

INTRODUCCIÓN

Las <u>técnicas de conteo</u> son fórmulas matemáticas, las cuales se utilizan en el campo de la Probabilidad y Estadística como herramientas para determinar el <u>número</u> total de resultados posibles en un experimento dado. Denominamos a dicho conjunto de resultados: <u>Espacio Muestral (E)</u>.

Uno de los problemas que el estadístico debe considerar e intentar evaluar es el elemento de aleatoriedad asociado con la ocurrencia de ciertos eventos o sucesos cuando se realiza un experimento. Definimos a un <u>evento o suceso como un subconjunto de un espacio muestral</u>.

EXPERIMENTO ALEATORIO VS DETERMINÍSTICO

Un <u>experimento</u> se dice <u>aleatorio</u> cuando al repetirlo una y otra vez bajo las mismas condiciones de ensayo, <u>puede presentar resultados distintos</u>.

- Experimento: "Lanzar un dado"
- Resultados posibles => $E = \{1; 2; 3; 4; 5; 6\}$
- Evento A: "Lanzar un dado y que salga par" => A = {2;4;6}

Un <u>experimento</u> se dice <u>determinístico</u> cuando al repetirlo una y otra vez bajo las mismas condiciones de ensayo, siempre presenta el mismo resultado.

- Experimento: "Determinar la temperatura de saturación del agua"
- Condiciones: Muestra de 1 litro de agua con un 5% de salinidad. Temperatura ambiente 20°C y Presión Atmosférica 1kg/cm2
- Resultado: Punto de ebullición a 101°C

DIAGRAMA DE ÁRBOL

En algunos experimentos es posible <u>listar por extensión todos los elementos del</u> <u>espacio muestral</u> de forma sistemática mediante un <u>diagrama de árbol</u>.

Ejemplo: Se seleccionan 3 artículos de forma aleatoria de un proceso de fabricación. Cada artículo se inspecciona y clasifica como defectuoso (D) y no defectuoso (N). Se pide listar todos los elementos del espacio muestral.

 $E = \{DDD; DDN; DND; DNN; NDD; NDN; NND; NNN\}$

REGLA DE LA MULTIPLICACION (Considera orden)

En muchos casos debemos ser capaces de resolver un problema de probabilidad mediante el conteo del número elementos en el espacio muestral, sin listar realmente cada uno.

<u>Ejemplo 1</u>: ¿Cuántos elementos hay en el espacio muestral E, cuando se lanza un par de dados una vez?

El primer dado puede caer en cualquiera de n_1 = 6 maneras. Para cada una de esas 6 maneras, el segundo dado también puede caer en n_2 = 6 maneras. Por lo tanto, el par de dados puede caer de n_1 x n_2 = 6 x 6 = <u>36</u> formas posibles.

"Si una operación se puede realizar de n_1 formas, y si para cada una de estas se puede realizar una segunda operación de n_2 formas, entonces las 2 operaciones se pueden ejecutar juntas de n_1 x n_2 formas".

FACTORIAL DE UN NÚMERO NATURAL "n"

Definimos factorial de un número natural n (entero positivo) como:

$$n! = \begin{cases} n(n-1)! & \text{si } n \ge 1 \\ 1 & \text{si } n = 0 \end{cases}$$

Ejemplo 2:

$$3! = 3 \times (2)! = 3 \times [2 \times (1)!] = 3 \times 2 \times [1 \times (0)!] = 3 \times 2 \times 1 \times 1 = 6$$

OPERACIONES CON FACTORIALES:

$$\bullet \ \frac{6!}{3!} = \frac{6*5*4*3!}{3!} = 6*5*4 = 120$$

•
$$\frac{7!}{8!} = \frac{7!}{8*7!} = \frac{1}{8}$$

•
$$\frac{10!}{6!*5!} = \frac{10*9*8*7*6!}{6!*(5*4*3*2*1)} = 7*2*3 = 42$$

•
$$\frac{8!*3!}{7!*4!} = \frac{(8*7!)*3!}{7!*(4*3!)} = \frac{8}{4} = 2$$

MODELOS SIMPLES:

"Todos los elementos son distintos. No hay reposición de elementos y por lo tanto solo se pueden elegir o suceder una única vez".

□ VARIACIONES (Sin repetición)

Se puede definir como los subconjuntos ordenados de n elementos que pueden seleccionarse de un conjunto de m elementos. Se denota mediante $V_{m,n}$.

$$V_{(m,n)} = \frac{m!}{(m-n)!}$$

Variaciónes de m elementos tomados de a n elementos. (m>n)

Ejemplo 3: (VARIACIONES SIN REPETICIÓN)

¿De cuantas maneras distintas pueden sentarse 4 personas (Pablo, Adolfo, Esteban y Carlos) en 3 butacas de cine contiguas y numeradas?

En la primera butaca tengo 4 personas para sentar, en la segunda me quedan 3 personas para sentar y en la tercera solo me quedan 2 personas para sentar.

- Usando la regla de la multiplicación $\Rightarrow 4 \times 3 \times 2 = 24$ maneras distintas
- Usando variaciones => $V_{(4,3)} = \frac{4!}{(4-3)!} = \frac{4!}{1!} = 24$

Ejemplo 4: (VARIACIONES SIN REPETICIÓN)

Dispongo de tela de 7 colores distintos y quiero armar una bandera de 3 franjas horizontales. De cuantas maneras puedo hacerlo si: a) no tengo restricciones b) la de arriba debe ser blanca.

- a) Tengo que elegir ordenadamente 3 colores de los 7 que tengo $\Rightarrow V_{(7,3)} = 7! / (7-3)! = 210$
- b) Ahora solo selecciono 2 colores de los 6 que quedan $\Rightarrow V_{(6,2)} = 6! / (6-2)! = 30$

□ PERMUTACIONES (Sin repetición)

Una permutación puede definirse como los distintos ordenamientos que pueden realizarse en un conjunto de m elementos. Se denota mediante la expresión P_m . Siendo un caso particular de las variaciones, donde solo podemos cambiar el orden de los elementos ya que cada muestra contiene todos los elementos.

$$P_m = m!$$

Permutaciones de m elementos tomados de a n elementos. (m=n)

Ejemplo 5: (PERMUTACIONES SIN REPETICIÓN)

Consideramos 3 letras a,b y c. Las permutaciones posibles son:

abc, acb, bac, bca, cab y cba.

Vemos que existen 6 ordenamientos o arreglos distintos. Podemos llegar a la misma respuesta sin listar los diferentes arreglos u ordenamientos.

Habrá entonces n_1 = 3 opciones para la primera posición, luego n_2 = 2 opciones para la segunda posición y finalmente n_3 = 1 opción para la última posición. (m=n)

- Por lo tanto, si usamos la regla de la multiplicación $=> n1 \times n2 \times n3 = 3 \times 2 \times 1 = 6$
- o bien usando permutaciones \Rightarrow $Pm = 3! = 3 \times 2 \times 1 = 6$.

Ejemplo 6: (PERMUTACIONES SIN REPETICIÓN)

Quiero ordenar 5 libros (A-B-C-D-E) en un estante:

- 1. Sin restricciones: son los distintos ordenamientos que pueden hacerse en un conjunto de 5 elementos es decir: P5 = 5! = 120
- 2. El libro A a la derecha: ahora solo debo ordenar 4 elementos, por lo cual tengo P4 = 4! = 24
- 3. El libro A y el B juntos: acá debo ordenar 4 elementos y considerar a A y B como un solo libro, pero a su vez ellos pueden ordenarse o permutar entre sí: $P4 \times P2 = 4! \times 2! = 24 \times 2 = 48$

☐ COMBINACIONES (Sin repetición)

Se puede definir como los subconjuntos ${
m NO}$ ordenados de n elementos que pueden seleccionarse de un conjunto de m elementos. En mucho casos, nos interesamos en el número de formas posibles de seleccionar n elementos de un total de m elementos ${
m sin}$ ${
m importar\ el\ orden}$. Tales selecciones se llaman combinaciones y se denotan con la expresión ${\cal C}_{m,n}$

$$C_{(m,n)} = \frac{V_{m,n}}{P_n} = \frac{m!}{n! \cdot (m-n)!}$$

Combinaciónes de m elementos tomados de a n elementos. (m>n)

Ejemplo 7: (COMBINACIONES SIN REPETICIÓN)

Tenemos 5 puntos no alineados en un plano:

¿Cuantas rectas determinan?

La recta la determinan dos puntos distintos, lo mismo que el segmento, sin importar el orden de consideración de esos puntos. Por lo tanto: $C_{(5,2)} = 10$

El triangulo lo determinan tres puntos distintos no alineados, por lo tanto: $C_{(5,3)} = 10$.

Ejemplo 8: (COMBINACIONES SIN REPETICIÓN)

Un niño le pide a su madre que le lleve 5 cartuchos de Game-boy de su colección de 10 juegos de aventuras y 5 de deportes. ¿De cuantas maneras podría su madre elegir 3 juegos de aventuras y 2 de deportes?. Podemos ver que no importará el orden en el que serán seleccionados siempre y cuando sean juegos de una clase o de la otra.

En primer lugar debemos tomar n = 3 elementos de m = 10 elementos de la clase A (juegos de aventuras). => 10! = 3.628.800

$$C_{(10,3)} = \frac{10!}{3! \, x \, (10-3)!} = \frac{3.628.800}{30.240} = 120$$

En segundo lugar debemos tomar n = 2 elementos de un total de m = 5 elementos de la clase B (juegos de deportes). => $C_{(5,2)} = \frac{5!}{2! \ x \ (5-2)!} = \frac{120}{12} = 10$

Finalmente, si utilizamos la regla de la multiplicación con $n_1 = 120$ y $n_2 = 10$, tendremos un total de n_1 x $n_2 = 120$ x 10 = 1200 formas distintas de elegir los 5 juegos donde 3 son de aventuras y 2 de deportes.

MODELOS COMPUESTOS:

"Existen elementos repetidos y/o hay reposición y por lo tanto los elementos se pueden elegir o suceder más de una vez".

□ VARIACIONES (Con repetición)

Son las maneras de elegir entre un total de m elementos, un subconjunto ${}^{\rm ordenado}$ de n elementos. Se denota mediante la expresión $V'_{m,n}$.

$$VR = V'_{(m,n)} = m^n$$

Ejemplo 9: (VARIACIONES CON REPETICIÓN)

¿Cuántos números de 3 cifras se pueden formar con los dígitos del 5 al 9? Teniendo en cuenta el orden y la reposición, podemos ubicar en cada una de las 3 cifras 5 elementos o números (5-6-7-8-9).

Utilizando la regla de la multiplicación obtenemos: $5 \times 5 \times 5 = 125$ formas diferentes donde se pueden repetir los elementos.

O bien usando variaciones => $V'_{(5,3)} = 5^3 = 125$

Ejemplo 10: (VARIACIONES CON REPETICIÓN)

Hay 15 jubilados haciendo cola en el Banco Nación y habilitan 4 cajas para el pago de haberes jubilatorios. Considerando que los jubilados se acomodan según su gusto y que podrá ocurrir que todos eligieran la misma caja. ¿Cuantas formas de ubicarse tienen?

Las opciones a elegir son las cajas, es decir: 4

La cantidad de veces que optamos por cada caja es equivalente a la cantidad de jubilados, es decir: 15

Entonces la cantidad de posibilidades son: $VR_{(4,15)} = 4^{15} = 1.073.741.824$

□ PERMUTACIONES (Con repetición)

Son los ordenamientos de un conjunto de m elementos, pero dentro de los cuales hay n_1 elementos de un tipo, n_2 de otro tipo y así sucesivamente. Se denota mediante la expresión P'_{n_1,n_2,\dots,n_k}

$$PR = P'_{n_1, n_2, \dots, n_k}^m = \frac{P_m}{P_{n_1} x P_{n_2} x \dots x P_{n_k}} = \frac{(n_1 + n_2 + \dots + n_k)!}{n_1! x n_2! x \dots x n_k!}$$

El número de permutaciones distintas de m objetos, en el que n₁ son de una clase, n₂ de una segunda clase, etc.

Ejemplo 11: (PERMUTACIONES CON REPETICIÓN)

Durante un entrenamiento de futbol americano, el entrenador debe alinear a 10 jugadores en una fila. Entre estos 10 jugadores hay 1 de primer año, 2 de segundo año, 4 de tercer año y 3 de cuarto año. ¿De cuantas formas diferentes se pueden ordenar en una fila?.

$$P_{1,2,4,3}^{\prime 10} = \frac{(1+2+4+3)!}{1! \ x \ 2! \ x \ 4! \ x \ 3!} = \frac{10!}{1! \ x \ 2! \ x \ 4! \ x \ 3!} = \frac{3.628.800}{288} = 12.600$$

"Podemos decir que son todos los ordenamientos posibles de 10 personas o elementos, dividido o bien descontando, los ordenamientos de las personas que son de la misma clase".

Ejemplo 12: (PERMUTACIONES CON REPETICIÓN)

Supongamos que todos los anagramas de la palabra AMOR tienen sentido:

...ROMA- MORA- ARMO- OMAR...

Sabemos que son todos los ordenamientos posibles de esas 4 letras => P4 = 4! = 24

Que cambiara si la palabra tiene 2 letras iguales, digamos RAMA.

En principio RAMA es la misma palabra que RAMA.

Por lo tanto, en lugar de ser P4 sería P4 / P2 = 4! / 2! = 24 / 2 = 12

□ COMBINACIONES (Con repetición)

Son las diferentes maneras de combinar m elementos tomados de n elementos pudiendo repetirse dichos elementos y sin importar el orden de los mismos.

$$CR = C'_{(m,n)} = C_{(m+n-1,n)} = \frac{(m+n-1)!}{n! \cdot (m-1)!}$$

Combinación con repetición de m elementos tomados de a n elementos.

"Podemos decir que una combinación con repetición la convertimos en una combinación simple o sin repetición mediante la transformación de sus parámetros m y n".

Ejemplo 13: (COMBINACIONES CON REPETICIÓN)

En un frasco hay 3 caramelos de gustos diferentes, menta, frutilla y naranja. ¿De cuantas maneras se pueden elegir 2 caramelos del frasco?. No nos importa el orden en que salen, pero si nos importa la clase o gusto. Podemos obtener 2 veces el mismo gusto de caramelo debido a que el experimento se realiza con reposición.

$$C'_{(3,2)} = C_{(4,2)} = \frac{(3+2-1)!}{(3-1)! \times 2!} = \frac{4!}{2! \times 2!} = \frac{24}{4} = 6$$

Si utilizamos la regla de la multiplicación obtenemos: $3 \times 3 = 9$ formas "diferentes" donde se pueden repetir los elementos. {MM, MF, MN, FF, FM, FN, NN, NM, NF}

¿Por qué el resultado es diferente?...... ¡¡¡Porque al utilizar la regla de la multiplicación estamos considerando orden!!!

Modelos simples (sin repetición):

Modelo	Fórmula	Importa	Ejemplo
Permutación	$P_n = n!$	orden	Formas de ordenar {a,b,c}: abc, acb, bac, bca, cab, cba P ₃ = 3! = 6
Variación	$V_{n,k} = \frac{n!}{(n-k)!}$	naturaleza ("¿cuáles?") y orden	Formas de tomar 2 elementos de {a,b,c}, teniendo en cuenta el orden: ab, ba, ac, ca, bc, cb $V_{3,2} = 3! / 1! = 6$
Combinación	$C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$	naturaleza	Formas de tomar 2 elementos de {a,b,c}, sin tener en cuenta el orden: ab, ac, bc $C_{32} = 3! / 2!1! = 6/2 = 3$

Modelos compuestos (con repetición):

Modelo	Fórmula	Importa	Ejemplo
Permutación	$\mathbf{P}_{nl,n2,,nk}' = \frac{(n_1 + n_2 + + n_k)!}{n_1! n_2! n_k!}$	orden	Formas de ordenar {a,a,b,c} aabc, aacb, abac, acab, abca, abca, baca, caba, baac, caab, bcaa, cbaa P'211 = 4! / 2!1!1! = 24/2 = 12
Variación	$V'_{n,k} = n^k$	naturaleza ("¿cuáles?") y orden	Formas de tomar 3 elementos de {a,b} (pudiendo repetir) y teniendo en cuenta el orden aaa, aab, aba, abb, baa, bab, bbb V'23 = 2³ = 8
Combinación	$C'_{n,k} = \frac{(n+k-1)!}{(n-1)!k!}$	naturaleza	Formas de tomar 3 elementos de {a,b} (pudiendo repetir) aaa, aab, abb, bbb C'23 = 4! / 1!3! = 24/6 = 4