Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

Схемотехника ЭВМ «Стабилитрон»

Проверил:	Выполнил:
	Студент группы Р3455
«»2021г.	Федюкович С. А
Оценка	

Цель

Изучить стабилитрон:

- 1. Построить обратную ветвь вольтамперной характеристики стабилитрона и определить напряжения стабилизации.
- 2. Вычислить ток и мощность, рассеиваемой стабилитроном.
- 3. Определить дифференциальное сопротивление стабилитрона по вольтамперной характеристике.
- 4. Исследовать изменения напряжения стабилитрона при изменении входного напряжения в схеме параметрического стабилизатора.
- 5. Исследовать изменения напряжения на стабилитроне при изменении сопротивления в схеме параметрического стабилизатора.

Задачи

Эксперимент 1

- 1. Построить схему, изображенную на Рис. 1, в программе Multisim.
- 2. Измерить силу тока и напряжение на диоде при разных значениях ЭДС, внести данные в таблицу и построить график.
- 3. По графику определить напряжение стабилизации, ток стабилизации и посчитать мощность стабилизации.

Эксперимент 2

- 1. Построить схему, изображенную на Рис. 2, в программе Multisim.
- 2. Измерить силу тока и напряжение на диоде при коротком замыкании и при значениях резистора $R_1(100, 300, 600, 1000 \Omega)$.

Эксперимент 3

- 1. Построить схему, изображенную на Рис. 3, в программе Multisim.
- 2. Пронаблюдать ВАХ стабилитрона на экране осциллографа.

Схемы

Рис. 1: Схема 1

Рис. 2: Схема 2

Рис. 3: Схема 3

Выводы

Эксперимент 1

В ходе работы были получены следующие данные:

E, V	U, V	I, mA
-30,00	-5,11	-100,00
-25,00	-5,11	-83,33
-20,00	-5,10	-66,67
-15,00	-5,09	-50,00
-10,00	-5,07	-33,34
0,00	0,00	0,00
4,00	0,56	13,34
6,00	0,57	20,00
10,00	0,58	33,33
15,00	0,59	50,00
20,00	0,60	66,67
25,00	0,61	83,33
30,00	0,61	100,00
35,00	0,62	116,67
36,00	0,62	120,00
37,00	0,62	123,33
40,00	0,62	133,33
45,00	0,62	150,92
50,00	0,63	166,67

U, V

$$U_{\text{min ct.}} = -5,07 B$$

$$U_{\rm max~ct.} = -5, 11~B;~I_{\rm ct.~hom.} = -50, 00~mA$$

$$I_{\text{max ct.}} = -100,00 \ mA$$

$$P_{\text{ct.}} = I_{\text{ct.}} \cdot U_{\text{ct.}} = 0,25 \ B$$

Эксперимент 2

В ходе работы были получены следующие данные:

R, Ω	U, mV	I, mA
100,00	599,55	66,67
300,00	601,25	66,67
600,00	601,66	66,67
1000,00	601,82	66,67

$$U_{\text{ct.}} = 602,02 \ mV$$

Эксперимент 3

В ходе работы на экране осциллографа была получена следующая ВАХ:

Рис. 4: BAX стабилитрона