Advanced Machine Learning

Bilel GUETARNI, PhD

bilel.guetarni@junia.com

https://www.baeldung.com/cs/learning-curve-ml

Underfitting occurs when the model is not able to obtain a sufficiently low error value on the training set.

66

... fitting a more flexible model requires estimating a greater number of parameters. These more complex models can lead to a phenomenon known as overfitting the data, which essentially means they follow the errors, or noise, too closely.

Unrepresentative Train Dataset

loss improvement, but a large gap remains between both curves

Unrepresentative Validation Dataset

validation loss that shows noisy movements around the training loss

A plot of learning curves shows a good fit if:

- The plot of training loss decreases to a point of stability.
- The plot of validation loss decreases to a point of stability and has a small gap with the training loss.

Transfer learning

Model trained from scratch Image extracted from

https://www.youtube.com/watch?v=H-HVZJ7kGI0

Transfer learning

Train the adapted model (pre-trained) on the new dataset

Transfer learning strategies

Figure extracted from

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

Transfer learning – similarity matrix and strategy choice

Figure extracted from

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

Transfer learning

Parameters	Training from scratch	Transfer Learning
Method	Build CNN from scratch	Only last few layers need to be trained
Tuning	Need to tune large number of hyperparameters	Only a few hyperparameters need to be tuned
Computation	Large computation power is required (multiple GPUs)	Less computation power needed (can even work with CPUs)
Dataset	Huge dataset needed to avoid overfitting	A small dataset is enough
Training time	May take weeks or even months	May take hours to train

Figure extracted from https://www.slideshare.net/RuchaGole/understanding-cnn

Classification

Classification

5 top error rate (category miss predicted in the 5 top ones).

Image extracted from

https://www.youtube.com/watch?v=H-HVZJ7kGI0

CNNs applications

Classification

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	79.0%	94.5%	22.9M	81	109.4	8.1
VGG16	528	71.3%	90.1%	138.4M	16	69.5	4.2
VGG19	549	71.3%	90.0%	143.7M	19	84.8	4.4
ResNet50	98	74.9%	92.1%	25.6M	107	58.2	4.6
ResNet50V2	98	76.0%	93.0%	25.6M	103	45.6	4.4
ResNet101	171	76.4%	92.8%	44.7M	209	89.6	5.2
ResNet101V2	171	77.2%	93.8%	44.7M	205	72.7	5.4
ResNet152	232	76.6%	93.1%	60.4M	311	127.4	6.5
ResNet152V2	232	78.0%	94.2%	60.4M	307	107.5	6.6
InceptionV3	92	77.9%	93.7%	23.9M	189	42.2	6.9
InceptionResNetV2	215	80.3%	95.3%	55.9M	449	130.2	10.0
MobileNet	16	70.4%	89.5%	4.3M	55	22.6	3.4
MobileNetV2	14	71.3%	90.1%	3.5M	105	25.9	3.8
DenseNet121	33	75.0%	92.3%	8.1M	242	77.1	5.4
DenseNet169	57	76.2%	93.2%	14.3M	338	96.4	6.3
DenseNet201	80	77.3%	93.6%	20.2M	402	127.2	6.7
NASNetMobile	23	74.4%	91.9%	5.3M	389	27.0	6.7
NASNetLarge	343	82.5%	96.0%	88.9M	533	344.5	20.0
EfficientNetB0	29	77.1%	93.3%	5.3M	132	46.0	4.9
EfficientNetB1	31	79.1%	94.4%	7.9M	186	60.2	5.6
EfficientNetB2	36	80.1%	94.9%	9.2M	186	80.8	6.5

