

Install

\$ tar xzf FrontISTR-v5.1.tar.gz

\$ cd FrontISTR-v5.1

\$ mkdir build; cd build

\$ cmake .. -

DCMAKE_INSTALL_PREFIX=\$HOME/local

\$ make -j2; make install

Parallel Execution

\$ hecmw_part1

\$ mpirun -np <4> fistr1

Input

File Type	File Name	
Overall Control Data	hecmw_ctrl.dat	
Mesh Data	.msh	
Analysis Control Data	.cnt	
Partitioning Control Data	hecmw_part_ctrl.dat	

Output

File Type	File Name	
Log File	<0>.log	
Analysis Result File	.res.<0>.	
Visualization File	_vis_psfpvtu	

Overall Control Data (hecmw ctrl.dat)

!MESH, NAME=part_in, TYPE=HECMW-ENTIRE

<ModelName>.msh

!MESH, NAME=part_out, TYPE=HECMW-DIST

<ModelName>.p

!MESH, NAME=fstrMSH, TYPE=HECMW-DIST,

REFINE=<1>

<ModelName>.p

!CONTROL, NAME=fstrCNT

<ModelName>.cnt

!RESTART, NAME=restart in, IO=INOUT

<ModelName>.restart

!RESULT, NAME=fstrTEMP, IO=IN

<ModelName>.res

!RESULT, NAME=fstrRES, IO=OUT, TYPE=BINARY
<ModelName>.res

!RESULT, NAME=vis out, IO=OUT

<ModelName> vis

!SUBDIR, ON

Partitioning Control Data (hecmw_part_ctrl.dat)

!PARTITION, TYPE=NODE-BASED, METHOD=PMETIS, DOMAIN=<4>

MeshData

!HEADER

<TITLE>

!NODE

<NODE_ID>, <x>, <y>, <z>

!ELEMENT, TYPE=<341>, EGRP=<E1>

<ELEM_ID>, <node1>, <node2>, <node3>, ...

!MATERIAL, NAME=<STRMAT>, ITEM=<3>

!ITEM=1, SUBITEM=2

<YoungModulus>, <PoissonRatio>

!ITEM=2

<Density>

!ITEM=3

<ExpansionCoeff>

!MATERIAL, NAME=<HEATMAT>, ITEM=<3>

!ITEM=1, SUBITEM=2

<Density>, <Temperature>

!ITEM=2, SUBITEM=2

<SpecificHeat>, <Temperature>

!ITEM=3, SUBITEM=2

<Conductivity>, <Temperature>

!SECTION, TYPE=<SOLID>, EGRP=<E1>,

MATERIAL=<STRMAT>

!NGROUP, NGRP=<NG1>

<node1>, <node2>, ...

!SGROUP, SGRP=<SG1>

<elem1>, <localsurf1>, <elem2>, <localsurf2>, ...

!EGROUP, EGRP=<EG1>

<elem1>, <elem2>, ...

!CONTACT PAIR, NAME=<CP1>

<Slave NodeGroup>, <Master SurfaceGroup>

!AMPLITUDE, NAME=<AMP1>, VALUE=

<RELATIVE|ABSOLUTE>

<value1>, <time1>, <value2>, <time2>, ...

!EQUATION

<Num_terms>, <RHS>

<NODE_ID>, <dof>, <coeff>, ...

