

# **Vector Examples**

Source: Vector examples (video) | Vectors | Khan Academy

## ★ Vector Basics

## Introduction to Vectors

- **Vector** = Ordered list of numbers. In  $\mathbb{R}^n$ , each element is a real number.
- ullet Example: In  $\mathbb{R}^2$ , a vector looks like  $egin{bmatrix} x_1 \ x_2 \end{bmatrix}$  where  $x_1,x_2\in\mathbb{R}$ .
- Rn is the space of all such n-tuples. Like a plane (for  $\mathbb{R}^2$ ) or a line (for  $\mathbb{R}^1$ ).

### Vector Representation (Position-Independent)

#### Standard Position

- Convention: place vectors starting at origin (0, 0).
- Helps simplify drawing and interpretation.

Vector Examples 1

### Arbitrary Position

- You can start a vector anywhere, not just at origin.
- The **shape + direction** define a vector, not its starting point.
- · Infinite valid drawings of vectors!

#### ✓ Visual:

- Let's say vector  $ec{a} = egin{bmatrix} -1 \\ 2 \end{bmatrix}$  .
- Start at (-4,4). Add  $\vec{a}$ 's components:

$$\cdot 4 - 1 = -5$$

$$\cdot 4 + 2 = 6$$

- So draw an arrow from (-4,4) to (-5,6).
  - ♠ A vector is like a direction arrow in space you can slide it around, and it's still the same vector.

# **Basic Operations with Vectors**

### + 1. Vector Addition



Let:

• 
$$\vec{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

• 
$$ec{b} = egin{bmatrix} 3 \\ 1 \end{bmatrix}$$

### **Compute**

$$ec{a}+ec{b}=egin{bmatrix} -1+3\ 2+1 \end{bmatrix}=egin{bmatrix} 2\ 3 \end{bmatrix}$$

#### Visual Interpretation

- **Head-to-tail** rule: Place tail of  $\vec{b}$  at head (tip) of  $\vec{a}$ , then draw the resulting arrow.
- **Resultant vector** connects the tail of  $\vec{a}$  to the head of  $\vec{b}$ .

Vector addition = "walking the path" of one vector and then the other.

### **x** 2. Scalar Multiplication



Let 
$$ec{v} = egin{bmatrix} 1 \\ 2 \end{bmatrix}$$

### **Examples**

- $2 ec{v} = egin{bmatrix} 2 \\ 4 \end{bmatrix}$ : Twice as long, same direction
- $-4\vec{v} = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$ : 4× longer, opposite direction  $\P$

Scalar multiplication = stretching or flipping the vector (+ still along the same line).

### - 3. Vector Subtraction





Let:

• 
$$\vec{x} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

• 
$$\vec{y} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

### **Compute**

$$ec{x}-ec{y}=ec{x}+(-1)ec{y}=egin{bmatrix}2\\4\end{bmatrix}+egin{bmatrix}1\\2\end{bmatrix}=egin{bmatrix}3\\6\end{bmatrix}$$

#### Wisual Interpretation

- Subtraction = "how do I get from  $\vec{y}$  to  $\vec{x}$ ?"
- Or: subtract head-to-head, connect tips.
- If vectors are collinear, subtraction still follows same rules—direction & length tell the difference.
  - Subtracting vectors = finding the difference arrow between them.

# **#** Higher-Dimensional Vectors (R³, R⁴...)

Let:

$$ullet \ ec{a} = egin{bmatrix} 0 \ -1 \ 2 \ 3 \end{bmatrix}$$

$$oldsymbol{\cdot} ec{b} = egin{bmatrix} 4 \ -2 \ 0 \ 5 \end{bmatrix}$$

### **Example** Compute

$$4ec{a}-2ec{b} = egin{bmatrix} 0 \ -4 \ 8 \ 12 \end{bmatrix} - egin{bmatrix} 8 \ -4 \ 0 \ 10 \end{bmatrix} = egin{bmatrix} -8 \ 0 \ 8 \ 2 \end{bmatrix}$$

No drawing possible ea, but math is same as R<sup>2</sup>!

# 鱰 Key Takeaways

| Concept                  | Description                                           |
|--------------------------|-------------------------------------------------------|
| Vector                   | Direction + magnitude (can slide anywhere!)           |
| Standard position        | Vector starting at (0,0) for simplicity               |
| Addition                 | Add coordinates element-wise, visualize head-to-tail  |
| Scalar multiplication    | Stretch or flip vector                                |
| Subtraction              | Like adding the negative vector, shows difference     |
| High-Dimensional Vectors | Treated the same as 2D vectors—just can't draw them 🐸 |

# Visual Memory Hook

Imagine vectors as arrows shot across space — their tail is where they start, and their tip points where they're going.

Scaling is like pulling the arrow back harder  $\aleph$ , and subtraction is like **reversing the arrow**  $\bigcirc$ .