(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 May 2001 (03.05.2001)

PCT

(10) International Publication Number WO 01/30316 A2

(51) International Patent Classification7: A61K 9/00

(21) International Application Number: PCT/US00/29702

(22) International Filing Date: 27 October 2000 (27.10.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/162,368 28 October 1999 (28.10.1999) US Not furnished 26 October 2000 (26.10.2000) US

(71) Applicant: 3M INNOVATIVE PROPERTIES COM-PANY [US/US]; 3M Center, Post Office Box 33427, Saint Paul, MN 55133-3427 (US).

(72) Inventor: DREYER, Steve J.; Post Office Box 33427, Saint Paul, MN 55133-3427 (US).

(74) Agents: HOWARD, MarySusan et al.; Office of Intellectual Property Counsel, Post Office Box 33427, Saint Paul, MN 55133-3427 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KR (utility model), KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TRANSDERMAL DRUG DELIVERY DEVICES

(57) Abstract: Systems and devices for the transdermal delivery of the compound (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime are disclosed. These devices include a drug in adhesive reservoir layer and a skin contacting adhesive layer acts as a rate controlling membrane. These devices also include a drug in adhesive reservoir layer and a skin contacting adhesive, where a membrane is placed between the two adhesive layers. The compound is a muscarinic agonist, useful in the treatment of a variety of cognitive disorders, including Alzheimer's Disease.

TRANSDERMAL DRUG DELIVERY DEVICES

Field of the Invention

This invention provides drug in adhesive systems for the transdermal delivery of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime, and transdermal drug delivery devices containing one or more of these systems.

5

10

15

20

25

30

Background of the Invention

The compound (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime is a muscarinic agonist, which property provides it with a number of therapeutic qualities. For example the compound is useful as an analgesic agent, as a sleep aid, and in the treatment of the symptoms of senile dementia, Alzheimer's disease, Huntington's chorea, tardive dyskinesia, hyperkinesia, mania or other conditions that are characterized by decreased cerebral acetylcholine production or release. This compound, and other compounds of its class, are described in detail in U.S. Patent No. 5,306,718 to Lauffer et al.

Transdermal drug delivery devices are designed to deliver drug through the skin of a patient, providing relatively constant drug delivery over an extended period of time. There are a number of possible designs for the devices, including reservoir devices, where the drug is typically present in a liquid reservoir and delivery of the drug is controlled by a rate-controlling membrane and drug in adhesive devices, where the drug is present in a generally solid matrix that comprises a pressure sensitive skin adhesive. Depending on the permeability of the skin to the drug, other components such as skin penetration enhancers can be added to the matrix. If, however, the skin is highly permeable to the drug, steps must be taken to control diffusion of the drug through the skin in order to provide stable, extended delivery of the drug.

Summary of the Invention

The invention provides drug in adhesive systems for the transdermal delivery of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime and transdermal drug delivery devices containing one or more of these systems.

More particularly, the transdermal drug delivery devices of the invention control the rate of delivery of the drug to a subject's skin. In one aspect of the invention, the rate of delivery of the drug is controlled by a rate controlling adhesive layer that is positioned between the drug reservoir layer and the skin. In another aspect of the invention the rate of delivery of the drug is controlled by a rate controlling membrane that is positioned between the drug reservoir layer and the skin contacting adhesive layer.

The invention additionally provides a method of treating a condition characterized by decreased cerebral acetylcholine production or release in a subject comprising applying a transdermal drug device of the invention to the skin of a subject and allowing the device to remain in contact with the skin for a time sufficient to deliver a therapeutically effective amount of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime to the subject.

Detailed Description of the Invention

15 The Drug

5

10

20

25

The compound (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (referred to herein as the "drug" or the "compound") is a selective m1/m4 muscarinic agonist, useful in the treatment of a variety of conditions that are characterized by decreased cerebral acetylcholine production or release. Such conditions include senile dementia, Alzheimer's disease, Huntington's chorea, tardive dyskinesia, hyperkinesia, mania, and the like. The compound is also useful as an analgesic and sleep aid. The structure of the compound is as follows:

The compound exists in a number of isomeric forms, including stereoisomers and geometric isomers. The compound can exist in two possible geometric forms known as E-oxime and Z-oxime. The pharmacological activity resides in the Z-oxime. Therefore, the compositions of the invention contain a sufficient amount of the Z-oxime to provide the desired therapeutic effect. The invention is inclusive of compositions that contain the drug in any of its therapeutically effective stereochemical forms or isomers. The structure,

chemistry, synthesis and isomeric properties of the drug are described in detail in U.S. Patent Nos. 5,306,718 (Lauffer et. al.); 5,346,911 (Augelli-Szafran et. al.); 5,514,812 (Bucsh et. al.); and 5,534,522 (Ando et. al.), all of which are incorporated by reference herein.

The compound can be used in the devices of the invention in its free base form or in the form of a pharmaceutically acceptable salt. Examples of such salts include hydrochloric, sulfuric, phosphoric, acetic, benzoic, citric, malonic, salicylic, malic, fumaric, oxalic, succinic, tartaric, lactic, gluconic, ascorbic, maleic, aspartic, benzenesulfonic, methane- and ethanesulfonic, and hydroxymethane- and hydroxyethanesulfonic acid salts of the compound (see, e.g., J. Pharm. Sci. 66(1), pp.1-19 (1977)). In general, it is preferred to select a form of the compound that resists isomerization from the active Z-form to the inactive E-form when combined with one of the adhesive polymers described below. The free base form of the compound is preferred primarily due to its relatively slow conversion rate in the adhesive polymers used in the devices of the invention.

The Adhesives

5

10

15

20

25

30

Pressure sensitive adhesives are used in the devices of the invention in a number of contexts. The drug reservoir layer of the devices is comprised of a mixture of the drug in a pressure sensitive adhesive, and the device is adhered to the subject's skin by a layer of pressure sensitive adhesive. In some devices of the invention an adhesive layer is used to control the rate of drug delivery as well as to adhere the device to the subject's skin.

The adhesive polymer(s) utilized in the devices of the invention should be substantially chemically inert to (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (e.g., it should not react with or degrade the compound, and preferably should not cause or accelerate conversion of the Z isomer to the E isomer), and is preferably a pressure sensitive skin adhesive. Chemical stability may be measured by preparing devices of the invention, storing them under conditions of 25°C and 60% relative humidity, and testing the devices for concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime at predetermined storage times. It is preferred that the amount of drug is more than about 95%, preferably more than about 97%, by weight of the initial amount of drug in the

5

10

15

20

25

30

device when stored at 25°C and 60% relative humidity for a period of time of 6 months. It is more preferred that the amount of drug is more than about 95%, preferably more than about 97%, by weight of the initial amount of drug in the device when stored at 25°C and 60% relative humidity for a period of time of 1 year.

Accelerated chemical stability may be measured by preparing devices of the invention, storing them under conditions of 40°C and 75% relative humidity, and testing the devices for concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime at predetermined storage times. It is preferred that the amount of drug is more than about 95%, preferably more than about 97%, by weight of the initial amount of drug in the device when stored at 40°C and 75% relative humidity for a period of time of 3 months, and more than about 90%, preferably more than about 93%, by weight of the initial amount of drug in the device when stored for a period of time of 6 months.

Examples of suitable types of adhesives include acrylates, natural rubbers, synthetic rubbers such as polyisobutylenes, polysiloxanes, polyurethanes, and other pressure sensitive skin adhesives known in the art. The adhesive polymers can be present alone or in combination.

Acrylate copolymers are preferred pressure sensitive adhesives for use in the devices of the invention. Suitable acrylate copolymers for use in an adhesive layer preferably comprise about 45 to about 95 percent by weight, more preferably 55 to 95 percent by weight, based on the total weight of all monomers in the copolymer, of one or more A monomers selected from the group consisting of alkyl acrylates containing 4 to 10 carbon atoms in the alkyl group and alkyl methacrylates containing 4 to 10 carbon atoms in the alkyl group. Examples of suitable alkyl acrylates and methacrylates include n-butyl, n-pentyl, n-hexyl, isoheptyl, n-nonyl, n-decyl, isohexyl, 2-ethyloctyl, isooctyl and 2-ethylhexyl acrylates and methacrylates. Preferred alkyl acrylates include isooctyl acrylate, 2-ethylhexyl acrylate, n-butyl acrylate, and cyclohexyl acrylate. Isooctyl acrylate is a particularly preferred A monomer.

