New Energy Vehicle Big Data Innovation and Entrepreneurship Competition

EV battery charging energy prediction

Tongji University

Liu Xiaoman, Wang Xinjie, Tan Haiyu 2018/11/22

- •数据分析与清洗
- •模型设计
- 算法结构
- •可移植性与工程优化

对数正态分布

- 影响充电能量的因素 不是彼此独立的,各 种因素对充电能量的 影响是相乘关系
- 数据量少

训练集能量原始分布

训练集能量In(x+1)处理后分布

训练集能量In处理后>0部分分布

数据清洗非常重要, 大数据往往是大量有 问题的数据

异常点修正, 缺失值补全

Car1-3 car_phase0.loc[(car_phase0.charge_end_U > 389) & (car_phase0.charge_end_I > -29), ['charge_end_soc']] = 100

Car4, 15-16 使用随机森林与梯度提升树进行异常点修正, 缺失值补全 —— 增加数据预处理工作量, 效果一般, 最后选择用树算法进行提升

Car15-16

增加数据预处理工作量, 效果一般,最后选择用 树算法进行提升

・有效数据量依然足够

树型算法

- 善于处理缺失值
- 对离群点鲁棒

数据预处理要结合算法特性 不用overengineering,人为引 入噪声

异常值修正

- car15 charge_min_temp为连续值,且为正态分布,使用均值修正,保持期望不变
- car16 charge_min_temp为连续值,且为长尾分布,使用中值修正,避免异常点影响
- 使用随机森林与梯度提升树进行异常点修正
- 取当月平均

一些充电结束电流 被记为0,尤其是 Car15, 16

离群点 ≠ 异常点 却会显著影响数据 分布,影响特征标 准化效果,信息量 却异常丰富

结束电流分布Box plot

结合新特征dsoc / charge_hour 剔除异常点

* dsoc 充电结束soc - 充电起始soc

- •数据分析与清洗
- •模型设计
- 算法结构
- •可移植性与工程优化

一类 基础特征 特征群 三 美 表征性特征 表征 特 征 特 征 群 三类时间维特征 ()

基础特征群

• 原始特征 12维

```
vehicle_id,
charge_start_time, charge_end_time
charge_start_soc, charge_end_soc,
charge_start_U, charge_end_U
charge_start_I, charge_end_I,
charge_max_temp, charge_min_temp,
mileage
```

表征特征群

- 更有表现力的特征 11维
 - 差值特征: charge_hour, dsoc, dU, dtemp
 - 比率特征: dU/dsoc, dsoc/hour, dmileage/soc
 - •记忆特征: ddsoc, dmileage,
 - 类别特征: phase, charge_mode

时间特征群

- 能量的时间维度特征
 - 时间维特征: year, month, day
 - •用户习惯特征: week, hour, night
 - 电池时间维特征: interval_min, sum_charge

• one-hot 编码

Car12 交叉验证结果 原始特征

Car12 交叉验证结果 多维特征

泛化特征

回归方法对训练集的数据量要求 高。百万级别的训练集都无法支 持数百维特征进行训练。特征数 量的限制导致无法充分利用信息, 进而影响了回归模型的精度。

小能量特征

```
select_list = [
    'charge_hour',
    'dsoc',
    'dtemp',
    'dU',
    'charge_start_l',
    'charge_end_l']
```

决赛倒数第二天,引入 的小能量模型,并进行 系数融合后,效果提升 9%,当天排名第一

gbm model

gbm_model = GradientBoostingRegressor(n_estimators=2000, max_depth=4, min_samples_split=2, min_samples_leaf=2, max_features='auto', subsample=0.6, learning rate=0.008) # 少样本

gbm_model = GradientBoostingRegressor(n_estimators=2000, max_depth=4, min_samples_split=15, min_samples_leaf=2, max_features='auto', subsample=0.6, learning rate=0.008) # 多样本

xgboost_model

xgboost_model = xgb.XGBRegressor(max_depth=3, min_child_weight=0.9, gamma=0.0001,subsample=0.55, scale_pos_weight=1, learning_rate=0.008, reg_alpha=0.001,colsample_bytree=0.9, booster='gbtree', n_estimators=3000) # 泛化

