Report No:C130809R02-RPB

2ABKCDCWL7942AP50

Date of Issue :August 31, 2013

## RADIO FREQUENCY EXPOSURE

## LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

### **EUT Specification**

| EUT                        | 802.11 bgn Enterprise Access point with plastic shell and internal antenna                                                                                                                  |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Frequency band (Operating) | <ul><li></li></ul>                                                                                                                                                                          |  |  |  |  |  |  |
| Device category            | <ul><li>□ Portable (&lt;20cm separation)</li><li>☑ Mobile (&gt;20cm separation)</li><li>□ Others</li></ul>                                                                                  |  |  |  |  |  |  |
| Exposure classification    | <ul> <li>☐ Occupational/Controlled exposure (S = 5mW/cm²)</li> <li>☐ General Population/Uncontrolled exposure (S=1mW/cm²)</li> </ul>                                                        |  |  |  |  |  |  |
| Antenna diversity          | ☐ Single antenna ☐ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity                                                                                                        |  |  |  |  |  |  |
| Max. output power          | IEEE 802.11b: 18.83dBm (76.38mW) IEEE 802.11g: 16.55dBm (45.19mW) draft 802.11n Standard-20 MHz Channel mode: 17.11dBm (51.42mW) draft 802.11n Wide-40 MHz Channel mode: 16.74dBm (47.25mW) |  |  |  |  |  |  |
| Antenna gain (Max)         | Two PIFA antennas for 2.4GHz Gain 3.0 dBi                                                                                                                                                   |  |  |  |  |  |  |
| Evaluation applied         | <ul><li>☑ MPE Evaluation</li><li>☐ SAR Evaluation</li><li>☐ N/A</li></ul>                                                                                                                   |  |  |  |  |  |  |
| Remark:                    |                                                                                                                                                                                             |  |  |  |  |  |  |

- 1. The maximum output power is 18.83dBm (76.38mW) at 2412MHz (with 2.00numeric antenna gain.);
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.
- 4. All two antennas are completely uncorrelated with each other.

Report No:C130809R02-RPB

2ABKCDCWL7942AP50

Date of Issue :August 31, 2013

# TEST RESULTS

No non-compliance noted.

Calculation

Given

$$\overline{E} = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where *E* = *Field* strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where

d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$ 

# **Maximum Permissible Exposure**

Substituting the MPE safe distance using d = 20 cm into Equation 1:

**Yields** 

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$ 



Report No:C130809R02-RPB

2ABKCDCWL7942AP50

Date of Issue :August 31, 2013

| Modulation Mode | Frequency<br>band (MHz) | Max.<br>Conducted<br>output<br>power(dBm) | Antenna<br>gain (dBi) | Distanc<br>e (cm) | Power<br>density<br>(mW/cm2) | Limit<br>(mW/cm2 |
|-----------------|-------------------------|-------------------------------------------|-----------------------|-------------------|------------------------------|------------------|
| 802.11b         | 2412-2462               | 18.83                                     | 3                     | 20                | 0.0304                       | 1                |
| 802.11g         |                         | 16.55                                     | 3                     | 20                | 0.0180                       | 1                |
| 802.11 n(20MHz) |                         | 17.11                                     | 3                     | 20                | 0.0204                       | 1                |
| 802.11 n(40MHz) |                         | 16.74                                     | 3                     | 20                | 0.0188                       | 1                |

Both of the WLAN 2.4G&5.0G can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1

CPD = Calculation power density

LPD = Limit of power density

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm<sup>2</sup> even if the calculation indicates that the power density would be larger.)