경희대학교 데이터 분석 동아리

XGBoost 기반 모바일 광고 클릭률 (CTR) 예측 알고리즘 개발

이영석 이채린 정혜주

Contents

- 01 프로젝트 개요
 - 1. 프로젝트 배경
 - 2. 프로젝트 목표

- 03 알고리즘 개발
 - 1. 모델 선정
 - 2. 모델 생성

- **02** 데이터셋
 - 1. 데이터셋 개요
 - 2. 전처리 및 EDA
 - 3. 데이터셋 분리
- 04 예측 결과
 - 1. 모델 예측 결과
 - 2. 한계점 및 보완점

프로젝트 개요

프로젝트 배경

프로젝트 목표

유저, 퍼블리셔, 앱 정보, 클릭 등의 기본적인 광고 정보를 바탕으로 모델링해 데이터 샘플 모바일 광고의 클릭률(CTR)을 예측하는 알고리즘 고안

• 주전시스템과 같은 고도화 기술이 발선하는 것과 더불어 광고의 효율을 높이기 위한 Click Prediction 기술 또한 비슷한 기법들로 발전

프로젝트 진행 과정

데이터셋

데이터셋 개요

- 2020 DIGIX Global AI Challenge에서 화웨이가 제공한 데이터셋 사용
- 총 36가지 칼럼의 다양한 사용자 데이터
- 익명화된 데이터, 불균형 데이터

데이터 탐색

	label	uid	task_id	adv_id	creat_type_cd	adv_prim_id	dev_id	inter_type_cd	slot_id	spread_app_id	
0	0	1638254	2112	6869	7	207	17	5	11	13	
1	0	1161786	3104	3247	7	183	29	5	17	86	
2	0	1814783	5890	4183	7	178	17	5	11	70	
3	0	1468996	1993	5405	7	207	17	5	21	13	
4	0	2164010	5439	4677	2	138	24	5	12	33	

- train set에는 약 4190만 여 개의 행 존재
- → 메모리 부족으로 50만 개 행만 샘플링해 분석 수행
- 대부분의 변수는 암호화되어 익명화(비식별화)된 변수
- → 시각화를 통한 EDA에 어려움이 있음
- → 데이터 간의 관계 이상의 것들을 추론하기 어려움
- 범주형 변수인 communication onlinerate를 제외하고 모두 수치형 변수

edited_file.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 500000 entries, 0 to 499999 Data columns (total 36 columns):

Column Non-Null Count label 500000 non-null uid 500000 non-null task_id 500000 non-null 500000 non-null adv id int64 500000 non-null creat_type_cd int64 adv prim id 500000 non-null int64 dev_id 500000 non-null int64 inter_type_cd 500000 non-null int64 500000 non-null slot id int64 spread_app_id 500000 non-null int64 10 tags 500000 non-null 11 app_first_class 500000 non-null int64 12 app_second_class 500000 non-null int64 13 age 500000 non-null int64 14 city 500000 non-null 500000 non-null 15 city_rank 500000 non-null int64 16 device name 17 device_size 500000 non-null int64 18 career 500000 non-null 500000 non-null 20 net type 500000 non-null int64 21 residence 500000 non-null int64 22 his_app_size 500000 non-null his_on_shelf_time 500000 non-null 24 app score 500000 non-null emui dev 500000 non-null int64 26 list_time 500000 non-null int.64 27 device price 500000 non-null 500000 non-null up_life_duration 29 up membership grade 500000 non-null 30 membership_life_duration 500000 non-null int64 31 consume_purchase 500000 non-null int64 32 communication_onlinerate 500000 non-null 33 communication avgonline 30d 500000 non-null 34 indu name 500000 non-null int64 35 pt_d 500000 non-null int64 dtypes: int64(35), object(1)

memory usage: 137.3+ MB

데이터 전처리

edited_file.isnull().sum()

[→ label 0 uid 0 task_id 0 adv_id creat_type_cd adv_prim_id dev_id inter_type_cd slot_id spread_app_id tags app first class app_second_class city city_rank device_name device_size career gender net_type residence his_app_size his_on_shelf_time app score emui dev list_time device price up_life_duration up_membership_grade membership_life_duration consume_purchase communication_onlinerate communication_avgonline_30d indu_name pt_d dtype: int64

결측치 확인 결과 없음 확인

KHODA

데이터 전처리

```
[13] communication_onlinerate=edited_file['communication_onlinerate'].value_counts()[edited_file['communication_onlinerate'].value_counts()>50]
    communication_onlinerate=pd.DataFrame(communication_onlinerate.index)

[14] cat_encoder=OneHotEncoder(sparse=False, handle_unknown='ignore')
    cat_encoder.fit(communication_onlinerate.values.reshape(-1,1))
    communication_onlinerate_encoded=pd.DataFrame(cat_encoder.transform(edited_file['communication_onlinerate'].values.reshape(-1,1)))
    features=list(edited_file.columns)
    features=features+cat_encoder.categories_[0].tolist()
    features.remove('communication_onlinerate')
    engineered_data=edited_file.join(communication_onlinerate_encoded)
    engineered_data=engineered_data.drop(columns=['communication_onlinerate'])
    engineered_data.columns = engineered_data.columns.astype(str)
```


