(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 November 2003 (13.11.2003)

PCT

(10) International Publication Number WO 03/093305 A2

(51) International Patent Classification7: C07K 14/00

(21) International Application Number: PCT/CA03/00622

(22) International Filing Date: 2 May 2003 (02.05.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/376,879 2 May 2002 (02.05.2002) US 60/377,231 3 May 2002 (03.05.2002) US 60/424,016 6 November 2002 (06.11.2002) US

(71) Applicants and

(72) Inventors: LOVEJOY, David [CA/CA]; 149 Baker Street, Stouffville, Ontario L4A 1K6 (CA). CHEWPOY, R., Bradley [CA/CA]; 9217 Inverness Road, North Saanich, British Columbia V8L 5G1 (CA). BARSYTE, Dalia [LT/CA]; 149 Baker Street, Stouffville, Ontario L4A

1K6 (CA). ROTZINGER, Susan [CA/CA]; 491 Oxford Street, Etobicoke, Ontario M8Y 3Y6 (CA).

- (74) Agent: BERESKIN & PARR; 40 King Street West, 40th Floor, Toronto, Ontario M5H 3Y2 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: TENEURIN C-TERMINAL ASSOCIATED PEPTIDES (TCAP) AND METHODS AND USES THEREOF

(57) Abstract: The invention provides a novel family of biologically active neuropeptides and the nucleic aid molecules coding for same. The peptides are derived for the C-terminus of the teneurin family peptides (Ten M1-4). These novel peptides, referred to as teneurin C-terminal associated peptides (TCAPs) are active in neuronal communication and are implicated in a number of neuropathologies. They are particularly useful in modulating stress responses and anxiety and in the treatment of cancer.

WO 03/093305 A2

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Teneurin C-Terminal Associated Peptides (TCAP) and Methods TITLE: and Uses Thereof

RELATED APPLICATIONS

This application claims the benefit and priority of United States provisional patent application number, US 60/377,231, Filed May 3, 2002, entitled "Teneurin C-Terminal Associated Peptides (TCAP)" and US 60/42,4016, filed November 6, 2002, entitled "Method for Modulating Stress using Teneurin C-Terminal Associated Peptide-1(TCAP-1)". This application also claims priority from United States provisional patent application number, 10 US 60/ 376,879, filed May 2, 2002, entitled, " Immortalized Hypothalamic Neuronal Cell Lines ". All of these references are incorporated in their entirety by reference.

FIELD OF THE INVENTION

30

The invention relates to a novel family of peptides associated with the c-terminal region of the teneurin molecule, to a nucleic acid molecule encoding said peptides and to methods and uses therefore.

BACKGROUND OF THE INVENTION

The aetiology of any neuropathology is a complex interplay of genetic, physiological and environmental factors. Effective treatment of these 20 conditions will ultimately depend upon the understanding of the cognate genes and their products. In recent years, it has become apparent that large families of related genes are responsible for the regulation of neuropathologies involving anxiogenic peptides. The identification and characterization of these gene families and how they interact is an essential step towards ultimately effectively treating the pathology. The aberrant regulation of neuronal growth can manifest as a variety of pathological conditions depending upon the age. Deficits in neuronal growth in foetal or neonatal animals can cause such diseases as learning deficits, mental retardation, autism, or schizophrenia. At later ages in juvenile individuals it may manifest as affective disorders such as panic disorder, depression, anorexia nervosa, obsessive-compulsive disorder later in adults. In adults

-2 -

such neuronal growth problems could lead to neurodegenerative illnesses such as Alzheimer's Disease or Parkinsons's Disease.

The onset of mood disorders, such as depression or post traumatic stress disorder, involve the altered function of multiple loci in the brain that regulate emotionality, memory and motivation (Manji et al., 2001; Drevets, 2001; Nestler et al., 2002). However, many of the cellular signaling molecules that mediate communication within and between these regions are unknown, leading to an incomplete understanding of the origin of such disorders.

Many neuropeptides show the presence of three or four paralogous structures as evidenced by the neuropeptide Y (NPY) (Larhammar, 1996a,b), proopiomelanocortin (POMC) (Danielson, 2000) and recently, the corticotropin releasing factor (CRF) family (Vale et al., 1981, Vaughan et al., 1995; Lovejoy and Balment, 1999; Lewis et al., 2001 Reyes et al., 2001; Hsu and Hseuh, 2001).

10

15

20

25

A family of neuronal cell surface proteins has been identified that are predominantly expressed in the nervous system. These proteins have been named teneurins (Rubin et al, Developmental Biology 216, 195-209 (1999)). Four basic teneurins have been identified Ten M1, Ten M2, Ten M3, and Ten M4. The Ten-M or Odz proteins were originally discovered in Drosophilia (Levine et al., 1994; Baumgartner et al., 1994) and are presently the only known example of a pair-rule gene that is not a transcription factor. The Ten-M gene is initially activated during the blastoderm stage, then down regulated before being expressed at later stages. The highest levels of Ten-M occur in the central nervous system where the protein occurs preferentially on the surface of axons (Levine et al., 1994; Levine et al., 1997). Mutations of the Ten-M/Odz gene result in embryonic lethality (Baumgartner et al., 1994; Levine et al., 1994).

Four Ten-M paralogous genes, called Teneurins, exist in vertebrates and encode a Type II transmembrane protein where the carboxy terminus of the protein is displayed on the extracellular face of the cell (Oohashi et al., 1999). The teneurin proteins are about 2800 amino acids long. There is a short stretch of hydrophobic residues at 300 to 400 amino acids after the

amino terminus that appear to act as the membrane spanning site. In the cytoplasmic N-terminal portion, is a conserved proline-rich SH3-binding site indicating a potential site where by they bind other proteins. Evidence suggests that the protein may be cleaved from the membrane at a Furin-like cleavage motif (RERR) located around residue 528 in teneurin 2 (Rubin et al., 1999). However, this motif is not present in the other paralogues and therefore a soluble version of the protein may not occur for all paralogues. There are a series of cysteine-rich EGF-like repeats carboxy terminal to this. Homodimerization occurs between Ten M1 forms via interaction between EGF-like modules 2 and 5 (Oohashi et al., 1999).

10

20

25

30

The ten-m gene appears to be upregulated by stressors. Wang et al (1998) showed that a ten-M like transcript, named DOC4 (downstream of chop) in mammalian cells was upregulated by the transcription factor GADD153/CHOP. This transcription factor is induced by several types of cellular stressors including UV light, alkylating agents or conditions triggering endoplasmic reticulum (ER) stress responses, such as, deprivation of oxygen, glucose or amino acids, or interference of calcium flux across the ER membrane (Zinszner et al, 1998). GADD153 is a small nuclear protein that dimerizes with members of the C/EBP family of transcription factors (Ron and Habener, 1992). It does not appear to homodimerize. GADD153 undergoes a stressor inducible phosphorylation by a p38-type MAP kinase which also enhances the transcriptional activation of GADD153 (Wang et al., 1996). High expressions of GADD153 will lead to cell cycle arrest (Zhan et al. 1994). These studies suggest that the teneurin gene may play a significant role in the regulation of the stress response of neurons and other cells.

Overexpression of teneurin 2 into the mouse neuroblastoma cells (Nb2a) augmented the amount of neurite outgrowth and a tendency to enlarge the growth cones. The number of filamentous actin-containing filopodia was also enhanced in the teneurin 2 overexpressing cells (Rubin et al., 1999). The expression of the teneurin genes have been examined in embryonic zebrafish (Mieda et al, 1999), chicken (Rubin et al., 1999) and mouse (Ben-Zur et al., 2000) although their expression patterns have not been finely resolved. The

transcripts are found in a number of peripheral tissues but are found predominantly in the central nervous system. In the embryonic chicken brain, teneurin 1 and 2 are expressed in the retina, telencephalon, the optic tectum and the diencephalons. The mRNA for teneurin 1 was found mainly in the intermediate zone of the dorsal thalamus whereas teneurin 2 was found in the intermediate zone of the thalamus (Rubin et al., 1999). In zebrafish, teneurin 4 is faintly expressed throughout gastrulation, although there is no teneurin 3 expression. Teneurin 3 expression begins at the notochord and the somite around the tailbud stage. In later stages (14 h post fertilization), teneurin 3 is 10 expressed in the somites, notochord and brain while teneurin 4 expression was confined to the brain. Teneurin 3 becomes defined within the optic vesicles and region covering the caudal diencephalons and mesencephalon with the expression strongest in the anterior mesencephalon. Teneurin 4 has its strongest expression toward the midbrain hindbrain border. By 23 h post fertilization, teneurin 3 is expressed in the dorsal part of the tectal primordium and the ventral midbrain while teneurin 4 is expressed in the ventral primordium (Mieda et al., 1999).

Neuropathological conditions tend to be complex and not very well understood. As such, there is a need to better understand the mechanisms involved and to develop a method of diagnosis and treatment of said conditions. There is also a need for the identification and design of therapeutic compounds for said conditions.

SUMMARY OF THE INVENTION

15

20

25

The present invention provides a teneurin c-terminal associated peptide (TCAP), existing as a 40 - 41-residue sequence on the c-terminal exon of Ten- M 1, 2, 3, or 4 that is correspondingly named TCAP 1, 2, 3, and 4. In another embodiment, the invention provides a peptide that has the amino acid sequence consisting of a 40- or 41 amino acid sequence located at the cterminus of the teneurin 1-4 peptides, to analogs, species homologues, dervivatives, variants, allelic variants, to sequences having substantial sequence identity thereto and to obvious chemical equivalents thereto. In another embodiment the TCAP peptides of the invention can further include an amidation signal sequence at the carboxy terminus (hereinafter referred to as "preTCAP"). Such amidation signal amino acid sequence can include but is not limited to GKR and GRR. The invention also provides fusion proteins comprising the TCAP peptides noted above, to labeled TCAP Peptides and to peptides comprising flanking amino acid sequence of 1-10 amino acids.

In one embodiment, the invention provides a TCAP peptide that has neuronal communication activity. In another embodiment the invention provides a TCAP peptide, an analog, derivative, variant, homolog that has similar activity. In one embodiment, the activity is neuronal communication. In another embodiment it is inhibition of cell proliferation, In yet another embodiment it is modulation of a stress response.

10

15

20

25

30

In one embodiment the TCAP sequence is a rainbow trout, zebrafish, human, mouse, *G. gallus*, or *D. melanogaster* TCAP. In another embodiment, the TCAP sequence comprises or consists of SEQ. ID. NOS: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103 In yet another embodiment, the TCAP is a mouse or human TCAP. In one embodiment the TCAP has one of the sequence selected from the group consisting of SEQ. ID. NOS: 69, 70, 77, 78, 85, 86, 93, 94 (human) or SEQ. ID. NOS: 37, 38, 45, 46, 53, 54, 61, 62, (mouse).

In one aspect, the invention provides a TCAP consisting of any one of the SEQ. ID. NOS. noted above and an amidation signal sequence at the carboxy terminus. Preferably the amidation signal sequence is selected from the group consisting of GRR or GKR, such as, 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 97, 88, 95, 96.

Another aspect of the invention relates to an isolated teneurin c-terminal associated peptide that has the amino acid sequence as shown in SEQ. ID. NOS: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103; or a fragment, analog, homolog, derivative or mimetic thereof. In a preferred embodiment, the TCAP peptides of the invention have anxiogenic activity. The invention also encompasses an antibody that can bind a TCAP peptide of the invention.

-6 -

In another embodiment, the peptide of the invention is a TCAP mouse peptide having the amino acid sequence of: SEQ. ID. NOS: 37, 38, 45, 46, 53, 54, 61, 62.

In another embodiment, the peptide of the invention is a TCAP human peptide having the amino acid sequence of SEQ. ID. NOS: 69, 70, 77, 78, 85, 86, 93, or 94.

In another embodiment the peptides TCAP human and mouse peptides have an amidation signal sequence at the C-terminus.

In another embodiment, the peptide of the invention is a TCAP-1 and has the amino acid sequence of SEQ. ID. NOS.: 37,38, 69 or 70.

In another embodiment, the peptide of the invention is a TCAP-2 and has the amino acid sequence of SEQ. ID. NOS.: 46, 47, 77, or 78.

In another embodiment, the peptide of the invention is a TCAP-3 and has the following amino acid sequence motif:

15 QLLSXaa₁Xaa₂KVXaa₃GYDGYYVLSXaa₄EQYPELADSANNXaa₅QFL RQSEI (SEQ. ID. NO:135) ,

20

30

where Xaa₁ is G, S, or A; Xaa₂ is G or R; Xaa₃ is L or Q; Xaa₄ and Xaa₅ are independently V or I. In one embodiment, the TCAP-3 is a human or mouse TCAP-3. In another embodiment, the TCAP-3 has SEQ. ID. NO: 85, 86, 53, or 54. In another embodiment, the TCAP 3 sequence is SEQ. ID. NO.: 13, 14, 21 or 22.

In another embodiment, the peptide of the invention is a TCAP-4 and has the amino acid sequence SEQ. ID. NOS.: 29, 30, 61, 62, 93, or 94.

In another embodiment the peptides TCAP 1 to TCAP 4 have an amidation signal sequence at the C-terminus.

In yet another embodiment, the present invention provides as isolated nucleic acid molecule encoding a teneurin c-terminal associated peptide (TCAP) of the invention, as noted herein. In yet another embodiment, the isolated nucleic acid molecule of the invention consists of:

(a) a nucleic acid sequence as shown in SEQ.ID.NOS.: 18-20, 25-28, 33-36, 41-44, 49-52, 57-60, 65-68, 73-76, 81-84, 89-92, 97-100 or that wherein T can also be U or that encodes a peptide having an amino acid

15

20

25

30

WO 03/093305 PCT/CA03/00622

-7 -

sequence selected from the group consisting of: SEQ. ID. NOS: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103 or that further has an amidation signal sequence (preferably GKR or GRR), at the carboxy terminus of said peptides, such as 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 97, 88, 95, 96;

- (b) a nucleic acid sequence that is complimentary to a nucleic acid sequence of (a) or (b);
- (c) a nucleic acid sequence that has substantial sequence homology to a nucleic acid sequence of (a), or (b);
- 10 (d) a nucleic acid sequence that is an analog of a nucleic acid sequence of (a), (b), or (c); or
 - (e) a nucleic acid sequence that hybridizes to a nucleic acid sequence of (a), (b), (c), or (d) under stringent hybridization conditions.

In a preferred embodiment the nucleic acid molecules of the invention encode teneurin c-terminal associated peptide that has anxiogenic activity.

The invention also encompasses antisense oligonucleotides complimentary to a nucleic acid sequence of the invention as well as expression vectors comprising a nucleic acid molecule of the invention and host cells transformed with the aforementioned expression vectors.

A further aspect of the invention relates to a method of identifying substances which can bind with a teneurin c-terminal associated peptide, comprising the steps of incubating a teneurin c-terminal associated peptide and a test substance, under conditions which allow for formation of a complex between the teneurin c-terminal associated peptide and the test substance, and assaying for complexes of the teneurin c-terminal associated peptide and the test substance, for free substance or for non complexed teneurin c-terminal associated peptide, wherein the presence of complexes indicates that the test substance is capable of binding a teneurin c-terminal associated peptide.

The invention also provides a method of identifying a compound that affects the regulation of neuronal growth comprising incubating a test compound with a teneurin c-terminal associated peptide or a nucleic acid

-8 -

encoding a teneurin c-terminal associated peptide; and determining an amount of teneurin c-terminal associated peptide protein activity or expression and comparing with a control, wherein a change in the TCAP peptide activity or expression as compared to the control indicates that the test compound has an effect on the regulation of neuronal growth.

The invention also provides a method of inhibiting cell proliferation comprising administering to a cell, an effective amount of teneurin c-terminal associated peptide that inhibits cell proliferation. In a preferred embodiment, the inhibited cells are selected from the group consisting of neuronal or fibroblast cells.

10

15

20

30

Another aspect of the invention relates to a method of detecting a condition associated with the aberrant regulation of neuronal growth comprising assaying a sample for a nucleic acid molecule encoding a teneurin c-terminal associated peptide or a fragment thereof or a teneurin c-terminal associated peptide or a fragment thereof.

The invention also relates to a method of treating a condition associated with the aberrant regulation of neuronal growth, for instance cancer, comprising administering to a cell or animal in need thereof, an effective amount of teneurin c-terminal associated peptide or an agent that modulates teneurin c-terminal associated peptide expression and/or activity.

The teneurin-1 mRNA containing the TCAP-1 sequence is expressed in regions of the forebrain and limbic system regulating stress responses and anxiety. TCAP signals through a specific cAMP-dependent G-protein-coupled receptor to modify cell cycle and proliferation in immortalized neurons. Administration of synthetic TCAP-1 into the lateral ventricle or amygdala of rats normalized the acoustic startle response. These peptides, therefore, appear to be an integral part of the neural stress response and likely play a role in the aetiology of some psychiatric illnesses.

In another embodiment, the invention provides a method of modulating the stress response in an animal, preferably in a mammal, preferably a human, by administering to said animal an effective amount of TCAP, preferably TCAP-1 peptide, a nucleic acid molecule coding for said TCAP

-9 -

peptide in a form that can express said peptide *in situ* or an antagonist or agonist of TCAP expression or activity, to modulate the stress response in said animal. In one embodiment the stress response is an anxiety response.

In another embodiment, the invention provides a method for normalizing the stress or anxiety response in an animal. In another embodiment, the invention provides a method for inducing an anxiogenic response in a low anxiety animal and for inducing an anxiolytic effect in a high anxiety animal.

In another embodiment, the invention provides a method modulating the stress response in an animal by modulating the effect of TCAP expression in an animal by administering to said animal a modulator of said TCAP expression or activity. In one embodiment said modulator is an inhibitor of TCAP expression and/or activity, in another embodiment, said modulator is an antagonist of TCAP expression or activity. In one embodiment said TCAP is TCAP-1.

10

15

20

25

30

In yet another embodiment, said invention provides a method of diagnosing an animal with high, normal or low stress response condition by administering to said animal a TCAP, such as TCAP-1 and monitoring whether it has an anxiolytic, anxiogenic or neutral effect on a stress response of the animal.

Other aspects of the invention relate to methods of inducing an anxiogenic response in a subject, methods of inhibiting damages caused by physiological stresses and methods of inhibiting cell death, each comprising administering to a subject an effective amount of teneurin c-terminal associated peptide for affecting the desired result.

Other features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the invention are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

-10 -

BRIEF DESCRIPTION OF THE DRAWINGS

20

25

30

The invention will now be described in relation to the drawings in which:

Figure 1 shows a putative 3' exon of the rainbow trout Teneurin 3 gene [SEQ. ID. NO: 2] with an intron region [SEQ. ID. NO: 1] (1490 bp). The exon/intron border as established by sequence comparison with the human ten M1 gene (LocusLink ID# 10178) shown in the genome database. The intron placement was subsequently confirmed by PCR. The exon encodes the carboxy terminal 251 residues of the protein SEQ. ID. NO: 3. Cleavage signals are indicated in the bolded grey regions. The Terminal GKR motif usually signifies a post translation amidation signal. The teneurin-associated c-terminal peptide (TCAP) is shown by the sequence between amino acids 208 and 248 inclusive [SEQ. ID. NOS: 13 and 14].

Figure 2 shows the alignment of the amino acid sequences encoded by the terminal exon of the rainbow trout (*O. mykiss*) SEQ. ID.NO: 3, zebrafish (*R. danio*) SEQ. ID.NO: 12, mouse (*M. musculus*) SEQ. ID.NO: 6 and human (*H. sapiens*) SEQ. ID.NO: 10 genes. All possess an additional serine insertion in position 58. All show a high sequence similarity with about 94% between trout and zebrafish, 83% between rainbow trout and mouse, and 83% between rainbow trout and human. Within the TCAP portion itself, rainbow trout SEQ. ID. NO: 13 or 14 shares 90% sequence identity with zebrafish SEQ. ID. NO: 21 or 22, 90% sequence identity with mouse SEQ. ID. NO:53 or 54, and 88% with human SEQ. ID. NO. 85 or 86. The preTCAP sequences that include the amidation signal are SEQ. ID. NOS: 15 - 16 (Rainbow Trout), 23 - 24 (zebrafish), 55 - 56 (mouse) and 87 –88 (human).

Figure 3 shows the alignment of the amino acid sequences encoded by the terminal exon of the mouse teneurin 1, 2, 3 and 4) SEQ. ID. NOS: 4, 5, 6, 7 genes. The highest level of sequence similarity occurs among the sequences encoding the TCAP portion of the protein. TCAP-1 SEQ. ID. NO: 37 or 38 is 68% identical to TCAP-2 SEQ. ID. NO. 45 or 46, 76% identical to TCAP-3 SEQ. ID. NO. 53 or 54, and 85% identical to TCAP-4 SEQ. ID. NO. 61 or 62. TCAP-2 is 75% identical with TCAP-3, and 68% identical with

TCAP-4. TCAP-3 possesses 71 % identity with TCAP-4. Teneurin 3 possesses a dibasic cleavage site at the amino terminus of TCAP-3 whereas 1, 2 and 4 all possess monobasic sites suggesting that the cleaved peptide is 40 residues in TCAP-3 but 41 residues in TCAP-1, 2 and 4. However, in one embodiment, both the 41 and 40 amino acid residue TCAP has activity.

Figure 4 shows the alignment of amino acid sequences encoded by the last exon of the human Teneurin 1, 2, 3 and 4 proteins SEQ. ID. NOS: 8, 9, 10, 11. Like the mouse sequence, the highest degree of sequence similarity occurs in the TCAP portion of the exon. TCAP-3 possesses a dibasic leaved signal whereas the others possess a monobasic site. The greatest variable region occurs with the first 70- 80 residues of the exon. Within the TCAP portion itself, TCAP-1 SEQ. ID. NO: 69 or 70 shares 73% identity with TCAP-2 SEQ. ID. NO: 77 or 78, 83% identity with TCAP-3 SEQ. ID. NO: 85 or 86 and 88% identity with TCAP-4 SEQ. ID. NO. 93 or 94. TCAP-2 has 76% identity with TCAP-3 and 71% identity with TCAP-4. TCAP-3 has 76% identity with TCAP-4.

15

25

30

Figure 5 shows the nucleotide coding sequence of the preTCAP sequences for Human (SEQ. ID. NOS: 76, 84, 92, and 100) and Mouse (SEQ. ID. NOS. 44, 52, 60 and 68) preTCAP-1 to 4, Zebrafish preTCAP-3 and 4 (SEQ. ID. NOS: 28 and 36), and Rainbow Trout preTCAP-3 (SEQ. ID. NO. 20) with stop codon. The coding region of the corresponding mature TCAP peptides would lack the terminal amidation and stop codon coding sequence (e.g. the last 12 nucleotide bases shown for each sequence). The sequences shown code for the 44 amino acid residue preTCAP sequence with stop codon. However, the 43 amino acid TCAP coding sequence is identical except with the first three nucleotides absent.

Figure 6A is a schematic representation of the functional domains within the Teneurin protein. Figure 6B is a schematic view of the exons on human teneurin 1 and an exploded view of the location of the C-terminal exon and location of TCAP thereon. A conserved prohormone convertase-like cleavage motif is shown as grey boxes. It illustrates the structure of Teneurin

C-terminal Associated Peptides and their location on the teneurin protein and gene.

Figure 7A shows the alignment of the human, mouse, rat, chicken, rainbow trout, zebrafish and drosopholia TCAP sequences SEQ. ID.NOS: 69, 78, 85, 94, 37, 46, 53, 66, 78, 101, 136, 13, 21, 30 and 103 and 7B shows the alignment of the TCAP sequences from mammals birds insects and nematodes Fig. 7B SEQ. ID. NOS: 37, 101 (without the Q at the N-terminus), 69, 61, 93, 53, 85, 13, 21, 77, 30, and 103. In figure 7B, non homologous amino acid substitutions are shaded in light grey. Homologous residues are shaded in dark grey.

Figure 8 shows the alignment of the amino acid sequences of the human CRF family SEQ. ID. NOS: 104 – 107 with those of the human TCAP family SEQ. ID.NOS: 70, 78, 85, 94. Although overall sequence identity is only about 20-25 %, many of the other substitutions reflect potential single base codon changes such as proline to serine, leucine or threonine, or conservative amino acid substitutions such as leucine to valine or isoleucine, aspartic acid to glutamic acid and asparagines to glutamine.

Figure 9 is a comparison of the sequence identity among CRF family members to that of the identity among TCAP members. The TCAP family members show a much greater sequence identity of 68% compared to the CRF family members of 34% between CRF and U3 and U2, 43% between CRF and urocortin, and 21% between urocortin 1 and 3.

Figure 10 shows a secondary structure prediction of TCAP (Rainbow Trout TCAP-3) and comparison with CRF-like peptides. Figure 10 A is a Grantham Polarity Prediction and Figure 10B is a Kyte-Doolittle Hydrophobicity Prediction. TCAP shows a highly similar polarity profile, but appears to possess higher levels of total hydrophobicity in the amino terminus.

25

30

Figure 11 shows the alignment of amino acid sequences of representations of TCAP peptides with the insect diuretic peptides and CRF superfamily SEQ. ID. NOS: 13, 22, 104, 107-110. The entire superfamily can

be divided into three general regions encompassing an amino terminal portion, a midsection and a carboxy terminal portion. All peptides can be aligned by the presence of conserved motifs within each of the separate sections

5

20

25

30

Figure 12 illustrates expression of Teneurins in mouse brain and cell lines NLT, Gn11, and Nero2a . PCR-amplified products corresponding to Teneurin 1 to 4 were found in whole brain and cell lines. TenM1,2 and 4 were found in whole brain and in the immortalized GnRH-expressing neuronal line, Gn11. Only Teneurin 2 and 4 were found in another GnRH-expressing cell, 10 NLT, however, all four forms were found in the Neuro2a neuroblastoma cell line. The bands on top indicate positive signals for the Teneurin transcripts. The bands at the bottom show a positive signal for glyceraldehydes-3phosphate dehydrogenase (GAPDH) to indicate the viability of the RNA. A 100-bp DNA ladder is shown at the left of all PCR gels.

Figure 13 is a bar graph illustrating the inhibition of cell proliferation in 15 Gn11 neuronal cells by 10 ⁻⁶ M TCAP (Rainbow Trout TCAP-3) at 48 hours (Figure 13 A) and at 72 hours (Figure 13B).

Figure 14 is a bar graph illustrating the inhibition of cell proliferation in TGR1 (wildtype) fibroblast cells.

Figure 15 is a bar graph illustrating the inhibition of cell proliferation in HO16 (c-myc constitutively expressed cells) (14B) by 10 ⁻⁶ M TCAP (Rainbow Trout TCAP-3) at 48 hours).

Figures 16A and 16B are bar graphs illustrating the inhibition of cAMP(16A) and cGMP (16B) accumulation in Gn11 cells by rtTCAP-3(Rainbow Trout TCAP-3). A. 10⁻⁶ M TCAP induced a significant (p<0.01) decrease in cAMP concentrations relative to the vehicle-treated cells. Replications: vehicle, n=10; urocortin, n=8; TCAP, n=11. B. 10⁻⁶ M TCAP induced a significant (p<0.01) decrease in cGMP accumulation in Gn11 cells. The same concentration of rat urocortin also induced a significant (p<0.05) decrease in cGMP concentrations. Three replications were used for each of the treatment groups. Significance was assessed using a one-way analysis of

PCT/CA03/00622

variance with a Dunnett's post-hoc test. An a priori level of significance was established at p=0.05. The original data was transformed to show percent concentration relative to the vehicle-treated cells.

Figure 17 A-D illustrates TCAP(Rainbow Trout TCAP-3) cAMP regulation in Gn11 cells. 17A illustrates cAMP levels in Gn11 cells treated with 10⁻⁸ M TCAP or urocortin over 30 minutes. 17B illustrates cAMP levels in Gn11 cells in the presence of 10⁻⁴ M 3-isobutyl-1 methyl xanthine (IBMX), a phosphodiesterase inhibitor used to boost cAMP induced by treatment of 10⁻⁸ MTCAP or urocortin. 17C is a bar graph illustrating cAMP accumulation over 30 minutes in Gn11 cells by administration of various concentrations of TCAP or Urocortin in the presence of IBMX. 17D is a bar graph illustrating inhibition of 10⁻⁶ M forskolin- stimulated cAMP by 10⁻⁸ MTCAP or urocortin.

Figures 18A and 18B are linear graphs illustrating the effect of TCAP (Rainbow Trout TCAP-3) on the administration of self reward behaviour. The behaviour was indicated by number of bar presses per 30 seconds over a range of pleasurable stimulation (25 – 100Hz). Figure 18A: Baseline, TCAP peptide (1.0µl of 0.001mg/ml, left), post-injection (approx. 90 min.), 850uA. Figure 18B: Baseline, TCAP peptide ((1.0µl of 0.001mg/ml, right), postinjection (approx. 60 min.), 550uA. 100 nM TCAP induced a significant decrease in the rats desire to self-administer reward by neural impulse.

20

30

Figure 19 A schematic cellular model for TCAP regulation. A. A stressor in the form of a physiological condition such as low oxygen or pH changes, or an anxiogenic ligand triggers metabolic activation of the cell. B. This causes an upregulation of the Teneurin protein and its cleaving enzyme. C. The enzyme liberates TCAP from Teneurin where it acts in an autocrine and paracrine manner to inhibit cAMP and cGMP production via a G protein coupled receptor.

Figure 20 illustrates the distribution of TCAP-1 mRNA in rat brain nuclei as explained in Example 9.

Figure 21 are bar graphs illustrating the chronic human TCAP-1 response in rats that were (A) vehicle treated ICV injected, (B)TCAP-1 ICV injected as described in Example 10 herein.

Figure 22 are graphs illustrating the mean baseline startle response of all animals in Example 10. Figure 22A is the average startle response at day 1 after TCAP injection and Figure 22B is the average startle at the end of the chronic TCAP study, Figure 22C is the average startle response following TCAP-1.

Figure 23 is the interaction bar plot for treatment with TCAP-1 at various doses for both high and low anxiety response animals as discussed in Example 11 herein.

Figure 24 is the plot of the effect of TCAP-1 amygdala –injected on the startle response of rats as discussed in Example 11 herein.

Figure 25 illustrates activity of TCAP on immortalized neurons. (A) cAMP accumulation in Gn11 cells. 1nM TCAP increased cAMP (p<0.05) whereas 100 nM TCAP decreased (p<0.05) cAMP. An intermediate concentration (10nM) was without effect. (B) Action of CRF-R1 antagonist on 15 cAMP accumulation. A 1 nM mouse TCAP-1, or mouse urocortin increased cAMP accumulation in Gn11 cells. The CRF R1 receptor antagonist PD171729 abolished the action of urocortin on these cells (p<0.01) but had no effect on TCAP-mediated cAMP accumulation. (C) Protein assays. Concentrations of 1 to 100 nM TCAP stimulated protein synthesis in Gn11 20 cells. (D) MTT Assay. 1 nM of mouse TCAP-1 increased MTT activity (p<0.05) in Gn11 cells after 48 hours. In contrast, 100 nM of mouse TCAP-1 decreased (p<0.05) MTT activity over the same time period. E. DNA Content Analysis. mouse TCAP-1 reduced the incidence of G1 phase at the lowest concentration of 1 nM, however, increased the number of cells in G1 phase at 25 the highest dose of 100 nM. The level of significance was determined using a one-way ANOVA for A, B and E, and a two-way ANOVA for C and D.

Figure 26 illustrates the functional cAMP response of murine hypothalamic immortalized cell lines to TCAP(rainbow trout TCAP-3) peptide stimulation.

The inventors have identified a novel peptide sequence which exists as part of a larger protein previously identified as the Ten M proteins or Teneurins. The novel peptides are referred to as teneurin C terminal peptides or TCAP. The genomes or gene transcripts of several vertebrate and invertebrate species were screened by homologous probe hybridization or by PCR. Sequence data from genome sequencing programs allowed the identification of a complement of four paralogous peptides from this family in humans and mice, two paralogues in zebrafish, one in rainbow trout and Drosophila (SEQ ID NO:103). The synthetic TCAP peptide has neuronal comunciation activity and has been shown to be a modulator of the stress response and anxiety in an animal. TCAp also modulates cell proliferation. In one embodiment, it can inhibit cell proliferation. In another emboimdnent, TCAPis a potent anxiogenic peptide in rats and highly effective at inhibiting neuronal proliferation in unstressed cells and protecting cells from physiological stresses. As such TCAP and/or modulators of TCAP can be used in the treatment of cancer and neuropathological conditions, including those related to neuronal communication, and or cell proliferation, for instance, cancer, stress anxiety, food-related disorders, such as anorexia and/or obesity.

15

20

The TCAP sequence encodes a cleavable peptide 40 amino acids long flanked by PC7 -like cleavage motifs on the amino terminus and an amidation motif on the carboxy terminus. Depending on the cleavage of the PC7-like cleavage site at the N-terminus, the resulting mature TCAP peptide is 40-41 amino acids in length. The TCAP sequence with the carboxy terminus amidation motif is herein referred to as preTCAP. Orthologues in humans, mice, zebrafish and Drosophila as well as three additional paralogous sequences have been identified. A synthetic version of the rainbow trout peptide significantly increases the startle reflex and decreases self-administered brain stimulation in rats. These findings are consistent with the actions of peptides known to induce anxiety in mammals and humans. The peptide is also potent at inhibiting the proliferation of unstressed neuronal and fibroblast cell cultures and inhibiting cell death in these cultures subjected to

high pH stress. These findings indicate that TCAP plays a role in the developing and adult brain to modulate and protect neuronal growth and metabolism and therefore be implicated in a number of pathologies including schizophrenia, Parkinson's disease and other mental conditions. In the adult brain the peptide may act to modulate the actions of anxiogenic stimuli and could play a role in depression, anorexia nervosa and other affective disorders.

The term "isolated" as used herein means "altered by the hand of man" from the natural state. If a composition or substance occurs in nature, the isolated form has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living animal is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated," as the term is employed herein. Thus, a polypeptide or polynucleotide produced and/or contained within a recombinant host cell is considered isolated for purposes of the present invention. Also intended as an "isolated polypeptide" or an "isolated polynucleotide" are polypeptides or polynucleotides that have been purified, partially or substantially, from a recombinant host cell or from a native source. For example, a recombinantly produced version of TCAP peptides and derivatives thereof can be substantially purified by methods known in the 20 art, such as the one-step method described in Smith and Johnson, Gene 67:31-40 (1988).

Nucleic Acid Molecules of the Invention

10

15

25

30

The present invention provides an isolated nucleic acid molecule consisting of a sequence encoding a teneurin c-terminal associated peptide This peptide is generally referred to as "TCAP" herein. The present invention also provides an isolated nucleic acid molecule encoding a TCAP peptide with a carboxy terminus amidation motif, said peptide herein referred to as "preTCAP".

Isolated nucleic acids substantially free of cellular material or culture medium when produced by recombinant DNA techniques, or chemical

precursors, or other chemicals when chemically synthesized are included in this invention.

-18 -

In a preferred embodiment, the invention provides an isolated nucleic acid sequence comprising or consisting of:

- (a) a nucleic acid sequence as shown in SEQ.ID.NOS.: 18-20, 25-28, 33-36, 41-44, 49-52, 57-60, 65-68, 73-76, 81-84, 89-92, 97-100 or that wherein T can also be U or that encodes a peptide having an amino acid sequence selected from the group consisting of : SEQ. ID. NOS: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103 or that further has an amidation signal sequence (preferably GKR or GRR), at the carboxy terminus of said peptides, such as 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 97, 88, 95, 96;
 - (b) a nucleic acid sequence that is complimentary to a nucleic acid sequence of (a);
- 15 (c) a nucleic acid sequence that has substantial sequence homology to a nucleic acid sequence of (a) or (b);
 - (d) a nucleic acid sequence that is an analog of a nucleic acid sequence of (a), (b) or (c); or
- (e) a nucleic acid sequence that hybridizes to a nucleic acid sequence of (a), (b), (c) or (d) under stringent hybridization conditions.
 - (f) a nucleice acid sequence of (a) -(e) where T is U.

25

30

The term "sequence that has substantial sequence homology" means those nucleic acid sequences which have slight or inconsequential sequence variations from the sequences in (a) or (b), i.e., the sequences function in substantially the same manner. The variations may be attributable to local mutations or structural modifications. Nucleic acid sequences having substantial homology include nucleic acid sequences having at least 65%, more preferably at least 85%, and most preferably 90-95% identity with the nucleic acid sequences as listed in (a) above. The term "sequence that hybridizes" means a nucleic acid sequence that can hybridize to a sequence of (a), (b), (c) or (d) under stringent hybridization conditions. Appropriate "stringent hybridization conditions" which promote DNA hybridization are

known to those skilled in the art, or may be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. For example, the following may be employed: 6.0 x sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 50°C; 0.2 x SSC at 50°C to 65°C; or 2.0 x SSC at 44°C to 50°C. The stringency may be selected based on the conditions used in the wash step. For example, the salt concentration in the wash step can be selected from a high stringency of about 0.2 x SSC at 50°C. In addition, the temperature in the wash step can be at high stringency conditions, at about 65°C.

The term "nucleic acid" is intended to include DNA and RNA and can be either double stranded or single stranded.

10

20

25

30

The term "a nucleic acid sequence which is an analog" means a nucleic acid sequence which has been modified as compared to the sequence of (a), (b) or (c) wherein the modification does not alter the utility of the sequence as described herein. The modified sequence or analog may have improved properties over the sequence shown in (a), (b) or (c). One example of a modification to prepare an analog is to replace one of the naturally occurring bases (i.e. adenine, guanine, cytosine or thymidine) of the sequence with a modified base such as such as xanthine, hypoxanthine, 2aminoadenine, 6-methyl, 2-propyl and other alkyl adenines, 5-halo uracil, 5halo cytosine, 6-aza uracil, 6-aza cytosine and 6-aza thymine, pseudo uracil, 4-thiouracil, 8-halo adenine, 8-aminoadenine, 8-thiol adenine, 8-thiolalkyl adenines, 8-hydroxyl adenine and other 8-substituted adenines, 8-halo guanines, 8 amino guanine, 8-thiol guanine, 8-thiolalkyl guanines, 8-hydroxyl guanine and other 8-substituted guanines, other aza and deaza uracils, thymidines, cytosines, adenines, or guanines, 5-trifluoromethyl uracil and 5trifluoro cytosine.

Another example of a modification is to include modified phosphorous or oxygen heteroatoms in the phosphate backbone, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages in the nucleic acid molecule listed in (a) to (e) above. For

example, the nucleic acid sequences may contain phosphorothioates, phosphotriesters, methyl phosphonates, and phosphorodithioates.

A further example of an analog of a nucleic acid molecule of the invention is a peptide nucleic acid (PNA) wherein the deoxyribose (or ribose) phosphate backbone in the DNA (or RNA), is replaced with a polyamide backbone which is similar to that found in peptides (P.E. Nielsen, et al Science 1991, 254, 1497). PNA analogs have been shown to be resistant to degradation by enzymes and to have extended lives *in vivo* and *in vitro*. PNAs also bind stronger to a complimentary DNA sequence due to the lack of charge repulsion between the PNA strand and the DNA strand. Other nucleic acid analogs may contain nucleotides containing polymer backbones, cyclic backbones, or acyclic backbones. For example, the nucleotides may have morpholino backbone structures (U.S. Pat. No. 5,034,506). The analogs may also contain groups such as reporter groups, a group for improving the pharmacokinetic or pharmacodynamic properties of nucleic acid sequence.

10

15

20

25

30

Isolated and purified nucleic acid molecules having sequences which differ from the nucleic acid sequence of the invention due to degeneracy in the genetic code are also within the scope of the invention. Such nucleic acids encode functionally equivalent peptides but differ in sequence from the above mentioned sequences due to degeneracy in the genetic code.

An isolated nucleic acid molecule of the invention which consists of DNA can be isolated by preparing a labeled nucleic acid probe based on all or part of the nucleic acid sequences of the invention and using this labeled nucleic acid probe to screen an appropriate DNA library (e.g. a cDNA or genomic DNA library). For example, a genomic library isolated can be used to isolate a DNA encoding a novel peptide of the invention by screening the library with the labeled probe using standard techniques. Nucleic acids isolated by screening of a cDNA or genomic DNA library can be sequenced by standard techniques.

