Boosting

(source: David Rosenberg)

Yann Chevaleyre

November 4, 2022

Contents

Introduction

- Porward Stagewise Additive Modeling (FSAM)
 - Application de FSAM à la Regression: L^2 Boosting
 - Application de FSAM à la Classification: Algorithme AdaBoost
 - Analyser la convergence d'Adaboost: lien avec Hedge

- Gradient Boosting / "Anyboost"
 - Example: BinomialBoost

- Gradient Tree Boosting
 - GBM Regression with Stumps

3/48

Introduction

- Base hypothesis space: $\mathcal F$ of $\hat{\mathcal Y}$ -valued functions
- Combined hypothesis space: \mathcal{F}_M :

$$\mathfrak{F}_{M} = \left\{ \sum_{m=1}^{M} v_{m} h_{m}(x) \mid v_{m} \in \mathbb{R}, h_{m} \in \mathfrak{F}, m = 1, \dots, M \right\}$$

- Suppose we're given some data $S = ((x_1, y_1), \dots, (x_n, y_n)).$
- Learning is choosing $v_1, \ldots, v_M \in \mathbb{R}$ and $h_1, \ldots, h_M \in \mathcal{F}$ to fit S.

Note:

in bagging, we learn h_i , but $v_i = \frac{1}{M}$ for all classifiers. Boosting will learn both!!

• We'll consider learning by **empirical risk minimization**:

$$\hat{h} = \underset{f \in \mathcal{F}_M}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i),$$

for some loss function $\ell(y, \hat{y})$.

• Write ERM objective function as

$$J(v_1,...,v_M,h_1,...,h_M) = \frac{1}{n} \sum_{i=1}^n \ell\left(y_i, \sum_{m=1}^M v_m h_m(x)\right).$$

• How to optimize J? i.e. how to learn?

• **Suppose** our base hypothesis space is parameterized by $\Theta = \mathbb{R}^d$:

$$J(v_1,\ldots,v_M,\theta_1,\ldots,\theta_M) = \frac{1}{n} \sum_{i=1}^n \ell\left(\sum_{m=1}^M v_m h_{\theta_m}(x), y_i\right).$$

- Can we can differentiate J w.r.t. v_m 's and θ_m 's? Optimize with SGD?
- For some hypothesis spaces and typical loss functions, yes!
- Neural networks fall into this category! (h_1, \ldots, h_M) are neurons of last hidden layer.)

What if Gradient Based Methods Don't Apply?

- What if base hypothesis space \mathcal{F} consists of decision trees?
- Can we even parameterize trees with $\Theta = \mathbb{R}^b$?
- Even if we could for some set of trees,
 - predictions would not change continuously w.r.t. $\theta \in \Theta$,
 - and so certainly not differentiable.
- Today we'll discuss boosting. It applies whenever
 - we can compute a particular form of the above ERM (FSAM algorithms)
 - our loss function is [sub]differentiable w.r.t. training predictions $f(x_i)$, and we can do regression with the base hypothesis space \mathcal{F} (gradient-boost).

Forward Stagewise Additive Modeling (FSAM)

Forward Stagewise Additive Modeling (FSAM)

- FSAM is an iterative optimization algorithm for fitting adaptive basis function models.
- Start with $f_0 \equiv 0$.
- After m-1 stages, we have

$$f_{m-1}=\sum_{i=1}^{m-1}\nu_ih_i.$$

- In m'th round, we want to find
 - step direction $h_m \in \mathcal{F}$ (i.e. a basis function) and
 - step size $v_i > 0$
- such that

$$f_m = f_{m-1} + v_i h_m$$

improves objective function value by as much as possible.

Forward Stagewise Additive Modeling for ERM

- Initialize $f_0(x) = 0$.
- \bigcirc For m=1 to M:
 - Compute:

$$(v_m, h_m) = \underset{v \in \mathbf{R}, h \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell \left(f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}}, y_i \right).$$

- ② Set $f_m = f_{m-1} + v_m h$.
- \odot Return: f_M .

