Lecture 7: Computational Geometry CS 491 CAP

Uttam Thakore

Friday, October 7th, 2016

Credit for many of the slides on solving geometry problems goes to the Stanford CS 97SI course lecture on computational geometry

(http://web.stanford.edu/class/cs97si/09-computational-geometry.pdf)

Trigonometry

mgonomen

Table of Contents

Basic HS Geometry Review Trigonometry

Vectors

Solving Geometry Problems

Line-line intersection

Sweep line algorithm

Area of a polygon

Binary search

Ternary search

Convex Hull

Other Geometry Concepts

More Resources

Trigonometry

sin, cos, & tan

$$ightharpoonup \sin heta = rac{ ext{opposite}}{ ext{hypotenuse}}$$

$$ightharpoonup$$
 $\cos heta = rac{ ext{adjacent}}{ ext{hypotenuse}}$

$$\blacktriangleright \ \tan\theta = \tfrac{\text{opposite}}{\text{adjacent}}$$

opposite

Basic HS Geometry Review

Trigonometry

Law of sines & law of cosines

- ▶ Law of sines: $\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}$
- ▶ Law of cosines: $a^2 = b^2 + c^2 2bc \cos(\alpha)$
 - Put another way: $\cos(\alpha) = \frac{-a^2 + b^2 + c^2}{2bc}$
 - ► Similar for b and c

Heron's formula

Basic HS Geometry Review

- Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
- $ightharpoonup s = semiperimeter = \frac{a+b+c}{2}$
- ▶ But there is an easier way to find the area of a triangle...

Vectors

•00000

Table of Contents

Basic HS Geometry Review

Trigonometry

Vectors

Area of a polygon

000000

What is a vector?

- Direction
- Magnitude
- ► Alternatively, magnitude & angle from positive x-axis

Vectors

000000

Basic HS Geometry Review

Why are vectors important?

- ▶ Basis for large number of geometry problems
- Basic operations on vectors provide very useful information

000000

Vectors

Vector Addition

Basic HS Geometry Review

- Place beginning of one vector at end of other
- New vector from beginning of first vector to end of last

Vectors

Vector Dot Product

- ► Why is this important?

 - \triangleright Can use to find $\cos \theta$

Vectors

Vector Cross Product

- $A \times B = x_1 \times y_2 y_1 \times x_2$
- Why is this important?
 - ▶ $\mathbf{A} \times \mathbf{B} = |\mathbf{A}||\mathbf{B}|\sin\theta$
 - ightharpoonup Can use to find $\sin \theta$
 - Significance:
 - For $\theta < 0$, $\sin \theta < 0$
 - For $\theta > 0$, $\sin \theta > 0$
 - ► Also, A × B = area of parallelogram created by A and B
 - $ightharpoonup \frac{A \times B}{2}$ is the area of the triangle

Line-line intersection

Table of Contents

Basic HS Geometry Review Trigonometry Vectors

Solving Geometry Problems Line-line intersection

Sweep line algorithm
Area of a polygon
Binary search
Ternary search
Convey Hull

Other Geometry Concepts

Cross Product

□ Define $ccw(A, B, C) = (B - A) \times (C - A)$

Segment-Segment Intersection Test

- \square Given two segments AB and CD
- Want to determine if they intersect properly: two segments meet at a single point that are strictly inside both segments

Segment-Segment Intersection Test

- Assume that the segments intersect
 - From A's point of view, looking straight to B, C and D must lie on different sides
 - Holds true for the other segment as well
- □ The intersection exists and is proper if:
 - \square ccw(A, B, C) \times ccw(A, B, D) < 0
 - □ AND $ccw(C, D, A) \times ccw(C, D, B) < 0$

Segment-Segment Intersection Test

- Determining non-proper intersections
 - We need more special cases to consider!
 - e.g. If ccw(A, B, C), ccw(A, B, D), ccw(C, D, A), ccw(C, D, B) are all zeros, then two segments are collinear
 - Very careful implementation is required

Sweep line algorithm

Table of Contents

Basic HS Geometry Review Trigonometry Vectors

Solving Geometry Problems

Line-line intersection

Sweep line algorithm

Area of a polygon

Ternary searcl

Convex Hull

Other Geometry Concepts

More Resources

Sweep Line Algorithm

- □ A problem solving strategy for geometry problems
- The main idea is to maintain a line (with some auxiliary data structure) that sweeps through the entire plane and solve the problem locally
- We can't simulate a continuous process, (e.g. sweeping a line) so we define events that causes certain changes in our data structure
 - And process the events in the order of occurrence
- □ We'll cover one sweep line algorithm

Sweep Line Algorithm

- Problem: Given n axis-aligned rectangles, find the area of the union of them
- □ We will sweep the plane from left to right
- Events: left and right edges of the rectangles
- The main idea is to maintain the set of "active" rectangles in order
 - \blacksquare It suffices to store the *y*-coordinates of the rectangles

Pseudopseudocode

- □ If the sweep line hits the left edge of a rectangle
 - Insert it to the data structure
- □ Right edge?
 - Remove it
- Move to the next event, and add the area(s) of the green rectangle(s)
 - Finding the length of the union of the blue segments is the hardest step
 - $lue{}$ There is an easy O(n) method for this step

Notes on Sweep Line Algorithms

- Sweep line algorithm is a generic concept
 - Come up with the right set of events and data structures for each problem
- Exercise problems
 - □ Finding the perimeter of the union of rectangles
 - $lue{}$ Finding all k intersections of n line segments in $Oig((n+k)\log nig)$ time

Area of a polygon

Table of Contents

Basic HS Geometry Review Trigonometry Vectors

Solving Geometry Problems

Line-line intersection Sweep line algorithm

Area of a polygon

Binary search Ternary search Convex Hull

Other Geometry Concepts

More Resources

Area of a polygon

Triangulation!

