5/31/2025 readme.md

A Comparative Analysis of Deep and Traditional Learning Models for Tomato Leaf Disease Classification

A Project Overview

TomatoNet is a research project that compares the performance of traditional Machine Learning (ML) models and modern Deep Learning (DL) architectures in classifying tomato leaf diseases. With a focus on agricultural AI, this work explores how different models behave on real-world data, including the impact of background removal on performance.

□ Directory Structure

```
TOMATO-LEAF/
  - dataset/
                                    # Original dataset with disease folders
                                     # Background-removed version of dataset
  - tomato\_bg\_removed/
  - models/
                                   # Saved DL models (.h5 files)
      - best\ inceptionv3.h5
    __ xception\_tomato\_leaf\_model.h5
  - metrics and visualizations/
                                 # Evaluation visuals
    confusion\_matrix.png
     — inception\_confusion\_matrix.png
      - inception\_training\_metrics.png
    └─ training\_history.png
  notebooks/
                                   # All model training notebooks
     — bg\_removed\_inception.ipynb

    EfficientB1.ipynb

     — inception.ipynb
     — KNN+NB+XGBoost.ipynb
       - Mobile\_shuffle\_efficient.ipynb
     — Xception.ipynb
   readme.md
                                   # Project documentation
```

Dataset Details

- **Source:** Custom-collected dataset of tomato leaf images.
- Classes:
 - Tomato__Target_Spot
 - Tomato_Tomato_mosaic_virus
 - Tomato_Tomato_YellowLeaf_Curl_Virus
 - Tomato_Bacterial_spot
 - Tomato_Early_blight
 - Tomato_healthy
 - Tomato_Late_blight
 - Tomato_Leaf_Mold
 - o Tomato_Septoria_leaf_spot
 - o Tomato_Spider_mites_Two_spotted_spider_mite
- **Dataset Variants:**
 - Original dataset
 - o Background-removed dataset (via preprocessing)

5/31/2025 readme.md

♦ Machine Learning Models

Implemented in KNN+NB+XGBoost.ipynb:

- K-Nearest Neighbors (KNN)
- Naive Bayes (NB)
- XGBoost

Features were extracted using pre-trained CNNs or hand-crafted descriptors.

O Deep Learning Models

Model	Notebook	Accuracy (%)	Notes
Xception	Xception.ipynb	97.00	Best performing overall
EfficientNetB0	EfficientB1.ipynb	94.26	Excellent efficiency-accuracy
MobileNetV2	Mobile_shuffle_efficient.ipynb	92.79	Lightweight & fast
ShuffleNetV2	Mobile_shuffle_efficient.ipynb	90.54	Lightweight, less accurate
InceptionV2	inception.ipynb	83.00	Underperformed in this task

Evaluation Metrics

- Accuracy
- Precision, Recall, F1-Score
- Confusion Matrix
- Training/Validation Curves
- Visuals available in metrics and visualizations/

✓ Key Findings

- **Xception** gave the highest accuracy (97%), making it ideal for deployment.
- EfficientNetB0 offered a good trade-off between speed and performance.
- MobileNetV2 and ShuffleNetV2 are suitable for resource-constrained environments.
- InceptionV2 was less effective despite its complexity.
- Traditional ML models are faster to train but were outperformed by DL models.
- Removing background boosted model performance by eliminating irrelevant noise.

% Installation & Setup

1. Clone the repo:

```
git clone https://github.com/yourusername/tomato-leaf-disease-classification
cd tomato-leaf-disease-classification
```

```
2. Install dependencies:
    ```bash
 pip install -r requirements.txt
    ```
3. Run any Jupyter notebook in `notebooks/`.
```

5/31/2025 readme.md

```
## 🖋 How to Use

    Use `KNN+NB+XGBoost.ipynb` for classical ML models.

2. Use the respective `.ipynb` files for DL model training.
3. Pre-trained models are available in the `models/` folder.
4. Evaluate performance using visuals from `metrics and visualizations/`.
## 🚱 Future Scope
* Include attention-based architectures (e.g., Vision Transformers)
* Fine-tune models with real-world data augmentation
* Deploy top-performing model into a **web/mobile plant health app**
* Test the model on other plant species and diseases
## 🖺 Author
**Obidur Rahman (Ashfin)**
{\cal O} [YouTube](https://www.youtube.com/@ObidurRahman) | {\cal O} Educator, ML Researcher & Content Creator
@ Passionate about AI, education, and solving real-world problems with tech.
## 📃 License
This project is open-source under the [MIT License](LICENSE).
*Made with ♥ and a lot of tomato leaves!*
```