Quantum Implementation and Analysis of ARIA

Yujin Oh, Kyungbae Jang, Yujin Yang, Hwajeong Seo Hansung University

Introduction & Contribution Background **Proposed Method** Performance & Evaluation Conclusion

Introduction & Contribution

- Grover's algorithm reduce in the complexity of symmetric key cryptographic attacks to the square root.
 - → This raises increasing challenges in considering symmetric key cryptography as secure.

- Establish secure post-quantum cryptographic systems.
 - → There is a need for quantum **post-quantum security** evaluations of cryptographic algorithms.
- In this paper, we propose an optimized quantum circuits for ARIA.
 - → We assess the **post-quantum security** strength of ARIA in accordance with NIST criteria.

Introduction & Contribution

1. Depth optimized quantum implementation.

- → We focus on optimizing the ARIA quantum circuit in terms of depth.
- → As a result, it exhibits the lowest depth compared to previous studies.

2. Applying various techniques for each part

- → We apply various techniques in each part.
- → Additionally, we compare the estimated resource to highlight the most efficient techniques for each part.

3. Post-quantum Security Assessment of ARIA

- → We estimate the cost of Grover's key search using an our implemented quantum circuit
- → We compare the estimated cost of Grover's key search for ARIA with the **security levels** defined by NIST.

Background: ARIA

- ARIA is a Korean symmetric key cipher included in the validation subjects of the KCMVP(Korean Cryptographic Module Validation Program)
- ARIA adopts an SPN (Substitution- Permutation Network) structure and shares similarities with the AES (Advanced Encryption Standard) due to the considerati on of AES design principles during its development.
- The main components of ARIA are the substitution layer, diffusion layer, and key schedule.

Background: Quantum gates

- Quantum gates commonly used for implementing quantum circuits of block ciphers
 - → This is not an exhaustive list of all possible gates that can be used.

Fig. 5: Quantum gates: X (left top), Swap (right top), CNOT (left bottom) and Toffoli (right bottom) gates.

Toffoli gate decomposition (T- depth 4, total depth 8)

Background: Grover's key search

Key search using Grover's Algorithm

1. Prepare a k-qubit key in a superposition state using Hadamard gates.

$$H^{\otimes k} |0\rangle^{\otimes k} = |\psi\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{1}{2^{k/2}} \sum_{x=0}^{2^k - 1} |x\rangle$$

2. This circuit encrypts a known plaintext(p) in a **superposition state** using a pre-prepared key, producing ciphertexts for every possible key value.

If the ciphertext matches the expected ciphertext, the sign of the desired key state to be recovered is negated.

$$f(x) = \begin{cases} 1 \text{ if } Enc_{key}(p) = c \\ 0 \text{ if } Enc_{key}(p) \neq c \end{cases}$$

$$U_f(|\psi\rangle |-\rangle) = \frac{1}{2^{n/2}} \sum_{x=0}^{2^n - 1} (-1)^{f(x)} |x\rangle |-\rangle$$

3. The Diffusion Operator serves to **amplify the amplitude** of the target key state indicated by the oracle, identifying it by flipping the sign of said amplitude to negative.

$$S_{1}(\alpha) := \mathbf{A}.\alpha^{-1} + \mathbf{a}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

Same as AES

$$S_2(\alpha) := \mathbf{B} \cdot \alpha^{247} + \mathbf{b}$$

 $S_2(\alpha) := \mathbf{B} \cdot (\alpha^{-1})^8 + \mathbf{b} = \mathbf{B} \cdot \mathbf{C} \cdot \alpha^{-1} + \mathbf{b}$
 $= \mathbf{D} \cdot \alpha^{-1} + \mathbf{b}$

$$\mathbf{D} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$S_2^{-1}(\alpha) = (\mathbf{D}^{-1}.(\alpha + \mathbf{b}))^{-1}$$

$$\mathbf{D}^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

- S-box (S_1)
 - Boyar and Peralta
 - $S(x) = A \cdot x^{-1} + [11000110]^T = B \cdot F(U \cdot x) + [11000110]^T$
 - \rightarrow Top linear Layer (U), a middle non-linear Layer, bottom linear layer (B)

Top Linear Part:				
$T_1 = U_0 + U_3$	$T_2 = U_0 + U_5$	$T_3 = U_0 + U_6$	$T_4 = U_3 + U_5$	$T_5 = U_4 + U_6$
$T_6 = T_1 + T_5$	$T_7 = U_1 + U_2$	$T_8 = U_7 + T_6$	$T_9 = U_7 + T_7$	$T_{10} = T_6 + T_7$
$T_{11} = U_1 + U_5$	$T_{12} = U_2 + U_5$	$T_{13} = T_3 + T_4$	$T_{14} = T_6 + T_{11}$	$T_{15} = T_5 + T_{11}$
$T_{16} = T_5 + T_{12}$	$T_{17} = T_9 + T_{16}$	$T_{18} = U_3 + U_7$	$T_{19} = T_7 + T_{18}$	$T_{20} = T_1 + T_{19}$
$T_{21} = U_6 + U_7$	$T_{22} = T_7 + T_{21}$	$T_{23} = T_2 + T_{22}$	$T_{24} = T_2 + T_{10}$	$T_{25} = T_{20} + T_{17}$
$T_{26} = T_3 + T_{16}$	$T_{27} = T_1 + T_{12}$			
Nonlinear Part:				
$M_1 = T_{13} \cdot T_6$	$M_2 = T_{23} \cdot T_8$	$M_3 = T_{14} + M_1$	$M_4 = T_{19} \cdot U_7$	$M_5 = M_4 + M_1$
$M_6 = T_3 \cdot T_{16}$	$M_7 = T_{22} \cdot T_9$	$M_8 = T_{26} + M_6$	$M_9 = T_{20} \cdot T_{17}$	$M_{10} = M_9 + M_6$
$M_{11} = T_1 \cdot T_{15}$	$M_{12}=T_4\cdot T_{27}$	$M_{13} = M_{12} + M_{11}$	$M_{14}=T_2\cdot T_{10}$	$M_{15}=M_{14}+M_{11}$
$M_{16} = M_3 + M_2$	$M_{17} = M_5 + T_{24}$	$M_{18} = M_8 + M_7$	$M_{19} = M_{10} + M_{15}$	$M_{20}=M_{16}+M_{13}$
$M_{21} = M_{17} + M_{15}$	$M_{22} = M_{18} + M_{13}$	$M_{23} = M_{19} + T_{25}$	$M_{24} = M_{22} + M_{23}$	$M_{25} = M_{22} \cdot M_{20}$
$M_{26} = M_{21} + M_{25}$	$M_{27} = M_{20} + M_{21} \\$	$M_{28} = M_{23} + M_{25}$	$M_{29} = M_{28} \cdot M_{27}$	$M_{30} = M_{26} \cdot M_{24}$
$M_{31} = M_{20} \cdot M_{23}$	$M_{32} = M_{27} \cdot M_{31}$	$M_{33} = M_{27} + M_{25}$	$M_{34} = M_{21} \cdot M_{22}$	$M_{35} = M_{24} \cdot M_{34}$
$M_{36} = M_{24} + M_{25}$	$M_{37} = M_{21} + M_{29}$	$M_{38} = M_{32} + M_{33}$	$M_{39} = M_{23} + M_{30}$	$M_{40} = M_{35} + M_{36}$
$M_{41} = M_{38} + M_{40}$	$M_{42} = M_{37} + M_{39}$	$M_{43} = M_{37} + M_{38}$	$M_{44} = M_{39} + M_{40}$	$M_{45} = M_{42} + M_{41}$
$M_{46} = M_{44} \cdot T_6$	$M_{47}=M_{40}\cdot T_8$	$M_{48} = M_{39} \cdot U_7$	$M_{49} = M_{43} \cdot T_{16}$	$M_{50}=M_{38}\cdot T_9$
$M_{51} = M_{37} \cdot T_{17}$	$M_{52} = M_{42} \cdot T_{15}$	$M_{53} = M_{45} \cdot T_{27}$	$M_{54} = M_{41} \cdot T_{10}$	$M_{55} = M_{44} \cdot T_{13}$
$M_{56} = M_{40} \cdot T_{23}$	$M_{57} = M_{39} \cdot T_{19}$	$M_{58}=M_{43}\cdot T_3$	$M_{59} = M_{38} \cdot T_{22}$	$M_{60} = M_{37} \cdot T_{20}$
$M_{61}=M_{42}\cdot T_1$	$M_{62}=M_{45}\cdot T_4$	$M_{63}=M_{41}\cdot T_2$		
Bottom Linear Part	:			
$L_0 = M_{61} \oplus M_{62}$	$L_1=M_{50}\oplus M_{56}$	$L_2=M_{46}\oplus M_{48}$	$L_3=M_{47}\oplus M_{55}$	$L_4=M_{54}\oplus M_{58}$
$L_5=M_{49}\oplus M_{61}$	$L_6=M_{62}\oplus L_5$	$L_7=M_{46}\oplus L_3$	$L_8=M_{51}\oplus M_{59}$	$L_9=M_{52}\oplus M_{53}$
$L_{10}=M_{53}\oplus L_4$	$L_{11}=M_{60}\oplus L_2$	$L_{12} = M_{48} \oplus M_{51}$	$L_{13}=M_{50}\oplus L_0$	$L_{14} = M_{52} \oplus M_{61}$
$L_{15}=M_{55}\oplus L_1$	$L_{16}=M_{56}\oplus L_0$	$L_{17}=M_{57}\oplus L_1$	$L_{18}=M_{58}\oplus L_8$	$L_{19}=M_{63}\oplus L_4$
$L_{20}=L_0\oplus L_1$	$L_{21}=L_1\oplus L_7$	$L_{22}=L_3\oplus L_{12}$	$L_{23}=L_{18}\oplus L_2$	$L_{24} = L_{15} \oplus L_9$
$L_{25}=L_6\oplus L_{10}$	$L_{26}=L_7\oplus L_9$	$L_{27}=L_8\oplus L_{10}$	$L_{28} = L_{11} \oplus L_{14}$	$L_{29} = L_{11} \oplus L_{17}$
$S_0 = L_6 \oplus L_{24}$	$S_1 = L_{16} \oplus L_{26} \oplus 1$	$S_2 = L_{19} \oplus L_{28} \oplus 1$	$S_3=L_6\oplus L_{21}$	$S_4=L_{20}\oplus L_{22}$
$S_5 = L_{25} \oplus L_{29}$	$S_6 = L_{13} \oplus L_{27} \oplus 1$	$S_7 = L_6 \oplus L_{23} \oplus 1$		

```
01100001
11100001
11100111
01110001
0\,1\,1\,0\,0\,0\,1\,1
10011011
0\,1\,0\,0\,1\,1\,1\,1
10000100
10010000
11111010
0\,1\,0\,0\,1\,1\,1\,0
10010110
10000010
0\,0\,0\,1\,0\,1\,0\,0
10011010
00101110
10110100
10101110
01111110
11011110
10101100
```

