Vishay Siliconix

RoHS

HALOGEN

FREE

3.2 Ω , Fast Switching Speed, +12 V / +5 V / +3 V / ± 5 V, 4- / 8-Channel Analog Multiplexers

DESCRIPTION

The DG9408E, DG9409E uses BiCMOS wafer fabrication technology that allows the DG9408E, DG9409E to operate on single and dual supplies. Single supply voltage ranges from 3 V to 16 V while dual supply operation is recommended with \pm 3 V to \pm 8 V.

The DG9408E is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address (A_0 , A_1 , A_2). The DG9409E is a dual 4-channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address (A_0 , A_1). Break-before-make switching action to protect against momentary crosstalk between adjacent channels.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations. The DG9408E, DG9409E are offered in a QFN package that has a nickel-palladium-gold device terminations and is represented by the lead (Pb)-free "-E4" suffix. The nickel-palladium-gold device terminations meet all the JEDEC® standards for reflow and MSL ratings.

FEATURES

- 3 V to 16 V single supply or ± 3 V to ± 8 V dual supply operation
- Low on-resistance R_{ON}: 3.2 Ω typ.
- Fast switching: t_{ON} 36 ns, t_{OFF} 24 ns
- Break-before-make guaranteed
- Low leakage
- TTL, CMOS, LV logic (3 V) compatible
- 2500 V ESD protection (HBM)
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

BENEFITS

- · Fast switching speed
- · Low switch resistance
- Wide operation voltage range
- Simple logic interface

APPLICATIONS

- Automatic test equipment
- · Process control and automation
- · Data acquisition systems
- Meters and instruments
- Medical and healthcare systems
- · Communication systems
- · Audio and video signal routing
- Relay replacement
- · Battery powered systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Note

• QFN16 package central exposed pad has no electrical connection inside the chip. It can be connected GND, V+, V-, or left floating.

Vishay Siliconix

TRUTH TABLE AND ORDERING INFORMATION

TRUTH	TRUTH TABLE DG9408E									
A ₂	A ₁	A ₀	EN	ON SWITCH						
Х	Х	Х	1	None						
0	0	0	0	1						
0	0	1	0	2						
0	1	0	0	3						
0	1	1	0	4						
1	0	0	0	5						
1	0	1	0	6						
1	1	0	0	7						
1	1	1	0	8						

TRUTH 1	TRUTH TABLE DG9409E									
A ₁	A ₀	EN	ON SWITCH							
Х	X	1	None							
0	0	0	1							
0	1	0	2							
1	0	0	3							
1	1	0	4							

X = do not care

For low and high voltage levels for V_{AX} and $V_{\overline{EN}}$ consult "Digital Control" parameters for specific V+ operation. See specifications tables for:

Single supply 12 V

Dual supply V+ = 5 V, V- = -5 V

Single supply 5 V

Single supply 3 V

ORDERING INFORMATION										
TEMP. RANGE	PACKAGE	PART NUMBER	MIN. ORDER / PACK. QUANTITY							
40 °C to +95 °C	16-pin QFN (4 mm x 4 mm)	DG9408EDN-T1-GE4	Tape and reel, 2500 units							
-40 °C to +85 °C	(variation 1)	DG9409EDN-T1-GE4	Tape and reel, 2500 units							

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)									
PARAMETER	LIMIT	UNIT							
Voltage referenced V+ to V-	-0.3 to +18								
GND to V-		18	V						
Digital inputs ^a , V _S , V _D	(V-) - 0.3 to (V+) + 0.3]							
Current (any terminal except S or D)	30								
Continuous current, S or D		100 mA							
Peak current, S or D (pulsed at 1 ms, 10 % duty cycle max.)		200]						
Package solder reflow conditions (lead (Pb)-free assembly) ^d	16-pin (4 x 4 mm) QFN	260 +0 / -5	°C						
Storage temperature		-65 to +150	1						
Power dissipation (package) b, (T _A = 70 °C)	16-pin (4 x 4 mm) QFN ^c	1880	mW						
ESD human body model (HBM), per ANSI / ESDA / JEDEC® JS	S-001	2500	V						
Latch up current, per JESD78	400	mA							

