General Topology Math Notes

Leon Lee

September 19, 2024

Contents

1	Intr	o to Topology	3
	1.1	Why Topology?	3
	1.2	Topological Spaces and Examples	3
		1.2.1 Examples of Topological Spaces	3
	1.3	Closed sets, Closure, Interior, and Boundary	6
	1.4	Open and closed sets in $\mathbb R$ with the usual topology $\ldots \ldots \ldots \ldots$	6
	1.5	Hausdorff Spaces	7

1 Intro to Topology

1.1 Why Topology?

Topology can appear where we least expect it...

- Algebraic Number Theory Next to Euclidean topology, can define other topologies on \mathbb{Q} (related to how often primes divide a number). Extends to Adeles, Langlands programme, etc
- Arithmetic Progressions in the Integers An arithmetic progression of length k is a set $\{a, a+d, \ldots, a+(k-1)d\}$ Finding subsets of $\mathbb N$ that contain arbitrarily long APs:
 - $-2\mathbb{N} \text{ or } \mathbb{N}$
 - Primes (Green-Tao Theorem, 2007). Green-Tao theorem relies on Szemeredi's Theorem: Any dense enough subset of N contains arbitrarily long APs

Furstenburg's idea: Get from
$$A \subseteq \mathbb{N}$$
 to $(a_i \in \{0,1\}^{\mathbb{N}})$ with $a_i \begin{cases} 1 & i \in A \\ 0 & \text{else} \end{cases}$

Use topological dynamics to study this: A topological dynamical system is a triple of X cpt, $T: X \to X$ continuous, and a probability measure μ preserved by T (what)

1.2 Topological Spaces and Examples

Definition 1.1: Topological Space

A **topological space** is a pair (X, \mathcal{T}) , where X is a nonempty set, and \mathcal{T} is a collection of subsets of X which satisfies:

- 1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$
- 2. if $U_{\lambda} \in \mathcal{T}$ for each $\lambda \in A$ (where A is some indexing set), then $\bigcup_{\lambda \in A} U_{\lambda} \in \mathcal{T}$
- 3. If $U_1, U_2 \in \mathcal{T}$, then $U_1 \cap U_2 \in \mathcal{T}$

1.2.1 Examples of Topological Spaces

- 1. \mathbb{R}^n with the Euclidean Topology induced by the Euclidean Metric
- 2. For any set X, $\mathcal{T} = \mathcal{P}(X)$ (discrete topology)
- 3. For any set X, $\mathcal{T} = \{\emptyset, X\}$ (indiscrete topology)
- 4. $X = \{0, 1, 2\}$ with $\mathcal{T} = \{\emptyset, X, \{0\}, \{0, 1\}, \{0, 2\}\}$
- 5. $X = \mathbb{R}$ and U open (aka, in \mathcal{T}) if $R \setminus U$ is finite or $U = \emptyset$

Proof for 5:

- 1. $\emptyset \in \mathcal{T}$, \emptyset is finite $\implies X \in \mathcal{T}$
- 2. Intersections of finite sets are finite
- 3. Unions of finite sets are finite

Definition 1.5: Neighbourhood of a point

A **neighbourhood** of a point $x \in X$ is a subset $N \subseteq X$ s.t. $x \in U \subseteq N$ for some open subset $U \subseteq X$

Definition 1.8: Metric Space

A metric space (X,d) is a nonempty set X together with a function

$$d: X \times X \to \mathbb{R}$$

with the following properties:

- 1. $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 iff x = y
- 2. d(x,y) = d(y,x) for all $x, y \in X$
- 3. $d(x,z) \leq d(x,y) + d(y,z)$ for all $x,y,z \in X$

The function d is called the metric. Point 3 is called the *triangle inequality*

For any $x \in X$ and any positive real number r the **open ball** in X with centre x and radius r is defined by

$$B(x,r) = \{ y \in X | d(x,y) < r \}$$

We declare a subset U of X to be open in the metric topology given by d iff for each $a \in U$ there is an r > 0 such that $B(a, r) \subseteq U$

If (X, \mathcal{T}) is a topological space, and if X admits a metric whose metric topology is precisely \mathcal{T} we say that (X, \mathcal{T}) is **metrisable**. Thus the euclidean spaces with their usual topologies are metrisable