xgboost_model = xgb.XGBRegressor(max_depth=6, min_child_weight=0.9, gamma=0.0001,subsample=0.55, scale_pos_weight=1, learning_rate=0.008, reg_alpha=0.001,colsample_bytree=0.9, booster='gbtree', n_estimators=3000) # 深层

car12

train_features[train_features['vehicle_id'].isin([1])]

car12

- •数据分析与清洗
- •模型设计
- 算法结构
- •可移植性与工程优化

$$\frac{x_{i}\ -\ Q_{1}\left(x\right)}{Q_{3}(x)-Q_{1}\left(x\right)}$$

K折交叉验证与基于k折的交叉训练

Ridge Regression

用于存在多重共线性(自变量高度相关)数据。 L2正则化惩罚在收缩的时候权重会分散,让权重平方和变小。

Lasso Regression

预测的一组变量是高度相关的,Lasso 有助于特征选择 L1正则化惩罚在收缩的时候权重会集中,会出现稀疏解,为了稀疏而提取特征。

ElasticNet Regression

使用L1来训练并且L2优先作为正则化矩阵。 当有多个相关的特征时,Lasso 会随机挑选他们其中的一个,而ElasticNet则会选择两个。

SVM Regression

适用于高维特征空间,解决的是一个凸二次规划问题,对缺失值敏感

Gradient boosting

能拟合复杂的非线性关系。 可以灵活处理各种类型的数据,包括连续值和离散值。 弱学习器之间存在依赖关系,容易过拟合

XGboost

特征的值有缺失的样本。正则化,防止过拟合。并行处理。

线性算法

集成学习算法

Ridge Regression 岭回归

$\min ||xw - y||_2^2 + \alpha ||w||_2^2$

- 基于最小二乘法残差平方和最小的优化目标,引入L2正则惩罚项控制收缩量复杂度,使权重对共线性特征变得更加鲁棒。
- 为了收缩权重把(α*权重)添加到最小二乘项中以得到一个非常低的方差。
- * L2范数: 表示向量x中元素的平方和再开平方, 如欧式距离, 度量向量间差异, 如平方差和 L2范数功能: 防止模型为了迎合模型训练而过于复杂出现过拟合能力, 提高模型的泛化能力。

Ridge Regression 岭回归

$\min_{w \in [w]} ||xw - y||^2 + \alpha ||w||^2$

```
#### Ridge 选取最佳参数
                                                                                              RSS
   r = [0,0.00001,0.0001,0.0008,0.001,0.005,0.1,0.4,1,10,15,20,30,40,50]
   ridge scores = []
   for alpha in r alphas:
       score = ridge selector(alpha, norm X train, train target)
       ridge scores.append(score)
   ridge score table = pd.DataFrame(ridge scores, r alphas, columns=['Ridge RMSE'])
   print(ridge score table)
                                                                                                                   β2
   # 用最佳参数进行计算
   r alphas best = [0.0008]
   ridge = make pipeline(RidgeCV(alphas = r alphas best, cv = kfolds))
   ridge model score = cv rmse(ridge, norm X train, train_target)
   plt.plot(r alphas, ridge scores, label='Ridge')
   plt.legend('center')
                                                                            0.046
   plt.xlabel('alpha')
   plt.ylabel('score')
   print("ridge cv score: {0:.6f}".format(ridge model score.mean()))
                                                                            0.045
                                                                           0.044
                                                                            0.043
                                                                            0.042
                                                                                 0.0
```

Lasso Regression Lasso回归

$$min_m \left\{ \frac{1}{2N} ||X^T \omega - y||_2^2 + \alpha ||\omega||_1 \right\}$$

- 基于最小二乘法残差平方和最小的优化目标,引入L1正则惩罚项控制收缩量复杂度,容易产生稀疏的权重,达到变量选择的效果。
- * L1范数: 表示向量x中非零元素的的绝对值之和,又称为曼哈顿距离,最小绝对误差等,用于度量向量间差异,如:绝对误差和 x1和x2为两个向量 L1范数功能:可以实现特征稀疏,去掉一些没有信息的特征