The acrylate copolymer further comprises about 5 to about 55 percent by weight, more preferably about 5 to about 40 percent by weight, based on the total weight of all monomers in the copolymer, of one or more B monomers. Suitable B monomers include those containing a functional group selected from the group consisting of carboxylic acid,

5

10

15

20

25

30

sulfonamide, urea, carbamate, carboxamide, hydroxy, amino, oxy, oxo, and cyano. Exemplary B monomers include acrylic acid, methacrylic acid, maleic acid, a hydroxyalkyl acrylate containing 2 to 4 carbon atoms in the hydroxyalkyl group, a hydroxyalkyl methacrylate containing 2 to 4 carbon atoms in the hydroxyalkyl group, acrylamide, methacrylamide, an alkyl substituted acrylamide containing 1 to 8 carbon atoms in the alkyl group, N-vinyl-N-methyl acetamide, N-vinyl valerolactam, N-vinyl caprolactam, N-vinyl-2-pyrrolidone, glycidyl methacrylate, vinyl acetate, alkoxyethyl acrylate containing 1 to 4 carbon atoms in the alkoxy group, alkoxyethyl methacrylate containing 1 to 4 carbon atoms in the alkoxy group, 2-ethoxyethoxyethyl acrylate, furfuryl acrylate, furfuryl methacrylate, tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, propylene glycol monomethacrylate, propylene oxide methyl ether acrylate, di(lower)alkylamino ethyl acrylate, di(lower)alkylamino ethyl methacrylate, di(lower alkyl)aminopropyl methacrylamide, acrylonitrile, and methacrylonitrile. Preferred B monomers include acrylic acid, methacrylic acid, acrylamide, methacrylamide, and vinyl acetate.

The copolymer may optionally further comprise a substantially linear macromonomer copolymerizable with the A and B monomers and having a weight average molecular weight in the range of about 500 to about 500,000, preferably about 2,000 to about 100,000 and more preferably about 5,000 to about 30,000. The macromonomer, when used, is generally present in an amount of not more than about 20%, preferably not more than about 10% by weight based on the total weight of all monomers in the copolymer. Suitable macromonomers include polymethylmethacrylate, styrene/acrylonitrile, polyether, and polystyrene macromonomers. Examples of useful macromonomers and their preparation are described in Krampe et al., U.S. Patent No. 4,693,776, the disclosure of which is incorporated herein by reference.

The copolymers described above can be prepared by methods well known to those skilled in the art and described for example in U.S. Pat. No. RE 24,906 (Ulrich), U.S. Pat. No. 4,732,808 (Krampe et. al.), and International Publication Number WO 96/08229 (Garbe et. al.), the disclosures of which are incorporated herein by reference.

The inherent viscosity of the copolymer is such as to ultimately provide a suitable pressure sensitive adhesive when used in a device of the invention. Preferably the

copolymer has an inherent viscosity in the range of about 0.2 dl/g to about 2 dl/g, more preferably about 0.5 dl/g to about 1.6 dl/g.

If desired, the adhesive layer can contain components that modify the properties of the adhesive polymer, such as plasticizers, tackifiers, and the like of types and in amounts readily determinable to those of skill in the art.

The Devices

5

10

15

20

25

30

One preferred transdermal drug delivery device of the invention uses two adhesive layers that are laminated directly to one another. The first adhesive layer, which does not contact the skin of the subject, comprises a polymer and drug and serves as a drug reservoir layer. The second adhesive layer, which does contact the skin of the subject, serves to control the rate of delivery of the drug to the subject and to adhere the device to the subject's skin. The second adhesive layer comprises a polymer that is rate controlling. Thus the presence of the second adhesive layer in the device changes the skin penetration profile of the device compared to a like device where the second adhesive layer is identical in composition to the first adhesive layer, when the profile is determined using the test method described below. This control of rate of delivery of the drug may be due to differences in the affinity of the drug for the two different adhesive layers and differences in the rate of diffusion of the drug through the two different adhesive layers. These differences in affinity and/or diffusion of the drug in the two adhesive layers, as well as the relative thickness of the adhesive layers, allows the rate of delivery of the drug to be controlled. This system is referred to as the "adhesive rate controlled system".

In a particularly preferred embodiment of the adhesive rate controlled system, the adhesives to be used in the two layers are selected so that the second adhesive layer is made of an adhesive polymer that has a lower affinity for the drug than the first adhesive layer. By "lower affinity" is meant that the drug preferentially resides in the reservoir layer, so that when the system is at equilibrium the weight percentage of drug in the reservoir layer is greater than the weight percentage of drug in the rate controlling layer. The difference in the affinity of the two polymers for the drug, as well as the relative thickness of the adhesive layers, allows the rate of delivery of the drug to be controlled.

The first adhesive layer, also known as the reservoir layer, of the adhesive rate controlled device is preferably comprised of an acrylate copolymer of the type described

above. A preferred copolymer is a terpolymer of about 60 to about 80 wt-%, preferably about 65 to about 75 wt-%, based on total monomer weight, of isooctyl acrylate, about 4 to about 15 wt-%, preferably about 5 to about 10 wt-% of acrylamide and about 15 to about 35 wt-%, preferably about 15 to about 25 wt-% of vinyl acetate, with a particularly preferred weight ratio of monomers being about 75/5/20 of isooctyl acrylate/acrylamide/vinyl acetate. Another preferred copolymer is a copolymer of about 54 to about 77 wt-%, based on total monomer weight, of isooctyl acrylate, about 18 to about 39 wt-% vinyl acetate and about 2 to about 10 wt-% of polymethylmethacrylate macromonomer (PMMA), with a particularly preferred weight ratio of about 59/38/3 isooctyl acrylate/vinyl acetate/PMMA.

5

10

15

20

25

30

The reservoir layer of the device contains sufficient drug to deliver a therapeutically effective amount of the drug to a subject over the delivery period. A therapeutically effective amount of the drug is that amount which is sufficient to alleviate the symptoms of the condition being treated. The precise amount will vary with the exact nature of the condition to be treated, the status of the patient, and other factors known to those skilled in the art, but typically the dose to be administered is 0.07 to 700 mg/day, preferably about 0.1 to about 50 mg/day, and most preferably about 1 to about 30 mg/day. To deliver this amount of drug, the reservoir layer preferably contains about 5 to about 45 wt-% drug based on the total weight of the reservoir layer. More preferably the reservoir layer contains about 20 to about 35 wt-% drug.

Devices of the invention provide a therapeutically effective dose of the compound over an extended period of time, preferably from about 1 to about 14 days, more preferably about 1 day, and most preferably about 7 days.

Devices of the invention provide a therapeutically effective blood serum level of the drug to a subject over the delivery period. A therapeutically effective blood serum level of the drug is that amount which is sufficient to alleviate the symptoms of the condition being treated. The precise amount will vary with the exact nature of the condition to be treated, the status of the patient, and other factors known to those skilled in the art, but typically the blood serum level is about 0.2 to about 100 ng/mL and preferably 20 to 60 ng/mL.

It is also preferred that the rate of transdermal drug delivery be relatively constant during the extended period of time that the devices of the invention are used to provide a

therapeutically effective dose of the compound. The rate of transdermal drug delivery, also known as the transdermal flux, is defined as the rate at which drug penetrates through the skin. In the *in vitro* skin penetration test described below, the flux may be determined by measuring the amount of drug in the receptor fluid (i.e., the amount of drug that penetrates through the skin) and dividing by the area of the skin and the amount of time allowed for the drug to penetrate the skin prior to removal and replacement of the receptor fluid. The flux for each time interval is given as the average flux over the entire time interval. When more than one time interval is included in an experiment, then a maximum and minimum flux for the time period of the entire experiment may be determined (e.g., when the time intervals are 3,6,12, and 24 hours, then flux values for the time intervals 0-3, 3-6, 6-12, and 12-24 hours are obtained). It is preferred that the ratio of the maximum flux to the minimum flux is between 1.0 and about 4.0, more preferably between 1.0 and about 2.0.

In some instances there is a period of time at the start of an application period where the transdermal flux is low, sometimes referred to as a "lag time". If short time intervals are selected at the start of a penetration experiment, then the initial values of transdermal flux may be quite low due to the lag time, which would then make a calculation of the ratio between maximum flux and minimum flux quite large. It should be understood that for purposes of determining the ratio of maximum flux to the minimum flux, the flux values during the initial 24 hours of a penetration experiment are not included in determining the minimum flux unless they have reached half of the maximum flux value. Once the flux during any time interval has reached more than half of the maximum flux value, then that value and all subsequent flux values are used in determining the minimum flux.

