```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read_csv('Desktop/قائمة الانجازات/athlete_events.csv')

In [40]: df.head()

[]	u												
[40]:	ID Name		Sex	Age	Height	Weight	Team	NOC	Games	Year	Season		
	0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Bar
	1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer	L
	2	3	Gunnar Nielsen Aaby	М	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Summer	Antv
	3	4	Edgar Lindenau Aabye	М	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	
	4	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	Winter	С

In [4]: plt.figure(figsize=(9,4))
 plt.title('number of medals over the Year')
 df.Year.value_counts().sort_index().plot()

Out[4]: <AxesSubplot:title={'center':'number of medals over the Year'}>


```
In [6]: itemNames = df['Medal'].value_counts().index[:10]
    itemValues = df['Medal'].value_counts().values[:10]
    plt.figure(figsize=(20,9))
    plt.ylabel('count', fontsize='medium')
    plt.xlabel('Medal', fontsize='medium')
    plt.title('Top 10 Medalies')
    plt.bar(itemNames,itemValues, width = 0.7,color='purple',linewidth=0.4)
    for i in range(len(itemNames)):
        plt.text(i,itemValues[i],itemValues[i],ha='center',va='bottom')
    plt.show()
```



```
In [9]: itemNames = df['City'].value_counts().index[:10]
    itemValues = df['City'].value_counts().values[:10]
    plt.figure(figsize=(20,9))
    plt.ylabel('count', fontsize='medium')
    plt.xlabel('City', fontsize='medium')
    plt.title('Top 10 Cities')
    plt.bar(itemNames,itemValues, width = 0.7,color='purple',linewidth=0.4)
    for i in range(len(itemNames)):
        plt.text(i,itemValues[i],itemValues[i],ha='center',va='bottom')
    plt.show()
```



```
In [8]: itemNames = df['Sport'].value_counts().index[:10]
    itemValues = df['Sport'].value_counts().values[:10]
    plt.figure(figsize=(20,9))
    plt.ylabel('count', fontsize='medium')
    plt.xlabel('Sport', fontsize='medium')
    plt.title('Top 10 Sportes')
    plt.bar(itemNames,itemValues, width = 0.7,color='purple',linewidth=0.4)
    for i in range(len(itemNames)):
        plt.text(i,itemValues[i],itemValues[i],ha='center',va='bottom')
    plt.show()
```



```
In [15]: labels = df.Sex.value_counts().index
colors = ['royalblue','orangered']
sex = df.Sex.value_counts().values
plt.figure(figsize = (5,5))
plt.pie(sex, labels=labels, colors=colors, autopct='%1.1f%%')
plt.title('proportion of Sexes',color = 'black',fontsize = 30)
```

Out[15]: Text(0.5, 1.0, 'proportion of Sexes')

proportion of Sexes


```
In [16]: female_df=df[df['Sex']== 'F']
female_df.head()
```

Out[16]:	ID		Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City
	4	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	Winter	Calgary
	5	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	Winter	Calgary
	6	5	Christine Jacoba Aaftink	F	25.0	185.0	82.0	Netherlands	NED	1992 Winter	1992	Winter	Albertville
	7	5	Christine Jacoba Aaftink	F	25.0	185.0	82.0	Netherlands	NED	1992 Winter	1992	Winter	Albertville
	8	5	Christine Jacoba Aaftink	F	27.0	185.0	82.0	Netherlands	NED	1994 Winter	1994	Winter	Lillehammer

```
In [17]: plt.figure(figsize=(9,4))
    plt.title('female impact over the Years')
    female_df.Year.value_counts().sort_index().plot()
```

Out[17]: <AxesSubplot:title={'center':'female impact over the Years'}>


