

第4章 大样本0LS

陈怡心

中央财经大学中国财政发展协同创新中心

为何需要大样本理论?

- "大样本理论" (large sample theory), 也称 "渐近理论" (asymptotic theory), 研究当样本容量n趋向无穷大时统计量的性质。
- ●大样本理论已成为当代计量经济学的主流方法,原因如下:
- (1) 小样本理论的假设过强。

首先,小样本理论的严格外生性假设要求解释变量与所有的扰动项均正交 (不相关)。

在时间序列模型中,这意味着解释变量与扰动项的过去、现在与未来值全部正交。

• **例** 考虑以下一阶自回归模型(first order autoregression, 简记 AR(1)):

$$y_t = \rho y_{t-1} + \varepsilon_t \ (t = 2, \dots, T)$$

- •解释变量 y_{t-1} 为被解释变量 y_t 的一阶滞后;且 $Cov(y_{t-1}, \varepsilon_t) = 0$ 。
- 严格外生性要求,解释变量 y_{t-1} 与所有 $\{\varepsilon_2, \dots, \varepsilon_T\}$ 均不相关。
- 这意味着, y_t 也不与 ε_t 相关。但是 ε_t 是 y_t 的一部分,故二者一定相关,因为

$$Cov(y_t, \varepsilon_t) = Cov[(\rho y_{t-1} + \varepsilon_t), \varepsilon_t] = \rho \underbrace{Cov(y_{t-1}, \varepsilon_t)}_{=0} + Var(\varepsilon_t) = Var(\varepsilon_t) > 0$$

- 以被解释变量滞后值为解释变量的自回归模型,必然违背严格外生性的假定。
- ・大样本理论只要求解释变量与同期(同方程)的扰动项不相关。

- ·其次,小样本理论假定扰动项为正态分布,而大样本理论无此限制。
- 在很多情况下,并无把握经济变量是否服从正态分布。
- 比如,正态分布为对称分布,但许多经济变量的分布并不对称,例如工资收入。
- 即使考虑比较对称的工资对数,由于正态变量的取值范围为 $(-\infty, +\infty)$,而工资对数一般为正数(假设工资大于 1),也不相符。

- •工资的分布与正态分布相去甚远。
- •工资对数,在取值范围为 $(-\infty, +\infty)$ 上,也与正态分布不符。

- 被解释变量的分布可能为各种形状;有时即使取对数也不能使其接近正态分布。
- 教育年限的分布呈现"双峰"状,即多数人为中学或大学毕业。
- 这种双峰形状,即使取对数后,也难以改变。

- •无论教育年限还是其对数,都与"单峰"的正态分布相去甚远。
- 通过取对数使得变量的分布接近于正态并非万能。
- 对于小样本理论来说,为了进行统计推断(比如,推导t与F 统计量的分布),须假设扰动项服从正态分布(故被解释变量也为正态)。
- 由于现实中的被解释变量可能服从各种分布(比如,变量婚否为离散的两点分布),故基于正态假设的小样本理论的适用范围受到很大限制。

• (2) 在小样本理论的框架下,须研究统计量的精确分布(exact distribution),但常难以推导(即使在正态分布的假设之下)。

根据大样本理论,只要研究统计量的大样本分布,即当 $n \to \infty$ 时的渐近分布,相对容易推导(可使用大数定律与中心极限定理)。

• (3) 使用大样本理论的代价是要求样本容量较大,以便大数定律与中心极限定理可以起作用。

大样本理论对于样本容量的要求,一般认为至少n>30,最好在100以上。现代的数据集越来越大,经常成百上千。

在当代计量实践中,研究人员一般用大样本理论;小样本 OLS已很少使用。

关于显著的N个tips: 用大样本

• 一元线性回归下, t统计量简化为:

$$t = \frac{\widehat{\beta}}{SE(\widehat{\beta})} = \frac{\widehat{\beta}}{\sqrt{\widehat{\sigma}^2/nVar(x)}}$$

- 如果你的结果不显著,因为什么呢?
 - $-\hat{\beta}$ 太小或 $SE(\hat{\beta})$ 太大
- $\hat{\beta}$ 太小的潜在原因: 内生性 (得到的 $\hat{\beta}$ 有偏) / β 原本就很小
- $SE(\hat{\beta})$ 太大的潜在原因?
- 结果不显著,因为什么呢?
 - ਰ²很大 (扰动项方差很大)
 - x的方差Var(x)很小(例如只有几个大学生)
 - 样本量n很小

为什么样本大了好?

- (1) 大数定律
 - 样本不够大,发现不了规律。 \hat{eta} 点估计值本身就不靠谱。
 - · 样本小, standard error会大, 导致统计显著性不过关。
 - 个别outlier的干扰会变小→影响对ô的估计。
- (2) 有足够多的花样做异质性
- (3) 没有功劳, 也有苦劳

数大便是美

• 徐志摩《志摩日记二则》

数大便是美。

碧绿的山坡前几千只绵羊,挨成一片的雪绒,是美;

一天的繁星,千万只闪亮的神眼,从无极的蓝空中下窥大地,是美;

泰山顶上的云海,巨万的云峰在晨光里静定着,是美;

大海万顷的波浪, 戴著各式的白帽, 在日光里动荡着, 是美;

爱尔兰附近的那个羽毛岛上栖息着几千万的飞禽,夕阳西沉时只见一个羽化的大空,只是万鸟齐鸣的大声,是美......

数大便是美。

数大了似乎按照著一种自然规律,自然也会有一种特别的排列,一种特别的节奏,一种特殊的式样,激动我们审美的本能,激发我们审美的情绪。

- •一些同学用分省数据、时序数据。
- 如果你的研究问题有更细的数据,就不要用粗的数据。分省VS分市VS微观
- 我们的幸运
 - ・大国
 - 大数据时代

- 例外:Acemoglu, AER, The Colonial Origins of Comparative Development, 只有63个观测值!
 - 这很运气。稍微碰一下,显著性就没了。

随机收敛

• 1. 确定性序列的收敛

• **定义** 确定性序列 $\{a_n\}_{n=1}^{\infty} = \{a_1, a_2, a_3, \cdots\}$ **收敛** (converge) 于常数a, 记为 $\lim_{n\to\infty} a_n \to a$ 或 $a_n \to a$,如果对于任意小的正数 $\varepsilon > 0$,都存在N > 0,只要n > N,就有 $|a_n - a| < \varepsilon$,即在 a_N 以后的序列 $\{a_{N+1}, a_{N+2}, \cdots\}$ 均落入区间 $(a - \varepsilon, a + \varepsilon)$ 内

• **例** 假设 $a_n = 5 + \frac{1}{n}$, 则 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (5 + \frac{1}{n}) = 5 + \lim_{n \to \infty} \frac{1}{n} = 5 + 0 = 5$

