

VISUAL NAVIGATION

Elements of linear algebra

Elements of linear algebra

Lecture outline

- > Vector space, matrices and linear equations
- > Euclidean spaces, orthogonality and projectors
- > Eigenvalues, Eigenvectors and matrix decompositions
- Quadratic forms

- > Vector space $\, \mathcal{V} \,:\,\,\, orall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V} \,$
 - $-\mathbf{u} + \mathbf{v} \in \mathcal{V} \quad ; \quad c\mathbf{u} \in \mathcal{V} \quad , \quad \forall c \in \mathbb{R}$
 - $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$; $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
 - $\exists \mathbf{0} \in \mathcal{V} : \mathbf{0} + \mathbf{u} = \mathbf{u}$
 - $\exists (-\mathbf{u}) \in \mathcal{V} : (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$
 - $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$; $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$, $\forall a, b \in \mathbb{R}$
 - $(ab)\mathbf{u} = a(b\mathbf{u})$, $\forall a, b \in \mathbb{R}$
- \blacktriangleright Example of vector space: \mathbb{R}^n

- \triangleright Subspace $\mathcal{W} \subset \mathcal{V}$ iff $\mathbf{u}, \mathbf{v} \in \mathcal{W} \Rightarrow a\mathbf{u} + b\mathbf{v} \in \mathcal{W}$
- ightharpoonup Linear combination $\mathbf{u}_i \in \mathcal{V} \;,\; a_i \in \mathbb{R} \quad \Rightarrow \quad \sum_{i=1}^n a_i \mathbf{u}_i$
- \triangleright The set of all linear combinations, denoted as $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$, defines a subspace of \mathcal{V}
- For If every vector in \mathcal{V} can be obtained as a linear combination of $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ the latter *spans* vector space $\mathcal{V}:\ \mathcal{V}=\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$
- \blacktriangleright Linear independence: vectors $\{\mathbf u_1,\dots,\mathbf u_n\}$ are independent iff $\sum_n a_i \mathbf u_i = \mathbf 0 \Rightarrow (a_1,\dots,a_n)^{ \mathrm{\scriptscriptstyle T} } = \mathbf 0$

 \triangleright A set of linear independent vectors $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ that $\mathrm{span}\mathcal{V}$ is a **base** of \mathcal{V}

Matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]$$

> Properties

$$-\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}] \qquad c\mathbf{A} = [c \cdot a_{ij}] \quad , \quad \forall c \in \mathbb{R}$$

-
$$\mathbf{C}_{(m \times o)} = \mathbf{A}_{(m \times n)} \mathbf{B}_{(n \times o)} = \left[c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \right]$$

> Properties (continues):

-
$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$
 , $\mathbf{AB} \neq \mathbf{BA}$

$$-(A + B) + C = A + (B) + C$$

$$-a(\mathbf{A} + \mathbf{B}) = a\mathbf{A} + a\mathbf{B} \quad , \quad \forall a \in \mathbb{R}$$

$$-(a+b)\mathbf{A} = a\mathbf{A} + b\mathbf{A}$$
 , $\forall a, b \in \mathbb{R}$

$$- A - A = A + (-A) = 0$$

$$- (\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$$

$$\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

$$- (\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

m

ightharpoonup Transpose $\mathbf{A}=[a_{ij}]$, $\mathbf{A}^{\mathrm{T}}=[a_{ji}]$

Properties

$$-(a\mathbf{A})^{\mathrm{T}} = a\mathbf{A}^{\mathrm{T}} \qquad (a\mathbf{A} + b\mathbf{B})^{\mathrm{T}} = a\mathbf{A}^{\mathrm{T}} + b\mathbf{B}^{\mathrm{T}}$$

-
$$(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$$

Frace $\operatorname{tr}(\mathbf{A}_{m \times m}) = \sum_{i=1}^{n} a_{ii}$

Properties

-
$$\operatorname{tr}(\mathbf{A}^{\mathrm{T}}) = \operatorname{tr}(\mathbf{A})$$
 - $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$

-
$$\operatorname{tr}(c\mathbf{A}) = c \operatorname{tr}(\mathbf{A})$$
 - $\operatorname{tr}(\mathbf{A}\mathbf{B}) = \operatorname{tr}(\mathbf{B}\mathbf{A})$

> Symmetric matrix (square)

