世博会参观线路设计

摘要:本文针对不同的情况设计出了不同的世博参观路线。比如对于我们自己我们选择了几个必去的场馆,算出去这几个馆的最优路线;对于组织者,他们安排的路线、时间等需要使绝大部分旅客的满意;而对于一般的参观者,自然参观的馆数越多越好。

问题一:我们选出了中国,沙特,日本,阿联酋,德国 5 个馆。大概的测出了他们之间的距离,通过最小生成树法,得出最优路线(见 p_5)。然后考虑到一天的参观时间只有 13 个小时,加上排队时间,我们还需要安排在各馆的滞留时间,以保证完成目标。

问题二:针对世博局,我们认为作为世博的组织者,应该让绝大部分参观者都尽量满意的回家,即将入口,交通,参观时间,购票等服务安排的合理便捷。而入口,交通,购票等因素已经差不多固定了,因此我们认为应该在参观时间上改善,由排队论,我们建议参观时间应该为:按时开放,可以考虑在凌晨五点左右关门,六点到九点左右作为场馆的清理时间。

问题三:见附录 8.1 表 1,对于一般的参观者,最好不要一天的时间都用于排队,且排队时间尽量越短越好,参观到吸引度高的馆数越多越好,吸引度的高低我们对各馆加入了权重,建立了以参观馆的数目最多为目标,观园时间为约束条件的 0-1 规划模型:最后得出一天能参观 ABC 三个区中的 19 个馆,耗时 10:45 h。

关键词: 最优路线 世博局 排队论 权重 0-1规划

1. 问题重述

1.1 问题背景

2010年中国上海世界博览会5月1日正式隆重拉开帷幕。

中国的盛情诚邀得到了国际社会积极响应,最终有 189 个国家、57 个国际组织确认参展上海世博会,轻而易举地打破了 2000 年德国汉诺威世博会保持的 177 个国家和国际组织参展的纪录,改写了历届世博会国际参展方数量的历史。截止到 5 月 17 日,参观者已经达到 295.68 万人,其中 5 月 26 日一天就达到 34 万多人,热门场馆出现了排队几个小时的现象。200 多个场馆,使参观者应接不暇。

1.2 问题提出

- (1) 如果你作为一个参观者,你将参观哪些场馆?请根据不同情况设计参观线路。
 - (2) 针对组织者(上海世博局、各参展国或组织),你有什么建议?
 - (3) 针对参观者, 你有什么建议?

2. 问题分析

问题一:我们选定了中国,沙特,日本,阿联酋,德国 5 个馆,粗测得到了他们之间的距离,根据最小生成树法,用 matlab 编程,求得最短路线为:中国 \rightarrow 沙特 \rightarrow 日本 \rightarrow 阿联酋 \rightarrow 德国。

参观者应该在所允许的时间内根据路线尽量安排好各馆的滞留时间,使得自己在一天内都参观完,若有时间剩,就可以考虑坐上观光车,游遍所有的地方。

问题二:针对上海世博局,我们认为应该从减少排队人数增加参观者的参观场馆的个数入手,让参观者能够更有效的利用他们参观世博的时间和金钱。这样或许也可以增加参观世博的人数。利用排队论我们可以算出参观时间和平均参观人数,然后与实际相对比我们给出了延长开发时间的建议。

问题三:根据附表,我们仅考虑一天的行程,在这一天内我们仅考虑 ABC 三个片区的 70 个场馆。我们以参观的馆数最多为目标,根据附表中;不同颜色的区域,加入权重:

	绿色区域	黄色区域	红色区域
权重	3	2	1

从而目标函数为: $\max=2\times p+q$; (p_6) 用 lingo 编程解出一天共可以参观 21 个馆,用时 13 个小时。

3. 模型假设

- ①. 假设问题 1 中参观者已经拥有去往中国馆的预约券,且已经进入园区。
- ②. 参观者在一馆到另一馆时间很短可以忽略不计。

- ③. 参观者休息的时间和吃饭的时间全部设为是排队时间。
- ④. 假设在中国馆已经饱和了时的情况下考虑排队论
- ⑤. 世博会中所有的馆在规定的时间内全部开放。
- ⑥中国馆外用来排队的面积为无穷大。
- ⑦参观者心中各个馆的权重固定不变。
- ⑧在排队过程中中途不会放弃。

