Chapter 10: Integration of Differential Forms

Author: Meng-Gen Tsai Email: plover@gmail.com
Exercise 10.1
Proof.
(1)
(2)
Exercise 10.2
Proof.
(1)
(2)
Exercise 10.3
Proof.
(1)
(2)
Exercise 10.4
Proof.
(1)
(2)

Exercise 10.5
Proof.
(1)
(2)
Exercise 10.6
Proof.
(1)
(2)
T
Exercise 10.7
Proof.
Proof.
Proof. (1)
Proof. (1) (2) □
Proof. (1) (2)
Proof. (1) (2) □
Proof. (1) (2) □ Exercise 10.8
Proof. (1) (2) □ Exercise 10.8 Proof.
Proof. (1) (2) □ Exercise 10.8 Proof. (1)
Proof. (1) (2) □ Exercise 10.8 Proof. (1) (2) □
Proof. (1) (2) □ Exercise 10.8 Proof. (1) (2)

(1)
(2)
Exercise 10.10
Proof.
(1)
(2)
Exercise 10.11
Proof.
(1)
(2)
Exercise 10.12
Proof.
(1)
(2)
Exercise 10.13
Proof.
(1)
(2)

Exercise 10.14. ...

Proof.

- (1)
- (2)

Exercise 10.15. If ω and λ are k- and m-forms, respectively, prove that

$$\omega \wedge \lambda = (-1)^{km} \lambda \wedge \omega.$$

Proof.

(1) Write

$$\omega = \sum_{I} b_{I}(\mathbf{x}) dx_{I}, \qquad \lambda = \sum_{I} c_{J}(\mathbf{x}) dx_{J}$$

in the stardard presentations, where I and J range over all increasing k-indices and over all increasing m-indices taken from the set $\{1, \ldots, n\}$.

(2) Show that $dx_I \wedge dx_J = (-1)^{km} dx_J \wedge dx_I$.

$$dx_{I} \wedge dx_{J} = dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}} \wedge dx_{J}$$

$$= (-1)^{m} dx_{i_{1}} \wedge \dots \wedge dx_{i_{k-1}} \wedge dx_{J} \wedge dx_{i_{k}}$$

$$= (-1)^{2m} dx_{i_{1}} \wedge \dots \wedge dx_{i_{k-2}} \wedge dx_{J} \wedge dx_{i_{k-1}} \wedge dx_{i_{k}}$$

$$\dots$$

$$= (-1)^{km} dx_{J} \wedge dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}}$$

$$= (-1)^{km} dx_{J} \wedge dx_{I}.$$

(3)

$$\omega \wedge \lambda = \sum_{I,J} b_I(\mathbf{x}) c_J(\mathbf{x}) dx_I \wedge dx_J$$
$$= (-1)^{km} \sum_{J,I} c_J(\mathbf{x}) b_I(\mathbf{x}) dx_J \wedge dx_I$$
$$= (-1)^{km} \lambda \wedge \omega.$$

Exercise	10.16.
Proof.	
(1)	
(2)	
Exercise	10.17
Proof.	
(1)	
(2)	
Exercise	10.18
Proof.	
(1)	
(2)	
Exercise	10.19
Proof.	
(1)	
(2)	
Exercise	10.20
Proof.	
(1)	
(2)	

Exercise 10.21
Proof.
(1)
(2)
Exercise 10.22
Proof.
(1)
(2)
Exercise 10.23
Exercise 10.23 Proof.
Proof.
Proof. (1)
Proof. (1) (2)
Proof. (1) (2)
Proof. (1) (2) □
Proof. (1) (2) □ Exercise 10.24 Proof.
Proof. (1) (2) □ Exercise 10.24
Proof. (1) (2) □ Exercise 10.24 Proof. (1)
Proof. (1) (2) □ Exercise 10.24 Proof. (1) (2)
Proof. (1) (2) □ Exercise 10.24 Proof. (1) (2)

(1)
(2)
Exercise 10.26
Proof.
(1)
(2)
Exercise 10.27
Proof.
(1)
(2)
Exercise 10.28
Proof.
(1)
(2)
Exercise 10.29
Proof.
(1)
(2)

Exercise 10.30
Proof.
(1)
(2)
Exercise 10.31
Proof.
(1)
(2)
Exercise 10.32
Proof.
(1)
(2)