

2/13/2018 4:16 PM

(2,4) Trees

Outline and Reading

- Multi-way search tree
 - Definition
 - Search
- ◆ (2,4) tree
 - Definition
 - Search
 - Insertion
 - Deletion
- Comparison of dictionary implementations

Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d-1 key-element items (k_i, o_i) , where d is the number of children
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v₁ are less than k₁
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d-1)
 - keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

2/13/2018 4:16 PM

(2,4) Trees

Multi-Way Searching

- Similar to search in a binary search tree
- lacktriangle A each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d 1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

Multi-Way Searching

- Similar to search in a binary search tree
- lacktriangle A each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d 1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

Multi-Way Searching

- Similar to search in a binary search tree
- lacktriangle A each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d 1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

(2,4) Tree

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

- As opposed to a binary tree, a (2,4) tree has internal nodes with 2, 3, and 4 children
- What is the height of the tree of n items?
- What is the big-Oh of the height of the tree of n items?

Height of a (2,4) Tree

- Theorem: A (2,4) tree storing n items has height $O(\log n)$ Proof:
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2^i items at depth i = 0, ..., h-1 and no items at depth h, we have

$$n \ge 1 + 2 + 4 + \dots + 2^{h-1} = 2^h - 1$$

■ Thus, $h \leq \log (n+1)$

(2,4) Tree Operations

- Search
 - Depends on height of tree, thus searching in a (2,4) tree with n items takes $O(\log n)$
- Insert
 - Coming up next...
- Delete
 - Coming up next next...

- How do you insert an item into an existing tree? Ideas?
- Recall the (2,4) tree properties:
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
 - THIS IS CRUCIAL TO KEEP O(logN) SEARCH TIME WHY?
- How do you maintain these properties? Ideas?

- Let's start at the beginning
 - Insert 27

- Let's start at the beginning
 - Insert 27
 - Insert 35

- Let's start at the beginning
 - Insert 27
 - Insert 35
 - Insert 32
 - Insert 30?

- Let's start at the beginning
 - Add 30 to the node?
 - Makes 5 children = overflow...

Node-size property is broken

- Let's start at the beginning
 - We make 30 a child of the node (27,32,35)?
 - External node at different depths...

Depth property is broken!

- Another example: insert 30 into a larger tree
- We insert the new item (k=30, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We cause an overflow (i.e., node v becomes a 5-node)

What can we do?

Handling Overflows

- \bullet We handle an overflow at a 5-node v with a split operation:
 - let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
 - node v is replaced nodes v' and v''
 - v' is a 3-node with keys $k_1 k_2$ and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
 - key k_3 is inserted into the parent u of v (a new root may be created)
- **♦** The overflow may propagate to the parent node *u*

Analysis of Insertion

Algorithm *insertItem*(k, o)

- 1. We search for key k to locate the insertion node v
- 2. We add the new item (k, o) at node v
- 3. while overflow(v)if isRoot(v)create a new empty root above v $v \leftarrow split(v)$

- Let T be a (2,4) tree with n items
 - Tree T has $O(\log n)$ height
 - Step 1 takes
 - O(log n) time because we visit O(log n) nodes
 - Step 2 takes
 - *0*(1) time
 - Step 3 takes
 - O(log n) time because each split takes O(1) time and we perform O(log n) splits
- Thus, an insertion in a (2,4) tree takes
 - $O(\log n)$ time

Deletion

- How do you delete an item?
- What problems can occur?

Deletion

- We reduce deletion of an item to the case where the item is at the node with leaf children
- Otherwise, we replace the item with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter item
- Example: to delete key 24, we replace it with 27 (inorder successor)

2/13/2018 4:16 PM

(2,4) Trees

Deletion

- ♦ What happens if I delete 12? 18?
- Simply removing the node will break the depth property...

2/13/2018 4:16 PM

(2,4) Trees

Underflow, Fusion, and Transfer

- Deleting an item from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- To handle an underflow at node v with parent u, we consider two cases in the next slides

Underflow and Fusion

- \diamond Case 1: the adjacent siblings of v are 2-nodes
 - Fusion operation: since there is "space" in the siblings, we merge v with an adjacent sibling w and move an item from u to the merged node v'
 - After a fusion, the underflow may propagate to the parent u

2/13/2018 4:16 PM (2,4) Trees 26

Underflow and Transfer

- Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of w to v
 - 2. we move an item from u to v
 - 3. we move an item from w to u
 - After a transfer, no underflow occurs

Analysis of Deletion

- \bullet Let T be a (2,4) tree with n items
 - Tree T has $O(\log n)$ height
- In a deletion operation
 - We visit $O(\log n)$ nodes to locate the node from which to delete the item
 - We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
 - Each fusion and transfer takes O(1) time
- Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time

Summary

Comparison of data structures and algorithms

	Search	Insert	Delete	Notes
Hash Table	1 expected	1 expected	1 expected	no ordered dictionary methodssimple to implement
Skip List	log n high prob.	log n high prob.	log n high prob.	randomized insertionsimple to implement
(2,4) Tree	log <i>n</i> worst-case	log <i>n</i> worst-case	log <i>n</i> worst-case	◆ complex to implement

2/13/2018 4:16 PM