Sporadic Cubic Torsion

David Zureick-Brown Amherst College arXiv:2007.13929

with Maarten Derickx, Anastassia Etropolski, Jackson S. Morrow, and Mark van Hoeij

AMS Special Session on Arithmetic Geometry with a View toward Computation

January 6, 2024

Slides available at https://dmzb.github.io/

Mazur's Theorem

Theorem (Mazur, 1978)

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \le N \le 10$ or $N = 12$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \le N \le 4$.

Via geometry, let

- $Y_1(N)$ be the curve paramaterizing (E, P), where P is a point of exact order N on E, and let
- $Y_1(M,N)$ (with $M \mid N$) be the curve paramaterizing E/K such that $E(K)_{\text{tors}}$ contains $\mathbb{Z}/M\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$.

Then $Y_1(N)(\mathbb{Q}) \neq \emptyset$ and $Y_1(2,2N)(\mathbb{Q}) \neq \emptyset$ iff N are as above.

Modular curves via Tate normal form

Example (N = 9)

 $E(K)\cong \mathbb{Z}/9\mathbb{Z}$ if and only if there exists $t\in K$ such that E is isomorphic to

$$y^{2} + (t - rt + 1)xy + (rt - r^{2}t)y = x^{3} + (rt - r^{2}t)x^{2}$$

where r is $t^2 - t + 1$. The torsion point is (0,0).

Example
$$(N = 11)$$

 $E(K) \cong \mathbb{Z}/11\mathbb{Z}$ correspond to $a, b \in K$ such that

$$a^2 + (b^2 + 1)a + b;$$

in which case E is isomorphic to

$$y^{2} + (s - rs + 1)xy + (rs - r^{2}s)y = x^{3} + (rs - r^{2}s)x^{2}$$

where r is ba + 1 and s is -b + 1.

Rational Points on $X_1(N)$ and $X_1(2,2N)$

Let $X_1(N)$ and $X_1(M,N)$ be the smooth compactifications of $Y_1(N)$ and $Y_1(M,N)$. We can restate the results of Mazur's Theorem as follows.

- $X_1(N)$ and $X_1(2,2N)$ have genus 0 for **exactly** the N appearing in Mazur's Theorem. (So in particular, there are **infinitely many** E/\mathbb{Q} with such torsion structure.)
- If $g(X_1(N))$ (resp. $g(X_1(2,2N))$) is greater than 0, then $X_1(N)(\mathbb{Q})$ (resp. $X_1(2,2N)(\mathbb{Q})$) consists only of cusps.

So, in a sense, the simplest thing that could happen does happen for these modular curves.

Higher Degree Torsion Points

Theorem (Merel, 1996)

For every integer $d \ge 1$, there is a constant N(d) such that for all K/\mathbb{Q} of degree at most d and all E/K,

$$\#E(K)_{tors} \leq N(d)$$
.

Expository reference: Darmon, Rebellodo (Clay summer school, 2006)

Problem

Fix $d \ge 1$. Classify all groups which can occur as $E(K)_{tors}$ for K/\mathbb{Q} of degree d. Which of these occur infinitely often?

Quadratic Torsion

Theorem (Kamienny-Kenku-Momose, 1980's)

Let E be an elliptic curve over a quadratic number field K. Then $E(K)_{tors}$ is one of the following groups.

```
\mathbb{Z}/N\mathbb{Z}, for 1 \le N \le 16 or N = 18, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}, for 1 \le N \le 6, \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3N\mathbb{Z}, for 1 \le N \le 2, or \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}.
```

In particular, the corresponding curves $X_1(M, N)$ all have $g \le 2$, which guarantees that they have infinitely many quadratic points.

Sporadic Points

Let X/\mathbb{Q} be a curve and let $P \in \overline{\mathbb{Q}}$. The **degree** of P is $[\mathbb{Q}(P) : \mathbb{Q}]$.

The set of degree *d* points of *X* is infinite if

- X admits a degree d map $X \to \mathbb{P}^1$;
- *X* admits a degree *d* map $X \to E$, where rank $E(\mathbb{Q}) > 0$; or
- Jac_X contains a positive rank abelian subvariety such that...
- Most Q points arise in the fashion. We call outliers isolated
- When X is a modular curve, cusps and CM points give rise to many isolated points; we call an isolated point **sporadic** if it is not cuspidal or CM.

See Bianca Viray's CNTA talk, linked here.

