Variance explained and partitioning

Bert van der Veen

Department of Mathematical Sciences, NTNU

The problem of model complexity

A model with always fit better if you add a parameter

Explained variation

R^2 : coefficient of determination

The ${\cal R}^2$ statistic helps us to assess how much variability we have explained.

Low R^2 : not so much? High R^2 : too much?

- Usually larger than 0 but smaller than 1
- lacksquare Observational studies usually have low R^2
- \blacktriangleright Experimental studies usually have high R^2

 ${\mathbb R}^2$ cannot be used to assess goodness of fit

\mathbb{R}^2 in linear regression

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \mu_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \alpha_{i})^{2}}$$
 (1)

- the numerator represents the unexplained variation of a model
- the numerator represents the explainable variation of a model
- One minus their fraction is the explained variation

Adjusted \mathbb{R}^2

Similar to information criteria, we can add a penalty for complexity

Adjusted R^2

Similar to information criteria, we can add a penalty for complexity

$$R_{adjusted}^2 = 1 - (1 - R^2) \frac{(n-1)}{n-p-1}$$
 (2)

Adjusted R^2

Similar to information criteria, we can add a penalty for complexity

$$R_{adjusted}^2 = 1 - (1 - R^2) \frac{(n-1)}{n-p-1}$$
 (2)

- Native with p>n, otherwise always lower than R^2
- Penalize the statistic for increased complexity
- \triangleright Penalty is large when p approaches n
- Such as for small samples

Visually: \mathbb{R}^2 and adjusted

partial \mathbb{R}^2

How much variation is explained by a covariate?

$$R_k^2 = 1 - \frac{\sum_{i=1}^n (y_i - \mu_i)^2}{\sum_{i=1}^n (y_i - \alpha - x_{ik}\beta_k)^2}$$
 (3)

Allows us to partition the explained variation over the covariates.

- Quantifies the variation additionally explained in a more complex models
- ls sensitive to order of covariates
- Multicollinearity: two covariates can explain similar variation

partial \mathbb{R}^2

How much variation is explained by a covariate?

$$R_k^2 = 1 - \frac{\sum\limits_{i=1}^n (y_i - \mu_i)^2}{\sum\limits_{i=1}^n (y_i - \alpha - x_{ik}\beta_k)^2} \tag{3}$$

- the numerator represents the unexplained variation of a model
- the numerator represents the explainable variation of a covariate
- One minus their fraction is the explained variation

Connection to Variance Inflation Factor (VIF)

$$VIF_k = \frac{1}{1 - R_k^2} \tag{4}$$

Measures increase in uncertainty of a parameter estimator when changing the model.

Psuedo R^2 in Generalised Linear Models

- 1) GLMs lack the error term of LMs
- 2) There is often no (clear) residual variance parameter
- 3) \mathbb{R}^2 is thus not clearly defined
- 4) Many many different \mathbb{R}^2 statistics exist

Concepts and name remain the same.

$\mathsf{GLM}\ R^2$

 \mathbb{R}^2 is linear models is based on the error

- GLMs do not have an explicit error term
- ightharpoonup Defining an \mathbb{R}^2 thus not as intuitive
- A similar interpretation not possible

But, we can still use it as an explorative statistic

A few GLM R^2 's

- \triangleright Deviance R^2
- ightharpoonup Pseudo R^2
- ightharpoonup McFadden's R^2
- ightharpoonup Cohen's \mathbb{R}^2
- ightharpoonup Tjur's R^2
- ightharpoonup Somer's R^2
- ightharpoonup Cox and snell R^2
- \blacktriangleright Nagelkerke R^2
- \triangleright Ffron's R^2
- Many more (see performance::R2)
- which one do we choose?

Deviance \mathbb{R}^2

Remember: deviance is the GLM equivalent of RSS!