Notes

- a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 23.5 mW/°C above 70 °C.
- d. Manual soldering with soldering iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPEC		TEMP.b	-40	UNIT		
		$V+ = 12 \text{ V}, \pm 10 \text{ %}, V- = 0$ $V_A, V_{\overline{EN}} = 0.8 \text{ V or } 2.4 \text{ V}$			MIN. c	TYP.d	MAX.c	
Analog Switch		70 EN						l
Analog signal range e	V _{ANALOG}			Full	0	-	12	V
On-resistance	R _{ON}	V+ = 10.8 V, V _D = 2 V or 9 V, I _S = sequence each switch or	Room Full	-	3.2	7 7.5		
R _{ON} match between channels ^g	ΔR _{ON}	·		Room	_	_		Ω
On-resistance flatness i	R _{ON} flatness	$V+ = 10.8 \text{ V}, V_D = 2 \text{ V or } 9 \text{ V}, I_S = 10.8 \text{ V}$	Room	-	-	8		
	I _{S(off)}			Room	-2	-	2	
Switch off leakage current	. ,	$V_{\overline{EN}} = 2.4 \text{ V}, V_D = 11 \text{ V or } 1 \text{ V}, V_S =$	1 V or 11 V	Full	-15	-		
	I _{D(off)}			Room	-2 15	-		nA
				Full	-15	-	P. d MAX. c 12	
Channel on leakage current	$I_{D(on)}$	$V_{\overline{EN}} = 0 \text{ V}, V_{S} = V_{D} = 1 \text{ V or } 11 \text{ V}$		Room Full	-2 -15	-		
Digital Cantral				Full	-15	_	15	
Digital Control Logic high input voltage	V _{INH}			Full	2.4	_	_	
Logic low input voltage	VINH			Full	2.4	_	0.8	V
Input current	I _{IN}	$V_{AX} = V_{\overline{EN}} = 2.4 \text{ V or } 0.8 \text{ V}$./	Full	-1	_		μA
Dynamic Characteristics	NII	VAX - VEN - 2.4 V 01 0.0	V	ı un	<u>'</u>		<u>'</u>	μл
Dynamic Gnaracteriones		V _{S1} = 8 V, V _{S8} = 0 V, (DG940	Room	l -	40	71		
Transition time	t _{TRANS}	$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, (DG9408E)$ $V_{S1b} = 8 \text{ V}, V_{S4b} = 0 \text{ V}, (DG9409E)$ see fig. 2		Full	-	-		
Dural, hafana mala tima		$V_{S(all)} = V_{DA} = 5 \text{ V}$		Room	2	20	-	ns
Break-before-make time	t _{BBM}	see fig. 4	Full	-	-	-		
Frankla trong an time				Room	-	36	70	
Enable turn-on time	t _{ON(EN)}	$V_{AX} = 0 \text{ V}, V_{S1} = 5 \text{ V} (DG940)$		Full	-	-	75	
Frankla trong off times		$V_{AX} = 0 \text{ V}, V_{S1b} = 5 \text{ V (DG940)}$ see fig. 3	09E)	Room	-	24	44	
Enable turn-off time	t _{OFF(EN)}	3		Full	-	-	46	
Charge injection ^e	Q	C _L = 1 nF, V _{GEN} = 0 V, R _{GEN} =	= 0 Ω	Room	-	4.5	-	рС
Off isolation e, h	OIRR	f 100 HJ - D 1 HO		Room	-	-83	-	-10
Crosstalk e	X _{TALK}	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega$		Room	-	-89	-	dB
Course off conceitence of		f = 1 MHz, V _S = 0 V, V _{FN} = 2.4 V	DG9408E	Room	-	17	-	
Source off capacitance e	C _{S(off)}	$I = I \text{ IVIDZ}, V_S = U V, V_{\overline{EN}} = 2.4 \text{ V}$	DG9409E	Room	-	16	-	
Drain off capacitance e	C	f = 1 MHz V= = 0.1/ V== = 2.4.1/	DG9408E	Room	-	134	_	nE
Бтант он сараспансе °	$C_{D(off)}$	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2.4 \text{ V}$	DG9409E	Room	-	67	-	- pr
Drain on capacitance ^e	C _{D(on)}	f = 1 MHz, V _D = 0 V, V _{EN} = 0 V	DG9408E	Room	-	154	-	
·	- D(OII)		DG9409E	Room	-	86	-	
Power Supplies				T	1	1	1	ı
Power supply current	l+	$V_{\overline{EN}} = V_A = 0 \text{ V or V} +$		Room	-	-	1	μΑ

