

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA CIVIL

2. RELAÇÕES ENTRE TENSÕES E DEFORMAÇÕES

PROF. LUIZ HENRIQUE DE ALMEIDA NEIVA

Ouro Preto - MG

Sumário

- 2.1 Tensão normal
- 2.2 Distribuição de tensão normal média
- 2.3 Tensão admissível e Fator de Segurança
- 2.4 Deformação Linear Específica
- 2.5 Coeficiente de Poisson
- 2.6 Diagrama Tensão x Deformação
- 2.7 Lei de Hooke

Referências

- Hibbeler, R. C
 Resistência dos Materiais
- Notas de aula do Prof. Alberto Leal
 Resistência dos Materiais I-A
- Notas de aula do Prof. Jaime Martins Resistência dos Materiais e Estruturas

2.1 Tensão Normal

Denota-se por Tensão a intensidade da *força interna* sobre um *plano* específico (área) que passa por um ponto.

Tensão normal: é a intensidade da força que atua no sentido perpendicular a ΔA , representada pela letra grega σ .

Se a força normal "puxa" o elemento de área ΔA tem-se uma tensão de tração, ao passo que se "empurra" ΔA tem-se uma tensão de compressão.

2.2 Distribuição de Tensão Normal Média

Hipóteses:

- A barra permanece reta tanto antes como depois de a carga ser aplicada;
- A carga P é aplicada ao longo do eixo centróide da seção transversal e o material deve ser *homogêneo* (possui as mesmas propriedades físicas e mecânicas em todo o seu volume) e *isotrópico* (as propriedades são as mesmas em qualquer direção).

2.2 Distribuição de Tensão Normal Média

$$\sigma = \frac{P}{A}$$

2.3 Tensão admissível e Fator de Segurança

Para garantir a segurança, é necessário escolher uma tensão admissível que restrinja a carga aplicada a um valor *menor* do que a carga que o elemento possa suportar integralmente.

Um dos métodos de especificar essa carga é através do fator de segurança (F.S).

$$F.S. = \frac{F_{rup}}{F_{adm}}$$

2.3 Tensão admissível e Fator de Segurança

Se a carga aplicada ao elemento for relacionada linearmente à tensão (σ =P/A), pode-se expressar o fator de segurança em termos de tensões.

$$F.S. = \frac{\sigma_{rup}}{\sigma_{adm}}$$

Exemplos

Ex. 1. Os cabos de aço AB e AC sustentam a massa de 200~kg. Se a tensão axial admissível para os cabos for $\sigma_{adm}=130~MPa$, determine o diâmetro exigido para cada cabo.

2.4 Deformação Linear Específica

Trata-se do alongamento ou da contração de um segmento de reta por unidade de comprimento.

$$\varepsilon = \frac{\Delta L}{L}$$

2.5 Coeficiente de Poisson

Quando uma barra é tracionada, o alongamento longitudinal é acompanhado de contrações laterais, isto é, o comprimento da barra aumenta e a seção transversal diminui. A relação entre a deformação lateral e a deformação longitudinal é chamada de coeficiente de Poisson.

$$\upsilon = -\frac{\varepsilon_y}{\varepsilon_x} \qquad 0 \le \upsilon \le 0.5$$

Para materiais isotrópicos:

$$\upsilon = -\frac{\mathcal{E}_y}{\mathcal{E}_x} = -\frac{\mathcal{E}_z}{\mathcal{E}_x}$$

Através de um ensaio de tração simples de corpo de prova de aço, na qual a força P seja aplicada gradualmente (sem impacto), pode-se plotar os diversos pares de tensão (σ) e deformação (ε).

- σ_p é a tensão de proporcionalidade;
- σ_{v} é a tensão de escoamento;
- σ_u é a tensão última ou limite de resistência;
- σ_r é a tensão de ruptura idealizada;
- $\sigma_{r'}$ é a tensão de ruptura real.

Região elástica: nesta fase a deformação desaparece com a retirada da tensão, não há deformação permanente.

Região plástica: descarregandose a barra ela não retorna às suas dimensões iniciais, isto é, surgem deformações permanentes (ou deformações plásticas).

Escoamento: o material continua a se deformar ainda que não haja qualquer acréscimo de carga.

<u>Encruamento</u>: endurecimento por deformação, no qual o material volta a suporta um acréscimo de carga.

área Estricção: a seção da diminui transversal em região uma localizada, de em todo vez seu comprimento. materiais Apenas em dúcteis.

Limite de escoamento para uma liga de alumínio

2.7 Lei de Hooke

Robert Hooke (1635 - 1703), através de ensaios, observou a proporcionalidade entre a magnitude das forças internas atuantes e as deformações elásticas.

$$\sigma = E \cdot \varepsilon$$

σ: tensão normal;

E: módulo de Elasticidade, Módulo de Young ou Módulo da rigidez elástica;

ε: deformação linear específica.

2.7 Lei de Hooke

A Lei de Hooke é válida até a tensão de proporcionalidade, σ_p . O módulo de Elasticidade, E, representa a inclinação da reta na porção inicial do diagrama tensão-deformação.

$$\tan \alpha = \frac{\sigma}{\varepsilon} \to \sigma = \tan \alpha \cdot \varepsilon$$

$$\tan \alpha = E$$