Introduction to Tensor Spaces Appunti del Corso

Mirko Torresani

18 gennaio 2025

1 Fatti Introduttivi

Per noi gli spazi vettoriali saranno di dimensione finita, con campo base \mathbb{C} .

Definizione 1.1. Il prodotto tensoriale $V_1 \otimes \cdots \otimes V_n$ è definito come lo spazio $\operatorname{Mult}(V_1, \dots, V_n; \mathbb{C})$.

Definizione 1.2. Dato un tensore $f \in V \otimes W$, il suo rango rk f è

$$\operatorname{rk} f = \min\{s \mid f = \sum_{i=1}^{s} v_i \otimes w_i\}.$$

Proposizione 1.3. Il rango $\operatorname{rk} f$ è equivalentemente definibile come

- (i) il rango del morfismo $V^* \to V$ associato a f;
- (ii) posto $f = \sum c_{ij}v_i \otimes w_j$, con $(v_i)_i$ e $(w_j)_j$ rispettive basi, il rango di f è il rango della matrice $(c_{ij})_{i,j}$.

Nel caso in cui abbiamo un prodotto tensore di più spazi, le cose si complicano.

Definizione 1.4. Dato un elemento $f \in V_1 \otimes \cdots \otimes V_d$, il rango rk f è definito come

$$\operatorname{rk} f = \min\{s \mid f = \sum_{i=1}^{s} v_{j,1} \otimes \cdots \otimes v_{j,d}\}\$$

Un argomento, storicamente molto importate, riguarda il calcolo del rango tensoriale. Per una sua prima trattazione introduciamo la seguente notazione: se f è un vettore in $V_1 \otimes \cdots \otimes V_d$, allora f induce mappe

$$f_k \colon V_k^* \to \bigotimes_{i \neq k} V_i \quad f_k^{\dagger} \colon \bigotimes_{i \neq k} V_i^* \to V_k$$

per ogni k.

Definizione 1.5. Un tensore $f \in V_1 \otimes \cdots \otimes V_d$ si dice V_i -conciso, o i-conciso, se f_i .

Definizione 1.6. Il multi-rango di f è definito come

$$\operatorname{mrk} f = (\operatorname{rk} f_1, \dots, \operatorname{rk} f_d) =: (r_1, \dots, r_d),$$

dove rk f_k è il rango di f_k come mappa lineare (o equivalentemente il rango della mappa trasporta f_k^{\dagger}).

Per il resto della trattazione useremo la notazione di Einstein: quando lo stesso indice compare come pedice e apice, allora viene intesa una sommatoria rispetto a quell'indice, se non diversamente indicato.

Proposizione 1.7. Sia f un tensore, allora

$$\max_i r_i \le \operatorname{rk} f \le \min_i \prod_{j \ne i} r_j$$

Dimostrazione. Sia r il rango di f, e poniamo

$$f = \sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{d,i}.$$

L'immagine della funzione trasporta f_k^{\dagger} , da $\bigotimes_{i\neq k} V_i^* \to V_k$, è contenuta nel generato $\langle v_{k,1},\ldots,v_{k,r}\rangle$, e quindi l'immagine ha dimensione ha al più dimensione r.

Se $\{u_{i,1},\ldots,u_{i,r_i}\}$ è una base per l'immagine di f_i^{\dagger} , allora f si può scrivere come

$$f = \alpha^{j_1, \dots, j_d} u_{1, j_1} \otimes \dots \otimes u_{d, j_d}$$

e per ognik

$$f = u_{1,j_1} \otimes \cdots \otimes u_{k-1,j_{k-1}} \otimes \left[\sum_{j_k=1}^{r_k} \alpha^{j_1,\dots,j_d} u_{k,j_k} \right] \otimes u_{k+1,j_{k+1}} \otimes \cdots \otimes u_{d,j_d}.$$

Conseguentemente per ogni k, il rango r è al più $\prod_{i\neq k} r_i$.

Corollario 1.8. Se rk f = 1, allora rk $f_k = 1$ per ogni k.

Corollario 1.9. Fissato un certo k, se $r_j = 1$ per ogni $j \neq k$ allora $\operatorname{rk} f_k = \operatorname{rk} f = 1$.

Proposizione 1.10. Sia f un tensore 1-conciso, tale che $r_1 \ge \cdots \ge r_d$ e che $\operatorname{rk} f = r_1$. Allora $f_1(V_1^*)$ è generato precisamente da r_1 tensori indecomponibili in $V_2 \otimes \cdots \otimes V_d$.

Dimostrazione. Sappiamo che $f = \sum_{i=1}^{r_1} v_{1,i} \otimes \cdots \otimes v_{d,i}$ via vettori arbitrari. Conseguentemente, l'immagine di

$$f_1^{\dagger} \colon \bigotimes_{i>1} V_i^* \to V_1$$

è generata da $\{v_{1,1},\ldots,v_{1,r_1}\}$. Siccome il rango di f_1 , e quindi quello di f_1^{\dagger} , è per ipotesi r_1 , quei vettori devono essere necessariamente indipendenti. Inoltre, per ipotesi,

il tensore f è 1-conciso, e quindi f_1 è iniettivo. In definitiva, dim $V_1^* = \dim V_1 = r_1$ e $\{v_{1,1}, \ldots, v_{1,r_1}\}$ formano una base di V_1 .

Consideriamo quindi la base duale $\{v_1^1, \ldots, v_1^{r_1}\}$ di V_1^* . Per costruzione

$$f(V_1^*) = \langle f(v_1^1), \dots, f(v_1^{r_1}) \rangle = \langle v_{2,i} \otimes \dots \otimes v_{d,i} \rangle_{i=1,\dots,r_1}.$$

Come non-esempio consideriamo $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$, ed il tensore

$$f := e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_0 \otimes e_1 \otimes e_0 \otimes e_0.$$

Si può osservare che in effetti è 1-conciso, e che

$$f(V_1^*) = \langle e_0 \otimes e_1 + e_1 \otimes e_0, e_0 \otimes e_0 \rangle.$$

Tuttavia quest'ultima espressione non può essere ricondotta ad uno span di tensori indecomponibili. Inoltre, $\operatorname{mrk} f$ è (2,2,2). Conseguentemente, $\operatorname{rk} f=3$ come ci si può immaginare.

Proposizione 1.11. Sia $f \in V_1 \otimes \cdots \otimes V_d$. Il rango di f coincide col minimo numero di elementi indecomponibili necessari per generare uno spazio che contiene $f_1(V_1^*)$.

Dimostrazione. Se r è il rango di f, allora f si scrive come $\sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{d,i}$ e conseguentemente $f_1(V_1^*)$ è contenuto in $\langle v_{2,i} \otimes \cdots \otimes v_{d,i} \rangle_{i=1}^r$.

