JURASSIC - High-Q

Sim
Lab Climate, JSC, FZJ, Jülich, Germany $^{\rm 1}$

24th July 2014

 $^{^{1}\}mathrm{Contact:}$ l.hoffmann@fz-juelich.de, s.griessbach@fz-juelich.de

Contents

1	Intr	Introduction					
2	Get	ting S	arted	3			
_	2.1	_	Start	3			
	2.2	•	pad the code	3			
	2.3		ation	4			
	2.4			4			
	2.1	2.4.1	Forward Simulations	4			
		2.4.2	Retrieval				
3	Inp	ut File	S	7			
	3.1		d File	7			
	3.2	Atmos	phere File	Ć			
	3.3	Contro	l File	Ĉ			
		3.3.1	Aerosol and Clouds	Ö			
		3.3.2	Continua	12			
		3.3.3	Emissivity look-up Tables	12			
		3.3.4	Emitter	12			
		3.3.5	Field of View	12			
		3.3.6	Ray-tracing	12			
		3.3.7	Spectral Windows	13			
		3.3.8	Examples	13			
	3.4	Observ	vation File	14			
	3.5	Optica	l Properties Database	14			
	3.6	-	tive Index File	15			
	3.7			15			
4	Out	put Fi	les	17			
5	Too	$_{ m ls}$		19			
	5.1	bright	ness	19			

iv	CONTENTS

5.2	climatology	19
5.3	collect	20
5.4	formod	20
5.5	interpolate	20
5.6	kernel	20
5.7	limb	20
5.8	planck	20
5.9	raytrace	20
5.1	0 retrieval	20
5.1	1 $tab2bin$	20
a D		0.1
6 Do	cumentation	21
6.1	Aerosol	21
A Lis	sts of Constants and Dimensions	23
	Physical Constants	23
A 2		$\frac{23}{23}$
A.2	Z Difficusions	23
Biblio	graphy	23

Introduction

The Juelich Rapid Spectral Simulation Code (JURASSIC) is a fast radiative transfer model for the mid-infrared spectral region (Hoffmann, 2006). It was used in several studies for the infrared limb sounder Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) (Hoffmann et al., 2005, 2008), Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere - New Frontiers (CRISTA-NF) (Hoffmann et al., 2009; Weigel et al., 2010), and Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) (Ungermann et al., 2010) and the nadir instrument Atmospheric Infrared Sounder (AIRS) (Hoffmann and Alexander, 2009; Grimsdell et al., 2010; Hoffmann et al., 2013).

For fast simulations, it applies pre-calculated look-up tables of spectral emissivities and approximations to radiative transfer calculations, such as the emissivity growth approximation (EGA) (Weinreb and Neuendorffer, 1973; Gordley and Russell, 1981; Marshall et al., 1994). The look-up-tables were calculated with the Reference Forward Model (RFM) (Dudhia et al., 2002; Dudhia, 2014), which is an exact line-by-line model specifically developed for MIPAS. For selected spectral windows, JURASSIC has been compared to the line-by-line models RFM and Karlsruhe Optimized and Precise Radiative transfer Algorithm (KOPRA) (Stiller, 2000; Stiller et al., 2002; Höpfner and Emde, 2005) and shows good agreement (Griessbach et al., 2013).

JURASSIC contains a scattering module that allows for radiative transfer simulations including single and multiple scattering on aerosol and cloud particles (Grießbach, 2012; Griessbach et al., 2013). Forward simulations with scattering on volcanic ash, ice and sulfate aerosol have been used to develop and characterise a volcanic ash detection method for MIPAS (Griessbach et al., 2012, 2014).

Retrieval of large satellite data sets (e.g. AIRS) require plenty of computing time that can be provided by supercomputers. JURASSIC works on JUROPA and JUQUEEN at

the Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH (L.Hoffmann, 2014).

Getting Started

2.1 Quick Start

get code from repository

(this will create directory jurassic with the subdirectories: docu, examples-tab, lib, jurassic-1.0)

run install script (check environment variables, libbuild.sh, make) (maybe one that works for JUROPA, JUQUEEN and normal workstations)

go to examples and run clear.sh

If this works you can try the other examples or start your own projects.

If any error occours, please refer to the more detailed documentation.

