

Machine Learning Fundamentals – DTSC102

Lecture 6 Logistic Regression

Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220

Contents

- **≻**Classification
- ➤ Logistic Regression
- ➤ Decision Boundaries
- **≻**Cost Function

Classification

Classification

- One form of Supervised Learning
- Goal: Learn a mapping from inputs x to outputs y, where y={1,2,...,C}, with C being the number of classes
- Examples:
 - Emails: Spam/Not Spam
 - Online Transactions: Fraudulent (Yes/No)
 - Tumor: Malignant/Benign
- Approach: Predict a hypothesis function $0 \le h_{\theta}(x) \le 1$

$$y = \{0,1\}$$
Negative Positive Class

Logistic Regression

Approach: Predict a hypothesis function $0 \le h_{\theta}(x) \le 1$

Solution:

Use Logistic/Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

• Define $h_{\theta}(x) = g(\theta^T x)$ $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

• Predict parameters θ to optimize $h_{\theta}(x)$

But what does $h_{\theta}(x)$ mean now??

Logistic Regression - Meaning

Interpretation of Hypothesis function

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

 $h_{\theta}(x) = \text{estimated probability that } y = 1 \text{ on input } x$

Example:

$$h_{\theta}(x) = p(y = 1|x; \theta) = 0.4$$

Means that the probability that y=1, given x, parameterized by θ is equal to 0.6

- \triangleright Accordingly, $p(y = 0|x; \theta) = 0.6$
- > So the algorithm should predict "y=1" if $h_{\theta}(x) \ge 0.6$ and "y=0" if $h_{\theta}(x) \le 0.6$
- Which means also that "y=1" if $z \ge 0$ and "y=0" if $z \le 0$

But how can we define this decision boundary?

Logistic Regression-Decision Boundary

Consider the training set in the graph:

- For all points marked x the output should be y = 1
- For all points marked o the output should be y = 0

- ➤ Decision Boundary is shown as the dashed line
 - Line equation: $x_1 + x_2 = 3 \rightarrow -3 + x_1 + x_2 = 0$

Thus

► Predict "
$$y = 1$$
" if $\rightarrow -3 + x_1 + x_2 \ge 0 : x_1 + x_2 \ge 3$

► Predict "
$$y = 0$$
" if $\rightarrow -3 + x_1 + x_2 < 0 : x_1 + x_2 < 3$

So
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) = g(-3 + x_1 + x_2)$$

Logistic Regression-Decision Boundary

- Decision Boundaries need not to be always linear, but could be any function that describes any shape that fits our data
- Consider the training set in the graph:
- ➤ We can predict hypothesis function as

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

► Using the training data we fit parameters θ

$$\theta^T = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

- ► Predict "y = 1" if $\rightarrow -1 + x_1^2 + x_2^2 \ge 0 : x_1 + x_2 \ge 1$
- More complex hypotheses functions can be predicted to present decision boundaries for training data

Logistic Regression - Cost Function

➤ Cost function in linear regression

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

yⁱ is continuous

> Square the error

➤ Cost function for logistic regression

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost (h_{\theta}(x^{(i)}), y^{(i)})$$

$$= 0$$

$$y = 1$$

$$Cost\left(h_{\theta}(x^{(i)}), 1\right) = -\log(h_{\theta}(x^{(i)})$$

$$Cost\left(h_{\theta}(x^{(i)}), 1\right) = -\log(1 - h_{\theta}(x^{(i)}))$$

Logistic Regression Cost Function (Example)

Logistic Regression Combined Cost Function

$$Cost\left(h_{\theta}(x^{(i)}),1\right) = -\log(h_{\theta}(x^{(i)})$$

$$Cost\left(h_{\theta}(x^{(i)}),0\right) = -\log(1-h_{\theta}(x^{(i)}))$$

$$Cost\left(h_{\theta}(x^{(i)}),y^{(i)}\right) = -y^{(i)}\log(h_{\theta}(x^{(i)}) - \left(1-y^{(i)}\right)\log(1-h_{\theta}(x^{(i)}))$$

$$Will \text{ only have value }$$

$$\text{when } y^{(i)} = 1$$

$$Will \text{ only have value }$$

$$\text{when } y^{(i)} = 0$$

Average cost $J(\theta)$ for a given Hypothesis

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log(h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Logistic Regression - Gradient Calculation

