Open Source AceCon 智能云边开源峰会 Al x Cloud Native x Edge Computing

Harbor企业级落地实践

张晨宇 灵雀云工程师

大纲

- 背景介绍
- 内部演进
- 治理维护
- 产品融合
- 开源社区
- Harbor企业版

背景介绍

Open Source AceCon 智能云边开源峰会 Alx Cloud Native x Edge Computing

内部开发流程

背景介绍

Open Source AceCon 智能云边开源峰会 Alx Cloud Native x Edge Computing

数据规模

镜像仓库 500->1000->2000

制品数量 10000->50000->100000

存储空间 1T -> 5T -> 10T

背景介绍

数据规模

日均推送 5000->10000->50000

日均拉取 10000->50000->100000

harbor 1.x

业务组件Chart

多架构镜像需求

- AMD64
- ARM64

常规方式:

两种架构tag分别维护,如v1-amd64, v1-arm64

缺点:

- 需要维护两个架构版本的chart
- tag信息冗余 额外的tag维护成本

image:\${version}-amd64

harbor 1.x

harbor(amd) + arm harbor

部署两套Harbor,维护两种架构的镜像

优点:

- 业务chart维护一套,通过指定registry拉取 不同架构的镜像
- tag比较统一

缺点:

· 额外的harbor维护成本

Open Source AceCon

harbor 1.x -> harbor 2.x

Open Source AceCon 智能云边开源峰会 Alx Cloud Native x Edge Computing 人工智能×云原生×边缘计算

Harbor 2.x 版本增加了对OCI制品的支持,可以通过同一个tag维护多架构的镜像。

OCI Image Index

application/vnd.oci.image.index.v1+json

- schemaVersion int
- mediaType string
- manifests []manifest
- annotation map

```
"schemaVersion": 2,
  "manifests": [
      "mediaType": "application/vnd.oci.image.manifest.v1+json",
      "size": 7143,
      "digest": "sha256:e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab815ad7fc331f",
       "platform": {
        "architecture": "arm64",
        "os": "linux"
      "mediaType": "application/vnd.oci.image.manifest.v1+json",
      "size": 7682,
      "digest": "sha256:5b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e94a4333501270",
      "platform": {
        "architecture": "amd64",
        "os": "linux"
  "annotations": {
    "com.example.key1": "value1",
    "com.example.key2": "value2"
```

harbor 1.x -> harbor 2.x

Open Source AceCon 智能云边开源峰会 Alx Cloud Native x Edge Computing 人工智能×云原生×边缘计算

Multi arch images migrations

- 1. 将1.x版本的单架构镜像以对应架构作为后缀同步到2.x版本中。 (同步方式可选择使用docker cli, skopeo或harbor的镜像复制功能)
- 2. 创建镜像的manifest index,并push到2.x版本。

```
# 创建多架构的manifest index
$ docker manifest create image:${version} -a image:${version}-amd64 -a image:${version}-arm64
# 推送该manifest index
$ docker manifest push image:${version}
```

harbor 2.x

通过Buildx构建多架构镜像

- QEMU
 - 配置简单方便
 - 单点构建,借助qemu模拟其他架构环境,构建速度慢于原生构建
- 异构集群(buildx kubernetes driver)
 - 多架构镜像通过原生平台构建,构建速度快
 - 需部署异构集群,配置及维护成本略高

- # 开启buildx
- \$ export DOCKER_CLI_EXPERIMENTAL=enabled
- # 构建多架构镜像
- \$ docker buildx build -t image:\${version} --platform=linux/arm64,linux/amd64 . --push

harbor 2.x

构建耗时对比

QEMU 246s Native 44s


```
# syntax=docker/dockerfile:1

FROM golang:1.16 AS builder

WORKDIR /go/src/github.com/alexellis/href-counter/

RUN go get -d -v golang.org/x/net/html

COPY app.go ./

RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o app .

FROM alpine:latest

RUN apk --no-cache add ca-certificates

WORKDIR /root/

COPY --from=builder /go/src/github.com/alexellis/href-counter/app ./

CMD ["./app"]
```

人工智能x 云原生分论坛

300

11

Open Source AceCon

开发阶段

命名规范

功能分支以feat/开头

命名规范

Open Source AceCon 智能云边开源峰会 Alx Cloud Native x Edge Computing

发版阶段

命名规范

规范意义

- 语义化信息,便于溯源
- 统一管理,便于统一的清理维护策略
 - 永久保留release相关的代码分支和制品
 - 按需清理开发阶段相关的代码分支和制品

Open Source AceCon 智能云边开源峰会 At Cloud Native × Edge Computing 人工智能×云原生×边缘计算

清理规则

清理周期:

- 定时执行
- 立即执行

清理策略

- 匹配(排除)Repo
- 匹配(排除)Tag
- 保留规则
 - 最近推送的#个
 - 最近拉取的#个
 - 最近#天被推送
 - 最近#天被拉取
 - 全部保留

清理策略

Open Source AceCon 智能云边开源峰会 Alx Cloud Native x Edge Computing 人工智能×云原生×边缘计算

保留策略可配置多条,且这些策略之间的关系为 "或"

示例:

匹配项目下所有仓库

保留所有tag为v1.**制品

清理策略

Open Source AceCon 智能云边开源峰会 Al x Cloud Native x Edge Computing 人工智能×云原生×边缘计算

示例:

添加 Tag 保留规则				×
为当前项目指定 tag 保留规则。所有 ta	ng 保留规则独立计算:	并且适用于所有符合组	条件的仓库。	
应用到仓库	匹配	**		
	使用逗号分隔re	—— epos,repo*和**		
以 artifact 数量或天数为条件	保留最近#天被	推送过的 artifacts	<u> </u>	天数 7
Tags	匹配	∨fix-**		无 Tag 的 Artifacts
	输入多个逗号分 略的一部分。	}隔的 Tags, Tag*或*	*。可通过勾选将未	加 Tag 的 artifacts 作为此策
				取消添加

匹配项目下所有仓库

保留最近一周内推送 的所有tag为fix-**制 品

垃圾清理

垃圾清理

思考:为什么需要GC?

镜像A依赖层a和层b 镜像B依赖层a和层c 镜像A和镜像B都依赖层a

垃圾清理

删除镜像B后:

Open Source AceCon 智能云边开源峰会 Al x Cloud Native x Edge Computing 人工智能×云原生×边缘计算

执行GC后:

开箱即用的部署体验

vOps 工具链 / 快速	₹部署并集成 						
快速部署并集局							表单 YAML
Harb	or Registry						重新选择工具
部署位置							
* 集群:							•
	1.建议部署在 DevOps 工具专 2.不建议部署在global集群中		时会消耗大量资源,这可	能会影响整个	个平台的 ^个	使用。	
* 命名空间:							•
架构							
高可用:							
	开启"高可用"时,需要确保事 暂不支持"高可用实例"与"非高) 。	
资源	首个文体 同时代关闭 可以作	可引用关例 的互相较深。关	:例创建位,当即同引用区	.且小时间以。			
* 规模:				?			
/X/1天·	推荐配置 适合并发要求高	最低配置 适合基础使用	自定义 适合专业用户配置				
	* CPU 4		相	<i>5</i> → *	内存	0	
* 资源请求:	CFO 4		12		רניין ד וניין	0	Gi ▼

配置基本信息

人工智能x 云原生分论坛

Open Source AceCon

开箱即用的部署体验

取消 部署并集成

开箱即用的部署体验

Open Source AceCon 智能云边开源峰会 Al x Cloud Native x Edge Computing 人工質能×云原生×边缘计算

DevOps 工具链 / high / high-zxnv8

查看部署状态,部署信 息或更新实例

租户绑定分配

Open Source AceCon 智能云边开源峰会 At Scioud Native x Edge Computing

项目 / devops / 绑定镜像仓库 (harbor3)

- 1. 绑定Harbor给项目
- 2.分配镜像仓库

租户绑定分配

查看绑定信息

租户绑定分配

查看分配的镜像仓库

人工智能x 云原生分论坛

全局(智能)绑定分配

更新全局绑定策略					
请谨慎更改凭据!更改凭据可能会影响下面已选绑定策略的最终使用效果。					
认证					
认证方式: 用户名/密码 无认证					
凭据: 请选择凭据 ▼ 添加凭据					
绑定策略					
● 同名项目自动绑定 1、镜像仓库会自动创建和 DevOps 平台项目同名的项目,若镜像仓库中同名项目已存在则不会重复创建,项目数量过多时可能会发生几分钟的延迟 2、自动将镜像仓库项目与 DevOps 平台的同名项目进行绑定,并建立分配关系供 DevOps 平台同名项目独立使用 3、DevOps 平台新建项目时也会触发上述动作					
 公共镜像仓库 1、将所选镜像仓库项目作为"公共镜像仓库"与 DevOps 平台的所有项目进行绑定,并建立分配关系供 DevOps 平台所有项目共同使用 2、DevOps 平台新建项目时也会触发上述动作 Harbor项目: 					
删除全局绑定策略					