• 2. 随机序列的收敛

- 考虑随机序列 $\{x_n\}_{n=1}^{\infty} = \{x_1, x_2, x_3, \dots\}$,即由随机变量构成的序列,其中每个元素 x_n 都是随机变量,下标n通常表示样本容量。
- 定义 随机序列 $\{x_n\}_{n=1}^{\infty}$ 依概率收敛(converge in probability)于常数 a,

记为plim
$$x_n = a$$
,或 $x_n \xrightarrow{p} a$,如果对于任意 $\varepsilon > 0$,当 $n \to \infty$ 时,都有 $\lim_{n \to \infty} P(|x_n - a| > \varepsilon) = 0$ 。

• 任意给定很小的正数 $\varepsilon > 0$,当n越来越大时,随机变量 x_n 落在区间 $(a - \varepsilon, a + \varepsilon)$ 之外的概率收敛于0。

- 当n变大时, x_n 远离常数a的可能性越来越小,变得几乎不可能。
- 由于已将随机事件($|x_n a| > \varepsilon$)取概率,故 $P(|x_n a| > \varepsilon)$ 其实是确定性序列(为概率的具体取值,已无不确定性),而 $\lim_{n\to\infty} P(|x_n a| > \varepsilon)$ 只是普通的微积分极限。

• **例** 假设 x_n 服从如下两点分布:

$$x_n = \begin{cases} 0 & 取值概率 1-(1/n) \\ n & 取值概率 1/n \end{cases}$$

- 随着 $n \to \infty$, x_n 的分布越来越集中于 0 , 取值为n的可能性越来越小。 故根据定义, $\lim_{n \to \infty} x_n = 0$ 。
- 利用随机变量依概率收敛于常数的概念,可定义随机变量之间的随机收敛,只要随机变量之差别依概率收敛于 0。
- **定义** 随机序列 $\{x_n\}_{n=1}^{\infty}$ **依概率收敛**于随机变量x,记为 $x_n \stackrel{p}{\longrightarrow} x$,如果随机序列 $\{x_n x\}_{n=1}^{\infty}$ 依概率收敛于 0。

- 概率收敛(plim)的运算规则类似于微积分中极限(lim)的运算。 $n\to\infty$
- •比如,假设 $g(\cdot)$ 为连续函数,则

$$\lim_{n\to\infty}g(x_n)=g(\underset{n\to\infty}{\text{plim}}x_n)$$

- 概率极限plim与连续函数 $g(\cdot)$ 可交换运算次序。 $n\to\infty$
- 当 x_n 的分布越来越集中于 $x^* \equiv \underset{n \to \infty}{\text{plim}} x_n$ 附近时, $g(x_n)$ 的分布自然也就越来越集中于 $g(x^*)$ 附近。
- 期望算子 $E(\cdot)$ 无此性质,因为 $E(x^2) \neq [E(x)]^2$ 。这正是大样本理论的方便之处。

• **例** 如果 $plims^2 = \sigma^2$ (样本方差依概率收敛于总体方差),则样本标准差s也 依概率收敛于总体标准差 σ ,因为

$$\operatorname{plim}_{n \to \infty} s = \operatorname{plim}_{n \to \infty} \sqrt{s^2} = \sqrt{\operatorname{plim}_{n \to \infty} s^2} = \sqrt{\sigma^2} = \sigma$$

- 其中, "开根号"(√)是连续函数,故可与求概率极限的运算交换次序。
- 对于随机向量序列(即序列中每个元素都是随机向量),也可类似地定义依概率收敛,只要定义其每个分量都依概率收敛即可。
- 比如,随机向量序列 $\{x_n\}_{n=1}^{\infty} = \{x_1, x_2, x_3, \cdots\}$ 依概率收敛于随机向量x,意味着x的每个分量都依概率收敛至x的相应分量,记为plim $x_n = x$

• 3. 依均方收敛

• **定义** 如果随机序列 $\{x_n\}_{n=1}^{\infty}$ 的期望收敛于a,即 $\lim_{n\to\infty} E(x_n) = a$;而

方差收敛于 0, 即 $\lim_{n\to\infty} Var(x_n) = 0$, 则称 $\{x_n\}_{n=1}^{\infty}$ 依均方收敛

(converge in mean square)于常数a,记为 $x_n \xrightarrow{ms} a$ 。

$$x_1, x_2, x_3, \cdots, x_n \cdots$$

$$E(x_1), E(x_2), E(x_3), \dots, E(x_n), \dots \rightarrow a$$

$$Var(x_1), Var(x_2), Var(x_3), \dots, Var(x_n), \dots \rightarrow 0$$

• 通过切比雪夫不等式,可以证明,依均方收敛意味着依概率收敛。

- 当 x_n 的均值越来越趋于a,而方差越来越小并趋于 0 时,就有 plim $x_n = a$,即在极限处 x_n 退化为常数a。
- 证明均方收敛通常比证明概率收敛更容易,故可通过证明前者来证明后者,这也是依均方收敛概念的主要用途之一。
- 反之, 依概率收敛并不意味着均方收敛。

• **例** 回到 $\{x_n\}$ 服从两点分布的例子,即 x_n 取值为0的概率为1-(1/n),而取值n的概率为(1/n)。虽然 x_n 依概率收敛到0,但 x_n 并不依均方收敛到0,因为此序列的期望恒等于1:

$$\lim_{n\to\infty} E(x_n) = \lim_{n\to\infty} \left[0 \cdot (1 - \frac{1}{n}) + n \cdot \frac{1}{n}\right] = 1 \neq 0$$

• 随着 $n \to \infty$,随机序列 x_n 取值大于0的概率越来越小(为1/n),但一旦取值为正数,则很大(等于n),故此序列的期望始终为1。

- 4. 依分布收敛
- **定义** 记随机序列 $\{x_n\}_{n=1}^{\infty}$ 与随机变量x的累积分布函数分别为 $F_n(x)$ 与F(x)。如果对于任意给定x,都有 $\lim_{n\to\infty} F_n(x) = F(x)$,则称随机序列 $\{x_n\}_{n=1}^{\infty}$ **依分布收敛**(converge in distribution)于随机变量,记为 $x_n \xrightarrow{d} x$,并称x的分布为 x_n 的**渐近分布**(asymptotic distribution)或**极限分布**(limiting distribution)。
- 当 $n \to \infty$ 时, x_n 的分布函数越来越像x的分布函数。
- **例** 当t分布的自由度越来越大时,t分布依分布收敛于标准正态分布; 即当 $k \to \infty$ 时, $t(k) \xrightarrow{d} N(0,1)$ 。

• 为了直观地显示依分布收敛的过程,在 Stata 中画 N(0,1), t(1)与t(5)的累积分布函数

• 更直观地,可通过概率密度函数,来考察t分布依分布收敛于标准正态的过程

- 许多统计量的大样本分布均为正态分布,故引入如下概念。
- •**定义** 如果 $x_n \stackrel{d}{\longrightarrow} x$,且x服从正态分布,则称 x_n 为**渐近正态** (asymptotically normal),即当 $n \to \infty$ 时, x_n 的分布越来越像正态分布。
- 依分布收敛的运算也很方便。