• S-box (S_1)

- We apply the implementation by Jang et al. [9], which achieved the best depth reduction (while e using a reasonable number of qubits), to the ARIA S-box.
- By applying this method, we can significantly re duce both the depth and the number of qubit s and gates compared to previous research.

Table 3: Comparison of quantum implementations of AES S-box.

M-411	#CNOT	#1qCliff	#T	TD	M	Full depth
Method	*	•	+	+	0	*
S-box [32]	1818	124	1792	88	40	951
S-box [16]	358	68	224	8	123	104
S-box [17] •	392	72	238	6	136	85
S-box [49]	628	98	367	40	32	514
S-box [77]	437	72	245	55	22	339
(391 lines	1470	670	1218	66	399	640
406 lines	1507	548	1245	74	414	709
S-box $[21,22]$ 413 lines	1484	561	1169	62	421	591
409 lines	1483	574	1190	74	416	693
400 lines	2244	1006	2254	111	408	998
S-box [36] {	418	72	238	4	136	72
5-box [50]	824	160	546	3	198	69
S-box [51]				32	20	
S-box [52] {				24	21	
5-box [52]				22	22	
S-box [54]	372	72	238	4	90	69
	418	72	238	4	136	61
S-box $\langle \mathring{\mathbf{x}} $	366	72	238	4	84	58
*	781	160	546	3	152	56

^{❖:} Reused in this work to fix [44] ❖.

[:] Used in this work (Toffoli depth 4).

^{*:} Used in this work (Toffoli depth 3).