等高线和约束域的切点就是目标函数的最优解。 Lasso约束域是正方形,存在与坐标轴的切点, 使得部分维度特征权重为0,产生稀疏的权重, 达到变量选择的效果。

Ridge方法约束域是圆,其切点只存在圆周上,不与坐标轴相切,虽然也对原本的系数进行压缩,但任一维度上的取值都不为0,最终模型保留了所的变量。

Lasso Regression

```
#### 分析lasso k-fold 过拟合 特征
   alphas mse = [0.00001, 0.0001, 0.006, 0.001, 0.003, 0.008, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]
   lasso model mse = make pipeline(RobustScaler(), LassoCV(max iter=1e7, alphas = alphas mse, cv = kfolds
                               )).fit(norm X train, train target)
   lasso model score = cv rmse(lasso model mse, norm X train, train target)
   print("Lasso cv score: {0:.6f}".format(lasso model score.mean()))
   lcv scores = lasso model mse.steps[1][1].mse path
   plt.plot(alphas_mse, lcv_scores, label='Lasso')
   coeffs = pd.DataFrame(list(zip(norm X train.columns, lasso model mse.steps[1][1].coef )), columns=['Features', 'Coefficients'])
   used coeffs = coeffs[coeffs['Coefficients'] != 0].sort values(by='Coefficients', ascending=False)
   print(used coeffs.shape)
                                                                                                       Features Coefficients
   print(used coeffs)
                                                                                                                      0.530155
                                                                                                            dsoc
   used coeffs values = norm X train[used coeffs['Features']]
                                                                                                   charge end U
                                                                                                                      0.064867
   used coeffs values.shape
                                                                                           11
                                                                                                   charge end I
                                                                                                                      0.030761
   overfit test2 = []
                                                                                           17
                                                                                                                      0.016488
                                                                                                             day
   for i in used coeffs values.columns:
                                                                                                    charge hour
                                                                                                                      0.016295
       counts2 = used coeffs values[i].value counts()
                                                                                                           month
                                                                                                                      0.015879
       zeros2 = counts2.iloc[0]
                                                                                                      dsoc/hour
                                                                                                                      0.008148
       if zeros2 / len(used coeffs values) * 100 > 40:
                                                                                                                      0.007684
           overfit test2.append(i)
                                                                                          13
   print('Overfit Features')
                                                                                                charge max temp
                                                                                                                      0.005540
   print(overfit test2)
                                                                                                 charge end soc
                                                                                                                      0.000267
                                                                                           14
                                                                                                charge min temp
                                                                                                                      0.000127
                                                                                                 charge start I
                                                                                                                     -0.026549
                                                                                           12
                                                                                                     sum charge
                                                                                                                     -0.057633
                                                                                           20
                                                                                                    charge mode
                                                                                                                     -0.076111
                                                                                                 charge start U
                                                                                                                     -0.100276
                                                                                               charge start soc
                                                                                                                     -0.106421
                                                                                           Overfit Features
```

['charge_min_temp', 'charge_mode']

SVR Regression 支持向量机回归

$$\min_{\mathbf{w},\mathbf{b},\mathbf{\epsilon}_{i},\hat{\mathbf{\epsilon}}_{i}} \frac{1}{2} |\mathbf{w}|^{2} + C \sum_{i=1}^{m} (\varepsilon_{i} + \hat{\varepsilon}_{i})$$

支持向量回归能容忍f(x)与y之间有 ε 的偏差,以f(x)为中心,构建一个宽度为2 ε 的间隔带,若训练样本落入此间隔带,认为预测正确。

虚线区域外的数据点到虚线的边界的距离为残差,与线性模型类似,希望这些残差最小。

将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,算法复杂度与样本维数无关。

适用于

- 高维特征空间,在数据维度比样本数量大的情况下仍然有效
- 解决的是一个凸二次规划问题,得到的 将是全局最优解,解决了在神经网络方 法中无法避免的局部极值问题

不适用于

- 要正确选择核函数
- SVM对缺失数据敏感

Gradient boosting 梯度提升树

$$F_{m+1}(x) = F_m(x) + h(x)$$

适用于:

- 拟合复杂的非线性关系。
- 可以灵活处理各种类型的数据,包括连续值和离散值。

不适用于:

- 弱学习器之间存在依赖关系,容易出现过拟合现象。
- 抗干扰能力不强。

XGboost

集成学习法(Ensemble),将基学习器多棵树的预测加到一起,得到最终结果。首先使用训练集和样本真值(即标准答案)训练一棵树,然后使用这棵树预测训练集,得到每个样本的预测值,由于预测值与真值存在偏差,所以二者相减可以得到"残差"。接下来训练第二棵树,此时不再使用真值,而是使用残差作为标准答案。两棵树训练完成后,可以再次得到每个样本的残差,然后进一步训练第三棵树,以此类推。

$$obj(\theta) = \sum_{i}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

适用于:

- 特征的值有缺失的样本。对于特征的值有缺失的样本,XGboost可以自动学习出它的分裂方向。
- 正则化,防止过拟合。XGboost在代价函数里加入了正则项,用于控制模型的复杂度。
- 并行处理。

不适用于:

- 模型复杂
- 解释性差
- 维护成本高

Ridge Regression

用于存在多重共线性(自变量高度相关)数据。 L2正则化惩罚在收缩的时候权重会分散,让权重平方和变小。

Lasso Regression

预测的一组变量是高度相关的,Lasso 有助于特征选择 L1正则化惩罚在收缩的时候权重会集中,会出现稀疏解,为了稀疏而提取特征。

ElasticNet Regression

使用L1来训练并且L2优先作为正则化矩阵。 当有多个相关的特征时,Lasso 会随机挑选他们其中的一个,而ElasticNet则会选择两个。

SVM Regression

适用于高维特征空间,解决的是一个凸二次规划问题,对缺失值敏感

Gradient boosting

能拟合复杂的非线性关系。 可以灵活处理各种类型的数据,包括连续值和离散值。 弱学习器之间存在依赖关系,容易过拟合

XGboost

特征的值有缺失的样本。正则化,防止过拟合。并行处理。

线性算法

集成学习算法

算法结构

Car 10

训练集原始数据: 187

数据处理后: 180

特征维度: 9

'charge_hour', 'dsoc', 'dsoc/hour', 'charge_min_temp',

'charge_end_U', 'charge_start_U', 'dU',

'charge_start_I', 'charge_end_I'

测试集数据: 14

特征维度: 9

 $\begin{pmatrix} X_{1,1} & \dots & X_{1,9} \\ \vdots & \ddots & \vdots \\ X_{180,1} & \dots & X_{180,9} \end{pmatrix}$

K-fold 10折

K-fold随机打散

$$\begin{pmatrix} x_{1,1} & \cdots & x_{1,9} \\ \vdots & \ddots & \vdots \\ x_{18,1} & \cdots & x_{18,9} \end{pmatrix}$$

$$\begin{pmatrix} X_{19,1} & \cdots & X_{19,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{19,1} & \dots & x_{19,9} \\ \vdots & \ddots & \vdots \\ x_{36,1} & \dots & x_{36,9} \end{pmatrix}$$

$$\begin{pmatrix} X_{37,1} & ... & X_{37,9} \\ \vdots & & \vdots \\ X_{54,1} & ... & X_{54,9} \end{pmatrix}$$

$$\begin{pmatrix} X_{145,1} & \dots & X_{145,9} \\ \vdots & \ddots & \vdots \\ X_{162,1} & \dots & X_{162,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{163,1} & \dots & x_{163,9} \\ \vdots & \ddots & \vdots \\ x_{180,1} & \dots & x_{180,9} \end{pmatrix}$$

