МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра систем сбора и обработки данных

ЛАБОРАТОРНАЯ РАБОТА №8

по дисциплине: Компьютерные технологии моделирования и анализа данных на тему: Исследование критериев проверки отклонения от нормального закона. Часть 2.

Вариант №2

Факультет: ФПМИ

Группа: ПММ-21

Выполнил: Сухих А.С., Черненко Д.А.

Проверил: д.т.н., профессор Лемешко Борис Юрьевич

Дата выполнения: 26.12.22

Отметка о защите:

Оглавление

1. Исследовать зависимость распределений статистик (8.	1) – (8.7) от
объема выборок в случае принадлежности наблюдений и	нормальному
закону	4
2. Оценить близость получаемых эмпирических распределен	ий статистик
(8.1) – (8.3) и (8.5) – (8.6) к «теоретическим» по процент	ным точкам
таблиц, соответствующим данному критерию	12
2.1 Критерий Фросини	12
2.2 Критерий Хегази-Грина	12
2.3 Критерий Гири	13
2.4 Критерий Шпигельхальтера	14
2.5 Критерий Дэвида-Хартли-Пирсона	15
3. Оценить близость получаемых эмпирических распределен	ий статистик
(8.4) и (8.7) к стандартному нормальному закону	16
3.1 Критерий Гири	16
3.2 Критерий Ройстона	18
4. При некотором объеме выборок ($m{n}=m{10}$) смоделировать ра	аспределения
статистик критериев при обобщённом нормальном законе (д	цвустороннее
экспоненциальное распределение) при параметре формы, ра	вном 4÷7 22
4.1 Критерий Фросини	22
4.2 Критерий Хегази-Грина	23
4.3 Критерий Гири	24
4.5 Критерий Шпигельхальтера	25
4 6 Кпитепий Ройстона	25

 Цель работы: Исследование распределений статистик критериев, используемых при проверке отклонения эмпирических распределений от нормального закона. Исследование распределений статистик критериев Фросини, Хегази–Грина, Шпигельхальтера, Гири, Дэвида–Хартли–Пирсона. Исследование и сравнение мощности критериев относительно близких конкурирующих гипотез.

№ п/п	$F_1(x,\theta_1)$
2	Двустороннее экспоненциальное с параметром формы 5

Ход работы:

1. Исследовать зависимость распределений статистик (8.1) – (8.7) от объема выборок в случае принадлежности наблюдений нормальному закону.

Так как у большинства представленных критериев возникают проблемы со способностью различать гипотезы H_0 и H_1 при объёмах выборки n=10..20, то сравним их при таких объёмах, а также увеличим объём до 1000.

При сравнении данных критериев при одинаковом объёме выборок видно, что похожими являются распределения Дэвида-Хартли-Пирсона и Ройстона, а также достаточно похожи остальные 4 распределения: Фросини, Гира, Т1, Т2. Дальше более детально посмотрим на особенности данных критериев (пункт 2).

Рисунок 1.1 — Изменение вида распределений критерия Форсини при разных n=10,20,50,100,1000

Рисунок 1.2 — Изменение вида распределений критерия Хегази-Грина Т1 при разных n=10,20,50,100,1000

Рисунок 1.3 — Изменение вида распределений критерия Хегази-Грина Т2 при разных n=10,20,50,100,1000

Рисунок 1.4 — Изменение вида распределений критерия Гири при разных n=10,20,50,100,1000

Рисунок 1.5 — Изменение вида распределений критерия Дэвида-Хартли-Пирсона при разных n=10,20,50,100,1000

Рисунок 1.6 — Изменение вида распределений критерия Шпигельхальтера при разных $n=10,20,\!50,\!100,1000$

Рисунок 1.7 — Изменение вида распределений критерия Ройстона при разных n=10,20,50,100,1000

Рисунок 1.8 — Все исследуемые распределения критериев при n=10

- Критерий Дзвида-Хартли-Пирсона №16600 N(0.0000,1.0000) SC SH n=20 ГСЧ=100
 Критерий Фросини №16600 N(0.0000,1.0000) SC SH n=20 ГСЧ=100
- В Критерий Гири №16600 N(0.0000,1.0000) SC SH n=20 ГСЧ=100
- В Критерий Хегази-Грина Т1 №16600 N(0.0000,1.0000) SC SH n=20 ГСЧ=100

- Критерий Хегази-Грина Т2 № 16600 N(0.0000,1.0000) SC SH n=20 ГСЧ=100
 Критерий Ройстона № 16600 N(0.0000,1.0000) SC SH n=20 ГСЧ=100
 Критерий Шпигельхальтера Т № 16600 N(0.0000,1.0000) SC SH n=20 ГСЧ=100

Рисунок 1.9 — Все исследуемые распределения критериев при n=20

- Ф Критерий Дэвида-Хартли-Пирсона №16600 N(0.0000,1.0000) SC SH n=50 ГСЧ=100
- Критерий Фросини №16600 N(0.0000,1.0000) SC SH n=50 ГСЧ=100
- Ф Критерий Гири №16600 N(0.0000,1.0000) SC SH n=50 ГСЧ=100
- В Критерий Хегази-Грина Т1 №16600 N(0.0000,1.0000) SC SH n=50 ГСЧ=100
- Ф Критерий Хегази-Грина Т2 №16600 N(0.0000,1.0000) SC SH n=50 ГСЧ=100
- Вритерий Ройстона №16600 N(0.0000,1.0000) SC SH n=50 ГСЧ=100
- ◆ Критерий Шпигельхальтера Т' №16600 N(0.0000,1.0000) SC SH n=50 ГСЧ=100

Рисунок 1.10 — Все исследуемые распределения критериев при n=50

- ◆ Критерий Дэвида-Хартли-Пирсона №16600 N(0.0000,1.0000) SC SH n=100 ГСЧ=100
- Критерий Фросини №16600 N(0.0000,1.0000) SC SH n=100 ГСЧ=100
- ◆ Критерий Гири N=16600 N(0.0000,1.0000) SC SH n=100 ГСЧ=100
- Критерий Хегази-Грина Т1 №16600 N(0.0000,1.0000) \$C \$H n=100 ГСЧ=100
- Критерий Хегази-Грина Т1 N=16600 N(0.0000,1.0000) SC SH n=100 ГСЧ=100
 Критерий Хегази-Грина Т2 N=16600 N(0.0000,1.0000) SC SH n=100 ГСЧ=100
- В Критерий Ройстона №16600 N(0.0000,1.0000) SC SH n=100 ГСЧ=100
- Критерий Ройстона №16600 N(0.0000,1.0000) SC SH n=100 ГСЧ=100
- В Критерий Шпигельхальтера Т' №16600 N(0.0000,1.0000) SC SH n=100 ГСЧ=100

Рисунок 1.11 — Все исследуемые распределения критериев при n = 100

lackвar* Критерий Шпигельхальтера Т N=16600 N(0.0000,1.0000) SC SH n=1000 ГСЧ=100 Рисунок 1.12 — Все исследуемые распределения критериев при n=1000

В Критерий Ройстона №16600 N(0.0000,1.0000) SC SH n=1000 ГСЧ=100

2. Оценить близость получаемых эмпирических распределений статистик (8.1) – (8.3) и (8.5) – (8.6) к «теоретическим» по процентным точкам таблиц, соответствующим данному критерию.

2.1 Критерий Фросини

Ниже показаны таблицы с «теоретическими» процентными точками и эмпирическими. Как мы можем увидеть, двусторонний экспоненциальный закон распределения хорошо проверяется на нормальность данным критерием лишь до объёма выборки в n = 50 и 100, где уже начинает чувствоваться расхождение данного закона распределение с нормальным. При n = 1000 ДЭ закон распределения уже окончательно отклоняется данным критерием на нормальность.

Таблица 2.1.1 — «Теоретические» процентные точки

	p = 0.85	p = 0.9	p = 0.95	p = 0.975	p = 0.99
n = 10	0.233	0.250	0.277	0.302	0.332
n = 20	0.237	0.255	0.283	0.308	0.338
n = 50	0.240	0.258	0.285	0.312	0.342
n = 100	0.241	0.258	0.286	0.312	0.344
n = 1000	0.242	0.260	0.2875	0.313	0.345

Таблица 2.1.2 — Эмпирические процентные точки

	_	i '			
	p = 0.85	p = 0.9	p = 0.95	p = 0.975	p = 0.99
n = 10	0.242883	0.259603	0.285997	0.308403	0.335173
n = 20	0.265158	0.28354	0.311726	0.335722	0.36452
n = 50	0.311707	0.33057	0.357337	0.382525	0.408594
n = 100	0.372271	0.391679	0.42035	0.446594	0.477022
n = 1000	0.873527	0.894602	0.926302	0.952887	0.986248

2.2 Критерий Хегази-Грина

Теперь давайте рассмотрим критерий Хегази-Грина таким же образом, как и в предыдущем пункте. Ситуация примерно похожая. Эти два критерия хорошо проверяют на нормальность ДЭ распределение. Хуже всего эти критерии работают при повышении объёма выборки и при n = 100 становятся менее точными.

Таблица 2.2.1 — «Теоретические» процентные точки Т1

	p = 0.85	p = 0.9	p = 0.95	p = 0.975	p = 0.99
n = 10	0.268	0.285	0.312	0.3338	0.370
n = 20	0.205	0.218	0.239	0.259	0.284
n = 50	0.136	0.146	0.160	0.173	0.190
n = 100	0.099	0.105	0.115	0.125	0.137

Таблица 2.2.2 — Эмпирические процентные точки Т1

	p = 0.85	p = 0.9	p = 0.95	p = 0.975	p = 0.99
n = 10	0.26979	0.284921	0.309367	0.331479	0.364247
n = 20	0.214294	0.227233	0.24581	0.263727	0.284231
n = 50	0.164011	0.172332	0.185512	0.19693	0.210111
n = 100	0.142305	0.149161	0.15948	0.168628	0.17803

Таблица 2.2.3 — «Теоретические» процентные точки Т2

	p = 0.85	p = 0.9	p = 0.95	p = 0.975	p = 0.99
n = 10	0.112	0.127	0.153	0.180	0.216
n = 20	0.072	0.082	0.100	0.118	0.143
n = 50	0.036	0.041	0.050	0.059	0.071
n = 100	0.020	0.023	0.028	0.032	0.039

Таблица 2.2.2 — Эмпирические процентные точки Т2

	p = 0.85	p = 0.9	p = 0.95	p = 0.975	p = 0.99
n = 10	0.103905	0.11484	0.13546	0.155746	0.187237
n = 20	0.0644887	0.071548	0.0829501	0.0945579	0.109127
n = 50	0.0370728	0.0405849	0.046496	0.0521214	0.059546
n = 100	0.0284689	0.0309366	0.034785	0.0388309	0.043208

2.3 Критерий Гири

Результаты исследования показали, что данный критерий достаточно хорошо аппроксимирует ДЭ распределение нормальным законом вплоть до n = 100. При n = 100 ДЭ закон попадает в крайние правые границы значений критических точек.

Таблица 2.3.1 — «Теоретические» процентные точки

		α								
n	0.	15	0.	10	0.	05	0.0	025	0.	01
	α/2	$1-\alpha/2$	α/2	$1-\alpha/2$	α/2	$1-\alpha/2$	α/2	$1 - \alpha/2$	α/2	$1-\alpha/2$
10	0.729	0.902	0.715	0.911	0.691	0.924	0.670	0.935	0.644	0.948
20	0.741	0.870	0.730	0.878	0.713	0.889	0.697	0.899	0.678	0.910
50	0.758	0.843	0.752	0.848	0.741	0.856	0.731	0.863	0.719	0.871
100	0.769	0.829	0.764	0.833	0.757	0.839	0.750	0.845	0.742	0.851

Таблица 2.3.2 — Эмпирические процентные точки

	p = 0.15	p = 0.10	p = 0.05	p = 0.025	p = 0.01
n = 10	0.793885	0.777644	0.753527	0.730294	0.702483
n = 20	0.807779	0.797338	0.782024	0.767378	0.751256
n = 50	0.822973	0.816834	0.80722	0.798257	0.788026
n = 100	0.830572	0.826213	0.819475	0.814164	0.80681

2.4 Критерий Шпигельхальтера

Данный критерий нормальности хорошо аппроксимирует ДЭ закон распределения нормальным законом, при том что эффективность данной аппроксимации не ухудшается с ростом выборки n.

Таблица 2.4.1 — «Теоретические» процентные точки

n	α						
"	0.85	0.9	0.95	0.975	0.99		
10	1.323	1.344	1.380	1.416	1.460		
20	1.311	1.331	1.365	1.396	1.435		
50	1.288	1.302	1.323	1.342	1.366		
100	1.279	1.288	1.302	1.314	1.329		

Таблица 2.4.2 — Эмпирические процентные точки

	p = 0.85	p = 0.90	p = 0.95	p = 0.975	p = 0.99
n = 10	1.34295	1.36581	1.40207	1.43814	1.4752
n = 20	1.36202	1.38864	1.42698	1.45959	1.50228
n = 50	1.36146	1.38263	1.41701	1.44629	1.48335
n = 100	1,3366	1,35599	1,38299	1,40656	1,4363

2.5 Критерий Дэвида-Хартли-Пирсона

Данный критерий достаточно плохо аппроксимирует ДЭ закон нормальным распределением. Практически во всех случаях нам не удалось даже попасть в заданный интервал «теоретических» процентных точек.

Таблица 2.5.1 — «Теоретические» процентные точки

n	0.15		0.1		0.05		0.025		0.01	
	α/2	$1-\alpha/2$	$\alpha/2$	$1-\alpha/2$	$\alpha/2$	$1-\alpha/2$	$\alpha/2$	$1-\alpha/2$	$\alpha/2$	$1-\alpha/2$
10	2.723	3.624	2.670	3.686	2.593	3.778	2.530	3.854	2.458	3.936
20	3.240	4.392	3.178	4.488	3.087	4.633	3.012	4.763	2.927	4.915
50	3.900	5.236	3.831	5.356	3.729	5.546	3.644	5.720	3.550	5.929
100	4.382	5.774	4.311	5.905	4.206	6.112	4.117	6.302	4.018	6.536
300	5.111	6.512	5.037	6.645	4.931	6.858	4.841	7.056	4.741	7.303

Таблица 2.5.2 — Эмпирические процентные точки

	p = 0.15	p = 0.10	p = 0.05	p = 0.025	p = 0.01
n = 10	2.695	2.63576	2.55483	2.48819	2.42051
n = 20	3.08931	3.02724	2.94446	2.87861	2.7959
n = 50	3.51259	3.45882	3.37488	3.30657	3.22395
n = 100	3.77731	3.7234	3.65066	3.58948	3.51516
n = 300	4.12351	4.07869	4.01837	3.96488	3.91011

3. Оценить близость получаемых эмпирических распределений статистик (8.4) и (8.7) к стандартному нормальному закону.

3.1 Критерий Гири

Как можно увидеть, при повышении п возрастает согласие с нормальным законом распределения, но при этом во всех случаях мы отвергаем согласие с нормальным законом распределения, что оказывается недалеко от теоретических данных.

n = 10	n = 20	n = 50	n = 100
P = 0	P = 2.625e - 46	P = 7.2273042e - 21	P = 3.787705e - 08
ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ

Рисунок 3.1.1 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Гира при n=10

Рисунок 3.1.2 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Гира при n=20

Рисунок 3.1.3 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Гира при n=50

Рисунок 3.1.4 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Гира при n=100

3.2 Критерий Ройстона

Так как критерий Ройстона плохо работает с семейством обобщённого нормального H1, неудивительно, критерий Ройстона, закона ЧТО оценивающий двусторонний экспоненциальный закон, не может согласоваться с нормальным законом распределения, так что данный аспект полностью подтверждается теорией.

n = 10	n = 20	n = 50	n = 100	n = 1000
P = 0	P = 0	P = 0	P = 1.031e - 66	P = 1.155e - 22
ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ

Рисунок 3.2.1 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Ройстона при n=10

Рисунок 3.2.2 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Ройстона при n=20

Рисунок 3.2.3 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Ройстона при n=50

Рисунок 3.2.4 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Ройстона при n=100

Рисунок 3.2.5 — Проверка на согласие с нормальным законом ДЭ, оцененного по критерию Ройстона при ${\rm n}=1000$

4. При некотором объеме выборок (n=10) смоделировать распределения статистик критериев при обобщённом нормальном законе (двустороннее экспоненциальное распределение) при параметре формы, равном $4\div7$. Сравнить с ситуацией, соответствующей справедливой проверяемой гипотезе о нормальном законе. Оценить мощность критериев относительно данного обобщённого нормального закона.

α	$1-\beta$							
	Фросини	T1	T2	Гири	Дэвид-Хартли-	Шпигельхальтер	Ройстон	
					Пирсон			
0.15	0.213735	0.175723	0.14151	0.208253	0.225602	0.182711	0.212831	
0.1	0.14247	0.110241	0.09259	0.146506	0.161205	0.124337	0.140964	
0.05	0.0751807	0.052771	0.04615	0.082892	0.0883735	0.0611446	0.0656627	
0.025	0.0393373	0.023554	0.02494	0.044759	0.0489157	0.0299398	0.030241	
0.01	0.0134337	0.008976	0.01018	0.019639	0.0222289	0.0113855	0.0103614	

Шкала мощности получилась следующая:

$$D-H-P > Frosini > Rois > Giri > Shpig > T1 > T2$$

4.1 Критерий Фросини

Данный критерий также, как и критерий Шапиро-Уилка не способен различать гипотезы H0 и H1 при объёме выборки n = 10.

Рисунок 4.1.1 — сравнение ДЭ с масштабом 7 и нормальным законом распределения, с использованием критерия Фросини при n = 10

4.2 Критерий Хегази-Грина

Критерий является смещённым, а также плохо различает гипотезы H0 и H1.

Рисунок 4.2.1 — сравнение ДЭ с масштабом 7 и нормальным законом распределения, с использованием критерия T1 при n=10

Рисунок 4.2.2 — сравнение ДЭ с масштабом 7 и нормальным законом распределения, с использованием критерия Т2 при n=10

4.3 Критерий Гири

Рисунок 4.3.1 — сравнение ДЭ с масштабом 7 и нормальным законом распределения, с использованием критерия Гири при n=10

4.4 Критерий Дэвида-Хартли-Пирсона

Критерий является несмещённым.

Рисунок 4.4.1 — сравнение ДЭ с масштабом 7 и нормальным законом распределения, с использованием критерия Дэвида-Хартли-Пирсона при n = 10

4.5 Критерий Шпигельхальтера

У данного критерия есть минус, он не всегда способен отличить нормальный закон от конкурирующей гипотезы.

Рисунок 4.5.1 — сравнение ДЭ с масштабом 7 и нормальным законом распределения, с использованием критерия Шпигельхальтера при n=10

4.6 Критерий Ройстона

Рисунок 4.6.1 — сравнение ДЭ с масштабом 7 и нормальным законом распределения, с использованием критерия Ройстона при n=10

5. Оценить мощность критериев со статистиками (8.1) – (8.7) относительно заданной альтернативы. Сравнить с мощностью критериев, рассмотренных в предшествующей работе.

Для n = 10

α	Шапиро-Уилк	Эппса-Пулли	z_1	Z_2
0.15	0.203976	0,235663	0.197831	0.245663
0.1	0.130843	0,169096	0.149157	0.179819
0.05	0.0599398	0,0955422	0.0866867	0.0981928
0.025	0.0262651	0,0529518	0.0496988	0.0557831
0.01	0.0089759	0,0218675	0.0268675	0.0255422

α		$1-\beta$							
	Фросини	T1	T2	Гири	Дэвид-Хартли-	Шпигельхальтер	Ройстон		
	_			_	Пирсон	_			
0.15	0.213735	0.175723	0.14151	0.208253	0.225602	0.182711	0.212831		
0.1	0.14247	0.110241	0.09259	0.146506	0.161205	0.124337	0.140964		
0.05	0.0751807	0.052771	0.04615	0.082892	0.0883735	0.0611446	0.0656627		
0.025	0.0393373	0.023554	0.02494	0.044759	0.0489157	0.0299398	0.030241		
0.01	0.0134337	0.008976	0.01018	0.019639	0.0222289	0.0113855	0.0103614		

Вывод:

У большинства критериев нормальности, которые мы рассматривали в лабораторных работах 7-8 присутствует один общий недостаток: они слабо различают нормальный закон распределения, а также группу обобщённого нормального распределения при малых объёмах выборки (n=10..20), что не есть хорошо. Критерий Шпигельхальтера имеет даже свойство похуже, чем просто плохая работа в области малых объёмов выборок. Он иногда некорректно работает с конкурирующими гипотезами, что является большим недостатком.

Кроме того, есть критерии, которые отклоняют нормальность при больших объёмах выборки. Такими критериями являются Фросини, Хегази-Грина.

Распределим критерии нормальности по их мощности:

$$z_2 >$$
 Эппс — Пулли $>$ Д — X — П $>$ Фросини $>$ Ройстон $>$ Гири $>$ Шапиро — Уилк $>$ $z_1 >$ Шпигельхальтер $>$ $T1 > T2$