

M5 Project: Cross-modal Retrieval

Week 2

Introduction to Object detection and Instance Segmentation with Detectron2

Rubèn Pérez Tito rperez@cvc.uab.cat

Ernest Valveny ernest@cvc.uab.cat

In M5 project, we will use <u>Detectron2</u> framework from Facebook Artificial Intelligence Research (FAIR), which is a research platform for object detection and segmentation in Pytorch.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark.

In M5 project, we will use <u>Detectron2</u> framework from Facebook Artificial Intelligence Research (FAIR), which is a research platform for object detection and segmentation in Pytorch.

What can we find in Detectron 2?

- Powered by PyTorch deep learning framework.
- It supports a range of tasks related to object detection:
 - Object detection with boxes
 - Object detection with instance segmentation masks
 - Human pose prediction
 - Semantic segmentation
 - Panoptic segmentation

In M5 project, we will use <u>Detectron2</u> framework from Facebook Artificial Intelligence Research (FAIR), which is a research platform for object detection and segmentation in Pytorch.

What can we find in Detectron 2?

In M5 project, we will use <u>Detectron2</u> framework from Facebook Artificial Intelligence Research (FAIR), which is a research platform for object detection and segmentation in Pytorch.

What can we find in Detectron2?

- Powered by PyTorch deep learning framework.
- It supports a range of tasks related to object detection.
- It includes many models (Check model zoo and baselines):
 - Faster R-CNN
 - Mask R-CNN
 - RetinaNet
 - Dense Pose
 - TensorMask
 - Panoptic FPN
 - Cascade R-CNN

COCO Object Detection Baselines

Name	lr sched	train time (s/iter)	inference time (s/im)	train mem (GB)	box AP	model id	download
Name	scried	(S/Itel)	(5/1111)	(GB)	AP	moderid	download
R50-C4	1x	0.551	0.102	4.8	35.7	137257644	model metrics
R50-DC5	1x	0.380	0.068	5.0	37.3	137847829	model metrics
R50-FPN	1x	0.210	0.038	3.0	37.9	137257794	model metrics
R50-C4	3x	0.543	0.104	4.8	38.4	137849393	model metrics
R50-DC5	3x	0.378	0.070	5.0	39.0	137849425	model metrics
R50-FPN	3x	0.209	0.038	3.0	40.2	137849458	model metrics
R101-C4	3x	0.619	0.139	5.9	41.1	138204752	model metrics
R101-DC5	3x	0.452	0.086	6.1	40.6	138204841	model metrics
R101-FPN	3x	0.286	0.051	4.1	42.0	137851257	model metrics
X101-FPN	3x	0.638	0.098	6.7	43.0	139173657	model metrics

COCO Instance Segmentation Baselines with Mask R-CNN

Name	lr sched	train time (s/iter)	inference time (s/im)	train mem (GB)	box AP	mask AP	model id	download
R50-C4	1x	0.584	0.110	5.2	36.8	32.2	137259246	model metrics
R50-DC5	1x	0.471	0.076	6.5	38.3	34.2	137260150	model metrics
R50-FPN	1x	0.261	0.043	3.4	38.6	35.2	137260431	model metrics
R50-C4	3x	0.575	0.111	5.2	39.8	34.4	137849525	model metrics
R50-DC5	3x	0.470	0.076	6.5	40.0	35.9	137849551	model metrics
R50-FPN	3x	0.261	0.043	3.4	41.0	37.2	137849600	model metrics
R101-C4	3x	0.652	0.145	6.3	42.6	36.7	138363239	model metrics
R101-DC5	3x	0.545	0.092	7.6	41.9	37.3	138363294	model metrics
R101-FPN	3x	0.340	0.056	4.6	42.9	38.6	138205316	model metric
X101-FPN	3x	0.690	0.103	7.2	44.3	39.5	139653917	model metric

In M5 project, we will use <u>Detectron2</u> framework from Facebook Artificial Intelligence Research (FAIR), which is a research platform for object detection and segmentation in Pytorch.

What can we find in Detectron2?

- Powered by PyTorch deep learning framework.
- It supports a range of tasks related to object detection.
- It includes many models (Check model zoo and baselines).
- Detectron2 beginner's <u>tutorial</u>.

Detectron2 Beginner's Tutorial

Welcome to detectron2! This is the official colab tutorial of detectron2. Here, we will go through some basics usage of detectron2, including the following:

- . Run inference on images or videos, with an existing detectron2 model
- . Train a detectron2 model on a new dataset

You can make a copy of this tutorial by "File -> Open in playground mode" and make changes there. DO NOT request access to this tutorial.

In M5 project, we will use <u>Detectron2</u> framework from Facebook Artificial Intelligence Research (FAIR), which is a research platform for object detection and segmentation in Pytorch.

What can we find in Detectron 2?

- Powered by PyTorch deep learning framework.
- It supports a range of tasks related to object detection.
- It includes many models (Check model zoo and baselines).
- Detectron2 beginner's <u>tutorial</u>.
- Official installation <u>instructions</u>.
 - M5 installation instructions
 - Note: Detectron2 beginner's tutorial is thought to be run in Google Colab, not on the server. Therefore:
 - You need to install opency-python (included in instructions)
 - Check PIL version => If problems:

```
!pip install Pillow==5.3.0
```

You can't use cv2_imshow from google.colab.patches but

```
cv2.imwrite(img_filename,img)
```


Faster R-CNN paper

Faster R-CNN paper

Novel RPN

Mask R-CNN paper

- Extension of Faster R-CNN
- Predicts a binary mask for each Rol head.