The second adhesive layer, also known as the rate controlling layer comprises a different polymer from the first adhesive layer, such that the second adhesive layer changes the skin penetration profile of the device compared to a like device where the second adhesive layer is identical in composition to the first adhesive layer. The polymers in the first and second adhesive may differ in, for example, types and amounts of monomers, extent of reaction, crosslinking, branching, and copolymer sequences. The polymer of the adhesive rate controlled device is preferably a polyisobutylene (PIB), as it has been found that this polymer has a lower affinity for the drug than the acrylate

copolymers described above. More preferably a mixture of low molecular weight PIB and high molecular weight PIB is used. Low molecular weight PIB typically has a viscosity average MW of about 40,000 to about 70,000; high molecular weight PIB typically has a viscosity average MW of about 900,000 to 2,000,000. The high and low molecular weight polymers are combined in a ratio of low MW/high MW of about 5/1 to about 1/1, preferably about 3/1. Mixtures of PIB and acrylic copolymers can also be used. A preferred combination comprises a mixture of one or more polyisobutylenes and a copolymer of about 75/5/20 isooctyl acrylate/acrylamide/vinyl acetate, in a ratio of about 95:5 to about 80:20 PIB:acrylate.

10

5

Another preferred transdermal drug delivery device of the invention contains at least three distinct layers. The first layer comprises an adhesive that serves as a drug reservoir. The second layer comprises a rate controlling membrane that is adhered to one surface of the first layer. The third layer comprises an adhesive that is adhered to the surface of the membrane that is opposed to the surface of the membrane in contact with the first layer. This third layer contacts the skin of the subject when the device is used. This type of device is referred to as the "membrane rate controlled device".

20

15

As in the adhesive rate controlled device, the preferred reservoir layer of the membrane rate controlled device is comprised of an acrylate copolymer in combination with the drug. A preferred copolymer is a terpolymer of about 60 to about 80 wt-%, preferably about 65 to about 75 wt-%, based on total monomer weight, of isooctyl acrylate, about 4 to about 15 wt-%, preferably about 5 to about 10 wt-% of acrylamide and about 15 to about 35 wt-%, preferably about 15 to about 25 wt-% of vinyl acetate, with a particularly preferred weight ratio of monomers being about 75/5/20 of isooctyl acrylate/acrylamide/vinyl acetate. Another preferred copolymer is a copolymer of about 54 to about 77 wt-%, based on total monomer weight, of isooctyl acrylate, about 18 to about 39 wt-% vinyl acetate and about 2 to about 10 wt-% of polymethylmethacrylate macromonomer (PMMA), with a particularly preferred weight ratio of about 59/38/3 isooctyl acrylate/vinyl acetate/PMMA. The reservoir layer typically contains about 5 to about 45 wt-% of drug based on the total weight of the reservoir layer, preferably about 20 to about 35 wt-%.

30

25

The membrane is selected such that it is rate controlling. The presence of the membrane in the device changes the skin penetration profile of the device compared to a

like device not having the membrane, when the profile is determined using the test method described below. Suitable membranes include continuous film membranes and microporous membranes. Particularly preferred membranes are continuous film membranes prepared from ethylene:vinyl acetate copolymers containing from about 2 to about 28 wt- % vinyl acetate. Most preferred membranes are continuous film membranes prepared from ethylene:vinyl acetate copolymers containing about 9 wt- % vinyl acetate. The membrane thickness will generally be from about 25 μ m to about 100 μ m, preferably the thickness will be about 50 μ m.

5

10

15

20

25

30

Because the delivery rate of the drug is controlled by the membrane, the polymer used in the second, skin contacting, adhesive layer can be selected from a variety of adhesive polymers that have a range of affinities for the drug. The polymer used in this layer can be the same as or different than the polymer used in the reservoir layer. Preferably the polymer used in the second adhesive layer has a relatively high affinity for the drug, and more preferably is an acrylic copolymer of the type described above. A particularly preferred copolymer is a copolymer of isooctyl acrylate, acrylamide, and vinyl acetate in a monomer ratio of about 75/5/20 isooctyl acrylate/acrylamide/vinyl acetate.

The skin contacting layer can initially contain no drug, as it is expected that over time drug will diffuse from the reservoir layer into the skin contacting layer, or can contain drug in a concentration similar to that of the reservoir layer.

The properties desirable in a transdermal drug delivery device are well known to those skilled in the art. For example, it is desirable to have sufficiently little cold flow that a device of the invention is stable to flow upon storage. It is also preferred that it adheres well to the skin and releases cleanly from the skin. In order to achieve resistance to cold flow, preferred levels of skin adhesion and clean release, the amount and structure of the comonomers in the copolymer, the inherent viscosity of the copolymer, and the amount and type of any adjuvants or additives are selected such that the adhesive layers obtain the desired balance of these properties.

A transdermal drug delivery device of the invention also comprises a backing. The backing is flexible such that the device conforms to the skin. Suitable backing materials include conventional flexible backing materials used for pressure sensitive adhesive tapes, such as polyethylene, particularly low density polyethylene, linear low density polyethylene, metallocene polyethylenes, high density polyethylene, polypropylene,

5

10

15

20

25

30

polyesters such as polyethylene terephthalate, randomly oriented nylon fibers, ethylenevinyl acetate copolymer, polyurethane, natural fibers such as rayon and the like. Backings that are layered such as polyethylene terephthalate-aluminum-polyethylene composites are also suitable. The backing should be substantially inert to the components of the adhesive layer.

Transdermal drug delivery devices of the invention may be prepared using methods of preparing multi-layered devices known in the art. For example, the adhesive layers may be coextruded onto a backing or release liner, the layers can be sequentially extruded or coated onto a backing or release liner, or the layers may be separately coated onto a backing or release liner, then the two adhesive layers can be laminated together. Suitable release liners include conventional release liners comprising a known sheet material such as a polyester web, a polyethylene web, a polystyrene web, or a polyethylene-coated paper coated with a suitable fluoropolymer or silicone based coating.

Preferably the adhesive rate controlled systems of the invention are prepared by separately preparing reservoir layers and skin contacting layers. The reservoir layer is generally prepared by combining the adhesive copolymer with the drug and appropriate organic solvent or solvents (such as, for example, methanol, ethanol, isopropanol, ethyl acetate, etc). The mixture is stirred until a homogeneous coating formulation is obtained. The reservoir coating formulation is then applied to a release liner using conventional coating methods (e.g., knife coating or extrusion die coating) at a wet thickness of about 880 μm to 2200 μm, sufficient to provide a dry reservoir layer of about 14.7 mg/cm² to about 37.5 mg/cm². The coated release liner is allowed to dry and then is laminated onto a backing. The skin contacting layer is generally prepared by combining the rate controlling adhesive(s) with an appropriate organic solvent (such as, for example, methanol, ethanol, isopropanol, ethyl acetate, heptane, hexane, etc.) and stirred until homogeneous. This formulation is then applied to a release liner using conventional coating methods (e.g., knife coating or extrusion die coating). The skin contacting adhesive layer is coated at a thickness sufficient to provide a dry skin contacting adhesive layer about 10 µm to about 40 µm thick. The coated liner is allowed to dry, then the release liner is removed from the reservoir layer and the exposed adhesive surface is laminated onto the adhesive surface of the skin contacting adhesive layer. Patches of the appropriate size may then be cut from the resulting laminate. In an alternate method of production, the adhesive copolymers may

be coated onto liner and drug added to the coated adhesive copolymer as an additional step in the process, for example, using the methods disclosed in U. S. Patent No. 5,688,523 (Garbe et. al).

Membrane rate controlled devices of the invention may be prepared by preparing a reservoir layer in the manner described above. The reservoir layer formulation may be coated onto a release liner, dried and then laminated to a backing. The wet thickness of the reservoir layer is about 880 μ m to about 2200 μ m. A skin contacting adhesive coating formulation is prepared in the same manner as the reservoir coating formulation, using the same adhesive polymer or a different adhesive or combination of adhesives. This formulation is then applied to a release liner using conventional coating methods (e.g., knife coating or extrusion die coating) to provide a dry thickness of about 5 μ m to about 50 μ m. This coated liner is allowed to dry. It is then laminated onto a membrane. The devices are assembled by removing the release liner from the reservoir layer and laminating the exposed adhesive surface of the reservoir layer onto the membrane surface of the skin contacting adhesive layer. Patches of the appropriate size may then be cut from the resulting laminate.