An isolated nucleic acid molecule of the invention which is DNA can also be isolated by selectively amplifying a nucleic acid encoding a novel peptide of the invention using the polymerase chain reaction (PCR) methods

and cDNA or genomic DNA. It is possible to design synthetic oligonucleotide primers from the nucleic acid sequence of the invention for use in PCR. A nucleic acid can be amplified from cDNA or genomic DNA using these oligonucleotide primers and standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. It will be appreciated that cDNA may be prepared from mRNA, by isolating total cellular mRNA by a variety of techniques, for example, by using the guanidinium-thiocyanate extraction procedure of Chirgwin et al., Biochemistry, 18, 5294-5299 (1979). cDNA is then synthesized from the mRNA using reverse transcriptase (for example, Moloney MLV reverse transcriptase available from Invitrogen, Carlsbad, CA, or AMV reverse transcriptase available from Seikagaku America, Inc., St. Petersburg, FL).

An isolated nucleic acid molecule of the invention which is RNA can be isolated by cloning a cDNA encoding a novel peptide of the invention into an appropriate vector which allows for transcription of the cDNA to produce an RNA molecule which encodes a protein of the invention. For example, a cDNA can be cloned downstream of a bacteriophage promoter, (e.g., a T7 promoter) in a vector, cDNA can be transcribed *in vitro* with T7 polymerase, and the resultant RNA can be isolated by standard techniques.

15

20

25

30

A nucleic acid molecule of the invention may also be chemically synthesized using standard techniques. Various methods of chemically synthesizing polydeoxynucleotides are known, including solid-phase synthesis which, like peptide synthesis, has been fully automated in commercially available DNA synthesizers (See e.g., Itakura et al. U.S. Patent No. 4,598,049; Caruthers et al. U.S. Patent No. 4,458,066; and Itakura U.S. Patent Nos. 4,401,796 and 4,373,071).

Determination of whether a particular nucleic acid molecule encodes a novel peptide of the invention may be accomplished by expressing the cDNA in an appropriate host cell by standard techniques, and testing the activity of the peptide using the methods as described herein. A cDNA having the activity of a novel peptide of the invention so isolated can be sequenced by

standard techniques, such as dideoxynucleotide chain termination or Maxam-Gilbert chemical sequencing, to determine the nucleic acid sequence and the predicted amino acid sequence of the encoded peptide.

The initiation codon and untranslated sequences of nucleic acid molecules of the invention may be determined using currently available computer software designed for the purpose, such as PC/Gene (IntelliGenetics Inc., Calif.). Regulatory elements can be identified using conventional techniques. The function of the elements can be confirmed by using these elements to express a reporter gene which is operatively linked to the elements. These constructs may be introduced into cultured cells using standard procedures. In addition to identifying regulatory elements in DNA, such constructs may also be used to identify proteins interacting with the elements, using techniques known in the art.

The sequence of a nucleic acid molecule of the invention may be inverted relative to its normal presentation for transcription to produce an antisense nucleic acid molecule which are more fully described herein. In particular, the nucleic acid sequences contained in the nucleic acid molecules of the invention or a fragment thereof, may be inverted relative to its normal presentation for transcription to produce antisense nucleic acid molecules.

The invention also provides nucleic acids encoding fusion proteins comprising a novel protein of the invention and a selected protein, or a selectable marker protein (see below).

Also provided are portions of the nucleic acid sequence encoding fragments, functional domains or antigenic determinants of the TCAP peptide. The present invention also provides for the use of portions of the sequence as probes and PCR primers for TCAP as well as for determining functional aspects of the sequence.

One of ordinary skill in the art is now enabled to identify and isolate TCAP encoding nucleic acids or cDNAs that are allelic variants of the disclosed sequences, using standard hybridization screening or PCR techniques.

II. Novel Proteins of the Invention

15

20

25

The invention further broadly contemplates an isolated TCAP peptide. The term "TCAP peptide" as used herein includes all homologs, analogs, fragments or derivatives of the TCAP peptide.

The term "analog" in reference to peptides includes any peptide having an amino acid residue sequence substantially identical to the human or mouse TCAP sequence specifically shown herein in which one or more residues have been conservatively substituted with a functionally similar residue and which displays the ability to mimic TCAP as described herein. Examples of conservative substitutions include the substitution of one non-polar (hydrophobic) residue such as alanine, isoleucine, valine, leucine or methionine for another, the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, between glycine and serine, the substitution of one basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue, such as aspartic acid or glutamic acid for another. The phrase "conservative substitution" also includes the use of a chemically derivatized residue in place of a non-derivatized residue provided that such polypeptide displays the requisite activity.

The term "derivative" reference to peptides refers to a peptide having one or more residues chemically derivatized by reaction of a functional side group. Such derivatized molecules include for example, those molecules in which free amino groups have been derivatized to form amine hydrochlorides, p-toluene sulfonyl groups, carbobenzoxy groups, t-butyloxycarbonyl groups, chloroacetyl groups or formyl groups. Free carboxyl groups may be derivatized to form salts, methyl and ethyl esters or other types of esters or hydrazides. Free hydroxyl groups may be derivatized to form O-acyl or O-alkyl derivatives. The imidazole nitrogen of histidine may be derivatized to form N-im-benzylhistidine. Also included as derivatives are those peptides which contain one or more naturally occurring amino acid derivatives of the twenty standard amino acids. For examples: 4-hydroxyproline may be substituted for proline; 5-hydroxylysine may be substituted for lysine; 3-methylhistidine may be substituted for histidine; homoserine may be

20

25

30

substituted for serine; and ornithine may be substituted for lysine. Polypeptides of the present invention also include any polypeptide having one or more additions and/or deletions or residues relative to the sequence of a polypeptide whose sequence is shown herein, so long as the requisite activity is maintained.

In one embodiment, the isolated TCAP peptide consists of 38-41 amino acid residues of the carboxy terminus of a teneurin-like protein with or without an amidation signal at the carboxy terminus. In one embodiment, the amidation signal consists of the amino acid sequence GKR or GRR (preTCAP). In another embodiment, the TCAP peptide comprises sequences substantially identity to the above-noted peptides or comprising an obvious chemical equivalents thereof. It also includes peptides sequence +/- amino acids at the amino and/or carboxy terminus of the above-noted TCAP peptide sequences. In yet another embodiment, the invention includes fusion proteins, comprising the TCAP peptide, labeled TCAP peptides, analogs, homologs and variants thereof.

15

25

In one embodiment, the TCAP peptide is a rainbow trout, zebrafish, human, mouse, *G. gallus* or *D. melanogaster* TCAP. In another embodiment, the TCAP peptides have the sequence selected from the group consisting of: SEQ. ID. NOS: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103 or that further has an amidation signal sequence (preferably GKR or GRR), at the carboxy terminus of said peptides, such as 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 97, 88, 95, 96;

In another embodiment, the peptide of the invention is a TCAP-3 and has the following amino acid sequence motif:

QLLSXaa₁Xaa₂KVXaa₃GYDGYYVLSXaa₄EQYPELADSANNXaa₅QFL RQSEI SEQ. ID. NO:135

Where Xaa₁ is G, S, or A; Xaa₂ is G or R; Xaa₃ is L or Q; Xaa₄ and Xaa₅ are independently V or I. In one embodiment, the TCAP-3 is a human or mouse TCAP- 3. In another embodiment, the TCAP- 3 has SEQ. ID. NO: 13, 21, 53 or 85.

Within the context of the present invention, a peptide of the invention may include various structural forms of the primary peptide which retain biological activity. For example, a peptide of the invention may be in the form of acidic or basic salts or in neutral form. In addition, individual amino acid residues may be modified by oxidation or reduction.

5

10

15

20

25

30

In addition to the full-length amino acid sequence, the peptide of the present invention may also include truncations, analogs and homologs of the peptide and truncations thereof as described herein. Truncated peptides or fragments may comprise peptides of at least 5, preferably 10 and more preferably 15 amino acid residues of the sequence listed above.

The invention further provides polypeptides comprising at least one functional domain or at least one antigenic determinant of a TCAP peptide.

Analogs of the protein of the invention and/or truncations thereof as described herein, may include, but are not limited to an amino acid sequence containing one or more amino acid substitutions, insertions, deletions and/or mutations. Amino acid substitutions may be of a conserved or non-conserved nature. Conserved amino acid substitutions involve replacing one or more amino acids of the peptides of the invention with amino acids of similar charge, size, and/or hydrophobicity characteristics. When only conserved substitutions are made the resulting analog should be functionally equivalent. Non-conserved substitutions involve replacing one or more amino acids of the amino acid sequence with one or more amino acids which possess dissimilar charge, size, and/or hydrophobicity characteristics.

One or more amino acid insertions may be introduced into the amino acid sequences of the invention. Amino acid insertions may consist of single amino acid residues or sequential amino acids ranging from 2 to 15 amino acids in length. For example, amino acid insertions may be used to destroy target sequences so that the peptide is no longer active. This procedure may be used *in vivo* to inhibit the activity of the peptide of the invention.

Deletions may consist of the removal of one or more amino acids, or discrete portions from the amino acid sequence of the TCAP peptide. The deleted amino acids may or may not be contiguous.

-26 -

Analogs of a protein of the invention may be prepared by introducing mutations in the nucleotide sequence encoding the peptide. Mutations may be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.

Alternatively, oligonucleotide-directed site-specific mutagenesis procedures may be employed to provide an altered gene having particular codons altered according to the substitution, deletion, or insertion required. Deletion or truncation of a peptide of the invention may also be constructed by utilizing convenient restriction endonuclease sites adjacent to the desired deletion. Subsequent to restriction, overhangs may be filled in, and the DNA religated. Exemplary methods of making the alterations set forth above are disclosed by Sambrook et al (Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, 1989).

15

20

25

30

The peptides of the invention also include homologs of the amino acid sequence of the TCAP peptide, mutated TCAP peptides and/or truncations thereof as described herein. Such homologs are proteins whose amino acid sequences are comprised of amino acid sequences that hybridize under stringent hybridization conditions (see discussion of stringent hybridization conditions herein) with a probe used to obtain a peptide of the invention. Homologs of a peptide of the invention will have the same regions which are characteristic of the protein.

A homologous peptide includes a peptide with an amino acid sequence having at least 70%, preferably 80-95% identity with the amino acid sequence of the TCAP peptide.

The invention also contemplates isoforms of the peptides of the invention. An isoform contains the same number and kinds of amino acids as a peptide of the invention, but the isoform has a different molecular structure. The isoforms contemplated by the present invention are those having the same properties as a peptide of the invention as described herein.

ĸ

The proteins of the invention (including e.g., truncations, analogs, etc.) may be prepared using recombinant DNA methods. Accordingly, nucleic acid molecules of the present invention having a sequence that encodes a peptide of the invention may be incorporated according to procedures known in the art into an appropriate expression vector that ensures good expression of the peptide. Possible expression vectors include but are not limited to cosmids, plasmids, or modified viruses (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), so long as the vector is compatible with the host cell used. The expression "vectors suitable for transformation of a host cell", means that the expression vectors contain a nucleic acid molecule of the invention and regulatory sequences, selected on the basis of the host cells to be used for expression, which are operatively linked to the nucleic acid molecule. "Operatively linked" is intended to mean that the nucleic acid is linked to regulatory sequences in a manner that allows expression of the nucleic acid.

10

15

20

25

30

The invention therefore contemplates a recombinant expression vector of the invention containing a nucleic acid molecule of the invention, or a fragment thereof, and the necessary regulatory sequences for the transcription and translation of the inserted peptide-sequence. Suitable regulatory sequences may be derived from a variety of sources, including bacterial, fungal, or viral genes (For example, see the regulatory sequences described in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Selection of appropriate regulatory sequences is dependent on the host cell chosen, and may be readily accomplished by one of ordinary skill in the art. Examples of such regulatory sequences include: a transcriptional promoter and enhancer or RNA polymerase binding sequence, a ribosomal binding sequence, including a translation initiation signal. Additionally, depending on the host cell chosen and the vector employed, other sequences, such as an origin of replication, additional DNA restriction sites, enhancers, and sequences conferring inducibility of transcription may be incorporated into the expression vector. It

-28 -

will also be appreciated that the necessary regulatory sequences may be supplied by the native peptide and/or its flanking regions.

The invention further provides a recombinant expression vector comprising a DNA nucleic acid molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression, by transcription of the DNA molecule, of an RNA molecule which is antisense to a nucleotide sequence of the invention. Regulatory sequences operatively linked to the antisense nucleic acid can be chosen which direct the continuous expression of the antisense RNA molecule.

10

20

25

The recombinant expression vectors of the invention may also contain a selectable marker gene that facilitates the selection of host cells transformed or transfected with a recombinant molecule of the invention. Examples of selectable marker genes are genes encoding a protein such as 15 G418 and hygromycin which confer resistance to certain drugs, β galactosidase, chloramphenicol acetyltransferase, or firefly luciferase. Transcription of the selectable marker gene is monitored by changes in the concentration of the selectable marker protein such as β -galactosidase, chloramphenicol acetyltransferase, or firefly luciferase. If the selectable marker gene encodes a protein conferring antibiotic resistance such as neomycin resistance transformant cells can be selected with G418. Cells that have incorporated the selectable marker gene will survive, while the other cells die. This makes it possible to visualize and assay for expression of recombinant expression vectors of the invention and in particular to determine the effect of a mutation on expression and phenotype. It will be appreciated that selectable markers can be introduced on a separate vector from the nucleic acid of interest.

Recombinant expression vectors can be introduced into host cells to produce a transformed host cell. Accordingly, the invention includes a host cell comprising a recombinant expression vector of the invention. The term "transformed host cell" is intended to include prokaryotic and eukaryotic cells which have been transformed or transfected with a recombinant expression

vector of the invention. The terms "transformed with", "transfected with", "transformation" and "transfection" are intended to encompass introduction of nucleic acid (e.g. a vector) into a cell by one of many possible techniques known in the art. Prokaryotic cells can be transformed with nucleic acid by, for example, electroporation or calcium-chloride mediated transformation. Nucleic acid can be introduced into mammalian cells via conventional techniques such as calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofectin, electroporation or microinjection. Suitable methods for transforming and transfecting host cells 10 can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press (1989)), and other such laboratory textbooks.

Suitable host cells include a wide variety of prokaryotic and eukaryotic host cells. For example, the peptides of the invention may be expressed in bacterial cells such as E. coli, Pseudomonas, Bacillus subtillus, insect cells (using baculovirus), yeast cells or mammalian cells. Other suitable host cells can be found in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1991).

15

25

As an example, to produce TCAP peptides recombinantly, for example, E. coli can be used using the T7 RNA polymerase/promoter system using two 20 plasmids or by labeling of plasmid-encoded proteins, or by expression by infection with M13 Phage mGPI-2. E. coli vectors can also be used with Phage lamba regulatory sequences, by fusion protein vectors (e.g. lacZ and trpE), by maltose-binding protein fusions, and by glutathione-S-transferase fusion proteins.

Alternatively, a TCAP peptide can be expressed in insect cells using baculoviral vectors, or in mammalian cells using vaccinia virus. For expression in mammalian cells, the cDNA sequence may be ligated to heterologous promoters and introduced into cells, such as COS cells to achieve transient or long-term expression. The stable integration of the chimeric gene construct may be maintained in mammalian cells by biochemical selection, such as neomycin and mycophoenolic acid.

The TCAP DNA sequence can be altered using procedures such as restriction enzyme digestion, fill-in with DNA polymerase, deletion by exonuclease, extension by terminal deoxynucleotide transferase, ligation of synthetic or cloned DNA sequences, site-directed sequence alteration with the use of specific oligonucleotides together with PCR.

The cDNA sequence or portions thereof, or a mini gene consisting of a cDNA with an intron and its own promoter, is introduced into eukaryotic expression vectors by conventional techniques. These vectors permit the transcription of the cDNA in eukaryotic cells by providing regulatory sequences that initiate and enhance the transcription of the cDNA and ensure its proper splicing and polyadenylation. The endogenous TCAP gene promoter can also be used. Different promoters within vectors have different activities which alters the level of expression of the cDNA. In addition, certain promoters can also modulate function such as the glucocorticoid-responsive promoter from the mouse mammary tumor virus.

10

15

20

25

30

Some of the vectors listed contain selectable markers or neo bacterial genes that permit isolation of cells by chemical selection. Stable long-term vectors can be maintained in cells as episomal, freely replicating entities by using regulatory elements of viruses. Cell lines can also be produced which have integrated the vector into the genomic DNA. In this manner, the gene product is produced on a continuous basis.

Vectors are introduced into recipient cells by various methods including calcium phosphate, strontium phosphate, electroporation, lipofection, DEAE dextran, microinjection, or by protoplast fusion. Alternatively, the cDNA can be introduced by infection using viral vectors.

TCAP peptides may also be isolated from cells or tissues, including mammalian cells or tissues, in which the peptide is normally expressed.

The protein may be purified by conventional purification methods known to those in the art, such as chromatography methods, high performance liquid chromatography methods or precipitation.

For example, an anti-TCAP antibody (as described below) may be used to isolate a TCAP peptide, which is then purified by standard methods.

PCT/CA03/00622

The peptides of the invention may also be prepared by chemical synthesis using techniques well known in the chemistry of proteins such as solid phase synthesis (Merrifield, 1964, J. Am. Chem. Assoc. 85:2149-2154) or synthesis in homogenous solution (Houbenweyl, 1987, Methods of Organic Chemistry, ed. E. Wansch, Vol. 15 I and II, Thieme, Stuttgart).

III. <u>Uses</u>

10

20

25

30

The present invention includes all uses of the nucleic acid molecules, TCAP peptides and preTCAP peptides of the invention including, but not limited to, the preparation of antibodies and antisense oligonucleotides, the preparation of experimental systems to study TCAP, the isolation of substances that can bind or modulate TCAP expression and/or activity as well as the use of the TCAP nucleic acid sequences and peptides and modulators thereof in diagnostic and therapeutic applications. Some of the uses are further described below.

15 (a) Antibodies

The isolation of the TCAP peptide enables the preparation of antibodies specific for TCAP. Accordingly, the present invention provides an antibody that binds to a TCAP peptide and/or a protein containing a TCAP peptide, such as preTCAP.

Conventional methods can be used to prepare the antibodies. For example, by using a TCAP, polyclonal antisera or monoclonal antibodies can be made using standard methods. A mammal, (e.g., a mouse, hamster, or rabbit) can be immunized with an immunogenic form of the peptide which elicits an antibody response in the mammal. Techniques for conferring immunogenicity on a peptide include conjugation to carriers or other techniques well known in the art. For example, the protein or peptide can be administered in the presence of adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassay procedures can be used with the immunogen as antigen to assess the levels of antibodies. Following immunization, antisera can be obtained and, if desired, polyclonal antibodies isolated from the sera.

To produce monoclonal antibodies, antibody-producing cells (lymphocytes) can be harvested from an immunized animal and fused with myeloma cells by standard somatic cell fusion procedures thus immortalizing these cells and yielding hybridoma cells. Such techniques are well known in the art, (e.g., the hybridoma technique originally developed by Kohler and Milstein (Nature 256, 495-497 (1975)) as well as other techniques such as the human B-cell hybridoma technique (Kozbor et al., Immunol. Today 4, 72 (1983)), the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al. Monoclonal Antibodies in Cancer Therapy (1985) Allen R. Bliss, Inc., pages 77-96), and screening of combinatorial antibody libraries (Huse et al., Science 246, 1275 (1989)). Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive with the peptide and the monoclonal antibodies can be isolated. Therefore, the invention also contemplates hybridoma cells secreting monoclonal antibodies with specificity for TCAP.

The term "antibody" as used herein is intended to include fragments thereof which also specifically react with TCAP. Antibodies can be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above. For example, F(ab')2 fragments can be generated by treating antibody with pepsin. The resulting F(ab')2 fragment can be further treated to produce Fab' fragments.

15

20

Chimeric antibody derivatives, i.e., antibody molecules that combine a non-human animal variable region and a human constant region are also contemplated within the scope of the invention. Chimeric antibody molecules can include, for example, the antigen binding domain from an antibody of a mouse, rat, or other species, with human constant regions. Conventional methods may be used to make chimeric antibodies containing the immunoglobulin variable region which recognizes the gene product of TCAP antigen of the invention (See, for example, Morrison et al., Proc. Natl Acad. Sci. U.S.A. 81,6851 (1985); Takeda et al., Nature 314, 452 (1985), Cabilly et al., U.S. Patent No. 4,816,567; Boss et al., U.S. Patent No. 4,816,397; Tanaguchi et al., European Patent Publication EP171496; European Patent

-33 -

Publication 0173494, United Kingdom patent GB 2177096B). It is expected that chimeric antibodies would be less immunogenic in a human subject than the corresponding non-chimeric antibody.

Monoclonal or chimeric antibodies specifically reactive with a peptide of the invention as described herein can be further humanized by producing human constant region chimeras, in which parts of the variable regions, particularly the conserved framework regions of the antigen-binding domain, are of human origin and only the hypervariable regions are of non-human origin. Such immunoglobulin molecules may be made by techniques known in the art, (e.g., Teng et al., Proc. Natl. Acad. Sci. U.S.A., 80, 7308-7312 (1983); Kozbor et al., Immunology Today, 4, 7279 (1983); Olsson et al., Meth. Enzymol., 92, 3-16 (1982)), and PCT Publication WO92/06193 or EP 0239400). Humanized antibodies can also be commercially produced (Scotgen Limited, 2 Holly Road, Twickenham, Middlesex, Great Britain.)

Specific antibodies, or antibody fragments, reactive against TCAP peptide may also be generated by screening expression libraries encoding immunoglobulin genes, or portions thereof, expressed in bacteria with peptides produced from the nucleic acid molecules encoding TCAP. For example, complete Fab fragments, VH regions and FV regions can be expressed in 20 bacteria using phage expression libraries (See for example Ward et al., Nature 341, 544-546: (1989); Huse et al., Science 246, 1275-1281 (1989); and McCafferty et al. Nature 348, 552-554 (1990)). Alternatively, a SCID-hu mouse, for example the model developed by Genpharm, can be used to produce antibodies or fragments thereof.

(b) Antisense Oligonucleotides 25

15

30

Isolation of a nucleic acid molecule encoding TCAP enables the production of antisense oligonucleotides that can modulate the expression and/or activity of TCAP. Accordingly, the present invention provides an antisense oligonucleotide that is complimentary to a nucleic acid sequence encoding TCAP.

The term "antisense oligonucleotide" as used herein means a nucleotide sequence that is complimentary to its target.

-34 -

The term "oligonucleotide" refers to an oligomer or polymer of nucleotide or nucleoside monomers consisting of naturally occurring bases, sugars, and intersugar (backbone) linkages. The term also includes modified or substituted oligomers comprising non-naturally occurring monomers or portions thereof, which function similarly. Such modified or substituted oligonucleotides may be preferred over naturally occurring forms because of properties such as enhanced cellular uptake, or increased stability in the presence of nucleases. The term also includes chimeric oligonucleotides which contain two or more chemically distinct regions. For example, chimeric oligonucleotides may contain at least one region of modified nucleotides that confer beneficial properties (e.g. increased nuclease resistance, increased uptake into cells), or two or more oligonucleotides of the invention may be joined to form a chimeric oligonucleotide.

The antisense oligonucleotides of the present invention may be ribonucleic or deoxyribonucleic acids and may contain naturally occurring bases including adenine, guanine, cytosine, thymidine and uracil. The oligonucleotides may also contain modified bases such as xanthine, hypoxanthine, 2-aminoadenine, 6-methyl, 2-propyl and other alkyl adenines, 5-halo uracil, 5-halo cytosine, 6-aza uracil, 6-aza cytosine and 6-aza thymine, pseudo uracil, 4-thiouracil, 8-halo adenine, 8-aminoadenine, 8-thiol adenine, 8-thiolalkyl adenines, 8-hydroxyl adenine and other 8-substituted adenines, 8-halo guanines, 8-amino guanine, 8-thiol guanine, 8-thiolalkyl guanines, 8-hydroxyl guanine and other 8-substituted guanines, other aza and deaza uracils, thymidines, cytosines, adenines, or guanines, 5-trifluoromethyl uracil and 5-trifluoro cytosine.

15

20

25

30

Other antisense oligonucleotides of the invention may contain modified phosphorous, oxygen heteroatoms in the phosphate backbone, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. For example, the antisense oligonucleotides may contain phosphorothioates, phosphotriesters, methyl phosphonates, and phosphorodithioates. In an embodiment of the invention there are

PCT/CA03/00622

phosphorothioate bonds links between the four to six 3'-terminus bases. In another embodiment phosphorothioate bonds link all the nucleotides.

The antisense oligonucleotides of the invention may also comprise nucleotide analogs that may be better suited as therapeutic or experimental reagents. An example of an oligonucleotide analogue is a peptide nucleic acid (PNA) wherein the deoxyribose (or ribose) phosphate backbone in the DNA (or RNA), is replaced with a polyamide backbone which is similar to that found in peptides (P.E. Nielsen, et al Science 1991, 254, 1497). PNA analogues have been shown to be resistant to degradation by enzymes and to have extended lives in vivo and in vitro. PNAs also bind stronger to a complimentary DNA sequence due to the lack of charge repulsion between the PNA strand and the DNA strand. Other oligonucleotides may contain nucleotides containing polymer backbones, cyclic backbones, or acyclic backbones. For example, the nucleotides may have morpholino backbone structures (U.S. Pat. No. 5,034,506). Oligonucleotides may also contain groups such as reporter groups, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an antisense oligonucleotide. Antisense oligonucleotides may also have sugar mimetics.

10

15

20

25

30

The antisense nucleic acid molecules may be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. The antisense nucleic acid molecules of the invention or a fragment thereof, may be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed with mRNA or the native gene e.g. phosphorothioate derivatives and acridine substituted nucleotides. The antisense sequences may be produced biologically using an expression vector introduced into cells in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense sequences are produced under the control of a high efficiency regulatory region, the activity of which may be determined by the cell type into which the vector is introduced.

The antisense oligonucleotides may be introduced into tissues or cells using techniques in the art including vectors (retroviral vectors, adenoviral vectors and DNA virus vectors) or physical techniques such as microinjection. The antisense oligonucleotides may be directly administered *in vivo* or may be used to transfect cells *in vitro* which are then administered *in vivo*. In one embodiment, the antisense oligonucleotide may be delivered to macrophages and/or endothelial cells in a liposome formulation.

(c) Diagnostic Assays

10

30

The findings by the present inventors that TCAP is involved in inhibiting neuronal cell proliferation, in inducing an anxiogenic response and in inhibiting cell death in cells subject to stress allows development of diagnostic assays, particularly for conditions associated with the aberrant regulation of neuronal growth.

Accordingly, the present invention provides a method of detecting a condition associated with TCAP or preTCAP expression comprising assaying 15 a sample for (a) a nucleic acid molecule encoding a TCAP peptide or a fragment thereof or (b) a TCAP protein or a fragment thereof. The TCAP peptide preferably has a sequence as shown in SEQ.ID.NOS.: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103. In one particular embodiment of the invention the condition is associated with 20 the aberrant regulation of neuronal growth. Neuronal growth may include somatic and process development, mitogenesis or migration. Aberrant regulation of neuronal growth may occur via a disturbance in interneuronal connections and the associated signal molecules. Examples of such conditions include learning deficits, mental retardation, autism, schizophrenia, Alzheimer's Disease, Parkinson's Disease as well as affective disorders such as panic disorder, depression, anorexia nervosa and obsessive-compulsive disorder.

(i) Nucleic acid molecules

The nucleic acid molecules encoding TCAP as described herein or fragments thereof, allow those skilled in the art to construct nucleotide probes for use in the detection of nucleotide sequences encoding TCAP or fragments

thereof in samples, preferably biological samples such as cells, tissues and bodily fluids. The probes can be useful in detecting the presence of a condition associated with TCAP expression or monitoring the progress of such a condition. Accordingly, the present invention provides a method for detecting a nucleic acid molecule encoding a TCAP comprising contacting the sample with a nucleotide probe capable of hybridizing with the nucleic acid molecule to form a hybridization product, under conditions which permit the formation of the hybridization product, preferably under stringent conditions, and assaying for the hybridization product.

10

15

Example of probes that may be used in the above method include fragments of the nucleic acid sequences shown in SEQ.ID.NOS.:-18-20, 25-28, 33-36, 41-44, 49-52, 57-60, 65-68, 73-76, 81-84, 89-92, 97-100 or that wherein T can also be U or that encodes a peptide having an amino acid sequence selected from the group consisting of : SEQ. ID. NOS: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103 or that further has an amidation signal sequence (preferably GKR or GRR), at the carboxy terminus of said peptides, such as 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 97, 88, 95, 96. A nucleotide probe may be labelled with a detectable substance such as a radioactive label which provides for an adequate signal and has sufficient half-life such as 32P, 3H, 14C or the like. Other detectable substances which may be used include antigens that are recognized by a specific labelled antibody, fluorescent compounds, enzymes, antibodies specific for a labelled antigen, and chemiluminescence. An appropriate label may be selected having regard to the rate of hybridization and binding of the probe to the nucleic acid to be detected and the amount of nucleic acid available for hybridization. Labelled probes may be hybridized to nucleic acids on solid supports such as nitrocellulose filters or nylon membranes as generally described in Sambrook et al, 1989, Molecular Cloning, A Laboratory Manual (2nd ed.). nucleotide probes may be used to detect genes, preferably in human cells, 30 that hybridize to the nucleic acid molecule of the present invention preferably, 10

15

20

25

30

WO 03/093305 PCT/CA03/00622

nucleic acid molecules which hybridize to the nucleic acid molecule of the invention under stringent hybridization conditions as described herein.

-38 -

Nucleic acid molecules encoding a TCAP peptide can be selectively amplified in a sample using the polymerase chain reaction (PCR) methods and cDNA or genomic DNA. It is possible to design synthetic oligonucleotide primers from the nucleotide sequence shown in Figures 1 – 5 .for use in PCR. A nucleic acid can be amplified from cDNA or genomic DNA using oligonucleotide primers and standard PCR amplification techniques. The amplified nucleic acid can be cloned into an appropriate vector and characterized by DNA sequence analysis. cDNA may be prepared from mRNA, by isolating total cellular mRNA by a variety of techniques, for example, by using the guanidinium-thiocyanate extraction procedure of Chirgwin et al., Biochemistry, 18, 5294-5299 (1979). cDNA is then synthesized from the mRNA using reverse transcriptase (for example, Moloney MLV reverse transcriptase available from Gibco/BRL, Bethesda, MD, or AMV reverse transcriptase available from Seikagaku America, Inc., St. Petersburg, FL).

Patients may be screened routinely using probes to detect the presence of a TCAP gene by a variety of techniques. Genomic DNA used for the diagnosis may be obtained from body cells, such as those present in the blood, tissue biopsy, surgical specimen, or autopsy material. The DNA may be isolated and used directly for detection of a specific sequence or may be PCR amplified prior to analysis. RNA or cDNA may also be used. To detect a specific DNA sequence hybridization using specific oligonucleotides, direct DNA sequencing, restriction enzyme digest, RNase protection, chemical cleavage, and ligase-mediated detection are all methods which can be utilized. Oligonucleotides specific to mutant sequences can be chemically synthesized and labelled radioactively with isotopes, or non-radioactively using biotin tags, and hybridized to individual DNA samples immobilized on membranes or other solid-supports by dot-blot or transfer from gels after electrophoresis. The presence or absence of these mutant sequences is then visualized using methods such as autoradiography, fluorometry, or colorimetric reaction.

15

25

30

Suitable PCR primers can be generated which are useful for example in amplifying portions of the subject sequence containing identified mutations. Other nucleotide sequence amplification techniques may be used, such as ligation-mediated PCR, anchored PCR and enzymatic amplification as would be understood by those skilled in the art.

Sequence alterations may also generate fortuitous restriction enzyme recognition sites that are revealed by the use of appropriate enzyme digestion followed by gel-blot hybridization. DNA fragments carrying the site (normal or mutant) are detected by their increase or reduction in size, or by the increase or decrease of corresponding restriction fragment numbers. Genomic DNA samples may also be amplified by PCR prior to treatment with the appropriate restriction enzyme and the fragments of different sizes are visualized under UV light in the presence of ethidium bromide after gel electrophoresis.

Genetic testing based on DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels. Small sequence deletions and insertions can be visualized by high-resolution gel electrophoresis. Small deletions may also be detected as changes in the migration pattern of DNA heteroduplexes in non-denaturing gel electrophoresis. Alternatively, a single base substitution mutation may be detected based on differential primer length in PCR. The PCR products of the 20 normal and mutant gene could be differentially detected in acrylamide gels.

Nuclease protection assays (S1 or ligase-mediated) also reveal sequence changes at specific locations. Alternatively, to confirm or detect a polymorphism restriction mapping changes ligated PCR, ASO, REF-SSCP and SSCP may be used. Both REF-SSCP and SSCP are mobility shift assays that are based upon the change in conformation due to mutations.

DNA fragments may also be visualized by methods in which the individual DNA samples are not immobilized on membranes. The probe and target sequences may be in solution or the probe sequence may be immobilized. Autoradiography, radioactive decay, spectrophotometry, and fluorometry may also be used to identify specific individual genotypes.

(ii) Proteins

The TCAP protein may be detected in a sample using antibodies that bind to the protein as described in detail above. Accordingly, the present invention provides a method for detecting a TCAP protein comprising contacting the sample with an antibody that binds to TCAP and which is capable of being detected after it becomes bound to the TCAP in the sample.

Antibodies specifically reactive with TCAP, or derivatives thereof, such as enzyme conjugates or labeled derivatives, may be used to detect TCAP in various biological materials, for example they may be used in any known immunoassays which rely on the binding interaction between an antigenic determinant of TCAP, and the antibodies. Examples of such assays are radioimmunoassays, enzyme immunoassays (e.g. ELISA), immunofluorescence, immunoprecipitation, latex agglutination, hemagglutination and histochemical tests. Thus, the antibodies may be used to detect and quantify mutated TCAP in a sample in order to determine its role in particular cellular events or pathological states, and to diagnose and treat such pathological states.

In particular, the antibodies of the invention may be used in immuno-histochemical analyses, for example, at the cellular and sub-subcellular level, to detect TCAP, to localize it to particular cells and tissues and to specific subcellular locations, and to quantitate the level of expression.

20

Cytochemical techniques known in the art for localizing antigens using light and electron microscopy may be used to detect TCAP. Generally, an antibody of the invention may be labelled with a detectable substance and TCAP may be localised in tissue based upon the presence of the detectable substance. Examples of detectable substances include various enzymes, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, biotin, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include radioactive iodine I-125, I-

131 or 3-H. Antibodies may also be coupled to electron dense substances, such as ferritin or colloidal gold, which are readily visualized by electron microscopy.

Indirect methods may also be employed in which the primary antigenantibody reaction is amplified by the introduction of a second antibody, having specificity for the antibody reactive against TCAP. By way of example, if the antibody having specificity against TCAP is a rabbit IgG antibody, the second antibody may be goat anti-rabbit gamma-globulin labelled with a detectable substance as described herein.

Where a radioactive label is used as a detectable substance, TCAP may be localized by autoradiography. The results of autoradiography may be quantitated by determining the density of particles in the autoradiographs by various optical methods, or by counting the grains.

(d) Experimental Systems

10

15

20

25

30

Eukaryotic expression systems are preferred and can be used for many studies of TCAP encoding genes and gene product(s) including the production of large amounts of the peptide for isolation and purification, to use cells expressing the TCAP peptide as a functional assay system for antibodies generated against the peptide or to test effectiveness of pharmacological agents, to study the function of the normal complete peptide, specific portions of the peptide, or of naturally occurring and artificially produced mutant peptides.

Using the techniques mentioned, the expression vectors containing the TCAP peptide cDNA sequence or portions thereof can be introduced into a variety of mammalian cells from other species or into non-mammalian cells.

The recombinant cloning vector, according to this invention, comprises the selected DNA of the DNA sequences of this invention for expression in a suitable host. The DNA is operatively linked in the vector to an expression control sequence in the recombinant DNA molecule so that TCAP peptide protein can be expressed. The expression control sequence may be selected from the group consisting of sequences that control the expression of genes of eukaryotic cells and their viruses and combinations thereof. The expression

control sequence may be selected from the group consisting of the lac system, the trp system, the tac system, the trc system, major operator and promoter regions of phage lambda, the control region of the fd coat protein, early and late promoters of TCAP, promoters derived from polyoma, adenovirus, retrovirus, baculovirus, simian virus, 3-phosphoglycerate kinase promoter, yeast acid phosphatase promoters, yeast alpha-mating factors and combinations thereof.

Expression of the TCAP peptide in heterologous cell systems may also be used to demonstrate structure-function relationships as well as to provide cell lines for the purposes of drug screening. Inserting a TCAP DNA sequence into a plasmid expression vector to transfect cells is a useful method to test the influence of the peptide on various cellular biochemical parameters including the identification of substrates as well as activators and inhibitors of the gene. Plasmid expression vectors containing either the entire coding sequence for TCAP, or for portions thereof, can be used in *in vitro* mutagenesis experiments that will identify portions of the protein crucial for function. The DNA sequence can be manipulated in studies to understand the expression of the gene and its product. The changes in the sequence may or may not alter the expression pattern in terms of relative quantities, tissue-specificity and functional properties.

10

15

20

25

30

The invention also provides methods for examining the function of the TCAP peptide encoded by the nucleic acid molecules of the invention. Cells, tissues, and non-human animals lacking in expression or partially lacking in expression of the peptide may be developed using recombinant molecules of the invention having specific deletion or insertion mutations in the nucleic acid molecule of the invention. A recombinant molecule may be used to inactivate or alter the endogenous gene by homologous recombination, and thereby create a deficient cell, tissue or animal. Such a mutant cell, tissue or animal may be used to define specific cell populations, developmental patterns and *in vivo* processes, normally dependent on the protein encoded by the nucleic acid molecule of the invention.

-43 -

Immortalized TCAP responsive cell lines can also be used to identify modulators of TCAP such as noted in Example 13. It can also be used to identify effect of TCAP and TCAP modulators on particular markers. In so far as these markers are associated with the regulation of a medical condition, TCAP and/or the TCAPmodulators may be used in the diagnosis, regulation, and/or treatment of said medical condition.

(e) TCAP Modulators

10

15

In addition to antibodies and antisense oligonucleotides described above, other substances that modulate TCAP expression or activity may also be identified.

(i) Substances that Bind/ModulateTCAP

Substances that affect TCAP activity can be identified based on their ability to bind to TCAP.

Substances which can bind with the TCAP of the invention may be identified by reacting the TCAP with a substance which potentially binds to TCAP, and assaying for complexes, for free substance, or for non-complexed TCAP, or for activation of TCAP. In particular, a yeast two hybrid assay system may be used to identify proteins which interact with TCAP (Fields, S. and Song, O., 1989, Nature, 340:245-247). Systems of analysis which also may be used include ELISA. 20

Accordingly, the invention provides a method of identifying substances which can bind with TCAP, comprising the steps of:

- 1. reacting TCAP and a test substance, under conditions which allow for formation of a complex between the TCAP and the test substance, and
- 2. assaying for complexes of TCAP and the test substance, for free 25 substance or for non complexed TCAP, wherein the presence of complexes indicates that the test substance is capable of binding TCAP.

In another embodiment the invention provides a method of identifying substances that can modulate TCAP activity, such as by binding to TCAP or a TCAP substrate and thus potentially compete (i.e. inhibit TCAP activity), or enhance TCAP/substrate interaction (i.e enhancing TCAP activity), the method comprising:

-44 -

 reacting TCAP and a TCAP substate and a test substance, under conditions which allow for formation of a complex between the TCAP and the TCAP substrate, and

2. assaying for complexes of TCAP and the test substance, TCAP and TCAP substate, TCAP substrate and test substance, for free substance or for non complexed TCAP or TCAP substrate, wherein the presence of complexes with the test substance indicates that the test substance is capable of binding TCAP or TCAP substrate, as the case may be.

5

15

20

30

In another embodiment, a method of identifying modulators of TCAP comprises the use of a cell line that has known reaction to TCAP that can be monitored and monitoring said reaction in the presence of TCAP and a potential modulator.

The TCAP peptide used in the assay may have the amino acid sequence shown in SEQ.ID.NOS:, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103 or may be a fragment, analog, derivative, homolog or mimetic thereof as described herein.

Conditions which permit the formation of substance and TCAP complexes may be selected having regard to factors such as the nature and amounts of the substance and the peptide.

The substance-peptide complex, free substance or non-complexed peptides may be isolated by conventional isolation techniques, for example, salting out, chromatography, electrophoresis, gel filtration, fractionation, absorption, polyacrylamide gel electrophoresis, agglutination, or combinations thereof. To facilitate the assay of the components, antibody against TCAP or the substance, or labelled TCAP, or a labelled substance may be utilized. The antibodies, proteins, or substances may be labelled with a detectable substance as described above.

