Docket No. 0010-1066-0

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Vitaliy A. LIVSHITS, et al.

GAU:

SERIAL NO: New Application

EXAMINER:

FILED:

Herewith

FOR:

METHOD FOR PRODUCING L-AMINO ACID

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS -WASHINGTON, D.C. 20231

~	-	•	•
•		ı	,
. 7		1	•

- □ Full benefit of the filing date of U.S. Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §120.
- □ Full benefit of the filing date of U.S. Provisional Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

COUNTRY	APPLICATION NUMBER	MONTH/DAY/YEAR
RUSSIA	98124016	December 30, 1998
RUSSIA	99104431	March 9, 1999

Certified copies of the corresponding Convention Application(s)

- are submitted herewith
- □ will be submitted prior to payment of the Final Fee
- were filed in prior application Serial No. filed
- were submitted to the International Bureau in PCT Application Number.

 Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
- ☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and
 - (B) Application Serial No.(s)
 - □ are submitted herewith
 - will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND MAIER & NEUSTADT, P.C.

MARVIN J. SPIVAK
REGISTRATION NUMBER 24,913

Norman F. Oblon Registration No. 24,618

Fourth Floor 1755 Jefferson Davis Highway Arlington, Virginia 22202 Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 11/98)

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (РОСПАТЕНТ)

per.No 20/14-300

11 июня 1999 г.

СПРАВКА

Федеральный институт промышленной собственности Российского Агентства по патентам и товарным знакам настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы и чертежей (если имеются) заявки на выдачу патента на изобретение N 98124016, поданной в декабре месяце 30 дня 1998 года.

Название изобретения: Фрагменты ДНК, определяющие повышенную устой-

чивость бактерий Escherichia coli к аминокислотам или их аналогам, и способ получения L-аминокислот.

Заявитель (и):

Государственный научно-исследовательский институт генетики и селекции промышленных

микроорганизмов (ГНИИгенетика).

Действительный автор(ы): ЛИВШИЦ Виталий Аркадьевич, RU,

ЗАКАТАЕВА Наталия Павловна, RU, НАКАНИШИ Казуо, JP,

АЛЕШИН Владимир Вениаминович,

ТРОШИН Петр Владимирович,

ТОКМАКОВА Ирина Львовна,

RU, RU.

RU,

Уполномоченный заверить копию заявки на изобретение

Г.Ф.Востриков

Заведующий отделом

MIIK⁶ C12 N /20 C12 P 13/06 C12 P 13/08

ФРАГМЕНТЫ ДНК, ОПРЕДЕЛЯЮЩИЕ ПОВЫШЕННУЮ УСТОЙЧИВОСТЬ БАКТЕРИЙ ESCHERICHIA COLI К АМИНОКИСЛОТАМ ИЛИ ИХ АНАЛОГАМ, И СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ

Настоящее изобретение относится к биотехнологии и, в частности, касается способа получения L-аминокислет, а именно, L-глутаминовой кислоты, L-лизина, L-треонина, L-аланина, L-гистидина, L-пролина, L-аргинина, L-валина, или L-изолейцина с помощью бактерий, принадлежащих к роду Escherichia.

Для получения аминокислот с помощью ферментации используются штаммы, выделенные из природных источников, или с целью увеличения продуктивности применяют специально полученные мутанты этих штаммов. В случае L-лизина, продуцирующих мутантов, искусственных известно много аминокислоту. Большинство из них - это мутанты бактерий, устойчивые к S-2аминоэтилцистеину, (АЭЦ) принадлежащие к родам Brevibacterium, Corynebacterium, Escherichia. Предложено много различных приемов для повышения продукции аминокислот, например, таких как трансформация рекомбинантными ДНК (Патент США 4,278,765). Эти приемы в большинстве случаев основаны на повышении активности ферментов, участвующих в биосинтезе аминокислоты, в придании ключевому ферменту нечувствительности к ингибирующему действию конечного продукта и т.п. (См. Выложенную заявку на патент в Японии No. 56-18596 (1981) и международную заявку WO No.95/16042)

С другой стороны, как пример повышения продуктивности штамма продуцента аминокислоты путем увеличения экскреции этой аминокислоты известен штамм, принадлежащий к роду Corynebacterium, у которого повышена активность гена экскреции лизина, lysE. Однако в отношении бактерий, принадлежащих к роду Escherichia, наличие белков, обеспечивающих экскрецию этой аминокислоты, остается неизвестным. Поэтому неизвестно также, может ли повышение активности белка экскреции повысить продукцию аминокислоты в случае бактерий принадлежащих к роду Escherichia.

Хотя на сегодня известна нуклеотидная последовательность всей хромосомы штамма Escherichia coli K-12, принадлежащего к роду Escherichia (Science, 227, 1453-1474 (1997), имеется большое число белков, функция которых остается неизвестной. Среди них могут быть и белки, участвующие в процессе транспорта аминокислот из клеток бактерий.

Задачей настоящего изобретения является выявление белков, участвующих в экскреции L-аминокислот с целью создания штаммов с повышенной продукцией L-аминокислот клетками бактерий и усовершенствование тем самым способа получения L-аминокислот, L-лизина, L-треонин, L-глутамата, L-гистидина, L-пролина, L-аланина, L-аргинина, L-валин или L-изолейцин путем культивирования штаммов-продуцентов

Поставленная задача решается путем выявления генов, контролирующих синтез бактериальных белков, участвующих в экскреции L-аминокислот у E. coli, и конструирования на их основе штаммов-продуцентов, позволяющих разработать способ получения аминокислот с повышенным выходом целевой аминокислоты на единицу затраченного углевода.

Предметом настоящего изобретения являются бактерии, принадлежащие к роду Escherichia, обладающие способностью к продукции аминокислот, у которых эта способность повышена в результате увеличения экспрессируемого количества, по крайней мере, одного из белков, принадлежащих к группе состоящей из следующих белков от A по H) (в дальнейшем рассматриваемые как "бактерии по настоящему изобретению"):

А – белок, который состоит из аминокислотной последовательности № 5 (Фиг. 1); или

В – белок, который состоит из аминокислотной последовательности, включающей также делеции, замены, вставки или добавки из одной или нескольких аминокислот к последовательности №5 и который имеет активность обеспечивающую бактериям, содержащим этот белок, повышенную продукцию L-аминокислот.

С – белок, который состоит из аминокислотной последовательности № 6 (Фиг.2)
 ; или

D – белок, который состоит из аминокислотной последовательности, включающей также делеции, замены, вставки или добавки из одной или нескольких аминокислот к последовательности №6 и который имеет активность обеспечивающую бактериям, содержащим этот белок, повышенную продукцию L-аминокислот.

Е. – белок, который состоит из аминокислотной последовательности № 7 (Фиг.3); или F – белок, который состоит из аминокислотной последовательности, включающей также делеции, замены, вставки или добавки из одной или нескольких аминокислот к последовательности №7 и который имеет активность обеспечивающую бактериям, содержащим этот белок, повышенную продукцию L-аминокислот.

G – белок, который состоит из аминокислотной последовательности № 8(Фиг.4) ; или

Н – белок, который состоит из аминокислотной последовательности, включающей также делеции, замены, вставки или добавки из одной или нескольких аминокислот к последовательности №8 и который имеет активность обеспечивающую бактериям, содержащим этот белок, повышенную продукцию L-аминокислот.

Бактериями изобретению преимущественно по настоящему продуценты L-лизина, у которых экспрессируемое количество по крайней мере одного: из белков выбранных из группы, состоящей из белков поименованных в п.от А по D и G и H увеличено, продуценты L-глутаминовой кислоты, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п.от А по Н увеличено; продуценты L-аланина, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. С и D увеличено; :продуценты L-валина, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. С и D увеличено, продуценты Lпролина, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п.от С по F увеличено; продуценты L-треонина, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. Е и F увеличено; продуценты L-гистидина, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. С, D, G и Н увеличено; продуценты L-аргинина, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. от А по D, и G, Н увеличено; продуценты Lизолейцина, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. С и D, увеличено.

В клетках бактерий по настоящем изобретению число копий ДНК, кодирующих указанные белки, увеличено. Указанная ДНК в клетках этих бактерий преимущественно находится на многокопийном векторе или на транспозоне.

Настоящее изобретение также защищает способ получения аминокислот, который включает этапы:

- 1. культивирования бактерий, полученных в соответствии с настоящим изобретением, и обладающих способностью к продукции аминокислот, в культуральной среде, обеспечивающей продукцию и накопление соответствующей аминокислоты в этой среде, и
- 2. выделения накопившейся аминокислоты из этой среды.

Этот способ получения аминокислот включает получение L-лизина с помощью бактерий, продуцирующих L-лизин, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п.от A по D и G, H увеличено, получение глутаминовой кислоты с помощью бактерий, продуцирующих глутаминовую мислоту, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п.от А по Н увеличено; получения L-треонина с помощью бактерий, продуцирующих L-треонин, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. Е и F увеличено; получение L-аланина с помощью бактерий, продуцирующих L-аланин, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. Си D увеличено; получения Lпролина с помощью бактерий, продуцирующих L-пролин, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п.от С по F увеличено; получение L-валина с помощью бактерий, продуцирующих L-валин, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. С и D увеличено; получение L-изолейцина с помощью бактерий, продуцирующих Lизолейцин, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п.С и D увеличено; получения L-гистидина помощью бактерий, продуцирующих L-гистидин, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. С. D и G. Н увеличено; получения L-пролина помощью бактерий, продуцирующих L-аргинин, у которых экспрессируемое количество по крайней мере одного из белков выбранных из группы, состоящей из белков поименованных в п. от A по D и G, Н увеличено.

В соответствии с настоящим изобретением способность продуцировать аминокислоты бактериям, принадлежащим к роду Escherichia может быть усилена, а способ получения аминокислот может быть усовершенствован в том, что касается повышения продукции аминокислот.

Ниже следует детальное объяснение настоящего изобретения. В дальнейшем изложении, если не оговорено, имеются в виду L-стереоизомеры аминокислот.

