

FSC-BT90X

BT4.2 Programming User Guide
Version 3.2

Copyright © 2013-2017 Feasycom Technology Co., Ltd. All Rights Reserved.

Revision History

Version	Data	Notes	Author
1.0	2015/09/10	First Release	Tony
2.0	2016/03/21	Add LE GATT Commands	Jerry
3.0	2016/11/12	Add HID Commands	Navy
3.1	2016/12/13	Add GPIO Indications	Navy
3.2	2019/03/22	Build for BT90X	Jerry
		Add GATT Client relevant content	
		Add LENAME\LEADDR\HIDMMU commands	
		Change usage of HIDSEND\PLIST commands	
		Change usage of SPPSTAT indication	
		Correct usage of SCAN indication	
		Delete HSM\PIOCFG\FLOWCTL commands	

Contact Us:

Shenzhen Feasycom Technology Co., Ltd

Web: www.feasycom.com Email:<u>support@feasycom.com</u>

Tel: +86-755-27924639,+86-755-23062695

Address: Room 2004-2005,20th Floor, Huichao Technology Building, Jinhai Road, Xixiang, Baoan District, Shenzhen,518100, China.

Contents

1.	Introduction	5
	1.1 Terms	5
	1.2 Hardware Interface	5
	1.3 Supported Bluetooth Profile	5
	1.4 Command Format	5
	1.5 Indication Format	6
	1.6 Module Default Settings	6
2.	Command Table	7
	2.1 General Commands	7
	2.1.1 UART Communication Test	7
	2.1.2 Read Firmware Version	7
	2.1.3 Read BR/EDR MAC Address	7
	2.1.4 Read BLE MAC Address	8
	2.1.5 Read/Write Local Name	8
	2.1.6 Read/Write BLE Local Name	9
	2.1.7 Read/Write Pin Code	9
	2.1.8 Turn On/Off Secure Simple Pairing	9
	2.1.9 Read/Write UART Baudrate	
	2.1.10 Read/Write Class Of Device	10
	2.1.11 Read/Write Work Mode	10
	2.1.12 Read/Clear Paired Record	11
	2.1.13 Turn On/Off Throughput Mode	11
	2.1.14 Turn On/Off Low Power Mode	
	2.1.15 Release All Connections	
	2.1.16 Soft Reboot	12
	2.1.17 Restore Factory Settings	13
	2.1.18 Scan Nearby Devices	13
	2.2 Bluetooth Serial Commands (BR/EDR SPP)	13
	2.2.1 Read SPP State	
	2.2.2 Turn On/Off SPP Power On Auto Reconnect	13
	2.2.3 Establish SPP Connection	14
	2.2.4 Release SPP Connection	14
	2.2.5 Send Data Via SPP	14
	2.3 Bluetooth Serial Commands (LE GATT Server)	15
	2.3.1 Read GATT Server State	15
	2.3.2 Release GATT Connection	15
	2.3.3 Send Data Via GATT	15
	2.4 Bluetooth Serial Commands (LE GATT Client)	15
	2.3.1 Read GATT Client State	15
	2.3.2 Establish GATT Connection	16
	2.3.3 Release GATT Connection	16
	2.3.4 Send Data Via GATT	16

2.5 Bluetooth Serial Commands (BR/EDR HID)	17
2.5.1 Read HID State	17
2.5.2 Turn On/Off HID Power On Auto Reconnect	17
2.5.3 Establish HID Connection	17
2.5.4 Release HID Connection	18
2.5.5 Read/Write HID Send Delay	18
2.5.6 IOS Device On-screen Keyboard Toggle	18
2.5.7 Send Data Via HID	18
2.5.8 Read HID Transmit Buffer Realtime Count	19
3. Indication Table	19
3.1 General Indications	19
3.1.1 Scan Result	19
3.2 Bluetooth Serial Indications	20
3.2.1 SPP State	20
3.2.2 GATT State	20
3.2.3 HID State	
3.2.4 SPP Received Data	21
3.2.5 GATT Server Received Data	21
3.2.6 GATT Client Received Data	21
3.3 GPIO Indications	
3.3.1 LED Pin	22
3 2 2 Stata Pin	22

1. Introduction

This specification presents design guidelines for software engineers that use FSC-BT90X for Bluetooth requirements. It applies to FSC-BT901, FSC-BT906 devices.