TCAP, or the substance used in the method of the invention may be insolubilized. For example, TCAP or substance may be bound to a suitable carrier. Examples of suitable carriers are agarose, cellulose, dextran, Sephadex, Sepharose, carboxymethyl cellulose polystyrene, filter paper, ion-

5

10

15

20

30

WO 03/093305 PCT/CA03/00622

-45 -

exchange resin, plastic film, plastic tube, glass beads, polyamine-methyl vinylether-maleic acid copolymer, amino acid copolymer, ethylene-maleic acid copolymer, nylon, silk, etc. The carrier may be in the shape of, for example, a tube, test plate, beads, disc, sphere etc.

The insolubilized peptide or substance may be prepared by reacting the material with a suitable insoluble carrier using known chemical or physical methods, for example, cyanogen bromide coupling.

The peptide or substance may also be expressed on the surface of a cell using the methods described herein.

The invention also contemplates assaying for an antagonist or agonist of the action of TCAP.

It will be understood that the agonists and antagonists that can be assayed using the methods of the invention may act on one or more of the binding sites on the protein or substance including agonist binding sites, competitive antagonist binding sites, non-competitive antagonist binding sites or allosteric sites.

The invention also makes it possible to screen for antagonists that inhibit the effects of an agonist of TCAP. Thus, the invention may be used to assay for a substance that competes for the same binding site of TCAP.

(ii) Peptide Mimetics

The present invention also includes peptide mimetics of TCAP. "Peptide mimetics" are structures which serve as substitutes for peptides in interactions between molecules (See Morgan et al (1989), Ann. Reports Med. Chem. 24:243-252 for a review). Peptide mimetics include synthetic structures which may or may not contain amino acids and/or peptide bonds but retain the structural and functional features of a peptide, or enhancer or inhibitor of the invention. Peptide mimetics also include peptoids, oligopeptoids (Simon et al (1972) Proc. Natl. Acad, Sci USA 89:9367); and peptide libraries containing peptides of a designed length representing all possible sequences of amino acids corresponding to a peptide of the invention.

Peptide mimetics may be designed based on information obtained by systematic replacement of L-amino acids by D-amino acids, replacement of

10

15

25

30

side chains with groups having different electronic properties, and by systematic replacement of peptide bonds with amide bond replacements. Local conformational constraints can also be introduced to determine conformational requirements for activity of a candidate peptide mimetic. The mimetics may include isosteric amide bonds, or D-amino acids to stabilize or promote reverse turn conformations and to help stabilize the molecule. Cyclic amino acid analogues may be used to constrain amino acid residues to particular conformational states. The mimetics can also include mimics of inhibitor peptide secondary structures. These structures can model the 3-dimensional orientation of amino acid residues into the known secondary conformations of proteins. Peptoids may also be used which are oligomers of N-substituted amino acids and can be used as motifs for the generation of chemically diverse libraries of novel molecules.

PCT/CA03/00622

Peptides of the invention may also be used to identify lead compounds for drug development. The structure of the peptides described herein can be readily determined by a number of methods such as NMR and X-ray crystallography. A comparison of the structures of peptides similar in sequence, but differing in the biological activities they elicit in target molecules can provide information about the structure-activity relationship of the target. Information obtained from the examination of structure-activity relationships can be used to design either modified peptides, or other small molecules or lead compounds that can be tested for predicted properties as related to the target molecule. The activity of the lead compounds can be evaluated using assays similar to those described herein.

Information about structure-activity relationships may also be obtained from co-crystallization studies. In these studies, a peptide with a desired activity is crystallized in association with a target molecule, and the X-ray structure of the complex is determined. The structure can then be compared to the structure of the target molecule in its native state, and information from such a comparison may be used to design compounds expected to possess.

(iii) Drug Screening Methods

In accordance with one embodiment, the invention enables a method for screening candidate compounds for their ability to increase or decrease the activity and/or expression of TCAP. The method comprises providing an assay system for assaying TCAP activity, assaying the activity in the presence or absence of the candidate or test compound and determining whether the compound has increased or decreased TCAP activity. Such compounds may be useful in treating conditions associated with aberrant regulation of neuronal growth.

Accordingly, the present invention provides a method for identifying a compound that affects TCAP activity or expression comprising:

15

20

25

30

- (a) incubating a test compound with a TCAP peptide or a nucleic acid encoding a TCAP peptide; and
- (b) determining an amount of TCAP peptide activity or expression and comparing with a control (i.e. in the absence of the test substance), wherein a change in the TCAP activity or expression as compared to the control indicates that the test compound has an effect on TCAP activity or expression.

In accordance with a further embodiment, the invention enables a method for screening candidate compounds for their ability to increase or decrease expression of a TCAP peptide. The method comprises putting a cell with a candidate compound, wherein the cell includes a regulatory region of a gene encoding TCAP operably joined to a reporter gene coding region, and detecting a change in expression of the reporter gene.

Such compounds can be selected from protein compounds, chemicals and various drugs that are added to the culture medium. After a period of incubation in the presence of a selected test compound(s), the expression of mutated TCAP can be examined by quantifying the levels of TCAP mRNA using standard Northern blotting procedure, as described in the examples included herein, to determine any changes in expression as a result of the test compound. Cell lines transfected with constructs expressing TCAP can also be used to test the function of compounds developed to modify the protein expression.

-48 -

(f) Therapeutic Uses

10

15

20

25

30

As previously discussed, TCAP of the invention is involved in cAMP, cGMP activity, neuronal growth and neurological development. Accordingly, the present invention provides a method of treating a condition associated with aberrant regulation of cAMP, cGMP, neuronal growth, neuronal communciation, or neuronal cell proliferation comprising the administering to a cell or animal in need thereof, an effective amount of agent that modulates TCAP expression and/or activity.

The term "agent that modulates TCAP expression and/or activity" means any substance that can alter the expression and/or activity of TCAP. Examples of agents which may be used to in administration include: a nucleic acid molecule encoding TCAP; the TCAP peptide as well as fragments, analogs, derivatives or homologs thereof; antibodies; antisense nucleic acids; peptide mimetics; and substances isolated using the screening methods described herein that can result in TCAP levels and/or function consistent with a person without the condition.

The term "effective amount" as used herein means an amount effective, at dosages and for periods of time necessary to achieve the desired results.

The term "animal" as used herein includes all members of the animal kingdom that respond to TCAP, preferably mammals, including both human and non-human animals, more preferably humans. In another embodiment, animals include domesticated animals, such as cows, horses, pigs, and sheep, In another embodiment, the animals are from the avian family and include chickens.

In accordance with another embodiment, the present invention enables gene therapy as a potential therapeutic approach to a condition, in which normal copies of the TCAP gene are introduced into patients to successfully code for normal TCAP peptide in several different affected cell types.

Retroviral vectors can be used for somatic cell gene therapy especially because of their high efficiency of infection and stable integration and expression. The targeted cells however must be able to divide and the expression of the levels of normal protein or peptide should be high. A TCAP

encoding gene can be cloned into a retroviral vector and driven from its endogenous promoter or from the retroviral long terminal repeat or from a promoter specific for the target cell type of interest (such as lymphoid cells). Other viral vectors that can be used include adeno-associated virus, vaccinia virus, bovine papilloma virus, or a herpesvirus such as Epstein-Barr virus. Gene transfer could also be achieved using non-viral means requiring infection in vitro. This would include calcium phosphate, DEAE dextran, electroporation, cationic or anionic lipid formulations (liposomes) and protoplast fusion. Although these methods are available, many of these are lower efficiency.

10

15

20

25

30

Anti-sense based strategies can be employed to inhibit TCAP gene function and as a basis for therapeutic drug design. The principle is based on the hypothesis that sequence specific suppression of gene expression can be achieved by intracellular hybridization between mRNA and a complementary anti-sense species. It is possible to synthesize anti-sense strand nucleotides that bind the sense strand of RNA or DNA with a high degree of specificity. The formation of a hybrid RNA duplex may interfere with the processing/transport/translation and/or stability of a target mRNA.

Hybridization is required for an antisense effect to occur. Antisense effects have been described using a variety of approaches including the use of antisense oligonucleotides, injection of antisense RNA, DNA and transfection of antisense RNA expression vectors.

Therapeutic antisense nucleotides can be made as oligonucleotides or expressed nucleotides. Oligonucleotides are short single strands of DNA which are usually 15 to 20 nucleic acid bases long. Expressed nucleotides are made using expression vectors such as an adenoviral, retroviral or plasmid vector. The vector is administered to the cells in culture, or to a patient, whose cells then make the antisense nucleotide. Expression vectors can be designed to produce antisense RNA, which can vary in length from a few dozen bases to several thousand.

Antisense effects can be induced by control (sense) sequences. The extent of phenotypic changes is highly variable. Phenotypic effects induced by

10

15

20

25

30

antisense are based on changes in criteria such as biological endpoints, protein levels, protein activation measurement and target mRNA levels.

(g) Methods And Uses Of TCAP For Modulation Of Stress Responses. Related Conditions And Anxiety

The invention also provides a method of detecting an anxiety disorder in an animal by monitoring the effect of TCAP on said animal. If the anxiety response decreases (anxiolytic) as compared to baseline level, than the animal may have a high anxiety related disorder. If the anxiety response of an animal increases in response to administration of TCAP, then the animal may have a low anxiety disorder.

The invention provides a method for normalizing the anxiety state of an animal by administering TCAP to said animal or up-regulating TCAP expression in said animal.

The invention also provides a method of inducing a desired anxiety state in an animal by:

- (a) determining whether the animal is a low or high anxiety animal; and
- (b) (i) administering an effective amount of TCAP or TCAP agonist (including a substance or nucleic acid molecule that up regulates TCAP expression) to increase anxiety in a low anxiety animal and decrease anxiety in a high anxiety animal; or
- (ii) administering an inhibitor of TCAP or TCAP antagonist (including a substance or nucleic acid molecule, such as a TCAP antisense nucleic acid molecule, that down regulates TCAP expression) to increase anxiety in a high anxiety animal and decrease anxiety in a low anxiety animal.

The invention also provides a method of detecting a modulator of TCAP activity comprising, administering TCAP to an animal with a known anxiety state (high or low anxiety), administering the potential modulator to said animal and comparing the response to TCAP in the presence and absence of said substance. If the animal's response to TCAP is different than that of baseline (Animal with TCAP alone, and no substance), then said substance is a

modulator of TCAP activity. Such compounds may be used to treat animals with undesired stress or anxiety levels.

In one embodiment, TCAP is TCAP-1, or analog, derivative or fragment thereof with similar biological activity.

In another embodiment a modulator of TCAP is administered to modulate or regulate the stress response in an animal.

5

15

20

25

Stress as used herein is any state that is not homeostasis or metabolic balance. Stress is also used to refer to the general state of stressors provoking stress responses (Sapolsky, 1992). Hoemeostasis refers to the normal stability of the internal environment (Sapolsky, 1992). A Stressor is defined as anything that disrupts physiological balance, be it physical or psychological (Sapolsky, 1992). For example, a stressor in the behavioural experimentals herein (Examples 10 and 11)is defined as a 120 dB tone using the acoustic startle test.

Stress Response as used herein is a physiological or behavioural response to stressor(s). For example, in the behavioural experiments (Examples 10 and 11), stress response is the startle response as measured by the acoustic startle testing apparatus (Med Associates, St. Albans, VT) following presentation of a 120 dB tone.

Anxiogenic as used herein means a stimulus, internal or external, that increases behavioural measures of anxiety in generally accepted tests. In Examples 10 and 11 herein, the behavioural measure of anxiety is the startle response as measured by the acoustic startle testing apparatus (Med Associates, St. Albans, VT) following the presentation of a 120 dB tone. An anxiogenic response is an increase in the startle response.

Anxiolytic as used herein means a stimulus, internal or external, that decreases behavioural measures of anxiety in generally accepted tests. In Examples 10 and 11 herein, the behavioural measure of anxiety is the startle response as measured by the acoustic startle testing apparatus (Med Associates, St. Albans, VT) following the presentation of a 120 dB tone. An anxiolytic response is a decrease in the startle response.

Anxiety refers to a generalized state of distress that may be prompted by generalized, non-specific cues, and involves physiological arousal, but often without organized functional behaviour (Lang et al., 2000). Animal models of anxiety attempt to represent some aspect of the etiology, symptomatology, or treatment of these disorders (Menard and Treit, 1999). In the present studies, the acoustic startle response was used as a measure of anxiety (Frankland et al., 1996, 1997). This test measures a simple reflex induced by a loud and unexpected auditory stimulus, and can be measured using standardized equipment (Med Associates, St. Albans, Vermont).

High Anxiety as used herein means an animal,e.g., rat, that has a post-vehicle injection startle response that is greater than the baseline response. An average startle response is calculated for the baseline trials and the post-injection (treatment) test periods. The treatment/baseline ratio is then calculated for each animal, e.g., rat. If this ratio is greater than 1, then the animal is classified as high anxiety.

10

15

20

30

Low Anxiety as used herein means an animal, e.g rat, that has a post-vehicle injection startle response that is less than the baseline response. The treatment/baseline ratio is calculated for each animal, e.g. rat, as above. If this ratio is less than 1, then the animal, e.g. rat, is classified as low anxiety.

Normal Anxiety as used herein means an animal, such as a rat that has a post-vehicle injection startle response that is the same as the baseline response. The treatment/baseline ratio is calculated for each rat as above. If this ratio is equal to 1, then the animal, e.g.rat, is classified as normal anxiety.

25 (h) The Role Of TCAP In The Regulation of Cell Proliferation and in the Treatment of Cancer

In one embodiment, the invention provides a method of regulating cell proliferation by administering an effective amount of TCAP to an animal in need thereof. In another embodiment, the TCAP is administered *in vivo* or *in vitro* to decreasing and/or inhibiting cell proliferation. In one embodiment the cell is cancerous. In another embodiment the cell is a neuronal tumour cell.

In one embodiment, TCAP or modulators thereof can be used in the treatment of cancer, such as neuroblastomas or other neuronal tumours.

(i) Pharmaceutical Compositions

20

The above described substances including nucleic acids encoding TCAP, TCAP peptides, antibodies, and antisense oligonucleotides as well as other agents that modulate TCAP activity or expression may be formulated into pharmaceutical compositions for administration to subjects in a biologically compatible form suitable for administration *in vivo*. By "biologically compatible form suitable for administration *in vivo*" is meant a form of the substance to be administered in which any toxic effects are outweighed by the therapeutic effects. The substances may be administered to living organisms including humans, and animals.

Thus in one embodment, the invention provides the use of TCAp or modulator there in the preparation of a medicament for the treatment of TCAP –related or TCAP regulated medical conditions. For instance, in the regulation of cell proliferation (e.g. cancer), stress, anxiety or neuronal communicative disorders.

Administration of a therapeutically effective amount of pharmaceutical compositions of the present invention is defined as an amount effective, at dosages and for periods of time necessary to achieve the desired therapeutic result. For example, a therapeutically effective amount of a substance may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance to elicit a desired response in the individual. Dosage regimes may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.

An active substance may be administered in a convenient manner such as by injection (subcutaneous, intravenous, etc.), oral administration, inhalation, transdermal application, or rectal administration. Depending on the route of administration, the active substance may be coated in a material to protect the compound from the action of enzymes, acids and other natural

conditions that may inactivate the compound. If the active substance is a nucleic acid encoding, for example, a TCAP peptide it may be delivered using techniques known in the art.

-54 -

The compositions described herein can be prepared by per se known methods for the preparation of pharmaceutically acceptable compositions which can be administered to subjects, such that an effective quantity of the active substance is combined in a mixture with a pharmaceutically acceptable Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack 10 Publishing Company, Easton, Pa., USA 1985) or Handbook of Pharmaceutical Additives (compiled by Michael and Irene Ash, Gower Publishing Limited, Aldershot, England (1995)). On this basis, the compositions include, albeit not exclusively, solutions of the substances in association with one or more pharmaceutically acceptable vehicles or diluents, and may be contained in buffered solutions with a suitable pH and/or be iso-osmotic with physiological fluids. In this regard, reference can be made to U.S. Patent No. 5,843,456. As will also be appreciated by those skilled, administration of substances described herein may be by an inactive viral carrier. In one embodiment TCApP can be administered in a vehicle comprising saline and acetic acid.

20 (i) Kits

30

The reagents suitable for carrying out the methods of the invention may be packaged into convenient kits providing the necessary materials, packaged into suitable containers. Such kits may include all the reagents required to detect a nucleic acid molecule or peptide of the invention or conjugates of a nucleic acid molecule or peptide of the invention and another substance, such as a potential modulator of TCAP, and/or the detection of an indicator of TCAP activity, such as cAMP or cGMP, in a sample by means of the methods described herein, and optionally suitable supports useful in performing the methods of the invention.

In one embodiment of the invention, the kit includes primers which are capable of amplifying a nucleic acid molecule of the invention or a predetermined oligonucleotide fragment thereof, all the reagents required to

WO 03/093305

5

15

20

25

30

produce the amplified nucleic acid molecule or predetermined fragment thereof in the polymerase chain reaction, and means for assaying the amplified sequences. In one embodiment, the primers can amplify a nucleic acid encoding a TCAP protein, preferably the protein of SEQ.ID.NO.:.

The kit may also include restriction enzymes to digest the PCR products. In another embodiment of the invention the kit contains a nucleotide probe which hybridizes with a nucleic acid molecule of the invention, reagents required for hybridization of the nucleotide probe with the nucleic acid molecule, and directions for its use. In a further embodiment of the invention, the kit includes antibodies of the invention and reagents required for binding of the antibody to a TCAP peptide of the invention in a sample.

Before testing a sample in accordance with the methods described herein, the sample may be concentrated using techniques known in the art, such as centrifugation and filtration. For the hybridization and/or PCR-based methods described herein, nucleic acids may be extracted from cell extracts of the test sample using techniques known in the art.

The following non-limiting examples are illustrative of the present invention:

EXAMPLES

<u>Example 1</u> Identification of Teneurin C-Terminal Associated Peptide (TCAP)

A. Identification of TCAP mRNA

Cloning of mRNA. A rainbow trout hypothalamic cDNA library was constructed as previously described (Barsyte et al., 1999) using a unidirectional vector (Unizap, Stratagene, La Jolla CA). A total of 600,000 clones were screened using a randomly labelled 305-bp hamster urocortin cDNA probe (Robinson et al., 1999)[SEQ. ID. NO 120 –5'-att cac cgccgc tcg gga tct gag cct gca ggc gag cgg cag cgg gaa gac ctt ccg ctg tcc atc gac ctc aca ttc cac ctg cta cgg acc ctg gag atg gcc cgg aca cag agc caa cgc gag cga gca gag cag aca cag agc cag cgg tgt ggc aag tga tcg gcc cgg tgt ggg acc cca aca gcc cgg tgt ggc aca gcc cgg tgt ggg acc cca aca gcc cgg

5

20

30

WO 03/093305 PCT/CA03/00622

ccg aag tcg gct tag tcc cgc ggt gca gcg cct ccc aga gtt acc ctg aac aat ccc gc-3'.] Primary, secondary and tertiary screens all utilized the same probe. The size of the clones, positive after the final screen, were determined by restriction analysis then sequenced using automated Big Dye methods.

Five positive clones were isolated from the rainbow trout hypothalamic library. Of these, one represented a partial sequence of a putative rainbow trout Ten-m3 homologue (Figure 1). The clone was 2986 bases long covering the translated portion of 769 bases]. SEQ. ID. NO. 1 shows a 756 base portion [SEQ. ID. NO. 2 thereof and a 3' untranslated region of 734 bases. The stop codon and translated portion were identified by alignment with the mouse (accession number AB025412)[SEQ. ID. NO: 132], human (accession number AK027474)[SEQ. ID. NO: 133] and zebrafish (accession number AB026976))[SEQ. ID. NO: 134], Ten M3 orthologues. Based on the human gene sequence (Locus Link ID# 10178) using Locus Link on the NICB server, the rainbow trout sequence included the terminal 6 exons of the gene. The final 3' exon encoded a 251 amino acid residue sequence [SEQ. ID. NO. 3] with a 40-41-residue carboxy-terminal sequence [SEQ. ID. NOS. 13 and 14, respectively] suggestive of a bioactive peptide. A putative amidation signal was indicated by the GKR amino acid motif immediately adjacent to the 40-41 residue carboxy terminal sequence and TAA stop codon. 40 residues upstream, a PC-7-like cleavage signal was present immediately followed by a glutamine suggesting that the putative free peptide would begin with a pyroglutamic acid. This cleavage site is not necessarily processed in the normal way and can create a 40 or 41 amino acid residue mature peptide (starting at 43 or 44 amino acid residues upstream from the stop codon).

B. Extraction of Free TCAP Peptide

Tissue Collection: Mouse brains (Mus musculus; n=10; 1.8g) were collected and stored at -80°C for one month, at which time they were removed and placed immediately into liquid nitrogen. Brain tissue was crushed using a mortar and pestle and powdered in the presence of liquid nitrogen.

Activation of C18 packing material: Bondpack® C18 bulk packing material (1g; 125Å; 37-55µm; Waters Corporation, Milford, MA, USA) was activated with 100% methanol (5ml), vortexed and left to stand (5min.). Excess methanol was removed. C18 was then washed in duplicate with PBS (5ml, pH 7.6). An additional PBS aliquot was added (5ml), vortexed and centrifuged (5000rpm; 5min); the supernatant was discarded.

Tissue Extraction: Acetonitrile (90%) and TFA (0.05%) were added to powdered brains in a 5:1 volume to weight ratio, mixed for 1 hr on an aliquot mixer rocker. The mixture was centrifuged (8000rpm X 20 min.); the supernatant was removed and saved. The remaining solids were back-extracted in acetonitrile (90%) and TFA (0.05%) in 40% of the solvent volume used in the initial extraction, vortexed and centrifuged as described previously. The supernatants were pooled and combined with activated C18 packing material, vortexed, mixed (1hr) and centrifuged (8000rpm X 10min). The supernatant was discarded while the pellet was subjected to three successive, independent acetonitrile extractions of 20%, 50% and 90% respectively. Acetonitrile (5ml) was added to the pellet, vortexed, mixed (20min) and centrifuged (6000rpm X 10min.). Resulting supernatant was saved and concentrated to 800µl on a vacuum concentrator (Brinkman Instruments) for HPLC analysis while the pellet was re-extracted in the same manner.

HPLC Purification of free TCAP in brain extracts

20

25

30

A Beckman model 126 HPLC System Gold (Beckman, Palo Alto, CA), attached to a UV detector module 168 and C18 column (3.5 um particle size; Waters Inc) was used to purify the TCAP peptide extracted from mouse brains (n=10).

A single injection (800ul) was applied to the column through a 1ml injection loop and carried to the column at a flow rate of 1ml/min using a dual solvent system (A: 0.05% trifluoroacetic acid (TFA); B: 80% acetonitrile, 0.05% TFA). Following an initial isocratic period of 10min, mobile phase B was increased from 10% to 60% over 75min, held isocratically for 5 min and

returned to 10% over 5 min. Fractions were collected (1ml/fraction), aliquoted (500ul) and concentrated to 50ul for analysis using mass spectrometry.

Example 2 Detection of the Cleaved TCAP in Cell and Tissue Extracts

HPLC as described in Example 1 can be used to detect TCAP. Mass Spectroscopy can also be used. Other detection methods can also be combined with HPLC, Mass Spectroscopy or used on their own, such as radio immunoassays, ELISAs, capillary electrophoresis, immunofluorescence confocal microscopy. Mass spectrometric methods identify molecules on the basis of a charged molecule's (ion) mass to charge ratio. A precise determination of the molecules mass is then determined allowing for 10 identification of the molecule. Larger peptides can be sequenced by subsequent fragmentation of the peptide in a collision chamber. This causes preferential breaking of the peptide bonds. The amino acid and peptide fragments are identified by their mass to charge ratio. Radioimmunoassays or 15 enzyme-linked immunosorbant assays (ELISA) utilize an antiserum specific for the molecule of interest. The molecule (TCAP) competes with a tagged structurally similar reference molecules to bind the antibody. The bound and unbound fractions are separated from each other and the quantity of remaining tagged TCAP is measured. This measurement is proportional to the amount of unlabeled TCAP present. Capillary electrophoresis can also be 20 used to identify TCAP using an antibody reaction. In this method, the unbound component is separated from the bound component by migration in an electric field. Immunofluoresence confocal microscopy ulitizes a specific antibody bound to TCAP and a secondary antibody that binds to the primary antibody. The secondary antibody is effectively conjugated to an enzyme that catalyzes 25 a fluorescent reaction upon introduction of the appropriate substrate. The amount of fluorescence is proportional to the amount of TCAP and is measured using digital image analysis.

30

Samples were dissolved in 5ul of 1:1 (vol/vol)Acetonitrile:water (plus 0.1%(vol/vol) formic acid). Typically, 2-3ul of each sample was loaded on a glass capillary probe tip and analyzed on a Micromass Q-TOF (hybrid quadrupole time of flight) mass spectrometer (Micromass, Manchester, UK).

5 All spectra were acquired under nanospray, positive-ion mode. For MS measurements the quadrupole RF value was set at 0.5. The scanning region (m/z) was between 200-2000 with a scan time of 1 s and a dwell time of 0.1 s. The data was analyzed using MassLynx program (Micromass, Manchester, UK).

10

15

20

25

30

Example 3 Synthesis and Solubilization of Peptide

Rainbow trout TCAP-3 [SEQ. ID. NO: 13], wherein the terminal isoleucine (I) was amidated [to give SEQ. ID. NO. 15] was synthesized on an automated peptide synthesizer, Model Novayn Crystal (NovaBiochem, UK Ltd. Nottingham, UK) on PEG-PS resin using continuous flow Fmoc chemistry (Calbiochem-Novabiochem Group, San Diego, CA). Eight times excess diisopropyl ethy amine (Sigma Aldrich Canada Ltd) and four times excess Fmoc-amino acid activated with HATU (O-(7-azabenzotriazol-1-,3,3tetramethyluronium hexfluorophosphate, Applied Biosystems, Foster City, CA) at a 1:1 (mole/mole) ratio were used during the coupling reaction. The reaction time was 1 hour. A solution of 20% piperidine (Sigma-Aldrich Canada Ltd) in N,N-dimethylformide (DMF; Caledon Laboratories Ltd, Canada was used for the deprotection step in the synthesis cycle. The DMF was purified in-house and used fresh each time as a solvent for the synthesis. The cleavage/deprotection of the final peptide was carried out with trifluoroacetic acid (TFA), thioanisole, 1,2 ethandithiol, m-cresole, triisopropylsilane, and bromotrimethyl silane (Sigma-Aldrich Canada Ltd) at a ratio of 40:10:5:1:1:5. Finally, it was desalted on a Sephadex G-10 column using aqueous 0.1% TFA solution and lyophilized. The peptide structure was confirmed by reversephase HPLC, amino acid analysis and atmospheric pressure ionization mass spectrometry. The HPLC and Mass spectrometry can be done as described in Examples 1 and 2 herein. See above method. The same method was used to synthesize mouse TCAP-1.

The peptide was solubilized using a number of different methods, however, the best results were obtained using alpha cyclodextrin. Acetic acid (1ul) was added to dry TCAP at room temperature, vortexed and left to stand (30min). Alpha-cyclodextrin (company) was then added in a 4:1 volume to dry weight ratio (0.25ug/ul), vortexed, and concentrated to 10% of the original volume on an Eppendorf Vacufuge at 30 °C for 2h and room temperature for the remainder of the process. Distilled, de-ionized water and physiological saline were then added independently in a 1:1 and 3:1,volume to concentrated volume ratio respectively. This solution (0.5ug/ul) was vortexed and centrifuged (11,000 rpm; 3 min). The supernatant was aliquoted and stored at 4 °C. The same method was used to synthesize and solubilize other TCAPS including mouse TCAP-1.

15 Example 4 Peptide Sequence Relationships and Phylogeny

10

20

25

30

The rainbow trout Teneurin 3 exon including the TCAP portion shows a high degree of conservation among its orthologues in zebrafish, mouse, and humans (Figure 2). However the trout sequences also showed high sequence similarity with four mouse Teneurin protein paralogues designated as Teneurin 1 to 4 (Figure 3) and similarly four human paralogues were found in the sequence data base (Figure 4). All possess a high degree of similarity among members of the protein family. The Teneurin protein family represents a type II transmembrane protein where the carboxy terminus is displayed on the extracellular face of the plasma membrane (Figure 6 A and B). The TCAP portion represents only the C-terminal residues of the protein. The TCAP sequence is highly conserved across vertebrate species and even the Drosophila version possesses about 60% sequence identity (accession number AF008228) (Figure 7A and B).

Figure 5 illustrates the preTCAP nucleotide coding sequences for human, mouse, zebrafish and rainbow trout plus the stop codon. The coding

PCT/CA03/00622

sequences for TCAP (40 and 41 amino acid residue sequences) can be easily determined from the figure.

A comparison of the conserved motifs within the primary structure of the TCAP and CRF families show a match (Figure 9). Conserved motifs of I/L-S-X-X (X)- L/V [SEQ. ID. NO: 129] at the amino terminus, L/V-L/I-X-V/aliphatic residue [SEQ. ID. NO: 130] in the middle and the motif N-I/A-H/basic residue-I/L/F-aliphatic residue [SEQ. ID. NO: 131] at the carboxy terminus. A more compelling gage of similarity, however, is shown by the secondary structure predictions (Figure 10). TCAP shows a highly similar polarity profile in comparison to others in the peptide superfamily. Hydrophobicity, using a Kyte-Doolittle plot shows a general similarity within the middle and carboxy terminal regions, but a more hydrophobic amino terminal region.

Although CRF and urocortin show high sequence similarity for each other and urocortin 2 and 3 show high similarity, the level of identity between these two paralogous lineages is only about 11%. The level of identity among TCAP members is about 60% (Figure 8). CRF and TCAP belong to a much larger peptide family that also includes the insect diuretic peptides (Figure 11). Key motifs, outlined in Figure 9 show alignment when the insect diuretic peptides are included.

20 Example 5 PCR Expression of Teneurin mRNA

25

30

The presence of the Teneurin protein in brain extracts and on cell lines were established using PCR. Primers utilized in this experiment were designed from 3'-ends of the published sequences for mouse Ten-M 1, 2, 3, and 4 [SEQ. ID. NOS: 4 – 7]. The TCAP-1 forward primer (25mer: 5'-ACGTCAGTGTTGATGGGAGGACTA-3')[SEQ. ID. NO: 121] is complementary to nucleotides 7938- 7962 of Teneurin 1. The Teneurin 1 reverse primer (27mer: 5'-CCTCCTGCCTATTTCACTCTGTCTCAT-3') [SEQ. ID. NO: 122] is specific for nucleotides 8262-8288 of Teneurin 1. The primers were predicted to generate a Ten-M1 PCR product of 351 bps. The Teneurin 2 forward primer (25mer: 5'-TCGAGGGCAAGGACACACACTACTT-3') [SEQ. ID. NO: 123] is complementary to nucleotides 7920-7944 of Teneurin 2. The Teneurin 2 reverse primer (26mer: AAGAACTGGATGTTGCTGCTACTGTC-

3') [SEQ. ID. NO: 124] is complementary to nucleotides 8354-8379 of Teneurin 2. The primers were predicted to get a Teneurin 2 PCR product of Teneurin 3 forward primer (25mer: The bps. CAACAACGCCTTCTACCTGGAGAAC) [SEQ. ID. NO: 12]5 is complementary to nucleotides 7681-7705 of Teneurin 3. The Teneurin 3 reverse primer (21mer: 5'-TGTTGTTGGCACTGTCAGCCA-3') [SEQ. ID. NO: 126] is specific for nucleotides 8139-8159. The predicted PCR product for Teneurin 3 primers is 479 bps. The Teneurin 4 forward primer (23mer: 5'-TTTGCCTCCAGTGGTTCCATCTT-3') [SEQ. ID. NO: 127] is complementary to nucleotides 7868-7890 of Teneurin 4. The Teneurin 4 reverse primer (24mer: 5'-TGGATATTGTTGGCGCTGTCTGAC-3') [SEQ. ID. NO: 128] is complementary to nucleotides 8446-8469 of Teneurin 4. The primers were predicted to generate a Teneurin 4 PCR product of 602 bps.

The total RNA of Gn11 cells was isolated using RNeasy Mini Kit (Qiagen). First strand synthesis was performed by using First-Strand Beads (Amersham Pharmacia Biotech). Briefly, 2µg of total RNA was mixed with the first strand reaction beads (include buffer,dNTPs, murine reverse transcriptase, RNAguard, and RNase/DNase-free BSA) and 0.2µg random hexamer pd(N)₆ in a volume of 33µl. Extension was carried out for 60 minutes at 37°C.

15

20

The PCR for Teneurin 1,2,3,and 4 was performed respectively using 1µl cDNA with a final reaction volume of 50µl containing 0.2mM each dNTP, 5µl 10xbuffer, 1.5mM MgCl, 1ul Taq DNA polymerase, 0.2µM each Teneurin primer and 0.1µM each GAPDH primer (forward and reverse primers; The expected GAPDH DNA≈200bps). The initial denaturation was set over an interval of 3 min at 94°C. After 35 cycles of 1 min. at 94°C, 1 min. at 60°C, and 1 min. at 72°C, a 5 min. extension was performed at 72°C. The PCR products were examined by 1.5% agarose gel electrophoresis. The appropriate size DNAs of Teneurin 1, 2 and 4 were extracted from the gel using DNA extraction kit (MBI-Fermentas). The Teneurin 1, 2 and 4 DNAs recovered from the gel were subcloned by using the TOPO TA Cloning kit (Invitrogen Corporation). Briefly, the pCR® 2.1-TOPO plasmids with Teneurin 1, 2 or 4

-63 -

DNA were transformed into chemically competent E. coli and cultured on LB agar plates and in liquid LB medium successively. The products were purified by using the Perfectprep Plasmid Midi Kit (Eppendorf). Positive results were selected by digesting the plasmids using the restriction endonuclease EcoRI and then by electrophoresis. The positive plasmids were sequenced commercially using T7 sequencing primer (AGTC Corp, Toronto, Canada).

Results

20

25

30

A positive amplification product was obtained from adult mouse cells for Teneurin 1, 2 and 4 using PCR (Figure 12). Similarily, the same products were obtained using mRNA extracted from the immortalized neuronal line, Gn11. A neuronal cell line isolated from the same tumour, NLT, showed expression of only Teneurin 2 and 4. However, a neuroblastoma cell line, Neuro2a appeared to express all four forms of the Teneurin gene family. The Neuro2a is the least differentiated of the cell lines used. A rat fibroblast cell line, TGR1, also showed the presence of paralogues 1, 2 and 4 (data not shown). The identity of the amplication signal was confirmed by sequence analysis. TCAP-1 primers generated a 351 bps sequence and showed 99.43% coincidence with Teneurin 1 DNA. TCAP-2 primers generated a 455 bps sequence and showed 99.56% coincidence with Teneurin 2 DNA. TCAP-4 primers generated a 602 bps sequence and showed 99.83% coincidence with Tenuerin 4 DNA. The TCAP 3 primers amplified a 306 bp sequence from mouse neuroblastoma Neuro2a cells. The amplified sequence possesses a 173-bp deletion upstream of the TCAP cleavage signal. This finding indicates that the TCAP-3 primers are specific, but that the Neuro2a cells appear to possess a variant of Teneurin 3.

Example 6 Cell Proliferation Experiments

Several cell lines were utilized initially to establish a model system for which the TCAP could be evaluated. Initially the mouse neuroblastoma cell line, Neuro2a, the human breast cancer cell line MCF-7, mouse GnRH-secreting immortalized neuron lines NLT and Gn11 COS-7 cells, and the rat fibroblast cell line TGR1. Preliminary studies indicated that the cells were

responsive to the effects of TCAP Rainbow Trout TCAP-3, SEQ.ID. NO:.13: amidated [SEQ. ID. NO. 15], in that the cells showed a decrease in cell proliferation (data not shown). The studies were performed essentially in accordance with the cell proliferation studies below. Gn11 and TGR1 cells were selected to be used for further studies.

Pharmacological Test of TCAP on fibroblast Cell Lines TGR1 and HO16.4c: 2 plates containing $3\times10^4\,\mathrm{TGR1}$ cells/well and 2 plates containing $3\leftrightarrow10^4\,\mathrm{HO16.4c}$ cells/well in full-serum medium were prepared for testing. Each 6-wells in the plate was designed as a testing group. 24 hours later, aliquots (20 µl) of drugs) were added in a 12-hours interval after changing the medium using fresh full-serum DMEM. The cells were observed through a microscope per 4-hours. The numbers of the two cell lines were found significantly lower in TCAP groups at 48-hrs and 72-hrs stages. Cells were counted at 48 hours and 72 hours after being treated. Two plates containing $3\times10^4\,\mathrm{Gn11}$ cells/well in full-serum medium were prepared for testing. Each 6-wells in the plate was designed as a testing group. 24 hours later, aliquots (20 µl) of drugs (vehicle:saline+acetic acid; $10^{-6}\,\mathrm{M}$ TCAP-3) were added in a 12-hours interval after changing the medium using fresh full-serum DMEM. The cells were observed through a microscope per 4-hours. Cells were counted at 48 hours and 72 hours after being treated.

10

20

25

30

A concentration of 10^{-6} M of TCAP administered at 0, 12 24 and 36 hours decreased the proliferation of a mouse neuronal cell line (Gn11) (Figure 13A – 48 hrs and 13B – 72 hrs), a rat fibroblast cell line(TGR1) by 50-60% at 48 hours (Figure 14)and a HO16.4c cells at 48 hours relative to the vehicle treated cells (Figure 15).

The ability of TCAP to inhibit cell proliferation in the above-noted cell lines, indicates that the peptide would be useful in the regulations of cell proliferation and associated medical conditions such as in the treatment of cancer TCAP could be used to arrest tumour growth and inhibit metastasis. In a preferred embodiment, TCAP could be used in the treatment of neuronal tumors.

Example 7 Cyclic Nucleotide Experiments

I. A. cAMP and cGMP assays

Approximately 10⁶ Gn11 cells were treated with 20 uL of 10⁻⁹, 10⁻⁸, or 10⁻⁷ or 10⁻⁶M TCAP-1 or TCAP-3 and incubated at 37 C for 10 minutes. Medium and peptide was removed and the cells were lysed using 350 uL of a 0.1 M HCL 0.1 % Triton X-100 solution. Using the same concentrated HCl and Triton X-100 solution and a provided standard concentrate, five standard solutions were made up with concentrations of 200, 50, 12.5, 3.12 and 0.78 pmol/ml. All reactions were done in triplicates. Wells were set up for blanks, non-specific binding, total activity(TA), zero binding, five standards, and 12 10 samples. Using a 96-well IgG coated plate, 50 uL of neutralizing reagent were pipetted into each well except the blanks. 150 uL of the 0.1 M HCL/0.1 % Triton solution was pipetted into the NSB wells and 100 uL of this solution was pipetted into the zero binding wells. 100 uL of the standards and 100 uL of the samples were pipetted into their respective wells. 50 uL of conjugate were pipetted into each well except the TA and the blank wells. 50 uL of the cAMP antibody were pipetted into each well except the TA, blank and NSB wells. The plate was allowed to shake overnight. The following morning, the wells were rinsed three times with a 10 times diluted wash buffer solution. 50 uL of conjugate was added to the TA wells and 200 uL of p-Npp substrate 20 was added to each well. The plate was covered again and incubated at room temp for one hour. At this point, 50 uL of stop solution was added to all wells and the absorbance was read at 405 nm using a Spectramax spectrophotometer. Three levels of controls were utlized: A blank tube which provides a measure of any reactivity between p-Npp substrate and IgG coated wells.;TA: measure of activity of alkaline phosphotase in conjugate, if any; NSB: measure of binding of conjugate to plate or to antibody; Bo: measure of binding conjugate to antibody (no sample and conjugate competition).

