SoPa++: Leveraging explainability from hybridized RNN, CNN and weighted finite-state neural architectures M.Sc. Thesis Defense

Atreya Shankar (799227), shankar.atreya@gmail.com Cognitive Systems: Language, Learning, and Reasoning (M.Sc.) 1st Supervisor: Dr. Sharid Loáiciga, University of Potsdam 2nd Supervisor: Mathias Müller, M.A., University of Zurich

> Foundations of Computational Linguistics Department of Linguistics University of Potsdam, SoSe 2021

> > July 8, 2021

Overview

- Introduction
- Background concepts
- 3 Data and methodologies
- **4** Results
- 5 Discussion
- 6 Conclusions
- 7 Further work

Motivation

- Trend of increasingly complex deep learning models achieving SOTA performance on ML and NLP tasks (Figure 1)
- To address emerging concerns such as inductive biases, several studies make arguments for research into XAI; for example Danilevsky et al. (2020) and Arrieta et al. (2020)
- Schwartz et al. (2018) approach XAI in NLP by proposing an explainable hybridized neural architecture called Soft Patterns (SoPa; Figure 2)
- SoPa provides localized and indirect explainability despite being suited for globalized and direct explanations by simplification

Figure 1: Parameter counts of recently released pre-trained language models; figure taken from Sanh et al. (2019)

SoPa: Bridging CNNs, RNNs, and Weighted Finite-State Machines

Roy Schwartz' [⋄]○ Sam Thomson' [♣] Noah A. Smith [⋄]

[⋄]Paul G. Allen School of Computer Science & Engineering, University of Washington

[♣]Language Technologies Institute, Carnegie Mellon University

[⋄]Allen Institute for Artificial Intelligence

Motivation

- Trend of increasingly complex deep learning models achieving SOTA performance on ML and NLP tasks (Figure 1)
- To address emerging concerns such as inductive biases, several studies make arguments for research into XAI; for example Danilevsky et al. (2020) and Arrieta et al. (2020)
- Schwartz et al. (2018) approach XAI in NLP by proposing an explainable hybridized neural architecture called Soft Patterns (SoPa; Figure 2)
- SoPa provides localized and indirect explainability despite being suited for globalized and direct explanations by simplification

Figure 1: Parameter counts of recently released pre-trained language models; figure taken from Sanh et al. (2019)

SoPa: Bridging CNNs, RNNs, and Weighted Finite-State Machines

Roy Schwartz * Sam Thomson * A Noah A. Smith*

Paul G. Allen School of Computer Science & Engineering, University of Washington

*Language Technologies Institute, Carnegie Mellon University

*Allen Institute for Artificial Intelligence

{rovsch.nasmith}*ecs.washinoton,edu, sthomson*ecs.cmu,edu

Figure 2: Excerpt from Schwartz et al. (2018)

Objective and research questions

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification

Process

 We study the performance and explanations by simplification of SoPa++ on the Facebook Multilingual Task Oriented Dialog (FMTOD) data set from Schuster et al. (2019); focusing on the English-language intent classification task.

Research questions

- Does SoPa++ provide **competitive** performance?
- To what extent does SoPa++ contribute to effective explanations by simplification?
- What interesting and relevant explanations can SoPa++ provide?

Objective and research questions

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification

Process:

 We study the performance and explanations by simplification of SoPa++ on the Facebook Multilingual Task Oriented Dialog (FMTOD) data set from Schuster et al. (2019); focusing on the English-language intent classification task.

Research questions

- Does SoPa++ provide competitive performance?
- To what extent does SoPa++ contribute to effective explanations by simplification?
- What interesting and relevant explanations can SoPa++ provide?

Objective and research questions

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification

Process:

 We study the performance and explanations by simplification of SoPa++ on the Facebook Multilingual Task Oriented Dialog (FMTOD) data set from Schuster et al. (2019); focusing on the English-language intent classification task.

Research questions:

- Does SoPa++ provide **competitive** performance?
- To what extent does SoPa++ contribute to effective explanations by simplification?
- What interesting and relevant explanations can SoPa++ provide?

