AFILAMENTO

Afilamento, forma, "taper" ou adelgaçamento é definido como a taxa de decréscimo em diâmetro que ocorre ao longo do tronco da árvore.

POLINÔMIO DO QUINTO GRAU (Schöepfer, 1966)

O polinômio de quinto grau foi proposto primeiramente por Schöepfer (1966), e tem a forma:

$$\frac{d_i}{D} = \beta_0 + \beta_1 \left(\frac{h_i}{H}\right) + \beta_2 \left(\frac{h_i}{H}\right)^2 + \beta_3 \left(\frac{h_i}{H}\right)^3 + \beta_4 \left(\frac{h_i}{H}\right)^4 + \beta_5 \left(\frac{h_i}{H}\right)^5 + e_i$$

onde:

 β_{is} = parâmetros a serem estimados;

 d_i = diâmetro comercial (cm) ou diâmetro correspondente a qualquer altura h_i, especificada ou comercial;

D = diâmetro a 1,3 m de altura (cm);

H = altura total (m);

 h_i = altura comercial (m);

 $e_i = erro de estimativa.$

Isolando d_i obtém-se a função de afilamento, através da qual pode-se estimar o diâmetro correspondente a qualquer altura na árvore, desde que fornecido o seu diâmetro a 1,3m de altura (DAP ou D) e a altura total.

$$d_i = D \left[\beta_0 + \beta_1 \left(\frac{h_i}{H} \right) + \beta_2 \left(\frac{h_i}{H} \right)^2 + \beta_3 \left(\frac{h_i}{H} \right)^3 + \beta_4 \left(\frac{h_i}{H} \right)^4 + \beta_5 \left(\frac{h_i}{H} \right)^5 \right]$$
(1)

Para integrar a função e obter a expressão que permite a estimativa dos volumes, fez-se a seguinte simplificação:

$$c_0 = \beta_0;$$
 $c_1 = \frac{\beta_1}{H};$ $c_2 = \frac{\beta_2}{H^2};$; $c_5 = \frac{\beta_5}{H^5}$

Feita a simplificação, a expressão a ser integrada assume a forma (2):

$$d_{i} = D * [c_{0} + c_{1} * h + c_{2} * h^{2} + c_{3} * h^{3} + c_{4} * h^{4} + c_{5} * h^{5}]$$
(2)

O volume (V) de um sólido de revolução é obtido pela integração de suas áreas seccionais (g_i) entre o limite inferior (h_1) e o superior (h_2) que se deseja estabelecer. No caso de uma árvore, se o volume total é desejado, então $h_1=0$ e $h_2=$ altura total da árvore. A representação da integral é mostrada a seguir:

$$V = \int_{h_{1}}^{h_{2}} g_{i} \, \delta \, h \qquad \to \qquad V = \int_{h_{1}}^{h_{2}} \frac{\pi * d_{i}^{2}}{40000} \, \delta \, h$$

$$V = K \int_{h_{1}}^{h_{2}} d_{i}^{2} \delta \, h \qquad (3)$$

sendo: $K = \frac{\pi}{40000}$

 d_i = diâmetro correspondente a qualquer altura h_i ao longo do fuste da árvore.

Então, substituindo (2) em (3), tem-se:

$$V = K * D^{2} * \int_{h_{1}}^{h_{2}} (c_{0} + c_{1}h_{i} + c_{2}h_{i}^{2} + c_{3}h_{i}^{3} + c_{4}h_{i}^{4} + c_{5}h_{i}^{5})^{2} \delta h_{i}$$
 (4)

O volume é então obtido pela integração do polinômio conforme a apresentação mostrada a seguir:

Simplificando a expressão por:

$$c_0 = \beta_0 \qquad \quad e \qquad \quad c_i = \left(\frac{\beta_i}{H^{p_j}}\right) \ , \label{eq:constraint}$$

i = 1, 2, ..., 5

p_i = expoentes variando de 1 a 5

e multiplicando ambos os lados da equação por D, a expressão fica:

$$d_i = D\left(c_0 + c_1h_1^{p_1} + c_2h_2^{p_2} + ... + c_nh_n^{p_n}\right) + e_i$$

O volume da árvore é obtido pela integral do polinômio:

$$V = K \int_{h_1}^{h_2} d_i^2 \delta h$$

$$V = K D^2 \int_{h_1}^{h_2} (c_0 + c_1 h_1^{p_1} + c_2 h_2^{p_2} + ... + c_n h_n^{p_n})^2 \delta h$$

