CURVES AND SURFACES

BEZIER CURVE

Specified by set of coordinates known as control points

Control points indicates the shape of the curve

A Bezier curve is an approximation curve

Degree	Control points	Name
2	3	Quadratic Bezier
3	4	Cubic Bezier
4	5	Quartic Bezier
5	6	Quintic Bezier

$$P_0 = (x_0, y_0, z_0)$$

$$P_1 = (x_1, y_1, z_1)$$

$$P_2 = (x_2, y_2, z_2)$$

$$P_3 = (x_3, y_3, z_3)$$

$$x(u) = (1-u)^{3}x_{0} + 3(1-u)^{2}ux_{1} + 3(1-u)u^{2}x_{2} + u^{3}x_{3} 0 \le u \le 1$$

$$= {}^{3}C_{0}(1-u)^{3}x_{0} + {}^{3}C_{1}(1-u)^{2}ux_{1} + {}^{3}C_{2}(1-u)u^{2}x_{2} + {}^{3}C_{3}u^{3}x_{3}$$

$$- \sum_{i=1}^{3} {}^{3}C_{i}(1-u)^{3-i}u^{i}$$
 \mathbf{y}

$$= \sum_{i=0}^{3} {}^{3}C_{i}(1-u)^{3-i} u^{i} X_{i}$$

Bezier basis function or Bernstein polynomial

$$y(u) = \sum_{i=0}^{3} {}^{3}C_{i}(1-u)^{3-i} u^{i} y_{i}$$

$$z(u) = \sum_{i=0}^{3} {}^{3}C_{i}(1-u)^{3-i} u^{i} Z_{i}$$

Quartic Bezier Curve

$$x(u) = \sum_{i=0}^{4} {}^{4}C_{i}(1-u)^{4-i} u^{i} x_{i}$$

Quintic Bezier Curve

$$x(u) = \sum_{i=0}^{5} {}^{5}C_{i}(1-u)^{5-i} u^{i} x_{i}$$

Nth degree Bezier Curve

$$x(u) = \sum_{i=0}^{N} {^{N}C_{i}(1-u)^{N-i} u^{i} x_{i}}$$

Property-I.

- a)Tangent (f') at each endpoint is defined by the endpoint and the adjacent point
- b) Curvature(f") at each endpoint is defined by the endpoint and its two adjacent points
- c) f" at each endpoint is defined by the endpoint and its three adjacent points

Property-II.

Reversing the sequence of control points does not change the shape of the curve

Property-III.

The curve is invariant under translation, rotation, scaling and sheering

Property-IV.(Property of convex hull)

The curve lies entirely inside characteristic polygon

- •Bound of a curve
- •Two Bezier curves are intersecting or not

Property-V.

The curve exhibits partition of unity

$$\sum_{i=0}^{3} {}^{3}C_{i}(1-u)^{3-i} u^{i} = 1$$

Property-VI.

The curve can be represented in matrix form

$$x(u) = (1-u)^{3}x_{0} + 3(1-u)^{2}ux_{1} + 3(1-u)u^{2}x_{2} + u^{3}x_{3} 0 \le u \le 1$$

$$= (1-3u+3u^{2}-u^{3})x_{0} + (3u-6u^{2}+3u^{3})x_{1} + (3u^{2}-3u^{3})x_{2} + u^{3}x_{3}$$

$$= u^{3}(-x_{0}+3x_{1}-3x_{2}+x_{3}) + u^{2}(3x_{0}-6x_{1}+3x_{2}) + u(-3x_{0}+3x_{1}) + x_{0}$$

$$\mathbf{x}(\mathbf{u}) = \begin{pmatrix} \mathbf{u}^3 & \mathbf{u}^2 & \mathbf{u} & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix}$$

Global propagation of change

Changing one control point changes the globally

Local propagation of change

Changing one control point changes the locally

$$x(u) = {}^{3}C_{0}(1-u)^{3}x_{0} + {}^{3}C_{1}(1-u)^{2}ux_{1} + {}^{3}C_{2}(1-u)u^{2}x_{2} + {}^{3}C_{3}u^{3}x_{3}$$

Piecewise BEZIER CURVE

N=9

Control points:10

$$x(u) = \sum_{i=0}^{9} {}^{9}C_{i}(1-u)^{9-i} u^{i} x_{i}$$

$$x(u) = \sum_{i=0}^{3} {}^{3}C_{i}(1-u)^{3-i}u^{i} x_{i}$$

$$x(u) = \sum_{i=0}^{3} {}^{3}C_{i}(1-u)^{3-i}u^{i} x_{i}$$

$$x(u) = \sum_{i=0}^{3} {}^{3}C_{i}(1-u)^{3-i}u^{i} x_{i}$$

Implementation issue

BEZIER SURFACE

Cubic Bezier curve

$$x(u) = \sum_{i=0}^{3} {}^{3}C_{i}(1-u)^{3-i} u^{i} x_{i}$$

Cubic-Cubic Bezier surface / Bi-cubic Bezier surface

$$x(u, w) = \sum_{i=0}^{3} \sum_{j=0}^{3} ({}^{3}C_{i}(1-u)^{3-i}u^{i})({}^{3}C_{j}(1-u)^{3-j}w^{j})x_{ij}$$

