ভেক্টর রাশি

$$\Delta \overrightarrow{r} = \overrightarrow{r_2} - \overrightarrow{r_1} = r_x \hat{i} + r_y \hat{j} + r_z \hat{k}$$

অভিন্দেপ ও উপাংশ ঃ অভিক্ষেপ o কেলার রাশি, উপাংশ o ভেক্টর রাশি। ভেক্টর গুণন ঃ

ডট্ গুণন ঃ $\stackrel{
ightarrow}{A}.\stackrel{
ightarrow}{B}=AB\cos\theta=A.[A$ এর উপর B এর অভিক্ষেপ $=B\cos\theta$] =B.[B এর উপর A এর অভিক্ষেপ $=A\cos\theta]$

উপাংশ = $B\cos\theta$. $(\stackrel{\rightarrow}{A}$ বরাবর একক ভেক্টর, $\hat{a}=\frac{\stackrel{\rightarrow}{A}}{\stackrel{\rightarrow}{|A|}}) = B\cos\theta.\hat{a}$.

ক্রেস শুণন ও $\stackrel{
ightarrow}{A}. imes\stackrel{
ightarrow}{B}=AB\sin heta\hat{\eta}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$ এখানে $\hat{\eta}$ কে ভেক্টরদ্বয়ের লম্বদিকে একক ভেক্টর বলে ।

ভেক্টর রাশি দুটিকে বিনিময় করলে, $\overrightarrow{A} imes \overrightarrow{B} = - \stackrel{
ightarrow}{B} imes \overrightarrow{A}$

ত্রিমাত্রিক ভেক্টর ঃ $\stackrel{\rightarrow}{r} = r_x \hat{i} + r_y \hat{j} + r_z \hat{k}$

যেখানে, $r_x \hat{i} \rightarrow x$ বরাবর r এর অংশক $r_{_{\!\!\!\!v}}\hat{j}\! o\! y$ বরাবর $\stackrel{
ightarrow}{r}$ এর অংশক $r_z \hat{k}
ightharpoonup z$ বরাবর $\stackrel{
ightharpoonup}{r}$ এর অংশক

$$_{x}$$
 অক্ষের সাথে উৎপন্ন কোণ, $\theta_{x}=\cos^{-1}rac{r_{x}}{r}$ $\hat{i}\cdot\hat{i}=1.1.\cos0^{\circ}=1=\hat{j}\cdot\hat{j}=\hat{k}\cdot\hat{k}$

$$\hat{i} \cdot \hat{i} = 1.1 \cdot \cos 0^{\circ} = 1 = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k}$$

$$y$$
 অক্ষের সাথে উৎপন্ন কোণ, $heta_y = \cos^{-1}rac{r_y}{r}$ $\hat{i}\cdot\hat{j}=1.1\cos 90^o=0$

$$\hat{i} \cdot \hat{j} = 1.1\cos 90^\circ = 0$$

$$z$$
 অক্ষের সাথে উৎপন্ন কোণ, $heta_z = \cos^{-1}rac{r_z}{r}$ $\hat{j}.\hat{k}=1.1\cos 90^\circ=0$

$$\hat{j}.\hat{k} = 1.1\cos 90^\circ = 0$$

$$\begin{split} \hat{i} \times \hat{j} &= \hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{i} = \hat{j} \\ \hat{j} \times \hat{i} &= -\hat{k} \end{split}$$

$$\hat{i} \times \hat{i} = 1.1 \sin 0^\circ = 0 = \hat{j} \times \hat{j} = \hat{k} \times \hat{k}$$

ভেক্টর গুণন পদ্ধতি ঃ

$$\overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
 ও $\overrightarrow{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ হলে,

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = (A_y B_z - B_y A_z) \hat{i} - (A_x B_z - A_z \cdot B_x) \hat{j} + (A_x B_y - B_x A_y) \hat{k}$$

 $\stackrel{
ightarrow}{A},\stackrel{
ightarrow}{B},\stackrel{
ightarrow}{C}$ তিনটি ভেক্টর একই তলে অবস্থান করলে, $\stackrel{
ightarrow}{A}.(\stackrel{
ightarrow}{B}\times\stackrel{
ightarrow}{C})=\stackrel{
ightarrow}{B}.(\stackrel{
ightarrow}{C}\times\stackrel{
ightarrow}{A})=\stackrel{
ightarrow}{C}.(\stackrel{
ightarrow}{A}\times\stackrel{
ightarrow}{B})=0$ হবে ।

সামান্তরিকের ক্ষেত্রফল ঃ

ভেক্টর আকার ৪ $\overset{
ightarrow}{A} imes h = \overset{
ightarrow}{A} \cdot \overset{
ightarrow}{B} \sin heta \hat{\eta}$

 $\stackrel{
ightarrow}{A}$ ও $\stackrel{
ightarrow}{B}$ ভেক্টর দ্বারা সামন্তরিকের দুটি সন্নিহিত বাহু নির্দেশ করলে সামান্তরিকের

ক্ষেত্রফল $=\begin{vmatrix} \overrightarrow{A} \times \overrightarrow{B} \end{vmatrix}$ এবং \overrightarrow{A} ও \overrightarrow{B} ভেক্টর দ্বারা সামন্তরিকের কর্ণ নির্দেশ করলে সামান্তরিকের ক্ষেত্রফল $=\frac{1}{2}\begin{vmatrix} \overrightarrow{A} \times \overrightarrow{B} \end{vmatrix}$