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log(h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

$$J(\theta) = \sum_{i=1}^{m} \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log(a) - (1 - y^{(i)}) \log(1 - a)$$

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial J(\theta)}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial \theta_j}$$

$$a = h_{\theta}(x^{(i)}) = \frac{1}{1 + e^{-z}}$$
where $z = \theta^{T} x$

Logistic Regression - Gradient Calculation

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial J(\theta)}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial \theta_j}$$

$$\begin{vmatrix} \frac{\partial J(\theta)}{\partial a} = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \frac{1}{a} + (1 - y^{(i)}) \frac{1}{1 - a} \\ = \frac{1}{m} \sum_{i=1}^{m} \frac{-y^{(i)}(1 - a) + a(1 - y^{(i)})}{a(1 - a)} \\ = \frac{1}{m} \sum_{i=1}^{m} \frac{a - y^{(i)}}{a(1 - a)} \end{vmatrix} = \frac{1}{m} \sum_{i=1}^{m} \frac{a - y^{(i)}}{a(1 - a)}$$

$$\frac{\partial a}{\partial z} = \frac{-e^{-z}}{(1 + e^{-z})^2} = \frac{1}{1 + e^{-z}} \left(1 - \frac{1}{1 + e^{-z}} \right) = a(1 - a)$$

$$\frac{\partial z}{\partial \theta_j} = x_j^{(i)}$$

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m \frac{\mathbf{a} - \mathbf{y}^{(i)}}{a(1-a)} \mathbf{a} (1-\mathbf{a}) x_j^{(i)} \qquad \frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) x_j^{(i)}$$

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \ x_j^{(i)}$$

Logistic Regression - Gradient Descent

> Similar to linear regression, gradient descent calculates θ using the following iteration

Repeat
$$\{\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \text{ for } j=0,1,...n\}$$

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m x_j^{(i)} \left[h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right]$$

Repeat
$$\{\theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m x_j^{(i)} [h_{\theta}(x^{(i)}) - y^{(i)}] \quad for \ j = 0, 1, ... n\}$$

$$\theta = \theta - \frac{\alpha}{m} X^{T} (H_{\theta}(X) - Y)$$

Logistic Regression Gradient Descent - Example

$$X = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 7 \\ 1 & 5 & 10 \\ 1 & 6 & 2 \end{bmatrix} Y = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad \theta = \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix} \qquad \alpha = 0.3$$

$$H_{\theta}(X) = \frac{1}{1 + \exp(-X\theta)}$$

$$= \frac{1}{1 + \exp\left(-\begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 7 \\ 1 & 5 & 10 \\ 1 & 6 & 2 \end{bmatrix} \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix}\right)}$$

$$H_{\theta}(X) = \begin{bmatrix} 0.1192 \\ 0.8808 \\ 0.7311 \\ 0.0003 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 7 \\ 1 & 5 & 10 \\ 1 & 6 & 2 \end{bmatrix} \mathbf{Y} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \theta = \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix} \quad \alpha = 0.3 \quad \theta_{new} = \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix} - \frac{0.3}{4} \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 7 \\ 1 & 5 & 10 \\ 1 & 6 & 2 \end{bmatrix}^T \begin{pmatrix} \begin{bmatrix} 0.1192 \\ 0.8808 \\ 0.7311 \\ 0.0003 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix}$$

$$\theta_{new} = \begin{bmatrix} -3.9799 \\ -1.1332 \\ 0.7785 \end{bmatrix}$$

$$\theta = \theta - \frac{\alpha}{m} X^{T} (H_{\theta}(X) - Y)$$

Machine Learning Fundamentals – DTSC102

Lecture 6 ML Diagnostics

Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220

Contents

- ➤ Machine Learning Diagnostics
- ➤ Evaluating your Hypothesis
- ➤ Model Selection
- ➤ Diagnosing Bias vs. Variance