Overview

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Further work

Explainability

- Transparency is a passive feature that a model exhibits
- Explainability is an active feature that involves target audiences (Figure 3)
- Arrieta et al. (2020) explore a taxonomy of post-hoc explainability techniques
- Explainability techniques can provide meaningful insights into decision boundaries within black-box models (Figure 4)
- Prominent explainability techniques include local explanations, feature relevance and explanations by simplification

Figure 3: Examples of various target audiences in XAI; figure taken from Arrieta et al. (2020)

(a) Husky classified as wolf

(b) Explanation

Figure 4: Local explanation for "Wolf" classification decision, figure

Explainability

- Transparency is a passive feature that a model exhibits
- Explainability is an active feature that involves target audiences (Figure 3)
- Arrieta et al. (2020) explore a taxonomy of post-hoc explainability techniques
- Explainability techniques can provide meaningful insights into decision boundaries within black-box models (Figure 4)
- Prominent explainability techniques include local explanations, feature relevance and explanations by simplification

Figure 3: Examples of various target audiences in XAI; figure taker from Arrieta et al. (2020)

(b) Explanation

Figure 4: Local explanation for "Wolf" classification decision, figure taken from Ribeiro et al. (2016)

SoPa: Weighted Finite-State Automaton (WFA)

Definition 1 (Semiring; Kuich and Salomaa 1986)

A semiring is a set $\mathbb K$ along with two binary associative operations \oplus (addition) and \otimes (multiplication) and two identity elements: $\bar 0$ for addition and $\bar 1$ for multiplication. Semirings require that addition is commutative, multiplication distributes over addition, and that multiplication by $\bar 0$ annihilates, i.e., $\bar 0 \otimes a = a \otimes \bar 0 = \bar 0$.

- Semirings follow the following generic notation: $\langle \mathbb{K}, \oplus, \otimes, \bar{0}, \bar{1} \rangle$.
- $\bullet \ \ \text{Max-sum semiring:} \ \langle \mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0 \rangle$
- Max-product semiring: $\langle \mathbb{R}_{>0} \cup \{-\infty\}, \max, \times, -\infty, 1 \rangle$

Definition 2 (Weighted finite-state automaton; Peng et al. 2018)

A weighted finite-state automaton over a semiring $\mathbb K$ is a 5-tuple $\mathcal A=\langle \Sigma,\mathcal Q,\Gamma,\lambda,\rho\rangle$ with:

- a finite input alphabet Σ
- a finite state set Q
- transition matrix $\Gamma: \mathcal{Q} \times \mathcal{Q} \times (\Sigma \cup \{\epsilon\}) \to \mathbb{K}$
- initial vector $oldsymbol{\lambda}:\mathcal{Q} o\mathbb{K}$
- and final vector $\rho: \mathcal{Q} \to \mathbb{K}$.

SoPa: Weighted Finite-State Automaton (WFA)

Definition 1 (Semiring; Kuich and Salomaa 1986)

A semiring is a set $\mathbb K$ along with two binary associative operations \oplus (addition) and \otimes (multiplication) and two identity elements: $\bar 0$ for addition and $\bar 1$ for multiplication. Semirings require that addition is commutative, multiplication distributes over addition, and that multiplication by $\bar 0$ annihilates, i.e., $\bar 0 \otimes a = a \otimes \bar 0 = \bar 0$.

- ullet Semirings follow the following generic notation: $\langle \mathbb{K}, \oplus, \otimes, 0, 1 \rangle$
- Max-sum semiring: $\langle \mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0 \rangle$
- Max-product semiring: $\langle \mathbb{R}_{>0} \cup \{-\infty\}, \max, \times, -\infty, 1 \rangle$

Definition 2 (Weighted finite-state automaton; Peng et al. 2018)

A weighted finite-state automaton over a semiring $\mathbb K$ is a 5-tuple $\mathcal A=\langle \Sigma,\mathcal Q,\Gamma,\pmb\lambda,\pmb\rho\rangle$, with:

- a finite input alphabet Σ ;
- a finite state set Q;
- transition matrix $\Gamma: \mathcal{Q} \times \mathcal{Q} \times (\Sigma \cup \{\epsilon\}) \to \mathbb{K}$;
- initial vector $\lambda: \mathcal{Q} \to \mathbb{K}$;
- and final vector $oldsymbol{
 ho}:\mathcal{Q} o\mathbb{K}.$

Figure 5: WFA slice: linear-chain FA with self-loop (blue), ϵ (red) and main-path (black) transitions; figure adapted from Schwartz et al. (2018)

Figure 6: SoPa's partial computational graph; figure taken from Schwartz et al. (2018)

Figure 5: WFA slice: linear-chain FA with self-loop (blue), ϵ (red) and main-path (black) transitions; figure adapted from Schwartz et al. (2018)

Figure 6: SoPa's partial computational graph; figure taken from Schwartz et al. (2018)

