BANA 6043: Statistical Computing Project: Factors impacting landing distance

Submitted By: Anupreet Gupta (M12823098)

The FAA data set consists of parameters including pitch, ground speed, air speed, duration of flight, no. of passengers, height of plane while landing and landing distance. The task in hand was to determine and predict the landing distance of a flight based on above parameters so that over run could have been avoided. After performing data cleaning and exploratory data analysis procedures, 831/950 (~ 87 %) of observations were used in regression model to determine the impact of parameter and successfully predict the landing distance. The analysis revels that ground speed, height and pitch impacts the landing distance with ground speed having major impact. While if only Boeing Aircrafts are looked into, pitch doesn't have an impact on landing distance. Thorough analysis attached.

Chapter 01: Data Preparation

Goal:

The goal of this chapter is to setup the given data into system and prepare it for data analysis purposes by performing the data sanity check on each variable.

Steps Followed:

1. Uploading the available data sets (FAA1.xlsx and FAA1.xlsx) into the SAS environment and merging the two data sets.

```
*Importing Data Set FAA1;
%web_drop_table(BANA6043.FAA1);
FILENAME REFFILE '/folders/myfolders/BANA 6043/FAA1.xls';
PROC IMPORT DATAFILE=REFFILE
     DBMS=XLS
     OUT=BANA6043.FAA1;
     GETNAMES=YES;
RUN:
PROC CONTENTS DATA=BANA6043.FAA1; RUN;
*Importing Data Set FAA2;
%web drop table(BANA6043.FAA2);
FILENAME REFFILE '/folders/myfolders/BANA 6043/FAA2.xls';
PROC IMPORT DATAFILE=REFFILE
     DBMS=XLS
     OUT=BANA6043.FAA2;
     GETNAMES=YES;
RUN;
PROC CONTENTS DATA=BANA6043.FAA2; RUN;
*Merging both the data sets;
DATA BANA6043.FLIGHTS COMBINED;
SET BANA6043.FAA1 BANA6043.FAA2;
RUN:
PROC PRINT DATA=BANA6043.FLIGHTS COMBINED (OBS=10);
RUN;
```

2. Removing observations with complete missing values and duplicates.

As a part of data preparation, it is imperative to get rid of missing observations and duplicates. Also, while estimating the correlation of any variable w.r.t dependent variable, the variable should not have missing values for more than 25-35 % of total observations to have correct estimation.

Hence, we shall be also analyzing missing values count variable wise to rule out any variable which has a considerable amount of missing values.

*Removing missing observations (The data set currently has 50 missing observations);

DATA BANA6043.FLIGHTS_COMBINED;

SET BANA6043.FLIGHTS COMBINED;

IF MISSING(NO_PASG) AND MISSING(DURATION) AND MISSING(AIRCRAFT) AND MISSING(SPEED GROUND)

AND MISSING(SPEED_AIR) AND MISSING(HEIGHT) AND MISSING(PITCH) AND MISSING(DISTANCE)

THEN DELETE;

RUN:

PROC PRINT DATA=BANA6043.FLIGHTS_COMBINED;

RUN;

*Removing duplicates (There were 100 observations which were removed followed by this step);

PROC SORT DATA=BANA6043.FLIGHTS_COMBINED NODUPKEY;
BY AIRCRAFT NO PASG SPEED AIR SPEED GROUND HEIGHT PITCH DISTANCE;

PROC MEANS DATA=BANA6043.FLIGHTS_COMBINED N NMISS MEDIAN STDDEV QRANGE; TITLE Statistical Summary for Each Variable;

Statistical Summary For Each Variable

The MEANS Procedure

Variable	Label	N	N Miss	Median	Std Dev	Quartile Range
duration	duration	800	50	153.9480975	49.2592338	69.4432967
no_pasg	no_pasg	850	0	60.0000000	7.4931370	10.0000000
speed_ground	speed_ground	850	0	79.6428041	19.0594903	26.2129610
speed_air	speed_air	208	642	101.1473493	10.2590370	13.1907754
height	height	850	0	30.0931324	10.2877268	13.6923145
pitch	pitch	850	0	4.0082875	0.5288298	0.7371201
distance	distance	850	0	1258.09	928.5600816	1053.66

