Construction de \mathbb{R} et de \mathbb{C}

Suites de Cauchy, coupures de Dedekind, théorèmes fondamentaux pour l'analyse

Motivation et suites de Cauchy

1.1 Pourquoi \mathbb{R} ?

Qu'est ce que l'ensemble des réels? Intuitivement, c'est l'ensemble des nombres rationnels dont on a "rempli les trous". Mais que sont donc ces trous? Par exemple, une solution de $x^2 = 2$:

Une preuve de l'irrationnalité de $\sqrt{2}$

On suppose qu'il existe deux entiers p, q premiers entre eux tels que $\left(\frac{p}{q}\right)^2 = 2$. Alors $p^2=2q^2$, donc p^2 est pair. Mais tout entier ayant la même parité que son carré, p est également pair. Avec p=2k, il vient $4k^2=2q^2$, d'où $2k^2=q^2$, et rebelote : q est pair.

On avait supposé la fraction irréductible, et pourtant $PGCD(p,q) \geq 2...$ C'est impossible, donc $\sqrt{2}$ est irrationnel.

Comment faire sens alors d'une telle solution?

Peut être d'une facon approchée : par exemple, en construisant une suite de rationnels dont le carré converge vers 2.

Exercice 1 (Méthode de Héron pour l'approximation de $\sqrt{2}$)

On définit par récurrence la suite rationnelle suivante :

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2} (u_n + \frac{2}{u_n}) \end{cases}$$

- 1. Montrer que $u_n^2 > 2$.
- 2. Montrer (sans utiliser le théorème de la limite monotone, puisqu'il n'est pas valable pour des suites rationelles) que la suite définie par $v_0 = 2$ et $v_{n+1} = (\frac{v_n}{2})^2$ tend vers 0.
- 3. Montrer que $u_n^2 \to 2$, en procédant par majoration de $u_n^2 2$ par v_n .

Les termes de cette suite sont successivement, en valeur approchée, [...]. Ils semblent être de plus en plus proches les uns des autres. On peut formaliser cette notion.

Définition 1

On dit qu'une suite (u_n) est de Cauchy quand :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, (m \ge N \text{ et } n \ge N) \implies |u_n - u_m| < \varepsilon$$

Intuitivement, cela veut dire que les termes sont de plus en plus proches deux à deux.

On notera $\mathcal{C}_{\mathbb{Q}}$ l'ensemble des suites de Cauchy rationnelles.

Propriété 1

Toute suite convergente est de Cauchy.

On rappelle que $u_n \to l$ quand :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N \implies |u_n - l| < \varepsilon$$

Soit $u_n \to l$ et $\varepsilon > 0$.

$$\exists N \in \mathbb{N}, n \geq N \implies l - \varepsilon/2 < u_n < l + \varepsilon/2$$

Alors si $n \ge N$ et $m \ge N$:

$$l - \varepsilon/2 < u_n < l + \varepsilon/2$$

$$l - \varepsilon/2 < u_m < l + \varepsilon/2$$

D'où:

$$-\varepsilon < u_n - u_m < \varepsilon$$

Autrement dit, $|u_n - u_m| < \varepsilon$ et donc (u_n) est de Cauchy.

On va immédiatemment montrer que la réciproque est fausse dans Q.

Exercice 2

La suite (u_n) est celle définie précédemment.

- 1. En se souvenant que $u_n^2 > 2$, montrer que (u_n) décroit. 2. En se souvenant que $u_n^2 \to 2$, déduire que $\forall p, \lim_{n \to +\infty} |u_{n+p} u_n| = 0$.
- 3. En conclure que (u_n) est de Cauchy.

Vue depuis le monde rationnel, cette suite n'est pourtant pas convergente, puisque $\sqrt{2}$ est irrationelle. Ceci nous fournit un contre-exemple à la réciproque de la propriété 1.

Pourtant, les termes semblent bien se rapprocher "de quelque chose" : ce quelque chose, c'est le nombre réel $\sqrt{2}$, qu'il reste encore à définir.

1.2 Quelques propriétés des suites de Cauchy

Avant d'attaquer la construction, on montre ici quelques propriétés qu'il sera utile d'avoir en tête :

Propriété 2

Toute suite de Cauchy est bornée.

Soit $\varepsilon > 0$. Il existe un rang N tel que si $n, m \ge N$ alors $|u_n - u_m| < \epsilon$. En particulier, $|u_N - u_n| < \varepsilon$, c'est à dire $u_n \in [u_N - \varepsilon, u_N + \varepsilon]$. Mais alors $\forall n \in \mathbb{N}, u_n \le \max(\{u_k | k < N\} \cup \{u_N + \varepsilon\})$, et de même $u_n \ge \min(\{u_k | k < N\} \cup \{u_N - \varepsilon\})$. Finalement, (u_n) est majorée et minorée, donc bornée.

Propriété 3

Toute suite de Cauchy ne convergeant pas vers 0 est non nulle à partir d'un certain rang.

Supposons l'inverse : pour tout $N \in \mathbb{N}$ aussi grand soit-il, il existe un $n \geq N$ tel que $u_n = 0$. Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que si m > N et p > N, $|u_m - u_p| < \varepsilon$. Soit n > N avec $u_n = 0$: alors $\forall m \geq N$, $|u_m - u_n| < \varepsilon$ soit $|u_m| < \varepsilon$. D'où $u_n \to 0$.

