PDS Final

楊書暐 M132040015 葉宇倫 M132040013

簡述

從原始資料集初始 0.65 的準確度,經過清理、移動以及增加資料、調整參數後達到了 0.85 的準確度。

原始資料

在原始資料裡,我們總共有3367張訓練圖像以及963張驗證圖像(圖一)。

(圖一)各類圖像數量

資料預處理

經過檢查後,發現資料有兩大問題:錯誤標籤、錯誤圖像(圖二):

這兩個問題處處皆存在,為了解決問題,我們決定使用同樣的模型(競賽的固定模型)去做錯誤圖像識別,不過為了提高識別準確度,我們先使用了 CleanVision套件觀察圖像問題(表一),並根據圖像問題,來設定影像增強參數,以提高辨識準確度,並且我們將訓練集與驗證集融合,當成單一資料放入模型中訓練,在訓練完模型後,分別對訓練集和驗證集預測 30 次,對這 30 次的預測機率取平均值,以穩定預測。預測完後,使用 CleanLab 套件裡面的 find_label_issues 快速找出相關問題(*1),找出問題後再決定是修改還是保留。

錯誤放置							
i_57.png	ii_7.png	ix_5.png					
My	I	W		I			
錯誤圖像							
iii_15.png	iv_58.png	vi_307.png	vii_256	x_40.png			
*	M	×	85	97			

(圖二)資料問題

	訓練集問題	驗證集問題
Light	1088	*普遍性 > 0.5
Near duplicates	92	22
Odd size	62	5
Odd aspect ratio	1	0
備註	Low information 與	Low information 與
	grayscale 普遍性 > 0.5	grayscale 普遍性 > 0.5

(表一) CleanVision 圖像問題

(*1) 使用篩選器為 'both' 同時使用兩種篩選方法:

● prune by noise rate:高機率預測錯誤

● prune by class:在正確標籤上預測為最小機率

^{*}普遍性 > 0.5:含有此類問題的圖像超過資料筆數的一半

修改完原始資料後總圖像數量為訓練集:3017筆、驗證集:939筆

(圖三)各類圖像修改後數量

增加資料

在修改完資料後經過初步的影像增強,能夠達到 0.7 左右的準確度,這離 0.85 的準確度還遠遠不足。另外我們知道任何羅馬數字都可以由 "I, V, X" 字母組合而成,為了增加圖像的多樣性,我們選擇了 Chars74k 這個資料集,資料集裡正好包含了以上的字母(*2)。

透過 CV2 套件,使用 "add weighted" 我們能夠將 "I, V, X" 組合而成,並且透過將圖像加入噪聲(表二)的方式模擬原始圖像。

加入噪聲	特性	範圍			
Guassian Noise	值分佈接近於平均值,波	平均:128、變異數:20			
	動小				
Uniform Noise	值在範圍內均勻隨機分	0, 255			
	佈				
Impulse Noise	部分像素的值被隨機置	250, 255			
	為最大值或最小值				
備註:我們為值取了(0, 0.2)的隨機權重。					

(表二)加入噪聲

在為圖像添加完上述方法後,我們得到了每組各 110 張的圖片(大小寫各 55 張), 由於圖像有好有壞,有時圖片會有易被混淆的問題;另外,噪聲加入方式也是隨 機的,圖像有時也會被破壞(圖四)。因此,此次資料添加提升準確度只能到達 0.72 左右。

(圖四)生成不佳的圖像

(*2) 這個資料集裡包含了數字與字母大小寫的手寫資料與圖片,這裡我們只使 用手寫資料。

分類增強

為了提高準確度,更多的圖像是必要的,我們決定使用現有的圖像進行隨機增強加入資料集中。為了確保圖像數量保持在 12000 張的限制中,我們將訓練集與驗證集混合,將每個類別增加到 1200 張後打亂放回,以確保圖像品質一致。

在增強時,為了適應各數字不同的特徵,我們將所有數字的參數分開來設定,以達到最好的參數(表三);並將訓練集與驗證集採8000張與4000張的初始配置。

使用參數	解釋
*Resize	將圖像大小調整為指定高度和寬度
FlipIr	將圖像水平翻轉
Flipud	將圖像垂直翻轉
Crop	裁剪圖像
*GaussianBlur	高斯模糊
*AdditiveGaussianNoise	高斯雜訊
LinearContrast	將每個像素縮放來調整對比度
Multiply	將圖像中的所有像素乘以特定值

