Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Занятие №4 – "Амплитудный аналоговый детектор, Балансный модулятор" по дисциплине «Информационные РЭС»

Выполнил ст. группы РЛ6-91 Филимонов С.В.

Преподаватель Руденко Н.Р.

Москва, 2024 Амплитудный аналоговый детектор

Амплитудный аналоговый детектор	3
Задание 1	3
Задание 2	5
Синхронный детектор	9
Исследование балансного модулятора	
Детектирование балансно-модулированного сигнала	
Вывод	
¬ ¬ ¬ · · · · · · · · · · · · ·	

Амплитудный аналоговый детектор

Задание к лабораторной работе:

- 1. Измените к схеме однотактного амплитудного модулятора амплитуду и частоту сигналов несущей и модуляции и установите их влияние на про детектированный сигнал. Подберите новые параметры RC фильтра.
- 2. Измените в схеме двухтактного амплитудного модулятора амплитуду и частоту сигналов несущей и модуляции и установите их влияние на про детектированный сигнал. Подберите новые параметры RC фильтра.

Задание 1

Рис. 1.1 – Схема однотактного амплитудного детектора.

Рис. 1.2 – Временные диаграммы амплитудно-детектированного сигнала.

Коэффициент модуляции $m=A_{mog}/A_{hec}$, m=1 соответствует 100% модуляции (полная модуляция),

Новые характеристика АМ сигнала:

- Частота несущей $f_{HeC} = 2000 \ \Gamma \mu$.
- Частота модуляции $f_{HeC} = 300 \ \Gamma \mu$.
- Амплитуда несущей $A_{Hec} = 2 B$.
- Амплитуда модуляции $A_{{\scriptscriptstyle MOJ}} = A_{{\scriptscriptstyle HeC}} = {\scriptscriptstyle B}$.

Чтобы фильтр эффективно удалял несущую, частота среза фильтра должна быть немного выше максимальной частоты модуляции $f_{\rm мод}(max)$, но существенно ниже частоты несущей $f_{\it hec}$. Выберем $f_{\it cp}=500~\Gamma\mu$

$$f_{cp} = \frac{1}{2\pi RC} \Longrightarrow \frac{1}{2\pi RC} = 500 \Longrightarrow \frac{1}{RC} = 3141.6$$

Выберем R=1000 Ом, C=0.3 мкФ. Согласно стандартному ряду E24 R=1000 Ом, C=0.33 мкФ.

Временные диаграммы амплитуднодетектированного сигнала до перерасчета RC фильтра

Временные диаграммы амплитуднодетектированного сигнала после перерасчета RC фильтра

Перерасчета RC фильтра

Перерасчета RC фильтра

Перерасчета RC фильтра

Влияние амплитуды и частоты сигналов несущей и модуляции на продетектированный сигнал:

- При увеличении амплитуды модулирующего сигнала возрастет глубина модуляции, что приведет к более четкому выделению информации в детектированном сигнале.
- При увеличении частоты модуляции необходимо корректировать параметры фильтра для пропускания всех полезных частот.

Задание 2

Рис. 2.1 – Схема двухтактного амплитудного детектора.

Рис. 2.2 — Временные диаграммы амплитудно-детектированного сигнала.

Рис. 2.3 – График двухтактного амплитудного модулятора с измененной амплитудой (увеличена на 1 B).

Рис. 2.4 – График двухтактного амплитудного модулятора при исходной амплитуде и измененной частоте модуляции (увеличена в двараза).

Рис. 2.5 – График двухтактного амплитудного модулятора при исходной амплитуде, частоте модуляции и при увеличенной в два раза частоте сигнала:

Так как при увеличенной в два раза частоте сигнала ($100-200~\Gamma$ ц) сигнал сильно подвержен искажениям, то надо его пустить на вход ФНЧ, представлено RC — цепью. Уменьшим сопротивление до 750 Ом исходя из следующего соотношения для ФНЧ фильтра:

Рис. 2.6 – Схема двухтактного амплитудного детектора с измененными параметрами.

Рис. 2.7 — Временные диаграммы амплитудно-детектированного сигнала.

Влияние амплитуды и частоты сигналов несущей и модуляции на продетектированный сигнал:

- При увеличении амплитуды модулирующего сигнала возрастет глубина модуляции, что приведет к более четкому выделению информации в детектированном сигнале.
- При увеличении частоты модуляции необходимо корректировать параметры фильтра для пропускания всех полезных частот.

