Data y, y2 ... yn X_1 X_2 \dots X_n assumed model for i in 1... N :normal $y_i \sim \mathcal{N}(y_i, \sigma^2)$ linear Model $M_i = \beta_0 + \beta_1 \times i$ unknowns: 30, B,, 52 Dayesian classical Interevo

data model unknowns Bryes's theorem Plunkowns daka, model posterior $\widehat{\beta}_{o}$ $\widehat{\beta}_{i}$ $\widehat{\delta}_{o}$ $\widehat{\beta}_{o}$ $\widehat{\beta}_{o}$

[P(data | F-, F, & model) p(F, B, or | model)

$$x \in \{0,1\}$$
 $y \in \{0,2\}$

Joint prob

 $p(x=0,y=0)$
 $p(x=1,y=1)$

$$P(x=0, y=1)$$
= $P(x=0|y=1)P(y=1)$
= $P(y=1|x=0)P(x=0)$
= $P(y=1|x=0)P(x=0) = P(x=0|y=1)P(y=1)$

$$P(y=1|x=0) = P(x=0|y=1)P(y=1)$$

$$P(y=1|x=0) = P(x=0|y=1)P(y=1)$$

 y_1 y_2 \dots y_n n=250Probof Heads y; E {H, T} FOR 1 in 1 ... M Ji ~ Bernoulli (8 Baroalli

y, yz. --. yn Likelihood: P(yi.... yn (a) = T $p(y_i|g)$ P(D) 0=0.4)
P(D) 0=0.6)

 $\mathcal{P}(\Theta|D) = \mathcal{P}(D|\Theta)\mathcal{P}(\Theta)$ 5 p(D/0)p(6) marginal

 $P(\theta|D) \sim P(D|\theta) \times P(\theta)$

1-0 95 HPD

proposed model nference evaluation Fitted model

posteriar Interval 95%

· Yn 41 42 U; ~ Student (U; , or) for i in l... $y: \sim N(\mu; \sigma^2)$ $Mi = \beta_0 + \beta_1 x_i$

Rhat 7,10 Mummm 2 2 m 2 m 3

weight cm

* Change settings * change priors * variants of linear models * Medd comparison logistic * generalized linear Posson/neglan/zoroinglated * multilevel model

For i in 1.... $y_i \sim t(v, M_i, \sigma)$ $M_i = \beta \sigma + \sum_{k=1}^{N} \beta_k \times_{ki}$

< COM testing Fit Madel Kraining

Alkaiko Information complexity bias

A Let date

Criterian

Dias

Wiana ~ - 2 log elph

 \(\)
 \(\)
 \(\) WALC LooiC 2 elpld Waranbe Akaile Witely applicable

 M_{\circ} P(Mo) P(Mo) P(Mo) P(D/Ms)P(Ms) + P(D/M)P(M) $\frac{P(M_{\delta}|D)}{P(M_{\delta})} = \frac{P(D|M_{\delta})}{P(M_{\delta})} \times \frac{P(M_{\delta})}{P(M_{\delta})}$ 7 (M, 1D)

pria productive donsily P(D/Mo) P(D) O, Ma) P(D) Ms) Marginal litelihad

 $\Delta 1C = \left(-2 \log \text{elpd}_1\right) - \left(-2 \log \text{elpd}_1\right)$ $= -2 \log \left(\frac{P(D|m)}{P(D|M2)}\right)$

60

log JF P(P|Mq P(D | M8) $P\left(D|M^{q}\right)$ P(D/M8)

 $\Delta 1C = (-2 LLR) - (-2 LLR)$ -2 (LLR₂)
-2 (9 (L₁)
-2 (9 (L₂) 0 Xn mle for o for y mlermle for o

DIMS Stan Compiling Samples

$$P(\theta|D) = P(D|\theta)P(\theta)$$

$$\int P(D|\theta)P(\theta)$$

$$\tilde{\theta}_{0} = P(D|\theta)P(\theta)$$

$$P(\tilde{\theta}_{1}|D) = P(D|\tilde{\theta}_{0}|P(\theta))$$

topical

 $P(x=0) = \int P(x=0|y|) P(y) dy$