D'altra parte, supponiamo che $f_1(V_1^*)$ sia contenuto in $\langle v_{2,i} \otimes \cdots \otimes v_{d,i} \rangle_{i=1}^r$. Fissiamo una base $\{v_{1,1}, \ldots, v_{1,m}\}$ di V_1 , ed una conseguente base duale. Allora

$$f_1(v_1^k) = \alpha^{k,i} v_{2,i} \otimes \cdots \otimes v_{d,i} \quad 1 \le k \le r,$$

е

$$f = \alpha^{k,i} \, v_{1,k} \otimes v_{2,i} \otimes \cdots \otimes v_{d,i}. \qquad \Box$$

Consideriamo ora il caso in cui tensoriamo solo per tre spazi.

Definizione 1.12. Siano $A, B \in C$ tre spazi vettoriali su \mathbb{C} . Inoltre sia $\{a_1, \ldots, a_n\}$ una base di A, e sia V un sottospazio di $B \otimes C$ con base $\{v_1, \ldots, v_m\}$. Una modificazione di $f \in A \otimes B \otimes C$ è una somma della forma

$$f + \sum_{i,j} a_i \otimes v_j$$
.

Analogo per V in $A \otimes B$ o in $A \otimes C$.

Definizione 1.13. Dato $V_1 \subseteq B \otimes C$, $V_2 \subseteq A \otimes C$ e $V_3 \subseteq A \otimes B$ il rango minimale modulo tre sottospazi V_1 , V_2 e V_3 è

 $\min \{r \mid \tilde{f} \mod V_1 \mid V_2 \mid V_3\} := \min \{r \mid \tilde{f} \mod \tilde{f} \mid \tilde{f} \mod \tilde$

Proposizione 1.14. Sia $f \in A \otimes B \otimes C$ un tensore conciso di rango r, e poniamo $f = \sum_{k=1}^{m} g_k \otimes c_k$ con $g_i \in A \otimes B$ e $\{c_1, \ldots, c_m\}$ una base di C. Se $g_1 \neq 0$, esistono constanti $\lambda_2, \ldots, \lambda_m \in \mathbb{C}$ tali che

$$\hat{f} = \sum_{j=2}^{m} (g_j - \lambda_j g_1) \otimes c_j \in A \otimes B \otimes (c_1^{\perp})^*$$

ha rango al più r-1. Se $\operatorname{rk} g_1=1$, allora \hat{f} ha rango almeno r-1 qualunque siano le costanti.

Dimostrazione. Sappiamo che esistono h_1, \ldots, h_r , tensori di rango 1 in $A \otimes B$, che generano uno spazio contenente $f_3(C^*)$. Quindi

$$g_j = \alpha^{j,t} h_t \in A \otimes B.$$

Conseguentemente

$$f = \alpha^{j,t} h_t \otimes c_j.$$

Possiamo assumere, senza perdita di generalità, $\alpha^{1,1} \neq 0$, e porre $\lambda_j := \alpha^{j,1}/\alpha^{1,1}$. Otteniamo quindi

$$\hat{f} = \sum_{j=2}^{m} (g_j - \lambda_j g_1) \otimes c_j$$

$$= \sum_{j=2}^{m} \left[\alpha^{j,t} h_t - \frac{\alpha^{j,1}}{\alpha^{1,1}} \alpha^{1,t} h_t \right] \otimes c_j$$

$$= \sum_{j=2}^{m} \left[\sum_{t=2}^{r} \left(\alpha^{j,t} - \frac{\alpha^{j,1} \alpha^{1,t}}{\alpha^{1,1}} \right) h_t \right] \otimes c_j$$

Ergo $\hat{f}_3(c_1^{\perp})$ è contenuto in $\langle h_2, \dots, h_r \rangle$, che uno span di tensori di rango 1. Quindi \hat{f} ha rango al più r-1.

Se il rango di $g_1 \in A \otimes B$ è 1, allora possiamo tranquillamente porre $h_1 = g_1$. In questo caso $\alpha^{1,t} = 0$ per ogni t > 1 e \hat{f} assume la forma seguente, indipendentemente dalle costanti $\lambda_j \in \mathbb{C}$:

$$\hat{f} = \sum_{j=2}^{m} \sum_{t=2}^{r} \alpha^{j,t} h_t \otimes c_j = \sum_{t=2}^{t} h_t \otimes \left[\sum_{j=2}^{m} \alpha^{j,t} c_j \right].$$

Ma questo implica che $\hat{f}_3(c_1^{\perp})$ coincide con $\langle h_2, \ldots, h_r \rangle$, da cui

$$\operatorname{rk} \hat{f} > \operatorname{rk} \hat{f}_3 = r - 1$$
.

Corollario 1.15. Sia $f \in A \otimes B \otimes C$, e sia f un tensore C-conciso. Fissato un sottospazio W di C^* , allora

$$\operatorname{rk} f \geq \operatorname{minrk}(f \mod 0 \ 0 \ f_3(W)) + \dim W$$
,

e l'uquaglianza si ottiene se f(W) è generato da tensori di rango 1.

Dimostrazione. Applichiamo la proposizione precedente per un numero di volte pari a $\dim W.$

Corollario 1.16. Se $f \in A \otimes B \otimes C$ è conciso, e $U \subseteq A^*$, $V \subseteq B^*$, $W \subseteq C^*$ sono sottospazi, allora

$$\operatorname{rk} f \geq \operatorname{minrk}(f \mod f(U) \ f(V) \ f(W)) + \dim U + \dim V + \dim W$$

e se f(U), f(V), f(W) sono generati da tensori dai rango 1, vale l'uguaglianza.

2 Algebre Tensoriali

Parliamo brevemente di algebre tensoriali.

Definizione 2.1. Dato un gruppo G, un G-modulo è, in questo contesto, un $\mathbb{C}[G]$ -modulo nel senso dell'algebra commutativa.

Definizione 2.2. Se G agisce su un \mathbb{C} -spazio V e W (tramite un morfismo $G \underset{\rho}{\rightarrow} GL(V)$)

- (i) G agisce su V^* via $\rho^*(g) = [\rho(g)^{-1}]^{\dagger}$;
- (ii) G agisce su $V \oplus W$ via $g \cdot (v, w) = (g \cdot v, g \cdot w)$;
- (iii) G agisce su $V \otimes W$ via $g \cdot (v \otimes w) = (g \cdot v) \otimes (g \cdot w)$.

Definizione 2.3. L'algebra tensoriale (TV, \otimes) è definita come

$$TV := \bigoplus_{d>0} V^{\otimes d}$$
.

Vogliamo definire l'algebra simmetrica.

Definizione 2.4. I *d*-tensori simmetrici sono

$$S^{d}V := \{ \alpha \in V^{\otimes d} \mid \sigma \cdot \alpha = \alpha \ \forall \sigma \in S_d \},\,$$

e l'algebra simmetrica è

$$SV := \bigoplus_{d \ge 0} S^d V .$$

Definiamo ora la proiezione simmetrica π_S da TV in SV:

$$\pi_S(v_1 \otimes \cdots \otimes v_d) = \frac{1}{d!} \sum_{\sigma \in S_d} \sigma \cdot (v_1 \otimes \cdots \otimes v_d).$$

Proposizione 2.5. Lo spazio S^dV è generato dall'insieme $\{v^{\otimes d} \mid v \in V\}$.

Dimostrazione. Basta osservare che

$$\sum_{\sigma \in S_d} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)} = \sum_{\substack{I \subseteq \{1, \dots, d\} \\ I \neq \varnothing}} (-1)^{d-|I|} \left[\sum_{i \in I} v_i \right]^{\otimes d},$$

e che per ogni $\alpha \in S^dV$ la somma precedente coincide con $d! \cdot \alpha$.

L'algebra SVrisulta effettivamente un algebra, grazie all'introduzione del prodotto simmetrico \odot su SV come

$$\alpha \odot \beta = \pi_S(\alpha \otimes \beta)$$
.

Osservazione. Se v_1, \ldots, v_n è una base di V, una base di S^dV è data da

$$\mathcal{B}_{S^dV} = \{v_{j_1} \odot \cdots \odot v_{j_d}\}_{1 < j_1 < \cdots < j_d < n}$$

e quindi

$$\dim S^dV = \binom{n+d-1}{d}.$$

In seguito sarà molto importante parlare di decomposizione di tensori. Un esempio in quella direzione viene ai prossimi risultati.

Proposizione 2.6. Dato un tensore $f \in S^2V$ di rango r, esso ammette una decomposizione della forma

$$f = \sum_{i=1}^{r} v_i \otimes v_i .$$

Proposizione 2.7. La rappresentazione di GL(V) sullo spazio vettoriale S^2V è irriducibile.

Dimostrazione. Sia $W\subseteq S^2V$ un GL(V)-sottomodulo contenente un tensore f non nullo. Sicuramente possiamo scrivere

$$f = \sum_{i=1}^{r} v_i \otimes v_i \quad v_i \in V, \lambda_i \in \mathbb{C}.$$

con v_1, \ldots, v_r indipendenti.

Sia un morfismo $g \in GL(V)$ per cui $g(v_1) = 2v_1$ e $g(v_i) = v_i$ per ogni i > 1. Allora vale che

$$W \ni \frac{1}{3}(g \cdot f - f) = v_1 \otimes v_1,$$

e quindi

$$S^{2}V = \langle (g \cdot v_{1}) \otimes (g \cdot v_{1}) \rangle_{g \in GL(V)} \subseteq W$$

Possiamo analogamente definire un rango simmetrico.

Definizione 2.8. Il rango simmetrico di $f \in S^dV$ è

$$\operatorname{rk}_{S} f := \min\{r \in \mathbb{N} \mid f = v_{1}^{\otimes d} + \dots + v_{r}^{\otimes d}\}.$$

Sicuramente rk $f \leq \text{rk}_S f$, e vale l'uguaglianza per d=2. È una congettura se sono uguali, detta congettura di Comon. Nel 2018 Shitov [2] ha pensato di trovare un controesempio, smentito da sé stesso nel 2024 [1].

Proposizione 2.9. Posto $\mathbb{C}[V]$ l'algebra delle funzioni $V \to \mathbb{C}$ generata da V^* , lo spazio S^dV^* è isomorfo a $\mathbb{C}[V]_d \simeq \mathbb{C}[x_1, \dots, x_n]_d$.

Dimostrazione. La mappa che funziona è

$$\Phi \colon S^d V^* \to \mathbb{C}[V]_d, \ \phi \mapsto f_{\phi},$$

con

$$f_{\phi}(v) = \phi(v, \dots, v)$$
.

Definizione 2.10 (Waring rank). Per ogni $f \in \mathbb{C}[x_1, \dots, x_n]_d$ il rango di Waring è

$$\operatorname{rk}_S f = \min\{r \in \mathbb{N} \mid f = l_1^d + \dots + l_r^d, \ l_i \text{ forma lineare}\}.$$

Definizione 2.11. I d-tensori antisimmetrici sono

$$\Lambda^d V := \{ \alpha \in V^{\otimes d} \mid \sigma \cdot \alpha = \operatorname{sgn}(\sigma) \ \alpha \ \forall \sigma \in S_d \},\,$$

e l'algebra antisimmetrica è

$$\Lambda V := \bigoplus_{d > 0} \Lambda^d V .$$

Definiamo la proiezione antisimmetrica π_{Λ} come

$$\pi_{\Lambda}(v_1 \otimes \cdots \otimes v_d) = \frac{1}{d!} \sum_{\sigma \in S_d} \operatorname{sgn}(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)}.$$

Analogamente a quanto fatto prima definiamo il prodotto antisimmetrico (o wedge) come

$$\alpha \wedge \beta \coloneqq \pi_{\Lambda}(\alpha \otimes \beta)$$
.

Proposizione 2.12. Un insieme finito v_1, \ldots, v_d è linearmente indipendente se e solo se

$$v_1 \wedge \cdots \wedge v_d = 0$$
.

Corollario 2.13. Una base $\mathcal{B}_{\Lambda^d V}$ di $\Lambda^d V$ è

$$\mathcal{B}_{\Lambda^d V} = \{v_{j_1} \wedge \cdots \wedge v_{j_d}\}_{1 \leq j_1 \leq \cdots \leq j_d \leq n}$$

e quindi

$$\dim \Lambda^d V = \binom{n}{d}.$$

Proposizione 2.14. Lo spazio $\Lambda^2 V$ è un GL(V)-modulo irriducibile.

3 Decomposizione di Tensori

Dati due spazi A, B, lo spazio $G := GL(A) \times (B)$ è incluso in $GL(A \otimes B)$. Dei teoremi di semplice decomposizione sono dati dai seguenti.

Proposizione 3.1. Lo spazio $S^2(A \otimes B)$ si G-decompone come

$$S^{2}(A \otimes B) = (S^{2}A \otimes S^{2}B) \oplus (\Lambda^{2}A \otimes \Lambda^{2}B).$$

Ed allo stesso modo $\Lambda^2(A \otimes B)$ si G-decompone come

$$\Lambda^2(A\otimes B)=(S^2A\otimes\Lambda^2B)\oplus (S^2A\otimes\Lambda^2B)\,.$$

Gli elementi di $(\mathbb{C}^2)^{\otimes 3}$ hanno le orbite secondo $(GL_2(\mathbb{C}))^3$ che seguono la seguente tabella:

orbita	r_1	r_2	r_3	$\operatorname{rk} f$	rappresentante
A	1	1	1	1	$a_0\otimes b_0\otimes c_0$
B_1	1	2	2	2	$a_0 \otimes b_0 \otimes c_0 + a_0 \otimes b_1 \otimes c_1$
B_2	2	1	2	2	$a_0 \otimes b_0 \otimes c_0 + a_1 \otimes b_0 \otimes c_1$
B_3	2	2	1	2	$a_0 \otimes b_0 \otimes c_0 + a_1 \otimes b_1 \otimes c_0$
W	2	2	2	3	$a_0 \otimes b_1 \otimes c_1 + a_1 \otimes b_0 \otimes c_1 + a_1 \otimes b_1 \otimes c_0$
G	2	2	2	2	$a_0 \otimes b_0 \otimes c_0 + a_1 \otimes b_1 \otimes c_1$

4 Varietà Algebriche Tensoriali

Definizione 4.1. Sia $Z \subseteq \mathbb{P}V$ un sottoinsieme dello spazio proiettivo su V. Il cono affine è $\hat{V} := \pi^{-1}(Z)$, con π la proiezione proiettiva.

