

NUC972 开发板

介绍

2015, 01, 09 新唐科技公司

解说员:黄永盛

电话: +886-3-5786612 #7608

Email: yshuang@nuvoton.com

概观

- 系统方块图标
- 功能
- 开发板外观
- 主板方块
- 脚位功能定义及功耗 (excel)
- 板子说明
- 包装及命名方式
- 问题现象
- 常见的提问问题
 - 及时时间计数的电源控制
 - ■以太网络布线方针

系统方块图标

功能I

- CAN Bus x 2
- EBI 汇流接口
 - 10-位地址汇流
 - 16-位数据汇流
- 外部 audio codec with IIS接口
 - 声音编译码器, NAU8822L.
 - 双麦克风.
- 人机接口:
 - Power Key x 1, Reset Key x 1
 - 3 x 2 矩阵方式按键
 - 5" LCD with 24-bit RGB 具电阻型态触控屏
 - 影像传感器

功能 II

- 记忆储存 eMMC 卡, SD 卡, NAND 快闪 & SPI 快闪.
- PWM x 4
- JTAG
- UART with RS232 transceiver 五紅
 - UART0 = PE[0:1], 预设是 UART 0 为除错讯息用
 - UART2 = PF[11:14], UART6 = PB[2:5], UART10 = PB[11:15], UART1 = PE[2:6]
- Other UART 五組
 - UART4=PC[10:13], UART8=PI[11:15], UART9=PD[11:12], UART7=PI[1:2], UART5=PB[0:1]五組
- USB
 - USB0 is HOST/DEVICE either one option
 - USB1 is Host
- ADC x 8
 - ADC0 电池侦测.
 - ADC [3:7] 触控.

主板外观

附属板外观

5" 24-位 LCD 板

CMOS 感测板 Back to continue

组合外观

Back to continue

主板外观

9

开发板说明I

- ■电源方块
 - ◆以 RTCWkUp & RTCPWREn 做系统电源控制
- RTC 电源输入
 - ◆低压降稳压器 NTC3705
 - ◆ 电池座 CR2032.
- JTAG ICE 界面
- U-Link 不接系统的复位电路.
- 周边装置 1
 - eMMC 闪存 与 NAND 快闪复用脚位 (PI[5:9]).
 - NAND 闪存-与 eMMC 快闪复用脚位 (PI[5:9]).
 - SD
 - SPI 闪存 4-位.

开发板说明 II

- 周边装置 2
 - CAN 汇流 x 2
 - ◆电压转换速率设定, SW19.
 - PWM x 4
- 周边装置 3
 - IIS NAU8822L
 - 以太网络 RMII
 - USB
 - ◆ USB HOST GPIO 控制电源.
 - SIM 卡

开发板说明 III

- 周边装置 4
 - 3 x 2 矩阵式按键.
 - CMOS 传感器.
 - LCD 5" RGB888.
 - ◆触控屏 ADC[3:7].
 - ◆PWM Backlight control.
 - EBI 脚针.
- 周边装置 6
 - UART0 除错讯息
 - UART[1:4]

开发板说明 IV

- 周边装置 5
 - ■电源启动参数设定
 - ◆ PA[0:9] (= Cfg[0:9])
 - ◆ 设定的脚位需用 10KΩ 下拉到地.

Cfg[1:0] =	00: USB 启动. 01: eMMC 启动. 10: NANA 快闪启动. 11: SPI 快闪启动.
Cfg2 =	0: 系统钟讯号来自 12 MHz 晶振. 1:系统钟讯号来自 UPLL 输出.
Cfg3 =	0: WDT 电源启动关闭. 1: WDT 电源启动打开.
Cfg4 =	0 : PJ[4:0] 当作 GPIO 脚位. 1 : PJ[4:0]当作 JTAG 界面.

