CURSO 20-21

EJERCICIOS TEMA 2

MODELADO CINEMÁTICO

1. Calcular los parámetros de DH del robot SCARA

Solución:

ÁREA DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA

	10	d	a	X
1	91	L	L2	\bigcirc
2	92	0	L3	H
3	0	93	0	0
4	94	4	0	0
(, ,	1		

2. Calcular los parámetros de DH del robot puma 560

ÁREA DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA

Solución:

. 1	0	d	al	X	lipe
1	01	4	0	-90	P
2	Oz	d	Lz	0	P
3	140	0	0	90	P.
4	Oq	123	0	-90	12
5	05	0	0	90	P
6	06	4	0	0	R

DEPARTAMENTO DE INGENIERÍA ELECTROMECÁNICA ÁREA DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA

3. Calcular los parámetros de DH del siguiente robot articular

Solución:

4. Calcular los parámetros de DH del siguiente robot cartesiano

ÁREA DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA

DEPARTAMENTO DE INGENIERÍA ELECTROMECÁNICA

Solución:

DEPARTAMENTO DE INGENIERÍA ELECTROMECÁNICA ÁREA DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA

5. Calcular los parámetros de DH del siguiente robot de Yaskawa

- ¿Podría aplicarse desacoplo cinemático en este robot?

Solución:

Si puede aplicarse desacoplo cinemático, porque los ejes de las 3 articulaciones finales se cortan en un punto.

6. Calcular los parámetros DH del robot Sawyer de rethink robotics

https://www.youtube.com/watch?v=G11l9bLHgkc

Este robot está disponible en Matlab en la librería de Peter Corke

Solución:

7. Sabiendo que los parámetros de DH de un robot son:

Artic.	θ	d	a	α
1	q 1	11	0	90°
2	q ₂	0	0	-90°
3	0	q 3	0	0

a)Represente el robot esquemáticamente.

b)Considerando que el sistema de coordenadas en el extremo del robot es O_{UVW} y en la base del robot es O_{XYZ} . Obtenga la matriz de transformación para calcular las coordenadas de un punto en el sistema O_{XYZ} O, a partir de sus coordenadas en el sistema O_{UVW} .

- c) Cual serán las coordenadas en el sistema O_{UVW} de los siguientes puntos:
 - Eje de la articulación 3
 - Extremo del robot
 - Base del robot

UNIVERSIDAD DE BURGOS

DEPARTAMENTO DE INGENIERÍA ELECTROMECÁNICA ÁREA DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA Grado en Ingeniería Electrónica y Automática Curso 20-21

8. Calcular el jacobiano de los robots de los problemas 3 y 4

Solución:

Esférico:

$$\begin{split} [X;Y;Z] &= \cos(q1)*(L3*\cos(q2+q3) + L2*\cos(q2)); \\ &\sin(q1)*(L3*\cos(q2+q3) + L2*\cos(q2)); \\ &L1 - L3*\sin(q2+q3) - L2*\sin(q2) \end{split}$$

Cartesiano:

$$[X;Y;Z] = [q1; q3; q2]$$

$$J=[1, 0, 0]$$

$$[0, 0, 1]$$

$$[0, 1, 0]$$

9. Calcular los puntos singulares del siguiente robot:

