IFCE - Campus Maracanaú Teoria da Computação

Ciência da Computação Prof. Thiago Alves

3ª Lista de Exercícios

Aluno(a):	Matrícula:	
1 11 a110 (a).		

- 1. Mostre uma expressão regular para gerar a linguagem $B = \{w \in \{0,1\}^* \mid \text{o tamanho de } w \text{ é divisível por } 3\}.$
- 2. Seja $C = \{w \in \{0,1\}^* \mid \text{cujo quarto símbolo de trás pra frente em } w \notin 1\}$. Faça uma expressão regular para gerar a linguagem C.
- 3. Dê a descrição da linguagem definida pela expressão regular $(1 + \epsilon)(00*1)*0*$.
- 4. Faça uma expressão regular para definir a linguagem $D = \{w \in \{0,1\}^* \mid w \text{ tem no máximo um par de 1's consecutivos}\}.$
- 5. Apresente uma expressão regular para definir o conjunto de strings que representam constantes numéricas de uma linguagem de programação de sua escolha.
- 6. Para qualquer linguagem L, seja $L^r = \{w^r \mid w \in L\}$. Mostre que se L é regular então L^r também é regular. **Dica**: Mostre como construir uma expressão regular E^r que gera L^r a partir da expressão regular E que gera L.
- 7. Seja $F = \{w \in \{0,1\}^* \mid w = xy, x \in \{1\}^*, y \in \{0\}^* \text{ e } y \text{ tem tamanho par.}\}$. Mostre uma expressão regular para gerar a linguagem F^r .
- 8. Transforme a expressão regular $00(0+1)^*$ em um Autômato Finito Não Determinístico.
- 9. Converta a expressão regular ∅* em um autômato finito não determinístico.
- 10. Construa um autômato finito não determinístico a partir da expressão regular $(01 + 001 + 010)^*$.
- 11. Mostre uma expressão regular para definir a linguagem $G=\{w\in\{0,1\}^*\mid w$ não possui 110 como substring $\}$.
- 12. Transforme o autômato finito determinístico abaixo em uma expressão regular.