Application de FSAM à la Regression: L^2 Boosting

FSAM pour la Regression: L^2 Boosting

• Utilisons la "mean square error".

$$L(v,h) = \frac{1}{n} \sum_{i=1}^{N} \left(y_i - \left[f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{nouveau classifieur}} \right] \right)^2$$

- Si \mathcal{F} est "fermé par changement d'échelle" alors on peut oublier ν et n'apprendre que h.
- minimiser

$$L(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\left[\underbrace{y_i - f_{m-1}(x_i)}_{\text{residus}} \right] - h(x_i) \right)^2$$

- Ce revient à faire un moindre carré sur les résidus !
- L'algorithme s'appelle parfois "matching pursuit"

 ${\it L}^2$ Boosting - interprétation géométrique

(au tableau)

Regression Stumps

- A regression stump is a regression tree with a single split.
- A regression stump is a function of the form $h(x) = a1(x_i \le c) + b1(x_i > c)$.

Plot courtesy of Brett Bernstein.

Yann Chevaleyre Boosting November 4, 2022

14 / 48

FSAM L^2 Boosting with Decision Stumps: Demo

Yann Chevaleyre Boosting November 4, 2022 15 / 48

Application de FSAM à la Classification: Algorithme AdaBoost

The Classification Problem

- Outcome space $\mathcal{Y} = \{-1, 1\}$
- The set of *base classifiers* is $\mathcal{F} \subset \mathcal{X} \mapsto \{-1,1\}$ (e.g. decision stumps)
- We want to learn a scoring function $f_M \in \mathcal{F}_M$ where

$$\mathcal{F}_{M} = \left\{ \sum_{m=1}^{M} v_{m} h_{m}(x) \mid v_{m} \in \mathbb{R}, h_{m} \in \mathcal{F}, m = 1, \dots, M \right\}$$

- As usual, this scoring function induces a "hard"-classifier $sign(f_M(x))$
- Can we optimize a scoring loss $f_M = \arg\min_{f \in \mathcal{F}_M} \sum_{i=1}^N \ell(f(x_i), y_i)$?

Scoring Losses for Classification

- All these losses are well calibrated
- For these functions, a direct computation of FSAM is not easy.
- For the exp loss: $\ell(f(x), y) = \exp(-yf(x))$ there is an "indirect" algo: Adaboost

November 4, 2022

18 / 48

AdaBoost - Rough Sketch

- Training set $S = ((x_1, y_1), ..., (x_n, y_n)).$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for m = 1, ..., M:
 - Find base classifier $h_m(x)$ that **tries** to fit weighted training data with 0/1 loss

$$\hat{R}^{W}(f) = \frac{1}{W} \sum_{i=1}^{N} w_{i} \ell(f(x_{i}), y_{i})$$
 where $W = \sum_{i=1}^{n} w_{i}$

- Increase weight w_i on the points $h_m(x)$ misclassifies
- So far, we've generated M classifiers: $h_1, \ldots, h_M : \mathcal{X} \to \{-1, 1\}$.
- Final scoring function is $f_M(x) = \sum_{m=1}^{M} v_m h_m(x)$, for some weights v_m .

FINAL CLASSIFIER $G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$ Weighted Sample $G_M(x)$ Weighted Sample $G_3(x)$ Weighted Sample $G_2(x)$ Training Sample $G_1(x)$

20 / 48

AdaBoost: Algorithm

Given training set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- Initialize observation weights $w_i = 1, i = 1, 2, ..., N$.
- ② For m = 1 to M:
 - learner fits weighted training data and returns $h_m(x)$
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = rac{1}{W} \sum_{i=1}^n w_i \mathbb{1}(y_i
eq h_m(x_i)) \quad ext{where } W = \sum_{i=1}^n w_i.$$

- **3** Compute $v_m = \ln\left(\frac{1 \text{err}_m}{\text{err}_m}\right)$ [classifier weight]
- **3** Set $w_i \leftarrow w_i \cdot \exp[v_m 1(y_i \neq h_m(x_i))]$, i = 1, 2, ..., n [example weight adjustment]
- **3** Ouput $f_M(x) = \sum_{m=1}^{M} v_m h_m(x)$.

AdaBoost Classifier Working Principle with Decision Stump as a Base Classifier

AdaBoost: Pas à pas

Adaboost en tant qu'algorithme FSAM

• Soit $\ell(\hat{y}, y) = \exp(-\hat{y}y)$. Montrons qu'à chaque étape d'Adaboost, l'algorithme calcule

$$(v_{m}, h_{m}) = \underset{v \in \mathbf{R}, h \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}}, y_{i} \right)$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell \left(f_{m-1}(x_{i}) \underbrace{+vh(x_{i})}_{\text{new piece}} \right)}_{\text{new piece}}$$

$$= \underset{n}{\operatorname{arg\,min}} \underbrace{\frac{1}$$

Yann Chevaleyre Boosting November 4, 2022 24 / 48

Analyser la convergence d'Adaboost: lien avec Hedge

Simplified variant of AdaBoost

• In this section, we will analyse a simplified version of Adaboost, which we will relate to the online learning *Hedge* algorithm.

