ECON 520 Homework 11

Due date: November 14, 2018

1. Let X_1, X_2, \ldots, X_n be independent random variables, all with a binomial $\mathcal{B}(2, p)$ distribution.

- (a) Find the maximum likelihood estimator for p.
- (b) Is the maximum likelihood estimator the minimum variance unbiased estimator?
- (c) Let n = 100, $\sum_{i=1}^{n} x_i = 40$, and $\sum_{i=1}^{n} x_i^2 = 48$. Calculate the MLE.

2. Let X_1, X_2, \ldots, X_n represent a random sample from a Poisson distribution with parameter λ .

- (a) Find the MLE for λ and its asymptotic distribution.
- (b) Is the MLE for λ unbiased? Consistent? Explain.
- (c) Suppose we are interested in the probability of a count of zero, i.e. P(X = 0). Let θ represent P(X = 0). Find the MLE for θ and its asymptotic ditribution.

3. Let X_1, \ldots, X_n be i.i.d. from a population with mean μ and variance $\sigma^2 < \infty$, and consider the sample mean $\bar{X}_n = n^{-1} \sum_{n=1}^n X_i$. Using asymptotic theory, derive the approximate distributions for:

- (a) $\exp(\bar{X}_n)$
- (b) $\ln(\bar{X}_n)$
- (c) \bar{X}_{n}^{3}

4. Suppose a random sample is available from a gamma distribution with parameters α and β . Find the method of moments estimators for α and β .

5. Show that the priors in the following cases are conjugate priors:

(a) X_1, \ldots, X_n is a random sample from the Binomial(p, k) distribution with probability p and size k. Assume that k is known. The prior for p is a Beta distribution with parameters α and β .

(b) X_1, \ldots, X_n is a random sample from the uniform distribution on $[0, \theta]$. The prior for θ is

$$f(\theta) = ba^b \theta^{-(b+1)} \cdot 1(\theta \ge a).$$

(c) X_1, \ldots, X_n is a random sample from the exponential distribution with density $f(x; \lambda) = \lambda \exp(-\lambda x)$ for x > 0. The prior for λ is a Gamma distribution with parameters α and γ .

1