Antes de proceder a integração, é necessário elevar ao quadrado a expressão entre parênteses. Desta forma tem-se:

$$\frac{c_0^2 + 2c_0c_1h^{p_1} + c_1^2h^{2p_1} + 2c_0c_2h^{p_2} + 2c_0c_{(n-1)}h^{p_{(n-1)}} + 2c_1c_2h^{(p_1+p_2)} + c_2^2h^{2p_2} + c_1c_{(n-1)}h^{(p_1+p_{(n-1)})} + 2c_0c_nh^{p_n} + 2c_1c_nh^{(p_1+p_n)} + 2c_2c_{(n-1)}h^{(p_2+p_{(n-1)})}}{c_0^2 + 2c_0c_nh^{p_1} + 2c_2c_nh^{(p_2+p_n)} + 2c_2c_{(n-1)}h^{(p_{(n-1)}+p_n)} + c_1^2h^{2p_n}} + c_1^2h^{2p_n}$$

A integral então fica:

$$\begin{split} V = & \frac{\pi \, D^2}{40000} \, \int\limits_{h_1}^{h_2} \! \left[c_0^2 + 2 c_0 c_1 h^{p_1} + c_1^2 h^{2p_1} + 2 c_0 c_2 h^{p_2} + 2 c_0 c_{(n-1)} h^{p_{(n-1)}} + 2 c_1 c_2 h^{(p_1 + p_2)} + \ c_2^2 h^{2p_2} + c_2^2 h^{2p_2} + c_1 c_{(n-1)} h^{(p_1 + p_{(n-1)})} \right] \\ & + \ c_1 c_{(n-1)} h^{(p_1 + p_{(n-1)})} + 2 c_0 c_n h^{p_n} + 2 c_1 c_n h^{(p_1 + p_n)} + 2 c_2 c_{(n-1)} h^{(p_2 + p_{(n-1)})} + \ c_{(n-1)}^2 h^{2p_{(n-1)}} + c_{(n-1)}^2 h^{2p_{(n-1)}} + c_1^2 h^{2p_n} \\ & + 2 c_2 c_n h^{(p_2 + p_n)} + 2 c_{(n-1)} c_n h^{(p_{(n-1)} + p_n)} + c_n^2 h^{2p_n} \end{split}$$

Resolvendo a integral:

$$\begin{split} V &= \frac{\pi \, D^2}{40000} \Bigg[c_0^2 h + 2 c_0 c_1 \Bigg(\frac{h^{(p_1+1)}}{p_1+1} \Bigg) + 2 c_0 c_2 \Bigg(\frac{h^{(p_2+1)}}{p_2+1} \Bigg) + \ 2 c_0 c_{(n-1)} \Bigg(\frac{h^{(p_{(n-1)}+1)}}{p_{(n-1)}+1} \Bigg) + 2 c_0 c_n \Bigg(\frac{h^{(p_n+1)}}{p_n+1} \Bigg) + \\ &+ c_1^2 \Bigg(\frac{h^{(2p_1+1)}}{2p_1+1} \Bigg) + \ 2 c_1 c_2 \Bigg(\frac{h^{(p_1+p_2+1)}}{p_1+p_2+1} \Bigg) + \ c_1 c_{(n-1)} \Bigg(\frac{h^{(p_1+p_{(n-1)}+1)}}{p_1+p_{(n-1)}+1} \Bigg) + 2 c_1 c_n \Bigg(\frac{h^{(p_1+p_n+1)}}{p_1+p_n+1} \Bigg) + \\ &+ c_2^2 \Bigg(\frac{h^{(2p_2+1)}}{2p_2+1} \Bigg) + 2 c_2 c_{(n-1)} \Bigg(\frac{h^{(p_2+p_{(n-1)}+1)}}{p_2+p_{(n-1)}+1} \Bigg) + 2 c_2 c_n \Bigg(\frac{h^{(p_2+p_n+1)}}{p_2+p_n+1} \Bigg) + c_{(n-1)}^2 \Bigg(\frac{h^{(2p_{(n-1)}+1)}}{2p_{(n-1)}} \Bigg) + \\ &+ 2 c_{(n-1)} c_n \Bigg(\frac{h^{(p_{(n-1)}+p_n+1)}}{p_{(n-1)}+p_n+1} \Bigg) + c_n^2 \Bigg(\frac{h^{(2p_n+1)}}{2p_n+1} \Bigg) \Bigg]_{h_1}^{h_2} \end{split}$$

EXEMPLO PRÁTICO:

Considere um ajuste do Polinômio do Quinto Grau, cujos coeficientes e respectivas medidas de precisão obtidos foram os seguintes:

$$b_0 = 1,15433$$

$$R^2 = 99,82\%$$

$$b_1 = -3,98529$$

$$Syx = 3,5912\%$$

 $b_2 = 18,03352$

 $b_3 = -38,02445$

 $b_4 = 34,00589$

$$b_5 = -11,19119$$

O Polinômio do Quinto Grau assume então a forma:

$$d_{i} = D \left[1,\!15433 - 3,\!98529 \left(\frac{h_{i}}{H} \right) \!\!+ 18,\!03352 \left(\frac{h_{i}}{H} \right)^{\!2} - 38,\!02445 \left(\frac{h_{i}}{H} \right)^{\!3} + 34,\!00589 \left(\frac{h_{i}}{H} \right)^{\!4} - 11,\!19119 \left(\frac{h_{i}}{H} \right)^{\!5} \right]$$

Considerando uma árvore de 21 anos, cujo DAP seja igual a 52,3cm e altura total seja 27,5m, deseja-se obter as seguintes informações:

a) Número de toras de 4,0m de comprimento com diâmetro mínimo de 25cm (para serraria, por exemplo):

Supondo 3 toras de 4,0m + 0,1m de toco, o diâmetro estimado para a altura de 12,1m é:

$$d_{i} = 52,3 \left\lceil 1,15433 - 3,98529 \left(\frac{12,1}{27,5} \right) + 18,03352 \left(\frac{12,1}{27,5} \right)^{2} - 38,02445 \left(\frac{12,1}{27,5} \right)^{3} + 34,00589 \left(\frac{12,1}{27,5} \right)^{4} - 11,19119 \left(\frac{12,1}{27,5} \right)^{5} \right\rceil$$

d_i a 12,1 metros de altura = 38,86 cm, o que significa que a árvore em questão fornece 3 ou mais toras para serraria. Para verificar se é possível obter uma quarta tora para serraria (diâmetro mínimo de 25 cm), basta acrescentar 4m ao valor anteriormente utilizado para o h_i. A equação então fica:

$$d_{i} = 52,3 \left\lceil 1,15433 - 3,98529 \left(\frac{16,1}{27,5}\right) + 18,03352 \left(\frac{16,1}{27,5}\right)^{2} - 38,02445 \left(\frac{16,1}{27,5}\right)^{3} + 34,00589 \left(\frac{16,1}{27,5}\right)^{4} - 11,19119 \left(\frac{16,1}{27,5}\right)^{5} \right\rceil$$

d_i a 16,1 metros de altura = 31,24 cm, ou seja, é possível obter uma quarta tora. É necessário verificar a possibilidade de obter uma quinta tora de 4 metros de comprimento, o que utilizaria o fuste em questão até a altura de 20,1 metros. Aplicando novamente a equação, temos que:

$$d_{i} = 52,3 \left[1,15433 - 3,98529 \left(\frac{20,1}{27,5} \right) + 18,03352 \left(\frac{20,1}{27,5} \right)^{2} - 38,02445 \left(\frac{20,1}{27,5} \right)^{3} + 34,00589 \left(\frac{20,1}{27,5} \right)^{4} - 11,19119 \left(\frac{20,1}{27,5} \right)^{5} \right]$$

d_i a 20,1 metros de altura = 20,85 cm, portanto não é possível obter a quinta tora. Assim, a árvore em questão (com 52,3cm de DAP e 27,5m de altura), fornecerá quatro toras para serraria (sendo utilizada para serraria até a altura de 16,1m). O restante da árvore poderá ser utilizado para outro fim, como produção de celulose, por exemplo.

b) Número de toras de 2,2m de comprimento com diâmetro mínimo de 6cm (para celulose, por exemplo):

Lembrando que a árvore estudada já foi utilizada para serraria até a altura de 16,1m, e supondo que, a partir desse ponto ainda seria possível obter três toras para celulose (diâmetro mínimo de 6 cm e 2,2 metros de comprimento), temos que o diâmetro estimado para a posição de 22,7m (16,1m + 3x2,2m) é de:

$$d_{i} = 52,3 \left[1,15433 - 3,98529 \left(\frac{22,7}{27,5} \right) + 18,03352 \left(\frac{22,7}{27,5} \right)^{2} - 38,02445 \left(\frac{22,7}{27,5} \right)^{3} + 34,00589 \left(\frac{22,7}{27,5} \right)^{4} - 11,19119 \left(\frac{22,7}{27,5} \right)^{5} \right]$$

 d_i a 22,7 metros de altura = 13,85 cm, o que significa que a árvore em questão fornece, além das quatro toras para serraria, mais três toras para celulose. Para verificar se é possível obter uma quarta tora para celulose (diâmetro mínimo de 6 cm), basta refazer os cálculos para um valor de h_i = 24,9 m, o que resultará num diâmetro estimado de 7,83 cm, portanto ainda superior ao diâmetro mínimo necessário para o aproveitamento da tora na fabricação de celulose, tornando necessária a estimativa do di. Assim, a utilização dessa árvore vai até os 24,9m, para os dois produtos propostos.