The following examples are provided to further illustrate the invention.

Examples

20

25

30

5

10

15

In Vitro Skin Penetration Test Method

The skin penetration data given in the examples below was obtained using the following test method. A vertical diffusion cell is used with human cadaver skin.

When a transdermal drug delivery device is evaluated, the release liner is removed from a 2.0 cm² patch and the patch is applied to the skin and pressed to cause uniform contact with the skin. The resulting patch/skin laminate is placed patch side up across the orifice of the lower portion of the diffusion cell. The diffusion cell is assembled and the lower portion is filled with 10 mL of warm (32°C) receptor fluid (0.1 M phosphate buffer, pH 6) so that the receptor fluid is in contact with the skin. The receptor fluid is stirred using a magnetic stirrer. The sampling port is covered except when in use.

The cell is then placed in a constant temperature (32 ± 2 °C) and humidity ($50 \pm 10\%$ relative humidity) chamber. The receptor fluid is stirred by means of a magnetic

stirrer throughout the experiment to assure a uniform sample and a reduced diffusion barrier on the dermal side of the skin. The entire volume of receptor fluid is withdrawn at specified time intervals and immediately replaced with fresh fluid. The withdrawn fluid is filtered through a 0.45 μ m filter. The last 1-2 mL are then analyzed for (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime using high performance liquid chromatography (Column: Zorbax SB-CN, 50 X 2.1 mm ID; Mobile Phase: 87 v% phosphate buffer with triethylamine adjusted to pH 3.0, 13 v% acetonitrile; Flow rate: 2 mL/min; Detector: UV, 240 nm; Run Time: 1 minute; Injection Volume: 5 μ L). The cumulative amount of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime penetrating the skin is calculated.

5

10

15

20

25

30

Drug Content Method for Stability

Transdermal drug delivery devices (20 cm² patches) were sealed in pouches (BAREXTM/aluminum/polyester or BAREXTM/aluminum/paper laminates) and stored under one or more of the following conditions of 25°C temperature/60 % relative humidity (25°C/60 % RH), 40°C temperature/75 % relative humidity (40°C/75 % RH), room temperature (RT, about 22°C), 40°C temperature, and 50°C temperature. The patches were tested for their drug content before storage and after preset storage times. An internal standard solution was prepared by adding 1.0 g ethyl paraben to 1000 mL tetrahydrofuran (THF). The liner was removed from ten 20 cm² patches and the patches were placed in a 1 quart (0.95 L) jar. The backing and coating were extracted using 500 mL of the internal standard solution. The sample was allowed to shake for at least 24 hours. A dilution of the sample was then prepared by placing 5 mL of the resulting solution into a 4 ounce (118.3 mL) jar and adding 100 mL 50:50 (v:v) acetonitrile/water to the jar and shaking for about 60 minutes. An aliquot of the dilution was then placed in an autosampler vial for analysis. Analysis of the samples was performed by high performance liquid chromatography (Column: Zorbax SB-CN 5 um particle size, 25 cm x 4.6 mm; Mobile phase: 82:18 (v/v) pH 3 buffer/acetonitrile; Buffer is 7.7 x 10⁻⁴ molar triethylamine in potassium phosphate solution adjusted to pH 3.0 with phosphoric acid; Flow rate: 2.0 mL/min; Detector: UV at 240 nm; Injection volume: 5 µL; Run time: 15 minutes). Results are reported as the percentage of the amount of drug remaining to the initial amount of drug.

Preparation of Adhesives

The adhesives used in the examples that follow were prepared generally according to the methods described below.

5

Preparation of Isooctyl Acrylate: Acrylamide: Vinyl Acetate (75:5:20) Copolymer

A master batch was prepared by combining isooctyl acrylate (621.0 g), acrylamide (41.4 g), vinyl acetate (165.6 g), 2,2'-azobis(2,4-dimethylpentanenitrile) (1.656 g), ethyl acetate (884.5 g) and methanol (87.48 g). A portion (400 g) of the resulting solution was placed in a 1 quart (0.95 L) amber glass bottle. The bottle was purged for 2 minutes with nitrogen at a flow rate of 1 L per minute. The bottle was sealed and placed in a rotating water bath at 45°C for 24 hours to effect essentially complete polymerization. The copolymer was diluted with ethyl acetate:methanol (250 g, 90:10 v:v) to 26.05% solids.

15

20

10

Preparation of Isooctyl Acrylate:Vinyl Acetate:Polymethylmethacrylate Macromonomer (59:38:3) Copolymer

Vinyl acetate (80.37 g), polymethylmethacrylate macromonomer (6.345 g of ELVACITE™ 1010 available from ICI Acrylics), ethyl acetate (271.95 g) and methanol (8.41 g) were charged to a 1 quart (0.95 L) amber glass bottle and then mixed on a roller until a solution was obtained. Isooctyl acrylate (124.875 g) and 2,2'-azobis(2-methylbutyronitrile) (0.3173 g) were added to the solution. The bottle was purged for 2 minutes with nitrogen at a flow rate of 1 L per minute. The bottle was sealed and placed in a rotating water bath at 57°C for 23 hours. The copolymer was diluted with ethyl acetate (62.78 g) and methanol (1.94 g) to about 38% solids.

25

30

<u>Preparation of Isooctyl Acrylate:Vinyl Acetate:Polymethylmethacrylate Macromonomer</u> (55:38:7) Copolymer

Vinyl acetate (80.37 g), polymethylmethacrylate macromonomer (14.80 g of ELVACITE™ 1010 available from ICI Acrylics), and ethyl acetate (370.80 g) were charged to a 1 quart (0.95 L) amber glass bottle and then mixed on a roller until a solution was obtained. Isooctyl acrylate (116.32 g) and 2,2'-azobis(2-methylbutyronitrile) (0.3173 g) were added to the solution. The bottle was purged for 2 minutes with nitrogen at a flow

rate of 1 L per minute. The bottle was sealed and placed in a rotating water bath at 57°C for 23 hours. The resultant copolymer was 28.5% solids in ethyl acetate.

Preparation of Polyisobutylene Adhesive Solution

5

Low molecular weight polyisobutylene (74.99 g of OPPANOL™ B10 polyisobutylene available from BASF), high molecular weight polyisobutylene (24.96 of OPPANOL™ B100 polyisobutylene), heptane (270.0 g) and ethyl acetate (180.0g) were combined and mixed until all of the polyisobutylene was dissolved.

10

Preparation of "Dry Adhesive"

Dry adhesive was prepared by knife coating a solution of the acrylate adhesive copolymer onto a release liner. The adhesive coated release liner was oven dried to remove the solvent and reduce the level of residual monomers. The dried adhesive was then stripped from the release liner and stored in a container until used.

15

Membranes

Some of the membranes used in the examples below are commercially available (e.g., COTRANTM 9702, COTRANTM 9717, COTRANTM 9726 and COTRANTM 9728 EVA controlled caliper membranes, all available from 3M Company). Others were prepared from commercially available resins using conventional extrusion methods (e.g., thermal extrusion onto a quenching roll). Examples of suitable resins include ELVAXTM ethylene-vinyl acetate (EVA) copolymers available from DuPont. In the examples that follow, the designation "X% EVA" means a membrane prepared from an ethylene-vinyl acetate copolymer which contains X weight % vinyl acetate.

25

30

20

Example 1

Transdermal drug delivery devices having two distinct adhesive layers separated by a membrane were prepared as described below.

A coating formulation was prepared by combining dry adhesive (8.84 g of isooctyl acrylate/acrylamide/vinyl acetate 75/5/20), (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (1.17 g) and solvent (30 g of ethyl

acetate/methanol 90/10 v/v) and then mixing until a uniform coating formulation was obtained.

A reservoir adhesive layer was prepared as follows. The coating formulation was knife coated at a wet thickness of 60 mil (1524 μm) onto a release liner (Daubert 164P silicone coated release liner). The resulting coated liner was allowed to dry at ambient temperature for 5 hours and then it was laminated onto a backing (SCOTCHPAKTM 1109 polyester film laminate; available from 3M Company).

A skin contacting adhesive layer was prepared as follows. The coating formulation was knife coated at a wet thickness of 10 mil (254 μ m) onto a release liner (Daubert 164P silicone coated release liner). The resulting coated liner was allowed to dry at ambient temperature for at least 1 hour and then the exposed adhesive surface was laminated onto a membrane (12% EVA film, 2 mil/51 μ m).

