#### DATE - 16\10\2023

**TEAM ID - 3884** 

# **PROJECT TITLE - Age Based Customer Segmentation using Data Science**

# **Importing Dependencies**

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

### **Loading Dataset**

```
In [65]: import pandas as pd
df = pd.read_csv("C:\\Users\\sowen\\OneDrive\\Documents\\phase 3 customer s
df
```

#### Out[65]:

|     | CustomerID | Gender | Age | Annual Income (k\$) | Spending Score (1-100) |
|-----|------------|--------|-----|---------------------|------------------------|
| 0   | 1          | Male   | 19  | 15                  | 39                     |
| 1   | 2          | Male   | 21  | 15                  | 81                     |
| 2   | 3          | Female | 20  | 16                  | 6                      |
| 3   | 4          | Female | 23  | 16                  | 77                     |
| 4   | 5          | Female | 31  | 17                  | 40                     |
|     |            |        |     |                     |                        |
| 195 | 196        | Female | 35  | 120                 | 79                     |
| 196 | 197        | Female | 45  | 126                 | 28                     |
| 197 | 198        | Male   | 32  | 126                 | 74                     |
| 198 | 199        | Male   | 32  | 137                 | 18                     |
| 199 | 200        | Male   | 30  | 137                 | 83                     |

200 rows × 5 columns

# **Data Exploration**

| In [66]: | <pre>print(df.head())</pre> |
|----------|-----------------------------|
|----------|-----------------------------|

|   | CustomerID | Gender | Age | Annual Income (k\$) | Spending Score (1-100) |
|---|------------|--------|-----|---------------------|------------------------|
| 0 | 1          | Male   | 19  | 15                  | 39                     |
| 1 | 2          | Male   | 21  | 15                  | 81                     |
| 2 | 3          | Female | 20  | 16                  | 6                      |
| 3 | 4          | Female | 23  | 16                  | 77                     |
| 4 | 5          | Female | 31  | 17                  | 40                     |

In [67]: print(df.tail(10))

|     | CustomerID | Gender | Age | Annual Income (k\$) | Spending Score (1-100) |
|-----|------------|--------|-----|---------------------|------------------------|
| 190 | 191        | Female | 34  | 103                 | 23                     |
| 191 | 192        | Female | 32  | 103                 | 69                     |
| 192 | 193        | Male   | 33  | 113                 | 8                      |
| 193 | 194        | Female | 38  | 113                 | 91                     |
| 194 | 195        | Female | 47  | 120                 | 16                     |
| 195 | 196        | Female | 35  | 120                 | 79                     |
| 196 | 197        | Female | 45  | 126                 | 28                     |
| 197 | 198        | Male   | 32  | 126                 | 74                     |
| 198 | 199        | Male   | 32  | 137                 | 18                     |
| 199 | 200        | Male   | 30  | 137                 | 83                     |

In [68]: dataset

#### Out[68]:

|     | CustomerID | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |
|-----|------------|--------|-----|---------------------|------------------------|
| 0   | 1          | Male   | 19  | 15                  | 39                     |
| 1   | 2          | Male   | 21  | 15                  | 81                     |
| 2   | 3          | Female | 20  | 16                  | 6                      |
| 3   | 4          | Female | 23  | 16                  | 77                     |
| 4   | 5          | Female | 31  | 17                  | 40                     |
|     |            |        |     |                     |                        |
| 195 | 196        | Female | 35  | 120                 | 79                     |
| 196 | 197        | Female | 45  | 126                 | 28                     |
| 197 | 198        | Male   | 32  | 126                 | 74                     |
| 198 | 199        | Male   | 32  | 137                 | 18                     |
| 199 | 200        | Male   | 30  | 137                 | 83                     |

200 rows × 5 columns

#### In [69]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

| # | Column                 | Non-Null Count | Dtype  |
|---|------------------------|----------------|--------|
|   |                        |                |        |
| 0 | CustomerID             | 200 non-null   | int64  |
| 1 | Genre                  | 200 non-null   | object |
| 2 | Age                    | 200 non-null   | int64  |
| 3 | Annual Income (k\$)    | 200 non-null   | int64  |
| 4 | Spending Score (1-100) | 200 non-null   | int64  |

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

#### In [70]: | dataset.describe()

#### Out[70]:

|       | CustomerID | Age        | Annual Income (k\$) | Spending Score (1-100) |
|-------|------------|------------|---------------------|------------------------|
| count | 200.000000 | 200.000000 | 200.000000          | 200.000000             |
| mean  | 100.500000 | 38.850000  | 60.560000           | 50.200000              |
| std   | 57.879185  | 13.969007  | 26.264721           | 25.823522              |
| min   | 1.000000   | 18.000000  | 15.000000           | 1.000000               |
| 25%   | 50.750000  | 28.750000  | 41.500000           | 34.750000              |
| 50%   | 100.500000 | 36.000000  | 61.500000           | 50.000000              |
| 75%   | 150.250000 | 49.000000  | 78.000000           | 73.000000              |
| max   | 200.000000 | 70.000000  | 137.000000          | 99.000000              |

#### In [71]: dataset.columns

# Pre-Processing and visualisation of data

```
In [72]: sns.histplot(dataset, x='Age', bins=10, color='g')
```

Out[72]: <AxesSubplot:xlabel='Age', ylabel='Count'>



# **Check for missing values**

```
In [74]: print(df.dropna().sum())
```

```
CustomerID 2010
0
Gender MaleMaleFemaleFemaleFemaleFemaleFemaleFemaleM
a...
Age 777
0
Annual Income (k$) 1211
2
Spending Score (1-100) 1004
```

dtype: object

In [75]: plt.figure(figsize=(12,8))
 sns.pairplot(dataset)

Out[75]: <seaborn.axisgrid.PairGrid at 0x2d0706a7f40>

<Figure size 864x576 with 0 Axes>



```
dataset.hist(figsize=(11,9))
In [76]:
Out[76]: array([[<AxesSubplot:title={'center':'CustomerID'}>,
                    <AxesSubplot:title={'center':'Age'}>],
                   [<AxesSubplot:title={'center':'Annual Income (k$)'}>,
                    <AxesSubplot:title={'center':'Spending Score (1-100)'}>]],
                  dtype=object)
                             CustomerID
                                                                              Age
                                                           35
            20.0
            17.5
                                                           30
            15.0
                                                            25
            12.5
                                                            20
            10.0
                                                           15
             7.5
                                                           10
             5.0
                                                            5
             2.5
             0.0
                                                            0
                        50
                                100
                                                 200
                                                                20
                                                                      30
                                                                             40
                                                                                               70
                                                                      Spending Score (1-100)
                          Annual Income (k$)
                                                           35
             35
                                                           30
             30
                                                            25
             25
                                                            20
             20
                                                           15
             15
                                                           10
             10
              5
                                                            5
```

# Visualising correlation

In [77]: dataset.corr()

Out[77]:

|                        | CustomerID | Age       | Annual Income (k\$) | Spending Score (1-100) |
|------------------------|------------|-----------|---------------------|------------------------|
| CustomerID             | 1.000000   | -0.026763 | 0.977548            | 0.013835               |
| Age                    | -0.026763  | 1.000000  | -0.012398           | -0.327227              |
| Annual Income (k\$)    | 0.977548   | -0.012398 | 1.000000            | 0.009903               |
| Spending Score (1-100) | 0.013835   | -0.327227 | 0.009903            | 1.000000               |

In [78]: plt.figure(figsize=(10,5))
sns.heatmap(dataset.corr(), annot=True)

Out[78]: <AxesSubplot:>

