0.1 杂题

例题 **0.1** 设 $Y, x_0, \delta > 0$, 计算

$$\lim_{n\to\infty} \sqrt{n} \int_{x_0-\delta}^{x_0+\delta} e^{-nY(x-x_0)^2} \, \mathrm{d}x.$$

证明

$$\lim_{n \to \infty} \sqrt{n} \int_{x_0 - \delta}^{x_0 + \delta} e^{-nY(x - x_0)^2} dx = \lim_{n \to \infty} \sqrt{n} \int_{-\delta}^{\delta} e^{-nYx^2} dx = \lim_{n \to \infty} \frac{1}{\sqrt{Y}} \int_{-\delta\sqrt{nY}}^{\delta\sqrt{nY}} e^{-x^2} dx$$

$$= \lim_{n \to \infty} \frac{2}{\sqrt{Y}} \int_{0}^{\delta\sqrt{nY}} e^{-x^2} dx = \frac{2}{\sqrt{Y}} \int_{0}^{+\infty} e^{-x^2} dx$$

$$= \sqrt{\frac{\pi}{Y}}.$$

例题 0.2 设 $f \in C^3[0,x], x > 0$, 证明: 存在 $\xi \in (0,x)$ 使得

$$\int_0^x f(t) dt = \frac{x}{2} [f(0) + f(x)] - \frac{x^3}{12} f''(\xi).$$
 (1)

若还有 $f'''(0) \neq 0$, 计算 $\lim_{x\to 0^+} \frac{\xi}{x}$.

§

笔记 我们当然可以直接用 Lagrange 插值公式得到

$$f(t) = (f(x) - f(0))t + f(0) + f''(\xi)t(t - x), t \in [0, x].$$

两边同时对 t 在 [0,x] 上积分就能得到(1)式.

证明 设 $K \in \mathbb{R}$ 使得

$$\int_0^x f(t) dt = \frac{x}{2} [f(0) + f(x)] - \frac{x^3}{12} K,$$

则考虑

$$g(y) \triangleq \int_0^y f(t) dt - \frac{y}{2} [f(0) + f(y)] + \frac{y^3}{12} K,$$

于是

$$g'(y) = f(y) - \frac{1}{2}[f(0) + f(y)] - \frac{yf'(y)}{2} + \frac{y^2K}{4} = \frac{f(y) - f(0)}{2} - \frac{yf'(y)}{2} + \frac{y^2K}{4}$$

以及

$$g''(y) = -\frac{yf''(y)}{2} + \frac{yK}{2}.$$

由 g(x) = g(0) = 0 和罗尔中值定理得 $\xi_1 \in (0,x)$ 使得 $g'(\xi_1) = 0$. 注意到 g'(0) = 0. 再次由罗尔中值定理得 $\xi \in (0,x)$ 使得

$$g''(\xi) = -\frac{\xi f''(\xi)}{2} + \frac{\xi K}{2} = 0,$$

即 $K = f''(\xi)$, 这就得到了(1)式. 由(1)式得

$$f''(\xi) = -12 \frac{\int_0^x f(t) dt - \frac{x}{2} [f(0) + f(x)]}{r^3}$$

由 Lagrange 中值定理得

$$f''(\xi) = f''(0) + f'''(\eta)\xi, \eta \in (0, \xi).$$

于是

$$f'''(\eta)\frac{\xi}{x} = \frac{-12\frac{\int_0^x f(t)\,\mathrm{d}t - \frac{x}{2}[f(0) + f(x)]}{x^3} - f''(0)}{x}$$

