

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 3

по курсу «Случайные процессы»

Тема: Процесс роста и мутации популяции

Выполнил: Студент 4-го курса Жолковский Д.А.

Группа: КМБО-01-16

Лабораторная работа по случайным процессам № 3

«Процесс роста и мутации популяции»

Задание

В популяции могут находиться объекты двух видов: N-объекты и M-объекты. Лано:

- время жизни каждого N-объекта является случайной величиной, имеющей показательное распределение с параметром $\lambda(t_b) = \gamma_1 \cdot N(t_b 0) + 2 \cdot \gamma_1 \cdot M(t_b 0) + 0,1$ (где t_b время рождения объекта, $N(t_b 0)$ число N-объектов до момента времени t_b , $M(t_b 0)$ число М-объектов до момента времени t_b , γ_1 заданный коэффициент);
- время жизни каждого М-объекта является случайной величиной, имеющей показательное распределение с параметром $\mu(t_b) = 3 \cdot \gamma_2 \cdot N(t_b 0) + \gamma_2 \cdot M(t_b 0)$ (где t_b время рождения объекта, $N(t_b 0)$ число N-объектов до момента времени t_b , $M(t_b 0)$ число М-объектов до момента времени t_b , γ_2 заданный коэффициент);
- по окончании времени жизни каждый N-объект порождает с вероятностью pn_1 один N-объект (событие $S_N(1)$), с вероятностью pn_2 два N-объекта (событие $S_N(2)$), с вероятностью $pn_{11} = 1 pn_1 pn_2$ один N-объект и один М-объект (событие $S_N(3)$);
- по окончании времени жизни каждый М-объект порождает с вероятностью pm_1 один М-объект (событие $S_M(1)$), ничего не порождает с вероятностью $pm_0 = 1 pm_1$ (событие $S_M(0)$);
- до начального момента t=0 не было объектов, в начальный момент происходит событие $S_N(1)$ и появляется первый объект: N-объект.

Состояние системы в момент времени t характеризуется параметрами (N(t),M(t)), где N(t) — число N-объектов, M(t) — число М-объектов. Событием в развитии системы называется момент окончания жизни (исчезновения) любого из объектов и (одновременно) появления новых объектов. События могут быть 5 типов: $S_N(1)$, $S_N(2)$, $S_N(3)$, $S_M(0)$, $S_M(1)$. При появлении каждого нового объекта случайным образом в соответствии с заданным законом распределения определяется время его жизни. Считать для первого события: момент наступления события $t_{coo}(1)=0$; тип события $t_{coo}(1)=S_N(1)$.

Требуется:

- 1. Провести моделирование первых 100 событий в развитии системы.
- 2. Составить следующие таблицы в соответствии с Указаниями.

Таблица 1 (см. вид таблицы в Указаниях) с данными о событиях:

- номер события i;
- момент наступления события $t_{coo}(i)$;
- тип события *Туре*(*i*);
- время жизни появившихся новых объектов (2 столбца) $t_{\infty 1}(i)$, $t_{\infty 2}(i)$;
- состояние системы после события C(i);
- время ожидания до следующего события $t_{ox}(i)$;

Таблица 2 (см. вид таблицы в Указаниях) с данными об объектах:

- номер объекта j;
- вид объекта Gen(j) (N или M);
- момент появления (рождения) объекта $t_h(j)$;
- время жизни объекта $t_l(j)$;
- момент исчезновения объекта $t_d(j)$;
- номера объектов-потомков (2 столбца) $Des_1(j)$, $Des_2(j)$.

Таблица 3 с данными о типах событий (см. вид таблицы в Указаниях).

Таблица 4 с данными о видах объектов (см. вид таблицы в Указаниях).

Таблица 5 с данными о состояниях (см. вид таблицы в Указаниях).

Вычисления времени проводить с точностью до 0,00001.

Краткие теоретические сведения

Процессом гибели и размножения называется марковский процесс с непрерывным временем, граф состояний которого изображён на рисунке:

$$E_0 \xrightarrow{\lambda_0} E_1 \xrightarrow{\lambda_1} E_2 \xrightarrow{\lambda_2} \dots \xrightarrow{E_{k-1}} E_k \xrightarrow{\mu_k} \dots \xrightarrow{\mu_k} E_n \xrightarrow{\mu_k} E_n$$

 λ_i — интенсивность размножения μ_i — интенсивность гибели

Система уравнений Колмогорова для вероятностей состояний процесса гибели и размножения имеет вид:

$$\begin{cases} p_0'(t) = -\lambda_0 p_0(t) + \mu_1 p_1(t) \\ \dots \\ p_k'(t) = -(\lambda_k + \mu_k) p_k(t) + \lambda_{k-1} p_{k-1}(t) + \mu_{k+1} p_{k+1}(t), (k = 1, 2, \dots, n-1) \\ \dots \\ p_n'(t) = -\mu_n p_n(t) + \lambda_{n-1} p_{n-1}(t) \end{cases}$$

