

Pen-and-Paper Brain Teasers: Math for Econometrics

Easy Exercises (5-10 minutes each)

Linear Algebra - Vectors & Matrices

- 1. **Vector Addition** Given vectors $\mathbf{a} = [2, -3, 5]$ and $\mathbf{b} = [1, 4, -2]$, compute $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} \mathbf{b}$.
- 2. **Dot Product** Calculate the dot product of $\mathbf{u} = [3, 1, -2]$ and $\mathbf{v} = [4, -1, 5]$. Is the angle between them acute or obtuse?
- 3. Matrix Multiplication (2×2) Multiply matrices:

$$A = egin{bmatrix} 2 & 3 \ 1 & 4 \end{bmatrix}, \quad B = egin{bmatrix} 1 & 0 \ -1 & 2 \end{bmatrix}$$

- 4. **Matrix Transpose** Given $A=egin{bmatrix}1&2&3\\4&5&6\end{bmatrix}$, find A^T and verify that $(A^T)^T=A$.
- 5. Scalar Multiplication If $C = egin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$, compute 3C and -2C.
- 6. **Diagonal Matrix** Create a 3×3 diagonal matrix D with diagonal elements [2, 5, -1]. Compute D^2 .
- 7. **Identity Matrix** Verify that $I_2 imes A = A$ where $I_2 = egin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A = egin{bmatrix} 3 & 7 \\ -2 & 4 \end{bmatrix}$.

Calculus - Derivatives

- 8. Power Rule Find the derivative of $f(x)=3x^4-2x^3+5x-7.$
- 9. **Product Rule** Differentiate $g(x) = (2x+1)(x^2-3)$.
- 10. Chain Rule (Basic) Find $rac{d}{dx}(3x+2)^5$.
- 11. **Exponential Function** Compute $\frac{d}{dx}e^{2x}$ and $\frac{d}{dx}e^{-x}$.
- 12. Natural Logarithm Find the derivative of $h(x) = \ln(x^2 + 1)$.

Calculus - Integrals

- 13. Basic Integration Evaluate $\int (3x^2 + 4x 1)dx$.
- 14. **Definite Integral** Calculate $\int_0^2 (x^2+1) dx$.
- 15. **Exponential Integral** Find $\int e^{3x} dx$.

Statistics - Descriptive Statistics

- 16. **Mean & Median** Data:. Calculate mean and median. [1] [2] [3] [4] [5] [6] [7]
- 17. Variance For data, compute the sample variance. [8] [9] [10] [11]
- 18. **Standard Deviation** Given variance = 16, find standard deviation. If all values are multiplied by 2, what's the new standard deviation?
- 19. **Range & IQR** Data:. Find range, Q1, Q3, and IQR. [2] [4] [10] [12] [13] [14] [15] [1]
- 20. **Z-score** A test score is 85 with mean = 75 and σ = 10. Calculate the z-score. Is this score above or below average?

Probability Basics

- 21. Basic Probability A bag has 3 red, 5 blue, and 2 green balls. What's P(red)? P(not blue)?
- 22. **Complementary Events** If P(rain) = 0.3, what's P(no rain)?
- 23. Multiplication Rule Two independent coin flips. What's P(both heads)?
- 24. **Expected Value (Discrete)** A simple game: win \$10 with probability 0.3, lose \$5 with probability 0.7. What's the expected value?
- 25. **Variance of Distribution** Random variable X: P(X=1) = 0.5, P(X=3) = 0.5. Find E[X] and Var(X).

Medium Exercises (10-30 minutes each)

Linear Algebra - Matrix Operations

- 1. **Determinant (2×2)** Calculate the determinant of $A=\begin{bmatrix}5&3\\2&4\end{bmatrix}$. Is A invertible?
- 2. **Matrix Inverse (2×2)** Find the inverse of $B=\begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}$. Verify by computing $B\times B^{-1}$.
- 3. System of Linear Equations Solve using substitution or elimination:

$$\begin{cases} 2x + y = 7 \\ x - y = 2 \end{cases}$$

4. Matrix Form of System - Write the system as $A\mathbf{x}=\mathbf{b}$ and solve using matrix inverse:

$$\begin{cases} 3x + 2y = 8 \\ x + y = 3 \end{cases}$$

- 5. **Eigenvalues (2×2)** Find eigenvalues of $C=\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ by solving $\det(C-\lambda I)=0$.
- 6. **Quadratic Form** Given $Q=egin{bmatrix}2&1\\1&3\end{bmatrix}$ and $\mathbf{x}=egin{bmatrix}1\\2\end{bmatrix}$, compute $\mathbf{x}^TQ\mathbf{x}$.
- 7. **Projection Matrix** For vector $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, find the projection onto $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Calculus - Optimization

- 8. Critical Points Find critical points of $f(x)=x^3-6x^2+9x+1$. Classify them as max, min, or inflection.
- 9. **Maxima/Minima** A farmer has 100m of fence. What rectangular dimensions maximize area?
- 10. Second Derivative Test For $g(x)=2x^3-3x^2-12x+5$, find local maxima and minima using the second derivative test.
- 11. Partial Derivatives Find $rac{\partial f}{\partial x}$ and $rac{\partial f}{\partial y}$ where $f(x,y)=x^2y+3xy^2-4$.
- 12. Chain Rule (Multivariate) If $z=x^2+y^2$, x=2t, y=3t, find $\frac{dz}{dt}$.
- 13. **Gradient Vector** For $f(x,y)=3x^2+2xy+y^2$, compute ∇f at point (1, 2).

