SYSTAT 12

Statistics III

SYSTAT 12

Statistics III

For more information about SYSTAT® software products, please visit our WWW site at http://www.systat.com or contact

Marketing Department SYSTAT Software, Inc. 1735 Technology Dr., Ste. 430 San Jose, CA 95110 Phone: (800) 797-7401 Fax: (800) 797-7406

Email: info-usa@systat.com

Windows is a registered trademark of Microsoft Corporation.

General notice: Other product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at 52.227-7013. Contractor/manufacturer is SYSTAT Software, Inc., 1735 Technology Drive, Suite 430, San Jose, CA 95110. USA.

SYSTAT® 12 Statistics- III
Copyright © 2007 by SYSTAT Software, Inc.
SYSTAT Software, Inc.
1735 Technology Dr., Ste. 430
San Jose, CA 95110
All rights reserved.
Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

1234567890 050403020100

Contents

List of Examples						X	cxiii
Electrical series							
Statistics I							
Statistics 1							
1 Introduction to Statistics							I-1
Descriptive Statistics						p - p	I-1
Know Your Batch	 						I-2
Sum, Mean, and Standard Deviation .	 						I-3
Stem-and-Leaf Plots	 * *						1-3
The Median	 						1-4
Sorting							I-5
Standardizing							
Inferential Statistics							I-7
What is a Population?	 	4 4					I-7
Picking a Simple Random Sample	 	h #	4				I-8
Specifying a Model	 6 2				4		. I-10
Estimating a Model	 			h .			. I-10
Confidence Intervals	 						. I-11
Hypothesis Testing	 	70			a		. I-12
Checking Assumptions	 			9 0			. I-14
References	 			0 9			. I-16

	I-17
Statistical Background	I-17
Resampling in SYSTAT	I-21
Resampling Tab	I-21
Using Commands	I-22
Usage Considerations	I-22
Examples	I-23
Computation	I-38
Algorithms	I-38
Missing Data	
References	
Classification and Regression Trees	I-41
Statistical Background	I-42
Statistical Background	
The Basic Tree Model	I-42
The Basic Tree Model	I-42
The Basic Tree Model	I-42 I-45 I-45
The Basic Tree Model	I-42 I-45 I-45 I-46
The Basic Tree Model	I-42 I-45 I-45 I-46 I-47
The Basic Tree Model. Categorical or Quantitative Predictors Regression Trees Classification Trees Stopping Rules, Pruning, and Cross-Validation Loss Functions	I-42 I-45 I-45 I-46 I-47 I-48
The Basic Tree Model	I-42 I-45 I-45 I-46 I-47 I-48
The Basic Tree Model. Categorical or Quantitative Predictors Regression Trees Classification Trees Stopping Rules, Pruning, and Cross-Validation Loss Functions Geometry Classification and Regression Trees in SYSTAT	I-42 I-45 I-45 I-46 I-47 I-48 I-51
The Basic Tree Model	I-42 I-45 I-45 I-46 I-47 I-48 I-51
The Basic Tree Model. Categorical or Quantitative Predictors Regression Trees Classification Trees Stopping Rules, Pruning, and Cross-Validation Loss Functions Geometry Classification and Regression Trees in SYSTAT Classification and Regression Trees Dialog Box Using Commands	I-42 I-45 I-45 I-46 I-47 I-48 I-51 I-51
The Basic Tree Model. Categorical or Quantitative Predictors Regression Trees Classification Trees Stopping Rules, Pruning, and Cross-Validation Loss Functions Geometry Classification and Regression Trees in SYSTAT Classification and Regression Trees Dialog Box	I-42 I-45 I-45 I-46 I-47 I-48 I-51 I-51
The Basic Tree Model. Categorical or Quantitative Predictors Regression Trees Classification Trees Stopping Rules, Pruning, and Cross-Validation Loss Functions Geometry Classification and Regression Trees in SYSTAT Classification and Regression Trees Dialog Box Using Commands Usage Considerations Examples	
The Basic Tree Model. Categorical or Quantitative Predictors Regression Trees Classification Trees Stopping Rules, Pruning, and Cross-Validation Loss Functions Geometry Classification and Regression Trees in SYSTAT Classification and Regression Trees Dialog Box Using Commands Usage Considerations Examples Computation	
The Basic Tree Model. Categorical or Quantitative Predictors Regression Trees Classification Trees Stopping Rules, Pruning, and Cross-Validation Loss Functions Geometry Classification and Regression Trees in SYSTAT Classification and Regression Trees Dialog Box Using Commands Usage Considerations Examples Computation Algorithms	
The Basic Tree Model. Categorical or Quantitative Predictors Regression Trees Classification Trees Stopping Rules, Pruning, and Cross-Validation Loss Functions Geometry Classification and Regression Trees in SYSTAT Classification and Regression Trees Dialog Box Using Commands Usage Considerations Examples Computation	

Cluster Analysis	I-65
Statistical Background	I-66
Types of Clustering	
Correlations and Distances	I-67
Hierarchical Clustering	
Hierarchical Clustering	
Additive Trees	
Cluster Analysis in SYSTAT	
Hierarchical Clustering Dialog Box	
K-Clustering Dialog Box	
Additive Trees Clustering Dialog Box	
Using Commands	1-93
Usage Considerations	
Examples	,
Computation	
Algorithms	I-122
Missing Data	I-122
References	I-122
	I-125
5 Conjoint Analysis	
	end principle
Statistical Background	I-125
Additive Tables	I-126
Multiplicative Tables	I-128
Computing Table Margins Based on an Additi	ve Model I-130
Applied Conjoint Analysis	I-131
Conjoint Analysis in SYSTAT	I-133
Conjoint Analysis Dialog Box	I-133
Using Commands	I-135
Usage Considerations	1-13:
Examples	I-136

Computation	I-152
Algorithms	
Missing Data	
References	
6 Correlations, Associations, and Distance	yartar)-
	I-157
Statistical Background	I-158
The Scatterplot Matrix (SPLOM)	
The Pearson Correlation Coefficient	
Other Measures of Association	
Transposed Data	
Hadi Robust Outlier Detection	
Simple Correlations in SYSTAT	
Simple Correlations Dialog Box	I-170
Using Commands	I-177
Usage Considerations	I-178
Examples	I-179
Computation	I-199
Algorithms	I-199
Missing Data	
References	I-200
7 Correspondence Analysis	I-201
Statistical Background	I-201
The Simple Model	
The Multiple Model.	
Correspondence Analysis in SYSTAT	1-204
Correspondence Analysis Dialog Box	

Smart Correspondence Analysis Dialog Box	I-205
Using Commands	1-206
Usage Considerations	I-206
Examples	I-207
Computation	I-218
Algorithms	I-218
Missing Data	
References	
8 Crosstabulation	
(One-Way, Two-Way, and Multiway)	I-219
Statistical Background	I-220
Making Tables	
Significance Tests and Measures of Association	
Crosstabulations in SYSTAT	1-228
One-Way Frequency Tables Dialog Box	
Two-Way Tables Dialog Box	I-231
Multiway Tables: Tabulate Dialog Box	I-237
Using Commands	I-244
Usage Considerations	
	I-248
References	I-296
	T 207
9 Descriptive Statistics	I-297
Statistical Background	I-299
Location	1-299
Spread	I-301
The Normal Distribution	I-301
Test for Normality	I-302

	Multivariate Normality Assessment	. 1-303
	Non-Normal Shape	. I-303
	Subpopulations	. I-305
	Descriptive Statistics in SYSTAT	. I-307
	Basic Statistics Dialog Box	. I-307
	Stem-and-Leaf Plot Dialog Box	. I-314
	Basic Statistics for Rows	. I-316
	Row Stem-and-Leaf Plot Dialog Box	. I-320
	Cronbach's Alpha Dialog Box	. I-321
	Using Commands	. I-322
	Usage Considerations	. I-323
	Examples	. I-324
		. I-344
	Algorithms	. I-344
	References	. I-344
10	Design of Experiments	-345
	122 congression and reject safety parties and s	
	Castistical Designation of	X 246
	Statistical Background	
	The Research Problem	
	Types of Investigation	
	The Importance of Having a Strategy	. I-348
	The Importance of Having a Strategy	. I-348 . I-349
	The Importance of Having a Strategy	. I-348 . I-349 . I-349
	The Importance of Having a Strategy	. I-348 . I-349 . I-349
	The Importance of Having a Strategy. The Role of Experimental Design in Research. Types of Experimental Designs. Factorial Designs. Response Surface Designs	. I-348 . I-349 . I-349 I-350 . I-354
	The Importance of Having a Strategy. The Role of Experimental Design in Research. Types of Experimental Designs. Factorial Designs. Response Surface Designs Mixture Designs.	. I-348 . I-349 . I-349 I-350 . I-354 . I-357
	The Importance of Having a Strategy. The Role of Experimental Design in Research. Types of Experimental Designs. Factorial Designs. Response Surface Designs Mixture Designs. Optimal Designs.	. I-348 . I-349 . I-349 I-350 . I-354 . I-357 . I-362
	The Importance of Having a Strategy. The Role of Experimental Design in Research Types of Experimental Designs. Factorial Designs. Response Surface Designs Mixture Designs. Optimal Designs Choosing a Design	. I-348 . I-349 . I-349 I-350 . I-354 . I-357 . I-362 . I-366
	The Importance of Having a Strategy. The Role of Experimental Design in Research Types of Experimental Designs. Factorial Designs. Response Surface Designs Mixture Designs. Optimal Designs Choosing a Design Design of Experiments in SYSTAT	. I-348 . I-349 . I-349 I-350 . I-354 . I-357 . I-362 . I-366 . I-368
	The Importance of Having a Strategy. The Role of Experimental Design in Research Types of Experimental Designs. Factorial Designs. Response Surface Designs Mixture Designs. Optimal Designs Choosing a Design Design of Experiments in SYSTAT. Design of Experiments Wizard	. I-348 . I-349 . I-349 I-350 . I-354 . I-357 . I-362 . I-366 . I-368
	The Importance of Having a Strategy. The Role of Experimental Design in Research Types of Experimental Designs. Factorial Designs. Response Surface Designs Mixture Designs. Optimal Designs Choosing a Design Design of Experiments in SYSTAT	. I-348 . I-349 . I-349 I-350 . I-354 . I-357 . I-362 . I-366 . I-368 . I-368

Usage Considerations	I-370
Examples	
References	
	maid gnith
11 Discriminant Analysis	I-391
Statistical Background	I-392
Linear Discriminant Model	I-392
Robust Discriminant Analysis	I-399
Discriminant Analysis in SYSTAT	I-400
Classical Discriminant Analysis Dialog box	I-400
Robust Discriminant Analysis Dialog Box	I-405
Using Commands	I-407
Usage Considerations	1-408
Examples	I-409
References	I-450
	T 452
12 Factor Analysis	1-433
Statistical Background	I-453
A Principal Component	I-454
Factor Analysis	1-45/
Principal Components versus Factor Analysis	I-460
A - Liestians and Caveats	I-461
Factor Analysis in SYSTAT.	I-462
	I-462
Using Commands	I-468
	I-468
Computation	I-492
Algorithms	I-492

Missing Data	I-492
References	I-493
13 Fitting Distributions	I-495
Statistical Background	I-495
Goodness-of-Fit Tests	I-496
Fitting Distributions in SYSTAT	I-498
Fitting Distributions: Discrete Dialog Box	I-498
Fitting Distributions: Continuous Dialog Box	I-499
Using Commands	1-501
Usage Considerations	I-503
Examples	I-503
Computation	I-518
Algorithms	I-518
References	I-518
14 Hypothesis Testing	I-519
Statistical Background	I-520
One-Sample Tests and Confidence Intervals for Mean at 520	nd ProportionI-
Two-Sample Tests and Confidence Intervals for Means I-520	and Proportions
Tests for Variances and Confidence Intervals	I-521
Tests for Correlations and Confidence Intervals	I-522
Multiple Tests	I-522
Hypothesis Testing in SYSTAT	I-523
Tests for Mean(s)	I-523
Tests for Variance(s)	
1000 101 101100(0)	I-531
Tests for Correlation(s)	

Using Commands			٠	p	e				,	P	e				e	e	1-541
Usage Considerations.																	
Examples	e		ь	4				ь	p				o		В		I-544
References		a					0	_						n			1-566

Statistics II

1 Linear Models	II-1
Simple Linear Models	II-1
Equation for a Line	II-2
Least Squares	11-5
Estimation and Inference	11-5
Standard Errors	II-7
Hypothesis Testing	ш-7
Multiple Correlation	11-8
Regression Diagnostics	11-9
Multiple Regression	. II-12
Variable Selection	. II-15
Using an SSCP, a Covariance, or a Correlation Matrix as InputII-18	
Analysis of Variance	. II-19
Effects Coding	. II-20
Means Coding	. 11-21
Models	11-22
Hypotheses	11-23
Multigroup ANOVA	11-24
Factorial ANOVA	11-24
Data Screening and Assumptions.	11-25
Levene Test.	II-25
Pairwise Mean Comparisons	II-26

	Linear and Quadratic Contrasts	-28
	Repeated Measures	-31
	Assumptions in Repeated Measures	-32
	Issues in Repeated Measures Analysis	-33
	SYSTAT's Sum of Squares	-34
	References	-36
2 Li	inear Models I: Linear Regression II	39
	3	
	Linear Regression in SYSTAT	-41
	Least Squares Regression Dialog Box	-41
	Ridge Regression	-48
	Ridge Regression Dialog Box	-49
	Bayesian Regression	-50
	Bayesian Regression Dialog Box	-51
	Using Commands	-53
	Usage Considerations	-54
	Examples	-55
	Computation	104
	Algorithms	104
	References	104
3 Li	inear Models II: Analysis of Variance II-1	07
	in the second control of the second control	
	Analysis of Variance in SYSTAT	108
	Analysis of Variance: Estimate Model Dialog Box II-	108
		113
	Analysis of Variance: Pairwise Comparisons Dialog Box II-	117
	Using Commands	121
	Usage Considerations	
	Examples	122

Computation
Algorithms
References
4 Linear Models III: General Linear Models II-175
General Linear Models in SYSTAT
Model Estimation (in GLM)
Hypothesis Test
Pairwise Comparisons
Post hoc Tests for Repeated Measures
Using Commands
Usage Considerations
Examples
Computation
Algorithms
References
5 Introduction to Linear Mixed Models II-251
Mixed Models and Paired t-test
Fixed Effects Versus Random Effects
Why Use Random Effects?
Some Linear Model Terminology
String and Numeric Variables
Estimability
Data Layout: Multiway or Nested
Nested Layout
Balanced and Unbalanced Data
SYSTAT Notation for Random Effects
Covariance Structures

	Using Covariates: Regression	,
	Estimation and Prediction II-279)
	Estimating the Fixed Effects II-279)
	Estimating Covariance Matrices	
	Testing Hypotheses	í
	The F Matrix	7
	The D Matrix	3
	The R Matrix)
	Pairwise Comparison Tests)
	Diagnostics)
	Residual Diagnostics	
	Further Insights	
	Henderson's Mixed Model Equation II-293	
	Some Properties of BLUPs II-294	
	Why Random Effect Coefficients are Always Estimable II-295	
	ML and REML	
	References	7
(1 7	grigues Components Models II 200	,
5 V	ariance Components Models II-299)
5 V		
6 V	Statistical Background	9
s V	Statistical Background	9
6 V	Statistical Background	9
5 V	Statistical Background	9 1 1 6
6 V	Statistical Background	9 1 6 0
6 V	Statistical Background	9 1 6 0
5 V	Statistical Background	9 1 6 0 0 1
S V	Statistical Background	9 1 6 0 0 1
8 V	Statistical Background	9 1 6 0 0 1
	Statistical Background	9 1 6 0 1 2
	Statistical Background . II-299 Variance Components in SYSTAT . II-301 Model Estimation (in VC) . II-301 Hypothesis Test . II-306 Using Commands . II-316 Usage Considerations . II-316 Examples . II-317 References . II-342	9 1 1 6 0 0 1 2 3

Linear Mixed Models in SYSTAT	
Model Estimation (in MIXED)	П-345
Category	II-347
Random	
Options	
Hypothesis Tests	
F and R Matrices	
D Matrix	
Using Commands	. ,
Usage Considerations	
Examples	
References	II-384
100 110 1-1-	11-385
8 Hierarchical Linear Mixed Models	11-303
Statistical Background	II-386
Hierarchical Linear Mixed Models in SYSTAT	
Model Estimation (in MIXED)	
Hypothesis Test	II-394
Using Commands	
Usage Considerations	
Examples	II-399
References	II-419
	II 401
9 Mixed Regression	II-421
Statistical Background	II-422
Historical Annroaches	II-423
The General Mixed Regression Model	
Model Comparisons	
Mixed Regression in SYSTAT	II-431

Mixed Regression: Hierarchical Data	 			II-431
Data Structure	 	0.0	4 8 8	II-438
Using Commands	 			II-441
Usage Considerations	 			II-441
Examples	 			П-442
Computation	 			II-484
Algorithms	 			II-484
References	 			II-485

Statistics III

Logistic Regression I	II-1
Statistical Background	III-2
Binary Logit	III-2
Multinomial Logit	III-5
Conditional Logit	III-5
Discrete Choice Logit	III-7
Stepwise Logit	III-9
Logistic Regression in SYSTAT	
Estimate Model Dialog Box	III-10
Quantiles	III-18
Simulation	III-19
Hypothesis	
Using Commands	
Usage Considerations	HI-22
Examples	
Computation	HI-85
Algorithms	
Missing Data	

glinear Models	III-93
Statistical Background	111-94
Fitting a Loglinear Model	
Loglinear Models in SYSTAT	
Loglinear Model: Estimate Dialog Box	
Frequency Table (Tabulate)	III-102
Using Commands	III-103
Usage Considerations	HI-103
Examples	III-105
Computation	ІН-122
Algorithms	
References	
ssing Value Analysis	III-123
Statistical Background	Щ-123
Statistical Background	III-12:
Statistical Background	III-123
Statistical Background	III-123
Statistical Background	III-123 III-124 III-134 III-134
Statistical Background	
Statistical Background	III-12: III-13: III-13:
Statistical Background. Techniques for Handling Missing Values Randomness and Missing Data. Testing for Randomness A Final Caution. Missing Value Analysis in SYSTAT Missing Value Analysis Dialog Box Using Commands.	
Statistical Background. Techniques for Handling Missing Values Randomness and Missing Data. Testing for Randomness A Final Caution. Missing Value Analysis in SYSTAT Missing Value Analysis Dialog Box Using Commands Usage Considerations.	III-12: III-13: III-13: III-13: III-13: III-13: III-13: III-13: III-13:
Statistical Background. Techniques for Handling Missing Values Randomness and Missing Data. Testing for Randomness A Final Caution. Missing Value Analysis in SYSTAT Missing Value Analysis Dialog Box Using Commands. Usage Considerations.	
Statistical Background	

References . .

. . III-89

4 Multidimensional Scaling	III-185
Statistical Background	III-186
Assumptions	III-186
Collecting Dissimilarity Data	III-187
Scaling Dissimilarities	III-188
Multidimensional Scaling in SYSTAT	III-189
Multidimensional Scaling Dialog Box	III-189
Using Commands	III-194
Usage Considerations	III-194
Examples	III-195
Computation	III-210
Algorithms	III-211
Missing Data	III-212
References	III-213
5 Multinormal Tests	III-215
5 Multinormal Tests Statistical Background	
	III-215
Statistical Background	III-215
Statistical Background	III-215 III-216
Statistical Background	III-215 III-216
Statistical Background	III-215 III-216 III-217
Statistical Background	
Statistical Background	
Statistical Background	
Statistical Background Multinormal Tests in SYSTAT Multinormal Tests Dialog Box Using Commands	
Statistical Background Multinormal Tests in SYSTAT Multinormal Tests Dialog Box Using Commands. Usage Considerations. Examples. References. References.	

MANOVA: Estimate Model Dialog Box	III-227	
Hypothesis Test Dialog Box		
Between-Groups Testing		
Within-Group Testing		
Post hoc Test for Repeated measures		
Using Commands		
Usage Considerations		
Examples	111-246	
References	III-259	
7 Nonlinear Models	III-261	
Statistical Background	III-262	
Modeling the Dose-Response Function	III-262	
Loss Functions		
Model Estimation		
Problems		
Nonlinear Models in SYSTAT		
Nonlinear Regression: Estimate Model		III-
Loss Functions for Analytic Function Minimization	III-281	
Using Commands	III-283	
Usage Considerations	111-283	
Examples	III-284	
Computation	III-316	
Algorithms	III-316	
Missing Data	111-316	
References	III-318	
8 Nonparametric Tests	III-319	
Statistical Background	III-320	

	Kank (Ordinal) Data	U
	Categorical (Nominal) Data	1
	Robustness	1
	Nonparametric Tests for Independent Samples in SYSTAT III-32:	2
	Kruskal-Wallis Test Dialog Box	2
	Two-Sample Kolmogorov-Smirnov Test Dialog Box III-32.	3
	Using Commands	5
	Nonparametric Tests for Related Variables in SYSTAT III-32.	5
	Sign Test Dialog Box	5
	Wilcoxon Signed-Rank Test Dialog Box III-32	6
	Friedman Test Dialog Box	8
	Quade Test Dialog Box	9
	Using Commands	1
	Nonparametric Tests for Single Samples in SYSTAT III-33	1
	One-Sample Kolmogorov-Smirnov Test Dialog Box III-33	1
	Anderson-Darling Test Dialog Box III-33	4
	Wald-Wolfowitz Runs Test Dialog Box III-33	7
	Using Commands	
	Usage Considerations	
	Examples	0
	Computation	5
	Algorithms	5
	References	5
9 F	Partial Least Squares Regression III-35	7
	Statistical Background	7
	Model Building	8
	Cross-Validation	
	Partial Least Squares Regression in SYSTAT III-36	
	Partial Least Squares Regression Dialog Box III-36	
	Using Commands	
	Usage Considerations	

Examples	III-365
Computation	Ш-377
Algorithms	III-377
Missing Data	III-378
References	III-378
10 Partially Ordered Scalogram	
Analysis with Coordinates	III-381
Statistical Background	III-381
Coordinates	1II-383
POSAC in SYSTAT	III-384
POSAC Dialog Box	
Using Commands	, . III-385
Usage Considerations	III-385
Examples	III-386
Computation	III-395
Algorithms	III-395
Missing Data	III-395
References	III-395
11 Path Analysis (RAMONA)	III-397
Statistical Background	III-397
The Path Diagram.	III-397
Path Analysis in SYSTAT	HI-405
Instructions for using RAMONA	III-405
The MODEL statement	HI-407
RAMONA Options	<u>111-411</u>
Usage Considerations	
Examples	III-414

Computation	III-452
RAMONA's Model	III-452
Algorithms	III-454
References	III-460
Acknowledgments	III-461
Statistics IV	
1 Perceptual Mapping	IV-1
Statistical Background	1V-1
Preference Mapping	
Biplots and MDPREF	
Procrustes Rotations	
Perceptual Mapping in SYSTAT	
Perceptual Mapping Dialog Box	
Using Commands	
Usage Considerations	IV-9
Examples	IV-9
Computation	
Algorithms	IV-16
Missing data	IV-16
References	
2 Power Analysis	IV-19
Statistical Background	
Error Types	IV-21
Power	IV-22

	Displaying Power Results
	Generic Power Analysis
	Power Analysis in SYSTAT
	Single Proportion
	Equality of Two Proportions
	Single Correlation Coefficient
	Equality of Two Correlation Coefficients
	One-Sample z-test
	Two-Sample z-test
	One-Sample t-test
	Paired t-test
	Two-Sample t-test
	One-Way ANOVA
	Two-Way ANOVA
	Generic Power Analysis
	Using Commands
	Usage Considerations
	Examples
	Computation
	Algorithms
	References
3 P	Probability Calculator IV-85
	Statistical Background
	Probability Calculator in SYSTAT
	Univariate Discrete Distributions Dialog Box
	Univariate Continuous Distributions Dialog Box
	Using Commands
	Usage Considerations
	Examples
	References

4 Probit Analysis	IV-99
Statistical Background	IV-99
Interpreting the Results	
Probit Analysis in SYSTAT	
Probit Regression Dialog Box	
Using Commands	
Usage Considerations	
Examples	IV-104
Computation	IV-107
Algorithms	
Missing Data	
References	
5 Quality Analysis	IV-109
	W. 100
Statistical Background	
Quality Analysis in SYSTAT	
Histogram	
Quality Analysis: Histogram Dialog Box	
Pareto Charts	
Pareto Chart Dialog Box	
Box-and-Whisker Plots	
Box-and-Whisker Plot Dialog Box	
Control Charts,	
Run Charts	
Run Chart Dialog Box	
Shewhart Control Charts	
Shewhart Control Chart Dialog Box	
OC and ARL curves	
Operating Characteristic Curves	
Operating Characteristic Curve Dialog Box	
Average Run Length Curves	IV-136

	Average Run Length Dialog Box	
	Cusum Charts	IV-142
	Cumulative Sum Chart Dialog Box	IV-142
	Moving Average Charts	IV-144
	Moving Average Chart Dialog Box	IV-144
	Exponentially Weighted Moving Average Charts	IV-146
	Exponentially Weighted Moving Average Chart Dialog	g Box IV-146
	X-MR Charts	IV-149
	X-MR Chart Dialog Box	IV-150
	Regression Charts	IV-152
	Regression Chart Dialog Box	IV-152
	TSO Charts	IV-153
	TSQ Chart Dialog Box	1V-154
	Process Capability Analysis	IV-155
	Process Capability Analysis Dialog Box	IV-159
	Using Commands	IV-161
	Usage Considerations	IV-162
	Examples	IV-163
	References	IV-217
		IV-219
6 R	andom Sampling	17-217
		IV-220
	Statistical Background	137.220
	Random Sampling in SYSTAT	IV-220
	Univariate Discrete Distributions Dialog Box	IV-220
	Univariate Continuous Distributions Dialog Box	IV-222
	Using Commands	IV-223
	Distribution Notations used in Random Sampling	IV-223
	Usage Considerations	IV-224
	Examples	IV-225
	Computation	IV-228
	Algorithms	IV-228
	/ LIGHT ONALGRAD	
	References	IV-228

7 Response Surface Methods	IV-231
Statistical Background	IV-231
Fitting a Response Surface	IV-232
Contour and Surface plot	
Response Optimization	
Response Surface Methods in SYSTAT	
Response Surface Methods: Optimize Dialog Box	IV-240
Using Commands	
Usage Considerations	
Examples	
Computation	
References	
8 Robust Regression	IV-255
Statistical Background	IV-256
Least Absolute Deviations (LAD) Regression	IV-260
M Regression	IV-261
Least Median Squares (LMS) Regression	IV-261
Least Trimmed Squares (LTS) Regression	IV-261
Scale (S) Regression	IV-262
Rank Regression	IV-262
Asymptotic Standard Errors, Confidence Intervals an	d Robust R2IV-262
Robust Regression in SYSTAT	IV-263
Least Absolute Deviation (LAD) Regression Dialog	Box IV-263
M Regression Dialog Box	IV-265
Least Median of Squares (LMS) Regression Dialog E	Box IV-268
Least Trimmed Squares (LTS) Regression Dialog Bo	ox IV-271
S Regression Dialog Box	IV-275
Rank Regression Dialog Box	IV-278
Using Commands	IV-279
Usage Considerations	IV-279

	Examples
	Computation
	Algorithms
	Missing Data
	References
	References
9 3	Set and Canonical Correlations IV-291
	Statistical Background
	Sets
	Partialing
	Notation
	Measures of Association Between Sets
	R2Y.X Proportion of Generalized Variance
	T2Y, X and P2Y, X Proportions of Additive Variance 1V-294
	Interpretations
	Types of Association between Sets
	Testing the Null Hypothesis
	Estimates of the Population R2Y,X, T2Y,X, and P2Y,X IV-29
	Set and Canonical Correlations in SYSTAT
	Set and Canonical Correlations Dialog Box IV-29
	Category
	Ontions
	Using Commands
	Usage Considerations
	Examples
	Computation
	Algorithms
	Missing Data
	References

10 Signal Detection Analysis	IV-319
Statistical Background	IV-319 IV-320 IV-321 IV-324 IV-325 IV-328
Algorithms	IV-346
11 Smoothing	IV-349
Statistical Background	
A Sample Data Set Kernels Bandwidth. Smoothing Functions Smoothness Interpolation and Extrapolation Close Relatives (Roses by Other Names).	IV-351 IV-352 IV-355 IV-360 IV-360

Spatial Statistics	IV-385
Statistical Background	IV-385
The Basic Spatial Model	
The Geostatistical Model	IV-387
Variogram	IV-388
Variogram Models	IV-389
Anisotropy	IV-392
Simple Kriging	IV-393
Ordinary Kriging	IV-394
Universal Kriging	IV-394
Simulation	IV-394
Point Processes	
Spatial Statistics in SYSTAT	IV-399
Spatial Statistics Dialog Box	IV-399
Using Commands	IV-408
Usage Considerations	IV-410
Examples	IV-411
Computation	IV-426
Missing Data	IV-426
Algorithms	IV-426
References	IV-426
Survival Analysis	IV-427
Statistical Background	IV-428
Graphics	IV-429
Parametric Modeling	IV-432
Survival Analysis in SYSTAT	IV-435
Survival Analysis: Nonparametric Dialog Box	IV-436
Survival Analysis: Nonparametric and Cox Dialog Box . Survival Analysis: Parametric and Cox Dialog Box .	IV-439
Using Commands	

	Usage Considerations
	Examples
	Computation
	Algorithms
	Missing Data
	References
147	Test Item Analysis IV-487
	Statistical Background
	Classical Model
	Latent Trait Model
	Test Item Analysis in SYSTAT
	Classical Test Item Analysis Dialog Box IV-491
	Logistic Test Item Analysis Dialog Box IV-493
	Using Commands
	Usage Considerations
	Examples
	Computation
	Algorithms
	Missing Data
	References
4.5.0	
15 T	Time Series IV-509
	Statistical Background
	Smoothing
	ARIMA Modeling and Forecasting
	Seasonal Decomposition and Adjustment IV-523
	Exponential Smoothing
	Trend Analysis

Fourier Analysis
Graphical Displays for Time Series in SYSTAT
Time Axis Format Dialog Box
Time Series Plot Dialog Box
ACF Plot Dialog Box
PACF Plot Dialog Box
CCF Plot Dialog Box
Using Commands
Transformations of Time Series in SYSTAT
Transform Dialog Box
Clear Series
Using Commands
Smoothing a Time Series in SYSTAT
Moving Average Smoothing Dialog Box IV-535
LOWESS Smoothing Dialog Box IV-536
Exponential Smoothing Dialog Box
Using Commands
Seasonal Adjustments in SYSTAT
Seasonal Adjustment Dialog Box
Using Commands
ARIMA Models in SYSTAT
ARIMA Dialog Box
Using Commands
Trend Analysis in SYSTAT
Trend Analysis dialog box
Using Commands
Fourier Models in SYSTAT
Fourier Transformation Dialog Box IV-545
Using Commands
Usage Considerations
Examples
Computation
Algorithms
References

16	Two-Stage Least Squares	IV-581
	Statistical Background	IV-581
	Two-Stage Least Squares Estimation	IV-582
	Heteroskedasticity	, IV-583
	Two-Stage Least Squares in SYSTAT	IV-584
	Two-Stage Least Squares Regression Dialog Box	IV-584
	Using Commands	IV-586
	Usage Considerations	IV-586
	Examples	IV-587
	Computation	IV-597
	Algorithms	IV-597
	Missing Data	

Acronym & Abbreviation Expansions

Index

List of Examples

Multi Way: Standardize Tables
A Model with Interaction
A Nested-Factorial Model with Case Frequencies
Actuarial Life Tables
Additive Trees
AIC and Schwarz's BIC
Analysis of Covariance (ANCOVA)
Analysis of Covariance
Anderson-Darling Test
ANOVA Assumptions and Contrasts
ARIMA Models
ARL Curve
Autocorrelation Plot
Automatic Stepwise Regression
Basic Statistics for Rows
Basic Statistics
Bayesian Regression

Binary Logit with Interactions
Binary Logit with Multiple Predictors
Binary Logit with One Predictor
Binary Profiles
Bonferroni and Dunn-Sidak adjustments
Box-and-Whisker Plots
Box-Behnken Design
Box-Cox Model
Box-Hunter Fractional Factorial Design
By-Choice Data Format
c Chart
Calculating Percentiles Using Inverse Cumulative Distribution Function . 1V-93
Calculating Probability Mass Function and Cumulative Distribution Function for Discrete Distributions
Canonical Correlation Analysis
Canonical Correlations: Using Text Output
Canonical Correlations—Simple Model
Casewise Pattern Table
Categorical Variables and Clustered Data
Central Composite Response Surface Design
Chi-Square Model for Signal Detection

Choice Data
Circle Model
Classical Test Analysis
Classification Tree
Clustered Data in Mixed Regression
Cochran's Test of Linear Trend
Comparing Correlation Estimation Methods
Computation of p-value Using 1-CF Function
Conditional Logistic Regression
Confidence Curves and Regions
Confidence Interval for Non-Centrality Parameter in One-Way Balanced Fixed Effect ANOVA
Confidence Intervals for Mean and Median
Confidence Intervals for One-Way Table Percentages
Confidence Intervals for Smoothers
Confidence Intervals
Contingency Table Analysis
Contouring the Loss Function
Contrasts
Correlation Estimation

Correspondence Analysis (Simple)
Covariance Alternatives to Repeated Measures
Cox Regression
Cross-Correlation Plot
Crossover and Changeover Designs
Cross-Validation
Cross-Validation
Cumulative Histogram
Cusum Charts
Deciles of Risk and Model Diagnostics
Density Clustering Examples
Differencing
Discrete Choice Models
Discriminant Analysis Using Automatic Backward Stepping 1-420
Discriminant Analysis Using Automatic Forward Stepping 1-413
Discriminant Analysis Using Complete Estimation 1-409
Discriminant Analysis Using Interactive Stepping 1-427
Discriminant Analysis
Employment Discrimination
Equality of Proportions

Estimation: ML and REML
EWMA Chart
Exploring with Residuals
Factor Analysis Using a Covariance Matrix
Factor Analysis Using a Rectangular File I-485
Fine Tuning
Fisher's Exact Test
Fitting a Second Order Response Surface
Fitting Binomial Distribution
Fitting Discrete Uniform Distribution
Fitting Exponential Distribution
Fitting Gumbel Distribution
Fitting Multiple Distributions
Fitting Normal Distribution
Fitting Weibull Distribution
Fixing Parameters and Evaluating Fit
Flexible Beta Linkage Method for Hierarchical Clustering I-115
Fourier Modeling of Temperature
Fractional Factorial Design
Fractional Factorial Designs

Frequency Input
Friedman Test for the Case with Ties
Friedman Test
From VC to MIXED
Full Factorial Designs
Functions of Parameters
Gamma Model for Signal Detection
Geometric Mean
Getting Acquainted with the Output Layout
Guttman Loss Function
Hadi Robust Outlier Detection
Harmonic Mean
Heteroskedasticity-Consistent Standard Errors
Hierarchical Clustering with Leaf Option
Hierarchical Clustering: Clustering Cases
Hierarchical Clustering: Clustering Variables and Cases 1-109
Hierarchical Clustering: Clustering Variables I-108
Hierarchical Clustering: Distance Matrix Input I-111
Histogram
Hotelling's T-Square

Hypothesis testing
Hypothesis Testing
Incomplete Block Designs
Independent Samples t-Test
Individual Differences Multidimensional Scaling
Interactive Stepwise Regression
Internal Model
Iterated Principal Axis
Iteratively Reweighted Least-Squares for Logistic Models
Kinetic Models
K-Means Clustering
Kriging (Ordinary)
Kruskal Method
Kruskal-Wallis Test
Latin Square Designs
Latin Squares
Least-Squares Regression
Life Tables: The Kaplan-Meier Estimator
Logistic Model (One Parameter)
Logistic Model (Two Parameter)

Logistic Model for Signal Detection
Loglinear Modeling of a Four-Way Table
Longitudinal Data in Mixed Regression
LOWESS Smoothing
Mann-Kendall test
Mann-Whitney Test
Mantel-Haenszel Test
Maximum Likelihood Estimation
Maximum Likelihood
McNemar's Test of Symmetry
Minimizing an Analytic Function
Missing Category Codes
Missing Cells Designs (the Means Model)
Missing Data
Missing Data: EM Estimation
Missing Data: Pairwise Deletion
Missing Value Imputation
Missing Values: Preliminary Examinations
Mixture Design with Constraints
Mixture Design

Mixture Models
Moving Average Chart
Moving Averages
Multinomial Logit
Multiple Categories
Multiple Correspondence Analysis
Multiple Linear Regression
Multiple Response Optimization using Desirability Analysis IV-250
Multiplicative Seasonal Factor
Multiplicative Seasonality with a Linear Trend
Multivariate Layout for Longitudinal Data
Multivariate Nested Design
Multivariate Normality Assessment of Anthropometric Measurements . III-219
Multivariate Normality Assessment of Perspiration Measurements III-218
Multivariate Regression by PLS Technique
Multiway Tables
Negative Exponential Model for Signal Detection IV-336
Nested Designs
Nested Effects
Nested Random Effects

Nesting in Design Structure
Nesting in treatment structure
Nesting versus Crossing
Nonlinear Model with Three Parameters
Nonmetric Unfolding
Nonparametric Model for Signal Detection
Nonparametric. One Sample Kolmogorov-Smirnov Test Statistic I-36
Normal Distribution Model for Signal Detection
Normality Assessment Using Shapiro-Wilk and Anderson-Darling Test . 1-341
np Chart
N-tiles and P-tiles
OC Curve for Binomial Distribution
OC Curve for Variances
OC Curve
Odds Ratios
One-Sample Kolmogorov-Smirnov Test for Non-Central Chi-square Distribution
One-Sample Kolmogorov-Smirnov Test for Normal Distribution Ill-350
One-Sample t-Test
One-Sample z-Test
One-Way ANOVA and Sample Size Estimation IV-77

One-Way ANOVA
One-Way ANOVA
One-Way MANOVA
One-Way Repeated Measures
One-Way Tables
Optimal Designs: Coordinate Exchange. 1-386
Optimizing Response using Canonical Analysis IV-247
Optimum Choice of Number of Factors
Outliers in X-space and Y-space
Outliers in X-space
Outliers in Y-space
p Chart
Paired t-Test
Paired t-Test
Pairwise comparisons
Pareto Charts
Partial Autocorrelation Plot
Partial Correlations
Partial Set Correlation Model
Path Analysis and Standard Errors

Path Analysis Basics
Path Analysis Using Rectangular Input
Path Analysis with a Restart File
PCA with Beta Distribution
PCA With Box-Cox Transformation
PCA with Normal Distribution
PDL with Instrumental Variables
PDL without Instrumental Variables
Pearson Correlations
Percentages
Piecewise Regression
Plackett-Burman Design
Point Statistics
Poisson Model for Signal Detection
Poisson Test
Polynomial Regression and Smoothing
POSAC: Proportion of Profile Pairs Correctly Represented
Post hoc tests
Power Scaling Ratio Data
Prediction of New Observations

Principal Components Analysis (Within Groups) II-242
Principal Components
Probabilities Associated with Correlations
Probit Analysis (Simple Model)
Probit Analysis with Interactions
Procrustes Rotation
Quade Test for Cases with Ties
Quade Test for Multiple Comparisons
Quadratic Model
Quantiles
R Chart
Randomized Block Designs
Regression Charts
Regression Imputation
Regression Tree with Box Plots
Regression Tree with Dit Plots
Regression using SSCP, Covariance or Correlation matrices
Regression with Ecological or Grouped Data
Regression without the Constant
Regression

Repeated Measures Analysis in the Presence of Subject-Specific Covariates III-255
Repeated Measures Analysis of Covariance
Repeated Measures ANOVA for One Grouping Factor and One Within Factor with Ordered Levels
Repeated Measures ANOVA for Two Grouping Factors and One Within Factor
Repeated Measures ANOVA for Two Trial Factors
Repeated Measures Experiment with Covariates
Residuals and Diagnostics for Simple Linear Regression
Ridge Analysis
Ridge Regression Analysis
Robust Discriminant Analysis
Robust Estimation (Measures of Location)
Rotation
Run Chart
s chart
S2 and S3 Coefficients
Sampling Distribution of Double Exponential (Laplace) Median IV-225
Saving Basic Statistics: Multiple Statistics and Grouping Variables 1-328
Saving Basic Statistics: One Statistic and One Grouping Variable . 1-327
Scalogram Analysis—A Perfect Fit

Screening Effects
Seasonal Trend tests
Seemingly Unrelated Regression Equations
Separate Variance Hypothesis Tests
Sign and Wilcoxon Tests for Multiple Variables
Sign Test
Simple Correspondence Analysis using Raw Data
Simple Linear Regression
Simulation of Assembly System
Simulation
Single-Degree-of-Freedom Designs
Smart Correspondence Analysis with Row-by-Column Data 1-210
Smoothing (4253H Filter)
Smoothing Binary Data in Three Dimensions
Smoothing: Saving and Plotting Results
Spearman Correlations
Spearman Rank Correlation
Split Plot Design
Split Plot Designs
Stem-and-Leaf Plot for Rows

Stem-and-Leaf Plot	
Stepwise Regression	
Stepwise Regression	
Stratified Cox Regression	
Stratified Kaplan-Meier Estimation	
Structural Zeros	
Structured Covariance Matrix for Random Errors	
Tables with Ordered Categories	
Tables without Analyses	
Tackling different data format in Logistic Regression	
Taguchi Design	
Test for Equality of Several Variances	
Test for Equality of Two Correlation Coefficients	
Test for Equality of Two Proportions	
Test for Equality of Two Variances	
Test for Single Proportion	
Test for Single Variance	
Test for Specific Correlation Coefficient	
Test for Zero Correlation Coefficient	
Testing Nonzero Null Hypotheses	

Testing whether a Single Coefficient Equals Zero
Testing whether Multiple Coefficients Equal Zero
Tetrachoric Correlation
The Nelson-Aalen Estimator
The Weibull Model for Fully Parametric Analysis
Time Series Plot
Transformations
Transformations
Treatment or design?
TSLS without lag and with hypothesis testing
TSQ Chart
Furnbull Estimation: K-M for Interval-Censored Data
Two-Sample t-Test
Two-Sample z-Test
Two-Stage Instrumental Variables
Two-Stage Least Squares
Two-Way MANOVA III-248
Two-Way ANOVA
Two-way ANOVA
Two-Way Table Measures (Long Results)

Two-Way Table Measures
Two-Way Tables
u Chart
Unbalanced ANOVA II-146
Unbalanced Data: Different Types of ANOVA
Univariate Regression by PLS Technique
Unordered Data
Unusual Distances
Usefulness of Jackknife estimate I-30
Using Covariates
Validity indices RMSSTD, Pseudo F, and Pseudo T-square with cities I-116
Variance Chart
Vector Model
Wald-Wolfowitz Runs Test
Weighting Means II-234
Wilcoxon Test
Within-Group Testing
Word Frequency
X-bar Chart
X-MR Chart (Sigma Estimation with Median)

X-MR Chart .		_										D	7-1	20	И

Logistic Regression

Dan Steinberg and Phillip Colla (revised by Nandita Ingawale and Avijit Maji)

LOGIT module estimates parameters for binary, multinomial, conditional, and discrete choice models. For each model you fit, LOGIT reports the parameter estimates, confidence interval for the parameters, z ratio, odds ratio, standard errors for odds ratio, confidence interval for the odds ratio, and correlation matrix of parameter estimates. Logit performs Wald test, score tests, forward, backward and interactive stepwise regression. Logit also produces Pregibon regression diagnostics, prediction success and classification tables, independent variable derivatives, model-based simulation of response curves, deciles of risk tables, options to specify start values and to separate data into learning and test samples, robust standard errors, control of significance levels for confidence interval calculations, zero/one dependent variable coding, choice of reference group in automatic dummy variable generation, and integrated plotting tools. Output includes information criteria values (Akaike Information Criterion (AIC) and Schwarz's BIC) which are tools for model selection. For more information on AIC and BIC see Chapter 1: Linear Models, "Variable Selection" on page 15 in Statistics I and Burnham and Anderson (1992).

Many of the results generated by modeling, testing, or diagnostic procedures can be saved to data files for subsequent graphing and display with the graphics routines. In case of binary logistic regression, SYSTAT displays the area under the curve and receiver operating characteristic (ROC) curve as Quick Graph.

Statistical Background

The LOGIT module is SYSTAT's comprehensive program for logistic regression analysis and provides tools for model building, model evaluation, prediction, simulation, hypothesis testing, and regression diagnostics. The program is designed to be easy for the novice and can produce the results most analysts need with just three simple commands. In addition, many advanced features are also included for sophisticated research projects. Beginners can skip over any unfamiliar concepts and gradually increase their mastery of logistic regression by working through the tools incorporated here.

LOGIT will estimate binary (Cox and Snell, 1989), multinomial (Anderson, 1972), conditional logistic regression models (Breslow and Day, 1980), and the discrete choice model (Luce, 2005; McFadden, 1973). The LOGIT framework is designed for analyzing the determinants of a categorical dependent variable. Typically, the dependent variable is binary and coded as 0 or 1; however, it may be multinomial and coded as an integer ranging from 1 to k or 0 to k-1.

Studies you can conduct with LOGIT include bioassay, epidemiology of disease (cohort or case-control), clinical trials, market research, transportation research (mode of travel), psychometric studies, and voter-choice analysis. The LOGIT module can also be used to analyze ranked choice information once the data have been suitably transformed (Beggs, Cardell, and Hausman, 1981).

This chapter contains a brief introduction to logistic regression and a description of the commands and features of the module. If you are unfamiliar with logistic regression, the textbook by Hosmer and Lemeshow (2000) is an excellent place to begin; Breslow and Day (1980) provide an introduction in the context of case-control studies; Train (1986) and Ben-Akiva and Lerman (1985) introduce the discrete-choice model for econometrics; Wrigley (2002) discusses the model for geographers; and Hoffman and Duncan (1988) review discrete choice in a demographic-sociological context. Valuable surveys appear in Amemiya (1981), McFadden (1976, 1982, 1984), and Maddala (1986).

Binary Logit

Although logistic regression may be applied to any categorical dependent variable, it is most frequently seen in the analysis of binary data, in which the dependent variable takes on only two values. Examples include survival beyond five years in a clinical

trial, presence or absence of disease, responding to a specified dose of a toxin, voting for a political candidate, and participating in the labor force.

In modeling the conditional distribution of the response variable Y, given the independent variable(s) X, we choose an appropriate characteristic of the conditional distribution which depends on the independent variables in an explicable manner. Thus in linear regression it is the expected value, in survival analysis it is the hazard rate and in logit (or probit) analysis it is $Prob(Y=1 \mid x)$.

When Y and X are positively associated, Prob(Y=1,x) is an increasing function of x, it lies between 0 and 1 and so the obviously appropriate model is a distribution function F(x). In logit analysis, the logistic distribution function is used to model Prob(Y=1|x). Now with m and s as the location and scale parameters respectively, the distribution function is

$$F(x) = F_0\left(\frac{x-\mu}{\sigma}\right)$$

where Fo is the standard logistic distribution function given by

$$F_0(x) = \frac{\exp(x)}{1 + \exp(x)}$$

It is convenient to write

$$F(x) = F_0(\alpha + \beta x)$$
$$= \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}$$

with
$$\alpha = -\frac{\mu}{\sigma}$$
 and $\beta - \frac{1}{\sigma}$.

With more than one independent variable and not necessarily with positive association among them, the model in its general form is written as:

$$Prob(Y = 1|\underline{x}) = \frac{\exp(\beta_0 + \underline{\beta}'\underline{x})}{1 + \exp(\beta_0 + \underline{\beta}'\underline{x})}$$

where an underline denotes the vector form. It can be easily seen that

$$\log \frac{Prob(Y=1|\underline{x})}{1-Prob(Y=1|\underline{x})} = \beta_0 + \underline{\beta}'\underline{x}$$

For data $\{(y_i, \underline{x}_i), i=1,2,3...n\}$, SYSTAT finds estimates of the parameters β_n and β using the maximum likelihood method of estimation.

In probit analysis the function F(x) is the cumulative distribution function of the normal distribution with m and s as the location and scale parameters respectively.

Logit analysis and probit analysis are quite similar in nature, the two curves also are alike with some difference in the shape, the logistic distribution having somewhat heavier tails. Whether to choose logit or probit will mostly depend on the nature of the phenomenon which gives rise to the data under consideration.

You can visually make the comparison from the following two graphs:

You may notice that while plotting the normal distribution function, we have taken the standard deviation s = 1.81 which is also the standard deviation of standard logistic distribution.

Multinomial Logit

Multinomial logit is a logistic regression model having a dependent variable with more than two levels (Agresti, 2002; Santer and Duffy, 2004; Nerlove and Press, 1973). Examples of such dependent variables include political preference (Democrat, Republican, Independent), health status (healthy, moderately impaired, seriously impaired), smoking status (current smoker, former smoker, never smoked), and job classification (executive, manager, technical staff, clerical, other). Outside of the difference in the number of levels of the dependent variable, the multinomial logit is very similar to the binary logit, and most of the standard tools of interpretation, analysis, and model selection can be applied. In fact, the polytomous unordered logit we discuss here is essentially a combination of several binary logits estimated simultaneously (Begg and Gray, 1984). We use the term polytomous to differentiate this model from the conditional logistic regression and discrete choice models discussed below.

There are important differences between binary and multinomial models. Chiefly, the multinomial output is more complicated than that of the binary model, and care must be taken in the interpretation of the results. Fortunately, LOGIT provides some new tools that make the task of interpretation much easier. There is also a difference in dependent variable coding. The binary logit dependent variable is normally coded 0 or 1, whereas the multinomial dependent can be coded 1, 2, ..., k, (that is, it starts at 1 rather than 0) or 0, 1, 2, ..., k-1.

