Functional Analysis

Alef Sterk a.e.sterk@rug.nl

Lecture 5 Monday 19 February 2024

Topics:

- §3.1: Banach spaces
- §3.3: Completion of normed linear spaces

Cauchy sequences

Let X be a linear space with a norm $\|\cdot\|$

Definition: (x_n) is a Cauchy sequence in X if

$$||x_n - x_m|| \to 0$$
 as $n, m \to \infty$

Formally:

$$\forall \varepsilon > 0 \quad \exists N > 0 \quad \text{such that} \quad n, m \ge N \quad \Rightarrow \quad \|x_n - x_m\| \le \varepsilon$$

Cauchy sequences

Claim: convergent \Rightarrow Cauchy

Proof: if $x_n \to x$ then

$$\|x_n - x_m\| = \|x_n - x + x - x_m\|$$

 $\leq \|x_n - x\| + \|x - x_m\| \to 0 \text{ as } n, m \to \infty$

Definition: a NLS is called a Banach space if every Cauchy sequence converges

Finite-dimensional spaces

Proposition: if X is a NLS with dim $X < \infty$, then X is Banach

Proof: denote the given norm on X by $\|\cdot\|$

Let $X = \text{span}\{e_1, \dots, e_d\}$ and define another norm by

$$\|x\|_+ = \sum_{i=1}^d |\lambda_i|$$
 where $x = \sum_{i=1}^d \lambda_i e_i$

By norm equivalence there exist constants a, b > 0 such that

$$a||x|| \le ||x||_+ \le b||x||$$
 for all $x \in X$

Finite-dimensional spaces

Proof (ctd): let (x_n) be Cauchy in X w.r.t. $\|\cdot\|$

Write $x_n = \sum_{i=1}^d \lambda_{n,i} e_i$, then for fixed *i* we have

$$|\lambda_{n,i} - \lambda_{m,i}| \le ||x_n - x_m||_+ \le b||x_n - x_m|| \to 0$$
 as $m, n \to \infty$

Since \mathbb{K} is complete, $\lambda_i := \lim_{n \to \infty} \lambda_{n,i}$ exists

Define $x = \sum_{i=1}^{d} \lambda_i e_i$ and note that

$$||x_n - x|| \le \frac{1}{a} ||x_n - x||_+ = \frac{1}{a} \sum_{i=1}^d |\lambda_{n,i} - \lambda_i| \to 0 \text{ as } n \to \infty$$

The ℓ^p and ℓ^∞ spaces

Theorem: the following spaces are Banach spaces:

$$\ell^{p} = \left\{ x = (x_{1}, x_{2}, x_{3}, \dots) : x_{i} \in \mathbb{K}, \quad \sum_{i=1}^{\infty} |x_{i}|^{p} < \infty \right\} \quad p \ge 1$$

$$\|x\|_{p} = \left(\sum_{i=1}^{\infty} |x_{i}|^{p} \right)^{1/p}$$

$$\ell^{\infty} = \left\{ x = (x_{1}, x_{2}, x_{3}, \dots) : x_{i} \in \mathbb{K}, \quad \sup_{i \in \mathbb{N}} |x_{i}| < \infty \right\}$$

$$\|x\|_{\infty} = \sup_{i \in \mathbb{N}} |x_{i}|$$

The ℓ^p and ℓ^∞ spaces

Proof: assume (x^n) is Cauchy in ℓ^{∞} and write

$$x^{n} = (x_{1}^{n}, x_{2}^{n}, x_{3}^{n}, \dots)$$

For fixed $i \in \mathbb{N}$ we have

$$|x_i^n - x_i^m| \le ||x^n - x^m||_{\infty} \to 0$$
 as $m, n \to \infty$

Completeness of \mathbb{K} : $x_i := \lim_{n \to \infty} x_i^n$ exists for all $i \in \mathbb{N}$

Claim:
$$x := (x_1, x_2, x_3, ...) \in \ell^{\infty}$$
 and $||x^n - x||_{\infty} \to 0$

