Пример решения задачи. Булевы функции. Минимизация методами Карно и Квайна.

Двумя способами: с помощью карты Карно и методом Квайна найти сокращенную, ядровую и все минимальные дизьюнктивные нормальные формы булевой функции f, заданной вектором значений. Построить минимальную функциональную (над системой $\{\neg, \&, \lor\}$) и минимальную контактную схемы для функции f.

0101101001001110

Решение. Составим таблицу истинности для функции f:

x_1	x_2	x_3	X_4	f	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	0	

Выпишем СДНФ функции:

$$\overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \vee \overline{x_$$

Выпишем $N_f = \{0001, 0011, 0100, 0110, 1001, 1100, 1101, 1110\}$.

Способ 1. Используем метод карт Карно. Составляем карту Карно для функции 4 переменных. В клетках ставим 1, если на данном наборе функция принимает значение 1 (данный набор присутствует в СДНФ), другие клетки оставляем пустыми. Получаем:

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00		1	1	
01	1			1
11	1	1		1
10		1		

Строим сокращенную ДНФ по карте Карно. Склеиваем все соседние пары единиц, а также прямоугольники максимальной величины (те, которые участвовали в склейке, больше не склеиваем), получаем:

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00		1	1	
01	1			1
11	1	1		1
10		1		

Получаем $x_2 \overline{x_4}$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00		1	1	
01	1			1
11	1	1		1
10		1		

Получаем $\overline{x_1} \overline{x_2} x_4$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00		1	1	
01	1			1
11	1	1		1
10		1		

Получаем $x_1 \overline{x_3} x_4$

$x_1x_2 \setminus x_3x_4$	00	01	11	10
00		1	1	
01	1			1
11	1	1		1
10		1		

Получаем $\overline{x_2} \overline{x_3} x_4$

Итак,
$$D_{cosp.} = x_2 \overline{x_4} \vee \overline{x_1} \overline{x_2} x_4 \vee x_1 \overline{x_3} x_4 \vee \overline{x_2} \overline{x_3} x_4$$
.

Выбираем ядровые импликанты. Им соответствуют такие прямоугольники, после удаления которых получим незакрытую 1. Избыточной является импликанта $\overline{x_2} x_3 x_4$, так как ее единицы покрыты другими импликантами.

Таким образом,
$$D_{\text{мор.}} = x_2 \overline{x_4} \vee \overline{x_1} \overline{x_2} x_4 \vee x_1 \overline{x_3} x_4$$

Поскольку все ядровые импликанты покрыли все 1 карты Карно (и ни одна 1 не покрыта дважды), ядровая ДНФ является минимальной,

$$D_{\text{\tiny MUH.}} = x_2 \overline{x_4} \vee \overline{x_1} \overline{x_2} x_4 \vee x_1 \overline{x_3} x_4.$$

Способ 2. Используем метод Квайна. Строим сокращенную ДНФ, используя набор единичных значений $N_f = \{0001,0011,0100,0110,1001,1100,1101,1110\}$.

Выделяем группы:

$$S_1 = \{(0001), (0100)\},$$

$$S_2 = \{(0011), (0110), (1001), (1100)\},$$

$$S_3 = \{(1101), (1110)\}.$$

Склеиваем конъюнкции в соседних группах, склеиваются все конъюнкции.

Этап 1.

$$(0001) + (0011) \Rightarrow (00-1)$$
 $(0001) + (1001) \Rightarrow (-001)$
 $(0100) + (0110) \Rightarrow (01-0)$ (использовали в этапе 2)
 $(0100) + (1100) \Rightarrow (-100)$ (использовали в этапе 2)
 $(0110) + (1110) \Rightarrow (-110)$
 $(1001) + (1101) \Rightarrow (1-01)$
 $(1100) + (1101) \Rightarrow (110-)$ (использовали в этапе 2)

 $(1100)+(1110) \Rightarrow (11-0)$ (использовали в этапе 2)

Этап 2.

$$(01-0)+(11-0) \Rightarrow (-1-0)$$

$$(-100) + (-110) \Rightarrow (-1-0)$$

Итак, получили
$$D_{cokp.} = x_2 \overline{x_4} \vee \overline{x_1} \overline{x_2} x_4 \vee \overline{x_2} \overline{x_3} x_4 \vee x_2 \overline{x_3} \overline{x_4} \vee x_1 \overline{x_3} x_4$$
 .

Строим импликантную таблицу, в столбцах элементарные конъюнкции СДНФ, в строках – простые импликанты сокращенной ДНФ. Ставим в ячейке плюс, если простая импликанта покрывает элементарную конъюнкцию. Получаем:

	$\overline{x_1} \overline{x_2} \overline{x_3} x_4$	$\overline{x_1} \overline{x_2} x_3 x_4$	$\overline{x_1} x_2 \overline{x_3} \overline{x_4}$	$\overline{x_1}x_2x_3\overline{x_4}$	$x_1 \overline{x_2} \overline{x_3} x_4$	$x_1 x_2 \overline{x_3} \overline{x_4}$	$x_1 x_2 \overline{x_3} x_4$	$x_1 x_2 x_3 \overline{x_4}$
$x_2 \overline{x_4}$ *			+	+		+		+
$\overline{x_1} \overline{x_2} x_4^*$	+	+						
$\overline{x_2} \overline{x_3} x_4$	+				+			
$\overline{x_2 x_3 \overline{x_4}}$				+				+
$x_1 x_3 x_4 *$					+		+	

Выбираем столбцы, содержащие только по одному плюсу (это столбцы 2, 3, 6, 7), импликанты строк, соответствующих этим плюсам попадают в ядровую

ДНФ, то есть $D_{\text{мор.}} = x_2 \overline{x_4} \vee \overline{x_1} \overline{x_2} x_4 \vee x_1 \overline{x_3} x_4$ (пометили эти импликанты *). Теперь вычеркиваем строки (отмечаем серой заливкой), соответствующие ядровым импликантам, а затем столбцы, содержащие отмеченные клетки в вычеркнутых строках (это все столбцы). Получаем:

	$\overline{x_1} \overline{x_2} \overline{x_3} x_4$	$\overline{x_1} \overline{x_2} x_3 x_4$	$\overline{x_1} x_2 \overline{x_3} \overline{x_4}$	$\overline{x_1} x_2 x_3 \overline{x_4}$	$x_1 \overline{x_2} \overline{x_3} x_4$	$x_1 x_2 \overline{x_3} \overline{x_4}$	$x_1 x_2 \overline{x_3} x_4$	$x_1 x_2 x_3 x_4$
$x_2 \overline{x_4}$ *			+	+		+		+
$\overline{x_1} \overline{x_2} x_4^*$	+	+						
$\overline{x_2} \overline{x_3} x_4$	+				+			
$\overline{x_2 x_3 x_4}$				+				+
$\overline{x_1} \overline{x_3} x_4^*$					+		+	

Искомая минимальная ДНФ имеет вид $D_{\text{мин.}} = x_2 \overline{x_4} \vee \overline{x_1} \overline{x_2} x_4 \vee x_1 \overline{x_3} x_4$.

Построим минимальную функциональную (над системой $\{\neg, \&, \lor\}$) схему для функции f.

Построим минимальную контактную схему для функции f.

