Near UV Aerosol Group Report

Omar Torres NASA GSFC 614

GSFC Aerocenter Update May 31, 2013

People

Research Group:

- -Omar Torres (NASA 614)
- -Changwoo Ahn (SSAI)
- -Hiren Jethva (GESTAR-USRA)
- -Pawan Gupta (GESTAR-USRA)
- -Santiago Gasso (GESTAR- Morgan State University)
- -Peter Leonard (ADNET)

Collaborations:

- -PK Bhartia
- -Nick Krotkov
- -Mian Chin
- -Rich McPeters
- -Peter Colarco, Valentina Aquila (JHU)
- -E.S. Yang (SSAI)
- -Sasha Marshak, Jay Herman (UMBC)
- -Kelly Chance (SAO)
- -Lorraine Remer (UMBC)
- -Robert Loughman (HU)

Projects

OMI near UV aerosol algorithm and products

- -Algorithm Upgrades (Ahn, Jethva, Gupta, Torres)
- -Product Assessment (Ahn, Jethva, Gasso, Torres)
- -OMI-MODIS Synergy (Gasso, Torres)
- -Near UV High Spatial resolution (CAI, GLI) Analysis (Gasso, Torres)

Detecting Aerosol Above Clouds (Jethva, Ahn, Torres, Bhartia, Remer)

- -OMI
- -MODIS Application
- -Inter-comparison to other techniques (POLDER, CALIOP)

Ground based observations of aerosols (Krotkov, Mok, Jethva, Loughman, Torres, Labow)

-Combined use of Cimel and UV and VIS MFRS sensors to measure aerosol absorption

Real and spurious effects of stratospheric aerosols on Satellite-measured total ozone (Aquila, Yang, Torres, Bhartia, McPeters, Colarco)

MEASURES Near UV Aerosol Project (Torres, Bhartia)

OMAERUV AOD Validation

Comparisons at 44 AERONET sites over for years (2005-2008)

Ahn et al., JGR 2013 (submitted); Torres et al., AMT 2013, (submitted)

All sites

Single Scattering Albedo Evaluation

Comparison to AERONET SSA (440 nm) retrievals

Most OMAERUV SSA retrievals agree with AERONET's within 0.03 in South America, Northern India, NE China, Eastern Saharan Desert, and the Sahel region.

Larger differences are observed in Central Saharan, Southern Africa and Southeast Asia.

OMI-MODIS AOD analysis Identification of OMI algorithm and scene specific issues

(Santiago Gassó)

Overlap Standard

AERONET vs SATELLITE AOT440

Cloud Contamination

RMSE, Slo, Ord, Corr, N OVER 0.19, 1.03, 0.02,0.83, 97 STAN 0.41, 0.24, 0.53,0.16, 97 Algorithm Related issues

Overestimation of AOD in partly cloud conditions

About the graphs:
Collocated OMI+MODIS+Aeronet pixel (years 04-11)

Overlap: OMI AOD corrected by the MODIS AOD

Standard: OMAERUV AOD

Underestimation of AOD in very dense dust storms (assumed size distribution, aerosol height)

Gasso and Torres (in preparation)

Aerosols Above Clouds: Sensor Inter-comparison

(Jethva, Torres, Waquet, Chand)

Combined use of CIMEL and Modified UV and VIS MFSR Measurements

(Krotkov, Torres, Mok, Labow, Jethva, Loughman)

Inter-calibration:

$$\tau_{\rm 440}^{\it Cimel}=\tau_{\rm 440}^{\it MFSR}$$

Direct Sun measurements: AOD Sky-radiance measurements

Replace three original UV filters with CIMEL's 340, 380 and 440 nm filters.