Head architecture

Mask R-CNN

M5 Project Stages and Schedule

Week 1 March 6-12

P1: Introduction to Pytorch - Image Classification

Week 2

March 13-19

Week 3Marh 20 - 26

P2 & P3: Object Detection, Recognition and Segmentation

Week 4

March 27 – April 3

P4: Image Retrieval

EASTER

Week 5April 17 - 23

P5: Cross-modal Retrieval

Deliverable: Report on object Detection and Segmentation, first version

Week 6 April 24 **Deliverable: Presentation**

Deliverable: Report on object Detection and Segmentation, final version

Week 2: Introduction to Object

Tasks

- a. Get familiar with Detectron2 framework.
- b. Set up project.
- c. Run inference with pre-trained Faster R-CNN (detection) and Mask R-CNN (detection and segmentation) on KITTI-MOTS dataset.
- Evaluate pre-trained Faster R-CNN (detection) and Mask R-CNN (detection and segmentation) on KITTI-MOTS dataset.
- e. Fine-tune Faster R-CNN and Mask R-CNN on KITTI-MOTS
- f. Start writing paper

Deliverable (for next week)

- Github repository with readme.md (code explanation & instructions)
- Presentation with all items listed in the tasks under the Project presentation title.
- One summary slide at the end of your presentation.
- Report on overlaf about object detection and segmentation.

P2 Dataset: KITTI-MOTS

Dataset: KITTI-MOTS

Tracking and segmentation of CARS and PEDESTRIANS

- Training data
 - o 12 sequences
 - 8,073 pedestrian masks + 18,831 car masks
- Validation data
 - 9 sequences
 - o 3,347 pedestrian masks + 8,068 car masks
- Testing data: 29 sequences
- (*) More details on training and validation split in the original paper: <u>link</u>

P2 Dataset: KITTI-MOTS

Dataset: KITTI-MOTS

- Dataset structure
 - Instances (segmentation masks in png format)
 - Instances_txt: Annotations in .txt format
 - Training/testing: Original image splits.

P2 Dataset: KITTI-MOTS

Dataset: KITTI-MOTS

- Annotation format
 - Class ids:
 - □ 1 --> car
 - 2 --> pedestrian
 - Class id is obtained performing floor division by 1000
 - Instance id is obtained by modulo 1000
 - o Car instances: **1000**, **1001**, **1002**, etc.
 - Pedestrian instances: 2000, 2001, 2002, etc.

Task (a): Get familiar with Detectron2 framework

- Installation of the framework.
- Follow Detectron2 beginner's tutorial.

Task (b): Set up project

- Review descriptions of the official challenge <u>link1</u>, <u>link2</u> (KITTI-MOTS).
- Get familiar with how to read images and annotations.
- You will find KITTI-MOTS dataset on the server.
 - /home/mcv/datasets/KITTI-MOTS/

Task (c): Run inference with pre-trained Faster R-CNN (detection) and Mask R-CNN (detection and segmentation) on KITTI-MOTS dataset.

- Apply Faster R-CNN using Detectron2 framework with pretrained weights of COCO on KITTI-MOTS dataset.
- Apply Mask R-CNN using Detectron2 framework with pretrained weights of COCO on KITTI-MOTS dataset.

Project presentation:

- Dataset description
- Qualitative results.

Task (d): Evaluate pre-trained Faster R-CNN (detection) and Mask R-CNN (detection and segmentation) on KITTI-MOTS dataset

- Apply Faster R-CNN using Detectron2 framework with pretrained weights of COCO on KITTI-MOTS dataset.
- Apply Mask R-CNN using Detectron2 framework with pretrained weights of COCO on KITTI-MOTS dataset.
- Use official validation partition of KITTI-MOTS as your test set.
- Don't use KITTI-MOTS evaluation metrics. Instead use official COCO metrics provided by Detectron2.
- You will have to map class labels of KITTI-MOTS to class labels of COCO.
 Modify MetadataCatalog: Official documentation, detectron2 thread.

Project presentation:

- Metric description
- Quantitative results.

Task (e): Fine-tune Faster R-CNN and Mask R-CNN on KITTI-MOTS.

- Train Faster R-CNN and Mask R-CNN using Detectron2 framework on KITTI-MOTS dataset.
 - Split original training set into training and validation sets.
- Evaluate fine-tuned models on your test set (official validation partition) using COCO metrics.
- Compare results with pre-trained models without finetuning.
- Include quantitative and qualitative results in your presentation.
- Project presentation:
 - Quantitative and quantitative results.
 - Compare against non-fine-tuned!

Task (f): **Start writing paper.**

- Abstract
- Introduction (½ page)
- State of the art (1 page)
- Methodology (1 page with diagram)
 - Faster R-CNN & Mask R-CNN
- Experiments
 - Datasets
 - Metrics
- Results
- Conclusion

Max: 6 pages w/o references

M5 Project

General tips:

- The weekly presentation objective is to follow the students' progress. Therefore, extensive experiments are welcome. You should also include problems you faced and examples you find interesting.
- The final **report/paper** objective is to **summarize** your work and teach you how to write a paper. Only the most relevant experiments and qualitative results are expected, those from where you can get **relevant** conclusions.
- Don't limit the results section to show the results. You must compare and get some insights or conclusions of the results of your experiments.

M5 – P2: Introduction to Object Det. and Seg.

Due date

20th of March, Monday, before 10:00 AM

Include one summary slide at the end of your presentation with main results and conclusions

One member of the group members will have to present this slide in 1 minute during the follow-up session next week.