Example: Microsatellite data set

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.2.8 [1849]

Compiled for a PARALLEL COMPUTER ARCHITECTURE

One master and 2 compute nodes are available.

Compiled for a SYMMETRIC MULTIPROCESSORS

Program started at Mon Mar 21 16:11:53 2011 Program finished at Mon Mar 21 16:33:26 2011

Options

Datatype: Microsatellite data [Brownian motion]
Missing data: not included

Inheritance scalers in use for Thetas: 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00

[Each Theta uses the (true) ineritance scalar of the first locus as a reference]

Random number seed: (from parmfile) 310705631

Start parameters:

Theta values were generated RANDOM start value from U(min,msx)

M values were generated from the FST-calculation

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population 1 2 1 population_numb * 0 2 population_numb * *

Order of parameters:

1 Θ_1 <displayed>

						batomio data oot 2
2	Θ_2		<dis< td=""><td>played></td><td></td><td></td></dis<>	played>		
4	N 4	->2	<dis< td=""><td>splayed></td><td></td><td></td></dis<>	splayed>		
	1	72				
Mutation rate	e among loc	i:			Mutation rate is	constant for all loci
	· ·					
Analysis stra	ateav:					Bayesian inference
7						- ay co.a
Proposal dis	stributions fo	r narameter				
Parameter		i parameter	Proposal			
Theta			•			
			Slice sampling			
M			Slice sampling			
Diametrical	C C					
Prior distribu	-		• •		5	5.
Parameter	Prior	Minimum	Mean*	Maximum	Delta	Bins
Theta	Uniform	0.000000	10.000000	20.000000	2.000000	500
M	Uniform	0.000000	10.000000	20.000000	2.000000	500
Markov chai	n settings:					Long chain
Number of c	hains					1
Recorded	steps [a]					5000
Increment	t (record eve	ry x step [b]				100
Number o	f concurrent	chains (replica	ates) [c]			2
		ameter values				1000000
-		es per chain (b				10000
		00 po: 0.1a (2	,			
Multiple Mar	kov chains:					
1	iting scheme	.			4 chains	with temperatures
Otatio rica	ung sonome	,		1000000.		1.50 1.00
				1000000.		apping interval is 1
					Swa	apping interval is 1
Drint entions						
Print options	.					: : ::::
Data file:						infile.msat
Output file						outfile-bayes
		aw histogram f	ile:			bayesfile
Print data:						No
Print gene	ealogies [only	y some for som	ne data type]:			None

Data summary

Datatype: Microsatellite data
Number of loci: 10

Population	Locus	Gene cor	oies
		data	(missing)
1 population_number0	1	50	(0)
	2	50	(0)
	3	50	(0)
	4	50	(0)
	5	50	(0)
	6	50	(0)
	7	50	(0)
	8	50	(0)
	9	50	(0)
	10	50	(0)
2 population_number1	1	42	(0)
	2	42	(0)
	3	42	(0)
	4	42	(0)
	5	42	(0)
	6	42	(0)
	7	42	(0)
	8	42	(0)
	9	42	(0)
	10	42	(0)
Total of all populations	1	92	(0)
	2	92	(0)
	3	92	(0)
	4	92	(0)
	5	92	(0)
	6	92	(0)
	7	92	(0)
	8	92	(0)
	9	92	(0)
	10	92	(0)

				Allele frequency spectra
Locus				
Allele	Pop1	Pop2	All	
16	0.220	0.167	0.193	
19	0.040	0.071	0.056	
18	0.060	0.119	0.090	
15	0.220	0.024	0.122	
21	0.020	0.167	0.093	
23	0.020	0.119	0.070	
17	0.280	0.095	0.188	
22	0.060	0.119	0.090	
25	0.060	0.024	0.042	
24	0.020	0.000	0.010	
26	0.000	0.024	0.012	
27	0.000	0.048	0.024	
29	0.000	0.024	0.012	
Locus	2			
Allele		Pop2	All	
16	0.520	0.571	0.546	
19	0.040	0.000	0.020	
18	0.220	0.119	0.170	
17	0.160	0.167	0.163	
15	0.020	0.000	0.010	
21	0.020	0.071	0.046	
20	0.020	0.024	0.022	
22	0.000	0.048	0.024	
Locus	3			
Allele	Pop1	Pop2	All	
19	0.240	0.262	0.251	
20	0.240	0.476	0.231	
18	0.280	0.476	0.088	
21	0.280	0.095	0.200	
22	0.200	0.119	0.200	
	0.120	0.040	0.004	
Locus	4			
	Pop1	Pop2	All	

