Generative Spoken Language Modeling from Raw Audio

Коган Александра Данг Нина Степанов Никита Станкевич Матвей

О чем статья?

- Generative Spoken Language Modeling задача обучения акустике и лингвистике только из аудио, без использования текстов или лейблов
- Метрики для оценки сгенерированного аудио и представлений на уровнях акустики и лингвистики.

(Не)много бэкграунда

Для тех, кто не ходил на курс Глубинное обучение в звуке

Automatic Speech Recognition (ASR)

Распознавание речи

Подробней можно прочитать в <u>Лекции по ASR</u>

WER

CER

Word Error Rate

Character Error Rate

How to compute?

The same, but on character level

Edit path from reference to prediction

- S substitution count \bigcirc
- D deletions count \bullet
- I insertions count \bigcirc
- *C* correct count
- N-S+D+C Total word count in reference

$$\mathit{WER} = \frac{S+D+I}{N} = \frac{S+D+I}{S+D+C}$$

Language Models (LM) для ASR

Проблемы в ASR:

Написание слова зависит от контекста

Подсказки:

- Неразмеченные тексты получить легко
- ASR выдает тексты

LM - модель, подсчитывающая вероятность текста

P(let's go two a movie) = 0.01

P(let's go to a movie) = 0.6

P(let's go too a movie) = 0.02

Подробнее про LM можно почитать в <u>Лекции</u>

Text-to-Speech (TTS)

Синтез речи

Метрика

Важные аспекты:

- Сходство с настоящим аудио
- Общее впечатление
- Усилие для прослушивания
- Разборчивость
- Натуральность
- Приятность
- Интонация, паузы
- Эмоциональность

Mean Opinion Score (MOS)

- Люди оценивают аудио от 1 до 5
- Оценки усредняются

MOS	Quality	Impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

Разделение TTS модели

Про spectrogram можно почитать в <u>Лекции</u>

Микс из ASR, LM и TTS

Обозначу:

S2t – Speech to text

t2S – text to Speech

Возвращаемся к статье

Обозначили:

S2u - Speech to unit

uLM - unit-based language model

u2S – unit to speech

Архитектура S2u

3 state-of-the-art unsupervised энкодера «из коробки»:

(с теми же гиперпараметрами)

- **CPC** (Contrastive Predictive Coding)
- wav2vec 2.0 LARGE
- **HuBERT** BASE 12

+ LogMel (туториал по Filter banks)

Квантизация: k-means

Архитектура uLM

Трансформер (transformer_lm_big из fairseq)

Гиперпараметры:

$$N = 12$$

$$h = 16$$

$$d_{\text{model}} = 1024$$

$$d_{\rm ff}\!=4096$$

$$P_{drop} = 0.1$$

<u>Предварительные эксперименты:</u> удаление unit-повторов улучшает качество <u>В работе:</u> повторы удаляются

Архитектура u2S

Адаптация модели **Tacotron-2** (создание spectrogram). Берет на вход unit (псевдо-текст)

Модификации:

- Добавление специального токена «end-of-input» (EOI)
- Обучение модели с использованием chunk-ов

Pre-trained WaveGlow (создание wav)

Предложенные метрики

Автоматические:

- ASR метрики для оценивания аудио
- Zero-shot probe метрики для оценивания представлений

«Ручками»:

• Human evaluation метрики - для оценивания аудио

ASR метрики

Задача 1 Воспроизводство (resynthesis) речи:

Акустика

 $S2u \rightarrow u2S$

Нужно измерять разборчивость (intelligibility)

Пх'нглуи мглв'нафх Ктулху Р'льех вгах'нагл фхтагн Задача 2

Генерация

(generation) речи:

Лингвистика

 $S2u \rightarrow uLM \rightarrow u2S$

Нужно измерять осмысленность (meaningfulness)

Где кончается безумие и начинается реальность?

(1) ASR-PER (resynthesis intelligibility)

Идея:

- Берем state-of-the-art pretrained ASR модель без LM
- Считаем PER (Phone Error Rate это как CER, только для фонем)

Идея предварительных экспериментов*:

- Берем state-of-the-art pretrained ASR модель с LM
- Считаем WER, CER

^{*}Результаты двух идей схожи, поэтому результаты первых экспериментов опускаются

Идея аналогична: оцениваем текст, распознанный ASR моделью

При оценивании генерации текста обычно оценивают:

- Качество (quality). Например, mean perplexity или negative log likelihood после LM)
- Разнообразие (diversity) Например, self-BLEU

Обычно: trade-off между этими показателями (при изменении гиперпараметра температуры Т при сэмплировании из LM)

