Healthcare cost analysis

t <- table(hosp_cost\$APRDRG)

To record the patient statistics, the agency wants to find the age category of people who frequent the hospital and has the maximum expenditure

```
hosp_cost<-read.table(file.choose(),sep=",",header=TRUE)</pre>
head(hosp_cost)
summary(hosp_cost)
head(hosp_cost$AGE)
summary(hosp_cost$AGE)
table(hosp_cost$AGE)
hist(hosp_cost$AGE)
summary(as.factor(hosp_cost$AGE))
max(table(hosp_cost$AGE))
max(summary(as.factor(hosp_cost$AGE)))
which.max(table(hosp_cost$AGE))
age <- aggregate(TOTCHG ~ AGE, data = hosp_cost, sum)
max(age)
#In order of severity of the diagnosis and treatments and to find out the expensive treatments, the
agency wants to find the diagnosis related group that has maximum hospitalization and expenditure.
```

```
d <- as.data.frame(t)</pre>
names(d)[1] = 'Diagnosis Group'
d
which.max(table(hosp_cost$APRDRG))
which.max(t)
which.max(d)
res <- aggregate(TOTCHG ~ APRDRG, data = hosp_cost, sum)
res
which.max(res$TOTCHG)
res[which.max(res$TOTCHG),]
#To make sure that there is no malpractice, the agency needs to analyze if the race of the patient is
related to the hospitalization costs
table(hosp_cost$RACE)
hosp_cost$RACE <- as.factor(hosp_cost$RACE)
fit <- Im(TOTCHG ~ RACE, data=hosp_cost)
fit
summary(fit)
fit1 <- aov(TOTCHG ~ RACE,data=hosp_cost)
summary(fit1)
hosp_cost <- na.omit(hosp_cost)</pre>
```

#To properly utilize the costs, the agency has to analyze the severity of the hospital costs by age and gender for proper allocation of resources.

```
table(hosp_cost$FEMALE)
a <- aov(TOTCHG ~ AGE+FEMALE,data=hosp_cost)
summary(a)
b <- Im(TOTCHG ~ AGE+FEMALE,data=hosp_cost)
summary(b)</pre>
```

#Since the length of stay is the crucial factor for inpatients, the agency wants to find if the length of stay can be predicted from age, gender, and race.

```
table(hosp_cost$LOS)

cat <- aov(LOS ~ AGE+FEMALE+RACE,data=hosp_cost)
summary(cat)

cat <- Im(LOS ~ AGE+FEMALE+RACE,data=hosp_cost)
summary(cat)</pre>
```

#To perform a complete analysis, the agency wants to find the variable that mainly affects the hospital costs.

```
aov(TOTCHG ~.,data=hosp_cost)
mod <- Im(TOTCHG ~ .,data=hosp_cost)
summary(mod)</pre>
```

```
#plot of residual error between observed values and fitted regression line
#To see how AGE,LOS, and APRDRG affects Total charges of discharge.
library(tidyverse)
library(broom)
m<-augment(mod)
head(m)
library(ggplot2)
ggplot(m,aes(LOS,TOTCHG))+
geom_point()+
stat_smooth(method = Im,se=FALSE)+
geom_segment(aes(xend=LOS,yend=.fitted),color="red",size=0.3)
ggplot(m,aes(AGE,TOTCHG))+
geom_point()+
stat_smooth(method = Im,se=FALSE)+
geom_segment(aes(xend=AGE,yend=.fitted),color="red",size=0.3)
ggplot(m,aes(APRDRG,TOTCHG))+
geom_point()+
stat_smooth(method = Im,se=FALSE)+
geom_segment(aes(xend=APRDRG,yend=.fitted),color="red",size=0.3)
```

.....OUTPUT......

hosp_cost <- read.csv("C:/Users/Harshada/Downloads/Healthcare-Cost-Analysis-of-Wisconsin-Hospital-master/Healthcare-Cost-Analysis-of-Wisconsin-Hospital-master/HospitalCosts.csv")

- > View(hosp_cost)
- > head(hosp_cost)

AGE FEMALE LOS RACE TOTCHG APRDRG

- 2 17 0 2 1 1689 753
- 3 17 1 7 1 20060 930
- 5 17 1 1 1 1194 754
- 6 17 0 0 1 3305 347