1. Бактерии по настоящему изобретению.

Бактерии настоящему изобретению представлены бактериями, по принадлежащими к роду Escherichia, способными к продукции аминокислот, у которых эта способность повышена за счет повышения экспрессируемого количества белков, обладающих активностью, которая обеспечивает увеличенную продукцию аминокислот. В дальнейшем эти белки будут обозначены как «белки, экскретирующие аминокислоты», однако этот термин не означает, что функция указанных белков ограничивается только экскрецией аминокислот. Примером белков, экскретирующих аминокислоты, являются белки, имеющие аминокислотные последовательности, представленные на Фиг.1 (последовательность No.5), Фиг.2 (Последовательность No.6), Фиг.3 (Последовательность No.7) и Фиг.4 (Последовательность No.8). Белки, экскретирующие аминокислоты, могут иметь специфичность по отношению к определенным аминокислотам. Эта специфичность может быть определена путем экспрессии соответствующих белков в клетках бактерий, принадлежащих к роду ингибирующих факта повышения минимально Escherichia, установления

концентраций определенных аминокислот, или аналогов аминокислот. Кроме того, специфичность может быть определена путем экспрессии соответствующих белков в клетках указанных бактерий, обладающих способностью к продукции аминокислот, и установления факта повышения продукции соответствующих аминокислот.

Например, в случае лизина, белок, имеющий последовательность, показанную в списке последовательностей под номером 5, 6 или 8 обнаружил такого рода активность. В случае глутаминовой кисоты белок, имеющий последовательность, показанную в списке последовательностей под номером 5, 6, 7 или 8, обнаруживает такого рода активность. В случае треонина белок, имеющий последовательность, показанную в списке последовательностей под номером 7, обнаруживает такого рода активность. В случае аланина белок, имеющий последовательность, показанную в списке последовательностей под номером 6, обнаруживает такого рода активность. В случае гистидина белок, имеющий последовательность, показанную в списке последовательностей под номером 6 и 8, обнаруживает такого рода активность. В случае пролина белок, имеющий последовательность, показанную в списке последовательностей под номером 6 или 7, обнаруживает такого рода активность. В случае аргинина белок, имеющий последовательность, показанную в списке последовательностей под номером 5, 6 или 8, обнаруживает такого рода активность. В случае валина белок. имеющий последовательность, показанную последовательностей под номером 6, обнаруживает такого рода активность. В случае изолейцина белок, имеющий последовательность, показанную списке последовательностей под номером 6, обнаруживает такого рода активность. В случае аргинина, белок, имеющий последовательность, показанную списке последовательностей под номером 5, 6 или 8 обнаружил такого рода активность.

Термин «экспрессируемое количество увеличено» используется здесь для обозначения того факта, что экспрессируемое количество белка больше чем в штаммах

дикого типа, например, в штамме Е. coli MG1655 или W3110. Этот термин означает также, что если штамм получен путем генетической модификации, например, с помощью методов генной инженерии и т.п., то экспрессируемое количество белка повышается в результате этой модификации. Экспрессируемое количество белка, экскретирующего аминокислоту может быть прямо определено путем измерения количества белка, экскретирующего аминокислоту, или косвенно по эффекту этого белка на устойчивость бактерий к аминокислотам и к аналогам аминокислот, или на продуктивность бактерий, принадлежащих к роду Escherihia и содержащих этот белок.

Способ повышения экспрессируемого количества белка, экскретирующих аминокислоту, может включать методы, предполагающие увеличение числа копий ДНК, кодирующих этот белок. Для увеличения числа копий ДНК фрагмент ДНК, который может кодирующий указанный белок, лигируют С вектором, функционировать в бактериях, принадлежащих к роду Escherichia, с образованием рекомбинантной ДНК, которой затем трансформируют клетки бактерии-хозяина. При этом число копий гена, кодирующего белок, экскретирующий аминокислоту (гена белка, экскретирующего аминокислоту) в клетках трансформированных бактерий увеличивается, и таким образом повышается экспрессируемое количество белка, экскретирующего аминокислоту. Для этой цели можно использовать многокопийный вектор.

Кроме того, повышение экспрессируемого количества белка, экскретирующего аминокислоту, может быть достигнуто введением множества копий гена белка, экскретирующего аминокислоту, в хромосоме бактерии-хозяина. Это введение в хромосому бактерий, принадлежащих к роду Escherichia, может быть осуществлено посредством гомологической рекомбинации с использованием в качестве мишеней последовательностей ДНК, множество копий которых существует в хромосоме. В качестве таковых могут быть использованы повторяющиеся последовательности в

хромосомной ДНК обращенные повторы транспозируемых Альтернативный метод предполагает введение в хромосомную ДНК множества копий гена белка, экскретирующего аминокислоту, с помощью интеграции его в транспозон и последующей индукции множественных актов транспозиции, как это описано в Выложенной заявке на патент в Японии No. 2-109985 (1990). В результате осуществления любого из описанных выше подходов число копий экскретирующего аминокислоту, увеличится и тем самым увеличится экспрессируемое количество белка, экскретирующего аминокислоту.

Мультикопийные вектора могут представлены плазмидными векторами, такими как pBR322, pMW118, pUC19 или подобными, или фаговыми векторами, такими как λ 1059, λ BF 101, M13mp9 или подобными. Транспозоны могут быть представлены фагом Ми, транспозонами Tn10, Tn5 или подобными. Введение ДНК в бактерии, принадлежащие к роду Escherichia, может быть осуществлено, например, с помощью метода Моррисона (Methods in Enzymology., 68, 326, 1979) или метода, в котором реципиентные клетки бактерий подвергают воздействия хлористого кальция для увеличения их проницаемости по отношению к ДНК (Mandel and Higa, J. Mol. Biol., 53, 159, 1970) или другими подобными методами.

Кроме упомянутой выше амплификации генов, экспрессируемое количество белка, экскретирующего аминокислоту, может быть увеличено также путем замены экспрессирующей регуляторной последовательности, такой как промотор гена белка, экскретирующего аминокислоту на более сильный промотор (Выложенная заявка на патент в Японии No.1-215280 (1989)). В качестве сильных промоторов известны lac промотор, trp промотор, tac промотор, P_R промотор и P_L промотор фага ламбда и дркгие. Замена промотора усиливает экспрессию гена белка, экскретирующего аминокислоту, и тем самым увеличивает экспрессируемое количество указанного

белка. Усиление экспрессирующей регуляторной последовательности можно совмещать с увеличением числа копий гена белка, экскретирующего аминокислоту.

В бактериях по настоящему изобретению, может быть повышено экспрессируемое количество нескольких белков, экскретирующих аминокислоты.

экскретирующие аминокислоты, кодируются известными (открытыми рамками считывания, ORF) yahN, yeaS, yfiK, yggA, функция которых не известна. Поэтому ДНК, кодирующие белки, экскретирующие аминокислоты, могут быть получены путем синтеза праймеров на основе известных последовательностей (например, полной нуклеотидной последовательности хромосомы Escherichia coli K-12, (Science, 277, 1453-1474, 1997)) அ амплификации с помощью полимеразной цепной реакции (ПЦР) с использованием хромосомной ДНК бактерий, принадлежащих к роду Escherichia, в качестве матрицы. Кроме того, нужный фрагмент ДНК может быть отобран с помощью гибридизации из библиотеки генов хромосоимной ДНК указанных бактерий путем применения зонда, изготовленного основе известной последовательности. Альтернативный подход предполагает синтез ДНК кодирующего белок, экскретирующий аминокислоту, основе известной последовательности. Нуклеотидные последовательности фрагментов ДНК кодирующих белки YahN, YeaS, YfiK, YggA, экскретирующие аминокислоты представлены в формуле изобретения (Последовательности 1-4).

Методы выделения хромосомной ДНК, получения библиотеки генов, ДНК-ДНК гибридизации, ПЦР, выделения и трансформации плазмидной ДНК, рестрицирования и лигирования ДНК, выбора нуклеотидов для праймеров, и т.п. методы хорошо известны и детально описаны во многих руководствах, например, Sombrook, J., Fritsch E. F. and Maniatis T. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.).

Белки, экскретирующие аминокислоты, могут содержать делеции, замены, инсерции или добавки одной или нескольких аминокислот в одной или нескольких позициях, не нарушающих при этом активность белка, обеспечивающую повышенную устойчивость к аминокислотам и/или аналогам и повышенную продукцию аминокислот.

Фрагменты ДНК, кодирующие по существу те же белки, что и экскретирующие аминокислоты, описанные выше, могут быть получены, например, путем модификации нуклеотидной последовательности, в частности при помощи сайтнаправленного мутагенеза, так что один или более аминокислотный остаток будет делетирован, заменен, вставлен или добавлен. ДНК, модифицированная описанным выше способом, может быть получена известными методами с помощью мутационных воздействий. Мутационная обработка включает методы обработки ДНК, кодирующей например, при помощи белок. экскретирующий аминокислоту, in vitro. гидроксиламина, или методы обработки микроорганизма, в частности, бактерий, ДНК, кодирующую Escherichia несущих принадлежащих роду белок, экскретирующий аминокислоту, УФ облучением или мутагенными агентами, такими как N-метил-N'-нитро-N-нитрозогуанидин (НГ) или азотистая кислота, которые обычно используется для индукции мутаций.

Фрагменты ДНК, кодирующую указанные варианты белков, экскретирующих аминокислоты, отбирают путем экспрессии в клетках бактерий рода Escherichia плазмидной ДНК, несущей ген, кодирующий указанный белок, и подвергнутой in vitro мутагенному воздействию, как описано выше, в соответствующих клетках с последующим определением их устойчивости к высокой концкнтрации аминокислоты и/или аналога аминокислоты и/или способности повышать продукцию аминокислоты.