3. Abnormality observation check.

```
*Validity check on each variable;
DATA BANA6043.FLIGHTS_COMBINED;
SET BANA6043.FLIGHTS COMBINED;
```

```
IF DURATION>=40 OR DURATION='' THEN IS DURATION ABNORMAL=0;
ELSE IS DURATION ABNORMAL=1;
IF SPEED GROUND>=30 AND SPEED GROUND<=140 THEN
IS SPEED GROUND ABNORMAL=0;
ELSE IS SPEED GROUND ABNORMAL=1;
IF (SPEED AIR>=30 AND SPEED AIR<=140) OR (SPEED AIR='') THEN
IS SPEED AIR ABNORMAL=0;
ELSE IS SPEED AIR ABNORMAL=1;
IF HEIGHT>=6 THEN IS HEIGHT ABNORMAL=0;
ELSE IS HEIGHT ABNORMAL=1;
IF DISTANCE<=6000 THEN IS DISTANCE ABNORMAL=0;</pre>
ELSE IS DISTANCE ABNORMAL=1;
IF IS DURATION ABNORMAL + IS SPEED GROUND ABNORMAL +
IS SPEED AIR ABNORMAL + IS HEIGHT ABNORMAL + IS DISTANCE ABNORMAL > 0
THEN IS LANDING ABNORMAL=1;
ELSE IS LANDING ABNORMAL=0;
RUN;
*Created 5 new variables to flag the abnormality corresponding to each
variable and another factor which collectively determines the
abnormality;
*Normal Landing Data;
DATA BANA6043.FLIGHTS COMBINED NORMAL;
SET BANA6043.FLIGHTS COMBINED;
IF IS LANDING ABNORMAL=0;
PROC MEANS DATA=BANA6043.FLIGHTS_COMBINED_NORMAL;
TITLE NORMAL LANDING DATA;
```

NORMAL LANDING DATA

The MEANS Procedure

Variable	Label	N	Mean	Std Dev	Minimum	Maximum
duration	duration	781	154.7757191	48.3499237	41.9493694	305.6217107
no_pasg	no_pasg	831	60.0553550	7.4913166	29.0000000	87.0000000
speed_ground	speed_ground	831	79.5426997	18.7356754	33.5741041	132.7846766
speed_air	speed_air	203	103.4850352	9.7362774	90.0028586	132.9114649
height	height	831	30.4578695	9.7848114	6.2275178	59.9459639
pitch	pitch	831	4.0051609	0.5265690	2.2844801	5.9267842
distance	distance	831	1522.48	896.3381524	41.7223127	5381.98
IS DURATION ABNORMAL		831	0	0	0	0
IS_SPEED_GROUND_ABNORMAL		831	0	0	0	0
IS SPEED AIR ABNORMAL		831	0	0	0	0
IS HEIGHT ABNORMAL		831	0	0	0	0
IS DISTANCE ABNORMAL		831	0	0	0	0
IS_LANDING_ABNORMAL		831	0	0	0	0

The MEANS Procedure													
Variable	Label	N Miss	Median	Mode	Lower Quartile	Upper Quartile	Quartile Range						
duration	duration	50	154.2845505		119.6314577	189.6629425	70.0314848						
no_pasg	no_pasg	0	60.0000000	61.0000000	55.0000000	65.0000000	10.0000000						
speed_ground	speed_ground	0	79.7939604		66.1925304	91.9498075	25.7570772						
speed_air	speed_air	628	101.1189240		96.1964606	109.3823005	13.1858399						
height	height	0	30.1670844	9.6883077	23.5298692	37.0143018	13.4844326						
pitch	pitch	0	4.0010380		3.6403979	4.3710717	0.7306738						
distance	distance	0	1262.15		892.9839743	1937.26	1044.27						
IS_DURATION_ABNORMAL		0	0	0	0	0	0						
IS_SPEED_GROUND_ABNORMAL		0	0	0	0	0	0						
IS_SPEED_AIR_ABNORMAL		0	0	0	0	0	0						
IS_HEIGHT_ABNORMAL		0	0	0	0	0	0						
IS_DISTANCE_ABNORMAL		0	0	0	0	0	0						
IS_LANDING_ABNORMAL		0	0	0	0	0	0						