В том случае, когда у процесса гибели и рождения все интенсивности положительны $\lambda_i > 0$, i = 0,1,...,n-1, $\mu_j > 0$, j = 1,...,n, а число состояний n конечно, процесс является эргодическим, и существуют предельные вероятности состояний $p_k(\infty) = p_k$:

$$\begin{split} p_0(\infty) &= p_0, p_1(\infty) = \frac{\lambda_0}{\mu_1} p_0, \dots, p_k(\infty) = \frac{\lambda_0 \lambda_1 \dots \lambda_{k-1}}{\mu_1 \mu_2 \dots \mu_k} p_0, \dots, \\ p_n(\infty) &= \frac{\lambda_0 \lambda_1 \dots \lambda_{n-1}}{\mu_1 \mu_2 \dots \mu_n} p_0, \qquad p_0 = \left\{ \sum_{k=0}^n \frac{\lambda_0 \lambda_1 \dots \lambda_{k-1}}{\mu_1 \mu_2 \dots \mu_k} \right\}^{-1}, \end{split}$$

являющиеся также и стационарными вероятностями.

Средства высокоуровневого интерпретируемого языка программирования Python, которые использованы в программе расчета scipy.stats.expon — класс для работы с экспоненциальным распределением $\max(x)$ — выбор максимального значения в массиве x; $\min(x)$ — выбор минимального значения в массиве x; $\operatorname{np.zeros}(m,n)$ — создание нулевой матрицы размера m x n; $\operatorname{abs}(x)$ — модуль числа x; $\operatorname{np.rand}$ — генерация равномерного псевдослучайного числа в диапазоне 0..1 $\operatorname{np.random.exponential}$ — генерация N псевдослучайных чисел, распределенных по показательному закону с параметром λ = lambda; $\operatorname{sorted}(x)$ — упорядочение по возрастанию массива x;

Результаты расчетов

Вариант №10

Исходные данные

$$pn_1 = 0.318$$

 $pn_2 = 0.318$
 $pm_1 = 0.25$
 $\gamma_1 = 0.35$
 $\gamma_2 = 0.21$

Таблица 1

№ события	t_{\cos}	Туре	t_{m1}	t_{m2}	С	t _{iook}	J _{rok}	$Gen_{\scriptscriptstyle ext{tor}}$
1	0	$S_N(1)$	6.64915	-1	(1,0)	6.64915	1	N
2	6.64915	$S_N(2)$	0.09554	2.83492	(2,0)	0.09554	2	N
3	6.74469	$S_N(3)$	0.40989	0.8441	(2,1)	0.40989	4	N
4	7.15458	$S_M(0)$	0.00775	0.03357	(3,1)	0.00775	6	N
5	7.16233	$S_N(3)$	0.1076	0.4915	(4,1)	0.02582	7	N
6	7.18815	$S_N(2)$	0.04375	0.58323	(4,2)	0.04375	10	M
7	7.2319	$S_N(2)$	-1	-1	(4,1)	0.03803	8	N
8	7.26993	$S_M(1)$	0.20504	0.51793	(5,1)	0.20504	12	N
9	7.47497	$S_N(1)$	0.06481	1.15915	(5,2)	0.06481	14	M
10	7.53978	$S_N(2)$	-1	-1	(5,1)	0.04901	5	M
11	7.58879	$S_N(3)$	0.38379	-1	(5,1)	0.06504	9	N
12	7.65383	$S_M(0)$	0.39782	0.51644	(6,1)	0.11755	11	N
13	7.77138	$S_M(1)$	0.19322	-1	(6,1)	0.01648	13	N
14	7.78786	$S_N(3)$	0.02582	0.06851	(7,1)	0.02582	20	N
15	7.81368	$S_N(1)$	0.25677	0.43915	(7,2)	0.04269	21	N
16	7.85637	$S_M(1)$	0.13855	-1	(7,2)	0.10823	19	N
17	7.9646	$S_M(0)$	0.12213	0.56656	(8,2)	0.00798	16	M
18	7.97258	$S_M(1)$	-1	-1	(8,1)	0.02234	24	N
19	7.99492	$S_N(2)$	0.01396	0.172	(9,1)	0.01396	27	N
20	8.00888	$S_M(0)$	0.00363	0.00679	(10,1)	0.00363	29	N
21	8.01251	$S_N(1)$	0.1874	0.26046	(11,1)	0.00316	30	N
22	8.01567	$S_N(3)$	0.47083	0.50479	(12,1)	0.03598	17	N
23	8.05165	$S_M(1)$	0.47137	-1	(12,1)	0.0188	22	M
24	8.07045	$S_N(3)$	0.03263	-1	(12,1)	0.01628	25	N
25	8.08673	$S_M(1)$	0.06125	0.12362	(12,2)	0.01635	36	M
26	8.10308	$S_N(2)$	-1	-1	(12,1)	0.0449	37	N
27	8.14798	$S_M(0)$	0.27266	-1	(12,1)	0.01894	28	N
28	8.16692	$S_M(1)$	0.10938	0.50261	(12,2)	0.00335	18	N
29	8.17027	$S_N(2)$	0.16493	-1	(12,2)	0.02964	31	N
30	8.19991	$S_M(0)$	0.10686	0.53546	(13,2)	0.01044	38	M
31	8.21035	$S_N(3)$	-1	-1	(13,1)	0.04248	23	N
32	8.25283	$S_M(1)$	0.01913	-1	(13,1)	0.01913	45	N
33	8.27196	$S_N(1)$	0.00317	0.30067	(14,1)	0.00101	32	N
34	8.27297	$S_M(0)$	0.00722	0.15491	(14,2)	0.00216	46	N