现在利用 L'Hospital 法则就有

$$\lim_{x \to 0^{+}} f'''(\eta) \frac{\xi}{x} = \lim_{x \to 0^{+}} \frac{-12 \frac{\int_{0}^{x} f(t) dt - \frac{x}{2} [f(0) + f(x)]}{x^{3}} - f''(0)}{x}$$

$$= \lim_{x \to 0^{+}} \frac{-12 \int_{0}^{x} f(t) dt + 6x [f(0) + f(x)] - f''(0)x^{3}}{x^{4}}$$

$$= \lim_{x \to 0^{+}} \frac{-12 f(x) + 6 [f(x) + f(0)] + 6x f'(x) - 3f''(0)x^{2}}{4x^{3}}$$

$$= \lim_{x \to 0^{+}} \frac{6x f''(x) - 6f''(0)x}{12x^{2}}$$

$$= \lim_{x \to 0^{+}} \frac{f'''(x) - f''(0)}{2x} = \frac{1}{2} f'''(0).$$

因为 $0 < \eta < \xi < x$,所以

$$\lim_{x \to 0^+} f'''(\eta) = f'''(0),$$

我们有

$$\lim_{x \to 0^+} \frac{\xi}{x} = \frac{1}{2}.$$

例题 **0.3** 设 $f \in [0, +\infty)$ 上的递增正函数. 若 $g \in C^2[0, +\infty)$ 满足

$$g''(x) + f(x)g(x) = 0.$$
 (2)

证明: 存在 M > 0 使得

$$|g(x)| \le M, \quad |g'(x)| \le M\sqrt{f(x)}, \quad \forall x > 0.$$
 (3)

证明 对 $\forall x > 0$, 有 f 在 [0,x] 上单调递增, 从而由闭区间上单调函数必可积可知 $f \in R[0,x], \forall x > 0$, f 在 $[0,+\infty)$ 上内闭连续. 由(2)知

$$\int_0^x g''(y)g'(y) \, \mathrm{d}y + \int_0^x f(y)g'(y)g(y) \, \mathrm{d}y = 0, \forall x > 0$$
 (4)

利用 f 递增和第二积分中值定理和 (4), 我们有

$$\int_0^x g''(y)g'(y) \, \mathrm{d}y + f(x) \int_{\xi}^x g'(y)g(y) \, \mathrm{d}y = 0, \xi \in [0, x].$$

即

$$\frac{1}{2}|g'(x)|^2 - \frac{1}{2}|g'(0)|^2 + \frac{[f(x)]^2}{2}\left[g^2(x) - g^2(\xi)\right] = 0.$$

现在一方面

$$|g'(x)|^2 = |g'(0)|^2 - f(x)g^2(x) + f(x)g^2(\xi) \le |g'(0)|^2 + f(x)g^2(\xi).$$
(5)

另外一方面由(2)得

$$\frac{g''(x)g'(x)}{f(x)} + g'(x)g(x) = 0, \forall x > 0.$$

即

$$\int_0^x \frac{g''(y)g'(y)}{f(y)} \, \mathrm{d}y + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0, \forall x > 0$$

由 f 递增和第二积分中值定理, 我们有

$$\frac{1}{f(0)} \int_0^{\eta} g''(y)g'(y) \, \mathrm{d}y + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0, \eta \in [0, x]$$

从而

$$\frac{1}{2f(0)} \left[|g'(\eta)|^2 - |g'(0)|^2 \right] + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0$$

即

$$|g(x)|^2 = g^2(0) - \frac{1}{f(0)} \left[|g'(\eta)|^2 - |g'(0)|^2 \right] \leqslant g^2(0) + \frac{|g'(0)|^2}{f(0)}, \forall x > 0.$$
 (6)

由 $g \in C[0, +\infty)$ 知 g 有界, 即存在 $C_1 > 0$, 使得 $|g(x)| < C_1, \forall x > 0$. 于是由(5)式知

$$|g'(x)|^2 \le |g'(0)|^2 + f(x)g^2(\xi) \le |g'(0)|^2 + C_1f(x), \forall x > 0.$$
 (7)

又因为 f 是递增正函数, 所以 $f(x) \ge f(0) > 0$, $\forall x > 0$. 从而存在 $C_2 > 0$, 使得

$$|g'(0)|^2 \le C_2 f(0) \le f(x), \forall x > 0.$$

于是取 $M = \max \left\{ C_1 + C_2, g^2(0) + \frac{|g'(0)|^2}{f(0)} \right\}$, 则由(7)式和(6)式可得, 对 $\forall x > 0$, 有

$$|g(x)|^2 \leqslant M \leqslant M^2,$$

$$|g'(x)|^2 \le C_2 f(x) + C_1 f(x) \le M f(x) \le M^2 f(x)$$
.