ত্রিভূজের ক্ষেত্রফল $=\frac{1}{2}\begin{vmatrix} \overrightarrow{A} \times \overrightarrow{B} \end{vmatrix}$ এখানে, \vec{A} ও \vec{B} ত্রিভূজের দুটি সন্নিহিত বাহু

বল , বেগ এবং সরণের মান ও দিক নির্ণয় সংক্রান্ত সূত্রাবলী ঃ

লামীর বিপরীত সূত্র ঃ
$$\frac{Q}{BC} = \frac{P}{AB} = \frac{R}{AC}$$

লামীর সূত্র ৪
$$\frac{P}{\sin\hat{Q}R} = \frac{Q}{\sin\hat{R}P} = \frac{R}{\sin\hat{P}Q}$$

$$\sin$$
 সূত্ৰ 8 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$

বিভূজ সূত্র ৪
$$cosA = \frac{b^2+c^2-a^2}{2bc}$$

সামন্তরিক সূত্র ঃ P এবং Q বলদয়ের মধ্যবর্তী কোণ α এবং বলদয়ের লব্ধি R , P বলের ক্রিয়ারেখার সাথে θ কোণ উৎপন্ন করে ।

ভেক্টর গুণন প্রক্রিয়া ও $ec{R}$. $ec{R}=(ec{P}+ec{Q})$. (P+Q) [ডট গুণন]

$$\Rightarrow R.R\cos 0^{\circ} = P.P\cos 0^{\circ} + PQ\cos \alpha + QP\cos \alpha + Q.Q\cos 0^{\circ}$$

$$\Rightarrow R^2 = P^2 + Q^2 + 2PQ\cos\alpha \Rightarrow R = \sqrt{P^2 + Q^2 + 2PQ\cos\alpha}$$

$$\vec{R}.\vec{P} = (\vec{P} + \vec{Q}).\vec{P} \implies R.P\cos\theta = P.P\cos\theta^{\circ} + QP\cos\alpha \quad \therefore R\cos\theta = P + Q\cos\alpha$$

$$ec{P}\! imes\!ec{R}\!=\!ec{P}\! imes\!(ec{P}\!+\!ec{Q})$$
 [ভেক্টর গুণন]

 $\Rightarrow PR\sin\theta\hat{\eta} = PP\sin\theta^{\circ}\hat{\eta} + PQ\sin\alpha\hat{\eta} \quad \therefore R\sin\theta = Q\sin\alpha$

[একই দিকে ঘূর্ণনের ফলে $\hat{\eta}$ অভিলম্ব বরাবর তলের উপর ক্রিয়া করে]

$$\therefore \tan \theta = \frac{Q \sin \alpha}{P + Q \cos \alpha} \qquad \therefore \theta = \tan^{-1} \frac{Q \sin \alpha}{P + Q \cos \alpha}$$

বিশেষ ক্ষেত্র $3(i)\alpha=0^o$ হলে অর্থাৎ ভেক্টরদ্বয় একই দিকে ক্রিয়াশীল হলে, লব্ধি ভেক্টর এর মান সর্বোচ্চ হয়।

$$\therefore R_{\max} = P + Q$$

 $(ii)\,lpha=180^\circ$ অর্থাৎ একটি ভেক্টরকে উল্টিয়ে দিলে লব্ধি ভেক্টরের মান সর্বনিম্ন হয়।

$$\therefore R_{\min} = P \sim Q ; P > Q$$
 হলে, $R_{\min} = P - Q$ $P = Q$ হলে $R_{\max} = 2P, R_{\min} = 0$

$$(iii)\,lpha=90^\circ$$
 হলে $P\perp Q$ হবে, সেক্ষেত্রে $R=\sqrt{P^2+Q^2}$ [সমকোণী ত্রিভূজাকার]

$$\theta = 90$$
°হলে, $R\cos\theta = P + Q\cos\alpha = 0$: $\cos\alpha = -P/Q$

:.
$$R = \sqrt{P^2 + Q^2 + 2PQ(-\frac{P}{Q})} = \sqrt{Q^2 - P^2} [Q > P]$$

নদী সংক্রান্ত সমস্যার জন্য শর্তাবলী ঃ

সবক্ষেত্রে নদীর স্রোতের বেগ v, নৌকা বা সাঁতারুর বেগ u, লব্ধিবেগ w এবং নদীর প্রস্থ d ধরা হয়েছে।

(1) ক্ষদ্রপথে বা সোজাসুজি নদী পার হওয়ার ক্ষেত্রে ঃ $w\cos 90^0=v+u\cos \alpha=0$ $\cos \alpha=-\frac{v}{u}$

$$\therefore u^2 = v^2 + w^2$$
এবং সময়, $t = \frac{d}{w} = \frac{d}{\sqrt{u^2 - v^2}}$