	1		ı	1	T	1	ı	
35	8.27513	$S_N(1)$	0.04413	-1	(14,2)	0.00117	40	M
36	8.2763	$S_N(1)$	-1	-1	(14,1)	0.00389	48	M
37	8.28019	$S_N(1)$	-1	-1	(14,0)	0.02658	43	N
38	8.30677	$S_N(1)$	0.02846	0.3388	(14,1)	0.01249	50	N
39	8.31926	$S_N(3)$	0.00247	0.21346	(14,2)	0.00247	53	M
40	8.32173	$S_N(3)$	-1	-1	(14,1)	0.01347	42	N
41	8.3352	$S_M(1)$	0.0008	0.19234	(15,1)	3e-05	51	N
42	8.33523	$S_M(0)$	0.01268	0.08333	(16,1)	0.00077	55	N
43	8.336	$S_N(2)$	0.05211	-1	(16,1)	0.01191	57	N
44	8.34791	$S_N(2)$	0.03693	0.19265	(16,2)	0.03693	60	M
45	8.38484	$S_N(1)$	-1	-1	(16,1)	0.00327	59	N
46	8.38811	$S_M(0)$	0.30824	-1	(16,1)	0.03045	58	N
47	8.41856	$S_N(1)$	0.08658	0.10593	(16,2)	0.00208	39	N
48	8.42064	$S_N(1)$	0.17674	0.48851	(17,2)	0.00724	49	N
49	8.42788	$S_N(3)$	0.07656	0.22754	(18,2)	0.05862	33	N
50	8.4865	$S_N(3)$	0.0464	0.17112	(19,2)	0.01794	67	N
51	8.50444	$S_N(3)$	0.05958	0.33443	(20,2)	0.0007	63	N
52	8.50514	$S_M(1)$	0.01549	0.032	(20,3)	0.01532	34	N
53	8.52046	$S_M(1)$	0.04698	0.06799	(20,4)	0.00017	73	N
54	8.52063	$S_N(2)$	0.02806	-1	(20,4)	0.00239	35	N
55	8.52302	$S_N(1)$	0.11685	-1	(20,4)	0.00147	64	M
56	8.52449	$S_M(0)$	-1	-1	(20,3)	0.00305	56	N
57	8.52754	$S_N(2)$	0.02731	0.05932	(20,4)	0.00362	26	N
58	8.53116	$S_M(1)$	0.1798	-1	(20,4)	0.00156	54	N
59	8.53272	$S_M(1)$	0.01178	0.08637	(20,5)	0.00018	69	N
60	8.5329	$S_N(1)$	0.14056	-1	(20,5)	0.00424	74	M
61	8.53714	$S_N(3)$	0.14127	-1	(20,5)	0.00342	61	N
62	8.54056	$S_M(1)$	0.01914	0.08257	(21,5)	0.00394	82	N
63	8.5445	$S_N(1)$	0.23829	-1	(21,5)	0.00419	77	N
64	8.54869	$S_N(2)$	0.05653	0.08447	(22,5)	0.00616	79	M
65	8.55485	$S_M(0)$	-1	-1	(22,4)	0.00485	86	N
66	8.5597	$S_N(1)$	0.52953	-1	(22,4)	0.00432	71	N
67	8.56402	$S_N(3)$	0.03716	-1	(22,4)	0.00342	75	N
68	8.56744	$S_N(3)$	0.04961	0.15757	(22,5)	0.00519	47	N
69	8.57263	$S_M(1)$	0.05779	0.11153	(22,6)	0.01423	80	N
70	8.58686	$S_N(1)$	0.04805	-1	(22,6)	0.00159	76	M
71	8.58845	$S_N(3)$	0.06961	-1	(22,6)	0.00893	65	N
72	8.59738	$S_M(1)$	0.10442	0.1619	(23,6)	0.0038	92	N
73	8.60118	$S_M(1)$	0.01916	0.0586	(23,7)	0.00404	89	N
74	8.60522	$S_M(1)$	0.09245	0.23269	(24,7)	0.01183	93	M
75	8.61705	$S_N(3)$	-1	-1	(24,6)	0.00204	83	M
76	8.61909	$S_M(0)$	-1	-1	(24,5)	0.00125	101	N
77	8.62034	$S_M(0)$	0.03758	0.09307	(25,5)	0.00279	87	N
78	8.62313	$S_N(3)$	0.01363	-1	(25,5)	0.00729	95	M
79	8.63042	$S_N(1)$	-1	-1	(25,4)	0.00274	90	N
80	8.63316	$S_M(0)$	0.03207	0.03241	(25,5)	0.00096	15	N
81	8.63412	$S_N(3)$	0.01434	0.19302	(26,5)	0.00079	97	N
82	8.63491	$S_N(1)$	0.00218	0.03477	(26,6)	0.00185	107	N
83	8.63676	$S_M(1)$	0.00804	-1	(26,6)	0.00033	112	N
84	8.63709	$S_N(3)$	0.00337	0.05425	(27,6)	0.00278	78	N
85	8.63987	$S_M(1)$	0.08546	0.08666	(27,7)	0.00059	115	N
86	8.64046	$S_N(2)$	0.11119	0.12149	(27,8)	0.00434	114	N
00	0.01010	-8 (-)	0.11117	0.1217/	1 (27,0)	0.00737	117	11

