МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ФАКУЛЬТЕТ ЭЛЕКТРОННО-ИНФОРМАЦИОННЫХ СИСТЕМ Кафедра интеллектуальных информационных технологий

РЕФЕРАТ

по дисциплине «Современные методы защиты компьютерных систем»

Выполнил: Студент 4 курса ФЭИС группы ИИ-22 Сиротюк Н.С.

1 SOC

B цифровизации глобальной сетевой современной И взаимосвязанности, вопросы безопасности данных и информационных систем становятся всё более актуальными. Одним из ключевых элементов обеспечения безопасности является создание и эффективное функционирование Центра Операций Безопасности (SOC, от англ. Security Operations Center). SOC представляет собой специализированное подразделение, предназначенное для мониторинга, анализа и реагирования на угрозы безопасности, с целью защиты информационных систем и данных организации от атак и инцидентов. **SOC** (Security Operations Center) — это центр, обеспечивающий круглосуточный мониторинг, анализ и управление событиями информационной безопасности. Главная цель SOC заключается в обнаружении, предотвращении и реагировании на кибератаки и инциденты безопасности, а также в обеспечении защиты информационных активов организации. SOC может быть как внутренним подразделением компании, так и внешней службой, предоставляющей услуги по аутсорсингу. SOC выполняет несколько важнейших функций, которые включают: Мониторинг и анализ угроз: SOC занимается непрерывным мониторингом трафика, сетевых активностей, журналов событий и систем для выявления аномальных или подозрительных действий, которые могут указывать на потенциальную угрозу. Обнаружение инцидентов безопасности: Основная задача SOC — своевременно выявлять инциденты безопасности, такие как кибератаки, вторжения, вредоносное ПО, утечки данных и другие угрозы. **Реагирование на инциденты**: В случае обнаружения угрозы SOC принимает нейтрализации инцидента. Это может включать вредоносного трафика, изоляцию заражённой системы, устранение уязвимостей или восстановление после атаки. Управление уязвимостями: SOC оценивает уязвимости информационных систем и помогает устранять их до того, как они Соблюдение будут использованы злоумышленниками. нормативных требований: SOC организации помогает соответствовать стандартам безопасности и соблюдения законодательства, таким как GDPR, PCI DSS, ISO 27001 и другие, путем мониторинга и отчетности. **Анализ угроз и угрозы снаружи**: SOC анализирует потенциальные угрозы и уязвимости в глобальной сети, отслеживает новые методы атак, чтобы заранее подготовиться к их возможному применению. Для эффективной работы SOC использует ряд технологий, которые помогают в мониторинге и реагировании на инциденты безопасности:

- SIEM (Security Information and Event Management): Это системы, которые собирают, нормализуют и анализируют данные о событиях из различных источников (системы, сети, устройства безопасности и т. д.), чтобы выявить возможные угрозы.
- IDS/IPS (Intrusion Detection/Prevention Systems): Системы обнаружения и предотвращения вторжений, которые позволяют автоматически реагировать на угрозы в реальном времени.
- SOAR (Security Orchestration, Automation and Response): Платформы для автоматизации процессов реагирования на инциденты и интеграции различных инструментов безопасности в единую систему.
- Threat Intelligence Platforms: Платформы для сбора и анализа информации о текущих угрозах и уязвимостях, которая помогает организациям заранее готовиться к возможным атакам.
- EDR (Endpoint Detection and Response): Решения для мониторинга конечных устройств и быстрого реагирования на угрозы, исходящие от них.

2 FW/NGFW

В современных условиях киберугроз и расширяющихся возможностей атакующих, защита информационных систем и сетевой инфраструктуры становится одной из важнейших задач для организаций любого уровня. Одним из ключевых компонентов системы безопасности является использование межсетевых экранов (firewall). В последние годы на смену традиционным межсетевым экранам приходят новые решения, которые обеспечивают более высокий уровень защиты. Это так называемые следующие поколения межсетевых экранов (Next-Generation Firewall, NGFW). В данном реферате будут рассмотрены основные характеристики, различия и преимущества традиционных межсетевых экранов (FW) и NGFW.

Традиционные межсетевые экраны (FW)

Межсетевой экран (Firewall, FW) — это система безопасности, предназначенная для фильтрации входящего и исходящего сетевого трафика в зависимости от заранее установленных правил. Принцип работы традиционного межсетевого экрана заключается в том, чтобы блокировать нежелательный трафик, исходя из анализа определенных характеристик, таких как:

- ІР-адреса источников и получателей.
- **Порты** и протоколы (ТСР, UDР и др.).
- Типы пакетов (например, на основе анализа заголовков).