Conditional Logit

The conditional logistic regression model has become a major analytical tool in epidemiology since the work of Prentice and Breslow (1978), Breslow et al. (1978), Prentice and Pyke (1979), and the extended treatment of case-control studies in Breslow and Day (1980). A mathematically similar model with the same name was introduced independently and from a rather different perspective by McFadden (1973) in econometrics. The models have since seen widespread use in the considerably different contexts of biomedical research and social science, with parallel literatures on sampling, estimation techniques, and statistical results. In epidemiology, conditional logit is used to estimate relative risks in matched sample case-control studies (Breslow, 1982), whereas in econometrics a similar likelihood function is used to model consumer choices as a function of the attributes of alternatives. We begin this section with a treatment of the biomedical use of the conditional logistic model. A separate

section on the discrete choice model covers the econometric version and contains certain fine points that may be of interest to all readers. A discussion of parallels in the two literatures appears in Steinberg (1991).

In the traditional conditional logistic regression model, you are trying to measure the risk of disease corresponding to different levels of exposure to risk factors. The data have been collected in the form of matched sets of cases and controls, where the cases have the disease, the controls do not, and the sets are matched on background variables such as age, sex, marital status, education, residential location, and possibly other health indicators. The matching variables combine to form strata over which relative risks are to be estimated; thus, for example, a small group of persons of a given age, marital status, and health history will form a single stratum. The matching variables can also be thought of as proxies for a larger set of unobserved background variables that are assumed to be constant within strata. The logit for the *j*th individual in the *i*th stratum can be written as:

$$logit(p_{ij}) = a_i + b_j X_{ij}$$

where X_{ij} is the vector of exposure variables and a_i is a parameter dedicated to the stratum. Since case-control studies will frequently have a large number of small matched sets, the a_i are nuisance parameters that can cause problems in estimation (Cox and Hinkley, 1979). In the example discussed below, there are 63 matched sets, each consisting of one case and four controls, with information on seven exposure variables for every subject.

The problem with estimating an unconditional model for these data is that we would need to include 63 - 1 = 62 dummy variables for the strata. This would leave us with possibly 70 parameters being estimated for a data set with only 315 observations. Furthermore, increasing the sample size will not help because an additional stratum parameter would have to be estimated for each additional matched set in the study sample. By working with the appropriate conditional likelihood, however, the nuisance parameters can be eliminated, simplifying estimation and protecting against potential biases that may arise in the unconditional model (Cox, 1975; Chamberlain, 1980). The conditional model requires estimation only of the relative risk parameters of interest.

LOGIT allows the estimation of models for matched sample case-control studies with one case and any number of controls per set. Thus, matched pair studies, as well as studies with varying numbers of controls per case, are easily handled. However, not all commands discussed so far are available for conditional logistic regression.

Discrete Choice Logit

Econometricians and psychometricians have developed a version of logit frequently called the **discrete choice model**, or **McFadden's conditional logit model** (McFadden, 1973, 1976, 1982, 1984; Hensher and Johnson, 1981; Ben-Akiva and Lerman, 1985; Train, 1986; Luce, 2005). This multinomial model differs from the standard polytomous logit in the interpretation of the coefficients, the number of parameters estimated, the syntax of the model sentence, and options for data layout.

The discrete choice framework is designed specifically to model an individual's choices in response to the characteristics of the choices. Characteristics of choices are attributes such as price, travel time, horsepower, or calories; they are features of the alternatives that an individual might choose from. By contrast, characteristics of the chooser, such as age, education, income, and marital status, are attributes of a person.

The classic application of the discrete choice model has been to the choice of travel mode to work (Domencich and McFadden, 1975). Suppose a person has three alternatives: private auto, car pool, and commuter train. The individual is assumed to have a utility function representing the desirability of each option, with the utility of an alternative depending solely on its own characteristics. With travel time and travel cost as key characteristics determining mode choice, the utility of each option could be written as:

$$U_i = B_1 T_i + B_2 C_i + e_i$$

where i=1,2,3 represents private auto, car pool, and train, respectively. In this random utility model, the utility U_i of the *i*th alternative is determined by the travel time T_i , the cost C_i of that alternative, and a random error term, e_i . Utility of an alternative is assumed not to be influenced by the travel times or costs of other alternatives available, although choice will be determined by the attributes of all available alternatives. In addition to the alternative characteristics, utility is sometimes also determined by an alternative specific constant.

The choice model specifies that an individual will choose the alternative with the highest utility as determined by the equation above. Because of the random component, we are reduced to making statements concerning the probability that a given choice is made. If the error terms are distributed as i.i.d. extreme value, it can be shown that the probability of the *i*th alternative being chosen is given by the familiar logit formula.

$$Prob(U_i > U_j \text{ for all } j \neq i) = \frac{\exp(\underline{X}_i \underline{b})}{\sum \exp(\underline{X}_i \underline{b})}$$

Suppose that for the first few cases our data are as follows:

Subject	Choice	Auto(1)	Auto(2)	Pool(1)	Pool(2)	Train(1)	Train(2)	Sex	Age
1	1	20	3.50	35	2.00	65	1.10	Male	27
2	3	45	6.00	65	3.00	65	1.00	Female	35
3	1	15	1.00	30	0.50	60	1.00	Male	22
4	2	60	5.50	70	2.00	90	2.00	Male	45
5	3	30	4.25	40	1.75	55	1.50	Male	52

The third record has a person who chooses to go to work by private auto (choice 1); when he drives, it takes 15 minutes to get to work and costs one dollar. Had he carpooled instead, it would have taken 30 minutes to get to work and cost 50 cents. The train would have taken an hour and cost one dollar. For this case, the utility of each option is given by

$$\begin{array}{l} U_{(\text{private auto})} = b_1 * 15 + b_2 * 1.00 + error_{13} \\ U_{(\text{car pool})} = b_1 * 30 + b_2 * 0.50 + error_{23} \\ U_{(\text{train})} = b_1 * 60 + b_2 * 1.00 + error_{33} \end{array}$$

The error term has two subscripts, one pertaining to the alternative and the other pertaining to the individual. The error is individual-specific and is assumed to be independent of any other error or variable in the data set. The parameters b_1 and b_2 are common utility weights applicable to all individuals in the sample. In this example, these are the only parameters, and their number does not depend on the number of alternatives individuals can choose from. If a person also had the option of walking to work, we would expand the model to include this alternative with

$$U_{\text{(walking)}} = b_1 * 70 + b_2 * 0.00 + error_{43}$$

and we would still be dealing with only the two regression coefficients b_1 and b_2 .

This highlights a major difference between the discrete choice and standard polytomous logit models. In polytomous logit, the number of parameters grows with the number alternatives; if the value of NCAT (number of categories) is increased from 3 to 4, a whole new vector of parameters is estimated. By contrast, in the discrete choice model without a constant, increasing the number of alternatives does not increase the number of discrete choice parameters estimated.

Finally, we need to look at the *optional* constant. Optional is emphasized because it is perfectly legitimate to estimate without a constant, and, in certain circumstances, it is even necessary to do so. If we were to add a constant to the travel mode model, we would obtain the following utility equations:

$$U_i = b_{oi} + b_1 T_i + b_2 C_i + e_i$$

where i=1,2,3 represents private auto, car pool, and train, respectively. The constant here, b_{ci} , is alternative-specific, with a separate one estimated for each alternative: b_{o1} corresponds to private auto; b_{o2} , to car pooling; and b_{o3} , to train. Like polytomous logit, the constant pertaining to the reference group is normalized to 0 and is not estimated.

An alternative specific CONSTANT is entered into a discrete choice model to capture unmeasured desirability of an alternative. Thus, the first constant could reflect the convenience and comfort of having your own car (or in some cities the inconvenience of having to find a parking space), and the second might reflect the inflexibility of schedule associated with shared vehicles. With NCAT=3, the third constant will be normalized to 0.

Stepwise Logit

Automatic model selection can be extremely useful for analyzing data with a large number of covariates for which there is little or no guidance from previous research. For these situations, LOGIT supports stepwise regression, allowing forward, backward, mixed, and interactive covariate selection, with full control over forcing, selection criteria, and candidate variables (including interactions). The procedure is based on Peduzzi, Holford, and Hardy (1980).

Stepwise regression results in a model that cannot be readily evaluated using conventional significance criteria in hypothesis tests, but the model may prove useful for prediction. We strongly suggest that you separate the sample into learning and test sets for assessment of predictive accuracy before fitting a model to the full data set. See the cautionary discussion and references in Statistics II, Chapter 2 Linear Models I: Linear Regression.

Logistic Regression in SYSTAT

Estimate Model Dialog Box

Logistic regression analysis provides tools for model building, model evaluation, prediction, simulation, hypothesis testing, and regression diagnostics.

Many of the results generated by modeling, testing, or diagnostic procedures can be saved to SYSTAT data files for subsequent graphing and display. New data handling features for the discrete choice model allow tremendous savings in disk space when choice attributes are constant, and in some models, performance is greatly improved.

To open the Logit Regression: Estimate Model dialog box, from the menus choose:

Analyze
Regression
Logit
Estimate Model...

Dependent. Select the variable you want to examine. The dependent variable should be a categorical numeric variable.

Independent(s). Select one or more continuous or categorical variables. To add an interaction to your model, use the Cross button. For example, to add the term SMOKE*LWT, add SMOKE to the Independent list and then add LWT by clicking Cross.

Conditional(s). Select conditional variables. To add interactive conditional variables to your model, use the Cross button. For example, to add the term SMOKE*LWT, add SMOKE to the Conditional list and then add LWT by clicking Cross.

Include constant. The constant is an optional parameter. Deselect Include constant check box to obtain a model through the origin. When in doubt, include the constant.

Confidence. Enter the level of confidence. The default value is 0.95.

Save results. You can save the following results to a new data file:

- Predicted. Saves the predicted probabilities. This is the default option.
- ROC. Select ROC to save the ROC curve points. This option is available only for binary logit models.

Category

You must specify numeric or string grouping variables that define cells. Specify for all categorical variables for which logistic regression analysis should generate design variables.

Categorical variable(s). Categorize an independent variable when it has several categories; for example, education levels, which could be divided into the following categories: less than high school, some high school, finished high school, some college, finished bachelor's degree, finished master's degree, and finished doctorate. On the other hand, a variable such as age in years would not be categorical unless age were broken up into categories such as under 21, 21–65, and over 65.

Coding. You must indicate the coding method to apply to categorical variables. The two available options include:

- **Dummy.** Produces dummy codes for the design variables instead of effect codes. Coding of dummy variables is the classic analysis of variance parameterization, in which the sum of effects estimated for a classifying variable is 0. If your categorical variable has k categories, k-1 dummy variables are created. This is the default coding option.
- Effect. Click Effect to produce parameter estimates that are differences from group means.

Discrete Choice

The discrete choice framework is designed specifically to model an individual's choices in response to the characteristics of the choices. Characteristics of choices are attributes such as price, travel time, horsepower, or calories; they are features of the alternatives that an individual might choose from. You can define set names for groups of variables, and create, edit, or delete variables.

SetNames. Specifies conditional variables. Enter a set name and then you can add and cross variables. To create a new set, click New. Repeat this process until you have defined all of your sets. You can edit existing sets by highlighting the name of the set in the SetNames drop-down list. To delete a set, select the set in the drop-down list and click Delete. When you click OK, SYSTAT will check that each set name has a definition. If a set name exists but no variables were assigned to it, the set is discarded and the set name will not be in the drop-down list when you return to this dialog box.

Alternatives. Specify an alternative for discrete choice. Characteristics of choice are features of the alternatives that an individual might choose between. It is needed only when the number of alternatives in a choice model varies per subject.

Number of categories. Specify the number of categories or alternatives the variable has. This is needed only for the by-choice data layout where the values of the dependent variable are not explicitly coded. This is only enabled when the Alternatives field is not empty.

Options

The Logit Options tab allows you to specify convergence and a tolerance level, and number of iterations, select complete or stepwise entry, and specify entry and removal criteria.

Convergence. Enter the largest relative change in any coordinate before iterations terminate.

Tolerance. Enter a value that prevents the entry of a variable that is highly correlated with the independent variables already included in the model. Enter a value between 0 and 1. Typical values are 0.01 or 0.001. The higher the value (closer to 1), the lower the correlation required to exclude a variable.

Iterations. Enter the maximum number of iterations for fitting your model.

Estimation. To control the method used to enter and remove variables from the equation.

- Complete. All independent variables are entered in a single step. This is the default option.
- Stepwise. Click the Stepwise estimation procedure. In stepwise procedure you can enter or remove the variables one at a time depending upon the stepwise options selected.

Stepwise options. The following alternatives are available for stepwise entry and removal:

- Backward. Begins with all candidate variables in the model. At each step, SYSTAT removes the variable with the largest Remove value.
- Forward. Begins with no variables in the model. At each step, SYSTAT adds the variable with the smallest Enter value.
- Both. Begins with no variables in the model. At each step, SYSTAT either adds the variable with the smallest Enter value, or removes the variable with the largest Remove value. This is the default stepwise option.
- Automatic. For Backward, SYSTAT automatically removes a variable from your model at each step. For Forward, SYSTAT automatically adds a variable to the model at each step.
- Interactive. At each step in the model building, you select the variable to enter into or remove from the model.

Probability. You can also control the criteria used to enter variables into and remove variables from the model:

■ Enter. Enter the probability to enter variable(s) into the model. The variable is entered into the model if its alpha value is less than the specified value. Enter a value between 0 and 1 (for example, 0.025). The default value is 0.15.

■ Remove. Enter the probability to remove variable(s) into the model. The variable is removed from the model if its alpha value is greater than the specified value. Enter a value between 0 and 1 (for example, 0.025). The default value is 0.15.

Maximum steps. Enter the maximum number of steps.

Force. Enter the number of variable. Forces the first *n* variables listed in your model to remain in the equation.

Results

Robust standard errors: Select the Robust standard errors check box for the robust standard error of parameter estimates when the model to be estimated by maximum likelihood is misspecified.

Prediction success table. Select the Prediction success table check box which summarizes the classificatory power of the model.

Classification table: Select the Classification table check box that summarizes the results of your fitted model based on a cutoff point.

Cutoff. Enter the desired cutoff point for displaying the classification table at that cutoff point. The default value is 0.5. The edit box is enabled only for binary logit models.

Means. Select the Means check box. It displays the average value for the variables in the model.

Derivatives. Select Derivatives check box. You can select the following options to produce a derivative table:

- Individual. Evaluates the change in the probability of outcome in response to a change in the covariate values. This is the default option.
- Average. Click Average to evaluate derivatives at the sample average of the covariates.

Deciles of Risk. After you successfully estimate your model using logistic regression, you can calculate deciles of risk. This feature is available only for binary logit models. This will help you make sure that your model fits the data and that the results are not unduly influenced by a handful of unusual observations. In using the deciles of risk table, please note that the goodness-of-fit statistics will depend on the grouping rule specified.

Two grouping rules are available:

- Based on probability values. Probability is reallocated across the possible values of the dependent variable as the independent variable changes. It provides a global view of covariate effects that is not easily seen when considering each binary submodel separately. In fact, the overall effect of a covariate on the probability of an outcome can be of the opposite sign of its coefficient estimate in the corresponding submodel. This is because the submodel concerns only two of the outcomes, whereas the derivative table considers all outcomes at once. By default, SYSTAT considers probability values from 0.1 to 1 in increments of 0.1. You may change these values.
- Based on equal counts per bin. Allocates approximately equal numbers of observations to each cell. Enter the number of cells or bins in the Number of bins text box.

Save residuals. Saves the residuals to new data file.

Quantiles

After estimating your model, you can calculate quantiles for any single-predictor in the model. This feature is available only for binary logit models. Quantiles of unadjusted data can be useful in assessing the suitability of a functional form when you are interested in the unconditional distribution of the failure times.

To open the Logit Regression: Quantiles dialog box, from the menus choose:

Analyze
Regression
Logit
Quantiles...

Covariate(s). The Covariate(s) list contains all of the variables specified in the Independent list in the Model tab of Logit Regression: Estimate Model dialog box. You can set any of the covariates to a fixed value by selecting the variable in the Covariates list and entering a value in the Value text box. This constraint appears as variable name—value in the Fixed value settings list after you click Add. The quantiles for the desired variable correspond to a model in which the covariates are fixed at these values. Any covariates not fixed to a value are assigned the value of 0.

Quantile value variable. By default, the first variable in the Independent variable list in the Model tab of Logit Regression: Estimate Model dialog box is shown in this field

You can change this to any variable from the list. This variable name is then issued as the argument for the QNTL command.

Fixed value settings. This box lists the fixed values on the covariates from which the logits are calculated.

Simulation

SYSTAT allows you to generate and save predicted probabilities and odds ratios, using the last model estimated to evaluate a set of logits. The logits are calculated from a combination of fixed covariate values and a grid of values taken by some of the covariates as specified by you in the dialog box shown below.

To open the Logit Regression: Simulation dialog box, from the menus choose:

Analyze
Regression
Logit
Simulation...

Covariate(s). The Covariate(s) list contains all of the variables specified in the Independent list on the Model tab of Logit Regression: Estimate Model dialog box. Select a covariate, enter a fixed value for the covariate in the Value text box, and click

the Add button corresponding to the Fixed value settings list. You can also specify a range of values for a covariate by entering the From, To and Increment values, and clicking the Add button corresponding to the Do variable(s) list.

Value. Enter the value at which the selected covariate should be fixed.

Fixed value settings. This box lists the fixed values on the covariates from which the logits are calculated.

From. Enter the starting value of the selected covariate.

To. Enter the ending value of the selected covariate.

Increment. Enter the increment for each step.

Do variable(s). This box lists the grid of values over which some or all of the covariates should vary.

When you specify a grid of values for one or more of the covariates, or when the model is multinomial, or when the dependent variable is a string variable, you should specify a file to which the simulation results will be saved.

Hypothesis

After you successfully estimate your model using logistic regression, you can perform post hoc analyses.

To open the Logit Regression: Hypothesis Test dialog box, from the menus choose:

Analyze
Regression
Logit
Hypothesis Test...

Enter the hypotheses that you would like to test. All the hypotheses that you list will be tested jointly in a single test. To test each restriction individually, you will have to revisit this dialog box each time. To reference dummies generated from categorical covariates, use square brackets, as in:

$$RACE[1] = 0$$

You can reproduce the Wald version of the z ratio by testing whether a coefficient is 0:

$$AGE = 0$$

If you don't specify a sub-vector, the first is assumed; thus, the constraint above is equivalent to:

$$AGE\{1\} = 0$$

Using Commands

After selecting a file with USE filename, continue with:

```
USE FILENAME
LOGIT
  CATEGORY grpvarlist / EFFECT DUMMY
  ALT var
  SET parameter=condvarlist
  MODEL depvar = CONSTANT + indvarexp
         depvar = condvarlist;polyvarlist
  SAVE filename/ Predicted or ROC
  ESTIMATE / CONFI = u PREDICT TOLERANCE = d CONVERGE = d ITER = n
             RSE MEANS CLASS=cutpoint DERIVATIVE=INDIVIDUAL or
             OF
             START / BACKWARD FORWARD ENTER=d REMOVE=d FORCE=n
             MAXSTEP=n
  STEP var or + or - / AUTO (sequence of STEPs)
  STOP
  SAVE
  DC / BINS=n P=p1,p2,...
  QNTL var / covar=d covar=d
  SIMULATE var1=d1, var2=d2, ... / D0 var1=d1,d2,d3, var2=d1,d2,d3
  HYPOTHESIS
  CONSTRAIN argument
  TEST
```

Usage Considerations

Types of data. LOGIT uses rectangular data only. The dependent variable is automatically taken to be categorical. To change the order of the categories, use the ORDER statement. For example,

```
ORDER CLASS / SORT=DESCENDING
```

LOGIT can also handle categorical predictor variables. Use the CATEGORY statement to create them, and use the EFFECTS or DUMMY options of CATEGORY to determine the coding method. Use the ORDER command to change the order of the categories.

Print options. For PLENGTH SHORT, the output gives N, the different strength of association, parameter estimates, confidence interval and associated tests. PLENGTH LONG gives, in addition to the above results, a correlation matrix of the parameter estimates.

MARKET, VA LOUISAND

Charles Brancon

Quick Graphs. In case of binary logistic regression, logit produces ROC curve as quick graph. Use the saved files from ESTIMATE or DC to produce diagnostic plots and fitted curves. See the examples.

Saving files. LOGIT saves simulation results, quantiles, or residuals, predicted values and ROC curve points.

BY groups. LOGIT analyzes data by groups.

Case frequencies. LOGIT uses the FREQ variable, if present, to weight cases. This inflates the total degrees of freedom to be the sum of the number of frequencies. Using a FREQ variable does not require more memory, however. Cases whose value on the FREQ variable are less than or equal to 0 are deleted from the analysis. The FREQ variable may take non-integer values. When the FREQ command is in effect, separate unweighted and weighted case counts are printed.

Weighting can be used to compensate for sampling schemes that stratify on the covariates, giving results that more accurately reflect the population. Weighting is also useful for market share predictions from samples stratified on the outcome variable in discrete choice models. Such samples are known as choice-based in the econometric literature (Manski and Lerman, 1977; Manski and McFadden, 1980; Coslett, 1980) and are common in matched-sample case-control studies where the cases are usually oversampled, and in market research studies where persons who choose rare alternatives are sampled separately.

Case weights. LOGIT does not allow case weighting.

Examples

The following examples begin with the simple binary logit model and proceed to more complex multinomial and discrete choice logit models. Along the way, we will examine diagnostics and other options used for applications in various fields.

Example 1 Binary Logit with One Predictor

To illustrate the use of binary logistic regression, we take this example from Hosmer and Lemeshow's book *Applied Logistic Regression*, referred to below as H&L. Hosmer and Lemeshow (2000) consider data on low infant birth weight (LOW) as a function of several risk factors. These include the mother's age (AGE), mother's weight during last menstrual period (LWT), race (RACE = 1: white, RACE = 2: black. RACE = 3: other), smoking status during pregnancy (SMOKE), history of premature labor (PTL), hypertension (HT), uterine irritability (UI), and number of physician visits during first trimester (FTV). The dependent variable is coded 1 for birth weights less than 2500 grams and coded 0 otherwise. These variables have previously been identified as associated with low birth weight in the obstetrical literature.

The first model considered is the simple regression of LOW on a constant and LWD, a dummy variable coded 1 if LWT is less than 110 pounds and coded 0 otherwise. (See H&L, Table 3.17.) LWD and LWT are similar variable names. Be sure to note which is being used in the models that follow.

The input is:

USE HOSLEM LOGIT MODEL LOW=CONSTANT+LWD ESTIMATE

The output is:

Logistic Regression

Categorical values encountered during processing are

Variabl	es	1	Levels
		+	~
LOW (2	levels)	: 0.00	0 1.000

Binary LOGIT Analysis

Dependent Variable : LOW Input Records : 189

Records for Analysis: 189

Sample Split

	Cat	egory Choices :		
_	***			~
	0 (REFERENCE)		
	1 (RESPONSE)		59
	Tot	al	Ì	89

Log-Likelihood Iteration History

		***************************************		_121 005
Log-Likelihood	at	Iteractoni	1	-113.231
Log-Likelihood	at			
Log-Likelihood	at	Iterations		-113.121
Log-Likelihood	at	Iteration4		-113.121
Log-Likelihood			- 1	-113.121

Information Criteria

AIC : 230.241 Schwarz's BIC : 236.725

Parameter Estimates

Parameter	Estimate	Standard	Error	Z	p-value	95 %	Confidence	Interval Upper
1 CONSTANT ,	-1.054 1.054		0.188 0.362	-5.594 2.914	0.000	~	-1.423 0.345	-0.685

Odds Ratio Estimates

Parameter Odds	Ratio	Standard Err	or 95	Sign Sign Sign Sign Sign Sign Sign Sign	Confidence Lower	Upper
2 LWD	2.868	1.0	37		1.412	5.826
Lon-Likelihood of	Constants	only Model	= LL(0)	: -	-117.336	

Log-Likelihood of Constants only Model = LL(0) : -117.336 2*[LL(N)-LL(0)] : 8.431 df : 1 p-value : 0.004

McFadden's Rho-squared | 0.036 Cox and Snell R-square | 0.044 Naglekerke's R-square | 0.061

Receiver Operating Characteristic Curve

Area under ROC Curve : 0.597

The output begins with a listing of the dependent variable and the sample split between 0 (reference) and 1 (response) for the dependent variable. A brief iteration history follows, showing the progress of the procedure to convergence. Finally, the parameter estimates, standard errors, standardized coefficients (popularly called z ratios). p values, 95% confidence intervals, and ratios and the log-likelihood are presented.

Coefficients

We can evaluate these results much like a linear regression. The coefficient on LWD is large relative to its standard error (z ratio = 2.914) and so appears to be an important predictor of low birth weight. The interpretation of the coefficient is quite different from ordinary regression, however. The logit coefficient tells how much the logit increases for a unit increase in the independent variable, but the probability of a 0 or 1 outcome is a nonlinear function of the logit.

Odds Ratio

The odds-ratio table provides a more intuitively meaningful quantity for each coefficient. The odds of the response are given by p/(1-p), where p is the probability of response, and the odds ratio is the multiplicative factor by which the odds change when the independent variable increases by one unit. In the first model, being a low-weight mother increases the odds of a low birth weight baby by a multiplicative factor of 2.868, with lower and upper confidence bounds of 1.41 and 5.83 and with standard error of odds ratio=1.037, respectively. Since the lower bound is greater than 1, the variable appears to represent a genuine risk factor. See Kleinbaum, Kupper, and Chambliss (1982) for a discussion.

Example 2 Binary Logit with Multiple Predictors

The binary logit example contains only a constant and a single dummy variable. We consider the addition of the continuous variable *AGE* to the model.

The input is:

USE HOSLEM LOGIT MODEL LOW=CONSTANT+LWD+AGE ESTIMATE / MEANS

The output is:

Logistic Regression

Categorical values encountered during processing are

Vari	abl	68		1		Le	vels	,	
									000
LOW	(2	level	s)	i	0.00	JU		Τ.	000

Binary LOGIT Analysis

Dependent Variable	-	LOW
Input Records		189
Records for Analysis		189

Sample Split

Ca	tegory	Choices	
0	(REFER	ENCE)	130
1	(RESPO	NSE)	59
m.	stal		189

Independent Variable Means

PARAMETER	1	0	-1	OVERALL
	4 .			
1 CONSTANT	1	1.000	1.000	1.000
2 LWD	1	0.356	0.162	0.222
3 AGE	1	22.305	23.662	23.238

Log-Likelihood Iteration History

Log-Likelihood	at	Iteration1	1	-131.005
Log-Likelihood	at	Iteration2	1	-112.322
Log-Likelihood	at	Iteration3	1	-112.144
Log-Likelihood	at	Iteration4	1	-112.143
Log-Likelihood	at	Iteration5	1	-112.143
Log-Likelihood			1	-112.143

Information Criteria

AIC | 230.287 Schwarz's BIC | 240.012

Parameter Estimates

			Estimate	Standard	Error	Z	p-value	95 %	Confidence Lower	Interval Upper
-		~ +				~		-		
1	CONSTANT	- 6	-0.027		1. 76	-0.035	0.972		-1.521	1.467
2	LWD	- 1	1.010		0.364	2.773	0.006		0.296	1.724
3	AGE	- 1	-0.044		1.6 2	-1.373	0.170		-0.107	0.019

Odds Ratio Estimates

Parameter	r Od	ds Ratio Sta	indar I Eri I	95 % Confidence Lower	
			1.6()	1.345	5.607 1.019
Log-Likelih 2*[LL(N)-L df p-value		f Constants or	nly Model = LL(C	3): -117.336 : 10.385 : 2 : 0.006	

McFadden's Rho-squared | 0.044 Cox and Snell R-square | 0.053 Naglekerke's R-square | 0.075

Receiver Operating Characteristic Curve

Area under ROC Curve : 0.644

We see the means of the independent variables overall and by value of the dependent variable. In this sample, there is a substantial difference between the mean *LWD* across birth weight groups but an apparently small *AGE* difference.

AGE is clearly not significant by conventional standards if we look at the coefficient/standard-error ratio. The confidence interval for the odds ratio (0.898, 1.019) includes 1.00, indicating no effect in relative risk, when adjusting for LWD. Before concluding that AGE does not belong in the model, H&L consider the interaction of AGE and LWD.

Interpretation of the Fitted Model

Consider the *HOSLEM* data. Here we fit the model using *LWT* and *RACE* as independent variables.

The input is:

USE HOSLEM
LOGIT
CATEGORY RACE / DUMMY
MODEL LOW = CONSTANT + LWT + RACE
SAVE PREPROB
ESTIMATE

The output is:

Logistic Regression

Categorical values encountered during processing are

Variables	\$ \$	Levels	
	+		
RACE (3 levels)	1.000	2.000	3.000
LOW (2 levels)	0.000	1.000	

Categorical variables are dummy coded with the highest value as reference

Binary LOGIT Analysis

Dependent Variable : LOW Input Records : 189 Records for Analysis : 189

Sample Split

	4	a	1	6	3	0	ľ	У		C.	11	0	1	C	6	S						
**		~	-	-	-		~	-	-	-	-	-	_	-	_	_	-	ą.	-	-	_	-
	D		(R	E	F	E	R	E	N	C	Ē	1					1		1	3	0
	1		{	R	E	S	þ	0	N	S	E)						ì			5	9
	T	0	t	a	1)		1	8	9

Log-Likelihood Iteration History

```
Log-Likelihood at Iteration1 | -131.005
Log-Likelihood at Iteration2 | -112.024
Log-Likelihood at Iteration3 | -111.632
Log-Likelihood at Iteration4 | -111.630
Log-Likelihood at Iteration5 | -111.630
Log-Likelihood | -111.630
```

Information Criteria

AIC		1	231.	259
Schwarz's	BIC	ì	244.	226

Logistic Regression

Parameter Estimates

Parameter	Estimate	Standard Error	Z	p-value	95 % Confidence Lower	Interval Upper
1 CONSTANT 2 LWT 3 RACE 1 4 RACE 2	1.286 -0.015 -0.481 0.600	0.797 0.006 0.357 0.509	1.615 -2.364 -1.347 1.180	0,106 0,018 0,178 0,238	-0.275 -0.028 -1.180 -0.397	2.848 -0.003 0.218 1.598

: 0.010

Odds Ratio Estimates

df

Parameter Odds	Ratio	Standard	Error 9	5 %	Confidence Lower	Interval Upper
LWT PA'I 1 4 RACE 2	0.985 0.618 1.823		0.006 0.221 0.928		0.973 0.307 0.672	0.997 1.244 4.943
Log-Likelihood of 2*[LL(N)-LL(0)]	Constants	s only Mo	del = LL(0)	0	-117.336 11.413	

p-value

McFadden's Rho-squared | 0.049 Cox and Snell R-square | 0.059 Naglekerke's R-square | 0.082

Receiver Operating Characteristic Curve

Area under ROC Curve : 0.648 SYSTAT save file created. 189 records written to SYSTAT save file.

From the *Parameter Estimates* table we get the estimated coefficients for the continuous variable *LWT* and the two dummy variables *RACE_1* and *RACE_2*. The estimates of the fitted values, logit and the standard error of the logit can be obtained in SYSTAT by giving the SAVE command prior to ESTIMATE command. The saved file *PREPROB* contains the estimated logits, standard error of the logits, predicted probabilities, upper and, lower bounds of the predicted probability.

The predicted probabilities are obtained from the following equation:

$$\hat{\pi}(x) = e^{g(x)}/(1+e^{g(x)})$$

The estimated logit is obtained from the following equation:

$$\hat{g}(x) = 1.286 - 0.015 * LWT - 0.481 * RACE_1 + 0.6 * Race_2$$

Using the above equations we can obtain the estimated logit for a 150 pound white woman. The estimated logit is:

$$\hat{g}(x) = 1.286 - 0.015 * 150 - 0.481 * 1 + 0.6 * 0 = -1.445$$

And the estimated probability is:

$$\hat{\Pi}(x) = \frac{e^{-1.445}}{1 + e^{-1.445}} = 0.191$$

The 95% confidence interval for this estimated probability is (0.122, 0.285).

Graphical presentation of the Fitted Model

We can also present graphically the effect of weight of the mother at the last menstrual on birth weight taking into account RACE = WHITE as constant variable.

The input is:

MERGE Hoslem preprob SELECT (RACE =1) PLOT PROB PLOWER PUPPER*LWT / OVERLAY, YLABEL = 'Estimated probability', xmin =90, xmax = 250

The output is:

Data for the following results were selected according to SELECT (RACE =1)

The graph gives the estimated probability of low weight birth and the confidence band as the function of *LWT* and *RACE*=WHITE.

Example 3 Binary Logit with Interactions

In this example, we fit a model consisting of a constant, a dummy variable, a continuous variable, and an interaction. Note that it is not necessary to create a new interaction variable; this is done for us automatically by writing the interaction on the MODEL statement. Let's also add a prediction table for this model.

The input is:

USE HOSLEM
LOGIT
MODEL LOW=CONSTANT+LWD+AGE+LWD*AGE
ESTIMATE / PREDICTION
SAVE SIM319/"SAVE ODDS RATIOS FOR H and L TABLE 3.19"
SIMULATE CONSTANT=0,AGE=0,LWD=1 / DO LWD*AGE =15,45,5
USE SIM319
LIST

The output is:

Logistic Regression

Categorical values encountered during processing are

Variable	es	Les	/els
		+	
LOW (2	levels)	0.000	1.000

Total : 12

Binary LOGIT Analysis

Dependent Variable : LOW Input Records : 189 Records for Analysis : 189

Sample Split

Category Choices	1	
	+-	
0 (REFERENCE)	1	130
1 (RESPONSE)	1	59
Total	Į.	189

Log-Likelihood Iteration History

Log-Likelihood	at	Iteration1	1	-131.005
Log-Likelihood				
Log-Likelihood	at	Iteration3	1	-110.573
Log-Likelihood				
Log-Likelihood	at	Iteration5	ŀ	-110.570
Log-Likelihood			1	-110.570

Information Criteria

AIC	1	229.	140
Schwarz's	BIC	242.	107

Parameter Estimates

Parameter	1	Standard Error	Z	p-value	95	g.	Confidence Lower	Interval Upper
1 CONSTANT 2 LWD 3 AGE 4 AGE*LWD		0.910 1.725 0.040 0.076	0.851 -1.127 -2.008 1.746	0.395 0.260 0.045 0.081	***		-1.009 -5.325 -0.157 -0.016	2.558 1.436 -0.002 0.281

Odds Ratio Estimates

Parameter Odd:	s Ratio Standa	rd Error 95	% Confidence Inte	Upper
2 LWD 1 3 AGE 4 AGE*LWD	0.143 0.924 1.141	0.247 0.037 0.086	0.005 0.854 0.984	4.206 0.998 1.324
Log-Likelihood of 2*[LL(N)-LL(0)] df p-value	Constants only		: -117.336 : 13.532 : 3 : 0.004	

McFadden's Rho-squared | 0.058 Cox and Snell R-square | 0.069 Naglekerke's R-square | 0.097

Model Prediction Success Table

Actual Choice	Predicted Choice Response Reference	Actual Total
Response Reference Fredicted Total Correct Success Index Total Correct	21,280 37.720 37.720 92.280 59,000 130.000 0.361 0.710 0.049 0.022	130.000
Sensitivity False Reference	0.361 Specificity 0.639 False Respon	0.710 nse 0.290

Receiver Operating Characteristic Curve

Area under ROC Curve : 0.659

Logistic Regression: Simulation Simulation Vector

	xed								
				 +-	-00			 	
1	CONS	TANT	1	2 2	0	. 0	000		
2	LWD				1	. (000		
3	AGE			1	0	. (000		

Loop Paramete	r ;	Maximum	Minimum	Increment
	. v 0			
4 AGE*LWD	- 1	15.000	45.000	5.000

SYSTAT save file created, 7 records written to SYSTAT save file.

List C Case	1	LOGIT ODDSL	SELOGIT ODDSU	PROB LOOP(1)	PLOWER	Farr	
1	1	0.039	0.660	0.510 15.000	0.222	1 3 4	1.4
2	- 1	0.700	0.404	0.668	0.477	1.8.0	Aug. 24 1 26 1 26 1
3	1	1.361	0.420 8.877	0.796 25.000	0.631	1,8-9	5. μ. ά 3
4	!	2.022 1.954	0.690	0.883 30.000	0.661	, 4+	7 . 1 C ₁
5	1 1	2.683	1.031	0.936 35.000	0.660	0. 11	14.626
6	0 11	3.344 1.854	1.391 432.767	0.966 40.000	0.650	0. +44	.8. 122
7	- 4	4.005 1.745	1.759 1724.151	0.982 45.000	0.636	0.044	51.859

At this point, it would be useful to assess the model as a whole. One method of model evaluation is to consider the likelihood-ratio statistic. This statistic tests the hypothesis that all coefficients except the constant are 0, much like the *F* test reported below linear regressions. The likelihood-ratio statistic (*LR* for short) of 13.532 is chi-squared with three degrees of freedom and a *p* value of 0.004. The degrees of freedom are equal to the number of covariates in the model, not including the constant. McFadden's rho-squared is a transformation of the *LR* statistic intended to mimic an *R*-squared. It is always between 0 and 1, and a higher rho-squared corresponds to more significant results. Rho-squared tends to be much lower than *R*-squared though, and a low number does not necessarily imply a poor fit. Values between 0.20 and 0.40 are considered very satisfactory (Hensher and Johnson, 1981). Along with McFadden's Rho-squared, SYSTAT also displays Cox and Snell R square and Naglekerke's R square (Naglekarke, 1991). The Cox and Snell R square is based on log likelihoods and the sample size. On the other hand Naglekerke R square adjusts Cox and Snell so that a value of 1 can be achieved.

Models can also be assessed relative to one another. A likelihood-ratio test is formally conducted by computing twice the difference in log-likelihoods for any pair of nested models. Commonly called the G statistic, it has degrees of freedom equal to the difference in the number of parameters estimated in the two models. Comparing the current model with the model without the interaction, we have

$$G = 2 * (112.14338 - 110.56997) = 3.14684$$

with one degree of freedom, which has a p value of 0.076. This result corresponds to the bottom row of H&L's Table 3.17. The conclusion of the test is that the interaction approaches significance.

Prediction Success Table

The output also includes a prediction success table, which summarizes the classificatory power of the model. The rows of the table show how observations from each level of the dependent variable are allocated to predicted outcomes. Reading across the first (*Response*) row we see that of the 59 cases of low birth weight, 21.28 are correctly predicted and 37.72 are incorrectly predicted. The second row shows that of the 130 not-*LOW* cases, 37.72 are incorrectly predicted and 92.28 are correctly predicted.

By default, the prediction success table sums predicted probabilities into each cell; thus, each observation contributes a fractional amount to both the *Response* and *Reference* cells in the appropriate row. Column sums give predicted totals for each outcome, and row sums give observed totals. These sums will always be equal for models with a constant.

The table also includes additional analytic results. The *Correct* row is the proportion successfully predicted, defined as the diagonal table entry divided by the column total, and *Tot.Correct* is the ratio of the sum of the diagonal elements in the table to the total number of observations. In the *Response* column, 21.28 are correctly predicted out of a column total of 59, giving a correct rate of 0.3607. Overall, 21.28 + 92.28 out of a total of 189 are correct, giving a total correct rate of 0.6009.

Success Ind. is the gain that this model shows over a purely random model that assigned the same probability of LOW to every observation in the data. The model produces a gain of 0.0485 over the random model for responses and 0.0220 for reference cases. Based on these results, we would not think too highly of this model.

In the biostatistical literature, another terminology is used for these quantities. The *Correct* quantity is also known as **sensitivity** for the *Response* group and **specificity**

for the *Reference* group. The *False Reference* rate is the fraction of those predicted to respond that actually did not respond, while the *False Response* rate is the fraction of those predicted to not respond that actually responded.

We prefer the prediction success terminology because it is applicable to the multinomial case as well.

Simulation

To understand the implications of the interaction, we need to explore how the relative risk of low birth weight varies over the typical child-bearing years. This changing relative risk is evaluated by computing the logit difference for base and comparison groups. The logit for the base group, mothers with LWD = 0, is written as L(0); the logit for the comparison group, mothers with LWD = 1, is L(1). Thus,

```
L(0) = CONSTANT + B2*AGE

L(1) = CONSTANT + B1*LWD + B2*AGE + B3*LWD*AGE

= CONSTANT + B1 + B2*AGE + B3*AGE

since, for L(1), LWD = 1. The logit difference is
```

$$L(1)-L(0) = B1 + B3*LWD*AGE$$

which is the coefficient on LWD plus the interaction multiplied by its coefficient. The difference L(I) - (0) evaluated for a mother of a given age is a measure of the log relative risk due to LWD being 1. This can be calculated simply for several ages, and converted to odds ratios with upper and lower confidence bounds, using the SIMULATE command.

SIMULATE calculates the predicted logit, predicted probability, odds ratio, upper and lower bounds, and the standard error of the logit for any specified values of the covariates. In the above command, the constant and age are set to 0, because these coefficients do not appear in the logit difference. *LWD* is set to 1, and the interaction is allowed to vary from 15 to 45 in increments of five years. The only printed output produced by this command is a summary report.

SIMULATE does not print results when a DO LOOP is specified because of the potentially large volume of output it can generate. To view the results, use the commands:

USE SIM319

The results give the effect of low maternal weight (LWD) on low birth weight as a function of age, where LOOP(1) is the value of AGE * LWD (which is just AGE) and ODDSU and ODDSL are upper and lower bounds of the odds ratio. We see that the effect of LWD goes up dramatically with age, although the confidence interval becomes quite large beyond age 30. The results presented here are calculated internally within LOGIT and thus differ slightly from those reported in H&L, who use printed output with fewer decimal places of precision to obtain their results.

Example 4 Deciles of Risk and Model Diagnostics

Before turning to more detailed model diagnostics, we fit H&L's final model. As a result of experimenting with more variables and a large number of interactions, H&L arrive at the model used here.

The input is:

The categorical variable *RACE* is specified to have three levels. By default LOGIT uses the highest category as the reference group, although this can be changed. The model includes all of the main variables except *FTV*, with *LWT* and *PTL* transformed into dummy variable variants *LWD* and *PTD*, and two interactions. To reproduce the results of Table 5.1 of H&L, we specify a particular set of cut points for the deciles of risk table.

The output is:

Logistic Regression

Categorical values encountered during processing are

Variables	1	1	evels	
	+			
RACE (3 levels) 1.	000	2.000	3.000
LOW (2 levels)	: 0.	000	1.000	

Categorical variables are dummy coded with the highest value as reference

Binary LOGIT Analysis

Dependent Variable	:	LOW
Input Records	:	189
Records for Analysis	1	189

Sample Split

Ca	teg	ory	Choices	S ;	
		-		+-	
0	(RE	FERI	ENCE)	1	130
1	(RE	SPO	NSE)	1	54
To	tal			1	189

Log-Likelihood Iteration History

Log-Likelihood	at	Iteration		-131.005
Log-Likelihood	at	Iteration2	1	-98.066
Log-Likelihood	at	Iteration3	1	-96.096
Log-Likelihood	at	Iteration4		-96.006
Log-Likelihood	at	Iteration5	,	-96.006
Log-Likelihood	at	Iteration6	1	-96.006
Log-Likelihood				-96.006

Information Criteria

AIC		1	214.012
Schwarz's	BIC	1	249.672

Parameter Estimates

Parameter :	Estimate	Standard Error	Z	p-value	95 Confidence In	terval
					Lower	Upper
1 CONSTANT	0.245	1.068	0.232	0.816	-1.845	
2 AGE	-0.084	0.046	-1.843	0.065	-0.173	10.
3 RACE 1	-0.760	0.464	-1.637	0.102	-1.669	0.156
4 RACE 2	0.323	0.532	0.608	1. 43	-0.719	1.300
5 SMOKE	1.153	0.458	2.515	6.012	0.255	11,
6 HT .!	1.359	0.661	2.055	0.046	0.463	, , , , ,
7 UI "	0.728	0.479	1.519	0.129	-0.212	1.168
8 LWD . ' !	-1.730	1.468	-0.9.0	0.354	- 53-	1. 4 .
9 PTD ''	1.232	0.471	2.613	0.009	0.308	. 1 1
10 AGE*LWD	0.147	0.083	1.779	0.075	0.615	6.410
11 SMOKE*LWD	-1.407	0.819	-1.719	6.086	-3.012	6 17

Odds Ratio Estimates

Parameter	Odds Ratio	Standard Error	95 % Confidence Lower	Interval Upper
2 AGE	0.919	0.042	0.841	1.005
3 RACE 1	0.468	0.217	0.188	1.162
4 RACE 2	1.382	0.735	0.487	3.920
5 SMOKE	3.168	1.452	1.290	7.781
6 HT	3.893	2.575	1.065	14.235
7 UI	2.071	0.993	0.809	5.301
8 LWD	0.177	0.331	0.005	6.902
9 PTD	3.427	1.615	1.360	8.632
10 AGE*LWD	1.159	0.096	0.985	1.363
11 SMOKE*LWI	0.245	0.200	0.049	1.218

Log-Likelihood of	Constants	only	Model	10	LL(0)	1	-117.336
2*[LL(N)-LL(0)]		-				2	42.660
df							10
p-value						-	0.000

McFadden's Rho-squared | 0.182 Cox and Snell R-square | 0.202 Naglekerke's R-square | 0.284

Receiver Operating Characteristic Curve

Area under ROC Curve : 0.785

Logistic Regression: Deciles of Risk Deciles of Risk Records Processed : 189 Sum of weights : 189.000

	Statistic	p-value	df
Hosmer-Lemeshow*	5.231	0.733	8.000
Pearson	183.443	0.374	178.000
Deviance	192.012	0.224	178.000

* Large influence of one or more deciles may affect statistic.

Category	0.069	0.094	0.153	0.206	0.278	0.331	0.423
Response Observation Expected Value Reference Observation Expected Value Avgerage Probability	0.854 18.000 17.146 0.047	1.(6(1.641 19.000 18.359 0.082	4 00 2.252 14.000 15.748 0.125	2.000 3.646 18.000 16.354 0.182	6.000 5.017 14.000 14.983 0.251	6.700 5.566 12.000 12.434 0.309	12.000 11.184 0.379
Category	0.431	0.611	1.000				
Response Observation Expected Value Reference Observation Expected Value Avgerage Probability	10,000 8,570 9,000 10,430 0,451	3.000 10.517 10.000 8.483 0.554	15.000 14.1.2 4.000 4.878 0.743				

SYSTAT save file created. 189 records written to SYSTAT save file.

Deciles of Risk

How well does a model fit the data? Are the results unduly influenced by a handful of unusual observations? These are some of the questions we try to answer with our model assessment tools. Besides the prediction success table and likelihood-ratio tests (see the "Binary Logit with Interactions" example), the model assessment methods in LOGIT include the Pearson chi-square, deviance and Hosmer-Lemeshow statistics, the deciles of risk table, and a collection of residual, leverage, and influence quantities. Most of these are produced by the DC command, which is invoked after estimating a model.

The table in this example is generated by partitioning the sample into 10 groups based on the predicted probability of the observations. The row labeled *Category* gives the end points of the cells defining a group. Thus, the first group consists of all observations with predicted probability between 0 and 0.069, the second group covers the interval 0.069 to 0.094, and the last group contains observations with predicted probability greater than 0.611.

The cell end points can be specified explicitly as we did or generated automatically by LOGIT. Cells will be equally spaced if the DC command is given without any arguments, and LOGIT will allocate approximately equal numbers of observations to each cell when the BINS option is given, as:

which requests 10 cells. Within each cell, we are given a breakdown of the observed and expected 0's (*Ref*) and 1's (*Resp*) calculated as in the prediction success table. Expected 1's are just the sum of the predicted probabilities of 1 in the cell. In the table, it is apparent that observed totals are close to expected totals everywhere, indicating a fairly good fit. This conclusion is borne out by the Hosmer-Lemeshow statistic of 5.23, which is approximately chi-squared with eight degrees of freedom. H&L discuss the degrees of freedom calculation.

In using the deciles of risk table, it should be noted that the goodness-of-fit statistics will depend on the grouping rule specified and that not all statistics programs will apply the same rules. For example, some programs assign all tied probabilities to the same cell, which can result in very unequal cell counts. LOGIT gives the user a high degree of control over the grouping, allowing you to choose among several methods. The table also provides the Pearson chi-square and the sum of squared deviance residuals, assuming that each observation has a unique covariate pattern.

Regression Diagnostics

DELBETA(3)

If the DC command is preceded by a SAVE command, a SYSTAT data file containing regression diagnostics will be created (Pregibon, 1981; Cook and Weisberg, 1982). The SAVE file contains these variables:

Value of Dependent Variable ACTUAL Class Assignment (1 or 0) PREDICT Predicted probability PROB Diagonal element of Pregibon "hat" matrix LEVERAGE(1) Component of LEVERAGE(1) LEVERAGE(2) PEARSON Pearson Residual for observation Variance of Pearson Residual **VARIANCE** Standardized Pearson Residual STANDARD DEVIANCE Deviance Residual Change in Deviance chi-square DELDSTART Change in Pearson chi-square DELPSTART Standardized Change in Beta DELBETA(1) Standardized Change in Beta DELBETA(2)

LEVERAGE(1) is a measure of the influence of an observation on the model fit and is H&L's h. DELBETA(1) is a measure of the change in the coefficient vector due to

Standardized Change in Beta

the observation and is their δ_{β} (delta beta), DELPSTAT is based on the squared residual and is their δ_{β} (delta chi-square), and DELDSTAT is the change in deviance and is their δ_{D} (delta D). As in linear regression, the diagnostics are intended to identify outliers and influential observations. Plots of PEARSON, DEVIANCE, LEVERAGE(I), DELDSTAT, DELPSTAT against the CASE will highlight unusual data points. H&L suggest plotting δ_{β} , δ_{D} , and δ_{β} against PROB and against h.

There is an important difference between our calculation of these measures and those produced by H&L. In LOGIT, the above quantities are computed separately for each observation, with no account taken of covariate grouping; whereas, in H&L, grouping is taken into account. To obtain the grouped variants of these statistics, several SYSTAT programming steps are involved. For further discussion and interpretation of diagnostic graphs, see H&L's Chapter 5. We include the probability plot of the residuals from our model, with the variance of the residuals used to size the plotting characters.

We also display an example of the graph on the cover of H&L. The original cover was plotted using SYSTAT Version 5 for the Macintosh. There are slight differences between the two plots because of the scales and number of iterations in the model fitting, but the examples are basically the same. H&L is an extremely valuable resource for learning about graphical aids to diagnosing logistic models.