4. Treating Missing Value.

*After removing 19 observations from Combined data because of abnormality, we have 831 observational data with normal values. Out of these there are speed_air variable has 628 missing value. Hence we will be discarding speed_air during our analysis;

```
*Working on missing values for duration;

DATA BANA6043.FLIGHTS_COMBINED_NORMAL;

SET BANA6043.FLIGHTS_COMBINED_NORMAL;

IF DURATION='' THEN IS_DURATION_MISSING=1;

ELSE IS_DURATION_MISSING=0;

RUN;

*Replacing missing values for duration with mean(duration);

PROC STDIZE DATA=bana6043.FLIGHTS_COMBINED_NORMAL REPONLY METHOD=MEAN out=BANA6043.FLIGHTS_COMBINED_NORMAL;

VAR DURATION;

RUN;
```

*Statistical Summary after cleaning data set;

PROC MEANS DATA=BANA6043.FLIGHTS_COMBINED_NORMAL N NMISS MEDIAN MODE
MIN MAX Q1 Q3 QRANGE;

TITLE Statistical Summary for Normal Data: Cleaned; Statistical Summary for Normal Data: Cleaned

Variable	Label	N	N Miss	Median	Mode	Minimum	Maximum	Lower Quartile	Upper Quartile	Quartile Rang
duration	duration	831	0	154.7757191	154.7757191	41.9493694	305.6217107	122.6022169	186.5109312	63.908714
no_pasg	no_pasg	831	0	60.0000000	61.0000000	29.0000000	87.0000000	55.0000000	65.0000000	10.000000
speed_ground	speed_ground	831	0	79.7939604		33.5741041	132.7846766	66.1925304	91.9496075	25.75707
speed_air	speed_air	203	628	101.1189240		90.0028586	132.9114649	96.1964606	109.3823005	13.18583
neight	height	831	0	30.1670844	9.6883077	6.2275178	59.9459639	23.5298692	37.0143018	13.48443
pitch	pitch	831	0	4.0010380		2.2844801	5.9267842	3.6403979	4.3710717	0.73067
distance	distance	831	0	1262.15		41.7223127	5381.96	892.9839743	1937.26	1044
S_DURATION_ABNORMAL		831	0	0	0	0	0	0	0	
S_SPEED_GROUND_ABNORMAL		831	0	0	0	0	0	0	0	
S_SPEED_AIR_ABNORMAL		831	0	0	0	0	0	0	0	
S_HEIGHT_ABNORMAL		831	0	0	0	0	0	0	0	
S_DISTANCE_ABNORMAL		831	0	0	0	0	0	0	0	
S_LANDING_ABNORMAL		831	0	0	0	0	0	0	0	
S_DURATION_MISSING		831	0	0	0	0	1.0000000	0	0	

The MEANS Procedure

5. Checking for distribution of parameter against Aircraft type

```
TITLE 'Landing Distance Vs Aircraft Type';
PROC BOXPLOT DATA=BANA6043.FLIGHTS_COMBINED_NORMAL;
PLOT DISTANCE*AIRCRAFT;
INSETGROUP MEAN MIN MAX N STDDEV /
        HEADER = 'EXTREMES BY AIRCRAFT'
        POS=TM;
RUN;
PROC UNIVARIATE DATA=BANA6043.FLIGHTS_COMBINED_NORMAL NOPRINT;
CLASS AIRCRAFT;
HISTOGRAM DISTANCE;
RUN;
```


Histogram depicts that distribution is normal for Airbus while slightly skewed for Boeing. Boeing has significantly higher mean and std for distance in comparison to airbus. Meaning that it requires more landing distance in comparison to Airbus. Not enough data to support the evident data but a general intuition says that the stark difference could be possibly because of the difference in size of these two types of Aircrafts.