Cubic Torsion

Theorem (Jeon-Kim-Schweizer, 2004)

Let E be an elliptic curve over a cubic number field K. Then the subgroups which arise as $E(K)_{tors}$ infinitely often are exactly the following.

```
\mathbb{Z}/N\mathbb{Z}, for 1 \le N \le 20, N \ne 17, 19, or \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}, for 1 \le N \le 7.
```

Minimalist conjecture

Conjecture

A modular curve X admits a non cuspidal, non CM point of degree d if and only if

- ullet X admits a degree d map $X o \mathbb{P}^1$; ot
- X admits a degree d map $X \to E$, where $\operatorname{rank} E(\mathbb{Q}) > 0$; or
- Jac_X contains a positive rank abelian subvariety such that...

Minimalist conjecture

Conjecture

A modular curve X admits a non cuspidal, non CM point of degree d if and only if

- X admits a degree d map $X \to \mathbb{P}^1$; ot
- X admits a degree d map $X \to E$, where $\operatorname{rank} E(\mathbb{Q}) > 0$; or
- ullet Jac $_X$ contains a positive rank abelian subvariety such that...

Cubic Torsion

Theorem (Jeon-Kim-Schweizer, 2004)

Let E be an elliptic curve over a cubic number field K. Then the subgroups which arise as $E(K)_{tors}$ infinitely often are exactly the following.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \le N \le 20$, $N \ne 17, 19$, or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \le N \le 7$.

Theorem (Najman, 2014)

The elliptic curve 162b1 has a 21-torsion point over $\mathbb{Q}(\zeta_9)^+$.

Remark

Parent showed that the largest prime that can divide $E(K)_{tors}$ in the cubic case is p = 13.

Classification of Cubic Torsion

Theorem (Etropolski-Morrow-ZB-Derickx-van Hoeij)

The only torsion subgroups which appear for an elliptic curve over a cubic field are

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \le N \le 21$, $N \ne 17$, 19, and $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \le N \le 7$.

The only sporadic point is the elliptic curve 162b1 over $\mathbb{Q}(\zeta_9)^+$.

Modular curves

Definition

- $\bullet \ X(N)(K) := \{(E/K, P, Q) : E[N] = \langle P, Q \rangle\} \cup \{ \mathsf{cusps} \}$
- $\bullet \ X(N)(K) \ \ni \ (E/K, P, Q) \Leftrightarrow \rho_{E,N}(G_K) = \{I\}$

Definition

$$\Gamma(N) \subset H \subset \operatorname{GL}_2(\widehat{\mathbb{Z}})$$
 (finite index)

- $X_H := X(N)/H$
- $\bullet \ X_H(K) \ni (E/K, \iota) \Leftrightarrow H(N) \subset H \mod N$

Stacky disclaimer

- This is only true up to twist; there are some subtleties if
 - $lackbox{0}\ j(E) \in \{0,12^3\}$ (plus some minor group theoretic conditions), or

Example - torsion on an elliptic curve

If *E* has a *K*-rational **torsion point** $P \in E(K)[n]$ (of exact order *n*) then:

$$H(n)\subset\left(\begin{array}{cc}1&*\\0&*\end{array}\right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$egin{array}{lll} \sigma(P) = & P \ \sigma(Q) = & a_{\sigma}P & + & b_{\sigma}Q \end{array}$$

Example - Isogenies

If *E* has a *K*-rational, **cyclic isogeny** $\phi \colon E \to E'$ with $\ker \phi = \langle P \rangle$ then:

$$H(n) \subset \left(\begin{array}{cc} * & * \\ 0 & * \end{array}\right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\begin{aligned}
\sigma(P) &= a_{\sigma}P \\
\sigma(Q) &= b_{\sigma}P + c_{\sigma}Q
\end{aligned}$$

Example - other maximal subgroups

Normalizer of a split Cartan:

$$N_{\mathsf{sp}} = \left\langle \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right\rangle$$

$H(n) \subset N_{\mathsf{sp}} \text{ and } H(n) \not\subset C_{\mathsf{sp}} \text{ iff}$

- there exists an unordered pair $\{\phi_1, \phi_2\}$ of cyclic isogenies,
- whose kernels intersect trivially,
- neither of which is defined over K,
- ullet but which are both defined over some quadratic extension of K,
- and which are Galois conjugate.