4. 符号约定

$$x_i = \begin{cases} 1, 选择该馆 \\ 0, 不选择该馆 \end{cases}$$
 $i = 0, 1, 2, ..., 70$

a:参观时间,这里约定a=0.5h

b: 排队时间,由附表中给定的数据而定

$$p = \sum_{i=1}^{70} x_i$$
 所选馆的个数

a: 权重为3的馆减去权重为1的馆

 p_0 : 在系统里没有顾客的概率,即所有服务设施空闲得概率

 L_q : 排队的平均长度,即排队的平均顾客数

L: 在系统里的平均顾客数,包括排队的顾客数和正在参观的顾客数

 W_a : 一位顾客花在排队上的平均时间

W: 每位顾客花在系统得平均逗留时间

λ: 为单位时间的顾客平均到达率。

u 为单位时间的平均服务率。

5. 模型的建立与求解

5.1 模型一:

我们选择中国,沙特,日本,阿联酋,德国5个馆作为参观目标,参观每个馆都有排队时间和参观时间两部分,我们暂时不考虑各馆的参观时间。假设各馆的排队时间一样。

粗测出5馆间的距离为:(单位:米)

馆名	中国1	沙特 2	日本3	阿联酋 4	德国5
中国 1	0	740	1300	780	1500

沙特 2	740	0	430	560	2000
日本3	1300	430	0	550	2200
阿联酋 4	780	560	550	0	200
德国 5	1500	2000	2200	200	0

通过 matlab 编程得到路线为:

1	2	3	4
2	3	4	5
740	430	550	200

即路线为中国→沙特→日本→阿联酋→德国。

根据去过世博的人的经验我们假设各馆的排队时间为:

	中国馆	沙特馆	日本馆	阿联酋馆	德国馆
排队时间/h	1	3	2	1.5	2

所以按最短路线排为:中国 \rightarrow 阿联酋 \rightarrow 日本(德国) \rightarrow 德国(日本) \rightarrow 沙特。 算得总时间为 9: 30 即在剩下的 3: 30 小时内我们必须合理且紧凑的安排时间才能勉强的参观这 5 个馆。

5.2 模型二:

参观者参观各个馆,由于参观的人数过多、各个馆的容量又有限,就出现了排队现象。以中国馆为例,考虑它达到稳态时的队伍状况。

参观者拿到预约卷在规定时间内开始排队,其顾客源是无限的。一般情况,我们认为参观者相继到达的时间间隔、服务时间符合负指数分布,排队规则为先来先服务。中国馆就只有一个服务台。设中国馆的最大容量为 N,参观者在馆外排队,认为可以无限地排下去。所以该排队系统我们表示为:

$$M/M/1$$
 \Leftrightarrow \Leftrightarrow FCI

排队情况如下图所示:

由实际,我们了解到, $\lambda < \mu$,否则队列将无限的增加,中国馆根本没法处理所有到达的参观者。设服务强度 $\rho = \lambda/\mu$,我们有:

平均排队顾客数:
$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$$
 . 。

在系统里的平均顾客数 $L_s = L_q + \frac{\lambda}{\mu}$ 。

一位顾客花在排队上的平均时间 $W_q = \frac{L_q}{\lambda}$ 。

每位顾客花在系统得平均逗留时间 $W_s = W_q + \frac{1}{\mu}$ 。

按实际情况,我们给定 $\lambda=0.5$ 人/s, $\mu=0.5005$ 人/s,各自带入上式,得到:

 $L_q = 9.9 \text{ S}$ $L_s = 1.0 \text{ O.D.}$ $W_q = 1.9 \text{ 9.8}$ $W_S = 2.0 \text{ O.D.}$ $\rho = 0.99 \text{ 9.9}$

由这些数据可与以知道,在中国馆达到稳态后,到达中国馆有 99.93%是要排队等待,排队长度平均为 999 人。排队的平均时间为 1988s,即半个多小时。所以我们认为有必要改善这个排队系统。如延长馆的开放时间,按时开放,可以考虑在凌晨五点左右关门,六点到九点左右作为馆和园的清理时间。这样就可以减少平均排队时间和参观时间。

5.3 模型三:

我们仅考虑一天内参观者的参观安排,为了尽量能让旅客能参观到更多的馆,且是相对较热门的馆,我们考虑到的一天的时间是有限的,就选择参观 ABC 三个片区中的几个,我们假设其参观每个馆的时间都为 0.5h,根据附录,我们设出各馆的排队时间b,为:

1	2	3	4	5	6	7	8	9	10
2.25	3	1.75	0.5	0.75	0.5	0.5	1.75	0.5	1.25
11	12	13	14	15	16	17	18	19	20
1.25	1	1		1	0	0.5	0.5	1	1
21	22	23	24	25	26	27	28	29	30
1	0.5	0	1.25	1.75	1	1	1	0.5	2.25
31	32	33	34	35	36	37	38	39	40
0.75	0.75	0.5	0.5	0.5	0.5	0.75	0.5	0.875	0.5
41	42	43	44	45	46	47	48	49	50
0.17	0.75	0.5	0.5	0.5	0.75	0.5	0.5	0.5	0.75

51	52	53	54	55	56	57	58	59	60
0.5	1.25	0.25	0.25	0	0.75	0.25	0	0	0
61	62	63	64	65	66	67	68	69	70
0	0	0	0	0	0	0.5	0.5	0.5	0.5

根据附录我们加入了权重为:

	绿色区域	黄色区域	红色区域
权重	3	2	1

以参观的馆数最多为目标,时间为约束条件。我们建立的模型为:

 $max=2\times p+q$;

s.t.

$$x_i(a+b_i) \le 13$$

$$p = \sum_{i=1}^{70} x_i,$$

其中:
$$q = x_1 + x_3 + x_8 + x_{11} + x_{12} + x_{13} + x_{14} + x_{16} + x_{19} + x_{20} + x_{23} + x_{24} + x_{25} + x_{27} + x_{30} + x_{32} + x_{42} + x_{48} - (x_1 + x_4 + x_{26} + x_{31} + x_{37} + x_{38} + x_{41})$$

用 lingo 求解得:参观的馆数为 21 个,用时 13h 具体的馆为:

	1	2	3	4	5	6	7
世博文化	中心新西兰	太平洋	联合安哥拉	非洲联合	智利	墨西哥	
	8	9	10	11	12	13	14
巴西	瑞典	斯里兰	卡 亚联一	亚联二	亚联三	土库曼	折坦
	15	16	17	18	19	20	21
卡塔尔	黎巴嫩	伊朗	朝鲜	乌兹别克斯	斯坦哈萨克	越南	

然而这样的话会比较赶,而且没有考虑到休息吃饭的时间,因此,我们可以考虑休息和吃饭的时间为两个小时,即让约束条件化为 $x_i(a+b_i) \le 11$,结果就是参观的个数就变为 19 个,用时 10. 45h。这样比较合理。当然若有时间剩,还可以坐上观光车去了解一下世博园区的其他风景。

从世博会开园到现在我们了解到旅客人数的统计情况(见附录 8.1 表 2): 对数据用 Excel 处理得到下图:

从上表分析我们得出,6、7月份的参观人数最多,且有一定的规律:假如 出发旅游前5天左右参观的人数明显很多,那么这段时期相对人数会减少,因此 我们建议参观者在出发前应该去搜索一下近期的旅客人数,然后适时前往。

6. 结果分析

问题一:我们考虑到的 5 个馆可能都是太热门的,在预测的排队时间内可能 无法正常进入场馆进行参观,也有可能比预期你的情况更好,即排队时间不需要 那么久,具体时间安排还得自己稍微做点安排。但路线是没有出入的。

问题二:在中国馆达到稳态后,假设馆内的最大容量为5000,把馆内的4999个人看作一个整体。到达中国馆有99.93%是要排队等待,排队长度平均为999人。排队的平均时间为1988s,即半个多小时。所以我们认为有必要改善这个排队系统。如延长馆的开放时间,按时开放,可以考虑在凌晨五点左右关门,六点到九点左右作为馆和园的清理时间。这样就可以减少平均排队时间和参观时间。

问题三:在这个模型中,很多的数据都是根据附录中的数据来定的,数据通过对大多数人而调查出来的,我们不能够亲自去调查,但这数据是可以说明问题的。模型最后的结果有所更改,是根据旅客的正常生活来考虑的,旅游不是马拉松,总是要有时间休息和静下来吃顿饭的,因此,我们最后考虑空出 2 个小时来供旅客休息。最后得出参观 19 个馆,耗时 10.45h

7. 模型的评价与推广

7.1 模型的优点:

- (1).模型一应用最小生成树法,求得最优路线,为参观者提供了很好的建议。
- (2). 模型二我们运用排队论,很好的说明了一个馆的管理模型,然后我们可以延伸到各个场馆。

- (3).模型中参考了大量的数据,尽量的去完善各个模型。
- (4). 模型三中我们考虑到了各个馆的热门程度,可以尽量的去反映旅客的旅游情形,这样就能更好的反映结果的合理性。

7.2 模型的缺点:

- (1). 模型一只考虑我们自身的参观喜好,是在我们自身的角度去解决问题的,不是很具有普遍性。
- (2).模型三仅考虑了一天的行程,而对于2天或者更多天的并没有考虑,结果可能有些太普遍。

7.3 模型的推广:

本模型可用于最短路线或最短路、最大流问题,如多方位旅游、推销、运货 等

8. 参考文献

- [1] 孔造杰 运筹学 北京: 机械工业出版社
- [2] 杨圣红 排队论(简本) 排队论.ppt
- [3] http://map.baidu.com/
- [4] http://map.expo2010.cn/
- [5]赵静 数学建模与数学实验 北京: 高等教育出版社 2001.11
- [6] http://wenku.baidu.com/view/d8ae3612a216147917112895.html 提供

者: mlxinyuan24

附录:

8.1 表 1

世博会场馆评价表:

馬家	实际平均排队时间	最长忍耐时间	场馆评价
A片区(亚洲)			
日本	2小时-2个半小时	1个半小时(建议入园首选)	****
沙特	3小时	1个半小时(建议入园首选)	***
韩国	1小时45分	1个半小时(建议下午-晚上入)	*** <u>*</u>
尼泊尔	30分钟以内	15分钟(全天都可)	**
以色列	45分钟	15分钟(建议下午-晚上入)	★★ ☆
巴基斯坦	30分钟以内	15分钟(全天都可)	★★ ☆
阿曼	30分钟以内	15分钟(全天都可)	***
阿联酋	1个半小时-2小时	1个半小时(建议下午-晚上入)	****
摩洛哥	30分钟以内	15分钟(全天都可)	***
印度	1小时-1个半小时	30分钟(建议下午-晚上入)	
中国	1小时-1个半小时	凭券(最好根据票面时间)	***
香港	未知	凭券(根据票面时间)	
澳门	未知	凭券(根据票面时间)	
台湾	未知	凭券(根据票面时间)	
其他	除个别场馆,基本都是直接	进 30分钟以内(全天都可)	

B片区(东南亚+人洋》	H)		
新西兰	30分钟	45分钟(全天都可)	★★★ ☆
马来西亚	30分钟	30分钟(全天都可)	***
新加坡	1小时	45分钟(建议晚上入)	***
澳大利亚	1小时	1小时(建议晚上入)	★★★ ☆
泰国	1小时	1小时15分(建议下午-晚上入)	****
菲律宾, 文莱, 印尼	30分钟内	未知(全天都可)	
太平洋联合	直接进	直接进	***
C片区(欧美+非洲)			
西班牙	1小时-1个半小时	1个半小时(建议入园首选,或晚上入)	****
瑞士	1个半小时-2小时	2小时(建议入园首选)	****
社開	1小时	1个半小时(建议晚上入)	****
英国	1小时	可看性较低,高峰慎入(一定晚上入)	**
意人利	1小时	1个半小时(建议晚上入)	****
卢森堡	30分钟	30分钟(全天都可)	***
荷兰	30分钟以内	30分钟(全天都可)	***
德国	2小时-2个半小时	2小时(建议入园首选,或晚上闭园前入)	****
波兰	45分钟	可看性较低,高峰慎入	**
比利时欧盟	45分钟	1小时(建议下午-晚上入)	****
摩纳哥,塞尔维亚	30分钟以内	30分钟(全天都可)	***
爱沙尼亚, 拉脱维亚	30分钟以内	15分钟(全天都可)	***
土耳其	30分钟以内	20分钟(全天都可)	***
奥地利	30分钟	20分钟(全天都可)	***
罗马尼亚	可能超过45分钟	可看性较低,高峰慎入	**
克罗地亚	30分钟以内	可看性较低,高峰慎入	★ ☆
俄罗斯	45分钟-1小时	45分钟(建议晚上入)	****
挪威	30分钟	30分钟(暂停盖章后,全天都可)	***
乌克兰	不超过10分钟	可看性较低,无需排队再进	★ ☆
瑞典	45分钟	45分钟(建议晚上入)	***
丹麦	30分钟	30分钟(建议下午-晚上入)	***
芬兰	30分钟	30分钟(有短信预约服务)	***
捷克	30分钟以内	30分钟(全天都可)	***
加拿大	45分钟	30分钟(建议下午-晚上入)	***
巴西	30分钟	30分钟(建议下午-晚上入)	***
美国	1小时-1个半小时	1个半小时(建议下午-晚上入)	****
墨西哥	15分钟	15分钟(全天都可,下午-晚上较好)	***
智利	15分钟	15分钟(全天都可,下午-晚上较好)	***
非洲联合	直接进	直接进	****
南非	30分钟	30分钟(全天都可,下午-晚上较好)	***
埃及	45分钟	30分钟(全天都可,下午-晚上较好)	***
安哥拉	15分钟	15分钟(全天都可)	**

