EULER PATHS AND CIRCUITS

(欧拉路径与欧拉回路)

ZHANG YANMEI

ymzhang@bupt.edu.cn

COLLEGE OF COMPUTER SCIENCE & TECHNOLOGY

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

Can I draw the figure in one continuous trace with no line being drawn twice?

EULERIAN GRAPH (欧拉图)

- An <u>Euler circuit</u> in a graph G is a simple circuit containing every <u>e</u>dge of G.
- An <u>Euler path</u> in G is a simple path containing every edge of G.
- A walk in a graph is called an *Euler tour* if it starts and ends in the same place and uses each edge exactly once.
- A walk in a graph is called an Euler trail if it uses each edge exactly once.
- If a graph has an Euler tour, it is said to be an *Eulerian* graph.

Which of the undirected graphs in Figure 3 have an Euler circuit? Of those that do not, which have an Euler path?

FIGURE 3 The Undirected Graphs G_1 , G_2 , and G_3 .

Which of the directed graphs in Figure 4 have an Euler circuit? Of those that do not, which have an Euler path?

FIGURE 4 The Directed Graphs H_1 , H_2 , and H_3 .

THEOREM

- A connected simple graph *G* is Eulerian iff every graph vertex has even degree.
- A connected direct graph G is Eulerian iff every graph vertex has equal indegree and outdegree.

- 1. A connected graph *G* is Eulerian iff G <u>has no</u> vertices of odd degree
- 连通多重图具有欧拉回路的充要条件是顶点度均 为偶数
- 2. A connected graph G has an Euler trail from node a to some other node b iff $a \neq b$ are the only two nodes of odd degree

连通多重图具有欧拉通路的充要条件是仅有两个度为奇数的顶点

PROOF OF ↓

- Assume G has an Euler trail T from node a to node b (a and b not necessarily distinct).
- For every node besides *a* and *b*, *T* uses an edge to exit for each edge it uses to enter. Thus, the degree of the node is even.
- 1. If a = b, then a also has even degree.
- 2. If $a \neq b$, then a and b both have odd degree.

- Assume G is connected. If there are no odd-degree nodes, pick any a = b.
- If there are two odd-degree nodes, call these nodes a and b.
- Start at a. Take a walk w_1 until you get stuck. You must be at b.

Incorporate this walk from v into w_1 .

- If no vertex along w_1 has an unused edge, we are done.
- Otherwise, call this vertex v. Walk from v until you get stuck. You must be back at v.

Incorporate this walk from v into w_1 .

ALGORITHM 1

procedure *Euler*(*G*: connected multigraph with all vertices of even degree)

circuit := a circuit in G beginning at an arbitrarily chosen vertex with edges successively added to form a path that returns to this vertex.

H := G with the edges of this circuit removed

while *H* has edges

subciruit := a circuit in H beginning at a vertex in H that also is an endpoint of an edge in circuit.

H := H with edges of *subciruit* and all isolated vertices removed circuit := circuit with subcircuit inserted at the appropriate vertex.

return circuit { circuit is an Euler circuit }

FLEURY'S ALGORITHM

 Fleury's Algorithm for constructing a Eulerian tour.

Current Path	Next Edge	Reasoning
π: A	$\{A, B\}$	No edge from A is a bridge. Choose any one.
$\pi:A,B$	$\{B,C\}$	Only one edge from B remains.
$\pi: A, B, C$	$\{C,A\}$	No edge from C is a bridge. Choose any one.
$\pi: A, B, C, A$	$\{A, D\}$	No edge from A is a bridge. Choose any one.
$\pi: A, B, C, A, D$	$\{D,C\}$	Only one edge from D remains.
$\pi: A, B, C, A, D, C$	$\{C, E\}$	Only one edge from C remains.
$\pi: A, B, C, A, D, C, E$	$\{E,G\}$	No edge from E is a bridge. Choose any one.
$\pi: A, B, C, A, D, C, E, G$	$\{G, F\}$	$\{A, G\}$ is a bridge. Choose $\{G, F\}$ or $\{G, H\}$.
$\pi: A, B, C, A, D, C, E, G, F$	$\{F, E\}$	Only one edge from F remains.
$\pi: A, B, C, A, D, C, E, G, F, E$	$\{E,H\}$	Only one edge from E remains.
π : A , B , C , A , D , C , E , G , F , E , H	$\{H,G\}$	Only one edge from H remains.
π : A, B, C, A, D, C, E, G, F, E, H, G π : A, B, C, A, D, C, E, G, F, E, H, G, A	$\{G,A\}$	Only one edge from G remains.

The problem is this: Is it possible to begin in a room or outside and take a walk that goes through each door exactly once?

Draw a picture in a continuous motion without lifting a pencil so that no part of the picture is retraced.

FIGURE 6 Mohammed's Scimitars.

Which graphs shown in Figure 7 have an Euler path?

FIGURE 7 Three Undirected Graphs.

HAMILTON PATHS AND CIRCUITS (哈密顿路径与回路)

ZHANG YANMEI

ymzhang@bupt.edu.cn

COLLEGE OF COMPUTER SCIENCE & TECHNOLOGY

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

ROUND-THE-WORLD PUZZLE

Can we traverse all the vertices of a dodecahedron, visiting each once?`

HAMILTONIAN GRAPH

(哈密顿图)

- A graph has a *Hamiltonian tour* if there is a tour that visits every vertex exactly once (and returns to its starting point).
- A graph with a Hamiltonian tour is called a *Hamiltonian graph*.
- A *Hamiltonian path* is a path that contains each vertex exactly once.
- A *Hamilton circuit* is a circuit that traverses each vertex in *G* exactly once.
- A *Hamilton path* is a path that traverses each vertex in *G* exactly once

Is it Hamiltonian?

