Bài 1: Vẽ đồ thị của các hàm số:

Vẽ đồ thị của các hàm số:

a)
$$y = 4^x$$

b)
$$y = \left(\frac{1}{4}\right)^x$$

Lời giải:

a)

a) TX: D
$$= R$$

$$y'=4^x \ln 4 > 0 => hàm số đồng biến trên D.$$

$$\lim_{x \to -\infty} 4^x = 0 \Longrightarrow \text{Hàm số có tiệm cận ngang là } y = 0$$

$$\lim_{x \to +\infty} 4^x = +\infty.$$

Bảng biến thiên

X	-∞	0	+∞
		1	
y'	+	+	+
У		1	→ +∞
	0 —	4	

b)

b)
$$TXD: D = R$$

 $y'=-\left(\frac{1}{4}\right)^x \ln 4 > 0 => hàm số nghịch biến trên D...$

$$\lim_{x \to -\infty} \left(\frac{1}{4}\right)^x = +\infty; \lim_{x \to +\infty} \left(\frac{1}{4}\right)^x = 0 \Rightarrow y = 0 \text{ là}$$

đường tiệm cận ngang.

Bảng biến thiên

X	-∞	-1	+∞
		0	
y'	-	-	-
У	+∞	1	
		1	

Bài 2: Tính đạo hàm

$$a) y = 2xe^x + 3\sin 2x$$

$$b) y = 5x^2 - 2^x \cos x$$

c)
$$y = \frac{x+1}{3^x}$$

Lời giải:

a)
$$y' = (2xe^x)' + (3\sin 2x)'$$

= $2(x)'e^x + 2x(e^x)' + 3(\sin 2x)'$
= $2e^x + 2xe^x + 3\cos 2x$. $(2x)' = 2e^x(x+1) + 6\cos 2x$

b)
$$y' = (5x^{2'} - (2^x \cos x)' = 10x - [(2^x)' \cos x + 2^x (\cos x)']$$

= $10x - 2^x \ln 2 \cdot \cos x + 2^x \sin x$

c) Ta có:
$$y = (x+1)3^{-x}$$

 $y' = (x+1)' \cdot 3^{-x} + (x+1)(3^{-x})'$
 $= 3^{-x} + (x+1)3^{-x}\ln 3 \cdot (-x)'$
 $= 3^{-x}[1 - \ln 3(x+1)] = \frac{1 - (x+1)\ln 3}{3^x}$.

Bài 3: Tìm tập xác định của các hàm số:

a)
$$y = \log_2(5 - 2x)$$

b)
$$y = log_3(x^2 - 2x)$$

c)
$$y = \log_{\frac{1}{5}}(x^2 - 4x + 3)$$

d)
$$y = \log_{0,4} \frac{3x+2}{1-x}$$

Lời giải:

a) Ta có: D =
$$\{x \in R/5 - 2x > 0\} = \{-\infty; \frac{5}{2}\}$$

b) Ta có: D =
$$\{x \in R/x^2 - 2x > 0\} = (-\infty; 0) \cup (2; +\infty)$$

c) Ta có: D =
$$\{x \in R/x^2 - 4x + 3 > 0\} = (-\infty; 1) \cup (3; +\infty)$$

d) Ta có: Bảng xét dấu:

X	$-\infty$		$-\frac{2}{3}$	1
	+∞			
3x + 2		-	0	+
1-x		+		+ 0
3x + 2				
1-x		-	0	+

Từ bảng xét dấu ta thấy
$$\frac{3x+2}{1-x} > 0$$
 với $x \in (-\frac{2}{3}; 1)$

Vậy tập xác định của hàm số là D = $\left(-\frac{2}{3}; 1\right)$

Bài 4: Vẽ đồ thị của các hàm số:

Vẽ đồ thị của các hàm số:

a)
$$y = \log x$$

b)
$$y = \log_{\frac{1}{2}} x$$

Lời giải:

a) Ta có: D= (0; +
$$\infty$$
)
$$y' = \frac{1}{x \ln 10} > 0 \Rightarrow \text{hàm số đồng biến trên } (0; +\infty)$$

$$\lim_{x \to 0^+} \log x = -\infty \Rightarrow \text{Đồ thị có tiệm cận đứng là } x = 0$$

Bảng biến thiên

X	0	1	+∞
		10	
у'	+	+	+
У		0	
	-∞	1	

b) Ta có:
$$D = (0; +\infty)$$

$$y' = -\frac{1}{x \ln 2} < 0 \Rightarrow$$
 hàm số nghịch biến trên $(0; +\infty)$

 $\lim_{x\to 0^+} \log_{\frac{1}{2}} x = +\infty$. Đường tiệm cận đứng là x = 0.

$$\lim_{x \to +\infty} \log_{\frac{1}{2}} x = -\infty$$

Bảng biến thiên

X	0	1	2	+∞
y'	+		+	+
У	+∞	0	-	
		1		→-∞

Bài 5: Tính đạo hàm của các hàm số

Tính đạo hàm của các hàm số:

a)
$$y = 3x^2 - \ln x + 4\sin x$$

b)
$$y = \log(x^2 + x + 1)$$

c)
$$y = \frac{\log_3 x}{x}$$

Lời giải:

a) Ta có:
$$y' = [3x^2]' - [lnx]' + 4[sinx]'$$

= $6x - \frac{1}{x} + 4cosx$

b) Ta có:
$$y' = \frac{(x^2+x+1)'}{(x^2+x+1)ln10} = \frac{2x+1}{(x^2+x+1)ln10}$$

c) Ta có:
$$y' = \frac{x[\log_3 x]' - [x]' \log_3 x}{x^2} = \frac{\frac{x}{x \ln 3} - \log_3 x}{x^2}$$
$$= \frac{1 - \ln 3 \cdot \log_3 x}{x^2 \ln 3} = \frac{1 - \ln x}{x^2 \ln 3}$$
(vì $\ln 3 \cdot \log_3 x = \ln 3 \cdot \frac{\ln x}{\ln 3} = \ln x$).