Tutorial & Practical 1: Linear Regression

Question 1

Given the model

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $\mathbf{y} \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$ is full rank p and $\boldsymbol{\epsilon} \in \mathbb{R}^n \sim \mathcal{N}(0, \sigma^2 I_n)$. Let $\hat{\boldsymbol{\beta}}$ be the estimate of $\boldsymbol{\beta}$ obtained by least square estimation and $H = X \left(X^\top X \right)^{-1} X^\top$ the orthogonal projector onto the subspace spanned the columns of X

- Write $U = \mathbf{y} X\hat{\boldsymbol{\beta}}$ as a function of H and $\boldsymbol{\epsilon}$
- Write $V = X(\hat{\beta} \beta)$ as a function of H and ϵ
- Using the results obtained find Cov(U, V)
- Use this results to show that

$$(\mathbf{y} - X\boldsymbol{\beta})^{\top} (\mathbf{y} - X\boldsymbol{\beta}) = (\mathbf{y} - X\hat{\boldsymbol{\beta}})^{\top} (\mathbf{y} - X\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\top} X^{\top} X (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

- What is the conclusion you can make from the left side of the above equation?
- Using the above decomposition find the distribution of $(\mathbf{y} X\hat{\boldsymbol{\beta}})^{\top} (\mathbf{y} X\hat{\boldsymbol{\beta}}) / \sigma^2$

Question 2

Let

$$\mathbf{y} = \mathbf{1}_n \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $\mathbf{y} \in \mathbb{R}^n$ and $\boldsymbol{\epsilon} \in \mathbb{R}^n \sim \mathcal{N}(0, \sigma^2 I_n)$.

- Find of the least square estimate of β ?
- \bullet What does represent $\hat{\beta}$ and the associated $\hat{\mathbf{y}}$
- \bullet Provide the expression of the projector generating $\hat{\boldsymbol{y}}$
- Use this projector to provide an alternative expression for $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Show that \bar{y} is independent of $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Show that $\sum_{i=1}^{n} (y_i \bar{y})^2 / \sigma^2$ is χ_{n-1}^2

Question 3

Let

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $\mathbf{y} \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$ is full rank p and $\epsilon \in \mathbb{R}^n \sim \mathcal{N}(0, \sigma^2 I_n)$.

- Give the expression of the log-likelihood $\ell(\beta, \sigma^2)$
- ullet Show that the least square estimate for $oldsymbol{eta}$ is also the maximum likelihood estimator for $oldsymbol{eta}$
- Find the maximum likelihood estimator of σ^2
- Using the expression of $\hat{\beta}$ and $\hat{\sigma}^2$ provide the expression of $\ell\left(\hat{\beta},\hat{\sigma}^2\right)$
- Taking $\boldsymbol{\theta} = (\boldsymbol{\beta}^{\top}, \sigma^2)^{\top}$ derive the expression of the information matrix $\mathbf{I} = -\mathbb{E}\left[\frac{\partial^2 \ell}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}}\right]$
- Discuss the efficiency of $\hat{\beta}$ and $\hat{\sigma}^2$

Question 4

Let

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $\mathbf{y} \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$ is full rank p and $\epsilon \in \mathbb{R}^n \sim \mathcal{N}(0, \sigma^2 I_n)$.

Furthermore to the above model there are a number of restrictions or constraints that β need to satisfies, these constraints are described by

$$A\beta = \mathbf{c}$$

where A is a known $q \times p$ matrix of rank q and **c** is a known $q \times 1$.

Find an estimate of β that minimizes the squared error subject to these constraint (use Lagrange multipliers, one for each constraint $\mathbf{a}_i \boldsymbol{\beta} = c_i$, i = 1, ..., q).

Question 5

Let

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $\mathbf{y} \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$ is full rank $r and <math>\epsilon \in \mathbb{R}^n \sim \mathcal{N}(0, \sigma^2 I_n)$.

- Write the least square estimate of $\boldsymbol{\beta}$ using the $n \times n$ matrix S, the diagonal matrix $\Sigma = \operatorname{diag}(\sigma_1, ..., \sigma_r)$ and the $p \times p$ matrix Q, obtained from the singular value decomposition of X, $X = S\Sigma Q^{\top}$
- Write the least square estimate of β as a function σ_i , \mathbf{s}_i and \mathbf{q}_i where \mathbf{s}_i and \mathbf{q}_i are the column vectors of S and Q respectively.

- Consider the estimate of $\boldsymbol{\beta}$ which can be represented as a projection $\boldsymbol{\beta}_p = Q_k z$ where $Q_k = (\mathbf{q}_1, ..., \mathbf{q}_k)$, what is the relation between the least square estimate of $\hat{\boldsymbol{\beta}}_{LS}$ and $\boldsymbol{\beta}_p$ where z is obtained by minimizing $\|\mathbf{y} XQ_k z\|^2$
- Provide an expression for the residual $R_k = \|\mathbf{y} X\hat{\boldsymbol{\beta}}_p\|^2$