\	import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline Get the Data We'll use the built in breast cancer dataset from Scikit Learn. We can get with the load function:
[2]: [3]: -	<pre>from sklearn.datasets import load_breast_cancer cancer = load_breast_cancer() The data set is presented in a dictionary form: cancer.keys()</pre>
\ [5]:	dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename']) We can grab information and arrays out of this dictionary to set up our data frame and understanding of the features: print(cancer['DESCR']) breast_cancer_dataset: Breast cancer wisconsin (diagnostic) dataset
	Data Set Characteristics: :Number of Instances: 569 :Number of Attributes: 30 numeric, predictive attributes and the class :Attribute Information: - radius (mean of distances from center to points on the perimeter) - texture (standard deviation of gray-scale values) - perimeter
	- area - smoothness (local variation in radius lengths) - compactness (perimeter^2 / area - 1.0) - concavity (severity of concave portions of the contour) - concave points (number of concave portions of the contour) - symmetry - fractal dimension ("coastline approximation" - 1) The mean, standard error, and "worst" or largest (mean of the three worst/largest values) of these features were computed for each image, resulting in 30 features. For instance, field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius.
	- class: - WDBC-Malignant - WDBC-Benign :Summary Statistics: ===================================
	perimeter (mean): 43.79 188.5 area (mean): 143.5 2501.0 smoothness (mean): 0.053 0.163 compactness (mean): 0.019 0.345 concavity (mean): 0.0 0.427 concave points (mean): 0.106 0.304 fractal dimension (mean): 0.106 0.304 fractal dimension (mean): 0.05 0.097 radius (standard error): 0.112 2.873 texture (standard error): 0.36 4.885 perimeter (standard error): 0.757 21.98 area (standard error): 6.802 542.2 smoothness (standard error): 0.002 0.031
	compactness (standard error): 0.002 0.135 concavity (standard error): 0.0 0.396 concave points (standard error): 0.0 0.053 symmetry (standard error): 0.008 0.079 fractal dimension (standard error): 0.001 0.03 radius (worst): 7.93 36.04 texture (worst): 12.02 49.54 perimeter (worst): 50.41 251.2 area (worst): 185.2 4254.0 smoothness (worst): 0.071 0.223
	compactness (worst): 0.027 1.058 concavity (worst): 0.0 1.252 concave points (worst): 0.0 0.291 symmetry (worst): 0.156 0.664 fractal dimension (worst): 0.055 0.208 ====================================
	:Donor: Nick Street :Date: November, 1995 This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2 Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.
	Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes. The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear
	Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34]. This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/ topic:: References - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on
[6]:	Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993. - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995. - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171. cancer['feature_names']
[6]:	<pre>array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',</pre>
[7]: [7]:	Set up DataFrame df_feat = pd.DataFrame(cancer['data'],columns=cancer['feature_names']) pd.set_option('display.max_columns', None) # to display all the columns in df df_feat mean mean mean mean mean mean mean mean
	0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710 0.2419 0.07871 1.0950 0.9053 8.589 153.40 0.006399 0.04904 0.05373 0.0188 1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017 0.1812 0.05667 0.5435 0.7339 3.398 74.08 0.005225 0.01308 0.01860 0.0134 2 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.12790 0.2669 0.05999 0.7456 0.7869 4.585 94.03 0.006150 0.04006 0.03832 0.0269 3 11.42 20.38 77.58 386.1 0.14250 0.28390 0.24140 0.10520 0.2597 0.09744 0.4956 1.1560 3.445 27.23 0.009110 0.07458 0.05661 0.0186 4 20.29 14.34 135.10 1297.0 0.10300 0.13280
