Devoir à la maison n° 12

À rendre le 6 février

- 1) Soit $u = (u_n)_{n \ge 1}$ la suite de terme général $u_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.
 - a) En s'aidant des suites (u_{2n}) et (u_{2n-1}) , montrer que que la suite u converge.
 - **b)** Justifier que $\forall n \geq 1, u_n < 0.$
- 2) Soit un entier naturel $n \ge 2$, on introduit le polynôme

$$P_n = -1 + X + \frac{1}{2}X^2 + \dots + \frac{1}{n}X^n = -1 + \sum_{k=1}^n \frac{X^k}{k}.$$

- a) Déterminer les racines du polynôme dérivé P'_n , en séparant, selon la parité de n, les racines réelles des racines complexes non réelles.
- b) Montrer que tout racine <u>réelle</u> de P_n est simple.
- 3) a) Montrer que, pour tout entier naturel $n \ge 2$, le polynôme P_n admet une unique racine (réelle!) dans l'intervalle $[0, +\infty[$. On note x_n cette racine : vérifier que $x_n \in [0, 1]$.
 - b) Pour $n \ge 2$, déterminer le signe de $P_{n+1}(x_n)$. En déduire la monotonie de $(x_n)_{n\ge 2}$ puis sa convergence. On note ℓ la limite de $(x_n)_{n\ge 2}$.
- 4) On pose, pour $n \ge 2$,

$$G_n: \left\{ \begin{array}{ccc} [0,1[& \rightarrow & \mathbb{R}; \\ x & \mapsto & -1-\ln(1-x)-P_n(x). \end{array} \right.$$

- a) Calculer la valeur exacte de $C = x_2$ et comparer C et 1.
- b) Calculer et simplifier G'_n .
- c) En déduire que, pour tout $x \in [0, C]$ et pout tout $n \ge 2$, $|G'_n(x)| \le \frac{C^n}{1 C}$ puis que $|G_n(x)| \le |x| \frac{C^n}{1 C}$.
- **5)** a) Justifier que, pour $n \ge 2$, $x_n \in [0, C]$.
 - **b)** En déduire que, pour $n \ge 2$, $|1 + \ln(1 x_n)| \le \frac{C^{n+1}}{1 C}$.
 - c) Déterminer la valeur de ℓ .

— FIN —