

Prof. Lorí Viali, Dr.

viali@mat.pucrs.br

http://www.pucrs.br/~viali/

Porto Alegre, agosto de 2002

Variável Aleatória continua

Uma variável aleatória X tem uma distribuição **normal** se sua fdp for do tipo:

$$\mathbf{f}(\mathbf{x}) = \frac{1}{\sqrt{2\pi \cdot \sigma}} \cdot \mathbf{e}^{-\frac{1}{2} \cdot \left(\frac{\mathbf{x} - \mu}{\sigma}\right)^2}, \ \mathbf{x} \in \Re$$

$$com - \infty < \mu < \infty \quad e \quad \sigma > 0$$

Gráficos

Cálculo da Probabilidade

$$P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi . \sigma}} e^{-\frac{1}{2} \cdot \left(\frac{u - \mu}{\sigma}\right)^2} du = ?$$

A normal não é integrável através do TFC, isto é, não existe F(x) tal que F'(x) = f(x).

Solução do Problema

Utilizar integração numérica. Como não é possível fazer isto com todas as curvas, escolheu-se uma para ser tabelada (integrada numericamente).

A normal padrão

A curva escolhida é a N(0, 1), isto é, com $\mu = 0$ e $\sigma = 1$.

Se X é uma $N(\mu, \sigma)$, então:

$$Z = \frac{X - \mu}{\sigma}$$

Será uma N(0; 1)

A fdp da variável Z é dada por:

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{z^2}{2}}, \quad z \in \Re$$

uma vez que $\mu = 0$ e $\sigma = 1$.

Distribuição N(0, 1)

Tabela

O que é tabelado é a FDA da variável Z, isto é:

$$P(Z \le z) = \int_{-\infty}^{z} \varphi(u) du =$$

$$= \int_{-\infty}^{\mathbb{Z}} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{u^2}{2}} \cdot du = \Phi(\mathbb{Z})$$

FDA da N(0; 1)

Utilização da Tabela

Área à esquerda (abaixo) de "z"

$$P(Z \le z) = \Phi(z) = Leitura$$
 direta

Área à direita (acima) de "z"

$$P(Z > z) = 1 - P(Z \le z) = 1 - \Phi(z) = \Phi(-z)$$

Área entre dois valores de "z"

$$P(z_1 < Z < z_2) = \Phi(z_2) - \Phi(z_1)$$

A tabela é construída como uma matriz. As linhas fornecem a unidade ou unidade mais décimo e as colunas fornecem os centésimos.

Assim para ler, por exemplo, -0,15 deve-se procurar na linha do -0,1 + coluna do 5 (sexta coluna). A primeira é a do "0" (zero).

A aproximação é centesimal (2 casas após a vírgula) exceto na linha do –3 e do +3, que estão destacadas, onde a aproximação é, em virtude da pouca área, decimal. Observe que está escrito –3 e não –3,0!

Z	0	1	2	3
-3	0,0013	0 0010	0,0007	0,0005
-2,9	9,00	P(Z<-3,3)	UU18	0,0017
-2,8	0,0026	$=\Phi(-3,3)$	J,0024	0,0023
-2,7	0,0035	0,0034	0,0033	0,0032
-2,6	0,00 ¹ p	2(Z < -2,53)	3) ~0044	0,0043
-2,5	\cap	$=\Phi(-2,53)$		0,0057
-2,4	0,0082		0,0078	0,0075
-2,3	0,0107	0,0104	D(7 -)	^ 1099
-2,2	0,0139	0,013	P(Z < -2, 0)	4
-2,1	0,0179	Λ^	$=\Phi(-2,0)$	J,U166
-2,0	0,0228	0,0222	0,0217	0,0212

Exemplo

Uma VAC tem distribuição normal de média 50 e desvio padrão 8. Determinar:

(a)
$$P(X \le 40)$$

(b)
$$P(X > 65)$$

(c)
$$P(45 < X < 62)$$

(a)
$$P(X \le 40)$$

$$P(X \le 40) = P(\frac{X - \mu}{\sigma} \le \frac{40 - 50}{8}) =$$

$$= P(Z \le -1,25) = 10,56\%$$

(b)
$$P(X > 65)$$

$$P(X > 65) = P(\frac{X - \mu}{\sigma} > \frac{65 - 50}{8}) =$$

$$= P(Z > 1,88) = 1 - P(Z < 1,88) =$$

$$=1-\Phi(1,88)=\Phi(-1,88)=3,01\%$$

(c)
$$P(45 < X < 62)$$

$$P(45 < X < 62) =$$

$$= P(\frac{45-50}{8} < \frac{X-\mu}{\sigma} < \frac{62-50}{8}) =$$

$$= P(-0.62 < Z < 1.50) =$$

$$=\Phi(1,50)-\Phi(-0,62)=$$

Uma VAC tem distribuição normal de média 50 e desvio padrão 8. Determinar:

(a)
$$P(X \le x) = 5\%$$

(b)
$$P(X > x) = 1\%$$

Para resolver este tipo de exercício é preciso utilizar a função inversa, isto pode ser feito direto na tabela. Só que agora devemos procurar uma probabilidade (corpo da tabela) e obter um valor de "z" (lateral da tabela).

Graficamente, tem-se:

Em (a) temos $P(X \le x) = 5\%$

$$P(X \le x) = P(\frac{X - \mu}{\sigma} \le \frac{x - 50}{8}) =$$

$$= P(Z \le z) = \Phi(z) = 5\%$$

onde
$$z = \frac{x - 50}{8}$$

Se
$$\Phi(z) = 5\%$$
, então

$$\Phi^{-1}[\Phi(z)] = \Phi^{-1}(5\%)$$

$$z = \Phi^{-1}(0,05)$$

Procurando na tabela, o valor (z)

mais próximo de 5% = 0.05, tem-se:

Z	0	1	2	3	4	5
-3	0,0013	0,0010	0,0007	0,0005	0,0003	0,0002
-2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016
-2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022
-2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040
-2,5	0,0062	0,0060	0,0059	0,0057	000=-	~~~54
-2,4	0,0082	0,0080	7	161	$\mathbf{z} = \mathbf{z}$	1,65
-2,3	0,0107	0,0104	$\mathbf{Z} = -1$	1,64	U, C.	_,~014
-2,2	0,0139	0,0136	0,0132	129	0,0125	0,0122
-2,1	0,0179	0,0174	0,0170	0, 5	0,0162	0,0158
-2,0	0,0228	0,0222	0.0217	0,021.	0,0207	0,0202
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256
-1,8	0,0359	0,0351	0,0344	0,0336	7,0329	0,0322
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606

Como os dois valores estão mesma distância, isto é, apresentam o mesmo erro (0,0005), pega-se a média entre eles.

Assim

$$z = \frac{1,64 + 1,65}{2} = 1,645$$

Como
$$z = \frac{x - 50}{8}$$
, tem – se :

$$1,645 = z = \frac{x - 50}{8} \Rightarrow$$

$$x = 50 - 1,645.8 = 36,84$$

Em (b) temos P(X > x) = 1%

$$P(X > x) = P(\frac{X - \mu}{\sigma} > \frac{x - 50}{8}) =$$

$$= P(Z > z) = 1 - \Phi(z) = 1\% = 0.01$$

Mas
$$1 - \Phi(z) = \Phi(-z)$$

Logo –
$$z = \Phi^{-1}(0,01)$$

Procurando na tabela, o valor (z) mais próximo de 1% = 0,01, tem-se:

$$z = -2,33$$

Conforme pode ser visto na próxima lâmina!

Z	0	1	2	3
-3	0,0013	0,0010	0,0007	0,0005
-2,9	0,0019	0,0018	0,0018	0,0017
-2,8	0,0026	0,0025	0,0024	0,0023
-2,7	0,0035	0.0° z =	-2.33	0,0032
-2,6	0,0047	0,0045	<u>4</u> 4	0,0043
-2,5	0,0062	0,0060	0,005	0,0057
-2,4	0,0082	0,0080	0,0078	0,0075
-2,3	0,0107	0,0104	0,0102	0,0099
-2,2	0,0139	0,0136	0,0132	0,0129
-2,1	0,0179	0,0174	0,0170	0,0166
-2,0	0,0228	0,0222	0,0217	0,0212

Como

$$-z = \Phi^{-1}(0,01)$$
, tem – se:

$$-(-2,33) = \frac{x-50}{8} \Rightarrow$$

$$x = 2,33.8 + 50 = 68,64$$

Outras Distribuições

Uma variável aleatória X tem uma distribuição "t" ou de **Student** se sua fdp for do tipo:

$$f(x) = \frac{\Gamma\left(\frac{\upsilon + 1}{2}\right)\left(1 + \frac{x^2}{\upsilon}\right)^{-\frac{\upsilon + 1}{2}}}{\sqrt{\pi\upsilon} \cdot \Gamma\left(\frac{\upsilon}{2}\right)}$$

para $x \in \Re$

onde Γ é a função dada por

$$\Gamma (p) = \int_0^\infty x^{p-1} e^{-x} dx$$
para $p > 0$

$$\Gamma (p) = (p - 1) \Gamma (p - 1)$$

$$\Gamma (1/2) = \sqrt{\pi}$$

$$\Gamma (n) = (n - 1)!$$

Gráficos

Caracterização

Expectância ou Valor esperado

$$\mu = E(X) = 0$$

Variância

$$Var(X) = \frac{\upsilon}{\upsilon - 2}$$

O valor υ é denominado de "Grau de liberdade"

