정보입력표시

2018. 03. 00

CONTENTS

- I 표시장치 및 인간요소와 휴먼에러
- Ⅲ 예상 문제

- 시각적 표시장치
 - 표시장치의 유형
 - ❖정적 표시장치
 - ▶ 시간에 따라 변화하지 않는 표시장치
 - ▶ 예) 간판, 도표, 그래프 등
 - ❖동적 표시장치
 - ▶ 시간에 따라 변화하는 표시장치
 - ▶ 예) 기압계, 고도계, 온도조절기 등
 - 시식별에 영향을 주는 조건

시식별에 영향을 주는 조건	물체가 잘 보이는 조건
• 광속발산도	• 색상
• 휘도	• 명도
• 조도	• 채도
• 광도	• 대비
• 반사율	
• 노출 시간	
• 대비	

- 시각적 표시장치의 종류
 - 정량적 표시장치 (*)
 - ❖ 온도나 속도와 같이 동적으로 변화하는 변수나 자로 재는 길이와 같은 정적 변수의 계량값에 관한 정보를 제공하는데 사용된다.
 - ❖ 정목동침형 : 눈금은 고정, 지침이 움직이는 형태
 - ❖ 정침동목형 : 지침은 고정, 눈금이 움직이는 형태
 - ❖계수형: 전력계, 택시요금 계기와 같이 숫자가 정확히 표시되는 형태

지침의 설계요령

- ① 선각이 20도 정도 되는 뾰족한 지침을 사용한다.
- ② 지침의 끝은 작은 눈금과 맞닿되, 겹쳐지지 않아야 한다.
- ③ 원형 눈금의 경우 지침의 색은 선단에서 눈금의 중심까지 칠한다.
- ④ 지침은 눈금과 밀착시킨다.

- 시각적 표시장치의 종류
 - 정성적 표시장치
 - ❖ 온도, 압력, 속도와 같이 연속적으로 변하는 변수의 대략적인 값이나 변화 추세, 비율 등을 알고자 할 때 주로 사용한다.
 - ❖색 이용
 - ❖상태 점검

- 상태 표시기 (status indicator)
 - ❖체계의 상황이나 상태를 나타낸다.

- 시각적 표시장치의 종류
 - 신호, 경고등
 - ❖비상 또는 위험상황, 물체의 존재 유무 등을 나타낸다.

신호 및 경보등의 빛의 검출성에 영향을 미치는 인자

- ① 광원의 크기: 배경보다 2배 이상의 밝기를 가진다.
- ② 광속발산도 및 노출시간
- ③ 색광(검출 효과가 빠른 순서: 적색-녹색-황색-백색)
- ④ 점멸속도: 주의를 끌기 위해서는 초당 3~10회의 점멸속도와 지속시간은 0.05초 이상이 적당하다.
- ⑤ 배경광
- ⑥ 조작자의 정상시선 30도 내에 위치한다.
- ⑦ 경고등은 점멸하는 형태가 좋다.

- 시각적 표시장치의 종류
 - 묘사적 표시장치
 - ❖ 위치나 구조가 변하는 경향이 있는 요소를 배경에 중첩시켜 변화하는 상황을 나타내는 장치
 - ❖ 해석이 필요치 않은 표현을 위한 표시장치로서 사물 재현 (TV화 항공 사진) 및 도해 및 상정 등이 예이다.

[묘사적 표시장치]

- 시각적 표시장치의 종류
 - 문자-숫자 표시장치
 - ❖ 문자, 숫자 및 관련된 여러 형태의 암호화 부호를 사용하는 장치
 - ❖ 가시성(visibility)
 - ▶ 배경과 분리하여 볼 수 있는 글자나 상징의 질(검출성)
 - ❖식별성 (legibility)
 - ➤ 글자(alphanumeric character) 를 서로 분간할 수 있는 속성
 - ▶ 획의 굵기, 글자 형태, 대비, 조도 등의 특징에 따라 영향 받음

- 시각적 표시장치의 종류
 - 문자-숫자 표시장치
 - ❖ 가독성(readability)
 - ▶ 의미있는 문자군으로 나타낸 정보 내용을 얼마나 쉽게 읽히는가 하는 능률 의 정도

