Multi-domain Bivariate Spectral Local Linearisation method for solving non-similar boundary layer partial differential equations

MAGAGULA VUSI MPENDULO

Supervisors: Prof. S.S. Motsa & Prof. P. Sibanda

The 40th South African Symposium of Numerical and Applied **Mathematics**

Multi-domain BSLLM

Overview

- AIM
- SOLUTION PROCEDURE
- RESULTS AND DISCUSSION
- Conclusion & Future Research Direction
- REFERENCES

Aim & Objectives

Aim

To present an extension of the **Bivariate Spectral Local Linearisation Method** (BSLLM)[1] for solving non-similar nonlinear PDEs over **large time intervals**.

- BSLLM uses Chebyshev-Gauss-Lobbatto points (see [3, 4])
- Drawback of BSLLM accuracy deteriorates over large time intervals.
- New approach termed Multi-domain Bivariate Spectral Local Linearisation Method (MD-BSLLM)

Objectives

- Solve non-linear non-similar boundary layer equations over a large time domain using the MD-BSLLM.
- Validate the results using a series solution approach.

3 / 16

Solution Method

The solution approach involves

- Domain decomposition
- linearisation and decoupling
- bivariate interpolation.
- pseudo-spectral approximation

Numerical Experiment

$$\frac{\partial^{3} f}{\partial \eta^{3}} + \frac{1}{4} (n+3) f \frac{\partial^{2} f}{\partial \eta^{2}} - \frac{1}{2} (n+1) \left(\frac{\partial f}{\partial \eta} \right)^{2} + \zeta \frac{\partial^{2} f}{\partial \eta^{2}} + (1-w)g + wh$$

$$= \frac{1}{4} (1-n) \zeta \left[\frac{\partial f}{\partial \eta} \frac{\partial^{2} f}{\partial \zeta \partial \eta} - \frac{\partial^{2} f}{\partial \eta^{2}} \frac{\partial f}{\partial \zeta} \right], \tag{1}$$

$$\frac{1}{Pr}\frac{\partial^2 g}{\partial \eta^2} + \frac{1}{4}(n+3)f\frac{\partial g}{\partial \eta} + \zeta\frac{\partial g}{\partial \eta} = \frac{1}{4}(1-n)\zeta\left[\frac{\partial f}{\partial \eta}\frac{\partial g}{\partial \zeta} - \frac{\partial g}{\partial \eta}\frac{\partial f}{\partial \zeta}\right],\tag{2}$$

$$\frac{1}{Sc}\frac{\partial^2 h}{\partial \eta^2} + \frac{1}{4}(n+3)f\frac{\partial h}{\partial \eta} + \zeta\frac{\partial h}{\partial \eta} = \frac{1}{4}(1-n)\zeta\left[\frac{\partial f}{\partial \eta}\frac{\partial h}{\partial \zeta} - \frac{\partial h}{\partial \eta}\frac{\partial f}{\partial \zeta}\right],\tag{3}$$

subject to

$$f(\zeta,0)=0, \quad \frac{\partial f}{\partial \eta}(\zeta,0)=0, \quad g(\zeta,0)=h(\zeta,0)=1, \quad \frac{\partial f}{\partial \eta}(\zeta,\infty)=g(\zeta,\infty)=h(\zeta,\infty)=0.$$

- Formulated and Solved by Hussain et.al. [2] using finite-difference based Keller-box technique
- Results were validated using **Series Solutions**, for small and large ζ

Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 5/10

Domain Decomposition

Figure: Multi-domain Grid

The patching condition requires that

$$f^{(l)}(\eta, \zeta_{l-1}) = f^{(l-1)}(\eta, \zeta_{l-1}), \quad \eta \in [a, b], \tag{4}$$

where $f^{(l)}(\eta,\zeta)$ denotes the solution of equation (2) at each sub-interval Γ_l

Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 6/16

Linearisation and Decoupling

- The PDEs are linearised using the **quasi-linearisation method**.
 - an iterative procedure based on the Taylor-series expansion about the previous estimates of the solution.
- Applying the quasi-linearisation method on one function at a time, results in three decoupled linear PDEs.
- In each sub-interval $[\zeta_{l-1}, \zeta_l]$, these decoupled linear PDEs can be solved iteratively in a sequential manner until the desired solution is obtained.