B. Results

In the first set of experiments, Gn11 cells were treated with 10⁻⁶ M of rtTCAP-3 SEQ. ID. NO:13, amidated [SEQ. ID. NO: 15], see above, rat

-66 -

urocortin or the vehicle, as above (Figure 16A). TCAP reduced cAMP accumulation in these cells to 58.9 ± 4.8 % of the vehicle- treated cells (p<0.01). Urocortin induced a non-significant decrease of 89.2 ± 6.3 % of the control cells. In cGMP accumulation experiments, TCAP reduced cGMP accumulation to 38.5 ± 8.8 % of the control cells (p<0.01) whereas urocortin caused a decrease to 50.0 ± 8.5 % of the control cells. (Figure 16B)

II. A. cAMP Assays

20

25

Gn11 cells were treated when the confluence reached 70%. The cells were treated with 10⁻⁹, 10⁻⁸ or 10⁻⁷M TCAP, urocortin and vehicle, separately, and incubated in incubator at 37 °C. (Details below) Medium was removed and the cells were washed by PBS one time, and then were lysed using 600 uL of 0.1 M HCL solution. After freezing/thawing 3 times, the samples were transferred into microcentrifuge tubes. At the same time, squeezed the cells by 3 ml syringe and 22G needle 20 times. Centrifuge 4000rpm ×5 min, the supernatant of each sample was aspirated and kept in the -20 °C freezer until the cAMP or cGMP assay was carried on. Using the same concentrated HCI and a provided standard concentrate, five standard solutions were made up with concentrations of 200, 50, 12.5, 3.12 and 0.78 pmol/ml. All reactions were done in duplicates. Wells were set up for blanks, non-specific binding (NSB), total activity (TA), zero binding (B0), five standards, and all samples. Using a 96-well IgG coated plate, 50 uL of neutralizing reagent were pipetted into each well except the blanks and TA. 150 uL of the 0.1 M HCL was pipetted into the NSB wells and 100 uL of this solution was pipetted into the zero binding wells. 100 uL of the standards and 100 uL of the samples were pipetted into their respective wells. 50 uL of conjugate were pipetted into each well except the TA and the blank wells. 50 uL of the cAMP antibody were pipetted into each well except the TA, blank and NSB wells. The plate was allowed to shake overnight (18h) at 200 rpm at 4 °C. The next day, the wells were rinsed three times with a 10 times diluted wash buffer solution. After each well was dried thoroughly, 5 uL of conjugate was added to the TA wells and 200 uL of p-Npp substrate was added to each well. The plate was covered again and incubated at room temp for one hour without shaking. At

-67 -

this point, 50 uL of stop solution was added to all wells and the absorbance was read at 405 nm and 580nm using a Spectramax spectrophotometer. The data of 580 nm were provided the background of each well, which were substracted from the data of 405 nm.

5 B. Results

10

15

10⁻⁸ M TCAP induced a significant increase in cAMP accumulation at 15 minutes after introduction of the peptide and fell to normal limits within 30 minutes of treatment (Figure 17A). Urocortin was used for the purpose of a positive control. Figure 17B illustrates cAMP levels in Gn11 cells in the presence of 10⁻⁴ M 3-isobutyl-1 methyl xanthine (IBMX), a phosphodiesterase inhibitor used to boost cAMP induced by treatment of 10⁻⁸ MTCAP or urocortin. Figure 17C is a bar graph illustrating cAMP accumulation over 30 minutes in Gn11 cells by administration of various concentrations of TCAP or Urocortin in the presence of IBMX. Figure 17D is a bar graph illustrating inhibition of 10⁻⁶ M forskolin- stimulated cAMP by 10⁻⁸ MTCAP or urocortin.

Example 8 Behavioural Studies

A. Brain Stimulation Reward Behaviour Experiments

Rats can be trained to bar press for electrical stimulation of the lateral hypothalamus which activates cholinergic nuclei of the pontine tegmentum and their projections to dopaminergic paths of the forebrain. Once reliable baseline rates of bar pressing have been established for a given current, the consequences of various drugs for the activity of this cholinergic dopaminergic system can be assessed by making injections of substances intracranially and then observing their effects on rates of self stimulating behaviour. TCAP-3 SEQ. ID. NO: 13, amidated, [SEQ. ID. NO. 15] see above, at a concentrations of 1 nM prepared in physiological saline was injected by canulae into the laterodorsal tegmental nucleus through guide cannulae. The rate of bar pressing was compared to the vehicle treated rats.

30 B. Results

A robust inhibition of self-reward stimulus occurred when TCAP at 1 nM (4.2 pg/ul) was injected into the caudal midbrain of rats (Figure 18). In both forebrain (lateral ventricle) and midbrain injections the effect was reversible with the rats behaviour returning to normal limits after about 60 minutes.

Example 9 Preliminary in situ Hybridization Results

The first in situ hybridization data indicate that the Teneurin I gene (TCAP-1) is highly expressed in adult rat brain. The regions of greatest expression occur in the lateral septum, bed nucleus of the stria terminalis ventral medial nucleus of the hypothalamus and ventral premammalary nucleus. Lesser expression occurs in the hippocampus and amygdala. This expression pattern is consistent with peptides regulating the stress response (see above) in emotional and mood disorders. These data indicate that TCAP plays a primary role in stress and anxiety regulation rather than one of neurogenesis and neurodegeneration. The Teneurin 4 (TCAP-4) expression also occurs in the adult brain but Teneurin 1 is stronger.

20 A. Methods

5

The methods were performed as previously described (Simmons et al., 1989; Ericsson et al., 1995) using ³⁵S-labelled antisense and sense (control) probes higher high stringency conditions (50% formamide with final washes at 0.2 SSC at 60 C). The ³⁵S-labelled cRNA probes were generated from 350 bp cDNA of exon 33 including the TCAP portion by in vitro transcription with the appropriate polymerases (T3 for antisense and T7 for sense).

B. Results

Results are shown in Figure 20. On the left column is the expression of TCAP-1 mRNA using the antisense probe, and on the right column, the sense probe. A-B. central nucleus of the amygdala (CeA); C-D. bed nucleus of the stria terminalis, medial (BSTM); E-F: premammilary ventral nucleus (PMV).

Abbreviations: 3V, third ventricle; fx, fornix; ic, internal capsule; LV, lateral ventricle; MeA, medial nucleus of the amygdala; opt, optic tract; st, stria terminalis. Bars = 300 μ m (A-B) and 500 μ m (C-F)

The in situ hybridization data indicate that the TCAP-1 gene is highly expressed in adult rat brain. The expression of the C-terminal teneurin-1 exon including the TCAP-1 region was restricted to hypothalamic and limbic regions (Fig 20 A-F). The regions of greatest expression occur in the lateral septum, bed nucleus of the stria terminalis ventral medial nucleus of the hypothalamus and ventral premammalary nucleus. Lesser expression occurs in the hippocampus and amygdala. This distribution is consistent with TCAP playing a modulatory role with emotionality, anxiety and motivation. The presence of TCAP-1 expression in the ventral premammillary nucleus is of particular interest as there are no known CRF receptors found in this region (Li et al., 2002). There was no evidence that the TCAP containing exon was expressed 15 in regions associated with neurogenesis, such as the olfactory lobes or subependymal layers of the lateral ventricles. Despite the previous recognition of the teneurin proteins, their expression in adult brain has never been examined. However, teneurin 1 and 4 expression has been observed in the diencephalon of developing mouse, chick and zebrafish brain (Rubin et al., 1999; Ben-Zur et al, 2000; Mieda et al., 1999).

These data support the hypothesis that TCAP primary role is one of stress and anxiety regulation.

Example 10 Chronic TCAP study: The Role of TCAP In Modulating The 25 Stress Response

A. Method

20

30

1. Wistar Rats were tested in acoustic startle for baseline response (1 hour test consisting of 60 acoustic startle stimuli, 120 dB, 60 sec interstimulus interval), and divided into matched groups to receive either TCAP-1 (10 nmol of mouse TCAP-1, amidated [SEQ. ID. NO. 40] in 3μl vehicle intra-cerebroventricularly) or Vehicle (e.g. saline and acetic acid).

-70 -

- Two days later, rats were tested in acoustic startle, 25 stimuli baseline (120 dB, 60 sec inter-stimulus interval), then injected ICV with 10 nmol TCAP-1 or Vehicle, then acute response was measured for 1h (60 stimuli, 120 dB, 60 sec inter-stimulus interval).
- 3. 25 days later, rats were given either TCAP-1 (10 nmol in 3μl or vehicle
 (3μl once per day for 5 consecutive days ICV.
 - 4. Rats were left alone for 10 days.
 - 5. On the 10th day, rats were tested for acoustic startle response without TCAP-1.

On the 11th day, rats were re-tested for startle response, again without TCAP-1, for 60 minutes (60 stimuli, 60 sec inter-stimulus interval, 120 dB). Re-tested in startle 13th and 28th days. The vehicle is the mixture of saline and acetic acid into which TCAP-1 was dissolved. When referring to vehicle, this refers to the solution without the addition of TCAP-1.

15

20

25

B. Results

Results are shown in Figure 21 for the 0, 10 and 12 days after the 5 consecutive day ICV of Vehicle (21A) or TCAP-1(21B). Startle responses for animals in the chronic study are shown in Figure 22. The average startle response for the two groups (TCAP-1 and Vehicle) on Day 1, before chronic TCAP treatment is shown in Figure 22A. Figure 22B shows the average startle response for TCAP and vehicle groups over the 60 trials in the session on the 10th day after chronic TCAP treatment. Figure 22C shows the mean baseline startle responses for all animals for TCAP and vehicle groups averaged across all 60 trials.

Example 11 Acute TCAP Study Acoustic Startle Measurements

A. Method

Male Wistar rats (250-275 g), were surgically implanted with cannulae (23 gauge) bilaterally into the basolateral nuclei of the amydala (AP –2.8, ML +/- 5.0, DV – 7.2 mm, from bregma). One week later, the animals were habituated to the acoustic startle reflex (ASR) chambers (MED Associates,

-71 -

grid rod cage measuring 7.5" x 3.6" x 4.2"), consisting of 25 trials of 120 dB stimuli presented randomly with an inter-stimulus interval of 55-65 seconds, duration of 30 msecs and frequency of 5000Hz. The same stimulus conditions were used for test days, which consisted of a 25 trial baseline, injection with mouse TCAP-1 (with amidation signal)[SEQ. ID. NO. 40] or vehicle (0.25 μ l/side, flow rate 0.5 μ l/min), and testing for a further 60 trials post-drug. Each rat received vehicle treatment on the first test day then TCAP-1 (e.g. mouse TCAP-1) in a random and counter balanced fashion in subsequent test days, spaced 48h apart. On the final test day, all rats again received vehicle treatment. Following histological analysis of cannulae placements, the data of eight rats was retained for statistical analysis.

From the data, rats were divided into high and low anxiety groups depending upon their treatment/baseline ratio for the vehicle. Animals that scored less than one were considered low anxiety, those scoring more than one were considered high anxiety. There were four animals in each anxiety group.

Results are shown in Figures 23 and 24. Figure 23 is a bar graph illustrating the mean treatment/baseline value for both groups for all concentrations of mouse TCAP-1. A repeated measures ANOVA indicated that the level of significant differences between the two anxiety groups was P=0.0078. After TCAP-1 treatment the treatment/baseline ratio of low anxiety was similar to the initial high anxiety value and vice versa. A vehicle injection was performed at the end of the study to show that the effect was due to the TCAP-1 and not to the experience of injection. TCAP 1 concentrations were 3, 30, 300 pmoles. A summary of the effect of amygdala-injected TCAP-1 is illustrated in Figure 24. It was shown that the effect by TCAP-1 on startle response is inversely proportional to the baseline startle response. As such TCAP-1 can be used to normalize startle behaviour or stress response.

30 Discussion

10

15

Regardless of the mechanism the synthetic TCAP peptide is potent, in vivo at eliciting a behavioural response in rats. Given the strong expression of

TCAP in hypothalamic and limbic regions, the synthetic mouse TCAP-1 peptide with amidation signal was micro injected into the basolateral amygdala to determine effects on acoustic startle in rats. Animals possessing a high treatment-to-baseline ratio (>1) showed a significant (p<0.05) decrease in startle magnitude, whereas animals with a low treatment-tobaseline ratio (<1) showed a significant (p,0.05) and does dependent increase in startle magnitude (Figure 23). These data indicate that TCAP-1 acts to modulate the effect on startle responses depending on baseline reactivity of the particular animal and can normalize the behaviour associated with acoustic startle. Other neuropeptides that have been demonstrated to increase acoustic startle are CRF (Liang et al., 1992), CCK (Frankland et al., 1997) and SP (Krase et al., 1994/1999). The acoustic startle paradigm is a well-known and extensively used paradigm for assessing the anxiogenic or anxiolytic effects of drugs. This is an ideal paradigm for testing a novel compound since the startle reflex does not involve locomotion, learning, memory, or motivated behaviour of any kind, which could possibly confound the interpretation of the results.

The data presented indicate that TCAP represent a new family of neuropeptides associated with the regulation of anxiety by regulating neuronal function in key regions of the forebrain and limbic system. Previous studies have also suggested a role of the teneurin genes with neural regulation. Human Ten-M1 maps to position Xq25 of the X chromosome (Ben-Zur et al., 1999). This is a region associated with X-linked mental retardation syndromes (Minet et al.,1999). The conditions mapped to this site are characterized by severe mental retardation and may include motor sensory neuropathy, deafness and sometimes seizures and impaired vision.

The regulation of TCAP represent a new target to understand the aetiology of neurological dysfunction and psychiatric illness. The example shows that TCAP can be used in the treatment of stress-reated disorders and in other neuropathological conditions.

Example 12 Activity of TCAP on immortalized neurons.

15

20

A. In vitro assays

WO 03/093305

Gn11 immortalized neurons were cultured as previously reported (Tellam et al., 1998) Direct cAMP measurements were performed with the nonacetylated version of a commercial kit (Assay Designs, Ann Arbor, MI). After starved by serum-free DMEM for 1 hr and replaced with fresh DMEM without serum, cells were treated for 15min with TCAP, urocortin or vehicle ± CRFR1 antagonist PD171729 in the continued presence of forskolin (1 _M) and IBMX (100 _M. Protein assays: Total protein was determined using the BCA protein assay method (Pierce Co). MTT Assays: Gn11 cells were seeded into 96-well plates and cultured in full serum DMEM until the cells 10 were 30% confluent. Vehicle, 1nM, 10nM or 100nM TCAP-1 were added into each group (n=8). (Figure 25A) The MTT assay (Sigma Chemicals) was performed at 0, 6, 12, 24 and 48 hours. Flow Cytometry: DNA content of the Gn11 cells was quantified by staining with propridium iodide and analyzed on a FACSCAN flow cytometer (Beckman Instruments).

B. Results

15

20

Mouse TCAP-1 induced a dose-dependent change in cAMP accumulation in mouse immortalized neurons after 15 minutes. A 1 nM dose increased (p<0.05) cAMP levels 45% over the vehicle-treated cells. In contrast, 100 nM TCAP-1 decreased (p<0.05) cAMP accumulation 40% from control cells (Figure 25A). However, co-treatment with the specific CRF type 1 receptor antagonist, PD171729 failed to completely abolish TCAP's effects at cAMP accumulation. In contrast, the same concentration of antagonist induced a complete inhibition (p<0.01) of urocortin-stimulated cAMP accumulation in these cells (Figure 25B). We have previously established that these cells possess a CRF-R1 receptor (Tellam et al., 1998) but not an R2 receptor (data not shown). Concentrations of 1, 10 and 100 nM of TCAP-1 induced a significant increase in total protein concentration after 120 minutes in the same cells (Figure 25C). Mouse TCAP-1 treatment of these cells also induced a dose-dependent effect on cell metabolism. Cellular activity as indicated by mitochondrial activity (MTT assay) showed a significant (p<0.05) increase in activity at 1 nM concentration, but a decrease at 100 nM concentrations (Figure 25D). Similarly, 1 nM TCAP reduced (p<0.05) the incidence of G1 phase after 24 hours whereas a 100 nM dose increased (p<0.05) G1 phase as determined by DNA content analysis.

As such α -helical CRF(9-41) antagonist can modulate TCAP stress response modulating activity.

Example 13 Proteomic Profiling and MicroArray Studies

10

20

25

30

To determine the effect of TCAP and to develop a cell model system for screening TCAP modulators, diagnostic and conditions related to TCAP and methods of medical treatment, TCAP responsive cell lines were subject to proteomic profiling and microarray analysis. This was done using a non-tumorgenic-derived immortalized murine hypothalamic cell line, N38, which has the marker profile shown in **Table 1**. The effect of TCAP on other immortalized cell lines can be preformed by adapting the method noted below.

A. TCAP Responsive Immortalized Hypothalamic Cell Lines

The TCAP responsive immortalized cell lines used were prepared by Denise Belsham, University of Toronto, by preparing a culture of embryonic hypothalamic cells; infecting said culture with a retrovirus encoding a viral oncogene, large T Antigen, operably linked to a promoter and a selectable marker; isolating transfected cells from non-transfected cells to obtain a culture of immortalized hypothalamic cells; subcloning said immortalized cells into sub-cloned populations; and screening said subcloned populations for expression of specific neuronal markers; and selecting and further cloning a specific population. The immortalized cell lines can then be screened for TCAP responsiveness.

TCAP responsiveness was screened by measuring the functional cAMP response of the immortalized subclones to TCAP. The results are shown in Figure 26. N-15-1, #7 (N7), N-18-1, #11 (N22), and N-15-14, #29

-75 -

(N29) were analyzed for the cAMP response to peptide stimulation. The subclones were split into 24 well plates. Cells were starved for 1 h in DMEM without FBS, then medium was replaced with 0.5 ml fresh DMEM (without FBS) with the compounds as indicated. In Figure 26, neurons were exposed to 10^{-7} M (100 nM) TCAP peptide. All peptides were diluted in DMEM containing IBMX (100 μ M). After a 15 min incubation at 37 °C, 1 ml of ice-cold ethanol was added to each well. Cells were scraped from the plate and kept at -20 °C until the amounts of intracellular cAMP were determined in triplicate by RIA (Biotechnologies Inc., Stoughton, MA) according to the manufacturer's instructions.

10 B. Proteomic Profiling Using TCAP 3

5

15

NPY17 (N38) immortalized neurons were treated with 100 nM TCAP-3 and subjected to proteomic profiling. In this procedure, the nuclei of cells are isolated and the proteins extracted. This method provides an indication of proteins that are up or down regulated by a given treatment. The proteomic profile indicated that the majority of proteins up-regulated were associated with cell cycle, metabolism and the stress response. A. number of cytoskeletal proteins were also upregulated. This observation is of particular importance as many antidepressants have been shown to increase spine density and arborization of neuronal processes. Such events are regulated by cytoskeletal proteins.

20 Proteomic profiling
Up regulated at 12 hours

Up regulated at 12

Protein Processing

Parvulin; protein chaperone protocadherin gammaB5

talin

<u>Transcriptional Regulation</u>

Npw28 binding protein

Alpha actinin4

Staufen; mRNA targetting CLP36, actinin4 interaction

Extracellular Matrix

Cell Signalling

histone acetylmethyl transferase helicase

MIDA1; cell growth regulator PKC iota

Smad 5; TGFbeta signalling
STE20-like kinase; apoptosis
Kp78, wnt pathway activation

Integrin linked kinase 1, wnt pathway p53 target protein,

tumor suppressor IGFBP, growth regulation

esp1, cell division

Cell Growth, Cycle and Proliferation

sepiapterin reductase

TGFbeta Bp1, growth regulation Rad23, uv repair protein

-76 -

B. MicroArray Studies

I. Method

WO 03/093305

RNA isolation 5

10

Total RNA (TRNA) was isolated from 3 independent treated and untreated N38 hypothalamic cell cultures, pooled (to reduce the noise), utilizing Trizol Reagent (GIBCO/BRL) following the manufacturer's protocol. The quality of total RNA was assessed using an Agilent 2100 Bioanalyzer (version A.02.01S1232, Agilent Technologies). Only RNA with the OD ratio of 1.99-2.0 at 260/280 was used.

PCT/CA03/00622

Oligonucleotide Arrays (Hybridization, Staining, and Scanning)

Hybridizations were performed on the Mouse MU74Av2 GeneChip Set (Affymetrix, Santa Clara, CA). Samples were prepared for hybridization 15 according to Affymetrix instructions. Briefly, a primer encoding the T7 RNA polymerase promoter linked to oligo-dT₁₇ was used to prime double-stranded cDNA synthesis from each mRNA sample using Superscript II RNase H reverse transcriptase (Life Technologies, Rockville, MD). Each purified (Qiaquick kit, Qiagen) double-stranded cDNA was in vitro transcribed using T7 20 RNA polymerase (T7 kit; Enzo), incorporating biotin-UTP and biotin-CTP (Enzo Biochemicals, New York, NY) into the cRNAs, followed by purification using RNEasy (Qiagen) and quantitated by measuring absorption at 260 nm/280 nm. Samples were fragmented and hybridized to the Chip for 16 h at 45°C and scanned (GeneArray scanner, Affymetrix). MicroArray Suite 25 Version 5 (MASv5; Affymetrix) was used to scale intensities across the Genechips to 150 fluorescence units, and to determine expression values for each gene on the chip. The expression value for each gene was determined by calculating the average of differences (perfect match intensity minus mismatch intensity) of the probe pairs in use for the gene. 30

Data Analysis

Gene analysis software: Data analysis was performed using two independent softwares, GeneChip and GeneSpring. To identify differentially expressed transcripts, pairwise comparison analyses were carried out with MicroArray Suite Version 5 MicroArray Suite Version 5 (MASv5; Affymetrix). This approach, which is based on the Mann-Whitney pairwise comparison test, allows the ranking of results by concordance, as well as the calculation of significance (P value) of each identified change in gene expression. Statistically significant genes (P<0.05) were selected for further analysis. Moreover, statistically significant changes in mean expression values were determined by importing the data from MASv5 into GeneSpring 5 (Silicon Genetics, Redwood City, CA). A stepwise process was followed, first with normalizations. A per-chip followed by a per-gene normalization in order to facilitate direct comparison of biological differences. Next, a second method of filter using Affymetrix data and p value with cut-off of P<0.005 generated 4,841 genes which were used for subsequent analysis utilizing Hierarchical Clustering, k-means, Self Organization Map (SOM) utilizing GeneSpring 5.0.

II. Results

5

10

15

20

25

30

Further, to demonstrate that the cell lines can be used as a model for studying TCAP responsiveness, modulation, and in screening for TCAP modulators, microarray studies were performed on 1 nM TCAP-1 [SEQ ID NO 5 plus amidation signal GRR at C-terminus] treated N38 hypothalmic cells, which do not possess either CRF receptor subtype (Table 4). RNAs isolated from treated and untreated cells were analyzed on oligonucleotide arrays representing 12,884 mouse genes (Affymetrix, http://www.affymetrix.com). Standard filtering (p< 0.005) and hierarchical clustering algorithm (average linage method: GeneSpring software – Silicon Genetics) identified significant changes in the expression of 4, 841/12,885 genes with 166 genes showing 1.5 fold down-regulation and 35 genes up-regulation in the TCAP-1-treated cells compared to the untreated cells. At 16 hours post-treatment, a significant decrease occurred among several genes, notably, GAS5, SDPR and CD95 that have been associated with growth arrest or apoptotic events

(45-47). In contrast, upregulated genes including MK167, MOP3 and GDAP10 have been associated with cell proliferation and cell cycle modulation (48-50). A G-protein coupled receptor-related signal transduction pathway is indicated by the regulation of genes, CREM, AKAP8, AKAP95 and PDE6A. Downstream effectors of RAS such as EFK1 and RGL were also down regulated. Downregulation of the A kinase anchoring protein AKAP95 but upregulation of AKAP8 suggests that TCAP may act, in part, by changing the targeting pattern of PKA (51). The upregulation in inducible nitric oxide (INOS), a intracellular voltage-gated chloride channel (CLCN3) and the serotonin transporter (SLC6A4) may reflect the down stream actions of cAMPmediated signal cascade and indicates the potential for TCAP to be involved in neuronal signaling systems. A role in interneuron communication by TCAP is also indicated by the modulation of genes associated with the regulation of vesicle trafficking. Thus, the TCAP responsive cell lines can be used to screen for modulators of neuronal function that affect growth, differentiation and communication.

SUMMARY OF EXPERIMENTAL RESULTS

20

30

The teneurin c-terminal associated peptide (TCAP) represents the terminal 40 to 41 residues on all four of the known teneurin (Ten M) proteins. On all four of the teneurins, TCAP shows the greatest sequence homology among the entire exon suggesting that it is under the most stringent physiological constraints of the protein. TCAP is a potent inhibitor of neuronal and fibroblast growth possibly by arresting cell cycle. When injected into rat brain it increased the startle reflex and decreased self-administered reward behaviour and was shown to modulate the stress response. These data indicates that TCAP represents a novel neurohormonal system associated with neuronal growth and development.

The finding of a TCAP-like peptide on the carboxy terminus of a type II transmembrane protein is unusual. Assuming that the protein is only expressed on the extracellular face of the cell, then it is likely that the peptide acts in a paracrine manner to regulate the surrounding cells. All Ten M

proteins possess a basic residue in positions -1 and -8 upstream from the putative cleavage site from the peptide. Such a basic residue arrangement is recognized by the prohormone convertase 7 (PC7) family of proteases (Saideh and Chretien, 1997), for the processing of peptide prohormones. Assuming this to be the case, then the requisite PC7-like protein would need to be expressed also on the extracellular face of the cell, or perhaps on the extracellular face of an adjacent cell. Alternatively, the protease may be secreted and act in a more mobile fashion. In any case, the release of the cleaved peptide would unlikely to occur in the bolus seen by vesicular release. It is also conceivable that the Ten-M protein is expressed in vesicles of the regulated pathway where intravesicular proteases could cleave the peptide before exocytosis. However, the synthetic peptide shows a strong tendency to aggregate and precipitate at concentrations higher than 2 ug/ul. This is likely due to the high number (15) of leucines, isoleucines, valine, tyrosines and phenylalanine within the peptide. Peptides that have high vesicular concentrations such as the urocortin-like peptide, sauvagine, found in the skin of a neotropical frog, Phyllomedusa sauvagei, tend to have a low proportion of hydrophobic residues (Pallai et al., 1983). Thus this physical characteristic of the TCAP peptide supports its preferential release from the cleavage from the extracellular face of the plasma membrane.

The TCAP portion of the Ten-M proteins appears to be the most highly conserved of the terminal exon of the protein. Such high levels of conservation occur when there are many physiological, biochemical constraints acting upon the sequence to inhibit change. Such resistance to change could result from essential interactions with processing or degrading enzymes, receptors, and/or transport proteins. The level of conservation of 90% between the paralogues in vertebrates is high in comparison to the CRF group of peptides to which TCAP appears to be most closely related.

20

30

In any case, a number of other bioactive peptides are initially expressed and processed in the same manner as TCAP. Other bioactive peptides such as tumor necrosis factor (TNF) (Utsumi et al., 1995), Apo-2 ligand (Pitti et al., 1996) and fractalkine (Garton et al., 2001) are processed in

this manner. These peptides are directed outward at the end of the Cterminus on the extracellular face. Peptides processed and expressed in this manner have the potential for a variety of endocrine or juxtacrine roles. For example they may act as an adhesion molecule for cells displaying the 5 appropriate receptor. Such actions could be particularly important during the migration of neurons in the developing brain, allowing neurons to be directed to a specific target. Alternatively, the peptide may be cleaved via a membrane-bound or extracellular matrix-associated protease to act as a paracrine/autocrine factor to modulate the actions of surrounding cells. Such a mechanism would be important for cells to protect against low oxygen stresses which occur in ischaemia. All three cytokines appear to be processed by a tumor necrosis factor alpha converting enzyme (TACE, ADAM17). This enzyme is also capable of cleaving the cell-surface ectodomain of the amyloid-beta precursor protein (Skovronsky et al. 2001), thus decreasing the generation of amyloid beta suggesting it may have a role in the aetiology of Alzheimer's disease.

10

20

The TCAP peptide appears to regulate several physiological events. In a mouse neuronal cell line, Gn11, and a rat fibroblast cell line, TGR1, treatment of TCAP at concentrations of 10⁻⁹ to 10⁻⁶ M could inhibit proliferation in a dose-dependent manner where maximal inhibition occurs at about 60%. There was no evidence of apoptosis or necrosis of the cells and morphology did not differ between treated and untreated cells.

This stress-related studies indicate an ability of the TCAP peptide to inhibit the damage done by environmental stresses on cells that would occur during periods of ischaemia or perhaps various neurodegenerative diseases. Given the decrease of proliferation rate seen in unstressed cells and the apparent increase in stressed cells suggests that TCAP may be acting in part to reduce the metabolic activity of the cell. Other related peptides have a similar effect. For example, urocortin can prevent cell death in primary cardiac myocyte cultures by stimulating the p42/p44 mitogen-activated protein (MAP) kinase pathway (Latchman, 2001). Under stressful conditions such as heat shock (Okosi et al., 1998) or ischaemia (Brar et al., 1999), urocortin mRNA is

upregulated in cultured cardiac cells, and is also secreted into the medium (Brar et al., 1999), suggesting that it too, is acting in a paracrine fashion to regulate cell metabolism. This effect is much greater by urocortin than CRF. This is of particular interest given that the urocortin paralogues of the CRF family appear to represent evolutionarily older sequences than CRF (Lovejoy and Balment, 1999). Such paracrine actions on cell metabolism may be then one of the initial and critical functions of the ancestor gene that gave rise to both the TCAP and CRF/urocortin/diuretic group of peptides.

10

25

30

The data obtained so far can be used to delineate a tentative model for the mechanism for TCAP (Figure 19). Initially, a stressor, such as changes in pH, temperature, or O₂ levels, or alternatively, a stress-induced ligand triggers an up-regulation of the Ten-M protein. Such stressors likely act through a number of signal transduction pathways including adenylate cyclase and guanylate cyclase. It is conceivable that the stressor also up-regulates the Ten-M cleaving enzyme such as TACE or PC7. The TCAP ligand is then cleaved from its protein and is free to act in an autocrine and paracrine manner. It binds to a G-protein coupled receptor that subsequently interacts with a G-inhibitory protein. This inhibits cAMP and cGMP production to inhibit activation of the cell. In a dividing neuron this would act to inhibit proliferation or migration, and in an mature non-dividing neuron could manifest as a reduction of synaptic output thereby inhibiting the neurological response of an activated nucleus of cells in the brain.

While the present invention has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the invention is not limited to the disclosed examples. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

-82 -Table 1: Cell Lines Screening

	Table 1	: Cell	Lines	Scree	ning		
MARKER	N-7	N-22	N-29	N-38			
T antigen	+	+	+	+			
NSE	+	+	+	+			
GFAP	-	-	-	-			
NT	-	-	•	-			
ER alpha	+	+	+	+			
ER beta	+	+	+	+			
Tph	+	+	•	w		i	
Socs-3	+	+	+	+			
AR	-	-	N/A	+			
G2R	+	+	+	-		<u> </u>	
CRF		-		-			
GnRH	+	+	+	w		 	
POMC	 	+	+			 	
Gal	+	-	w	_		 	
Lep Receptor		+	+	w			
Agrp	+	+	+	+		 	
Cart	 	-	-	-		 	
NPY		-	+	+			
proGlu	 	w	w	_			
TH	+	-	+	-			<u> </u>
GHRH	 	+	+	+		ļ	
Avp	+	+	w	w			 _
proTRH			•				
Ucn	-					·	
MCH	+	N/A	+	+	-		·
orexin	-	-	<u> </u>	<u> </u>		ļ	<u></u>
DAT	strong		w	-			
CRFR1	outong	-		-		·	
CRFR2							
Aromatase	 	-		strong			·
GnRH Receptor	 			Subity			
Insulin receptor	+	+	+	+			
Oxytocin	+	+	+	+			
New-1		<u> </u>	-	-		ļ ——	
New-2						 	
New-4	-	-	+			 -	<u> </u>
GHS-R	N/A	N/A	N/A	<u>-</u> -		 	
Leptin	INVA	IVA	IN/A	-		 	
som						ļ .	
NTR			N1/A				
	+	w	N/A	-			
mc3R	N/A	N/A	NI/A				
mc4R	N/A	N/A	N/A	· .			
NPY-Y1	<u> </u>				<u> </u>		
NPY-Y2	N/A	NI/A	N1/A			ļ-——	
CRLR	N/A	N/A	N/A				
Ghrelin	+	+	N/A	+			
Ghrelin variant	+	•	N/A				

The following abbreviations will have their standard scientific abbreviations: T-Ag, Large T-antigen; NSE, neuron-specific enolase; GFAP, glial fibrillary acidic protein; SNTX, syntaxin; ER, estrogen receptor, AR, androgen receptor, LepR, leptin receptor b; GIp-2R (also G2R), glucagon-like peptide 2 receptor, SOCS-3, suppressor of cytokine signaling 3; NPY, neuropeptide Y; AGRP, agoutirelated peptide; POMC, proopiomelanocortin; CART, cocaine and amphetamine regulated transcript; MCH; melanin-concentrating hormone; Uon, urocortin; NT, neurotensin; Gal, galantin; Oox, orexin; DAT, dopamine transporter; CRFR, corticotrophin-releasing hormone; proGlu, proglucagon; GHRH, growth hormone-releasing hormone; GnRH, gonadotropin-releasing hormone receptor; CRF, corticotrophin-releasing factor; TRH, thyrold-releasing hormone; AVP, arginine vasopressin; OXY, oxytocin; Arom, aromatase; TPH, tryptophan hydroxylase; TH, tyroxylase; TenM-1 (also New-1); TenM-2 (also New-2); TenM-3 (atso New-3); and TenM-4 (also New-4), Teneurins 1-4; GHS-R, growth hormone secratogue receptor; Lep, leptin; SOM, somatostatin; NTR, neurotensin receptor, MC3R, melanocortin receptor-3; MC4R, melanocortin receptor-4; NPY-Y1, NPY receptor Y1; NPY-Y2, NPY receptor Y2; CRLR, calcitonin receptor like receptor, nd, not done; na, not done; w, weak expression.

Table 2: Genes Regulated by TCAP-1 at 16 hours

Cluster	Gene	Affimetrix Probe No.	Acc No. GB	Function	Fold change
Growth/	GAS5	98530	A1849615	Growth arrest specific transcript	0.46
Differentiation	SDPR	160373	AI839175	Serum deprivation response protein	0.57
	PPAN	160802	AA674812	Peter Pan homologue	0.62
	CD95	102921	M83649	Fas antigen	0.61
	CRD-BP	102627	AF061569	CRD-binding protein	0.59
	SSG1	160298	AW122012	Steroid sensitive gene 1	0.62
	DIP1/2	97353	A1837497	DAB2 interacting protein	0.68
	GBP3	103202	AW047476	Guanylate binding protein	0,63
	P202	161173	AV229143	202 interferon activatable protein	0.61
	CAII	103441	A194248	Casein kinase II	0.61
	INIIB	99924	AW121845	Integrase interacting protein 1B	0.48
	MMPI	100484	X66473	Matrix metalloproteinase 1	0.55
	MMP10	94724	Y13185	Matrix metalloproteinase 10	0.59
	PTK7	92325	A1326889	Receptor protein tyrosine kinase	1.53
	P204	98466	M31419	Interferon activatable protein	1.85
	MK167	161931	AV309347	Cell cycle protein regulator	1.70
	MOP3	102382	AB014494	Circadian rhythm regulator	1.57
	ST7	160591	A1504013	Suppressor of tumourigenicity	1.97
	GDAP10	94192	Y17860	Ganglioside induced diff. protein 10	1.62
Signalling/	ERKI	101834	Z14249	Mitogen activated protein kinase	0.64
Communication-	ALK3	92767	D16250	Bone morphogenic protein receptor	0.60
	BMP4	93456	L47480	Bone morphogenic protein-4	0.52
	ILIR	93914	M20658	Interleukin 1 receptor	0.60
	GR	98818	X04435	Glucocorticoid receptor	0.66
	BARKI	104270	AA982714	β adrencegic receptor kinase 1	0.61
	CAMIII	92631	M19380	Calmodulin III	0.53
	PCDHy	160976	AA222943	protocadheria y	0.42
	AKAP95	9500I	AB028920	A kinase anchor protein 95	0.60
	TTF-1IP	161019	W41560	TTF-1 interacting peptide	0.50
	CREMB1		M60285	cAMP-responsive element modulator	1.61
	AKAP8	161088	AV171460	A kinase anchor protein 8	1.58
	PDE6A	100696	X60664	cGMP Phosphodiesterase a	1.68
	INOS	104420	U43428	Inducible nitric oxide synthetase	1.50
	FNBX	92754	D49920	Ferredoxin-NADP reductase	1.61
	SLC6A4	161695	AV230927	Serotonin transporter	1.53
	CLCN3	94465	AF029347	Chloride channel protein 3	1.66
Processing	ARP1	95156	A11853873	ADP ribosylation factor 1	0.63
	CLM2-B	93492	AB013469	Cytohesin-2	0.63
	YIPID	99675	A1839766	Rab-mediated membrane transport	1.88
	RAB10	160149	A1841543	Ras oncogene homologue	1.62
	GP25L2	100074	AW046723	gp25L brings cargo forward from ER	1.53
	AP4S1	104561	A1847561	Adaptor related protein complex	1.52

The change in expression levels is indicated relative to the untreated control cell

for the same time period of 16 hours. Values >1.5 fold or <0.70 fold were considered significant.

FULL CITATIONS FOR REFERENCES REFERRED TO IN THE SPECIFICATION

Barsyte et al., (1999), "Rainbow trout (*oncorhynchus mykiss*) urotensin-1: structural differences between the urotenins-1 and urocortins." Gen Comp. Endocrinol. 115, 169-185.

Baumgartner, S. et al., (1994). "A Drosophilia gene related to tenascin, is a new pair-rule gene. EMBO J. 13:3728-3740.

10

- Ben-Zur, T. & Wides, R. (1999) Mapping homologs of Drosophila odd Oz (odz): Doc4/Odz4 to mouse chromosome 7, Odz1 to mouse chromosome 11; and ODZ3 to human chromosome Xq25. Genomics 58, 102-103.
- Ben-Zur, T., Feige, E., Motro, B. & Wides R. (2000) The mammalian Odz gene family: homologs of a drosphila pair-rule gene with expression implying distinct yet overlapping developmental roles. Dev. Biol. **217**, 107-120.
- Brar, B. K., A. Stephanou, et al. (1999). "CRH-like peptides protect cardiac myocytes from lethal ischaemic injury." Molecular and Cellular Endocrinology 158: 55-63.
 - Brooke, N. M., J. Garcia-Fernandez, et al. (1998). "The parahox gene cluster is an evolutionary sister of the hox gene cluster." Nature 392: 920-922.

- Broqua, P. et al., (1995). "Behavioral effects of neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle procedures. Behav. Pharmacol. 6:215-222.
- 30 Bunger et al., (2000). "Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103:1009-1017.

Carroll, S. B. (1995). "Homeotic genes and the evolution of arthropods and chordates." Nature 376: 479-485.

Coast, G. M. (1998). "Insect Diuretic peptides: Structures, evolution and actions." American Zoologist 38: 442-449.

Coccia, E.M. et al., (1992). "Regulation and expression of a growth arrest-specific gene (gas5) during growth differentiation and development. Mol. Cell. Biol. 12:3514-3521.

10

Copertino, D., G. M. Edelman, et al. (1997). "Multiple promoter elements differentially regulate the expression of the mouse tenascin gene." Proc. Natl. Acad. Sci. U.S.A. 93: 1846-1851.

Danielson PB, Dores RM (1999) Molecular evolution of the opioid/orphanin gene family Gen Comp. Endocrinol 113:169-186.

Donaldson, C. J., S. W. Sutton, et al. (1996). "Cloning and characterization of human urocortin." Endocrinology 137(5): 2167-2170.

20

Drevets, W.C. (2001) Neuroimaging and neuropathological studies of depression: Implications for the cognitive emotional features of mood disorders. Curr. Opin. Neurobiol. **11**, 240-249.

25 Ericsson, A., Liu, C., Hart, R.P. & Sawchenko, P.E. (1995) Type 1 interleukin-1 receptor in the rat brain: Distribution, regulation, and relationship to sites of IL-1 induced cellular activation. J. Comp. Neurol. **361**, 681-698.

Erspamer, V., G. Falconieri Erspamer, et al. (1980). "Sauvagine, a new polypeptide from Phyllomedusa sauvagei skin." Naunyn-Schmiedeberg's Archives of Pharmacology 312: 265-270.

Fayos, R. et al. (2003). Induction of flexibility through protein-protein interactions. J. Biol. Chem. In press.

Frankland PW, Josselyn SA, Bradwejn J, Vaccarino FJ, Yeomans JS. (1996)
Intracerebroventricular infusion of the CCKB receptor agonist pentagastrin potentiates acoustic startle. Brain Research; 733(1):129-32

Frankland PW, Josselyn SA, Bradwejn J, Vaccarino FJ, Yeomans JS. (1997) Activation of amygdala cholecystokininB receptors potentiates the acoustic startle response in the rat. Journal of Neuroscience 17(5):1838-47.

Garton, K.J. et al, (2001). Tumor necrosis factor-_-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. **276**, 37993-38001.

