AC Waveform Introduction

- Team Assignments
 - ☐ Sit together now, also in myCourses as teams
- AC Waveforms
 - □ Intro, various types
 - ☐ Sinusoids, intro and characteristics
 - □ ICP
- Sinusoids Continued
 - AC sources
 - Equations
 - Radians and degrees
 - □ ICP
 - □ Phase lead and lag
 - □ ICP

FIG. 13.1 Alternating waveforms.

FIG. 13.2 Various sources of ac power: (a) generating plant; (b) portable ac generator; (c) wind-power station; (d) solar panel; (e) function generator

FIG. 13.3 *Important parameters for a sinusoidal voltage.*

FIG. 13.4 Defining the cycle and period of a sinusoidal waveform.

Ŋ

Frequency (f in cycles/second or Hz) = 1/T

F=1/(0.4 sec) = 2.5 Hz F=1/(0.5 sec) = 2 Hz

FIG. 13.5 Demonstrating the effect of a changing frequency on the period of a sinusoidal waveform.

FIG. 13.8 Areas of application for specific frequency bands.

٧

Find the period (T) and frequency (F)

FIG. 13.9 Example 13.3.

Ŋ

ICP - Find T, f and Vpeak (O'Scope Screen)

Vertical sensitivity=0.1 V/div. Horizontal sensitivity=50 μs/div.

FIG. 13.38 Example 13.13.

м

Note – Lower Case Notation: e(t), i(t)...

FIG. 13.11 (a) Sinusoidal ac voltage sources; (b) sinusoidal current sources.

FIG. 13.15 Plotting a sine wave versus (a) degrees and (b) radians.

Make sure you:

- Know how to use your calculator in degrees (DEG) and radian (RAD) modes
- Can convert between degrees and radians

Note: Angular speed (omega, w) = angle/time or alpha/t So Em*sin(alpha) = Em*sin(w*t)

Examples: Sharp EL-516 (calculator from DC Circuits)

DEG = degree mode RAD = radian mode (top of display) (2ndF,SETUP,0 to select)

90° → [rad]	(ON/C) 9 Ø (2ndF) (DRG▶)	- <u>1</u> π
→ [g]	(2ndF) (DRG▶)	100.
→ [°]	(2ndF) (DRG▶)	90.

ICP

1691:

-169V °

FIG. 13.27 Defining the phase shift for a sinusoidal function that crosses the horizontal axis with a positive slope before 0° .

FIG. 13.28 Defining the phase shift for a sinusoidal function that crosses the horizontal axis with a positive slope after 0° .

Waveforms with the same period (and hence frequency) but different "starting points"

FIG. 13.31 Example 13.12(a): i leads y by 40°.

Or v(wt) LAGS i(wt) by 40 deg

ICP – Find The Relationship Between i(t) and e(t)

Vertical sensitivity = 2 V/div. Horizontal sensitivity = 0.2 ms/div.

FIG. 13.39 Finding the phase angle between waveforms using a dual-trace oscilloscope.