

NCEAC.FORM.001-D

COURSE DESCRIPTION: <u>EE-2003 Computer Organization & Assembly Language</u> (COAL)

COURSE DESCRIPTION FORM

INSTITUTION National University of Computerand Emerging Sciences, FAST

PROGRAM TO BE EVALUATED

BS-School of Computing-FALL 2024

Course Description

Course Description									
Course Code	EE-2003								
Course Title	Computer Organization & A	Computer Organization & Assembly Language							
Credit Hours	3								
Prerequisites by Course(s) and Topics	PF, DLD								
Grading Policy	Absolute grading								
Policy about missed assessment items in the course	For a missed midterm/ fina evidence are required to	Retake of missed assessment items (other than midterm/ final exam) will not be held. For a missed midterm/ final exam, an exam re-take/ pre-take application along with necessary evidence are required to be submitted to the department secretary. The examination assessment and retake committee will decide the exam re-take/ pre-take cases.							
Course Plagiarism Policy	. ,		nay result in F grade in the course. marks in the whole assignments category.						
Assessment	50% Theory 50% Practical Assessment Items								
Instruments with	Assessment Items								
Weights	Assessment Items Assessment Item	Number	Weight (%)						
Weights (homework,		Number 3	Weight (%) 10%						
Weights (homework, quizzes, midterms, final, programming	Assessment Item		<u> </u>						
Weights (homework, quizzes, midterms, final, programming assignments, lab	Assessment Item Assignment	3	10%						
Weights (homework, quizzes, midterms, final, programming	Assessment Item Assignment Quiz	3 3	10% 10%						
Weights (homework, quizzes, midterms, final, programming assignments, lab	Assessment Item Assignment Quiz Midterm Exam	3 3 2	10% 10% 30%						
Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Assessment Item Assignment Quiz Midterm Exam Final Exam	3 3 2	10% 10% 30%						
Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.) Course Instructors Lab Instructors (if	Assessment Item Assignment Quiz Midterm Exam Final Exam Muhammad Usman	3 3 2	10% 10% 30%						

Current Catalog Description	 Programming Methodology of low-level languages How to access computer hardware directly Overview of a user-visible architecture (of Intel 80x86 processors) Intel 80x86 instruction set, assembler directives, macro, etc. How programs interact with the operating system for various services including memory management and input/output services How is it possible to interface high-level language and low-level language modules
Textbook (or Laboratory Manual for Laboratory Courses)	Assembly Language for Intel Based Computers K.Irvine 7 th Edition MIPS Assembly Language Programming by Ed Jorgensen, Version 1.1.35 April 2018
Reference Material	Computer organization and design: the hardware/software interface by David A. Patterson and John L. Hennessy Computer Organization & Embedded Systems Hamacher et al. 6 th Ed.

NCEAC.FORM.001-D

Course Learning Outcomes

A. Course Learning Outcomes (CLOs)

On successful completion of this course students will have to know how of:

CLO	Course Learning Outcome (CLO)	Domain	Taxonomy Level	PLO	Tools
01	Illustrate micro-architectures of x86 and RISC processors	Cognitive	3	02	A1, Q1, M1, F
02	Create basic assembly code using different type of addressing modes in x86 & RISC ISAs to solve simple-moderate problems	Cognitive	4	02	A2, Q1, M1, F
03	Apply translation of machine instructions into binary code and visa versa.	Cognitive	5	03	A2, A3, Q2, M1, M2, F
04	Illustrate use of stack during a parametrized function/procedure call that uses local variables.	Cognitive	5	03	Q3, A3, M2, F
05	Justify need to use assembly code along with a high-level language code	Cognitive	5	03	Q3,A3, M2, F
Tool: A	I = Assignment, $Q = Quiz$, $M = Midterm$, $F = Fina$	l			

B. Program Learning Outcomes

1. Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.	
2. Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.	✓
3. Design/ Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	✓
4. Investigation & Experimentation	Conduct investigation of complex computing problems using research-based knowledge and research-based methods.	
5. Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modeling for complex computing problems.	
6. Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.	
7. Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems.	