$$\beta_{0,r} \frac{\partial^{3} f_{r+1}^{(l)}}{\partial \eta^{3}} + \beta_{1,r} \frac{\partial^{2} f_{r+1}^{(l)}}{\partial \eta^{2}} + \beta_{2,r} \frac{\partial f_{r+1}^{(l)}}{\partial \eta} + \beta_{3,r} f_{r+1}^{(l)} + \beta_{4,r} \frac{\partial f_{r+1}^{(l)}}{\partial \xi} + \beta_{5,r} \frac{\partial f_{r+1}^{(l)}}{\partial \xi} = R_{f,r}^{(l)}, \quad (5)$$

$$\sigma_{1,r} \frac{\partial^2 g_{r+1}^{(l)}}{\partial \eta^2} + \sigma_{2,r} \frac{\partial g_{r+1}^{(l)}}{\partial \eta} + \sigma_{3,r} g_{r+1}^{(l)} + \sigma_{4,r} \frac{\partial g_{r+1}^{(l)}}{\partial \xi} = R_{g,r}^{(l)}, \tag{6}$$

$$\omega_{1,r} \frac{\partial^2 h_{r+1}^{(l)}}{\partial \eta^2} + \omega_{2,r} \frac{\partial h_{r+1}^{(l)}}{\partial \eta} + \omega_{3,r} h_{r+1}^{(l)} + \omega_{4,r} \frac{\partial h_{r+1}^{(l)}}{\partial \xi} = R_{h,r}^{(l)}, \tag{7}$$

7/16

Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016

Pseudo-spectral Approximation

• Assume that the solution at each sub-interval Γ_l , denoted by $f^{(l)}(\eta, \zeta)$, can be approximated by a **bivariate Lagrange interpolation** polynomial of the form

$$f^{(l)}(\eta,\zeta) \approx \sum_{i=0}^{N_x} \sum_{i=0}^{N_t} f^{(l)}(\eta_i,\zeta_j) \mathcal{L}_i(\eta) \mathcal{L}_j(\zeta). \tag{8}$$

• Transpiration parameter derivative values are computed at the grid points (η_i, ζ_j) :

$$\left. \frac{\partial f^{(l)}}{\partial \zeta} \right|_{(\eta_l, \zeta_l)} = \left(\frac{2}{\zeta_l - \zeta_{l-1}} \right) \sum_{\nu=0}^{N_t} d_{j\nu} f^{(l)}(\eta_j, \zeta_\nu) = \left(\frac{2}{\zeta_l - \zeta_{l-1}} \right) \sum_{\nu=0}^{N_t} d_{j\nu} \mathbf{F}_{\nu}^{(l)} \tag{9}$$

• The *n*th order space derivative is defined as

$$\frac{\partial^n f^{(l)}}{\partial \eta^n}\Big|_{(\eta_i,\zeta_j)} = \left(\frac{2}{\eta_\infty}\right)^n \sum_{\rho=0}^{N_x} D_{i\rho}^n f^{(l)}(\eta_\rho,\zeta_j) = \left(\frac{2}{\eta_\infty}\right)^n \mathbf{D}^n \mathbf{F}_j^{(l)}, \quad j=0,1,2,\ldots,N_t, (10)$$

where the vector $\mathbf{F}_{i}^{(l)}$ is defined as

$$\mathbf{F}_{j}^{(l)} = [f^{(l)}(\eta_{0}, \zeta_{j}), f^{(l)}(\eta_{1}, \zeta_{j}), \dots, f^{(l)}(\eta_{N_{x}}, \zeta_{j})]^{T}.$$
(11)

Pseudo-spectral Approximation

• Substituting equations (9) and (10) into equation (5), we get

$$\left[\boldsymbol{\beta}_{0,r}\mathbf{D}^{3} + \boldsymbol{\beta}_{1,r}\mathbf{D}^{2} + \boldsymbol{\beta}_{2,r}\mathbf{D} + \boldsymbol{\beta}_{3,r}\right]\mathbf{F}_{r+1,j}^{(l)} + \boldsymbol{\beta}_{4,r}\sum_{\nu=0}^{N_{t}}d_{j\nu}\mathbf{F}_{r+1,\nu}^{(l)} + \boldsymbol{\beta}_{5,r}\sum_{\nu=0}^{N_{t}}d_{j\nu}\mathbf{D}\mathbf{F}_{r+1,\nu}^{(l)} = \mathbf{R}_{f,r}^{(l)}, \quad (12)$$

for $j = 0, 1, 2, \dots, N_t$.

The patching condition requires that

$$f_{r+1}^{(l)}(\eta_i, \zeta_{(l-1,j)}) = f_{r+1}^{(l-1)}(\eta_i, \zeta_{(l-1,j)}), \quad \eta \in [a, b],$$
(13)

- The initial unsteady solution of equation (5) when $\zeta = 0$ corresponds to $t = t_{N_t} = -1$.
- Equation (12) is evaluated for $j = 0, 1, \dots, N_t 1$

$$\left[\boldsymbol{\beta}_{0,r}\mathbf{D}^{3} + \boldsymbol{\beta}_{1,r}\mathbf{D}^{2} + \boldsymbol{\beta}_{2,r}\mathbf{D} + \boldsymbol{\beta}_{3,r}\right]\mathbf{F}_{r+1,j}^{(l)} + \boldsymbol{\beta}_{4,r}\sum_{\nu=0}^{N_{t}-1}d_{j\nu}\mathbf{F}_{r+1,\nu}^{(l)} + \boldsymbol{\beta}_{5,r}\sum_{\nu=0}^{N_{t}-1}d_{j\nu}\mathbf{D}\mathbf{F}_{r+1,\nu}^{(l)} = \boldsymbol{\mathcal{R}}_{1,j}^{(l)}, \quad (14)$$

and

$$\mathbf{\mathcal{R}}_{1,j}^{(l)} = \mathbf{R}_{f,r}^{(l)} - \beta_{4,r} d_{jN_t} \mathbf{F}_{N_t}^{(l)} - \beta_{5,r} d_{jN_t} \mathbf{D} \mathbf{F}_{N_t}^{(l)}.$$

