Домашнее задание $Mame Mamu \kappa a - \mathcal{A} o mau me e з a d a mue 3$

А.Д. Егоров

Оглавление

1.	Задача №1	 •							•										•	3
2.	Задача №2								•							•	•			4
3.	Задача №3																		•	5
4.	Задача №4								•											6
5.	Задача №5																			7

1. Задача №1

Условие

Компания по страхованию автомобилей разделяет водителей по 3 классам: класс A (мало рискует), класс B (рискует средне), класс C (рискует сильно). Компания предполагает, что из всех водителей, застрахованных у неё, 30% принадлежат классу A, 50% — классу B, 20% — классу C. Вероятность того, что в течение года водитель класса A попадёт хотя бы в одну автокатастрофу, равна 0,01; для водителя класса B эта вероятность равна 0,03, а для водителя класса C — 0,1. Мистер Джонс страхует свою машину у этой компании и в течение года попадает в автокатастрофу. Какова вероятность того, что он относится к классу A?

Решение

Пусть $H = \{$ человек страхует машину и в течении года попадет в ДТП $\}$, а $H_i = \{$ человек из i-ого класса страхует машину и в течении года попадет в ДТП $\}$. Получаем, что $P(H) = P(H_A) + P(H_B) + P(H_C) = 0.3 \cdot 0.01 + 0.5 \cdot 0.03 + 0.2 \cdot 0.1 = 0.038$. Тогда вероятность, что человек принадлежит классу A, при условии, что он попал в аварию, следующая:

$$\frac{P(H_A)}{P(H)} = \frac{0.003}{0.038} \approx 0.0789.$$

Условие

Движением частицы по целым точкам прямой управляет схема Бернулли с вероятностью исхода 1. Если в данном испытании схемы Бернулли появилась 1, то частица из своего положения переходит в правую соседнюю точку, а в противном случае - в левую. Найти вероятность того, что за n шагов частица из точки 0 перейдет в точку m.

Решение

Положим, что для того, чтобы дойти до точки m потребовалось сделать k шагов вправо и, соответственно, n-k шагов влево. Также допустим, что точка m находится справа от точки 0, т. е. $k \geqslant n-k$, тогда m=k-(n-k) или $k=\frac{n+m}{2}$. Тогда для того, чтобы найти вероятность попадания из точки 0 в точку m за n шагов, воспользуемся формулой вероятности для биномиального закона Bi(n,p):

$$P(\{\text{из т. 0 в т. } m \text{ за } n \text{ шагов}\}) = C_n^k p^k (1-p)^{n-k} = C_n^{\frac{n+m}{2}} p^{\frac{n+m}{2}} (1-p)^{\frac{n-m}{2}}.$$

Аналогично для случая, когда точка m слева от 0:

$$P(\{$$
из т. 0 в т. m за n шагов $\}) = C_n^{\frac{n-m}{2}} p^{\frac{n-m}{2}} (1-p)^{\frac{n+m}{2}}.$

Условие

Плотность распределения p(x) некоторой случайной величины имеет вид

$$p(x) = \frac{C}{e^x + e^{-x}}$$

где C – константа. Найти значение этой константы с и вероятность того, что случайная величина примет значение, принадлежащее интервалу $(-\pi,\pi)$.

Решение

Для нахождения константы воспользуемся условием нормировки:

$$\int_{-\infty}^{\infty} p(x) dx = \int_{-\infty}^{\infty} \frac{C}{e^x + e^{-x}} dx = 1,$$

отсюда получим, что $C=\frac{2}{\pi}$. Тогда вероятность того, что случайная величина примет значение, принадлежащее интервалу $(-\pi,\pi)$, будет следующая:

$$\int_{-\pi}^{\pi} \frac{2/\pi}{e^x + e^{-x}} dx = \frac{2}{\pi} \left(\operatorname{arctg} (e^{\pi}) - \operatorname{arctg} (e^{-\pi}) \right) \approx 0.945013.$$

Условие

Задана плотность распределения вероятностей f(x) непрерывной случайной величины X:

$$f(x) = \begin{cases} A\sqrt{x}, & x \in [1, 4], \\ 0, & x \notin [1, 4]. \end{cases}$$

Найти функцию распределения F(x) и P(2 < X < 3).

Решение

Из условия нормировки найдем константу А:

$$\int_{-\infty}^{\infty} f(x) dx = \int_{1}^{4} A\sqrt{x} dx = 1,$$

отсюда $A = \frac{3}{14}.$ Тогда функция распределения с. в. X имеет вид

$$F(x) = \int_{-\infty}^{x} f(y) \, dy = \int_{1}^{x} \frac{3}{14} \sqrt{y} \, dy = \frac{1}{7} (x^{3/2} - 1),$$

а вероятность $P(2 < X < 3) = F(3) - F(2) = \frac{1}{7} (3^{3/2} - 2^{3/2}).$

5. Задача №5

Условие

При работе ЭВМ время от времени возникают сбои. Поток сбоев можно считать простейшим. Среднее число сбоев за сутки равно 1.5. Найти вероятность того, что в течение суток произойдет хотя бы один сбой.

Решение

Число сбоев $\lambda=1.5$, поток простейший (пуассоновский случайный процесс), тогда вероятность события $A=\{$ в течении суток произойдет хотя бы 1 сбой $\}$, будет следующая:

$$P(A) = P(X \ge 1) = 1 - P(X = 0) = 1 - e^{-\lambda} = 1 - e^{-1.5} \approx 0.77687,$$

где X — случайная величина, отвечающая за число сбоев.