假设 $x_n \xrightarrow{d} x$,而 $g(\cdot)$ 为连续函数,则 $g(x_n)$ 的渐近分布就是g(x),即 $g(x_n) \xrightarrow{d} g(x)$ 。

• 当 x_n 的分布越来越像x的分布时, $g(x_n)$ 的分布自然也越来越像g(x)的分布。这为大样本理论的推导提供了方便。

- **例** 假设 $x_n \xrightarrow{d} z$, 其中 $z \sim N(0,1)$, 则 $x_n^2 \xrightarrow{d} z^2$, 其中 $z^2 \sim \chi(1)$, 即 $x_n^2 \xrightarrow{d} \chi(1)$, 因为平方是连续函数。
- •因此,渐近标准正态的平方服从渐近 $\chi(1)$ 的分布。

- "依概率收敛"比"依分布收敛"更强,前者是后者的充分条件; 但反之,则不然。
- 如果 $x_n \xrightarrow{p} x$,则意味着 $(x_n x) \xrightarrow{p} 0$,即在极限处 x_n 与x的具体取值无区别,故二者的概率分布也必然相同,所以 $x_n \xrightarrow{d} x$ 。
- 如果 $x_n \xrightarrow{d} x$,这只说明在极限处 x_n 与x的分布函数相同,但 x_n 与x的实际取值仍可以很不相同(比如, x_n 与x相互独立)。

- **例** 假设x与y都为标准正态,且相互独立。考虑随机序列 $\{x_n = x + (1/n)\}_{n=1}^{\infty}$ 。
- 由于 $1/n \to 0$,故 x_n 的渐近分布为标准正态,因此 $x_n \stackrel{d}{\longrightarrow} y$ (y也是标准正态)。
- 但 x_n 却与y相互独立, x_n 的具体取值也与y毫无关系,故 x_n 并不依概率收敛于y。
- 依分布收敛只是分布函数的收敛(随机变量之间可以毫无关系), 而依概率收敛才是随机变量本身的收敛。
- 总之, "依均方收敛" → "依概率收敛" → "依分布收敛"。

大数定律与中心极限定理

- 1. 大数定律(Law of Large Numbers)
- 假定 $\{x_n\}_{n=1}^{\infty}$ 为独立同分布的随机序列,且 $E(x_1) = \mu$, $Var(x_1) = \sigma^2$ 存在,则样本均值 $\bar{x}_n \equiv \frac{1}{n}\sum_{i=1}^n x_i \stackrel{p}{\longrightarrow} \mu$ 。
- 证明: 首先, $E(\bar{x}_n) = \frac{1}{n} \sum_{i=1}^n E(x_i) = \frac{1}{n} \cdot n\mu = \mu$, 故样本均值 \bar{x}_n 的期望仍为 μ 。
- 其次, $Var(\bar{x}_n) = Var(\frac{x_1 + \dots + x_n}{n}) = \frac{1}{n^2}(n\sigma^2) \to 0$,样本均值 \bar{x}_n 的方差收敛到0。
- 因此, \bar{x}_n 依均方收敛于 μ 。
- 由此"依均方收敛"是"依概率收敛"的充分条件,故 $\bar{x}_n \stackrel{p}{\longrightarrow} \mu$ 。
- 当样本容量n很大时, 样本均值趋于总体均值, 故名"大数定律"。

- 2. 中心极限定理(Central Limit Theorem)
- 根据大数定律,当 $n \to \infty$ 时,样本均值 \bar{x}_n 依概率收敛到总体均值 μ 。但一般情况下, \bar{x}_n 的具体分布很难推导。
- 中心极限定理告诉我们,无论原序列 $\{x_n\}_{n=1}^{\infty}$ 服从什么分布,当 $n \to \infty$ 时,样本均值 \bar{x}_n 的渐近分布都为正态分布。
- 只要样本容量n足够大,则 \bar{x}_n 的真实分布将很接近于正态分布。
- •中心极限定理 假定 $\{x_n\}_{n=1}^{\infty}$ 为独立同分布的随机序列,且 $E(x_1)=\mu$,

 $Var(x_1) = \sigma^2$ 存在,则

$$\frac{\bar{x}_n - \mu}{\sqrt{\sigma^2/n}} \xrightarrow{d} N(0,1)$$

标准化之后的样本均值(即减去期望,除以标准差)的渐近分布为标准正态。

- 直观上,可视为 $\bar{x}_n \stackrel{d}{\longrightarrow} N(\mu, \sigma^2/n)$:但不严格,因为 \bar{x}_n 的方差 $\sigma^2/n \to 0$ (在极限处, \bar{x}_n 的方差为 0,故退化为常数 μ)。
- 将表达式两边同乘 σ :

$$\sigma\left(\frac{\bar{x}_n - \mu}{\sqrt{\sigma^2/n}}\right) \xrightarrow{d} \sigma N(0,1)$$

因为乘以某常数 σ 为连续函数,故根据依分布收敛的运算规则

$$y_n \xrightarrow{d} y \Longrightarrow \sigma y_n \xrightarrow{d} \sigma y$$

整理可得

$$\frac{\bar{x}_n - \mu}{\sqrt{1/n}} \xrightarrow{d} N(0, \sigma^2)$$

• $4\sqrt{1/n}$ 放到分子上,可得中心极限定理的等价表达式:

$$\sqrt{n}(\bar{x}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$$

其中, $\sqrt{n} \to \infty$, 而根据大数定律, $(\bar{x}_n - \mu) \xrightarrow{p} 0$ 。 故上式用 $\sqrt{n}(\bar{x}_n - \mu)$ (即" $\infty \cdot 0$ "型) 得到非退化的渐近正态分布 $N(0, \sigma^2)$ 。

而且, $\bar{x}_n \xrightarrow{p} \mu$ 的速度在数量级上与 \sqrt{n} 相当,称为"root-n convergence",即($\bar{x}_n - \mu$) $\xrightarrow{p} 0$ 的速度大约为 $\frac{1}{\sqrt{1}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \cdots, \frac{1}{\sqrt{n}}, \cdots$

- 该式的好处是,容易推广到多维的情形。
- 多维的中心极限定理: 假定 $\{x_n\}_{n=1}^{\infty}$ 为独立同分布的随机向量序列, 且 $E(x_1) = \mu$, $Var(x_1) = \Sigma$ 存在, 则 $\sqrt{n}(\overline{x}_n \mu) \stackrel{d}{\longrightarrow} N(\mathbf{0}, \Sigma)$ 。