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED				LIMITS -40 °C to +85 °C			
TAIRWETER	O I III DOL	V+ = 5 V, V- = -5 V, \pm 10 9 V _A , V _{EN} = 0.8 V or 2 V f	TEMP.b	MIN. c	TYP.d	MAX.c	UNIT		
Analog Switch					ı			L	
Analog signal range e	V _{ANALOG}			Full	-5	-	5	V	
On-Resistance	R _{ON}	$V+ = 4.5 \text{ V}, V- = -4.5 \text{ V}, V_D = \pm 3.5 \text{ V},$		Room	-	4	8		
On resistance	TION	sequence each switch on		Full	-	-	8.5		
R _{ON} match between channels ^g	ΔR_{ON}			Room	-	-	3.6	Ω	
On-resistance flatness i	R _{ON} Flatness	$V+ = 4.5 V, V- = -4.5 V, V_D = \pm 3.5 V,$	$I_S = 50 \text{ mA}$	Room	-	-	8.2		
				Room	-2	-	2		
Cusitab off lookage assument 3	I _{S(off)}	V+ = 5.5, V- = -5.5 V		Full	-15	-	15		
Switch off leakage current a	1	$V_{\overline{EN}} = 2.4 \text{ V}, V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}$	± 4.5 V	Room	-2	-	2	nA	
	I _{D(off)}			Full	-15	-	15	IIA	
Channel on leakage assurent 3		V+ = 5.5 V, V- = -5.5 V	Room	-2	-	2			
Channel on leakage current a	I _{D(on)}	$V_{\overline{EN}} = 0 \text{ V}, V_D = \pm 4.5 \text{ V}, V_S = \pm$	Full	-15	-	15			
Digital Control									
Logic high input voltage	V _{INH}			Full	2	-	-	V	
Logic low input voltage	V _{INL}			Full	-	-	0.8	v	
Input current ^a	I _{IN}	$V_{AX} = V_{\overline{EN}} = 2 \text{ V or } 0.8 \text{ V}$		Full	-1	-	1	μΑ	
Dynamic Characteristics									
	_	$V_{S1} = 3.5 \text{ V}, V_{S8} = -3.5 \text{ V}, (DG9)$	Room	-	47	65			
Transition time ^e	t _{TRANS}	$V_{S1b} = 3.5 \text{ V}, V_{S4b} = -3.5 \text{ V}, (DG)$ see fig. 2	9409E)	Full	-	_	70		
Break-before-make time e	t _{BBM}	$V_{S(all)} = V_{DA} = 3.5 \text{ V}$		Room	1	13	-		
Break Belore make time	rBBM	see fig. 2		Full	-	-	-	ns	
Enable turn-on time e	t _{ON(EN)}			Room	-	54	70		
Liable tail on time	UN(EN)	$V_{AX} = 0 \text{ V}, V_{S1} = 3.5 \text{ V} (DG940 \text{ V}_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V} (DG940 \text{ V}_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V} (DG940 \text{ V}_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V})$	08E) .na=\	Full	-	-	76		
Enable turn-off time e	t _{OFF(EN)}	see fig. 3	.03L)	Room	-	28	40		
Enable tarri on time	OFF(EN)			Full	-	-	43		
Source off capacitance e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$	DG9408E	Room	-	15	-		
Source on Supusitation	∽ S(0π)	1 WII 12, V5 - 0 V, VEN - 2 V	DG9409E	Room	-	14	-		
Drain off capacitance e	C _D /-45	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$	DG9408E	Room	-	126	-	pF	
Drain on oupdoitanoo	$C_{D(off)}$	1 WII 12, VD - 0 V, VEN - 2 V	DG9409E	Room	-	63	-	Ι Ρ'	
Drain on capacitance e	C _{D(on)}	f = 1 MHz, V _D = 0 V, V _{EN} = 0 V		Room	-	153	-		
2.a 011 0apaona100	OD(on)	1 12, VD - 0 V, VEN - 0 V	Room	-	89	-			
Power Supplies									
Power supply current	l+	$V_{\overline{FN}} = VA = 0 V \text{ or } V+$		Room	-	-	1	μA	
	I-	LEIN - V/(- O V OI V+		Room	-1	-	-	"	

