EECS 16A Designing Information Devices and Systems I Summer 2020 Discussion 7B

1. Orthogonal Matching Pursuit

Let's work through an example of the OMP algorithm. Suppose that we have a vector $\vec{x} \in \mathbb{R}^4$ that is sparse and we know that it has only 2 non-zero entries. In particular,

$$\mathbf{M}\vec{\mathbf{x}} \approx \vec{\mathbf{y}} \tag{1}$$

$$\begin{bmatrix} | & | & | & | \\ \vec{m}_1 & \vec{m}_2 & \vec{m}_3 & \vec{m}_4 \\ | & | & | & | \end{bmatrix} \vec{x} \approx \vec{y}$$
 (2)

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \approx \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$$
 (3)

where exactly 2 of x_1 to x_4 are non-zero. Use Orthogonal Matching Pursuit to estimate x_1 to x_4 .

- (a) Why can we not solve for \vec{x} directly?
- (b) Why can we not apply the least squares process to obtain \vec{x} ?
- (c) Let us start by reviewing the OMP procedure,

Inputs:

- A matrix M, whose columns, \vec{m}_i , make up a set of vectors, $\{\vec{m}_i\}$, each of length n
- A vector \vec{y} of length n
- The sparsity level k of the signal

Outputs:

- A vector \vec{x} , that contains k non-zero entries.
- A error vector $\vec{e} = \vec{y} \mathbf{M}\vec{x}$

Procedure:

- Initialize the following values: $\vec{e} = \vec{y}$, j = 1, k, $\mathbf{A} = \begin{bmatrix} \\ \end{bmatrix}$
- while $(j \le k)$:
 - i. Compute the inner product for each vector in the set, \vec{m}_i , with \vec{e} : $c_i = \langle \vec{m}_i, \vec{e} \rangle$.
 - ii. Column concatenate matrix **A** with the column vector that had the maximum absolute inner product value with \vec{e} , c_i : $\mathbf{A} = \begin{bmatrix} \mathbf{A} & | & \vec{m}_i \end{bmatrix}$
 - iii. Use least squares to compute \vec{x} given the **A** for this iteration: $\vec{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y}$
 - iv. Update the error vector: $\vec{e} = \vec{y} A\vec{x}$
 - v. Update the counter: j = j + 1
- (d) Compute the inner product of every column with the \vec{y} vector. Which column has the largest absolute inner product? This will be the first column of the matrix \bf{A} .

- (e) Now, find the projection of \vec{y} onto the columns of \mathbf{A} (ie. $\text{proj}_{\text{Col}(\mathbf{A})}\vec{y} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\vec{y}$). Use this to update the error vector.
- (f) Now compute the inner product of every column with the new error vector. Which column has the largest absolute inner product? This will be the second column of \mathbf{A} .
- (g) We now have two non-zero entries for our vector, \vec{x} . Find the values of those two entries.

(Reminder:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
)

2. One Magical Procedure (Fall 2015 Final)

Suppose that we have a vector $\vec{x} \in \mathbb{R}^5$ and an $N \times 5$ measurement matrix **M** defined by column vectors $\vec{c}_1, \dots, \vec{c}_5$, such that:

$$\mathbf{M}\vec{x} = \begin{bmatrix} | & & | \\ \vec{c}_1 & \cdots & \vec{c}_5 \\ | & & | \end{bmatrix} \vec{x} \approx \vec{b}$$

We can treat the vector $\vec{b} \in \mathbb{R}^N$ as a noisy measurement of the vector \vec{x} , with measurement matrix \mathbf{M} and some additional noise in it as well.

You also know that the true \vec{x} is sparse – it only has two non-zero entries and all the rest of the entries are zero in reality. Our goal is to recover this original \vec{x} as best we can.

However, your intern has managed to lose not only the measurements \vec{b} but the entire measurement matrix **M** as well!

Fortunately, you have found a backup in which you have all the pairwise inner products $\langle \vec{c}_i, \vec{c}_j \rangle$ between the columns of \mathbf{M} and each other as well as all the inner products $\langle \vec{c}_i, \vec{b} \rangle$ between the columns of \mathbf{M} and the vector \vec{b} . Finally, you also know the inner product of \vec{b} with itself, *i.e.* $\langle \vec{b}, \vec{b} \rangle$.

All the information you have is captured in the following table of inner products. (These are not the vectors themselves.)

$\langle \cdot, \cdot angle$	\vec{c}_1	\vec{c}_2	\vec{c}_3	$ec{c}_4$	\vec{c}_5	$ec{b}$
\vec{c}_1	2	0	1	-1	1	1
\vec{c}_2		2	1	-1	-1	-5
\vec{c}_3			2	0	-1	2
$ec{c}_4$				2	-1	6
\vec{c}_5					2	-1
$ec{b}$						29

(So, for example, if you read this table, you will see that the inner product $\langle \vec{c}_2, \vec{c}_3 \rangle = 1$, that the inner product $\langle \vec{c}_3, \vec{b} \rangle = 2$, and that the inner product $\langle \vec{b}, \vec{b} \rangle = 29$. By symmetry of the real inner product, $\langle \vec{c}_3, \vec{c}_2 \rangle = 1$ as well.)

Your goal is to find which entries of \vec{x} are non-zero and what their values are.

(a) Use the information in the table above to answer which of the $\vec{c}_1, \dots, \vec{c}_5$ has the largest magnitude inner product with \vec{b} .

- (b) Let the vector with the largest magnitude inner product with \vec{b} be \vec{c}_a . Let \vec{b}_p be the projection of \vec{b} onto \vec{c}_a . Write \vec{b}_p symbolically as an expression only involving \vec{c}_a , \vec{b} , and their inner products with themselves and each other.
- (c) Use the information in the table above to find which of the column vectors $\vec{c}_1, \dots, \vec{c}_5$ has the largest magnitude inner product with the residue $\vec{b} \vec{b}_p$.

 Hint: The linearity of inner products might prove useful.
- (d) Suppose that the vectors we found in parts (a) and (c) are \vec{c}_a and \vec{c}_c . These correspond to the components of \vec{x} that are non-zero, that is, $\vec{b} \approx x_a \vec{c}_a + x_c \vec{c}_c$. However, there might be noise in the measurements \vec{b} , so we want to find the least squares estimates \hat{x}_a and \hat{x}_c . Write a matrix expression for $\begin{bmatrix} \hat{x}_a \\ \hat{x}_c \end{bmatrix}$ in terms of appropriate matrices filled with the inner products of \vec{c}_a , \vec{c}_c , \vec{b} .
- (e) Compute the numerical values of \hat{x}_a and \hat{x}_c using the information in the table.