Aula 13 - Exercicios

Muller Moreira S Lopes

Universidade Federal do Rio Grande do Norte

20 de setembro de 2023

Equação da reta tangente

Determine a equação da reta tangente à curva $f(x) = \frac{1}{x}$ no ponto x = 2.

R:
$$y = -\frac{1}{4}x + 1$$

Equação da reta tangente

Determine a equação da reta tangente à curva $f(x) = \frac{1}{x}$ no ponto x = 2.

R:
$$y = -\frac{1}{4}x + 1$$

Equação da reta tangente

Determine a equação da reta tangente à curva $f(x) = \sqrt{3x+4}$ no ponto x=4.

R:
$$y = \frac{3}{8}x + \frac{5}{2}$$

Equação da reta tangente

Determine a equação da reta tangente à curva $f(x) = \sqrt{3x+4}$ no ponto x=4.

R:
$$y = \frac{3}{8}x + \frac{5}{2}$$

Derivada da função exponencial

Determine a derivada da função $f(x) = \left(\frac{2}{5}\right)^x \ln\left(\frac{2}{5}\right)$.

R:
$$\frac{df}{dx} = \left(\frac{2}{5}\right)^x \left[ln\left(\frac{2}{5}\right)\right]^2$$

Derivada da função exponencial

Determine a derivada da função $f(x) = \left(\frac{2}{5}\right)^x \ln\left(\frac{2}{5}\right)$.

R:
$$\frac{df}{dx} = \left(\frac{2}{5}\right)^x \left[ln\left(\frac{2}{5}\right)\right]^2$$

Regra da cadeia

Determine a derivada da função $f(x) = \frac{1}{3}(2x^5 + 6x^{-3})^5$.

R:
$$\frac{df}{dx} = \frac{10}{3}(2x^5 + 6x^{-3})^4(5x^4 - 9x^{-4})$$

Regra da cadeia

Determine a derivada da função $f(x) = \frac{1}{3}(2x^5 + 6x^{-3})^5$.

R:
$$\frac{df}{dx} = \frac{10}{3}(2x^5 + 6x^{-3})^4(5x^4 - 9x^{-4})$$

Regra do produto

Determine a derivada da função f(x) = xsen(x).

R:
$$\frac{df}{dx} = sin(x) + xcos(x)$$

Regra do produto

Determine a derivada da função f(x) = xsen(x).

R:
$$\frac{df}{dx} = sin(x) + xcos(x)$$

Regra do quociente

Determine a derivada da função $f(x) = \frac{ln(x)}{\sqrt{x}}$.

$$R: \frac{df}{dx} = \frac{2 - \ln(x)}{2x^{\frac{3}{2}}}$$

Regra do quociente

Determine a derivada da função $f(x) = \frac{ln(x)}{\sqrt{x}}$.

R:
$$\frac{df}{dx} = \frac{2-ln(x)}{2x^{\frac{3}{2}}}$$

Otimização

Um fabricante de móveis estima que o custo semanal da fabricação de x mesas é dado por $C(x)=x^3-3x^2-80x+500$. Cada mesa é vendida por 2800 reais. Qual produção semanal maximizará o lucro? Qual o lucro máximo semanal possível?

Otimização

Um fabricante de móveis estima que o custo semanal da fabricação de x mesas é dado por $C(x)=x^3-3x^2-80x+500$. Cada mesa é vendida por 2800 reais. Qual produção semanal maximizará o lucro? Qual o lucro máximo semanal possível?

Otimização

Uma companhia que promove excursões constata que, quando o preço médio era de 9 reais por pessoa, o número médio de clientes era de 1000 por semana. Após reduzir o preço para 7 reais por pessoa, o número médio de clientes aumentou para 1500 por semana. Admitindo que a função procura seja linear, que preço deve ser cobrado para obter a receita semanal máxima?

Otimização

Um recipiente cilíndrico, aberto em cima, dever ter capacidade de $375\pi cm^3$. O custo do material usado para a base do recipiente é de 15 centavos por cm^2 , e o custo do material usado na parte para a parte curva é de 5 centavos por cm^2 . Se não há perda de material, determine as dimensões que minimizem o custo do material.