범주형 변수 communication_onlinerate를 수치형으로 변환(원-핫 인코딩)

KHODA

히트맵을 통해 변수 간 상관관계 탐색

상관관계가 높은 변수들 확인

- corr(his_on_shelf_time, app_first_class) = 0.96
- corr(app_score, app_first_class) = 0.99
- corr(app_score, his_on_shelf_time) = 0.97

→ 그러나 의사결정트리 기반 모델 특성상 다중 공선성 문제는 고려하지 않아도 OK!

개별 속성값 관찰

- 히스토그램을 그려 다양한 변수들의 분포를 관찰하고 데이터의 왜곡이나 편향을 확인해 데이터에 대한 이해를 높임
- | label 변수를 통한 데이터 불균형 확인!

심한 데이터 불균형

[11] edited_file['label'].value_counts()[1] / 500000

0.036942

실제 광고 클릭수

데이터셋 분리

```
split=StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0)
for train_index, test_index in split.split(engineered_data, engineered_data['adv_prim_id']):
    strat_train_set=engineered_data.loc[train_index]
    strat_test_set=engineered_data.loc[test_index]

train_labels=strat_train_set['label']
test_labels=strat_test_set['label']
strat_train_set=strat_train_set.drop(columns=['label'])
strat_test_set=strat_test_set.drop(columns=['label'])
scaler=StandardScaler()
strat_train_set=pd.DataFrame(scaler.fit_transform(strat_train_set))
strat_test_set=pd.DataFrame(scaler.fit_transform(strat_test_set))
```


정확도를 높이기 위해 계층적 샘플링 사용 훈련 세트와 테스트 세트를 분리하고 데이터 표준화

알고리즘 개발

모델 선정

Bagging

Parallel

ex. 랜덤포레스트

Boosting

Sequential

ex. GBM, XGBoost, LightGBM

XGBoost

기존 GBM 모델의 단점

학습이 순차적으로 이루어지기 때문에 계산 시간이 오래 걸리며, 과적합을 방지하는 규제 없음.

XGBoost는 이러한 GBM의 문제를 해결하기 위해 고안된 알고리즘!

병렬처리 지원

과적합 방지 규제 시행 회귀&분류 둘 다 적용 가 능

XGBoost 모델 생성

- Scale_pos_weight 하이퍼 파라미터, 가중치 조절 ex) 5라면, 5배의 가중치를 가짐. 불균형한 클래스에 집중하여 학습하게 되므로, 예측 성능이 개선됨
- rnd_search 모델을 여러 번 학습하고, 최적의 하이퍼파라미터를 찾음
- rnd serach.fit RandomizedSearchCV 객체를 통해 하이퍼파라미터 탐색

주요 하이퍼파라미터

- learning_rate (기본값 0.3): 학습률. 각 트리 모델이 개선될 때마다 적용되는 가중치 조정값
- subsample (기본값 1): 각 트리 모델 학습 시 사용되는 샘플 데이터의 비율
- n_estimators (기본값 100): 학습에 사용되는 결정 트리의 개수
- max_depth (기본값 6): 결정 트리의 최대 깊이
- colsample_bytree (기본값 1): 각 트리 모델 학습 시 사용되는 특성(feature) 데이터의 비율
- scale_pos_weight (기본값 1): 데이터 레이블 불균형이 있을 때 레이블 가중치 조절
 - → 권장값: summ(negative instances) / sum(positive instances)
 - → 데이터 불균형이 심한 경우 반드시 설정해주면 좋음!

예측 결과

모델 예측 결과

- 처음 숫자 모델의 성능
- Scale_pos_weight 양성 클래스에 대한 가중치
- min_child_weight 리프 노드(마지막 노드)에 필요한 최소 가중치를 정의

KHODA

최종 결과

```
y_predict2 = pd.DataFrame(rnd_search.best_estimator_.predict(strat_test_set))
y_predict2.value_counts()[1]/500000
0.051338
```

• 양성 클래스(1)의 비율, 즉, 전체 테스트 세트에서 양성 클래스로 분류된 샘플의 비율은 약 0.051338 (약 5.13%)입니다.

KHODA

한계점 및 보완점

- 개인정보 보호를 위해 데이터가 익명화되어 있어서 해석에 어려움이 있었음. → ex) [0,1,2…6]이 아니라 [Mon,Tue, … Sun]으로 되어있다면 해석하기 편했을 것
- 데이터의 용량이 너무 커서(train의 칼럼은 4000만개) 일부만 사용
- 시간 부족으로 LightGBM, Catboost 등 다른 모델 사용해 보지 못함

Thank You

Any Questions?

