Spectral learning for structured partially observable environments

Lucas Langer

Supervisors: Borja Balle, Doina Precup

August 18, 2015

Overview

- Predictive state representations
- 2 The Base System
- 3 Experimental results
- 4 Learning the Base System

Structure partially observable environments

Structured Environments

Goal: Predictions

Plan: Exploit structure

Example: Pacman

PSRs: The Timing Case

- Model environment with a Predictive state representation
- PSR defined by: $<\alpha_0,\{A_\sigma\},\alpha_\infty\}>$

 α_0 : Initial weighting on states 1xn

 A_{σ} Transition matrix $n \times n$

 α_{∞} : Normalizer nx1

PSRs compute probabilities of observations

Notation: σ : one time unit, σ^k : k time units

$$f(\sigma^k) = \alpha_0 * A_\sigma^k * \alpha_\infty$$

Examples of a PSRs: HMMs, POMDPs

Overview of Learning

- Spectral algorithms can learn PSRs
- Flavour of learning algorithm:
 - Step 1: Represent data as a matrix
 - Step 2: Singular value decomposition
 - Step 3: Pick number of states for PSR
 - Step 4: Learn the PSR with matrix computations

The Base System

- Idea: include $\{A_a, A_{a^2}, A_{a^4}, ... A_{a^N}\}$ as additional operators
- Timing queries $f(a^{11}) = \alpha_0 * A_{a^8} * A_{a^2} * A_{a^1} * \alpha_\infty$
- Motivation:
 - 1) Express transitions directly to avoid error build up
 - 2) Faster queries. Discussion: $M^k * v$

Timing with the Base

Agent goes through loops until leaving through an exit state. Exit states have transition probabilities of 0.4 and 0.6. Loop lengths are 64 and 16.

Varying amount of data

• The more data, the more effective the base

•
$$||f - \hat{f}|| = \sqrt{\sum_{x \in observations} (f(x) - f(\hat{x}))^2}$$

Varying noise in loops

- Left Figure: No noise in durations
- Right Figure: Noise in loops

Noise allows for smaller models

Pacman Labyrinth

- Left figure: Timing predictions
- Right figure: Distance predictions

Wall Color Predictions

We paint the first loop green and the second loop blue.

Picking the Base System

- How do we pick transition operators?
 - Observations: $\{"a^{30}":10, "a^{60}":5, "b^{18}":15\}$ Desired Base System: A_a^{30} , A_b^{18} , A_a , A_b
- Substring properties: long, frequent, diverse
- Solution: iterative greedy heuristic

Computing with the Base System

- Using the Base System well involves requires good **string partitions** Query string: "abcacb", Base System = $\{A_{ab}, A_{bca}, A_{cb}, A_a, A_b\}$ Desired partition: "a—bca—cb""
- Goal: minimize matrices used
- Solution: dynamic programming

Conclusion and Future Work

- What's left for the Base System?
 - 1) Theoretical analysis
 - 2) Test heuristics on labyrinths
 - 3) Further optimize heuristics

Questions? Comments?