- 1. Start at any point (let's call it A)
- Go through all other points, summing areas of triangles made by vectors from A (using cross product)

Area of a polygon

Why does this work?

- For convex polygons, obvious
- ► For concave polygons, when we turn inwards, area is negative
- Sum of the negative and positive triangles equals area of polygon

00

Binary search

Table of Contents

Basic HS Geometry Review Trigonometry Vectors

Solving Geometry Problems

Line-line intersection Sweep line algorithm Area of a polygon

Binary search

Ternary search Convex Hull

Other Geometry Concepts

More Resources

Note on Binary Search

 Usually, binary search is used to find an item of interest in a sorted array

- There is a nice application of binary search, often used in geometry problems
 - Example: finding the largest circle that fits into a given polygon
 - Don't try to find a closed form solution or anything like that!
 - Instead, binary search on the answer

Ternary search

Table of Contents

Basic HS Geometry Review Trigonometry Vectors

Solving Geometry Problems

Line-line intersection Sweep line algorithm Area of a polygon Binary search

Ternary search

Convex Hull

Other Geometry Concepts

Ternary Search

- □ Another useful method in many geometry problems
- $\ \square$ Finds the minimum point of a "convex" function f
 - Not exactly convex, but let's use this word anyway
- \square Initialize the search interval [s, e]
- □ Until e s becomes small:
 - $m_1 = s + (e s)/3, m_2 = e (e s)/3$
 - □ If $f(m_1) \le f(m_2)$, then set e to m_2
 - $lue{}$ Otherwise, set s to m_1

Convex Hull

Table of Contents

Trigonometry

Solving Geometry Problems

•0000000000000000000

Solving Geometry Problems

Area of a polygon

Convex Hull

Convex Hull

Table of Contents

Trigonometry

Solving Geometry Problems

•0000000000000000000

Solving Geometry Problems

Area of a polygon

Convex Hull

Convex Hull Problem

- Given n points on the plane, find the smallest convex polygon that contains all the given points
 - □ For simplicity, assume that no three points are collinear

Simple $O(n^3)$ algorithm

- \square AB is an edge of the convex hull iff ccw(A, B, C) have the same sign for all other given points C
 - □ This gives us a simple algorithm

- \square For each A and B:
 - □ If ccw(A, B, C) > 0 for all $C \neq A, B$:
 - Record the edge $A \rightarrow B$
- Walk along the recorded edges to recover the convex hull

Faster Algorithm: Graham Scan

- We know that the leftmost given point has to be in the convex hull
 - We assume that there is a unique leftmost point
- Make the leftmost point the origin
 - $lue{}$ So that all other points have positive χ coordinates
- \Box Sort the points in increasing order of y/x
 - □ Increasing order of angle, whatever you like to call it
- Incrementally construct the convex hull using a stack

Incremental Construction

- We maintain a convex chain of the given points
- \Box For each i, we do the following:
 - lacktriangle Append point i to the current chain
 - If the new point causes a concave corner, remove the bad vertex from the chain that causes it
 - Repeat until the new chain becomes convex

 \square Points are numbered in increasing order of y/x

□ Add the first two points in the chain

- □ Adding point 3 causes a concave corner 1-2-3
 - □ Remove 2

□ That's better...

- □ Adding 4 to the chain causes a problem
 - □ Remove 3

■ Bad corner!

□ Bad corner again!

□ Done!

Pseudocode

- \square Set the leftmost point (0,0), and sort the rest of the points in increasing order of y/x
- \square Initialize stack S
- \Box For i = 1 ... n:
 - Let A be the second topmost element of S, B be the topmost element of S, C be the ith point
 - □ If ccw(A, B, C) < 0, pop S and go back
 - \square Push C to S
- \square Points in S form the convex hull

Solving Geometry Problems

00000000000000000000

Convex Hull

Graham Scan Complexity

- ▶ Sorting of points takes $O(n \log n)$ time
- ▶ Construction of the hull requires only traversal of all points once, with removal from the stack at most once, so O(n) time
- ▶ Total runtime complexity: O(n log n)

Table of Contents

Basic HS Geometry Review Trigonometry

Solving Geometry Problems
Line-line intersection
Sweep line algorithm
Area of a polygon
Binary search
Ternary search

Other Geometry Concepts

More Resources

There are more geometry concepts to know!

- ► Circle concepts chord length, inscribed and circumscribed polygons, circles and intersecting tangent/secant lines
- ► Sphere concepts great circle distance
- Polygons checking if point is inside polygon (extension of concepts covered today)
- ► For formulas, algorithms, and implementations, see Chapter 7 of Competitive Programming by Steven Halim

Thankfully, most of these concepts do not appear in our regionals

However, you should know these for World Finals!

Table of Contents

Basic HS Geometry Review

Trigonometry

Vectors

Solving Geometry Problems

Line-line intersection

Sweep line algorithm

Area of a polygon

Binary search

Ternary search

Convex Hull

Other Geometry Concepts

More Resources

Some geometry resources

- ► TopCoder Algorithm Tutorials Basic Geometry Concepts
- TopCoder Algorithm Tutorials Line Intersection and its Applications
- ► TopCoder Algorithm Tutorials Practice TopCoder geometry problems
- Ahmed-Aly list of geometry problems
- Stanford Introduction to ICPC Course
 - ▶ Geometry Lecture Slides
- ► Stanford ICPC Notebook (contains geometry algorithm implementations in C++)
- ► Chapter 7 of Competitive Programming by Steven Halim