

标题

作者: Autin

目录

第	1 阐	3式
	1.1	-次同余式 1
	1.2	小子定理
	1.3	高次同余式 2
	1.4	長数模的同余式
第	2 章	以同余式
	2.1	-般二次同余式的化简
	2.2	寄素数的平方剩余与非剩余
	2.3	到用勒让德符号判定 6
	2.4	惟可比符号 7
第	3 훾	9
	3.1	欠拉定理与费马小定理9
第	4 摩	股和指标 10
	4.1	旨数及其基本性质
		京根存在条件 10
	4.3	旨标和 n 次剩余 \dots \dots 10

第1章 同余式

1.1 一次同余式

定理 1.1

$$ax \equiv b \pmod{m}, \quad a \not\equiv 0 \pmod{m}$$

当且仅当 (a,m) |b , 此时解数为 d=(a,m)

\bigcirc

解一次同余式的算法:

- 1. 找最大公因子 d = (a, m);
- $2. \ a,b,m$ 除以 d,化作系数和模数互素的情况。

$$a_1 x \equiv b_1 \pmod{m_1}, \quad (a_1, m_1) = 1$$

3. 找到同余式

$$a_1 x \equiv 1 \pmod{m_1}$$

的解c。

- (a). 矩阵行变换形式的辗转相除法;
- (b). 欧拉定理

$$c = a_1^{\varphi(m_1) - 1}$$

4. 两边乘以 c,得到解

$$x \equiv b_1 c \pmod{m_1}$$

为模 m_1 意义下的唯一解。

5. 所有解为

$$b_1c + k \cdot m_1 \pmod{m}, \quad k = 0, 1, \dots, d - 1$$

1.2 孙子定理

定理 1.2 (CRT)

设 m_1, \cdots, m_k 是 k 个两两互素的正整数,令

$$m = m_1 \cdots m_k, \quad m = m_i M_i, \quad i = 1, \cdots, k,$$

 \bigcirc

 \bigcirc

则同余式组

$$\begin{cases} x \equiv b_1 \pmod{m_1} \\ \vdots \\ x \equiv b_k \pmod{m_k} \end{cases}$$

在 mod m 意义下的唯一解是

$$x \equiv M_1' M_1 b_1 + \dots + M_k' M_k b_k \pmod{m}$$

其中

$$M_i'M_i \equiv 1 \pmod{m_i}, i = 1, \dots, k$$

定理 1.3

若 b_1,\cdots,b_k 过模 m_1,\cdots,m_k 的完全剩余系,则

$$M_1'M_1b_1+\cdots+M_k'M_kb_k$$

过模 m 的完全剩余系。

Remark 给出寻找合数模的完全剩余系的方法,只需要做素因子分解,给出每个准素数的完全剩余系,并找出系数 $M_i^\prime M_i$,拼成模 m 的完全剩余系。

1.3 高次同余式

定理 1.4 (合数模变为准素模)

若 m_1,\cdots,m_k 是 k 个两两互素的正整数,令 $m=m_1m_2\cdots m_k$,则

$$f(x) \equiv 0 \pmod{m} \iff f(x) \equiv 0 \pmod{m_i}, i = 1, \dots, k$$

模 m 解的个数为模 m_i 解的个数的乘积。

定理 1.5 (准素模变为素数模)

设 p 是素数。若 $x\equiv x_1\pmod p$ 是 $f(x)\equiv 0\pmod p$ 的一个解,并 且 $p\nmid f'(x_1)$,则存在 $\operatorname{mod} p^\alpha$ 下唯一的 x_α ,使得 $x_\alpha\equiv x_1\pmod p$,且 $x\equiv x_\alpha\pmod p^\alpha$ 成为 $f(x)\equiv 0\pmod p^\alpha$ 的一个解。