획폭비	종횡비
(문자나 숫자의 높이 : 획 굵기의 비)	(문자나 숫자의 폭 : 높이의 비)
• 검은 바탕에 흰 숫자 1 : 13.3 • 흰 바탕에 검은 숫자 1 : 8	• 문자 1 : 1 • 숫자 3 : 5(0.6 : 1) • 영문 대문자 0.7 : 1

인지 용이성 순위	1	2	3	4	5	6
형상	삼각형	마름모	정사각형	직사각형	오각형	원 (

- 부호 및 기호, 시각적 암호
 - 부호의 3가지 유형 (*)
 - ❖ 임의적 부호
 - ▶ 부호가 이미 고안되어 있으므로 이를 배워야 하는 부호
 - ▶ 예) 안전표지판의 원형 -금지, 삼각형 -안내 표시 등
 - ❖묘사적 부호
 - ▶ 사물의 행동을 단순하고 정확하게 묘사한 부호
 - ▶ 위험표지판의 해골과 뼈, 보도 표지판의 걷는 사람
 - ❖추상적 부호
 - ▶ 전언의 기본요소를 도식적으로 압축한 부호

- 부호 및 기호, 시각적 암호
 - 암호 체계의 일반적 사항 (*)
 - ❖ 암호의 검출성 : 암호화한 자극은 검출이 가능할 것
 - ❖ 암호의 변별성 : 다른 암호표시와 구별될 수 있을 것
 - ❖ 부호의 양립성 : 자극-반응의 관계가 인간의 기대와 모순되지 않는 성질

[양립성의 종류]

	표시 장치나 조종 장치에서 물리적 형태나 공간적인 배치의 양립성
공간 양립성	◉ 오른쪽 조리대는 오른쪽 조절장치로, 왼쪽 조리대는 왼쪽
	조절장치로 조정한다.
	표시 장치, 조종 장치, 체계 반응의 운동 방향의 양립성
운동 양립성	◉ 조종장치를 오른쪽으로 돌리면 표시장치 지침이 오른쪽으
	로 이동한다.
THE 40 FILE	인간이 가지는 개념적 연상의 양립성
개념 양립성	■ 빨간 버튼은 온수, 파란 버튼은 냉수
양식 양립성	직무에 알맞은 자극과 응답 양식의 존재에 대한 양립성
	■ 음성과업에 대해서는 청각적 자극제시와 이에 대한 음성
	응답 등이 양립성이다.

- 부호 및 기호, 시각적 암호
 - 암호 체계의 일반적 사항 (*)
 - ❖부호의 의미 : 암호를 사용할 때는 그 사용자가 그 뜻을 분명히 알 수 있어야 한다.
 - ❖ 암호의 표준화 : 암호를 표준화하여 다른 상황으로 변화하더라도 쉽게 이용할 수 있어야 한다.
 - ❖ 다차원 암호의 사용 : 2가지 이상의 암호를 조합해서 사용하면 정보 전달 이 촉진된다.

- 청각적 표시장치
 - 청각적 표시장치의 3가지 기능
 - ❖ 검출성 : 신호의 존재여부를 결정
 - ❖ 상대식별 : 2가지 이상의 신호가 근접하여 제시되었을 때 이를 구별하는 능력
 - ❖절대식별: 특정한 신호가 단독으로 제시되었을 때 이를 구별하는 능력
 - 경계 및 경보신호 설계지침 (*)
 - ❖ 귀는 중음역에 민감하므로 500~3000Hz 의 진동수 사용
 - ❖ 300m 이상 장거리용 신호는 1000Hz 이하의 진동수 사용
 - ❖장애물 및 칸막이 통과시는 500Hz 이하의 진동수 사용
 - ❖주의를 끌기 위해서는 변조된 신호 사용
 - ❖ 배경 소음의 진동수와 구별되는 신호 사용
 - ❖ 경보효과를 높이기 위해서 개시 시간이 짧은 고감도 신호를 사용
 - ❖ 가능하면 확성기, 경적 등과 같은 별도의 통신 계통을 사용