Machine Learning Diagnostic

 Suppose you have implemented linear regression to predict housing prices.

$$J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

- However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?
- >Get more training examples
- ➤ Try smaller sets of features
- ➤ Try getting additional features
- Try adding polynomial features

$$(x_1^2, x_2^2, x_1 x_2)$$

➤ Try a different hypothesis

Choosing your Hypothesis

Which one is the best hypothesis ??

This one will present the lowest cost function (lowest error)

But this may not present a general learning

It represents an Over Fitting of the data

Over Fitting & Under Fitting

Over Fitting

- > Excellent fitting of the training
- > Poor ability to predict unlearned data
- > Called high variance
- Caused by
 - Very complex Hypothesis
 - Too many features

Under Fitting

- > Poor Fitting of the learning data
- Called high bias
- Caused by:
 - Simple hypothesis
 - Too few features
 - Small number of training data

Solution

Model Selection

Regularization

Price

400

330

369

232

540

300

315

199

212

243

Model Selection

Consider your given dataset:

➤ Split the data into a Training Set (70%) and a Test Set (30%)

For **Linear** Regression:

- \triangleright Learn parameter θ from training data to minimize training error $J(\theta)$
- Compute test set error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2}$$

	Size
Training Set Size=m	2104
	1600
	2400
	1416
	3000
Test Set Size= m_{test}	1985
	1534
	1427
	1380
	1494

For **Logistic** Regression:

- \triangleright Learn parameter θ from training data to minimize training error $J(\theta)$
- ➤ Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta} \left(x_{test}^{(i)} \right) + \left(1 - y_{test}^{(i)} \right) \log h_{\theta} \left(x_{test}^{(i)} \right)$$

➤ Alternatively, we can calculate Misclassification Error (0/1 Error)

$$err(h_{\theta}(x), y) = \begin{cases} 1 & if h_{\theta}(x) \ge 0.5 \ and \ y = 0 \ or \ h_{\theta}(x) < 0.5 \ and \ y = 1 \\ 0 & Otherwise \end{cases}$$

which gives us a binary 0/1 error based on a misclassification, then calculate Average

Test error
$$Test Error = \frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err\left(h_{\theta}\left(x_{test}^{(i)}\right) - y_{test}^{(i)}\right)$$

Which polynomial to choose for Hypothesis Function??

$$1. h_{\theta}(x) = \theta_0 + \theta_1 x$$

for d=1:
$$\theta^{(1)} \to J_{test}(\theta^{(1)})$$

$$2. h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

for d=2:
$$\theta^{(2)} \rightarrow J_{test}(\theta^{(2)})$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

for d=3:
$$\theta^{(3)} \rightarrow J_{test}(\theta^{(3)})$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$
 for $d=10: \theta^{(10)} \rightarrow J_{test}(\theta^{(10)})$

for d=10:
$$\theta^{(10)} \rightarrow J_{test}(\theta^{(10)})$$

- \triangleright Choose degree with the lowest test-set error (ex: $h_{\theta}(x) = \theta_0 + \dots + \theta_5 x^5$)
- But does this model generalize well? Not really...
- Why? Because $I_{test}(\theta^{(5)})$ is likely to be an optimistic estimate of generalization error, as *d* was chosen to fit the test set

Back to our dataset:

- > Split the data into a Training Set (60%), a Cross Validation (CV) Set (20%) and a Test Set (20%)
- Set \triangleright Optimize the parameters in θ using the training Size=*m* set for each polynomial degree $I_{train}(\theta)$
- Find the polynomial degree d with the least error using the cross validation set. Validation Set

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2}$$

S	ize	Price
21	L04	400
16	500	330
24	400	369
14	416	232
30	000	540
19	985	300
15	534	315
14	127	199
13	380	212
14	194	243

