Функционални зависимости II част

Обвивки и покрития

Slide 1

Функционална зависимост (FD)

$A_1, A_2, ..., A_n \rightarrow B$

- Ако два кортежа от r(R) съвпадат по атрибутите A₁, A₂, ..., A_n of R, те трябва да съвпадат и по атрибута В
- Ако
 - $A_1 A_2 \dots A_n \rightarrow B_1$
 - $A_1 A_2 \dots A_n \rightarrow B_2$
 -
 - $A_1 A_2 \dots A_n \rightarrow B_m$
- TO
 - $\bullet \quad A_1 \ A_2 \ ... \ A_n \mathop{\rightarrow} B_1 \ B_2 \ ... \ B_m$

Slide

Обвивка на множество от функционални зависимости

Def. Нека F е множество от FD's. F + - Обвивка на F е множество от FD's , които логически следват от F.

 $F^+ = \{X \rightarrow Y \mid X \models Y \}$ са логически следствия от F

Slide 3

Пример

- Нека
 - R = {A, B, C, G, H, I}
 - F: A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H
- Да се докаже:
 - A → H следва логически от F

Slide

FD's и ключове

- Ако **R** е релационна схема с атрибути A1. . .An и м-во от функционални зависимости F и X A₁,A₂,...,A_n, то казваме, че **X** е ключ на релацията R ако:
 - $X \rightarrow A_1, A_2, \dots, A_n$
 - За никое Y <> 0, Y \subseteq X не $\,$ е вярно, че Y \rightarrow A_1,A_2,\ldots,A_n

Slide 5

Аксиоми на Армстронг

• А1 Рефлексивност (Reflexivity).

Ako $Y \subset X$ to $X \rightarrow Y$

Пример: Name, Address \rightarrow Address

•A2 Разширение, попълнение (Augmentation).

Ако $X \rightarrow Y$ то $XW \rightarrow YW$

Пример : от $C\# \to Description$ получаваме $C\#_{J}Id\# \to Description$, $Id\#_{J}$

•А3 Транзитивност (Transitivity).

Ако $X \rightarrow Y$ и $Y \rightarrow Z$ то $X \rightarrow Z$

Приложение на правилата на Amstrong: Пример

Дадено е м-во от функционални зависимости:

 $\mathsf{AB} \to \mathsf{C}, \ \mathsf{CD} \to \mathsf{E}$

 $ABD \rightarrow E$?

AB → C дадено
 ABD → CD A2
 CD → E дадено
 ABD → E A3

CE 4. 7

Надежност (soundness) на аксиомите Armstrong

Лема:

Аксиомите на Армстронг са надеждни, т.е ако $X \rightarrow Y$ е изведено от F чрез аксиомите,

то $X \to Y$ е вярно за всяка релация, в която важат зависимостите F.

Slide 8

Следствия от Armstrong's Axioms

• Обединение

Ако $X \rightarrow Y$ и $X \rightarrow Z$ то $X \rightarrow YZ$

• Псевдотранзитивност

Ако $X \to Y$ и $WY \to Z$ то $XW \to Z$

• Декомпозиция

Ако $X \rightarrow Y$ и $Z \subseteq Y$ то $X \rightarrow Z$

ПРАВИЛА ЗА ИЗВОД

Slide 9

Правила за разделяне и обединение

- Имаме право да разделим множеството атрибути в дясната част на FD и да поставим всеки от тях в дясната част на нова FD.
- Правило за декомпозиция:
 - Ako $AA \rightarrow B_1, B_2, ..., B_n$, to

 $AA \rightarrow B_1$

 $AA \rightarrow B_2$

, ...,

 $AA \rightarrow B_n$

• Можем ли да декомпозираме лявата част?