Boxplot here depicts that in average the pitch for Boeing is 10 % higher than that of Airbus.

Boxplot here depicts that variability of speed ground for Boeing is 21 % higher than that of Airbus.

Boxplot and histograms for height and no_pasg at an aircraft level had no significance difference.

Chapter 02: Modeling and Validation

Goal:

The goal of this chapter is to establish a relationship between parameters and landing distance. So, as it can be used to predict and help avoid of landing overrun in future.

Steps Followed:

1. Calculating Correlation between independent variable (parameters) and dependent variable (landing distance).

Using XY plots and correlation values to establish the relationship strength.

```
/* Plotting Landing Distance Vs. The Ground Speed*/
PROC SGPLOT DATA=BANA6043.FLIGHTS_COMBINED_NORMAL;
    REG X=DISTANCE Y=SPEED_GROUND / LINEATTRS=(COLOR=RED
THICKNESS=2);
    TITLE "SCATTER PLOT - REGRESSION LINE: LANDING DISTANCE VS GROUND
SPEED";
RUN;
```


Looking at the graphs above, ground speed have a strong positive correlation with landing distance while pitch and height have slightly positive relation with landing distance. On the other hand, no. of passengers and height have either no or slightly negative relation with landing distance.

2. Calculating Correlation value to determine the strength of relationship between independent and dependent variable. Also this could help in identifying any relationship among independent variables.

```
*CALCULATING THE CORRELATIONS;

PROC CORR DATA=BANA6043.FLIGHTS_COMBINED_NORMAL;

VAR DISTANCE SPEED_GROUND DURATION NO_PASG HEIGHT PITCH;

RUN;
```

	Pea	rson Correlation Prob > r und		•			
	distance	speed_ground	duration	no_pasg	height	pitch	
distance	1.00000	0.88624	-0.05027	-0.01776	0.09941	0.08703	
distance		<.0001	0.1477	0.6093	0.0041	0.0121	
speed_ground	0.88624	1.00000	-0.04788	-0.00013	-0.05761	-0.03912	
speed_ground	<.0001		0.1679	0.9969	0.0970	0.2599	
duration	-0.05027	-0.04788	1.00000	-0.03544	0.01073	-0.04496	
duration	0.1477	0.1679		0.3075	0.7574	0.1954	
no_pasg	-0.01776	-0.00013	-0.03544	1.00000	0.04699	-0.01793	
no_pasg	0.6093	0.9969	0.3075		0.1760	0.6057	
height	0.09941	-0.05761	0.01073	0.04699	1.00000	0.02298	
height	0.0041	0.0970	0.7574	0.1760		0.5082	
pitch	0.08703	-0.03912	-0.04496	-0.01793	0.02298	1.00000	
pitch	0.0121	0.2599	0.1954	0.6057	0.5082		

The above matrix depicts the Pearson Correlation Coefficients among parameters and with landing distance. In accordance to our results in step 1; height and pitch does have a positive correlation with landing distance. While the p-value for any other pair is > 0.05. Hence, at 95 % confidence, we could say that there is no correlation among any other parameters.

3. Fitting into model.

After we have establish the correlation between parameters and landing distance, we would want to come to an equation which best fits these data point and in future could predict the landing distance given the input parameters.

Since, we are also interested in understanding the difference in model because of the aircraft type, we would be coming up with three different relation equations:

- 1) Overall equation fitting the data 2) Equation corresponding to Airbus 3) for Boeing
- * Performing the regression analysis on complete data set;

PROC REG DATA=BANA6043.FLIGHTS_COMBINED_NORMAL;
 MODEL DISTANCE=DURATION NO_PASG SPEED_GROUND HEIGHT PITCH;
 OUTPUT OUT=temp_reg r=resid;
 RUN;