!ZERO

<AbsoluteZero>

!END

Version

!VERSION

Static Analysis

!SOLUTION, TYPE=STATIC

!STATIC

5

!BOUNDARY,GRPID=<1>

<NODE ID>, <StartDOF>, <EndDOF>, <Value>

!CLOAD,GRPID=<1>

<NODE_ID>, <DOF>, <LoadValue>

!DLOAD,GRPID=<1>

<SGRP>, <LoadType>, <LoadParameter>

!SPRING,GRPID=<1>

<NODE_ID>, <DOF>, <SpringConstant>

Contact

!CONTACT ALGO, TYPE=

<SLAGRANGE|ALAGRANGE>

!CONTACT, GRPID=<1>, NTOL=

<NormalThreshold>, TTOL=<TangentThreshold>,

NPENALTY=<NormalPenalty>, TPENALTY=

<TangentPenalty>

<ContactPair>, <FrictionCoeff>, <FrictionPenalty>

Thermal Stress

!REFTEMP

<Temperature>

!TEMPERATURE, READRESULT=<ResultStep>,

SSTEP=<FirstStep>, INTERVAL=<StepInterval>

Eigen

!SOLUTION, TYPE=EIGEN

!EIGEN

<NumOfEigenvalues>, <Allowance>,

<MaxIterations>

!BOUNDARY

Heat Conduction

!SOLUTION, TYPE=HEAT

!HEAT

<DT>, <CalcTime>, <TimeIncrement>,

<Allowable>, <MaxIteration>, <Allowance>

!INITIAL CONDITION, TYPE=<TEMPERATURE>

<NODE_ID>, <Temperature>

!FIXTEMP

<NODE ID>, <Temperature>

!CFLUX

<NODE ID>, <HeatFlux>

!DFLUX

<ELEMENT_ID>, <LoadType>, <HeatFlux>

1

<SGRP>, <HeatFlux>

!FILM

!SFLUX

<ELEMENT_ID>, <LoadType>,

<HeatTransferCoeff>, <AmbientTemp>

!SFLIM

SGRP, <HeatTransferCoeff>, <AmbientTemp>

!RADIATE

ELEMENT ID, <LoadType>, <RadiationFactor>,

<AmbientTemp>

ISRADIATE

SGRP, <RadiationFactor>, <AmbientTemp>

!WELD LINE

<Current>, <Voltage>, <HeatInput>,

<TorchSpeed>

EGRP, <DOF>, <StartPoint>, <EndPoint>,

<TorchWidth>, <StartTime>

Dynamic Analysis

!SOLUTION, TYPE=DYNAMIC

!BOUNDARY

!CLOAD

!DLOAD

!SPRING

!VELOCITY, TYPE=<INITIAL|TRANSIT>, AMP=

<NAME>

NODE ID, <DOF>, <DOF>, <RestrictedValue>

!ACCELERATION, TYPE=<INITIAL|TRANSIT>, AMP=

<NAME>

NODE_ID, <DOF>, <DOF>, <RestrictedValue>

!INITIAL_CONDITION, TYPE=

<VELOCITY|ACCELERATION>
NODE ID, <DOF>, value

Time History Response Analysis

!DYNAMIC, TYPE=<LINEAR|NONLINEAR>

<ImplicitMethod1|ExplicitMethod11>, 1

<StartTime>, <EndTime>, <NumberOfSteps>, <TimeIncrement>

<gamma>, <beta>

<LumpedMass1|ConsistentMass2>, 1, <Rm>,

<Rk>

1, <MonitoringNode>, <OutputInterval>

<Displacement>, <Velocity>, <Acceleration>,

<Reaction>, <Strain>, <Stress>

Frequency Response Analysis

!DYNAMIC, TYPE=NONLINEAR

<ImplicitMethod1|ExplicitMethod11>, 2

<MinFrequency>, <MaxFrequency>,

<NumOfDivisions>, <MeasurementFrequency>

<starttime>, <endtime></endtime></starttime>
<lumpedmass1>, 1, <rm>, <rk></rk></rm></lumpedmass1>
<resultinterval>, <mode1 timehistory2>,</mode1 timehistory2></resultinterval>
<monitoringnode></monitoringnode>
<displacement>, <velocity>, <acceleration>, 0, 0,</acceleration></velocity></displacement>
0
!EIGENREAD
<eigenanalysislog></eigenanalysislog>
<startmode>, <endmode></endmode></startmode>
!FLOAD
NODE_ID, <doc>, <loadvalue></loadvalue></doc>

Boundary Condition Type	Card
CONTACT	!CONTACT

Output

!WRITE, VISUAL, FREOUENCY=<OutputInterval> !WRITE, RESULT, FREOUENCY=<OutputInterval> !OUTPUT VIS <OutputVariableName>, <ON|OFF> **!OUTPUT RES** <OutputVariableName>, <ONIOFF> !OUTPUT SSTYPE, TYPE=<SOLUTION|MATERIAL>

Value	Precondition
5	AMG
10	Block ILU(0)
11	Block ILU(1)
12	Block ILU(2)
12	DIOCK ILO(2)

Value	Method of MPC
1	Penalty
2	MPC-CG
3	Explicit Elimination

Solver Control (AMG)

-	
J	!SOLVER, METHOD= <cg>, PRECOND=5,</cg>
1	MPCMETHOD=<3>
ı	<maxiteration>, <preiteration>, <krilov>,</krilov></preiteration></maxiteration>
ı	<color>, <reusesetup></reusesetup></color>
_	<truncationerror>, <diagonalscale>, 0.0</diagonalscale></truncationerror>
1	<coarsesolver>, <smoother>, <multigridcycle>,</multigridcycle></smoother></coarsesolver>
ı	<maxlevel>, <scheme>, <sweep></sweep></scheme></maxlevel>

Post Process (for ParaView)

!VISUAL

!output type=VTK

Post Process (output BMP)

!VISUAL, method=PSR !surface num=1 !surface !surface style=1 !display method=1 !color comp name=STRESS !color comp=7 !x resolution=800 ly resolution=600 !output_type=BMP