c) Aproveitamento da árvore (em número de toras):

- \rightarrow 4 toras para serraria (diâmetro \geq 25cm e 4 m de comprimento);
- → 4 toras para celulose (diâmetro ≥ 6cm e 2,2 m de comprimento);
- \rightarrow resíduo = 27,5 m 24,9m = 2,6m.

d) Calcular os volumes

Antes de calcular os volumes dos produtos, é necessário fazer a simplificação dos coeficientes. É importante observar que a simplificação envolve a altura total da árvore e por isso, após a simplificação, cada árvore passa a ter valores de coeficientes diferentes. Assim:

$$d_{i} = D \left[b_{0} + b_{1} \left(\frac{h_{i}}{H} \right) + b_{2} \left(\frac{h_{i}}{H} \right)^{2} + b_{3} \left(\frac{h_{i}}{H} \right)^{3} + b_{4} \left(\frac{h_{i}}{H} \right)^{4} + b_{5} \left(\frac{h_{i}}{H} \right)^{5} \right]$$

Para aplicar a função ajustada na integral que permite a estimativa dos volumes de uma árvore com 52,3cm de DAP e 27,5m de altura, a seguinte simplificação é necessária:

$$b_0 = 1,15433$$
 $b_1 = -3,98529$ $b_2 = 18,03352$ $b_3 = -38,02445$ $b_4 = 34,00589$ $b_5 = -11,19119$

$$c_0 = b_0 = 1,15433$$

$$c_{1} = \frac{b_{1}}{H} \qquad c_{1} = \frac{-3,98529}{27,5} = -0,14491964$$

$$c_{2} = \frac{b_{2}}{H^{2}} \qquad c_{2} = \frac{18,03352}{27,5^{2}} = 0,02384498$$

$$c_{3} = \frac{b_{3}}{H^{3}} \qquad c_{3} = \frac{-38,02445}{27,5^{3}} = -0,00182837$$

$$c_{4} = \frac{b_{4}}{H^{4}} \qquad c_{4} = \frac{34,00589}{27,5^{4}} = 5,946 \times 10^{-5}$$

$$c_{5} = \frac{b_{5}}{H^{5}} \qquad c_{5} = \frac{-11,19119}{27,5^{5}} = -7,1156 \times 10^{-7}$$

d.1)Volume do toco

$$h_{toco} = 0.1 m$$

$$\begin{array}{lll} DAP = 52{,}3cm & HT = 27{,}5cm \\ p_1 = 1; & p_2 = 2; & p_3 = 3; & p_4 = 4; & p_5 = 5; \end{array}$$