Изобретение относится также к вариантам белков, экскретирующих аминокислоты, которые встречаются в разных видах, штаммах и вариантах бактерий

рода Escherichia и обусловлены природным разнообразием. ДНК, кодирующих эти варианты, и которые гибридизуются в жестких условиях с ДНК, имеющими нуклеотидные последовательности с 1 по 4, показанные в формуле изобретения.

Термин «жесткие условия» означает здесь условия, при которых так называемая специфическая гибридизация происходит, а неспецифическая не происходит. Трудно четко выразить эти условия с помощью каких-то цифровых значений, однако например, жесткие условия включают условия, при которых ДНК, имеющие высокую гомологию, например, не менее 70% гомологии по отношению друг к другу - гибридизуются, а ДНК, имеющие гомологию ниже указанной величины – нет.

Среди отобранных таким образом генов могут встречаться гены с появившимся в их средней части стоп-кодоном, или гены, кодирующие белок, который утратил активность в результате мутации в активном центре. Такие дефектные гены легко элиминируются после лигирования их с коммерчески доступными экспрессионными векторами и определения способности повышать продукцию аминокислот бактериями, принадлежащими к роду Escherichia, как это описано выше.

Термин "ДНК, кодирующая белок", обозначает двунитевую ДНК, одна из нитей которой кодирует белок.

Увеличив экспрессируемое количество белка, экскретирующего аминокислоту, в клетках штамма-продуцента, как это описано выше, можно повысить продукцию соответствующей аминокислоты. При этом возможны два варианта:

- 1. Признак повышенного экспрессируемого количества белка, экскретирующего аминокислоту вводят в штамм, уже способный продуцировать желаемую аминокислоту.
- 2. Способность к продукции аминокислот придается штаммам, у которых экспрессируемое количество белка, экскретирующего аминокислоту, уже повышено.

Примеры бактерий, продуцирующих аминокислоты и принадлежащих к роду Escherichia, приведены ниже.

Треонин –продуцирующие бактерии

Продуцент треонина, принадлежащий к роду Eschsrichia, может быть представлен штаммом VL2054. Этот штамм является производным известного штамма E. coli ВКПМ В-3996 (Патент США No. 5 175 107), и получен на его основе в два этапа. Сначала из штамма E. coli ВКПМ В-3996 элиминируют плазмиду рVIС40; в полученный бесплазмидный реципиет с помощью фага P1 трансдуцируют сцепленный с транспозоном Tn10 дикий аллель гена rhtA, связанный с устойчивостью к гомосерину и треонину (ABSTRACTS of 17th International Congress of Biochemistry and Molecular Biology in conjugation with 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francicco, California August 24-29, 1997, №457) и получают известным методом мутацию, повреждающую ген кап транспозона Tn5, интегрированного в ген tdh.

На втором этапе в интегративный вектор миниМи (Mud) клонируют гены треонинового оперона из плазмиды pVIC40 под P_R промотором фага ламбда и ген сат устойчивости к хлорамфениколу. Полученную конструкцию интегрируют известным методом в штамм E.coli C600, откуда ее трансдукцией переносят в полученный на первом этапе штамм. Таким образом получают штамм E. coli VL2054, который является бесплазмидным продуцентом треонина. Кроме треонина в процессе ферментации штамм E. coli VL2054 способен накапливать также небольшие количества аланина, валина и изолейцина.

Лизин –продуцирующие бактерии

Продуцент лизина принадлежащий к роду Escherichia, может быть представлен штаммом E.coli W3110 (ТугА) (Европ. Патент 488424), в который введена плазмида pCABD2 (Международная заявка WO 95/16042). Штамм W3110 (tyrA) был

сконструирован следующим образом. Штамм E.coli W3110, который хранится в Национальном Институте Генетики (Япония) высевали на чашку с LB-агаром, содержащим стрептомицин, и отбирали стрептомицин-устойчивый мутант. Этот мутант смешивали со штаммом E.coli K-12 ME8424, и подращивали в L-бульоне (состав: 1% бактотрептона, 0.5% дрожжевого экстракта, 0.5% NaCl), при 37°C в течение 15 минут для индукции конъюгации. Штамм E.coli K-12 ME8424 имеет следующие генетические характеристики (HfrPO45, thi, relA1, tyr::Tn10, ung-1, nadB) и хранится в Национальном Институте Генетики (Япония). Затем, высевая эту суспензию бактерий на полноценную питательную среду (агаризованный L-бульон, содержащий стрептомицин, тетрациклин и дирозин), получили штамм E.coli W3110 (tyrA). Плазмида pCABD2 может быть получена интеграцией фрагмента, содержащего ген ddh и фрагмента, содержащего ген dapB, которые амплифицировали из хромосомы E.coli W3110 на основе известной последовательности, в плазмиду RSED80. Штамм E.coli, несущий плазмиду RSFD80, депозирован в Национальном Институте Биологических Наук и Гуманитарных Технологий Агентства Промышленной Науки и Технологии 28 октября 1993 года под номером FERM P-13936, откуда он передан в международный депозитарий по Будапештскому договору от 1 ноября 1994 года и получил номер хранения FERM BP-4859. Кроме того, в качестве продуцента лизина, принадлежащего к роду Escherichia, может быть использован штамм E. coli VL614. Этот штамм является призводным известного штамма VL613 (Авторское свидетельство СССР No.1354458).

Продуценты глутаминовой кислоты.

В качестве продуцента глутаминовой кислоты может быть представлен штамм Е. coli AJ12624, который содержит мутацию в генах SucAB, кодирующие синтез дегидрогеназы альфа-кетоглутаровой кислоты, а также дополнительных мутаций, повышающих выход и стабильность глутаминовой кислоты (Патент США No.5,378,616).

Гистидин –продуцирующие бактерии

В качестве продуцента гистидина, принадлежащего к роду Escherichia, может рассматриваться штамм Е. coli 80, описанный в Патенте РФ No.2119536.

Пролин –продуцирующие бактерии

В качестве продуцента пролына принадлежащего к роду Escherichia; можно рассматривать штамм Е. coli VL2151 (W3350 proB* ΔputAP Tn10), сконструированный на основе известного штамма W3350 путем селекции мутантов, устойчивых к 3,4-дегидро-DL-пролину и последующего введения с помощью трансдукции фагом Р1 в полученный таким образом мутант, накапливающий следы пролина, мутации ДрutAP, сцепленной с транспозоном Tn10

Аргинин –продуцирующие бактерии

В качестве продуцента аргинина, принадлежащего к роду Escherichia coli, можно рассматривать штамм Е. coli VL2141, который получен как мутант известного штамма W3350, устойчивый к канаванину и 5-фторурацилу.

Гены белков, экскретирующих аминокислоты, по настоящему изобретению были идентифицированы впервые как это описано ниже.

Ранее авторы настоящего изобретения идентифицировали гены rhtВ и rhtС гены как белков экскреции гомосерина и треонина у Escherichia coli. Далее, основываясь на предположении о том, что белки экскреции аминокислот должны иметь какое-то сходство в своей структуре, был осуществлен поиск белков, гомологичных RhtВ.

Поиск гомологии осуществляли с помощью программы BLAST и PSI-BLAST(Altschul, et al., Nucleic Acids Res. 25:3389-3402, 1997) в базах данных GenBank CDS translations, PDB, SwissProt, Spupdate и PIR; с помощью программы BLITZ (Sturrock, S. S., and J. F. Collins, MPsch version 1.3. Biocomputing research unit. University of Edinburgh, UK(1993)) осуще ствлялся поиск в базе данных SWALL и с помощью программы (Ogiwara, I. et al., Protein Sci. 5, 1991-1999 (1996) в базе транслированных генов SWISS-PROT. Из более 60 обнаруженных последовательностей гены yeaS (кодирует f212 в последовательности No. AE 000274 в базе данных GenBank), yahN (кодирует f223 в последовательности No. AE 000140 в базе данных GenBank), уfiK (кодирует o195 в последовательности No. AE 000344 в базе данных GenBank) и уggA (кодирует f211 в последовательности No. AE 000375 в базе данных GenBank) из Е. coli могут иметь функцию, сходную с функцией RhtB. Поскольку функции всех этих генов были неизвестны, эти гены были выделены и клонированы на плазмидных векторах имеющих в клетках E. coli разное число копий. Затем определялось влияние повышенного экспрессируемого количества продуктов этих генов на чувствительность клеток бактерий Е. coli к высоким концентрациям аминокислот и аналогов аминокислот, а также на продукцию аминокислот. В результате была установлена повышенная устойчивость бактерий, содержащих плазмиды с генами yeaS, yfhN, yahN и yggA, к определенным аминокислотам и аналогам. Кроме того, была обнаружена повышенная продуктивность штаммов-продуцентов аминокислот, содержащих указанные плазмиды. Установлено также, что в этом отношении гены yahN, yeaS, yfiK, и yggA могут обладать как определенной избирательностью, так и проявлять множественный эффект.

Получение аминокислот по настоящему изобретению.

Получение аминокислот с помощью штаммов-продуцентов бактерий, полученных в соответствии с настоящим изобретением, осуществляют

культивированием штаммов- в культуральной среде, обеспечивающей продукцию и накопление соответствующей аминокислоты в этой среде, и выделения накопившейся аминокислоты из этой среды.

К числу аминокислот, которые получают по настоящему изобретению относятся лизина, треонин, глутаминовая кислота, гистидин, аланин, пролин, аргинин, валин и изолейцин.