87	8.6448	$S_M(1)$	0.08946	-1	(27,8)	0.00077	52	M
88	8.64557	$S_M(0)$	-1	-1	(27,7)	0.00289	110	N
89	8.64846	$S_M(0)$	0.05146	0.08298	(27,8)	0.00696	68	N
90	8.65542	$S_M(0)$	0.00104	-1	(27,8)	0.00104	124	N
91	8.65646	$S_N(1)$	0.05484	0.27359	(27,9)	0.00116	70	N
92	8.65762	$S_N(3)$	0.03498	-1	(27,9)	0.0003	105	N
93	8.65792	$S_N(1)$	0.13386	-1	(27,9)	0.00014	98	M
94	8.65806	$S_N(3)$	0.0256	-1	(27,9)	0.00172	102	M
95	8.65978	$S_N(1)$	-1	-1	(27,8)	0.00545	108	M
96	8.66523	$S_M(1)$	-1	-1	(27,7)	0.00034	109	N
97	8.66557	$S_N(1)$	0.02451	0.04799	(28,7)	0.00396	41	N
98	8.66953	$S_M(0)$	0.02545	-1	(28,7)	0.00015	113	M
99	8.66968	$S_N(2)$	-1	-1	(28,6)	0.00378	84	N
100	8.67346	$S_M(1)$	0.0422	0.17393	(28,7)	0.00495	85	M

Таблица 2

№ объекта	Gen	t_b	t_I	t_d	Des_1	Des ₂
1	N	0	6.64915	6.64915	2	3
2	N	6.64915	0.09554	6.74469	4	5
3	N	6.64915	2.83492	9.48407	-1	-1
4	N	6.74469	0.40989	7.15458	6	7
5	M	6.74469	0.8441	7.58879	16	-1
6	N	7.15458	0.00775	7.16233	8	9
7	N	7.15458	0.03357	7.18815	10	11
8	N	7.16233	0.1076	7.26993	12	13
9	N	7.16233	0.4915	7.65383	17	18
10	M	7.18815	0.04375	7.2319	-1	-1
11	N	7.18815	0.58323	7.77138	19	-1
12	N	7.26993	0.20504	7.47497	14	15
13	N	7.26993	0.51793	7.78786	20	21
14	M	7.47497	0.06481	7.53978	-1	-1
15	N	7.47497	1.15915	8.63412	110	111
16	M	7.58879	0.38379	7.97258	-1	-1
17	N	7.65383	0.39782	8.05165	35	-1
18	N	7.65383	0.51644	8.17027	42	-1
19	N	7.77138	0.19322	7.9646	25	26
20	N	7.78786	0.02582	7.81368	22	23
21	N	7.78786	0.06851	7.85637	24	-1
22	M	7.81368	0.25677	8.07045	36	-1
23	N	7.81368	0.43915	8.25283	45	-1
24	N	7.85637	0.13855	7.99492	27	28
25	N	7.9646	0.12213	8.08673	37	38
26	N	7.9646	0.56656	8.53116	81	-1
27	N	7.99492	0.01396	8.00888	29	30
28	N	7.99492	0.172	8.16692	40	41
29	N	8.00888	0.00363	8.01251	31	32
30	N	8.00888	0.00679	8.01567	33	34
31	N	8.01251	0.1874	8.19991	43	44
32	N	8.01251	0.26046	8.27297	48	49
33	N	8.01567	0.47083	8.4865	69	70
34	N	8.01567	0.50479	8.52046	75	76
35	N	8.05165	0.47137	8.52302	78	-1

