Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria extraordinaria

Ejercicio 1. (2.5 puntos) Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\sin(z^2 + t)}{1 + t^2} dt \quad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 1} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Ejercicio 2. (2.5 puntos) Integrando la función $z \mapsto \frac{\log(z+i)}{1+z^2}$ sobre un camino cerrado que recorra la frontera del conjunto $\{z \in \mathbb{C} : |z| < R, \text{ Im } z > 0\}$, con $R \in \mathbb{R}$ y R > 1, evaluar la integral

$$\int_{-\infty}^{+\infty} \frac{\log(1+x^2)}{1+x^2} \, dx.$$

Ejercicio 3. (2.5 puntos) Sean f y g funciones enteras verificando que g(f(z)) = zf(z) para todo $z \in \mathbb{C}$. ¿Qué se puede afirmar sobre f y g?

Ejercicio 4. (2.5 puntos) Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Probar que si la función Re f tiene un extremo relativo entonces f es constante.