontario	67	0.5	1	1.5					11.9	62.7	23.9					1.5			
	Québec	40	0.5	1	7.5					25.0	52.5	15.0				7.5				
	National	147	0.5	1	2.7					12.9	63.9	20.4				2.0	0.7			
Nalidixic acid	Prairies	40	4	4	0.0								45.0	55.0						
	Ontario	67	4	4	0.0							1.5	20.9	77.6						
	Québec	40	4	4	0.0								42.5	52.5	5.0					
	National	147	4	4	0.0							0.7	33.3	64.6	1.4					
Streptomycin	Prairies	40	16	> 64	37.5										45.0	17.5		2.5	35.0	
	Ontario	67	64	> 64	52.2									1.5	13.4	26.9	6.0	4.5	47.8	
	Québec	40	16	> 64	42.5									2.5	32.5	20.0	2.5	2.5	40.0	
	National	147	16	> 64	45.6									1.4	27.2	22.4	3.4	3.4	42.2	
Trimethoprim-																				
sulfamethoxazole	Prairies	40	≤ 0.12	≤ 0.12	5.0				90.0	5.0					5.0					
	Ontario	67	0.25	0.5	7.5				68.7	20.9	3.0				7.5					
	Québec	40	≤ 0.12	8	15.0				67.5	17.5					15.0					
Oblesses	National	147	≤ 0.12	0.5	8.8				74.1	15.6	1.4			07.5	8.8	0 -		40.7		
Chloramphenicol	Prairies	40	8	> 32	12.5									27.5	57.5	2.5	l	12.5		
	Ontario	67	8	> 32	19.4									25.4	55.2			19.4		
	Québec	40	8	> 32	12.5								2.5	12.5	70.0	2.5	l	12.5		
	National	147	8	> 32	15.6								0.7	22.4	59.9	1.4	1	15.6		
Sulfisoxazole	Prairies	40	64	> 256	40.0											10.0	30.0	20.0		40.0
	Ontario	67	> 256	> 256	55.2											6.0	29.9	9.0		55.2
	Québec	40	32	> 256	47.5											20.0	32.5			47.5
	National	147	64	> 256	49.0											10.9	30.6	9.5		49.0
Tetracycline	Prairies	40	≤ 4	> 32	45.0									55.0			7.5	37.5		
	Ontario	67	> 32	> 32	91.0									9.0		1.5	13.4	76.1		
	Québec	40	> 32	> 32	70.0									30.0		2.5	2.5	65.0		
	National	147	> 32	> 32	72.8									27.2	:	1.4	8.8	62.6		

Percentage of isolates resistant are not adjusted for clustering.

Table 4.11. Distribution of minimum inhibitory concentrations among *Escherichia coli* from pigs, 2014

	pig5, 201		Porcon	tilos							ь	ietribut	ion (%)	of MICs	. (ualm	1 \					
Antimicrobial	Province/region		Percent MIC 50	MIC 90	% R	≤ 0.015	0.03	0.06	0.12	0.25	ر 0.5	15 (11) 1	.ion (%) 2	of MICs	s (µg/m 8	L) 16	32	64	128	256	> 256
Amoxicillin-			11110 30	-MITO 30		_ 0.015	0.03	0.00	V. 12	0.23	0.0			- 4	- 0	- 10	- 32	- 04	120	230	> 200
clavulanic acid	Prairies	735	4	8	1.2							4.9	29.3	39.0	24.1	1.5	0.7	0.5			
	Ontario	478	4	8	2.3							1.9	17.6	39.3	37.0	1.9	2.3				
	Québec	459	4	8	2.8							2.6	22.2	41.8	28.5	2.0	2.0	0.9			
	National	1,672	4	8	2.0							3.4	24.0	39.9	29.0	1.7	1.5	0.5			
Ceftiofur	Prairies	735	0.25	0.5	1.1				3.1	46.9	48.3	0.4		0.1	0.3	8.0					
	Ontario	478	0.5	0.5	2.1				3.6	46.2	47.5	0.2	0.4		1.5	0.6					
1	Québec	459	0.5	0.5	3.3				1.3	45.8	49.5	0.2			2.0	1.3					
•	National	1,672	0.5	0.5	2.0				2.8	46.4	48.4	0.3	0.1	0.1	1.1	0.9					
Ceftriaxone	Prairies	735	≤ 0.25	≤ 0.25	1.2					98.6	0.1			0.1	0.3	0.5	0.3				
	Ontario	478	≤ 0.25	≤ 0.25	2.1					97.5		0.4			8.0	1.0		0.2			
	Québec	459	≤ 0.25	≤ 0.25	3.3					96.7					1.1	1.7		0.2	0.2		
a	National	1,672	≤ 0.25	≤ 0.25	2.0					97.8	0.1	0.1	}	0.1	0.7	1.0	0.1	0.1	0.1		
Ciprofloxacin	Prairies	735	≤ 0.015	≤ 0.015	0.0	97.7	1.8		0.4	0.1											
	Ontario	478	≤ 0.015	≤ 0.015	0.0	98.3	0.2			0.4	1.0										
	Québec	459	≤ 0.015	≤ 0.015	0.0	96.9	1.7	0.2		0.2	0.9										
A mnicillin	National Prairies	1,672 735	≤ 0.015 2	≤ 0.015 > 32	27.3	97.7	1.3	0.1	0.2	0.2	0.5	11.0	44.9	15.8	0.8	0.1		27.3			
Ampicillin	Ontario	735 478	4	> 32	46.0							8.8	29.3	15.8	0.8	0.1	0.6	45.4			
	Québec	459	4	> 32	34.6							8.3	39.2	13.5	2.8	1.5	0.6	34.2			
	National	1,672	4	> 32	34.7							9.6	38.9	15.0	1.3	0.5	0.4	34.4			
Azithromycin	Prairies	735	4	> 32	0.3						0.1	0.5	12.9	57.7	27.6	0.8	0.3	34.4			
Azitili Olliyelli	Ontario	478	4	8	1.3						0.1	1.5	15.7	54.8	25.3	1.3	1.3				
	Québec	459	4	8	0.9						0.2	0.4	10.9	53.2	32.0	2.6	0.9				
	National	1,672	4	8	0.7						0.1	0.4	13.2	55.6	28.2	1.4	0.5				
Cefoxitin	Prairies	735	4	4	1.2						0.5	0.3	25.6	61.2	10.5	0.7	0.3	1.0			
COTOXIIII	Ontario	478	4	8	2.3						0.0	0.0	23.8	57.9	14.2	1.7	1.0	1.3			
	Québec	459	4	8	2.8								21.4	64.1	11.5	0.2	1.3	1.5			
	National	1,672	4	8	2.0						0.2	0.1	23.9	61.1	11.8	0.8	0.8	1.2			
Gentamicin	Prairies	735	1	1	0.0					1.0	44.2	52.1	2.4	0.3							
	Ontario	478	1	1	4.0					1.0	42.3	48.3	3.1	0.8	0.4	0.2	3.8				
	Québec	459	1	1	1.1					2.0	45.8	48.1	2.6		0.4	0.2	0.9				
	National	1,672	1	1	1.4					1.3	44.1	49.9	2.7	0.4	0.2	0.1	1.3				
Nalidixic acid	Prairies	735	2	2	0.5						1.4	23.7	71.0	3.4		,		0.5			
	Ontario	478	2	2	0.0						3.3	24.7	67.6	3.3	1.0						
	Québec	459	2	2	0.4						1.1	22.9	71.7	3.3	0.7		0.2	0.2			
	National	1,672	2	2	0.4						1.9	23.7	70.2	3.3	0.5		0.1	0.3			
Streptomycin	Prairies	735	8	> 64	26.5								0.7	21.4	28.3	10.7	12.4	11.6	15.0		
	Ontario	478	16	> 64	30.5								0.2	20.7	21.5	10.5	16.5	13.2	17.4		
	Québec	459	32	> 64	36.2								0.4	16.3	20.0	9.4	17.6	17.4	18.7		
	National	1,672	16	> 64	30.3								0.5	19.8	24.1	10.3	15.0	13.6	16.7		
Trimethoprim-																					
sulfamethoxazole	Prairies	735	≤ 0.12	0.25	8.2				81.9	8.6	1.0	0.4			8.2						
	Ontario	478	≤ 0.12	> 4	16.9				69.7	10.5	2.7	0.2	0.4	1	16.9						
	Québec	459	≤ 0.12	> 4	18.1				74.3	5.2	1.1	0.9	0.4		18.1						
Chloromphaniani	National	1,672	≤ 0.12	> 4	13.4				76.3	8.2	1.5	0.5	0.1	20.4	13.4	4.0	44.0	6.4			
Chloramphenicol	Prairies Optario	735	8	> 32	17.1								1.6	30.1	46.3	4.9	11.0	6.1			
	Ontario Québec	478 459	8	32 > 32	22.0 17.2								2.9	29.7 28.5	41.6 47.9	3.8 4.1	12.3 6.3	9.6 10.9			
	National	1,672	8	> 32	18.5								2.2	29.5	47.9	4.1	10.1	8.4			
Sulfisoxazole	Prairies	735	o ≤ 16	> 256	35.4								۷.۷	23.0	40.4	60.1	3.5	0.5	0.3	0.1	35.4
	Ontario	478	32	> 256	48.1											47.7	3.3	0.6	0.3	0.1	48.1
I	Québec	459	≤ 16	> 256	44.9											50.8	3.9	0.4	0.2		44.9
	National	1,672	≤ 16	> 256	41.6											54.0	3.6	0.4	0.2	0.1	41.6
Tetracycline	Prairies	735	> 32	> 32	59.9									39.9	0.3	0.5	6.0	53.3	U.Z	U. 1	, 41.0
	Ontario	478	> 32	> 32	85.6									13.4	1.0	5.5	6.7	78.9			
	Québec	459	> 32	> 32	80.2									19.2	0.7	İ	10.5	69.7			
	National	1,672	> 32	> 32	72.8									26.6	0.6	0.2	7.4	65.1			
		.,0,2	, JZ	- 32	, 2.0									20.0	0.0	<u> </u>					

Percentage of isolates resistant are not adjusted for clustering.

Table 4.12. Distribution of minimum inhibitory concentrations among *Salmonella* from chicks at placement, 2014

	at placen		Perce								D	istr <u>ibut</u>	ion <u>(%)</u>	of MICs	: (μg/m	L)				
Antim icrobial	Province/region	n	MIC 50		% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	-, 16	32	64	128	256 > 250
Amoxicillin- clavulanic acid	British Columbia	18	1	1	0.0							100.0								
ciavulariic acid	Prairies	7	1	1	0.0							100.0								
	Ontario	2	1	1	0.0							100.0				}				
	Québec	9	1	> 32	22.2							77.8				}		22.2		
	National	36	1	1	5.6							94.4						5.6		
Ceftiofur	British Columbia	18	1	1	0.0						22.2	77.8								
	Prairies	7	1	1	0.0							100.0		1						
	Ontario Québec	2 9	0.5 0.5	1	0.0					44.4	50.0	50.0				22.2				
	National	36	0.5	> 8 1	22.2 5.6					11.1 2.8	55.6 27.8	11.1 63.9				22.2 5.6				
Ceftriaxone	British Columbia	18	≤ 0.25	≤ 0.25	0.0					100.0	21.0	00.9		Ì		3.0				
	Prairies	7	≤ 0.25	≤ 0.25	0.0					100.0										
	Ontario	2	≤ 0.25	≤ 0.25	0.0					100.0										
	Québec	9	≤ 0.25	16	22.2					77.8					11.1	11.1				
	National	36	≤ 0.25	≤ 0.25	5.6				,	94.4		i		ļ ,	2.8	2.8				
Ciprofloxacin	British Columbia	18	≤ 0.015	0.03	0.0	83.3	16.7													
	Prairies		≤ 0.015		0.0	100.0														
	Ontario Québec	2 9	≤ 0.015 ≤ 0.015	≤ 0.015 0.03	0.0	100.0 77.8	22.2													
	National		≤ 0.015	0.03	0.0	86.1	13.9													
Ampicillin	British Columbia	18	1	2	0.0	55.1	.0.0					88.9	11.1			}				
•	Prairies	7	1	2	0.0							57.1	42.9							
	Ontario	2	1	1	0.0							100.0								
	Québec	9	1	> 32	22.2							77.8						22.2		
	National	36	1	2	5.6							80.6	13.9			§		5.6		
Azithromycin	British Columbia	18	4	8	0.0								5.6	83.3	11.1					
	Prairies	7	4	4	0.0								42.9	57.1	50.0					
	Ontario Québec	9	4	8	0.0									50.0 100.0	50.0					
	National	36	4	4	0.0								11.1	80.6	8.3					
Cefoxitin	British Columbia	18	2	2	0.0							33.3	66.7	00.0	0.0	ŧ.				
	Prairies	7	2	4	0.0								85.7	14.3						
	Ontario	2	2	4	0.0								50.0	50.0						
	Québec	9	2	32	22.2								66.7	11.1			22.2			
	National	36	2	4	5.6							16.7	69.4	8.3			5.6			
Gentamicin	British Columbia	18	0.25	0.5	5.6					61.1	33.3						5.6			
	Prairies Ontario	7	0.5 ≤ 0.25	1 ≤ 0.25	0.0					100.0	85.7	14.3								
	Québec	9	0.25	± 0.25	0.0					44.4	44.4	11.1								
	National	36	0.5	0.5	2.8					47.2	44.4	5.6					2.8			
Nalidixic acid	British Columbia	18	4	4	0.0								38.9	55.6	5.6	Į.				
	Prairies	7	4	4	0.0									100.0						
	Ontario	2	2	4	0.0								50.0	50.0						
	Québec	9	2	4	0.0							11.1	77.8	11.1						
	National	36	4	4	0.0							2.8	41.7	52.8	2.8					
Streptomycin	British Columbia Prairies	18 7	4	16 8	5.6 0.0								38.9	50.0	20.0	5.6		5.6		
	Ontario	2	8	64	50.0								42.9	28.6	28.6 50.0			50.0		
	Québec	9	64		100.0										50.0			55.6	44.4	
	National	36	4	> 64									27.8	30.6	8.3	2.8		19.4	11.1	
Trimethoprim-																				
sulfamethoxazole	British Columbia	18	≤ 0.12	≤ 0.12	0.0				100.0											
	Prairies Ontario	7	≤ 0.12	≤ 0.12	0.0				100.0											
	Ontario Québec	2 9	≤ 0.12 ≤ 0.12	≤ 0.12 ≤ 0.12	0.0				100.0											
	National	36	≤ 0.12	≤ 0.12	0.0				100.0											
Chloramphenicol	British Columbia	18	4	8	0.0									50.0	50.0	1				
•	Prairies	7	4	8	0.0									28.6	71.4					
	Ontario	2	4	8	0.0									50.0	50.0					
	Québec	9	4	8	0.0								11.1	77.8	11.1					
	National	36	4	8	0.0								2.8	52.8	44.4	}	1			
Sulfisoxazole	British Columbia	18	32	64	5.6											11.1	66.7	16.7		5.6
ı	Prairies Ontario	7 2	32 32	> 32 > 256	0.0 50.0											14.3	42.9 50.0	42.9		50.0
•	Ontario Québec	9	32	> 256	11.1											44.4	33.3	11.1		11.1
	National	36	32	64	8.3											19.4	52.8	19.4		8.3
Tetracycline	British Columbia	18	4	4	0.0									100.0		1				
•	Prairies	7	4	4	0.0									100.0						
	Ontario	2	4	> 32	50.0									50.0				50.0		
	Québec	9	> 32		100.0													100.0		
,	National	36	4	> 32	27.8									72.2				27.8		
1																				

Table 4.13. Distribution of minimum inhibitory concentrations among *Escherichia coli* from chicks and barn environment at placement, 2014

	CITICKS att		Perce				-	- 10				istributi	ion (%)	of MICs	(ua/m	1)				
Antimicrobial	Province/region	n	MIC 50		% R	≤ 0.015	0.03	0.06	0.12	0.25	ر 0.5	1	ion (%) 2	4	8 (µg/m	L) 16	32	64	128	256 > 256
Amoxicillin- clavulanic acid	British Columbia	57	4	> 32	31.6							1.8	12.3	38.6	15.8		22.8	8.8		
	Prairies	46	4	32	13.0								8.7	45.7	30.4	2.2	8.7	4.3		
	Ontario	65	4	32	12.3							1.5	20.0	41.5	23.1	1.5	9.2	3.1		
	Québec	66	8	32	31.8							1.5	6.1	27.3	30.3	3.0	22.7	9.1		
Ceftiofur	National British Columbia	234 57	4 0.5	> 32 > 8	22.6 31.6					22.8	40.4	1.3	12.0 3.5	37.6 1.8	24.8 12.3	1.7 19.3	16.2	6.4		
Certiorui	Prairies	46	0.5	>8	13.0					30.4	52.2	4.3	5.5	1.0	2.2	10.9				
	Ontario	65	0.5	8	12.3					23.1	63.1	1.5			6.2	6.2				
	Québec	66	0.5	> 8	36.4					12.1	50.0	1.5			12.1	24.2				
	National	234	0.5	> 8	23.9					21.4	51.7	1.7	0.9	0.4	8.5	15.4				
Ceftriaxone	British Columbia	57	≤ 0.25	16	33.3					63.2		3.5			5.3	22.8	5.3			
	Prairies	46	≤ 0.25	16	13.0					87.0					2.2	6.5	4.3			
	Ontario Québec	65 66	≤ 0.25 ≤ 0.25	8 32	12.3 36.4					86.2 63.6	1.5				4.6 3.0	7.7 22.7	2.0	6.1	4.5	
	National	234	≤ 0.25	16	24.4					74.4	0.4	0.9			3.8	15.4	3.0 3.0	1.7	1.5 0.4	
Ciprofloxacin	British Columbia	57	≤ 0.015	0.12	0.0	86.0	1.8		3.5	8.8	0.4	0.5		,	0.0	10.4	0.0		0.4	
	Prairies	46		≤ 0.015	0.0	93.5	2.2			4.3										
	Ontario	65	≤ 0.015	≤ 0.015	0.0	100.0														
	Québec	66	≤ 0.015	≤ 0.015	0.0	95.5	1.5			3.0										
	National	234	≤ 0.015		0.0	94.0	1.3		0.9	3.8										
Ampicillin	British Columbia	57	4	> 32	47.4							7.0	33.3	12.3		}	1	47.4		
	Prairies Optario	46 65	4	> 32	43.5							2.2	34.8	19.6	15	•	1	43.5 35.4		
	Ontario Québec	66	> 32	≥ 32 > 32	35.4 65.2							4.6 1.5	44.6 18.2	13.8 15.2	1.5			35.4 65.2		
	National	234	> 32 4	> 32	48.3							3.8	32.5	15.2	0.4	•	ĺ	48.3		
Azithromycin	British Columbia	57	4	8	0.0								5.3	63.2	31.6	ş				
	Prairies	46	4	8	0.0								34.8	41.3	23.9					
	Ontario	65	4	8	0.0								9.2	55.4	32.3	3.1				
	Québec	66	8	8	0.0								4.5	43.9	43.9	7.6				
	National	234	4	8	0.0								12.0	51.3	33.8	3.0				
Cefoxitin	British Columbia	57	4	> 32	31.6								10.5	49.1	8.8		1.8	29.8		
	Prairies Ontario	46 65	4	> 32 ≥ 32	13.0 12.3								4.3 10.8	67.4 67.7	13.0 7.7	2.2 1.5		13.0 12.3		
	Québec	66	4	> 32	31.8								7.6	50.0	10.6	1.5		31.8		
	National	234	4	> 32	22.6								8.5	58.1	9.8	0.9	0.4	22.2		
Gentamicin	British Columbia	57	1	> 16	21.1						38.6	36.8			3.5	f	21.1			
	Prairies	46	0.5	> 16	21.7						52.2	26.1				4.3	17.4			
	Ontario	65	1	≥ 16	29.2						18.5	50.8		1.5		6.2	23.1			
	Québec	66	2	> 16	48.5						19.7	28.8	3.0			10.6	37.9			
	National	234	1	> 16	31.2						30.3	36.3	0.9	0.4	0.9	5.6	25.6			
Nalidixic acid	British Columbia Prairies	57 46	2	32 4	12.3 4.3							10.5 6.5	73.7 76.1	3.5 13.0			3.5	8.8 4.3		
	Ontario	65	2	2	0.0							13.8	83.1	3.1				4.3		
	Québec	66	2	2	3.0							15.2	80.3	1.5				3.0		
	National	234	2	2	4.7							12.0	78.6	4.7			0.9	3.8		
Streptomycin	British Columbia	57	32	> 64	47.4									8.8	35.1	3.5	5.3	22.8	24.6	
	Prairies	46	8	> 64	32.6									28.3	23.9	2.2	13.0	13.0	19.6	
	Ontario	65	8	> 64	26.2									16.9	41.5	3.1	12.3	15.4	10.8	
	Québec	66	64	> 64	59.1									6.1	18.2	3.0	13.6	15.2	43.9	
Trimethoprim-	National	234	≤ 32	> 64	41.9									14.1	29.9	3.0	11.1	16.7	25.2	
sulfamethoxazole	British Columbia	57	≤ 0.12	0.25	3.5				89.5	7.0					3.5					
	Prairies	46	≤ 0.12	8	10.9				84.8	4.3					10.9					
	Ontario	65	≤ 0.12	0.25	9.2				87.7	3.1					9.2					
	Québec	66	≤ 0.12	> 4	16.7				69.7	10.6	1.5	1.5			16.7					
a	National	234	≤ 0.12	> 4	10.3				82.5	6.4	0.4	0.4		L	10.3	E				
Chloramphenicol	British Columbia	57	8	8	1.8								5.3	40.4	52.6	4.2	1	1.8		
	Prairies Ontario	46 65	4	8	2.2 3.1								2.2	52.2 36.9	39.1 55.4	4.3 4.6	1.5	2.2 1.5		
	Québec	66	8	≥ 32	16.7								1.5	27.3	53.0	1.5	1.5	16.7		
	National	234	8	8	6.4								2.1	38.0	50.9	2.6	0.4	6.0		
Sulfisoxazole	British Columbia	57	16	> 256	31.6											57.9	10.5			31.6
	Prairies	46	16	> 256	32.6											65.2	2.2			32.6
	Ontario	65	16	> 256	35.4											56.9	7.7			35.4
	Québec	66	> 256	> 256	65.2											31.8	3.0			65.2
	National	234	≤ 16	> 256	42.3											51.7	6.0			42.3
Tetracycline	British Columbia	57	> 32	> 32										45.6			3.5	50.9		
	Prairies	46	> 32 > 32	> 32	60.9 47.7									39.1 52.3			2.2 3.1	58.7 44.6		
	Ontario				71.1									JZ.J		ı	5.1	77.0		
	Ontario Québec	65 66												21.2				78.8		
	Ontario Québec National	66	> 32 > 32 > 32		78.8									21.2 39.3			2.1	78.8 58.5		

Table 4.14. Distribution of minimum inhibitory concentrations among *Salmonella* from chickens at pre-harvest, 2014

Antimierabiel	Province/region		Perce								D	istribut	ion <u>(%)</u>	of MICs	s (μg/m	L)				
Antimicrobial	Province/region	n	MIC 50	MIC 90	% R	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256 > 256
Amoxicillin- clavulanic acid	British Columbia	74	1	32	14.9							83.8	1.4				8.1	6.8		
	Prairies	54	1	1	3.7							90.7	5.6					3.7		
	Ontario	42	1	1	4.8							95.2				}		4.8		
	Québec	79	1	> 32	20.3							72.2	5.1		2.5	}	2.5	17.7		
0.00	National	249	1	32	12.4							83.5	3.2	}	0.8		3.2	9.2		
Ceftiofur	British Columbia	74 54	1	> 8	13.5						17.6	66.2	1.4	1.4	1.4	12.2				
	Prairies Ontario	54 42	0.5	1	3.7 4.8					2.4	44.4 47.6	51.9 45.2				3.7 4.8				
	Québec	79	0.5	> 8	20.3					2.4	50.6	25.3	3.8	1	1.3	19.0				
	National	249	1	> 8	12.0					0.4	39.0	46.6	1.6	0.4	0.8	11.2				
Ceftriaxone	British Columbia	74	≤ 0.25	8	14.9					85.1				1.4	5.4	6.8	1.4			
	Prairies	54	≤ 0.25	≤ 0.25	3.7					96.3						1.9	1.9			
	Ontario	42	≤ 0.25	≤ 0.25	4.8					95.2					4.8					
	Québec	79	≤ 0.25	16	20.3					79.7					6.3	11.4	2.5			
C'arrellance als	National	249	≤ 0.25	8	12.4	00.0	0.5		1	87.6		ı '		0.4	4.4	6.0	1.6			
Ciprofloxacin	British Columbia Prairies	74 54	≤ 0.015	0.03 ≤ 0.015	0.0	89.2 96.3	9.5	1.4												
	Ontario	42	≤ 0.015 ≤ 0.015	0.03	0.0	83.3	3.7 16.7													
	Québec	79	≤ 0.015	0.03	0.0	88.6	10.1	1.3												
	National	249	≤ 0.015	0.03	0.0	89.6	9.6	0.8												
Ampicillin	British Columbia	74	1	> 32	14.9							71.6	12.2	1.4		[14.9		
	Prairies	54	1	2	3.7							83.3	13.0			}		3.7		
	Ontario	42	1	2	4.8							88.1	7.1					4.8		
	Québec	79	1	> 32	22.8							67.1	7.6	2.5		•		22.8		
A = 101	National	249	1	> 32	13.3							75.5	10.0	1.2	04.0	}		13.3		
Azithromycin	British Columbia Prairies	74 54	4	8	0.0								16.2	58.1	24.3 3.7	1.4				
	Ontario	42	4	8	0.0								33.3 9.5	61.1 57.1	31.0	1.9 2.4				
	Québec	79	4	8	0.0								16.5	53.2	27.8	2.5				
	National	249	4	8	0.0								18.9	57.0	22.1	2.0				
Cefoxitin	British Columbia	74	2	32	13.5						1.4	8.1	66.2	8.1	1.4	1.4	10.8	2.7		
	Prairies	54	2	4	3.7							5.6	64.8	22.2	3.7		3.7			
	Ontario	42	2	4	4.8							23.8	38.1	33.3		}	4.8			
	Québec	79	2	32	19.0							6.3	58.2	13.9	1.3	1.3	15.2	3.8		
	National	249	2	32	11.6						0.4	9.6	58.6	17.3	1.6	0.8	9.6	2.0		
Gentamicin	British Columbia	74	0.5	0.5	0.0					41.9	51.4	6.8	4.0				4.0			
	Prairies Ontario	54 42	0.5 0.5	1	1.9 7.1					7.4 33.3	68.5 52.4	20.4 4.8	1.9 2.4				1.9 7.1			
	Québec	79	0.5	1	1.3					16.5	55.7	25.3	1.3			1.3	7.1			
	National	249	0.5	1	2.0					24.9	56.6	15.3	1.2			0.4	1.6			
Nalidixic acid	British Columbia	74	2	4	0.0							8.1	50.0	41.9						
	Prairies	54	4	4	0.0								24.1	74.1	1.9					
	Ontario	42	4	4	0.0								45.2	52.4		2.4				
	Québec	79	2	4	0.0							7.6	55.7	32.9	3.8					
0	National	249	2	4	0.0							4.8	45.4	47.8	1.6	0.4	l	40.5		
Streptomycin	British Columbia Prairies	74 54	4	64 > 32	17.6 13.0								25.7 9.3	33.8 11.1	18.9 50.0	4.1 16.7		13.5 13.0	4.1	
	Ontario	42	16	> 64	31.0								3.5	2.4	42.9	14.3	9.5	19.0	11.9	
	Québec	79	64	> 64	69.6									1.3	10.1	8.9	10.1	39.2	30.4	
	National	249	16	> 64	35.3								9.6	13.3	26.9	10.0	4.8	22.5	12.9	
Trimethoprim-																				
sulfamethoxazole	British Columbia	74	≤ 0.12	≤ 0.12	0.0				100.0											
	Prairies Optario	54 42	≤ 0.12	≤ 0.12 ≤ 0.12	0.0				100.0	2.4										
	Ontario Québec	42 79	≤ 0.12 ≤ 0.12	≤ 0.12 ≤ 0.12	0.0 3.8				97.6 92.4	2.4 3.8					3.8					
	National	249	≤ 0.12	≤ 0.12	1.2				97.2	1.6					1.2					
Chloramphenicol	British Columbia	74	8	8	0.0								5.4	40.5	51.4	2.7				
•	Prairies	54	8	8	0.0									38.9	61.1					
	Ontario	42	8	8	0.0								2.4	45.2	52.4	}				
	Québec	79	4	8	0.0								12.7	54.4	30.4	2.5				
	National	249	4	8	0.0								6.0	45.4	47.0	1.6	l			
Sulfisoxazole	British Columbia	74	32	64	2.7											18.9	50.0	28.4		2.7
	Prairies Optario	54	32	64	1.9											13.0	50.0	35.2		1.9
	Ontario Québec	42 70	32	> 256	23.8											23.8	45.2 57.0	7.1		23.8
	Quebec National	79 249	32 32	> 256 64	15.2 10.0											19.0 18.5	57.0 51.4	8.9 20.1		15.2 10.0
		40	52	04										00.4		10.0	31.4			10.0
Tetracycline			4	> 32	17.6													17.6		
Tetracycline	British Columbia Prairies	74 54	4	> 32 > 32	17.6 11.1									82.4 88.9				17.6 11.1		
Tetracycline	British Columbia	74		> 32 > 32 > 32																
Tetracycline	British Columbia Prairies	74 54	4	> 32 > 32	11.1									88.9			1.3	11.1		

Table 4.15. Distribution of minimum inhibitory concentrations among *Escherichia coli* from chickens at pre-harvest, 2014

	cnickens		Percei			, = 3 - 1					istribut	ion (%)	of Mic-	(IIalaa	1)				
Antim icrobial	Province/region	n	MIC 50		% R	≤ 0.015 0.03	0.06	0.12	0.25	0.5	istribut 1	10H (%) 2	01 MIC:	s (μg/m 8	L) 16	32	64	128	256 > 25
Amoxicillin- clavulanic acid	British Columbia	116	32	32	51.7							15.5	20.7	12.1		45.7	6.0		
Ciavalarile acia	Prairies	147	4	32	29.9						2.0	29.3	29.3	9.5		23.8	6.1		
	Ontario	166	4	32	11.4						3.0	21.7	33.1	28.3	2.4	9.0	2.4		
	Québec	132	4	16	9.8						1.5	26.5	34.1	26.5	1.5	9.8			
0.61.6	National	561	4	32	24.2						1.8	23.5	29.8	19.6	1.1	20.7	3.6		
Ceftiofur	British Columbia Prairies	116 147	4 0.5	> 8 > 8	49.1 26.5			1.7 0.7	11.2 38.1	24.1 28.6	6.0 2.7	5.2	2.6 3.4	30.2 15.0	19.0 11.6				
	Ontario	166	0.5	8	10.2			1.8	34.3	49.4	3.0	1.2	3.4	4.8	5.4				
	Québec	132	0.5	8	10.6			1.5	32.6	51.5	3.0		0.8	5.3	5.3				
	National	561	0.5	8	22.6			1.4	30.1	39.2	3.6	1.4	1.6	12.8	9.8				
Ceftriaxone	British Columbia	116	8	16	50.9				37.9		9.5	1.7		13.8	31.0	4.3	1.7		
	Prairies Ontario	147 166	≤ 0.25 ≤ 0.25	16 8	29.9 10.8				68.7 86.7	0.7 0.6	0.7 1.8		0.6	9.5 1.2	16.3 6.6	4.1 1.2	0.6	0.6	
	Québec	132	≤ 0.25	≤ 0.25	11.4				88.6	0.0	1.0		1.5	1.5	6.1	0.8	0.8	0.8	
	National	561	≤ 0.25	16	24.2				72.4	0.4	2.7	0.4	0.5	6.1	14.1	2.5	0.7	0.4	
Ciprofloxacin	British Columbia	116	≤ 0.015	0.03	0.9	88.8 2.6		1.7	6.0					0.9					
	Prairies	147		≤ 0.015	0.0	91.2 1.4		2.0	4.8	0.7									
	Ontario Québec	166 132		≤ 0.015 ≤ 0.015	0.0	96.4 1.2 98.5		0.6 1.5	1.8										
	National	561	≤ 0.015	≤ 0.015	0.0	93.9 1.2		1.4	3.0	0.2				0.2					
Ampicillin	British Columbia	116	> 32	> 32	67.2						6.0	19.8	6.9				67.2		
	Prairies	147	4	> 32	38.8						7.5	38.1	15.0	0.7			38.8		
	Ontario	166	4	> 32	45.2						10.8	30.7	13.3	0.0			45.2		
	Québec National	132 561	4	> 32 > 32	37.1 46.2						3.8 7.3	40.2 32.6	15.9 13.0	3.0 0.9			37.1 46.2		
Azithromycin	British Columbia	116	4	> 32 8	0.0						1.5	10.3	53.4	33.6	2.6		70.2		
	Prairies	147	4	4	0.0						1.4	34.7	54.4	8.8	0.7				
	Ontario	166	4	8	1.8						0.6	9.0	51.2	32.5	4.8	1.8			
	Québec	132	4	8	0.8							12.1	45.5	37.9	3.8	0.8			
Cefoxitin	National British Columbia	561 116	4 32	8 > 32	0.7 51.7						0.5	16.8 11.2	51.2 27.6	27.8 9.5	3.0	0.7 3.4	48.3		
Ceroxium	Prairies	147	4	> 32	29.9							11.6	40.8	15.6	2.0	3.4	26.5		
	Ontario	166	4	32	11.4						1.2	15.7	56.6	14.5	0.6	2.4	9.0		
	Québec	132	4	16	9.8						8.0	11.4	55.3	20.5	2.3	2.3	7.6		
	National	561	8	> 32	24.2						0.5	12.7	46.2	15.2	1.2	2.9	21.4		
Gentamicin	British Columbia Prairies	116 147	1 0.5	16 16	15.5 12.2				2.6	35.3 49.0	41.4 34.7		0.9	4.3 2.0	7.8 2.7	7.8 9.5			
	Ontario	166	1	> 16	15.1				1.8	37.3	41.6	4.2		2.0	3.6	11.4			
	Québec	132	1	> 16	28.0				1.5	32.6	32.6	3.0		2.3	4.5	23.5			
	National	561	1	> 16	17.5				2.0	38.9	37.6	2.0	0.2	2.0	4.5	13.0			
Nalidixic acid	British Columbia	116	2	4	8.6						24.1	63.8	3.4	}		0.9	7.8		
	Prairies	147	2	4	7.5					0.7	22.4	63.9	5.4			2.0	5.4		
	Ontario Québec	166 132	2	2	1.8 1.5					1.8 0.8	18.1 14.4	71.1 75.0	7.2 8.3			1.5	1.8		
	National	561	2	4	4.6					0.9	19.6	68.6	6.2			1.1	3.6		
Streptomycin	British Columbia	116	8	> 64	33.6							0.9	21.6	33.6	4.3	6.0	10.3	23.3	
	Prairies	147	8	> 64	24.5							1.4	43.5	20.4	6.1	4.1	10.2	14.3	
	Ontario	166	16	> 64	38.0								14.5	32.5	6.6	8.4	9.6	28.3	
	Québec National	132 561	64 16	> 64 > 64	60.6 38.9							0.5	9.1 22.3	11.4 24.6	3.0 5.2	15.9 8.6	29.5 14.6	31.1 24.2	
Trimethoprim-	· atoriai	551	10	<i>></i> 04	55.5							0.0	22.0	2-1.0	U.Z	5.0	1-7.0	2-7.2	
sulfamethoxazole	British Columbia	116	≤ 0.12	≤ 0.12	2.6			92.2	5.2					2.6					
	Prairies	147	≤ 0.12	0.25	3.4			85.0	7.5	3.4	0.7			3.4					
	Ontario Québec	166 132	≤ 0.12 ≤ 0.12	> 4 > 4	19.3 41.7			74.1 52.3	4.2 4.5	1.8 0.8	0.6 0.8			19.3 41.7					
	National	561	≤ 0.12	> 4	16.9			75.6	5.3	1.6	0.5			16.9					
Chloramphenicol	British Columbia	116	8	8	1.7							0.9	35.3	56.9	5.2	0.9	0.9		
	Prairies	147	8	8	3.4							2.7	46.9	44.2	2.7	١.	3.4		
	Ontario	166	8	16	4.8							1.8	39.8	48.2	5.4	1.8	3.0		
	Québec National	132 561	8 8	16 16	9.1 4.8							1.4	23.5 36.9	54.5 50.4	12.9 6.4	2.3 1.2	6.8 3.6		
Sulfisoxazole	British Columbia	116	≤ 16	> 256	27.6								55.5	55.4	66.4	6.0	0.0		27.
	Prairies	147	16	> 256	26.5										71.4	1.4	0.7		26.
	Ontario	166	≤ 16	> 256	36.1										59.6	3.6	0.6		36.
	Québec	132	> 256	> 256	63.6										30.3	5.3	0.4	0.8	63.
Tetracycline	National British Columbia	561 116	16 4	> 256 > 32	38.3 37.9								61.2	0.9	57.2	3.9 3.4	0.4 34.5	0.2	38.
. Stratoy office	Prairies	147	4	> 32	46.9								53.1	0.5		2.0	44.9		
	Ontario	166	≤ 4	> 32	50.0								50.0			4.2	45.8		
	Québec	132	> 32	> 32	59.1								40.9			3.0	56.1		
	National	561	4	> 32	48.8								51.0	0.2		3.2	45.6		

Table 4.16. Distribution of minimum inhibitory concentrations among *Campylobacter* from chickens at pre-harvest, 2014

