$\langle x \rangle$

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = 1 - \frac{9}{u_n + 5}$: n ومن أجل كل عدد طبيعي $u_0 = 1$ حيث $u_0 = 1$ حيث (u_n) متتالية عددية معرفة بحدها الأول

 $u_n > -2 : n$ أ) برهن بالتراجع أنّه من أجل كل عدد طبيعي أنّه (1

بيّن أنّ (u_n) متتالية متناقصة تماما على $\mathbb N$ واستنتج أنّها متقاربة.

 $v_n = \frac{1}{u_n + 2}$: n نضع من أجل كل عدد طبيعي (2

. أثبت أنّ المتتالية $(
u_n)$ حسابية أساسها $\frac{1}{3}$ يطلب تعيين حدها الأول الثبت أنّ

 $\lim_{n \to +\infty} u_n$ عبّر بدلالة n عن v_n و v_n عن (3

 $u_0v_0 + u_1v_1 + \dots + u_nv_n = \frac{1}{3}(1-n^2)$: n عدد طبیعي (4

التمرين الثاني: (04 نقاط)

يحوي صندوق 10 كريات متماثلة لا نفرق بينها باللمس، منها أربع كريات بيضاء مرقمة بـ: 1 ، 2 ، 2 ، 3 وثلاث كريات خضراء مرقمة بـ: 2 ، 3 ، 3 نسحب عشوائيا وفي آن واحد 3 كربات من هذا الصندوق.

المعتب عسواني ولي ال واحد و حريات من هذا المعسوق.

نعتبر الحادثتين A: "الكريات الثلاث المسحوبة تحمل ألوان العلم الوطني"

و B: "الكريات الثلاث المسحوبة لها نفس الرقم".

الترتيب. P(A) و P(B) احتمالي الحادثتين P(A) و P(A)

. $P(A \cup B)$ و $P_A(B)$ ثم استنتج $P(A \cap B) = \frac{1}{20}$ و . بيّن أنّ

2) ليكن X المتغيّر العشوائي الذي يرفق بكل نتيجة عملية سحب عدد الكريات التي تحمل رقما فرديا. عرّف قانون الاحتمال للمتغير العشوائي X واحسب أمله الرياضياتي E(X).

التمرين الثالث: (05 نقاط)

 $z^2 - \sqrt{3} z + 1 = 0$: المعادلة ذات المجهول z التالية (1 المركبة $z^2 - \sqrt{3} z + 1 = 0$ المعادلة ذات المجهول المعادلة المركبة $z^2 - \sqrt{3} z + 1 = 0$

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

 $\left(\mathbf{O}; \overrightarrow{u}, \overrightarrow{v}
ight)$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

: حيث Z_C و Z_B ، Z_A : الترتيب B ، A

(
$$Z_B$$
 لمرافق \overline{Z}_B لمرافق \overline{Z}_B و $Z_C=\overline{Z}_B$ و $Z_B=\frac{\sqrt{3}}{2}+i\frac{1}{2}$ ، $Z_A=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ اكتب $Z_A=\frac{1}{2}+i\frac{\sqrt{3}}{2}$

 \cdot OBC وحدّد طبیعة المثلث $\frac{Z_B}{Z_C}=e^{i\frac{\pi}{3}}$: (أ (3)

ب) استنتج أنّ: B هي صورة C بدوران r يطلب تعيين عناصره المميزة.

$$|z| = |\overline{z} - \frac{\sqrt{3} + i}{2}|$$
 تسمي (γ) مجموعة النقط M من المستوي ذات اللاحقة z التي تحقق: (γ) مجموعة (γ) ثم عيّن صورتها بالدوران z .

التمرين الرابع: (07 نقاط)

. $g(x)=2+(x-1)e^{-x}$ كما يلي: \mathbb{R} كما يلي: الدالة العددية المعرفة على g .I

 $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to -\infty} g(x)$ احسب (أ

p ادرس اتجاه تغیر الدالة p ثم شكّل جدول تغیراتها.

- \mathbb{R} على g(x) على أنّ المعادلة g(x)=0 تقبل حلا وحيدا lpha حيث $\alpha<-0.38$ حيث $\alpha<-0.38$ على α
- المستوي المستوي المستوي وليكن $f(x) = 2x + 1 xe^{-x}$ به المستوي ا
 - $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (أ (1
 - بیانیا. $\lim_{x\to +\infty} (f(x)-(2x+1))$ مصر النتیجة بیانیا.
 - $(\Delta): y=2x+1$:حيث (Δ) والمستقيم (C_f) والمستقيم الدرس الوضع النسبي للمنحني المنحني (C_f)
- بيّن أنّه من أجل كل عدد حقيقي x يكون g(x) = g(x) ثم استنتج اتجاه تغير الدالة f وشكّل جدول تغيراتها.
 - . 1 كتب معادلة المماس (T) للمنحنى للمنحنى (3
 - . $(f(\alpha)=0.8$ نأخذ (C_f) والمنحنى (T) ، (Δ) ارسم (4
 - . $x = (1-m)e^x$: x القش بيانيا وحسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة ذات المجهول $x = (1-m)e^x$
- . x=1 على \mathbb{R} والتي تنعدم من أجل الدالة الأصلية للدالة $x\mapsto xe^{-x}$ على التجزئة عيّن الدالة الأصلية للدالة عين الدالة الأصلية ألدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الذالة الأصلية الدالة الدالة الذالة الأصلية الدالة الأصلية الدالة الذالة الأصلية الدالة الذالة ا
- (x=1) احسب العدد (C_f) والمستقيمات التي معادلاتها الحين المحدّد بالمنحنى (x=1) الحسب العدد (x=1) الحسب (x=1) الحسب (x=1) الحسب العدد (x=1) العدد (x=1

انتهى الموضوع الأول

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

الموضوع الثاني

التمرين الأول: (04 نقاط)

$$u_{n+1} = u_n + \ln\left(\frac{2n+3}{2n+1}\right)$$
 : n عددیة عددیة معرفة کما یلي: $u_0 = 0$ و من أجل کل عدد طبیعي $u_n = 0$

- u_3 و u_2 ، u_1 کلا من (1
- . (u_n) غير المتتالية $\frac{2n+3}{2n+1} > 1$: n عدد طبيعي عدد طبيعي (2
 - $v_n=2n+1$: بn متتالیة عددیة معرفة من أجل کل عدد طبیعي (v_n
 - $e^{u_n}=v_n$ ، برهن بالتراجع أنه من أجل كل عدد طبيعي (أ
 - . $\lim_{n\to\infty} u_n$ عبارة الحد العام للمتتالية (u_n) بدلالة n ثم احسب عبارة الحد
 - احسب المجموعين S_n و T حيث:

$$T = e^{u_{1439}} + e^{u_{1440}} + \dots + e^{u_{2018}} \quad \text{o} \quad S_n = \ln\left(\frac{v_1}{v_0}\right) + \ln\left(\frac{v_2}{v_1}\right) + \dots + \ln\left(\frac{v_n}{v_{n-1}}\right)$$

