

## Inhalt

- 1. Systemdefinition
- 2. Tools
- 3. Explorative Datenanalyse
- 4. Monte-Carlo Simulation
- 5. Berechnung
- 6. Auswertung
- 7. Praxisbeispiel Tiefbauamt GR

# 1. Systemdefinition



#### 2. Tools



**Python v3.11.5** 





VSCode/Pycharm

| Date       | Uhrzeit | m [kg] | v [m/s] |
|------------|---------|--------|---------|
| 2019-01-01 | 09:00   | 38     | 45.4    |
| 2019-01-03 | 06:00   | 187    | 41.6    |
| 2019-01-04 | 10:00   | 36     | 44.6    |
| 2019-01-07 | 14:00   | 6      | 41.2    |
| 2019-01-11 | 06:00   | 65     | 39.6    |
| 2019-01-11 | 16:00   | 58     | 33.2    |
| 2019-01-14 | 11:00   | 365    | 40.2    |
| 2019-01-16 | 02:00   | 22     | 46.5    |
| 2019-01-18 | 06:00   | 146    | 36.2    |
| 2019-01-19 | 17:00   | 29     | 38.3    |
| 2019-01-20 | 22:00   | 40     | 41.6    |
| 2019-01-21 | 11:00   | 304    | 36.7    |

| Datum      | Uhrzeit | Masse [kg] | Geschwindigkeit [m/s] |
|------------|---------|------------|-----------------------|
| 2019-01-01 | 09:00   | 194        | 8.4                   |
| 2019-01-01 | 21:00   | 224        | 8.8                   |
| 2019-01-02 | 14:00   | 3104       | 9.2                   |
| 2019-01-04 | 15:00   | 228        | 8.0                   |
| 2019-01-05 | 23:00   | 755        | 7.0                   |
| 2019-01-08 | 16:00   | 215        | 6.5                   |
| 2019-01-10 | 10:00   | 300        | 7.9                   |
| 2019-01-11 | 08:00   | 1019       | 10.4                  |
| 2019-01-13 | 08:00   | 1288       | 10.8                  |
| 2019-01-15 | 05:00   | 344        | 10.0                  |
| 2019-01-17 | 14:00   | 707        | 6.0                   |
| 2019-01-17 | 18:00   | 938        | 10.2                  |

| Date       | Uhrzeit | m [kg] | v [m/s] |
|------------|---------|--------|---------|
| 2019-01-01 | 09:00   | 38     | 45.4    |
| 2019-01-03 | 06:00   | 187    | 41.6    |
| 2019-01-04 | 10:00   | 36     | 44.6    |
| 2019-01-07 | 14:00   | 6      | 41.2    |
| 2019-01-11 | 06:00   | 65     | 39.6    |
| 2019-01-11 | 16:00   | 58     | 33.2    |
| 2019-01-14 | 11:00   | 365    | 40.2    |
| 2019-01-16 | 02:00   | 22     | 46.5    |
| 2019-01-18 | 06:00   | 146    | 36.2    |
| 2019-01-19 | 17:00   | 29     | 38.3    |
| 2019-01-20 | 22:00   | 40     | 41.6    |
| 2019-01-21 | 11:00   | 304    | 36.7    |

| Datum      | Uhrzeit | Masse [kg] | Geschwindigkeit [m/s] |
|------------|---------|------------|-----------------------|
| 2019-01-01 | 09:00   | 194        | 8.4                   |
| 2019-01-01 | 21:00   | 224        | 8.8                   |
| 2019-01-02 | 14:00   | 3104       | 9.2                   |
| 2019-01-04 | 15:00   | 228        | 8.0                   |
| 2019-01-05 | 23:00   | 755        | 7.0                   |
| 2019-01-08 | 16:00   | 215        | 6.5                   |
| 2019-01-10 | 10:00   | 300        | 7.9                   |
| 2019-01-11 | 08:00   | 1019       | 10.4                  |
| 2019-01-13 | 08:00   | 1288       | 10.8                  |
| 2019-01-15 | 05:00   | 344        | 10.0                  |
| 2019-01-17 | 14:00   | 707        | 6.0                   |
| 2019-01-17 | 18:00   | 938        | 10.2                  |

