Especificación de Requerimientos de Software

para el proyecto:

"Sistema de Monitoreo y Optimización para Impresoras 3D"

Versión 1.0 aprobada

Preparado por Axel Josue Cordero Martinez

15 de marzo de 2025

Índice general

0.1	Introducción		
	0.1.1	Propósito	3
	0.1.2	Alcance	3
	0.1.3	Resumen del Producto	3
	0.1.4	Definiciones	4
	0.1.5	Siglas y Abreviaturas	4
0.2	Refere	ncias	4
0.3	Requis	sitos	5
	0.3.1	Requisitos Funcionales	5
	0.3.2	Requisitos de Usabilidad	5
	0.3.3	Requisitos de Rendimiento	5
	0.3.4	Requisitos de Interface	5
	0.3.5	Operaciones del Sistema	5
	0.3.6	Modos de Operación y Estados	6
	0.3.7	Características Físicas	6
	0.3.8	Condiciones Ambientales	6
	0.3.9	Requisitos de Seguridad	6
	0.3.10	Requisitos de Administración de la Información	6
	0.3.11	Requerimientos de Políticas y Regulaciones	6
	0.3.12	Requerimientos de Ciclo de Vida	7
	0.3.13	Requisitos de Empaque, Manejo, Envío y Transporte	7
0.4	Verific	ación	7
	0.4.1	Estrategia de Verificación	7
	0.4.2	Plan de Pruebas	7
0.5	Apéndices		
	0.5.1	Supuestos y Dependencias	8
	0.5.2	Matriz de Trazabilidad	8

0.1. Introducción

0.1.1. Propósito

El presente documento define de forma clara y verificable los requerimientos del sistema de AutoPrint, es una solución embebida que permite monitorear y optimizar el rendimiento de impresoras 3D. Se integra hardware (Raspberry Pi, sensores y módulos de cámara) y software (algoritmos de Inteligencia Artificial e interfaz web) para reducir el tiempo de inactividad y mejorar la eficiencia operativa.

0.1.2. Alcance

El sistema de AutoPrint comprende:

- Monitoreo en tiempo real de variables ambientales (temperatura y humedad).
- Supervisión visual mediante cámaras.
- Predicción de fallos a través de modelos de IA para mantenimiento preventivo.
- Interfaz web para la gestión remota de impresoras 3D.
- Limitaciones: No incluye el diseño mecánico de las impresoras ni la modificación del firmware original.

0.1.3. Resumen del Producto

Contexto del Sistema

El sistema de AutoPrint es un módulo independiente que se comunica con impresoras 3D mediante sensores y APIs, sin alterar su funcionamiento interno.

Funciones del Sistema

- El sistema de AutoPrint ofrece las siguientes funciones:
- F1 Monitorear en tiempo real las condiciones ambientales y el estado de las impresoras.
- F2 Predecir fallos en las impresoras con alta precisión mediante algoritmos de IA.
- F3 Optimizar la asignación de trabajos de impresión.
- F4 Generar alertas y reportes para mantenimiento preventivo.
- F5 Proveer una interfaz web intuitiva para control remoto.

Características de los usuarios

- Técnicos: Acceden a datos técnicos y diagnósticos del sistema.
- Operarios: Gestionan trabajos y reciben alertas del sistema.
- Gerentes: Analizan reportes de eficiencia y costos.

0.1.4. Definiciones

- Mantenimiento predictivo: Acciones basadas en análisis de datos para prevenir fallos.
- Sistema embebido: Computadora integrada (por ejemplo, Raspberry Pi) que ejecuta software especializado.
- Interfaz web: Aplicación accesible mediante navegador para control y monitoreo remoto.
- Sensores: Dispositivos que miden parámetros ambientales (por ejemplo, temperatura y humedad).

0.1.5. Siglas y Abreviaturas

- IA: Inteligencia Artificial.
- API: Interfaz de Programación de Aplicaciones.
- **RF:** Requisito Funcional.
- RU: Requisito de Usabilidad.
- RR: Requisito de Rendimiento.
- **RI:** Requisito de Interface.
- **RS:** Requisito de Seguridad.

0.2. Referencias

- ISO/IEC/IEEE 29148:2018 Estándar para Ingeniería de Requisitos de Software.
- Documentación técnica de Raspberry Pi.
- Especificaciones del protocolo IEEE 802.11ac.
- Guía para la elaboración del documento de requerimientos (CE-1114, 2025-1).

0.3. Requisitos

0.3.1. Requisitos Funcionales

- RF-01 El sistema debe registrar la temperatura y la humedad cada 5 minutos en el entorno de las impresoras. *Verificación:* Validación de los registros almacenados en la base de datos.
- RF-02 El modelo de IA debe identificar patrones de fallo con una precisión mínima del 85 %. Verificación: Pruebas con datos históricos y simulaciones.
- RF-03 El sistema debe asignar trabajos de impresión optimizando la utilización de las 3 impresoras disponibles. *Verificación:* Análisis de tiempos de espera y productividad.

