Corrigé: Génération d'objets combinatoires

Partie I. Génération des parties d'un ensemble

Question 1.

- a) À toute application $f \in \mathcal{F}(\llbracket 1, n \rrbracket, \{0, 1\})$ associons l'ensemble $A_f = \{k \in \llbracket 1, n \rrbracket \mid f(k) = 1\}$. Alors l'application $f \mapsto A_f$ est l'application réciproque de $A \mapsto \chi_A$.
- b) Par unicité de la décomposition d'un entier en base 2, l'application $(b_1, \ldots, b_n) \mapsto \sum_{k=1}^n b_k 2^{k-1}$ est une bijection de $\{0,1\}^n$ vers $[\![0,2^n-1]\!]$. Par ailleurs, il est clair que l'application $f \mapsto (f(1),\ldots,f(n))$ est une bijection de $\mathcal{F}([\![1,n]\!],\{0,1\})$ vers $\{0,1\}^n$. On en déduit, car la composée de plusieurs bijections est encore une bijection, que l'application $\phi: A \mapsto \sum_{k=1}^n \chi_A(k) 2^{k-1}$ réalise une bijection entre \mathscr{P}_n et $[\![0,2^n-1]\!]$.

Question 2.

a) On définit la fonction :

ou si on préfère utiliser une fonctionnelle :

```
let ajoute k = map (function l -> k::l) ;;
```

b) On dispose de la relation : $\mathcal{P}_n = \mathcal{P}_{n-1} \cup (n \oplus \mathcal{P}_{n-1})$ (cette union étant disjointe). En effet, \mathcal{P}_{n-1} est l'ensemble des parties de $[\![1,n]\!]$ qui ne contiennent pas n, et $n \oplus \mathcal{P}_{n-1}$ celles qui le contiennent. Par ailleurs, $\mathcal{P}_0 = \{\emptyset\}$; on en déduit la fonction :

Montrons par récurrence sur n que parties1 n retourne la liste des éléments de \mathcal{P}_n rangés par ordre croissant.

- C'est clair si n = 0.
- Si $n \ge 1$, supposons le résultat acquis au rang n 1. Par hypothèse de récurrence, **q** est rangé par ordre croissant. Soit $A \in \mathcal{P}_{n-1}$. Puisque $n \notin A$ on a $\phi(n \oplus A) = 2^{n-1} + \phi(A)$. De ceci il résulte que **ajoute n q** retourne une liste d'ensembles rangés par ordre croissant. Or pour tout $(A, B) \in \mathcal{P}_{n-1} \times (n \oplus \mathcal{P}_{n-1})$,

$$\phi(A) \le \sum_{k=1}^{n-1} 2^{k-1} = 2^n - 1 < 2^n \le \phi(B).$$

Ceci montre que q @ (ajoute n q) est encore rangé par ordre croissant.

Question 3.

a) On obtient successivement:

$$A_1 = \{4\}, \ A_2 = \{3,4\}, \ A_3 = \{2,3,4\}, \ A_4 = \{1,2,3,4\}, \ A_5 = \{1,3,4\}, \ A_6 = \{2,4\}, \ A_7 = \{1,2,4\}, \\ A_8 = \{1,4\}, \ A_9 = \{3\}, \ A_{10} = \{2,3\}, \ A_{11} = \{1,2,3\}, \ A_{12} = \{1,3\}, \ A_{13} = \{2\}, \ A_{14} = \{1,2\}, \\ A_{15} = \{1\}, \ A_{16} = \emptyset.$$

b) Montrons par récurrence sur $n \in \mathbb{N}^*$ que A_1, \ldots, A_{2^n} sont définis, que $A_{2^n} = \emptyset$, et que $\mathscr{P}_n = \{A_p \mid p \in [1, 2^n]\}$.