进而

$$|g(x)| \leq M, |g'(x)| \leq M\sqrt{f(x)}, \forall x > 0.$$

这就证明了(3). □

例题 0.4 设 $f \in C^2[0,1]$, 证明

(a)

$$|f'(x)| \le 4 \int_0^1 |f(x)| dx + \int_0^1 |f''(x)| dx. \tag{8}$$

(b)

$$\int_{0}^{1} |f'(x)| dx \le 4 \int_{0}^{1} |f(x)| dx + \int_{0}^{1} |f''(x)| dx.$$
 (9)

(c) 若 $f(0)f(1) \ge 0$, 则

$$\int_0^1 |f'(x)| \mathrm{d}x \le 2 \int_0^1 |f(x)| \mathrm{d}x + \int_0^1 |f''(x)| \mathrm{d}x. \tag{10}$$

证明

(a) 注意到对任何 $\theta \in [0,1]$, 我们有

$$|f'(x)| \le |f'(x) - f'(\theta)| + |f'(\theta)| \le \left| \int_{\theta}^{x} f''(y) dy \right| + |f'(\theta)|$$
$$\le \int_{0}^{1} |f''(y)| dy + |f'(\theta)|.$$

于是只需证明存在 $\theta \in [0,1]$ 使得

$$|f'(\theta)| \leqslant 4 \int_0^1 |f(x)| \mathrm{d}x. \tag{11}$$

如果 f' 有零点,则显然存在 $\theta \in [0,1]$, 使得 $f(\theta) = 0$, 从而满足 (11) 式. 下设 f' 没有零点. 由 f' 的介值性可知, f' 要么恒正, 要么恒负. 不妨设 f 严格递增. 若 f 没有零点, 不妨设 f > 0, 则由 Lagrange 中值定理可得

$$f(x) = f(0) + xf'(\eta) \geqslant xf'(\eta) \geqslant x \min_{[0,1]} |f'| \implies \int_0^1 |f(x)| dx \geqslant \min_{[0,1]} |f'| \geqslant \frac{1}{4} \min_{[0,1]} |f'|,$$

这也给出了 (11) 式. 若存在 $t \in [0,1]$, 使得 f(t) = 0. 由 Lagrange 中值定理可知

$$f(x) = f'(\theta)(x - t).$$

从而

$$\int_0^1 |f(x)| \mathrm{d}x \geqslant \min_{[0,1]} |f'| \cdot \int_0^1 |x - t| \mathrm{d}x \stackrel{\text{deg. 2?}}{\geqslant} \min_{[0,1]} |f'| \cdot \int_0^1 \left| x - \frac{1}{2} \right| \mathrm{d}x = \frac{1}{4} \min_{[0,1]} |f'|.$$

这也给出了(11)式. 于是我们证明了不等式(8)式。

(b) 直接对(8)式两边关于x 在 [0,1] 上积分得(9)式.

(c) 由 (a) 同理只需证明存在 θ ∈ [0,1] 使得

$$|f'(\theta)| \leqslant 2 \int_0^1 |f(x)| \mathrm{d}x. \tag{12}$$

不妨假定 f' 没有零点且 $f(0) \ge 0$, 则当 f 递增, 由 Lagrange 中值定理, 我们有

$$f(x) = f(0) + xf'(\eta) \geqslant xf'(\eta) \geqslant x \cdot \min|f'| \Longrightarrow \int_0^1 |f(x)| \mathrm{d}x \geqslant \min|f' \geqslant \frac{1}{2} \min|f'|.$$

当 f 递减, 由 Lagrange 中值定理, 我们有

$$f(x) = f(1) + (x - 1)f'(\alpha) \ge (1 - x)\min|f'| \implies \int_0^1 |f(x)| dx \ge \frac{1}{2}\min|f'|.$$

于是必有(12)式成立,这就给出了(10)式.

