MA204: Mathematics IV

Complex Analysis: Introduction and basic terminologies

Gautam Kalita IIIT Guwahati

Introduction

For the set of real numbers \mathbb{R} , we have the following properties:

- (a) $\mathbb R$ is group with respect to addition. $\mathbb R^\times$ is a group with respect to multiplication. In fact, $\mathbb R$ is a field.
- (b) \mathbb{R} is a one dimensional vector space over \mathbb{R} .
- (c) \mathbb{R} is ordered complete.

However, the algebraic structure of $\ensuremath{\mathbb{R}}$ has some limitations.

The quadratic equation $x^2 + 1 = 0$ does not have any root in real numbers. Let i (iota) be a root of the equation.

To address this issue of real numbers, the complex number system is introduced.

Introduction

Definition

The smallest field containing the real field and i is called the complex field. We denote this field by \mathbb{C} .

Note that

$$\mathbb{C} \equiv \mathbb{R}[x]/\langle x^2 + 1 \rangle \equiv \mathbb{R}[i] = \{a + ib : a, b \in \mathbb{R}\},\$$

where $\langle x^2+1\rangle=\{a(x)(x^2+1):a(x)\in\mathbb{R}[x]\}$ with $\mathbb{R}[x]$ being the set of all polynomials over \mathbb{R} , is the set of all residues when a polynomial over \mathbb{R} is divided by x^2+1 .

It is easy to see that

- (a) $\mathbb C$ is group with respect to addition. $\mathbb C^\times$ is a group with respect to multiplication. In fact, $\mathbb C$ is a field.
- (b) $\mathbb C$ is a two dimensional vector space over $\mathbb R.$

Complex numbers

Thus we can write

$$\mathbb{C} = \{ a + ib : a, b \in \mathbb{R} \text{ and } i^2 + 1 = 0 \}.$$

Any element $z=a+ib\in\mathbb{C}$ is called a complex number with a and b being the real and imaginary parts of z, respectively. We denote

$$Re(z) = a$$
 and $Im(z) = b$.

Operations: Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$. Then

- (1) Equality: $z_1 = z_2$ if and only if $a_1 = a_2$ and $b_1 = b_2$.
- (2) Addition and subtraction: $z_1 \pm z_2 = (a_1 \pm a_2) + i(b_1 \pm b_2)$.
- (3) Multiplication and division:

$$z_1z_2 = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$$

and

$$\frac{z_1}{z_2} = \frac{a_1 + ib_1}{a_2 + ib_2} = \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + i\frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}.$$

Denoting 1 by (1,0) and i by (0,1), one can identify $\mathbb C$ with $\mathbb R^2$. As a result, a complex number z=a+ib can be identified as an ordered pair (a,b) in the complex plan or Argand plan.

Question: Are \mathbb{C} and \mathbb{R}^2 same?

Properties

Properties:

- (a) Addition and multiplication of complex numbers is commutative.
- (b) Addition and multiplication of complex numbers is associative.
- (c) Multiplication of complex numbers is distributive over addition of complex numbers.
- (d) Additive identity and multiplicative identity exist in complex numbers.
- (e) Additive inverse for all complex numbers and multiplicative inverse for non-zero complex numbers exist.

Exercise:

- (a) Re(iz) = -Im(z) and Im(iz) = Re(z).
- (b) Solve $z^2 2z + 2 = 0$ directly as well as converting to Cartesian coordinates.
- (c) Express $\frac{5i}{(1-i)(2-i)(3-i)}$ in the a+ib form.

Conjugate of a complex number

Let z = a + ib be a complex number, then the complex number a - ib, denoted by $\bar{z} = a - ib$, is called the conjugate of z.

The conjugate of a complex number has the following properties:

(a)
$$(z_1 \pm z_2) = \bar{z_1} \pm \bar{z_2}$$
.

(b)
$$\overline{z_1z_2} = \overline{z_1}\overline{z_2}$$
 and $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$.

(c)
$$\overline{z} = z$$
 and $\overline{\alpha}\overline{z} = \alpha \overline{z}$.

(d)
$$Re(\bar{z}) = Re(z)$$
 and $Im(\bar{z}) = -Im(z)$.

(e)
$$Re(z) = \frac{z+\overline{z}}{2}$$
 and $Im(z) = \frac{z-\overline{z}}{2i}$.

Geometrically, the conjugate of a complex number is reflection of the complex number along the real axis.

Modulus

Let z=a+ib be a complex number. The modulus or absolute value of the complex number z, denoted by |z|, is a non-negative real number defined as

$$|z|=\sqrt{a^2+b^2}.$$

Note that |z| is identical to the usual distance of (a,b) from the origin in the Euclidean space. Thus we can define a metric or distance function $d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ on \mathbb{C} as

$$d(z,w)=|z-w|.$$

As a result, the topological notions of $\mathbb C$ coincide with those of $\mathbb R^2$.

