Definition

Sei (Ω, A, P) ein W-Raum. Wir bezeichnen zweiß Ereignisse A und B in A als unabhängig, falls $P(A \cap B) = P(A)P(B)$.

Kurz: $A \perp \!\!\! \perp B$.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A).$$

• verallgemeinert auf mehr als 2 [[Ereignisse]]

Unabhängigkeit: Wir nennen A_1, \ldots, A_n unabhängig, falls

(*)
$$P\left(\bigcap_{i\in I}A_i\right)=\prod_{i\in I}P(A_i)$$
 für alle $\emptyset\neq I\subset\{1,\ldots,n\}.$

Lemma: Ist A von B unabhängig, dann ist auch A von B^C unabhängig.

Beispiel

Wir spielen Roulette. Wir setzen in 3 Runden jeweils 5€. Im ersten Spiel setzen wir auf rot, im zweiten setzen wir auf 1 – 12 und im letzten Spiel setzen wir auf die Zahl 23. Wie groß ist die Wahrscheinlichkeit, dass wir mindestens 10€ gewinnen?

Rocalette 3 Spiele
$$\stackrel{>}{\rightarrow}$$
 Rot 50
 $1-12$ 106 jewils 5 \in 23 1756
P (mindesbus $10 \in$ Gersin) = ? Juin
 $A_1 \cdots$ Jewin in 1. Spiel
 $A_2 \cdots$ $-4-$
 $A_3 \cdots$ $-4-$
P ($(A_1^c \cap A_2^c \cap A_3^c) \cup (A_1 \cap A_2 \cap A_3^c) \cup (A_1 \cap A_2 \cap A_3^c)$
 $\cup (A_1^c \cap A_2 \cap A_3^c) \cup (A_1 \cap A_2 \cap A_3^c)$
 $\cup (A_1^c \cap A_2 \cap A_3^c) \cup (A_1 \cap A_2 \cap A_3^c)$

$$= P(A_{1}^{c} \land A_{2}^{c} \land A_{3}) + P(A_{1} \land A_{2} \land A_{3}^{c})$$

$$+ P(A_{1}^{c} \land A_{1} \land A_{3}) + P(A_{1} \land A_{2} \land A_{3}^{c})$$

$$+ P(A_{1} \land A_{2}^{c} \land A_{3})$$

$$= P(A_{1}^{c}) \cdot P(A_{2}^{c}) P(A_{3}^{c}) + P(A_{1}) P(A_{2}) P(A_{3}^{c}) + \cdots$$

$$= (1 - P(A_{1})) \cdot (1 - P(A_{2})) P(A_{3}^{c}) + P(A_{1}) P(A_{2}) (1 - P(A_{3}^{c}))$$

$$P(A_{1}) = \frac{NY}{3+} \qquad P(A_{2}) = \frac{12}{37} \qquad P(A_{3}^{c}) = \frac{1}{37}$$