Given training set $S = \{(x_1, y_1), ..., (x_n, y_n)\}.$

- Initialize observation weights $w_i = 1, i = 1, 2, ..., N$.
- ② For m = 1 to M:
 - learner fits weighted training data and returns $h_m(x)$
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i 1(y_i \neq h_m(x_i))$$

- § Set $w_i \leftarrow w_i \cdot \exp[-\beta . 1(y_i = h_m(x_i))]$, i = 1, 2, ..., n [example weight adjustment]
- **3** Ouput $f_M(x) = \sum_{m=1}^{M} h_m(x)$.

Rappel: apprentissage en-ligne en 0/1 loss

Protocole

Pour t = 1 à T

- L'environnement choisit x_t, y_t , et révèle x_t à l'apprenant
- L'apprenant prédit \hat{y}_t (en général, il choisit h_t et prédit $\hat{y}_t = h_t(x_t)$)
- L'environnement révèle y_t
- L'apprenant reçoit le cout de $\ell^{0/1}(\hat{y}_t, y_t)$

Objectif: produire la séquence de classifieurs $h_1 \dots h_T$ tels que la perte cumulée $\sum_{t=1}^T \ell^{0/1}(h_t(x_t), y_t)$ soit minimisée

Rappel: Hedge

- Je choisis $P_t(h) = \frac{1}{\Omega_t} w_{h,t}$ avec
 - $w_{h,1} = 1$
 - $w_{h,t+1} = w_{h,t}e^{-\beta \ell^{0/1}(h(x_t),y_t)}$ pour une constante $\beta > 0$

Algorithme Hedge (voir cours d'apprentissage en ligne)

$$\mathfrak{F}_1 = \mathfrak{F}$$

Pour t = 1 à T

- je reçois x_t
- je tire $h_t \sim P_t$
- ullet je reçois le vrai label y_t , et ma prédiction me coute $\ell(h_t(x_t),y_t)$
- je mets à jour P_{t+1}

Thm: in expectation, $Regret_T = \sum_{t=1}^T \ell_t\left(h_t\right) - \min_{h \in \mathcal{F}} \sum_{t=1}^T \ell_t\left(h\right) \leqslant \sqrt{2T \ln |\mathcal{F}|}$

Problème dual de l'apprentissage en-ligne

• (on inverse la place de l'apprenant et de l'environnement)

Protocole dual

Pour t = 1 à T

- ullet L'environnement choisit sans le révéler un classifieur h_t
- L'apprenant choisit x_t, y_t de l'ensemble S
- L'environnement révèle h_t
- L'apprenant reçoit le gain de $\ell(h_t(x_t), y_t)$

Objectif: Trouver les exemples $(x_t, y_t) \in S$ qui maximisent la perte cumulée $\sum_{t=1}^T \ell^{0/1}(h_t(x_t), y_t)$, ou qui minimisent $\sum_{t=1}^T \left(1 - \ell^{0/1}(h_t(x_t), y_t)\right)$

Dual Hedge

- Je choisis $P_t(i) = \frac{1}{\Omega_t} w_{i,t}$, distribution discrète sur $S = \{(x_1, y_1) \dots (x_N, y_N)\}$ avec:
 - $w_{i,1} = 1$, et $w_{i,t+1} = w_{i,t}e^{-\beta(1-\ell(h_t(x_i),y_i))}$ pour une constante $\beta > 0$

Algorithme Dual-Hedge

Pour t = 1 à T

- l'environnement choisit h_t sans le révéler
- je tire $(x_t, y_t) \sim P_t$
- je reçois h_t et mon choix me coute $1 \ell(h_t(x_t), y_t)$
- je mets à jour P_{t+1} en calculant $w_{i,t+1} = w_{i,t}e^{-\beta(1-\ell(h_t(x_i),y_i))}$ pour tout i

Thm: we have in expectation, $Regret_{\mathcal{T}} = \sum_{t=1}^{T} \left(1 - \ell\left(h_t(x_t), y_t\right)\right) - \min_{i \in \{1..N\}} \sum_{t=1}^{T} \left(1 - \ell\left(h_t(x_t), y_t\right)\right) \leqslant \sqrt{2T \ln |S|}$

Yann Chevaleyre Boosting November 4, 2022 30 / 48

Dual Hedge

• La borne de regret est vraie pour TOUTE stratégie de l'environnement. On peut donc imposer une condition sur l'environnement sans changer la borne.

