Question 1 Use the tableau algorithm to test the satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C$ (Hint: to test the satisfiability of a concept X, you have to show that it is possible for some element y to be member of X, in other words you have to use a tableau to construct a model for y:X).

Answer 1 We try to construct a model:

1	$y: \exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C$	$\mathcal A$
2	$y:\exists S.C$	$(\sqcap:1)$
3	$y: \forall S.(\neg C \sqcup \neg D)$	$(\sqcap:1)$
4	$y:\exists R.C$	$(\sqcap:1)$
5	(y,p):S	$(\exists:2)$
6	p:C	$(\exists:2)$
7	(y,q):R	$(\exists:4)$
8	q:C	$(\exists:4)$
9	$p: \neg C \sqcup \neg D$	$(\forall:3,5)$
10^{split_1}		$(\sqcup:9)$
11^{split_1}		$(6, 10^1)$
10^{split_2}	$p: \neg D$	$(\sqcup:9)$

A model exists that demonstrates the satisfiability.

Question 2 Given the following interpretation of the concepts

- Person = {Daisy, Dan, Dirk, Pat, Paul}
- Doctor = {Daisy, Dan, Dirk}
- Patient = {Pat, Paul, Dan}
- Treats = {(Daisy, Pat), (Dan, Paul), (Dirk, Dan), (Dan, Dan)}
- Suffers_from = {(Pat, pain), (Paul, pain), (Dan, pain), (Dan, sickness)}

Compute the interpretation of the following expressions:

- a) Doctor \sqcap Patient
- b) Person $\sqcap \exists treats. Doctor$

Answer 2

- a) (Doctor \sqcap Patient) $^{\mathcal{I}} = \{Dan\}$
- b) (Person $\sqcap \exists treats.Doctor$) $^{\mathcal{I}} = \{Dirk, Dan\}$

Question 3 Show that from the knowledge base: $P \sqsubseteq (E \sqcap U) \sqcup (E \sqcap \neg D)$ we can derive that $P \sqsubseteq E$

Answer 3 we have to show that $a:P \sqcap \neg E$ is not satisfiable given that the TBox is not empty.

1.
$$a: P \sqcap \neg E$$
 \mathcal{A}
2. $\top \equiv \neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D)$ \mathcal{T}
3. $a: P$ $(\sqcap: 1)$
4. $a: \neg E$ $(\sqcap: 1)$
5. $a: \neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D)$ $(\equiv: 2)$
6. $a: \neg P$ $(\sqcup: 5)$ 7. $a: (E \sqcap U)$ $(\sqcup: 5)$ 9. $a: (E \sqcap \neg D)$ $(\sqcup: 5)$
 $\times (3,6)$ 8. $a: E$ $(\sqcap: 7)$ 10. $a: E$ $(\sqcap: 9)$
 $\times (4,8)$ $\times (4,10)$

Yes, given the TBox, P is subsumed by E.