Package 'FER'

October 12, 2022
Title Financial Engineering in R
Version 0.94
Description R implementations of standard financial engineering codes; vanilla option pricing models such as Black-Scholes, Bachelier, CEV, and SABR.
<pre>URL https://github.com/PyFE/FE-R</pre>
<pre>BugReports https://github.com/PyFE/FE-R/issues</pre>
Depends R (>= $3.3.1$)
NeedsCompilation no
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports stats, statmod
Suggests testthat (>= 3.0.0)
Author Jaehyuk Choi [aut, cre]
Maintainer Jaehyuk Choi <pyfe@eml.cc></pyfe@eml.cc>
Repository CRAN
Date/Publication 2021-03-05 14:00:20 UTC
R topics documented:
BachelierImpvol
BachelierPrice
BlackScholesImpvol 4 BlackScholesPrice 6
CevMassZero
CevPrice
Nsvh1Choi2019
SabrHagan2002

2 BachelierImpvol

Index		18
	SpreadKirk SwitchMargrabe	
	SpreadBjerksund2014	13
	SpreadBachelier	12

BachelierImpvol

Calculate Bachelier model implied volatility

Description

Calculate Bachelier model implied volatility

Usage

```
BachelierImpvol(
  price,
  strike = forward,
  spot,
  texp = 1,
  intr = 0,
  divr = 0,
  cp = 1L,
  forward = spot * exp(-divr * texp)/df,
  df = exp(-intr * texp)
)
```

Arguments

```
(vector of) option price
price
strike
                   (vector of) strike price
                   (vector of) spot price
spot
texp
                   (vector of) time to expiry
                   interest rate (domestic interest rate)
intr
                   dividend/convenience yield (foreign interest rate)
divr
                   call/put sign. 1 for call, -1 for put.
ср
forward
                   forward price. If given, forward overrides spot
df
                   discount factor. If given, df overrides intr
```

Value

Bachelier implied volatility

BachelierPrice 3

References

Choi, J., Kim, K., & Kwak, M. (2009). Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion. Applied Mathematical Finance, 16(3), 261-268. doi: 10.1080/13504860802583436

See Also

BachelierPrice

Examples

```
spot <- 100
strike <- 100
texp <- 1.2
sigma <- 20
intr <- 0.05
price <- 20
FER::BachelierImpvol(price, strike, spot, texp, intr=intr)</pre>
```

BachelierPrice

Calculate Bachelier model option price

Description

Calculate Bachelier model option price

Usage

```
BachelierPrice(
   strike = forward,
   spot,
   texp = 1,
   sigma,
   intr = 0,
   divr = 0,
   cp = 1L,
   forward = spot * exp(-divr * texp)/df,
   df = exp(-intr * texp)
)
```

```
strike (vector of) strike price
spot (vector of) spot price
texp (vector of) time to expiry
sigma (vector of) volatility
```

BlackScholesImpvol

intr interest rate (domestic interest rate)

divr dividend/convenience yield (foreign interest rate)

cp call/put sign. 1 for call, -1 for put.

forward forward price. If given, forward overrides spot df discount factor. If given, df overrides intr

Value

option price

References

Choi, J., Kim, K., & Kwak, M. (2009). Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion. Applied Mathematical Finance, 16(3), 261-268. doi: 10.1080/13504860802583436

See Also

```
BachelierImpvol
```

Examples

```
spot <- 100
strike <- seq(80,125,5)
texp <- 1.2
sigma <- 20
intr <- 0.05
FER::BachelierPrice(strike, spot, texp, sigma, intr=intr)</pre>
```

BlackScholesImpvol

Calculate Black-Scholes implied volatility

Description

Calculate Black-Scholes implied volatility

Usage

```
BlackScholesImpvol(
  price,
  strike = forward,
  spot,
  texp = 1,
  intr = 0,
  divr = 0,
  cp = 1L,
```

BlackScholesImpvol 5

```
forward = spot * exp(-divr * texp)/df,
  df = exp(-intr * texp)
)
```

Arguments

price	(vector of) option price
strike	(vector of) strike price
spot	(vector of) spot price
texp	(vector of) time to expiry
intr	interest rate (domestic interest rate)
divr	dividend/convenience yield (foreign interest rate)
ср	call/put sign. 1 for call, -1 for put.
forward	forward price. If given, forward overrides spot
df	discount factor. If given, df overrides intr

Value

Black-Scholes implied volatility

References

Giner, G., & Smyth, G. K. (2016). statmod: Probability Calculations for the Inverse Gaussian Distribution. The R Journal, 8(1), 339-351. doi: 10.32614/RJ2016024