- C'est clair si n = 1 car alors $A_1 = \{1\}$, $A_2 = \emptyset$.
- Si $n \ge 2$, supposons le résultat acquis au rang n-1. On a $A_1 = \{n\}$ et $A_2 = \{n-1,n\} = A_1' \cup \{n\}$, en notant $A_1' = \{n-1\}$. Par hypothèse de récurrence, $A_1', \ldots, A_{2^{n-1}-1}'$ sont définis, constituent les éléments de $\mathcal{P}_{n-1} \setminus \{\emptyset\}$, et $A_{2^{n-1}-1}' = \{1\}$. On en déduit que $A_1, \ldots, A_{2^{n-1}}$ sont définis, constituent les éléments de $n \oplus \mathcal{P}_{n-1}$, et $A_{2^{n-1}} = \{1,n\}$. Mais alors $A_{2^{n-1}+1} = \{n-1\}$, et en appliquant de nouveau l'hypothèse de récurrence, on en déduit que $A_{2^{n-1}+1}, \ldots, A_{2^{n-1}+2^{n-1}}$ sont définis, constituent les éléments de \mathcal{P}_{n-1} , et $A_{2^n} = \emptyset$. Sachant que $\mathcal{P}_{n-1} \cup (n \oplus \mathcal{P}_{n-1}) = \mathcal{P}_n$, on peut conclure quant au résultat au rang n.

Question 4.

a) Il est naturel d'opérer par filtrage :

b) La fonction qui suit engendre la liste $(A_1 = \{n\}, A_2, A_3, ..., A_{2^n} = \emptyset)$

Partie II. Génération des permutations

Question 5.

a) $c_i(\sigma)$ est le nombre d'entiers j strictement supérieurs à i qui apparaissent avant i dans la liste $\langle \sigma(1), \dots, \sigma(n) \rangle$. Ainsi :

$$\sigma = \langle 2, 1, 4, 5, 3 \rangle \Rightarrow c(\sigma) = (1, 0, 2, 0, 0).$$

b) La somme $\sum_{i=1}^{n} c_i(\sigma)$ représente le nombre de couples $(i,j) \in [\![1,n]\!]^2$ tel que i < j et $\sigma^{-1}(j) < \sigma^{-1}(i)$. Mais σ est une bijection, donc l'application $(i,j) \mapsto (\sigma(i),\sigma(j))$ est une bijection de $[\![1,n]\!]^2$ dans lui-même, et en posant $(i',j') = (\sigma(i),\sigma(j))$, on a :

Question 6.

- a) On obtient successivement : $\ell_5 = \langle 5 \rangle$, $\ell_4 = \langle 5, 4 \rangle$, $\ell_3 = \langle 5, 3, 4 \rangle$, $\ell_2 = \langle 5, 3, 2, 4 \rangle$, $\ell_1 = \langle 5, 3, 2, 4, 1 \rangle$.
- b) Il est clair que ℓ_1 est une liste de longueur n formée des n premiers entiers naturels non nuls, donc représente une permutation. Montrons pour tout $k \in [\![1,n]\!]$ que $c_k(\ell_1) = \gamma_k$.
 - − Si k = 1, on sait que ℓ_1 est de la forme $\langle a_1, \dots, a_{\gamma_1}, 1, a_{\gamma_1+1}, \dots, a_{n-1} \rangle$, chaque a_i étant supérieur ou égal à 2 (1 vient d'être inséré après l'élément d'ordre γ_1). On a donc bien $c_1(\ell_1) = \gamma_1$.
 - Si k > 1, la définition de c_k montre que l'on peut supprimer de la liste ℓ_1 les entiers inférieurs strictement à k sans modifier la valeur de $c_k(\ell_1)$. Autrement dit, $c_k(\ell_1) = c_k(\ell_k)$, et cette dernière valeur, comme pour le cas k = 1, vaut clairement γ_k .

Ainsi, $c(\ell_1) = (\gamma_1, \dots, \gamma_n)$.

c) Nous venons de montrer que l'application $d: \gamma \mapsto \ell_1$ vérifie : $c \circ d = \operatorname{Id}_{K_n}$; autrement dit, elle est injective. Sachant que card $\mathfrak{S}_n = n! = \operatorname{card} K_n$, il s'agit en fait d'une bijection, et $c = d^{-1}$.

Question 7.

a) On définit:

b) Nous allons utiliser une fonction auxiliaire aux k qui calcule la liste ℓ_k lorsque $k \in [1, n]$.

