def: Subexponentia X mean 0.

Sub gaussian: \(\frac{1}{2} \text{Kos.t.} \) \(\text{Eetx} \leq \text{ekt}^2 \) \(\text{fir all teR.} \) $X \text{ mean } 0. \quad P(|X|>t) \leq \exp e^{-\frac{t^2}{4k}}$ $X \text{ meano } P(X>t) = e^{-\frac{t^2}{4K}} \text{ contrast.}$ Sub exponential: X mean 0 $P(X > t) \leq e^{-kt}$ $t \in [0, \infty)$ X meano, c∈(0, ∞), 5∈10, ∞) s.t. (t∈(-5, 5)) Fet7 = pct2 Values for C, δ : set $\delta = \frac{k}{\Sigma}$. $C = \frac{2e}{L^2}$ Thms: $\mathbb{O} \times T$ subgaussian with mean $0. \implies x+T$, x-Y are subgaussian. $E \left\{ e^{t(x+r)y}, E \right\} e^{t(x-r)y} \le e^{t^2(2k_x+2k_r)}$ \mathbb{Q} X subgaussian \Rightarrow X subexponential. $P(|X^2|>u) \leq e^{1-\frac{u}{4k}}$ 3 { Yiyi=1 independent, mean O @ subexponential with constant Co € (0, ∞). \$ max P(|Yi|>t) $\implies \sum_{i=1}^{n} T_i \quad \text{Subgaussian}: \quad P(|\sum_{i=1}^{n} T_i| > nt) \leq 2 \exp(-knt^2) < e^{-knt^2}.$ Yt ∈ [o, ∞) (t positive & sufficiently small) def: random sequence bold in probability -andom sequence bdd in probability. Constant seq. X_n of order less than one or equal to the order of α_n : $\iff X_n = O_p(\alpha_n)$ YE>O. = constant ME & integer Ne S.t. P(|Xn| ≤ ME|an|) ≥1-E for yn>nz. Thms for Covariance Matrix. (1) $X_1 - X_1$ iid copies of $X = \begin{pmatrix} X_{[1]} \\ X_{[P]} \end{pmatrix}$, mean 0, $\bigoplus X_{[1]} - X_{[P]}$ are subgaussion. $\max_{x \in \mathbb{R}} \mathbb{E} e^{t \times t_{[1]}} \leq e^{Cot^{2}} \forall t \in \mathbb{R}$. DEXXT = Ix ESpt, Ix bdd &diagonally, (max Ixj) = max Exij EM) =] = Constant K. P[|Sjkp- Zejk|>t) = 4 exp[-Knt*) >> P(|| 5 - Ix || max ≤ 2) \(\frac{1 \langle p_n}{n} \) > 1 - 4 \(\frac{p^2 - K_2}{n} \) → if log Pn=O(n), \$ 115- In | max = Op (Vn)

Q&A for this thm:

1. this is saying: as long as we choose D> \ R, Pn con even grow factor than h las long as. Pn = o(n).

2. is it ok that. for $M\epsilon = 2$, $\epsilon = 4P_n^{2-k_2\nu^2}$ depends on P_n ?

I think it's ok, because when $V > \sqrt{2}$, 2- Kzv²<0, & decrease with Ph increases, and Pn increases with n.

So we can still select the smallest NE s.t. & achieves the minimum?

max E (|Xtj1|24) ≤ Ca ⊕ EXXT = 5* ESpt, 5* bdd diagonaly

 \Rightarrow 3 constant k $P(|Sjk-Skjk|>t) < \frac{k}{n^{\frac{N}{2}}t^{N}}$ $\rightarrow \exists k_2$. $P(||S-\Sigma_*||_{\text{max}} \leq \nu \sqrt{\frac{p^{\frac{4}{3}}}{n}}) \geq 1-\frac{k_2}{\nu^2}$ $(n^{-1})^{\frac{4}{3}}$ sufficiently small.) \rightarrow if $p^{\frac{1}{\alpha}} = o(n)$, $||S - \sum_{x}||_{max} = O_{p}(\sqrt{\frac{px}{n}})$

Q&A for this thm:

1. it gets a weaker result. of 22., des allows Programs from fastest. $\frac{8}{4} > \frac{1}{2}$. $P_n = O(n^{\frac{8}{4}})$ certainly slower than of en. log Pin → ∞. ∀a. (n→∞)

so what's the point of having this thm?

