```
import pandas as pd
import numpy as np
import time
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import metrics
from sklearn.metrics import roc_curve
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from imblearn.over_sampling import SMOTE
from sklearn import preprocessing
from \ sklearn.preprocessing \ import \ MinMaxScaler
from sklearn.metrics import f1_score, roc_auc_score, roc_curve, precision_recall_curve, auc, make_scorer, recall_score, accuracy_
from sklearn.model_selection import GridSearchCV
!cd fraudDetection/
!ls fraudDetection/
!pip install -U imbalanced-learn
!pip install pandas-profiling
!pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip
→ cv_data.csv
                   imbalancedFraudDF.csv
                                              test_data.csv
                                                              tr_server_data.csv
    cv_label.csv IpAddress_to_Country.csv test_label.csv
    Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.10/dist-packages (0.10.1)
    Collecting imbalanced—learn
      Downloading imbalanced_learn-0.12.2-py3-none-any.whl (257 kB)
                                                   258.0/258.0 kB 2.2 MB/s eta 0:00:00
    Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn) (1.25.2)
    Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn) (1.11.4)
    Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn) (1
    Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn) (1.3.2) Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn) (:
    ERROR: Operation cancelled by user
    Traceback (most recent call last):
      File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pkg_resources/__init__.py", line 3108, in _dep_map
         return self.__dep_map
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pkg_resources/__init__.py", line 2901, in __getattr__
        raise AttributeError(attr)
    AttributeError: _DistInfoDistribution__dep_map
    During handling of the above exception, another exception occurred:
    Traceback (most recent call last):
       File "/usr/local/lib/python3.10/dist-packages/pip/_internal/cli/base_command.py", line 169, in exc_logging_wrapper
        status = run_func(*args)
       File "/usr/local/lib/python3.10/dist-packages/pip/_internal/cli/req_command.py", line 242, in wrapper
         return func(self, options, args)
       File "/usr/local/lib/python3.10/dist-packages/pip/_internal/commands/install.py", line 441, in run
        conflicts = self._determine_conflicts(to_install)
       File "/usr/local/lib/python3.10/dist-packages/pip/_internal/commands/install.py", line 572, in _determine_conflicts
         return check_install_conflicts(to_install)
       File "/usr/local/lib/python3.10/dist-packages/pip/_internal/operations/check.py", line 101, in check_install_conflicts
        package_set, _ = create_package_set_from_installed()
       File "/usr/local/lib/python3.10/dist-packages/pip/_internal/operations/check.py", line 42, in create_package_set_from_
        dependencies = list(dist.iter dependencies())
       File "/usr/local/lib/python3.10<sup>7</sup>dist-packages/pip/_internal/metadata/pkg_resources.py", line 216, in iter_dependencies
         return self._dist.requires(extras)
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pkg_resources/__init__.py", line 2821, in requires
        dm = self._dep_map
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pkg_resources/__init__.py", line 3110, in _dep_map
        self.__dep_map = self._compute_dependencies()
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pkg_resources/__init__.py", line 3120, in _compute_dependenc
         regs.extend(parse_requirements(reg))
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pkg_resources/__init__.py", line 3173, in __init__
        super(Requirement, self).__init__(requirement_string)
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/packaging/requirements.py", line 102, in __init__
         req = REQUIREMENT.parseString(requirement_string)
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pyparsing/core.py", line 1131, in parse_string
        loc, tokens = self._parse(instring, 0)
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pyparsing/core.py", line 817, in _parseNoCache
        loc, tokens = self.parseImpl(instring, pre_loc, doActions)
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pyparsing/core.py", line 3886, in parseImpl
         loc, exprtokens = e._parse(instring, loc, doActions)
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pyparsing/core.py", line 817, in _parseNoCache
        loc, tokens = self.parseImpl(instring, pre_loc, doActions)
       File "/usr/local/lib/python3.10/dist-packages/pip/_vendor/pyparsing/core.py", line 4114, in parseImpl
        return e._parse(
       File "/usr/local/lih/nython? 10/dist nackages/nin/ yendor/nynarsing/sore ny" line 917 in narseNoCashe
```

ipToCountry = pd.read_csv('fraudDetection/IpAddress_to_Country.csv')
fraud_data = pd.read_csv('fraudDetection/imbalancedFraudDF.csv')

fraud_data.head()