Definizione 4.2. Se X l'insieme di zeri comuni di $S \subseteq S^{\bullet}V^*$, allora poniamo X := Z(S).

Definizione 4.3. Viceversa, dato $A \subseteq \mathbb{P}V$,

$$I(A) := \{ F \in S^{\bullet}V^* \mid F(a) = 0 \ \forall a \in \hat{A} \}$$

è l'ideale di A.

Definizione 4.4. L'embedding di Segre è dato da

$$\label{eq:Seg:PA new BB of PA in BB} \begin{split} \operatorname{Seg} \colon \mathbb{P}A \times \mathbb{P}B &\to \mathbb{P}(A \otimes B) \\ ([a], [b]) &\mapsto [a \otimes b] \end{split}$$

L'immagine è data dalla proiezione delle matrici dim $A \times \dim B$ di rango 1, cioè dal luogo di zeri di $\Lambda^2 A^* \otimes \Lambda^2 B^* \subseteq S^2(A \otimes B)$.

Proposizione 4.5. In generale l'analoga mappa da $\mathbb{P}A_1 \times \cdots \times \mathbb{P}A_n$ a $\mathbb{P}(A_1 \otimes \cdots \otimes A_n)$ dà come immagine un'insieme chiuso.

Definizione 4.6. La d-mappa di Veronese è

$$v_d \colon \mathbb{P}V \to \mathbb{P}(S^dV)$$
$$[a] \mapsto [a^{\otimes d}]$$

L'immagine è costituita da $\operatorname{Seg}((\mathbb{P}V)^n) \cap \mathbb{P}(S^dV)$, e quindi è una varietà proiettiva.

Definizione 4.7. Data una mappa f da V in sé, $f^{\wedge m}$ è la naturale endomorfismo di $\Lambda^m V$. Se $m = \dim V$, $f^{\wedge m}$ è la moltiplicazione per $\det(f)$.

Definizione 4.8. La Grasmanniana è

$$Gr(r, V) := \{ [v_1 \wedge \cdots \wedge v_r] \mid v_f \in V \} \subseteq \mathbb{P}(\Lambda^r V).$$

Osserviamo che nel proiettivo un tale prodotto wedge è insensibile a cambi di base del sottospazio generato. La Grassmaniana parametrizza quindi i sottospazi

Definizione 4.9. Per ogni $\phi \in V^*$ e $v \in V$, definiamo $\phi \, \lrcorner \, v := \phi(v)$. Per induzione se $\phi \in V^*$, $v \in V$ e $f \in \Lambda^k V$ imponiamo

$$\phi \,\lrcorner\, (v \wedge f) \coloneqq (\phi \,\lrcorner\, v) \wedge f - v \wedge (\phi \,\lrcorner\, f) \,.$$

Infine imponiamo $(\phi \land g) \, \lrcorner \, f := \phi \, \lrcorner \, (g \, \lrcorner \, f).$

Proposizione 4.10. $f \in \Lambda^r V$ può essere scritta come un prodotto wedge $w_1 \wedge \cdots \wedge w_r$ se e solo se

$$(\psi \, \lrcorner \, f) \wedge f = 0 \,\, \forall \psi \in \Lambda^{r-1} V^*$$

In particolare, se

$$f = p_{i_1 \dots i_r} v^{i_1} \wedge \dots \wedge v^{i_r}$$

allora l'equazione diventa

$$\sum_{k=1}^{r+1} (-1)^k p_{i_1 \dots i_{r-1} j_k} p_{j_1 \dots j_{k-1} j_{k+1} \dots j_{r+1}} = 0,$$

per ogni scelta di multiindici (i_1, \ldots, i_k) e (j_1, \ldots, j_k) . Avendo ottenuto una equazione polinomiale, Gr(r, V) è una varietà proiettiva.

Parliamo ora di spazi tangenti.

Definizione 4.11. Sia $M \subseteq V$ un sottoinsieme e $v \in V$. Allora

$$\hat{T}_v M \coloneqq \left\{ \frac{d\gamma}{dt} \Big|_{t=0} \mid \gamma \colon \mathbb{C} \to M \text{ curva liscia} \right\}$$

è lo spazio tangente.

Osserviamo che lo spazio tangente su v o su λv rimane invariato per $\lambda \in \mathbb{C}^*$.

Definizione 4.12. Sia $X \subseteq \mathbb{P}V$ una varietà proiettiva. Un punto $v \in X$ si dice liscio se esiste un insieme aperto U (di Zarinksi) su cui lo spazio tangente \hat{T}_wX ha la stessa dimensione per ogni $w \in U$. L'insieme dei punti singolari è un chiuso proiettivo.

Poniamo quindi

$$\dim X := \dim(\hat{T}_v X) - 1$$

con v un punto liscio.

Proposizione 4.13. Vale che

$$\hat{T}_{v_1 \otimes \cdots \otimes v_d} \operatorname{Seg}(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_d) = \sum_{j=1}^d v_1 \otimes \cdots \otimes v_{j-1} \otimes V_j \otimes v_{j+1} \otimes \cdots \otimes v_d.$$

Proposizione 4.14. Analogamente vale che

$$\hat{T}_{[v^{\otimes d]}}v_d(\mathbb{P}V) = \{[v^{\otimes (d-1)} \otimes w] \mid w \in V\}.$$

Parliamo ora di orbite. Sulle nostre varietà proiettive facciamo agire G := SL(V). È il rivestimento universale (di grado finito) di PGL(V).

Proposizione 4.15 (Borel). Se un'azione è algebrica, allora per ogni orbita \mathcal{O} la sua chiusura è ancora G-invaiante e

$$\overline{\mathcal{O}} = \mathcal{O} \cup \{orbite\ di\ dimensione\ minore\}.$$

Conseguentemente, le orbite di dimensione minore sono chiuse, e se l'azione è irriducibile, essa è unica.

In questa ottica delle azioni, guardiamo alle tre varietà di prima.

- (i) Dato l'embedding di Veronese v_d , esso è G-equivariante, e la sua immagine è l'orbita chiusa per l'azione di G su $\mathbb{P}(S^dV)$.
- (ii) Per quanto riguarda, l'embedding di Segre, l'immagine è l'orbita chiusa per l'azione di $SL(V_1) \times \cdots \times SL(V_d)$.
- (iii) Possiamo anche considerare varietà di Segre-Veronese denntro

$$\mathbb{P}(S^{a_1}V\otimes\cdots\otimes S^{a_d}V)$$

(iv) Le varietà di Grassmann *proiettive*, indicate come $Gr(\mathbb{P}^k, \mathbb{P}V)$, possiedono delle naturali coordinate di Plücker che le immergono dentro $\mathbb{P}(\Lambda^{k+1}V)$.

