

스크래치로 배우는

컴퓨팅 사고

Part 01. 컴퓨팅 사고 이론

Chapter 03. 컴퓨팅 사고와 문제 해결

목차

- 1. 컴퓨터를 이용한 문제 해결
- 2. 컴퓨팅 사고의 이해
- 3. 컴퓨팅 사고의 구성요소

01 컴퓨터를 이용한 문제 해결

01. 컴퓨터를 이용한 문제 해결

■ 컴퓨터와 인간

 컴퓨터는 인간이 시키는 일을 빠른 속도로 처리하고 정확하게 기억한다. 인간은 컴퓨터의 이러한 능력을 이용하여 각종 작업의 효율을 높인다.

■ 컴퓨터와 계산기의 차이

컴퓨터가 일반 계산기와 다른 점이 있다면 '프로그래밍' 할 수 있다는 점이다. 프로그래밍이란 컴퓨터에게 작업을 지시하는 것을 말한다.

[그림 3-1] 컴퓨터와 계산기의 차이

01. 컴퓨터를 이용한 문제 해결

■ 프로그래밍

- 프로그램이란 컴퓨터로 문제를 해결하기 위해 작성한 명령어의 모임을 말한다.
 프로그래밍은 이러한 프로그램을 작성하는 과정이다.
- 프로그래밍이 가능하다는 것은 블록으로 만든 인형처럼 원하는 모양으로 다양
 하게 변형할 수 있다는 의미이다.

01. 컴퓨터를 이용한 문제 해결

■ 알고리즘

- 로봇청소기를 만들 때 방의 크기를 측정하는 방법, 장애물을 인식하는 방법, 이동할 경로를 찾는 방법을 프로그래밍하여 로봇청소기에 내장한다. 우리는 로봇청소기가 경로를 찾는 전체 과정을 알고리즘이라 부른다.
- 알고리즘이란 어떤 문제를 해결하기 위한 동작들을 하나로 모은 것이다.

[그림 3-2] 진공청소기와 로봇청소기

■ 컴퓨팅 사고의 개념

 내비게이션 프로그램의 경우 출발지부터 도착지까지 최단 거리 혹은 최단 시간을 구하는 알고리즘을 돌려 결과를 출력한다. 스마트 TV가 영화를 추천하는 것도 알 고리즘을 이용하여 그 결과를 출력하는 것이다.

[그림 3-3] 내비게이션을 활용한 최단 거리 찾기

■ 컴퓨팅 사고의 개념

 컴퓨팅 사고(Computational Thinking, CT): 컴퓨터가 인간의 문제를 해결하기 위해서는 주어진 작업을 어떤 순서와 어떤 방법으로 풀지 결정해야 하는데, 이렇게 문제를 해결하기 위해 논리적이고 창의적으로 생각하는 것을 '컴퓨팅 사고'라고 부른다.

[**그림 3-5]** 컴퓨팅 사고

- * 메뉴가 2개인 냉면집: 2진수
- 메뉴가 2개인 식당과 메뉴가 10개인 식당을 비교해보면 메뉴가 간단할수록 음식 회 전율이 좋다. 컴퓨터가 계산을 빠르게 하기 위하여 2진수를 사용하는 것과 같은 원리 이다.

[**그림 3-6**] 메뉴가 2개인 냉면집

- * 구내식당의 줄서기 : 입출력 채널의 분리
- 한식을 기다리는 줄과 분식을 기다리는 줄을 분리하면 분식 때문에 한식을 기다리는
 사람이 시간을 낭비하는 것을 줄일 수 있다.
- 입출력 장치들을 느린 채널과 빠른 채널로 분리하여 사용하면 전체 입출력의 효율이 올라간다.

[그림 3-7] 구내식당의 줄서기

- * 주스 공장의 박스 : 버퍼
- 모터를 돌려서 사과를 잘게 부수는 것은 매우 빠른 속도로 이루어진다. 기계의 속도를 맞추려면 사과를 큰 박스에 담아서 통째로 옮겨야만 한다. 속도 차이가 많이 나는 두 장치 사이에 끼어서 속도 차이를 완화시켜주는 장치가 버퍼이다. 여기서 큰 박스가 버퍼의 역할을 한다

[그림 3-8] 주스 공장의 박스

- * 조미료 통: 캐시
- 주방에는 조미료를 대용량 포장으로부터 조금씩 덜어 놓은 조미료 통이 있다. 이렇게 앞으로 사용할 것이라 예상되는 것을 미리 가져다 놓은 것을 캐시(cache)라 부른다.