See Also

BlackScholesPrice

Examples

```
spot <- 100
strike <- 100
texp <- 1.2
sigma <- 0.2
intr <- 0.05
price <- 20
FER::BlackScholesImpvol(price, strike, spot, texp, intr=intr)</pre>
```

6 BlackScholesPrice

BlackScholesPrice

Calculate Black-Scholes option price

Description

Calculate Black-Scholes option price

Usage

```
BlackScholesPrice(
   strike = forward,
   spot,
   texp = 1,
   sigma,
   intr = 0,
   divr = 0,
   cp = 1L,
   forward = spot * exp(-divr * texp)/df,
   df = exp(-intr * texp)
)
```

Arguments

```
(vector of) strike price
strike
                   (vector of) spot price
spot
                   (vector of) time to expiry
texp
sigma
                   (vector of) volatility
                   interest rate (domestic interest rate)
intr
divr
                   dividend/convenience yield (foreign interest rate)
                   call/put sign. 1 for call, -1 for put.
ср
                   forward price. If given, forward overrides spot
forward
df
                   discount factor. If given, df overrides intr
```

Value

option price

References

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637-654. doi: 10.1086/260062

Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3(1), 167-179. doi: 10.1016/0304405X(76)900246

https://en.wikipedia.org/wiki/Black-Scholes_model

CevMassZero 7

See Also

BlackScholesImpvol

Examples

```
spot <- 100
strike <- seq(80,125,5)
texp <- 1.2
sigma <- 0.2
intr <- 0.05
FER::BlackScholesPrice(strike, spot, texp, sigma, intr=intr)</pre>
```

CevMassZero

Calculate the mass at zero under the CEV model

Description

Calculate the mass at zero under the CEV model

Usage

```
CevMassZero(
    spot,
    texp = 1,
    sigma,
    beta = 0.5,
    intr = 0,
    divr = 0,
    forward = spot * exp(-divr * texp)/df,
    df = exp(-intr * texp)
)
```

```
spot
                   (vector of) spot price
                   (vector of) time to expiry
texp
                   (vector of) volatility
sigma
beta
                   beta
intr
                   interest rate
                   dividend rate
divr
forward
                   forward price. If given, forward overrides spot
df
                   discount factor. If given, df overrides intr
```

8 CevPrice

Value

```
mass at zero
```

Examples

```
spot <- 100
texp <- 1.2
beta <- 0.5
sigma <- 2
FER::CevMassZero(spot, texp, sigma, beta)</pre>
```

CevPrice

Calculate the constant elasticity of variance (CEV) model option price

Description

Calculate the constant elasticity of variance (CEV) model option price

Usage

```
CevPrice(
    strike = forward,
    spot,
    texp = 1,
    sigma,
    beta = 0.5,
    intr = 0,
    divr = 0,
    cp = 1L,
    forward = spot * exp(-divr * texp)/df,
    df = exp(-intr * texp)
)
```

```
(vector of) strike price
strike
                   (vector of) spot price
spot
                   (vector of) time to expiry
texp
sigma
                   (vector of) volatility
                   elasticity parameter
beta
                   interest rate (domestic interest rate)
intr
divr
                   dividend/convenience yield (foreign interest rate)
                   call/put sign. 1 for call, -1 for put.
ср
                   forward price. If given, forward overrides spot
forward
df
                   discount factor. If given, df overrides intr
```

Nsvh1Choi2019 9

Value

option price

References

Schroder, M. (1989). Computing the constant elasticity of variance option pricing formula. Journal of Finance, 44(1), 211-219. doi: 10.1111/j.15406261.1989.tb02414.x

Examples

```
spot <- 100
strike <- seq(80,125,5)
texp <- 1.2
beta <- 0.5
sigma <- 2
FER::CevPrice(strike, spot, texp, sigma, beta)</pre>
```

Nsvh1Choi2019

Calculate the option price under the NSVh model with lambda=1 (Choi et al. 2019)

Description

Calculate the option price under the NSVh model with lambda=1 (Choi et al. 2019)

Usage

```
Nsvh1Choi2019(
    strike = forward,
    spot,
    texp = 1,
    sigma,
    vov = 0,
    rho = 0,
    intr = 0,
    divr = 0,
    cp = 1L,
    forward = spot * exp(-divr * texp)/df,
    df = exp(-intr * texp)
)
```

```
strike (vector of) strike price
spot (vector of) spot price
texp (vector of) time to expiry
```

SabrHagan2002

sigma	(vector of) volatility
vov	(vector of) vol-of-vol
rho	(vector of) correlation
intr	interest rate
divr	dividend rate
ср	call/put sign. 1 (default) for call price, $\neg 1$ for put price, NULL for Bachelier volatility
forward	forward price. If given, forward overrides spot
df	discount factor. If given, df overrides intr

