19. Caches: Direct Mapped

Assignment Project Exam Help

EECS 370 – Introduction to Computer Organization – Fall 2020

AddweChatpowcoder

EECS Department
University of Michigan in Ann Arbor, USA

© Narayanasamy 2020

The material in this presentation cannot be copied in any form without written permission

Announcements

Upcoming deadlines:

Assignment Project Exam Help

HW4

due Nov 10th
due Nov. 12th://powcoder.com Project 3

Add WeChat powcoder

Assignment Project Exam Help

Recap: Cache Blockhtand/Worte podricyom

Add WeChat powcoder

Review: Cache Organization

Cache blocks:

Captures spatial locality (increase cache hit rate)

Reduces tag overhead (number and size of tags)

Need not store block offset in the cache line

Determine byte to be read/written from the address directly

Review: How to find tag from address?

Review: Writes

Write-allocate vs. no-write-allocate caches

Policy that decides what to do with a cache-miss on a store instruction.

Assignment Project Exam Help

Write-allocate: First bring data from memory into the cache, then write

Add WeChat powcoder

No-write-allocate: do not bring data in the cache, just write directly to the memory, not to the cache

Review: Writes

Write-through vs. write-back caches

Policy that decides when to write to cache vs. memory vs. both

Assignment Project Exam Help

Write-through: write to both cache and memory

https://powcoder.com

Write-back: write only to cache, keep track of dirty cache line, write to memory when dirty cache line is evicted

Review: Writes

Store w No Allo	ate Write-Back	Write-Through	
Hit?	Write Cache	Write to Cache + Memory	
Miss?	Write to Memory	Write to Memory	
Replace block? Assignmente notes tirt xam He Nothing			
write to Memory			
https://powcoder.com			

Store w Allocate	Write-Back	Write-Through
Hit?	Write Cache	Write to Cache + Memory
Miss?	Read from Memory to Cache, Allocate to LRU block Write to Cache	Read from Memory to Cache, Allocate to LRU block Write to Cache + Memory
Replace block?	If evicted block is dirty, write to Memory	Do Nothing

Assignment Project Exam Help

Direct Mapped Caches://powcoder.com

Add WeChat powcoder

Fully-associative caches

We designed a fully-associative cache

- A memory location can be copied to any cache line.
- •We check every cache tag to determine whether the data is in the cache.

Assignment Project Exam Help

This approach can be too slow sometimes https://powcoder.com
•Parallel tag searches are expensive and can be slow. Why?

Add WeChat powcoder

Direct mapped caches

We can redesign the cache to eliminate the requirement for parallel tag lookups

- •Direct mapped caches partition memory into as many regions as there are cache linessignment Project Exam Help
- •Each memory region maps to a single cache line in which data can be placed https://powcoder.com
- •You then only need to check a single tag the one associated with the region the reference Weathertnpowcoder

Mapping memory to cache (Direct-mapped)

Direct-mapped cache: Placement & Access

Direct mapped caches

Two blocks in memory that map to the same cache index cannot be present in the cache at the same time (conflict)

One index \rightarrow one entry

Assignment Project Exam Help

Can lead to 0% hit rate if more than one block accessed in an interleaved manner map to the same index https://powcoder.com

Assume addresses A and B have the same index bits but different tag bits A, B, A, B, A, B, A, B, ... Add WeChat powcoder

All accesses are conflict misses

Direct-mapped cache

Direct-mapped (REF 1)

Direct-mapped (REF 1)

Direct-mapped (REF 2)

Direct-mapped (REF 2)

Direct-mapped (REF 3)

Direct-mapped (REF 3)

Direct-mapped (REF 4)

Direct-mapped (REF 4)

Direct-mapped (REF 4)

Direct-mapped (REF 5)

Direct-mapped (REF 5)

Class Problem

How many tag bits are required for:

32-bit address, byte addressed, direct-mapped 32k cache, 128 byte block size, write-back

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

What are the overheads of this cache?

Class Problem

How many tag bits are required for:

32-bit address, byte addressed, direct-mapped 32k cache, 128 byte block size, write-back

```
# Bytes in blocks igamento Proffects Exampitally profects in blocks igamento Proffects is a subject of the subj
```

Add WeChat powcoder

What is the overhead of this cache?

```
17 bits (Tag) + 1 bit (Valid) + 1 bit (Dirty) = 19 bits / line
19 bits / line * 256 lines = 4864 bits
4864 bits / 32KB = 1.9% overhead
```

What about cache for instructions?

Instructions should be cached as well

We have two choices:

- 1. Treat instruction fetches as normal data and allocate cache lines when fetched
- 2. Create a second cackers instructions only

https://powcoder.com

How do you know which cache to use?

Add WeChat powcoder
What are advantages of a separate ICache?

Integrating Caches into a Pipeline

How are caches integrated into a pipelined implementation?

Replace instruction memory with Icache

Replace data memory with Dcache

Assignment Project Exam Help

Issues:

Memory accesses now have validate late work coder.com

Both caches may miss at the same time Add WeChat powcoder

LC2K Pipeline with Caches

Summary: Direct-mapped caches

Next lecture: Get the advantage of both...

Set associative caches:

Partition memory into regions

like direct mapped but fewer partitions

Associate a region to Assignment Project Exam Help

Check tags for all lines in a set to determine a HIT https://powcoder.com
Treat each line in a set like a small fully associative cache

LRU (or LRU-like) policy generally wed Chat powcoder

Set-associative cache

Memory

42