التمرين الثاني: (04 نقاط)

 (P_1) والمستويين A(1;-2;1) نعتبر النقطة A(1;-2;1) والمستويين والفضاء منسوب إلى المعلم المتعامد المتجانس

- -3x+y+z+4=0 و -x+y+2z+1=0 و اللذين معادلتيهما على الترتيب -x+y+2z+1=0
- لكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة A و u(1;5;-2) شعاع توجيه له.
 - (Δ) بيّن أنّ المستويين (P_1) و (P_2) متقاطعان ثم تحقق أن تقاطعهما هو المستقيم و (2
- الذي يشمل B(-1;4;0) ويعامد كلا من P_1 و الذي يشمل B(-1;4;0) الذي يشمل B(-1;4;0) ويعامد كلا من P_2 ويعامد كلا من P_3 ويعامد كلا من P_2 و المستويات الثلاثة P_3 و P_4 و P_2 و P_3 و المستويات الثلاثة P_3 و المستويات الثلاثة و المستويات المستويات الثلاثة و المستويات الثلاثة و المستويات المستويات الثلاثة و المستويات المستويات الثلاثة و المستويات المستويات الثلاثة و المستويات المستويات المستويات الثلاثة و المستويات المستويا
 - لتكن E(2;3;-1) و E(2;3;-1) نقطتان من الفضاء.
 - اً) تحقّق أنّ H هي المسقط العمودي للنقطة B على المستوي H
 - \bullet . AEBH ثم احسب V حجم رباعي الوجوه EBH ثم احسب

التمرين الثالث: (05 نقاط)

- (z المعادلة : $(z-4+i)(z^2-4z+5)=0$ المعادلة : $(z-4+i)(z^2-4z+5)=0$ المعادلة : (z المرافق العدد (z
- و C التي لاحقاتها C في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس C نعتبر النقط C و C التي لاحقاتها في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس C و C التي لاحقاتها على الترتيب المنسوب إلى المعلم المتعامد المتعامد
 - تحقق أنّ $\frac{Z_B-Z_A}{Z_C-Z_A}$ ثم عيّن قيم العدد الطبيعي n بحيث يكون العدد $\frac{Z_B-Z_A}{Z_C-Z_A}=i$ تخيليا صرفا.

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

$$\begin{cases} |z_D - z_A| = |z_B - z_A| \\ Arg\left(\frac{z_D - z_A}{z_B - z_A}\right) = \frac{\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \end{cases}$$
 :غطة من المستوي لاحقتها z_D حيث: z_D نقطة من المستوي لاحقتها z_D نقطة من المستوي الحقتها z_D

 \mathcal{Z}_D بيّن أن المثلث ABD متقايس الأضلاع و احسب

A مركز ثقل المثلث ABD ثم عيّن نسبة وزاوية التشابه المباشر الذي مركزه G مركز G الحسب G

$$\operatorname{Arg}\left(\frac{z_G-z}{z_C-z}\right)=\pi+2k\pi\;(k\in\mathbb{Z})$$
 عيّن (C عيّن (C عيّن (C تختلف عن C تختلف عن (C تختلف عن (C عيّن (C عين (C ع

التمرين الرابع: (07 نقاط)

الدالة العددية ذات المتغير الحقيقي x المعرفة على $]0;+\infty[$ بـ: g

و (C_g) و $g(x) = \frac{1}{x} - (\ln x)^2 - \ln x - 1$ و المنحنى البياني الممثل لها كما هو مبيّن في الشكل المقابل:

. g(x) ثم استنتج بیانیا إشارة g(1) –

إلى المعلم المتعامد المتجانس $(O; \vec{i}, \vec{j})$.

$$\lim_{x\to+\infty} f(x) = 0$$
 و بيّن أنّ $\lim_{x\to-\infty} f(x)$ احسب (1) احسب ثم فسّر النتيجتين بيانيا.

 $oldsymbol{+}$ استنتج اتجاه تغیر الداله f و شکل جدول تغیراتها.

بيّن أنّ
$$y=\left(\frac{e^2}{e-1}\right)x-\frac{e}{e-1}$$
 مماس المنحنى $y=\left(\frac{e^2}{e-1}\right)x-\frac{e}{e-1}$ بيّن أنّ ارسم المماس $y=\left(\frac{e^2}{e-1}\right)x$ و المنحنى $y=\left(\frac{e^2}{e-1}\right)x$ الفواصل، ثم ارسم المماس $y=\left(\frac{e^2}{e-1}\right)x$

. عيّن بيانيا قيم الوسيط الحقيقي m بحيث تقبل المعادلة $(e-1)f(x)=e^2x-me$ عيّن بيانيا قيم الوسيط الحقيقي m

 $\left(C_f\right)$ مساحة الحيز من المستوي المحدد بحامل محور الفواصل و المنحنى I_n ، n>1 عدد طبيعي حيث n>1 عدد طبيعي المحدد بحامل محادلتيهما x=1 و المستقيمين اللذين معادلتيهما x=1

 $I_n = \ln \left(1 + n \ln n \right) : n > 1$ مين أنّه من أجل كل عدد طبيعي n حيث (1

