20-R-KIN-DK-ZG Beginner

Rotation (RBK)

Inspiration: Hibbeler pg. 445

Kronk is asked to pull the lever. He applies a force of $40 \, \text{N}$, causing the $10 \, \text{kg}$ lever to have an angular velocity of $3 \, \text{rad/s}$. Determine the angular acceleration of the lever and the reaction forces at O. Assume the lever is a slender rod and that the lever was originally propped up to be level horizontally. The prop was removed at the instant Kronk applied the force. Kronk applies the force at a length 5/61 and the lever has length $I = 0.3 \, \text{m}$.

$$\Sigma F_{x} = 0_{x} = ma_{GX}$$
 $\Sigma F_{y} = 0_{y} - F_{5} - F = ma_{GY}$
 $\Sigma M_{C} = -0_{y}(0.15) - F(0.1) = I_{C} x = \frac{1}{12}(10)(0.3)^{3} x$

$$0.1503 - 1.351$$

$$0.1503 - 1.351$$

$$0.1503 - 1.351$$

$$0.64 = 0.150$$

$$0.64 = 0.150$$

$$O_{4} - 10(9.81) - 40 = 10(0.15)9$$

 $O_{4} = 1.58 + 134.1$
 $O_{4} = -30_{4} - 80 + 134.1$
 $O_{4} = 56.1$ $O_{4} = 14.525$