(2) স্বল্পতম সময়ে নদী পাড় হওয়ার ক্ষেত্রে ঃ $wsin\theta = usin\alpha$ এবং সময়, $t = \frac{d}{wsin\theta} = \frac{d}{usin\alpha}$ [$sin\alpha$ এর বৃহত্তম মান 1 এর জন্য সময় t নৃন্যতম হবে]

$$\therefore t_{min} = \frac{d}{u}$$
 এবং $w^2 = v^2 + u^2$

Type-01ঃ নদী সংক্রান্ত সমস্যাবলীঃ

 ${
m Problem-01}$ ঃ একজন সাতারু 900m প্রশন্ত নদী স্বল্পতম সময়ে এবং অপর সাতারু ক্ষুদ্রতম পথে পার হতে চায়। শ্রোতের বেগ ঘন্টায় $12{
m km}$ হলে সাতারুদ্বয়ের বেগ কত? দেওয়া আছে, উভয়ের নূন্যতম সময়ের পার্থক্য 0.04h এবং তাদের বেগদ্বয়ের পার্থক্য শূন্য।

Solve ঃ ধরি, সাতারুদ্বয়ের বেগ = u

প্রথম সাতাকর ক্ষেত্রে, $t_1=rac{d}{w_1 sin heta}=rac{d}{u sinlpha}$ [sinlpha এর বৃহত্তম মান 1 এর জন্য সময় t_1 ন্যূনতম হবে $] \div t_{1min}=rac{d}{u}$

দিতীয় সাতারুর ক্ষেত্রে, $t_2 = \frac{d}{w_2} = \frac{d}{\sqrt{u^2 - v^2}}$

শর্তানুযায়ী, $t_2 > t_{1min}$ \therefore $t_2 - t_{1min} = 0.04 \Rightarrow \frac{d}{\sqrt{u^2 - v^2}} - \frac{d}{u} = 0.04$

এখানে, d=0.9~km এবং $v=12~kmh^{-1} \div u=15~kmh^{-1}$

 ${f Problem-02}$ ঃ নদীতে নৌকা স্রোতের অনুকূলে ঘণ্টায় 50km বেগে যায় এবং স্রোতের বিপরীতে ঘণ্টায় 30km বেগে যায়। নৌকাটি কোনদিকে চালনা করলে তা সোজা ওপর পাড়ে পৌছাবে?

Solve ঃ
$$R_{\max}=P+Q=50\,km/hr$$
 $\therefore P=40\,km/hr$ [নৌকার বেগ] $R_{\min}=P-Q=30\,km/hr$ $Q=10\,km/hr$ [ম্রোতের বেগ] $lpha=rac{\pi}{2}+sin^{-1}\left(rac{10}{40}
ight)=104.48^\circ$

Try yourself &

01.একটি নদীতে একজন সাতারু $25kmh^{-1}$ বেগে সাতরিয়ে সোজাসুজি নদী পার হতে চায়। যদি স্রোতের বেগ $15kmh^{-1}$ এবং নদীর প্রস্থ 400m হয় তবে সে কোন দিকে যাত্রা করবে? অপর পাড়ে পৌছতে কত সময় লাগবে?

Anss
$$\pi/2 + \tan^{-1}\frac{3}{4}$$
, 1.2 min.

02. স্রোত না থাকলে একজন সাঁতারু $4 \ kmh^{-1}$ বেগে সাঁতার কাটতে পারেন। $2 \ kmh^{-1}$ বেগে সরলরেখা বরাবর প্রবাহিত একটি নদীর এপার থেকে ওপারের ঠিক বিপরীত বিন্দুতে যেতে হলে সাঁতারুকে কোন দিকে সাঁতার কাটতে হবে?

Ans: 120°

03.একজন সাঁতারু 100m প্রস্থের শান্ত নদী $4\ min$ এ আড়া-আড়িভাবে পার হতে পারে। স্রোত থাকলে ঐ নদী পর হতে $1\ min$ সময় বেশি লাগে। স্রোতের বেগ নির্ণয় কর।

Ans: 15 *m/min*

04.দুইজন সাঁতারু একজন u_1 বেগে সাতরিয়ে ক্ষুদ্রতম পথে ও অপরজন u_2 বেগে সাতরিয়ে ক্ষুদ্রতম সময়ে v বেগে প্রবাহমান নদী

পাড় হওয়ার লক্ষ্যে একই সঙ্গে একই স্থান হতে যাত্রা করে উভয়ে নদীর অপরতীরে একত্রে পৌছাল। প্রমাণ কর যে, ${u_1}^2-{u_2}^2=v^2$ যেখানে $u_1>v$

 $05.\,500m$ প্রশস্থ এবং $3 {
m kmh^{-1}}$ বেগে প্রবাহিত একটি নদী $5 {
m kmh^{-1}}$ বেগে চলে দুইখানা নৌকা একটি ন্যূনতম পথে এবং অপরটি নুন্যতম সময়ে পার হয়। এদের সময়ের ব্যবধান নির্ণয় কর। ${
m Ans:}~1.5 {
m min}$

Type-02: আপেক্ষিক বেগ সংক্রান্ত গাণিতিক সমস্যাবলী

আপেক্ষিক গতি ঃ একটা প্রসঙ্গ কাঠামো সাপেক্ষে অপরটির গতি।

সরলরেখায় ঃ
$$\overline{V_{ab}} = \overline{V_a} - \overline{V_b}$$
 $V_b \longleftarrow V_a$ $\overline{V_{ab}} = V_a + V_b$

আনত হলে, $R = \sqrt{P^2 + Q^2 + 2PQ\cos(\pi - \alpha)}$ যেখানে বেগদ্বয়ের মধ্যবর্তী কোণ α

