APRENDIZAJE AUTOMÁTICO.

Fundamentos y Aplicaciones en Meteorología del Espacio DCAO, UBA 08-12 AGOSTO 2022

Dra María Graciela Molina FACET-UNT / CONICET Tucumán Space Weather Center - TSWC

https://spaceweather.facet.unt.edu.ar/ IG -> @spaceweatherargentina

gmolina@herrera.unt.edu.ar

ANN

- Data-driven modeling
- Inspired in brain neural networks
- Solving wide number of complex problems: facial recognition, handwrite recognition, weather forecasting, etc.
- Black-box modelling (?) based in the composition of interconnected neurons (neural network)

Perceptron

• Unidad fundamental para construir redes neuronales

- Cada una de las entradas corresponde a una característica (feature)
- A cada una de las xi se les aplica un peso (w) (ponderación de los valores de la entrada)
- Los pesos son las vbles que se ajustan durante el entrenamiento

Perceptron

Input \rightarrow Weights \rightarrow Sum \rightarrow Non linearity \rightarrow Output

- Capa oculta (hidden layer).
- El bias es un término de ajuste
- La función de activación se aplica a la combinación lineal de las entradas ponderadas teniendo en cuenta el bias

Perceptron

Input \rightarrow Weights \rightarrow Sum \rightarrow Non linearity \rightarrow Output

$$\widehat{y} = g \left(w_0 + \sum_{i=1}^m x_i w_i \right)$$

$$\hat{y} = g \left(w_0 + X^T W \right)$$

where:
$$\mathbf{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\mathbf{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Activation function

Agrega no-linealidd al modelo

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

$$\hat{y} = \mathbf{g} (w_0 + \mathbf{X}^T \mathbf{W})$$

- Una de las más usadas en la función sigmoide.
- Produce resultados entre 0 y 1

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Activation function

Sigmoid Function

tf.math.sigmoid(z)

g'(z) = g(z)(1 - g(z))

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Activation function

Adds no-linearity to the model

$$\hat{y} = g (w_0 + X^T W)$$

Nanc	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
Tanii		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)	/	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Feed Forward (FF)

 Perceptrón simplificado (n entradas → 1 salida)

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

 Armemos una red neuronal compuesta por múltiples perceptrones (n entradas → m salida)

$$z_{i} = w_{0,i} + \sum_{j=1}^{m} x_{j} w_{j,i}$$

Observación: todas las entradas están conectadas a todas las salidas → dense layers

1-Layer Neural Network

1-Layer Neural Network

$$z_2 = w_{0,2}^{(1)} + \sum_{j=1}^m x_j w_{j,2}^{(1)}$$

= $w_{0,2}^{(1)} + x_1 w_{1,2}^{(1)} + x_2 w_{2,2}^{(1)} + x_m w_{m,2}^{(1)}$

M-layers Neural Network (multi-layer)

Deep Neural Network

$$z_{k,i} = w_{0,i}^{(k)} + \sum_{j=1}^{n_{k-1}} g(z_{k-1,j}) w_{j,i}^{(k)}$$

Loss Function

Mean squared error loss can be used with regression models that output continuous real numbers

Cross entropy loss can be used with models that output a probability between 0 and 1

Predicted

Actual

Actual

Predicted

symbol	name	equation
\mathcal{L}_1	L_1 loss	$\ \mathbf{y} - \mathbf{o}\ _1$
\mathcal{L}_2	L_2 loss	$\ \mathbf{y} - \mathbf{o}\ _2^2$
$\mathcal{L}_1 \circ \sigma$	expectation loss	$\ \mathbf{y} - \sigma(\mathbf{o})\ _1$
$\mathcal{L}_2 \circ \sigma$	regularised expectation loss ¹	$\ \mathbf{y} - \sigma(\mathbf{o})\ _2^2$
$\mathcal{L}_{\infty} \circ \sigma$	Chebyshev loss	$\max_{j} \sigma(\mathbf{o})^{(j)} - \mathbf{y}^{(j)} $
hinge	hinge [13] (margin) loss	$\sum_{i} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})$
$hinge^2$	squared hinge (margin) loss	$\sum_{i=1}^{3} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})^2$
$hinge^3$	cubed hinge (margin) loss	$\sum_{j}^{3} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})^3$
\log	log (cross entropy) loss	$-\sum_{i} \mathbf{y}^{(j)} \log \sigma(\mathbf{o})^{(j)}$
\log^2	squared log loss	$-\sum_{j=1}^{J} [\mathbf{y}^{(j)} \log \sigma(\mathbf{o})^{(j)}]^2$
tan	Tanimoto loss	$\frac{-\sum_{j}\sigma(\mathbf{o})^{(j)}\mathbf{y}^{(j)}}{\ \sigma(\mathbf{o})\ _{2}^{2}+\ \mathbf{y}\ _{2}^{2}-\sum_{j}\sigma(\mathbf{o})^{(j)}\mathbf{y}^{(j)}}$
D_{CS}	Cauchy-Schwarz Divergence 3	$-\log \frac{\sum_{j} \sigma(\mathbf{o})^{(j)} \mathbf{y}^{(j)}}{\ \sigma(\mathbf{o})\ _{2} \ \mathbf{y}\ _{2}}$