在Harbor上创建同名项目,实现自动绑定

将Harbor上的仓库作为公共仓库共享给所 有项目使用

人工智能× 云原生分论坛

清理/保护策略

创建镜像清理	里策略	×
* 名称:	以 a-z, 0-9 开头结尾,支持使用 a-z, 0-9, -, 最多 36 个字符	
*保留时间:	保留所填写天数的镜像,如填写N,则保留最近N天的镜像,N天前的镜像将会被清理	
* TAG 匹配规则:	▼	
* 适用仓库:	符合规则的镜像将会被清理,多个筛选条件是"或"的关系 ▼ 选择镜像仓库,清理规则将对选择的镜像仓库生效	
清理时间规则:	快捷选择	
* 清理时间:	✓ 星期一 ✓ 星期二 ✓ 星期四 ✓ 星期五 ✓ 星期日	
	②00:00 × + 配置时间	
	创建	肖

创建镜像保护	户策略	×
* 名称:	以 a-z, 0-9 开头结尾,支持使用 a-z, 0-9, -, 最多 36 个字符	
* TAG 匹配规则:	▼ 符合规则的镜像将被设置保护,不会被清理,多个筛选条件是"或"的关系	
* 适用仓库:	→ 选择镜像仓库,保护策略将对选择的镜像仓库生效	
	创建	7消

Open Source AceCon 智能云边开源峰会 Ax Cloud Native x Edge Computing

Multi Architecture WorkGroup(多架构工作组)

https://github.com/goharbor/community/tree/master/workgroups/wg-multiarch

背景:

此前Harbor社区只提供了标准的x86架构的组件镜像,对于其他架构的环境无法部署harbor,且社区有很多用户有其他架构支持的需求。

目标:

致力于以统一通用的方式持续构建多架构的Harbor镜像,如arm,龙芯等。

Multi Architecture WorkGroup(多架构工作组)

成果:

- https://github.com/goharbor/harbor-arm (ARM架构,开发中,预计harbor 2.4提供)
- https://github.com/goharbor/harbor-loongson (国产化龙芯架构,开发中)

加入:

Slack: # harbor-multi-arch-workgroup

Performance WorkGroup(性能工作组)

https://github.com/goharbor/community/tree/master/workgroups/wg-performance

背景:

Harbor在一些数据规模场景下,会存在一些性能问题,此前也没有相关的性能测试工具和官方的性能测试报告,需要长期专注于解决性能问题和性能优化领域的贡献者。

目标:

致力于提高Harbor在大数据集或高并发规模下的稳定性和性能,建设统一的性能测试工具,提供标准的性能 测试报告等。

Open Source AceCon 智能云边开源峰会 Al x Cloud Native x Edge Computing

Performance WorkGroup(性能工作组)

成果:

- 性能测试工具集: https://github.com/goharbor/perf
 - 准备测试数据
 - 执行并发测试(参数配置化)
 - 自动生成测试报告
 - harbor2.3性能测试报告: https://github.com/goharbor/perf/wiki/Harbor-2.3.0-Performance-Test-Reports
- 性能问题修复
 - https://github.com/goharbor/harbor/issues/14819
 - https://github.com/goharbor/harbor/issues/14815
 - https://github.com/goharbor/harbor/issues/14814
 - https://github.com/goharbor/harbor/issues/14813
 - https://github.com/goharbor/harbor/issues/14716

Open Source AceCon 智能云边开源峰会 Alx Cloud Native x Edge Computing

Performance WorkGroup(性能工作组)

• 性能提升

concurrency 300 artifacts 10w

API	version < 2.3 (p95)	version = 2.3 (p95)	improvement
Catalog	15s	5s	x3
Projects	8s	2s	x4
Artifacts	46s	3s	x15
Tags	4s	1s	x4
Audit logs	40s	4s	x10

Harbor企业版

Alauda Registry Service for Harbor

背景:

近年来,灵雀云已服务了数百家来自政府、金融、能源、制造、地产、交通等领域的头部客户,Harbor作为ACP平台中默认且推荐的镜像仓库,为其中超过100家客户部署了Harbor开源版,同时提供了高质量的运维和兜底服务,获得了客户的高度评价。灵雀云愿意基于自身丰富的Harbor运维经验帮助更多Harbor企业客户解决后顾之忧,让客户获得稳定、可靠、性能优异的制品库产品使用体验。

Harbor企业版

Open Source AceCon 智能云边开源峰会 Al x Cloud Native x Edge Computing

Alauda Registry Service for Harbor

企业版服务内容:

- 1、Harbor云原生制品仓库的高可用解决方案;
 - a) 企业级高可用解决方案;
 - b) 基于Kubernetes Operator的高可用解决方案;
- 2、Harbor云原生制品仓库的版本升级、漏洞修复;
- 3、Harbor云原生制品仓库运行环境的运维支持服务,包括:镜像复制迁移、故障恢复、环境部署等;
- 4、DevOps工具链解决方案。

Harbor企业版

Alauda Registry Service for Harbor

咨询方式

电话: 4006-252-832

微信:

York

扫一扫上面的二维码图案, 加我微信