准素数模同余式的算法: 对于同余式 $f(x) \equiv 0 \pmod{p^{\alpha}}$

1. 求同余式

$$f(x) \equiv 0 \pmod{p}$$

的一个解 x_1 ,使得 $p \nmid f'(x_1)$

2. 寻找 t_1 , 使得

$$f\left(x_1 + pt_1\right) \equiv 0 \pmod{p^2}$$

为此, 将左式泰勒展开, 得到

$$f(x_1) + pt_1 f'(x_1) \equiv 0 \pmod{p^2}$$

解一次同余式,得到唯一解 $t_1 \equiv t_1' \pmod{p^2}$ 。

令 $x_2 := x_1 + pt_1'$, 则 $x \equiv x_2 \pmod{p^2}$ 是 $f(x) \equiv 0 \pmod{p^2}$ 的一个解。

3. 重复上述操作,对于以上过程中得到的 $f(x)\equiv 0\pmod{p^{\alpha-1}}$ 的解 $x\equiv x_{\alpha-1}\pmod{p^{\alpha-1}}$ 。 寻找 $t_{\alpha-1}$,使得

$$f\left(x_{\alpha-1} + p^{\alpha-1}t_{\alpha-1}\right) \equiv 0 \pmod{p^{\alpha}}$$

为此,Taylor 展开得到

$$f(x_{\alpha-1}) + p^{\alpha-1}t_{\alpha-1}f'(x_{\alpha-1}) \equiv 0 \pmod{p^{\alpha}}$$

解一次同余式, 得到唯一解 $t_{\alpha-1} \equiv t'_{\alpha-1} \pmod{p^{\alpha}}$.

令 $x_{\alpha}:=x_{\alpha-1}+t'_{\alpha-1}p^{\alpha-1}$,则 $x\equiv x_{\alpha}\ (\mathrm{mod}\ p^{\alpha})$ 为同余式 $f\left(x\right)\equiv 0\ (\mathrm{mod}\ p^{\alpha})$ 的一个解。

1.4 素数模的同余式

考虑素数模 p 的同余式

$$f(x) \equiv 0 \pmod{p}, \quad f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

其中 p 是素数, $a_n \not\equiv 0 \pmod{p}$

定理 1.6

上述同余式与一个次数不超过 p-1 的模 p 的同余式等价。

定理 1.7

设 $k \le n$, $x \equiv \alpha_i \pmod p$ $(1, \dots, k)$ 是素数模同余式的 k 个不同的解,则对于任意的整数 x,我们有

$$f(x) \equiv (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_k) f_k(x) \pmod{p}$$

其中 f_k 是首项系数为 a_n 的 n-k 次多项式。

定理 1.8

1.

$$x^{p-1} - 1 \equiv (x-1)(x-2)\cdots(x-(p-1)) \pmod{p}$$

2.

$$(p-1)! + 1 \equiv 0 \pmod{p}$$

定理 1.9

若 $n \leq p$, 同余式

$$f(x) \equiv 0 \pmod{p}, \quad f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{0}$$

有 n 个解当且仅当 f(x) 除 x^p-x 所得余式的一切系数都是 p 的倍数。

第2章 二次同余式

2.1 一般二次同余式的化简

定义 2.1

二次同余式是指

$$ax^2 + bx + c \equiv 0 \pmod{m}, \quad a \not\equiv 0 \pmod{m}$$

需要讨论二次同余式什么时候有解。

第一步,将m标准分解,化简为每个准素数模的同余式是否有解的问题

定理 2.1

设 m 的标准分解是 $m=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$,则上述二次同余式有解,当且仅当下列每个同余式都有解

$$ax^2 + bx + c \equiv 0 \pmod{p_i^{\alpha_i}}, \quad i = 1, \dots, k$$

接下来讨论准素数模同余式何时有解,

定理 2.2

对于二次同余式

$$f(x) \equiv 0 \pmod{p^{\alpha}}, \quad f(x) = ax^{2} + bx + c$$

- 1. 当 $p^{\alpha}|(a,b,c)$ 时,任意整数满足同余式,进而有解;
- 2. 若 p^{α} 不整除 (a,b,c),不妨只考虑 $p \nmid (a,b,c)$ 的情况
 - (a). 若 $p \mid a, p \mid b, p \nmid c$, 无解。
 - (b). 若 p | a, p ∤ b,