Definition 1.16: Subspace Topology

Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$ be any subset. Then the **subspace** topology on A consists of all sets of the form $U \cap A$ where $U \in \mathcal{T}$

Theorem B: Topology Lemmas

- **1.3** If (X, \mathcal{T}) is a topological space and U_1, \ldots, U_n are open sets, then the intersection $\bigcap_{i=1}^n u_i$ is also open
- 1.6 In order to show that a set $U \subseteq X$ is open, it is enough to show that for every $x \in U$ there is an open set V with $x \in V \subseteq U$
- 1.6 A subset U of \mathbb{R}^n is open for the usual topology iff for each $a \in U$ there exists an r > 0 s.t.

$$|x - a| < r \implies x \in U$$

The collection of open sets thus defined is called the **usual topology on** \mathbb{R}^n . Note that open balls are open sets under this definition

Definition C: Topology Small Definitions

•

1.3 Closed sets, Closure, Interior, and Boundary

Definition 1.17: Closed Subsets

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is **closed** iff its complement $X \setminus A := \{x \in X \ x \notin A\}$ is open in X

Note: A set being "closed" has no connection with "not being open"

Theorem 1.19

Let (X, \mathcal{T}) be a topological space. Then

- 1. \emptyset and X are closed.
- 2. The union of finitely many closed sets is a closed set
- 3. The intersection of any collection of closed sets is a closed set

Definition 1.20: Closure, Interior, Boundary

Let (X, \mathcal{T}) be a topological space.

1. The **closure** of a subset $A \subseteq X$ is

$$\overline{A} := \bigcap_{C \subseteq X \text{closed}; \ A \subseteq C} C$$

2. The **interior** of a subset $A \subseteq X$ is

$$\operatorname{int} A = A^{\circ} := \bigcap_{U \subseteq X \text{ open; } U \subseteq A} C$$

3. The **boundary** or **frontier** of a subset $A \subseteq X$ is

$$\partial A := \overline{A} \backslash A^{\circ}$$

4. A subset A of X is **dense** in X iff $\overline{A} = X$

Theorem 1.22: Closure and Interior of Complement

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Then

1. The closure of the complement is the complement of the interior:

$$\overline{X \backslash A} = X \backslash (A^{\circ})$$

2. the interior of the complement is the complement of the closure:

$$(X\backslash A)^{\circ} = X\backslash \overline{A}$$

1.4 Open and closed sets in \mathbb{R} with the usual topology

1.5 Hausdorff Spaces

Definition 1.32: Hausdorff Space

A topological space (X, \mathcal{T}) is **Hausdorff** if for each $x, y \in X$ with $x \neq y$ there exist disjoint open sets U and V s.t. $x \in U$ and $y \in V$

If (X, d) is a metric space then it is automatically Hausdorff, so any metrisable space is Hausdorff. The trivial topology on a set with more than one element is not Hausdorff. Not every Hausdorff space is metrisable

Non-Hausdorff spaces are a lot more annoying to work with - for example you can have multiple limits in non-Hausdorff spaces

Definition 1.33: Convergence of Hausdorff Spaces

A sequence (x_n) of members of a topological space X converges to $x \in X$ if for every open set U containing x, there exists an N such that $n \geq N \implies x_n \in U$

Theorem 1.34: Haussdorf Convergence Uniqueness

Suppose (X, \mathcal{T}) is Hausdorff. Then a sequence (x_n) can converge to at most one limit.

Being Hausdorff is what's called a *topological property*, which means whether or not it is true in a particular case depends only on the open sets of the space in question.

In contrast, the property of *completeness* of a metric space is not a topological property as there exist sets upon which one can put two distinct metrics, one complete and one not, yet for which the metric topologies coincide

Definition 1.36: Cauchy Sequences

Let (X, d) be a metric space

- 1. A Cauchy Sequence is a sequence (x_n) with each $x_n \in X$ with the property that for each $\epsilon > 0$, there exists an N s.t. $m, n \geq N \implies d(x_m, x_n) < \epsilon$
- 2. (X,d) is **complete** if every Cauchy Sequence converges