SoPa: Post-hoc explainability techniques

- SoPa provides two post-hoc explainability techniques; namely local explanations and feature relevance
- Local explanations gather highest scoring phrases across the training data (Figure 7)
- Feature relevance perturbs inputs using an occlusion technique to determine the highest impact phrases for a classification decision (Figure 8)
- Overall, both techniques are localized and indirect
- WFAs have a rich theoretical background which can be exploited for more direct and globalized explanations

Highest Scoring Phrases					
Patt. 1	thoughtful and entertaining gentle poignant	, astonishingly , , and	reverent articulate thought-provoking mesmerizing uplifting	portrait cast film portrait story	of of with of in
Patt. 2	's this this a is	€ € €	uninspired bad leaden half-assed clumsy _{sst}	story on comedy film the	purpose

Figure 7: Ranked local explanations from SoPa; table taken from Schwartz et al. (2018)

Analyzed Documents

it 's dumb, but more importantly, it 's just not scary

though moonlight mile is replete with acclaimed actors and actresses and tackles a subject that 's potentially moving, the movie is too predictable and too self-conscious to reach a level of high drama

While its careful pace and seemingly *opaque story* may not satisfy every moviegoer 's appetite, the film 's final scene is soaringly, transparently moving

Figure 8: Feature relevance outputs from SoPa; table taken from Schwartz et al. (2018)

SoPa: Post-hoc explainability techniques

- SoPa provides two post-hoc explainability techniques; namely local explanations and feature relevance
- Local explanations gather highest scoring phrases across the training data (Figure 7)
- Feature relevance perturbs inputs using an occlusion technique to determine the highest impact phrases for a classification decision (Figure 8)
- Overall, both techniques are localized and indirect
- WFAs have a rich theoretical background which can be exploited for more direct and globalized explanations

Highest Scoring Phrases					
Patt. 1	thoughtful and entertaining gentle poignant	, astonishingly , , and	reverent articulate thought-provoking mesmerizing uplifting	portrait cast film portrait story	of of with of in
Patt. 2	's this this a is	€ € € €	uninspired bad leaden half-assed clumsy , _{SL}	story on comedy film the	purpose writing

Figure 7: Ranked local explanations from SoPa; table taken from Schwartz et al. (2018)

Analyzed Documents

it 's dumb, but more importantly, it 's just not scary

though moonlight mile is replete with acclaimed actors and actresses and tackles a subject that 's potentially moving, the movie is too predictable and too self-conscious to reach a level of high drama

While its careful pace and seemingly *opaque story* may not satisfy every moviegoer 's appetite, the film 's final scene is soaringly, transparently moving

Figure 8: Feature relevance outputs from SoPa; table taken from Schwartz et al. (2018)

Overview

- Introduction
- Background concepts
- 3 Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Further work

FMTOD: Summary statistics

Class and description	Frequency	Utterance length [†]	Example [‡]
0: alarm/cancel_alarm	1791	5.6 ± 1.9	cancel weekly alarm
1: alarm/modify_alarm	566	7.1 ± 2.5	change alarm time
2: alarm/set_alarm	5416	7.5 ± 2.5	please set the new alarm
3: alarm/show_alarms	914	6.9 ± 2.2	check my alarms.
4: alarm/snooze_alarm	366	6.1 ± 2.1	pause alarm please
5: alarm/time_left_on_alarm	344	8.6 ± 2.1	minutes left on my alarm
6: reminder/cancel_reminder	1060	6.6 ± 2.2	clear all reminders.
7: reminder/set_reminder	5549	8.9 ± 2.5	birthday reminders
8: reminder/show_reminders	773	6.8 ± 2.2	list all reminders
9: weather/check_sunrise	101	6.7 ± 1.7	when is sunrise
10: weather/check_sunset	136	6.7 ± 1.7	when is dusk
11: weather/find	14338	7.8 ± 2.3	jacket needed?
Σ/μ	31354	7.7 ± 2.5	_

 $^{^\}dagger$ Summary statistics follow the mean \pm standard-deviation format

Table 1: Summary statistics and examples for the preprocessed FMTOD data set

[‡]Short and simple examples were chosen for brevity and formatting purposes

SoPa++: WFA- ω and TauSTE

Figure 9: WFA- ω slice: strict linear-chain FA with ω (blue) and main-path (black) transitions

TauSTE(x) =
$$\begin{cases} 1 & x \in (\tau, +\infty) \\ 0 & x \in (-\infty, \tau] \end{cases}$$

$$TauSTE'(x) = \begin{cases} 1 & x \in (1, +\infty) \\ x & x \in [-1, 1] \\ -1 & x \in (-\infty, -1) \end{cases}$$

