

Advanced R Day 1

Sereina Herzog

Institute for Medical Informatics, Statistics and Documentation Medical University of Graz

04.03.2024

04.03.2024

Course Content - Advanced R (Day 1)

- ▶ Short repetition
 - Reproducibility Rmarkdown for reports
 - Project structure
 - Visualization with ggplot

04.03.2024

Course Content - Advanced R (Day 1)

- Short repetition
 - Reproducibility Rmarkdown for reports
 - Project structure
 - Visualization with ggplot
- ► Working with placeholders

Course Content - Advanced R (Day 1)

- Short repetition
 - Reproducibility Rmarkdown for reports
 - Project structure
 - Visualization with ggplot
- ► Working with placeholders
- Splitting Rmd files
 - knit_child()

2

Repetition

What is reproducibility in science?

- ► Ability to reproduce results by a peer
- ► Requires data, methods, and procedures
- ▶ Increasingly, science is supposed to be reproducible

Be nice to your future selves!

Reproducibility with RStudio & R

- ► R with RMarkdown can be used to produce different types of documents [see: http://rmarkdown.rstudio.com/gallery.html]
 - standardised reports (html, pdf)
 - word documents (.docx)
 - slides for presentations (html, pdf, powerpoint)
 - journal articles. using the rticles package (.pdf)
 - ..

Reproducibility with RStudio & R

- ► R with RMarkdown can be used to produce different types of documents [see: http://rmarkdown.rstudio.com/gallery.html]
 - standardised reports (html, pdf)
 - word documents (.docx)
 - slides for presentations (html, pdf, powerpoint)
 - journal articles. using the rticles package (.pdf)
 - ..

⇒ making transparent and reproducible analysis

Folder structure

Suggestion how to structure your project folder

- project1
 - literature
 - reports
 - ...
 - R

Folder structure

Suggestion how to structure your project folder

- project1
 - literature
 - reports
 - ...
 - R
- orig
- Rdata
- Rmarkdown
- ► Routput
- ► Rfiles

Folder structure

Suggestion how to structure your project folder

- project1
 - literature
 - reports
 - ...
 - R
- orig
- Rdata
- Rmarkdown
- Routput
- ► Rfiles

Hint: never touch the original data!

Folder structure - Create folder structure

- 1) Generate following folder structure
- Course Advanced R
 - slides
 - ...
 - R
- orig
- Rdata
- Rfiles
- Rmarkdown
- ► Rfiles

R project

- ► An R project
 - is a way to organize files and folders related to a specific analysis or project
 - easy to switch different projects
 - the working directory is the project's root folder

R project

- ► An R project
 - is a way to organize files and folders related to a specific analysis or project
 - easy to switch different projects
 - the working directory is the project's root folder

R projects - Create R project

- 2) Generate a 'R project' (together)
- ightharpoonup File ightharpoonup New Project... ightharpoonup Existing Directory

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - a layered approach to building plots

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - a layered approach to building plots
- consists of three main components:

- powerful data visualization package in R
 - · wide range of high-quality plots and graphics
 - provides a consistent syntax
 - a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized

- powerful data visualization package in R
 - · wide range of high-quality plots and graphics
 - provides a consistent syntax
 - · a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized
 - aesthetics (aes)
 - ▶ define how variables are mapped to visual properties (e.g., x-axis, y-axis, color)

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - · a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized
 - aesthetics (aes)
 - define how variables are mapped to visual properties (e.g., x-axis, y-axis, color)
 - geometric objects (geom)
 - determine the type of plot (e.g., points, lines, bars)

Example - Iris

A famous iris data set gives the measurements in centimeters of the variables

- sepal length
- sepal width
- petal length
- petal width

for 50 flowers from each of 3 species of iris (Iris setosa, versicolor, and virginica).

12

Example - Iris

Example - Iris: including species as colour

Example - Iris: increase point size

Example - Iris: adding title

Example - Iris

Example - Iris: using another geom

Saving ggplots

```
plot_iris <-
    ggplot(data = iris,
        aes(x = Sepal.Length, y = Sepal.Width, colour = Species)) +
    geom_point() +
    theme_bw()

ggsave(filename = "../Routputs/example_iris.png", plot = plot_iris,
    units = "cm", width = 12, height = 7)</pre>
```