36	M	8.07045	0.03263	8.10308	-1	-1
37	N	8.08673	0.06125	8.14798	39	-1
38	M	8.08673	0.12362	8.21035	-1	-1
39	N	8.14798	0.27266	8.42064	65	66
40	M	8.16692	0.10938	8.2763	-1	-1
41	N	8.16692	0.50261	8.66953	132	-1
42	N	8.17027	0.16493	8.3352	55	56
43	N	8.19991	0.10686	8.30677	51	52
44	N	8.19991	0.53546	8.73537	-1	-1
45	N	8.25283	0.01913	8.27196	46	47
46	N	8.27196	0.00317	8.27513	50	-1
47	N	8.27196	0.30067	8.57263	95	96
48	M	8.27297	0.00722	8.28019	-1	-1
49	N	8.27297	0.15491	8.42788	67	68
50	N	8.27513	0.04413	8.31926	53	54
51	N	8.30677	0.02846	8.33523	57	58
52	M	8.30677	0.3388	8.64557	-1	-1
53	M	8.31926	0.00247	8.32173	-1	-1
54	N	8.31926	0.21346	8.53272	82	83
55	N	8.3352	0.0008	8.336	59	-1
56	N	8.3352	0.19234	8.52754	79	80
57	N	8.33523	0.01268	8.34791	60	61
58	N	8.33523	0.08333	8.41856	63	64
59	N	8.336	0.05211	8.38811	62	-1
60	M	8.34791	0.03693	8.38484	-1	-1
61	N	8.34791	0.19265	8.54056	86	87
62	N	8.38811	0.30824	8.69635	-1	-1
63	N	8.41856	0.08658	8.50514	73	74
64	M	8.41856	0.10593	8.52449	-1	-1
65	N	8.42064	0.17674	8.59738	99	100
66	N	8.42064	0.48851	8.90915	-1	-1
67	N	8.42788	0.07656	8.50444	71	72
68	N	8.42788	0.22754	8.65542	124	-1
69	N	8.4865	0.0464	8.5329	84	-1
70	N	8.4865	0.17112	8.65762	127	-1
71	N	8.50444	0.05958	8.56402	92	-1
72	N	8.50444	0.33443	8.83887	-1	-1
73	N	8.50514	0.01549	8.52063	77	-1
74	M	8.50514	0.032	8.53714	85	-1
75	N	8.52046	0.04698	8.56744	93	94
76	M	8.52046	0.06799	8.58845	98	-1
77	N	8.52063	0.02806	8.54869	89	90
78	N	8.52302	0.11685	8.63987	117	118
79	M	8.52754	0.02731	8.55485	-1	-1
80	N	8.52754	0.05932	8.58686	97	-1
81	N	8.53116	0.1798	8.71096	-1	-1
82	N	8.53272	0.01178	8.5445	88	-1
83	M	8.53272	0.08637	8.61909	-1	-1
84	N	8.5329	0.14056	8.67346	133	134
85	M	8.53714	0.14127	8.67841	-1	-1
86	N	8.54056	0.01914	8.5597	91	-1
87	N	8.54056	0.08257	8.62313	107	-1

88	N	8.5445	0.23829	8.78279	-1	-1
89	N	8.54869	0.05653	8.60522	103	104
90	N	8.54869	0.08447	8.63316	108	109
91	N	8.5597	0.52953	9.08923	-1	-1
92	N	8.56402	0.03716	8.60118	101	102
93	M	8.56744	0.04961	8.61705	-1	-1
94	N	8.56744	0.15757	8.72501	-1	-1
95	M	8.57263	0.05779	8.63042	-1	-1
96	N	8.57263	0.11153	8.68416	-1	-1
97	N	8.58686	0.04805	8.63491	112	113
98	M	8.58845	0.06961	8.65806	129	-1
99	N	8.59738	0.10442	8.7018	-1	-1
100	N	8.59738	0.1619	8.75928	-1	-1
101	N	8.60118	0.01916	8.62034	105	106
102	M	8.60118	0.0586	8.65978	-1	-1
103	N	8.60522	0.09245	8.69767	-1	-1
104	N	8.60522	0.23269	8.83791	-1	-1
105	N	8.62034	0.03758	8.65792	128	-1
106	N	8.62034	0.09307	8.71341	-1	-1
107	N	8.62313	0.01363	8.63676	114	-1
108	M	8.63316	0.03207	8.66523	-1	-1
109	N	8.63316	0.03241	8.66557	130	131
110	N	8.63412	0.01434	8.64846	122	123
111	N	8.63412	0.19302	8.82714	-1	-1
112	N	8.63491	0.00218	8.63709	115	116
113	M	8.63491	0.03477	8.66968	-1	-1
114	N	8.63676	0.00804	8.6448	121	-1
115	N	8.63709	0.00337	8.64046	119	120
116	N	8.63709	0.05425	8.69134	-1	-1
117	N	8.63987	0.08546	8.72533	-1	-1
118	M	8.63987	0.08666	8.72653	-1	-1
119	N	8.64046	0.11119	8.75165	-1	-1
120	M	8.64046	0.12149	8.76195	-1	-1
121	N	8.6448	0.08946	8.73426	-1	-1
122	N	8.64846	0.05146	8.69992	-1	-1
123	M	8.64846	0.08298	8.73144	-1	-1
124	N	8.65542	0.00104	8.65646	125	126
125	M	8.65646	0.05484	8.7113	-1	-1
126	N	8.65646	0.27359	8.93005	-1	-1
127	N	8.65762	0.03498	8.6926	-1	-1
128	N	8.65792	0.13386	8.79178	-1	-1
129	M	8.65806	0.0256	8.68366	-1	-1
130	N	8.66557	0.02451	8.69008	-1	-1
131	N	8.66557	0.04799	8.71356	-1	-1
132	N	8.66953	0.02545	8.69498	-1	-1
133	M	8.67346	0.0422	8.71566	-1	-1
134	N	8.67346	0.17393	8.84739	-1	-1

