

第五讲 数论中的构造问题 1

- **例1.** 即构造 abcde = (a-1)(b-1)(c-1)(d-1)(e-1). 为了简化问题,可设 b = a-1, c = b-1, d = c-1, e = d-1, a = e-1,即 ae = (a-4)(e-1). 故只需 a+4e=4,取 a=8, e=-1,从而 (a,b,c,d,e)=(8,7,6,5,-1). 验证 $8\times7\times6\times5\times(-1)=-1680=(8-1)\times(7-1)\times(6-1)\times(5-1)\times(-1-1)$. 故结论成立.
- **例2.** 设 $k = [\lg n] + 1$,则 $10^k > n$,则在 1234567890×10^k , $1234567890 \times 10^k + 1$,…, $1234567890 \times 10^k + (n-1)$ 这连续 n 个正整数中,必有一个数为 n 的倍数,令这个数为 m,则数 m 在十进制表示下包含 $0 \sim 9$ 这十个数字.
- **例3.** 要使得 $p \mid (2^n n)$, 只需要 $2^n \equiv n \pmod p$, 加强命题 $\begin{cases} 2^n \equiv 1 \pmod p \\ n \equiv 1 \pmod p \end{cases}$ 若 p = 2, 则 n 为偶数即可. p > 2 时,由费马小定理, $2^{p-1} \equiv 1 \pmod p$,故 $p 1 \mid n$ 时,均有 $2^n \equiv 1 \pmod p$, ∴ 只需找出 n,使 $\begin{cases} n \equiv 0 \pmod {p-1} \\ n \equiv 1 \pmod p \end{cases}$ 成立,由中国剩余定理,令 n = kp(p-1) (p-1) ($k \in \mathbb{N}^*$)即可.
- **例4.** 解一: 令 $1^n \equiv 1, 2^n \equiv 2, 3^n \equiv 3, \cdots, m^n \equiv m \pmod{p}$, 即 $a_1 \cdot 1^n + a_2 \cdot 2^n + \cdots + a_m \cdot m^n \equiv a_1 + 2a_2 + \cdots + ma_m \pmod{p}$. 取 $p 为 a_1 + 2a_2 + \cdots + ma_m$ 的质因子. 由费马小定理 $a^p \equiv a \pmod{p} \Rightarrow a^{k(p-1)+1} \equiv a \pmod{p}$. 取 $n 为 n = k(p-1)+1, (k \in N^*)$. 解二: $a_1 + 2a_2 + 3a_3 + \cdots + ma_m > 1$,故任取 $a_1 + 2a_2 + 3a_3 + \cdots + ma_m$ 的一个质因子 p,则 $i^p \equiv i \pmod{p}$,从而 $i^{p^k} = \left(i^{p^{k-1}}\right)^p \equiv i^{p^{k-1}} \equiv \cdots \equiv i \pmod{p}$,于是 $a_1 \cdot 1^{p^k} + a_2 \cdot 2^{p^k} + \cdots + a_m \cdot m^{p^k} \equiv a_1 + 2a_2 + \cdots + ma_m \equiv 0 \pmod{p}$,故取 $n = p^k$ 即可.
- **例5.** 解一: 从简单情况找规律,归纳构造, $A_1 = \{1,2\}$,设取出的 2^n 个数组成集合 A_n . 当 n=1 时,构造 $A_1 = \{1,2\}$. 若 n=k 时,满足要求的集合为 A_k ,则 n=k+1 时,构造 $A_{k+1} = A_k \cup \{x+3^k \mid x \in A_k\}$. 证明:当 n=1 时, A_1 满足 . 当 n=k 时, A_k 满足 . 若 n=k 时, A_k 满足 . 考虑 n=k+1 时 . 若存在 $p < q < r, p, q, r \in A_{k+1} \cdot 2q = p+r$.

当 $p,q,r \in A_k$. 则与归纳假设矛盾.

当
$$p,q \in A_k$$
, $r \in \{x+3^k \mid x \in A_k\}$.
则 $r-q \ge 1+3^k - \frac{3^k+1}{2} = \frac{3^k+1}{2}$, $q-p \le \frac{3^k+1}{2} - 1 = \frac{3^k-1}{2} < r-q$. 矛盾.

当 $p \in A_k$; $q, r \in \{x + 3^k \mid x \in A_k\}$, $p, q, r \in \{x + 3^k \mid x + A_k\}$ 均矛盾.

综上,得证.

解二:直接构造,将该数列中的每个数均减一,在该数列中取出2"个数,这些数中三进制下只含数字0、1.

例6. 解:二重数为 10^n+1 的倍数, $n=\overline{a_1a_2\cdots a_ka_1a_2\cdots a_k}=\overline{a_1a_2\cdots a_k}\times \left(10^k+1\right)$,且 $\overline{a_1a_2\cdots a_k}<10^k$. 找出质数p使得 $p^2|10^k+1$.p=2,3,5时显然不行,在p=7时,找出k,使得 $49|10^k+1$. $10^k\equiv -1 \pmod{49}$, $10^{2k}\equiv 1 \pmod{49}$, $10^{\varphi(49)}\equiv 1 \pmod{49}$, $10^{42}\equiv 1 \pmod{49}$ 。 k=21时, $10^{21}\equiv 100^{10}\cdot 10\equiv 2^{10}\cdot 10\equiv 10240\equiv -1 \pmod{49}$ $\overline{a_1a_2a_3\cdots a_k}=\frac{10^{21}+1}{49}\cdot 36$, $n=\frac{36}{49}\cdot \left(10^{21}+1\right)^2=\overline{a_1a_2\cdots a_{21}a_1a_2\cdots a_{21}}$. 取 $k=21(2m+1),10^k\equiv (-1)^{2m+1}\equiv -1 \pmod{49}$, $n=\frac{36}{49}\left(10^k+1\right)^2$ 即可.

例7. 有 0 就加上一个倍数填上 0.

对 2^k 的倍数 t,若从右往左数前 s 位均不为 0,第 s+1 位是 0.

构造 $t+10^s\cdot 2^k$,则该数仍为 2^k 的倍数且从右向左数前s+1位均不为0.

这样可以构造出 2^k 的倍数 t,从右往左数前 k 位均不为 0,设这 k 位为 $\overline{x_1x_2\cdots x_k}$.

注意
$$t \equiv \overline{x_1 x_2 \cdots x_a} \pmod{10^a}$$
,故有 $t \equiv \overline{x_1 x_2 \cdots x_a} \pmod{2^a}$,

于是 $\frac{1}{x_1x_2\cdots x_k}$ 为 2^k 的倍数且所有数字不为0.