- 15 Graner, M. W., T. A. Bunch, et al. (1998). "Splice variants of the Drosphila PS2 integrins differentially interact with RGD-containing fragments of the extracellular proteins tiggrin, Ten-m and D-laminin alpha2." Journal of Biological Chemistry 273.
- 20 Greer J.M., Puetz, J., Thomas, K.R. & Capecchi, M.R. (2000). Maintenance of functional equivalence during paralogous gene evolution. Nature 403, 661-665.
- Gustavson K.H. et al., (1993). "New X-linked syndrome with severe mental retardation, severely impaired vision, severe hearing defect, epileptic seizures, spasticity, restricted joint mobility, and early death. Am. J. Med. Genet. 45(5):654-8.
- Gustincich, S. et al., (1999). "The human serum response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics. 57:120-129.

- Hsu, S. Y., & Hsueh, A. J. W. (2001). Human stresscopin and stresscopin-related peptide are selective ligands for the coticotropin- releasing hormone receptor. Nature Med. 7, 605-611.
- Ichiwara, T., D. McMaster, et al. (1982). "Isolation and amino acid sequence of urotensin-I, a vasoactive and ACTH-releasing neuropeptide from the carp (Cyprinus carpio)." Peptides 3: 859-867.
- Ishida, I., T. Ichikawa, et al. (1986). "Cloning and sequence analysis of cDNA encoding urotensin-I precursor." Proceedings of the National Academy of Sciences, USA 83: 308-312.
 - Johnsen, A.H. (1998). Phylogeny of the cholecystokinin/gastrin family. Front. Neuroendocrinol. **19**, 73-99.
- Kaaijk, P. et al., (2003). "Cell proliferation is related to in vitro drug resistance in childhood acute leukaemia, Br. J. Cancer, 88: 775-781.
- Kishimoto, T., R. V. Pearse, et al. (1995). "A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle." Proceedings of the National Academy of Sciences, USA. 92: 1108-1112.
- Krase, W., Koch, M., & Schnitzler, H. Substance P is involved in the sensitization of the acoustic startle response by footshock in rats. Behav.

 25 Brain Res., **63**, 81-88 (1994). -1185 (1999).
 - Lang PJ, Davis M, Ohman, A (2000) Fear and anxiety: animal models and human cognitive psychophysiology. Journal of Affective Disorders, 61:137-159.
 - Larhammar, D. (1996a). "Evolution of neuropeptide Y, peptide YY, and pancreatic polypeptide." Regulatory Peptide 62: 1-11.

- Larhammar, D. (1996b). "Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide." Regulatory Peptides 65: 165-174.
- 5 Latchman, D. S. (2001). "Urocortin protects against ischemic injury via a MAPK-dependent pathway." Trends in Cell Metabolism 11: 167-169.
- Lederis, K., A. Letter, et al. (1983). "Isolation, analysis of structure, synthesis, and biological actions of urotensin I neuropeptides." Can. J. Biochem. Cell. 10 Biol. 61: 602-614.
 - Lederis, K., J. Fryer, et al. (1985). "Neurohormones from fish tails. II. Actions of urotensin-I in mammals and fishes." Recent Progress in Hormone Research 41: 553-576.
- 15 LeFeuvre, R. A., N. J. Rothwell, et al. (1989). "A comparison of the thermogenic effects of CRF, sauvagine and urotensin-I in the rat." Hormones and Metabolism Research 21: 525-526.
- 20 Lenz, H. J., L. A. Fisher, et al. (1985). "Corticortropin-releasing factor, sauvagine, and urotensin-I: effects on blood flow." American Journal of Physiology 249: E85-E90.
- Levine, A., D. Gartenberg, et al. (2000). "The genetics and molecular structure of the drososphila pair-rule gene odd Oz (odz)." Gene 200, 59-74. 25
 - Levine, A. et al. (1994). " A novel Drosophila pair rule gene". Cell, 77:587-598.
- 30 Lewis et al., (2001). Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF 2 receptor. Proc. natn. Acad. Sci. USA.98, 7570-7575.

Li, C., Vaughan J., Sawchenko, P.E. & Vale, W.W. (2002). Urocortin III-immunoreactive projections in rat brain: Partial overlap with sites of type 2 corticotropin-releasing factor receptor expression. J. Neurosci. **22**, 991-1001.

5

Liang,K.C. et al., (1992). Lesions of the central nucleus of the amygdala, but not the paraventricular nucleus of the hypothalamus, block the excitatory effects of corticotropin-releasing factor on the acoustic startle reflex. J. Neurosci., **12**, 2313-2320

10

Liu, H. et al., (1999). "Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a cells induced through controlled expression of the CD3 syenthetase gene". J. Neurochem. 72:1781-1790.

Lovejoy, D. A. (1996). "Peptide hormone evolution:Functional heterogeneity with GnRH and CRF families." Biochemistry and Cell Biology 74(1): 1-7.

Lovejoy, D.A.& Balment, R.J. (1999). Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides and vertebrates.

20 Gen. comp. Endocrinol **115**, 1-22.

Malmgren H., et al. (1993). "Linkage mapping of a severe X-linked mental retardation syndrome". Am. J. Genet. 52(6):1046-52.

25 Manji, H.K., Drevets, W.C.& Charney, D.S. (2001). The cellular neurobiology of depression. Nat. Med. **7**, 541-547.

Melchiorri, P. and P. Negri (1981). "Action of sauvagine on the mesenteric vascular bed of the dog." Regulatory Peptides 2: 1-13.

- Menard J, Treit D (1999) Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neuroscience and Biobehavioral Reviews 23: 591-613.
- Mieda, M, Kikuchi, Y., Hirate, Y., Aoki, M. & Okamoto, H. (1999). Compartmentalized expression of zebrafish ten-m3 and ten-m4, homologues of the Drosophila ten(m)/odd Oz gene, in the central nervous system. Mech. Dev. 87, 223-227.
- Minet, A.D., Rubin, B.P., Tucker, R.P., Baumgartner, S. & Chiquet-Ehrismann, R. (1999). Teneurin-1, a vertebrate homologue of the Drosophila pair-rule gene, Ten-m, is a neuronal protein with a novel type of heparin-binding domain. J. Cell. Sci. 112, 2019-2032.
- 15 Montecucchi, P. C., A. Henschen, et al. (1979). "Structure of Sauvagine, a vasoactive peptide from the skin of a frog." Hoppe-Seyler's Z. Physiol. Chem. 360: 1178.
- Montminy, M. (1993). Control of transcription and cellular proliferation by cAMP. General and Cell-Type-Specific Gene Expression. M. Karin. Boston, Birkauser: 75-91.
 - Nestler, E.J. et al., (2002). Neurobiology of Depression. Neuron. 34, 13-25.
- Ohno, S., U. Wolf, et al. (1968). "Evolution from fish to mammals by gene duplication." Heredity 59: 169-189.
 - Ohno, S. (1996). "The notion of the cambrian pananimalia genome." Proc. Natl. Acad. Sci. U.S.A. 93: 8475-8478.

Ohno, S. (1997). "The reason for as well as the consequence of the cambrian explosion in animal evolution." Journal of Molecular Evolution 44 (Suppl. 1): S23-S27.

5 Okosi, A., B. K. Brar, et al. (1998). "Expression and protective effects of urocortin in cardiac myocytes." Neuropeptides 32: 167-171.

Oohashi, T. et al., (1999). Mouse Ten-m/Odz is a new family of dimeric type II transmembrane proteins expressed in many tissues. J. Cell Biol. **145**, 563-577.

Otaki, J. M. and S. Firestein (1999). "Neurestin: Putative transmembrane molecule implicated in neuronal development." Developmental Biology 212: 165-181.

15

10

Pallai, P. V., M. Mabilia, et al. (1983). "Structural homology of corticotropin-releasing factor, sauvagine, and urotensin-I: Circular dichroism and prediction studies." Proceedings of the National Academy of Sciences, USA 80: 6770-6774.

20

Park, J. H., Y. J. Lee, et al. (2000). "Genomic organization and tissue specific expression of rat urocortin." Neuroscience Letters 292: 45-48.

Pitti, R.M. et al., (1996). Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. **271**, 12687-12690.

Reyes, T. M., K. Lewis, et al. (2001). "Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 receptors." Proc. Natl. Acad. Sci. U.S.A.: 2843-2848.

- Robinson, B. M., et al. (1999). "CRFand Urocortin Genes In Syrian Hamster(Mesocritus auratus); Cloning and Characterization." Peptides, 20, 1177-1185.
- Ron D, Habener JF.1992 CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev.6:439-53.
- Rubin, B.P., Tucker, R.P. Martin, D. & Chiquet-Ehrismann, R. (1999) Teneurins: A novel family of neuronal cell surface proteins in vertebrates, homologous to the Drosophila pair- rule gene product Ten-m Dev. Biol. 216, 195-209.
- Sapolsky, RM (1992). Neuroendocrinology of the stress response. In: Becker JB, Breedlove SM, Crews D (eds.), Behavioral Endocrinology, A Bradford 15 Book, MIT Press, Cambridge, Massachusetts, p. 288.
- Schilling, L., C. Kanzler, et al. (1998). "Characterization of the relaxant action of urocortin, a new peptide related to corticotropin-releasing factor in the rat isolated basilar artery." British Journal of Pharmacology 125: 1164-1171. 20
 - Seidah N.G. and Chretien M., (1997). "Eukaryotic protein processing: endoproteolysis of precursuor proteins". Curr. Opin. Biotechnol. 8(5):602-7.
- Simmons, D.M., Arriza, J.L. & Swanson, L.W. (1989). A complete protocol for 25 in situ hybridization of messenger RNAs in brain and other tissues with radiolabelled single-stranded RNA probes. J. Histotech 12, 169-181.
- Sirinathsinghji, D. J. S., L. H. Rees, et al. (1983). "Corticotropin-releasing factor is a potent inhibitor of sexual receptivity in the female rat." Nature 305: 30 232-234.

25

Spina, M., E. Merlo-Pich, et al. (1996). "Appetite-suppressing effects of urocortin, a CRF-related peptide." Science 273: 1561-1564.

Stanger, B.Z. (1996). "Looking beneath the surface: the cell death pathway of Fas/Apo-1 (CD95)". Mol. Med. 2:7-20.

Tellam D.J. et al., (1998) Direct regulation of GnRH transcription by CRF-like peptides in an immortalized neuronal cell line. NeuroReport 9, 3135-3140.

10 Turnbull, A. V., W. Vale, et al. (1996). "Urocortin, a corticotropin-releasing factor-related mammalian peptide, inhibits edema due to thermal injury in rats." European J. of Pharmacology 303: 213-216.

Utsumi T. et al., Human pro-tumor necrosis factor: Molecular determinants of membrane translocation, sorting and maturation. Mol. Cell. Biol. **15**, 6395-6405. (1995).

Vale W., Speiss, J., Rivier, C. & Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and B-endorphin. Science **213**, 1394-1397 (1981).

Vaughan, J., C. Donaldson, et al. (1995). "Urocortin, a mammalian neuropeptide related to fish urotensin-I and to corticotropin-releasing factor." Nature 378: 287-292.

Wang, X.-Z., M. Kuroda, et al. (1998). "Identification of novel stress induced genes downstream of chop." EMBO J. 17: 3619-3630.

Wang X.Z. et al., (1996). "Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153)." Mol. Cell Biol. 16(8):4273-80.

- Xiong, Y. T., L. Y. Xie, et al. (1995). "Signaling properties of mouse and human corticotropin-releasing factor (CRF) receptors-decreased coupling efficiency of human type-II CRF receptor." Endocrinology 136: 1828-1834.
- Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace AJ Jr. 1994 The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol.14:2361-71.
- Zhong M. et al., (1999). "The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectively." J. Biol. Chem. 274(48):33913-20.
- Zhou, L., C. J. Donaldson, et al. (1998). "The structures of the mouse and human urocortin genes (Ucn and UCN)." Genomics 50: 23-33.
 - Zhou, A., Webb, G, Zhu, X. & Steiner, D.F. Proteolytic processing in the secretory pathway. J. Biol. Chem. **274**, 20745-20748 (1999).
- Zinszner H. et al. (1998). "CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev., 12(7):982-95.

WE CLAIM:

5

10

15

- 1. An isolated nucleic acid molecule encoding a teneurin c-terminal associated peptide consisting of:
 - (a) a nucleic acid sequence as shown in SEQ.ID.NOS.: 18-20, 25-28, 33-36, 41-44, 49-52, 57-60, 65-68, 73-76, 81-84, 89-92, 97-100 or that wherein T can also be U or that encodes a peptide having an amino acid sequence selected from the group consisting of : SEQ. ID. NOS: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103 or that further has an amidation signal sequence, at the carboxy terminus of said peptides, or has SEQ. ID. NO. 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 97, 88, 95, 96;
 - (b) a nucleic acid sequence that is complimentary to a nucleic acid sequence of (a);
 - (c) a nucleic acid sequence that has substantial sequence homology to a nucleic acid sequence of (a) or (b);
 - (d) a nucleic acid sequence that is an analog of a nucleic acid sequence of (a), (b) or (c); or
- 20 (e) a nucleic acid sequence that hybridizes to a nucleic acid sequence of (a), (b), (c) or (d) under stringent hybridization conditions.
- A isolated nucleic acid molecule of claim 1 wherein the amidation signal
 sequence is GKR or GRR.
 - 3. A nucleic acid molecule of claim 2 wherein the sequence is selected from the group of sequences consisting of SEQ. ID. NOS:15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 97, 88, 95, 96.

-96 -

WO 03/093305 PCT/CA03/00622

- 4. An isolated nucleic acid molecule encoding a TCAP peptide wherein the peptide has neuronal communication activity and/or stress modulation activity and/or cell proliferation inhibition activity.
- 5 5. An antisense oligonucleotide that is complimentary to a nucleic acid sequence according to claims 1 to 4.
 - 6. An expression vector comprising a nucleic acid molecule of any one of claims 1 to 5.

- 7. A host cell transformed with an expression vector of claim 6.
- An isolated teneurin c-terminal associated peptide which has the amino acid sequence as shown in SEQ. ID. NOS: 13, 14, 21, 22, 29, 30, 37, 38, 45, 46, 53, 54, 61, 62, 69, 70, 77, 78, 85, 86, 93, 94, 101, 103 or a fragment, analog, homolog, derivative or mimetic thereof or a biologically active fragment thereof.
- 9. An isolated teneurin c-terminal associated peptide of claim 8 further comprising an amidation signal sequence at the carboxy terminus.
 - 10. A teneurin c-terminal associated peptide according to claim 8 or 9 wherein the peptide has anxiogenic activity.
- 25 11. An antibody that can bind a peptide according to any one of claims 8 to 10.
 - 12. A method of identifying substances which can bind with a teneurin cterminal associated peptide, comprising the steps of:
- 30 (a) incubating a teneurin c-terminal associated peptide and a test substance, under conditions which allow for formation of a

-97 -

complex between the teneurin c-terminal associated peptide and the test substance, and

(b) assaying for complexes of the teneurin c-terminal associated peptide and the test substance, for free substance or for non complexed teneurin c-terminal associated peptide, wherein the presence of complexes or reduced levels as compared to a starting level of free substance or non-complexed teneurin cterminal associated peptide indicates that the test substance is capable of binding to the teneurin c-terminal associated peptide.

10

5

- 13. A method for identifying a compound that affects the activity or expression of teneurin c-terminal associated peptide comprising:
 - incubating a test compound with a teneurin c-terminal associated peptide or a nucleic acid encoding a teneurin c-terminal associated peptide; and
 - (b) determining an amount of teneurin c-terminal associated peptide protein activity or expression and comparing with a control, wherein a change in the TCAP peptide activity or expression as compared to the control indicates that the test compound has an effect on TCAP peptide activity or expression.

20

25

15

14. The method of claim 13 wherein in step(a) a test compound is incubated with a teneurin c-terminal associated peptide and teneurin c-terminal associated peptide substrate under conditions that permit interaction of the peptide and substrate, and step(b) and in step(b) the peptide activity on the substrate is determined.

15. The method of claim 13, wherein in step (a) a cell expressing a teneurin c-terminal associated peptide and activity, is incubated with a test compound, under conditions where teneruin c-terminal associated peptide is active and in step (b) teneurin c-terminal associated peptide activity is determined.

- 16. The method of claim 15, wherein the teneurin c-terminal associated peptide activity is determined by detecting the levels of cAMP and cGMP before and after incubation with the test compound, or as compared to a control, wherein a change in magnitude of levels of cAMP or cGMP as compared to a baseline or control level is indicative that the test compound is a modulator of teneurin c-terminal associated peptide activity.
- 10 17. The method of claim 16, wherein the reduction of cAMP or cGMP in the presence of a test compound is less than in the control or baseline level or is greater than in the control or baseline level of TCAP activity indicates that the test compound is an inhibitor of c-teneurin associated peptide activity.

15

5

- 18. A method of identifying a compound that affects the regulation of neuronal growth comprising:
 - (a) incubating a test compound with a teneurin c-terminal associated peptide or a nucleic acid encoding a teneurin c-terminal associated peptide; and

20

(b) determining an amount of teneurin c-terminal associated peptide protein activity or expression and comparing with a control, wherein a change in the TCAP peptide activity or expression as compared to the control indicates that the test compound has an effect on the regulation of neuronal growth.

25

19. A method of inhibiting cell proliferation comprising administering to a cell, an effective amount of teneurin c-terminal associated peptide that inhibits cell proliferation.

30

 A method according to claim 19 wherein the cell is selected from the group consisting of neuronal or fibroblast cells. 5

- 21. A method of detecting a condition associated with the aberrant regulation of neuronal growth comprising assaying a sample for (a) a nucleic acid molecule encoding a teneurin c-terminal associated peptide or a fragment thereof or (b) a teneurin c-terminal associated peptide or a fragment thereof.
- 22. A method of treating a condition associated with the aberrant regulation of neuronal growth comprising administering to a cell or animal in need thereof, an effective amount of a teneurin c-terminal associated peptide or an agent that modulates teneurin c-terminal associated peptide expression and/or activity.
- 23. A method according to claim 22 wherein the agent is selected from the group consisting of: a nucleic acid molecule encoding teneurin cterminal associated peptide; teneurin cterminal associated peptide as well as fragments, analogs, derivatives or homologs thereof; antibodies; antisense nucleic acids; peptide mimetics; and substances isolated using the screening methods described in claims 12- 20.

- 24. A method of inducing an anxiogenic response in a subject comprising administering to a subject an effective amount of teneurin c-terminal associated peptide to induce an anxiogencic response.
- 25 25. A method of inihibiting an anxiogenic response in a subject comprising administering to a subject an effective amount of an inhibitor of teneruin c-terminal associated peptide to inhibit an anxiogenic response.
- 26. A method of claim 25 wherein the inhibitor is identified according to the method of anyone of claims 13 to 18.

-100 -

27. A method of inhibiting the damage caused by physiological stresses comprising administering to a cell, an effective amount of teneurin cterminal associated peptide that protects cells from the physiological stresses.

5

- 28. A method of modulating the stress response in an animal comprising administering an effective amount of TCAP to said animal.
- 29. A method of modulating anxiety response in an animal comprising
 administering an effective amount of TCAP to said animal.
 - 30. The method of increasing anxiety in a low anxiety animal comprising administering to said animal an effective amount of TCAP.
- 15 31. A method of decreasing anxiety in a high anxiety animal comprising administering to said animal an effective amount of TCAP.
 - 32. A method of normalizing anxiety response in an animal comprising administering to said animal an effective amount of TCAP.

- 33. A method of treating cancer in an animal comprising administering an effective amount of TCAP to said animal.
- 3 4 . A pharmaceutical composition comprising TCAP and a pharmaceutically acceptable vehicle.

1/30

	60
5'-tccatctcgggggtgcaacaggaagtgacccggcaagccaaggctttcctgtccttcgag	20
SISGVQQEVTRQAKAFLSFE	120
aggatgccggagatccagctgagccgccggcgctccaaccgggagaaaccctggctgtgg	
RMPEIQLSRRSNREKPWLW	40
ttcgccaccgccaagtctctgatcggtaagggtgtcatgttggcggtgacgcagggccgt	180
FATAKSLIGKGVMLAVTQGR	60
gtggtcaccaacgctctgaacatcgccaacgaggactgcatcaaggtcgccgccgtcctc	240
V V T N A L N I A N E D C I K V A A V L	80
aacaatgcgttctacctggaggacctgcacttcacggtggagggacgcgacacgcactac	300
NNAFYLEDLHFTVEGRDTHY	100
ttcatcaagaccagcctcccggagagcgacctgggagcgctgaggctgacaagcggggagg	360
FIKTSLPESDLGALRLTSGR	120
aagtcgctggagaacggaagtcaacgtgactgtgtcccagtccaccaccgtggtgaacgg	420
KSLENGVNVTVSQSTTVNG	140
cagaaccggcgcttcgccgacgtggagctgcagtacggcgctctagcgctccacgtgcgc	480
R T R R F A D V E L Q Y G A L A L H V R	160
tatggcatgactctggacgaggagaaggcgcgtgtgctggagcaggccaggcagaaggcg	540
Y G M T L D E E K A R V L E Q A R Q K A	180
ttgtcgagtgcctggtccagggagcaacaacgggtgagggagg	600
	200
t s s A W s R E g g k v R E G E E G v R ctgtggacggaggaggaggatgtctgggctacgac	660
	220
gggtactacgtcctccatagagcagtaccccgagctagcagactccgctaacaacatc	720
	240
G 1 1 7 1 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	756
	251
Q F L R Q S E I G R stop (SEQ.ID.NO.3) cagacagaatcctcggcactggcc	780
cayacayaatcactcggcactggca	840
gccaaagagactaccccttccaaatcctgcccccaacctccctc	900
tctaaaaagggggagggtccaggctagtgctgtgtttagcgccgactagctgaaacaaac	960
agtaaaatgtagaatatcttaaactgaactatacctaatactaccactgtggggcctgaa	1020
aatcaaacaaaacggctccaactgacgcaaatgtttgtcccatgtgctatacagcgttga	1080
atggactgtggactctcttgaaaagagagaaaaaaaagtcaaaactctcggtttgtgaaa	1140
ggagaaaaaacgttttttttttttttaaatagacttcctgaatttgctttcggaaaaaa	1200
tattttaaaaagaaagaaatgtgtttacatacgcataacactacaacacgtctggac	1260
taatagaagaaaagccttctggtttcttacacaggacaacgtctataatctgattctaca	1320
tcctgacgactgacctttgattgacctttgcgtactgaaaaaggtagttgttgttcgc	
agtaggaccatgggtctccaatggtggtaactagacagttaaaaccacttgttgaaacca	1380
cttgcttgttcttctgcttttctttccaaaagggacaaaacagctcccaccaagtgactt	1440
ctttaccaatactagatcaaagtgggacgttttgggctcgtgccgaattc-3'(SEQ.ID.NO.1	1490

2/30

O.mykiss Ten M3	SISGVQQEVTRQAKAFLSFERMPEIQLSRRRSNREKPWLWFATAKSLIGK
R.danio Ten M3	SISGVQQEVMRQAKAFLSFERMPEIQLSRRRSSREKPWLWFATVKSLIGK
M.musculus Ten M3	BIFGVQQQVARQAKAFLSIGKMAEVQVSRRKAGAEQSWLWFATVKSLIGK
H.sapiens Ten M3	BIFGVQQQVABQAKAFLSLGKMAEVQVSRRRAGGAQSWLWFATVKSLIGK
O.mykiss Ten M3	GVMLAVT QGRVVTNALNIANEDCIKVAAVLNNAFYLEDLHFTVEGRDTH
R.danio Ten M3	GVMLAVT QGRVQTNALNIANEDCIKVAAVLNNAFYLEDLHFTVEGRDTH
M.musculus Ten M3	GVMLAVT QGRVQTNALNIANEDCIKVAAVLNNAFYLENLHFTTEGKDTH
H.sapiens Ten M4	GVMLAVT QGRVQTNALNIANEDCIKVAAVLNNAFYLENLHFTTEGKDTH
O.mykiss Ten M3	YFIKTSLPESDLGALRLTSGRKSLENGVNVTVSQSTTVVNGRTRRFADVE
R.danio Ten M3	YFIKTSLPESDLGALRLTSGRKSLENGVNVTVSQSTTVVNGRTRRFADVE
M.musculus Ten M3	YFIKTTPESDLGTLRLTSGRKALENGENVTVSQSTTVVNGRTRRFADVE
H.sapiens Ten M3	YFIKTTPESDLGTLRLTSGRKALENGENVTVSQSTTVVNGRTRRFADVE
O.mykiss Ten M3	LQYGALALHVRYGMTLDEEKARVLEQARQKALSSAWSREQQRVREGEEGV
R.danio Ten M3	LQYGALALHVRYGMTLDEEKARVLEQARQRALSSAWAREQQRVRDGEEGV
M. musculus Ten M3	MOEGALALHVRYGMTLDEEKARTLEQARQRALARAWAREQQRVRDGEEGA
H. sapiens Ten M3	MOEGALALHVRYGMTLDEEKARTLEQARQRALARAWAREQQRVRDGEEGA
O.mykiss Ten M3	RLWTEGEKRQLLSGRKVLGYDGYYVLSIEQYPELADSANNIQFLRQSEIG
R.danio Ten M3	RLWTEGEKRQLLSGKVLGYDGYYVLSWEQYPELADSANNWOFLRQSEIG
M.musculus Ten M3	RLWTEGEKRQLLSAGKVQGYDGYYVLSWEQYPELADSANNIQFLRQSEIG
H. sapiens M3	RLWTEGEKRQLLSAGKVQGYDGYYVLSWEQYPELADSANNIQFLRQSEIG
O. mykiss Ten M3 R. danio Ten M3 M. musculus Ten M3 H. sapiens Ten M3	KR (SEQ.ID.NO.3) KR (SEQ.ID.NO.12) KR (SEQ.ID.NO.6) RR (SEQ.ID.NO.10)

3/30

Mouse Teneurin 1	MILGIQCELQKQLRNFISLDQLPMTPQYNEGRCLEGGKQPRFAAVPSVFG
Mouse Ten eurin M2	LITGVQQTTERHNQAFLALEGQVITKKLHAS IREKAGHWFATTTPIIG
Mouse Ten eurin M3	PIFGVQQQVARQAKAFLSL GKMAEVQVSRRKAGAEQSWLWFATVKSLIG
Mouse Ten eurin M4	SILGVQCEVQKQLKAFVTLERFDQLYGSTITSCQQAPETKKFASSGSIFG
Mouse Teneurin 1	KGIKFAIKEGIVTADIIGVANEDSRRLAAILNNAHYLENLHFTIEGRDTH
Mouse Teneurin 2	KGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYSIEGKDTH
Mouse Teneurin 3	KGVMLAVSQGRVQTNVLNIANEDCIKVAAVLNNAFYLENLHFTIEGKDTH
Mouse Teneurin 4	KGVKFALKDGRVTTDIISVANEDGRRIAAILNNAHYLENLHFTIDGVDTH
nouse remediate	
Mouse Teneurin 1	YFIKLGSLEEDLVLIGNTGGRRILENGVNVTVSQMTSVLNGRTRRFADIQ
Mouse Teneurin 2	YFVKIGAADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRTRRFTNIE
Mouse Teneurin 3	YFIKTTTPESDLGTLRLTSGRKALENGINVTVSQSTTVVNGRTRRFADVE
Mouse Teneurin 4	YFVKPGPSEGDLAILGLSGGRRTLENGVNVTVSQINTML
Mouse lenediin 4	11 111 01 01 01 01 01
Mouse Teneurin 1	LOHGALCFNIRYGTT VEEEKNHVLEMARQRAVAQAWTQEQRRLQEGE
Mouse Teneurin 2	FQYSTLLLSIRYGLTPDTLDEEKARVLDQAGQRALGTAWAKEQQKARDGR
Mouse Teneurin 3	MQFGALALHVRYGMT LDEEKARILEQARQRALARAWAREQQRVRDGE
Mouse Teneurin 4	IOLOYRALCINTRYGT TVDEEKVRVLELARQRAVRQAWAREQQRLREGE
Mouse Tenediin 4	TODOTTO TO
Mouse Teneurin 1	EGTRVWTEGEKQQLLGTGRVQGYDGYFVLSVEQYLELSDSANNIHFMRQS
Mouse Teneurin 2	EGSRLWTEGEKQQLLSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQN
Mouse Teneurin 3	EGARLWTEGEKRQLLSAGKVQGYDGYYVLSVEQYPELADSANNIQFLRQS
Mouse Teneurin 4	EGLRAWTDGEKQQVLNTGRVQGYDGFFVTSVEQYPELSDSANNIHFMRQS
Mouse Teneurin 4	EGHKAWIDGEKQQ III I GK V ZOIDOIL VIO VIZZIII III
	EIGRR (SEQ.ID.NO.4)
Mouse Teneurin 1	EMGKR (SEQ.ID.NO.5)
Mouse Teneurin 2	EIGKR (SEQ.ID.NO.6)
Mouse Teneurin 3	· · · ·
Mouse Teneurin 4	EMGRR (SEQ.ID.NO.7)

4/30

Human	Ten	M1	TILGIQCELQKQLRNFISL D QLPMTPRYNDGRCLEGGKQ PRFA
Human	Ten	M2	LITGVQQTTERHNQAFMALE GQV ITKKLHASIREKAGHW FA
Human	Ten	M3	PIFGVQQQVARQAKAFLSLGKMAEVQV SRRRAGGA QS WLW FA
Human	Ten	M4	SILGVQCEVQKQLKAFVTLER FD QL YGSTITSCLQAPKT KKFA
Human	Ten	м1	${\tt AVPSVFGKGIKFAIKDGIVTADIIGVANEDSRRLAAILNNAHYLENLHFT}$
Human	Ten	M2	TTTPIIGKGIMFAIKEGRVTTGVSSIASEDSRKVASVLNNAYYLDKMHYS
Human	Ten	м3	TVKSLIGKGVMLAVSQGRVQTNVLNIANEDCIKVAAVLNNAFYLENLHFT
Human	Ten	M4	SSGSVFGKGVKFALKDGRVTTDIISVANEDGRRVAAILNHAHYLENLHFT
Human	Ten	MI	IEGRDTHYFIKLGSLEEDLVLIGNTGGRRILENGVNVTVSQMTSVLNGRT
Human	Ten	M2	IEGKDTHYFVKIGSADGDLVTLGTTIGRKVLESGVNVTVSQPTLLVNGRT
Human	Ten	м3	IEGKDTHYFIKTTTPESDLGTLRLTSGRKALENGINVTVSQSTTVVNGRT
Human	Ten	M4	IDGVDTHYFVKPGPSEGDLAILGLSGGRRTLENGVNVTVSQINTVLSGRT
Human	Ten	M1.	RRFADIQLQHGALCFNIRYGTT VEEEKNHVLEIARQRAVAQAWTKEQ
Human	Ten	M2	RRFTNIEFQYSTLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQ
Human	Ten	мз	RRFADVEMQFGALALHVRYGMT LDEEKARILEQARQRALARAWAREQ
Human	Ten	M4	RRYTDIQLQYGALCINTRYGTT LDEEKARVLELARQRAVRQAWAREQ
Human	Ten	м1	$\tt RRLQEGEEGIRAWTEGEKQQLLSTGRVQGYDGYFVLSVEQYLELSDSANN$
Human	Ten	M2	QKARDGREGSRLWTEGEKQQLLSTGRVQGYEGYYVLPVEQYPELADSSSN
Human	Ten	мз	QRVRDGEEGARLWTEGEKRQLLSAGKVQGYDGYYVLSVEQYPELADSANN
Human	Ten	M4	QRLREGEEGLRAWTEGEKQQVLSTGRVQGYDGFFVISVEQYPELSDSANN
Human	Ten	M1	IHFMRQSEIGRR (SEQ.ID.NO.8)
Human	Ten	M2	IQFLRQNEMGKR (SEQ.ID.NO.9)
Human	Ten	мз	IQFLRQSEIGRR (SEQ.ID.NO.10)
Human	Ten	M4	IHFMRQSEMGRR (SEQ.ID.NO.11)

5/30

FIGURE 5

Human	TCAP-	1
-------	-------	---

cag	cag	ctt	ttg	agc	act	ggg	cgg	gta	caa	
ggt	tac	gat	ggg	tat	ttt	gtt	ttg	tct	gtt	
gag										(SEQ.ID.NO.76
aat	aat	att	cac	ttt	atg	aga	cag	agc	gaa	+stop codon)
ata	ggc	agg	agg	taa						

Human TCAP-2

cag	cag	ctt	ctg	agc	acc	ggg	cgc	gtg	caa	
ggg	tac	gag	gga	tat	tac	gtg	ctt	CCC	gtg	
gag	caa	tac	cca	gag	ctt	gca	gac	agt	agc	(SEQ.ID.NO.84
agc	aac	atc	cag	ttt	tta	aga	cag	aat	gag	+stop codon)
atg	gga	aag	agg	taa						

Human TCAP-3

				agc						
ggc	tac	gac	ggg	tac	tac	gta	ctc	tcg	gtg	
gag	cag	tac	CCC	gag	ctg	gcc	gac	agc	gcc	(SEQ.ID.NO.92
				ttc						+stop codon)
atc	ggc	agg	agg	taa						

Human TCAP-4

cag										
ggc	tac	gac	ggc	ttt	ttc	gtg	atc	tct	gtc	
gag										(SEQ.ID.NO.100
aac	aac	atc	cac	ttc	atg	aga	cag	agc	gag	+stop codon)
atg	ggc	cgg	agg	tga						

Mouse TCAP-1

	cag									
ggg	tat	gat	ggg	tat	ttt	gtc	ttg	tct	gtt	
	cag									(SEQ.ID.NO.44
aac	aat	att	cac	ttc	atg	aga	cag	agt	gaa	+stop codon)
ata	ggc	agg	agg	taa						

6/30

FIGURE 5 (CONT'D)

Mouse TCA	\P-2
-----------	------

cag	caa	ctc	ctg	agc	acg	gga	cgg	gta	caa	
aat	tat	gag	ggc	tat	tac	gta	ctt	ccg	gtg	
gaa	cag	tac	ccg	gag	ctg	gca	gac	agt	agc	(SEQ.ID.NO.52
agc										+stop codon)
ato	aga	aaσ	agg	taa						

Mouse TCAP-3

ggc	tac	gat	ggg	tac	tac	gta	ctg	tcg	cag gtg gcc	(SEQ.ID.NO.60
aac atc	aac	atc	cag	ttc	ttg	cga	caa	agt	gag	+stop codon)

Mouse TCAP-4

cag	cag	gtg	ctg	aac	acg	ggg	cgg	gtg	caa	
aac										
gag										(SEQ.ID.NO.68
aac										+stop codon)
atg	ggc	cga	agg	tga						

Zebrafish TCAP-3

agg	cag	ttg	ctc	agc	tct	ggg	aag	gtg	ctg	
ggt	tac	gat	ggt	tac	tat	gta	cta	tca	gtg	
				gaa						(SEQ.ID.NO.28
aac	aat	gtc	cag	ttc	ttg	agg	cag	agt	gag	+stop codon)
ata	ggg	aag	agg	taa						

Zebrafish TCAP-4

cag	cag	ctc	cta	agc	tct	gga	cgt	gta	cag	
aac	tac	gaa	ggc	ttc	tac	ata	gta	tca	gtc	
gac	cag	ttc	cca	gag	ttg	act	gac	aac	ata	(SEQ.ID.NO.36
aat	aac	gtc	cat	ttc	tgg	cga	cag	act	gag	+stop codon)
atg	gga	cgc	agg	tga						

Rainbow Trout TCAP-3

5'-agg cag ct	g ctg agc g	gg agg aag gtt ctg	
ggc tac gac g	gg tac tac	gtc ctc tcc ata	/ NO 20
		god gdo oos g-	(SEQ.ID.NO.20
		agg cag agc gaa	+stop codon)
ata ggg aag a	agg taa-3'		

7/30 **FIGURE 6A**

8/30 **FIGURE 6B**

			9.	/30			©	
Accession Numbers	nm_014253 (SEQ.ID.NO.69) xm_047995 (SEQ.ID.NO.78) ak001336 (SEQ.ID.NO.85) ak056531 (SEQ.ID.NO.94)	NH2 nm 011855 (SEQ.ID.NO.37) nm 011856 (SEQ.ID.NO.76) nm 011857 (SEQ.ID.NO.53) ab025413 (SEQ.ID.NO.66)	nm_020088 (SEQ.ID.NO.78)		-NH2 aj238613 (SEQ.ID.NO.101) -NHZ aj279031 (SEQ.ID.NO.136)		夏not entered Yet (SEQ.ID.NO.13)	nm_130968 (SEQ.ID.NO.21) ab026980 (SEQ.ID.NO.30) (SEQ.ID.NO.103)
ces	OOLESTGRVOGYDGYFVLSVEGYLELSDSANNIHEMEGSET-NH2 OOLESTGRVOGYDGYYVLPVEQYPELADSSSNIOFLRONEM-NH2 OLESAGKVOGYDGYYVLSVEQYPELADSANNIOFLROSEI-NH2 OOVESTGRVOGYDGFFVISVEQYPELSDSANNIHEMEGSEM-NH2	OOLEGTGRWOGYDGYFVLSVE@YLEESBSANNIHEMROSEI-NH2 OOLESAGKWOGYDGYYVLPVE@YPELABSSSNIOFIRONEM-NH2 nm OLESAGKWOGYDGYYVLSVE@YPELABSANNIOFIROSEI-NH2 nm OOVENTGRWOGYDGFFVTSVE@YPELSDSANNIHEMROSEM-NH2 ab	QQLPSTGRWQEYEGYYVLPVEQYPETJABSSSMIQELEQUPM		QÖLÜNTGRÜQĞYDĞYFVLSVEQYLELSÖSANNIHÜNRÖSET-NH2 QÖLÜNTGRÜQÇYEĞYYVLPVEQYPENADSSSNIQRIRĞONEM-NHZ		3 QLLSGRKWLGYDGYYVLSIEQYPERABSANNIQFIRQSEI-NEZ not	ÖLLISSGKVLGYDGYYVLSVEÖYPETADSANNVOFLRÖSFI-NHZ QÖLLISSGRVOGYEGEYIVSVDÖFPELTDNINNVHFWRÖTEM-NH2 ELVOHGDVDGWNG1DIHSIHKYPQLADOPGNVAFQRDAK
Mammalian TCAP Sequences	human TCAP 1 human TCAP 2 human TCAP 3 human TCAP 4	mouse TCAP 1 mouse TCAP 2 mouse TCAP 3 mouse TCAP 4	Rat TCAP 2	Avian TCAP Sequences	chicken TCAP 1 chicken TCAP 2	Piscine TCAP Sequences	Rainbow trout TCAP 3	zebrafish TCAP 3 zebrafish TCAP 4 Insect Drosopholia

9/30

FIGURE 7A

10/30

FIGURE 7B

Protein name	Species	Truncated peptide	% Identical	% Homolog
Ten-m1/odd Odz1	M musculus	QLLGTGRVQGYDGYFVLSVEQYLELSDSANNIHFMRQSEI	100	
Teneurin-1	G gallus	QLLNTGRVQGYDGYFVLSVEQYLELSDSANNIHFMRQSEI	97	97
		QLLSTGRVQGYDGYFVLSVEQYLELSDSANNIHFMRQSEI	97	97
Odz (odd Oz1/ten-m1) / tenascin M	H sapiens		97	97
Mouse DOC4-like protein	H saplens	QLLSTGRVQGYDGYFVLSVEQYLELSDSANNIHFMRQSEI		
DOC4/Ten-m4 /odd Oz4	M musculus	QULNTGRVQGYDG FVTSVEQYPELSDSANNIHFMRQSE	85	92
Similar to odd Oz4/ten-m4/	H sapiens	QVILSTGRVQGYDGEFVESVEQYELSDSANNIHFMRQSEM	85	95
KIAA1302 protein	H sapiens	QUISTGRVQGYDGHFVESVEQYPELSDSANNIHFMRQSEM	85	95
Hypothetical protein/ DKFZp56400423.1 (fragment)		OMINITARY OF THE VERY MADE AND OF THE OWN TO	80	90
odd Oz/ten-m3/ ODZ3	M musculus	QLLSAGGVQGYDGYWVLSVEQYHELMDSANNIQFWQSEI	80	90
Hypothetical protein FLJ10474; FLJ10886; unnamed protein products:	H sapiens	OLLSAGMACGADGAMARSAEGAHETMOSYNNIÖLMEGSEI		
AK001336, AK027473, AK001748 Putative (AK011924)	M musculus	QLLSAGEVQGYDGYEVLSVEQYPELEDSANNI QFERQSEI	80	90
N/A	R trout	QLLSGREVLGYDGY WVLSHEQYPEL DSANNIQFTRQSEI	80	90
		QLLSSCHVLGYDGYMULSVEQYRELMDSANNWQFERQSEI	75	90
Ten-m3	D rerio	OPT 250 MATERIA DO LES A POLICIO DE LA COMPANSION DE LA C	70	90
Neurestin alpha	R norvegicus	QLLSTGRVQGYEGYEVLEVEQYPELEDSSNIDFERQEM	70	90
Teneurin-2	G gallus	QLLSTGRVQGYEGYHVLPVEQYPELHTSSNIQFERQHEM		
Ten-m2/ QDZ2/ odd Oz2	M musculus	QLLSTGRVQGYEGYEVEQYEELEDSSENIQFERQUE	70	90
Odd Oz/ten-m2/ KIAA1127 protein /	H saplens	QLLSTGRVQGYEGYMVLEVEQYPELMDSSNIDFERONEM	70	90
hypothetical protein	<u> </u>		70	90
Hypothetical protein	H saptens	QLLSTGRVQGYEGYMVLEVEQYPELMDSSSNIQFERQNEM	70	90
Odd Oz/ten-m2	H saptens	QLLSTGRVQGYEGYMVLBVEQYBELEDESSNIQFEROMEN		89
Ten-m4	D rerio	QLLSSGRVQGYEGEXXXSVEQEPELEDDINNMHFWRQEED	57	
odd Oz/tenascin-like protein/Ten-m gene product	D melanogaster	BTWOHEDADEMMETDEHERHMA SETHOD SEWAW LOSIDING	30	60