统计量的大样本性质

- ・1. 一致估计量
- **定义** 考虑参数 β 的估计量 $\hat{\beta}_n$,其中下标n为容量(强调 $\hat{\beta}_n$ 对样本容量n的依赖)。如果 $\lim_{n\to\infty}\hat{\beta}_n=\beta$,则称 $\hat{\beta}_n$ 是参数 β 的一致估计量(consistent estimator)。
- 在多维情况下,称估计量 $\hat{\boldsymbol{\beta}}_n$ 是参数 $\boldsymbol{\beta}$ 的一致估计量,如果 $\lim_{n\to\infty}\hat{\boldsymbol{\beta}}_n=\boldsymbol{\beta}$,即 $\hat{\boldsymbol{\beta}}_n$ 的各分量都是 $\boldsymbol{\beta}$ 相应分量的一致估计。
- 一致性(consistency)意味着,当样本容量足够大时, $\hat{\beta}_n$ 依概率收敛到真实参数 β 。
- 这是对估计量最基本, 也是最重要的要求。

• 如果估计方法不一致,则意味着研究没有太大意义;因为无论样本容量多大,估计量也不会收敛到真实值。

• 2. 渐近正态分布与渐近方差

- 定义 如果 $\sqrt{n}(\hat{\beta}_n \beta) \xrightarrow{d} N(0, \sigma^2)$,则称 $\hat{\beta}_n$ 为**渐近正态** (asymptotically normal),称 σ^2 为其**渐近方差**(asymptotic variance),记为 $Avar(\hat{\beta}_n)$ 。
- 可近似认为 $\hat{\beta}_n \stackrel{d}{\longrightarrow} N(\beta, \sigma^2/n)$,但不严格(方差 σ^2/n 趋于0,故为退化的分布)。
- 在多维情况下,如果 $\sqrt{n}(\hat{\boldsymbol{\beta}}_n \boldsymbol{\beta}) \stackrel{d}{\longrightarrow} N(\mathbf{0}, \boldsymbol{\Sigma})$,其中 $\boldsymbol{\Sigma}$ 为半正定矩阵,则称 $\hat{\boldsymbol{\beta}}_n$ 为渐近正态分布,而称 $\boldsymbol{\Sigma}$ 为 $\hat{\boldsymbol{\beta}}_n$ 的渐近协方差矩阵,记为 $Avar(\hat{\boldsymbol{\beta}}_n)$ 。

• 3. 渐近有效

- 假设 $\hat{\beta}_n$ 与 $\tilde{\beta}_n$ 都是 β 的渐近正态估计量。如果 $Avar(\hat{\beta}_n) \leq Avar(\tilde{\beta}_n)$,则称 $\hat{\beta}_n$ 比 $\tilde{\beta}_n$ **更为渐近有效**(asymptotically more efficient)。
- 在大样本下, $\hat{\beta}_n$ 的方差小于 $\tilde{\beta}_n$ 的方差(在小样本下未必如此)。
- 在多维情况下,假设 $\hat{\boldsymbol{\beta}}_n$ 与 $\hat{\boldsymbol{\beta}}_n$ 都是 $\boldsymbol{\beta}$ 的渐近正态估计量。如果 $[Avar(\hat{\boldsymbol{\beta}}_n) Avar(\hat{\boldsymbol{\beta}}_n)]$ 为半正定矩阵,则称 $\hat{\boldsymbol{\beta}}_n$ 比 $\hat{\boldsymbol{\beta}}_n$ **更为渐近有效**。

随机过程的性质

- 大数定律与中心极限定理假设随机序列为 iid, 但对于大多数经济变量, 此假定太强。
- •比如,今年的通货膨胀率通常依赖于去年的通货膨胀率,二者并非相互独立。
- 需要研究随机序列的性质,并将推广大数定律与中心极限定理。
- 随机序列 $\{x_n\}_{n=1}^{\infty}$ 有个更好听的名称,叫"随机过程"(stochastic process)。
- •如下标为时间,则记为 $\{x_t\}_{t=1}^{\infty}$,也称"时间序列" (time series)。

- 1.严格平稳过程
- 考察中国 1978—2013 年的通货膨胀率,即 $\{\pi_{1978},\pi_{1979},\cdots,\pi_{2013}\}$

- 假如每年的通货膨胀率作为随机变量都有不同的分布,如何估计 $E(\pi_{1978})$ 与 $Var(\pi_{1978})$ 呢?
- 每年通货膨胀率的样本容量仅为 1, 且历史不能重演!
- 如果这 36 年的通货膨胀率分布都不变,则可将 $\pi = \frac{1}{36} \sum_{t=1978}^{2013} \pi_t$ 作为 $E(\pi_t)$ 的估计量。
- 通常要求随机过程 $\{x_n\}_{t=1}^{\infty}$ 的概率分布不随时间推移而改变。
- 无论过去、现在还是未来去看此随机过程,它的概率分布性质都一样。

- 这种随机过程称为"严格平稳过程",它要求随机过程的有限维分布不随时间推移而改变
- •比如,相同(∀*t*,*s*);
- (x_1, x_4) 的分布与 (x_2, x_5) 相同(二者均相隔3期);
- (x_1, x_2, x_3) 的分布与 (x_5, x_6, x_7) 相同(二者均为连续3期)。

- **定义** 随机过程 $\{x_t\}_{t=1}^{\infty}$ 是**严格平稳过程**(strictly stationary process), 简称平稳过程,如果对任意m个时期的时间集合 $\{t_1, t_2, \dots, t_m\}$,随机向量 $\{x_{t_1}, x_{t_2}, \dots, x_{t_m}\}$ 的联合分布等于随机向量 $\{x_{t_{1+k}}, x_{t_{2+k}}, \dots, x_{t_{m+k}}\}$ 的联合分布,其中k为任意整数。
- 将 $\{x_{t_1}, x_{t_2}, \dots, x_{t_m}\}$ 中每个变量的时间下标全部前移或后移k期,不会改变其分布。
- $\{x_{t_1}, x_{t_2}, \dots, x_{t_m}\}$ 的联合分布仅取决于 $\{t_1, t_2, \dots, t_m\}$ 各个时期之间的相对距离,而不依赖于其绝对位置。

- **例** 如果随机过程 $\{x_t\}_{t=1}^{\infty}$ 为iid,则 $\{x_t\}_{t=1}^{\infty}$ 是平稳过程,且不存在序列相关。
- **例** 如果随机过程 $\{x_t\}_{t=1}^{\infty} = \{x_1, x_1, \cdots, x_1\}$ (即 $x_t \equiv x_1$),则 $\{x_t\}_{t=1}^{\infty}$ 是平稳过程,且存在最强的序列相关。
- · 例 考虑以下一阶自回归过程(AR(1)),

$$y_t = \rho y_{t-1} + \varepsilon_t \quad (t = 1, \dots, T)$$

其中, $\{\varepsilon_t\}$ 为独立同分布, 且 $Cov(y_{t-1}, \varepsilon_t) = 0$ 。

• 命题 如果 $\rho = 1$,则 $y_t = y_{t-1} + \varepsilon_t$ 。因此, $y_1 = y_0 + \varepsilon_1$,而 $y_2 = y_1 + \varepsilon_2 = y_0 + \varepsilon_1 + \varepsilon_2$,以此类推可知

$$y_t = y_0 + \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_t$$

给定初始值 y_0 , 当 $t \to \infty$ 时,

$$Var(y_t) = Var(\varepsilon_1) + Var(\varepsilon_2) + \dots + Var(\varepsilon_t) = t\sigma_{\varepsilon}^2 \to \infty$$
,