Statistics - Distributions

- 14. Normal Distribution $X \sim N(100, 15)$. Using z-table, find P(X < 115) and P(85 < X < 115).
- 15. **Standardization** Convert $X \sim N(50, 10)$ to standard normal. What's the z-score for X = 65?
- 16. **Binomial Probability** Flip fair coin 5 times. Calculate P(exactly 3 heads) and P(at least 3 heads).
- 17. **Covariance** Given paired data: X = , Y = . Calculate $Cov(X,Y).^{[12]}$ [16] [17] [18] [19] [8]
- 18. **Correlation** From the covariance above, calculate the correlation coefficient $\rho(X,Y)$.
- 19. Law of Total Probability Events: A_1 (disease, 1%), A_2 (no disease, 99%). Test: P(+|disease) = 0.95, P(+|no disease) = 0.05. Find P(+).
- 20. **Bayes' Theorem** Using the above, find P(disease +).

Econometrics Basics

21. Simple Regression (By Hand) - Data: $(x,y) = \{(1,2), (2,4), (3,5), (4,7)\}$. Calculate slope β_1 and intercept β_0 using formulas:

$$eta_1 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2}$$

- 22. Fitted Values & Residuals Using regression from above, calculate fitted values \hat{y}_i and residuals $e_i=y_i-\hat{y}_i$.
- 23. **R-squared** Calculate $R^2=1-rac{SS_{res}}{SS_{tot}}$ where $SS_{res}=\sum e_i^2$ and $SS_{tot}=\sum (y_i-ar{y})^2$.
- 24. **Elasticity** If demand function is Q=100-2P, calculate price elasticity at P = 20.
- 25. **Log Returns** Stock prices: Day 1: \$100, Day 2: \$105, Day 3: \$103. Calculate log returns for each day.

Hard Exercises (1-2 hours each)

Linear Algebra - Advanced

- 1. **Eigenvalue Decomposition** For matrix $A = egin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$:
 - Find eigenvalues λ_1 , λ_2
 - Find corresponding eigenvectors
 - $\circ \;\; {
 m Write \; A \; as } \, A = PDP^{-1} \; {
 m where \; D \; is \; diagonal}$
 - \circ Verify by computing PDP^{-1}
- 2. Least Squares (Matrix Method) Data points: (1,1), (2,3), (3,2), (4,5). Fit line $y=\beta_0+\beta_1x$ using normal equations:

$$(X^TX)oldsymbol{eta}=X^T\mathbf{y}$$

Set up matrices, compute $(X^TX)^{-1}$, solve for β .

- 3. **Positive Definite Matrix** Prove that $A=\begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$ is positive definite by:
 - o Checking all eigenvalues > 0
 - o Checking leading principal minors > 0
 - $\circ~$ Showing $\mathbf{x}^T A \mathbf{x} > 0$ for any non-zero \mathbf{x}
- 4. **Diagonalization Application** Given $A=\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$, compute A^{10} using diagonalization (much easier than multiplying A by itself 10 times).
- 5. Singular Value Decomposition (2×2) For $B=\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$, find the SVD: $B=U\Sigma V^T$. (Hint: this is already diagonal!)

Calculus - Multivariate Optimization

- 6. Unconstrained Optimization Find the minimum of $f(x,y)=x^2+2y^2-2xy+2x-4y+5.$ Use:
 - Find critical points (set ∇f = 0)
 - o Compute Hessian matrix
 - Use second derivative test (check if Hessian is positive definite)
- 7. Lagrange Multipliers Maximize f(x,y)=xy subject to x+y=10. Set up Lagrangian, find critical points, solve for x, y, λ .
- 8. Constrained Optimization (Inequality) Minimize $f(x,y)=x^2+y^2$ subject to $x+2y\geq 4$. Use KKT conditions or graphical analysis.
- 9. Taylor Approximation Approximate $e^{0.1}$ using Taylor series up to 3rd degree term. Calculate error compared to actual value.
- 10. Integration by Parts Evaluate $\int xe^xdx$ using integration by parts formula.

Statistics - Hypothesis Testing

- 11. **T-test (By Hand)** Sample 1: (n=5). Sample 2: (n=5). [4] [5] [6] [7] [11] [20] [21] [22] [1] [2]
 - o Calculate means and pooled variance
 - Compute t-statistic
 - With df=8, critical value (95%) \approx 2.306. Reject H₀: $\mu_1 = \mu_2$?
- 12. **Chi-Square Test** Observed frequencies:. Expected (all equal):. Calculate χ^2 statistic: $\frac{[6]}{[14]}$

$$\chi^2 = \sum rac{(O_i - E_i)^2}{E_i}$$

With df=3, critical value (95%) ≈ 7.815. Significant?

- 13. **Confidence Interval** Sample mean = 50, s = 8, n = 16. Construct 95% CI for population mean (use t = 2.131 for df=15).
- 14. **Type I and Type II Errors** A court trial analogy: Define null hypothesis H₀ (defendant innocent). What is Type I error? Type II error? Which is worse in this context?
- 15. **Power Calculation** For testing H₀: μ = 100 vs H₁: μ = 105, with σ = 10, n = 25, α = 0.05. Calculate the power (probability of rejecting H₀ when μ = 105).