Tabelas

O que é tabelado é a função inversa (percentis), em relação a área à direita (unilateral) de cada curva (uma para cada linha), ou a soma das caudas (bilateral), isto é, a tabela retorna um valor "t" tal que $P(T \ge t) = \alpha$ (unilateral) ou $P(|T| \ge t) = \alpha$.

As duas opções podem ser colocadas em uma mesma tabela. Pode-se ler uma área (α) de cima para baixo e se ter um valor unilateral ($P(T \ge t) = \alpha$) ou ler a área (α) de baixo para cima e se ter um valor "t" tal que $P(T \ge t) = \alpha/2$.

	0,200	0,100	0,050	0,040	0,030	0,020
1	3,078	6,314	12,706	15,894	21,205	31,821
2	1,886	2,920	920 4,303		5,643	6,965
3	1.63 ^p	^		2 182	3,896	4,541
4	P(]	$ \Gamma_9 \geq 2$,262) =	= 5%	798	3,747
5	,	9 1	,		3,003	3,365
6	1,440	1,945	+7	2,612	2,829	3,143
7	1,415	1,895	65	2,517	2,715	2,998
8	1,397	1,860	306	2,449	2,634	2,896
9	1,383	1,833	2,262	2,398	2,574	2,821
10	1,372	1,812	2,228	2,359	2,527	2,764

	0,200	0,100	0,050	0,040	0,030	0,020
1	3,078	6,314	12,706	15,894	21,205	31,821
2	1,886	2 920	1 303	4.849	5,643	6,965
3	P (7.	$\Gamma_9 < -2$,262) :	= 2,5%	76	4,541
4			ou			3,747
5	P('	$T_9 > 2$,262) =	= 2,5%	3,003	3,365
6	1,440	1,943		2,612	2,829	3,143
7	1,415	1,895	5ر	2,517	2,715	2,998
8	1,397	1,860	2 306	2,449	2,634	2,896
9	1,383	1,833	2,262	2,398	2,574	2,821
10	1,372	1,812	2,228	2,359	2,527	2,764

Qui-Quadrado

Uma variável aleatória X tem uma distribuição Qui-Quadrado se sua fdp for do tipo:

sua fdp for do tipo:

$$f(x) = \begin{cases} \frac{\frac{v}{2} - 1}{x^{\frac{v}{2} - 1}} & \text{se } x > 0 \\ \frac{v}{2} - v & \frac{v}{2} - v \\ \frac{v}$$

Caracterização

Expectância ou Valor esperado

$$E(X) = v$$

Variância

$$Var(X) = 2v$$

O valor υ é denominado de "Grau de liberdade"

Gráficos

Tabelas

O que é tabelado é a função inversa, em relação a área à direita de cada curva (uma para cada linha), isto é, dado um valor de área na cauda direita (\alpha), a tabela retorna um valor "x" tal que $P(\chi^2 \ge x) = \alpha$

	0,995	0,990	0,975	0,950	0,900
1	0,000	0,000	0,001	0,004	0,016
2	0,010	0,020	0,051	0,103	0,211
3	0,072	0,115	0,216	0,352	0,584
4	0,207	0,297	0,484		1,064
5	0,412	0,554	0,831	,145	1,610
6	0 67			_	2,204
7	P	$ \chi^2(2) \geq 1$	0,211] =	90%	2,833
8	1,344	1,0	_,	4,133	3,490
9	1,735	2,088	2,700	3,325	4,168
10	2,156	2,558	3,247	3,940	4,865

	0,100	0,050	0,025	0,010	0,005
41	52,949	56,942	60,561	64,950	68,053
42	51	- 2 (1 0)			69,336
43	P	$[\chi^2(49) \ge$	274,919]	= 1%	,616
44	56,369	00,701		00,/10	71,892
45	57,505	61,656	65	69,957	73,166
46	58,641	62,830	66,6.	71,201	74,437
47	59,774	64,001	67,821	'2,443	75,704
48	60,907	65,171	69,023	, 3,683	76,969
49	62,038	66,339	70,222	74,919	78,231
50	63,167	67,505	71,420	76,154	79,490

