Метод параллельного выполнения запросов к системе управления базами данных PostgreSQL в пределах одного соединения

Студент: Платонова Ольга Сергеевна

Группа: ИУ7-85Б

Руководитель: Филиппов Михаил Владимирович,

к.т.н., доцент кафедры ИУ-7

Консультант: Гаврилова Юлия Михайловна

Цель и задачи работы

Цель — разработать метод параллельного выполнения запросов к СУБД PostgreSQL в пределах одного соединения.

Задачи:

- Выполнить анализ предметной области и существующих методов выполнения запросов в MPP системах.
- Разработать метод параллельного выполнения запросов к СУБД PostgreSQL в пределах одного соединения.
- Реализовать разработанный метод.
- Выполнить исследование временной эффективности метода и его затрат памяти путем сравнения со стандартными методами обработки запросов.

Введение в предметную область

Доступ к БД объемом 100.000 записей:

- многопоточная программа примерно в 1000 раз работает быстрее;
- однопоточная программа показывает нестабильную работу на больших данных.

Операция подключения — одна из самых дорогостоящих (процесс подключения к БД занимает от 2 до 3 МБ).

Анализ предметной области

PostgreSQL (14.2):

- доступность исходного кода;
- кроссплатформенность.

«Два потока не должны пытаться одновременно работать с одним объектом PGconn.

В частности, не допускается параллельное выполнение команд из разных потоков через один объект соединения»

Рейтинг	СУБД	Модель БД
1.	Oracle	Реляционная
2.	MySQL	Реляционная
3.	Microsoft SQL Server	Реляционная
4.	PostgreSQL	Реляционная
5.	MongoDB	Документная
6.	Redis	«Ключ-значение»
7.	IBM Db2	Реляционная
8.	Elasticsearch	Поисковая система
9.	Microsoft Access	Реляционная
10.	SQLite	Реляционная

Apхитектура PostgreSQL

Выделяют 3 основные подсистемы:

- клиентская часть
- серверная часть
- хранилище данных

Анализ существующих решений. Пул соединений

Повышение производительности, когда стоимость и скорость инициализации экземпляра высоки, а количество одновременно используемых объектов в любой момент времени является низким.

B PostgreSQL отсутствует встроенный пул соединений, однако допускается использование внешнего.

- Пул на основе libpq
- Пул в качестве внешней службы

Сравнительный анализ пулов соединений

Вид пула Критерий	Пул на основе libpq	Пул в качестве внешней службы	Встроенный пул
Максимальный размер пула по умолчанию	100	100	32767
Доступность	Да	Да	Коммерческая версия
Необходимость поддержки отдельного пула для каждой БД	Да	Да	Да
Затраты на разработку	Да	Нет	Нет

Распараллеливание запроса

Распараллеливание — возможность построения таких планов запросов, которые будут задействовать несколько ядер.

Выбор плана:

- рассмотрение всевозможных вариантов для получения одного и того же результата;
- оценка каждого варианта для выбора самого дешевого.

Недостатки метода:

- применим к малому числу запросов;
- может быть снижена производительность.

Функциональная модель разрабатываемого программного комплекса

Этап отправки запроса серверу БД

Этап получения результата от сервера БД

Внешний модуль

Внешний модуль, используя интерфейс командной строки, предоставляет пользователю возможность выбора запускаемой реализации.

Внешний пул был разработан с использованием умных указателей для предотвращения возможной утечки ресурсов.

Сам пул был реализован в качестве очереди соединений: в конец добавлялись свободные соединения, работа с которыми была завершена.

Зависимость времени работы различных реализаций от количества соединений к БД

Сравнение времени выполнения простого запроса для 4 реализаций:

- 1. последовательная;
- 2. параллельная;
- 3. реализация с использованием внешнего пула соединений;
- 4. реализация с использованием разработанного метода.

Простой запрос – один SQL-оператор.

Сравнение времени работы реализованного метода с пулами соединений в зависимости от количества соединений

Сравнение времени работы пула, использующего библиотеку libpq и пула, реализованного в качестве внешней службы (PGBouncer), с разработанным методом.

Анализ памяти

Сравнение затрат памяти для каждой реализации в случае создания 10 соединений и выполнения простого запроса.

Реализация	Число раз выделения памяти	Суммарный объем используемой памяти
Однопоточная	729	588,870 байт
Многопоточная	812	593,508 байт
Внешний пул	831	586,212 байт
Разработанный метод	182	180,794 байт

Заключение

Цель достигнута: разработан метод параллельного выполнения запросов к СУБД PostgreSQL в пределах одного соединения.

Поставленные задачи решены:

- Выполнен анализ предметной области и существующих методов выполнения запросов в МРР системах.
- Разработан метод параллельного выполнения запросов к СУБД PostgreSQL в пределах одного соединения.
- Реализован разработанный метод.
- Выполнено исследование временной эффективности метода и его затрат памяти путем сравнения со стандартными методами обработки запросов.

Дальнейшее развитие

- Реализация пользовательского вывода информации об ошибки в случае конкатенации нескольких запросов в одну команду.
- Рассмотрение корректного завершения потоков в случае потери соединения с базой данных.