例题 0.5 设函数 f(x) 在 $(a, +\infty)$ 上严格单调下降,证明: 若 $\lim_{n \to \infty} f(x_n) = \lim_{x \to +\infty} f(x)$,则 $\lim_{n \to \infty} x_n = +\infty$. 证明 反证,假设 $\lim_{n \to \infty} x_n = c \in (a, +\infty)$,则存在子列 $\{x_{n_k}\}$,满足 $x_{n_k} \to c$.记

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x) = A,$$

 $\lim_{n\to\infty}f\left(x_{n}\right)=\lim_{x\to+\infty}f\left(x\right)=A,$ 则 $f\left(x_{n}\right)$ 的子列极限也收敛到 A, 即 $\lim_{k\to\infty}f\left(x_{n_{k}}\right)=A$. 由 $x_{n_{k}}\to c$ 知, 存在 $K\in\mathbb{N}$, 使得

$$x_{n_k} \in (c - \delta, c + \delta), \forall k > K.$$

其中 $\delta = \min \left\{ \frac{c-a}{2}, \frac{1}{2} \right\}$. 任取 $x_1, x_2 \in (c+\delta, +\infty)$ 且 $x_1 < x_2$, 则由 f 严格递减知

$$f(x_{n_k}) > f(x_1) > f(x_2) > f(x), \forall x > x_2, \forall k > K.$$

左边令 $k \to +\infty$, 右边令 $x \to +\infty$ 得

$$A = \lim_{k \to \infty} f\left(x_{n_k}\right) \geqslant f\left(x_1\right) > f\left(x_2\right) \geqslant \lim_{k \to +\infty} f\left(x\right) = A,$$

显然矛盾!

例题 0.6 设 $\{x_n\} \subset (0,1)$ 满足对 $i \neq j$, 有 $x_i \neq x_j$, 讨论函数 $f(x) = \sum_{i=1}^{\infty} \frac{\operatorname{sgn}(x - x_n)}{2^n}$ 连续性.

证明 由

$$\sum_{n=1}^{\infty} \left| \frac{\operatorname{sgn}(x - x_n)}{2^n} \right| \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty,$$

故级数一致收敛. 注意到对 $\forall n \in \mathbb{N}$, 都有 $\operatorname{sgn}(x-x_n)$ 在 $x=x_n$ 处间断, 在 $x \neq x_n$ 处连续.

当 $x \neq x_k, \forall k \in \mathbb{N}$ 时, f(x) 的每一项都连续. 又 f(x) 一致收敛, 故 f 在 $x \neq x_k, \forall k \in \mathbb{N}$ 处都连续. 当 $x = x_k$, $\forall k \in \mathbb{N}$ 时, 有

$$f(x) = \frac{\operatorname{sgn}(x - x_k)}{2^k} + \sum_{n \neq k} \frac{\operatorname{sgn}(x - x_n)}{2^n}$$

在 $x = x_k$ 处间断. 故 f(x) 在 $x = x_k, \forall k \in \mathbb{N}$ 处都间断.

例题 **0.7** 证明 $\sum_{t=1}^{\infty} (-1)^t \frac{t}{t^2 + x}$ 在 $x \in [0, +\infty)$ 一致收敛性.

证明 由 Abel 变换得, 对 $\forall m \in \mathbb{N}, \forall x \geq 0$ 成立

$$\sum_{t=m}^{\infty} (-1)^t \frac{t}{t^2 + x} = \lim_{n \to \infty} \sum_{t=m}^n (-1)^t \frac{t}{t^2 + x}$$

$$= \lim_{n \to \infty} \left[\sum_{t=m}^{n-1} \left(\frac{t}{t^2 + x} - \frac{t+1}{(t+1)^2 + x} \right) s_t + \frac{n}{n^2 + x} s_n \right]$$

$$= \sum_{t=m}^{\infty} \left(\frac{t}{t^2 + x} - \frac{t+1}{(t+1)^2 + x} \right) s_t$$

4

$$=\sum_{t=m}^{\infty}\frac{t^2+t}{(x+t^2)(x+t^2+2t+1)}s_t-\sum_{t=m}^{\infty}\frac{x}{(x+t^2)(x+t^2+2t+1)}s_t,$$