Algorithme Dual-Hedge

Pour t = 1 à T

- l'environnement choisit h_t tel que $err_t = \frac{1}{M} \sum_{i=1}^{N} w_i \mathbb{1}(y_i \neq h_t(x_i)) \leqslant \frac{1}{2} \gamma$
- je mets à jour P_{t+1} en calculant $w_{i,t+1} = w_{i,t}e^{-\beta(1-\ell(h_t(x_i),y_i))}$ pour tout i

Thm:

$$\begin{aligned} \textit{Regret}_T &= \mathbb{E}\left[\sum_{t=1}^T \left(1 - \ell\left(h_t(x_t), y_t\right)\right) - \min_{i \in \{1..N\}} \sum_{t=1}^T \left(1 - \ell\left(h_t(x_t), y_t\right)\right)\right] \\ &= \sum_{t=1}^T \mathbb{E}_{x, y \sim P_t} \left[\left(1 - \ell\left(h_t(x), y\right)\right) - \min_{t \in \{1..N\}} \sum_{t=1}^T \left(1 - \ell\left(h_t(x), y\right)\right)\right] \leqslant \sqrt{2T \ln |S|} \\ &\text{Yann Chevaleyre} &\text{Boosting} &\text{November 4, 2022} \end{aligned}$$

Analyse de Dual-Hedge / Lien avec (Simplified) Adaboost

• Nous allons montrer que si, à chaque étape, h_t satisfait

$$err_t = \frac{1}{W} \sum_{i=1}^{N} w_i 1(y_i \neq h_t(x_i)) \leqslant \frac{1}{2} - \gamma$$
 (weak learning hypothesis)

pour $\gamma \in]0, \frac{1}{2}[$, alors au bout de quelques étapes, le classifieur final aura une erreur empirique nulle.

- Notons que $err_t = \mathbb{E}_{x,y \sim P_t} \left(\ell^{0/1}(h_t(x),y) \right)$.
- Plus précisément:

Thm de convergence d'Adaboost: Sous l'hypothèse de weak learning, après $T=\frac{2}{\gamma^2}\ln N$ pas de temps, le classifieur majoritaire a un taux d'erreur de classification nulle sur l'échantillon S. (preuve au tableau)

Gradient Boosting / "Anyboost"

FSAM Is Iterative Optimization

• The FSAM step

$$(v_m, h_m) = \underset{v \in \mathbf{R}, h \in \mathcal{F}}{\arg\min} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

- Hard part: finding the **best step direction** h.
- What if we looked for the locally best step direction?
 - like in gradient descent

"Functional" Gradient Descent

We want to minimize

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

- In some sense, we want to take the gradient w.r.t. "f", whatever that means.
- J(f) only depends on f at the n training points.
- Define

$$\mathbf{f} = (f(x_1), \dots, f(x_n))^T$$

and write the objective function as

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_i, \mathbf{f}_i).$$

Functional Gradient Descent: Unconstrained Step Direction

Consider gradient descent on

$$f_{i} = f(x_{k})$$

$$J(f) = \sum_{i=1}^{n} \ell(y_{i}, f_{i}).$$

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_i, \mathbf{f}_i).$$

$$\mathbf{f} = \begin{pmatrix} f_1 \\ \vdots \\ f_N \end{pmatrix} \in \mathbb{R}^N$$

$$\mathbf{g} \in \mathbb{R}^N$$

36 / 48

• The negative gradient step direction at f is

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f})$$

= $-(\partial_{\mathbf{f}_1} \ell(y_1, \mathbf{f}_1), \dots, \partial_{\mathbf{f}_n} \ell(y_n, \mathbf{f}_n))$

which we can easily calculate.

- $-\mathbf{g} \in \mathbf{R}^n$ is the direction we want to change each of our n predictions on training data.
- Eventually we need more than just \mathbf{f} , we'll need the function f.