Affine - scale	將圖像縮放
Affine - translate_percent	將圖像平移
Affine - rotate	將圖像旋轉
Affine – shear	將圖像剪切

(表三)初始使用參數

*Resize:設定為 400*400 以保留更多細節

*高斯模糊、雜訊:互為拮抗關係,模糊有降低噪聲影響效果。

調整參數

在設定完初始參數後,調整參數使其 F1-score 達到 0.85 就是最後的工作,由於每個類別都有不同的優缺點,並且水平翻轉以及垂直翻轉無法適用到所有類別上(表四、圖五),為了更加細緻的微調參數,我們決定為每個類別分開進行調整。並且,為了在修改後方便辨別準確度,我們使用了人工標註後的*測試集進行評分比較(*3),在大量嘗試後,我們將訓練集與驗證集的數量改成11000張與1000張,並且將每個類別都進行了大量的修改,最終我們得到了能夠達到 0.85 準確度以上的參數。

可被水平翻轉	I, II, III, V, X
可被垂直翻轉	I, II, III, IX, X

(表四)可被翻轉類別

成功	範例	失敗範例		
翻轉前	翻轉前 翻轉後		翻轉後	
Ī	I	1 1	V/	
X	X	7%	X	

(圖五)翻轉範例圖像

問題與討論

在調整參數時,有遇到幾項常見問題:

- 參數隨機性過高:在設置參數時,起初為了更微小的調節,在隨機性上,我們為高斯模糊加上了只有 50%機率起作用的設置,後續因不易使用,故關閉此項。
- I, III, V 圖像不佳:在與真實標籤的比較中,這三種的預測錯誤是最常發生的,因此參數調整,也著重在這三類圖像的調整。
- V、X相似性過高:在觀察 f1-score 中,可以觀察到 V 與 X 會互相影響:V 的精確率(Precision)與 X 的召回率(Recall)兩者同時偏低(圖六),在最後將 X 的高斯模糊拉高,解決此問題。

	precision	recall	f1-score	support
1	0.80	0.94	0.87	52
2	0.87	0.81	0.84	59
3	0.73	0.70	0.72	54
4	0.89	0.94	0.92	52
5	0.71	0.88	0.78	41
6	0.86	0.76	0.81	50
7	0.71	0.78	0.74	41
8	0.91	0.91	0.91	47
9	0.86	0.78	0.82	49
10	0.83	0.69	0.75	55
accuracy			0.82	500
macro avg	0.82	0.82	0.82	500
weighted avg	0.82	0.82	0.82	500

(圖六)調整中報表

● 可能的設備問題:使用同一參數進行調整時,在 Kaggle 平台上,我們兩人的準確度(valid accuracy)差距能達到 0.1 以上,後葉宇倫轉到 Colab 平台上解決此問題。

嘗試與結果

在這章節,我將會列出我們嘗試過的一些事情與結果

● 資料預處理

- i. 錯誤導向學習(Error-driven learning):
 - ◆ 概念:根據模型預測結果與真實值的差異來調整模型參數。在這裡, 我們將方式改為,模型預測不符正確標籤的圖像取出進行增強後放 回。
 - ◆ 表現:使用過後能夠提升模型的預測表現,簡化預處理過程。
 - ◆ 問題點:增強參數過於保守,效果提升有限、嘗試次數不足。礙於 時間關係,故放棄使用。

ii. Wasserstein GAN:

- ◆ 概念:這是一種改進後的生成對抗網路,與傳統 GAN 相比能提高 學習的穩定性。
- ◆ 表現:提升效果待確定
- ◆ 問題點:迭代次數不足,使得生成圖像不佳,嘗試次數不足。礙於 時間關係,故放棄使用。

● 調整參數

- i. 根據 f1-score 改變權重:
 - ◆ 在改變訓練集與驗證集數量時,我們有嘗試過每個類別分開調整數量,與調整圖像類別總數。
 - ◆ 例:將 VIII 的總數降低至 500 張,將多出圖像平分增加至 V 與 VI。 提升效果不佳,與原始相同。
 - ◆ 問題點:在圖像原本就不好的情況下,調整圖像數量無法帶來幫助。
- ii. 根據模型預測做出混淆矩陣:
 - ◆ 放棄:過度為測試集調整會帶來過擬合的風險,不使用。

結論

在這次競賽中,我們首先清理和移動了大量的錯誤圖像,並在後續增加了額外的 手寫資料集,增加圖像多樣性。在之後,我們採取分類增強的方法將資料增加到 最大限制的 12000 張,採取了良好的參數設置,並且將訓練集的數量從 8000 張提升至 11000 張,部分解決了上述提到的問題,將 f1-score 的評分成功的保 持在 0.84 以上,並且有機會達到 0.87 的分數。