Complement	Antimicrobial	Species	Province / region	n	Percent	iles	% R							ion (%)		s (µg/m	L)			
Continues	Ciprofloxacin	Campylobacter coli	British Columbia	0			0.0	≤ 0.016	0.032	0.064	0.125	0.25	0.5	1	2	4	8	16	32 6	4 > 64
Cyrolinesian																				
Control Cont										60.0	40.0									
Confisionation Comprehender prigned Enter Confisionation Confisi										60.0	40.0									
Control Cont		Campylobacter jejuni		26								11.5					3.8	23.1		
Cyrolination	Ciprofloxacin	Campylobacter jejuni	Prairies	11	0.12					45.5	27.3	27.3								
Cyclification Cyclificatio																		6.7		
Cycortisacion Cymposhocare span Parish Churches 26 0.12 16 50 1.02 1																	11	0.1		
Control periode																				
Controllace Completable sign Controllace Controlla																				
Control Cont	Ciprofloxacin	Campylobacter spp.	Ontario	35	0.12	0.12	5.7			34.3	60.0							5.7		
Tellerunyich Campylocates coil Britch Calarities 0 0 0 0 0 0 0 0 0																				
Tethnomyon Campylobacter cut Pairies 0										44.1	36.6	9.7			1	ļ	1.1	8.6		
Telliformyrich Campylobacter cult Cubes S 0.5 1 0.0																				
Tethnomych Campylocher col Cashec 0 2 4 0.0 2 0.0											20.0	20.0	40.0	20.0						
Tellistrampin Campylochaeter pipul Parise Cautaria 28																				
Tathismorphic Campylobacter John Camp	Telithromycin	Campylobacter coli	National	5	0.5	1	0.0				20.0	20.0	40.0	20.0						
Telliferromycin Campyrobacter piguri Campyrobacter piguri Campyrobacter piguri Campyrobacter piguri National 88 0.5 2.2 2.0 3.8 3.5 1.1 18.2 8.0 1.1 2.3 2.3 1.1 18.2 8.0 1.1 2.3 2.3 1.1 18.2 8.0 1.1 2.3 2.3 1.1 18.2 8.0 1.1 2.3	Telithromycin	Campylobacter jejuni	British Columbia								3.8	7.7	46.2	26.9						
Teithermyrein Campyrobaeter jejum Campyrobaeter jejum National 88 0.5 2 2.0 1.1 8.2 5.1 1.82 5.1																				
Tathirmorpic Campyolobaeter January Camp															3.3		4.0	0.5		
Telleromyche Campylohaeter sp. Parises 11 0.5 2.0 0. 0.88 0.71 4.82 8.82 8.12 1.8											1.1				8.0		2			
Tallermaryen Campylobacter gap Paries 11 0.5 2 0.0																	l	2.0		
Telleromycin Campylobaerer spa			Prairies																	
Azithromycin Campylobacter of a Philish Columbia 0 0 0 0 0 0 0 0 0	Telithromycin	Campylobacter spp.	Ontario	35		1	0.0				2.9	8.6	68.6	17.1	2.9					
Azibronycin																	8			
Aziltromycin Campylobacter coli											2.2	18.3	50.5	18.3	7.5	,	1.1	2.2		
Aziltromycin Campylobacter coli Outable 0 0,12 0,12 0,10 0,12 0,10 0,12 0,10 0,12 0,10 0,12 0,10 0,12 0,10 0,12 0,10 0,12 0,10 0,12 0,10 0,12 0,10 0,10	-																			
Azitromycin Campylobacter odi National 5 0.06 0.08 0.0 4.00 80.0 Azitromycin Campylobacter i piuri Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.6 8.1 1.5 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.6 8.1 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.6 8.1 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.6 8.1 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.6 8.1 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.6 8.1 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.8 81.4 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.8 81.4 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 27.3 83.8 81.4 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 4.2 9 57.1 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 4.2 9 57.1 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 4.2 9 57.1 Azitromycin Campylobacter i piuri Parise 111 0.06 0.06 0.0 4.2 9 57.1 Azitromycin Campylobacter i piuri Parise 101 0.06 0.06 0.0 4.2 9 57.1 Campylobacter i piuri Parise 101 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.									40.0	60.0						1				
Azithromycin Campylobacter pilori Camp																				
Azithromycin Campylobacter jujuni Campy	Azithromycin	Campylobacter coli	National	5	0.06	0.06	0.0		40.0	60.0										
Azithromycin Campylobacter jejuni Cambele 21 0.03 0.06 0.0	-																			
Azithromycin Campylobacter jejuni Azithromycin Campylobacter jejuni Azithromycin Campylobacter spp. British Columbia 26 0.06 0.12 0.0 0.27 3.85 5.21 4.5 4.15 4.5 4.15 4.25											9.1									
Azithromycin Campylobacteri jejuni Alafonal 88 0.06 0.05 3.4 1.1 38.6 52.3 4.5								4.8												14.3
Azithromycin Campylobacter spp. Pairies 11 0.06 0.06 0.12 0.0 23.1 65.4 11.5											4.5									
Azilthromycin Campylobacier spp. Outario 35 0.06 0.06 1.4 29 57.1 Azilthromycin Campylobacier spp. National 93 0.06 1.4 3 4.8 57.1 23.8 Azilthromycin Campylobacier spp. National 93 0.06 1.4 3 4.8 57.1 23.8 Azilthromycin Campylobacier spp. National 93 0.06 1.4 3 4.8 57.1 23.8 Azilthromycin Campylobacier spp. National 93 0.06 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																				
Azithromycin Campylobacter spp. National 93 0.06 0.06 3.2 1.1 38.7 5.1 23.8	Azithromycin	Campylobacter spp.	Prairies	11	0.06	0.06	0.0		27.3	63.6	9.1									
Azilhromycin Campylobacter spp. National 93 0.06 0.06 3.2 1.1 38.7 52.7 4.3																				
Clindamycin Campylobacter coli British Columbia 0											4.0									
Clindamycin Campylobacter coli Prairies 0 0 0 0 0 0 0 0 0								1.1	38.7	52.7	4.3									3.2
Clindarrycin Campylobacter coli Ontario 5 0.25 0.25 0.0 0.0 40.0 60.0 Clindarrycin Campylobacter coli Québec 0 4 4 0.0 Clindarrycin Campylobacter coli National 5 0.25 0.25 0.0 15.4 65.4 19.2 T. 27.3 Ultimate of the color of th	-																			
Cindamycin Campylobacter coli National 5 0.25 0.25 0.0 40.0 60.0 Cindamycin Campylobacter jejiuni British Columbia 26 0.12 0.25 0.0 1.54 65.4 19.2 Cindamycin Campylobacter jejiuni Ontario 30 0.12 0.12 0.0 3.3 30.0 60.0 6.7 Cindamycin Campylobacter jejiuni Oudebec 21 0.12 4 0.0 2.38 61.9 14.3 Cindamycin Campylobacter jejiuni Oudebec 21 0.12 4 0.0 2.38 61.9 14.3 Cindamycin Campylobacter spp. British Columbia 26 0.12 0.25 0.0 1.1 20.5 63.6 11.4 3.4 Cindamycin Campylobacter spp. British Columbia 26 0.12 0.25 0.0 1.5 4 65.4 19.2 Cindamycin Campylobacter spp. Ontario 35 0.12 0.25 0.0 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	-									40.0		60.0								
Clindamycin Campylobacter jejuni Clindamycin Campylobacter jejuni Prairies 11 0.12 0.25 0.0 72.7 27.3	Clindamycin	Campylobacter coli	Québec	0	4	4	0.0													
Clindamycin Campylobacter jejuni Prairies 11 0.12 0.25 0.0 0.0 3.3 30.0 6.0 6.7 14.3 1	-															1				
Clindamycin Campylobacter jejuni Ontario 30 0.12 0.12 0.0 2.3 3.3 3.0 6.0 6.7										15.4										
Clindamycin Campylobacter jejuni National 88 0.12 0.25 0.0 1.1 20.5 63.6 11.4 3.4 Clindamycin Campylobacter spp. British Columbia 26 0.12 0.25 0.0 15.4 65.4 19.2 Clindamycin Campylobacter spp. Prairies 11 0.12 0.25 0.0 15.4 65.4 19.2 Clindamycin Campylobacter spp. Ontario 35 0.12 0.25 0.0 2.9 31.4 51.4 14.3 Clindamycin Campylobacter spp. Ontario 35 0.12 0.25 0.0 2.9 31.4 51.4 14.3 Clindamycin Campylobacter spp. National 93 0.12 0.25 0.0 2.9 31.4 51.4 14.3 Clindamycin Campylobacter spp. National 93 0.12 0.25 0.0 1.1 21.5 60.2 14.0 Erythromycin Campylobacter coli Prairies 0 0 0 0 0.0 Erythromycin Campylobacter coli Prairies 0 0 0 0 0.0 Erythromycin Campylobacter coli Québec 0 1 2 0.0 Erythromycin Campylobacter coli National 5 0.5 0.5 0.5 0.0 Erythromycin Campylobacter coli National 5 0.5 0.5 0.5 0.0 Erythromycin Campylobacter jejuni British Columbia 26 0.25 1 0.0 Erythromycin Campylobacter jejuni Prairies 11 0.5 1 0.0 Erythromycin Campylobacter jejuni Ontario 30 0.25 0.25 0.0 Erythromycin Campylobacter jejuni Prairies 11 0.5 1 0.0 Erythromycin Campylobacter jejuni National 88 0.25 1 3.4 Erythromycin Campylobacter spp. British Columbia 26 0.25 1 0.0 Erythromycin Campylobacter spp. Prairies 11 0.5 1 0.0 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.5									22	30.0										
Clindarrycin Campylobacter jejuni National 88 0.12 0.25 0.0 11.1 20.5 63.6 11.4 3.4 Clindarrycin Campylobacter spp. British Columbia 26 0.12 0.25 0.0 15.4 65.4 19.2 Clindarrycin Campylobacter spp. Prairies 11 0.12 0.25 0.0 72.7 27.3 Clindarrycin Campylobacter spp. Ontario 35 0.12 0.25 0.0 2.9 31.4 51.4 14.3 Clindarrycin Campylobacter spp. National 93 0.12 0.25 0.0 23.8 61.9 14.3 Clindarrycin Campylobacter spp. National 93 0.12 0.25 0.0 1.1 21.5 60.2 14.0 3.2 Erythromycin Campylobacter coli British Columbia 0 0 0 0 0.0 Erythromycin Campylobacter coli Ontario 5 0.5 0.5 0.0 Erythromycin Campylobacter coli Ontario 5 0.5 0.5 0.0 Erythromycin Campylobacter coli National 5 0.25 0.0 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter jejuni British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter jejuni Prairies 11 0.5 1 0.0 10.0 80.0 10.0 Erythromycin Campylobacter jejuni Ontario 30 0.25 0.25 0.0 10.0 80.0 10.0 Erythromycin Campylobacter jejuni Ontario 30 0.25 0.25 1 0.0 10.0 80.0 10.0 Erythromycin Campylobacter jejuni National 88 0.25 1 3.4 6.8 71.6 11.4 6.8 Erythromycin Campylobacter spp. Prairies 11 0.5 1 0.0 10.0 80.0 10.0 Erythromycin Campylobacter spp. Prairies 11 0.5 1 0.0 10.0 80.0 10.0 Erythromycin Campylobacter spp. Prairies 11 0.5 1 0.0 10.0 80.0 10.0 Erythromycin Campylobacter spp. Prairies 11 0.5 1 0.0 10.0 80.0 10.0 Erythromycin Campylobacter spp. Prairies 11 0.5 1 0.0 10.0 80.0 10.0 Erythromycin Campylobacter spp. Prairies 11 0.5 0.0 10.0 86.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 86.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 86.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 86.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 86.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 86.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 86.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 86.6 74.3 17									0.0			0.7				14.3				
Clindamycin Campylobacter spp. Ontario 35 0.12 0.25 0.0 2.9 31.4 51.4 14.3 14.3 Clindamycin Campylobacter spp. Outebec 21 0.12 4 0.0 23.8 61.9 14.3 Clindamycin Campylobacter spp. National 93 0.12 0.25 0.0 1.1 21.5 60.2 14.0 3.2 Erythromycin Campylobacter coli British Columbia 0 0 0 0.0 Erythromycin Campylobacter coli Ontario 5 0.5 0.5 0.0 Erythromycin Campylobacter coli Outebec 0 1 1 2 0.0 Erythromycin Campylobacter coli Ontario 5 0.5 0.5 0.0 Erythromycin Campylobacter jejuni British Columbia 26 0.25 1 0.0 Erythromycin Campylobacter jejuni Pariries 111 0.5 1 0.0 45.5 36.4 18.2 Erythromycin Campylobacter jejuni Ontario 30 0.25 0.25 0.0 10.0 Erythromycin Campylobacter jejuni Outebec 21 0.25 128 14.3 9.5 71.4 4.8 14.3 Erythromycin Campylobacter spp. British Columbia 26 0.25 1 0.0 Erythromycin Campylobacter jejuni National 88 0.25 1 3.4 6.8 71.6 11.4 6.8 3.4 Erythromycin Campylobacter spp. British Columbia 26 0.25 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. British Columbia 26 0.25 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 4.8 14.3						0.25			1.1			11.4				1				
Clindamycin Campylobacter spp. Ontario 35 0.12 0.25 0.0 23.8 61.9 14.3 Clindamycin Campylobacter spp. Outhor 21 0.12 4 0.0 23.8 61.9 14.3 Clindamycin Campylobacter spp. National 93 0.12 0.25 0.0 1.1 21.5 60.2 14.0 3.2 Erythromycin Campylobacter coli British Columbia 0 0 0 0 0.0 Erythromycin Campylobacter coli Pairies 0 0 0 0 0.0 Erythromycin Campylobacter coli Ontario 5 0.5 0.5 0.0 40.0 60.0 Erythromycin Campylobacter coli National 5 0.5 0.5 0.0 40.0 60.0 Erythromycin Campylobacter coli National 5 0.5 0.5 0.0 40.0 60.0 Erythromycin Campylobacter jejuni British Columbia 26 0.25 1 0.0 45.5 36.4 18.2 Erythromycin Campylobacter jejuni Ontario 30 0.25 0.25 0.0 10.0 80.0 10.0 Erythromycin Campylobacter jejuni Ontario 30 0.25 128 14.3 9.5 71.4 4.8 14.3 Erythromycin Campylobacter spp. British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter jejuni National 88 0.25 1 3.4 6.8 71.6 11.4 6.8 3.4 Erythromycin Campylobacter spp. British Columbia 26 0.25 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Pairies 11 0.5 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. Pairies 11 0.5 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. Pairies 11 0.5 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. Pairies 11 0.5 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. Pairies 11 0.5 1 0.0 45.5 36.4 18.2 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 4.8 14.3	Clindamycin	Campylobacter spp.	British Columbia	26	0.12	0.25	0.0			15.4	65.4	19.2								
Clindarrycin Campylobacter spp. Québec 21 0.12 4 0.0 23.8 61.9 14.3 3.2																				
Clindamycin Campylobacter spp. National 93 0.12 0.25 0.0 1.1 21.5 60.2 14.0 3.2									2.9			14.3								
Erythromycin Campylobacter coli British Columbia 0 0 0 0 0 0 0 0 0									1.			14.0								
Erythromycin Campylobacter coli Prairies 0 0 0 0 0 0 0 0 0										21.5	00.2	14.0				3.2	ļ	1		
Erythromycin Campylobacter coli Ontario 5 0.5 0.5 0.0 40.0 60.0 Erythromycin Campylobacter coli Ouèbec 0 1 2 0.0 40.0 60.0 Erythromycin Campylobacter coli National 5 0.5 0.5 0.0 40.0 60.0 Erythromycin Campylobacter jejuni British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter jejuni Prairies 11 0.5 1 0.0 45.5 36.4 18.2 Erythromycin Campylobacter jejuni Ontario 30 0.25 0.25 0.0 10.0 80.0 10.0 Erythromycin Campylobacter jejuni Ouèbec 21 0.25 128 14.3 9.5 71.4 4.8 14.3 Erythromycin Campylobacter spp. British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. Drairies 11 0.5 1 0.0 45.5 36.4 18.2 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Québec 21 0.25 128 14.3 9.5 71.4 4.8 14.3																				
Brythromycin Campylobacter joini British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4				5								40.0	60.0							
Erythromycin Campylobacter jejuni British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4																				
Erythromycin Campylobacter jejuni Prairies 11 0.5 1 0.0 45.5 36.4 18.2																				
Erythromycin Campylobacter jejuni Ontario 30 0.25 0.25 0.0 10.0 80.0 10.0											3.8									
Erythromycin Campylobacter jejuni Québec 21 0.25 128 14.3 9.5 71.4 4.8 14.3											10.0			10.2						
Erythromycin Campylobacter jejuni National 88 0.25 1 3.4 6.8 71.6 11.4 6.8																				14.3
Erythromycin Campylobacter spp. British Columbia 26 0.25 1 0.0 3.8 73.1 7.7 15.4 Erythromycin Campylobacter spp. Prairies 11 0.5 1 0.0 45.5 36.4 18.2 Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Québec 21 0.25 128 14.3 9.5 71.4 4.8 14.3														6.8						
Erythromycin Campylobacter spp. Ontario 35 0.25 0.5 0.0 8.6 74.3 17.1 Erythromycin Campylobacter spp. Québec 21 0.25 128 14.3 9.5 71.4 4.8 14.3 14.3	Erythromycin	Campylobacter spp.									3.8									
Erythromycin Campylobacter spp. Québec 21 0.25 128 14.3 9.5 71.4 4.8 14.3														18.2						
																				143
Erythromycin Campylobacter spp. National 93 0.25 0.5 3.2 6.5 69.9 14.0 6.5 3.2			National	93	0.25	0.5	3.2				9.5 6.5	69.9	14.0	6.5						3.2

Table 4.16. Distribution of minimum inhibitory concentrations among *Campylobacter* from chickens at pre-harvest, 2014 (cont'd)

	Antimicrobial	Species	Province / region	n	Percen		% R						ion (%)	of MIC	s (µg/m	L)				
_	Gentamicin	Campylobacter coli	British Columbia	0	MIC 50	MIC 90 0	0.0	≤ 0.016 0.03	2 0.064	0.125	0.25	0.5	1	2	4	8	16	32	64	> 64
	Gentamicin	Campylobacter coli	Prairies	0	0	0	0.0													
	Gentamicin	Campylobacter coli	Ontario	5	1	1	0.0					40.0	60.0							
	Gentamicin	Campylobacter coli	Québec	0	1	1	0.0					40.0	00.0							
	Gentamicin	Campylobacter coli	National	5	1	1	0.0					40.0	60.0							
	Gentamicin	Campylobacter jejuni	British Columbia	26	0.5	1	0.0					50.0	50.0							
	Gentamicin	Campylobacter jejuni	Prairies	11	1	1	0.0						90.9	9.1						
	Gentamicin	Campylobacter jejuni	Ontario	30	1	1	0.0					40.0	60.0		1					
	Gentamicin	Campylobacter jejuni	Québec	21	1	1	0.0					76.2	23.8							
	Gentamicin	Campylobacter jejuni	National	88	1	1	0.0					46.6	52.3	1.1						
	Gentamicin	Campylobacter spp.	British Columbia	26	0.5	1	0.0					50.0	50.0		1					
	Gentamicin	Campylobacter spp.	Prairies	11	1	1	0.0						90.9	9.1						
	Gentamicin	Campylobacter spp.	Ontario	35	1	1	0.0					40.0	60.0		1					
	Gentamicin	Campylobacter spp.	Québec	21	1	1	0.0					76.2	23.8		1	ĺ				
п	Gentamicin	Campylobacter spp.	National	93	1	1	0.0					46.2	52.7	1.1						
	Nalidixic acid	Campylobacter coli	British Columbia	0	0	0	0.0													
	Nalidixic acid	Campylobacter coli	Prairies	0	0	0	0.0													
	Nalidixic acid	Campylobacter coli	Ontario	5	4	4	0.0								100.0					
	Nalidixic acid	Campylobacter coli	Québec	0	8	> 64	0.0													
	Nalidixic acid	Campylobacter coli	National	5	4	4	0.0								100.0					
	Nalidixic acid	Campylobacter jejuni	British Columbia	26	4	> 64	26.9								61.5	11.5				26.9
	Nalidixic acid	Campylobacter jejuni	Prairies	11	4	8	0.0								54.5	36.4	9.1			
	Nalidixic acid	Campylobacter jejuni	Ontario	30	4	8	6.7								86.7	6.7				6.7
	Nalidixic acid	Campylobacter jejuni	Québec	21	4	8	0.0								85.7	14.3				
	Nalidixic acid	Campylobacter jejuni	National	88	8	> 64	10.2								75.0	13.6	1.1			10.2
	Nalidixic acid	Campylobacter spp.	British Columbia	26	4	> 64	26.9								61.5	11.5				26.9
	Nalidixic acid	Campylobacter spp.	Prairies	11	4	8	0.0								54.5	36.4	9.1			
	Nalidixic acid Nalidixic acid	Campylobacter spp.	Ontario Québec	35 21	4	8	5.7 0.0								88.6 85.7	5.7				5.7
	Nalidixic acid	Campylobacter spp. Campylobacter spp.	National	93	4 ≤4	8 16	9.7								76.3	14.3 12.9	1.1			9.7
-	Florfenicol	Campylobacter spp.	British Columbia	0	0	0	0.0								70.3	12.9		!		9.1
	Florfenicol	Campylobacter coli	Prairies	0	0	0	0.0													
	Florfenicol	Campylobacter coli	Ontario	5	1	1	0.0					40.0	60.0							
	Florfenicol	Campylobacter coli	Québec	0	1	2	0.0									İ				
	Florfenicol	Campylobacter coli	National	5	1	1	0.0					40.0	60.0			1				
	Florfenicol	Campylobacter jejuni	British Columbia	26	1	1	0.0					30.8	69.2							
	Florfenicol	Campylobacter jejuni	Prairies	11	1	2	0.0					9.1	72.7	18.2						
	Florfenicol	Campylobacter jejuni	Ontario	30	1	1	0.0					26.7	73.3							
	Florfenicol	Campylobacter jejuni	Québec	21	1	1	0.0					14.3	81.0	4.8						
	Florfenicol	Campylobacter jejuni	National	88	1	1	0.0					22.7	73.9	3.4						
	Florfenicol	Campylobacter spp.	British Columbia	26	1	1	0.0					30.8	69.2							
	Florfenicol	Campylobacter spp.	Prairies	11	1	2	0.0					9.1	72.7	18.2						
	Florfenicol	Campylobacter spp.	Ontario	35	1	1	0.0					28.6	71.4							
	Florfenicol	Campylobacter spp.	Québec	21	1	1	0.0					14.3	81.0	4.8		İ				
Ш	Florfenicol	Campylobacter spp.	National	93	1	1	0.0		_			23.7	73.1	3.2		1				
	Tetracycline	Campylobacter coli	British Columbia	0	0	0	0.0									ĺ	1			
	Tetracycline	Campylobacter coli	Prairies	0	0	0	0.0									1	1			
	Tetracycline	Campylobacter coli	Ontario	5	1	> 64	40.0						60.0			į	1			40.0
	Tetracycline	Campylobacter coli	Québec	0	> 64	> 64	0.0									1	1			
	Tetracycline	Campylobacter coli	National	5	1	> 64	40.0						60.0			1	l			40.0
	Tetracycline	Campylobacter jejuni	British Columbia	26	32	> 64	65.4			11.5	23.1						15.4	15.4	26.9	7.7
	Tetracycline	Campylobacter jejuni	Prairies	11	1	> 64	45.5				18.2	27.3	9.1			İ	1	9.1		36.4
	Tetracycline	Campylobacter jejuni	Ontario	30	0.25	64	26.7			33.3	40.0					1	1	6.7	20.0	
	Tetracycline	Campylobacter jejuni	Québec	21	64	> 64	52.4			33.3	00 -	14.3	4.			1	l		42.9	9.5
	Tetracycline	Campylobacter jejuni	National	88	0.5	64	46.6			22.7	22.7	6.8	1.1			ĺ	4.5	8.0	25.0	9.1
	Tetracycline	Campylobacter spp.	British Columbia	26	32	> 64	65.4			11.5	23.1						15.4	15.4	26.9	7.7
	Tetracycline	Campylobacter spp.	Prairies	11	1	> 64	45.5			00.5	18.2	27.3	9.1				l	9.1		36.4
		Campylobacter spp.	Ontario	35	0.25	64	28.6			28.6	34.3		8.6			1	1	5.7	17.1	5.7
	Tetracycline		046	~ .	~ .		FC /			00.0										
	Tetracycline Tetracycline	Campylobacter spp. Campylobacter spp.	Québec National	21 93	64 1	> 64 > 64	52.4 46.2			33.3 21.5	21.5	14.3 6.5	4.3				43	7.5	42.9 23.7	9.5 10.8

RECOVERY RESULTS

Table 4.17. Farm Surveillance recovery rates in grower-finisher pigs, 2006–2014

CIPARS Component/	Province / region	Year	Percentage (%) of isolate:	s recovered ar	ıd number o	of isolates recovered / numb	per of samples	submitted
Animal species			Escherich	ia coli	Salmor	nella	Campylobacter	Enterod	coccus
Pigs	Prairies	2012	100%	232/232	19%	43/232			
		2013	98%	224/228	14%	33/228			
		2014	99%	248/252	16%	40/252			
	Ontario	2012	99%	167/168	18%	31/168			
		2013	100%	168/168	26%	43/168			
		2014	100%	162/162	41%	67/162			
	Québec	2012	100%	120/120	16%	19/120			
		2013	100%	138/138	17%	23/138			
		2014	100%	156/156	26%	40/156			
	National	2006	99%	459/462	20%	94/462		81%	374/462
		2007	100%	612/612	21%	136/612		81%	495/612
		2008	99%	481/486	13%	61/486		92%	448/486
		2009	99%	695/698	18%	124/698		97%	680/698
		2010	99%	566/569	18%	101/569		96%	545/569
		2011	100%	560/560	14%	77/560			
		2012	99%	519/520	18%	93/520			
		2013	99%	530/534	19%	99/534			
		2014	99%	566/570	26%	147/570			

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e., grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e., grey-shaded areas with no data).

The Prairies is a region including the provinces of Alberta, Saskatchewan and Manitoba.

Table 4.18. Farm Surveillance recovery rates in broiler chickens, 2013–2014

CIPARS Component/	Province / region	Year	Percentage ((%) of isolates	recovered a	nd number of	isolates reco	vered / numbe	er of samples submitte
Animal species			Escheric		Salmo		Campylo		Enterococcus
Chickens	British Columbia	2013	72%	43/60	28%	17/60			
(Chick placement)		2014	71%	57/80	23%	18/80			
	Prairies	2013	89%	31/35	29%	10/35			
		2014	82%	46/56	13%	7/56			
	Ontario	2013	85%	64/75	17%	13/75			
		2014	87%	65/75	3%	2/75			
	Québec	2013	82%	53/65	17%	11/65			
		2014	83%	66/80	11%	9/80			
	National	2013	81%	191/235	22%	51/235			
		2014	80%	234/291	12%	36/291			
Chickens	British Columbia	2013	98%	94/96	71%	68/96	28%	27/96	
(Pre-harvest)		2014	100%	116/116	64%	74/116	22%	26/116	
	Prairies	2013	100%	60/60	40%	24/60	25%	15/60	
		2014	99%	147/148	36%	54/148	7%	11/148	
	Ontario	2013	100%	120/120	54%	65/120	17%	20/120	
		2014	99%	166/168	25%	42/168	21%	35/168	
	Québec	2013	99%	111/112	64%	72/112	17%	19/112	
		2014	100%	132/132	60%	79/132	16%	21/132	
	National	2013	99%	385/388	59%	229/388	20%	81/388	
		2014	99%	561/564	44%	249/564	16%	93/564	

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e., grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e., grey-shaded areas with no data).

5. SURVEILLANCE OF ANIMAL CLINICAL ISOLATES

KEY FINDINGS

CATTLE

SALMONELLA (n = 149)

Salmonella Typhimurium was the most common serovar recovered from cattle (42%, 63/149). One isolate (2%) was resistant to all antimicrobial classes tested and 9 isolates (14%) were resistant to 6 antimicrobial classes (all except the macrolides). Forty-eight percent (30/63) of Typhimurium isolates were susceptible to all antimicrobials tested (Table 5.1).

The second most common serovar observed in cattle was Dublin (18%, 27/149). Fifteen Dublin isolates (56%) were resistant to 6 antimicrobial classes (all except the macrolides).

No Cerro isolates demonstrated resistance to any of the antimicrobials tested (0/17). One Heidelberg isolate was resistant to all antimicrobial classes except the β -lactams.

CHICKENS

SALMONELLA (n = 195)

Salmonella Enteritidis was the most common serovar recovered from chicken samples (48%, 93/195). Two isolates (2%) were resistant to 1 or more antimicrobials: 1 isolate (1%) was resistant to a single antimicrobial class (folate pathway inhibitors) and 1 isolate (1%) was resistant to 2 antimicrobial classes (β -lactams and tetracyclines). All other Enteritidis isolates from chickens were susceptible to all of the antimicrobials tested (Table 5.2).

Salmonella Heidelberg was the second most common serovar recovered from chicken samples (15%, 30/195). Three isolates (10%) were resistant to 2 antimicrobial classes and 9 isolates (31%) were resistant to just 1 class (β -lactams).

There were 21 Kentucky isolates (11%) from chickens in 2014. One isolate (5%) was susceptible to all antimicrobials tested; all of the others were resistant to 2 to 3 classes.

One Typhimurium isolate (1%) was resistant to 4 antimicrobial classes.

Seventy-four percent (144/195) of all *Salmonella* isolates from chickens were susceptible to all antimicrobials tested.

PIGS

SALMONELLA (n = 316)

Salmonella Typhimurium, Derby, and 4,[5],12:i:- were the most common serovars recovered from clinical pig samples in 2014, representing 40% (125/316), 16% (51/316), and 16% (50/316), respectively.

Seven isolates (2%) from pigs were resistant to 6 antimicrobial classes (all except the quinolones). These included 2 Typhimurium isolates, 2 Rough:i:1,2, 1 Ohio, and 2 Ohio var. 14+. As in 2013, no quinolone resistance was observed in any clinical isolates from pigs (Table 5.3).

TURKEYS

SALMONELLA (n = 62)

Salmonella Senftenberg, Agona, and Heidelberg were the most common serovars recovered from clinical turkey samples in 2014, representing 15% (9/62), 11% (7/62), and 11% (7/62), respectively.

Five isolates (8%) were resistant to 4 or more antimicrobial classes: 1 Agona was resistant to 4 classes, 1 Indiana was resistant to 5 classes, 1 Kentucky was resistant to 4 classes (including the quinolones), and 2 Senftenberg isolates were resistant to 5 classes (Table 5.4).

No resistance to macrolide antimicrobials was observed in any isolates from turkeys in 2014.

HORSES

SALMONELLA (n = 11)

Three Typhimurium isolates were resistant to tetracyclines and 1 Kentucky isolate was resistant to tetracycline and the aminoglycosides (Table 5.5).

MULTICLASS RESISTANCE

Table 5.1. Number of antimicrobial classes in resistance patterns of Salmonella from cattle, 2014

	Number (0/)				olates				Nur	nber	of iso	lates	resist		/ antim late	icrobial class	and antimi	crobial		
Serovar	Number (%) of isolates	clas			resist	ance	Aminogly	ycosides		β-I	_acta	ms			nway	Macrolides	Phenicols	Quinc	olones	Tetracyclines
			1	patter	n 4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO		SXT	AZM	CHL	CIP	NAL	TET
Typhimurium	63 (42.3)	30		2-3	23	10	7	33	33	11	12	11	12	33	12	1	32	1	9	33
Dublin	27 (18.1)	1	1		10	15	2	25	22	22	22	22	22	26	1		25	4	17	25
Cerro	17 (11.4)	17																		
4,[5],12:i:-	9 (6.0)				8	1		9	9	7	7	7	7	9	7	1	9			9
Heidelberg	6 (4.0)		1		4	1	1	5	1	1	1	1	1	5	5	1	5	5	5	5
Give	3 (2.0)	3																		
Muenster	3 (2.0)	3																		
Uganda	3 (2.0)	1		2				2						2						2
Less common serovars	18 (12.1)	14		3	1			4	1	1	1	1	1	4			1			4
Total	149 (100)	69	2	5	46	27	10	78	66	42	43	42	43	79	25	3	72	10	31	78

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 5.2. Number of antimicrobial classes in resistance patterns of Salmonella from chickens, 2014

Serovar	Number (%) of isolates	num	nber (ses i	r of iso of anti n the r	imicro esist	bial	Aminogly	cosides	Nun		of iso _acta		resist	ant by antim Folate pathway inhibitors	nicrobial class			lones	Tetracyclines
		0	1		4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS SXT	AZM	CHL	CIP	NAL	TET
Enteritidis	93 (47.7)	91	1	1					1					1					1
Heidelberg	30 (15.4)	18	9	3			2	3	10	10	10	10	10	2					
Kentucky	21 (10.8)	1		20				20	8	8	8	7	8						20
Typhimurium	7 (3.6)	6			1			1	1					1					1
Mbandaka	6 (3.1)	1		5				5						5					5
Thompson	6 (3.1)	6																	
Senftenberg	5 (2.6)	4		1			1	1	1										
4,[5],12:-:-	4 (2.1)	4																	
Less common serovars	23 (11.8)	13	1	9			3	6	2	1	1	1	1	3					8
Total	195 (100)	144	11	39	1		6	36	23	19	19	18	19	12	•				35

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 5.3. Number of antimicrobial classes in resistance patterns of Salmonella from pigs, 2014

	Number (%)			r of iso					Nun	nber	of iso	lates	resis		antin ate	nicrobial class	s and antimi	crobial	
Serovar	of isolates	clas		in the i		ance	Aminogly	cosides		β-Ι	Lacta	ms			way itors		Phenicols	Quinolones	Tetracyclines
		0	1	2–3	4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	TIO	SSS	SXT	AZM	CHL	CIP NAL	TET
Typhimurium	125 (39.6)	4	4	19	96	2	9	103	108	3	1	1	1	116	33	4	84		117
Derby	51 (16.1)	10	7	22	12			34	13	4	4	4	4	34	3		3		40
4,[5],12:i:-	50 (15.8)	2	2	1	45		7	46	45	1	3	1	1	46	3	2	5		48
Infantis	20 (6.3)	15	2	2	1			3	4	2	2	2	2	1	1				4
Ohio var. 14+	8 (2.5)			1	5	2	2	8	7	2	2	2	2	7	2	2	7		8
Less common serovars	62 (19.6)	25	3	18	13	3	6	31	19	3	3	3	3	34	7	5	7		33
Total	316 (100)	56	18	63	172	7	24	225	196	15	15	13	13	238	49	13	106		250

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 5.4. Number of antimicrobial classes in resistance patterns of Salmonella from turkeys, 2014

	N 1 (0/)				olates by				Num	nber	of iso	lates	resist	tant by antim Folate	icrobial class	s and antimi	crobial	
Serovar	Number (%) of isolates		ses i		esistano		noglyco	sides		β-Ι	_acta	ms		pathway inhibitors	Macrolides	Phenicols	Quinolones	Tetracyclines
		0	1	2-3	4–5 6–	-7 GE	N :	STR	AMP	AMC	CRO	FOX	TIO	SSS SXT	AZM	CHL	CIP NAL	TET
Senftenberg	9 (14.5)	2	3	2	2	7		5	4		1		1	2		2		2
Agona	7 (11.3)	1		5	1	3		4	4	2	2	2	2	6				3
Heidelberg	7 (11.3)	1		6		6		6						6				
Albany	5 (8.1)			5		5		1	4	1	4	1	4	2				
Liverpool	5 (8.1)	3		2		2		2	1					1				1
Muenchen	5 (8.1)	1	1	3		3		2						3				2
Braenderup	3 (4.8)			3		3		3						3				
Bredeney	3 (4.8)		2	1		3		2						1				1
Hadar	3 (4.8)			3		1		3						1				3
Montevideo	2 (3.2)		1	1		2		2	1									
Less common serovars	13 (21.0)	4	1	6	2	6		9	3	2	2	2	2	4		1	1	6
Total	62 (100)	12	8	37	5	4	1	39	17	5	9	5	9	29		3	1	18

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 5.5. Number of antimicrobial classes in resistance patterns of Salmonella from horses, 2014

	No				f isolate: antimicr				Number of isolates	resis	tant by antim Folate	nicrobial class	s and antimi	crobia		
Serovar	Number (%) of isolates			in t	he resis ttern		Aminogl	ycosides	β-Lactams		pathway inhibitors	Macrolides	Phenicols	Quin	olones	Tetracyclines
		0	1		2-3 4-5	6–7	GEN	STR	AMP AMC CRO FOX	TIO	SSS SXT	AZM	CHL	CIP	NAL	TET
Typhimurium	5 (45.5)	2	3													3
Enteritidis	2 (18.2)	2														
6,7:-:1,6	1 (9.1)	1														
Kentucky	1 (9.1)				1			1								1
Oranienburg	1 (9.1)	1														
Thompson	1 (9.1)	1														
Total	11 (100)	7	3		1			1								4

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

MINIMUM INHIBITORY CONCENTRATIONS

See how to interpret the minimum inhibitory concentration tables in the section "How to Read this Chapter".

Table 5.6. Distribution of minimum inhibitory concentrations among Salmonella from cattle, 2014

	Antimicrobial	n	Perce	ntiles	% R						D	istributi	ion (%)	of MICs	ε (μg/m	L)					
	Antimicropiai	"	MIC 50	MIC 90	% K	≤ 0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	> 256
	Amoxicillin-clavulanic acid	149	≤ 1	> 32	28.2							52.3	3.4		3.4	12.8	10.1	18.1			
	Ceftiofur	149	1	> 8	28.9						16.1	53.7	1.3		2.7	26.2					
•	Ceftriaxone	149	≤ 0.25	32	28.9					71.1						13.4	10.7	2.7	2.0		
	Ciprofloxacin	149	≤ 0.015	0.50	6.7	74.5	4.0		2.0	5.4	7.4	6.7									
	Ampicillin	149	2	> 32	44.3							49.0	6.7			1		44.3			
	Azithromycin	149	4	16	2.0								4.0	46.3	39.6	8.1	2.0				
	Cefoxitin	149	2	> 32	28.2							5.4	51.0	13.4	1.3	0.7	3.4	24.8			
II	Gentamicin	149	0.50	1	6.7					3.4	69.8	17.4	1.3		1.3	0.7	6.0				
	Nalidixic acid	149	4	> 32	20.8								42.3	36.2		0.7	2.0	18.8			
	Streptomycin	149	64	> 64	52.3									8.7	29.5	8.1	1.3	4.0	48.3		
	Trimethoprim-sulfamethoxazole	149	≤ 0.12	> 4	16.8				59.7	16.8	4.7	2.0		0.7	16.1						
	Chloramphenicol	149	8	> 32	48.3								1.3	20.1	30.2			48.3			
Ш	Sulfisoxazole	149	> 256	> 256	53.0											9.4	36.2	1.3			53.0
_	Tetracycline	149	32	> 32	52.3									47.7			3.4	49.0			
IV																					

Table 5.7. Distribution of minimum inhibitory concentrations among *Salmonella* from chickens, 2014

Table 5.8. Distribution of minimum inhibitory concentrations among Salmonella from pigs, 2014

Table 5.9. Distribution of minimum inhibitory concentrations among *Salmonella* from turkeys, 2014

Table 5.10. Distribution of minimum inhibitory concentrations among *Salmonella* from horses, 2014

6. SURVEILLANCE OF FEED AND FEED INGREDIENTS

KEY FINDINGS

SALMONELLA (n = 25)

One Salmonella Livingstone isolate was resistant to 3 antimicrobial classes; this isolate was from a starter ration intented for turkeys in Ontario (Table 6.1). No resistance to Category I antimicrobials was detected.

More information about the feed and feed ingredients was available in 2014, than in previous years. In addition to the source of the isolate described above, the other products from which *Salmonella* was recovered included avian ingredients (n = 1), canola meal (n = 4), corn (n = 1), feed (n = 4), fish ingredients (n = 1), fish meal (n = 4), meat and bone meal (n = 3), porcine ingredients (n = 2), and soybean meal (n = 4).

MULTICLASS RESISTANCE

Table 6.1. Number of antimicrobial classes in resistance patterns of *Salmonella* from feed and feed ingredients, 2014

	Number(%)				lates b				Number of isolates	resist	tant by antin Folate	nicrobial class	and antimi	crobia	1	
Serovar	of isolates		es ir		esistar		Aminogl	ycosides	β-Lactams		pathway inhibitors	Macrolides	Phenicols	Quin	olones	Tetracyclines
		0			4–5 6	-7	GEN	STR	AMP AMC CRO FOX	ПО	SSS SXT	AZM	CHL	CIP	NAL	TET
Schwarzengrund	4 (16)	4														
Senftenberg	4 (16)	4														
Infantis	2(8)	2														
Mbandaka	2(8)	2														
Montevideo	2(8)	2														
Orion var.15+34+	2(8)	2														
Alachua	1(4)	1														
Havana	1(4)	1														
Johannesburg	1(4)	1														
Livingstone	1(4)			1				1			1					1
Livingstone var. 14+	1(4)	1														
Newport	1(4)	_1_														
Ohio	1(4)	1														
Putten	1(4)	1														
Soerenga	1(4)	1														
Total	25 (100)	24		1_				1			1					11

Antimicrobial abbreviations are defined in the Appendix

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

MINIMUM INHIBITORY CONCENTRATIONS

See how to interpret the minimum inhibitory concentration tables in the section "How to Read this Chapter".

Table 6.2. Distribution of minimum inhibitory concentrations among *Salmonella* from feed and feed ingredients, 2014

CHAPTER 3—ANTIMICROBIAL USE IN ANIMALS

HOW TO READ THIS CHAPTER

This chapter highlights the most notable antimicrobial use findings across the animal surveillance components of CIPARS for 2014. These findings are presented by component (farm—broiler chickens, farm—grower-finisher pigs, quantities of antimicrobials distributed for sale for use in animals). For the 2 *Farm Surveillance* components, information about the farm demographics, animal health and biosecurity are also presented to provide context and possible reasons for antimicrobial use.

PRESENTATION OF ANTIMICROBIAL USE DATA

The antimicrobial use data collected on farm (broiler chicken and grower-finisher pigs) is largely presented by antimicrobial except in the feed sections where some figures and tables are presented by antimicrobial class. The *Farm Surveillance* data are reported as both qualitative antimicrobial use metrics (e.g., number of farms reporting using an antimicrobial), as well as quantitative antimicrobial (active ingredient) use metrics (e.g., median g/1,000 pig-days).

Summary antimicrobial use data in feed are presented in Table 7.4 for broiler chickens and in Table 8.3 for grower-finisher pigs. These tables provide key antimicrobial use data including the number and percent of flocks/herds exposed to each listed antimicrobial (active ingredient), the number and percent of rations that contained each antimicrobial, the median number of days the herd/flock was fed the antimicrobial (days exposed), the percent of the flock/herds that was exposed to the antimicrobial, the median concentration of the antimicrobial in the feed (g/tonne), the rate of antimicrobial consumption (g/1,000 chicken-days or 1,000 pig-days), and the amount antimicrobial fed adjusted for chicken or pig population and weight. This last measure provides a standardized estimate of use that can be compared with estimates from other countries and surveillance programs.

For the antimicrobial distribution data provided by the Canadian Animal Health Institute (CAHI), the data are aggregated by CAHI according to accounting rules and are provided in antimicrobial categories/classes. The CAHI data are reported as quantitative information (e.g., kg of active ingredient or as mg of active ingredient/population correction unit).

NATIONAL OR PROVINCIAL/REGIONAL PREVALENCE ESTIMATES

Data for the farm antimicrobial use components in this chapter are presented at the national and regional level. For broiler chickens on farm, the 4 provinces/regions were British Columbia, Prairies (Alberta and Saskatchewan), Ontario, and Québec. For grower-finisher pigs on farm, the 5 provinces (or 3 provinces/regions) were the Prairies (Alberta, Saskatchewan, and Manitoba), Ontario, and Québec. Data from CAHI are presented nationally and provincially.

TEMPORAL FIGURES AND DATA TABLES FOR SIGNIFICANCE TESTING

All temporal figures and accompanying data tables presented in this chapter for the *Farm Surveillance* components depict the variation in antimicrobial use since the year surveillance was implemented or a significant change was made in the data collection; this is 2009 for grower-finisher pigs, 2013 for broiler chickens and 2006 for the CAHI data. For consistency across the farm components, statistical analyses were limited to comparison of 2014 results with: 1) 2013 results and 2) the first year of surveillance. Where temporal analyses are presented regionally for the *Farm Surveillance* components, the data are truncated to a maximum of 5 surveillance years. Therefore, temporal figures for grower-finisher pigs are limited from 2010 to 2014 data where the national data include 2009 data.

To facilitate the assessment of significant results at a glance, all significant differences found have been highlighted in blue (or red for significant regional differences and purple to indicate significant differences in both year and region) in data tables underneath the temporal figures. Finally, for all statistical analyses, a P-value less than or equal to the level of significance of 0.05 (\leq 0.05) was used to indicate a significant difference between years. All statistically significant results are marked by the use of the words "significant" or "significantly" in the text. All other findings presented without this word should be considered as non-statistically significant and should be interpreted with caution.

As the CAHI data represent census type information, there is no testing of statistical differences between years (i.e., the CAHI data are not data derived from samples); any difference in findings between years should reflect a true difference.

BACKGROUND INFORMATION

FARM—BROILER CHICKENS

A total of 143 farms across 4 poultry producing provinces/regions (British Columbia, Prairies [Alberta and Saskatchewan], Ontario, and Québec) participated in the CIPARS *Farm Surveillance* program in 2014. The proportion of flocks sampled that were antimicrobial-free and organic in a certain region, such as in British Columbia, may not be representative of the volume of birds raised under these management practices in the participating province/region or nationally.

One hundred and forty-three chick placement and 141 pre-harvest questionnaires were received. The sampling and data collection in broiler farms commenced in January and covered 8 quota periods (A-121 to A-128). Fifteen poultry veterinary practices conducted the survey and collected samples associated with the flock visit (placement or pre-harvest).

The overall capacity of the sentinel farms was 7.6 million birds at 1 grow-out period; overall contribution to national production was approximately 7%, similar to the previous year. The chicks placed in these farms were from 19 major commercial broiler hatcheries in the 5 provinces (Canadian Hatcheries Federation members). A proportion of chicks in 22 flocks were from imported sources. The mean age at pre-harvest sampling was 34 days and mean body weight was 2.00 kg. Table 7.7 summarizes the farm level demographics of the 143 farms included in the survey.

FARM—GROWER-FINISHER PIGS

Data were collected from sentinel swine farms through questionnaires administered by the herd veterinarian (or designated staff) to the producer (or designated farm staff). The questionnaires collected data on antimicrobial use (AMU), herd demographics, and animal health—antimicrobial use data pertain only to the grow-finish phase of production.

Over the 5-year period from 2009 to 2014, 549 questionnaires were received from 146 sentinel swine farms, with 34% of farms (50/146) reporting in each of the 6 years. In 2014, questionnaires were submitted from 95 sentinel farms by 21 veterinarians, contributing 17% (95/549) of the total number of questionnaires to the data presented in this section.

In 2014, questionnaires were received from 18 herds in Alberta (19%, 18/95), 17 in Saskatchewan (18%, 17/95), 8 in Manitoba (8%, 8/95), 26 in Ontario (27%, 26/95) and 26 in Québec (27%, 26/95).

In 2014, 62% of farms (59/95) reported owning their own breeding sows; 44% (42/95) kept sows on-site and 18% (17/95) had sows off-site. Twenty-seven percent (26/95) of farms reported that they purchased pigs from a single source while 11% (10/95) purchased pigs from multiple sources.

Fifty-nine percent of farms (56/95) reported being all-in-all-out operations and 41% of farms (39/95) indicated operating as continuous flow systems. These proportions represent are a shift in operation types compared to 2013, where 52% of sentinel farms (46/89) reported all-in-all-out operations and 48% of farms (43/89) indicated operating as a continuous flow system.

QUANTITIES OF ANTIMICROBIALS DISTRIBUTED FOR SALE FOR USE IN ANIMALS

As an estimate of the quantities of licensed antimicrobials used in animals, data on active ingredients distributed for sale were aggregated and provided to the Public Health Agency of Canada by the Canadian Animal Health Institute (CAHI). CAHI is the trade association representing the companies that manufacture and distribute drugs for administration to food (including fish), sporting, and companion animals in Canada. The association estimates that its members' sales represent about 90% of all sales of licensed animal pharmaceutical products in Canada¹². The CAHI data provides a measure of antimicrobials distributed for sale for all animal species, including those not covered by CIPARS farm-level surveillance. The CAHI data do not include antimicrobials manufactured for export.

The CAHI data do not include antimicrobials imported under the personal-use provision of the federal Food and Drugs Act Regulations (own use import—OUI), nor do they include imported active pharmaceutical ingredients (API), which are drugs imported in non-dosage form and compounded by a licensed pharmacist or veterinarian. The latest information from an Ipsos/Impact Vet study prepared for CAHI is that the lost opportunity value due to OUI and API was estimated to be 13% of total animal health product sales. Health Canada's Veterinary Drugs Directorate is currently reviewing these importation processes as part of their regulatory modernization discussions, to enable appropriate oversight. The CAHI data do not include prescriptions filled at community pharmacies for antimicrobials to be used in companion animals using human labeled drugs. Hence, distribution data should always be considered with other sources of information (such as farm-level surveillance and antimicrobial resistance findings) for any decision-making. Strong caution should be applied with making inferences with the CAHI to any use practice for a particular animal species. As stated in the United Kingdom's surveillance report on antimicrobials sold for use in animals¹³, the population is an important denominator, as the greater the number of animals, the greater the potential need for antimicrobial therapy. A standard weight was used for each production class to determine the biomass of the animal population; the population correction unit (PCU). However, a static standard weight may not reflect an industry shift in production affecting the average weights of animals treated, related to weather, trade, or other reasons. For the first time, we are presenting the companion animal data adjusted for population and weights of cats and dogs. Other animals (pocket pets, caged pet birds, reptiles, etc.) were not included in the denominator.

Distribution data in broad categories, whether adjusted for populations and weights or not, cannot account for the individual potencies of the antimicrobials administered to different species; having implications for interpretations in trends over time. For example, a decrease in the milligrams of antimicrobials distributed reported for a given year could potentially reflect a

-

¹² Available at: http://cahi-icsa.ca/about/

¹³ 2012. UK Veterinary Antibiotic Resistance and Sales Surveillance Report. Veterinary Medicines Directorate - Government Department for the Environment, Food and Rural Affairs. UK-VARSS. Available at: http://webarchive.nationalarchives.gov.uk/20140909112428/http://www.vmd.defra.gov.uk/pharm/antibiotic_s alesdata.aspx. Accessed March 2014.

switch to using a more potent drug, as opposed to reflecting a decrease in the actual exposure of animals to antimicrobials.

There have been several advances in detail of this data over the past five years. Since 2011, the data were stratified by province, since 2012 stratified by companion animal/production animal, and since 2013 stratified by route of administration.

CIPARS continues to work to improve this measure and other appropriate measures, to best reflect antimicrobial use in the Canadian context.

7. FARM SURVEILLANCE—BROILER CHICKENS

KEY FINDINGS

- The 143 sentinel farms represent a cross-section of hatcheries, chick source (e.g., domestic and few broiler chicken flocks with imported chicks mixed), production type, farm size, and breed/genetics (Table 7.7 and Table 7.8); sample and data were collected over 8 quota periods. Two cohort flocks were not sampled at pre-harvest.
- Antimicrobials administered via feed represented the greatest route of administration/exposure (91%, 128/141 flocks) for broilers (Table 7.1).
- Thirty-five percent of broiler flocks were medicated at the hatchery; significantly lower than 2013.
- At the hatchery, ceftiofur, a third-generation cephalosporin, was the only Category I (a category considered of very high importance to human medicine) antimicrobial administered. The number of broiler flocks that reported using ceftiofur was significantly lower in 2014 than in 2013; it was administered to only 9 flocks in 2014 compared to 31 flocks in 2013. All flocks that reported using this antimicrobial were medicated prior to the May 2014 change in industry use practice¹⁴ eliminating the preventive use of Category I antimicrobials.
- There were no reported use of Category I antimicrobials in either feed or water; all Category I antimicrobials were administered by injection.
- Among the broiler flocks surveyed, the most commonly used antimicrobials were bacitracin (57%, 82/143), salinomycin (35%, 50/143), and monensin (31%, 45/143) (Table 7.2). These are all antimicrobials administered via feed.
- Fourteen broiler flocks (10%, 14/143) reported no use of antimicrobials (Table 7.1). These were flocks raised as antimicrobial-free, organic, and conventional flocks that were fed un-medicated rations.