- TauSTE'(x) implies the backwar pass and not the gradient in this context
- Flavors of STEs are being extensively researched, such as in Yin et al. (2019)

Figure 10: TauSTE's forward and backward passes

SoPa++: WFA- ω and TauSTE

Figure 9: WFA- ω slice: strict linear-chain FA with ω (blue) and main-path (black transitions

TauSTE
$$(x)$$
 =
$$\begin{cases} 1 & x \in (\tau, +\infty) \\ 0 & x \in (-\infty, \tau] \end{cases}$$

$$\mathsf{TauSTE}'\big(x\big) = \begin{cases} 1 & x \in (1, +\infty) \\ x & x \in [-1, 1] \\ -1 & x \in (-\infty, -1) \end{cases}$$

- TauSTE'(x) implies the backward pass and not the gradient in this context
- Flavors of STEs are being extensively researched, such as in Yin et al. (2019)

Figure 10: TauSTE's forward and backward passes

Figure 11: SoPa++ computational graph; flow of graph is from bottom to top and left to right

Figure 11: SoPa++ computational graph; flow of graph is from bottom to top and left to right

Figure 11: SoPa++ computational graph; flow of graph is from bottom to top and left to right

Figure 11: SoPa++ computational graph; flow of graph is from bottom to top and left to right

Figure 11: SoPa++ computational graph; flow of graph is from bottom to top and left to right

Figure 12: RE proxy computational graph; flow of graph is from bottom to top and left to right

Figure 12: RE proxy computational graph; flow of graph is from bottom to top and left to right

Figure 12: RE proxy computational graph; flow of graph is from bottom to top and left to right

Figure 12: RE proxy computational graph; flow of graph is from bottom to top and left to right

SoPa vs. SoPa++

Characteristic	SoPa	SoPa++
Text casing	True-cased	Lower-cased
Token embeddings	GloVe 840B 300- dimensions	GloVe 6B 300-dimensions
WFAs	Linear-chain WFA's with ϵ , self-loop and mainpath transitions	Strict linear-chain WFA- ω 's with ω and mainpath transitions
Hidden layers	Multi-layer perceptron after max-pooling	Layer normalization, TauSTE and linear trans- formation after max- pooling
Post-hoc explainability technique(s)	Local explanations, feature relevance	Explanations by simplification

Table 2: Summarized differences for SoPa vs. SoPa++

Research Question 1: Competitive performance

Model size	Patterns hyperparameter P	Parameter count
	6-10_5-10_4-10_3-10	1,260,292
Medium	6-25_5-25_4-25_3-25	1,351,612
Large	6-50_5-50_4-50_3-50	1,503,812

Table 3: Three different Sora++ model sizes used during training

- RQ 1: Does SoPa++ provide **competitive** performance?
- Competitive accuracy range: 96.6 99.5% (Schuster et al., 2019; Zhang et al., 2019; Zhang et al., 2020)
- Upsampling minority classes to mitigate data imbalance
- Grid-search with three model sizes, varying τ -thresholds: $\{0.00, 0.25, 0.50, 0.75, 1.00\}$ and 10 random seed iteration
- $3 \times 5 \times 10 = 150$ model runs
- Evaluation and comparison on the test set

Research Question 1: Competitive performance

Model size	Patterns hyperparameter P	Parameter count
Small	6-10_5-10_4-10_3-10	1,260,292
Medium	6-25_5-25_4-25_3-25	1,351,612
Large	6-50_5-50_4-50_3-50	1,503,812

Table 3: Three different SoPa++ model sizes used during training

- RQ 1: Does SoPa++ provide **competitive** performance?
- Competitive accuracy range: 96.6 99.5% (Schuster et al., 2019; Zhang et al., 2019; Zhang et al., 2020)
- Upsampling minority classes to mitigate data imbalance
- Grid-search with three model sizes, varying τ -thresholds: $\{0.00, 0.25, 0.50, 0.75, 1.00\}$ and 10 random seed iterations
- $3 \times 5 \times 10 = 150$ model runs
- Evaluation and comparison on the test set

Research Question 2: Effective explanations

- RQ 2: To what extent does SoPa++ contribute to effective explanations by simplification?
- Effective explanations by simplification require simpler model, similar performance and maximizing resemblance to antecedent
- Similar performance ⇒ compare test set evaluations
- Maximum resemblance ⇒ minimum distances over test set
- Softmax distance norm

$$\delta_{\sigma}(\mathbf{y}) = \left\| \sigma_{\mathcal{S}}(\mathbf{y}) - \sigma_{\mathcal{R}}(\mathbf{y}) \right\|_2 = \sqrt{\sum_{i=1}^n (\sigma_{\mathcal{S}_i}(\mathbf{y}) - \sigma_{\mathcal{R}_i}(\mathbf{y}))^2}$$