Econometrics - Regression Analysis

- 16. **Multiple Regression Setup** You have data on house prices (Y), square footage (X₁), and number of bedrooms (X₂). Write out:
 - $\circ~$ The regression model: $Y=eta_0+eta_1X_1+eta_2X_2+\epsilon$
 - \circ Matrix form: $\mathbf{y} = X oldsymbol{eta} + oldsymbol{\epsilon}$
 - \circ Normal equations: $(X^TX)oldsymbol{eta} = X^T\mathbf{y}$
 - For small dataset {(Y, X₁, X₂)}: (200, 1000, 2), (250, 1200, 3), (300, 1500, 3), set up and solve
- 17. **Omitted Variable Bias** True model: $Y=\beta_0+\beta_1X_1+\beta_2X_2+\epsilon$. You mistakenly estimate: $Y=\alpha_0+\alpha_1X_1+u$.
 - $\circ~$ Show that α_1 is biased if X_1 and X_2 are correlated
 - \circ Derive the bias formula: $\mathrm{Bias} = eta_2 imes rac{\mathrm{Cov}(X_1, X_2)}{\mathrm{Var}(X_1)}$
 - Give economic interpretation
- 18. **Heteroskedasticity Test** Given residuals from regression: [2, -1, 4, -3, 5, -2, 6, -4]. Plot e_i^2 against fitted values. Does variance appear constant? What problem does this indicate?
- 19. **Autocorrelation (Durbin-Watson)** Residuals (in time order): [1, 2, -1, -2, 0, 1, -1, 2]. Calculate Durbin-Watson statistic:

$$DW = rac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=2}^{n} e_t^2}$$

Is there evidence of autocorrelation? (DW ≈ 2 means no autocorrelation)

20. **Instrumental Variables** - Regression: Education = $\beta_0 + \beta_1 \text{Income} + \epsilon$. Problem: Income is endogenous (reverse causality). Propose valid instrument (e.g., parental education). What conditions must instrument satisfy?

Advanced Exercises (2-4 hours each)

Linear Algebra - Higher Dimensions

1. **3×3 Determinant & Inverse** - Calculate the determinant of matrix A using cofactor expansion:

$$A = egin{bmatrix} 2 & 1 & 3 \ 0 & 4 & 1 \ 1 & 2 & 2 \end{bmatrix}$$

Then find A^{-1} using the adjugate method: $A^{-1}=rac{1}{\det A}\mathrm{adj}(A)$. Verify your answer.

- 2. 4D Vector Operations Given four-dimensional vectors:
 - ullet $\mathbf{a} = [1, -2, 3, 4]$, $\mathbf{b} = [2, 1, -1, 2]$, $\mathbf{c} = [0, 3, 2, -1]$
 - \circ Calculate: $\mathbf{a} \cdot \mathbf{b}$, $\|\mathbf{a}\|$, angle between **a** and **b**
 - Find vector **d** orthogonal to both **a** and **b** (use Gram-Schmidt on 4D space)
 - Compute projection of c onto a
- 3. 3×3 Eigenvalue Problem For matrix:

$$B = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

- Find all three eigenvalues by solving the characteristic polynomial (cubic equation)
- Find corresponding eigenvectors for each eigenvalue
- Verify orthogonality of eigenvectors (B is symmetric)
- 4. 3×3 System of Equations Solve using Gaussian elimination with back-substitution:

$$\left\{egin{aligned} 2x+y-z &= 8 \ -3x-y+2z &= -11 \ -2x+y+2z &= -3 \end{aligned}
ight.$$

Show all row operations step-by-step to reach row echelon form.

5. Gram-Schmidt Orthogonalization (3D) - Given basis vectors:

$$\mathbf{v}_1 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, \quad \mathbf{v}_2 = egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, \quad \mathbf{v}_3 = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}$$

Apply Gram-Schmidt to produce orthonormal basis $\{u_1, u_2, u_3\}$. Verify orthonormality.

6. **QR Decomposition (3×3)** - Using the result from exercise 5, write the original matrix with columns [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3] as A=QR where Q is orthogonal and R is upper triangular.

Calculus - Higher-Order Polynomials

7. **Fifth-Degree Polynomial** - Find all critical points and classify them for:

$$f(x) = x^5 - 5x^4 + 5x^3 + 5x^2 - 6x$$

Use first and second derivative tests. Identify intervals of increase/decrease and concavity.

8. Three-Variable Optimization - Find and classify critical points of:

$$f(x,y,z) = x^2 + y^2 + z^2 - xy - xz - yz$$

- o Compute gradient and set to zero
- o Compute 3×3 Hessian matrix
- Use eigenvalue test for classification
- 9. **Multivariate Taylor Series** Find the second-order Taylor expansion of $f(x,y)=e^{x+y}$ around point (0,0):

$$f(x,y)pprox f(0,0) +
abla f \cdot egin{bmatrix} x \ y \end{bmatrix} + rac{1}{2}[x \quad y] H egin{bmatrix} x \ y \end{bmatrix}$$

where H is the Hessian. Evaluate at (0.1, 0.2) and compare with actual value.

