Mensuration

PART 1 - Shapes, Volume and Surface area

List of 2D Shapes we will be covering

- Squares
- Rectangle
- Triangle
- Parallelogram
- Trapezium
- Rhombus

List of 3D Shapes we will be covering

- Prism
- Cylinder
- Cone
- Pyramid
- Sphere

Area is the amount of space inside a boundary of an object.

- Basic -

Square

- Length x Length
- All sides are of same length
- Right angle at every corner

Rectangle

- Length x Breadth
- Two pairs of sides of equal length
- Right angle at every corner

Area of a Triangle

- It is 1/2 the area of a corresponding square or rectangle of same perpendicular height and base
- Basically, Area of triangle = 1/2 x Base x Perpendicular height

Area of Parallelogram

- Parallelograms have two pairs of parallel lines,
- Shifting a triangle from one side to another, you form a rectangle.
- With that in mind, Area of Parallelogram = Base x Perpendicular Height

Area of Rhombus

- Similar to a parallelogram, the area = Base x Perpendicular Height
- Area can also be (1/2) x Product of diagonals

Area of Trapezium

- A trapezium consists of a rectangle and two triangles.
- With that in mind, the area would be the average length of the parallel lines multiplied by perpendicular height since the area of a triangle is 1/2(base)(perpendicular height)
- -(1/2)(a+b)h

Prism

- Volume of prism is base area x height.
- Surface area is 2 x base area added to the sides.

Cylinder

- Volume = π x Radius^2 x Height
- Similar to the prism, it uses the same idea of base area x height, where (π x Radius^2) is the base area.
- Curved Surface Area = 2 x Radius x π x Height where (2 x Radius x π) is the circumference.
- Total surface area then, will be (2 x π x Radius x Height) + 2(π x Radius ^2). Simplified : (2 x π x Radius)(Radius + Height)

Pyramid

- A solid where all vertices of its polygonal base are connected to a point(apex) above its base.
- Volume = (1/3) x base x height

Cone

- A pyramid where the base is a circle.
- Volume of cone = (1/3) x (π x radius^2) x height where π x radius ^2 is the base.
- Curved surface area of the cone = π x radius x l where l is the slant height of the cone.

Sphere

- Any point from edge to middle is the radius
- Volume of sphere = (4/3) \times π \times radius^3
- Curved Surface Area = $4 \times \pi \times radius^2$

2D Shape	Area	
Square	L×L	
Rectangle	L×B	
Triangle	(1/2) x Base x H	
Parallelogram	L×H	
Trapezium	1/2(A+B)H	
Rhombus	L×H	

3D Shape	Volume	Surface Area
Prism	Base Area x Height	2(Base Area) + sides
Cylinder	π(r^2)h	2 π r(r+h)
Cone	(1/3) π (r^2)h	π r(r+l)
Pyramid	(1/3)Base Area x Height	Base area + Sides
Sphere	(4/3) π r^3	4 π r^2

9. MensurationPART 2 - Unit Conversion

2 Ways of changing units Method 1: Convert 3m^2 to cm^2

> Step 1. Copy units 1m = 100cm

Step 2. Square

(1^2)m^2 = (100^2)cm^2 1m^2 = 10000cm^2 3m^2 = 30000cm^2

Method 2: Convert 25m/s to km/h 25m/1s = 0.025km/(1/3600)h = 90km/h

When asked questions that are not applicable: Convert 5m^2 (Area) to m^2 (Volume) Answer = No solution/ Not applicable