其中 $\sigma_{\varepsilon}^2 \equiv Var(\varepsilon_t)$,即方差越来越大,以至无穷。

• 故 $\{y_t\}$ 不是平稳过程(平稳过程要求同分布,故方差不变)。

- 由于 y_t 只是在 y_{t-1} 的基础上,加上随机扰动项 ε_t ,故当 $\rho=1$ 时,称 $\{y_t\}$ 为"随机游走"(random walk)。
- 如果 $|\rho| < 1$,则 $Var(y_t)$ 会收敛到常数。对方程两边同时取方差,可得

$$Var(y_t) = \rho^2 Var(y_{t-1}) + \sigma_{\varepsilon}^2$$

- 记 $z_t \equiv Var(y_t), z_{t-1} = Var(y_{t-1})$, 则上式可写为 $z_t = \rho^2 z_{t-1} + \sigma_{\varepsilon}^2$
- 这是确定性的一阶线性差分方程,因为 $z_t \equiv Var(y_t)$ 为非随机。
- 由于 $\rho^2 < 1$,故 $Var(y_t)$ 将收敛到一个稳定值。
- $\diamondsuit Z_t = Z_{t-1}$,可求解此收敛的稳定值 Z^* :

$$z^* = \rho^2 z^* + \sigma_{\varepsilon}^2$$

- 将上式整理后可得, $z^* = \frac{\sigma_{\varepsilon}^2}{1-\rho^2}$ 。
- 如果忽略序列 $\{y_t\}$ 的前面几项,可将 $\{y_t\}$ 的方差视为常数。
- 进一步可证明, $\{y_t\}_{t=0}^{\infty}$ 是严格平稳过程。

- 有时仅关心随机过程的期望、方差及协方差是否稳定,而不要求整个分布都稳定,故引入以下"弱平稳过程"的概念。
- 定义 随机过程 $\{x_t\}_{t=1}^{\infty}$ 是弱平稳过程(weakly stationary process)或协 方差平稳过程(covariance stationary process),如果 $E(x_t)$ 不依赖于t,而且 $Cov(x_t, x_{t+k})$ 仅依赖于k(即 x_t 与 x_{t+k} 在时间上的相对距离)而不依赖于其绝对位置t。
- •对于弱平稳过程,由于 $E(x_t)$ 不依赖于t,故其期望为常数。
- 由于 $Cov(x_t, x_{t+k})$ 仅依赖于k,如果k = 0,则 $Cov(x_t, x_t) = Var(x_t)$ 也不依赖于t,故弱平稳过程的方差也是常数。
- 严格平稳过程是弱平稳过程的充分条件; 但反之则不然。
- 弱平稳过程只要求二阶矩平稳(即期望、方差、协方差等不随时间 而变),而概率分布还可能依赖于更高阶的矩。

- **定义** 对于弱平稳过程 $\{x_t\}_{t=1}^{\infty}$,如果对于 $\forall t$,都有 $E(x_t) = 0$,而且 $Cov(x_t, x_{t+k}) = 0 (\forall k \neq 0)$,则称为**白噪声过程**(white noise process)。
- 白噪声过程不一定独立同分布,也不一定是严格平稳过程。
- "白噪声"是性质比较好的"噪声",即该噪声的期望值为 0,而不同期之间的噪声互不相关。
- 推广到多维:对于随机向量过程 $\{x_t\}_{t=1}^{\infty}$,可以类似地定义平稳过程或弱平稳过程(只要将上述定义中的x置换为x即可)。
- 对于随机向量过程 $\{\mathbf{x}_t\}_{t=1}^{\infty}$ 为(弱)平稳过程,则其每个分量都是(弱)平稳过程;反之,则不然。

- 2.新近独立性
- "严格平稳过程" (相当于"同分布"假定)还不足以应用大数定律或中心极限定理,因为它们都要求独立同分布(iid)。
- 但"相互独立"的假定对于大多数经济变量过强。
- •比如,今年的通胀率显然与去年的通胀率相关。
- 但今年的通胀率与 100 年前的通胀率或许可近似地视为相互独立, 称为**渐近独立**(ergodic, 也称**遍历性**), 或**弱相依**(weakly dependent)。
- 新近独立意味着,只要两个随机变量相距足够远,可近似认为它们相互独立。
- 例 相互独立的随机序列是渐近独立的。

• **例** AR(1)是否渐近独立? 考虑以下一阶自回归模型:

$$y_t = \rho y_{t-1} + \varepsilon_t$$

其中, $|\rho| < 1$, 而 ε_t 为白噪声。

- 计算其各阶 "自协方差" (autocovariance)。
- 当时间间隔为 1 期时, 一阶自协方差为
- $Cov(y_t, y_{t-1}) = Cov(\rho y_{t-1} + \varepsilon_t, y_{t-1}) = \rho \sigma_y^2 + \underbrace{Cov(\varepsilon_t, y_{t-1})}_{=0} = \rho \sigma_y^2$
- 其中, σ_y^2 为y的方差;而 $Cov(\varepsilon_t, y_{t-1}) = Cov(\varepsilon_t, \rho y_{t-2} + \varepsilon_{t-1}) = Cov(\varepsilon_t, \varepsilon_{t-1}) = 0$ 因为 ε_t 为白噪声。

• 当时间间隔为2期时,原方程可写为

$$y_t = \rho y_{t-1} + \varepsilon_t = \rho(\rho y_{t-2} + \varepsilon_{t-1}) + \rho^2 = \rho^2 y_{t-2} + \rho \varepsilon_{t-1} + \varepsilon_t$$

- 因此,二阶自协方差为
- $Cov(y_t, y_{t-2}) = Cov(\rho^2 y_{t-2} + \rho \varepsilon_{t-1} + \varepsilon_t, y_{t-2}) = \rho^2 \sigma_y^2$

•以此类推, 当时间间隔为j期时,

$$Cov(y_t, y_{t-j}) = \rho^j \sigma_y^2$$

- •由于 $|\rho| < 1$,故当上式 $j \to \infty$ 时, $Cov(y_t, y_{t-j}) \to 0$ 。
- 相距越远,则序列 $\{y_t\}$ 的自协方差越小,且在极限处变为 0 (不相关),故此 AR(1)模型为渐近独立的过程。

