Neural Jump Ordinary Differential Equations: Consistent Continuous-Time Prediction and Filtering

Calypso Herrera Florian Krach Josef Teichmann Department of Mathematics, ETH Zürich

ICLR - May 2021

Markovian stochastic process $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$

- Markovian stochastic process $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$
- lacktriangle training set of N independent realisations $x_1^{(j)},\dots,x_{n_j}^{(j)}\in\mathbb{R}^{d_X}$

- ▶ Markovian stochastic process $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$
- ightharpoonup training set of N independent realisations $x_1^{(j)},\ldots,x_{n_i}^{(j)}\in\mathbb{R}^{d_X}$
- ightharpoonup observed at n_j random observation times $t_1^{(j)}, \ldots, t_{n_j}^{(j)} \in [0, T]$

- lacktriangle Markovian stochastic process $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$
- lacktriangle training set of N independent realisations $x_1^{(j)},\ldots,x_{n_j}^{(j)}\in\mathbb{R}^{d_X}$
- lacktriangle observed at n_j random observation times $t_1^{(j)}, \dots, t_{n_j}^{(j)} \in [0, T]$

Goal: learn the L^2 -optimal prediction of X given last observation x_t :

► Recurrent Neural Network

$$h_{i+1} := \mathsf{RNNCell}(h_i, x_{i+1}).$$

Recurrent Neural Network

$$h_{i+1} := \mathsf{RNNCell}(h_i, x_{i+1}).$$

Neural Ordinary Differential Equation

$$h_t := h_0 + \int_{t_0}^t f_{ heta}(h_s,s) ds = \mathsf{ODESolve}(f_{ heta},h_0,(t_0,t)),$$

Recurrent Neural Network

$$h_{i+1} := \mathsf{RNNCell}(h_i, x_{i+1}).$$

Neural Ordinary Differential Equation

$$h_t := h_0 + \int_{t_0}^t f_{ heta}(h_s,s) ds = \mathsf{ODESolve}(f_{ heta},h_0,(t_0,t)),$$

▶ ODE-RNN and GRU-ODE-Bayes

$$\left\{ \begin{array}{ll} h'_i & := & \mathsf{ODESolve}(f_\theta, h_{i-1}, (t_{i-1}, t_i)) \\ h_i & := & \mathsf{RNNCell}(h'_i, x_i) \, . \end{array} \right.$$

Recurrent Neural Network

$$h_{i+1} := \mathsf{RNNCell}(h_i, x_{i+1}).$$

Neural Ordinary Differential Equation

$$h_t := h_0 + \int_{t_0}^t f_{ heta}(h_s,s) ds = \mathsf{ODESolve}(f_{ heta},h_0,(t_0,t)),$$

▶ ODE-RNN and GRU-ODE-Bayes

$$\begin{cases} h'_i &:= \text{ODESolve}(f_\theta, h_{i-1}, (t_{i-1}, t_i)) \\ h_i &:= \text{RNNCell}(h'_i, x_i). \end{cases}$$

no theoretical guarantees exist

Neural Jump ODE

▶ jumpNN instead of RNN & additional inputs for neural ODE

```
 \left\{ \begin{array}{ll} h_i' & := & \mathsf{ODESolve}(f_\theta, (h_{i-1}, x_{i-1}, t_{i-1}, t - t_{i-1}), (t_{i-1}, t_i)) \\ h_i & := & \mathsf{jumpNN}(x_i) \\ y_{i-} & := & \mathsf{outputNN}(h_i'), \quad y_i := \mathsf{outputNN}(h_i) \end{array} \right.
```

Neural Jump ODE

jumpNN instead of RNN & additional inputs for neural ODE

$$\left\{ \begin{array}{ll} h_i' & := & \mathsf{ODESolve}(f_\theta, (h_{i-1}, x_{i-1}, t_{i-1}, t - t_{i-1}), (t_{i-1}, t_i)) \\ h_i & := & \mathsf{jumpNN}(x_i) \\ y_{i-} & := & \mathsf{outputNN}(h_i'), \quad y_i := \mathsf{outputNN}(h_i) \end{array} \right.$$

new objective function

$$\hat{\Phi}_{N}(\theta) := \underbrace{\frac{1}{N} \sum_{j=1}^{N} \frac{1}{n^{j}} \sum_{i=1}^{n^{j}} \left(\underbrace{|x_{i}^{(j)} - y_{i}^{(j)}|}_{\text{jump part}} + \underbrace{|y_{i}^{(j)} - y_{i-}^{(j)}|}_{\text{continuous part}} \right)^{2}}_{\text{paths dates}}$$

Theoretical Convergence Guarantees

Theorem (informal)

Neural Jump ODE output Y converges to L^2 -optimal prediction as the number of paths N and network sizes M increase to ∞ .

Theoretical Convergence Guarantees

Theorem (informal)

Neural Jump ODE output Y converges to L^2 -optimal prediction as the number of paths N and network sizes M increase to ∞ .

Experiments on synthetic Heston dataset

Experiments on synthetic Heston dataset

Further experiments on synthetic datasets

▶ Black Scholes (left) & Ornstein Uhlenbeck (right) dataset

Further experiments on synthetic datasets

▶ Black Scholes (left) & Ornstein Uhlenbeck (right) dataset

 \blacktriangleright switching regime (left) & time-dependent drift μ (right)

Experiments on real world datasets

climate forecast on USHCN dataset

	USHCN – MSE	# params
neural ODE-VAE	0.96 ± 0.11	-
neural ODE-VAE-MASK	0.83 ± 0.10	-
sequential VAE	0.83 ± 0.07	-
GRU-SIMPLE	0.75 ± 0.12	_
GRU-D	0.53 ± 0.06	_
T-LSTM	0.59 ± 0.11	_
GRU-ODE-Bayes	0.43 ± 0.07	42'640
NJ-ODE (S)	0.45 ± 0.06	10'925
NJ-ODE (L)	$\textbf{0.40}\pm\textbf{0.07}$	571′305

Experiments on real world datasets

climate forecast on USHCN dataset

	USHCN – MSE	# params
neural ODE-VAE	0.96 ± 0.11	-
neural ODE-VAE-MASK	0.83 ± 0.10	-
sequential VAE	0.83 ± 0.07	-
GRU-SIMPLE	0.75 ± 0.12	-
GRU-D	0.53 ± 0.06	-
T-LSTM	0.59 ± 0.11	-
GRU-ODE-Bayes	0.43 ± 0.07	42'640
NJ-ODE (S)	0.45 ± 0.06	10'925
NJ-ODE (L)	$\textbf{0.40}\pm\textbf{0.07}$	571′305

▶ PhysioNet dataset

	Physionet – MSE $(\times 10^{-3})$	# params
RNN-VAE	3.055 ± 0.145	-
Latent ODE (RNN enc.)	3.162 ± 0.052	-
Latent ODE (ODE enc)	2.231 ± 0.029	163′972
Latent ODE + Poisson	2.208 ± 0.050	181′723
NJ-ODE	1.945 ± 0.007	24'423

continuous-time prediction and filtering with Neural Jump ODE

- continuous-time prediction and filtering with Neural Jump ODE
- ▶ first model with theoretical convergence guarantees

- continuous-time prediction and filtering with Neural Jump ODE
- ▶ first model with theoretical convergence guarantees
- outperforming existing models on different empirical examples

- continuous-time prediction and filtering with Neural Jump ODE
- first model with theoretical convergence guarantees
- outperforming existing models on different empirical examples

Thank you for watching!