ЛАБОРАТОРНАЯ РАБОТА 3

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ ПРЯМЫМИ МЕТОДАМИ. ТЕОРИЯ ВОЗМУЩЕНИЙ

Теоретический материал к данной теме содержится [1, глава 5].

Варианты заданий к задачам 3.1-3.3 даны в ПРИЛОЖЕНИИ 3.А.

ТРЕБОВАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ 3

Задачи 3.1-3.3 выполняются на Python.

Задача 3.1. Реализовать решение СЛАУ с помощью LU разложения и LU разложения по схеме частичного выбора. Решить систему небольшой размерности с возмущенной матрицей обоими методами, оценить погрешность и сравнить с теоретической оценкой. Проанализировать поведение методов с ростом числа уравнений.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ.

- 1. Реализовать метод решения СЛАУ с помощью LU разложения в виде, указанном в приложении. Убедиться в его работоспособности.
- 2. Реализовать метод решения СЛАУ с помощью LU разложения по схеме частичного выбора в виде, указанном в приложении. Убедиться в его работоспособности.
- 2*. Реализовать метод решения СЛАУ с помощью LU разложения по схеме частичного выбора без перестановки строк в виде, указанном в приложении. Убедиться в его работоспособности.
- 3. Решить систему $A^*x = b$, размера 5x5, двумя методами. Вектор b задается как b = Ax, где $x_i = N$, N --- номер варианта. Матрицу A_{ij}^* задать как A_{ij} и к одному элементу прибавить 10^{-3} .
- 4. Вычислить погрешность и сравнить ее с теоретической оценкой. Для вычисления обратной матрицы можно воспользоваться встроенными функциями.
 - 5. Задавая вектор b как b = Ax, где $x_i = N$, решить систему обоими методам для размера матрицы n = 5,...,15.
- 6. Построить на одном графике погрешности обоих методов как функций, зависящих от n. Прокомментировать полученный результат.

Задача 3.2 Дана система уравнений Ax=b порядка n с разреженной матрицей A. Решить систему прямым методом. **ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:**

- 1. Для указанной в индивидуальном варианте системы уравнений вывести формулы для нахождения неизвестных.
- 2. Предусмотреть компактное размещение элементов матрицы в памяти ЭВМ, используя одномерные массивы.
- 3. Подготовить тестовый пример.
- 4. Решить систему для тестового примера и для указанной в варианте системы уравнений.

Задача 3.3.Решить задачу итерационным методом. указанным в индивидуальном варианте . Вектор правой части задается как b = Ax, где $x_i = N$.

Указание. Задача 3.3. решается с критерием окончания, характерным для индивидуального метода (см. лекции 7,8 и гл.6 учебника)

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 3

ВНИМАНИЕ! Номер варианта N для **лабораторных работ** вычисляется по следующей формуле:

- 1) N = I для группы A-5-19;
- 2) N = 10 + I для группы A-13a-19

- 3) N = 20 + I для группы A-136-19
- 4) N = 30 + I для группы A-14-19
- 5) N = 60 I для группы A-16-19

(здесь I — индивидуальный номер студента по журналу).

ПРИЛОЖЕНИЕ З.А.

Условия к задаче 3.1

Группа	A-05	A-13a	А-13б	A-14	A-16
K	0	1	2	3	4

 $(N+K) \bmod 2 = 0$ -- решение с помощью LU реализовано в виде двух функций, одна из которых возвращает две матрицы – L и U, не модифицируя A, а вторая функция решает систему; решение с помощью LU по схеме частичного выбора модифицирует исходную матрицу A.

(N+K) mod 2=1 -- решение с помощью LU модифицирует исходную матрицу A; решение с помощью LU по схеме частичного выбора реализовано в виде двух функций, одна из которых возвращает две матрицы – L и U, не модифицируя A, а вторая функция решает систему.

	Матрица А
$(N+K) \bmod 4 = 0$	$A_{ij} = tg^{17-j}(i+1)$
$(N+K) \bmod 4 = 1$	$A_{ij} = \frac{1}{70 - 3i - j}$
$(N+K) \bmod 4 = 2$	$A_{ij} = \sin^{20-j}(i+1)$
$(N+K) \bmod 4 = 3$	$A_{ij} = \arctan(0.1(10i + j + 1))$

Таблица к задаче 3.2 В случае коллизий в матрице диагонали имеют приоритет над столбцами, главные диагонали – над побочными.