Example 5 Quantiles

In bioassay, it is common to estimate the dosage required to kill 50% of a target population. For example, a toxicity experiment might establish the concentration of nicotine sulphate required to kill 50% of a group of common fruit flies (Hubert, 1984). More generally, the goal is to identify the level of a stimulus required to induce a 50% response rate, where the response is any binary outcome variable and the stimulus is a continuous covariate. In bioassay, stimuli include drugs, toxins, hormones, and insecticides; the responses include death, weight gain, bacterial growth, and color change, but the concepts are equally applicable to other sciences.

To obtain the LD50 in LOGIT, simply issue the QNTL command. However, don't make the mistake of spelling "quantile" as QU, which means QUIT in SYSTAT. QNTL will produce not only the LD50 but also a number of other quantiles as well, with upper

and lower bounds when they exist. Consider the following data WILL from Williams (1986):

		RESPONSE	LDOSE	COUNT
CASE	1	1	-2	1
CASE	2	0	-2	4
CASE	3	1	-1	3
CASE	4	0	-1	2
CASE	5	1	0	2
CASE	6	0	0	3
CASE	7	1	1	4
CASE	8	0	1	1
CASE	9	1	2	5

Here, *RESPONSE* is the dependent variable, *LDOSE* is the logarithm of the dose (stimulus), and *COUNT* is the number of subjects with that response.

The input is:

```
USE WILL
FREQ COUNT
LOGIT
MODEL RESPONSE=CONSTANT+LDOSE
ESTIMATE
ONTL
```

The output is:

Logistic Regression

Case frequencies determined by value of variable COUNT Categorical values encountered during processing are

Variables	1	B	Levels
		+	
RESPONSE	(2 levels)] 0.0	1.000

Binary LOGIT Analysis

Dependent Variable	2	RESPONSE
Analysis is Weighted by	2	COUNT
Sum of Weights	2	25.000
Input Records	-	9
Records for Analysis	-	9

Sample Split

Category	1	Count	Weighted	Count
	+-			
O (REFERENCE)	1	4	1	0.000
1 (RESPONSE)	1	5		5.000
Total	1	9	2	25.000

Log-Likelihood Iteration Mistory

Log-Likelihood	at	Iterationl	1	-17.329
Log-Likelihood	at	Iteration2	1	-13.277
Log-Likelihood	at	Iteration3	1	-13.114
Log-Likelihood	at	Iteration4	1	-13.112
Log-Likelihood	at	Iteration5	1	-13.112
Log-Likelihood			1	-13.112

Information Criteria

AIC : 30.224 Schwarz's BIC : 30.618

Parameter Estimates

Paramerei	Estimate	Standard Error	2	p-value	95 % Confidence Lower	
L JUNUTANI .		0.496	1.138	0.255	-0.408	1.536
2 LDOSE		0.394	2.334	0.020	0.147	1.691

Odds Ratio Estimates

Parameter : Odds Ratio Standard Error	95 % Confidence Lower	Interval Upper
2 LDOSE : 2.507 0.987	1.159	5.425
Log-Likelihood of Constants only Model = 2°[LL(N)-LL(0)] df p-value	LL(0): -16.825 : 7.427 : 1 : 0.006	
McFadden's Rho-squared ! 0.221		

McFadden's Rho-squared : 0.221 Cox and Snell R-square : 0.562 Naglekerke's R-square : 0.576

Receiver Operating Characteristic Curve

Area under ROC Curve : 0.800

Logistic Regression: Quantiles Evaluation Vector

1 CONSTANT : 1.000 2 LDOSE : VALUE

Quantile Table

Probability	LOGIT	LDOSE	Upper	Lower
0.999 0.995 0.995 0.995 0.950 0.900 0.750 0.667 0.500 0.333 0.250 0.100 0.050 0.025 0.010	6.907 5.293 4.595 3.664 2.944 2.197 1.099 0.695 0.000 ~0.695 -1.099 -2.197 ~2.944 -4.595 -5.293 ~6.907	6.900 5.145 4.385 3.372 2.590 1.777 0.582 0.142 -0.613 -1.369 -3.004 -3.817 -4.599 -5.612 -6.372 -8.127	44.788 33.873 29.157 22.875 18.042 13.053 5.928 3.551 0.746 -0.347 -0.731 -1.552 -2.046 -2.503 -3.081 -3.508 -4.486	3.518 2.536 2.105 1.519 1.050 0.530 -0.445 -1.047 -3.364 -7.392 -9.987 -17.266 -22.281 -27.126 -33.416 -38.136 -49.055

This table includes LD (probability) values between 0.001 and 0.999. The median lethal *LDOSE* (log-dose) is -0.613 with upper and lower bounds of 0.746 and -3.364 for the default 95% confidence interval, corresponding to a dose of 0.542 with limits 2.11 and 0.0346.

Indeterminate Confidence Intervals

Quantile confidence intervals are calculated using Fieller bounds (Finney, 1978), which can easily include positive or negative infinity for steep dose-response relationships. In the output, these are represented by the SYSTAT missing value. If this happens, an alternative suggested by Williams (1986) is to calculate confidence bounds using likelihood-ratio (LR) tests. See Cox and Oakes (1984) for a likelihood profile example. Williams observes that the LR bounds seem to be invariably smaller than the Fieller bounds even for well-behaved large-sample problems.

With the BASIC commands of SYSTAT, the search for the LR bounds can be conducted easily. However, if you are not familiar with LR testing of this type, please refer to Cox and Oakes (1984) and Williams (1986) for further explanation, because our account here is necessarily brief.

We first estimate the model of *RESPONSE* on *LDOSE* reported above, which will be the unrestricted model in the series of tests. The key statistic is the final log-likelihood of -13.112. We then need to search for restricted models that force the LD50 to other values and that yield log-likelihoods no worse than -13.112 - 1.92 = -15.032. A difference in log-likelihoods of 1.92 marks a 95% confidence interval because 2 * 1.92 = 3.84 is the 0.95 cutoff of the chi-squared distribution with one degree of freedom.

A restricted model is estimated by using a new independent variable and fitting a model without a constant. The new independent variable is equal to the original minus the value of the hypothesized LD50 bound. Values of the bounds will be selected by trial and error.

Thus, to test an LD50 value of 0.4895, we could type:

LOGIT LET LDOSEB=LDOSE-.4895 MODEL RESPONSE=LDOSEB ESTIMATE LET LDOSEB=LDOSE+2.634 MODEL RESPONSE=LDOSEB ESTIMATE

The LET command is used to create the new variable *LDOSEB* "on the fly," and the new model is then estimated without a constant. The only important part of the results from a restricted model is the final log-likelihood. It should be close to -15.032 if we have found the boundary of the confidence interval. We won't show the results of these estimations except to say that the lower bound was found to be -2.634 and is tested using the second LET statement. Note that the value of the bound is subtracted from the original independent variable, resulting in the subtraction of a negative number. While the process of looking for a bound that will yield a log-likelihood of -15.032 for these data is one of trial and error, it should not take long with the interactive program. Several other examples are provided in Williams (1986). We were able to reproduce most of his confidence interval results, but for several models his reported LD50 values seem to be incorrect.

Quantiles and Logistic Regression

The calculation of LD values has traditionally been conducted in the context of simple regressions containing a single predictor variable. LOGIT extends the notion to multiple

regression by allowing you to select one variable for LD calculations while holding the values of the other variables constant at prespecified values. Thus,

will produce the quantiles for AGE with the other variables set as specified. The Fieller bounds are calculated, adjusting for all other parameters estimated.

Example 6 Multinomial Logit

We will illustrate multinomial modeling with an example, emphasizing what is new in this context. If you have not already read the example on binary logit, this is a good time to do so. The data used here have been extracted from the National Longitudinal Survey of Young Men, 1979. Information on 200 individuals is supplied on school enrollment status (NOTENR = 1 if not enrolled, 0 otherwise), log10 of wage (LW), age, highest completed grade (EDUC), mother's education (MED), father's education (FED), an index of reading material available in the home (CULTURE - 1 for least, 3 for most), mean income of persons in father's occupation in 1960 (FOMY), an IQ measure, a race dummy (BLACK = 0 for white), a region dummy (SOUTH = 0 for non-South), and the number of siblings (NSIBS).

We estimate a model to analyze the *CULTURE* variable, predicting its value with several demographic characteristics. In this example, we ignore the fact that the dependent variable is ordinal and treat it as a nominal variable. (See Agresti, 2002, for a discussion of the distinction.)

The input is:

```
USE NLS
FORMAT 4
PLENGTH LONG
LOGIT
MODEL CULTURE=CONSTANT+MED+FOMY
ESTIMATE / MEANS, PREDICT, CLASS, DERIVATIVE-INDIVIDUAL,
PLENGTH
```

These commands look just like our binary logit analyses with the exception of the DERIVATIVE and CLASS options, which we will discuss below.

The output is:

Logistic Regression

Categorical values encountered during processing are

Variables	1		Levels	
CULTURE (3		1.000	2.000	3.000

Total : 21

Multinomial LOGIT Analysis

Dependent Variable : CULTURE Input Records : 200 Records for Analysis : 200

Sample Split

Category Choices	1
	+
1	1 12
2	; 49
3 (REFERENCE)	139
Total	200

Independent Variable Means

PARAMETER	4	1	2	3	OVERALL
I MICAPILITE					
1 CONSTANT 2 MED 3 FOMY	- į	1.0000 8.7500 4551.5000	1.0000 10.1837 5368.8571	1.0000 11.4460 6116.1367	1.0000 10.9750 5839.1750

Log-Likelihood Iteration History

Information Criteria

ATC : 287.5692 Schwarz's BIC : 307.3591

Parameter Estimates

Parameter Estimates					T-t-n-mira?
Parameter Estimate	Standard Error	Z	p-value	95 % Confidence Lower	Upper
1 CONSTANT 5.0638 2 MED -0.4228 3 FOMY -0.0006	1.6964 0.1423 -	Group: 2.9850 2.9711 2.6034	1 0.0028 0.0030 0.0092	1.7389 -0.7017 -0.0011	8.3886 -0.1439 -0.0002
1 CONSTANT 2.5435 2 MED -0.1917 3 FOMY -0.0003	0.9834	Group: 2.5864 2.4956 2.1884	0.0097 0.0126 0.0286	0.6161 -0.3423 -0.0005	4.4709 -0.0411 0.0000

Odds Ratio Estimates

Paramete.	r 0	dds Ratio	Standard Error	95 & Confidence Lower	Interval Upper
2 MED 3 FOMY 2 MED 3 FOMY	:	0.6552 0.9994 0.8255 0.9997	Choice Group: 1 0.0932 0.0002 Choice Group: 2 0.0634 0.0001	0.4958 0.9989 0.7101 0.9995	0.8660 0.9998 0.9597
Log-Likeli 2*[LL(N)-L] df p-value	hood L(0)]	of Constant	s only Model = LL(0): -153.2535 : 30.9379 : 4 : 0.0000	

McFadden's Rho-squared : 0.1009 Cox and Snell R-square : 0.1433 Naglekerke's R-square : 0.1828

Wald Tests on Effects Across all Choices

Effect	Wald	Statistic	Chi-sqare Significance	df
1 CONSTANT		12.0028	0.0025	2.0000
2 MED		12.1407	0.0023	2.0000
3 FOMY		9.4575	0.0088	2.0000

Covariance Matrix

1 2.9711	2		4	£,	6
2 0.1746 3 -0.0.1 4 0.5097 5 -0.0274 6 0.0000	0.0202 3.0306 -0.0282 0.0027 0.0000	0.0000 0.0000 0.0000	0.9670 -0.0541 -0.0001	0.0059	0.000

Correlation Matrix

1	1.0000	-0.7234	-0.6151			6
3 4 5	-0.7234 -0.6151 0.3055 -0.2100 -0.1659	1.0000 -0.0633 -0.2017 0.2462 -0.0149	-0.0633 1.0000 -0.1515 -0.0148 0.2284	0.3055 -0.2017 -0.1515 1.0000 -0.7164 -0.5544	-0.2100 0.2462 -0.0148 -0.7164 1.0000	-0.1659 -0.0149 0.2284 -0.5544 -0.1570

Individual variable derivatives averaged over all observations.

PARAMETER	1	1	2	3
1 CONSTANT 2 MED 3 FOMY	i	-0.0174 -	0.3441 0.0251 0.0000	-0.5474 0.0425 0.0001

Model Prediction Success Table

Actual Choice	Pre	edicted Ch	oice	Actual Total
	1	2	-5	
1	1.8761	4.0901	6.0338	12.0000
2	3.6373	13.8826	31.4801	49.0000
3	6.4865	31.0273	101.4862	139.0000
Predicted Total	12.0000	49.0000	139.0000	200.0000
Correct	0.1563	0.2833	0.7301	
Success Index	0.0963	0.0383	0.0351	
Total Correct	0.5862			

Model Classification Table

Actual Choice	Pre	edicted Ch	oice	Actual Total
	1	2	3	
	+			
1	: 1.0000	3.0000	8.0000	12.0000
2	0.0000	4.0000	45,0000	49.0000
3	1.0000	5.0000	133.0000	139.0000
Predicted Total	2.0000	12.0000	186.0000	200.0000
Correct	0.0833	0.0816	0.9568	
Success Index	0.0233	-0.1634	0.2618	
Total Correct	0.6900			

The output begins with a report on the number of records read and retained for analysis. This is followed by a frequency table of the dependent variable; both weighted and unweighted counts would be provided if the FREQ option had been used. The means table provides means of the independent variables by value of the dependent variable. We observe that the highest educational and income values are associated with the most reading material in the home. Next, an abbreviated history of the optimization process lists the log-likelihood at each iteration, and finally, the estimation results are printed.

Note that the regression results consist of two sets of estimates, labeled *Choice Group 1* and *Choice Group 2*. It is this multiplicity of parameter estimates that differentiates multinomial from binary logit. If there had been five categories in the dependent variable, there would have been four sets of estimates, and so on. This volume of output provides the challenge to understanding the results.

The results are a little more intelligible when you realize that we have really estimated a series of binary logits simultaneously. The first submodel consists of the two dependent variable categories 1 and 3, and the second consists of categories 2 and 3. These submodels always include the highest level of the dependent variable as the reference class and one other level as the response class. If NCAT had been set to 25, the 24 submodels would be categories 1 and 25, categories 2 and 25, through categories 24 and 25. We then obtain the odds ratios for the two submodels separately, comparing dependent variable levels 1 against 3 and 2 against 3. This table shows that levels 1 and 2 are less likely as MED and FOMY increase, as the odds ratio is less than 1.

Wald Test Table

The coefficient/standard-error ratios (z ratios) reported next to each coefficient are a guide to the significance of an individual parameter. But when the number of categories is greater than two, each variable corresponds to more than one parameter. The Wald test table automatically conducts the hypothesis test of dropping all parameters associated with a variable, and the degrees of freedom indicates how many parameters were involved. Because each variable in this example generates two coefficients, the Wald tests have two degrees of freedom each. Given the high individual z ratios, it is not surprising that every variable is also significant overall. The PLENGTH LONG option also produces the parameter covariance and correlation matrices.

Derivative Tables

In a multinomial context, we will want to know how the probabilities of each of the outcomes will change in response to a change in the covariate values. This information is provided in the derivative table, which tells us, for example, that when *MED* increases by one unit, the probability of category 3 goes up by 0.042, and categories 1 and 2 go down by 0.017 and 0.025, respectively. To assess properly the effect of father's income, the variable should be rescaled to hundreds or thousands of dollars (or the *FORMAT* increased) because the effect of an increase of one dollar is very small. The sum of the entries in each row is always 0 because an increase in probability in one category must come about by a compensating decrease in other categories. There is no useful interpretation of the *CONSTANT* row.

In general, the table shows how probability is reallocated across the possible values of the dependent variable as the independent variable changes. It thus provides a global view of covariate effects that is not easily seen when considering each binary submodel separately. In fact, the overall effect of a covariate on the probability of an outcome can be of the opposite sign of its coefficient estimate in the corresponding submodel. This is because the submodel concerns only two of the outcomes, whereas the derivative table considers all outcomes at once.

This table was generated by evaluating the derivatives separately for each individual observation in the data set and then computing the mean; this is the theoretically correct way to obtain the results. A quick alternative is to evaluate the derivatives once at the sample average of the covariates. This method saves time (but at the possible cost of accuracy) and is requested with the option DERIVATIVE=AVERAGE.

Prediction Success

The PREDICT option instructs LOGIT to produce the prediction success table, which we have already seen in the binary logit. (See Hensher and Johnson, 1981; McFadden, 1979.) The table will break down the distribution of predicted outcomes by actual choice, with diagonals representing correct predictions and off-diagonals representing incorrect predictions. For the multinomial model, the table will have dimensions NCAT by NCAT with additional marginal results. For our example model, the core table is 3 by 3.

Each row of the table takes all cases having a specific value of the dependent variable and shows how the model allocates those cases across the possible outcomes. Thus in row 1, the 12 cases that actually had CULTURE = 1 were distributed by the predictive model as 1.88 to CULTURE = 1, 4.09 to CULTURE = 2, and 6.03 to CULTURE = 3. These numbers are obtained by summing the predicted probability of being in each category across all of the cases with CULTURE actually equal to 1. A similar allocation is provided for every value of the dependent variable.

The prediction success table is also bordered by additional information—row totals are observed sums, and column totals are predicted sums and will be equal for any model containing a constant. The *Correct* row gives the ratio of the number correctly predicted in a column to the column total. Thus, among cases for which CULTURE = 1, the fraction correct is 1.8761/12 = 0.1563; for CULTURE = 3, the ratio is 101.4862/139 = 0.7301. The total correct gives the fraction correctly predicted overall and is computed as the sum Correct in each column divided by the table total. This is (1.8761 + 13.8826 + 101.4862)/200 = 0.5862.

The success index measures the gain that the model exhibits in number correctly predicted in each column over a purely random model (a model with just a constant). A purely random model would assign the same probabilities of the three outcomes to each case, as illustrated below:

Random Probabitity Model Predicted Sample Fraction	Success Index = CORRECT - Random Predicted
PROB (CULTURE-1) = 12/200 = 0.0600	0.1563 - 0.0600 = 0.0963
PROB (CULTURE=2) = 49/200 = 0.2450	0.2833 - 0.2450 = 0.0383
PROB (CULTURE-3)=139/200 = 0.6950	0.7301 - 0.6950 = 0.0351

Thus, the smaller the success index in each column, the poorer the performance of the model; in fact, the index can even be negative.

Normally, one prediction success table is produced for each model estimated. However, if the data have been separated into learning and test subsamples with BY, a

separate prediction success table will be produced for each portion of the data. This can provide a clear picture of the strengths and weaknesses of the model when applied to fresh data.

Classification Tables

Classification tables are similar to prediction success tables except that predicted choices instead of predicted probabilities are added into the table. Predicted choice is the choice with the highest probability. Mathematically, the classification table is a prediction success table with the predicted probabilities changed, setting the highest probability of each case to 1 and the other probabilities to 0.

In the absence of fractional case weighting, each cell of the main table will contain an integer instead of a real number. All other quantities are computed as they would be for the prediction success table. In our judgment, the classification table is not as good a diagnostic tool as the prediction success table. The option is included primarily for the binary logit to provide comparability with results reported in the literature.

Example 7 Conditional Logistic Regression

Data must be organized in a specific way for the conditional logistic model; fortunately, this organization is natural for matched sample case-control studies. First, matched samples must be grouped together; all subjects from a given stratum must be contiguous. It is thus advisable to provide each set with a unique stratum number to facilitate the sorting and tracking of records. Second, the dependent variable gives the relative position of the case within a matched set. Thus, the dependent variable will be an integer between 1 and NCAT, and if the case is first in each stratum, then the dependent variable will be equal to 1 for every record in the data set.

To illustrate how to set up conditional logit models, we use data discussed at length by Breslow and Day (1980) on cases of endometrial cancer in a retirement community near Los Angeles. The data are reproduced in their Appendix III and are identified in SYSTAT as *MACK*.

The data set includes the dependent variable *CANCER*, the exposure variables *AGE*, *GALL* (gall bladder disease), *HYP* (hypertension), *OBESE*, *ESTROGEN*, *DOSE*, *DUR* (duration of conjugated estrogen exposure), *NON* (other drugs), some transformations of these variables, and a set identification number. The data are organized by sets, with

the case coming first, followed by four controls, and so on, for a total of 315 observations (63 * (4+1)).

To estimate a model of the relative risks of gall bladder disease, estrogen use, and their interaction, you may proceed as follows:

USE MACK
PLENGTH LONG
LOGIT
MODEL DEPVAR=GALL+EST+GALL*EST;
ALT SETSIZE
NCAT 5
ESTIMATE

There are three key points to notice about this sequence of commands. First, the NCAT command is required to let LOGIT know how many subjects there are in a matched set. Unlike the unconditional binary LOGIT, a unit of information in matched samples will typically span more than one line of data, and NCAT will establish the minimum size of each matched set. If each set contains the same number of subjects, the NCAT command completely describes the data organization. If there were a varying number of controls per set, the size of each set would be signaled with the ALT command together with the NCAT command specifying the maximum size of eac match set, as in

NCAT 5 ALT SETSIZE

Here, SETSIZE is a variable containing the total number of subjects (number of controls plus 1) per set. Each set could have its own value.

The second point is that the matched set conditional logit never contains a constant; the constant is eliminated along with all other variables that do not vary among members of a matched set. The third point is the appearance of the semicolon at the end of the model. This is required to distinguish the conditional from the unconditional model.

After you specify the commands, the output produced includes:

The output is:

Logistic Regression

Conditional LOGIT, data organized by matched set. Categorical values encountered during processing are

Variables | Levels

Conditional LOGIT Analysis

Dependent Variable : DEPVAR
Number of Alternatives : SETSIZE
Input Records : 315
Matched Sets for Analysis : 63

Log-Likelihood Iteration History

Log-Likelihood	at	Iterationl	1	-101.395
Log-Likelihood	at	Iteration2	74	-79.055
Log-Likelihood	at	Iteration3	1	-76.887
Log-Likelihood				-76.733
Log-Likelihood	at	Iteration5	1	-76.731
Log-Likelihood	at	Iteration6	1	-76.731
Log-Likelihood			i	-76 721

Information Criteria

AIC : 159.461 Schwarz's BIC : 165.891

Parameter Estimates

			Standard Error		p-value	95 %	Confidence Lower	Interval
1 GALL 2 EJT 3 GALL*EST	1	2.70)	0.612	4.414 -2.063	0 6 6 7 67		1.164	

Parameter Estimates (contd...)

		i	
Pe	arameter	1	Upper
~			
1	GALL	1.	4.625
2	EST	- 1	3,899
3	GALL*EST	1	-0.103

Odds Ratio Estimates

Parameter :		Standard Error	95 % Confidence Lower	Interval Upper
1 GALL	18.072	15.958	3.201	102.013
2 EST	14.882	9.104	4.487	49.362
3 GALL*EST	0.128	0.128	0.018	0.902

Covariance Matrix

	- 1			- 1		2			3
-	-+				 		_		
1	- 1	- 0	.7	80					
		0			0.3	74			
3	- [-0	. 7	84	-0.3	67		0.9	90

Correlation Matrix

	-						-									2								3
	-+			-		-	-	-	-	-	-	-		_	-	_	 -	_		٠.	ja	_	_	_
1	1		-1	l.	. (0	0					Ó	*	6	2	9			-0	١.	, 1	8	9.	2
2	- {		() ,	. е	2	9					1	٠	0	0	0			-0	١.	. (6	0.	2
3	1	-	-() ,	. 8	9	2					0	4	6	0	Z			1		. (0	0	0

The output begins with a report on the number of SYSTAT records read and the number of matched sets kept for analysis. The remaining output parallels the results produced by the unconditional logit model. The parameters estimated are coefficients of a linear

logit, the relative risks are derived by exponentiation, and the interpretation of the model is unchanged. Model selection will proceed as it would in linear regression; you might experiment with logarithmic transformations of the data, explore quadratic and higher-order polynomials in the risk factors, and look for interactions. Examples of such explorations appear in Breslow and Day (1980).

Varying Controls per set

The following is an example of the conditional logistic regression for varying controls per set. The data used is a subset of SYSTAT data *HOSLEM*. For making this data suitable for the desired analysis we have omitted some cases and created four new variables *SETSIZE*, *GROUP*, *REC* and *DEPVAR* along the lines of the previous analysis. The mother's age (*AGE*) is used as the matching variable and low infant birth weight (*LOW*) is used for deciding case and controls.

The input is:

```
USE HOSLEMM
LOGIT
NCAT 14
ALT SETSIZE
MODEL DEPVAR = LWT + SMOKE + HT + UI ;
ESTIMATE
```

The output is:

Logistic Regression

Log-Likelihood

```
Conditional LOGIT, data organized by matched set.
Categorical values encountered during processing are

Variables : Levels

DEPVAR (1 levels) : 1.00

Conditional LOGIT Analysis

Dependent Variable : DEPVAR
Number of Alternatives : SETSIZE
Input Records : 137
Matched Sets for Analysis : 17

Log-Likelihood at Iteration History

Log-Likelihood at Iteration2 : -30.170
Log-Likelihood at Iteration3 : -30.130
Log-Likelihood at Iteration4 : -30.130
Log-Likelihood at Iteration5 : -30.130
```

Information Criteria

AIC | 68.259 Schwarz's BIC | 71.592

Parameter Estimates

			Standard Error	Z	p-value	95 % Confidence Into Lower	erval
1 LWT 2 SMOKE 3 HT 4 UI	1 1 1 1 1 1 1 1	-0.001 1.076 1.394 1.585	0.009 0.558 1.284 0.736	-0.069		-0.018 -0.018 -1.122 0.144	

Parameter Estimates (contd...)

Pa	arameter	1	Upper
		- +	
1	LWT	1	0.017
2	SMOKE		2.170
3	HT	1	3.910
4	UI	1	3.027

Odds Ratio Estimates

Parame	ter	Odds	Ratio	Standard	Error	95 %	Confidence Lower	Interval Liber
1 LWT 2 SMOK 3 HT 4 UI	E		0.494 2.433 4.030 4.881		(.009 1.e37 5.173 3.590		0.982 0.982 0.325 1.154	1.01 8.7% 49.8% 20.634

Covariance Matrix

	1	2	3	4
1	0.000			
2	0.000	0.311		
3	-0.003	0.101	1.648	
4	0.001	004	0.180	0.541

Correlation Matrix

				2	3	4
-		÷				
	1	î	1.000	0.098	-0.275 Q	.187
	2	ł	0.098	1.000	0.141 0.	252
	3	ł	-0.275	0.141	1.000 0	190
	4	1	0.187	0.252	0.190 1.	.000

Example 8 Discrete Choice Models

The CHOICE data set contains hypothetical data motivated by McFadden (1979). The CHOICE variable represents which of the three transportation alternatives (AUTO, POOL, TRAIN) each subject prefers. The first subscripted variable in each choice category represents TIME and the second, COST. Finally, SEX\$ represents the gender of the chooser, and AGE, the age.

A basic discrete choice model is estimated with:

```
USE CHOICE
LOGIT
SET TIME = AUTO(1), POOL(1), TRAIN(1)
SET COST = AUTO(2), POOL(2), TRAIN(2)
MODEL CHOICE=TIME+COST
ESTIMATE
```

There are two new features of this program. First, the word *TIME* is not a SYSTAT variable name; rather, it is a label we chose to remind us of time spent commuting. The group of names in the SET statement are valid SYSTAT variables corresponding, in order, to the three modes of transportation. Although there are three variable names in the SET variable, only one attribute is being measured.

The output is:

```
Logistic Regression
Linear Restriction System
Discrete Choice Models
```

Categorical values encountered during processing are

Discrete Choice Analysis

```
Dependent Variable : CHOICE
Input Records : 29
Records for Analysis : 29
```

Sample Split

'atequity Thomas	,	
	-+-	
1	-	15
2	1	6
3 (REFERENCE)	1	8
Total	1	29

Log-Likelihood Iteration History

```
Log-Likelihood at Iteration1 : -31.860
Log-Likelihood at Iteration2 : -31.142
Log-Likelihood at Iteration3 : -31.141
Log-Likelihood at Iteration4 : -31.141
Log-Likelihood : -31.141
```

Information Criteria

```
AIC : 66.282
Schwarz's BIC : 69.017
```

Parameter Estimates

		- 1					
Pa	arameter	1	Estimate	Standard	Error	Z	p-value
		-+					
1	TIME	- 1	-0.020		0.017	-1.169	0.243
2	COST	- 1	-0.088		0.145	-0.611	0.541

Odds Ratio Estimates

	rameter		Ratio	Standard	Error	95 %	Lower Lower	Interval Upper
1	TIME COST	1	0.980 0.915	**	0.017		0.947 0.689	1.014 1.216

Covariance Matrix

	•					1				2								
_	_	-	+	_	_	_	_	_	-	_	-	_	_	-	_	_	_	
	1				0		0	0	0									
	2		1		0		0	0	1				0	1	0.	2	1	

Correlation Matrix

	1		1		2
	+-				
1	ŀ	1.	000	0.	384
2	ŀ	0.	384	1.	000

The output begins with a frequency distribution of the dependent variable and a brief iteration history and prints standard regression results for the parameters estimated.

A key difference between a conditional variable clause and a standard SYSTAT polytomous variable is that each clause corresponds to only one estimated parameter regardless of the value of NCAT, while each free-standing polytomous variable generates NCAT—1 parameters. The difference is best seen in a model that mixes both types of variables (see Hoffman and Duncan, 1988, or Steinberg, 1987) for further discussion).

Mixed Parameters

The following is an example of mixing polytomous and conditional variables:

```
USE CHOICE
LOGIT
CATEGORY SEX$
SET TIME = AUTO(1),POOL(1),TRAIN(1)
SET COST = AUTO(2),POOL(2),TRAIN(2)
MODEL CHOICE=TIME+COST+SEX$+AGE
ESTIMATE
```

The hybrid model generates a single coefficient each for *TIME* and *COST* and two sets of parameters for the polytomous variables.

The output is:

Logistic Regression

Linear Restriction System
Discrete Choice Models
Categorical values encountered during processing are

Variables	1		Levels	
	-+-			
SEX\$ (2 levels) CHOICE (3 levels)	-	Female 1.000	Male 2.000	3.000

Categorical variables are effects coded with the highest value as reference Effects coding is in force for the categorical independent variables in your model. Parameters and odds ratios are easier to interpret for dummy coded categoricals. Unless you have specific reasons for requesting effects coding, we suggest that you re-issue the category statement with the /dummy option and re-fit your model. See Hosmer & Lemeshow, for more information.

Discrete Choice Analysis

Dependent Variable : CHOICE Input Records : 29 Records for Analysis : 29

Sample Split

Category Choices	
1	15
2 3 (REFERENCE)	8

Log-Likelihood Iteration History

Log-Likelihood Log-Likelihood Log-Likelihood Log-Likelihood	at at at at	Iteration2 Iteration3 Iteration4		-31.860 -28.495 -28.477 -28.477 -28.477 -28.477
--	----------------------	--	--	--

Information Criteria

AIC : 68.955 Schwarz's BIC 77.159

Parameter Estimates

Parameter	2002	ard Error	Z	p-value
1 TIME 2 COST	-0.018 -0.351	0.020 0.217	-0.887 -1.615	0.375
3 SEXS_Female 4 AGE	Choice Gr 0.328 0.026	0.509 0.014 coup: 2	0.645	0.519
3 SEX\$_Female 4 AGE	0.024	0.598	0.040	0.968

Odds Ratio Estimates

	-		Standard	Freeze	95 % Confidence Lower	Interval Upper
Parameter	Odds	Ratio	Standard	PITOI		
1 TIME 2 COST		0.982		0.020	0.945 0.460	1.022 1.078

				Choice Group: 1		
3	SEX\$ Female		1.388	0.707	0.512	3.764
	AGE	1	1.026	0.014	0.998	1.054
				Choice Group: 2		
3	SEX\$ Female	1	1.024	0.613	0.317	3.308
4	AGE	1	0.992	0.016	0.961	1.024

Wald Tests on Effects Across all Choices

		1			Chi-sqare	
Ef	Efect	1	Wald	Statistic	Significance	df
		+ -				
3	SEX\$ Female	1		0.551	0.759	2.700
4	AGE	1		4.475	C.107	2.000

Covariance Matrix

	ł	1	2	3	4	5	6
	-4-						
1	1	0.000					
2	- 1	0.001	0.047				
3	-1	0.002	0.009	0.259			
4	1	0.000	-0.001	0.002	0.000		
5	- 1	0.002	-0.018	0.165	0.002	0.358	
-6	- 1	0.000	0.001	0.002	0.000	0.003	0.000

Correlation Matrix

	1	1	2	3	4	5	6
	4						
1	1	1.000	0.180	0.150	-0.076	0.146	-0.266
		0.180	1.000	0.084	-0.499	-0-140	0.310
3	1	0.150	0.084	1.000	0.230	0.543	0.193
4	ł	-0.076	-0.499	0.230	1.000	0.281	0.265
5	1	0.146	-0.140	0.543	0.281	1.000	0.323
6	1	-0.266	0.310	0.193	0.265	0.323	1.000

Varying Alternatives

For some discrete choice problems, the number of alternatives available varies across choosers. For example, health researchers studying hospital choice pooled data from several cities in which each city had a different number of hospitals in the choice set (Luft et al., 1988). Transportation research may pool data from locations having train service with locations without trains. Carson, Hanemann, and Steinberg (1990) pool responses from two contingent valuation survey questions having differing numbers of alternatives. To let LOGIT know about this, there are two ways of proceeding. The most flexible is to organize the data by choice. With the standard data layout, use the ALT command, as in

ALT NCHOICES

where *NCHOICES* is a SYSTAT variable containing the number of alternatives available to the chooser. If the value of the ALT variable is less than NCAT for an observation, LOGIT will use only the first *NCHOICES* variables in each conditional variable clause in the analysis.

With the standard data layout, the ALT command is useful only if the choices not available to some cases all appear at the end of the choice list. Organizing data by choice is much more manageable. One final note on varying numbers of alternatives: if the ALT command is used in the standard data layout, the model may not contain a constant or any polytomous variables; the model must be composed only of conditional variable clauses. We will not show an example here because by now you must have figured that we believe the by-choice layout is more suitable if you have data with varying choice alternatives.

Interactions

A common practice in discrete choice models is to enter characteristics of choosers as interactions with attributes of the alternatives in conditional variable clauses. When dealing with large sets of alternatives, such as automobile purchase choices or hospital choices, where the model may contain up to 60 different alternatives, adding polytomous variables can quickly produce unmanageable estimation problems, even for mainframes. In the transportation literature, it has become commonplace to introduce demographic variables as interactions with, or other functions, of the discrete choice variables. Thus, instead of, or in addition to, the *COST* group of variables, AUTO(2), POOL(2), TRAIN(2), you might see the ratio of cost to income. These ratios would be created with LET transformations and then added in another SET list for use as a conditional variable in the MODEL statement. Interactions can also be introduced this way. By confining demographic variables to appear only as interactions with choice variables, the number of parameters estimated can be kept quite small.

Thus, an investigator might prefer

```
USE CHOICE
LOGIT
SET TIME = AUTO(1), POOL(1), TRAIN(1)
SET TIMEAGE=AUTO(1)*AGE, POOL(1)*AGE, TRAIN(1)*AGE
SET COST = AUTO(2), POOL(2), TRAIN(2)
MODEL CHOICE=TIME+TIMEAGE+COST
ESTIMATE
```

as a way of entering demographics. The advantage to using only conditional clauses is clear when dealing with a large value of NCAT as the number of additional parameters estimated is minimized. The model above yields:

Logistic Regression

Linear Restriction System
Discrete Choice Models
Categorical values encountered during processing are

Variables	1	Levels	
	~~~~+		
CHOICE (3 leve	els) ; 1.000	2.000	3.000

#### Discrete Choice Analysis

Dependent Variable : CHOICE Input Records : 29 Records for Analysis : 29

#### Sample Split

Category Choices	-	
	-+	
1	1	15
2	i	6
3 (REFERENCE)	i	8
Total	÷	20

#### Log-Likelihood Iteration History

Log-Likelihood Log-Likelihood Log-Likelihood Log-Likelihood Log-Likelihood	at at at	Iteration2 Iteration3 Iteration4	- 1	-28.021 -27.866 -27.864 -27.864
Log-Likelihood			į	-27.864

#### Information Criteria

AIC : 61.728 Schwarz's BIC : 65.830

#### Parameter Estimates

	1				
Parameter	Estimate	Standard	Error	Z	p-value
1 TIME 2 TIMEAGE 3 COST	-0.148 0.003 0.007	a dan alian digerang man hale sada may alian a	0.062 0.001 0.155	-2.382 2.193 0.043	0.017

#### Odds Ratio Estimates

Parameter			Standard	Error	95	8 1	Confidence Lower	Interval Upper
1 TIME 2 TIMEAGE 3 COST	:	0.863 1.003 1.007		0.054 0.001 0.156			0.764 1.000 0.742	0.974 1.006 1.365

#### Covariance Matrix

	í	1	2	3
-	-+-			
	1	0.004		
2	1	0.000	0.000	
3	1	-0.001	0.000	0.024

#### Correlation Matrix

	1	2	3
4			
1 :	1.000	-0.936	-0.110
2 !	-0.936	1.000	0.273
3	-0.110	0.273	1.000

#### Constants

The models estimated here deliberately did not include a constant because the constant is treated as a polytomous variable in LOGIT. To obtain an alternative specific constant, enter the following model statement:

```
USE CHOICE
LOGIT
SET TIME = AUTO(1), POOL(1), TRAIN(1)
SET COST = AUTO(2), POOL(2), TRAIN(2)
MODEL CHOICE=CONSTANT+TIME+COST
ESTIMATE
```

Two CONSTANT parameters would be estimated. For the discrete choice model with the type of data layout of this example, there is no need to specify the NCAT value because LOGIT determines this automatically by the number of variables between the brackets. If the model statement is inconsistent in the number of variables within brackets across conditional variable clauses, an error message will be generated.

# The output is:

```
Logistic Regression
```

Linear Restriction System Discrete Choice Models

Categorical values encountered during processing are

Variables	1	Levels	
CHOICE (3		1.000 2.000	3.000

Discrete Choice Analysis

```
Dependent Variable : CHOICE
Input Records : 29
Records for Analysis : 29
```

#### Sample Split

1 15 2 6 3 (REFERENCE) 8	Log-Likelihood Iteration Histor	3 (REFERENCE)		15 6 8 29	Histor
--------------------------------	---------------------------------	---------------	--	--------------------	--------

Log-Likelihood	at	Iteration1	1	-31.860
Log-Likelihood				
Log-Likelihood	at	Iteration3	1	-25.779
Log-Likelihood				
Log-Likelihood	at	Iteration5	1	-25.779
Log-Likelihood			1	-25.779

#### Information Criteria

AIC : 59.557 Schwarz's BIC : 65.026

#### Parameter Estimates

Parameter		Standard	Error	Z	p-value
***					~ **
1 TIME 2 COST 3 CONSTANT 3 CONSTANT	-0.012 -0.567 1.510 -0.865		0.020 0.222 0.608 0.675	-0.575 -2.550 2.482 -1.282	0.565 0.011 0.013 0.200

#### Odds Ratio Estimates

Parameter   Odds Ratio Standard Error	95 Confidence Inter- Lower	zil Jpper
1 TIME   0.988 0.020 2 COST   0.567 0.126		1.0.9
$\label{eq:log-likelihood} \begin{array}{l} \text{Log-Likelihood of Constants only Model} = 2*\left[\text{LL}(N) - \text{LL}(0)\right] \\ \text{df} \\ \text{p-value} \end{array}$	LL(0): -29.645 : 7.732 : 2 : 0.021	
McFadden's Rho-squared   0.130 Cox and Snell R-square   0.234 Naglekerke's R-square   0.269		

# Wald Tests on Effects Across all Choices

Effect	Wald Sta	tietie	Chi-sqare	
	I HELLE STO	CISCIC	Significance	41
3 CONSTANT	]	8.630	0.014 2.6	100

#### Covariance Matrix

	:	1	?	4	4
	-+				
1		1.400			
2		0.001	0.049		
4		-0.001	-0.082	0.370	
4	1	-0.005	0.056	0.046	0.455

## Correlation Matrix

		1					1						2				3		4
-00	-	÷		-	-	-	-			-	_	-	-		tide				
	1	1	1	-0	0	0	0	(	),		1	3	0	-0	ø	053	3	-0.	350
	2	1	0	a	1	3	0		١.		0	0	0	-0	0	600	5	0.	372
	3	î	-0		0	5	3	~ (	) ,		6	0	6	1		000	)	0.	113
- 8	1	1	-0	·	3	5	0	(	١.		3	7	2	0	٠	113	3	1.	000

# Example 9 By-Choice Data Format

In the standard data layout, there is one data record per case that contains information on every alternative open to a chooser. With a large number of alternatives, this can quickly lead to an excessive number of variables. A convenient alternative is to organize data by choice; with this data layout, there is one record per alternative and as many as NCAT records per case. The data set *CHOICE2* organizes the *CHOICE* data of the Discrete Choice Models example in this way. If you analyze the differences between the two data sets, you will see that they are similar to those between the split-plot and multivariate layout for the repeated measures design (see Statistics II, Chapter 3, Linear Models II - Analysis of Variance). To set up the same problem in a by-choice layout, input the following:

USE CHOICE2
LOGIT
NCAT 3
ALT NCHOICES
MODEL CHOICE=TIME+COST;
ESTIMATE

The by-choice format requires that the dependent variable appear with the same value on each record pertaining to the case. An ALT variable (here *NCHOICES*) indicating the number of records for this case must also appear on each record. The by-choice organization results in fewer variables on the data set, with the savings increasing with the number of alternatives. However, there is some redundancy in that certain data values are repeated on each record. The best reason for using a by-choice format is to handle varying numbers of alternatives per case. In this situation, there is no need to shuffle data values or to be concerned with choice order.

With the by-choice data format, the NCAT statement is required; it is the only way for LOGIT to know the number of alternatives to expect per case. For varying numbers of alternatives per case, the ALT statement is also required, although we use it here with the same number of alternatives.

USE CHOICE2
LOGIT
CATEGORY SEX\$
NCAT 3
ALT NCHOICES
MODEL CHOICE=TIME+COST ; AGE+SEX\$
ESTIMATE

Because the number of alternatives (ALT) is the same for each case in this example, the output is the same as the "Mixed Parameters" example.

# Weighting Choice-Based Samples

For estimation of the slope coefficients of the discrete choice model, weighting is not required even in choice-based samples. For predictive purposes, however, weighting is necessary to forecast aggregate shares, and it is also necessary for consistent estimation of the alternative specific dummies (Manski and Lerman, 1977).

The appropriate weighting procedure for choice-based sample logit estimation requires that the sum of the weights equal the actual number of observations retained in the estimation sample. For choice-based samples, the weight for any observation choosing the tth option is W = S, s, where S, is the population share choosing the tth option and s, is the choice-based sample share choosing the tth option.

As an example, suppose theatergoers make up 10% of the population and we have a choice-based sample consisting of 100 theatergoers (Y=1) and 100 non-theatergoers (Y=0). Although theatergoers make up only 10% of the population, they are heavily oversampled and make up 50% of the study sample. Using the above formulas, the correct weights would be

$$W_0 = 0.9/0.5 = 1.8$$
  
 $W_1 = 0.1/0.5 = 0.2$ 

and the sum of the weights would be 100 * 1.8 + 100 * 0.2 = 200, as required. To handle such samples, LOGII permits non-integer weights and does not truncate them to integers.

# Example 10 Stepwise Regression

LOGIT offers forward and backward stepwise logistic regression with single stepping as an option. The simplest way to initiate stepwise regression is to substitute START for ESTIMATE following a MODEL statement and then proceed with stepping with the STEP command, just as in GLM or Regression.

An upward step consists of three components. First, the current model is estimated to convergence. The procedure is exactly the same as regular estimation. Second, score statistics for each additional effect are conducted, adjusted for variables already in the

model. The joint significance of all additional effects together is also computed. Finally, the effect with the smallest significance level for its score statistic is identified. If this significance level is below the ENTER option (0.05 by default), the effect is added to the model.

A downward step also consists of three computational segments. First, the model is estimated to convergence. Then Wald statistics are computed for each effect in the model. Finally, the effect with the largest p value for its Wald test statistic is identified. If this significance level is above the REMOVE criterion (by default 0.10), the effect is removed from the model.

If you require certain effects to remain in the model regardless of the outcome of the Wald test, force them into the model by listing them first in the model and using the FORCE option of START. It is important to set the ENTER and REMOVE criteria carefully because it is possible to have a variable cycle in and out of a model repeatedly. Each step of the analysis consists of AIC, AIC (corrected), Schwarz's BIC values which are tools for model selection. The defaults are

```
START / ENTER = .05, REMOVE = .10
```

although Hosmer and Lemeshow use

```
START / ENTER =.15, REMOVE =.20
```

in the example we reproduce below.

Hosmer and Lemeshow use stepwise regression in their search for a model of low birth weight discussed in the "Binary Logit" section. We conduct a similar analysis.

# The input is:

```
USE HOSLEM
LOGIT
CATEGORY RACE
MODEL LOW=CONSTANT+PTL+LWT+HT+RACE+SMOKE+UI+AGE+FTV
START / ENTER=.15, REMOVE=.20
STEP / AUTO
STOP
```

#### The output is:

Legistic Persession

Stepwine Selection of Variables

Stepping Parameters

Significance to Include

to the same of the

6 Lomeshow, for more information.

THE PARTY OF THE PARTY.

Binary Stepwise LOGIT Analysis

Records for Analysis : 189

#### Sample Split

"at egory Choices

Married Total Con-

O (REFERENCE) : 130 1 (RESPONSE) : 59

#### Log Likelihood Iteration History

#### Information Criteria

A10 : 236.672 5 hwarz's B10 : 239.914

#### Parameter Estimates

95 % Confidence Interval

## Score Tests on Effects not in Medel



#### Log Likelihood Iteration Bistory

Log-Likelihood	26	[teration]	1	40	1 1	11	0.0	Ą
Iza-Likelihood	at	Iteration?	Ž.	0	L 3	40	68.	q
favor Likelihood	0.7	iteration)	-	01		, 1	40	8
Log-Likelihood	81	Iteration4	6	0		, ]	9.6	8
Log-Likelihood			0	-	l 1	1)	9-6	6

### Information Criteria

AIC ; 231.493 5:hwers's BIC : 230.376

#### Parameter Estimates

				95 6	Confidence	fatervel
Parameter Estimate  1 CONSTANT: -0.964	Standard Error 0.175 0.317	-5.511 2.520	0.000 0.011		1.307	-4 621 1.433

# Score Tests on Effects not in Model

Effect	Score Statistic	Chi-square Significance	df
J LWT 4 HT 5 RA-E 6 SMOKE 7 UI 0 AGE 9 FTV Joint Score	4.113 4.722 5.359	0.043 0.030 0.069 0.075 0.075 0.062	1.000 1.000 1.000 1.000 1.000

#### Step 2

# Log-Likelihood Iteration History

Log-Likelihood Log-Likelihood	AT	ITAKATLONA	0	- 4 7 0 - 5 0 1
Log-Likelihood Log-Likelihood	AT	TERRECTORS.		40000

### Information Criteria

AIC	10	22	9	a	51	8.	3
Schwarz's BIC	1	23	9	*	31	9	9

#### Parameter Estimates

Parameter	Standard Error	Z	p-value	95 % Confidence Lower	Interval Upper
1 CONSTANT 2 PTL 3 HT	0.184 0.318 0.616	2.585	0.000 0.010 0.039	-1.423 0.199 0.066	-0.701 1.447 2.479

#### Score Tests on Effects not in Model

Effect	Score Statistic	Chi-square Significance	df
4 LWT	6.900	0.009	1.000
5 RACE	4.882	0.087	2.000
6 SMOKE	3.117	0.078	1.000
7 01	4.225	0.040	1.000
B AGE	3.448	0.063	1.000
9 FTV	0.370	0.543	1.000
Joint Score	20.658	0.004	7.000

#### Step 3

#### Log-Likelihood Iteration History

Log-Likelihood	at	Iterationl	8	-131.005
Log-Likelihood	at	Iteration2	1	-108.523
Log-Likelihood	at	Iteration3	1	-107.987
Log-Likelihood	at	Iteration4	- 1	-107.982
Log-Likelihood	at	Iteration5	- 1	-107.982
Log-Likelihood			1	-107.982

#### Information Criteria

AIC | 223.964 Schwarz's BIC | 236.931

#### Parameter Estimates

		Estimate	Standard	Error	Z	p-value	95 % Confidence Lower	Interval Upper
2 3	CONSTANT PTL HT LWT			0.841 0.328 0.705 0.007	1.299 2.213 2.633 -2.560	0.194 0.027 0.008 0.010	-0.556 0.083 0.474 -0.030	2.742 1.368 3.238 -0.004

#### Score Tests on Effects not in Model

Effect	Score Statistic	Chi-square Significance	df
5 RACE	5.266	0.072	2.000
6 SMOKE	2.857	0.091	1.000
7 UI	3.081	0.079	1.000
8 AGE	1.895	0.169	1.000
9 FTV	0.118	0.732	1.000
Joint Score	14.395	0.026	6.000

#### Step 4

#### Log-Likelihood Iteration History

Log-Likelihood	at	Iterationl		
Log-Likelihood	at	Iteration2	- 1	-106.169
Log-Likelihood	at	Iteration3	1	-105.434
Log-Likelihood	at	Iteration4	1	-105.425
Log-Likelihood	at	Iteration5	1	-105.425
Log-Likelihood			1	-105.425

#### Information Criteria

AIC | 222.850 Schwarz's BIC | 242.301

#### Parameter Estimates

Parameter	Estimate	Standard Error	2	p-value	95 \ Confidence Lower	Interval Upper
1 CONSTANT 2 PTL 3 HT 4 LWT 5 RACE 1 6 RACE 2	1.405 0.746 1.805 1.0018 1.0518 0.569	0.900 0.328 0.714 0.007 0.237 0.318	1.560 2.778 2.530 -2.60° -2.19) 1.787	0.119 0.23 0.11 0.109 0.29	-0.36) 0.104 0.407 -0.032 -0.983 -0.055	3.1°0 1.489 3.24 -0.009 -0.654 1.193

# Score Tests on Effects not in Model

			Chi-square	
Effect	Score	Statistic	Significan 'e	dî
	+			
6 SMOKE		5.936	0.015	1.000
7 UI 8 AGE	1	1.019	0.313	1.000
9 FTV	•	0.025	0.873	4.000
Joint Score		9.505	0.050	1.000

Step 5

## Log-Likelihood Iteration History

Log-Likelihood Log-Likelihood Log-Likelihood Log-Likelihood Log-Likelihood Log-Likelihood	at at at	Iteration2 Iteration3 Iteration4 Iteration5	1	-102.468
----------------------------------------------------------------------------------------------------------	----------------	------------------------------------------------------	---	----------

#### Information Criteria

AIC			218.898
Schwarz's	BIC	ă.	241.590

### Parameter Estimates

Parameter	: Estimate	Standard Error	Z	p-value	95 % Confidence Lower	Interval Upper
1 CONSTANT 2 PTL 3 HT 4 LWT 5 RACE 1 6 RACE 2 7 SMOKE	0.851 0.602 1.745 -0.017 -0.734 0.557 0.946	0.913 0.335 0.695 0.007 0.263 0.324	0.933 1.797 2.511 -2.418 -2.790 1.720 2.396	0.351 0.072 0.012 0.016 0.005 0.085 0.017	-0.938 -0.055 0.383 -0.030 -1.249 -0.078 0.172	2.641 1.260 3.107 -0.003 -0.218 1.191 1.720

# Score Tests on Effects not in Model

Effect	Score	Statistic	Chi-square Significance	df
7 UI		3.034	0.082	1.000
8 AGE		0.781	0.377	1.000
9 FTV		0.014	0.904	1.000
Joint Score		3.711	0.294	3.000

#### Step 6

## Log-Likelihood Iteration History

Log-Likelihood	at	Iteration1	1	-131.005
Log-Likelihood	at	Iteration2	1	-102.280
Log-Likelihood	at	Iteration3	i	-101,017
Log-Likelihood	at	Iteration4	i	-100.993
Log-Likelihood	at	Iteration5	1	-100.993
Log-Likelihood	at	Iteration6	i	-100.993
Log-Likelihood			1	-100,993

#### Information Criteria

AIC	1	21	7.	986
Schwarz's	BIC :	24	3.	920

#### Parameter Estimates

Parameter	Estimate	Standard Error	Z	p-value	95 % Confidence Lower	Interval Upper
1 CONSTANT 2 PTL 3 HT 4 LWT 5 RACE 1 6 RACE 2 7 SMOKE 8 UI	0.654	0.921	0.710	0.477	-1.151	2.460
	0.503	0.341	1.475	0.140	-0.166	1.172
	1.855	0.695	2.669	0.008	0.493	3.217
	-0.016	0.007	-2.520	0.020	-0.029	-0.002
	-0.741	0.265	-2.797	0.005	-1.260	-0.222
	0.585	0.323	1.811	0.070	-0.048	1.218
	0.939	0.399	2.54	0.019	0.157	1.720
	0.786	0.456	1.721	0.085	-0.109	1.680

# Score Tests on Effects not in Model

Effect	Score	Statistic	Chi-square Significance	df
8 AGE		0.553	0.457	1.000
9 FTV		0.056	6.41,	1.000
Joint Score		0.696	0.70+	2.000

Final Model Summary

# Log-Likelihood Iteration History

## Information Criteria

AIC		1	217.986
Schwarz's	BIC	Ĺ	243.920

#### Parameter Estimates

Parameter :	Estimate	Standard Error		p-value	95 % Confidence Lower	Interval Upper
1 CONSTANT 2 PTL 3 HT 4 LWT 5 RACE 1 6 RACE 2 7 SMOKE 8 UI	0.654 0.503 1.855 -0.016 -0.741 0.585 0.939 0.786	· · · · · · · · · · · · · · · · · · ·	. 1	. 1	1::1::	1

#### Odds Ratio Estimates

Parameter	Odds Ratio Sta	indard Error	95 % Confidence Lower	Interval Upper
2 PTL 3 HT 4 LWT 5 RACE 1 6 RACE 2 7 SMOKE 8 UI	1.654 6.392 0.984 0.477 1.795 2.557 2.194	0.564 4.443 0.007 0.126 0.579 1.019	0.847 1.637 0.971 0.284 0.953 1.170 0.897	3.229 24.964 0.998 0.801 3.379 5.586 5.367
Log-Likeli 2*[LL(N)-L df p-value	hood of Constants L(0)]	only Model = L	L(0): -117.336 : 32.686 : 7 : 0.000	
Cox and Sn	ell R-square   0.	139 159 223		

Not all logistic regression programs compute the variable addition statistics in the same way, so minor differences in output are possible. Our results listed in the *Chi-Square Significance* column of the first step, for example, correspond to H&L's first row in their Table 4.15; the two sets of results are very similar but not identical. While our method yields the same final model as H&L, the order in which variables are entered is not the same because intermediate *p* values differ slightly. Once a final model is arrived at, it is re-estimated to give true maximum likelihood estimates.

# Example 11 Hypothesis Testing

Two types of hypothesis tests are easily conducted in LOGIT: the likelihood ratio (LR) test and the Wald test. The tests are discussed in numerous statistics books, sometimes under varying names. Accounts can be found in Maddala's text (2001), Cox and Hinkley (1979), Rao (1973), Engel (1984), and Breslow and Day (1980). Here we provide some elementary examples.

# Likelihood-Ratio Test

The likelihood-ratio test is conducted by fitting two nested models (the restricted and the unrestricted) and comparing the log-likelihoods at convergence. Typically, the unrestricted model contains a proposed set of variables, and the restricted model omits a selected subset, although other restrictions are possible. The test statistic is twice the difference of the log-likelihoods and is chi-squared with degrees of freedom equal to

the number of restrictions imposed. When the restrictions consist of excluding variables, the degrees of freedom are equal to the number of parameters set to 0.

If a model contains a constant, LOGIT automatically calculates a likelihood-ratio test of the null hypothesis that all coefficients except the constant are 0. It appears on a line that looks like:

```
2*[LL(N)-LL(0)] = 26.586 with 5 df, Chi-sq p-value = 0.00007
```

This example line states that twice the difference between the likelihood of the estimated model and the "constants only" model is 26.586, which is a chi-squared deviate on five degrees of freedom. The p value indicates that the null hypothesis would be rejected.

To illustrate use of the LR test, consider a model estimated on the low birth weight data (see the "Binary Logit" example). Assuming CATEGORY=RACE, compare the following model

```
MODEL LOW CONSTANT + LWD + AGE + RACE + PTD
```

with

```
MODEL LOW CONSTANT + LWD + AGE
```

The null hypothesis is that the categorical variable RACE, which contributes two parameters to the model, and PTD are jointly 0. The model likelihoods are 104.043 and -112.143, and twice the difference (16.20) is chi-squared with three degrees of freedom under the null hypothesis. This value can also be more conveniently calculated by taking the difference of the LR test statistics reported below the parameter estimates and the difference in the degrees of freedom. The unrestricted model above has G=26.587 with five degrees of freedom, and the restricted model has G=10.385 with two degrees of freedom. The difference between the G values is 16.20, and the difference between degrees of freedom is 3.

Although LOGIT will not automatically calculate LR statistics across separate models, the p value of the result can be obtained with the command:

```
CALC 1-XCF(16.2,3)
```

#### Wald Test

The Wald test is the best known inferential procedure in applied statistics. To conduct a Wald test, we first estimate a model and then pose a linear constraint on the parameters estimated. The statistic is based on the constraint and the appropriate

elements of the covariance matrix of the parameter vector. A test of whether a single parameter is 0 is conducted as a Wald test by dividing the squared coefficient by its variance and referring the result to a chi-squared distribution on one degree of freedom. Thus, each z ratio is itself the square root of a simple Wald test. Following is an example:

```
USE HOSLEM
LOGIT
CATEGORY RACE
MODEL LOW=CONSTANT+LWD+AGE+RACE+PTD
ESTIMATE
HYPOTHESIS
CONSTRAIN PTD=0
CONSTRAIN RACE[1]=0
CONSTRAIN RACE[2]=0
TEST
```

# The output is (minus the estimation stage):

Hypothesis Tests Entering Hypothesis Procedure

# Linear Restriction System

		P	arameter		
EQN	; 1	2	3	4	٦
1 2 3	0.000	0.000	0.000	0.000 1.000 0.000	0.000 0.000 1.000

### Linear Restriction System

EQN	6	Parameter RHS	
1 2	1.000	0.000	1.515 -0.442 0.464

General Linear Wald Test Results

Chi-square Statistic : 15.104 df : 3 p-value : 0.002

Note that this statistic of 15.104 is close to the *LR* statistic of 16.2 obtained for the same hypothesis in the previous section. Although there are three separate CONSTRAIN lines in the HYPOTHESIS paragraph above, they are tested jointly in a single test. To test each restriction individually, place a TEST after each CONSTRAIN. The restrictions being tested are each entered with separate CONSTRAIN commands. These can include any linear algebraic expression without parentheses involving the parameters. If interactions were present on the MODEL statement, they can also appear on the CONSTRAIN statement. To reference dummies generated from categorical covariates,

use square brackets, as in the example for RACE. This constraint refers to the coefficient labeled RACE-1 in the output.

More elaborate tests can be posed in this framework. For example,

or

CONSTRAIN AGE + LWD = 1

For multinomial models, the architecture is a little different. To reference a variable that appears in more than one parameter vector, it is followed with curly braces around the number corresponding to the *Choice Group*. For example,

```
CONSTRAIN CONSTANT{1} - CONSTANT{2} = 0 CONSTRAIN AGE{1} - AGE{2} = 0
```

# Comparisons between Tests

The Wald and likelihood-ratio tests are classical testing methods in statistics. The properties of the tests are based on asymptotic theory, and in the limit, as sample sizes tend to infinity, the tests give identical results. In small samples, there will be differences between results and conclusions, as has been emphasized by Hauck and Donner (1977). Given a choice, which test should be used?

Most statisticians favor the LR test over the Wald for three reasons. First, the likelihood is the fundamental measure on which model fitting is based. Cox and Oakes (1984) illustrate this preference when they use the likelihood profile to determine confidence intervals for a parameter in a survival model. Second, Monte Carlo studies suggest that the LR test is more reliable in small samples. Finally, a nonlinear constraint can be imposed on the parameter estimates and simply tested by estimating restricted and unrestricted models. See the "Quantiles" example for an illustration involving LD50 values. Also, you can use the FUNPAR option in NONLIN to do the same thing.

Why bother with the Wald test, then? One reason is simplicity and computational cost. The LR test requires estimation of two models to final convergence for a single test, and each additional test requires another full estimation. By contrast, any number of Wald tests can be run on the basis of one estimated model, and they do not require an additional pass through the data.

# Example 12 Tackling different data format in Logistic Regression

So far, we have come across the data format in which each case (row) corresponds to a single trial and the response in that trial is indicated by a variable (binary or p-array).

Case no	Response	Explanatory
1	a	(x11 x21xp1)
2	ь	(x12 x22xp2)
	a	
*	Ъ	
N	a	(x1N x2NxpN)

Now, if the dependent variable specifies two variables: number of events and number of observations; in other words if the event is binomially distributed with the number of trials given by the number of observations, what should be the correct syntax for handling such data in SYSTAT?

Clearly the second kind of data format is as follows:

Case no	Trial	Event	Explanatory
1	n1	s1	(x11 x21xp1)
2	n2	s2	(x12 x22xp2)
4			
	•		
N	nN	sN	(x1N x2NxpN)

A possible solution to the query is creation of an appropriate data file in SYSTAT. To do this a suitable example is given below with necessary explanations. The *TARGET* data set is hypothetical. It describes the success of an arrow throwing machine to hit the target. The aim is to analyze the relationship between the probability of success of the machine and the height at which the machine is placed (in centimeters), and the force applied (in newtons).

In TARGET there is no response variable available explicitly and so it cannot be readily handled in SYSTAT. But just by adding one more variable, the analysis can be done in SYSTAT. The data modification is independent of the number of explanatory variables.

# The input is:

USE TARGET

LET eventtype = 1

ESAVE target1.syz

USE target.syz

LET eventtype = 0

LET noofevents = nooftrails-noofevents

ESAVE target2.syz

APPEND target1 target2

ESAVE app.syz

The resultant data APP contains a response variable EVENTTYPE. Now each case corresponds to experiment number and events frequency with event type (0 or 1). A few data points from APP are as follows:

EXPTNO	NOOFTRA	ILS NOOFEVE	NTS HEIGHT	FORCE	<b>EVENTTYPE</b>
1.000	50.000	35.000	136.315	0.577	1.000
2.000	50.000	33.000	138.026	0.622	1.000
3.000	50.000	35.000	137.820	0.501	1.000
			P		
			٠		
48.000	50.000	32.000	139.202	0.745	1.000
49.000	50.000	32.000	135.484	0.708	1.000
50.000	50.000	31.000	137.693	0.746	1.000
1.000	50.000	15.000	136.315	0.577	0.000
2.000	50.000	17.000	138.026	0.622	0.000
3.000	50.000	15.000	137.820	0.501	0.000
				•	
48.000	50.000	18.000	139.202	0.745	0.000
49.000	50.000	18.000	135.484	0.708	0.000
50.000	50.000	19.000	137.693	0.746	0.000

Logistic Regression

# Now to analyze APP the input is:

USE APP
FREQ NOOFEVENTS
LOGIT
MODEL eventtype = constant + height + force
ESTIMATE

# The output is:

Logistic Regression

Case frequencies determined by value of variable NOOFEVENTS

Categorical values encountered during processing are

Variables	Levels
	+
EVENITYFE (2 levels)	0.000 1.000

#### Binary LOGIT Analysis

Dependent Variable : EVENTTYPE
Analysis is Weighted by : NOOFEVENTS
Sum of Weights : 2500.000
Input Records : 100
Records for Analysis : 100

#### Sample Split

	tegory	3	Count	Weighted	
		-+-			
0	(REFERENCE)	1	50		1626
1	(RESPONSE)	-	50		874
To	tal	1	100	250	000.00

#### Log-Likelihood Iteration History

Log-Likelihood	at	Iteration1	1	-1732.868
Log-Likelihood	at	Iteration2	-	-1618.041
Log-Likelihood	at	Iteration3	1	~1617.935
Log-Likelihood	at	Iteration4	1	-1617.935
Log-Likelihood			1	-1617.935

#### Information Criteria

AIC : 3241.871 Schwarz's BIC : 3249.686

#### Parameter Estimates

Parameter		Estimate	Standard	Error	Z	p-value
1 CONSTANT 2 HEIGHT 3 FORCE	1 1 1 1 1	1.840 -0.008 -0.110		3.912 0.028 0.568	0.470 -0.296 -0.195	0.638 0.767 0.846

#### Odds Ratio Estimates

Parameter ! Odds Ratio Standard Error	95 % Confidence Interval Lower Upper
*2 HEIGHT   0.992 0.028 3 FORCE   0.895 0.508	0.938 1.048 0.294 2.724
<pre>Log-Likelihood of Constants only Model = I 2*[LL(N)-LL(0)] df p-value</pre>	.L(0): -1617.997 : 0.123 : 2 : 0.941
McFadden's Rho-squared   0.000 Cox and Snell R-square   0.001 Naglekerke's R-square   0.001	

# Receiver Operating Characteristic Curve



Area under ROC Curve : 0.502

# Computation

# Algorithms

LOGIT uses Gauss Newton methods for maximizing the likelihood. By default, two tolerance criteria must be satisfied: the maximum value for relative coefficient changes must fall below 0.001, and the Euclidean norm of the relative parameter change vector must also fall below 0.001. By default, LOGIT uses the second derivative matrix to update the parameter vector. In discrete choice models, it may be preferable to use a first derivative approximation to the Hessian instead. This option, popularized by Berndt, Hall, Hall, and Hausman (1974), will be noted if it is used by the program. BHHH uses the summed outer products of the gradient vector in place of the Hessian matrix and generally will converge much more slowly than the default method.

# Missing Data

Cases with missing data on any variables included in a model are deleted.

#### **Basic Formulas**

For the binary logistic regression model, the dependent variable for the *i*th case is  $Y_i$ , taking on values of 0 (nonresponse) and 1 (response), and the probability of response is a function of the covariate vector  $x_i$  and the unknown coefficient vector  $\beta$ . We write this probability as:

$$Prob(Y_i = 1|x_i) = \frac{e^{x_i\beta}}{1 + e^{x_i\beta}}$$

and abbreviate it as  $P_i$ . The log-likelihood for the sample is given by

$$LL(\beta) = \sum_{i=1}^{n} Y_{i} \log P_{i} + (1 - Y_{i}) \log (1 - P_{i})$$

For the polytomous multinomial logit, the integer-valued dependent variable ranges from 1 to k, and the probability that the ith case has Y = m, where  $1 \le m \le k$  is:

$$Prob(Y_i = m|x_i) = \frac{e^{x_i \beta_m}}{\sum_{j=1}^k e^{x_j \beta_j}}$$

In this model, k is fixed for all cases, there is a single covariate vector  $x_i$ , and k  $\beta_i$  parameter vectors are estimated. This last equation is identified by normalizing  $\beta_k$  to 0.

McFadden's discrete choice model represents a distinct variant of the logit model based on Luce's (1959) probabilistic choice model. Each subject is observed to make a choice from a set  $C_i$  consisting of  $J_i$  elements. Each element is characterized by a separate covariate vector of attributes  $Z_k$ . The dependent variable  $Y_i$  ranges from 1 to  $J_i$ , with  $J_i$  possibly varying across subjects, and the probability that  $Y_i = k$ , where  $1 \le k \le J_i$  is a function of the attribute vectors  $Z_1, Z_2, \ldots Z_j$  and the parameter vector  $\beta$ . The probability that the ith subject chooses element m from his choice set is:

$$Prob(Y_i = m|Z) = \frac{e^{Z_m \beta}}{\sum_{j \in C_i} e^{Z_j \beta}}$$

Heuristically, this equation differs from the previous one in the components that vary with alternative outcomes of the dependent variable. In the polytomous logit, the coefficients are alternative-specific and the covariate vector is constant; in the discrete choice model, while the attribute vector is alternative-specific, the coefficients are constant. The models also differ in that the range of the dependent variable can be case-specific in the discrete choice model, while it is constant for all cases in the polytomous model.

The polytomous logit can be recast as a discrete choice model in which each covariate x is entered as an interaction with an alternative-specific dummy, and the number of alternatives is constant for all cases. This reparameterization is used for the mixed polytomous discrete choice model.

# Regression Diagnostics Formulas

The SAVE command issued before the deciles of risk command (DC) produces a SYSTAT save file with a number of diagnostic quantities computed for each case in the input data set. Computations are always conducted on the assumption that each covariate pattern is unique. The following formulas are based on the binary dependent variable  $y_i$ , which is either 0 or 1, and fitted probabilities  $P_i$ , obtained from the basic logistic equation.

LEVERAGE(1) is the diagonal element of Pregibon's (1981) hat matrix, with formulas given by Hosmer and Lemeshow (2000) as their equations (5.12) and (5.13). It is defined as  $b_j v_j$ , where

$$b_j = x_j'(X'VX)^{-1}x_j$$

and  $x_i$  is the covariate vector for the xth case, **X** is the data matrix for the sample including a constant, and **V** is a diagonal matrix with general **A** A element  $P_i(1-P_i)$ , the fitted probability for the *i*th case.  $b_i$  is our LEVERAGE(2).

$$v_i = P_i(1 - P_i)$$

Thus LEVERAGE(L) is given by

$$h_j = v_j b_j$$

The PEARSON residual is

$$r_j = \frac{y_i - p_i}{\sqrt{p_i(1 - p_i)}}$$

The VARIANCE of the residual is

$$v_j(1-h_j)$$

and the standardized residual STANDARD is

$$r_{sj} = \frac{r_j}{\sqrt{1 - h_j}}$$

The DEVIANCE residual is defined as

$$d_j = \sqrt{2|ln(p_j)|}$$

for  $y_i = 1$  and

$$d_j = -2\sqrt{|ln(1-p_j)|}$$

otherwise.

DELDSTAT is the change in deviance and is

$$\nabla D_j = d_j^2/(1-h_j)$$

DELPSTAT is the change in Pearson chi-square:

$$\nabla \chi^2 = r_{s_i}^2$$

is a measure proposed by Pregibon, and

The final three saved quantities are measures of the overall change in the estimated parameter vector  $\beta$ .

$$DELBETA(1) = r_{ij}^2 h_j / (1 - h_j)$$

# References

Agresti, A. (2002). Categorical data analysis. 2nd ed. New York: John Wiley & Sons.

*Albert, A. and Anderson, J. A. (1984). On the existence of maximum likelihood estimates in logistic regression models. *Biometrika*, 71, 1–10.

Amemiya, T. (1981). Qualitative response models: A survey. *Journal of Economic Literature*, 1483–1536.

Anderson, J.A. (1972). Separate sample logistic discrimination: Biometrika, 59(1): 19-35.

Begg, C. and Gray, R. (1984). Calculation of polychotomous logistic regression parameters using individualized regressions. *Biometrika*, 71, 11–18.

Beggs, S., Cardell, N. S., and Hausman, J. A. (1981). Assessing the potential demand for electric cars. *Journal of Econometrics*, 16, 1–19.

Ben-Akiva, M. and Lerman, S. (1985). Discrete choice analysis. Cambridge, Mass.: MIT Press.

Berndt, E. K., Hall, B. K., Hall, R. E., and Hausman, J. A. (1974). Estimation and inference in non-linear structural models. *Annals of Economic and Social Measurement*, 3, 653–665.

Breslow, N. (1982). Covariance adjustment of relative-risk estimates in matched studies. *Biometrics*, 38, 661–672.

Breslow, N. and Day, N. E. (1980). Statistical methods in cancer research, vol. II: The design and analysis of cohort studies. Lyon: IARC.

Breslow, N., Day, N. E., Halvorsen, K.T, Prentice, R.L., and Sabai, C. (1978). Estimation of multiple relative risk functions in matched case-control studies. *American Journal of Epidemiology*, 108, 299–307.

Burnham, K.P., and Anderson, D.R. (1992). Data-based selection of an appropriate biological model: the key to modern data analysis. Pages 16-30 in Wildlife 2001: Populations, McCullough, D.R. and R.H. Barrett (eds.). Elsevier Science Publishers, Ltd. London, England.

*Burnham, K.P., and Anderson, D.R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer-Verlag.

- Carson, R., Hanemann, M. and Steinberg, S. (1990). A discrete choice contingent valuation estimate of the value of kenai king salmon. *Journal of Behavioral Economics*, 19, 53–68.
- Chamberlain, G. (1980). Analysis of covariance with qualitative data. *Review of Economic Studies*, 47, 225–238.
- Cook, D. R. and Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman and Hall.
- Coslett, S. R. (1980). Efficient estimation of discrete choice models. In C. Manski and D. McFadden, Eds., Structural Analysis of Discrete Data with Econometric Applications. Cambridge, Mass.: MIT Press.
- Cox, D. R. (1975). Partial likelihood. Biometrika, 62, 269-276.
- Cox, D. R. and Hinkley, D.V. (1979). Theoretical statistics. London: Chapman and Hall.
- Cox, D. R. and Oakes, D. (1984). Analysis of survival data. New York: Chapman and Hall.
- Cox, D. R. and Snell, E.J. (1989). The analysis of binary data. 2nd ed. Methuen, London.
- Domencich, T. and McFadden, D. (1975). *Urban travel demand: A behavioral analysis*. Amsterdam: North-Holland.
- Engel, R. F. (1984). Wald, likelihood ratio and Lagrange multiplier tests in econometrics. In Z. Griliches and M. Intrilligator, Eds., *Handbook of Econometrics*. New York: North-Holland.
- Finney, D. J. (1978). Statistical method in biological assay. London: Charles Griffin.
- *Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. *Radiology*, 143, 29-36.
- *Hauck, W. W. (1980). A note on confidence bands for the logistic response curve. *American Statistician*, 37, 158–160.
- Hauck, W. W. and Donner, A. (1977). Wald's test as applied to hypotheses in logit analysis. *Journal of the American Statistical Association*, 72, 851–853.
- Hensher, D. and Johnson, L. W. (1981). *Applied discrete choice modelling*. London: Croom Helm.
- Hoffman, S. and Duncan, G. (1988). Multinomial and conditional logit discrete choice models in demography. *Demography*, 25, 415–428.
- Hosmer, D. W. and Lemeshow, S. (2000). *Applied logistic regression*, 2nd ed. New York John Wiley & Sons.
- Hubert, J. J. (1984). Bioassay, 2nd ed. Dubuque, Iowa: Kendall-Hunt.
- *Kalbfleisch, J. D. and Prentice, R. L. (2002). The statistical analysis of failure time data. New York: John Wiley & Sons.
- Kleinbaum, D., Kupper, L., and Chambliss, L. (1982). Logistic regression analysis of epidemiologic data: Theory and practice. Communications in Statistics. Theory and Methods, 11, 485–547.

- Luce, R. D. (2005). *Individual choice behavior: A theoretical analysis*. Mineola, N.Y.: Dover Press.
- Luft, H., Garnick, D., Peltzman, D., Phibbs, C., Lichtenberg, E., and McPhee, S. (1988). The sensitivity of conditional choice models for hospital care to estimation technique. Draft, Institute for Health Policy Studies. San Francisco: University of California.
- Maddala, G. S. S. (1986). Limited-dependent and qualitative variables in econometrics. Cambridge University Press.
- Maddala, G. S. S. (2001). Introduction to econometrics. New York: John Wiley & Sons.
- Manski, C. and Lerman, S. (1977). The estimation of choice probabilities from choice based samples. *Econometrica*, 8, 1977–1988.
- Manski, C. and McFadden, D. (1980). Alternative estimators and sample designs for discrete choice analysis. In C. Manski and D. McFadden (eds.), Structural Analysis of Discrete Data with Econometric Applications. Cambridge, Mass.: MIT Press.
- *Manski, C. and McFadden, D., eds. (1981). Structural analysis of discrete data with econometric applications. Cambridge, Mass.: MIT Press.
- McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (ed.), Frontiers in Econometrics. New York: Academic Press.
- McFadden, D. (1976). Quantal choice analysis: A survey. Annals of Economic and Social Measurement, 5, 363–390.
- McFadden, D. (1979). Quantitative methods for analyzing travel behavior of individuals: Some recent developments. In D. A. Hensher and P. R. Stopher (eds.), *Behavioral Travel Modelling*. London: Croom Helm.
- McFadden, D. (1982). Qualitative response models. In W. Hildebrand (ed.), Advances in Econometrics. Cambridge University Press.
- McFadden, D. (1984). Econometric analysis of qualitative response models. In Z. Griliches and M. D. Intrilligator (eds.), *Handbook of Econometiics, Volume III*. Elsevier Science Publishers BV.
- Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. *Biometrika*, Vol. 78, No. 3: 691-692.
- Nerlove, M. and Press, S. J. (1973). Univariate and multivariate loglinear and logistic models. Rand Report No R-1306EDA/NIH.
- Peduzzi, P. N., Holford, T. R., and Hardy, R. J. (1980). A stepwise variable selection procedure for nonlinear regression models. *Biometrics*, 36, 511–516.
- Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9, 705-724.
- Prentice, R. and Breslow, N. (1978). Retrospective studies and failure time models. *Biometrika*, 65, 153–158.
- Prentice, R. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. *Biometrika*, 66, 403–412.
- Rao, C. R. (1973). Linear statistical inference and its applications, 2nd ed. New York: John Wiley & Sons.

- Santer, T. J. and Duffy, D. E. (2004). *The statistical analysis of discrete data*. New York: Springer-Verlag.
- *Schwarz, G. (1978). Estimating the dimension of a model. *Annals of Statistics*, 6, 461-464.
- Steinberg, D. (1987). Interpretation and diagnostics of the multinomial and binary logistic regression using PROC MLOGIT. SAS Users Group International, Proceedings of the Twelfth Annual Conference, 1071-1073, Cary, N.C.: SAS Institute.
- Steinberg, D. (1991). The common structure of discrete choice and conditional logistic regression models. Unpublished paper. Department of Economics, San Diego State University.
- *Steinberg, D. and Cardell, N. S. (1987). Logistic regression on pooled choice based samples and samples missing the dependent variable. Proceedings of the Social Statistics Section. Alexandria, Va.: American Statistical Association, 158–160.
- Train, K. (1986). Qualitative choice analysis. Cambridge, Mass.: MIT Press.
- Williams, D. A. (1986). Interval estimation of the median lethal dose. *Biometrics*, 42, 641–645.
- Wrigley, N. (2002). Categorical data analysis for geographers and environmental scientists. Caldwell, N.J.: Blackburn Press.
- (* indicates additional reference.)

# Loglinear Models

Laszlo Engelman

Loglinear models are useful for analyzing relationships among the factors of a multiway frequency table. The loglinear procedure computes maximum likelihood estimates of the parameters of a loglinear model by using the Newton-Raphson method. For each user-specified model, a test of fit of the model is provided, along with observed and expected cell frequencies, estimates of the loglinear parameters (lambdas), standard errors of the estimates, the ratio of each lambda to its standard error, and multiplicative effects  $(EXP(\lambda))$ .

For each cell, you can request its contribution to the Pearson chi-square or the likelihood-ratio chi-square. Deviates, standardized deviates, Freeman-Tukey deviates, and likelihood-ratio deviates are available to characterize departures of the observed values from expected values.

When searching for the best model, you can request tests after removing each firstorder effect or interaction term one at a time individually or hierarchically (when a lower-order effect is removed, so are the higher order interaction terms containing it). The models need not be hierarchical.

A model can explain the frequencies well in most cells, but poorly in a few. LOGLIN uses Freeman-Tukey deviates to identify the most divergent cell, fit a model without it, and continue in a stepwise manner identifying other outlier cells that depart from your model.

You can specify cells that contain structural zeros (cells that are empty naturally or by design, not by sampling), and fit a model to the subset of cells that remain. A test of fit for such a model is often called a test of quasi-independence.

Resampling procedures are available in this feature.

# Statistical Background

Researchers fit loglinear models to the cell frequencies of a multiway table in order to describe relationships among the categorical variables that form the table.

To introduce loglinear models, recall how to calculate expected values for the Pearson chi-square statistic. The expected value for a cell in a row i and column j is  $(F_{ij})$ :

 $F_{ij}$  = total count (n)*(proportion in row  $i(p_i)$ )*(proportion in column  $j(p_j)$ )

(Part of each expected value comes from the row it is in and part from the column it is in.) Now, by taking the log, we get an expression of the type:

$$\ln F_{ij} = constant + A_i + B_j$$

Thus the logarithm of the expected frequency is linear in certain parameters. Similarly, the loglinear model expresses the logarithm of the expected cell frequency as a linear function of these parameters in a manner analogous to that of analysis of variance.

In the above model, the expected value is computed under the null hypothesis of independence (that is, there is no interaction between the table factors). If this hypothesis is rejected, you would need more information than  $A_i$  and  $B_j$ . In fact, the usual chi-square test can be expressed as a test that the interaction term is needed in a model that estimates the log of the cell frequencies. We write this model as:

$$ln F_{ij} = constan t + A_i + B_j + AB_{ij}$$
  
or more commonly as:

$$ln F_{ij} = \theta + \lambda_i^A + \lambda_j^B + \lambda_0^{AB}$$

where  $\theta$  is an overall mean effect and the parameters  $\lambda$  sum to zero over the levels of the row factors and the column factors. For a particular cell in a three-way table (a cell in the *i* row, *j* column, and *k* level of the third factor) we write:

$$ln \; F_{ijk} \; = \; \theta + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{jk}^{BC} + \lambda_{ijk}^{ABC}$$

The order of the effect is the number of indices in the subscript.

Notation in publications for loglinear model parameters varies. Grant Blank summarizes:

SYSTAT FATHER + SON + FATHER * SON

Agresti (1984) 
$$\log m_{ij} = \mu + \lambda_i^F + \lambda_j^S + \lambda_{ij}^F S$$

Fienberg (1980)  $\log m_{ij} = \mu + \mu_{1(i)} + \mu_{2(j)} + \mu_{12(ij)}$ 

Goodman (1978)  $\xi_{ij} = \theta + \lambda_i^A + \lambda_j^B + \lambda_{ij}^A B$ 

Haberman (1978)  $\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^A B$ 

Knoke and Burke (1980)  $G_{ij} = \theta + \lambda_i^F + \lambda_j^S + \lambda_{ij}^F S$ 

or, in multiplicative form,  $G_{ij} = g_{ij} + g_{ij}^A B$  where  $G_{ij} = g_{ij} + g_{ij}^A B$ 

An important distinction between ANOVA and loglinear modeling is that in the latter, the focus is on the need for interaction terms; while in ANOVA, testing for main effects is the primary interest. Look back at the loglinear model for the two-way table—the usual chi-square tests the need for the AB_{ij} interaction, not for A alone or B alone.

The above loglinear model for a three-way table is saturated because it contains all possible terms or effects. Various smaller models can be formed by including only selected combinations of effects (or equivalently testing that certain effects are 0). An important goal in loglinear modeling is parsimony—that is, to see how few effects are needed to estimate the cell frequencies. You usually don't want to test that the main effect of a factor is 0 because this is the same as testing that the total frequencies are equal for all levels of the factor. For example, a test that the main effect for *SURVIVES* (alive, dead) is 0 simply tests whether the total number of survivors equals the number of nonsurvivors. If no interaction terms are included and the test is not significant (that is, the model fits), you can report that the table factors are independent. When there are more than two second-order effects, the test of an interaction is conditional on the other interactions and may not have a simple interpretation.

# Fitting a Loglinear Model

To fit a loglinear model:

■ First, screen for an appropriate model to test.

- Test the model, and if significant, compare its results with those for models with one or more additional terms. If not significant, compare results with models with fewer terms.
- For the model you select as best, examine fitted values and residuals, looking for cells (or layers within the table) with large differences between observed and expected (fitted) cell counts.

How do you determine which effects or terms to include in your loglinear model? Ideally, by using your knowledge of the subject matter of your study, you have a specific model in mind—that is, you want to make statements regarding the independence of certain table factors. Otherwise, you may want to screen for effects.

The likelihood-ratio chi-square is additive under partitioning for nested models. Two models are nested if all the effects of the first are a subset of the second. The likelihood ratio chi-square is additive because the statistic for the second model can be subtracted from that of the first. The difference provides a test of the additional effects —that is, the difference in the two statistics has an asymptotic chi-square distribution with degrees of freedom equal to the difference between those for the two model chi-squares (or the difference between the number of effects in the two models). This property does not hold for the Pearson chi-square. The additive property for the likelihood ratio chi-square is useful for screening effects to include in a model.

If you are doing exploratory research and lack firm knowledge about which effects to include, some statisticians suggest a strategy of starting with a large model and, step by step, identifying effects to delete. (You compare each smaller model nested within the larger one as described above.) But we *caution you about multiple testing*. If you test many models in a search for your ideal model, remember that the *p-value* associated with a specific test is valid when you execute one and only one test. That is, use *p-values* as relative measures when you test several models.

# Loglinear Models in SYSTAT

## Loglinear Model: Estimate Dialog Box

To open the Loglinear Model: Estimate dialog box, from the menus choose:

Analyze Loglinear Model Estimate...



The following must be specified:

**Model terms.** Build the model components (main effects and interactions) by adding terms to the Model terms text box. All variables should be categorical (either numerical or string). Click Cross to add interactions. Click # to include lower order effects with the interaction term, that is, A#B=A+B+A*B. Check the Minus option with a selection of variables to remove (subset or all) model terms from previously defined model terms. The model terms can be defined up to a desired higher level of interaction using Order option. For example,  $(A+B+C)^2=A+B+C+A*B+A*C+B*C$ .

**Custom Model.** Any valid loglinear model expression can be constructed using variable names and symbols: +, -, *, #,  $^{\wedge}$ . For example,  $(A + B + C)^{\wedge}2 - (A \# B)$ 

**Table.** The variables that define the frequency table. Variables that are used in the model terms must be included in the frequency table.

The following optional computational controls can also be specified:

- **Convergence.** The parameter convergence criteria.
- Log-likelihood convergence. The log-likelihood convergence criteria.
- Tolerance. The tolerance limit.
- Iterations. The maximum number of iterations.
- Step-halvings. The maximum number of step-halvings.
- **Delta.** The constant value added to the observed frequency in each cell.

You can save two sets of statistics to a file:

- Estimates. Saves, for each cell in the table, the observed and expected frequencies and their differences, standardized and Freeman-Tukey deviates, the contribution to the Pearson and likelihood-ratio chi-square statistics, the contribution to the log-likelihood, and the cell indices.
- Lambdas. Saves, for each level of each term in the model, the estimate of lambda, the standard error of lambda, the ratio of lambda to its standard error, the multiplicative effect  $(EXP(\lambda))$ , and the indices of the table of factors.

#### Zero

A cell is declared to be a structural zero when the probability is zero that there are counts in the cell. Notice that such zero frequencies do not arise because of small samples but because the cells are empty naturally (a male hysterectomy patient) or by design (the diagonal of a two-way table comparing father's (rows) and son's (columns) occupations is not of interest when studying changes or mobility). A model can then be fit to the subset of cells that remain. A test of fit for such a model is often called a test of quasi-independence.

To specify structural zeros, click the Zero tab in the Analyze:Loglinear Model: Estimate dialog box.



The following can be specified:

No structural zeros. No cells are treated as structural zeros.

Make all empty cells structural zeros. Treats all empty cells with zero frequency as structural zeros. In the output, the corresponding cell which is defined as structural zero will be represented with an asterisk (*) by default. If you give an option BLANK, these cells will be shown as blank cells. This option can be given only through commands.

**Define custom structural zeros.** Specifies one or more cells for treatment as structural zeros. List the index  $(n_1, n_2, ...)$  of each factor in the order in which the factor appears in the table. If you want to select a layer or level of a factor, use 0's for the other factors when specifying the indices. For example, in a table with four factors (*TUMOR\$* being the fourth factor), to declare the third level of *TUMOR\$* as structural zeros, use 0 0 0 3. Alternatively, you can replace the 0's with periods (...3).

When fitting a model, LOGLIN excludes cells identified as structural zeros, and then, as in a regression analysis with zero weight cases, it can compute expected values, deviates, and so on, for all cells including the structural zero cells.

You might consider identifying cells as structural zeros when:

- It is meaningful to the study at hand to exclude some cells —for example, the diagonal of a two-way table crossing the occupations of fathers and sons.
- You want to determine whether an interaction term is necessary only because there are one or two aberrant cells. That is, after you select the "best" model, fit a second model with fewer effects and identify the outlier cells (the most outlandish cells) for the smaller model. Then refit the "best" model declaring the outlier cells to be structural zeros. If the additional interactions are no longer necessary, you might report the smaller model, adding a sentence describing how the unusual cell(s) depart from the model.

#### Statistics

Statistics tab offers statistics for hypothesis testing, parameter estimation, and individual cell examination.



The following statistics are available:

- Chi-square. Displays Pearson and likelihood-ratio chi-square statistics for lack of fit.
- Ratio. Displays lambda divided by standard error of lambda. For large samples, this ratio can be interpreted as a standard normal deviate (z score).
- Maximized likelihood value. The log of the model's maximum likelihood value.
- Multiplicative effects. Multiplicative parameters, EXP (λ). Large values indicate an increased probability for that combination of indices.
- Term. One at a time, LOGLIN removes each first-order effect and each interaction term from the model. For each smaller model, LOGLIN provides a likelihood-ratio chi-square for testing the fit of the model and the difference in the chi-square statistics between the smaller model and the full model.
- HTerm. Tests each term by removing it and its higher order interactions from the model. These tests are similar to those in Term except that only hierarchical models

are tested—if a lower-order effect is removed, so are the higher-order effects that include it.

To examine the parameters, you can request the coefficients of the design variables, the covariance matrix of the parameters, the correlation matrix of the parameters, and the additive effect of each level for each term (lambda).

In addition, for each cell you can choose to display the observed frequency, the expected frequency, the standardized deviate, the standard error of lambda, the observed minus the expected frequency, the likelihood ratio deviate, the Freeman-Tukey deviate, the contribution to Pearson chi-square, and the contribution to the model's log-likelihood.

Finally, you can select the number of cells to identify as outlandish. The first cell has the largest Freeman-Tukey deviate (these deviates are similar to z scores when the data are from a Poisson distribution). It is treated as a structural zero, the model is fit to the remaining cells, and the cell with the largest Freeman-Tukey deviate is identified. This process continues step by step, each time including one more cell as a structural zero and refitting the model.

## Frequency Table (Tabulate)

If you want only a frequency table and no analysis, from the menus choose:

Analyze Loglinear Model Tabulate...



Simply specify the table factors in the same order in which you want to view them from left to right. In other words, the last variable selected defines the columns of the table and cross-classifications of all preceding variables define the rows.

Although you can also form multiway tables, tables for loglinear models are more compact and easy to read. Multiway tables form a series of two-way tables stratified by all combinations of the other table factors. Loglinear models create one table, with the rows defined by factor combinations. However, loglinear model tables do not display marginal totals, whereas Multiway tables do.

# **Using Commands**

First, specify your data with USE filename. Continue with:

```
FREQ var

TABULATE var1*var2*...

MODEL variables defining table = terms of model

ZERO CELL n1, n2, ...or Empty/ BLANK

SAVE filename / ESTIMATES or LAMBDAS

PLENGTH SHORT or MEDIUM or LONG OR NONE,

/ OBSPREQ CHISQ RATIO MLE EXPECT STAND ELAMBDA,

TERM HITERM PARAM COVA CORR LAMBDA SELAMBDA DEVIATES,

LRDEV FTDEV PEARSON LOGLIKE CELLS=n

ESTIMATE / DELTA=n LCONV=n CONV=n TOL=n ITER=n HALF=n

SAMPLE = BOOT(m,n)

= JACK

= SIMPLE(m,n)
```

# **Usage Considerations**

**Types of data.** LOGLIN uses a cases-by-variables rectangular file or data recorded as frequencies with cell indices.

Print options. You can control what report panels appear in the output by globally setting output length to SHORT, MEDIUM, or LONG. You can also use the PLENGTH command in LOGLIN to request reports individually. You can specify individual panels by specifying the particular option.

Short output panels include the observed frequency for each cell, the Pearson and likelihood-ratio chi-square statistics, lambdas divided by their standard errors, the log of the model's maximized likelihood value, and a report of the three most outlandish cells.

Medium results include all of the above, plus the following: the expected frequency for each cell (current model), standardized deviations, multiplicative effects, a test of

each term by removing it from the model, a test of each term by removing it and its higher-order interactions from the model, and the five most outlandish cells.

Long results add the following: coefficients of design variables, the covariance matrix of the parameters, the correlation matrix of the parameters, the additive effect of each level for each term, the standard errors of the lambdas, the observed minus the expected frequency for each cell, the contribution to the Pearson chi-square from each cell, the likelihood-ratio deviate for each cell, the Freeman-Tukey deviate for each cell, the contribution to the model's log-likelihood from each cell, and the 10 most outlandish cells.

As a PLENGTH option, you can also specify CELLS=n, where n is the number of outlandish cells to identify.

Quick Graphs. LOGLIN produces no Quick Graphs.

Saving files. For each level of a term included in your model, you can save the estimate of lambda, the standard error of lambda, the ratio of lambda to its standard error, the multiplicative effect, and the marginal indices of the effect. Alternatively, for each cell, you can save the observed and expected frequencies, its deviates (listed above), the Pearson and likelihood-ratio chi-square, the contributions to the log-likelihood, and the cell indices.

BY groups. LOGLIN analyzes each level of any BY variables separately.

Case frequencies. LOGLIN uses the FREQ variable, if present, to duplicate cases.

Case weights. WEIGHT variables have no effect in LOGLIN.

# Examples

# Example 1 Loglinear Modeling of a Four-Way Table

In this example, we use the Morrison breast cancer data stored in the CANCER data file (Bishop, Fienberg and Holland, 1977) and treat the data as a four-way frequency table:

CENTER\$ Center or city where the data were collected

SURVIVES Survival—dead or alive

AGE Age groups of under 50, 50 to 69, and 70 or over

TUMOR\$ Tumor diagnosis (called INFLAPP by some researchers) with levels:

Minimal inflammation and benign
 Greater inflammation and benign
 Minimal inflammation and malignant

-Greater inflammation and malignant

The CANCER data include one record for each of the 72 cells formed by the four table factors. Each record includes a variable, NUMBER, that has the number of women in the cell plus numeric or character value codes to identify the levels of the four factors that define the cell.

For the first model of the CANCER data, you include three two-way interactions.

### The input is:

```
USE CANCER
LOGLIN

FREQ number
LABEL age / 50='Under 50', 60='50 to 69', 70='70 & Over'
ORDER center$ survive$ tumor$ / SORT=NONE
MODEL center$*age*survive$*tumor$ = center$ + age,
+ survive$ + tumor$,
+ age*center$,
+ survive$*center$,
+ tumor$*center$

PLENGTH SHORT / EXPECT LAMBDA
ESTIMATE / DELTA=0.5
```

The MODEL statement has two parts: table factors and terms (effects to fit). Table factors appear to the left of the equal sign and terms are on the right. The layout of the table is determined by the order in which the variables are specified—for example, specify TUMOR\$ last so its levels determine the columns.

The LABEL statement assigns category names to the numeric codes for AGE. If the statement is omitted, the data values label the categories. By default, SYSTAT orders string variables alphabetically, so we specify SORT = NONE to list the categories for the other factors as they first appear in the data file.

We specify DELTA = 0.5 to add 0.5 to each cell frequency. This option is common in multiway table procedures as an aid when some cell sizes are sparse. It is of little use in practice and is used here only to make the results compare with those reported elsewhere.

### The output is:

Case frequencies determined by value of variable NUMBER

Number of Celis (product of levels): 72 Total count: 764

Observed 1	Frequencies					
CENTER\$	AGE	SURVIVE\$	MinMalig	TUM( MinBengn		MaxBengn
Токуо	Under 50	Dead	9,000	7,000	4.000	3.0(0)
		Alive	26.000	68.000	25.006	9.(4/
	50 to 69	Dead	9,000	9.000	11.000	2,000
		A.ive	20.000	46.000	18.000	5.000
	70 & Over	Dead	2.000	3.000	1.000	0.00
		Al.ve	1.000	6.000	1,000	1.000
Boston	Under 50	Dead	(,1)00	7.000	6,030	(,((0
		Alive	. 11.000	24.000	4.000	0,(()
	50 to 69	Dead	8.)10	20.000	3,010	2. 11
		Alive	, 18,000	58.000	10,060	1. ()
	70 & Over	Dead	9.000	18.000	5. 11 101	0.00
		Alive	15.000	26.000	1, 100	1.00
Glamorgn	Under 50	Dead	16.0 0	7.700	3,000	0.00
		Alive	16.000	20.000	8.000	1.000
	50 to 69	Dead	14.000	12.000	3.000	0.000
		Alive	27.000	39.000	10,000	4.000
	70 & Over	Dead	3.000	7.000	3,000	0.000
		Alive	12.000	11.000	4.000	1.000
Pearson Cl LR Chi-squ Raftery's Dissimilar	BIC :			-value : 0.2		

#### Expected Values

				TUMO	P\$	
CENTER\$	AGE	SURVIVE\$	MinMalig	MinBengn	MaxMalig	MaxBengn
Tokyo	Under 50 50 to 69 70 & Over	Dead Alive Dead Alive Dead Alive	7.852 28.076 6.281 22.460 1.165 4.166	15.928 56.953 12.742 45.563 2.363 8.451	7.515 26.872 6.012 21.498 1.115 3.988	2.580 9.225 2.064 7.380 0.383 1.369
Boston	Under 50 50 to 69 70 & Over	Dead Alive Dead Alive Dead Alive	5.439 10.939 11.052 22.231 6.754 13.585	12.120 24.378 24.631 49.542 15.052 30.276	2.331 4.688 4.737 9.527 2.895 5.822	0.699 1.406 1.421 2.858 0.868 1.747
Glamorgn	Under 50 50 to 69 70 & Over	Dead Alive Dead Alive Dead Alive	9.303 19.989 14.017 30.117 5.582 11.993	10.121 21.746 15.249 32.764 6.073 13.048	3.476 7.468 5.237 11.252 2.086 4.481	0.920 1.977 1.386 2.979 0.552 1.186

### Log-Linear Effects (Lambda)

THETA

1.826

Tokyo Boston Glamorgn
0.049 0.001 -0.050

Under 50 50 to 69 70 & Over
0.145 0.444 -0.589

SURVIVES Dead Alive -0.456 0.456

MinMalig 0.480	TUM MinBengn 1.011	OR\$ MaxMaliq -0.145	MaxBengn -1.346
CENTER\$	Under 50	AGE 50 to 69	70 & Over
Tokyo Boston Glamorgn	0.565 -0.454 -0.111	0.043 -0.043 0.000	-0.609 0.497 0.112
CENTER\$	SURVI	/E\$ Alive	
Tokyo Boston Glamoran	-0.181 0.107 0.074	0.181 -C.107 -(.074	

	TUMOR\$						
CENTER\$	MinMalig	MinBengn	MaxMalig	MaxBengn			
Tokyo	: -0.368	-0.191	0.214	0.345			
	0.044	0.315	-0.178	-0.181			
Glamorgn	0.323	-0.123	-0.036	-0.164			

#### Standardized Parameter Estimates (Lambda / Standard Error of Lambda)

THETA 30.528

CENTERS
Tokyo Boston Glamorgn
0.596 0.014 -0.586

AGE Under 50 50 to 69 70 & Over 2.627 8.633 -8.649

SURVIVES
Dead Alive
-11,548 11.548

MinMali	ig	MinBengn	MaxMalig	MaxBengn
6.7	15	15.736	1.718	10.150
'ENTERS	ŧ	Under 50	AGE 50 tc 69	70 & Over
Texy Boston Glamory	gn	7.348 -5.755 -1.418	0.576 -0.618 -0.003	-5.648 5.757 1.194

THMORS

	SURVI	VE\$
CENTER\$	Dead	Alive
	+	
Tokyo	: -3.207	3.207
Boston	1.959	-1.959
Glamorgn	1 1.304	-1.304

Model ln (MLE) | -160.563

#### The 3 most Outlandish Cells (based on FTD, stepwise)

ln (MLE)	IR Chi-square	p-value	Frequency	CENTER\$	AGE	SURVIVE\$	TUMOR\$
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
-154.685	11.755	0.001	7	1	1	1	2
-150.685	8.001	0.005	1	2	3	2	3
-145.024	11.321	0.001	16	3	1	ĺ	1

Initially, SYSTAT produces a frequency table for the data. We entered cases for 72 cells. The total frequency count across these cells is 764—that is, there are 764 women in the sample. Notice that the order of the factors is the same order we specified in the

MODEL statement. The last variable (TUMORS) defines the columns; the remaining variables define the rows.

The test of fit is not significant for either the Pearson chi-square or the likelihood-ratio test, indicating that your model with its three two-way interactions does not disagree with the observed frequencies. The model statement describes an association between study center and age, survival, and tumor status. However, at each center, the other three factors are independent. Because the overall goal is parsimony, we could explore whether any of the interactions can be dropped.

Raftery's BIC (Bayesian Information Criterion) adjusts the chi-square for both the complexity of the model (measured by degrees of freedom) and the size of the sample. It is the likelihood-ratio chi-square minus the degrees of freedom for the current model times the natural log of the sample size. If BIC is negative, you can conclude that the model is preferable to the saturated model. When comparing alternative models, select the model with the lowest BIC value.

The index of dissimilarity can be interpreted as the percentage of cases that need to be relocated in order to make the observed and expected counts equal. For these data, you would have to move about 9.95% of the cases to make the expected frequencies fit.

The expected frequencies are obtained by fitting the loglinear model to the observed frequencies. Compare these values with the observed frequencies. Values for corresponding cells will be similar if the model fits well.

After the expected values, SYSTAT lists the parameter estimates for the model you requested. Usually, it is of more interest to examine these estimates divided by their standard errors. Here, however, we display them in order to relate them to the expected values. For example, the observed frequency for the cell in the upper left corner (*Tokyo, Under 50, Dead, MinMalig*) is 9. To find the expected frequency under your model, you add the estimates (from each panel, select the term that corresponds to your cell):

theta CENTER\$ AGE SURVIVE\$ TUMOR\$	1.826 0.049 0.145 -0.456 0.480	C*A C*S C*T	0.565 -0.181 -0.368
--------------------------------------------------	--------------------------------------------	-------------------	---------------------------

and then use SYSTAT's calculator to sum the estimates:

```
CALC 1.826 + 0.049 + 0.145 - 0.456 + 0.480 + 0.565 - 0.181 - 0.368
```

and SYSTAT responds 2.06. Take the antilog of this value:

```
CALC EXP(2.06)
```

and SYSTAT responds 7.846. In the panel of expected values, this number is printed as 7.852 (in its calculations, SYSTAT uses more digits following the decimal point). Thus, for this cell, the sample includes 9 women (observed frequency) and the model predicts 7.85 women (expected frequency).

The ratio of the parameter estimates to their asymptotic standard errors is part of the default output. Examine these values to better understand the relationships among the table factors. Because, for large samples, this ratio can be interpreted as a standard normal deviate (z score), you can use it to indicate significant parameters - for example, for an interaction term, significant positive (or negative) associations. In the CENTER\$ by AGE panel, the ratio for young women from Tokyo is very large (7.348), implying a significant positive association, and that for older Tokyo women is extremely negative (-5.648). The reverse is true for the women from Boston. If you use the Column Percent option in XTAB to print column percentages for CENTER\$ by AGE, you will see that among the women under 50, more than 50% are from Tokyo (53.9), while only 20.7% are from Boston. In the 70 and over age group, 14% are from Tokyo and 55% are from Boston.

The *Alive* estimate for Tokyo shows a strong positive association (3.207) with survival in Tokyo. The relationship in Boston is negative (1.959). In this study, the overall survival rate is 72.5%. In Tokyo, 79.3% of the women survived, while in Boston, 67.6% survived. There is a negative association for having a malignant tumor with minimal inflammation in Tokyo (-3.862). The same relationship is strongly positive in Glamorgan (3.199).

Cells that depart from the current model are identified as outlandish in a stepwise manner. The first cell has the largest Freeman-Tukey deviate (these deviates are similar to z scores when the data are from a Poisson distribution). It is treated as a structural zero, the model is fit to the remaining cells, and the cell with the largest Freeman-Tukey deviate is identified. This process continues step by step, each time including one more cell as a structural zero and refitting the model.

For the current model, the observations in the cell corresponding to the youngest nonsurvivors from Tokyo with benign tumors and minimal inflammation (*Tokyo*. *Under 50*, *Dead*, *MinBengn*) differs the most from its expected value. There are 7 women in the cell and the expected value is 15.9 women. The next most unusual cell is 2,3,2,3 (*Boston*, 70 & Over, Alive, MaxMalig), and so on.

### Medium Output

We continue the previous analysis, repeating the same model, but changing the PLENGTH (output length) setting to request medium-length results:

### The input is:

```
USE CANCER
LOGLIN

FREQ number
LABEL age / 50='Under 50', 60='50 to 69', 70='70 & Over'
ORDER center$ survive$ tumor$ / SORT=NONE
MODEL center$*age*survive$*tumor$ = age # center$,
+ survive$ # center$,
+ tumor$ # center$

PLENGTH MEDIUM
ESTIMATE / DELTA = 0.5
```

Notice that we use shortcut notation to specify the model.

### The output is:

## Standardized Deviates = (Obs-Exp)/sqrt(Exp)

			! TUMOR\$				
CENTER\$	AGE	SURVIVE\$	MinMalig	MinBengn	MaxMalig	MaxBengn	
T jkyo	Under 50 50 to 69 70 & Over	Dead Alive Dead Alive Dead Alive	0.410 -0.392 1.085 -0.519 0.774 -1.551	-2.237 1.464 -1.048 0.65 0.414 -0.843	-1.282 -0.361 2.034 -0.754 -0.109 0.507	0.26; -0.074 -0.044 -0.876 -0.619 -0.315	
Rist in	Under 50 50 to 69 70 & Over	Dead Alive Dead Alive Dead Alive	0.241 0.018 -0.918 -J.897 0.864 0.384	-1.471 -0.077 -0.933 1.202 6.760 -0.777	2.403 -0.318 -0.38 -0.153 0.062 -1.999	-0.835 -1.185 0.485 0.084 -0.332 -0.565	
Glamorgn	Under 50 50 to 69 70 & Over	Dead Alive Dead Alive Dead Alive	2.196 -0.892 -0.004 -0.568 -1.093 0.002	-0.3/4 -0.3/4 -0.8/2 1.089 0.376 -0.507	-0.257	-0.459 -0.695 -1.177 0.532 -J.743 0.171	

# Multiplicative Effects = exp(Lambda)

```
Under 50 50 to 69 70 & Over
```

	CENTER\$	
Tokyo	Boston	Glamorgn
1.050	1.001	0.951

SURVIVE\$
Dead Alive
0.634 1.578

TUMOR\$
MinMalig MinBengn MaxMalig MaxBengn

1.616 2.748 0.865 0.260

| SURVIVES | Dead Alive | T xyo | 1.98 | Boston | 1.113 | 0.89 | Glamorgn | 1.077 | 0.929

Model In (MLE) | -160.563

#### Tests for Model Terms

Term Tested	The Mo	del without Chi-square	the Te		Removal of Chi-square		from Model p-value
AGE CENTERS SURVIVES TUMORS CENTERS*AGE CENTERS*SURVIVES CENTERS*TUMORS	-216.120 -160.799 -234.265 -344.471 -196.672 -166.007	166.946 56.306 203.238 423.649 128.050 66.721 91.241	53 53 52 54 55 53	0.000 0.352 0.000 0.000 0.000 0.097	111.114 0.473 147.405 367.817 72.217 10.888 35.408	2 2 1 3 4 2	0.789

#### Tests for Hierarchical Terms

Term Tested Hierarchically	In (MLE)		df	p-value		df	from Model p-value
AGE CENTER\$ SURVIVE\$		*. 1 183.285 219.574		0.000 0.000	172.432 127.453 163.741 405.557	6 14 3	0.000

### The 5 most Outlandish Cells (based on FTD, stepwise)

in (MLE)	LR Chi-square	p-value	Frequency	CENTERS	AGE	SURVIVES	TUMORS
~154.685	11.755	0.001	7	1	1	1	2
-150.685	8.001	0.005	1	2	3	2	3
-145.024	11.321	0.001	16	3	1	1	1
-140.740	8.569	0.003	6	2	1	1	3
-136.662	8.157	0.004	11	1	2	1	3

The goodness-of-fit tests provide an *overall* indication of how close the expected values are to the cell counts. Just as you study residuals for each case in multiple regression, you can use deviates to compare the observed and expected values for each cell. A standardized deviate is the square root of each cell's contribution to the Pearson chi-square statistic—that is, (the observed frequency minus the expected frequency) divided by the square root of the expected frequency. These values are similar to z scores. For the second cell in the first row, the expected value under your model is considerably larger than the observed count (its deviate is -2.237, the observed count is 7, and the expected count is 15.9). Previously, this cell was identified as the most outlandish cell using Freeman-Tukey deviates.

Note that LOGLIN produces five types of deviates or residuals: standardized, the observed minus the expected frequency, the likelihood-ratio deviate, the Freeman-Tukey deviate, and the Pearson deviate.

Estimates of the multiplicative parameters equal  $(Exp(\lambda))$ . Look for values that depart markedly from 1.0. Very large values indicate an increased probability for that combination of indices and, conversely, a value considerably less than 1.0 indicates an unlikely combination. A test of the hypothesis that a multiplicative parameter equals 1.0 is the same as that for lambda equal to 0; so use the values of (lambda)/SE to test the values in this panel. For the CENTER\$ by AGE interaction, the most likely combination is women under 50 from Tokyo (1.76); the least likely combination is women 70 and over from Tokyo (0.544).

After listing the multiplicative effects, SYSTAT tests reduced models by removing each first-order effect and each interaction from the model one at a time. For each smaller model, LOGLIN provides:

- A likelihood-ratio chi-square for testing the fit of the model
- The difference in the chi-square statistics between the smaller model and the full model

The likelihood-ratio chi-square for the full model is 55.833. For a model that omits AGE, the likelihood-ratio chi-square is 166.95. This smaller model does not fit the observed frequencies (p-value < 0.00005). To determine whether the removal of this term results in a significant decrease in the fit, look at the difference in the statistics:  $166.95 \cdot 55.833 = 111.117$ , p-value < 0.00005. The fit worsens significantly when AGE is removed from the model.

From the second line in this panel, it appears that a model without the first-order term for CENTER\$ fits (p-value = 0.3523). However, removing any of the two-way interactions involving CENTER\$ significantly decreases the model fit.

The hierarchical tests are similar to the preceding tests except that only hierarchical models are tested—if a lower-order effect is removed, so are the higher-order effects that include it. For example, in the first line, when *CENTER\$* is removed, the three interactions with *CENTER\$* are also removed. The reduction in the fit is significant (p-value < 0.00005). Although removing the first-order effect of *CENTER\$* does not significantly alter the fit, removing the higher-order effects involving *CENTER\$* decreases the fit substantially.

# Example 2 Screening Effects

In this example, you pretend that no models have been fit to the *CANCER* data (that is, you have not seen the other example). As a place to start, first fit a model with all second-order interactions finding that it fits. Then fit models nested within the first by using results from the HTERM (terms tested hierarchically) panel to guide your selection of terms to be removed.

Here's a summary of your instructions: you study the output generated from the first MODEL and ESTIMATE statements and decide to remove AGE by TUMOR\$. After seeing the results for this smaller model, you decide to remove AGE by SURVIVE\$, too. To carry out these steps, the input is:

```
USE CANCER
LOGLIN
   FREQ number
   PLENGTH NONE / CHI HTERM
   MODEL center$*age*survive$*tumor$ - tumor$..center$^2
   ESTIMATE / DELTA=0.5
   MODEL center$*age*survive$*tumor$ = tumor$..center$^2,
                                    - age*tumor$
   ESTIMATE / DELTA=0.5
  MODEL center$*age*survive$*tumor$ = tumor$..center$^2,
                                    - age*tumor$,
                                    - age*survive$
   ESTIMATE / DELTA=0.5
  MODEL center$*age*survive$*tumor$ = tumor$..center$^2,
                                    - age*tumor$,
                                    - age*survive$.
                                    - tumor$*surviveS
  ESTIMATE / DELTA=0.5
```

## The output is:

#### All two-way interactions

	-	40.165 39.921 -225.622 7.643	df		40	p-value p-value		
--	---	---------------------------------------	----	--	----	--------------------	--	--

#### Tests for Hierarchical Terms

Term Tested Hierarchically	The Model w		Term	Removal of T	df	from Model p-value
TUMORS SURVIVE\$ AGE CENTER\$ SURVIVE\$*TUMOR\$ AGE*TUMOR\$ AGE*SURVIVE\$ CENTER\$*TUMOR\$ CENTER\$*AGE	-241.675 2 -241.668 2 -231.996 1 -157.695 -153.343 -154.693 -169.724 -156.501	18.056 18.043 62.699 50.097 41.393 44.093 74.154 47.709	0.000 0.000 0.000 0.000 0.000 0.000 0.212 0.665 0.212 0.383 0.005 0.252 0.252 0.000	417.251 178.135 178.122 122.778 10.176 1.473 4.173 34.233 7.788 66.808	18 8 14 14 3 6 2 6 2 4	0.000 0.000 0.000 0.000 0.017 0.961 0.124 0.000 0.020

#### Remove AGE * TUMOR\$

	2 2	41.828 41.393 -263.981 7.868	df df	-	46 46	p-value p-value	1	0.648
--	-----	---------------------------------------	----------	---	----------	--------------------	---	-------

#### Tests for Hierarchical Terms

Term Tested Hierarchically	The M	Model without Chi-square	the 7	Perm	Removal of Chi-square		from Model p-value
TUMOR\$ SURVIVES AGE CENTER\$ SURVIVE\$*TUMOR\$ AGE*SURVIVE\$ CENTER\$*TUMOR\$ CENTER\$*SURVIVE\$ CENTERS**AGE	-361.233 -242.434 -241.668 -215.687 -158.454 -155.452 -171.415 -157.291 -187.702	49.290	58 54 54 60 49 48 52 48 50	0.000 0.000 0.000 0.000 0.372 0.571 0.012 0.421 0.000	415.779 178.181 176.649 124.688 10.221 4.218 36.143 7.896 68.718	8 8 14 3 2 6 2	0.000 0.000 0.000 0.000 0.017 0.121 0.000 0.019

# Remove AGE * TUMOR\$ and AGE * SURVIVE\$

Pearson Chi-square LR Chi-square Raftery's BIC Dissimilarity	- 1	45.611 -273.040	df df		48	p-value p-value		0.582
-----------------------------------------------------------------------	-----	--------------------	----------	--	----	--------------------	--	-------

## Tests for Hierarchical Terms

Term Tested Hierarchically	The M	odel without Chi-square	the T	erm p-value	Removal of Chi-square		from Model p-value
TUMOR\$ SURVIVE\$ AGE CENTER\$ SURVIVE\$*TUMOR\$ CENTERS*TUMOR\$ CENTERS*SURVIVE\$ CENTERS*AGE	-363.341 -242.434 -241.668 -219.546 -160.563 -173.524 -161.264 -191.561	461.390 219.574 218.043 173.799 55.833 81.754 57.234 117.828		0.000 0.000 0.000 0.000 0.298 0.009 0.224 0.000	415.779 173.963 172.432 128.188 10.221 36.143 11.623 72.217	6 6 14 3 6	0.000 0.00J 0.000 0.000 0.017 0.00J 0.003 0.000

#### Remove AGE * TUMOR\$ , AGE * SURVIVE\$ and TUMOR\$ * SURVIVE\$

Pearson Chi-square	:	57.527	df	÷	51	p-value	7	0.246
LR Chi-square	-	55.833	df	2	51	p-value	:	0.298
Raftery's BIC	1	-282.734						
Dissimilarity		9 953						

#### Tests for Hierarchical Terms

Term Tested Hierarchically	-	The ln(MLE)	Model without Chi-square			-value	Removal of Chi-square		
TUMOR\$ SURVIVE\$ AGE CENTER\$ CENTER\$ CENTER\$*TUMOR\$ CENTER\$*SURVIVE\$ CENTER\$*AGE		-363.341 -242.434 -246.779 -224.289 -178.267 -166.007 -196.672	219.574 228.264 183.285 91.241 66.721	6547 555 555 555	1 7 5 7	0.000 0.000 0.000 0.000 0.003 0.097 0.000	405.557 163.741 172.432 127.453 35.408 10.888 72.217	14	0.000 0.000 0.000 0.000 0.000 0.004

The likelihood-ratio chi-square for the model that includes all two-way interactions is  $39.9 \ (p-value=0.4738)$ . If the AGE by TUMOR\$ interaction is removed, the chi-square for the smaller model is  $41.39 \ (p-value=0.6654)$ . Does the removal of this interaction cause a significant change? No, chi-square =  $1.47 \ (p-value=0.9613)$ . This chi-square is computed as  $41.39 \ \text{minus} \ 39.92 \ \text{with} \ 46 \ \text{minus} \ 40 \ \text{degrees} \ \text{of} \ \text{freedom}$ . The removal of this interaction results in the least change, so you remove it first. Notice also that the estimate of the maximized likelihood function is largest when this second-order effect is removed (-153.343).

The model chi-square for the second model is the same as that given for the first model with AGE * TUMOR\$ removed (41.3934). Here, if AGE by SURVIVE\$ is removed, the new model fits (p-value - 0.5713) and the change between the model minus one interaction and that minus two interactions is insignificant (p-value 0.1214).

If SURVIVE\$ by TUMOR\$ is removed from the current model with four interactions, the new model fits (p-value = 0.2981). The change in fit is not significant (p-value = 0.0168). Should we remove any other terms? Looking at the HTERM panel for the model with three interactions, you see that a model without CENTER\$ by SURVIVE\$ has a marginal fit (p-value = 0.0975) and the chi-square for the difference is significant (p-value = 0.0043). Although the goal is parsimony and technically a model with only two interactions does fit, you opt for the model that also includes CENTER\$ by SURVIVE\$ because it is a significant improvement over the very smallest model.

# Example 3 Structural Zeros

This example identifies outliers and then declares them to be structural zeros. You wonder if any of the interactions in the model that fit in the example on loglinear modeling for a four-way table are necessary only because of a few unusual cells. To identify the unusual cells, first pull back from your "ideal" model and fit a model with main effects only, asking for the four most unusual cells. (Why four cells? Because 5% of 72 cells is 3.6 or roughly 4).

### The input is

```
USE CANCER
LOGLIN

FREQ number
ORDER center$ survive$ tumor$ / SORT=NONE
MODEL center$*age*survive$*tumor$ = tumor$ .. center$
PLENGTH SHORT / CELLS=4
ESTIMATE / DELTA=0.5
```

Of course this model doesn't fit, but the following are selections from the output:

### The output is:

```
Pearson Chi-square : 181.389 df : 63 p-value : 0.000 IR Chi-square : 174.346 df : 63 p-value : 0.000 Raftery's BIC : -243.884 Dissimilarity : 19.385
```

The 4 most Outlandish Cells (based on FTD, stepwise)

Tities 4 money	-							
		ot /	p-value	Frequency	CENTERS	AGE	SURVIVE\$	TUMORS
in (MLE)	LR	Chi-square	b-ABTOC	2243				
-203.261 -195.262 -183.471 -176.345		33.118 15.997 23.582 14.253	0.000	68 1 25 6	1 1 1	1 3 1 3	2 2 2 2 2	2 1 3 2

Next, fit your "ideal" model, identifying these four cells as structural zeros and also requesting PLENGTH SHORT / HTERM to test the need for each interaction term.

# Defining Four Cells As Structural Zeros

Continuing from the analysis of main effects only, now specify your original model with its three second-order effects.

### The input for this is:

The following are selections from the output. Notice that asterisks mark the structural zero cells.

### The output is:

```
Number of Cells (product of levels): 72
Number of structural zero cells: 4
Total count: 664
```

#### Observed Frequencies

				TUMO	OR\$	
CENTER\$	AGE	SURVIVEŞ	MinMalig	MinBengn	MaxMalig	MaxBengn
Tokyo	50	Dead Alive	9.000 26.000	7.000 *68.000	4.000 *25.000	3.000 9.000
	60	Dead Alive	9.000 20.000	9.000 46.000	11.000	2.000
	70	Dead Alive	2.000 *1.000	3.000 *6.000	1.000 5.000	0.000
Boston	50	Dead Alive	6.000	7.000	6.000	0.000
	60	Dead Alive	8.000 18.000	20.000	3.000	2.000
	70	Dead Alive	9.000 15.000	18.000 26.000	3.000 1.000	0.000
Glamorgn	50	Dead Alive	16.000	7,000	3.000	0.000
	60	Dead Alive	14.000	12.000	3.000	0.000
	70	Dead Alive	3.000 12.000	7.000 11.000	3.000 4.000	0.000

^{*} indicates structural zero cells

Pearson Chi-square	:	46.842	df	2	47	p-value		0.479
LR Chi-square	:	44.881	df	n o	47	p-value	:	0.561
Raftery's BIC	:	-260.538						
Dissimilarity		10.168						

#### Tests for Hierarchical Terms

Term Tested Hierarchically	The Mo	del without Chi-square		p-value	Removal of Chi-square		from Model
	<del>+</del>						
AGE SURVIVE\$ TUMOR\$ CENTER\$ CENTER\$*AGE CENTER\$*SURVIVE\$ CENTER\$*TUMOR\$	-190.460 -206.152 -326.389 -177.829 -158.900 -149.166 -162.289	132.866 164.249 404.724 107.604 69.746 50.277 76.522	53 50 56 61 51 49 53	0.000 0.000 0.000 0.000 0.042 0.423 0.019	87.984 119.368 359.843 62.722 24.865 5.396 31.641	6 3 9 14 4 2	0.000 0.000 0.000 0.000 0.000 0.067 0.000

The model has a nonsignificant test of fit and so does a model without the CENTER\$ by SURVIVAL\$ interaction (p-value = 0.4226).

# Eliminating Only the Young Women

Two of the extreme cells are from the youngest age group. What happens to the CENTER\$ by SURVIVE\$ effect if only these cells are defined as structural zeros? HTERM remains in effect.

The input, to declare these cells as structural zeros, is:

# The following are the selections of the output:

```
Number of Cells (product of levels): 72
Number of structural zero cells : 2
Total count : 671

Pearson Chi-square: 50.261 df: 49 p-value: 0.423
LR Chi-square : 49.115 df: 49 p-value: 0.469
Raftery's BIC : -269.814
Dissimilarity : 10.637
```

### Tests for Hierarchical Terms

Term Tested	The Me	odel without Chi-square	the Te	b-value	Chi-square		fr m M del
AGE SURVIVES TUMORS CENTERS CENTERS*AGE CENTERS*SURVIVES	-221.256	188.370	55	0,000	139.254	6	0.000
	-210.369	166.596	52	0,000	117.481	3	0.000
	-331.132	408.121	58	0,000	359.005	9	0.70
	-192.179	130.215	63	0,000	61.100	14	6.000
	-172.356	93.570	53	0,001	41.455	4	0.000
	-153.888	53.633	51	0,001	4.517	2	0.101
	-169.047	83.952	55	0,001	34.837	6	0.000

When the two cells for the young women from Tokyo are excluded from the model estimation, the *CENTER*\$ by *SURVIVE*\$ effect is not needed (*p-value* = 0.3737).

# Eliminating the Older Women

Here you define the two cells for the Tokyo women from the oldest age group as structural zeros.

### The input is:

#### The following are the selections of the output:

Case frequencies determined by value of variable NUMBER

```
Number of Cells (product of levels): 72
Number of structural zero cells : 2
Total count : 757

Pearson Chi-square : 53.435 df : 49 p-value : 0.308
LR Chi-square : 50.982 df : 49 p-value : 0.396
Raftery's BIC : -273.856
Dissimilarity : 9.458
```

#### Tests for Hierarchical Terms

Term Tested Hierarchically	The !	Model without Chi-square		erm p-value	Removal of Chi-square		from Model p-value
AGE SURVIVES TUMORS CENTERS* CENTERS*AGE CENTERS*SURVIVES CENTERS*TUMORS	-203.305	147.406	55	0.000	96.423	6	0.000
	-238.968	218.731	52	0.000	167.749	3	0.000
	-358.521	457.838	58	0.000	406.855	9	0.000
	-209.549	159.893	63	0.000	108.911	14	0.000
	-177.799	96.393	53	0.000	45.410	4	0.000
	-161.382	63.560	51	0.111	12.577	2	0.002
	-171.123	83.041	55	0.009	32.058	6	0.000

When the two cells for the women from the older age group are treated as structural zeros, the case for removing the *CENTER\$* by *SURVIVE\$* effect is much weaker than when the cells for the younger women are structural zeros. Here, the inclusion of the effect results in a significant improvement in the fit of the model (*p-value* = 0.0019).

#### Conclusion

The structural zero feature allowed you to quickly focus on 2 of the 72 cells in your multiway table: the survivors under 50 from Tokyo, especially those with benign tumors with minimal inflammation. The overall survival rate for the 764 women is 72.5%, that for Tokyo is 79.3%, and that for the most unusual cell is 90.67%. Half of the Tokyo women under age 50 have *MinBengn* tumors (75 out of 151) and almost 10% of the 764 women (spread across 72 cells) are concentrated here. Possibly the protocol for study entry (including definition of a "tumor") was executed differently at this center than at the others.

# Example 4 Tables without Analyses

If you want only a frequency table and no analysis, use TABULATE. Simply specify the table factors in the same order in which you want to view them from left to right. In other words, the last variable defines the columns of the table and cross-classifications of the preceding variables the rows.

For this example, we use data in the *CANCER* file. Here we use LOGLIN to display counts for a 3 by 3 by 2 by 4 table (72 cells) in two dozen lines.

### The input is:

```
USE CANCER
LOGLIN

FREQ number
LABEL age / 50='Under 50', 60='50 to 69', 70='70 & Over'

ORDER center$ / SORT=NONE

ORDER tumor$ / SORT = 'MinBengn', 'MaxBengn', 'MinMalig', 'MaxMalig'

TABULATE age * center$ * survive$ * tumor$
```

### The output is:

Case frequencies determined by value of variable NUMBER

Number of Cells (product of levels): 72 Total count: 764

		SURVIVE\$	MinBengn	TUMC MaxBengn	R\$ MinMalig	MaxMalig
AGE Under 50	Tokyo Boston Glamorgn	Alive Dead Alive Dead Alive Dead	68.000 7.000 24.000 7.000 20.000 7.000	9.000 3.000 0.000 0.000 1.000 0.000	26.000 9.000 11.000 6.000 16.000 16.000	25.000 4.000 4.000 6.000 8.000 3.000
50 to 69	Tokyo Boston Glamorgn	Alive Dead Alive Dead Alive Dead	46.000 3.000 58.000 27.000 39.000 12.000	5.000 2.000 3.000 2.300 4.000 0.000	20.000 9,100 18.000 8.000 27.000 14.000	18.000 11.000 10.000 3.000 10.000 3.000
70 & Over	Tokyo Boston Glamorgn	Alive Dead Alive Dead Alive Dead	6.000 3.000 26.000 18.000 11.000 7.000	1.000 0.000 1.000 0.000 1.000 0.000	1.000 2.000 15.000 9.000 12.000 3.000	5.000 1.000 3.000 4.000 3.000

# Computation

# Algorithms

Loglinear modeling implements the algorithms of Haberman (1973).

# References

- Agresti, A. (1984). Analysis of ordinal categorical data. New York: Wiley-Interscience.
- * Agresti, A. (2002). Categorical data analysis, 2nd ed. New York: Wiley-Interscience.
  - Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1977). *Discrete multivariate analysis: Theory and practice*. Cambridge, Mass: The MIT Press.
  - Fienberg, S. E. (1980). *The analysis of cross-classified categorical data*, 2nd ed. Cambridge, Mass: MIT Press.
  - Goodman, L.A. (1971). The analysis of multidimensional contingency tables: Stepwise procedures and direct estimation methods for building models for multiple classifications. *Technometrics*, 13, 33-61.
  - Goodman, L. A. (1978). Analyzing qualitative/categorical data: Loglinear models and latent structure analysis. Cambridge, Mass: Abt Books.
  - Haberman, S. J. (1973). Loglinear fit for contingency tables, algorithm AS 51. *Applied Statistics*, 21, 218–224.
  - Haberman, S. J. (1978). Analysis of qualitative data, Vol. 1: Introductory topics. New York: Academic Press.
  - Knoke, D. and Burke, P. J. (1980). Loglinear models. Newbury Park: Sage.
- * Morrison, D. F. (2004). *Multivariate statistical methods*, 4th ed. Pacific Grove, CA: Duxbury Press.
  - (* indicates additional reference.)

# Missing Value Analysis

Rick Marcantonio and Michael Pechnyo

Missing value analysis helps address several concerns caused by incomplete data. Cases with missing values that are systematically different from cases without missing values can obscure the results. Also, missing data may reduce the precision of calculated statistics because there is less information than originally planned. Another concern is that the assumptions behind many statistical procedures are based on complete cases, and missing values can complicate the theory required.

The MISSING module displays and analyzes missing value patterns in data. The procedure computes maximum likelihood estimates of correlation, covariance, and cross-products of deviations matrices using either linear regression or an EM algorithm. You can downweight outliers using a normal or a t distribution.

Statistics computed include missing value patterns, means, correlations, variances and covariances, cross-products of deviations, and a pairwise frequency table. In addition, for EM estimation, SYSTAT reports Little'sMCAR test. The correlation, covariance, or SSCP matrix can be saved to a data file for further analyses. Alternatively, you can save imputed estimates in place of missing values.

Resampling procedures are available in this feature.

# Statistical Background

Even in the best designed and monitored study, observations can be missing—a subject inadvertently skips a question, a blood sample is ruined, or the recording equipment malfunctions. Because many classical statistical analyses require complete cases (no missing values), when data are incomplete it may be hard "to get off the ground." That is, if the analyst wants to explore a new data set by, say, using a factor

analysis to identify redundant variables or sets of related variables, a cluster analysis to check for distinct subpopulations, or a stepwise discriminant analysis to see which variables differ among subgroups, there may be too few complete cases for an analysis. Alternatively, the complete cases may not fully represent the total sample, leading to biased results.

Analysis of missing values focuses on three issues:

- Description of patterns. How many missing values are there? Where are they located (specific cases and/or variables)? Are values missing randomly? For each variable, the word pattern indicates the dichotomized version of the variable—that is, a binary distribution where each value is missing or present. Also, when the same variables are missing for several cases, cases are said to have the same pattern.
- Estimation of parameters, including means, covariances, and correlations.
  Statistics are computed using either the EM (expectation maximization) algorithm or linear regression.
- Imputation of values. EM and regression methods are provided for estimating replacement values for the missing data.

Often it is necessary to run the MISSING procedure several times. You should:

- First, see the extent and pattern of missing values, and determine if values are missing randomly. At this point, you may want to delete cases and variables with large numbers of missing data and, most importantly, screen variables with skewed distributions for symmetrizing transformations before proceeding to the estimation or imputation phases.
- Next, study various estimates of descriptive statistics, possibly making a side step to check relations graphically when differences in estimates are found.
- Finally, impute values (estimate replacement values) and use graphics to assess the suitability of the filled-in values.

The use of a data matrix with imputed values may not be acceptable for a final report of results, but by using the approaches and methods described here, you may be able to find a subset of variables with enough complete cases for a meaningful analysis. You may omit variables simply because a large proportion of their values are missing, or, by making exploratory runs using the imputed data matrix, you may learn that some variables are redundant or have little relation to the outcome variables of interest. For example:

- In a stepwise regression, you may find that some variables have no relation to your outcome variable. Try rerunning the analysis with a smaller subset of candidate variables that has many more complete cases.
- In a factor analysis, you may identify one or more redundant variables. You might also learn this by examining an estimate of the correlation matrix in the MISSING procedure.

# Techniques for Handling Missing Values

Over the years, many software users approached the missing data problem by using a pairwise complete method to compute a covariance or correlation matrix and then using this matrix as input for, say, a factor analysis. However, such a matrix may have eigenvalues less than 0, and some correlations may be computed from substantially different subsets of the cases. Other analysts use EM (expectation-maximization) or regression methods to estimate statistics or to impute data. Simulation studies indicate that pairwise estimates are often more distorted than estimates obtained via the EM method. In most algorithms, they are simply the first iteration of the EM method. A few analysts use multiple imputation, a computationally complex method that is not commonly available.

### **Deletion Methods**

The two most common deletion methods are listwise and pairwise deletion. In listwise deletion, the analysis uses complete cases only. That is, the procedure removes from computations any observation with a value missing on any variable included in the analysis.

Pairwise deletion is listwise deletion done separately for every pair of selected variables. In other words, counts, sums of squares, and sums of cross-products are computed separately for every pair of variables in the file. With pairwise deletion, you get the same correlation (covariance, etc.) for two variables containing missing data if you select them alone or with other variables containing missing data. With listwise deletion, correlations under these two circumstances may differ, depending on the pattern of missing data among the other variables in the file.

Because it makes better use of the data than listwise deletion, pairwise deletion is a popular method for computing correlations on matrices with missing data. Many regression programs include it as a standard method for computing regression estimates from a covariance or correlation matrix.

Ironically, pairwise deletion is one of the worst ways to handle missing values. If as few as 20% of the values in a data matrix are missing, it is not difficult to find two correlations that were computed using substantially different subsets of the cases. In such cases, it is common to encounter error messages that the matrix is singular in regression programs and to get eigenvalues less than 0 in factor analysis.

But, more importantly, classical statistical analyses require complete cases. For exploration, this restriction can be circumvented by identifying one or more variables that are not needed, deleting them, and requesting the desired analysis —there should be more complete cases for this smaller set of variables.

If you have missing values, you may want to compare results from pairwise deletion with those from the EM method. Or, you may want to take the time to replace the missing values in the raw data by examining similar cases or variables with nonmissing values.

### Imputation Methods

Deletion methods attempt to restrict computations to complete cases by eliminating cases or variables that are incomplete. Imputation methods, on the other hand, replace missing data with hypothesized values, resulting in a "complete" data set consisting of observed and imputed values. Analyses that require complete cases can then be applied to the resulting data.

### **Unconditional Mean Imputation**

One common imputation technique replaces all missing values for a variable with the mean of the observed values for that variable. Although it is highly unlikely that the missing values, if actually observed, would all lie at the center of the distribution for the variable, the most likely value for each missing point is the mean. Placing all missing values at the center of the distribution, however, underestimates the variances and covariances for the variables.

Let's look at a simple case. Consider two variables, X and Y, having a positive correlation. X has a mean of 5 and a variance of 1. Y has a mean of 13.5 and a variance

of 3.25. The covariance between X and Y equals 1.80. The data in the X and Y columns of the following table represent ten observations on these variables.

Case	X	Y	x'	Y'	
1	4.65	13.85	4.67	13.86	
2	6.21	16.41	6.21	15.22*	
3	6.63	15.68	6.64	15.68	
4	4.94	15.76	4.95	15.77	
5	7.21	17.70	4.98*	17.70	
6	5.09	13.44	5.09	15.22*	
7	6.08	15.64	4.98*	15.64	
8	4.19	12.94	4.20	12.95	
9	3.09	10.67	3.09	15.22*	
10	5.19	14.95	4.98*	14.96	
Mean	5.33	14.71	4.98	15.22	
Variance	1.51	4.06	.95	1.55	
Covariance	2	2,29	.33		

Suppose that the Y values for cases 2,6, and 9 and the X values for 5, 7, and 10 could not be observed. Simple mean imputation yields the data in columns X' and Y' (imputed values are marked with an asterisk). Notice:

- For X' and Y', the mean for the ten cases equals the mean for the seven observed cases.
- The variances for X' and Y' underestimate the corresponding true variances.
- The covariance between X' and Y' underestimates the true covariance between X and Y.

The systematic underestimation of the variances and covariances suggests that any conclusions drawn from analyses using the imputed data are suspect.

# Regression Imputation

Buck (1960) suggested an alternative procedure for imputation using conditional means. In Buck's method, the sample means and covariance matrix for the complete cases are used as estimates for the corresponding population parameters. These estimates are subsequently used to compute linear regressions of the variables with

missing values on the variables without missing values for each case. The resulting regression equations allow you to predict the missing values from the observed values.

The following plot illustrates the technique for the ten cases presented above. Cases with missing Y values could be placed at any Y value for the corresponding observed X value; cases with missing X values could be placed at any X value for the corresponding observed Y value. In this display, we place missing values at points corresponding to the complete sample (if we had been able to observe it). The solid line represents the regression of Y on X and should be used to impute values for cases lacking Y values. The dashed line indicates the regression of X on Y and is used to impute values when the X value is missing.



The two regression lines result in the following imputed estimates appearing in columns X" and Y":

Case	X'	Y'	X"	Y"
1	4.67	13.86	4.67	13.86
2	6.21	15.22*	6.21	15.64*
3	6.64	15.68	6.64	15.68
4	4.95	15.77	4.95	15.77
5	4.98*	17.70	6.90*	17.70
6	5.09	15.22*	5.09	14.55*
7	4.98	15.64	5.72*	15.64
8	4.20	12.95	4.20	12.95
9	3.09	15.22*	3.09	12.60*
10	4.98*	14.96	5.33*	14.96
Mean	4.98	15.22	5.27	14.93
Variance	.95	1.55	1.34	2.29
Covariance		.33	1	.57

Compare the mean, variance, and covariance estimates with those obtained using unconditional mean imputation (columns X' and Y'). The variance for Y and the covariance still underestimate the true values, but to a lesser extent than found previously.

## Other Imputation Methods

Replacing missing values by means (unconditional or conditional) is one approach to imputation. Other techniques found in the literature include:

- replacing missing data with values selected randomly from a distribution for each missing value.
- replacing missing data with values selected from cases not included in the analysis.
- adding a random residual to the conditional mean estimates.
- imputating multiple values for each missing item.

None of these methods, however, should be used as a panacea for solving the missing data problem. For a complete discussion of these methods, see Little and Rubin (2002).

### EM Method

Instead of pairwise deletion, many data analysts prefer to use an EM algorithm when estimating correlations, covariances, or an SSCP matrix. EM uses the maximum likelihood method to compute the estimates. This procedure defines a model for the partially missing data and bases inferences on the likelihood under that model. Each iteration consists of an E step and an M step. The E step finds the conditional expectation of the log likelihood based on complete data, with respect to the missing data model, given the observed values and current estimates of the parameters. For the M step, maximum likelihood estimation is performed for this expectation. "Missing" is enclosed in quotation marks because the missing values are not being directly filled but, rather, functions of them are used in the log-likelihood. Estimation iterates between these two steps until the parameters converge.

Returning to the previous data set, the EM imputed values appear in the final two columns of the following table:

Case	X"	Y"	X***	Y'''
1	4.67	13.86	4.67	13.86
2	6.21	15.64*	6.21	16.00*
3	6.64	15.68	6.64	15.68
4	4.95	15.77	4.95	15.77
5	6.90*	17.70	6.86*	17.70
6	5.09	14.55*	5.09	14.86*
7	5.72*	15.64	5.62*	15.64
8	4.20	12.95	4.20	12.95
9	3.09	12.60*	3.09	12.83*
10	5.33*	14.96	5.21*	14.96
Mean	5.27	14.93	5.25	15.02
Variance	1.34	2.29	1.51	2.55
Covariance	î	.57	1.	.54

For this simple example, the regression and EM results are very similar. However, when data are missing for several variables across eases, the EM method generally outperforms regression imputation. The latter technique cannot capture covariances between jointly missing data, nor does it lead to maximum likelihood estimates based on observed data.

If you compute the covariance matrix for the imputed data, the estimates will differ from the variances shown above. The EM algorithm estimates two sets of parameters (the means and covariances) with corresponding sufficient statistics (the sums of values, and the sums of cross-products). In the M step, the first set of statistics yields the EM mean estimates and the second set yields the EM covariance estimates. Using the imputed data to estimate the covariances and variances ignores any relationships between the presence or absence of data across variables. In effect, one set of sufficient statistics is being used to estimate both sets of parameters. As a result, the variances estimated from the imputed data always underestimate the variances produced by the EM algorithm. See Little and Rubin for details.

By default for the EM method, the Missing Value procedure assumes that the data follow a normal distribution. If you know that the tails of the distributions are longer than those of a normal distribution, you can request that a t distribution with n degrees of freedom be used in constructing the likelihood function (n is specified by the user). A second option also provides a distribution with longer tails. You specify the ratio of standard deviations of a mixed normal distribution and the mixture proportion of the two distributions. This assumes that only the standard deviations of the distributions differ, not the means.

# Randomness and Missing Data

You should take care in assessing the pattern of how the values are missing. For simplicity in graphic presentation, we consider a bivariate situation with incomplete data for one of the variables. Given variables *X* and *Y* (education and income, for example), is the probability of a response:

- Independent of the values of X and Y? That is, is the probability that income is recorded the same for all people regardless of their education or incomes? The recorded or observed values of income form a random subsample of the true incomes for all of the people in the sample. Little and Rubin call this pattern MCAR (Missing Completely At Random).
- Dependent on X but not on Y? In this case, the probability that income is recorded depends on the subject's education, so the probability varies by education but not by income within that education group. This pattern is called MAR (Missing At Random).
- Dependent on Y and possibly X also? In this case, the probability that income is present varies by the value of income within each education group. This is not an unusual pattern for real-world applications.

The following figure illustrates these missing data situations. In the upper left plot, the data contain no missing values. The remaining three plots depict the relationship between X and Y when approximately 30% of the data are missing. The border plots display the approximate distribution of cases for each situation.



In the MCAR plot, notice the random scatter of missing and present data. Missing observations occur for both low and high values of both variables. The distribution of the missing values is indistinguishable from the distribution of observed values for both variables. If data follow this pattern, the pairwise deletion, EM, and regression methods give consistent and unbiased estimates of correlations and covariances.

In the MAR plot, the missing values tend to occur for large values of X. However, the unobserved values are spread throughout the range of Y. The distributions for the missing and complete groups are practically identical when focusing on Y. In other words, the probability of nonresponse is independent of Y. However, two distributions emerge along the X variable. The missing value distribution (shown with a dashed

line) shifts toward higher values. The probability of observing nonresponse increases as X increases.

The pairwise, EM, and regression methods may still provide good estimates if the data are missing at random. For example, in a study of education and income, the subjects with low education may have more missing income values. If education is MCAR and if, for a given level of education, income is MCAR, pairwise, FM, and regression methods may still yield good estimates.

If the data are MAR and the assumption that the distributions are normal, mixed normal, or t with specific degrees of freedom is met, the FM method yields maximum likelihood estimates of means, standard deviations, covariances, and correlations. Be sure to check the data for outliers and to determine whether symmetrizing transformations are required before applying the technique, however.

In the final plot, the missing values appear in the upper right area of the plot. In contrast to the MAR plot, the value of Y influences the probability of nonresponse; the higher the Y value, the more likely the value will be missing. The distributions along both axes have much less overlap, with unique centers appearing for each group of cases. This situation is not an unusual pattern for real-world applications, but no current estimation methods are appropriate for data of this type.

## Testing for Randomness

The Little (1988) chi-square statistic for testing whether values are missing completely at random is printed with EM matrices. The test computes the Mahalanobis distance between parameter estimates based on listwise complete data and parameter estimates resulting from the EM algorithm. The resulting sum is referred to a chi-square distribution with degrees of freedom based on the number of patterns of missing data in the data set. If the test is rejected, the EM and listwise estimates are sufficiently "far" enough apart to warrant further examination, and certainly tells one that analysis based on listwise estimates MAY be biased.

Another method for testing for randomness involves dividing a variable into two groups based on whether data are missing or present for another variable. The means for the two groups can be compared using a t-statistic; if the values are not missing randomly, the test statistic will be large. However, be aware that while a sizable *t* statistic does indicate a departure from randomness, a small *t* may be no confirmation that values are missing randomly. Sadly, there is no magic test for MAR.

### A Final Caution

Imputed data are not complete. Although missing values do not occur in imputed data, imputation does not replace them with values that would have been observed had all data been available. If you use imputed data in analyses, you should control for the imputation. For example, suppose you use the EM estimates in a regression, the degrees of freedom for the error term should be adjusted back down to either the listwise complete value or some other reasonable estimate.

To us, none of the approaches to estimation and imputation should be viewed as a magic black box. While the EM and regression methods allow a specific way in which the values of one variable may be related to another, a good data analyst will want to ferret out possible problems in how the data are sampled, recorded, or otherwise fail to conform to the study protocol—for example, which regions of a multivariate space are sparse because data are missing? It is hard to separate the selection of an appropriate method for estimation or imputation from the basic data screening process.

## Missing Value Analysis in SYSTAT

## Missing Value Analysis Dialog Box

To analyze missing values, from the menus choose:

Advanced
Missing Value Analysis...



SYSTAT treats all selected variables as continuous (numeric) data. Select a matrix to compute and a method for handling missing data.

Matrix to display. SYSTAT computes the correlation, covariance, or SSCP matrix.

Estimation method. Two estimation methods are available:

- **EM estimation.** Requests the EM algorithm to estimate Pearson correlation, covariance, or SSCP matrices. Little's MCAR test is shown with a display of the pattern of missing values.
- Regression substitution. Uses multiple linear regression to impute estimates for missing values. For each case, SYSTAT uses linear regression on the observed variables to predict values for the missing variables.

You can downweight outliers using a Normal, contaminated normal, or t distribution. The following options are available:

- Normal produces maximum likelihood estimates for a multivariate normal sample.
- Contaminated normal produces maximum likelihood estimates for a contaminated multivariate normal sample. For the contaminated normal, SYSTAT assumes that the distribution is a mixture of two normal distributions (same mean, different variances) with a specified probability of contamination. The Probability value is the probability of contamination (for example, 0.10), and Variance is the variance of contamination. Downweighting for the normal model tends to be concentrated in a few outlying cases.
- t produces maximum likelihood estimates for a *t* distribution, where df is the degrees of freedom. Downweighting for the multivariate *t* model tends to be more spread out than for the normal model. The degree of downweighting is inversely related to the degrees of freedom.

**Iterations.** For EM estimation, specify the maximum number of iterations for computing the estimates.

Convergence. Define the convergence criterion for EM estimation. If the relative change of covariance entries is less than the specified value, convergence is assumed.

Save. Saves the matrix being displayed to a SYSTAT data file. You can also save the raw data with imputed estimates in place of any missing values.

## **Using Commands**

Select your data by typing USE filename. Continue with:

Omitting the DATA option from SAVE results in the current matrix being saved to outfile.

# Usage Considerations

Types of data. Data for missing value analysis must be rectangular and all variables must be numerical. This procedure should not be used to estimate missing categorical values, but categorical variables can be used to estimate values for missing continuous data. In this case, dummy code the categories and use the resulting indicator variables in the analysis.

Print options. With PLENGTH LONG, SYSTAT prints the mean of each variable. In addition, for EM estimation, SYSTAT prints an iteration history, missing value patterns, Little's MCAR test, and mean estimates.

Quick Graphs. Missing value analysis produces a cases-by-variables plot similar to a shaded data matrix.

Saving files. You can save the correlation, covariance, or SSCP matrix, or save a rectangular file of the raw data with missing values replaced by imputed estimates. SYSTAT automatically defines the type of file as CORR, COVA, SSCP, or RECT.

BY groups. Missing value analysis produces separate analyses for each level of any BY variables.

Case frequencies. FREQUENCY <variable> increases the number of cases by the FREQ variable.

Case weights. WEIGHT is available in missing value analysis.

## Examples

Example 1

Missing Values: Preliminary Examinations

Where are the missing values located? How extensive are they? If a value is missing for one variable, does it tend to be missing for one or more other variables? Conversely, if a value is present for one variable, do values tend to be missing for other specific variables? Is the pattern of missing values related to values of another variable?

You may need to uncover patterns of incomplete data in order to:

 select enough complete cases for a meaningful analysis. If you omit a few variables, or even just one, does the sample size of complete cases increase dramatically?

- select a method of estimation or imputation. If, for example, you plan to use complete cases for a final analysis, you need to verify that values are missing completely at random, missing at random, or missing nonrandomly.
- understand how results may be biased or distorted because of a failure to meet necessary assumptions about randomness of the missing values.

In this example, we explore the *WORLD95m* data for patterns of how values are missing. We focus on descriptive statistics to explore variable distributions and reveal the amount of missing data.

### The input is:

USE WORLD95M
CSTATISTICS POPULATN DENSITY URBAN LIFEEXPF LIFEEXPM,
LITERACY POP INCR BABYMORT GDP CAP CALORIES,
BIRTH RT DEATH RT B TO D FERTILTY LIT MALE,
LIT FEMA / MEAN MEDIAN SD SES SKEWNESS N

### The output is:

	POPULATN	DENSITY	URBAN	LIFEEXPF
N of Cases Median Arithmetic Mean Standard Deviation Skewness(G1) Standard Error of Skewness	109.000 10400.000 47723.881 146726.364 6.592 0.231	64.000 203.415 675.705 6.887	56.528 24.203	74.000 70.156 10.572 -1.109
	LIFEEXPM			
N of Cases Median Arithmetic Mean Standard Deviation Skewness(G1) Standard Error of Skewness	109.000 67.000 64.917 9.273 -1.080 0.231			
	LITERACY	POP_INCR	BABYMORT	GDP_CAP
N of Cases Median Arithmetic Mean Standard Deviation Skewness(G1) Standard Error of Skewness	88.000 78.336 22.883 -0.994	1.682 1.198 0.324	27.700 42.313 38.079 1.090	5859.982 6479.836
	CALORIES			
N of Cases Median Arithmetic Mean Standard Deviation Skewness(G1) Standard Error of Skewness	75.000 2653.000 2753.827 567.828 0.170 0.277			

	BIRTH_RT	DEATH_RT	B_TO_D	FERTILTY
N of Cases Median Arithmetic Mean Standard Deviation Skewness(G1) Standard Error of Skewness	109.000 25.000 25.923 12.361 0.446 0.231	9.000 9.557 4.253	2.667 3.204 2.125 1.829	107.000 3.050 3.563 1.902 0.664 0.234
	LIT MALE			
N of Cases Median Arithmetic Mean Standard Deviation Skewness(G1) Standard Error of Skewness	* 85.000 : 8'.00 78.74 : 20.445 -0.851 0.26:			
	LIT FEMA			
N of Cases Median Arithmetic Mean Standard Deviation Skewness(G1) Standard Error of Skewness	85.000 71.000 67.259 28.607 -0.504 0.261			

This output provides your first look, variable by variable, at the extent of incomplete data. Because means and standard deviations are computed using all available data for each variable, the sample sizes vary from variable to variable. The total number of observations is 109. The number of values present for each variable is reported as 'N of cases'. For calories, 75 countries (cases) report a value, so 109 - 75, or 34, do not. That is, calories is missing for 34 / 109 = 31.2% of the cases. The female and male literacy rates (*lit fema* and *lit_male*) are each missing for 22% of the cases. Eight variables have no missing values, and five others have from 0.9% to 1.8% missing values.

Use the skewness statistic to identify nonsymmetric distributions. Symmetry is important if one's goal is to estimate means, standard deviations, covariances, or correlations. Both *POPULATN* and *DENSITY* are highly positively skewed. Transformations should be considered to make the distributions of these variables more symmetric.

### **Boxplots and Transformations**

Boxplots and stem-and-leaf plots provide a visual display of distributions and assist in identifying outliers. To generate boxplots for the *WORLD95m* data, the input is:

USE WORLD95M
DENSITY POPULATN DENSITY URBAN LIFEEXPF LIFEEXPM,
LITERACY POP_INCR BABYMORT GDP_CAP CALORIES,
BIRTH_RT DEATH_RT B_TO_D FERTILTY LIT_MALE,
LIT_FEMA / BOX









POPULATN, DENSITY, GDP CAP and DEATH RT all contain many extreme cases and outliers. Transforming these variables may eliminate these problematic cases and improve the symmetry of the distributions.

The log transformation improves the distributions of these variables considerably. Here we plot the boxplots for the original data next to the boxplots for the log-

transformed data. In order to display the four distributions within each plot, we standardize the variables before plotting.