ADMINISTRATION IN FEED

 Overall, 91% (128/141) of broiler chicken flocks reported antimicrobial use in feed; the antimicrobials used belonged to Categories II, III, and IV. No Category I antimicrobials were used in feed.

¹⁴ Agrimedia Inc. 2014. Canada's chicken farmers plan to eliminate some antibiotic use by May 2014. Available at: www.betterfarming.com/online-news/canada%E2%80%99s-chicken-farmers-plan-eliminate-some-antibiotic-use-may-2014-54120. Accessed January 2016.

- Provincial/regional variations in antimicrobial use were observed in 2014 (Figure 7.4), but the following antimicrobial classes were used across the 4 provinces/region: streptogramins, bacitracins, ionophores, and chemical coccidiostats.
- The use of avilamycin, an orthosomycin indicated for the prevention of necrotic enteritis, was reported by the producers/veterinarians after it was licensed for use and added to Health Canada's Human and Veterinary Prescription Drugs List in March, 2014¹⁵.
- Disease prevention was the most frequently reported reason for antimicrobial use in broiler flocks (91%, 128/141) (Figure 7.5).
- Fifteen percent (21/141) of flocks used antimicrobials for disease treatment in 2014.
- Only 4% (6/141) of broiler flocks reported use of antimicrobials for growth promotion.
- Trimethoprim-sulfadiazine, reported being used for disease treatment, had the highest grams per 1,000 chicken-days (Table 7.4).

ADMINISTRATION IN WATER

- No antimicrobial belonging to Category I was reported used in water in 2014.
- Unlike in the feed antimicrobials, the water-level medications were used largely for disease treatment and rarely for prevention (Figure 7.11).
- Sulfonamide antimicrobials also had the highest grams per 1,000 chicken-days (Table 7.5).

ADMINISTRATION IN OVO OR SUBCUTANEOUS INJECTION

- The use of 3 injectable antimicrobials was reported in 2014. These were: ceftiofur (6%, 9/143), gentamicin (5%, 7/143), and lincomycin-spectinomycin (24%, 34/143).
- Provincial/regional differences in antimicrobials used at the hatcheries were observed (Figure 7.1).
- The primary reason for use reported for all antimicrobials administered by injection was mainly for disease prevention, except for 1 flock that used injectable antimicrobial for disease treatment (Figure 7.2). Avian pathogenic *E. coli* (APEC), which causes yolk-sacculitis and neonatal septicemia, was the most frequently targeted pathogen for preventive use of any antimicrobials administered at the hatchery in 2014 (Figure 7.3).
- Final doses for hatchery administered antimicrobials reported in the questionnaires were consistent with the manufacturer recommended dosages (Compendium of

¹⁵ Health Canada 2015. Product Information, Surmax. Available at: http://webprod5.hc-sc.gc.ca/dpd-bdpp/dispatch-repartition.do?lang=eng. Accessed January 2016.

Veterinary Products¹⁶) or based on the quantities of active ingredient per body weight (mg/kg) calculated by standard egg or chick weight (Table 7.3).

SUMMARY OF ANTIMICROBIAL USE BY ROUTE OF ADMINISTRATION

Table 7.1. Number of broiler flocks with reported antimicrobial use by route of administration, 2014

		Route of admir	nistration	
Antimicrobial use	Any route ^a	In ovo/subcutaneous	Feed	Water
	n (%)	n (%)	n (%)	n (%)
Any antimicrobial use	129 (90)	50 (35)	128 (91)	20 (14)
No antimicrobial use ^b	14 (10)	93 (65)	13 (9)	121 (86)
Total flocks	143 (100)	143 (100)	141 (100)	141 (100)

Two flocks were sampled at placement but were not sampled at pre-harvest (no feed and water data).

^a Flocks with reported use of an antimicrobial class by feed, water, *in ovo*/subcutaneous, or any combination of these routes are included in each count.

^b These were antibiotic free, organic and a conventional flock that were fed unmedicated feed ration and no medications in water throughout the grow-out period. The proportion of flocks sampled that were antimicrobial-free and organic in certain province, such as in British Columbia, may not be representative of the volume of birds raised under these management practices in that participating province or nationally.

¹⁶ North American Compendiums 2015. Compendium of Veterinary Products online. Available at: https://bam.naccvp.com. Accessed January 2016.

Table 7.2. Number of broiler flocks with reported use of antimicrobial by route of administration, 2014

				Route of adr	ninistration	
	Antimicrobial class	Antimicrobial	Any route ^a	In ovo/SC	Feed	Water
			n (%)	n (%)	n (%)	n (%)
	Third generation cephalosporins	Ceftiofur	9 (6)	9 (6)	0 (0)	0 (0)
	Fluoroquinolone	Enrofloxacin	0 (0)	0 (0)	0 (0)	0 (0)
	Aminoglycosides	Apramycin	1 (1)	0 (0)	0 (0)	1 (1)
		Gentamicin	7 (5)	7 (5)	0 (0)	0 (0)
	Lincosamides-aminocyclitols	Lincomycin-spectinomycin	34 (24)	34 (24)	0 (0)	0 (0)
	Macrolides	Tylosin	28 (20)	0 (0)	28 (20)	0 (0)
II	Penicillins	Amoxicillin	2 (1)	0 (0)	0 (0)	2 (1)
		Penicillin G potassium	13 (9)	0 (0)	5 (4)	8 (6)
		Penicillin G procaine	12 (8)	0 (0)	12 (9)	0 (0)
	Streptogramins	Virginiamycin	28 (20)	0 (0)	28 (20)	0 (0)
	Trimethoprim-sulfonamides	Trimethoprim-sulfadiazine	17 (12)	0 (0)	17 12)	0 (0)
	Bacitracin	Bacitracin	82 (57)	0 (0)	82 (58)	0 (0)
	Sulfonamides	Sulfamethazine	1 (1)	0 (0)	0 (0)	1 (1)
Ш		Sulfaquinoxaline	5 (3)	0 (0)	0 (0)	5 (4)
1111		Sulfaquinoxaline-pyrimethamine	1 (1)	0 (0)	0 (0)	1 (1)
	Tetracyclines	Oxytetracycline	1 (1)	0 (0)	1 (1)	0 (0)
	•	Tetracycline-neomycin	4 (3)	0 (0)	0 (0)	4 (3)
	Flavophospholipids	Bambermycin	0 (0)	0 (0)	0 (0)	0 (0)
	Ionophores	Lasalocid	4 (3)	0 (0)	4 (3)	0 (0)
		Maduramicin	10 (7)	0 (0)	10 (7)	0 (0)
I۷		Monensin	45 (31)	0 (0)	45 (32)	0 (0)
		Narasin	31 (22)	0 (0)	31 (22)	0 (0)
		Narasin-nicarbazin	37 (26)	0 (0)	37 (26)	0 (0)
		Salinomycin	50 (35)	0 (0)	50 (35)	0 (0)
	Chemical coccidiostats	Clopidol	7 (5)	0 (0)	7 (5)	0 (0)
		Decoquinate	24 (17)	0 (0)	24 (17)	0 (0)
		Diclazuril	0 (0)	0 (0)	0 (0)	0 (0)
N/A		Nicarbazin	40 (28)	0 (0)	40 (28)	0 (0)
		Robenidine	1 (1)	0 (0)	1 (1)	0 (0)
		Zoalene	3 (2)	0 (0)	3 (2)	0 (0)
	Orthosomycins	Avilamycine	32 (23)	0 (0)	32 (23)	0 (0)

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

N/A = not applicable (no classification available at the time of writing of this report).

SC = subcutaneous route of injection.

^a Flocks with reported use of an antimicrobial class by feed, water, in ovo/subcutaneous, or any combination of these routes are included in each count.

ANTIMICROBIAL USE IN OVO OR SUBCUTANEOUS INJECTION

Figure 7.1. Percentage of broiler flocks reporting antimicrobial use *in ovo* or subcutaneous injection at the hatchery level by province/region, 2014

Province/region National British Columbia **Prairies** Québec Ontario 2013 2013 2014 2013 2014 2013 Number of flocks 143 37 **Antimicrobial** 31% 6% 58% 7% 53% 11% Ceftiofur 0% 0% 29% 9% 12% 20% Gentamicin 3% 0% 0% 0% 5% 3% 0% 0% Ш 24% 0% 0% 82% Lincomycin-spectinomycin 24% 0% 0% 17% 14% 68% 65% 35% 73% No antimicrobials used at the hatchery 9%

Roman numerals I to II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only the current year is depicted in the figure but all surveillance years are included in the table.

Numbers per column may not add up to 100% due to rounding or batches of chicks (hatched at the same time to supply 1 barn) may have used more than 1 antimicrobial.

Data represent flocks medicated at the hatchery at day 18 of incubation or upon hatch.

For the temporal analyses nationally and by province/region, the proportion (%) of flocks using antimicrobial over the current year has been compared to the proportion (%) of flocks using the same antimicrobial during the first and the previous surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

100% Percentage of broiler flocks reporting antimicrobial use at the hatchery level ■ Ceftiofur ■Gentamicin 90% ■Lincomycin-spectinomycin 80% 70% 60% 50% 40% 30% 20% 10% 0% 143 143 143 143 Prevention, general High risk breeder flock source Producer request Disease treatment Disease prevention

Figure 7.2. Percentage of broiler flocks reporting antimicrobial use *in ovo* or subcutaneous injection at the hatchery by primary reason, 2014

Number of broiler flocks and primary reasons for use

Pri	mary reasons for use	Disease treatment		Disease prevention	
Sul	bcategory		Prevention, general	High risk breeder flock source	Producer request
Nu	mber of flocks	143	143	143	143
An	timicrobial				
П	Ceftiofur	0%	31%	3%	0%
	Gentamicin	0%	4%	1%	0%
["	Lincomycin-spectinomycin	0.7%	23%	0%	0%

Roman numerals I to II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Respondents were instructed to select only one of "Disease treatment", "Disease prevention", "High risk breeder flock source" (i.e., hatching eggs from old flocks that may have poor shell quality; any disease pressure, infectious or metabolic) as a primary reason for use of an antimicrobial. High risk breeder flock source and producer request were deemed preventive reasons for use.

Figure 7.3. Percentage of broiler flocks reporting antimicrobial use *in ovo* or subcutaneous injection at the hatchery for *Disease prevention*, 2014

Number of broiler flocks and bacterial pathogens

Primary reason for use				Disease pre	Disease prevention							
Bacterial pathogen		APEC	Enterococcus cecorum	terococcus cecorum Salmonella Staphylococcus		Clostridium spp.	Others					
Number of flocks		143	143	143	143	143	143					
An	timicrobial											
I Ceftiofur		6%	0%	1%	0%	0%	0%					
	Gentamicin	5%	4%	4%	0%	0%	0%					
	Lincomycin-spectinomycin	23%	1%	0%	0%	2%	0%					

Roman numerals I to II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

The respondents were instructed to select all potential pathogens affecting chicks post-hatch as diagnosis cannot be made at the time of hatchery medication; lesions typically occur post-hatch. These are largely for prevention. APEC = Avian pathogenic *E. coli* (responsible for yolk sacculitis and septicemia).

In 2014, lincomycin-spectinomycin was largely used for prevention except in 1 flock that reported use of this antimicrobial for treatment.

Table 7.3. Summary of antimicrobial use administered *in ovo* or subcutaneous injection at the hatchery, 2014

Antimicrobial	Flock n (%)	Days exposed median (min.; max.)	Dose (mg) per egg/chick median (min. ; max.) ^{a,b,c}
l Ceftiofur	9 (6%)	N/A	0.20 (0.10 ; 0.20)
Gentamicin	7 (5%)	N/A	0.20 (0.20 ; 0.20)
Lincomycin-spectinomycin	34 (24%)	N/A	0.75 (0.75 ; 0.75)

Roman numerals I to II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

N/A = not applicable (these were administered only once).

^a Doses used for *in ovo* applications in hatching eggs at day 18 of incubation or subcutaneous applications in chicks at day of hatch.

^b Median use estimates are based on flocks that used the specified antimicrobial in mg per hatching egg or chick.

^c Doses reported were based on milligrams per egg or chick suggested by the manufacturer or from veterinary consultation (based on mg/body weight of the treated animal or any available recommendations based on residue avoidance): ceftiofur routine dose (0.10 to 0.20 mg/egg or chick), gentamicin routine dose (0.20 mg/chick or egg), lincomycin-spectinomycin routine dose (0.75 mg/egg or chick consisting of 0.50 mg spectinomycin and 0.25 mg of lincomycin).

ANTIMICROBIAL USE IN FEED

100% ■Macrolides ■ Penicillins 90% ■ Streptogramins Percentage of broiler flocks reporting antimicrobial use in feed ■Trimethoprim-sulfonamides ■ Bacitracins 80% ■Tetracyclines ■Ionophores 70% ■Chemical coccidiostats ■ Orthosomycins 60% ■No antimicrobial use in feed 50% 40% 30% 20% 10% 0% 141 National British Columbia Prairies Québec Ontario

Figure 7.4. Percentage of broiler flocks reporting antimicrobial use in feed by province/region, 2014

Number of broiler flocks and province/region

Province/region		Nati	onal	British C	olumbia	Prairies		Ontario		Québec		
Year		2013	2014	2013	2014	2013	2014	2013	2014	2013	2014	
Number of flocks		97	141	24	29	15	37	30	42	28	33	
Antimicrobial class												
	Macrolides	7%	20%	0%	0%	7%	16%	20%	29%	0%	30%	
۱.,	Penicillins	12%	12%	50%	24%	0%	0%	0%	2%	0%	27%	
"	Streptogramins	46%	20%	54%	34%	40%	14%	43%	14%	46%	21%	
	Trimethoprim-sulfonamides	15%	12%	0%	0%	0%	0%	23%	21%	29%	24%	
	Bacitracins	48%	58%	50%	45%	67%	84%	37%	55%	50%	45%	
	Tetracyclines	1%	1%	0%	0%	0%	0%	3%	2%	0%	0%	
IV	Flavophospholipids	1%	0%	0%	0%	0%	0%	0%	0%	4%	0%	
IV	Ionophores	91%	88%	88%	59%	93%	97%	87%	93%	96%	97%	
N/A	Chemical coccidiostats	49%	46%	63%	52%	13%	8%	53%	60%	54%	67%	
IN/F	Orthosomycin	0%	21%	0%	7%	0%	5%	0%	43%	0%	30%	
	No antimicrobial use in feed	7%	9%	13%	34%	0%	3%	10%	2%	4%	3%	

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification at the time of writing of this report).

Only the current year is depicted in the figure but all surveillance years are included in the table.

Ionophores and chemical coccidiostats are listed in Table 7.2 and Table 7.4.

Numbers per column may not add up to 100% as some flocks may have used an antimicrobial more than once or used multiple antimicrobials throughout the grow-out period.

For the temporal analyses nationally and by province/region, the proportion (%) of flocks using antimicrobial class over the current year has been compared to the proportion (%) of flocks using the same antimicrobial class during the first and the previous surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 7.5. Percentage of broiler flocks reporting antimicrobial use in feed by primary reason, 2014

Number	of	broiler	flocks	and	reason	for	use

Reason for use		Disease	treatment	Disease	orevention	Growth p	romotion
Year		2013	2014	2013	2014	2013	2014
Number of flocks		97	141	97	141	97	141
Antimicrobial class							
	Macrolides	0%	0%	7%	20%	0%	0%
۱,	Penicillins	0%	1%	10%	10%	2%	1%
"	Streptogramins	0%	0%	41%	18%	5%	1%
	Trimethoprim-sulfonamides	15%	12%	0%	0%	0%	0%
ııı	Bacitracins	1%	0%	39%	55%	8%	3%
""	Tetracyclines	1%	1%	0%	0%	0%	0%
IV	Flavophospholipids	0%	0%	0%	0%	1%	0%
1	lonophores	0%	0%	91%	88%	0%	0%
NI/A	Chemical coccidiostats	0%	0%	49%	46%	0%	0%
N/A	Orthosomycins	0%	0%	0%	23%	0%	0%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report). Ionophores and chemical coccidiostats are listed in Table 7.2 and Table 7.4.

Growth promotion includes production uses/claims listed in the Compendium of Medicating Ingredients Brochure ¹⁷ other than disease prevention or treatment such as 1) to increase the rate of weight gain, and 2) to improve feed efficiency.

Only the current year is depicted in the figure but all surveillance years are included in the table.

¹⁷ Available at: www.inspection.gc.ca/animals/feeds/medicating-ingredients/eng/1300212600464/1320602461227. Accessed January 2016.

^{...}working towards the preservation of effective antimicrobials for humans and animals...

Figure 7.6. Percentage of broiler flocks reporting antimicrobial use in feed for *Disease* prevention, 2014

Primary reason for use Disease conditions		Disease prevention									
		Yolksacculitis	Septicemia	Musculoskeletal /lameness	Respiratory	Necrotic enteritis	Coccidiosis	Other diseases			
Number of flocks		141	141	141	141	141	141	141			
Ant	Antimicrobial class										
	Macrolides	0%	0%	0%	0%	20%	0%	0%			
	Penicillins	0%	0%	0%	0%	10%	0%	0%			
"	Streptogramins	0%	0%	0%	0%	18%	0%	0%			
	Trimethoprim-sulfonamides	0%	0%	0%	0%	0%	0%	0%			
Ш	Bacitracins	0%	0%	0%	0%	55%	0%	0%			
III	Tetracyclines	0%	0%	0%	0%	0%	0%	0%			
IV	Ionophores	0%	0%	0%	0%	0%	88%	0%			
NI/A	Chemical coccidiostats	0%	0%	0%	0%	0%	46%	0%			
N/A	Orthosomycins	0%	0%	0%	0%	23%	0%	0%			

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report). Ionophores and chemical coccidiostats are listed in Table 7.2 and Table 7.4.

Data presented in the above figure were number of flocks reporting disease prevention including few flocks reporting growth promotion: bacitracins (4 flocks), penicillins (1 flock), and streptogramin (2 flocks).

Figure 7.7. Percentage of broiler flocks reporting antimicrobial use in feed for *Disease* treatment, 2014

Number of broiler flocks and disease condition

Pri	mary reason for use			Di	sease treatmer	it		
Dis	ease condition	Yolksacculitis	Septicemia	Musculoskeletal/ lameness	Respiratory	Necrotic enteritis	Coccidiosis	Other diseases
Nur	mber of flocks	141	141	141	141	141	141	141
Ant	imicrobial class	•						
	Macrolides	0%	0%	0%	0%	0%	0%	0%
П	Penicillins	0%	0%	0%	0%	1%	0%	0%
II	Streptogramins	0%	0%	0%	0%	0%	0%	0%
	Trimethoprim-sulfonamides	2%	7%	1%	2%	0%	0%	0%
Ш	Bacitracins	0%	0%	0%	0%	0%	0%	0%
III	Tetracyclines	1%	0%	0%	0%	0%	0%	1%
IV	Ionophores	0%	0%	0%	0%	0%	0%	0%
N 1 / A	Chemical coccidiostats	0%	0%	0%	0%	0%	0%	0%
N/A	Orthosomycins	0%	0%	0%	0%	0%	0%	0%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report). Ionophores and chemical coccidiostats are listed in Table 7.2 and Table 7.4.

Table 7.4. Quantitative summary of antimicrobial use in feed, 2014

	Antimicrobial	Flock n (%)	Ration n (%)	Days exposed median (min.; max.) ^a	Inclusion rate (g/tonne) median (min. ; max.) ^b	Grams/1,000 chicken- days median (min. ; max.) ^{c,d,e}
	Tylosin	28 (20)	70 (6)	8 (1 ; 18)	22 (22 ; 22)	3 (0.5 ; 5)
	Penicillin G potassium	5 (4)	9 (1)	8 (3; 9)	20 (20 ; 20)	1 (1; 2)
Ш	Penicillin G procaine	12 (9)	15 (1)	12 (8 ; 18)	110 (33 ; 110)	3 (2; 4)
	Virginiamycin	28 (20)	65 (6)	7 (1; 19)	22 (22 ; 44)	3 (0.4; 8)
	Trimethoprim-sulfadiazine	17 (12)	17 (1)	7 (2 ; 14)	200 (200 ; 300)	25 (7 ; 46)
Ш	Bacitracin	82 (52)	243 (21)	9 (1; 20)	55 (55 ; 110)	6 (1 ; 21)
	Oxytetracycline	1 (1)	1 (0.1)	7 (7 ; 7)	97 (97 ; 97)	8 (8 ; 8)
	Lasalocid	4 (3)	8 (1)	7 (3; 9)	60 (60 ; 105)	10 (5 ; 19)
	Maduramicin	10 (7)	27 (2)	8 (3 ; 11)	4 (4 ; 5)	0.2 (0.1; 1)
IV	Monensin	45 (32)	95 (8)	8 (1; 20)	99 (50 ; 100)	12 (1 ; 21)
	Narasin	31 (22)	61 (5)	8 (1 ; 16)	70 (40 ; 70)	11 (2 ; 15)
	Narasin-nicarbazin	37 (26)	156 (13)	9 (2 ; 18)	80 (80 ; 80)	5 (2 ; 14)
	Salinomycin	50 (35)	125 (11)	8 (1 ; 18)	60 (30 ; 120)	7 (1 ; 14)
	Clopidol	7 (5)	19 (2)	7 (3 ; 17)	125 (25 ; 125)	7 (1; 26)
	Decoquinate	24 (17)	42 (4)	9 (2 ; 18)	30 (10 ; 60)	2 (1; 6)
N/A	Nicarbazin	40 (28)	82 (7)	8 (3 ; 17)	50 (50 ; 125)	3 (1 ; 16)
	Robenidine	1 (1)	1 (0.1)	7 (7 ; 7)	33 (33 ; 33)	3 (3; 3)
	Zoalene	3 (2)	6 (1)	10 (8 ; 12)	125 (125 ; 125)	7 (4 ; 10)
	Avilamycin	32 (23)	68 (5)	8 (1 ; 17)	15 (15 ; 25)	2 (0.4 ; 4)
	Unmedicated flock/ration	13 (9)	60 (6)			

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report). Combination antimicrobials (trimethoprim-sulfadiazine and narasin-nicarbazin) include the inclusion rate for both antimicrobial components.

^a Days exposed are by ration.

b Inclusion rate per tonne of feed reported by the veterinarian/producer.

^c Estimates are based on consumption tables of the common breeds prevalent in Canada(Ross x Ross, Cobb x Cobb) and representative Canadian feed company standards (Nutreco Canada Inc., Wallenstein Feed and Supply Ltd.) for straight-run birds.

d Median use estimates are based on rations that used the specified antimicrobial and are estimated in "grams per 1,000 chicken-days (g/TCD)".

^e TCD values are by ration.

100 ■Tylosin ■Penicillin G potassium 90 □Penicillin G procaine ■Virginiamycin Median grams of active ingredient/1,000 chicken-days 80 ■ Trimethoprim-sulfadiazine ■Bacitracin Oxytetracycline 70 ■Avilamycin 60 50 40 30 20 10 0 141 141 141 Disease Treatment Disease Prevention Growth promotion

Figure 7.8. Quantity of antimicrobials used in feed by reason for use, 2014

Number of broiler flocks and primary reasons for use

Re	ason for use	Disease	treatment	Disease p	revention	Growth p	romotion
Yea	ar	2013	2014	2013	2014	2013	2014
Nu	mber of flocks	97	141	97	141	97	141
An	timicrobial						
	Tylosin	0 (0)	0 (0)	25 (3)	3 (70)	0 (0)	0 (0)
	Penicillin G potassium	0 (0)	0 (0)	0 (0)	1 (7)	0 (0)	2 (2)
II	Penicillin G procaine	0 (0)	3 (2)	19 (3)	3 (13)	3 (4)	0 (0)
	Virginiamycin	0 (0)	1 (1)	120 (2)	2 (55)	22 (3)	4 (9)
	Trimethoprim-sulfadiazine	16 (37)	25 (17)	0 (0)	0 (0)	0 (0)	0 (0)
	Bacitracin	3 (8)	0 (0)	124 (6)	6 (228)	24 (5)	5 (15)
""	Oxytetracycline	1 (55)	8 (1)	0 (0)	0 (0)	0 (0)	0 (0)
IV	Bambermycin	0 (0)	0 (0)	0 (0)	0 (0)	4 (0.2)	0 (0)
N/A	A Avilamycin	0 (0)	0 (0)	0 (0)	2 (68)	0 (0)	0 (0)

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report).

Median use estimates are based on rations that used the specified antimicrobial and are estimated in "grams per 1,000 chicken-days".

Estimates are based on the average feed consumption from common breeds (Ross x Ross, Cobb x Cobb) and representative Canadian feed company standards for straight run birds.

Numbers in parentheses are total rations.

Only the current year is depicted in the figure but all surveillance years are included in the table.

Figure 7.9. Quantity of antimicrobial use in feed by province/region, 2014

Number of broiler flocks and province/region

Pro	ovince/region	Nati	onal	British C	olumbia	Pra	iries	Ont	ario	Qué	bec
Yea	ar	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Nui	mber of flocks	97	141	24	29	15	37	30	42	28	33
Ant	timicrobial										
	Tylosin	3 (25)	3 (70)	0 (0)	0 (0)	0 (0)	3 (11)	3 (23)	3 (34)	0 (0)	2 (25)
	Penicillin G potassium	0 (0)	1 (9)	0 (0)	1 (9)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Ш	Penicillin G procaine	3 (22)	3 (15)	3 (22)	3 (4)	0 (0)	0 (0)	0 (0)	3 (2)	0 (0)	3 (9)
	Virginiamycin	2 (142)	3 (65)	2 (35)	3 (23)	2 (21)	2 (13)	3 (48)	3 (15)	2 (38)	3 (14)
	Trimethoprim-sulfadiazine	37 (16)	25 (17)	0 (0)	0 (0)	0 (0)	0 (0)	15 (7)	16 (9)	46 (9)	31 (8)
Ш	Bacitracin	6 (151)	6 (243)	5 (32)	5 (42)	6 (34)	5 (90)	7 (31)	6 (56)	4 (54)	5 (55)
	Oxytetracycline	55 (1)	8 (1)	0 (0)	0 (0)	0 (0)	0 (0)	55 (1)	8 (1)	0 (0)	0 (0)
IV	Bambermycin	0.2 (4)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0.2 (4)	0 (0)	0 (0)	0 (0)
N/A	Avilamycin	0 (0)	2 (61)	0 (0)	2 (4)	0 (0)	4 (3)	0 (0)	2 (39)	0 (0)	2 (20)

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report).

Median use estimates are based on rations that used the specified antimicrobial and are estimated in "grams per 1,000 chicken-days".

Estimates are based on the average feed consumption from common breeds (Ross x Ross, Cobb x Cobb) and representative Canadian feed company standards for straight run birds.

This figure does not include ionophores and chemical coccidiostats.

Only the current year is depicted in the figure but all surveillance years are included in the table (i.e., no flavophospholipids use reported in 2014).

Numbers in parenthesis are total rations.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

ANTIMICROBIAL USE IN WATER

Figure 7.10. Percentage of broiler flocks reporting antimicrobial use in water by province/region, 2014

Number of broiler flocks and province/region

Pro	ovince/region	Nati	onal	British C	Columbia	Pra	iries	Ont	ario	Qué	bec
Yea	ar	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Nui	mber of flocks	97	141	24	29	15	37	30	42	28	33
Ant	timicrobial										
1	Enrofloxacin	2%	0%	8%	0%	0%	0%	0%	0%	0%	0%
	Apramycin	0%	1%	0%	0%	0%	0%	0%	2%	0%	0%
Ш	Amoxicillin	0%	1%	0%	0%	0%	0%	0%	5%	0%	0%
	Penicillin	4%	6%	4%	3%	7%	11%	7%	7%	0%	3%
	Sulfamethazine	0%	1%	0%	0%	0%	3%	0%	0%	0%	0%
1,,,	Sulfaquinoxaline	1%	4%	0%	3%	7%	11%	0%	0%	0%	0%
""	Sulfaquinoxaline-pyrimethamine	2%	1%	0%	0%	7%	0%	3%	0%	4%	3%
	Tetracycline-neomycin	0%	4%	0%	0%	0%	8%	0%	2%	0%	0%
	No antimicrobial use in water	93%	86%	96%	93%	93%	68%	93%	88%	96%	97%

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only the current year is depicted in the figure but all surveillance years are included in the table (i.e., enrofloxacin use reported only in 2013).

Numbers per column may not add up to 100% as some flocks may have used an antimicrobial more than once or used multiple antimicrobials throughout the grow-out period.

For the temporal analyses nationally and by province/region, the proportion (%) of flocks using antimicrobial over the current year has been compared to the proportion (%) of flocks using the same antimicrobial during the first and the previous surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

100% □Apramycin ■ Amoxicillin 90% ■ Penicillin ■ Sulfamethazine Percentage of broiler flocks reporting antimicrobial use in water ■ Sulfaquinoxaline 80% □Sulfaquinoxaline-pyrimethamine ■Tetracycline-neomycin 70% 60% 50% 40% 30% 20% 10% 0% 141 Disease treatment Disease prevention

Figure 7.11. Percentage of broiler flocks reporting antimicrobial use in water by primary reason, 2014

Number of broiler flocks and primary reasons for use

Pri	mary reasons for use	Disease treatment	Disease prevention
Nu	mber of flocks	141	141
An	timicrobial		
	Apramycin	1%	0%
Ш	Amoxicillin	1%	0%
	Penicillin	5%	1%
	Sulfamethazine	1%	0%
۱,,,	Sulfaquinoxaline	4%	0%
""	Sulfaquinoxaline-pyrimethamine	1%	0%
	Tetracycline-neomycin	1%	2%

Respondents were instructed to select only one of "Disease treatment" or "Disease prevention" as a primary reason for use of an antimicrobial.

100% □Apramycin ■ Amoxicillin 90% ■ Penicillin Percentage of broiler flocks reporting antimicrobial use in water ■ Sulfamethazine ■Sulfaquinoxaline 80% □ Sulfaquinoxaline-pyrimethamine ■Tetracycline-neomycin 70% 60% 50% 40% 30% 20% 10% 0% 141 141 141 141 141 141 141

Figure 7.12. Percentage of broiler flocks reporting antimicrobial use in water for *Disease* prevention, 2014

Number of broiler flocks and disease condition

Respiratory

Musculoskeletal

/lameness

Septicemia

Yolksacculitis

Necrotic enteritis

Coccidiosis

Other diseases

Pri	mary reason for use			Diseas	e prevention			
Dis	ease condition	Yolksacculitis	Septicemia	Musculoskeletal /lameness	Respiratory	Necrotic enteritis	Coccidiosis	Other diseases
Nu	mber of flocks	141	141	141	141	141	141	141
An	timicrobial							
	Apramycin	0%	0%	0%	0%	0%	0%	0%
Ш	Amoxicillin	0%	0%	0%	0%	0%	0%	0%
	Penicillin	0%	1%	0%	0%	0%	0%	0%
	Sulfamethazine	0%	0%	0%	0%	0%	0%	0%
۱	Sulfaquinoxaline	0%	0%	0%	0%	0%	0%	0%
""	Sulfaquinoxaline-pyrimethamine	0%	0%	0%	0%	0%	0%	0%
	Tetracycline-neomycin	1%	0%	0%	0%	1%	0%	0%

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

For "Disease prevention", the respondents were instructed to select all applicable disease conditions.

Figure 7.13. Percentage of broiler flocks reporting antimicrobial use in water for *Disease treatment*, 2014

Number of broiler flocks and disease condition

Pri	mary reason for use			Disea	se treatment			
Dis	ease condition	Yolksacculitis	Septicemia	Musculoskeletal/ lameness	Respiratory	Necrotic enteritis	Coccidiosis	Other diseases
Nu	mber of flocks	141	141	141	141	141	141	141
An	timicrobial							
	Apramycin	1%	1%	0%	0%	0%	0%	0%
Ш	Amoxicillin	1%	1%	1%	0%	0%	0%	0%
	Penicillin	0%	1%	1%	1%	2%	0%	0%
	Sulfamethazine	0%	1%	0%	0%	0%	0%	0%
۱	Sulfaquinoxaline	2%	2%	0%	0%	0%	0%	0%
""	Sulfaquinoxaline-pyrimethamine	0%	0%	0%	0%	0%	1%	0%
	Tetracycline-neomycin	1%	0%	0%	0%	0%	0%	0%

For "Disease treatment", the respondents were instructed to select all applicable disease conditions.

Table 7.5. Quantitative summary of antimicrobial use in water, 2014

	Antimicrobial	Flock n (%)	Days exposed median (min. ; max.)	Inclusion rate (g/L) ^a	Level of drug (g/L) ^b	Grams/1,000 chicken-days median (min. ; max.) ^c
	Apramycin	1 (1%)	4 (4 ; 4)	0.5	0.3	10 (10 ; 10)
II	Amoxicillin	2 (1%)	5 (5 ; 5)	0.2	0.1	19 (10 ; 28)
	Penicillin G potassium	8 (6%)	4 (3; 8)	0.2	0.2	35 (4 ; 90)
	Sulfamethazine	1 (1%)	4 (3; 3)	4.0	1.0	29 (29 ; 29)
Ш	Sulfaquinoxaline	5 (4%)	4 (3; 5)	2.0	0.4	23 (16 ; 52)
III	Sulfaquinoxaline-pyrimethamine	1 (1%)	4 (4; 4)	1.5	0.2	39 (39; 39)
	Tetracycline-neomycin	4 (3%)	5 (4 ; 5)	0.9	0.3	16 (9 ; 38)

^a Inclusion rate in grams per liter of drinking water reported by the veterinarian/producer.

^b Level of drug (median) is the final grams of product per liter of drinking water (reported inclusion rate x product concentration).

^c Estimated based on daily water consumption chart (Nutreco Canada Inc.).

Figure 7.14. Quantity of antimicrobial use in water by reason for use, 2014

Number of broiler flocks and primary reasons for use

Pri	mary reasons for use	Disease treatment	Disease prevention
Nu	mber of flocks	141	141
An	timicrobial		
	Apramycin	10	0
II	Amoxicillin	19	0
	Penicillin	39	4
	Sulfamethazine	29	0
۱	Sulfaquinoxaline	23	0
""	Sulfaquinoxaline-pyrimethamine	39	0
	Tetracycline-neomycin	30	9

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Median use estimates are based on flocks that used the specified antimicrobial and are estimated in "grams per 1,000 chicken-days".

Estimates are based on daily water consumption chart (Nutreco Canada Inc.).

Figure 7.15. Quantity of antimicrobial use in water by province/region, 2014

Number of broiler flocks by province/region

Pro	ovince/region	Nati	onal	British C	olumbia	Pra	iries	Ont	ario	Qué	bec
Yea	ar	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Nu	mber of flocks	97	141	24	29	15	37	30	42	28	33
An	timicrobial										
Ι	Enrofloxacin	0	0	0	0	0	0	0	0	0	0
	Apramycin	0	10	0	0	0	0	0	10	0	0
Ш	Amoxicillin	0	19	0	0	0	0	0	19	0	0
	Penicillin G potassium	17	35	41	90	13	28	17	41	0	37
	Sulfamethazine	0	29	0	0	0	29	0	0	0	0
l ,,,	Sulfaquinoxaline	37	23	0	16	37	24	0	0	0	0
""	Sulfaquinoxaline-pyrimethamine	25	39	0	0	0	0	26	0	24	39
	Tetracycline-neomycin	0	16	0	0	0	10	0	38	0	0

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Median use estimates are based on flocks that used the specified antimicrobial and are estimated in "grams per 1,000 chicken-days".

Estimates are based on daily water consumption chart (Nutreco Canada Inc.).

Only the current year is depicted in the figure but all surveillance years are included in the table (i.e., no enrofloxacin reported in 2014).

OTHER QUANTITATIVE RESULTS

Table 7.6. Quantity of antimicrobial use based on different metrics, 2013–2014

Route of administration	Antimicrobial class	Antimicrobial		s of active edient	mg/l	PCU
aummsuation			2013	2014	2013	2014
Feed						
I						
	Macrolides	Tylosin	16.2	35.5	7.1	10.8
	Penicillins	Penicillin G potassium	0.0	4.1	0.0	1.2
II		Penicillin G procaine	13.2	12.1	5.8	3.7
	Streptogramins	Virginiamycin	54.4	26.8	23.7	8.1
	Trimethoprim-sulfonamides	Trimethoprim-sulfadiazine	43.6	59.6	19.0	18.1
III	Bacitracins	Bacitracin	173.3	262.1	75.4	79.5
III	Tetracyclines	Oxytetracycline	11.3	1.7	4.9	0.5
	Flavophospholipids	Bambermycin	0.4	0.0	0.2	0.0
	Ionophores	Lasalocid	41.9	16.7	18.2	5.1
		Maduramicin	0.0	1.6	0.0	0.5
IV		Monensin	69.8	173.7	30.4	52.7
		Narasin	74.6	109.5	32.4	33.2
		Narasin-nicarbazin	73.5	79.9	32.0	24.2
		Salinomycin	134.0	172.9	58.3	52.4
	Chemical coccidiostat	Clopidol	28.6	39.2	12.5	11.9
		Decoquinate	0.0	19.5	0.0	5.9
		Diclazuril	0.2	0.0	0.1	0.0
V/A		Nicarbazin	77.6	78.0	33.7	23.7
		Robenidine	0.0	0.3	0.0	0.1
		Zoalene	8.1	11.2	3.5	3.4
	Orthosomycins	Avilamycin	0.0	23.4	0.0	7.1
	Total, feed ^a		820.7	1,127.8	357.0	342.1
	Total, feed without ionophore	es/chemical coccidiostats	706.2	425.2	135.7	129.0
Water						
I	Fluoroquinolones	Enrofloxacin	< 0.1	0.0	< 0.1	0.0
	Aminoglycosides	Apramycin	0.0	1.2	0.0	0.4
II	Penicillins	Amoxicillin	0.0	4.6	0.0	1.4
		Penicillin G potassium	11.2	41.0	4.9	12.4
	Sulfonamides	Sulfamethazine	0.0	3.0	0.0	0.9
		Sulfaquinoxaline	1.7	16.4	0.7	5.0
III		Sulfaquinoxaline-pyrimethamine	2.4	3.2	1.0	1.0
					0.0	3.6
	Tetracyclines-aminoglycosides	Tetracycline-neomycin	0.0	12.0	0.0	0.0
		Tetracycline-neomycin				
	Total, water ^b		15.4	81.3	6.7	24.7
Injection						
Injection	Total, water ^b Total, water without coccidio	stats/antiprotozoals	15.4 14.0	81.3 79.0	6.7 6.1	24.7 24.0
I	Total, water ^b	stats/antiprotozoals	15.4	81.3	6.7	24.7
Injection	Total, water ^b Total, water without coccidio Third generation cephalosporins Aminoglycosides	stats/antiprotozoals Ceftiofur Gentamicin	15.4 14.0 0.1 < 0.1	81.3 79.0 0.0 < 0.1	6.7 6.1 0.0 < 0.1	24.7 24.0 0.0 < 0.1
I	Total, water ^b Total, water without coccidio Third generation cephalosporins Aminoglycosides Lincosamides-aminocyclitols	stats/antiprotozoals Ceftiofur	15.4 14.0 0.1 < 0.1 0.2	81.3 79.0 0.0 < 0.1 0.4	6.7 6.1 0.0 < 0.1 0.1	24.7 24.0 0.0 < 0.1 0.1
	Total, water ^b Total, water without coccidio Third generation cephalosporins Aminoglycosides Lincosamides-aminocyclitols Total injectable	stats/antiprotozoals Ceftiofur Gentamicin	15.4 14.0 0.1 < 0.1	81.3 79.0 0.0 < 0.1	6.7 6.1 0.0 < 0.1	24.7 24.0 0.0 < 0.1
	Total, water ^b Total, water without coccidio Third generation cephalosporins Aminoglycosides Lincosamides-aminocyclitols Total injectable of administration	stats/antiprotozoals Ceftiofur Gentamicin Lincomycin-spectinomycin	15.4 14.0 0.1 < 0.1 0.2 0.3	81.3 79.0 0.0 < 0.1 0.4 0.5	6.7 6.1 0.0 < 0.1 0.1	24.7 24.0 0.0 < 0.1 0.1
	Total, water b Total, water without coccidio Third generation cephalosporins Aminoglycosides Lincosamides-aminocyclitols Total injectable of administration kg antimicrobials, all adminis	stats/antiprotozoals Ceftiofur Gentamicin Lincomycin-spectinomycin	15.4 14.0 0.1 < 0.1 0.2 0.3	81.3 79.0 0.0 < 0.1 0.4 0.5	6.7 6.1 0.0 < 0.1 0.1	24.7 24.0 0.0 < 0.1 0.1
	Total, water ^b Total, water without coccidio Third generation cephalosporins Aminoglycosides Lincosamides-aminocyclitols Total injectable of administration	stats/antiprotozoals Ceftiofur Gentamicin Lincomycin-spectinomycin	15.4 14.0 0.1 < 0.1 0.2 0.3	81.3 79.0 0.0 < 0.1 0.4 0.5	6.7 6.1 0.0 < 0.1 0.1	24.7 24.0 0.0 < 0.1 0.1

See corresponding footnotes on next page.

Table 7.6. Quantity of antimicrobial use based on different metrics, 2013–2014 (cont'd)

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

N/A = not applicable (no classification available at the time of writing of this report).

mg/PCU = mg (total milligrams of active ingredient consumed by the flocks included in the survey) divided by PCU (population correction unit, adjusted by population size and weight of birds at treatment); the average weight of broilers at treatment used in the estimates above are based on the European Surveillance of Veterinary Antimicrobial Consumption weight for broiler chickens at 1 kg/bird.

^a The feed component is also collected in the swine program, thus farm-level broiler estimates could be compared to this species.

^b The antimicrobial combination sulfaquinoxaline-pyrimethamine is indicated for coccidiodis prevention, this was excluded in the estimates in the next row ("without coccidiostats/antiprotozoals").

Figure 7.16. Milligrams per Population Correction Unit (mg/PCU) by primary reasons for use, 2014

Estimates above include antimicrobials administered via feed, water, and injection.

Figure 7.17. Milligrams per Population Correction Unit (mg/PCU) by antimicrobial class, 2014

Estimates above include antimicrobials administered via feed, water, and injection.

^a PCU = Population correction unit.

^a PCU = Population correction unit.

ANIMAL HEALTH AND BIOSECURITY

- Yolk-sacculitis and septicemia were the top 2 diseases diagnosed in 2014 (Figure 7.18).
- Confirmed diagnosis of enteric diseases (e.g., Clostridium perfringens and coccidiosis) that are targeted by most of the antimicrobials included in this report was less frequently reported compared to the systemic/neonatal diseases. This is likely due to the more frequent occurrence of subclinical cases of many enteric pathogens and the frequent preventive use of antimicrobials that are efficacious against C. perfringens and Eimeria spp. throughout the grow-out period.
- Among the bacterial diseases prevalent in broiler flocks, only 2 commercial vaccines are available to help prevent field infections (e.g., E. coli and coccidiosis vaccines) (Table 7.9). Trends in the use of these non-antimicrobial preventive approaches that potentially have sparing effect on the overall usage of antimicrobials will continue to be monitored.
- Biosecurity practices at the national level were summarized in 2014 (Table 7.10). Some components of biosecurity will be used in future analyses to identify management or operational risk or protective factors for antimicrobial-resistant and multidrug-resistant organisms.

