AUDITORIEØVING NR 5 TEP 4100 FLUIDMEKANIKK

Utført av: (alle i gruppa) *LØSNINGSFORSLAG*

Oppgave 1

En luftstrøm driver en væskefilm opp et skråplan ved en konstant skjærspenning τ_0 på væskeoverflaten. For å finne hastigheten util væsken, trenger vi to grensebetingelser for funksjonen u(y). Hvilke to?

Svar:
$$u(y=0)=0$$
 og $\mu \frac{du}{dy}\Big|_{y=\text{overflate}} = \tau_0$

Skisser mulige hastighetsprofil u(y) som er slik at

$$\bullet$$
 $Q=0$

$$\bullet \quad \tau_w = \tau \Big|_{v=0} = 0$$

Oppgave 3

Legg et kontrollvolum på innsiden av et rør, og finn sammenhengen mellom trykkgradienten $\frac{\partial p}{\partial x} \left(= \frac{\Delta p}{L} \right)$ og

veggskjærspenningen τ_{w} .

Svar:
$$\sum F_x = (p_1 - p_2)\pi R^2 - \tau_w 2\pi RL = 0$$
$$\Rightarrow \frac{p_1 - p_2}{L} = -\frac{\Delta p}{L} = \tau_w \frac{2}{R}$$

Hvilke forutsetninger/antagelser må du gjøre?

Svar: Fullt utviklet strømning (samme hastighetsprofil inn som ut).

Spiller det noen rolle om strømningen er laminær eller turbulent?

Svar: Nei.

Oppgave 4

Gjenta oppgave 3, men nå skal rørlengden L dekke innløpslengden L_e . Hvorfor klarer vi ikke nå å finne en enkel sammenheng mellom Δp og τ_w ?

Svar: τ_w vil variere med x, så friksjonskraften blir

 $\int_0^L \tau_w 2\pi R dx$, men vi kjenner ikke funksjonen τ_w .

Oppgave 1

Et dreneringsrør (perforert plastslange) har lengde $L=100\,\mathrm{m}\,$ og diameter $d=5\,\mathrm{cm}\,$. Det renner 100 liter vann pr. time ut av røret. Hvis vi modellerer røret som et linjesluk, hva blir da styrken m til sluket?

$$m = \frac{q}{2\pi} = \frac{Q}{2\pi b} = \frac{100 \ liter / time \cdot \frac{1 time}{3600 s} \cdot \frac{1 m^3}{1000 \ liter}}{2\pi \cdot 100 m} = 4.4 \cdot 10^{-8} \ m^2 / s$$

Oppgave 3

Skisser noen strømlinjer fra kombinasjonen sluk -m i (0,0), kilde +m i (a,0) og kilde +m i (4a,0). (En sirkel skal dukke opp.)

Oppgave 4

Skisser noen strømlinjer fra kombinasjonen potensialvirvel +K i (0,0), +K i (4a,0) og -K i (a,0). (En sirkel skal igjen dukke opp.)

Oppgave 5

2D-strømning over en skarpkantet innsnevring skal beregnes numerisk ved å løse Laplaceligningen $\nabla^2 \psi = 0$. Det strømmer inn en konstant hastighet $v_1 = 1$ m/s over høyden $H_1 = 1$ m, og ved utløpet $v_2 = 2$ m/s over $H_2 = 1/2$ m. Finn

grensebetingelsene for strømfunksjonen ψ over inn- og utløp, og langs veggene.

Velger bunnen $\psi_{BUNN} = 0$ (også trappetrinnet), da blir taket $\psi_{TOPP} = 1$.

Over innløpet må ψ variere lineært fra 0 til 1, og det samme over utløpet (fra y=0.5 til y=1).