这里
$$s_t = \sum_{i=1}^t (-1)^i = (-1)^t \in \{1, -1\}.$$
 一方面

$$\left| \sum_{t=m}^{\infty} \frac{t^2 + t}{(x+t^2)(x+t^2 + 2t + 1)} s_t \right| \le \sum_{t=m}^{\infty} \frac{t^2 + t}{t^2(t^2 + 2t + 1)},$$

另外一方面

$$\left|\sum_{t=m}^{\infty} \frac{x}{(x+t^2)(x+t^2+2t+1)} s_t \right| \leqslant \sum_{t=m}^{\infty} \frac{1}{t^2+t+1}.$$

而由
$$\sum_{t=1}^{\infty} \frac{t^2 + t}{t^2(t^2 + 2t + 1)}$$
 和 $\sum_{t=1}^{\infty} \frac{1}{t^2 + t + 1}$ 都收敛知

$$\lim_{m \to \infty} \sum_{t=m}^{\infty} \frac{1}{t^2 + t + 1} = \lim_{m \to \infty} \sum_{t=m}^{\infty} \frac{t^2 + t}{t^2 (t^2 + 2t + 1)} = 0.$$

于是我们有

$$\lim_{m\to\infty}\sum_{t=m}^{\infty}(-1)^t\frac{t}{t^2+x}=0, \, \not \in \exists x\in [0,+\infty) -\mathfrak{P},$$

这就证明了
$$\sum_{t=1}^{\infty} (-1)^t \frac{t}{t^2 + x} \, \text{ at } x \in [0, +\infty) - \text{ 致收敛.}$$

命题 0.1

设 f(x) 是 [a,b] 上连续实值右可导函数, 记 $D^+f(x)$ 为 f(x) 的右导函数, 如果 f(a)=0, 且 $D^+f(x)\leqslant 0$, 则 $f(x)\leqslant 0$, $x\in [a,b]$.

证明 (1) 先假定 $D^+f(x) < 0$, 如果结论不成立, 则存在 $x_1 \in (a,b)$, 使 $f(x_1) > 0$. 记

$$x_0 = \inf\{x \mid f(x) > 0\}.$$

由 x_0 的定义, 我们有序列 $\{x_n\}$, 使 x_n 单调递减趋于 x_0 , 且 $f(x_n) > 0$. 从而由 f(x) 的连续性知

$$f(x_0) = \lim_{n \to \infty} f(x_n) \geqslant 0. \tag{13}$$

根据 x_0 的定义可知, 对 $\forall x < x_0$, 都有 $f(x) < f(x_0)$, 否则与下确界定义矛盾! 于是有序列 $\{x'_n\}$ 单调递增趋于 x_0 , 且 $f(x'_n)$. 于是由 f(x) 的连续性知

$$f(x_0) = \lim_{n \to \infty} f(x_n') \leqslant 0. \tag{14}$$

故由(13)(14)知 $f(x_0) = 0$. 于是

$$D^+ f(x_0) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \geqslant 0,$$

这与 $D^+f(x_0) < 0$ 矛盾, 于是 $f(x) \leq 0, x \in [a, b]$.

(2) 若 $D^+f(x) \leq 0$, 对任给的 $\varepsilon > 0$ 构造函数

$$f_{\varepsilon}(x) = f(x) - \varepsilon(x - a),$$

对 $f_{\varepsilon}(x)$ 有 $f_{\varepsilon}(a) = 0$ 且

$$D^+ f_{\varepsilon}(x) \leqslant -\varepsilon < 0.$$

从而由 (1) 得 $f_{\varepsilon}(x) \leq 0, x \in [a, b]$. 因此 $f(x) \leq \varepsilon(x - a) \leq \varepsilon(b - a)$, 由 ε 的任意性, 得 $f(x) \leq 0, x \in [a, b]$. **例题 0.8** 设 $\varphi(x)$ 是 [a, b) 上连续且右可导的函数, 如果 $D^+\varphi(x)$ 在 [a, b) 上连续, 证明: $\varphi(x)$ 在 [a, b) 上连续可导, $\varphi'(x) = D^+\varphi(x)$.

