Lab 6: Shielding Design for a Co-60 Vault

Author: John Hayes

Group 1: A. Roth, M. Batie, C. Hoffman, G. Zhao, J. Beres, R. Shirley

Course: MP 569 Lab No.: 6

Performed: Wed 4/29/15Due: Wed 5/13/15

Abstract

Shielding designs for two walls in a Co-60 vault are determined. The exposure rate was 2458 R/hr at 1 m from the source, which equates to a workload of the beam of 492 Gy/wk.

Theory

Shielding of radioactive sources in any facility that houses them is required to protect personnel and the general public.

$$P_c = 5 \,\mathrm{mSv/yr} = 0.1 \,\mathrm{mSv/wk} \tag{1a}$$

$$P_u = 1 \,\text{mSv/yr} = 0.02 \,\text{mSv/wk}.$$
 (1b)

The weekly rate is based on fifty 5-day workweeks (allowing for 10 days of holiday.) As the data section will show,

$$n = -\log(B_T) \tag{2}$$

Finally, a schematic of the UWMRRC Co-60 vault is shown in Fig 1.

Figure 1: Schematic of the UWMRRC Co-60 vault.

Data

Figure 2: Schematic of parameters required in shielding calculations.

Table 1

Parameter	Value	Unit	Description
d_{pri}	6.71 ± 0.01	m	distance from source to 1 m past the primary barrier
d_{sec}	4.88 ± 0.01	m	distance from source to 1 m past the secondary barrier
d_{sca}	1.0 ± 0.01	m	distance from source to phantom
\dot{X}_U	2458 ± 4	R/hr	unattenuated exposure rate 1 m from the source
\dot{X}_S	1520 ± 100	mR/hr	scattered exposure rate 1 m from patient surface
\dot{X}_L	1800 ± 300	$\mu R/hr$	exposure rate due to leakage 1 m from the source
S_p	to be determined	m	thickness of primary barrier
S_s	to be determined	m	thickness of secondary barrier

Table 2: Ion chamber measurements. M_U values are in nC/30-sec; M_S values are in pC.

	Trial 1	Trial 2	Trial 3	Avg	σ	N_x [R/C]
M_U	4.09	4.10	4.10	4.10	0.01	4.997×10^9
M_S	356.44	356.47	356.69	356.53	0.001	3.545×10^{7}

Discussion

References

- NCRP Report 151. Structural shielding design and evaluation for megavoltage x- and gamma-ray radiotherapy facilities. Technical report, National Council on Radiation Protection and Measurements, 2005.
- [2] NCRP Report 49. Structural Shielding Design and Evaluation for Medical Use of X-rays and Gamma Rays of Energies up to 10 MeV. Technical report, National Council on Radiation Protection and Measurements, 1976.
- [3] NRC. Code of federal regulations, title 10 part 20: Standards for protection against radiation. Technical report, Nuclear Regulatory Commission, 2015.