SzCzGiE-labs

Part I

```
In [73]:

# imports
import pandas as pd
import mathlotlib.pyplot as plt
from math import log10, log2, log
import numpy as np
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
```

In [3]:

```
# loading data from csv

data = pd.read_csv('IBM.csv', parse_dates=['Date'])

N = len (data.index)
close = pd.Series(data['Close'], name='Close')
dates = pd.Series(data['Date'], name='Date')
```

In [4]:

data.head()

	Date	Open	High	Low	Close	Adj Close	Volume
0	1962-01-02	7.713333	7.713333	7.626667	7.626667	1.858243	390000
1	1962-01-03	7.626667	7.693333	7.626667	7.693333	1.874485	292500
2	1962-01-04	7.693333	7.693333	7.613333	7.616667	1.855805	262500
3	1962-01-05	7.606667	7.606667	7.453333	7.466667	1.819257	367500
4	1962-01-08	7.460000	7.460000	7.266667	7.326667	1.785148	547500

In [5]:

```
# separation of close price data
close = pd.DataFrame({'Date':data['Date'], 'Close':data['Close']})
close.set_index('Date')
pass
```

In [6]:

close.plot(figsize-(20,8), x-'Date', y-'Close', title-'Close')

0.4161

<AxesSubplot:title={'center':'Close'}, xlabel='Date'>

In [7]:

close.plot(figsize-(20,8), x-'Date', y-'Close', logy-True, title-'log(Close)')

Out[7]:

<AxesSubplot:title={'center':'log(Close)'}, xlabel='Date'>

In [8]:

```
f logarithmic rates of return for close prices
close['LogReturnRates'] = pd.Series(np.array([0.0] + [log(close['Close'][i]/close['Close'][i-1]) for i in range(1, len(close['Close']))]))
```

In [9]:

```
close.plot(figsize-(20,8), x-'Date', y-'LogReturnRates', title-'LogReturnRates')
```

Out[9]:

In [10]:

standarized logarithimc rates of return for close prices (using z-score: std-1, mean-0)
close['Z-score']- (close['LogReturnRates'] - close['LogReturnRates'].mean()) / close['LogReturnRates'].std()
close.head()

Out[10]:

	Date	Close	LogReturnRates	Z-score
0	1962-01-02	7.626667	0.000000	-0.011651
1	1962-01-03	7.693333	0.008703	0.531862
2	1962-01-04	7.616667	-0.010015	-0.637102
3	1962-01-05	7.466667	-0.019890	-1.253790
4	1962-01-08	7.326667	-0.018928	-1.193704

In [11]:

close.plot(figsize-(20,8), x-'Date', y-'Z-score', title-'Z-score(LogReturnRates)')

Out[11]:

Part II

f white noise
mean = 0
std = 1
N = len(data['Close'])
white_noise = pd.DataFrame(data=

white_noise.plot(figsize-(20,8), y-'WhiteNoise', title-'WhiteNoise')

In [14]:

f white noise cumulative sume
white_noise['CumulativeSum'] - white_noise.cumsum()
white_noise.head()

Out[14]:

Whitehlaine CountationSum

Date		
1962-01-02	0.764974	0.764974
1962-01-03	-0.683988	0.080986
1962-01-04	1.656510	1.737495
1962-01-05	-0.301831	1.435664
1962-01-08	0.439684	1.875348

In [15]:

white_noise.plot(figsize-(20,8), y-'CumulativeSum', title-'CumulativeSum(WhiteNoise)')

Out[15]:

<AxesSubplot:title={'center':'CumulativeSum(WhiteNoise)'}, xlabel='Date'>

In [16]:

ax - white_noise.plot(y-'CumulativeSum') close.plot(figsize-(20,8), x-'Date', y-'Close', ax-ax, title-'Close & CumulativeSum(WhiteNoise)', legend-True)

Out[16]:

<AxesSubplot:title={'center':'Close & CumulativeSum(WhiteNoise)'}, xlabel='Date'>

In [17]:

ax - white noise.plot(y-'WhiteNoise') close.plot(figsize-(20,8), x-'Date', y-'Z-score', ax-ax, title-'Z-score(LogReturnRates(Close)) & WhiteNoise', legend-True)

Out[17]:

<AxesSubplot:title={'center':'Z-score(LogReturnRates(Close)) & WhiteNoise'}, xlabel='Date'>