Table 7.7. Summary of broiler farm characteristics, 2014

	Number of farms reporting	Units	Median	Mean	Minimum	Maximum	Total
Farm capacity ^a	141	Birds (n)	36,200	54,262	4,000	300,000	7,650,915
Chicks placed on floor sampled ^b	141	Chicks (n)	11,000	12,016	3,400	37,682	901,217
Chicks placed on barn sampled	141	Chicks (n)	20,200	24,105	1,700	75,364	3,374,714
Broiler population on floor at pre-harvest	141	Birds (n)	10,624	11,616	3,378	35,874	871,198
Broiler population on barn at pre-harvest	141	Birds (n)	19,674	22,995	1,693	69,510	3,219,341
Floor-level mortality at pre-harvest	141	Birds (%)	2.44	3.35	0.65	12.82	N/A
Barn-level mortality at pre-harvest	141	Birds (%)	3.51	4.37	0.41	17.44	N/A
Domestic chicks, proportion placed to barn sampled	135	Birds (%)	100	96	13	100	N/A
Youngest age of breeder source in chicks delivered	132	Age (weeks)	35	36	25	56	N/A
Oldest age of breeder source in chicks delivered	132	Age (weeks)	45	45	30	64	N/A
Imported chicks, proportion placed to barn sampled	22	Birds (%)	74	62	5	100	N/A
Youngest age of breeder source in chicks delivered	21	Age (weeks)	35	36	25	56	N/A
Oldest age of breeder source in chicks delivered	21	Age (weeks)	45	44	28	63	N/A
Hatchery sources of chicks sampled	143	Establishment (n)	N/A	N/A	N/A	N/A	19
Age of broilers at pre-harvest sampling day	141	Days (n)	34	34	22	49	N/A
Weight of broilers at pre-harvest sampling day	141	kg	1.95	2.00	1.20	3.50	N/A
Stocking density	141	Chicks placed/sq ft	0.80	0.85	0.49	2.53	N/A
Quota Period ^c	141	n	N/A	N/A	N/A	N/A	8
Downtime ^d	141	Days (n)	16	17	2	60	NA

N/A = not applicable.

_

^a Total capacity of the 141 farms sampled at pre-harvest in the 2014 sampling year. Estimated number of birds grown in the 143 participating farms in 2014 sampling year in approximately 8 quota periods (A-121 to A-128) is equivalent to 7% of national production (765,0915 x 6 cycle/640,630,200 heads).

^b Two cohort flocks not sampled at pre-harvest were excluded.

^c Quota period is an 8-week production period (A-121 to A-128) in the Chicken Farmers of Canada's allocation calendar.

d In the poultry industry, this pertains to a period of time between flocks, starting with a barn being emptied of birds and ending with the placement of chicks. It allows for the natural reduction in number of diseases causing micro-organisms within the barn (i.e., carry-over from previous flock)¹⁸.

¹⁸ Chicken Farmers of Canada, On-farm Food Safety Program. Available at: www.chickenfarmers.ca/wp-content/uploads/2014/07/OFFSAP-Manual-2014.pdf. Accessed 28 January 2016.

Table 7.8. Summary of broiler production and operational factors, 2013–2014

		Ye	ar
Operational factors	Units	2013	2014
Farm operation, general			
All-in-all-out	Farms (n)	82	116
Multi-barn facilities	Farms (n)	16	22
Multispecies/commodity	Farms (n)	1	1
Production type			
Antimicrobial-free or raised without antibiotics ^a	Flocks (n)	5	12
Conventional	Flocks (n)	93	126
Organic ^b	Flocks (n)	1	1
Others (conventional but no antimicrobial used)	Flocks (n)	0	2
Strains			
Ross x Ross			
Ross 308	Flocks (n)	63	88
Ross 708	Flocks (n)	17	24
Unspecified or unknown	Flocks (n)	9	9
Cobb x Cobb			
Cobb 500	Flocks (n)	4	28
Cobb 700	Flocks (n)	1	1
Unspecified or unknown	Flocks (n)	8	13
Other strains			
Hubbard	Flocks (n)	0	1
Hubbard and Cobb mixed flock	Flocks (n)	0	1

^a Antimicrobial/antibiotic free (ABF) production in Canada is synonymous to "Raised Without Antibiotics" (RWA); an animal production claim. According to the Canadian Food Inspection Agency Manual of Procedures, product labelled as RWA or ABF "will be acceptable provided the animals were not administered any medication that could fall in the definition of an antibiotic or have the same purpose, for example, coccidiostats or monensin" Flocks in this category were not medicated with any antimicrobials including ionophores or chemical coccidiostats in any route of administration from incubation to pre-harvest stage.

^b Also an animal production claim that requires mandatory certification to the revised National Organic Standard¹⁹.

¹⁹ Canadian Food Inspection Agency. Available from: http://www.inspection.gc.ca/food/meat-and-poultry-products/manual-of-procedures/chapter-7/eng/1367720000285/1367720106452?chap=7. Accessed January 2016.

Figure 7.18. Health status of broiler chicken flocks during the grow-out period, 2014

CAV = Chicken Anemia Virus.

IBDV = Infectious Bursal Disease Virus.

IBV = Infectious Bronchitis Virus.

Common disease agents implicated in bacterial diseases are: avian pathogenic *E. coli* (for yolk sacculitis and septicemia), *Clostridium perfringens* (necrotic enteritis), *Staphylococcus aureus* and/or *Streptococcus* spp. (for osteomyelitis/osteoarthritis), and *Enterococcus cecorum* (for vertebral osteomyelitis).

Other diseases include ascites due to sodium toxicity, bacterial hepatitis, mixed bacterial infections, other manifestations of *E. coli* (air sacculitis with synovitis complications), gangrenous dermatitis, and reovirus-like signs (tenosynovitis).

The respondents were instructed to select all applicable diseases and only one of "Confirmed positive", "Likely positive", "Likely negative", and "Confirmed negative".

Figure 7.19. Disease diagnostic tools to establish the health status of broiler flocks, 2014

CAV = Chicken Anemia Virus.

IBDV = Infectious Bursal Disease Virus.

IBV = Infectious Bronchitis Virus.

Common disease agents implicated in disease syndromes above are: avian pathogenic *E. coli* (for yolk sacculitis and septicemia), *Clostridium perfringens* (necrotic enteritis), *Staphylococcus aureus* and/or *Streptococcus* spp. (for osteomyelitis/osteoarthritis), and *Enterococcus cecorum* (for vertebral osteomyelitis).

Other diseases include ascites due to sodium toxicity, bacterial hepatitis (unknown etiology), mixed bacterial infections, other manifestations of *E. coli* (air sacculitis with synovitis complications), gangrenous dermatitis (Clostridium septicum), and Reovirus-like lesions (tenosynovitis)

The respondents were instructed to select all applicable tools to establish the health status of the broiler flocks. The total flocks reporting diagnostic tools (depicted in red, blue, and grey bars) are total number of responses and do not necessary indicate a disease-positive status.

Grey bars represent flocks that have no recorded disease diagnostic tool applied.

Table 7.9. Vaccination summary of broiler chicken flocks at the hatchery and after chick placement, 2014

Agont/discoso	Vaccina straina	Number of flocks	Vaccination age
Agent/disease	Vaccine strains	n (%)	Days, median (min.; max.)
Hatchery-level applications ^a			
Coccidiosis	Eimeria spp. (broiler strains)	18 (13)	N/A
Infectious Bronchitis Virus	Massachusetts	124 (87)	N/A
	Massachusetts-Connecticut	0 (0)	N/A
Infectious Bursal Disease Virus (IBD)	Standard/classical	4 (3)	N/A
Marek's Disease Virus	HVT	72 (50)	N/A
Marek's Disease Virus-IBD	Vectored HVT, VP2 antigen	44 (31)	N/A
Escherichia coli	O78 strain	5 (4)	N/A
Farm applications ^b			
Coccidiosis	Eimeria spp. (broiler strains)	2 (1)	1 (1 ; 1)
Infectious Bronchitis Virus	Massachusetts	5 (4)	9 (1 ; 11)
	Massachusetts-Connecticut	8 (6)	10 (10 ; 18)
Infectious Bursal Disease Virus	Standard/classical	23 (16)	10 (1 ; 18)
Escherichia coli	O78 strain	2 (1)	4 (1 ; 7)

The respondents were instructed to select all applicable vaccines administered at the hatchery. If flocks were also vaccinated on-farm after placement, the respondents were instructed to indicate the age of the flock for each vaccine application.

N/A = not applicable; all hatchery level administrations were either at Day 18 of incubation or at the day of hatch (Day 1).

^a Flocks (94%, 134/143) were vaccinated with one or more agent at the hatchery.

^b Flocks (24%, 34/141) were vaccinated with one or more agent after placement on-farm.

Table 7.10. Biosecurity summary, 2014

	Res	ponse		All applicable subcategories	Proporti
	Unknown	No	Yes	All applicable subcategories	of farm
cess management					
Presence of livestock and poultry	0%	15%	85%	Broiler chickens	46%
within a 1 km radius	0,0	.0,0	00,0	Broiler breeders	9%
				Hatchery	2%
				Layers	21%
				Turkeys	14%
				Cattle	43%
				Pigs	23%
				Other animals	13%
Presence of domestic and wild				Other animals	1370
animals on-farm as observed at the					
time of visit	0%	53%	47%	Dogs	33%
				Cats	18%
				Horses	6%
				Other domestic/wild	12%
Recognizable biosecurity zone	0%	1%	99%	other democracy thing	.270
Foot bath/foot dip	0%	79%	21%		
Personal protective equipment	070	1070	2170		
required for access to production					
areas	0%	6%	94%	Boots	93%
				Gloves	42%
				Coveralls or designated farm clothes	72%
				Other (hair net)	1%
imal health management					
Downtime between flocks ^b	0%	0%	100%		
erational management					
Daily dead bird collection/removal					
from production areas	0%	0%	100%		
Manure stored within farm premise	0%	50%	50%	Adjacent to barns	18%
				Designated storage within controlled access	
				zone	21%
				Others (100 to 400 meters away from barn,	
				field behind barn and other farm sites/same	
				owner)	10%
Manure removal process				Removed from barn under nutrient	
				management plan	32%
				On-farm composting	12%
				Spread on field (0.5 km from farm)	12%
				Spread on field (> 1 km away from farm)	35%
				Spread elsewhere by contracted services	40%
				Others (hauled away, sold, stock-piled	
				elsewhere, mushroom farm use)	8%

^a The respondents were instructed to select all applicable subcategories/specific type if the response was "Yes"; Total percentage (%) may not be 100% because of multiple options provided per biosecurity item.

^b See Table 7.7 for downtime days observed.

Table 7.10. Biosecurity summary, 2014 (cont'd)

		ponse		All applicable subcategories	Proport
	Unknown	No	Yes		of farm
ational management (cont'd)					
Months of spread if spread on field	N/A	N/A	N/A	January	5%
				February	6%
				March	6%
				April	25%
				May	29%
				June	12%
				July	11%
				August	13%
				September	18%
				October	33%
				November	19%
				December	7%
Integrated pest control program	0%	1%	99%	Rodents	97%
				Beetles	80%
				Wild birds	53%
				Flies	43%
				Others (wildlife control)	1%
Premise cleaning and washing for the	0%	5%	95%	Dry clean only	38%
cycle				Dry clean and washed	22%
				Washed	16%
				Washed, hot water	24%
				Other	4%
Premise disinfection	1%	26%	74%	Quaternary ammonium compounds	20%
				Aldehydes	11%
				Phenol	4%
				Chlorine-based	18%
				Others (combination, various ingredients)	26%
Water source	N/A	N/A	N/A	Municipal	26%
				Well water	71%
				Ponds, other surface waters (dug-out, rain	6%
				water collected in cisterns)	
Analyse régulière de l'eau	0%	1%	99%	Monthly	4%
				Yearly	86%
				Other (quarterly, 2-3 times a year)	10%
Water treatment between flocks	1%	18%	81%	Chlorine-based	28%
				Hydrogen peroxide	40%
				Water acidifiers	21%
				lodine	1%
				Others (reverse osmosis, ultraviolet,	
				disinfectants)	10%
Water treatment during the grow-out	1%	21%	78%	Chlorine-based	52%
period				Hydrogen peroxide	16%
				Water acidifiers	31%
				lodine	0%
				Others (surface water treatment/mud	10%
				reduction, phosphoric acids, reverse osmosis	
				system, ultraviolet)	

N/A = not applicable.

^a The respondents were instructed to select all applicable subcategories/specific type if the response was "Yes". Total percentage (%) may not be 100% because of multiple options provided per biosecurity item.

8. FARM SURVEILLANCE—GROWER-FINISHER PIGS

KEY FINDINGS

- Ninety-five grower-finisher pig herds participated in *Farm Surveillance* in 2014.
- Most of the participating herds reported using antimicrobials in feed (78 herds, 82%) and by injection (59 herds, 62%). Twenty-seven herds (28%) reported using antimicrobials in water and 9 herds (9%) reported no use of antimicrobials by any route of administration.
- The most commonly reported antimicrobials used were penicillin G (56 herds, 59%) mostly by injection, lincomycin (38 herds, 40%) mainly in feed, tylosin (34 herds, 36%) mainly in feed, and chlortetracycline (30 herds, 32%) all in feed.
- At a national level, no significant differences where noted in the antimicrobials used in feed or their relative use frequencies between 2009 and 2014.
- Most feed antimicrobial use in the Prairies and Québec was for growth promotion and disease prevention purposes but in Ontario, most feed use was only for disease prevention purposes. In all regions, fewest herds used in-feed antimicrobials for disease treatment.
- In 2014, 13% of herds reported using florfenicol by injection; this is a significant increase since 2009 when just 1% of herds reported using florfenicol.
- Disease pressures on grower-finisher farms were significantly different between regions
- Overall herd size was bigger, farm density lower and source of pigs was different on the Prairies than in Ontario or Québec.

ADMINISTRATION IN FEED

- There were no significant changes in the number of herds reporting the use of specified antimicrobials in feed in 2014.
- Since 2009, there has been an increasing trend in the number of herds reporting the use of salinomycin and tiamulin in feed.
- In 2014, there was no significant change in the number of herds reporting that no antimicrobials were used in feed.

ADMINISTRATION IN WATER

 More grower-finisher herds in the Prairies (88%, 38/43) did not use antimicrobials in water than in Québec (42%, 11/26) (Figure 8.14).

ADMINISTRATION BY INJECTION

- When antimicrobials were used by injection in 2014, the greatest proportion of the herd exposed was 25% and in most situations less than 5% of the herd was exposed (Table 8.7)
- More penicillin was used by injection to treat respiratory disease and lameness than enteric disease (Figure 8.16)
- Most florfenicol use was reported by herds in Ontario and Québec (Figure 8.17).

SUMMARY OF ANTIMICROBIAL USE BY ROUTE OF ADMINISTRATION

Table 8.1. Number of pig herds with reported use by route of administration, 2014

Antimicrobial use		Route of Administration											
	Any Route ^a	Feed	Water	Injection									
	n (%)	n (%)	n (%)	n (%)									
Any antimicrobial use	86 (91)	78 (82)	27 (28)	59 (62)									
No antimicrobial use	9 (9)	17 (18)	68 (72)	36 (38)									
Total Herds	95 (100)	95 (100)	95 (100)	95 (100)									

^a Herds with reported use of an antimicrobial class by feed, water, injection, or any combination of these routes are included in each count.

Table 8.2. Number of pig herds (n = 95) with reported use of specific antimicrobial by route of administration, 2014

	Antimicrobial class	Antimicrobial		Route of Ad	ministration	
			Any Route	Feed	Water	Injection
			n (%)	n (%)	n (%)	n (%)
T	Extended-spectrum cephalosporins	Ceftiofur	18 (19)	0 (0)	0 (0)	18 (19)
П	Aminoglycosides	Streptomycin	9 (9)	0 (0)	9 (9)	0 (0)
	Lincosamides	Lincomycin	38 (40)	35 (37)	1 (1)	4 (4)
	Macrolides	Erythromycin	0 (0)	0 (0)	0 (0)	0 (0)
		Tulathromycin	13 (14)	0 (0)	0 (0)	13 (14)
		Tilmicosin	3 (3)	3 (3)	0 (0)	0 (0)
		Tylosin	34 (36)	32 (34)	0 (0)	5 (5)
		Tyvalosin	3 (3)	3 (3)	0 (0)	0 (0)
	Penicillins	Ampicillin	3 (3)	0 (0)	0 (0)	3 (3)
		Penicillin G	56 (59)	9 (9)	18 (19)	42 (44)
	Streptogramins	Virginiamycin	2 (2)	2 (2)	0 (0)	0 (0)
	Potentiated sufonamides	Trimethoprim-sulfadoxine	12 (13)	0 (0)	6 (6)	7 (7)
III	Aminocyclotols	Spectinomycin	1 (1)	1 (1)	0 (0)	0 (0)
	Aminoglycosides	Neomycin	5 (5)	0 (0)	5 (5)	0 (0)
	Bacitracins	Bacitracin	0 (0)	0 (0)	0 (0)	0 (0)
	Phenicols	Florfenicol	12 (13)	0 (0)	0 (0)	12 (13)
	Pleuromutilins ^b	Tiamulin	8 (8)	8 (8)	0 (0)	0 (0)
	Sulfonamides	Sulfonamide (unspecified)	6 (6)	4 (4)	2 (2)	0 (0)
	Tetracyclines	Chlortetracycline	30 (32)	30 (32)	0 (0)	0 (0)
		Oxytetracycline	10 (11)	1 (1)	0 (0)	9 (9)
		Tetracycline hydrochloride	2 (2)	0 (0)	2 (2)	0 (0)
IV	Flavophospholipids	Bambermycin	2 (2)	2 (2)	0 (0)	0 (0)
	lonophores	Salinomycin	22 (23)	22 (23)	0 (0)	0 (0)

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

^a Herds with reported use of an antimicrobial class by feed, water, injection, or any combination of these routes are included in each count.

^b Pleuromutilins are not officially categorized in the current Health Canada Classification System. However, according to the criteria provided by Health Canada, pleuromutilins meet the criteria for Category III.

ANTIMICROBIAL USE IN FEED

Table 8.3. Summary of antimicrobial use in feed, 2014

	Antimicrobial	Herds (n = 95) N (%)	Rations (n = 455) N (%)	Days exposed median (min. ; max.)	% Herd exposed median (min. ; max.)	Drug level in feed grams/tonne median (min.; max.)	Antimicrobial consumption ^a grams/1000 pig-days median (min. ; max.)	Adjusted antimicrobial consumption ^a Total milligrams adjusted for pig population and w eight
	Lincomycin	35 (37)	72 (16)	25 (3 ; 56)	100 (29 ; 100)	44 (22 ; 550)	114 (32 ; 1265)	146
	Penicillin	9 (9)	12 (3)	19 (3; 35)	100 (33 ; 100)	105 (55 ; 134)	160 (82 ; 219)	13
п	Tilmicosin	3 (3)	3 (1)	14 (14 ; 14)	100 (100 ; 100)	200 (200 ; 200)	489 (472 ; 512)	11
	Tylosin	32 (34)	85 (19)	28 (1; 70)	100 (25 ; 100)	33 (11 ; 110)	61 (26 ; 297)	210
	Tylvalosin	3 (3)	3 (1)	7 (7;21)	100 (100 ; 100)	43 (43 ; 43)	107 (103 ; 112)	1
	Virginiamycin	2 (2)	4 (1)	35 (28 ; 60)	99 (94 ; 100)	22 (11 ; 22)	48 (31 ; 60)	5
	Chlortetracycline	30 (32)	40 (9)	14 (3 ; 42)	100 (15 ; 100)	550 (51 ; 1100)	715 (65 ; 1604)	414
	Oxytetracylcine	1 (1)	1 (0)	10 (10 ; 10)	100 (100 ; 100)	550 (550 ; 550)	704 (704 ; 704)	31
III	Spectinomycin	1 (1)	2 (0)	28 (28 ; 28)	100 (100 ; 100)	22 (22 ; 22)	37 (32 ; 43)	1
	Sulfamethazine	4 (4)	5 (1)	6 (3; 35)	100 (33 ; 100)	110 (110 ; 220)	175 (163 ; 373)	10
	Tiamulin	8 (8)	9 (2)	18 (7 ; 42)	100 (100 ; 100)	70 (31 ; 176)	86 (41 ; 297)	14
IV	Bambermycin	2 (2)	4 (1)	32 (28 ; 56)	100 (100 ; 100)	251 (2; 500)	610 (5 ; 1402)	17
	Salinomycin	22 (23)	62 (14)	28 (14 ; 56)	100 (2 ; 100)	25 (24 ; 60)	61 (35 ; 105)	86
Unm	nedicated rations	59 (62)	153 (34)	28 (1 ; 168)	100 (33 ; 100)	N/A	N/A	N/A

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

N/A: not applicable.

ESVAC: European Surveillance of Veterinary Antimicrobial Consumption.

Level of drug: grams of active ingredient per tonne of feed.

Adjusted antimicrobial consumption: Estimated quantity of antimicrobials (mg) consumed through feed/(Total number of pigs in the sampled grow-finish period x ESVAC standard weight of 65 kg).

^a Median antimicrobial consumption estimates were calculated using reported ration days fed and predicted feed intake²⁰, adjusted for herd average daily gain; only rations medicated with the specified antimicrobial were included in the analysis for each antimicrobial.

²⁰ National Research Council. 2012. Nutrient Requirements of Swine, Eleventh Edition. Washington, DC: National Academy Press.

Figure 8.1. Percentage of pig herds reporting antimicrobial use in feed, 2009–2014

Year	2009	2010	2011	2012	2013	2014
Number of herds	95	90	93	87	89	95
Antimicrobial						
Lincomycin	28%	24%	25%	29%	34%	37%
, Penicillin	5%	8%	5%	6%	8%	9%
" Tylosin	41%	41%	37%	34%	31%	34%
Virginiamycin	1%	2%	2%	7%	3%	2%
Chlortetracycline	29%	39%	39%	36%	30%	32%
Tiamulin	2%	4%	6%	8%	8%	8%
IV Salinomycin	14%	12%	17%	20%	20%	23%
No antimicrobials used in feed	24%	24%	22%	18%	27%	18%

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobial use in feed reported by fewer than 5% of herds included: tilmicosin (Category II); bacitracin, neomycin, oxytetracycline, spectinomycin, and sulfamethazine (Category III); bambermycin (Category IV).

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2009 and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 8.2. Percentage of pig herds reporting antimicrobial use in feed by province/region, 2010–2014

Only antimicrobials used by 5% of herds or more in a given year within any province/region are depicted in this figure. Antimicrobial use in feed reported by fewer than 5% of herds included: bacitracin, neomycin, oxytetracycline, and spectinomycin (Category III).

For the temporal analyses within province/region, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2010 and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year. The presence of purple areas indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial. The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

100% Lincosamides 90% Macrolides -Penicillins 80% Percentage of herds reporting antimicrobial use -Pleuromutilins 70% Tetracyclines 60% -lonophores 50% 40% 30% 20% 10% 0% 93 87 89 87 95 90 95 95 95 90 93 87 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014

Figure 8.3. Percentage of pig herds reporting antimicrobial use in feed by primary reasons, 2009–2014

Number of herds, year, and reason for antimicrobial use

Re	ason for use		Dis	sease 1	treatmo	ent			Disease prevention							Growth promotion				
Ye	ar	2009	2010	2011	2012	2013	2014	2	2009	2010	2011	2012	2013	2014	2009	2010	2011	2012	2013	2014
Nu	mber of herds	95	90	93	87	89	95		95	90	93	87	89	95	95	90	93	87	89	95
An	Antimicrobial class																			
	Lincosamides	4%	4%	1%	7%	8%	7%		18%	17%	17%	17%	20%	25%	7%	6%	9%	6%	7%	5%
Ш	Macrolides	1%	1%	1%	5%	2%	5%		17%	21%	18%	18%	18%	23%	23%	26%	18%	14%	16%	15%
	Penicillins	1%	1%	1%	0%	1%	0%		2%	6%	3%	5%	6%	8%	1%	1%	1%	1%	1%	1%
III -	Pleuromutilins	0%	0%	0%	2%	2%	2%		2%	3%	5%	5%	4%	4%	0%	1%	1%	1%	1%	2%
	Tetracyclines	2%	3%	1%	5%	4%	4%		25%	33%	33%	29%	24%	25%	2%	2%	5%	3%	2%	3%
IV	Ionophores	0%	0%	0%	0%	0%	0%		1%	1%	1%	2%	3%	4%	13%	10%	16%	17%	18%	20%

Respondents were instructed to select only one of "Disease treatment", "Disease prevention" or "Growth promotion" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure.

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2009 and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

100% Lincosamides 90% Macrolides ♣ Penicillins 80% Percentage of herds reporting antimicrobial use Pleuromutilins 70% Tetracyclines 60% Ionophores 50% 40% 30% 20% 10% 0% 38 38 40 38 43 24 27 27 28 26 28 28 20 23 26 2011 2010 | 2011 | 2010 2011 2012 2013 2010 2012 2013 2014 2012 | 2013 | 2014 2014 Prairies Québec Ontario Number of herds, year, and province/region

Figure 8.4. Percentage of pig herds reporting antimicrobial use in feed for *Disease treatment* by province/region, 2010–2014

Pr	ovince/region			Prairie	s				(Ontario)		Québec							
Ye	ar	2010	2011	2012	2013	2014		2010	2011	2012	2013	2014	2010	2011	2012	2013	2014			
Νu	ımber of herds	38	38	40	38	43		24	27	27	28	26	28	28	20	23	26			
An	Antimicrobial class																			
	Lincosamides	3%	0%	10%	8%	9%		8%	0%	4%	4%	0%	4%	4%	5%	13%	12%			
Ш	Macrolides	3%	0%	8%	3%	9%		0%	0%	0%	0%	0%	0%	4%	5%	4%	4%			
	Penicillins	0%	3%	0%	3%	0%		4%	0%	0%	0%	0%	0%	0%	0%	0%	0%			
III	Pleuromutilins	0%	0%	3%	3%	5%		0%	0%	4%	0%	0%	0%	0%	0%	4%	0%			
L'''	Tetracyclines	0%	3%	5%	5%	5%		4%	0%	0%	7%	0%	7%	0%	10%	0%	8%			
IV	lonophores	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%			

Respondents were instructed to select only one of "Disease treatment", "Disease prevention" or "Growth promotion" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure.

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2010 and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year. The presence of purple areas indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

100% Lincosamides -x-Macrolides 90% -Penicillins -Pleuromutilins Tetracyclines Ionophores 80% Percentage of herds reporting antimicrobial use 70% 60% 50% 40% 30% 20% 10% 0% 26 38 38 40 43 24 27 27 28 26 28 28 20 23 2011 2010 2011 2012 2010 2011 2012 2013 2010 2012 2013 2014 2013 | 2014 2014 **Prairies** Ontario Québec

Figure 8.5. Percentage of pig herds reporting antimicrobial use in feed for *Disease prevention* by province/region, 2010–2014

Province	/region			Prairie	s		Ontario							(Québe	С	
Year		2010	2011	2012	2013	2014	2010	2011	2012	2013	2014		2010	2011	2012	2013	2014
Number o	of herds	38	38	40	38	43	24	27	27	28	26		28	28	20	23	26
Antimicrobial class												-					
Lincos	amides	26%	18%	20%	24%	33%	8%	7%	15%	18%	27%		11%	25%	15%	22%	12%
II Macro	lides	13%	16%	10%	13%	14%	21%	22%	19%	21%	19%		32%	18%	35%	22%	42%
Penici	llins	5%	3%	5%	11%	12%	8%	4%	7%	4%	12%		4%	4%	0%	0%	0%
,, Pleuro	mutilins	5%	8%	8%	8%	7%	4%	7%	4%	4%	4%		0%	0%	0%	0%	0%
Tetrac	yclines	13%	16%	18%	16%	16%	25%	26%	26%	18%	27%		68%	64%	60%	43%	38%
IV Ionoph	ores	0%	3%	5%	8%	7%	0%	0%	0%	0%	0%		4%	0%	0%	0%	4%

Number of herds, year, and province/region

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Respondents were instructed to select only one of "Disease treatment", "Disease prevention" or "Growth promotion" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure.

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2010 and the previous surveillance year (grey areas). The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year. The presence of purple areas indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial. The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

100% Lincosamides -x-Macrolides 90% -Penicillins -Pleuromutilins 80% Percentage of herds reporting antimicrobial use ---Ionophores Tetracyclines 70% 60% 50% 40% 30% 20% 10% 0% 26 38 38 40 43 24 27 27 26 28 28 20 23 2010 2011 2012 2010 2011 2012 2013 2010 2011 2012 2013 2014 2013 | 2014 2014 **Prairies** Ontario Québec Number of herds, year, and province/region Province/region **Prairies** Québec 2010 2011 2012 2014 2010 2011 2012 2013 2014 2010 2011 2012 2013 2014 Year

Figure 8.6. Percentage of pig herds reporting antimicrobial use in feed for *Growth promotion* by province/region, 2010–2014

Antimicrobial class 13% 21% 13% 11% 7% 0% 0% 7% 8% 0% 0% 0% 0% Lincosamides 0% 0% 21% 20% 18% 12% 13% 11% 15% 11% 15% 43% 21% 17% 19% Il Macrolides 21% 0% 3% Penicillins 3% 3% 3% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% Pleuromutilins 3% 3% 3% 3% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% Tetracyclines 8% 5% 5% 7% 0% 7% 4% 0% 0% 0% 0% 0% 0% 0%

27

4%

7%

0%

18%

32%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

4%

0%

Respondents were instructed to select only one of "Disease treatment", "Disease prevention" or "Growth promotion" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure.

16%

Number of herds

Ionophores

38

13%

11%

40

18%

13%

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2010 and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year. The presence of purple areas indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

20

35%

39%

46%

Figure 8.7. Quantity of antimicrobials used in feed by reason for use, 2009-2014

Rea	ason for use		Disease treatment							isease p	reventic	n	Growth promotion						
Yea	ar	2009	2010	2011	2012	2013	2014	2009	2010	2011	2012	2013	2014	2009	2010	2011	2012	2013	2014
Nur	mber of herds	95	90	93	87	89	95	95	90	93	87	89	95	95	90	93	87	89	95
Ant	timicrobial		Median grams/1,000 pig-days ^a (number of rations medicated)																
	Lincomycin	240 (9)	133 (5)	282 (2)	198 (10)	240 (11)	209 (9)	82 (35)	94 (34)	106 (31)	102 (26)	114 (31)	118 (50)	54 (28)	48 (15)	105 (18)	74 (15)	66 (14)	67 (13)
l	Penicillin	216 (1)	166 (1)	106 (1)	0	241 (1)	0 (0)	122 (2)	303 (6)	146 (4)	120 (4)	90 (4)	172 (11)	72 (1)	72 (1)	72 (1)	29 (1)	82 (1)	82 (1)
"	Tylosin	273 (1)	116 (5)	0	242 (7)	293 (1)	297 (3)	70 (40)	78 (30)	78 (47)	83 (33)	83 (31)	74 (41)	57 (58)	58 (56)	59 (52)	61 (39)	58 (37)	57 (43)
	Virginiamycin	0	0	0	0	0	0 (0)	0	0	0	49 (3)	47 (2)	54 (3)	31 (1)	26 (2)	21 (5)	55 (8)	43 (5)	31 (1)
	Chlortetracycline	721 (2)	751 (3)	212 (1)	795 (4)	740 (5)	801 (7)	687 (24)	691 (32)	756 (36)	758 (30)	809 (27)	699 (29)	230 (2)	235 (2)	304 (5)	332 (3)	372 (3)	472 (4)
III -	Tiamulin	0	0	0	70 (3)	69 (3)	116 (2)	3 (2)	131 (4)	94 (5)	85 (4)	91 (4)	88 (4)	0	26 (1)	26 (1)	30 (1)	35 (2)	81 (3)
1//	Bambermycin	0	0	0	11 (1)	0	0 (0)	5 (2)	0	0	0	0	0 (0)	5 (7)	5 (2)	5 (2)	10 (1)	1 (2)	3 (4)
	Salinomycin	0	0	0	0	0	0 (0)	73 (1)	60 (1)	50 (4)	61 (7)	61 (7)	52 (12)	53 (33)	56 (26)	60 (50)	61 (49)	61 (54)	63 (51)

Respondents were instructed to select only one of "Disease treatment", "Disease prevention" or "Growth promotion" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure.

^a Median antimicrobial consumption estimates were calculated using reported ration days fed and predicted feed intake²¹, adjusted for herd average daily gain; only rations medicated with the specified antimicrobial were included in the analysis for each antimicrobial.

²¹ National Research Council. 2012. Nutrient Requirements of Swine, Eleventh Edition. Washington, DC: National Academy Press.

Figure 8.8. Quantity of antimicrobial used in feed (rations) for *Disease treatment* by province/region, 2010–2014

Number of rations medicated for disease treatment, year, and province/region

Pr	ovince/region			Prairies	;				Ontario			Québec					
Ye	ar	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	
Νι	ımber of rations	6	3	19	13	16	4	0	3	3	0	4	3	3	6	8	
Ar	Antimicrobial Median grams/1,000 pig-days ^a																
	Lincomycin	118	0	198	104	184	122	0	198	247	0	487	282	0	329	209	
Ш	Penicillin	0	106	0	241	0	166	0	0	0	0	0	0	0	0	0	
	Tylosin	116	0	263	293	297	0	0	0	0	0	0	0	242	0	0	
Г.,,	Chlortetracycline	0	212	740	740	801	333	0	0	836	0	1,004	0	850	0	984	
L	Tiamulin	0	0	60	59	116	0	0	144	0	0	0	0	0	414	0	

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Respondents were instructed to select only one of "Disease treatment", "Disease prevention" or "Growth promotion" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

^a Median antimicrobial consumption estimates were calculated using reported ration days fed and predicted feed intake²², adjusted for herd average daily gain; only rations medicated with the specified antimicrobial were included in the analysis for each antimicrobial.

²² National Research Council. 2012. Nutrient Requirements of Swine, Eleventh Edition. Washington, DC: National Academy Press.

-Lincomycin Penicillin ×-Tylosin Chlortetracycline Tiamulin Salinomycin Median grams of active ingredient/1,000 pig-days Prairies Ontario Québec Number of rations medicated for disease prevention, year, and province/region

Figure 8.9. Quantity of antimicrobial used in feed (rations) for *Disease prevention* by province/region, 2010–2014

Pr	Province/region			Prairie	S				Ontario			Québec					
Ye	Year		2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	
Nι	Number of rations		44	45	49	75	22	37	36	34	45	38	46	23	21	27	
Ar	timicrobial		Median grams/1000 pig-days ^a														
	Lincomycin	97	95	100	107	152	88	94	104	115	107	92	109	123	176	83	
Ш	Penicillin	319	161	112	95	173	190	94	120	86	148	442	197	0	0	0	
	Tylosin	118	93	115	111	87	74	65	71	88	92	62	57	99	54	59	
III	Chlortetracycline	637	730	618	694	402	743	592	631	965	928	754	810	772	809	761	
	Tiamulin	152	153	96	91	91	94	68	50	50	47	0	0	0	0	0	
IV	Salinomycin	0	50	61	61	54	0	0	0	0	0	60	0	0	0	45	

Respondents were instructed to select only one of "Disease treatment", "Disease prevention" or "Growth promotion" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of farms or more in a given year are depicted in this figure; those antimicrobials used for disease prevention by < 5% of herds included: tilmicosin, virginiamycin, oxytetracycline, spectinomycin, and sulfamethazine.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

^a Median antimicrobial consumption estimates were calculated using reported ration days fed and predicted feed intake²³, adjusted for herd average daily gain; only rations medicated with the specified antimicrobial were included in the analysis for each antimicrobial.

²³ National Research Council. 2012. Nutrient Requirements of Swine, Eleventh Edition. Washington, DC: National Academy Press.

Lincomycin -Penicillin Tvlosin Median grams of active ingredient/1,000 pig-days -Virginiamycin -Chlortetracycline -Tiamulin -Salinomycin Prairies Québec Ontario Number of rations medicated for growth promotion, year and province/region

Figure 8.10. Quantity of antimicrobial used in feed (rations) for *Growth promotion* province/region, 2010–2014

Province/region				Prairie	s				Ontario			Québec					
Ye	Year		2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	
Number of rations		58	72	74	59	55	6	13	11	17	13	39	47	31	40	48	
An	Antimicrobial		Median grams/1000 pig-days ^a														
	Lincomycin	48	105	74	67	67	0	0	0	65	68	0	0	0	0	0	
L	Penicillin	72	72	29	82	82	0	0	0	0	0	0	0	0	0	0	
Ι"	Tylosin	60	89	75	59	62	48	52	50	44	49	57	50	0	58	52	
	Virginiamycin	0	0	0	0	0	0	0	0	0	0	26	21	55	43	31	
Ш	Chlortetracycline	235	143	195	372	472	0	458	797	0	0	0	0	0	0	0	
L'''	Tiamulin	26	26	30	35	81	0	0	0	0	0	0	0	0	0	0	
IV	Salinomycin	57	54	60	63	63	0	837	843	60	0	56	59	60	60	61	

Respondents were instructed to select only one of "Disease treatment", "Disease prevention" or "Growth promotion" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of herds or more in a given year within any province/region are depicted in this figure. Antimicrobial use in feed for growth promotion reported by fewer than 5% of herds included: tilmicosin, virginiamycin, oxytetracycline, spectinomycin and sulfamethazine.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

^a Median antimicrobial consumption estimates were calculated using reported ration days fed and predicted feed intake²⁴, adjusted for herd average daily gain; only rations medicated with the specified antimicrobial were included in the analysis for each antimicrobial.

National Research Council. 2012. Nutrient Requirements of Swine, Eleventh Edition. Washington, DC: National Academy Press.

350 -Prairies Quantity of antimicrobial use (milligrams) adjusted for pig population and weight 300 -Ontario Québec 250 200 150 100 50 0 2009 2010 2011 2012 2013 2014 Year

Figure 8.11. Trends in quantitative estimates of total antimicrobial use in feed adjusted for population and pig weight by province/region, 2009–2014

Year Province/region	2009	2010	2011	2012	2013	2014
Prairies	178	143	159	152	155	167
Ontario	78	82	105	152	109	151
Québec	218	224	298	276	261	280

Adjusted antimicrobial use estimate: Estimated quantity of antimicrobials (mg) consumed through feed/(Total number of pigs in the sampled grow-finish period x ESVAC²⁵ standard weight of 65 kg).

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

 $www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000302.jsp\&mid=WC0b01ac0580153a00.$

²⁵ Available at:

Figure 8.12. Trends in quantitative estimates of antimicrobial use in feed, adjusted for population and pig weight by antimicrobial class, 2009–2014

Year	2009	2010	2011	2012	2013	2014
Number of herds	95	90	93	87	89	95
Antimicrobial class						
Flavophospholipids	0	0	0	0	1	15
Ionophores	9	8	17	23	18	15
Lincosamides	28	20	25	23	30	28
Macrolides	36	42	44	43	37	33
Penicillins	2	2	1	1	2	5
Tetracyclines	88	70	84	78	66	83

Antimicrobial classes used at lower frequencies and quantities were excluded from this figure: aminoglycosides, bacitracins, streptogramins, and sulfonamides.

Adjusted antimicrobial use estimate = Estimated quantity of antimicrobials (mg) consumed through feed/(Total number of pigs in the sampled grow-finish period x ESVAC²⁶ standard weight of 65 kg).

-

 $www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000302.jsp\&mid=WC0b01ac0580153a00.$

²⁶ Available at:

250 → Ionophores Quantity of antimicrobial use (milligrams) adjusted for pig population and weight -Lincosamides -Macrolides 200 -Penicillins -Pleuromutilins -Tetracyclines 150 100 50 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 Québec Ontario Year and province/region

Figure 8.13. Trends in quantitative estimates of antimicrobial use in feed adjusted for population and pig weight by antimicrobial class and province/region, 2009–2014

								•		•								
Province/region									Ont	ario					Qué	bec		
Year	2009	2010	2011	2012	2013	2014	2009	2010	2011	2012	2013	2014	2009	2010	2011	2012	2013	2014
Antimicrobial cla	SS																	
lonophores	10	8	12	20	17	12	0	0	24	24	4	0	13	17	26	34	42	40
Lincosamides	38	27	32	34	36	31	25	14	5	9	9	31	1	10	28	4	40	16
Macrolides	37	47	53	52	39	34	21	17	30	30	37	27	48	56	34	32	30	35
Penicillins	3	2	1	0	4	4	1	4	1	2	0	12	0	2	0	0	0	0
Pleuromutilins	0	3	3	3	3	11	0	1	1	1	1	0	0	0	0	0	8	0
Tetracyclines	85	54	57	41	52	70	30	47	43	86	59	80	156	134	207	194	125	114

Antimicrobial classes used at lower frequencies and quantities excluded from this figure: aminoglycosides, bacitracins, flavophospholipids, streptogramins, and sulfonamides.

Adjusted antimicrobial use estimate = Estimated quantity of antimicrobials (mg) consumed through feed/(Total number of pigs in the sampled grow-finish period x ESVAC²⁷ standard weight of 65 kg).

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

 $www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000302.jsp\&mid=WC0b01ac0580153a00.$

²⁷Available at:

Figure 8.14. Quantity of antimicrobial use in feed adjusted for population and weight, by primary reasons for use, 2010–2014

Adjusted antimicrobial use estimate = Estimated quantity of antimicrobials (mg) consumed through feed/(Total number of pigs in the sampled grow-finish period x $ESVAC^{28}$ standard weight of 65 kg). Analysis includes ionophores.

 $www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000302.jsp\&mid=WC0b01ac0580153a00.$

²⁸ Available at:

Figure 8.15. Quantity of antimicrobial use in feed adjusted for population and pig weight, by primary reason for use and province/region, 2009–2014

Adjusted antimicrobial use estimate = Estimated quantity of antimicrobials (mg) consumed through feed/(Total number of pigs in the sampled grow-finish period x $ESVAC^{29}$ standard weight of 65 kg). Analysis includes ionophores.

Year and province/region

 $www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000302.jsp\&mid=WC0b01ac0580153a00.$

²⁹ Available at:

Figure 8.16. Percentage of rations medicated with specified antimicrobials fed over the growfinish period by reported pig weight, 2014

		Number of			Pig w	eignt ca	tegories	over the	grow-tin	ısn perio	oa (kg)		
	Antimicrobial	medicated rations	15–29	30–39	40–49	50–59	60–69	70–79	80–89	90–99	100–109	110–119	> 119
	Lincomycin	35	43%	57%	60%	74%	69%	46%	49%	54%	49%	43%	31%
l II	Penicillin	9	67%	100%	89%	67%	11%	0%	0%	0%	0%	0%	0%
	Tylosin	32	38%	53%	75%	78%	78%	78%	81%	72%	56%	53%	34%
	Chlortetracycline	30	80%	93%	70%	43%	20%	13%	13%	3%	0%	0%	0%
Ľ	Tiamulin	8	63%	50%	38%	38%	25%	25%	25%	0%	0%	0%	0%
I۱	[/] Salinomycin	22	18%	64%	77%	86%	86%	77%	82%	77%	64%	55%	50%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobials used in medicated rations by fewer than 5% of herds included: tilmicosin, tylvalosin, and virginiamycin (Category II); oxytetracycline, spectinomycin, and sulfamethazine (Category III); bambermycin (Category IV).

100% -Disease treatment Disease prevention 90% Growth promotion 80% Percentage of herds reporting antimicrobial use 70% 60% 50% 40% 30% 20% 10% 0% 43 37 37 39 43 26 25 28 28 28 26 28 28 20 26 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 Prairies Québec Number of herds, year and province/region

Figure 8.17. Percentage of pig herds reporting antimicrobial use in feed by primary reason and province/region, 2010–2014

Province/region			Pra	iries					Ont	ario					Qué	bec		
Year	2009	2010	2011	2012	2013	2014	2009	2010	2011	2012	2013	2014	2009	2010	2011	2012	2013	2014
Number of herds	43	37	37	39	38	43	26	25	28	28	28	26	26	28	28	20	23	26
Disease treatment	7%	5%	3%	15%	8%	16%	8%	8%	0%	7%	7%	0%	4%	11%	7%	15%	22%	15%
Disease prevention	42%	43%	41%	38%	39%	51%	50%	48%	54%	57%	50%	69%	54%	75%	79%	60%	57%	69%
Growth promotion	42%	38%	49%	44%	32%	30%	15%	12%	21%	21%	21%	19%	69%	68%	61%	60%	61%	73%

Respondents were instructed to select only one of "Disease Treatment", "Disease Prevention" or "Growth Promotion" as a primary reason for use of an antimicrobial

The proportion (%) of farms using antimicrobials in feed for the same primary reason were compared across regions for the current year (grey areas). The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year.