The release liner was removed from the reservoir adhesive layer and then the exposed adhesive surface was laminated onto the membrane surface of the skin contacting adhesive layer. Patches were die cut from the resulting laminate. Each patch consisted of 5 layers: a backing; a reservoir adhesive layer containing 11.7% by weight of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime; a membrane; a skin contacting adhesive layer containing 11.7% by weight of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime; and a release liner. Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 2 below where each value is the average of 3 independent determinations.

Examples 2 –20

30

25

5

10

15

20

Using the method of Example 1, a set of transdermal drug delivery devices in which the concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime in the adhesive layers, the coating weight of the reservoir adhesive layer, and the percent of EVA in the membrane were varied was prepared. The compositions are shown in Table 1 below. In each example the adhesive used was isooctyl acrylate/acrylamide/vinyl acetate 75/5/20, the coating formulation contained 25% solids, the concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime was the same in both adhesive layers, the skin

contacting adhesive layer was coated at a wet thickness of 10 mil (254 μ m), and the membrane was 2 mil (51 μ m) thick. Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 2 below where each value is the average of 3 independent determinations.

	Table 1		
Example Number	Drug Concentration	Wet Coating	% EVA
		Thickness	
1	11.7%	1524 μm	12
2	25%	1905 μm	19
3	20%	1524 μm	12
4	20%	2160 μm	12
5	20%	1524 μm	2
6	20%	1524 μm	12
7	20%	1524 μm	12
8	25%	1143 μm	19
9	25%	1905 μm	4.5
10	20%	1524 μm	12
11	28.4%	1524 μm	12
12	15%	1905 μm	19
13	20%	889 µm	12
14	15%	1905 μm	4.5
15	20%	1524 μm	12
16	25%	1143 μm	4.5
17	15%	1143 μm	4.5
18	15%	1143 μm	19
19	20%	1524 μm	28
20	20%	1524 μm	12

	1		_			· ·			,					_				
			168 hr	1308	2725	2081	1961	1350	1812	1703	4312	2213	2226	3759	2422	1839	1048	2105
			144 hr	1179	2436	1865	1818	1263	1611	1554	4003	2066	2006	3406	2222	1718	964	1882
		g/cm ²)	120 hr	1035	2099	1633	1584	1170	1395	1372	3605	1902	1758	3008	1967	1510	698	1634
	l a	etrated (μ	96 hr	855	1696	1362	1322	1056	1144	1137	3079	1721	1478	2570	1659	1276	759	1354
	enetratio	ount Pene	72 hr	673	1289	1086	1040	919	006	875	2469	1540	1191	2124	1310	1025	633	1070
Table 2	ver Skin F	lative Am	48 hr	462	830	763	732	902	612	629	1757	1315	877	1650	925	736	459	739
	Human Cadaver Skin Penetration	Average Cumulative Amount Penetrated (µg/cm ²)	24 hr	214	343	375	362	357	273	306	964	965	493	1046	488	397	210	339
	Hum	Avera	12 hr	06	130	165	151	152	115	125	494	619	242	594	239	961	83	135
			6 hr	37	50	73	61	62	49	50	230	323	102	276	110	92	32	51
			3 hr	91	21	35	28	28	21	22	101	154	46	123	59	47	13	21
		Example	Number		2	3	4	5	9	7	∞	6	10	11	12	13	14	15

		т		r			_	
			168 hr	1921	1655	2486	4213	3456
			144 hr	1788	1533	2302	3919	3140
		g/cm ²)	120 hr	1637	1399	2065	3538	2780
	u	etrated (µ	96 hr 120 hr 144 hr 168 hr	1474	1264	1788	3074	2390
	enetratio	ount Pen	72 hr	1303	1113	1425	2462	1964
Table 2	ver Skin I	lative Am	48 hr	1074	937	926	1690	1494
	Human Cadaver Skin Penetration	Average Cumulative Amount Penetrated (µg/cm²)	24 hr	735	989	466	818	962
	Hun	Avera	12 hr	429	454	206	371	603
			6 hr	223	251	83	156	337
			3 hr	118	129	35	99	182
		Example	Number	91	11	18	19	20

Example 21

A coating formulation was prepared by combining dry adhesive (13.7 g of isooctyl acrylate/acrylamide/vinyl acetate 75/5/20), (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (1.54 g) and solvent (45 g of ethyl acetate/methanol 90/10 v/v) and then mixing until a uniform coating formulation was obtained.

5

10

15

20

25

A reservoir adhesive layer was prepared as follows. The coating formulation was knife coated at a wet thickness of 30 mil (762 μm) onto a release liner (SCOTCHPAKTM 9742 fluoropolymer coated release liner, available from 3M Company). The resulting coated liner was allowed to dry at ambient temperature for 60 to 90 minutes and then the exposed adhesive surfaces of two portions of the coated liner were laminated to each other. The release liner was removed from one surface and the exposed adhesive surface was laminated onto a backing (SCOTCHPAKTM 1109 polyester film laminate).

A skin contacting adhesive layer was prepared as follows. The coating formulation was knife coated at a wet thickness of 7 mil (178 μm) onto a release liner (SCOTCHPAKTM 9742 fluoropolymer coated release liner). The resulting coated liner was allowed to dry at ambient temperature for 60 to 90 minutes and then the adhesive surface was laminated onto a membrane (4.5% EVA film, 2 mil/51 μm).

The release liner was removed from the reservoir adhesive layer and then the exposed adhesive surface was laminated onto the membrane surface of the skin contacting adhesive layer. Patches were die cut from the resulting laminate. Each patch consisted of 5 layers: a backing; a reservoir adhesive layer containing 10% by weight of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime; a membrane; a skin contacting adhesive layer containing 10% by weight of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime; and a release liner. Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 4 below where each value is the average of 3 independent determinations.

5

10

Examples 22 - 38

Using the method of Example 21, a set of transdermal drug delivery devices in which the concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime in the adhesive layers, the adhesive used, and the percent of EVA in the membrane were varied was prepared. The compositions are shown in Table 3 below. In each example the same adhesive was used in both layers, the concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime was the same in both adhesive layers, and the membrane was 2 mil (51 µm) thick. Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 4 below where each value is the average of 3 independent determinations.

		Table 3	
Example	Drug	Adhesive	% EVA
Number	Concentration		
22	10%	IOA/ACM/VOAc 75/5/20	19
23	10%	IOA/ACM/VOAc 75/5/20	28
24	20%	IOA/ACM/VOAc 75/5/20	4.5
25	20%	IOA/ACM/VOAc 75/5/20	19
26	20%	IOA/ACM/VOAc 75/5/20	28
27	30%	IOA/ACM/VOAc 75/5/20	4.5
28	30%	IOA/ACM/VOAc 75/5/20	19
29	30%	IOA/ACM/VOAc 75/5/20	28
30	10%	IOA/VOAc/PMMAMac 59/38/3	4.5
31	10%	IOA/VOAc/PMMAMac 59/38/3	19
32	10%	IOA/VOAc/PMMAMac 59/38/3	28
33	20%	IOA/VOAc/PMMAMac 59/38/3	4.5
34	20%	IOA/VOAc/PMMAMac 59/38/3	19
35	20%	IOA/VOAc/PMMAMac 59/38/3	28
36	30%	IOA/VOAc/PMMAMac 59/38/3	4.5
37	30%	IOA/VOAc/PMMAMac 59/38/3	19
38	30%	IOA/VOAc/PMMAMac 59/38/3	28

IOA = isooctyl acrylate

ACM = acrylamide

VOAc = vinyl acetate

5 PMMAMac = polymethylmethacrylate macromonomer

	1	Τ	Τ_	T	T	T	T	T	1	1	_	1	7	T	Т.	1	T	т
			168 hr	625	1255	1051	1033	2591	1889	1462	2183	2164	543	1187	647	1199	1740	2285
			144 hr	564	1146	952	924	2341	1724	1333	1936	1924	492	1078	590	1092	1558	2063
		ug/cm ²)	120 hr	489	1006	828	797	2021	1510	1178	1629	1625	432	943	520	971	1341	1794
	uo	Average Cumulative Amount Penetrated (µg/cm²)	96 hr	417	844	692	929	1688	1282	1018	1332	1328	376	811	447	858	1128	1523
	Human Cadaver Skin Penetration	mount Per	72 hr	338	099	544	548	1302	666	831	066	991	309	653	358	726	874	1190
Table 4	aver Skin	ulative An	48 hr	245	445	354	395	859	859	599	619	614	228	457	248	562	579	785
	ıman Cad	rage Cum	24 hr	131	216	149	203	393	284	283	244	234	126	222	117	311	257	345
	H	Ave	12 hr	54	88	47	82	135	94	68	70	61	50	83	41	120	91	123
			6 hr	17	30	10	28	27	19	32	14	8	13	20	6	30	22	28
			3 hr	5	6	2	10	4	3	6	4		3	3	2	9	4	5
		Example	Number	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

