Math 55b, Assignment #8, April 18, 2006 (due April 24, 2006)

Notations and Convention. $\mathbb C$ is the set of all complex numbers. $\mathbb R$ is the set of all real numbers. $\mathbb N$ is the set of all positive integers. For a domain D in $\mathbb R^n$ with coordinates x_1, \cdots, x_n , the orientation of D is defined by the differential n-form $dx_1 \wedge \cdots \wedge dz_n$ unless explicitly specified otherwise. For a function f on D the integral $\int_D f$ means the integration of the differential n-form $fdx_1 \wedge \cdots \wedge dx_n$ over the oriented domain D.

Problem 1 (Differential Forms and Volumes). Let $1 \leq k < n$ be integers and G be an open subset of \mathbb{R}^k and $f: G \to \mathbb{R}^n$ be a continuously differentiable map which is injective and whose derivative f' as an $n \times r$ matrix has rank r at every point of G. Let u_1, \dots, u_k be the coordinates of \mathbb{R}^k and x_1, \dots, x_n be the coordinates of \mathbb{R}^n and let

$$f(u_1, \dots, u_k) = (f_1(u_1, \dots, u_k), \dots, f_n(u_1, \dots, u_k)).$$

Define the pullback $f^*\left(\sum_{j=1}^n dx_j \otimes dx_j\right)$ by the map f of the Euclidean metric $\sum_{j=1}^n dx_j \otimes dx_j$ as

$$f^* \left(\sum_{j=1}^n dx_j \otimes dx_j \right) = \sum_{j=1}^n df_j \otimes df_j$$

which is equal to

$$\sum_{\mu,\nu=1}^{k} \left(\sum_{j=1}^{n} \frac{\partial f_{j}}{\partial u_{\mu}} \frac{\partial f_{j}}{\partial u_{\nu}} \right) \left(du_{\mu} \otimes du_{\nu} \right).$$

Define the Jacobian (determinant)

$$\frac{\partial (f_{j_1}, \cdots, f_{j_k})}{\partial (u_1, \cdots, u_k)}$$

to be the determinant of the $k \times k$ matrix whose (μ, ν) -th entry is

$$\frac{\partial f_{j_{\mu}}}{\partial u_{\nu}}$$

for $1 \leq \mu, \nu \leq k$.

(a) Show that the $k \times k$ determinant

$$\det\left(\sum_{j=1}^{n} \frac{\partial f_{j}}{\partial u_{\mu}} \frac{\partial f_{j}}{\partial u_{\nu}}\right)_{1 \leq \mu, \nu \leq k} = \begin{vmatrix} \sum_{j=1}^{n} \frac{\partial f_{j}}{\partial u_{1}} \frac{\partial f_{j}}{\partial u_{1}} & \cdots & \sum_{j=1}^{n} \frac{\partial f_{j}}{\partial u_{1}} \frac{\partial f_{j}}{\partial u_{k}} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{j=1}^{n} \frac{\partial f_{j}}{\partial u_{k}} \frac{\partial f_{j}}{\partial u_{1}} & \cdots & \sum_{j=1}^{n} \frac{\partial f_{j}}{\partial u_{k}} \frac{\partial f_{j}}{\partial u_{k}} \end{vmatrix}$$

of the coefficients of $f^*\left(\sum_{j=1}^n dx_j \otimes dx_j\right)$ in terms of $du_\mu \otimes du_\nu$ is equal to

$$\sum_{1 < j_1 < \dots < j_k < n} \left| \frac{\partial (f_{j_1}, \dots, f_{j_k})}{\partial (u_1, \dots, u_k)} \right|^2.$$

Define the *volume* of the image f(G) of $f: G \to \mathbb{R}^n$ as

$$\int_{G} \left(\det \left(\sum_{j=1}^{n} \frac{\partial f_{j}}{\partial u_{\mu}} \frac{\partial f_{j}}{\partial u_{\nu}} \right)_{1 \leq \mu, \nu \leq k} \right)^{\frac{1}{2}} du_{1} \cdots du_{k}.$$

- (b) Consider the following special case.
 - (i) k = 1;
 - (ii) n = 2;
- (iii) G = (a, b);
- (iv) $f: G \to \mathbb{R}^2$ is given by x = x(t) and y = y(t).