2.2 download the code

jurassic repository

optional/additional file repository (tables and filter functions, refractive index files, external optical properties databases, Remedios atmospheres and PSC study???)

2.3 Installation

- which libraries are needed? GSL and NCDF
- how to compile and link the code?

2.4 Code Execution

- how to run the code?
- which input is required? (link to description section)
- examples for forward simulations: clear air, aerosol scattering, retrieval

2.4.1 Forward Simulations

- .ctl: control file with global control flags
- atm.tab: atmospheric profiles/mixing ratios
- obs.tab: observations and geometry
- rad.tab: forward simulation results output file name
- tables
- aero.tab: aerosol and cloud parameters
- complex refractive indices
- or optical properties database
- maybe one example for clear air nadir
- another example for cloudy limb

5

Clear Air Simulation

```
# path
pirat=../pirat-1.0

info "Create geometry..."

pirat/limb test.ctl 800 5 15 1 obs.tab || exit

info "Call forward model..."

pirat/formod test-aerosol.ctl obs.tab atm.tab rad.tab || exit
```

Aerosol/Cloud Simulation

```
#fpirat/formod aerosol1.ctl obs.tab atm.tab rad.tab || exit
#fpirat/formod aerosol1.ctl obs.tab atm.tab rad.tab DIRLIST dirlist-aero.asc|| ex

$pirat/formod aerosol1.ctl obs.tab atm.tab rad.tab AEROFILE aero.tab|| exit
#fpirat/formod aerosol1.ctl obs.tab atm.tab rad.tab DIRLIST dirlist-aero.asc AERO.
#fpirat/formod test.ctl obs.tab atm.tab rad.tab TASK c || exit
```

Instead of giving the filename of the aerosol data here it can also ge given in the control-file:

```
AEROFILE = aero.tab
```

The same holds for DIRLIST and TASK.

2.4.2 Retrieval

- .ctl: control file with global control flags
- atm.tab: atmospheric profiles/mixing ratios
- obs.tab: observations and geometry
- rad.tab: forward simulation results output file name????
- tables
- measurement data converted to obs.tab
- maybe one example for clear air nadir
- another example for clear air limb

Input Files

3.1 Aerosol File

The aerosol file (aero.tab) contains a single 1D cloud scenario with the parameters given in Table 3.1. An aerosol scenario can be composed of multiple aerosol models. Each aerosol model contains data for a single scattering model in a single layer. The aerosol data must be given sorted starting with the highest layer and ending with the lowest layer. Please make sure that the layers, including their transition layers, do not overlap. Multiple cloud models can be superposed within one layer (e.g. multi-modal lognormal size distribution, different refractive indices, different scattering models). For this, please make sure that top and bottom altitudes are exactly the same. An example is given below.

Table 3.1: Columns of aero.tab file

```
# $1
           aerosol layer top altitude [km]
# $2
           aerosol layer bottom altitude [km]
# $3
           transition layer thickness [km]
# $4
           source for optical properties
# $5
           refractive index file
# $6
           particle concentration of log-normal mode in cm<sup>-3</sup>
# $7
           median radius of log-normal mode in \mum
# $8
           width of log-normal mode
```

	Do:							
1	14.0	13.0	0.01	MIE	\$J/refrac/ice-266K-warren.dat	0.032	3.6	1.6
2	14.0	13.0	0.01	MIE	\$J/refrac/h2so4-215K-shettle.dat	340.0	0.065	1.7
3	14.0	13.0	0.01	MIE	\$J/refrac/h2so4-215K-shettle.dat	5.0	0.49	1.3
4	12.0	10.0	0.01	MIE	\$J/refrac/h2so4-215K-shettle.dat	340.0	0.065	1.7
5	12.0	10.0	0.01	MIE	\$J/refrac/h2so4-215K-shettle.dat	5.0	0.49	1.3
6	9.0	8.0	0.01	MIE	\$J/refrac/ice-266K-warren.dat	0.032	3.6	1.6
	Don't:							
1	14.0	13.0	0.01	MIE	\$J/refrac/ice-266K-warren.dat	0.032	3.6	1.6
2	14.0	13.0	0.01	MIE	\$J/refrac/h2so4-215K-shettle.dat	340.0	0.065	1.75
3	14.0	12.0	0.01	MIE	\$J/refrac/h2so4-215K-shettle.dat	5.0	0.49	1.3

Column 3, the transition layer thickness, defines the distance where the particle concentration decreases to zero. We highly recommend to use sharp cloud edges or small transition layers e.g. 0.01 km.

Column 4, the source for the optical properties can be

- Mie: internal Mie code with Gauss-Hermite integration
- Ext: external database, e.g. for non-spherical particles not implemented yet
- MieBin: internal Mie code with integration over binned data not implemented yet
- ???: we keep this extendable

Column 5 contains the path and name of an external file. For the Mie code complex refractive indices are required. The refractive index file is described in 3.6. For an external database of optical properties the file name must be given here. The optical properties database format is described in 3.5.

Columns 6-8, for Mie calculations we use mono-modal log-normal particle size distributions with the parameters (particle concentration, median radius and width) given in columns 6 to 8. If an external database is used columns 6 to 8 must be set to "0".

The aerosol/cloud and scattering related control file parameters are listed in Table 3.3.

TO DO example for external data base

3.2 Atmosphere File

The atmosphere file (atm.tab) is a XX+1 column list containing the temperature, pressure and volume mixing ratio profiles on a certain altitude grid. The number of total columns increases with the number of trace gases. The column order of the trace gases must be the same as the trace gas name order given in the control file (3.3). The tool climatology (5.2) can be used to generate some default atmosphere files with an arbitrary altitude grid. The atmosphere related control file parameters are optional and listed in Table 3.3.

The atmosphere file is the setup information for forward simulations. For retrievals it is the a priori information. Retrieval results are written in the same format (atmosphere structure) into a new file (e.g atm_res.tab). The retrieval output file names are hard-coded.

```
Table 3.2: Columns of atm. tab file
# $1
               time (seconds since 2000-01-01T00:00Z)
# $2
               altitude [km]
# $3
               longitude [deg]
# $4
               latitude [deg]
               pressure [hPa]
# $5
# $6
               temperature [K]
            =
# $7
               CO2 volume mixing ratio
# $8
               H2O volume mixing ratio
# $9
               O3 volume mixing ratio
# $XX
               XX volume mixing ratio
# $XX+1
               window 0: extinction [1/km]
```

3.3 Control File

The control file (e.g. clear.ctl) contains all general setup parameters for simulation and retrieval runs. All mandatory and optional parameters are listed in Tables 3.3 and 3.4. Examples for clear air and aerosol simulation setups are given in Section 3.3.8.

3.3.1 Aerosol and Clouds

See Section 6.1 for detailed description.

Table 3.3: Control flags

flag name	purpose	default	options		
Emitter					
NG EMITTER[NG]	number of emitter emitter name (trace gas name)	0 "	0-15 List of emitter names in Section 3.3.4		
Radiance channe	ls	I			
ND NU[ND]	number of radiance channels central wave number of each channel in ${\rm cm}^{-1}$	0 "	$0-50$ range: $600-3000 \mathrm{cm}^{-1}$???		
Spectral windows	S				
NW	number of spectral windows	1	1-5		
WINDOW[ND]	window index of each channel	0			
Emissivity look-u	-				
TBLBASE	look-up table path and prefix	"_"			
Hydrostatic equil					
HYDZ	reference height for hydrostatic pressure profile	-999	-999: skip this option in km???		
Continua					
CTM_CO2	CO2-continuum	1	0: off; 1: on		
CTM_H2O	H2O-continuum	1	0: off; 1: on		
CTM_N2	N2-continuum	1	0: off; 1: on		
CTM_O2	O2-continuum	1	0: off; 1: on		
Aerosol and Clou					
SCA_N SCA_MULT	number of scattering models multiple scattering - number	0	0-XX 0: clear air (no extinction, no scattering) 0: extinction only		
SCA_EXT	of recursions; to be used if SCA_N≥1 extinction coefficient; to be used if SCA_MULT= 0	beta_a	1: single scattering \geq 2: multiple scattering beta_e: β_e beta_a: β_a		
Atmosphere/Climatology					
ZMIN	atmosphere bottom altitude	0	in km		
ZMAX	atmosphere top altitude	0	in km		
DZ	atmosphere vertical grid	1	in km		

