Podstawy Robotyki

Praca domowa nr. 1

TEMAT: Zadanie kinematyki prostej i odwrotnej

TERMIN ODDANIA: 30 listopada 2020

Pracę należy złożyć na stronie internetowej Moodle przedmiotu. Praca powinna być w postaci pojedynczego pliku w formacie DOC(X) lub PDF. Wyjątkowo można pracę złożyć w postaci jednego folderu (zawierającego główny plik i dodatkowo np. rysunki, kody źródłowe lub aplikacje) skompresowanego do pliku w formacie ZIP lub RAR.

Zalecany tytuł pliku PRACA1 <imie>.<nazwisko>.<rozszerzenie>

<u>UWAGA</u>: Praca składa się z części podstawowej i (znacznie krótszej) części dodatkowej. Rozwiązanie części dodatkowej nie jest obowiązkowe i nie poprawia oceny, ale z egzaminu końcowego mogą ewentualnie być zwolnione tylko te osoby, które poprawnie rozwiążą część dodatkową (również w przypadku drugiej pracy).

OPIS MANIPULATORA

Na Rys.1 pokazany jest manipulator antropomorficzny o 5 przegubach obrotowych.

Rys. 1

Rys.2 pokazuje rozmiary poszczególnych fragmentów oraz ilustruje jak układy współrzędnych są przypisane do struktury robota zgodnie z formalizmem Denavita-Hartenberga.

Rys. 2

Faktyczne wartości pokazanych na Rys. 2 wymiarów wynoszą:

	Wysokość kolumny	h = 350
--	------------------	---------

 \triangleright Przesuniecie drugiej osi obrotu względem pierwszej osi i = 16

\triangleright Długość "ramienia" $e=22$	O.
--	----

$$\triangleright$$
 Długość "przedramienia" $f = 220$

ightharpoonup Długość chwytaka g = 150

1. ZADANIE KINEMATYKI PROSTEJ

Określ parametry θ , d, a i α dla wszystkich par kinematycznych tego robota. Zauważ, że:

- (a) Osie \mathbb{Z}_1 i \mathbb{Z}_0 są prostopadłe, ale <u>nie</u> przecinają się (przesunięcie i na Rys. 2);
- (b) Osie Z₁, Z₂ i Z₃ są poziome;

Rozwiąż zadanie kinematyki prostej dla tego manipulatora, tzn. znajdź poszczególne macierze transformacji H_{k-1}^k (k = 1, ..., 5) oraz ich złożenie, czyli macierz H_0^5 .

Naszkicuj robota w położeniach odpowiadającym następującym konfiguracjom **A**, **B**, **C** i **D**, dla których kąty przegubów są zamieszczone w poniższej tabeli.

	θ_1	θ_2	θ ₃	θ ₄	θ ₅
A	0°	0°	0°	90°	90°
В	0°	90°	0°	90°	90°
С	-90°	90°	-90°	180°	0°
D	0°	120°	-90°	0°	0°

Sprawdź, czy otrzymane szkice intuicyjnie zgadzają się z wartościami wektora przesunięcia w macierzy H_0^5 otrzymanymi w wyniki podstawienia tych wartości kątów do uzyskanych wzorów.

2. UPROSZCZONE ZADANIE KINEMATYKI PROSTEJ

Na podstawie wartości kątów θ_1 , θ_2 , i θ_3 wyznacz wektor położenia środka układu $X_3Y_3Z_3$ czyli środka nadgarstka tego robota (patrz Rys. 3) dla każdej z powyższych konfiguracji **A**, **B**, **C** i **D**.

W tym celu użyj części pozycyjnej macierzy H_0^3 (cząstkowy wynik kinematyki prostej).

3. UPROSZCZONE ZADANIE KINEMATYKI ODWROTNEJ

Rozwiąż zdanie kinematyki odwrotnej dla położenia środka nadgarstka (wektor położenia środka układu $X_3Y_3Z_3$), tzn. wyznacz wartości kątów θ_1 , θ_2 i θ_3 , które doprowadzą środek nadgarstka do docelowego położenia $\left\lceil p_x^w, p_y^w, p_z^w \right\rceil$.

Przeanalizuj istnienie rozwiązań wielokrotnych i osobliwych. Jeżeli takie istnieją, to zilustruj ich sens prostymi szkicami.

Sprawdź, czy uzyskane rozwiązanie daje poprawne wyniki dla położenia środka nadgarstka w konfiguracjach **A**, **B**, **C** i **D** zdefiniowanych powyżej.

4. PEŁNE ZADANIE KINEMATYKI ODWROTNEJ JEST TO CZEŚĆ DODATKOWA PRACY

Przeanalizuj macierz rozwiązania kinematyki prostej H_0^5 i znajdź w niej ograniczenie (powinno być jedno, bo robot ma 5 przegubów) na możliwe do osiągnięcia konfiguracje narzędzia końcowego (chwytaka).

Rozwiąż pełne zadanie kinematyki odwrotnej, tzn. dla zadanej macierzy H_{base}^{tool} konfiguracji docelowej (macierz musi spełniać ograniczenie konfiguracyjne znalezione powyżej) wyznacz wartości kątów kątów θ_1 , θ_2 , θ_3 , θ_4 i θ_5 , które doprowadzą środek narzędzia (chwytaka) do docelowego położenia [p_x , p_y , p_z] wraz w docelową orientacją.

Sprawdź, czy uzyskane rozwiązanie daje poprawne wyniki dla położenia środka nadgarstka w konfiguracjach **A**, **B**, **C** i **D** zdefiniowanych powyżej.