

Lecture #15: Dynamic programming

School of Computer Science and Engineering Kyungpook National University (KNU)

Woo-Jeoung Nam

- Binary search tree
 - > A rooted binary tree data structure
 - Internal nodes each store a key
 greater than all the keys in the node's left subtree
 and less than those in its right subtree
- Optimal binary search tree
 - Provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities)
 - > to-minimize the number of nodes visited in all searches

[A binary search tree of size 9 and depth 3, wi th 8 at the root]

- Binary search tree (BST)
 - ▶ 크다, 작다의 기준은 알파벳 ABC순 정렬
 - ➤ 둘다 BST
 - ▶ 왼쪽의 트리가 오른쪽보다 층의 수가 작으므로 왼쪽이 더 효율적이다

- Binary search tree (BST)
 - ▶ 현실에서는?
 - Crystal 보다는 John이라는 이름이 훨씬 더 많이 호출된다
 - 단어별 검색 빈도가 다음과 같다고 가정
 - Crystal = 0.1 / Daisy = 0.2 / Beatrice = 0.3 / John = 0.4
 - BST 평균 검색시간 = 검색빈도 * 필요탐색횟수 = $\sum_{i=1}^n c_i p_i$

C:: 到 數 款

- C: 단어 검색하는데 호출함수 횟수, p: 검색 빈도, n: 단어 수

Binary search tree (BST)

▶ 현실에서는?

- Crystal = 0.1 / Daisy = 0.2 / Beatrice = 0.3 / John = 0.4
- 왼쪽: (0.1*1) + (0.2*2) + (0.3*2) + (0.4*3) = 2.3
- 오른쪽: (0.1*4) + (0.2*3) + (0.3*2) + (0.4*1) = 2.0
- 오른쪽 BST가 효율이 좋다
- 가능한 BST 모양들 중에서 평균검색시간이 가장 낮은, 가장 효율적인 최적이진탐색 트리는 뭘까? (optimal binary search trees)
- 가능한 경우의 수를 모두 구현 후 비교? -> 너무 비효율적이다

- BST의 특성상 어떤 BST의 왼쪽, 오른쪽 서브트리가 각각 최적 BST여야 해당 BST도 최적

 - 최적 이진 검색 트리는 단순히 높이를 균형있게 하는 것이 아니라 탐색시간을
 최소로 하여 최적의 탐색시간을 갖도록 하는 것

Optimal Binary Search Trees (cont.)

- N개의 서로다른 키 $K = \langle k_1, k_2, ..., k_n \rangle$, sorted $(k_1 < k_2 < ... < k_n)$
 - \triangleright 각 key에 대해 k_i , 검색확률 p_i that a search is for k_i
 - > 검색을 했는데 k에 존재하지 않는 값에 대해 일어날 수 있음
- N+1 "dummy keys(가상 키)" d_0 , d_1 , d_2 , ..., d_n representing values not in K
 - Some searches may be for values not in K
 - \rightarrow 가상키 d_i 에 대해 검색확률 q_i that a search is for d_i
- Every search is either successful (finding some key k_i) or unsuccessful (finding some dummy key d_i), and so we have

Optimal Binary Search Trees (cont.)

- 각 키와 각 가상 키의 확률이 존재, 이진검색트리 T의 기댓값 결정 가능
- Expected cost of a search in a given binary search tree T
 - ➤ 검색 한번에 필요한 실제 비용 = 검사한 노드의 수
 T를 검색하여 발견한 노드의 깊이 +1 이라고 가정
 - ➤ T에서 한번의 검색에 필요한 기대값은

$$E \left[\text{search cost in } T \right] = \sum_{i=1}^{n} \left(\frac{\text{depth}_{T}(k_{i}) + 1}{\text{depth}_{T}(k_{i}) \cdot p_{i}} + \sum_{i=0}^{n} \left(\frac{\text{depth}_{T}(d_{i}) + 1}{\text{depth}_{T}(d_{i}) \cdot q_{i}}, \right) \right]$$

$$= 1 + \sum_{i=1}^{n} \left(\frac{\text{depth}_{T}(k_{i}) \cdot p_{i}}{\text{depth}_{T}(k_{i}) \cdot p_{i}} + \sum_{i=0}^{n} \left(\frac{\text{depth}_{T}(d_{i}) \cdot q_{i}}{\text{depth}_{T}(d_{i}) \cdot p_{i}} \right) \right]$$

$$= \frac{n}{i=1} \left(\frac{\text{depth}_{T}(k_{i}) \cdot p_{i}}{\text{depth}_{T}(k_{i}) \cdot p_{i}} + \sum_{i=0}^{n} \left(\frac{\text{depth}_{T}(d_{i}) \cdot q_{i}}{\text{depth}_{T}(d_{i}) \cdot p_{i}} \right) \right) \cdot \left(\frac{n}{i} \right)$$

Example

■ 다음 트리의 노드별 기댓값은 다음 테이블과 같이 계산 가능

node	depth	probability	contribution
k_1	1	<u>0.15</u> x2.	0.30
k_2	0	0.10 💢	0.10
k_3	2	6× 20.0	0.15
k_4	1	0.10	0.20
k ₅	2	0.20	0.60
d_0	2	0.05	0.15
d_1	2	0.10	0.30
d_2	3	0.05	0.20
d_3	3	0.05	0.20
d_4	3	0.05	0.20
d_5	3	0.10	0.40
Total			2.80

Example

- 다음 트리의 노드별 기댓값은 다음 테이블과 같이 계산 가능
 - ▶ B기 전체 높이가 더 큼에도 최직인 이진트리이다

Optimal Substructure

JESS HAES!