- 청각적 표시장치
 - 청각적 표시의 설계원리
 - ❖양립성
 - ▶ 가능한 한 사용자가 알고 있거나 자연스러운 신호를 선택한다.
 - ▶ 긴급용 신호일 때는 높은 주파수를 사용한다.
 - ❖근사성 : 복잡한 정보를 나타내고자 할 때는 다음과 같이 2단계 신호를 고려한다.
 - ▶ 주의신호 : 주의를 끌어서 정보의 일반적 부류를 식별하게 한다.
 - ▶ 지정신호 : 주의신호로 식별된 신호의 정확한 정보를 지정하는 것으로 처음 신호 후에 나타낸다.
 - ❖분리성
 - ▶ 청각신호는 기존 입력과 쉽게 식별되는 것 이어야 한다.
 - ▶ 두가지 이상의 채널을 듣고 있다면 각 채널의 주파수가 분리되어야 한다.
 - ❖검약성 : 조작자에 대한 입력신호는 꼭 필요한 정보만을 제공한다.
 - ❖ 불변성 : 통일한 신호는 항상 통일한 정보를 지정하도록 한다.

- 청각적 표시장치
 - 청각장치와 시각장치의 비교 (**)

청각장치	시각장치	
① 전언이 짧고, 간단할 때	① 전언이 길고, 복잡할 때	
② 재참조되지 않는다.	② 재참조 된다.	
③ 시간적인 사상을 다룬다.	③ 공간적인 위치 다룬다.	
④ 즉각적인 행동을 요구할 때	④ 즉각적 행동을 요구하지 않을 때	
⑤ 시각계통이 과부하일 때	⑤ 청각계통이 과부하일 때	
⑥ 주위가 너무 밝거나 암조응일 때	⑥ 주위가 너무 시끄러울 때	
⑦ 자주 움직이는 경우	⑦ 한곳에 머무르는 경우	

- 촉각 및 후각적 표시장치
 - 촉각적 표시장치
 - ❖손과 손가락을 기본 정보 수용기로 이용한다.
 - ❖촉각적 표시 장치의 용도는 맹인용 점자와 형상 암호화 된 조종 장치를 들 수 있다.
 - ❖촉각적 표시 장치에서 자주 사용되는 자극유형은 기계적 진동이나 전기 적 자극이다.
 - 조종장치의 촉각적 암호화
 - ❖ 위험기계의 조종장치를 촉각적으로 암호화 할 수 있는 3가지 차원▶ 형상 암호, 크기 암호, 표면촉감 암호화
 - 후각적 표시장치
 - ❖ 냄새를 이용하는 표시장치로서 다른 표시장치의 보조수단으로서 활용될수 있다.
 - ❖예) 광부들에게 긴급대피를 알려주기 위하여 악취 시스템을 사용하는데 악취를 환기 계통에 주입하여 즉시 전체 갱내에 퍼지도록 한다.

- 인간요소와 휴먼에러
 - 인간 실수의 분류

[휴먼에러의 심리적 분류(Swain의 분류) ※※]

① omission error(누설오류,	필요한 작업 또는 절차를 수행하지 않는
생략오류, 부작위오류)	데 기인한 에러
② time error(시간오류)	필요한 작업 또는 절차의 수행 지연으로 인한 에러
③ commission error	필요한 작업 또는 절차의 불확실한 수행
(작위오류)	으로 인한 에러
④ sequencial error	필요한 작업 또는 절차의 순서 착오로 인
(순서오류)	한 에러
⑤ extraneous error	불필요한 작업 또는 절차를 수행함으로
(과잉행동오류)	써 기인한 에러

- 인간요소와 휴먼에러
 - 인간 실수의 분류

[원인의 레벨적 분류☆☆]

① primary error(1차 에러)	작업자 자신으로부터 발생한 에러
② secondary error(2차 에러)	작업형태, 작업조건 중 문제가 생겨 필요 한 사항을 실행할 수 없어 발생한 에러
③ command error	실행하고자 하여도 필요한 물품, 정보, 에너지 등이 공급되지 않아서 작업자가 움직일 수 없는 상태에서 발생한 에러

- 인간요소와 휴먼에러
 - 인간실수의 형태적 특성
 - ❖ 행동과정을 통한 분류
 - ▶ 입력 에러 (input error) : 감각 또는 지각 입력의 에러
 - ➤ 정보처리 에러 (information processing error) : 중재 (mediation) 또는 정보 처리 절차의 에러
 - ➤ 출력 에러 (output error) : 신체적 반응의 출력 에러
 - ➤ 피드백 에러 (feedback error) 인간 제어의 에러
 - ➤ 의사결정 에러 (decision making error) : 주어진 의사결정 과정에서의 에러
 - ❖대뇌 정보처리 에러
 - ▶ 제1 단계 : 인지단계 인지(확인) 에러(입력에러)
 - ✓ 외계로부터 작업정보의 습득으로부터 감각 중추로 인지 되기까지 일어날 수 있는 에러이며, 확인 착오도 이에 포함된다.
 - ▶ 제2단계 : 판단단계 판단(기억) 에러
 - ✓ 중추신경의 의사과정에서 일으키는 에러로써 의사결정의 착오나 기억에 관한 실패도 여기에 포함된다.
 - ▶ 제3단계: 조작단계 조작(동작) 에러 (반응에러)
 - ✓ 운동 중추에서 올바른 지령이 주어졌으나 동작 도중에 일어난 에러이다.

- 인간요소와 휴먼에러
 - 인간실수의 형태적 특성
 - ❖대뇌 정보처리 에러
 - ▶ 제3단계 : 조작단계 조작(동작) 에러 (반응에러)
 - ✓ 운동 중추에서 올바른 지령이 주어졌으나 동작 도중에 일어난 에러이다.

[인간의 정보처리 과정에서 발생되는 에러 ★]

Mistake	 인지과정과 의사결정과정에서 발생하는 에러 상황해석을 잘못하거나 틀린 목표를 착각하여 행하는
(착오, 착각)	경우
Lapse (건망증)	저장단계에서 발생하는 에러어떤 행동을 잊어버리고 안하는 경우
Slip	 실행단계에서 발생하는 에러 상황(목표)해석은 제대로 하였으나 의도와는 다른
(실수, 미끄러짐)	행동을 하는 경우
Violation	• 알고 있음에도 의도적으로 따르지 않거나 무시한
(위반)	경우

- 인간요소와 휴먼에러
 - 인간실수의 형태적 특성
 - ❖대뇌 정보처리 에러
 - ▶ 제3단계 : 조작단계 조작(동작) 에러 (반응에러)
 - ✓ 운동 중추에서 올바른 지령이 주어졌으나 동작 도중에 일어난 에러이다.

[휴먼에러 모형]

- 인간요소와 휴먼에러
 - 인간실수의 형태적 특성
 - ❖대뇌 정보처리 에러
 - ▶ 제3단계 : 조작단계 조작(동작) 에러 (반응에러)
 - ✓ 운동 중추에서 올바른 지령이 주어졌으나 동작 도중에 일어난 에러이다.

[휴먼 에러의 작업별 오류 유형]

조작 오류	기계나 설비를 조작하는 과정에서 발생하는 오류
설치 오류	설비, 장치 등을 설치할 때에 발생하는 오류
보전 오류	기계나 설비에 필요한 주유를 생략하였다든지 부품의 교체 시기에 규격이 다른 부품을 사용했다든지 하는 오류로 보전작 업상의 오류
검사 오류	불량품 검사나 품질 검사 등에서 발생하는 오류

- 인간요소와 휴먼에러
 - 인간실수의 형태적 특성
 - ❖ 휴먼 에러의 배후요인(4M)

[4M 本本本]

① Man(인간)	본인 외의 사람, 직장의 인간관계 등
② Machine(기계)	기계, 장치 등의 물적 요인
③ Media(매체)	작업정보, 작업방법 등(인간과 기계를 연결하 는 매개체이다)
④ Management(관리)	작업관리, 법규준수, 단속, 점검 등

