

Shapes applications and tools

Jose Emilio Labra Gayo

WESO Research group University of Oviedo, Spain

Contents

Introduction to Knowledge graphs

Types of Knowledge Graphs:

RDF, Property graphs, Wikibase, RDF-Star

Shaping RDF: ShEx & SHACL

Shaping other types of Knowledge graphs:

Wikibase and Wikidata graphs

Property Graphs

RDF-1.2

Applications:

Inferring shapes from data, Knowledge Graphs Subsets, etc.

Some applications of Shapes

Traditional application: Validate RDF data

Tools to understand/manage the data models

Visualizations, HTML page generation

Editors

Obtaining shapes from data

Creating subsets from Shapes

Other applications:

Continuous integration

Generate code, SPARQL queries

Optimize SPARQL queries or triplestores based on their shapes

. . .

Tools to understand/edit shapes schemas

UML-like diagram visualizations

Implemented in rdfshape and rudof

Edit the data models using UML editors (XMI prototype)

HTML pages

Partial visualizations to improve usability browsing large data models

3D prototype visualization of shapes schemas

Continuous integration with Shapes

Coexistence between ontologies/shapes

Shapes can validate the behaviour of inference systems

Shapes pre- and post- inference

TDD and continuous integration based on shapes

Ontolo-ci: https://github.com/weso/ontolo-ci

Gene Ontology Shapes:

Ontology

engineer

Continuous

Integration

server

Continuous integration with Shapes

Ontolo-ci: https://github.com/weso/ontolo-ci

Developed as part of HERCULES-Ontology

Test-Driven-Development applied to Ontologies

Input:

- Ontologies
- Shapes
- Test data
- Input shape map (SPARQL competency question)
- Expected result shape map

Creating shapes

Shapes editors

Text-based editors

Visual editors and visualizers

Obtaining shapes from...

Spreadsheets

RDF data

Ontologies

Other schemas (XML Schema)

Text-based editors

YaSHE: Forked from YASGUI: http://www.weso.es/YASHE/

Syntax highlighting

Auto-completion

```
1 PREFIX xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#</a>
                                                                                                                       土 ≜ 百 ● □
2 prefix wd: <http://www.wikidata.org/entity/>
   prefix wdt: <http://www.wikidata.org/prop/direct/>
    # Example SPARQL query: select ?researcher where { ?researcher wdt:P106 wd:Q1650915 } limit 5
7 ▼ <Researcher> EXTRA wdt:P31 wdt:P106 {
                            ; # Instance of = human
      wdt:P31 [ wd:Q5 ]
     wdt:P106 [ wd:Q1650915 ] ; # Occupation = researcher
     wdt:P101 @<Discipline> * ; # Field of work
     wdt:P496 xsd:string
                                 ? ; # ORCID-ID
                                ? ; # Scopus-Author ID
      wdt:P1153 xsd:string
                  Scopus Author ID (P1153)
13
                  identifier for an author
                     assigned in Scopus
                   bibliographic database
```


Shapes author tools: Top Braid Composer

Form based editor Integrated with Top Braid product

Shapes author tools: UnSHACLed

Visual SHACL Editor in Javascript

B. De Meester, P. Heyvaert, A. Dimou, and R. Verborgh, "Towards a Uniform User Interface for Editing Data Shapes," in Proceedings of the 4th International Workshop on Visualization and Interaction for Ontologies and Linked Data, 2018, vol. 2187.

Shapes author tools: ShEx Author

ShEx-Author: Inspired by Wikidata Query Service

2 column: Visual one synchronized with text based

Shapes visualization

Integrated in RDFShape/Wikishape

- <u>UMLSHacIEX</u> UML diagrams for ShEx
- ShUMLex: Conversion to UML through XMI

Shapes from spreadsheets

SKOS-Play was used at ELI to generate SHACL shapes from Excel

ShExstatements: https://shexstatements.toolforge.org/

ShExCSV: CSV representation of Shapes

Hermes: ShExCSV processor, https://github.com/weso/hermes

Creating data models using spreadsheets

DCTAP data models (templates in XLSX, CSV), recently added to rudof

Generating Shapes from RDF data

Useful use case in practice

Some prototypes

RDFShape: http://rdfshape.weso.es

sheXer: http://shexer.weso.es/

Shapes from data: RDFShape

RDFShape/Wikishape implement a basic prototype to derive Shapes from RDF data

Shapes from data: sheXer

sheXer: https://github.com/DaniFdezAlvarez/shexer

Implemented as a Python library

Supports Shapes generation from large SPARQL endpoints

Can generate shapes from sampling

ShEx consolidator can be used for large RDF data

Application example: Creating Knowledge Graphs subsets

Some current problems...