Table 3.4: Control flags

flag name	purpose Table 3.4: Control flags	default	options			
Ray-tracing						
REFRAC	refraction in the atmosphere	1	1: on; 0: off			
RAYDS	maximum step lengths for	10	10 km: suitable for limb			
	raytracing		1 km: suitable for nadir			
RAYDZ	maximum vertical component of	1	1 km is reasonable			
	step length					
TRANSS	transition layer sampling step	0.02	0.01-0.1 km is reasonable			
Interpolation of atmo	ospheric data					
IP	interpolation method	1	1: profile			
			2: satellite track			
			3: Lagrangian grid			
CZ	influence length for vertical	0	in km			
	interpolation					
CX	influence length for horizontal	0	in km			
	interpolation					
Field of view						
FOV	field-of-view data file	"_"	path+filename			
Retrieval interface						
RETP_ZMIN	minimum altitude for pressure retrieval	-999	in km			
RETP_ZMAX	maximum altitude for pressure retrieval	-999	in km			
RETT_ZMIN	minimum altitude for	-999	in km			
	temperature retrieval	-555	III KIII			
RETT_ZMAX	maximum altitude for	-999	in km			
	temperature retrieval		111 1111			
RETQ_ZMIN[NG]	minimum altitude for volume	-999	in km			
	mixing ratio retrieval					
RETQ_ZMAX[NG]	maximum altitude for volume	-999	in km			
	mixing ratio retrieval					
RETK_ZMIN[NW]	minimum altitude for extinction	-999	in km			
	retrieval					
RETK_ZMAX[NW]	maximum altitude for extinction	-999	in km			
	retrieval					
Output flags						
WRITE_BBT	use brightness temperature	0	0: no; 1: yes			
	instead of radiance					
WRITE_MATRIX	write matrix data	0	0: no; 1: yes			

3.3.2 Continua

TO DOkurze Beschreibung, welches Schema?

3.3.3 Emissivity look-up Tables

Basename for table files and filter function files. Look-up tables are created in instrument specific spectral resolution/sampling. The look-up tables are described in 3.7.

3.3.4 Emitter

A list of supported trace gases is given in Table 3.5. The reading routine is not case sensitive.

3.3.5 Field of View

TO DO

3.3.6 Ray-tracing

The lengths of the line-of-sight segments to be integrated is either determined by RAYDS (total segment length) or RAYDZ (z-component of segment length). For limb scenarios RAYDS is most likely the limiting value and in nadir scenarios RAYDZ will be the limiting value. For limb-scenarios RAYDS = $10\,\mathrm{km}$ is reasonable. In nadir and sub-limb-scenarios a segment length of $10\,\mathrm{km}$ is too much to sample steep atmospheric gradients (temperature, trace gases). Especially for scattering simulations, where limb, sub-limb and nadir pathes are calculated a reasonable combination of RAYDS and RAYDZ is required for fast and accurate simulations. From our experience RAYDS = $10\,\mathrm{km}$ and RAYDZ = $0.1-1\,\mathrm{km}$ offer a good trade off for accuracy and efficiency.

For cloud and aerosol simulations with a transition layer larger than $20 \,\mathrm{m}$ the parameter TRANSS refines the sampling grid within the transition layer. The default value is TRANS = $20 \,\mathrm{m}$. (Please see further comments on transition layers in Section 6.1.)

Table 3.5: Trace Gases

Emitter Name	Formula	Name Name
C2H2	C_2H_2	acetylene
C2H6	C_2H_6	ethane
CCl4	CCl_4	carbon tetrachloride
CH4	CH_4	methane
ClO	ClO	chlorine monoxide
ClONO2	$ClONO_2$	chlorine nitrate
CO	CO	carbon monoxide
COF2	COF_2	carbonyl fluoride
F11	CCl_3F	trichlorofluoromethane
F12	CCl_2F_2	dichlorodifluoromethane
F14	CF_4	tetrafluoromethane
F22	$CHClF_2$	chlorodifluoromethane
H2O	$\mathrm{H_{2}O}$	water
H2O2	$\mathrm{H_2O_2}$	hydrogen peroxide
HCN	HCN	hydrogen cyanide
HNO3	HNO_3	nitric acid
HNO4	HNO_4	peroxynitric acid
HOCl	HOCl	hypochlorous acid
N2O	N_2O	nitrous oxide
N2O5	N_2O_5	dinitrogen pentoxide
NH3	NH_3	ammonia
NO	NO	nitric oxide
NO2	NO_2	nitrogen dioxide
O3	O_3	ozone
OCS	OCS	carbonyl sulfide
SF6	SF_6	sulfur hexafluoride
SO2	SO_2	sulfur dioxide

3.3.7 Spectral Windows

Each channel can be assigned to a window e.g. to have a constant extinction for all channels.