			epende	Mod	EG Pro lel: MO iable: d	DEL	.1	listan	ce					
			Number	of Ob	servati	ons	Read	83	1					
			Number of Observations Used 831											
	Analysis of Variance													
					um of	alla		an			_		_	
	Source Model Error		DF		uares		Squ		F	Value		Pr > F	:	
			5	52492	28360	10	49856	372	6	10.33		<.0001		
			825	1419	11969		1720	015						
	Corrected Total		830	66684	10329									
	Root N		ot MSE		14.746	32	2 R-Squa		e 0.787		2			
		Depende	endent Mean		22.482	87	Adj	R-Sq		0.7859				
		Coeff Va	Var		27.241									
				Param	eter Es	tim	otoc							
						ame		Star	nd	ard				
Variat	ble	Label		DF		stim		0.0		ror	t V	alue	Pr >	tį
Interc	ept	Interce	pt	1	-2858	3.647	768	188.	379	914	-1	5.17	<.000	1
durati	ion	duratio	n	1	-0	0.10	127	0.3	30	806	-	0.33	0.742	4
no_pa	asg	no_pa	sg .	1	-2	2.71	593	1.9	92	548	-	1.41	0.158	8
speed	_ground	speed	ground	1	42	2.058	381	0.	77	114	5	4.54	<.000	1
heigh	t	height		1	13	3.60	170	1.4	47	578		9.22	<.000	1
pitch		pitch		1	199	9.783	261	27.	400	248		7.29	<.000	1

The model used 831 observations to present the equation which could be denoted as:

Distance= -2858.64768 + 42.05881*speed_ground + 13.60170*height + 199.78261*pitch

P-value corresponding to parameters no. of passengers and duration > 0.05. Hence they are not part of the linear regression here.

From ANOVA table, p-value < 0.05 and F value is quite high, indicating that landing distance could be well predicted by the input data provided for parameters here.

Parameter estimators table used here to determine the value of coefficients and noise.

```
PROC UNIVARIATE DATA=temp_reg NORMAL;

VAR RESID;
QQPLOT RESID /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);
RUN;
```


The test for normality indicated that the residual is not normally depicted since the p-value is less than 0.05.

Similarly, running the regression model only for Airbus and Boeing observations results in the below equations:

```
* Performing the regression analysis on Airbus data set;

DATA BANA6043.FLIGHTS_COMBINED_NORMAL_AIRBUS;
SET BANA6043.FLIGHTS_COMBINED_NORMAL (where=(aircraft='airbus'));
RUN;

PROC REG DATA=BANA6043.FLIGHTS_COMBINED_NORMAL_AIRBUS;
    MODEL DISTANCE=DURATION NO_PASG SPEED_GROUND HEIGHT PITCH;
    OUTPUT OUT=temp_reg r=resid;
    RUN;

PROC UNIVARIATE DATA=temp_reg NORMAL;
    VAR RESID;
    QQPLOT RESID /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);
RUN;
```

		D	epende	Mod	EG Prod lel: MOD able: di	EL1	dieta	nce					
		15	Number of Observations Read 444										
		15	lumber	of Ob	eervatio	na Uae	ed 4	144					
				Analys	als of Va	rlance	,						
	Source)	DF	_	um of uares	Mean Square		F١	/alue	Pr > F			
	Model		5	2376	37306	47527	461	51	17.96	<.0001			
	Error		438	401	90299	91	91759						
	Correct	ted Total	443	2778	27605								
		Root M St Depende			02.9169 23.3169		Squar J R-S	_	0.855 0.853				
		Coeff Var			22.89073								
				Param	eter Est	Imates	ı						
Variab	le	Label		DF		meter timate		and		t Value	Pr > jt		
Interce	ept	Intercep	ot	1	-2793.	49269	198	8.431	149	-14.08	<.0001		
duration	on	duration	1	1	-0.	31047		0.311	152	-1.00	0.3198		
no_pa	ag	no_pas	9	1	-1.	29891	Ι.	1.95	328	-0.66	0.5064		
speed	_ground	speed_	ground	1	42.	52132		0.850	374	49.98	<.0001		
height		height		1	13.	82587		1.463	396	9.44	<.0001		
pitch		pitch		1	106.	60235	2	9.28	711	3.64	0.0003		

The model used 444 observations to present the equation which could be denoted as:

Distance = - 2793.49269 + 42.52132*speed_ground + 13.82587*height + 106.60235*pitch

P-value corresponding to parameters no. of passengers and duration > 0.05. Hence they are not part of the linear regression here.