For this special case, verify that the above definition of the arc-length of the image of $f:(a,b)\to\mathbb{R}^2$ agrees with

$$\int_{t=a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

- (c) Consider the following special case.
 - (i) k = 2;
 - (ii) n = 3;

(iii) $f: G \to \mathbb{R}^3$ is given by the vector-valued function $(x, y, z) = \vec{r}(u, v)$ of two variables u, v.

Let

$$E(u,v) = \left| \frac{\partial \vec{r}}{\partial u} \right|^2,$$

$$F(u,v) = \left(\frac{\partial \vec{r}}{\partial u} \right) \cdot \left(\frac{\partial \vec{r}}{\partial v} \right),$$

$$G(u,v) = \left| \frac{\partial \vec{r}}{\partial v} \right|^2.$$

For this special case, verify that the volume of f(G) is given by

$$\int_{G} \sqrt{EG - F^2} \, du \wedge dv$$

and that it is also given by

$$\int_{G} \left| \left(\frac{\partial \vec{r}}{\partial u} \right) \times \left(\frac{\partial \vec{r}}{\partial v} \right) \right| du \wedge dv,$$

where $\vec{\xi} \times \vec{\eta}$ means the vector product of the two vectors $\vec{\xi}$ and $\vec{\eta}$.

(d) In the special case of k = n - 1 and $f_j = u_j$ for $1 \leq j \leq n - 1$ and $f_n = F(u_1, \dots, u_{n-1})$ (in other words, the image of $f: G \to \mathbb{R}^n$ is defined as the graph of the function

$$(x_1,\cdots,x_{n-1})\to F(x_1,\cdots,x_{n-1})$$

over $G \subset \mathbb{R}^{n-1}$), verify that the volume of the image f(G) of $f: G \to \mathbb{R}^n$ is equal to

$$\int_{G} \sqrt{1 + \sum_{j=1}^{n-1} \left(\frac{\partial F}{\partial x_{j}}\right)^{2}} dx_{1} \cdots dx_{n-1}.$$

(e) In the special case when each f_j is an \mathbb{R} -linear function

$$f_j(u_1, \cdots, u_k) = \sum_{\nu=1}^k a_{j,\nu} u_{\nu}$$

for some $a_{j,\nu} \in \mathbb{R}$, verify that the volume of f(G) is equal to

$$\sqrt{\sum_{1 \leq j_1 < \dots < j_k \leq n} (V_{j_1,\dots,j_k})^2},$$

where $\pi_{j_1,\cdots,j_k}:\mathbb{R}^n\to\mathbb{R}^k$ is the projection

$$(x_1, \cdots, x_n) \mapsto (x_{j_1}, \cdots, x_{j_k})$$

and V_{j_1,\dots,j_k} is the volume of the subset $(\pi_{j_1,\dots,j_k} \circ f)(G)$ of \mathbb{R}^k .

- (f) Consider the following special case:
 - (i) $k = 2\ell$;
 - (ii) n = 2m;
- (iii) $u_{2\mu-1}$ equals the real part of ζ_{μ} and $u_{2\mu}$ equals the imaginary part of ζ_{μ} for $1 \leq \mu \leq \ell$, where $(\zeta_1, \dots, \zeta_{\ell}) \in \mathbb{C}^{\ell} = \mathbb{R}^k$;
- (iv) $x_{2\nu-1}$ equals the real part of z_{ν} and $x_{2\nu}$ equals the imaginary part of z_{ν} for $1 \leq \nu \leq m$, where $(z_1, \dots, z_m) \in \mathbb{C}^m = \mathbb{R}^n$;
- (v) G is the ball of radius R > 0 in $\mathbb{C}^{\ell} = \mathbb{R}^{k}$ centered at the origin;
- (vi) The function

$$f_{2\nu-1} + \sqrt{-1} f_{2\nu}$$

of $\zeta_1, \dots, \zeta_\ell$ is a power series in $(\zeta_1, \dots, \zeta_\ell)$ which converges at every point of G.

