## - Curs 2 - Gemantica LP

```
Curs s: - Logica propositionalà informalà
                Lo ambiguitati
         - Logica propositionalà (formal)
                 Lo sintaxa LP
```

UP - cea ruei ruico ruelfine a.i.

pellp (p) \$ LIF

CJ3: Daca Y, Yz ELP, atunci (Y, VYz) ELP

Ex de function recursive:

subf - nultiquea de subformule a une formule date,

$$2^{X} = \mathcal{G}(X) - \text{multirula partir}$$

$$X = \{0, 1, 2, 3\}$$

$$2^{X} = \{0, 1, 2, 3\}$$

$$2^{X} = \{0, 1, 2, 3\}$$

$$\{1, 2, 3, 3, 1, 2, 3, 3\}$$

$$|2^{X}| = 2^{|X|}$$

$$|2^{\times}| = 2^{\times 1}$$

$$|2^{$$

arb : LP -> Trues

$$anb(\varphi) = \begin{cases} \varphi, & daca & \varphi \in A \\ \\ \varphi, & daca & \varphi \in A \end{cases}$$

$$anb(\varphi') \qquad , & daca & \varphi = 7\varphi' \\ \varphi' \in LP$$

arb(
$$\varphi_1$$
) arb( $\varphi_2$ ) , dacā  $\varphi = (\varphi_1 \land \varphi_2)$  — CI2

 $\varphi_1, \varphi_2 \in UP$ 
 $\varphi_1, \varphi_2 \in UP$ 
 $\varphi_1, \varphi_2 \in UP$ 
 $\varphi_1, \varphi_2 \in UP$ 

and 
$$\left(\begin{array}{c} p & \sqrt{7} & (2 \wedge n) \\ \sqrt{2} & \sqrt{2} & 2 \end{array}\right)$$

pe UP

 $2e \text{ LP} \left(\begin{array}{c} \sqrt{2} & 2 \\ -2 & 2 \end{array}\right) \left(\begin{array}{c} 2 \wedge n \\ 2 & 2 \end{array}\right) e \text{ LP}$ 
 $e \text{ LP} \left(\begin{array}{c} \sqrt{2} & 2 \\ -2 & 2 \end{array}\right) \left(\begin{array}{c} 2 \wedge n \\ 2 & 2 \end{array}\right) e \text{ LP}$ 
 $e \text{ LP} \left(\begin{array}{c} \sqrt{2} & 2 \\ -2 & 2 \end{array}\right) \left(\begin{array}{c} 2 \wedge n \\ 2 & 2 \end{array}\right) e \text{ LP}$ 
 $e \text{ LP} \left(\begin{array}{c} \sqrt{2} & 2 \\ -2 & 2 \end{array}\right) \left(\begin{array}{c} 2 \wedge n \\ 2 & 2 \end{array}\right) e \text{ LP}$ 



Demonstrati prin inductie structuralà.

ind maternatica

CB: 
$$n=0$$
  $P(v)'A''$   $CB: P(4), 4 \in A$   $CI: pr.  $P(k) = P(k+1)$   $CIA: pr.  $P(4') \Rightarrow P(74')$$$ 

## Semantica logici propozitionale

$$B = \{0, 13\}$$
 :  $B \rightarrow B$  - regation logica  $\overline{0} = 1$  in  $\overline{1} = 0$ 

+: 
$$B \times B \rightarrow B$$
 - Sau logic  
0+0 = 0  
0+1 = 1  
1+0 = 1  
1+1 = 1

+: 
$$B \times B \rightarrow B$$
 - Sau logic

0+0=0

0+1=1

1+0=1

1+1=1

## Afribuirà

O atribuire de valori de adevar este orice functie T:A-B

Ex: 
$$T_1: A \rightarrow B$$

$$T_1(p) = 1$$

$$T_1(2) = 0$$

$$T_1(n) = 1$$

$$T_1(a) = 0 \text{ pt orice } a \in A \setminus \{p, 2, n\}\}$$

$$Ex: T': A \rightarrow B$$

$$E \times : \tau' : A \rightarrow B$$

$$\tau'(a) = 0, \text{ pt strice } a \in A$$

Valourea de adevar a unei formule 4 intr-o atribuire 7

Valsarea de advar a une formule 
$$\Psi$$
 initio a  $\Psi$  albutte  $\mathcal{L}$ 

$$\hat{\mathcal{L}} : \mathbb{LP} \to \mathbb{B} - \text{extensia homomorpica a lui } \mathcal{L}$$