Value

BS volatility or option price based on cp

References

Choi, J., Liu, C., & Seo, B. K. (2019). Hyperbolic normal stochastic volatility model. Journal of Futures Markets, 39(2), 186–204. doi: 10.1002/fut.21967

Examples

```
spot <- 100
strike <- seq(80,125,5)
texp <- 1.2
sigma <- 20
vov <- 0.2
rho <- -0.5
strike <- seq(0.1, 2, 0.1)
FER::Nsvh1Choi2019(strike, spot, texp, sigma, vov, rho)</pre>
```

SabrHagan2002 Calculate the equivalent BS volatility (Hagan et al. 2002) for the Stochatic-Alpha-Beta-Rho (SABR) model

Description

 $Calculate \ the \ equivalent \ BS \ volatility \ (Hagan \ et \ al. \ 2002) \ for \ the \ Stochatic-Alpha-Beta-Rho \ (SABR) \ model$

SabrHagan2002

Usage

```
SabrHagan2002(
   strike = forward,
   spot,
   texp = 1,
   sigma,
   vov = 0,
   rho = 0,
   beta = 1,
   intr = 0,
   divr = 0,
   cp = NULL,
   forward = spot * exp(-divr * texp)/df,
   df = exp(-intr * texp)
)
```

Arguments

strike	(vector of) strike price
spot	(vector of) spot price
texp	(vector of) time to expiry
sigma	(vector of) volatility
vov	(vector of) vol-of-vol
rho	(vector of) correlation
beta	(vector of) beta
intr	interest rate (domestic interest rate)
divr	convenience rate (foreign interest rate)
ср	call/put sign. NULL for BS vol (default), 1 for call price, -1 for put price.
forward	forward price. If given, forward overrides spot
df	discount factor. If given, df overrides intr

Value

BS volatility or option price based on cp

References

Hagan, P. S., Kumar, D., Lesniewski, A. S., & Woodward, D. E. (2002). Managing Smile Risk. Wilmott, September, 84-108.

Examples

```
sigma <- 0.25
vov <- 0.3
rho <- -0.8
beta <- 0.3
```

12 SpreadBachelier

```
texp <- 10
strike <- seq(0.1, 2, 0.1)
FER::SabrHagan2002(strike, 1, texp, sigma, vov, rho, beta)
FER::SabrHagan2002(strike, 1, texp, sigma, vov, rho, beta, cp=1)</pre>
```

SpreadBachelier

Spread option under the Bachelier model

Description

The payout of the spread option is max(S1_T - S2_T - K, 0) where S1_T and S2_T are the prices at expiry T of assets 1 and 2 respectively and K is the strike price.

Usage

```
SpreadBachelier(
    strike = 0,
    spot1,
    spot2,
    texp = 1,
    sigma1,
    sigma2,
    corr,
    intr = 0,
    divr1 = 0,
    divr2 = 0,
    cp = 1L,
    forward1 = spot1 * exp(-divr1 * texp)/df,
    forward2 = spot2 * exp(-divr2 * texp)/df,
    df = exp(-intr * texp)
)
```

```
strike
                   (vector of) strike price
                   (vector of) spot price of asset 1
spot1
                   (vector of) spot price of asset 2
spot2
                   (vector of) time to expiry
texp
sigma1
                   (vector of) Bachelier volatility of asset 1
sigma2
                   (vector of) Bachelier volatility of asset 2
corr
                   correlation
                   interest rate
intr
divr1
                   dividend rate of asset 1
                   dividend rate of asset 2
divr2
```

SpreadBjerksund2014 13

```
cp call/put sign. 1 for call, -1 for put.

forward1 forward price of asset 1. If given, overrides spot1

forward2 forward price of asset 2. If given, overrides spot2

df discount factor. If given, df overrides intr
```

Value

option price

Examples

```
FER::SpreadBachelier((-2:2)*10, 100, 120, 1.3, 20, 36, -0.5)
```

SpreadBjerksund2014 Spread option pricing method by Bjerksund & Stensland (2014)

Description

The payout of the spread option is max(S1_T - S2_T - K, 0) where S1_T and S2_T are the prices at expiry T of assets 1 and 2 respectively and K is the strike price.