Parliamo ora di varietà secanti. Iniziamo ora con delle definizioni.

Definizione 4.16. Siano X e Y sottoinsiemi di $\mathbb{P}(W)$. Il Join è definito come

$$J(X,Y) \coloneqq \overline{\bigcup_{\substack{x \in X \\ y \in Y}} \langle x, y \rangle}$$

La chiusura serve per prendere anche le tangenti come limite di secanti. Se $X = Y = v_3(\mathbb{PC}^2)$, dato in coordinate come (dim_C $S^3\mathbb{C}^2 = 4$)

$$[x_0, x_1] \mapsto [x_0^3, 3x_0^2x_1, 3x_0x_1^2, x_1^3],$$

allora X prende il nome di *cubica gobba*. Studiamo ora l'azione di SL_2 su $\mathbb{P}(S^3\mathbb{C}^2)$. Abbiamo tre orbite che sono

$$X, \operatorname{Tan}(X) \setminus X, \mathbb{P}(S^3\mathbb{C}^2) \setminus \operatorname{Tan}(X)$$

Se $f \in S^3\mathbb{C}^2$, allora può essere pensato come un polinomio omogeneo cubico in x_0 e x_1 . Su \mathbb{C} ricade in tre casistiche

- (i) f una radice tripla, e appartiene a X.
- (ii) f ha una radice singola ed una doppia, ed appartiene a $Tan(X) \setminus X$;
- (iii) f ha tre radici singole, ed appartiene a $\mathbb{P}(S^3\mathbb{C}^2) \setminus \text{Tan}(X)$.

Può essere dimostrato che $X \cup (\mathbb{P}(S^2\mathbb{C}^3) \setminus \text{Tan}(X))$ coincide esattamente con l'unione delle secanti. Detto altrimenti, J(X,X) è tutto lo spazio $\mathbb{P}(S^3\mathbb{C}^2)$.

Definizione 4.17. La varietà secante è data da

$$\sigma_k(X) := J(X, \dots, X)$$
.

Abbiamo quindi una catena ascendente

$$X \subseteq \sigma_1(X) \subseteq \cdots \subseteq \sigma_{n_0}(X) = \mathbb{P}(W)$$
.

Se consideriamo X come $\mathbb{P}(V_1) \times \mathbb{P}(V_2)$ dentro $\mathbb{P}(V_1 \otimes V_2)$, allora

$$\sigma_r(X) = \{ f \in \operatorname{Hom}(V_1^{\vee}, V_2) \mid \operatorname{rk} f \leq r \},\,$$

in quanto ogni matrice di rango r (in senso matriciale) può essere scritta come somma di matrici di rango 1.

Si può dimostrare che la chiusura di Zarinksky di

$$\{f \in \operatorname{Hom}(V_1^{\vee}, V2) \mid \operatorname{rk} f = r\}$$

coincide precisamente con $\sigma_r(X)$. Questo recupera il risultato di Borel.

Consideriamo ora il caso $X = v_d(\mathbb{P}^1\mathbb{C})$, con $d \geq 3$.

Per d=3 siamo di fronte alla cubica gobba. Se supponiamo di proiettare questa cubica su un piano, usando un generico punto $p \notin X$ come fuoco, osserviamo che la proiezione ha un nodo precisamente se p è in una secante, o ha una cuspide precisamente quando p sta in una tangente. Ma una cubica in un piano può solo avere un nodo. Quindi se p sta su una secante, essa è unica. Analogamente se $p \notin X$ sta su una tangente essa è unica. Si può provare, come già detto, che $\sigma_2(X) = \mathbb{P}^3\mathbb{C}$.

Per d=4 stiamo guardando l'immersione di $\mathbb{P}^1\mathbb{C}$ in $\mathbb{P}^4\mathbb{C}$. In questo caso abbiamo infinite SL_2 -orbite, in quanto quattro radici non possono essere generalmente portate una dentro l'altra. La catena secante è della forma

$$X = \sigma_1(X) \subseteq \sigma_2(X) \subseteq \sigma_3(X) = \mathbb{P}^4$$

Capiamo l'equazione di $\sigma_2(X)$. Sia

$$S^{2}\mathbb{C}^{2\vee} = \{\alpha_{0}\partial_{0}^{2} + 2\alpha_{1}\partial_{0}\partial_{1} + \alpha_{2}\partial_{1}^{2}\}$$

e consideriamo la mappa

$$C_f \colon S^2 \mathbb{C}^{2\vee} \to S^2 \mathbb{C}^2$$
$$\partial \mapsto \partial f$$

 $con f \in S^4 \mathbb{C}^2.$

Sia ℓ una forma lineare. Allora l'immagine di \mathcal{C}_{ℓ^4} è \mathbb{C} -generata da ℓ^2 ed ha dimensione 1. Inoltre,

$$C_{\lambda f + \mu g} = \lambda C_f + \mu C_g$$

e quindi se ℓ_1 , ℓ_2 sono due forme lineari, allora

$$\operatorname{rk} \mathcal{C}_{\lambda_1 \ell_1^4 + \lambda_2 \ell_2^4} \leq 2.$$

Quindi la mappa precedente ha sempre determinante nullo, in quando dim $S^2\mathbb{C}^2=3$.

Conseguentemente, la varietà $\sigma_2(X)$ è contenuta in $V(\det C_f)$. Inoltre vale l'uguaglianza in quanto $\det C_f$ è un polinomio cubico irriducibile.

Inoltre, SL_2 agisce su $S^4\mathbb{C}^2$, e quindi su

$$\bigoplus_d S^d(S^4\mathbb{C}^2) \, .$$

Proposizione 4.18. Il sottoanello

$$\left[\bigoplus_{d} S^{d}(S^{4}\mathbb{C}^{2})\right]^{SL_{2}} \subseteq \bigoplus_{d} S^{d}(S^{4}\mathbb{C}^{2})$$

è un anello polinomiale completo: $\mathbb{C}[I,J]$, con deg I=2 e deg J=3. Questo fatto (mi fido) è molto raro in teoria degli invarianti. Inoltre come varietà algebrica è $\mathbb{P}^1\mathbb{C}$, oltre ad essere liscia. A meno di multipli scalari $J=\det \mathcal{C}_f$.

Lemma 4.19. dim $\sigma_r(X) \le r \dim(X) + (r-1)$

Dimostrazione. Consideriamo

$$\sigma^r(X) := \{(x_1, \dots, x_r, y) \mid y \in \langle x_1, \dots, x_r \rangle \}$$

dentro

$$X \times \cdots \times X \times \mathbb{P}W$$

E consideriamo le due mappe

$$X \times \cdots \times X \stackrel{\pi_1}{\longleftarrow} \sigma^r(X) \stackrel{\pi_2}{\longrightarrow} \mathbb{P}W$$
.