	user_id	signup_time	purchase_time	purchase_value	device_id	source	browser	sex	age	ip_address	class	-
C	22058	2015-02-24 22:55:49	2015–04–18 02:47:11	34	QVPSPJUOCKZAR	SEO	Chrome	М	39	7.327584e+08	0	ılı
1	333320	2015-06-07 20:39:50	2015–06–08 01:38:54	16	EOGFQPIZPYXFZ	Ads	Chrome	F	53	3.503114e+08	0	
2	150084	2015-04-28 21:13:25	2015-05-04 13:54:50	44	ATGTXKYKUDUQN	SEO	Safari	М	41	3.840542e+09	0	
_	004005	2015-07-21	2015-09-09	20	NIALUTOZE UZIDADAZ	A .1	0 ()		45	4.455004 00	^	

fraud_data['class'].value_counts()

class 0 136961 1 1415

Name: count, dtype: int64

You can install pandas_profiling using the pip package manager by running:

pip install pandas-profiling

import pandas_profiling

#Inline summary report without saving report as object
pandas_profiling.ProfileReport(fraud_data)

#simpler version without installing pandas_profiling
fraud_data.describe().transpose()

will give warnings on missing, correlation, constant value(0 variance), etc, see http://nbviewer.jupyter.org/github/JosPolflie

<ipython-input-6-85dec7efa125>:4: DeprecationWarning: `import pandas_profiling` is going to be deprecated by April 1st. Plea
import pandas_profiling

Summarize dataset: 100% 36/36 [00:18<00:00, 3.49it/s, Completed]

Generate report structure: 100% 1/1 [00:08<00:00, 8.84s/it]

Render HTML: 100% 1/1 [00:02<00:00, 2.20s/it]

Overview

Dataset statistics	
Number of variables	11
Number of observations	138376
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	11.6 MiB
Average record size in memory	88.0 B

Variab	le	types
--------	----	-------

Numeric	4
DateTime	2
Text	1
Categorical	4

Alerts

class is highly imbalanced (91.8%)	Imbalance
user_id has unique values	Unique
signup_time has unique values	Unique

Reproduction

Analysis	2024-04-07 23:25:42.194497
started	

fraud_data.isna().sum()

user_id 0
signup_time 0
purchase_time 0
purchase_value 0
device_id 0
source 0
browser 0
sex 0
age 0
ip_address 0
class 0
dtype: int64

ipToCountry.head()

```
lower_bound_ip_address upper_bound_ip_address country
                                                                   \blacksquare
     0
                      16777216.0
                                                16777471
                                                         Australia
                                                                    ıl.
     1
                      16777472.0
                                                16777727
                                                            China
                                               16778239
     2
                      16777728.0
                                                            China
                                                16779263 Australia
                     16778240.0
     3
                                                16781311
                     16779264.0
                                                            China
     4
start = time.time()
countries = []
for i in range(len(fraud data)):
    ip_address = fraud_data.loc[i, 'ip_address']
    tmp = ipToCountry[(ipToCountry['lower_bound_ip_address'] <= ip_address) &</pre>
                    (ipToCountry['upper_bound_ip_address'] >= ip_address)]
    if len(tmp) == 1:
        countries.append(tmp['country'].values[0])
    else:
        countries.append('NA')
fraud_data['country'] = countries
runtime = time.time() - start
print("Lookup took", runtime, "seconds.")
    Lookup took 181.20686292648315 seconds.
ip_address = fraud_data.loc[6, 'ip_address']
tmp = ipToCountry[(ipToCountry['lower_bound_ip_address'] <= ip_address) &</pre>
                     (ipToCountry['upper_bound_ip_address'] >= ip_address)]
print(tmp)
            lower_bound_ip_address upper_bound_ip_address
                                                                    country
                      1.686110e+09
                                                 1694498815 United States
    28203
print(fraud_data.user_id.nunique())
print(len(fraud_data.index))
    138376
    138376
#Part3 Feature Engineering
fraud_data['interval_after_signup'] = (pd.to_datetime(fraud_data['purchase_time']) - pd.to_datetime(
        fraud_data['signup_time'])).dt.total_seconds()
fraud_data['signup_days_of_year'] = pd.DatetimeIndex(fraud_data['signup_time']).dayofyear
#bed time operation
fraud_data['signup_seconds_of_day'] = pd.DatetimeIndex(fraud_data['signup_time']).second + 60 * pd.DatetimeIndex(
    fraud_data['signup_time']).minute + 3600 * pd.DatetimeIndex(fraud_data['signup_time']).hour
fraud_data['purchase_days_of_year'] = pd.DatetimeIndex(fraud_data['purchase_time']).dayofyear
fraud_data['purchase_seconds_of_day'] = pd.DatetimeIndex(fraud_data['purchase_time']).second + 60 * pd.DatetimeIndex(
    fraud_data['purchase_time']).minute + 3600 * pd.DatetimeIndex(fraud_data['purchase_time']).hour
fraud_data = fraud_data.drop(['user_id','signup_time','purchase_time'], axis=1)
fraud_data.head()
```