- 10. Lagrange Multipliers (3 Variables) Minimize $f(x,y,z)=x^2+y^2+z^2$ subject to constraint x+2y+3z=6.
 - Set up Lagrangian with one constraint
 - Solve system of 4 equations in 4 unknowns
 - Verify solution using geometric interpretation (closest point on plane to origin)
- 11. Polynomial Long Division Divide $p(x)=2x^4+3x^3-x^2+5x-2$ by $q(x)=x^2+x-1.$

Find quotient and remainder, verify $p(x) = q(x) \cdot \text{quotient} + \text{remainder}$.

12. Partial Fraction Decomposition - Decompose the rational function:

$$\frac{2x^3 + 3x^2 + 4x + 5}{(x+1)(x-1)(x^2+1)}$$

into partial fractions. Then integrate the result.

Statistics - Multivariate Analysis

- 13. 3×3 Covariance Matrix Given data for three variables X, Y, Z (5 observations each):
 - o X: [16] [17] [18] [8] [12]
 - o Y: [17] [8] [12]
 - o Z: [9] [18] [8] [12]

Calculate the 3×3 covariance matrix and 3×3 correlation matrix by hand.

- 14. **Multinomial Distribution** A die is rolled 12 times. Calculate the probability of getting exactly 2 ones, 3 twos, 3 threes, 2 fours, 1 five, and 1 six using the multinomial formula: $P = \frac{n!}{n_1!n_2!\cdots n_k!}p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$
- 15. **Principal Component Analysis (By Hand)** Using the 3×3 covariance matrix from exercise 13:
 - Find eigenvalues and eigenvectors
 - Order eigenvectors by eigenvalue magnitude (these are principal components)
 - Calculate proportion of variance explained by first two components
 - Transform one data point into PC space

Econometrics - Advanced Topics

16. Three-Variable Regression (Matrix Form) - Fit model

 $Y=eta_0+eta_1X_1+eta_2X_2+eta_3X_3+\epsilon$ to data:

	0 ' /-	11	' - 4-
Υ	X1	X ₂	Хз
10	1	2	1
15	2	3	2
12	1	4	1
18	3	5	2
20	4	6	3

- Construct design matrix X (5×4, including intercept column)
- \circ Compute X^TX (4×4 matrix)
- \circ Compute $(X^TX)^{-1}$ (requires 4×4 inversion)
- \circ Solve for $oldsymbol{eta} = (X^TX)^{-1}X^T\mathbf{y}$
- Calculate fitted values and R²

17. F-Test for Joint Significance - Using regression from exercise 16:

- Test H_0 : $\beta_2 = \beta_3 = 0$ (last two coefficients jointly zero)
- Calculate SSR_restricted (regress Y on X1 only) and SSR_unrestricted (full model)
- \circ Compute F-statistic: $F = rac{(SSR_r SSR_u)/q}{SSR_u/(n-k)}$
- o Compare with critical value F(2, n-4) at 5% level

18. Polynomial Regression - Fit cubic model $Y=eta_0+eta_1X+eta_2X^2+eta_3X^3+\epsilon$ to data:

- o (X, Y): (1, 2), (2, 3), (3, 8), (4, 15), (5, 27)
- Set up design matrix with columns [1, X, X², X³]
- Solve normal equations
- Evaluate model at X = 3.5

19. Variance-Covariance Matrix of Estimators - For the regression in exercise 16:

- \circ Estimate error variance: $\hat{\sigma}^2 = rac{SSR}{n-k}$
- \circ Calculate $\mathrm{Var}(\hat{oldsymbol{eta}}) = \hat{\sigma}^2(X^TX)^{-1}$
- Extract standard errors (square roots of diagonal elements)
- Compute t-statistics for each coefficient

20. Interaction Terms - Model with interaction:

$$Y=eta_0+eta_1X_1+eta_2X_2+eta_3(X_1 imes X_2)+\epsilon$$
 Data:

Y	X1	X ₂
5	1	2

Υ	X1	X ₂
10	2	3
8	1	4
15	3	3
12	2	4

- Create interaction variable X₁×X₂
- Solve for coefficients
- o Interpret $β_3$: how does the effect of X_1 on Y depend on X_2 ?

Solution Methods Reference (Check Yourself!)

Linear Algebra Methods

Easy Level:

- 1. **Vector Addition** Component-wise addition/subtraction
- 2. **Dot Product** Dot product formula: $u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3$; Sign test: positive \rightarrow acute, negative \rightarrow obtuse
- 3. Matrix Multiplication (2×2) Row-by-column multiplication rule
- 4. **Matrix Transpose** Swap rows and columns (element a_{ii} becomes a_{ii})
- 5. **Scalar Multiplication** *Multiply* each element by the scalar
- 6. **Diagonal Matrix** For diagonal matrices, $(D^2)_{ii} = (D_{ii})^2$, off-diagonal elements remain 0
- 7. **Identity Matrix** Matrix multiplication; identity matrix property

Medium Level:

- 1. **Determinant (2×2)** 2×2 determinant formula: det(A) = ad bc; Invertibility test: $det(A) \neq 0$
- 2. **Matrix Inverse (2×2)** 2×2 inverse formula: $A^{-1} = (1/\det(A)) \cdot [d, -b; -c, a]$ where A = [a, b; c, d]
- 3. **System of Linear Equations** Substitution method; Elimination (addition) method; Graphical method
- 4. **Matrix Form of System** Matrix equation: $x = A^{-1}b$; Cramer's rule using determinants
- 5. **Eigenvalues (2×2)** Characteristic equation: $det(A \lambda I) = 0$, yields quadratic equation in λ
- 6. **Quadratic Form** Matrix multiplication: compute Qx first, then $x^T(Qx)$
- 7. **Projection Matrix** Vector projection formula: $proj_u(v) = [(v \cdot u)/(u \cdot u)]u$

Hard Level:

1. **Eigenvalue Decomposition** - Characteristic polynomial: $det(A - \lambda I) = 0$; Eigenvector: solve $(A - \lambda I)v = 0$; Diagonalization: $P = [v_1 \ v_2], D = diag(\lambda_1, \lambda_2)$

- 2. **Least Squares (Matrix Method)** Normal equations: $X^T X \beta = X^T y$; Matrix solution: $\beta = (X^T X)^{-1} X^T y$; QR decomposition (advanced); Geometric interpretation: projection onto column space of X
- 3. **Positive Definite Matrix** Eigenvalue test; Sylvester's criterion (principal minors); Quadratic form test; Cholesky decomposition (advanced)
- 4. **Diagonalization Application** Diagonalization: $A = PDP^{-1}$, then $A^n = PD^nP^{-1}$; For diagonal D, D^n is easy (just raise diagonal elements to power n)
- 5. **Singular Value Decomposition (2×2)** SVD algorithm: compute eigenvalues of B^TB and BB^T; For diagonal matrices, SVD is trivial; Relationship to eigenvalue decomposition

Advanced Level:

- 1. **3×3 Determinant & Inverse** Cofactor expansion (Laplace expansion) along any row/column; Rule of Sarrus (for 3×3 only); Adjugate method: $A^{-1} = adj(A)/det(A)$; Gauss-Jordan elimination
- 2. **4D Vector Operations** Standard dot product in n dimensions; Magnitude: $||v|| = \sqrt{(v \cdot v)}$; Angle: $\cos(\theta) = (a \cdot b)/(||a|| ||b||)$; Gram-Schmidt process for orthogonalization
- 3. **3×3 Eigenvalue Problem** Characteristic polynomial is cubic; Cardano's formula or numerical approximation; For symmetric matrices: real eigenvalues, orthogonal eigenvectors (Spectral theorem)
- 4. **3×3 System of Equations** Gaussian elimination; Row echelon form; Back substitution; Gauss-Jordan for reduced row echelon form; LU decomposition
- 5. **Gram-Schmidt Orthogonalization (3D)** *Gram-Schmidt algorithm*: $u_1 = v_1/||v_1||$, $u_2 = (v_2 proj_{u_1}v_2)/||v_2 proj_{u_1}v_2||$, etc.; QR decomposition is built on this
- 6. **QR Decomposition (3×3)** A = QR where Q is orthogonal (Q from Gram-Schmidt), R is upper triangular (inner products)

Calculus Methods

Easy Level:

- 8. **Power Rule** Power rule: $d/dx(x^n) = nx^{n-1}$; Linearity of derivatives
- 9. **Product Rule** Product rule: (uv)' = u'v + uv'; Alternative: expand first then differentiate
- 10. Chain Rule (Basic) Chain rule: $d/dx[f(g(x))] = f'(g(x)) \cdot g'(x)$
- 11. **Exponential Function** Exponential rule with chain rule: $d/dx(e^{kx}) = ke^{kx}$
- 12. Natural Logarithm Logarithmic differentiation with chain rule: d/dx[ln(u)] = u'/u
- 13. **Basic Integration** Power rule for integration: $[x^n dx = x^{n+1}/(n+1) + C;$ Linearity
- 14. **Definite Integral** Fundamental Theorem of Calculus: $\int_a^b f(x) dx = F(b) F(a)$
- 15. **Exponential Integral** Exponential integration rule: $\int e^{kx} dx = (1/k)e^{kx} + C$

Medium Level:

- 8. **Critical Points** First derivative test: set f'(x) = 0; Second derivative test: f''(x) > 0 (min), f''(x) < 0 (max)
- 9. **Maxima/Minima** Constraint optimization: express area A(x) subject to perimeter constraint; Calculus: find dA/dx = 0
- 10. **Second Derivative Test** Second derivative test: compute g'(x) = 0 for critical points, then

evaluate g''(x) at each

- 11. **Partial Derivatives** Partial differentiation: treat other variables as constants
- 12. **Chain Rule (Multivariate)** Substitution then differentiate; Multivariate chain rule: $dz/dt = (\partial z/\partial x)(dx/dt) + (\partial z/\partial y)(dy/dt)$
- 13. **Gradient Vector** *Gradient vector*: $\nabla f = [\partial f/\partial x, \partial f/\partial y]$

Hard Level:

- 6. **Unconstrained Optimization** First-order condition: $\nabla f = 0$ (system of equations); Hessian matrix $H = [\partial^2 f/\partial x_i \partial x_j]$; Second-order condition: check eigenvalues of H or determinant tests; Bordered Hessian (for constrained)
- 7. **Lagrange Multipliers** Lagrangian: $L(x,y,\lambda) = f(x,y) \lambda(g(x,y) c)$; First-order conditions: $\nabla L = 0$; Geometric interpretation: gradient of f parallel to gradient of constraint
- 8. **Constrained Optimization (Inequality)** KKT (Karush-Kuhn-Tucker) conditions for inequality constraints; Complementary slackness; Graphical method: sketch feasible region; Check boundary vs interior solutions
- 9. **Taylor Approximation** Taylor series expansion: $f(x) \approx f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...;$ Remainder term (Lagrange form) for error estimation
- 10. **Integration by Parts** Integration by parts: [udv = uv [vdu; Choice of u and dv is critical (LIATE rule: Logarithmic, Inverse trig, Algebraic, Trig, Exponential)

Advanced Level:

- 7. **Fifth-Degree Polynomial** Derivative of polynomial is one degree lower; Rational root theorem for finding roots; Synthetic division; Newton's method for numerical solutions
- 8. **Three-Variable Optimization** Gradient in 3D: $\nabla f = [\partial f/\partial x, \partial f/\partial y, \partial f/\partial z]$; 3×3 Hessian matrix; Eigenvalue test for definiteness; Sylvester's criterion
- 9. **Multivariate Taylor Series** Multivariate Taylor: $f(x) \approx f(a) + \nabla f(a) \cdot (x-a) + \frac{1}{2}(x-a) \cdot H(a)(x-a)$; Hessian contains all second partials
- 10. Lagrange Multipliers (3 Variables) Lagrangian: $L = f \lambda g$; $\nabla L = 0$ gives n+1 equations; Geometric: level sets of f tangent to constraint surface
- 11. **Polynomial Long Division** Polynomial long division algorithm; Remainder theorem; Factor theorem
- 12. **Partial Fraction Decomposition** Method of partial fractions; Cover-up method; Heaviside's method; Integration of rational functions

Statistics Methods

Easy Level:

- 16. **Mean & Median** Mean = sum/n; Median = middle value after sorting (for odd n)
- 17. **Variance** Sample variance formula: $s^2 = \sum (x_i \bar{x})^2/(n-1)$
- 18. **Standard Deviation** $SD = \sqrt{variance}$; Scaling property: $SD(kX) = |k| \cdot SD(X)$
- 19. **Range & IQR** Range = max min; Quartiles: Q1 = 25th percentile, Q3 = 75th percentile; IQR = Q3 Q1
- 20. **Z-score** *Z-score* standardization: $z = (x \mu)/\sigma$
- 21. **Basic Probability** Classical probability: P(A) = favorable/total; Complement rule: P(not A) = 1 P(A)
- 22. **Complementary Events** Complement rule: $P(A^c) = 1 P(A)$
- 23. **Multiplication Rule** Multiplication rule for independent events: $P(A \cap B) = P(A) \cdot P(B)$

- 24. **Expected Value (Discrete)** Expected value formula: $E[X] = \sum x_i \cdot P(x_i)$
- 25. Variance of Distribution $E[X] = \sum x_i \cdot P(x_i)$; $Var(X) = E[X^2] (E[X])^2$

Medium Level:

- 14. **Normal Distribution** Z-score transformation: $z = (x \mu)/\sigma$; Standard normal table lookup; Symmetry properties of normal distribution
- 15. **Standardization** Standardization formula: $Z = (X \mu)/\sigma$, where $Z \sim N(0, 1)$
- 16. **Binomial Probability** Binomial probability formula: $P(X=k) = C(n,k) \cdot p^{k \cdot (1-p)}(n-k)$; Binomial coefficient: C(n,k) = n!/(k!(n-k)!)
- 17. **Covariance** Sample covariance formula: $Cov(X,Y) = \Sigma(x_i \bar{x})(y_i \bar{y})/(n-1)$
- 18. **Correlation** Pearson correlation: $\rho = Cov(X,Y)/(SD(X)\cdot SD(Y))$
- 19. Law of Total Probability Law of total probability: $P(B) = \sum P(B|A_i)P(A_i)$
- 20. **Bayes' Theorem** Bayes' theorem: P(A|B) = P(B|A)P(A)/P(B)

Hard Level:

- 11. **T-test (By Hand)** Two-sample t-test with pooled variance: $t = (\bar{x}_1 \bar{x}_2)/\sqrt{(s^2_p(1/n_1 + 1/n_2))}$; Pooled variance: $s^2_p = [(n_1-1)s_1^2 + (n_2-1)s_2^2]/(n_1+n_2-2)$; Welch's t-test (unequal variances); Paired t-test (if data is paired)
- 12. **Chi-Square Test** Chi-square goodness-of-fit test; Degrees of freedom: df = k 1 p (k categories, p estimated parameters); Chi-square test of independence (for contingency tables)
- 13. **Confidence Interval** t-distribution CI: $\bar{x} \pm t \cdot (s/\sqrt{n})$; Z-distribution CI (for large n or known σ); Bootstrap CI (computational method)
- 14. **Type I and Type II Errors** Type I error (α): reject true H_0 (false positive); Type II error (β): fail to reject false H_0 (false negative); Power = 1 β ; Trade-off between errors
- 15. **Power Calculation** Power = $P(reject H_0 \mid H_1 true)$; Calculate critical value under H_0 ; Find probability of exceeding critical value under H_1 ; Use z-distribution or t-distribution