*可以让 (a,b,c) 除尽 p,直到 $p \nmid (a,b,c)$,化简为新的形如上的二次同余式。

2.2 奇素数的平方剩余与非剩余

只讨论奇素数 p 的平方剩余与非剩余,即讨论

$$x^2 \equiv a \pmod{p}, \quad (a, p) = 1$$

的同余式的解。

定理 2.3 (欧拉判别)

若 (a,p)=1, p 是奇素数,则 a 是模 p 的平方剩余,当且仅当

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

非剩余当且仅当

$$a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$$

若为平方剩余,则 $x^2 \equiv a \pmod{p}$ 恰有二解。

定理 2.4

模 p 的既约剩余系有 p-1 (偶数) 个,其中平方剩余与非剩余各占一半,有 $\frac{p-1}{2}$ 个。

其中的平方剩余在同余的意义下与

$$1^2, 2^2, \cdots, \left(\frac{p-1}{2}\right)^2$$

--对应。

2.3 利用勒让德符号判定

定理 2.5 (勒让德符号)

设 p 是奇素数,定义勒让德符号 $\left(rac{a}{p}
ight)$ 按

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} := \begin{cases} 1, & a$$
是模 p 的平方剩余 \\ -1, & a是模 p 的平方非剩余,
$$0, & p|a \end{cases}$$

命题 2.1 (勒让德符号的运算性质)

1. 若 $a \equiv a_1 \pmod{p}$,则

$$\left(\frac{a}{p}\right) = \left(\frac{a_1}{p}\right)$$

2.

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$$

3.

$$\left(\frac{a_1 a_2 \cdots a_n}{p}\right) = \left(\frac{a_1}{p}\right) \left(\frac{a_2}{p}\right) \cdots \left(\frac{a_n}{p}\right)$$

4.

$$\left(\frac{ab^2}{p}\right) = \left(\frac{a}{p}\right), \quad p \nmid b$$

5.

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}$$

6. 若 (a,p)=1 且 $2 \nmid a$,则

$$\left(\frac{a}{p}\right) = (-1)^{\sum_{k=1}^{p_1} \left[\frac{ak}{p}\right]}, \quad p_1 = \frac{p-1}{2}$$

7. 若 p,q 是奇素数, (p,q)=1, 则

$$\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right)$$

2.4 雅可比符号

引入以下雅可比符号,可以更方便地计算勒让德符号

定义 2.2

对于奇数 m, 定义雅可比符号 $\left(rac{a}{m}
ight)$, 按

$$\left(\frac{a}{m}\right) := \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_r}\right)$$

其中 $m=p_1p_2\cdots p_r$, p_i 是素数, $\left(rac{a}{p_i}
ight)$ 是勒让德符号。

命题 2.2

1. 若 $a \equiv a_1 \pmod{m}$,则

$$\left(\frac{a}{m}\right) = \left(\frac{a_1}{m}\right)$$

2.

$$\left(\frac{-1}{m}\right) \equiv -1^{\frac{m-1}{2}} \pmod{m}$$

$$\left(\frac{a_1 a_2 \cdots a_n}{m}\right) = \left(\frac{a_1}{m}\right) \left(\frac{a_2}{m}\right) \cdots \left(\frac{a_n}{m}\right)$$

4.

$$\left(\frac{ab^2}{m}\right) = \left(\frac{a}{m}\right), \quad (b, m) = 1$$

5.

$$\left(\frac{2}{m}\right) = \left(-1\right)^{\frac{m^2 - 1}{8}}$$

6. 若 m,n 是大于 1 的奇数,则

$$\left(\frac{n}{m}\right) = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}} \left(\frac{m}{n}\right)$$