Binary -misalignment rate

$$\delta_b(y) = \frac{\|\mathbf{b}_{\mathcal{S}}(y) - \mathbf{b}_{\mathcal{R}}(y)\|_1}{\dim(\mathbf{b}_{\mathcal{S}}(y) - \mathbf{b}_{\mathcal{D}}(y))} = \frac{\sum_{i=1}^{n} |b_{\mathcal{S}_i}(y) - b_{\mathcal{R}_i}(y)|}{\dim(\mathbf{b}_{\mathcal{S}}(y) - \mathbf{b}_{\mathcal{D}}(y))}$$

Research Question 2: Effective explanations

- RQ 2: To what extent does SoPa++ contribute to effective explanations by simplification?
- Effective explanations by simplification require simpler model, similar performance and maximizing resemblance to antecedent
- Similar performance ⇒ compare test set evaluations
- Maximum resemblance ⇒ minimum distances over test se
- Softmax distance norm:

$$\delta_{\sigma}(\mathbf{y}) = \|\sigma_{\mathcal{S}}(\mathbf{y}) - \sigma_{\mathcal{R}}(\mathbf{y})\|_{2} = \sqrt{\sum_{i=1}^{n} (\sigma_{\mathcal{S}_{i}}(\mathbf{y}) - \sigma_{\mathcal{R}_{i}}(\mathbf{y}))^{2}}$$

• Binary -misalignment rate:

$$\delta_b(\mathbf{y}) = \frac{\|\mathbf{b}_{\mathcal{S}}(\mathbf{y}) - \mathbf{b}_{\mathcal{R}}(\mathbf{y})\|_1}{\dim(\mathbf{b}_{\mathcal{S}}(\mathbf{y}) - \mathbf{b}_{\mathcal{R}}(\mathbf{y}))} = \frac{\sum_{i=1}^{n} |b_{\mathcal{S}_i}(\mathbf{y}) - b_{\mathcal{R}_i}(\mathbf{y})|}{\dim(\mathbf{b}_{\mathcal{S}}(\mathbf{y}) - \mathbf{b}_{\mathcal{R}}(\mathbf{y}))}$$

Research Question 3: Relevant explanations

- RQ 3: What interesting and relevant explanations can SoPa++ provide?
- Open-ended question, can answer in different ways
- Capitalize on the new linear layer ⇒ allows for direct analysis of relative linear weights
- Sample REs from RE lookup layer corresponding to salient TauSTE neurons
- Analyze REs for interesting linguistic features and inductive biases

Research Question 3: Relevant explanations

- RQ 3: What interesting and relevant explanations can SoPa++ provide?
- Open-ended question, can answer in different ways
- Capitalize on the new linear layer ⇒ allows for direct analysis of relative linear weights
- Sample REs from RE lookup layer corresponding to salient TauSTE neurons
- Analyze REs for interesting linguistic features and inductive biases

Overview

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Further work

Research Question 1: Competitive performance

Figure 13: Validation accuracies of SoPa++ models against training updates

	97.6 ± 0.2					

Table 4: Test accuracies of SoPa++ model

Research Question 1: Competitive performance

Figure 13: Validation accuracies of SoPa++ models against training updates

		Accuracy in $\%$ with mean \pm standard-deviation					
Size	Parameters	τ=0.00	$\tau = 0.25$	$\tau = 0.50$	$\tau = 0.75$	τ =1.00	
Small	1,260,292	$\textbf{97.6} \pm \textbf{0.2}$	97.6 ± 0.2	97.3 ± 0.2	97.0 ± 0.3	96.9 ± 0.3	
Medium	1,351,612	98.3 ± 0.2	98.1 ± 0.1	98.0 ± 0.2	97.9 ± 0.1	97.7 ± 0.1	
Large	1,503,812	98.3 ± 0.2	98.3 ± 0.2	98.2 ± 0.2	98.1 ± 0.2	98.0 ± 0.2	

Table 4: Test accuracies of SoPa++ models

Research Question 2: Effective explanations

Figure 14: Visualization of model-pair accuracies and distance metrics

roduction Background concepts Data and methodologies **Results** Discussion Conclusions Further work Bibliography

Research Question 3: Relevant explanations

Figure 15: Relative linear layer weights applied to TauSTE neurons for the best performing small RE proxy model with a test accuracy of 97.4%

roduction Background concepts Data and methodologies **Results** Discussion Conclusions Further work Bibliography