Анализ результатов и выводы

Таблица 3

Тип события	$S_N(1)$	$S_N(2)$	$S_N(3)$	$S_M(1)$	$S_M(0)$	
Число событий	25	27	25	18	5	100
Относительная	0.25000	0.27000	0.25000	0.18000	0.05000	1
частота						

Таблица 4

Вид объекта	Число	появившихся	Число	объектов	в момент
	объектов за время		$t_{\cos}(100)$		
	$[0, t_{\cos}(100)]$]	000 (
N	104		28		
M	30		7		

Таблипа 5

$egin{array}{cccccccccccccccccccccccccccccccccccc$	0.76661 0.01102 0.04726 0.00089 0.00736 0.00504
(2,0) 1 0.01 0.09554 (2,1) 1 0.01 0.40989 (3,1) 1 0.01 0.00775	0.01102 0.04726 0.00089 0.00736
(2,1) 1 0.01 0.40989 (3,1) 1 0.01 0.00775	0.04726 0.00089 0.00736
(3,1) 1 0.01 0.00775	0.00089 0.00736
	0.00736
(4.1) 2 0.02 0.06385	
[(4,1)	0.00504
(4,2) 1 0.01 0.04375	0.0000.
(5,1) 3 0.03 0.31909	0.03679
(5,2) 1 0.01 0.06481	0.00747
(6,1) 2 0.02 0.13403	0.01545
(7,1) 1 0.01 0.02582	0.00298
(7,2) 2 0.02 0.15092	0.0174
(8,2) 1 0.01 0.00798	0.00092
(8,1) 1 0.01 0.02234	0.00258
(9,1) 1 0.01 0.01396	0.00161
(10,1) 1 0.01 0.00363	0.00042
(11,1) 1 0.01 0.00316	0.00036
(12,1) 5 0.05 0.1349	0.01555
(12,2) 3 0.03 0.04934	0.00569
(13,2) 1 0.01 0.01044	0.0012
(13,1) 2 0.02 0.06161	0.0071
(14,1) 4 0.04 0.03086	0.00356
(14,2) 3 0.03 0.0058	0.00067
(14,0) 1 0.01 0.02658	0.00306
(15,1) 1 0.01 3e-05	0.0
(16,1) 4 0.04 0.0464	0.00535
(16,2) 2 0.02 0.03901	0.0045
(17,2) 1 0.01 0.00724	0.00083
(18,2) 1 0.01 0.05862	0.00676
(19,2) 1 0.01 0.01794	0.00207

(20,2)	1	0.01	0.0007	8e-05
(20,3)	2	0.02	0.01837	0.00212
(20,4)	5	0.05	0.00921	0.00106
(20,5)	3	0.03	0.00784	0.0009
(21,5)	2	0.02	0.00813	0.00094
(22,5)	2	0.02	0.01135	0.00131
(22,4)	3	0.03	0.01259	0.00145
(22,6)	3	0.03	0.02475	0.00285
(23,6)	1	0.01	0.0038	0.00044
(23,7)	1	0.01	0.00404	0.00047
(24,7)	1	0.01	0.01183	0.00136
(24,6)	1	0.01	0.00204	0.00024
(24,5)	1	0.01	0.00125	0.00014
(25,5)	3	0.03	0.01104	0.00127
(25,4)	1	0.01	0.00274	0.00032
(26,5)	1	0.01	0.00079	9e-05
(26,6)	2	0.02	0.00218	0.00025
(27,6)	1	0.01	0.00278	0.00032
(27,7)	3	0.03	0.00382	0.00044
(27,8)	5	0.05	0.01856	0.00214
(27,9)	4	0.04	0.00332	0.00038
(28,7)	3	0.03	0.00906	0.00104
(28,6)	1	0.01	0.00378	0.00044
	100	1.00000	8.67841	1.00000

Список литературы

- 1. Лобузов А.А., Гумляева С.Д., Норин Н.В. Задачи по теории случайных процессов. М.: МИРЭА, 1993.
- 2. Булинский А. В., А. Н. Ширяев А. Н. Теория случайных процессов: Учебник для вузов. М.: ФИЗМАТЛИТ, 2005
- 3. Вентцель Е. С., Овчаров Л. А. Теория случайных процессов и ее инженерные приложения: Учеб. пособие для вузов. М.: Высшая школа, 2007.

