第一章 复数与复变函数

选择题

- 1. $\exists z = \frac{1+i}{1-i}$ 时, $z^{100} + z^{75} + z^{50}$ 的值等于 ()
 - (A) i
- (B) -i (C) 1
- 2. 设复数z满足 $arc(z+2) = \frac{\pi}{3}$, $arc(z-2) = \frac{5\pi}{6}$, 那么z = (

- (A) $-1+\sqrt{3}i$ (B) $-\sqrt{3}+i$ (C) $-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ (D) $-\frac{\sqrt{3}}{2}+\frac{1}{2}i$
- 3. 复数 $z = \tan \theta i \left(\frac{\pi}{2} < \theta < \pi \right)$ 的三角表示式是(
- (A) $\sec\theta[\cos(\frac{\pi}{2}+\theta)+i\sin(\frac{\pi}{2}+\theta)]$ (B) $\sec\theta[\cos(\frac{3\pi}{2}+\theta)+i\sin(\frac{3\pi}{2}+\theta)]$
- (C) $-\sec\theta[\cos(\frac{3\pi}{2}+\theta)+i\sin(\frac{3\pi}{2}+\theta)]$ (D) $-\sec\theta[\cos(\frac{\pi}{2}+\theta)+i\sin(\frac{\pi}{2}+\theta)]$
- 4. 若z 为非零复数,则 $z^2 \overline{z}^2$ 与 $2z\overline{z}$ 的关系是(

 - (A) $|z^2 \bar{z}^2| \ge 2z\bar{z}$ (B) $|z^2 \bar{z}^2| = 2z\bar{z}$
- (D) 不能比较大小
- 5. 设x, y 为实数, $z_1 = x + \sqrt{11} + yi$, $z_2 = x \sqrt{11} + yi$ 且有 $|z_1| + |z_2| = 12$,则动点(x, y)的轨迹是() (A) 圆
- (B) 椭圆
- (C) 双曲线
- (D) 抛物线
- 6. 一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 3 个单位,再向下平移 1 个单位后对应的复数为
- $1-\sqrt{3}i$,则原向量对应的复数是(

 - (A) 2 (B) $1+\sqrt{3}i$ (C) $\sqrt{3}-i$ (D) $\sqrt{3}+i$

7. 使得 $z^2 = z ^2$ 反	战立的复数 z 是()	
(A) 不存在的	(B) 唯一的	(C) 纯虚数	(D) 实数
8. 设 z 为复数,贝	リ方程 $z+ \bar{z} =2+i$	的解是()	
$(A) -\frac{3}{4} + i$	(B) $\frac{3}{4}+i$	(C) $\frac{3}{4}-i$	(D) $-\frac{3}{4}$ -i
9. 满足不等式 z z -	$\left \frac{-i}{+i} \right \le 2$ 的所有点 z	构成的集合是()	
(A) 有界区域	(B) 无界区域	(C) 有界闭区域	(D) 无界闭区域
10. 方程 z + 2 - 3 <i>i</i>	$ =\sqrt{2}$ 所代表的曲	线是()	
(A) 中心为2-3i	,半径为 $\sqrt{2}$ 的圆 $\mathbb R$	引 (B) 中心为-2-	+3i,半径为 2 的圆周
(C) 中心为-2+3	$3i$,半径为 $\sqrt{2}$ 的圆	□周 (D) 中心为2-3	Si , 半径为 2 的圆周
11. 下列方程所表示	示的曲线中,不是圆	周的为 ()	
$(A) \left \frac{z-1}{z+2} \right = 2$		(B) $ z+3 - z-3 =$	= 4
= 1.0		$) z\bar{z} + a\bar{z} + \bar{a}z + a\bar{a} -$	
12. 设 $f(z) = 1 - \bar{z}$	$z_1, z_1 = 2 + 3i, z_2 = 3i$	$f-i$,则 $f(\overline{z_1})$	$\overline{-z_2}$) = ()
(A) -4-4i	(B) $4+4i$	(C) $4-4i$ (D)	-4+4i
13. $\lim_{z \to z_0} \frac{\operatorname{Im}(z) - \operatorname{Ir}}{z - z_0}$	$\frac{n(z_0)}{n(z_0)}$ ()		
(A) 等于i	(B) 等于-i	(C) 等于 0	(D) 不存在
14. 函数 f(z) = u(z)	(x,y)+iv(x,y)在	点 $z_0 = x_0 + iy_0$ 处连续	的充要条件是()
(A) u(r v)在(r	v) 外连续	(B) v(r v)在(r	v) 外连续

