Lecture 12

Ashis Kumar Chanda

chanda@rowan.edu

Computer Vision

Computer Vision

Picture data is stored in RGB format

Structured data

Computer Vision Problems

• Cat? (0/1)

Image Classification

64x64

Object detection

Neural Style Transfer

Introduction

Two types of image classification:

- Object (i.e., cat, dog) [background doesn't matter]
- Background (i.e., grassland, living room)

- Effects on images:
 - Lighting: which changes the brightness and color of the image.
 - Aspect: which causes objects to look different when seen from different directions.
 - Occlusion: where some parts of the object are hidden.
 - Deformation: where the object changes its shape.

Introduction

Figure 2. Deformation and scaling problem in product images

Figure 3. Occlusion problem in product images

Manual Feature Design

Introduction

- Individual pixel values are not important.
- Local patterns can be quite informative.
 - The digits 0, 6, 8, 9 have loops.
 - The digits 4, and 8 have crosses.
 - The digits 1, 2, 3, 5, 7 have lines.

How do we learn about the patterns?

NN on images

NN on images

 $1000 \times 1000 \times 3 = ?$

NN on images: problems

Idea: Reading frame by frame

Types of layer in a convolutional network:

- Convolution
- Pooling
- Fully connected

Convolution layer Edge detection example

Slides adapted from Andrew Ng

Computer Vision Problem

Vertical edge detection

3	0	1-0	2-10	7	4
1	5	8-10	9-0	3	1
2	7	2	5	1-0	3
0	1 0	3	1-0	7-0	8
4	2	1	6	2	8
2	4	5	2	3	9

1	0	-1
1	0	-1
1	0	-1

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Filter/Kernel
Small region to scan

Stride: the number of gap to slide the filter

Spatial size: [(W - F)/S] + 1

Zero padding: adding extra zero column & rows in input to make a desirable output matrix

Vertical edge detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Vertical edge detection examples

0	30		0
0	30	30	0
0	30	30	0

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

*

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
			•

Vertical and Horizontal Edge Detection

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Vertical

Horizontal

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Vertical and Horizontal Edge Detection

Figure: The Lenna image and the effect of different convolution kernels.

Pooling layer

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Reduce the spatial size (Idea: adjacent cells have same similar property)

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

5 * 5

Kernel size is 3 * 3F = 3Stride, S = 1

Kernel size is 3 * 3F = 3Stride, S = 1

1	3	2	1	3			
2	9		1	5			
1		2		2			
8	3	6		0			
5 6 1 2 9							
5 * 5							

9	9	5
9	9	5
8	6	4

Kernel size is 3 * 3 F = 3 Stride, S = 1

Pooling layer: Average pooling

1	3	2	1	
2	9	1	1	
1	4	2	3	→
5	6	1	2	

Kernel size is 2 * 2F = 2Stride, S = 2

Summary of pooling

Hyperparameters:

f: filter size

s:stride

Max or average pooling

- Reduce spatial size (memory size)
- Reduce computation cost
- Reduce overfitting

Dropout

- During training, some number of layer outputs are randomly ignored or "dropped out."
- Dropout is a regularization method.
- Dropout is not used after training when making a prediction with the fit network.
- A new hyperparameter is introduced that specifies the probability at which outputs of the layer are dropped out.

Dropout

Without Dropout

With Dropout

Example of a layer

Spatial size: [(W - F)/S] + 1[(6-3)/1] + 1

4 by 4

(4 by 4) * 2

4 by 4

3 x 3 x 3

CNN: simple architecture

Last layer:

Use sigmoid for binary classification Use softmax for multi-class problem

Last/Output layer

$$z = w \cdot x + b$$

Solution 1: Sigmoid (use a function of z that goes from 0 to 1)

$$y = s(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

Solution 2: Softmax

CNN: adding more layers

Use gradient descent to optimize parameters to reduce J

Why convolutions

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Deep CNN Model

DenseNet

Deep CNN Model

Residual Network (ResNet)

Simplest resNet example given in paper - 34 layers

Deep learning in Image Classification

A real example

ImageNet: 14 million images; 30,000 categories

CNN in Text Analysis

Thanks!