Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lecture 19

ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author

Previously...

We have discussed two methods to identify "good" estimators $\hat{\Theta}$ for unknown parameters in the distribution of a population:

- the method of moments.
 - **1** Compute the moments of the population: $E[X^k]$.
 - **2** Compute the moments of the sample: $\frac{1}{n} \sum_{i=1}^{n} X_i^k$.
 - 3 Equate them and solve for the unknown parameters.
- maximum likelihood estimation.
 - 1 Calculate the likelihood (or log-likelihood) function as

$$L(\theta) = f(X_1, \theta) \cdot f(X_2, \theta) \cdot \ldots \cdot f(X_n, \theta)$$

2 Find the maximizer (usually by setting the derivative equal to 0)

Previously...

We have discussed two methods to identify "good" estimators $\hat{\Theta}$ for unknown parameters in the distribution of a population:

the method of moments.

- **1** Compute the moments of the population: $E[X^k]$.
- **2** Compute the moments of the sample: $\frac{1}{n} \sum_{i=1}^{n} X_i^k$.
- 3 Equate them and solve for the unknown parameters.
- maximum likelihood estimation
 - 1 Calculate the likelihood (or log-likelihood) function as

$$L(\theta) = f(X_1, \theta) \cdot f(X_2, \theta) \cdot \ldots \cdot f(X_n, \theta)$$

2 Find the maximizer (usually by setting the derivative equal to 0)

Previously...

We have discussed two methods to identify "good" estimators $\hat{\Theta}$ for unknown parameters in the distribution of a population:

the method of moments.

- **1** Compute the moments of the population: $E[X^k]$.
- **2** Compute the moments of the sample: $\frac{1}{n} \sum_{i=1}^{n} X_i^k$.
- 3 Equate them and solve for the unknown parameters.

maximum likelihood estimation.

1 Calculate the likelihood (or log-likelihood) function as

$$L(\theta) = f(X_1, \theta) \cdot f(X_2, \theta) \cdot \ldots \cdot f(X_n, \theta)$$

2 Find the maximizer (usually by setting the derivative equal to 0).

Previously..

We have discussed two methods to identify "good" estimators $\hat{\Theta}$ for unknown parameters in the distribution of a population:

the method of moments.

- **1** Compute the moments of the population: $E[X^k]$.
- **2** Compute the moments of the sample: $\frac{1}{n} \sum_{i=1}^{n} X_i^k$.
- 3 Equate them and solve for the unknown parameters.

maximum likelihood estimation.

1 Calculate the likelihood (or log-likelihood) function as

$$L(\theta) = f(X_1, \theta) \cdot f(X_2, \theta) \cdot \ldots \cdot f(X_n, \theta)$$

2 Find the maximizer (usually by setting the derivative equal to 0).

Bayesian estimation (from xkcd)

DID THE SUN JUST EXPLODE? (IT'S NIGHT SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS \$ = 0.027. SINCE P<0.05, I CONCLUDE. THAT THE SUN HAS EXPLODED.

BAYESIAN STATISTICIAN:

(日) (日) (日) (日)

- Assume we throw some coin with probability of Heads equal to p.

$$\frac{E[X] = p}{X = \frac{10}{10} = 1}$$
 $p = 1$.

- \blacksquare Assume we throw some coin with probability of Heads equal to p.
- What if we get Heads 10 times in a row?
- We should expect the coin always comes up Heads!

Method of moments:

$$\frac{E[X] = p}{X = \frac{10}{10} = 1}$$
 $p = 1$.

Maximum likelihood estimation:

- $L(p) = p^{10}$
- Maximized at p = 1

Bayesian estimation

This might be unrealistic, though.

- \blacksquare Assume we throw some coin with probability of Heads equal to p.
- What if we get Heads 10 times in a row?
- We *should* expect the coin always comes up Heads!

Method of moments:

$$\frac{E[X] = p}{X = \frac{10}{10} = 1}$$
 $p = 1$.

Maximum likelihood estimation:

 $L(p) = p^{10}$

4/11

■ Maximized at p = 1

This might be unrealistic, though.

- Assume we throw some coin with probability of Heads equal to p.
- What if we get Heads 10 times in a row?
- We should expect the coin always comes up Heads!

Method of moments:

$$\frac{E[X] = p}{X = \frac{10}{10} = 1}$$
 $p = 1$.

- \blacksquare Assume we throw some coin with probability of Heads equal to p.
- What if we get Heads 10 times in a row?
- We should expect the coin always comes up Heads!

Method of moments:

$$\frac{E[X] = p}{X = \frac{10}{10} = 1}$$
 $p = 1$.

Maximum likelihood estimation:

- $L(p) = p^{10}$.
- Maximized at p = 1.

