Algebra

Nithin

Maveric Systems

May 2, 2025

- Introduction
- 2 Algebra of real numbers
 - Inequalities, Intervals and Absolute Value
- Sunctions
 - Domain, Range and Equality
 - Analytical Geometry
 - Graphs
 - Function Transformation
 - Function Composition
 - Inverse Functions
- 4 Linear, Quadratic, Polynomial and Rational Functions
 - Lines and Linear Function
 - Quadratic Functions and Conics
 - Exponents
 - Polynomials
 - Rational Function
- 5 Exponential Functions, Logarithms and e

Bacterial Growth on the Human Body

- Our skin (and other areas like the mouth, nose, and intestines) hosts hundreds of thousands of microscopic organisms.
- In fact, bacterial cells in our body outnumber our own cells.
- While some bacteria can cause illness, many are essential for our health.
- Bacteria reproduce through binary fission—each cell splits into two.
- Under ideal conditions, a single bacterium doubling every hour can lead to over 1,000 cells in 10 hours and more than 16 million in 24 hours.

Bacterial Growth Over Time

Hour	0	1	2	3	4	5	6	7	8	9	10
Bacteria	1	2	4	8	16	32	64	128	256	512	1024

Table: Bacterial cell count doubling every hour.

Bacterial Growth (Doubling Every Hour)

Population Growth in India

- India is the second most populous country, with about 1.39 billion people in 2021.
- Its population grows at an annual rate of roughly 1.2%.
- If this trend continues, India's population is projected to exceed China's by 2027.
- While rapid population increases are often described as "exponential," in mathematics the term has a very precise meaning.

Defining Exponential Growth

Key Concepts

Percentage Change:

refers to a change based on a percent of the original amount

• Exponential Growth:

- refers to an increase based on a constant multiplicative rate of change over equal increments of time, that is, a percent increase of the original amount over time.
- For example, if a quantity doubles each period, that is a 100% increase per period.

Linear Growth:

 The original value increases by a fixed amount (additive rate) over equal time intervals.

• Exponent Decay:

 refers to a decrease based on a constant multiplicative rate of change over equal increments of time, that is, a percent decrease of the original amount over time.

Exponential Function and Its Behavior

Definition

Suppose b>0 with $b\neq 1$. Then the *exponential function* with base b is defined by

$$f(x) = b^x.$$

For example, if b=2, then $f(x)=2^x$. (Note that 2^x is different from x^2 .)

Behavior (for b > 1)

- **Domain:** All real numbers, \mathbb{R} .
- Range: All positive numbers, $(0, \infty)$.
- $f(x) = b^x$ is an increasing function.
- b^x becomes very large as x increases.
- ullet b^x approaches 0 as x becomes very negative.

Comparing Exponential and Linear Growth

\boldsymbol{x}	$f(x) = 2^x$	g(x) = 2x
0	1	0
1	2	2
2	4	4
2 3	8	6
4	16	8
5	32	10
6	64	12

Table: Exponential vs. Linear Growth.

Example: The Function $f(x) = 2^x$

Exponential Growth Illustrated (Table 2)

x	-3	-2	-1	0	1	2	3
2^x	$2^{-3} = \frac{1}{8}$	$2^{-2} = \frac{1}{4}$	$2^{-1} = \frac{1}{2}$	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$

Table: Exponential values of 2^x for $x = -3, \dots, 3$.

Observation: As x increases by 1, the output of 2^x doubles, clearly illustrating exponential growth.

Algebraic Properties of Exponents

Properties

Let a, b > 0 and $x, y \in \mathbb{R}$. Then:

- $b^x \cdot b^y = b^{x+y}$
- $(b^x)^y = b^{xy}$
- $a^x \cdot b^x = (ab)^x$
- $b^0 = 1$
- $b^{-x} = \frac{1}{b^x}$
- $\bullet \ \frac{b^x}{b^y} = b^{x-y}$

Exponent Graph

The graph of x^2 on the interval [-3,3]. Unlike the graph of 2^x , the graph of x^2 is symmetric about the vertical axis.

The graph of the exponential function 2^x on the interval [-5,5]. Here the same scale is used on both axes to emphasize the rapid growth of this function.

Logarithm

Definition

Suppose b and y are positive numbers with $b \neq 1$.

ullet The logarithm base b of y, denoted $\log_b y$, is defined as the unique number x such that

$$b^x = y$$
.

Short Version

$$\log_b y = x$$
 means $b^x = y$.

Logarithm of 1 and the Base

Key Properties

Let b > 0 with $b \neq 1$. Then:

- $\log_b 1 = 0$ because $b^0 = 1$,
- $\log_b b = 1$ because $b^1 = b$.

Logarithm as an Inverse Function

Definition

Suppose b is a positive number with $b \neq 1$ and the exponential function f is defined by

$$f(x) = b^x$$
.

Then the inverse function f^{-1} is given by

$$f^{-1}(y) = \log_b y.$$

Inverse Properties of Logarithms - Summary

• Inverse Relationship:

- $\log_b x$ is the inverse of b^x .
- Flipping the graph of b^x across the line y = x yields the graph of $\log_b x$.

• Monotonicity:

• For b > 1, b^x is increasing, so $\log_b x$ is also increasing.

• Key Equations:

- $b^{\log_b y} = y$
- $\log_b(b^x) = x$

Function-Inverse Properties:

• These can be written as $(f \circ f^{-1})(y) = y$ and $(f^{-1} \circ f)(x) = x$.

• Understanding:

 These properties are fundamental to the relationship between exponential and logarithmic functions.

Logarithm of a Power

Property

If b and y are positive numbers, with $b \neq 1$, and t is a real number, then

$$\log_b(y^t) = t\log_b y.$$

Radioactive Decay) If a radioactive isotope has half-life , then the function modeling the number of atoms in a sample of this isotope is

$$a(t) = a_0 2^{-t/h}$$

where a_0 is the number of atoms of the isotope in the sample at time 0

Nithin (Maveric Systems) Algebra May 2, 2025 17 / 183