- S-box $^{-1}(S_1^{-1})$
 - "Quantum analysis of AES" + "Synthesizing quantum circuits of AES with lower T-depth and less qubits"
 - According to Huang et al, implementing the inverse of S1 requires the S1 circuit.
 - → replacing only the S1 circuit part with the circuit in Jang et al.
 - S-box = $LS_0(x) + c = B \cdot F(U \cdot x) + [11000110]^T$, ($L = linear\ function$, $S_0(x) = inversion$)

Fig. 15. The circuit for implementing the S-box⁻¹ of AES

- S-box (S₂)
 - We use **Itoh-Tsujii algorithm** to compute a^{-1}
 - → Squaring and multiplication

$$\alpha^{-1} = \alpha^{254} = ((\alpha.\alpha^2).(\alpha.\alpha^2)^4.(\alpha.\alpha^2)^{16}.\alpha^{64})^2$$

- Squaring
 - In squaring, modular reduction can be employed XZLBZ because it is a linear operation.
 - → Without allocating additional ancilla qubits (i.e., in-place), using only CNOT gates.

Fig. 4: Squaring in $\mathbb{F}_{2^8}/(x^8+x^4+x^3+x+1)$ using XZLBZ

- Multiplication in a S-box(S₂)
 - We apply WISA'22 [Jang et al.] multiplication
 - →optimized with a **Toffoli depth of one** for any field size.

- WISA'22[Jang et al.] multiplication
 - Using the Karatsuba algorithm recursively and allocating additional ancilla qubits.
 - → All the AND operations become independent and the operations of all Toffoli gates in parallel.
 - → The allocated ancilla qubits can be **reused** through **reverse operations**.

- Quantum resources required for implementations of a S-box
 - $S_1 \leftarrow \text{Boyar-Peralta}, S_2 \leftarrow \text{Itoh-Tsujii}$
 - For comparison, note that quantum resources applied to S_1 are presented.

Method	Source	#CNOT	#X	#Toffoli	Toffoli depth	#Qubit	depth
	[11]	569	4	448	196	40	-
Itoh-Tsujii	[13]	1114	4	108	4	162	151
	Ours	1106	4	108	4	170	137
Boyar-Peralta	Ours	162	4	34	4	84	33

Proposed Method: Substitution Layer

Substitution Layer

- We reduce the depth by parallelizing the processing of all S-boxes(16) in each substitution layer
- We initially allocate a total of 304 (38×8) ancilla qubits
 - \rightarrow Only need S_2 , S_2^{-1}
- Due to parallel processing, the technique applied to S_1 has been beneficial in reducing the number of q ubits, but there is no corresponding gain in terms of depth.
 - \rightarrow This is because the depth cost of S_2 is higher than that of S_1 ,

resulting in the depth of a substitution layer being measured by S_2 .

(a) S-box layer type 1

(b) S-box layer type 2

Proposed Method: Diffusion Layer

Diffusion Layer

Algorithm 1: Quantum circuit implementation of ARIA Diffusion Layer using out-of-place.

```
Input: x, M
Output: result

0: Allocate result qubit \rightarrow result[16][8]

0: for 0 \le i \le 16 do

0: for 0 \le j \le 16 do

0: if M[16+j]{==}1 then

0: CNOT8bit(x, j, result, i)

0: return result =0
```

- 16 x 16 binary matrix multiplication
- 128 ancilla qubits are allocated for each round (i.e., out-of-place) to store the output of the diffusion

layer. → optimizing the depth

Method	#CNOT	#Qubit	depth
PLU	768	128	31
XZLBZ	376	128	17
Out-of-place	896	256	7

Performance & Evaluation

Estimation of the quantum resources required for ARIA

- Our implementation of the ARIA quantum circuit achieves over 92.5% improvement in **full depth** and o ver 98.7% improvement in **Toffoli depth** compared to the implementation proposed in Chauhan et al.
- Compared to Yang et al, our implementation is improved the full depth by 36.7% and the number of qubits by 8%.

