Sistemes Intel·ligents – Examen Final (Bloc 1), 17 gener 2018 Test (2 punts) <u>puntuació</u>: max (0, (encerts – errors/3)/3)

Cognoms	:							Nom:	
Grup:	Α	В	С	D	Ε	F	FLIP		

1) Si s'aplica una cerca voraç en l'espai de cerca de la figura, quin node meta es triarà en primer lloc com a solució i quants nodes es generaran per a trobar aquesta solució?

- A. Node A i es generen 7 nodes
- B. Node Bi es generen 8 nodes
- C. Node Bi es generen 11 nodes
- D. Node Ci es generen 14 nodes
- 2) Donat l'espai de cerca de la figura anterior, indica la resposta **INCORRECTA**:
 - A. La funció h(n) és admissible
 - B. La funció h(n) és consistent
 - C. Un algorisme en amplària trobaria la mateixa solució que un algorisme de tipus A
 - D. Un algorisme en profunditat trobaria la mateixa solució que un algorisme voraç
- 3) Siguen tres nivells d'un arbre de cerca per a un problema, d1, d2 i d3, on d1 < d2 < d3, tal que una solució es troba en el nivell d1, una altra solució en el nivell d2 i una altra solució en el nivell d3 (solament hi ha una solució en cadascun dels nivells). Indica l'afirmació **CORRECTA**:
 - A. La complexitat temporal d'un algorisme d'Amplària és $O(b^{d^2})$ i la d'un algorisme d'Aprofundiment Iteratiu és $O(b^{d^1})$
 - B. La complexitat temporal d'un algorisme limitat en Profunditat, amb màxima profunditat m=d1, és $O(b^{d1+1})$
 - C. Assumint que se selecciona màxima profunditat m=d3, un algorisme limitat en Profunditat sempre trobarà abans la solució del nivell d1 o d2.
 - D. Assumint que se selecciona màxima profunditat m=d1, la complexitat temporal d'un algorisme limitat en profunditat i un algorisme d'aprofundiment iteratiu és **O(b**^{d1})

- 4) Siga l'aplicació d'un algorisme A^* per a la resolució d'un problema i siga G el node solució trobat. Indica la sentència que és **FALSA**:
 - A. Si h(n) és consistent, llavors $\forall n1$, n2 tal que n2 és un fill de n1, es compleix sempre h(n2) > h(n1)
 - B. \forall n1, n2, tal que n1 i n2 són nodes del camí solució a G, es compleix sempre $g(n1)+h^*(n1)=g(n2)+h^*(n2)$
 - C. \forall n, tal que n és un node del camí solució a G, es compleix sempre f(n) <= q(G)
 - D. Es compleix sempre que f(G)=g(G).
- 5) Si s'aplica l'algorisme MINIMAX a l'arbre de joc de la figura, quina branca s'escolliria?

- A. A
- B. B
- C. C
- D. D
- 6) Quins valors hauria de tenir el node ombrejat perquè es produïsca sempre el tall mostrat en la figura?

- A. Qualsevol valor comprès en [-∞ 4]
- B. Qualsevol valor.
- C. Qualsevol valor comprès en [4 +∞]
- **D.** Mai es produirà

Sistemes Intel·ligents – Examen Final (Bloc 1), 17 gener 2018 Problema: 3 punts

Joc Sokoban

La figura d'a baix mostra un possible tauler del joc del Sokoban. Cada casella conté un obstacle (O), representat mitjançant quadres de color clar; una caixa (C), representat amb quadrats de color fosc que contenen una creu; un magatzem (A), representat amb un cercle; o no contenir res (N). Així mateix tenim un jugador (J) situat a una de les caselles. L'objectiu consisteix que el jugador espente les caixes fins als magatzems, els quals poden guardar un nombre indefinit de caixes. El jugador es pot desplaçar en 4 direccions: dalt, baix, dreta i esquerra; i per a espentar una caixa ha de fer-ho en una d'aquestes 4 direccions.