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECI		TEMP.b	-40	UNIT		
		$V_{+} = 5 \text{ V}, \pm 10 \text{ %, V}_{-} = 0 \text{ V}$ $V_{A}, V_{\overline{EN}} = 0.8 \text{ V or } 2 \text{ V}^{\text{ f}}$	/		MIN. °	TYP. d	MAX.c	
Analog Switch								
Analog signal range ^e	V _{ANALOG}			Full	0	-	5	V
On-resistance	R _{ON}	$V_{+} = 4.5 \text{ V}, V_{D} \text{ or } V_{S} = 1 \text{ V or } 3.5 \text{ V},$	I _S = 50 mA	Room Full	-	6.8	10.5 11	
R _{ON} match between channels ^g	ΔR _{ON}			Room	-	-	3.6	Ω
On-resistance flatness i	R _{ON} Flatness	$V+ = 4.5 \text{ V}, V_D = 1 \text{ V or } 3.5 \text{ V}, I_S =$	Room	-	-	9		
				Room	-2	-	2	
Outtab afficiency of the	I _{S(off)}	V+ = 5.5 V		Full	-15	-	15	
Switch off leakage current a		$V_S = 1 \text{ V or } 4 \text{ V, } V_D = 4 \text{ V or } 1 \text{ V}$	1 V	Room	-2	-	2	
	I _{D(off)}			Full	-15	-	15	nA
Observation to the control of the co		V+ = 5.5 V		Room	-2	-	2	-
Channel on leakage current a	I _{D(on)}	$V_D = V_S = 1 \text{ V or 4 V, sequence each}$	switch on	Full	-15	-	15	
Digital Control								
Logic high input voltage	V _{INH}	V+ = 5 V		Full	2	-	-	V
Logic low input voltage	V _{INL}	V+ = 5 V		Full	-	-	0.8	V
Input current a	I _{IN}	$V_{AX} = V_{\overline{EN}} = 2 \text{ V or } 0.8 \text{ V}$		Full	-1	-	1	μΑ
Dynamic Characteristics								
		$V_{S1} = 3.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG94)$	Room	-	79	97		
Transition time ^e	t _{TRANS}	$V_{S1b} = 3.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG94)$ see fig. 2	409E)	Full	-	-	112	
Break-before-make time e	t _{OPEN}	$V_{S(all)} = V_{DA} = 3.5 \text{ V}$	Room	2	35	-]	
break before make time	OPEN	see fig. 4		Full	-	-	-	ns
Enable turn-on time ^e	towen			Room	-	83	95	
Lilable tarri on time	t _{ON(EN)}	$V_{AX} = 0 \text{ V}, V_{S1} = 3.5 \text{ V} \text{ (DG940)} $ $V_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V} \text{ (DG940)} $		Full	-	-	116	
Enable turn-off time ^e	t _{OFF(EN)}	see fig. 3	03L)	Room	-	36	57	
Enable tarri on time	OFF(EN)			Full	-	-	61	
Charge injection e	Q	$C_L = 1 \text{ nF}, R_{GEN} = 0, V_{GEN} =$	0 V	Room	-	3.7	-	рС
Off isolation e, h	OIRR	$R_1 = 1 \text{ k}\Omega, f = 100 \text{ kHz}$		Room	-	-83	-	dB
Crosstalk ^e	X_{TALK}	11 = 1 105 K12	1	Room	-	-90	-	<u> </u>
Source off capacitance e	$C_{S(off)}$	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9408E DG9409E	Room Room	-	19 18	-	
			DG9409E DG9408E	Room	-	149	_	1
Drain off capacitance e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$	DG9409E	Room	-	74		pF
			DG9409E	Room	_	170	_	1
Drain on capacitance e	$C_{D(on)}$	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9409E	Room	-	94	_	1
Power Supplies			5.5 .552	1				