On notera que c_k est stocké dans la case **c.** (k-1) car les vecteurs sont indexés à partir de 0.

Question 8.

a) On peut bien entendu procéder par récurrence, ou bien faire un calcul direct par télescopage :

$$\sum_{k=0}^{j} k.k! = \sum_{k=0}^{j} (k+1-1).k! = \sum_{k=0}^{j} ((k+1)! - k!) = (j+1)! - 1.$$

b) Si $p \in [[1, n! - 1]]$, il existe un unique entier $j \in [[1, n - 1]]$ tel que $j! \le p \le (j + 1)! - 1$. Une condition nécessaire d'existence de la décomposition est que $d_{j+1} = \cdots = d_n = 0$ car si l'une de ces valeurs est non nulle la somme dépasse (j + 1)!.

Par ailleurs, si une telle décomposition existe on a : $p = d_j j! + \sum_{k=1}^{j-1} d_k k!$, et la question précédente montre que $0 \le \sum_{k=1}^{j-1} d_k k! \le j! - 1$. Ceci prouve que d_j est le quotient de la division euclidienne de p par j!, soit $d_j = \left\lfloor \frac{p}{j!} \right\rfloor$.

- c) Ce qui précède assure l'unicité d'une telle décomposition, à supposer qu'elle existe. Nous allons prouver son existence en raisonnant par récurrence sur *p*.
 - Si p = 0, on a clairement $d_1 = \cdots = d_{n-1} = 0$.
 - Si p > 0, supposons le résultat acquis jusqu'au rang p 1. Par hypothèse de récurrence, $p \left\lfloor \frac{p}{j!} \right\rfloor j!$ (l'entier j étant celui défini à la question précédente) admet une unique décomposition $\sum_{k=0}^{j-1} d_k k!$, et en posant $d_j = \left\lfloor \frac{p}{j!} \right\rfloor$, on obtient bien $p = \sum_{k=0}^{j} d_k k!$ avec $d_j < \frac{(j+1)!}{j!} = j+1$.

Question 9.

a) On définit la fonction :

b) Pour tout $j \in [\![1,n]\!]$, posons $u_{j-1} = ju_j + \tilde{d}_{j-1}$ avec $\tilde{d}_{j-1} \in [\![0,j-1]\!]$ (autrement dit, \tilde{d}_{j-1} est le reste de la division euclidienne de u_{j-1} par j). Il s'agit de prouver que $\tilde{d} = d$.

On a
$$(j-1)!u_{j-1} = j!u_j + \tilde{d}_{j-1}(j-1)!$$
 donc par télescopage $u_0 - n!u_n = \sum_{i=1}^n \tilde{d}_{j-1}(j-1)! = \sum_{k=0}^{n-1} \tilde{d}_k k!$.

Sachant que $u_0 = p$, il suffit de prouver que $u_n = 0$ et d'invoquer l'unicité de la décomposition établie à la question 8 pour en déduire que $\tilde{d} = d$.

Or il est aisé d'établir par récurrence que $0 \le u_j \le \frac{n!-1}{j!}$, donc $0 \le u_n \le 1 - \frac{1}{n!}$ et s'agissant d'un entier, $u_n = 0$.

On en déduit la fonction :

```
let lehmer n p =
let d = make_vect n 0 in
let u = ref p in
for j = 1 to n - 1 do
  u := !u / j ;
  d.(n-1-j) <- !u mod (j+1)
done ;
d ;;</pre>
```

Question 10. La question 8 établit une bijection entre un entier $p \in \llbracket [0,n!-1 \rrbracket]$ et un n-uplet $(d_{n-1},d_{n-2},\ldots,d_1,d_0) \in \mathbb{K}_n$. Compte tenu de la question 6, l'application $f: p \longmapsto c^{-1}(d_{n-1},\ldots,d_1,d_0)$ réalise une bijection entre $\llbracket [0,n!-1 \rrbracket]$ et \mathfrak{S}_n . Il s'agit donc d'énumérer les permutations $f(0),f(1),\ldots,f(n!-1)$.