- **渐近独立定理**(Ergodic Theorem) 假设 $\{x_i\}_{i=1}^{\infty}$ 为渐近独立的严格平稳过程,且 $E(x_i) = \mu$ 存在,则 $\bar{x}_n \equiv \frac{1}{n}\sum_{i=1}^n x_i \xrightarrow{p} \mu$,即样本均值 \bar{x}_n 是总体均值 $E(x_i)$ 的一致估计。
- 渐近独立定理是对大数定律的重要推广, 更适用于经济数据。
- 大数定律要求每个 x_i 相互独立,而渐近独立定理允许 $\{x_i\}_{i=1}^{\infty}$ 存在"序列相关" (serial correlation),只要此相关关系在极限处消失即可。
- 大数定律要求每个 x_i 的分布相同,而渐近独立定理要求 $\{x_i\}_{i=1}^{\infty}$ 为严格平稳过程,故也是同分布的。
- 类似地,可将中心极限定理作相应的推广;即在一定条件下,中心极限定理也适用于渐近独立的平稳过程。

• **命题** 如果 $\{x_i\}_{i=1}^{\infty}$ 为渐近独立的严格平稳过程,则对于任何连续函数 $f(\cdot)$, $\{y_i = f(x_i)\}_{i=1}^{\infty}$ 也是渐近独立的严格平稳过程。

• 根据此命题,则渐近独立定理意味着,渐近独立平稳过程 $\{x_i\}_{i=1}^{\infty}$ 的任何"总体矩" (population moment) $E[f(x_i)]$,都可以由其对应的"样本矩" (sample moment) $\frac{1}{n}\sum_{i=1}^{n}f(x_i)$ 来一致地估计。

- **例** 对于渐近独立的平稳过程 $\{x_i\}_{i=1}^{\infty}$ 样本方差 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$,是总体方差 $Var(x) = E[x E(x)]^2$ 的一致估计。
- 例 样本协方差 $S_{xy} \equiv \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$,为总体协方差 $Cov(x,y) \equiv E[(x E(x))(y E(y))]$ 的一致估计。

大样本OLS的假定

•假定1线性假定

$$y_i = \beta_1 + \beta_2 x_{i2} + \dots + \beta_K x_{iK} + \varepsilon_i \ (i = 1, \dots, n)$$
 此假定与小样本OLS完全相同。

- **假定2** (K+1)维随机过程 $\{y_i, x_{i1}, \cdots, x_{iK}\}$ 为渐近独立的平稳过程 (ergodic stationarity),故适用大数定律与中心极限定理。
- 例 如果样本为随机样本,则 $\{y_i, x_{i1}, \cdots, x_{iK}\}$ 独立同分布,故是渐近独立的平稳过程。

• 假定3 前定解释变量(predetermined regressors)

所有解释变量均为"前定"(predetermined),也称"同期外生" (contemporaneously exogenous),即它们与同期(同方程)的扰动项正交,即 $E(x_{ik}\varepsilon_i)=0, \forall i,k$ 。

由于 $E(x_{ik}\varepsilon_i)=0$,故 x_{ik} 与 ε_i 不相关,仿佛在 ε_i 产生之前, x_{ik} 已经确定,故名"前定解释变量"。

此假定比严格外生性假定更弱,因为后者要求扰动项与过去、现在及未来的解释变量都不相关(对于时间序列数据而言),而前定变量仅要求与同期的扰动项不相关。

• 假定4 秩条件(rank condition)

数据矩阵X满列秩,即X中没有多余(可由其他变量线性表出)的解释变量,故不存在严格多重共线性。

- 大样本理论的假定 1 与 4 与小样本理论相同,而假定 2 与3 则比小样本理论更为放松。
- 大样本 OLS 无须假设"严格外生性"与"正态随机扰动项",具有更大的适用性。

OLS的大样本性质

- 在假定1-4之下,OLS 估计量 $\hat{\beta}$ 具有以下良好的大样本性质。
- (1) $\hat{\beta}$ 为一致估计量,即 $\lim_{n\to\infty}\hat{\beta}=\beta$

以一元回归为例。考虑以下模型:

$$y_i = \alpha + \beta x_i + \varepsilon_i \quad (i = 1, \dots, n)$$

 β 的OLS估计量为

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

• 此模型的离差形式为

$$(y_i - \bar{y}) = \beta(x_i - \bar{x}) + (\varepsilon_i - \bar{\varepsilon})$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
, $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\overline{\varepsilon} = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i$

• 代入
$$\hat{\beta}$$
 的表达式可得
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \left[\beta(x_i - \overline{x}) + (\varepsilon_i - \overline{\varepsilon})\right]}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$= \frac{\beta \sum_{i=1}^{n} (x_i - \overline{x})^2 + \sum_{i=1}^{n} (x_i - \overline{x})(\varepsilon_i - \overline{\varepsilon})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$= \beta + \frac{\sum_{i=1}^{n} (x_i - \overline{x})(\varepsilon_i - \overline{\varepsilon})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$=\beta + \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(\varepsilon_i - \overline{\varepsilon})}{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} \xrightarrow{p} \beta + \underbrace{\frac{\text{Cov}(x_i, \varepsilon_i)}{\text{Var}(x_i)}}_{=0} = \beta$$

其中, $Cov(x_i, \varepsilon_i) = 0$

- 前定解释变量,或扰动项与解释变量同期不相关,是保证 OLS—致的最重要条件。
- 反之,如果 $Cov(x_i, \varepsilon_i) \neq 0$,,则 $\lim_{n \to \infty} \hat{\beta} = \beta + \frac{Cov(x_i, \varepsilon_i)}{Var(x_i)} \neq \beta$
- •如果 $Cov(x_i, \varepsilon_i) > 0$,则 $plim \hat{\beta} > \beta$

比如,考察教育投资的回报率, x_i 为教育年限,而 ε_i 为被遗漏的个人能力。 x_i 与 ε_i 正相关(能力高者通常上学更久),故 OLS 估计量将高估教育投资的回报率。

• 如果 $Cov(x_i, \varepsilon_i) < 0$,则 $plim\hat{\beta} < \beta$

比如,考察上医院对健康的作用, x_i 为是否上医院,而 ε_i 为个人原来的健康状况(被遗漏)。 x_i 与 ε_i 负相关(通常只有健康不佳者才上医院),故 OLS 估计量将低估上医院对健康的正面作用(去医院者的健康往往不如未去医院者)。

- 通过图示考察 $Cov(x_i, \varepsilon_i) \neq 0$ 的后果
- 真实(总体)回归线为 $\alpha + \beta x_i$
- 样本回归线为 $\hat{\alpha} + \hat{\beta}x_i$
- 假设 $Cov(x_i, \varepsilon_i) > 0$, x_i 与 ε_i 正相关
- 当 x_i 较小时, ε_i 也倾向于较小
- 当 x_i 较大时, ε_i 也倾向于较大
- 反之,如果 $Cov(x_i, \varepsilon_i) < 0$,则 $\hat{\beta}$ 将低估 β 。
- 增大样本容量 $(n \to \infty)$ 也不能使偏差(bias)消失。

- 在计量经济学中,如果解释变量与扰动项相关,即 $Cov(x_i, \varepsilon_i) \neq 0$,则称此解释变量为"内生解释变量" (endogenous regressor),简称"内生变量"。反之,则为"外生变量"(exogenous variable)。
- •由于内生变量的存在,致使 OLS 回归出现偏差,统称为"内生性偏差"(endogeneity bias),或简称"内生性"。