Large knowledge graphs are difficult to handle
SPARQL queries require computational resources
Endpoints usually impose limits (timeouts...)
Contents are continually evolving
Results of SPARQL queries now may be different later
Research based on large KGs difficult to be reproducible

Some applications for KG subsets (1)

Performance

Enable SPARQL queries that don't work with whole KG

Data integration

Create domain specific subsets and integrate with other data Reproducibility

Snapshots of KG contents that can be cited & reused

Some applications for KGs subsets (2)

Transformation and enrichment

Add and integrate content from different KGs

KG in your pocket

Create mobile apps based on some subset

KG analysis

Create and compare subsets from historical dumps

License combination

Combine subsets from KG with some license (CCO) with others

Motivating use case: GeneWiki project

Source: Wikidata as a knowledge graph for the life sciences, A. Waagmeester et al, https://elifesciences.org/articles/52614

Reusing turned out to be difficult

Example: counting number of genes and associated elements:

- Proteins
- Chromosomes
- Disease
- Taxons

```
Wikidata Query Service
                                       Examples
                                                                       ♠ More tools
                                                                                           Query Builder
        1 PREFIX wd: <http://www.wikidata.org/entity/>
        2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
        4 SELECT (COUNT(?gene) AS ?count gene) ?count P688 protein ?count P1057 chromosome ?count P2293 disease ?count P703 taxon
        5 WHERE
           { ?gene wdt:P31 wd:Q7187
              { SELECT (COUNT(?y) AS ?count P688 protein)
                WHERE
                  { ?x wdt:P31 wd:Q7187 ;
                        wdt:P688 ?y .
                    ?v wdt:P31 wd:08054
      12
      13
              { SELECT (COUNT(?y) AS ?count P1057 chromosome)
      14
      15
                WHERE
                  { ?x wdt:P31
                                   wd:Q7187 ;
      17
                        wdt:P1057 ?v .
       18
                    ?y wdt:P31
                                   wd:Q37748
      19
      20
              { SELECT (COUNT(?y) AS ?count_P2293_disease)
      21
      22
                WHERE
                 { ?x
                                                                                Query timeout limit reached
      23
      25
                    ?y
                              SPARQL-QUERY: queryStr=PREFIX wd: <a href="http://www.wikidata.org/entity/">http://www.wikidata.org/entity/</a>
       26
                              PREFIX wdt: <a href="http://www.wikidata.org/prop/direct/">http://www.wikidata.org/prop/direct/</a>
      27
      28
              { SELECT ((
                                      (COUNT(?gene) AS ?count gene) ?count P688 protein ?count P1057 chromosome ?count P2293 disease ?count P703 taxon
      29
                WHERE
      30
                  { ?x wc
                                { ?gene wdt:P31 wd:Q7187
      31
                                  { SELECT (COUNT(?y) AS ?count_P688_protein)
      32
                    ?y wo
       33
                                      { ?x wdt:P31 wd:Q7187;
                                            wdt:P688 ?y .
                                        ?y wdt:P31 wd:Q8054
          GROUP BY ?count
```


Wikidata subsetting efforts

Collaborative research driven by a practical need

Most of the advances were triggered by SWAT4HCLS and Biohackathons

- 12th SWAT4HCLS conference, 2019. Wikidata: WikiProject Schemas/Subsetting Wikidata
- Europe Biohackathon, 2020, <u>project 35</u> [<u>preprint</u>]
- Europe Biohackathon, 2021, project 21
- Europe Biohackathon, 2022 <u>project 11</u>, [<u>preprint</u>]
- Japan Biohackathon, 2023 [preprint]
- 2023, Paper: Wikidata subsetting: approaches, tools and evaluation, accepted at Semantic Web Journal

Problem statement

Subsetting based on ShEx

Generate subsets from ShEx
ShEx describes the contents of the expected subset

```
RDF data
                                                  :Person {
:alice
                      "Alice"
                                                          xsd:string
                                                   :name
          :name
                      :bob
                                                   :knows @:Person *
          : knows
          :worksFor
                      :company1
:company1 :location
                      :loc1
                      :alice
          :employee
:loc1
          :postalCode
                      "33007"
          :country
                      :Spain
                      "Robert"
: bob
          :name
                                                          Subset
                      "Carole"
:carol
          :name
                                                                                   Subset
                                                        generator
          :worksFor
                      :company2 .
:company2 :employee
                      :carol
                                                                                         :alice :name
                                                                                                         "Alice" ;
          :location
                       :loc2
                                                                                                 :knows :bob
:loc2
          :postalCode "98052"
                                                                                                         "Robert" .
                                                                                          : bob
                                                                                                 :name
                       :USA
          :country
                                                                                                         "Carole" .
                                                                                          carol
                                                                                                 :name
```


wdsub

Input:

- ShEx/WShEx schema
- Wikidata dumps in JSON

Output

- Dumps in JSON/RDF

Link: https://github.com/weso/wdsub

Docker (CLI): wesogroup/wdsub:0.0.32

GeneWiki project

Data model

GeneWiki subset

GeneWiki experiments

ShEx schema (E258)


```
start= @:active site OR
      @:anatomical structure OR
      @:gene OR
:active site EXTRA wdt:P31 {
 rdfs:label [ @en ] ;
 wdt:P31 [ wd:Q423026 ]
 wdt:P361 @:protein_family *;
 wdt:P527 @:protein family *;
:gene EXTRA wdt:P31 {
 rdfs:label [ @en ] ;
 wdt:P31 [ wd:Q7187 ];
 wdt:P684 @:gene * ; # ortholog (P684)
 wdt:P2293 @:disease *; # genetic association (P2293)
 wdt:P703 @:taxon * ; # found in taxon (P703)
 wdt:P1057 @:chromosome * ; # chromosome (P1057)
 wdt:P682 @:biological_process * ; # biological process (P682)
 wdt:P688 @:protein *; # encodes (P688)
```


Results about GeneWiki experiment

Class	2015	2016	2017	2018	2019	2020	2021	2022	Wikidata
active_site	0	0	132	132	132	132	132	132	132
anatomical_structure	4	62	470	483	614	732	738	812	746
binding_site	0	0	76	76	76	77	77	77	76
biological_pathway	0	0	425	2754	2929	3279	3429	3486	3554
biological_process	11	12	31263	31222	42058	43417	42061	41857	42449
cellular_component	1	1	4017	4081	4239	4298	4137	4139	4211
chemical_compound	19144	21128	156718	157018	157685	1050488	1201719	1245041	1249719
chromosome	0	0	149	152	432	9167	9224	9223	9224
disease	124	931	9578	9926	11439	13197	5395	5607	5698
gene	17	20	679372	677836	811574	1196193	1196334	1211506	Timed-Out
medication	46	2127	2459	2472	2699	3210	3336	3424	3450
molecular_function	0	0	9413	9801	11258	11226	10940	10898	11246
pharmaceutical_product	0	0	1067	1067	2725	2754	2759	2774	2784
protein_domain	2	3	9581	8847	9348	10770	11274	11709	11736
protein_family	0	212	20912	20632	22240	22170	23277	24204	24266
protein	118	166	450785	487781	579979	980520	985755	988099	Timed-Out
sequence_variant	0	0	1411	918	774	724	695	686	686
supersecondary_structure	0	0	687	687	688	688	694	696	696
symptom	16	235	273	283	328	366	319	335	343
taxon	1920049	2121404	2213907	2318731	2492613	2769303	2929068	3478871	3491430

Other examples

The paper contains other other studies about

Multilingual extraction

```
start= @:gene OR
      @:taxon
:gene EXTRA wdt:P31 {
 rdfs:label
                    [ @en @es @fa @nl ]
 schema:description [ @en @es @fa @nl ]
 skos:altLabel
                    [ @en @es @fa @nl ] *
 wdt:P31
                    [ wd:Q7187 ];
                    @:taxon *
 wdt:P703
:taxon EXTRA wdt:P31 {
 rdfs:label
                    [ @en @es @fa @nl ] ;
 schema:description [ @en @es @fa @nl ] ;
                    [ @en @es @fa @nl ] *;
  skos:altLabel
  wdt:P31
                    [ wd:Q16521 ];
```

Qualifiers and references

```
color="block" color="bloc
```


Subsets based on Pregel algorithm

Pregel algorithm = parallel algorithm proposed at Google

"think like a vertex"

2 prototype implementations (work in progress)

- Scala: <u>SparkWDSub</u>
 - We were able to create subsets in 36 minutes with large cluster (512 cores)
- Rust: pregel-rs based on Polars and
 - It can process Wikidata-dumps
 - Recently applied to large RDF data: UniProt

More information at paper:

- <u>Creating Knowledge Graphs Subsets using Shape Expressions</u>, J. Labra, arXiv:2110.11709
- <u>Using Pregel to create Knowledge Graphs subsets described by non-recursive Shape Expressions</u>, A. Préstamo, J. Labra, accepted at KGSWC' 23

UIs and shapes

Shapes can provide hints to generate user interfaces/forms
SHACL core defines a basic vocabulary: sh:group, sh:order, ...
ShEx annotations can also be used to define UI declarations
Example: UI ontology annotations

