Supplementary Notes #03

Data Mining and Data Warehousing

Solutions to exercises on clustering

1) Using Euclidean distance as the distance metric, the following dissimilarity matrix can be generated

Stock	Д	verag	e Av	erage				,	1	2	3		4	5	6
No.	No. High			Low			1	()						
1		0.5		0.1			2	0.3	36	0					
2	2 0.8			0.3	-	→	3	0.4	41	0.14	0				
3		0.9		0.2			4	0.	.1	0.28	0.32		0		
4		0.6		0.1			5	0.2	28	0.1	0.22	2 0	.22	0	
5		0.7		0.3			6	0.4	42	0.1	0.22	2 0	.36	0.14	0
6	6 0.8			0.4			<u> </u>								
						1									
		14	25	3	6	-			14	2		3	5	6	
1	4	0					1	4	0						
2	25	0.22	0				2	>	0.28	3 0					
	3	0.32	0.14	0			3		0.32			0			
	6	0.36	0.1	0.22	0		5		0.22			.22	0		
						_		,	0.22	<u> </u>	1 0	.∠∠	U		
							6	_	0.36	3 0.1		.22	0.14	4 0	

			`								
			ı		14	256	3				
	14	256		14	0						
14	0		-	256	0.22	0					
2356	0.22	0		3	0.32	0.14	0				

2)

Let the 2 random initial cluster C1 and C2 be sample 1 and sample 2 $C1 = \{1\}$, $C2 = \{2\}$; Center of $C1 = \{0.5, 0.1\}$, Center of $C2 = \{0.8, 0.3\}$

Iteration 1:

- Sample 3
 D(3, Center of C1) = 0.41;
 D(3, Center of C2) = 0.14
 Sample 3 is assigned to C2
- Sample 4
 D(4, Center of C1) = 0.1;
 D(4, Center of C2) = 0.28
 Sample 4 is assigned to C1
- Sample 5
 D(5, Center of C1) = 0.28;
 D(5, Center of C2) = 0.1
 Sample 5 is assigned to C2
- Sample 6
 D(6, Center of C1) = 0.42;
 D(6, Center of C2) = 0.1
 Sample 6 is assigned to C2

$$C1 = \{1,4\}, C2 = \{2,3,5,6\}$$

New centers for C1 = (0.55, 0.1) for C2 = (0.8, 0.3)

Iteration 2:

- Sample 1
 D(1, Center of C1) = 0.05;
 D(1, Center of C2) = 0.36
 Sample 1 is assigned to C1
- Sample 2

D(2, Center of C1) = 0.32; D(3, Center of C2) =
$$\frac{0}{2}$$

Sample 2 is assigned to C2

• Sample 3

D(3, Center of C1) = 0.36; D(3, Center of C2) =
$$0.14$$

Sample 3 is assigned to C2

• Sample 4

D(4, Center of C1) =
$$0.05$$
; D(4, Center of C2) = 0.28
Sample 4 is assigned to C1

• Sample 5

D(5, Center of C1) = 0.25; D(5, Center of C2) =
$$0.1$$

Sample 5 is assigned to C2

• Sample 6

D(6, Center of C1) = 0.39; D(6, Center of C2) =
$$0.1$$

Sample 6 is assigned to C2

The centers do not have any changes, the algorithm stops.

From left to right, label them as 1 - 9 Each face has 10 features.

- Addition of 1:
 Assigns 1 to cluster 1 (C1)
- Addition of 2:
 S(C1, 2) = S(1, 2) = -2
 Assigns 2 to cluster 2 (C2)
- Addition of 3:
 S(C1, 3) = S(1, 3) = 4
 S(C2, 3) = S(2, 3) = 2
 Assigns 3 to cluster 1 (C1)
- Addition of 4:
 S(C1, 4) = S(1, 4) + S(3, 4) = 2 + -2 = 0
 S(C2, 4) = S(2, 4) = -4
 Assigns 4 to cluster 2 (C3)
- Addition of 5:
 S(C1, 5) = S(1, 5) + S(3, 5) = 2 + 2 = 4
 S(C2, 5) = S(2, 5) = 2
 S(C3, 5) = S(4, 5) = -2
 Assigns 5 to cluster 2 (C1)
- Addition of 6:
 S(C1, 6) = S(1, 6) + S(3, 6) + S(5, 6) = -2 + 2 + 2 = 2
 S(C2, 6) = S(2, 6) = 6
 S(C3, 6) = S(4, 6) = 0
 Assigns 6 to cluster 2 (C2)

• Addition of 7:

$$S(C1, 7) = S(1, 7) + S(3, 7) + S(5, 7) = -6 + -4 + 0 = -10$$

$$S(C2, 7) = S(2, 7) + S(6, 7) = -2 + -4 = -6$$

$$S(C3, 7) = S(4, 7) = -4$$

Assigns 7 to cluster 4 (C4)

• Addition of 8:

$$S(C1, 8) = S(1, 8) + S(3, 8) + S(5, 8) = 2 + 2 + 4 = 8$$

$$S(C2, 8) = S(2, 8) + S(6, 8) = -2 + -2 = -4$$

$$S(C3, 8) = S(4, 8) = 0$$

$$S(C4, 8) = S(7, 8) = 0$$

Assigns 8 to cluster 1 (C1)

• Addition of 9:

$$S(C1, 9) = S(1, 9) + S(3, 9) + S(5, 9) + S(8, 9) = 0 + -2 + -6 + -4 = -12$$

$$S(C2, 9) = S(2, 9) + S(6, 9) = -8 + -6 = -14$$

$$S(C3, 9) = S(4, 9) = -2$$

$$S(C4, 9) = S(7, 9) = -4$$

Assigns 9 to cluster 5 (C5)

Cluster 1:

Cluster 4:

Cluster 2:

Cluster 5:

Cluster 3:

