R Stats & Swirl

March 19 & 20, 2025 www.dartgo.org/RRADworkshops

Research Data Services
researchdatahelp@groups.dartmouth.edu
Stephen P. Gaughan
Research Facilitator - Geospatial Programmer/Analyst
603-646-9524
stephen.p.gaughan@dartmouth.edu
Hanover, NH 03755

Data Frames, CSV files & Tibbles

Data Frames, CSV's and Tibbles

Data frames are structured data objects in programming languages like R, used to store tabular data in rows and columns, where each column can contain different types of data (e.g., numeric, character).

Tibbles are a modern take on data frames in R, part of the tidyverse, designed to be more user-friendly and efficient, providing better printing and subsetting capabilities.

CSV files (Comma-Separated Values) are a widely-used plain text file format for storing tabular data, where each row corresponds to a record and each column is separated by a comma, making them easily readable and writable by both humans and machines.

See also:

https://r4ds.had.co.nz/data-import.html

Most of readr's functions are concerned with turning flat files into data frames:

read_csv() reads comma delimited files, read_csv2() reads semicolon separated files (common in countries where , is used as the decimal place), read_tsv() reads tab delimited files, and read_delim() reads in files with any delimiter.

Categorical data

String / Character Data and categories/levels/factors in R

In R, "strings as factors" refers to converting character strings into factors when creating data frames, which is beneficial for categorical data analysis because factors store categorical variables with a fixed set of possible values (levels).

- Data that includes responses such as carnivore, omnivore, herbivore or things like survey data (yes, no, don't know) using factors is advantageous for statistical modeling and visualizations, as it allows R to treat these responses as categories rather than continuous values.
- Free-text responses or unique identifiers (like names or addresses) that don't have a
 predefined set of categories, it's better not to convert them to factors, as this could lead
 to confusion and difficulties in data manipulation or text processing.

R Studio Debugging tools

- Debugging in RStudio
- Break points
- Running line by line
- print() statements
- Environment window / variables

Stopping on a line

Editor breakpoints

The most common (and easiest) way to stop on a line of code is to set a breakpoint on that line. You can do this in RStudio by clicking to the left of the line number in the editor, or by pressing **Shift+F9** with your cursor on the desired line.

R swirl

- What is R swirl?
- https://swirlstats.com/

```
install.packages("swirl")
library("swirl")
swirl()
```

```
Console Terminal × Background Jobs ×

1: R Programming: The basics of programming in R
2: Regression Models: The basics of regression modeling in R
3: Statistical Inference: The basics of statistical inference in R
4: Exploratory Data Analysis: The basics of exploring data in R
5: Don't install anything for me. I'll do it myself.

Selection:
```


Swirlstats

RStu pr-basics-eda-stat-test.R × proceedings for stats_demo_quarto.qmd* × proceedings for recode-intro202404 (1) Render on Save ABC Q I Render (2) + PRun + Set (Top Level) \$ Console Terminal × Background Jobs × Swirlstats - https:// R - R 4.4.2 · ~/Documents/

I as you did then. If you are new, call yourself something unique.

```
> install.packages("swirl")
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-arm64/contri
5.tgz'
Content type 'application/x-gzip' length 352577 bytes (344 KB)
downloaded 344 KB
The downloaded binary packages are in
        /var/folders/sg/cy13dc_j0vzg_r3xrvskyw500000gg/T//RtmpaTqWk\
ges
> library(swirl)
```


Swirlstats

Swirlstats - https://swirlstats.com

```
| Let's get started!
. . .
To begin, you must install a course. I can install a course for y
I internet, or I can send you to a web page
| (https://github.com/swirldev/swirl_courses) which will provide co
I and directions for installing courses yourself. (If you are not c
I the internet, type 0 to exit.)
1: R Programming: The basics of programming in R
2: Regression Models: The basics of regression modeling in R
3: Statistical Inference: The basics of statistical inference in R
4: Exploratory Data Analysis: The basics of exploring data in R
5: Don't install anything for me. I'll do it myself.
```


R swirl

- Swirl options install course
- Swirl courses: https://github.com/swirldev/swirl-courses

```
# make sure you have a recent version of swirl
install.packages("swirl")
library("swirl")
# install the course you want:
#install course ("course name here")
install course()
                     > install_course("R_Programming")
swirl()
                     I Course installed successfully!
```


R swirl

- Swirl interactive questions
- Interactive coding
- Interactive readings

|==========

28%

| What does this graph NOT show you?

- 1: Using the air cleaner makes asthmatic children sicker
- 2: 75% of the children using the air cleaner had at most 3 symptom-free days
- 3: Children in the control group had at most 3 symptom-free days
- 4: Half the children in the control group had no improvement

Selection: 1

| You're the best!

31%

Reference: Butz AM, et al., JAMA Pediatrics, 2011.

Swirlstats interactive: data, stats, visualizations and discussion points:

- 1: That the air in the control group is cleaner than the air in the other group
- 2: That the children in the control group are healthier
- 3: That the air cleaner increases pollution
- 4: That the air cleaner reduces pollution

Selection: 4

| Your dedication is inspiring!

By showing the two sets of boxplots side by side you're explaining your theory of why the air cleaner increases the number of symptom-free days. Onward!

39%