1.1 Terms

Throughout this specification:

- {} : Content between {...} is optional
- << : Content behind << represents a COMMAND sent from Host to Module
- >> : Content behind >> represents a RESPONSE sent from Module to Host

1.2 Hardware Interface

- GPIO
- PWM
- UART
- SPI Master
- I2C Master/Slave
- Analog Input/Output

1.3 Supported Bluetooth Profile

- SPP (Serial Port Profile)
- GATT Server (Generic Attribute Profile)
- GATT Client (Generic Attribute Profile)
- HID Keyboard (Human Interface Profile)

1.4 Command Format

AT+ Command {=Param1{, Param2{, Param3...}}} <CR><LF>

- All commands start with "AT", end with <CR><LF>
- <CR> stands for "carriage return", corresponding hex is 0x0D
- <LF> stands for "line feed", corresponding hex is 0x0A
- If command has parameter, parameter keep behind "="
- If command has multiple parameters, parameter must be separated by ""
- If command has response, response start with <CR><LF>, end with <CR><LF>
- Module will always report command's execution result using "OK" for success or

"ERROR" for failure

e.g.

- 1. Read module's BR/EDR local name
 - << AT+NAME
 - >> +NAME=Feasycom
 - >> OK
- 2. Write a baudrate which is not supported
 - << AT+BAUD=0
 - >> ERROR

1.5 Indication Format

<CR><LF>+ Indication {=Param1{, Param2{, Param3...}}} <CR><LF>

- All indications start with <CR><LF>, end with <CR><LF>
- If indication has parameter, parameter keep behind "="
- If indication has multiple parameters, parameter must be separated by ""

e.g.

- $1. \quad Received \ ``1234567890" \ from \ mobile \ phone \ via \ SPP \ profile$
 - >> +SPPDATA=10,1234567890

1.6 Module Default Settings

Local Name (BR/EDR) Feasycom
Local Name (LE) FeasycomLE

Pin Code 0000 Secure Simple Pairing Mode OFF

Physical UART Baudrate 115200bps/8/N/1

2. Command Table

2.1 General Commands

2.1.1 UART Communication Test

Format: AT

Response: OK

Description: Test the UART communication between HOST and Module after power on, baudrate changed, etc.

Example: UART communication test

<< *AT*>> *OK*

2.1.2 Read Firmware Version

Format: AT+VER

Response: +VER=Param

Param: Firmware version (16 Bytes ASCII)

Example: Read module's firmware version

<< AT+VER

>> +VER=BT901,2.2.9,20181001

>> OK

2.1.3 Read BR/EDR MAC Address

Format: AT+ADDR

Response: +ADDR=Param

Param: Module's BR/EDR MAC address (12 Bytes ASCII)

Example: Read Module's BR/EDR MAC address

<< AT+ADDR

>> +ADDR=DC0D30123456

>> *OK*

2.1.4 Read BLE MAC Address

Format: AT+LEADDR

Response: +LEADDR=Param

Param: Module's LE MAC address (12 Bytes ASCII)

2.1.5 Read/Write Local Name

Format: AT+NAME {=Param1{, Param2}}

Param1: BR/EDR local name (1~31 Bytes ASCII, default: Feasycom)

Param2: MAC address suffix (0/1, default:0)

(0) Disable suffix

(1) Enable suffix "-XXXX" (lower 4 bytes of MAC address) after local name

Response: +NAME=Param

Description: Write local name if parameter existence, otherwise read current local name

Example: Read current BR/EDR local name

<< AT+NAME

>> +NAME=Feasycom

>> *OK*

Example: Change module's BR/EDR local name to "ABC"

<< AT+NAME=ABC

>> *OK*

Example: Change module's BR/EDR local name to "ABC" and enable suffix

<< AT+NAME=ABC,1

>> OK

2.1.6 Read/Write BLE Local Name

Format: AT+LENAME {=Param1{, Param2}}

Param1: BLE local name (1~25 Bytes ASCII, default: FeasycomLE)

Param2: MAC address suffix (0/1, default:0)