- 在什么情况下可能出现内生性偏差?
- ·如果存在**遗漏变量、双向因果关系**、或**解释变量测量误差** (measurement errors),常会出现解释变量与扰动项同期相关的情形,导致 OLS 不一致。

• (2) $\hat{\boldsymbol{\beta}}$ 服从渐近正态分布,即 $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{d} N(\mathbf{0}, Avar(\hat{\boldsymbol{\beta}}))$

其中, $Avar(\hat{\beta})$ 为 $\hat{\beta}$ 的渐近协方差矩阵。

 $\hat{\beta}$ 之所以服从渐近正态,因为在一定条件下,中心极限定理适用于渐近独立的平稳过程。

- (3) 由于大样本理论一般不假设球形扰动项,故渐近协方差矩阵 $Avar(\hat{\beta})$ 的表达式更为复杂。
- OLS 估计量 $\hat{\beta}$ 的协方差矩阵可写为:

$$\operatorname{Var}(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X}) = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \operatorname{Var}(\boldsymbol{\varepsilon} \mid \boldsymbol{X}) \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1}$$

其中, $Var(\varepsilon|X)$ 为扰动项的协方差矩阵。

- 如果存在球形扰动项(同方差、无自相关),则 $Var(\varepsilon|X) = \sigma^2 I_n$
- 上式简化为

$$\operatorname{Var}(\hat{\beta} \mid X) = (X'X)^{-1}X'(\sigma^2 I_n)X(X'X)^{-1} = \sigma^2(X'X)^{-1}$$

- 对于横截面数据,经常存在异方差,但无自相关(比如,各截面单位之间相互独立)。
- 考虑存在条件异方差,但无自相关的情形。
- 扰动项的协方差矩阵可写为

$$\operatorname{Var}(\boldsymbol{\varepsilon} \mid \boldsymbol{X}) = \begin{pmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_n^2 \end{pmatrix}$$

• 其中, $\sigma_1^2, \dots, \sigma_n^2$ 不全相等。

- 如何估计上式的 $\{\sigma_1^2, \dots \sigma_n^2\}$?
- 其中, $\sigma_1^2 = Var(\varepsilon_1) = E(\varepsilon_1^2) [E(\varepsilon_1)]^2 = E(\varepsilon_1^2)$
- 以 OLS 残差平方 $\{e_1^2, \dots e_n^2\}$ 替代上式的 $\{\sigma_1^2, \dots \sigma_n^2\}$, 得到扰动项协方差 矩阵的估计量:

$$\widehat{\operatorname{Var}(\boldsymbol{\varepsilon} \mid \boldsymbol{X})} = \frac{n}{n - K} \begin{pmatrix} e_1^2 & 0 \\ & \ddots & \\ 0 & e_n^2 \end{pmatrix}$$

• 其中, $\frac{n}{n-\kappa}$ 为自由度的调整 (在大样本下无差别)。

• 将上式代入 $Var(\hat{\boldsymbol{\beta}}|\boldsymbol{X})$ 的表达式,可得如下方差估计量

$$\widehat{\operatorname{Var}(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X})} = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \widehat{\operatorname{Var}(\boldsymbol{\varepsilon} \mid \boldsymbol{X})} \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1}$$

• 考虑 $\sqrt{n}\hat{\boldsymbol{\beta}}$ 的方差估计量,即 $\hat{\boldsymbol{\beta}}$ 的**渐近方差估计量**:

$$\widehat{\operatorname{Avar}(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X})} = n(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\widehat{\operatorname{Var}(\boldsymbol{\varepsilon} \mid \boldsymbol{X})}\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}$$

• 上式为 $\hat{\beta}$ 渐近协方差矩阵的一致估计量,即

$$\widehat{\operatorname{Avar}(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X})} \xrightarrow{p} \operatorname{Avar}(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X})$$

•由于表达式在推导过程中并未假设"条件同方差",故在"条件异方差"情况下也成立,称为"异方差稳健的标准误"(heteroskedasticity-consistent standard errors),简称"稳健标准误"(robust standard errors)。

- 在形式上,稳健标准误也是夹心估计量。
- 稳健标准误的思想最早由 Eicker(1967)与 Huber(1967)提出,并由 White(1980) 严格证明,故也称 White's standard errors, Huber-White standard errors。
- 稳健标准误的表达式虽较复杂,但对于计算机,其计算成本可以忽略(无须人为记忆)。
- 通过使用迭代期望定律可以证明,在条件同方差的假定下,稳健标准误还原为普通(非稳健)标准误。

• 考虑同方差的极端情形,即 $e_1^2 = e_2^2 = \cdots = e_n^2$ (所有残差的绝对值都相等,但符号可以相反),则

$$\widehat{\operatorname{Var}(\boldsymbol{\varepsilon} \mid \boldsymbol{X})} = \frac{n}{n - K} \begin{pmatrix} e_1^2 & 0 \\ & \ddots & \\ 0 & e_n^2 \end{pmatrix} = \frac{ne_i^2}{n - K} \boldsymbol{I}_n = \frac{\sum_{i=1}^n e_i^2}{n - K} \boldsymbol{I}_n = s^2 \boldsymbol{I}_n$$

• 稳健的协方差矩阵简化为同方差情况下的普通(非稳健)协方差矩阵:

$$\widehat{\operatorname{Var}(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X})} = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \widehat{\operatorname{Var}(\boldsymbol{\varepsilon} \mid \boldsymbol{X})} \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1}$$
$$= (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' (s^2 \boldsymbol{I}_n) \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1} = s^2 (\boldsymbol{X}'\boldsymbol{X})^{-1}$$

大样本统计推断

- 对于渐近独立的平稳过程,如果样本容量足够大,则 OLS 估计量 β的渐近正态分布是对其真实分布的较好近似,可使用其渐近分 布进行大样本假设检验与区间估计。
- 大样本统计推断(large sample inference)的步骤与小样本 OLS 基本相同。

- 1. 检验单个系数: H_0 : $\beta_k = c$
- 考虑检验 H_0 : $\beta_k = c$, 其中c为已知常数。
- 根据大样本理论,OLS 估计量 $\hat{\boldsymbol{\beta}}$ 服从渐近正态分布,即 $\sqrt{n}(\hat{\boldsymbol{\beta}} \boldsymbol{\beta}) \xrightarrow{d} N(\mathbf{0}, Avar(\hat{\boldsymbol{\beta}}))$,其中 $Avar(\hat{\boldsymbol{\beta}})$ 为渐近协方差矩阵。
- 具体到 $\hat{\beta}$ 的第k个元素 $\hat{\beta}_k$,则有

$$\sqrt{n}(\hat{\beta}_k - \beta_k) \xrightarrow{d} N(0, Avar(\hat{\beta}_k))$$

• $Avar(\hat{\beta}_k)$ 为 $\hat{\beta}_k$ 的渐近方差,即渐近方差矩阵 $Avar(\hat{\beta})$ 主对角线上的第k个元素。