ANTIMICROBIAL USE IN WATER

Figure 8.18. Percentage of pig herds reporting antimicrobial use in water, 2009–2014

		ľ	lumber of herds	and year			
Ye	ar	2009	2010	2011	2012	2013	2014
Νι	mber of herds	95	90	93	87	89	95
Ar	timicrobial						
	Penicillin	21%	13%	9%	18%	10%	19%
II	Streptomycin	3%	4%	1%	10%	4%	9%
	Trimethoprim-sulfadoxine	2%	9%	6%	1%	8%	6%
III	Neomycin	2%	4%	4%	7%	6%	5%
111	Tetracycline	4%	7%	3%	6%	2%	2%
	No antimicrobials used in water	74%	72%	82%	71%	73%	72%

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobial use in water reported by fewer than 5% of herds included: lincomycin (Category II); sulfonamides (Category III). For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2009 and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 8.19. Percentage of pig herds reporting antimicrobial use in water by province/region, 2010–2014

Pr	ovince/region		F	Prairie	S			(Ontari	0			(Québe	С	
Ye	ar	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014	2010	2011	2012	2013	2014
Nι	ımber of herds	38	38	40	38	43	24	27	27	28	26	28	28	20	23	26
Ar	ntimicrobial			•	-				•				-			
	Penicillin	13%	13%	10%	11%	9%	13%	0%	26%	7%	27%	14%	11%	25%	13%	27%
П	Streptomycin	5%	3%	8%	5%	9%	8%	0%	22%	7%	12%	4%	0%	0%	0%	8%
	Trimethoprim-sulfadoxine	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	29%	21%	5%	26%	23%
	Neomycin	3%	0%	3%	3%	0%	0%	0%	4%	7%	8%	7%	14%	20%	9%	12%
III	Sulfonamide	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	4%	0%	4%	8%
	Tetracycline	13%	3%	5%	3%	5%	4%	4%	7%	4%	0%	0%	4%	5%	0%	0%
	No antimicrobials used in water	76%	87%	85%	87%	88%	83%	96%	67%	82%	73%	57%	61%	50%	39%	42%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobial use in water reported by fewer than 5% of herds included: lincomycin (Category II) and spectinomycin (Category III). For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2009 and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year. The presence of purple areas indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

100% Penicillin Streptomycin 90% -Trimethoprim-sulphadoxine 80% Neomycin Percentage of herds reporting antimicrobial use Tetracycline 70% 60% 50% 40% 30% 20% 10% 0% 95 90 93 87 89 95 95 90 93 87 89 95 2009 2010 2011 2012 2014 2010 2011 2012 2013 2014 2013 2009 Disease treatment Disease prevention

Figure 8.20. Percentage of pig herds reporting antimicrobial use in water by primary reason for use, 2009–2014

Number of herds, year, and reason for antimicrobial use

Re	eason for use		D	isease t	reatme	nt			Di	sease p	reventi	on	
Ye	ear	2009	2010	2011	2012	2013	2014	2009	2010	2011	2012	2013	2014
Nι	umber of herds	95	90	93	87	89	95	95	90	93	87	89	95
Ar	ntimicrobial												
	Penicillin	5%	6%	0%	9%	8%	11%	16%	8%	9%	7%	3%	9%
Ш	Streptomycin	1%	1%	0%	3%	2%	5%	2%	3%	1%	5%	2%	4%
	Trimethoprim-sulfadoxine	1%	7%	5%	1%	7%	5%	1%	2%	1%	0%	1%	1%
	Neomycin	1%	1%	2%	3%	3%	4%	1%	3%	2%	3%	2%	1%
Ľ	Tetracycline	0%	2%	2%	3%	2%	0%	3%	4%	1%	2%	0%	1%

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Respondents were instructed to select only one of "Disease treatment" or "Disease prevention" as a primary reason for use of an antimicrobial.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobial use in water reported by fewer than 5% of herds included: lincomycin, tilmycosin, and tylvalosin (Category II); Spectinomycin and sulfonamides (Category III).

Table 8.4. Frequency of antimicrobial use in water by the proportion of pigs exposed, 2014

			Proportion of	pigs exposed		
Antim	icrobial	1–25%	26–50%	51–75%	76–100%	Total
		Nun	nber of medicated	I water use (% of	total)	
Lincomycin		0 (0)	0 (0)	0 (0)	1 (2)	1 (2)
Penicillin		2 (4)	1 (2)	1 (2)	15 (31)	19 (40)
Streptomyc	in	1 (2)	1 (2)	1 (2)	6 (13)	9 (19)
Tilmicosin		0 (0)	0 (0)	0 (0)	1 (2)	1 (2)
Trimethoprii	m-sulfadoxine	1 (2)	2 (4)	0 (0)	3 (6)	6 (13)
Tylvalosin		0 (0)	0 (0)	0 (0)	3 (6)	3 (6)
Neomycin		0 (0)	0 (0)	2 (4)	3 (6)	5 (10)
III Sulfonamide	Э	0 (0)	1 (2)	0 (0)	1 (2)	2 (4)
Tetracycline	e	0 (0)	0 (0)	0 (0)	2 (4)	2 (4)
Total		4 (8)	5 (10)	4 (8)	35 (73)	48 (100)

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Table 8.5. Frequency of antimicrobial use in water by the proportion of pigs exposed, 2009–2013

		Proportion o	fpigs exposed		
Antimicrobial	1–25%	26–50%	51–75%	76–100%	Total
	Nun	nber of medicated	l water uses (% of	total)	
Lincomycin	0 (0)	1 (1)	0 (0)	2 (1)	3 (2)
, Penicillin	1 (1)	6 (4)	2 (1)	58 (36)	67 (41)
" Streptomycin	1 (1)	2 (1)	0 (0)	19 (12)	22 (13)
Trimethoprim-sulfadoxine	0 (0)	3 (2)	1 (1)	20 (12)	24 (15)
Neomycin	0 (0)	0 (0)	1 (1)	19 (12)	20 (12)
II Spectinomycin	0 (0)	0 (0)	0 (0)	2 (1)	2 (1)
" Sulfonamide	1 (1)	0 (0)	0 (0)	4 (2)	5 (3)
Tetracycline	0 (0)	0 (0)	0 (0)	20 (12)	20 (12)
Total	3 (2)	12 (7)	4 (2)	144 (88)	163 (100)

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

ANTIMICROBIAL USE BY INJECTION

Figure 8.21. Percentage of pig herds reporting antimicrobial use by injection, 2009–2014

N	lum	ber	of	hero	ls	and	year
---	-----	-----	----	------	----	-----	------

Ye	ar	2009	2010	2011	2012	2013	2014
Νι	ımber of herds	95	90	93	87	89	95
Ar	timicrobial						
Г	Ceftiofur	20%	24%	24%	18%	18%	19%
'	Ampicillin	4%	4%	3%	5%	4%	3%
	Lincomycin	8%	9%	10%	8%	11%	4%
	Penicillin	41%	51%	46%	45%	53%	44%
Ш	Trimethoprim-sulfadoxine	9%	13%	9%	3%	4%	7%
	Tulathromycin	8%	10%	6%	8%	10%	14%
	Tylosin	5%	4%	8%	5%	3%	5%
	Florfenicol	1%	6%	3%	5%	7%	13%
["	Oxytetracycline	4%	6%	9%	7%	9%	9%
	No antimicrobials used by injection	47%	40%	40%	36%	34%	38%

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure.

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2009 and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 8.22. Percentage of pig herds reporting antimicrobial use by injection and province/region, 2010–2014

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobial use in feed reported by fewer than 5% of herds included: erythromycin (Category II), spectinomycin and tiamulin (Category III).

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in 2009 and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year. The presence of purple areas indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

100% Ceftiofur ---Lincomycin 90% Penicillin 80% Trimethoprim-sulfadoxine ---Tulathromycin Percentage of herds reporting antimicrobial use 70% ---Tylosin ----Florfenicol 60% Oxytetracycline 50% 40% 30% 20% 10% 0% 93 95 95 87 89 89 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 Treatment: Enteric disease Treatment: Respiratory disease Treatment: Lameness Number of herds and year Reason for use Antimicrobial I Ceftiofur 13% 14% 13% 12% 14% 11% 8% 10% 12% 2% 16% 8% 7% 1% Lincomycin 2% 1% 5% 3% 6% 0% 7% 7% 5% 5% 7% 4% 3% 4% 2% 1% 1% 0% Penicillin 16% 20% 18% 18% 18% 15% 32% 38% 38% 38% 44% 36% 1% 6% 3% 2% 1% 1% II Trimethoprim-sulfadoxine 5% 9% 5% 2% 4% 3% 2% 3% 4% 1% 1% 5% 2% 6% 2% 3% 1% 2% Tulathromycin 7% 10% 5% 8% 10% 13% 0% 0% 0% 0% 0% 1% 0% 1% 1% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 1% 4% 5% 3% 4% Tylosin 0% 0% 0% 3% 3%

Figure 8.23. Percentage of pig herds reporting antimicrobial use by injection by reasons for use, 2009–2014

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

1%

0%

1%

2%

2%

4%

1%

1%

3%

6%

0%

0%

1%

0%

2%

1%

0%

1%

1%

6%

6%

9%

3%

Florfenicol

Oxytetracycline

0%

4%

2%

2%

5%

5%

3%

Respondents were instructed to "Check all that apply" from a list of reasons for an antimicrobial use: "Respiratory disease", "Enteric disease", "Lameness", and "Other".

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure; Antimicrobials used by fewer than 5 % of herds included: ampicillin, erythromycin, and tiamulin (Category II); spectinomycin (Category III).

Table 8.6. Frequency of antimicrobial treatments by injection by the proportion of pigs exposed, 2014

			Proportion of pigs exposed								
	Antimicrobial	< 5%	6–25%	26–50%	51–75%	76–100%	Total				
		N	Number of uses by injection (% of total)								
	Ceftiofur	16 (14)	2 (2)	0 (0)	0 (0)	0 (0)	18 (16)				
	Enrofloxacin	3 (3)	0 (0)	0 (0)	0 (0)	0 (0)	3 (3)				
	Ampicillin	2 (2)	1 (1)	0 (0)	0 (0)	0 (0)	3 (3)				
	Lincomycin	4 (3)	0 (0)	0 (0)	0 (0)	0 (0)	4 (3)				
Ш	Penicillin	39 (34)	3 (3)	0 (0)	0 (0)	0 (0)	42 (36)				
"	Trimethoprim-sulfadoxine	6 (5)	1 (1)	0 (0)	0 (0)	0 (0)	7 (6)				
	Tulathromycin	13 (11)	0 (0)	0 (0)	0 (0)	0 (0)	13 (11)				
	Tylosin	5 (4)	0 (0)	0 (0)	0 (0)	0 (0)	5 (4)				
III	Florfenicol	11 (9)	1 (1)	0 (0)	0 (0)	0 (0)	12 (10)				
	Oxytetracycline	9 (8)	0 (0)	0 (0)	0 (0)	0 (0)	9 (8)				
	Total	108 (93)	8 (7)	0 (0)	0 (0)	0 (0)	116 (100)				

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Table 8.7. Frequency of antimicrobial treatments by injection by the proportion of pigs exposed, 2009–2013

		Proportion of pigs exposed							
Antimicrobial	< 5%	6–25%	26–50%	51–75%	76–100%	Total			
	N	umber of us	es by injecti	on (% of tota	al)				
Ceftiofur	87 (17)	6 (1)	0 (0)	0 (0)	1 (0)	94 (18)			
Enrofloxacin	1 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (0)			
Ampicillin	18 (3)	1 (0)	0 (0)	0 (0)	0 (0)	19 (4)			
Erythromycin	1 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (0)			
Lincomycin	40 (8)	1 (0)	0 (0)	0 (0)	0 (0)	41 (8)			
, Penicillin	203 (39)	10 (2)	1 (0)	2 (0)	0 (0)	216 (41)			
" Tiamulin	2 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (0)			
Trimethoprim-sulfadoxine	31 (6)	4 (1)	0 (0)	0 (0)	0 (0)	35 (7)			
Tulathromycin	36 (7)	2 (0)	0 (0)	0 (0)	0 (0)	38 (7)			
Tylosin	23 (4)	0 (0)	0 (0)	0 (0)	0 (0)	23 (4)			
Florfenicol	16 (3)	3 (1)	0 (0)	0 (0)	0 (0)	19 (4)			
III Oxytetracycline	30 (6)	1 (0)	0 (0)	0 (0)	0 (0)	31 (6)			
Spectinomycin	2 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (0)			
Total	490 (94)	28 (5)	1 (0)	2 (0)	1 (0)	522 (100)			

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

ANIMAL HEALTH AND BIOSECURITY

The diseases most commonly reported in CIPARS grower-finisher herds in all 3 province/region in 2014 were *Streptococcus suis* (78%, 91%, 85%), Porcine Circovirus Associated Disease (PCVAD) (86%, 100%, 83%), and *Lawsonia* (89%, 75%, 77%) in the Prairies, Ontario and Québec, respectively. In 2014, Ontario grower-finisher herds had a significantly higher reported prevalence of *E. coli, Mycoplasma* and *Salmonella* than grower-finisher herds in the Prairies. In 2014, Québec grower-finisher herds had a significantly higher reported prevalence of *Mycoplasma* and *Salmonella* than grower-finisher herds in the Prairies (Figure 8.25).

In 2014, Ontario nurseries supplying CIPARS grower-finisher herds had a significantly higher reported prevalence of *Mycoplasma* than nurseries in the Prairies. In 2014, Québec nurseries supplying CIPARS grower-finisher herds had a significantly higher reported prevalence of *Mycoplasma* and *Salmonella* than nurseries in the Prairies (Figure 8.26).

In 2014, Ontario sow herds supplying CIPARS grower-finisher herds had a significantly higher reported prevalence of *E. coli* and Swine Influenza and a significantly lower reported prevalence of *Lawsonia* than sow herds in the Prairies. Québec sow herds supplying grower-finisher herds had a significantly higher reported prevalence of Salmonella and a significantly lower reported prevalence of Lawsonia than sow herds in the Prairies (Figure 8.27).

Antimicrobials were most commonly reported in grower-finisher herds for the control or treatment of *Streptococcus* suis (30%, 35%, 38%) and *Lawsonia* (39%, 42%, 31%) in all 3 regions (Prairies, Ontario, and Québec) in 2014, respectively. There was significantly more antimicrobial use reported for *Mycoplasma* in Ontario grower-finisher herds than in herds in the Prairies. There was significantly more antimicrobial use reported for swine Influenza, *Mycoplasma*, and *Salmonella* in grower-finisher herds in Québec than in grower-finisher herds in the Prairies (Figure 8.30).

In 2014, there was significantly more reported antimicrobial use for PCVAD, *E. coli* and *Mycoplasma* in Ontario nurseries supplying grower-finisher herds than in nurseries supplying grower-finisher herds in the Prairies. There was significantly more reported antimicrobial use for *E. coli*, Swine Influenza, *Mycoplasma*, *Salmonella* and *Streptococcus suis* in Québec nurseries supplying grower-finisher herds than in nurseries supplying herds in the Prairies (Figure 8.31).

In 2014, there was significantly more reported use for *Erysipelas* in Ontario sow herds supplying CIPARS grower-finisher herds than in sow herds supplying grower-finisher herds in the Prairies. In 2014, there was significantly more reported use for *Streptococcus suis* in Québec sow herds supplying CIPARS grower-finisher herds than in the Prairies (Figure 8.32).

There were significantly more grower-finisher herds reporting vaccination for *Mycoplasma* in Ontario than in the Prairies in 2014. There were significantly more grower-finisher herds reporting vaccination for *Mycoplasma* and Porcine Reproductive and Respiratory Syndrome (PRRS) in Québec than in the Prairies (Figure 8.33).

In 2014, there were significantly fewer herds with their own sows in Ontario and Québec than in the Prairies and significantly more single source grower-finisher herds in Ontario than in the Prairies (Figure 8.34).

Grower-finisher herds in Ontario and Québec were significantly smaller than in the Prairies in 2014 (Figure 8.35). As well, the number of pig farms within 2 km of CIPARS grower-finisher herds was significantly higher in Ontario and Québec than in the Prairies (Figure 8.36).

In 2014, the number of grower-finisher herds with the following biosecurity measures: boots provided, coveralls provided, biosecurity sign, shower required and downtime required were significantly lower in Québec than in the Prairies (Figure 8.37).

■Confirmed positive Ontario Likely positive ■Likely negative Québec Confirmed negative Prairies ☐ Don't know Ontario Prairies Ontario Québec Prairies Ontario Québec Prairies Ontario Disease / agen Québec Prairies Ontario Québec Prairies Ontario Québec Prairies Ontario Québec Prairies Salmonella Ontario Québec Prairies suis Ontario Québec 100% 50% Percentage of grower-finisher herds

Figure 8.24. Reported health status of grower-finisher herds (n = 95), 2014

APP = Actinobacillus pleuropneumoniae.

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE = Transmissible gastroenteritis.

Other disease reported in grower-finisher herds included: *Actinobacillus suis, Brachyspira, Hemophilus parasuis, Mycoplasma hyosynoviae*, and Porcine Epidemic Diarrhea.

Only one grower-finisher herd was reported as "Likely positive" for TGE. There were no herds reported as "Confirmed positive".

Figure 8.25. Reported health status of grower-finisher herds by province/region, 2010–2014

APP = Actinobacillus pleuropneumoniae.

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE = Transmissible gastroenteritis.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

100% **◆**APP 90% E. coli -Erysipelas - Lawsonia 80% -Swine Influenza - Mvcoplasma 70% PRRS Salmonella Percentage of herds 60% Streptococcus suis -TGE 50% 40% 30% 20% 10% 0% 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 Prairies Ontario Québec Year and province/region

Figure 8.26. Reported health status in nurseries supplying grower-finisher herds, by province/region, 2010–2014

APP = Actinobacillus pleuropneumoniae.

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE = Transmissible gastroenteritis.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

Note that for grower-finisher pigs received from more than 1 source, if at least 1 nursery was positive, the nursery was categorized as positive.

Figure 8.27. Reported health status in sow herds supplying grower-finisher herds by province/region, 2010–2014

 ${\sf APP} = Actino bacillus\ pleuropneumoniae.$

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE was not included in the sow herd survey.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

For grower-finisher pigs received from more than one source, if at least one sow herd was positive, the sow herds were categorized as positive.

Figure 8.28. Number of infectious diseases reported on grower-finisher herds (n = 92) by province/region, 2014

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

■ Positive and antimicrobials

■Positive and no antimicrobials

■ Negative and no antimicrobials

■ Negative and antimicrobials

Figure 8.29. Reported antimicrobial use for specific diseases in grower-finisher herds by province/region and disease status, 2014

APP = Actinobacillus pleuropneumoniae.

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE = Transmissible gastroenteritis.

Not all questionnaires were completed for all diseases listed.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

---APP 100% → PCVAD —×− E. coli 90% --- Lawsonia Swine Influenza 80% Mycoplasma → PRRS 70% --- Salmonella Streptococcus suis Percentage of herds 60% -TGE 50% 40% 30% 20% 10% 0% 2012 | 2013 | 2010 2011 2011 2012 2013 2010 2011 2012 2013 2014 2010 2014 2014 Québec **Prairies** Ontario Year and province/region

Figure 8.30. Reported antimicrobial use for specific diseases in grower-finisher herds by province/region, 2010–2014

APP = Actinobacillus pleuropneumoniae.

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE = Transmissible gastroenteritis.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

Figure 8.31. Reported antimicrobial use for specific diseases in nurseries supplying grower-finisher herds by province/region, 2010–2014

 ${\sf APP} = Actino bacillus\ pleuropneumoniae.$

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE = Transmissible gastroenteritis.

Not all questionnaires were completed for all diseases listed

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

Figure 8.32. Reported antimicrobial use for specific diseases in sow herds supplying grower-finisher herds, by province/region, 2010–2014

APP = Actinobacillus pleuropneumoniae.

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE was not included in the sow herd survey.

Not all questionnaires were completed for all diseases listed

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

100% → PCVAD — E. coli 90% Lawsonia Mycoplasma 80% PRRS 70% Percentage of herds 60% 50% 40% 30% 20% 10% 0% 2010 2011 2012 2013 2010 2011 2012 2013 2010 2011 2012 2013 2014 Prairies Québec Ontario Year and province/region

Figure 8.33. Reported vaccination status of grower-finisher herds by province/region, 2010–2014

APP = Actinobacillus pleuropneumoniae.

PCVAD = Porcine Circovirus Associated Disease.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE = Transmissible gastroenteritis.

Diseases where less than 5% of herds vaccinated for all years (2009 to 2014) were not included in the graph. This included, APP, Swine influenza, *Salmonella*, *Streptococcus suis* and TGE.

Québec Ontario **Prairies** Multiple Multiple source source Multiple source Single source Own sows Own sows Single Single Own sows source source

Figure 8.34. Source of pigs for grower-finisher herds (n = 95) by province/region, 2014

Herds that had their own sows and also purchased pigs from a single source/ multiple sources were classified as multiple source herds.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Québec **Prairies Ontario** 3000-3000-3999 1000-1999 3999 < 1000 > 5000 < 1000 2000-2999 4000-4999 _ 2000-2999 3000-3999 2000-1000-2999 1999 1000-1999

Figure 8.35. Barn capacity of grower-finisher herds by province/region, 2014

Capacity indicates the maximum number of pigs that the barn is designed to house.

Participating herds may have additional barns that were not sampled for the CIPARS program therefore this barn capacity is not necessarily equivalent to grower-finisher herd size.

Data on barn size was directly collected in 2014 for the first time.

Figure 8.36. Number of pig farms (n = 95) within 2 km of grower-finisher herds by province/region, 2014

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Figure 8.37. Biosecurity measures utilized in grower-finisher herds (n = 95) by province/region, 2014

Danish entry and locks were not specifically listed in the questionnaire but were indicated in the "Other" category, therefore the number of herds reporting this biosecurity measure may be an under-representation. The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

9. QUANTITIES OF ANTIMICROBIALS DISTRIBUTED FOR SALE FOR USE IN ANIMALS

KEY FINDINGS

In 2014, 1.5 million kg of antimicrobials were distributed for sale for use in animals in Canada by the Canadian Animal Health Institute (CAHI) member companies; a decrease of 12% relative to the 2006 total and an increase of 5% relative to the 2013 total (Table 9.1). Though when the Category IV antimicrobials were removed, the decrease since 2006 was 14% and there was a 1% increase since 2013. Of the 1.5 million kg, 73% included antimicrobial classes also used in human medicine. The remaining 27% were in Category IV; considered of low importance in human medicine (ionophores and chemical coccidiostats) (Table 9.1 and Figure 9.1).

Similar to other years, the predominant classes of antimicrobials distributed for sale in 2014 were the tetracyclines, ionophores, β -lactams, "other antimicrobials", and the macrolides (based on kg of active ingredient; Table 9.1 and Figure 9.1).

The quantity of fluoroquinolones distributed for use in animals in 2014 decreased by 10% relative to the 2006 total and increased by 14% relative to the 2013 total (based on kg of active ingredient; Table 9.1 and Figure 9.2).

There were provincial differences between the quantities of antimicrobials distributed for sale (Table 9.2, Figure 9.3, and Figure 9.4) and differences within provinces in the quantities distributed between years. These differences could be related to different numbers and types of animals in each province, differences in disease pressure, or differences in antimicrobial use or other management practices. The quantities reported per province reflect the quantities distributed to veterinary clinics, feed mills, and over-the-counter outlets by CAHI member companies. There may be subsequent re-distribution of antimicrobials across provincial borders after this point.

British Columbia, Alberta, Manitoba, and Ontario all reported an increase in antimicrobials distributed for sale (by % of change) between 2013 and 2014; with the most notable increases occurring in Ontario (30%) and Alberta (24%). Québec and the Atlantic provinces all had a decrease in antimicrobials distributed for sale; ranging between a 9% decline (New Brunswick) to an 80% decline (Newfoundland and Labrador). These values do not account for changes in underlying population or disease pressures.

In 2014, the quantity of antimicrobials distributed for use in companion animals represented less than 1% of the total antimicrobials distributed for sale. Antimicrobials distributed for sale for use in companion animal were mostly β -lactams (penicillins), trimethoprim and sulfonamides, and cephalosporins (Table 9.3 and Figure 9.5). For production animals, the antimicrobials distributed for sale were mostly tetracyclines, ionophores, and β -lactams (penicillins) (Table 9.3 and Figure 9.6).

CHAPTER 3—ANTIMICROBIAL USE IN ANIMALS—Quantities of Antimicrobials Distributed for Sale for Use in Animals

For the first time, CAHI have stratified their data by pharmaceutical form/route of administration (feed, water, injection, oral/topical, and intra-mammary). Overall, antimicrobials are predominantly distributed for use in feed (84% of total kg) (Figure 9.7). Since 2013 (data not shown), the changes of sales by route of administration were all less than 6%, other than for "oral/topical" where 2014 was 19% higher relative to the 2013 "oral/topical" total. The predominant classes of antimicrobials vary considerably across the routes of administration (Figure 9.8, Figure 9.9, Figure 9.10, Figure 9.11, and Figure 9.12).

New macrolides were registered in 2012 and 2013 in Canada and the volumes for the new product have been reported since 2012.

In terms of the Canadian animal population, the animal biomass (otherwise known as the population correction unit—PCU) in Canada has decreased over time from the highest point in 2006. Since 2006, there has been a 16% decline in the PCU and a 0% change since 2013 (Figure 9.13). Comparing the 2014 animal biomass to 2006, the respective declines in the PCU were as follows: fish 22%, cattle 19%, swine 16%, poultry 4%, rabbits 2%, and sheep and goats 1%. The detailed data used to calculate the PCU for 2014 can be found in Table A.4 in the Appendix. Recent live horse data were not available at the time of writing.

For production animals, the total quantity of antimicrobials distributed for sale adjusted for populations and weights (mg/PCU) in 2014 was 164; an increase of 3% since 2006 and a 1% increase since 2013 (Figure 9.14). New in 2014, the mg/PCU for companion animals was 32.

For international comparison, the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC), at the time of writing, had data available for 26 member countries for 2013. Comparing the most recent data (Canada 2014, ESVAC 2013), Canada ranked as 4th highest for PCU (with first rank being the country with the highest animal biomass); only lower than France, Germany, and Spain. When compared to the countries participating in the ESVAC network, for the mg/PCU, Canada was 21 out of 27 countries (Figure 9.15), when ranked from smallest to highest mg/PCU. Canada's position would be further to the left on the figure (higher mg adjusted by populations and weights) if we could account for the currently unrecorded imports of antimicrobials which fall under own-use importation and imports of active pharmaceutical ingredients intended for further compounding.

Canadian standard weights and provincial-level animal numbers are currently being further developed.

NATIONAL-LEVEL ANTIMICROBIAL DISTRIBUTION DATA

Table 9.1. Quantity of antimicrobials (kg) distributed in Canada for sale for use in animals, 2006–2014

			Quantity o	of active ingredi	ent (kg)					Change (%)	Change (%)
Antimicrobial class aggregation	2006	2007	2008	2009	2010	2011	2012	2013	2014	from 2006 to 2014	from 2013 to 2014
Aminoglycosides	5,122	4,302								NA	NA
			5,817	4,652	3,961					NA	NA
						12,250	10,372	10,785	13,276	NA NA	23%
Amphenicols	NA	NA	3,242	4,001	4,391	NA	NA	NA	NA	NA	NA
β-Lactams	58,538	52,594								NA	NA
			109,153	118,109	201,934					NA	NA
		-				147,908				NA	NA
					_		136,611			NA	NA
								134,838	148,187	' NA	10%
Cephalosporins	702	850	NA	NA	NA					NA	NA
						6,725	6,388	2,403	2,714	NA	13%
Fluoroquinolones	591	443	411	377	381	519	406	469	533	-10%	14%
lonophores, chemical anticoccidials, and											
arsenicals ^a	455,753	445,952								NA	NA
lonophores, chemical anticoccidials,											
arsenicals, and nitroimidazoles ^a			472,384	491,152	490,355					NA	NA
Chemical coccidiostats ^a						22,372				NA	NA
							18,471			NA	NA
								78,493	99,037	NA	26%
lonophore coccidiostats ^a						433,897				NA	NA
							473,595	272.007	040.004	NA NA	NA 150
	27.005	55.070	44.000	44.40	40.070	10.001	54.007	278,297	318,961	NA 1884	15%
Lincosamides	67,825	55,872	41,222	44,137	46,373	43,261	51,027	54,784	60,006	-12%	10%
Macrolides and pleuromutilins	136,497	118,725								NA	NA
Macrolides, pleuromutilins, and bacitracins	NA	NA	210,869	204,169	170,154					NA	NA
						100,000	00.000	00.070	110.010		
Macrolides	NA NA	NA 110 222	NA	NA	NA	108,862	98,622	93,870	112,340	NA NA	20%
Other antimicrobials	143,029	146,880								NA	NA
			32,706	21,339	26,757	100.011				NA NA	NA
						130,911	100.01			NA	NA
							129,614	105 514	405.000	NA NA	NA 00/
T	0.47.004	750 100	200 004	222 222	505 440		225 125	125,511	125,230	NA NA	0%
Tetracyclines	847,281	753,168	680,601	686,832	535,142	600,930	635,435	635,675	599,540	-29%	-6%
Trimethoprim and sulfonamides	50,789	38,961	59,166	57,596	48,221	70,465	58,716	00.00=	00.700	NA NA	NA 201
T-4-1	1 700 100	4 047 740	4.045.574	4 000 005	4 507 000	4 570 400	4 040 057	63,367	68,762	NA 1996	9%
Total	1,766,126	1,617,748	1,615,571	1,632,365	1,527,669	1,578,100	1,619,257	1,478,492	1,548,585	-12%	5%

See corresponding footnotes on next pages.

Table 9.1. Quantity of antimicrobials (kg) distributed in Canada for sale for use in animals, 2006–2014 (cont'd)

Values do not include own use imports or active pharmaceutical ingredients used in compounding.

NA = not available or not applicable.

CAHI provides the information according to a "3 company accounting rule" established by CAHI to comply with the European Union and the United States' anti-competition regulations. CAHI added in some cases a "90% rule" to be sure not to infringe the regulations in the United States. These accounting rules can result in changes to the categorization of specific antimicrobials over time; hence within an antimicrobial category, columns with different colours should not be compared.

Changes in percentage over time from 2006 to 2014 are relative to the quantities reported in 2006. Changes in percentage over time from 2013 to 2014 are relative to the quantities reported in 2013.

"Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurantoin, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

^a These antimicrobial classes are considered of low importance to human medicine (Category IV) according to Veterinary Drugs Directorate.

Values do not include own use imports or active pharmaceutical ingredients used in compounding. "Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Figure 9.2. Percentage change in the quantities of antimicrobials distributed for use in animals between 2013 and 2014

Values do not include own use imports or active pharmaceutical ingredients used in compounding. "Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

PROVINCIAL-LEVEL ANTIMICROBIAL DISTRIBUTION DATA

Table 9.2. Quantity of antimicrobials (kg of active ingredient) distributed for sale for use in animals, by province, 2011–2014

				Ti di			Side.			,	G		
Year	Province		So de la company	Ē.	, E		ş ⁰	, Sol	49	in erop	ŗ Æ	P	¹ Total
		40mosiy	The factories from the man		Floorogu	Solution Company of the Company of t	onopopo _{po}	Che Can	Wearelling	Ones Par	Torne, Jelling	Trimon South	
	BC	614	11,405	216	54	16,100	11,008	92	582	11,949	19,384	2,442	73,848
	AB	735	20,897	507	125	21,244	106,645	7,942	30,683	19,586	116,755	12,275	337,394
	SK	668	6,699	125	6	3,388	22,106	3,260	2,991	5,490	507, 27	3,974	76,215
	MB	652	18,277	269	21	7,105	36,554	13,673	23,013	11,840	71,478	8,863	745, 191
2014	ON	4,154	56,407	695	234	29,104	67,081	19,559	26,880	37,133	134,221	24,595	400,063
2014	QC	6,052	30,986	795	80	20,363	69,372	15,314	27,754	35,849	216,041	15,691	438,297
	NS	180	1,412	47	8	1,481	3,719	51	419	1,814	10,112	446	19,688
	NB	103	1,229	26	3	63	795	89	9	153	3,741	316	6,526
	PE	47	581	17	1	1	0	2	8	70	278	99	1,103
	NL	72	293	16	2	188	1,680	24	0	1,347	23	61	3,706
Total		13,276	148,187	2,714	533	99,037	318,961	60,006	112,340	125,230	599,540	68,762	1,548,585
	BC	628	10,669	181	49	12,619	17,890	90	928	11,267	12,474	2,395	69,189
	AB	664	19,613	437	102	2,652	79,208	7,596	12,803	17,160	118,675	12,195	271,106
	SK	311	6,707	101	6	454	24,717	3,224	5,592	6,030	24,787	4,204	76,132
	MB	553	16,184	206	16	889	29,728	13,490	10,955	9,494	91,201	9,575	182,292
2013	ON	3,007	48,319	596	192	9,832	47,434	14,289	13,053	33,254	116,662	20,248	306,886
	QC	3,997	29,926	792	91	17,187	103,767	15,898	50,121	29,562	248,315	13,610	513,266
					_								
	NS	793	1,367	35	7	1,201	4,681	64	410	8,784	11,679	711	29,732
	NB	125	1,147	28	3	89	919	85	4	494	4,035	250	7,180
	NB PE	125 50	1,147 501	28 16	3 1	89 1	919 0	85 1	4 4	494 604	4,035 2,881	250 107	7,180 4,164
Total	NB	125 50 658	1,147 501 404	28 16 11	3 1 2	89 1 213	919 0 3,308	85 1 47	4 4 0	494 604 8,863	4,035 2,881 4,967	250 107 72	7,180 4,164 18,544
Total	NB PE NL	125 50 658 10,785	1,147 501 404 134,838	28 16 11 2,403	3 1 2 469	89 1 213 45,138	919 0 3,308 311,652	85 1 47 54,784	4 4 0 93,870	494 604 8,863 125,511	4,035 2,881 4,967 635,675	250 107 72 63,367	7,180 4,164 18,544 1,478,492
Total	NB PE NL BC	125 50 658 10,785 598	1,147 501 404 134,838 9,966	28 16 11 2,403 658	3 1 2 469 42	89 1 213 45,138 1,017	919 0 3,308 311,652 26,973	85 1 47 54,784 81	4 4 0 93,870 454	494 604 8,863 125,511 17,255	4,035 2,881 4,967 635,675 15,233	250 107 72 63,367 2,100	7,180 4,164 18,544 1,478,492 74,376
Total	NB PE NL BC AB	125 50 658 10,785 598 643	1,147 501 404 134,838 9,966 20,939	28 16 11 2,403 658 1,102	3 1 2 469 42 88	89 1 213 45,138 1,017 1,745	919 0 3,308 311,652 26,973 181,282	85 1 47 54,784 81 6,921	4 4 0 93,870 454 30,355	494 604 8,863 125,511 17,255 14,592	4,035 2,881 4,967 635,675 15,233 113,282	250 107 72 63,367 2,100 10,242	7,180 4,164 18,544 1,478,492 74,376 381,193
<u>Total</u>	NB PE NL BC AB SK	125 50 658 10,785 598 643 294	1,147 501 404 134,838 9,966 20,939 5,449	28 16 11 2,403 658 1,102 229	3 1 2 469 42 88 6	89 1 213 45,138 1,017 1,745 300	919 0 3,308 311,652 26,973 181,282 27,290	85 1 47 54,784 81 6,921 4,581	4 4 0 93,870 454 30,355 2,939	494 604 8,863 125,511 17,255 14,592 5,060	4,035 2,881 4,967 635,675 15,233 113,282 28,622	250 107 72 63,367 2,100 10,242 3,203	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971
Total	NB PE NL BC AB SK MB	125 50 658 10,785 598 643 294 674	1,147 501 404 134,838 9,966 20,939 5,449 16,057	28 16 11 2,403 658 1,102 229 404	3 1 2 469 42 88 6 21	89 1 213 45,138 1,017 1,745 300 1,001	919 0 3,308 311,652 26,973 181,282 27,290 34,213	85 1 47 54,784 81 6,921 4,581 13,175	4 4 0 93,870 454 30,355 2,939 11,434	494 604 8,863 125,511 17,255 14,592 5,060 9,285	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755	250 107 72 63,367 2,100 10,242 3,203 7,557	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577
Total 2012	NB PE NL BC AB SK MB ON	125 50 658 10,785 598 643 294 674 3,012	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031	28 16 11 2,403 658 1,102 229 404 2,248	3 1 2 469 42 88 6 21 172	89 1 213 45,138 1,017 1,745 300 1,001 5,436	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602	85 1 47 54,784 81 6,921 4,581 13,175 11,796	4 4 0 93,870 454 30,355 2,939 11,434 23,651	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917
	NB PE NL BC AB SK MB ON QC	125 50 658 10,785 598 643 294 674 3,012 4,175	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322	28 16 11 2,403 658 1,102 229 404 2,248 1,376	3 1 2 469 42 88 6 21 172 65	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077	4 4 0 93,870 454 30,355 2,939 11,434 23,651 29,163	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364
	NB PE NL BC AB SK MB ON GC NS	125 50 658 10,785 598 643 294 674 3,012 4,175 520	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322 1,624	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199	3 1 2 469 42 88 6 21 172 65 7	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48	4 4 0 93,870 454 30,355 2,939 11,434 23,651 29,163 590	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797
	NB PE NL BC AB SK MB ON GC NS NB	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322 1,624 1,332	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199	3 1 2 469 42 88 6 21 172 65 7 4	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343	4 4 0 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11	494 604 8,863 125,511 17,256 14,592 5,060 9,285 37,735 27,747 7,572 1,060	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959
	NB PE NL BC AB SK MB ON GC NS NB PE	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46	1,147 501 404 134,838 9,968 20,939 5,449 16,057 54,031 26,322 1,624 1,332 499	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199 99	3 1 2 469 42 88 6 21 172 65 7 4	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 7,20 0	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 3	4 4 30,3870 454 30,355 2,939 11,434 23,651 29,163 590 11 7	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,765 114,729 236,532 31,534 4,018 2,382	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781
	NB PE NL BC AB SK MB ON GC NS NB	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322 1,624 1,332	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199 99 34 40	3 1 2 469 42 88 6 21 172 65 7 4	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343	4 4 0 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11	494 604 8,863 125,511 17,256 14,592 5,060 9,285 37,735 27,747 7,572 1,060	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322
2012	NB PE NL BC AB SK MB ON GC NS NB PE NL	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372	1,147 501 404 134,838 9,966 9,966 5,449 16,057 54,031 26,322 1,624 1,332 499 391	28 16 11 2,403 688 1,102 229 404 2,248 1,376 199 99 34 40 6,388	3 1 2 469 42 88 6 21 172 65 7 4 1 2	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 3 2 51,027	4 4 0 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11 7 18	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617 129,614	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347 635,435	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62 58,716	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257
2012	NB PE NL BC AB SK MB ON GC NS NB PE	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322 1,624 1,332 499 391	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199 99 34 40 6,388	3 1 2 469 42 88 6 21 172 65 7 4 1	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595 24,089	85 1 47 54,784 6,921 4,581 13,175 11,796 14,077 48 343 3 2	4 4 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11 7	494 604 8,863 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322
2012	NB PE NL BC AB SK MB ON GC NS NB PE NL BC	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372 775	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322 1,624 1,332 499 391 136,611 11,690	28 16 11 2,403 688 1,102 229 404 2,248 1,376 199 99 34 40 6,388	3 1 2 469 42 88 6 21 172 65 7 4 1 2 406	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0 18,471 1,190	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 3 2 51,027	4 4 0 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11 7 18 98,622 827	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 8,617 129,614 15,186	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347 635,435 10,371	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62 58,716	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257 67,755
2012	NB PE NL BC AB SK MB ON QC NS NB PE NL BC AB	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372 775 930	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322 1,624 1,332 499 391 136,611 11,690 22,497	28 16 11 2,403 668 1,102 229 404 2,248 1,376 199 99 34 40 6,388 583 1,190	3 1 2 469 42 88 6 21 172 65 7 4 1 2 406 50 137	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0 18,471 1,190 2,338	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595 24,089 71,682	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 3 2 51,027 113 6,711	4 4 4 93,870 454 30,355 2,399 11,434 23,651 29,163 590 11 7 18 98,622 827 41,567 5,187	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617 129,614 15,186 13,015 4,600	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347 635,435 10,371 97,868	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62 58,716 2,881 13,853	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257 67,755 271,788
2012 Total	NB PE NL BC AB SK MB ON QC NS NB PE NL BC AB SK	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372 775 930 206	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322 1,624 1,332 499 391 11,690 22,497 6,112	28 16 11 2,403 6,588 1,102 229 404 2,248 1,376 199 99 34 40 6,388 583 1,190 308	3 1 2 469 42 88 6 21 172 65 7 4 1 2 406 50 137	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0 18,471 1,190 2,338 1,294	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595 24,089 71,682 22,369	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 3 2 51,027 113 6,711 4,821	4 4 0 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11 7 7 18 98,622 827 41,567	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617 129,614 15,186 13,015	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347 635,435 10,371 97,888 28,401	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62 58,716 2,881 13,863 5,786	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257 67,755 271,788 79,099
2012	NB PE NL BC AB SK MB PE NL BC AB SK MB PE NL BC AB SK MB	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372 775 930 206 1,117	1,147 501 404 9,968 20,939 5,449 16,057 54,031 26,322 1,624 1,332 499 391 136,611 11,690 22,497 6,112 17,896	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199 99 34 40 6,388 583 1,190 308 501	3 1 2 469 42 88 6 21 172 65 7 4 1 2 406 50 137 15 22	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0 18,471 1,190 2,338 1,294 928	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595 24,089 71,682 22,369 57,400	85 1 47 54,784 6,921 4,581 13,175 11,796 14,077 48 343 3 2 51,027 113 6,711 4,821 9,849	4 4 93,870 93,870 43,935 2,939 11,434 23,651 29,163 590 11 7 18 98,622 827 41,567 5,187 14,326	494 604 8,863 125,511 17,255 14,552 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617 129,614 15,186 13,015 4,600 7,119	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,765 114,729 236,532 31,534 4,018 2,382 4,347 635,435 10,371 97,868 28,401 80,862	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62 58,716 2,881 13,853 5,786 9,156	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257 67,755 271,788 79,099 199,166
2012 Total	NB PE NL BC AB SK MB ON GC NS NB PE NL BC AB SK MB ON	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372 775 930 206 1,117 3,448	1,147 501 404 9,966 20,939 5,449 16,057 54,031 26,322 1,624 1,332 499 391 136,611 11,690 22,497 6,112 17,896 54,305	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199 99 34 40 6,388 583 1,190 308 501 1,938	3 1 2 469 42 88 6 21 172 65 7 4 1 2 406 50 137 15 22 206	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0 18,471 1,190 2,338 1,294 928 4,433	919 0 3,308 311,652 26,973 26,973 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595 24,089 71,682 22,369 57,400 89,954	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 3 2 51,027 113 6,711 4,821 9,849 8,410	4 4 4 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11 7 18 98,622 827 41,567 5,187 14,326 13,326	494 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617 129,614 15,186 13,015 4,600 7,119 39,170	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347 635,435 10,371 97,868 28,401 80,852 105,905	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62 58,716 2,881 13,853 5,766 9,156 19,388	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257 67,755 271,788 79,099 199,166 340,483
2012 Total	NB PE NL BC AB SK MB ON GC NS NB PE NL BC AB SK MB ON GC ON GC	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372 775 930 206 1,117 3,448 4,443	1,147 501 404 9,966 9,966 16,057 54,031 26,322 1,624 1,332 499 391 136,611 11,690 22,497 6,112 17,896 54,305 30,277	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199 93 34 40 6,388 583 1,190 308 501 1,938 1,981	3 1 2 469 42 88 6 21 172 65 7 4 1 2 406 50 137 15 22 206 73	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0 18,471 1,190 2,338 1,294 928 4,433 9,330	919 0 3,308 311,652 26,973 112,82 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595 24,089 71,682 22,369 57,400 89,954 156,118	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 3 2 51,027 113 6,711 4,821 9,849 8,410 12,952	4 4 4 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11 7 18 98,622 827 41,567 5,187 14,326 13,326 32,275	494 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617 129,614 15,186 13,015 4,600 7,119 39,170 34,709	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347 635,435 10,371 97,880 28,401 80,852 105,905 242,951	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62 58,716 2,881 13,853 5,786 9,156 19,388 18,126	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257 67,755 271,788 79,099 199,166 340,483 543,135
2012 Total	NB PE NL BC AB SK MB ON GC NS BC AB SK MB ON GC NS NS BC AB SK MB ON GC NS	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372 775 930 206 1,117 3,448 4,443 614	1,147 501 404 134,838 9,966 9,966 26,332 16,057 54,031 26,322 1,624 1,332 499 391 136,611 11,690 22,497 6,112 17,896 54,305 30,277 1,919	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199 93 34 40 6,388 583 1,190 308 501 1,938 1,881 1,881	3 1 2 469 42 88 6 21 172 65 7 4 1 2 406 50 137 15 22 206 73 9	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0 18,471 1,190 2,338 1,294 928 4,433 9,330 2,742	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595 24,089 71,682 22,369 57,400 89,954 156,118 8,577	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 3 2 51,027 113 6,711 4,821 9,849 8,410 12,952 48	4 4 4 93,870 454 30,355 2,939 11,434 23,651 29,163 590 11 7 18 98,622 827 41,567 5,187 14,326 13,326 32,275 615	494 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617 129,614 15,186 13,015 4,600 7,119 39,170 34,709 8,875	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347 635,435 10,371 97,888 28,401 80,852 105,905 242,951 22,069	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,168 556 203 117 62 58,716 2,881 13,853 5,786 9,156 19,388 18,126 684	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257 67,755 271,788 79,099 199,166 340,483 543,135 46,292
2012 Total	NB PE NL BC ABK MB ON GC NS NB PE NL BC ABK MB ON GC NS NB NB NB NB NB NB	125 50 658 10,785 598 643 294 674 3,012 4,175 520 116 46 294 10,372 775 930 206 1,117 3,448 4,443 614 156	1,147 501 404 134,838 9,966 20,939 5,449 16,057 54,031 26,322 1,624 1,332 499 391 11,690 22,497 6,112 17,896 54,305 30,277 1,919 2,244	28 16 11 2,403 658 1,102 229 404 2,248 1,376 199 93 440 6,388 583 1,190 308 501 1,938 1,938 1,881 1,40 98	3 1 2 469 42 88 6 21 172 65 7 4 1 2 406 50 137 15 22 206 73 9 4	89 1 213 45,138 1,017 1,745 300 1,001 5,436 8,430 489 52 2 0 18,471 1,190 2,338 1,294 928 4,433 9,330 2,742 117	919 0 3,308 311,652 26,973 181,282 27,290 34,213 113,602 78,308 7,658 720 0 3,549 473,595 24,089 71,682 22,369 57,400 89,954 156,118 8,577 666	85 1 47 54,784 81 6,921 4,581 13,175 11,796 14,077 48 343 2 51,027 113 6,711 4,821 9,849 8,410 12,952 48 351	4 4 4 93,870 454 30,365 2,939 11,434 23,651 29,163 590 11 7 18 98,622 827 41,567 5,187 14,326 13,326 32,275 615 566	494 604 8,863 125,511 17,255 14,592 5,060 9,285 37,735 27,747 7,572 1,060 690 8,617 129,614 15,186 13,015 4,600 7,119 39,170 34,709 8,875 945	4,035 2,881 4,967 635,675 15,233 113,282 28,622 84,755 114,729 236,532 31,534 4,018 2,382 4,347 635,435 10,371 97,868 28,401 80,852 105,905 242,951 22,069 2,915	250 107 72 63,367 2,100 10,242 3,203 7,557 20,505 14,188 556 203 117 62 58,716 2,881 13,853 5,786 9,156 19,156 19,156 18,126 684 267	7,180 4,164 18,544 1,478,492 74,376 381,193 77,971 178,577 386,917 440,364 50,797 7,959 3,781 17,322 1,619,257 67,755 271,788 79,099 199,166 340,483 543,135 46,292 8,329

Province abbreviations are defined in the Appendix.