- $\mathbf{A}^{\mathrm{\scriptscriptstyle T}}=\mathbf{A}$
- ightharpoonup Skew-symmetric matrix (square) ${f A}^{
 m T}=-{f A}$
- > Skew decomposition:

$$\mathbf{A} = \underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathrm{T}}) + \underbrace{\frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathrm{T}})}_{Skew} + \underbrace{\frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathrm{T}})}_{Symmetric}$$

 \blacktriangleright Matrix inverse: $\mathbf{A}_{m \times m}^{-1} \mathbf{A}_{m \times m} = \mathbf{I}_m$

Property
$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$$

➤ Inverse of partitioned matrices:

$$\begin{pmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} \end{bmatrix}^{-1}$$

$$=\begin{bmatrix} (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} & -(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}\mathbf{B}\mathbf{D}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} & \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}\mathbf{B}\mathbf{D}^{-1} \end{bmatrix}$$

$$=\begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \\ -(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1} & (\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \end{bmatrix}$$

$$(\mathbf{M} + \mathbf{N})^{-1} = \mathbf{M}^{-1} - \mathbf{M}^{-1}(\mathbf{M}^{-1} + \mathbf{N}^{-1})^{-1}\mathbf{M}^{-1}$$

 $(\mathbf{M} + \mathbf{b}\mathbf{c}^{\mathrm{T}})^{-1} = \mathbf{M}^{-1} - \frac{\mathbf{M}^{-1}\mathbf{b}\mathbf{c}^{\mathrm{T}}\mathbf{M}^{-1}}{1 + \mathbf{c}^{\mathrm{T}}\mathbf{M}^{-1}\mathbf{b}}$

with b,c vectors

Corollaries:

Determinant (Laplace formula)

$$\det(\mathbf{A}_{m \times m}) = \sum_{j=1}^{m} a_{ij} (-1)^{i+j} m_{ij} = \sum_{i=1}^{m} a_{ij} (-1)^{i+j} m_{ij}$$

 \blacktriangleright Having chosen a column j or a row i :

 a_{ij} : ij component of ${\bf A}$

 m_{ij} : determinant of ij minor of ${f A}$

- \triangleright Cofactor of \mathbf{A} : $(-1)^{i+j}m_{ij}$
- ightharpoonup Adjugate (or adjoint) of $\mathbf{A}: \operatorname{adj}(\mathbf{A}) = \left[(-1)^{i+j} m_{ij} \right]^{\mathrm{T}}$

Determinant (Laplace formula)

$$\det(\mathbf{A}_{m \times m}) = \sum_{j=1}^{m} a_{ij} (-1)^{i+j} m_{ij} = \sum_{i=1}^{m} a_{ij} (-1)^{i+j} m_{ij}$$

Properties

- $\det(c\mathbf{A}_{m\times m}) = c^m \det(\mathbf{A}_{m\times m})$
- $\det(\mathbf{A}^{\mathrm{T}}) = \det(\mathbf{A}) \qquad \det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$
- **A** is invertible iff $\det(\mathbf{A}) \neq 0$

$$-\mathbf{A}^{-1} = \frac{\operatorname{adj}(\mathbf{A})}{\det(\mathbf{A})}$$

Determinant (Laplace formula)

$$\det(\mathbf{A}_{m \times m}) = \sum_{j=1}^{m} a_{ij} (-1)^{i+j} m_{ij} = \sum_{i=1}^{m} a_{ij} (-1)^{i+j} m_{ij}$$

Properties (cont.)

$$- \det \begin{pmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} \end{bmatrix} = \det(\mathbf{A}) \det(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})$$
$$= \det(\mathbf{D}) \det(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})$$

-
$$\det(\mathbf{A} + \mathbf{BC}) = \det(\mathbf{A})\det(\mathbf{I} + \mathbf{CA}^{-1}\mathbf{B})$$

-
$$\det(\mathbf{A} + \mathbf{b}\mathbf{c}^{\mathrm{T}}) = \det(\mathbf{A})\det(1 + \mathbf{c}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{b})$$

> System of linear equations:

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n}$$

$$y_{2} = a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n}$$

$$\vdots$$

$$y_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n}$$

$$y = Ax$$

Range space

$$\mathcal{R}(\mathbf{A}_{(m \times n)}) = {\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n} \subset \mathbb{R}^m$$

Null space

$$\mathcal{N}(\mathbf{A}_{(m \times n)}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \} \subset \mathbb{R}^n$$

