RESOLUÇÃO DE PROBLEMAS COM GRAFOS

Prof. Vinícius M. A. Souza

Atividade 3

Nomes: Gustavo Klinfuss da Silva, Anderson Ryuuchi e Marcio Vinicius

Contexto: Uma empresa de engenharia foi contratada para projetar estradas que irão conectar diferentes cidades do Paraná. A empresa desenvolveu várias alternativas de conexões entre as cidades, entretanto, surge um problema: elas foram desenhadas por diferentes equipes e possivelmente algumas delas representam as mesmas conexões. Nesse contexto, responder os itens abaixo.

Parte 1

1) Qual teoria da Teoria dos Grafos permite identificar que dois grafos G e H representam a mesma estrutura? Quando dois grafos G e H apresentam a mesma estrutura, é possível afirmar que G = H?

R: Teoria do Isomorfismo

2) Se os planejamentos das estradas forem os apresentados abaixo, é possível dizer que elas representam a mesma estrutura? Como provar isso? Caso os grafos representem a mesma estrutura, apresente uma função bijetora f_1 que leva em consideração a relação entre os vértices dos grafos e uma função bijetora f_2 que leva em consideração as arestas dos grafos. Caso não possuam a mesma estrutura, justifique a sua resposta.

- f(1) = c
- f(2) = e
- f(3) = d
- f(4) = a
- f(5) = b
- 3) Considere os planejamentos apresentados a seguir. Verifique se ambos apresentam a mesma estrutura. Caso positivo, apresente uma função bijetora que prove o isomorfismo. Caso contrário, justifique porque não representam a mesma estrutura.

A)

f(1) = c

f(2) = a

f(3) = b

f(4) = d

f(5) = e

f(6) = f

B)

R: Não, pois o vértice f possui 4 arestas, e nenhum vértice de (a) possui esta característica

6) Considere que você recebeu três planejamentos de estradas para serem avaliados e a sua tarefa é identificar qual deles difere dos demais em termos de estrutura para que seja novamente discutido com a empresa de engenharia. Dentre as 3 opções de grafo abaixo, qual deles não é isomorfo? Por quê?

R: A estrutura (b), pois ele não tem um vértice isolado, como os demais.

Parte 2

Responda as seguintes questões relacionadas a Fecho Transitivo

1) Para que serve a matriz de Fecho Transitivo? R: Para verificar se um vértice é alcaçável a partir de determinado vértice.

2) Para cada um dos grafos apresentados a seguir, encontre as matrizes de Fecho Transitivo correspondentes.

F)					
	0	1	2	3	4
	1	1	1	1	1
	2	1	1	1	1
	3	1	1	1	1
	4	0	0	0	0

G)						
	0	1	2	3	4	5
	1	1	1	1	1	1
	2	0	0	1	1	1
	3	0	0	0	1	1
	4	0	0	0	0	1
	5	0	0	0	0	0

H)						
	0	1	2	3	4	5
	1	1	1	1	1	1
	2	1	1	1	1	1

3	0	0	1	1	1
4	0	0	1	1	1
5	0	0	1	1	1

3) Com base no pseudocódigo do algoritmo de Warshall apresentado em aula, implemente o algoritmo utilizando a estrutura de matriz de adjacências. Também implemente um método que verifica a existência de um caminho entre dois vértices a partir de uma consulta única na matriz de alcançabilidade. def possui_caminho(u,v) # retorna True se existir um caminho entre u e v ou False, caso contrário.

Obs.: Não é necessário enviar o código no Blackboard, mas é importante a sua implementação para tarefas futuras.