- 인간요소와 휴먼에러
 - 인간실수 확률에 대한 추정기법
 - ❖위급사건기법 (CIT)
 - ▶ 인간-기계 엔지니어로 하여금 사고, 위기 인발, 조작 실수 등 정보를 수집하기 위해 면접하는 방법
 - ❖ 인간에러율 예측기법 (THERP)
 - ▶ 인간의 과오율을 예측하기 위한 기법

인간과오율
$$HEP = \frac{$$
실제 과오의 수 과오발생 전체기회 수

- ▶ 직무 위급도 분석 : 안전, 경미, 중대, 파국적으로 위험을 구분한다.
- ▶ 결함수 분석(FTA) : 결함을 분석하는 기법
- ➤ 조작자 행동 나무(OAT) : 제품 사용 중에 발생할 수 있는 여러 가지 상황을 그려본다.

- 인간요소와 휴먼에러
 - 인간실수 예방기법
 - ❖페일세이프(Fail-Safe)
 - ▶ 기계 설비에 결함이 발생되더라도 사고가 발생되지 않도록 2중, 3중으로 통제를 가한다.

[페일세이프의 구분 ☎☎☎]

① Fail Passive	부품의 고장 시 기계장치는 정지 상태로 옮겨간다.
② Fail active	부품이 고장나면 경보를 울리며 짧은 시간 운전이 가능하다.
3 Fail operational	부품의 고장이 있어도 다음 정기점검까지 운전이 가능하다.

❖ 풀프루프(Fool-proof) (***)

▶ 인간의 실수가 있더라도 사고로 연결되지 않도록 2중, 3중으로 통제를 가한다.

- 1. 다음의 정량적 표시장치에 대한 설명으로 틀린 것은? (05.03.20)
 - ① 정목동침형은 대략적인 편차나 변화를 빨리 파악할 수 있다.
 - ② 정침동목은 조작상의 실수 없이 쉽게 조작할 수 있어 생산설비에 많이 사용되고 있다.
 - ③ 계수형은 판독오차가 적다.
 - ④ 필요에 따라 계수형과 아날로그형을 혼합해서 사용할 수 있다.

- 2. 시각적 부호 가운데 위험 표지판에 해골과 뼈를 나타내듯이 사물이나 행동 수정을 단순하고 정확하게 의미를 전달하기 위한 부호는? (05.03.20)
 - ① 추상적 부호
 - ② 묘사적 부호
 - ③ 임의적 부호
 - ④ 상태적 부호

- 3. 인간 에러(human error)를 일으킬 수 있는 정신적 요소가 아닌 것은? (05.02.29)
 - ① 방심과 공상
 - ② 개성적 결합요소
 - ③ 판단력의 부족
 - ④ 기능정도

- 4. 시각적 표시장치에서 지침설계의 요령이 아닌 것은? (05.02.29)
 - ① 뾰족한 지침을 사용한다.
 - ② 지침의 끝은 눈금과 겹치도록 한다.
 - ③ 지침을 눈금변에 밀착시킨다.
 - ④ 원형 눈금일 경우 지침의 색은 선단에서 눈금의 중심까지 칠한다.

- 5. 경계 및 경보신호를 설계할 때 적합하지 않는 것은? (05.08.07)
 - ① 장애물이 있을 시는 500Hz 이하의 진동수를 갖는 신호를 사용
 - ② 주의를 끌기 위해서는 변조된 신호를 사용
 - ③ 배경소음의 진동수와 같은 신호를 사용
 - ④ 경보효과를 높이기 위해서 개시시간이 짧은 고감도 신호를 사용

- 6. 어떤 상황 하에서 정보를 전송하기 위해 표시장치를 선택하 거나 설계할 때, 청각장치를 사용하는 사례로 올바른 것은? (05.08.07)
 - ① 전언이 길다
 - ② 전언이 후에 재참조 된다.
 - ③ 전언이 시간적인 사상을 다룬다.
 - ④ 직무상 수신자가 한 곳에 머무르는 경우

- 7. 동적인 촉각적 표시장치에서 기계적 자극에는 어떤 것이 있는가? (05.08.07)
 - 표면촉감
 - ② 맥동전류 자극
 - ③ 전기자극
 - ④ 진동기