$$\begin{split} V &= \frac{\pi\,D^2}{40000} \Bigg[c_0^2 h + 2 c_0 c_1 \Bigg(\frac{h^{(p_1+1)}}{p_1+1} \Bigg) + 2 c_0 c_2 \Bigg(\frac{h^{(p_2+1)}}{p_2+1} \Bigg) + 2 c_0 c_3 \Bigg(\frac{h^{(p_3+1)}}{p_3+1} \Bigg) + 2 c_0 c_4 \Bigg(\frac{h^{(p_4+1)}}{p_4+1} \Bigg) + 2 c_0 c_5 \Bigg(\frac{h^{(p_5+1)}}{p_5+1} \Bigg) + 2 c_0 c_5 \Bigg(\frac{h^{(p_5+1)}}{p_5+1} \Bigg) + 2 c_0 c_5 \Bigg(\frac{h^{(p_1+p_2+1)}}{p_1+p_2+1} \Bigg) + 2 c_1 c_2 \Bigg(\frac{h^{(p_1+p_3+1)}}{p_1+p_3+1} \Bigg) + 2 c_1 c_4 \Bigg(\frac{h^{(p_1+p_4+1)}}{p_1+p_4+1} \Bigg) + 2 c_1 c_5 \Bigg(\frac{h^{(p_1+p_5+1)}}{p_1+p_5+1} \Bigg) + 2 c_1 c_5 \Bigg(\frac{h^{(p_1+p_5+1)}}{p_1+p_5+1} \Bigg) + 2 c_1 c_5 \Bigg(\frac{h^{(p_1+p_5+1)}}{p_1+p_5+1} \Bigg) + 2 c_2 c_5 \Bigg(\frac{h^{(p_2+p_3+1)}}{p_2+p_3+1} \Bigg) + 2 c_2 c_5 \Bigg(\frac{h^{(p_2+p_5+1)}}{p_2+p_4+1} \Bigg) + 2 c_2 c_5 \Bigg(\frac{h^{(p_2+p_5+1)}}{p_2+p_5+1} \Bigg) + c_3^2 \Bigg(\frac{h^{(2p_3+1)}}{2p_3+1} \Bigg) + 2 c_3 c_5 \Bigg(\frac{h^{(p_3+p_5+1)}}{p_3+p_5+1} \Bigg) + 2 c_4 c_5 \Bigg(\frac{h^{(p_4+p_5+1)}}{p_4+p_5+1} \Bigg) + c_5^2 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg] \\ + 2 c_3 c_4 \Bigg(\frac{h^{(p_3+p_4+1)}}{p_3+p_4+1} \Bigg) + 2 c_3 c_5 \Bigg(\frac{h^{(p_3+p_5+1)}}{p_3+p_5+1} \Bigg) + c_4^2 \Bigg(\frac{h^{(2p_4+1)}}{2p_4+1} \Bigg) + 2 c_4 c_5 \Bigg(\frac{h^{(p_4+p_5+1)}}{p_4+p_5+1} \Bigg) + c_5^2 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg] \\ + 2 c_3 c_4 \Bigg(\frac{h^{(p_3+p_5+1)}}{p_3+p_5+1} \Bigg) + 2 c_3 c_5 \Bigg(\frac{h^{(p_3+p_5+1)}}{p_3+p_5+1} \Bigg) + 2 c_4 c_5 \Bigg(\frac{h^{(2p_4+1)}}{2p_4+1} \Bigg) + 2 c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg] \\ + 2 c_5 \Bigg(\frac{h^{(2p_5+1)}}{p_5+p_5+1} \Bigg) + 2 c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg] \\ + 2 c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + 2 c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg] \\ + 2 c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1} \Bigg) \Bigg) \Bigg) + c_5 \Bigg(\frac{h^{(2p_5+1)}}{2p_5+1}$$

Substituindo os valores na função, encontraremos que, para uma altura de 0,1m teremos um volume de 0,0282715m³. Então:

$$V_{toco} = 0.0282715 \text{m}^3$$

d.2) O volume de madeira para serraria (volume das 4 primeiras toras):

A altura a ser utilizada para serraria (4 toras de 4m de comprimento + altura do toco) é de 16,1m. O volume de madeira para serraria é dado por:

$$V_{\text{serraria}} = V_{\text{a 16.1m de altura}} - V_{\text{toco}}$$

Substituindo a altura de 16,1m na função de estimativa de volume, obtém-se um volume de 2,3215067m³, que corresponde ao volume da base da árvore até a altura de 16,1m. O volume de madeira a ser utilizado para serraria é então:

$$V_{\text{serraria}} = 2,3215067 - 0,028271 = 2,2932357 \text{m}^3$$

d.3) O volume de madeira para celulose (volume das 4 toras de 2,2m):

A altura da árvore correspondente à extremidade da quarta tora a ser utilizada para celulose é de 24,9m. O volume da árvore em questão estimado até esta altura é de 2,6224397m³. No entanto, este volume corresponde ao volume desde a base da árvore, incluindo toco + madeira para serraria + madeira para celulose, sendo então necessário subtrair os volumes do toco e das toras para serraria. Assim, o volume efetivo das duas toras para celulose é de:

$$V_{celulose} = V_{a\,24,9m\,de\,altura} - (V_{toco} + V_{serraria})$$

$$V_{celulose} = 2,6224397 - (0,028271 + 2,510979) = 0,300933m^3$$

d.4) O volume total da árvore:

Para estimar o volume total de uma árvore através do Polinômio do Quinto Grau, basta estimar o volume para h = HT, ou seja 27,5m. Assim, tem-se um volume total da árvore igual a 2,6266921m³.

d.5) O volume de resíduos:

Considerando como resíduo toda a ponta da árvore que não será utilizada para serraria nem para celulose, o volume de resíduos corresponde então ao volume total da árvore menos o volume utilizado (toco + serraria + celulose). Assim:

$$\begin{split} V_{residuo} &= V_{total} - (V_{toco} + V_{serraria} + V_{celulose}) \\ V_{celulose} &= 2,6266921 - (0,028271 + 2,2932357 + 0,300933) = 0,0042524m^3 \end{split}$$