 ${f Problem}-03$ ঃ তুমি খুব দ্রুত স্কুলে যেতে চাও। বৃষ্টি হচ্ছে বলে ছাতা নিয়ে আগে যে বেগে যেতে এখন তার চেয়ে দ্রুত যাবে। ছাতা কোন দিকে ধরতে হবে যাতে বৃষ্টির ফোঁটা তোমার শরীরে না পড়ে। ছাতা সরালে বৃষ্টির ফোঁটা তোমার শরীরে কত কোণে পড়ত তার রাশিমালা বের কর। তোমার কাছে মনে হচ্ছে বৃষ্টি উলম্বের সাথে 30° কোণে পড়ছে। এরপর তুমি তোমার বেগকে দ্বিগুণ করে দেখলে বৃষ্টি উলম্বের সাথে 60° কোণে পড়ছে। বৃষ্টির প্রকৃত বেগ ও দিক নির্ণয় কর।

Solve ঃ ১ম ক্ষেত্রে ঃ
$$\frac{V_u}{\sin(\theta + 30^\circ)} = \frac{V_r}{\sin 60^\circ}$$

হয় ক্ষেত্রে ঃ $\frac{2V_u}{\sin(\theta + 60^\circ)} = \frac{V_r}{\sin 30^\circ}$

$$\Rightarrow \frac{\sin(\theta + 60^\circ)}{2\sin(\theta + 30^\circ)} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$$

$$\Rightarrow \frac{\sin(\theta + 60^\circ)}{\sin(\theta + 30^\circ)} = \frac{2}{\sqrt{3}} \therefore \theta = 30^\circ$$

 ${f Problem-04}$ ঃ ঘন্টায় $60\,km$ বেগে পূর্ব দিকে চলমান একটি গাড়ির যাত্রীর কাছে মনে হল $20\sqrt{3}\,kmh^{-1}$ বেগে একটি ট্রাক উত্তরদিকে যাচ্ছে। (ক) ট্রাকটি কোন দিকে চলছে? (খ) ট্রাকটির প্রকৃত বেগ কত?

Try yourself 8

01. বৃষ্টির দিনে একটি ঘন্টায় 5 কি.মি বেগে হেঁটে দেখল বৃষ্টি খাঁড়াভাবে পড়ছে। তার বেগ দিগুন করে দেখল বৃষ্টি খাড়া রেখার সাথে 30^0 কোণে পড়ছে। বৃষ্টির প্রকৃত বেগ নির্ণয় কর। $Ans 10 kmh^{-1}$

02. $200 ext{ } ext{8} ext{300}$ দৈর্ঘ্যের দুটি ট্রেন একটি ষ্টেশন থেকে একই দিকে দুটি সমান্তরাল রেলপথে যথাক্রমে $40 ext{kmh}^{-1}$ এবং $30 ext{kmh}^{-1}$ বেগে যাত্রা করে। কত সময়ে এরা পরস্পরকে অতিক্রম করবে? Ans: 3 min

03. ঘন্টায় 45 কি.মি বেগে চলমান একটি ট্রেনের যাত্রীর নিকট মনে হচ্ছে বৃষ্টির ধারার আপেক্ষিক বেগের দিক উলম্ব রেখার সাথে $an^{-1} rac{3}{2}$ কোণ উৎপন্ন করে। বৃষ্টি প্রকৃত বেগ নির্ণয় কর। Ans: ঘন্টায় 30 কি.মি.

Type-03: ভেক্টর ডট্ ও ক্রস গুণন এবং শর্তসাপেক্ষে তাদের প্রয়োগমূলক সমস্যাবলী

 ${f Problem-05}$ ঃ একটি সামান্তরিকের দুটি কর্ণ $\stackrel{
ightarrow}{A}=\hat{i}+\hat{j}+\hat{k}$ এবং $\stackrel{
ightarrow}{B}=2\hat{i}+\hat{j}+2\hat{k}$ হলে সামান্তরিকের ক্ষেত্রফল কত?

Solve
$$\vec{s} \stackrel{\rightarrow}{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{vmatrix} = \hat{i} - \hat{k} : | \stackrel{\rightarrow}{A} \times \vec{B} | = \sqrt{1^2 + (-1)^2} = \sqrt{2} \text{ sq.unit.}$$

$$\therefore$$
 ক্ষেত্রফল $=\frac{1}{2}\sqrt{2} \, sq. \, unit. = \frac{1}{\sqrt{2}} \, sq. \, unit$

 $\stackrel{
ightarrow}{A}=\hat{i}+\hat{j}+\hat{k}$ এবং $\stackrel{
ightarrow}{B}=2\hat{i}+\hat{j}+2\hat{k}$ দুটি সামান্তরিকের বাহু হলে,ক্ষেত্রফল $=\sqrt{2}$ sq. unit

 $\mathbf{Problem} - \mathbf{06}$ ঃ $\overset{
ightarrow}{P} = 2\hat{i} - 3\hat{j} + \hat{k}$ এর উপর $\overset{
ightarrow}{Q} = 3\hat{i} + 4\hat{j}$ এর অভিক্ষেপ ও উপাংশ কত?