This might be unrealistic, though.

- Assume we throw some coin with probability of Heads equal to p.
- What if we get Heads 10 times in a row?
- We should expect the coin always comes up Heads!

Method of moments:

$$\frac{E[X] = p}{X = \frac{10}{10} = 1}$$
 $p = 1$.

Maximum likelihood estimation:

- $L(p) = p^{10}$.
- Maximized at p = 1.

This might be unrealistic, though.

Bayesian estimation: discrete case

Suppose you know that I carry three coins with me every time. It is equally likely I pick any one of them from my pocket.

- Coin 1: a fair coin (50%-50%).
- Coin 2: an unfair coin that favors Tails (75%).
- Coin 3: an unfair coin that favors Heads (75%).

Which coin did we "see" earlier?

Our intuition tells us that it is most probably Coin 3.

Bayesian estimation: discrete case

Suppose you know that I carry three coins with me every time. It is equally likely I pick any one of them from my pocket.

- Coin 1: a fair coin (50%-50%).
- Coin 2: an unfair coin that favors Tails (75%).
- Coin 3: an unfair coin that favors Heads (75%).

Which coin did we "see" earlier?

Our intuition tells us that it is most probably Coin 3.

Bayesian estimation: discrete case

Suppose you know that I carry three coins with me every time. It is equally likely I pick any one of them from my pocket.

- Coin 1: a fair coin (50%-50%).
- Coin 2: an unfair coin that favors Tails (75%).
- Coin 3: an unfair coin that favors Heads (75%).

Which coin did we "see" earlier?

Our intuition tells us that it is most probably Coin 3.

This type of prior information is invaluable; and it comes as *extra information* on top of our observations.

We define three types of probabilities:

- *priors*: i.e., the probability we see a certain parameter. $P(\theta)$
- *likelihoods*: i.e., the probability we see an observation given a certain parameter. $P(X = x|\theta)$
- **posteriors**: i.e., the multiplication of the two. $P(\theta) \cdot P(X = x | \theta)$

This type of prior information is invaluable; and it comes as *extra information* on top of our observations.

We define three types of probabilities:

- *priors*: i.e., the probability we see a certain parameter. $P(\theta)$
- *likelihoods*: i.e., the probability we see an observation given a certain parameter. $P(X = x|\theta)$
- **posteriors**: i.e., the multiplication of the two. $P(\theta) \cdot P(X = x | \theta)$

This type of prior information is invaluable; and it comes as *extra information* on top of our observations.

We define three types of probabilities:

- **priors**: i.e., the probability we see a certain parameter. $P(\theta)$
- *likelihoods*: i.e., the probability we see an observation given a certain parameter. $P(X = x|\theta)$
- **posteriors**: i.e., the multiplication of the two. $P(\theta) \cdot P(X = x | \theta)$

This type of prior information is invaluable; and it comes as *extra information* on top of our observations.

We define three types of probabilities:

- *priors*: i.e., the probability we see a certain parameter. $P(\theta)$
- *likelihoods*: i.e., the probability we see an observation given a certain parameter. $P(X = x|\theta)$
- **posteriors**: i.e., the multiplication of the two. $P(\theta) \cdot P(X = x | \theta)$

This type of prior information is invaluable; and it comes as *extra information* on top of our observations.

We define three types of probabilities:

- **priors**: i.e., the probability we see a certain parameter. $P(\theta)$
- *likelihoods*: i.e., the probability we see an observation given a certain parameter. $P(X = x|\theta)$
- **posteriors**: i.e., the multiplication of the two. $P(\theta) \cdot P(X = x | \theta)$

$\underset{\theta}{parameter}$	$P(\theta)$	likelihood $P(X = 10 \theta)$	posterior $P(\theta) \cdot P(X = 10 \theta)$
0.25	1/3	$0.25^{10} = 0.00000095$ $0.5^{10} = 0.00098$ $0.75^{10} = 0.0563$	0.3179 · 10 ⁻⁷
0.50	1/3		0.000327
0.75	1/3		0.01877

Looking at the highest posterior, we can estimate that the coin used seems to be the one with θ equal to 75% Heads.

$\begin{array}{c} \text{parameter} \\ \theta \end{array}$	$P(\theta)$	likelihood $P(X = 10 \theta)$	posterior $P(\theta) \cdot P(X = 10 \theta)$
0.25	1/3	$0.25^{10} = 0.00000095$ $0.5^{10} = 0.00098$ $0.75^{10} = 0.0563$	0.3179 · 10 ⁻⁷
0.50	1/3		0.000327
0.75	1/3		0.01877

Looking at the highest posterior, we can estimate that the coin used seems to be the one with θ equal to 75% Heads.