- 8. 다음 중 정보의 시각적제시(視覺的提示)가 적당한 경우는? (06.03.05)
 - ① 수용 위치에 소음이 많은 경우
 - ② 정보를 나중에 다시 볼 필요가 없을 때
 - ③ 정보의 지시대로 즉시 행동해야 할 때
 - ④ 작동자의 직무상 여러 곳으로 움직여야 할 때

- 9. 수치를 정확히 읽어야 할 경우에 적합한 시각적 표시장치는? (06.05.14)
 - ① 동침형
 - ② 동목형
 - ③ 수평형
 - ④ 계수형

10. 촉각적 표시장치에서 기존 정보 수용기로 주로 사용되는 것은? (06.05.14)

- ① 귀
- ② 손
- ③ 上
- ④ 코

- 11. 구성, 숫자, 영문자, 기하학적 형상 중에서 암호로서의 성능이 가장 좋은 것부터 배열한 것은? (06.08.06)
 - ① 기하학적 형상 숫자 구성 영문자
 - ② 구성 기하학적 형상 영문자 숫자
 - ③ 영문자기- 구성 숫자 기하학적 형상
 - ④ 숫자 영문자 기하학적 형상 -구성

12. 정량적인 동적 표시장치에 해당되지 않는 것은? (06.08.06)

- ① 정목동침형
- ② 정침동목형
- ③ 계수형
- ④ 상태표시기

13. 다음 중 인간 실수확률에 대한 추정기법이 아닌 것은? (07.03.04)

- ① 계층분석모델
- ② 위급사건기법
- ③ 직무 위급도 분석
- ④ 조작자 행동나무

14. 검사공정의 작업자가 제품의 완성도에 대한 검사를 하고 있다. 어느 날 10000개의 제품에 대한 검사를 실시하여 200개의 부적합품(불량품)을 발견하였으나, 이 Lot 에는 실제로 500개의 부적합품(불량품)이 있었다. 이 때 인간과오확률 (,Human Error Probability)은 얼마인가? (07.03.04)

- ① 0.02
- 2 0.03
- ③ 0.04
- 4 0.05

15. 산업안전표지 중 유독물 경고는 해골과 뼈로 나타내고 있다. 이처럼 사물이나 행동을 단순하고 정확하게 나타낸 부호를 무엇이라 하는가? (07.05.13)

- ① 묘사적 부호
- ② 추상적 부호
- ③ 사실적 부호
- ④ 임의적 부호

16. 일정한 범위에서 수치가 자주 또는 계속 변하는 경우 가장 유용한 표시장치는? (07.05.13)

- ① 디지털 표시장치
- ② 카운터 표시장치
- ③ 고정눈금 이동지침 표시장치
- ④ 이동눈금 고정지침 표시장치

- 17. 다음 중 경계 및 경보신호를 설계할 때 적합하지 않은 것은? (07.08.05)
 - ① 장애물이 있는 경우에는 500Hz 이하의 진동수를 갖는 신호를 사용
 - ② 주의를 끌기 위해서는 변조된 신호를 사용
 - ③ 배경소음의 진동수와 같은 신호를 사용
 - ④ 경보효과를 높이기 위해서 개시시간이 짧은 고감도 신호를 사용

18. Human Error 의 배경요인 중 4M이 아닌 것은? (07.08.05)

- ① 인간(man)
- ② 기계(machine)
- ③ 재료(material)
- ④ 관리(management)

- 19. 암호체계 사용상의 일반적 지침 중 부호의 양립성 (compatibility)에 대한 설명은? (08.03.02)
 - ① 자극은 주어진 상황하의 감지장치나 사람이 감지할 수 있는 것이어 야 한다.
 - ② 암호의 표시는 다른 암호 표시와 구별될 수 있어야 한다.
 - ③ 자극과 반응 간의 관계가 인간의 기대와 모순되지 않아야 한다.
 - ④ 두 가지 이상을 조합하여 사용하면 정보의 전달이 촉진된다.