证明 设

$$f(x) = \varphi(a) + \int_{a}^{x} D^{+}\varphi(t)dt - \varphi(x), \quad x \in [a, b).$$

则 f(x) 在 [a,b) 上连续且右可导,并且

$$D^+f(x) = D^+\varphi(x) - D^+\varphi(x) = 0.$$

又 f(a) = 0, 由命题 0.1得 $f(x) \le 0$. 又 -f(x) 满足 -f(a) = 0, $D^+[-f(x)] = 0$, 同理由命题 0.1得 $-f(x) \le 0$, 故 f(x) = 0. 于是

$$\varphi(x) = \varphi(a) + \int_{a}^{x} D^{+} \varphi(t) dt.$$

由 $D^+\varphi(x)$ 的连续性, 得 $\varphi'(x) = D^+\varphi(x)$.

例题 0.9 证明:

$$\sum_{k=1}^{n-1} \frac{1}{\sin \frac{k\pi}{n}} = \frac{2n}{\pi} \left(\ln 2n + \gamma - \ln \pi \right) + o\left(1 \right).$$

证明 见here.

例题 **0.10** $\lim_{n\to\infty} \frac{\sum\limits_{k=1}^{n} (-1)^k \operatorname{C}_n^k \ln k}{\ln (\ln n)} = 1.$

证明 证法一:对任意充分大的 n, 由 Frullani(傅汝兰尼) 积分知

$$\ln k = \int_0^{+\infty} \frac{e^{-x} - e^{kx}}{x} \mathrm{d}x.$$

再结合二项式定理可得

$$A \triangleq \sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \ln k = \sum_{k=1}^{n} \left[(-1)^{k} C_{n}^{k} \left(\int_{0}^{+\infty} \frac{e^{-x} - e^{-kx}}{x} dx \right) \right] = \int_{0}^{+\infty} \frac{\sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx$$

$$= \int_{0}^{+\infty} \frac{\sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx = \int_{0}^{+\infty} \frac{1 - e^{-x} + \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx$$

$$= \int_{0}^{+\infty} \frac{1 - e^{-x} + e^{-x} \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} - \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} e^{-kx}}{x} dx = \int_{0}^{+\infty} \frac{1 - e^{-x} + e^{-x} (1 - 1)^{n} - (1 - e^{-x})^{n}}{x} dx$$

$$= \int_{0}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^{n}}{x} dx.$$

由 Bernoulli 不等式知

$$(1-e^{-x})^n \geqslant 1-ne^{-x}.$$

取 $M_n > 1$ 满足 $M_n e^{M_n} = n$ 干是

$$0 \leqslant \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx \leqslant \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - ne^{-x})}{M_n} dx = \frac{n}{M_n} \int_{M_n}^{+\infty} e^{-x} dx = \frac{n}{M_n e^{M_n}} = 1.$$

从而

$$A = \int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx = \int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + O(1).$$
 (15)

因为 $M_n e^{M_n} = n$, 所以由命题??知

$$M_n = \ln n + o(\ln n), n \to \infty. \tag{16}$$

于是

$$(1-e^{-x})^{n-1}=e^{(n-1)\ln(1-e^{-x})}\leqslant e^{-(n-1)e^{-x}}\leqslant e^{-(n-1)e^{-M_n}}=e^{-\frac{M_n(n-1)}{n}}\to 0, \forall x\in [0,M_n]\,.$$