	purchase_value	device_id	source	browser	sex	age	ip_address	class
0	34	QVPSPJUOCKZAR	SEO	Chrome	М	39	7.327584e+08	0
1	16	EOGFQPIZPYXFZ	Ads	Chrome	F	53	3.503114e+08	0
2	44	ATGTXKYKUDUQN	SEO	Safari	М	41	3.840542e+09	0
3	39	NAUITBZFJKHWW	Ads	Safari	М	45	4.155831e+08	0
4	42	ALEYXFXINSXLZ	Ads	Chrome	М	18	2.809315e+09	0

```
print(fraud_data.source.value_counts())
```

source SE0

55766 54913 Ads 27697 Direct

Name: count, dtype: int64

#Part4 Feature Split

y = fraud_data['class']

X = fraud_data.drop(['class'], axis=1)

#split into train/test

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=0) print("X_train.shape:", X_train.shape)
print("y_train.shape:", y_train.shape)

X_train.shape: (110700, 13) y_train.shape: (110700,)

X_train['country'].value_counts(ascending=True)

country Benin 1 Yemen 1 Fiji Monaco 1 Madagascar 1 United Kingdom 3253 5251 Japan China 8876 NA 16275 United States 42348

Name: count, Length: 177, dtype: int64

X_train.head()

	purchase_value	device_id	source	browser	sex	age	ip_address	country	<pre>interval_after_signup</pre>	signup_days_of_
29343	12	OULPAZAFRFPXP	Ads	Chrome	М	42	3.690922e+09	Korea Republic of	3499664.0	
12190	10	AllWMFEYQQIEB	Ads	Opera	М	29	1.686759e+09	United States	6766039.0	
19388	34	VUVETBUPCIWJE	Direct	Chrome	М	53	4.138429e+09	NA	5870515.0	
89104	48	QCFULAJOYKFUU	Ads	Chrome	М	29	9.617337e+07	France	2145618.0	
82082	44	IHRWLMIJMEEEU	Ads	FireFox	М	24	1.936025e+09	China	7079059.0	

#Feature Engineer

```
X_train = pd.get_dummies(X_train, columns=['source', 'browser'])
X_train['sex'] = (X_train.sex == 'M').astype(int)
X_train_device_id_mapping = X_train.device_id.value_counts(dropna=False)
X_train['n_dev_shared'] = X_train.device_id.map(X_train_device_id_mapping)
X_train_ip_address_mapping = X_train.ip_address.value_counts(dropna=False)
X_train['n_ip_shared'] = X_train.ip_address.map(X_train_ip_address_mapping)
X_train_country_mapping = X_train.country.value_counts(dropna=False)
X_train['n_country_shared'] = X_train.country.map(X_train_country_mapping)
X_train = X_train.drop(['device_id','ip_address','country'], axis=1)
X_test = pd.get_dummies(X_test, columns=['source', 'browser'])
X_test['sex'] = (X_test.sex == 'M').astype(int)
X_test['n_dev_shared'] = X_test.device_id.map(X_test.device_id.value_counts(dropna=False))
X_test['n_ip_shared'] = X_test.ip_address.map(X_test.ip_address.value_counts(dropna=False))
X_test['n_country_shared'] = X_test.country.map(X_test.country.value_counts(dropna=False))
X_test = X_test.drop(['device_id','ip_address','country'], axis=1)
```

purchase_value sex age interval_after_signup signup_days_of_year signup_seconds_of_day purchase_days_of_year pur 29343 3499664.0 67384 12 42 183 12190 10 6766039.0 78146 29 5 84 19388 34 53 5870515.0 197 81354 265 1 89104 48 1 29 2145618.0 160 30920 185

