Stop-and-Wait ARQ (cont.)

http://www.net-seal.net/animations.php?aid=37

(Premature Timeout)

- Delayed Acknowledgment · ACKs can be delayed due to problems with links or network congestion
- time-out expires early, sender resends frame
- when delayed ACK arrives, sender assumes that given ACK is for the last frame sent
- ACKs must be numbered to prevent gaps in delivered packet sequence

How large should the packet / ACK sequence be? Only 1-bit long!!!

Lost Acknowledgment

- frame received correctly, but ACK undergoes errors / loss
- after time-out period, sender resends frame
- receiver receives the same frame twice
- frames must be numbered so that receiver can recognize and discard duplicate frames
- sequence # are included in packet header

without packet numbering

with packet numbering

Stop-and-Wait ARQ

Stop-and-Wait ARQ - simplest flow and error control mechanism

- sender sends an information frame to receiver
- sender, then, stops and waits for an ACK
- if no ACK arrives within time-out, sender will resend the frame, and again stop and wait
- time-out period > roundtrip time
- abnormalities (and how to fix them)
- lost acknowledgment
- delayed acknowledgment

(1) Stop-and-Wait ARQ

Error and Flow Control

Flow Control – set of procedures used to restrict the amount of data that sender can send while waiting for acknowledgment

two main strategies

(1) Stop-and-Wait: sender waits until it receives ACK before sending next frame

(2) Sliding Window: sender can send W frames before waiting for ACKs

(1) Stop-and-Wait ARQ(2) Go-Back-N ARQ **Error + Flow Control Techniques**

(3) Selective Repeat ARQ

Error Detection + ARQ (error detection with retransmissions) must be combined with methods that intelligently limit the number of 'outstanding' (unACKed) frames. Fewer unACKed frames ⇒ fewer packets buffered at sender and receiver.

Error Control (cont.)

Challenges of ARQ-based Error Control

- Challenges of . send one frame at the time, wait for ACK
- easy to implement, but inefficient in terms of channel usage

send multiple frames at once

 better channel usage, but more complex to implement sender must keep (all) sent but unACKed frame(s) in a buffer, as such frame(s) may have to be retransmitted

How many frames should be sent at any point in time?

How should frames be released from the sending buffer?

Error Control

(2) Error Detection + Automatic Retrans. Req. (ARQ) Error Control (1) Forward Error Correction (FEC) **Approaches**

- not enough redundant info to enable error correction
- case (a) receiver detects no errors
- an ACK packet is sent back to sender
- case (b) <u>receiver detects errors</u>
- no ACK sent back to sender
- sender retransmits frame after a 'time-out'

Error and Flow Control

Required reading: Garcia 5.2 CSE 3213, Fall 2010 Instructor: N. Vlajic