N	n	A	b_i , i =1,, n
3.2.1	30	на главной диагонали элементы равны 100, на первой поддиагонали равны 5, на второй поддиагонали элементы равны 10.	$b_i = i \cdot e^{\frac{18}{i}}$
3.2.2	40	на главной диагонали элементы равны 10 , на 4-ой наддиагонали и побочной диагонали элементы равны 1.	$b_i = i \cdot e^{\frac{22}{i}} \sin\left(\frac{9}{i}\right)$
3.2.3	34	на главной диагонали элементы равны 50 , на 5-ой поддиагонали элементы равны 15, на 20-ой побочной наддиагонали элементы равны 10	$b_i = n^2 - i^3$
3.2.4	50	на главной диагонали элементы равны 200, на 25-ой наддиагонали элементы равны 30, на 2-ой побочной поддиагонали элементы равны 40.	$b_i = n \cdot i + n$
3.2.5	40	на побочной диагонали элементы равны 100, на второй побочной наддиагонали равны 15.Эдементы 3 строки равны 35	$b_i = i^2 - n$
3.2.6	32	на побочной диагонали элементы равны 10, на пятой побочной поддиагонали равны 5. Элементы предпоследней строки равны 6	$b_i = i^2 - 100$

3.2.7	40	на главной диагонали элементы равны 100, на 1-ой наддиагонали и на 1-ой поддиагонали элементы равны 3.	$b_i = i \cdot e^{\frac{10}{i}}$
3.2.8	50	элементы 4-го столбца матрицы равны 14, элементы главной диагонали равны 20, элементы 24 го столбца равны 4.	$b_i = i \cdot e^{\frac{10}{i}} \cos\left(\frac{9}{i}\right)$
3.2.9	40	на главной диагонали элементы равны 30, элементы 10-го столбца и 10 строки равны 10	$b_i = i^3 - \sqrt{2i}$
3.2.10	50	на главной диагонали элементы равны 500, на третьей наддиагонали элементы равны 100, на побочной диагонали равны 150.	$b_i = (-1)^i 10 + ni$
3.2.11	35	на главной диагонали элементы равны 80, на 6-ой наддиагонали элементы равны 40, на 1-ой побочной наддиагонали элементы равны 10.	$b_i = i \cdot e^{\frac{22}{i}} tg(i)$
3.2.12	30	на главной диагонали элементы равны 150, на 8-ой поддиагонали элементы равны 15, на 30-ой поддиагонали элементы равны 40	$b_i = n \cdot i - i^2$
3.2.13	50	на побочной диагонали элементы равны 200, на 25-ой наддиагонали элементы равны 30, на 2-ой поддиагонали элементы равны 40.	$b_i = (-1)^i (i+n)$
3.2.14	40	на побочной диагонали элементы равны 100, на третьей побочной наддиагонали равны 15.	$b_i = (-1)^i + n$
3.2.15	40	на главной диагонали элементы равны 100, на 1-ой поддиагонали и на 15-ой поддиагонали элементы равны 24.	$b_i = i \cdot e^{\frac{10}{i}}$
3.2.16	50	на побочной диагонали элементы равны 100, элементы 5-го и 15-го столбцов равны 10.	$b_i = i \cdot e^{\frac{18}{i}}$
3.2.17	30	на главной диагонали элементы равны 30, в 4-ом столбце и на побочной диагонали элементы равны 10.	$b_i = i \cdot e^{\frac{22}{i}} \sin\left(\frac{9}{i}\right)$
3.2.18	60	на главной диагонали элементы равны 50, на 5-ой наддиагонали элементы равны 15, на 20-ой наддиагонали элементы равны 10	$b_i = (-1)^i n$
3.2.19	50	на главной диагонали элементы равны 200, на 2-ой побочной наддиагонали и 2-ой побочной поддиагонали элементы равны 40.	$b_i = in$
3.2.20	30	на побочной диагонали элементы равны 100, на второй побочной поддиагонали равны 15, на третьей побочной поддиагонали равны 5.	$b_i = i^2 - n$
3.2.21	70	на побочной диагонали элементы равны 50, в 65-ом столбце элементы равны 10.	$b_i = i^2 - 100$
3.2.22	40	на главной диагонали элементы равны 80, в 1-ом и 31-ом столбцах элементы равны 4.	$b_i = i \cdot e^{\frac{10}{i}}$
3.2.23	50	элементы 25-го столбца матрицы и элементы побочной диагонали равны 20, элементы главной диагонали равны 50.	$b_i = i \cdot e^{\frac{10}{i}} \cos\left(\frac{9}{i}\right)$
3.2.24	40	на главной диагонали и в 10-ом столбце элементы равны 5, на побочной диагонали элементы равны 15.	$b_i = i^3 - \sqrt{2i}$
3.2.25	50	на побочной диагонали элементы равны 100, на третьей и пятой наддиагоналях элементы равны 20.	$b_i = i^3 e^{-i}$
3.2.26	35	на главной диагонали элементы равны 30 , на 6-ой побочной наддиагонали элементы равны 1, на 1-ой побочной поддиагонали элементы равны 2.	$b_i = i \cdot e^{\frac{22}{i}} tg(i)$