111

71897

```
scaler = preprocessing.MinMaxScaler().fit(X_train[['n_dev_shared', 'n_ip_shared', 'n_country_shared']])
print(scaler.data_max_)
```

7079059.0

#transform the training data and use them for the model training X_train[['n_dev_shared', 'n_ip_shared', 'n_country_shared']] = scaler.transform(X_train[['n_dev_shared', 'n_ip_shared', 'n_count

#before the prediction of the test data, apply the same scaler obtained from above, on X_test, not fitting a brandnew scaler on X_test[['n_dev_shared', 'n_ip_shared', 'n_country_shared']] = scaler.transform(X_test[['n_dev_shared', 'n_ip_shared', 'n_country

[1. 1. 1.]

X_train.head()

82082

X_train.n_dev_shared.value_counts(dropna=False)

44

1 24

#Compute the train minimum and maximum to be used for later scaling:

```
n_dev_shared
0.0
       105427
         4774
0.2
0.4
          324
          124
0.6
           45
0.8
1.0
             6
Name: count, dtype: int64
```

X_test.n_dev_shared.value_counts(dropna=False)

```
n_dev_shared
0.0
       27330
         334
0.2
0.4
          12
Name: count, dtype: int64
```

#Model Training

193

```
logreg = LogisticRegression()
logreg.fit(X_train,y_train)
y_pred=logreg.predict(X_test)
cm = metrics.confusion_matrix(y_test, y_pred)
cmDF = pd.DataFrame(cm, columns=['pred_0', 'pred_1'], index=['true_0', 'true_1'])
print(cmDF)
                        pred_0 pred_1
         true_0
                          27389
         true_1
                              287
                                                 0
classifier_RF = RandomForestClassifier(random_state=0)
classifier_RF.fit(X_train, y_train)
probs = classifier_RF.predict_proba(X_test)
predicted = classifier_RF.predict(X_test)
# generate evaluation metrics
print("%s: %r" % ("accuracy_score is: ", accuracy_score(y_test, predicted)))
print("%s: %r" % ("roc_auc_score is: ", roc_auc_score(y_test, probs[:, 1])))
print("%s: %r" % ("f1_score is: ", f1_score(y_test, predicted )))#string to int
print ("confusion_matrix is: ")
cm = confusion_matrix(y_test, predicted)
cmDF = pd.DataFrame(cm, columns=['pred_0', 'pred_1'], index=['true_0', 'true_1'])
print(cmDF)
print('recall =',float(cm[1,1])/(cm[1,0]+cm[1,1]))
 print('precision =', float(cm[1,1])/(cm[1,1] + cm[0,1])) \# 1.0 \\ predicted = classifier_RF.predict(X\_test) \\ print('precision =', float(cm[1,1])/(cm[1,1] + cm[0,1])) \# 1.0 \\ print('precision =', float(cm[1,1])/(cm[1,1] + cm
         accuracy_score is: : 0.9948692007515537
         roc_auc_score is: : 0.7801672204169557
         f1_score is: : 0.6712962962962
         confusion_matrix is:
                        pred_0 pred_1
         true_0
                         27389
                              142
                                             145
         true_1
         recall = 0.5052264808362369
         precision = 1.0
smote = SMOTE(random_state=12)
x_train_sm, y_train_sm = smote.fit_resample(X_train, y_train)
unique, counts = np.unique(y_train_sm, return_counts=True)
print(np.asarray((unique, counts)).T)
         [[
                      0 1095721
                      1 109572]]
#RF on smoted training data
classifier_RF_sm = RandomForestClassifier(random_state=0)
classifier_RF_sm.fit(x_train_sm, y_train_sm)
# predict class labels for the test set
predicted_sm = classifier_RF_sm.predict(X_test)
# generate class probabilities
probs_sm = classifier_RF_sm.predict_proba(X_test)
# generate evaluation metrics
print("%s: %r" % ("accuracy_score_sm is: ", accuracy_score(y_test, predicted_sm)))
print("%s: %r" % ("roc auc score sm is: ", roc auc score(y test, probs sm[:, 1])))
print("%s: %r" % ("f1_score_sm is: ", f1_score(y_test, predicted_sm )))\#string to int
print ("confusion_matrix_sm is: ")
cm_sm = confusion_matrix(y_test, predicted_sm)
cmDF = pd.DataFrame(cm_sm, columns=['pred_0', 'pred_1'], index=['true_0', 'true_1'])
print(cmDF)
print('recall or sens_sm =',float(cm_sm[1,1])/(cm_sm[1,0]+cm_sm[1,1]))
print('precision_sm =', float(cm_sm[1,1])/(cm_sm[1,1] + cm_sm[0,1]))
```

```
accuracy_score_sm is: : 0.9948330683624801
    roc_auc_score_sm is: : 0.7666438992331798
    f1_score_sm is: : 0.6697459584295612
    confusion matrix sm is:
            pred_0 pred_1
             27388
    true_0
                       145
    true_1
               142
    recall or sens_sm = 0.5052264808362369
    precision_sm = 0.9931506849315068
#Part 6: Parameter tuning by GridSearchCV
scorers = {
    'precision_score': make_scorer(precision_score),
    'recall_score': make_scorer(recall_score),
    'f1_score': make_scorer(f1_score, pos_label=1)
}
def grid_search_wrapper(model, parameters, refit_score='f1_score'):
    fits a GridSearchCV classifier using refit_score for optimization(refit on the best model according to refit_score)