La figura representa l'estat inicial d'un problema determinat. El jugador està a la mateixa posició que el magatzem de la fila superior. Per a espentar una caixa, el jugador ha de situar-se a una casella adjacent a la caixa i solament pot espentar-la a una casella que no tinga res (N) o al magatzem (A). En l'exemple de la figura, per a espentar la caixa de la fila superior, el jugador pot:

- situar-se a la casella de la dreta de la caixa i espentar-la cap a l'esquerra; l'efecte d'aquesta operació és que tant la caixa com el jugador es desplacen a l'esquerra
- situar-se a la casella a l'esquerra de la caixa i espentar-la cap a la dreta; l'efecte d'aquesta operació és que tant la caixa com el jugador es desplacen a la dreta
- no és possible situar-se a la casella de dalt de la caixa perquè hi ha un obstacle
- pot situar-se a la casella sota la caixa però no pot espentar la caixa cap amunt perquè hi ha un obstacle

Es demana dissenyar un SBR en CLIPS per a resoldre aquest problema. Per a açò s'utilitzarà una representació que s'ajuste al següent patró:

(sokoban J
$$F_j^s C_j^s$$
 [pos $F_c^s C_c^s v^s$]^m) on

 F_j , C_j , F_c , $C_c \in INTEGER$;; F_j i C_j representen la fila i la columna de la posició del jugador (J); F_c i C_c representen la fila i columna de cada casella

 $v \in \{O,C,A,N\}$;; representa el contingut de la casella

Les posicions de les caselles en el patró han d'aparèixer ordenades per files (de dalt a baix) i per columnes (d'esquerra a dreta). En l'exemple de la figura, no és necessari representar els obstacles que envolten el tauler, per la qual cosa es pot gastar una representació de 4 files x 5 columnes. Per exemple, la posició (1,1) indica la casella de la fila superior, columna a l'esquerra; la posició (3,2) indica la casella de la tercera fila començant per dalt i segona columna començant per l'esquerra, la qual conté una caixa.

Per a facilitar el disseny assumirem que:

- no és necessari representar explícitament en el tauler quan una caixa arriba a un magatzem; açò és, quan el jugador espenta una caixa a una posició on hi ha un magatzem, la representació de la caixa s'elimina del tauler
- es pot emmagatzemar un nombre indefinit de caixes a un magatzem

Es demana:

- 1) (0.3 punts) Representa l'estat inicial que es mostra en la figura.
- 2) (0.8 punts) Escriu una regla per a moure el jugador a la casella de la dreta.
- 3) (1.3 punts) Escriu una regla que permeta al jugador espentar una caixa cap amunt a una posició que no siga el magatzem.
- **4)** (0.6 punts) Assumint que existeixen regles d'espentar una caixa que detecten quan la caixa s'introdueix a un magatzem, i que l'efecte d'aquestes regles és simplement eliminar la caixa del tauler, escriu una regla que detecte quan el problema s'ha resolt.

Examen Final de SIN: qüestions del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 17 de gener de 2018

