Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2

По дисциплине
Вычислительная математика
Вариант № 7

Выполнил:

студент группы Р3213

Нягин Михаил Алексеевич

Проверила:

Машина Екатерина

Алексеевна

г. Санкт-Петербург 2024 год

Цель работы:

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения, выполнить программную реализацию методов.

Описание работы:

Дано уравнение:

$$x^3 + 2.28x^2 - 1.934x - 3.907$$

Состоит из двух частей:

Часть первая. Решение нелинейного уравнения

Задание:

- 1. Отделить корни заданного нелинейного уравнения графически
- 2. Определить интервалы изоляции корней.
- 3. Уточнить корни нелинейного уравнения с точностью ϵ = 10^{-2}
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
- 5.1 Для метода половинного деления заполнить таблицу 1.
- 5.2 Для метода хорд заполнить таблицу 2.
- 5.3 Для метода Ньютона заполнить таблицу 3.
- 5.4 Для метода секущих заполнить таблицу 4.
- 5.5 Для метода простой итерации заполнить таблицу 5. Проверить условие сходимости метода на выбранном интервале.
- 6. Заполненные таблицы отобразить в отчете.

2 часть. Решение системы нелинейных уравнений

$$\begin{cases} 2x - \sin(y - 0.5) = 1\\ y + \cos(x) = 1.5 \end{cases}$$

- 1. Отделить корни заданной системы нелинейных уравнений графически (вид системы представлен в табл. 8).
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01.
- 3. Для метода простой итерации проверить условие сходимости метода.
- 4. Подробные вычисления привести в отчете.

Решение

Часть первая

$$x^3 + 2.28x^2 - 1.934x - 3.907$$

Для определения интервалов изоляции корней данного уравнения можно воспользоваться методом интервалов знакопеременности. Для этого нужно найти значения функции на различных интервалах и определить знак функции на каждом из них.

Метод половинного деления (левый корень)

Nº	а	b	х	f(a)	f(b)	f(x)	a-b
C	-2,5	-2	-2,25	-0,447	1,081	0,596375	0,5
1	-2,5	-2,25	-2,375	-0,447	0,596375	0,150391	0,25
2	-2,5	-2,375	-2,4375	-0,447	0,150391	-0,12865	0,125
3	-2,4375	-2,375	-2,40625	-0,12865	0,150391	0,015695	0,0625
4	-2,4375	-2,40625	-2,42188	-0,12865	0,015695	-0,05526	0,03125
5	-2,42188	-2,40625	-2,41407	-0,05528	0,015695	-0,01949	0,01563
6	-2,41407	-2,40625	-2,41016	-0,01951	0,015695	-0,00183	0,00782

Метод простых итераций (центральный корень)

$$x^3 + 2.28x^2 - 1.934x - 3.907 = 0$$

$$[a;b]=[-1.5;-1]$$

- 1) Преобразуем уравнение f(x)=0 к виду (при $\lambda \neq 0$) $\lambda f(x)=0$
- 2) Прибавим x к обоим частям: $x=x+\lambda f(x)=0$

3)
$$\varphi(x) = x + \lambda f(x), \varphi'(x) = 1 + \lambda f'(x)$$

3)
$$\lambda = \frac{1}{\max_{[a;b]}(|f'(x)|)} = 0.286$$

a.
$$f'(x) = (x^3 + 2.28x^2 - 1.934x - 3.907)' = 3x^2 + 4.56x - 1.934$$

c.
$$f'(-1) = -3.494$$

5)
$$x=x+\lambda f(x) = x+0.286(x^3+2.28x^2-1.934x-3.907) =$$

$$= 0.447x + 0.286x^3 + 0.652x^2 - 1.117$$

$$\varphi(x) = 0.447x + 0.286x^3 + 0.652x^2 - 1.117$$

Nº	x_k x_k+1		φ(x_k+1)	f(x_k+1)	x_k+1 - x_k
0	-1,4	-1,24966	-1,215540835	0,11888481	0,150336
1	-1,249664	-1,21554	-1,210649738	0,016636462	0,034123
2	-1,215541	-1,21065	-1,210024859	0,001714172	0,004891

Метод Ньютона (правый корень)

Интервал: [1;1.5]

$$f'(x) = (x^3 + 2.28x^2 - 1.934x - 3.907)' = 3x^2 + 4.56x - 1.934$$
$$f''(x) = 6x + 4.56$$

$$f(1) = -2.561 < 0$$

$$f(1.5)*f''(1.5) > 0 -> x_0=1.5$$

Nº	x_i	f(x_i)	f'(x_i)	x_(i+1)	x_i+1 - x_i
0	1,5	1,697	11,656	1,354409746	0,145590254
1	1,354409746	0,140626412	9,745385723	1,339979695	0,014430051
2	1,339979695	0,001317823	9,56294416	1,33984189	0,000137805

Часть два: Решение нелинейной системы уравнений

$$\begin{cases} 2x - \sin(y - 0.5) = 1\\ y + \cos(x) = 1.5 \end{cases}$$

Выберем начальное приближение: x = 1 y = 1

Νō	хi	yi	xi-x_{i-1}	yi-y_{i-1}	epsilon xi	epsilon yi
0	1	1	-	-		
1	0,739713	0,959698	0,260287	0,040302	ЛОЖЬ	ЛОЖЬ
2	0,721839	0,761338	0,017874	0,19836	ЛОЖЬ	ЛОЖЬ

3	0,629187	0,749408	0,092652	0,01193	ЛОЖЬ	ЛОЖЬ
4	0,623415	0,691494	0,005771	0,057914	ИСТИНА	ЛОЖЬ
5	0,595163	0,688111	0,028252	0,003383	ЛОЖЬ	ИСТИНА
6	0,593502	0,671943	0,001661	0,016168	ИСТИНА	ЛОЖЬ
7	0,585548	0,671013	0,007953	0,00093	ИСТИНА	ИСТИНА