

Trabajo Fin de Máster

Máster en Ciencia de Datos e Ingeniería de Datos en la Nube

Predicción de duración de dosificación para corrección de colas en procesos automáticos de fabricación de pienso.

Auto: Jose Luis Casado Valero Tutor: Luis de la Ossa Jiménez

Nombre columna	Ejemplo	Descripción	
Fecha_inicio	2013-08-14 16:51:48	Fecha de inicio de la dosificación	
Fecha_fin	2013-08-14 16:52:39	Fecha de fin de la dosificación	
Cantidad_solicitada	235.026	Cantidad objetivo a dosificar	
Cantidad_dosificada	236.5	Cantidad real dosificada al finalizar	
Mezcla	1	Nº de mezcla dentro de la fabricación	
Pesada	0	Nº de pesada dentro de la mezcla	
Peso_inicial	0.0 Peso que marca la báscula a		
		dosificación	
Manual	0	Booleano que indica si la dosificación ha sido manual o	
		automática	
Id_lote_destino	232527	Lote de fabricación.	
Materia_origen	13	Código de la materia origen.	
Materia_destino	66	Código de la materia destino	
_ld_silo	90	Silo origen del que se dosifica	
Tipo_materia	Prima	Tipo de materia origen	
Tipo_destino	Premezcla	Tipo de materia destino	
Densidad	1.0	Densidad de la materia origen	
Tam_mezcla	500	Suma teórica total de los ingredientes al finalizar todas	
		las dosificaciones	
Desviacion	1.47	Error real en la dosificación	

	C. Solicitada	C. Dosificada	P. Inicial	T. mezcla	Duración	Desviación
Count	395477	395477	395477	395477	395477	395477
Mean	801.251	800.430	1342.961	4000.817	37.613	-0.8203
Std	744.934	745.126	1249.587	211.905	37.362	30.4486
Min	0.000	0.000	-64.000	400.000	0.000	-2623.09
25%	167.984	168.000	11.000	4000.000	16.000	-3.000
50%	668.040	664.000	1574.000	4000.000	25.000	0.0040
75%	1163.096	1168.000	2600.000	4040.000	49.000	3.0198
Max	3121.984	3127.000	3995.000	4500.000	7786.000	1179.891

Filtrado de datos:

- Cantidad solicitada mayor de 0.
- Cantidad solicitada menor de 1300.
- Cantidad dosificada mayor de 1.
- Cantidad dosificada menor de 1400.
- Desviación > -100.
- Desviación < 100.
- Peso inicial de la báscula menor de 2700.
- Duración menor de 120 segundos.

Como resultado nos queda una base de datos con 235.045 registros.

Columnas a eliminar:

- Fecha_fin.
- Cantidad_dosificada.
- Mezcla.
- Pesada.
- Manual.
- Densidad.
- Tipo_materia.
- Tipo_destino.
- Desviación.

Creación de nuevas características:

- Hora. Hora a la que se produce la dosificación.
- DOW. Día de la semana en el que se produce la dosificación.
- Tmed. Temperatura media del día (OpenData AEMET).

Correlación entre variables

CIDaeN

Por silo

Cantidad solicitara – duración

Por silo y Materia

Predicción de duración de dosificación para corrección de colas en procesos automáticos de fabricación de pienso.

Trabajo Fin de Máster

Preprocesamiento:

Numéricas: Cantidad solicitada, peso inicial, tamaño mezcla y tmed. Categóricas: Materia origen, Materia destino, silo, orden, hora, dow.

Numéricas
SimpleImputer()

Numéricas
StandarScaler()

Numéricas
SimpleImputer()

Categoricas
Categoricas
OneHotEncoder()

Train y test: 66% y 33%

Entrenamiento de modelos:

Error Train	Error Test	Hiperparametros
4.18 Seg.	4.15 Seg.	
4.18 Seg.	4.15 Seg.	Alpha = 1
1.31 Seg.	1.55 Seg.	Estimadores = 200
0.39 Seg.	0.87 Seg.	Max Atributos = 'auto'
0.35 Seg.	0.88 Seg.	Max Profundidad = 20
	4.18 Seg.4.18 Seg.1.31 Seg.0.39 Seg.	4.18 Seg.4.15 Seg.4.18 Seg.4.15 Seg.1.31 Seg.1.55 Seg.0.39 Seg.0.87 Seg.

Conclusiones:

- Importancia de la fase de análisis.
- Importancia Generación de características.
- Random Forest funciona perfectamente con gran cantidad de datos y variables.
- En nuestro problema muy caracterizado por el diseño y la disposición del elemento mecánico.

Trabajos futuros:

 Modelo de clasificación de materia en silos en función de menor desviación en la dosificación.

GRACIAS POR SU ATENCIÓN