Синхронный детектор

$$5000 = \frac{1}{\pi\sqrt{LC}} \Longrightarrow 15708 = \frac{1}{\sqrt{LC}} \Longrightarrow \sqrt{LC} = \frac{1}{15708} \Longrightarrow LC = 4,05 \cdot 10^{-9}$$

Пусть L = 3 мГн, тогда

$$C = \frac{4,05 \cdot 10^{-9}}{3 \cdot 10^{-3}} = 1,35 \cdot 10^{-6}$$

Т.к. конденсатора подключены последовательно то посчитанную ёмкость поделим пополам:

$$C_1 = C_2 = 0.68 \text{ MK}\Phi$$

Рис. 3.1 – Схема синхронного детектора.

Рис. 3.2 – Временные диаграммы амплитудно-детектированного сигнала.

Исследование балансного модулятора

Содержание отчета

- 1. Результат работы программы Matlab
- 2. Схема исследуемого модулятора
- 3. Осциллограммы и спектрограммы исследуемых сигналов
- 4. Результаты экспериментов и графики построенные по этим результатам

Рисунок 1 – Результат работы программы Matlab

Рисунок 2 – Принципиальная схема исследуемого балансного модулятора

Рисунок 3 — Осциллограмма на выходе модулятора при частоте модулирующего генератора 500 к Γ ц

Рисунок 4 — Спектр сигнала на выходе модулятора при положении подстроечного резистора R1 50%

Коэффициент модуляции:

$$m = \frac{U_{\text{max}} - U_{\text{min}}}{U_{\text{max}} + U_{\text{min}}}$$

Частота генератора	150 Гц	170	180	200	250	500	800
Коэффици ент Мам	0.76 7	0.76	0.72	0.72	0.457	0.281	0.205

Частота генератора	1 кГц	10	20	30	40	45	50	100
Коэффици ент Мам	0.101	0.764	0.879	0.899	0.936	0.944	0.949	0.958

Табл. 1 – Таблица измеренных и рассчитанных значений коэффициента модуляции

Рисунок 5 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 150 Гц, U_{max} , U_{min}

Рисунок 6 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 170 Γ ц, U_{max} , U_{min}

Рисунок 7 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 180 Гц, U_{max} , U_{min}

Рисунок 8 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 200 Гц, U_{max} , U_{min}

Рисунок 9 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 250 Гц, U_{max} , U_{min}

Рисунок 10 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 500 Гц, U_{max} , U_{min}

Рисунок 11 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 800 Гц, U_{max} , U_{min}

Рисунок 11 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 1 к Γ ц, U_{max} , U_{min}

Рисунок 12 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 10 кГц, U_{max} , U_{min}

Рисунок 13 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 20 кГц, U_{max} , U_{min}

Рисунок 14 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 30 кГц, U_{max} , U_{min}

Рисунок 15 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 40 кГц, U_{max} , U_{min}

Рисунок 16 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 45 кГц, U_{max} , U_{min}

Рисунок 17 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 50 кГц, U_{max} , U_{min}

Рисунок 18 — Пример осциллограммы на выходе модулятора при частоте модулирующего генератора 100 кГц, U_{max} , U_{min}

Рисунок 19 – График частотной характеристики модулятора

Детектирование балансно-модулированного сигнала

Рисунок 20 – Схема детектора балансно модулированного сигнала

Рисунок 21 — Осциллограмма, содержащая сигнал с выхода балансного модулятора и выхода детектора

Вывод

В ходе практического занятия была исследована балансная амплитудная модуляция (АМ) с подавлением несущей частоты, а также проведен анализ спектров и сигналов с использованием программной среды Matlab. Получены результаты моделирования сигналов, их синхронного детектирования и балансной модуляции. Проведённые эксперименты подтвердили возможность эффективного подавления несущего сигнала, что приводит к увеличению коэффициента полезного действия модуляции до 100%. Тем не менее, балансная модуляция имеет свои сложности, в частности, необходимость точной синхронизации при демодуляции. Для решения этой проблемы может использоваться метод с неполным подавлением несущей частоты, что позволяет выполнять фазочастотную автосинхронизацию. В итоге, было продемонстрировано, что балансная модуляция оптимально распределяет энергию сигнала, хотя и требует более сложных схем для демодуляции, что ограничивает её практическое применение в некоторых случаях.