Slide 10

Правила за разделяне и обединение

• Правило за обединение:

Ако
$$AA \rightarrow B_1$$

 $AA \rightarrow B_2$

 $AA \rightarrow B_n$

TO AA \rightarrow B₁, B₂, ..., B_n

Приложение на правилата на Amstrong: Пример

Дадено е м-во от функционални зависимости:

 $A \rightarrow B$, $B \rightarrow C$, $A \rightarrow D$, $CE \rightarrow HG$

- Прилагайки транзитивното правило към $A \to B$ и $B \to C$, получаваме $A \to C$.
- Прилагайки правилото за обединение към A ightarrow B и A ightarrow D, получаваме A ightarrow BD
- Прилагайки правилото за псевдотранзитивност към CE ightarrowHG и резултатът A ightarrow C, получаваме AE ightarrow HG
- Прилагайки правилото за декомпозиция към горния резултат, получаваме AE → H и AE → G

Намиране на *FD's*

Пълнота на аксиомите на Armstrong

• Теорема:

Аксиомите на Армстронг са надеждни и пълни.

Slide 14

Еквивалентна дефиниция на F^+

- Следствие:
 - Нека F е множество от FD's. F^+ Обвивка на F е множество от FD's $\{X \to Y \mid X \to Y \mid \text{могат да бъдат извлечени от } F$ чрез аксиомите на Армстронг $\}$
 - Кои зависимости принадлежат на обвивката на множеството F от предходния пример?

Slide 15

Намиране на *F*+

 $AB \! o \! BD, AB \to \! BCD, AB \to \! BCDE$ и $AB \to \! CDE$ са елементи на F^+

Slide 16

Обвивка на атрибут

Def. Обвивка на атрибута (множество от атрибути) X се нарича множеството от атрибути X+:

$$X^{+} = \bigcup \{Y \mid X \rightarrow Y \in F^{+}\}$$

• Функционалната зависимост $X \to Y$ е от F (следва от правилата на Армстронг) само ако $Y \subseteq X^+$

Slide 17

Пълнота (soundness) на аксиомите Armstrong

- Лема: Нека F е множество от FD's. Функционалната зависимост $X \to Y$ е от F (следва от правилата на Армстронг) само ако $Y \subseteq X^+$
- Теорема: Аксиомите на Армстронг са надеждни и пълни

Обвивка на атрибут

- Обвивката X^+ на X е максималният атрибут, за който $X \to X^+$ е от F^+
- $X \subseteq X^+$
- Намиране на обвивка

closure:= X; repeat until there is no change { if there is an fd U → V in F such that U is in closure then add V to closure}

Slide 19

Алгоритъм за намиране на обвивка

Намиране на обвивката на $\{A_1, A_2, ..., A_n\}$

- 1. Нека променливата **X** представлява м-во от атрибути, което ще се разшири до обвивката на $\{A_1, A_2, ..., A_n\}$. Първоначално $X = \{A_1, A_2, ..., A_n\}$
- 2. Търсим FD ($Z \rightarrow C$)

$$\mathbf{B_1} \ \mathbf{B_2} \ ... \ \mathbf{B_m} \! \! o \! \mathbf{C}$$
 , такава че $\mathbf{B_1} \ \mathbf{B_2} \ ... \ \mathbf{B_m} \! \! \subseteq \! \mathbf{X}$, но $\mathbf{C} \ ! \subseteq \mathbf{X}$

Ако съществува такава **FD**, С се добавя към X

- 3. Ct.2 се повтаря докато има **FD**, които позволяват включване на атрибут в X.
- 4. След завършване **X** съдържа $\{A_1, A_2, ..., A_n\}$ +

Намиране на X+

? $Z \rightarrow C$

Slide 21

Пример: обвивка на атрибут

$$AB \rightarrow C$$
 (a)
 $A \rightarrow D$ (b)
 $D \rightarrow E$ (c)
 $AC \rightarrow B$ (d)
 $AB\}^+ ???$

