Exercises 1.1: Numeral systems

- 2. Transform the following numbers:
 - a. 0x43 from hexadecimal to binary and then to decimal
 - b. 000000110011001 from binary to hexadecimal and then to decimal
 - c. 43 from decimal to binary and then to hexadecimal
 - d. -53 from decimal to binary (two's complement)
 - e. 0xA0F3 from hexadecimal to binary
 - f. 147 from decimal to binary
- 3. Imagine a computer in which integers are stored using 6 bits. How many different signed integers could be represented? What is the range of signed integers that can be represented with 6 bits (assuming that negative numbers are encoded using two's complement)?
- 4. The following binary number corresponds to an ASCII message, using one byte per character. Find out the equivalent hexadecimal representation; and then, using an ASCII table, find out the real string.

```
0110 1110 0110 1111 0111 0100 0110 0001
```

- 5. Find the ASCII code of the characters A, B, F, and Z; and then, determine how many characters are between Z and the others. How to convert from lowercase to uppercase letters using the ASCII code?
- 6. Find the ASCII code (in hexadecimal) for the following message: *Let the force be with you.*

7. What is the hidden message?

01001100	01110101	01101011
01100101	00100000	01001001
00100000	01100001	01101101
00100000	01111001	01101111
01110101	01110010	00100000
01100110	01100001	01110100
01101000	01100101	01110010