Let

$$\omega = \frac{\sqrt{-1}}{2} \sum_{\nu=1}^{m} dz_{\nu} \wedge d\overline{z_{\nu}}$$

and $\Theta = f^*\omega$, where

$$dz_{\nu} = dx_{2\nu-1} + \sqrt{-1} dx_{2\nu},$$

$$d\overline{z_{\nu}} = dx_{2\nu-1} - \sqrt{-1} dx_{2\nu}.$$

so that

$$\frac{\sqrt{-1}}{2} dz_{\nu} \wedge d\overline{z_{\nu}} = dx_{2\nu-1} \wedge dx_{2\nu}$$

and

$$f^*\left(\frac{\sqrt{-1}}{2}\,dz_{\nu}\wedge d\overline{z_{\nu}}\right) = df_{2\nu-1}\wedge df_{2\nu}.$$

Show that for this special case the volume of f(G) is equal to the integration of the differential k-form

 $\frac{1}{\ell!} \left(\underbrace{\Theta \wedge \cdots \wedge \Theta}_{\ell \text{ copies}} \right)$

over G. (The significance of this special case is that while in general the volume is not computed by the integration of a differential form on the ambient space \mathbb{R}^n which is independent of f(G), for this special case the volume does come from the integration of such a differential form.)

(*Hint*: use the \mathbb{C} -basis

$$\frac{\partial}{\partial u_{2\mu-1}} + \sqrt{-1} \frac{\partial}{\partial u_{2\mu}}, \quad \frac{\partial}{\partial u_{2\mu-1}} - \sqrt{-1} \frac{\partial}{\partial u_{2\mu}} \quad (1 \le \mu \le \ell)$$

instead of

$$\frac{\partial}{\partial u_j}$$
 $(1 \le j \le k)$

and use the \mathbb{C} -basis

$$\frac{\partial}{\partial x_{2\nu-1}} + \sqrt{-1} \frac{\partial}{\partial x_{2\nu}}, \quad \frac{\partial}{\partial x_{2\nu-1}} - \sqrt{-1} \frac{\partial}{\partial x_{2\nu}} \quad (1 \le \nu \le m)$$

instead of

$$\frac{\partial}{\partial x_j}$$
 $(1 \le j \le n)$

for the calculation and observe from direct computation that

$$\left(\frac{\partial}{\partial u_{2\mu-1}} + \sqrt{-1}\frac{\partial}{\partial u_{2\mu}}\right) \left(f_{2\nu-1} + \sqrt{-1}f_{2\nu}\right) \equiv 0,$$

because

$$f_{2\nu-1} + \sqrt{-1} \, f_{2\nu}$$

is a power series in $\zeta_{\mu} = u_{2\mu-1} + \sqrt{-1} u_{2\mu}$ when the other variables

$$u_1, \cdots, u_{2\mu-2}, u_{2\mu+1}, \cdots, u_n$$

are fixed.)

Problem 2 (Volume of n-Sphere Computed by Integrating a Radial Function of Quadratic Exponent Decay).

(a) Suppose G is a domain in \mathbb{R}^{n+1} . Let $F(x_1, \dots, x_n, x_{n+1})$ be a continuously differentiable real-valued function on G so that the length |dF| of the differential of F is identically 1 at every point of the zero-set Z of F. Here

|dF| equals $\left(\sum_{j=1}^{n+1} \left|\frac{\partial F}{\partial x_j}\right|^2\right)^{\frac{1}{2}}$. Assume that $\frac{\partial F}{\partial x_{n+1}} > 0$ at every point of Z.

Give Z the orientation defined by the differential n-form $dx_1 \wedge \cdots \wedge dx_n$ on Z. Show that the volume of Z is equal to

$$\int_{Z} \frac{1}{\frac{\partial F}{\partial x_{n+1}}} dx_1 \wedge \dots \wedge dx_n,$$

when locally Z is represented as a graph over a domain in \mathbb{R}^n by the implicit function theorem and the volume of that graph is as defined in Problem 1 above.

Hint: When $F(x_1, \dots, x_n, f(x_1, \dots, x_n)) \equiv 0$ in x_1, \dots, x_n , use implicit differentiation and the chain rule to express $\frac{\partial f}{\partial x_j}$ in terms of $\frac{\partial F}{\partial x_{n+1}}$ and $\frac{\partial F}{\partial x_j}$ for $1 \leq j \leq n$.

Remark: Note that, unlike the form ω on \mathbb{R}^n in Problem 1(f) used to compute the volume of f(G) there, the form $\frac{1}{\frac{\partial F}{\partial x_{n+1}}} dx_1 \wedge \cdots \wedge dx_n$ used here to compute the volume of Z depends on Z.