Notiamo che $\pi_2(\sigma^r(X)) = \sigma_r(X)$, e che π_1 è suriettiva con fibra generica $\mathbb{P}^{r-1}\mathbb{C}$. Conseguentemente

$$\dim \sigma_r(X) \le \dim \sigma^r(X) = \dim(\text{Fibra}) + \dim(X \times \dots \times X)$$
$$= (r-1) + r \dim(X). \qquad \Box$$

Si postula che valga l'uguaglianza.

Definizione 4.20. X si dice essere (h+1)-difettivo se $\sigma_{h+1}X$ ha dimensione minore del minimo tra X e la stima del teorema precedente.

Lemma 4.21 (Terracini). Se $x_i \in X_i$ sono punti generici, e $p \in \langle x_1, \dots, x_{h+1} \rangle$ è generico, allora

$$T_p J(X_1, \ldots, X_{h+1}) = \langle T_{x_1} X_1, \ldots, T_{x_{h+1}} X_{h+1} \rangle.$$

Sia ora $X \subseteq \mathbb{P}^N$, e $p \in \mathbb{P}^N$

Definizione 4.22. Il rango $\operatorname{rk}_X(p)$ è definito come

$$\operatorname{rk}_X(p) = \min\{h+1 \mid p \in \langle x_1, \dots, x_{h+1} \rangle\}.$$

Definizione 4.23. Il rango di bordo $brk_X(p)$ è definito come

$$\operatorname{brk}_X(p) = \min\{h+1 \mid p \in \sigma_{h+1}(X)\}.$$

Ovviamente $\operatorname{brk}_X(p)$ è minore di $\operatorname{rk}_X(p)$.

Se $X = v_d(\mathbb{P}V) = \{\ell^{\otimes d} \mid \ell \in \mathbb{P}V\}$ in $\mathbb{P}(S^dV)$, allora stiamo sostanzialmente guardando al rango simmetrico.

Se $X' = \mathbb{P}V \times \cdots \times \mathbb{P}V$ dentro $\mathbb{P}(V^{\otimes d})$, stiamo guardando al rango normale.

Siccome $v_d(\mathbb{P}V)$ coincide con $X' \cap \mathbb{P}(S^dV)$, allora ogni elemento di $\mathbb{P}(S^dV)$ ha due ranghi. È una congettura se sono uguali.

Inoltre, sicuramente vero che

$$\sigma_{h+1}(v_d(\mathbb{P}V)) \subseteq \mathbb{P}(S^dV) \cap \sigma_{h+1}(X')$$
.

È una congettura se valga l'uguaglianza.

Note terminate a causa della presenza di appunti del Prof. Ottaviani sulla teoria dell'apolarità

5 Teoria dell'Apolarità

Sia $K = \mathbb{C}$, e sia V uno spazio vettoriale di dimensione n+1. Inoltre, siano

$$R = K[x_0, \dots, x_n] \simeq S^{\bullet}V, \quad S = K[\partial_0, \dots, \partial_n] \simeq S^{\bullet}V^{\vee}$$

L'anello R ha un unico ideale massimale omogeneo: $\mathfrak{M} = (\partial_0, \dots, \partial_n)$. Inoltre, S agisce su R additivamente tramite la ovvia azione che indichiamo con ·.

D'ora in poi useremo la notazione a multiindice.

Lemma 5.1. Se α e β sono multiindici tali che $|\alpha| = |\beta|$, allora

$$\partial^{\alpha} \cdot x^{\beta} = \begin{cases} \alpha! & \alpha = \beta \\ 0 & \alpha \neq \beta \end{cases}$$

Corollario 5.2. L'accoppiamento tra S^dV^{\vee} e S^dV è una dualità, e S^dV^{\vee} è isomorfo a $(S^dV)^{\vee}$.

Lemma 5.3. Se $g \in S_d$, $e \ell = \sum c_i x_i$, allora

$$g \cdot \ell^d = d! \, g(c_0, \dots, c_n)$$

Dimostrazione. Usando la notazione a multiindice, possiamo notare semplicemente che

$$g \cdot \ell^d = g \cdot \left[\sum_{|\alpha| = d} c^{\alpha} x^{\alpha} \binom{d}{\alpha} \right] = \sum_{|\alpha| = d} g_{\alpha} c^{\alpha} \alpha! \binom{d}{\alpha}$$

che coincide esattamente con $d! g(c_0, \ldots c_n)$.

Definizione 5.4. Dato $f \in S^dV = R_d$, l'ideale apolare è definito come

$$f^{\perp} = \{g \in S \mid g \cdot f = 0\}.$$

Definizione 5.5. Una R-algebra S, con R un anello, è detta Artiniana se R è Artiniano e se S è un R-modulo finitamente generato. In particolare, se R è un campo stiamo chiedendo che $\dim_R S$ sia finito.

Proposizione 5.6. (i) f^{\perp} è un ideale omogeneo (i.e. è un sottomodulo graduato).

- (ii) il zoccolo $(f^{\perp})_d$ ha K-codimensione 1.
- (iii) Se k > d, allora $(f^{\perp})_k = S^k V$.
- (iv) L'algebra graduata

$$A_f := SV^{\vee}/(f^{\perp}) = \bigoplus_{e=0}^{\infty} S^e V^{\vee}/(f^{\perp})_e$$
.

è un'algebra Artiniana.

Proposizione 5.7. Sia $f \in S^dV$. Allora per ogni e < d vale che

$$(f^{\perp})_e = [(f^{\perp})_e : \mathfrak{M}^{d-2}]_e = \{g \in S_e \mid \forall h \in \mathfrak{M}^{d-e} \ (gh) \cdot f = 0\}.$$

Dimostrazione. L'inclusione \subseteq è immediata.

Per quanto riguarda l'inclusione \supseteq , sia $g \in [(f^{\perp})_d : \mathfrak{M}^{d-e}]$ per cui $(g\partial^{\alpha}) \cdot f = 0$ per ogni $|\alpha| = d - e$. Siccome S è un anello commutativo, allora

$$(g\partial^{\alpha}) \cdot f = (\partial^{\alpha} g) \cdot f = \partial^{\alpha} \cdot (g \cdot f),$$

e per il Lemma 5.1, sappiamo che tutti i coefficienti di $g \cdot f \in S_{d-e}$ sono zero. Conseguentemente, $g \cdot f = 0$, i.e. g appartiene a $(f^{\perp})_e$.

Proposizione 5.8. Sia $f \in S^dV$ e sia $e \in \{0, ..., d\}$. La moltiplicazione

$$(A_f)_e \times (A_f)_{d-e} \to (A_f)_d \simeq \mathbb{C}$$

è una dualità perfetta.

Dimostrazione. Dimostriamo che la componente di sinistra è non-degenere. Per simmetria lo stesso risultato vale anche per l'altra componente.

Sia $[t] \in (A_f)_e$, tale che [tu] = 0 in $(A_f)_f$ per ogni $u \in (A_f)_{d-e}$. In particolare, tu appartiene a $(f^{\perp})_d$ per ogni $u \in \mathfrak{M}^{d-e} \subseteq S_{d-e}$. Ergo, t appartiene a $[(f^{\perp})_d : \mathfrak{M}^{d-e}]_e$. La precedente proposizione implica quindi che t appartiene a $(f^{\perp})_e$, i.e. [f] = 0 in $(A_f)_e$. \square

La precedente proposizione ci dice che l'algebra è un'algebra di Gorestein. Siano $Z = \{[\ell_1], \dots, [\ell_r]\} \subseteq \mathbb{P}V$, con deg $\ell_i = 1$.

