

前回の復習 • 加元論理代数方程式の解を求める $\begin{cases} f_1(x_1, \cdots, x_n) = g_1(x_1, \cdots, x_n) \\ f_2(x_1, \cdots, x_n) = g_2(x_1, \cdots, x_n) \\ f_m(x_1, \cdots, x_n) = g_m(x_1, \cdots, x_n) \end{cases}$ 講義や演習問題に関して質問がある場合には下記までメールを送ってください. katsurada@rs.tus.ac.jp

4	AND	とOR	以外の	演算子			
x y	$x \cdot y$	$x \lor y$	<i>x</i> ⊕ <i>y</i>	$x \mid y$	$x \downarrow y$	$x \rightarrow y$	$x \leftrightarrow y$
0 0	0	0	0	1	1	1	1
0 1	0	1	1	1	0	1	0
1 0	0	1	1	1	0	0	0
1 1	1	1	0	0	0	1	1
	AND	OR	XOR	NAND	NOR		
読み方	アンド	オア	エクスク ルーシブ オア	ナンド	ノア		
日本語			排他的論 理和 (環和)			含意	同値
111			1 1111				4/28/2023

7

シャノンの展開定理

(証明)
$$x_1 = 0$$
のとき
(左辺) = $\varphi(0, x_2, \dots, x_n)$
(右辺) = $\varphi(0, x_2, \dots, x_n) \cdot 1 \vee \varphi(1, x_2, \dots, x_n) \cdot 0$
= $\varphi(0, x_2, \dots, x_n)$

$$x_1 = 1$$
のとき
(左辺) = $\varphi(1, x_2, \cdots, x_n)$
(右辺) = $\varphi(0, x_2, \cdots, x_n) \cdot 0 \lor \varphi(1, x_2, \cdots, x_n) \cdot 1$
= $\varphi(1, x_2, \cdots, x_n)$

4/28/202

8

XORの展開定理

1. シャノン展開

$$\varphi(x_1, x_2, \cdots, x_n) = \varphi_0 \overline{x_1} \oplus \varphi_1 x_1$$

$$\varphi_0 = \varphi(0, x_2, \cdots, x_n), \ \varphi_1 = \varphi(1, x_2, \cdots, x_n)$$

2. 正極性ダビオ展開

$$\varphi(x_1, x_2, \dots, x_n) = \varphi_0 \oplus \varphi_2 x_1 (= \varphi_0 \oplus (\varphi_0 \oplus \varphi_1) x_1)$$
$$\varphi_2 = \varphi_0 \oplus \varphi_1$$

3. 負極性ダビオ展開

$$\varphi(x_1, x_2, \cdots, x_n) = \varphi_2 \overline{x_1} \oplus \varphi_1 (= (\varphi_0 \oplus \varphi_1) \overline{x_1} \oplus \varphi_1)$$

4/28/2023

リード・マラー標準形

②全ての変数を正極性ダビオ展開で展開すると... $\varphi(x_1, x_2, \dots, x_n) \\
= \varphi(0, x_2, \dots, x_n) \oplus \varphi(0, x_2, \dots, x_n) x_1 \oplus \varphi(1, x_2, \dots, x_n) x_1 \\
= \varphi(0, 0, x_3, \dots, x_n) \oplus \varphi(0, 0, x_3, \dots, x_n) x_2 \oplus \varphi(0, 1, x_3, \dots, x_n) x_2 \\
\oplus \varphi(0, 0, x_3, \dots, x_n) x_1 \oplus \varphi(0, 0, x_3, \dots, x_n) x_1 x_2 \oplus \varphi(0, 1, x_3, \dots, x_n) x_1 x_2 \\
\oplus \varphi(1, 0, x_3, \dots, x_n) x_1 \oplus \varphi(1, 0, x_3, \dots, x_n) x_1 x_2 \oplus \varphi(1, 1, x_3, \dots, x_n) x_1 x_2$ 428/2022

リード・マラー標準形 ②全ての変数を正極性ダビオ展開で展開すると... $\varphi(x_1,x_2,\cdots,x_n)$ $= \varphi(0,0,0,\cdots,0)$ $\oplus (\varphi(0,0,0,\cdots,0)\oplus\varphi(1,0,0,\cdots,0))x_1$ $\oplus (\varphi(0,0,0,\cdots,0)\oplus\varphi(0,1,0,\cdots,0))x_2$ \vdots $\oplus (\varphi(0,0,0,\cdots,0)\oplus\varphi(0,1,0,\cdots,0)\oplus\varphi(1,0,0,\cdots,0)\oplus\varphi(1,1,0,\cdots,0))x_1x_2$ \vdots $\oplus (\varphi(0,0,0,\cdots,0)\oplus\varphi(0,1,0,\cdots,0)\oplus\varphi(1,0,0,\cdots,0)\oplus\varphi(1,1,0,\cdots,0))x_1x_2$ \vdots $\oplus (\varphi(0,0,0,\cdots,0)\oplus\cdots\oplus\varphi(1,1,1,\cdots,1))x_1x_2\cdots x_n$ \vdots $\oplus (\varphi(0,0,0,0,\cdots,0)\oplus\cdots\oplus\varphi(1,1,1,\cdots,1))x_1x_2\cdots x_n$ \vdots $\oplus (\varphi(0,0,0,0,\cdots,0)\oplus\cdots\ominus\varphi(0,0,0,\cdots,0)\oplus\varphi(0,0,0$

リード・マラー標準形への変換 $\varphi(x,y,z) = \bar{x}y \vee \overline{x} \vee \overline{z}$ $\varphi(x,y,z) = \bar{x}y \vee \overline{x} \vee \overline{z}$ $= \bar{x}y \vee x\bar{z}$ $= \bar{x}y \vee x\bar{z}$ $= (x \oplus 1)y \vee x(z \oplus 1)$ $= (x \oplus 1)y \oplus x(z \oplus 1) \oplus (x \oplus 1)yx(z \oplus 1)$ $= (x \oplus 1)y \oplus x(z \oplus 1) \oplus (x \oplus 1)yx(z \oplus 1)$ $= xy \oplus y \oplus xz \oplus x \oplus xyz \oplus xy \oplus xyz \oplus xy$ $= x \oplus y \oplus xy \oplus xz$ 1. $\bar{x} = x \oplus 1$, $x \vee y = x \oplus y \oplus xy \in A$ を何度も使う
2. 積項とXORのみになったら $x \oplus x = 0$ を使って積項を消す

出題予定の演習課題 ■ リードマラー標準形への変形 ■ 排他的論理和の計算