Cfg5 =	0: UARTO 除错讯息打开. 1: UARTO 除错讯息关闭.
Cfg[7:6] =	00: NAND 快闪页大小是 2KB. 01: NAND 快闪页大小是 4KB. 10: NAND 快闪页大小是 8KB. 11: 忽略电源启动设定.
Cfg[9:8] =	00: NAND 快闪 ECC 型态是 BCH T12. 01: NAND 快闪 ECC 型态是 BCH T15. 10: NAND 快闪 ECC 型态是 BCH T24. 11: 忽略电源启动设定.

包装型号及命名方式

- 包装型号:
 - NUC972DF62Y
 - NUC973DF62Y
 - NUC976DK51Y
 - NUC976DK52Y
 - NUC976DK62Y
 - NUC977DK62Y

• 命名方式:

平台使用事项I

- 电源复位
 - ◆ U-Link 不连接系统复位电路,在 2nd 开发板断开 J4。
 - ◆ JTAG 1st开发板直接接到系统复位电路. 2nd 增加一个开关 (J4) 短路接到复位电路。
- USB 0
 - ◆ 软件辨识 (USB_ID) device 或 host 状态.
 - ◆ USB电源电源保护器件可由硬件开关控制,或者由软件控制。

• ICE Link

- 启动 NuWriter 连接后, 再开启 (J-link 或 U-link) ICE。
- 安装 WinUSB4NuCom

平台使用事项II

- IIC
 - PG[1:0] IIS ∘
 - PB[1:0] 影像传感器,软件动作。
- ADC
 - ADC0
 - ◆ 泄漏电流 → 0.5mA.
 - ◆加一个开关电路减少泄漏电流。

常见问题

- 排针
 - 双排, VD33: 前两脚, VS: 后两脚。
- UARTO
 - ■无讯息输出
 - → SW31.1 必须打开。
- NAND 失效
 - 总线与eMMC复用.
 - → 关掉 SW11.
- SIM 卡失效
 - ■与IIS复用。
 - \rightarrow Turn off SW15.

RTC 电源控制

- RTC 的缓存器设定
 - PCLR_TIME
 - ◆ 当电源案件被压下后,在电荷区间被清除。时间级距是 1秒到 5 秒。
 - ◆ Key_Pressed_Period_To_Power_Off = (PCLR_TIME+3) sec.
 - EDGE_TRIG
 - ◆1=边缘触发
 - ◆0=位准触发(≥程序设定时间).
 - HW_PCLR_EN
 - ◆ = 1, 当电源按键压下超过 PCLR_TIME, RPWR 脚将被清除到低电位。
 - ◆ = 0, 电源件压下RPWR 脚不被影响。
 - PWR_ON
 - ightharpoonup PWRCE = 1 $lip PWR_ON$ = 1.
 - ◆ PWRCE = 0 当 PWR_ON = 0, HW_PCLR_EN = 1 且电源件被压下 超过设定时间。

RTC Control Waveform

RTC 检查表

编号	外部 RTC	内建 RC	V _{RTC}
	OSC.	给 RTC	
N3290x	$\sqrt{}$	×	1.8V
N3291x	$\sqrt{}$		3.3V
N3292x			3.3V
NUC97x		×	3.3V

20

以太网络核实

- 为何以太网络线少于100米?
 - 是标准 CAT-5/CAT-5e?

线缆标示 "24AWG/4P UTP TIA/EIA 568-A CATEGORY 5E LOCAL AREA NETWORK CABLE".

- 以太网络的 PHY 可达 100米?
- RJ-45 (以太网络连接器) 外壳要接到地?

以太网络 PHY 布线方向

- DIFF. 阻抗 (Tx+/Tx-, Rx+/Rx-) 是 100Ω, PHY 和 变压器靠近.
- Tx/Rx 讯号线 (红/绿线) 等长.
- Tx/Rx 讯号线 (红/绿线) 不大于12 公分.
- RMII to PHY bus 等长 至少 6-miles 线宽, 建议线长不大于20 公分
- 周围围地
 - Tx+/Tx-, Rx+/Rx- Iset, 晶振
 - 如果需要在变压器下方走线, D2 ≥ 60mil.
- 在Tx/Rx 讯号线 (红/绿线) 之
- D1 \geq 60mil, D2 \geq 80mil