(C) u(x,y) 和 v(x,y) 在 (x_0,y_0) 处连续 (D) u(x,y)+v(x,y) 在 (x_0,y_0) 处连续

15. 设
$$z \in C$$
 且 $|z| = 1$,则函数 $f(z) = \frac{z^2 - z + 1}{z}$ 的最小值为(

- (A) -3
- (B) -2
- (C) -1
- (D) 1

二、填空题

1.
$$\exists z = \frac{(1+i)(2-i)(3-i)}{(3+i)(2+i)}$$
, $\exists z = \underline{ }$

- 2. $\forall z = (2-3i)(-2+i)$, $\cup \arg z = \underline{\hspace{1cm}}$
- 3. 设 $|z| = \sqrt{5}$, $\arg(z i) = \frac{3\pi}{4}$, 则z =______
- 5. 以方程 $z^6=7-\sqrt{15}i$ 的根的对应点为顶点的多边形的面积为_____
- 7. 方程 $\left| \frac{2z-1-i}{2-(1-i)z} \right| = 1$ 所表示曲线的直角坐标方程为______

9. 对于映射
$$\omega = \frac{i}{z}$$
,圆周 $x^2 + (y-1)^2 = 1$ 的像曲线为______

10.
$$\lim_{z \to 1+i} (1+z^2+2z^4) = \underline{\hspace{1cm}}$$

三、若复数z满足 $z\overline{z}+(1-2i)z+(1+2i)\overline{z}+3=0$,试求|z+2|的取值范围.

四、设 $a \ge 0$,在复数集C中解方程 $z^2 + 2|z| = a$.

五、设复数
$$z \neq \pm i$$
, 试证 $\frac{z}{1+z^2}$ 是实数的充要条件为 $|z|=1$ 或 $IM(z)=0$.

六、对于映射
$$\omega = \frac{1}{2}(z + \frac{1}{z})$$
,求出圆周 $|z| = 4$ 的像.

七、试证
$$1.\frac{z_1}{z_2} \ge 0$$
 $(z_2 \ne 0)$ 的充要条件为 $\left|z_1 + z_2\right| = \left|z_1\right| + \left|z_2\right|$;

2.
$$\frac{z_1}{z_2} \ge 0$$
 $(z_j \ne 0, k \ne j, k, j = 1, 2, \dots, n)$) 的充要条件为

$$|z_1 + z_2 + \dots + z_n| = |z_1| + |z_2| + \dots + |z_n|.$$

八、若
$$\lim_{x \to x_0} f(z) = A \neq 0$$
,则存在 $\delta > 0$,使得当 $0 < |z - z_0| < \delta$ 时有 $|f(z)| > \frac{1}{2}|A|$.

九、设z = x + iy,试证 $\frac{|x| + |y|}{\sqrt{2}} \le |z| \le |x| + |y|$.

十、设z = x + iy,试讨论下列函数的连续性:

1.
$$f(z) = \begin{cases} \frac{2xy}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

2.
$$f(z) = \begin{cases} \frac{x^3 y}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

-, 1. (B)

2. (A)

3. (D)

4. (C)

5. (B)

6. (A) 11. (B) 7. (D) 12. (C) 8. (B)

13. (D)

9. (D) 14. (C)

10. (C) 15. (A)

 \pm , 1. $\sqrt{2}$ 2. π -arctan8 3. -1+2i

5. $3\sqrt{3}$

6.
$$|z-2|+|z+2|=5$$
 ($\frac{x^2}{(\frac{5}{2})^2}+\frac{y^2}{(\frac{3}{2})^2}=1$) 7. x^2+y^2

7.
$$x^2 + y^2 = 1$$

8.
$$-1+2i,2-i$$

8.
$$-1+2i,2-i$$
 9. $\mathbf{Re}(\mathbf{w}) = \frac{1}{2}$

10.
$$-7 + 2i$$

三、
$$[\sqrt{5}-\sqrt{2},\sqrt{5}+\sqrt{2}]$$
 (或 $\sqrt{5}-\sqrt{2} \le |z+2| \le \sqrt{5}+\sqrt{2}$).

四、当
$$0 \le a \le 1$$
 时解为 $\pm (1 \pm \sqrt{1-a})i$ 或 $\pm (\sqrt{1+a}-1)$

当 $1 \le a \le +\infty$ 时解为± $(\sqrt{1+a}-1)$.

六、像的参数方程为
$$\begin{cases} u = \frac{17}{2}\cos\theta \\ v = \frac{15}{2}\sin\theta \end{cases} 0 \le \theta \le 2\pi . \ \, 表示 w 平面上的椭圆 \frac{u^2}{(\frac{17}{2})^2} + \frac{v^2}{(\frac{15}{2})^2} = 1.$$

- 十、1. f(z)在复平面除去原点外连续,在原点处不连续;
 - 2. f(z) 在复平面处处连续.