System Rozproszonej Bazy Danych dla Prywatnej Szkoły Podstawowej

Część 1: Wprowadzenie i Architektura

Autorzy: Piotr Ledwoch, Kacper Woźnica **Przedmiot:** Rozproszone Bazy Danych

1. Wprowadzenie

1.1 Opis projektu

System Rozproszonej Bazy Danych (RBD) został zaprojektowany dla kompleksowego zarządzania prywatną szkołą podstawową. Projekt demonstruje praktyczne zastosowanie kluczowych konceptów rozproszonych baz danych w środowisku heterogenicznym, integrując trzy różne systemy bazodanowe.

1.2 Cele realizacji

- Zarządzanie danymi edukacyj nymi przechowywanie informacji o uczniach, nauczycielach, ocenach i frekwencji
- Obsługa finansowa kompleksowe zarządzanie kontraktami i płatnościami
- System uw ag pedagogicznych rejestrowanie obserwacji i komentarzy nauczycieli
- Integracja systemów zapewnienie spójnego dostępu do danych rozproszonych

1.3 Znaczenie edukacyjne

System ilustruje najważniejsze aspekty rozproszonych baz danych:

- Integrację środowisk heterogenicznych
- · Mechanizmy transakcji rozproszonych
- Strategie replikacji danych
- Optymalizację zapytań międzysystemowych

2. Architektura Systemu

2.1 Komponenty systemu

Microsoft SQL Server (Serwer główny)

- Rola: Centralny system zarządzania danymi szkolnymi
- Zawartość: Dane uczniów, nauczycieli, klas, przedmiotów, ocen, frekwencji
- Uzasadnienie: Doskonałe wsparcie dla linked servers i koordynacji transakcji

Oracle Database (Serwer finansowy)

- Rola: Obsługa aspektów finansowych szkoły
- Zawartość: Kontrakty finansowe, płatności, rozliczenia
- Uzasadnienie: Wysoką wydajność dla operacji finansowych i silne mechanizmy transakcyjne

PostgreSQL (Serwer uwag)

- Rola: System uwag i komentarzy pedagogicznych
- Zawartość: Uwagi nauczycieli, pochwały, obserwacje postępów
- Uzasadnienie: Elastyczność w przechowywaniu danych tekstowych i symulacja trzeciego środowiska

2.2 Strategia podziału danych

Podział funkcjonalny - każdy serwer obsługuje określoną domenę biznesową:

- Separacja danych finansowych krytyczne dane finansowe odizolowane w dedykowanym systemie Oracle
- Specjalizacja serwerów każdy system zoptymalizowany pod konkretne operacje
- Niezależne skalowanie możliwość rozwoju każdego komponentu osobno

2.3 Schemat komunikacji

SQL Server jako centrum integracji:

- Łączy się ze wszystkimi systemami poprzez Linked Servers
- Udostępnia zunifikowane widoki danych rozproszonych
- Koordynuje transakcje rozproszone

Oracle z database links:

- Symuluje środowisko rozproszone poprzez połączenia między schematami
- Implementuje zaawansowane procedury finansowe
- Zarządza operacjami międzysystemowymi

PostgreSQL jako system zewnętrzny:

- Działa niezależnie z dostępem przez ODBC
- Przechowuje dane w izolowanym środowisku
- Symuluje integrację z zewnętrznym systemem pedagogicznym

3. Kluczowe Technologie

3.1 Linked Servers

- Połączenia heterogeniczne integracja SQL Server z Oracle, PostgreSQL i Excel
- Transparentny dostęp jednolity interfejs do różnych systemów
- Optymalizacja zapytań inteligentne przekazywanie przetwarzania do systemów źródłowych

3.2 Database Links Oracle

- Symulacja rozproszonego środowiska połączenia między schematami Oracle
- Synonimy transparentny dostęp do zdalnych tabel
- Wzajemne uprawnienia bezpieczna synchronizacja danych

3.3 Transakcje Rozproszone

- MS DTC Microsoft Distributed Transaction Coordinator
- Two-Phase Commit protokół zapewniający atomowość operacji
- Error handling kompletny rollback przy błędach

3.4 Replikacja Transakcyjna

- Publisher-Subscriber model replikacji między instancjami SQL Server
- Continuous monitoring automatyczne śledzenie zmian
- Disaster recovery mechanizmy odzyskiwania po awarii

4. Korzyści Rozwiązania

4.1 Funkcjonalne

- Kompleksowe zarządzanie szkołą wszystkie aspekty w jednym systemie
- Specjalizacja komponentów każdy system wykonuje swoje zadania optymalnie
- **Skalowalność** możliwość niezależnego rozwijania modułów