Lemma 5.9 (Apolarità). f coincide con $\sum \ell_i^d$ se e solo se I_Z è contenuto in f^{\perp} .

Nel caso in cui $\dim_{\mathbb{C}} V = 2$, allora il lemma precedente diventa come segue.

Lemma 5.10 (Apolarità per forme bilineari). Sia $f \in \mathbb{C}[x,y]$, e siano $(\alpha_i : \beta_i)$ punti distinti in \mathbb{P}^1 , allora

$$\left[\prod_{i} \beta_{i} \partial_{x} - \alpha_{i} \partial_{y}\right] \cdot f = 0 \iff f = \sum_{i} c_{i} (\alpha_{i} x + \beta_{i} y)^{d}$$

Dimostrazione. Posto

$$Z = \{ [\alpha_1 x + \beta_1 y], \dots, [\alpha_k x + \beta_k y] \},$$

allora il risultato segue dal Lemma di Apolarità una volta provato che

$$I_Z = ((\beta_1 \partial_x - \alpha_1 \partial_y) \cdot \dots \cdot (\beta_k \partial_x - \alpha_k \partial_y)).$$

Sicuramente l'ideale proposto, che denotiamo con J, è contenuto in I_Z .

D'altra parte, sia $g \in I_Z$ omogeneo. Allora g ha (α_i, β_i) come radici: per il Lemma 5.3

$$d!g(\alpha_i, \beta_i) = g \cdot (\alpha_i x + \beta_i y) = 0. \tag{1}$$

per ogni i = 1, ..., k. Ma sappiamo che in due variabili vale un teorema di circa-Ruffini. Detto altrimenti, da (1) sappiamo che il polinomio

$$\prod_{i=1}^{k} \beta_1 \partial_x - \alpha_1 \partial_y$$

divide g.

Una versione più generale, che introduce delle molteplicità, è data dall'enunciato seguente.

Proposizione 5.11. Sia $f \in \mathbb{C}[x,y]_d$, e siano $(\alpha_i : \beta_i)$, i = 1, ..., k, punti di \mathbb{P}^1 . Allora

$$\left[\prod_{i} \beta_{i} \partial_{x} - \alpha_{i} \partial_{y}\right] \cdot f = 0$$

$$\Leftrightarrow \exists c_{i}(c, y) \in \mathbb{C}[x, y]_{m_{i}-1} \ t.c. \ f = \sum_{i} c_{i}(x, y) (\alpha_{i} x + \beta_{i} y)^{d-m_{i}+1}$$

Dimostrazione. La dimostrazione, in teoria data in classe, è incomprensibile. \Box

Definizione 5.12. Se S è un anello $\mathbb{Z}_{\geq 0}$ -graduato, allora un ideale I riempe l'anello in grado k se I contiene S_k .

Lemma 5.13. Siano ϕ_1 , ϕ_2 in $\mathbb{C}[x,y] = S$ due polinomi senza fattori in comune.

- (i) L'ideale $I = (\phi_1, \phi_2)$ riempe l'anello R in gradi maggiori o uguali di $\deg \phi_1 + \deg \phi_2 1$. Inoltre, I ha codimensione 1 in grado $d := \deg \phi_1 + \deg \phi_2 1$.
- (ii) I_e coincide con $[I_d: \mathfrak{M}^{d-e}]_e$.

Dimostrazione. Sia $d_i := \deg \phi_i$, e consideriamo la sequenza corta

$$0 \to S \to S \oplus S \to I \to 0$$
$$\beta \mapsto (-\beta \phi_2, \beta \phi_1)$$
$$(a, b) \mapsto a\phi_1 + b\phi_2$$

Siccome ϕ_1 e ϕ_2 non hanno fattori in comune, la sequenza precedente è esatta.

Conseguentemente, preso un certo polinomio $g \in S$ di grado $t \ge d_1 + d_2 - 1$, allora \Box

Teorema 5.14. L'ideale f^{\perp} ha sempre due generatori.

6 Grassmaniane

Fissiamo un \mathbb{C} -spazio vettoriale V di dimensione n+1.

Definizione 6.1. La Grassmanniana $Gr(\mathbb{P}^k, \mathbb{P}^n)$, i.e. la varietà dei sottospazi di V di dimensione k+1, viene identificata con i prodotti wedge indecomponibili in $\Lambda^{k+1}V$.

Ricordiamo il risultato noto.

Proposizione 6.2. La varietà $Gr(\mathbb{P}^k, \mathbb{P}^n)$ ha la struttura di varietà liscia, ed ha dimensione (k+1)(n-k).

Fissiamo una base e_0, \ldots, e_n per V, in modo da avere una identificazione canonica $V \simeq \mathbb{C}^{n+1}$.

Consideriamo un sottospazio $L = \langle v_0, \dots, v_k \rangle$ di dimensione k+1, ed organizziamo i vettori in righe incolonnate, via una matrice M_L in $M_{(k+1)\times(n+1)}(\mathbb{C})$ di rango massimo.

A questo punto, possiamo osservare il seguente fatto: due embedding $\mathbb{C}^{k+1} \xrightarrow{i,j} V$ danno la stessa immagine se e solo se esiste una trasformazione $g \in GL_{k+1}\mathbb{C}$ per cui i = jg.

Conseguentemente, moltiplicare la matrice M_L a sinistra per un elemento di $GL_{k+1}(\mathbb{C})$ non cambia lo spazio generato dalle righe (trasposte). Ma questa operazione coincide con una riduzione di Gauss per righe, che porta M_L in

$$\begin{bmatrix} 1 & * & * & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

In base alle possibili configurazione di questa forma, possiamo decomporre la Grassmaniana in celle affini, dette *celle di Schubert*.ù

Un modo per organizzare queste celle, in modo da avere una descrizione combinatorica, è tramite le *tabelle di Young*.

Definizione 6.3. La tabella di Young di parametri interi $(\lambda_1 \ge \cdots \ge \lambda_{k+1})$ è data dal diagramma seguente:

$$\lambda =$$
 :

dove la riga i ha lunghezza λ_i .

