3 一般の数ベクトル の解答例

演習 3.1 と演習 3.2 は結果のみ書いておきます.

演習 3.1 (1) 線形独立 (2) 線形従属 (3) 線形従属 (4) 線形独立

演習 3.2 (1) 線形従属 (2) 線形従属 (3) 線形従属 (4) 線形独立

演習 3.3 (1) $a_1 \neq 0$, $a_2 = 0$ のときにそうなる. 実際, $c_1 = 0$, $c_2 = 1$ とすれば $c_1a_1 + c_2a_2 = 0$ となるので a_1, a_2 は線形従属であるが, a_2 のスカラー倍はすべて 0 だから a_1 と一致するはずがない.

(2) (\Leftarrow) $a_1=ca_2$ ($c\in K$) のとき、 $c_1=1$, $c_2=-c$ とすれば $c_1a_1+c_2a_2=0$. また、 $a_2=ca_1$ ($c\in K$) のときは $c_1=-c$, $c_2=1$ とすれば $c_1a_1+c_2a_2=0$. いずれにしても、 $(c_1,c_2)\neq (0,0)$ なるスカラー c_1,c_2 について $c_1a_1+c_2a_2=0$ が成り立つため、 a_1,a_2 は線形従属である.

 (\Rightarrow) a_1, a_2 が線形従属のとき、 $(c_1, c_2) \neq (0, 0)$ なる $c_1, c_2 \in K$ が存在して $c_1 a_1 + c_2 a_2 = 0$ が成り立つ. $c_1 \neq 0$ のとき, $c = -c_2/c_1$ とすれば $a_1 = c a_2$ となる. $c_1 = 0$ (このとき $c_2 \neq 0$) のときは,c = 0 $(= -c_1/c_2)$ とすれば $a_2 = c a_1$ となる.

(3) (a') が成立しない \Leftrightarrow a_1, \ldots, a_m のうちある 2 つが線形従属, である. これがさらに (b') と同値であることが (2) により従う.

(4) 例えば、演習 3.1 (2)(3)、演習 3.2 (1)(2)(3) はそのような例になっている.

演習 $3.4 \ a_1, \ldots, a_m$ は線形従属なので、ある定数の組 $b_1, \ldots, b_m \in K$ が存在して、

$$b_1 \mathbf{a}_1 + \dots + b_m \mathbf{a}_m = \mathbf{0}, \quad (b_1, \dots, b_m) \neq (0, \dots, 0).$$

すると、 $(b_1,\ldots,b_m) \neq (0,\ldots,0)$ だから、ある自然数 i $(1 \leq i \leq m)$ が存在して $b_i \neq 0$ となる。そこで、 $c_j = -\frac{b_j}{b_i}$ $(j=1,\ldots,m,\,j \neq i)$ とおけば、上記の式により、

$$a_i = c_1 a_1 + \cdots + c_{i-1} a_{i-1} + c_{i+1} a_{i+1} + \cdots + c_m a_m.$$