▲ 练习 2.1 判断同余式

$$x^2 \equiv 286 \pmod{563}$$

是否有解。

Solution

$$\left(\frac{286}{563}\right) = \left(\frac{2}{563}\right) \left(\frac{143}{563}\right)$$

$$= (-1) (-1)^{\frac{143-1}{2} \cdot \frac{563-1}{2}} \left(\frac{563}{143}\right)$$

$$= \left(\frac{-9}{143}\right) = \left(\frac{-1}{143}\right) =$$

第3章 同余

3.1 欧拉定理与费马小定理

定理 3.1 (欧拉)

设m是大于1的整数,(a,m)=1,则

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

\Diamond

定理 3.2 (费马小定理)

若 p 是素数,则

$$a^p \equiv a \pmod{p}$$

第4章 原根和指标

4.1 指数及其基本性质

定义 4.1

若 m > 1, (a, m) = 1, 则使得同余式

$$a^{\gamma} \equiv 1 \pmod{m}$$

成立的最小正整数 γ 叫做 a 对模 m 的指数。

若 a 对模 m 的指数是 $\varphi(m)$, 则 a 叫做模 m 的一个原根。

定理 4.1

若 a 对模 m 的指数为 δ ,则 $1=a^0,a^1,\cdots,a^{\delta-1}$ 对模 m 两两不同余。

定理 4.2

若 a 对模 m 的指数是 δ ,则 $a^{\gamma}=a^{\gamma'} \pmod{m}$ 当且仅当 $\gamma=\gamma' \pmod{\delta}$ 。特别地, $a^{\gamma}\equiv 1 \pmod{\delta}$ 当且仅当 $\delta\mid\gamma$ 。

定理 4.3

- 1. 若 x 对模 m 的指数是 ab, a>0,b>0,则 x^a 对模 m 的指数是 b.
- 2. 若 x 对模 m 的指数是 a, y 对模 m 的指数是 b, 且 (a,b)=1, 则 xy 对模 m 的指数是 ab.

4.2 原根存在条件

定理 4.4

模m的原根存在 $\iff m=2,4,p^{\alpha},2p^{\alpha},\quad p$ 是奇素数

4.3 指标和 n 次剩余

考察同余式

$$x^n \equiv a \pmod{m}, \quad (a, m) = 1$$

 \bigcirc

解的存在条件,解的个数,模 m 的原根的个数。

若无特别声明,以下皆设 m 是 p^{α} 或 $2p^{\alpha}$, $c=\varphi\left(m\right)$, g 是模 m 的一个原根。

定理 4.5

若 γ 过模 c 的最小非负完全剩余系,则 g^{γ} 过模 m 的一个既约剩余系。 γ

定义 4.2

设 a 是整数,若对于模 m 的一个原根 g ,存在整数 γ ,使得

$$a \equiv g^{\gamma} \pmod{m}, \quad \gamma \ge 0$$

则称 γ 为以 g 为底的 a 对模 m 的一个指标。

Remark 可以将指标 γ 看成是 a 以 g 为底的对数,只不过这里 γ 只在模 m 的意义下唯一。

定理 4.6

设 a 是整数使得 (a,m)=1, g 是模 m 的一个原根。则存在 γ' 满足 $0 \le \gamma' < c$,是一个 a 的以 g 为底的模 m 的指标。

此外,整数 γ 是 g 为底的 a 的模 m 的指标,当且仅当它满足

$$\gamma \equiv \gamma' \pmod{c}, \quad \gamma \geq 0$$

此 γ' 记作 ind aa或 (ind a)

定理 4.7

设 g 是模 m 的一个原根, γ 是一个非负整数。则以 g 为底,对模 m 有同一指标的 γ 的一切指标构成模 m 的一个与模互素的剩余类。

定理 4.8

设 a_1, \dots, a_n 是与 m 互素的 n 个整数,则

ind
$$(a_1 a_2 \cdots a_n) \equiv \text{ind } a_1 + \text{ind } a_2 + \cdots + \text{ind } a_n \pmod{c}$$