2. is "max E # (| X cjp|2") ≤ Ca a weaker condition than: "max E e t X cjp € e t tc.

yes: Gaussian: all moments exist & finite.

-> sub gaussian: some,

so the second condition implies the first.

Preparation: | asso inverse covariance \rightarrow | asso inverse correlation. Covariance: | likelihood: $(2\pi)^{\frac{1}{2}} |\Sigma|^{\frac{1}{2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^T(x-\mu))$ take $\frac{1}{2} = \frac{1}{2} |\log(2\pi) - \frac{1}{2} |\log(2\pi)| = \frac{1}{2} |\Sigma|^{\frac{1}{2}} |\nabla(x-\mu)|^{\frac{1}{2}}$ In capies, $|\nabla(x-\mu)|^{\frac{1}{2}} |\nabla(x-\mu)|^{\frac{1}{2}} |\nabla(x-\mu)|^{\frac{1}{2}} |\nabla(x-\mu)|^{\frac{1}{2}}$

n copies, \times plug in $\hat{N} = \frac{1}{N} \sum_{i=1}^{N} X_i$ $\Rightarrow [\underline{\Sigma}]^{\frac{1}{2}} \exp(-\frac{1}{2} \sum_{i=1}^{N} (X_i - \underline{N}) \overline{\Sigma}^{-1} (X_i - \overline{X}))$ take $l \cdot g \cdot - \frac{n}{2} (og |\underline{\Sigma}| - \frac{1}{2} tr(\underline{\Sigma}^{-1} \sum_{i=1}^{N} (X_i - \overline{X})(X_i - \overline{X})^{-1})$ $S = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{N})(X_i - \overline{X}) \Rightarrow \frac{1}{2} (l \cdot g |\underline{\Sigma}^{-1}| - tr(\underline{\Sigma}^{-1}S))$

correlation: R: sample correlation.

I need to refer to the paper.

Now work with correlation matrix. R: sample correlation.

Ox : population correlation matrix.

O estimate the inverse of correlation matrix

θλ = argmin. { tr (0R) - 1.9 | 0 + λ 107, 4.

interested: 11 On - Dx 11F.

Thm 1: def: S is # non-zero off-dragonal entrees of the precision motrix.

 $\exists \ T \in [0,1] \quad T = \text{Qmin}(\theta_{k}^{-1}) = \text{Qmax}(\theta_{k}^{-1}) \in T^{-1} \quad \text{(can take } \ \text{sufficiently small})$ $\oplus \max_{j \neq k} |R_{jk} - (\theta_{k}^{-1})_{jk}| = \sum_{j \neq k} \frac{\tau^{2}}{32} \quad \Rightarrow \quad ||\theta_{\lambda} - \theta_{k}||_{F} \in \Sigma, \text{ occurs.}$ this happen.

? what is the reason for introducing s?

Corl: X_1 --- X_n iid copies of $X = \begin{pmatrix} X_{CII} \\ \vdots \\ X_{CPII} \end{pmatrix}$, mean $0 \oplus X_{CII}$ --- X_{CPII} subgaussian. $\bigoplus \{X_i X_i^T = 2x \in S_p^+ \}$ $\exists Constant = 7 \in (P_{min}(S^*)) \in (P_{max}(S^*)) = 7 \in (P_{min}(S^*))$

Z ∈ (Pmin (S*) ∈ (Pmox (S*) ∈ ½ all Pn. al: does this guarentee Σ* bdd diagonally?

 $\frac{\partial}{\partial x} = \frac{\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_$