(0) Disable suffix

(1) Enable suffix "-XXXX" (lower 4 bytes of MAC address) after local name

Response: +LENAME=Param

2.1.7 Read/Write Pin Code

Format: AT+PIN{=Param}

Param: Pin code (4~15 Bytes ASCII, default:0000)

Response: +PIN=Param

Example: Read module's pin code

<< AT+PIN

>> +PIN=0000

>> OK

Example: Change module's pin code to "1234"

<< AT+PIN=1234

>> OK

2.1.8 Turn On/Off Secure Simple Pairing

Format: AT+SSP{=Param}

Param: Simple pairing (0/1, default:1)

(0) Turn off

(1) Turn on

Response: +SSP=Param

Description: Pin code input will be bypassed if simple pairing is on in pairing procedure

2.1.9 Read/Write UART Baudrate

Format: AT+BAUD{=Param}

Param: Baudrate (2400/4800/9600/19200/38400/57600/115200/230400/256000/

460800/512000/921600, default:115200)

Response: +BAUD=Param

Description: Module's baudrate will be changed immediately after received this command

2.1.10 Read/Write Class Of Device

Format: AT+COD{=Param}

Param: Class of device (6 bytes ASCII, default:240404 Handsfree device)

Response: +COD=Param

2.1.11 Read/Write Work Mode

Format: AT+MODE{=Param}

Param: Work Mode (1~4, default:4)

- (1) SPP Mode
- (2) HID Mode
- (3) BLE Mode
- (4) SPP+BLE Mode

Response: +MODE=Param

Description: After the command is executed, the module switches to the new Work Mode

Example: Read current Work Mode

<< AT+MODE

>> +MODE=4

>> OK

Example: Change module's Work Mode to HID Mode

<< AT+MODE=2

>> OK

2.1.12 Read/Clear Paired Record

Format: AT+PLIST{=Param} Param: Control method(0)

(0) Clear all paired record

Response1: +PLIST= {

Response2: +PLIST=Param1, Param2 Param1: $(1\sim8)$ Paired device's index

Param2: (MAC) Paired device's MAC address

Response3: +PLIST=}

Example: Read module's paired record

<< AT+PLIST

>> +PLIST= {

+PLIST=1,1C5CF226D773

+PLIST=2, A0BC30075421

+PLIST=}

>> OK

Example: Clear module's paired record

<< AT+PLIST=0

>> OK

2.1.13 Turn On/Off Throughput Mode

Format: AT+TPMODE{=Param}

Param: Throughput mode (0/1, default:0)

(0) Turn Off

(1) Turn On

Response: +TPMODE=Param

Description: When SPP/HID/GATT profile connected and throughput mode is on, the AT command will be de-active, every byte received via physical UART will be sent to air, vice visa

Example: Read current throughput mode

<< AT+TPMODE

>> +TPMODE=1

>> OK

Example: Turn off throughput mode

<< AT+TPMODE=0

>> OK

2.1.14 Turn On/Off Low Power Mode

Format: AT+LPM{=Param}

Param: Low Power Mode (0/1, default:0)

(0) Turn Off

(1) Turn On

Response: +LPM=Param

Description: This instruction is only applicable to BT816S module

Example: Read current Low Power Mode

<< AT+LPM

>> +LPM=0

>> *OK*

Example: Turn on Low Power Mode

<< AT+LPM=1

>> OK

2.1.15 Release All Connections

Format: AT+DISC

Description: Module release all Bluetooth connections with remote device

2.1.16 Soft Reboot

Format: AT+REBOOT

Description: Module release all Bluetooth connections with remote device then reboot

2.1.17 Restore Factory Settings

Format: AT+RESTORE

Description: Module restore all factory settings then reboot

2.1.18 Scan Nearby Devices

Format: AT+SCAN =Param1{, Param2{, Param3}}

Param1:(0~3)

(0) Stop scan

- (1) Scan nearby BR/EDR devices
- (2) Scan nearby BLE devices
- (3) Scan nearby BR/EDR/BLE devices