Training

Cross

 $Size=m_{CV}$

Test Set

 $Size=m_{test}$

Estimate the generalization error using the test

$$\operatorname{set} J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2}$$

Which polynomial to choose for Hypothesis Function??

$$1. h_{\theta}(x) = \theta_0 + \theta_1 x$$

for d=1:
$$\theta^{(1)} \to J_{cv}(\theta^{(1)})$$

$$2. h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

for d=2:
$$\theta^{(2)} \to J_{cv}(\theta^{(2)})$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

for d=3:
$$\theta^{(3)} \to J_{cv}(\theta^{(3)})$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

for d=10:
$$\theta^{(10)} \rightarrow J_{cv}(\theta^{(10)})$$

Choose degree with the lowest cross-validation set error $(ex:h_{\theta}(x) = \theta_0 + \dots + \theta_5 x^4)$

 \succ Estimate generalization error for test set $J_{test}(\theta^{(4)})$

(Thus the degree of the polynomial d has not been trained using the test set)

However there are still limitations for using a single training/CV/test set:

- > Original data might not be enough to make a sufficiently large training/CV/test sets
- ➤ A single training set doesn't tell us how sensitive accuracy is to a particular training sample

Possible solution: Random Resampling

Done more accurately it is called: K-fold Sampling

- ➤ Partition data into n subsamples
- ➤ Iteratively leave one subsample out for the test set, train on the rest
- Suppose we have 100 instances:
 Accuracy=73/100 = 73%
- Common value for K is 10, smaller numbers are also used when learning is time consuming

iteration	train on	test on	correct
1	S ₂ S ₃ S ₄ S ₅	S ₁	11 / 20
2	S ₁ S ₃ S ₄ S ₅	S ₂	17 / 20
3	S ₁ S ₂ S ₄ S ₅	S ₃	16 / 20
4	S ₁ S ₂ S ₃ S ₅	S ₄	13 / 20
5	S ₁ S ₂ S ₃ S ₄	S ₅	16 / 20

Other possible solution: Stratified Sampling

- Ensures that class proportions are maintained in each selected set
- ➤ How it is done:
 - 1. Stratify instances by class
 - 2. Randomly select instances from each class proportionally

Model Evaluation

How to understand types of mistakes your model is making?

➤ Construct a Confusion Matrix

Emotion Recognition from Video

Model Evaluation

Confusion Matrix

Is the simple accuracy calculation $\frac{TP+TN}{TP+FP+FN+TN}$ sufficient? Not Always...

- Accuracy may not be useful measure in cases where there is a large class skew
 - ➤ Is 98% accuracy good if 97% of the instances are negative?
- There are differential misclassification costs; say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
- >We are most interested in a subset of high-confidence predictions

Model Evaluation

Confusion Matrix

- ➤ Other Accuracy metrics: TP-rate & FP-rate
- ➤ ROC Curves: "Receiver Operating Characteristics" curve plots the TP-rate (sensitivity/prob. Of detection) vs. the FP-rate (prob. of false alarm) at various threshold settings

false positive rate =
$$\frac{FP}{\text{actual neg}}$$
 = $\frac{FP}{TN + FP}$

Model Evaluation Diagnosing Bias vs. Variance

Recall Over/Under fitting hypotheses

Training Error:

$$J_{Train}(\theta) = \frac{1}{2m_{Train}} \sum_{i=1}^{m_{Train}} \left(h_{\theta} \left(x_{Train}^{(i)} \right) - y_{Train}^{(i)} \right)^{2}$$

Cross Validation Error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2}$$

Model Evaluation Diagnosing Bias vs. Variance

How to diagnose if your learning algorithm is suffering from a Bias/Variance Problem?

Bias (Underfit)

- $\succ J_{Train}(\theta)$ will be high
- $> J_{CV}(\theta) \approx J_{Train}(\theta)$

Variance (Overfit)

- $\triangleright J_{Train}(\theta)$ will be low
- $> J_{CV}(\theta) \gg J_{Train}(\theta)$