 (I_n) ادرس اتجاه تغیر المتتالیة (2

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للإمتحانات و المسابقات

وزارة التربية الوطنية

شعبة: علوم تجريبية

تصحيح مقاترح لبكالوريا 2018

الموضوع 01

التَصْحيحْ المفصّل للبكالُوريَا الرَّسمِيةَ دُورة : جوان 2018

التنقيط	تصحيح التمرين الأول (04 نقاط)
	$u_0 = 1$
	$\left\{u_{n+1}=1-rac{9}{u_n+5} ight.$ دينا $\left(u_n ight)$ متتاليّة معرّفة من أجل كل عدد طبيعي $\left(u_n ight)$
	li li
	البرهان بالتراجع أنّه من أجل كل عدد طبيعي $u_n > -2$: $u_n > 0$ البرهان بالتراجع أنّه من أجل كل عدد طبيعي $u_n > 0$
	. $P(n):u_n>-2$ أو لا نضع الخاصية
	نتحقق من صحة الخاصية $P(n)$ من أجل $n=0$ لدينا : $u_0>-2$ ، أي : $u_0>-2$ ، و منه الخاصية محققة .
	$:u_{n+1}>-2$: نفرض أنّ $P(n)$ صحيحة أي $P(n)=u_n>-2$ ونتحقّق من صحّة $P(n+1)$ أي $P(n)=0$
	$1-\frac{9}{u_n+5}>-2$: أي $1-\frac{9}{u_n+5}>-3$: أي $1-\frac$
	. $u_n>-2$: n صحيحة ، و أخير ا $P(n)$ صحيحة ، أي من أجل كل عدد طبيعي $P(n+1)$ صحيحة ، $u_{n+1}>-2$
	ب) بيان أنّ (u_n) متتالية متناقصة على $\mathbb N$ واستنتاج أنّها متقاربة : متتالية متناقصة على $\mathbb N$
	$. \ u_{n+1} - u_n = 1 - \frac{9}{u_n + 5} - u_n = 1 - u_n - \frac{9}{u_n + 5} = \frac{(1 - u_n)(u_n + 5) - 9}{u_n + 5} = \frac{-u_n^2 - 4u_n - 4}{u_n + 5} = \frac{-(u_n + 2)^2}{u_n + 5} < 0$
	و منه المتالية (u_n) متناقصة على . $\mathbb N$
	- بما أنّ : المتتالية $\left(u_{_n} ight)$ متناقصة و محدودة من الأسفل فهي متقاربة .
	$v_n = rac{1}{u_n + 2}$ ، انضع من أجل كل عدد طبيعي n ، n عدد طبيعي (2
	اً) إثبات أن المتتالية $\left(v_n ight)$ حسابية أساسها $r=rac{1}{3}$ يطلب تعيين حدّها الأول :
	: معناه $v_{n+1} = v_n + \frac{1}{3}$ معناه
	$v_{n+1} = \frac{1}{u_{n+1} + 2} = \frac{1}{1 - \frac{9}{u_n + 5} + 2} = \frac{1}{3 - \frac{9}{u_n + 5}} = \frac{1}{\frac{3u + 15 - 9}{u_n + 5}} = \frac{u_n + 5}{3u_n + 6} = \frac{1}{3} + \frac{3}{3u_n + 6} = \frac{1}{3} + \frac{1}{u_n + 2} = \frac{1}{3} + v_n$
	. $v_0=rac{1}{u_0+2}=rac{1}{3}$ ، ومنه $r=rac{1}{3}$ ، ومنه (v_n) حسابية أساسها
	u_n التعبير عن v_n و u_n بدلالة u_n و حساب u_n التعبير عن u_n التعبير عن u_n التعبير عن u_n التعبير عن u_n و u_n
	. $v_n = \frac{1}{3}(n+1)$ ، و منه $v_n = \frac{1}{3} + \frac{1}{3}n$: $v_n = v_0 + nr$: $v_n = v_0 + nr$.
	$u_{n} = \frac{1}{v_{n}} - 2$: لدينا : $v_{n}u_{n} = 1 - 2v_{n}$. أي : $v_{n}(u_{n} + 2) = 1$. أي : $v_{n} = \frac{1}{u_{n} + 2}$. أي : $v_{n}u_{n} = 1 - 2v_{n}$. أي : $v_{n}u_{n} = 1 - 2v_{n}$.
	$u_n = \frac{1}{\frac{1}{3}(n+1)} - 2$ و منه :
	3` ′

$$\lim_{n \to +\infty} \left| \frac{1}{\frac{1}{3}(n+1)} \right| = 0 : \forall i \text{ } \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left| \frac{1}{\frac{1}{3}(n+1)} - 2 \right| = -2 : \lim_{n \to +\infty} u_n = -2 : \lim_{n \to +\infty} u_n$$

: و منه
$$S_n = (n+1) - \left[n + 1 \left(\frac{2}{3} + \frac{1}{3} n \right) \right] = (n+1) \left[1 - \frac{2}{3} - \frac{1}{3} n \right] = (n+1) \left(\frac{1}{3} - \frac{1}{3} n \right) = \frac{1}{3} (n+1) (1-n)$$

$$S_n = \frac{1}{3} (1-n^2)$$

تصحيح التمرين الثاني (04 نقاط) السحب في أن واحد معناه: توفيقة. إذن الحالات الممكنة للسحب هي: التنقيط (الإحتمالات)

. أي عدد الحالات الممكنة للسحب هي : $\frac{10!}{3!(10-3)!} = 120$

$$P(A) = \frac{3}{10}$$
 : و منه $P(A) = \frac{C_4^1 \times C_3^1 \times C_3^1}{C_{10}^3}$ و منه $P(A) = \frac{C_4^1 \times C_3^1 \times C_3^1}{C_{10}^3}$ و منه $P(A) = \frac{3}{10}$

.
$$P(B) = \frac{7}{60}$$
 : هو إحتمال سحب ثلاث كريات تحمل نفس الرقم ، أي $P(B) = \frac{C_5^3 + C_4^3}{C_{10}^3}$ و منه $P(B)$

 $p_A\left(B
ight)$ بيان أنّ : $p\left(A\cap B
ight)=rac{1}{20}$ ، ثم استنتاج $p_A\left(B
ight)$ و ر

نفس الرقم ، أي : $p(A \cap B)$ هو إحتمال سحب ثلاث كريات تحمل لون العلم الوطني و تحمل نفس الرقم ، أي :

. و هنه
$$p(A \cap B) = \frac{1}{20}$$
 ، و منه $P(A \cap B) = \frac{\left(C_2^1 \times C_2^1 \times C_1^1\right) + \left(C_1^1 \times C_1^1 \times C_2^1\right)}{C_{10}^3} = \frac{6}{120}$

.
$$p_{A}(B) = \frac{1}{6}$$
 : و منه $p_{A}(B) = \frac{p(A \cap B)}{p(A)} = \frac{\frac{1}{20}}{\frac{3}{10}} = \frac{1}{20} \times \frac{10}{3} : p_{A}(B)$. و منه $p_{A}(B) = \frac{1}{6}$

.
$$p(A \cup B) = \frac{11}{30}$$
: أي $p(A \cup B) = p(A) + p(B) - p(A \cap B) = \frac{22}{60}$: $p(A \cup B)$

لا المتغير العشوائي الذي يرفق بكل نتيجة عملية سحب عدد الكريات التي تحمل رقما فرديا X $X \in \{0,1,2,3\}$: لدينا