ţ	565 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 0.7655 2.4630 5.203 99.04 0.005769 0.02423 0.03950 0.0167 566 16.60 28.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 0.4564 1.0750 3.425 48.55 0.005903 0.04730 0.0155 567 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 0.7260 1.5950 5.772 86.22 0.006522 0.06158 0.07117 0.0166 569 rows × 30 columns 2.454 47.92 181.0 0.0263 0.04362 0.00000 0.00000 0.05884 0.3857 1.4280 2.548 19.15 0.007189 0.00466 0.00000
	<pre>df_feat.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 569 entries, 0 to 568 Data columns (total 30 columns): # Column</class></pre>
	4 mean smoothness 569 non-null float64 5 mean compactness 569 non-null float64 6 mean concavity 569 non-null float64 7 mean concave points 569 non-null float64 8 mean symmetry 569 non-null float64 9 mean fractal dimension 569 non-null float64 10 radius error 569 non-null float64 11 texture error 569 non-null float64 12 perimeter error 569 non-null float64 13 area error 569 non-null float64 14 smoothness error 569 non-null float64 15 compactness error 569 non-null float64
	16 concavity error 569 non-null float64 17 concave points error 569 non-null float64 18 symmetry error 569 non-null float64 19 fractal dimension error 569 non-null float64 20 worst radius 569 non-null float64 21 worst texture 569 non-null float64 22 worst perimeter 569 non-null float64 23 worst area 569 non-null float64 24 worst smoothness 569 non-null float64 25 worst compactness 569 non-null float64 26 worst concavity 569 non-null float64
	27 worst concave points 569 non-null float64 28 worst symmetry 569 non-null float64 29 worst fractal dimension 569 non-null float64 dtypes: float64(30) memory usage: 133.5 KB df_target = pd.DataFrame(cancer['target'], columns=['Cancer']) df_target Cancer
	0 0 1 0 2 0 3 0 4 0 564 0
	565 0 566 0 567 0 568 rows × 1 columns
LO]: [L1]: [Train Test Split from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(df_feat, np.ravel(df_target), test_size=0.30, random_state=101) Train the Support Vector Classifier
L2]: [L3]: [L4]: [<pre>from sklearn.svm import SVC model = SVC() model.fit(X_train,y_train)</pre>
	Predictions and Evaluations Now let's predict using the trained model. predictions = model.predict(X_test)
L7]: [L7]: [L8]: [<pre>from sklearn.metrics import classification_report,confusion_matrix print(confusion_matrix(y_test,predictions)) [[56 10]</pre>
	precision recall f1-score support 0 0.95 0.85 0.90 66 1 0.91 0.97 0.94 105 accuracy 0.92 171 macro avg 0.93 0.91 0.92 171 weighted avg 0.93 0.92 0.92 171 Woah! Notice that we are classifying everything into a single class! This means our model needs to have it parameters adjusted (it may also help to normalize the data).
, ,	We can search for parameters using a GridSearch! Gridsearch Finding the right parameters (like what C or gamma values to use) is a tricky task! But luckily, we can be a little lazy and just try a bunch of combinations and see what works best! This idea of creating a 'grid' of parameters and just trying out all the possible combinations is called a Gridsearch, this method is common enough that Scikit-learn has this functionality built in with GridSearch The CV stands for cross-validation which is the
\	GridSearchCV takes a dictionary that describes the parameters that should be tried and a model to train. The grid of parameters is defined as a dictionary, where the keys are the parameters and values are the settings to be tested. param_grid = {'C': [0.1,1, 10, 100, 1000], 'gamma': [1,0.1,0.01,0.001,0.0001], 'kernel': ['rbf']} from sklearn.model_selection import GridSearchCV
\ 21]: [\	One of the great things about GridSearchCV is that it is a meta-estimator. It takes an estimator like SVC, and creates a new estimator, that behaves exactly the same - in this case, like a classifier You should add refit=True and choose verbose to whatever number you want, higher the number, the more verbose (verbose just means the text output describing the process). grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=3) What fit does is a bit more involved then usual. First, it runs the same loop with cross-validation, to find the best parameter combination. Once it has the best combination, it runs fit again on all date passed to fit (without cross-validation), to built a single new model using the best parameter setting. # May take awhile!