Приложение (Листинг программы)

```
# coding: utf-8
import numpy as np
from scipy.stats import expon
import random
pn1 = 0.318
pn2 = 0.318
pm1 = 0.250
gamma1 = 0.35
gamma2 = 0.21
Objects arr = []
Num of N objects = 0
Num of M objects = 0
Type = 'S n(1)'
t life = round(np.random.exponential(1/0.1), 5)
Objects arr.append([1, 0, t life, t life, 'N'])
Num of N objects += 1
t wait = t life
total num = 1
Arr_of_types = [1,0,0,0,0]
Total N objects = 1
Total M objects = 0
def add to arr objects(obj):
   global Num of N objects
   global Num of M objects
   if(obj[-1] == 'N'):
      Num of N objects += 1
   else:
      Num of M objects += 1
   Objects arr.append(obj)
```

```
j = len(Objects arr) - 1
   while (j > 0 \text{ and } Objects\_arr[j - 1][-2] > Objects\_arr[j][-2]):
        temp = Objects arr[j-1]
        Objects arr[j - 1] = Objects arr[j]
        Objects arr[j] = temp
        j -= 1
def delete object():
    global Num of N objects
    global Num of M objects
    if (Objects arr[0][-1] == 'N'):
        Num of N objects -= 1
    else:
       Num of M objects -= 1
    Objects arr.pop(0)
table1 = open('Data/table1.txt', 'w')
table5 = dict()
table5['(1,0)'] = [1,t life]
table2 = []
table2.append([1, 'N', 0, Objects arr[0][2], Objects arr[0][2], -1, -1])
table1.write('1 ' + str(Objects arr[0][1]) + ' '+ Type + ' '+
str(Objects arr[0][2]) +' - (1,0) '+ str(Objects arr[0][3]) +' '+ '1 ' + 'N
1)
Total events = 1
Total time = t life
while (Total events < 100):</pre>
    Time spent = 0 #сколько времени проведено в данном состоянии
   print(Objects arr)
   Total events += 1
   p = np.random.rand()
    if(Objects arr[0][-1] == 'N'):
        if(0 <= p <= pn1):
            Type = 'S n(1)'
            Arr of types[0] += 1
            total num += 1
            #создание нового объекта
            t life = round(np.random.exponential(1/(gamma1*Num of N objects +
2*gamma1*Num of M objects + 0.1)), 5)
            new obj = [total num, Objects arr[0][-2], t life,
round(Objects arr[0][-2]+t life,5), 'N']
            Total N objects += 1
            #добавление предков во 2 таблицу
            table2[Objects\_arr[0][0] - 1][-2] = (new\_obj[0])
            #table2[Objects arr[0][0] - 1].append(-1)
```

```
delete object()
            add to arr objects(new obj)
            table1.write(str(Total events)+' '+str(new obj[1])+' '+ Type +'
'+str(new obj[2])+' - ('+ str(Num of N objects)+','+str(Num of M objects)+')
')
            table1.write(str(round(Objects arr[0][-2] - new obj[1],5)) +
'+str(Objects arr[0][0])+' '+str(Objects arr[0][-1])+' ')
            Total spent = round(Objects_arr[0][-2] - new_obj[1],5)
            Total time = new obj[1]
            table2.append([total num, new obj[-1], new obj[1], new obj[2],
new obj[3], -1, -1])
        elif(pn1 < p <= pn1+pn2):
            Type = 'S n(2)'
            Arr of types[1] += 1
            first t life =
round(np.random.exponential(1/(gamma1*Num of N objects +
2*gamma1*Num of M objects + 0.1)), 5)
            second t life =
round(np.random.exponential(1/(gamma1*Num of N objects +
2*gamma1*Num of M objects + 0.1)), 5)
            Total N objects += 2
            if(second t life < first t life):</pre>
                first t life, second t life = second t life, first t life
            total num += 1
            first obj = [total num, Objects arr[0][-2], first t life,
round(Objects arr[0][-2]+first t life,5), 'N']
            total num += 1
            second obj = [total num, Objects_arr[0][-2], second_t_life,
round(Objects_arr[0][-2] + second t life,5), 'N']
            table2[Objects arr[\mathbf{0}][\mathbf{0}] - \mathbf{1}][\mathbf{-2}] = (first obj[\mathbf{0}])
            table2[Objects\_arr[0][0] - 1][-1] = (second\_obj[0])
            delete object()
            add to arr objects(first obj)
            add to arr objects(second obj)
            table1.write(str(Total events)+' '+str(first obj[1])+' '+Type+'
'+str(first obj[2])+' '+str(second obj[2])+'
('+str(Num of N objects)+','+str(Num of M objects)+')')
            table1.write(str(round(Objects_arr[0][-2] - first_obj[1],5))+
'+str(Objects_arr[0][0])+' '+str(Objects_arr[0][-1])+' ')
            Total spent = round(Objects arr[0][-2] - first obj[1],5)
            Total time = first obj[1]
```

```
table2.append([total num - 1, first obj[-1], first obj[1],
first obj[2], first obj[3], -1, -1])
            table2.append([total num, second obj[-1],
second obj[1], second obj[2], second obj[3], -1, -1])
        else:
            Type = 'S n(3)'
            Arr of types[2] += 1
            first t life =
[round(np.random.exponential(1/(gamma1*Num of N objects +
2*gamma1*Num of M objects + 0.1)), 5), 'N']
            second t life =
[round(np.random.exponential(1/(3*gamma2*Num of N objects+gamma2*Num of M obj
ects)),5), 'M']
            if(second t life[0] < first t life[0]):</pre>
                 first t life, second t life = second t life, first t life
            Total N objects += 1
            Total M objects += 1
            total num += 1
            first obj = [total num, Objects arr[0][-2], first t life[0],
round(Objects arr[0][-2]+first t life[0],5), first t life[1]]
            total num += 1
            second obj = [total num, Objects arr[0][-2], second t life[0],
round(Objects arr[0][-2] + second t life[0],5), second t life[1]]
            table2[Objects arr[0][0] - 1][-2] = (first obj[0])
            table2[Objects arr[\mathbf{0}][\mathbf{0}] - \mathbf{1}][-\mathbf{1}] = (second obj[\mathbf{0}])
            delete object()
            add to arr objects(first obj)
            add to arr objects(second obj)
            table1.write(str(Total events)+' '+str(first obj[1])+' '+Type+'
'+str(first obj[2])+' '+str(second obj[2])+'
('+str(Num of N objects)+','+str(Num of M objects)+') ')
            table1.write(str(round(Objects arr[0][-2] - first obj[1],5))+
'+str(Objects arr[0][0])+' '+str(Objects arr[0][-1])+' ')
            Total spent = round(Objects arr[0][-2] - first obj[1],5)
            Total time = first obj[1]
            table2.append([total num - 1, first obj[-1], first obj[1],
first obj[2], first obj[3], -1, -1])
            table2.append([total num, second obj[-1],
second obj[1], second obj[2], second obj[3], -1, -1])
    else:
        if(0 <= p <= pm1):
            Type = 'S m(1)'
            Arr of types [4] += 1
            total num+=1
```

```
t life =
round(np.random.exponential(1/(3*gamma2*Num of N objects+gamma2*Num of M obje
cts)), 5)
            Total M objects += 1
            new obj = [total num, Objects arr[0][-2], t life,
round(Objects arr[0][-2]+t life,5), 'M']
            table2[Objects arr[0][0] - 1][-2] = (new obj[0])
            delete object()
            add to arr objects (new obj)
            table1.write(str(Total events)+' '+str(new obj[1])+' '+ Type +'
'+str(new obj[2])+' - ('+ str(Num of N objects)+','+str(Num of M objects)+')
')
            table1.write(str(round(Objects arr[0][-2] - new obj[1],5)) +
'+str(Objects arr[0][0])+' '+str(Objects arr[0][-1])+' ')
            Total spent = round(Objects arr[0][-2] - new obj[1], 5)
            Total time = new obj[1]
            table2.append([total num, new obj[-1], new obj[1], new obj[2],
new_obj[3], -1, -1])
        else:
            Type = 'Sm(0)'
            Arr of types[3] += 1
            table1.write(str(Total events)+' '+str(Objects arr[0][3])+'
'+Type+' '+str(-1)+' '+str(-1)+'
('+str(Num of N objects)+','+str(Num of M objects - 1)+') ')
            table1.write(str(round(Objects arr[1][-2] -
Objects arr[0][3],5))+' '+str(Objects arr[1][0])+' '+str(Objects arr[1][-
1])+'')
            Total spent = round(Objects arr[1][-2] - Objects arr[0][3],5)
            Total time = Objects arr[0][3]
            delete object()
    if(table5.get('('+str(Num of N objects)+','+str(Num of M objects)+')') !=
None):
        table5['('+str(Num of N objects)+','+str(Num of M objects)+')'][0] +=
1
        table5['('+str(Num of N objects)+','+str(Num_of_M_objects)+')'][1] =
round(table5['('+str(Num of N objects)+','+str(Num of M objects)+')'][1]+Tota
1 spent, 5)
    else:
        table5['('+str(Num_of_N_objects)+','+str(Num_of_M_objects)+')'] =
[1,Total spent]
table1.close()
```

```
file2 = open('Data/table2.txt','w')
for item in table2:
    for i in item:
       file2.write(str(i)+'')
file2.close()
print(Arr of types)
table3 = open('Data/table3.txt','w')
for item in Arr of types:
   table3.write(str(item) + ''')
table3.close()
table4 = open('Data/table4.txt','w')
table4.write(str(Total N_objects)+' '+str(Num_of_N_objects)+'
'+str(Total_M_objects)+' '+str(Num_of_M_objects))
table4.close()
for i in table5:
   table5[i].append(round(table5[i][-1] / Total time,5))
    table5[i].append(table5[i][0]/100)
file5 = open('Data/table5.txt','w')
for key, value in table5.items():
    file5.write(str(key)+' '+str(value[0])+' '+str(value[1])+'
'+str(value[2])+' '+str(value[3])+' ')
file5.close()
print('Total time: ', Total time)
```