$$\hat{\mathcal{L}}(\Psi) = \begin{cases}
\mathcal{L}(\Psi), & \text{daca } \Psi \in A, & \text{define } \mathcal{L}(\Psi), \\
\hat{\mathcal{L}}(\Psi), & \text{daca } \Psi = \mathcal{L}(\Psi), & \text{define } \mathcal{L}(\Psi), \\
\hat{\mathcal{L}}(\Psi), & \hat{\mathcal{L}}(\Psi), & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_1, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_2, \Psi_2 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_3, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_2), \\
\Psi_4, \Psi_4 \in \mathbb{LP}, & \text{daca } \Psi = (\Psi, \Lambda \Psi_$$

$$\frac{\zeta_1(\gamma(p \vee q))}{\zeta_1(p \vee q)} = \frac{\zeta_1(p) + \zeta_1(q)}{\zeta_1(p) + \zeta_1(q)} = \frac{\zeta_1(p) + \zeta_1(q)}{\zeta_1(p)} = \frac{\zeta_1(p) + \zeta_1(q)}{\zeta_1(p)} = \frac{\zeta_1(p) + \zeta_1(q)}{\zeta_1(p)} = \frac{\zeta_1(p) + \zeta_1(q)}{\zeta_1(q)} = \frac{\zeta_1(q)}{\zeta_1(q)} = \frac{\zeta_1(q)}{\zeta_1(q)} = \frac{\zeta_1(q)}{\zeta_1(q)}$$

Def: 
$$T \models Y \quad ddac\bar{\alpha} \quad \hat{\tau}(Y) = 1$$

$$T \not\models Y \quad ddac\bar{\alpha} \quad \hat{\tau}(Y) = 0$$

$$\Psi$$
 este satisfiabilă dacă exista o atribuire  $T:A \rightarrow B$ 

a.i.  $T \neq \Psi$   $\left(\frac{t}{t}(\Psi) = 1\right)$ 
 $E \times : \neg (p \vee q) \quad \hat{\tau}'(\neg (p \vee q)) = \dots = 1$ 
 $\left(p \wedge \neg p\right) - rue$  este satisfiabilă  $-$  contradictie

$$\mathcal P$$
 este valida dalaca pt orice atribuire  $\mathcal T:A \Rightarrow \mathcal B$ , avem  $\mathcal T \models \mathcal P$ 

$$7(pvg)$$
 -rue este valida  $(\hat{T}_1(7(pvg)) = 0)$   
 $(pv7p)$  -rvalida.

4 - satisfiabila, dar nu este valida a contingenta

 $P_1, P_2 \in \mathbb{CP}$  sunt echivalente in notain  $P_1 \equiv P_2$ oddaca pt orice atribuire  $T: A \rightarrow B$ , over  $\tilde{\mathcal{Z}}(P_1) = \tilde{\mathcal{Z}}(P_2)$ 

Dem: Fire 
$$T: A \rightarrow B$$
 or attribute containing  $\hat{\tau}(p) = T(\frac{p}{p})$ 

$$\hat{\tau}(77p) = \hat{\tau}(7p) = \hat{\tau}(p) = \hat{\tau}(p)$$

$$\hat{\tau}(77p) = \hat{\tau}(7p) = \hat{\tau}(p)$$

 $\varphi$  este consecintà semantica din  $\Gamma$  dolaca pt orice abilipuire  $\tau:A\to B$  a.2.  $\hat{\tau}(\varphi_1)=\hat{\tau}(\varphi_2)=...=\hat{\tau}(\varphi_n)$  avem is  $\hat{\tau}(\varphi)=1$ 

$$\mathcal{E}_{\times}: \quad \Gamma = \left\{ p, (\gamma p \vee 2) \right\}$$

$$\Gamma \models 2$$

Fie  $\tau: A \rightarrow B$  arbitrar a.i.  $\hat{\tau}(p) = 1$ in  $\hat{\tau}((7pvg)) = 1$ in  $\hat{\tau}((7pvg)) = 1$ in  $\hat{\tau}((7pvg)) = 1$ in  $\hat{\tau}((7pvg)) = 1$ 

$$\hat{\tau}((\tau_{p,q})) = 1 = \hat{\tau}(\tau_{p}) + \hat{\tau}(\tau_{q}) = 1 = 1$$

$$= \hat{\tau}(\tau_{p}) + \hat{\tau}(\tau_{q}) = 1$$

=) [ =2 (desource I a fost ales autoitrar)