

Анализ и концептуальное моделирование систем

Ахмедова Х.Г. ahmedova_h@mirea.ru

Преподаватель курса:

Ахмедова Хамида Гаджиалиевна

- доцент кафедры ППИ
- кандидат физико-математических наук;
- преподавательский стаж более 20 лет;
- email: ahmedova_h@mirea.ru

Структура дисциплины

Вид учебной работы	Всего часов
Лекции	16
Практические занятия (ПЗ)	32
Вид промежуточной аттестации	Зачет

Литература

- о Флегонтов А. В., Матюшичев И. Ю. Моделирование информационных систем. Unified Modeling Language.
- о **Волк В. К.** Практическое введение в программную инженерию.
- Шелухин О. И. Моделирование информационных систем.
- Леоненков А. В. Объектно-ориентированный анализ и проектирование с использованием UML и IBM Rational Rose.
- Гвоздева Т. В., Баллод Б. А. Проектирование информационных систем: технология автоматизированного проектирования.
- Антонов, А.В. Системный анализ. Учебник для вузов /
 А.В. Антонов. М.: Высш. шк., 2004. 454 с.

Цель и задачи курса:

Цель курса — изучение методов исследования систем, методов обследования организаций, изучение современных методов и средств моделирования и проектирования информационных систем на базе унифицированного языка моделирования UML.

Задачи курса:

- о введение в системный анализ и теорию моделирования;
- изучение системного подхода к исследованию систем и их моделированию;
- о изучение инструментов системного анализа;
- о обзор языка UML, его средств и возможностей;
- изучение языка UML применительно к моделированию и проектированию информационных систем.

ПЛАН ЛЕКЦИОННЫХ ЗАНЯТИЙ:

- ❖ Лекция 1. Основные понятия системного анализа и теории систем.
- ❖ Лекция 2. Введение в теорию моделирования.
 Классификация моделей.
- ❖ Лекция 3. Объектно-ориентированное моделирование.
- **⋄ Лекция 4.** Основы унифицированного языка моделирования.
- ❖ Лекция 5-6. Модели анализа, проектирования, реализации. (4 ч.)
- ❖ Лекция 7. Исследование систем управления.
- ❖ Лекция 8. Оценивание систем.

ПЛАН ПРАКТИЧЕСКИХ РАБОТ:

- Практическая работа №1. Описание функционала системы.
- Практическая работа №2. Описание функций системы через диаграмму вариантов использования.
- Практическая работа №3. Построение UML модели системы. Диаграмма классов анализа.
- Практическая работа №4. Построение UML модели системы. Диаграмма последовательности.
- Практическая работа №5. Построение UML модели системы. Диаграмма классов.
- Практическая работа №6. Построение UML модели системы. Диаграмма деятельности.
- Практическая работа №7. Построение UML модели системы. Диаграммы компонентов, развертывания.

Организация зачета

Критерии активности:

- о «автомат» с 86 баллов
- 60-85б. тест очно в ауд. по расписанию зачета
- 0-59б. тест очно в ауд. по расписанию зачета + теоретические вопросы (билет 3 вопроса) + если баллов <
 40 выполненные практ. работы (не менее 50%)

Необходимое ПО:

Visual Paradigm Community edition

https://www.visualparadigm.com/download/community.jsp

Лекция №1

Основные понятия системного анализа и теории систем

- Основные положения системного анализа. Цель системного анализа.
- Принципы системного анализа.
- Классификация систем. Понятие информационной системы.
- Методы исследования систем.

1. Основные положения системного анализа

* Система — это множество элементов, находящихся во взаимодействиях, отношениях, связях и благодаря этому представляющих целостность

Элемент системы

Система

Элемент системы предел ____Членения системы с точки зрения аспектов рассмотрения, решения конкретной задачи, поставленной цели (простейшая, неделимая часть системы).

- компоненты
- подсистемы
- надсистемы

Связь элементов системы,

- взаимодействия;
- отношения;
- *связи*

M –элемент $\{M\}$ совокупность элементов $M_i \in \{M\}$ - принадлежность элемента совокупности

❖ Связь — взаимное ограничение объектов, создающее ограничение на их поведение, зависимость между ними, обмен между элементами веществом, энергией, информацией (объединяет элементы системы в одно целое).