    for each combination of parameters, calculate all score in scorers, save them
    prints classifier performance metrics
    grid_search = GridSearchCV(model, parameters, scoring=scorers, refit=refit_score,
                           cv=3, return_train_score=True)
    grid_search.fit(X_train, y_train)
   # make the predictions
   y_pred = grid_search.predict(X_test)
   y_prob = grid_search.predict_proba(X_test)[:, 1]
   print('Best params for {}'.format(refit_score))
   print(grid_search.best_params_)
   # confusion matrix on the test data.
   print('\nConfusion matrix of Random Forest optimized for {} on the test data:'.format(refit_score))
    cm = confusion_matrix(y_test, y_pred)
    cmDF = pd.DataFrame(cm, columns=['pred_0', 'pred_1'], index=['true_0', 'true_1'])
   print(cmDF)
    print("\t%s: %r" % ("roc_auc_score is: ", roc_auc_score(y_test, y_prob)))
   print("\t%s: %r" % ("f1_score is: ", f1_score(y_test, y_pred)))#string to int
   print('recall = ', float(cm[1,1]) / (cm[1,0] + cm[1,1]))
   print('precision = ', float(cm[1,1]) / (cm[1, 1] + cm[0,1]))
    return grid search
# C: inverse of regularization strength, smaller values specify stronger regularization
 LRGrid = {"C" : np.logspace(-2,2,5), "penalty":["l1","l2"]} \# l1 lasso l2 ridge 
#param_grid = {'C': [0.01, 0.1, 1, 10, 100], 'penalty': ['l1', 'l2']}
logRegModel = LogisticRegression(random_state=0)
grid_search_LR_f1 = grid_search_wrapper(logRegModel, LRGrid, refit_score='f1_score')
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
       _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
       _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
```

```
_warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
          _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
         _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
         _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
          _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
         _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
         _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
         _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to conve
      STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
      Increase the number of iterations (max_iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html
      Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
         n_iter_i = _check_optimize_result(
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
          _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
         _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
         _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
          _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
          _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
         _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
          _warn_prf(average, modifier, msg_start, len(result))
      /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is il
           warn prf(average. modifier. msg start. len(result))
parameters = {
#None: nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples
'max_depth': [None, 5, 15],
'n_estimators': [10,150],
'class_weight' : [{0: 1, 1: w} for w in [0.2, 1, 100]]
clf = RandomForestClassifier(random_state=0)
grid_search_rf_f1 = grid_search_wrapper(clf, parameters, refit_score='f1_score')#no improvement on f1
      Best params for f1 score
      {'class_weight': {0: 1, 1: 0.2}, 'max_depth': None, 'n_estimators': 150}
      Confusion matrix of Random Forest optimized for f1_score on the test data:
                  pred_0 pred_1
      true_0
                   27389
      true_1
                      142
                                  145
                  roc_auc_score is: : 0.7781993788548851
                  f1_score is: : 0.6712962962962
      recall = 0.5052264808362369
      precision = 1.0
best_rf_model_f1 = grid_search_rf_f1.best_estimator_
best_rf_model_f1
                                          RandomForestClassifier
       RandomForestClassifier(class_weight={0: 1, 1: 0.2}, n_estimators=150,
                                         random_state=0)
results_f1 = pd.DataFrame(grid_search_rf_f1.cv_results_)
results_sortf1 = results_f1.sort_values(by='mean_test_f1_score', ascending=False)
results_sortf1[['mean_test_precision_score', 'mean_test_recall_score', 'mean_test_f1_score', 'mean_train_precision_score', 'mean_test_recall_score', 'mean_test_f1_score', 'mean_train_precision_score', 'mean_test_recall_score', 'mean_test_f1_score', 'mean_train_precision_score', 'mean_test_recall_score', 'mean_test_recall_score',
```