4.2 Techniczne

- Wydaj ność równoległe przetwarzanie na różnych serwerach
- Bezpieczeństwo separacja krytycznych danych finansowych
- Elastyczność wykorzystanie najlepszych cech każdego systemu

4.3 Edukacyjne

- Praktyczne zastosowanie wszystkie kluczowe koncepty RBD w jednym projekcie
- Różnorodność technik od podstawowych linked servers po zaawansowane transakcje rozproszone
- Realistyczne scenariusze problemy i rozwiązania typowe dla środowisk produkcyjnych

5. Implementacja Rozwiązania

5.1 Konfiguracja środowiska

Infrastruktura techniczna:

- SQL Server 2019+ instancja główna (port 1433) i replika (port 1434)
- Oracle Database 19c+ trzy schematy (FINANCE_DB, REMOTE_DB1, REMOTE_DB2)
- PostgreSQL 12+ baza remarks system ze schematem remarks main
- Dodatkowe komponenty ODBC drivers, OLE DB providers, MS DTC

Mechanizmy połączeń:

- Linked Servers ORACLE_FINANCE, POSTGRES_REMARKS, MSSQL_REPLICA, EXCEL_DATA
- Database Links połączenia między schematami Oracle
- ODBC DSN konfiguracja PostgreSQL30 dla dostępu z SQL Server

5.2 Struktura danych

Rozkład tabel w systemie:

- SQL Server: 15 tabel (uczniowie, nauczyciele, oceny, frekwencja, słowniki)
- Oracle: 4 tabele główne (contracts, payments, contracts_remote, payment_summary)
- PostgreSQL: 1 tabela (remarks z metadanymi)

Strategia kluczy:

- Wspólne identyfikatory (studentld, teacherld, parentld) jako klucze logiczne
- Sekwencje Oracle z automatycznymi triggerami
- · Identity columns w SQL Server
- · Serial type w PostgreSQL

5.3 Mechanizmy integracji

Zapytania wielosystemowe:

- OPENQUERY przetwarzanie zdalne w Oracle i PostgreSQL
- OPENROWSET zapytania ad-hoc i eksport do Excel
- Four-part naming standardowy dostęp przez linked servers

Widoki rozproszone:

- vw_DistributedStudentData dane z wszystkich trzech systemów
- vw_StudentFinancialInfo połączenie SQL Server z Oracle
- vw_StudentCompleteInfo kompletny profil ucznia

6. Funkcjonalności Systemowe

6.1 Operacje CRUD

Zarządzanie uczniami:

- Pełny cykl życia ucznia (tworzenie, aktualizacja, usuwanie)
- Walidacja danych i integralności referencyjnej
- Obsługa relacji z rodzicami i klasami

Zarządzanie nauczycielami:

- Rejestracja nauczycieli z danymi kontaktowymi
- Przypisywanie do klas jako wychowawcy
- Zarządzanie planem lekcji

System ocen:

- Wystawianie ocen z wagami i komentarzami
- Kalkulacja średnich (zwykłych i ważonych)
- Statystyki per uczeń i per przedmiot

6.2 Operacje rozproszone

Integracja z PostgreSQL:

- Dodawanie i usuwanie uwag pedagogicznych
- Dynamiczne budowanie zapytań OPENQUERY
- Zabezpieczenie przed SQL injection

Integracja z Oracle:

- Zarządzanie kontraktami finansowymi
- Przetwarzanie płatności (w tym częściowych)
- Synchronizacja między schematami zdalnymi

6.3 Transakcje rozproszone

Operacje atomowe:

- Dodawanie ucznia z jednoczesnym utworzeniem kontraktu finansowego
- Przetwarzanie płatności z aktualizacją statusów w wielu systemach
- Obsługa błędów z automatycznym rollback

Mechanizmy spój ności:

- Two-Phase Commit protocol
- MS DTC dla koordynacji transakcji
- Walidacja krzyżowa między systemami

6.4 Replikacja danych

Konfiguracja replikacji:

- Publikacja tabeli students z SQL Server głównego
- Subskrypcja push na instancji repliki
- Automatyczne agenty replikacji (Log Reader, Distribution Agent)

Monitoring i zarządzanie:

- Sprawdzanie statusu replikacji
- Obsługa konfliktów (Publisher wins strategy)
- Procedury recovery w przypadku awarii

7. Zaawansowane Funkcjonalności

7.1 Pakiet Oracle pkg_DistributedFinance

Komponenty pakietu:

- Funkcje PIPELINED wydajne zwracanie zbiorów danych finansowych
- Procedury autonomiczne tworzenie kontraktów z automatycznymi płatnościami
- Raporty finansowe różne typy analiz (SUMMARY, DETAILED, OVERDUE)

Kalkulacje finansowe:

- Wyliczanie należności na podstawie czasu trwania kontraktu
- Obsługa płatności częściowych
- Synchronizacja podsumowań między schematami

7.2 System raportowy

Raporty wielosystemowe:

- Kompletny profil ucznia z danymi ze wszystkich systemów
- Statystyki frekwencji z analizą obecności
- Raporty finansowe z zagregowanymi danymi płatności

Eksport danych:

- Wieloarkuszowy eksport do Excel
- Automatyczne formatowanie nagłówków
- Obsługa błędów połączenia z poszczególnymi systemami

7.3 Optymalizacja wydajności

Strategie przetwarzania:

- Maksymalizacja obliczeń na serwerach źródłowych
- Minimalizacja transferu danych przez sieć
- Inteligentne planowanie zapytań (remote vs local)

Mechanizmy cachowania:

· Connection pooling dla linked servers

- Ponowne wykorzystanie połączeń ODBC
- · Optymalne limity czasowe dla zapytań

8. Testowanie i Weryfikacja

8.1 Zakres testów

Testy integracji:

- Operacje CRUD na wszystkich systemach
- Integralność danych między systemami
- Funkcjonalność transakcji rozproszonych

Testy wydaj nościowe:

- Obciążenie linked servers
- Latencja replikacji
- Throughput zapytań wielosystemowych

Testy odporności:

- Symulacja awarii poszczególnych systemów
- Test recovery po przerwach w połączeniu
- Weryfikacja mechanizmów rollback

8.2 Rezultaty testów

Funkcjonalność:

- Wszystkie operacje CRUD działają poprawnie
- Transakcje rozproszone zapewniają atomowość
- Replikacja synchronizuje dane w czasie rzeczywistym

Wydaj ność:

- Optymalne czasy odpowiedzi dla zapytań lokalnych
- Akceptowalna latencja dla operacji rozproszonych
- Efektywne wykorzystanie zasobów wszystkich systemów

Niezaw odność:

- Graceful degradation przy awarii pojedynczych systemów
- Skuteczne mechanizmy recovery
- Spójność danych po operacjach rollback

9. Analiza Wyników

9.1 Realizacja założeń projektowych

Wypełnienie wszystkich wymagań:

- Środowisko heterogeniczne SQL Server, Oracle, PostgreSQL
- Linked Servers pełna integracja między systemami
- Database Links symulacja rozproszonego środowiska Oracle
- Zapytania ad-hoc OPENQUERY i OPENROWSET
- Transakcje rozproszone MS DTC i Two-Phase Commit
- Replikacja automatyczna synchronizacja danych

Dodatkowe funkcjonalności:

- Zaawansowane procedury Oracle w pakiecie pkg_DistributedFinance
- Kompletny system raportowy z eksportem do Excel
- Widoki rozproszone z inteligentną optymalizacją zapytań
- Mechanizmy monitoringu i diagnostyki

9.2 Architektura jako rozwiązanie wzorcowe

Podział funkcjonalny systemów:

- SQL Server doskonały hub centralny z możliwościami integracji
- Oracle efektywny system finansowy z zaawansowanymi procedurami

• PostgreSQL - elastyczne rozwiązanie dla danych tekstowych

Strategia komunikacji:

- Synchroniczna integracja linked servers dla dostępu w czasie rzeczywistym
- Asynchroniczna integracja replikacja dla wysokiej dostępności
- Optymalizacja wydajności inteligentne przekazywanie przetwarzania

9.3 Wyzwania i rozwiązania

Wyzwania techniczne:

- Heterogeniczność systemów różne typy danych i składnie SQL
- Latencja sieci wpływ na wydajność zapytań rozproszonych
- Koordynacja transakcji zapewnienie spójności ACID

Zastosowane rozwiązania:

- Standaryzacja przez casting unifikacja typów danych
- Przetwarzanie zdalne minimalizacja transferu danych
- MS DTC profesjonalna koordynacja transakcji rozproszonych

Mechanizmy niezaw odności:

- Graceful degradation system kontynuuje pracę przy częściowych awariach
- Szczegółowe logowanie kompletna informacja o błędach
- Procedury recovery jasne kroki przywracania systemu

10. Wartość Edukacyjna

10.1 Demonstracja konceptów RBD

Strategie dystrybucji:

- Podział funkcjonalny różne typy danych w wyspecjalizowanych systemach
- Replikacja master-slave zapewnienie wysokiej dostępności
- Federacja logiczna integracja bez konsolidacji fizycznej

