离散数学 (2023) 作业 10

周帛岑 221900309

2023年3月29日

1 Problem 1

解:

a):P(A|B) =
$$\frac{P(A \cap B)}{P(B)}$$
 = $\frac{1}{3}$

b):
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{1}{5}$$

c): 由题可知,
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.7$$

又
$$P(A \cup B \cap A) = P(A) = 0.5$$
, 故 $P(A|A \cup B) = \frac{P(A \cup B \cap A)}{P(A \cup B)} = \frac{5}{7}$

d): 由题可知 $P(A \cap B \cap A) = P(A \cap B) = 0.1$

故 P (A|A∩B) =
$$\frac{P(A \cap B \cap A)}{P(A \cap B)} = 1$$

e): 由题可知, $P(A|A \cup B \cap (A \cap B)) = P(A \cap B) = 0.1$

故 P (A∩B|A∪B) =
$$\frac{P(A\cap B\cap (A\cup B))}{P(A\cup B)} = \frac{1}{7}$$

2 Problem 2

解:不妨设头像朝上为 0,头像朝下为 1,从左到右分别代表 1-3 次抛掷,我们可以将结果与 01 位串对应,设所有的情况构成的集合为 A

则 $A = \{000,001,010,011,100,101,110,111\}$

a):
$$E_1 = \{100,101,110,111\}, E_2 = \{000,001,100,101\} E_1 \cap E_2 = \{100,101\}$$

$$P(E_1) = \frac{|E_1|}{|A|} = 0.5 \quad P(E_2) = \frac{|E_2|}{|A|} = 0.5 \quad P(E_1 \cap E_2) = \frac{|E_1 \cap E_2|}{|A|} = 0.25 = P(E_1) \times P(E_2)$$

故为独立的

b):
$$E_1 = \{100,101,110,111\}, E_2 = \{001,010,100\} E_1 \cap E_2 = \{100\}$$

$$P(E_1) = \frac{|E_1|}{|A|} = 0.5$$
 $P(E_2) = \frac{|E_2|}{|A|} = \frac{3}{8}$ $P(E_1 \cap E_2) = \frac{|E_1 \cap E_2|}{|A|} = \frac{1}{8} \neq P(E_1) \times P(E_2)$ 故不为独立的

c):
$$E_1 = \{010,011,110,111\}, E_2 = \{001,010,100\} E_1 \cap E_2 = \{010\}$$

$$P(E_1) = \frac{|E_1|}{|A|} = 0.5$$
 $P(E_2) = \frac{|E_2|}{|A|} = \frac{3}{8}$ $P(E_1 \cap E_2) = \frac{|E_1 \cap E_2|}{|A|} = \frac{1}{8} \neq P(E_1) \times P(E_2)$

故不为独立的

3 Problem 3

解: 设取从某个厂中取产品的概率为 $P(x),(x \in \{ \mathbb{P}, \mathbb{Z}, \mathbb{R} \})$

由题意,
$$P(甲) = \frac{5}{5+2+3} = 0.5, P(Z) = \frac{3}{5+2+3} = 0.3, P(丙) = \frac{2}{5+2+3} = 0.2$$

则取到次品的概率 R 为

$$R = 0.5 \times (1-0.95) + 0.3 \times (1-0.96) + 0.2 \times (1-0.98) = 0.041$$

4 Problem 4

解:不妨设从 X 中取出某数概率为 A(X),从 Y 中取出某数概率为 B(Y)

$$P(1 \cap 2) = P(A(1)) \times P(B(1)) = \frac{1}{6}$$

$$P(1 \cap 3) = P(A(1)) \times P(B(2)) = \frac{1}{9}$$

$$P(1 \cap 3) = P(A(1)) \times P(B(3)) = \frac{1}{18}$$

三式分别相除,得

则
$$P(B(1)): P(B(2)): P(B(3)) = 3: 2: 1$$

$$\mathbb{P} P(B(1)) = \frac{P(B(3))}{P(B(3)) + P(B(2)) + P(B(1))} = \frac{1}{2}$$

故
$$P(A(1)) = \frac{1}{3}$$

$$\mathbb{Z} P(2 \cap 1) = P(A(2)) \times P(B(1)) = \frac{1}{3}$$

则
$$P(A(2)) = \frac{2}{3}$$

故
$$P(A(2)) \cap P(B(2)) = P(A(2)) \times P(B(2)) = \frac{1}{6}$$
 即 $a = \frac{1}{6}$

故
$$P(A(2) \cap P(B(3)) = P(A(2) \times P(B(3)) = \frac{1}{9}$$
 即 $b = \frac{1}{9}$

5 Problem 5

解: 设是否感染为事件 A(x), 其中 x=0 为未感染, x=1 为已感染, 其中 P(A(1))=0.04 设是否为阳性为事件 B(x), 其中 x=0 为不为阴性, x=1 为阳性

a): 由没感染禽流感的人中有 2% 的人禽流感检测呈阳性, 感染了禽流感的人中有 97% 的人禽流感检测呈阳性。故 $P(B(1)) = P(A(0)) \times 0.02 + P(A(1)) \times 0.97 = 0.058$

则禽流感检测呈阳性的人真的感染了禽流感病毒的概率为 $Q_1 = \frac{P(A(1)) \times 0.97}{0.058} \approx 0.669$