| Date       | Uhrzeit | m [kg] | v [m/s] |
|------------|---------|--------|---------|
| 2019-01-01 | 09:00   | 38     | 45.4    |
| 2019-01-03 | 06:00   | 187    | 41.6    |
| 2019-01-04 | 10:00   | 36     | 44.6    |
| 2019-01-07 | 14:00   | 6      | 41.2    |
| 2019-01-11 | 06:00   | 65     | 39.6    |
| 2019-01-11 | 16:00   | 58     | 33.2    |
| 2019-01-14 | 11:00   | 365    | 40.2    |
| 2019-01-16 | 02:00   | 22     | 46.5    |
| 2019-01-18 | 06:00   | 146    | 36.2    |
| 2019-01-19 | 17:00   | 29     | 38.3    |
| 2019-01-20 | 22:00   | 40     | 41.6    |
| 2019-01-21 | 11:00   | 304    | 36.7    |

| Datum      | Uhrzeit | Masse [kg] | Geschwindigkeit [m/s] |
|------------|---------|------------|-----------------------|
| 2019-01-01 | 09:00   | 194        | 8.4                   |
| 2019-01-01 | 21:00   | 224        | 8.8                   |
| 2019-01-02 | 14:00   | 3104       | 9.2                   |
| 2019-01-04 | 15:00   | 228        | 8.0                   |
| 2019-01-05 | 23:00   | 755        | 7.0                   |
| 2019-01-08 | 16:00   | 215        | 6.5                   |
| 2019-01-10 | 10:00   | 300        | 7.9                   |
| 2019-01-11 | 08:00   | 1019       | 10.4                  |
| 2019-01-13 | 08:00   | 1288       | 10.8                  |
| 2019-01-15 | 05:00   | 344        | 10.0                  |
| 2019-01-17 | 14:00   | 707        | 6.0                   |
| 2019-01-17 | 18:00   | 938        | 10.2                  |

| Date       | Uhrzeit | m [kg] | v [m/s] |
|------------|---------|--------|---------|
| 2019-01-01 | 09:00   | 38     | 45.4    |
| 2019-01-03 | 06:00   | 187    | 41.6    |
| 2019-01-04 | 10:00   | 36     | 44.6    |
| 2019-01-07 | 14:00   | 6      | 41.2    |
| 2019-01-11 | 06:00   | 65     | 39.6    |
| 2019-01-11 | 16:00   | 58     | 33.2    |
| 2019-01-14 | 11:00   | 365    | 40.2    |
| 2019-01-16 | 02:00   | 22     | 46.5    |
| 2019-01-18 | 06:00   | 146    | 36.2    |
| 2019-01-19 | 17:00   | 29     | 38.3    |
| 2019-01-20 | 22:00   | 40     | 41.6    |
| 2019-01-21 | 11:00   | 304    | 36.7    |

| Datum      | Uhrzeit | Masse [kg] | Geschwindigkeit [m/s] |
|------------|---------|------------|-----------------------|
| 2019-01-01 | 09:00   | 194        | 8.4                   |
| 2019-01-01 | 21:00   | 224        | 8.8                   |
| 2019-01-02 | 14:00   | 3104       | 9.2                   |
| 2019-01-04 | 15:00   | 228        | 8.0                   |
| 2019-01-05 | 23:00   | 755        | 7.0                   |
| 2019-01-08 | 16:00   | 215        | 6.5                   |
| 2019-01-10 | 10:00   | 300        | 7.9                   |
| 2019-01-11 | 08:00   | 1019       | 10.4                  |
| 2019-01-13 | 08:00   | 1288       | 10.8                  |
| 2019-01-15 | 05:00   | 344        | 10.0                  |
| 2019-01-17 | 14:00   | 707        | 6.0                   |
| 2019-01-17 | 18:00   | 938        | 10.2                  |