https://arxiv.org/pdf/1702.05659.pdfs

Training (loss optimization)

• Encontrar los valores de los **pesos** de la red neuronal tal que la **pérdida o costo sea mínimo**

$$\mathbf{W}^* = \operatorname{argmin}_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \mathbf{W}), y^{(i)})$$

$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

- Es un problema de optimización
- Podemos usar algún método numérico de optimización

Training (loss optimization)

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Principales problemas:

- Mínimos locales
- Silla de montar: el g. d. un vez que llega a una región con gradiente cero, no puede escapar de allí independientemenete de la calidad del mínimo.

Training (loss optimization)

https://ruder.io/optimizing-gradient-descent/index.html

Gradient Descent Algorithms

Algorithm

- SGD
- Adam
- Adadelta
- Adagrad
- RMSProp

TF Implementation

tf.keras.optimizers.RMSProp

Reference

Kiefer & Wolfowitz. "Stochastic Estimation of the Maximum of a Regression Function." 1952.

Kingma et al. "Adam: A Method for Stochastic Optimization." 2014.

Zeiler et al. "ADADELTA: An Adaptive Learning Rate Method." 2012.

Duchi et al. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." 2011.

Backpropagation

• Qué tanto puede afectar a la función de pérdida un pequeño cambio en uno del los pesos?

Aplicando la regla de la cadena

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

 Repetir para cada uno de los pesos en la red usando los gradientes de las capas siguiente!

- Info se propaga desde las entradas hacia adelante mediante sus parámetros hasta que logra hacer una predicción
- Luego realiza una propagación hacia atrás a lo largo de la red para ir modificando los parámetros de manera que el error final sea el mínimo.
- El error asociado a una mala predicción es usado para ajustar los parámetros (el aprendizaje puede ser visto como una optimización). Para esto la salida y es comparada con el valor esperado (target) del conjunto de entrenamiento (z). La diferencia se entre el valor esperado y el de salida se llama error o residuo.

Regularización

- Técnica que consiste en establecer restricciones al problema de optimización para evitar llegar a modelos complejos
- La idea es poder generalizar nuestro modelo para nuevos datos

DROP OUT

- Durante el entrenamiento de manera aleatoria se setean algunas activaciones en 0.
- << overfitting

EARLY STOPING

 Consiste en parar antes de llegar al overfitting observando los datos de training y testing.

Amounty comparts charo di Neural Networks Control type (ed.) The Contract of the Contract o Boury topol Soli: Personal Residence Street Street Section (Section Control Section (Section Control Section Control Section Control Section Control Section Control Section (Section Control Section Control Se · record (AC) Problem Accounted byte. the factor of the last of the Branchille . Committee of the commit TRANSPORT TOTAL hermy Dd. the branchists (referenced left) Different Bermy but O total Constitute to feet. Name (Section) - Name (Section) (Section (Secti Track School School or School Stage and description of \$6% Science in the Property of the Control of the Contr Commission of the Commission o Descriptions of Horses (1990) force-force (fil) Input true flaventh(i) from Into flavor(600)


```
self.timperprints

self.logger logsing

self.logger logsing

self.tile combanance

self.
```

HANDS-ON LAB

TP - 1

2 problems

- Radar signal classification (mandatory)
- Flare classification (optional)