$X = x_i$	0	1	2	3
$P(X=x_i)$	$\frac{C_5^3}{C_{10}^3} = \frac{10}{120}$	$\frac{C_5^1 \times C_5^2}{C_{10}^3} = \frac{50}{120}$	$\frac{C_5^2 \times C_5^1}{C_{10}^3} = \frac{50}{120}$	$\frac{C_5^3}{C_{10}^3} = \frac{10}{120}$

.
$$E(X) = \frac{3}{2}$$
 $E(X) = \sum_{i=1}^{4} x_i P_i = 0 \times \frac{10}{120} + 1 \times \frac{50}{120} + 2 \times \frac{50}{120} + 3 \times \frac{10}{120} = \frac{180}{120}$ حساب الأمل الرياضي:

التنقيط	تصحيح التمرين الثالث (05 نقاط)
	$z^2 - \sqrt{3}z + 1 = 0$ المعادلة $z^2 - \sqrt{3}z + 1 = 0$ المعادلة روحت الم
	: و منه المعادلة تقبل حلان متمايز ان هما $\Delta=b^2-4ac=\left(-\sqrt{3} ight)^2-4$ ، و منه المعادلة تقبل حلان متمايز ان هما
	$z_{2} = \frac{\sqrt{3} + i}{2} = \frac{\sqrt{3}}{2} + \frac{1}{2}i z_{1} = \frac{\sqrt{3} - i}{2} = \frac{\sqrt{3}}{2} - \frac{1}{2}i$ $\vdots n \exists x \in \mathbb{Z}_{A} \text{ على الشكل الأسبي ، ثم تعيين قيم } $
	. $\arg(z_A) = \frac{\pi}{3} + 2k \pi$ و منه : $z_A = e^{i\frac{\pi}{3}}$ و منه : $z_A = \frac{1}{2} + i \frac{\sqrt{3}}{2}$: لاینا
	. $\arg(z_B) = \frac{\pi}{6} + 2k \pi$ و منه : $z_B = \frac{i\frac{\pi}{6}}{6}$ ؛ و منه : $z_B = \frac{\sqrt{3}}{2} + i\frac{1}{2}$ الدينا
	$(e^{irac{n\pi}{6}}=e^{irac{\pi}{3}}:$ ين قيم $(e^{irac{\pi}{6}})^n=e^{irac{\pi}{3}}:$ ين قيم $(e^{irac{n\pi}{6}})^n=e^{irac{\pi}{3}}:$ ين قيم $(e^{irac{\pi}{6}})^n=e^{irac{\pi}{3}}:$
	. $n = 12k + 2$ ، و منه $3n = 6 + 36k$ ، أي $\frac{n}{6} = \frac{1 + 6k}{3}$ ، أي $\frac{n\pi}{6} = \frac{\pi}{3} + 2k\pi$ ، و منه $\frac{\pi}{6} = \frac{\pi}{3} + 2k\pi$
	$z_{C}=e^{irac{\pi}{3}}:$ التحقّق أنّ $z_{C}=e^{irac{\pi}{3}}=e^{irac{\pi}{3}}$ و تحديد طبيعة المثلث $z_{C}=e^{irac{\pi}{3}}$
	. بادينا $\frac{z_B}{z_C} = \frac{e^{i\frac{\pi}{6}}}{e^{i\frac{\pi}{6}}} = e^{i(\frac{\pi}{6} + \frac{\pi}{6})} = e^{i\frac{\pi}{3}}$. وهو المطلوب
	الدينا : $\frac{\overline{OB}}{\overline{C}} = \frac{z_B - z_O}{z_C} = \frac{z_B - z_O}{\overline{C}}$ ، وَ $\frac{\overline{OB}}{\overline{OC}} = 1$ ، وَ $\frac{\overline{OB}}{\overline{OC}} = 1$ ، إستنتاج أنَ $\frac{z_B}{z_C} = \frac{z_B - z_O}{z_C - z_O} = e^{i\frac{\pi}{3}}$ ، إن المثلث $\frac{z_B}{z_C} = \frac{z_B - z_O}{z_C - z_O} = e^{i\frac{\pi}{3}}$
	C الذي مركزه C الذي الدينا C الذي مركزه C الذي مركزه C الذي مركزه C الذي مركزه C الذي الدينا C الذي مركزه C الذي مركزه C الذي مركزه C الذي الدينا C الذي مركزه C الذي الدينا C الذينا
	و زاویته : $\frac{\pi}{3}$.
	(4) تعيين طبيعة المجموعة (γ) ثم تعيين صورتها بالدوران r :
	. $OM = CM$: و منه $ z - z_o = z - z_c $ ، أي $ z = \left \frac{\overline{z} - z_B}{z} \right $ ، أي $ z = \left \overline{z} - z_B \right $ ، و منه $ z = \left \overline{z} - \frac{\sqrt{3} + i}{2} \right $ لدينا:
	. $[OC]$ هو: محور القطعة (γ) هو: محور القطعة
	صورة (γ) بالدوران r : بما أنّ النقطة O هي مركز الدوران r فصورتها بواسطته هي O (نقطة صامدة) . وَ نعلم أنّ صورة النقطة C بالدوران C محور القطعة C .
التنقيط	تصحيح التمرين الرابع (7نقاط)
	. $g(x) = 2 + (x-1)e^{-x}$ الأول: لدينا : $g(x) = 2 + (x-1)e^{-x}$
	ان حساب: $g(x)$ و $\lim_{x \to -\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ و نام المحساب: (۱)
	$\lim_{x \to \infty} e^{-x} = +\infty \text{i} \lim_{x \to \infty} (x - 1) = -\infty \text{if } i \text{ im} g(x) = \lim_{x \to \infty} \left[2 + (x - 1)e^{-x} \right] = -\infty$
	. $\lim_{x \to +\infty} \frac{x}{e^x} = 0$: ڏُنُ $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \left[2 + (x - 1)e^{-x} \right] = \lim_{x \to +\infty} \left[2 + \frac{x}{e^x} - \frac{1}{e^x} \right] = 2$
	ب) دراسة إتجاه تغيّر الدالة g ثم تشكيل جدول تغيراتها $g'(x) = e^{-x} \left(2-x\right)$. \mathbb{R} و دالتها المشتقة هي $g'(x) = e^{-x} \left(2-x\right)$.