UIs and Shapes: ShExPath and ShEx-Forms

ShEx Path can be used to point to parts of a ShEx schema

https://shexspec.github.io/spec/ShExPath

ShEx generated forms demo based on UI ontology:

https://ericprud.github.io/shex-form/?manifestURL=examples/manifest.json

Uls and shapes: TopQuadrant

Form generation from SHACL

DASH vocabulary:

http://datashapes.org/forms.html

Generating code from shapes

Domain model based on Shapes

Clean architecture pattern

Domain model as central element

Simple classes (POJO): Plain Old Java Objects

Shapes synchronization

Application logic and services based on domain model

Shapes and rules

SHACL Advanced Features describes SHACL rules

```
:Rectangle a rdfs:Class, sh:NodeShape ;
 rdfs:label "Rectangle" ;
 sh:property [ sh:path :height ;
  sh:datatype xsd:integer ;
  sh:maxCount 1 ; sh:minCount 1 ;
  sh:name "height" ];
 sh:property [sh:path :width ;
  sh:datatype xsd:integer ;
  sh:maxCount 1 ; sh:minCount 1 ;
  sh:name "width"; ];
 sh:rule [ a sh:TripleRule ;
  sh:subject sh:this;
  sh:predicate rdf:type ;
  sh:object :Square ;
  sh:condition :Rectangle ;
  sh:condition [
   sh:property [
    sh:path
             :width ;
    sh:equals :height ;
```

```
:I a :Rectangle .
:N a :Rectangle ;
    :height 2 ;
    :width 3 .
:S a :Rectangle ;
    :height 4 ;
    :width 4 .
```

:S a :Square .

Shapes ecosystems

Wikidata provides a whole ShEx ecosystem

Entity schemas can evolve and relate between each other

Directory: https://www.wikidata.org/wiki/Wikidata:Database_reports/EntitySchema_directory

Different schemas for the same entities?

Some schemas stress some aspects while others stress others

Evolution of schemas

Searching entity schemas

Conclusions

Shapes can be a very important aspect of Knowledge Graphs Graph data is flexible and shapes also Shapes ecosystems with:

Prescriptive shapes

Descriptive shapes

Suggestive shapes (can *suggest* properties to employ)

Domain experts are a key aspect of this

END OF PRESENTATION

Acknowldgments

Awesome Semantic Shapes:

https://github.com/w3c-cg/awesome-semantic-shapes

Special thanks to Vladimir Alexiev for starting it

People from ShEx community group: Tom Baker, Kat Thornton, Andra Waagmeester,...

Uls and shapes: Schímatos

http://schimatos.org/

It will be presented at ISWC20

Shapes for data integration

XMLSchema2ShEx: Convert XML Schemas to shapes

ShExML: Domain specific language to convert data to RDF

Input formats: CSV, XML, JSON, SQL

Generating code from shapes

Generate domain model from shapes

Entities (pseudo-shapes) defined with Excel (Google spreadsheets) Shapes generation from those templates Java code generation (POJOs) from those shapes

Shapes from data: ShapeDesigner

https://gitlab.inria.fr/jdusart/shexjapp

Other uses of Shapes

UIs and shapes

Generating code from Shapes

Shapes and rules

Data portals

In 2013, at WESO, we were hired to develop some data portals

Examples: WebIndex (Web Foundation)

One of the first applications of ShEx

Measure WWW's contribution to development and human rights by country

Developed by the Web Foundation

Content of data portal = statistical observations

We employed RDF Data Cube vocabulary (qb:Observation)

Simplified WebIndex data model

Lessons learnt from ShEx usage at WebIndex

1. Documentation of linked data portal Human-readable, machine processable

http://weso.github.io/wiDoc

2. Team communication

Communicate the developers which shapes they had to generate

3. Validation

For example: check if a value of type qb:Observation had shape <Observation>

4. Reuse

Another data portal was later developed for http://landportal.org base on observations Easy to reuse and adapt the data model

Same types (qb:Observation) but different structure

Wikidata and wikibase

WESO

In May, 2019, Wikidata announced ShEx adoption New namespace for schemas

Example:

https://www.wikidata.org/wiki/EntitySchema:E2

Wikibase also contains entity schemas

Online demo: wikishape

SOLID (SOcial Linked Data): Promoted by Tim Berners-Lee

Goal: Re-decentralize the Web

Separate data from apps

Give users more control about their data

Internally using linked data & RDF

Shapes needed for interoperability

"...I just can't stop thinking about shapes.", Ruben Verborgh https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/

Other use cases

HL7 FHIR.

Example: https://www.hl7.org/fhir/observation.html

ELI validator

SHACL shapes obtained from Excel sheets:

https://webgate.ec.europa.eu/eli-validator/home

SHACL adoption supported by Top Quadrant

See: https://www.topquadrant.com/technology/shacl/

More info:

Chapter 6 of Validating RDF data: http://book.validatingrdf.com/bookHtml012.html

Tools: challenges and perspectives

Validating with shapes

Obtaining shapes

Other applications of shapes

Shapes ecosystems

Validating with shapes

Libraries and command line validators

Online demos

Integrated in ontology editors

Continuous integration with Shapes