11/30

(SEQ.ID.NO.104)	(SEQ.ID.NO.70)
(SEQ.ID.NO.105)	(SEQ.ID.NO.78)
(SEQ.ID.NO.106)	(SEQ.ID.NO.85)
(SEQ.ID.NO.107)	(SEQ.ID.NO.94)
SEEPPESIDETFHEEREVEENARAEOGAUSNREINEIT	OOLESTGRWOGYDGYFYISVEOYLEISDSANNIHĀMROSEI
DNPSISEDTTFHEERTREEFARTOSORERAEONRITTEDSW	OOLESTGRWOGYBGYWYLPVEOYPPLADSSSNIOFLROVĒM
IVESEDWPIGELOIRLEOARARAAREOATTNARELARW	OLESAGWWOGYDGYWYLSVEOYPPLADSANNIOFIROSEI
FTISEDWPINEWNIEWNEARKEOATTNARELARW	OOMISTGRWOGYDGWWSVEOYPPLSDSANNIHFMROSEM
human CRF human urocortin human urocortin 2 human urocortin 3	TCAP Peptide Family human TCAP 1 human TCAP 2 human TCAP 3

CRF Peptide Family

FIGURE 8

12/30

SEQ ID NOS 104 105 106 106 70 78 85 94 SEEPPES LDLTFHLIREVIEMARAEQLAOOAHSNRKEM EIE DNPSES IDLTFHLLRTETEMARTOSORERAEONRIEM DSM IWES LDMPIGLLOIMTEOARARAREOATTNAREM ARW FILS LDMPTNIMNIMMARARENERAOAFANAREM AOE OOTISTGREGGYDGYFVISMEQYLEES DSANNEHEMRQSEI OOTISTGREGGYGGYYVISMEQYPELA DSSSNEOTEMEM ONISAGKROGYDGYYVYLSKEOYPELA DSANNEHENRQSEI OOTISTGREGGYDGYYVYLSKEOYPELS DSANNEHENRQSEI Human TCAP Paralogues Human CRF Paralogues urocortin 2 urocortin 3 human urocortin human urocortin TCAP TCAP human TCAP human CRF human human human

FIGURE 9

13/30

FIGURE 10

30

20

Residue (window of 7)

10

40

FIGURE 11

O mykiss TCAP-3 (SEQ.ID.NO.13) R. danio TCAP-3 (SEQ.ID.NO.22) L. migratoria DP (SEQ.ID.NO.108) A. domesticus DP (SEQ.ID.NO.109) T. molitor DP (SEQ.ID.NO.110) M. sexta DP-I (SEQ.ID.NO.111) M. sexta DP-II (SEQ.ID.NO.111) P. Americana (SEQ.ID.NO.113) P. Americana (SEQ.ID.NO.113) R. norvegicus CRF (SEQ.ID.NO.114) O. keta CRF (SEQ.ID.NO.114) R. norvegicus UCN (SEQ.ID.NO.115) P. sauvageii SVG (SEQ.ID.NO.116) C. carpio UI (SEQ.ID.NO.117) M. musculus UCN2 (SEQ.ID.NO.118) R. danio UCN2 (SEQ.ID.NO.119) H. sapiens UCN3 (SEQ.ID.NO.119)	
PS ANNIOFIROSEI-NH2 LEDGERIOONEEL GOI-NH2 RELOGSRIOONEEL SI-NH2 ONNREEL NSIN-OH RA AANNEEL NR EII-NH2 ROSODOI WREEL NR EII-NH2 ROSODOI WREEL NR EII-NH2 ONN REEL NR EII-NH2 ON AHSNRK EII-NH2 ORE AGINRKII DEI-NH2	
CYVISIEOYPE IN SYFVISHEOYLE IMNEINRR KTWEGERARKON ESERKKURA ILHEIARR EVHEMARAEO ONNEMSRAEO ONNEMSRAEO THELARTOS KMIEIEROEK NMIEIRARR NMIEIRARR ILHEIARTOS KMIEIEROEK NMIEIRARR	
OLLS GRKVLGYDGYYVLSIEOYPE OOLLS TGRVGGYDGYFVLSMEGYL MGMGPSLSIVNPMDVLRQR TGAOSLSIVAPLDVLRQR TGAOSLSIVAPLDVLRQR TGAOSLSIVAPLDVLRQR SPTESTAPIDVLR KTWEGER SLSVNPAVDLOHR KTWEGERER SLSVNPAVDLOHR TGSGPSISIVNPLDVLRQR SEEPPHSLDLTFHEIR SDDPPHSLDLTFHEIR OOPPHSLDLTFHEIR NDDPPHSLDLTFHEIR VIELLBURGER TIMERAR	

15/30

Figure 12

Teneurin
Teneurin
Teneurin
Teneurin

Whole Mouse Brain

NLT immortalized neurons

Gn11 immortalized neurons

Neuro2a neuroblastoma cells

16/30

FIGURE 13

17/30 **FIGURE 14**

Effect of 10⁻⁶M RT TCAP3 on TGR1 cells at 48-hrs

18/30

FIGURE 15

Effect of 10⁻⁶M RT TCAP3 on HO16.4c cells at 48-hrs

19/30

FIGURE 16

B cGMP

20/30

FIGURE 17

21/30 FIGURE 18

22/30

FIGURE 19

23/30

FIGURE 20

In Situ Hybridization

Amygdala

Bed nucleus of Stria terminalis

Ventral Premammillary nucleus

Startle amplitude

TCAP-1 Treated Rats-ICV injected

FIGURE 21B

26/30

FIGURE 22

27/30 **FIGURE 23**

Summary of amygdala-injected TCAP-1

FIGURE 24

29/30 **FIGURE 25**

30/30

FIGURE 26

1/88

SEQUENCE LISTING

<110> Lovejoy, David

Chewpoy, R.B.

Barsyte, Dalia

Rotzinger, Susan

<120> Tereuin C-Terminal Associated Peptides (TCAP)

<130> 2223-159

<150> US 60/376,879

<151> 2002-05-02

<150> US 60/377,231

<151> 2002-05-03

<150> US 60/424,016

<151> 2002-11-06

<160> 136

<170> PatentIn version 3.1

<210> 1

<211> 1490

<212> DNA

<213> Artificial Sequence

<220>

<223> Rainbow Trout Ten M3 carboxy termini'

2/88

<400> 1 tccatctcgg	gggtgcaaca	ggaagtgacc	cggcaagcca	aggctttcct	gtccttcgag	60
aggatgccgg	agatccagct	gagccgccgg	cgctccaacc	gggagaaacc	ctggctgtgg	120
ttegecaceg	ccaagtctct	gatcggtaag	ggtgtcatgt	tggcggtgac	gcagggccgt	180
gtggtcacca	acgctctgaa	catcgccaac	gaggactgca	tcaaggtcgc	cgccgtcctc	240
aacaatgcgt	tctacctgga	ggacctgcac	ttcacggtgg	agggacgcga	cacgcactac	300
ttcatcaaga	ccagcctccc	ggagagcgac	ctgggagcgc	tgaggctgac	aagcgggagg	360
aagtcgctgg	agaacggaag	tcaacgtgac	tgtgtcccag	tccaccaccg	tggtgaacgg	420
cagaaccggc	gcttcgccga	cgtggagctg	cagtacggcg	ctctagcgct	ccacgtgcgc	480
tatggcatga	ctctggacga	ggagaaggcg	cgtgtgctgg	agcaggccag	gcagaaggcg	540
ttgtcgagtg	cctggtccag	ggagcaacaa	cgggtgaggg	agggggagga	gggggtgagg	600
ctgtggacgg	agggggagaa	gaggcagctg	ctgagcggga	ggaaggttct	gggctacgac	660
gggtactacg	tectetecat	agagcagtac	cccgagctag	cagactccgc	taacaacatc	720
cagttcctca	ggcagagcga	aatagggaag	aggtaacaga	cagaatcctc	ggcactggcc	780
gccaaagaga	ctaccccctc	caaatcctgc	cccccaacct	ccctcgcctc	ccccttttc	840
tctaaaaagg	gggagggtcc	aggctagtgc	tgtgtttagc	gccgactagc	tgaaacaaac	900
agtaaaatgt	agaatatctt	aaactgaact	atacctaata	ctaccactgt	ggggcctgaa	960
aatcaaacaa	aacggctcca	actgacgcaa	atgtttgtcc	catgtgctat	acagcgttga	1020
atggactgtg	gactctcttg	aaaagagaga	aaaaaaagtc	aaaactctcg	gtttgtgaaa	1080
ggagaaaaaa	. acgtttttt	ttttttaaa	tagacttcct	gaatttgctt	tcggaaaaaa	1140
tattttaaaa	agaaagaaga	aatgtgttta	catacgcata	acactacaac	acgtctggac	1200
taatagaaga	. aaagccttct	ggtttcttac	acaggacaac	gtctataatc	tgattctaca	1260
tcctgacgac	tgacctttga	ttgacctttg	cgtactgaaa	. aaggtagtgt	tgttgttcgc	1320
agtaggacca	tgggtctcca	. atggtggtaa	. ctagacagtt	aaaaccactt	gttgaaacca	1380
cttgcttgtt	cttctgcttt	tctttccaaa	agggacaaaa	cageteceae	: caagtgactt	1440
ctttaccaat	actagatcaa	agtgggacgt	tttgggctcg	tgccgaatto	:	1490

<210> 2

<211> 756

<212> DNA

3/88

<213> Artificial Sequence

<220> <223> Rainbow Trout Ten M3 coding sequence of carboxy termini of Ten M3 <400> 2 tecatetegg gggtgcaaca ggaagtgace eggcaageea aggettteet gteettegag 60 aggatgccgg agatccagct gagccgccgg cgctccaacc gggagaaacc ctggctgtgg 120 ttcgccaccg ccaagtctct gatcggtaag ggtgtcatgt tggcggtgac gcagggccgt 180 gtggtcacca acgctctgaa catcgccaac gaggactgca tcaaggtcgc cgccgtcctc 240 aacaatgcgt tctacctgga ggacctgcac ttcacggtgg agggacgcga cacgcactac 300 ttcatcaaga ccagcctccc ggagagcgac ctgggagcgc tgaggctgac aagcgggagg 360 aagtcgctgg agaacggaag tcaacgtgac tgtgtcccag tccaccaccg tggtgaacgg 420 cagaaccggc gcttcgccga cgtggagctg cagtacggcg ctctagcgct ccacgtgcgc 480 tatggcatga ctctggacga ggagaaggcg cgtgtgctgg agcaggccag gcagaaggcg 540 600 ttgtcgagtg cctggtccag ggagcaacaa cgggtgaggg agggggagga gggggtgagg ctgtggacgg agggggagaa gaggcagctg ctgagcggga ggaaggttct gggctacgac 660 gggtactacg tectetecat agageagtae eeegagetag eagaeteege taacaacate 720 756 cagttcctca ggcagagcga aatagggaag aggtaa

<210> 3

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Rainbow Trout Ten M3 carboxy termini of Ten M3

<400> 3

Ser Ile Ser Gly Val Gln Gln Glu Val Thr Arg Gln Ala Lys Ala Phe 1 5 10 15

Leu Ser Phe Glu Arg Met Pro Glu Ile Gln Leu Ser Arg Arg Arg Ser

4/88

Asn Arg Glu Lys Pro Trp Leu Trp Phe Ala Thr Ala Lys Ser Leu Ile 35 40 45

Gly Lys Gly Val Met Leu Ala Val Thr Gln Gly Arg Val Val Thr Asn 50 55 60

Ala Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Ala Ala Val Leu 65 70 75 80

Asn Asn Ala Phe Tyr Leu Glu Asp Leu His Phe Thr Val Glu Gly Arg 85 90 95

Asp Thr His Tyr Phe Ile Lys Thr Ser Leu Pro Glu Ser Asp Leu Gly 100 105 110

Ala Leu Arg Leu Thr Ser Gly Arg Lys Ser Leu Glu Asn Gly Val Asn 115 120 125

Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg Arg 130 135 140

Phe Ala Asp Val Glu Leu Gln Tyr Gly Ala Leu Ala Leu His Val Arg 145 150 155 160

Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Gln Ala 165 170 175

Arg Gln Lys Ala Leu Ser Ser Ala Trp Ser Arg Glu Gln Gln Arg Val

Arg Glu Gly Glu Gly Val Arg Leu Trp Thr Glu Gly Glu Lys Arg 195 200 205

Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 210 215 220

Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 225 230 235 240

Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245 250

<210> 4

5/88

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M1

<400> 4

Met Ile Leu Gly Ile Gln Cys Glu Leu Gln Lys Gln Leu Arg Asn Phe 1 5 10 15

Ile Ser Leu Asp Gln Leu Pro Met Thr Pro Gln Tyr Asn Glu Gly Arg 20 25 30

Cys Leu Glu Gly Gly Lys Gln Pro Arg Phe Ala Ala Val Pro Ser Val 35 40 45

Phe Gly Lys Gly Ile Lys Phe Ala Ile Lys Glu Gly Ile Val Thr Ala 50 55 60

Asp Ile Ile Gly Val Ala Asn Glu Asp Ser Arg Arg Leu Ala Ala Ile
65 70 75 80

Leu Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Leu Gly Ser Leu Glu Glu Asp Leu 100 105 110

Val Leu Ile Gly Asn Thr Gly Gly Arg Arg Ile Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Met Thr Ser Val Leu Asn Gly Arg Thr Arg 130 135 140

Arg Phe Ala Asp Ile Gln Leu Gln His Gly Ala Leu Cys Phe Asn Ile 145 150 155 160

Arg Tyr Gly Thr Thr Val Glu Glu Glu Lys Asn His Val Leu Glu Met 165 170 175

Ala Arg Gln Arg Ala Val Ala Gln Ala Trp Thr Gln Glu Gln Arg Arg

6/88

180 185 190

Leu Gln Glu Gly Glu Gly Thr Arg Val Trp Thr Glu Gly Glu Lys 195 200 205

Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 210 215 220

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg 245 250

<210> 5

<211> 253

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M2

<400> 5

Leu Ile Thr Gly Val Gln Gln Thr Thr Glu Arg His Asn Gln Ala Phe 1 5 10 15

Leu Ala Leu Glu Gly Gln Val Ile Thr Lys Lys Leu His Ala Ser Ile 20 25 30

Arg Glu Lys Ala Gly His Trp Phe Ala Thr Thr Thr Pro Ile Ile Gly

Lys Gly Ile Met Phe Ala Ile Lys Glu Gly Arg Val Thr Thr Gly Val

Ser Ser Ile Ala Ser Glu Asp Ser Arg Lys Val Ala Ser Val Leu Asn 65 70 75 80

Asn Ala Tyr Tyr Leu Asp Lys Met His Tyr Ser Ile Glu Gly Lys Asp 85 90 95

7/88

Thr His Tyr Phe Val Lys Ile Gly Ala Ala Asp Gly Asp Leu Val Thr 100 105 110

Leu Gly Thr Thr Ile Gly Arg Lys Val Leu Glu Ser Gly Val Asn Val 115 120 125

Thr Val Ser Gln Pro Thr Leu Leu Val Asn Gly Arg Thr Arg Arg Phe 130 135 140

Thr Asn Ile Glu Phe Gln Tyr Ser Thr Leu Leu Leu Ser Ile Arg Tyr 145 150 155 160

Gly Leu Thr Pro Asp Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Asp 165 170 175

Gln Ala Gly Gln Arg Ala Leu Gly Thr Ala Trp Ala Lys Glu Gln Gln 180 185 190

Lys Ala Arg Asp Gly Arg Glu Gly Ser Arg Leu Trp Thr Glu Gly Glu 195 200 205

Lys Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr 210 215 220

Tyr Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser 225 230 235 240

Asn Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg 245 250

<210> 6

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M3

<400> 6

Pro Ile Phe Gly Val Gln Gln Gln Val Ala Arg Gln Ala Lys Ala Phe 1 5 10

8/88

Leu	Ser	Leu	Gly 20	Lys	Met	Ala	Glu	Val 25	Gln	Val	Ser	Arg	Arg 30	Lys	Ala
Gly	Ala	Glu 35	Gln	Ser	Trp	Leu	Trp 40	Phe	Ala	Thr	Val	Lys 45	Ser	Leu	Ile
Gly	Lys 50	Gly	Val	Met	Leu	Ala 55	Val	Ser	Gln	Gly	Arg 60	Val	Gln	Thr	Asn
Val 65	Leu	Asn	Ile	Ala	Asn 70	Glu	Asp	Cys	Ile	Lys 75	Val	Ala	Ala	Val	Leu 80
Asn	Asn	Ala	Phe	Tyr 85	Leu	Glu	Asn	Leu	His 90	Phe	Thr	Ile	Glu	Gly 95	Lys
Asp	Thr	His	Туr 100	Phe	Ile	Lys	Thr	Thr 105	Thr	Pro	Glu	Ser	Asp 110	Leu	Gly
Thr	Leu	Arg 115	Leu	Thr	Ser	Gly	Arg 120	Lys	Ala	Leu	Glu	Asn 125	Gly	Ile	Asn
Val	Thr 130	Val	Ser	Gln	Ser	Thr 135	Thr	Val	Val	Asn	Gly 140	Arg	Thr	Arg	Arg
Phe 145	Ala	Asp	Val	Glu	Met 150	Gln	Phe	Gly	Ala	Leu 155	Ala	Leu	His	Val	Arg 160
Tyr	Gly	Met	Thr	Leu 165		Glu	Glu	Lys	Ala 170	Arg	Ile	Leu	Glu	Gln 175	Ala
Arg	Gln	Arg	Ala 180	Leu	Ala	Arg	Ala	Trp 185	Ala	Arg	Glu	Gln	Gln 190	Arg	Val
Arg	Asp	Gly 195		Glu	Gly	Ala	Arg 200		Trp	Thr	Glu	Gly 205	Glu	Lys	Arg
Gln	Leu 210		Ser	Ala	Gly	Lys 215		Gln	Gly	Tyr	Asp 220	Gly	Tyr	Tyr	Val
Leu 225		Val	Glu	Gln	Tyr 230		Glu	Leu	Ala	Asp 235	Ser	Ala	Asn	Asn	11e 240

Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245 250 9/88

<210> 7

<211> 243

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse Ten M4

<400> 7

Ser Ile Leu Gly Val Gln Cys Glu Val Gln Lys Gln Leu Lys Ala Phe 1 5 10 15

Val Thr Leu Glu Arg Phe Asp Gln Leu Tyr Gly Ser Thr Ile Thr Ser 20 25 30

Cys Gln Gln Ala Pro Glu Thr Lys Lys Phe Ala Ser Ser Gly Ser Ile 35 40 45

Phe Gly Lys Gly Val Lys Phe Ala Leu Lys Asp Gly Arg Val Thr Thr 50 55 60

Asp Ile Ile Ser Val Ala Asn Glu Asp Gly Arg Arg Ile Ala Ala Ile 65 70 75 80

Leu Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Asp Gly 85 90 95

Val Asp Thr His Tyr Phe Val Lys Pro Gly Pro Ser Glu Gly Asp Leu 100 105 110

Ala Ile Leu Gly Leu Ser Gly Gly Arg Arg Thr Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Ile Asn Thr Met Leu Ile Gln Leu Gln Tyr 130 135 140

Arg Ala Leu Cys Leu Asn Thr Arg Tyr Gly Thr Thr Val Asp Glu Glu 145 150 155 160

Lys Val Arg Val Leu Glu Leu Ala Arg Gln Arg Ala Val Arg Gln Ala

10/88

165 170 175

Trp Ala Arg Glu Gln Gln Arg Leu Arg Glu Gly Glu Glu Gly Leu Arg 180 185 190

Ala Trp Thr Asp Gly Glu Lys Gln Gln Val Leu Asn Thr Gly Arg Val 195 200 205

Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu 210 215 220

Leu Ser Asp Ser Ala Asn Asn Ile His Phe Met Arg Gln Ser Glu Met 225 230 235 240

Gly Arg Arg

<210> 8

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M1

<400> 8

Thr Ile Leu Gly Ile Gln Cys Glu Leu Gln Lys Gln Leu Arg Asn Phe 1 5 10 15

Ile Ser Leu Asp Gln Leu Pro Met Thr Pro Arg Tyr Asn Asp Gly Arg 20 25 30

Cys Leu Glu Gly Gly Lys Gln Pro Arg Phe Ala Ala Val Pro Ser Val 35 40 45

Phe Gly Lys Gly Ile Lys Phe Ala Ile Lys Asp Gly Ile Val Thr Ala 50 55 60

Asp Ile Ile Gly Val Ala Asn Glu Asp Ser Arg Arg Leu Ala Ala Ile 65 70 75 80

11/88

Leu Asn Asn Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Leu Gly Ser Leu Glu Glu Asp Leu 100 105 110

Val Leu Ile Gly Asn Thr Gly Gly Arg Arg Ile Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Met Thr Ser Val Leu Asn Gly Arg Thr Arg 130 135 . 140

Arg Phe Ala Asp Ile Gln Leu Gln His Gly Ala Leu Cys Phe Asn Ile 145 150 155 160

Arg Tyr Gly Thr Thr Val Glu Glu Glu Lys Asn His Val Leu Glu Ile 165 170 175

Ala Arg Gln Arg Ala Val Ala Gln Ala Trp Thr Lys Glu Gln Arg Arg 180 185 190

Leu Gln Glu Gly Glu Glu Gly Ile Arg Ala Trp Thr Glu Gly Glu Lys
195 200 205

Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 210 215 220

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg 245 250

<210> 9

<211> 253

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M2

<400> 9

PCT/CA03/00622 WO 03/093305

12/88

Leu Ile Thr Gly Val Gln Gln Thr Thr Glu Arg His Asn Gln Ala Phe Met Ala Leu Glu Gly Gln Val Ile Thr Lys Lys Leu His Ala Ser Ile 25 Arg Glu Lys Ala Gly His Trp Phe Ala Thr Thr Thr Pro Ile Ile Gly Lys Gly Ile Met Phe Ala Ile Lys Glu Gly Arg Val Thr Thr Gly Val 55 50 Ser Ser Ile Ala Ser Glu Asp Ser Arg Lys Val Ala Ser Val Leu Asn Asn Ala Tyr Tyr Leu Asp Lys Met His Tyr Ser Ile Glu Gly Lys Asp Thr His Tyr Phe Val Lys Ile Gly Ser Ala Asp Gly Asp Leu Val Thr 105 100 Leu Gly Thr Thr Ile Gly Arg Lys Val Leu Glu Ser Gly Val Asn Val 120 Thr Val Ser Gln Pro Thr Leu Leu Val Asn Gly Arg Thr Arg Arg Phe 135 130 Thr Asn Ile Glu Phe Gln Tyr Ser Thr Leu Leu Leu Ser Ile Arg Tyr 155 Gly Leu Thr Pro Asp Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Asp 170 165 Gln Ala Arg Gln Arg Ala Leu Gly Thr Ala Trp Ala Lys Glu Gln Gln 185 Lys Ala Arg Asp Gly Arg Glu Gly Ser Arg Leu Trp Thr Glu Gly Glu 200 Lys Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr 215 Tyr Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser 235 230

225

13/88

Asn Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg 245 250

<210> 10

<211> 251

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M3

<400> 10

Pro Ile Phe Gly Val Gln Gln Gln Val Ala Arg Gln Ala Lys Ala Phe 1 5 10 15

Leu Ser Leu Gly Lys Met Ala Glu Val Gln Val Ser Arg Arg Ala 20 25 30

Gly Gly Ala Gln Ser Trp Leu Trp Phe Ala Thr Val Lys Ser Leu Ile 35 40 45

Gly Lys Gly Val Met Leu Ala Val Ser Gln Gly Arg Val Gln Thr Asn 50 55 60

Val Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Ala Ala Val Leu 65 70 75 80

Asn Asn Ala Phe Tyr Leu Glu Asn Leu His Phe Thr Ile Glu Gly Lys 85 90 95

Asp Thr His Tyr Phe Ile Lys Thr Thr Thr Pro Glu Ser Asp Leu Gly 100 105 110

Thr Leu Arg Leu Thr Ser Gly Arg Lys Ala Leu Glu Asn Gly Ile Asn 115 120 125

Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg Arg 130 135 140

Phe Ala Asp Val Glu Met Gln Phe Gly Ala Leu Ala Leu His Val Arg

14/88

145 150 155 160

Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Ile Leu Glu Gln Ala 165 170 175

Arg Gln Arg Ala Leu Ala Arg Ala Trp Ala Arg Glu Gln Gln Arg Val 180 185 190

Arg Asp Gly Glu Glu Gly Ala Arg Leu Trp Thr Glu Gly Glu Lys Arg 195 200 205

Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val 210 215 220

Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 225 230 230 235 240

Gln Phe Leu Arg Gln Ser Glu Ile Gly Arg Arg 245 250

<210> 11

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Human Ten M4

<400> 11

Ser Ile Leu Gly Val Gln Cys Glu Val Gln Lys Gln Leu Lys Ala Phe 1 5 10 15

Val Thr Leu Glu Arg Phe Asp Gln Leu Tyr Gly Ser Thr Ile Thr Ser 20 25 30

Cys Leu Gln Ala Pro Lys Thr Lys Lys Phe Ala Ser Ser Gly Ser Val 35 40 45

Phe Gly Lys Gly Val Lys Phe Ala Leu Lys Asp Gly Arg Val Thr Thr 50 55 60

15/88

Asp Ile Ile Ser Val Ala Asn Glu Asp Gly Arg Arg Val Ala Ala Ile 65 70 75 80

Leu Asn His Ala His Tyr Leu Glu Asn Leu His Phe Thr Ile Asp Gly 85 90 95

Val Asp Thr His Tyr Phe Val Lys Pro Gly Pro Ser Glu Gly Asp Leu 100 105 110

Ala Ile Leu Gly Leu Ser Gly Gly Arg Arg Thr Leu Glu Asn Gly Val 115 120 125

Asn Val Thr Val Ser Gln Ile Asn Thr Val Leu Ser Gly Arg Thr Arg 130 135 140

Arg Tyr Thr Asp Ile Gln Leu Gln Tyr Gly Ala Leu Cys Leu Asn Thr 145 150 155 160

Arg Tyr Gly Thr Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Leu 165 170 175

Ala Arg Gln Arg Ala Val Arg Gln Ala Trp Ala Arg Glu Gln Gln Arg 180 185 190

Leu Arg Glu Gly Glu Gly Leu Arg Ala Trp Thr Glu Gly Glu Lys 195 200 205

Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe 210 215 220

Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 225 230 235 240

Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg 245 250

<210> 12

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

16/88

<223> Zebrafish Ten M3

<400> 12

Ser Ile Ser Gly Val Gln Gln Glu Val Met Arg Gln Ala Lys Ala Phe 1 5 10 15

Leu Ser Phe Glu Arg Met Pro Glu Ile Gln Leu Ser Arg Arg Ser 20 25 30

Ser Arg Glu Lys Pro Trp Leu Trp Phe Ala Thr Val Lys Ser Leu Ile 35 40 45

Gly Lys Gly Val Met Leu Ala Ile Thr Ser Lys Gly Gln Val Ala Thr 50 55 60

Asn Ala Leu Asn Ile Ala Asn Glu Asp Cys Ile Lys Val Val Thr Val 65 70 75 80

Leu Asn Asn Ala Phe Tyr Leu Glu Asp Leu His Phe Thr Val Glu Gly 85 90 95

Arg Asp Thr His Tyr Phe Ile Lys Thr Ser Leu Pro Glu Ser Asp Leu 100 105 110

Gly Ala Leu Arg Leu Thr Ser Gly Arg Lys Ser Leu Glu Asn Gly Val

Asn Val Thr Val Ser Gln Ser Thr Thr Val Val Asn Gly Arg Thr Arg 130 135 140

Arg Phe Ala Asp Val Glu Leu Gln Tyr Gly Ala Leu Ala Leu His Val 145 150 155 160

Arg Tyr Gly Met Thr Leu Asp Glu Glu Lys Ala Arg Val Leu Glu Gln
165 170 175

Ala Arg Gln Arg Ala Leu Ser Ser Ala Trp Ala Arg Glu Gln Gln Arg 180 185 190

Val Arg Asp Gly Glu Glu Gly Val Arg Leu Trp Thr Glu Gly Glu Lys
195 200 205

Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr 210 215 220

17/88

Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 225 Val Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 245 <210> 13 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Rainbow Trout TCAP3 (40a.a.) <400> 13 Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 10 5 Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 25 20 Gln Phe Leu Arg Gln Ser Glu Ile 35 <210> 14 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Rainbow Trout TCAP 3 (41a.a.) <400> 14 Arg Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr

Val Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn

18/88

20 25 30

Ile Gln Phe Leu Arg Gln Ser Glu Ile 35

<210> 15

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Rainbow Trout preTCAP3 (43 a.a.)

<400> 15

Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val

Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 20 25 30

Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 35 40

<210> 16

<211> 44

<212> PRT

<213> Artificial Sequence

<220>

<223> Rainbow Trout preTCAP3 (44 a.a.)

<400> 16

Arg Gln Leu Leu Ser Gly Arg Lys Val Leu Gly Tyr Asp Gly Tyr Tyr 1 5 10 15

Val Leu Ser Ile Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 20 25 30

19/88

Ile Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 35 <210> 17 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Rainbow Trout TCAP3 (120 n.a.) <400> 17 cagctgctga gcgggaggaa ggttctgggc tacgacgggt actacgtcct ctccatagag 60 cagtaccccg agctagcaga ctccgctaac aacatccagt tcctcaggca gagcgaaata 120 <210> 18 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Rainbow Trout TCAP3 (123 n.a.) <400> 18 aggcagctgc tgagcgggag gaaggttctg ggctacgacg ggtactacgt cctctccata 60 120 gagcagtacc ccgagctagc agactccgct aacaacatcc agttcctcag gcagagcgaa 123 ata <210> 19 <211> 129 <212> DNA <213> Artificial Sequence <220> <223> Rainbow Trout preTCAP3 (129 n.a.)

400	10												
<400> cagctgo	19 ctga	gcggg	aggaa	ggttct	gggc	tacg	gacggg	t acta	acgtco	t c	tccat	tagag	60
cagtac	cccg	agctag	gcaga	ctccgc	taac	aaca	atccag	t tcct	caggo	a g	agcga	aaata	120
gggaaga	agg												129
<210>	20												
<211>	132												
<212>	DNA												
<213>	Art:	ificia	l Seq	uence									
<220>													
<223>	Rai	nbow T	rout	preTCAE	3 (1	32 n	.a.)						
<400> aggcag	20 ctgc	tgagc	gggag	gaaggt	tctg:	ggc	tacgac	g ggt	actac	gt c	ctct	ccata	60
gagcag	tacc	ccgag	ctago	agacto	egct	aac	aacato	c agt	tcctca	ag g	gcaga	.gcgaa	120
ataggg	aaga	gg											132
<210>	21												
<211>	40												
<212>	PRT												
<213>	Art	ificia	l Sec	quence									
<220>													
<223>	Zeb	rafish	1 TCAI	23 (40 a	a.a.)								
<400>	21												
Gln Le 1	u Le	u Ser	Ser (Ely Lys	Val	Leu	Gly T	yr Asp	Gly	Tyr	Tyr 15	Val	
Leu Se	er Va	1 Glu 20	Gln S	Tyr Pro	Glu	Leu 25	Ala A	sp Ser	: Ala	Asn 30	Asn	Val	,
Gln Ph	e Le		Gln :	Ser Glu	Ile								

21/88

<210> 22 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Zebrafish TCAP3 (41 a.a.) <400> 22 Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 25 Val Gln Phe Leu Arg Gln Ser Glu Ile <210> 23 <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Zebrafish preTCAP3 (43 a.a.) <400> 23 Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr Val 5 Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Val Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 40 <210> 24

<211> 44

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Zebrafish preTCAP3 (44 a.a.)
<400> 24
Arg Gln Leu Leu Ser Ser Gly Lys Val Leu Gly Tyr Asp Gly Tyr Tyr
Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
Val Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
<210> 25
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (120 n.a.)
cagttgctca gctctgggaa ggtgctgggt tacgatggtt actatgtact atcagtggag
                                                                     60
                                                                    120
caataccctg aactggccga cagtgccaac aatgtccagt tcttgaggca gagtgagata
<210> 26
<211> 123
<212> DNA
<213> Artificial Sequence
<220>
<223> Zebrafish TCAP3 (123 n.a.)
```

<400>	26				attactatat	actatcactc	60
					gttactatgt		
gagcaat	acc	ctgaactggc	cgacagtgcc	aacaatgtcc	agttcttgag	gcagagtgag	120
ata							123
<210>	27						
	129						
<211>							
<212>	DNA						
<213>	Arti	ficial Sequ	ience				
							•
<220>							
<223>	Zebi	rafish TCAP	3 (129 n.a.)			
<400>	27			L	a a ta ta ta a t	atcactegae	60
					actatgtact		120
caatac	cctg	aactggccga	cagtgccaac	aatgtccagt	tcttgaggca	gagtgagata	
gggaaga	agg						129
<210>	28						
	132						
<211>							
<212>	DNA						
<213>	Art:	ificial Seq	uence				
<220>							
<223>	Zeb	rafish preT	CAP3 (132 n	.a.)			
<400>	28					actatoacto	60
						actatcagtg	
gagcaa	tacc	ctgaactggc	cgacagtgcc	: aacaatgtcc	agttcttgag	gcagagtgag	120
ataggg	aaga	gg					132
<210>	29						
<211>	40						
<212>	PRT						
<213>	Art	ificial Sec	nience				

24/88

<220> <223> Zebrafish TCAP4 (40 a.a.) <400> 29 Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile 10 Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn Val 20 His Phe Trp Arg Gln Thr Glu Met <210> 30 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Zebrafish TCAP4 (41 a.a.) <400> 30 Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn Val His Phe Trp Arg Gln Thr Glu Met <210> 31 <211> 43 <212> PRT <213> Artificial Sequence

25/88

<220> <223> Zebrafish preTCAP4 (43 a.a.) <400> 31 Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn Val 20 His Phe Trp Arg Gln Thr Glu Met Gly Arg Arg <210> 32 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Zebrafish preTCAP4 (44 a.a.) <400> 32 Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn 20 Val His Phe Trp Arg Gln Thr Glu Met Gly Arg Arg <210> 33 <211> 120 <212> DNA <213> Artificial Sequence <220>

<223> Zebrafish TCAP4 (120 n.a.)

<400> cagctco	33 taa	gctctggacg	tgtacagggc	tacgaaggct	tctacatagt	atcagtcgac	60
cagttco	cag	agttgactga	caacataaat	aacgtccatt	tctggcgaca	gactgagatg	120
<210>	34						
<211>	123						
<212>	DNA						
<213>	Art:	ificial Seq	uence				
<220>							
<223>	Zeb	rafish TCAP	4 (123 n.a.)			
<400> cagcago	34 ctcc	taagctctgg	acgtgtacag	ggctacgaag	gcttctacat	agtatcagtc	60
gaccag	ttcc	cagagttgac	tgacaacata	aataacgtcc	atttctggcg	acagactgag	120
atg							123
010	25						
<210>	35						
<211>	129						
<212>	DNA						
<213>	Art	ificial Seg	uence				
<220>							
<223>	Zeb	rafish preT	CAP4 (129 r	ı.a.)			
<400>	35			· +accaaccct	tctacatagt	atcagtcgac	60
							120
cagttc	ccag	agttgactga	caacataaat	aacgtccatt	tetggegae	gactgagatg	
ggacgc	agg						129
<210>	36						
<211>	132	2					
<212>	DNA	A					
<213>	Art	cificial Sec	quence				

27/88

<220> <223> Zebrafish preTCAP4 (132 n.a.) <400> 36 cagcagetee taagetetgg acgtgtacag ggctacgaag gettetacat agtateagte 60 120 gaccagttcc cagagttgac tgacaacata aataacgtcc atttctggcg acagactgag 132 atgggacgca gg <210> 37 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Mouse TCAP1 (40 a.a.) <400> 37 Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val 5 Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile 25 20 His Phe Met Arg Gln Ser Glu Ile <210> 38 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Mouse TCAP1 (41 a.a.) <400> 38 Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe

28/88

15 10 5 1 Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 25 20 Ile His Phe Met Arg Gln Ser Glu Ile 35 <210> 39 . <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Mouse preTCAP1 (43 a.a.) <400> 39 Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile 20 His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg <210> 40 <211> 44

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse preTCAP1 (44 a.a.)

<400> 40

Gln Gln Leu Leu Gly Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 1 5 10 15

29/88

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 25 20 Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg 40 <210> 41 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP1 (120 n.a.) <400> 41 cagcttttgg gcaccgggag ggtgcagggg tatgatgggt attttgtctt gtctgttgag 60 cagtatttag aactttcaga cagtgccaac aatattcact tcatgagaca gagtgaaata 120 <210> 42 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP1 (123 n.a.) <400> 42 cagcagcttt tgggcaccgg gagggtgcag gggtatgatg ggtattttgt cttgtctgtt 60 gagcagtatt tagaactttc agacagtgcc aacaatattc acttcatgag acagagtgaa 120 123 ata <210> 43 <211> 129 <212> DNA <213> Artificial Sequence

<220>	
<223> Mouse preTCAP1 (129 n.a.)	
<400> 43 cagettttgg geacegggag ggtgeagggg tatgatgggt attttgtett gtetgttgag	60
cagtatttag aactttcaga cagtgccaac aatattcact tcatgagaca gagtgaaata 1	L20
ggcaggagg	129
<210> 44	
<211> 132	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mouse preTCAP1 (132 n.a.)	
<400> 44 cagcagettt tgggcaccgg gagggtgcag gggtatgatg ggtattttgt ettgtetgtt	60
	120
	132
ataggcagga gg · ·	
<210> 45	
<211> 40	
<212> PRT .	
<213> Artificial Sequence	
<220>	
<223> Mouse TCAP2 (40 a.a.)	
<400> 45	
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val 1 5 10 15	
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile 20 25 30	

31/88

Gln Phe Leu Arg Gln Asn Glu Ile 35 <210> 46 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Mouse TCAP2 (41 a.a.) <400> 46 Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr 15 Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn 25 Ile Gln Phe Leu Arg Gln Asn Glu Met 35 <210> 47 <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Mouse preTCAP2 (43 a.a) <400> 47 Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val · 5 10 Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Asn Ile 25 20

Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg

40

```
<210> 48
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP2 (44 a.a.)
<400> 48
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg
<210> 49
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse TCAP2 (120 n.a.)
<400> 49
caacteetga geaegggaeg ggtacaaggt tatgaggget attaegtaet teeggtggaa
                                                                    60
cagtacccgg agctggcaga cagtagcagc aacatccagt tcttaagaca gaatgagagg
                                                                    120
<210> 50
<211> 123
<212> DNA
<213> Artificial Sequence
```

<220>	
<223> Mouse TCAP 2 (123 n.a.)	
<400> 50	60
cagcaactcc tgagcacggg acgggtacaa ggttatgagg gctattacgt acttccggtg	120
gaacagtace eggagetyge agacagtage agcaacatee ageocodaag acagamis s	
atg ,	123
<210> 51	
<211> 129	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mouse preTCAP2 (129 n.a.)	
<400> 51 caactcctga gcacgggacg ggtacaaggt tatgagggct attacgtact tccggtggaa	60
cagtaccegg agctggcaga cagtagcagc aacatccagt tettaagaca gaatgagatg	120
ggaaagagg	129
<210> 52	
<211> 132	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Mouse preTCAP2 (132 n.a.)	
<400> 52 cagcaactcc tgagcacggg acgggtacaa ggttatgagg gctattacgt acttccggtg	60
gaacagtacc cggagctggc agacagtagc agcaacatcc agttcttaag acagaatgag	120
	132
atgggaaaga gg	
<210> 53	
<211> 40	

34/88

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse TCAP3 (40 a.a.)

<400> 53

Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val 1 5 10 15

Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 20 25 30

Gln Phe Leu Arg Gln Ser Glu Ile 35 40

<210> 54

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Mouse TCAP3 (41 a..a)

<400> 54

Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr 1 5 10 15

Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 20 25 30

Ile Gln Phe Leu Arg Gln Ser Glu Ile $35 ext{ } 40$

<210> 55

<211> 43

<212> PRT

```
<213> Artificial Sequence
<220>
<223> Mouse preTCAP3 (43 a.a.)
<400> 55
Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val
                        10
Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile
Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
<210> 56
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse preTCAP3 (44 a.a.)
 <400> 56
 Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr
               5
Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn
 Ile Gln Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg
 <210> 57
 <211> 120
 <212> DNA
 <213> Artificial Sequence
```

<220>		
<223>	Mouse TCAP3 (120 n.a.)	
<400> cagctgo	57 tga gcgctggcaa ggtgcagggc tacgatgggt actacgtact gtcggtggag:	60
cagtaco	ccg agctggctga cagtgccaac aacatccagt tcttgcgaca aagtgagatc	120
<210>	58	
<211>	123	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Mouse TCAP3 (123 n.a.)	
<400> cggcago	58 ctgc tgagcgctgg caaggtgcag ggctacgatg ggtactacgt actgtcggtg	60
gagcagi	tacc ccgagctggc tgacagtgcc aacaacatcc agttettgcg acaaagtgag	120
atc		123
<210>	59	
<211>	129	
<212>	DNA	
<213>	Artificial Sequence	
	,	
<220>		
<223>	Mouse preTCAP3 (129 n.a.)	
<400> cagctg	59 ctga gcgctggcaa ggtgcagggc tacgatgggt actacgtact gtcggtggag	60
cagtac	cccg agctggctga cagtgccaac aacatccagt tcttgcgaca aagtgagatc	120
ggcaag		129
<210>	60	
<211>	132	

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Mouse preTCAP3 (132 n.a.)
<400> 60
cggcagctgc tgagcgctgg caaggtgcag ggctacgatg ggtactacgt actgtcggtg
                                                                   60
gagcagtacc ccgagctggc tgacagtgcc aacaacatcc agttcttgcg acaaagtgag
                                                                   120
                                                                   132
atcggcaaga gg
<210> 61
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse TCAP4 (40 a.a.)
<400> 61
Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val
                5
Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile
                               25
His Phe Met Arg Gln Ser Glu Met
        35
<210> 62
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Mouse TCAP4 (41 a.a.)
```

38/88

<400> 62 Gln Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 25 Ile His Phe Met Arg Gln Ser Glu Met 35 <210> 63 <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Mouse preTCAP4 (43 a.a.) <400> 63 Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg <210> 64 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Mouse preTCAP4 (44 a.a.) <400> 64

39/88

Gln Gln Val Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Thr Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 25 Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg <210> 65 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP4 (120 n.a.) <400> 65 caggtgctga acacggggcg ggtgcaaggc tacgacggct tctttgtgac ctcggtcgag 60 cagtacccag aactgtcaga cagcgccaac aatatccact tcatgagaca gagcgagatg 120 <210> 66 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Mouse TCAP4 (123 n.a.) <400> 66 cagcaggtgc tgaacacggg gcgggtgcaa ggctacgacg gcttctttgt gacctcggtc 60 gagcagtacc cagaactgtc agacagcgcc aacaatatcc acttcatgag acagagcgag 120 123 atg <210> 67 · <211> 129

<212> DNA

40/88

<213> Artificial Sequence <220> <223> Mouse preTCAP4 (129 n.a.) <400> 67 caggtgctga acacggggcg ggtgcaaggc tacgacggct tctttgtgac ctcggtcgag 60 cagtacccag aactgtcaga cagcgccaac aatatccact tcatgagaca gagcgagatg 120 -129 ggccgaagg <210> 68 <211> 132 <212> DNA <213> Artificial Sequence <220> <223> Mouse preTCAP4 (132 n.a.) <400> 68 cagcaggtgc tgaacacggg gcgggtgcaa ggctacgacg gcttctttgt gacctcggtc 60 gagcagtacc cagaactgtc agacagcgcc aacaatatcc acttcatgag acagagcgag 120 132 atgggccgaa gg <210> 69 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Human TCAP1 (40 a.a.) <400> 69 Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val 5

41/88

Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile 20 25 30

His Phe Met Arg Gln Ser Glu Ile 35 40

<210> 70

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Human TCAP1 (41 a.a.)

