PHYSICS

Chapter 2
Equilibrio con
fuerzas no paralelas
4th
SECONDARY

El equilibrio es parte de nuestra vida y de la curiosidad de muchos

Si un cuerpo esta en equilibrio de traslación bajo tres fuerzas, estas deben ser concurrentes, coplanares, y se formara un triangulo cuyos lados son los vectores que representan a las fuerzas aplicadas al cuerpo y estas deben ser consecutivas.

Fuerzas concurrentes

Se forma el triangulo

Formación del triángulo de fuerzas

Consideremos a la siguiente esfera homogénea en equilibrio.

1. Se muestra el D.C.L. de un cuerpo en equilibrio. Construya el triángulo de fuerzas y determine el módulo de la fuerza F_1 y F_2 .

Sobre el D.C.L. formamos el triangulo de fuerzas

$$*4k = 40$$

$$F_g = 40 \text{ N}$$

$$K = 10$$

Ahora:

$$F_1 = 5 \text{ k}$$
; entonces; $F_1 = 5 (10 \text{ N})$

$$\therefore F_1 = 50 \text{ N}$$

$$F_2 = 3 \text{ k}$$
; entonces; $F_2 = 3 (10 \text{ N})$

$$\therefore F_2 = 30 \text{ N}$$

2. Determine el módulo de la fuerza F en el DCL que se muestra del bloque de 6 kg que está en equilibrio. $(g = 10 \text{ m/s}^2)$

Formando el triangulo de fuerzas

Resolviendo el triangulo:

*
$$5 k = 60$$
 $K = 12$

$$K = 12$$

Ahora:

$$F = 3 k$$
; entonces; $F = 3 (12 N)$

3. La esfera lisa de 2,4 kg se encuentra en equilibrio. Determine el módulo de la fuerza normal de la pared sobre dicha esfera. $(g = 10 \text{ m/s}^2)$

$$\therefore F_N = 18 N$$

4. La esfera lisa de 4 kg se encuentra en equilibrio. Determine el módulo de la tensión en la cuerda. $(q = 10 \text{ m/s}^2)$

5. La esfera lisa se encuentra en equilibrio en la posición mostrada. Si la reacción en A es de 60 N, determine la masa de la esfera, (g = 10 m/s^2)

$$mg = 80 N$$

PHYSICS

6. Determine el módulo de la fuerza elástica si el bloque de 6 kg se encuentra en reposo, $(g = 10 \text{ m/s}^2)$

7. Si el bloque de 1,2 kg se encuentra en equilibrio, determine los módulos de las tensiones en las cuerdas (I)y (2) (g =10m/s²)

$$: T_1 = 9 N$$

$$T_2 = 15 \text{ N}$$

Con la intención de levantar un bloque de 50 kg, se diseña el siguiente sistema. Una cuerda fija en A pasa por una argolla lisa en B y en su otro extremo se coloca una canasta de 5 kg. Si se van colocando, en la canasta, ladrillos de 5 kg de cada uno, determine la cantidad de ladrillos que debe contener la canasta para que en el equilibrio la medida del ángulo Q sea 120° . ($g = 10 \text{ m/s}^2$)

n = 9 ladrillos