Math 521 HW4

Raj Mohanty

raj.mohanty@student.csulb.edu

1 Theory

1.1 Problem 1

Given $C_x u = \lambda_x u$ and $C_s v = \lambda_s v$ where the matrices are related as $C_x = C_s + \alpha I$ Substituting C_x in the first eigenvalue problem we have

$$C_s u + \alpha I u = \lambda_x u$$

$$=> C_s u = (\lambda_x - \alpha) u$$

Hence the eigenvalues of C_s are $(\lambda_x - \alpha)$ and eigenvectors are u. Hence u = v and $\lambda_s = \lambda_x - \alpha$

1.2 Problem 2

For $x \in R^m$ and x is a non-zero vector. Then $x^T A A^T x = (A^T x)^T (A^T x) \ge 0$. Hence the matrix AA^T is positive semi-definite, which means the eigenvalues of this matrix are nonnegative.

For a given eigenvector λ , $AA^Tv = \lambda v$. therefore

$$Mv = (\alpha^2 I + AA^T)v = \alpha^2 Iv + AA^Tv = \alpha^2 v + \lambda v = (\alpha^2 + \lambda)v$$

Since $\lambda \geq 0$ and $\alpha^2 > 0$, the eigenvalues of matrix M are positive nonzero. Since non-singular matrices can only have non-zero eigenvalues and we just proved that M falls in that category, then M must be non-singular.

1.3 Problem 3

Here M is the total number of distinct classes, n_i is the number of data points in class i, m_i is the class mean of the ith class, and m is the mean across all n data points.

$$S_B = S_T - S_W$$

$$= \sum_{i=1}^{M} \sum_{x \in D_i} (x_i - \mathbf{m})(x_i - \mathbf{m})^T - \sum_{i=1}^{M} \sum_{x \in D_i} (x - \mathbf{m}_i)(x - \mathbf{m}_i)^T$$

$$= \sum_{i=1}^{M} \sum_{x \in D_i} [(x_i - \mathbf{m})(x_i - \mathbf{m})^T - (x - \mathbf{m}_i)(x - \mathbf{m}_i)^T]$$

$$\begin{split} &= \sum_{i=1}^{M} \sum_{x \in D_{i}} [x.x^{T} - mx^{T} - xm^{T} + mm^{T} - xx^{T} + m_{i}x^{T} + xm_{i}^{T} - m_{i}.m_{i}^{T}] \\ &= \sum_{i=1}^{M} [-n_{i}mm_{i}^{T} - n_{i}m_{i}m^{T} + n_{i}mm^{T} + n_{i}m_{i}m_{i}^{T} + n_{i}m_{i}m_{i}^{T} - n_{i}m_{i}m_{i}^{T}] \\ &= \sum_{i=1}^{M} n_{i}(m_{i} - m)(m_{i} - m)^{T} \end{split}$$