

Overview of Reinforcement Learning-Part I

Prof. Jae Young Choi

Pattern Recognition and Machine Intelligence Lab. (PMI)

Division of Computer Engineering

Hankuk University of Foreign Studies

Many Faces of Reinforcement Learning

Branches of Machine Learning

Overview of Reinforcement Learning Techniques

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

Examples of Reinforcement Learning

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play many different Atari games better than humans

Rewards

- \blacksquare A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected cumulative reward

Do you agree with this statement?

Example of Rewards

- Fly stunt manoeuvres in a helicopter
 - +ve reward for following desired trajectory
 - ve reward for crashing
- Defeat the world champion at Backgammon
 - -+/-ve reward for winning/losing a game
- Manage an investment portfolio
 - +ve reward for each \$ in bank
- Control a power station
 - +ve reward for producing power
 - ve reward for exceeding safety thresholds
- Make a humanoid robot walk
 - +ve reward for forward motion
 - ve reward for falling over
- Play many different Atari games better than humans
 - +/-ve reward for increasing/decreasing score

Sequential Decision Making

- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refuelling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

Agent and Environment

Agent and Environment

- At each step t the agent:
 - \blacksquare Executes action A_t
 - Receives observation O_t
 - Receives scalar reward Rt
- The environment:
 - \blacksquare Receives action A_t
 - Emits observation O_{t+1}
 - \blacksquare Emits scalar reward R_{t+1}
- t increments at env. step

History and State

■ The history is the sequence of observations, actions, rewards

$$H_t = O_1, R_1, A_1, ..., A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Environment State

- The environment state S_t^e is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if S_t^e is visible, it may contain irrelevant information

Agent State

- The agent state S_t^a is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of history:

$$S_t^a = f(H_t)$$

Agent State

An information state (a.k.a. Markov state) contains all useful information from the history.

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

"The future is independent of the past given the present"

$$H_{1:t} \rightarrow S_t \rightarrow H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

Rat Example

- What if agent state = last 3 items in sequence?
- What if agent state = counts for lights, bells and levers?
- What if agent state = complete sequence?

Agent State

Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state
- Formally, this is a Markov decision process (MDP)
- (Next lecture and the majority of this course)

State

Experience is a sequence of observations, actions, rewards

$$o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t$$

► The state is a summary of experience

$$s_t = f(o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t)$$

► In a fully observed environment

$$s_t = f(o_t)$$

Episodes

- During agent's lifetime, its experience is presented as episodes
- * Every episode is a sequence of observations (states), actions, rewards

Sample episodes with observations, actions, and rewards