Research Question 3: Relevant explanations

Figure 15: Relative linear layer weights applied to TauSTE neurons for the best performing small RE proxy model with a test accuracy of 97.4%

Figure 16: Ten sampled regular expressions from the RE lookup layer corresponding to TauSTE neuron 17 for the best performing small RE proxy model

Overview

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Further work

Research Question 1: Competitive performance

Overview:

- RQ 1: Does SoPa++ provide competitive performance?
- Competitive accuracy range: 96.6 99.5% (Schuster et al., 2019; Zhang et al., 2019; Zhang et al., 2020)
- Observed best accuracy range for $\tau = 0.00$: 97.6 98.3%
- SoPa++ offers competitive performance on FMTOD's English language intent detection task

- Other studies worked with true-cased text
- Observed performance is in the middle of competitive range
- Worth noting the sizes of competitive BERT-derived models with external data

Research Question 1: Competitive performance

Overview:

- RQ 1: Does SoPa++ provide **competitive** performance?
- Competitive accuracy range: 96.6 99.5% (Schuster et al., 2019; Zhang et al., 2019; Zhang et al., 2020)
- Observed best accuracy range for $\tau = 0.00$: 97.6 98.3%
- SoPa++ offers competitive performance on FMTOD's English language intent detection task

- Other studies worked with true-cased text
- Observed performance is in the middle of competitive range
- Worth noting the sizes of competitive BERT-derived models with external data

Research Question 2: Effective explanations

Overview:

- RQ 2: To what extent does SoPa++ contribute to effective explanations by simplification?
- Effective explanations by simplification require simpler model, similar performance and maximizing resemblance to antecedent
- Effective to the extent of: lowest accuracy differences ranging from 0.1-0.7% and softmax distance norms ranging from 4.3-10.0%
- Most effective for medium-large sized models with $\tau \in [0.50, 1.00]$

- No benchmark for effective explanations by simplification
- RE proxy may not necessarily always be transparent given size of RE lookup layer
- Target audience was omitted in this analysis

Research Question 2: Effective explanations

Overview:

- RQ 2: To what extent does SoPa++ contribute to effective explanations by simplification?
- Effective explanations by simplification require simpler model, similar performance and maximizing resemblance to antecedent
- Effective to the extent of: lowest accuracy differences ranging from 0.1-0.7% and softmax distance norms ranging from 4.3-10.0%
- Most effective for medium-large sized models with $\tau \in [0.50, 1.00]$

- No benchmark for effective explanations by simplification
- RE proxy may not necessarily always be transparent given size of RE lookup layer
- Target audience was omitted in this analysis

Overview:

- RQ 3: What **interesting and relevant** explanations can SoPa++ provide?
- Similar lexical properties in branches
- USA-centric inductive biases
- Pronoun-level inductive biases

Figure 17: Sampled regular expressions from the RE lookup layer corresponding to TauSTE neuron 17 for the best

Overview:

- RQ 3: What interesting and relevant explanations can SoPa++ provide?
- Similar lexical properties in branches
- USA-centric inductive biases
- Pronoun-level inductive biases

Figure 17: Sampled regular expressions from the RE lookup layer corresponding to TauSTE neuron 17 for the best performing small RE proxy model

Overview:

- RQ 3: What interesting and relevant explanations can SoPa++ provide?
- Similar lexical properties in branches
- USA-centric inductive biases
- Pronoun-level inductive biases

Figure 17: Sampled regular expressions from the RE lookup layer corresponding to TauSTE neuron 17 for the best performing small RE proxy model

Overview:

- RQ 3: What **interesting and relevant** explanations can SoPa++ provide?
- Similar lexical properties in branches
- USA-centric inductive biases
- Pronoun-level inductive biases

Figure 17: Sampled regular expressions from the RE lookup layer corresponding to TauSTE neuron 17 for the best performing small RE proxy model

Overview

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- Further work

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification

- Does SoPa++ provide competitive performance?
 - Best accuracy range: 97.6 − 98.3% √
- To what extent does SoPa++ contribute to effective explanations by simplification?
 - \circ Lowest accuracy differences ranging from 0.1 0.7% and softmax distance norms ranging from 4.3 10.0% \checkmark
 - Target audience analysis omitted
- What interesting and relevant explanations can SoPa++ provide?
 - Regular expression samples from salient TauSTE neurons analyzed √
 - Linguistic features and inductive biases √
 - Small sample size >