Проблема: При маленькой T self-BLEU не увеличивается, но модель повторяет слова в предложении

Решение:

• Новая метрика auto-BLEU, которая измеряет разнообразие внутри предложения:

$$u$$
 -utterance,
$$s \in NG_k(u) - k - grams \ with \ u$$
 auto-BLEU $(u, k) = \frac{\sum_s \mathbb{1} \left[s \in (NG_k(u) \setminus s) \right]}{|NG_k(n)|}$ (1)

• Новая метрика $VERT = \sqrt{auto - BLEU \times self - BLEU}$

Проблема: «критическая» Т, при которой выход нормальный сильно зависит от модели

Решение: использовать Perplexity(PPX) и VERT для oracle текста в качестве границ и считать AUC между ними

Comparison of **diversity** and **perplexity** of the generated speech. We plot VERT vs. Median perplexity. The blue diamond corresponds to the oracle reference point. It defines two cut-offs on the curve: VERT @oracle-PPX and PPX @oracle-VERT. The green area corresponds to the AUC metric.

Алгоритм:

- Находим PPX, VERT для oracle текста (o-PPX, o-VERT)
- Находим T_{o-PPX} температуру, когда PPX сгенерированного текста = o-PPX
- Находим T_{o-VERT} температуру, когда VERT сгенерированного текста = o-VERT
- Считаем AUC-PPX-VERT между T_{o-PPX} и T_{o-VERT}

 $AUC \downarrow \Rightarrow$ ближе к oracle \Rightarrow лучше

Zero-shot probe метрики

Цель – оценить качество представлений в пайплайне (S2u → uLM) на уровнях:

- 1. Акустики,
- 2. Лингвистики

Метрики zero-shot, так как не требуют обучения никакого классификатора

(1) Zero-shot probe метрики для акустики

ABX score:

$$A, B$$
 — категории $a, x \in A; b \in B$ $ABX = P(x ближе к a , чем к b)$

ABX-within Категории — 3-звучия, которые отличаются только центральной фонемой. Например, bit-bet-bat

ABX-across Категории – разные говорящие

+bitrate
$$B(U) = n \sum_{i=1}^{n} \frac{p(s_i) \log_2 p(s_i)}{D}$$
 $U = [s_1, s_2, ..., s_n], \quad D - len in seconds$

(2) Zero-shot probe метрики для лингвистики

spot-the-word accuracy – доля правильно выделенных слов из пары «настоящее» - «ненастоящее» utterance (транскрипции).

Например, 'brick' и 'blick'

Вычисление: считается вероятность utterances после uLM

Human evaluation метрики

Аналогично ASR-метрикам, оценивается аудио на уровнях:

- 1. Акустики (разборчивость)
- 2. Лингвистики (осмысленность)

(1) Human evaluation метрики

Оценка разборчивости:

- **i. MOS** насколько разборчиво? (От 1 до 5 с шагом 1)
- **ii. CER** считается на транскрипциях \Rightarrow более объективный тест на разборчивость

(2) Human evaluation метрики

Оценка осмысленности:

meaningfulness-MOS (MMOS) — насколько естественно (грамматика и смысл)? (От 1 до 5 с шагом 1)

Выбор Т:

<u>Предварительные эксперименты</u>: люди любят маленькую Т (меньше diversity, больше quality)

<u>В работе:</u> взяли короткие фразы из датасета Librespeech, прогнали с разными Т, выбрали ту Т, которая дает лучший BLEU-2 после ASR

Все метрики вместе

		Акустика	Лингвистика
Аудио	ASR метрики	ASR-PER	AUC (PPX-VERT)
	Human evaluation	MOS, CER на	MMOS
	метрики	транскрипциях	
Представле	Zero-shot probe	ABX-within, ABX-	spot-the-word
ния	метрики	across, bitrate	accuracy
(units)			

Результаты

Графики метрик в зависимости от bitrate При разном количестве unit (50, 100, 200) Чем меньше метрики, тем лучше. Даны -MOS и -MMOS