Param2:(1~48) Scan period. unit:1.28s, default:12.8s

Param3:(1~25 Bytes ASCII) Name filter. Filter scan results with name if set

Description: Refer to Chapter 3 for format description of scan result

2.2 Bluetooth Serial Commands (BR/EDR SPP)

2.2.1 Read SPP State

Format: AT+SPPSTAT

Response: +SPPSTAT=Param

Param: Refer to Chapter 3 for state description

2.2.2 Turn On/Off SPP Power On Auto Reconnect

Format: AT+SPPAC{=Param}

Param: Option (0/1, default:0)

(0) Turn Off(1) Turn On

Response: +SPPAC=Param

Description: Module will attempt to connect last device after power on

if set the param as 1

2.2.3 Establish SPP Connection

Format: AT+SPPCONN{=Param}

Param: MAC address of target device (12 Bytes ASCII)

Description: If the parameter does not exist, the module will attempt to connect to the last

device

2.2.4 Release SPP Connection

Format: AT+SPPDISC

Description: Release current SPP connection with remote device

2.2.5 Send Data Via SPP

Format: AT+SPPSEND=Param1, Param2

Param1: Payload length (1~256)

Param2: Payload (1~256Bytes UTF8)

Description: If throughput mode is on, this command is de-active

Example: Send data "1234567890" to remote device via SPP

<< AT+SPPSEND=10,1234567890

>> OK

2.3 Bluetooth Serial Commands (LE GATT Server)

2.3.1 Read GATT Server State

Format: AT+GATTSTAT

Response: +GATTSTAT=Param

Param: Refer to Chapter 3 for state description

2.3.2 Release GATT Connection

Format: AT+GATTDISC

Description: Release current GATT connection with remote device

2.3.3 Send Data Via GATT

Format: AT+GATTSEND=Param1, Param2

Param1: Payload length (1~100)

Param2: Payload (1~100 Bytes UTF8)

Description: If throughput mode is on, this command is de-active

Example: Send data "1234567890" to remote device via GATT

<< AT+GATTSEND=10,1234567890

>> OK

2.4 Bluetooth Serial Commands (LE GATT Client)

2.3.1 Read GATT Client State

Format: AT+LECSTAT

Response: +LECSTAT=Param

Param: Refer to Chapter 3 for state description

2.3.2 Establish GATT Connection

Format: AT+ LECCONN=Param1, Param2, Param3, Param4, Param5

Param1: Remote device's LE MAC address (12 Bytes ASCII)

Param2: MAC address type(0~1)

Param3: Service UUID (16 or 128 bits Hex)
Param4: Write UUID (16 or 128 bits Hex)
Param5: Notify UUID (16 or 128 bits Hex)

Description: Establish GATT connection with remote device by specific UUIDs

Example: Connect to remote device via GATT by 16 bits UUID

<< AT+LECCONN=DD0D30101234,0,FFF0,FFF2,FFF1

>> OK

Example: Connect to remote device via GATT by 128 bits UUID

<< AT+LECCONN=000D30101234,1,49535343FE7D4AE58FA99FAFD205E455,49535343 884143F4A8D4ECBE34729BB3,495353431E4D4BD9BA6123C647249616

>> OK

2.3.3 Release GATT Connection

Format: AT+LECDISC

Description: Release current GATT connection with remote device

2.3.4 Send Data Via GATT

Format: AT+LECSEND=Param1, Param2

Param1: Payload length (1~100)

Param2: Payload (1~100 Bytes UTF8)

Description: If throughput mode is on, this command is de-active

Example: Send data "1234567890" to remote device via GATT

<< AT+LECSEND=10,1234567890

>> OK

2.5 Bluetooth Serial Commands (BR/EDR HID)

2.5.1 Read HID State

Format: AT+HIDSTAT

Response: +HIDSTAT=Param

Param: Refer to Chapter 3 for state description

2.5.2 Turn On/Off HID Power On Auto Reconnect

Format: AT+HIDAC{=Param}

Param: Option (0/1, default:1)

(0) Turn Off(1) Turn On

Response: +HIDAC=Param

Description: Module will attempt to connect last device after power on

if set the param as 1

2.5.3 Establish HID Connection

Format: AT+HIDCONN{=Param}

Param: MAC address of target device (12 Bytes ASCII)