Традиционные межсетевые экраны обычно действуют на уровне сетевого или транспортного слоя модели OSI и осуществляют лишь базовую фильтрацию трафика, ограничиваясь проверкой информации о подключении и простыми правилами.

Межсетевые экраны нового поколения (NGFW)

Next-Generation Firewall (NGFW) — это более современное решение, которое объединяет традиционные функции межсетевых экранов с новыми возможностями для защиты от более сложных угроз. NGFW предлагают расширенную функциональность, которая включает в себя не только фильтрацию на уровне сетевого трафика, но и: Глубокий анализ пакетов (DPI, Deep Packet

Inspection). NGFW анализируют содержимое пакетов, ЧТО позволяет обнаруживать угрозы на уровне приложений, например, вирусы, шпионские программы и другие формы вредоносного кода. Интеграция с системами предотвращения вторжений (IPS). Эти системы могут предотвращать атаки и блокировать подозрительную активность, реагируя на определенные паттерны поведения. Контроль приложений. NGFW позволяют фильтровать трафик по приложениям, а не только по порту или IP-адресу. Например, блокировка доступа к социальным сетям или мессенджерам. Антивирусная защита. Встроенные механизмы антивирусной фильтрации помогают выявлять и блокировать вредоносные файлы, даже если они зашифрованы. Шифрование трафика. **NGFW** анализировать способны зашифрованный трафик, невозможным использование SSL/TLS туннелей для обхода фильтрации. **Контроль пользователей и устройств**. Некоторые решения NGFW позволяют интегрировать механизмы аутентификации и идентификации пользователей, а также контролировать подключенные устройства.

Сравнение FW и NGFW

Характеристика	FW	NGFW
Функциональность	Базовая фильтрация трафика	Глубокая фильтрация, анализ на уровне приложений
Уровень анализа	Только заголовки пакетов	Заголовки пакетов + содержимое пакетов (DPI)
Защита от атак	Защита от атак на уровне сети	Защита от атак на уровне приложений, шифрование, IPS
Механизмы предотвращения	Отсутствуют или ограничены	Системы предотвращения вторжений, антивирусные технологии

Характеристика	FW	NGFW
Сложность настройки	Простота и минимальные настройки	Более сложная настройка и управление
Стоимость	Низкая	Высокая

Применение FW и NGFW

Традиционные межсетевые экраны (FW) остаются актуальными для небольших сетевых инфраструктур, где необходимо только базовое разделение трафика между внутренними и внешними сегментами сети, а также защита от простых угроз. Они также могут использоваться в небольших офисах, где требования безопасности не столь высоки. NGFW, в свою очередь, более эффективно применяются в крупных и средних организациях, где необходима защита от более сложных и многогранных угроз, таких как атаки на веб-приложения, шифрование трафика, вирусы и другие формы зловредного ПО. NGFW также активно используются в облачных сервисах и в организации гибридных инфраструктур, где требуется защита как от внутренних угроз, так и от внешних атак.

3 IDS/IPS

IDS (Intrusion Detection System) и IPS (Intrusion Prevention System) — это два ключевых компонента современной системы безопасности информационных технологий, предназначенные для защиты сетей и серверов от различных видов атак и угроз. IDS и IPS выполняют схожие функции, однако их назначение и способы работы имеют определённые различия. IDS в первую очередь служит для обнаружения вторжений, а IPS помимо обнаружения также активно предотвращает или блокирует атаки. В данном реферате рассмотрены основные принципы работы, различия, преимущества и недостатки этих систем, а также их роль в обеспечении безопасности сети.

IDS (Intrusion Detection System) — система обнаружения вторжений. Она предназначена для мониторинга трафика сети, анализа данных и выявления аномалий, которые могут свидетельствовать о попытке вторжения или атаки. Основной задачей IDS является уведомление администратора о возможных угрозах, но она не блокирует эти угрозы автоматически.

IPS (Intrusion Prevention System) — система предотвращения вторжений. В отличие от IDS, которая лишь информирует о проблемах, IPS может не только обнаруживать атаки, но и принимать меры по их блокированию в реальном времени. IPS интегрируются с сетевой инфраструктурой, принимая активное участие в управлении трафиком и предотвращении вторжений.

