Departamento de Ciência de Computadores FCUP Desenho e Análise de Algoritmos (CC2001) 2017/18

	_		
Exame (09.01.2018)		duração: 3	h

N.º		Nome	
-----	--	------	--

1. Considere a rede de fluxo seguinte, onde c/f são pares capacidade/fluxo, e s e t são a origem e destino.

$$c_f(q,m)$$
 $c_f(m,q)$ $c_f(x,z)$

$$c_f(z,x)$$
 $c_f(s,q)$ $c_f(q,s)$

- **b**) [0.4] Indique um corte $\{S,T\}$ com capacidade mínima. Qual é a essa capacidade?
- c) [1.4] Partindo de f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo (desenhe a rede residual **em cada iteração**, represente o fluxo final na rede, e explique sucintamente).
- residuai em cada neração, represente o nuxo imai na rede, e expirque sucintamente).
- d) [0.3] Qual é a diferença principal entre o método de Ford-Fulkerson e o algoritmo de Edmonds-Karp?

5, 10, 20 e 50 cêntimos, 1 e 2 euros, e ainda notas de 5 de notas e moedas. Admita que pode dispor de um núi	
a) [1.2] Usando pseudocódigo, defina uma função $\operatorname{QUANTIA}(v,n,q,c,s)$, com complexidade $O(n)$, que determine no $\operatorname{array} s$ a solução obtida pelo algoritmo greedy dado e retorne o número de moedas/notas usadas. O $\operatorname{array} v$ define o valor das moedas/notas e n o número de tipos.	b) [0.2] Se $q=327$ e $c=77$, o estado final de s e o valor de retorno são:
d) 10 61 Prove que se o número de mondes/notes for li	c) [0.5] A complexidade de QUANTIA (v, n, q, c, s) é $\Theta(n)$? Justifique.
d) [0.6] Prove que se o número de moedas/notas for li Indique todos os erros possíveis (e instâncias correspondentes de la correspondente de la correspo	

2. Considere o problema de formar uma certa quantia de q euros e c cêntimos com moedas de valores 1, 2,

_		
N.º	Nome	

3. [1.5] Aplique o algoritmo de Prim para obter uma árvore geradora \mathcal{T} de peso $\underline{\mathbf{máximo}}$ do grafo indicado, com \mathbf{raiz} q. \mathbf{Em} \mathbf{cada} $\mathbf{iteração}$, apresente os nós em \mathcal{T} e o vetor $pai[\cdot]$ e $dist[\cdot]$, como se definiu nas aulas.

4. [0.6] No algoritmo de Dijkstra, suportado por uma *heap binária de mínimo*, para determinação de caminhos mínimos com origem num nó s de um grafo dirigido G = (V, E, d), com $d(e) \in \mathbb{Z}^+$, qual é o estado de dist[v] e pai[v], no fim de cada iteração, para todo $v \in V$? Qual é o invariante de ciclo que garante a correção do algoritmo?

5. [2.0] Usando diretamente a **definição** das ordens de grandeza indicadas:

a) prove que $200n + 5n \log_2 n \in O(3n^2 \log_2 n)$

b) diga, justificando, se $3n + 100 \in \Omega(n^2/3)$.

6. Considere um grafo dirigido acíclico $G=(V,E,d)$, com valores com $d(e)\in\mathbb{Z}^+$ associados aos ramos. Cada ramo e representa uma tarefa de um projeto e o valor $d(e)$ representa a sua duração. Todas as tarefas terão de ser realizadas e algumas podem decorrer simultaneamente . As tarefas com origem num nó só podem começar depois de todas as tarefas com fim nesse nó estarem concluídas. Admitindo que pode iniciar o projeto no instante 0 (zero), pretendemos determinar o instante em que estaria concluído e o instante em que daria início às tarefas com origem em cada nó se as realizasse o mais cedo possível.
a) [0.5] Para a instância representada, indique o instante em que daria início às tarefas com origem em cada nó. Quando é que o projeto estaria concluído?
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
b) [3.0] Usando pseudocódigo, apresente um algoritmo com complexidade temporal $\Theta(V + E)$ para resolver o problema. Justifique sucintamente a correção e complexidade do algoritmo.
7. [0.6] Indique a estratégia <i>greedy</i> que o resolve o problema da mochila fracionário (<i>linear knapsack</i>).

DCC/FCUP			CC20	001 - Exar	me (09.01.2018)
1.0	Nome				
• [1.5] Apresente a reco únima de s para t , para $(e) \in \mathbb{Z}^+$, para todo $e \in \mathbb{Z}^+$	todos os pare	es $(s,t) \in V \times$	V, num grafo	dirigido pesac	$\operatorname{do} G = (V, E, d), \operatorname{con}$
• [2.0] Considere uma h	eap binária de	<i>mínimo</i> com 10		_	5, 2, -3, 4, 9, 6, 1, 10, 8
Indique os valores deRepresente-a por uma		LEFT		RIGHT(7)	
) Represente-a por uma	arvore. C) L	resemie-a apos	LATRACTIVIIN		or DECREASEKEY.
0. [1.0] Qual é a compl	exidade de um	a operação de pi	ocura de um el	emento com u	ma chave k dada, num
eap binária de mínimo,	$\operatorname{com} n \operatorname{elemen}$	tos (todos com	chaves distinta	s)?	
, numa árvore de pesqui	sa red-black			, num array	
um <i>array</i> ordenado		·	?		(Continua, v.p.

11. Recorde o problema "Caixotes de morangos", em que é necessário determinar como distribuir c caixas de morangos por l lojas de forma a maximizar o valor total obtido. Seja R_{kn} o valor que a loja k oferece por n caixas e seja T_{kn} o valor máximo que se pode obter se se distribuir n caixas pelas lojas $1, 2, \ldots, k$. Seja S_{kn} uma solução com valor T_{kn} , dada por uma lista de pares (q, i) , em que q é o número de caixas que envia à loja i , com $q \neq 0$ (omite o par se $q = 0$). Seja N_{kn} o número total de soluções com valor T_{kn} . Assuma que os valores R_{kn} são inteiros positivos.
a) [1.2] Adaptando a função dada nas aulas, escreva (em pseudocódigo) a função CAIXOTES (R,c,l,T,S,N) para obter os valores T_{ln} , S_{ln} e N_{ln} , usando programação dinâmica, para $0 \le n \le c$, sendo T e N arrays de inteiros, com $c+1$ posições e S um array de $c+1$ listas de pares de inteiros. Admita que R é uma matriz de inteiros com l linhas e $c+1$ colunas.
b) [0.5] Justifique sucintamente a correção.

 $c) \ \ \hbox{$[0.3]$ Indique a complexidade temporal.}$