NCEAC.FORM.001-D

8. Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.	
9. Individual and Teamwork	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	
10. Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
11. Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
12. Lifelong Learning	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

C. Mapping of CLOs on PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)

			PLOs										
		1	2	3	4	5	6	7	8	9	10	11	12
40	1					✓							
CLOs	2		✓	✓									
J	3					✓							

Topics covered in
the course with
number of
lectures on each
topic (Assume 15
weeks of instruction
and 1 hour lecture
duration)

Topics to be covered							
List of Topics	Week	No. of Weeks	Contact Hours	CLO(s)			
Introduction: Introduction to Computer Architecture & Organization & Assembly Language (1 Lecture)							
Applications of Assembly Language, Assemble-Link-Execute Cycle (1 Lecture)	1	1	3	1			
Assembly Relativity, Portability, Virtual Machine Concept and Machine Levels (1 Lecture)							
Microcomputer Concepts, Components of Microcomputer (1 Lecture)							
Intel 80x86 Processor Architecture, Mode of Operations (1 Lecture)	2	1	3	1			
Basic Execution Environment (1 Lecture)							
Assembly Language Fundamentals: Integer, Character & String Literals, Identifier, Directive Vs Instruction (1 Lecture)		1	3				
Instruction, Defining Data (1 Lecture)	3			2			
Symbolic Constants (1 Lecture)							
Assignment no 1 Release (Start of Week 3)							
Data Transfer (1 Lecture)							
Addressing			3	_			
(1 Lecture)	4	1		2			
Arithmetic Operations (1 Lecture) Assignment no 1 Submission							

(End of Week 4)				
Operators and Directive (1 Lecture)				
Instruction to control transfer Instructions				
(1 Lecture)	5	1	3	2
Arrays and Loops (1 Lecture)				
WEEK 6	MID -	1 Exam		
Procedures and Stack Operations (1 Lecture)				
Runtime Stack				
(1 Lecture)	7	1	3	4
PUSH and POP Instructions (1 Lecture)				
Assignment no 2 Release (Start of Week 7)				
Conditional Processing: Boolean and comparison instruction, conditional jumps (3 Lectures)	8	1	3	2
conditional loop structures, high-level language constructs (3 Lectures)	9	1	2	2
Assignment no 2 Submission (End of Week 9)	9	1	3	2
Shift & Rotate Instructions (1 Lectures)				
Multiplication & Division instructions (1 Lecture)	10	1	3	2
Extended Addition & Subtraction (1 Lecture)				

	Week 11		MID	-2 Exam		
	Advanced Proceand Examples:	edures – Introduction Stack Frames				
	Recursion (1 Le	ecture)	12	1	3	1,2,4
	INVOKE, ADDR	R, PROC, PROTO s (1 Lecture)				
	Assignment no (Start of Week					
	String and Arra String primitive (3 Lectures)	13	1	3	2	
	Two dimensiona	al array (1 Lecture)	13	'	3	2
	Assignment no (End of Week 1	o 3 Submission				
	Instruction Form Instruction Set at Translation and	nage Translation nats, encoding an nd Modes of Addressing, Working of an File and Memory Map	14	1	3	3
	CISC vs RISC, I Assembly (3 Lee	introduction to MIPS	15	1	3	
	Week 16		Fina	al Exam	1	
	Review			1	3	
	Total			16	48	
Laboratory Projects/Experime nts Done in the Course	Mentioned in La	ab Course Description				
Programming Assignments Done in the Course	3 Assignments a	are given which are attach	ed in the as	ssignments se	ection	
Class Time Spent (in percentage)	Theory (%)	Problem Analysis (%)	Solut	ion Design (%)		and Ethical ues (%)

NCEAC.FORM.001-D

	50	25	20	5
Oral and Written Communications	research report forma		written report of typica called for viva/presentaction	

Instructor Name: Muhammad Usman

Instructor Signature: <u>USMAN</u>

Date: 19th August 2024