Partial Differential Equations - MSO 203B

Assignment 3 - Classification of 2nd Order PDE and Laplace equation

Tutorial Problems

- 1. Classify the following PDE as per their ellipticity, parabolicity or hyperbolicity.
 - $u_{xx} \pm (\operatorname{sech}^4 x) u_{yy} = 0.$
 - $u_{xx} + (2 \csc y)u_{xy} + (\csc^2 y)u_{yy} = 0.$
 - $\bullet \ 4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2.$
- 2. Show that the behaviour of a PDE based on ellipticity, parabolicity or hyperbolicity depends on the domain.
- 3. Reduce $y^2u_{xx} x^2u_{yy} = 0$ into its canonical form.
- 4. Reduce the PDE $u_{xx} + x^2 u_{yy} = 0$ into its canonical form.
- 5. Reduce $u_{xx} 4u_{xy} + 4u_{yy} = \exp y$ into its canonical form and solve it.
- 6. Deduce the Laplace equation on a disk using polar coordinate.
- 7. Solve the Laplace equation on a disk of radius R, using polar coordinate subject to the condition $u(R,\theta) = h(\theta)$ with h being a continuous function.
- 8. Show that the value of u at any point is just the average value of u on the circle centered at that point provided u solves the Laplace Equation.
- 9. Let ϕ be a continuous function which changes sign on $\partial\Omega$. If $\Delta u = 0$ and $u = \phi$ on $\partial\Omega$, show that u must change sign in Ω provided Ω is bounded and smooth domain.

Practice Problems

- 1. Reduce all the equations in problem 1 to its canonical form.
- 2. Solve the problem $u_{tt} u_{xx} = 0$.
- 3. Show that Laplacian is rotation invariant.
- 4. Solve the problem $-\Delta u = \lambda u$ in a square.
- 5. Solve the problem $-\Delta u = 1$ in a rectangle in \mathbb{R}^2 .

 END