ART OF EMBEDDED SYSTEM DESIGN

Bobby

February 8, 2018

In these book, I will summerize all I know about the embedded system, and give some practical electronic designs what I have done in my career. Also, I want to improve the ability of using LATEX by myselt. This book is in the public domain. All the copyrights are under GPL 2.0. Thanks all for your attentions! All the materials are from books, internet, etc. I will list as much references as possible, but I am not sure that I can list all. For any improper or defects, your suggurestions are warmly welcomed.

Best Regards!

Contents

I Physics	1
1 Solid state physics	3
2 Semiconductor physics	5
II Circuit basics	7
III Analog circuit	9
IV Analog VLSI design	11
3 Current source	13
4 Current mirror	15
5 Differential amplifier pair	17
6 OP AMP design	19
V Digital circuit	21
7 Finite state machine	23

iv	CONTENTS
VI Analog digital converter	25
VII Verilog HDL	27
VIII Digital VLSI	29
8 CPU design	31
IX PCB design	33
X PCB SI&PI	35
XI C and C++ programming	37
XII Data structure and algorithms	39
XIII Computer orgnization	41
XIV Computer architecture	43
XV Operating system	45
XVI Linux administration	47
XVII Linux kernel	49
XVIII Linux driver development	51
XIX Linux system porting	53
9 Buildroot	55

CONTENTS	V
XX Computer Network	57
$10~{ m TCP/IP}$ protocols	59
11 Socket programming	61
XXI Signal and system	63
XXII Ditial signal processing	65
XXIII Digtal image processing	67
XXIV Audio signal processing	69
XXV Modal analysis	71
XXVI Project Development	73
XXVII Appendix	75
12 Basic mathimatics 12.1 Formulas	77 77

vi CONTENTS

Part I

Physics

Solid state physics

In this chapter, will discuss the solid state physics, mainly about the basic fundamentles.

Semiconductor physics

Table 2.1:				
11	1	12	4	6
				-

Table 2.1 indicate that

The universe is immense and it seems to be homogeneous, in a large scale, everywhere we look at.

furnished his toy with a romantic legend about a much larger "Tower of Brahma", which supposedly has 64 disks of pure gold Gold —wow.

Are our disks made of concrete? resting on three diamond needles. At the beginning of time, he said, "God" placed these golden disks on the first needle and ordained that a group of priests should transfer them to the third, according to the rules above. The priests reportedly work day and night at their task. When they finish, the Tower will crumble and the world will end.

resting on three diamond needles. At the beginning of time, he said, "God" placed these golden disks on the first needle and ordained that a group of priests should transfer them to the third, according to the rules above. The priests reportedly work day and night at their task. When they finish, the Tower will crumble and the world will end.

Part II Circuit basics

Part III Analog circuit

$\begin{array}{c} {\rm Part~IV} \\ {\bf Analog~VLSI~design} \end{array}$

Current source

$$\frac{d}{dx}\left(int_0^x f(u)\ du\right) = f(x)$$

Figure 3.1:

Current mirror

Differential amplifier pair

OP AMP design

Part V Digital circuit

Finite state machine

Part VI Analog digital converter

$egin{array}{c} { m Part\ VII} \\ { m Verilog\ HDL} \end{array}$

$\begin{array}{c} {\rm Part\ VIII} \\ {\rm \bf Digital\ VLSI} \end{array}$

CPU design

$\begin{array}{c} {\rm Part~IX} \\ {\rm PCB~design} \end{array}$

Part X PCB SI&PI

$\begin{array}{c} {\rm Part~XI} \\ {\rm C~and~C++~programming} \end{array}$

Part XII Data structure and algorithms

Part XIII Computer orgnization

Part XIV Computer architecture

Part XV Operating system

Part XVI Linux administration

Part XVII Linux kernel

Part XVIII Linux driver development

Part XIX Linux system porting

Buildroot

Part XX Computer Network

TCP/IP protocols

Socket programming

$\begin{array}{c} {\rm Part~XXI} \\ {\bf Signal~and~system} \end{array}$

Part XXII Ditial signal processing

Part XXIII Digtal image processing

Part XXIV Audio signal processing

Part XXV Modal analysis

Part XXVI Project Development

Part XXVII

Appendix

Chapter 12

Basic mathimatics

12.1 Formulas

a+b=b+a

appendix test