Mathematical Statistics I Assignment 1 - Solutions

1. By definition we write,

$$E(|X - \mu|) = \int_{-\infty}^{\infty} |x - \mu| \left(\sqrt{2\pi\sigma^2}\right)^{-1} e^{-(x - \mu)^2/(2\sigma^2)} dx.$$
 (1)

The substitution $t = x - \mu \text{ turn } (1)$ into

$$\left(\sqrt{2\pi\sigma^2}\right)^{-1} \int_{-\infty}^{\infty} |t| e^{-t^2/(2\sigma^2)} dx,$$

since $f(t) = |t| \exp(-t^2)$ is an even function, we have,

$$\left(\sqrt{2\pi\sigma^2}\right)^{-1} \int_{-\infty}^{\infty} |t| e^{-t^2/(2\sigma^2)} dx = \left(\sqrt{2\pi\sigma^2}\right)^{-1} \cdot 2 \int_{0}^{\infty} t e^{-t^2/(2\sigma^2)} dx. \tag{2}$$

Note that,

$$\int_{0}^{\infty} t e^{-t^{2}/(2\sigma^{2})} dx = -\sigma^{2} e^{-t^{2}/(2\sigma^{2})} \Big|_{0}^{\infty} = \sigma^{2},$$

and then the result follows immediately from (2).

2. Let $M_Z(t)$ be the moment generating function of the random variable Z, we can write,

$$M_{X_1}(t)M_Y(t) = M_{X_1+Y}(t) = M_{X_2}(t),$$
 (3)

where the first equality comes from the independence of X_1 and Y. Hence (3) implies,

$$M_Y(t) = \frac{M_{X_2}(t)}{M_{X_1}(t)}.$$

Note that if X be a chi-square random variable with r degrees of freedom, then the moment generating function of X is, $M_X(t) = (1-2t)^{-r/2}$ for t < 1/2. Hence for t < 1/2,

$$M_Y(t) = (1 - 2t)^{-(r_2 - r_1)/2},$$

which is the moment generating function of a chi-square random variable with $r_2 - r_1$ degrees of freedom.

3. Note that $F_{X_i}(x) = 1 - e^{(x-a)/\theta}$ for $i = 1, 2, \dots, n$. Hence we can write,

$$F_{X_{(1)}}(x) = P(X_{(1)} \le x) = 1 - P(X_{(1)} > x) = 1 - (1 - F_{X_1}(x))^n$$

note that in the last equality we use the independence assumption. We have,

$$F_{X_{(1)}}(x) = 1 - e^{n(x-a)/\theta}$$

therefore $X_{(1)} \sim E(a,\theta/n)$. It can be easily seen that $X_{(1)} - a \sim E(\theta/n)$, therefore $2n(X_{(1)} - a)/\theta \sim E(1/2)$ which is the same as χ^2_2 . On the other hand, for $i=1,2,\ldots,n$, $(X_i-a)/\theta \sim E(1)$, hence $2\sum_{i=1}^n (X_i-a)/\theta \sim \Gamma(n,1/2)$ which is the same as χ^2_{2n} . Since $X_{(1)}$ is a complete sufficient statistic for parameter θ , and $Y=2\sum_{i=1}^n \left(X_i-X_{(1)}\right)/\theta$ is an ancillary statistic (its distribution does not depend on θ), they are independent of each other according to Basu's theorem. (Don't forget that this independence was given to us as a presumption). Hence we can apply the theorem that we proved in previous question to write,

$$Y = \left[2\sum_{i=1}^{n} (X_i - a)/\theta - 2n(X_{(1)} - a)/\theta \right] \sim \chi_{2n-2}^2.$$

4. Let Z be a random variable with distribution G, and let $X = \sigma Z$ for $\sigma > 0$. Then the distributions of X form a scale family. Now consider the distributions of $\log X = \log \sigma + \log Z$.

$$P(\log X \le y) = P(\log \sigma + \log Z \le y) = P(\log Z \le y - \log \sigma) = F(y - \mu),$$

where $\mu = \log \sigma$ and F is the distribution of $\log Z$. Thus the distributions of $\log X$ are functions of $y - \mu$ and therefore form a location family.

5. (i) The probability density function of X is

$$\frac{1}{\Gamma(\alpha)\gamma^{\alpha}}x^{\alpha-1}e^{-x/\gamma}I_{(0,\infty)}(x).$$

Therefore the probability density function for $Y = \sigma \log X$ is

$$\frac{1}{\Gamma(\alpha)\sigma} e^{\alpha(y-\sigma\log\gamma)/\sigma} \exp\left\{-e^{(y-\sigma\log\gamma)/\sigma}\right\} = \frac{1}{\sigma} g\left(\frac{y-\eta}{\sigma}\right),$$

where $\eta = \sigma \log \gamma$ and $g(t) = \Gamma(\alpha)^{-1} \exp{\alpha t - e^t}$. Hence it belongs to a location-scale family with location parameter η and scale parameter σ .

(ii) When σ is known, we rewrite the density of Y as

$$\frac{1}{\sigma\Gamma(\alpha)}\exp\left\{\alpha y/\sigma - \frac{e^{y/\sigma}}{\gamma} - \alpha\log\gamma\right\}.$$

Therefore, the distribution of Y is from an exponential family.