Solve ঃ অভিক্ষেপ =
$$|\vec{Q}|\cos\theta = |\vec{Q}|\frac{\vec{P}.\vec{Q}}{PQ} = \frac{6-12}{\sqrt{2^2 + (-3)^2 + (1)^2}} = \frac{-6}{\sqrt{14}}$$
 একক

উপাংশ =
$$\begin{vmatrix} \vec{Q} \\ \vec{Q} \end{vmatrix} \cos \theta \cdot \hat{a} = \frac{-6}{\sqrt{14}} \left[\frac{2}{\sqrt{14}} \hat{i} - \frac{3}{\sqrt{14}} \hat{j} + \frac{1}{\sqrt{14}} \hat{k} \right] = \frac{3}{7} \left[2\hat{i} - 3\hat{j} + \hat{k} \right] - vector$$
 রাশি

 $\operatorname{Problem} - \mathbf{07}$ ঃ $\begin{vmatrix} \vec{P} + \vec{Q} \\ \vec{P} + \vec{Q} \end{vmatrix} = \begin{vmatrix} \vec{P} - \vec{Q} \\ \vec{P} - \vec{Q} \end{vmatrix}$ P ও Q এর মধ্যবর্তী কোণ কত?

 ${f Solve}$ ঃ বর্গ করে, $\therefore P^2+Q^2+2PQ\coslpha=P^2+Q^2-2PQ\coslpha$ যখন P ও Q এর মধ্যেকার কোণ।

$$2PQ\cos\alpha = 2PQ\cos(\pi - \alpha) \implies 2\alpha = \pi : \alpha = \frac{\pi}{2}$$

Problem – 08 ঃ $\vec{A} = 2\hat{i} + 3\hat{j} - a\hat{k}$, $\vec{B} = \frac{2}{3}\hat{i} + \hat{j} - 3\hat{k}$ দুটি ভেক্টর সমান্তরাল হলে a এর মান কত?

অথবা,
$$\frac{A_X}{B_X} = \frac{A_Y}{B_Y} = \frac{A_Z}{B_Z}$$
 হবে, $\frac{3}{1} = \frac{-a}{-3}$ $\therefore a = 9$

$$\frac{2}{\frac{2}{3}} = \frac{-a}{-3} \Rightarrow \therefore a = 9$$

 ${f Problem-09}$ ঃ একটি কণার উপর $\stackrel{
ightharpoonup}{F}=5\hat{i}$ সম একত্রে বল প্রয়োগ করায় কণাটির অবস্থান $\stackrel{
ightharpoonup}{r_1}=rac{1}{\sqrt{2}}\hat{i}+rac{1}{\sqrt{2}}\hat{j}$ হতে

 $\stackrel{
ightarrow}{r_2}=\sqrt{2}\,\,\hat{j}\,\,$ হয়েছে। এতে কৃতকাজ এর মান কত? প্রযুক্ত টর্কের মান ও দিক নির্ণয় কর।

Solve 8
$$\vec{\Delta r} = \sqrt{2}\hat{j} - \frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j}$$
 $\therefore \vec{\Delta r} = -\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$

কৃতকাজ,
$$W = F.r = 5\hat{i}.(-\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}) = -5 \times \frac{1}{\sqrt{2}} = -3.54N.m$$

[(-)চিহ্ন প্রমাণ করে বলের বিরুদ্ধে সরণ হয়েছে]

টর্ক,
$$\vec{\tau} = \vec{\tau}_1 + \vec{\tau}_2 = \vec{F} \times \vec{r}_1 + \vec{F} \times \vec{r}_2 = \left(5\sqrt{2} + \frac{5}{\sqrt{2}}\right)\hat{k} = :: \tau = 10.6N.\,m.\,\,\,\hat{k}$$
 বরাবর

 $\mathbf{Problem-10}$ ঃ তিনটি অক্ষের সাথে সমান কোণ তৈরি করে এরূপ একক ভেক্টর রাশি নির্ণয় কর।

সমাধান: ধরি ভেক্টর রাশিটি, $ec{r}=r_x\hat{\imath}+r_y\hat{\jmath}+r_z\hat{k}$

Solve ঃ শর্তানুযায়ী ,
$$r_x=r_y=r_z$$
 এবং $r_x^2+r_y^2+r_z^2=r^2$:: $r^2=3r_x^2=3r_y^2=3r_z^2$:: $r_x=r_y=r_z=\pm\frac{1}{\sqrt{2}}r$

$$rac{ec{r}}{r}=\pmrac{1}{\sqrt{3}}ig(\hat{\imath}+\hat{\jmath}+\hat{k}ig)$$
 ; যা $ec{r}$ এর সমান্তরালে একক ভেক্টর।

 ${f Problem-11}$ ঃ এরূপ একটি একক ভেক্টর রাশি নির্ণয় কর যা $4\hat{\imath}+3\hat{k}$ ও $3\hat{\jmath}+4\hat{k}$ ভেক্টর দুটির উপর লম্ব হয়। ${f Solve}$ ঃ ধরি, ভেক্টর রাশিটি $=x\hat{\imath}+y\hat{\imath}+z\hat{k}$

$$4x + 3z = 0$$
 [ডটগুণন $= 0$ ধরে]

$$3y + 4z = 0$$

একক ভেক্টর =
$$\hat{a} = \frac{-\frac{3z}{4}\hat{\imath} - \frac{4z}{3}\hat{\jmath} + z\hat{k}}{\sqrt{(-\frac{3z}{4})^2 + (-\frac{4z}{3})^2 + z^2}} = \frac{-9\hat{\imath} - 16\hat{\imath} + \hat{k}}{\sqrt{338}}$$

