AI ENGINEERING, COGNITIVE AND SEMANTIC COMPUTATION & IOT

PS - 1 Semestre

Prova	prática	em	grupo	\mathbf{com}	consulta.	
-------	---------	----	-------	----------------	-----------	--

Nome:	 	
RM:		

Observações da avaliação nesta disciplina:

- A prova é prática, com o objetivo de avaliar sua compreensão relacionado ao conteúdo ministrado pela disciplina.
- A prova é em grupo
- É permitido consulta a todo material pessoal (suas anotações, códigos) e público (github e internet).
- Ponha o seu nome no enunciado da prova
- Todos os códigos fornecidos estão executando perfeitamente.
- Entregue código que executa, código que não executa é zero!
- A responsabilidade por ter o setup funcionando é de cada estudante
- Os exercícios admitem diversas estratégias de resolução. A prova de cada aluno é única.
- Casos intermediários ou omissos da rubrica serão decididos pelo professor.
- A leitura e interpretação das questões faz parte da avaliação.
- Boa prova!

Questões

Inspirado no contexto do Metaverso para crianças, vamos utilizar visão computacional para criar dois jogos.

Questão 1 (5 pontos)

Você deve fazer um programa que detecta a colisão entre as formas geométricas.

Orientações

Você vai trabalhar no arquivo q1/q1.py. com o vídeo q1A.mp4 ou q1B.mp4que já estão no diretório.

O vídeo para prova tem como base a soma de todos os dígitos do RM de todos os componentes do grupo:

ideo
IA IB

Exemplo: RM090174,RM0224,.. = 0+9+0+1+7+4 + 0+2+2+4... = 29=> 2+9 = 11 => 1+1 = 2 usar o víideo q1A

O que você deve fazer:

Fazer o programa que devolve um output visual de acordo com a rubrica.

Atenção: Não pode usar Template Matching, Feature Detection, Machine Learing ou Deep Learning.

Rubrica

O que é esperado para cada rubrica:

Resultado	Conceito
R0 – Não executa	0
R1 – Detecta todas as formas geométrica	1
por cor e produz saída visual	
demonstrando	
R2 – Identifica a forma geométrica de	2
maior massa com um retângulo verde em	
output visual	
R3 – Detecta colisão entre as formas	4
geométricas e identifica escrevendo no	
output visual "COLISÃO DETECTADA"	
R4 – Identifica e exibe que a forma	5
geométrica de maior massa ultrapassou	
completamente a outra forma geométrica	

Casos intermediários ou omissos da rubrica serão decididos pelo professor.

Dica: É esperado como output visual para a R1/R2, resultado do cálculo de massa com o retângulo em verde.

 $\acute{\rm E}$ esperado como output visual para a R3, resultado da detecção de colisão.

 $\acute{\rm E}$ esperado como output visual para a R4, resultado indicando que ultrapassou a barreira .

Se você precisar gerar mais de uma imagem de debug para demonstrar como seu programa funciona, as exiba usando a função cv2.imshow.

Questão 2 (5 pontos)

Você deve fazer um programa que realiza a contagem de cartas vermelhas e cartas pretas que aparecem na tela.

Orientações

Você vai trabalhar no arquivo q2/q2.py com o vídeo q2.mp4 que já está no diretório.

O que você deve fazer:

Fazer o programa que devolve um output visual de acordo com a rubrica.

Rubrica

O que é esperado para cada rubrica:

Resultado	Conceito
R0 – Não executa	0
R1 – Segmenta por cor ao menos 1 tipo de	2
carta (as cartas vermelhas ou cartas	
pretas) e produz saída visual	
demonstrando	
R2 – Segmenta por cor todas as cartas	3
vermelhas e todas as cartas pretas e	
produz output visual	

Resultado	Conceito
R3 – Conta a quantidade de cartas vermelhas e cartas pretas e identifica escrevendo no output visual "Vermelho: xx, Preto: yy" onde xx e yy representam a quantidade de cartas respectivamente	5

Casos intermediários ou omissos da rubrica serão decididos pelo professor.

 ${\bf Dica:}~~{\bf Como}$ exemplo de output visual:

resultado esperado para 3 cartas vermelhas e 2 cartas pretas.

resultado esperado para 1 carta vermelha e 0 carta preta.

Vermelho: 1 Preto: 0

Se você precisar gerar mais de uma imagem de $\tt debug$ para demonstrar como seu programa funciona, as exiba usando a função $\tt cv2.imshow$.