```
In [21]: itemNames = df['Name'].value_counts().index[:8]
    itemValues = df['Name'].value_counts().values[:8]
    plt.figure(figsize=(20,9))
    plt.ylabel('count', fontsize='medium')
    plt.xlabel('Name', fontsize='medium')
    plt.title('Top 10 Names')
    plt.bar(itemNames,itemValues, width = 0.7,color='purple',linewidth=0.4)
    for i in range(len(itemNames)):
        plt.text(i,itemValues[i],itemValues[i],ha='center',va='bottom')
    plt.show()
```


In [23]: df_gold=df[df['Medal']== 'Gold']
df_gold.head()

	_0		• • • • • • • • • • • • • • • • • • • •										
Out[23]:		ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	
	3	4	Edgar Lindenau Aabye	M	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	
	42	17	Paavo Johannes Aaltonen	M	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	
	44	17	Paavo Johannes Aaltonen	M	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	
	48	17	Paavo Johannes Aaltonen	M	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	
	60	20	Kjetil Andr Aamodt	М	20.0	176.0	85.0	Norway	NOR	1992 Winter	1992	Winter	All

In [33]: df_silver=df[df['Medal']== 'Silver']
df_silver.head()

Out[33]:

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	
63	20	Kjetil Andr Aamodt	М	22.0	176.0	85.0	Norway	NOR	1994 Winter	1994	Winter	Lilleha
67	20	Kjetil Andr Aamodt	M	22.0	176.0	85.0	Norway	NOR	1994 Winter	1994	Winter	Lillehaı
86	25	Alf Lied Aanning	M	24.0	NaN	NaN	Norway	NOR	1920 Summer	1920	Summer	Antw
92	30	Pepijn Aardewijn	М	26.0	189.0	72.0	Netherlands	NED	1996 Summer	1996	Summer	А
106	38	Karl Jan Aas	М	20.0	NaN	NaN	Norway	NOR	1920 Summer	1920	Summer	Antw

In [38]: df_bronze=df[df['Medal']== 'Bronze']
 df_bronze.head()

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City
37	15	Arvo Ossian Aaltonen	М	30.0	NaN	NaN	Finland	FIN	1920 Summer	1920	Summer	Antwerpen
38	15	Arvo Ossian Aaltonen	М	30.0	NaN	NaN	Finland	FIN	1920 Summer	1920	Summer	Antwerpen
40	16	Juhamatti Tapio Aaltonen	М	28.0	184.0	85.0	Finland	FIN	2014 Winter	2014	Winter	Sochi
41	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Summer	London
50	17	Paavo Johannes Aaltonen	M	32.0	175.0	64.0	Finland	FIN	1952 Summer	1952	Summer	Helsinki
4												•

```
In [29]: itemNames = df_gold['Name'].value_counts().index[:6]
    itemValues = df_gold['Name'].value_counts().values[:6]
    plt.figure(figsize=(20,9))
    plt.ylabel('count', fontsize='medium')
    plt.xlabel('Name', fontsize='medium')
    plt.title('Top 10 Names')
    plt.bar(itemNames,itemValues, width = 0.7,color='purple',linewidth=0.4)
    for i in range(len(itemNames)):
        plt.text(i,itemValues[i],itemValues[i],ha='center',va='bottom')
    plt.show()
```



```
In [35]: itemNames = df_silver['Name'].value_counts().index[:6]
    itemValues = df_silver['Name'].value_counts().values[:6]
    plt.figure(figsize=(20,9))
    plt.ylabel('count', fontsize='medium')
    plt.xlabel('Name', fontsize='medium')
    plt.title('Top 10 Names')
    plt.bar(itemNames,itemValues, width = 0.7,color='purple',linewidth=0.4)
    for i in range(len(itemNames)):
        plt.text(i,itemValues[i],itemValues[i],ha='center',va='bottom')
    plt.show()
```



```
In [36]: itemNames = df_bronze['Name'].value_counts().index[:6]
    itemValues = df_bronze['Name'].value_counts().values[:6]
    plt.figure(figsize=(20,9))
    plt.ylabel('count', fontsize='medium')
    plt.xlabel('Name', fontsize='medium')
    plt.title('Top 10 Names')
    plt.bar(itemNames,itemValues, width = 0.7,color='purple',linewidth=0.4)
    for i in range(len(itemNames)):
        plt.text(i,itemValues[i],itemValues[i],ha='center',va='bottom')
    plt.show()
```


Thank You