

Course Handout (Part II)

Date: 26/08/2022

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : PHA G 535
Course Title : Biomaterials
Instructor-in-Charge : Dr. Nirmal J

Instructor(s) : Tutorial/Practical Instructors : NA

1. Course Description:

Introduction to biomaterials for pharmaceutical applications; polymeric biomaterials; Natural and synthetic polymers for drug delivery, regenerative medicine and nanomedicines; Polymer properties including crystallinity, glass transition, polymer degradation influencing pharmaceutical formulations; biocompatibility; biodegradation; in-vitro and in-vivo assessment of polymer toxicity.

2. Scope and Objective of the Course:

The objective of this course is to impart knowledge on various aspects of materials used in biomedical and pharmaceutical applications. The primary focus would be on the natural and synthetic polymers, their design, characterization, properties, assessment and applications in pharmaceuticals.

3. Text Books:

- 1. Abraham J. Domb, Neeraj Kumar and Aviva Ezra, Biodegradable Polymers in Clinical Use and Clinical Development, Published by John Wiley and Sons, Inc
- 2. Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons, Biomaterials Science An Introduction to Materials in Medicine, 2nd Edition, Elsevier Academic Press.

4. Reference Books:

- 1. Sangamesh G. Kum-bar, Cato Laurencin, Meng Deng, Natural and Synthetic Biomedical Polymer (1st edition), published by Elsevier Science.
- 2. Johnna S. Temenoff, Antonios G. Mikos, Biomaterials: The Intersection of Biology and Materials Science, 1st edition, Published by Pearson (January 2nd 2008)
- 3. Deepak Chitkara, Anupama Mittal, Ram I. Mahato, Molecular Medicines for Cancer: Concepts and Applications of Nanotechnology, CRC Press; 1 edition, 2018.

5. Course Plan:

Lecture	Learning	Topics to be covered	Reference	Learning
No	objectives			Outcome
1-8	Biomaterials for	What is the need for biomaterials?	T2. Section II.5	Understanding of
	Pharmaceutical	Introduction to biomaterials and its	R2 Ch. 1	biomaterials, their
	applications	applications in implants and drug delivery systems	Journal articles	uses in
				pharmaceutical
				formulations
9-15	Polymers for	Polymers of natural origin in	T1. CH. 2, 3, 4, 5	Understanding

A INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION

FIRST SEMESTER 2022-2023

Course Handout (Part II)

	biomedical	pharmaceuticals- Gelatin, collagen,	and 6	polymers of
	applications	chitosan, alginate, Dextrans	R1. Ch 4, 5	different origins,
			Journal articles	their structures,
		Synthetic polymers in	T1. CH. 9, 10 and 11	and properties
		pharmaceuticals-Polyesters,	R1. Ch. 6, 8, 10 and	
		polyanhydrides, polycarbonates, etc	11	
			Journal articles	
16-22	Polymer	olymer Polymer bulk and surface		Understanding
	properties	characterization. Thermal/mechanical	R2 Ch. 3 and 4	properties of the
	influencing	properties of polymers, surface and	Journal articles	polymers, different
	pharmaceutical	morphological characterization.		characterization
	formulations			techniques
23-28	Biodegradation	Degradation of materials in biological	T2. Section II.4	Understanding
		environment		properties of the
				biodegradation of
				polymers
29-33	In vitro and in	Biological response to biomaterials,	T2 Section II.2.1,	Understanding the
	vivo assessment	immune response to foreign materials,	II2.3, II.2.6	biological response
	of polymer	Blood-material interactions	R2 Ch. 9, 12	towards polymers
	toxicity		Journal articles	and their
		Biological Testing of biomaterials,	T2 Section II.3	assessment
		concept and assessment of	Journal articles, class	
		biocompatibility, in vitro and in vivo	notes	
		assessment, evaluation of blood		
		material interactions		
34-41	Polymers for	Polymeric systems for nucleic acid	R3. Ch 10, 11, 16	Understanding
	emerging	delivery	Journal articles, class	different
	clinical	Polymers for tissue engineering and	notes	application of
	applications	regenerative medicine		biomaterials in
		Polymers for nanomedicines		emerging areas

6. **Evaluation Scheme**:

Component	Duration	Weightage (%)	Date & Time	Remarks
Mid-Semester Test	90 min	25		Close book
Seminars/Assignments/ Research summaries		40	Will be announced in the class	Open book
Comprehensive Examination	180 min	35		35% Close book

INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION

FIRST SEMESTER 2022-2023

Course Handout (Part II)

*: Assignments/seminar topics, mode of evaluation and number will be announced in the regular class.

*Slides used during class hours provide key information for which additional supportive information is expected to be collected from sources aforementioned. Recent developments in the area/topic will be discussed in class based on their significance to healthcare delivery and hence some information on therapeutic benefits and toxicity effects, besides others, may differ from the information in text, reference material and hence students are expected to take note of such key discussions during contact hours. Such discussions held in class will be considered as primary source of information in assessments.

- **7. Chamber Consultation Hour**: To be announced in the class.
- **8. Notices:** Pharmacy Notice Board.
- **9. Make-up Policy:** Make-ups are not given as a routine. It is solely dependent on the "genuineness" of the circumstances under which a student fails to appear in a scheduled evaluation component. Prior permission should be sought from the instructor-in-charge in advance.
- **10. Note (if any): Grading Procedure:** As specified in Handout Part I, appended to the timetable, the instructor in-charge reserves the right to award a NC report in case the student does not make himself/ herself available for any of the evaluation component mentioned above. Also it is not imperative on part of the instructor in-charge to award all the grades. Borderline cases during grading will be judged on the basis of regularity to classes and consistency or progress in the performance in evaluation components. In borderline cases subjective judgment will be exercised for pull-up's (max. 2%).

Instructor-in-charge Course No. PHA G 535