> summary(hosp_cost)

AGE FEMALE LOS RACE TOTCHG

Min.: 0.000 Min.: 0.000 Min.: 0.000 Min.: 1.000 Min.: 532

1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 2.000 1st Qu.: 1.000 1st Qu.: 1216

Median: 0.000 Median: 1.000 Median: 2.000 Median: 1.000 Median: 1536

Mean: 5.086 Mean: 0.512 Mean: 2.828 Mean: 1.078 Mean: 2774

3rd Qu.:13.000 3rd Qu.:1.000 3rd Qu.: 3.000 3rd Qu.:1.000 3rd Qu.: 2530

Max. :17.000 Max. :1.000 Max. :41.000 Max. :6.000 Max. :48388

NA's :1

APRDRG

Min. : 21.0

1st Qu.:640.0

Median :640.0

Mean :616.4

```
3rd Qu.:751.0
Max. :952.0
> head(hosp_cost$AGE)
[1] 17 17 17 17 17 17
> summary(hosp_cost$AGE)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 0.000 5.086 13.000 17.000
> table(hosp_cost$AGE)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
307 10 1 3 2 2 2 3 2 2 4 8 15 18 25 29 29 38
> hist(hosp_cost$AGE)
> summary(as.factor(hosp_cost$AGE))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
307 10 1 3 2 2 2 3 2 2 4 8 15 18 25 29 29 38
> max(table(hosp_cost$AGE))
[1] 307
> max(summary(as.factor(hosp_cost$AGE)))
[1] 307
> which.max(table(hosp_cost$AGE))
0
1
> age <- aggregate(TOTCHG ~ AGE, data = hosp_cost, sum)
> max(age)
```

```
[1] 678118
```

- > t <- table(hosp_cost\$APRDRG)
- > d <- as.data.frame(t)
- > names(d)[1] = 'Diagnosis Group'
- > d

Diagnosis Group Freq

- 1 21 1
- 2 23 1
- 3 49 1
- 4 50 1
- 5 51 1
- 6 53 10
- 7 54 1
- 8 57 2
- 9 58 1
- 10 92 1
- 11 97 1
- 12 114 1
- 13 115 2
- 14 137 1
- 15 138 4
- 16 139 5
- 17 141 1
- 18 143 1
- 19 204 1

20	206	1
21	225	2
22	249	6
23	254	1
24	308	1
25	313	1
26	317	1
27	344	2
28	347	3
29	420	2
30	421	1
31	422	3
32	560	2
33	561	1
34	566	1
35	580	1
36	581	3
37	602	1
38	614	3
3 9	626	6
40	633	4
41	634	2
42	636	3
43	639	4
44	640	267

```
710 1
45
       720 1
46
       723 2
47
48
       740 1
49
       750 1
       751 14
50
51
       753 36
52
       754 37
53
       755 13
       756 2
54
       758 20
55
       760 2
56
       776 1
57
58
       811 2
59
       812 3
       863 1
60
61
       911 1
62
       930 2
       952 1
63
> which.max(table(hosp_cost$APRDRG))
640
44
> which.max(t)
640
```

44

> which.max(d)

Error in which.max(d): 'list' object cannot be coerced to type 'double'

> res <- aggregate(TOTCHG ~ APRDRG, data = hosp_cost, sum)

> res

APRDRG TOTCHG

- 1 21 10002
- 2 23 14174
- 3 49 20195
- 4 50 3908
- 5 51 3023
- 6 53 82271
- 7 54 851
- 8 57 14509
- 9 58 2117
- 10 92 12024
- 11 97 9530
- 12 114 10562
- 13 115 25832
- 14 137 15129
- 15 138 13622
- 16 139 17766
- 17 141 2860
- 18 143 1393
- 19 204 8439
- 20 206 9230

- 21 225 25649
- 22 249 16642
- 23 254 615
- 24 308 10585
- 25 313 8159
- 26 317 17524
- 27 344 14802
- 28 347 12597
- 29 420 6357
- 30 421 26356
- 31 422 5177
- 32 560 4877
- 33 561 2296
- 34 566 2129
- 35 580 2825
- 36 581 7453
- 37 602 29188
- 38 614 27531
- 39 626 23289
- 40 633 17591
- 41 634 9952
- 42 636 23224
- 43 639 12612
- 44 640 437978
- 45 710 8223