(b) Let ω_n be the volume of the unit *n*-sphere in \mathbb{R}^{n+1} with coordinates x_1, \dots, x_{n+1} . Show that

$$\int_{\mathbb{R}^{n+1}} e^{-\sum_{j=1}^{n+1} (x_j)^2} = \omega_n \int_{r=0}^{\infty} r^n e^{-r^2} dr.$$

Hint: Let $r = \left(\sum_{j=1}^{n+1} (x_j)^2\right)^{\frac{1}{2}}$. Use local coordinates x_1, \dots, x_n, r at a point where $\frac{\partial r}{\partial x_n}$ is nonzero and apply Part(a) by observing that $|dr| \equiv 1$. The factor r^n comes from the fact that the volume of an n-sphere of radius a is equal to $\omega_n a^n$ as one can see by considering the map $(x_1, \dots, x_{n+1}) \mapsto (ax_1, \dots, ax_{n+1})$ of \mathbb{R}^{n+1} .

(c) Use Part(b) to show that

$$\omega_{n-1} = \frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)},$$

where the denominator is the value of the Gamma function at $\frac{n}{2}$.

Hint: Write the integral on the left-hand side of the equation in Part(b) as the (n+1)-st power of $\int_{-\infty}^{\infty} e^{-t^2} dt$.

Problem 3 (Expressing a 1-Form as the Differential of a Function).

(a) Let P(x,y)dx + Q(x,y)dy be a continuously differentiable differential 1-form on $(-1,1)\times(-1,1)\subset\mathbb{R}^2$. Define

$$g(x) = \int_0^x P(s,0)ds$$
 for $x \in (-1,1)$

and

$$f(x,y) = g(x) + \int_0^y Q(x,t)dt$$
 for $x, y \in (-1,1)$.

Assume that $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. Show that df = P dx + Q dy on $(-1,1) \times (-1,1)$.

Hint: Use

$$\frac{\partial}{\partial x} \int_0^y Q(x,t)dt = \int_0^y \frac{\partial}{\partial x} Q(x,t)dt = \int_0^y \frac{\partial}{\partial t} P(x,t)dt.$$

(b) For $1 \leq j \leq n$ let $-\infty < a_j < b_j < \infty$. Let $\Theta = \sum_{j=1}^n \varphi_j(x_1, \dots, x_n) dx_j$ be a continuously differentiable differential 1-form on $(a_1, b_1) \times \cdots \times (a_n, b_n) \subset \mathbb{R}^n$ such that

$$\frac{\partial \varphi_j}{\partial x_k} = \frac{\partial \varphi_k}{\partial x_j}$$

on $(a_1, b_1) \times \cdots \times (a_n, b_n)$ for $1 \leq j, k \leq n$. Define $f_0 = 0$ and for $1 \leq j \leq n$ inductively define

$$f_j(x_1, \dots, x_j) = f_{j-1}(x_1, \dots, x_{j-1}) + \int_{t_i=0}^{x_j} \varphi_j(x_1, \dots, x_{j-1}, t_j, 0, \dots, 0) dt_j.$$

Let $f = f_n$. Verify that $df = \sum_{j=1}^n \varphi_j dx_j$ on $(a_1, b_1) \times \cdots \times (a_n, b_n)$.

(c) Use the notations of Part(b). Let $-\infty < \alpha < \beta < \infty$ and let $\Phi : [\alpha, \beta] \to (a_1, b_1) \times \cdots \times (a_n, b_n)$ be a continuously differentiable map with $\Phi(\alpha) = \Phi(\beta)$. Show that $\int_{[\alpha, \beta]} \Phi^*\Theta = 0$, where $\Phi^*\Theta$ is the pullback of the differential 1-form Θ by the map Φ .

Hint: Use the fundamental theorem of calculus and $\Phi(\alpha) = \Phi(\beta)$.

Problem 4 (Riemann Double and Iterated Integrals for a Function Continuous Outside a Closed Subset of Zero Measure). Let $-\infty < a < b < \infty$ and $-\infty < \alpha < \beta < \infty$. Let A be a closed subset of $[a,b] \times [\alpha,\beta]$ of measure zero in the sense that given any $\varepsilon > 0$ there exists a sequence of open disks $B(P_j, r_j)$ (for $j \in \mathbb{N}$) of radius $r_j > 0$ centered at $P_j \in \mathbb{R}^2$ such that $A \subset \bigcup_{j \in \mathbb{N}} B(P_j, r_j)$ and $\sum_{j \in \mathbb{N}} r_j^2 < \varepsilon$.