Cogno	ms:				Nom:					
Grup:	□ 3A □	3B □ 3C	□ 3D □ 3H	E □ 3F	□ 3FL]	ſΡ				
Marca cad	la requadre an	nb una única opc	ió. Puntuació: n	$\max(0, (encert$	s - errors/3	3) / 3).				
A) Un co pr ga B) El se C) La	na de les princi ndicions lògiqu àcticament im rantir que "arn s sistemes inte mitjançant <i>pr</i> a majoria de m	pals dificultats d les que haurien d possible conèixe ribem a temps a l·ligents actuals s obabilitats associ lètodes d'AA con	ns sobre la IA i l' le la IA clàssica co de complir-se per r i comprovar tot l'aeroport de Mar olen incloure la <i>in</i> lades als successos astrueix hipòtesis de en AA són els c	onsisteix en la a garantir el es la condicio nises si eixim certesa com a s d'interès. a partir de da	pràctica in compliment ons lògique de casa 90 part del co ades.	npossibilitat d'una acció s que haurie minuts aban neixement, l	de co o. Per en de s del	mprov exem comp vol".	ple, res lir-se p	ulta er a
classific p(c = 1 A) L' B) $p(c$ C) $p(c$	eador de Bayes $\mid x)$, és igual a objecte x pot	s l'assigna a la cla $1/3$. Amb base classificar-se amb $p(c=2\mid x)+p(c\mid 1)$.	quatre classes equivasse 1 i que la ser en el coneixement o una probabilitat $c=3 \mid x) + p(c=1)$	ua probabilita donat, indica d'error menc	at a posteri quina de le	ori de pertin	ença	a aqu	esta cla	asse
2 carac homogè corresp A) {x B) {x C) {x	eterístiques realenia): $\mathbf{w}_1 = (u)$ onent a aquest $\mathbf{x} : x_1 \ge 0 \land \mathbf{x}$ $\mathbf{x} : x_2 \ge 0 \land \mathbf{x}$ $\mathbf{x} : x_1 \ge 0 \land \mathbf{x}$	$\begin{aligned} &\text{ds, } \mathbf{x} = (x_1, x_2) \\ &v_{10}, w_{11}, w_{12})^t = \\ &\text{c classificador \'es:} \\ &x_2 < -x_1 + 2 \} \\ &x_2 < -x_1 + 2 \} \\ &x_2 < -x_1 + 1 \} \end{aligned}$	n 3 classes, $c = t \in \mathbb{R}^2$. Consider $(2,0,0)^t$, $\mathbf{w}_2 = (0)^t$ $\{\mathbf{x}: x_1 < 0 \land t \in \mathbf{x}: x_2 < 0 \land t \in \mathbf{x}: x_1 < 0 \land t \in \mathbf{x}: x_2 < 0$	eu un classifi $(x_1, x_1)^t$ i $\mathbf{w}_3 = x_2 < x_1 + 2$. $(x_2 > x_1 - 2)$. $(x_2 > x_1 - 2)$.	cador linea $=(0,1,-1)^t$	d de vectors	de p	esos ((en not	ació
classe $c_4 = 4$. d'apren Durant s'obten $(-1, -1)$	$\mathbf{c}_1 = 1, \ \mathbf{x}_2 = 1$. Suposeu que lentatge $\alpha = 1$ la primera it en els vectors $[1, -3]^t$ i $\mathbf{w}_4 = 1$ r dels vectors ament:	$(-1,1)^t$ de c_2 = s'executa l'algo; , marge $b = 0.1$ i eració de l'algor de pesos $\mathbf{w}_1 = (-3,1,-1)^t$. Co	d'aprenentatge de $\mathbf{z} = \mathbf{z} \cdot \mathbf{x}_3 = (-1, -1)$ risme Perceptró a vectors de pesos insme i després de $(w_{10}, w_{11}, w_{12})^t = 0$ mpleteu la primerants, quantes mo	$)^t$, de $c_3 =$ a partir de les inicials nuls (e e processar le a a a b a a b a	3 , i $\mathbf{x}_4 =$ s mateixes, en notació les 3 primer $\mathbf{x}_4 = (-1, -1)$ l'algorisme	$(1,-1)^t$ de amb factor nomogènia). Les mostres, $[1,1)^t$, $\mathbf{w}_3 = 1$ i indiqueu,	-	$ \begin{array}{ccc} \bullet & 1 \\ \times 2 \\ 2 = 2 \end{array} $ $ \begin{array}{cccc} + & -1 \\ \bullet & -1 \\ \times 3 \\ 3 = 3 \end{array} $	+ ;	$\begin{array}{c} \bullet \\ \mathbf{x}_1 \\ 1 = 1 \\ \end{array}$ $\begin{array}{c} \mathbf{x}_1 \\ \bullet \\ \mathbf{x}_4 \\ 4 = 4 \\ \end{array}$
c = 1, 2 la 4. La les class A) 0.0 B) 1.0 C) 2.0	2, 3, 4. L'algoris	sme ha arribat a $t,\mathcal{I}(t), ext{mesurada}$	e d'aprenentatge α un node t que in a com l'entropia d	clou vuit dad	es: 2 de la	classe 1, 4 d	e la 2	, 1 de	la 3 i 1	$1 d\epsilon$
la dret les pri d'aque A) B)	a. Es creu que	una partició nat en un clúster i l	e format per les 6 ural de dit conjun les 2 últimes en l'	t en 2 clúster	s consisteix	a agrupar			1 1 2 0	$ \begin{array}{c} n3)^t \\ 2n3 \\ \hline 1 \\ 0 \\ 1 \\ 2 \\ 4 \end{array} $

6

C) $6 \le J < 12$ D) $12 \le J$

Examen Final de SIN: problema del bloc 2 (3 punts)

ETSINF, Universitat Politècnica de València, 17 de gener de 2018

Cognoi	ms:							Nom:			
Grup:	□ 3A	\Box 3B	\Box 3C	\Box 3D	\Box 3E	П	3F	□ 3FLT	Р		

Siga M un model de Markov de conjunt d'estats $Q = \{1, 2, F\}$; alfabet $\Sigma = \{a, b\}$; probabilitats inicials $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; i probabilitats de transició entre estats i d'emissió de símbols:

	A	1	2	F		
ĺ	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$		
	2	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$		

B	a	b
1	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{1}{3}$	$\frac{2}{3}$

- 1. (1.5 punts) Realitzeu una traça de l'algorisme de Viterbi per a obtenir la seqüència d'estats més probable amb la qual M genera la cadena "aabb".
- 2. (1.5 punts) A partir de les cadenes d'entrenament "aabb" i "a", reestimeu els paràmetres de M mitjançant l'algorisme de reestimació per Viterbi (fins a convergència).