20. 다음 중 통제표시비의 설계시 고려하여야 할 사항으로 볼수 없는 것은? (08.03.02)

- ① 계기의 크기
- ② 작업자의 시력
- ③ 조작시간
- ④ 방향성

- 21. 다음 중 작위적 오류(commission error)에 해당되지 않는 것은? (08.03.02)
 - ① 전선(cable)이 바뀌었다.
 - ② 틀린 부품을 사용하였다.
 - ③ 부품이 거꾸로 조립되었다.
 - ④ 부품을 빠뜨리고 조립하였다.

- 22. 암호체계 사용상의 일반적인 지침에서 "암호의 변별성"을 의미하는 것으로 가장 적절한 것은? (08.05.11)
 - ① 암호화한 자극은 감지장치나 사람이 감지할 수 있어야 한다.
 - ② 모든 암호의 표시는 다른 암호 표시와 구분될 수 있어야 한다.
 - ③ 암호를 사용할 때에는 사용자가 그 뜻을 분명히 알 수 있어야 한다.
 - ④ 두 가지 이상의 암호 차원을 조합해서 사용하면 정보전달이 촉진 된다.

23. 휴먼에러 중 필요한 task 및 절차를 수행하지 않아 발생하는 에러를 무엇이라 하는가? (08.05.11)

- 1 time error
- (2) omission error
- (3) commission error
- (4) extraneous error

24. 출력되는 값을 정확히 읽어야 하는 경우에 가장 적합한 시각적 표시장치의 형태는? (08.07.27)

- ① 동침형
- ② 동목형
- ③ 수직형
- ④ 계수형

25. 다음 중 조종장치를 촉각적으로 식별하기 위하여 암호화 할때 사용하는 방법으로 볼 수 없는 것은? (08.07.27)

- ① 형상을 이용한 암호화
- ② 표면 촉감을 이용한 암호화
- ③ 크기를 이용한 암호화
- ④ 전기적 자극을 이용한 암호화

26. 다음 중 암호체계 사용상의 일반적인 지침에 해당하지 않는 것은? (09.05.10)

- ① 암호의 검출성
- ② 부호의 양립성
- ③ 암호의 표준화
- ④ 암호의 단일 차원화

- 27. 정보입력에 사용되는 표시장치 중 청각장치보다 시각장치를 사용하는 것이 더 유리한 경우는? (09.05.10)
 - ① 정보의 내용이 긴 경우
 - ② 수신자가 직무상 자주 이동하는 경우
 - ③ 정보의 내용이 즉각적인 행동을 요구하는 경우
 - ④ 정보를 나중에 다시 확인하지 않아도 되는 경우

- 28. 다음 중 정보의 측정단위인 bit 를 올바르게 설명한 것은? (10.03.07)
 - ① 실현가능성이 같은 2개의 대안 중 하나가 명시되었을 때 얻는 정보 량
 - ② 실현가능성이 같은 4개의 대안 중 하나가 명시되었을 때 얻는 정보 량
 - ③ 실현가능성이 같은 8개의 대안 중 하나가 명시되었을 때 얻는 정보 량
 - ④ 실현가능성이 같은 16개의 대안 중 하나가 명시되었을 때 얻는 정 보량

29. [그림]에서 A 는 자극의 불확실성, B 는 방응의 불확실성을 나타낼 때 C 부분에 해당하는 것은? (10.05.09)

- ① 전달된 정보량
- ② 불안전한 행동량
- ③ 자극과 반응의 확실성
- ④ 자극과 반응의 검출성

- 30. 인간 오류의 분류에 있어 원인에 의한 분류 중 작업의 조건이나 작업의 형태 중에서 다른 문제가 생겨 그 때문에 필요한 사항을 실행할 수 없는 오류(error)를 무엇이라고 하는가? (10.07.25)
 - secondary error
 - 2 primary error
 - 3 command error
 - (4) commission error

31. 다음 중 관측하고자 하는 측정값을 가장 정확하게 읽을 수 있는 표시장치는? (10.07.25)

- ① 묘사적 표시장치
- ② 상태표시기
- ③ 동침형 표시장치
- ④ 계수형 표시장치

32. 다음 중 형상 암호화된 조종 장치에서 단회전용 조종장치로 가장 적절한 것은? (10.07.25)

Thank you