Values do not include own use imports or active pharmaceutical ingredients used in compounding. There may be subsequent distribution of antimicrobials across provincial borders after being distributed to the veterinary clinics.

"Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurantoin, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Figure 9.3. Quantity of antimicrobials (kg of active ingredient) distributed for sale for use in animals, by province, 2011–2014

Province	2011	2012	2013	2014	Change (%) since 2011	Change (%) since 2013	
ВС	67,755	74,376	69,189	73,848	9	7	
AB	271,788	381,193	271,106	337,394	24	24	
SK	79,099	77,971	76,132	76,215	-4	0	
MB	199,166	178,577	182,292	191,745	-4	5	
ON	340,483	386,917	306,886	400,063	17	30	
QC	543,135	440,364	513,266	438,297	-19	-15	
NS	46,292	50,797	29,732	19,688	-57	-34	
NB	8,329	7,959	7,180	6,526	-22	-9	
PE	7,465	3,781	4,164	1,103	-85	-74	
NL	13,907	17,322	18,544	3,706	-73	-80	
Total	1,577,419	1,619,257	1,478,492	1,548,585	-2	5	
					> 10% but < 20	% increase	
					≥ 20% but < 30°	% increase	
					≥ 30% increase		
					> 10% but < 20% decrease		
					> 20% but < 309	% decrease	

Province abbreviations are defined in the Appendix.

Values do not include own use imports or active pharmaceutical ingredients used in compounding.

There may be subsequent distribution of antimicrobials across provincial borders after being distributed to the veterinary clinics.

This figure does not account for provincial differences in numbers or types of animals.

≥ 30% decrease

Figure 9.4. Quantity of antimicrobials (kg of active ingredient) distributed for sale for use in animals by province and antimicrobial class, 2014

Province abbreviations are defined in the Appendix.

Values do not include own use imports or active pharmaceutical ingredients used in compounding.

There may be subsequent distribution of antimicrobials across provincial borders after being distributed to the veterinary clinics.

This figure does not account for provincial differences in numbers or types of animals.

"Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurantoin, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

DISTRIBUTION BY ANIMAL TYPE

Table 9.3. Quantity of antimicrobials (kg of active ingredient) distributed for sale for use in animals, by province and animal type, 2014

Animal type province	4mmosyles	B. Lacenns	Cookalo.	Floor Souries	Chemical Constants	Siescoposo.	Huesceut,	So	Oner anne	Sielo".	Tring to the state of the state	Total
Production a		44.007	204	20	40.400	44.000		500	44.040	40.004	2 207	70.044
BC AB	614	11,267	201	38	16,100	11,008	92	582	11,940	19,384	2,387	73,614
AB	734 668	20,644	472 116	87	21,244	106,645	7,923	30,683	19,572	116,755	11,998	336,755 76,000
SK MB	652	6,618 18,056	250	4 14	3,388 7,105	22,106 36,554	3,253 13,640	2,991 23,013	5,486 11,831	507, 27 71,478	3,884 8,663	76,022 191,256
ON	4,153	55,724	250 646	162	29,104	36,554 67,081	19,512	25,013 26,880	37,105	134,221	0,003 24,038	398,628
QC	4,155 6,050	30,610	739	56	20,363	69,372	15,278	27,754	35,823	216,041	15,336	437,422
NS	180	1,395	44	5	1,481	3,719	51	419	1,813	10,112	436	19,654
NB	103	1,214	24	2	63	795	88	413	153	3,741	309	6,501
PE	47	573	15	1	1	790	2	8	70	278	97	1,092
NL	72	290	15	1	188	1,680	24	0	1,346	270	60	3,698
Total	13,273	146,391	2,523	370	99,037	318,961	59,864	112,340	125,139	599,540	67,206	1,544,643
Companion a		140,001	2,020	310	00,001	310,301	33,004	112,540	120,100	300,340	01,200	1,544,645
BC	0	138	15	17	0	0	0	0	9	0	55	234
AB	ō	253	36	38	Ō	Ō	19	Ō	14	Ō	278	638
SK	Ō	81	9	2	Ō	Ō	8	Ō	4	Ō	90	194
MB	Ō	222	19	6	Ō	Ō	32	Ō	9	Ō	201	489
ON	1	684	49	72	0	0	46	0	27	0	556	1,435
QC	1	376	56	25	0	0	36	0	26	0	355	875
NS	0	17	3	2	0	0	0	0	1	0	10	34
NB	0	15	2	1	0	0	0	0	0	0	7	25
PE	0	7	1	0	0	0	0	0	0	0	2	11
NL	0	4	1	1	0	0	0	0	1_	0	1	8
Total	3	1,796	191	163	0	0	142	0	92	0	1,556	3,943
Total (animal		,										
	13,276	148,187	2,714	533	99,037	318,961	60,006	112,340	125,230	599,540	68,762	1,548,585

Province abbreviations are defined in the Appendix.

Values do not include own use imports or active pharmaceutical ingredients used in compounding. Production animals include horses.

The attribution of antimicrobials sold in each province to the type of animal (companion animals vs. production animals) was based on multiplying a national average percentage of the antimicrobial sold for companion animals/production animals by the total reported in that province.

Province abbreviations are defined in the Appendix.

[&]quot;Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurantoin, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Figure 9.5. Quantity of antimicrobials (kg of active ingredient) distributed for use in companion animals (a) over time and (b) 2014

Values do not include own use imports or active pharmaceutical ingredients used in compounding.

"Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurantoin, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Antimicrobial sales were assigned to animal type according to label claim and in the situation where mixed species was indicated on the label, the manufacturer assigned the species as either "Companion animal" or "Production animal".

Figure 9.6. Quantity of antimicrobials (kg) distributed for use in production animals (a) over time and (b) 2014

Note the differences in scale of the vertical axes between the companion animal and the production animal figures. Values do not include own use imports or active pharmaceutical ingredients used in compounding.

"Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurantoin, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Antimicrobial sales were assigned to animal type according to label claim and in the situation where mixed species was indicated on the label, the manufacturer assigned the species as either "Companion animal" or "Production animal". Production animals include horses.

DISTRIBUTION BY ROUTE OF ADMINISTRATION

Figure 9.7. Quantity of antimicrobials (% of total kg and kg of active ingredient) distributed for use in animals, by route of administration and antimicrobial class, 2014

Values do not include own use imports or active pharmaceutical ingredients used in compounding. "Other antimicrobials" for 2014 included: avilamycin, bacitracin, bambermycin, chloramphenicol, florfenicol, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Figure 9.8. Quantity of antimicrobials (% of total kg) distributed for use in animals, via feed, by antimicrobial class, 2014

Values do not include own use imports or active pharmaceutical ingredients used in compounding. "Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

β-Lactams (penicillins) 26% 14%

Figure 9.9. Quantity of antimicrobials (% of total kg) distributed for use in animals, via water, by antimicrobial class, 2014

Values do not include own use imports or active pharmaceutical ingredients used in compounding. "Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Figure 9.10. Quantity of antimicrobials (% of total kg) distributed for use in animals, via injection, by antimicrobial class, 2014

Values do not include own use imports or active pharmaceutical ingredients used in compounding. "Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Figure 9.11. Quantity of antimicrobials (% of total kg) distributed for use in animals, via oral/topical routes by antimicrobial class, 2014

Values do not include own use imports or active pharmaceutical ingredients used in compounding. "Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurantoin, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

Figure 9.12. Quantity of antimicrobials (% of total kg) distributed for use in animals, for intramammary use, by antimicrobial class, 2014

Values do not include own use imports or active pharmaceutical ingredients used in compounding. "Other antimicrobials" for 2014 included: avilamycin, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurazone, novobiocin, polymixin, tiamulin, and virginiamycin.

ANTIMICROBIAL SALES AND ANIMAL BIOMASS IN CANADA—THE POPULATION CORRECTION UNIT (PCU) OVER TIME

Table 9.4. Canadian population numbers and population correction unit (PCU), 2014

Animal species	Number of animals and/or kg fish	PCU (1,000 tonnes)
Cattle	8,866,523	3,680
Swine	26,488,530	1,931
Poultry	606,771,567	697
Sheep and goats	1,362,265	58
Horses	963,500	385
Fish	133,583,000	134
Rabbit	590,086	1
Total production animals		6,886
Cats	7,000,000	28
Dogs	6,400,000	96
Total companion Animals		124

For more detailed information on data sources and specific information on production stages, imports, exports, please see Table A.4 in Appendix.

The data used for live horses was from 2010; more recent data were unavailable.

Figure 9.13. Canadian animal biomass as measured by the population correction unit (PCU) over time, using European weights and European Surveillance of Veterinary

For 2010 to 2014, the data used for live horses was from 2010; more recent data were unavailable. Data based on European weights and European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) production classes (no companion animals)³⁰.

2010

Year

2011

2012

2013

2014

1000

0

2006

2007

2008

2009

³⁰ Sales of veterinary antimicrobial agents in 26 EU/EEA countries in 2012 (EMA/333921/2014). European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Available at: www.ema.europa.eu/docs/en GB/document library/Report/2014/10/WC500175671.pdf. Accessed August 2015.

Figure 9.14. Antimicrobials distributed for use in animals over time (kg of active ingredient and mg/PCU), 2006–2014

PCU = population correction unit.

Own-use importation and active pharmaceutical ingredient importation are not included for the Canadian data. Ionophores and chemical coccidiostats were excluded.

For 2010 to 2014, the data used for live horses was from 2010; more recent data were unavailable.

^{*}Indicates data excluding antimicrobials sold for use in companion animals.

INTERNATIONAL-LEVEL DATA

Figure 9.15. Sales of antimicrobials (adjusted by populations and weights) for Canada (2014) and countries participating in the European Surveillance of Veterinary Antimicrobial Consumption network (2013)

PCU = population correction unit.

Own-use importation and active pharmaceutical ingredient importation are not included for the Canadian data. Ionophores and chemical coccidiostats were excluded.

The PCU denominator was harmonized to the greatest extent possible with the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)³¹. ESVAC denominator does not include beef cows, whereas in Canada beef cows are a significant population and are included. ESVAC approach excludes companion animal data from the numerator.

Data from all countries shown are using the same average weights at treatment. However, Canadian average weights in many production classes are heavier than European average weights. As per stakeholder request, based on preliminary analysis, the lighter red column for Canada indicates where Canada would rank if Canadian average weights at treatment were used in the calculations. Canadian stakeholder experts are working with CIPARS to refine this analysis.

³¹ European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. Sales of veterinary antimicrobial agents in 26 EU/EEA countries in 2013 - Fifth ESVAC Report. (EMA/387934/2015). Available at: www.ema.europa.eu/docs/en_GB/document_library/Report/2015/10/WC500195687.pdf. Accessed October 2015.

APPENDIX—DESIGN AND METHODS

ANTIMICROBIAL RESISTANCE

HUMAN SURVEILLANCE

OBJECTIVE(S)

The objective of the *Surveillance of Human Clinical Isolates* component of CIPARS is to provide a representative and methodologically unified approach to monitor temporal variations in the prevalence of antimicrobial resistance in *Salmonella* isolated from humans.

SURVEILLANCE DESIGN

Hospital-based and private clinical laboratories culture human *Salmonella* isolates in Canada. Although reporting is mandatory through laboratory notification of reportable diseases to the National Notifiable Disease Reporting System, forwarding of *Salmonella* isolates to provincial reference laboratories is voluntary and passive. A high proportion (84% in 2001)³² of *Salmonella* isolates are forwarded to Provincial Public Health Laboratories (PPHLs), but this proportion may vary among laboratories. The Yukon, Northwest Territories, and Nunavut, which do not have a PPHL counterpart, forward their isolates to one of the PPHLs.

Prior to 2002, PPHLs forwarded *Salmonella* isolates to the Enteric Diseases Program, National Microbiology Laboratory (NML) @ Winnipeg, Public Health Agency of Canada (PHAC), Winnipeg, Manitoba for confirmation and subtype characterization. A letter of agreement by which provinces agreed to forward all or a subset of their *Salmonella* isolates to NML @ Winnipeg for CIPARS was signed in 2002 by the PPHLs and PHAC. This agreement officially launched the surveillance program.

To ensure a statistically valid sampling plan, all human *Salmonella* isolates (outbreak-associated and non-outbreak-associated) received passively by PPHLs in Saskatchewan, Manitoba, New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador were forwarded to the NML. The PPHLs in more heavily populated provinces (British Columbia,

³² Report of the 2001 Canadian Laboratory Study, National Studies on Acute Gastrointestinal Illness, Division of Enteric, Foodborne and Waterborne Diseases, 2002.

Alberta, Ontario, and Québec) forwarded only the isolates received from the 1st to the 15th of each month. However, all human *S*. Newport and *S*. Typhi isolates were forwarded to the NML because of concerns of multidrug resistance and clinical importance, respectively.

The PPHLs were also asked to provide a defined set of data for each forwarded isolate, including serovar name, date collected, and patient age, sex, and province of residence.

RETAIL MEAT SURVEILLANCE

OBJECTIVE(S)

The objectives of CIPARS *Retail Meat Surveillance* component are to provide data on the prevalence of antimicrobial resistance and to monitor temporal variations in selected bacteria found in raw meat at the provincial/region level.

SURVEILLANCE DESIGN

Retail Meat Surveillance provides a measure of human exposure to antimicrobial-resistant bacteria via the consumption of undercooked meat. Retail food represents a logical sampling point for surveillance of antimicrobial resistance because it is the endpoint of food animal production. Through meat sample collection and testing, the retail surveillance provides a measure of human exposure to antimicrobial resistant bacteria through the consumption of meat products available for purchase by Canadian consumers. The scope of the surveillance framework can be modified as necessary (e.g., to evaluate different food commodities, bacteria, or geographic regions) and functions as a research platform for investigation of specific questions regarding antimicrobial resistance in the agri-food sector.

The unit of concern in *Retail Meat Surveillance* in 2014 was the bacterial isolate cultured from one of the commodities of interest. In this situation, the commodities were raw meat products commonly consumed by Canadians, which originated from the 3 animal species sampled in the *Abattoir Surveillance* component as well as turkey beginning in 2012. These raw meat products consisted of chicken (legs or wings [skin on]), turkey (ground), pork (chops), and beef (ground).

For ground beef, a systematic collection of extra-lean, lean, medium, and regular ground beef was performed to ensure representation of the heterogeneity of ground beef with respect to its origins (e.g., domestic vs. imported beef or raised beef cattle vs. culled dairy cattle). The meat cuts "legs or wings with skin on", "ground turkey", "pork chops", and "ground beef" were chosen on the basis of suspected high prevalences of the targeted bacterial species within and the low purchase prices of these commodities³³ and for comparability to other international retail surveillance programs .

Bacteria of interest in chicken and turkey were *Campylobacter*, *Salmonella*, and generic *E. coli*. In pork, both *Salmonella* and *E. coli* were cultured, but only isolates of *E. coli* underwent antimicrobial susceptibility testing for routine surveillance. *Salmonella* was isolated from pork

³³ Ravel A. Antimicrobial Surveillance in food at retail – Proposal for a pilot project. 2002. 13 pp.

mainly to provide recovery estimates from this commodity for other Public Health Agency of Canada programs. Because the prevalence of *Salmonella* in pork is low, antimicrobial susceptibility results are not presented on an annual basis but are pooled and presented over a multi-year period in the interest of precision. Recovery of *Campylobacter* from pork was not attempted because of the low prevalence observed in the initial stages of *Retail Meat Surveillance*. In beef, only *E. coli* was cultured and then tested for antimicrobial susceptibility given the low prevalence of *Campylobacter* and *Salmonella* in this commodity at the retail level, as determined during the early phase of the program. In turkey, *Campylobacter*, *Salmonella*, and *E. coli* were isolated from retail samples.

SAMPLING METHODS

Generally, the sampling protocol was designed to evaluate antimicrobial resistance in certain bacterial species that contaminate retail meat and to which Canadian consumers may subsequently be exposed. In 2014, it primarily involved continuous weekly submission of samples of retail meat from randomly selected geographic areas (i.e., census divisions defined by Statistics Canada), weighted by population, in each participating province.

Retail meat samples were collected in British Columbia, Prairies (a region including the provinces of Saskatchewan, Alberta, and Manitoba³⁴), Ontario, and Québec. In past years, retail data have been presented for the Atlantic region (a region including the provinces of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador³⁵). In 2012, due to unforeseeable delays with respect to resuming sampling, very few retail samples were collected and thus, data from the Atlantic region are not presented in the 2012 Annual Report. In the 2014 CIPARS Annual Report, previously unpublished data for 2013 and 2014 in the Atlantic region regarding *E. coli* and *Salmonella* are presented.

Data from Statistics Canada were used to define strata. This was done by using cumulative population quartiles (or thirdtiles) from a list of census divisions in a province, sorted by population in ascending order. Generally, between 15 and 18 census divisions per province/region were then chosen by means of stratified random selection and weighted by population within each stratum. The number of sampling days allocated to each stratum was also weighted by population and is summarized as follows:

BRITISH COLUMBIA

- Stratum One: 10 divisions selected, with 1 sampling day per division per year
- Stratum Two: 4 divisions selected, with 3 sampling days per division per year
- Stratum Three: 1 division selected, with 20 sampling days per year

-

³⁴ No retail sampling was conducted in Manitoba.

³⁵ No retail sampling was conducted in Newfoundland and Labrador.

PRAIRIFS

- Stratum One: 9 divisions selected, with 2 sampling days per division per year
- Stratum Two: 5 divisions selected, with 3 sampling days per division per year
- Stratum Three: 2 divisions selected, with 5 sampling days per division per year
- Stratum Four: 1 division selected, with 7 sampling days per year

ONTARIO and QUÉBEC

- Stratum One: 10 divisions selected, with 2 sampling days per division per year
- Stratum Two: 4 divisions selected, with 5 sampling days per division per year
- Stratum Three: 2 divisions selected, with 10 sampling days per division per year
- Stratum Four 1 division selected, with 20 sampling days per year

ATLANTIC REGION

For the 3 Maritimes provinces, results are aggregated and presented at the Atlantic region level; however, sampling activities for this region were proportional to the population within each province as indicated below. Furthermore, as with the other provinces/regions sampled in the retail component, sampling within each province was proportional to the census division subpopulations and is summarized as follows:

Nova Scotia

- Stratum One: 5 divisions selected, with 1 sampling day per division per year (on average)
- Stratum Two: 4 divisions selected, with 2 sampling days per division per year
- Stratum Three: 1 division selected, with 10 sampling days per division per year

New Brunswick

- Stratum One: 5 divisions selected, with 1 sampling day per division per year (on average)
- Stratum Two: 4 divisions selected, with 2 sampling days per division per year
- Stratum Three: 2 divisions selected, with 4 sampling days per division per year (on average)

Prince Edward Island

- Stratum One: 1 division selected, with 1 sampling day per division per year
- Stratum Two: 1 division selected, with 2 sampling days per division per year

Generally, field workers in Ontario and Québec conducted sampling on a weekly basis, and those in British Columbia, the Prairie region, and the Atlantic region conducted sampling every other week. Sampling was less frequent in British Columbia, the Prairie region, and the Atlantic region because of funding constraints, limited laboratory capacity, and a desire to avoid oversampling at particular stores. Samples were collected on Mondays or Tuesdays for submission to the laboratory by Wednesday. Samples submitted from outside Québec (with the exception of samples from the Atlantic region) were sent to the same laboratory via 24-hour courier. In the rare sampling weeks for the Atlantic region in 2014, samples from the whole Atlantic region were collected on Mondays or Tuesdays and submitted to a laboratory in Prince Edward Island within 24 hours.

In each province, 2 census divisions were sampled each sampling week. In each census division, 4 stores were selected prior to the sampling day, based on store type. Generally, 3 chain stores and 1 independent market or butcher shop were selected. An exception to this protocol was made in densely populated urban census divisions (e.g., Toronto or Montréal), where 2 chain stores and 2 independent markets or butcher shops were sampled to reflect the presumed shopping behaviour of that subpopulation. Generally speaking, from each store type, 1 sample of each commodity of interest was attempted, for a desired total of 15 meat samples (4 chicken, 4 turkey, 4 pork, and 3 beef samples) per division per sampling day³⁶. When possible, specific stores were sampled only once per sampling year. In some cases due to reduced availability of certain meats and store closures etc., the desired sample yield was not achieved.

Prevalence estimates were used to determine the numbers of samples to be collected, which were based on an expected yield of 100 isolates per commodity per province per year, plus 20% to account for lost or damaged samples. Because sampling was less frequent in British Columbia, the Prairie region, and the Atlantic region than in Ontario and Québec, the target of 100 isolates per year may not have always been met in those provinces/regions.

Personal digital assistants (PDAs) were used to capture the following store and sample data:

- Type of store
- Number of cash registers (surrogate measure of store volume)
- "Sell-by" or packaging date
- "May contain previously frozen meat" label—yes or no
- Final processing in store—yes, no, or unknown
- Air chilled—yes, no, or unknown (applied to chicken samples only)
- Organic—yes, no, or unknown
- Antimicrobial free—yes, no, or unknown
- Price per kilogram

-

³⁶ At 1 store in each division (except the Atlantic region), the beef sample was not collected to minimize oversampling of this commodity.

Individual samples were packaged in sealed zipper-type bags and placed in 16 L thermal coolers for transport. The ambient environmental temperature was used to determine the number of ice packs placed in each cooler (i.e., 1 ice pack for temperatures below 20°C and 2 ice packs for temperatures 20°C or higher). In 1 or 2 coolers per sampling day, instruments for recording temperature data³⁷ were used to monitor temperatures to which samples were exposed.

ABATTOIR SURVEILLANCE

OBJECTIVE(S)

The objectives of the CIPARS *Abattoir Surveillance* component are to provide nationally representative, annual antimicrobial resistance data for bacteria isolated from animals entering the food chain, and to monitor temporal variations in the prevalence of antimicrobial resistance in these bacteria.

SURVEILLANCE DESIGN

Abattoir Surveillance only includes animals that originated from premises within Canada. Established in September 2002, this component initially targeted generic Escherichia coli and Salmonella within the food animal commodities associated with the highest per capita meat consumption: beef cattle, broiler chickens, and pigs. In 2003, the component was refined to discontinue Salmonella isolation from beef cattle because of the low prevalence of Salmonella in that population. Campylobacter surveillance was initiated in beef cattle in late 2005 in order to include a pathogen in beef cattle surveillance and to provide data on fluoroquinolone resistance, following the approval of a fluoroquinolone for use in cattle. Campylobacter surveillance was also initiated in chickens in 2010 and pigs in 2012.

In the *Abattoir Surveillance* component, the unit of concern (i.e., the subject of interest) was the bacterial isolate. The bacteria of interest were isolated from the caecal contents (not carcasses) of slaughtered food animals to avoid misinterpretation related to cross-contamination and to better reflect antimicrobial resistance in bacteria that originated on the farm.

Over 90% of all food-producing animals in Canada are slaughtered in federally inspected abattoirs annually³⁸. The program is based on the voluntary participation of federally inspected slaughter plants from across Canada. The sampling method was designed with the goal that, across Canada, 150 isolates of *Salmonella* and generic *E. coli* and 100 isolates of *Campylobacter* would be recovered from each of the 3 animal species over a 12 month period. These numbers

³⁷ Ertco Data Logger™, West Patterson, NJ, USA

³⁸ Agriculture and Agri-Food Canada. Red meat market information. Available at: www.agr.gc.ca/redmeat-vianderouge/index_eng.htm. Accessed September 2014.

represented a balance between acceptable statistical precision and affordability³⁹. The actual number of samples collected was determined for each food animal species on the basis of the expected caecal prevalence of the bacteria in that animal species. For example, if the goal is 150 isolates and the expected bacterial prevalence was 10%, then 1,500 samples would need to be collected and submitted for bacterial isolation.

The sampling design was based on a 2-stage sampling plan, with each commodity handled separately. The first stage consisted of random selection of federally inspected slaughterhouses. The probability of an abattoir being selected was proportional to its annual slaughter volume. The second stage involved systematic selection of animals on the slaughter line. The annual number of caecal samples collected at each abattoir was proportional to its slaughter volume.

SAMPLING METHODS

To minimize shipping costs and allow each abattoir to maintain efficiency, the annual total number of samples to be collected in each abattoir was divided by 5, resulting in the number of collection periods. For each collection period, 5 to 7 caecal samples were collected within 5 days, at the convenience of the slaughterhouse staff, provided the 5 animals and associated samples originated from different groups. Sampling from different groups of animals was important to maximize diversity and avoid bias attributable to overrepresentation of particular producers. Collection periods were uniformly distributed throughout the year to avoid any bias that may have resulted from seasonal variation in bacterial prevalence and antimicrobial susceptibility test results.

Thirty-nine federally inspected slaughter plants (6 beef cattle plants, 28 poultry plants, and 15 swine plants) from across Canada participated in the 2014 CIPARS *Abattoir Surveillance* component. Samples were obtained according to a predetermined protocol, with modifications to accommodate various production-line configurations in the different plants. Protocols were designed to avoid conflict with carcass inspection methods, plant-specific Food Safety Enhancement Programs, and Health and Safety requirements. They were also designed to avoid situations of potential cross-contamination. All samples were collected by industry personnel under the oversight of the Veterinarian-in-Charge of the Canadian Food Inspection Agency.

³⁹ Ravel A. Development of the Canadian antimicrobial resistance surveillance system (agri-food sector) – sampling design options. Presented to the National Steering Committee on Antimicrobial Resistance in Enterics, Canada, 2001. 79 pp.

FARM SURVEILLANCE

OBJECTIVE(S)

The objectives of the CIPARS Farm Surveillance component are to provide data on antimicrobial use and resistance, to monitor temporal trends in the prevalence of antimicrobial resistance, to investigate associations between antimicrobial use and resistance on grower-finisher pigs, and broiler chickens, and to provide data for human health risk assessments.

SURVEILLANCE DESIGN

The Farm Surveillance component was the third active surveillance component implemented by CIPARS. Taken together, with the Abattoir Surveillance and Retail Meat Surveillance components, these data validate the information collected at key points along the farm-to-fork food production chain. This initiative is built on a sentinel farm framework. Questionnaires are used to collect data on farm demographics, animal health and antimicrobial use. Composite pen fecal samples are collected and submitted to laboratories for bacterial isolation and antimicrobial susceptibility testing. The bacteria of interest in broiler chickens were Campylobacter, Salmonella, and generic E. coli and were Salmonella and E. coli in grower-finisher pigs.

BROILER CHICKENS

The CIPARS Farm Surveillance broiler chicken component was initiated in April 2013 in the 4 poultry-producing provinces in Canada (British Columbia, Alberta, Ontario, and Québec). In 2014, Saskatchewan participated in the program. The Broiler Farm Surveillance component samples flocks at least 1 week before shipment for slaughter (i.e., pre-harvest stage). Broilers in this stage of production are proximal to the consumer. Half of the flocks sampled for the year were also sampled at the time of chick placement to determine the resistance profiles of chicks on arrival and carry-over of resistant organism from the previous flock.

GROWER-FINISHER PIGS

CIPARS Farm Surveillance component was initiated in 2006 in the 5 major pork-producing provinces in Canada (Alberta, Saskatchewan, Manitoba, Ontario, and Québec). The swine industry was selected as the pilot commodity for development of the Farm Surveillance infrastructure because the Canadian Quality Assurance (CQA®) program had been extensively implemented by the industry and because, in 2006, unlike in the other major livestock commodities, there had not been a recent outbreak of foreign animal disease in pigs. The Farm Surveillance component concentrates on grower-finisher pigs. Pigs in this stage of production were chosen because of their proximity to the consumer.

SAMPLING METHODS

BROILER CHICKENS

Poultry veterinarians recruited sentinel flocks to participate in this voluntary national surveillance program. The number of sentinel flocks allocated to each of the 4 participating provinces was proportional to the national total of quota-holding producers, except in the FoodNet Canada sentinel sites, where a minimum of 30 flocks were sampled. In Alberta, laboratory testing for all flocks was provided by the Alberta Agriculture and Rural Development, Agri-Food Laboratories Branch. In Saskatchewan, the Saskatchewan Ministry of Agriculture provided full financial support for 9 flocks.

The anonymity of the participating broiler producers and hatcheries supplying chicks to these producers were considered. To preserve the anonymity of participating producers, poultry veterinarians collected the samples and data and submitted coded information to Public Health Agency of Canada (PHAC). In the case of corporate veterinarians that are associated with a hatchery or processing company, 1 noncorporate supervisory veterinarian ensured confidentiality by holding the key to corporate veterinarians. This step was taken because knowing a corporate veterinarian's name could have identified the hatchery source, thereby breaking anonymity. Additionally, the Canadian Hatchery Federation (CHF) and the Canadian Poultry and Egg Processing Council ensured confidentiality by holding the key to hatcheries; only the coded information was known to PHAC.

Poultry veterinary practices were purposively selected from each province. Each veterinarian recruited a predetermined number of sentinel farm sites proportional to their practice profile and availability by use of specific inclusion and exclusion criteria. To be included, farms were required to be a Safe, Safer, Safest™ compliant quota-holding broiler operations (i.e., broilers are the major commodity reared on-site but producers may also have other animal species and/or commodities). Antibiotic-free, raised without antibiotics or organic production systems were selected proportional to the veterinarian's practice profile. Veterinarians also ensured that selected farms were also representative of all the CHF hatcheries supplying chicks and representative of the feed mills supplying feeds in the province of their practice, and were geographically distributed (i.e., not neighboring flocks). Additionally, these farms were demographically reflective of the veterinary practice and overall broiler industry profile (e.g., variety of flock management: poor to excellent performing flocks, variety in volume of chicks placed: low to high flock densities). These criteria helped ensure that the flocks enrolled were representative of most broiler flocks raised in Canada. The veterinarians were also asked to distribute their sampling visits across the year to account for seasonal variations in pathogen prevalence and diseases that may drive AMU at the hatchery and on farms.

Sentinel broiler flocks were visited during the last week of growth (chickens more than 30 days of age), once per year for sample and data collection. Four pooled fecal samples, representing one per floor quadrant with at least 10 fecal droppings were collected from randomly selected barns and floors (if multiple level/pen barn). On a trial basis, a proportion of the flocks were also visited when the chicks arrived at the barn. Using a sterile sponge, 2 environmental barn surface samples and 3 meconium samples were collected. The meconium samples were

collected from the liners (chick pads) of the boxes used to ship chicks from the hatchery to the barn.

GROWER-FINISHER PIGS

Swine veterinarians recruited sentinel herds to participate in this voluntary national surveillance program. The number of sentinel herds allocated to each of the 5 participating provinces was proportional to the national total of grower-finisher units, except in Saskatchewan, where 3 additional sentinel herds were included. Support for the 3 extra herds, was provided by the Saskatchewan Ministry of Agriculture.

To preserve the anonymity of participating producers, herd veterinarians collected the samples and data and submitted coded information to the Public Health Agency of Canada. In the case of corporate herds, noncorporate supervisory veterinarians ensured confidentiality by holding the key to corporate herd codes. This step was taken because knowing a corporate veterinarian's name could have identified the corporation associated with the herd, thereby breaking anonymity.

Veterinarians were purposively selected from the list of veterinarians practicing swine medicine in each province. Each veterinarian selected a predetermined number of sentinel farm sites by use of specific inclusion and exclusion criteria. To be included, herds were required to be CQA® validated, produce more than 2,000 market pigs per year, and be representative of the characteristics (i.e., similar production volumes and types of production systems) and geographic distribution of herds in the veterinarian's swine practice. Herds were excluded when they were regarded as organic with respect to animal husbandry, were fed edible residual material, or were raised on pasture. These criteria helped ensure that the herds enrolled were representative of most grower-finisher swine herds in Canada.

Sentinel grower-finisher herds were visited once per year for sample and data collection. Pooled fecal samples were collected from 6 pens of pigs that were close to market weight (i.e., more than 80 kg [175 lb]). Veterinarians were asked to distribute their sampling visits across the year to account for seasonal variations in pathogen prevalence and diseases that may drive AMU on farms.

SURVEILLANCE OF ANIMAL CLINICAL ISOLATES

OBJECTIVE(S)

The objective of Surveillance of Animal Clinical Isolates is to detect emerging antimicrobial resistance patterns as well as new serovar/resistance pattern combinations in *Salmonella*.

SURVEILLANCE DESIGN

This component of CIPARS relies on samples that are typically collected and submitted to veterinary diagnostic laboratories by veterinarians and/or producers. Consequently, sample

collection and submission as well as *Salmonella* isolation techniques varied among laboratories over the year.

Salmonella isolates were sent by provincial and private animal health laboratories from across the country to the Salmonella Typing Laboratory (STL) at the National Microbiology Laboratory (NML) @ Guelph (Ontario) with the exception of Québec, where isolates from animal health laboratories were sent to the Laboratoire d'épidémiosurveillance animale du Québec, du ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec for serotyping. Isolates and serotyping results for S. Enteritidis and S. Typhimurium from Québec were then forwarded to the NML @ Guelph to perform phage typing and antimicrobial resistance testing. Isolates that were not S. Enteritidis or S. Typhimurium was also serotyped. Not all isolates received by provincial animal health laboratories were forwarded to the NML @ Guelph, with the exception of isolates received by laboratories in British Columbia, Ontario, Québec, and Prince Edward Island. Therefore, coverage may have varied considerably among provinces.

Samples submitted for testing may have been collected from sick animal, animal feed, the animal's environment, or non-diseased animals from the same herd or flock. Reported here are results from chicken, turkey, cattle, pigs, and horses. Cattle isolates could have originated from dairy cattle, milk-fed or grain-fed veal, or beef cattle. Chicken isolates were largely from layer hens or broiler chickens, but could also have been from primary layer breeders or broiler breeder birds. A proportion of the turkey isolates might have been recovered from turkey-related environmental samples.

FEED AND FEED INGREDIENTS

SAMPLING DESIGN

Data from the *Feed and Feed Ingredients* component of CIPARS were obtained from various sources, including monitoring programs of the Canadian Food Inspection Agency (CFIA) and a few isolates from provincial authorities. Information on specimen collection methods was only available for the CFIA monitoring programs.

The CFIA collects samples of animal feed under 2 different programs: Program 15A (Monitoring Inspection—Salmonella) and Program 15E (Directed Inspection—Salmonella). Under Program 15A, feeds produced at feed mills, rendering facilities, ingredient manufacturers, and on-farm facilities are sampled and tested for Salmonella. Although this program makes use of a random sampling process, extra attention is paid to feeds that are more likely to have a higher degree of Salmonella contamination, such as those that contain rendered animal products, oilseed meals, fish meals, grains, and mashes. Program 15E targets feeds or ingredients from establishments that (i) produce rendered animal products, other feeds containing ingredients in which Salmonella could be a concern (e.g., oilseed meal or fishmeal), or a significant volume of poultry feed; (ii) are known to have repeated problems with Salmonella contamination; or (iii) have identified a Salmonella serovar that is highly pathogenic (e.g., Typhimurium, Enteritidis, or Newport). Program 15E is a targeted program; samples are not randomly selected.

BACTERIAL ISOLATION METHODS

All samples were cultured by use of standard protocols as described below. All primary isolation of human *Salmonella* isolates was conducted by hospital-based or private clinical laboratories in participating provinces/regions. Most primary isolation of *Escherichia coli*, *Salmonella*, and *Campylobacter* from agri-food samples was conducted at the National Microbiology Laboratory (NML) @ Saint-Hyacinthe. Primary isolation for *Retail Meat Surveillance* in Prince Edward Island was conducted at the Atlantic Veterinary College, University of Prince Edward Island. Part of the primary isolation for *Farm Surveillance* was conducted at the Agri-Food Laboratory of the Alberta Agriculture and Rural Development. Samples from the CIPARS *Surveillance of Animal Clinical Isolates* component were cultured by various participating laboratories. Most primary bacterial isolation of samples from Feed and Feed Ingredients was conducted by the CFIA—Laboratory Services Division (Calgary or Ottawa).

SALMONELLA

SURVEILLANCE OF HUMAN CLINICAL ISOLATES

Hospital-based and private clinical laboratories isolated and identified *Salmonella* from human samples according to approved methods 40,41,42,43.

SURVEILLANCE OF AGRI-FOOD ISOLATES (*Retail Meat Surveillance, Abattoir Surveillance, and Farm Surveillance*)

The method used to isolate *Salmonella* was a modification of the MFLP-75 method ⁴⁴. This method allowed isolation of viable and motile *Salmonella* from fecal (*Farm Surveillance*) matter, caecal (*Abattoir Surveillance*) content, and meat (*Retail Meat Surveillance*) from agri-food samples. It is based on the ability of *Salmonella* to multiply and be motile in modified semi-solid Rappaport Vassiliadis (MSRV) medium at 42°C.

Retail Meat Surveillance: depending on the sample type either 1 chicken \log^{45} , 1 pork chop or 25 g of ground turkey was added to 225 mL of Buffered Peptone Water (BPW). One hundred milliliters of the peptone rinse were kept for *Campylobacter* and/or *E. coli* isolation. Chicken and turkey samples were left in the remaining volume of peptone rinse and incubated at 35 \pm 1°C for 24 hours. Afterward, a MSRV plate was inoculated with 0.1 mL of the rinse and

⁴⁰ Kauffman F. The Bacteriology of Enterobacteriaceae. Baltimore: Williams and Wilkins Co, 1966.

⁴¹ Ewing WH. Edwards and Ewing's Identification of Enterobacteriaceae. 4th ed. New York: Elsevier Science Publishing Co, 1986.

⁴² Le Minor L. Guidelines for the preparation of *Salmonella* antisera. Paris, France: WHO Collaborating Centre for Reference and Research on *Salmonella*, Pasteur Institute, 2001.

⁴³ Murray PR, Baron EJ, Pfaller MA, et al, eds. Manual of Clinical Microbiology. 8th ed. Washington DC, ASM Press, 2005.

⁴⁴ Compendium of Analytical Methods, Health Protection Branch, Methods of Microbiological Analysis of Food, Government of Canada.

⁴⁵ When legs with skin on were not available, wings with skin on or other cuts were purchased instead.

incubated at $42 \pm 1^{\circ}$ C for 24 to 72 hours. Suspect colonies were screened for purity and used to inoculate triple-sugar-iron and urea agar slants. Presumptive *Salmonella* isolates were assessed using the indole test, and their identities were verified by means of slide agglutination with *Salmonella* Poly A-I and Vi antiserum.

Abattoir Surveillance and **Farm Surveillance**: a 25 g portion of each pig caecal or fecal sample and broiler pooled fecal samples were mixed with 225 mL of BPW. Chicken caecal contents were weighed and mixed with BPW at a ratio of 1:10. Environmental and chick meconium sponges were mixed with 100 mL of BPW. Samples were incubated at $35 \pm 1^{\circ}$ C for 24 hours. Afterward, the method used was the same as the one described in the *Salmonella—Retail Meat Surveillance* section.

SURVEILLANCE OF ANIMAL CLINICAL ISOLATES

Salmonella was isolated according to standard procedures, which varied among laboratories. Most methods for detecting *Salmonella* in animal clinical isolates were similar in principle and involved pre-enrichment, selective enrichment, differential and selective plating, isolation, and biochemical and serological confirmation of the selected isolates.

FEED AND FEED INGREDIENTS

Under both Canadian Food Inspection Agency programs (15A and 15E), all samples were collected aseptically and submitted for bacterial culture and isolation. For *Salmonella* isolation, MSRV medium was used.

ESCHERICHIA COLI

RETAIL MEAT SURVEILLANCE

Fifty milliliters of the peptone rinse prepared as stated in the Salmonella—Retail Meat Surveillance section were mixed with 50 mL of double strength EC Broth and incubated at $45 \pm 1^{\circ}$ C for 24 hours. One loopful of the mixture was then streaked onto Eosin Methylene Blue agar and incubated at $35 \pm 1^{\circ}$ C for 24 hours. Suspect colonies were screened for purity and transferred onto trypticase soy agar with 5% sheep blood. Presumptive *E. coli* colonies were assessed using Simmons citrate and indole tests. The *E. coli* isolates with negative indole test results were confirmed using a bacterial identification test kit⁴⁶.

ABATTOIR SURVEILLANCE AND FARM SURVEILLANCE

One drop of the peptone mixture prepared as earlier stated in the Surveillance of Agri-Food Isolates/Salmonella—Abattoir Surveillance and Farm Surveillance section was streaked onto MacConkey agar and incubated at 35°C for 18 to 24 hours. Suspect lactose-fermenting colonies were screened for purity and transferred onto Luria-Bertani agar. Presumptive E. coli colonies were assessed as in the Retail Meat Surveillance for E. coli.

_

⁴⁶ API® 20E system

^{...}working towards the preservation of effective antimicrobials for humans and animals...

CAMPYLOBACTER

RETAIL MEAT SURVEILLANCE

Fifty milliliters of the peptone rinse prepared as previously stated in the Salmonella—Retail Meat Surveillance section, were mixed with 50 mL of double-strength Bolton broth and incubated in a microaerophilic atmosphere at 42 ± 1°C for 44 to 48 hours. A loopful of broth was then streaked onto a modified Charcoal Cefoperazone Deoxycholate Agar (mCCDA) plate and incubated in a microaerophilic atmosphere at 42 ± 1°C for 24 to 72 hours. Suspect colonies were streaked onto a second mCCDA and on a Mueller Hinton agar plate. Both plates were incubated in a microaerophilic atmosphere at 42 ± 1°C for 24 to 48 hours. Presumptive Campylobacter colonies were identified using the following tests: Gram stain, oxidase, and catalase. A multiplex PCR (mPCR)⁴⁷ was used to speciate colonies. Specific genomic targets (hippuricase in C. jejuni and aspartokinase in C. coli) were amplified by mPCR from bacterial lysates. Products were visualized on agarose gel and identified based on their specific molecular size. An internal universal control (16s rRNA) was incorporated into the PCR method. The priming oligonucleotides used in the PCR were highly specific for C. jejuni or C. coli and will not amplify DNA present in any other Campylobacter spp. or non-Campylobacter organisms. Unidentified species of Campylobacter are collectively referred to in the CIPARS reports as "Campylobacter spp.". However, when used alone, the term "Campylobacter" refers to all Campylobacter species.

ABATTOIR SURVEILLANCE AND FARM SURVEILLANCE

One milliliter of BPW mixture prepared as previously stated in the *Salmonella—Abattoir Surveillance* and *Farm Surveillance* sections, was mixed with 9 mL of Hunt's enrichment broth (HEB) and incubated in a microaerophilic atmosphere at $35 \pm 1^{\circ}$ C for 4 hours. After this first incubation, $36 \, \mu$ L of sterile cefoperazone were added to the HEB tubes which were then sent back to microaerophilic incubation, this time at $42 \pm 1^{\circ}$ C for 20 to 24 hours. A loopful of HEB was then used to inoculate a mCCDA plate which was incubated at $42 \pm 1^{\circ}$ C in microaerophilic conditions for 24-72 hours. Suspect colonies were assessed as described earlier in the *Campylobacter—Retail Meat Surveillance* section.