46	720 14243	
47	723 5289	
48	740 11125	
49	750 1753	
50	751 21666	
51	753 79542	
52	754 59150	
53	755 11168	
54	756 1494	
55	758 34953	
56	760 8273	
57	776 1193	
58	811 3838	
59	812 9524	
60	863 13040	
61	911 48388	
62	930 26654	
63	952 4833	
> w	hich.max(res\$TOTCHG)	
[1]	44	
> re	s[which.max(res\$TOTCHG),]	
APRDRG TOTCHG		
44	640 437978	

> #To make sure that there is no malpractice, the agency needs to analyze if the race of the patient is related to the hospitalization costs

> table(hosp_cost\$RACE)

```
1 2 3 4 5 6
484 6 1 3 3 2
> hosp_cost$RACE <- as.factor(hosp_cost$RACE)
> fit <- Im(TOTCHG ~ RACE,data=hosp_cost)
> fit
Call:
Im(formula = TOTCHG ~ RACE, data = hosp_cost)
Coefficients:
(Intercept)
             RACE2
                       RACE3
                                RACE4
                                          RACE5
                                                    RACE6
  2772.7
           1429.5
                              -428.0 -746.0
                     268.3
> summary(fit)
Call:
Im(formula = TOTCHG ~ RACE, data = hosp_cost)
Residuals:
 Min 1Q Median 3Q Max
-3049 -1551 -1223 -238 45615
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
```

```
(Intercept) 2772.7 177.6 15.615 <2e-16 ***
RACE2
         1429.5 1604.7 0.891 0.373
RACE3 268.3 3910.5 0.069 0.945
RACE4
       -428.0 2262.4 -0.189 0.850
RACE5
       -746.0 2262.4 -0.330 0.742
RACE6 -1423.7 2768.0 -0.514 0.607
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 3906 on 493 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.002465, Adjusted R-squared: -0.007652
F-statistic: 0.2437 on 5 and 493 DF, p-value: 0.9429
> fit1 <- aov(TOTCHG ~ RACE,data=hosp_cost)
> summary(fit1)
      Df Sum Sq Mean Sq F value Pr(>F)
RACE 5 1.859e+07 3718656 0.244 0.943
Residuals 493 7.524e+09 15260687
1 observation deleted due to missingness
> hosp_cost <- na.omit(hosp_cost)
> table(hosp_cost$FEMALE)
0 1
```