Try yourself 8

$$01.\ 2\hat{\imath} + \lambda\hat{\jmath} + \hat{k}$$
 এবং $\hat{\imath} + k\hat{\jmath} + \hat{k}$ ভেক্টর দুটি পরস্পর লম্ব হলে λ এর মান কত? $Ans.\ ^5/_2$

 $02.\ 2\hat{\imath}-\hat{\jmath}+2\hat{k}$ ভেক্টরটি অক্ষের সাথে যে কোণগুলি উৎপন্ন করে তা নির্ণয় কর।

Ans.
$$\theta_x = \cos^{-1}\left(\frac{2}{3}\right)$$
, $\theta_y = \cos^{-1}\left(\frac{-1}{3}\right)$, $\theta_z = \cos^{-1}\left(\frac{2}{3}\right)$

03. $ec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ ও $ec{b}=\sqrt{3}\hat{\imath}+3\hat{\jmath}-2\hat{k}$ হলে $ec{b}$ ভেক্টরের উপর $ec{a}$ ভেক্টরের অভিক্ষেপ ও উপাংশ নির্ণয় কর।

$$Ans.rac{\sqrt{3}+1}{4}$$
 এবং $rac{\sqrt{3}+1}{16}(\sqrt{3}\hat{\imath}+3\hat{\jmath}-2\hat{k})$

04. $ec{a}=2\hat{\imath}+\hat{\jmath}+2\hat{k}$ এবং $ec{b}=\hat{\imath}+2\hat{\jmath}+\hat{k}$ ভেক্টরদ্বয়ের লম্ব একক ভেক্টর নির্ণয় কর।

Ans.
$$\hat{\eta} = \pm \frac{1}{\sqrt{35}} (3\hat{\imath} - \hat{\jmath} - 6\hat{k})$$

05. $\vec{A}=4\hat{\imath}+5\hat{\jmath}-3\hat{k}$ এবং $\vec{B}=-\hat{\imath}+5\hat{\jmath}-\hat{k}$ হলে \vec{A} এবং \vec{B} এর লদ্ধি ভেক্টরের সমান্তরাল একক ভেক্টর নির্ণয় কর। $Ans.~~\frac{3}{5}\hat{\imath}-\frac{4}{5}\hat{\imath}$

06. কোন গতিশীল কণার ব্যাসার্ধ $\stackrel{
ightharpoonup}{r} = \left(2\hat{i} + 2\hat{j} - \hat{k}\right)m$ এবং প্রযুক্ত বল $\stackrel{
ightharpoonup}{F} = \left(6\hat{i} + 3\hat{j} - 3\hat{k}\right)N$ হলে কৃতকাজ, টর্কের মান ও দিক নির্ণয় কর। Ans.15j. $\left|\stackrel{
ightharpoonup}{\tau}\right| = \sqrt{45}$ $\left[-j\right]$ বরাবর]

 $\overrightarrow{07}$.একটি কণা \overrightarrow{AB} পথে 5km/hrবেগে যাত্রা করে 2hr-এ A হতে চিত্রানুযায়ী B বিন্দুতে যায় এবং একই বেগে কণাটি A বিন্দুতে ফিরে আসে।

 $BC\perp AB,\ CD\perp DE\ BD\|AE$ এবং $\angle DCB=120^\circ$ হলে, $\stackrel{
ightarrow}{AD}$ ও $\stackrel{
ightarrow}{AC}$ এর মান ও দিক নির্ণয় কর।

hints: কোণ বিশ্লেষণঃ পঞ্চভূজঃ মোট কোণের পরিমাণ 540° শর্তানুযায়ী , $AB\|DE$

$$\Rightarrow$$
120° + 90° + 90° = 300°

অবশিষ্ট 240° কোণ E ও A বিন্দুতে সমান অংশে বিভক্ত $\angle AED = 120^\circ, \angle EAB = 120^\circ$

$$\angle CED = 45^{\circ} = \angle CAB$$
 $\angle CEA = \angle CAE = 75^{\circ}$

 $AB + BC + CD + DE + EA = 5AB = 5 \times 5 \times 2 = 5 \times 10$ প্রতিবাহর দৈর্ঘ্য 10km.

লন রোলারকে ঠেলার চেয়ে টানা সহজ

ঠেলার ক্ষেত্রে ৪ ধরি w ওজনের একটি লন রোলারকে F বলে অনুভূমিকের সমান্তরাল রেখার সাথে heta কোণে ঠেলা হচ্ছে। তাহলে F এর অনুভূমিক উপাংশ = $F\cos heta$ যা লন রোলারকে সামনের দিকে গতিশীল করে এবং উলম্ব উপাংশ = $F\sin heta$ যা লন রোলারের ওজনের দিকে ক্রিয়া করে ফলে লন রোলারের ওজন $F\sin heta$ পরিমাণ বৃদ্ধিপায়।

টানার ক্ষেত্রে \$ ধরি \$ ওজনের একটি লন রোলারকে \$ বলে অনুভূমিকের সমান্তরাল রেখার সাথে θ কোণে টানা হচ্ছে। তাহলে \$ এর অনুভূমিক উপাংশ \$ \$ তেওঁ যা লন রোলারকে সামনের দিকে গতিশীল করে এবং উলম্ব উপাংশ \$ \$ যা লন রোলার ওজনের বিপরীত দিকে ক্রিয়া করে ফলে লন রোলারের ওজন \$ পরিমাণ্ড্রাস পায়। এজন্য লন রোলারকে ঠেলার চেয়ে টানা সহজ।

Type-04 ঃ:লন রোলার সংক্রান্ত সমস্যাবলী

 ${f Problem-12}$ ঃ একটি লন রোলারকে 10N বলে উলম্ব রেখার সাথে ${f 60}^{0}$ কোণে টানা হচ্ছে। লন রোলারটি কতটুকু ওজন হারাবে?

