Introduction to the Associahedron

Thibault Manneville (LIX, Polytechnique) supervised by Vincent Pilaud (LIX, CNRS)

June 3rd, 2015

What is an Associahedron?

It is altogether

- a combinatorial structure:
 - ♦ simplicial complex
 - ♦ lattice of Catalan objects (Tamari lattice)
- a geometric structure:
 - polytope
- an algebraic structure:
 - ♦ set of basis for Hopf algebras
 - ♦ index set of seeds and variables for cluster aglebras

Definition

 $\Delta \subseteq \mathcal{P}(S)$ is a simplicial complex if $\sigma' \subseteq \sigma \in \Delta \Longrightarrow \sigma' \in \Delta$. $\sigma \in \Delta$: simplex or face of Δ .

Definition

 $\Delta \subseteq \mathcal{P}(S)$ is a simplicial complex if $\sigma' \subseteq \sigma \in \Delta \Longrightarrow \sigma' \in \Delta$. $\sigma \in \Delta$: simplex or face of Δ .

Example $S = \{1, 2, 3, 4\}$

$$\Delta = \big\{\!\{1\},\!\{2\},\!\{3\},\!\{4\},\!\{1,2\},\!\{1,3\},\!\{1,4\},\!\{2,3\},\!\{3,4\},\!\{1,3,4\}\big\}\!$$

Definition

 $\Delta \subseteq \mathcal{P}(S)$ is a simplicial complex if $\sigma' \subseteq \sigma \in \Delta \Longrightarrow \sigma' \in \Delta$. $\sigma \in \Delta$: simplex or face of Δ .

Example $S = \{1, 2, 3, 4\}$

$$\Delta \!=\! \big\{\!\{1\}\!,\!\{2\}\!,\!\{3\}\!,\!\{4\}\!,\!\{1,2\}\!,\!\{1,3\}\!,\!\{1,4\}\!,\!\{2,3\}\!,\!\{3,4\}\!,\!\{1,3,4\}\!\big\}$$

geometrical representation:

Definition

 $\Delta \subseteq \mathcal{P}(S)$ is a simplicial complex if $\sigma' \subseteq \sigma \in \Delta \Longrightarrow \sigma' \in \Delta$. $\sigma \in \Delta$: simplex or face of Δ .

the associahedron: $S = \{\text{diagonals of a convex } (n+3)\text{-gon}\}$

Definition

 $\Delta \subseteq \mathcal{P}(S)$ is a simplicial complex if $\sigma' \subseteq \sigma \in \Delta \Longrightarrow \sigma' \in \Delta$. $\sigma \in \Delta$: simplex or face of Δ .

the associahedron: $S = \{ \text{diagonals of a convex } (n+3) \text{-gon} \}$ $\Delta(n) = \{ \text{dissections of the } (n+3) \text{-gon} \}$

Definition

$$\dim(\sigma) = |\sigma| - 1$$
 $\dim(\Delta) = \max{\dim(\sigma) | \sigma \in \Delta}$

 Δ is **pure**: inclusion-maximal simplexes are dimension-maximal.

Definition

$$\dim(\sigma) = |\sigma| - 1$$
 $\dim(\Delta) = \max{\dim(\sigma) | \sigma \in \Delta}$

 Δ is **pure**: inclusion-maximal simplexes are dimension-maximal.

is not pure.

Definition

$$\dim(\sigma) = |\sigma| - 1$$
 $\dim(\Delta) = \max{\{\dim(\sigma) | \sigma \in \Delta\}}$

 Δ is **pure**: inclusion-maximal simplexes are dimension-maximal.

inclusion-maximal dissections:

Definition

$$\dim(\sigma) = |\sigma| - 1$$
 $\dim(\Delta) = \max{\dim(\sigma) | \sigma \in \Delta}$

 Δ is **pure**: inclusion-maximal simplexes are dimension-maximal.

inclusion-maximal dissections:

triangulations have n diagonals $\implies \Delta(n)$ is pure.