244 255

```
> a <- aov(TOTCHG ~ AGE+FEMALE,data=hosp_cost)
> summary(a)
      Df Sum Sq Mean Sq F value Pr(>F)
AGE
         1 1.297e+08 129749266 8.759 0.00323 **
FEMALE 1 6.522e+07 65219972 4.403 0.03638 *
Residuals 496 7.347e+09 14812787
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
> b <- Im(TOTCHG ~ AGE+FEMALE,data=hosp_cost)
> summary(b)
Call:
Im(formula = TOTCHG ~ AGE + FEMALE, data = hosp_cost)
Residuals:
 Min 1Q Median 3Q Max
-3403 -1444 -873 -156 44950
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 2719.45 261.42 10.403 < 2e-16 ***
AGE
         86.04 25.53 3.371 0.000808 ***
FEMALE -744.21 354.67 -2.098 0.036382 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

Residual standard error: 3849 on 496 degrees of freedom

Multiple R-squared: 0.02585, Adjusted R-squared: 0.02192

F-statistic: 6.581 on 2 and 496 DF, p-value: 0.001511

> table(hosp_cost\$LOS)

0 1 2 3 4 5 6 7 8 9 10 12 15 17 18 23 24 39 41

15 79 223 98 38 14 8 11 1 1 1 2 1 1 2 1 1 1 1

> cat <- aov(LOS ~ AGE+FEMALE+RACE,data=hosp_cost)

> summary(cat)

Df Sum Sq Mean Sq F value Pr(>F)

AGE 1 27 26.907 2.361 0.125

FEMALE 1 17 16.510 1.449 0.229

RACE 5 6 1.138 0.100 0.992

Residuals 491 5595 11.396

> cat <- Im(LOS ~ AGE+FEMALE+RACE,data=hosp_cost)

> summary(cat)

Call:

Im(formula = LOS ~ AGE + FEMALE + RACE, data = hosp_cost)

Residuals:

Min 1Q Median 3Q Max

-3.211 -1.211 -0.857 0.143 37.789

Coefficients:

Estimate Std. Error t value Pr(>|t|)

AGE -0.03938 0.02258 -1.744 0.0818.

FEMALE 0.35391 0.31292 1.131 0.2586

RACE2 -0.37501 1.39568 -0.269 0.7883

RACE3 0.78922 3.38581 0.233 0.8158

RACE4 0.59493 1.95716 0.304 0.7613

RACE5 -0.85687 1.96273 -0.437 0.6626

RACE6 -0.71879 2.39295 -0.300 0.7640

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1

Residual standard error: 3.376 on 491 degrees of freedom

Multiple R-squared: 0.008699, Adjusted R-squared: -0.005433

F-statistic: 0.6156 on 7 and 491 DF, p-value: 0.7432

> aov(TOTCHG ~.,data=hosp_cost)

Call:

aov(formula = TOTCHG ~ ., data = hosp_cost)

Terms:

AGE FEMALE LOS RACE APRDRG Residuals

Sum of Squares 129749266 65219972 3086194093 13244291 887028136 3360676025

Deg. of Freedom 1 1 1 5 1 489

Residual standard error: 2621.555

Estimated effects may be unbalanced

> mod <- Im(TOTCHG ~ .,data=hosp_cost)

> summary(mod)

Call:

Im(formula = TOTCHG ~ ., data = hosp_cost)

Residuals:

Min 1Q Median 3Q Max

-6367 -691 -186 121 43412

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5024.9610 440.1366 11.417 < 2e-16 ***

AGE 133.2207 17.6662 7.541 2.29e-13 ***

FEMALE -392.5778 249.2981 -1.575 0.116

LOS 742.96<mark>37</mark> 35.0464 21.199 < 2e-16 ***

RACE2 458.2427 1085.2320 0.422 0.673

RACE3 330.5184 2629.5121 0.126 0.900

RACE4 -499.3818 1520.9293 -0.328 0.743

RACE5 -1784.5776 1532.0048 -1.165 0.245

RACE6 -594.2921 1859.1271 -0.320 0.749

```
APRDRG
           -7.8175 0.6881 -11.361 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 2622 on 489 degrees of freedom
Multiple R-squared: 0.5544, Adjusted R-squared: 0.5462
F-statistic: 67.6 on 9 and 489 DF, p-value: < 2.2e-16
> library(tidyverse)
> library(broom)
> m<-augment(mod)
> head(m)
# A tibble: 6 x 13
.rownames TOTCHG AGE FEMALE LOS RACE APRDRG .fitted .resid .std.resid .hat
<chr>
        <int> <int> <int> <int> <fct> <int> <dbl> <dbl> <dbl> <dbl> <
11
        2660 17 1 2 1 560 4005. -1345. -0.516 0.00991
22
        1689 17 0 2 1 753 2889. -1200. -0.461 0.0141
3 3
       20060 17 1 7 1 930 4828. 15232. 5.86 0.0165
44
        736 17 1 11 758 1714. -978. -0.375 0.00958
5 5
        1194 17 1
                      11
                           754 1746. -552. -0.211 0.00954
66
        3305 17
                   0 01
                             347 4577. -1272. -0.490 0.0180
# ... with 2 more variables: .sigma <dbl>, .cooksd <dbl>
> library(ggplot2)
> ggplot(m,aes(LOS,TOTCHG))+
+ geom_point()+
```

```
+ stat_smooth(method = Im,se=FALSE)+
+ geom_segment(aes(xend=LOS,yend=.fitted),color="red",size=0.3)
`geom_smooth()` using formula 'y ~ x'
> ggplot(m,aes(AGE,TOTCHG))+
+ geom_point()+
+ stat_smooth(method = lm,se=FALSE)+
+ geom_segment(aes(xend=AGE,yend=.fitted),color="red",size=0.3)
`geom_smooth()` using formula 'y ~ x'
> ggplot(m,aes(APRDRG,TOTCHG))+
+ geom_point()+
+ stat_smooth(method = Im,se=FALSE)+
+ geom_segment(aes(xend=APRDRG,yend=.fitted),color="red",size=0.3)
`geom_smooth()` using formula 'y ~ x'
```