表示值得一看的场馆 一般般,个别星较多的馆有亮点 包括个别"剧毒"场馆,原则上不排队可以看看,排队就pass吧

*实际平均排队时间:是自己根据实际排队,现场观察以及询问工作人员后得出,会有些偏差,但不会太大。

表 2

10 4							
5月1日	206900	6月1日	311100	7月1日	369800	8月1日	316000
5月2日	220000	6月2日	369600	7月2日	388000	8月2日	336700
5月3日	131700	6月3日	417500	7月3日	397600	8月3日	336000
5月4日	148600	6月4日	437000	7月4日	358800	8月4日	335700
5月5日	88900	6月5日	524900	7月5日	428500	8月5日	352100
5月6日	120200	6月6日	417400	7月6日	457100	8月6日	388100
5月7日	147700	6月7日	487900	7月7日	403400	8月7日	442400

5月8日	209800	6月8日	510900	7月8日	411500	8月8日	390700
5月9日	144000	6月9日	413400	7月9日	430500	8月9日	398400
5月10日	163000	6月10日	391300	7月10日	493600	8月10日	422700
5月11日	180400	6月11日	403000	7月11日	433800	8月11日	373800
5月12日	180100	6月12日	424600	7月12日	444700	8月12日	369700
5月13日	215500	6月13日	417300	7月13日	476100	8月13日	383200
5月14日	240300	6月14日	503200	7月14日	477300	8月14日	425800
5月15日	335300	6月15日	552000	7月15日	481200		
5月16日	241500	6月16日	379000	7月16日	471800		
5月17日	236400	6月17日	394100	7月17日	557200		
5月18日	261900	6月18日	414400	7月18日	474000		
5月19日	290600	6月19日	429800	7月19日	448400		
5月20日	296400	6月20日	361200	7月20日	437400		
5月21日	328500	6月21日	415100	7月21日	435300		
5月22日	361200	6月22日	409800	7月22日	425800		
5月23日	311700	6月23日	404100	7月23日	457200		
5月24日	314500	6月24日	447100	7月24日	512000		
5月25日	345800	6月25日	480900	7月25日	453100		
5月26日	353500	6月26日	553500	7月26日	463800		
5月27日	377000	6月27日	486800	7月27日	475400		
5月28日	382200	6月28日	458300	7月28日	453800		
5月29日	505000	6月29日	452600	7月29日	420100		
5月30日	368300	6月30日	427900	7月30日	410500		
5月31日	327500			7月31日	440900		

8.2 模型一的程序:

```
Matlab 程序:
clc;clear;
a=[0 740 1300 780 1500
    740 0 430 560 2000
    1300 430 0 550 2200
    780 560 550 0 200
    1500 2000 2200 200 0];

result=[];p=1;tb=2:length(a);
while length(result)~=length(a)-1
    temp=a(p,tb);temp=temp(:);
    d=min(temp);
    [jb,kb]=find(a(p,tb)==d);
    j=p(jb(1));k=tb(kb(1));
    result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];
end
```

result

8.3 模型三的程序: model: sets: gs/1...70/:a,b,x;endsets 0.5 0.5 0.5 0.5 0.5; b= 2.25 3 1.75 0.5 0.75 0.5 0.5 1.75 0.5 1.25 1.25 1 1 1 0 0.5 0.5 1 1 1 0.5 0 1.25 1.75 1 1 1 0.5 0.5 2.25 0.75 0.75 0.5 0.5 0.5 0.5 0.75 0.5 0.875 0.5 0.17 0.75 0.5 0.5 0.5 0.75 0.5 1.25 0.25 0.25 0 0.5 0.75 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5; enddata p = @sum(gs(i):x(i));q=x(1)+x(3)+x(8)+x(11)+x(12)+x(13)+x(14)+x(16)+x(19)+x(20)+x(23)+x(24))+x(25)+x(27)+x(30)+x(32)+x(42)+x(48)+x(1)-(x(4)+x(26)+x(31)+x(37)+x(38)+x(41));max=2*p+q;@sum(gs(i):x(i)*(a(i)+b(i))) <=11;

s=@sum(gs(i):x(i)*(a(i)+b(i)));

@for(gs(i):@bin(x(i)));

end