В соответствии с настоящим изобретением, культивирование бактерий, принадлежащих к роду Escherichia, выделение и очистку аминокислоты культуральной жидкости осуществляют известными методами. Для культивирования используют синтетическую или натуральную среду. Такая среда включает источник углерода, азота, минеральные соли и необходимые добавки в количествах, оптимальных для роста и биосинтеза. В качестве источника углерода используют различные углеводы, такие как глюкоза, сахароза, различные органические кислоты. В -зависимости от ассимилирующих способностей можно применять спирты, включая этанол или глицерол. В качестве источника азота используют аммиак, различные соли аммония, такие как сульфат аммония, или другие азотсодержащие соединения, такие как амины, а также природные источники азота, такие как пептон, гидролизат соевых бобов, или гидролизат микробных клеток. В качестве минеральных компонентов используются фосфат калия однозамещенный, сульфат магнезии, хлористый натрий, сульфат железа, сульфат марганца, карбонат кальция. Культивирование преимущественно осуществляют в аэробных условиях, таких как культивирование на мешалке, или с аэрацией и перемешиванием культуры. Температура культивирования от 30° до 40° C, преимущественно $30\text{--}38^{\circ}$ C. pH культуры - 5-9, преимущественно 6,5-7,2 рН культуры доводят до желаемых значений с помощью аммония, карбоната кальция, различных кислот, оснований или буферов. Культивирование осуществляют в течение 1-3 дней. После завершения культивирования выделение аминокислоты

осуществляют путем удаления твердых частиц, таких как клетки, из среды с помощью центрифугирования или фильтрации через мембранные фильтры с последующим выделением и очисткой целевой аминокислоты с помощью ионообменника, фракционирования с помощью концентрации и кристаллизации.

Перечень фигур.

Фиг. 1. Последовательность белка YahN.

Фиг.2 Последовательность белка YeaS.

Фиг.3. Последовательность белка YahN.

Фиг.4. Последовательность белка YggA.

Настоящее изобретение более конкретно поясняют нижеследующие примеры.

Пример 1. Получение фрагментов ДНК yahN, yeaS, yfiK, и yggA, кодирующих синтез белков, экскретирующих аминокислоты.

Полная нуклеотидная последовательность хромосомы Escherichia coli K-12 известна (Science, 277, 1453-1474, 1997). На ее основе синтезируют праймеры, которые используют для амплификации фрагментов ДНК (генов) yahN, yeaS, yfiK, и yggA, кодирующих синтез белков, экскртирующих аминокислоты, с помощью полимеразной цепной реакции (ПЦР).

(1).В качестве матрицы используют хромосомную ДНК штамма Echerichia coli MG1655, которую выделяляют по стандартной методике (Sambrook, J., Fritsch E. F. and Maniatis T. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.). Амплификацию проводили в термоциклере TechnePHC2, используя Таq полимеразу (Fermentas); условия реакции подбирают в зависимости от температуры плавления праймеров и размеров амплифицируемого

фрагмента, как это описано в руководствах (PCR protocols.Current methods and applications. White, B.A., ed. Humana Press, Totowa, New Jersey, 1993)

Полученные продукты PCR очищали стандартным способом и рестрицировали как описано ниже.

Для амплификации гена yahN используют праймеры:

gtgtggaaccgacgccggat (последовательность, комплементарная последовательности нуклеотидов с 1885 по 1704 в последовательности AE000140, хранящейся в GenBank) и tgttgtatggtacggggttcgag (последовательность с 223 по 245 нуклеотида там же).

Полученный продукт ПЦР рестрицируют ферментами PstI, StuI и лигируют с вектором рUC21, обработанным теми же ферментами. В результате получают плазмиду рYAHN.

Для амплификации гена yeaS используют праймеры:

ctttgccaatcccgtctccc (последовательность, комплиментарная нуклеотидам с 7683 по 7702 в последовательности AE000274 в GenBank; и

дссссаtдсаtаасддааад (последовательность с 5542 по 5561 нуклеотид)

Полученный продукт ПЦР рестрицируют ферментом AvaI и лигируют с вектором pUC19. В результате получают плазмиду pYAHN.

Для амплификации гена yfiK используют праймеры: gaagatcttgtaggccggataaggcg- (последовательность с 4155 по 4177 в AE000344 GenBank, с добавленными на 5' конце нуклеотидами, образующими сайт для BglII), и tggttttaccaattggccgc (последовательность, комплиментарная нуклеотидам с 6307 по 6326 в той же последовательности).

Полученный продукт ПЦР рестрицируют ферментами BglII, MunI и лигируют с вектором pUC21. В результате получают плазмид pYFIK.

Для амплификации гена yggA были используют праймеры:

астистесседсадется (последовательность, комплиментарная последовательности нуклеотидов с 9606 по 9626 в АЕ000375 в GenBank) и ggcaagcttagcgcctctgtt (последовательность с 8478 по 8498 нуклеотид, там же). Продукт PCR рестрицируют HindIII и ClaI и лигируют с вектором умеренной копийности pOK12 (Vieira, Messing, Gene, 100, 189-194, 1991). В результате получают плазмиду pYGGA.

Полученными плазмидами трансформируют известный штамм E. coli TG1(Sambrook, J., Fritsch E. F. and Maniatis T. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.). и штаммы E. coli – продуценты аминокислот.

(2).).В качестве матрицы используют хромосомную ДНК штамма Echerichia coli W3110, которую выделяляют по стандартной методике как описано выше.

Для амплификации гена yahN используют праймеры:

доследовательность нуклеотидов с 1230 по 1247 в AE000140, GenBank с сайтом для рестрицирующего фермента SacI, добавленным на 5' конце) и сдетства в адрассае статом для последовательность с 429 по 446 нуклеотид с последовательностью для рестриктазы XbaI, добавленной на 5' в конце).

Для амплификации гена yeaS используют праймеры:

досладовательности нуклеотидов с 6542 по 6560 в AE000274 в GenBank с сайтом для распознавания рестриктазой SacI, добавленной на 5' конце) и судестада с сайтом для распознавания для рестриктазы XbaI, добавленной на 5' в конце).

Для амплификации гена yfiK используют праймеры:

ggcgagctca tgttccgtgt cgggtac (последовательность с 5192 по 5209 нуклеотид в

AE000344, GenBank с добавленными на 5' конце нуклеотидами, образующими сайт для

распознавания ферментом SacI) и

ggctctagat agcaagttac taagcgg (последовательность, комплиментарная

последовательности нклеотидов с 5871 по 5854 нуклеотида с добавленными на 5'

конце нуклеотидами, образующими сайт для распознавания рестрицирующим

ферментом XbaI).

Для амплификации гена yggA были используют праймеры:

ctctgaattctctcttattagtttttctgattgcc (последовательность, комплиментарная

последовательности нуклеотидов с 9236 по 9270 в AE000375, GenBank, с

добавленными на 5' конце нуклеотидами, образующими сайт для распознавания

рестрицирующим ферментом EcoRI) и

cgtgacctgcagcgttctcacagcgcggtagcctttaa (последовательность с 8075 по 8112 нуклеотид

с добавленными на 5' конце нуклеотидами, образующими сайт для распознавания

рестрицирующим ферментом Pstl).

Полученные продукты ПЦР очищают как описано выше, рестрицируют ферментами

SacI и XbaI (EcoRI и PstI для yggA) и лигируют с малокопийным вектором рМW118,

рестрицированным аналогичными ферментами. Нуклеотидную последовательность

полученных вставок определяют с помощью ABI PRISM BigDye Terminator Cycle

Sequence Ready Reaction Kit (PE Applied Biosystems) и и автоматическим секвенатором

ДНК (PE Applied Biosystems). Плазмиды, в которых нуклеотидная последовательность

вставок соответствовала приведенной в GenBank, были отобраны и названы,

соответственно:

C геном yahN: pMW118::yahN

С геном yeaS: pMW118::yeaS

С геном yfiK: pMW118::yfiK

С геном уggA: pMW118::yggA

Полученными плазмидами трансформируют штамм JM109 и различные штаммы-продуценты лизина.

Пример 2 Влияние фрагментов ДНК yahN, yeaS, yfiK, yggA на устойчивость бактерий E.coli к некоторым аминокислотам и аналогам аминокислот.

Гомология продуктов reнoв yeaS, yfhN, yahN и yggA с белком RhtB и с лизиновым транспортером LysE, осуществляющим экспорт L-лизина из клеток Corynebacterium glutamicum (Vrljic et al., Mol. Microbiol., 22, 815-826, 1996), указывает на аналогичную функцию белков – продуктов указанных генов. Известно, что повышение активности генов, контролирующих транспорт из клеток различных ингибиторов роста, увеличивает их устойчивость к соответсвующим соединениям. В связи с этим определяют влияние плазмид, несущих фрагменты ДНК yeaS, yahN, yahN и yggA, на устойчивость бактерий Е. coli TG1 к некоторым аминокислотам и аналогам аминокислот. С этой целью штамм TG1 трансформируют плазмидами pYEAS, pYAHN, pYFIK, pYGGA и векторами pUC21 и pOK12. Ночные культуры полученных штаммов, выращенные в минимальной среде M9 на качалке (около 10⁹ клеток/мл) разводят 1:100 и подращивают в течение 5 часов в той же среде. Затем полученные культуры в логарифмической фазе роста разводят и приблизительно по 104 жизнеспособных клеток наносят на высушенные чашки с агаризованной (2% агара) средой М9, содержащей различные концентрации аминокислот, или аналогов аминокислот. Рост или отсутствие роста определяют через 46-48 часов. Таким образом устанавливают минимальные ингибирующие концентрации (МИК) этих соединений (Табл. 1).

Таблица 1

	МИК (мкг/мл) для штамма E. coli TG1, несущего					
Соединение	плазм					
	PUC21	PYFIK	PYAHN	pYEAS	PYGGA	
L-Гомосерин	500	1000	500	1000	500	
L-Треонин	30000	40000	30000	50000	30000	
L-Лизин HCl	5000	5000	7500	10000	15000	
L-Глутаминовая кислота (натриевая соль)	50000	60000	60000	120000	50000	
L-Гистидин	20000	20000	20000	60000	40000	
L-Валин	0,5	0,5	0,5	0,5	0,5	
L-Пролин	20000	80000	20000	60000	20000	
L-Аргинин	10000	10000	20000	20000	20000	
АЭЦ	5	10	5	5	200	
AOB	100	200	100	100	100	
α-Аминомасляная кислота	2000	5000	2000	10000	2000	
4-аза-DL-лейцин	50	50	50	50	100	
3,4-Дегидро-DL-пролин	20	20	20	20	20	

Как видно из таблицы 1, амплификация фрагмента ДНК уfiК существенно повышает устойчивость бактерий к пролину, в меньшей степени возрастает устойчивость к треонину, гомосерину, глутамату, α-аминомасляной кислоте, к аналогу треонина, α-амино-β-оксивалериановой кислоте (AOB) и к аналогу L-лизина, (S)-2-аминоэтил-L-цистеину (АЭЦ). Амплификация фрагмента ДНК уаhN повышает устойчивость бактерий к лизину, глутамату и аргинину. Амплификация гена уеаЅ существенно повышает устойчивость бактерий к глутамату, гистидину и α-аминомасляной кислоте, в меньшей степени возрастает устойчивость к треонину, гомосерину, лизину и аргинину. Амплификация гена уggA существенно повышает

устойчивость бактерий к (S)-2-аминоэтил-L-цистеину (АЭЦ) и лизину, в меньшей степени возрастает устойчивость к глутамату, гистидину, и к 4- аза-DL-лейцину.

