Distributed Systems Foundations

https://powcoder.com

Add WeChat powcoder Lecture 1

Main Characteristics of Distributed Systems

 Independent processors, sites, processes

• Message passignment Project Exam Help

No shared merhttps://powcoder.com

No shared clockdd WeChat powcoder

Independent failure modes

Distributed System Models

- Synchronous System: Known bounds on times for message transmission, processing, bounds on local clock drifts, etc.
 - Can use timesters://powcoder.com
- Asynchronous dys Werch Mowder bounds on times for message transmission, processing, bounds on local clock drifts, etc.
 - More realistic, practical, but no timeout.

Distributed System Models

- Synchronous System: Known bounds on times for message transmission, processing, bounds on local clock drifts, etc.
 - Can use timesters://powcoder.com
- Asynchronous dys Werch Mowder bounds on times for message transmission, processing, bounds on local clock drifts, etc.
 - More realistic, practical, but no timeout.

Synchronous model example

Asynchronous model example

Data link layer in a distributed system

Goal: Send a message from A to B

Data Link Layer Example

https://powcoder.com

- Assumptions:
 - Add WeChat powcoder
 - Infinite buffer
 - No message loss
- Solution?

Data Link Layer Example

Assignment Project Exam Help

• Assumptions: https://powcoder.com

- Finite buffer
- No message loss

 Add WeChat powcoder
- Solution:
 - Synchronous System?
 - Asynchronous System?

Data Link Layer Example

Assignment Project Exam Help

• Assumptions: https://powcoder.com

- Finite buffer
- Message loss

 Add WeChat powcoder
- Solution?

Data Link Layer Lessons

What are the Assignment Project Exam Help

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

CAUSALITY AND TIME

What is a Distributed System?

- A simple model of a distributed system proposed by Lamport in a landmark 1978 Assignment Project Exam Help paper:
- "Time, Clocks and the Ordering of Events in a Distributed Sydtle We'Componunidations of the ACM

UCSB COMPUTER SCIENCE DEPARTMENT PRESENTS DISTINGUISHED LECTURE

LESLIELAMPORT

■ ■ ■ MICROSOFT RESEARCH

What is a Distributed System?

- A set of processes that communicate using message passing.
 Assignment Project Exam Help
 A process is a sequence of events

3 kinds of events:

- - Local events Add WeChat powcoder
 - Send events
 - Receive events
- Local events on a process for a total order.

Example of a Distributed System

Why do we care about "Time" in a distributed system?

- May need to know the time of day at which some event happens on a specific computer
 - external clock synchronization Help

https://powcoder.com

- May need to know the relative order two events Add WeChat powcoder that happened on different computers
 - internal clock synchronization

Physical Clocks in Distributed Systems

Does this work?

- Synchronize all the clocks to some known high degree of accuracy
- Measure time relative to local clock to determine order between events

Assignment Project Exam Help

- Well, there are some problems...
 - It's difficult to synthesize to be a synthesize t
 - Crystal-based clocks tend to drift over time-count time at different rates, and diverge flom the powcoder
 - Physical variations in the crystals, temperature variations, etc.
 - Drift is small, but adds up over time
 - For quartz crystal time, typical drift rate is about one second every 10⁶ seconds=11.6days
 - Best atomic clocks drift one second in 10^{13} seconds = 300,000 years

Logical Clocks

Idea — abandon idea of physical time

Assignment Project Exam Help

- For many purposes, it is sufficient to know https://powcoder.com the **order** in which events occurred Add WeChat powcoder
- Lamport (1978) introduce logical time, to provide consistent event ordering

ORDERING EVENTS

- Event ordering linked with causality:
 - Saying that event a happened before event b is Assignment Project Exam Help same as saying that event a could have affected the outcometofse/pot/boder.com
 - If events a and b happen on processes that do not exchange any data, their exact ordering is not important

Happens Before or Causal Order on Events

- Event e happens before (causally precedes)
 event f, denoted eroject Exam Help
 - 1. The same process executes *e* before *f*; or https://powcoder.com
 - 2. e is send(m) and f is receive(m); or
 - 3. Exists h so that e Chat powcoder
- We define *concurrent*, $e \mid | f$, as: $\neg (e \rightarrow f \lor f \rightarrow e)$

Lamport Logical Clocks

- Assign "clock" value to each event such that
 - if $a \rightarrow b$ then clock(a) < clock(b)
- Assign each process a clock counter".
 - Clock is incretipented week week pany two events in the same process
 Add WeChat powcoder

 – Each message carries the sender's clock value
- When a message arrives set local clock to:
 - max(local value, message timestamp) + 1
- This clock forms a partial order.

Logical Clocks

- Each event has a single integer as its logical clock
 - Each process has a local counter C
 - Increment C between two events
 - At each "send", logical clock value V is attached.
 - At each receive, C = max(C, V) + 1 Help

Logical Clock Properties

- Theorem:
 - Event s happens before t ⇒ logical clock value of s is Asmallantha Pthie dogical slock value of t.
- The reverse may pot be truem

Example of a Logical Clock

Problem: Identical timestamps

 $a \rightarrow b$, $b \rightarrow c$, Add Wocahaepents sequenced $j \rightarrow c$, $g \rightarrow d$, $f \rightarrow k$, ...: Lamport imposes a $send \rightarrow receive$ relationship

Concurrent events (e.g., a & j) <u>may</u> have the same timestamp ... or not (e.g., c & g)

Total Order Lamport Clock

 To extend the partial order to total order: use process ids to break ties

- Global timestamps://powcoder.com
 - (Ta, Pa): Ta is tocal earhotope logical timestamp

 Pa is process id.
 - (Ta,Pa) < (Tb,Pb) iff
 - (Ta < Tb) or ((Ta = Tb) and (Pa < Pb))
- Total order is consistent with partial order.
- Total order useful in many applications.

Unique (totally ordered) timestamps

Add WeChat powcoder