FROM PLASTIC WASTE TO PURPOSE

OUR JOURNEY TO REINVENT INNER PACKAGING

OURJOURNEY

Original Problem:

How can we move vehicles undamaged, efficiently and sustainably?

During the Journey we faced several problems:

- 1. The navigation of company's and university expectations
- 2. Understanding sustainability in logistics
- 3. Combining trans-disciplinary skills

Process caused the problem question to evolve with observing the major issue of waste created in the inner packaging created by suppliers.

Cross Innovation Class 2025

PLASTIC WASTE

The global annual production of plastic is more than

359 million tons.

(Pilapitiya & Ratnayake, 2024)

PROBLEM & PROCESS

New Problem:

How can STILL **provide** their European, German, and local suppliers with **solutions** that **motivate** them to use **sustainable material** In wrapping and **packaging**?

During the Journey we made interesting observations:

- 1. STILL has over 800 suppliers
- 2. 77 tonnes plastic waste in 2024
- 3. Existing circular Outer-Packaging solution
- 4. Inner packaging is inconsistent, plastic based and waste-heavy

We figured out, what STILL is missing:

- 1. A versatile, scalable, and sustainable inner packaging device for suppliers
- 2. Simple and easy usage

THE SOLUTION

STILL will motivate European, German, and local suppliers to use more sustainable packaging by **standardising its circular system** with the use of the **PackMate**.

PackMate - THEFEATURES

Our product stands out from others in the industry:

3D Scanning and laser-cutting

Custom Fitting

Reuseable cardboard usage

Modular design, maintenance & distribution

Meet PackMate

The modularity provides 3 separate compartments

Personalised upgrades and configurations to suit their specific needs are possible.

Designing:

Top - compartment

- 2 Cameras scanning object
- providing 3D Model

Middle - compartment

 cutting cardboard to create packaging

Lower - compartment

storing the cardboard

The device features a **user-friendly touch screen** angled towards the user, with **color-coded sections** that highlight key functions, while shredded cardboard **leftovers** can be conveniently **stored** in **integrated containers** for sustainable use.

COMPANY VALUE

We create high value for the company by:

Circularity

- Cost saving because no new packaging is needed Sustainabilty
 - Improvement in brand image

Premium feeling

• Custom made packaging conveys the premium brand image

THEFUTURE

We see high potential with the following ideas:

Cross Innovation Class 2025

- More accuracy through improvement in the scanning.
- More variance in size for scanning and packaging larger parts, materials, and even products.
- Experimentation with new and alternative packing materials to lead the market.
- Standardisation of packaging for companies across logistics industry.

Cross Innovation Class 2025

MEETTHETEAN

Kat HeitbaumBrand University

Niklas Völz AMD **Lukas Krämer** FH Wedel L

Marie Dittrich
Leuphana University

Yuri Gwak AMD

Jule Pfister Leuphana Univerisity

By turning waste into value, we complete the loop.

LITERATURE

Fastermann, P. (2014). Nachhaltigkeit – 3D-Druck als umweltfreundliche Technologie? In *Technik im Fokus* (S. 103–113). https://doi.org/10.1007/978-3-642-40964-6_15

Mania, S., Ryl, J., Jinn, J., Wang, Y., Michałowska, A. & Tylingo, R. (2019). The Production Possibility of the Antimicrobial Filaments by Co-Extrusion of the PLA Pellet with Chitosan Powder for FDM 3D Printing Technology. *Polymers*, 11(11), 1893. https://doi.org/10.3390/polym11111893

Pilapitiya, P. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220

Plastikmüll | Heinrich-Böll-Stiftung. (n.d.). Heinrich-Böll-Stiftung. Retrieved July 6, 2025, from https://www.boell.de/de/plastikmuell

The lifecycle of plastics | WWF-Australia | The life cycle of plastics | WWF Australia. (n.d.). WWF Australia. https://wwf.org.au/blogs/the-lifecycle-of-plastics/