Functional Gradient Descent: Projection Step

Unconstrained step direction is

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f}) = -\left(\partial_{\mathbf{f}_1} \ell\left(y_1, \mathbf{f}_1\right), \dots, \partial_{\mathbf{f}_n} \ell\left(y_n, \mathbf{f}_n\right)\right).$$

- Also called the "pseudo-residuals"
 - (for square loss, they're exactly the residuals)

$$\lim_{x \to \infty} \sum_{i=1}^{n} (-\mathbf{g}_{i} - h(x_{i}))^{2}. \qquad \qquad \mathcal{C}_{M + h(m)}$$

 $\geq l(y_i, f_i - g_i) \leq \geq l(y_i, f_i)$

• Find the closest base hypothesis $h \in \mathcal{F}$ (in the ℓ^2 sense):

$$\min_{h\in\mathcal{F}}\sum_{i=1}^n\left(-\mathbf{g}_i-h(x_i)\right)^2.$$

- This is a least squares regression problem over hypothesis space \mathcal{F} .
- Take the $h \in \mathcal{F}$ that best approximates $-\mathbf{g}$ as our step direction.

Functional Gradient Descent: Step Size

- Finally, we choose a stepsize.
- Option 1 (Line search):

$$v_m = \underset{v>0}{\arg\min} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + v h_m(x_i)\}.$$

- Option 2: (learning rate parameter more common)
 - We consider v = 1 to be the full gradient step.
 - Choose a fixed $v \in (0,1)$ called a **learning rate or shrinkage parameter.**
 - A value of $\nu = 0.1$ is typical optimize as a hyperparameter .

The Gradient Boosting Machine Ingredients (Recap)

- Take any loss function [sub]differentiable w.r.t. the prediction
- Choose a base hypothesis space for regression.
- Choose number of steps (or a stopping criterion).
- Choose step size methodology.
- Then you're good to go!

Example: BinomialBoost

BinomialBoost: Gradient Boosting with Logistic Loss

• Recall the logistic loss for classification, with $\mathcal{Y} = \{-1, 1\}$:

$$\ell(y, f(x)) = \log\left(1 + e^{-yf(x)}\right)$$

• Pseudoresidual for i'th example is negative derivative of loss w.r.t. prediction:

$$r_i = -\partial_{f(x_i)} \left[\log \left(1 + e^{-y_i f(x_i)} \right) \right]$$

$$= \frac{y_i e^{-y_i f(x_i)}}{1 + e^{-y_i f(x_i)}}$$

$$= \frac{y_i}{1 + e^{y_i f(x_i)}}$$

BinomialBoost: Gradient Boosting with Logistic Loss

• Pseudoresidual for *i*th example:

$$r_i = -\partial_{f(x_i)} \left[\log \left(1 + e^{-y_i f(x_i)} \right) \right] = \frac{y_i}{1 + e^{y_i f(x_i)}}$$

• So if $f_{m-1}(x)$ is prediction after m-1 rounds, step direction for m'th round is

$$h_m = \underset{h \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^n \left[\left(\frac{y_i}{1 + e^{y_i f_{m-1}(x_i)}} \right) - h(x_i) \right]^2.$$

• And $f_m(x) = f_{m-1}(x) + \nu h_m(x)$.

Gradient Tree Boosting

Gradient Tree Boosting

One common form of gradient boosting machine takes

$$\mathcal{F} = \{\text{regression trees of size } J\},$$

where J is the number of terminal nodes.

- J = 2 gives decision stumps
- HTF recommends $4 \le J \le 8$ (but more recent results use much larger trees)
- Software packages:
 - Gradient tree boosting is implemented by the **gbm package** for R
 - \bullet as GradientBoostingClassifier and GradientBoostingRegressor in sklearn
 - xgboost and lightGBM are state of the art for speed and performance

GBM Regression with Stumps

Sinc Function: Our Dataset

Minimizing Square Loss with Ensemble of Decision Stumps

Decision stumps with 1, 10, 50, and 100 steps, step size $\lambda = 1$.

Figure 3 from Natekin and Knoll's "Gradient boosting machines, a tutorial"

Rule of Thumb

- The smaller the step size, the more steps you'll need.
- But never seems to make results worse, and often better.
- So set your step size as small as you have patience for.