|     | Date       | Time  | Mass [kg] | Velocity [m/s] | Kinetic Energy [kJ] | DateTime            | TimeDiffHours |
|-----|------------|-------|-----------|----------------|---------------------|---------------------|---------------|
| 0   | 01/01/2019 | 09:00 | 194       | 8.4            | 6.844320            | 2019-01-01 09:00:00 | 0.0           |
| 1   | 01/01/2019 | 21:00 | 224       | 8.8            | 8.673280            | 2019-01-01 21:00:00 | 12.0          |
| 2   | 02/01/2019 | 14:00 | 3104      | 9.2            | 131.361280          | 2019-01-02 14:00:00 | 17.0          |
| 3   | 04/01/2019 | 15:00 | 228       | 8.0            | 7.296000            | 2019-01-04 15:00:00 | 49.0          |
| 4   | 05/01/2019 | 23:00 | 755       | 7.0            | 18.497500           | 2019-01-05 23:00:00 | 32.0          |
| *** |            |       |           |                |                     |                     |               |
| 63  | 18/03/2019 | 16:00 | 167       | 8.9            | 6.614035            | 2019-03-18 16:00:00 | 28.0          |
| 64  | 22/03/2019 | 18:00 | 2847      | 7.0            | 69.751500           | 2019-03-22 18:00:00 | 98.0          |
| 65  | 26/03/2019 | 00:00 | 44        | 8.9            | 1.742620            | 2019-03-26 00:00:00 | 78.0          |
| 66  | 26/03/2019 | 06:00 | 45        | 8.4            | 1.587600            | 2019-03-26 06:00:00 | 6.0           |
| 67  | 27/03/2019 | 16:00 | 312       | 5.8            | 5.247840            | 2019-03-27 16:00:00 | 34.0          |

|    | Date       | Time  | Mass [kg] | Velocity [m/s] | Kinetic Energy [kJ] | DateTime            | TimeDiffHours |
|----|------------|-------|-----------|----------------|---------------------|---------------------|---------------|
| 0  | 01/01/2019 | 09:00 | 194       | 8.4            | 6.844320            | 2019-01-01 09:00:00 | 0.0           |
| 1  | 01/01/2019 | 21:00 | 224       | 8.8            | 8.673280            | 2019-01-01 21:00:00 | 12.0          |
| 2  | 02/01/2019 | 14:00 | 3104      | 9.2            | 131.361280          | 2019-01-02 14:00:00 | 17.0          |
| 3  | 04/01/2019 | 15:00 | 228       | 8.0            | 7.296000            | 2019-01-04 15:00:00 | 49.0          |
| 4  | 05/01/2019 | 23:00 | 755       | 7.0            | 18.497500           | 2019-01-05 23:00:00 | 32.0          |
|    |            |       |           |                |                     |                     |               |
| 63 | 18/03/2019 | 16:00 | 167       | 8.9            | 6.614035            | 2019-03-18 16:00:00 | 28.0          |
| 64 | 22/03/2019 | 18:00 | 2847      | 7.0            | 69.751500           | 2019-03-22 18:00:00 | 98.0          |
| 65 | 26/03/2019 | 00:00 | 44        | 8.9            | 1.742620            | 2019-03-26 00:00:00 | 78.0          |
| 66 | 26/03/2019 | 06:00 | 45        | 8.4            | 1.587600            | 2019-03-26 06:00:00 | 6.0           |
| 67 | 27/03/2019 | 16:00 | 312       | 5.8            | 5.247840            | 2019-03-27 16:00:00 | 34.0          |



#### Scatter-Diagram of Separation Zone 1





#### Scatter-Diagram of Separation Zone 2





#### Rockfall Boxplot By Kinetic Energy



## Explorative Datenanalyse: Zeitabstände

#### Time Between Events over Time



#### Explorative Datenanalyse: Zeitabstände



#### Explorative Datenanalyse: Zeitabstände



#### Explorative Datenanalyse: Geschwindigkeit



#### Explorative Datenanalyse: Geschwindigkeit



#### Explorative Datenanalyse: Masse



#### Explorative Datenanalyse: Masse



# Explorative Datenanalyse: Verteilungsfunktionen

| Zufallsvariable       | Verteilungsfunktion |
|-----------------------|---------------------|
| Zeitabstände [h]      | Gammaverteilung     |
| Geschwindigkeit [m/s] | Normalverteilung    |
| Masse [kg]            | Gammaverteilung     |

## 4. Monte-Carlo Simulation

## Umgang mit Ausreissern

- Ausreisser mit Median ersetzt
- Zone 1 und 2 wurden separat simuliert

#### Monte-Carlo Simulation: Zeitabstände



#### Monte-Carlo: Geschwindigkeit



#### Monte-Carlo: Masse



## Verarbeitung Simulationsdaten

- 1. Kinetische Energie berechnen
- 2. Datum und Uhrzeit ermitteln
- 3. Kumulatives Gewicht im Netz ermitteln

## Netzbruchwahrscheinlichkeit



- Kinetische Energie ≥ (0.25 \*
  Kumulatives Gewicht im Netz) + 1000
- Netzbruchwahrscheinlichkeit
- = Gesamtanzahl Netzbrüche Gesamtanzahl Ereignisse