貢獻與感謝

我與葉宇倫都是一起討論及共同編寫程式碼,我們決定兩人貢獻相同。

特別感謝:

● 薄育文:提高訓練集數量的提示幫大忙了。

● 阮柏誠:一起熬夜調參數,讓我不孤單。

● 我媽:給我電話號碼,讓我多出30小時調整參數。

參考資料

- GitHub kennethleungty
- The Beginning! I Agneev's DS/ML lab book
- The Chars74K image dataset
- <u>eriklindernoren/Keras-GAN: Keras implementations of Generative</u> Adversarial Networks.
- 李宏毅 ATDL Lecture 15 HackMD

附錄 - 最終參數與原始參數比較

	FlipIr	Flipud	Crop	GaussianBlur	AdditiveGaussianNoise	LinearContrast	Multiply	Affine
原	0.5	0.5	(0, 0.05)	sigma = (0, 0.5)	scale = (0, 0.05*255)	(1.35, 1.75)	(0.8, 1.2)	縮放:(0.8, 1.2)
始								平移:(-0.06, 0.06)
								剪切:(-3, 3)
								旋轉:(-20, 20)
I	0.5	0.2	(0, 0.05)	sigma = (0, 3)		(1.2, 1.5)	(0.85. 1.15)	縮放:(0.9, 1.1)
								平移:(-0.05, 0.05)
								剪切:(-3, 3)
								旋轉:(-15, 15)
II	0.5	\setminus	(0, 0.05)		scale = (0, 0.05*255)	(1.2, 1.4)	(0.9. 1.1)	縮放:(0.9, 1.1)
								平移:(-0.04, 0.04)
		$ \wedge $						剪切:(-2, 2)
		/						旋轉:(-10, 10)
III	0.5	0.2	(0, 0.03)	sigma = (0, 2)	scale = (0, 0.05*255)	(1.1, 1.4)	(0.9. 1.2)	縮放:(0.85, 1.15)
								平移:(-0.04, 0.04)
								剪切: (-3, 3)
								旋轉:(-10, 10)
IV	\setminus	\setminus	(0, 0.03)	sigma = (0, 1)		(1.2, 1.5)	(0.85. 1.15)	縮放:(0.9, 1.1)
								平移:(-0.05, 0.05)
		$ \wedge $						剪切: (-4, 4)
		/						旋轉:(-15, 15)
٧	0.25	\setminus	(0, 0.05)	sigma = (0, 4)		(0.7, 1.4)	(0.55. 1.2)	縮放:(0.9, 1.15)
								平移:(-0.06, 0.06)
		$ \wedge $						剪切:(-2, 2)
								旋轉:(-10, 10)
VI	\	\setminus $/$	(0, 0.03)	sigma = (0, 0.5)		(1.1, 1.4)	(0.9. 1.1)	縮放:(0.85, 1.15)
								平移: (-0.08, 0.08)
		$ / \rangle $						剪切:(-5, 5)
								旋轉:(-20, 20)
VII	\setminus	\setminus /	(0, 0.03)	sigma = (0, 1)		(1.1, 1.4)	(0.9. 1.1)	縮放:(0.85, 1.15)
								平移:(-0.08, 0.08)
	$ \wedge $	$ \wedge $						剪切:(-5, 5)
	$/ \setminus$	/						旋轉:(-20, 20)

VIII			(0, 0.05)	sigma = (0, 1.5)		(1.2, 1.6)	(0.85. 1.15)	縮放: (0.85, 1.15)
								平移:(-0.06, 0.06)
								剪切:(-4, 4)
								旋轉:(-15, 15)
IX	\setminus	0.5	(0, 0.05)	sigma = (0, 0.7)	scale = (0, 0.05*255)	(1.2, 1.6)	(0.85. 1.15)	縮放:(0.85, 1.15)
								平移:(-0.06, 0.06)
								剪切: (-4, 4)
								旋轉:(-15, 15)
Х	0.5	0.5	(0, 0.05)		scale = (0, 0.85*255)	(1.2, 1.6)	(0.85. 1.15)	縮放:(0.85, 1.15)
								平移:(-0.06, 0.06)
								剪切:(-4, 4)
								旋轉:(-15, 15)

^{*}紅字為有改變參數

^{*}打叉為未使用