Принцип работы IDS

Система IDS работает по одному из следующих принципов. Сигнатурный анализ — метод, основанный на сравнении сетевого трафика с заранее известными "подписями" атак. Это позволяет быстро обнаружить известные угрозы. Однако такой подход не эффективен для защиты от новых, ещё не идентифицированных атак. Аномалистический анализ — система анализирует нормальные шаблоны поведения в сети и сигнализирует о любых отклонениях от этих норм. Это позволяет выявить новые, неизвестные атаки, но может привести к ложным срабатываниям. Гибридный подход — комбинированный метод, использующий как сигнатурный, так и аномалистический анализ. Это

повышает точность обнаружения угроз и снижает количество ложных срабатываний.

Принцип работы IPS

IPS работает на основе схожих методов, но в отличие от IDS, она выполняет не только анализ, но и действия, направленные на предотвращение атак. Сигнатурный подход — IPS может блокировать трафик, который соответствует известным шаблонам атак. Аномалистический анализ — если система обнаруживает аномалии в трафике, она может принять решение о блокировке подозрительных соединений или о маршрутизации трафика через дополнительные фильтры для более глубокого анализа. Реализация правил в реальном времени — IPS, интегрированная в сеть, принимает решения на основе текущей ситуации, автоматически блокируя попытки вторжения.

Системы IDS и IPS становятся важными компонентами в стратегиях киберзащиты. Они активно используются для защиты корпоративных сетей, облачных сервисов и других инфраструктурных объектов. Современные решения часто интегрируют функции IDS и IPS в одну систему, создавая более эффективные и гибкие средства защиты.

4 NTA

National Testing Agency (NTA) — это автономная организация, которая была основана правительством Индии в 2017 году с целью проведения различных национальных экзаменов и оценки квалификации кандидатов. Ее основная задача заключается в разработке, организации и администрировании экзаменов для студентов, аспирантов и профессионалов, что обеспечивает справедливость и прозрачность в процессе оценки знаний и навыков. NTA была создана с целью улучшения процесса экзаменов в Индии и устранения недостатков существующих системах. До ее создания экзамены для студентов и кандидатов на различные образовательные и профессиональные программы проводились различными государственными и частными органами, что приводило к несоответствиям в качестве и организации. Создание NTA было обусловлено необходимостью единого стандарта для проведения экзаменов, увеличения числа доступных мест для экзаменов, повышения качества оценки и снижения стресса у кандидатов. Правительство Индии поручило NTA проводить такие важные экзамены, как JEE (Joint Entrance Examination), NEET (National Eligibility cum Entrance Test) и другие.

Основные функции и задачи NTA

- Разработка и проведение экзаменов: Организация и проведение экзаменов для поступления в учебные заведения на разные уровни образования от бакалавриата до аспирантуры.
- **Публикация результатов:** После завершения экзаменов NTA обеспечивает публикацию результатов и проводит анализ качества оценки.
- **Сертификация и лицензирование:** Организация сертификационных экзаменов для профессиональных квалификаций в различных областях.
- Обеспечение прозрачности и честности: Система электронных протоколов и строгие меры безопасности, такие как биометрия и электронные носители, помогают исключить возможность мошенничества и фальсификаций.

NTA проводит множество крупных национальных экзаменов, среди которых наиболее известные. JEE Main: Экзамен для поступления в инженерные учебные заведения, такие как IIT (Indian Institutes of Technology) и NIT (National Institutes of Technology). Экзамен проводится дважды в год и является важным этапом для студентов, стремящихся получить степень бакалавра в области инженерии. **NEET:** Национальный экзамен, проводимый для поступления в медицинские и стоматологические колледжи. NEET является обязательным для всех кандидатов, желающих учиться медицинских вузах Индии. **CUET**: Экзамен для поступления в университеты страны, начиная с 2022 года. Он был введен как единый экзамен для студентов, желающих учиться в государственном и частном секторе высшего образования. UGC NET: Экзамен для кандидатов, желающих стать преподавателями в высших учебных заведениях, а также для тех, кто хочет пройти аспирантуру в области гуманитарных, социальных и естественных наук.

NTA активно использует технологии для повышения эффективности экзаменационного процесса. Среди значимых инноваций стоит отметить:

- **Интернет-платформы и онлайн-экзамены:** NTA внедрила систему онлайн-подачи заявок, а также электронных тестов и многократных повторных экзаменов для повышения доступности.
- **Меры безопасности:** Для предотвращения нарушений и мошенничества на экзаменах используются различные технические средства, включая сканеры для проверки документов, видеонаблюдение и биометрические системы для идентификации кандидатов.
- Электронные результаты и обратная связь: Результаты экзаменов публикуются в онлайн-режиме, что позволяет кандидатам быстро получить информацию и ознакомиться с анализом своей работы.