Bitcoin: to the moon?

1. Introducción

En los últimos años, Bitcoin ha emergido como un activo financiero de gran interés, no solo por su naturaleza descentralizada, sino también por sus posibles vínculos con mercados tradicionales y alternativos. Este trabajo tiene como objetivo principal analizar las correlaciones entre Bitcoin y otros mercados financieros, así como modelar su comportamiento utilizando redes neuronales avanzadas como LSTM.

2. Características de Bitcoin

Bitcoin fue creado en 2009 por el seudónimo Satoshi Nakamoto. A diferencia de las monedas tradicionales, no depende de ningún banco central o gobierno. Su escasez es una característica fundamental: solo existirán 21 millones de unidades. Esto lo ha llevado a considerarse una posible reserva de valor. No obstante, existe una contradicción fundamental: mientras se le compara con activos refugio como el oro, su elevada volatilidad lo aleja de ese estatus. Los movimientos de precio de Bitcoin pueden superar el 10% en un solo día, lo cual es inusual en activos tradicionalmente considerados seguros. Esto plantea dudas sobre su fiabilidad como almacén de valor estable a largo plazo, especialmente en contextos de crisis económica.

3. Relación con otros mercados

Observamos una correlación positiva grande (>90%) entre Bitcoin y mercados bursátiles como el NASDAQ, S&P500 y Dow Jones.

Los futuros de dichos mercados presentan correlaciones muy similares, sugiriendo que existen colinealidades.

A efectos de los modelos LSTM, no se incluirán.

Además, muestra cierta sensibilidad a commodities como el oro y el petróleo, así como a los bonos del Tesoro.

Esta relación sugiere que Bitcoin no opera de forma completamente independiente, sino que responde a la coyuntura económica global. En períodos de alta inflación o incertidumbre geopolítica, puede actuar como activo refugio, pero también ha mostrado comportamientos similares a los activos de riesgo, cayendo junto a las bolsas en tiempos de aversión general al riesgo. Esto lo convierte en un activo híbrido cuya dinámica depende del contexto macroeconómico y de las expectativas

4. Modelización del precio de Bitcoin

Para estudiar el comportamiento del precio de Bitcoin, se han probado modelos estadísticos tradicionales como ARIMA y SARIMAX. Sin embargo, su capacidad para capturar la dinámica no lineal y temporal de Bitcoin es limitada.

Por ello, se recurrió a modelos de aprendizaje profundo, en particular redes neuronales LSTM (Long Short-Term Memory). Estas redes están diseñadas para aprender secuencias temporales y recordar información relevante a largo plazo. Funcionan mediante una estructura de 'celdas' que contienen puertas de entrada, olvido y salida, las cuales controlan el flujo de información. Gracias a esta arquitectura, una LSTM puede detectar patrones que se repiten en el tiempo, descartando el ruido y conservando solo las señales útiles. Esto la convierte en una herramienta ideal para predecir la evolución del precio de activos con comportamiento complejo como Bitcoin.

5. Retos y observaciones

Uno de los principales retos en el uso de LSTM es su correcta configuración. Muchos modelos fallan al predecir múltiples días en el futuro, limitándose a estimaciones paso a paso de un solo día, lo cual distorsiona la utilidad real del modelo. Este fenómeno puede conducir a la degeneración del modelo, en la que pierde capacidad predictiva por un mal diseño del entrenamiento. Es crucial establecer arquitecturas robustas que consideren predicciones multistep desde una ventana de observación fija.

6. Aplicación con sentimiento del mercado

La inclusión de variables de sentimiento ha demostrado ser valiosa. Al incorporar opiniones y emociones colectivas extraídas de redes como Twitter o Bitcointalk (datos), los modelos pueden capturar señales adelantadas de movimientos de mercado. Esta fusión de datos cuantitativos y cualitativos mejora la capacidad de los modelos para adaptarse a cambios abruptos en la narrativa del mercado.

En términos técnicos, el error medido por el MAE mejoró de manera considerable respecto a un modelo multivariable con valores bursátiles y de commodities como features.

No obstante, el modelo tiene serios problemas para predecir hacer predicciones out-of-sample, es decir, predicciones hacia el futuro. Por un lado, dado que el modelo se apoya en las features las predicciones pueden ser realistas y razonables, pero difícilmente precisas.

Por otro, se requeriría más estudio en la hiperparametrización y arquitectura de las neuronas.