

INFORMATIKOS FAKULTETAS KOMPIUTERIŲ KATEDRA

Skaitmeninė logika

Laboratorinis darbas nr. 2, 242 variantas

Atliko: IFF-1/4 gr. stud.

Dovydas Stumbra

Priėmė:

dėst. Stasys Maciulevičius

Turinys

1. Už	ŽDUOTIES VARIANTAS	3
1.1.	Užduoties lygtis	3
1.2.	Trigerio rūšis	3
2. PI	ROJEKTAVIMAS	4
2.1.	Teisingumo lentelė	4
2.2.	Statinis SR trigeris	4
2.3.	Dviejų pakopų SR trigeris	5
2.4.	Dinaminis SR trigeris	5
2.5.	Trigerių testavimas	6
2.6.	Trigerių "ModelSim" simuliacijos	6
4. IŠ	SVADOS	7

1. UŽDUOTIES VARIANTAS

1.1. Užduoties lygtis

Paskirtame užduoties variante (242) gauta tokia lygtis:

$$(x_1 \cup \overline{x_1}((x_2 \cdot x_3) \cup \overline{x_4}))Q_t \cup \overline{x_1}((x_2 \cup x_3) \cdot \overline{x_4})$$

1.2. Trigerio rūšis

Lygtyje nėra Q inversijos, todėl tai nėra JK trigerio lygtis. Taip pat prie Q nėra vien tik C signalas, tad D trigeris taip pat netinka šiai lygčiai. Taigi, įvertinus, kad lygtis apibūdina SR trigerį, nustatyti įvesties signalai:

- $C = \overline{x}_1$;
- $R = \frac{1}{((x_2x_3) \cup \overline{x}_4)};$
- $\bullet \quad S = (x_2 \cup x_3) \, \overline{x}_4 \, .$

2. PROJEKTAVIMAS

2.1. Teisingumo lentelė

Signalas C priskiriamas x_1 reikšmei, todėl S ir R funkcionalumas nustatomas naudojant x_2 , x_3 ir x_4 reikšmes. Taip pat naudojama "Rst" (Reset) įvestis, kuria signalas nustatomas į pradinę būseną. Pirmame paveiksle vaizduojama funkcijos teisingumo lentelė.

x2	x3	x4	R	S	Būsena
0	0	0	0	0	Saugo
0	0	1	1	0	Įrašo 0
0	1	0	0	1	Įrašo 1
0	1	1	1	0	Įrašo 0
1	0	0	0	1	Įrašo 1
1	0	1	1	0	Įrašo 0
1	1	0	0	1	Įrašo 1
1	1	1	0	0	Saugo

1 pav. Teisingumo lentelė

2.2. Statinis SR trigeris

Suprojektuota schema pateikta 2 paveiksle:

2 pav. Statinio SR trigerio schema

2.3. Dviejų pakopų SR trigeris

Schemos modelis pateiktas 3 pav.

3 pav. Dviejų pakopų SR trigerio schema

2.4. Dinaminis SR trigeris

Dinaminio trigerio schema pavaizduota 4 paveiksle.

4 pav. Dinaminio SR trigerio schema

2.5. Trigerių testavimas

	1 1	1 '1	1	1 ~	'1 1
I ri corili toctovimili	noudoti aignoli	1 101211 6	diiamantia :	motolizti 🦠 :	novoilzalo
Trigeriu testavimui	HARRON SIVITALI	11 1211 K 11 (HICHICHVS	Daicikii)	DAVELKSIE

x2 x3 x4	Signalo keitimo laikas			Operacija
000	0	0	0	Informacijos saugojimas
100	75	75	75	Vieneto įrašymas
001	280	280	280	Nulio įrašymas
111	410	410	410	Informacijos saugojimas
010	440	440	440	Vieneto įrašymas
111	540	540	540	Informacijos saugojimas
101	590	590	590	Nulio įrašymas
	•			

5 pav. Signalų laikai

Testavimo direktyvos:

```
restart -f
force -freeze sim:/dekoderis/Rst 0 0, 1 10
force -freeze sim:/dekoderis/Enbl1 1 0
force -freeze sim:/dekoderis/x1 1 0, 0 {50 ps} -r 100
force -freeze sim:/dekoderis/x2 0 0, 1 75, 0 280, 1 410, 0 440, 1 540, 1 590
force -freeze sim:/dekoderis/x3 0 0, 0 75, 0 280, 1 410, 1 440, 1 540, 0 590
force -freeze sim:/dekoderis/x4 1 0, 0 75, 1 280, 1 410, 0 440, 1 540, 1 590
run 600
```

2.6. Trigerių "ModelSim" simuliacijos

Statinio (Q), dviejų pakopų (Q1 ir Q2) bei dinaminio (Qdin) trigerių simuliacijos pateiktos 6 paveiksle. Statinis trigeris keičia būseną tik esant aukštam signalo C lygiui (75 ps, 280 ps) arba šiam pereinant į aukštą lygį (440 ps). Dviejų pakopų trigerio, kuris sudarytas iš dviejų trigerių ir inverterio, pirmosios pakopos trigeris keičia būseną tuo pačiu metu kaip ir statinis, o antrosios pakopos trigeris – keičiantis sinchroninio signalo būsenai (75 ps kinta Q1 būsena, 100 ps – Q2). Dinaminis trigeris reaguoja į sinchronizavimo signalo lygio pasikeitimą, todėl pirmasis pakitimas įvyksta ne 75 ps metu, o 150 ps, kai pakinta C signalo būsena.

6 pav. Trigerių simuliacijos

4. IŠVADOS

- Laboratorinio darbo metu susipažinau su trigeriais ir jų charakteringomis savybėmis;
- Įgyvendinau trijų tipų trigerių: statinio, dviejų pakopų ir dinaminio schemas, naudodamasis "Lattice Diamond" programine įranga;
- Įvertinau trigerių veikimą sukurdamas simuliaciją "ModelSim" programa.