Wintersemester 2023/24

13. Übung zur Vertiefung Analysis

28. Januar 2024

Abgabe bis spätestens Sonntag 4. Februar 2024 um 22 Uhr per WueCampus (maximal zu dritt).

Aufgabe 13.1 (Parametrisierungen, 3 Punkte) Sei $M \subseteq \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit der Klasse C^{α} und $f \in \mathcal{L}^1(\lambda_M)$. Außerdem existieren offene Mengen $U, V \subseteq \mathbb{R}^k$ und lokale Parameterdarstellungen $\varphi : U \to \mathbb{R}^n$ und $\psi : V \to \mathbb{R}^n$ von M mit $\varphi(U) \cup \psi(V) = M$ und $\varphi(U) = M \setminus A$, wobei $A = \psi(N)$ mit einer λ_k -Nullmenge $N \subseteq V$ gilt. Zeigen Sie, dass A messbar ist und

$$\int_{M} f \, d\lambda_{M} = \int_{M \setminus A} f \, d\lambda_{M} = \int_{U} f \circ \varphi \cdot \sqrt{\det \varphi'^{T} \varphi'} \, d\lambda_{k}.$$

Hinweis: Diese Aufgabe zeigt, dass es für Integrale über Untermannigfaltigkeiten ausreicht, "fast" die ganze Untermannigfaltigkeit zu parametrisieren.

Aufgabe 13.2 (Nullmengen, 5 Punkte) Sei $M \subseteq \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit.

- (a) Sei $N \in \mathcal{L}_M$ mit $\lambda_M(N) = 0$. Dann gilt $\lambda_{M,V}(N) = 0$ für alle in M offenen Mengen $V \subseteq \mathbb{R}^n$ für die eine lokale Parameterdarstellung $\varphi : T \to V$, mit $T \subseteq \mathbb{R}^k$ offen, existiert.
- (b) Zeigen Sie, dass M eine λ_n -Nullmenge ist.

Hinweis: Satz 3.5

Aufgabe 13.3 (Torus, 8 Punkte) Seien 0 < r < R und

$$T := \left\{ (x, y, z) \in \mathbb{R}^3 \mid \left(R - \sqrt{x^2 + x^2} \right)^2 + z^2 - r^2 = 0 \right\}$$

die 2-dimensionale Untermannigfaltigkeit aus Präsenzaufgabe 10.1. Definiere außerdem die Funktion

$$\varphi: U := (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^3, \quad \varphi(\alpha, \beta) := \begin{pmatrix} \cos \alpha \cdot (R + r \cos \beta) \\ \sin \alpha \cdot (R + r \cos \beta) \\ r \sin \beta \end{pmatrix}.$$

- (a) Zeigen Sie, dass eine Menge $A \subseteq T$, eine offene Menge $V \subseteq \mathbb{R}^2$, ein Homöomorphismus $\psi : V \to \psi(V) \subseteq T$ und eine λ_2 -Nullmenge $N \subseteq V$ existiert, sodass $\varphi : U \to T \setminus A$ ein Homöomorphismus ist und $\psi(N) = A$ gilt.
- (b) Zeigen Sie, dass $\lambda_T(T) = 4\pi^2 Rr$ gilt.