# TYPES OF DATA ANALYTICS

### 4 types of Data Analytics



#### What is the data telling you?

#### Descriptive: What's happening in my business?

- Comprehensive, accurate and live data
- Effective visualisation

#### Diagnostic: Why is it happening?

- Ability to drill down to the root-cause
- Ability to isolate all confounding information

#### Predictive: What's likely to happen?

- Business strategies have remained fairly consistent over time
- Historical patterns being used to predict specific outcomes using algorithms
- Decisions are automated using algorithms and technology

#### Prescriptive: What do I need to do?

- Recommended actions and strategies based on champion / challenger testing strategy outcomes
- Applying advanced analytical techniques to make specific recommendations

Complexity



# DESCRIPTIVE STATISTICS



## MEASURE OF CENTRAL TENDANCIES

- One number that best summarizes the entire set of measurements.
- It is also called measure of central location.
- A number that is in some way "central" to the set.
- Depending upon the application various methods are used.



### **Standard Deviation**



# Standard Deviation

• Standard deviation is the squared root of variance:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (\bar{x} - x_i)^2}{n}}$$

**Note**: If the data points are too far from the mean, there is higher deviation within the data set.

| ×i | $x_i - \overline{x}$ | $(x_i - \overline{x})^2$ |
|----|----------------------|--------------------------|
| 6  | 6 – 9 = –3           | 9                        |
| 7  | 7 - 9 = -2           | 4                        |
| 10 | 10 - 9 = 1           | 1                        |
| 12 | 12 - 9 = 3           | 9                        |
| 13 | 13 - 9 = 4           | 16                       |
| 4  | 4 - 9 = -5           | 25                       |
| 8  | 8 - 9 = -1           | 1                        |
| 12 | 12 - 9 = 3           | 9                        |
|    | Σ                    | $(x_i - \bar{x})^2 = 74$ |

Standard deviation of above case = root(variance) = root(9.25) =3.041