NCT Le	evel
--------	------

Clifford + T Level

Cipher	Source	#X	#CNOT	#Toffoli	Toffoli depth	#Qubit	Depth		Cipher	Source	#Clifford	#T	T-depth	#Qubit	Full depth
ARIA-128	[11]	1,595	231,124	157,696	4,312	1,560	9,260		ARIA-128	[11]	1,494,287	1,103,872	17,248	1,560	37,882
	[13]	1,408	285,784	25,920	60	29,216	3,500			[13]	494,552	181,440	240	29,216	4,650
	This work	1,408	173,652	17,040	60	26,864	2,187			This work	311,380	119,280	240	26,864	2,952
	[11]	1,851	273,264	183,368	5,096	1,560	10,948		ARIA-192	[11]	1,742,059	1,283,576	20,376	1,560	44,774
ARIA-192	[13]	1,624	324,136	29,376	68	32,928	3,978			[13]	560,768	205,632	272	32,928	5,285
	This work	1,624	197,036	19,312	68	30,320	2,480			This work	353,156	135,184	272	30,320	3,347
ARIA-256	[11]	2,171	325,352	222,208	6,076	1,688	13,054		ARIA-256	[11]	2,105,187	1,555,456	24,304	1,688	51,666
	[13]	1,856	362,488	32,832	76	36,640	4,455			[13]	627,000	229,824	304	36,640	5,919
	This work	1,856	220,420	21,584	76	33,776	2,772			This work	394,948	151,088	304	33,776	3,741

[11]A. K. Chauhan and S. K. Sanadhya, "Quantum resource estimates of grover's key search on aria," in Security, Privacy, and Applied Cryptography Engineering: 10th International Conference, SPACE 2020, Kol kata, India, December 17–21, 2020, Proceedings 10. Springer, 2020, pp. 238–258.

[13] Y. Yang, K. Jang, Y. Oh, and H. Seo, "Depth-optimized quantum implementation of aria," Cryptology ePrint Archive, 2023.

Performance & Evaluation

Grover's key search

- Grover's key search cost: the quantum resources x 2 x $\left[\frac{\pi}{4}\sqrt{2^k}\right]$
- → ARIA-128,192,256 can be evaluated as achieving post-quantum security Level 1,3 and 5,respectively.

Cipher	Source	Total gates	Total depth	Cost	#Qubit	NIST security	
				(complexity)			
	[11]	$1.998\cdot 2^{85}$	$1.816\cdot 2^{79}$	$1.814\cdot 2^{165}$	1,561		
ARIA-128	[13]	$1.117\cdot 2^{84}$	$1.783\cdot 2^{76}$	$1.991\cdot 2^{160}$	29,217	Level 1	
	This work	$1.296 \cdot 2^{83}$	$\bf 1.132 \cdot 2^{76}$	$\bf 1.468 \cdot 2^{159}$	26,865		
	[11]	$1.146\cdot 2^{119}$	$1.073\cdot 2^{112}$	$1.23\cdot 2^{231}$	3,121		
ARIA-192	[13]	$1.2\cdot 2^{117}$	$1.013\cdot2^{109}$	$1.216\cdot 2^{226}$	65,857	Level 3	
	This work	$\bf 1.469 \cdot 2^{116}$	$\bf 1.284 \cdot 2^{108}$	$1.886 \cdot 2^{224}$	60,449		
	[11]	$1.384\cdot2^{151}$	$1.238\cdot 2^{144}$	$1.714\cdot 2^{295}$	3,377		
ARIA-256	[13]	$1.336\cdot2^{149}$	$1.135\cdot 2^{141}$	$1.516\cdot 2^{290}$	72,081	Level 5	
	This work	$1.642 \cdot 2^{148}$	$1.435 \cdot 2^{140}$	$1.178 \cdot 2^{289}$	67,553		

Conclusion

- This paper presents the implementation of a quantum circuit for ARIA.
- We focus on optimizing Toffoli and full depths
- Our ARIA quantum circuit achieves over 92.5% improvement in full depth and over 98.7% improvement in Toffoli depth compared to the implementation proposed in Chauhan et al.
- Compared to [13], our implementation is improved the full depth by 36.7% and the number of qubits by 8%.
- We analyze the cost of Grover's key search attack.
 - →We can conclude that ARIA-128, 192, and 256 achieve quantum security level 1, 3 and 5, respectively
- In future work, we plan to explore the **Boyar- Peralta** technique for all S-boxes and integrate it.

Q&A