Эти результаты свидетельствуют о том , что каждый из белков, кодируемых указанными фрагментами ДНК обладают специфичностью по отношению к нескольким субстратам (аминокислотам) или может обнаруживать неспецифический эффект в результате амплификации.

Пример 3. Влияние фрагментов ДНК yeaS, yahN, yfiK на продукцию глутаминовой кислоты.

В качестве продуцента глутаминовой кислоты используют штамм Е. coli AJ12624 (Патент США No.5,378,616).

Штамм AJ12624 трансформируют каждой из плазмид pYAHN, pYEAS, pYFIK несущей гены белков, экскретирующих аминокислоты, а также вектором pUC21. В результате получают штаммы: AJ12624/pUC21 (ВКПМ В-7728); AJ12624/pYAHN (ВКПМ В-7729); AJ12624/pYEAS (ВКПМ В-7731); AJ12624/pYFIK (ВКПМ В-7730).

Каждый из полученных таким образом штаммов культивируют при 37°C 18 часов в LB бульоне содержащем 100 мг/л ампициллина. Затем по 0.3 мл полученной культуральной жидкости вносят в пробирки 20 х 200 мм с 3 мл ферментационной среды, содержащей 100 мг/л ампициллина и культивируют при 37°C 46 часов на роторной качалке (120 об/мин).

Состав ферментационной среды (г/л):

Глюкоза	80
$(NH_4)_2SO_4$	22
K ₂ HPO ₄	2
NaCl	0.8
MgSO₄ x 7H₂O	0.8

 $FeSO_4 \times 7H_2O$ 0.02

 $MnSO_4 \times 5H_2O$ 0.02

Тиамин HCl 0,0002

Дрожжевой экстракт 1,0

СаСО₃ 30 (добавляют после стерилизации)

После культивирования количество накопленной глутаминовой кислоты, а также оптическую плотность культуральной жидкости при 560 нм измеряют известными методами. Результаты представлены в Табл.2.

Таблица 2.

Штамм	Оптйческая плотность	_ Глутаминовая кислота, г/л
AJ12624/pUC21	15.3	21.9
AJ12624/pYAHN	17.9.	27.9
AJ12624/pYEAS	18.3	29.7
AJ12624//pYFIK	16.8	28.4
÷		

Как следует из таблицы 2, увеличение экспрессируемого количества каждого из белков YahN, YeaS и YfiK, кодируемых соответсвующими генами, локализованными на многокопийных плазмидах, повышает продукцию глутаминовой кислоты штаммомпродуцентом. Наибольший эффект дает ген yeaS, амплификация которого повышает продукцию аминокислоты на 35%.

Пример 4. Влияние фрагментов ДНК yeaS, yahN, yfiK и yggA, на продукцию лизина.

(1). В качестве исходного лизин-продуцирующего штамма используют штамм E.coli W3110 (ТугА) (Европейский патент No.488424), в который вводят плазмиду pCABD2 (Международной заявке WO 95/16042) и каждую из плазмид pMW118::yahN,, pMW118::yeaS,, pMW118::yfiK, несущих гены экскреции аминокислот, а также вектор pMW118. Так были получены следующие штаммы E. coli:

W3110 (tyrA)/pCABD2+pMW118::yahN

W3110 (tyrA)/pCABD2+pMW118::yeaS

W3110 (tyrA)/pCABD2+pMW118::yfik

W3110 (tyrA)/pCABD2+pMW118.

Продукция лизина этими штаммами определяют культивируя их в ферментационной среде следующего состава:

Глюкоза	40 g/i
MgSO ₄ x7H ₂ O	1 g/l
(NH ₄) ₂ SO ₄	16 g/l
K₂HPO₄	1 g/l
FeSO ₄ x7H ₂ O	0,01 g/l
MnSO ₄ x7H ₂ O	0,01
Дрожжевой экстракт	2 g/l
Тирозин	0,1 g/l
CaCO3	25 g/l

Глюкоза и сернокислый магний стерилизуется отдельно. CaCO₃ стерилизуется сухим жаром при 180°C в течение 2 часов. pH доводится до 7.0. Антибиотики, ампицилин - 50 мг/л и хлорамфеникол - 25 мг/л, вносят в среду после стерилизации.

Культивирование осуществляют при 37оС в течение 30 часов с аэрацией (роторная качалка, 115 об./мин). Результаты представлены в Табл.3

Таблица3

Штамм E. coli	Лизин,	Выход на 1 г. сахара,	
	г/л	· (%)	
W3110 (tyrA)/pCABD2, pMW118	12,2	30,5	

13,8	34,5
12,7	31,8
12,2	30,5
	12,7

Как следует из Табл. 3, наибольший эффект на продукцию лизина из исследованных в этом примере генов оказывает ген yahN.

(2). В качестве исходного лизин-продуцирующего штамма используют штамм Е. coli VL614.. Этот штамм является призводным известного штамма Е. coli VL613 (Авторское свидетельство СССР № 1354458). Штамм VL614 получают трасдукцией с помощью фага Р1 в исходный штамм VL613 дикого аллеля rhtA⁺, сцепленного с транспозоном Tn10. Трасдуктанты отбирают на среде LB с тетрациклином (10 мг/л) и среди них находят клоны, чувствительные на минимальной среде к гомосерину (10 г/л). Полученный таким путем штамм VL614 трансформируют плазмидой рYGGA и вектором рОК12. В результате получают штаммы VL614/рYGGA (ВКПМ В-7719) и VL614/рОК12 (ВКПМ В-7722).

Каждый из полученных штаммов культивируют при 37°C 18 часов в LB бульоне с 50 мг/л канамицина. Затем по 0.3 мл полученной культуральной жидкости внесят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей 50 мг/л канамицина, и культивируют при 34° С 68 часов на роторной качалке. После культивирования количество накопленного в среде лизина и глутаминовой кислоты, а также оптическую плотность культуральной жидкости при 560 нм измеряют известными методами. Результаты представлены в Табл.4.

Таблица 4

Штамм E. coli	OD ₅₆₀	Лизин, г/л	Глутамат, (г/л)
VL614/pOK12	14.4	2.6	8,0
VL614/pYGGA	15.7	3.6	2.2

Как видно из Табл.4, амплификация фрагмента ДНК уggA на плазмиде pOK12 заметно повышает продукцию лизина. Одновременно с этим повышается накопление в культуральной жидкости и глутаминовой кислоты.

Пример 5. Влияние фрагментов ДНК yeaS и yggA на продукцию L-треонина, L-аланина, L-валина и L-изолейцина.

В качестве продуцента треонина используют штамм Е. coli VL2054. Этот штамм является производным известного штамма Е. coli ВКПМ В-3996 (Патент США No. 5 175 107), и получен на его основе в два этапа. Сначала из штамма Е. coli ВКПМ В-3996 элиминируют плазмиду рVIС40; в полученный бесплазмидный реципиет с помощью фага Р1 трансдуцируют сцепленный с транспозоном Тп10 дикий аллель гена rhtA, связанный с устойчивостью к гомосерину и треонину (ABSTRACTS of 17th International Congress of Biochemistry and Molecular Biology in conjugation with 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francicco, California August 24-29, 1997, №457) и получают известным методом мутацию, повреждающую ген кап транспозона Тп5, интегрированного в ген tdh.

На втором этапе в интегративный вектор миниМи (Mud) клонируют гены треонинового оперона из плазмиды рVIC40 под P_R промотором фага ламбда и ген сат устойчивости к хлорамфениколу. Полученную конструкцию интегрируют известным методом в штамм E.coli C600, откуда ее трансдукцией переносят в полученный на первом этапе штамм. Таким образом получают штамм E. coli VL2054, который является бесплазмидным продуцентом треонина. Кроме треонина в процессе

ферментации штамм Е. coli VL2054 способен накапливать также небольшие количества аланина, валина и изолейцина.

Штамм Е. coli VL2054 трансформируют каждой из плазмид pYEAS, pYFIK, а также векторами pUC21. В результате получают штаммы Е. coli VL2054/pYEAS (ВКПМ В-7707), Е. coli VL2054/pFIK (ВКПМ В-7712) и Е. coli VL2054/pUC21 (ВКПМ В-7708).

Каждый из полученных таким образом штаммов культивируют при 37°C 18 часов в LB бульоне со 100 мг/л ампициллина. Затем по 0.3 мл полученной культуральной жидкости внесят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей 100 мг/л ампициллина и культивируют при 37С 46 часов на роторной качалке. После культивирования количество накопленных в среде L-треонина, L-аланина, L-валина и L-изолейцина, а также оптическую плотность культуральной жидкости при 560 нм измеряют известными методами. Результаты представлены в Табл.5.

Таблица 5

Штамм E. coli	OD ₅₆₀	Накопление аминокислоты, г/л			ı, г/л
		L-треонина	L-Аланина	L-Валина	L-Изолейцина
VL2054/pUC21	13,4	5.8	0.4	0,31	0,15
VL2054/pYEAS	10,7	5,2	1.4	0,52	0,45
VL2054/pYFIKk	15.2	8.8	0.5	0.22	0.14

Как показано в Табл.5, штамм Е. coli VL2054/рYFIK накапливает в культуральной жидкости значительно больше треонина, чем штамм Е. coli VL2054/рUC21, в котором экспрессируемое количество продукта гена уfik не увеличено. Штамм Е. coli VL2054/рYEAS накапливает больше L-аланина, L- валина и L-изолейцина чем контрольный штамм Е. coli VL2054/рUC21.

Пример 6. Влияние фрагментов ДНК yeaS и yggA на продукцию гистидина.

В качестве продуцента гистидина, принадлежащего к роду Escherichia, используют штамм Е. coli 80, описанный в Патенте РФ No.2119536. Этот штамм трансформируют плазмидами pYEAS и pYGGA, а также вектором pUC21. В результате получают штаммы: E. coli 80/pYEAS (ВКПМ В-7726), E. coli 80/pYGGA (ВКПМ В-7725), E. coli 80/pUC21 (ВКПМ В-7727).

Каждый из полученных штаммов культивируют при 29 C в течение 20 часов на круговой качалке в посевной среде следующего состава (г/л):

Глюкоза 5	6 .
$(NH_4)_2SO_4$ 2	.8 *
KH₂PO₄	2.25
MgSO ₄ x 7H ₂ O	1.125
FeSO ₄ x 7H ₂ O	0.01
MnSO ₄ x 5H ₂ O	0.01
Тиамин HCl	0,001
Дрожжевой экстракт	2.8
L-Про лин	0.3
Стрептомицин	1.0

::

Выращенный материал в количестве вносят в ферментационную среду следующего состава (г/л):

Глюкоза	72
$(NH_4)_2SO_4$	28
KH ₂ PO ₄	2.25
$MgSO_4 \times 7H_2O$	1.125
FeSO ₄ x 7H ₂ O	0.01
MnSO ₄ x 5H ₂ O	0.01

Тиамин НСІ 0,001

Дрожжевой экстракт 2.8

L-Пролин 1.0

Стрептомицин 1.0

CaCO3 65

Глюкозу и мел стерилизуют отдельно.

В стерильную среду вносят 100 мг/мл ампицилина. Культивирование осуществляют в пробирках 20 х 200 мм, при 29 С 68 часов на роторной качалке.

Результаты представлены в Табл.6.

Таблица 6

Штамм	Оптическая плотность	Гистидин, г/л
E. coli 80/pUC19	14.4	13.9
E. coli 80/pYEAS	14.0	15.5
E. coli 80/pYGGA	13.6	14.4

Как следует из Табл.6, штаммы Е. coli 80/pYEAS и Е. coli 80/pYGGA продуцируют больше гистидина, чем штаммы Е. coli 80/pUC21, у которого экспрессируемое количество белков, продуктов генов yeaS и yggA, не увеличено. При этом видно, что набольший положительный эффет на продукцию гистидина дает амплификация на плазмиде гена yeaS.

Пример 7. Влияние фрагментов ДНК yfiK и yeaS на продукцию пролина

В качестве продуцента пролина, принадлежащего к роду Escherichia, используют штамм VL2151 (Е. coli W3350 proB* ΔputAP Tn10), сконструированный на основе известного штамма W3350 путем селекции мутантов, устойчивых к 3,4-дегидро-DL-пролину и последующего введения с помощью трансдукции фагом P1 в полученный

таким образом мутант, накапливающий следы пролина, мутации ∆рutAP, сцепленной с транспозоном Tn10.

Штамм E. coli VL2151 трансформируют каждой из плазмид pYEAS, pYFIK, а также векторами pUC21. В результате получают штаммы E. coli E. coli VL2151/pYEAS (ВКПМ В-7714), E. coli VL2151/pFIK (ВКПМ В-7713) и E. coli VL2151/pUC21 (ВКПМ В-7715).

Каждый из полученных таким образом штаммов культивируют при 37°C 18 часов в LB бульоне со 100 мг/л ампициллина. Затем по 0.3 мл полученной культуральной жидкости внесят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей 100 мг/л ампициллина и культивируют при 37С 46 часов на роторной качалке. После культивирования количество накопленного в среде пролина, а также оптическую плотность культуральной жидкости при 560 нм измеряют известными методами. Результаты представлены в табл.7.

Таблица 7

Штамм E. coli	OD ₅₆₀	Пролин, г/л
VL2151/pUC21	16.8	0.9
VL2151/pYEAS	17.3	1.5
VL2151/pYFIK	18.0	2.4

Как видно из Табл.7, штаммы E. coli VL2151/pYEAS и E. coli VL2151/pYFIK накапливают больше пролина, чем штаммы E. coli VL2151/pUC21, у которого экспрессируемое количество белков, продуктов генов yeaS и yfiK, не увеличено. При этом видно, что набольший положительный эффет на продукцию пролина оказывает гена yfiK.

Пример 8. Влияние фрагментов ДНК yahN, yfiK и yggA на продукцию аргинина В качестве продуцента аргинина, принадлежащего к роду Escherichia coli, используют штамм Е. coli VL2141, который получен как мутант известного штамма W3350, устойчивый к канаванину и 5-фторурацилу.

Штамм E. coli VL2141 трансформируют каждой из плазмид pYAHN, pYEAS, pYGGA, а также вектором pUC21. В результате получают штаммы E. coli VL2141/pYAHN, E.coli VL2141/pYEAS, E. coli/pYGGA и E. coli VL2141/pUC21.

Каждый из полученных таким образом штаммов культивируют при 37°C 18 часов в LB бульоне со 100 мғ/л ампициллина. Затем по 0.3 мл полученной культуральной жидкости внесят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей 100 мг/л ампициллина и культивируют при 37С 46 часов на роторной качалке. После культивирования количество накопленного в среде аргинина, а также оптическую плотность культуральной жидкости при 560 нм измеряют известными методами. Результаты представлены в табл.8.

Таблица 8

OD_{560}	Аргинин, г/л
18.4	0.28
19.9	0.45
19.0	0.43
17.8	0.50
	18.4 19.9 19.0

Как видно из табл.8, штаммы E. coli VL2141/pYAHN, E.coli VL2141/pYEAS, E. coli/pYGGA накапливают больше аргинина, чем штамм E. coli E. coli VL2141/pUC21 у которого экспрессируемое количество белков, продуктов генов уаhN, yeaS и yggA, не увеличено.

Формула изобретения.

 Фрагмент ДНК yahN. определяющий повышенную устойчивость бактерий Escherichia coli к аминокислотам или их аналогам и имеющий следующую нуклеотидную последовательность (последовательность №1):

atg	atg	cag	tta	gtt	cac	tta	ttt	atq	gat	gaa	atc	act	atg	gat	cct	48
Met 1	Met	Gln	Leu	Val 5	His	Leu	Phe	Met	Asp 10	Glu	Ile	Thr	Met	Asp 15	Pro	
ttg Leu	cat His	gcc Ala	gtt Val 20	tac Tyr	ctg Leu	acc Thr	gta Val	gga Gly 25	ctg Leu	ttc Phe	gtg Val	att Ile	act Thr 30	ttt Phe	ttt Phe	96
aat Asn	ccg Pro	gga Gly 35	qCC	aat Asn	ctc Leu	ttt Phe	gtg Val 40	gta Val	gta Val	caa Gln	acc Thr	agc Ser 45	ctg Leu	gct Ala	tcc Ser	144
ggt Gly	cga Arg 50	cgc	gca Ala	ggg Gly	gtg Val	ctg Leu 55	acc Thr	ggg Gly	ctg Leu	ggc Gly	gtg Val 60	gcg Ala	ctg Leu	ggc Gly	gat Asp	192
gca Ala 65	ttt Phe	tat Tyr	tcc Ser	Gly GSg	ttg Leu 70	ggt Gly	ttg Leu	ttt Phe	ggt Gly	ctt Leu 75	gca Ala	acg Thr	cta Leu	att Ile	acg Thr 80	240
cag Gln	tgt Cys	gag Glu	gag Glu	att Ile 85	ttt Phe	tcg Ser	ctt Leu	atc Ile	aga Arg 90	atc Ile	gtc Val	ggc Gly	Gly	gct Ala 95	tat Tyr	288
ctc Leu	tta Leu	tgg Trp	ttt Phe 100	gcg Ala	tgg Trp	tgc Cys	agc Ser	atg Met 105	cgc Arg	cgc Arg	cag Gln	tca Ser	aca Thr 110	ccg Pro	caa Gln	336
atg Met	agc Ser	aca Thr 115	cta Leu	caa Gln	caa Gln	ccg Pro	att Ile 120	agc Ser	gcc Ala	ccc Pro	tgg Trp	tat Tyr 125	gtc Val	ttt Phe	ttt Phe	384
cgc Arg	cgc Arg 130	gga Gly	tta Leu	att Ile	acc Thr	gat Asp 135	ctc Leu	tct Ser	aac Asn	ccg Pro	caa Gln 140	acc Thr	gtt Val	tta Leu	ttt Phe	432
ttt Phe 145	atc	agt	att Ile	ttc Phe	tca Ser 150	gta Val	aca Thr	tta Leu	aat Asn	gcc Ala 155	Glu	aca Thr	cca Pro	aca Thr	tgg Trp 160	480
qca	cgt Arg	tta Leu	atg Met	gcc Ala 165	tgg Trp	gcg Ala	ggg Gly	att Ile	gtg Val 170	Leu	gca Ala	tca Ser	att	atc Ile 175	tgg Trp	528
cga Arg	gtt Val	ttt Phe	ctt Leu 180	agt Ser	cag	gcg Ala	ttt Phe	tct Ser 185	Leu	ccc Pro	gct Ala	gtg Val	cgt Arg 190	Arg	gct Ala	576
tat Tyr	ggg Gly	cgt Arg 195	atg Met	caa	cgc Arg	gtt Val	gcc Ala 200	agt Ser	. c gg	gtt Val	att Ile	ggt Gly 205	gca Ala	att	att Ile	624
ggt Gly	gta Val 210	ttc Phe	gcg	cta Leu	cgc Arg	ctg Leu 215	att Ile	tac	gaa Glu	a ggg a Gly	gtg Val	acg Thr	cag	g egg Arg	rtga i	672

 Фрагмент ДНК yeaS, определяющий повышенную устойчивость бактерий Escherichia coli к аминокислотам или их аналогам и имеющий следующую нуклеотидную последовательность (последовательность №2):

Met	ttc Phe	gct Ala	gaa Glu	tac Tyr	ggg Gly	gtt Val	ctg Leu	aat Asn	tac Tyr 10	tgg Trp	acc Thr	tat Tyr	ctg Leu	gtt Val 15	ggg Gly	48
gcc Ala	att Ile	ttt Phe	att Ile 20	gtg Val	ttg Leu	gtg Val	cca Pro	ggg Gly 25	cca	aat Asn	acc Thr	ctg Leu	ttt Phe 30	gta Val	ctc Leu	96
Lys	Asn	Ser 35	gtc Val	Ser	Ser	Gly	Met 40	Lys	Gly	Gly,	Tyr	Leu 45	Ala	Ата	Cys	144
ggt Gly	gta Val 50	ttt Phe	att Ile	ggc Gly	gat Asp	gcg Ala 55	gta Val	ttg Leu	atg Met	ttt Phe	ctg Leu 60	gca Ala	tgg Trp	gct Ala	gga Gly	192
gtg Val 65	gcg Ala	aca Thr	tta Leu	att Ile	aag Lys 70	acc Thr	acc Thr	ccg Pro	ata Ile	tta Leu 75	ttc Phe	aac Asn	att Ile	gta Val	cgt Arg 80	240
tat Tyr	Leu	Gly	gcg Ala	Phe 85	Tyr	Leu	Leu	Tyr	Leu 90	GIĄ	Ser	Lys	TTE	95	Tyr	288
Ala	Thr	Leu	Lys	Gly	Lys	Asn	Ser	Glu 105	Ala	Lys	Ser	Asp	110	Pro	caa Gln	336
Tyr	Gly	Ala	Ile	Phe	Lys	Arg	Ala 120	Leu	He	Leu	Ser	125	THE	ASI	ccg Pro	384
Lys	Ala	Ile	Leu	Phe	Tyr	Val 135	Ser	Phe	Phe	Val	140	Pne	116	ASP	gtt Vál	432
Asn	gcc	Pro	His	Thr	Gly 150	Ile	Ser	Phe	Phe	: Ile 155	Leu	Ala	ALa	TUI	ctg Leu 160	480
Glu	Leu	Val	. Ser	Phe 165	Cys	Туг	Leu	ı Ser	: Ph∈	e Leu)	ı IIE	116	s ser	175	_	528
Phe	val	Thr	Gln 180	Tyr	· Ile	Arc	J Thi	Lys 185	Lys 5	5 Lys	s Leu	ı Ala	1 Lys 190	s va.)	t ggc l Gly	576
aac Asr	tca Sei	tet Let 199	ı Ile	ggt Gly	ttq Leu	ato Met	tto Phe 200	e Val	g ggt L Gly	t tto y Pho	e Ala	a Ala 209	a Ar	a cto	g gcg u Ala	624
		ı Glı	a tco n Sei		1											639

3. Фрагмент ДНК yfiK, определяющий повышенную устойчивость бактерий Escherichia coli к аминокислотам или их аналогам и имеющий следующую нуклеотидную последовательность (последовательность №3):

gtg	aca	ccg	acc	ctt	tta	agt	gct	ttt	tgg	act	tac	acc	ctg	att	acc	48
1	Thr			5					10					15		
act	atg	acq	cca	gga	ccg	aac	aat	att	ctc	gcc	ctt	agc	tct	gct	acg	96
Ála	Met	Thr	Pro 20	Gly	Pro	Asn	Asn	Ile 25	Leu	Ala	Leu	Ser	Ser 30	Ala	Thr	
t.ca	cat	aga		cqt	caa	agt	acc	cgc	gtg	ctg	gca	g g g	atg	agt	ctg	144
Ser	His	Gly 35	Phe	Arg	Gln	Ser	Thr 40	Arg	Val	Leu	Ala	Gly 45	Met	Ser	Leu	
	ttt		a++	ata	atσ	tta		tat	aca	aac	ått		ttt	tca	ctq	192
994	Phe	Ten	Tle	Val	Met	Leu	Leu	Cvs	Ala	Glv	Ile	Ser	Phe	Ser	Leu	
_	50					55					60					
qca	gtg	att	gac	ccg	gca	gcg	gta	cac	ctt	ttg	agt	tgg	gcg	9 99	gcg	240
Ála	Val	Ile	Asp	Pro	Ala	Ala	Val	His	Leu	Leu	Ser	Trp	Ala	Gly	A!a	
65	ı				70					75					80	
gca	tat	att	gtc	tgg	ctg	gcg	tgg	aaa	atc	gcc	acc	agc	cca	aca	aag	288
Āla	Tyr	Ile	Val	Trp	Leu	Ala	Trp	Lys	Ile	Ala	Thr	Ser	Pro	Thr	Lys	-
				85					90					95		226
gaa	gac	gga	ctt	cag	çca	aaa	cca	atc	agc	ttt	tgg	gcc	agc	ttt	gat	336
Glu	Asp	Gly	Leu	Gln	Ala	Lys	Pro		Ser	Phe	Trp	Ala	Ser	Phe	Ата	
			100					105					110		a tu	384
tt	g cag	ttt	gtg	aac	gtc	aaa	atc	att	ttg	tac	ggt	gtt	acg	gca nla	Lou	334
Leu	. Gln	Phe	Val	Asn	Val	Lys	He	TTG	Leu	TYL	GLY	vaı	1111	Ala	Leu	
		115					120					125				
tcg	acg	ttt	gtt	ctg	ccg	caa	aca	cag	gcg	tta	agc	tgg	gta	gtt	gāc	432
Ser	Thr	Phe	Val	Leu	Pro	Gln	Thr	Gln	Ala	Leu		Trp	Val	Val	Gly	
	130					135					140					
gto	agc	gtt	ttg	ctg	gcg	atg	att	aaa	acg	ttt	ggc	aat	gtg	tgc	tgg _	480
Val	Ser	Val	Leu	Leu		Met	Ile	Gly	Thr		GLY	Asn	Val	Cys		
145					150					155			.		160	520
gcg	ctg	gcg	999	cat	ctg	ttt	cag	cga	ttg	Dho	cgc	Cag	Tac	gge	Nea-	528
Ala	Leu	Ala	GLY	H15	Leu	Pne	GIN	Arg	170	Pne	ALG	GIII	TÄT	175	ALG	
cad	tta	aat	atc	gtg	ctt	gcc	ctg	ttg	ctg	gtc	tat	tgc	gcg	gta	cgc	576
Glr	Leu	Asn	Ile	Val	Leu	Ala	Leu	Leu	Leu	Val	Tyr	Cys	Ala	Val	Arg	
			180					185					190			
att	ttc	tat	taa													588
Ile	Phe	Tyr														
		195													•	

4. Фрагмент ДНК уggA, определяющий повышенную устойчивость бактерий Escherichia coli к аминокислотам или их аналогам и имеющий следующую нуклеотидную последовательность (последовательность №4):

gtg Met 1	ttt Phe	tct Ser	tat Tyr	tac Tyr 5	ttt Phe	caa Gln	ggt Gly	ctt Leu	gca Ala 10	ctt Leu	ggg Gly	gcg Ala	gct Ala	atg Met 15	atc Ile	48
cta Leu	ccg Pro	ctc Leu	ggt Gly 20	cca Pro	caa Gln	aat Asn	gct Ala	ttt Phe 25	gtg Val	atg Met	aat Asn	cag Gln	ggc Gly 30	ata Ile	cgt Arg	96
cgt Arg	cag Gln	tac Tyr 35	cac His	att Ile	atg Met	att Ile	gcc Ala 40	tta Leu	ctt Leu	tgt Cys	gct Ala	atc Ile 45	agc Ser	gat Asp	ttg Leu	144
Val	Leu 50	Ile	Cys	Āla	Gly	Ile 5 <u>5</u>	Phe	ggt Gly	Gly	Ser	Ala 60	Leu	Leu	Met	Gln	192
Ser 65	Pro	Trp	Leu	Leu	Ala 70	Leu	Val	acc Thr	Trp	Gly 75	Gly	Val	Ala	Phe	Leu 80	240
ctg Leu	tgg Trp	tat Tyr	ggt Gly	ttt Phe 85	ggc Gly	gct Ala	ttt Phe	aaa Lys	aca Thr 90	gca Ala	atg Met	agc Ser	agt Ser	aat Asn 95	att Ile	288
								aag Lys 105								3 36
gcc Ala	acc Thr	atg Met 115	ttg Leu	gca Ala	gtg Val	acc Thr	tgg Trp 120	ctg Leu	aat Asn	ccg Pro	cat His	gtt Val 125	tac Tyr	ctg Leu	gat Asp	384
act Thr	ttt Phe 130	gtt	gta Val	ctg Leu	ggc Gly	agc Ser 135	ctt Leu	ggc Gly	ggg Gly	caa Gln	ctt Leu 140	gat Asp	gtg Val	gaa Glu	cca Pro	432
aaa Lys 145	cgc	tgg Trp	ttt Phe	gca Ala	ctc Leu 150	ggg Gly	aca Thr	att Ile	agc Ser	gcc Ala 155	tct Ser	ttc Phe	ctg Leu	tgg Trp	ttc Phe 160	.480
ttt	ggt Gly	ctg Leu	gct Ala	ctt Leu 165	ctc Leu	gca Ala	gcc Ala	tgg Trp	ctg Leu 170	gca Ala	ccg Pro	cgt Arg	ctg Leu	cgc Arg 175	acg Thr	528
		Ala		Arg	Ile	Ile	Asn	ctg Leu 185	Val					Met	tgg Trp	576
		gcc	ttg Leu	cag	ctg	gcg	aga	gac Asp	ggt				gca Ala	caa		624
_		agt Ser	tag				_ 								,	636

5. Способ получения L-аминокислот путем культивирования штаммовпродуцентов бактерий рода Escherichia в подходящей питательной среде с последующим выделением и очисткой целевой аминокислоты, отличающийся тем, что в качестве продуцентов используют бактерии E. coli, содержащие фрагмент ДНК по п. 1, или по п. 2, или по п. 3, или по п. 4.

Met	Met	Gln	Leu	Val	His	Leu	Phe	Met	azA	Glu	Ile	Thr	Met	asb	Pro
1				5					10					15	
Leu	His	Ala	Val 20	Tyr	Leu	Thr	Val	Gly 25	Leu	Phe	Val	Ile	Thr 30	Phe	Phe
Asn	Pro	Gly 35	Ala	Asn	Leu	Phe	Val 40	Val	Val	Gln	Thr	Ser 45	Leu	Ala	Ser
Gly	Arg 50	Arg	Ala	Gly	Val	Leu 55	Thr	Gly	Leu	Gly	Val 60	Ala	Leu	Gly	Asp
Ala 65	Phe	Туr	Ser	Gly	Leu 70	Gly	Leu	Phe	Gly	Leu 75	Ala	Thr	Leu	Ile	Thr 80
Gln	Cys	Glu	Glu	Ile 85	Phe	Ser	Leu	Ile	Arg 90	Ile	Val	Gly	Gly	Ala 95	Tyr
Leu	Leu	Trp	Phe 100	Ala	Trp	Cys	Ser	Met 105	Arg	Arg	Gln	Ser	Thr 110	Pro	Gln
Met	Ser	Thr 115	Leu	Gln	Gln	Pro	Ile 120	Ser	Ala	Pro	Trp	Tyr 125	Val	Phe	Phe
Arg	Arg 130	Cly	Leu	Ile	Thr	Asp 135		Ser	Asn	Pro	Gln 140	Thr	Val	Leu	Phe
Phe 145	Ile	Ser	Ile	Phe	Ser 150	Val	Thr	Leu	Asn	Ala 155	Glu	Thr	Pro	Thr	Trp 160
Ala	Arg	Leu	Met	Ala 165	Trp	Ala	Gly	Ile	Val 170		Ala	Ser	Ile	Ile 175	đư.
Arg	Val	Phe	Leu 180	Ser	Gln	Ala	Phe	Ser 185	Leu	Pro	Ala	Val	Arg 190	Arg	Ala
Tyr	Gl.y	Arg 195		Gln	Arg	Val	Ala 200		Arg	Val	Ile	Gly 205		Ile	Ile
Gly	Val 210		Ala	Leu	Arg	Leu 215	Ile	Туг	Glu	Gly	Val 220	Thr	Gln	Arg	,

Фиг. 1. Последовательность № 5

Met 1	Phe	Ala	Glu	Tyr 5	Gly	Val	Leu	Asn	Tyr 10	Trp	Thr	Tyr	Leu	Val 15	Gly
Ala	Ile	Phe	Ile 20	Val	Leu	Val	Pro	Gly 25		Asn	Thr	Leu	Phe 30	Val	Leu
Lys	Asn	Ser 35	Val	Ser	Ser	Gly	Met 40	Lys	Gly	Gly	Tyr	Leu 45	Ala	Ala	Суз
	50					55		Leu			60				
Val 65	Ala	Thr	Leu	Ile	Lys 70	Thr	Thr	Pro	Ile	Leu 75	Phe	Asn	Ile	Val	Arg 80
Туг	Leu	Gly	Ala	Phe 85	Тул	Leu	Leu	Туг	Leu 90	Gly	Ser	Lys	Ile	Leu 95	Tyr
Ala	Thr	Leu	Lys 100	Gly	Lys	Asn	Ser	Glu 105	Ala	Lys	Ser	Asp	Glu 110	Pro	Gln
Tyr	Gly	Ala 115	Ile	Phe	Lys	Arg	Ala 120	Leu	Ile	Leu	Ser	Leu 125	Thr	Asn	Pro
Lys	Ala 130	Ile	I.eu	Phe	Tyr	Val 135	Ser	Phe	Phe	Val	Gln 140	Phe	Ile	Asp	Val
Asn 145	Ala	Pro	His	Thr	Gly 150	Ile	Ser	Phe	Phe	Ile 155	Leu	Ala	Ala	Thr	Leu 160
Glu	Leu	Val	Ser	Phe 165	Суѕ	Tyr	Leu	Ser	Phe 170	Leu	Ile	Ile	Ser	Gly 175	Ala
Phe	Val	Thr	Gln- 180	Tyr	Ile	Arg	Thr	Lys 185	Lys	Lys	Leu	Ala	Lys 190	Val	Gly
Asn	Ser	Leu 195	Ile	Gly	Leu	Met	Phe 200	Val	Gly	Phe	Ala	Ala 205	Arg	Leu	Ala
Thr	Leu 210	Gln	Ser												,

Фиг. 2. Последовательность № 6

```
Met Thr Pro Thr Leu Leu Ser Ala Phe Trp Thr Tyr Thr Leu Ile Thr
Ala Met 'Thr Pro Gly Pro Asn Asn Ile Leu Ala Leu Ser Ser Ala Thr
Ser His Gly Phe Arg Gln Ser Thr Arg Val Leu Ala Gly Met Ser Leu
                             40
Gly Phe Leu Ile Val Met Leu Leu Cys Ala Gly Ile Ser Phe Ser Leu
Ala Val Ile Asp Pro Ala Ala Val His Leu Leu Ser Trp Ala Gly Ala
                     70
Ala Tyr Ile Val Trp Leu Ala Trp Lys Ile Ala Thr Ser Pro Thr Lys
Glu Asp Gly Leu Gln Ala Lys Pro Ile Ser Phe Trp Ala Ser Phe Ala
                                105
            100
Leu Gln Phe Val Asn Val Lys Ile Ile Leu Tyr Gly Val Thr Ala Leu
Ser Thr Phe Val Leu Pro Gln Thr Gln Ala Leu Ser Trp Val Val Gly
                                            140
                        135
Val Ser Val Leu Leu Ala Met Ile Gly Thr Phe Gly Asn Val Cys Trp
Ala Leu Ala Gly His Leu Phe Gln Arg Leu Phe Arg Gln Tyr Gly Arg
                                    170
                165
Gln Leu Asn Ile Val Leu Ala Leu Leu Leu Val Tyr Cys Ala Val Arg
                                185
Ile Phe Tyr
        195
```

Фиг. 3. Последовательность № 7

Met 1	Phe	Ser	Tyr	Tyr 5	Phe	Gln	Gly	Leu	Ala 10	Leu	Gly	Ala	Ala	Met 15	Ile
Leu	Pro	Leu	50 GTÀ	Pro	Gln	Asn	Ala	rhe 25	val	Met	Asn	Gln	Gly 30	Ile	Arg
Arg	Gln	Tyr 35	His	Ile	Met	Ile	Ala 40	Leu	Leu	Cys	Ala	Ile 45	Ser	Asp	Leu
Val	Leu 50	Ile	Cys	Ala	Gly	Ile 55	Phe	Gly	Gly	Ser	Ala 60	Leu	Leu	Met	Gln
Ser 65	Pro	Trp	Leu	Leu	Ala 70	Leu	Val	Thr	Trp	Gly 75	Gly	Val	Ala	Phe	Leu 80
Leu	Trp	Tyr	Gly	Phe 85	Gly	Ala	Phe	Lys	Thr 90	Ala	Met	Ser	Ser	Asn 95	Ile
Glu	Leu	Ala	Ser 100	Ala	Glu	Val	Met	Lys 105	Gln	Gly	Arg	Trp	Lys 110	Ile	Ile
Ala	Thr	Met 115	Leu	Ala	Val	Thr	Trp 120	Leu	Asn	Pro	His	Val 125	Tyr	Leu	Asp
Thu	Phe 130	Val	Val	Leu	Gly	Ser 135	Leu	Gly	Gly	Gln	Leu 140	Asp	Val	Glu	Pro
Lys 145	Arg	Trp	Phe	Ala	Leu 150	Gly	Thr	Ile	Ser	Ala 155	Ser	Phe	Leu	Trp	Phe 160
Phe	Gly	Leu	Ala	Leu 165	Leu	Ala	Ala	Trp	Leu 170	Ala	Pro	Arg	Leu	Arg 175	Thr
Ala	Lys	Ala	Gln 180	Arg	Ile	Ile	Asn	Leu 185	Val	Val	Gly	Cys	Val 190	Met	Trp
Phe	Ile	Ala 195	Leu	Gln	Leu	Ala	Arg 200	Asp	Gly	Ile	Ala	His 205		Gln	Ala
Leu	Phe 210						_ 3 •								

Фиг. 4. Последовательность № 8

РЕФЕРАТ

ФРАГМЕНТЫ ДНК, ОПРЕДЕЛЯЮЩИЕ ПОВЫШЕННУЮ УСТОЙЧИВОСТЬ БАКТЕРИЙ ESCHRICHIA COLI К АМИНОКИСЛОТАМ ИЛИ ИХ АНАЛОГАМ, И СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ

Изобретение относится к биотехнологии и генетической инженерии. Заявлены фрагменты ДНК yahN, yeaS, yfiK, yggA, кодирующие синтез белков, придающих бактериям Escherichia coli повышенную устойчивость к аминокислотам или их аналогам. На основе этих фрагментов сконструированы штаммы бактерий Е. coli, обладающие повышенной способностью к продукции L-лизина, L-треонина, L-глутаминовой кислоты, L-гистидина, L-пролина, L-аланина, L-аргинина, L-валина и L-изолейцина. Описан способ получения аминокислот с использованием новых штаммов-продуцентов.