Probabilistic Classifiers

$$P(x_{1}, x_{1}, x_{1}, ..., x_{ip}, c_{k}) P(c_{k})$$

$$= P(x_{1}, x_{1}, ..., x_{ip}, c_{k}) P(x_{1}, x_{1}, ..., x_{ip}, c_{k}), ..., P(x_{i,p-1}, x_{ip}, c_{k})$$

$$\times P(x_{ip}, c_{k}) P(c_{k})$$

$$P(x_i | c_k) = P(x_{i1} | x_{i2}, x_{i3}, c_k) P(x_{i2} | x_{i3}, c_k) P(x_{i3} | c_k) P(c_k)$$

i
$$X_{i1}$$
 X_{i2} X_{i3} C_{i} $P(C_{k}=0)$
1 | 0 | 0 | 32 $P(C_{k}=0) = 1 - P(C_{k}=0)$
2 | 0 | 0 | 0 | #rows with $C_{i}=1$
3 | 1 | 0 | 0 | +otal #rows

•
$$P(x_i|C_h) P(C_h) = P(x_{i1}|x_{12},...,x_{ip},C_h),..., P(x_{ip}|C_h) P(C_h)$$

Naive Bayes: conditional independence of features

•
$$P(C_1) = P(C_2) = \frac{1}{2}$$
 (uniform (class) prior

e,	Xia	Хib	Xic	
er	V	· C	0	
es	0	1	1	
eų	(0	O	
وړ وړ	1	1	0	
	1	0	10	
es :	0	0	0	

model parans : Pat, Pt, Pt, Pa, Pt, Pc

Estimates (MLE):

$$e_{x} = abbdebb$$
 $c_{x} = ?$

$$x_{x} = (x_{xa}, x_{xb}, x_{yb})^{T}$$

$$= (1, 1, 0)^{T}$$

$$C_{\sharp} = \underset{\mathsf{Re} \ \{+,-\}}{\operatorname{argmax}} P(C_{\mathtt{h}})P(X_{\mathtt{h}}|C_{\mathtt{h}})$$

$$= \underset{\mathsf{argmax}}{\operatorname{argmax}} \left\{ \underbrace{P(C_{\mathtt{h}})P(X_{\mathtt{h}}|C_{\mathtt{h}})}_{(2_{\mathtt{h}})} P(C_{\mathtt{h}})P(X_{\mathtt{h}}|C_{\mathtt{h}}) \right\}$$

$$= \underset{\mathsf{argmax}}{\operatorname{argmax}} \left\{ \underbrace{\frac{q}{G_{\mathtt{h}}}, \frac{q}{(2_{\mathtt{h}})}}_{(2_{\mathtt{h}})} \right\}$$

$= P(C_{+}) P(X_{+} | C_{+}) = P(C_{+}) \prod_{i \in V} P(X_{v} = X_{+v} | C_{+})$ $= P(C_{k})P(X_{0} = X_{k})P(X_{1} = X_{k})(C_{k})$

$$Xa|C_4 \sim Bern(Bat)$$

 $P(X_A = ||C_4)$
 $P(C_4)$ $P(X_0 = ||C_4)$ $P(X_1 = ||C_4)$ $P(X_0 = ||C_4)$

$$P(C_{4}) \cdot P_{a}^{+} \cdot P_{b}^{+} \cdot (1 - P_{c}^{+})$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot (1 - P_{c}^{+})$$

$$= \frac{3}{16} \cdot \frac{3}{4} = \frac{9}{64}$$

$$\begin{cases}
P(C_{-})P(X_{a} = X_{*a}(C)) \\
= \frac{1}{2} \cdot P_{a}^{-} \cdot P_{b}^{-} \cdot (1 - P_{c}^{-}) \\
= \frac{q}{128}
\end{cases}$$

Multinomial NB

 $\times \sim$ Multinonial $(n, K, \theta, ..., \theta_h) \rightarrow$ dist on histograms (Generalising Bihamila to K

repeat an experiment ntimes

and there are k possible outcomes.

X~ Binon (1,p)

• Fair dice
$$\rightarrow$$
 K=6, $\Theta_1 = \frac{1}{6} = \Theta_2 = \Theta_3 \dots = \Theta_6$

$$P(x=x) = P(x = (x_1, ..., x_k)) = \frac{n!}{x_1! ..., x_k!}$$

$$P(x=x) = P(x = (x_1, ..., x_k)) = \frac{n!}{x_1! ..., x_k!}$$

$$P(x=x) = P(x = (x_1, ..., x_k)) = \frac{n!}{x_1! ..., x_k!}$$

$$\sum_{j=1}^{k} \Theta_{j} = 1 \quad | \quad 2 \quad 3 \quad 4 \quad > \quad 0$$

				J = 1		
e_{i}	Xìa	kib 3	k _{ie}	XIC4~ Multinonial (n, k, 0,,, 0)		
e ₂	0	3	3	$n=17$ $k=3$ $\theta_a^{\dagger}, \theta_b^{\dagger}, \theta_c^{\dagger}$		
ez	03	0	0	$\times (C_{-} \sim Multinon (n=17, k=3, \Theta_a^{-}, O_b^{-}, \Theta_c^{-})$		
ey	0 %	3	0			
er+	Lę	3 '	0	$-\frac{e_{p+}=(1,1,1)}{\theta_{a}^{+}=\theta_{b}^{+}=\frac{q+1}{12}\theta_{b}^{+}=\frac{q+1}{12}\theta_{c}^{+}=\frac{3+1}\theta_{c}^{+}=\frac{3+1}\theta_{c}^{+}=\frac{3+1}\theta_{c}^{+}=\frac{3+1}\theta_{c}^{+}=\frac$		
eb	4	0	3			
ez	3	0	0	Kra Kab		
es	0	0	0_	$P(C_{+})P(X_{+} C_{+}) = P(C_{+}) \frac{N!}{X_{*a}! X_{*b}! X_{*c}!} (\Theta_{a}^{+}) (\Theta_{b}^{+}) (\Theta_{c}^{+}) \times_{*c}$ 171		
ep-	l	1		$= \frac{1}{2} \cdot \frac{171}{114121} \left(\frac{5}{17}\right)^{1} \left(\frac{9}{17}\right)^{1} \left(\frac{3}{17}\right)^{2}$		
$\frac{1}{15} + \frac{10}{16} + \frac{4}{15} - \frac{15}{15} = 1$						
ex = abldebbcc						

x = (1,4,2)