Example - other maximal subgroups

Normalizer of a non-split Cartan:

$$C_{\mathsf{ns}} = \operatorname{im}\left(\mathbb{F}_{p^2}^* o \operatorname{GL}_2(\mathbb{F}_p)
ight) \subset N_{\mathsf{ns}}$$

$$\mathit{H}(\mathit{n}) \subset \mathit{N}_{\mathsf{ns}} \ \mathsf{and} \ \mathit{H}(\mathit{n}) \not\subset \mathit{C}_{\mathsf{ns}} \ \mathsf{iff}$$

E admits a "necklace" (Rebolledo, Wuthrich)

A typical subgroup (from Rouse–ZB)

"Jenga"

$$\ker \phi_4 \subset H(32) \subset \operatorname{GL}_2(\mathbb{Z}/32\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_4 = 4$$

$$\ker \phi_3 \subset H(16) \subset \operatorname{GL}_2(\mathbb{Z}/16\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_3 = 3$$

$$\ker \phi_2 \subset H(8) \subset \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_2 = 2$$

$$\ker \phi_1 \subset H(4) \subset \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_1 = 3$$

$$\downarrow \phi_1 \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Non-abelian entanglements

(from Brau-Jones)

There exists a surjection $\theta \colon \operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$.

$$\operatorname{im} \rho_{E,6} \subset H(6) \Leftrightarrow j(E) = 2^{10} 3^3 t^3 (1 - 4t^3) \Rightarrow K(E[2]) \subset K(E[3])$$
$$X_H \cong \mathbb{P}^1 \xrightarrow{j} X(1)$$

Rational Points on modular curves

Mazur's program B

Compute $X_H^{(d)}(\mathbb{Q})$ for all H.

Remark

- Sometimes $X_H \cong \mathbb{P}^1$ or elliptic with rank $X_H(\mathbb{Q}) > 0$.
- Some X_H have sporadic points.
- Can compute $g(X_H)$ group theoretically (via Riemann–Hurwitz).
- Can compute $\#X_H(\mathbb{F}_q)$ via moduli and enumeration [Sutherland].

Fact

$$g(X_H), \gamma(X_H) \to \infty \text{ as } \left[\operatorname{GL}_2(\widehat{\mathbb{Z}}): H\right] \to \infty.$$

Najman's example

Theorem (Najman, 2014)

The elliptic curve 162b1 has a 21-torsion point over $\mathbb{Q}(\zeta_9)^+$.

- Let $H := \rho_{E,21}(G_{\mathbb{O}})$.
- Then H contains an index 3 subgroup H' such that $H' \subset \left\langle \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \right\rangle$
- Thus we have a degree 3 map

$$X_{H'} \rightarrow X_H$$

and an induced map

$$X_H o \operatorname{Sym}^3 X_{H'} o \operatorname{Sym}^3 X_1(21)$$

Mazur - Rational Isogenies of Prime Degree (1978)

Let N be a positive integer. Examples of elliptic curves over \mathbf{Q} possessing rational cyclic N-isogenies are known for the following values of N:

N	g	ν	N	g	ν	N	g	v
<u>≤</u> 10	0	<u></u>	11	1	3	27	1	1
12	0	∞	14	1	2	37	2	2
13	0	00	15	1	4	43	3	1
16	0	00	17	1	2	67	5	1
18	ő	∞	19	1	1	163	13	1
25	0	∞	21	1	4			

CM *j*-invariants

Zywina, Silverman AEC II

j-invariant	D	f	Elliptic curve $E_{D,f}$	N
0	3	1	$y^2 = x^3 + 16$	3^3
$2^4 3^3 5^3$		2	$y^2 = x^3 - 15x + 22$	2^23^2
$-2^{15}3 \cdot 5^3$		3	$y^2 = x^3 - 480x + 4048$	3^3
$2^6 3^3 = 1728$	4	1	$y^2 = x^3 + x$	2^{6}
$2^33^311^3$		2	$y^2 = x^3 - 11x + 14$	2^5
$-3^{3}5^{3}$	7	1	$y^2 = x^3 - 1715x + 33614$	7^2
$3^35^317^3$		2	$y^2 = x^3 - 29155x + 1915998$	7^2
$2^{6}5^{3}$	8	1	$y^2 = x^3 - 4320x + 96768$	2^8
-2^{15}	11	1	$y^2 = x^3 - 9504x + 365904$	11^{2}
$-2^{15}3^3$	19	1	$y^2 = x^3 - 608x + 5776$	19^{2}
$-2^{18}3^35^3$	43	1	$y^2 = x^3 - 13760x + 621264$	43^{2}
$-2^{15}3^35^311^3$	67	1	$y^2 = x^3 - 117920x + 15585808$	67^{2}
$-2^{18}3^35^323^329^3$	163	1	$y^2 = x^3 - 34790720x + 78984748304$	163^{2}

Sporadic points on $X_H(\ell)$, $H \subset GL_2(\mathbb{F}_{\ell})$

Zywina, "On the Possible Images of the Mod ℓ Representations Associated to..."