Связь элементов системы: классификация

Направление

• направленные и ненаправленные, односторонние и двусторонние, прямые и обратные

Сила

• сильные и слабые

Характер

• положительные и отрицательные

Смысл

- подчинения
- порождения
- равноправия
- безразличия
- управления

Организация системы

Особенности организации системы

Структура системы

- $\{M\}$ совокупность групп элементов (компонентов)
- $\{\hat{\chi}\}$ совокупность связей между этими группами.

Структура — взаимное расположение составных частей системы, ее устройство, строение.

Структура - совокупность элементов системы и связей между ними.

Структура системы вещественная

функциональная

алгоритмическая

Характеристика структур: типы связей

Декомпозиция системы

о **Декомпозицией** называется деление системы на части, удобное для каких-либо операций с этой системой.

Иерархические структуры

Иерархическая структура целей

Модульное строение системы

 x_j — внешние (от «не системы») воздействия на элементы модуля; xij — воздействия от других элементов системы на элементы модуля; y_{jk} — воздействия от элементов модуля на другие элементы системы; y_i — воздействия от элементов модуля на «не систему».

$$(\{x_j\}, \{x_{ij}\}, J) \rightarrow (\{y_j\}, \{y_{jk}\})$$

Признаки системы. Функционирование системы

Признаки системы

Целостность

Связность

Наличие целей

Эмерджентность

Функционирование системы

Состояние

Равновесие

Поведение

Устойчивость

Развитие

Анализ и синтез

Анализ - исследовательский метод, СОСТОЯЩИЙ TOM, ЧТО объект исследования, рассматриваемый как система, мысленно ИЛИ практически расчленяется на составные элементы (признаки, свойства, отношения и т.п.) ДЛЯ изучения каждого из НИХ отдельности и выявления их роли и места в системе.

Синтез - исследовательский метод, имеющий целью объединить отдельные части изучаемой системы, ее элементы в единую систему.

Системный анализ и системный подход

Системный анализ СОВОКУПНОСТЬ ЭТО методологических средств для подготовки и обоснования решений проблем СЛОЖНЫХ политического, социального, экономического, научного, военного, технического характера.

Методы исследования

Теоретические

• Анализ и синтез

Эмпирические

- Методы наблюдения
- Методы опроса
 - Социальный опрос
 - Интервьюирование
 - Анкетирование
- Экспериментальные методы

Специальные методы

Цель системного анализа

Целью применения системного анализа

является повышение степени обоснованности принимаемого решения, расширение множества вариантов, среди которых производится обоснованный выбор.

Альтернативная формулировка цели системного анализа:

- установление структуры исследуемой систем;
- выявление причины отличия свойств системы от свойств составляющих ее элементов

Результат системного анализа:

• знание о структуре исследуемой системы

Задачи системного анализа:

поиск альтернативных вариантов решения проблемы

выявление и анализ масштабов неопределенности по каждому из вариантов

анализ возможных вариантов по

тем или иным вариантам эффективности

Системный анализ

Выявление проблемы Формирование альтернатив Выбор альтернатив Выбор решения

Составляющие системного анализа

Составные части системного анализа

Методология

- Определение используемых понятий
- Принципы системного подхода
- Постановка и общая характеристика проблем

Аппаратная реализация

Приемы моделирования принятия решений

Опыт применения в различных областях знания

- Научнотехнические разработки, в т.ч. Создание АСУ
- Различные задачи экономики

Принципы системного анализа

Принципы

дедуктивной последовательности

интегрированного рассмотрения

согласования ресурсов и целей рассмотрения

бесконфликтности

Алгоритм проведения

1. Анализ объекта

2. Формирование конечных целей объекта

3. Определение стратегии развития систем

4. Реализация решения при управлении системой

Классификация проблем

1) хорошо структурированные (well-structured), или количественно сформулированные;

2) слабо структурированные (ill-structured) или смешанные, содержащие количественные и качественные оценки;

3) неструктурированные (unstructured), или качественные проблемы.

Классификация систем

Классификация систем

Основание (критерий) классификации	Классы систем
По взаимодействию с внешней средой	Открытые
	Закрытые Комбинированные
По структуре	Простые
	Сложные
	Большие
По характеру функций	Специализированные
	Многофункциональные (универсальные)
По характеру развития	Стабильные
	Развивающиеся
По степени организованности	Хорошо организованные
	Плохо организованные (диффузные)
По сложности поведения	Автоматические
	Решающие
	Самоорганизующиеся
	Предвидящие
	Превращающиеся
По характеру связи между	Детерминированные
элементами	Стохастические
По характеру структуры управления	Централизованные
	Децентрализованные
По назначению	Производящие
	Управляющие
	Обслуживающие

Классификация информационных систем

по решаемым задачам:

- системы управления;
- вычислительные информационные системы;
- поисково-справочные информационные системы;
- системы поддержки принятия решений;
- информационные обучающие системы.

