Assignment 2 – Window-based Tagging

Daniel Bazar 314708181

Peleg shefi 316523638

Part 4 – Adding sub-word units

Architecture

- Both tasks implement the same Network: MLP
 - o Embedding layer sum of word embedding and sub-word embedding.
 - o one hidden layer
 - o tanh activation function.
- The way we implemented the sub-word embedding:
 - Assign an embedding vector to each prefix and suffix of 3 letters. (Among the prefixes and suffixes that were observed in the corpus).
 - Then, we represent each word as the sum of the word vector, the prefix vector, and the suffix vector.
- The network trained with cross-entropy loss.
- The optimizer is Adam.
- We Experimented with several network configurations and chose the best configuration based on the DEV accuracy using our grid search function.

Best parameters

• NER:

Hidden layer size: 130Dropout probability: 0.4

o Batch size: 128

o Optimizer: Adam (Learning rate: 0.001)

o Epochs: 5

POS:

Hidden layer size: 130Dropout probability: 0.4

o Batch size: 2048

o Optimizer: Adam (Learning rate: 0.001)

o Epochs: 6

Considerations

- The sub-word unit method can be combined with the pretrained embedding so we had to consider all the things we considered in the pretrained part:
 - We handle unseen the same way as in the other parts (with the UNK token).
 - If we used the pre-trained embedding vectors, we transform the training and the dev data to lower case because the embedding vocabulary being lower-case.
 - Because the embedding vocabulary contains special words like "DGDGDGDG",
 "DG.DG", "+DG", "NNNUMMM", etc. We treated those words as digit patterns.
 - We padded the sentences with SOS (start of string) and EOS (end of string) at the beginning and end of the sentence.
- If a length of a word is less than 3, we take the whole word as a suffix and prefix.

Results

	POS		NER	
	With pre-	Without	With pre-	Without
	trained	pre-trained	trained	pre-trained
BATCH	128	2048	128	128
EPOCHS	6	3	5	3
HIDDEN LAYER	130	130	130	130
LR	0.001	0.001	0.001	0.001
DROPOUT	0.2	0.2	0.4	0.4
LOSS	0.145	0.136	0.191	0.158
ACCURACY	95.6	95.84	80.12	78.97

^{*}the results are the best we achieved and aren't the same as we used in the comparison below.

Brief analysis of the results

In order to compare the performance of our model with the different embedding settings combinations [standard/pre-trained & sub-word/sub-word/pre-trained] we had to run them with the same parameters. We used the standard – without both as the baseline.

we run the model for 8 epochs with the following configuration: {'hidden_layer': 130, 'dropout_p': 0.4, 'batch_size': 128, 'lr': 0.0004}

Tagger	Best DEV Accuracy	conclusion	
standard	82.95	Baseline	
Pre-trained & Sub-word	79.54	significant difference	
		compared to the baseline	
Sub-word	79.25	No significant difference	
		compared to pre trained	
		and sub-word	
Pre-trained	77.51	significant difference	
		compared sub-word	

Main points:

- We can see that all of the methods are less optimal than our standard tagger which uses a Xavier initialization for the embedding.
- Although, it seems like the sub-word units are more useful than the pre-trained embedding.
- There is no significant difference in combining them together.
- Prefixes and suffixes can be helpful in two major ways:
 - For POS tagging- can tell the POS for example ing,ify,ise are usually verbs. For ner not too much.
 - For unknown words that have a common prefix/suffix we get a better representation.
 - *We didn't have time to try it but using the prefix/suffix only on unknown words and having all the other words with the Xavier init may result in better performance.

^{**} All used subword

Graphs

With pretrained embedding:

NER with pre-trained & sub-word

NER with sub-word only

POS with sub-word only

