JUDICIAL NER(Hindi)

Mentor - Pruthwik Mishra

Souvik Banerjee Priyank Modi

Technologies and Resources used

- Python
- Bash
- LTRC shallow parser
- ISC tagger, parser
- Data on web for building libraries

Project Requirements

- 1. Analyzing the data to find the distribution of named entities in the data (frequency).
- 2. Creating a set of rules to identify the named entities
- 3. Checking and plotting the frequency of features designed.
- 4. Designing a date, time recognizer using a set of rules.

Insight into project difficulties

- Hindi data has no capitalization
- Judicial data has specific format, not captured by taggers
- Careful use of parsers because of Free word order in Hindi
- Handling multi-word NEs in Judicial data

WORKFLOW

Analysis of Training data

We first analysed Judicial documents and using Bash scripts, extracted out the frequencies of each class of Named Entity.

Tokenizing data

- Needed to convert hindi literals into computer readable format
- Used python's utf-encoding
- Also used isc-parser

Tagging data

```
Hindi Shallow Parser: Output
                 भारत शासन अधिनियम, 1935 में परिभाषित भारत में जन्मा था
<Sentence id="1">
               d | 66 × 20 | fs af='भारत,n,m,sg,3,d,0,0' head="भारत_2">
                       <fs af='भारत,n,m,sg,3,d,0,0' name="भारत 2">
     भारत
     ))
                      <fs af='अधिनियम,n,m,sg,3,d,0,0' head="अधिनियम">
                NP
                       <fs af='शासन,n,m,sq,3,d,0,0' poslcat="NM">
     शासन
     अधिनियम
                       <fs af='अधिनियम,n,m,sg,3,d,0,0' name="अधिनियम">
2.3
                       <fs af='&comma,punc,,,,,,'>
                SYM
     ))
                      <fs af='1935,num,...,0 前,' vpos="vib1 2" head="1935" poslcat="NM">
                NP
                      <fs af='1935,num,,,,,' name="1935" poslcat="NM">
     1935
                NNP
                       <fs af='भारत,n,m,sg,3,d,0 में,0' vpos="vib2 3" head="भारत">
                NP
     परिभाषित
                       <fs af='परिभाषित,adj,any,any,,any,,'>
4.2
                       <fs af='भारत,n,m,sg,3,d,0,0' name="भारत">
                NNP
     भारत
                       <fs af='जन्म,v,m,sq,any,,या था,yA' vpos="tam1 2" head="जन्मा">
                VGF
                       <fs af='जन्म,v,m,sg,any,,या,yA' name="जन्मा">
     जन्मा
                VM
</Sentence>
                                    Intermediate Outputs
```

Making dictionaries

- Studied judicial documents
- Scraped the web to form dictionaries
- Used the given dictionaries

Forming rules

The most important part was to form the rules. We used dictionaries to compare the NE, defined a scope for the length of an NE based on the tags and dependencies of it's neighbours and found relations between the tags and the dependencies.

Frequency charts

The final part of the project was to assign labels to each word and calculate the frequency of the different types of NEs against each other

ROADBLOCKS

Rule clashing

...यथा अधिनियमित) <mark>भारत</mark> शासन अधिनियम , 1935 में परिभाषित भारत में जन्मा था..... हे B-Case

हम, भारत के लोग, भारत को एक संपूर्ण... B-NEL

Issues with parsing data(dependencies)

"...19 जुलाई, 1948 के पश्चात् प्रव्रजन किया है, 12-6-2014......"

```
1 19 19 NNPC NNPC 3 pof cn
2 जुलाई, जुलाई, NNPC NNPC _ 3 pof_cn _ _
3 1948 1948 NNP NNP 7 k7t
4 के के PSP PSP _ 3 lwg_psp _ _
5 पश्चात पश्चात NST NST 3 lwg psp
6 ਸ਼ਕ਼ਤਜ ਸ਼ਕ਼ਤਜ NN NN _ 7 pof _ _
7 किया किया VM VM _ 0 main _ _
                                                  Doesn't work well
8 青, 青, VAUX VAUX _ 7 lwg_vaux _
  12-6-2014 12-6-2014 QC QC _ 0 nmod_adj
```

Very long sentences with often with no action verb. The dependency data more often than not gives no meaningful information

Multiword Named Entities

```
मिनवी मिल्स लि. और अन्य बनाम भारत संघ और अन्य
"
      2 एससीसी 591 में अविधिमान्य घोषित कर दिया गया।"
                                           Also a
                                           B-NFI
```

Date/Time recognition

Consider the 2 phrases, the first of which has a date/time reference but the second not. However both will be assigned the same pos-tag.

1948 में

1900 लोग

Date/Time recognition

9 12-6-2014 12-6-2014 QC

"...19 जुलाई, 1948 के पश्चात् प्रव्रजन किया है, 12-6-2014......" 1 19 19 NNPC NNPC 3 pof cn Works well 2 जुलाई, जुलाई, NNPC NNPC _ 3 pof_cn _ _ 3 1948 1948 NNP NNP 7 4 के के PSP PSP _ 3 lwg__psp _ _ 5 पश्चात् पश्चात् NST NST _ 3 lwg__psp _ _ _ 6 ਸ਼ਕ਼ਤਾਰ ਸ਼ਕ਼ਤਾਰ NN NN _ 7 pof _ _ Doesn't work well 7 किया किया VM VM _ 0 main _ _ 8 है, है, VAUX VAUX _ 7 lwg_vaux _

QC 0

OUTPUT

Testing

For testing our outputs, we used a second training file, removed the tags from it, converted it into a normal testing file.

We then ran a difference test and checked the percentage match.

We achieved 99% match for the file we tested.

Limitations

- Assumes tagging output is correct
- Relies on parsing output to be correct
- Rules are only as exhaustive as the training data
- Not very efficient, uses around O(n^3) but it was made faster by efficiently using the isc tagger and parser which does the work very quickly as it uses ML.

Future Work

- Testing the software against more Judicial data
- Using a Brill's tagger based approach to automate rule formation
- Increasing efficiency by using Machine Learning

THANK YOU