من $g'(x)$ أي أنّ إشارة e^-	-x > 0: x لدينا من أجل كل عدد حقيقي
	إشارة : $2-x$ ، إذن الإشارة تكون كما

جدول التغيرات

х	∞	2	+∞
g'(x)	+	\rightarrow	_

ب) بيان أنّ المعادلة g(x)=0 تقبل حل وحيد α على g(x)=0 ، ثم استنتاج إشارة g(x)=0

$$g\left(-0,38\right) \times g\left(-0,37\right) < 0$$
 : فينا $\begin{cases} g\left(-0,38\right) = -0,01 \\ g\left(-0,37\right) = 0,01 \end{cases}$ و لدينا و $\left[-0,38;-0,37\right]$ و لدينا و $\left[-0,38;-0,37\right]$ مستمرة و رتيبة على الدالة و الدينا و الدينا

و منه و حسب نظرية القيم المتوسطة فإن المعادلة g(x)=0 تقبل حل وحيد α حيث : $-0.38 < \alpha < -0.37$. إذن : نجد إشارة α على α كما يلى :

. g(x) > 0 فَإِنّ $x \in]\alpha; +\infty[$ ولمّا g(x) = 0 فإنّ $x = \alpha$ فإنّ g(x) < 0 فإنّ $x \in]-\infty; \alpha[$ لمّا

x	8	α	+∞
g(x)	1	¢	+

 $f(x) = 2x + 1 - xe^{-x}$ الجزء الثانى: لدينا

هو مبيّن في الجدول التالي :

-----: $\lim_{x\to -\infty} f\left(x\right)$ وَ $\lim_{x\to +\infty} f\left(x\right)$ وَ $\lim_{x\to +\infty} f\left(x\right)$ وَ $\lim_{x\to +\infty} f\left(x\right)$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[2x + 1 - xe^{-x} \right] = \lim_{x \to +\infty} \left[2x + 1 - \frac{x}{e^x} \right] = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x \left(2 + \frac{1}{x} - e^{-x} \right) = +\infty$$

و منه : المستقيم ذو المعادلة
$$y=2x+1$$
 مقارب $\lim_{x\to +\infty} \left[f(x) - (2x+1) \right] = \lim_{x\to +\infty} \left[-xe^{-x} \right] = \lim_{x\to +\infty} \left[-\frac{x}{e^x} \right] = 0$ مقارب مائل للمنحنى $\binom{x}{e}$ بجوار $\binom{x}{e}$

 (Δ) و المستقيم $(C_f$) و المستقيم (C_f) ع المستقيم النسبي المنحني (C_f)

 $e^{-x}>0$ ندر س إشارة الفرق: -x=-x=-x ، أي ، ومنه إشارة الفرق -x=-x=-x ، أي اندر س

----- : و تشكيل جدول تغيراتها f'(x) = g(x) و استنتاج إتجاه تغير الدالة f و تشكيل جدول تغيراتها (2

$$f'(x) = 2 - e^{-x} + xe^{-x} = 2 + (x-1)e^{-x} = g(x)$$
 الدالة f قابلة للإشتقاق على $\mathbb R$ و دالتها المشتقة هي

. g(x) من إشارة f'(x) من إشارة

لمّا
$$x\in]-\infty;\alpha]$$
 فان $x\in [\alpha;+\infty[$ ، متزایدة تماما f فان $x\in [\alpha;+\infty[$ متناقصة تماما .

جدول التغيرات

$$\begin{array}{c|cccc}
x & -\infty & \alpha & +\infty \\
\hline
f'(x) & - & + & \\
\hline
f(x) & +\infty & +\infty \\
\hline
f(\alpha) & & \\
\end{array}$$

(3) كتابة معادلة المماس (T) للمنحني (C) عند النقطة ذات الفاصلة (T): $y = 2x + 1 - e^{-1}$: (T): $y = 2(x - 1) + 3 - e^{-1}$: (T): (T)

المناقشة البيانية حسب قيم الوسيط الحقيقي m: ---------

y=2x+m : المعادلة هي فواصل نقط تقاطع C_{f} و المستقيما ت ذات المعادلة

. بالمعادلة تقبل حل مضاعف موجب ، $m=1-e^{-1}$: لمّا $m=1-e^{-1}$: لمّا المعادلة لا تقبل حل مضاعف موجب ، المعادلة تقبل على المعادلة الم

. معدوم ، للمعادلة حل ، m=1 : لمّا : m=1 ، المعادلة تقبل حلان موجبان ، m=1 . المعادلة حل معدوم *

. لمّا : m>1 للمعادلة حل سالب *

 $x\mapsto xe^{-x}$ تعيين الدالة الأصلية للدالة $x\mapsto xe^{-x}$ عيين الدالة الأصلية الدالة الدالة

: و منه $c=2e^{-1}$: أي F(1)=0 ؛ لدينا $F(x)=-xe^{-x}-e^{-x}+c$ و منه و منه و منه :

 $F(x) = -xe^{-x} - e^{-x} + 2e^{-1}$

ب) حساب العدد A عساب العدد عند العدد العد

$$A = \int_{1}^{3} (y - f(x)) dx = \int_{1}^{3} xe^{-x} dx = F(3) - F(1) = -3e^{-3} - e^{-3} + 2e^{-1} = \frac{2e^{-1} - 4e^{-3}}{2e^{-1} - 4e^{-3}} (u \cdot a)$$