	mean_test_precision_score	mean_test_recall_score	mean_test_f1_score	mean_train_precision_score	mean_train_recall_score
9	1.0	0.527	0.69	1.0	0.52
1	1.0	0.527	0.69	1.0	1.00
13	1.0	0.527	0.69	1.0	1.00
3	1.0	0.527	0.69	1.0	0.52
5	1.0	0.527	0.69	1.0	0.56

pd.DataFrame(best_rf_model_f1.feature_importances_, index = X_train.columns, columns=['importance']).sort_values('importance', a

```
importance
                                            \blacksquare
        interval_after_signup
                                 0.408875
                                 0.132442
       purchase_days_of_year
     purchase_seconds_of_day
                                 0.079075
       signup_seconds_of_day
                                 0.077661
        signup_days_of_year
                                 0.057319
                                 0.052617
           n_ip_shared
          purchase_value
                                 0.044106
                                0.038233
               age
                                0.035686
           n_dev_shared
         n_country_shared
                                 0.027432
                                 0.008170
               sex
                                 0.006122
            source_Ads
         browser_Chrome
                                0.006042
           source_SEO
                                0.005925
          browser_Safari
                                0.004952
           source_Direct
                                 0.004812
          browser_FireFox
                                 0.004662
            browser_IE
                                0.004603
          browser_Opera
                                 0.001265
grid_search_rf_recall = grid_search_wrapper(clf, parameters, refit_score='recall_score')
     Best params for recall_score
     {'class_weight': {0: 1, 1: 100}, 'max_depth': 5, 'n_estimators': 150}
     Confusion matrix of Random Forest optimized for recall_score on the test data:
             pred_0 pred_1
     true_0
              27146
                         243
                132
     true_1
                         155
             roc_auc_score is: : 0.7904661234456265
             f1_score is: : 0.4525547445255475
     recall = 0.5400696864111498
     precision = 0.38944723618090454
best_RF_model_recall = grid_search_rf_recall.best_estimator_
best_RF_model_recall
                            {\tt RandomForestClassifier}
     RandomForestClassifier(class_weight={0: 1, 1: 100}, max_depth=5,
                              n_estimators=150, random_state=0)
```

predict class labels for the test set
predictedBest_recall = best_RF_model_recall.predict(X_test)

generate class probabilities
probsBest_recall = best_RF_model_recall.predict_proba(X_test)

results_recall = pd.DataFrame(grid_search_rf_recall.cv_results_)# recall score is different from above, as above is metric on te results_sortrecall = results_recall.sort_values(by='mean_test_recall_score', ascending=False) results_sortrecall[['mean_test_precision_score', 'mean_test_recall_score', 'mean_test_f1_score', 'mean_train_precision_score', '#recall is worse than default rf?? no this is on test, but train recall is better

	mean_test_precision_score	mean_test_recall_score	${\tt mean_test_f1_score}$	${\tt mean_train_precision_score}$	mean_train_recall_scor
15	0.159	0.636	0.254	0.164	0.65
14	0.160	0.633	0.255	0.162	0.65
16	0.675	0.533	0.593	0.759	0.81
0	0.995	0.527	0.689	1.000	0.85

#for task 3, based on the above var importance
trainDF = pd.concat([X_train, y_train], axis=1)
pd.crosstab(trainDF["n_dev_shared"],trainDF["class"])
#the larger n_dev_shared, the higher rate of fraud

class	0	1	
n_dev_shared			ıl.
0.0	104966	461	
0.2	4403	371	
0.4	152	172	
0.6	37	87	
0.8	13	32	
1.0	1	5	

fraud_data.groupby("class")[['interval_after_signup']].mean()

fraud_data.groupby("class")[['interval_after_signup']].median()#1

	interval_after_signup	
class		ılı
0	5194911.0	