Квантовая физика.			
Уравнение Эйнштейна.	$T_{max} = \hbar\omega - W$ — максимальная энергия вылетающего электрона.	Оператор проекции момента импульса на ось z .	$ \hat{l}_z = (\hat{x}\hat{p}_y - \hat{y}\hat{p}_x) = i\hbar \left(y\frac{\partial}{\partial x} - y\frac{\partial}{\partial y}\right). $
Формула Планка.	$\rho(\omega) = \frac{\hbar\omega^3}{\pi^2 c^3 [\exp \hbar\omega/kT - 1]}$	Правила коммутации операторов проекций импульса.	$\hat{l}_y\hat{l}_z - \hat{l}_z\hat{l}_y = i\hbar\hat{l}_x, \ \hat{l}_z\hat{l}_x - \hat{l}_x\hat{l}_z = i\hbar\hat{l}_y, \ \hat{l}_x\hat{l}_y - \hat{l}_y\hat{l}_x = i\hbar\hat{l}_z.$
Закон Стефана-Больцмана.	$\rho(T) = \frac{\pi^2 k^4}{15c^3 h^3} T^4 = \sigma T^4.$	Оператор момента импульса через операторы проекций.	$\vec{\hat{I}} = \vec{i}\hat{l}_x + \vec{j}\hat{l}_y + \vec{k}\hat{l}_z.$
Закон смещения Вина.	$arg \max \rho(\omega) = 2.8 \frac{kT}{\hbar}.$ $\psi(\vec{r}, t) = Ce^{\frac{i}{\hbar}(\vec{p}\vec{r} - Et)}.$	Сложение угловых моментов.	$\hat{I} = \hat{I}_1 + \hat{I}_2.$
Волна де Бройля.	$\psi(\vec{r},t) = Ce^{\frac{i}{\hbar}(\vec{p}\vec{r}-Et)}.$	Сложение проекций углового момента.	$\hat{l}_x = \hat{l}_{1x} + \hat{l}_{2x}.$
Длина волны де Бройля.	$\lambda_{AB} = \frac{h}{p}.$	Обозначение состояний, соответствующих различным орбитальным квантовым числам l .	$ \begin{vmatrix} 0 - s, 1 - p, 2 - d, 3 - f, \\ 4 - g, 5 - h, 6 - i, 7 - k. \end{vmatrix} $
Волновая функция.	$ \psi(\vec{r},t) = Ce^{i(\vec{k}\vec{r}-\omega t)} = Ce^{\frac{i}{\hbar}(\vec{p}\vec{r}-Et)}. $	Одномерное стационарное уравнение Шрёдингера.	$ \begin{array}{rcl} -\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} & + & U(x)\psi(x) & = \\ E\psi(x). & & \end{array} $
Плотность вероятности нахождения частицы в пространстве.	$dW(\vec{r},t) = \psi ^2 dV.$	Эффективнаяя потенциальная энергия радиального движения электрона.	$U_{\Rightarrow \Phi} = U(r) + \frac{L^2}{2mr^2} = U(r) + \frac{\hbar^2 l(l+1)}{2mr^2}.$
Разложение волновой функции в ряд Фурье.	$\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(k)e^{ikx}dk,$ $f(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \psi(x)e^{ikx}dx.$	Магнитный момент точечного заряда.	$ \vec{\boldsymbol{m}} = \frac{q}{2c} [\vec{r}, \vec{v}] = \frac{q}{2\mu c} [\vec{r}, \vec{p}] = \Gamma \vec{I}. $
Вероятность нахождения волнового числа в интервале $[k, k+dk]$ или импульса в $[\hbar k, \hbar (k+dk)]$.	$f(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \psi(x)e^{ikx} dx.$ $W = f(k) ^2 dk.$	Гиромагнитное отношение.	$\Gamma = -\frac{e}{2\mu c}.$
Средняя координата.	$ \langle x \rangle = \int_{-\infty}^{+\infty} x \psi(x) ^2 dx = $ $\int_{-\infty}^{+\infty} \psi^*(x) x \psi(x) dx. $	Оператор магнитного момента.	$ec{\hat{m{m}}} = \Gamma ec{\hat{L}}.$
Оператор координаты.	$\hat{x} = x$.		
Оператор импульса.	$\hat{p}(\vec{r}) = -i\hbar \nabla.$		
Соотношение неопределённостей Гейзенберга.	$\Delta x \Delta p \ge \hbar.$		
Уравнение Шредингера.	$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi.$		
Стационарное уравнение Шредингера.	$\frac{\partial^2 \psi}{\partial x^2} = -k_x^2 \psi.$		
Оператор полной энергии частицы.	$\hat{H} = \hat{T} + \hat{U} = U(x, y, z) - \frac{\hbar^2}{2m} \left(\frac{\partial^2 x}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} + \frac{\partial^2 z}{\partial z^2} \right).$		
Радиус n -ой Боровской орбиты.	$r_n = \frac{\hbar^2}{mZe^2}n^2,$		
Полная энергия электрона на n -той орбите.	$E_n = -\frac{Z^2 m e^4}{2\hbar^2} \frac{1}{n^2}.$		
Длина волны, излучаемая при преходе электрона между дву- мя уровнями.	$\frac{1}{\lambda_{nm}} = RZ^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right).$		
Постоянная Ридберга.	$R = \frac{2\pi^2 m e^4}{ch^3}.$ $\sqrt{\nu} = A(Z - \sigma).$		
Закон Мюзли. Энергетические уровни ротато-	$\sqrt{\nu} = A(Z - \sigma).$ $E_r = \frac{\hbar^2}{2I}l(l+1).$		
ра. Опреатор проекции момента импульса на ось x .	$ \hat{l}_x = (\hat{y}\hat{p}_z - \hat{z}\hat{p}_y) = i\hbar \left(z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}\right). $		
Опреатор проекции момента импульса на ось y .	$i\hbar \left(z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z} \right).$ $\hat{l}_y = (\hat{z}\hat{p}_x - \hat{x}\hat{p}_z) = i\hbar \left(x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x} \right).$		