LANDAU

CERN Program Library

G110

Author(s): K.S. KölbigLibrary: MATHLIBSubmitter:Submitted: 30.08.1985

Language: Fortran Revised: 15.03.1993

Landau Distribution

The LANDAU function subprogram package contains six independent subprograms for the calculation of the following functions related to the Landau distribution:

The density
$$\phi(\lambda) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \exp(\lambda s + s \ln s) ds,$$
 the distribution
$$\Phi(\lambda) = \int_{-\infty}^{\lambda} \phi(\lambda) d\lambda,$$
 the derivative
$$\phi'(\lambda) = \frac{d\phi(\lambda)}{d\lambda},$$
 the first moment
$$\Phi_1(x) = \frac{1}{\Phi(x)} \int_{-\infty}^{x} \lambda \phi(\lambda) d\lambda,$$
 the second moment
$$\Phi_2(x) = \frac{1}{\Phi(x)} \int_{-\infty}^{x} \lambda^2 \phi(\lambda) d\lambda,$$
 the inverse of $\Phi(x)$
$$\Psi(x) = \Phi^{-1}(x).$$

The function $\Psi(x)$ can be used to generate Landau random numbers (see **Usage**).

Structure:

FUNCTION subprograms

User Entry Names: DENLAN, DISLAN, DIFLAN, XM1LAN, XM2LAN, RANLAN

Obsolete User Entry Names: DSTLAN ≡ DISLAN

Usage:

In any arithmetic expression,

DENLAN(X)	has the value	$\phi(\mathtt{X}),$
DISLAN(X)	has the value	$\Phi(\mathtt{X})$,
DIFLAN(X)	has the value	$\phi'(\mathtt{X}),$
XM1LAN(X)	has the value	$\Phi_1(X)$,
XM2LAN(X)	has the value	$\Phi_2(X)$,
RANLAN(X)	has the value	$\Psi(X)$,

where DENLAN, DISLAN, DIFLAN, XM1LAN, XM2LAN, RANLAN and X are of type REAL.

To generate a set of Landau random numbers, RANLAN should be referenced repeatedly, using as argument a random number from a uniform distribution over the interval (0,1).

Method:

Approximation by rational functions. For reason of speed, RANLAN proceeds mainly by table look-up and quadratic interpolation.

Accuracy:

At least six significant digits (five for RANLAN) are correct.

1 G110 – 1

Restrictions:

- 1. Underflow may occur for DENLAN, DISLAN and DIFLAN if X is negative and (moderately) large.
- 2. No test is made whether X for RANLAN lies outside the interval (0,1), and hence no error message is printed.

Notes:

This program package is a version of the CPC Program Library package LANDAU (Ref. 1).

References:

1. K.S. Kölbig and B. Schorr, A program package for the Landau distribution, Computer Phys. Comm. **31** (1984) 97–111.

•

G110-2