Understanding Deep Neural Networks

Chapter Five

On Some Problems of BP

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Prediction
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

Network Structure

Network Concepts

Local activation function f

Global cost function J

$$\frac{\partial J}{\partial z_i^l} = \delta_i^l \xrightarrow{\begin{array}{c} Global & Local \\ J & f_i^l \\ \hline z_i^l & A_i^l = f_i^l(z_i^l) \end{array}}$$
Bridge

Network Operations

Network Functions

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$$

$$a_i^{l+1} = f_i^{l+1}(z_i^{l+1})$$
end

function
$$bc(w^l, \delta^{l+1})$$

$$for \ i = 1: n_l$$

$$\delta_i^l = \dot{f_i^l}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

$$end$$

Network Relationship

Local activation function *f*

Global cost function J

Network Learning Rule

Learning rule

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$$

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \left(\delta_j^{l+1} \cdot a_i^l\right)$$

Local activation function *f*

Global cost function J

- Step 1. Input the training data set $D = \{(x, y)\}$
- Step 2. Initialize each w_{ij}^l , and choose a learning rate α .

Step 3. for each mini-batch sample $D_m \subseteq D$

for each
$$x \in D_m$$

 $a^1 \leftarrow x \in D_m$;
for $l = 2$: L
 $a^{l+1} \leftarrow fc(w^l, a^l)$;
end
 $\delta^L = \frac{\partial J(x)}{\partial z^L}$;
for $l = L - 1$: 2
 $\delta^l \leftarrow bc(w^l, \delta^{l+1})$;
end
 $\frac{\partial J}{\partial w^l_{ji}} \leftarrow \frac{\partial J}{\partial w^l_{ji}} + \delta^{l+1}_j \cdot a^l_i$;
end
 $w^l_{ji} \leftarrow w^l_{ji} - \alpha \cdot \frac{\partial J}{\partial w^l_{ji}}$;
end
Step 4. Return to Step 3 until each w^l converge.

training data

$$D = \{(x, y^L)\}$$

$$O = \{(x, y^L)\}$$

The BP Algorithm

function $fc(w^l, a^l)$ $for i = 1: n_{l+1}$ $z_i^{l+1} = \sum_{i=1}^l w_{ij}^l a_j^l$ $a_i^{l+1} = f_i^{l+1}(z_i^{l+1})$ end

Relationship:

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

function $bc(w^l, \delta^{l+1})$ for $i = 1: n_i$

$$\delta_i^l = \dot{f_i^l}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

end

Network Training

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Output
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

Two important characters:

- No any connection in any layer
- No any connection across any layer

Recurrent Neural Networks

Activation functions of each neuron can be different

Layer l $f_{n_l}^l$

Linear function

$$f(z) = z$$

Rectifier function

$$f(z) = \begin{cases} z, & z \ge 0 \\ 0, & z < 0 \end{cases}$$

Sigmoid function

$$f(z) = \frac{1}{1 + e^{-z}}$$

Hard-limit function

$$f(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0 \end{cases}$$

DenseNets

Linear neuron f(s) = s

Connection weights between two layers can share some weights

Layer l Layer l + 1

$$W^l = \left(w_{ij}^l\right)_{n_{l+1} \times n_l}$$

CNNs

Sharing of connection weights between two layers

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Output
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

Problem: How to define target output?

In principle, it can be defined in any way by users. However, it must fit the meaning of applications. Thus, it is application originated. A target output must correspond to its associated input.

Defined on the last layer Target Output

$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix}$$
 Input x

A training sample (x, y^L)

$$\dim(a^L) = \dim(y^L)$$

Classification Problem

The target is to assign each input data sample to its class label. Thus, the target output can be defined by the representation of the label.

Representation of the label associated with the input.

Target Output
$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix}$$

Tip:

The number of output neurons equals to the number of classes.

Curve Fitting Problem

Given a set of sample data, estimates a curve that go through the samples.