3.2.27	60	на главной диагонали элементы равны 40, на 8-ой побочной наддиагонали элементы равны 5, в 30-ом столбце элементы равны 40	$b_i = i^3$
3.2.28	50	на побочной диагонали элементы равны 200, на 2-ой побочной поддиагонали элементы равны 30, на 5-ой побочной поддиагонали элементы равны 40.	$b_i = i + n$
3.2.29	40	на побочной диагонали элементы равны 100, на третьей и четвертой наддиагоналях равны 15.	$b_i = i^2 - n$
3.2.30	45	на главной диагонали элементы равны 95, на второй поддиагонали равны 5, на четвертой поддиагонали элементы равны 10.	$b_i = i \cdot e^{\frac{18}{i}}$
3.2.31	75	на главной диагонали элементы равны 44, на 14-ой наддиагонали и побочной диагонали элементы равны 4.	$b_i = i \cdot e^{\frac{22}{i}} \sin\left(\frac{9}{i}\right)$
3.2.32	55	на главной диагонали элементы равны 45, на 5-ой поддиагонали элементы равны 5, на 20-ой побочной наддиагонали элементы равны 12	$b_i = n^2 - i^3$
3.2.33	65	на главной диагонали элементы равны 87, на 23-ой наддиагонали элементы равны 30, на 2-ой побочной поддиагонали элементы равны 4	$b_i = n \cdot i + n$
3.2.34	45	на побочной диагонали элементы равны 100, на второй побочной наддиагонали равны 15.	$b_i = i^2 - n$
3.2.35	65	на побочной диагонали элементы равны 180, на шестой побочной поддиагонали равны 15.	$b_i = i^2 - 100$
3.2.36	45	на главной диагонали элементы равны 700, на 1-ой наддиагонали и на 1-ой поддиагонали элементы равны 30.	$b_i = i \cdot e^{\frac{10}{i}}$
3.2.37	50	элементы главной диагонали равны 20, элементы 34-го столбца матрицы равны 16, элементы побочной диагонали равны 4	$b_i = i \cdot e^{\frac{10}{i}} \cos\left(\frac{9}{i}\right)$
3.2.38	35	на главной диагонали элементы равны 150, на 18-ой поддиагонали элементы равны 3, на 32-ой поддиагонали элементы равны 40	$b_i = n \cdot i - i^2$
3.2.39	55	на побочной диагонали элементы равны 155, на 15-ой наддиагонали элементы равны 33, на 4-ой поддиагонали элементы равны 45.	$b_i = (-1)^i (i+n)$
3.2.40	65	на побочной диагонали элементы равны 100, на третьей побочной наддиагонали равны 15, на третьей побочной поддиагонали 17	$b_i = (-1)^i + n$
3.2.41	45	на главной диагонали элементы равны 120, на 6-ой поддиагонали и на 16-ой поддиагонали элементы равны 24.	$b_i = i \cdot e^{\frac{10}{i}}$
3.2.42	50	на главной диагонали элементы равны 110, на 34-ой наддиагонали и побочной диагонали элементы равны 26.	$b_i = i \cdot e^{\frac{4}{i}} \sin\left(\frac{9}{i}\right)$
3.2.43	66	на главной диагонали элементы равны 56, на 5-ой поддиагонали элементы равны 6, на 12-ой побочной наддиагонали элементы равны 10	$b_i = n^2 + 2i$
3.2.44	50	на главной диагонали элементы равны 216, на 6-ой наддиагонали элементы равны 30, на 22-ой побочной поддиагонали элементы равны 46.	$b_i = n \cdot i - n^2$
3.2.45	48	на побочной диагонали элементы равны 108, на четвертой побочной наддиагонали равны 15, на шестой поддиагонали 8	$b_i = i^2 - n$
3.2.46	56	на побочной диагонали элементы равны 28, на пятой побочной поддиагонали равны 5, на восьмой побочной поддиагонали 18	$b_i = i^2 - 100$
3.2.47	42	на главной диагонали элементы равны 46, на 6-ой наддиагонали и на 16-ой поддиагонали элементы равны 3.	$b_i = i \cdot e^{\frac{10}{i}}$