从而

$$\frac{\int_{0}^{M_{n}} \frac{(1-e^{-x})^{n}}{x} dx}{\int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx} \leqslant \frac{e^{-\frac{M_{n}(n-1)}{n}} \int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx}{\int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx} = e^{-\frac{M_{n}(n-1)}{n}} \to 0, n \to \infty.$$

$$\mathbb{P} \int_{0}^{M_{n}} \frac{(1-e^{-x})^{n}}{x} dx = o\left(\int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx\right), n \to \infty. \text{ id}$$

$$\int_{0}^{M_{n}} \frac{1-e^{-x}-(1-e^{-x})^{n}}{x} dx = \int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx - \int_{0}^{M_{n}} \frac{(1-e^{-x})^{n}}{x} dx = (1+o(1)) \int_{0}^{M_{n}} \frac{1-e^{-x}}{x} dx, n \to \infty. \tag{17}$$

$$\mathring{\mathfrak{L}} \tilde{\mathfrak{H}} \tilde{\mathfrak{H}}$$

$$\lim_{x\to 0}\frac{1-e^{-x}}{x}\xrightarrow{\text{L'Hospital}}\lim_{x\to 0}e^x=1,$$
 故 $\frac{1-e^{-x}}{x}$ 在 $[0,1]$ 上有界,进而 $\int_0^1\frac{1-e^{-x}}{x}\mathrm{d}x=O(1)$. 又注意到
$$\int_1^{M_n}\frac{-e^{-x}}{x}\mathrm{d}x\leqslant -e^{-M_n}\int_1^{M_n}\frac{1}{x}\mathrm{d}x\to 0, n\to\infty,$$

故
$$\int_{1}^{M_n} \frac{-e^{-x}}{x} dx = O(1)$$
. 于是再结合(16)式可知

$$\int_0^{M_n} \frac{1 - e^{-x}}{x} dx = \int_0^1 \frac{1 - e^{-x}}{x} dx + \int_1^{M_n} \frac{-e^{-x}}{x} dx + \int_1^{M_n} \frac{1}{x} dx$$

$$= O(1) + \ln M_n = \ln(\ln n + o(\ln n)) + O(1)$$

$$= \ln \ln n + o(1) + O(1) = \ln \ln n + O(1), n \to \infty.$$

因此再由(17)式可知

$$\int_{0}^{M_{n}} \frac{1 - e^{-x} - (1 - e^{-x})^{n}}{x} dx = (1 + o(1)) \int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx = (1 + o(1)) (\ln \ln n + O(1)) = \ln \ln n + o(\ln \ln n), n \to \infty.$$
故由(15)可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} (-1)^k C_n^k \ln k}{\ln(\ln n)} = \lim_{n \to \infty} \frac{A}{\ln(\ln n)} = \lim_{n \to \infty} \frac{\int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + O(1)}{\ln(\ln n)}$$
$$= \lim_{n \to \infty} \frac{\ln \ln n + o(\ln \ln n) + O(1)}{\ln(\ln n)} = 1.$$

证法二:注意到

$$S \triangleq \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} \ln k = \sum_{k=1}^{n} (-1)^{k} \left[\binom{n-1}{k} + \binom{n-1}{k-1} \right] \ln k$$

$$= \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k-1} \ln k$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=0}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln(k+1)$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln(k+1)$$

$$= -\sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \left(\ln(k+1) - \ln k \right)$$

$$= -\sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \int_{0}^{1} \frac{1}{k+x} dx.$$

又由二项式定理可知

$$\sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{k+y} = \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \int_0^1 t^{k+y-1} dt = \int_0^1 \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} t^{k+y-1} dt$$
$$= \int_0^1 t^{y-1} \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} t^k dt = \int_0^1 t^{y-1} \left[(1-t)^{n-1} - 1 \right] dt.$$

故

$$S = -\int_0^1 \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{k+y} dy = \int_0^1 \int_0^1 t^{y-1} \left[1 - (1-t)^{n-1} \right] dt dy$$

$$= \int_0^1 \int_0^1 t^{y-1} \left[1 - (1-t)^{n-1} \right] dy dt = \int_0^1 \frac{t-1}{t \ln t} \left[1 - (1-t)^{n-1} \right] dt$$

$$= \frac{t-e^{-x}}{t} \int_0^{+\infty} \frac{(1-e^{-x}) \left[1 - (1-e^{-x})^{n-1} \right]}{x} dx.$$

后续估阶与证法一相同.