Sample data

	1	2	3	4	5	6
x	-0.5000	0.1740	0.7100	-0.9980	-0.6340	1.0400
y	0	1.5198	1.7902	0.9937	0.0873	0.8747

Sample data

	1	2	3	4	5	6
	-0.2000	-1.9000	1.9000	0.4000	-1.9000	0.8000
x	1.4000	-1.9000	-1.5000	-0.5000	0.3000	-0.1000
y	2.0000	7.2200	5.8600	0.4100	3.7000	0.6500

Target Output

$$y^L = \begin{bmatrix} y_1^L \\ y_2^L \\ \vdots \\ y_{2983}^L \end{bmatrix}$$

zero

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Prediction
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

On the Network Prediction

Network Prediction

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

Define the last layer activation function f^L so that the network output a^L can match the target output y^L . Note that f^L should be differentiable.

Target

$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix}$$

Linear function

$$f(s) = s$$

On the Network Prediction

Target
$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix}$$

$$0 \le y_i^L \le 1$$

$$\sum_{i=1}^{n_L} y_i^L = 1$$

Softmax function

Network Prediction

$$0 < a_i^L < 1$$

$$\sum_{i=1}^{n_L} a_i^L =$$

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix} \qquad 0 \le y_i^L \le 1, \sum_{i=1}^{n_L} y_i^L = 1$$

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Prediction
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

On the Network Input

External input:

■ Directly from sample data.

Internal input:

- Generated by former layer
- Maintain a working memory for the neural network
- The first layer internal input is generated by user

On the Input

Sequence Input

On the Input

If the dimension of the input data is too large, it can be divided into small ones.

196-dimension

On the Input

784-dimension

Of course, the whole image can be used as the input if your computer is sufficiently powerful.

On the input

On the input

On the Input 4000-dimension 784-dimension

On the input

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Output
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

Network Output

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

Target Output

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

$$J(a^L, y^L)$$

Cost function $J(a^L, y^L)$ is used to describe the closeness between a^L and $y^L, J(a^L, y)$ is indeed a function of (w^1, \dots, w^{L-1}) , i. e., $J = J(w^1, \dots, w^{L-1})$.

forward computing a^l

Square Error

$$\begin{cases} J = \frac{1}{2} \sum_{j=1}^{n^L} (a_j^L - y_j^L)^2 \\ \\ \delta_i^L = \frac{\partial J}{\partial z_i^L} = (a_i^L - y_i^L) \cdot \dot{f}(z_i^L) \end{cases}$$

$$0 \le y_i^L \le 1 \ (i = 1, \dots, n_L)$$

$$a_i^L = f(z_i^L)$$

$$= \frac{1}{1 + e^{-z_i^L}}$$

Sigmoid function

 $J(a^L, y^L)$ Cost function $J(a^L, y^L)$ is used to describe the closeness between a^L and $y^L, J(a^L, y)$ is indeed a function of (w^1, \dots, w^{L-1}) , i. e., $J = J(w^1, \dots, w^{L-1})$.

forward computing a^l

Cross Entropy

Cross Entropy
$$J = -\sum_{j=1}^{n_L} y_j^L \cdot \log(a_j^L) + \lambda \cdot \sum (w_{ij}^l)^2$$

$$a_j^L = \frac{e^{z_j^L}}{\sum_{i=1}^{n_L} e^{z_i^L}}$$

$$\delta_i^L = a_i^L - y_i^L$$

Softmax function

 $J(a^L, y^L)$ Cost function $J(a^L, y^L)$ is used to describe the closeness between a^L and y^L , $J(a^L, y)$ is indeed a function of (w^1, \dots, w^{L-1}) , i. e., $J = J(w^1, \cdots, w^{L-1}).$

An example

Sample data

	1	2
$\boldsymbol{\mathcal{X}}$	0.8000	0.2000
27	0	1
y	1	0

Network

Square Error

$$\begin{cases} J = \frac{1}{2} \sum_{j=1}^{2} (a_j - y_j)^2 \\ a_j = \frac{1}{1 + \exp(-z_j)} \\ z_j = w_j \cdot x \end{cases}$$

Cross Entropy

$$\begin{cases} J = -\sum_{j=1}^{2} y_{j} \cdot \log(a_{j}) + \lambda(w_{1}^{2} + w_{2}^{2}) \\ a_{j} = \frac{e^{z_{j}}}{\sum_{i=1}^{2} e^{z_{j}}} \\ z_{j} = w_{j} \cdot x \end{cases}$$

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Prediction
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

Shallow neural network

- L = 2
- too shallow to learn complex mappings

Deep neural network

- *L* > 2
- can approximate any nonlinear mappings in any precise provided sufficient neurons in the networks

The classification task CANNOT be completed by using two layers network.