Part III

Histograms In [18]: close.hist(figsize=(20,4), column=['Close', 'Z-score'], legend=True) Close Z-score Close Z-score 8000 5000 4000 6000 3000 2000 2000 1000 In [19]: # White noise histograms white_noise.hist(figsize-(20,4), column-['CumulativeSum', 'WhiteNoise'], legend-True) Out[19]: CumulativeSum WhiteNoise WhiteNo 3000 2500 3000 2000 1500 2000 1000 -50 -125 -100 -75 -25 In [20]: close['NormalizedClose'] = close['Close']/abs(close['Close']).sum() close['NormalizedZ=score'] = close['Z=score']/abs(close['Z=score']).sum() # Normalized Close prices histograms close.hist(figsize=(20,4), column=['NormalizedClose', 'NormalizedZ=score'], legend-True) Out [201: NormalizedZ-score 6000 6000 0.00005 0.00010 0.00015 -0.0015 -0.0010 0.0000 In [21]: white_noise['NormalizedCumulativeSum'] - white_noise['CumulativeSum']/abs(white_noise['CumulativeSum']).sum() white_noise['NormalizedWhiteNoise'] - white_noise['WhiteNoise']/abs(white_noise['WhiteNoise']).sum() # Normalized White noise histograms white_noise.hist(figsize-(20,4), column-['NormalizedCumulativeSum', 'NormalizedWhiteNoise'], legend-True) NormalizedCumulativeSum NormalizedWhiteNoise ■ NormalizedCumulativeSum NormalizedWhiteNoise 3000 2500 3000 2000 2000 1500 1000 1000 500 -0.00005 -0.0002 -0.00015 -0.00010 0.00000 0.00005 -0.0003 -0.0001 0.0000 0.0001 0.0002 0.00010 In [22]: ax - white_noise.hist(figsize-(20,8), column-['NormalizedCumulativeSum'], legend-True) close.hist(figsize-(20,8), column-['NormalizedClose'], ax-ax, legend-True) Out [22]: array([<AxesSubplot:title={'center':'NormalizedClose'}>], dtype=object)


```
ax - close.hist(figsize-(20,8), column-['Normalized2-score'], legend-True)
white_noise.hist(figsize-(20,8), column-['NormalizedWhiteNoise'], ax-ax, legend-True)
```

Out[23]:

Distribution parameters

In [24]:

close prices kurtosis
close.kurt(axis=0)

Out[24]:

Close
LogReturnRates
Z-score
NormalizedClose
NormalizedZ-score
dtype: float64 -0.485366 12.239468 12.239468 -0.485366 12.239468

In [25]:

close prices skeweness close.skew(axis=0)

Out[25]:

Close 0.924353
LogReturnRates -0.342694
2-score -0.342694
NormalizedClose 0.924353
NormalizedZ-score dtype: float64

In [26]:

white noise kurtosis
white_noise.kurt(axis=0)

Out[26]:

WhiteNoise CumulativeSum NormalizedCumulativeSum NormalizedWhiteNoise dtype: float64 -0.008483 -0.663026 -0.663026 -0.008483

In [27]:

white noise skeweness
white_noise.skew(axis-0)

Out[27]:

0.004915 -0.596867 -0.596867 0.004915 WhiteNoise CumulativeSum
NormalizedCumulativeSum
NormalizedWhiteNoise
dtype: float64

Cumulative Distribution Function for both series (close data and white noises)

In [84]:

```
plt.figure(figsize-(20,8))
plt.grid(True)
plt.hist(close['NormalizedClose'], label="Normalized Close")
plt.hist(close['NormalizedClose'], cumulative-1, histtype-'step', label="Cumulative Normalized Close")
plt.legend(loc-'upper left')
```

<matplotlib.legend.Legend at 0x28996f16430>


```
4000
4000
0 0,00005 0,00010 0,00015 0,00020
```

In [85]:

```
plt.figure(figsize-(20,8))
plt.grid(True)
plt.hist (white noise['NormalizedWhiteNoise'], label-"Normalized White Noises")
plt.hist (white noise ('NormalizedWhiteNoise'], cumulative-l, histtype-'step', label-"Cumulative Normalized White Noises")
plt.legend(loc-'upper left')
```

Out[85]:

<matplotlib.legend.Legend at 0x2899681a310>

In [87]:

```
plt.figure(figsize-(20,8))
plt.grid(True)
plt.hist(close['NormalizedClose'], cumulative-1, histtype-'step', label-"Cumulative Normalized Close", log-True)
plt.hist(white_noise['NormalizedWhiteNoise'], cumulative-1, histtype-'step', label-"Cumulative Normalized White Noises", log-True)
plt.legend(loc='upper left')
```

O-+ 1071 -

<matplotlib.legend.Legend at 0x289968d7d60>