	т					
			168 hr	1399	066	1126
			144 hr	1280	872	982
		μg/cm ²)	48 hr 72 hr 96 hr 120 hr 144 hr	1137	738	817
	on	Average Cumulative Amount Penetrated (μg/cm²)	96 hr	994	612	099
	Penetrati	mount Pe	72 hr	805	456	472
Table 4	I able 4 Human Cadaver Skin Penetration	ulative A	48 hr	556	273	270
		rage Cum	12 hr 24 hr	250	93	90
		Ave	12 hr	100	27	24
				6 hr	33	9
	:		3 hr	11	1	0
		Example	Number	. 36	37	38

Example 39

A coating formulation was prepared by combining dry adhesive (5200 g of isooctyl acrylate/acrylamide/vinyl acetate 75/5/20), ethyl acetate (17.56 Kg), methanol (1.96 Kg), and (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (1300 g) and mixing until a uniform coating formulation was obtained. The formulation was allowed to stand until all air bubbles had dissipated.

5

10

15

20

25

30

A reservoir adhesive layer was prepared as follows. The coating formulation was die coated (The pump speed and die gap were selected to provide a dry coat weight of 13 mg/cm² ± 4%.) onto a release liner (SCOTCHPAKTM 1022 fluoropolymer coated release liner). The resulting coated liner was oven dried at 140°F (60°C) for 2 minutes, at 190°F (88°C) for 2 minutes and at 240°F (116°C) for 2 minutes. The adhesive surface of a first section of the coated liner was laminated onto a backing (SCOTCHPAKTM 1109 polyester film laminate), the release liner was removed and the exposed adhesive surface was laminated to the adhesive surface of a second section of the coated release liner. The resulting reservoir adhesive layer had a dry coat weight of 26 mg/cm² ± 4%.

A skin contacting adhesive layer was prepared as follows. The coating formulation was die coated (The pump speed and die gap were selected to provide a dry coat weight of $2.5 \text{ mg/cm}^2 \pm 4\%$.) onto a release liner (SCOTCHPAKTM 1022 fluoropolymer coated release liner). The resulting coated liner was oven dried at 140°F (60°C) for 2 minutes, at 190°F (88°C) for 2 minutes and at 240°F (116°C) for 2 minutes and then the adhesive surface was laminated to a 9% EVA (2 mil/51 µm) membrane (COTRANTM 9702 EVA controlled caliper membrane).

The release liner was removed from the reservoir adhesive layer and then the exposed adhesive surface was laminated to the membrane surface of the skin contacting adhesive layer. Patches were die cut from the resulting laminate. Each patch consisted of 5 layers: a backing; a reservoir adhesive layer containing 20% by weight of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime; a membrane; a skin contacting adhesive layer containing 20% by weight of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime; and a release liner. Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 5 below where each value is

the average of 15 independent determinations. Drug content stability data is shown in Table 6 below.

	Table 5												
i	Human Cadaver Skin Penetration												
	Average Cumulative Amount Penetrated (μg/cm²)												
3 hr	6 hr	12 hr	24 hr	48 hr	72 hr	96 hr	120 hr	144 hr	168 hr				
26	26 54 125 263 516 721 908 1078 1251 1415												

	Table 6												
Drug Content Stability (% of initial content)													
	1 mo.	2 mo.	3 mo.	4.5 mo.	6 mo.	9 mo.	12 mo.						
25°C/60%RH	100.1	98.8	99.4	99.3	97.9	98.4	97.7						
40°C/75%RH	98.4	97.9	97.4	96.7	93.6	-	-						

Example 40

5

10

15

20

Transdermal drug delivery devices having two distinct adhesive layers directly adhered together were prepared as described below.

A reservoir adhesive layer was prepared as follows. Dry adhesive (35.0 g of isooctyl acrylate/acrylamide/vinyl acetate 75/5/20), ethyl acetate (135.0 g), methanol (15.1 g), and (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (15.0 g) were combined and mixed until a uniform coating formulation was obtained. The formulation was knife coated at a wet thickness of 60 mil (1524 μm) onto a release liner (SCOTCHPAKTM 1022 fluoropolymer coated release liner). The resulting coated liner was allowed to dry at ambient temperature for 3 hours and then it was laminated onto a backing (SCOTCHPAKTM 1109 polyester film laminate).

A skin contacting layer was prepared as follows. The polyisobutylene adhesive solution described above was knife coated at a wet thickness of 7 mil (178 μ m) onto a release liner. The coated liner was allowed to dry at ambient temperature. The "dry" adhesive layer was approximately 0.7 mil (17.8 μ m) thick.

The release liner was removed from the reservoir adhesive layer and then the exposed adhesive surface was laminated onto the adhesive surface of the skin contacting

adhesive layer. Patches were die cut from the resulting laminate. Each patch consisted of 4 layers: a backing; a reservoir adhesive layer containing 30% by weight of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime in isooctyl acrylate/acrylamide/vinyl acetate 75/5/20 adhesive; a skin contacting layer of polyisobutylene adhesive; and a release liner. Samples were allowed to sit for at least about 12 hours to allow drug to diffuse from the reservoir layer into the skin contacting layer. Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 8 below where each value is the average of 3 independent determinations.

10

15

20

5

Examples 41 - 58

Using the method of Example 40, a set of transdermal drug delivery devices in which the concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime in the reservoir layer and the dry thickness of the skin contacting layer were varied was prepared. The compositions are shown in Table 7 below. In each example, the reservoir layer adhesive was isooctyl acrylate/acrylamide/vinyl acetate 75/5/20. The reservoir layer was coated at a wet thickness of 60 mil (1524 μ m). The skin contacting layer was polyisobutylene (PIB). Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Tables 8 and 10 below where each value is the average of 3 independent determinations.

	Table 7	
Example Number	Drug Concentration	PIB Thickness (mil/μm)
41	35%	0.4/10.2
42	25%	1.0/25.4
43	35%	1.0/25.4
44	23%	0.7/17.8
45	30%	0.7/17.8
46	25%	0.4/10.2
47	30%	0.7/17.8
48	30%	1.1/27.9
49	37%	0.7/17.8
50	30%	0.7/17.8
51	30%	0.7/17.8
52	20%	0.5/12.7
53	20%	1.5/38.1
54	25%	1.0/25.4
55	25%	1.0/25.4
56	25%	1.0/25.4
57	30%	0.5/12.7
58	30%	1.5/38.1

			168 hr	1348	1658	754	949	1002	1118	1657	1092	745	1013	1165	1052
										ļ				-	-
			144 hr	1164	1408	644	815	850	950	1417	933	631	858	966	901
		μg/cm²)	120 hr	975	1163	535	682	703	786	1176	692	535	704	832	752
	on	Average Cumulative Amount Penetrated (µg/cm²)	96 hr	779	915	427	544	550	621	921	611	422	550	799	601
	Human Cadaver Skin Penetration	mount Pe	72 hr	580	089	322	412	405	460	989	458	317	402	494	446
Table 8	aver Skin	ulative A	48 hr	377	447	213	275	261	298	457	302	208	258	326	298
	ıman Cad	rage Cum	24 hr	174	207	103	134	114	137	217	137	86	115	153	143
	H.	Ave	12 hr	74	98	46	62	48	57	100	59	30	43	99	63
			6 hr	24	28	16	22	14	18	36	17	6	10	19	19
			3 hr	5	6	4	9	2	4	111	3	2		3	4
		Example	Number	40	41	42	43	44	45	46	47	48	49	50	51

Examples 59 - 61

5

10

Using the general method of Example 40, a set of transdermal drug delivery devices was prepared in which the composition of the skin contacting adhesive was varied. The compositions are shown in Table 9 below. The skin contacting adhesive composition was prepared by mixing solvated isooctyl acrylate/acrylamide/vinyl acetate 75/5/20 with the polyisobutylene adhesive solution described above. The coating formulation for the skin contacting layer contained about 19% solids and was coated at a wet thickness of 8 mil (203 μ m). In each example, the reservoir layer adhesive was isooctyl acrylate/acrylamide/vinyl acetate 75/5/20 and the reservoir layer contained 25% (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime. The coating formulation for the reservoir layer contained 25% solids and was coated at a wet thickness of 60 mil (1524 μ m). Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 10 below where each value is the average of 3 independent determinations.

