Rank-73797 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_0^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 73797

General information

Number of lines	3
Number of points	9
Number of singular points	1
Number of Eckardt points	1
Number of double points	0
Number of single points	6
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$3, 1^6, 0^2$

Singular Points

The surface has 1 singular points:

0:
$$P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_4$$

Rank of lines: (4, 34, 18)

Rank of points on Klein quadric: (2, 1, 4)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0). T = -1$$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 6 single points:

The single points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0

1: $P_3 = (0,0,0,1)$ lies on line ℓ_1

2 : $P_6 = (1, 0, 1, 0)$ lies on line ℓ_0

 $3: P_9 = (1,0,0,1)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line: The points on the surface but not on lines are:

 $0: P_4 = (1, 1, 1, 1)$

 $1: P_8 = (1, 1, 1, 0)$

Line Intersection Graph

$$\begin{array}{c|c} |012\\ \hline 0 & 011\\ 1 & 101\\ 2 & 110\\ \end{array}$$

4: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_1

5: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_2

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_2	P_2

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2
in point	P_2	P_2

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1
in point	P_2	P_2

The surface has 9 points: $\frac{1}{2}$

The points on the surface are:

 $0: P_0 = (1,0,0,0)$ $1: P_2 = (0,0,1,0)$ $2: P_3 = (0,0,0,1)$ $3: P_4 = (1,1,1,1)$

 $4: P_6 = (1,0,1,0)$ $5: P_8 = (1,1,1,0)$ $6: P_9 = (1,0,0,1)$ $7: P_{12} = (0,0,1,1)$

 $8: P_{13} = (1,0,1,1)$