Advanced Level:

- 13. **3×3 Covariance Matrix** Covariance matrix: $\Sigma_{ij} = Cov(X_i, X_j)$; Symmetric matrix; Diagonal contains variances; Correlation matrix: standardize by dividing by standard deviations
- 14. **Multinomial Distribution** Multinomial probability: $P = n!/(n_1!n_2!...n_k!) \cdot p_1^n_1 \cdot p_2^n_2 \cdot ... \cdot p_k^n_k$; Generalization of binomial
- 15. **Principal Component Analysis (By Hand)** PCA steps: (1) Compute covariance matrix, (2) Find eigenvalues/eigenvectors, (3) Sort by eigenvalue, (4) Transform data using eigenvector matrix; Variance explained = eigenvalue/sum of eigenvalues

Econometrics Methods

Medium Level:

- 21. **Simple Regression (By Hand)** OLS (Ordinary Least Squares) formulas for β_1 and β_0 ; Method of moments; Geometric interpretation: minimize sum of squared residuals
- 22. **Fitted Values & Residuals** Fitted value formula: $\hat{y}_i = \beta_0 + \beta_1 x_i$; Residual: $e_i = y_i \hat{y}_i$
- 23. **R-squared** R^2 formula using sum of squares; Alternative: R^2 = (correlation coefficient)²
- 24. **Elasticity** Point elasticity formula: $\varepsilon = (dQ/dP) \cdot (P/Q)$
- 25. **Log Returns** Log return formula: $r_t = ln(P_t/P_{t-1})$

Hard Level:

16. Multiple Regression Setup - OLS in matrix form; Interpretation of coefficients (partial

- derivatives); Multicollinearity concerns; Adjusted R²
- 17. **Omitted Variable Bias** Omitted variable bias formula derivation; Auxiliary regression: regress X_2 on X_1 ; Direction of bias depends on sign of β_2 and correlation; Frisch-Waugh-Lovell theorem
- 18. **Heteroskedasticity Test** Visual inspection: plot residuals vs fitted values or vs X; Breusch-Pagan test; White test; Goldfeld-Quandt test; Consequences: OLS still unbiased but inefficient, standard errors wrong
- 19. **Autocorrelation (Durbin-Watson)** Durbin-Watson test: $DW \approx 2(1 \rho)$ where ρ is first-order autocorrelation; Breusch-Godfrey test (higher-order); Ljung-Box test; Consequences: OLS inefficient, standard errors biased
- 20. **Instrumental Variables** Two-Stage Least Squares (2SLS); Instrument relevance: Cov(Z, X) \neq 0; Instrument exogeneity: Cov(Z, ε) = 0; First-stage regression: regress X on Z; Second-stage: regress Y on \hat{X} ; Weak instruments problem; Overidentification tests (if multiple instruments)

Advanced Level:

- 16. **Three-Variable Regression (Matrix Form)** Design matrix construction (include column of 1s for intercept); X^TX is $k \times k$ symmetric matrix; $(X^TX)^{-1}$ requires matrix inversion; $\hat{\beta} = (X^TX)^{-1}X^Ty$; $R^2 = 1 SSR/SST$
- 17. **F-Test for Joint Significance** F-test for multiple restrictions; F-statistic: $F = [(SSR_r SSR_u)/q]/[SSR_u/(n-k)]; q = number of restrictions; F-distribution with <math>(q, n-k)$ degrees of freedom; Relationship to R^2
- 18. **Polynomial Regression** Polynomial regression as special case of multiple regression; Design matrix includes powers of X; Multicollinearity issues with high-degree polynomials; Centered polynomials reduce collinearity
- 19. **Variance-Covariance Matrix of Estimators** $Var(\hat{\beta}) = \sigma^2(X^TX)^{-1}$; Estimate σ^2 : residual variance $s^2 = SSR/(n-k)$; Standard errors: $SE(\hat{\beta}_j) = \sqrt{[(X^TX)^{-1}]_{jj}} \cdot s$; t-statistics for hypothesis testing
- 20. **Interaction Terms** Interaction: effect of X_1 depends on level of X_2 ; Coefficient interpretation: $\partial Y/\partial X_1 = \beta_1 + \beta_3 X_2$; Centering variables before creating interactions; Marginal effects at different levels

Research Keywords by Topic

Linear Algebra

- Basic operations: Vector spaces, linear combinations, span, linear independence
- Matrix theory: Rank, nullity, row space, column space, null space
- Determinants: Properties, cofactor expansion, Cramer's rule
- **Eigentheory**: Characteristic polynomial, algebraic/geometric multiplicity, diagonalization, Jordan normal form
- Orthogonality: Inner products, orthogonal projections, Gram-Schmidt, QR decomposition
- Spectral theory: Spectral theorem, positive definiteness, Cholesky decomposition
- SVD: Singular value decomposition, pseudoinverse, low-rank approximation, matrix norms

• Advanced: Tensor products, exterior algebra, matrix exponential, Cayley-Hamilton theorem

