Secure Searching of Biomarkers Using Hybrid GSW Encryption Scheme

Jung Hee Cheon, Miran Kim, Yongsoo Song

Seoul National University, South Korea

iDASH Privacy & Security Workshop, November 11, 2016

Table of contents

- Motivation
- 2 Background
 - RLWE public-key encryption
 - GSW symmetric-key encryption
 - Multiplication
- Main idea
- Implementation

Motivation

Track 3: Testing for Genetic Diseases

- Database $Chr[i] \in \{1, 2, \dots, 22, X(=23), Y(=24)\}, POS[i]$
- Corresponding nucleic acid sequence $SNPs[i] \in \{A, T, G, C\}^*$
- Goal: find a query genome in database.

Encoding of database

- We make the use of 1-to-1 functions
 - ▶ $(Chr[i], POS[i]) \mapsto d_i = Chr[i] + 24 \cdot POS[i] \in \mathbb{Z}_{2^{32}}$.
 - ▶ SNPs[i] $\mapsto \alpha_i \in \mathbb{Z}$.
- Check if there is an index k such that $(d, \alpha) = (d_k, \alpha_k)$.

Problem: comparison is expensive in Homomorphic Encryption

Motivation

Track 3: Testing for Genetic Diseases

- Database $Chr[i] \in \{1, 2, \dots, 22, X(=23), Y(=24)\}, POS[i]$
- Corresponding nucleic acid sequence $SNPs[i] \in \{A, T, G, C\}^*$
- Goal: find a query genome in database.

Encoding of database

- We make the use of 1-to-1 functions
 - $(\mathsf{Chr}[i],\mathsf{POS}[i]) \mapsto d_i = \mathsf{Chr}[i] + 24 \cdot \mathsf{POS}[i] \in \mathbb{Z}_{2^{32}}.$
 - ▶ $SNPs[i] \mapsto \alpha_i \in \mathbb{Z}$.
- Check if there is an index k such that $(d, \alpha) = (d_k, \alpha_k)$.

Problem: comparison is expensive in Homomorphic Encryption

RLWE public-key encryption

- Cyclotomic Ring
 - $ightharpoonup \mathcal{R} = \mathbb{Z}[X]/\Phi_m(X)$ for an integer m (: power of two).
 - $\mathcal{R}_q = \mathcal{R}/q\mathcal{R}$ is the residue ring modulo an integer q.
- KeyGen:
 - ▶ $sk \leftarrow (1, s)$ for a small s.
 - ▶ $pk \leftarrow (b, a)$ generated by $a \leftarrow \mathcal{R}_q$, b = -as + e for a small e.
- Encryption: $\vec{c} \leftarrow \mathsf{RLWE}.\mathsf{Enc}(m)$
 - $ightharpoonup \vec{c} \leftarrow v \cdot pk + (\frac{q}{t}m + e_0, e_1)$ for small e_1, e_2 and v.
 - $\langle \vec{c}, sk \rangle = \frac{q}{t}m + e \pmod{q}$ for some small e.
 - ▶ Free to convert RLWE encryption of $m = \sum_i m_i X^i$ into a LWE encryption of m_0

GSW encryption [GSW13, DM15]

Encryption: $C \leftarrow \mathsf{GSW}.\mathsf{Enc}(m)$:

• A $2k \times 2$ matrix $(\vec{c_0}, \vec{c_1}) \leftarrow (-s \cdot \vec{a} + \vec{e}, \vec{a}) + m \cdot G$ for a small \vec{e}

and the Gadget matrix
$$G=\mathcal{P}_B(1)\otimes I_2=egin{bmatrix}1&0\\0&1\\\vdots&\vdots\\B^{k-1}&0\\0&B^{k-1}\end{bmatrix}$$

• An encryption C of m satisfies $C \cdot sk = m \cdot \mathcal{P}_B(sk) + \vec{e}$.

Multiplication of GSW & RLWE ciphertexts [CGGI16]

• GSW ciphertexts act on RLWE ciphertexts.

- If $C \cdot sk = m' \cdot \mathcal{P}_B(sk) + \vec{e}$ and $\langle \vec{c}, sk \rangle = \frac{q}{t}m + e$, then $\langle \vec{c}_{\mathsf{mult}}, sk \rangle = (WD_B(\vec{c}) \cdot C) \cdot sk = WD_B(\vec{c}) \cdot (C \cdot sk) = \frac{q}{t}mm' + e^*$ for $e^* = m'e + \langle WD_B(\vec{c}), \vec{e} \rangle$.
- \vec{c}_{mult} is a RLWE encryption of mm' with the error e^* .

Encryption of VCF Files & Query Data

• Database file is encoded into $\{(d_i, \alpha_i) : 1 \leq i \leq \ell\}$. Construct the polynomial

$$\mathsf{DB}(X) = \sum_{i} \alpha_{i} X^{d_{i}},$$

and use the RLWE encryption scheme. Store the ciphertext \vec{c}_{DB} .

• Use symmetric-key GSW scheme for encoded query (d, α) . Encrypt the polynomial $X^{-d} = -X^{n-d}$ and send the ciphertext $C_{\mathbb{Q}}$ to the server.

Query Computation: Searching and Extraction

Given $\vec{c}_{DB} \leftarrow \text{RLWE.Enc}(\sum_{i} \alpha_{i} X^{d_{i}})$ and $C_{Q} \leftarrow \text{GSW.Enc}(X^{-d})$,

- **1** Compute $\vec{c}_{res} \leftarrow \text{Mult}(C_Q, \vec{c}_{DB}) \ (= \text{RLWE.Enc}(\sum_i \alpha_i X^{d_i d})).$
- **②** Convert it into a LWE ciphertext, which is an encryption of α_k if $d_k = d$ for some k; otherwise an encryption of random value.
- Oarry out the modulus-switching to reduce the size of resulting LWE ciphertexts and communication cost.
- **1** Decrypt the LWE ciphertexts and compare with α .

Query Computation: Searching and Extraction

Optimization technique

- Construction of a single polynomial yields huge $n > 2^{31}$, \Rightarrow take $n = 2^{16}$ and divide d_i into two 16-bit integers $d_{i,1}$, $d_{i,2}$.
- Size of the encoded nucleic acid sequences α_i is too large to be encrypted in a single ciphertext (e.g. 41 bits).
 - ▶ Split α_i into smaller integers ⇒ smaller plaintext space $t = 2^{11}$ and modulus $q = 2^{32}$.
 - ► The use of variable type 'int32_t' accelerates the speed of implementation and basic C++ std libraries.

#(SNPs)	Size	Complexity				Storage	
		Q-enc	DB-enc	Eval	Dec	DB	Res
5	10K		0.11s	0.67s	0.15ms	1MB	0.25MB
	100K						0.625MB
20	10K		0.45s	2.75s	0.41ms	4MB	1MB
	100K		1.04s	6.88s	0.84ms	10MB	2.5MB

 $\#({\sf SNPs})$: maximal number of SNPs considered for comparison Intel Core i5 running at 2.9 GHz processor

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.

Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.

to be appeared in ASIACRYPT, 2016.

Léo Ducas and Daniele Micciancio.

Fhew: Bootstrapping homomorphic encryption in less than a second. In *Advances in Cryptology–EUROCRYPT 2015*, pages 617–640. Springer, 2015.

Craig Gentry, Amit Sahai, and Brent Waters.

Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based.

In Advances in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.