- b): 由 a) 可知,禽流感检测呈阳性的人没有感染禽流感病毒的概率为 $Q_2 = \frac{P(A(0)) \times 0.02}{0.058} \approx 0.331$
- c): 由没感染禽流感的人中有 98% 的人禽流感检测不呈阳性, 感染了禽流感的人中有 3% 的人禽流感检测不呈阳性。且 P(B(0))=1-P(B(1)) 故 $P(B(0))=P(A(0))\times0.02+P(A(1))\times0.97=0.942$

则禽流感检测呈阴性的人感染了禽流感病毒的概率为 $Q_3 = \frac{P(A(1)) \times 0.03}{0.942} \approx 0.001274$

d): 由 c) 可知,禽流感检测呈阴性的人没有感染禽流感病毒的概率为 $Q_4 = \frac{P(A(0)) \times 0.98}{0.942} \approx 0.998726$

6 Problem 6

解:

由题可知,每一次扔骰子是独立的且扔出 6 的概率为 $p = \frac{1}{6}$ 故扔 10 次后出现六的次数的方差 D 满足 $D = np(1-p) = \frac{25}{18}$

7 Problem 7

解: 从 20 件样品中抽取 5 件共有 $C_{20}^5 = 15504$ 种情况

其中抽到一件或零件次品的事件共 $C_{16}^4 \times C_4^1 + C_{16}^5 = 11648$ 种情况

故会被拒绝的概率为 1 - $\frac{11648}{15504} \approx 0.2487$

期望值
$$E = 1 \times \frac{C_{16}^4 \times C_4^4}{15504} + 2 \times \frac{C_{16}^3 \times C_4^2}{15504} + 3 \times \frac{C_{16}^2 \times C_4^3}{15504} + 4 \times \frac{C_{16}^1 \times C_4^4}{15504} = 1$$

方差 D =
$$(0-1)^2 \times \frac{C_{16}^5}{15504} + (1-1)^2 \times \frac{C_{16}^4 \times C_4^1}{15504} + (2-1)^2 \times \frac{C_{16}^3 \times C_4^2}{15504} + (3-1)^2 \times \frac{C_{16}^2 \times C_4^3}{15504} + (4-1)^2 \times \frac{C_{16}^1 \times C_4^4}{15504} = \frac{12}{19}$$

8 Problem 8

解:

n=2 时,不妨按顺序将其设为玩家 A, 玩家 B,(A 先开枪)。A 获胜的概率为 $P(A)=\frac{1}{6}+\frac{5}{6}\times\frac{4}{5}\times\frac{1}{4}+\frac{5}{6}\times\frac{4}{5}\times\frac{3}{4}\times\frac{3}{2}\times\frac{1}{2}=\frac{1}{2}$

即 B 获胜的概率 P(B) 为 1- $P(A) = \frac{1}{2}$

此时是公平的

n=3 时,不妨按顺序将其设为玩家 A, 玩家 B, 玩家 C,(A 先开枪)。A 获胜的概率为 P(A) = $\frac{1}{6}+\frac{5}{6}\times\frac{4}{5}\times\frac{3}{4}\times\frac{1}{3}=\frac{1}{3}$

同理, $P(B) = P(C) = \frac{1}{3}$

此时是公平的

n=4 时,不妨按顺序将其设为玩家 A, 玩家 B, 玩家 C, 玩家 D,(A 先开枪)。A 获胜的概率 为 $P(A)=\frac{1}{6}+\frac{5}{6}\times\frac{4}{5}\times\frac{3}{4}\times\frac{2}{3}\times\frac{1}{2}=\frac{1}{3}$

而 D 获胜的概率为 $P(D) = \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \times \frac{1}{3} = \frac{1}{6}$

P(D)≠P(A)。故不公平

n=5 时,不妨按顺序将其设为玩家 A,玩家 B,玩家 C,玩家 D,玩家 E,(A 先开枪)。A 获胜的概率为 $P(A)=\frac{1}{6}+\frac{5}{6}\times\frac{4}{5}\times\frac{3}{4}\times\frac{2}{3}\times\frac{1}{2}=\frac{1}{3}$

而 D 获胜的概率为 $P(D) = \frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \times \frac{1}{3} = \frac{1}{6}$

P(D)≠P(A)。故不公平

9 Problem 9

解:由题可知,这个人说真话的概率为 $\frac{2}{3}$,故这个骰子真为4点的概率为 $\frac{2}{3}$

10 Problem 10

解:由题可知,每一组连续座位对被取到的概率为 $\frac{25}{100} \times \frac{24}{99}$

每一个连续座位对的期望值为 $1 \times \frac{25}{100} \times \frac{24}{99}$

由于一共有 99 个连续座位对,每一个座位对被取到的期望值都相同,为 $1 \times \frac{25}{100} \times \frac{24}{99}$

故期望值为 $1 \times \frac{25}{100} \times \frac{24}{99} \times 99 = 6$

11 Problem 11

证:由算数基本定理,我们设这个数为 n,且 n = $q_1^{a1} \cdot q_2^{a2} \cdot \dots \cdot q_n^{an}$ 则 $n^2 = q_1^{2a1} \cdot q_2^{2a2} \cdot \dots \cdot q_n^{2an}$

设 m 为 n^2 的一个因子,对于每一个 $q_i^{2ai}(1 \le i \le n)$,其在 m 中均有(2ai+1)种存在可能,故 m 一共有 $\prod_{k=1}^n (2ai+1)$ 个,而 \forall i \in [1,n],(2ai+1) 为一个奇数,故 m 一共奇数个,