AF schouderafstand

December 26, 2020

[1]: import sys

```
sys.path.append("../")
     import pandas as pd
     from ortho_lib import *
     import os
     import matplotlib.pyplot as plt
     import numpy as np
[2]: path_cats = ['..//transformed_data/Category_1/', '..//transformed_data/
     →Category_2/', '..//transformed_data/Category_3/', '..//transformed_data/

    Gategory_4/']

     exercise = '/AF1'
     df = pd.DataFrame()
     def schouderafstand(path_cat, df = pd.DataFrame()): #bij het aanroepen van de_u
      → functie het indexnummer voor de categorie uit path_cats
         patientID = os.listdir(path_cats[path_cat])
         if path cat == 3:
             patientID.remove('41')
         for patient in patientID:
             path = path_cats[path_cat] + patient + exercise + '.txt'
             df_patient = exercise_to_df(path)
             df_patient['patientID'] = patient
             df = df.append([df_patient])
             del df['z']
             del df['y']
         elbow_df = df[df['sensor'] != '2'] #anker verwijderen uit de dataframe, dit_
      → datapunt is nooit nodig
         elbow_df = elbow_df.set_index( ['patientID', 'frame'], drop=True,_
      →inplace=False, verify_integrity=False)
         elbow_df = elbow_df[elbow_df['sensor'] != '3'] #sensoren verwijderen die_u
      →niet van belang zijn. Alleen de sensoren bewaren die vergeleken moeten
      \rightarrow worden.
```

```
elbow_df = elbow_df[elbow_df['sensor'] != '5']
elbow_df = elbow_df[elbow_df['sensor'] != '6']
elbow_df = elbow_df[elbow_df['sensor'] != '8']
elbow_df = elbow_df[elbow_df['sensor'] != '9']
minschouderafstand_list = []
for patient in patientID:
    dfpatient = df[df['patientID'] == str(patient)]
    per patient 4 = dfpatient[dfpatient['sensor'] == '4']
    per_patient_7 = dfpatient[dfpatient['sensor'] == '7']
    max_4 = max(per_patient_4['x'])
    min_4 = min(per_patient_4['x'])
    verschil_4 = max_4 - min_4
    max_7 = max(per_patient_7['x'])
    min_7 = min(per_patient_7['x'])
    verschil_7 = max_7 - min_7
    minschouderafstand = min(verschil_4, verschil_7)
    minschouderafstand_list.append(minschouderafstand)
shoulder_distance_df = pd.DataFrame()
shoulder_distance_df['patientID'] = patientID
shoulder_distance_df.set_index(['patientID'], drop = True, inplace = True)
shoulder_distance_df['shoulder distance'] = minschouderafstand_list
shoulder_distance_df['category'] = path_cat + 1
return shoulder_distance_df
```

[4]: df_schouders

```
[4]:
                 shoulder distance category
     patientID
     8
                           0.154578
                                             1
     3
                          0.222953
                                             1
     1
                          0.288041
                                             1
     14
                          0.238534
                                             1
     22
                          0.261994
                                             1
     5
                          0.304512
                                             4
     2
                           0.322105
                                             4
     4
                          0.235204
                                             4
     28
                          0.198968
     24
                           0.121678
```

[138 rows x 2 columns]

[6]: Text(0, 0.5, 'category')


```
[11]: from sklearn.model_selection import train_test_split
    from sklearn.model_selection import StratifiedKFold
    import numpy as np
    from sklearn.linear_model import LogisticRegression

#splitten test en train set
    X = np.asarray(df_schouders[['shoulder distance']])
    y = np.asarray(df_schouders[['category']])

scores=[]

skf = StratifiedKFold(n_splits=6)
    for train, test in skf.split(X, y):
        X_train, X_test = X[train], X[test]
```

```
y_train, y_test = y[train], y[test]
    logistic_reg = LogisticRegression(multi_class='ovr', solver='saga')
    logistic_reg.fit(X_train,y_train)
    y_predict = logistic_reg.predict(X_test)
    score = logistic_reg.score(X_test, y_test)
    print(y_predict, score)
    scores.append(score)
print(np.mean(scores))
[2 2 3 2 3 2 2 2 3 2 2 3 3 2 2 3 3 2 2 3 3 2] 0.30434782608695654
[2 3 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 2 2 2 3 2] 0.30434782608695654
[2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 2 2 3 3 3 2 2 2] 0.43478260869565216
0.31884057971014496
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
```

[11]: Text(0, 0.5, 'category')


```
[12]: from sklearn.model_selection import train_test_split
    from sklearn.model_selection import StratifiedKFold
    import numpy as np
    from sklearn.linear_model import LogisticRegression

#splitten test en train set
    X = np.asarray(df_schouders_subset[['shoulder distance']])
    y = np.asarray(df_schouders_subset[['category']])

scores=[]

skf = StratifiedKFold(n_splits=6)
```

```
for train, test in skf.split(X, y):
    X_train, X_test = X[train], X[test]
    y_train, y_test = y[train], y[test]
    logistic_reg = LogisticRegression()
    logistic_reg.fit(X_train,y_train)
    y_predict = logistic_reg.predict(X_test)
    score = logistic_reg.score(X_test, y_test)
    print(y_predict, score)
    scores.append(score)
print(np.mean(scores))
[3 3 3 3 3 3 3 3 3 3 3 3] 0.5
[3 3 3 3 3 3 3 3 3 3 3 ] 0.5
[3 3 3 3 3 3 3 3 3 3 3 3 ] 0.5454545454545454
0.5366161616161617
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
 return f(**kwargs)
/opt/jupyterhub/anaconda/lib/python3.6/site-
packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
```

```
(n_samples, ), for example using ravel().
  return f(**kwargs)
```

[]: