Outils Logiques Groupe 3 & 4 – DM 2

Chaitanya Leena Subramaniam

à rendre avant le 15 février 2021 par email à chaitanya@irif.fr

Exercice 1

Soit $\Sigma = \{a^0, b^1, x^1, \neg^2\}$ une signature. Pour chacune des expressions ci-dessous, dire si elle correspond à un élément de T_{Σ} . Justifier.

- (1) x
- (2) $(b, (\neg, a, x))$
- $(3) (\neg, (b, (b, a)), a)$
- $(4) (\neg, (\neg, b, a), a)$
- (5) $(x, (\neg, a, (\neg, a, (x, a))))$

Exercice 2

Soit $\Sigma = \{\varepsilon^0, a^1, b^1\}$. Considérer la structure de Σ -algèbre suivante sur \mathbb{N} :

$$f_{\varepsilon} = 1$$

 $f_a \colon \mathbb{N} \to \mathbb{N} \quad ; \quad f_a(x) = 3 \times x$
 $f_b \colon \mathbb{N} \to \mathbb{N} \quad ; \quad f_b(x) = x + 1$

- (1) Quel est l'alphabet X tel que T_{Σ} est en bijection avec l'ensemble X^* des mots sur X? Par la suite nous allons identifier $X^* = T_{\Sigma}$.
- (2) Soit $\mu: T_{\Sigma} \longrightarrow \mathbb{N}$ le morphisme d'algèbre depuis l'algèbre initiale $\underline{T_{\Sigma}}$. Quelle est la valeur de $\mu(abab)$? (Ici le mot abab correspond à un arbre de syntaxe grâce au point précédent.)
- (3) Montrer que pour tout mot $v \in T_{\Sigma}$, on a $\mu(abv) > \mu(bbav)$ pour l'ordre habituel sur \mathbb{N} . (Indice : calculer $\mu(abv), \mu(bbav)$ en fonction de $\mu(v)$.)
- (4) Montrer que pour tous mots $u, v, w \in T_{\Sigma}$, si on a $\mu(v) > \mu(w)$, alors on a $\mu(uv) > \mu(uw)$. (Indice: pour cela, commencer en montrant que si on a $\mu(v) > \mu(w)$, alors on a $\mu(av) > \mu(aw)$ et $\mu(bv) > \mu(bw)$. Puis conclure.)
- (5) En déduire que pour tous mots $u, v \in T_{\Sigma}$, on a $\mu(uabv) > \mu(ubbav)$.
- (6) Soit \rightarrow la relation suivante sur T_{Σ} : pour tous mots $u, v \in T_{\Sigma}$, on a

$$uabv \rightarrow ubbav$$

Montrer que la relation \rightarrow termine.

Exercice 3

Considérons l'alphabet $\{a, b, c\}$.

- (1) Définissez une signature Σ telle que T_{Σ} est en bijection avec l'ensemble $\{a,b,c\}^*$ des mots sur $\{a,b,c\}$.
- (2) Définissez une structure de Σ -algèbre sur \mathbb{N} telle que la fonction canonique $\mu \colon T_{\Sigma} \longrightarrow \mathbb{N}$ envoie un mot w sur le nombre de caractères dans w (la longueur du mot w).
- (3) Définissez une structure de Σ -algèbre sur \mathbb{N} telle que la fonction canonique $\mu \colon T_{\Sigma} \longrightarrow \mathbb{N}$ envoie un mot w sur le nombre de a et de c qui apparaissent dans w.

(4) Soit \to la relation suivante sur $\{a,b,c\}^*$: pour tous mots $u,v\in\{a,b,c\}^*$, on a

 $uacv \rightarrow uabbv \qquad ucbav \rightarrow ucav \qquad uaav \rightarrow uabv$

Montrer qu'il existe une fonction $f: \{a, b, c\}^* \longrightarrow \mathbb{N} \times \mathbb{N}$ telle que pour tout pair de mots $w, w' \in \{a, b, c\}^*$, si on a $w \to w'$, alors on a $f(w) >_{lex} f(w')$. (Ici, $>_{lex}$ est l'ordre lexicographique habituel sur $\mathbb{N} \times \mathbb{N}$)

(5) En déduire que la relation \rightarrow termine.