9/16

Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016

• Imposing boundary conditions for $j = 0, 1, \dots, N_t - 1$, equation (14) can be expressed as the following

$$N_t(N_x+1)\times N_t(N_x+1)$$

matrix system

$$\begin{bmatrix} A_{0,0} & A_{0,1} & \cdots & A_{0,N_{t}-1} \\ A_{1,0} & A_{1,1} & \cdots & A_{1,N_{t}-1} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N_{t}-1,0} & A_{N_{t}-1,1} & \cdots & A_{N_{t}-1,N_{t}-1} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{0}^{(l)} \\ \mathbf{F}_{1}^{(l)} \\ \vdots \\ \mathbf{F}_{N_{t}-1}^{(l)} \end{bmatrix} = \begin{bmatrix} \mathbf{\mathcal{R}}_{1,0}^{(l)} \\ \mathbf{\mathcal{R}}_{1,1}^{(l)} \\ \vdots \\ \mathbf{\mathcal{R}}_{1,N_{t}-1}^{(l)} \end{bmatrix}, \quad (15)$$

where

$$A_{i,i} = \beta_{0,r} \mathbf{D}^3 + \beta_{1,r} \mathbf{D}^2 + \beta_{2,r} \mathbf{D} + \beta_{3,r} \mathbf{I} + \beta_{4,r} d_{ii} \mathbf{I} + \beta_{5,r} d_{ii} \mathbf{D}$$
(16)

$$A_{i,j} = \beta_{4,r} d_{ij} \mathbf{I} + \beta_{5,r} d_{ij} \mathbf{D}, \quad \text{when } i \neq j,$$

$$\tag{17}$$

10 / 16

Results

• Comparison of Multi-domain bivariate spectral local linearisation solution for the **skin friction** against the series solution for large ζ .

	MD-BSLLM	Series Solution for large ζ
$\overline{\zeta}$	$f''(0,\zeta)$	$f''(0,\zeta)$
5	0.3088214	0.3088214
10	0.1547399	0.1547399
15	0.1031717	0.1031717
20	0.0773803	0.0773803
25	0.0619045	0.0619045
30	0.0515872	0.0515872
35	0.0442176	0.0442176
40	0.0386905	0.0386905

Table:
$$N_x = 60, N_t = 5, p = 20$$

Results

• Comparison of Multi-domain bivariate spectral local linearisation solution for the **Sherwood number** against the series solution for large ζ

	MD-BSLLM	Series Solution for large ζ
$\overline{\zeta}$	$-h'(0,\zeta)$	$-h'(0,\zeta)$
5	3.0018658	3.0018658
10	6.0002332	6.0002332
15	9.0000691	9.0000691
20	12.0000292	12.0000292
25	15.0000149	15.0000149
30	18.0000086	18.0000086
35	21.0000054	21.0000054
40	24.0000036	24.0000036

Table:
$$N_x = 60$$
, $N_t = 5$, $p = 20$

Results

• Comparison of Multi-domain bivariate spectral local linearisation solution for the **Nusselt number** against the series solution for large ζ

	MD-BSLLM	Series Solution for large ζ
ζ	$-g'(0,\zeta)$	$-g'(0,\zeta)$
5	3.5018961	3.5018961
10	7.0002370	7.0002370
15	10.5000702	10.5000702
20	14.0000296	14.0000296
25	17.5000152	17.5000152
30	21.0000088	21.0000088
35	24.5000055	24.5000055
40	28.0000037	28.0000037

Table:
$$N_x = 60, N_t = 5, P = 20$$

Conclusion

- The MD-BSLLM method can be used to solve non-linear non-similar boundary layer equations over a large time domain.
- We were able to validate the results using a series solution approach.

Future Research Direction

• Solve different **types** of NPDEs arising from Physics, Mathematical Biology, etc.

14 / 16

References

- Motsa, S.S. and Animasaun, I.L., 2015. A new numerical investigation of some thermo-physical properties on unsteady MHD non-Darcian flow past an impulsively started vertical surface. Thermal Science, 19(suppl. 1), 249-258.
- Hussain S., Hossain M.A., Natural convection flow from a vertical permeable flat plate with variable surface temperature and species concentration, Engineering Computations, Vol. 17 No. 7,2000, 789-812
- Trefethen, Lloyd N. Spectral methods in MATLAB. Vol. 10. Siam, 2000.
- Canuto C., Hussaini M. Y., Quarteroni A., and T. A. Zang, Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin, 2007.