Uma variável aleatória X tem uma distribuição "F" ou de Snedecor se sua fdp for do tipo:

$$f(x) = \begin{cases} \Gamma\left(\frac{m+n}{2}\right) m^{\frac{m}{2}} n^{\frac{n}{2}} x^{\frac{m}{2}-1} (n+mx)^{-\frac{m+n}{2}} \\ \Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right) \end{cases} \quad \text{se } x > 0 \\ 0 \quad \text{se } x \le 0$$

Caracterização

Expectância ou Valor esperado

$$\mathbf{E}(\mathbf{X}) = \frac{\mathbf{m}}{\mathbf{m} - 2}$$

Variância

m é o grau de liberdade do numerador e n do denominador

Var(X) =
$$\frac{2(m+n-2) m^2}{m(n-2)(n-4)}$$

Gráficos

Tabelas

O que é tabelado é a percentil 95% ou 99% - área à direita de cada curva (uma para cada par de valores numerador, denominador) igual a 5% e 1%, isto é, "x" tal que $P[F(m, n) \ge x] =$ 5% ou $P[F(m, n) \ge x] = 1\%$.

	1	2	3	4	5	6	7
1	161,45	199,50	215,71	224,58	230,16	233,99	236,77
2	10 51				10.20	19,33	19,35
	P	F(5.7	$() \geq 3,9$	9 7 1 = :	5%		8,89
4		(=,,) = 0,2	′′]		,	6,09
5	6,61	5,19	J, 4 1	_	5,05	4,95	4,88
6	5,99	5,14	4,76	4,5	4,39	4,28	4,21
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91

	1	2	3	4	5	6	7
1	4052,18	4999,34	5403,53	5624,26	5763,96	5858,95	5928,33
2	9850				^^ ^0	99,33	99,36
3	p	PF(5.)	$7) \geq 7$	461 =	1%		27,67
4			1) = 1;	, 10] —	1/0	,-1	14,98
5	16,26	13,21	12,00		10,97	10,67	10,46
6	13,75	10,92	9,78	9,15	8,75	8,47	8,26
7	12,25	9,55	8,45	7,85	7,46	7,19	6,99
8	11,26	8,65	7,59	7,01	6,63	6,37	6,18
9	10,56	8,02	6,99	6,42	6,06	5,80	5,61
10	10,04	7,56	6,55	5,99	5,64	5,39	5,20
11	9,65	7,21	6,22	5,67	5,32	5,07	4,89
12	9,33	6,93	5,95	5,41	5,06	4,82	4,64

Designaldade de Tchebycher

Desigualdade

de **Tchebycheff**, Tchebichev ou Chebyshev, 1821 –1894.

$$P(|X - \mu| \ge k\sigma) \le 1/k^2$$

$$P(|X - \mu| < k\sigma) \ge 1 - 1/k^2$$

Desigualdade de Camp-Meidell

Se a distribuição for unimodal e simétrica, então:

$$P(|X - \mu| \ge k\sigma) \le 4/9k^2$$

Estas desigualdades fornecem as probabilidades de que os valores de uma VAD/VAC estejam em um intervalo simétrico em torno da média de amplitude igual a 2k desvios padrões.

Assim se k = 2, por exemplo, a desigualdade de Tchebycheff estabelece que o percentual de valores da variável aleatória que está compreendida no intervalo μ ± 2σ é de pelo menos 1 - 1/4 = 75%

Graficamente

Na normal este percentual vale exatamente 95,44%. Mas como a normal é simétrica e unimodal, neste caso, um resultado mais próximo é dado pela desigualdade de Camp-Meidell, isto é:

$$1 - 4/(9k^2) = 1 - (1/9) = 88,89\%$$
.

Exemplo

O número de aviões que chegam a um aeroporto durante um determinado de tempo tem o seguinte comportamento:

$$f(x) = \frac{100^{x} e^{-100}}{x!} \quad x = 0, 1, 2, 3...$$

Utilize a desigualdade de **Tchebichev** para determinar uma cota inferior da probabilidade $P(85 \le X \le 115)$

Solução

Como k = 1,5, então a probabilidade solicitada deve ser maior ou igual a:

$$1 - \frac{1}{k^2} = 1 - \frac{1}{1,5^2} =$$

$$1 - 0,4444 = 55,56\%$$