Théorème 1 (Analogue au théorème de la limite monotone)

Toute suite rationnelle monotone bornée est de Cauchy.

On fait une démonstration par dichotomie dans le cas croissante et majorée.

Soit $(u_n) \in \mathbb{Q}^{\mathbb{N}}$ croissante et majorée par un rationnel M. Pour tout n, $u_0 \leq u_n \leq M$. On pose $a_0 = u_0$ et $b_0 = M$.

On va construire par récurrence deux suites :

- Si $[a_n, \frac{a_n+b_n}{2}]$ contient une infinité de termes de la suite, alors $\left[\frac{a_n+b_n}{2}, b_n\right]$ n'en contient aucun. On pose $a_{n+1} = a_n$ et $b_{n+1} = \frac{a_n+b_n}{2}$.
- Sinon, $\left[\frac{a_n+b_n}{2},b_n\right]$ contient tous les termes de la suite à partir d'un certain rang. On pose $a_{n+1}=\frac{a_n+b_n}{2}$ et $b_{n+1}=b_n$.

On a $|a_n - b_n| = \frac{1}{2^n}$.

De plus, par construction, pour tout n il existe un rang N_n à partir duquel tous les termes de la suite sont dans $[a_n, b_n]$. Pour tout $m, p > N_n$ on a donc $|u_m - u_p| < \frac{1}{2^n}$.

Soit maintenant $\varepsilon > 0$. Soit n le plus petit entier tel que $2^n > \frac{1}{\varepsilon}$. Il existe un rang N à partir duquel $|u_m - u_p| < \frac{1}{2^n}$. Mais par définition, $\frac{1}{2^n} < \varepsilon$. D'où finalement, (u_n) est de Cauchy.

Exercice 3

Reprendre la démonstration ci dessus dans le cas décroissante et minorée, et ainsi achever la démonstration du théorème 1.

2 Une construction de $\mathbb R$ par les suites de Cauchy

2.1 Les réels

On rappelle les notions suivantes :

Définition 2

Une relation d'équivalence sur E est une relation binaire \sim sur E :

- réfléxive $(\forall x \in E, x \sim x)$;
- transitive $((x \sim y \land y \sim z) \implies x \sim z)$;
- symétrique $(x \sim y \iff y \sim x)$

On appelle classe d'équivalence de x l'ensemble noté $[x]=\{y\in E|y\sim x\}$. Remarquons que si $x\sim y, [x]=[y]$.

Propriété 4

L'ensemble des classes d'équivalence est une partition de E.

L'idée est de définir une relation d'équivalence R sur les suites rationnelles :

$$(a_n)R(b_n) \iff a_n - b_n \to 0$$

On vérifie bien que c'est une relation d'équivalence :

- $-a_n a_n = 0 \to 0$,
- si $a_n b_n \to 0$, alors $b_n a_n = -(a_n b_n) \to -0 = 0$,
- si $a_n b_n \to 0$ et $b_n c_n \to 0$, alors $a_n b_n + b_n c_n = a_n c_n \to 0$.

On peut donc partitionner $\mathcal{C}_{\mathbb{O}}$: cette partition est \mathbb{R} . Chaque classe d'équivalence est alors un réel, représenté par toutes les suites rationnelles qui l'approximent.

En identifiant tout rationnel q à la classe d'équivalence de la suite stationnaire dont tous les termes sont égaux à q, $\mathbb{Q} \subset \mathbb{R}$.

Leur structure algébrique

On peut ensuite définir les opérations usuelles sur \mathbb{R} :

Définition 3

1. $[(a_n)] + [(b_n)] = [(a_n + b_n)]$ 2. $[(a_n)] \times [(b_n)] = [(a_n b_n)]$

Il faut ici vérifier que quelque soit la suite rationelle qu'on a choisi pour représenter un réel, l'addition et la multiplication donnera le même résultat. Autrement dit:

- 1. Si $(a_n)R(a'_n)$, $[(a_n+b_n)] = [(a'_n+b_n)]$. 2. Si $(a_n)R(a'_n)$, $[(a_nb_n)] = [(a'_nb_n)]$.

En effet comme attendu:

- 1. $a_n a'_n = (a_n + b_n) (a'_n + b_n)$, donc si $a_n a'_n \to 0$, $(a_n + b_n)R(a'_n + b_n)$ soit $[(a_n + b_n)] = [(a'_n + b_n)].$ 2. Si $a_n - a'_n \to 0$, comme (b_n) est de Cauchy donc bornée, $b_n(a_n - a'_n) \to 0$.
- D'où $(a_n b_n) R(a'_n b_n)$ soit $[(a_n b_n)] = [(a'_n b_n)].$

On définit de plus une relation d'ordre sur \mathbb{R} :

Définition 4

Soit $x = [(a_n)] \in \mathbb{R}$. x est positif si $x \neq 0$ et si il existe un rang N tel que $\forall n \geq N, a_n > 0.$

Il faut encore vérifier que cette définition a un sens, c'est à dire que si $a_n - b_n \to 0$ et (a_n) ne tend pas vers 0, si (a_n) finit par n'avoir que des termes positifs, alors (b_n) aussi.