كتابة الأستاذ: ب. لقمان + بلقاسم عبدالرزاق

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للإمتحانات والمسابقات

وزارة التربية الوطنية

شعبہ: علوم تجریبیہ

تصحيح مقاترح لبكالوريا 2018

التَصْحِيحُ المفصّل للبكالُورِبَا الرَّسمِية دُورة: جوان 2018 الموضوع 02

02 8	الموتي المنظل منبط توريب الرسبية دوره : جوان 2010
التنقيط	تصحيح التمرين الأول (04 نقاط)
	$egin{cases} u_0=0 \ u_{n+1}=u_n+\ln\!\left(rac{2n+3}{2n+1} ight) \end{cases}$: لدينا $u_n=u_n+\ln\!\left(rac{2n+3}{2n+1} ight)$ عنتاليّة معرّفة من أجل كل عدد طبيعي $u_n=u_n+\ln\!\left(rac{2n+3}{2n+1} ight)$
	u_3 ، u_2 ، u_1 : عساب الحدود (1
	$u_3 = \ln(5) + \ln\left(\frac{7}{5}\right) = \ln(7) \cdot u_2 = u_1 + \ln\left(\frac{5}{3}\right) = \ln(3) + \ln(5) - \ln(3) = \ln(5) \cdot u_1 = u_0 + \ln(3) = \ln(3)$
	(u_n) بيان أنّه من أجل كل عدد طبيعي n $(2n+3)$ ، ثم استنتاج إتجاه تغيّر المتتالية (u_n) عدد طبيعي $(2n+3)$
	$n \in \mathbb{N}$ نعلم أنّ : $0 < \frac{2}{2n+1} > 1$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 1$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$ ، نعلم أنّ : $0 < \frac{2}{2n+1} > 0$
	$\ln\left(\frac{2n+3}{2n+1}\right) > 0$: $\ln\left(\frac{2n+3}{2n+1}\right) > \ln\left(1\right)$: $\ln\left(\frac{2n+3}{2n+1}\right) > \ln\left(\frac{2n+3}{2n+1}\right)$ ، أي $u_{n+1} - u_n = \ln\left(\frac{2n+3}{2n+1}\right)$: لاينا :
	إذن : من أجل كل عدد طبيعي n ، المتتالية $\left(u_n ight)$ متزايدة تماما . $v_n=2n+1$ ، n عدد طبيعي $v_n=2n+1$ ، n
	$e^{u_n}=v_n$: ، $n\in\mathbb{N}$ کل التراجع أنه من أجل کل $P(n)$: $e^{u_n}=v_n$: . $P(n)$: $e^{u_n}=v_n$: نضع الخاصية
	. $n=0$ ، و منه $e^{u_0}=v_0$ ، و منه $e^{u_0}=v_0$ ، و منه $e^{u_0}=v_0$ ، و منه ، $e^{u_0}=v_0$
	. $e^{u_{n+1}} = v_{n+1} : فرض صحة P(n+1) ، أي e^{u_n} = v_n : e^{u_n} = v_n ، و نبر هن صحة e^{u_{n+1}} = v_n : e^{u_n} = v_n ، أي e^{u_{n+1}} = e^{u_n + \ln\left(\frac{2n+3}{2n+1}\right)} : e^{u_{n+1}} = e^{u_n + \ln\left(\frac{2n+3}{2n+1}\right)} : e^{u_n} = v_n : 1$
	. $e^{u_{n+1}} = v_{n+1}$: و منه $(v_{n+1} = 2n + 3 : 5)$ ، $e^{u_{n+1}} = v_n \times \frac{v_{n+1}}{v_n}$ ، $e^{u_{n+1}} = e^{u_n} \times \left(\frac{2n+3}{2n+1}\right)$
	$e^{u_n}=v_n:n\in\mathbb{N}$ إذن الخاصية $P\left(n+1 ight)$ صحيحة يستلزم $P\left(n\right)$ صحيحة ، أي : من أجل كل والمجموعين S_n عن S_n و تاليات المجموعين المجموعين المجموعين المجموعين المجموعين المجموعين المجموعين المحموعين المحمو
	$S_{n} = \ln v_{1} - \ln v_{0} + \ln v_{2} - \ln v_{1} + \dots + \ln v_{n} - \ln v_{n-1} : $ $S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \ln \left(\frac{v_{2}}{v_{1}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{n}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{0}}\right) + \dots + \ln \left(\frac{v_{1}}{v_{n-1}}\right) : S_{n} = \ln \left(\frac{v_{1}}{v_{1}}\right) + \dots + \ln \left(\frac{v_{1}}{v$
	. $S_n = \ln(2n+1)$: $S_n = \ln(2n+1)$ ، و منه $S_n = -\ln v_0 + \ln v_n$: أي $S_n = -\ln v_0 + \ln v_n$.
	$T=rac{580}{2}ig(v_{1439}+v_{2018}ig)$: $T=v_{1439}+v_{1440}++v_{2018}$: $T=e^{1439}+e^{1440}++e^{2018}$: $T=290(2879+4037)$: $T=290(2879+4037)$: $T=290(2879+4037)$:
	$1 = 2003040^{\circ} \cdot = 3 \cdot 1 = 250(2075 + 4037)^{\circ} \cdot 3^{\circ}$

```
تصحيح التمرين الثاني (04 نقاط)
                                   (الهندسة الفضائية)
التنقيط
                                                                                                                                                                                                                             (1) كتابة التمثيل الوسيطى لىلمستقيم (\Delta): ----
                            : و منه ، \overrightarrow{AM} = t\overrightarrow{u} : يشمل A و منه : لدينا M\left(x;y;z\right) معناه توجيه له ، كالمناء تحقق المناء تحق
                                                                                                                                                                                       . \left\{y=-2+5t\ ;\ t\in\mathbb{R}\ : التمثيل الوسيطي لـ \left(\Delta\right) يكون
                                                                                                                       (\Delta) بيان أنّ المستويين: (P_1) و (P_2) متقاطعهان ، ثم التحقق أنّ تقاطعهما هو (\Delta): –
                                \vec{n}_{P_2}\left(-3;1;1
ight) و \vec{n}_{P_1}\left(-1;1;2
ight): نبيّن أنّ \vec{n}_{P_1}\left(-1;1;2
ight) و (P_2) و (P_1) مرتبطان خطيا ، لدينا
                                                                              اي : rac{1}{r} 
eq rac{1}{r} ، و منه : rac{1}{n_{P_1}} و منه : rac{1}{r} و منه : rac{1}{r} ، و منه : rac{1}{r}
                                      \overrightarrow{u} النتحقق أنّ تقاطع (P_1) و (P_2) هو المستقيم (\Delta) يكفي : النتحقق أن A \in (P_1) و الشعاع (P_2) هو الشعاع (\Delta)
                                . (محققة) A \in (P_2): -3-2+1+4=0 عمودي على \vec{n}_{P_2} ، أي \vec{n}_{P_2} . \vec{n}_{P_2} عمودي على \vec{n}_{P_3} عمودي على المحققة عمودي على المحققة المحق
                                    و لدينا : \vec{u} \perp \overrightarrow{n_{P_2}} : و منه : \vec{u} \cdot \overrightarrow{n_{P_2}} = -3 + 5 - 2 = 0 . \vec{u} \perp \overrightarrow{n_{P_1}} : و منه : \vec{u} \cdot \overrightarrow{n_{P_1}} = -1 + 5 - 4 = 0
                                                                                                                                           من هذا و ذاك نستنتج أنّ المستوبين (P_1) و (P_2) يتقاطعان وفق المستقيم (\Delta)
                                                                                            (Q) ، ثم استنتاج تقاطع المستويات (P_1) ، ثم استنتاج تقاطع المستويات (P_1) و (P_2) . --
                            \vec{n}_{\mathcal{Q}} (1;5;-2) بما أنّ (Q) يعامد (P_1) و (P_2) فسكون شعاع توجيه المستقيم (\Delta) هو الشعاع الناظمي للمستوي (Q)، أي:
                                                             . d=-19 : فإنّ A=-19 : فإنّ B\in (Q) ، و بما أنّ B\in (Q) ، و بما أنّ B\in (Q) ، و بما أنّ و منه
                                                                                                                                                                                                                                                Q(z): x + 5y - 2z - 19 = 0:
                                                                                                    - بما أنّ تقاطع المستويين (P_1) و (P_2) هو (\Delta) ، إذن يكفي در اسة تقاطع (\Delta) و (P_1) فقط :
                                             : النينا : t=1 ، و منه : t=1 ، و منه : (t+1)+5(5t-2)-2(1-2t)-19=0 ، النينا : (Q):x+5y-2z-19=0
                                                                                                                                                                       C(2;3;-1) هي : النقطة (P_1) و (P_2) و النقطة المستويات (P_1)
                                                                                                                                         (P_1) أ) التحقق أنّ H هي المسقط العمودي للنقطة B على المستوي (P_1): ---
                              أي : يكفي التتحقق أن : H \in (P_1) و \overrightarrow{HB} مرتبط خطيا مع \overrightarrow{n_R} ، لدينا: H \in (P_1) (محققة) ، و نلاحظ
                             ان الشعاعين \overline{(P_1)} و \overline{(-1;1;2)} و \overline{(-1;1;2)} مرتبطين خطيا ، إذن \overline{(P_1)} هي المسقط العمودي لـ \overline{(R_1)} على المستوي
                                                                                                                                                   ب) تحديد طبيعة المثلث EBH ، ثم حساب حجم الرباعي AEBH : ----
                                                  . BE = \sqrt{11} وَ HE = \sqrt{5} وَ HB = \sqrt{6} وَ وَمَنَّهُ \overrightarrow{HB} \left( -1;1;2 \right) وَ \overrightarrow{EH} \left( -2;0;-1 \right) وَ \overrightarrow{EB} \left( -3;1;1 \right) لدينا
                                                                                                 \stackrel{	ext{N}}{=} H ، و منه حسب نظرية فيتاغورس فإنّ المثلث EBH قائم في BE^2 = HB^2 + EH^2
                                                                                                                                                                                                       V = \frac{1}{2} \times S_{EBH} \times h : AEBH حساب حجم الرباعي
                                                                       AEBH ، و نلاحظ أنّ AEB هو إرتفاع الرباعي S_{EBH}=rac{HE	imes HB}{2}=rac{\sqrt{5}	imes\sqrt{6}}{2}=rac{\sqrt{30}}{2} : لدينا
                                                                                                                                                 . h = AE = \sqrt{30} : أي . ( (AE) \perp (EH) وَ (AE) \perp (BH) . أي .
                                                                                                                                                                                                                                           V = \frac{1}{2} \times \frac{\sqrt{30}}{2} \times \sqrt{30} = 5(u.v) إذن :
```