A graph of the vertices of a dodecahedron.

EULER TOUR HAMILTONIAN TOUR

Left one has a Hamiltonian path, but not a Hamiltonian

tour.

Right one has an Euler tour, but no Hamiltonian tour.

No one knows

- There is probably no nice characterization of Hamiltonian graphs the way there was with Eulerian graphs.
 - Deciding if a graph is Hamiltonian is NP-complete.
 - This means, if an algorithm for solving it in polynomial time were found, it could be used to solve *all* NP problems in polynomial time.

KN HAS A HAMILTON CIRCUIT

Kn has a Hamilton circuit whenever $n \ge 3$. We can form a Hamilton circuit in Kn beginning at any vertex.

 \sum_{n}

PARTIAL RESULT

- We now state some partial answers that say if a graph *G* has "*enough*" edges, a Hamiltonian circuit can be found.
- These are again existence statements; no method for constructing a Hamiltonian circuit is given.

THEOREM 3,4

DIRAC'S THEOREM (1952)

G has a Hamiltonian circuit if each vertex has degree greater than or equal to n/2.

Corollary: ORE'S THEOREM

Let G be a connected graph with n vertices, n > 2, and no loops or multiple edges. G has a Hamiltonian circuit if for any two vertices u and v of G that are not adjacent, the degree of u plus the degree of v is greater than or equal to n.

PROOF OF DIRAC'S THEOREM

- Let G=(V, E) be a graph with |G/=n>2, and $\delta(G) \ge n/2$.
- Then G is connected. otherwise, the degree of any vertex in the smallest component C of G would be less than |C| < n/2.
- Let $P=x_0...x_k$ be a longest path in G. By the maximality of G, all the neighbors of x_0 and all the neighbors of x_k lies on P.

PROOF OF DIRAC'S THEOREM

- Hence at least n/2 of the vertices $x_0...x_{k-1}$ are adjacent to x_k , and at least n/2 of these same k<n vertices x_k are such that $x_0 x_{i+1} \in E$.
- By the pigeon hole principle, there is a vertex x_i that have both properties, so we have $x_0x_{i+1} \in E$ and $x_ix_k \in E$ for some

 x_{i+1}

i<k.

PROOF OF DIRAC'S THEOREM

- We claim that the cycle $C:=x_0x_{i+1}Px_kx_iPx_0$ is a Hamilton cycle of G.
- indeed, since G is connected, C would otherwise have a neighbor in G-C, which would be combined with a spanning path of C into a path longer than P.

COROLLARY

- Let the number of edges of G be m.
- Then G has a Hamiltonian circuit if

$$m \ge (n^2 - 3n + 6)/2$$
.

$$m > n^2 - 3ntb$$

PROOF OF COROLLARY

- Suppose that u and v are any two vertices of G that are not adjacent.
 - We write deg(u) for the degree of u.
- Let *H* be the graph produced by eliminating *u* and *v* from *G* along with any edges that have *u* or *v* as end points.
- Then *H* has *n*-2 vertices and *m*-deg(*u*)-deg(*v*) edges (one fewer edge would have been removed if *u* and *v* had been adjacent).

PROOF

The maximum number of edges that H could possibly have is $\binom{n-2}{2}$. This happens when there is an edge connecting every distinct pair of vertices. Thus the number of edges of H is at most

$$_{n-2}C_2 = \frac{(n-2)(n-3)}{2}$$
 or $\frac{1}{2}(n^2 - 5n + 6)$.

PROOF

- So
 - $-m \deg(u) \deg(v) \le (n^2 5n + 6)/2.$
- Therefore
 - $\deg(u) + \deg(v) \ge m (n^2 5n + 6)/2.$
- By the hypothesis of the theorem,
 - $deg(u) + deg(v) \ge (n^2 3n + 6)/2 (n^2 5n + 6)/2 = n.$
- Thus the result follows from Ore's Theorem.

NOTE

- The converses of Theorems 3 and 4 given above are not true; that is, the conditions given are sufficient, but not necessary, for the conclusion.
- Example: graph C_n.

Hamiltonian Platonic Cycles

All Platonic solids are Hamiltonian, as illustrated below.

REMARKS

- The problem we have been considering has a number of important variations. In one case, the edges may have *weights* representing distance, cost, and the like. The problem is then to find a Hamiltonian circuit (or path) for which the total sum of weights in the path is a minimum.
- For example, the vertices might represent cities; the edges, lines of transportation; and the weight of an edge, the cost of traveling along that edge. This version of the problem is often called *the traveling salesperson problem*.

ROTATING MEMORY DRUM

(旋转鼓轮-格雷码)

A Cray code is a labeling of the arcs of the cycle such that adjacent arcs are labeled with bit strings that differ in exactly one bit.

ROTATING MEMORY DRUM

■ A Hamilton circuit in Q_n.

FIGURE 14 A Hamilton Circuit for Q_3 .

HOMEWORK

- **§** 10.5
 - **8**, 10, 16, 26, 34, 48, 58