Description: If the parameter does not exist, the module will attempt to connect to the last

device

2.5.4 Release HID Connection

Format: AT+HIDDISC

Description: Release current HID connection with remote device

2.5.5 Read/Write HID Send Delay

Format: AT+HIDDLY{=Param}

Param: HID Send Delay (2~4 Bytes ASCII, Default:10)

Response: +HIDDLY=Param

Description: Different phones may require different delay settings to achieve the best HID

transmission speed and stability

Example: Read current HID Send Delay

<< AT+HIDDLY

>> +HIDDLY=10

>> OK

2.5.6 IOS Device On-screen Keyboard Toggle

Format: AT+HIDOSK

Description: This instruction applies only to the IOS Device

2.5.7 Send Data Via HID

Format: AT+HIDSEND=Param1, Param2 Param1: Payload length (even, 2,4,6,...,256) Param2: Payload (2,4,6,...,256Bytes HID key)

Description: If throughput mode is on, this command is de-active

Example: Send data "12" to remote device via HID, ' $\x00\x1E\x00\x1F'$ below is four bytes of Hex, and it's NOT printable string, except this, all the other characters are ASCII.

<< $AT+HIDSEND=4,\x00\x1E\x00\x1F$

>> OK

2.5.8 Read HID Transmit Buffer Realtime Count

Format: AT+HIDMMU

Response: +HIDMMU =Param1, Param2

Param1: HID transmit buffer total size (1~8192) Param2: HID transmit buffer rest size (1~8192)

Description: When total size equals to rest size, this means HID transmit buffer is empty.

Example: Read HID transmit buffer realtime count

<< AT+HIDMMU

>> +HIDMMU=4096,4090

>> OK

3. Indication Table

3.1 General Indications

3.1.1 Scan Result

Format: +SCAN =Param1, Param2, Param3, Param4{, Param5, Param6}

Param1: Index (1~8)

Param2: Device address type $(0\sim2)$

(0)LE public address

(1)LE random address

(2)BR/EDR address

Param3: MAC address (12 Bytes ASCII)

Param4: RSSI $(-255 \sim 0)$

Param5: Size of Param6 if exist

Param6: Device Name for BR/EDR devices or advertising data for LE devices

Description: Param5/Param6 may not exist if remote device out of distance

Example: Scan nearby BR/EDR devices

- << AT+SCAN=1
- >> OK
 - +SCAN=1,2, DC0D30000003, -32,8, Feasycom
 - +SCAN=2,2, DC0D30000044, -64,8, Feasycom
 - +SCAN=3,2, DC0D30000097, -47,8, TESTHID

3.2 Bluetooth Serial Indications

3.2.1 SPP State

Format: +SPPSTAT=Param

Param: $(0\sim4)$

- (0) Unsupported
- (1) Standby
- (2) QueryingService
- (3) Connecting
- (4) Connected

3.2.2 GATT State

Format: +GATTSTAT=Param

Param: $(0\sim3)$

- (0) Unsupported
- (1) Standby
- (2) Connecting
- (3) Connected

3.2.3 HID State

Format: +HIDSTAT=Param

Param:(0~3)

- (0) Unsupported
- (1) Standby

(2) Connecting

(3) Connected

3.2.4 SPP Received Data

Format: +SPPDATA=Param1, Param2

Param1: Payload length

Param2: Payload

Description: If throughput mode is on, only Param2 will be present

Example: Received data "1234567890" from remote device via SPP

<< +SPPDATA=10,1234567890

3.2.5 GATT Server Received Data

Format: +GATTDATA=Param1, Param2

Param1: Payload length

Param2: Payload

Description: If throughput mode is on, only Param2 will be present

Example: Received data "1234567890" from remote device via GATT

<< +GATTDATA=10,1234567890

3.2.6 GATT Client Received Data

Format: +LECDATA=Param1, Param2

Param1: Payload length

Param2: Payload

Description: If throughput mode is on, only Param2 will be present

Example: Received data "1234567890" from remote device via GATT

<< +LECDATA=10,1234567890

3.3 GPIO Indications

3.3.1 LED Pin

PIN32 (Output)

Low Level Initializing

Blink in 1Hz Ready to connecting

High Level Connected

3.3.2 State Pin

PIN33 (Output)

Low Level Disconnected High Level Connected