3.2.48	52	на главной диагонали и в 10-ом столбце элементы равны 15, на	2 —
3.2.40	32	побочной диагонали элементы равны 2.	$b_i = i^3 - \sqrt{2i}$
3.2.49	48	на побочной диагонали элементы равны 150, на третьей и пятой наддиагоналях элементы равны 20.	$b_i = i^3 e^{-i}$
3.2.50	38	В первой строке все элементы равны 5, на главной диагонали элементы равны 17, на побочной диагонали элементы равны 13	$b_i = i \cdot e^{\frac{22}{i}} tg(i)$
3.2.51	27	На главной диагонали элементы равны 25, на побочной диагонали элементы равны 10, на 13 поддиагонали элементы равны 5	$b_i = i^3$
3.2.52	32	На главной диагонали элементы равны 36, на побочной диагонали элементы равны 22, в 8 строке элементы равны 10, в 24 строке элементы равны 14.	$b_i = i + n$
3.2.53	37	На главной диагонали элементы равны 50, на побочной диагонали элемент равен 30 на 18-ой побочной поддиагонали элемент равен 20.	$b_i = i^2 - n$
3.2.54	28	На главной диагонали элементы равны 23, на восьмой побочной поддиагонали элементы равны 17. Элементы 20-го столбца равны 10.	$b_i = n^2 - i^3$
3.2.55	34	На побочной диагонали элементы равны 16, на 4-ой наддиагонали элементы равны 20, элементы 5-го столбца равны 24.	$b_i = n \cdot i + n$
3.2.56	45	На главной диагонали элементы равны 50, элементы 20 и 28 столбца равны 15.	$b_i = i^2 - n$
3.2.57	41	На главной диагонали элемент равен 60, на побочной диагонали элемент равен 40. На 20-й побочной наддиагонали элемент равен 30.	$b_i = i^2 - 100$
3.2.58	43	На главной диагонали элемент равен 25, на побочной диагонали элемент равен 15, на 21-ой побочной поддиагонали элемент равен 10.	$b_i = i \cdot e^{\frac{10}{i}}$
3.2.59	32	на главной диагонали и в 12-ом столбце элементы равны 35, на побочной диагонали элементы равны 22.	$b_i = i^3 - \sqrt{2i}$
3.2.60	40	на главной и на 12-ой наддиагонали элементы равны 24, в 12 столбце элементы равны 20.	$b_i = i \cdot e^{\frac{12}{i}} tg(i)$

Таблица к задаче 3.3

Элементы матрицы
$$A$$
 задаются формулами: $a_{i,j} = \frac{\cos(i+j)}{0.1 \cdot \beta} + 0.1 \beta \cdot e^{-(i-j)^2}$, параметр β задается

формулой : $\beta = (|66-N|+5) \cdot m$, здесь N – номер варианта, m- размерность матрицы, указанная в варианте. Вектор \boldsymbol{b} задается по вектору решения.

Варианты	Размерн ость <i>т</i>	Метод решения
N = 1, 9, 17, 25, 33, 41,49,57	26	Метод минимальных невязок
N = 2, 10, 18, 26, 34, 42,50,58	35	Метод наискорейшего спуска

N = 3, 11, 19, 27, 35, 43,51,59	24	Метод минимальных поправок, В – диагональная матрица, содержащая главную диагональ матрицы А
N = 4, 12, 20, 28, 36, 44,52,60	25	Метод сопряженных градиентов
N = 5, 13, 21, 29, 37, 45, 53	18	Метод Зейделя
N = 6, 14, 22, 30, 38, 46,54	27	Метод релаксации
N = 7,15,23, 31, 39, 47,55	36	Метод минимальных поправок, , В – диагональная матрица, содержащая главную диагональ матрицы А и поддиагональ матрицы А
N=8, 16, 24,32, 40, 48,56	25	Метод минимальных поправок, , В – диагональная матрица, содержащая главную диагональ матрицы А и наддиагональ матрицы А

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копчёнова Н.В. Вычислительные методы. М.:Издательский дом МЭИ , 2008.