Heaven's Light is Our Guide

Rajshahi University of Engineering & Technology

Department of Electrical & Computer Engineering

Lab Report

Experiment No: 01

Name of the experiment:

Study the relationship between phase voltage and line voltage of wye connected 3 phase balanced system.

Course Code	ECE 1202
Course Title	Circuits & Systems-II Sessional
Date of experiment	14-05-2024
Date of Submission	17-09-2024

Submitted by	Submitted to
Name: Md. Samiul Alam	Oishi Jyoti
Roll: 2210042	Assistant Professor
Registration: 1096	Department of ECE, RUET
Session: 2022-2023	
Department of ECE, RUET	

Experiment No. 01

Name of the Experiment: Study the relationship between phase voltage and line voltage of wye connected 3 phase balanced system.

Objective: To verify the relationship between phase voltage and line voltage in a balanced three-phase system connected in a wye (Y) configuration.

Theory:

In a balanced three-phase system, the voltages are symmetrical and have equal magnitudes, separated by 120° phase angles. For a wye-connected system:

- Phase Voltage (V_P): The voltage measured between any one line and the neutral point.
- Line Voltage (V_L): The voltage measured between any two lines.

The relationship between the line voltage and phase voltage in a wye-connected system is given by: $V_L = \sqrt{3} V_P$, $I_L = I_P$

Required Apparatus:

- 1. Voltmeter
- 2. Ammeter
- 3. Multimeter
- 4. Source
- 5. Connecting Wires

Circuit Diagram:

Fig 1.1 wye-connected three-phase system

Data Table:

Sl.	$V_{\rm L}$	V _{P (m)}	V _{P (c)}	$I_{\rm L}$	IP	Error,
						$\mathbf{e} = \left \frac{\mathbf{V}_{\mathbf{P}_{(c)}} - \mathbf{V}_{\mathbf{P}_{(m)}}}{\mathbf{V}_{\mathbf{P}_{(c)}}} \right \times 100\%$
1	39.6	22.6	22.86	0.375	0.388	1.14%
2	41.2	23.2	22.78	0.382	0.378	2.44%
3	40.2	22.9	23.20	0.386	0.389	1.29%

Data Table from Lab experiment:

Calculations & Results:

In wye connection, $V_L = \sqrt{3} V_P \implies V_P = \frac{V_L}{\sqrt{3}}$

For trial 1,

$$V_{P(c)} = \frac{V_L}{\sqrt{3}} = \frac{39.6}{\sqrt{3}} = 22.86 V$$

error =
$$\left| \frac{V_{P_{(c)}} - V_{P_{(m)}}}{V_{P_{(c)}}} \right| \times 100\% = \left| \frac{22.86 - 22.6}{22.86} \right| \times 100\% = 1.14\%$$

For trial 2,

$$V_{P(c)} = \frac{V_L}{\sqrt{3}} = \frac{41.2}{\sqrt{3}} = 22.78 V$$

error =
$$\left| \frac{V_{P_{(c)}} - V_{P_{(m)}}}{V_{P_{(c)}}} \right| \times 100\% = \left| \frac{22.78 - 23.2}{22.78} \right| \times 100\% = 2.44\%$$

For trial 3,

$$V_{P(c)} = \frac{V_L}{\sqrt{3}} = \frac{40.2}{\sqrt{3}} = 23.20 V$$

error = $\left| \frac{V_{P(c)} - V_{P(m)}}{V_{P(c)}} \right| \times 100\% = \left| \frac{23.30 - 22.9}{23.30} \right| \times 100\% = 1.29\%$

Average error =
$$\frac{1.14 + 2.44 + 1.29}{3}$$
 = 1.62%

There are slight errors in the measurement of phase voltages due to factors such as instrument precision, connection stability, or minor variations in the load.

Discussion:

This experiment confirmed the theoretical relationship between phase and line voltages in a Wye-connected three-phase balanced system, where the line voltage was $\sqrt{3}$ times the phase voltage. This relationship is crucial for the analysis and design of balanced three-phase power systems.

Precautions:

- 1. All connections were securely fastened and insulated to prevent short circuits or electric shocks.
- 2. High accuracy and minimal errors were ensured by using properly calibrated instruments.

Reference:

- 1. Alexander, Charles K. and Matthew N. O. Sadiku, Fundamentals of Electric Circuits:
 - a. Chapter 12
- 2. Wikipedia