	Fitting 5 folds for each of 25 candidates, totalling 125 fits [CV 1/5] END
	[CV 4/5] END .C=0.1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 5/5] END .C=0.1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 1/5] END .C=0.1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 2/5] END .C=0.1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 3/5] END .C=0.1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 4/5] END .C=0.1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 2/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 2/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 4/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 5/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 5/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 5/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 5/5] END .C=0.1, gamma=0.001, kernel=rbf; total time= </td
	[CV 1/5] END .C=0.1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 2/5] END .C=0.1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=0.1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 4/5] END .C=0.1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 5/5] END .C=0.1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=1, kernel=rbf; total time= 0.0s [CV 2/5] END .C=1, gamma=1, kernel=rbf; total time= 0.0s [CV 3/5] END .C=1, gamma=1, kernel=rbf; total time= 0.0s [CV 4/5] END .C=1, gamma=1, kernel=rbf; total time= 0.0s [CV 5/5] END .C=1, gamma=1, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s <t< td=""></t<>
	[CV 2/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 3/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 4/5] END .C=1, gamma=0.1, kernel=rbf; total time= 0.0s [CV 5/5] END .C=1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 2/5] END .C=1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 3/5] END .C=1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 4/5] END .C=1, gamma=0.01, kernel=rbf; total time= 0.0s [CV 5/5] END .C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 2/5] END .C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5]
	[CV 4/5] END C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 5/5] END C=1, gamma=0.001, kernel=rbf; total time= 0.0s [CV 1/5] END C=1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 2/5] END C=1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 3/5] END C=1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 4/5] END C=1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 5/5] END C=1, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 1/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s [CV 2/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s [CV 3/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s [CV 4/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s [CV 5/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s [CV 5/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s [CV 5/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s [CV 5/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s [CV 5/5] END C=10, gamma=1, kernel=rbf; total time= 0.0s
	[CV 1/5] END C=10, gamma=0.1, kernel=rbf; total time= 0.0s [CV 2/5] END C=10, gamma=0.1, kernel=rbf; total time= 0.0s [CV 3/5] END C=10, gamma=0.1, kernel=rbf; total time= 0.0s [CV 4/5] END C=10, gamma=0.1, kernel=rbf; total time= 0.0s [CV 5/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 2/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 3/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 4/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 5/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s [CV 1/5] END C=10, gamma=0.01, kernel=rbf; total time= 0.0s <td< td=""></td<>
	[CV 2/5] END
	[CV 4/5] END
	[CV 1/5] END .C=100, gamma=0.001, kernel=rbf; total time= 0.0s [CV 2/5] END .C=100, gamma=0.001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=100, gamma=0.001, kernel=rbf; total time= 0.0s [CV 4/5] END .C=100, gamma=0.001, kernel=rbf; total time= 0.0s [CV 1/5] END .C=100, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 2/5] END .C=100, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=100, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 3/5] END .C=100, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 4/5] END .C=100, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 5/5] END .C=100, gamma=0.0001, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1000, gamma=1, kernel=rbf; total time= 0.0s [CV 1/5] END .C=1000, gamma=1, kernel=rbf; total time= 0.0s [CV 2/5] END .C=1000, gamma=1, kernel=rbf; total time= 0.0s [CV 2/5] END .C=1000, gamma=1, kernel=rbf; total time= 0.0s [CV 2/5] END .C=1000, gamma=1, kernel=rbf; total time= 0.0s [CV 2/5] END .C=1000, gamma=1, kernel=rbf; total ti
	[CV 3/5] END
	[CV 5/5] END
23]:	GridSearchCV(estimator=SVC(),
24]:	grid.best_estimator_ SVC(C=1, gamma=0.0001) Then you can re-run predictions on this grid object just like you would with a normal model. grid_predictions = grid.predict(X_test)
26]: [27]: [<pre>print(confusion_matrix(y_test,grid_predictions)) [[59 7]</pre>
	0 0.94 0.89 0.91 66 1 0.94 0.96 0.95 105 accuracy 0.94 171 macro avg 0.94 0.93 0.93 171 weighted avg 0.94 0.94 0.94 171
	Great job!