7	$3^3 \cdot 5 \cdot 7^5/2^7$	$H \subsetneq N_{ns}(7)$	Sutherland 2012
11	-11^{2}	$\left\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2^2 & 0 \\ 0 & 2^9 \end{smallmatrix} \right) \right angle$	$g(X_0(11)) = 1$
	$-11\cdot 131^3$	$\left\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2^4 & 0 \\ 0 & 2^7 \end{smallmatrix} \right) \right angle$	
13	$\frac{2^4 \cdot 5 \cdot 13^4 \cdot 17^3}{3^{13}}$	$\widetilde{H} \subset S_4 \subset \mathrm{PGL}_2(\mathbb{F}_{13})$	BDMTV
	$-\frac{2^{12} \cdot 5^3 \cdot 11 \cdot 13^4}{3^{13}}$		Annals 2019
	$\frac{2^{18} \cdot 3^3 \cdot 13^4 \cdot 127^3 \cdot 139^3 \cdot 157^3 \cdot 283^3 \cdot 929}{5^{13} \cdot 61^{13}}$		g=r=3
17	$-17 \cdot 373^3 / 2^{17}, \ -17^2 \cdot 101^3 / 2$	$H_i \subsetneq B(17)$	$g(X_0(17)) = 1$
37	$-7 \cdot 11^3, \ -7 \cdot 137^3 \cdot 2083^3$	$H_i \subsetneq B(37)$	$\exists \iota \neq w_{37}$

2-adic sporadic points; $H \subset \operatorname{GL}_2(\mathbb{Z}/32\mathbb{Z})$, index 96 or 64

j-invariant	level of H	Generators of image	
211	16	$\begin{bmatrix} 7 & 14 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 6 & 11 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix}$	hyperelliptic
$2^4 \cdot 17^3$	16	$\begin{bmatrix} 7 & 0 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 5 \\ 14 & 7 \end{bmatrix}, \begin{bmatrix} 7 & 7 \\ 2 & 1 \end{bmatrix}$	genus 3
$\frac{4097^3}{2^4}$	16	$\begin{bmatrix} 3 & 5 \\ 6 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 5 \\ 14 & 7 \end{bmatrix}, \begin{bmatrix} 7 & 7 \\ 2 & 1 \end{bmatrix}$	rank 1
$\frac{257^3}{2^8}$	16	$\begin{bmatrix} 7 & 14 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 6 & 3 \end{bmatrix}$	
$-\frac{857985^3}{62^8}$	32	$\begin{bmatrix} 25 & 18 \\ 2 & 7 \end{bmatrix}, \begin{bmatrix} 25 & 25 \\ 2 & 7 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 8 & 1 \end{bmatrix}, \begin{bmatrix} 25 & 11 \\ 2 & 7 \end{bmatrix}$	not hyperelliptic
$\frac{919425^3}{496^4}$	32	$\begin{bmatrix} 29 & 0 \\ 4 & 1 \end{bmatrix}, \begin{bmatrix} 31 & 27 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 31 & 31 \\ 2 & 1 \end{bmatrix}$	genus 3, rank 3
$-\frac{3\cdot 18249920^3}{17^{16}}$	16	$\begin{bmatrix} 4 & 7 \\ 15 & 12 \end{bmatrix}, \begin{bmatrix} 7 & 14 \\ 7 & 9 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 11 & 9 \end{bmatrix}$	$g(X_{ns}(16)) = 2$
$-\tfrac{7\cdot1723187806080^3}{79^{16}}$			rank 2

Subgroups of $\mathrm{GL}_2(\mathbb{Z}_2)$

Sporadic points on X_H , $H \subset \operatorname{GL}_2(\mathbb{Z}_\ell)$, $\ell > 2$

Rouse-Sutherland-Zureick-Brown, in progress

- Probably no sporadic rational points for $\ell = 3$.
- Some sporadic points for $\ell = 5$.
- Still working on the bookkeeping for $\ell = 7, 11$.

See Jeremy Rouse's CNTA talk, linked here

Bourdon-Gill-Rouse-Watson, 2020

(Application) Classification of all odd degree isolated points on $X_1(N)$ with rational j-invariant:

$$j = -3^3 \cdot 5^6/2^3$$
, or $3^3 \cdot 13/2^2$

The first is the Najman cubic example, and the second corresponds to a degree 8 point on $X_1(28)$, found by Najman and González-Jiménez.