$Model1_{k-fold1}$ K-fold随机打散

$$\begin{pmatrix} x_{1,1} & ... & x_{1,9} \\ \vdots & \ddots & \vdots \\ x_{18,1} & ... & x_{18,9} \end{pmatrix} \quad \begin{array}{c} \text{predict} \\ \vdots \\ p_{18} \end{pmatrix}$$

$$\begin{pmatrix} t_{1,1} & \dots & t_{1,9} \\ \vdots & \ddots & \vdots \\ t_{14,1} & \dots & t_{1,9} \end{pmatrix} \qquad \begin{pmatrix} t_{p1_1} \\ \vdots \\ t_{p1_14} \end{pmatrix}$$

Model1k-fold2

$$\begin{pmatrix} x_{1,1} & \dots & x_{1,9} \\ \vdots & \ddots & \vdots \\ x_{18,1} & \dots & x_{18,9} \end{pmatrix}$$
 train
$$\begin{pmatrix} x_{1,1} & \dots & x_{19,9} \\ \vdots & \ddots & \vdots \\ x_{180,1} & \dots & x_{180,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{1,1} & \dots & x_{19,9} \\ \vdots & \ddots & \vdots \\ x_{180,1} & \dots & x_{180,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{37,1} & \dots & x_{37,9} \\ \vdots & \ddots & \vdots \\ x_{54,1} & \dots & x_{54,9} \end{pmatrix}$$

$$\vdots \\ x_{162,1} & \dots & x_{162,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{163,1} & \dots & x_{163,9} \\ \vdots & \ddots & \vdots \\ x_{180,1} & \dots & x_{180,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{163,1} & \dots & x_{163,9} \\ \vdots & \ddots & \vdots \\ x_{180,1} & \dots & x_{180,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{163,1} & \dots & x_{163,9} \\ \vdots & \ddots & \vdots \\ x_{180,1} & \dots & x_{180,9} \end{pmatrix}$$

$$\begin{pmatrix} t_{1,1} & \dots & t_{1,9} \\ \vdots & \ddots & \vdots \\ t_{14,1} & \dots & t_{1,9} \end{pmatrix}$$

$$\begin{pmatrix} t_{1,1} & \dots & t_{1,9} \\ \vdots & \ddots & \vdots \\ t_{14,1} & \dots & t_{1,9} \end{pmatrix}$$

$$\begin{pmatrix} t_{1,1} & \cdots & t_{1,9} \\ \vdots & \ddots & \vdots \\ t_{14,1} & \cdots & t_{1,9} \end{pmatrix} \qquad \qquad \qquad \qquad \qquad \begin{pmatrix} t_{p2_1} \\ \vdots \\ t_{p2_14} \end{pmatrix}$$

Model1k-fold3 train $\begin{pmatrix} x_{1,1} & \cdots & x_{1,9} \\ \vdots & \ddots & \vdots \\ x_{18,1} & \cdots & x_{18,9} \end{pmatrix} \quad \text{If all }$ K-fold随机打散 $\begin{pmatrix} x_{145,1} & \cdots & x_{145,9} \\ \vdots & \ddots & \vdots \\ x_{162,1} & \cdots & x_{162,9} \end{pmatrix}$

$$\begin{pmatrix} x_{18,1} & \cdots & x_{18,9} \\ x_{19,1} & \cdots & x_{19,9} \\ \vdots & \ddots & \vdots \\ x_{36,1} & \cdots & x_{36,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{37,1} & \cdots & x_{37,9} \\ \vdots & \ddots & \vdots \\ x_{162,1} & \cdots & x_{162,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{145,1} & \cdots & x_{145,9} \\ \vdots & \ddots & \vdots \\ x_{162,1} & \cdots & x_{162,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{163,1} & \cdots & x_{163,9} \\ \vdots & \ddots & \vdots \\ x_{180,1} & \cdots & x_{180,9} \end{pmatrix}$$

$$\begin{pmatrix} x_{163,1} & \cdots & x_{163,9} \\ \vdots & \ddots & \vdots \\ x_{114,1} & \cdots & x_{19,9} \end{pmatrix}$$

$$\begin{pmatrix} t_{1,1} & \cdots & t_{1,9} \\ \vdots & \ddots & \vdots \\ t_{14,1} & \cdots & t_{1,9} \end{pmatrix}$$