⁴⁷ The multiplex PCR speciation of *Campylobacter jejuni* and *Campylobacter coli* was based on the following published method. Person S, KE Olsen. Multiplex PCR for identification of *Campylobacter coli* and *Campylobacter jejuni* from pure cultures and directly on stool samples. J Med Microbiol 2005; 54:1043–1047.

SEROTYPING AND PHAGE TYPING METHODS

SALMONELLA

SURVEILLANCE OF HUMAN CLINICAL ISOLATES

In general, clinical laboratories forwarded their *Salmonella* isolates to their Provincial Public Health Laboratory (PPHL) for identification and serotyping. The PPHL further forwarded *Salmonella* isolates to the National Microbiology Laboratory (NML) @ Winnipeg according to the predefined testing protocol. Isolate identities were confirmed by the NML @ Winnipeg when isolates received did not have a serovar name ⁴⁸ or when inconclusive results arose during phage typing. The O or somatic antigens of the *Salmonella* isolates were serotyped by use of a slide agglutination method ⁴⁹. At the NML @ Winnipeg, *Salmonella* H or flagellar antigens were detected via slide and confirmatory tube agglutination methods. *Salmonella* isolates were maintained at room temperature between 25° and 35°C until typed.

Phage typing was performed at the NML @ Winnipeg for isolates of the following *Salmonella* serovars: Enteritidis, Heidelberg, Typhimurium, Hadar, Newport, Typhi, Paratyphi B⁵⁰, Paratyphi B var. L(+) tartrate (+), Infantis, Thompson, Oranienburg, Panama, I 4,[5],12:b:-, and 4,[5],12:i:-. For phage typing the standard technique described by Anderson and Williams⁵¹ was followed. Isolates were streaked onto nutrient agar plates and incubated at 37°C for 18 hours. Three to 5 smooth colonies were selected and used to inoculate 4.5 mL of phage broth⁵², which was then incubated for 1.5 to 2 hours in a shaking water bath at 37°C to attain bacterial growth with a turbidity equivalent to 1 McFarland standard. Phage agar plates⁵³ were flooded with approximately 2 mL of culture medium, and the excess liquid was removed with a Pasteur pipette. Flooded plates were allowed to dry for 15 minutes at room temperature. Afterward, approximately 10 μ L of each serovar-specific typing phage was used to inoculate the bacterial lawn by means of a multiple inoculating syringe method⁵⁴. The plates were incubated at 37°C overnight, and lytic patterns were subsequently interpreted⁵⁵.

Salmonella Enteritidis strains were phage typed with typing phages obtained from the International Centre for Enteric Phage Typing (ICEPT), Central Public Health Laboratory,

⁴⁸ Grimont PAD, Weill F-X. Antigenic formulae of the *Salmonella* serovars. 9th ed. Paris, France: WHO Collaborating Centre for Reference and Research on Salmonella, Institut Pasteur, 2007.

⁴⁹ Ewing WH. Edwards and Ewing's Identification of Enterobacteriaceae. 4th ed. New York: Elsevier Science Publishing Co, 1986.

⁵⁰ Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

⁵¹ Anderson E, Williams R. Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J Clin Pathol 1956; 9: 94–127.

⁵² Difco[™] phage broth, Difco Laboratories, Baltimore, MD; pH 6.8

⁵³ Difco[™] phage agar, Difco Laboratories

⁵⁴ Farmer J. Hickman F, Sikes J. Automation of *Salmonella* typhi phage-typing. Lancet 1975; 2(7939): 787–790.

⁵⁵ Anderson E, Williams R. Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J Clin Pathol 1956; 9: 94–127.

Colindale, United Kingdom⁵⁶. The phage-typing protocol and phages for *S*. Typhimurium, developed by Callow⁵⁷ and further extended by Anderson⁵⁸ and Anderson and colleagues⁵⁹ were obtained from the ICEPT. The *S*. Heidelberg phage typing protocol and phages were supplied by the NML @ Winnipeg ⁶⁰. Isolates that reacted with the phages but did not conform to any recognized phage type were designated as atypical. Strains that did not react with any of the typing phages were designated as "untypable".

The Identification and Serotyping and the Phage Typing units at the NML @ Winnipeg have attained International Standards Organization (ISO) 17025 accreditation by the Standards Council of Canada. These identification and Serotyping, Phage Typing, and Antimicrobial Resistance units participate in the annual Global Food-borne Infections Network (WHO-GFN), External Quality Assurance System of the World Health Organization, the Enter-net (a European network for the surveillance of human gastrointestinal infections) proficiency program for Salmonella, and a strain exchange with the NML@ Guelph and NML@ Saint-Hyacinthe (Salmonella and Escherichia coli). The NML @ Winnipeg and the Centre for Foodborne, Environmental and Zoonotic Infectious Diseases have been strategic planning members of the WHO-GFN program since 2002.

SURVEILLANCE OF AGRI-FOOD, ANIMAL CLINICAL AND FEED ISOLATES

Animal clinical *Salmonella* isolates from Québec were serotyped at the Laboratoire d'épidémiosurveillance animale du Québec, du ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec and were sent to the STL⁶¹. Isolates of *S*. Enteritidis and *S*. Typhimurium were not re-serotyped, they were only phage typed. All other *Salmonella* isolates sent to STL by MAPAQ were serotyped; *S*. Heidelberg isolates were also phage typed. All other *Salmonella* isolates tested as part of CIPARS, including clinical isolates from other provinces, were submitted to the STL for serotyping and phage typing. The serotyping method detects O or somatic antigens of the *Salmonella* isolates via slide agglutination⁶². The H or flagellar antigens were identified with a microtitre plate well precipitation method⁶³. The antigenic formulae of the *Salmonella* serovars as reported by Grimont and Weill⁶⁴ were used to identify and name the serovars.

⁵⁶ Ward L, de Sa J, Rowe B. A phage-typing scheme for *Salmonella* Enteritidis. Epidemiol Infect 1987; 99: 291–294.

⁵⁷ Callow B. A new phage typing scheme for *Salmonella* Typhimurium. J Hyg (Lond) 1959; 57: 346–359.

⁵⁸ Anderson E. The phagetyping of *Salmonella* other than *S*. Typhi. In: Van Oye E, ed. The World Problem of Salmonellosis. The Hague, The Netherlands: Dr W. Junk Publishers, 1964; 89–100.

Anderson E, Ward L, de Saxe M, et al. Bacteriophage-typing designations of *Salmonella* Typhimurium. J Hyg (Lond) 1977; 78: 297–300.

⁶⁰ Demczuk W, Soule G, Clark C, et al. Phage-based typing scheme for *Salmonella* enterica serovar Heidelberg, a causative agent of food poisonings in Canada. J Clin Microbiol 2003; 41: 4279–4284.

⁶¹ Office Internationale des Épizooties (OIÉ); All World Organisation for Animal Health, Reference Laboratory for Salmonellosis, Guelph, Ontario.

⁶² Ewing WH. Edwards and Ewing's Identification of Enterobacteriaceae. 4th ed. New York: Elsevier Science Publishing Co, 1986.

⁶³ Shipp C, Rowe B. A mechanised microtechnique for *Salmonella* serotyping. J Clin Pathol 1980; 33: 595–597.

⁶⁴ Grimont PAD, Weill F-X. Antigenic Formulae of the *Salmonella* Serovars. 9th ed. Cedex, France: Collaborating Center for Reference and Research on Salmonella, Institut Pasteur, 2007.

For phage typing, the standard technique by Anderson and Williams⁶⁵ and described above was followed. Phage typing was performed on isolates of *S.* Enteritidis, *S.* Typhimurium, and *S.* Heidelberg; the sources of the typing phages for these 3 serovars were the same as described above for *Surveillance of Human Clinical Isolates*.

Since 1995, the STL has participated in annual inter-laboratory exchange of serotyping panels with up to 3 other laboratories. The STL began external proficiency testing of the accuracy of phage typing in 2003. Every year, the STL participates successfully in phage typing proficiency panels from the NML @ Winnipeg.

⁶⁵ Anderson E, Williams R. Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J Clin Pathol 1956; 9: 94–127.

ANTIMICROBIAL SUSCEPTIBILITY TESTING METHODS

All Salmonella isolates of human origin were tested for antimicrobial susceptibility at the National Microbiology Laboratory (NML) @ Winnipeg and all Salmonella isolates of agri-food or feed origin were tested for antimicrobial susceptibility at the NML @ Guelph. The majority of Campylobacter and Escherichia coli isolates from all agri-food components were tested at the NML @ Saint-Hyacinthe. In most instances, only 1 isolate per positive sample was submitted for antimicrobial susceptibility testing. In the case of on Farm Surveillance—grower-finisher pigs or broiler chickens, antimicrobial susceptibility testing was performed on 3 E. coli isolates, and 1 Salmonella isolate per sample. All E. coli isolates from Retail Meat Surveillance in Prince Edward Island were processed at the Atlantic Veterinary College, University of Prince Edward Island. Whereas a portion of E. coli isolates from Farm Surveillance in Alberta and Saskatchewan were processed by the Agri-Food Laboratory Branch, Alberta Agriculture and Rural Development.

The NML @ Winnipeg is a World Health Organization Collaboration Centre for Preparedness and Response to Enteric Pathogens and their Antimicrobial Resistance. The NML @ Guelph and NML @ Saint-Hyacinthe laboratories, and Atlantic Veterinary College participate in external proficiency programs for antimicrobial susceptibility testing for *Salmonella* and *E. coli*. The NML @ Guelph and NML @ Saint-Hyacinthe laboratories participate in inter-agency proficiency programs for identification and antimicrobial susceptibility testing of *Salmonella*, *E. coli*, and *Campylobacter* with the National Antimicrobial Resistance Monitoring System, United States (NARMS). The NML @ Guelph laboratory is ISO/IEC 17025-accredited for antimicrobial sensitivity testing.

SALMONELLA AND ESCHERICHIA COLI

The minimum inhibitory concentration (MIC) values for *Salmonella* and *E. coli* were determined by means of the broth microdilution method⁶⁶ by use of an automated system⁶⁷. This automated incubation and reading system uses microtitre plates containing various concentrations of dehydrated antimicrobials. The CMV3AGNF plate⁶⁸ was designed by the NARMS and contains 14 antimicrobials (see Table A.1, Antimicrobial Susceptibility Breakpoints'section).

Isolates were streaked onto a Mueller Hinton or MacConkey agar plate and incubated at $36\pm1^{\circ}\text{C}$ for 18 to 24 hours to obtain isolated colonies. One colony was chosen from the plate and restreaked onto agar plates for growth. The plates were incubated at $36\pm1^{\circ}\text{C}$ for 18 to 24 hours. A 0.5-McFarland suspension was prepared by transferring bacterial growth from the agar plates into 5.0 mL of sterile, demineralized water. Ten microliters of the water-bacteria suspension were transferred to 10 mL of Mueller Hinton broth (MHB). This suspension was dispensed onto CMV3AGNF testing plates at 50 μ L per well and the plates were sealed with adhesive plastic sheets. After an 18-hour incubation at $36\pm1^{\circ}\text{C}$ the plates were read automatically with the

⁶⁶ Clinical and Laboratory Standards Institute (CLSI) M7-A8

⁶⁷ Sensititre™, Automated Microbiology System, Trek™ Diagnostic Systems Ltd, West Sussex, England

⁶⁸ Sensititre™, Trek™ Diagnostic Systems Ltd, West Sussex, England

fluorometric plate reading system⁶⁹. In accordance with standards set by the Clinical and Laboratory Standards Institute (CLSI)⁷⁰, Staphylococcus aureus ATCC 29213, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, and *Enterococcus faecalis* ATCC 29212 were used for quality assurance purposes to ensure validity of the MIC values.

CAMPYLOBACTER

The MIC values for *Campylobacter* were determined by means of the broth microdilution method 71 . The CAMPY plates 37 designed by NARMS and containing 9 dehydrated antimicrobials were used (see Table A.2, Antimicrobial Susceptibility Breakpoints' section). Colonies were streaked onto Mueller Hinton agar plates with 5% sheep blood and incubated in a microaerophilic atmosphere at $42 \pm 1^{\circ}$ C for 24 hours. A 0.5-McFarland suspension of bacterial growth was prepared by transferring selected bacterial colonies into a tube containing 5 mL of MHB. Afterward, 10 μ L of the MHB were transferred to 11 mL of MHB with laked horse blood. The mixture was dispensed onto CAMPY plates at 100 μ L per well. The plates were sealed with perforated adhesive plastic sheets. After a 24-hour incubation in microaerophilic atmosphere at $42 \pm 1^{\circ}$ C, plates were read using the Sensititre Vizion System 72 . *Campylobacter jejuni* ATCC 33560 was used as quality control organism. The MIC values obtained were compared with those of CLSI standards 73 .

⁶⁹ ARIS™, Trek™ Diagnostic Systems Ltd, West Sussex, England

⁷⁰ CLSI M100-S24

⁷¹ CLSI M45-A2

⁷² Sensititre Vizion System[™], Trek[™] Diagnostic Systems Ltd, West Sussex, England

⁷³ CLSI M45-A2

ANTIMICROBIAL SUSCEPTIBILITY BREAKPOINTS

Table A.1. Antimicrobial susceptibility breakpoints for *Salmonella* and *Escherichia coli*; CMV3AGNF plate, 2014

	Antimicrobial	Range tested	Breakpoints ^a (µ g/mL)				
	Antimicrobial	(μ g/m L)	S	l l	R		
	Amoxicillin-clavulanic acid	1.0/0.5-32/16	≤ 8/4	16/8	≥ 32/16		
	Ceftiof ur ^b	0.12-8	≤ 2	4	≥ 8		
•	Ceftriaxone	0.25-64	≤ 1	2	≥ 4		
	Ciprofloxacin	0.015–4	≤ 0.06	0.12 - 0.5	≥ 1		
	Ampicillin	1–32	≤ 8	16	≥ 32		
	Azithromycin ^c	0.12-16	≤ 16	N/A	≥ 32		
	Cefoxitin	0.5–32	≤ 8	16	≥ 32		
Ш	Gentamicin	0.25-16	≤ 4	8	≥ 16		
	Nalidixic acid	0.5-32	≤ 16	N/A	≥ 32		
	Streptomycin ^c	2-64	≤ 32	N/A	≥ 64		
	Trimethoprim-sulfamethoxazole	0.12/2.38-4/76	≤ 2/38	N/A	≥ 4/76		
	Chloramphenicol	2–32	≤ 8	16	≥ 32		
Ш	Sulfisoxazole	16–256	≤ 256	N/A	≥ 512		
	Tetracycline	4–32	≤ 4	8	≥ 16		
IV	·	·		·			

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Table A.2. Antimicrobial susceptibility breakpoints for Campylobacter; CAMPY plate, 2014

Range tested (µg/mL) —— 0.015–64 0.015–8	S ≤ 1 ≤ 4	<u>l</u> 2	R ≥ 4
		2	≥ 4
0.015–8	< 1		
	- - -	8	≥ 16
0.015–64	≤ 2	4	≥ 8
0.03–16	≤ 2	4	≥ 8
0.03-64	≤ 8	16	≥ 32
0.12–32	≤ 2	4	≥ 8
4–64	≤ 16	32	≥ 64
0.03-64	≤ 4	N/A	N/A
0.06–64	≤ 4	8	≥ 16
	0.03–16 0.03–64 0.12–32 4–64 0.03–64	$\begin{array}{rcl} 0.03-16 & \leq 2 \\ 0.03-64 & \leq 8 \\ 0.12-32 & \leq 2 \\ 4-64 & \leq 16 \\ 0.03-64 & \leq 4 \end{array}$	$\begin{array}{cccc} 0.03-16 & \leq 2 & 4 \\ 0.03-64 & \leq 8 & 16 \\ 0.12-32 & \leq 2 & 4 \\ 4-64 & \leq 16 & 32 \\ 0.03-64 & \leq 4 & N/A \end{array}$

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

S = Susceptible. I = Intermediate susceptibility. R = Resistant. N/A = Not applicable.

^a Unless otherwise specified, CLSI M100-S24 was the reference used for all antimicrobials in the panel.

^b CLSI VET-01-S2.

^c No Clinical and Laboratory Standards Institute interpretive criteria for Enterobacteriaceae were available for this antimicrobial. Breakpoints were based on the distribution of minimal inhibitory concentrations and were harmonized with those of the National Antimicrobial Resistance Monitoring System, United States.

S = Susceptible. I = Intermediate susceptibility. R = Resistant. N/A = Not applicable.

^a CLSI M45-A2.

^b No Clinical and Laboratory Standards Institute interpretive criteria for *Campylobacter* were available for this antimicrobial. Breakpoints were based on the distribution of minimal inhibitory concentrations and were harmonized with those of the National Antimicrobial Resistance Monitoring System.

^c For florfenicol, only a susceptible breakpoint has been established. In this report, we therefore only report the proportion of isolates non-susceptible.

DATA ANALYSIS

HUMAN AND AGRI-FOOD SURVEILLANCE

DATA MANAGEMENT

Laboratory data from human and agri-food surveillance components originated in 2 computer programs (NML @ Winnipeg Labware and NML @ Guelph and NML @ Saint-Hyacinthe Labware) and were subsequently transferred to a central data repository using intermediary computer software ⁷⁴. Data were then transferred to a SAS® based harmonized database ⁷⁵ called the Data Extraction and Analysis (DEXA) application. Additional antimicrobial resistance variables used for analysis are derived within the DEXA application; this application is also used as a central data access point.

RECOVERY RATE

For Retail Meat Surveillance, Abattoir Surveillance, and the Farm Surveillance components, recovery rate was defined as the number of positive bacterial culture results divided by the total number of samples submitted for culture.

RESISTANT ISOLATES

The percentage of isolates with resistance to 1 or more antimicrobials was defined as the number of isolates resistant to at least 1 antimicrobial divided by the total number of isolates tested for each antimicrobial, multiplied by 100.

The breakpoints used for interpretation of antimicrobial susceptibility results are listed in Table A.1 and Table A.2 (see the previous section). Intermediate Minimum Inhibitory Concentration (MIC) values were categorized as susceptible for all analyses. A new ceftriaxone breakpoint was officially adopted by the CLSI in January 2010 and was applied to all CIPARS data, including historical data. A new Enterobacteriaceae plate, CMV3AGNF, was utilized beginning in January 2014. Notable changes to the new plate included the removal of kanamycin (Category II) and expansion of the number of dilutions tested for streptomycin (Category II).

RESISTANCE PATTERNS

The total number of antimicrobials in each resistance pattern was calculated by summing the number of antimicrobials to which each isolate was resistant. The most common resistance pattern may include patterns with only 1 antimicrobial. In this case, like for the most common patterns including 2 or more antimicrobials, the number of isolates reported includes only those resistant to this specific pattern (i.e., without any additional resistance to other antimicrobials).

3A3 3.3, 3A3 mstitute me., cary, Ne, O3A

⁷⁴ Oracle [®], Oracle Corp., Redwood Shores, CA, USA

⁷⁵ SAS® 9.3, SAS Institute Inc., Cary, NC, USA

STATISTICAL ANALYSIS

Data were analyzed with various statistical softwares⁷⁶, and outputs were exported into a spreadsheet application⁷⁷. All tables and figures were generated with the spreadsheet application⁷⁷.

For Farm Surveillance, statistical analyses were performed to account for clustering of antimicrobial resistance within swine herds or chicken flocks through generalized estimating equations $(GEE)^{78}$. All statistical models included a binary outcome, logit-link function, and exchangeable correlation structure. Null binomial response models were used to estimate the prevalence of resistance to each antimicrobial. From each null model, the intercept (β 0) and 95% confidence intervals were used to calculate population-averaged (i.e., GEE) prevalence estimates with the formula $[1 + \exp(-\beta 0)]$ -1. When the prevalence was 0%, a model was run with a single positive isolate to determine the upper confidence interval only.

PROVINCIAL INCIDENCE DATA IN HUMANS

For the provincial human incidence data, the number of *Salmonella* clinical cases in which a particular serovar was detected per 100,000 inhabitant-years was calculated by dividing the total number of isolates of each serovar reported to the National Enteric Surveillance Program (NESP) of the Public Health Agency of Canada from that province by the provincial population and then multiplying by $100,000^{79}$.

TEMPORAL ANALYSIS

Temporal analyses were performed for selected antimicrobials. Only 1 antimicrobial per antimicrobial class was selected among those antimicrobials commonly used in the agri-food and/or human sectors. Some antimicrobials were excluded from the temporal analyses for the following reasons:

- Resistance to the antimicrobial was absent or at a very low prevalence, or the breakpoint was debatable and other antimicrobials could be used to provide a surrogate measure of resistance or intermediate susceptibility (e.g., nalidixic acid for ciprofloxacin).
- The isolate was cross-resistant to another selected antimicrobial (e.g., amoxicillinclavulanic acid and ceftiofur).
- The antimicrobial has been banned for use in the agri-food sector, and resistance to this drug is maintained because of the use of another antimicrobial (e.g., chloramphenicol).

⁷⁶ SAS® 9.3; and Stata® 12 SE, Stata Corp., College Station, TX, USA

⁷⁷ Microsoft® Excel 2010, Microsoft Corp.

⁷⁸ PROC GENMOD. SAS® 9.3

⁷⁹ Statistics Canada, Demography Division, Demographic Estimates Section, July Population Estimates, 2013 Final Intercensal Estimate.

Logistic regression models (asymptotic or exact depending on prevalence of the outcome variable) were developed with year as an independent categorical variable. Data were analyzed with commercial software 80. Analyses of Farm Surveillance data were adjusted for clustering at the herd level for grower-finisher pigs and flock level for broiler chickens. For broiler chickens, the 2014 data was compared to 2013. Components with regional or provincial temporal analysis had the current proportion of isolates resistant to a specific antimicrobial compared to those proportions observed in the previous surveillance year and 5 years previously. For components with national temporal analysis, the current proportion of isolates resistant to a specific antimicrobial were compared to those proportions observed in the previous surveillance year, 5 years previously (for comparison between components), and the first year of surveillance. In a few specific instances, the first comparison year may vary to reflect the implementation of new CIPARS components (e.g., 2006 for the Farm Surveillance component in grower-finisher pigs and addition of the broiler chicken Farm Surveillance component in 2013). For ampicillin and ceftiofur, special temporal analyses have been conducted in E. coli and Salmonella isolated from retail chicken or abattoir chickens to compare the current year's data with that of 2004 and 2006. This was due to a change in ceftiofur use practices by Québec chicken hatcheries in early 2005 and in 2007 (start and end of the voluntary period of withdrawal respectively). These special analyses were also conducted in human Salmonella Heidelberg isolates because this human serovar was suspected to originate from chicken. A Pvalue less than or equal to 0.05 was considered significant for all temporal analyses.

⁸⁰ Stata ®12 SE

ANTIMICROBIAL USE

HUMAN SURVEILLANCE

Human antimicrobial use monitoring activities within the Public Health Agency of Canada (PHAC) are presented as part of the PHAC Human Antimicrobial Use Report 2014⁸¹ and the 2016 Canadian Antimicrobial Resistance Surveillance System Report.

FARM SURVEILLANCE

FARM QUESTIONNAIRE

BROILER CHICKENS

In the Broiler chicken's Farm Surveillance component of CIPARS, sentinel farm data were collected through questionnaires administered by the poultry veterinarian (or designated practice staff) to the producer (or designated farm staff). The questionnaires collected information related to the hatchery and broiler farm levels. Veterinarians asked the producers for the chick delivery receipts which contain information required to fill the hatchery-level portion of the questionnaire such as breeder flock information including source origin (e.g., province of origin or imported) the age range of breeder flock source; whether the hatchery purchased the chicks as hatching eggs or chicks; the antimicrobial drugs used and routes of administration, dosage, and primary reasons (treatment, prevention, high risk breeder flock source, producer request) and secondary reasons or by disease diagnosed (avian pathogenic E. coli, Enterococcus cecorum, Salmonella spp., Staphylococcus spp., early clostridial infections and other diseases), and; all vaccines administered in ovo or at the time of hatch. The veterinarians or a designated staff confirmed the information by calling the hatcheries. The farm-level portion of the questionnaire was answered by using feed delivery receipts, farm records, prescriptions and/or by asking the producer. Farm demographics information (e.g., quota period, age and estimated weight of birds at the time of visit, farm/barn/floor capacity), biosecurity and animal health (i.e., vaccines administered at the farm level) were also obtained.

Producers/designated farm person were asked about antimicrobial use (AMU) via feed and water. Data were collected on each diet fed to the flock, including medicated and non-medicated feeds (non-medicated feeds did not contain antimicrobials). Information collected on each type of feed fed included the total days fed and age of flocks at the start and end of each ration. Additional information was collected for diets containing antimicrobials: active ingredient(s), their concentration(s) in the feed, and the primary reason(s) for that AMU

81 http://healthycanadians.gc.ca/publications/drugs-products-medicaments-produits/human-antimicrobial-use-2014-utilisation-antimicrobiens-humains/index-eng.php

(growth promotion, disease prevention, or treatment). Secondary AMU reasons or by diseases diagnosed were captured if the primary use was for disease prevention or treatment; the list for secondary reasons included the most commonly diagnosed conditions in broilers: yolk sacculitis, septicemia, musculoskeletal diseases, respiratory diseases, necrotic enteritis, coccidiosis, and other diseases (e.g., any non-bacterial etiology such as viral and metabolic).

Data collected on exposure to antimicrobials though water included active ingredient(s) in the drug(s) use, dosage (per liter of drinking water), start and end age of each water medication, the proportion of flock exposed, and the reason(s) for use. The primary reasons and secondary reasons for prevention and treatment for AMU in water were similar to those described for feed AMU. The producers were also asked if prescription was provided by a veterinarian and if the water medication is an over the counter purchase.

Based on the required components of the National Avian On-farm Biosecurity Standard⁸² relevant questions were asked pertaining to the level of biosecurity. Questions on access management, animal health management and operational management were included. Data on flock health status (i.e., diagnosis of the most common bacterial and viral diseases), and vaccination administration from the time of chick placement onwards were also collected.

GROWER-FINISHER PIGS

In the grower-finisher's Farm Surveillance component of CIPARS, sentinel farm data were collected through questionnaires administered by the herd veterinarian (or designated staff) to the producer (or designated farm staff). The questionnaires collected data on antimicrobial use (AMU), herd demographics and animal health.

Questions pertaining to the number of pigs in the population of interest differed by management system: continuous-flow or all-in-all-out. All-in-all-out management is a production system whereby animals are moved into and out of facilities in distinct groups. By preventing the commingling of groups, the hope is to reduce the spread of diseases. Facilities are normally cleaned and disinfected thoroughly between groups of animals. This type of management is generally by room or by barn. In continuous-flow operations, animals are continually being removed and added.

The AMU questionnaire was designed to collect data for groups of pigs in the grower-finisher production phase. No data on individual pigs were collected. Six pens representative of this population were selected for the collection of fecal specimens for bacterial culture and antimicrobial susceptibility testing. Thus, in herds with all-in-all-out management, the population of interest included all pigs that entered and exited the barn in the same group as the sampled pigs. The population of interest in herds with continuous-flow management was pigs that entered the grower-finisher unit with the sampled pigs.

⁸² Government of Canada. Animal biosecurity: National avian on-farm biosecurity standard. Available at: www.inspection.gc.ca/DAM/DAM-animals-animaux/STAGING/text-texte/terr_biosec_avian_standard_1375192173847_eng.pdf. Accessed September 2014.

Herd owners/managers were asked about AMU via feed, water, and injections. Data were collected on each diet fed to the specified group of pigs, including medicated and non-medicated feeds (i.e., feeds did not contain antimicrobials). Information collected on each type of feed fed during the grow-finish period included the average number of weeks each ration was fed and the associated start and end pig weights. Additional information was collected for diets (rations) containing antimicrobials: active antimicrobial ingredient(s), their concentration(s) in the feed, and the primary reason(s) for that AMU (choose one of growth promotion, disease prevention, or treatment). Under the primary reasons for AMU, disease prevention or treatment, respondents could choose any of the following secondary reasons for use in feed: respiratory disease, enteric disease, lameness or other diseases. The proportion of pigs fed each diet was also captured.

Data collected on exposure to antimicrobials through water or injection included active ingredient(s) in the drug(s) used, the reason(s) for use and the proportion of pigs exposed. The primary reasons for AMU in water included: disease prevention and disease treatment with associated secondary reasons for use being respiratory disease, enteric disease, lameness or other diseases. Only disease treatment reasons were collected for AMU administered by injection. The number of pigs exposed to AMU by water or injection was captured as categorical data with ranges of 1–25%, 26–50%, 51–75% or 76–100% of the pigs. No AMU data were collected for any production phase prior to the grower-finisher phase. Any data regarding AMU in pigs weighing less than 15 kg (33 lb) were excluded because this weight is considered below the industry standard for grower-finisher pigs.

DATA ANALYSIS

Data were entered into a PostGreSQL Database and descriptive statistics were obtained with commercially available software ⁸³.

GROWER-FINISHER PIGS

Antimicrobial exposures were summarized for each herd. An exposure was defined as any reported use of an active ingredient by a given route of administration in 2014. Data were reported as exposure to an active ingredient by a given route of administration, as well as by exposure to an active ingredient by any administration route. These exposures were summarized by antimicrobial class. It is important to note that antimicrobial exposures through feed tend to involve larger groups of pigs and longer durations of use than antimicrobial exposures via water. Injectable antimicrobials are generally administered on an individual basis to a limited number of pigs⁸⁴.

Quantitative AMU data (dose and duration) were collected for antimicrobials administered through feed but not for antimicrobials administered through water or by injection. The amount of an antimicrobial consumed through feed was estimated from the concentration of

⁸³ Microsoft Excel® 2003 and Microsoft Access® 2003, Microsoft Corp., Redmond, WA, USA; SAS® 9.1, SAS Institute Inc., Carv. NC. USA.

⁸⁴ Version April, 2009. Available at: www.hc-sc.gc.ca/dhp-mps/vet/antimicrob/amr_ram_hum-med-rev-eng.php. Accessed May 2013.

the antimicrobial in a given ration multiplied by the cumulative tonnes consumed over the duration of exposure. Estimates of feed intake were based on simple regression equations and integral calculus. Plots of feed consumption per day were created within Microsoft™ Excel, using National Research Council (NRC) tables (Nutrient Requirements of Swine: Eleventh Revised Edition, National Academy of Sciences, 2012) for grower-finisher pigs. Three plots were created to reflect poor (15% less protein deposition per kg feed consumed than the standard pig), medium (standard pig described by NRC), and high (15% more protein deposition than the standard pig) performance. The lightest starting weight recorded for all rations listed on a questionnaire was selected and the corresponding day on the feed consumption table was identified. The number of days the ration was fed was then added to the start day to obtain an end day for that ration. For each successive ration, the number of days the ration was fed was added to the proceeding ration end day. When the reported feeding end day went beyond the NRC table, data were extrapolated up to maximum of 50 additional days.

Regression parameters for each level of pig performance were calculated within Microsoft™ Excel by using the feed intake curve (e.g., Figure A.1). A minimum R-square value higher than 0.99 was required to be considered a good fit.

Figure A.1. Example of daily medium performing pigs feed intake (kg/day)

Feed intake (kg/day) were based on National Research Council feeding with fitted polynomial regression line generated in Microsoft™ Excel.

The area under the curve for each regression equation provided feed intake using the following formula:

$$\beta_0 t + \beta_1 t^2 / 2 + \beta_2 t^3 / 3$$

The corresponding β values come from the performance specific regression lines and the ages (t) came from the above described approach. Using PPlpgSQL code within the PostGreSQL database for each regression line (poor, medium and high performance) 2 integrals were calculated, the lower integral where "t" is the start age and the upper integral is where "t" is the end age. The difference between the upper and lower integral yielded the estimate of feed intake in kilograms per pig for that ration. For each grower-finisher herd an average daily gain (ADG) was calculated. Farms were categorized as having poor, medium, or high performance by using cut off points which were generated by partitioning the survey ADG data into thirds. High performance herds were defined as herds with an ADG more than 0.8734, medium performance herds had an ADG between 0.8734 to 0.8045, and poor performance herds had ADG less than 0.8045. Based on this categorization the appropriate regression line and integral were applied to calculate feed consumption. Feed consumption was converted from kilograms

to tonnes and multiplied by the number of pigs at risk to provide an estimate of total tonnes fed for each ration. This value was then utilized to calculate the grams of antimicrobial consumed per ration and incorporated in quantitative analyses.

BROILER CHICKENS

Antimicrobial exposures from hatching stage to end of growth or pre-harvest sampling stage (≥ 30 days) were summarized for each flock. An exposure was defined as any reported use of an active ingredient by a given route of administration. Data are reported as exposure to an active ingredient by a given route of administration, as well as by exposure to an active ingredient by any administration route. These exposures were summarized by antimicrobial class.

Estimates of feed intake were based on simple regression and integral calculus. Feed consumption estimates from the 2014 Ross 208 and 708 performance objectives, the most recent Cobb 500 and 700 Broiler Performance and Nutrition Supplement manuals, and feed company standards (Wallenstein Feeds and Nutreco-Shur Gain) were loaded into Microsoft™ Excel. From these data, the cumulative feed consumption was calculated using the average of feeding standards for the 2 most common broiler strains and the standards developed by feeding companies (i.e., non-strain specific) 85,86,87,88 for as-hatched broilers (i.e., males and females combined) and a plot of feed consumption in grams per bird per day was created.

From the broiler chicken survey the start and end age of the birds was available for each ration. Since the end day of one ration is the start day of the next an algorithm was used to prevent overlapping days for each subsequent ration. Regression parameters were calculated within Microsoft™ Excel by using the plotted feed intake curve. A minimum R-square value of > 0.99 was required to be considered a good fit therefore to obtain the best fitting regression values the feeding curve was divided into 3 segments. Feed consumption calculations based on the regression line in Figure A.2 were used if the age of the birds when they started and finished the ration was less or equal to 21 days (i.e., equivalent to brooding and early grow-out period). The regression line in Figure A.4 was used if the age of the birds when they started and finished the ration was equal or more than 35 days of age (i.e., equivalent to finisher phase or extended grow-out period in roasters). All other age ranges had feed consumption based on the regression line depicted in Figure A.3 (i.e., grow-out period). From the regression coefficients feed consumption could then be calculated using integral calculus.

⁸⁵ Cobb-Vantress, Inc. Products: Cobb 500[™]. Available at: www.cobb-vantress.com/products/cobb500. Accessed September 2014.

⁸⁶ Cobb-Vantress, Inc. Products: Cobb 700™. Available at: www.cobb-vantress.com/products/cobb700. Accessed September 2014.

Aviagen. Ross 308. Available at: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-308-Broiler-PO-2014-EN.pdf. Accessed November 2014.

⁸⁸ Aviagen. Ross 708. Available at: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-708-Broiler-PO-2014-EN.pdf. Accessed November 2014.

Figure A.2. Segment one daily feed intake (g/day) based on common broiler chicken breeds

Feed intake (g/day) are based on the average consumption of the common broiler chicken breeds raised in Canada with growth curves derived from the feed standards/guidelines and the fitted polynomial regression line generated in Microsoft™ Excel.

Figure A.3. Segment two daily feed intake (g/day) based on common broiler chicken breeds

Feed intake (g/day) are based on the average consumption of common broiler chicken breeds raised in Canada with growth curves derived from the feed standards/guidelines and the fitted polynomial regression line generated in Microsoft™ Excel.

Figure A.4. Segment three daily feed intake (g/day) based on common broiler chicken breeds

Feed intake (g/day) are based on the average consumption of the common broiler chicken breeds raised in Canada with growth curves derived from the feed standards/guidelines and the fitted polynomial regression line generated in Microsoft™ Excel.

The area under the curve for each regression equation provided an estimate of feed consumption. The equations for each segment of the curve where the corresponding β values came from the regression line and the ages (t) for each ration came from the survey (as entered) were as follows.

The formula for the first and second segment polynomial was:

$$\beta_0 t + \beta_1 t^2 / 2.0 + \beta_2 t^3 / 3.0 + \beta_3 t^4 / 4.0$$

The formula for the third segment polynomial was:

$$\beta_0 t \beta_1 t^2 / 2.0 + \beta_2 t^3 / 3.0$$

Using PLpgSQL code within the PostGreSQL database, for the applicable regression line, two integrals were calculated, the lower integral where "t" is the start age and the upper integral where "t" is the end age. The difference between the upper and lower integral yielded the estimate of feed intake in grams per bird. Feed consumption was converted from grams to tonnes and multiplied by the number of birds at risk (i.e., total birds minus half of the

cumulative mortality rate at the time of sampling) to provide an estimate of total tonnes fed for each ration. The number of birds reported were the total birds delivered in the poultry unit of concern (barn or floor) including the 2% allowance provided by the hatchery. This value was then utilized to calculate the grams of antimicrobial consumed per ration and incorporated into the quantitative analysis.

Broiler chickens—water consumption calculations: estimates of water consumption were based on simple regression and calculus. Water consumption estimates were uploaded into Microsoft ™Excel from the Nutreco Canada Inc (Revised April 4, 2011) daily water consumption chart and a plot of intake in liters/bird/day was created.

From the broiler chicken survey the start and end age of the birds was available for each water treatment. An algorithm was used to prevent any possible overlapping of age in days for consecutive water treatments with different antimicrobials in the same flock. Regression parameters were calculated within Microsoft ™Excel by using the plotted water intake curve. A minimum R-square value of more than 0.99 was required to be considered a good fit therefore to obtain the best fitting regression values the water consumption curve was divided into 3 segments. Water consumption based on the regression line in Figure A.5 was used if the age of the birds when they started and ended the water treatment was less or equal to 21 days of age. The regression line in Figure A.7 was used if the age of the birds when they started and ended the water treatment was less or equal to 38 days of age. All other age ranges had water consumption calculated from the regression line depicted in Figure A.6. From the regression coefficients the water consumption could then be calculated using integral calculus.

Figure A.5. Segment one broiler chicken daily water consumption (Liters/day)

Water intake (L/day) is based the Nutreco Canada Inc. daily water consumption chart for common breeds and average performing flocks in Canada and the fitted polynomial regression lines generated in Microsoft ™Excel.

Figure A.6. Segment two broiler chicken daily water consumption (Liters/day)

Water intake (L/day) is based the Nutreco Canada Inc. daily water consumption chart for common breeds and average performing flocks in Canada and the fitted polynomial regression lines generated in Microsoft ™Excel.

Figure A.7. Segment three broiler chicken daily water consumption (Liters/day)

Water intake (L/day) is based the Nutreco Canada Inc. daily water consumption chart for common breeds and average performing flocks in Canada and the fitted polynomial regression lines generated in Microsoft ™Excel.

The area under the curve for each regression equation provided an estimate of water consumption. The equation for each segment of the curve was as follows; where the corresponding " β " values came from the regression line for each segment of the curve and the ages (t) for each treatment came from the survey (as entered).

The formula for the polynomial was:

$$\beta_0 t + \beta_1 t^2 / 2.0 + \beta_2 t^3 / 3.0 + \beta_3 t^4 / 4.0$$

Using PLpgSQL code within the PostGreSQL database, for the applicable regression line, 2 integrals were calculated, the lower integral where "t" is this the start age and the upper integral where "t" is the end age. The difference between the upper and lower integral yielded the estimate of water intake in liters per bird. Water consumption in liters/bird was then multiplied by the number of birds at risk (i.e., total birds minus half of the cumulative mortality rate at the time of sampling) to provide an estimate of total liters consumed for each treatment. This value was then utilized to calculate the grams of antimicrobial consumed per treatment and incorporated into the quantitative analysis.

QUANTITIES OF ANTIMICROBIALS DISTRIBUTED FOR SALE FOR USE IN ANIMALS AND CROPS

QUANTITIES OF ANTIMICROBIALS DISTRIBUTED FOR SALE FOR USE IN ANIMALS

As an estimate of antimicrobials used in animals, data on active ingredients distributed for sale were aggregated and provided to the Public Health Agency of Canada by the Canadian Animal Health Institute (CAHI). CAHI is the trade association representing the companies that manufacture and distribute drugs for administration to food (including fish), sporting, and companion animals in Canada. The association estimates that its members' sales represent over 90% of all sales of licensed animal pharmaceutical products in Canada⁸⁹. CAHI coordinates electronic collection of data from its members. Data collection and analysis are performed by a third party, Impact Vet⁹⁰. The CAHI data include information from 15 companies that manufacture antimicrobials products for use in animals in Canada, and 5 major wholesalers/distributors. The CAHI data on the distribution of antimicrobials for use in animals provide a context to interpret other data on antimicrobial use in animals generated through research and farm data collection. They also provide a means to estimate gross temporal changes in antimicrobials used in animals.

The level in the distribution chain that kilograms of active ingredients are reported to CIPARS is at the feed manufacturer/veterinary clinic/over-the-counter outlet/feed mill. Antimicrobial use was assigned to either production animal (inclusive of horses) or companion animal by the manufacturers according to label claim, and in the situation where mixed species was indicated on the label, the manufacturer assigned (estimated) the species as either companion animal or production animal based on the veterinary clinic practice profile.

These data do not represent actual antimicrobial use in a given year; rather, they reflect the volume of antimicrobials distributed by manufacturers and wholesalers. Distribution values should approximate amounts used, particularly when data from more than one year are included. However, when data from only one year are included, distribution values may vary from amounts actually used because of the time lag between distribution and actual use, as well as stockpiling of antimicrobials at various points in the distribution system. The sales data also do not account for drug wastage due to drug expiry.

The data do not include antimicrobials imported for personal use (own use importation—OUI) under the personal-use provision of the federal Food and Drugs Act and its Regulations, nor do they include imported active pharmaceutical ingredients (API), which are drugs imported in non-dosage form and compounded by a licensed pharmacist or veterinarian. The latest information from CAHI is that the lost opportunity value due to OUI and API was estimated to be 13% of total pharma sales or about \$50M. The CAHI data do not include prescriptions filled by pharmacists using human labeled drugs for antimicrobials used in companion animals.

Division of AgData Ltd. Available at: http://www.agdata.net/industry_platforms/canada/impact_vet. Accessed August 2015.

⁸⁹ Canadian Animal Health Institute. Available at: www.cahi-icsa.ca/about. Accessed August 2015.

Hence, the CAHI data are currently an underestimate of the true volume of antimicrobials used in animals in Canada. Also, the CAHI data do not capture what happens to the drugs after purchase; hence these data cannot provide information the actual antimicrobial use practices, such as dose, duration, reason for use, detailed species-specific information, or extra-label use.

The CAHI data include medicines sold directly to pharmacists that have a focus on dispensing for production medicine. It does not include antimicrobial agents moved from veterinarians to pharmacies and then subsequently dispensed by pharmacies. The latter distribution is captured with the veterinary clinic-level data.

CAHI provides the information in categories, with some antimicrobials not independently reported. This is based on a "3 company accounting rule" established by CAHI to comply with the European Union and the United States' anti-competition regulations. CAHI added in some cases a "90% rule" to be sure not to infringe the regulations in the United States. These accounting rules can result in changes to the categorization of specific antimicrobials over time. For 2014, the antimicrobials are categorized as per Table A.3.

QUANTITIES OF ANTIMICROBIALS DISTRIBUTED FOR SALE FOR USE IN CROPS

In addition to antimicrobial use in animals, Health Canada's Pest Management Regulatory Agency (PMRA) collects annual Canadian sales data from all pesticide manufacturers. Sales information on antimicrobial drugs registered as pesticides on food crops was provided by PMRA to CIPARS and the 2014 data are reported in the 2016 Canadian Antimicrobial Resistance Surveillance System Report.

Table A.3. Canadian Animal Health Institute's aggregation of data on antimicrobial distributed for sale for use in animals, 2014

Antimicrobial class	Ingredient
Aminoglycosides	Amikacin, apramycin, dihydrostreptomycin, gentamicin, neomycin, spectinomycin, streptomycin
β-Lactams / penicillin	Amoxicillin, ampicillin, cloxicillin, penicillin, sulbactam, clavulanic acid
Cephalosporins	Ceftiofur, cephapirin, cefovecin, cefaclor, cefadroxil
Fluoroquinolones	Enrofloxacin, difloxacin, marbofloxacin, orbifloxacin
Chemical coccidiostats	Amprolium, clopidol, decoquinate, diclazuril, narasin, nicarbazin, pyrimethamine, robenidine, zoalene
Ionophore coccidiostats	Lasalocid, maduramicin, monensin, salinomycin
Lincosamides	Clindamycin, lincomycin, pirlimycin
Macrolides	Erythromycin, gamithromycin, tilmicosan, tylosin, tulathromycin,
Tetracyclines	Chlortetracycline, oxytetracycline, tetracycline
Trimethoprim and sulfonamides	Ormethoprim, trimethoprim, sulfabenzamide, sulfacetamide, sulfadiazine, sulfadimethoxine, sulfadoxine, sulfaguanidine, sulfamerazine, sulfamethazine, sulfanilamide, sulfaquinoxaline, sulfathiazole
Other antimicrobials	Avilamycine, bacitracins, bambermycin, chloramphenicol, florfenicol, nitrofurantoin, nitrofurazone, novobiocin, polymixin, tiamulin,

POPULATION CORRECTION UNIT IN ANIMALS

Changes in overall distribution of antimicrobials over time may reflect several things, including: true change in use practices, a change in the numbers or types of animals in the population (requiring antimicrobials), changes in disease prevalence necessitating antimicrobial use, and changes in the types of antimicrobials administered (with different potencies)As one way to adjust the sales data for the changing animal populations over time, a denominator accounting for the number of animals and their standardized weights (animal biomass) was applied. This denominator was based on the methodology currently in use by the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)⁹¹.