ABEZ

= minimum. (ACI)DK-I)+ACK-KI)[N]

ATIJ [n]

17/71

- 먼저 i번째 key부터 j번째 key까지로 최적 BST를 만들었을 때
 - ➢ 평균 검색 시간, 즉 최적값을 A[i][j]
- 평균 검색 시간은 루트노드가 k번째 key일 때
 - ▶ 왼쪽, 오른쪽 각각 A[1][k-1], A[k+1][n]
- k개의 BST 중 하나는 반드시 최적

Optimal Substructure

■ 1부터 n까지가 아니라 i번째부터 j번째까지의 key로 일반화

$$\begin{split} A[i][j] &= \underset{\substack{i < = k < = j \\ j \leq k \leq j}}{minimum} (A[i][k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad A[i] \; \text{Lij} \; = \; \underset{\substack{i \leq k \leq j \\ j \leq k \leq j}}{minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \; (i < j) \\ &\quad \text{Minimum} \; \Big(\; \; \text{ACij}[k-1] + A[k+1][j$$

- 2차원 배열 A를 채워나가서, A[1][n] 의 값을 얻으면 그것이 최적 BST의 평균 검색 시간 (최적값)
- 최적 BST의 모양을 알 수가 없다
 - ▶ R이라는 2차원 배열을 하나 더 만드는 것
 - ➤ R의 각 칸에 들어가는 값은 A 배열에 최적값을 넣는 순간의 k값으로, 이는 즉 i 번째 key부터 j번째 key까지를 이용해 BST를 만들 때 루트가 되는 노드의 번 호를 의미
 - R[1][n] 을 구하면 최적 BST의 루트노드를 구할 수 있다.

BST=

Optimal Substructure example

- 4개의 key, 검색빈도 p_i
- i번째부터 j번째 key를 이용해서 만든 최적(BS) 으므로, i<=j인 경우만 생각
- 대각선 칸은 0, 점화식을 이용해서 칸을 채운다

Optimal Substructure – example

- A[1][2]의 경우, k=1, 2 중 작은값 + $\sum_{m=i}^{j} p_m$ (i < j)
- A[1][0] + A[2][2] (k=1인 경우) = 0 + 3/8 + 3/8*2
- A[1][1] + A[3][2] (k=2인 경우) = 3/8 + 0 + 3/8 * 2

3 to + 3 x2.

	둘다	값이	같다 ->	• 작은	값을	우선으로	R배열에	삽입
--	----	----	-------	------	----	------	------	----

Don	Isabelle	Ralph	Wally
Key[1]	Key[2]	Key[3]	Key[4]

$$p_1 = \frac{3}{8}$$
 $p_2 = \frac{3}{8}$ $p_3 = \frac{1}{8}$ $p_4 = \frac{1}{8}$.

					\bigcirc	
	0	1	2	3	4	
1	0	$\frac{3}{8}$	$\frac{9}{8}$	11 8 5 8	7/4	
2		0	3/8	$\frac{5}{8}$	1	
3			0	$\frac{1}{8}$	3 8	
4				0	$\frac{1}{8}$	
5					0	
			A			

$$A[i][j] = minimum(A[i][k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m \ (i < j)$$

Optimal Substructure (교재)

- Use optimal substructure to construct an optimal solution to the proble m from optimal solutions to subproblems:
 - \rightarrow Given keys $k_i, ..., k_i$ (the problem)
 - > One of them, k_n where $i \le r \le j$, must be the root
 - > Left subtree of k_r contains k_i , ..., k_{r-1}
 - \rightarrow Right subtree of k_r contains $k_{r+1}, ..., k_i$

Recursive Solution

Subproblem domain:

- Find optimal BST for $k_i, ..., k_j$, where $i \ge 1, j \le n, j \ge i$ -1
- When j = i 1, there are no actual keys; just the dummy key d_{i-1}
- Define e[i, j] = expected search cost of optimal BST for k_i, ..., k_j
 - > If j = i 1, then $e[i, j] = q_{ij} 1$
 - \triangleright If $j \ge i$,
 - Select a root k_r for some $i \le r \le j$
 - Make an optimal BST with $k_i, ..., k_{r-1}$ as the left subtree
 - Make an optimal BST with $k_{r+1}, ..., k_i$ as the right subtree

Recursive Solution (cont.)

- Depth of every node in subtree goes up by 1
- Expected search cost increases by $w(i,j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$
- If k_r is the root of an optimal BST for k_i, ..., k_j

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r-1,j))$$

$$\text{But } w(i,j) = w(i,r-1) + p_r + w(r+1,j)$$

$$\text{Therefore, } e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)$$

$$e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)$$

$$e[i,j] = e[i,r-1] + e[r+1,j] + v(i,j)$$

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j. \end{cases}$$

$$e[i,j] = \begin{cases} \min_{i \le r \le j} \{e[i,r-1] + w(i,j)\} & \text{if } i \le j. \end{cases}$$

$$e[i,j] = \begin{cases} \min_{i \le r \le j} \{e[i,r-1] + e[i,r-1]\} & \text{if } i \le j. \end{cases}$$

Computing an Optimal Solution

