

MATHEMATICS

Handbook of Statistics

Author:

David Silva Sanmartín

February 21, 2020

Contents

1	Def	initions	
2	Dis	crete uniform distribution	
	2.1	Description	
		2.1.1 Probability mass function	
		2.1.2 Cumulative distribution function	
		2.1.3 Plot	
	2.2	Moments	
3	Binomial distribution		
	3.1	Description	
		3.1.1 Probability mass function	
		3.1.2 Cumulative distribution function	
	3.2	Moments	
	3.3	Plots	
	3.4	Examples	

1 Definitions

2 Discrete uniform distribution

2.1 Description

Used to model experimental outcomes which are "equally likely".

2.1.1 Probability mass function

$$P(X = k) = \frac{1}{N}, \quad k = 1, \dots, N$$

2.1.2 Cumulative distribution function

$$P(X \le k) = \frac{k}{N}, \quad k = 1, \dots, N$$

2.1.3 Plot

2.2 Moments

Mean	$\frac{N+1}{2}$
Variance	$\frac{(N-1)(N+1)}{2}$

3 Binomial distribution

3.1 Description

A binomial experiment involves n independent and identical trial such that each trial can result into one of the two possible outcomes: success of failure. If p is the probability of observing success in each trial, then the number of successes X that can be observed out of these n trials is referred to as the **binomial random** variable with n trials and success probability p.

3.1.1 Probability mass function

The probability of observing k successes out of n trials is given by the following probability mass function

$$P(X = k \mid n, p) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, 1, \dots, n$$

3.1.2 Cumulative distribution function

$$P(X \le k \mid n, p) = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}, \quad k = 0, 1, \dots, n$$

- 3.2 Moments
- 3.3 Plots
- 3.4 Examples