

Quantum Cryptography

LWE- Learning With Errors

COMP3601 21T3

Cryptography vs. Quantum Computers

 Cryptography uses complex/ hard to reverse calculations to encrypt/ make data secure

ECC- Elliptic Curve Cryptography

Data Encryption – WiFi Network Configuration (2.4 GHz) Wireless Network: Enabled Disabled Network Name (SSID): HOME-D12F Mode: 802.11 b/g/n ▼ WPA2-PSK (AES) Security Mode: Open (risky) WEP 64 (risky) Channel Selection: WEP 128 (risky) WPA-PSK (TKIP) Channel: WPA-PSK (AES) WPA2-PSK (TKIP) **Network Password:** WPAWPA2-PSK (TKIP/AES) (recor AES- Advanced Encryption Standard

- Quantum computers can process calculations simultaneously or differently than how current computers calculate
- So where do they meet

Symmetric Key

Cryptography

Asymmetric Key

One example: break AES

• Brute force 128-bit key = 2^{128} = 3.4028 x 10^{38}

- If you assume there are 8 billion people on Earth
- Each person has 10 devices (computers, mobile phones, gaming consoles, smart watches, ...)
- Each device can test 1 billion keys per second
- After trying 50% of possibilities, we will find the correct key
- Whole world can crack a single 128-bit in 67.439 billion years
- Age of the Earth = 4.543 billion years
- Age of the universe = 13.77 billion years

Quantum computers may crack AES-128 in 6 months

Break RSA - 1024

- RSA depends on prime numbers [<u>link</u>]
- Brute force RSA 1024 needs 1.88×10³⁰² calculations copied from [link]
- AES-128 brute force = 3.4028×10^{38}

HTTPS- gmail.com

Quantum computers can crack RSA 1024 in 3.58 hours ¹

RSA 2048 in 28.6 hours ¹

Quantum computers can crack ECC 256 in 10.5 hours ¹

¹ https://www.nap.edu/read/25196/chapter/6#98

Current Cryptographic Algorithms vs. Quantum Computers

Symmetric Key Cryptography

Considered as Quantum Secure – large key sizes

Grover's algorithm showed the brute force attack time to its square root. AES-128 the attack time becomes reduced to 2⁶⁴ (not highly secure)

Asymmetric Key Cryptography

Can be broken quickly using a Quantum Computer

Quantum Secure Algorithms — Postquantum cryptography

National Institute of Standards and Technology U.S. Department of Commerce

- National Institute of Standard and Testing (NIST) started finding quantum secure algorithms
- https://csrc.nist.gov/projects/post-quantum-cryptography
- Started in 2016
- Currently in round 3
- Expected to publish draft standards in 2023–2025

Image: NIST 7

LWE- Learning with Errors

- Proposed in 2005 by Regev [link]
- Considered as quantum secure
- New implementations/ proposals
- We often project LWE as a Lattice Problem [<u>link</u>]
- We will use a simple implementation for your project

Example – given blue matrices, can you deduce red matrix (column vector)?

Example -

Gaussian
Elimination

Example – add errors

This brings us Search LWE problem: Given blue matrices find red matrix

Noise/ Error

e=
$$Z_{19}^{4X1}$$

B= Z_{19}^{4X1}

1

0

1

12

16

Considered as Quantum safe/ hard

Known algorithms require 2^{O(n)} time

LWE Search Problem

- Pick a vector $A \in \mathbb{Z}_q^n$ from the uniform distribution over $A \in \mathbb{Z}_q^n$, q is poly(n) we choose a prime number
- Pick e from the distribution ϕ We assume distribution ϕ is Gaussian, mean = 0 $\sqrt{n} \leq \text{Std. deviation} \ll q$, 'rate'- $\alpha \in \mathbb{R}$ (only cover alpha fraction of \mathbb{Z}_q^n)
- Evaluate B = $\langle A, S \rangle / q + e$,
- Output pairs (A_i, B_i); i=1,...,n

LWE Search problem: Find $S \in \mathbb{Z}_q^n$, given many (A_i, B_i) $B \approx \langle A, S \rangle$

LWE Decision Problem

• Given a set of (A, B) parameters/ pairs, can you guess uniform random pairs over \mathbf{Z}_q vs. pairs generated by $\mathbf{B} = \langle A, S \rangle / \mathbf{q} + \mathbf{e}$?

LWE Public Cryptography

- How to use LWE problem to implement a simple public key crypto algorithm
- 3 Components
 - Key generation
 - Encryption
 - Decryption
- Used to encrypt 1-bit(1,0), for L-bits repeat encryption L times
- There may be errors in decryption[one of the tasks you evaluate]

Key Generation

Public Key

Bob generates public keys (A, B) and sends to Alice

• S is only known by Bob (private key)

• q is assumed to be known by Alice and Bob

Encryption/ Encode

- Alice generates the message (let's say one bit) M={0,1}
- Generates u and v

$$u = (\sum A_{\text{sample}}) \mod q$$

$$v = \left(\sum B_{\text{sample}} - M.\frac{q}{2}\right) \mod q$$

If S is a scalar
u is a scalar
If S is a column vector
u is a row vector

Encrypted/ encoded values are (u, v)

Decryption/ Decode

- Bob receives u and v
- Bob calculates D, $D = (v u.s) \mod q$

If **D** is less than **q/2**, the **message (M)** is **0**. If **D** is greater than **q/2**, the **message(M)** is **1**.

If **D** is between -q/4 and q/4, the message (M) is 0. else the message(M) is 1.