Placeholders

Example - Iris


```
var_int <- "Sepal.Width"
group_int <- "Species"</pre>
```


Problem: axis labels and legend title \rightarrow need to adapt them too


```
var_int <- "Sepal.Width"
var_int_lab <- "Sepal width [cm]"
group_int <- "Species"
group_int_lab <- "Species Iris"</pre>
```



```
var int <- "Sepal.Width"</pre>
var_int_lab <- "Sepal width [cm]"</pre>
group_int <- "Species"</pre>
group_int_lab <- "Species Iris"</pre>
ggplot(data = iris.
       aes(x = get(group_int), y = get(var_int), fill = get(group_int))) +
  geom boxplot() +
  guides(fill = guide_legend(group_int_lab)) +
  xlab(group_int_lab) +
  vlab(var int lab) +
  theme bw()
```


Advantage - can reuse same code for plots and only need to change things at one place

Advantage - can reuse same code for plots and only need to change things at one place

```
var_int <- "Sepal.Length"
var_int_lab <- "Sepal length [cm]"
group_int <- "Species"
group_int_lab <- "Species Iris"</pre>
```


25

Working with variables as placeholders

Advantage - can reuse same code for plots and only need to change things at one place

```
var_int <- "Sepal.Length"
var_int_lab <- "Sepal length [cm]"
group_int <- "Species"
group_int_lab <- "Species Iris"</pre>
```


Splitting Rmd files

Why split Rmd files?

- ► If RMarkdown document is too long
 - split it into shorter documents, and include them as child documents

Why split Rmd files?

- ► If RMarkdown document is too long
 - split it into shorter documents, and include them as child documents
- ▶ If you want to use the same RMarkdown document again
 - include this RMarkdown document as a child document

What is knit_child()?

It is a function which knits a child document and returns a character string to input the result into the main document.

How to use knit_child()?

- ▶ It is designed to be used in the chunk option *child*
 - link (https://bookdown.org/yihui/rmarkdown-cookbook/child-document.html)

How to use knit_child()?

- ▶ It is designed to be used in the chunk option *child*
 - link (https://bookdown.org/yihui/rmarkdown-cookbook/child-document.html)
- ▶ It can be used in combination with chunk option results and function cat()

knit_child() with cat()

▶ within header of chunk: {r, results = 'asis'}

```
cat(knit_child("0_subRmds/subRmd_example.Rmd"), sep = '\n')
```

Splitting Rmd files 04.03.2024 30

knit_child() with cat()

within header of chunk: {r, results = 'asis'}

```
cat(knit child("0 subRmds/subRmd example.Rmd"), sep = '\n')
```

- Suggestions
 - in folder Rmarkdown have folder '0 subRmds'
 - start filenames of these subroutine Rmds with subRmd XXX vYYYYMMDD.Rmd

30 04.03.2024

knit_child() with cat()

within header of chunk: {r, results = 'asis'}

```
cat(knit_child("0_subRmds/subRmd_example.Rmd"), sep = '\n')
```

- Suggestions
 - in folder Rmarkdown have folder '0_subRmds'
 - start filenames of these subroutine Rmds with subRmd_XXX_vYYYYMMDD.Rmd
- Important
 - ullet if you reuse a 'subRmd' several times o use no chunk name

Example - DAY1_ex3a_example.Rmd

```
dt_analysis <- iris
var_int <- "Sepal.Length"</pre>
```

```
cat(knit_child("0_subRmds/subRmd_example.Rmd"), sep = '\n')
```

▶ within header of chunk with 'knit_child': {r, results = 'asis'}

Splitting Rmd files 04.03.2024 31

Example - subRmd_example.Rmd

- ▶ important subRmd has no header
 - open new Rmd file
 - ► File/new File/R Markdown . . .
 - ▶ delete the suggested content
 - save as 'subRmd_example.Rmd'

Example - DAY1_ex3b_example.Rmd

```
for(i in 1:lenght(parameters)){
  var_int <- parameters[i]
  cat(knit_child("0_subRmds/subRmd_example.Rmd"), sep = '\n')
}</pre>
```


Example - subRmd_DAY1_ex3b_example.Rmd

```
## Parameter 'r i': 'r var_int'

'``{r}
! <- sum(!is.na(dt %>% pull(var_int)))

* has class: 'r class(dt %>% pull(var_int))'
* has 'r l ' valid observations

'``{r}
rm(1)
```


Links

Links (I)

- ▶ Introduction to R
 - R for Data Science (https://r4ds.hadley.nz/)
- ► Plots using ggplot
 - Overview with further links to course material: https://ggplot2.tidyverse.org/
- Display tables using flextable
 - flextable bool https://ardata-fr.github.io/flextable-book/
 - Function references https://davidgohel.github.io/flextable/reference/index.html
- knit_child()
 - link (https://bookdown.org/yihui/rmarkdown-cookbook/child-document.html)

Links (II)

- ▶ Download R
 - CRAN (https://cran.r-project.org/)
- ► Download RStudio
 - RStudio Desktop (https://posit.co/download/rstudio-desktop/)