```
CS235: pset-1, Section 1 #2, 7, 11, 14 (Due: September 12th)
```

Exercise 1.2. Let n be a composite integer. Show that there exists a prime p dividing n, with $p \leq n^{1/2}$.

Proof: Let n be a composite integer $\therefore n = ab$ for some integers $a, b \mid 1 < a, b < n$. $a, b \le n^{1/2}$ must hold, or else ab > n.

n > 0: n can factor to powers of primes p (Fundamental Theorem of Arithmetic). If p is a composite, factor again until a single prime p' is found. $p' \mid p$ then $p' \mid n$ and $p' \leq n^{1/2}$.

Theorem 1.5. Let $a, b \in \mathbb{Z}$ with b > 0, and let $x \in \mathbb{R}$. Then there exist unique $q, r \in \mathbb{Z}$ such that a = bq + r and $r \in [x, x + b)$.

Exercise 1.7. Show that Theorem 1.5 also holds for the interval (x, x + b]. Does it hold in general for the intervals [x, x + b] or (x, x + b)?

Proof: Thm. 1.5 is the division algorithm, for $a, b \in \mathbb{Z}$ with b > 0, and let $x \in \mathbb{R}$. Then there exist unique $q, r \in \mathbb{Z}$ such that a = bq + r and $r \in [x, x + b)$.

r, the remainder demonstrates the interval [x, x + b). This interval represents the residue class of a modulo b with shifts in mind. This class is of length b. The question of whether the interval (x, x+b] holds is if it sustains the same length of b to represent the residue classes, which it does.

The intervals [x, x + b] and (x, x + b) do not hold such lengths.

Exercise 1.11. Let n be an integer. Show that if a, b are relatively prime integers, each of which divides n, then ab divides n.

Proof: Let a,b be relatively prime integers, then there exists s,t such that as+bt=1. If $a\mid n$ then n=ak for some integer k. If $b\mid n$ then n=bq for some integer q. n=ak=bq, multiplying both equations (ak)(bq)=(ak)(bq)=(ab)(kq), kq is some integer say j. Therefore ab(j)=n and $ab\mid n$.

Exercise 1.14. Let p be a prime and k an integer, with 0 < k < p. Show that the binomial coefficient

$$\binom{p}{k} = \frac{p!}{k!(p-k)!},$$

which is an integer (see $\S A2$), is divisible by p.

Proof: The binomial coefficient $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ is an integer, which when expanded:

$$\frac{p(p-1)...(p-k+1)}{k!}$$

(p-1)...(p-k+1) is some integer m. So $\frac{pm}{k!}$ then $p \mid pm$, p divides the numerator. Since k is less than p, p does not divide k!. Therefore k won't cancel the p in the numerator. Since the result is an integer, a factor of p must still be present.