9.4 习题

张志聪

2024年12月4日

9.4.1

按照定义 9.4.1 可知 (a) 等价于 f 在 x_0 处沿着 X 收敛于 $f(x_0)$ (定义 9.3.6),即: $(a) \Leftrightarrow f$ 在 x_0 处沿着 X 收敛于 $f(x_0)$

- (b) ⇒ f 在 x₀ 处沿着 X 收敛于 f(x₀)
 (b) 满足 9.3.9 (b), 所以 f 在 x₀ 处沿着 X 收敛于 f(x₀)。
- (c) \Rightarrow f 在 x_0 处沿着 X 收敛于 $f(x_0)$ $|f(x) f(x_0)| < \epsilon \text{ 成立,那么 } |f(x) f(x_0)| \le \epsilon \text{ 成立,于是满足定义}$ 9.3.6,所以 f 在 x_0 处沿着 X 收敛于 $f(x_0)$ 。
- (d) ⇒ f 在 x₀ 处沿着 X 收敛于 f(x₀)
 因为 (x₀ δ, x₀ + δ) ⊂ [x₀ δ, x₀ + δ], 所以 |x x₀| ≤ δ 命题成立, 于是 |x x₀| < δ 时命题也成立。

于是满足定义 9.3.6,所以 f 在 x_0 处沿着 X 收敛于 $f(x_0)$ 。

9.4.2

例 9.4.2、例 9.4.3 已经说明了证明过程, 唯一的区别是定义域的不同的。

9.4.3

任意 $x_0 \in R$,设序列 $(a_n)_{n=0}^{\infty}$ 是任意一个完全由 R 中元素构成并且收敛于 x_0 的序列。

对任意 $\epsilon > 0$, 我们希望

$$|f(x) - f(x_0)| \le \epsilon$$
$$|a^x - a^{x_0}| \le \epsilon$$
$$a^{x_0}|a^{x - x_0} - 1| \le \epsilon$$
$$|a^{x - x_0} - 1| \le \epsilon/a^{x_0}$$

• 当 $x - x_0 > 0$,由引理 6.5.3 可知,存在正整数 N',使得

$$|a^{x-x_0} - 1| \le \epsilon/a^{x_0}$$

当 $x - x_0 \le 1/N'$ 时成立。

所以当 $\delta' = 1/N'$ 时, $|f(x) - f(x_0)| \le \epsilon$ 对所有满足 $|x - x_0| < \delta'$ 的 $x \in R$ 均成立。

• 当 $x-x_0<0$,由引理 6.5.3 和极限定律可知, $\lim_{n\to\infty}x^{-(1/n)}=1$,类似 地,存在正整数 N'',使得

$$|a^{x-x_0} - 1| \le \epsilon/a^{x_0}$$

当 $x - x_0 \ge -(1/N'')$ 即 $x_0 - x \le 1/N''$ 时成立。

所以当 $\delta'' = 1/N''$ 时, $|f(x) - f(x_0)| \le \epsilon$ 对所有满足 $|x - x_0| < \delta''$ 的 $x \in R$ 均成立。

取 $\delta = min(\delta', \delta'')$ 时, $|f(x) - f(x_0)| \le \epsilon$ 对所有满足 $|x - x_0| < \delta$ 的 $x \in R$ 均成立。所以 f 在 x_0 处沿着 R 收敛于 $f(x_0)$ 。于是 f 在每一个点 $x_0 \in R$ 处都连续。

9.4.4

任意 $x_0 \in (0, +\infty)$, 对任意 $\epsilon > 0$,

$$|f(x) - f(x_0)| \le \epsilon$$
$$|x^p - x_0^p| \le \epsilon$$
$$|(\frac{x}{x_0})^p - 1| \le \epsilon/x_0^p$$

说明 1. 到这里, 也就知道书中那样提示的原因了, 接下来, 我们先按照提示证明:

$$\lim_{x \to 1} x^p = 1$$

因为 $\lim_{x\to 1} x = 1$,所以利用极限定理(命题 9.3.14)可知证明 $\lim_{x\to 1} x^n = 1$ 对所有的非负整数 n 均成立 (对 n 进行归纳即可);