Remark. For the statements of this problem the condition of A being closed can be removed (when E is not required to be closed). It is used here so that the problem can be directly handled from the definition of Riemann integrability without the use of a more complicated theory such as Lebesgue integration.

- (a) Show that there exists a closed subset E of measure zero in [a,b] such that $(\{x\} \times [\alpha,\beta]) \cap A$ is of measure zero in the interval $\{x\} \times [\alpha,\beta]$ for $x \in [a,b] E$.
- (b) Suppose f is a bounded real-valued function on $[a, b] \times [\alpha, \beta]$ which is continuous on $[a, b] \times [\alpha, \beta] A$. Show that f is Riemann integrable on $[a, b] \times [\alpha, \beta]$ in the sense that given any $\varepsilon > 0$ there exist

$$a = x_0 < x_1 < \dots < x_{p-1} < x_p = b,$$

 $\alpha = y_0 < y_1 < \dots < y_{q-1} < y_q = \beta,$

such that

$$\sum_{k=1}^{p} \sum_{\ell=1}^{q} (M_{k,\ell} - m_{k,\ell}) (x_k - x_{k-1}) (y_\ell - y_{\ell-1}) < \varepsilon,$$

where $M_{k,\ell}$ is the supremum of f(P) for $P \in [x_{k-1}, x_k] \times [y_{\ell-1}, y_{\ell}]$ and $m_{k,\ell}$ is the infimum of f(P) for $P \in [x_{k-1}, x_k] \times [y_{\ell-1}, y_{\ell}]$. We denote by

$$\int_{[a,b]\times[\alpha,\beta]} f(x,y)dxdy$$

the supremum of

$$\sum_{k=1}^{p} \sum_{\ell=1}^{q} m_{k,\ell} (x_k - x_{k-1}) (y_\ell - y_{\ell-1}),$$

or equivalently the infimum of

$$\sum_{k=1}^{p} \sum_{\ell=1}^{q} M_{k,\ell} (x_k - x_{k-1}) (y_\ell - y_{\ell-1}),$$

over all possible choices of

$$a = x_0 < x_1 < \dots < x_{p-1} < x_p = b,$$

 $\alpha = y_0 < y_1 < \dots < y_{q-1} < y_q = \beta.$

(c) Verify that the function

$$\int_{y=\alpha}^{\beta} f(x,y)dy$$

on [a, b] - E of the variable x defined by Riemann integration can be extended to a function on [a, b] which is Riemann integrable on [a, b].

(d) Verify that

$$\int_{x=a}^{b} \left(\int_{y=\alpha}^{\beta} f(x,y) dy \right) dx = \int_{[a,b] \times [\alpha,\beta]} f(x,y) dx dy,$$

where the left-hand side is the Riemann integral of the function in Part(c).

Remark. For a closed subset S in $[a,b] \times [\alpha,\beta]$ whose boundary A is of measure zero in $[a,b] \times [\alpha,\beta]$ and a continuous function g on S, the integral $\int_S g(x,y) dx dy$ can be defined as the Riemann integral of the function f over $[a,b] \times [\alpha,\beta]$ which is defined by f(P) = g(P) for $P \in S$ and f(P) = 0 for $P \notin S$.

Problem 5 (Representing an Interated Indefinite Integral as a Single Integral).

(a) Let c > 0 and let f(x) be a continuous function on [0, c]. Use two ways to prove by induction on n that for $n \ge 1$ and $0 \le x \le c$ the iterated integral

$$\int_0^x \left(\int_0^{t_n} \left(\int_0^{t_{n-1}} \left(\cdots \left(\int_0^{t_2} f(t_1) dt_1 \right) \cdots \right) dt_{n-2} \right) dt_{n-1} \right) dt_n$$

is equal to

$$\int_0^x \frac{(x-t)^n}{n!} f(t) dt,$$

the first way differentiating both sides with respect to x and the second way by switching the order of the iterated integration on the left-hand side.

(b) Use Part(a) to obtain the following Taylor expansion with integral remainder

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt \quad \text{for } 0 \le x \le c$$

for any (n+1)-times continuously differentiable function f on [0,c]

(c) Use Part(b) and the Mean Value Theorem to obtain the following Taylor expansion with derivative remainder

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1} \quad \text{for } 0 \le x \le c \text{ and some } 0 < \xi < x$$

for any (n+1)-times continuously differentiable function f on [0, c].

