Report Summary

Data Loading

We concatenated all the csv files together as they have the same number of columns.

Several columns are text based, such as town, flat_type, street_name, storey_range, flat_model, remaining_lease, while the rest are numeric. Some columns are not useful due to how specific and non-informative, such as the block number and the street_name as there are too many and too specific to specific units and buildings.

Data Preprocessing

We tried various preprocessing steps for each feature. Some are used for the final features while others may be removed after testing.

Features	Preprocessing	Comments		
resale_price	Divided by 10000 to narrow			
(Target)	down the range of values			
flat_model	Convert all names to lower	Tried to group different flat		
	alphabet for standardization	models as one hot and label		
		encoding but it only seems to		
		worsen results		
storey_range	We get the average of the storey.	Tried to get the lower/higher end		
	Additionally, we grouped the	of the storey, but it does not		
	storey into:	seem to help much		
	- Low floor (<5			
	- Mid floor (5-9)			
	- High floor (>=10)			
remaining_lease	From the years and months left	I tried to normalize the flat age		
	on the lease, we standardize the	by a multiple of 5, but it did not		
	lease into just months. Also, we	seem to improve results		
	get the flat age by getting the			
	difference between the date and			
	lease_commence_date			
	column.			
flat_type	Remove a random '-' in some of			
	the text to standardize output			
town		Tried to get the region from the		
		town by grouping them into East,		

		North, North-East, Central, and West region, but this makes the results poorer
year	Get the year from the date	Does not seem important as we end up using the most recent data only
month	Get the month from the date	Tried getting cyclic encoding for month but it does nothing

Data splitting

As this is a time-series problem, we must split the data by date, where the testing data is the latest data. Also, house prices have tended to change a lot in recent years. Consequently, the latest data is the best representation of the latest trends. Hence, while we have data from 1990 to 2020, using old data from before 2000 seems like a bad idea.

For the testing set, we kept the latest data, which is between 2019-2020. Meanwhile, for the testing data, we take the latest n years of data, and test our results to see how recency of training data affects performance

Pipeline

As some of the features are text based, one hot encoding is required:

- flat_type 1 ROOM, 2 ROOM, 3 ROOM, etc
- flat_model improved, model a, etc
- storey_range_avg mid floor, high floor, etc
- region SENGKANG, GEYLANG, etc)

Label encoding is tested for flat_type and storey_range_avg, but they appear to worsen the results. Meanwhile, other features such as month, floor_area_sqm, storey_range_avg, remaining_lease_month, and flat_age, are simple numerical values that can be used directly. Initially, there are plans to normalize them by rounding them to the nearest factor to make them more standardized (for instance, making all the area a fact of 5). However, after testing, it appears that its impact is nominal.

Thus, we have a parallel preprocessing pipeline (see below), that consists of a regular standard scaler for numeric features, while a one hot encoder for category data.

For this project, it is a regression problem as we are trying to predict the housing price, which is a continuous target. Meanwhile the model selected is the Linear Regressor as it is the fastest and yields decent results. While Random Forest Regressor or XGBoost Regressor may potentially yield more results, due to the high dimensionality of the problem due to the one hot encoding, as well as limited computation time and sources, the Linear Regressor is used. Grid search CV is used to determine the best parameters in the Linear Regressor.

Performance

Training data	Testing data	R2 (training)	R2	MAE	MSE
1990-2018	2019-2020	0.666	0.49	0.77	1.196
2000-2018	2019-2020	0.618	0.562	0.724	1.028
2010-2018	2019-2020	0.784	0.821	0.488	0.42

2018	2019-2020	0.869	0.859	0.439	0.33
2017-2018	2019-2020	0.868	0.857	0.444	0.336
2015-2018	2019-2020	0.864	0.854	0.446	0.343

From the results, it appears our assumption that the latest results should be represented by the latest trend is correct. While we have a lot of historic data, most old data are no longer useful, and should be discarded. This is because old data is not reliable as the housing price is not stationery and tends to follow an upward trend in general.

Discussion

By determining the coefficient of the Linear Regressor, we can determine the most important features. From what we see, the area where the house is located is the most important thing in determining the price. This makes sense as popular locations near the Central Area like Bukit Timah and Marine Parade are favored and thus more expensive (high positive coefficient) over areas like Sembawang and Choa Chu Kang (high negative coefficient). This makes sense as property is always about location and convenience. Additionally, flat models such as Terrace and Type S2 are more expensive.

Conclusion

For this project, we used a simple model to model the housing price in Singapore. From our experiments, using the latest data for prediction is the most accurate. Additionally, by looking at feature importance, it appears that location is the most important factor when determining housing prices, over housing size and storey level. Nonetheless, those features are also important as they affect the prices, just less significantly.