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECI		TEMP.b	LIMITS -40 °C to +85 °C			UNIT
		$V+ = 3 V, \pm 10 \%, V- = 0 V$ $V_{\overline{EN}} = 0.4 V \text{ or } 1.8 V f$	•		MIN. c	TYP. d	MAX.c	
Analog Switch								
Analog signal range ^e	V _{ANALOG}			Full	0	-	3	V
On-resistance	R _{ON}	$V+ = 2.7 \text{ V}, V_D = 0.5 \text{ V or } 2.2 \text{ V}, I_S$	$V+ = 2.7 \text{ V}, V_D = 0.5 \text{ V} \text{ or } 2.2 \text{ V}, I_S = 5 \text{ mA}$				25.5 26.5	
R _{ON} match between channels ^g	ΔR_{ON}			Room		-	3.6	Ω
On-resistance flatness i	R _{ON} Flatness	$V+ = 2.7 \text{ V}, V_D = 0.5 \text{ V or } 2.2 \text{ V}, I_S$	V+ = 2.7 V, V_D = 0.5 V or 2.2 V, I_S = 5 mA				13	
			Room	-2	-	2		
Switch off leakage current ^a	I _{S(off)}	V+ = 3.3 V		Full	-15	-	15	
Switch off leakage current 4		$V_S = 2 \text{ V or } 1 \text{ V}, V_D = 1 \text{ or } 2$	Room	-2	-	2	A	
	I _{D(off)}			Full	-15	-	85 °C MAX.° 3 25.5 26.5 3.6 13 2 15	nA
Channel on lookens assument a		V+ = 3.3 V		Room	-2	-	2	
Channel on leakage current a	I _{D(on)}	$V_D = V_S = 1 \text{ V or 2 V, sequence each}$	Full	-15	-	15		
Digital Control								
Logic high input voltage	V_{INH}			Full	1.8	-	-	V
Logic low input voltage	V _{INL}			Full	-	-	0.4	٧
Input current ^a	I _{IN}	$V_{AX} = V_{\overline{EN}} = 1.8 \text{ V or } 0.4 \text{ V}$		Full	-1	-	1	μΑ
Dynamic Characteristics								
		$V_{S1} = 1.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG940)$	Room	-	169	245		
Transition time	t _{TRANS}	$V_{S1b} = 1.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG94)$ see fig. 2	109E)	Full	-	-	278	
Break-before-make time	t _{BBM}	$V_{S(all)} = V_{DA} = 1.5 \text{ V}$	Room	2	96	-	ns	
Broak Boloro make time	DDIVI	see fig. 4	Full	-	-	-		
Enable turn-on time	t _{ON(EN)}	V 0.V V 4.5.V/D0040)OF)	Room	-	202	255	-
	-OIV(EIV)	$V_{AX} = 0 \text{ V}, V_{S1} = 1.5 \text{ V} (DG940 \text{ V}_{AX} = 0 \text{ V}, V_{S1b} = 1.5 \text{ V} (DG940 \text{ V}_{AX} = 0 \text{ V}, V_{S1b} = 1.5 \text{ V} (DG940 \text{ V}_{AX} = 0 \text{ V}, V_{S1b} = 1.5 \text{ V} (DG940 \text{ V}_{AX} = 0 \text{ V}, V_{S1b} = 1.5 \text{ V})$	18E) 19F)	Full	-	-	272	
Enable turn-off time	t _{OFF(EN)}	see fig. 3	,	Room	-	72	97	
	. ,			Full	-	-	104	
Charge injection e	Q	$C_L = 1 \text{ nF}, R_{GEN} = 0, V_{GEN} = 0$	0 V	Room	-	2.1	-	рC
Off isolation e, h	OIRR	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega$		Room	-	-83	-	dB
Crosstalk e	X _{TALK}			Room	-	-90	-	
Source off capacitance e	C _{S(off)}	f = 1 MHz, V _S = 0 V, V _{FN} = 1.8 V	DG9408E	Room	-	20	-	
	- 3(011)		DG9409E	Room	-	19	-	pF
Drain off capacitance e	$C_{D(off)}$	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 1.8 \text{ V}$	DG9408E	Room	-	159	-	
	- 5(011)	, 5 - 1, LIN	DG9409E	Room	-	79	-	
Drain on capacitance e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$		Room	-	179		-
D 0 P.	(* /	DG9409E		Room	-	98	-	
Power Supplies		l , , , , , , , , , , , , , , , , , , ,			ı	I		
Power supply current	I+	$V_{\overline{EN}} = V_A = 0 \text{ V or V+}$		Room	-	-	1	μΑ