	Table 9
Example Number	Skin Contacting Adhesive
59	95:5 PIB:IOA/ACM/VOAc 75/5/20
60	87.5:12.5 PIB:IOA/ACM/VOAc 75/5/20
61	80:20 PIB:IOA/ACM/VOAc 75/5/20
_	

15 IOA = isooctyl acrylate

ACM = acrylamide

VOAc = vinyl acetate

PIB = polyisobutylene

	,										,		
			168 hr	2008	471	1137	1120	1171	1997	764	1315	1831	1395
			144 hr	1793	400	962	926	666	1651	629	1113	1538	1167
		ug/cm²)	120 hr	1486	332	788	789	826	1323	554	206	1243	949
	on	Average Cumulative Amount Penetrated (µg/cm ²)	96 hr	1177	265	622	629	655	1020	450	707	963	745
	Human Cadaver Skin Penetration	mount Pe	72 hr	298	197	461	463	479	743	337	515	693	546
Table 10	aver Skin	ulative A	48 hr	555	132	301	304	309	457	231	322	421	346
	ıman Cad	rage Cum	24 hr	263	57	144	144	139	206	113	145	176	157
	H.	Ave	13 hr	120	36	81	81	73	112	65	78	93	87
			6 hr	49	13	30	31	25	38	24	28	35	30
			3 hr	16	5	11	12	6	13	6	10	13	=
		Example	Number	52	53	54	55	56	57	58	59	09	61

Example 62

A reservoir adhesive layer was prepared as follows. A coating formulation was prepared by combining dry adhesive (4200 g of isooctyl acrylate/acrylamide/vinyl acetate 75/5/20), ethyl acetate (16200 g), methanol (1800 g), and (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (1800 g) and mixing until a uniform coating formulation was obtained. The formulation was allowed to stand until all air bubbles had dissipated. The coating formulation was die coated (The pump speed and die gap were selected to provide a dry coat weight of 13 mg/cm² ± 4%.) onto a release liner (SCOTCHPAKTM 1022 fluoropolymer coated release liner). The resulting coated liner was oven dried at 140°F (60°C) for 2 minutes, at 190°F (88°C) for 2 minutes and at 240°F (116°C) for 2 minutes. The adhesive surface of a first section of the coated liner was laminated onto a backing (SCOTCHPAKTM 1109 polyester film laminate), the release liner was removed and the exposed adhesive surface was laminated to the adhesive surface of a second section of the coated release liner. The resulting reservoir adhesive layer had a dry coat weight of 26 mg/cm² ± 4%.

A skin contacting adhesive layer was prepared as follows. A coating formulation was prepared by combining low molecular weight polyisobutylene (900 g of OPPANOL B-10), high molecular weight polyisobutylene (300 g of OPPANOL B-100) and heptane (3006 g) and mixing until a uniform coating formulation was obtained. The formulation was allowed to stand until all air bubbles had dissipated. The coating formulation was die coated (The pump speed and die gap were selected to provide a dry coat weight of 1.53 mg/cm $^2 \pm 4\%$.) onto a release liner (one side silicone coated release liner). The resulting coated liner was oven dried at 125°F (52°C) for 2 minutes, at 185°F (85°C) for 2 minutes and at 225°F (107°C) for 2 minutes.

25

30

5

10

15

20

The release liner was removed from the reservoir adhesive layer and then the exposed adhesive surface was laminated to the adhesive surface of the skin contacting adhesive layer. The silicone release liner was replaced with a fluoropolymer release liner (SCOTCHPAKTM 1022 fluoropolymer coated release liner). Patches were die cut from the resulting laminate. Each patch consisted of 4 layers: a backing; a reservoir adhesive layer containing 30% by weight of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime and 70% by weight of adhesive (acrylate/acrylamide/vinyl acetate 75/5/20); a skin contacting polyisobutylene adhesive

layer; and a release liner. Samples were allowed to sit for at least about 12 hours to allow drug to diffuse from the reservoir layer into the skin contacting layer. Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 11 below where each value is the average of 15 independent determinations. Drug content stability data is shown in Table 12 below.

5

Table 11										
Human Cadaver Skin Penetration										
	Average Cumulative Amount Penetrated (μg/cm²)									
3 hr	3 hr 6 hr 12 hr 24 hr 48 hr 72 hr 96 hr 120 hr 144 hr 168 hr									
16	34	80	179	396	611	819	1019	1231	1439	

Table 12									
Drug Content Stability (% of initial content)									
1 mo. 2 mo. 3 mo. 4.5 mo. 6 mo. 9 mo. 12 mo									
25°C/60%RH	98.3	98.0	94.8	99.0	97.4	97.6	98.6		
40°C/75%RH	98.4	97.1	95.1	95.9	92.4	-	-		

Examples 63-75

Using the general method of Example 21, a set of transdermal drug delivery devices was prepared in which the coating weight of the skin contacting adhesive and the reservoir layer was varied (see table 13). In each example the same adhesive (isooctyl acrylate/acrylamide/vinyl acetate 75/5/20) was used in both layers and the concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime was 20%. In each example the membrane was 2 mil (51 µm) thick and the EVA percentage was 9%. Skin penetration through human cadaver skin was determined using the test method described above. The skin penetration data is shown in Table 14 below where each value is the average of 5 independent determinations.

5

Table 13							
Example Number	Skin Contact Layer	Reservoir Layer					
	Coat Weight [mg/cm ²]	Coat Weight [mg/cm ²]					
63	2.6	26.3					
64	2.6	26.3					
65	5.0	23.3					
66	7.7	20.2					
67	7.7	20.2					
68	10.0	18.1					
69	12.6	13.9					
70	12.6	13.9					
71	2.6	26.3					
72	5.0	26.3					
73	7.7	26.3					
74	10.0	26.3					
75	12.6	26.3					

	1	т —			_	 	7	T**	1	,			_				
		Human Cadaver Skin Penetration Average Cumulative Amount Penetrated (μg/cm²)	168 hr	1627	1446	1666	1924	2153	2255	2434	2323	1420	1626	1713	2028	2185	
			144 hr	1445	1294	1486	1780	1974	2074	2236	2125	1245	1449	1531	1835	1979	
			120 hr	1257	1140	1301	1639	1784	1892	2012	1900	1064	1261	1339	1631	1758	
	on		96 hr	1042	964	1089	1414	1350	1662	1726	1616	861	1043	1116	1383	1497	
	Penetrati		mount Per	72 hr	810	718	846	1155	1069	1372	1375	1261	648	908	862	1088	1189
Table 14	aver Skin		48 hr	562	474	554	892	708	1013	915	791	420	527	559	717	822	
	ıman Cad		24 hr	301	222	348	404	304	548	337	300	161	220	244	310	425	
	H		12 hr	177	158	177	207	180	297	192	193	119.	125	126	177	218	
			6 hr	85	75	9/	85	78	133	82	83	47	45	48	70	87	
			3 hr	35	33	32	34	33	50	35	33	11	9	10	23	18	
		Example	Number	63	64	99	99	<i>L</i> 9	89	69	70	71	72	73	74	75	

Example 76

A coating formulation was prepared by combining dry adhesive (18.0 g of isooctyl acrylate/acrylamide/vinyl acetate 75/5/20), (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (2.0 g) and solvent (70 g of ethyl acetate/methanol 90/10 v/v) and then mixing until a uniform coating formulation was obtained. The coating formulation was knife coated at a wet thickness of 25 mil (635 μ m) onto a release liner (Daubert 164P silicone coated release liner). The resulting coated liner was dried and laminated onto a backing (SCOTCHPAKTM 1109 polyester film laminate; available from 3M Company). Drug content stability data is shown in Table 15 below.

