Rank-65687 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_1 + X_0 X_1^2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(4) is 1431672425

General information

Number of lines	4
Number of points	17
Number of singular points	5
Number of Eckardt points	0
Number of double points	0
Number of single points	16
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{4}
Type of lines on points	$4, 1^{16}$

Singular Points

The surface has 5 singular points:

$$\begin{array}{ll} 0: \, P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1) \\ 1: \, P_4 = \mathbf{P}(1,1,1,1) = \mathbf{P}(1,1,1,1) \\ 2: \, P_{12} = \mathbf{P}(1,1,1,0) = \mathbf{P}(1,1,1,0) \end{array} \qquad \begin{array}{ll} 3: \, P_{63} = \mathbf{P}(\omega,\omega,\omega,1) = \mathbf{P}(2,2,2,1) \\ 4: \, P_{84} = \mathbf{P}(\omega^2,\omega^2,\omega^2,1) = \mathbf{P}(3,3,3,1) \end{array}$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0, 0, 0, 0, 1, 0)_{25}$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0,0,0,1,0,0)_{9}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{41} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{41} = \mathbf{Pl}(0,0,0,1,1,0)_{53}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \mathbf{Pl}(0,1,0,1,1,0)_{57}$$

Rank of lines: (20, 340, 41, 125)

Rank of points on Klein quadric: (25, 9, 53, 57)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 16 single points: The single points on the surface are:

0: $P_0 = (1, 0, 0, 0)$ lies on line ℓ_0 1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1 2: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_3 3: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_2 4: $P_{12} = (1, 1, 1, 0)$ lies on line ℓ_3 5: $P_{23} = (1, 0, 0, 1)$ lies on line ℓ_0 6: $P_{24} = (2, 0, 0, 1)$ lies on line ℓ_0 7: $P_{25} = (3, 0, 0, 1)$ lies on line ℓ_0 8: $P_{26} = (0, 1, 0, 1)$ lies on line ℓ_1

9: $P_{27} = (1, 1, 0, 1)$ lies on line ℓ_2 10: $P_{30} = (0, 2, 0, 1)$ lies on line ℓ_1 11: $P_{32} = (2, 2, 0, 1)$ lies on line ℓ_2 12: $P_{34} = (0, 3, 0, 1)$ lies on line ℓ_1 13: $P_{37} = (3, 3, 0, 1)$ lies on line ℓ_2 14: $P_{63} = (2, 2, 2, 1)$ lies on line ℓ_3 15: $P_{84} = (3, 3, 3, 1)$ lies on line ℓ_3

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} & 0 \ 1 \ 2 \ 3 \\ \hline 0 \ 0 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 0 \ 1 \ 1 \\ 2 \ 1 \ 1 \ 0 \ 1 \\ 3 \ 1 \ 1 \ 1 \ 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_3	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3
in point	P_3	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3
in point	P_3	P_3	P_3

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2
in point	P_3	P_3	P_3

The surface has 17 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$6: P_{23} = (1,0,0,1)$	$12: P_{32} = (2, 2, 0, 1)$
$1: P_1 = (0, 1, 0, 0)$	$7: P_{24} = (2,0,0,1)$	13: $P_{34} = (0, 3, 0, 1)$
$2: P_3 = (0,0,0,1)$	$8: P_{25} = (3,0,0,1)$	14: $P_{37} = (3, 3, 0, 1)$
$3: P_4 = (1, 1, 1, 1)$	9: $P_{26} = (0, 1, 0, 1)$	$15: P_{63} = (2, 2, 2, 1)$
$4: P_5 = (1, 1, 0, 0)$	$10: P_{27} = (1, 1, 0, 1)$	16: $P_{84} = (3, 3, 3, 1)$
$5: P_{12} = (1, 1, 1, 0)$	$11: P_{30} = (0, 2, 0, 1)$,