Решение:

$${AB}^{+} = {AB}$$

(a) ${AB}^{+} = {ABC}$
(b) ${AB}^{+} = {ABCD}$
(c) ${AB}^{+} = {ABCDE}$

Slide 22

Пример: обвивка на атрибут

- Релация с атрибути A,B,C,D,E,F
- FD's
 - 1. AB →C
 - 2. $BC \rightarrow AD$
 - 3. D →E
 - 4. CF →B
- {AB}⁺ ???
 - X = {AB}
 - AB \rightarrow C (1) X= {A,B,C}
 - $\bullet \quad \ \ X\text{= \{A,B,C\}, BC} \rightarrow \text{AD} \quad \text{(2)} \qquad \quad X\text{= \{A,B,C,D\}}$
 - $D \rightarrow E$ (3) $X = \{A,B,C,D,E\}$
 - F??, CF →B ??

Slide 23

Пример: обвивка на атрибут

 ${X_F}^+$ ни позволява да определим FDs от F^- във формата X o Y

Намиране на всички функционални зависимости

Проверка дали една FD $A_1A_2...A_n \to B$ е част от м-во от функционални зависимости S

- 1. Намираме $\{A_1,\,A_2,\,...,\,A_n^{}\}^+$ като използваме S
- 2. Ако B $\in \{A_1, A_2, ..., A_n\}^+$ то FD $A_1A_2...A_n \to B$ следва от S
- 3. В противен случай В не следва от S

Slide 25

Ключове на релации -дефиниции

- K ={A₁,A₂,...,A_n} е ключ за релацията R ако:
 - 1. М-то K функционално определя всички атрибути на R.
 - 2. За нито едно подмножество на K условие (1) не е вярно
- Ако *К* удовлетворява (1), но не удовлетворява (2), то *К* е *суперключ*.

Slide 26

FD's и ключове

- Ако R е релационна схема с атрибути A1. . .An и м-во от функционални зависимости F и X A₁,A₂,...,A_n, то казваме, че X е ключ на релацията R ако:
 - $X \rightarrow A_1, A_2, \dots, A_n$
 - За никое Y <> 0, Y \subseteq X не е вярно, че Y \rightarrow A1,A2,...,An

Slide 27

Обвивки и ключове

 $\{A_1, A_2, ..., A_n\}^+$ е множеството от всички атрибути на релацията R тогава и само тогава, когато $A_1, A_2, ..., A_n$ суперключ за тази релация.

Slide 28

Обосновка на алгоритъм за намиране на обвивка

- Алгоритъмът за намиране на обвивката на атрибут (м-во от атрибути) намира само верни FD's
- Алгоритъмът за намиране на обвивката на атрибут (м-во от атрибути) намира всички верни FD's

Намиране на "скрити" FD's

- Мотивация: "нормализация," процес на разбиване на релационната схема на 2 или повече схеми
- Пример: ABCD c FD's
 AB ->C, C ->D, and D ->A.
 - Да разделим ли на *ABC*, *AD*. Какви FD's има в *ABC*?
 - Не само AB -> C, но и C -> A (породена) също важи за ABC

Slide 30

Еквивалентност на м-ва от FD's

Def. Две множества от FD's, F и G, са еквивалентни ако $F^+ = G^+$

Пример:

$$\{AB \to C, A \to B\}$$
 и $\{A \to C, A \to B\}$ са еквивалентни.

 ${\it Def.}$ Всяко м-во от FD's, еквивалентно на ${\it F^+}$, се нарича ${\it покритие}$ на F

- *F* + с-жа голям брой FD's
- Малки еквиваленти множества

Slide 31

Минимално покритие

Def. Множеството от FD's F е минимално ако: 1. Всяка FD от F е във вида $X \to A$, където A е единичен атрибут

- 2. За никоя FD $X \to A$ от F , множеството $F \{X \to A\}$ не е еквивалентно на F.
- 3. За никоя $X \to A$ от F и $Z \subseteq X$, множеството F- $\{X \to A\} \cup \{Z \to A\}$ не е еквивалентно на F.

Slide 32

Минимално покритие

Теорема

Всяко множество FD's F е еквивалентно на някакво минимално множество F!