<400> 70

Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe 1 5 10 15

Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 20 25 30

Ile His Phe Met Arg Gln Ser Glu Ile 35

<210> 71

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Human preTCAP1 (43 a.a.)

<400> 71

Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val

Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn Ile 20 25 30

```
His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg
       35
<210> 72
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP1 (44 a.a.)
<400> 72
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe
Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn
                                25
Ile His Phe Met Arg Gln Ser Glu Ile Gly Arg Arg
        35
<210> 73
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> Human TCAP1 (120 n.a.)
<400> 73
cagcttttga gcactgggcg ggtacaaggt tacgatgggt attttgtttt gtctgttgag
                                                                      60
cagtatttag aactttctga cagtgccaat aatattcact ttatgagaca gagcgaaata
<210> 74
<211> 123
<212> DNA
```

<213> Artificial Sequence	
<220>	
<223> Human TCAP1 (123 n.a.)	
<400> 74 cagcagcttt tgagcactgg gcgggtacaa ggttacgatg ggtattttgt tttgtctgtt	60
gagcagtatt tagaacttte tgacagtgee aataatatte aetttatgag acagagegaa	120
ata	123
<210> 75	
<211> 129	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Human preTCAP1 (129 n.a.)	
<400> 75 cagcttttga gcactgggcg ggtacaaggt tacgatgggt attttgtttt gtctgttgag	60
cagtatttag aactttctga cagtgccaat aatattcact ttatgagaca gagcgaaata	120
ggcaggagg	129
<210> 76	
<211> 132	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Human preTCAP1 (132 n.a.)	
<400> 76 cagcagcttt tgagcactgg gcgggtacaa ggttacgatg ggtattttgt tttgtctgtt	60
gagcagtatt tagaactttc tgacagtgcc aataatattc actttatgag acagagcgaa	120
ataggcagga gg	132

```
<210> 77
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Human TCAP2 (40 a.a.)
<400> 77
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Asn Ile
                               25
Gln Phe Leu Arg Gln Asn Glu Met
<210> 78
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP2 (41 a.a.)
<400> 78
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
                                                       15
Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
                                25
Ile Gln Phe Leu Arg Gln Asn Glu Met
        35
<210> 79
```

45/88

```
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP2 (43 a.a.)
<400> 79
Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val
Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile
Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg
<210> 80
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Human preTCAP2 (44 a.a.)
<400> 80
Gln Gln Leu Leu Ser Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr
Val Leu Pro Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn
            20
Ile Gln Phe Leu Arg Gln Asn Glu Met Gly Lys Arg
                            40
<210> 81
<211> 120
```

<212> DNA

<213> Artificial Sequence	
<220>	
<223> Human TCAP2 (120 n.a.)	
<400> 81 cagcttctga gcaccgggcg cgtgcaaggg tacgagggat attacgtgct tcccgtggag	60
caatacccag agcttgcaga cagtagcagc aacatccagt ttttaagaca gaatgagatg 1	L20
.010. 02	
<210> 82	
<211> 123	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Human TCAP2 (123 n.a.)	
<400> 82 cagcagette tgagcacegg gegegtgeaa gggtaegagg gatattaegt getteeegtg	60
	120
	123
<210> 83	
<211> 129	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Human preTCAP2 (129 n.a.)	
<400> 83 cagettetga geacegggeg egtgeaaggg taegagggat attaegtget teeegtggag	60
caatacccag agcttgcaga cagtagcagc aacatccagt ttttaagaca gaatgagatg	120
ggaaagagg	129
22~~~2~2	

47/88

<210> 84 <211> 132 <212> DNA <213> Artificial Sequence <220> <223> Human preTCAP2 (132 n.a.) <400> 84 cagcagette tgageacegg gegegtgeaa gggtaegagg gatattaegt getteeegtg 60 gagcaatacc cagagcttgc agacagtagc agcaacatcc agtttttaag acagaatgag 120 132 atgggaaaga gg <210> 85 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Human TCAP3 (40 a.a.) <400> 85 Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 20 Gln Phe Leu Arg Gln Ser Glu Ile <210> 86 <211> 41 <212> PRT <213> Artificial Sequence

48/88

<220> <223> Human TCAP3 (41 a.a.) <400> 86 Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr 5 . Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 25 Ile Gln Phe Leu Arg Gln Ser Glu Ile <210> 87 <211> 43 <212> PRT <213> Artificial Sequence <220> <223> Human preTCAP3 (43 a.a.) <400> 87 Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 25 Gln Phe Leu Arg Gln Ser Glu Ile Gly Arg Arg <210> 88 <211> 44 <212> PRT <213> Artificial Sequence

<220>

49/88

<223> Human preTCAP3 (44 a.a.) <400> 88 Arg Gln Leu Leu Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val Leu Ser Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn 25 Ile Gln Phe Leu Arg Gln Ser Glu Ile Gly Arg Arg <210> 89 · <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Human TCAP3 (120 n.a.) <400> 89 cagctgctga gcgccggcaa ggtgcagggc tacgacgggt actacgtact ctcggtggag 60 cagtaccccg agctggccga cagcgccaac aacatccagt tcctgcggca gagcgagatc 120 <210> 90 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> Human TCAP3 (123 n.a.) <400> 90 cggcagctgc tgagcgccgg caaggtgcag ggctacgacg ggtactacgt actctcggtg 60 gagcagtacc ccgagctggc cgacagcgcc aacaacatcc agttcctgcg gcagagcgag 120 123 atc

<210> 91

<211>	129	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Human preTCAP (129 n.a.)	
<400> cagctgc	91 tga gcgccggcaa ggtgcagggc tacgacgggt actacgtact ctcggtggag	60
cagtacc	ccg agctggccga cagcgccaac aacatccagt tcctgcggca gagcgagatc	120
ggcagga	aga	129
.010-	0.2	
<210>		
<211>	132	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Human preTCAP3 (132 n.a.)	
<400> cggcage	92 ctgc tgagcgccgg caaggtgcag ggctacgacg ggtactacgt actctcggtg	60
gagcag	tacc ccgagctggc cgacagcgcc aacaacatcc agttcctgcg gcagagcgag	120
atcggc	agga gg	132
	93	
<211>	40	
<212>		
<213>	Artificial Sequence	
<220>	T07774 (40 2 7)	
	Human TCAP4 (40 a.a.)	
~400>	07	

51/88

Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val 1 5 10 15

Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile 20 25 30

His Phe Met Arg Gln Ser Glu Met 35 40

<210> 94

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Human TCAP4 (41 a.a.)

<400> 94

Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe 1 5 10 15

Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 20 25 30

Ile His Phe Met Arg Gln Ser Glu Met 35 40

<210> 95

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Human preTCAP4 (43 a..a)

<400> 95

Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val 1 5 10

52/88

Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn Ile 25 His Phe Met Arg Gln Ser Glu Met Gly Arg Arg 35 <210> 96 <211> 44 <212> PRT <213> Artificial Sequence <220> <223> Human preTCAP4 (44 a.a.) <400> 96 Gln Gln Val Leu Ser Thr Gly Arg Val Gln Gly Tyr Asp Gly Phe Phe Val Ile Ser Val Glu Gln Tyr Pro Glu Leu Ser Asp Ser Ala Asn Asn 25 Ile His Phe Met Arg Gln Ser Glu Met Gly Arg Arg 35 <210> 97 <211> 120 <212> DNA <213> Artificial Sequence <220> <223> Human TCAP4 (120 n.a.) <400> 97 caggtgctga gcacagggcg ggtgcaaggc tacgacggct ttttcgtgat ctctgtcgag 60 cagtacccag aactgtcaga cagcgccaac aacatccact tcatgagaca gagcgagatg 120

<210> 98

<211> 123	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Human TCAP4 (123 n.a.)	
<400> 98 cagcaggtgc tgagcacagg gcgggtgcaa ggctacgacg gctttttcgt gatctctgtc 6	0
gagcagtacc cagaactgtc agacagegec aacaacatec acttcatgag acagagegag 12	0
atg 12	3
<210> 99	
<211> 129	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Human preTCAP4 (129 n.a.)	
<400> 99	50
caggracta gcacagage agracaagae caegaeggee essessions of p	
cagtacccag aactgtcaga cagegecaac aacatectaet coacgagaea gagegas 1	
ggccggagg	
<210> 100	
<211> 132	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Human preTCAP4 (132 n.a.)	
<400> 100	60

54/88

gagcagtacc cagaactgtc agacagcgcc aacaacatcc acttcatgag acagagcgag 120 132 atgggccgga gg <210> 101 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> G. gallus TCAP-1 <400> 101 Gln Gln Leu Leu Asn Thr Gly Arg Val Gln Gly Tyr Asp Gly Tyr Phe Val Leu Ser Val Glu Gln Tyr Leu Glu Leu Ser Asp Ser Ala Asn Asn 25 Ile His Phe Met Arg Gln Ser Glu Ile 35 <210> 102 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Zebrafish TCAP-4 <400> 102 Gln Gln Leu Leu Ser Ser Gly Arg Val Gln Gly Tyr Glu Gly Phe Tyr 5 Ile Val Ser Val Asp Gln Phe Pro Glu Leu Thr Asp Asn Ile Asn Asn 20 Val His Phe Trp Arg Gln Thr Glu Met

55/88

<210> 103

<211> 37

<212> PRT

<213> Artificial Sequence

<220>

<223> D. melanogaster Ten-m gene product

<400> 103

Glu Leu Val Gln His Gly Asp Val Asp Gly Trp Asn Gly Asp Ile His 1 5 10 15

Ser Ile His Lys Tyr Pro Gln Leu Ala Asp Pro Gly Asn Val Ala Phe 20 25 30

Gln Arg Asp Ala Lys 35

<210> 104

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> Human CRF TCAP like region

<400> 104

Ser Glu Glu Pro Pro Ile Ser Leu Asp Leu Thr Phe His Leu Leu Arg 1 5 10 15

Glu Val Leu Glu Met Ala Arg Ala Glu Gln Leu Ala Gln Gln Ala His 20 25 30

Ser Asn Arg Lys Leu Met Glu Ile Ile 35 40

<210> 105

56/88

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> Human urocortin TCAP-like region

<400> 105

Asp Asn Pro Ser Leu Ser Ile Asp Leu Thr Phe His Leu Leu Arg Thr 1 5 10 15

Leu Leu Glu Leu Ala Arg Thr Gln Ser Gln Arg Glu Arg Ala Glu Gln 20 25 30

Asn Arg Ile Ile Phe Asp Ser Val 35 40

<210> 106

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> Human urocortin 2 TCAP-like region

<400> 106

Ile Val Leu Ser Leu Asp Val Pro Ile Gly Leu Leu Gln Ile Leu Leu 1 5 10 15

Glu Gln Ala Arg Ala Arg Ala Arg Glu Gln Ala Thr Thr Asn Ala 20 25 30

Arg Ile Leu Ala Arg Val 35

<210> 107

<211> 38

57/88

<212> PRT

<213> Artificial Sequence

<220>

<223> Human urocortin 3 TCAP=like region

<400> 107

Phe Thr Leu Ser Leu Asp Val Pro Thr Asn Ile Met Asn Leu Leu Phe 1 5 10 15

Asn Ile Ala Lys Ala Lys Asn Leu Arg Ala Gln Ala Ala Ala Asn Ala 20 25 30

His Leu Met Ala Gln Ile 35

<210> 108

<211> 46

<212> PRT

<213> Artificial Sequence

<220>

<223> L. migratoria DP

<400> 108

Met Gly Met Gly Pro Ser Leu Ser Ile Val Asn Pro Met Asp Val Leu 1 5 10 15

Arg Gln Arg Leu Leu Leu Glu Ile Ala Arg Arg Arg Leu Arg Asp Ala 20 25 30

Glu Glu Gln Ile Lys Ala Asn Lys Asp Phe Leu Gln Gln Ile 35 40 45

<210> 109

<211> 46

<212> PRT

<213> Artificial Sequence

58/88

<220>

<223> A. domesticus DP

<400> 109

Thr Gly Ala Gln Ser Leu Ser Ile Val Ala Pro Leu Asp Val Leu Arg
1 5 10 15

Gln Arg Leu Met Asn Glu Leu Asn Arg Arg Arg Met Arg Glu Leu Gln 20 25 30

Gly Ser Arg Ile Gln Gln Asn Arg Gln Leu Leu Thr Ser Ile 35 40 45

<210> 110

<211> 39

<212> PRT

<213> Artificial Sequence

<220>

<223> T. molitor DP

<400> 110

Ser Pro Thr Ile Ser Ile Thr Ala Pro Ile Asp Val Leu Arg Lys Thr 1 5 10 15

Trp Glu Gln Glu Arg Ala Arg Lys Gln Met Val Ala Gln Asn Asn Arg 20 25 30

Glu Phe Leu Asn Ser Leu Asn 35

<210> 111

<211> 41

<212> PRT

<213> Artificial Sequence

59/88

<220>

<223> M. sexta DP-1

<400> 111

Arg Met Pro Ser Leu Ser Ile Asp Leu Pro Met Ser Val Leu Arg Gln 1 5 10

Lys Leu Ser Leu Glu Lys Glu Arg Lys Val His Ala Leu Arg Ala Ala 20 25 30

Ala Asn Arg Asn Phe Leu Asn Asp Ile 35 40

<210> 112

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> M. sexta DP-II

<400> 112

Ser Leu Ser Val Asn Pro Ala Val Asp Ile Leu Gln His Arg Tyr Met 1 5 10 15

Glu Lys Val Ala Gln Asn Asn Arg Asn Phe Leu Asn Arg Val 20 25 30

<210> 113

<211> 45

<212> PRT

<213> Artificial Sequence

<220>

<223> P. Americana

<400> 113

Thr Gly Ser Gly Pro Ser Leu Ser Ile Val Asn Pro Leu Asp Val Leu

60/88

1 5 10 15

Arg Gln Arg Leu Leu Leu Glu Ile Ala Arg Arg Arg Met Arg Gln Ser 20 25 30

Gln Asp Gln Ile Gln Asn Arg Glu Ile Leu Gln Thr Ile 35 40 45

<210> 114

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> O. keta CRP

<400> 114

Ser Asp Asp Pro Pro Ile Ser Leu Asp Leu Thr Phe His Met Leu Arg 1 5 10 15

Gln Met Asn Glu Met Ser Arg Ala Glu Gln Leu Gln Gln Gln Ala His 20 25 30

Ser Asn Arg Lys Met Met Glu Ile Phe

<210> 115

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> R. norvegicus

<400> 115

Asp Asp Pro Pro Leu Ser Ile Asp Leu Thr Phe His Leu Leu Arg Thr 1 5 10 15

61/88

Leu Leu Glu Leu Ala Arg Thr Gln Ser Gln Arg Glu Arg Ala Glu Gln 20 25 30

Asn Arg Ile Ile Phe Asp Ser Val 35 40

<210> 116

<211> 37

<212> PRT

<213> Artificial Sequence

<220>

<223> P. sauvageii

<400> 116

Gln Gly Pro Pro Ile Ser Ile Asp Leu Ser Leu Glu Leu Leu Arg Lys
1 10 15

Met Ile Glu Ile Glu Lys Gln Glu Lys Glu Lys Gln Gln Ala As
n 20 25 30

Asn Arg Leu Leu Leu 35

<210> 117

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> C. carpio US

<400> 117

Asn Asp Asp Pro Pro Ile Ser Ile Asp Leu Thr Phe His Leu Leu Arg 1 5 10 15

Asn Met Ile Glu Met Ala Arg Asn Glu Asn Gln Arg Glu Gln Ala Gly 20 25 30

62/88

Leu Asn Arg Lys Tyr Leu Asp Glu Val 35 40

<210> 118

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> M. Musculus UCN2

<400> 118

Val Ile Leu Ser Leu Asp Val Pro Ile Gly Leu Leu Arg Ile Leu Leu 1 5 10 15

Glu Gln Ala Arg Tyr Lys Ala Ala Arg Asn Gln Ala Ala Thr Asn Ala 20 25 30

Gln Ile Leu Ala His Val

<210> 119

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> R. dano UCN2

<400> 119

Leu Thr Leu Ser Leu Asp Val Pro Thr Asn Ile Met Asn Val Leu Phe 1 5 10

Asp Val Ala Lys Ala Lys Asn Leu Arg Ala Lys Ala Ala Glu Asn Ala 20 25 30

Arg Leu Leu Ala His Ile 35

63/88

<210>	120	
<211>	305	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Hamster 305bp urocortin cDNA probe examples "cloning mRNA"	
<400> attcaco	120 egcc gctegggate tgageetgea ggegagegge agegaeggga agaeetteeg	60
ctgtcc	atcg acctcacatt ccacctgcta cggaccctgc tggagatggc ccggacacag	120
agccaa	cgcg agcgagcaga gcagaaccga atcatactca acgcggtggg caagtgatcg	180
gcccgg	tgtg ggaccccaaa aggctcgacc ctttccccta cctaccccgg ggctgaagtc	240
acgcga	ccga agtcggctta gtcccgcggt gcagcgcctc ccagagttac cctgaacaat	300
cccgc		305
<210>	121	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP1 fwd primer	
<400> acgtca	121 ugtgt tgatgggagg acta	24
<210>	122	
<211>	27	
<212>		
<213>	Artificial Sequence	

<220>

<223>	TCAP1 rvs primer	
	122 gcct atttcactct gtctcat	27
<210>	123	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP2 Fwd primer	
<400> tcgagg	123 gcaa ggacacacac tactt	25
<210>	124	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	TCAP2 rvs primer	
<400> aagaa	124 etgga tgttgetget aetgte .	26
<210>	125	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		•
<223>	TCAP3 fwd primer	
<400>	125	25

65/88

:210>	126	
:211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP3 rvs primer	
	126 tggc actgtcagcc a	21
<210>	127	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP4 fwd primer	
	127 tcca gtggttccat ctt	23
oouguu		
<210>	128	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	TCAP4 rvs primer	
<400> tggata	128 ttgt tggcgctgtc tgac	24
<210>	129	

<211> 6

66/88

ι

<212> PRT <213> Artificial Sequence <220> <223> Conserved motif between CRF and TCAP I/L S X X (X)-L/V at amino terminus <220> <221> MISC_FEATURE <222> (1)..(1) <223> X=I or L<220> <221> MISC_FEATURE <222> (3)..(3) <223> X=T or A <220> <221> MISC_FEATURE <222> (4)..(4) <223> X=L, I or G <220> <221> MISC_FEATURE <222> (5)..(5) <223> X=D, R or K <220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> X=L or V

```
<400> 129
Xaa Ser Xaa Xaa Xaa Xaa
<210> 130
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Conserved motif between CRF and TCAP - In middle L/V-L/I-X-V/ali
      phatic residue
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> X=V or L
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> X=M, L Q, I or V
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X=L, I or F
<220>
<221> MISC_FEATURE
<222> (3)..(3)
```

```
<223> X=E, N, S or P
<400> 130
Xaa Xaa Xaa Xaa
1
<210> 131
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Conserved motif between CRF and TCAP N/I/A-H/basic residue -I/L/F
       /-aliphatic at carboxy terminus
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X=R, A or I
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> X=H or basic residues, K, I, R or Q
<220>
<221> MISC_FEATURE
 <222> (4)..(4)
 <223> X=I, L or F
 <400> 131
 Asn Xaa Xaa Xaa
```

69/88

<210> 132

1

<211> 8964

<212> DNA

<213> Mus musculus

<220>

<221> exon

<222> (50)..(8197)

<223>

<400> 132 aagttctaag aagccggacc gatgtgcaca gagaaggaat gaaggaagt atg gat gtg 58 Met Asp Val 106 aag gaa cgc agg cct tac tgc tcc ttg acc aag agc aga cgg gaa aag Lys Glu Arg Arg Pro Tyr Cys Ser Leu Thr Lys Ser Arg Arg Glu Lys 10 154 gaa agg cgc tat aca aat tcg tcc gcg gac aat gag gag tgt agg gtc Glu Arg Arg Tyr Thr Asn Ser Ser Ala Asp Asn Glu Glu Cys Arg Val 25 ccc acg cag aag tcc tat agt tcc agt gaa acc ttg aaa gct ttc gat 202 Pro Thr Gln Lys Ser Tyr Ser Ser Ser Glu Thr Leu Lys Ala Phe Asp 45 cat gat tat tca cgg ctg ctt tat gga aac aga gta aag gat ttg gtc 250 His Asp Tyr Ser Arg Leu Leu Tyr Gly Asn Arg Val Lys Asp Leu Val 55 cac aga gaa gcc gac gag tat act aga caa gga cag aat ttt acc cta 298 His Arg Glu Ala Asp Glu Tyr Thr Arg Gln Gly Gln Asn Phe Thr Leu agg cag tta gga gtg tgt gaa tcc gca act cga aga gga gtg gca ttc 346 Arg Gln Leu Gly Val Cys Glu Ser Ala Thr Arg Arg Gly Val Ala Phe 394 tgt gcg gaa atg ggg ctc cct cac aga ggt tac tcc atc agt gca ggg Cys Ala Glu Met Gly Leu Pro His Arg Gly Tyr Ser Ile Ser Ala Gly 100 105 442 tca gat gcg gat acg gaa aac gaa gca gtg atg tcc cct gag cat gcc Ser Asp Ala Asp Thr Glu Asn Glu Ala Val Met Ser Pro Glu His Ala 130 120

atg Met	aga Arg	ctt Leu	tgg Trp 135	ggc Gly	agg Arg	GJÀ âââ	gtc Val	aaa Lys 140	tcg Ser	gg¢ Gly	cgc Arg	agt Ser	tcc Ser 145	tgc Cys	ctg Leu		490
tca Ser	agc Ser	cgg Arg 150	tcc Ser	aac Asn	tcc Ser	gcc Ala	ctc Leu 155	acc Thr	ctg Leu	aca Thr	gac Asp	acg Thr 160	gag Glu	cac His	gag Glu		538
aac Asn	agg Arg 165	tcg Ser	gac Asp	agt Ser	gag Glu	agc Ser 170	gag Glu	caa Gln	cct Pro	tca Ser	aac Asn 175	aac Asn	cca Pro	Gly ggg	caa Gln		586
ccc Pro 180	acc Thr	ctg Leu	cag Gln	cct Pro	ttg Leu 185	ccg Pro	cca Pro	tcc Ser	cac His	aag Lys 190	cag Gln	cac His	ccg Pro	gcg Ala	cag Gln 195		634
cat His	cac His	ccg Pro	tcc Ser	atc Ile 200	act Thr	tcc Ser	ctc Leu	aat Asn	aga Arg 205	aac Asn	tcc Ser	ctg Leu	acc Thr	aat Asn 210	aga Arg		682
agg Arg	aac Asn	cag Gln	agt Ser 215	ccg Pro	gcc Ala	ccg Pro	ccg Pro	gct Ala 220	gct Ala	ttg Leu	ccc Pro	gcc Ala	gag Glu 225	ctg Leu	caa Gln		730
acc Thr	aca Thr	ccc Pro 230	gag Glu	tcc Ser	gtc Val	cag Gln	ctg Leu 235	cag Gln	gac Asp	agc Ser	tgg Trp	gtc Val 240	ctt Leu	Gly	agt Ser		778
aat Asn	gta Val 245	cca Pro	ctg Leu	gaa Glu	agc Ser	agg Arg 250	cat His	ttc Phe	cta Leu	ttc Phe	aaa Lys 255	aca Thr	Gly	aca Thr	Gly ggg		826
acg Thr 260	acg Thr	cca Pro	ctg Leu	ttc Phe	agt Ser 265	acg Thr	gca Ala	acc Thr	ccg Pro	gga Gly 270	tac Tyr	aca Thr	atg Met	gca Ala	tct Ser 275		874
ggc Gly	tct Ser	gtt Val	tat Tyr	tct Ser 280	ccg Pro	cct Pro	acc Thr	cgg Arg	cca Pro 285	ctt Leu	cct Pro	aga Arg	aac Asn	acc Thr 290	cta Leu		922
tca Ser	aga Arg	agt Ser	gct Ala 295	ttt Phe	aaa Lys	ttc Phe	aag Lys	aag Lys 300	tct Ser	tca Ser	aag Lys	tac Tyr	tgc Cys 305	agc Ser	tgg Trp		970
agg Arg	tgc Cys	acc Thr 310	Ala	ctg Leu	tgt Cys	gct Ala	gta Val 315	Gly	gtc Val	tca Ser	gtg Val	ctc Leu 320	Leu	gcc Ala	att Ile	;	1018
ctc Leu	ctc Leu 325	Ser	tat Tyr	ttt Phe	ata Ile	gca Ala 330	Met	cat His	cta Leu	ttt Phe	ggc Gly 335	Leu	aac Asn	tgg Trp	cac His		1066
tta Leu 340	Gln	cag Gln	acg Thr	gaa Glu	aat Asn 345	Asp	aca Thr	ttc Phe	gag Glu	aat Asn 350	Gly	aaa Lys	gtg Val	aat Asn	tct Ser 355		1114
gac Asp	acc Thr	gtg Val	cca Pro	aca Thr	aac Asr	act Thr	gta Val	tcg Ser	tta Leu	cct Pro	tct Ser	ggc Gly	gac Asp	aat Asn	gga Gly		1162

				360					365					370		
aaa Lys	tta Leu	ggt Gly	gga Gly 375	ttt Phe	aca Thr	cat His	gaa Glu	aat Asn 380	aac Asn	acc Thr	ata Ile	gat Asp	tcc Ser 385	gga Gly	gaa Glu	1210
ctt Leu	gat Asp	att Ile 390	ggc Gly	cgg Arg	aga Arg	gca Ala	att Ile 395	caa Gln	gag Glu	gtt Val	ccc Pro	ccc Pro 400	ggg ggg	atc Ile	ttc Phe	1258
tgg Trp	aga Arg 405	tcg Ser	cag Gln	ctc Leu	ttt Phe	att Ile 410	gat Asp	cag Gln	cca Pro	cag Gln	ttt Phe 415	ctt Leu	aag Lys	ttc Phe	aac Asn	1306
atc Ile 420	tct Ser	ctt Leu	cag Gln	aag Lys	gat Asp 425	gca Ala	ttg Leu	atc Ile	gga Gly	gtg Val 430	tac Tyr	ggc Gly	cgg Arg	aag Lys	ggc Gly 435	1354
tta Leu	ccg Pro	cct Pro	tcc Ser	cat His 440	act Thr	cag Gln	tac Tyr	gac Asp	ttt Phe 445	gtg Val	gaa Glu	cta Leu	ctg Leu	gat Asp 450	ggt Gly	1402
agc Ser	agg Arg	tta Leu	att Ile 455	gcg Ala	aga Arg	gag Glu	cag Gln	cgg Arg 460	aac Asn	ctg Leu	gtg Val	gag Glu	tcc Ser 465	gaa Glu	aga Arg	1450
gcc Ala	Gly ggg	cgg Arg 470	cag Gln	gcg Ala	aga Arg	tct Ser	gtc Val 475	agc Ser	ctg Leu	cac His	gaa Glu	gct Ala 480	ggc Gly	ttc Phe	atc Ile	1498
cag Gln	tac Tyr 485	ttg Leu	gat Asp	tct Ser	gga Gly	atc Ile 490	tgg Trp	cat His	ctg Leu	gct Ala	ttt Phe 495	tat Tyr	aac Asn	gac Asp	GJÀ āāā	1546
aaa Lys 500	aac Asn	cca Pro	gag Glu	cag Gln	gtc Val 505	tcc Ser	ttt Phe	aac Asn	acg Thr	atc Ile 510	gtt Val	ata Ile	gag Glu	tct Ser	gtg Val 515	1594
gtg Val	gaa Glu	tgc Cys	ccc Pro	cga Arg 520	aat Asn	tgc Cys	cat His	gga Gly	aat Asn 525	gga Gly	gag Glu	tgt Cys	gtt Val	tct Ser 530	gga Gly	1642
act Thr	tgc Cys	cat His	tgt Cys 535	ttc Phe	ccc Pro	ggg Gly	ttt Phe	cta Leu 540	Gly	ccg Pro	gat Asp	tgt Cys	tca Ser 545	aga Arg	gca Ala	1690
gcc Ala	tgt Cys	ccg Pro 550	Val	ctc Leu	tgt Cys	agt Ser	ggc Gly 555	aac Asn	GJA aaa	caa Gln	tac Tyr	tcc Ser 560	Lys	ggc Gly	cgc	1738
tgc Cys	ctg Leu 565	Cys	ttc Phe	agt Ser	ggc	tgg Trp 570	aag Lys	ggc Gly	acc Thr	gag Glu	tgt Cys 575	Asp	gtg Val	ccg Pro	acg Thr	1786
acc Thr 580	Gln	tgc Cys	att	gac Asp	ccg Pro 585	Gln	tgc Cys	ggg	ggt Gly	cgt Arg 590	Gly	att Ile	tgc Cys	atc	atg Met 595	1834
ggc	tct	tgc	gct	tgt	aac	tcg	gga	tac	aaa	. gga	. gaa	aac	tgt	gag	gaa	1882

Gly	Ser	Cys	Ala	Cys 600	Asn	Ser	Gly	Tyr	Lys 605	Gly	Glu	Asn	Cys	Glu 610	Glu	
gcg Ala	gac Asp	tgt Cys	cta Leu 615	gac Asp	cct Pro	gga Gly	tgt Cys	tct Ser 620	aat Asn	cac Hiŝ	GJA aaa	gtg Val	tgt Cys 625	atc Ile	cat His	1930
gly ggg	gaa Glu	tgt Cys 630	cac His	tgc Cys	aat Asn	cca Pro	ggc Gly 635	tgg Trp	ggt Gly	ggc Gly	agc Ser	aac Asn 640	tgt Cys	gaa Glu	ata Ile	1978
ctg Leu	aag Lys 645	act Thr	atg Met	tgt Cys	gca Ala	gac Asp 650	cag Gln	tgc Cys	tca Ser	ggc Gly	cac His 655	Glà aaa	act Thr	tac Tyr	ctt Leu	2026
caa Gln 660	gaa Glu	agc Ser	ggc Gly	tcc Ser	tgc Cys 665	act Thr	tgc Cys	gac Asp	cca Pro	aat Asn 670	tgg Trp	act Thr	ggc Gly	ccc Pro	gac Asp 675	2074
tgc Cys	tca Ser	aat Asn	gaa Glu	ata Ile 680	tgt Cys	tca Ser	gtg Val	gac Asp	tgc Cys 685	ggc Gly	tca Ser	cac His	ggc Gly	gtc Val 690	tgc Cys	2122
atg Met	GJÀ āāā	ggc Gly	tcc Ser 695	tgt Cys	cgc Arg	tgt Cys	gaa Glu	gaa Glu 700	ggc Gly	tgg Trp	acc Thr	ggc Gly	ccg Pro 705	gcg Ala	tgt Cys	2170
aat Asn	cag Gln	aga Arg 710	gct Ala	tgc Cys	cac His	cct Pro	cgc Arg 715	tgt Cys	gct Ala	gag Glu	cac His	ggg Gly 720	acg Thr	tgc Cys	aag Lys	2218
gac Asp	ggc Gly 725	aag Lys	tgc Cys	gag Glu	tgc Cys	agc Ser 730	caa Gln	gga Gly	tgg Trp	aac Asn	gga Gly 735	gag Glu	cac His	tgc Cys	aca Thr	2266
att Ile 740	gct Ala	cac His	tat Tyr	ttg Leu	gat Asp 745	aag Lys	ata Ile	gtt Val	aaa Lys	gag Glu 750	Gly	tgc Cys	ccc Pro	ggc	ttg Leu 755	2314
tgc Cys	aac Asn	agc Ser	aat Asn	ggg Gly 760	aga Arg	tgc Cys	aca Thr	ctg Leu	gac Asp 765	Gln	aac Asn	ggc Gly	tgg Trp	cac His 770	tgc Cys	2362
gtt Val	tgc Cys	cag Gln	cca Pro 775	Gly	tgg Trp	aga Arg	gga Gly	gca Ala 780	Gly	tgt Cys	gac Asp	gta Val	gcc Ala 785	Met	gag Glu	2410
acc Thr	ctc Leu	tgt Cys 790	Thr	gac Asp	agc Ser	aaa Lys	gac Asp 795	Asn	gaa Glu	gga Gly	gac Asp	gga Gly 800	Leu	att Ile	gac Asp	2458
tgc Cys	atg Met 805	Asp	cct Pro	gat Asp	tgc Cys	tgc Cys 810	Leu	cag Glr	agc Ser	tco Ser	tgc Cys 815	Gln	aac Asn	cag Gln	ccc Pro	2506
tac Tyr 820	Cys	cgt Arg	ggc	ttg Leu	cct Pro 825	Asp	cct Pro	caç Glr	gat Asp	ato 11e 830	: Ile	ago Ser	caa Glr	ago Ser	Leu 835	2554

cag Gln	aca Thr	cca Pro	tct Ser	cag Gln 840	caa Gln	gct Ala	gcc Ala	aag Lys	tcc Ser 845	ttc Phe	tat Tyr	gac Asp	cga Arg	atc Ile 850	agt Ser	2602
ttc Phe	ctg Leu	att Ile	gga Gly 855	tcg Ser	gat Asp	agc Ser	acc Thr	cac His 860	gtg Val	ctc Leu	cct Pro	gga Gly	gaa Glu 865	agt Ser	ccg Pro	2650
ttc Phe	aat Asn	aag Lys 870	agt Ser	ctt Leu	gcg Ala	tcc Ser	gtc Val 875	atc Ile	aga Arg	ggc Gly	caa Gln	gta Val 880	cta Leu	aca Thr	gct Ala	2698
gat Asp	gga Gly 885	acc Thr	cca Pro	ctt Leu	att Ile	ggc 890	gtc Val	aac Asn	gtg Val	tcg Ser	ttt Phe 895	tta Leu	cac His	tac Tyr	tcg Ser	2746
gaa Glu 900	tat Tyr	gga Gly	tat Tyr	acc Thr	att Ile 905	acc Thr	cgc Arg	cag Gln	gat Asp	gga Gly 910	atg Met	ttt Phe	gac Asp	ttg Leu	gtg Val 915	2794
gca Ala	aat Asn	ggt Gly	ggc Gly	gct Ala 920	tct Ser	ctg Leu	act Thr	ttg Leu	gta Val 925	ttt Phe	gag Glu	cgt Arg	tcc Ser	cca Pro 930	ttc Phe	2842
ctc Leu	act Thr	cag Gln	tac Tyr 935	cac His	act Thr	gtg Val	tgg Trp	att Ile 940	ccc Pro	tgg Trp	aat Asn	gtc Val	ttt Phe 945	tat Tyr	gtg Val	2890
atg Met	gat Asp	acc Thr 950	ctt Leu	gtc Val	atg Met	aag Lys	aaa Lys 955	gag Glu	gag Glu	aac Asn	gac Asp	att Ile 960	ccc Pro	agc Ser	tgt Cys	2938
gac Asp	ctc Leu 965	agt Ser	ggc Gly	ttt Phe	gtg Val	agg Arg 970	cca Pro	agt Ser	ccc Pro	atc Ile	att Ile 975	gtg Val	tct Ser	tca Ser	ccg Pro	2986
tta Leu 980	tcc Ser	acc Thr	ttc Phe	ttc Phe	agg Arg 985	tct Ser	tcc Ser	cct Pro	gag Glu	gac Asp 990	agc Ser	ccc Pro	atc Ile	atc Ile	ccc Pro 995	3034
gag Glu	aca Thr	cag Gln	gtc Val	ctg Leu 1000	Hi	t gaa	a ga u Gl	a ac	c ace r Th	r I	tt c le P	ca g ro G	ga a ly T	hr A	at sp 010	3079
ttg Leu	aaa Lys	ctt Leu	tcc Ser	tac Tyr 101	Le	g ag	t tc r Se	c ag	a gc g Al 10	a A	ca g la G	gg t ly T	ac a yr L	ys S	ca er 025	3124
			att Ile		Me	g ac	c ca r Gl	g gc	c gt a Va 10	1 . I	ta c le P	cg t ro P	tt a he A	sn L	tc eu 040	3169
			cat His		Me	g gt	g gc l Al	c gt a Va	g gt l Va 10	1 G	gg a ly A	ga c rg L	tc t eu P	he G	ag 1n 055	3214
aag Lys	tgg Trp	ttt Phe	cct Pro	gcc Ala 106	Se	g cc r Pr	a aa o As	c tt n Le	g gc u Al 10	а Т	ac a yr T	.cg t hr P	tc a he I	le T	gg Tp .070	3259

gat Asp	aag Lys	acg Thr	gac Asp	gca Ala 1075	tat Tyr	aat Asn	cag Gln	Lys	gtc Val 1080	tac Tyr	ggc Gly	ttg Leu	tca Ser	gag Glu 1085	3304
gca Ala	gtt Val	gtg Val	tcc Ser	gtc Val 1090	gga Gly	tac Tyr	gag Glu	tac Tyr	gag Glu 1095				gac Asp		3349
act Thr	ctc Leu	tgg Trp	gaa Glu	aag Lys 1105	agg Arg	act Thr	gcc Ala	gtt Val	ttg Leu 1110	caa Gln	ggc Gly	tat Tyr	gag Glu	ttg Leu 1115	3394
gat Asp	gct Ala	tcg Ser	aac Asn	atg Met 1120	ggc Gly	ggc	tgg Trp	acg Thr	ttg Leu 1125	gac Asp	aag Lys	cac His	cat His	gta Val 1130	3439
ctg Leu	gac Asp	gtt Val	cag Gln	aac Asn 1135	ggt Gly	ata Ile	cta Leu	tac Tyr		gga Gly	aat Asn	gga Gly	gaa Glu	aat Asn 1145	3484
cag Gln	ttc Phe	atc Ile	tct Ser	cag Gln 1150	cag Gln	cct Pro	ccg Pro	gtg Val					atg Met		3529
aat Asn	ggt Gly	cgg Arg	agg Arg	cgt Arg 1165	agc Ser	atc Ile	tca Ser	tgc Cys	cca Pro 1170				ggt Gly		3574
				aaa Lys 1180	ctc Leu	ctg Leu	gca Ala	ccc Pro	gtg Val 1185	gcg Ala	ctt Leu	gcc Ala	tgt Cys	ggg Gly 1190	3619
				cta Leu 1195	tac Tyr	gta Val	Gly ggg	gat Asp	ttc Phe 1200	aat Asn	tac Tyr	gtc Val	cgg Arg	cgg Arg 1205	3664
ata Ile	ttc Phe	ccg Pro	tct Ser	ggg Gly 1210	aat Asn	gtg Val	aca Thr	agt Ser	gtt Val 1215	tta Leu	gaa Glu	cta Leu	aga Arg	aat Asn 1220	3709
aaa Lys	gat Asp	ttt Phe	aga Arg	cat His 1225	agt Ser	agc Ser	aac Asn	cca Pro	gct Ala 1230	cac His	aga Arg	tac Tyr	tac Tyr	ctg Leu 1235	3754
gct Ala	acg Thr	gac Asp	cca Pro	gtc Val 1240	Thr	gga Gly	gat Asp	ttg Leu	tac Tyr 1245	Val	tct Ser	gat Asp	act Thr	aac Asn 1250	3799
acc Thr	cgc Arg	aga Arg	atc Ile	tat Tyr 1255	Arg	ccg Pro	aaa Lys	tca Ser	ctc Leu 1260	Thr	gga Gly	gcc Ala	aaa Lys	gac Asp 1265	3844
ctg Leu	act Thr	aaa Lys	aac Asn	gct Ala 1270	Glu	gtg Val	gtg Val	gca Ala	ggg Gly 1275	Thr	Gly	gaa Glu	. cag . Gln	tgc Cys 1280	3889
ctt Leu	ccc Pro	ttt Phe	gac Asp	gag Glu	gcc Ala	agg Arg	tgt Cys	Gly	gat Asp	gga Gly	ggc Gly	aag Lys	gct Ala	gtg Val	3934

