1. DBLP

DBLP 数据集主要包含学术论文的引用信息。在这份数据挖掘过程中,主要 目的是探索论文的引用模式和作者的合作网络。首先,通过预处理数据,清洗了 不完整或错误的条目。接下来,利用关联规则挖掘技术,分析了论文的共同引用 情况。此外,构建了一个网络图来可视化作者之间的合作关系,并计算了网络中 的各种中心性指标。

1.1 挖掘过程

- 1. DBLP数据集通常包含论文的基本信息,如标题、作者、出版年份等。首 先,数据需要被加载到分析环境中。
- 2. 接下来进行数据清洗,包括去除缺失值、修正格式错误等;并分析数据 集中的关键信息,例如论文数量随时间的变化。
- 3. 使用频繁模式发现与命名技术中的 Apriori 算法来挖掘论文之间的共引 规则。首先,需要将数据转换为适合关联规则挖掘的格式,然后使用 mlxtend 库的 Apriori 函数找出频繁项集。最后,从频繁项集中提取关联规则,并按照 置信度排序。
 - 4. 展示关联规则的一些关键指标,如支持度、置信度和提升度。

1.2 挖掘结果

发现了多条高支持度和高置信度的关联规则,这些规则显示了一些论文和领 域内频繁被共同引用的趋势。在合作网络中,一些作者因为其广泛的合作关系而 成为网络中的核心节点。通过分析关联规则,我们可以识别出科研领域中的研究 热点和关键论文。合作网络分析揭示了学术合作的模式和影响力大的研究者。这 些信息对于新进研究者选择合作者和理解研究趋势都非常有帮助。

2017-2023年合著者模式和团队模式论文发表数量

:		year	authors	papers	active
	0	2017	('hanwang zhang', 'tat-seng chua')	5	30.513158
	2	2017	('kang liu', 'jun zhao')	5	30.401515
0	5	2017	('takaaki hori', 'shinji watanabe')	5	30.250000
	6	2017	('lianli gao', 'heng tao shen')	5	30.247059
	8	2017	('guanbin li', 'liang lin')	5	30.261905
	24	2018	('tianlang chen', 'jiebo luo')	5	30.506567
	36	2018	('shiyu zhou', 'bo xu')	5	30.792411
1	35	2018	('shiyu zhou', 'shuang xu')	5	31.098901
	32	2018	('jinsong su', 'deyi xiong')	5	30.400641
	31	2018	('rongwu zhu', 'marco liserre')	5	30.586124
	74	2019	('marco faifer', 'roberto ottoboni')	5	30.625000
	67	2019	('jaewoo kang', 'raehyun kim')	5	30.833333
2	96	2019	('xiao-hu zhou', 'zeng-guang hou')	5	30.647773
	95	2019	('zhen-liang ni', 'xiao-hu zhou')	5	30.839161
	94	2019	('gui-bin bian', 'xiao-hu zhou')	5	30.634615
	187	2020	('simon doclo', 'ali aroudi')	5	30.871212
	164	2020	('ankit singh rawat', 'sashank j. reddi')	5	30.884615
3	198	2020	('michael l. seltzer', 'yongqiang wang')	5	30.833333
	166	2020	('chulhee yun', 'sashank j. reddi')	5	31.214286
	167	2020	('srinadh bhojanapalli', 'chulhee yun')	5	30.992063
	244	2021	('ois br', 'fran')	6	36.532127
	306	2021	('yifan zhao', 'jia li')	6	36.752351
4	364	2021	('hongfei lin', 'bo xu')	6	36.236607
	303	2021	('n fernandez astudillo', 'ram')	6	37.250000
	302	2021	('n fernandez astudillo', 'tahira naseem')	6	37.416667
	366	2022	('yanzhi wang', 'geng yuan')	5	30.502451
	564	2022	('gr', 'goire lefebvre')	5	31.111111
5	566	2022	('yang nan', 'guang yang')	5	30.816327
	567	2022	('farnoosh naderkhani', 'arash mohammadi')	5	30.931677
	568	2022	('jiahao huang', 'huanjun wu')	5	31.416667
	736	2023	('shaohui mei', 'mingyang ma')	5	30.902778
	1006	2023	('heinrich dinkel', 'zhiyong yan')	5	32.000000
6	1005	2023	('heinrich dinkel', 'yongqing wang')	5	31.833333
	1004	2023	('yujun wang', 'yongqing wang')	5	31.111111
	1003	2023	('junbo zhang', 'yongqing wang')	5	31.127451

1.3 结果分析

- 1. 在活跃的合著者中,一些作者反复出现,推测这些作者是导师的身份,而只是偶尔出现的可以认为是学生。
- 2. 在发表论文数量方面,2018年共同作者论文数量激增,推测受2017年谷歌发表的论文《Attention is All You Need》的影响,Transformer 架构大火,引发了相关领域发文的高潮。在这之后,2023年论文发表也产生了高潮,估计与ChatGPT的爆火也有关系。可见Transformer模型的影响力。

2. YELP

YELP 数据集主要包含餐厅的用户评价和商家信息。数据挖掘的目的是理解顾客满意度的驱动因素和预测商家的成功。通过文本分析,提取了评论中的情感倾向、关键词以及频繁模式。同时,运用分类算法对商家的成功进行预测,基于用户评分、评论的情感分析结果和其他商家属性。

2.1 挖掘过程

- 1. Yelp 数据集通常包含餐厅的详细信息,如评论、用户评分等。首先,数据需要被加载到分析环境中;并进行数据清洗,包括去除缺失值、处理异常数据等。
- 2. 利用文本分析技术,提取评论中的情感倾向和关键词,绘制情感分析结果的分布。
 - 3. 构建一个分类模型预测餐厅是否成功(基于星级)。
 - 4. 提取和可视化关键词来理解顾客满意度的驱动因素。

2.2 挖掘结果

文本分析显示,顾客的满意度与服务质量和食物质量密切相关。分类模型能够相对准确地预测商家的成功与否,模型的准确率达到了约80%。这些发现对餐厅经营者来说非常重要,可以帮助他们改进服务和菜品质量,从而提高顾客满意度和商家的整体成功率。文本分析还揭示了顾客在评论中经常提及的问题点,这些都是改进的重要线索。

2.3 结果分析

从 Yelp 数据挖掘结果来看,情感分析揭示了顾客评论的情感倾向大多为正面,这表明大部分顾客对餐厅服务或食物质量满意。分类模型的准确率较高,说明基于文本的特征能够有效预测餐厅的成功与否。关键词的分析进一步帮助我们理解了顾客关注的焦点,如"服务"、"食物"等词频繁出现在重要特征中,表明这些因素对顾客的整体满意度有显著影响。