$$\begin{pmatrix} t_{p3,1} \\ \vdots \\ t_{p3,14} \end{pmatrix}$$

$Model1_{k-fold10}$ train K-fold随机打散 X36,1 X162,1

$$\begin{pmatrix} x_{163,1} & \dots & x_{163,9} \\ \vdots & \ddots & \vdots \\ x_{180,1} & \dots & x_{180,9} \end{pmatrix} \xrightarrow{predict} \begin{pmatrix} p_{163} \\ \vdots \\ p_{180} \end{pmatrix}$$

$$\begin{pmatrix} t_{1,1} & \dots & t_{1,9} \\ \vdots & \ddots & \vdots \\ t_{180,1} & \dots & t_{180,1} \end{pmatrix}$$

- •数据分析与清洗
- •模型设计
- 算法结构
- •可移植性与工程优化

初赛阶段

- DNN 深度神经网络
- 复杂的梯度提升树

初赛阶段:

最终的B榜排名第二 与第一差距0.002

缺点:

- 训练时间长, 难以找到全局最优解
- 模型重, 灵敏性差
- 数据量不足够支撑模型
- 模型受数据分布影响明显

决赛阶段: 化繁为简

- 更快的训练速度,数十秒
- 解释性更强,更轻的模型,融合算法
- 数据分布差异鲁棒性更强,适用于更广的数据分布
- 结合算法特点更简洁的异常值处理
- 模型对自身参数不敏感,可以保证参数在一定范围 内变化,得分保持在一个很高的水平上
- 模型对更换数据集不敏感,以更少的数据量稳定的得到领先的分数

$$\xrightarrow{\text{xi } - Q_1(x)}$$

$$Q_3(x) - Q_1(x)$$
 合理建树

小能量模型特征


```
def car10_feature(ca, train_ornot):
    car = ca.copy()
    car['sum_charge'] = car['charge_hour'].cumsum()

if train_ornot == True:
    # 第一个interval_min为上年数据
    car.loc[0, 'interval_min'] = np.nan
    # 不区分快慢充电
    car['charge_mode'] = 3
    # 删除异常数据
    car.drop(car.loc[car['dsoc'] <= 1].index.tolist(), inplace=True)

if train_ornot == False:
    car['charge_mode'] = 3
    return car
```

```
def car15_feature(ca, train_ornot):
    car = ca.copy()
    car['sum_charge'] = car['charge_hour'].cumsum()

if train_ornot == True:
    # 第一个interval_min为上年数据
    car.loc[0, 'interval_min'] = np.nan
# 不区分快慢充电
    car['charge_mode'] = 3
# 删除异常数据
    car.drop(car.loc[car['dsoc'] <= 1].index.tolist(), inplace=True)
    car.drop(car.loc[car['charge_hour'] > 5].index.tolist(), inplace=True)

if train_ornot == False:
    car['charge_mode'] = 3
    return car
```

```
def car16_feature(ca, train_ornot):
    car = ca.copy()
    car['sum_charge'] = car['charge_hour'].cumsum()

if train_ornot == True:
    # 第一个interval_min为上车数据
    car.loc[0, 'interval_min'] = np.nan
    # 不区分快慢充电
    car['charge_mode'] = 3
    # 删除异常数据
    car.drop(car.loc[car['dsoc'] <= 1].index.tolist(), inplace=True)
    car.drop(car.loc[car['charge_hour'] > 5].index.tolist(), inplace=True)
    car.drop(car.loc[car['dsoc/hour'] > 100].index.tolist(), inplace=True)

if train_ornot == False:
    car['charge_mode'] = 3
    return car
```


新能源汽车数据类型决定了,不能靠堆砌数据, 数据预处理质量与模型 算法方法才是核心

关于工程实践的思考

- 边缘计算场景:基于线性模型与弱学习器,可只需较小的算力和较小的成本在车辆上应用,并能在数秒内完成预测。
- 上云:车联网,大数据统一汇总云平台, 对数据分布类似的车型一起处理。

新能源汽车大数据创新创业大赛

电动汽车动力电池充电能量预测

感谢评委与同学们的聆听 谢谢