3.3.8 Examples

TO DOinclude clear air and aerosol example with minted

3.4 Observation File

The observation file (obs.tab) is a multi-column list containing the geometry information (time, observer, view point and tangent point position) and the (measured) radiances (and/or transmittances) for each channel. (View point and tangent point differ, because of atmospheric refraction.) The number of columns increases with the number of channels. For retrievals this file contains the measurements. For forward simulations this file defines the viewing geometry. Columns 1 to 7 are mandatory. (Kann mann hier statt 5-7 auch 8-10 angeben? Ist fr diese conversion im Code was vorgesehen?) The forward simulation output is written in the same format (observation structure) into a new file specified when calling the forward model (e.g. rad.tab).

Wie generiert man eine Beobachtungsgeometrie????

```
Table 3.6: Columns of obs. tab file
# $1
                 time [seconds since 2000-01-01T00:00Z]
# $2
                 observer altitude [km]
# $3
                 observer longitude [deg]
# $4
                 observer latitude [deg]
# $5
                 view point altitude [km]
# $6
                 view point longitude [deg]
# $7
                 view point latitude [deg]
            =
# $8
                 tangent point altitude [km]
# $9
                 tangent point longitude [deg]
# $10
                 tangent point latitude [deg]
# $11
                 channel 792: radiance [W/(m^2 \text{ sr cm}^{-1})]
# $12
                 channel 792: transmittance
                 channel XX: radiance [W/(m^2 \text{ sr cm}^{-1})]
# $XX
                 channel XX: transmittance
# $XX+1
```

3.5 Optical Properties Database

TO DONot implemented yet.

3.6 Refractive Index File

The refractive index file contains the wavenumber dependent complex refractive indices in the format given in Table 3.7. A formatted colletion can be found in the folder refrac. One file contains the data set for one temperature (given in the file name). All refractive indices are taken from the HITRAN database (Rothman et al., 2009) aerosol compilation. References to the original sources are given there.

```
# $1 = wavenumber [cm-1]

# $2 = real part

# $3 = imaginary part
```

3.7 Tables

TO DODescribe me!!!

Output Files

output

Tools

5.1 brightness

5.2 climatology

The climatology tool can be used to generate the atmosphere file (atm.tab). This tool interpolates the chosen climatology from Remedios et al. (2007) onto the defined altitude grid and adds the trace gases in the same order as given in the control file. One can choose between polar winter (pwin), polar summer (psum), midlatitude (midl) and equatorial (equ) atmosphere (example 2). The default is the midlatitude atmosphere (example 1). The input grid can be taken from an already existing atm.tab file (example 3). The grid points e.g. with 500 m vertical spacing will be taken from the file, but not the data! The control file parameters relevant for the climatology tool can be found in Table 3.3 in the Emitter and Atmosphere/Climatology sections.

The Remedios climatology clim_remedios.tab is in the clim folder. Either copy the climatology into the working directory or set a link.

Examples

```
0 ../src/climatology [control file] [input grid] [output] [optional]
1 ../src/climatology clear-air.ctl - atm.tab
2 ../src/climatology clear-air.ctl - atm.tab CLIMZONE pwin
3 ../src/climatology clear-air.ctl atm2.tab atm.tab
```

- 5.3 collect
- 5.4 formod
- 5.5 interpolate
- 5.6 kernel
- 5.7 limb
- 5.8 planck
- 5.9 raytrace
- 5.10 retrieval
- 5.11 tab2bin

Documentation

6.1 Aerosol

Aerosol and cloud sampling: Done in raytracing. Extra los points about 5 m above and below cloud edges.

Sabines hint:

Generally transition layers are a nasty idea. They make physical interpretations much more complicated/difficult, e.g see Griessbach et al. (2013) and Höpfner et al. (2009) scenarios 4 and 5 for the effects of transition layer sampling. I would strongly recommend to avoid transition layers as long as possible.