We may prefer to normalize the posterior probabilities:

$\begin{array}{c} \text{parameter} \\ \theta \end{array}$	$P(\theta)$	likelihood $P(X = 10 \theta)$	$ posterior P(\theta) \cdot P(X = 10 \theta) $
0.25 0.50 0.75	1/3 1/3 1/3	$0.25^{10} = 0.00000095$ $0.5^{10} = 0.00098$ $0.75^{10} = 0.0563$	$0.3179 \cdot 10^{-7}$ 0.000327 0.01877 $= 0.019097$

This leads to:

- $0.3179 \cdot 10^{-7} / 0.019097 = 0.000002.$
- \blacksquare 0.000327/0.0191 = 0.017123.
- \blacksquare 0.01877/0.0191 = 0.982877.

There is a 98.29% chance that the coin used is indeed the 75% Heads unfair coin.

We may prefer to normalize the posterior probabilities:

$\begin{array}{c} \text{parameter} \\ \theta \end{array}$	$P(\theta)$	likelihood $P(X=10 heta)$	$ posterior P(\theta) \cdot P(X = 10 \theta) $
0.25 0.50 0.75	1/3 1/3 1/3	$0.25^{10} = 0.00000095$ $0.5^{10} = 0.00098$ $0.75^{10} = 0.0563$	$0.3179 \cdot 10^{-7}$ 0.000327 0.01877 $= 0.019097$

This leads to:

- $\qquad \textbf{0.3179} \cdot \textbf{10}^{-7} / \textbf{0.019097} = \textbf{0.000002}.$
- \blacksquare 0.000327/0.0191 = 0.017123.
- \blacksquare 0.01877/0.0191 = 0.982877.

There is a 98.29% chance that the coin used is indeed the 75% Heads unfair coin.

We may prefer to normalize the posterior probabilities:

$\begin{array}{c} \text{parameter} \\ \theta \end{array}$	$P(\theta)$	likelihood $P(X=10 \theta)$	$ posterior P(\theta) \cdot P(X = 10 \theta) $
0.25 0.50 0.75	1/3 1/3 1/3	$0.25^{10} = 0.00000095$ $0.5^{10} = 0.00098$ $0.75^{10} = 0.0563$	$0.3179 \cdot 10^{-7}$ 0.000327 0.01877 $= 0.019097$

This leads to:

- $\quad \blacksquare \ \ 0.3179 \cdot 10^{-7} / 0.019097 = 0.000002.$
- \blacksquare 0.000327/0.0191 = 0.017123.
- \blacksquare 0.01877/0.0191 = 0.982877.

There is a 98.29% chance that the coin used is indeed the 75% Heads unfair coin.

We may prefer to normalize the posterior probabilities:

$\underset{\theta}{parameter}$	$P(\theta)$	likelihood $P(X=10 heta)$	posterior $P(\theta) \cdot P(X = 10 \theta)$
0.25 0.50 0.75	1/3 1/3 1/3	$0.25^{10} = 0.00000095$ $0.5^{10} = 0.00098$ $0.75^{10} = 0.0563$	$0.3179 \cdot 10^{-7}$ 0.000327 0.01877 $= 0.019097$

This leads to:

- $\qquad \textbf{0.3179} \cdot \textbf{10}^{-7} / \textbf{0.019097} = \textbf{0.000002}.$
- \blacksquare 0.000327/0.0191 = 0.017123.
- \blacksquare 0.01877/0.0191 = 0.982877.

There is a 98.29% chance that the coin used is indeed the 75% Heads unfair coin.

Bayesian estimation: continuous extension

What if we had a probability distribution $f(\theta)$ to represent the pdf of parameter θ ? For example, assume that coins are produced to have a probability of Heads with pdf:

Visually

Our prior beliefs for θ ($f(\theta)$):

Our likelihood function ($L(\theta)$):

The combination of the two $(f(\theta) \cdot L(\theta))$:

Visually

Our prior beliefs for θ ($f(\theta)$):

The combination of the two $(f(\theta) \cdot L(\theta))$:

Bayesian estimation: quick review

- When provided discrete cases for θ :
 - 1 Obtain the prior belief distribution.

 $P(\theta)$ for every possible θ .

2 Compute the likelihood function based on the observations.

 $L(\theta)$

3 Multiply them.

 $P(\theta) \cdot L(\theta)$.

- Find the maximizer $\hat{\theta}$.
- When provided a pdf for θ :

1 Obtain the prior belief distribution.

 $f(\theta)$.

2 Compute the likelihood function based on the observations.

 $L(\theta)$

3 Multiply them.

 $f(\theta) \cdot L(\theta)$.

4 Find the maximizer $\hat{\theta}$.