التنقيط	تصحيح التمرين الثالث (05 نقاط)
	ا حل في المجموعة $\mathbb C$ المعادلة \mathbb
	. $z_0=4+i$ و منه : $z_0=4+i$ و منه : $z_0=4+i$ و منه : $z_0=4+i$ ، و منه :
	. $z_2=2+i$ ، و منه المعادلة تقبل حلان متمايزان ، أي $2i=2i$ ، إذن $\sqrt{\Delta}=2i$ ، و منه المعادلة تقبل حلان متمايزان ، أي .
	التحقق أنّ $rac{z_B-z_A}{z_C-z_A}$ ثم تعيين قيم n حتي يكون $\left(rac{z_B-z_A}{z_C-z_A} ight)^n$ تخيليا صرفا
	. الدينا : $\frac{z_B - z_A}{z_C - z_A} = \frac{4 + i - 2 - i}{2 - i - 2 - i} = \frac{2}{-2i} = \frac{1}{-i} = i$ ، و هو المطلوب
	: معناه ، أي : $\left(e^{i\frac{n\pi}{2}}\right)$ معناه ، أي : $\left(e^{i\frac{n\pi}{2}}\right)$ ، أي : $\left(e^{i\frac{\pi}{2}}\right)$ معناه ، أي : $\left(e^{i\frac{\pi}{2}}\right)^n$) معناه ، أي : الدينا
	. $n=2k+1$ ، أي : $\frac{n}{2}=\frac{1}{2}+k$ ، و منه : $n=2k+1$. و منه : $\frac{n}{2}=\frac{\pi}{2}+k$. π بيان أنّ المثلث ABD متقايس الأضلاع ، ثم حساب z_D :
	$ z_{D}-z_{A} = z_{R}-z_{A} $
	. لدينا $ABD = AB : \begin{cases} z_D - z_A = z_B - z_A \\ z_D - z_A = z_B - z_A \end{cases}$ و منه المثلث $ABD = AB : \begin{cases} z_D - z_A = z_B - z_A \\ z_D - z_A = z_B - z_A \end{cases}$ الدينا $ABD = AB : \begin{cases} z_D - z_A = z_B - z_A \\ z_B - z_A = z_B - z_A \end{cases}$
	: و منه $z_D = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)(2) + 2 + i$: ينا $z_D - z_A = e^{i\frac{\pi}{3}}(z_B - z_A)$: ينا $z_D = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)(2) + 2 + i$. و منه $z_D = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)(2) + 2 + i$. و منه $z_D = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)(2) + 2 + i$.
	$z_D = 3 + (1 + \sqrt{3})i$: أي $z_D = 1 + \sqrt{3}i + 2 + i$
	z_G عساب z_G ، ثم تعیین عناصر التشابه المباشر z_G :
	$z_G = 3 + \left(rac{3+\sqrt{3}}{3} ight)$ ا دينا $z_G = \frac{z_A + z_B + z_D}{3}$ ، أي $z_G = \frac{z_A + z_B + z_D}{3}$ ، و منه $z_G = \frac{z_A + z_B + z_D}{3}$
	، $a=rac{z_A-z_D}{z_A-z_G}$: بطرح نجد $\begin{cases} z_A=az_A+b \\ z_D=az_G+b \end{cases}$ بطرح نجد G ويحول G إلى G معناه ويحول G معناه :
	. $\arg(a) = \frac{\pi}{6} + 2k \pi$: و زاویته هي $ a = \sqrt{3}$: بعد الحساب والتبسیط نجد: $a = \frac{3}{2} + \frac{\sqrt{3}}{2}i$ ، إذن نسبة التشابه هي $ a = \sqrt{3}$ ، و زاویته هي $ a = \sqrt{3}$
	4) تعيين مجموعة النقط (۲):
	لدينا: $\left(\overrightarrow{MC};\overrightarrow{MG} ight)=\pi+2k\pi$ ، أي $\pi = \left(\frac{z_G-z}{z_C-z}\right)=\pi+2k\pi$ ، و منه $\pi = \left(\frac{z_G-z}{z_C-z}\right)=\pi+2k\pi$ ذات
	. $]GC$. هي القطعة المستقيمة المفتوحة $]GC$
التنقيط	تصحيح التمرين الرابع (7نقاط)
	. $g(x) = \frac{1}{x} - (\ln x)^2 - \ln x - 1$ الجزء الأول: لدينا
	$g\left(1 ight)$ و استنتاج إشارة $g\left(x ight)$: $g\left(x ight)$ و استنتاج إشارة .
	بعد حساب $g(1) = 0$ نجد جدول إشارة $g(x)$ بيانيا فيكون كما يلي $g(x) > 0$ لمّا $g(x) = 0$ و $g(x) = 0$ لمّا $g(x) < 0$ و $g(x) < 0$ لمّا $g(x) < 0$ بيانيا فيكون كما يلي $g(x) < 0$ المّا $g(x) < 0$ بيانيا فيكون كما يلي $g(x) < 0$ بيانيا فيكون كما يلي $g(x) < 0$ و $g(x) < 0$ بيانيا فيكون كما يلي كما يلي فيكون كما يلي فيكون كما يلي فيكون كما يلي كما يلي فيكون كما يلي فيكون كما يلي كما
	$g(x)$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$
	1 W 111V
	ان حساب : $\lim_{x \to +\infty} f\left(x\right) = 0$ وَ بيان أَنّ $\lim_{x \to +\infty} f\left(x\right) = 0$ أَن حساب : $\lim_{x \to +\infty} f\left(x\right) = 0$

