- 1. Given an algorithm where the fraction that the program is serial (*f*) is .15, what is the speedup on 2, 4, 8, 16 and an infinite number of processors. You may ignore communication costs and the problem size is fixed.
- 2. What is the efficiency at 2, 4, 8 and 16 processes?

р	2	4	8	16	∞
speedup					
efficiency					

- 3. Solve problem 1 for a non-infinite number of processors where the serial portion *s* of a parallel execution is .15
- 4. What is the efficiency of each?

р	2	4	8	16
speedup				
efficiency				

- 5. Given a 1000 machine cluster, what must s and f be to obtain an efficiency of 80%?
- 6. Given the following two tables, what can you say about the scalability of the two programs that yield these results? If the scaling is poor, is it a result of Amdahl's Law or an increasing degree of sequential execution/overhead in the program? If the scaling is good, why do you think it is?

p	2	4	8	16	32	64
Ψ	1.8	3.6	7.2	14.4	28.8	57.6
е	0.111	0.037	0.0158	0.007	0.004	0.002

р	2	4	8	16	32	64
Ψ	1.9	3	4	5	5.5	5.7
е	0.053	0.111	0.143	0.147	0.155	0.162