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
EfficientNetB3	48	81.6%	95.7%	12.3M	210	140.0	8.8
EfficientNetB4	75	82.9%	96.4%	19.5M	258	308.3	15.1
EfficientNetB5	118	83.6%	96.7%	30.6M	312	579.2	25.3
EfficientNetB6	166	84.0%	96.8%	43.3M	360	958.1	40.4
EfficientNetB7	256	84.3%	97.0%	66.7M	438	1578.9	61.6
EfficientNetV2B0	29	78.7%	94.3%	7.2M	-	-	-
EfficientNetV2B1	34	79.8%	95.0%	8.2M	-	-	-
EfficientNetV2B2	42	80.5%	95.1%	10.2M	-	-	-
EfficientNetV2B3	59	82.0%	95.8%	14.5M	-	-	-
EfficientNetV2S	88	83.9%	96.7%	21.6M	-	-	-
EfficientNetV2M	220	85.3%	97.4%	54.4M	-	-	-
EfficientNetV2L	479	85.7%	97.5%	119.0M	-	-	-
ConvNeXtTiny	109.42	81.3%	-	28.6M	-	-	-
ConvNeXtSmall	192.29	82.3%	-	50.2M	-	-	-
ConvNeXtBase	338.58	85.3%	-	88.5M	-	-	-
ConvNeXtLarge	755.07	86.3%	-	197.7M	-	-	-
ConvNeXtXLarge	1310	86.7%	-	350.1M	-	-	-

For a detailed coverage of modern CNN architectures:

8. Modern Convolutional Neural Networks — Dive into Deep Learning 1.0.3 documentation (d2l.ai)

Neural Network Architectures. Deep neural networks and Deep Learning... | by Eugenio Culurciello | Towards Data Science

Usage examples for image classification models

Classify ImageNet classes with ResNet50

```
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
model = ResNet50(weights='imagenet')
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img to array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
# Predicted: [(u'n02504013', u'Indian elephant', 0.82658225), (u'n01871265', u'tusker', 0.1122
```

Fine-tune InceptionV3 on a new set of classes

```
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
                                                                      Prediction
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(200, activation='softmax')(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
```

Input

Fine-tune InceptionV3 on a new set of classes

```
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(200, activation='softmax')(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
```

Input

Fine-tune InceptionV3 on a new set of classes

```
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
                                                                        Input
# add a global spatial average pooling layer
x = base model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(200, activation='softmax')(x)
                                                                       New
# this is the model we will train
                                                                       Layers
model = Model(inputs=base_model.input, outputs=predictions)
                                                                      Prediction
```

Fine-tune InceptionV3 on a new set of classes

Fine-tune InceptionV3 on a new set of classes

```
Strategy 2
 # and train the remaining top layers.
                                                                                          Train some layers and
                                                                                          leave the others frozen
                                                                                              Input
 # let's visualize layer names and layer indices to see how many layers
 # we should freeze:
 for i, layer in enumerate(base model.layers):
                                                                                                       Legend:
    print(i, layer.name)
                                                                                                             Frozen
 # we chose to train the top 2 inception blocks, i.e. we will freeze
                                                                                                             Trained
 # the first 249 layers and unfreeze the rest:
 for layer in model.layers[:249]:
    layer.trainable = False
 for layer in model.layers[249:]:
                                                                                             Prediction
    layer.trainable = True
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical crossentropy'
# we train our model again (this time fine-tuning the top 2 inception blocks
# alongside the top Dense layers
model.fit(...)
```

Extract features with VGG16

```
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input
import numpy as np

model = VGG16(weights='imagenet', include_top=False)
model.summary()
```

Model: "vgg16"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, None, None, 3)]	0
block1_conv1 (Conv2D)	(None, None, None, 64)	1792
block5_conv3 (Conv2D)	(None, None, None, 512)	2359808
block5_pool (MaxPooling2D)	(None, None, None, 512)	0

Total params: 14,714,688
Trainable params: 14,714,688

Non-trainable params: 0

Extract features from an arbitrary intermediate layer with VGG19

```
from tensorflow.keras.applications.vgg19 import VGG19
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg19 import preprocess_input
from tensorflow.keras.models import Model
import numpy as np
base model = VGG19(weights='imagenet')
model = Model(inputs=base model.input, outputs=base model.get layer('block4 pool').output)
img path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img to array(img)
x = np.expand_dims(x, axis=0)
x = preprocess input(x)
block4_pool_features = model.predict(x)
```

Lab session Keras – TensorFlow core

- Using VGG19 apply two strategies of transfer learning for training CIFAR10 and CIFAR100
 - For each run on datasets show training/validation accuracy curves
 - Confirm which strategy improved your accuracy from previous session
- For technical support follow
 - https://keras.io/api/applications/