Deviance R^2

Remember: deviance is the GLM equivalent of RSS!

deviance
$$R^2 = 1 - \frac{D(\mathbf{y}; \hat{\boldsymbol{\mu}})}{D(\mathbf{y}; \hat{\boldsymbol{\alpha}})}$$

Deviance R^2

Remember: deviance is the GLM equivalent of RSS!

deviance
$$R^2 = 1 - \frac{D(\mathbf{y}; \hat{\boldsymbol{\mu}})}{D(\mathbf{y}; \hat{\boldsymbol{\alpha}})}$$

$$\text{Cohen } R^2 = \frac{D(\mathbf{y}; \hat{\alpha}) - D(\mathbf{y}; \hat{\boldsymbol{\mu}})}{D(\mathbf{y}; \hat{\alpha})}$$

Deviance R^2

Remember: deviance is the GLM equivalent of RSS!

deviance
$$R^2 = 1 - \frac{D(\mathbf{y}; \hat{\boldsymbol{\mu}})}{D(\mathbf{y}; \hat{\boldsymbol{\alpha}})}$$

$$\text{Cohen } R^2 = \frac{D(\mathbf{y}; \hat{\alpha}) - D(\mathbf{y}; \hat{\boldsymbol{\mu}})}{D(\mathbf{y}; \hat{\alpha})}$$

$$\text{deviance } R_{adjusted}^2 = 1 - \bigg\{1 - \frac{D(\mathbf{y}; \hat{\boldsymbol{\mu}})}{D(\mathbf{y}; \hat{\boldsymbol{\alpha}})}\bigg\} \frac{n-1}{n-p}$$

Based on reduction in deviance

McFadden \mathbb{R}^2

$$\text{McFadden } R^2 = 1 - \frac{\log \mathcal{L}(\mathbf{y}; \Theta_1)}{\log \mathcal{L}(\mathbf{y}; \Theta_1)} \tag{5}$$

Based on reduction in the ratio of log-likelihoods.

$\mathsf{GLM}\ R^2$'s

All quantify change in fit due to increased model complexity, in one way or another.

Which one do we use?

Example: Lizards interaction

First model without interaction of Time and Site

Second model with interaction

[1] 0.2168604 0.2325368

[1] 0.093206835 0.006812369

[1] 0.1197730 0.1284312

Lizards: R^2 under more complex model

```
nullmodel <- update(model1, formula = .~1)</pre>
```

```
(devianceR2 <- c(1-deviance(model1)/deviance(nullmodel),1-deviance(model2)
```

(adjdevianceR2 <- 1-(1-devianceR2)*(n-1)/(n-c(attr(logLik(model1), "df"),a

(mcfaddenR2 <- c(1-logLik(model1)/logLik(nullmodel), 1-logLik(model2)/logL

Variability of \mathbb{R}^2

 R^2 is a statistic of the data So it is susceptible to sampling variation! (such like LRT and information criteria)

Veall and Zimmermann (1992)

- \blacktriangleright Evaluate which R^2 best mimics the original statistic
- \triangleright Conclude that various popular R^2 severely underestimate the truth

```
R2s <- NULL
for(i in 1:1000){
set.seed(i)
ynew <- as.matrix(stats::simulate(model2))
model2s <- update(model2, formula = ynew~.)
nullmodels <- update(model2s, formula = .~1)
R2s <- c(R2s, 1-deviance(model2s)/deviance(nullmodels))}</pre>
```

Red line = observed R2

Lizards: McKelvey-Zavoina \mathbb{R}^2

```
R2s2 <- NULL
for(i in 1:1000){
set.seed(i)
ynew <- as.matrix(stats::simulate(model2))
model2s <- update(model2, formula = ynew~.)
nullmodels <- update(model2s, formula = .~1)
R2s2 <- c(R2s2, DescTools::PseudoR2(model2s, "McKelveyZavoina"))
}</pre>
```

Red line = observed R2

Conclusion

- $ightharpoonup R^2$ to quantify improvement of fit in GLMs
- There is no single agreed upon statistic
- lacktriangle Careful with overinterpretation: low R^2 can be just fine