## Konvergieren der Simulation

- Konvergiert bei 1 Mio. Jahre
- 11351 Netzbrüche
- Netzbruchwahrscheinlichkeit = 0.0023%
- Gesamttodeswahrscheinlichkeit = 3.0407e-05%

## 5. Berechnungen

Input-Parameter Todeswahrscheinlichkeit

| Parameter                                  | Wert                       | Quelle                                   |
|--------------------------------------------|----------------------------|------------------------------------------|
| Geschwindigkeit                            | 60 km/h                    | Projektgrundlagen                        |
| Verkehrsaufkommen                          | 1200 Fahrzeuge<br>pro Tag  | Projektgrundlagen                        |
| Fahrzeuglänge                              | 4.4 m                      | BFS                                      |
| Fahrzeugbesetzungsgrad                     | 1.6 Personen /<br>Fahrzeug | Kanton Graubünden                        |
| Letalität indirekter Treffer (bei 60 km/h) | 10 %                       | Kanton Graubünden                        |
| Letalität bei direktem<br>Treffer          | 100%                       | Annahme                                  |
| P(Steinnetzbruch pro Jahr)                 | 0.0023%                    | Simulation                               |
| Reaktionszeit                              | 1 Sekunde                  | BFU, Beratungsstelle für Unfallverhütung |
| Risikozeitanteil direkter<br>Treffer       | 0.367 %                    | eigene Berechnung                        |
| Risikozeitanteil indirekter<br>Treffer     | 0.44 %                     | eigene Berechnung                        |

#### Gesamttodesswahrscheinlichkeit

#### **Gesamttodeswahrscheinlichkeit pro Jahr**

= (Risikozeitanteil indirekter Treffer + Risikozeitanteil direkter Treffer) \* 1.6 Personen / Fahrzeug \* P (Steinnetzdurchbruch pro Jahr)



Länge Gefahrenzone = Netzlänge = Fahrzeuglänge

#### Risikozeitanteil direkter Treffer

#### Durchfahrtszeit durch die Gefahrenzone

$$t_{pass} = \frac{\text{Länge der Gefahrenzone}}{v} = \frac{4.4}{\frac{60}{3.6}} \approx 0.264 \text{ s}$$

#### Berechnung der gesamten Durchfahrtszeit aller Fahrzeuge pro Tag

- = Anzahl der Fahrzeuge pro Tag \* Durchfahrtszeit eines Fahrzeugs = 1200 Fahrzeuge \* 0.264 Sekunden
- = 316.8 Sekunden

#### Risikozeitanteil (zeitliche Präsenzwahrscheinlichkeit)

$$\frac{\text{Gesamte Durchfahrtszeit aller Fahrzeuge pro Tag}}{\text{Gesamtzeit pro Tag}} = \frac{316.8 \text{ Sekunden}}{86.400 \text{ Sekunden}} = 0.003667 \text{ oder } 0.367 \%$$

#### Risikozeitanteil indirekter Treffer

Reaktionsweg = Geschwindigkeit in m/s \* Reaktionszeit in Sekunden = 16.67 m/s \* 1 s = 16.67 m

Bremsweg = 
$$\left(\frac{\text{Geschwindigkeit in km/h}}{10}\right)^2 = \left(\frac{60 \text{ km/h}}{10}\right)^2 = 36 \text{ m}$$

Gesamter Anhalteweg = Reaktionsweg + Bremsweg = 16.67 m + 36 m = 52.67 m

Zeit pro Fahrzeug für Anhalteweg = 
$$\frac{\text{Gesamter Anhalteweg}}{\text{Geschwindigkeit in m/s}} = \frac{52.67 \text{ m}}{16.67 \text{ m/s}} = 3.16 \text{ s}$$

Gesamte Risikozeit aller Fahrzeuge pro Tag = 1200 Fahrzeug \* 3.16 s \* 0.1 (Letalität) = 379.2 s

Risikozeitanteil = 
$$\frac{\text{Gesamte Risikozeit aller Fahrzeuge pro Tag}}{\text{Gesamtzeit pro Tag}} = \frac{379.2 \text{ s}}{86400 \text{ s}} = 0.004389 \text{ oder } 0.44 \%$$

## 6. Auswertung

#### Empfehlung an den Kantonsingenieur

- Todeswahrscheinlichkeit 3.0407×10<sup>-5</sup> %
- Die Strasse kann offen bleiben

# 7. Praxisbeispiel Tiefbauamt GR