.
$$\lim_{x \to 0} 1 + x \ln x = 1$$
 و منه : 0 $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : 0 $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : 0 $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : 0 $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$ و منه : $\lim_{x \to 0} 1 + x \ln x = 1$

$$x + \infty$$
 بجوار (C_f) بجوار $y = 0$: و منه $y = 0$. $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{x} \left(\frac{\frac{1}{x} + \frac{\ln x}{x}}{\frac{1}{x} + \ln x} \right) = 0$

-----:
$$f'(x) = \frac{g(x)}{(1+x\ln x)^2}$$
: $x \in]0;+\infty[$: $x \in]0;+\infty[$) بیان أنه من أجل کل : $x \in]0;+\infty[$

الدالة f قابلة للإشتقاق على $]0;+\infty$ و دالته المشتقة هي :

$$f'(x) = \frac{\frac{1}{x}(1+x\ln x) - (\ln x + 1)(1+\ln x)}{(1+x\ln x)^2} = \frac{\frac{1}{x} + \ln x - (1+\ln x)^2}{(1+x\ln x)^2} = \frac{\frac{1}{x} - (\ln x)^2 - \ln x - 1}{(1+x\ln x)^2}$$

و منه :
$$f'(x) = \frac{g(x)}{(1+x \ln x)^2}$$
 و منه :

جدول التغيّرات:

Х	0	1 +∞
f'(x)	+	\rightarrow -
f(x)	8	

----- ييان أنّ
$$y=\left(rac{e^2}{e-1}
ight)$$
 مماس $y=\left(rac{e^2}{e-1}
ight)$ معادلة $y=\left(rac{e^2}{e-1}
ight)$ مماس (3) بيان أنّ بيان أنّ بيان أنّ

لدينا : بعد حل المعادلة : $f'(e^{-1}) = \frac{e^2}{e-1}$: ينا : بعد حل المعادلة : $f(x) = \{(e^{-1};0)\}$: نجد f(x) = 0 : لدينا : بعد حل المعادلة : f(x) = 0

.
$$(T): y = \left(\frac{e^2}{e-1}\right)x - \frac{e}{e-1}$$
 : نكون $(T): y = f'(e^{-1})(x-e^{-1}) + f(e^{-1})$ نكون

رسم كلا من (T) المنحني (C): -------رسم كلا من (T) المنحني (C): ---------

4) المناقشة البيانية حسب قيم الوسيط الحقيقى m: ---

، أي
$$y = \left(\frac{e^2}{e-1}\right)x + m'$$
 . أي $y = \left(\frac{e^2}{e-1}\right)x + m'$. أي $y = \left(\frac{e^2}{e-1}\right)x - \frac{e}{e-1}m$. أي $y = \left(\frac{e^2}{e-1}\right)x - me$. $y = \left(\frac{e^2}{e-1}\right)x + m'$. أي $y = \left(\frac{e^2}{e-1}\right)x - me$. $y = \left(\frac{e^2}{e-1}\right)x + m'$. أي $y = \left(\frac{e^2}{e-1}\right)x - me$. $y = \left(\frac{e^2}{e-1}\right)x + m'$. أي $y = \left(\frac{e^2}{e-1}\right)x + m'$. y

الجزء الثالث:

$$I_n = \left[\ln\left|u(x)\right|\right]_1^n$$
 . و منه $I_n = \int_1^n \frac{u'(x)}{u(x)} dx$. نلاحظ أنّ $I_n = \int_1^n \left(\frac{1+\ln x}{1+x\ln x}\right) dx$. و منه $I_n = \int_1^n f(x) dx$. لينا : $I_n = \int_1^n f(x) dx$. المنا : $I_n = \int_1^n f(x) dx$.

.
$$I_n = \ln \left(1 + n \ln n \right)$$
 : و منه : $I_n = \ln \left(1 + n \ln n \right) - \ln \left(1 \right)$: و منه : $I_n = \ln \left(u(n)\right) - \ln \left(u(1)\right)$: و منه : $I_n = \ln \left(1 + n \ln n \right)$

 (I_n) دراسة إتجاه تغيّر المنتالية (I_n)

: ندرس إشارة الفرق:
$$I_{n+1} = \int_{1}^{n} f(x)dx + \int_{1}^{n+1} f(x)dx$$
 ندرس إشارة الفرق: $I_{n+1} = \int_{1}^{n+1} f(x)dx$ الدينا: $I_{n+1} = \int_{1}^{n+1} f(x)dx$

ن أجل
$$\int_{n}^{n+1} f(x) dx > 0$$
 : فإنّ $n > 1$: ن من أجل $I_{n+1} - I_n = \int_{n}^{n+1} f(x) dx$ ، و منه : $I_{n+1} = I_n + \int_{n}^{n+1} f(x) dx$ كل عدد طبيعي $I_{n+1} = I_n + \int_{n}^{n+1} f(x) dx$ كل عدد طبيعي $I_{n+1} = I_n + \int_{n}^{n+1} f(x) dx$ كل عدد طبيعي $I_{n+1} = I_n + \int_{n}^{n+1} f(x) dx$

كتابة الأستاذ: ب. لقمان + بلقاسم عبدالرزاق