- 在原假设 H_0 成立的情况下, $\beta_k = c$,故表达式可写为 $\sqrt{n}(\hat{\beta}_k c) \xrightarrow{d} N(0, Avar(\hat{\beta}_k))$
- •记 $Avar(\hat{\beta}_k)$ 为渐近方差矩阵估计量 $Avar(\hat{\beta})$ 主对角线上的第k个元素,则 $Avar(\hat{\beta}_k)$ 是 $Avar(\hat{\beta}_k)$ 的一致估计量。
- 定义t统计量为

$$t_{k} = \frac{\sqrt{n}(\hat{\beta}_{k} - c)}{\sqrt{\widehat{\text{Avar}}(\hat{\beta}_{k})}} = \frac{\hat{\beta}_{k} - c}{\sqrt{\frac{1}{n}\widehat{\text{Avar}}(\hat{\beta}_{k})}} = \frac{\hat{\beta}_{k} - c}{\text{SE}^{*}(b_{k})} \xrightarrow{d} N(0, 1)$$

- $SE^*(\hat{\beta}_k) \equiv \sqrt{\frac{1}{n}Avar(\hat{\beta}_k)}$ 即为异方差稳健的标准误。
- 统计量 t_k 称为"稳健t比值"(robust t ratio),服从渐近标准正态分布,而不是t分布。

- 对于双边检验(即 $H_1: \beta_k \neq c$),则 $|t_k|$ 越大,越倾向于拒绝 H_0 。
- 比如,对于 5%的显著性水平,如果 $|t_k|$ 大于临界值1.96,则可拒绝 H_0 。
- 也可以通过p值进行检验,方法与小样本理论相同。

- 2. 检验线性假设: $H_0: R\beta = r$
- 考虑检验m个线性假设是否同时成立:

$$H_0: \underset{m \times K}{\mathbf{R}} \underset{K \times 1}{\mathbf{\beta}} = \underset{m \times 1}{\mathbf{r}}$$

- 其中, r为m维列向量(m < K), R为 $m \times K$ 矩阵。
- rank(R) = m,即R满行秩,没有多余或自相矛盾的行或方程。
- 对于原假设 H_0 : $R\beta = r$,根据沃尔德检验原理,可考察 $(R\widehat{\beta} r)$ 的大小,譬如其二次型 $(R\widehat{\beta} r)'(R\widehat{\beta} r)$ 。

• 在 H_0 成立的情况下,可证明统计量

$$W = n(\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})'[\widehat{\mathbf{R}}\widehat{\mathrm{Avar}}(\widehat{\boldsymbol{\beta}})\mathbf{R}']^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r}) \xrightarrow{d} \chi^{2}(m)$$

- $RAvar(\hat{\beta})R'$ 为 $(R\hat{\beta}-r)$ 的渐近方差矩阵(使用夹心估计量公式)。
- 如果统计量W大于 $\chi^2(m)$ 的临界值,则拒绝原假设。
- 虽然统计量W服从 χ^2 分布,而非小样本的F分布,但 χ^2 分布与F分布 在大样本情况下是等价的。
- 即使在大样本下使用稳健标准误进行假设检验,Stata 也依然汇报F 统计量及其 p值。

- •命题 假设统计量 $F \sim F(m,n)$ 分布,则当 $n \to \infty$ 时, $mF \xrightarrow{a} \chi^2(m)$ 。
- **证明**: 因为 $F \sim F(m,n)$, 故可写为 $F = \frac{\chi^2(m)/m}{\chi^2(n)/n}$, 其中分子与分母相互独立。
- 根据 χ^2 分布的性质, χ^2 分布的期望等于自由度,而方差等于自由度的两倍;即 $E[\chi^2(n)] = n$,且 $Var[\chi^2(n)] = 2n$ 。
- 分母的期望为 $E[\chi^2(n)/n] = n/n = 1$,而方差为 $Var[\chi^2(n)/n] = 2n/n^2 = 2/n \to 0$ (当 $n \to \infty$ 时)。
- 分母依均方收敛于 1,故依概率收敛于 1(前者是后者的充分条件), 即 $\chi^2(n)/n \xrightarrow{p} 1$ 。
- F统计量的性质仅由分子 $\chi^2(m)/m$ 决定,故 $F \xrightarrow{a} \chi^2(m)/m$ 。
- 因此,在大样本下, $mF \xrightarrow{d} \chi^2(m)$ 。

一元回归实例

$$\widehat{\alpha} = 4.391, \ \widehat{\beta} = 0.097$$
 $\widehat{\ln w} = 4.391 + 0.097s$

教育的投资回报率为9.7%, 每增加一年教育,平均可提高收入9.7%

多元回归实例

. reg lnw s expr tenure smsa rns

	Source	SS	df	MS	Number of o		758 81.75	F统计量
ESS	Model	49.0478814	5	9.80957628	F(5, 752) Prob > F	=	0.0000	P值
RSS	Residual	90.2382684	752	.119997697		=	0.3521	R ²
TSS	Total	139.28615	757	.183997556	Adj R-squar Root MSE		0.3478 .34641	Adjusted R ²
133	Total		(C) (C) (C) (C)			=	E. E. Children	
		回归系数	标准误	t统计量	P值	置信	<u> </u>	
被解释变量	lnw	Coefficient	Std. err.	t	P> t [95%	conf.	interval]	
解释变量	S	.102643	.0058488			1611	.114125	
751112	expr	.0381189	.0063268	6.02	0.000 .025	6986	.0505392	
	tenure	.0356146	.0077424	4.60	0.000 .026	94153	.0508138	
	smsa	.1396666	.0280821	4.97	0.000 .084	15379	.1947954	
	rns	0840797	.0287973	-2.92	0.004146	6124	0275471	
	_cons	4.103675	.085097	48.22	0.000 3.93	86619	4.270731	

. esttab , se r2 b(4) star(* 0.1 ** 0.05 *** 0.01) nogap

	(1)
	lnw
S	0.1026***
	(0.0062)
expr	0.0381***
	(0.0066)
tenure	0.0356***
	(0.0080)
smsa	0.1397***
	(0.0281)
rns	-0.0841***
	(0.0295)
_cons	4.1037***
	(0.0877)
N	758
R-sq	0.352

Standard errors in parentheses * p<0.1, ** p<0.05, *** p<0.01

. reg lnw s expr tenure smsa rns, robust

758
84.05
0.0000
0.3521
.34641

lnw	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
S	.102643	.0062099	16.53	0.000	.0904523	.1148338
expr	.0381189	.0066144	5.76	0.000	.025134	.0511038
tenure	.0356146	.0079988	4.45	0.000	.0199118	.0513173
smsa	.1396666	.028056	4.98	0.000	.0845893	.194744
rns	0840797	.029533	-2.85	0.005	1420566	0261029
_cons	4.103675	.0876665	46.81	0.000	3.931575	4.275775

谢谢!