Solve ঃ হারানো ওজন, $W = 10 \cos 60^{\circ} = 5 \text{ N}$

Problem-13ঃ একটি লন রোলারকে 10N বলে ঠেলা হচ্ছে এবং 50N বলে টানা হচ্ছে। লন রোলারের ওজন 2 kg-wt হলে লন রোলার 2 সেকেন্ডে কত দুরত্ব অতিক্রম করবে? ঠেলা এবং টানা একই কোণে হচ্ছে।

Solve st ধরি, ঠেলা এবং টানা উলম্বের সাথে hetaকোণে হচ্ছে।

ঠেলার ক্ষেত্রে ওজন বৃদ্ধিপায় = $10\cos\theta$ এবং টানার ক্ষেত্রে ওজন হ্রাস পায় = $50\cos\theta$ \div $50\cos\theta$ - $10\cos\theta$ = $2\times9.8\Rightarrow\theta=60.66^\circ$, $50\sin\theta+10\sin\theta=2\times\alpha=52.3$

$$\therefore a = 26.152 ms^{-2}$$
, 2 সেকেন্ডে অতিক্রান্ত দুরত্ব $= \frac{1}{2} \times 26.152 \times 2^2 = 52.3 m$

Try yourself &

01. একটি লন রোলারকে 15N বলে উলম্ব রেখার সাথে 30° কোণে ঠেলা হচ্ছে। লন রোলারটি কতটুকু ওজন লাভ করবে?
Ans. 12.99N

02. একটি লন রোলারকে 10N বলে ঠেলা হচ্ছে এবং FN বলে টানা হচ্ছে। লন রোলারের ওজন 2 kg-wt হলে লন রোলারটি 2 সেকেন্ডে 52.3m দুরত্ব অতিক্রম করে। ঠেলা এবং টানা একই কোণে হচ্ছে। F বল এবং কোণের পরিমাণ নির্ণয় কর।

Ans. 50N, 60.66°

Type-05 ঃ ভেক্টর অপারেটরের প্রয়োগ মূলক সমস্যাবলী

ভেক্টর অপারেটর ঃ [গ্রেডিয়েন্ট; ডাইভারজেন্স ও কার্ল]

গ্রোডিয়েন্ট অপারেটর: এ অপারেটর স্কেলার ক্ষেত্রকে ভেক্টর ক্ষেত্রে পরিণত করে।

সংজ্ঞা ৪
$$\overrightarrow{
abla}$$
. $\varphi = grad \varphi = \left(\hat{\imath} \frac{\delta}{\delta x} + \hat{\jmath} \frac{\delta}{\delta y} + \hat{k} \frac{\delta}{\delta z}\right)$. $\varphi = \hat{\imath} \frac{\delta \varphi}{\delta x} + \hat{\jmath} \frac{\delta \varphi}{\delta y} + \hat{k} \frac{\delta \varphi}{\delta z}$

যা একটি ভেক্টর রাশি। এর মান অবস্থানের সাপেক্ষে ঐ ক্ষেলার রাশি $\varphi(x,y,z)$ এর সর্বোচ্চ বৃদ্ধির হার নির্দেশ করে এবং গ্রেডিয়েন্টের দিক হবে φ এর বৃদ্ধির হারের দিকে।

Problem - 14 ঃ যদি $\varphi(x,y,z)=2xyz^3-x^2z^2$ হয় তবে (-1,-2,1) বিন্দুতে $\overrightarrow{\nabla}$. φ এর মান বের কর । Solve ঃ আমরা জানি: $\overrightarrow{\nabla}$. $\varphi=grad\varphi=\left(\hat{\imath}\frac{\delta}{\delta x}+\hat{\jmath}\frac{\delta}{\delta y}+\hat{k}\frac{\delta}{\delta z}\right)$. $\varphi=\hat{\imath}\frac{\delta \varphi}{\delta x}+\hat{\jmath}\frac{\delta \varphi}{\delta y}+\hat{k}\frac{\delta \varphi}{\delta z}$ $=\hat{\imath}(2yz^3-2xz^2)+\hat{\jmath}(2xz^3-0)+\hat{k}(6xyz^2-2x^2z)$ $=(2yz^3-2xz^2)\hat{\imath}+2xz^3\hat{\jmath}+(6xyz^2-2x^2z)\hat{k}$ (-1,-2,1) বিন্দুতে, $\overrightarrow{\nabla}$. $\varphi=[2\times(-2)\times 1^3-2(-1)\times 1^2]\hat{\imath}+2\times(-1)\times 1^3$. $\hat{\jmath}+[6(-1)(-2)\times 1^2-2\times(-1)^2\times 1]\hat{k}$

$$= -6\hat{\imath} - 2\hat{\jmath} + 10\hat{k}$$

Try yourself 8

01.যদি ঢাকা শহরের প্রতিটি বিন্দুতে জীবানু থাকার একটি স্কেলার ফাংশন $\varphi(x,y,z)=2xyz^4-x^2z^2$ হয় তবে (1,-2,-1) বিন্দুতে জীবানুটির অবস্থান ও দিক নির্ণয় কর।

