Architektury systemów komputerowych 2016

Lista zadań nr 11

Na zajęcia 16-19 maja 2016

UWAGA! W trakcie prezentacji zadań należy być przygotowanym do wytłumaczenia haseł, które zostały oznaczone **wytłuszczoną** czcionką.

Zadanie 1. Zbuduj układ z bramek NAND, który będzie równoważny wyrażeniu $\overline{a}b\overline{c}+\overline{a}bc+a\overline{b}c$. Należy użyć minimalnej liczby bramek, przy czym dopuszcza się stosowanie bramek wielowejściowych.

Zadanie 2. Dla poniższego układu bramek, wskaż ścieżkę krytyczną oraz oblicz czas propagacji i czas kontaminacji posługując się podaną tabelką.

Zadanie 3. Dla następującego wykresu fal sygnałów wejściowych, jak wygląda sygnał na wyjściu **przerzutnika typu D** wyzwalanego (a) **poziomem** (b) **zboczem narastającym**.

Zadanie 4. Multiplekser to układ, który ma 2^n wejść danych, n wejść adresowych i jedno wyjście. W zależności od numeru wskazywanego przez linie adresowe wybierane jest jedno z wejść i kierowane na wyjście. Zbuduj z bramek multiplekser dla n=2. Następnie za pomocą wyłącznie tegoż multipleksera oraz drutów z wartościami 0 i 1 zbuduj układ logiczny równoważny wyrażeniu $bc+\overline{a}\overline{b}\overline{c}+b\overline{c}$.

Zadanie 5. Mając do dyspozycji bramki z tabelki w zadaniu 2 zaprojektuj układ sumujący dwie jednobitowe liczby. Następnie przy jego pomocy zbuduj układ, który będzie sumował *n*-bitowe liczby.

Zadanie 6. Dysponując bramkami z tabelki w zadaniu 2 zaprojektuj układ sprawdzający czy dwie n-bitowe liczby są równe. Następnie oblicz czas propagacji układu dla n=8.

Zadanie 7. Rozważamy liczby binarne bez znaku. Używając wyłącznie niżej wymienionych układów skonstruuj układ mnożący dwie liczby czterobitowe i zwracający ośmiobitowy wynik.

- \bullet układ $M_{2.4}$ mnożący dwie liczby dwubitowe i zwracający czterobitowy wynik
- układ $S_{2,2}$ **pełnego sumatora** dwubitowego

Zadanie 8 (po jednym punkcie za instrukcję). Na powyższym schemacie widnieje jednocyklowa implementacja procesora MIPS. Przedstaw kodowanie instrukcji, stan sygnałów kontrolnych i modyfikacje niezbędne do obsługi dodatkowych instrukcji wymienionych w poniższej tabelce.

mnemonik	typ	semantyka
jr \$Rs	R	PC := Reg[Rs];
lui \$Rt,imm	I	Reg[Rt] := imm << 16;
jal addr	J	Reg[31] := PC + 8; PC := (PC & Oxf0000000) (addr << 2);