Add a 440 nm CIMEL filter to VIS MFSR sensor

Measure 1 min F_{diff} and F_{tot} (3% error)

Calculate F_{dir} Derive τ_{uv-vis}^{MFSR}

Particle Size Distribution Real Refractive Index

Mie plus RT Calculations $K_{uv-vis'}$ SSA $_{uv-vis}$ that explains measured F_{diff}/F_{tot} ratios

CIMEL and Modified UV and VIS MFSR observations: Results

Plan to return to Bolivia in 2013 using three-instrument suite

Future Perspective:

DSCOVR At Lagrange-1

Earth Polychromatic Imaging Camera

Channels and Applications

Channel (nm)	FWHM (nm)	Purpose	Spatial Resolution (km)	SNR	Exp. Time (seconds)
317.5 ± 0.1	1±0.2	Ozone, SO ₂ , UV	10*	265	1.3
325 ± 0.1	1±0.2	Ozone, UV	10	265	0.84
340 ± 0.3	3 ± 0.6	Ozone, Aerosols, UV, and Volcanic Ash	10	265	0.13
388 ± 0.3	3 ± 0.6	Aerosols, Clouds, UV and Volcanic Ash	10	266	0.087
443±1	3 ± 0.6	Blue, Aerosols, Vegetation	10	265	0.052
551±1	3 ± 0.6	Green, Aerosols, Vegetation	10	265	0.030
680 ± 0.2	2 ± 0.4	Red, Aerosol, Veg., O ₂ B-Band, Clouds	10	266	0.037
687.75 ± 0.2	0.8 ± 0.2	O ₂ B-Band Cloud Height	10	266	0.060
764.0 ± 0.2	1 ± 0.2	A-Band Cloud Height	10	265	0.061
779.5 ± 0.3	2 ± 0.4	A-Band Reference, Vegetation	10	265	0.036

Official launch date: November 2014

Science Team to be selected via ROSES call

Future Perspective (2):

Tropospheric Emissions: Monitoring of Pollution (TEMPO)

PI: Kelly Chance (Smithsonian Astrophysical Observatory)

- -First GEO NASA Science Mission
- -Commercial Satellite Hosted Payload
- -GEOCAPE Precursor
- -To be launched in 2019

EY INSTRUMENT CHARACTERISTICS						
Requirements		Comment				
Field of Regard	GNA	Mexico City to Canada tar sands & Atlantic to Pacific				
Imaging Time	1 hr	1250 scan positions with 2.8 sec integration				
Footprint N/S	2.0 km	Native pixel achieved by 44 cm				
Footprint E/W	4.5 km	telescope effective focal length				
Spectral Range	290-690 nm	1,024 spectral channels matched to 2k focal plane				
Spectral Resolution	0.6 nm	Achieved by spectrometer design				
Spectral Sampling	0.2 nm					

PLANED PRODUCTS

Species	λ Band nm	SNR Reqs	SNR Predict	EOL Margin
SO ₂	305-345	1297	1820	40%
H₂CO	327-354	487	2094	330%
NO ₂	423-451	1233	1910	55%
C ₂ H ₂ O ₂	433-457	1350	2331	73%
O ₃ (UV)	303-345	1122	1635	46%
O ₃ (Vis)	546-648	958	1254	31%
AOD	354, 388	1000	1596	60%

SCIENCE TEAM

Kelly Cha	nce, (PI)	SAO	Xiong Liu, (DPI)	SAO	
James	James Carr		Ronald Cohen	UC Berkeley	
David E	David Edwards No.		Jack Fishman	St. Louis U.	
David F	littner	LaRC	Jay Herman	UMBC	
Daniel	Jacob	Harvard	Scott Janz	GSFC	
Joanna	Joiner	GSFC	Nickolay Krotkov	GSFC	
James	Leitch	Ball	Randall Martin	SAO	
Doree	n Neil	LaRC	Michael Newchurch	UAH	
R. Bradle	y Pierce	NOAA	Robert Spurr	RT Solutions	
Raid Su	Raid Suleiman SAO		James Szykman	EPA	
Omar	Torres	GSFC	Jun Wang	U. Nebraska	
78-5					