Problem 6 (Sobolev Imbedding). Let f be a real-valued continuously differentiable function on \mathbb{R}^n which is identically zero outside some ball of radius R > 0 centered at the origin. Let

$$g(P) = \left(\sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_j}(P) \right|^2 \right)^{\frac{1}{2}}.$$

(a) Let ω_{n-1} be the volume of the unit (n-1)-sphere in \mathbb{R}^n . By applying the Fundamental Theorem of Calculus radially from x to y and by averaging the unit vector from x to y over the unit (n-1)-sphere, show that

$$|f(x)| \le \frac{1}{\omega_{n-1}} \int_{\mathbb{R}^n} \frac{1}{|x-y|^{n-1}} g(y) \, dy,$$

where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \dots, y_n) \in \mathbb{R}^n$ and $|x - y| = \left(\sum_{j=1}^n |x_j - y_j|^2\right)^{\frac{1}{2}}$ and $dy = dy_1 \cdots dy_n$.

(b) Let $1 \leq p < n$ and $\mu > n$. Let $h(x) = \frac{1}{|x|^{n-1}}$ for $x \in \mathbb{R}^n - \{0\}$. By Hölder's inequality show that

$$|f(x)| \le \frac{1}{\omega_{n-1}} \left(\int_{\mathbb{R}^n} h(x-y)^{\frac{\mu}{\mu-1}} g(y)^{\frac{\mu-p}{\mu-1}} dy \right)^{\frac{\mu-1}{\mu}} \left(\int_{\mathbb{R}^n} g(y)^p \right)^{\frac{1}{\mu}}.$$

Hint: Write $h(x-y)g(y) = \left(h(x-y)g(y)^{\frac{\mu-p}{\mu}}\right)\left(g(y)^{\frac{p}{\mu}}\right)$ and apply Hölder's inequality to raise the exponent of the first factor $h(x-y)g(y)^{\frac{\mu-p}{\mu}}$ to $\frac{\mu}{\mu-1}$.

(c) Let $q = \frac{p\mu}{\mu - p}$. Use Part(b) to show that

$$\left(\int_{\mathbb{R}^n} |f(x)|^q dx\right)^{\frac{1}{q}} \le \frac{C_{R,\mu,n}}{\omega_{n-1}} \left(\int_{\mathbb{R}^n} g(y)^p dy\right)^{\frac{1}{p}},$$

where

$$C_{R,\mu,n} = \left(\int_{|x| \le R} |x|^{-\frac{\mu(n-1)}{\mu-1}} dx \right)^{\frac{\mu}{\mu-1}} < \infty.$$

Hint: For $s \geq 1$ and for functions $\varphi(x)$, $\psi(x)$ on \mathbb{R}^n with compact support, their convolution

$$(\varphi * \psi)(x) = \int_{\mathbb{R}^n} \varphi(x-y)\psi(y)dy$$

satisfies

$$\|\varphi * \psi\|_{L^s} \le \|\varphi\|_{L^1} \|\psi\|_{L^s},$$

which is the limiting case of

$$\left\| \sum_{j \in J} c_j \left(T_{P_j} \psi \right) \right\|_{L^s} \le \left(\sum_{j \in J} |c_j| \right) \left\| \psi \right\|_{L^s}$$

as $\sum_{j\in J} |c_j|$ approaches $\|\varphi\|_{L^1}$, where $c_j \in \mathbb{R}$ and $P_j \in \mathbb{R}^n$ and $T_{P_j}(x) = \psi(x+P_j)$ is the translate of ψ by P_j . The norms $\|\cdot\|_{L^s}$ and $\|\cdot\|_{L^1}$ denote respectively the L^s norm and the L^1 norm over \mathbb{R}^n .

Remark. This inequality gives the following statement concerning Sobolev norms. Any function on \mathbb{R}^n with compact support whose first-order derivatives are all L^p for some $1 \leq p < n$ is L^q for any $1 \leq q < \frac{np}{n-p}$. Actually the Sobolev imbedding theorem can conclude that the function is L^q for $q = \frac{np}{n-p}$, but the procedure given here gives only the weaker result of the function being L^q for any $1 \leq q < \frac{np}{n-p}$.