75/88 gaa gca acg ctc atg agt ccc aaa gga atg gca atc gat aag aac Glu Ala Thr Leu Met Ser Pro Lys Gly Met Ala Ile Asp Lys Asn gga ctg atc tac ttt gtt gat gga acc atg atc aga aag gtt gat Gly Leu Ile Tyr Phe Val Asp Gly Thr Met Ile Arg Lys Val Asp caa aat gga atc ata tca act ctc ctg ggc tcc aac gac ctc acg Gln Asn Gly Ile Ile Ser Thr Leu Leu Gly Ser Asn Asp Leu Thr tca gct cga cct tta acc tgt gat act agc atg cat atc agc cag Ser Ala Arg Pro Leu Thr Cys Asp Thr Ser Met His Ile Ser Gln gtg cgt ctg gaa tgg ccc act gac ctc gcg atc aac ccc atg gat Val Arg Leu Glu Trp Pro Thr Asp Leu Ala Ile Asn Pro Met Asp aac tcc atc tac gtc ctg gat aat aac gta gtt tta cag atc act Asn Ser Ile Tyr Val Leu Asp Asn Asn Val Val Leu Gln Ile Thr gaa aac cgt cag gtc cgc atc gct gcc ggg cgg ccc atg cac tgt Glu Asn Arg Gln Val Arg Ile Ala Ala Gly Arg Pro Met His Cys cag gtc cct gga gtg gaa tac ccg gtg ggg aag cac gcg gtt cag Gln Val Pro Gly Val Glu Tyr Pro Val Gly Lys His Ala Val Gln acc acc ctg gag tca gcc acg gcc att gct gtg tcc tac agc ggg Thr Thr Leu Glu Ser Ala Thr Ala Ile Ala Val Ser Tyr Ser Gly gto ott tac atc acg gaa act gat gag aag aag atc aac cga ata Val Leu Tyr Ile Thr Glu Thr Asp Glu Lys Lys Ile Asn Arg Ile agg cag gtc acg aca gac ggg gag atc tcc tta gtg gct ggg ata Arg Gln Val Thr Thr Asp Gly Glu Ile Ser Leu Val Ala Gly Ile cct tcg gaa tgt gac tgc aag aac gac gcc aac tgt gac tgc tac Pro Ser Glu Cys Asp Cys Lys Asn Asp Ala Asn Cys Asp Cys Tyr caa age gga gae gge tae gee aaa gat gee aaa ete aat geg eeg Gln Ser Gly Asp Gly Tyr Ala Lys Asp Ala Lys Leu Asn Ala Pro tcc tcc ctg gcc gcc tcg cca yat ggc act ctg tac att gca gat Ser Ser Leu Ala Ala Ser Pro Asp Gly Thr Leu Tyr Ile Ala Asp

ctg gga aat atc agg atc cgg gcc gtt tcg aag aat aaa cct tta

		·

Leu	Gly	Asn		Arg 1510	Ile	Arg	Ala	Val	Ser 1515	Lys	Asn	Lys	Pro	Leu 1520	
ctg Leu	aac Asn	tca Ser	atg Met	aac Asn 1525	ttt Phe	tac Tyr	gaa Glu	gtt Val	gcc Ala 1530	tct Ser	cca Pro	act Thr	gat Asp	cáa Gln 1535	4654
gag Glu	ctc Leu	tac Tyr	atc Ile	ttt Phe 1540	gac Asp	atc Ile	aac Asn	ggt Gly	act Thr 1545	cac His	cag Gln	tac Tyr	acc Thr	gtg Val 1550	4699
agc Ser	ctg Leu	gtc Val	acg Thr	ggt Gly 1555	gac Asp	tac Tyr	cta Leu	tat Tyr	aat Asn 1560	ttt Phe	agt Ser	tac Tyr	agc Ser	aat Asn 1565	4744
gac Asp	aat Asn	gac Asp	gtc Val	acc Thr 1570	gct Ala	gta Val	act Thr	gac Asp	agc Ser 1575	aat Asn	ggc Gly	aac Asn	acc Thr	ctc Leu 1580	4789
cga Arg	atc Ile	cga Arg	agg Arg	gat Asp 1585	ccg Pro	aat Asn	cgg Arg	atg Met	ccg Pro 1590	gtg Val	cgg Arg	gtg Val	gtg Val	tct Ser 1595	4834
cct Pro	gat Asp	aac Asn	cag Gln	gtg Val 1600	ata Ile	tgg Trp	ttg Leu	acc Thr	ata Ile 1605	ggc	acc Thr	aac Asn	ggg Gly	tgt Cys 1610	4879
ctg Leu	aaa Lys	agc Ser	atg Met	acc Thr 1615	gct Ala	cag Gln	ggc	ctg Leu	gaa Glu 1620	Leu	gtt Val	ttg Leu	ttt Phe	act Thr 1625	4924
tac Tyr	cat His	ggc Gly	aac Asn	agt Ser 1630	Gly ggg	ctt Leu	tta Leu	gcc Ala	acc Thr 1635	Lys	agt Ser	gac Asp	gaa Glu	act Thr 1640	4969
				ttt Phe 1645	ttt Phe	gac Asp	tat Tyr	gac Asp	agt Ser 1650	Glu	ggt Gly	cgc Arg	ctg Leu	acg Thr 1655	5014
aat Asn	gtt Val	acc Thr	ttc Phe	ccc Pro 1660	act Thr	Gly	gtg Val	gtt Val	aca Thr 1665	Asn	ctg Leu	cac His	Gly	gac Asp 1670	5059
atg Met	gac Asp	aag Lys	gct Ala	atc Ile 1675	acg Thr	gtg Val	gac Asp	atc Ile	gag Glu 1680	Ser	tcc Ser	agc Ser	aga Arg	gag Glu 1685	5104
			agc Ser	atc Ile 1690	act Thr	tcg Ser	aac Asn	ttg Leu	tcc Ser 1695	Ser	atc Ile	gat Asp	tcc Ser	ttc Phe 1700	5149
tac Tyr	acc Thr	atg Met	gtc Val	caa Gln 1705	gac Asp	cag Gln	tta Leu	aga Arg	aac Asn 1710	Ser	tac Tyr	cag Gln	att Ile	ggg Gly 1715	5194
tat Tyr	gat Asp	ggc	tcc Ser	ctt Leu 1720	Arg	atc Ile	ttc Phe	tat Tyr	gcc Ala 1725	Ser	ggt Gly	ctg Lev	gac Asp	: tct Ser 1730	5239

cac His	tac Tyr	cag Gln	aca Thr	gag Glu 1735	ccc Pro	cac His	gtt Val	ctg Leu	gct Ala 1740	ggc Gly	acg Thr	gcg Ala	aat Asn	ccc Pro 1745	5284
aca Thr	gta Val	gcc Ala	aaa Lys	aga Arg 1750	aac Asn	atg Met	act Thr	ctt Leu	ccc Pro 1755	ggt Gly	gag Glu	aac Asn	Gly ggg	cag Gln 1760	5329
aat Asn	ctg Leu	gtg Val	gag Glu	tgg Trp 1765	aga Arg	ttc Phe	cga Arg	aaa Lys	gaa Glu 1770	caa Gln	gcc Ala	cag Gln	ggc Gly	aaa Lys 1775	5374
gtc Val	aac Asn	gta Val	ttc Phe	ggc Gly 1780	cgg Arg	aag Lys	ctc Leu	agg Arg	gtc Val 1785	aat Asn	GJA aaa	cgc Arg	aac Asn	cta Leu 1790	5419
ctc Leu	tca Ser	gtg Val	gac Asp	ttt Phe 1795	gat Asp	cgg Arg	acc Thr	acc Thr	aag Lys 1800	acg Thr	gaa Glu	aag Lys	atc Ile	tat Tyr 1805	5464
gat Asp	gac Asp	cac His	cgg Arg	aaa Lys 1810	ttt Phe	ctc Leu	ctg Leu	agg Arg	atc Ile 1815	gct Ala	tac Tyr	gac Asp	acg Thr	tcg Ser 1820	5509
ggg ggg	cac His	ccg Pro	act Thr	ctc Leu 1825	tgg Trp	ctg Leu	ccg Pro	agt Ser	agc Ser 1830	aag Lys	cta Leu	atg Met	gca Ala	gtg Val 1835	5554
aac Asn	gtc Val	acc Thr	tac Tyr	tca Ser 1840	tcc Ser	acc Thr	ggt Gly	caa Gln	att Ile 1845	gcc Ala	agc Ser	atc Ile	cag Gln	aga Arg 1850	5599
Gly	acc Thr	acg Thr	agc Ser	gaa Glu 1855	aag Lys	gtg Val	gac Asp	tat Tyr	gac Asp 1860	Ser			agg Arg		5644
gta Val	tct Ser	cgg Arg	gtc Val	ttt Phe 1870	gcc Ala	gat Asp	Gly	aaa Lys	aca Thr 1875	Trp	agt Ser	tac Tyr	acg Thr	tac Tyr 1880	5689
ttg Leu	gaa Glu	aag Lys	tcc Ser	atg Met 1885	gtt Val	ctt Leu	ctg Leu	ctc Leu	cat His 1890	Ser	cag Gln	cgg Arg	cag Gln	tac Tyr 1895	5734
atc Ile	ttc Phe	gaa Glu	tac Tyr	gac Asp 1900	Met	tgg Trp	gac Asp	cgc	ctg Leu 1905	Ser	gcc Ala	atc Ile	acc Thr	atg Met 1910	5779
ccc Pro	agt Ser	gtg Val	gct Ala	cgc Arg 1915	His	acc Thr	atg Met	cag Gln	acc Thr 1920	I1€	cgg Arg	tcc Ser	att Ile	ggc Gly 1925	5824
tac Tyr	tac Tyr	cgc	aac Asn	atc Ile 1930	Tyr	aat Asn	ccc Pro	cca Pro	gaa Glu 1935	Ser	aat Asn	gcc Ala	tct Ser	atc Ile 1940	5869
ato Ile	acc Thr	gac Asp	tac Tyr	aac Asn 1945	Glu	gaa Glu	ggg Gly	r cto Lev	ctt Leu 1950	Let	g caa 1 Glr	aca Thr	gct Ala	ttc Phe 1955	5914

ctg Leu	gga Gly	acg Thr	agt Ser	cgg Arg 1960	agg Arg	gtc Val	tta Leu	Phe	aag Lys 1965	tat Tyr	aga Arg	agg Arg	cag Gln	acc Thr 1970	5959
agg Arg	cta Leu	tca Ser	gaa Glu	att Ile 1975	tta Leu	tac Tyr	gac Asp	agc Ser	aca Thr 1980	aga Arg	gtc Val	agt Ser	ttt Phe	acc Thr 1985	6004
tac Tyr	gac Asp	gaa Glu	aca Thr	gcg Ala 1990	gga Gly	gtc Val	ctg Leu	aaa Lys	aca Thr 1995	gta Val	aac Asn	ctt Leu	cag Gln	agt Ser 2000	6049
gat Asp	ggt Gly	ttt Phe	att Ile	tgc Cys 2005	acc Thr	att Ile	aga Arg	tac Tyr	agg Arg 2010	caa Gln	att Ile	ggt Gly	ccc Pro	ctg Leu 2015	6094
att Ile	gac Asp	aga Arg	cag Gln	att Ile 2020	ttc Phe	cgc Arg	ttc Phe	agc Ser	gag Glu 2025	gat Asp	gga Gly	atg Met	gta Val	aat Asn 2030	6139
gcg Ala	aga Arg	ttt Phe	gac Asp	tat Tyr 2035	agc Ser	tac Tyr	gac Asp	aac Asn	agc Ser 2040	ttt Phe	cga Arg	gtg Val	acc Thr	agc Ser 2045	6184
atg Met	cag Gln	ggt Gly	gtc Val	atc Ile 2050	aat Asn	gaa Glu	aca Thr	cca Pro	ctg Leu 2055	ccc Pro	att Ile	gat Asp	cta Leu	tac Tyr 2060	6229
cag Gln	ttt Phe	gat Asp	gac Asp	atc Ile 2065	tct Ser	ggc Gly	aaa Lys	gtc Val	gag Glu 2070	Gln	ttt Phe	gga Gly	aaa Lys	ttc Phe 2075	6274
gga Gly	gtg Val	ata Ile	tac Tyr	tac Tyr 2080	Asp	atc Ile	aac Asn	caa Gln	atc Ile 2085	att Ile	tcc Ser	acg Thr	gcc Ala	gtg Val 2090	6319
atg Met	act Thr	tat Tyr	aca Thr	aag Lys 2095	cac His	ttt Phe	gat Asp	gct Ala	cat His 2100	Gly	cgc Arg	atc Ile	aag Lys	gag Glu 2105	6364
atc Ile	caa Gln	tat Tyr	gag Glu	ata Ile 2110	Phe	agg Arg	tca Ser	ctc Leu	atg Met 2115	Tyr	tgg Trp	att	aca Thr	att Ile 2120	6409
caa Gln	tat Tyr	gat Asp	aat Asn	atg Met 2125	Gly	cgg Arg	gta Val	acc Thr	aag Lys 2130	Arg	gag Glu	att Ile	aaa Lys	att Ile 2135	6454
				aac Asn 2140	Thr	acc Thr	aaa Lys	tac Tyr	gcg Ala 2145	Тух	gag Glu	tac Tyr	gac Asp	gtc Val 2150	6499
				caa Gln 2155	Thr	gtt Val	tac Tyr	cta Leu	aac Asn 2160	Glu	aag Lys	ato : Ile	atg Met	tgg Trp 2165	6544
				gac Asp	cta Lev	aat Asn	gga Gly	aac Asn	ctc Leu	cac His	tto Lev	cto Lev	aac Asr	ccc Pro	6589

				2170					2175					2180	
agc Ser	agc Ser	agc Ser	gcc Ala	cgc Arg 2185	ctg Leu	acc Thr	cct Pro	ctg Leu	cgc Arg 2190	tat Tyr	gac Asp	ctg Leu	cgc Arg	gac Asp 2195	6634
aga Arg	atc Ile	acc Thr	cgc Arg	ctg Leu 2200	ggc Gly	gat Asp	gtt Val	cag Gln	tac Tyr 2205	cgg Arg	ctg Leu	gat Asp	gaa Glu	gat Asp 2210	6679
ggt Gly	ttc Phe	ctg Leu	cgt Arg	cag Gln 2215	agg Arg	ggc ggc	act Thr	gaa Glu	att Ile 2220	ttt Phe	gaa Glu	tac Tyr	agc Ser	tcc Ser 2225	6724
aaa Lys	ggg ggg	ctt Leu	ctg Leu	act Thr 2230	cga Arg	gtc Val	tac Tyr	agt Ser	aaa Lys 2235	ggc Gly	agt Ser	ggc	tgg Trp	aca Thr 2240	6769
gtg Val	atc Ile	tat Tyr	cgg Arg	tac Tyr 2245	gac Asp	ggc Gly	ctg Leu	gga Gly	aga Arg 2250	cgt Arg	gtt Val	tct Ser	agc Ser	aaa Lys 2255	6814
acc Thr	agc Ser	ctg Leu	gga Gly	cag Gln 2260	cac His	ctt Leu	cag Gln	ttt Phe	ttc Phe 2265	tac Tyr	gcc Ala	gac Asp	ctg Leu	aca Thr 2270	6859
				att I1e 2275		cac His	gtc Val	tac Tyr	aac Asn 2280	cat His	tcc Ser	agt Ser	tca Ser	gaa Glu 2285	6904
atc Ile	acc Thr	tcc Ser	ctg Leu	tac Tyr 2290	tat Tyr	gac Asp	ctc Leu	caa Gln	gga Gly 2295	cat His	ctc Leu	ttc Phe	gcc Ala	atg Met 2300	6949
gag Glu	atc Ile	agc Ser	agt Ser	ggg Gly 2305	gat Asp	gag Glu	ttc Phe	tac Tyr	atc Ile 2310	Ala	tcg Ser	gac Asp	aac Asn	acg Thr 2315	6994
Gly ggg	aca Thr	ccg Pro	ctg Leu	gct Ala 2320	gtt Val	ttc Phe	agc Ser	agc Ser	aac Asn 2325	ggg	ctc Leu	atg Met	ctg Leu	aaa Lys 2330	7039
cag Gln	acc Thr	cag Gln	tac Tyr	act Thr 2335	Ala	tat Tyr	ggt Gly	gag Glu	atc Ile 2340	Tyr	ttt Phe	gac Asp	tcc Ser	aac Asn 2345	7084
gtc Val	gac Asp	ttt Phe	cag Gln	ctg Leu 2350	Val	att Ile	gga Gly	ttc Phe	cac His 2355	Gly	ggc Gly	ttg Leu	tat Tyr	gac Asp 2360	7129
ccg Pro	ctc Leu	acc Thr	aaa Lys	cta Leu 2365	Ile	cac His	ttt Phe	gga Gly	gaa Glu 2370	Arg	gat Asp	tat Tyr	gac Asp	att Ile 2375	7174
ttg Leu	gcg Ala	gga Gly	aga Arg	tgg Trp 2380	Thr	aca Thr	ccg Pro	gac Asp	att Ile 2385	Glu	ato Ile	tgg Trp	aaa Lys	agg Arg 2390	7219
atc	gga	aag	gac	cct	gct	cct	. ttt	aac	ctg	tat	atg	, ttt	cgg	aat	7264

Ile	Gly	Lys		Pro 2395	Ala	Pro	Phe	Asn	Leu 2400	Tyr	Met	Phe	Arg	Asn 2405	
aac Asn	aac Asn	ccc Pro	gcg Ala	agc Ser 2410	aaa Lys	atc Ile	cat His	gat Asp	gtg Val 2415	aaa Lys	gat Asp	tac Tyr	atc Ile	acg Thr 2420	7309
gat Asp	gtt Val	aac Asn	agc Ser	tgg Trp 2425	ctg Leu	gtg Val	acg Thr	ttt Phe	ggc Gly 2430	ttc Phe	cat His	ctg Leu	cac His	aat Asn 2435	7354
gct Ala	att Ile	cct Pro	gga Gly	ttc Phe 2440	cct Pro	gtt Val	ccc Pro	aaa Lys	ttt Phe 2445	gat Asp	tta Leu	act Thr	gag Glu	cct Pro 2450	7399
				gtg Val 2455	aag Lys	agt Ser	caa Gln	cag Gln	tgg Trp 2460	gaa Glu	gat Asp	gtg Val	ccg Pro	ccc Pro 2465	7444
atc Ile	ttt Phe	gga Gly	gtt Val	cag Gln 2470	cag Gln	caa Gln	gtg Val	gca Ala	agg Arg 2475	caa Gln	gcc Ala	aag Lys	gcc Ala	ttc Phe 2480	7489
ttg Leu	tcc Ser	ctg Leu	ggg ggg	aag Lys 2485	atg Met	gcc Ala	gag Glu	gtg Val	cag Gln 2490	gtg Val	agc Ser	cga Arg	cgc Arg	aaa Lys 2495	7534
gct Ala	ggc Gly	gcc Ala	gag Glu	cag Gln 2500	tcg Ser	tgg Trp	ctg Leu	tgg Trp	ttc Phe 2505	Ala	acg Thr	gtc Val	aag Lys	tcg Ser 2510	7579
ctc Leu	atc Ile	ggc Gly	aag Lys	ggc Gly 2515	gtc Val	atg Met	ctg Leu	gcc Ala	gtg Val 2520	agc Ser	caa Gln	ggc Gly	cgc Arg	gtg Val 2525	7624
cag Gln	acc Thr	aac Asn	gtg Val	ctc Leu 2530	aac Asn	atc Ile	gcc Ala	aac Asn	gag Glu 2535	Asp	tgc Cys	atc Ile	aag Lys	gtg Val 2540	7669
gcg Ala	gcg Ala	gtg Val	ctc Leu	aac Asn 2545	aac Asn	gcc Ala	ttc Phe	tac Tyr	ctg Leu 2550	GIu	aac Asn	ctg Leu	cac	ttc Phe 2555	7714
acc Thr	atc Ile	gag Glu	ggc	aag Lys 2560	gac Asp	aca Thr	cac His	tac Tyr	ttc Phe 2565	I1е	aag Lys	acc Thr	acc Thr	aca Thr 2570	7759
ccc Pro	gag Glu	agc Ser	gac Asp	ctg Leu 2575	ggc	aca Thr	ctg Leu	cgg Arg	ctg Leu 2580	Thr	agc Ser	ggt Gly	. cgc Arg	aag Lys 2585	7804
				ggg Gly 2590	Ile	aac Asn	gtg Val	acc Thr	gtg Val 2595	Ser	cag Gln	tco Ser	acc Thr	acg Thr 2600	7849
				agg Arg 2605	Thr	. cgc	agg Arg	tto Phe	gcc Ala 2610	Asp	gtg Val	gaç Glu	g ato Met	cag Gln 2615	7894

81/88

ttc ggt gcc ctg gca ctg cat gtg cgc tat ggc atg acg ctg Phe Gly Ala Leu Ala Leu His Val Arg Tyr Gly Met Thr Leu 2620 2625	gac 7939 Asp 2630
gag gag aag gcg cgc att ctg gag cag gcg cgc cag cgc gcg Glu Glu Lys Ala Arg Ile Leu Glu Gln Ala Arg Gln Arg Ala 2635 2640	r ctc 7984 . Leu 2645
gcc cgg gcg tgg gca cgg gag cag cag cgc gtg cgc gac ggc Ala Arg Ala Trp Ala Arg Glu Gln Gln Arg Val Arg Asp Gly 2650 2655	gag 8029 Glu 2660
gag ggt gcg cgc ctc tgg acg gag ggt gag aaa cgg cag ctg Glu Gly Ala Arg Leu Trp Thr Glu Gly Glu Lys Arg Gln Leu 2665 2670	r ctg 8074 Leu 2675
agc gct ggc aag gtg cag ggc tac gat ggg tac tac gta ctg Ser Ala Gly Lys Val Gln Gly Tyr Asp Gly Tyr Tyr Val Lev 2680 2685	tcg 8119 Ser 2690
gtg gag cag tac ccc gag ctg gct gac agt gcc aac aac atc Val Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Ile 2695 2700	cag 8164 Gln 2705
ttc ttg cga caa agt gag atc ggc aag agg taa cccccgggcc Phe Leu Arg Gln Ser Glu Ile Gly Lys Arg 2710 2715	8207
acccctgtgc agattctcct gtagcacaat ccaaaccgga ctctccaaag ag	geetteeaa 8267
aatgacactg ctctgcagac agacacatcg cagatacaca cgcaacacaa ac	ccagaaaca 8327
aagacaactt ttttttttt ctgaatgacc ttaaaggtga tcggctttaa ag	gaatatgtt 8387
tacatacgca tatcgctgca ctcaattgga ctggaagtat gagaaaggaa aa	aaaaagcat 8447
taaaaaaaggc aacgttttgc catgacccct ctgtaccttc gaggcactgt at	ttaacaaa 8507
ggttttaaaa aggaaaaaaa aatgcgtaca atgtttccag atattactga a	tgtcgacc 8567
tttgcttaca ggaagtaatc tctacttagg atgtgatata tatagatctg ti	cattttaa 8627
aatgtggggc aaagttactg tttatagaac ccaactgctt tcccgtgctg c	ttgtaaaa 8687
ggacactggc acaagggacg tetgettegg eggggattta ataatggatt te	tactaacat 8747
ggcttgccct gggagggaaa aactgacgaa tagaatcctt gtcactgata a	gcaaaggaa 8807
accctgattt ttttgtaaat tatgtgagac aagttgttta tggattttta ta	atgaattac 8867
aatttactgt acatcaaata ttagtctcag aggagttaat ttatgtaaag t	gtttaaaaa 8927
gtttatactt aaaaataaaa tgataaaaac aaaaaaa	8964

<210> 133

<211> 2253

PCT/CA03/00622 WO 03/093305

82/88

<212> DNA <213> Homo sapiens <220> <221> exon (107)..(1090)<222> <223> <400> 133 gtgcccgga tgtgcccagc tggctcctgg ccccacccct cgggcctttg ggctggacca 115 gccacctctg cctgagacct ccggtcgccg caagaagctg gagagg atg tac agc Met Tyr Ser 1 gtt gac cgt gtg tct gac gac atc cct att cgt acc tgg ttc ccc aag 163 Val Asp Arg Val Ser Asp Asp Ile Pro Ile Arg Thr Trp Phe Pro Lys 10 211 gaa aat ctt ttc agc ttc cag aca gca acc aca act atg caa gcg gtg Glu Asn Leu Phe Ser Phe Gln Thr Ala Thr Thr Thr Met Gln Ala Val 20 259 ttc agg ggc tac gcg gag agg aag cgc cgg aaa cgg gag aat gat tcc Phe Arg Gly Tyr Ala Glu Arg Lys Arg Lys Arg Glu Asn Asp Ser 40 307 geg tet gta ate cag agg aac tte ege aaa eac etg ege atg gte gge Ala Ser Val Ile Gln Arg Asn Phe Arg Lys His Leu Arg Met Val Gly 55 age egg agg gtg aag gee eag aeg tte get gag egg ege gag egg age 355 Ser Arg Arg Val Lys Ala Gln Thr Phe Ala Glu Arg Arg Glu Arg Ser 75 ttc agc cgg tcc tgg agc gac ccc acc ccc atg aaa gcc gac act tcc 403 Phe Ser Arg Ser Trp Ser Asp Pro Thr Pro Met Lys Ala Asp Thr Ser cac gac tee ega gac age agt gac etg cag age tee cac tge acg etg 451 His Asp Ser Arg Asp Ser Ser Asp Leu Gln Ser Ser His Cys Thr Leu 100 105 gac gag gcc ttc gag gac ctg gac tgg gac act gag aag ggc ctg gag 499 Asp Glu Ala Phe Glu Asp Leu Asp Trp Asp Thr Glu Lys Gly Leu Glu 125

gct gtg gcc tgc gac acc gaa ggc ttc gtg cca cca aag gtc atg ctc

Ala Val Ala Cys Asp Thr Glu Gly Phe Val Pro Pro Lys Val Met Leu 140

135

547

145

att Ile	tcc Ser	tcc Ser 150	aag Lys	gtg Val	ccc Pro	aag Lys	gct Ala 155	gag Glu	tac Tyr	atc Ile	ccc Pro	act Thr 160	atc Ile	atc Ile	cgc Arg	595
cgg Arg	gat Asp 165	gac Asp	ccc Pro	tcc Ser	atc Ile	atc Ile 170	ccc Pro	atc Ile	ctc Leu	tac Tyr	gac Asp 175	cat His	gag Glu	cac His	gca Ala	643
acc Thr 180	ttc Phe	gag Glu	gac Asp	atc Ile	ctt Leu 185	gag Glu	gag Glu	ata Ile	gag Glu	agg Arg 190	aag Lys	ctg Leu	aac Asn	gtc Val	tac Tyr 195	691
cac His	aag Lys	gga Gly	gcc Ala	aag Lys 200	atc Ile	tgg Trp	aaa Lys	atg Met	ctg Leu 205	att Ile	ttc Phe	tgc Cys	cag Gln	gga Gly 210	ggt Gly	739
cct Pro	gga Gly	cac His	ctc Leu 215	tat Tyr	ctc Leu	ctc Leu	aag Lys	aac Asn 220	aag Lys	gtg Val	gcc Ala	acc Thr	ttt Phe 225	gcc Ala	aaa Lys	787
gtg Val	gag Glu	aag Lys 230	gaa Glu	gag Glu	gac Asp	atg Met	att Ile 235	cac His	ttc Phe	tgg Trp	aag Lys	cgg Arg 240	ctg Leu	agc Ser	cgc Arg	835
ctg Leu	atg Met 245	agc Ser	aaa Lys	gtg Val	aac Asn	cca Pro 250	gag Glu	ccg Pro	aac Asn	gtc Val	atc Ile 255	cac His	atc Ile	atg Met	Gly ggc	883
tgc Cys 260	tac Tyr	att Ile	ctg Leu	ggg	aac Asn 265	ccc Pro	aat Asn	gga Gly	gag Glu	aag Lys 270	ctg Leu	ttc Phe	cag Gln	aac Asn	ctc Leu 275	931
agg Arg	acc Thr	ctc Leu	atg Met	act Thr 280	Pro	tat Tyr	agg Arg	gtc Val	acc Thr 285	Phe	gag Glu	tca Ser	ccc Pro	ctg Leu 290	gag Glu	979
ctc Leu	tca Ser	gcc Ala	caa Gln 295	Gly	aag Lys	cag Gln	atg Met	atc Ile 300	Glu	acg Thr	tac Tyr	ttt Phe	gac Asp 305	Pne	cgg Arg	1027
ttg Leu	tat Tyr	cgc Arg 310	Leu	tgg Trp	aag Lys	agc Ser	cgc Arg 315	Gln	cac His	tcg Ser	aag Lys	ctg Leu 320	Leu	gac Asp	ttt Phe	1075
		Val			ggg	gcag	agg	cctc	egee	ca g	tcac	cato	a gg	ccac	tecc	1130
tct	gcac	cgg	gacc	tggg	gc t	gggc	cgcc	t cç	jtgct	cccc	ggg	gacto	ıtgt	agct	ccggtc	1190
tcg	cctg	gag	ccac	ttca	gg g	cacc	tcag	ja cg	ttgc	tcag	gtt	cccc	ctg	tggg	ttccgg	1250
tcc	tcgc	tgc	acco	gtgg	icc č	gcaga	ggct	g ca	gtco	ctgg	g ggg	geegg	gag	gato	ccgccc	1310
tgt	ggcc	cgt	ggat	gete	ag c	ggco	aggo	ca ct	gaco	etgco	ato	gccto	gcc	tgga	iggctca	1370
gct	gtgg	gca	tecc	etcca	tg g	gggtt	cata	ag aa	aataa	agtgo	aat	ttct	aca	ccc	cgaaac	1430
aat	tcaa	agg	gaag	gcago	at t	tctt	gtta	aa ct	agti	aago	act	atgo	etge	tagt	tacagt	1490

gtaggcaccc cggcccagca (gcccagcagc	ccacatgtgt	tcaggaccct	ccctgcccac	1550
cccctccctg ccgtatcgat (caccagcacc	agggtggccc	gtgtgcgtgg	ggccagcgtc	1610
gccgggctgc ccagcctggc	tctgtctaca	ctggccgagt	ctctgggtct	gtctacactg	1670
gccgagtctc cgactgtctg	tgctttcact	tacactcctc	ttgccacccc	ccatecetge	1730
ttacttagac ctcagccggc (gccggacccg	gtaggggcag	tctgggcagc	aggaaggaag	1790
ggcgcagcgt cccctccttc	agaggaggct	ctgggtgggg	cctgctcctc	atccccccaa	1850
gcccacccag cactctcatt	gctgctgttg	agttcagctt	ttaccagcct	cagtgtggag	1910
gctccatccc agcacacagg	cctggggctt	ggcaggggcc	cagctggggc	tgggccctgg	1970
gttttgagaa actcgctggc	accacagtgg	gcccctggac	ccggccgcgc	agctggtgga	2030
ctgtaggggc tcctgactgg	gcacaggagc	teccagettt	tgtccacggc	cagcaggatg	2090
ggctgtcgtg tatatagctg	gggcgagggg	gcaggccccc	cttgtgcaga	gccaggggtc	2150
tgagggcacc tggctgtgtt	cccagctgag	ggagggctgg	ggcgggggcc	gggcttggaa	2210
cgatgtacga taccctcata	gtgaccatta	aacctgatcc	tcc		2253
224					
<210> 134					
<211> 2253					
<212> DNA					
<213> Danio rerio					
<220>					
<221> exon					
<222> (1)(298)					
<223>					
<pre><400> 134 gtg ccc cgg atg tgc cc</pre>	a gct ggc	tee tgg ece	cac ccc tcg	g ggc ctt	48
Val Pro Arg Met Cys Pr 1 5	co Ala Gly	Ser Trp Pro	HIS PIO Se	15	
tgg gct gga cca gcc ac	ce tet gee	tga gac ctc	cgg tcg cc Arg Ser Pro	g caa gaa	96
Trp Ala Gly Pro Ala Th	r ser Ala	25	MIG SEL FI	30	
gct gga gag gat gta ca	ag cgt tga	ccg tgt gtc	tga cga ca Arg Hi	t ccc tat s Pro Tyr	144
Ala Gly Glu Asp Val Gl	TIT UTA	035 441		_	

63/00	
35 40 45	
tcg tac ctg gtt ccc caa gga aaa tct ttt cag ctt cca gac agc aac Ser Tyr Leu Val Pro Gln Gly Lys Ser Phe Gln Leu Pro Asp Ser Asn 50 55 60	192
cac aac tat gca agc ggt gtt cag ggg cta cgc gga gag gaa gcg ccg .His Asn Tyr Ala Ser Gly Val Gln Gly Leu Arg Gly Glu Glu Ala Pro 65 70 75	240
gaa acg gga gaa tga ttc cgc gtc tgt aat cca gag gaa ctt ccg caa Glu Thr Gly Glu Phe Arg Val Cys Asn Pro Glu Glu Leu Pro Gln 80 85 90	288
aca cct gcg c atggtcggca gccggagggt gaaggcccag acgttcgctg Thr Pro Ala 95	338
agcggcgcga gcggagcttc agccggtcct ggagcgaccc caccccatg aaagccgaca	398
cttcccacga ctcccgagac agcagtgacc tgcagagctc ccactgcacg ctggacgagg	458
cettegagga eetggaetgg gacaetgaga agggeetgga ggetgtggee tgegaeaeeg	518
aaggettegt gecaccaaag gteatgetea ttteeteeaa ggtgeeeaag getgagtaca	578
tecceaetat cateegeegg gatgaceeet ceateateee cateetetae gaceatgage	638
acgcaacctt cgaggacatc cttgaggaga tagagaggaa gctgaacgtc taccacaagg	698
gagccaagat ctggaaaatg ctgattttct gccagggagg teetggacae etetatetee	758
tcaagaacaa ggtggccacc tttgccaaag tggagaagga agaggacatg attcacttct	818
ggaagegget gageegeetg atgageaaag tgaaceeaga geegaaegte ateeacatea	878
tgggctgcta cattctgggg aaccccaatg gagagaaget gttccagaac ctcaggaccc	938
tcatgactcc ttatagggtc accttcgagt cacccctgga gctctcagcc caagggaagc	998
agatgatcga gacgtacttt gacttccggt tgtatcgcct gtggaagagc cgccagcact	1058
cgaagctgct ggactttgac gacgtcctgt gaggggcaga ggcctccgcc cagtcaccat	1118
caggccactc cctctgcacc gggacctggg gctgggccgc ctcgtgctcc ccgggactgt	1178
gtagctccgg tctcgcctgg agccacttca gggcacctca gacgttgctc aggttccccc	1238
tgtgggttcc ggtcctcgct gcacccgtgg ccgcagaggc tgcagtccct gggggccggg	1298
aggatecege cetgtggece gtggatgete ageggecagg cactgacetg ceatgeeteg	1358
cctggaggct cagctgtggg catccctcca tggggttcat agaaataagt gcaatttcta	1418
	1478
caccecegaa acaatteaaa gggaageage atttettgtt aactagttaa geactatget	1538
gctagttaca gtgtaggcac cccggcccag cagcccagca gcccacatgt gttcaggacc	1598
ctccctgccc accccctccc tgccgtatcg atcaccagca ccagggtggc ccgtgtgcgt	

86/88

ggggccagcg	tegeeggget	gcccagcctg	gctctgtcta	cactggccga	gtctctgggt	1658
	tggccgagtc					1718
	gcttacttag					1778
	agggcgcagc					1838
	aagcccaccc					1898
	aggctccatc					1958
	gggttttgag					2018
	gactgtaggg					2078
	tgggctgtcg					2138
	tctgagggca					2198
	aacgatgtac					2253
ccgggcttgg	aacyatgtac	gatacccca	cagogaccae			

<210> 135

<211> 40

<212> PRT

<213> Artificial Sequence

<220>

<223> TCAP 3 General Motif

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> X=G, S or A

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> X=G or R

87/88

<221> MISC_FEATURE

<222> (9)..(9)

<223> X=L or Q

<220>

<221> MISC_FEATURE

<222> (19)..(19)

<223> X=V or I

<220>

<221> MISC_FEATURE

<222> (32)..(32)

<223> X=V or I

<400> 135

Gln Leu Leu Ser Xaa Xaa Lys Val Xaa Gly Tyr Asp Gly Tyr Tyr Val

Leu Ser Xaa Glu Gln Tyr Pro Glu Leu Ala Asp Ser Ala Asn Asn Xaa 20 25 30

Gln Phe Leu Arg Gln Ser Glu Ile

<210> 136

<211> 36

<212> PRT

<213> Artificial Sequence

<220>

<223> G. gallus TCAP2

<400> 136

88/88

Thr Gly Arg Val Gln Gly Tyr Glu Gly Tyr Tyr Val Leu Pro Val Glu 1 5 10 15

Gln Tyr Pro Glu Leu Ala Asp Ser Ser Ser Asn Ile Gln Phe Leu Arg 20 25 30

Gln Asn Glu Met 35