证法三:注意到

$$S \triangleq \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} \ln k = \sum_{k=1}^{n} (-1)^{k} \left[\binom{n-1}{k} + \binom{n-1}{k-1} \right] \ln k$$

$$= \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k-1} \ln k$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=0}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln (k+1)$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln (k+1)$$

$$= -\sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln (k+1) - \ln k$$

$$= -\sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \int_{0}^{1} \frac{1}{k+x} dx$$

$$= -\int_{0}^{1} \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \frac{1}{k+x} dx$$

$$= \int_{0}^{1} \left(\frac{1}{x} - \sum_{k=0}^{n-1} (-1)^{k} \binom{n-1}{k} \frac{1}{k+x} dx \right) dx$$

$$\stackrel{\text{deg}(??)}{=} \int_{0}^{1} \left(\frac{1}{x} - \frac{(n-1)!}{x(x+1)\cdots(x+(n-1))} \right) dx$$

$$= \int_{0}^{1} \frac{1}{x} \left(1 - \frac{(n-1)!}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \right) dx.$$

由命题??(4) 知

$$e^{x^2-x} \geqslant \frac{1}{1+x} \geqslant e^{-x}, \forall x > 0.$$

于是

$$e^{x^2-x} \cdot e^{\left(\frac{x}{2}\right)^2 - \frac{x}{2}} \cdots e^{\left(\frac{x}{n-1}\right)^2 - \frac{x}{n-1}} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x} \cdot e^{-\frac{x}{2}} \cdots e^{-\frac{x}{n-1}},$$

即

$$e^{x^2\left(1+\frac{1}{2^2}+\cdots+\frac{1}{(n-1)^2}\right)-x\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)}.$$

注意到

$$x^{2}\left(1+\frac{1}{2^{2}}+\cdots+\frac{1}{(n-1)^{2}}\right) \leqslant x\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}x < 2x, \forall x \in [0,1],$$

故

$$e^{-x\left(-2+\sum_{j=1}^{n-1}\frac{1}{j}\right)} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x\sum_{j=1}^{n-1}\frac{1}{j}}.$$

从而由连续函数 e^{-x} 的介值性知, 存在 $C_n \in \left[-2 + \sum_{j=1}^{n-1} \frac{1}{j}, \sum_{j=1}^{n-1} \frac{1}{j} \right]$, 使得

$$\frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} = e^{-C_n x}.$$

于是由
$$-2 + \sum_{j=1}^{n-1} \frac{1}{j} \leqslant C_n \leqslant \sum_{j=1}^{n-1} \frac{1}{j}$$
 知

$$C_n = \ln n + O(1), n \to \infty$$

因此

$$S = \int_0^1 \frac{1}{x} \left(1 - \frac{1}{(1+x)\left(1 + \frac{x}{2}\right)\cdots\left(1 + \frac{x}{n-1}\right)} \right) dx = \int_0^1 \frac{1}{x} \left(1 - e^{-C_n x} \right) dx$$
$$= \int_0^{C_n} \frac{1 - e^{-t}}{t} dt = \int_0^1 \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1}{t} dt.$$

注意到

$$\lim_{t \to 0} \frac{1 - e^{-t}}{t} \xrightarrow{\text{L'Hospital}} \lim_{t \to 0} e^{t} = 1,$$

故 $\frac{1-e^{-t}}{t}$ 在 [0,1] 上有界, 进而 $\int_0^1 \frac{1-e^{-t}}{t} dt = O(1)$. 又注意到

$$\int_{1}^{C_n} \frac{1 - e^{-t}}{t} dt \leqslant 1 - e^{-C_n} = 1 - e^{-\ln n + O(1)} \to 1, n \to \infty,$$

故
$$\int_{1}^{C_n} \frac{1 - e^{-t}}{t} dt = O(1)$$
. 从而

$$S = \int_0^1 \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1}{t} dt = \ln C_n + O(1)$$
$$= \ln (\ln n + O(1)) + O(1) = \ln \ln n + O(1), n \to \infty.$$

因此

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{n}{(-1)^k\binom{n}{k}\ln k}}{\ln \ln n}=\lim_{n\to\infty}\frac{S}{\ln \ln n}=\lim_{n\to\infty}\frac{\ln \ln n+O(1)}{\ln \ln n}=1.$$