ANTRITTSVORTRAG

SENSORBASIERTER ORIENTIERUNGSSINN MIT KÜNSTLICHEN NEURONALEN NETZEN UND ENTSCHEIDUNGSBÄUMEN

Tom Dymel 21.04.2021

Masterarbeit Technische Universität Hamburg

MOTIVATION

- · Orientierungssinn von Tieren und Menschen
- · Indoor-Lokalisierung hohe Infrastrukturkosten
- · Mian untersuchte FFNN und simulierte Daten
- Entscheidungsbäume potentiell effizienter

ZIELE

- · Diskrete Orte oder Wege erkennen können
- · Robustheit gegenüber Fehler/Anomalien
- · Trainings- und Testdaten simulativ erfassen
- · Geeignete Features wählen
- Berücksichtigung von Batterielaufzeit und Limitierung des $\mu \mathcal{C}$
- · Vergleich von KNN und Entscheidungsbaum

MÖGLICHE SENSOREN

- · Beschleunigung
- Gyroskop
- Licht
- Magnetfeld
- Temperatur
- Geräusche
- WLAN Access-Points

DISKRETE ORTE UNTERSCHEIDEN

TRAININGS- UND TESTDATEN

- · Simulation von Routen durch CoppeliaSim
 - · Realistische Physik-Engine
 - · Förderband System
 - · Beschleunigungs-, Lichtsensor und Gyroskop
- · Post-Processing
 - · Feature-Extrahierung
 - · Ergänzung von Sensoren
 - · Fault-Injection
 - · Synthetische Routen
 - Filterung basierend auf künstliche Interrupts

MODELL

ZEITPLAN

Aufgabe/KW

Initiale Recherche
Proof of Concept
Daten simulieren
Metriken finden und visualisieren
Testdaten konstruieren
Testdaten evaluieren
Features konstruieren
Evaluierung Features
Optimierung auf Robustheit
Optimierung auf Resourcenverbrauch
Evaluierung der entgültigen Modelle
Schreiben der Arbeit

ROUTE: "MANY CORNERS"

ROUTE: "SIMPLE SQUARE"

ROUTE: "LONG RECTANGLE"

ROUTE: "RECTANGLE WITH RAMP"