(Morrow) $H_1 \times H_2 \subset \operatorname{GL}_2(\mathbb{Z}/2^m\mathbb{Z}) \times \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$

Camacho-Navarro-Li-Morrow-Petok-Zureick-Brown

 $H_1 \times H_2 \subset \operatorname{GL}_2(\mathbb{Z}/p^m\mathbb{Z}) \times \operatorname{GL}_2(\mathbb{Z}/q^n\mathbb{Z})$ (Genus 1)

$3B^{0} - 3a$	$4A^{0}-4a$	109503/64, -35937/4
$3B^{0} - 3a$	$4D^0 - 4a$	-35937/4, 109503/64
$3B^{0} - 3a$	$5A^{0} - 5a$	-316368, 432
$3B^{0} - 3a$	$5B^{0} - 5a$	-25/2, -349938025/8,
		-121945/32, 46969655/32768
$3B^{0} - 3a$	$7B^{0} - 7a$	3375/2, -189613868625/128
		-140625/8, -1159088625/2097152
$3C^{0} - 3a$	$4A^{0} - 4a$	3375/64
$3C^{0} - 3a$	$5B^{0} - 5a$	1331/8, -1680914269/32768
$4A^{0} - 4a$	$5B^{0} - 5a$	-1723025/4, 1026895/1024

Camacho-Navarro-Li-Morrow-Petok-Zureick-Brown

 $H_1 \times H_2 \subset \mathrm{GL}_2(\mathbb{Z}/p^m\mathbb{Z}) \times \mathrm{GL}_2(\mathbb{Z}/q^n\mathbb{Z})$

(Genus ≥ 2)

label 1	label 2	sporadic j -invariants
4A0-4a	7B0-7a	-38575685889/16384, 351/4
4D0-4a	5A0-5a	-36, -64278657/1024
5B0-5a	9A0-9a	-23788477376, 64.
5E0-5a	2A0-8a	-5000
4A0-4a	5E0-5a	(genus 3)

More Sporadic Points on $X_1(N)$, via Derickx–van Hoeij

ICERM project: higher degree sporadic points on $X_0(N)$

Bilgin, Giusti, Korde, Manes, Morrison, Sankar, Triantafillou, Viray, Zureick-Brown

Classification of Cubic Torsion

Theorem (Etropolski-Morrow-ZB-Derickx-van Hoeij)

The only torsion subgroups which appear for an elliptic curve over a cubic field are

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \le N \le 21$, $N \ne 17$, 19, and $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \le N \le 7$.

The only sporadic point is the elliptic curve 162b1 over $\mathbb{Q}(\zeta_9)^+$.

Formal immersions

Previous work

- (Parent) handles p > 13.
- (Momose) N = 27,64.
- (Wang) N = 77,91,143,169
- (Bruin–Najman) N = 40, 49, 55

Main technique

- If N is large, then there are no elliptic curves mod small $\ell \nmid 2N$ with an N torsion point (e.g., by the Hasse bound).
- Thus a non cuspidal point of $X_1(N)$ reduces mod ℓ to a cusp.
- Fiddle with conditions on ℓ , N so that the formal immersion criterion works. (E.g., need to worry about cusps splitting.)

Put table from our paper here

Good fortune - many small level ranks are zero

Let

```
S_0 = \{1, \dots, 36, 38, \dots, 42, 44, \dots, 52, 54, 55, 56, 59, 60, 62, 63, 64, 66, 68, 69, 70, 71, 72, 75, 76, 78, 80, 81, 84, 87, 90, 94, 95, 96, 98, 100, 104, 105, 108, 110, 119, 120, 126, 132, 140, 144, 150, 168, 180\},
S_1 = \{1, \dots, 21, 24, 25, 26, 27, 30, 33, 35, 36, 42, 45\}.
```

Theorem (Etropolski-Morrow-ZB-Derickx-van Hoeij)

- \bullet rank $J_0(N)(\mathbb{Q}) = 0$ if and only if $N \in S_0$.
- 2 rank $J_1(N)(\mathbb{Q}) = 0$ if and only if $N \in S_0 \{63, 80, 95, 104, 105, 126, 144\}$.
- ③ rank $J_1(2,2N)(\mathbb{Q})$ if and only if $N \in S_1$.

The Mordell-Weil Sieve

For a finite set S of primes of good reduction, we have the following commutative diagram.

$$X^{(d)}(\mathbb{Q}) \xrightarrow{\iota} J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \alpha$$

$$\prod_{p \in S} X^{(d)}(\mathbb{F}_q) \xrightarrow{\beta} \prod_{p \in S} J(\mathbb{F}_p)$$

Compare the images of α and β .

Thanks!

Thank you!