Per futura utilità definiamo l'insieme delle tabelle di Young

$$Y_{k,n} := \{ \lambda \mid k \text{ righe ed al più } n - k \text{ colonne} \}.$$

Le tabelle di Young possiedono una naturale struttura ad albero, governata dalla relazione di inclusione delle une dentro le altre. Per esempio l'insieme $Y_{1,3}$ si ordine come segue:

Figura 1: Tabelle di Young con al più 2 righe

Definizione 6.4. Fissiamo ora una base $\langle e_0, \ldots, e_n \rangle$ su V, e fissiamo la filtrazione

$$F_0 := \{0\}, \ F_i := \langle e_{n-i+1}, \dots, e_n \rangle.$$

Data una tabella di Young $\lambda \in Y_{k,n}$, la cella X_{λ} è definita come

$$X_{\lambda} := \{ L \in \operatorname{Gr}_{k+1}(V) \mid \dim(L \cap F_{n-k+i-\lambda_i}) \ge i \ \forall 1 \le i \le k+1 \}.$$

Essa è una cella affine di codimensione

$$|\lambda| := \#\{\text{scatole in } \lambda\}.$$

In particolare, la cella $C_{(0,...,0)}$ ha dimensione massima. Se guardiamo a alla varietà di Grassmann come varietà algebrica con topologia di Zarinsky, $C_{(0,...,0)}$ è ancora aperto. La varietà di Grassmann è quindi una varietà algebrica particolare: possiede un sottoinsieme aperto, e quindi Zarinskyi-denso, che è anche una sottovarietà algebrica affine.

L'ordinamento delle tabelle di Young fornisce un ordinamento nelle celle della forma

$$\lambda \subseteq \mu \Rightarrow X_{\lambda} \supseteq X_{\mu}$$

Inoltre, questo ordinamento è strettamente legato alla forma di Gauss su righe ridotta: infatti, se andiamo a considerare le differenze

$$X_{\lambda}^0 := X_{\lambda} \setminus \bigcup_{\lambda \subseteq \mu} X_{\mu},$$

allora i differenti X_{λ}^{0} raggruppano i diversi modi in cui si può presentare una forma di Gauss ridotta su righe di una matrice $(k+1) \times (n+1)$ di rango massimo.

Per dare maggiore chiarezza al discorso — per quanto possibile — consideriamo il caso di $Gr(\mathbb{P}^1, \mathbb{P}^3)$. Essa è la varietà dei 2-sottospazi in \mathbb{C}^4 , ed ha dimensione complessa 4. Le tabelle di Young $Y_{1,3}$ sono mostrate nella Figura 1. Le relative celle di Schubert $\{X_{\lambda}\}_{\lambda}$ sono quindi ordinate come segue:

In particolare, otteniamo un analogo diagramma se sostituiamo X_{λ} con X_{λ}^{0} . Quest'ultimo corrisponde alle possibili forme di Gauss ridotte per righe tramite il diagramma seguente:

$$\begin{bmatrix} 1 & * & * & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \underbrace{ \begin{bmatrix} 1 & 0 & * \\ 0 & 1 & * & * \end{bmatrix} - \begin{bmatrix} 1 & * & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \underbrace{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & * \end{bmatrix} }_{ \begin{bmatrix} 0 & 0 & 0 & 1 &$$

Possiamo effettivamente visualizzare il collegamento tra forma di Gauss ridotta per righe e tabelle di Young. Supponiamo di voler considerare le celle di Schubert nello spazio $Gr(\mathbb{P}^k, \mathbb{P}^n)$. Le relative tabelle di Young appartengono a $Y_{k,n}$, e sono quindi tabelle contenute in una griglia $A_{k,n}$ di forma $(k+1) \times (n-k)$. Una specifica forma di Gauss ridotta avrà degli *, che procediamo ad allineare sul lato destro di $A_{k,n}$. Il complementare, una volta riflessa sull'asse orizzontale, sarò la relativa la tabella di Young.

Per esempio, consideriamo la forma di Gauss in $Gr(\mathbb{P}^2, \mathbb{P}^6)$

$$\begin{bmatrix} 0 & 1 & * & 0 & * & * & 0 \\ 0 & 0 & 0 & 1 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

La matrice $A_{2,6}$ viene riempita come segue:

e quindi la tabella di Young associata a (2) è

Parliamo ora della *coomologia della Grassmanniana*. La sua descrizione è puramente combinatorica.

Teorema 6.5. La coomologia di $Gr(\mathbb{P}^k_{\mathbb{C}}, \mathbb{P}^n_{\mathbb{C}})$ è zero in dimensione dispari, ed è

$$\dim_{\mathbb{R}} H^{2i}(\operatorname{Gr}(\mathbb{P}^k_{\mathbb{C}}, \mathbb{P}^n_{\mathbb{C}}); \mathbb{R}) = |\{\lambda \in Y_{k,n} \mid \lambda \text{ ha 2i scatole}\}|$$

in dimensione pari.

Sketch della dimostrazione. Si può dimostrare che ognuna delle celle di Schubert X^0_{λ} è topologicamente omeomorfa all'interno di un disco complesso $D^i_{\mathbb{C}}$, con $|\lambda|=i$. In particolare, X^0_{λ} è omeomorfa al disco reale $D^{2i}_{\mathbb{R}}$. Inoltre, se definiamo

$$X^{(2i)} := \bigcup_{|\lambda|=2i} \overline{X_{\lambda}^0},$$

allora abbiamo una decomposizione ${\cal CW}$

$$X^{(0)} \subseteq \cdots \subseteq X^{(2d)}, \ d = \dim_{\mathbb{C}} \operatorname{Gr}(\mathbb{P}^k, \mathbb{P}^n)$$

con celle solo \mathbb{R} -dimensione pari. Ma a questo punto sappiamo il complesso cellulare omologico su \mathbb{Z} è della forma

$$0 \to \mathbb{Z}^{a_0} \stackrel{\partial}{\to} 0 \stackrel{\partial}{\to} \mathbb{Z}^{a_2} \stackrel{\partial}{\to} 0 \stackrel{\partial}{\to} \dots \stackrel{\partial}{\to} 0 \stackrel{\partial}{\to} \mathbb{Z}^{a_{2d}} \to 0$$

con

$$a_{2i} = |\{\lambda \in Y_{k,n} \mid |\lambda| = 2i\}|.$$

Conseguentemente

$$H_{2i}(\operatorname{Gr}(\mathbb{P}^k,\mathbb{P}^n);\mathbb{Z})=\mathbb{Z}^{a_{2i}}$$

ed è nulla altrimenti. Per coefficienti univesali concludiamo:

$$H^{2i}(\mathrm{Gr}(\mathbb{P}^k_{\mathbb{C}}, \mathbb{P}^n_{\mathbb{C}}); \mathbb{R}) = \mathrm{Hom}_{\mathbb{Z}}(H_{2i}(\mathrm{Gr}(\mathbb{P}^k, \mathbb{P}^n); \mathbb{Z}), \mathbb{R}) = \mathbb{R}^{a_{2i}}.$$

Per il teorema dei coefficienti universali, le dimensioni di

$$\dim_{\mathbb{C}} H^{2i}(\operatorname{Gr}(\mathbb{P}^k_{\mathbb{C}}, \mathbb{P}^n_{\mathbb{C}}); \mathbb{C})$$

con quelle precedenti.

Per esempio

$$H^{i}(\mathrm{Gr}(\mathbb{P}^{1},\mathbb{P}^{3});\mathbb{C}) = \begin{cases} \mathbb{C} & i = 0,2,6,8 \\ \mathbb{C}^{2} & i = 4 \\ 0 & \text{altrimenti} \end{cases}$$