The ℓ^p and ℓ^∞ spaces

Proof (ctd): for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$m, n \geq N \quad \Rightarrow \quad \|x^n - x^m\|_{\infty} \leq \varepsilon$$

$$\Rightarrow \quad |x_i^n - x_i^m| \leq \varepsilon \qquad \forall i \in \mathbb{N}$$

$$n \geq N \quad \Rightarrow \quad |x_i^n - x_i| \leq \varepsilon \qquad \forall i \in \mathbb{N} \qquad [\text{take } m \to \infty]$$

$$\Rightarrow \quad \sup_{i \in \mathbb{N}} |x_i^n - x_i| \leq \varepsilon$$

$$\Rightarrow \quad \|x^n - x\|_{\infty} \leq \varepsilon \qquad [\text{in particular: } x^N - x \in \ell^{\infty}]$$

Hence,
$$x = x^N - (x^N - x) \in \ell^{\infty}$$
 and $x^n \to x$

Relation with closedness

Proposition: if X is a NLS and $V \subset X$ a lin. subspace, then

- 1. X Banach and V closed \Rightarrow V Banach
- 2. V Banach $\Rightarrow V$ closed in X

Proof (1): (v_n) Cauchy in $V \Rightarrow (v_n)$ Cauchy in X

$$v_n \to x$$
 for some $x \in X$

Hence, $x \in \overline{V} = V$

Relation with closedness

Proposition: if X is a NLS and $V \subset X$ a lin. subspace, then

- 1. X Banach and V closed \Rightarrow V Banach
- 2. V Banach \Rightarrow V closed in X

Proof (2): if $x \in \overline{V}$, then $v_n \to x$ for some sequence (v_n) in V

 (v_n) convergent \Rightarrow (v_n) Cauchy in V

 $v_n \rightarrow v$ for some $v \in V$

 $x = v \in V$ since limits are unique

Relation with closedness

Exercise: for any nonempty set S the following space is Banach:

$$\mathcal{B}(S,\mathbb{K}) = \left\{ f: S \to \mathbb{K} : \sup_{s \in S} |f(s)| < \infty \right\}$$

 $\|f\|_{\infty} = \sup_{s \in S} |f(s)|$

[Note that $\mathcal{B}(\mathbb{N},\mathbb{K})$ is isomorphic to ℓ^{∞}]

 $\mathcal{C}([a,b],\mathbb{K})$ is closed in $\mathcal{B}([a,b],\mathbb{K})$ and thus a Banach space

Theorem: if X is Banach, then

$$\sum_{i=1}^{\infty} \|x_i\| < \infty \quad \Rightarrow \quad \sum_{i=1}^{\infty} x_i \text{ converges}$$

Proof: writing $s_n = x_1 + x_2 + \cdots + x_n$ gives

$$||s_n - s_m|| = \left\| \sum_{i=m+1}^n x_i \right\| \le \sum_{i=m+1}^n ||x_i|| \to 0 \quad n, m \to \infty$$

 (s_n) Cauchy and X Banach \Rightarrow (s_n) convergent

Proposition: let X be a NLS such that for any series we have

$$\sum_{i=1}^{\infty} \|x_i\| < \infty \quad \Rightarrow \quad \sum_{i=1}^{\infty} x_i \quad \text{converges}$$

Then X is a Banach space

Proof: assume (s_n) is Cauchy

For each $i \in \mathbb{N}$ there exists $N_i \in \mathbb{N}$ such that

$$n, m \geq N_i \quad \Rightarrow \quad \|s_n - s_m\| \leq \frac{1}{2^i}$$

Without loss of generality we may assume that

$$N_1 < N_2 < N_3 < \cdots$$

Proof: note that for k > 2 we have

$$s_{N_k} = s_{N_1} + \sum_{i=1}^{k-1} (s_{N_{i+1}} - s_{N_i}) \quad \text{with} \quad \|s_{N_{i+1}} - s_{N_i}\| \leq \frac{1}{2^i}$$

