Geometría. Septiembre 2014.

Duración 2 horas. No se permite ningún tipo de material.

Justificar concisa y razonadamente todas las respuestas.

Ejercicio 1. (3 puntos) Sea $\triangle \{A, B, C\}$ un triángulo isósceles donde AB = AC. Sean Q y Q' dos puntos distintos del lado [B, C]. Sean $R, R' \in [A, B]$ y $S, S' \in [A, C]$, de modo que $r_{QR} \bot r_{AB}$, $r_{Q'R'} \bot r_{AB}$, $r_{QS} \bot r_{AC}$ y $r_{Q'S'} \bot r_{AC}$. Demostrar:

$$QR + QS = Q'R' + Q'S'.$$

Ejercicio 2. (4 puntos)

- 1. Definir potencia de un punto P respecto de una circunferencia C.
- 2. Sea \mathcal{C} una circunferencia de centro O y $\iota_{\mathcal{C}}$ la inversión del plano con respecto a \mathcal{C} . Sea X un punto del plano $X \neq O$ y $X \notin \mathcal{C}$. Si \mathcal{C}' es una circunferencia que pasa por X y $\iota_{\mathcal{C}}(X)$, probar que $\iota_{\mathcal{C}}(\mathcal{C}') = \mathcal{C}'$.

Ejercicio 3. (3 puntos) Sean π_1 y π_2 dos planos distintos y paralelos del espacio euclidiano. Encontrar una isometría h del espacio que sea par y sin puntos fijos tal que $h(\pi_1) = \pi_2$ y $h(\pi_2) = \pi_1$.

Soluciones

Ejercicio 1.

Solución 1.

Sea α la medida de los dos ángulos iguales del triángulo $\triangle\{A,B,C\},$ entonces:

 $QR = BQ\mathrm{sen}\alpha$

 $QS = CQ\operatorname{sen}\alpha$

Sumando ambas igualdades tenemos que

$$QR + QS = (BQ + CQ)\operatorname{sen}\alpha = BC\operatorname{sen}\alpha$$

Del mismo modo se prueba que $Q'R' + Q'S' = BC\operatorname{sen}\alpha$. Luego QR + QS = Q'R' + Q'S'.

Solución 2.

Sea $\sigma_{r_{BC}}$ la reflexión con base la recta r_{BC} . Sea $\sigma_{r_{BC}}(A) = A'$. El cuadrilátero (A, B, A', C) es un rombo, pues tiene dos simetrías que son las reflexiones $\sigma_{r_{BC}}$ y $\sigma_{r_{AA'}}$ (y por tanto también la media vuelta $\sigma_{r_{BC}} \circ \sigma_{r_{AA'}}$, un rombo es también un paralelogramo y así $r_{AB} \| r_{A'C}$ y $r_{AC} \| r_{A'B}$). Además por ser $\sigma_{r_{BC}}$ una isometría, $QS = \sigma_{r_{BC}}(Q)\sigma_{r_{BC}}(S) = Q\sigma_{r_{BC}}(S)$ y al ser $r_{QS} \bot r_{AC}$, entonces $r_{Q\sigma_{r_{BC}}(S)} \bot r_{A'C}$, con lo que $r_{Q\sigma_{r_{BC}}(S)} = r_{QR}$ y perpendiculares a r_{AB} . Luego $QR + QS = QR + Q\sigma_{r_{BC}}(S) = R\sigma_{r_{BC}}(S)$ donde R y $\sigma_{r_{BC}}(S)$ son los puntos de intersección de una recta ortogonal a las rectas paralelas r_{AB} y $r_{A'C}$. Con el mismo argumento $Q'R' + Q'S' = R'\sigma_{r_{BC}}(S')$ donde R' y $\sigma_{r_{BC}}(S')$ son los puntos de intersección de una recta ortogonal a las rectas paralelas r_{AB} y $r_{A'C}$. Por lo tanto QR + QS = Q'R' + Q'S'.

Ejercicio 2.

1. Ver Teorema 8.16 del texto base.

2.

Solución 1.

Sea $Y \in \mathcal{C}'$. Vamos a probar que $\iota_{\mathcal{C}}(Y) \in \mathcal{C}'$. Si Y = X por el enunciado $\iota_{\mathcal{C}}(Y) \in \mathcal{C}'$. Supongamos que $Y \neq X$. Sea \overline{r} la semirrecta con

origen en O y tal que $Y \in \overline{r}$. Entonces \overline{r} corta a C' en dos puntos distintos $Y' \neq Y$ o bien es tangente a C'. En el primer caso, por el teorema de la potencia de un punto respecto de una circunferencia (teorema 8.16), $OYOY' = OXO\iota_{\mathcal{C}}(X) = \rho^2$, donde ρ es el radio de C'. Luego $Y' = \iota_{\mathcal{C}}(Y)$ y entonces $\iota_{\mathcal{C}}(Y) \in C'$. Si \overline{r} en tangente a C' entonces $OY^2 = OXO\iota_{\mathcal{C}}(X) = \rho^2$, y entonces $Y = \iota_{\mathcal{C}}(Y) \in C'$. Por tanto $\iota_{\mathcal{C}}(C') \subset C'$. Falta ver que $C' \subset \iota_{\mathcal{C}}(C')$. Si $Z \in C'$, como $\iota_{\mathcal{C}} \circ \iota_{\mathcal{C}} = \mathrm{id}_{\mathbf{P}}, Z = \iota_{\mathcal{C}} \circ \iota_{\mathcal{C}}(Z) = \iota_{\mathcal{C}}(\iota_{\mathcal{C}}(Z)) \in \iota_{\mathcal{C}}(C')$, pues hemos visto antes que $\iota_{\mathcal{C}}(Z) \in C'$. Luego $\iota_{\mathcal{C}}(C') = C'$.

Solución 2. Aplicar ejercicio 8.5.

Ejercicio 3.

Hay much soluciones. Una posible:

Sea π el plano que es paralelo a π_1 y π_2 y que pasa por el punto medio del segmento determinado por los puntos de intersección de los planos π_1 y π_2 con una recta ortogonal a dichos planos. Sea r una recta cualquiera contenida en π y σ_r una media vuelta cuyo eje es r. Entonces $\sigma_r(\pi_1) = \pi_2$ y $\sigma_r(\pi_2) = \pi_1$. Ahora consideramos una traslación τ de vector paralelo a la recta r y como $\tau(\pi_1) = \pi_1$ y $\tau(\pi_2) = \pi_2$, se tiene que $\tau \circ \sigma_r(\pi_1) = \pi_2$, $\tau \circ \sigma_r(\pi_2) = \pi_1$ y $\tau \circ \sigma_r$ es una isometría par sin puntos fijos.