0.3.2. Requisitos de Usabilidad

- RU-01 La interfaz web debe cargar en menos de 3 segundos bajo condiciones normales de uso. *Verificación:* Pruebas de carga con hasta 5 usuarios simultáneos.
- RU-02 La interfaz debe ser intuitiva y accesible, permitiendo a operarios y técnicos acceder rápidamente a diagnósticos y reportes. *Verificación:* Encuestas y pruebas de usuario.

0.3.3. Requisitos de Rendimiento

RR-01 El sistema debe procesar datos de hasta 3 impresoras con una latencia inferior a 1 segundo. *Verificación:* Monitoreo con herramientas de profiling en condiciones de carga moderada.

0.3.4. Requisitos de Interface

RI-01 La interfaz web debe incluir elementos de diseño que faciliten su uso y navegación. Verificación: Evaluación de usabilidad mediante pruebas de usuario.

0.3.5. Operaciones del Sistema

Requisitos de Integración Sistema-Humano

El sistema debe permitir la interacción mediante una interfaz web adaptable a dispositivos móviles y de escritorio. *Verificación:* Pruebas de compatibilidad en distintos navegadores y dispositivos.

Requisitos de Mantenibilidad

El código debe seguir estándares básicos (por ejemplo, PEP8 en Python) y contar con documentación interna que facilite futuras modificaciones. *Verificación*: Revisión del código y auditoría de documentación.

Requisitos de Confiabilidad

El sistema debe mantener un tiempo de actividad mínimo del 99 % durante operaciones normales. *Verificación:* Monitoreo continuo durante períodos de prueba.

Otros Requisitos de Calidad

El sistema debe ser escalable, permitiendo la incorporación de futuras impresoras o módulos sin una reestructuración completa. *Verificación:* Pruebas de escalabilidad con cargas incrementales.

0.3.6. Modos de Operación y Estados

El sistema debe contar con un modo normal para el monitoreo activo y un modo de mantenimiento para actualizaciones o reparaciones. *Verificación:* Pruebas de conmutación entre modos sin pérdida de datos.

0.3.7. Características Físicas

El hardware, compuesto por la Raspberry Pi y los sensores, se integrará en una carcasa que proteja el equipo del polvo y la humedad moderada. *Verificación:* Inspección física y pruebas ambientales en el taller.

0.3.8. Condiciones Ambientales

El sistema debe operar correctamente en ambientes con temperaturas entre 15°C y 30°C, acorde a las condiciones del taller. *Verificación:* Pruebas de funcionamiento en distintos rangos de temperatura.

0.3.9. Requisitos de Seguridad

- RS-01 El acceso a la interfaz web se protegerá mediante autenticación de dos factores. Verificación: Revisión de la implementación y pruebas de penetración.
- RS-02 La comunicación entre dispositivos y la base de datos deberá estar cifrada. *Verificación:* Auditoría de seguridad y pruebas de encriptación.

0.3.10. Requisitos de Administración de la Información

Los datos recopilados se almacenarán en una base de datos encriptada y se realizarán respaldos periódicos. *Verificación:* Auditorías de seguridad y pruebas de restauración.

0.3.11. Requerimientos de Políticas y Regulaciones

No aplica.

0.3.12. Requerimientos de Ciclo de Vida

No aplica.

0.3.13. Requisitos de Empaque, Manejo, Envío y Transporte

No aplica.

0.4. Verificación

0.4.1. Estrategia de Verificación

El sistema AutoPrint se validará mediante pruebas unitarias, de integración, de rendimiento y de seguridad, garantizando que todos los requerimientos sean claros y verificables.

0.4.2. Plan de Pruebas

- Ejecución de pruebas unitarias en cada componente del software.
- Realización de pruebas de integración para evaluar la comunicación entre módulos.
- Pruebas de rendimiento bajo condiciones de carga real.
- Evaluación de usabilidad mediante encuestas y análisis de la interfaz.

Figura 1: Diagrama de Secuencia de la Verificación de Requerimientos

0.5. Apéndices

0.5.1. Supuestos y Dependencias

- Las impresoras 3D deben contar con APIs abiertas para la recolección de datos.
- La conexión Wi-Fi debe ser estable en el entorno de operación.
- El hardware (Raspberry Pi, sensores) funcionará según especificaciones técnicas.
- Las bibliotecas de IA (TensorFlow/PyTorch) serán compatibles con el sistema operativo.

0.5.2. Matriz de Trazabilidad

Requisito	Objetivo del Proyecto
RF-01	Objetivo 1: Diseñar sistema embebido para monitoreo
RF-02	Objetivo 2: Implementar modelo predictivo de IA
RU-01	Objetivo 3: Interfaz web para control remoto
RR-01	Objetivo 4: Optimizar eficiencia operativa
RI-01	Objetivo 3: Interfaz intuitiva
RS-01	Objetivo 5: Seguridad del sistema

Figura 2: Diagrama de Clases del Sistema de AutoPrint

Aprobación del Supervisor

Figura 3: Correo de aprobación del supervisor