Usage

```
SpreadBjerksund2014(
  strike = 0,
  spot1,
  spot2,
  texp = 1,
  sigma1,
  sigma2,
  corr,
  intr = 0,
 divr1 = 0,
 divr2 = 0,
  cp = 1L,
  forward1 = spot1 * exp(-divr1 * texp)/df,
 forward2 = spot2 * exp(-divr2 * texp)/df,
  df = exp(-intr * texp)
)
```

14 SpreadKirk

Arguments

strike	(vector of) strike price
spot1	(vector of) spot price of asset 1
spot2	(vector of) spot price of asset 2
texp	(vector of) time to expiry
sigma1	(vector of) volatility of asset 1
sigma2	(vector of) volatility of asset 2
corr	correlation
intr	interest rate
divr1	dividend rate of asset 1

cp call/put sign. 1 for call, -1 for put.

forward1 forward price of asset 1. If given, overrides spot1 forward2 forward price of asset 2. If given, overrides spot2

df discount factor. If given, df overrides intr

dividend rate of asset 2

Value

option price

divr2

References

Bjerksund, P., & Stensland, G. (2014). Closed form spread option valuation. Quantitative Finance, 14(10), 1785–1794. doi: 10.1080/14697688.2011.617775

Examples

```
FER:: SpreadBjerksund2014 ((-2:2) \times 10,\ 100,\ 120,\ 1.3,\ 0.2,\ 0.3,\ -0.5)
```

SpreadKirk Kirk's approximation for spread option

Description

The payout of the spread option is max(S1_T - S2_T - K, 0) where S1_T and S2_T are the prices at expiry T of assets 1 and 2 respectively and K is the strike price.

SpreadKirk 15

Usage

```
SpreadKirk(
 strike = 0,
  spot1,
 spot2,
  texp = 1,
  sigma1,
 sigma2,
 corr,
  intr = 0,
 divr1 = 0,
 divr2 = 0,
  cp = 1L,
  forward1 = spot1 * exp(-divr1 * texp)/df,
  forward2 = spot2 * exp(-divr2 * texp)/df,
 df = exp(-intr * texp)
)
```

Arguments

strike	(vector of) strike price
spot1	(vector of) spot price of asset 1
spot2	(vector of) spot price of asset 2
texp	(vector of) time to expiry
sigma1	(vector of) volatility of asset 1
sigma2	(vector of) volatility of asset 2
corr	correlation
intr	interest rate
divr1	dividend rate of asset 1
divr2	dividend rate of asset 2
ср	call/put sign. 1 for call, -1 for put.
forward1	forward price of asset 1. If given, overrides spot1
forward2	forward price of asset 2. If given, overrides spot2
df	discount factor. If given, df overrides intr

Value

option price

References

Kirk, E. (1995). Correlation in the energy markets. In Managing Energy Price Risk (First, pp. 71–78). Risk Publications.

SwitchMargrabe

See Also

SwitchMargrabe

Examples

```
FER::SpreadKirk((-2:2)*10, 100, 120, 1.3, 0.2, 0.3, -0.5)
```

SwitchMargrabe

Margrabe's formula for exhange option price

Description

The payout of the exchange option is $max(S1_T - S2_T, 0)$ where $S1_T$ and $S2_T$ are the prices at expiry T of assets 1 and 2 respectively.

Usage

```
SwitchMargrabe(
    spot1,
    spot2,
    texp = 1,
    sigma1,
    sigma2,
    corr,
    intr = 0,
    divr1 = 0,
    divr2 = 0,
    cp = 1L,
    forward1 = spot1 * exp(-divr1 * texp)/df,
    forward2 = spot2 * exp(-divr2 * texp)/df,
    df = exp(-intr * texp)
)
```

```
spot1
                   (vector of) spot price of asset 1
spot2
                   (vector of) spot price of asset 2
                   (vector of) time to expiry
texp
sigma1
                   (vector of) volatility of asset 1
                   (vector of) volatility of asset 2
sigma2
                   correlation
corr
intr
                   interest rate
                   dividend rate of asset 1
divr1
```

SwitchMargrabe 17

divr2 dividend rate of asset 2

cp call/put sign. 1 for call, -1 for put.

forward1 forward price of asset 1. If given, overrides spot1 forward2 forward price of asset 2. If given, overrides spot2

df discount factor. If given, df overrides intr

Value

option price

References

Margrabe, W. (1978). The value of an option to exchange one asset for another. The Journal of Finance, 33(1), 177–186.

See Also

SpreadKirk

Examples

FER::SwitchMargrabe(100, 120, 1.3, 0.2, 0.3, -0.5)

Index

```
BachelierImpvol, 2, 4
BachelierPrice, 3, 3
BlackScholesImpvol, 4, 7
BlackScholesPrice, 5, 6

CevMassZero, 7
CevPrice, 8

Nsvh1Choi2019, 9

SabrHagan2002, 10
SpreadBachelier, 12
SpreadBjerksund2014, 13
SpreadKirk, 14, 17
SwitchMargrabe, 16, 16
```