DISP	Displacement	VIS,RES	!PLASTIC, YIELD=MISES, HARDEN=SWIFT,
REACTION	Nodal Reaction Force	VIS,RES	DEPENDENCIES=<0>
NSTRAIN	Nodal Strain	VIS,RES	<ε0>, <k>, <n></n></k>
NSTRESS	Nodal Stress	VIS,RES	!PLASTIC, YIELD= <mohr-coulomb drucker-prager>,</mohr-coulomb drucker-prager>
NMISES	Nodal Mises Stress	VIS,RES	HARDEN=BILIENAR, DEPENDENCIES=<0>
ESTRAIN	Elemental Strain	RES	<adhesive>, <internalfrictionangle>, <curing></curing></internalfrictionangle></adhesive>
ESTRESS	Elemental Stress	RES	
EMISES	Elemental Mises Stress	RES	!HYPERELASTIC, TYPE=NEOHOOKE

Target

VIS,RES

VIS,RES

VIS.RES

Restart

VEL

ACC

TEMP

!RESTART, FREQUENCY=<n>

VariableName Physical Value

Solver Control

Method

CG

<C10>, <D>

!VISCOELASTIC

<A>, <n>, <m>

!EXPANSION_COEFF, TYPE=

<LinearExpansion>

DEPENDENCIES=<0>

DEPENDENCIES=<0>

<YieldStress>, <PlasticStrain>

<YieldStress>, <PlasticStrain>

<ISOTROPIC|ORTHOTROPIC>, DEPENDENCIES=

!PLASTIC, YIELD=MISES, HARDEN=BILINEAR,

!PLASTIC, YIELD=MISES, HARDEN=MULTILINEAR,

<InitialYieldStress>, <CuringCoefficient>

!SOLVER, METHOD=<CG>, PRECOND=<1>, MPCMETHOD=<3> <MaxIteration>, <PreIteration>, <Krilov>, <Color>, <ReuseSetup> <TruncationError>, <DiagonalScale>, 0.0

Notes

<ShearRelaxationModulus>, <RelaxationTime>

!CREEP, TYPE=Norton, DEPENDENCIES=<0>

ı		

	Nonlinear Analysis					
	Analysis Type	Related Cards				
	Static Analysis	!SOLUTION, TYPE=NLSTATIC !STEP				
	Dynamic Analysis	!DYNAMIC, TYPE=NONLINEAR !STEP				
	Contact Analysis	!CONTACT !CONTACT_ALGO !STEP				
	Material Nonlinear	!PLASTIC !HYPERELASTIC !VISCOELASTIC !CREEP				

Local Coordinate

!ORIENTATION, NAME=<CoordinateSystem>, **DEFINITION=COORDINATES** <ax,ay,az>,<bx,by,bz>,<cx,cy,cz>

Velocity

Acceleration

Temperature

!ORIENTATION, NAME=<CoordinateSystem>, DEFINITION=NODES <a,b,c>

Section

!SECTION, SECNUM=<IndexOfSectionOfMeshData>, ORIENTATION = < CoordinateSystem > , FORM361 = <FBAR|IC|BBAR|FI>

Material Property

!MATERIAL, NAME=<NameOfMaterial> !ELASTIC, TYPE=<ISOTROPIC|ORTHOTROPIC>, DEPENDENCIES=<0> <YoungsModulus>, <PoissonRatio> !DENSITY <MassDensity>

BiCGSTAB

GMRES Enable Number Of Krilov Subspaces **GPBiCG** DIRECT DIRECTmkl Use for Contact Analysis MUMPS

Value	Precondition	
1,2	SSOR	
3	Diagonal Scaling	

Analysis Step

!STEP, TYPE=<STATIC|VISCO>, SUBSTEPS= <NumOfSubsteps>, CONVERG=<Threshold>, MAXITER=<MaxIteration> <TimeIncrement>, <EndValueOfTimeIncrement> BOUNDARY, <GRPID> LOAD, <GRPID> CONTACT, < GRPID>

Auto Time Increment

!AUTOINC PARAM, NAME=<AP1> <DecreaseRate>, <MaxIteration>, <TotalIteration>, <ContactIteration>, <NumOfDecreaseSubsteps> <IncreaseRate>, <MaxIteration>, <TotalIteration>, <ContactIteration>, <NumOfIncreaseSubsteps> <CutbackRate>, <NumberOfCutbacks> !TIME POINTS, NAME=<NameofList>, TIME= <STEP|TOTAL> <TIME> !STEP, TYPE=<STATIC|VISCO>, SUBSTEPS= <MaxSubsteps>, CONVERG=<Threshold>, MAXITER=<MaxIteration>, INC TYPE=AUTO, MAXRES=<MaxAllowance>, TIME POINTS= <NameOfTimeList>, AUTOINCPARAM= <NameOfAutoIncrementParameter>, MAXCONTITER=<ContactIteration> <InitialTimeIncrement>, <StepIncrement>, <UpperLimitOfTimeIncrement>, <LowerLimitOfTimeIncrement> BOUNDARY, <GRPID> LOAD, <GRPID> CONTACT, <GRPID>

Boundary Condition Card Type **BOUNDARY** !BOUNDARY, !SPRING !CLOAD, !DLOAD, LOAD

!TEMPERATURE