By assumption the series $\sum_{i=1}^{\infty} (s_{N_{i+1}} - s_{N_i})$ converges

Thus the subsequence (s_{N_k}) converges

Hence, (s_n) itself converges

[Exercise: show that a Cauchy seq. with a convergent subseq. is convergent]

Quotient spaces

Proposition: Let $(X, \|\cdot\|)$ be Banach

 $V \subset X$ closed linear subspace $\Rightarrow X/V$ is Banach

Proof: the strategy is to show that

$$\sum_{i=1}^{\infty} \|x_i + V\| < \infty \ \Rightarrow \ \sum_{i=1}^{\infty} (x_i + V) \ \text{converges in } X/V$$

Quotient spaces

Proof (ctd): recall that

$$||x_i + V|| = d(x_i, V) = \inf\{||x_i - v|| : v \in V\}$$

There exists $v_i \in V$ such that $||x_i - v_i|| < ||x_i + V|| + 1/2^i$

Note that

$$\sum_{i=1}^{\infty} \|x_i + V\| < \infty \quad \Rightarrow \quad \sum_{i=1}^{\infty} \|x_i - v_i\| < \infty$$

Since X is Banach there exists $x \in X$ such that $\sum_{i=1}^{n} (x_i - v_i) \to x$

Quotient spaces

Proof (ctd): $x_i + V = (x_i - v_i) + V$ since $v_i \in V$ so

$$\left\| (x+V) - \sum_{i=1}^{n} (x_i + V) \right\| = \left\| (x+V) - \sum_{i=1}^{n} (x_i - v_i + V) \right\|$$

$$= \left\| \left(x - \sum_{i=1}^{n} (x_i - v_i) \right) + V \right\|$$

$$\leq \left\| x - \sum_{i=1}^{n} (x_i - v_i) \right\| \to 0$$

The completion theorem

Theorem: Let X be a NLS

There exists a Banach space \widetilde{X} and a lin. map $\iota: X \to \widetilde{X}$ s.t.

- 1. X and $\iota(X)$ are isometrically isomorphic
- 2. $\iota(X)$ dense in \widetilde{X}

Moral: every NLS can be completed

Consider the following sets:

$$\mathcal{X} = \left\{ \text{all Cauchy sequences } \mathbf{x} = (x_i)_{i=1}^{\infty} \text{ in } X \right\}$$

$$\mathcal{V} = \left\{ \text{all sequences } \mathbf{x} = (x_i)_{i=1}^{\infty} \text{ in } X \text{ such that } x_i \to 0 \right\}$$

Note: \mathcal{X} is a linear space and $\mathcal{V} \subset \mathcal{X}$ is a linear subspace

Turn
$$\widetilde{X}:=\mathfrak{X}/\mathcal{V}$$
 into a normed linear space via

$$\|\mathbf{x} + \mathcal{V}\| = \lim_{i \to \infty} \|x_i\|$$

[Exercise: show that this indeed gives a norm on \widetilde{X}]

Define the linear map

$$\iota: X \to \widetilde{X}, \qquad \iota(x) = (x, x, x, \dots) + \mathcal{V}$$

Note that ι is an isometry: for any $x \in X$ we have

$$\|\iota(x)\| = \|(x, x, x, \dots) + \mathcal{V}\| = \lim_{i \to \infty} \|x\| = \|x\|$$

In particular:

- $\iota: X \to \iota(X)$ is linear, bijective, and isometric
- X and $\iota(X)$ are isometrically isomorphic

Let $\mathbf{x} + \mathcal{V} \in \widetilde{X}$ and $\varepsilon > 0$ be arbitrary

