Induction Motors

Thursday, April 21, 2016

4:52 PM

A 208V, 50Hz, 40hp, three phase induction motor is drawing 25A at a pf of 0.8 inductive. The stator copper losses are 2kW, and the rotor copper losses are 700W. The friction and windage losses are 600W, and the core losses are 1kW (neglect stray losses).

- What is the air gap power.
 What is the converted power.
- What is the output power.
 What is the overall efficiency of the motor.

A 460V, 60Hz, 25hp, four pole, Y connected induction motor, in ohms, per phase, referred to the stator circuit: R_1 =0.641 Ω ; X_1 =1.106 Ω ; R'_2 =0.332 Ω ; X'_2 =0.464 Ω ; X_m =26.3 Ω . Rotational losses are assumed constant for any speed at 1100W. If the rotor slip is 3.3%.

- What is the speed of the motor, in rps, rpm and rad/s.
- What is the stator current.
- What is the power factor.

- What is the converted power, and the output power.
- What is the efficiency of the motor at this load.

b/c connected in Y don't need to divide
$$R_5 \ 8 \times 5 \ by 3$$
 $V_L = 460$
 $5 = 3.3\%$ at some load

 $P_{friction} = 110000$
 $N_0 = 60 \frac{f}{p} = 60 \frac{60}{2} = 1800 RPM$
 $N_2 = (1-5)N_0 \implies N_2 = (1-0.033)(806 = 1741 RPM)$

+
$$\frac{R_1}{M}$$
 $\frac{jX_1}{M}$ $\frac{jX_2}{M}$ $\frac{R_2}{M}$ $\frac{jX_2}{M}$ $\frac{j$

$$I_{1} = \frac{460/\sqrt{3}}{\frac{1}{3} \times \frac{1}{3} \times \frac{1}$$

Prono =
$$3\left(\frac{1-5}{5}R_2^2\right)\left(\frac{1}{2}\right)^2 = 16362\omega$$
 (shipped ma)
Note, converted power is 3 times
this byc only one line of Y

- A two pole, 50Hz, induction motor supplies 15kW at a speed 2900 rpm.
 - What is rotor slip.

What is the induced torque.

- What is the new speed if the torque of the load doubles.
- What is the output power with the doubled torque of the load

$$N_0 = 60 \frac{1}{\rho} = 60 \frac{50}{1} = 3000 \text{ RPM}$$

$$S = \frac{N_0 - N_S}{N_b} = \frac{3000 - 2000}{3000} = 3.33\%$$

Pronv = Tind wroter

Tind = Triction + Tout

windage

Pronv = Pout = 15kW

Pout = To
$$n_2 \frac{2\pi}{60} = To (2900 \frac{2\pi}{60}) = 15kW$$

Ly Tind = Tout = 14.39 Nm

X2 T means ×2 slip in operating region

N = (1-26)No = 2800

Prew = $\frac{2\pi}{60}$ 2800 (2(4a.89Nm)) = 28.96kW

A 480V, 60Hz, 50hp, six pole, Y connected induction motor, in ohms, per phase, referred to the stator circuit: R_1 =0.641 Ω ; X_1 =1.106 Ω ; R'_2 =0.332 Ω ; X'_2 =0.464 Ω ; X_m =26.3 Ω . Neglect windage and friction.

At what speed the motor delivers maximum torque.

Vind =
$$\frac{P_{3}r}{\omega_{0}}$$
 maximize $P_{3}p_{0}$ maximize T
 $\frac{P_{1}}{M} = \frac{1}{12} \frac{1}{1$