Calculus

- Single variable: Limits, continuity, mean value theorem, L'Hôpital's rule
- **Differentiation**: Power rule, product rule, quotient rule, chain rule, implicit differentiation, logarithmic differentiation
- **Integration**: Substitution, integration by parts, partial fractions, trigonometric substitution, improper integrals
- Series: Taylor series, Maclaurin series, convergence tests, power series
- **Multivariate**: Partial derivatives, gradient, directional derivatives, Jacobian matrix, implicit function theorem
- **Optimization**: Lagrange multipliers, KKT conditions, convexity, Jensen's inequality, envelope theorem
- Vector calculus: Divergence, curl, line integrals, Green's theorem, Stokes' theorem
- Advanced: Differential forms, calculus of variations, Legendre transform, Hamiltonian mechanics

Statistics & Probability

- Foundations: Sample space, events, probability axioms, conditional probability
- **Distributions**: Discrete (binomial, Poisson, geometric), Continuous (normal, exponential, chisquare, t, F)
- Central Limit Theorem: Sampling distributions, standard error, law of large numbers
- **Estimation**: Point estimation, MLE (Maximum Likelihood), method of moments, biasvariance tradeoff
- Hypothesis testing: Null hypothesis, p-value, Type I/II errors, power, multiple testing
- Confidence intervals: Coverage probability, pivotal quantities, bootstrap
- Regression: Least squares, Gauss-Markov theorem, residual analysis
- Multivariate: Joint distributions, marginal distributions, independence, copulas
- Advanced: Sufficient statistics, Rao-Blackwell theorem, exponential families, decision theory

Econometrics

- **OLS foundations**: BLUE, Gauss-Markov theorem, assumptions (linearity, exogeneity, homoskedasticity, no autocorrelation)
- Violations & remedies:
 - Heteroskedasticity: White standard errors, WLS (Weighted Least Squares), FGLS
 - Autocorrelation: Newey-West standard errors, Cochrane-Orcutt, AR models
 - Multicollinearity: VIF, ridge regression, PCA

- Endogeneity: IV (Instrumental Variables), 2SLS, GMM (Generalized Method of Moments)
- Model selection: AIC, BIC, adjusted R², cross-validation, information criteria
- **Causality**: Randomized experiments, natural experiments, difference-in-differences, regression discontinuity, matching, propensity scores
- **Time series**: Stationarity, unit root tests (ADF, PP), ARIMA, VAR, cointegration, ECM (Error Correction Model), GARCH
- Panel data: Fixed effects, random effects, Hausman test, clustered standard errors, difference-in-differences
- Limited dependent variables: Logit, probit, Tobit, selection models (Heckman), count data (Poisson, negative binomial)
- Advanced: Quantile regression, nonparametric regression, structural models, dynamic models, spatial econometrics

Numerical & Computational Methods

- Linear systems: Gaussian elimination, LU decomposition, iterative methods (Jacobi, Gauss-Seidel)
- **Eigenproblems**: Power iteration, QR algorithm, Lanczos method
- **Optimization**: Gradient descent, Newton-Raphson, quasi-Newton (BFGS), conjugate gradient, simplex method
- Root finding: Bisection, Newton's method, secant method
- Integration: Trapezoidal rule, Simpson's rule, Gaussian quadrature, Monte Carlo
- **Differential equations**: Euler's method, Runge-Kutta, finite differences

This comprehensive reference guide provides all the mathematical methods and research directions needed to tackle exercises at every level!

- 1. https://satoricyber.com/data-masking/data-encryption-top-7-algorithms-and-5-best-practices/
- 2. https://www.sealpath.com/blog/types-of-encryption-guide/
- 3. http://www.di-srv.unisa.it/~ads/corso-security/www/CORSO-9900/keyescrow/Alternatives to RSA Using Diffie-Hellman with DSS.htm
- 4. https://thalesdocs.com/ctp/cm/2.19/reference/xml/supp-key-algo/index.html
- 5. https://it.ufl.edu/security/security-guidance/acceptable-encryption-products-and-algorithms/
- 6. https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/encrypt
- 7. https://www.cbtnuggets.com/blog/certifications/security/7-common-encryption-algorithms-explained
- 8. https://easychair.org/publications/preprint/Pp2W/open
- 9. https://www.reddit.com/r/cryptography/comments/1cpa7u6/alternate_diffie_hellman_key_exchange/
- 10. https://stackoverflow.com/questions/1914257/when-can-you-trust-yourself-to-implement-cryptography-based-solutions

- 11. https://www.cryptopp.com/algorithms.html
- 12. https://blog.cloudflare.com/lattice-crypto-primer/
- 13. https://mojoauth.com/encryption-decryption/rsa-4096-encryption--javascript-in-browser/
- 14. https://gist.github.com/jo/8619441
- 15. https://taro.codes/posts/2022-09-25-encryption-with-javascript-p1/
- 16. https://www.reddit.com/r/learnprogramming/comments/w0hslf/need_a_decent_but_easy_to_implement_encryption/
- 17. https://github.com/sobolevn/awesome-cryptography
- 18. https://www.reddit.com/r/arduino/comments/1hi96g2/simple_encryption_scheme/
- 19. http://www.arcserve.com/blog/5-common-encryption-algorithms-and-unbreakables-future
- 20. https://veracrypt.io/en/EncryptionAlgorithms.html
- 21. https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
- 22. https://mojoauth.com/encryption-decryption/cast-256-224-encryption--javascript-in-browser/