по функциональным возможностям:

- функции редактирования данных;
- функции получения информации из информационного хранилища (поисковые функции);
- функции безопасности (управления доступом);
- расчётные функции;
- технологические функции (автоматизация деятельности).

Сложные системы: ИС, АС, ВС

Сложная система - система, состоящая из элементов разных типов и обладающая разнородными связями между ними.

$$\{M\}: \{\{M^1\}, \{M^2\}, ..., \{M^R\}\}\}$$

$$\{M\} = \bigcup_{r=1}^{R} \{M^r\}$$

• Информационная система — это комплекс информационных ресурсов и технологий, предназначенный для сбора, хранения и обработки данных в рамках некоторой предметной области.

Автоматизированные или вычислительные системы (АС, ВС).

АС - сложная система с определяющей ролью элементов двух типов:

- в виде технических средств;
- в виде действий человека. $\Sigma^A: \{\{M^T\}, \{M^Y\}, \{x^T\}, \{x^{T-Y}\}, \{x^Y\}, F\}$

 M^{T} - технические средства, в первую очередь ЭВМ;

 M^{4} - решения и другая активность человека;

 $\{x^{T-q}\}$ - совокупность связей между человеком и техникой.

Процессы в системе

Процесс - набор состояний системы, соответствующий упорядоченному (непрерывному или дискретному) изменению некоторого параметра, определяющего характеристики системы.

$$S_{t_0t}(z(t_0)) = z(t), z \in Z, t \in T$$

Z - значения характеристик

 S_{t_0t} - некоторое правило перехода от состояния в момент t_0 к состоянию в момент $t > t_0$ через все его промежуточные непрерывные или дискретные значения

Управление системой (в системе)

Управление системой

 выполнение внешних функций управления, обеспечивающих необходимые условия функционирования системы.

Управление в системе

• — внутренняя функция системы, осуществляемая в системе независимо от того, каким образом, какими элементами системы она должна выполняться.

Цели управления системой (в системе)

увеличения скорости передачи сообщений; увеличения объема передаваемых сообщений; уменьшения времени обработки сообщений; увеличения степени сжатия сообщений; увеличения (модификации) связей системы; увеличения информации (информированности).

Схема управления системой

Взаимодействие с внешней средой:

Цикл управления системой (в системе)

Управление системой

Функции и задачи управления системой:

- Организация системы.
- Мониторинг системы.
- Анализ и синтез, агрегирование системы.
- Прогнозирование (поведения) системы.
- Планирование (ресурсов, элементов, структуры) системы.
- Учет и контроль ресурсов системы.
- Регулирование (адаптация) системы.
- Реализация решений в системе (относительно системы).

Управление по характеру:

- *стратегическое*, направленное на разработку, корректировку *стратег ии поведения* системы;
- *тактическое*, направленное на разработку, корректировку тактики поведения системы.

Спасибо за внимание

К.ф.-м.н., доцент Ахмедова Хамида Гаджиалиевна

Материал для практической работы №1

Диаграмма вариантов использования

Диаграмма вариантов использования (ДВИ)...

- **⋄** =Диаграмма прецедентов;
- ❖ Описывает
 функциональное
 назначение системы,
 т.е. то, что система
 будет делать в
 процессе своего
 функционирования;
- ❖ Является исходной концептуальной моделью системы в процессе ее проектирования и разработки.

Цели построения:

1) определить общие границы и контекст моделируемой предметной области на начальных этапах проектирования;

2) сформулировать **общие требования** к функциональному проектированию системы;

3) разработать **исходную концептуальную модель** системы для ее последующей реализации;

4) подготовить **документацию** для взаимодействия *разработичика* системы с ее *заказчиком* и *пользователями*.

Диаграмма вариантов использования (прецедентов)

Отношения (связи) между сущностями

Пример диаграммы вариантов использования

Сущность «актёр» («действующее лицо»)

Актером или **действующим лицом** называется любой объект, субъект или система, взаимодействующая с моделируемой бизнес-системой извне.