Anyway, real clouds usually have sharp cloud egdges (e.g. lifting condensation level).

Appendix A

Lists of Constants and Dimensions

A.1 Physical Constants

Table A.1: Physical constants in pirat.h.

name	purpose	value
C1	First spectroscopic constant $(c_1 = 2hc^2)$ [W/(m ² sr cm ⁻⁴)]	1.19104259e-8
C2	Second spectroscopic constant ($c_2 = hc/k$) [K/cm ⁻¹]	1.43877506
P0	Standard pressure [hPa]	1013.25
RE	Mean radius of Earth [km]	6367.421
ME	Mass of Earth [kg]	5.976e24
SCA_TSUN	temperature of the sun [K]	5780

A.2 Dimensions

Table A.2: Dimensions in control.h.					
name	purpose	value			
LEN	Maximum length of ASCII data lines	5000			
MMAX	Maximum size of measurement vector	(NRMAX×NDMAX)			
NMAX	Maximum size of state vector	(NQMAX×NPMAX)			
NQMAX	Maximum number of quantities	(2+NGMAX+NWMAX)			
NWMAX	Maximum number of spectral windows	5			
NDMAX	Maximum number of radiance channels	50			
NGMAX	Maximum number of emitters	15			
NLOS	Maximum number of LOS points	1000			
NPMAX	Maximum number of atmospheric data points	1000			
NRMAX	Maximum number of ray paths	1000			
NSHAPE	Maximum number of shape function grid points	10000			
NFOV	Number of ray paths used for FOV calculations	5			
TBLNPMAX	Maximum number of pressure levels in	40			
	emissivity tables				
TBLNSMAX	Maximum number of source function	1201			
	temperature levels				
TBLNTMAX	Maximum number of temperatures in	30			
	emissivity tables				
TBLNUMAX	Maximum number of column densities in	320			
	emissivity tables				
SCAMOD	Maximum number of scattering models	15			
NLMAX	Maximum number of aerosol/cloud layers	10			
NRAD	Number of points for Gauss-Hermite	170			
	integration				
NTHETA	Number of scattering angles	181			
	(from 0 to 180 deg)				
REFMAX	Maximum number of refractive indices	5000			

Bibliography

- A. Dudhia. RFM Software User's Manual. Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, United Kingdom, 2014. URL http://www.atm.ox.ac.uk/{RFM}. last access: 24.07.2014.
- Anu Dudhia, Paul E. Morris, and Robert J. Wells. Fast monochromatic radiative transfer calculations for limb sounding. *J. Quant. Spectrosc. Radiat. Transfer*, 74: 745–756, 2002.
- Larry L. Gordley and James M. Russell. Rapid inversion of limb radiance data using an emissivity growth approximation. *Appl. Optics*, 20:807–813, 1981.
- S. Griessbach, L. Hoffmann, M. von Hobe, R. Müller, R. Spang, and M. Riese. A six-year record of volcanic ash detection with Envisat MIPAS. In *Proceedings of ESA ATMOS 2012*. European Space Agency, ESA Special Publication SP-708 (CD-ROM), 2012.
- S. Griessbach, L. Hoffmann, M. Hoepfner, M. Riese, and R. Spang. Scattering in infrared radiative transfer: A comparison between the spectrally averaging model JURASSIC and the line-by-line model KOPRA. *J. Quant. Spectrosc. Radiat. Transfer*, 27:102–118, 2013. doi: 10.1016/j.jqsrt.2013.05.004.
- S. Griessbach, L. Hoffmann, R. Spang, and M. Riese. Volcanic ash detection with infrared limb sounding: MIPAS observations and radiative transfer simulations. *Atmos. Meas. Tech.*, 7(5):1487–1507, 2014. doi: 10.5194/amt-7-1487-2014.
- Sabine Grießbach. Clouds and aerosol in infrared radiative transfer calculations for the analysis of satellite observations, volume 139 of Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt. Forschungszentrum Jülich, Jülich, 2012. ISBN 978-3-89336-785-6. URL http://juwel.fz-juelich.de:8080/dspace/handle/2128/4597. last access: 24.07.2014.
- Alison W. Grimsdell, M. Joan Alexander, Peter T. May, and Lars Hoffmann. Model study of waves generated by convection with direct validation via satellite. *J. Atmos. Sci.*, 67(5):1617–1631, 2010.