Bi-cubic Bezier surface

Properties of BEZIER SURFACE

- 1. Passes through four corner points
- 2. Tangent vectors are defined by adjacent points
- 3. Convex hull
- 4. Partition of unity

Non uniform B-SPLINE CURVE

Order of curve: K

No. of control points: n+1

No of segments of a curve: n-K+2

B-Spline basis function

$$x(u) = \sum_{i=0}^{n} N_{i,k}(u) x_i$$
 $0 \le u \le n - K + 2$

$$x(u) = \sum_{i=0}^{n} N_{i,k}(u) x_i$$
 $0 \le u \le n - K + 2$

$$N_{i,k}(u) = \frac{(u-t_i) N_{i,K-1}(u)}{t_{i+K-1} - t_i} + \frac{(t_{i+K} - u) N_{i+1,K-1}(u)}{t_{i+K} - t_{i+1}}$$

$$N_{i,1}(u) = 1 \qquad \text{if} \quad t_i \le u \le t_{i+1}$$
$$= 0$$

Knot values: t_i $(0 \le i \le n + K)$

$$t_i = 0$$
 if $i < K$
 $= i - K + 1$ if $K \le i \le n$
 $= n - K + 2$ if $i > n$

Non uniform B-SPLINE CURVE example

Order of curve:

K = 3

No. of control points:

N+1=7

No of segments of a curve:

N-K+2=5

SEGMENT	\mathbf{U}_{1}	$\mathbf{U_2}$	CONTROL
			POINT
Segment-1	0	1	$[P_0,P_1,P_2]$
Segment-2	1	2	$[P_1,P_2,P_3]$
Segment-3	2	3	$[P_2,P_3,P_4]$
Segment-4	3	4	$[P_3,P_4,P_5]$
Segment-5	4	5	$[P_4,P_5,P_6]$

SEGMENT	$\mathbf{U_1}$	$\mathbf{U_2}$	CONTROL POINT
Segment-1	0	1	$[P_0,P_1,P_2]$
Segment-2	1	2	$[P_1,P_2,P_3]$
Segment-3	2	3	$[P_2,P_3,P_4]$
Segment-4	3	4	$[P_3,P_4,P_5]$
Segment-5	4	5	$[P_4,P_5,P_6]$

CONTROL POINT	SEGMENT	NUMBER OF SEGMENT(S)
P_0	Segment-1	1
P ₁	Segment-1	2
	Segment-2	
P ₂	Segment-1	3
	Segment-2	
	Segment-3	
P ₃	Segment-2	3
	Segment-3	
	Segment-4	
$\mathbf{P_4}$	Segment-3	3
	Segment-4	
	Segment-5	
P ₅	Segment-4	2
	Segment-5	
P_6	Segment-5	1

CONTINUITY

C₀ continuity/Point Continuity

All points are connected

C₁ continuity/Slope Continuity

All points have unique slope(f')

C₂ continuity/Curvature Continuity

All points have unique curvature(f")

Properties of Non uniform B-SPLINE CURVE

- 1. The curve is C_{K-2} continuous
- 2. Made up of N-K+2 segments
- 3. Only K control points affect any segment
- 4. A control point affects at most K curve segments

Non uniform B-SPLINE SURFACE

Non uniform B-SPLINE curve

$$x(u) = \sum_{i=0}^{N} N_{i,k}(u) x_i$$

Non uniform B-SPLINE surface

$$x(u, w) = \sum_{i=0}^{N} \sum_{j=0}^{M} N_{i,k}(u) N_{j,l}(w) x_{ij}$$

Non uniform rational B-SPLINE (NURBS)

NURBS curve

$$x(u) = \frac{\sum_{i=0}^{N} h_{i} N_{i,k}(u) x_{i}}{\sum_{i=0}^{N} h_{i} N_{i,k}(u)}$$

h_i is the weightage of x_i

Family of NURBS

h_i=1 for non uniform B-Spline

NURBS surface

$$x(u, w) = \frac{\sum_{i=0}^{N} \sum_{j=0}^{M} h_{i} h_{j} N_{i,k}(u) N_{j,l}(w) x_{ij}}{\sum_{i=0}^{N} \sum_{j=0}^{M} h_{i} h_{j} N_{i,k}(u) N_{j,l}(w)}$$