Properties:

- (a) $|z| = |\overline{z}|$ and $|z|^2 = z\overline{z}$.
- (b) $|z_1z_2| = |z_1||z_2|$ and $|\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|}$ if $z_2 \neq 0$.
- (c) $|z_1 + z_2| \le |z_1| + |z_2|$ and $||z_1| |z_2|| \le |z_1 z_2|$.

Modulus

Exercise:

- (a) Find modulus and argument for the complex numbers $z = \frac{-1+3i}{2-i}$ and z = (1-i)(2i-3).
- (b) Describe the geometrical figures satisfying |z 4i| + |z + 4i| = 10, $z^2 + \bar{z}^2 = 2$, $\text{Re}(\bar{z} i) = 2$, and |z 1 + i| < 1.
- (c) Show that $\sqrt{2}|z| \ge |\operatorname{Re}(z)| + |\operatorname{Im}(z)|$.
- (d) If z lies on the circle |z|=2, then show that $|\frac{1}{z^4-4z^2+3}|\leq \frac{1}{3}$.

Argument

Let \vec{r} denotes the position vector of a complex number z=a+ib in the Argand plan, then the angles made by \vec{r} with the positive direction of the real axis are called argument of the complex number z, denoted by $\arg(z)$. Note that $|\vec{r}|=r=|z|$.

The value of arg(z) which satisfies the condition $-\pi < arg(z) \le \pi$ is called principal argument of z, and it is denoted by Arg(z).

For the complex number z = a + ib, we have $Arg(z) = tan^{-1}(b/a)$ or $tan^{-1}(b/a) + \pi$ or $tan^{-1}(b/a) - \pi$.

Moreover $arg(z) = Arg(z) \pm 2n\pi$ for all $n \in \mathbb{Z}$.

Polar representation

For any non zero complex number z, it is easy to see that $\frac{z}{|z|}$ lies on an unit circle centered at the origin.

Any point on an unit circle centered at the origin is represented by $(\cos \theta, \sin \theta) = \cos \theta + i \sin \theta$ for some $\theta \in [0, 2\pi]$.

As a result, we must have

$$\frac{z}{|z|} = \cos\theta + i\sin\theta,$$

where $\theta = \arg\left(\frac{z}{|z|}\right) = \arg(z)$. Thus

$$z = r\cos\theta + ir\sin\theta,$$

where r = |z| and $\theta = \arg(z)$. This expression is called polar representation of z.

Exponential form

The famous Euler's formula states that

$$e^{i\theta} = \cos\theta + i\sin\theta,$$

and hence

$$z = re^{i\theta}$$
,

where r = |z| and $\theta = \arg(z)$. This is called exponential form of z.

Properties:

- (a) $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$ and $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) \arg(z_2)$
- (b) $z^n = \{r\cos\theta + ir\sin\theta\}^n = r^n\cos(n\theta) + ir^n\sin(n\theta)$. [De Moiver's Theorem]

Exercise:

- (a) Express -1+i, $-1-i\sqrt{3}$, $(1+i)^7$, and i in the polar and exponential form.
- (b) Prove/disprove $\operatorname{Arg}(z_1z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$ and $\operatorname{Arg}\left(\frac{z_1}{z_2}\right) = \operatorname{Arg}(z_1) \operatorname{Arg}(z_2)$.

Roots of complex numbers

Given a nonzero complex number z_0 and a natural number $n \in \mathbb{N}$, find all distinct complex numbers w such that $z_0 = w^n$ or $w = z_0^{\frac{1}{n}}$.

Note that $z_0 = |z_0|(\cos \theta + i \sin \theta) = |z_0|(\cos(\theta + 2k\pi) + i \sin(\theta + 2k\pi))$ for any $k \in \mathbb{Z}$.

As a result

$$w = z_0^{\frac{1}{n}} = \left\{ |z_0| \left(\cos(\theta + 2k\pi) + i\sin(\theta + 2k\pi) \right) \right\}^{\frac{1}{n}}$$
$$= |z_0|^{\frac{1}{n}} \left\{ \cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right\} \text{ for } k \in \mathbb{Z}.$$

Finally, the distinct values of w are obtained for $k=0,1,2,\ldots (n-1)$.

Exercise:

(a) Find values of $i^{\frac{1}{4}}$, $(-1)^{\frac{1}{6}}$, and $(1-\sqrt{3})^{\frac{1}{3}}$. Represent them geometrically.

Note: The values of w satisfying $z_0 = w^n$ or $w = z_0^{\frac{1}{n}}$ form vertices of a regular n-polygon inscribed on a circle of radius $|z_0|^{\frac{1}{n}}$ and centered at the origin.

Thank You

Any Question!!!