

Рис. 7.

Шаг 2 – изучаем исходные функции.

Если f и g – удобные функции, а c и d – действительные числа, то функция cf + dg, которая по определению, принимает на фигуре F значение с f(F)+dg(F), очевидно, является удобной.

Итак, с удобными функциями можно обращаться как с векторами: их можно умножать на действительные числа и складывать. Положим, например, $P=N_2-2N+E$ (т. е. P(F)=N(2F)-2N(F)+1). Так как функции N_2 , N и E – удобные, то и функция P – удобная.

Сопоставим теперь каждой удобной функции $f \in Y$ вектор в трёхмерном пространстве, а именно, вектор $(f(X_1); f(X_2); f(X_3))$, где X_1, X_2, X_3 – три целочисленные фигуры, изображенные на рисунке 7. Этот вектор мы будем обозначать через \overrightarrow{f} . В первых пяти строках таблицы 1 записано, какие векторы сопоставляются уже известным нам удобным функциям.

Таблица 1

140111441				
	f	$f(X_1)$	$f(X_2)$	$f(X_3)$
1	S	0	0	1/2
2	N	1	2	3
3	E	1	1	1
4	N	1	3	6
5	P	0	0	1
6	?	0	2	3
7	e=2E+2S-N	1	0	0
8	e=N-E-4S	0	1	0
9	e=2S	0	0	1

А всякий ли вектор соответствует какойнибудь удобной функции (например, вектор (0; 2; 3) из шестой строки)? Положительный ответ на этот вопрос дают строки 7–9 таблицы 1. Из них видно, что удобным функциям e_1 , e_2 , e_3 соответствуют базисные векторы в трёхмерном пространстве. Поэтому для любых чисел c_1 , c_2 , c_3 мы можем указать удобную функцию, которой соответствует вектор (c_1 ; c_2 , c_3), а именно – удобную функцию $c_1e_1+c_2e_2+c_3e_3$. Например, вектор из шестой строки таблицы 1 соответствует функции $2e_2+3e_3=2(N-E-4S)+3\cdot 2S=2N-2E-2S$.

Шаг 3 – критерий совпадения удобных функций.

До сих пор мы нигде не пользовались тем, что имеем дело с удобными функциями. Любой функции на Φ можно было бы сопоставить вектор трехмерного пространства. Например, функции R из упражнения 2 соответствует вектор из шестой строки таблицы 1. Особое "удобство" удобных функций заключается в том, что между ними и векторами трехмерного пространства имеется взаимно однозначное соответствие. Иными словами, если f и g удобные функции g совпаданот.

Обозначим разность f–g через h. Тогда утверждение о взаимной однозначности соответствия мужду удобными функциями и векторами принимает такой вид.

Основнаятеорем а. Если $h \in Y$ и вектор f равен нулю, то и функция h есть тождественный нуль.

Мы рекомендуем читателю доказать основную теорему самостоятельно или прочесть доказательство в приложении к статье.

Из основной теоремы сразу следует формула δ). Действительно, из первой и пятой строк таблицы 1 мы получаем, что вектор, соответсвующий функции P-2S – нулевой. Так как функция P-2S удобная, то по основной теореме P-2S=0, т. е. P(F)-2S(F)=0 для любой фигуры F.