于是 $\lim_{x\to 1} x^n = 1$ 对所有的负整数 n 均成立 (因为 $x^n = 1/x^{-n}$ 然后利用极限定理可证);

由命题 5.4.12 和命题 4.4.1 可知,存在整数 n 使得 $n \le p < n+1$,这里以 $n \ge 0, x > 1$ 为例 (其他情况类似,不做赘述),因为 $x^n \le x^p < x^{n+1}$,于是由习题 9.3.5 (夹逼定理的连续形式)可得 $\lim_{n \to 1} x^p = 1$.

所以, $\lim_{\frac{x}{x_0}\to 1}(\frac{x}{x_0})^p=1$ (不妨把 $x':=\frac{x}{x_0}$ 整体看做自变量),所以存在 $\delta>0$ 使得

$$\left| \left(\frac{x}{x_0} \right)^p - 1 \right| \le \epsilon / x_0^p$$

即

$$|f(x) - f(x_0)| \le \epsilon$$

对所有满足 $|\frac{x}{x_0} - 1| < \delta$ 即 $(|x - x_0| \le \delta x_0)$ 的 $x \in (0, +\infty)$ 均成立。 所以 f 在 x_0 处沿着 $(0, +\infty)$ 收敛于 $f(x_0)$,于是 f 在每一个点 $x_0 \in (0, +\infty)$ 处都连续。

9.4.5

对任意 $\epsilon > 0$, 只要能找到 $\delta > 0$ 使得

$$|(g \circ f)(x) - (g \circ f)(x_0)| \le \epsilon$$

对所有满足 $|x-x_0|<\delta$ 的 $x\in X$ 均成立,即可证明复合函数 $g\circ f:X\to Y$ 在 x_0 处是连续的。

为了表述方便, 定义

$$y_x := f(x)$$

$$y_0 := f(x_0)$$

$$r_x := (g \circ f)(x) = g(f(x)) = g(y_x)$$

$$r_0 := (g \circ f)(x_0) = f(f(x_0)) = g(y_0)$$

因为 g 在 $f(x_0)$ 处是连续的,所以,存在 $\delta_q > 0$ 使得

$$|g(y) - g(y_0)| \le \epsilon$$

对所有满足 $|y-y_0| \le \delta_g$ 的 $y \in Y$ 均成立。

又因为 f 在 x_0 处是连续的,所以,存在 $\delta_f > 0$ 使得

$$|y_x - y_0| \le \delta_g$$

对所有满足 $|x-x_0| \le \delta_f$ 的 $x \in X$ 均成立。

综上,取 $\delta = \delta_f$ 时,对满足 $|x - x_0| \le \delta$ 且 $x \in X$ 的 x 来说,

$$|f(x) - f(x_0)| \le \delta_g$$

$$\Rightarrow$$

$$|y_x - y_0| \le \delta_g$$

进而 $|g(y_x) - g(y_0)| \le \epsilon$ 。于是可得,复合函数 $g \circ f: X \to Y$ 在 x_0 处是连续的。

9.4.6

任意 $x_0 \in Y$ 。

对任意一个由 Y 中元素构成的且满足 $\lim_{x\to x_0} a_n = x_0$ 的序列 $(a_n)_{n=0}^{\infty}$,因为 $Y\subseteq X$,所以序列 $(a_n)_{n=0}^{\infty}$ 中的项也是 X 中元素,因为 $f:X\to Y$ 是连续函数,由命题 9.4.7(b)可知, $\lim_{x\to x_0} f(a_n) = f(x_0)$,再次利用命题 9.4.7(b)可知 $f|_Y$ 在 x_0 处是连续的。

于是 f 在 Y 上是连续的。

说明 2. 这个习题给了一个启发,就算 Y 是一个孤立的点,也是连续的,也是严格符合定义的。

9.4.7