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification √

- Does SoPa++ provide competitive performance?
 - Best accuracy range: 97.6 − 98.3% √
- To what extent does SoPa++ contribute to effective explanations by simplification?
 - \circ Lowest accuracy differences ranging from 0.1 0.7% and softmax distance norms ranging from 4.3 10.0% \checkmark
 - Target audience analysis omitted X
- 3 What interesting and relevant explanations can SoPa++ provide?
 - Regular expression samples from salient TauSTE neurons analyzed √
 - Linguistic features and inductive biases √
 - Small sample size X

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification √

- Does SoPa++ provide **competitive** performance?
 - $_{\rm \bullet}$ Best accuracy range: 97.6 98.3% \checkmark
- To what extent does SoPa++ contribute to effective explanations by simplification?
 - \circ Lowest accuracy differences ranging from 0.1 0.7% and softmax distance norms ranging from 4.3 10.0% \checkmark
 - Target audience analysis omitted X
- What interesting and relevant explanations can SoPa++ provide?
 - Regular expression samples from salient TauSTE neurons analyzed √
 - Linguistic features and inductive biases v
 - Small sample size X

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification √

- Does SoPa++ provide **competitive** performance?
 - $_{\rm \bullet}$ Best accuracy range: 97.6 98.3% $\sqrt{}$
- To what extent does SoPa++ contribute to effective explanations by simplification?
 - \bullet Lowest accuracy differences ranging from 0.1-0.7% and softmax distance norms ranging from 4.3-10.0% \checkmark
 - Target audience analysis omitted
- **3** What **interesting and relevant** explanations can SoPa++ provide?
 - Regular expression samples from salient TauSTE neurons analyzed √
 - Linguistic features and inductive biases v
 - Small sample size X

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification √

- Does SoPa++ provide **competitive** performance?
 - \bullet Best accuracy range: 97.6 98.3% \checkmark
- To what extent does SoPa++ contribute to effective explanations by simplification?
 - \bullet Lowest accuracy differences ranging from 0.1-0.7% and softmax distance norms ranging from 4.3-10.0% \checkmark
 - Target audience analysis omitted X
- 3 What interesting and relevant explanations can SoPa++ provide?
 - Regular expression samples from salient TauSTE neurons analyzed √
 - Linguistic features and inductive biases √
 - Small sample size X

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification √

- Does SoPa++ provide **competitive** performance?
 - ullet Best accuracy range: 97.6-98.3% $\sqrt{}$
- To what extent does SoPa++ contribute to effective explanations by simplification?
 - \bullet Lowest accuracy differences ranging from 0.1-0.7% and softmax distance norms ranging from 4.3-10.0% \checkmark
 - Target audience analysis omitted X
- 3 What interesting and relevant explanations can SoPa++ provide?
 - ullet Regular expression samples from salient TauSTE neurons analyzed $\sqrt{}$
 - ullet Linguistic features and inductive biases \checkmark
 - Small sample size >

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification √

- Does SoPa++ provide **competitive** performance?
 - ullet Best accuracy range: 97.6-98.3% $\sqrt{}$
- To what extent does SoPa++ contribute to effective explanations by simplification?
 - \bullet Lowest accuracy differences ranging from 0.1-0.7% and softmax distance norms ranging from 4.3-10.0% \checkmark
 - Target audience analysis omitted X
- 3 What interesting and relevant explanations can SoPa++ provide?
 - ullet Regular expression samples from salient TauSTE neurons analyzed $\sqrt{}$
 - ullet Linguistic features and inductive biases $\sqrt{}$
 - Small sample size X

Overview

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Further work

Explainability:

• Are SoPa++'s explanations useful for its target audience?

Bias correction

- Manual bias corrections through large-scale analysis of RE lookup layer
- Mitigate ethical issues of using black-box models?

Generalization

- Possible to generalize branches with broad categories like locations and numbers
- For example, replace digital tokens with $\-?[\d]+\.?[\d]*$
- Robustness on unseen data?

Efficiency

- Parallelize RE lookup layer
- Utilize GPU-based regular expression matching algorithms (Wang et al., 2011; Zu et al., 2012; Yu and Becchi, 2013)

Explainability

• Are SoPa++'s explanations useful for its target audience?

Bias correction:

- Manual bias corrections through large-scale analysis of RE lookup layer
- Mitigate ethical issues of using black-box models?

Generalization

- Possible to generalize branches with broad categories like locations and numbers
- For example, replace digital tokens with \-?[\d]+\.?[\d]*
- Robustness on unseen data?