[그림 3-9] 사용할 만큼 미리 조미료 통에 덜어서 쓰기

- * 소문난 맛집의 주방 : 병렬 처리
- 어느 맛집에 손님들이 줄서기 시작하였다. 주문이 많아 음식을 주문하고 30분이 지나야만 음식을 맛볼 수 있다. 그래서 주방장을 더 채용하고 주방을 하나 더 만들었다.
 그러고 나니 15분 정도면 음식을 맛볼 수 있게 되었다. 이것이 바로 병렬 처리이다.
- 병렬 처리란 두 개의 작업을 동시에 처리하는 기법을 가리킨다. 병렬 처리를 하기 위해서 하나의 CPU에 코어를 2개를 만들었는데, 이러한 CPU를 듀얼-코어(dual-core)라부른다.

[그림 3-10] 주방을 하나 더 만들면 여러 음식을 빨리 만들 수 있다

- 컴퓨팅 사고의 구성요소는 다음과 같다.
 - 추상화 : 문제에서 중요하지 않은 부분을 제거하고 중요한 특징만 남겨 단순화시 키는 것.
 - 분해 : 주어진 문제를 해결하기 쉬운 작은 단위의 문제로 나누는 것.
 - 패턴인식 : 주어진 데이터를 특징별로 나누어 의미 있는 패턴이 있는지 찾는 것.
 - 알고리즘 : 주어진 문제를 해결하기 위한 일련의 절차나 방법을 공식화한 형태로 표현하는 것.

[그림 3-11] 컴퓨팅 사고의 구성 요소

■ 추상화

- 추상화(abstraction): 세부사항을 제거하여 간결하게 만드는 것으로, 문제에서 불필요
 한 세부사항을 제거함으로써 문제의 본질을 쉽게 파악하도록 하는 작업이다.
- 추상화를 통하여 만들어진 공통의 특성을 추려내어 만들어진 개념을 일반화라 부른다.

[그림 3-12] 다각형으로 추상화된 코뿔소

■ 추상화

(a) 서울 지도

(b) 지하철 노선도

[그림 3-13] 서울 지도와 지하철 노선도

■ 추상화

[그림 3-14] 음식 네온사인의 픽토그램

■ 분해

• 분해(decomposition): 복잡한 문제를 풀기 쉬운 간단한 문제로 나누는 것으로 일상생활에서 많이 사용하는 방법이다.

[그림 3-15] 짜장면 만들기의 문제 분해

■ 분해

 몇 장의 타일과 몇 그램의 본드가 필요할까? 타일 붙이기 문제를 분해하여 타일 한 장에 필요한 본드의 양으로부터 전체 문제를 해결할 수 있다.

[그림 3-16] 타일 붙이기의 문제 분해

■ 분해

• 컴퓨터에서 전체 문제를 작은 문제로 분해하여 해결한 후 해결된 작은 문제를 결합하여 큰 문제를 해결하는 방식을 분할정복(divide and conquer)이라 부른다.

■ 분해

• 정렬이 되어 있는 8개의 숫자에서 16이 있는지 없는지 알고 싶다고 가정해보자.

[그림 3-17] 일반적인 문제 해결 방식

■ 패턴인식

- 패턴인식(pattern recognition): 추상화 및 분해를 한 후, 데이터를 특징별로 나누어 유사한 문제 해결 방식이 있는지 찾아보는 과정이다. 우리가 해결하는 문제 혹은데이터에서 의미 있는 패턴을 찾아내는 과정이다.
- 움직이는 사람을 그린다고 가정해보자. 사람이 서있는 것과 달리 사람이 걷는 것에 는 일정한 패턴이 있다.

[그림 3-19] 서있는 사람과 걷는 사람

■ 패턴인식

• RGB는 빛의 패턴이다. 빛을 이루는 3원색인 빨간색(Red), 녹색(Green), 파란색 (Blue)이 모든 사진이나 동영상의 패턴이다.

[그림 3-20] RGB 패턴

■ 패턴인식

• 수학에서의 패턴, 수열

1 2 3	5	8	13	21	34	X
-------	---	---	----	----	----	---

[그림 3-21] 수열

■ 패턴인식

• 어느 식당의 한 달 방문자 수를 표시한 것이다.

11	14	19	26	22	16	55	16	15	20	21	21	18	60
12	24	20	19	23	19	61	12	18	19	11	12	18	49

[그림 3-22] 한 달 방문자 수

 위의 데이터에 요일을 집어넣으면 사람이 많이 몰리는 날은 일요일이라는 것을 알 수 있다.

27	화	宁	军	7/2	豆	0132
17	14	19	26	22	16	55
16	15	20	21	21	18	60
12	24	20	19	23	19	61
12	18	19	11	12	18	49

[그림 3-23] 요일을 넣어 패턴 찾기

■ 알고리즘

• **알고리즘(algorithm)**: 어떠한 문제를 해결하기 위해 정해진 일련의 절차나 방법을 공식화한 형태로 표현한 것을 말한다. 알고리즘은 다음 Chapter 04에서 자세히 다룬다.

Thank You!