Since $\mathbf{x} = (x_i)_{i=1}^{\infty}$ is Cauchy in X, there exists $N \in \mathbb{N}$ such that

$$||x_i - x_j|| \le \varepsilon \quad \forall i, j \ge N$$

Fixing j = N gives

$$||x_i - x_N|| \le \varepsilon \quad \forall i \ge N$$

This implies

$$\|(\mathbf{x} + \mathcal{V}) - \iota(x_N)\| = \lim_{i \to \infty} \|x_i - x_N\| \le \varepsilon$$

Conclusion: $\iota(X)$ is dense in \widetilde{X}

Let $\mathbf{x}^n + \mathcal{V}$ be a Cauchy sequence in \widetilde{X}

To show: there exists $\mathbf{z} = (z_i)_{i=1}^{\infty}$ in \mathfrak{X} such that

$$\|(\mathbf{x}^n + \mathcal{V}) - (\mathbf{z} + \mathcal{V})\| \to 0$$
 as $n \to \infty$

 $\iota(X)$ is dense in X: for each $n \in \mathbb{N}$ there exists $z_n \in X$ such that

$$\|(\mathbf{x}^n+\mathcal{V})-\iota(z_n)\|\leq \frac{1}{n}$$

Proof: step 4 (ctd)

For each $\varepsilon > 0$ there exists N > 0 such that

$$n, m \ge N \implies \begin{cases} \|\iota(z_n) - (\mathbf{x}^n + \mathcal{V})\| \le \frac{1}{6}\varepsilon \\ \|(\mathbf{x}^n + \mathcal{V}) - (\mathbf{x}^m + \mathcal{V})\| \le \frac{1}{6}\varepsilon \\ \|(\mathbf{x}^m + \mathcal{V}) - \iota(z_m)\| \le \frac{1}{6}\varepsilon \end{cases}$$

$$\Rightarrow \|\iota(z_n) - \iota(z_m)\| \le \frac{1}{6}\varepsilon + \frac{1}{6}\varepsilon + \frac{1}{6}\varepsilon = \frac{1}{2}\varepsilon$$

$$\Rightarrow \|z_n - z_m\| \le \frac{1}{2}\varepsilon$$

$$\Rightarrow \mathbf{z} = (z_i)_{i=1}^{\infty} \text{ Cauchy in } X \text{ so } \mathbf{z} \in \mathcal{X}$$

Proof: step 4 (ctd)

If n > N, then

$$\begin{aligned} \|(\mathbf{x}^n + \mathcal{V}) - (\mathbf{z} + \mathcal{V})\| & \leq \|(\mathbf{x}^n + \mathcal{V}) - \iota(z_n)\| + \|\iota(z_n) - (\mathbf{z} + \mathcal{V})\| \\ & \leq \frac{1}{6}\varepsilon + \|\iota(z_n) - (\mathbf{z} + \mathcal{V})\| \\ & = \frac{1}{6}\varepsilon + \lim_{i \to \infty} \|z_n - z_i\| \\ & \leq \frac{1}{6}\varepsilon + \frac{1}{2}\varepsilon < \varepsilon \end{aligned}$$

Conclusion: $\mathbf{x}^n + \mathcal{V} \to \mathbf{z} + \mathcal{V}$ in \widetilde{X}

The L^p spaces

Example: $\mathcal{C}([a,b],\mathbb{K})$ is **NOT** Banach w.r.t. the norm

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p} \qquad (1 \le p < \infty)$$

For a suitable discontinuous function $f_0:[a,b] \to \mathbb{K}$ define

$$X = \{f + \lambda f_0 : f \in \mathcal{C}([a, b], \mathbb{K}), \lambda \in \mathbb{K}\}$$

Now show that $\mathcal{C}([a,b],\mathbb{K})$ is **NOT** closed in X w.r.t. $\|\cdot\|_p$

The L^p spaces

Definition: $L^p(a,b)$ is the completion of $\mathcal{C}([a,b],\mathbb{K})$ w.r.t.

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p} \qquad (1 \le p < \infty)$$

Alternative: obtain $L^p(a,b)$ via Lebesgue measure and integral

[See §3.4 in the lecture notes]