 \succ Rank: maximum number of independent column vectors of ${f A}$

Regular or nonsingular matrix $\operatorname{rk}(\mathbf{A}_{m \times m}) = m$

Rank-deficiency

$$\operatorname{rk}(\mathbf{A}_{m \times n}) < \min(m, n)$$

Range space

$$\mathcal{R}(\mathbf{A}_{(m \times n)}) = {\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n} \subset \mathbb{R}^m$$

Null space

$$\mathcal{N}(\mathbf{A}_{(m \times n)}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \} \subset \mathbb{R}^n$$

➤ Rank: maximum number of independent column vectors of **A**Properties

- $\operatorname{rk}(\mathbf{AB}) \leq \min(\operatorname{rk}(\mathbf{A}), \operatorname{rk}(\mathbf{B}))$
- $\operatorname{rk}(\mathbf{A}_{(m \times n)} \mathbf{B}_{(n \times p)}) \ge \operatorname{rk}(\mathbf{A}) + \operatorname{rk}(\mathbf{B}) n$

- ➤ Solvability of linear systems of equations
- \succ Homogeneous system: $\mathbf{A}_{m imes n} \mathbf{x} = \mathbf{0}$

Trivial solution $\mathbf{x} = \mathbf{0}$

Nontrivial solution iff $\operatorname{rk}(\mathbf{A}) < n$ or $\mathcal{N}(\mathbf{A}) \neq \{\mathbf{0}\}$

 \succ Inhomogeneous system: $\mathbf{A}_{m imes n} \mathbf{x} = \mathbf{y}$

If a solution exists, the system is consistent

Consistency is guaranteed when $rk(\mathbf{A}) = m$ (full row rank)

Consistency is not guaranteed when $\operatorname{rk}(\mathbf{A}) < m$

> Solvability of linear systems of equations

$$\mathbf{A}_{m \times n} \mathbf{x} = \mathbf{y}$$

- \blacktriangleright System overdetermined if $\operatorname{rk}(\mathbf{A}) < m$
- > System underdetermined if $\operatorname{rk}(\mathbf{A}) < n$
- > Redundancy: $\rho = m r$
- \triangleright Parameter deficiency: n-r

> Definite and indefinite matrices

$$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} > 0 \quad \forall \mathbf{x} \neq \mathbf{0}$$

$$\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \ge 0 \quad \forall \mathbf{x} \ne \mathbf{0}$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} < 0 \quad \forall \mathbf{x} \neq \mathbf{0}$$

> Negative semidefinite
$$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} \leq 0 \quad \forall \mathbf{x} \neq \mathbf{0}$$

> Indefinite otherwise

$$\forall \det(\mathbf{A}_i) > 0 \quad , \quad i = 1, \ldots, m$$

Euclidean space

An Euclidean space is a vector space with inner product (\mathbf{u},\mathbf{v})

-
$$(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u}) \qquad \forall \mathbf{u}, \mathbf{v} \in \mathcal{V}$$

$$-(c\mathbf{u}, \mathbf{v}) = c(\mathbf{v}, \mathbf{u}) \qquad \forall \mathbf{u}, \mathbf{v} \in \mathcal{V} , \ \forall c \in \mathbb{R}$$

$$-(\mathbf{u}, \mathbf{u}) > 0 \quad \forall \mathbf{u} \neq \mathbf{0} \quad , \quad (\mathbf{u}, \mathbf{u}) = 0 \Rightarrow \mathbf{u} = \mathbf{0}$$

-
$$(\mathbf{u} + \mathbf{v}, \mathbf{w}) = (\mathbf{u}, \mathbf{w}) + (\mathbf{v}, \mathbf{w})$$
 $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V}$

- > Euclidean space
- ightharpoonup We define $(\mathbf{u},\mathbf{v})_{\mathbf{W}}=\mathbf{u}^{\mathrm{T}}\mathbf{W}\mathbf{v}$ with \mathbf{W} symmetric
- > Length: $\|\mathbf{u}\|_{\mathbf{W}} = \sqrt{\mathbf{u}^{\mathrm{T}}\mathbf{W}\mathbf{u}}$
- > Angle between two vectors: $\cos(\theta_{\mathbf{W}}) = \frac{\mathbf{u}^{\mathrm{T}} \mathbf{W} \mathbf{v}}{\sqrt{\mathbf{u}^{\mathrm{T}} \mathbf{W} \mathbf{u}} \sqrt{\mathbf{v}^{\mathrm{T}} \mathbf{W} \mathbf{v}}}$