26 BIBLIOGRAPHY

L. Hoffmann and M. J. Alexander. Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies. *J. Geophys. Res.*, 114, 2009. doi: 10.1029/2008JD011241.

- L. Hoffmann, M. Kaufmann, R. Spang, R. Müller, J.J. Remedios, D. P. Moore, C. M. Volk, T. von Clarmann, and M. Riese. Envisat MIPAS measurements of CFC-11: retrieval, validation, and climatology. *Atmos. Chem. Phys.*, 8:3671–3688, 2008.
- L. Hoffmann, K. Weigel, R. Spang, S. Schroeder, K. Arndt, C. Lehmann, M. Kaufmann, M. Ern, P. Preusse, F. Stroh, and M. Riese. CRISTA-NF measurements of water vapor during the SCOUT-O3 Tropical Aircraft Campaign. Adv. Space Res., 43: 74–81, 2009.
- L. Hoffmann, X. Xue, and M. J. Alexander. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. *J. Geophys. Res.*, 118:416–434, 2013. doi: 10.1029/2012JD018658.
- Lars Hoffmann. Schnelle Spurengasretrieval für das Satellitenexperiment Envisat MI-PAS. Technical Report JUEL-4207, Forschungszentrum Jülich, Germany, 2006. ISSN 0944-2952.
- Lars Hoffmann, Reinhold Spang, Martin Kaufmann, and Martin Riese. Retrieval of CFC-11 and CFC-12 from Envisat MIPAS observations by means of rapid radiative transfer calculations. *Adv. Space Res.*, 36:915–921, 2005.
- M. Höpfner, M. C. Pitts, and L. R. Poole. Comparison between CALIPSO and MIPAS observations of polar stratospheric clouds. *J. Geophys. Res.*, 114, 2009. doi: 10. 1029/2009JD012114.
- Michael Höpfner and Claudia Emde. Comparison of single and multiple scattering approaches for the simulation of limb-emission observations in the mid-IR. *J. Quant. Spectrosc. Radiat. Transfer*, 91:275–285, 2005.
- L.Hoffmann, 2014. URL http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/JURASSIC/_node.html. last access: 24.07.2014.
- Benjamin T. Marshall, Larry L. Gordley, and D. Allen Chu. BANDPAK: Algorithms for modeling broadband transmission and radiance. *J. Quant. Spectrosc. Radiat. Transfer*, 52:581–599, 1994.
- J. J. Remedios, R. J. Leigh, A. M. Waterfall, D. P. Moore, H. Sembhi, I. Parkes, J. Greenhough, M.P. Chipperfield, and D. Hauglustaine. MIPAS reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2 geophysical data sets. Atmos. Chem. Phys. Discuss., 7:9973–10017, 2007.
- L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk,

BIBLIOGRAPHY 27

V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 110(9-10):533-572, 2009.

- G. P. Stiller. The Karlsruhe Optimized and Precise Radiative Transfer Algorithm (KOPRA). Technical Report FZKA-6487, Forschungszentrum Karlsruhe, 2000.
- Gabriele P. Stiller, Thomas von Clarmann, Bernd Funke, Norbert Glatthor, Frank Hase, Michael Höpfner, and Andrea Linden. Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modelling. *Appl. Optics*, 41:249–280, 2002.
- J. Ungermann, M. Kaufmann, L. Hoffmann, P. Preusse, H. Oelhaf, F. Friedl-Vallon, and M. Riese. Towards a 3-D tomographic retrieval for the air-borne limb-imager GLORIA. *Atmos. Meas. Tech.*, 3(4):2995–3046, 2010. doi: 10.5194/amtd-3-2995-2010.
- K. Weigel, M. Riese, L. Hoffmann, S. Hoefer, C. Kalicinsky, P. Knieling, F. Olschewski, P. Preusse, F. Stroh, R. Spang, and C. M. Volk. CRISTA-NF measurements during the AMMA-SCOUT-O3 aircraft campaign. *Atmos. Meas. Tech.*, 3:1437–1455, 2010.
- Michael P. Weinreb and Arthur C. Neuendorffer. Method to apply homogeneous-path transmittance models to inhomogeneous atmospheres. *J. Atmos. Sci.*, 30:662–666, 1973.