At least three layers are required for XOR problem.

Gradient Vanishing Problem

Cost function: $J(w^1, \dots, w^{L-1})$ Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$ Relationship: $\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$

key:

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

Gradient Vanishing Problem

a simple example

$$w = w^{l}$$

$$\delta^{l} = \dot{f}(z^{l}) \cdot w \cdot \delta^{l+1}$$

$$\delta^{l} = \dot{f}(z^{l}) \cdot w \cdot \delta^{l+1}$$

$$= \dot{f}(z^{l}) \cdot w \cdot \dot{f}(z^{l+1}) \cdot w \cdot \delta^{l+2}$$

$$= w \cdot \dot{f}(z^{l}) \cdot w \cdot \dot{f}(z^{l+1}) \cdots w \cdot \dot{f}(z^{l-1}) \cdot \delta^{L}$$

$$= \prod_{m=L-1}^{l} (w \cdot \dot{f}(z^{m})) \cdot \delta^{L}$$

$$\left| \frac{\partial \delta^l}{\partial \delta^L} \right| = \prod_{m=L-1}^l \left| w \cdot \dot{f}(z^m) \right| \le |w|^{L-l+1} \cdot (0.25)^{L-l+1}$$

$$\dot{f}(z^m) \leq 0.25$$
 Sigmoid

Notes:

The exponential descent of δ^l causes the gradient vanish problem.

The depth of the network is correlated to the problem.

Handwritten digits recognition problem

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Output
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

Using a 2-9-1 network to fit a partial sin curve

Overfitting

Using a 2-9-1 network to fit a partial sin curve

2-9-1 network has 27 weights to be tuned. In general, we need more samples than the number of unknown parameters in a system.

The network fit the data sample properly, but nowhere else on the curve! Overfitting!

- Fit training data well
- Cannot fit testing data
- We need MORE data!

For a network to be able to generalize, it should have fewer parameters than there are data points in the training set.

Big data

Complex patterns in **big data** need complex model to deal with.

Abundant data sample for training model (samples)

Highly nonlinear, flexible, and trainable model (complexity)

DNN

Huge number of parameters in **DNN** models need to be determined.

Big data + DNN Example

Speech Recognition

1950s Wave of speech + pattern recognition = few words

1970s Gaussian Mixture Model + Hidden Markov Model = ~80% recognition rate

Deep neural network for modeling speech = awesome real-time recognition!

Outline

- ■Brief Review of Backpropagation Algorithm
- ■On Some Problems of BP
 - On the Network Structure
 - On the Target Output
 - On the Network Prediction
 - On the Input
 - On the Cost Function
 - On the Depth of the Network
 - On the Training Data
- Assignment

Assignment

Implement the handwritten digits to speech convertor by MATLAB.

Thanks

Assignment: an example

Hint: One of my student used the following parameters for the network and successfully trained the network.

