GPTIPS pareto front report

17-Apr-2019 23:25:43

Config file: Y6_config.m

Number of models on front: 6

Total models: 100

This report shows the expressional complexity/performance characteristics (on training data) of symbolic models on the pareto front.

Numerical precision is reduced for display purposes.

Click on column headers to sort models by expressional complexity and goodness of fit (R²).

Model ID	Goodness of fit (R ²)	Model complexity	Model
25	0.925	282	$613.0 x_1 (x_1 + x_2) - 97.3 x_2 - 711.0 x_3 - 5177.0 x_1 - 6.78e4 x_3 \\ (x_1 + x_3) + 1.48e5 x_3 (x_1 - 1.0 x_3) + 281.0 x_3 (x_1 + x_2 + x_2 x_3) \\ + 529.0 x_1 (x_2 + 1.0) (x_3 - 1.0 x_1 + x_1 x_3) + 2.64 (x_2 + x_3) (x_1 - 1.0 x_3) (x_1 - 1.0 x_2 + x_1 x_2) + 2377.0$
34	0.98	351	$839.0 \ x_1 + 361.0 \ x_2 + 5.35e4 \ x_3 + 2.64 \ x_1^2 \ x_2^2 - 940.0 \ x_1 \ x_2 - 1.99e5 \ x_1 \ x_3 - 4499.0 \ x_2 \ x_3 - 2.64 \ x_1 \ x_2^2 + 301.0 \ x_1^2 \ x_2 - 3199.0 \ x_1^2 \ x_3 + 2.64 \ x_1^3 \ x_2 - 4499.0 \ x_2 \ x_3^2 + 19.2 \ x_2^2 \ x_3 + 1.13e4 \ x_1^2 + 2.64 \ x_1^3 + 3.14e5 \ x_3^2 - 19.2 \ x_1 \ x_2^2 \ x_3 - 3199.0 \ x_1^2 \ x_2 \ x_3 + 1.14e4 \ x_1 \ x_2 \ x_3 + 6055.0$
37	0.968	313	$\begin{array}{c} 1.2e4\ x_1 + 50.7\ x_2 - 822.0\ x_3 + 2.4\ x_1^2\ x_2^2 + 20.4\ x_1\ x_2 - \\ 1.86e5\ x_1\ x_3 - 3244.0\ x_2\ x_3 - 2.4\ x_1\ x_2^2 - 261.0\ x_1^2\ x_2 - 2.4\ x_1\ x_3^2 + 2.4\ x_1^2\ x_3 - 3244.0\ x_2\ x_3^2 + 19.7\ x_2^2\ x_3 + 873.0\ x_1^2 + \\ 4.06e5\ x_3^2 - 2.4\ x_1\ x_2\ x_3^2 - 19.7\ x_1\ x_2^2\ x_3 + 2.4\ x_1^2\ x_2\ x_3 + \\ 6277.0\ x_1\ x_2\ x_3 + 8999.0 \end{array}$
48	0.981	353	$344.0\ x_2-3000.0\ x_1-8422.0\ x_3+2.79\ x_1^2\ x_2^2-908.0\ x_1\ x_2-1.88e5\ x_1\ x_3-4544.0\ x_2\ x_3-2.79\ x_1\ x_2^2+286.0\ x_1^2\ x_2-2.79\ x_1\ x_3^2-3277.0\ x_1^2\ x_3-4544.0\ x_2\ x_3^2+19.9\ x_2^2\ x_3+1.2e4\ x_1^2+4.45e5\ x_3^2-2.79\ x_1\ x_2\ x_3^2-19.9\ x_1\ x_2^2\ x_3-3277.0\ x_1^2\ x_2\ x_3+1.16e4\ x_1\ x_2\ x_3+1.33e4$
55	0.978	321	$346.0 \ x_2 - 1200.0 \ x_1 + 8.58e4 \ x_3 + 2.1 \ x_1^2 \ x_2^2 - 988.0 \ x_1 \ x_2 - 1.76e5 \ x_1 \ x_3 - 4066.0 \ x_2 \ x_3 - 2.1 \ x_1 \ x_2^2 + 378.0 \ x_1^2 \ x_2 - 3100.0 \ x_1^2 \ x_3 + 2.1 \ x_1^3 \ x_2 - 4066.0 \ x_2 \ x_3^2 + 16.9 \ x_2^2 \ x_3 + 1.06e4 \ x_1^2 + 2.1 \ x_1^3 + 1.69e5 \ x_3^2 - 16.9 \ x_1 \ x_2^2 \ x_3 - 3100.0 \ x_1^2 \ x_2 \ x_3 + 1.07e4 \ x_1 \ x_2 \ x_3 + 4222.0$
68	0.945	307	$\begin{array}{l} 6.4e4 \; x_3 \; (x_1 - 1.0 \; x_3) - 2.05e4 \; x_3 \; (x_1 + x_3) - 1911.0 \; x_1 - \\ 3.34e4 \; x_1 \; x_3 - 93.1 \; x_3 \; (x_1 + x_2 + x_2 \; x_3) - 1699.0 \; x_2^2 \; x_3 + \\ 1699.0 \; x_2 \; x_3 \; (x_1 + x_2) + 58.0 \; x_1 \; (x_2 + 1.0) \; (x_3 - 1.0 \; x_1 + x_1 \; x_3) \\ + 0.461 \; (x_2 + x_3) \; (x_1 - 1.0 \; x_3) \; (x_1 - 1.0 \; x_2 + x_1 \; x_2) + 5744.0 \end{array}$

GPTIPS - the symbolic data mining platform for MATLAB

© Dominic Searson 2009-2015