Результаты - Аудио - Акустика

Systems		-	End-to	end AS	R-based	metrics		Human (Opinion	-
S2u	Nb	Bit-	PER↓	PER↓	CER↓	CER↓	MOS↑	MOS↑	CER↓	CER↓
architect.	units	rate	(LJ)	(LS)	(LJ)	(LS)	(LJ)	(LS)	(LJ)	(LS)
Toplines										
original wav			-	-	-	-	4.83	4.30	8.88	6.73
orig text+TTS			7.78	7.92	8.87	5.14	4.02	4.03	13.25	10.73
ASR + TTS	27		9.45	8.18	9.48	5.30	4.04	4.06	15.98	11.56
Baselines										
LogMel	50	214.8	27.72	49.38	27.73	52.05	2.41	2.07	43.78	66.75
LogMel	100	292.7	25.83	45.58	24.88	48.71	2.65	2.01	37.39	62.72
LogMel	200	373.8	19.78	45.16	17.86	46.12	2.96	2.16	23.33	62.6
Unsupervised										
CPC	50	159.4	10.87	17.16	10.68	12.06	3.63	3.51	13.97	19.92
CPC	100	213.1	10.75	15.82	9.84	9.46	3.42	3.68	13.53	14.73
CPC	200	279.4	8.74	14.23	9.20	8.29	3.85	3.54	9.36	14.33
HuBERT-L6	50	125.7	11.45	16.68	11.02	11.85	3.69	3.49	14.54	13.14
HuBERT-L6	100	168.1	9.53	13.24	9.31	7.19	3.84	3.68	13.02	11.43
HuBERT-L6	200	211.3	8.87	11.06	8.88	5.35	4.00	3.85	11.67	10.84
wav2vec-L14	50	141.3	24.95	33.69	25.42	32.91	2.45	2.87	46.82	54.9
wav2vec-L14	100	182.1	14.58	22.07	13.72	17.22	3.50	3.32	23.76	28.1
wav2vec-L14	200	226.8	10.65	16.34	10.21	10.50	3.83	3.51	13.14	15.27

Результаты - Аудио - Лингвистика

Systems		-	Ger	Human Opinion					
Encoder	Nb	unconditional			prompt			uncond.	prompt
architect.	units	PPX↓	VERT↓	AUC↓	PPX↓	VERT↓	AUC↓	MMOS↑	MMOS↑
Controls		, , , , , , , , , , , , , , , , , , ,	·	· · · · · · · · · · · · · · · · · · ·		·	•		
oracle text		154.5	19.43	_	154.5	19.43	_	4.02	4.26
ASR + LM		178.4	21.31	0.18	162.8	20.49	0.04	3.91	4.38
Baseline									
LogMel	50	1588.97	-	1083.76	-	_	_	_	-
LogMel	100	1500.11	95.50	510.26	-	-	-	_	-
LogMel	200	1539.00	-	584.16	-	-	-	_	-
Unsupervised									
CPC	50	374.26	46.26	19.68	323.9	39.92	18.44	3.31	3.61
CPC	100	349.56	41.797	15.74	294.7	42.93	14.06	3.65	3.65
CPC	200	362.84	40.28	16.46	303.5	43.42	26.67	3.58	3.67
HuBERT-L6	50	376.33	43.06	19.27	339.8	45.85	21.03	3.53	3.00
HuBERT-L6	100	273.86	31.36	5.54	251.2	33.67	5.88	3.95	3.53
HuBERT-L6	200	289.36	33.04	7.49	262.4	34.30	6.13	4.01	4.32
wav2vec-L14	50	936.97	-	307.91	1106.3	-	330.8	2.26	1.91
wav2vec-L14	100	948.96	79.51	208.38	775.1	-	205.7	2.28	1.92
wav2vec-L14	200	538.56	61.06	61.48	585.8	-	91.07	2.64	3.04

Результаты - Представления

]	S2	2u	uLM		
	Nb	ABX	ABX	spot-the-	accept.
System	units	with.↓	acr.↓	word↓	judg.↓
Toplines					
ASR+LM		-	-	3.12	29.02
Baselines					
LogMel	50	23.95	35.86	48.52	46.78
LogMel	100	24.33	37.86	48.12	46.83
LogMel	200	25.71	39.65	49.62	47.76
Unsupervis	sed				
CPC	50	5.50	7.20	32.18	45.43
CPC	100	5.09	6.55	31.72	44.35
CPC	200	5.18	6.83	37.40	45.19
HuBERT-L	.6 50	7.37	8.61	32.88	44.06
HuBERT-L	.6 100	6.00	7.41	31.30	42.94
HuBERT-L	.6 200	5.99	7.31	36.52	47.03
wav2vec-L	14 50	22.30	24.56	51.92	45.75
wav2vec-L	14 100	18.16	20.44	50.24	45.97
wav2vec-L	14 200	16.59	18.69	44.68	45.70

Заключение

- Новая задача: Generative Spoken Language Modeling
- Метрики для данной задачи (ASR-based, Zero-shot probe, Human evaluation), которые измеряют качество представлений и аудио на уровнях акустики и лингвистики
- Вывод о корреляции автоматических и «ручных» метрик
- Хорошие результаты генерации (действительно возможно использовать только аудио)