Allele	Pop1	Pop2	All	=
				_
16	0.080	0.071	0.076	
24	0.180	0.024	0.102	
15	0.020	0.048	0.034	
25	0.160	0.167	0.163	
14	0.020	0.048	0.034	
19	0.100	0.143	0.121	
12	0.060	0.000	0.030	
20	0.080	0.190	0.135	
23	0.060	0.119	0.090	
28	0.020	0.000	0.010	
22	0.060	0.024	0.042	
21	0.160	0.119	0.140	
13	0.000	0.024	0.012	
26	0.000	0.024	0.012	
Locus	5			
Allele	Pop1	Pop2	All	
				_
20	0.400	0.524	0.462	
21	0.420	0.357	0.389	
19	0.180	0.119	0.150	
Locus	6			
Allele	Pop1	Pop2	All	
				_
19	0.060	0.000	0.030	
20	0.100	0.024	0.062	
18	0.300	0.214	0.257	
22	0.200	0.119	0.160	
21	0.120	0.476	0.298	
16	0.060	0.000	0.030	
24	0.160	0.048	0.104	
17	0.000	0.119	0.060	
Locus				
Allele	Pop1	Pop2	All	
				_
23	0.040	0.238	0.139	
20	0.660	0.143	0.401	
22	0.180	0.190	0.185	
21	0.100	0.333	0.217	
19	0.020	0.095	0.058	

Locus	8		
ı	Pop1	Pop2	All
		. op_	
19	0.520	0.524	0.522
17	0.040	0.048	0.044
18	0.100	0.071	0.086
20	0.140	0.190	0.165
16	0.080	0.000	0.040
22	0.100	0.048	0.074
15	0.020	0.048	0.074
23	0.020	0.048	0.034
23	0.000	0.07 1	0.036
Lague	0		
Locus		Dong	٨॥
Allele	Рорт	Pop2	All
24	0.090	0.024	0.050
24	0.080	0.024	0.052
19	0.300	0.429	0.364
20	0.300	0.167	0.233
23	0.180	0.143	0.161
22	0.080	0.024	0.052
18	0.020	0.071	0.046
21	0.040	0.095	0.068
25	0.000	0.048	0.024
Locus			
Allele	Pop1	Pop2	All
22	0.100	0.214	0.157
	0.440		
23	0.080	0.167	0.123
24	0.020	0.000	0.010
19	0.160	0.167	0.163
21	0.060	0.048	0.054
18	0.080	0.000	0.040
15	0.020	0.071	0.046
17	0.040	0.048	0.044
25	0.000	0.071	0.036