• Lets assume n=12, m=4, q=23, S={4 7 5 5}

	A	\			S						е		В	
18	4	16	20		4		280		4		-1		3	
8	11	12	12		7		229		22		2		1	
1	11	17	9		5		211		4		0		4	
13	22	22	12		5		376		8		0		8	
20	19	22	16				403		12		-2		10	
4	22	12	0	X		=	230	mod q	0	+	2	=	2	
9	15	22	18				341		19		0		19	
17	9	2	3				156		18		2		20	
0	21	1	11				207		0		1		1	
21	11	7	5				221		14		-1		13	
17	5	13	8				208		1		2		3	
12	9	12	15				246		16		1		17	

		В		
4	16	20		3
11	12	12		1
11	17	9		4
22	22	12		8
19	22	16		10
22	12	0		2
15	22	18		19
9	2	3		20
21	1	11		1
11	7	5		13
5	13	8		3
9	3	15		17
	4 11 11 22 19 22 15 9 21 11 5	11 12 11 17 22 22 19 22 15 22 9 2 21 1 11 7 5 13	4 16 20 11 12 12 11 17 9 22 12 12 19 22 16 22 12 0 15 22 18 9 2 3 21 1 11 11 7 5 5 13 8	4 16 20 11 12 12 11 17 9 22 22 12 19 22 16 22 12 0 15 22 18 9 2 3 21 1 11 11 7 5 5 13 8

- Lets assume n=12, m=4, q=23
- M = 1

= 22

• A, B and q known

• Lets assume n=12, q=23, s={4 7 5 5}

• M=?

```
Bob receives (u,v) u = [8 \ 4 \ 0 \ 8] v = 22
```

```
D = (v - u.s) \mod q

= (22 - [8 4 0 8] * {}^{4}) \mod 23

5

(-n) mod k = k - (n \mod k)

= (22 - 100) \mod 23

= -78 \mod 23 = 23 - (78 \mod 23)

= 14
```

D is greater than q/2, the message (M) is 1

$$v = \sum B_{sample} - M.\frac{q}{2}$$

= $(1 + 10 + 19 + 3) - 0x11.5$
= $(33) - 0x11.0$
= 33 mod 23
= 10 Assume M=0

D is less than q/2, the message (M) is 0

When there is no error (e=0)

18	4	16	20		4		280		4
8	11	12	12		7		229		22
1	11	17	9		5		211		4
13	22	22	12		5		376		8
20	19	22	16	V		_	403	a al a:	12
4	22	12	0	X		=	230	mod q	0
9	15	22	18				341		19
17	9	2	3				156		18
0	21	1	11				207		0
21	11	7	5				221		14
17	5	13	8				208		1
12	9	12	15				246		16

	В			
18	4	16	20	4
8	11	12	12	22
1	11	17	9	4
13	22	22	12	8
20	19	22	16	12
4	22	12	0	0
9	15	22	18	19
17	9	2	3	18
0	21	1	11	0
21	11	7	5	14
17	5	13	8	1
12	9	3	15	16

- Lets assume n=12, m=4, q=23
- M = 1


```
 u = (\sum A_{sample}) \mod q 
 = [8 \ 11 \ 12 \ 12] + [20 \ 19 \ 22 \ 16] + [9 \ 15 \ 22 \ 18] 
 + [17 \ 5 \ 13 \ 8] 
 = [54 \ 50 \ 69 \ 54] \mod 23 
 = [8 \ 4 \ 0 \ 8] 
 u = [8 \ 4 \ 0 \ 8]
```

If there is no error, D is either q/2 or 0;

u = [8408]В $v = (\sum B_{\text{sample}} - M.\frac{q}{2}) \mod q$ $v = (\sum B_{\text{sample}} - M.\frac{q}{2}) \mod q$ 22 $= (22 + 12 + 19 + 1) - 1 \times 11.5$ = (22 + 12 + 19 + 1) - 0x11.54 = (54) - 0x11.0= (54) - 1x11.0 $= 54 \mod 23$ $= 43 \mod 23$ v = 8v = 2012 0 $D = (v - u.s) \mod q$ $D = (v - u.s) \mod q$ $= (20 - [8408] * \frac{4}{7}) \mod 23$ $= (8 - [8408] * \frac{4}{7}) \mod 23$ 19 18 $= (20 - 100) \mod 23$ $= (8 - 100) \mod 23$ 14 = 12 = 01 D is q/2**D** is 0

(difference due to rounding)

16

Extra – Ring LWE & Homomorphic Computing

Crypto systems often use Ring LWE

Why? inefficient!!!

You need to store A which consumes significant memory

and matrix multiplications

m=2048, n=64, q = 65099

 $Size_A = 2048x 64 \times 16bit = 256KB$

What if we use a Polynomial X

• Multiplication in a polynomial ring, $Z_{\alpha}[X]/(X^{n}+1)$

- We only need to send X,
 can use FFT to speed up
- LWE 200-400KB public key
 Ring LWE 1-2KB public key

Public Key

Extra – Ring LWE & Homomorphic Computing

- Can we perform operations on encrypted data?
- Typically, $ENC(X_1) + ENC(X_2) \neq ENC(X_1+X_2)$
- What is the advantage?
- Homographic computing involves performing operations (+,-,x,/,...) on encrypted data
- Not easy as you may think, ENC makes data nonlinear, applies avalanche effects.
- We can expand LWE problem into homomorphic computing
- Fun to explore LWE problems → Final year thesis