Notes

- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DON} = R_{DON}$ max. R_{DON} min.
- h. Worst case isolation occurs on channel 4 due to proximity to the drain pin.
- i. R_{DON} flatness is measured as the difference between the minimum and maximum measured values across a defined analog signal.

On-Resistance vs. Analog Voltage

Leakage Current vs. Analog Voltage

Leakage Current vs. Analog Voltage

Leakage Current vs. Temperature

Supply Current vs. Temperature

Loss, OIRR, X_{TALK} vs. Frequency

Loss, OIRR, X_{TALK} vs. Frequency

Supply Current vs. Input Switching Frequency

Switching Threshold vs. Supply Voltage

Switching Time vs. Temperature

Charge Injection vs. Analog Voltage

Transition Time vs. Temperature

Capacitance vs. Analog Voltage

Capacitance vs. Analog Voltage

SCHEMATIC DIAGRAM (Typical Channel)

Fig. 1 -

TEST CIRCUITS

Fig. 2 - Transition Time

Fig. 3 - Enable Switching Time

Single Supply 12 V

Single Supply 5 V Single Supply 3 V

Dual Supply V+=5 V, V-=-5 V

TEST CIRCUITS

Fig. 4 - Break-Before-Make Interval

Fig. 5 - Charge Injection

Fig. 6 - Off Isolation

TEST CIRCUITS

Fig. 7 - Crosstalk

Fig. 8 - Insertion Loss

Fig. 9 - Source Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg275375.

QFN 4x4-16L Case Outline

			VAR	IATION 1					VARIA	ATION 2				
DIM	МІ	LLIMETE	RS ⁽¹⁾		INCHES MILLIMETERS ⁽¹⁾ INCHES									
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.75	0.85	0.95	0.029	0.033	0.037	0.75	0.85	0.95	0.029	0.033	0.037		
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002		
A3	0.20 ref.			0.008 ref.			0.20 ref.							
b	0.25	0.30	0.35	0.010	0.012	0.014	0.25	0.30	0.35	0.010	0.012	0.014		
D		4.00 BSC		0.157 BSC		4.00 BSC		0.157 BSC						
D2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106		
е		0.65 BSC			0.026 BSC		0.65 BSC				0.026 BSC			
Е		4.00 BS0	0		0.157 BSC		4.00 BSC				0.157 BSC			
E2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106		
К		0.20 min.		0.008 min.				0.20 min.			0.008 min.			
L	0.5	0.6	0.7	0.020	0.024	0.028	0.3	0.4	0.5	0.012	0.016	0.020		
N ⁽³⁾		16			16			16			16			
Nd ⁽³⁾		4			4			4 4						
Ne ⁽³⁾		4			4			4			4			

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: S13-0893-Rev. B, 22-Apr-13

DWG: 5890

Revision: 22-Apr-13

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.