# Convolutional Neural Network (Recap)

## Naeemullah Khan

naeemullah.khan@kaust.edu.sa

# Prashant Aparajeya



جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

KAUST Academy King Abdullah University of Science and Technology

May 20, 2025

4 D > 4 D > 4 E > 4 E > E 9 Q Q

KAUST Academy Sanyoli Kanal Newark May 20, 2025

## Table of Contents



- 1. Definition
- 2. Convolutional Layer
- 3. Activation Functions
- 4. Pooling Layers
- 5. Padding & Strides
- 6. Normalization (Batch Norm)
- 7. Regularization (Dropout)
- 8. Flattening & Fully Connected Layers
- 9. Loss Functions & Optimizers
- 10. Architectures
  - 10.1 LeNet
  - 10.2 AlexNet

# Table of Contents (cont.)



- 10.3 VGG
- 10.4 InceptionNet
- 10.5 ResNet
- 10.6 MobileNet
- 11. Transfer Learning
- 12. Evaluation Metrics
- 13. Further Reading

## CNN - Definition



- Convolutional Neural Networks (CNNs) are a class of deep learning models specifically designed for processing structured grid data, such as images.
- ► They are particularly effective for tasks like image classification, object detection, and segmentation.
- ► CNNs leverage the spatial structure of images by using convolutional layers to automatically learn hierarchical features.
- ► The architecture typically consists of convolutional layers, activation functions, pooling layers, and fully connected layers.
- ► CNNs are known for their ability to capture local patterns and translate them into higher-level representations.

## **CNN** Architecture



#### What is a CNN?

A CNN is a deep network of neurons with learnable filters that perform convolution operations on inputs, usually images, to extract hierarchical features.



## Why use CNNs?

Parameter sharing and sparse connectivity reduce number of parameters and improve spatial feature extraction.

## **CNN** Architecture



#### What makes a Convolutional Neural Network?

Characterised by "Convolutional Layer" – they are able to detect "abstract features" and "almost ideas within the image"



# Components of a CNN



### **Convolution Layers**



**Pooling Layers** 



**Fully-Connected Layers** 



**Activation Function** 



### Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

# CNN - Convolutional Layer



### Operation:

ightharpoonup Element-wise multiply filter with image patch and sum ightarrow feature map.

## Hyperparameters:

- kernel size
- number of filters
- stride
- padding

## Listing 1: Code snippet (PyTorch)

# CNN - Convolutional Layer





Interactive demo: cs231n.github.io/convolutional-networks

# Quick Exercise (5 mins)



### Let's find out what this can give us:

- ► Padding = 0
- ► Stride = 1



Note: Once you traverse entire image/matrix it will give you a matrix calls Feature Map or Activation Map.

## CNN - Activation Functions



#### Role:

Introduce non-linearity so multiple conv layers can learn complex mappings.

#### Common.

- ReLU (Rectified Linear Unit)
- ► Leaky ReLU
- ► Sigmoid
- ► Tanh

## Listing 2: Code snippet (PyTorch)

```
import torch.nn.functional as F
x = conv(input_tensor)
x = F.relu(x)
                           # ReLU
x = F.leaky_relu(x, 0.1) # Leaky ReLU
```

# CNN - Activation Functions





# CNN - Pooling Layers



### Purpose:

▶ Downsample feature maps, reduce spatial dims and parameters, add invariance.

## Types:

- Max Pooling
- Average Pooling
- ► Global Average Pooling
- ► Global Max Pooling

### Listing 3: Code snippet (PyTorch)

```
import torch.nn as nn
pool = nn.MaxPool2d(kernel_size=2, stride=2)
pooled = pool(x)  # halves H and W
```

# CNN - Pooling Layers





# CNN - Padding Strides



### Padding:

- "same" preserves spatial size by adding zeros around input;
- "valid" reduces spatial size by not adding any padding.
- ▶ Padding is used to control the spatial size of the output feature map.
- ▶ Padding is added to the input image before applying the convolution operation.

### Strides:

- ▶ Strides control how much the filter moves across the input image.
- ► Strides can be set independently for height and width.
- ▶ Strides are used to control the spatial size of the output feature map.
- Strides are set in the convolutional layer.

### Listing 4: Code snippet (PyTorch)

# CNN - Padding Strides









padding = 1, stride = 1



padding = 0, stride = 2



padding = 1, stride = 2

# CNN - Normalization (Batch Norm)



#### What:

▶ Normalize layer inputs over mini-batch, then scale shift.

#### Benefits:

- Faster training,
- ► Allows higher learning rates,
- Reduces sensitivity to initialization,
- Acts as a regularizer.

## Listing 5: Code snippet (PyTorch)

```
import torch.nn as nn
bn = nn.BatchNorm2d(16)
x = bn(x)
```

#### Note:

- BatchNorm is typically used after convolutional layers and before activation functions.
- ► BatchNorm normalizes activations per-batch, then scales/shifts them.

# CNN - Normalization (Batch Norm)





Figure 2: Order of placement of Batch Norm layer

More on Batch Norm from Towards Data Science

KAUST Academy Convolutional Neural Network May 20, 2025

# CNN - Regularization (Dropout)



#### What:

► Randomly drop units with probability p during training to prevent co-adaptation.

#### Where:

▶ Often after FC layers, sometimes after conv layers.

### Effect on images:

► Regularization does not alter the input images but modifies the training process to improve generalization.

### Listing 6: Code snippet (PyTorch)

```
import torch.nn as nn
drop = nn.Dropout(p=0.5)
x = drop(x)
```