ESVAC adjusts the sales data by a population correction unit (PCU)⁹¹ in which a PCU is a proxy for the animal biomass that is at risk of being treated with antimicrobials. The PCU has been described as "currently the best approximation of consumption, extrapolated from sales data, for changes within a country over time and comparison between countries"⁹². It is a technical measurement only; where 1 PCU = 1 kg of different categories of livestock and slaughtered animals. ESVAC methodology was applied to the greatest extent possible, however population

⁹¹ Sales of veterinary antimicrobial agents in 26 EU/EEA countries in 2012 (EMA/333921/2014). European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Report/2014/10/WC500175671.pdf. Accessed August 2015.

⁹² UK-VARSS 2013. UK Veterinary Antibiotic Resistance and Sales Surveillance Report. Veterinary Medicines Directorate -Government Department for the Environment, Food and Rural Affairs. Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/440744/VARSS.pdf. Accessed August 2015.

information collected by Statistics Canada and Agriculture and Agri-Food Canada is different in structure somewhat from the data accessed by ESVAC (Eurostat and TRACES), hence direct comparisons of PCU's or mg/PCU with ESVAC participating country data should only be made with due caution.

The PCU is calculated by multiplying the numbers of livestock and slaughtered animals in each species/production state by the theoretical (standardized) weight at the most likely time of treatment ^{93,94}.

PCU (kg) = number of animals * average weight of animal at treatment (kg)

$$AMU = \frac{Antimicrobials distributed (mg)}{PCU (kg)}$$

National denominator data regarding the number of livestock and slaughtered animals for 2006 to 2014 were obtained from Statistics Canada, Agriculture and Agri-Food Canada, Fisheries and Oceans Canada, the Canadian Animal Health Institute, and Equine Canada websites and are detailed in Chapter 3—Antimicrobial Use in Animals—Quantities of Antimicrobials Distributed for Sale for Use in Animals.

The average weights at treatment used in these calculations, as per ESVAC, can be found in Table A.4. Canadian average weights were approximated for this surveillance reporting period, as there is discussion with industry stakeholders to determine appropriate weights in the Canadian context.

Trends in the sales of veterinary antimicrobial agents in nine European countries—Reporting period: 2005-2009. European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Available at: www.ema.europa.eu/docs/en GB/document library/Report/2011/09/WC500112309.pdf. Accessed August 2015

⁹³ Sales of veterinary antimicrobial agents in 26 EU/EEA countries in 2012 (EMA/333921/2014). European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Report/2014/10/WC500175671.pdf. Accessed August 2015.

Table A.4. Detailed information on population numbers, 2014

Animal Species	Animal class/production class	Production Stage	Number of Animals	ESVAC Average weight (w) at treatment or standard weight for import/export (kg) ^a	PCU (1000 tonnes)
			n	w	(n*w)/(1000 *1000) (imports subtracted)
Cattle					
	Cattle	Slaughter ^b	2,831,374	425	1,203
	Calves	Slaughter ^b	205,595	140	29
	Cattle and calves	Live cattle and calf import from the United States (US) for slaughter ^c	0	425	0
	Slaughter cattle and calves	Export for slaughter to the US ^d	739,511	425	314
	Calves	Live cattle and calf international import for feeding ^c	31,957	140	4
	Feeder cattle and calves	Export for feeding to US ^e	441,695	140	62
	Beef cows	On farm ^f	3,926,600	425	1,669
	Dairy cows	On farm ^f	959,300	425	408
	Total		8,866,523		3,680
Swine					
	Finishers	Slaughter ^g	20,335,730	65	1,322
	All swine	International importh	3,600	65	0
	All swine	International export ^h	4,959,900	65	322
	Sows and gilts	On farm ⁱ	1,196,500	240	287
	Total		26,488,530		1,931
Poultry					
	Broiler chickens	Slaughter	640,630,200	1	641
	Turkey (> 6.2 to < 13.3 kg)		20,876,341	6.5	136
	Poultry (< 185 g)	Live poutry for import ^k	32,273,861	0.2	6
	Poultry (> 185 g)	Live poutry for import ^k	38,729,701	2	77
	Poultry (< 185 g)	Export ^k	15,483,379	0.2	3
	Poultry (> 185 g)	Export ^k	785,209	2	2
Chaanan	Total		606,771,567		697
Sheep an	d goats Sheep and lamb	Claushtor	756,100	20	15
	Goats	Slaughter ⁿ	60,265	20	13
	Sheep	International import	9,800	20	0
	Sheep	International import	4,000	20	0
	Ewes	On farm	551,700	75	41
	Total	On laim	1,362,265		58
Horses		Living ^o	963,500	400	385
Fish					
	Finfish	Production (kg) ^p	93,656,000	N/A	94
	Shellfish	Production (kg) ^p	39,927,000	N/A	40
	Total		133,583,000		134
Rabbits		Slaughter ^q	590,086	1.4	1
	production animals				6,886
Cats	N/A	N/A ^{r, s}	7,000,000	4	28
Dogs	N/A	N/A ^{r, s}	6,400,000	15	96
Total PCU	companion animals				124

See corresponding footnotes on next pages.

Table A.4. Detailed information on population numbers, 2014 (cont'd)

PCU = population correction unit.

N/A = not applicable.

Shaded data source: needs updating as data become available.

For cattle, pigs, and sheep on farm, the number of animals entered for a calendar year was the number captured on January 1st of that calendar year (this was sometimes reported in the previous year's end of year number; e.g., for sows and gilts on farm for January 1, 2014 in the Statistics Canada CANSIM table, this was reported for the second period of 2013).

For horses, data on number of horses on farm were only reported for 2006 and 2010. The assumption was that for 2014, the number was the same.

- As per European Surveillance of Veterinary Antimicrobial Consumption (ESVAC), unless otherwise specified.
 ESVAC does not include beef cows. Beef cows are included here because they are a significant animal population in Canada.
- ^b Data from federal and provincial slaughter plants. Available at:.http://aimis-simia.agr.gc.ca/rp/index-eng.cfm?action=rR&pdctc=&r=105&menupos=1.02.06 and http://aimis-simia.agr.gc.ca/rp/index-eng.cfm?action=rR&pdctc=&r=111&menupos=1.02.06. Accessed March 12, 2015.
- ^c Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/statistics-and-market-information/by-product-sector/red-meat-and-livestock/red-meat-market-information-canadian-industry/imports-and-exports/livestock-imported-from-the-united-states/?id=1415860000006. Accessed Dec. 3, 2015.
- d Includes steers, heifers, cows, and bulls. Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/statistics-and-market-information/by-product-sector/red-meat-and-livestock/red-meat-market-information-canadian-industry/imports-and-exports/?id=1415860000005. Accessed March 24, 2015
- ^e Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/statistics-and-market-information/by-product-sector/red-meat-and-livestock/red-meat-market-information-canadian-industry/imports-and-exports/?id=1415860000005. Accessed March 24, 2015.
- ^f Table 003-0032. Data for January 1st. Available at: http://www5.statcan.gc.ca/cansim/a05. Accessed March 24, 2015.
- ^g Agriculture and Agri-Food Canada (Report A005C). Available at: http://aimis-simia.agr.gc.ca/rp/index-eng.cfm?menupos=1.02.06&pdctc=&action=pR&LANG=EN&r=93. Accessed April 13, 2015.
- hAdded for periods I and II. Statistics Canada (CANSIM 003-0102). Available at:
 http://www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=0030102&paSer=&pattern=&stByVal=1&p1
 =1&p2=-1&tabMode=dataTable&csid=. Accessed April 13, 2015.
- Number of animals recorded on period II for 2014. Statistics Canada (CANSIM 003-0100). Available at: www.statcan.gc.ca/tables-tableaux/sum-som/I01/cst01/prim51a-eng.htm. Accessed April 13, 2015.
- Live weight; for turkeys mature birds were included. Agriculture and Agri-Food Canada (Poultry Slaughter Report 001). Available at: http://aimis-simia.agr.gc.ca/rp/index-eng.cfm?action=pR&r=1&pdctc=. Accessed April 14, 2015.
- k Included all poultry. Agriculture and Agri-Food Canada (Poultry and Egg Trade Balance Report). Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/statistics-and-market-information/by-product-sector/poultry-and-eggs/poultry-and-egg-market-information-canadian-industry/imports-and-exports/statistics-canada-poultry-and-egg-trade-reports/2014-poultry-and-egg-trade-balance-reports/?id=1426000524082. Accessed April 14, 2015.
- Statistics Canada (CANSIM 003-0028). Available at: www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=0030028&tabMode=dataTable&srchLan=-1&p1=-1&p2=9. Accessed September 2, 2015.
- ^m Added numbers from federally and provincially inspected establishments. Agriculture and Agri-Food Canada (Annual Goats Slaughtered in Federally and Provincially Inspected Establishments in Canada). Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/statistics-and-market-information/by-product-sector/red-meat-and-livestock/red-meat-market-information-canadian-industry/by-sector-reports/sheep-lambs-and-goats/goat-slaughtered-in-canada/?id=1415860000044#2014. Accessed April 17, 2015.
- ⁿ Number of animals recorded on January 1st, 2013 Statistics Canada (CANSIM 003-0031). Available at: www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=0030031&tabMode=dataTable&srchLan=-1&p1=-1&p2=9. Accessed April 17, 2015.

Table A.4. Detailed information on population numbers, 2014 (cont'd)

- ° Available at:
 - www.equinecanada.ca/industry/index.php?option=com_content&view=section&id=103&Itemid=559&lang=en. Accessed December 3, 2015.
- ^pTable 003-0001. Available at:
 - www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=0030001&pattern=aquaculture&tabMode=dataTa ble&srchLan=-1&p1=1&p2=49. Accessed December 3, 2015.
- ^q Federal and provincial slaughter. Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/statistics-and-market-information/by-product-sector/red-meat-and-livestock/red-meat-and-livestock-market-information/supply-sheets-by-species/rabbit-industry-at-a-glance/?id=1415860000120. Accessed December 3, 2015.
- Companion Animal Health. Canadian Animal Health Institute. Available at: http://www.cahi-icsa.ca/companion-animal-health/. Accessed August 21, 2015.
- S Average weights for cats and dogs from ANSES, 2012. French Agency for Food. Environmental and Occupational Health & Safety (ANSES) French Agency for Veterinary Medicinal Products (ANMV). Sales survey of Veterinary Medicinal Products containing Antimicrobials in France 2012. Volumes and estimated exposure of animals to antimicrobials. Oct. 2013. Available at: http://www.anses.fr/sites/default/files/documents/ANMV-Ra-Antibiotiques 2012EN.pdf. Accessed on September 2, 2015.

Detailed inclusions and exclusions for the PCU denominator: As per ESVAC, exported animals were added to the PCU, whereas imported animals were subtracted, based on the ESVAC assumption that animals are treated in their country of origin. However, it was noted that in the Canadian context, this would vary depending upon the production stage that is crossing the border. For the purposes of calculating the PCU, production animal species with the largest populations were included, using the same production classes as ESVAC, with the exception that we additionally included beef cows (not included by ESVAC). Species currently excluded from our PCU calculations include game animals (e.g., moose), "pocket" companion animals (e.g., hamsters, guinea pigs, pet birds), reptiles, and amphibians. For some production stages, import and export data for poultry are included in a different structure before and after 2009, based on the data available from Statistics Canada. The total number of cattle slaughtered per year as provided/accessed was not stratified by type of cattle (beef versus cull dairy); hence it was assumed that the total slaughtered includes all cattle types (including cull dairy).

PROVINCIAL STRATIFICATION OF THE NUMERATOR AND DENOMINATOR

There may be subsequent distribution of antimicrobials across provincial borders after being distributed to the veterinary clinics (in particular the movement of medicated feed—for example, anecdotal information was that New Brunswick has a negligible feed-mill industry, they generally purchase their medicated feed from Québec), hence caution should be applied when interpreting the quantities of antimicrobials distributed for sale within each province. An effort was made to calculate a PCU at the provincial-level, however there is ongoing discussion with industry stakeholders regarding the inter-provincial movement of animals. As interprovincial export data is not available for all species in all provinces/regions, provincial/regional calculations of PCU will be postponed pending further discussion.

OVERALL DISCUSSION OF STRENGTHS AND LIMITATIONS

The CAHI data provides a rough measure of antimicrobials distributed for sale for all animal species, including those not covered by CIPARS farm-level surveillance (with appropriate caveats regarding OUI/API). With respect to the PCU, as stated in the United Kingdom's surveillance report on antimicrobials sold for use in animals, the population is an important denominator, as the greater the number of animals, the greater the potential need for antimicrobial therapy. The PCU metric currently does not take into account the lifespan of the animal, which may affect the interpretation of the quantities of antimicrobials administered to animals. Also, use of a static standard weight may not reflect an industry shift in production affecting the average weights of animals treated, related to weather, trade, or other reasons. Measures of antimicrobial use as reported by broad categories and by a PCU denominator do not account for the individual potencies of the drugs that make up the category. For example, a decrease in the mg/PCU reported for a given year could potentially reflect a switch to using a more potent drug, as opposed to reflecting a decrease in the actual exposure of animals to antimicrobials. The CAHI data should be interpreted as one measure describing antimicrobials used in animals, strong caution should be applied with making inferences to any use practice for a particular animal species. CIPARS continues to work to improve this measure and other appropriate measures, to best reflect antimicrobial use in the Canadian context.

ANTIMICROBIAL CLASSIFICATION

CATEGORIZATION OF ANTIMICROBIALS BASED ON IMPORTANCE IN HUMAN IMPORTANCE

Categories of antimicrobials used in this report were taken from the document Categorization of Antimicrobial Drugs Based on Importance in Human Medicine ⁹⁵ by Health Canada's Veterinary Drugs Directorate (Table A.5). Antimicrobials are considered to be of Very High Importance in Human Medicine (Category I) when they are essential for the treatment of serious bacterial infections and there is no or limited availability of alternative antimicrobials for effective treatment. These antimicrobials include amoxicillin-clavulanic acid, ceftiofur ⁹⁶, ceftriaxone, ciprofloxacin, telithromycin, and colistin. Antimicrobials of High Importance in Human Medicine (Category II) consist of those that can be used to treat a variety of infections, including serious infections, and for which alternatives are generally available. Bacteria resistant to antimicrobials of this category are generally susceptible to Category I antimicrobials, which could be used as alternatives. Antimicrobials of Medium Importance in Human Medicine (Category III) are used in the treatment of bacterial infections for which alternatives are generally available. Infections caused by bacteria resistant to these antimicrobials can, in general, be treated with Category II or I antimicrobials. Antimicrobials of Low Importance in Human Medicine (Category IV) are currently not used in human medicine.

⁹⁵ Health Canada. 2009. Categorization of Antimicrobial Drugs Based on Importance in Human Medicine. Version April, 2009. Available at: www.hc-sc.gc.ca/dhp-mps/vet/antimicrob/amr_ram_hum-med-rev-eng.php. Accessed September 2014.

⁹⁶ Ceftiofur is licensed for use in animals only. Resistance to ceftiofur is generally detected in combination with resistance to amoxicillin-clavulanic acid, cefoxitin, ampicillin and ceftriaxone (A2C-AMP-CRO resistance pattern).

Table A.5. Categorization of antimicrobial drugs based on importance in human medicine class, 2014

	Category of importance in human medicine	Antimicrobial class
I	Very high importance	Carbapenems Cephalosporins – the third and fourth-generations Fluoroquinolones Glycopeptides Glycylcyclines Ketolides Lipopeptides Monobactams Nitroimidazoles (metronidazole) Oxazolidinones Penicillin-β-lactamase inhibitor combinations Polymyxins (colistin) Therapeutic agents for tuberculosis (e.g. ethambutol, isoniazid, pyrazinamide, and rifampin)
II	High importance	Aminoglycosides (except topical agents) Cephalosporins – the first and second-generations (including cephamycins) Fusidic acid Lincosamides Macrolides Penicillins Quinolones (except fluoroquinolones) Streptogramins Trimethoprim-sulfamethoxazole
III	Medium importance	Aminocyclitols Aminoglycosides (topical agents) Bacitracins Fosfomycin Nitrofurans Phenicols Sulfonamides Tetracyclines Trimethoprim
IV	Low importance	Flavophospholipols Ionophores

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

LIST OF ANTIMICROBIALS FROM THE FARM SWINE QUESTIONNAIRE

Table A.6. List of antimicrobials from the Farm Swine questionnaire database for each ATCvet class, 2014

Third-generation cephalosporins (QJ01DD) Ceftiofur (QJ01DD90) Fluoroquinolones Enrofloxacin (QJ01MA90) Amphenicols (QJ01BA) Florfenicol (QJ01BA90) Penicillins with extended spectrum (QJ01CA) Ampicillin (QJ01CA01) β-Lactamase sensitive penicillins (QJ01CE) Penicillin (QJ01CE01) Combination of sulfadoxine and trimethoprim (QJ01E Trimethoprim-sulfadoxine (QJ01EW13) Erythromycin (QJ01FA01) Tylosin (QJ01FA90) Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Lincomycin (QJ01FG90) Other aminoglycosides (QJ01GB) Neomycin (QJ01GB05)		ATCvet class	Antimicrobial				
Amphenicols (QJ01BA) Penicillins with extended spectrum (QJ01CA) β-Lactamase sensitive penicillins (QJ01CE) Combination of sulfadoxine and trimethoprim (QJ01E Trimethoprim-sulfadoxine (QJ01EW13) Erythromycin (QJ01FA01) Tylosin (QJ01FA90) Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)	$\overline{}$	Third-generation cephalosporins (QJ01DD)	Ceftiofur (QJ01DD90)				
Penicillins with extended spectrum (QJ01CA) β-Lactamase sensitive penicillins (QJ01CE) Combination of sulfadoxine and trimethoprim (QJ01E Trimethoprim-sulfadoxine (QJ01EW13) Erythromycin (QJ01FA01) Tylosin (QJ01FA90) Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)		Fluoroquinolones	Enrofloxacin (QJ01MA90)				
Penicillins with extended spectrum (QJ01CA) β-Lactamase sensitive penicillins (QJ01CE) Combination of sulfadoxine and trimethoprim (QJ01E Trimethoprim-sulfadoxine (QJ01EW13) Erythromycin (QJ01FA01) Tylosin (QJ01FA90) Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Lincomycin (QJ01FF02) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)		Amphenicols (QJ01BA)	Florfenicol (QJ01BA90)				
Amoxicillin (QJ01CA04) β-Lactamase sensitive penicillins (QJ01CE) Penicillin (QJ01CE01) Combination of sulfadoxine and trimethoprim (QJ01E Trimethoprim-sulfadoxine (QJ01EW13) Erythromycin (QJ01FA01) Tylosin (QJ01FA90) Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Lincomycin (QJ01FF02) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)		Penicilling with extended spectrum (O IO1CA)	Ampicillin (QJ01CA01)				
Combination of sulfadoxine and trimethoprim (QJ01E Trimethoprim-sulfadoxine (QJ01EW13) Erythromycin (QJ01FA01) Tylosin (QJ01FA90) Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Lincomycin (QJ01FF02) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)		- Terrorinia with extended spectrum (Q0010A)	Amoxicillin (QJ01CA04)				
Erythromycin (QJ01FA01) Macrolides (QJ01FA) Tylosin (QJ01FA90) Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Lincomycin (QJ01FF02) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)		β-Lactamase sensitive penicillins (QJ01CE)	Penicillin (QJ01CE01)				
Macrolides (QJ01FA) Tylosin (QJ01FA90) Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Lincomycin (QJ01FF02) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)		Combination of sulfadoxine and trimethoprim (QJ01	E Trimethoprim-sulfadoxine (QJ01EW13)				
Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Streptogramins (QJ01FG) Lincomycin (QJ01FG90) Virginiamycin (QJ01FG90)			Erythromycin (QJ01FA01)				
Tilmicosin (QJ01FA91) Tulathromycin (QJ01FA94) Lincosamides (QJ01FF) Lincomycin (QJ01FF02) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)		Macrolides (O IO1EA)	Tylosin (QJ01FA90)				
Lincosamides (QJ01FF) Lincomycin (QJ01FF02) Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)		Macronides (Quoti A)	Tilmicosin (QJ01FA91)				
Streptogramins (QJ01FG) Virginiamycin (QJ01FG90)	п		Tulathromycin (QJ01FA94)				
	"	Lincosamides (QJ01FF)	Lincomycin (QJ01FF02)				
Other aminoglycosides (Q.I01GB) Neomycin (Q.I01GB05)		Streptogramins (QJ01FG)	Virginiamycin (QJ01FG90)				
Troomy on (Quo 100)		Other aminoglycosides (QJ01GB)	Neomycin (QJ01GB05)				
Penicillin-streptomycin (QJ01RA01)			Penicillin-streptomycin (QJ01RA01)				
Chlortetracycline-sulfamethazine-penicillin (QJ01RA90)			Chlortetracycline-sulfamethazine-penicillin (QJ01RA90)				
Combinations of antibacterials (QJ01RA) Oxytetracycline-neomycin (QJ01RA90)		Combinations of antibacterials (QJ01RA)	Oxytetracycline-neomycin (QJ01RA90)				
Tetracycline-neomycin (QJ01RA90)			Tetracycline-neomycin (QJ01RA90)				
Lincomycin-spectinomycin (QJ01RA94)			Lincomycin-spectinomycin (QJ01RA94)				
Other antibacterials (QJ01XX) Spectinomycin (QJ01XX04)		Other antibacterials (QJ01XX)	Spectinomycin (QJ01XX04)				
Chlortetracycline (QJ01AA03)			Chlortetracycline (QJ01AA03)				
Tetracyclines (QJ01AA) Oxytetracycline (QJ01AA06)		Tetracyclines (O IO1AA)	Oxytetracycline (QJ01AA06)				
Tetracycline (QJ01AA07)		Tetracy offices (Quo 17 tr.)	Tetracycline (QJ01AA07)				
III Chlortetracycline, combinations (QJ01AA53)	III		Chlortetracycline, combinations (QJ01AA53)				
Sulfonamides (QJ01EQ) Combinations of sulfonamides (QJ01EQ30)		Sulfonamides (QJ01EQ)	Combinations of sulfonamides (QJ01EQ30)				
Pleuromutilins (QJ01XQ) Tiamulin (QJ01XQ01)		Pleuromutilins (QJ01XQ)	Tiamulin (QJ01XQ01)				
Other antibacterials (QJ01XX) Bacitracin (QJ01XX10)		, ,					
No ATCvet code Bambermycin (No ATCvet code)	IV/						
Pyranes and hydropyranes (QP51AH) Salinomycin (QP51AH01)		Pyranes and hydropyranes (QP51AH)	Salinomycin (QP51AH01)				

ATC = Anatomical Therapeutic Chemical.

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

The ATCvet system for classification of veterinary medicines is based on the same overall principles as the ATC system for substances used in human medicine. This system is a tool for exchanging and comparing data on drug use in veterinary medicine at international, national or local levels⁹⁷.

⁹⁷ World Health Organization Collaborating Center for Drug Statistics Methodology. Available at: www.whocc.no/atcddd. Accessed September 2014.

ABBREVIATIONS

CANADIAN PROVINCES, TERRITORIES, AND REGIONS

PROVINCES TERRITORIES

BC British Columbia YT Yukon

AB Alberta **NT** Northwest Territories

SK Saskatchewan **NU** Nunavut

MB Manitoba **REGIONS**

ON Ontario Prairies: AB, SK, MB

QC Québec Maritimes: NB, NS, PE

NB New Brunswick Atlantic: NB, NS, PE, NL

In 2014, not all provinces are represented in **NS** Nova Scotia each surveillance component for the Prairies

PE Prince Edward Island and the Atlantic region.

NL Newfoundland and Labrador

ANTIMICROBIALS

AMC Amoxicillin-clavulanic **CRO** Ceftriaxone **SSS** Sulfisoxazole

acid **ERY** Erythromycin **STR** Streptomycin

AMP Ampicillin FLR Florfenicol SXT Trimethoprim-**AZM** Azithromycin sulfamethoxazole

FOX Cefoxitin **CHL** Chloramphenicol **TEL** Telithromycin

GEN Gentamicin CIP Ciprofloxacin **TET** Tetracycline

KAN Kanamycin **CLI** Clindamycin

TIO Ceftiofur **NAL** Nalidixic acid

IMPORTANT RESISTANCE PATTERNS

A2C-AMP Amoxicillin-clavulanic acid, cefoxitin, ceftiofur, and ampicillin

ACSSuT Ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline

ACKSSuT Ampicillin, chloramphenicol, kanamycin, streptomycin, sulfisoxazole, and tetracycline

AKSSuT Ampicillin, kanamycin, streptomycin, sulfisoxazole, and tetracycline

DISEASES

APP Actinobacillus pleuropneumoniae

APEC Avian pathogenic *Escherichia coli*

CAV Chicken Anemia Virus

IBDV Infectious Bursal Disease Virus

IBV Infectious Bronchitis Virus

PCVAD Porcine Circovirus Associated Disease

PRRS Porcine Reproductive and Respiratory Syndrome

TGE Transmissible gastroenteritis

OTHERS

G/TPD or g/TCD Grams per thousand pig-days or grams per thousand chicken-days

VDD Veterinary Drugs Directorate, Health Canada

SUMMARY OF DESIGN AND METHODS CHANGES

ANTIMICROBIAL RESISTANCE

Table A.7. Changes implemented to the CIPARS antimicrobial use components, 2002–2014

					0.1	ta dha ataula			
Year	Component	Province / region	Species	 Escherichia	Selec	ted bacteria		- Design	Methods
rear	Component	Province / region	Species	Escnericnia coli	Salmonella	Campylobacter	Enterococcus	Design	Wethous
	Retail Surveillance	British Columbia Prairies Ontario Québec Atlantic	Beef					Data presented are stratified regionally (British Columbia, Prairies, Ontario, Québec, and Atlantic).	Resistance to kanamycin is no longer reported due to its removal from the Enterobacteriacea Gramnegative plate (CMV3AGNF). Additionally, the number of dilutions tested for streptomycin and sulfisoxazole were increased and decreased, respectively.
			Chicken Pork Turkey	× ×	∀	4			
2014	Farm Surveillance	British Columbia Prairies Ontario Québec	Chickens	5	5	59		Saskatchewan participated in the program; data aggregated with Alberta (Prairies).	Statistical analyses were limited to comparison of 2014 results for selected antimicrobials with: 1) 2013 results, 2) 2010 (or 5 years previous) for components with regional results (human, retail, and farm) and abattoir (for comparison between components) 3) the first year of surveillance for components (abattoir) with national results shown.
		Prairies Ontario Québec	Pigs	V	~				The CIPARS Farm Surveillance grower-finisher pig component began reporting regional and national antimicrobial use at the farm level.

Table A.7. Changes implemented to the CIPARS antimicrobial use components, 2002–2014 (cont'd)

					Calaa	4 - d b 4 i -			
V					Selec	ted bacteria			Markhada
Year	Component	Province / region	Species	Escherichia coli	Salmonella	Campylobacter	Enterococcus	Design	Methods
2013	Farm	British Columbia Alberta Ontario Québec	Chickens	4	₹	¥		Implementation of the CIPARS farm component in broiler chickens of the 4 major poultry producing provinces.	
	Surveillance	Alberta Saskatchewan Manitoba Ontario Québec	Pigs	7	✓				
	Surveillance of Human Clinical Isolates	Across provinces	Humans		₹				Adoption of a lower breakpoint for ciprofloxacin (≥ 1 µg/mL; CLSI M100-S22) than in past years (≥ 4
	Retail Surveillance		Beef	✓					μg/mL) for both Salmonella
		British Columbia	Chicken	✓	✓	✓		_	and E. coli. Ciprofloxacin's new breakpoint was applied
		saskatchewan Ontario	Pork	✓				Surveillance of Salmonella,	to all data, including
		Québec Maritimes	Turkey	3	₹	₩.		E. coli and Campylobacter isolates in retail turkey was started in January.	historical data. Then, the term "reduced susceptibility to ciprofloxacin" was dropped.
	Abattoir Surveillance		Beef cattle	~		~		Surveillance of	
2012		Across provinces —	Chickens	Y	4	✓		Campylobacter in pigs at the	
			Pigs	✓	✓	✓		abattoir was started in January.	
	Farm Surveillance	Alberta Saskatchewan Manitoba Ontario Québec	Pigs	3	₹				
	Surveillance of		Bovine		~				
	animal clinical	Across provinces -	Chickens		✓.				
	Isolates		Pigs		~				
	Feed and Feed Ingredients	Across provinces	Turkeys		✓				
2011	Surveillance of	Across provinces	Humans		V			Human serovars : Newport added as a separate category.	The CMV2AGNF susceptibility testing plate has replaced the CMV1AGNF plate for Salmonella and E.
	Farm Surveillance	Alberta Saskatchewan Manitoba Ontario Québec	Pigs				×	Bacterial culture and antimicrobial susceptibility testing of <i>Enterococcus</i> isolates from pigs were discontinued as of January.	_coli. Amikacin was removed and azithromycin was included in the panel.

Table A.7. Changes implemented to the CIPARS antimicrobial use components, 2002–2014 (cont'd)

	•	cont u _j			Selec	ted bacteria			
Year	Component	Province / region	Species	Escherichia coli	Salmonella	Campylobacter	Enterococcus	- Design	Methods
	Surveillance of Human Clinical Isolates	Across provinces	Humans		Ø				Half of the Salmonella Enteritidis submitted by the most populated provinces (British Columbia, Alberta, Ontario, and Québec) during the first 15 days of the month were tested.
			Beef	~				Bacterial culture and	A new ceftriaxone breakpoint was officially adopted by the
2010	Retail Surveillance	British Columbia Saskatchewan Ontario Québec Maritimes	Chicken	5	ø	50	8	(no vancomycin resistance was detected since the	CLSI in January 2010. It was applied to all data, including historical data. A new genus- and species-specific multiplex PCR method was
			Pork	Y				program began in 2003).	used in replacement of the standard method
		-	Beef cattle	√		✓		Bacterial culture and	(biochemical tests) to perform identification and
	Abattoir Surveillance Across provinces	Chickens	2	₩.	•		antimicrobial susceptibility spe	peciation of Campylobacter.	
			Pigs	Y	~			January.	
	Surveillance of Human Clinical Isolates	Across provinces	Humans		₹			Human serovars: Newport not presented as a separate category; now included with the "other serovars".	
	Retail Saskatchewan Ontario Québec Maritimes	British Columbia	Beef	~				First full surveillance year in the Maritimes.	The CMV3AGPF susceptibility testing plate has replaced
		Ontario	Chicken	✓	✓	✓	✓		the CMV2AGPF plate for all Enterococcus isolates.
2009			Pork	✓					
	Farm Surveillance	Alberta Saskatchewan Manitoba Ontario Québec	Pigs	S	5		5	Sample collection from pigs on entry to the Grower- Finisher unit was terminated. Changed from 3 herd visits per year to 1 annual visit to collect fecal samples from close-to-market pigs.	
	Surveillance of Human Clinical Isolates	Across provinces	Humans		₹			Human serovars: Paratyphi A and B reported as a separate category along with Entertitidis, Heidelberg, Newport, Typhi, Typhimurium, and Other Serovars.	
2008	British Columbia Retail Saskatchewan Ontario Québec Maritimes (pilot)		Beef	5				First surveillance year in British Columbia. Pilot surveillance also began in the Maritimes region in September 2008.	antimicrobial (High Importance in Human Medicine, Veterinary Drugs Directorate, Health Canada) for all <i>Enterococcus</i> isolates.
		Ontario Québec	Chicken	V	₹	3	Ø		Application of a more sensitive Campylobacter recovery method in abattoir beef cattle isolates.
		Pork	✓					Quinupristin-dalfopristin reclassified as category II for all <i>Enterococcus</i> isolates.	

Table A.7. Changes implemented to the CIPARS antimicrobial use components, 2002–2014 (cont'd)

		cont a)							
V-	0	B	C		Selec	ted bacteria			Mari
Year	Component	Province / region	Species	Escherichia coli	Salmonella	Campylobacter	Enterococcus	Design	Methods
			Beef	✓				Implementation of pilot retail surveillance in British Columbia.	Retail surveillance: Enhancement to the
	Retail Surveillance	British Columbia (pilot) Saskatchewan Ontario Québec	Chicken	5	3	5	3	God	Salmonella recovery method yielded higher recovery rates than in prior years. For antimicrobial susceptibility testing of Enterococcus, bacitracin was removed and tigecycline removed from the panel. New resistance breakpoints were adopted for lincomycin (from ≥ 32 to ≥ 8
2007									μg/mL) and kanamycin (from
		•	Pork	~				-	≥ 512 to ≥ 1,024 µg/mL).
		Across provinces	Bovine	_	4				
			Chickens		4			_	
	Surveillance of animal clinical		Pigs		✓			_	
	Isolates	-	Turkeys		✓			Publication of surveillance	
			Horses		✓			findings from clinical isolates from horses.	
	Feed and Feed		Not		_			Feed and Feed Ingredients	
	Ingredients	Across provinces	available		✓			presented as a separate surveillance component.	
			Beef	~				surveillance component.	
	Retail Surveillance	Saskatchewan Ontario Québec	Chicken	4	•	3	•		The NARMS CAMPY plate has replaced the disk diffusion method (Etest) for antimicrobial susceptibility testing of Campylobacter.
		•	Pork	~	✓				tooting or campyrobactor.
2006	Abattoir Surveillance	Across provinces	Beef cattle	~		₹		Abattoir surveillance of Campylobacter from beef cattle was started in January.	
	Survemance		Chickens	~	✓				
			Pigs	~	✓				_
	Farm Surveillance	Alberta Saskatchewan Manitoba Ontario Québec	Pigs	2	3		7	Implementation of the CIPARS farm component in grower-finisher pigs of the 5 major pork producing provinces.	
-	D-4-il	Saskatchewan	Beef	~				Addition of Saskatchewan to	Antimicrobial susceptibility
	Retail Surveillance	Ontario	Chicken	~	✓	~	4	the retail component.	testing of Salmonella and E.
	- Survemance	Québec	Pork	~	✓				coli was fully performed by
2005	Abattoir	Across provinces	Beef cattle	✓		✓		Pilot surveillance of Campylobacter from beef cattle started in late 2005.	the NARMS CMV1AGNF plate in January.
	Surveillance	,	Chickens	~	✓				
			Pigs	~	~				
	Surveillance of Human Clinical Isolates	Across provinces	Humans		3				Antimicrobial susceptibility testing of human Salmonella was performed by the NARMS CMV7CNCD from January to April and the CMV1AGNF from April to December.
2004	Abattoir Surveillance	Across provinces	Beef cattle	Ø	×			Salmonella isolation discontinued because of its low prevalence in beef cattle.	
			Chickens	Y	4			_	
			Pigs	✓	✓			There is a systematic	
	Retail Surveillance	Ontario Québec	Beef	✓				rotational selection of extra lean, lean, regular, and medium ground beef.	
			Chicken	~	✓	√	✓		
			Pork	4					

Table A.7. Changes implemented to the CIPARS antimicrobial use components, 2002–2014 (cont'd)

					Selec	ted bacteria			
Year	Component	Province / region	Species	Escherichia coli	Salmonella	Campylobacter	Enterococcus	Design	Methods
2003	Surveillance of Human Clinical Isolates	Across provinces	Humans		Ø			Implementation of the CIPARS human component. Antimicrobial susceptibility testing done on all serovars but they were classified and reported into the following categories: Enteritidis, Heidelberg, Newport, Typhi, Typhimurium, and Other Serovars.	Susceptibility testing of Campylobacter and Enterococcus was performed with the disk diffusion method using the ETest® methodology (AB Biodisk, Solna, Sweden) and the NARMS CM/5ACDC plate respectively.
		_	Beef	4				Implementation of the	
	Retail Surveillance	Ontario Québec	Chicken	✓	✓	✓	✓	CIPARS Retail Surveillance component in Ontario and	
			Pork	✓				Québec.	
2002	Surveillance of Human Clinical Isolates	Across provinces	Humans					Agreement signed with the Provinces to send all (or a subset) of Salmonella isolates to CIPARS. Data were not available for reporting that year.	
			Beef cattle	~	~			Implementation of the first	Antimicrobial susceptibility
	Abattoir Surveillance	Across provinces	Chickens	₹	₹			active suveillance component of CIPARS.	testing of Salmonella and E. coli was performed by the CMV7CNCD plate (Sensititre TM), NARMS,
			Pigs	4	4	•			United States.
	Surveillance of animal clinical Isolates	Across provinces	Cattle Chickens Pigs Turkeys Feed and Feed Ingredients		Y Y Y			Implementation of the first passive suveillance components of CIPARS.	

ANTIMICROBIAL USE

Table A.8. Changes implemented to the CIPARS antimicrobial use components, 2003–2014

Year	Component	Province / region	Population exposed	Reporting metrics	Dosage information	Design	Methods
	Quantities of antimicrobials distributed for sale for use in crops	National	Crops			The 2014 data are reported in the 2016 Canadian Antimicrobial Resistance Surveillance System Report.	
2014	Quantities of antimicrobials distributed for sale for use in animals	National	Production animal (including horses) / companion animals	kg active ingredient stratified by route of administration mg/population correction unit for companion animal data			Stratification of the data into route of administration by the Canadian Animal Health Institute (CAHI). Application of biomass denominator for the companion animal distribution data.
	Farm AMU surveillance in pigs/chickens	National Prairies Ontario Québec	Grower-finisher pigs/broiler chickens	mg active ingredient adjusted for population and weight median g of active ingredients/1,000 pig-days or /1,000 chicken-days Percentage of herds reporting antimicrobial use			The CIPARS Farm Surveillance grower-finisher pig component began reporting regional and national antimicrobial use at the farm level. Two new metrics are used in grower-finisher pigs and broiler chickens to present data on antimicrobial use.
	Human antimicrobial use surveillance	National Provincial Regional	Canadians			Human antimicrobial use data no longer reported in CIPARS report.	
	Quantities of antimicrobials distributed for sale for use in crops	National	Crops			For the first time, Health Canada's Pest Management Regulatory Agency (PMRA) collects annual Canadian sales data from all pesticide manufacturers. Sales information on antimicrobial drugs registered as pesticides on food crops was provided by PMRA to CIPARS.	
2013	Farm AMU surveillance in broiler chickens	British Columbia Alberta Ontario Québec	Number of chicks placed and number of grown broilers (> 30 days of grow- out period)	Farm count data for AMU by class, category of importance to human medicine, and reason for use	inclusion rate in hatchery medications administered via in-ovo or subcutaneous. Broilers: inclusion rate in	Implementation of the CIPARS farm component in broiler chickens of the 4 major poultry producing provinces.	Antimicrobial consumption estimates were based on the concentration of antimicrobials by tonnes of feed (or volume of water) over the duration of feed (or water) administration. Feed and water consumption estimates were based on current standards for the prevalent broiler strains.
	Human antimicrobial use surveillance— physician diagnosis	National Provincial Regional	Canadians	Total diagnoses/10,000 inhabitants Total antimicrobial recommendations/10,000 inhabitants Percentage diagnoses with antimicrobial recommendations	feed and water.	Enhancement of the Human antimicrobial use surveillance component. The design is based on a sample of physicians providing antimicrobial recommendation information for every patient in a 48-hour period four times a year.	Analysis based on the Canadian Disease and Therapeutic Index (CDTI) purchased from IMS Health Canada Inc.
2011	Human antimicrobial use surveillance — h ospital purchases	National Provincial	Canadians	Defined Daily Doses (DDD)/1,000 inhabitant-days Total cost/1,000 inhabitant-days Total cost per unit of antimicrobials Total active ingredient (kg)		Enhancement of the Human antimicrobial use surveillance component. The design is based on a purchasing information for a number of Canadian hospitals extrapolated to all hospitals in Canada.	Analysis based on the Canadian Drugstore and Hospital Purchases Audit (CDH) purchased from IMS Health Canada Inc.
	Quantities of antimicrobials distributed for sale for use in animals	National	A national animal biomass denominator was calculated as per the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)	Total of active ingredients (kg) (national and provincial; production animal, and companion animal); mg/PCU (where PCU=population correction unit, a measure of animal biomass)			Stratification of CAHI data into production & companion animal; stratification by province; extraction of cephalosporins back into separate category; application of biomass denominator to national-level data.

Table A.8. Changes implemented to the CIPARS antimicrobial use components, 2003–2014 (cont'd)

Year	Component	Province /	Population	Reporting metrics	Dosage	Design	Methods
Teal		region Alberta	exposed	Farm count data for	information Inclusion rate in		Inclusion rate in feed ONLY: no
2009	Farm AMU surveillance in pigs	Saskatchewan Manitoba Ontario Québec	Number of grower- finisher pigs at start and end of grow, mortalities and culls	antimicrobial use by class, category of importance to human medicine, and reason for use	feed (g/tonne)	Annual and Sampling Day questionnaires were complied into a single Sampling Day Questionnaire which is applied once/herd/year.	inclusion rate in leed ONLY; no dosage information collected for water or injections
2008	Quantities of antimicrobials distributed for sale for use in animals	National	N/A				CAHI has a "3 company accounting rule" to comply with the EU & the US' anti-competition regulations. CAHI added in some cases a "90% rule" to be sure not to infringe upon the regulations in the US. These accounting rules can result in changes to the categorization of specific antimicrobials over time.
2007	Human antimicrobial use surveillance— pharmacy sale	National Provincial	Canadians	Prescriptions/1,000 inhabitants Defined daily doses (DDDs)/1,000 inhabitant-days Total cost/1,000 inhabitant-days Total active ingredients (kg)			Data are now available separately for Newfoundland & Labrador and Prince Edward Island.
	Farm AMU surveillance in pigs	Alberta Saskatchewan Manitoba Ontario Québec	Number of grower- finisher pigs at start and end of grow, mortalities and culls	Farm count data for AMU by class, category of importance to human medicine, and reason for use	feed and water (not collected for		Questionnaire was refined to improve data quality and compliance.
	Farm AMU surveillance in pigs	Alberta Saskatchewan Manitoba Ontario Québec	Number of grower- finisher pigs at start and end of grow, mortalities and culls	Farm count data for AMU by class, category of importance to human medicine, and reason for use	feed and water (not collected for	CIPARS farm component in grower-finisher pigs of the 5 major porc producing	Antimicrobial use in feed, water, and injection information was collected through 1 annual and 3 sampling day questionnaires/ herd/year.
2006	Quantities of antimicrobials distributed for sale for use in animals	National	N/A	Total of active ingredients (kg)	NA	Implementation of surveillance of manufacturer and distributor- level data for antimicrobials used in animals as provided by the Canadian Animal Health Institute (CAHI)	
2003	Human antimicrobial use surveillance— pharmacy sale	National	Canadians	Prescriptions/1,000 inhabitants Defined daily doses (DDDs)/1,000 inhabitant-days Total cost/1,000 inhabitant-days Total cost/1,000 inhabitant-days Total active ingredients (kg)		•	Analysis based on the Canadian CompuScript (CCS) purchased from IMS Health Canada Inc.

N/A = not applicable.

NA = not available.

SUMMARY OF CIPARS SAMPLES AND DATA FLOW

Figure A.8. Summary of the CIPARS samples and data flow, 2014

CIPARS Surveillance director: Rebecca Irwin (rebecca.irwin@phac.gc.ca); Michael Mulvey (michael.mulvey@phac-aspc.gc.ca).

⁼ Active surveillance; primary data, primarily for prevalence estimation. = Passive surveillance; secondary data, primarily for AMR detection.

CFEZID = Centre for Food-borne, Environmental and Zoonotic Infectious Diseases. NML = National Microbiology Laboratory.

¹⁻⁷ CIPARS project leads: 1(grower-finisher pigs)—David Léger (david.leger@phac-aspc.gc.ca) and Sheryl Gow (sheryl.gow@phac-aspc.gc.ca); 1(broiler chickens)—Agnes Agunos (agnes.agunos@phac-aspc.gc.ca); 2—Anne Deckert (anne.deckert@phac-aspc.gc.ca); 3—Brent Avery (brent.avery@phac-aspc.gc.ca); 4—Jane Parmley (jane.parmley@phac-aspc.gc.ca); 5—Michael Mulvey (michael.mulvey@phac-aspc.gc.ca); 6—Carolee Carson (carolee.carson@phac-aspc.gc.ca).