Zarządzanie transakcjami:

- Distributed ACID spójność między systemami
- Protokół 2PC atomowość operacji rozproszonych
- Poziomy izolacji równowaga między wydajnością a spójnością

Przetwarzanie zapytań:

- Optymalizacja kosztowa wybór między przetwarzaniem lokalnym a zdalnym
- Strategie JOIN planowanie zapytań z uwzględnieniem sieci
- Materializacja wyników efektywny transfer danych

10.2 Aplikowalność w środowiskach produkcyjnych

Scenariusze enterprise:

- Integracja systemów legacy praca z istniejącymi rozwiązaniami
- Migracja stopniowa podejście krok po kroku do modernizacji
- Środowisko wielovendorowe zarządzanie różnymi technologiami

Compliance i governance:

- Suwerenność danych różne systemy dla różnych typów danych
- Wymagania regulacyj ne wyspecjalizowane systemy dla wrażliwych danych
- Ślady audytu rozproszone logowanie i monitoring

11. Możliwości Rozwoju

Dodatkowe moduły:

- System biblioteki katalog książek w PostgreSQL
- Zarządzanie laboratoriami sprzęt w dedykowanym schemacie Oracle

• Kalendarz wydarzeń - integracja z systemami NoSQL

Zaawansowana analityka:

- Machine learning modele predykcyjne dla wyników uczniów
- Automatyczne raporty integracja z SQL Server Reporting Services

12. Wnioski Końcowe

12.1 Sukces implementacji

Projekt System Rozproszonej Bazy Danych dla prywatnej szkoły podstawowej stanowi kompleksową demonstrację wszystkich kluczowych aspektów rozproszonych baz danych. System łączy teoretyczne koncepty z praktyczną implementacją, tworząc rozwiązanie o jakości produkcyjnej.

Główne osiągnięcia:

- Pełna realizacja wymagań wszystkie założenia projektu zostały zrealizowane
- Architektura klasy enterprise zastosowanie wzorców używanych w środowiskach produkcyjnych
- Kompleksowa strategia testowa weryfikacja wszystkich aspektów systemu
- Szczegółowa dokumentacja wsparcie dla dalszego rozwoju i utrzymania

12.2 Innowacje projektu

Elementy wykraczające poza podstawowe wymagania:

- Pakiet PL/SQL zaawansowane procedury finansowe z funkcjami PIPELINED
- Sophisticated error handling zaawansowana obsługa błędów w środowisku rozproszonym
- Optymalizacje wydajności techniki minimalizujące latencję sieci
- Realistyczne scenariusze uwzględnienie problemów środowisk produkcyjnych

12.3 Rekomendacje dla dalszego rozwoju

Środowiska produkcyjne:

- Wzmocnienie bezpieczeństwa szyfrowanie i zaawansowana autoryzacja
- Narzędzia monitoringu kompleksowe śledzenie zdrowia systemu
- Strategie backup procedury spójnych kopii zapasowych między systemami
- Dokumentacja operacyjna żywa dokumentacja dla zespołów eksploatacyjnych

Rozwój edukacyjny:

- Integracja NoSQL dodanie MongoDB lub Cassandra jako kolejnego węzła
- Wdrożenie chmurowe dystrybucja w środowisku Azure/AWS
- Architektura mikroserwisów dekompozycja zorientowana na usługi
- Wzorce event-driven kolejki wiadomości i streaming zdarzeń

12.4 Wartość dla nauki i praktyki

System stanowi **solidną podstawę** dla zrozumienia konceptów rozproszonych baz danych oraz **praktyczne odniesienie** dla implementacji podobnych rozwiązań w środowiskach enterprise. Projekt demonstruje, że profesjonalne systemy RBD mogą być zarówno **funkcjonalnie bogate**, jak i **edukacyjnie przej rzyste**.

Długoterminowa wartość:

- Wzorzec architektoniczny referencyjne rozwiązanie dla podobnych projektów
- Baza wiedzy zbiór sprawdzonych technik i rozwiązań
- Platforma rozwoj u fundament dla dalszych innowacji
- Narzędzie edukacyj ne praktyczny przykład teorii RBD w działaniu

Podsumowanie: Projekt System Rozproszonej Bazy Danych dla prywatnej szkoły podstawowej jest pełnym sukcesem realizacji założeń edukacyjnych i technicznych. Stanowi przykład profesjonalnego podejścia do projektowania systemów rozproszonych, łącząc solidne podstawy teoretyczne z praktyczną implementacją na poziomie enterprise.