Revision

Dr. Yuan Yao

University of Nottingham Ningbo China (UNNC)

Exam Preparation

Exam Information

- · Time allowed: 2 hours
- Total Marks: 100
- 75% of the final marks.
- · Four Questions.
- Question Types:
 - · True of False.
 - · Knowledge: Concepts and definitions.
 - · Proof.
 - Draw transition graphs.
 - ...

Content

Language and Computation

Language and Computation

Languages:

- Regular Languages.
- · Context-Free Languages.
- · Unrestricted Languages.

Models of Computation (Automaton):

- · Finite Automata.
- · Pushdown Automata.
- · Turing Machine.

Regular Languages

Three ways of representing the regular languages:

- · Finite Automaton:
 - · DFA and NFA.
 - E.g. $M = \{Q, \Sigma, \delta, q_0, F\}$
- · Regular Expression.
 - · It is unique to RL.
 - E.g., $a^* + b$
- · Regular Grammar.
 - *G* = (*V*, *T*, *S*, *P*), all productions are right-linear or all productions are left-linear.

Deterministic Finite Automata

· A deterministic finite automata (DFA) is defined by a 5-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- · Q is a finite set of internal states.
- Σ is a finite set of symbols called the **input alphabet**.
- $\delta: Q \times \Sigma \to Q$ is a total function called the **transition function**.
- $q_0 \in Q$ is the initial state.
- $F \subseteq Q$ is the set of **final states**.

Nondeterministic Finite Automaton (NFA)

- · Nondeterminism means a choice of moves.
- Formally, a **nondeterministic finite automaton** is defined as a 5-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

where Q, Σ , q_0 and F are defined as for DFA, but

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \to 2^Q$$

- Major differences between NFA and DFA:
 - In an NFA, the transition function returns a subset of *Q* rather than a single element in *Q*, e.g.,

$$\delta(q_1,a)=\{q_0,q_2\}$$

- · δ is can be a **partial function**.
- δ accepts λ as input, with which an NFA may change states without consuming input.

Properties of Regular Languages

- Clousure: If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , $\overline{L_1}$, L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation and star-closure.
- Membership: Given a standard representation of any regular language L on L and $w \in \Sigma^*$, there exists an algorithm to determine whether or not $w \in L$.
- Empty, Finite, Infinite: There exists an algorithm for determining whether a regular language, given in the standard representation, is empty, finite or infinite.
- · Non-Regular: Pigeonhole Principle, Pumping Lemma.

Context-Free Grammars

• Definition: We call G = (V, T, S, P) a context-free grammar (CFG) if all the productions in P have the form:

$$A \rightarrow X$$

in which $A \in V$, and $x \in (V \cup T)^*$.

- The left-hand side of each production is a single variable, where there is no restrictions on the right-hand side.
- We say that L is a **context-free language (CFL)** if and only if there is a context-free grammar G such that L = L(G), that is, L is generated by G.

Context-Free Grammars

- · What is a derivation?
- · How to write a derivation for a given string?
- · Leftmost and rightmost derivation?
- · What is a derivation tree?
- The parsing problem.
- The membership problem.
 - Exhaustive parsing.
- What is ambiguity?

Nondeterministic Pushdown Automata

- A nondeterministic pushdown automaton (NPDA) $M = (Q, \Sigma, \Gamma, \delta, q_0, \mathbf{z}, F)$ is defined by:
 - · Q: the finite set of internal states of the control unit.
 - Σ : the finite set of input alphabet.
 - Γ : the finite set of stack alphabet.
 - δ : the transition function with the type signature:

$$Q \times (\Sigma \cup {\lambda}) \times \Gamma \rightarrow P_f(Q \times \Gamma^*)$$

where $P_f(Q \times \Gamma^*)$ is the set of *finite subsets* of $(Q \times \Gamma^*)$

- $q_0 \in Q$: the initial state of the control unit.
- $z \in \Gamma$: the stack start symbol.
- $F \subseteq Q$: the set of final states.

Instantaneous Descriptions

- While transition graphs are convenient for describing NPDAs, they are not so suitable for formal reasoning.
- To trace the operation of an NPDA, we must keep track of:
 - 1. the current state of the control unit
 - 2. the unread part of the input string
 - 3. and the stack contents
- Instantaneous Description: The triplet (q, w, u) in which:
 - 1. q is the state of the control unit
 - 2. w is the unread part of the input string
 - 3. and *u* is the stack contents, with the leftmost symbol indicating the top of the stack

is called an instantaneous description of a pushdown automaton.

NPDA, DPDA and CFL

- How to convert a CFG to a corresponding NPDA?
 - · Greibach Normal Form.
- · What is a Deterministic Pushdown Automaton?
- The relationship between NPDA and DPDA.

Definition of a Turing Machine

- **Definition 9.1:** A Turing Machine $M = \{Q, \Sigma, \Gamma, \delta, q_0, \Box, F\}$ is defined by:
 - · Q: a finite set of internal states.
 - Σ : the input alphabet.
 - Γ : the tap alphabet.
 - $\delta: Q \times T \rightarrow Q \times \Gamma \times \{L, R\}$: the transition function.
 - · $\square \in \Gamma$: a special symbol called the blank.
 - $q_0 \in Q$: the initial state.
 - $F \subseteq$ the set of final states.
- In the definition of a Turing machine, we assume that:

$$\Sigma\subseteq\Gamma-\{\square\}$$

Instantaneous Description

• An instantaneous description of a machine in state *q* with the tape depicted in the figure below is as follows:

Turing Machine as Transducers

- · Transducers: transforms input into output.
- A Turing machine transducer implements a function that treats the original contents of the tape as its input and the final contents of the tape as its output.
- Turing machines are the most powerful model of computation as transducers as well:
 - · Arithmetic operators, Exponentiation, Integer logarithm;
 - · Comparison;
 - String manipulation;
 - ...

Turing Machine

- · Combining Turing Machine.
- · Universal Turing Machine.
- What is the Church-Turing Thesis?
- Computability and Decidability.
- The halting problem.