- - представляет собой **внешнюю** по отношению к моделируемой системе сущность.
- - взаимодействует с системой и использует ее функциональные возможности для достижения определенных целей и решения частных задач
- может рассматриваться как некая роль относительно конкретного варианта использования

Актёр

Актёр: роль

Актер

человек;

техническое устройство;

программа;

информационная система.

Актер всегда находится вне системы, его *внутренняя структура* никак не воспринимается.

Имя актера – существительное, начинается с большой буквы

Отношения (связи) между элементами

- Один актер может взаимодействовать с несколькими вариантами использования и наоборот.
- Два варианта использования, определенные для одной и той же сущности, не могут взаимодействовать друг с другом, т.к. любой из них самостоятельно описывает законченный вариант использования этой сущности.

Сущность «Вариант использования» («прецедент»)

Вариант использования или прецедент служит для описания сервисов, которые система предоставляет актеру, т.е. каждый вариант использования определяет набор действий, совершаемый системой при диалоге с актером.

При этом ничего не говорится о том, каким образом будет реализовано взаимодействие актеров с системой и собственно выполнение вариантов использования.

Вариант использования (прецедент

сервис, предоставляемый системой актеру

действия, совершаемые системой

функции, выполняемые системой

Название прецедента – глагол или отглагольное существительное Начинается с большой буквы

Выставить оценки в журнал

Виды отношений (связей) между элементами

- На диаграммах UML для связывания элементов используются различные соединительные линии, которые называются **отношениями**.
- Каждое такое отношение имеет собственное название и используется для достижения определённой цели.

Отношение ассоциации

Направленная ассоциация - то же что и простая ассоциация, но показывает, что вариант использования инициализируется актером. Обозначается стрелкой.

Простая ассоциация - отражается линией между актером и вариантом использования (без стрелки). Отражает связь актера и варианта использования.

Отношение ассоциации

- о Отношение между вариантом использования и актером, отражающее *связь* между ними.
- Оно устанавливает, какую конкретную роль играет актер при взаимодействии с экземпляром варианта использования.

Обозначение:

- в виде прямой линии.
- могут быть дополнительные обозначения (кратность связи, направление связи, наименование связи)

Отношение обобщения (наследования)

• *Наследование* - показывает, что потомок наследует атрибуты и поведение своего прямого предка.

• Может применяться как для актеров, так для вариантов использования.

ООВ,

Купить велосипед

Купить скоростной велосипед

Служит для указания того факта, что некоторый *вариант использования А* может быть обобщен до *варианта использования Б* (или актер A может быть обобщен до актера Б).

Стрелка указывает в сторону родительского ВИ (актера)

Отношение обобщения: примеры

Сдать зачет по системному моделированию

Сдать зачет по предмету

Студент 2 курса

Студент

Отношение расширения

Определяет взаимосвязь базового варианта использования с некоторым другим вариантом использования, функциональное поведение которого задействуется базовым не всегда, а только при выполнении некоторых дополнительных условий.

Сдать зачет

Взять индивидуальную ведомость

Стрелка указывает на базовый вариант использования!

Отношение включения

 Указывает, что некоторое заданное поведение для одного варианта использования включается в качестве составного компонента в последовательность поведения другого варианта использования.

Пример ДВИ

ДВИ процесса оформления заказа на покупку товара

Пример ДВИ

Диаграмма прецедентов для процесса постройки дома

Примечание как элемент ДВИ

- Примечание (Note) в языке UML предназначено для включения в модель произвольной текстовой информации, имеющей непосредственное отношение к контексту разрабатываемого проекта.
- Примечание может относиться к любому элементу диаграммы.

Реализовать в форме печати чека с указанием реквизитов

Получение справки о состоянии счета

Основные правила

- **❖** *Чрезмерной детализации не требуется*, т.е. диаграмма не должна быть перенасыщена элементами (не более 15 вариантов использования).
- ❖ Располагать элементы следует так, чтобы была видна логическая последовательность выполнения вариантов использования и минимум пересечений между отношениями.
- ❖ На диаграммах не следует отображать особенности реализации вариантов использования и внутренней организации системы, связанные со спецификой используемых программных и аппаратных средств.
- ❖ Диаграммы предназначены для совместного с заказчиком определения функциональных требований к системе. Поэтому интерпретировать отображенное на них и заказчик и разработчик должны одинаково.

Спасибо за внимание

К.ф.-м.н., доцент Ахмедова Хамида Гаджиалиевна