Efficiency

- Parallelize RE lookup layer
- Utilize GPU-based regular expression matching algorithms (Wang et al., 2011; Zu et al., 2012; Yu and Becchi, 2013)

explainability

Are SoPa++'s explanations useful for its target audience

Bias correction

- Manual bias corrections through large-scale analysis of RE lookup layer
- Mitigate ethical issues of using black-box models?

Generalization:

- Possible to generalize branches with broad categories like locations and numbers
- For example, replace digital tokens with \-?[\d]+\.?[\d]*
- Robustness on unseen data?

Efficiency

- Parallelize RE lookup layer
- Utilize GPU-based regular expression matching algorithms (Wang et al., 2011; Zu et al., 2012; Yu and Becchi, 2013)

-xpiailiability

Are SoPa++'s explanations useful for its target audience

Bias correction

- Manual bias corrections through large-scale analysis of RE lookup layer
- Mitigate ethical issues of using black-box models?

Generalization

- Possible to generalize branches with broad categories like locations and numbers
- For example, replace digital tokens with \-?[\d]+\.?[\d]*
- Robustness on unseen data?

Efficiency:

- Parallelize RE lookup layer
- Utilize GPU-based regular expression matching algorithms (Wang et al., 2011; Zu et al., 2012; Yu and Becchi, 2013)

Thank you for your time and attention \heartsuit

Bibliography I

- Arrieta, Alejandro Barredo, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot,
 Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina,
 Richard Benjamins, et al. (2020). "Explainable Artificial Intelligence (XAI):
 Concepts, taxonomies, opportunities and challenges toward responsible Al". In:
 Information Fusion 58, pp. 82–115.
- Danilevsky, Marina, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithviraj Sen (Dec. 2020). "A Survey of the State of Explainable AI for Natural Language Processing". In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Suzhou, China: Association for Computational Linguistics, pp. 447–459. URL: https://www.aclweb.org/anthology/2020.aacl-main.46.
- Kuich, Werner and Arto Salomaa (1986). "Linear Algebra". In: Semirings, automata, languages. Springer, pp. 5–103.
- Peng, Hao, Roy Schwartz, Sam Thomson, and Noah A. Smith (2018). "Rational Recurrences". In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, pp. 1203–1214. DOI: 10.18653/v1/D18-1152. URL: https://www.aclweb.org/anthology/D18-1152.

Bibliography II

- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). ""Why Should I Trust You?": Explaining the Predictions of Any Classifier". In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 1135–1144.
- Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf (2019). "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter". In: NeurIPS EMC² Workshop.
- Schuster, Sebastian, Sonal Gupta, Rushin Shah, and Mike Lewis (June 2019).

 "Cross-lingual Transfer Learning for Multilingual Task Oriented Dialog". In:

 Proceedings of the 2019 Conference of the North American Chapter of the

 Association for Computational Linguistics: Human Language Technologies, Volume
 1 (Long and Short Papers). Minneapolis, Minnesota: Association for

 Computational Linguistics, pp. 3795–3805. DOI: 10.18653/v1/N19-1380. URL:

 https://www.aclweb.org/anthology/N19-1380.
- Schwartz, Roy, Sam Thomson, and Noah A. Smith (July 2018). "Bridging CNNs, RNNs, and Weighted Finite-State Machines". In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics, pp. 295–305. DOI: 10.18653/v1/P18-1028. URL: https://www.aclweb.org/anthology/P18-1028.

Bibliography III

- Wang, Lei, Shuhui Chen, Yong Tang, and Jinshu Su (2011). "Gregex: Gpu based high speed regular expression matching engine". In: 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE, pp. 366–370.
- Yin, Penghang, Jiancheng Lyu, Shuai Zhang, Stanley J. Osher, Yingyong Qi, and Jack Xin (2019). "Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=Skh4jRcKQ.
- Yu, Xiaodong and Michela Becchi (2013). "GPU acceleration of regular expression matching for large datasets: exploring the implementation space". In: Proceedings of the ACM International Conference on Computing Frontiers, pp. 1–10.
- Zhang, Li, Qing Lyu, and Chris Callison-Burch (Dec. 2020). "Intent Detection with WikiHow". In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Suzhou, China: Association for Computational Linguistics, pp. 328-333. URL: https://www.aclweb.org/anthology/2020.aacl-main.35.
- Zhang, Zhichang, Zhenwen Zhang, Haoyuan Chen, and Zhiman Zhang (2019). "A joint learning framework with bert for spoken language understanding". In: IEEE Access 7, pp. 168849–168858.

Bibliography IV

Zu, Yuan, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qunfeng Dong (2012). "GPU-based NFA implementation for memory efficient high speed regular expression matching". In: Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, pp. 129–140.