10

15

20

5

	Table 15								
Dr	ug Content St	ability (% of i	initial content)					
	4 wk. 2 mo. 3 mo. 6 mo.								
RT	100.0	99.9	100.0	99.7					
40°C	100.0	99.4	98.9	97.7					
50°C	99.2	97.8	96.6	93.0					

Example 77

A coating formulation was prepared by combining dry adhesive (18.0 g of isooctyl acrylate/vinyl acetate/polymethylmethacrylate macromonomer 55/38/7), (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3-(3-methoxyphenyl)-2-propynyl]oxime (2.0 g) and solvent (70 g of ethyl acetate/methanol 90/10 v/v) and then mixing until a uniform coating formulation was obtained. The coating formulation was knife coated at a wet thickness of 25 mil (635 μm) onto a release liner (Daubert 164P silicone coated release liner). The resulting coated liner was dried and laminated onto a backing (SCOTCHPAKTM 1109 polyester film laminate; available from 3M Company). Drug content stability data is shown in Table 16 below.

D	nua Contant St	Table 16		
Di	4 wk.	2 mo.	nitial content) 3 mo.	6 mo.
RT	100.0	99.8		
			100.0	99.6
40°C	99.5	99.0	98.4	96.6
50°C	98.6	97.1	95.9	92.9

The present invention has been described with reference to several embodiments thereof. The foregoing detailed description and examples have been provided for clarity of understanding only, and no unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made to the described embodiments without departing from the spirit and scope of the invention. Thus, the scope of the invention should not be limited to the exact details of the compositions and structures described herein, but rather by the language of the claims that follow.

WHAT IS CLAIMED IS:

1. A device for the transdermal delivery of the drug (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime comprising:

- (a) a drug reservoir layer comprising a therapeutically effective amount of the drug and a first pressure sensitive adhesive and
- (b) a skin contacting layer adhered to one surface of the drug reservoir layer and comprising the drug and a second pressure sensitive adhesive.
- 2. The device of claim 1 wherein the first pressure sensitive adhesive comprises an acrylic copolymer comprising a copolymer of
 - (a) one or more A monomers selected from the group consisting of alkyl (meth)acrylates containing 4 to 10 carbons in the alkyl group and
 - (b) one or more ethylenically unsaturated B monomers containing a functional group selected from the group consisting of carboxylic acid, sulfonamide, urea, carbamate, carboxamide, hydroxy, amino, oxy, oxo and cyano.
- 3. The device of claim 2 wherein the A monomer(s) is selected from the group consisting of isooctyl acrylate, 2-ethylhexyl acrylate, butyl acrylate, and cyclohexyl acrylate.
- 4. The device of claim 2 wherein the B monomer(s) is selected from the group consisting of acrylic acid, methacrylic acid, acrylamide, vinyl acetate and methacrylamide.
- 5. The device of claim 2 wherein the acrylic copolymer further comprises one or more substantially linear macromonomers copolymerizable with the A and B monomers.
- 6. The device of claim 1 wherein the second pressure sensitive adhesive comprises a polysiloxane, an acrylate, a natural rubber, or a synthetic rubber.

7. The device of claim 6 wherein the second pressure sensitive adhesive layer comprises polyisobutylene.

- 8. The device of claim 1 wherein the drug is present in the reservoir layer in an amount of about 5 to about 45 wt-% based on the total weight of the reservoir layer.
- 9. A device for the transdermal delivery of the drug (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime comprising:
 - (a) a drug reservoir layer comprising a therapeutically effective amount of the drug and a first pressure sensitive adhesive;
 - (b) a rate controlling membrane adhered to one surface of the drug reservoir layer; and
 - (c) a skin contacting layer adhered to the surface of the membrane that is opposed to the surface of the membrane in contact with the reservoir layer and comprising a second pressure sensitive adhesive.
- 10. The device of claim 9 wherein the first and second pressure sensitive adhesives independently comprise an acrylic copolymer.
- 11. The device of claim 9 wherein the skin contacting layer also includes drug.
- 12. The device of claim 10 wherein each acrylic copolymer independently comprises a copolymer of:
 - (a) one or more A monomers selected from the group consisting of alkyl (meth)acrylates containing 4 to 10 carbons in the alkyl group and
 - (b) one or more ethylenically unsaturated B monomers containing a functional group selected from the group consisting of carboxylic acid, sulfonamide, urea, carbamate, carboxamide, hydroxy, amino, oxy, oxo and cyano.

13. The device of claim 12 wherein the A monomer(s) is selected from the group consisting of isooctyl acrylate, 2-ethylhexyl acrylate, butyl acrylate, and cyclohexyl acrylate.

- 14. The device of claim 12 wherein each B monomer(s) is independently selected from the group consisting of acrylic acid, methacrylic acid, acrylamide, vinyl acetate and methacrylamide.
- 15. The device of claim 12 wherein at least one of the acrylic copolymers further comprises one or more substantially linear macromonomers copolymerizable with the A and B monomers.
- 16. The device of claim 9 wherein the rate controlling membrane comprises an ethylene vinyl acetate copolymer.
- 17. The device of claim 9 wherein the drug is present in the reservoir layer in an amount of about 5 to about 45 wt-% based on the total weight of the reservoir layer.
- 18. A method of treating a condition characterized by decreased cerebral acetylcholine production or release in a mammal comprising applying a device according to claim 1 to the mammal and allowing the device to remain in contact with the skin for a time sufficient to deliver a therapeutically effective amount of (R)-(Z)- 1- azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime to the mammal.
- 19. The method of claim 18 wherein the condition is Alzheimer's disease.
- 20. A method of treating a condition characterized by decreased cerebral acetylcholine production or release in a mammal comprising applying a device according to claim 9 to the mammal and allowing the device to remain in contact with the skin for a time sufficient to deliver a therapeutically effective amount of (R)-(Z)- 1-

azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime to the mammal.

- 21. The method of claim 20 wherein the condition is Alzheimer's disease.
- 22. A method of treating a condition characterized by decreased cerebral acetylcholine production or release in a mammal comprising delivering (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime to a mammal via a transdermal drug delivery device in an amount of about 0.1 to about 50.0 mg/20 cm² patch/day thereby causing the serum concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime in the mammal to be about 0.2 to about 100 ng/mL for a period of time from about 2 to about 14 days.
- 23. The method of claim 22 wherein the (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime is delivered in an amount of 1.0 to 30.0 mg/20 cm² patch/day, the serum concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime in the mammal is about 20 to about 60 ng/mL, and the period of time is about 7 days.
- A method of treating a condition characterized by decreased cerebral acetylcholine production or release in a mammal comprising delivering (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime to a mammal via a transdermal drug delivery device in an amount of about 0.1 to about 50.0 mg/20 cm² patch/day wherein the ratio of the maximum flux to the minimum flux is between 1.0 and about 4.0 for a period of time from about 2 to about 14 days.
- 25. The method of claim 24 wherein the ratio of the maximum flux to the minimum flux is between 1.0 and about 2.0.

26. A method of treating a condition characterized by decreased cerebral acetylcholine production or release in a mammal comprising delivering (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime to a mammal via a transdermal drug delivery device in an amount of about 7.5 to about 50.0 mg/20 cm² patch/day for a period of time from about 1 to about 14 days.

- 27. A method of treating a condition characterized by decreased cerebral acetylcholine production or release in a mammal comprising delivering (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime to a mammal via a transdermal drug delivery device in a therapeutic amount for a period of time from about 2 to about 14 days.
- 28. A method of treating a condition characterized by decreased cerebral acetylcholine production or release in a mammal comprising delivering (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime to a mammal via a transdermal drug delivery device thereby causing the serum concentration of (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime in the mammal to be about 0.2 to about 100 ng/mL for a period of time from about 1 to about 14 days.
- 29. The method of claim 28 wherein the serum concentration is between about 20 and about 60 ng/mL.
- 30. A device for the transdermal delivery of the drug (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime comprising a pressure sensitive adhesive layer comprising a therapeutically effective amount of the drug wherein the amount of drug is more than about 95% by weight of the initial amount of drug in the device when stored at 25°C and 60% relative humidity for a period of time of at least 6 months.
- 31. The device of claim 30 wherein the period of time is 1 year.

32. A device for the transdermal delivery of the drug (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime comprising a pressure sensitive adhesive layer comprising a therapeutically effective amount of the drug wherein the amount of drug is more than about 90% by weight of the initial amount of drug in the device when stored at 40°C and 75% relative humidity for a period of time of 6 months.

33. A device for the transdermal delivery of the drug (R)-(Z)-1-azabicyclo[2.2.1]heptan-3-one, O-[3(3-methoxyphenyl)-2-propynyl]oxime comprising a pressure sensitive adhesive layer comprising a therapeutically effective amount of the drug wherein the amount of drug is more than about 95% by weight of the initial amount of drug in the device when stored at 40°C and 75% relative humidity for a period of time of 3 months.