learning rate (0.1); mini batch (100); iteration

```
fc.m %%forward computation file
function [a_next, z_next] = fc(w, a, x, f)
   % Your code BELOW
   % forward computing (either component or vector form)
   z_next = w * [x; a];
   a_next = f(z_next);
   $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
   % Your code ABOVE
   end
```

```
get_audio.m %%the function to get audio file

function [ audio_y ] = get_audio( y, audio )

audio_y = zeros(size(audio,2), size(y,2));
for i = 1:size(y,2)
    audio_y(:,i) = audio(find(y(:,i)==1),:);
end
```

```
lab5.m %%the main training function
% clear workspace and close plot windows
clear;
close all;
% Your code BELOW
% prepare the data set
load mnist_small_matlab.mat
input_size = 28 * 28; % size of each patch
% prepare training data
train_size = size(trainLabels,2);
X_train{1} = reshape(trainData,[],train_size);% top-left
X_train{2} = zeros(0, train_size);
X_train{3} = zeros(0, train_size);
X_train{4} = zeros(0, train_size);
X_train{5} = zeros(0, train_size);
```

```
% prepare testing data
test size = size(testLabels,2);
X_test{1} = reshape(trainData,[],test_size);% top-left
X_test{2} = zeros(0, test_size);
X_test{3} = zeros(0, test_size);
X_test{4} = zeros(0, test_size);
X_{test}{5} = zeros(0, test_size);
% prepare standard speech audio
sample rate = 4000; % shall assert they all have a same sample rate
audio = zeros(2983, 10); % we checked with the audio file and know its 2983-dim
input
for i = 1:10
    [audio(:,i), sample_rate] = audioread(fullfile('audio',sprintf('%d.wav',i-1)));
    soundsc(audio(:,i), sample_rate);
    pause(1)
end
audio = (audio+1)/2;
% choose parameters
alpha = 0.1; % learning rate
max iter = 300;
mini batch = 100;
```

```
layer_size = [input_size 512 % layer 1
                       0 512 % layer 2
                       0 1024 % layer 3
                       0 2048 % layer 4
                       0 2983]; % layer 5
L = size(layer_size, 1);
% define function
sigm = @(s) 1 ./ (1 + exp(-s));
dsigm = @(s) sigm(s) .* (1 - sigm(s));
lin = @(s) s;
dlin = @(s) 1;
fs = \{[], sigm, sigm, sigm, sigm, sigm, sigm, sigm\};
dfs = {[], dsigm, dsigm, dsigm, dsigm, dsigm, dsigm, dsigm};
% initialize weights
w = cell(L-1, 1);
for 1 = 1:L-1
    w\{1\} = randn(layer\_size(l+1,2), sum(layer\_size(l,:)));
   % a tricky, but effective, initialization
    w\{1\} = (rand(layer\_size(l+1,2), sum(layer\_size(l,:))) * 2 -1) *
sqrt(6/(layer size(l+1,2)+sum(layer size(l,:))));
end
% train
J = [];
x = cell(L, 1);
a = cell(L, 1);
z = cell(L, 1);
delta = cell(L, 1);
```

```
for iter = 1:max iter
    ind = randperm(train_size);
    % for each mini-batch
    for k = 1:ceil(train size/mini batch)
         % prepare internal inputs
         a{1} = zeros(layer_size(1,2),mini_batch);
         % prepare external inputs
         for l=1:L
             x\{1\} = X \operatorname{train}\{1\}(:, \operatorname{ind}((k-1) * \min \operatorname{batch} + 1: \min(k * \min \operatorname{batch}, \operatorname{train} \operatorname{size})));
         end
         % prepare labels
         [~, ind label] = max(trainLabels(:,ind((k-1)*mini batch+1:min(k*mini batch, train size))));
         % prepare targets
         y = audio(:,ind label);
         % batch forward computation
         for l=1:L-1
              [a\{1+1\}, z\{1+1\}] = fc(w\{1\}, a\{1\}, x\{1\}, fs\{1+1\});
         end
         % cost function and error
         J = [J 1/2/mini_batch*sum((a\{L\}(:)-y(:)).^2)];
         delta\{L\} = (a\{L\} - y).* dfs\{L\}(z\{L\});
         % batch backward computation
         for l=L-1:-1:2
             delta{1} = bc(w{1}, z{1}, delta{1+1}, dfs{1});
         end
         % update weight
         for l=1:L-1
             gw = delta{l+1} * [x{l};a{l}]' / mini_batch;
             w\{1\} = w\{1\} - alpha * qw;
         end
```

end

```
% end loop
   if mod(iter,1) == 0
        fprintf('%i/%i epochs: J=%.4f\n', iter,
max_iter, J(end));
   end
end

% save model
save model.mat w layer_size J
```