MACHINE LEARNING

INTRODUCTION TO PYTHON FOR STATISTICAL LEARNING

Fathi Abdul Muhyi

MACHINE LEARNING

"Sebuah Algoritma yang dapat mempelajari karakteristik data, membuat prediksi, menggali informasi berdasarkan data"

PENERAPAN MACHINE LEARNING

Classification

Regression

How Much?

Clustering

ML FLOWCHART

METODE KLASIFIKASI

Classification is a method to build a model to classify the response variable by certain charcteristic (feature variable).

There are many problem in case of classification:

- 1. Credit scoring, calon penerima kredit mampu bayar atau tidak
- 2. Churn, customer yang berpotensi meninggalkan jasa/produk
- 3. Direct Marketting, identifikasi prospective customer

CONTOH KASUS SEDERHANA

Toko X mengumpulkan data pelanggan untuk mengetahui apakah pelanggan mereka tertarik untuk membeli produk jenis baru

Toko tersebut memiliki sejumlah pelanggan baru yang belum diketahui tertarik atau tidak

	No	Jenis Kelamin	Single	Tinggal di Kota	usia	Perokok	Budget	Kesukaan	Tertarik Beli?
0	1	1	0	1	32	0	low	Tekno	0
1	2	0	1	0	38	0	medium	Tekno	0
2	3	0	0	0	33	0	low	Tekno	0
3	4	0	1	0	27	0	medium	Lainnya	0
4	5	1	1	1	30	0	medium	Busana	1
5	6	0	1	0	44	0	medium	Tekno	0
6	7	1	1	1	36	0	medium	Seni	1
7	8	1	0	0	32	0	low	Seni	0
8	9	0	1	0	31	0	medium	Seni	0
9	10	1	1	0	40	0	high	Tekno	0
10	11	1	0	1	34	0	low	Lainnya	0

Peubah Penjelas

Peubah Respon

REGRESI LOGISTIK BINER

Memprediksi peluang ketertarikan untuk membeli

$$P(Y = 1) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$

Y: peubah kategorik biner

 x_i : peubah penjelas

 eta_i : Parameter Regresi

POHON KEPUTUSAN

Hierarchi of if/else question, leading to a decision (Muller and Guido, 2016)

How to distinguish: Hawk, Penguin, Dolphin, Bear?

Terminal Node / Leaf

POHON KEPUTUSAN

samples = 210

value = [22, 188]

class = tertarik

Membedakan yang tertarik beli dan tidak

> value = [131, 218] class = tertarik samples = 139value = [109, 30]class = tidak tertarik

Jenis Kelamin Perempuan <= 0.5 samples = 731value = [494, 237]class = tidak tertarik False True Budget low <= 0.5 Budget medium <= 0.5 samples = 349samples = 382value = [363, 19]class = tidak tertarik samples = 150samples = 232value = [132, 18]value = [231, 1]class = tidak tertarik class = tidak tertarik

RANDOM FOREST

EVALUASI

Ukuran Ketepatan Prediksi:

- 1. Akurasi, persentase yang terprediksi benar
- 2. Sensitivitas/Recall, persentase yang terprediksi benar pada kelas positif
- 3. Spesifisitas, persentase yang terprediksi benar pada kelas negatif
- 4. dan lain-lain

Metode Evaluasi:

- 1. Validasi (Train Test)
- 2. Validasi Silang

Table 1 Confusion Matrix

Prediction	Aktual	
	+	-
+	True Positive (A)	False Positive(B)
-	False Negative (C)	True Negative(D)

Table 2 Metrics of the classification

Metrics	Information
Accuracy	(A + D) / (A+B+C+D)
Recall (postive)	A / (A+C)
Recall (negative)	D / (B+D)
Precision (Positive)	A / (A+B)
F1 score	Weighted Average between precision and
	recall
Geometric mean score	(Accuracy*Recall(+)*Recall(-)) ^{1/3}

METRICS

2		True co	ondition			
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positive	cy (ACC) = + Σ True negative population
Predicted	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
Click thumbr		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
Pc- F- T- FOR NPV TPR FPR LR+ DOR FNR TNR LR- F1		False negative rate (FNR), $Miss\ rate = \frac{\Sigma\ False\ negative}{\Sigma\ Condition\ positive}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= LR+ LR-	Recall + Precision

CONTOH

No	Perdiksi	Aktual	
1	1	1	
2	1	0	
• • •	•••	•••	
• • •	•••	•••	
553	0	0	
554	0	1	

Matriks Klasifikasi

Dua dilesi	Aktual			
Prediksi	1	0		
1	121	23		
0	10	400		

Akurasi:

94.04 %

Sensitivitas:

92.36 %

Spesifisitas:

94/56 %

VALIDASI

VALIDASI SILANG

TASK

Prediksi variabel default pada data titanic dan upload di kaggel.com