The test for normality indicated that the residual is not normally depicted since the p-value is less than 0.05.

```
* Performing the regression analysis on Boeing data set;

DATA BANA6043.FLIGHTS_COMBINED_NORMAL_BOEING;
SET BANA6043.FLIGHTS_COMBINED_NORMAL (where=(aircraft='boeing));
RUN;

PROC REG DATA=BANA6043.FLIGHTS_COMBINED_NORMAL_ BOEING;
    MODEL DISTANCE=DURATION NO_PASG SPEED_GROUND HEIGHT PITCH;
    OUTPUT OUT=temp_reg r=resid;
    RUN;

PROC UNIVARIATE DATA=temp_reg NORMAL;
    VAR RESID;
    QQPLOT RESID /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);
RUN;
```

		De	pende		el: MOI able: di			iletano	9			
		N	umber	of Obs	ervatio	ene	Read	1 38	7			
	Number of Observations Used 387											
				Analys	is of Va	arlaı	nce					
	Source		DF		um of uaree		Me Squa	an are F	Value	,	Pr > F	
	Model Error		5	29252	29476	58	5058	95	379.97	7 <.0001		
			381	5866	58664858		1539	76				
	Corrected Total		386	35119	351194334							
		Root M SE			92.3977	_		quare	_			
	-	Coeff Var			50.9833 22.4101			R-Sq	0.83	us		
				Param	eter Est	tima	ites					
Variable	,	Label		DF	Parame Estim				Standard Error		alue	Pr > jt
Intercep	ot	Intercep	t	1	-1796	989	03	256.9	0886	-	6.99	<.000
duration	1	duration		1	0	.457	75	0.4	2224		1.08	0.2790
no_paeg	9	no_pasg	1	1	-1.	.952	40	2.6	6558	-	0.73	0.4643
speed_g	ground	speed_g	ground	1	42	.281	07	0.9	7564	4	3.34	<.0001
In a Laula &		height		1	14	.237	27	2.0	6972		6.88	<.0001
height												

The model used 387 observations to present the equation which could be denoted as:

Distance - 1796.98903 + 42.28107*speed_ground + 14.23727*height

P-value corresponding to parameters pitch, no. of passengers and duration > 0.05. Hence they are not part of the linear regression here.

The test for normality indicated that the residual is not normally depicted since the p-value is less than 0.05.

A stark difference for Boeing Aircraft is that here landing distance is not influenced by the pitch unlike for Airbus.

Final Answers:

1. How many observations (flights) do you use to fit your final model? If not all 950 flights, why?

831 observations were used to fit the final model. Out of 950 observations, 100 were ruled out because of duplicity while another 19 didn't fit into the criteria mentioned for a normal landing.

While these 831 observations had 50 observations where duration was missing, but that has been replaced with the mean value for other observations. Since, removing those would have led to a loss of information and duration (intuitively also suggests that should not have an impact on landing distance which was later proved with the correlation matrix).

2. What factors and how they impact the landing distance of a flight?

Model Equation for overall data:

<u>Distance= -2858.64768 + 42.05881*speed_ground + 13.60170*height + 199.78261*pitch</u>

Ground Speed, height and pitch are the factors that impact the landing distance of a flight. The equation could be interpreted as:

- For Every unit increase (miles/hour) in ground speed, landing distance increases by ~ 42 ft.
- For Every unit increase (meters) in height, landing distance increases by ~ 13.6 ft.
- For Every unit increase (degrees) in pitch, landing distance increases by ~ 200 ft.
- 3. Is there any difference between the two makes Boeing and Airbus?

Yes. Pitch which on average is 10 % higher for Boeing than Airbus, is not a deciding factor while evaluating landing distance incase of Boeing. While height and ground speed affect the landing distance for both the aircrafts in same proportion.

Airbus Distance = - 2793.49269 + 42.52132*speed ground + 13.82587*height + 106.60235*pitch

Boeing Distance = - 1796.98903 + 42.28107*speed_ground + 14.23727*height