- > Euclidean space
 - Orthogonality: $\mathbf{u}^{\mathrm{T}}\mathbf{W}\mathbf{v}=0$
 - Orthogonal set $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ if $\mathbf{u}_i^{ \mathrm{\scriptscriptstyle T} } \mathbf{W} \mathbf{u}_j = 0$, $i \neq j$
 - Orthonormal set $\{\mathbf{u}_1,\dots,\mathbf{u}_n\}$ if $\mathbf{u}_i^{ \mathrm{\scriptscriptstyle T} } \mathbf{W} \mathbf{u}_j = \delta_{ij}$
- Orthonormal matrices: column vectors are orthonormal vectors

Properties:

$$- \det(\mathbf{U}) = \pm 1 \qquad \mathbf{U}^{-1} = \mathbf{U}^{\mathrm{T}}$$

- > Euclidean space
 - Cross product in \mathbb{R}^3 :

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

- Alternative notation:

$$\mathbf{u} \times \mathbf{v} = \mathbf{\Omega}_{\mathbf{u}} \mathbf{v} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \mathbf{v}$$

 \succ Projectors (or idempotent matrices) ${
m {f PP}}={
m {f P}}$

Properties

-
$$\mathbf{I} - \mathbf{P}$$
 is a projector

-
$$\mathcal{R}(\mathbf{P}) = \mathcal{N}(\mathbf{I} - \mathbf{P})$$

-
$$\mathcal{N}(\mathbf{P}) = \mathcal{R}(\mathbf{I} - \mathbf{P})$$

 \triangleright Orthogonal projector (relative to the range space of \mathbf{A}):

$$\mathbf{P}_{\mathbf{A}} = \mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{W}$$
 $\mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I} - \mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{W}$

$$\mathbf{P}_{\mathbf{A}} + \mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I}$$

> Pythagorean theorem

$$\|\mathbf{y}\|_{\mathbf{W}}^2 = \|\mathbf{P}_{\mathbf{A}}\mathbf{y}\|_{\mathbf{W}}^2 + \|\mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{y}\|_{\mathbf{W}}^2$$

 \triangleright Orthogonal projector (relative to the range space of ${\bf A}$):

$$\mathbf{P}_{\mathbf{A}} = \mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{W}$$
 $\mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I} - \mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{W}$

$$\mathbf{P}_{\mathbf{A}} + \mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I}$$

> Pythagorean theorem

$$\|\mathbf{y}\|_{\mathbf{W}}^2 = \|\mathbf{P}_{\mathbf{A}}\mathbf{y}\|_{\mathbf{W}}^2 + \|\mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{y}\|_{\mathbf{W}}^2$$

> Pythagorean theorem

$$\|\mathbf{y}\|_{\mathbf{W}}^2 = \|\mathbf{P}_{\mathbf{A}}\mathbf{y}\|_{\mathbf{W}}^2 + \|\mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{y}\|_{\mathbf{W}}^2$$

 \blacktriangleright How do we find the nearest vector to \mathbf{y} belonging to the range space of \mathbf{A} ?

$$\mathbf{Y}$$
 $\|\mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{y}\|_{\mathbf{W}}$ $\mathbf{A}\mathbf{x} = \|\mathbf{P}_{\mathbf{A}}\mathbf{y}\|_{\mathbf{W}}$

$$\mathcal{R}(\mathbf{A})$$

> Pythagorean theorem

$$\|\mathbf{y}\|_{\mathbf{W}}^2 = \|\mathbf{P}_{\mathbf{A}}\mathbf{y}\|_{\mathbf{W}}^2 + \|\mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{y}\|_{\mathbf{W}}^2$$

➤ Application: solution of a weighted least-squares problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^2 = \min_{\mathbf{x} \in \mathbb{R}^n} \left[\|\mathbf{P}_{\mathbf{A}}\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^2 + \|\mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{y}\|_{\mathbf{W}}^2 \right]$$

$$= \min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{P}_{\mathbf{A}}\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^2 = 0$$

$$\hat{\mathbf{x}} = (\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{y}$$

Eigenvalues and eigenvectors

Consider solving the linear system of equations

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

Unknowns:

$$\mathbf{x} \in \mathbb{R}^n$$
 , $\lambda \in \mathbb{R}$

Nontrivial solutions iff $det(\mathbf{A} - \lambda \mathbf{I}) = 0$ (characteristic equation)