Ans.
$$(-6\hat{\imath}+4\hat{\jmath}-8\hat{k})$$
, φ এর বৃদ্ধির দিকে।

ভাইভারজেশ ${f 8}$ এ অপারেটর এর মাধ্যমে একটি ভেক্টর রাশি স্কেলার ক্ষেত্রে পরিণত করা যায় । যদি কোন স্থানের একটি এলাকায় প্রতিটি বিন্দুতে ${ec v}(x,y,z)=\hat \iota v_x+\hat \jmath v_y+\hat k v_z$ কে অন্তরীণকরণযোগ্য ভেক্টর অপেক্ষক হিসেবে ধরা হয় ,তবে ${ec v}$ এর ডাইভারজেশ এর সংজ্ঞা: ${ec
abla}.{ec v}=rac{\delta v_x}{\delta x}+rac{\delta v_y}{\delta y}+rac{\delta v_z}{\delta z}$ যা একটি স্কেলার রাশি । ${ec
abla}.{ec v}$ হয় যদিও স্কেলার গুণন দিকের উপর নির্ভর করেনা ।

 ${f Problem-15}$ ঃ যদি ${f ec A}=3xyz\hat\imath+2xy^2\hat\jmath-x^2yz\hat k$ হয় তবে (1, 1,-1) বিন্দুতে ${f ec A}$ এর ডাইভারজেন্স নির্ণয়

Solve ঃ
$$\vec{\nabla}$$
. $\vec{A} = 3yz + 4xy - x^2y$ (1, 1,-1) বিন্দুতে, $\vec{\nabla}$. $\vec{A} = 3 \times 1(-1) + 4 \times 1 \times 1 - 1^2 \times 1 = -3 + 4 - 1 = 0$

Try yourself &

01. যদি $\vec{A} = (3x^2z)\hat{\imath} + (xyz^2z)\hat{\jmath} - (x^3y^2z)\hat{k}$ হয় তবে (1, -1, 1) বিন্দুতে স্কেলার ক্ষেত্র কত হবে? Ans 6. কার্ল \hat{s} এটি দ্বারা ভেক্টর ক্ষেত্রের ঘূর্ণন ব্যাখ্যা করা যায়।

$$ec{ ext{v}} = \hat{\imath}v_x + \hat{\jmath}v_y + \hat{k}v_z$$
 একটি অন্তরীকরণযোগ্য ভেক্টরক্ষেত্র এর কার্ল: $ec{ extsf{V}} imes ec{ ext{v}} = egin{bmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ v_x & v_y & v_z \end{bmatrix}$

 $=\left(rac{\delta v_z}{\delta y}-rac{\delta v_y}{\delta z}
ight)\hat{\imath}+\left(rac{\delta v_x}{\delta z}-rac{\delta v_z}{\delta x}
ight)\hat{\jmath}+\left(rac{\delta v_z}{\delta x}-rac{\delta v_x}{\delta z}
ight)\hat{k}$ যা একটি ভেক্টর রাশি যার মান ঐ ভেক্টরের ক্ষেত্রে একক ক্ষেত্রফলের উপর সর্বোচ্চ রেখা যোগজের সমান। কার্ল শূন্য হলে ক্ষেত্র ঘূর্ণশীল হবে না।

 ${
m Problem}-15$ ঃ একটি স্থানের কোন এলাকায় $ec{v}=2x^3y\hat{\iota}+2y^3z\hat{\jmath}+z^2xy\hat{k}$ হয় তবে (-2, 2,-1) বিন্দুতে $ec{v}$ এর কার্ল নির্ণয় কর এবং $|ec{
abla} imesec{v}|=?$

Solve
$$\vec{v} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ 2x^3y & 2y^3z & z^2xy \end{vmatrix}$$

$$= (z^2x - 2y^3)\hat{\imath} + (0 - z^2y)\hat{\jmath} + (0 - 2x^3)\hat{k}$$

$$= (z^2x - 2y^3)\hat{\imath} - z^2y\hat{\jmath} - 2x^3\hat{k}$$

$$(-2,2,-1)$$
 বিন্দুতে, $\overrightarrow{\nabla} \times \overrightarrow{v} = (-2 - 16)\hat{\imath} - 2\hat{\jmath} - 16\hat{k} = -18\hat{\imath} - 2\hat{\jmath} - 16\hat{k}$

$$|\overrightarrow{\nabla} \times \overrightarrow{v}| = \sqrt{(-18)^2 + (-2)^2 + (-16)^2} = 2\sqrt{146}$$

Try yourself &

01. যদি
$$\vec{A}=3xyz\hat{\imath}+2xy^2\hat{\jmath}-x^2yz\hat{k}$$
 হয় তবে (1, 1,-1) বিন্দুতে $\vec{\nabla}\times\vec{v}$ এবং $|\vec{\nabla}\times\vec{v}|$ নির্ণয় কর। Ans. $\hat{\imath}+\hat{\jmath}+5\hat{k};3\sqrt{3}$.

#