Definition

 Δ is a **pseudo-manifold** if it is pure and for any σ maximal simplex of Δ and $s \in \sigma$, there is a unique $s' \in S$ such that $\sigma \setminus \{s\} \cup \{s'\}$ is a maximal simplex of Δ .

Definition

 Δ is a **pseudo-manifold** if it is pure and for any σ maximal simplex of Δ and $s \in \sigma$, there is a unique $s' \in S$ such that $\sigma \setminus \{s\} \cup \{s'\}$ is a maximal simplex of Δ .

not a pseudo-manifold

Definition

 Δ is a **pseudo-manifold** if it is pure and for any σ maximal simplex of Δ and $s \in \sigma$, there is a unique $s' \in S$ such that $\sigma \setminus \{s\} \cup \{s'\}$ is a maximal simplex of Δ .

 $\implies \Delta(n)$ is a pseudo-manifold.

Definition

 Δ is a **pseudo-manifold** if it is pure and for any σ maximal simplex of Δ and $s \in \sigma$, there is a unique $s' \in S$ such that $\sigma \setminus \{s\} \cup \{s'\}$ is a maximal simplex of Δ .

 $\implies \Delta(n)$ is a pseudo-manifold.

flip graph: • vertices: triangulations (dual graph of $\Delta(n)$)

• edges: flips

Much more other properties:

some combinatorial: manifolds, spheres, homoligical spheres... some geometrical: realizable by fans, polytopes...

 $P \in \mathbb{R}^d$ is a polytope if P = conv(S) with $|S| < \infty$.

 $P \in \mathbb{R}^d$ is a polytope if P = conv(S) with $|S| < \infty$.

P is **simplicial** if its faces are simplexes.

Geometrical simplex of dimension n: $\Sigma_n = \text{conv}\{e_i\}_{i \in [n+1]}$

P is **simplicial** if its faces are simplexes.

Geometrical simplex of dimension n: $\Sigma_n = \text{conv}\{e_i\}_{i \in [n+1]}$

P is **simplicial** if its faces are simplexes.

Geometrical simplex of dimension n: $\Sigma_n = \text{conv}\{e_i\}_{i \in [n+1]}$

P is **simplicial** if its faces are simplexes.

Geometrical **simplex** of dimension n: $\Sigma_n = \text{conv}\{e_i\}_{i \in [n+1]}$

 $\forall I \subseteq [n+1], \operatorname{conv}\{e_i\}_{i \in I}$ is a face of Σ_n . Simplexes: only polytopes with this property.

 $Theorem\ (Lee, Loday, Hohlweg-Lange, Ceballos-Santos-Ziegler...)$

The associahedron $\Delta(n)$ is realizable as a convex polytope.

 $Theorem\ (Lee, Loday, Hohlweg-Lange, Ceballos-Santos-Ziegler...)$

The associahedron $\Delta(n)$ is realizable as a convex polytope.

duality on polytopes: reversing the inclusion order on faces.

duality on polytopes: reversing the inclusion order on faces.

both the dual of an associahedron.

both the dual of an associahedron.

interest \Rightarrow the graph is the flip graph.

Associahedra

interest for the flip graph:

Theorem (Sleator-Tarjan-Thruston,Pournin)

The diameter of the flip graph of the *n*-dimensional associahedron is 2n - 10 for n > 9.

Theorem (Lucas, Hurtado-Noy)

The flip graph of any associahedron is Hamiltonian.

allows to define the associahedron from a path.

Theorem (Carr-Devadoss)

For a graph G, there is a polytope, the **graph associahedron** of G, encoding a certain simplicial complex associated to G.

 $G = \text{path on } n+1 \text{ vertices} \longrightarrow \text{usual associahedron}.$

Theorem (M-Pilaud)

Any graph associahedron is Hamiltonian.

Theorem (M-Pilaud)

The diameter of any graph associahedron satisfies:

$$\max(|E|, 2|V| - 18) \le \delta(Asso_G) \le \binom{|V| + 1}{2}$$

THANK YOU FOR YOUR WONDERED ATTENTION!