 \succ Eigenvalues: λ

 \triangleright Eigenvectors: $(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x}_i = 0$

Eigenvalues and eigenvectors

Consider solving the linear system of equations

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

Unknowns:

$$\mathbf{x} \in \mathbb{R}^n$$
 , $\lambda \in \mathbb{R}$

Properties

- There exist n eigenvalues (not necessarily distinct)
- Eigenvalues of diagonal and triangular matrices are the diagonal entries
- Eigenvalues of symmetric matrix are real

Eigenvalues and eigenvectors

Consider solving the linear system of equations

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

Unknowns:

$$\mathbf{x} \in \mathbb{R}^n$$
 , $\lambda \in \mathbb{R}$

Properties (continue)

- Eigenvalues of positive definite matrix are positive
- Eigenvalues of orthonormal matrix are $=\pm 1$
- Eigenvalues of a projector: $\{0,1\}$

Eigenvalues and eigenvectors

Consider solving the linear system of equations

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Unknowns:

$$\mathbf{x} \in \mathbb{R}^n$$
 , $\lambda \in \mathbb{R}$

Properties (continue)

-
$$\det(\mathbf{A}_{n\times n}) = \lambda_1 \lambda_2 \dots \lambda_n$$

$$\operatorname{tr}(\mathbf{A}_{n\times n}) = \lambda_1 + \lambda_2 + \ldots + \lambda_n$$

➤ Matrix decompositions: LDU / LDL decompositions

- \triangleright Exists if $\det(\mathbf{A}_i) \neq 0$, $i = 1, \dots, (n-1)$
- \blacktriangleright If ${f A}$ is symmetric: ${f A}={f L}{f D}{f L}^{\scriptscriptstyle {
 m T}}$
- ightharpoonup If ${f A}$ is positive definite, the decomposition ${f A}={f L}{f D}{f L}^{
 m T}$ is unique, and the entries of ${f D}$ are all positive

➤ Matrix decompositions: Cholesky decomposition

If **A** is positive definite,

$$\mathbf{A} = \mathbf{G}^{\mathrm{T}}\mathbf{G}$$

with G a unique upper triangular matrix.

➤ Derived from the LDL decomposition as

$$\mathbf{G} = \mathbf{D}^{rac{1}{2}}\mathbf{L}$$

➤ Matrix decompositions: Singular Value Decomposition (SVD)

$$\mathbf{A}_{m imes n} = \mathbf{U}_m \mathbf{S}_{m imes n} \mathbf{V}_n^{ ext{T}}$$

with \mathbf{U} , \mathbf{V} orthonormal and \mathbf{S} "diagonal" (entries: singular values).

- \succ Main application: solution of homogeneous system $~{f A}{f x}=0$
- ightharpoonup Null vector is the vector column of \mathbf{V}^{T} corresponding to the singular value equal to zero

➤ Matrix decompositions: Eigenvalue Decomposition (SVD)

$$\mathbf{A}_{m imes m} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ ext{T}}$$

with U orthonormal and Λ diagonal.

- Λ contains the eigenvalues
- U contains the corresponding eigenvectors

➤ Matrix decompositions: Orthogonal decomposition (QR factorization)

Any matrix $\mathbf{A}_{m \times n}$ can be factorized as (for $m \ge n$)

$$A = QR$$

with $\mathbf{Q}_{m \times m}$ orthonormal w.r.t. \mathbf{W} : $\mathbf{Q}^{\mathrm{T}}\mathbf{W}\mathbf{Q}$

and $\mathbf{R}_{m imes n}$ triangular

 \succ Cholesky decomposition of $\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A}$

$$\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A} = \mathbf{R}^{\mathrm{T}}\mathbf{Q}^{\mathrm{T}}\mathbf{W}\mathbf{Q}\mathbf{R} = \mathbf{R}^{\mathrm{T}}\mathbf{R}$$

Quadratic forms

- Quadratic forms $p(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ with \mathbf{A} symmetric.
- ➤ Points for which $p(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = c$ describe different geometrical figures. Example in 2D:

Quadratic forms

> (Hyper)ellipsoid and principal axes

If \mathbf{A} is positive definite $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}=c$ is the equation of a (hyper)ellipsoid

ightharpoonup SVD decomposition $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ gives principal axes :

length of semiaxis:
$$\sqrt{\frac{c}{\lambda_i}}$$

direction of semiaxis: \mathbf{u}_i