Bayesian Analysis: Posterior distribution table

_ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	9.60000	14.80000	0.00000	18.60000	0.00000	0.00000	15.23731
1	Θ_2	7.92000	15.08000	0.00000	19.92000	0.00000	15.22000	14.65390
1	M _{1->2}	0.000	0.320	0.000	1.240	0.000	1.060	1.201
2	Θ_1	2.44000	4.36000	0.00000	7.92000	0.00000	0.00000	7.36486
2	Θ_2	0.56000	0.84000	0.00000	6.72000	0.00000	6.74000	8.09118
2	M _{1->2}	0.000	13.560	0.000	19.880	0.000	13.500	12.603
3	Θ_1	2.44000	5.24000	0.00000	9.68000	0.00000	0.00000	8.57502
3	Θ_2	1.20000	1.44000	0.00000	7.84000	0.00000	8.18000	9.06468
3	M _{1->2}	0.000	18.760	0.000	19.840	0.000	11.420	11.172
4	Θ_1	11.32000	17.44000	0.00000	19.96000	0.00000	0.00000	16.76846
4	Θ_2	3.60000	12.16000	0.00000	19.80000	0.00000	12.38000	12.00746
4	M _{1->2}	0.000	1.080	0.000	8.720	0.000	8.460	9.376
5	Θ_1	0.32000	1.00000	0.00000	2.76000	0.00000	0.00000	2.83008
5	Θ_2	0.24000	5.36000	0.00000	8.96000	0.00000	9.46000	9.75400
5	M _{1->2}	0.000	18.920	0.000	19.680	0.000	13.540	13.254
6	Θ_1	2.72000	4.64000	0.00000	8.60000	0.00000	0.00000	8.27743
6	Θ_2	0.00000	0.36000	0.00000	1.88000	0.00000	1.74000	2.93945
6	M _{1->2}	0.000	1.160	0.000	6.760	0.000	7.380	8.118
7	Θ_1	0.72000	1.56000	0.00000	4.36000	0.00000	0.00000	4.47605
7	$\Theta_2^{'}$	0.96000	1.32000	0.00000	6.88000	0.00000	7.06000	8.35536
7	M _{1->2}	0.000	0.320	0.000	2.760	0.000	2.580	3.842
8	Θ_1	3.84000	5.56000	0.00000	10.00000	0.00000	0.00000	9.54921
8	Θ_2	1.72000	2.12000	0.00000	9.68000	0.00000	9.38000	9.83750
8	M _{1->2}	0.000	15.000	0.000	19.840	0.000	11.900	11.693
9	Θ_1	3.32000	6.60000	0.00000	11.92000	0.00000	0.00000	10.29873
9	Θ_2	2.80000	3.92000	0.00000	9.36000	0.00000	9.98000	10.34376
9	M _{1->2}	0.000	3.440	0.000	6.560	0.000	10.460	10.630

10	Θ_1	6.68000	14.92000	0.00000	19.92000	0.00000	0.00000	13.68066	
10	Θ_2	1.32000	1.96000	0.00000	8.40000	0.00000	7.62000	8.64818	
10	M _{1->2}	0.000	0.360	0.000	4.920	0.000	4.780	7.003	
All	Θ_1	5.36000	6.88000	7.78000	8.24000	10.76000	7.94000	8.01937	
All All	$\Theta_1 \\ \Theta_2$	5.36000 1.72000	6.88000 4.48000	7.78000 5.98000	8.24000 6.84000	10.76000 12.00000	7.94000 6.14000	8.01937 6.61349	

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the support for thisModel]$

Locus	Raw thermodynamic score(1a)	Bezier approximation score(1b)	Harmonic mean(2)
1	-7346.97	-1303.45	-125.62
2	-2168.35	-438.45	-82.20
3	-1287.70	-304.25	-96.24
4	-8720.53	-1525.66	-122.34
5	-739.66	-191.03	-70.57
6	-3998.99	-743.70	-89.18
7	-1401.63	-314.51	-93.45
8	-2320.05	-471.38	-94.80
9	-2971.22	-580.34	-98.67
10	-3580.91	-694.64	-113.58
All	-34595.62	-6627.01	-1046.24

(1a, 1b and 2) is an approximation to the marginal likelihood, make sure the program run long enough!
(1a, 1b) and (2) should give a similar result, (2) is considered more crude than (1), but (1) needs heating with several well-spaced chains,
(1b) is using a Bezier-curve to get better approximations for runs with low number

of heated chains

[Scaling factor = -59.595907

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	8501325/8501325	1.00000
Θ_2	8507800/8507800	1.00000
$M_{1\rightarrow 2}$	8506080/8506080	1.00000
Genealogies	7881070/24994790	0.31531

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.84612	39358.65
Θ_2	0.69715	84878.68
$M_{1\rightarrow 2}$	0.89913	34549.43
Ln[Prob(D G)]	0.95301	10194.08