

Year 12 Methods TEST 1 Friday 22 February 2019 TIME: 45 minutes working

One-page notes allowed

Calculator Assumed

39 marks 7 Questions

Name:	Teacher:

Note: All part questions worth more than 2 marks require working to obtain full marks.

Question 1 (6 marks)

X	f(x)	f'(x)	g(x)	g'(x)
1	3	1	-2	-1
2	2	-1	1	0
3	1	-2	2	1

(a) Define
$$h(x) = \frac{f(x)}{g(x)}$$
, use the table to find the value for $h'(2)$. (3 marks)

(b) Define
$$I(x) = [g(x)]^5$$
, use the table to find the value for $I'(1)$. (3 marks)

Question 2 (3 marks)

Find the equation of the line tangent to the function $y = (3x^2 - 2)^3$ at the point (2,2). Give your answer in the gradient-intercept form.

Question 3 (3 marks)

If $\frac{dy}{dx} = (5x+3)^3$, and y = 50 when x = 1, determine the expression of y in terms of x.

Question 4 (7 marks)

A company is purchasing a type of thin sheet metal required to make a closed cylindrical container with a capacity of 4000π cm³. Let the radius of the cylindrical base be r and the height be h.

(a) Show that the surface area of the cylinder can be expressed as
$$2\pi r^2 + \frac{8000\pi}{r}$$

(a) Show that the surface area of the cylinder can be expressed as

(3 marks)

(b) Using calculus, determine the least area of metal required to make a closed cylindrical container from thin sheet metal in order that it will have a capacity of 4000π cm³. (Work to one decimal place) (4 marks) Question 5 (6 marks)

A share portfolio, initially worth \$26 000, has a value of f dollars after t months, and begins with a negative rate of growth. The rate of growth remains negative until after 20 months t = 20 when the value of the portfolio is momentarily stationary and then continues with negative growth for the life of the investment. The value of the portfolio, f(t) after t months can be modelled by the following model, $f(t) = -2t^3 + bt^2 + ct + d$, $0 \le t \le 37$ months where t = 200 are constants.

Determine the values of the constants $\,^{b,c\,\&\,d}$.

Question 6 (8 marks)

The volume, V in cubic metres and radius R metres, of a spherical balloon are changing with time,

$$V = \frac{4\pi R^3}{3}$$
. The radius of the balloon at any time is given by $R = 2t(t+3)^3$.

Determine the following:

a) The value of
$$\frac{dR}{dt}$$
 when $t=1$. (3 marks)

b) The value of
$$\frac{dV}{dt}$$
 when $t=1$. (3 marks)

Consider the volume of the balloon at t = 1.

c) Use the incremental formula to estimate the change in volume 0.1 seconds later (i.e. t =1.1) (2 marks)

Question 7 (6 marks)

The position of a train on a straight mono rail, x metres at time t seconds, is modelled by the following formula for the velocity, x in metres/second, $y = pt^2 - 12t + q$ where $p \otimes q$ are constants.

The deceleration of the train is $8ms^{-2}$ when t=1. The train has a position $x=\frac{4}{3}$ when t=2 and is initially at the origin (x=0).

a) Determine the values of the constants p & q. (4 marks)

b) Determine the position of the train when the acceleration is $12ms^{-2}$. (2 marks)

Supplementary Page

Question Number: _____

Supplementary Page

Question Number: _____