```
USE WORLD95M
LET ZPOP = POPULATN
LET ZDENS = DENSITY
LET ZGDP = GDP CAP
LET ZDEATH = DEATH RT
LET ZLOG POP = L10 (POPULATN)
LET ZLOG DEN = L10 (DENSITY)
LET ZLOG GDP = L10 (GDP CAP)
LET ZLOG DEA = L10 (DEATH RT)
STANDARDIZE ZPOP ZDENS ZGDP ZDEATH,
     ZLOG POP ZLOG DEN ZLOG GDP ZLOG DEA
DENSITY ZPOP ZDENS ZGDP ZDEATH / REPEAT BOX XLAB='',
                           TITLE='Raw Data' LOC=-3IN,0IN
DENSITY ZLOG POP ZLOG DEN ZLOG GDP ZLOG DEA / REPEAT BOX,
                           XLAB=' TITLE='Transformed Data',
                           YMIN=-5 YMAX=10 LOC=3IN,0IN
END 'Boxplots'
```



For each variable, the number of extreme cases decreases after applying the transformation. In addition, cases identified as extreme occur at both ends of the distribution for the transformed data. In contrast, extreme cases for the raw data correspond only to the high end of the distributions. The improvement in the distributions suggests transforming these variables to logarithms before applying any missing value analysis.

# Example 2 Casewise Pattern Table

A casewise pattern table is a picture of the data file that highlights the location of missing observations. Each column in the display represents the values of a variable; each row represents the data for one case. This display is used to see if particular cases and/or variables have too little complete data to use and also to see if variables (or groups of variables) have values missing nonrandomly.

In this example, we create this layout using the MIS function. In addition, we recode the variables as (0,1) indicator variables, in which a 1 indicates a missing value and a 0 indicates an observed value. To save space, the Eastern European, African, and Latin American countries are omitted.

### The input is:

```
USE WORLD95M
LET NUMMISS=MIS (POPULATN, DENSITY, URBAN, LIFEEXPF, LIFEEXPM, LITERACY,,
      POP INCR, BABYMORT, GDP CAP, CALORIES, BIRTH RT, DEATH RT, B TO D.,
      FERTILTY, LIT MALE, LIT FEMA)
LET PERCENTM= NUMMISS/(NUMMISS+NUM(POPULATN, DENSITY, URBAN, LIFEEXPF,,
      LIFEEXPM, LITERACY, POP INCR, BABYMORT, GDP CAP, CALORIES, BIRTH RT,
      DEATH RT, B TO D, FERTILTY, LIT MALE, LIT FEMA)) *100
LET (POPULATN, DENSITY, URBAN, LIFEEXPF, LIFEEXPM, LITERACY,
      POP INCR, BABYMORT, GDP CAP, CALORIES, BIRTH RT, DEATH RT, B TO D.,
      FERTILTY, LIT MALE, LIT FEMA) = @ = .
SORT REGION COUNTRYS
SELECT REGION =. OR REGION =1 OR REGION =3 OR REGION =5
REM 'In the following table, a 1 indicates a missing value.'
REM 'A 0 indicates an observed value.'
LIST COUNTRYS NUMMISS PERCENTM POPULATN DENSITY URBAN LIFEEXPF,
      LIFEEXPM LITERACY POP INCR BABYMORT GDP CAP CALORIES BIRTH RT.
      DEATH RT B TO D FERTILTY LIT MALE LIT FEMA
# # # # "
```

Because USA and Canada have missing values for *REGION2*, we select cases where *REGION2* is missing to include these countries in the table. We also sort the cases by geographical region and by country name, yielding an alphabetical listing of countries within each region.

## The output is:

Data for the following results were selected according to SELECT REGION =. OR REGION =1 OR REGION =3 OR REGION =5

Case :	COUNTRYS LIFEEXPF CALORIES LIT_FEMA	NUMMISS LIFEEXPM BIRTH_RT	PERCENTM LITERACY DEATH_RT	POPULATN POP_INCR B_TO_D	DENSITY BABYMORT FERTILTY
1	Australia	0.00000	0.00000	17800.00000	2.30000
	80.00000	74.00000	100.00000	1.38000	7.30000
	3216.00000	15.00000	8.00000	1.87500	1.90000
2	100.00000 Austria 79.00000 3495.00000	2.00000 73.00000 12.00000	12.50000 99.00000 11.00000	8000.00000 0.20000 1.09091	94.00000 6.70000 1.50000
3	Belgium 79.00000	3.00000 73.00000 12.00000	18.75000 99.00000 11.00000	10100.00000 0.20000 1.09091	329.00000 7.20000 1.70000
4	Canada	2.00000	12.50000	29100.00000	2.80000
	81.00000	74.00000	97.00000	0.70000	6.80000
	3482.00000	14.00000	8.00000	1.75000	1.80000
5	Denmark	2.00000	12.50000	5200.00000	120.00000
	79.00000	73.00000	99.00000	0.10000	6.60000
	3628.00000	12.00000	12.00000	1.00000	1.70000
6	Finland	2.00000	12.50000	5100.00000	39.00000
	80.00000	72.00000	100.00000	0.30000	5.30000
	3253.00000	13.00000	10.00000	1.30000	1.80000
7	France	2.00000	12.50000	58000.00000	105.00000
	82.00000	74.00000	99.00000	0.47000	6.70000
	3465.00000	13.00000	9.30000	1.39785	1.80000
8	Germany	2.00000	12.50000	81200.00000	227.00000
	79.00000	73.00000	99.00000	0.36000	6.50000
	3443.00000	11.00000	11.00000	1.00000	1.47000
9	Greece	0.00000	0.00000	10400.00000	80.00000
	80.00000	75.00000	93.00000	0.84000	8.20000
	3825.00000	10.00000	10.00000	1.00000	1.50000
10	89.00000	3.00000	18.75000	263.00000	2.50000
	Iceland	76.00000	100.00000	1.10000	4.00000
	81.00000	16.00000	7.00000	2.28571	2.11000
11	Treland	2.00000	12.50000	3600.00000	51.00000
	78.00000	73.00000	98.00000	0.30000	7.40000
	3778.00000	14.00000	9.00000	1.55556	1.99000
12	Italy	0.00000	0.00000	58100.00000	188.00000
	81.00000	74.00000	97.00000	0.21000	7.60000
	3504.00000	11.00000	10.00000	1.10000	1.30000
13	96.00000 Netherlands 81.00000 3151.00000	2.00000 75.00000 13.00000	12.50000 99.00000 9.00000	15400.00000 0.58000 1.44444	366.00000 6.30000 1,58000
14	New Zealand	2.00000	12.50000	3524.00000	13.00000
	80.00000	73.00000	99.00000	0.57000	8.90000
	3362.00000	16.00000	8.00000	2.00000	2.03000
15	Norway	2.00000	12.50000	4300.00000	11.00000
	81.00000	74.00000	99.00000	0.40000	6.30000
	3326.00000	13.00000	10.00000	1.30000	2.00000

16	Portugal 78.00000	1.00000 71.00000 12.00000	6.25000 85.00000 10.00000	10500.00000 0.36000 1.20000	108.00000 9.20000 1.50000
17 :	82.00000 Spain 81.00000 3572.00000	0.00000 74.00000 11.00000	0.00000 95.00000 9.00000	39200.00000 0.25000 1.22222	77.00000 6.90000 1.40000
18	93.00000 Sweden 81.00000 2960.00000	2.00000 75.00000 14.00000	12.50000 99.00000 11.00000	8800.00000 0.52000 1.27273	19.00000 5.70000 2.10000
19	Switzerland 82.00000 3562.00000	2.00000 75.00000 12.00000	12.50000 99.00000 9.00000	7000.00000 0.70000 1.33333	170.00000 6.20000 1.60000
20	0K : 80.00000 3149.00000	2.00000 74.00000 13.00000	12.50000 99.00000 11.00000	58400.00000 0.20000 1.18182	237.00000 7.20000 1.83000
21	USA 79.00000 3671.00000	0.00000 73.00000 15.00000	0.00000 97.00000 9.00000	260800.00000 0.99000 1.66667	26.00000 8.11000 2.06000
36	97.00000 Afghanistan 44.00000	1.00000 45.00000 53.00000	6.25000 29.00000 22.00000	20500.00000 2.80000 2.40909	25.00000 168.00000 6.90000
37	14.00000 Bangladesh 53.00000 2021.00000	0.00000 53.00000 35.00000	0.00000 35.00000 11.00000	125000.00000 2.40000 3.18182	800.00000 106.00000 4.70000
38	: 22.00000 : Cambodia : 52.00000 : 2166.00000	0.00000 50.00000 45.00000	0.00000 35.00000 16.00000	10000.00000 2.90000 2.81250	55.00000 112.00000 5.81000
39	22.00000 China 69.00000 2639.00000 68.00000	0.00000 67.00000 21.00000	0.00000 78.00000 7.00000	1.20520E+006 1.10000 3.00000	124.00000 52.00000 1.84000
Case	GDF CAP				
1	85.00000 16848.00000 100.00000				
2	58.00000 , 18396.00000				
1	96.00000 17912.00000				
4	77.00000 19904.00000				
r	85.00000 18277.00000				
,	60.00000 15877.00000				

## Missing Value Analysis

7	73.00000
,	73.00000
8	85.00000 17539.00000
9	63.00000 8060.00000 98.00000
10	91.00000 17241.00000
11	57.00000 12170.00000
12	69.00000 17500.00000 98.00000
13	89.00000 17245.00000
14	84.00000 14381.00000
15	75.00000 17755.00000
16	34.00000 9000.00000 89.00000
17	78.00000 13047.00000 97.00000
18	84.00000 16900.00000
19	62.00000
20	89.00000 15974.00000
21	75.00000 23474.00000 97.00000
36	18.00000 205.00000 44.00000
37	16.00000 202.00000 47.00000
38	12.00000 260.00000 48.00000

39	26.00000 377.00000 87.00000				
Case	COUNTRYS LIFEEXPF CALORIES LIT_FEMA	NUMMISS LIFEEXPM BIRTH_RT	PERCENTM LITERACY DEATH_RT	POPULATN POP_INCR B_TO_D	DENSITY BABYMORT FERTILTY
40	Hong Kong 80.00000	1.00000 75.00000 13.00000	6.25000 77.00000 6.00000	5800.00000 -0.09000 2.16667	5494.00000 5.80000 1.40000
41	64.00000 India 59.00000 2229.00000	0.00000 58.00000 29.00000	0.00000 52.00000 10.00000	911600.00000 1.90000 2.90000	283.00000 79.00000 4.48000
42	39.00000 Indonesia 65.00000 2750.00000	0.00000 61.00000 24.00000	0.00000 77.00000 9.00000	199700.00000 1.60000 2.66667	102.00000 68.00000 2.80000
43	68.00000 Japan 82.00000 2956.00000	2.00000 76.00000 11.00000	12.50000 99.00000 7.00000	125500.00000 0.30000 1.57143	330,00000 4,40000 1,55000
44	Malaysia 72.00000 2774.00000 70.00000	0.00000 66.00000 29.00000	0.00000 78.00000 5.00000	19500.00000 2.30000 5.80000	58.00000 25.60000 3.51000
45	N. Korea : 73.00000	1.00000 67.00000 24.00000	6.25000 99.00000 5.50000	23100.00000 1.83000 4.36364	189.00000 27.70000 2.40000
46	99.00000 Pakistan 58.00000	1.00000 57.00000 42.00000	6.25000 35.00000 10.00000	128100.00000 2.80000 4.20000	143.00000 101.00000 6.43000
47	21.00000 Philippines 68.00000 2375.00000	0.00000 63.00000 27.00000	0.00000 90.00000 7.00000	69800.00000 1.92000 3.85714	221.00000 51.00000 3.35000
48	90.00000 S. Korea 74.00000	1.00000 68.00000 16.00000	6.25000 96.00000 6.00000	45000.00000 1.00000 2.66667	447.00000 21.70000 1.65000
49	: 99.00000 : Singapore 79.00000 3198.00000 ; 84.00000	0.00000 73.00000 16.00000	0.00000 88.00000 6.00000	2900.00000 1.20000 2.66667	4456.00000 5.70000 1.88000
50	Taiwan 78.00000	6.00000 72.00000 15.60000	37.50000 91.00000	20944.00000	582.00000 5.10000
51	Thailand 72.00000 : 2316.00000 90.00000	0.00000 65.00000 19.00000	0.00000 93.00000 6.00000	59400.00000 1.40000 3.16667	115.00000 37.00000 2.10000
52	Vietnam 68.00000 2233.00000 83.00000	0.00000 63.00000 27.00000	0.00000 88,00000 8,00000	73100.00000 1.78000 3.37500	218.00000 46.00000 3.33000
72	Armenia 75.00000	1.00000 68,00000 23.00000	6.25000 98.00000 6.00000	3700.00000 1.40000 3.83333	126.00000 27.00000 3.19000
73	100.00000 Azerbaijan 75.00000	1.00000 67.00000 23.00000	6.25000 98.00000 7.00000	7400.00000 1.40000 3.28571	86.00000 35.00000 2.80000
	100.00000				

## Missing Value Analysis

74	Bahrain 74.00000	1.00000 71.00000 29.00000	6.25000 77.00000 4.00000	600.00000 2.40000 7.25000	828.00000 25.00000 3.96000
75	55.00000 Egypt 63.00000 3336.00000	0.00000 60.00000 29.00000	0.00000 48.00000 9.00000	60000.00000 1.95000 3.22222	57.00000 76.40000 3.77000
76	34.00000 Iran 67.00000 3181.00000	0.00000 65.00000 42.00000	0.00000 54.00000 8.00000	65600.00000 3.46000 5.25000	39.00000 60.00000 6.33000
77	43.00000 Iraq 68.00000 2887.00000	0.00000 65.00000 44.00000	0.00000 60.00000 7.00000	19900.00000 3.70000 6.28571	44.00000 67.00000 6.71000
78	49.00000 Israel 80.00000	1.00000 76.00000 21.00000	6.25000 92.00000 7.00000	5400.00000 2.22000 3.00000	238.00000 8.60000 2.83000
79	89.00000 Jordan 74.00000 2634.00000	0.00000 70.00000 39.00000	0.00000 80.00000 5.00000	3961.00000 3.30000 7.80000	42.00000 34.00000 5.64000
80	70.00000 Kuwait 78.00000 3195.00000	0.00000 73.00000 28.00000	0.00000 73.00000 2.00000	1800.00000 5.24000 14.00000	97.00000 12.50000 4.00000
81	67.00000 Lebanon 71.00000	1.00000 67.00000 27.00000	6.25000 80.00000 7.00000	3620.00000 2.00000 3.85714	343.00000 39.50000 3.39000
82	73.00000 Libya 65.00000 3324.00000	0.00000 62.00000 45.00000	0.00000 64.00000 8.00000	5500.00000 3.70000 5.62500	2.80000 63.00000 6.40000
83	50.00000 Oman 70.00000	4.00000 66.00000 40.00000	25.00000 5.00000	1900.00000 3.46000 8.00000	7.80000 36.70000 6.53000
Case	URBAN GDP_CAP LIT_MALE				
40	94.00000 14641.00000 90.00000				
41	26.00000 275.00000 64.00000				
42	29.00000 681.00000 84.00000				
43	77.00000 19860.00000				
44	43.00000 2995.00000 86.00000				
45	60.00000 1000.00000 99.00000				
46	; 32.00000				

		406.00000 47.00000
17	!	43.00000 867.00000 90.00000
18	e z	72.00000 6627.00000 99.00000
49	0.0	100.00000 14990.00000 93.00000
50		71.00000 7055.00000
51	0 0	22.00000 1800.00000 96.00000
52		20.00000 230.00000 93.00000
72	1 0 0	68.00000 5000.00000 100.00000
73		54.00000 3000.00000 100.00000
74		83.00000 7875.00000 55.00000
75		44.00000 748.00000 63.00000
76		57.00000 1500.00000 64.00000
77	-	72.00000 1955.00000 70.00000
78	0.0	92.00000 13066.00000 95.00000
79	1	68.00000 1157.00000 89.00000
80	:	96.00000 6818.00000 77.00000
81		84.00000 1429.00000 88.00000
82		82.00000 5910.00000 75.00000

9 3	11.00000 7467,00000				
Case	COUNTRYS LIFEEXPF CALORIES	NUMMISS LIFEEXPM BIRTH_RT	1	· · · ·	LENSITY BARYM PT PERTILTY
r4	and and	0.0000C 66.00000 38.00000	0.00000 62.00000 6.00000	3.20000	7,70000 52,00000 6,67000
85	2874.00000 48.00000 Syria 68.00000	1.00000 65.00000 44.00000	6.25000 64.00000 6.00000	14900.00000 3.70000 7.33333	74.00000 43.00000 6.65000
86	51.00000 Turkey 73.00000 3236.00000	0.00000 69.00000 26.00000	0.00000 81.00000	62200.00000 2.02000 4.33333	79.00000 49.00000 3.21000
87	71.00000 U.Arab Em. 74.00000	1.00000 70.00000 28.00000	.25000 00000	2800.00000 4.80000 9.33333	32.00000 22.00000 4.50000
ŊR	63.00000 Uzbekistan 72.00000	1.00000 65.00000 30.00000	.25000	22600.00000 2.13000 4.28571	50.00000 53.00000 3.73000
Case	100.00000  UBBAN  GI AF  LIT MALE				
e4	77.0 00 . 6651				
85	*(.107)) _4*0.77 / ) *8.00000				
86	61.00000 3721.30.00 90.00000				
87	81.00000 14193.00776 70.000J0				
88	41.00000 1350.00000 100.00000				

The 1's show that when female literacy is missing, male literacy is missing too (see the final two columns). LIT_MALE and LIT_FEMA are missing frequently for European countries, but calories is missing more often for Middle Eastern countries. In the complete sample, 37.5% of Taiwan's data are missing, 25% of Oman's data are missing, and so forth.

### Sorted Pattern Table

In a sorted pattern table, cases and variables are sorted by the patterns of the missing data. Complete cases are not included.

### The input is:

USE WORLD95M LET NUMMISS=MIS (POPULATN, DENSITY, URBAN, LIFEEXPF, LIFEEXPM, , LITERACY, POP INCR, BABYMORT, GDP CAP,, CALORIES BIRTH RT DEATH RT, B TO D, FERTILTY, , LIT MALE, LIT FEMA) LET PERCENTM = NUMMISS/(NUMMISS+NUM(POPULATN, DENSITY, URBAN,, LIFEEXPF, LIFEEXPM, LITERACY, POP INCR, BABYMORT, GDP CAP,, CALORIES, BIRTH RT, DEATH RT, B TO D, FERTILTY, LIT MALE,, LIT FEMA)) *100 DSAVE WORLD95N TRANSPOSE POPULATN DENSITY URBAN LIFEEXPF LIFEEXPM LITERACY, POP INCR BABYMORT GDP CAP CALORIES, BIRTH RT DEATH RT B TO D, FERTILTY LIT MALE LIT FEMA NUMMISS PERCENTM LET NUMMISS=MIS(COL(1)..COL(109)) SORT NUMMISS TRANSPOSE DSAVE RECODE

MERGE WORLD95N (COUNTRY\$ NUMMISS PERCENTM) RECODE DROP LABELS

To shorten the output, we omit countries with one missing value. *CALORIES* is missing for most of the omitted cases.

Data for the following results were selected according to SELECT NUMMISS_worLD95N > 1

Case	COUNTRYS LIFEEXPM PERCENTM RECODE LIT MALE	NUMMISS_WORLD9- 5N POP_INCR URBAN LIT_FEMA	PERCENTM_WORLD- 95N BABYMORT DEATH_RT CALORIES	POPULATN GDP_CAP B_TO D	
87	: Austria . 73.000 : 12.500	2.000 0.200 58.000	12.500 6.700 11.000 3495.000	8000.000 18396.000 1.091	
88	Canada 74.000 12.500	2.000 0.700 77.000	12.500 6.800 8.000 3482.000	29100.000 19904.000 1.750	
89	Denmark 73.000 12.500	2.000 0.100 85.000	12.500 6.600 12.000 3628.000	5200.000 18277.000 1.000	
90	Finland 72.000 12.500	2.000 0.300 60.000	12.500 5.300 10.000 3253.000	5100.000 15877.000 1.300	
91	France 74.000	2.000 0.470 73.000	12.500 6.700 9.300	58000.000 18944.000 1.398	
92	Germany 73.000 12.500	2.000 0.360 85.000	3465.000 12.500 6.500 11.000 3443.000 12.500 7.400 9.000	81200.000 17539.000 1.000	
93	Ireland 73.000	2.000 0.300 57.000		3600.000 12170.000 1.556	
94	Japan 76.000	2.000 0.300 77.000	3778.000 12.500 4.400 7.000 2956.000	125500.000 19860.000 1.571	
95	Netherlands 75.000	2.000 0.580 89.000	2956.000 12.500 6.300 9.000 3151.000 12.500 8.900 8.000 3362.000 12.500 6.300 10.000 3326.000 12.500 20.300 10.000 3155.000 12.500 5.700 11.000 2960.000 12.500 6.200 9.000 3562.000	12.500 15400 6.300 17245 9.000 1.444 3151.000 12.500 3524. 8.900 14381 8.000 2.000	15400.000 17245.000 1.444
96	New Zealand 73.000	2.000 0.570 84.000			3524.000 14381.000 2.000
97	Norway 74.000	2.000 0.400 75.000		4300.000 17755.000 1.300	
98	Romania 69.000 12.500	2.000 0.060 54.000		23400.000 2702.000 1.400	
99	Sweden 75.000	2.000 0.520 84.000		8800.000 16900.000 1.273	
100	Switzerland 75.000 12.500	2.000 0.700 62.000		7000.000 22384.000 1.333	

101	UK 74.000 12.500	2.000 0.200 89.000	12.500 7.200 11,000	58400.000 15974.000 1.182
102	Belgium 73.000 18.750	3.000 0.200 96.000	3149.000 18.750 7.200 11.000	10100.000 17912.000 1.091
103	Bulgaria 69.000 18.750	3.000 -0.200 68.000	18.750 12.000 12.000	8900.000 3831.000 1.083
104	Croatia 70.000 18.750	3.000 -0.100 51.000	18.750 8.700 11.000	4900.000 5487.000 1.000
105	1celand 76.000 18.750	3.000 1.100 91.000	18.750 4.000 7.000	263.000 17241.000 2.286
106	South Afri 62.000 18.750	3.000 2.600 49.000	18.750 47.100 8.000	43900.000 3128.000 4.250
107	Bosnia 72.000 25.000	4.000 0.700 36.000	25.000 12.700 6.390	4600.000 3098.000 2.191
108	Czech Rep. 69.000 25.000	4.000	25.000 9.300 11.100 3632,000	10400.000 7311.000 1.171
109	Oman 66.000 25.000	4.000 3.460 11.000	25.000 36.700 5.000	1900.000 7467.000 8.000
110	Taiwan 72.000 37.500	6.000 0.920 71.000	37.500 5.100	20944.000 7055.000
Case	DENSITY BIRTH RT LITERACY	LIFEEXPF NUMMISS RECODE FERTILTY		
8 7	94.000 12.000 99.000	79.000 2.000 1.500		
88	2.800 14.000 97.000	81.000 2.000 1.800		
89	120.000 12.000 99.000	79.000 2.000 1.700		
90	39.000 13.000 100.000	80.000 2.000 1.800		
91	105.000 13.000 99.000	82.000 2.000 1.800		
92	227.000 11.000 99.000	79.000 2.000 1.470		

# Missing Value Analysis

93	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51.000 14.000 98.000	78.000 2.000 1.990
94	1 1	330.000 11.000 99.000	82.000 2.000 1.550
95		366.000 13.000 99.000	81.000 2.000 1.580
96	1	13.000 16.000 99.000	80.000 2.000 2.030
97		11.000 13.000 99.000	81.000 2.000 2.000
98	1	96.000 14.000 96.000	75.000 2.000 1.820
99		19.000 14.000 99.000	81.000 2.000 2.100
100		170.000 12.000 99.000	82.000 2.000 1.600
101	1	237.000 13.000 99.000	80.000 2.000 1.830
102	1	329.000 12.000 99.000	79.000 3.000 1.700
103	1	79.000 13.000 93.000	75.000 3.000 1.800
104	1 1 1 1	85.000 11.000 97.000	77.000 3.000 1.650
105	;	2.500 16.000 100.000	81.000 3.000 2.110
106		35.000 34.000 76.000	68.000 3.000 4.370
107		87.000 14.000 86.000	78.000 4.000
108	3 ;	132.000 13.000	77.000 4.000

```
109 | 7.800 70.000
| 40.000 4.000
| 6.530
| 110 | 582.000 78.000
| 15.600 6.000
| 91.000 .
```

The last three columns are LIT_MALE, LIT_FEMA, and CALORIES, and the four last cases are Oman, Bosnia, Czech Rep., and Taiwan, because they have the most values missing. Recalling that cases with one missing value are not included and that this missing value is usually CALORIES, it is easy to see that when CALORIES is missing, the literacy rates for females and males tend to be present. For larger data files, the most common patterns may be less apparent.

# Example 3 Correlation Estimation

In this example, we continue to use the WORLD95m data used in the "Preliminary Examinations" example, now requesting estimates of correlations. Even though we established that values are nonrandomly missing, we request listwise estimates so that they can be compared later with estimates obtained by the pairwise, and EM.

### The input is:

```
USE WORLD95M
LET LOG DEA = L10 (DEATH_RT)
FORMAT 6,3
CORR
NOTE 'Listwise Deletion'
PEARSON LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR,
BABYMORT LOG GDP BIRTH RT LOG DEA B TO D,
FERTILTY URBAN LITERACY LIT FEMA,
LIT MALE CALORIES / LISTWISE
```

### The output is:

Listwise Deletion

Number of Observations: 59

#### Means

LOG DEA	B TO D	e marra a mara		ITERACY L	IT FEMA L	IT_MALE	CALORIES
0.945		4.303	49.763	69.576	62.119	75.356 2	.589E+003
earson Co	orrelation	Matrix					
	LOG_POP	LOG_DEN	LIFEEXPF	LIFEEXPM	POP_INCR	BABYMORT	LOG_GDP
OG POP	1.000						
OG DEN	0.282	1.000					
IFEEXPF	0.038	0.004	1.000				
IFEEXPM	0.059	0.023	0.987				
OP INCR	-0.299	0 206	-0.492	-0.325	1.000	1.000	
ABYMORT	-0.009	0.037	-0.951	-0.931	0.420		1.000
OG GDP	-0.139		0.766	0.736	-3.363		-0.674
IRTH RT	: -0.423		-0.817	-0.773	0.776		-0.478
OG DEA	0.029		-0.801		-0.102	0.742	0.083
TO D	: -0.269		0.270	0.318	0.692	-0.231	-0.586
ERTILTY	-0.240	-0.142	-0.790	-0.747	0.755 -0.192 -0.567	0.784	
	-0.141		0.741	0.717	-0.192	-0.705 -0.891	0.701
RBAN	: 0,082		0.827	0.785 C.713	-0.567	-0.891	0.602
ITERACY	0.109		0.815	0.773	-0.580 -0.542	-0.856	
IT FEMA	0.176	0.097	0 754	0.727	-0.542		0.000
IT MALE			0.716	0.711	-0.393	-0.70x	0.80
CALORIES	,						
Pearson C	correlation	n Matrix (co	med			rmenacy I	T FFMA
	BIRTH_R	T LOG_DEA	B TO D	FERTILTY	UKBAN L.	I I DEPART D	
LOG POP	,						
LOG DEN	1						
LIFEEXPF	1						
LIFEEXPM	1						
POP INCR	1						
BABYMORT	]						
LOG GDP	1						
BIRTH RT	1.00	0					
LOG DEA	: 0.46		1 000				
TÖ D	; 0.18		1.000	1,000			
FERTILTY	, 0.96			-0.533	1.000		
JRBAN	-0.56		0.261	-0.814	0.614	1.000	
LITERACY	-0.82	2 -0.589	0.043	-0.019	0.634	0.963	1.000
LIT FEMA			0.032		0.595	0.939	0.960
LIT MALE		-0.362	0.023	-0.581	0.674	0.575	0.548
CALORIES	-0.65	8 -0.407	0.040	-0.501	3.0		
Pearson (	Correlatio	n Matrix (c	ontd)				
		E CALORIE					

		LIT	MALE	CALORIES	
	÷				
LOG POP	1				
LOG DEN	*				
LIFEEXPF	1				
LIFEEXPM	1				
POP INCR	2				
BABYMORT	ì				
LOG_GDP	1				
BIRTH_RT	*				
LOG_DEA	1				
B_TO_D	i				
FERTILTY	1				
URBAN	i				
LITERACY	1				
LIT_FEMA			1.000		
LIT_MALE	į.		0.576	1.000	
CALORIES			0,510		

### Scatter Plot Matrix



Of the 109 cases in the file, 50 have missing data. All statistics reported here are based on the remaining 59 cases. If you compute the means for these variables using CSTATISTICS, the values will differ. The latter procedure deletes cases on a variable-by-variable basis, instead of deleting a case if it has a missing value on any variable.

### Pairwise Deletion

A table of frequency counts for each pair of variables provides a picture of the pattern of incomplete data. SYSTAT displays this table when using pairwise deletion in CORR or when using PLENGTH MEDIUM in MISSING.

## The input is:

USE WORLD95M
LET LOG DEA = L10 (DEATH_RT)
FORMAT 6,3
CORR
NOTE 'Pairwise Deletion'
PEARSON LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR,
BABYMORT LOG GDP BIRTH RT LOG DEA B TO_D,
FERTILTY URBAN LITERACY LIT FEMA,
LIT_MALE CALORIES / PAIRWISE

## The output is:

### Pairwise Deletion

Means							
LOG_POP	LOG DEN	LIFEEXPF	LIFEEXPM	POP_INCR	BABYMORT	rog_gdb	BIRTH_RT
	1.784		64.917	1.682	42.313	3,422	25.923
Means (con						IT_MALE	CALORIES
LOG_DEA	B_TO_D	FERTILTY					
0.941	3.204	3,563	56.528	78.336	67.259	78.729	2.7546+005
Pearson Co	orrelation	Matrix					
	LOG POP	LOG_DEN	LIFEEXPF	LIFEEXPM	POP_INCR	BABYMORT	LOG_GDP
LOG POP LOG DEN LIFEEXPM POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA LIT MALE CALÓRIES	1.001 0.143 -0.088 -0.082 -0.078 0.109 -0.217 -0.027 0.089 -0.153 -0.060 -0.138 -0.050 0.005 0.005	1.000 0.126 0.153 -0.252 -0.152 -0.004 -0.216 -0.064 -0.111 -0.223 0.015 0.084 0.113 0.138	1.000 0.982 -0.579 -0.962 0.831 -0.862 -0.587 -0.087 -0.838 0.743 0.865 0.819 0.777	0.809 0.745 0.717	-0.557 0.861 -0.206 0.800 0.840 -0.375 -0.699 -0.638 -0.619	-0.900 -0.843 -0.809	1.000 -0.769 -0.322 -0.209 -0.693 0.754 0.732 0.632
Pearson C	orrelation	n Matrix (c	contd)	PERTITY	URBAN L	ITERACY :	LIT FEMA
	BIRTH_R	T LOG DEA	P_10_0				
LOG POP LOG DEN LIFEEXPM POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY	1.00 0.23 0.48 0.97 -0.62	0 1.000 3 -0.690 5 0.260 9 -0.43	1.000 0.452 1 -0.032	1.000 -0.619 -0.866	1,000 0.650	1,000	

Caroning I o acc	0.973 0.948 0.682	1.000 0.964 0.548
------------------	-------------------------	-------------------------

### Pearson Correlation Matrix (contd...)

	LIT MALE	CALORIES
	4	
LOS POT LIFEEXPM POP_INCR BABYMORT LOG GDP BIRTH RT LOG DEA B_TO D FERTILTY URBAN LITERACY LIT FEMA LIT_MALE	1.000	
CALORIES	0.576	1.000

### Pairwise Frequency Table

	: IOG POP	LOG_DEN	LIFEEXPF	LIFEEXPM	POP_INCR	BABYMORT	LOG_GDP
LOG_POP LOG DEN LIFEEXPM POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT_FEMA LIT_MALE CALORIES	109 109 109 109 109 109 109 109 108 107 108 107 108 107	109 109 109 109 109 109 108 108 107 108 107 108 107	109 109 109 109 109 108 108 107 108 107 85 85	109 109 109 109 108 108 107 108 107	109 109 109 108 108 107 108 107	109 109 109 108 108 107 108 107 85	109 109 108 108 107 108 107 85 85

## Pairwise Frequency Table (contd...)

	BIRTH R	T LOG DEA	B_TO_D	FERTILTY	URBAN	LITERACY	LIT FEMA
LOG POP	1						
LIFEEXPF	1						
LIFEEXPM							
PalfW18e	Fredneuch	Table (conto	1)				

	1	BIRTH	PT	LOG_DEA	B_TO_D	FERTILTY	URBAN	LITERACY	LIT	FEMA
LOG_POP LOG_DEN LIFEEXPF LIFEEXPM POP_INCR BABYMORT LOG_GDP BIRTH_RT LOG_DEA			09	108						

### Missing Value Analysis

B TO D :	208	108	108				
FERTILTY	107	107	107	107			
URBAN	108	107	107	106	108		
LITERACY !	107	106	106	105	107	307	
LIT FEMA !	85	85	85	85	85	85	85
LIT MALE ;	85	85	85	85	85	85	85
CALORIES !	75	75	75	75	74	74	5.9

### Pairwise Frequency Table (contd...)

	1	LIT MALE	CALORIES
	÷		
I + P P			
L TEN			
LIFEEXPF	т		
LIFFEREM	п		
FIINF			
PARIM ET			
L 37 P	п		
BIRTH RT			
1 CFA	п		
B T D	;		
FERTILTY	1		
UFBAN	,		
LITERATY	1		
LIT FEMA			
LIT MALE	0	85	
CALORIES	1	59	75

### Scatter Plot Matrix



In contrast to listwise deletion, the number of cases used to compute each correlation and mean varies with the variable(s) involved. The mean computations use all observed cases for each variable. The correlation computations involve all cases that

have observed values for both variables. The pairwise frequency table displays the number of cases used to calculate each correlation.

The sample size for each variable is reported on the diagonal of the table; sample sizes for complete pairs of cases, off the diagonal. *CALORIES* alone has 75 values, but when paired with male or female literacy, the count of cases with both values drops to 59. If you need a set of variables for a multivariate analysis, it would be wise to omit *CALORIES* or the male and female literacy rates. Otherwise, if these variables are essential to your analysis, be concerned that results may be biased due to the fact they are not missing randomly.

### Regression Method

We now use the regression method for estimating the correlation matrix.

### The input is:

```
USE WORLD95M
LET LOG DEA = L10 (DEATH_RT)
FORMAT 6,3
MISSING
NOTE 'Regression Method'
MODEL LOG POP LOG DEN LIFEEXPF LIFEEXPM POP_INCR,
BABYMORT LOG GDP BIRTH_RT LOG DEA B_TO_D,
FERTILTY URBAN LITERACY LIT_FEMA,
LIT_MALE CALORIES
ESTIMATE / MATRIX=CORRELATION REGRESSION
```

## The output is:

#### Regression Method

```
Mahalanobis D^2 and z-score
NOTE:

Case is an outlier. Mahalanobis D^2 : 41.670 Z : 3.307
Case is an outlier. Mahalanobis D^2 : 39.861 Z : 3.286
Case is an outlier. Mahalanobis D^2 : 68.621 Z : 5.419
Case is an outlier. Mahalanobis D^2 : 38.981 Z : 3.050

Missing Value Patterns

N of Cases Missing Value
Patterns
(X=nonmissing;
```

SACKCHANCH   SECTION   S								
1	5	XXXXXXXXX	XXXXX					
NXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1	XXXXXXXX	xx.xx					
NXXXXXXXXXXXXX   1	1		ххх					
NXXXXXXXXXX   Regression Substitution Estimate of Means     LOG POP	1		xxxx					
LOG POP	1		xx					
LOG POP		• •						
LOG POP				6 M				
Regression Substitution Estimate of Means (contd)  LOG DEA B_TO_D FERTILTY URBAN LITERACY LIT_FEMA LIT_MALE CALORIES  0.941 3.201 3.533 56.614 78.440 69.423 80.383 2.769E+003  Regression Substitution Estimated Correlation Matrix  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP_INCR BABYMORT LOG_GDP  LOG_DEN	Regression	Substituti	on Estimat	S OI MANTIN		DARVMORT	tod GDP	BIRTH RT
Regression Substitution Estimate of Means (contd)    LOG DEA	: LOG POP	LOG_DEN	LIFEEXPF	LIFEEXPM	POP_INCR	BABIMORI	2 422	25 923
LOG DEA B_TO_D FERTILTY URBAN LITERACY LIT_FEMA LIT_MALE CALORIES   0.941 3.201 3.533 56.614 78.440 69.423 80.383 2.769E+003	4.114	1.784	70.156	64.917	1.682	42.313	3.424	20.745
0.941 3.201 3.533 56.614 78.440 69.423 80.383 2.769E+003   Regression Substitution Estimated Correlation Matrix	Regression	Substituti	ion Estimat	e of Means	(contd)			CALODIEC
0.941 3.201 3.533 56.614 78.440 69.423 80.363 2.70924003   Regression   Substitution   Estimated   Correlation   Matrix     LOG   POP   LOG   DEN   LIFEEXPF   LIFEEXPM   POP   INCR   BABYMORT   LOG   GDP	LOG DEA	B_TO_D	FERTILTY	URBAN	LITERACY	LIT FEMA	LIT_MALE	CALORIES
LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR BABYMORT LOG GDP  LOG POP 1.000 LOG DEN 0.143 1.000 LIFEEXPF -0.088 0.126 1.000 LIFEEXPF -0.082 0.153 0.982 1.000 POP INCR -0.078 -0.252 -0.579 -0.502 0.602 BABYMORT 0.109 -0.152 -0.962 -0.936 0.602 LOG GDP -0.217 0.004 0.831 0.805 -0.557 -0.824 1.000 BIRTH RT -0.027 -0.216 -0.862 -0.805 0.861 0.865 -0.769 BIRTH RT -0.027 -0.216 -0.862 -0.805 0.861 0.865 -0.323 LOG DEA 0.087 -0.069 -0.587 -0.640 -0.203 0.535 -0.323 LOG DEA 0.087 -0.069 -0.587 0.041 0.835 -0.692 FERTILTY -0.0566 -0.232 -0.839 -0.785 0.841 0.835 -0.692 FERTILTY -0.0566 -0.232 -0.839 -0.785 0.841 0.835 -0.692 FERTILTY -0.046 0.092 0.864 0.807 -0.698 -0.899 0.728 LITERACY -0.046 0.092 0.864 0.807 -0.698 -0.899 0.728 LITERMA 0.010 0.124 0.785 0.718 0.611 -0.801 0.588 LIT FEMA 0.010 0.124 0.785 0.712 0.693 -0.597 -0.770 0.575 LIT MALE 0.079 0.152 0.747 0.693 -0.597 -0.770 0.575 LIT MALE 0.079 0.152 0.747 0.693 -0.597 -0.770 0.575 LIT MALE 0.079 0.152 0.747 0.693 -0.597 -0.770 0.575 LIT MALE 0.079 0.152 0.747 0.693 -0.597 -0.770 0.575 LITERMA 0.010 0.124 0.785 0.712 -0.529 -0.704 0.789  Regression Substitution Estimated Correlation Matrix (contd)  BIRTH RT LOG DEA B_TO D FERTILTY URBAN LITERACY LIT_FEMA  LOG POP LOG DEN LITEEXPF LIFEEXPF LIFEEXPM POP INCR	0.941	3.201	3.533	56.614	78.440	69.423	80.383	2.76954003
LOG_POP	Regression	Substituti	ion Estimat	ed Correlat	tion Matrix			
BIRTH_RT LOG_DEA B_TO D FERTILTY URBAN LITERACY LIT_FEMA  LOG_DEN LITEEXPF LITEEXPF LITEEXPM POP_INCR	)	LOG POP	LOG DEN	LIFEEXPF	LIFEEXPM	POP_INCR	BABYMORT	LOG GDP
BIRTH_RT LOG_DEA B_TO D FERTILTY URBAN LITERACY LIT_FEMA  LOG_DEN LITEEXPF LITEEXPF LITEEXPM POP_INCR	LOG POP	1.000						
BIRTH_RT LOG_DEA B_TO D FERTILTY URBAN LITERACY LIT_FEMA  LOG_DEN LITEEXPF LITEEXPF LITEEXPM POP_INCR	LOG DEN	0.143	1,000	1.000				
BIRTH_RT LOG_DEA B_TO D FERTILTY URBAN LITERACY LIT_FEMA  LOG_DEN LITEEXPF LITEEXPF LITEEXPM POP_INCR	LIFEEXPF	-0.088	0.120	0.982	1.000			
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	LIFEEXPM ;	-0.078	-0,252	-0.579	-0.502	1.000	1 000	
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	BARYMORT	0.109	-0.152	-0.962	-0.936	-0.557	-0.824	1,000
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	LOG GDP	-0.217	0.004	0.831	-0.805	0.861	0.865	-0.769
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	BIRTH RT	-0.027	-0.216	-0.802	-0.640	-0.203	0.535	-0.323
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	LOG DEA	0.087	-0.069	-0.088	-0.012	0.799	0.119	-0.209
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	BTOD	-0.153	-0.112	-0.080	-0.785	0.841	0.835	-0.692
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	FERTILTY	-0.056	0.232	0.743	0.729	-0.376	-0.717	0.733
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	URBAN	-0.138	0.017	0.74	0.807	-0.698	-0.899	0.728
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	LITERACY '	-0.046	0.092	0.785	0.718	0.611	-0.801	0.700
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	LIT FEMA	0.010	0.124	0.747	0.693	-0.597	-0.770	0.373
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA  LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	LIT MALE	0.079	0.059	0.720	0.712	-0.529	-0.704	0.702
BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACT								
LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR	rugzoo	BIRTH RT	LOG DEA	B_TO_D	FERTILTY	URBAN LIT	ERACY LI	T_FEMA
LOG DEN LIFEEXPF LIFEEXPM POP INCR		h						
LIFEEXPF   LIFEEXPM   POP INCR								
POP INCR		l L						
POP INCR		1						
		1						
LOG GDP 1		1						
DYDEN PT 1,000	PABIMOR!	4						
	TOG GDS	1.000						
100 DEA 1 0.232 1.000	BIKTH KT	0.232	1.000					
0.483 -0.689 1.000	LOG DEA	0.483	-0.689	1.000				
B TO 0 975 0.274 0.454 1.000	B_TO_D	0.75	0.274	0.454	1.000	- 000		
FERTILITY -0.628 -0.428 -0.036 -0.607 1.000	FERTILITY	-0.638	-0.428	-0.036	-0.607	1.000	1 000	
URBAN	URBAN	-0.020	-0.371	-0.277	-0.860	U.643	1,000	1 000
URBAN   -0.628	LITERACY	-0.867	-0.386	-0.216	-0.801	0.598	0.928	0.061
LIT FEMA   -0.747 -0.354 -0.223 -0.625 0.613 0.610 0.489	LIT FEMA	-0.782	-0.354	-0.223	-0.763	0.578	0,904	0.901
LIT MALE   -0.747 -0.354 -0.223 -0.625 0.613 0.610 0.489			01001		-0.625	0.613	0.010	V : 307
CALORIES ; -0.002	LIT_MALE	0.602	-0.214	-0.232	-0.023	0.000		



### Missing Values Plot



### Pairwise Frequency Table

,	LOG POP	LOG DEN	LIFEEXPF	LIFEEXPM	FOP_INCR	BABYMORT
LOG DEN 1 LIFEEXPF 1 LIFEEXPM 1 POP INCR 1 BABYMORT 1 BABYMORT 1 LOG GUP 1 BIRTH RT 1 LOG DEA 1 B TC D 1 FERTILTY 1 URBAN 1	.090E+002 .090E+002 .090E+002 .090E+002 .090E+002 .090E+002 .090E+002 .080E+002 .080E+002 .070E+002 .070E+002 .080E+002 .070E+002 .070E+002 .080E+002	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.080E+002 1.070E+002 1.070E+002 85.000 75.000	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.070E+002 1.070E+002 1.070E+002 85.000 85.000	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.070E+002 1.070E+002 1.070E+002 95.000 75.000	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.080E+002 1.070E+002 85.000 85.000	1.090E+002 1.414 1.090E+002 1.080E+002 1.070E+002 1.070E+002 1.070E+002 85.000 85.000 75.000

ł	LOG_GDP	BIRTH_RT	LOG_DEA	B_TO_D	FERTILTY	URBAN
LOG DEA P TJ D FERTILTY URBAN LITERACY LIT FEMA LIT MALE CALORIES	1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.070E+002 1.070E+002 1.070E+002 85.000 75.000		1.080E+002 1.080E+002 1.15E-1 1.1 1.15E-1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	1.08 5.172 1. 18.1 1. 18.1 1. 18.1 85.000 75.000	1.0° F* . 1. e F* . 1. * E* ! 8° . 9° . 70 75.000	1. * F · · · · · · · · · · · · · · · · · ·
	LITERACY	LIT_FEMA	LIT_MALE CA	LORIES		
LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FRETILITY URBAN	1.070E+002					

In the Missing Value Patterns display, the patterns of missing values across variables are tabulated. An X indicates an observed value for a variable; a . represents a missing value for a variable. The ordering of the variables corresponds to the order of the variables in the analysis. The first row in the display represents the pattern for 26 cases and has X's for all variables but the last (CALORIES); for 26 cases, CALORIES is the only missing value. Fifty-nine cases have no missing values. LIT_FEMA and LIT_MALE are the only missing values for 15 cases and five cases are missing CALORIES, LIT_FEMA, and LIT_MALE. The remaining four cases exhibit unique missing value patterns.

#### EM Method

Here we employ the EM algorithm to iteratively arrive at final correlation estimates. This method often performs better than the other methods when data are jointly missing.

### The input is:

```
USE WORLD95M
LET LOG DEA = L10 (DEATH_RT)
FORMAT 6,3
MISSING
NOTE 'EM Method'
MODEL LOG POP LOG DEN LIFEEXPF LIFEEXPM POP_INCR,
BABYMORT LOG GDP BIRTH RT LOG DEA B_TO_D,
FERTILTY URBAN LITERACY LIT_FEMA,
LIT MALE CALORIES
ESTIMATE 7 MATRIX=CORRELATION ITER=200
```

### The output is:

EM Method

#### EM Algorithm

Iteration 1 2 3 4 4 5 6 7 8 9 10	Maximum	Error 0.982 0.117 0.056 0.028 0.014 0.008 0.005 0.003 0.002 0.002	-2*LL 4.071E+003 4.010E+003 3.983E+003 3.971E+003 3.965E+003 3.965E+003 3.961E+003 3.961E+003 3.961E+003
11 12		0.001	3.961E+003 3.961E+003

Mahalanobis D^2 and z-score NOTE:

```
Case is an outlier. Mahalanobis D^2 : 38.437 Z : 3.149
Case is an outlier. Mahalanobis D^2 : 67.453 Z : 5.340
Case is an outlier. Mahalanobis D^2 : 37.961 Z : 3.102
Case is an outlier. Mahalanobis D^2 : 69.508 Z : 5.476
Case is an outlier. Mahalanobis D^2 : 38.723 Z : 3.176
Case is an outlier. Mahalanobis D^2 : 39.696 Z : 3.120
```

#### Missing Value Patterns

N of Cases	Missing Value Patterns (X=nonmissing;missing)
26	XXXXXXXXXXXXXXXX
59	XXXXXXXXXXXXXXXX
15	XXXXXXXXXXXXXXX.~

1 XXXXXXXXXXXXXXXX.-

1 XXXXXXXXXXXX...-

Little MCAR Test Statistic : 1.335E+002 : 88 : 0.001 

### EM Estimate of Means

	, .	, F*	LIFEEXPF	LIFEEXPH	rur_shun	Bris Maria		
1 4	.114	1.784	70.156	64.917	1.682	42.313	3.422	25.923

# EM Estimate of Means (contd...)

					2 4 M PROMIS	0.51%	
LOG DEA	B TO D	FERTILTY	URBAN	LITERACY	LIT_FEMA		
 					72.717	14	
0.941	3.200	3.530	56.640	78.408	12.11.		

## EM Estimated Correlation Matrix

	LOG POP	LOG_DEN	LIFEEXPF	LIFEEXPH	POP_INCR	BABYMORT	LOG_GDP
IN I		1.000 0.126 0.153 -0.252 -0.152 0.004 -0.216 -0.070 -0.112 -0.233 0.018 0.094	1.000 0.982 -0.579 -0.962 0.831 -0.862 -0.588 -0.088 -0.839 0.743 0.864 0.838 0.799	1.00 -0.502 -0.936 0.805 -0.805 -0.640 -0.012 -0.785 0.729 0.807 0.775 0.748 0.732	1.000 0.602 -0.557 0.861 -0.202 0.799 0.841 -0.377 -0.700 -0.703 -0.686 -0.582	1.000 -0.824 0.865 0.535 0.119 0.835 -0.718 -0.898 -0.856 -0.824	1.000 -0.769 -0.323 -0.209 -0.692 0.754 0.727 0.686 0.669 0.810

# EM Estimated Correlation Matrix (contd...)

EM Estima	ted Correlat	TOD MUCETA	(Consum.	* 3			
		; . * FA	B_TO_D	FERTILTY	URBAN	LITERACY	LIT_FEMA
LOG POP LOG DEN LIFEEXPH POP INCR BABYMORT LOG GDP BIRTH RT I. DEA E T D FEWILLIY URBAN LITEFA Y LIT FEMA LIT MAL LIT MAL CALORIES	0.483 0.975 -0.629 -0.868	1.000 -0.689 0.275 -0.427 -0.370 -0.325 -0.295 -0.213	1.000 0.454 -0.037 -0.280 -0.310 -0.261	1.000 -0.606 -0.860 -0.858 -0.818 -0.664	1.000 0.646 0.653 0.630 0.646	1.000 0.970 0.944 0.637	1.000 0.965 0.600

# EM Estimated Correlation Matrix (contd...)

	,	LIT	MALE	CALORIES
	+			
LOG POP				
LOG DEN	4			
LIFEEXPF	1			
LIFEEXPM				
POP_INCR	1			
BABYMORT				
LOG GDP	1			
BIRTH RT	3			
LOG DEA	4			
B TO D	)			
FERTILTY	4			
URBAN	>			
LITERACY	5			
LIT FEMA	1			
LIT MALE	-(	1	1.000	
CALORIES	,	(	0.635	1.000

## Pairwise Frequency Table

	LOG POP	LOG_DEN	LIFEEXPF	LIFEEXPM	POP INCR	BABYMORT
LOG_POP LOG_DEN LIFEEXPF LIFEEXPM POP INCR BABYMORT LOG_GDP BIPTH RT LOG_DEA B TO D FERTILTY URBAN LITERACY LIT FEMA LIT_MALE CALÖRIES	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.070E+002 1.070E+002 85.000 85.000	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.080E+002 1.070E+002 1.070E+002 85.000 75.000	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.070E+002 85.000 85.000 75.000	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.060E+002 1.070E+002 1.070E+002 85.000 85.000 75.000	1.090E+002 1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.080E+002 1.080E+002 1.080E+002 1.080E+002 1.080E+002	1.090E+002 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.070E+002 1.070E+002 1.070E+002 85.000 85.000
Pairwise	Frequency Tab	ole (contd)				
	LOG_GDP	BIRTH RT	LOG PEA	₽+ T' I	FERTILTY	UPRAN
LO, FOP LO, DEN LIFEEXPF LIFEEXPM POP INCR BABYMORT LOG GDP RIFTH FT LOG GTP	: 1.090E+002 1.090E+002 1.080E+002 1.080E+002 1.070E+002	1.090E+002 1.080E+002 1.080E+002 1.070E+002	1.080E+002 1.080E+002 1.070E+002	1.080E+002 1.070E+002	1.070E+002	

#### Pairwise Frequency Table (contd...)

;	LITERACY	LIT_FEMA	LIT_MALE	CALORIES
LOG POP LOG DEN LIFEEXPF POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA BTO D FERTILTY URBAN LITERACY LIT FEMAL LIT MALE	1.070E+002 85.000 85.000	85.000 85.000	85.000	
CALORIES	74.000	59.000	59.000	75.000

#### Missing Values Plot



Roderick J. A. Little's chi-square statistic for testing whether values are missing completely at random accompanies EM matrices. This statistic has an asymptotic chi-square distribution with degrees of freedom equal to the sum of the number of observed variables across missing value patterns minus the number of variables. In this example, the degrees of freedom equal 15 + 16 + 14 + 13 + 12 + 12 + 12 + 10 - 16, or 88. For a chi-square distribution with 88 degrees of freedom, the obtained value of 133.476 has a *p-value* of .001. This small *p-value* suggests that the missing values are not missing completely at random, but instead depend on the variables in the analysis.

SYSTAT identifies six cases as outliers. Outliers have undue influence on the estimates and you should examine these cases for possible omission from the analysis.

# Example 4 Comparing Correlation Estimation Methods

In a large study, it is difficult to compare two correlation matrices for differences (or to determine whether they differ at all). Here, we save three correlation matrices and use MATRIX to compute the differences between elements in each pair of matrices.

#### The input is:

```
USE WORLD95M
LET LOG DEA = L10 (DEATH RT)
FORMAT 6,3
CORR
SAVE LCORR
PEARSON LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR,
      BABYMORT LOG GDP BIRTH RT LOG DEA B TO D.
      FERTILTY URBAN LITERACY LIT FEMA,
      LIT MALE CALORIES / LISTWISE
SAVE PCORR
PEARSON LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR,
      BABYMORT LOG GDP BIRTH RT LOG DEA B TO D.
      FERTILTY URBAN LITERACY LIT FEMA,
      LIT MALE CALORIES / PAIRWISE
MISSING
MODEL LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR.
      BABYMORT LOG GDP BIRTH RT LOG DEA B TO D,
      FERTILTY URBAN LITERACY LIT FEMA,
      LIT MALE CALORIES
SAVE EMCORR
ESTIMATE / MATRIX=CORRELATION ITER=200
USE EMCORR/MAT=EMCORR
ROWNAME EMCORR = LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR,
      BABYMORT LOG GDP BIRTH RT LOG DEA B TO D,
      FERTILTY URBAN LITERACY LIT FEMA,
      LIT MALE CALORIES
USE PCORR/MAT=PCORR
ROWNAME PCORR = LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR.
      BABYMORT LOG GDP BIRTH RT LOG DEA B TO D.
      FERTILTY URBAN LITERACY LIT FEMA,
      LIT MALE CALORIES
USE LCORR/MAT=LCORR
MAT DIFF LP=LCORR-PCORR
MAT DIFF LE=LCORR-EMCORR
MAT DIFF PE=PCORR-EMCORR
SHOW DIFF LP DIFF LE DIFF PE
```

The differences between the listwise and pairwise estimates follow:

Matrix Name:	diff_lp						
	1 F F	I * F 60	LIFEEXPF	LIFEEXEM	. 1 1% 1	BARYM PT	
LIFEEXPH LIFEEXPH LIFEEXPH POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA LIT MALE CALORIES	-0.221 -0.118 -0.078 -0.196 -0.059 -0.116 -0.180 -0.003 -0.103 -0.104 -0.100	0.046 0.115 -0.220 0.080 0.050 0.039 0.081 -0.241 -0.081 -0.042 -0.042		-0,054	0.077		
CHECKEDO	LOG GDP			B_TO_D	FERTILTY	TEBAS :	TEPA':
LOG_POP LOG DEN LIFEEXPF LIFEEXPF LIFEEXPF POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA LIT MALE CALORIES	0.000 0.095 -0.156 0.291 0.108 0.032 -0.090 -0.030 -0.031	0.000 0.238 -0.295 -0.007 0.063 0.047 0.024 0.037 0.104		0.14	r, ar		0.1 -f.,-c.1't
LOG_POP LOG_DEN LIFEEXPM POF INCE BABYMORT LOG SDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA LIT_MALE CALORIES	0.000	0.000					

We find many large differences between the correlations estimated by the two deletion methods. The differences are particularly large for  $B_TO_D$ .

To assist in identifying the large differences, we use MATRIX to create a rectangular data file of correlation differences. We then create a bar chart of these differences.

Anchoring the bars at 0 allows rapid discrimination between positive and negative differences. We also use blue bars for positive differences and red bars for negative differences.

```
USE PCORR/MAT=PCORR
USE LCORR/MAT=LCORR
MAT DIFF LP=LCORR-PCORR
CLEAR PCORR LCORR
MAT CIX=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
MAT CIX=CIX//CIX//CIX//CIX//CIX//CIX//CIX//
CIX//CIX//CIX //CIX//CIX//CIX
MAT RIX=TRP(CIX)
MAT RIX=SHAPE(RIX, 256, 1)
MAT CIX=SHAPE(CIX, 256, 1)
MAT DIFF LP=FOLD (DIFF LP)
MAT COL LP=SHAPE (DIFF LP, 256, 1)
MAT COL_LP=COL_LP | RIX | CIX
SHOW COL LP
COLNAME COL LP=C1 C2 C3
MSAVE COL LP
USE COL LP
IF C1 < 0 THEN LET SIGN=0
IF C1 >= 0 THEN LET SIGN=1
LABEL C2/1='LOG POP' 2='LOG DEN' 3='LIFEEXPF' 4='LIFEEXPM',
            5='POP INCR' 6='BABYMORT' 7='LOG GDP' 8='BIRTH RT',
            9='LOG DEA' 10='B TO D' 11='FERTILTY' 12='URBAN',
           13='LITERACY' 14='LIT FEMA' 15='LIT MALE',
           16='CALORIES'
LABEL C3/1='LOG POP' 2='LOG DEN' 3='LIFEEXPF' 4='LIFEEXPM',
           5='POP_INCR' 6='BABYMORT' 7='LOG_GDP' 8='BIRTH RT',
           9='LOG DEA' 10='B TO D' 11='FERTILTY' 12='URBAN',
           13='LITERACY' 14='LIT FEMA' 15='LIT MALE',
           16='CALORIES'
CATEGORY C2 C3
BAR C1*C3*C2 / GROUP=SIGN OVERLAY COLOR=RED, BLUE,
                BASE=0 BTHICK= 0.80 LEGEND=NONE,
             XLAB='' YLAB='' ZMIN=-.5 ZMAX=.5,
             ZLAB= 'Correlation Difference'
```



The order of the variables along an axis corresponds to variables with little or no missing data at the left end (LOG POP) and variables with the most missing data at the right end (CALORIES). The bar graph reveals that LOG_DEA pairwise correlation estimates tend to be larger than listwise estimates when the variable being correlated with LOG DEA contains many missing values. The reverse pattern occurs for B_TO_D. These patterns suggest that the data are not missing completely at random.

# Listwise Deletion vs EM Method

The differences between the listwise and EM correlation estimates follow:

Matrix Name: diff_le ; LOG_POP	LOG_DEN	LIFEEXPF	LIFEEXPM	POP_INCR	BABYMORT
LOG POP   0.000   0.139   0.139   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.078   0.078   0.126   0.078   0.126   0.078   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.126   0.133	0.000 -0.122 -0.129 0.046 0.115 -0.220 0.080 0.055 0.040 0.090 -0.243 -0.090 -0.068 -0.070 -0.106	0.000 0.005 0.188 0.011 -0.066 0.045 -0.214 0.358 0.049 -0.002 0.038 -0.023 -0.045 -0.032	0.000 0.177 0.005 -0.069 0.032 -0.183 0.330 0.038 -0.012 -0.022 -0.022 -0.022	0.000 -0.182 0.194 -0.086 0.101 -0.107 -0.086 0.185 0.133 0.123 0.124 0.189	0.000 0.079 -0.057 0.207 -0.350 -0.051 0.013 0.008 0.009 0.019

	LOG_GDP	BIRTH_RT	LOG_DEA	B_TO_D	FERTILTY	URBAN	LITERACY
LOG POP LOG DEN LIFEEXPM FOP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA LIT MALE CALORIES	0.000 0.095 -0.155 0.292 0.106 0.033 -0.085 -0.084 -0.089	0.000 0.236 -0.295 -0.007 0.063 0.044 0.063	0.000 -0.043 0.228 -0.156 -0.220 -0.245 -0.234	0.000 -0.301 0.299 0.323 0.339	0.000 0.073 0.046 0.039 0.059	0.000	0.000
LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA LIT MALE CALORIES	-0.007 LIT_FEMA	0.072 LIT_MALE	-0.194 CALORIES	0.301	0.083	0.028	-0.062

Again, we find large differences between many correlations involving  $B_TO_D$ . The EM estimates tend to be larger when values are not missing.  $LOG_DEA$  also exhibits large differences, but not to the degree of  $B_TO_D$ .

As done for listwise/pairwise comparison, here we create a bar chart of the correlation differences between the listwise and EM estimates.

```
USE LCORR/MAT=LCORR
USE EMCORR/MAT=EMCORR
MAT DIFF LE=LCORR-EMCORR
CLEAR LCORR EMCORR
MAT CIX=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
CIX//CIX//CIX//CIX//CIX
MAT RIX=TRP(CIX)
MAT RIX=SHAPE(RIX, 256, 1)
MAT CIX=SHAPE(CIX, 256, 1)
MAT DIFF LE=FOLD (DIFF LE)
MAT COL LE=SHAPE(DIFF LE, 256, 1)
MAT COL_LE=COL_LE| RIX| CIX
SHOW COL LE
COLNAME COL LE=C1 C2 C3
MSAVE COL LE
```

```
USE COL LE
IF C1<0 THEN LET SIGN=0
IF C1>=0 THEN LET SIGN=1
LABEL C2 / 1='LOG POP' 2='LOG DEN' 3='LIFEEXPF' 4='LIFEEXPM'.
         5='POP INCR' 6='BABYMORT' 7='LOG GDP' 8='BIRTH RT'.
           9='LOG DEA' 10='B TO D' 11='FERTILTY' 12='URBAN',
           13='LITERACY' 14='LIT FEMA' 15='LIT_MALE',
           16='CALORIES'
LABEL C3 / 1='LOG POP' 2='LOG DEN' 3='LIFEEXPF' 4='LIFEEXPM',
          5='POP INCR' 6='BABYMORT' 7='LOG GDP'8='BIRTH RT',
           9='LOG DEA' 10='B TO D' 11='FERTILTY' 12='URBAN',
           13='LITERACY' 14='LIT FEMA' 15='LIT MALE',
           16='CALORIES'
CATEGORY C2 C3
BAR C1*C3*C2 / GROUP=SIGN OVERLAY COLOR=RED, BLUE,
               BASE=0 BTHICK= 0.80 LEGEND=NONE,
               XLAB='' YLAB='' ZMIN=-.5 ZMAX=.5,
              XLAB='' YLAB='' ZMIN=-.5 ZMAX=.5.
              ZLAB='Correlation Difference'
```



As found elsewhere for pairwise estimates, this bar graph reveals that LOG_DEA EM correlation estimates tend to be larger than listwise estimates when the variable being correlated with LOG_DEA contains many missing values. B_TO_D exhibits the opposite pattern. For a given pair of variables, the difference between EM and listwise estimates tends to be larger than the difference between pairwise and listwise estimates.

# Pairwise Deletion vs EM Method

Matrix Name: diff_pe

LIFEEXPM POP INCR BABYMORT LOG GDP BIRTH RT LOG DEA B TO D FERTILTY URBAN LITERACY LIT FEMA LIT MALE CALORIES

0.000

0.000 -0.052 0.000

0.000

The differences between the pairwise and EM correlation estimates follow:

	LOG_POP	LOG_DEN	LIFEEXPF	LIFEEXPM	POP_INCR	BABYMO	RT
LOG FIF	0.200						,
LOS DEN	1.00	0.300			0.000		
LIFEEXPF	0.000	0.000	0.000				
LIFEEXPM	0.000	0.000	0.000	0.000			
	0.000	0.000	0.000	0.000	0.000		4
BARVMORT	0.000	0.000	0.000	0.000	0.000 0.000 0.000 0.000 -0.003 0.001 -0.001 0.002 0.000 0.067 -0.027	0.0	00
TOC CDD	0.000	0.000	0.000	0.000	0.000	0.0	00
DIDEU DE	0.000	0.000	0.000	0.000	0.000	0.0	00
DIKIN KI	0.000	0.000	0.000	0.000	-0.003	-0.0	01
LOG_DEA	0.000	0.000	0.001	0.000	0.003	-0.0	101
B TO D	0.000	0.001	0.001	0.001	-0.001	-0.0	102
FERTILTY	-0.005	0.009	0.001	0.002	0.001	-0.0	102
URBAN	0.000	-0.002	0.001	0.001	0.002	0.0	100
LITERACY	-0.005	-0.009	0.001	0.002	0.000	-0.0	112
LIT_FEMA	-0.001	-0.026	-0.019	-0.031	0.064	0.0	11.5
LIT MALE	0.006	-0.028	-0.022	-0.031	0.067	0.0	715
CALORIES	0.037	-0.044	0.027	0.033	-0.027	-0.0	127
	LOG_GDP	BIRTH_RT	LOG_DEA	B_TO_D	FERTILTY	URBAN	LITERAC
LOG POP	!						
LOG DEN		_					
LIFEEXPF							
LIFEEXPM							
POP INCR							
_			•		,	•	
TOC CDD	0.000	0.000	•		•	•	
DIDEN DE	0.000	0.000				•	
DIKIE KI	0.000	- 0 003	0.000			•	
B TO D	0.001	0.002	0.000	0.000		-	
R LO D	0.000	0.001	-0.001	-0.000	0.000	*	
	-0.001	0.000	-0.007	0.001	0.000	0.000	
URBAN	100.001	0.000	-0.004	0.005	-0.013	0.000	0.00
LITERACY	0.005	-0.001	-0,015	0.009	-0.006	0.004	0.00
LIT_FEMA	-0.053	0.020	~U.II/	0.159	0.019	-0.041	0.00
LIT_MALE	-0.058	0.025	-0.118	0.157	-0.006 0.019 0.023 -0.031	-0.043	0.00
CALORIES	0.038	-0.032	-0.054	0.022	-0.031	0.046	0.04
	LIT_FEMA	LIT_MALE	CALORIES				
LOG_POP LOG_DEN LIFEEXPF							

The differences between these two sets of correlation estimates are very small. The largest differences appear for variables missing 22% of the data, *LIT FEMA* and *LIT_MALE*.

As done for the other method comparisons, here we create a bar chart of the correlation differences between the pairwise and EM estimates.

```
USE PCORR/MAT=PCORR
USE EMCORR/MAT=EMCORR
MAT DIFF PE=PCORR-EMCORR
CLEAR POORR EMCORR
MAT CIX=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
CIX//CIX//CIX//CIX//CIX
MAT RIX=TRP(CIX)
MAT RIX=SHAPE(RIX, 256, 1)
MAT CIX=SHAPE(CIX, 256, 1)
MAT DIFF_PE=FOLD (DIFF_PE)
MAT COL PE-SHAPE (DIFF PE, 256, 1)
MAT COL PE=COL_PE | RIX | CIX
SHOW COL PE
COLNAME COL PE=C1 C2 C3
MSAVE COL_PE
USE COL PE
IF C1<0 THEN LET SIGN=0
IF C1>=0 THEN LET SIGN=1
LABEL C2/1='LOG_POP' 2='LOG_DEN' 3='LIFEEXPF'4='LIFEEXPM',
          5='POP_INCR' 6='BABYMORT' 7='LOG_GDP'8='BIRTH_RT',
          9='LOG_DEA' 10='B_TO_D' 11='FERTILTY' 12='URBAN',
         13='LITERACY' 14='LIT_FEMA' 15='LIT_MALE',
 LABEL C3/1='LOG POP' 2='LOG DEN' 3='LIFEEXPF'4='LIFEEXPM',
          5='POP_INCR' 6='BABYMORT' 7='LOG_GDP'8='BIRTH_RT',
          9='LOG DEA' 10='B TO D' 11='FERTILTY' 12='URBAN',
          13='LITERACY' 14='LIT FEMA' 15='LIT MALE',
          16='CALORIES'
 CATEGORY C2 C3
 BAR C1*C3*C2/GROUP=SIGN OVERLAY COLOR=RED, BLUE,
              BASE=0 BTHICK= 0.80 LEGEND=NONE,
              XLAB='' YLAB='' ZMIN=-.5 ZMAX=.5,
             ZLAB='Correlation Difference'
```



Notice the large empty area in the lower left of the plot. This area corresponds to variables with no missing data; pairwise deletion and EM estimation behave identically in this region. For variables with missing data, the differences between the two estimates are small. The largest differences occur for LIT_FEMA and LIT MALE.

# Example 5 Missing Value Imputation

MISSING provides EM and regression methods for estimating (imputing) replacement values, but this should not be done until the data have been screened for recording errors and variables in need of a symmetrizing transformation.

Values in the WORLD95m data are not randomly missing (we're sure that they are not missing completely at random and also have doubts about satisfying the MAR condition). So, how good are the imputed values? In this section, we display some plots that you might create when evaluating your own filled-in data. You can:

- Display the variables with the most values missing in a pair of bivariate scatterplots with the same plot scales—one using the observed data only and the other using the imputed values. For our example, we use calories and lit fema.
- For the same variable, plot the imputed values from one method against those from another. For female literacy, we plot imputed values from the regression method with random residuals against those from the EM method.

Generating pattern variables. When evaluating imputation estimates, pattern variables are used as case selection variables to group and identify observed and imputed values. Use the original data to generate pattern variables and merge the pattern variables with the imputed data. Here, we compute pattern variables for calories and female literacy.

```
USE WORLD95M
LET PAT_CAL = CALORIES
LET PAT_LITF = LIT_FEMA
LET (PAT_CAL, PAT_LITF) = @ = .
LET PAT BOTH = 10*PAT_CAL + PAT_LITF
```

PAT_CAL and PAT_LITF are binary variables. A 1 indicates a missing value and a 0 indicates an observed value. We also generate a third pattern variable (PAT_BOTH) that combines the missing/present information for calories and female literacy. The result of this transformation is four codes: 0, 1, 10, and 11. For example, if, for a case, both values are missing (PAT_CAL and PAT_LITF are both 1), the value of the new variable PAT_BOTH is 10*1 + 1 or 11. When only female literacy is missing, the code for PAT_BOTH is 1; when only calories is missing, the code is 10; and when values of both variables are present, the code is 0.

# Scatterplots of Observed and Imputed Values

Comparing estimates for variables with many missing values assists in evaluating the performance of the imputation methods. We create pattern variables for *CALORIES* and *LIT FEMA* and use them to look for trends in the estimates.

```
USE WORLD95M
LET PAT CAL = CALORIES
LET PAT LITF = LIT FEMA
LET (PAT_CAL, PAT_LITF) = @ = .
LET PAT BOTH = 10*PAT CAL + PAT LITF
LET LOG DEA = L10 (DEATH RT)
DSAVE WORLD95P
MISSING
MODEL LOG_POP LOG_DEN LIFEEXPF LIFEEXPM POP INCR,
      BABYMORT LOG GDP BIRTH RT LOG DEA B TO D,
      FERTILTY URBAN LITERACY LIT FEMA,
      LIT MALE CALORIES
SAVE REGEST / DATA
ESTIMATE / MATRIX=CORRELATION REGRESSION
MODEL LOG POP LOG DEN LIFEEXPF LIFEEXPM POP INCR,
      BABYMORT LOG GDP BIRTH RT LOG DEA B TO D,
      FERTILTY URBAN LITERACY LIT FEMA,
      LIT MALE CALORIES
SAVE EMEST / DATA
```

FEMA

```
ESTIMATE / MATRIX=CORRELATION ITER=200
  MERGE WORLD95P (PAT CAL, PAT LITF, PAT BOTH, COUNTRY$) EMEST
 DSAVE EMEST2
 MERGE WORLD95P (PAT CAL, PAT LITF, PAT BOTH, COUNTRY$) REGEST
 DSAVE REGEST2
 BEGIN
 USE EMEST2
  PLOT LIT FEMA*CALORIES / OVERLAY GROUP=PAT BOTH YLIMIT=100,
                               COLOR=10,2,1,3 SYM=1,4,5,8,
                               FILL=1,0,0,0 LEGEND=NONE,
                               TITLE='EM Imputed Values',
                              LOC=-3in.0in
  USE REGEST2
 PLOT LIT FEMA*CALORIES / OVERLAY GROUP=PAT BOTH YLIMIT=100,
                              COLOR=10,2,1,3 sym=1,4,5,8,
                              LEGEND=-1.6IN, -1.8IN,
                         FILL=1,0,0,0 LTITLE='Missing Patterns',
                            LLABEL='Both present','LIT missing',
                               'CAL missing', 'Both missing',
                              TITLE='Regression Imputed Values',
                              LOC=3in,0in
 END
       EM Imputed Values
                                              Regression Imputed Values
                                          120
                                          100
80
                                          80
                                        FEMA
60
                                          60
40
20
                                          20
1000
                   3000
         2000
                            4000
                                                              3000
                                                                       4000
            CALORIES
                                                       CALORIES
                                  Mssing Patterns

    Both present

                                A. LIT missing
                                  CAL missing
                                  Both missing
```

Some of the imputed values for both EM and regression lie above 100%. However, the regression estimates tend to be higher. Furthermore, when female literacy is missing, both methods impute values that tend to be high.

## EM vs Regression Imputation

In this example, values imputed by the EM method are compared with those imputed by the regression method. The EM results must be merged with the regression results. To prevent overwriting, we create two new variables in the EM file and merge them with the regression values.

```
USE EMEST2
LET EMLITF-LIT FEMA
LET EMCAL=CALORIES
DSAVE EMEST2
MERGE EMEST2 (EMCAL EMLITF) REGEST2
DSAVE REGEST2
BEGIN
SELECT PAT BOTH>0
PLOT LIT FEMA*EMLITF / OVERLAY GROUP-PAT BOTH COLOR=2,1,3,
                        SYM=4,5,8 FILL=0,0,0 XGRID YGRID,
                        LEGEND=NONE LOC=-3IN, 0IN XMAX=120,
                        XLAB='Female Literacy via EM',
                        YLAB='Female Literacy via Regression'
SELECT EMLITF>80 AND PAT BOTH>0
PLOT LIT FEMA*EMLITF / OVERLAY GROUP=PAT BOTH COLOR=2,1,3,
                        SYM=4,5,8 FILL=0,0,0 XGRID YGRID,
                        LEGEND=-1.6IN, -1.8IN,
                        LTITLE='Missing Patterns',
                        LLABEL='LIT missing', 'CAL missing',
                        'Both missing' LABEL=COUNTRYS,
                        LOC=3IN, OIN XMAX=120,
                        XLAB='Female Literacy via EM',
                        YLAB='Female Literacy via Regression'
END
SELECT PAT BOTH>0
                      OVERLAY GROUP=PAT_BOTH COLOR=2, 1, 3,
PLOT CALORIES*EMCAL /
                       SYM=4,5,8 FILL=0,0,0 XGRID YGRID,
                       LTITLE='Missing Patterns',
                       LLABEL='LIT missing', 'CAL missing',
                       'Both missing' XMAX=4000 YMIN=1500,
                       YMAX=4000 XLAB= 'Calories via EM',
                       YLAB='Calories via Regression'
```



Ideally, the points should fall along a line connecting the intersection of grid lines for the same percentage (for example, 80% for EM with 80% for regression). When both calories and female literacy are estimated, the regression estimates tend to be higher than the EM estimates. The points with estimated literacy values are clustered together, making it difficult to identify them in the left plot. On the right side, we zoom in on the area containing the imputed LIT_FEMA values.



In this plot, we compare imputed values for *CALORIES*. In general, when there is a difference, the regression estimates tend to be higher more often than they are lower.

# Example 6 Regression Imputation

Here, we use a subset of the WORLD95m data to illustrate the mechanics underlying regression imputation. Two of the three variables used (CALORIES and LIT_FEMA) contain missing values. The third variable, LOG_GDP, is complete. We also create pattern variables for subsequent plotting.

## The input is:

```
USE WORLD95M
LET PAT CAL = CALORIES
LET PAT LITF = LIT FEMA
LET (PAT CAL, PAT LITF) = @ = .
LET PAT_BOTH = 10*PAT_CAL + PAT_LITF
ESAVE WORLD95M

MISSING
SAVE RESULTS / DATA
MODEL LOG GDP LIT FEMA CALORIES
ESTIMATE / MATRIX=CORRELATION REGRESSION
```

# The output is:

```
No.of Missing value patterns
 Cases (X=nonmissing; .=missing)
   26 XX.
   59
16
       XXX
       X.X
      X.,
Regression Substitution estimate of means
                                           CALORIES
                   LOG GDP LIT FEMA
                                70.140
                                          2781.935
                    3.422
Regression Substitution estimated correlation matrix
                                           CALORIES
                   LOG GDP
                              LIT FEMA
 LOG_GDP
                    1.000
                                 1.000
                    0.592
 LIT FEMA
                                              1,000
                                 0.505
                    0.810
```

Fifty-nine cases contain complete data. Twenty-six cases lack a value for *CALORIES* only, and sixteen cases lack only a *LIT_FEMA* value. Eight cases are missing data for both *CALORIES* and *LIT_FEMA*.

## Regression Surfaces

The three patterns involving missing data for at least one variable result in three regression equations for imputing values for the missing entries. Two of these models correspond to simple linear regression:

```
CALORIES = \beta 0 + \beta 1(LOG\_GDP) + \beta 2(LIT\_FEMA)
LIT FEMA = \beta 0 + \beta 1(LOG\_GDP) + \beta 2(CALORIES)
```

The third model involves a multivariate regression of *CALORIES* and *LIT_FEMA* on *LOG_GDP*.

To derive the imputed values, SYSTAT begins by substituting the mean of all available data for each variable for each missing entry. The mean-substituted data yield estimates of the regression coefficients, which can then be used to predict the missing values for each case.

The regression surfaces illustrate the regression imputation procedure. We create sideby-side plots of the imputed data and the regression surfaces:

```
MERGE WORLD95M.SYD (PAT CAL, PAT LITF, PAT BOTH) RESULTS.SYD
LABEL PAT BOTH / 0='Both Present',
                1='Female Literacy Missing',
                10='Calories Missing',
                11='Both Missing'
ORDER PAT BOTH / SORT='Both Present',
                'Female Literacy Missing',
                'Calories Missing',
                'Both Missing'
CATEGORY PAT BOTH
BEGIN
PLOT LOG GDP*LIT FEMA*CALORIES / GROUP=PAT BOTH,
      OVERLAY COLOR=10,1,2,12 SYMBOL=1,4,5,9,
      SIZE=.1,1,1,1, XLABEL="Calories",
      YLABEL='Female Literacy' ZLABEL='Log(GDP)',
      LEGEND=4.3,-2.5 LTITLE = "Missing Value Pattern",
      FILL=1 XMIN=1000, XMAX=4000, YMIN=0, YMAX=120,
      ZMIN=2 ZMAX=5 LOC=-3.3IN, OIN
PLOT LOG GDP*LIT_FEMA*CALORIES / GROUP=PAT BOTH,
      OVERLAY COLOR=10,1,2,12 SYMBOL=1,4,5,9,
      SIZE=.1,1,1,1, XLABEL="Calories",
      YLABEL='Female Literacy' ZLABEL='Log(GDP)'.
      LEGEND=NONE FILL=1 XMIN=1000 XMAX=4000,
      YMIN=0 YMAX=120 ZMIN=2 ZMAX=5 LOC=3.3IN,0IN
SELECT PAT BOTH=1
        WITH THE SEMA "AL RIED", CM. TH LINEAR,
      SURFACE=XYCUT COLOR=1 FILL=1 XLABEL="Calories",
      YLABEL='Female Literacy' ZLABEL='Log(GDP)'.
```

LEGEND=NONE XMIN=1000 XMAX=4000,
YMIN=0 YMAX=120 ZMIN=2 ZMAX=5 LOC=3.3IN,0IN

SELECT PAT_BOTH=10
PLOT LOG GDP*LIT FEMA*CALORIES / SMOOTH=LINEAR,
SURFACE=XYCUT COLOR=2 FILL=1 XLABEL="Calories",
YLABEL='Female Literacy' ZLABEL='Log (GDP)',
LEGEND=NONE XMIN=1000 XMAX=4000,
YMIN=0 YMAX=120 ZMIN=2 ZMAX=5 LOC=3.3IN,0IN

END
SELECT



Rotating the graphs allows us to view the three-dimensional space from multiple perspectives. When viewing the space along the regression surfaces, we find that many points lie exactly within each regression plane. One plane contains cases with imputed estimates for *CALORIES*, and the other plane contains cases with imputed estimates for *LIT_FEMA*. These are the planes used to predict the imputed values. Notice that cases lacking values for both *CALORIES* and *LIT_FEMA*, plotted with a diamond, lie in both regression planes.

# Computation

# Algorithms

The computational algorithms use provisional means, sums of squares, and cross-products (Spicer, 1972). Starting values for the EM algorithm use all available values (see Little and Rubin, 2002).

# References

- Buck, S.F. (1960). A method of estimation of missing values in multivariate data suitable for use with an electronic computer. *Journal of the Royal Statistical Society*, B22, 302-306.
- Little, R.J.A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. *Applied Statistics*, 37, 23-28.
- Little, R. J. A. and Rubin, D. B. (2002). Statistical analyses with missing data, 2nd ed. New York: John Wiley & Sons.
- * Rubin, D.B. (1976). Inference and missing data. Biometrika, 63, 581-592.
  - Spicer, C. C. (1972). Algorithm AS 52: Calculation of power sums of deviations about the mean. *Applied Statistics*, 21, 226-227.

(* indicates additional reference.)

# Multidimensional Scaling

Leland Wilkinson

Multidimensional Scaling (MDS) offers nonmetric multidimensional scaling of a similarity or dissimilarity matrix in one to five dimensions. Multidimensional scaling is a powerful data reduction procedure that can be used on a direct similarity or dissimilarity matrix or on one derived from rectangular data with Correlations. SYSTAT provides three MDS loss functions (Kruskal, Guttman, and Young) that produce results comparable to those from three of the major MDS packages (KYST, SSA, and ALSCAL). All three methods perform a similar function: to compute coordinates for a set of points in a space such that the distances between pairs of these points fit as closely as possible to measured dissimilarities between a corresponding set of objects.

The family of procedures called *principal components* or *factor analysis* is related to multidimensional scaling in function, but multidimensional scaling differs from this family in important respects. Usually, but not necessarily, multidimensional scaling can fit an appropriate model in fewer dimensions than can these other procedures. Furthermore, if it is implausible to assume a linear relationship between distances and dissimilarities, multidimensional scaling nevertheless provides a simple dimensional model.

MDS also computes the INDSCAL (individual differences multidimensional scaling) model (Carroll and Chang, 1970). The INDSCAL model fits dissimilarity or similarity matrices for multiple subjects into one common space, with jointly estimated weight parameters for each subject (that is, a dissimilarity matrix is input for each subject and separate (monotonic) regression functions are computed). MDS can fit the INDSCAL model using any of the three loss functions, although we recommend using Kruskal's STRESS for this purpose.

Finally, MDS can fit the nonmetric unfolding model. This allows one to analyze rank-order preference data.

# Statistical Background

Multidimensional scaling (MDS) is a procedure for fitting a set of points in a space such that the distances between points correspond as closely as possible to a given set of dissimilarities between a set of objects. Dissimilarities may be measured directly, as in psychological judgments, or derived indirectly as in correlation matrices computed on rectangular data.

# Assumptions

Because MDS, like cluster analysis, operates directly on dissimilarities, no statistical distribution assumptions are necessary. There are, however, other important assumptions. First, multidimensional scaling is a spatial model. To fit points in the kind of spaces that MDS covers, assume that your data satisfy *metric* conditions:

- The distance from an object to itself is 0,
- The distance from object A to object B is the same as that from B to A,
- The distance from object A to C is less than or equal to the distance from A to B plus B to C. This is sometimes called the **triangle inequality**.

You may think these conditions are obvious, but there are numerous counter-examples in psychological perception and elsewhere. For example, commuters often view the distance from home to the city as closer than the distance from the city to home because of traffic patterns, terrain, and psychological expectations related to time of day. Framing or context effects can also disrupt the metric axioms, as Amos Tversky has shown. For example, Miami is similar to Havana. Havana is similar to Moscow. Is Miami similar to Moscow? If your data (objects) are not consistent with these three axioms, do not use MDS.

Second, there are ways of deriving distances from rectangular data that do not satisfy the metric axioms. The ones available in Correlations do, but if you are thinking of using some other derived measure of similarity, check it carefully.

Finally, it is assumed that all your objects will fit in the same metric space. It is best if they diffuse somewhat evenly through this space as well. Do not expect to get

interpretable results for 25 nearly indistinguishable objects and one that is radically different.

# Collecting Dissimilarity Data

You can collect dissimilarities directly or compute them indirectly.

#### Direct Methods

Examples of direct dissimilarities are:

Distances. Take distances between objects (for example, cities) directly off a map. If the scale is local, MDS will reproduce the map nicely. If the scale is global, you will need three dimensions for an MDS fit. Two or three dimensional spatial distances can be measured directly. Direct measures of social distance might include spatial propinquity or the number of times or amount of time one individual interacts with another.

**Judgments.** Ask subjects to give a numerical rating of the dissimilarity (for example, 0 to 10) between all pairs of objects.

Clusters. Ask people to sort objects into piles; or examine naturally occurring aggregates, such as paragraphs, communities, and associations. Record 0 if two objects occur in the same group and 1 if they do not. Sum these counts over replications or judges.

Triads. Ask subjects to compare three objects at a time and report which two are most similar (or which is the odd one out). Do this over all possible triads of objects. To compute dissimilarities, sum over all triads, as for the clustering method. There are usually many more triads than pairs of objects, so this method is more tedious. However, it allows you to independently assess possible violations of the triangle inequality.

## **Indirect Methods**

Indirect dissimilarities are computed over a rectangular matrix whose columns are objects and rows are attributes. You can transpose this matrix if you want to scale rows instead. Possible indirect dissimilarities include:

Computed Euclidean distances. These are the square root of the sum-of-squared discrepancies between columns of the rectangular matrix.

Negatives of correlations. For standardized data (mean of 0 and standard deviation of 1), Pearson correlations are proportional to Euclidean distances. For unstandardized data, Pearson correlations are comparable to computing Euclidean distances after standardizing. MDS automatically negates correlations if you do not. Other types of correlations for example, Spearman and gamma are analogous to standardized distances, but only approximately. Also, be aware that large negative correlations will be treated as large distances and large positive correlations as small distances. Make sure that all variables are scored in the same direction before computing correlations. If you find that a whole row of a correlation matrix is negative, reverse the variable by multiplying by -1, and recompute the correlations.

Counts of discrepancies. Counting discrepancies between columns or using some of the binary association measures in Correlations is closely related to computing the Euclidean distance. These methods are also related to the clustering distance calculations mentioned above for direct distances

# Scaling Dissimilarities

Once you have dissimilarities (or similarities, correlations, etc., which MDS automatically transforms to dissimilarities), you may scale them. You do not need to know how the computer does the calculations in order to use the program intelligently as long as you pay attention to the following:

## Stress and Iterations

Stress is the goodness-of-fit statistic that MDS tries to minimize. It consists of the square root of the normalized squared discrepancies between interpoint distances in the MDS plot and the smoothed distances predicted from the dissimilarities. Stress varies between 0 and 1, with values near 0 indicating better fit. It is printed for each *iteration*, which is one movement of all the points in the plot toward a better solution. Make sure that iterations proceed smoothly to a minimum. This is true for the examples in this chapter. If you find that the stress values increase or decrease in uneven steps, you should be suspicious.

## The Shepard Diagram

The Shepard diagram is a scatterplot of the distances between points in the MDS plot against the observed dissimilarities (or similarities). The points in the plot should adhere cleanly to a curve or straight line (which would be the smoothed distances). In other words, you should look at a good Shepard plot and think it resembles the outcome of a well-designed experiment. For more information refer examples in the chapter.

If the Shepard diagram resembles a stepwise or L-shaped function, beware, you may have achieved a degenerate solution. Publish it and you will be excoriated by the clergy.

#### The MDS Plot

The plot of points is what you seek. The points should be scattered fairly evenly through the space. The orientation of axes is arbitrary remember we are scaling distances, not axes. Feel free to reverse axes or rotate the solution. MDS rotates it to the largest dimensions of variation, but these do not necessarily mean anything for your data.

You may interpret the axes as in principal components or factor analysis. More often, however, you should look for clusters of objects or regular patterns among the objects, such as circles, curved manifolds, and other structures. See the Guttman loss function example for a good view of a circle.

For more information, see Borg and Lingoes (1981, 1987), Carroll and Arabie (1980), Davison (1983), Green and Rao (1972), Kruskal, Wish and Uslaner (2006), Schiffman, Reynolds, and Young (1981), and Shepard, Romney and Nerlove (1972).

# Multidimensional Scaling in SYSTAT

# Multidimensional Scaling Dialog Box

To open the Multidimensional Scaling dialog box, from the menus choose:

Advanced
Multidimensional Scaling...



The following options are available:

Selected variable(s). Select the variables that contain the matrix of data to be analyzed.

**Shape.** Specify the type of matrix input. For a similarities model, select Square. For an unfolding model, select Rectangular and enter the number of rows in your matrix.

**Loss function.** MDS scales similarity and dissimilarity matrices using three loss functions:

- Kruskal. Uses Kruskal's STRESS formula 1 scaling method.
- Young. Uses Young's S-STRESS scaling method, which allows you to scale using the loss function featured in ALSCAL.
- Guttman. Uses Guttman's coefficient of alienation scaling method.

**Note**: Iterations with Kruskal's method are faster but usually take longer to converge to a minimum value than those with the Guttman method. The procedure used in the

latter has been found in simulations to be less susceptible to local minima than that used in the Kruskal method (Lingoes and Roskam, 1973). We do not recommend Young's S-STRESS loss function. Because it weights squares of distances, large distances have more influence than smaller ones. Weinberg and Menil (1993) summarized why this is a problem: "...error variances of dissimilarities tend to be positively correlated with their means. If this is the case, large distances should be, if anything, down-weighted relative to small distances."

When using the Kruskal or Young loss functions, choose the form of the function relating distances to similarities (or dissimilarities):

- Mono. Specifies nonmetric scaling.
- Linear. Specifies metric scaling.
- Log. Specifies a log function, allowing a smooth curvilinear relation between dissimilarities and distances.
- Power. Specifies a power function. (This option is available only with Kruskal loss function.)

By default, SYSTAT takes it as Kruskal MONOTONIC loss function.

Note: If you use the Kruskal loss function, you can fit a MONOTONIC, LINEAR, or LOG function of distances onto input dissimilarities. The standard option is MONOTONIC multidimensional scaling. To avoid degenerate solutions, however, log or linear scaling is sometimes handy. Log scaling is recommended for this purpose because it allows a smooth curvilinear relation between dissimilarities and distances.

Split loss. For an individual differences of unfolding model, split the calculation of the loss function by rows of the matrix or by matrices. Splitting by rows is possible only for a rectangular matrix.

**Dimension.** Number of dimensions in which to scale. The number of dimensions must be a positive integer less than or equal to the number of variables that you scale and 5. The default value is 2.

**R-metric.** Constant for the Minkowski power metric for computing distances. For ordinary Euclidean distance, enter 2. For city-block distance, enter 1. For values other than 1 or 2, computation is slower because logarithms and exponentials are used. The default value is 2.

The general formula for calculating distances is:

$$d_{jk} = \left[ \sum_{i=1}^{p} |x_{ij} - x_{ik}|^{r} \right]^{\frac{1}{r}}$$

where r is the specified power and p is the number of dimensions.

Iterations. Limit for the number of iterations.

Convergence. Iterations terminate when the maximum absolute difference between any coordinate in the solution at iteration i versus iteration i-1 is less than the specified convergence criterion. Because the configuration is standardized to unit variance on every iteration, iteration stops when no coordinate moves more than the specified convergence criterion (0.005 by default) from its value on the previous iteration.

Most MDS programs terminate when stress reaches a predetermined value or changes by less than a small amount. These programs can terminate prematurely, however, because comparable stress values can result from different configurations. The SYSTAT convergence criterion allows you to stop iterating when the configuration ceases to change.

Weight. Adds weights for each dimension and each matrix (subject) into the calculation of separate distances that are used in the minimization. For an individual differences model, select Weight.

Save. You can save three sets of output to a data file:

- **Configuration.** Saves the final configuration.
- **Distances.** Saves the matrix of distances between points in the final scaled configuration.
- Residuals. Saves the data, distances, estimated distances, residuals, and the row and column number of the original distance in the rectangular SYSTAT file.

With the residuals, MDS displays the root-mean-squared residuals for each point in its output. Because STRESS is a function of the sum-of-squared residuals, the root-mean-squared residuals are a measure of the influence of each point on the STRESS statistic. This can help you identify ill-fitting points.

## Multidimensional Scaling Configuration

SYSTAT offers several alternative initial configurations.



Compute configuration from data. By default, the configuration is computed from the data. The method used depends on the loss function.

Use previous configuration. Uses the configuration from the previous scaling.

**Define custom configuration.** You can specify a custom starting configuration for the scaling. There must be as many rows as items and columns as dimensions. When you type a matrix, SYSTAT reads as many numbers in each row as you specify. It reads as many rows as there are points to scale.

You can specify a configuration for confirmatory analysis. Enter a hypothesized configuration and let the program iterate only once. Then look at the stress.

# **Using Commands**

First, specify your data with USE filename. Continue with:

```
MDS

MODEL varlist / ROWS=n SHAPE=SQUARE or RECT
CONFIG LAST
or
CONFIG [matrix]
ESTIMATE / DIM=n R=n ITER=n WEIGHT CONVERGE=n,
LOSS=GUTTMAN or KRUSKAL or YOUNG,
REGRESS=MONO or LINEAR or LOG or POWER,
SPLIT=ROW or MATRIX
SAVE filename / CONFIG or DIST or RESID
```

# **Usage Considerations**

**Types of data.** MDS uses a data file that contains an SSCP, covariance, correlation, or dissimilarity matrix. When you open the data file, MDS automatically recognizes its type.

Print options. The output is standard for all PLENGTH options.

Quick Graphs. MDS produces a Shepard diagram for each matrix analyzed and a plot of the final configuration. For solutions containing four or more dimensions, the final configuration appears as a scatterplot matrix of all dimension pairs.

Saving files. You can save the final configuration, matrix of distances between points in the final scaled configuration, distances, estimated distances, residuals, and the row and column number of the original distance in SYSTAT data files.

BY groups. MDS produces a separate analysis for each level of a BY variable.

Case frequencies. FREQ is not available in MDS.

Case weights. WEIGHT is not available in MDS.

# Examples

# Example 1 Kruskal Method

They were originally obtained from 598 subjects who judged whether or not pairs of Morse code signals presented in succession were the same. Morse code signals for letters and digits were used in the experiment, and all pairs were tested in each of two possible sequences. For multidimensional scaling, the data for letter signals have been averaged across sequence, and the diagonal (pairs of the same signal) has been omitted. The data in this form were first scaled by Shepard.

## The input is:

```
MDS
USE ROTHKPF1
MODEL a . . Z
IDVAR code$
ESTIMATE / LOSS=KRUSKAL
```

Use the shortcut notation (..) in MODEL for listing consecutive variables in the file (otherwise, simply list each variable name separated by a space).

The program begins by generating an initial configuration of points whose interpoint distances are a linear function of the input data. For this estimation, MDS uses a metric multidimensional scaling. To do this, missing values in the input matrix are replaced by mean values for the whole matrix. Then the values are converted to distances by adding a constant.

## The output is:

Monotonic Multidimensional Scaling

Kruskal Method The data are analyzed as similarities Minimizing Kruskal STRESS (form 1) in 2 dimensions

#### Iteration History

Iteration	STRESS
0	0.263539
2 3	0.218820 0.202184 0.190513
5	0.184341
7 8	0.179394

Stress of Final Configuration : 0.178269 Proportion of Variance (RSQ) : 0.845020

#### Coordinates in 2 Dimensions

Variable	Dimension		
	-1.211291	-0.310037	
	0.587818	-0.449746 0.050103	
	0.061532	-0.439883 0.893490	
	0.475856	-0.571910 0.645882	
	0.032423	-1.047075 -0.381961	
	0.776074	0.765947	
	0.603292	-0.269646 0.757884	
<del>-</del> ,	-1.153965 0.468887	-0.042454	
	0.629749	0.305905	
, - , -	0.897228 -0.283513	0.555671	
0 b a tre	-0.655589 -1.469059	-1.038669 0.948010	
	-0.310876 0.365593	-0.750825 -0.869607	
	0.041743 0.832711	0.131315	
	0.870719 0.935717	0.381966 0.178765	

## Shepard Diagram







The solution required eight iterations. Notice that STRESS reduces at each iteration. Final STRESS values near zero may indicate the presence of a degenerate solution.

The Shepard diagram is a scatterplot of distances between points in the MDS plot against the observed dissimilarities or similarities. In monotonic scaling, the regression function has steps at various points. For most solutions, the function in this plot should be relatively smooth (without large steps). If the function looks like one or two large steps, you should consider setting REGRESSION to LOG or LINEAR under ESTIMATE.

Notice that large values of the data tend to have small distances in the configuration. The diagram displays an overall decreasing trend because we are using similarities (large data values indicate similar objects). For dissimilarities, the Shepard diagram displays an increasing trend.

In the configuration plot, the points should be scattered fairly evenly through the space. If you are scaling in more than two dimensions, you should examine plots of pairs of axes or rotate the solution in three dimensions. The solution has been rotated to principal axes (that is, the major variation is on the first dimension). This rotation is not performed unless the scaling is in Euclidean space, as in the present example.

The two-dimensional solution clearly distinguishes short signals from long and dots from dashes. Dashes tend to appear in the upper right and dots in the lower left. Long codes tend to appear in the lower right and short in the upper left.

# Example 2 Guttman Loss Function

To illustrate the Guttman loss function, this example uses judged similarities among 14 spectral colors (from Ekman, 1954). Nanometer wavelengths (W434, ..., W674) are used to name the variables for each color. Blue-violets are in the 400's; reds are in the 600's. The judgments are averaged across 31 subjects; the larger the number for a pair of colors, the more similar the two colors are. The file (EKMAN) has no diagonal elements, and its type is SIMILARITY.

The Guttman method is used to scale these judgments in two dimensions to determine whether the data fit a perceptual color wheel. The Kruskal loss function will give you a similar result.

### The input is:

```
MDS
USE EKMAN
MODEL w434 .. w674
ESTIMATE / LOSS=GUTTMAN
```

### The output is:

Monotonic Multidimensional Scaling

Guttman loss function
The data are analyzed as similarities
Minimizing Guttman/Lingoes Coefficient of Alienation in 2 dimensions

#### Iteration History

Iteration	Alienation
0	0.070826
1	0.042072
2	0.037764
3	0.036151
4	0.035074

Alienation of Final Configuration : 0.035074 Proportion of Variance (RSQ) : 0.996227

#### Coordinates in 2 Dimensions

Variable	Dimension		
	1	2	
W434	0.311713	-0.905203	
W445	0.400413	-0.840312	
W465	0.893585	-0.574320	
W472	0.952088	-0.484501	

W490	0.975491	0.112340
W504	0.814841	0.640540
W537	0.547614	0.888347
W555	0.329882	0.974307
W584	-0.536487	0.734375
W600	-0.826975	0.381875
W610	-1.010004	0.056985
W628	-1.005072	-0.181708
*****		

# Shepard Diagram



# Configuration



The fit of configuration distances to original data is extremely close, as evidenced by the low coefficient of alienation and clean Shepard diagram.

The resulting configuration is almost circular, denoting a "circumplex" by Guttman (1954). There is a large gap at the bottom of the figure, however, because the perceptual color between deep red and dark purple is not a spectral color.

# Example 3 Individual Differences Multidimensional Scaling

The data in the *COLAS* file are taken from Schiffman, Reynolds, and Young (1981). The data in this file have an unusual structure. The file consists of 10 dissimilarity matrices stacked on top of each other. They are judgments by 10 subjects of the dissimilarity (0–100) between pairs of colas. The example will fit the INDSCAL (individual differences scaling) model to these data, seeking a common group space for the 10 different colas and a parallel weight space for the 10 different judges.

### The input is:

```
MDS
USE COLAS
MODEL dietpeps .. dietrite
ESTIMATE / LOSS=KRUSKAL WEIGHT SPLIT=MATRIX DIM=3
```

The WEIGHT option tells SYSTAT to weight each matrix separately. Without this option, all matrices would be weighted equally, and you would have a single pooled solution. You want to use weighting so that you can see which subjects favor one dimension over the others in their judgments. The MATRIX option of SPLIT tells SYSTAT to compute separate (monotonic) regression functions for each subject (matrix). Finally, scale the result in three dimensions, as did Schiffman et al. (1981).

## The output is:

Monotonic Multidimensional Scaling Kruskal Method The data are analyzed as dissimilarities There are 10 replicated data matrices Dimensions are weighted separately for each matrix Fitting is split between data matrices Minimizing Kruskal STRESS (form 1) in 3 dimensions

Iteration History

It	erat	lon	ST	RESS
	-			-
		0	0.22	
		1	0.18	4422
		0	0.22	1309
		1	0.18	4508

Stress of Final Configuration : 0.184508 Proportion of Variance (RSQ) : 0.535014

#### Coordinates in 3 Dimensions

Variable	1	Dimension 2	3
DIETPEPS  F. N  PFITER SHA. A  COKE  DIETPEPR  TAB  PEPSI  DIETRITE	0.521748 0.415860 0.271872 0.797845 0.390732 -0.747107 -0.790969 0.570666	0.195575 0.052353 -0.089042 -1.265870 0.024902 0.836586 -0.842914 0.438430 0.221001 0.428980	0.777055 0.756390 -0.867859 0.059119 -0.143788 -0.347338 -0.173399 -0.609165 0.381030 0.167955

	DIMENSTON		RSO	Stress	Matrix '
3	2	1	-	242000	LIGICAAA
					1
0.526788 0.721233 0.739323 0.608234 0.563840 0.570188 0.659122 0.608641 0.625805 0.617438	0.433686 0.465357 0.522989 0.492475 0.370109 0.367609 0.582263 0.597254 0.495564 0.609372	0.697761 0.452105 0.347855 0.591235 0.704482 0.704169 0.419485 0.483517 0.562688 0.435248	0.547755 0.416268 0.467821 0.564314 0.594393 0.621371 0.551692 0.559729 0.624525 0.402270	0.188374 0.199808 0.196430 0.170677 0.178156 0.171913 0.181071 0.183465 0.163263	1 2:33:4 55:7 8:90

# **Shepard Diagram**



The solution required four iterations. Notice that the second two iterations appear to be a restart. This is true, because the fourth matrix has a missing value. SYSTAT uses the EM algorithm to reestimate this value, compute a new metric solution, and iterate two more times until convergence. This extra set of iterations did not do much for you in

this example because the stress is insignificantly higher than it would have been had you stopped at only two iterations. With many missing values, however, the EM algorithm will improve MDS solutions substantially.

For the INDSCAL model, you have a set of coordinates for the colas and one for the subjects. In the three-dimensional graph of the coordinates, the colas are represented by symbols and the subjects by vectors. The first dimension separates the diet colas from the others. The second dimension differentiates between Dr. Pepper/diet Dr. Pepper and the remaining colas.

For each subject, you have a contribution to overall stress and a separate squared correlation (RSQ) between the predicted and obtained distances in the configuration. Notice that subject 10 is fit worst (STRESS = 0.211658) and subject 9 best (STRESS = 0.163263). Furthermore, subjects 1, 5, and 6 have a high loading on the first dimension, indicating that they place a higher emphasis on diet/nondiet differences than on cherry cola/cola differences. Subjects 7, 8, and 10, on the other hand, emphasize the second dimension more.

# Example 4 Nonmetric Unfolding

The COLRPREF data set contains color preferences among 15 SYSTAT employees for five primary colors. This example uses the MDS unfolding model to scale the people and the colors in two dimensions, such that each person's coordinate is near his or her favorite color's coordinate and far from his or her least favorite color's coordinate. For this example, use ROWS to specify the number of rows for a rectangular matrix and SHAPE to specify the type of matrix input to use. When you enter these data for the first time, you must remember to specify their type as DISSIMILARITY so that small numbers are understood as meaning most similar (preferred).

To scale these with the unfolding model, specify:

MDS
USE COLRPREF
MODEL red .. blue / SHAPE=RECT
IDVAR name\$
ESTIMATE / SPLIT=ROWS

Notice that you are using the Kruskal loss function as the default.

## The output is:

Monotonic Multidimensional Scaling
Kruskal Method
The data are analyzed as dissimilarities
The data are rectangular (lower corner matrix)
Fitting is split between rows of data matrix
Minimizing Kruskal STRESS (form 1) in 2 dimensions

#### Iteration History

Iteration	STRESS
0	0.148373
1	0.135423
2	0.125152
3	0.117255
4	0.111131
5	0.106394
6	0.102622
7	0.099539
8	0.096883
9	0.094498
0	0.107455
1	0.100496
2 3	0.096037
.3 A	0.092747
4	0.090001

Stress of Final Configuration : 0.090087 Proportion of Variance (RSQ) : 0.940008

#### Coordinates in 2 Dimensions

Variable	Dimor	ani an
variable	Dimer	
RED ORANGE YELLOW GREEN BLUE Patrick Laszlo Mary Jenna Julie Steve Phil Mike Keith Kathy Leah		2 -0.486827 -1.697840 -0.563914   0.255362   0.785062   0.782517 -0.132010   0.113803   -0.247226   -0.219116 -0.756052   0.614672 -0.017760   0.758853   0.7565885   0.756548   0.004649
Stephanie Lisa Mark John	0.498464 0.784008 -0.565003 0.064703	0.577649 0.209336 0.500289 -1.237996
Lisa Mark	0.784008 -0.565003	0.209336 0.500289

#### Row Fit Measures

Fr W	Stress	RSQ
	+	
Patrick	0.000000	1.000000
Laszlo	: 0.068318	0.969913
Mary	0.004396	0.999893
Jenna	0.048405	0.983337
Julie	: 0.271710	0.508263

Steve		0.033042	0.992776
Phil	1	0.061234	0.972002
Mike		0.083004	0.958462
Keith		0.171898	0.773657
Kathy	1	0.000000	1.000000
Leah	i	0.067386	0.971396
Stephanie	1	0.028564	0.993661
Lisa	í	0.055084	0.980702
Mark		0.000000	1.000000
John	i	0.024703	0.996053

## Shepard Diagram



## Configuration



## Nonmetric Unfolding and the EM Algorithm

The nonmetric unfolding model has often presented problems to MDS programs because so much data are missing. If you think of the unfolding matrix as the lower corner matrix in a larger triangular matrix of subjects + objects, you can visualize how much data (namely, all of the subject-object comparisons) are missing. Since SYSTAT uses the EM algorithm for missing values, unfolding models do not degenerate as frequently. SYSTAT does a complete MDS using all available data and then estimates missing dissimilarities/similarities using the distances in the solution. These estimated values are then used to get a starting configuration for another complete iteration cycle. This process continues until there are no changes between EM cycles.

The following example, from Borg and Lingoes (1987) adapted from Green and Carmone (1970), shows how this works. This unfolding data set contains dissimilarities only between the points delineating A and M, and these dissimilarities are treated only as rank orders. Borg and Lingoes discuss the problems in fitting an unfolding model to these data.

### The input is:

```
MDS
USE AM
IDVAR row$
MODEL / SHAPE=RECT
ESTIMATE / LOSS=GUTTMAN SPLIT=ROWS
```

Notice that the example uses the Guttman loss function, but the others provide similar results.

## The output is:

```
Monotonic Multidimensional Scaling
Guttman loss function
The data are analyzed as dissimilarities
The data are rectangular (lower corner matrix)
Fitting is split between rows of data matrix
Minimizing Guttman/Lingoes Coefficient of Alienation in 2 dimensions
```

#### Iteration History

Alienation of Final Configuration : 0.009960 Proportion of Variance (RSQ) : 0.999247 Coordinates in 2 Dimensions

Variable	Dimen	sion 2
	-0.938673	-1.018145
A1		-0.975977
A2	-0.892414	-0.414280
A3	-1.090552	-0.398294
A4	-1.066410	0.146240
A5	-1.187946	0.337007
A6	-1.227090	0.668773
A7	-1.543054	
A8	-0.997198	0.552347
A9	-0.694101	0.467134
A10	-0.305124	0.356277
A11	0.014600	0.102324
A12	0.104769	0.102859
A13	0.130734	0.092203
A14	-0.845901	0.094247
A15	-0.739913	0.136811
A16	-0.569064	0.128649
M1	0.735047	-1.080081
M2	0.430679	-0.524410
M3	0.201071	-0.564505
M4	0.013212	-0.431126
M5	-0.154900	-0.326271
M6	-0.205833	-0.180667
M7	-0.172336	0.121768
M8	-0.056279	0.224731
M9	0.175900	0.267054
M10	0.560531	0.243136
M11	0.588937	0.21804
M12	0.588937	0.218047
M13	0.831710	0.87119.
M14	0.890298	0.66002
M15	1.041142	0.212429
M16	1.238422	0.15662
M17	1.498853	0.23188
M18	1.701128	-0.210182
M19	1.940814	-0.48587

Row Fit Measures

Row	Stress	RSQ
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M18 M18		1.000000 1.000000 1.000000 0.999998 0.993181 0.996393 0.997286 0.998870 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000





#### Configuration



Example 5
Power Scaling Ratio Data

As similarities or dissimilarities are often collected as rank-order data, the nonmetric MDS model has to work "backward" in order to solve for a configuration fitting the data. As J. D. Carroll has pointed out, the MDS model should really express observed data as a function of distances between points in a configuration rather than the other

way around. If your data are direct or derived distances, however, you should try setting REGRESSION = POWER with LOSS - KRUSKAL. This way, you can fit a Stevens power function to the data using distances between points in the configuration. The results may not always differ much from nonmetric or linear or log MDS, but SYSTAT will also tell you the exponent of the power function in the Shepard diagram. Notice, with this model, that the data and distances are transposed in the Shepard diagram because loss is being computed from errors in the data rather than the distances. SYSTAT calls the loss for the power model PSTRESS to distinguish it from Kruskal's STRESS. In PSTRESS, you use DATA and its DHAT instead of DIST to compute the loss.

The *HELM* data set contains highly accurate estimates of distance between color pairs by one experimental subject (CB). These are from Helm (1959) and reprinted by Borg and Lingoes (1987).

To scale these with power model, specify:

```
MDS
USE HELM
MODEL a . . 8
ESTIMATE / REGRESS=POWER
```

## The output is:

Power regression function, where Dissimilarities=a*Distances^p Kruskal Method The data are analyzed as dissimilarities M.nimizing PSTRESS (STRESS with DIST and DATA exchanged) in 2 dimensions

#### Iteration History

Iteration	PSTRESS
0	0.142062
1	0.131426
2	0.127137
3	0.125205

Stress of Final Configuration : 0.125205 Estimated Exponent for Power Regression : 0.651539 Proportion of Variance (RSQ) : 0.910392

### Coordinates in 2 Dimensions

Variable	Dimension		
A C E G I K M	1 -0.828615 0.396618 1.134571 0.977829 0.785506 0.331216 -0.205344 -0.725019	2 -0.792411 -1.087634 -0.503104 0.101019 0.483283 0.683545 0.804234 0.581419 0.052736	
Q S	-0.999584 -0.867177	-0.323088	



SYSTAT estimated the power exponent for the function, fitting distances to dissimilarities as 0.85. Color and many other visual judgments show similar power exponents less than 1.0.

# Computation

This section summarizes algorithms separately for the Kruskal and Guttman methods. The algorithms in these options substantially follow those of Kruskal (1964a, 1964b)

and Guttman (1968). MDS output should agree with other nonmetric multidimensional scaling except for rotation, dilation, and translation of the configuration. Secondary documentation can be found in Schiffman, Reynolds, and Young (1981) and the other multidimensional scaling references. The summary assumes that dissimilarities are input. If similarities are input, MDS inverts them.

# Algorithms

## Kruskal Method

The program begins by generating a configuration of points whose interpoint distances are a linear function of the input data. For this estimation, MDS uses a metric multidimensional scaling. Missing values in the input dissimilarities matrix are replaced by mean values for the whole matrix. Then the values are converted to distances by adding a constant. A scalar products matrix **B** is then calculated following the procedures described in Torgerson (1958). The initial configuration matrix **X** in p dimensions is computed from the first p eigenvectors of **B** using the Young-Householder procedure (Torgerson, 1958)

After an initial configuration is computed by the metric method, nonmetric optimization begins (there are no metric pre-iterations). At the beginning of each iteration, the configuration is normalized to have zero centroid and unit dispersion. Next, Kruskal's DHAT (fitted) distance values are computed by a monotonic regression of distances onto data. Tied data values are ordered according to their corresponding distances in the configuration.

Stress (formula 1) is calculated from fitted distances, observed distances, and input data values. If the stress is less than 0.001, or has decreased less than 0.001 per iteration in the last five iterations, or the number of iterations equals the number specified by the user (default is 50), iterations terminate (that is, go to the next paragraph). Otherwise, the negative gradient is computed for each point in the configuration by taking the partial derivatives of stress with respect to each dimension. Points in the configuration are moved along their gradients with a step size chosen as a function of the rate of descent; the steeper the descent, the smaller the step size. This completes an iteration.

After the last iteration, the configuration is shifted so that the origin lies in the centroid. Thus, the point coordinates sum to 0 on each dimension. Moreover, the configuration is normalized to unit size so that the sum of squares of its coordinates is 1. If the Minkowski constant is 2 (Euclidean scaling, which is the standard option), the final configuration is rotated to its principal axis.

#### Guttman Method

The initial configuration for the Guttman option is computed according to Lingoes and Roskam (1973). Principal components are computed on a matrix C,

$$c_{ij} = 1 - \frac{r_{ij}}{\underline{n(n-1)}}$$

where  $r_{ij}$  are the ranks of the input dissimilarities (smallest rank corresponding to smallest dissimilarity), and n is the number of points. The diagonal elements of C are

$$c_{jj} = 1 - \Sigma r_{ij}$$

where the sum is taken over the entire row of the dissimilarity matrix.

For the iteration stage, the initial configuration is normalized as in the Kruskal method. Then rank images corresponding to each distance in the configuration are computed by permuting the configuration distances so that they mirror the rank order of the original input dissimilarities. Ties in the data are handled as in the Kruskal method. These rank images are used to compute the Guttman/Lingoes coefficient of alienation. Iterations are terminated if this coefficient becomes arbitrarily small, if the number of iterations exceeds the maximum, or if the change in its value becomes small. Otherwise, the points in the configuration are moved five times using the same rank images but different interpoint distances each time to compute a new negative gradient. These five cycles within each iteration are what lengthens the calculations in the Guttman method. This completes an iteration.

The final configuration is rotated and scaled as with the Kruskal method. Guttman/Lingoes programs normalize the extreme values of the configuration to unity and thus do not plot the configuration with a zero centroid, so MDS output corresponds to their output within rigid motion and configuration size.

## Missing Data

Missing values in a similarity/dissimilarity matrix are ignored in the computation of the loss function that determines how points in the configuration are moved. For information on how this function is computed, see the discussion of algorithms.

If you compute a similarity matrix with Correlations for input to MDS, the matrix will have no missing values unless all of your cases in the raw data have a constant or missing value on one or more variables.

# References

- * Borg, I. and Groenen, P. (2005). Modern multidimensional scaling: Theory and applications. 2nd ed. New York: Springer-Verlag.
  - Borg, I. and Lingoes, J. (1981). Multidimensional data representations: When and why? Ann Arbor: Mathesis Press.
  - Borg, I. and Lingoes, J. (1987). Multidimensional similarity structure analysis. New York: Springer Verlag.
  - Carroll, J. D. and Arabie, P. (1980). Multidimensional scaling. M. R. Rosenzweig and L. W. Porter, eds. *Annual Review of Psychology*, 31, 607–649.
  - Carroll, J. D. and Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. *Psychometrika*, 35, 283–319.
- * Carroll, J. D. and Wish, M. (1974). Models and methods for three-way multidimensional scaling. D. H. Krantz, R. C. Atkinson, R. D. Luce, and P. Suppes, eds. Contemporary Developments in Mathematical Psychology, Vol. II: Measurement, Psychophysics, and Neural Information Processing. San Francisco: W. H. Freeman and Company.
- * Coombs, C. H. (1964). A theory of data. New York: John Wiley & Sons.
  - Davison, M. L. (1983). Multidimensional scaling. New York: John Wiley & Sons.
  - Ekman, G. (1954). Dimensions of color vision. Journal of Psychology, 38, 467–474.
  - Green, P. E. and Carmone, F. J. (1970). Multidimensional scaling and related techniques. Boston: Allyn and Bacon.
  - Green, P. E. and Rao, V. R. (1972). Applied multidimensional scaling. New York: Holt, Rinehart, and Winston.
  - Guttman, L. (1954). A new approach to factor analysis: The radex. P. F. Lazarsfeld, ed. Mathematical Thinking in the Social Sciences. New York: Free Press.
  - Guttman, L. (1968). A general nonmetric technique for finding the smallest coordinate space for a configuration of points. *Psychometrika*, 33, 469–506.
  - Helm, C. E. (1959). A multidimensional ratio scaling analysis of color relations. *Technical Report*, Princeton University and Educational Testing Service, June 1959.
  - Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. *Psychometrika*, 29, 1–27.
  - Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. *Psychometrika*, 29, 115–129.

- Kruskal, J. B., Wish, M and Uslaner, E.M. (2006). *Multidimensional scaling*. Beverly Hills, Calif.: Sage Publications.
- Lingoes, J. C. and Roskam, E. E. (1973). A mathematical and empirical study of two multidimensional scaling algorithms. Psychometrika Monograph Supplement, 19.
- Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in some paired-associate learning tasks. *Journal of Experimental Psychology*, 53, 94–101.
- Schiffman, S. S., Reynolds, M. L., and Young, F. W. (1981). *Introduction to multidimensional scaling: Theory, methods, and applications*. New York: Academic Press.
- Shepard, R. N. (1963). Analysis of proximities as a study of information processing in man. *Human Factors*, 5, 33–48.
- Shepard, R. N., Romney, A. K., and Nerlove, S., eds. (1972). *Multidimensional scaling: Theory and application in the behavioral sciences*. New York: Academic Press.
- * Takane, Y., Young, F. W., and de Leeuw, J. (1977). Nonmetric individual differences scaling: An alternating least squares method with optimal scaling features. *Psychometrika*, 42, 3–27.
- Torgerson, W. S. (1958). Theory and methods of scaling. New York: John Wiley & Sons.
- Weinberg, S. L. and Menil, V. C. (1993). The recovery of structure in linear and ordinal data: INDSCAL and ALSCAL. *Multivariate Behavioral Research*, 28:2, 215–233.
- (* indicates additional references.)

# Multinormal Tests

Mangalmurti Badgujar

Just as normality plays a vital role in many univariate statistical procedures, multivariate normality plays a crucial role in multivariate data analysis. Results are often obtained after assuming the underlying distribution to be normal; but these results are valid and correct only if the normality assumption is itself justified.

MNTEST assesses the marginal normality of each variable in multivariate data. The Shapiro-Wilk test is used if the sample size is less than or equal to 5000; otherwise, the Lilliefors test (Kolmogorov-Smirnov test with estimated parameters) is favored. MNTEST computes Mardia's skewness and kurtosis coefficients (Mardia, 1970), and performs tests of significance of these coefficients using asymptotic distributions. These tests are generally effective for testing multivariate normality (Mecklin and Mundform, 2004). MNTEST also computes the Henze-Zirkler test statistic (Henze and Zirkler, 1990; Mecklin and Mundform, 2004, also list it amongst potentially useful tests), and the associated *p-value* using the lognormal distribution. Finally, it produces the beta Q-Q plot of scaled squared Mahalanobis distances following the approach of Gnanadesikan and Kettenring (1972).

# Statistical Background

Mardia (1970) has listed some measures of skewness and kurtosis and their distributional properties. Rejection of normality using Mardia's tests indicates that either multivariate outliers are present or the multivariate normal distribution does not describe the data suitably. In addition to the Mardia measures and tests, we also calculate the Henze-Zirkler test statistic (Henze and Zirkler, 1990), which has better

power properties than the Mardia test against symmetric alternatives such as a family of elliptically contoured distributions.

Q-Q plots using 'Squared Mahalanobis Distances' are useful to identify departures from multivariate normality and outliers. Graphical tests alone are inadequate; some numeric measures are needed. Romeu and Ozturk (1993) investigated ten tests of goodness-of-fit for multivariate normality. Their simulation study shows that the multivariate tests of skewness and kurtosis proposed by Mardia (1970) "are the most stable and reliable for assessing multivariate normality" (Timm, 2002: page 121). For evaluating marginal normality we use the univariate Shapiro-Wilk test (Shapiro and Wilk, 1965).

# Multinormal Tests in SYSTAT

# Multinormal Tests Dialog Box

To open the Multinormal Tests dialog box, from the menus choose:

Analyze Multinormal Tests...



**Selected variables**. Select two or more numeric variables for testing multivariate normality.

Save Mahalanobis distances. Saves data and squared Mahalanobis distances.

# **Using Commands**

First, specify your data with USE filename. Continue with:

SSAVE filename / MAHAL MNTEST varlist

MNTEST assesses the marginal normality for each variable in *varlist*, using the Shapiro-Wilk test, if sample size is less than or equal to 5000; otherwise, it uses the Lilliefors test (Kolmogorov-Smirnov test with estimated parameters). Further, it computes Mardia's skewness and kurtosis coefficients for the variables in *varlist* and performs a test of the significance of these coefficients using an asymptotic distribution. The Henze-Zirkler test statistic and its associated *p-value* using lognormal distribution are also displayed. Finally, it produces the beta Q-Q plot of scaled squared Mahalanobis distances.

SSAVE with MAHAL option will save data and squared Mahalanobis distances in the file *filename*.

# Usage Considerations

Type of data. MNTEST uses rectangular numeric data.

Print options. The output is standard for all PLENGTH options.

Quick Graphs. MNTEST produces a Q-Q plot of scaled squared Mahalanobis distances.

Saving files. MNTEST saves data and squared Mahalanobis distances.

BY groups. MNTEST produces a separate output for each group.

Case frequencies. FREQUENCY is not available in MNTEST.

Case weights. WEIGHT is not available in MNTEST.

# **Examples**

# Example 1 Multivariate Normality Assessment of Perspiration Measurements

In this example we check the multivariate normality for SWEAT data from Johnson and Wichern (2002). The data set contains perspiration measurements from twenty healthy females arranged in three components, SWEAT_RATE = sweat rate, SODIUM – sodium content, and POTASSIUM = potassium content.

## The input is:

USE SWEAT MNTEST SWEAT RATE SODIUM POTASSIUM

## The output is:

Number of Cases Used for Analysis = 20

Marginal Normality Tests

Variable	Test	Test S	tatistic	p-value
SWEAT RATE	Shapiro-Wilk		0.976	0.869
SODIUM	Shapiro-Wilk		0.986	0.986
POTASSIUM	Shapiro-Wilk		0.964	0.623

#### Joint Normality

Test	Coefficients	Test	Statistic	p-value
	+			
Mardia Skewness Mardia Kurtosis Henze-Zirkler	2.188		9.033 -1.273 0.452	0.529 0.203 0.387





By using *p-values* for marginal Shapiro-Wilk test statistics, we get sufficient evidence for marginal normality of variables *SWEAT_RATE*, *SODIUM*, and *POTASSIUM*. The joint multivariate normality of *SWEAT_RATE*, *SODIUM*, and *POTASSIUM* is also supported by *p-values* associated with Mardia's skewness, kurtosis coefficients, and the Henze-Zirkler test.

# Example 2 Multivariate Normality Assessment of Anthropometric Measurements

Here we check the multivariate normality for six variables measured on a selected sample of Swiss army personnel. The variables, as described in Flury and Riedwyl (1988) are:

MFB = minimal frontal breadth

BAM = breadth of angulus mandibulae

TFH = true facial height

LGAN = length from glabella to apex nasi

LTN =length from tragion to nasion

LTG =length from tragion to gnathion

Measurements are made on 200 twenty-year old male soldiers.

### The input is:

USE HEADDIM MNTEST MFB BAM TFH LGAN LTN LTG

### The output is:

Number of Cases Used for Analysis = 200

Marginal Normality Tests

Variable	Test	Test Statistic	p-value
	+		
MFB	Shapiro-Wilk	0.995	0.797
BAM	Shapiro-Wilk	0.993	0.526
TFH	Shapiro-Wilk	0.988	0.078
LGAN	Shapiro-Wilk	0.973	0.001
LTN	Shapiro-Wilk	0.993	0.469
LTG	Shapiro-Wilk	0.994	0.646

Joint Normality

Test	Coefficients	Test Statistic	p-value
	4		
Mardia Skewness	2.646	89.894	0.003
Mardia Kurtosis	46.939	-0.766	0.444
Henze-Zirkler		0.997	0.140

## Beta Q-Q plot



In this case the *p-value* associated with the Shapiro-Wilk test statistic of the variable *LGAN* is very low. Also, the *p-value* for significance testing of Mardia's skewness coefficient is low (0.003). Thus there is no clear-cut evidence that this data set follows

a multivariate normal distribution; we must therefore be careful and cautious while analyzing it under the multivariate normality assumption.

# References

- Flury, B, and Riedwyl, H. (1988). *Multivariate statistics: A practical approach*. London: Chapman and Hall.
- Gnanadesikan, R. and Kettenring, J. R. (1972). Robust estimates, residuals, and outlier detection with multi-response data. *Biometrics*, 28, 81-124.
- Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics Theory and Methods, 19, 3595-3618.
- Johnson, R.A. and Wichern, D.W. (2002). Applied multivariate statistical analysis, 5th ed. Engelwood Cliffs, N.J.: Prentice Hall.
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. *Biometrika*, 58, 519-530.
- Mecklin, C. J. and Mundform, D. J. (2004). An appraisal and bibliography of tests for multivariate normality. *International Statistical Review*, 72:1, 123-138.
- Romeu, J. L. and Ozturk, A. (1993). A comparative study of goodness-of-fit tests for multivariate normality. *Journal of Multivariate Analysis*, 46,309-334.
- Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complex samples). *Biometrika*, 52, 591-611.
- Timm, N. H.(2002). Applied multivariate analysis. New York: Springer-Verlag.



# Multivariate Analysis of Variance

Sayyad Nisar Badashah and Rajesh V. Nath

(Some material has been taken from the SYSTAT 10.2 manual, Statistics I: Chapter 16: Linear Models III: General Linear Models by Leland Wilkinson and Mark Coward.)

The Multivariate Analysis of Variance (MANOVA) feature handles estimation and testing in one-way, two-way, and multi-way classified multivariate data, repeated measures analysis, and more generally handles within-group and between-group testing. These include multivariate analysis of data obtained by using standard experimental designs and standard factorial treatment structures with crossing and nesting.

You can select any of the three types of sum of squares, Type I, Type II, and Type III, for the analysis. MANOVA begins with a preliminary analysis that provides parameter estimates and least-squares mean vectors. This is followed by results of tests of hypotheses, where, besides results of multivariate tests in terms of suitable statistics and their *p-values*, results of corresponding univariate tests for each (dependent) variable (components of the multivariate data vector) are also provided. AIC, AIC (Corrected) and Schwarz's BIC values are also provided for each fitted model. For more information on AIC and Schwarz's BIC in SYSTAT refer to the Chapter Linear Models: Introduction: "Variable Selection" on page 15 in Statistics II.

# Statistical Background

Multivariate Analysis of Variance (MANOVA) is the multivariate analog of the Analysis of Variance (ANOVA). MANOVA procedures were already available in SYSTAT's earlier versions and could be used by invoking the General Linear Model (GLM) procedures and suitably defining the models and the hypotheses, through either dialog or commands. However, many applications of MANOVA are in standard problems, and, in this MANOVA feature, such standard applications have been made simpler by making them menu-driven.

As with ANOVA, the independent variables in a MANOVA model are factors, each factor having two or more levels. Unlike ANOVA, MANOVA deals with multiple dependent variables, rather than a single dependent variable. MANOVA examines whether the population means on a set of dependent variables vary across levels of a factor or factors. For example, suppose three varieties of peanuts were grown at different geographical locations (1, 2) and three variables of interest were measured:  $X_I$ = yield (plot weight),  $X_2$  = sound mature kernels (weight in grams--maximum of 250 grams), and  $X_3$ = seed size (weight, in grams, of 100 seeds). In this two-factor experiment, the primary objective is to compare location effects, variety effects and their interaction. Clearly, a two-way MANOVA is appropriate in this situation.

In most models for which MANOVA is used, the following assumptions are made:

- The joint distribution of dependent variables is multivariate normal in each level of factor combinations.
- The variances and covariances (variance-covariance matrix) among the dependent variables are the same across all levels of factor combinations.
- The multivariate observations are independently distributed over the observational units.

The main interest in MANOVA is the comparison of mean vectors over factor-level combinations. For many problems, the MANOVA procedure is similar to the ANOVA procedure for the corresponding univariate problem, wherein the sum of squares is replaced by a sum of squares and cross-products (SSCP) matrix. Thus, there is a total SSCP matrix that is decomposed into within-groups, i.e., the error or residual SSCP matrix and between-groups SSCP matrix. Further decomposition is carried out depending on the specific models and the hypotheses being tested. While the test statistic in ANOVA is the ratio of mean squares with an appropriate F-distribution under the hypothesis, in MANOVA, the test statistics are generalized versions of these ratios based upon corresponding SSCP matrices with their sampling distributions often approximated by suitable F distributions.

## MANOVA Tests

SYSTAT provides the following four multivariate test statistics for testing the significance of various effects in a model. The following notations are used to represent various SSCP matrices:

G: Within-groups (error) SSCP matrix

H: Between-groups SSCP matrix

T: Total SSCP matrix

# Wilks's Lambda (A or W or likelihood ratio criterion)

The first of these four statistics is the Wilks's Lambda:

$$W = |G|/|T|$$

The statistic is a monotonically decreasing function of the log-likelihood ratio statistic. The value of the test statistic varies from 0 to 1. The distribution of W is approximated by the F distribution (Rao, 1973).

## Pillai's Trace (V)

The statistic is

$$V = trace(HT^{-1})$$

An approximate F-ratio is displayed in SYSTAT.

## Hotelling-Lawley Trace (T)

The statistic is

$$T = trace(G^{-1}H)$$

The *F-ratio* approximation is similar to that of the other statistics.

### Roy's Greatest Root (Theta)

This statistic is derived by Roy's union-intersection approach to MANOVA. Along with  $\lambda_1$ , the largest eigenvalue of the matrix  $G^{-1}H$ , SYSTAT displays the following form of the statistic:

$$\theta = \frac{\lambda_1}{1 + \lambda_1}$$

The exact values for the probabilities are taken from the Heck (1960) chart. The chart for the percentile points of distribution of the largest root is commonly given for  $\theta$ . This is more powerful than the others if the mean vectors are collinear.

Historically, Wilks's lambda played a dominant role in tests in MANOVA because it was the first to be derived and in view of its flexibility and its well-known F approximation. In the case of two groups, all the four test statistics are equivalent and, in turn, equivalent to Hotelling's T² statistic. In those cases when these statistics differ with regard to the acceptance or rejection of the null hypothesis, you can examine the eigenvalues to select the best one from the procedures discussed above.

Since, like ANOVA, MANOVA is derived from the GLM module, you can find a detailed discussion of various aspects of estimation and testing in Chapter 1 o"Linear Models" on page 1 of *Statistics II*. Also, for further information, see Johnson and Wichern (2002), Rencher (2002), or Timm (2002).

# MANOVA in SYSTAT

# MANOVA: Estimate Model Dialog Box

Estimate Model produces estimates of parameters and tests for equality of group effects.

To open the MANOVA: Estimate Model dialog box from the menus choose:

Analyze MANOVA Estimate Model....



**Dependents.** Select the response variables you want to examine. The dependent variables should be continuous numeric variables.

**Independent(s).** Select one or more categorical or numerical variables. The variables not specified as categories are treated as covariates. If you want to build a model that contains interaction effects and nested effects, use Cross and Nest buttons to build the model. If you want to include effects like A+B+A*B, select the effects A and B, and then click on the # button.

Model options. The following model options are available:

- Include constant. This includes a constant term in your model. Deselect this option to remove the constant.
- Means. Specifies a fully factorial design using means coding (For more information on means coding, see "Linear Models" on page 1 in Statistics II).
- Weight. Weights cell means by cell counts before doing the analysis.
- Cases. Data can be either rectangular or triangular. When the form of the data is a symmetric matrix (triangular), you have to specify the sample size that generated the symmetric matrix.

**Sum of squares**. For the model, you can choose a particular type of the sum of squares. Type III is the one most commonly used and is therefore the default.

- Type I: Sequential. Uses type I sum of squares for the analysis.
- Type II: Partially sequential. Uses type II sum of squares for the analysis.
- Type III: Adjusted. Uses type III sum of squares for the analysis. This is the default.

**Save.** Saves residuals and other output to a data file. The following alternatives are available:

- Adjusted. Saves adjusted cell means from analysis of covariance.
- Adjusted/Data. Saves adjusted cell means plus all the variables in the working data file, including any transformed data values.
- Coefficients. Saves the estimates of the regression coefficients.
- Model. Saves statistics given in Residuals and the variables used in the model.
- Residuals. Saves predicted values, residuals, Studentized residuals, and the standard errors of predicted values.
- Residuals/Data. Saves the statistics given by Residuals, plus all the variables in the working data file, including any transformed data values.

## Category

You can specify numeric or character-valued categorical (grouping) variables that define cells. The variables that are not specified as categorical variables are considered as covariates.

To do so, click the Category tab in MANOVA: Estimate Model dialog box.



Categorical variable(s). Specify categorical (grouping) variables that define cells.

Coding. You can choose a coding method from the following:

Dummy. Produces dummy codes for the design variables instead of effect codes. Coding of dummy variables is the classic analysis of variance parameterization, in

which the sum of effects estimated for a classifying variable is 0. If your categorical variable has k categories, k-1 dummy variables are created.

■ Effect. Produces by default, the parameter estimates that are differences from group means.

Missing values. Check this to include categorical variables with missing values as a separate category in the analysis.

## Repeated Measures

To perform a repeated measures analysis, click Repeated Measures tab in MANOVA: Estimate model dialog box.



No. Displays the serial number.

Name. Specify names that identify each set of repeated measures.

Levels. Enter the number of repeated measures in the set. For example, suppose you have three dependent variables that represent measurements at different times, the number of levels is three.

Metric. Metric that indicates the spacing between unevenly spaced measurements. For example, suppose measurements were taken at the third, fifth, and ninth weeks, the metric would be 3, 5, 9.

## Hypothesis Test Dialog Box

After estimating the treatment effects, contrasts are used to test the relationship among various treatment levels. We may focus on whether the interaction is significant for some linear combination of variables or each variable individually.

To perform the hypothesis tests, from the menus choose:

Analyze
MANOVA
Hypothesis Test...



Selected effect(s). Effect or effects selected for testing.

Hypothesis. Select the type of hypothesis. The following choices are available:

- Model. Select to test the significance of the model parameters.
- **Effects.** Select one or more effects you want to test.
- Specify. Select to use Specify tab.
- A Matrix. Select to use A Matrix tab.

Within. Use when specifying a contrast across the levels of repeated measures factor. Select the name assigned to the set of repeated measures in the Repeated Measures tab. This will be enabled only when a repeated measures analysis is performed.

## Specify

To specify the contrasts for between-subjects effects, choose Specify in the MANOVA: Hypothesis Test dialog box.



You can define contrasts across the levels of a grouping variable in a multivariate model. For example, for a two-way factorial MANOVA design with *GENDER\$* (two categories) and *DRUG* (three categories), you could contrast the marginal mean for the first level of drug against the third level by specifying:

Note that the brackets enclose the value of the category (for example, for GENDER\$, specify GENDER\$['MALE']). For the simple contrast of the first and third levels of DRUG for the second GENDER\$ only, specify:

```
DRUG[1] GENDER$['MALE'] = DRUG[3] GENDER$['MALE']
```

The syntax also allows statements like:

```
-3*DRUG[1] - 1*DRUG[2] + 1*DRUG[3] + 3*DRUG[4]
```

One can use various combinations of factor levels to specify the hypothesis.

#### Contrast

You can specify contrasts across the levels of a factor. To invoke the Contrast tab, choose Effect in Hypothesis, select one effect.



Contrast tab generates a contrast for a grouping factor or a repeated measures factor. SYSTAT offers eight types of contrasts:

Custom. Enter your own custom coefficients. For example, if your factor has four ordered categories (or levels), you can specify your own coefficients, such as -3 -1 1 3, by typing these values in the Custom text box.

Adjacent difference. Compares each level with its adjacent level.

Helmert. Compare the mean of each level of the selected factor to the mean of the succeeding levels.

Reverse Helmert. Compares the mean of each level of selected factor with the previous levels.

Polynomial. Generates orthogonal polynomial contrasts (to test linear, quadratic, or cubic trends across ordered categories or levels).

- Order. Enter 1 for linear, 2 for quadratic, etc.
- Metric. Use Metric when the ordered categories are not evenly spaced. For example, when repeated measures are collected at weeks 2, 4, and 8, enter 2, 4, 8 as the metric.

**Deviation**. The deviation contrast compares the mean of the dependent variable at each level of the selected categorical variable (except a reference level) to the overall mean (grand mean) of the dependent variable.

Simple. The result of the simple contrast includes testing for each level against the specified reference level. This type of contrast is useful when there is a control group. You can choose any level or category as the reference.

Sum. Totals the value for each subject.

#### A, C, and D matrices

The matrices **A**, **C**, and **D** are available for hypothesis testing in multivariate models. These matrices (**A**, **C**, and **D**) may be specified in several alternative ways; if they are not specified, they assume the default values.

To specify A Matrix, click A matrix tab in MANOVA: Hypothesis test dialog box.



A is a matrix of linear weights contrasting the coefficient estimates (the rows of B). You can write your hypothesis in terms of the A matrix. The A matrix has as many columns as there are regression coefficients (including the constant) in your model. The number of rows in A determines how many degrees of freedom your hypothesis involves.

To specify C Matrix, click C Matrix tab in the MANOVA: Hypothesis Test dialog box.



The C matrix is used to test hypotheses for repeated measures analysis of variance designs and models with multiple dependent variables. C has as many columns as there are dependent variables. By default, the C matrix is the identity matrix.

To specify D Matrix, click D Matrix tab in the MANOVA: Hypothesis Test dialog box



**D** is a null hypothesis matrix. By default it is a null matrix. The **D** matrix, if you use it, must have the same number of rows as **A**. For univariate multiple regression, **D** has only one column. For multivariate models (multiple dependent variables), the **D** matrix has one column for each dependent variable.

Toggling among command line and GUI is supported in ANOVA, GLM, MANOVA, REGRESS, MIXED, LOGIT, LOGLINER, and RSM. That is, if estimation is performed through dialog box then post estimation analysis can be performed through commands and vice-versa.

## Between-Groups Testing

You may be interested in various linear hypotheses of group means. If the group means are shown to be different by a MANOVA test, then you may be interested in testing various linear relationships among these group means.

To perform the Between-Groups Testing, from the menus choose:

Analyze MANOVA Between-Groups Testing...



Specified hypothesis. Select this option to specify the hypothesis to be tested.

**Expression.** Enter your expression. For a two-way factorial MANOVA design with *DISEASE* (three categories) and *DRUG* (four categories), you could contrast the group mean for the first level of drug against the third level by specifying:

Alternatively, you can use DRUG [1] - DRUG [3]

Note that the brackets enclose the value of the category (for example, for GENDER\$, specify GENDER\$['MALE']).

The syntax also allows statements like:

```
- 3*DRUG[1] - 1*DRUG[2] + 1*DRUG[3] + 3*DRUG[4]
```

■ Equate to. Specify a vector of size equal to the number of dependent variables; if not specified, by default, SYSTAT takes a zero vector of appropriate dimension. 'Equate to' does not allow you to give a group name like DRUG[2]; SYSTAT expects that 'Equate to' should be a user-specified numeric vector.

Specified effect. Click to perform one-way MANOVA or All Pairs Comparison.

- Effect. Shows a list of categorical variables, which have been used to fit the MANOVA model. Select a grouping variable out of those categorical variables to perform a One-Way MANOVA.
- Perform all pairs comparison. Check this to perform comparisons for all pairs within a specified effect or grouping variable.

Error term. Enter your own error SSCP matrix; by default SYSTAT uses the model error SSCP matrix to test the hypothesis.

Toggling among command line and GUI is supported in ANOVA, GLM, MANOVA, REGRESS, MIXED, LOGIT, LOGLINER, and RSM. That is, if estimation is performed through dialog box then post estimation analysis can be performed through commands and vice-versa.

## Within-Group Testing

A hypothesis of interest may be whether there exists a difference in the various components rather than groups. The components are considered inside each group. SYSTAT automatically tests the equality of various components in a group. You can give linear contrasts of your interest; and you can perform the test for equality of component means.

To perform Within-Group Testing, from the menus choose:

Analyze MANOVA Within-Group Testing...



**Effect.** Effect gives you a list of all categorical variables, which have been used in the model. Select one among them. By default, it takes the first categorical variable in the category list.

**Test within group.** Displays all the levels of the above-specified effect. If you have a categorical variable (say) *CLASS* with two levels (1,2) and if you want to perform testing within level 1, then select 1 in test within. If not selected, SYSTAT takes the first level of the selected effect.

Coefficients. Specify the coefficients of the linear hypothesis.

**Equate to.** Specify the null hypothesis vector. If you want to test the mean vector of a level of a group equal to some specific value, then specify a vector of proper order; if not specified, by default, SYSTAT takes the zero vector of appropriate dimension.

**Equality of means.** Check this to perform a test of equality of means of components within a group.

For example:

Grouping variable: CLASS Test within group: CLASS 1 Hypothesis to test: $\mu_1 + \mu_2 + \mu_3 = 5$ $\mu_1 - \mu_2 + \mu_3 = 6$ $\mu_1 - 2\mu_2 + \mu_3 = 6$	Input  Effect = CLASS  Test within group = 1  Coefficients = 1 1 1 1-1 1 1-2 1
, ,	Equate to $= 566$

Toggling among command line and GUI is supported in ANOVA, GLM, MANOVA, REGRESS, MIXED, LOGIT, LOGLINER, and RSM. That is, if estimation is performed through dialog box then post estimation analysis can be performed through commands and vice-versa.

# Post hoc Test for Repeated measures

After performing analysis of variance, suppose we have an *F-ratio* which tells us that means are not equal; we still do not know exactly which means are significantly different from which other ones. Post hoc tests can only be used when the 'omnibus' ANOVA finds a significant overall effect. If the *F*-value for a factor turns out non-significant, you may not want to go further with the analysis. This protects the post hoc test from being used too liberally.

The main problem that designers of post hoc test try to deal with is alpha inflation. This refers to the fact that the more tests you conduct at alpha 0.05, the more likely you are to come across a significant difference, which in reality may not exist. The overall chance of a Type I error rate in a particular experiment is referred to as the 'experiment-wise error rate' (or family-wise error rate).

To open the Post hoc Test for Repeated Measures dialog box, from the menus choose: Analyze

MANOVA

Post Hoc Test for Repeated Measures...



Factor name. This is the name given to the set of repeated measures in MANOVA.

**Bonferroni.** If you want to keep the experiment-wise error rate to a specified level (alpha-0.05), a simple way of doing this is to divide the acceptable alpha level by the number of comparisons you intend to make. That is, for any one comparison to be considered significant, the obtained *p-value* would have to be less than alpha/number of comparisons. Select this option if you would like to perform a Bonferroni correction.

Sidak. The above experiment-wise error is kept in control by the use of the formula: Sidak alpha = 1-(1-alpha)^(1/c), where c is the number of paired comparisons. Select this option if you would like to perform a Sidak correction.

Toggling among command line and GUI is supported in ANOVA, GLM, MANOVA, REGRESS, MIXED, LOGIT, LOGLINER, and RSM. That is, if estimation is performed through dialog box then post estimation analysis can be performed through commands and vice-versa.

## **Using Commands**

Select the data with USE filename and continue with:

```
MANOVA

MILL VARILATION OF SIMPLE(m, n) OF SIMPLE (m, n) OF SAMPLE = BOOT(m, n) OF SIMPLE(m, n) OF JACK

MANOVA

MILL VARILATION OF MANOTHER (MISSER)

VARIABLE (MISSER)

VARIABLE (MISSER)

MEANS:

M
```

## To perform hypothesis tests:

## **Usage Considerations**

Types of data. Normally, you analyze raw cases-by-variables data with the MANOVA module. You can, however, use a symmetric matrix data file (for example, a covariance matrix saved in a file from Correlations) as input. If you use a matrix as input, you must specify a value for Cases when estimating the model (under Model options in the

MANOVA Model tab) to specify the sample size of the data file that generated the matrix. The value in the dialog must be greater than 2

SYSTAT uses the sample size to calculate degrees of freedom in hypothesis tests SYSTAT also determines the type of matrix (SSCP, covariance, and so on) and adjusts appropriately. With a correlation matrix, the raw and standardized coefficients are the same, therefore, you cannot include a constant when using SSCP, covariance, or correlation matrices. Because these matrices are centered, the constant term has already been removed. If you give the sample size '2' you may get the residual degrees of freedom as zero.

**Print options.** The MANOVA module produces extended output if you set the output length to LONG.

For model estimation, the extended output adds the following total sum of squares and product matrix, residual (or pooled within groups) sum of product matrix, residual (or pooled within groups) covariance matrix, and the residual (or pooled within groups) correlation matrix.

For hypothesis testing, the extended output adds A, C, and D matrices, the matrix of contrasts, and the inverse of the cross products of contrasts, hypothesis and error sum of product matrices, tests of residual roots, canonical correlations, and coefficients.

Quick Graphs. If no variables are categorical, MANOVA produces Quick Graphs of residuals versus predicted values.

Saving files. Several sets of the output can be saved to a file. The actual contents of the saved file depend on the analysis. Files may include the estimated regression coefficients, model variables, residuals, predicted values and diagnostic statistics.

BY groups. Each level of any BY variables yields a separate analysis.

Case frequencies. MANOVA uses the FREQUENCY variable, if present, to duplicate cases.

Case weights. MANOVA uses the values of any WEIGHT variables to weight each case.

## **Examples**

## Example 1 One-Way MANOVA

Here is an example from Jackson (2003), which deals with one-way classified data where samples were tested in three different laboratories using two different methods. In each laboratory two methods were used to test samples of size four. In one laboratory a sample of eight observations was tested. We can perform a multivariate analysis on this data to test for differences in laboratories. Here the dependent variables are *METHOD1* and *METHOD2*.

#### The input is:

```
USE LAB
PLENGTH SHORT
MANOVA
CATEGORY LAB / EFFECT
MODEL METHOD1 METHOD2 = CONSTANT + LAB
ESTIMATE
```

## The output is:

#### Dependent Variable Means

METHOD1	METHOD2
10.275	10.083

#### Estimates of Effects $B = (X'X)^{-1}X'Y$

Factor		Level	METHOD1	METHOD2
	+			
CONSTANT	1		10.275	10.083
LAB	ł	1	-0.275	0.267
LAB	ŀ	2	-0.275	-0.083

#### Information Criteria

AIC	1		22		977
AIC (Corrected)	t t	1	12	,	977
Schwarz's BIC	- 1		27		341

The above table displays the estimated effects for the fitted model; the means and information criteria table are also displayed above.

## Test of Hypothesis

Our interest is to simultaneously compare the three laboratories. We test the effect of LAB.

The input is:

HYPOTHESIS EFFECT LAB TEST

## The output is:

Test for effect called: LAB

Null Hypothesis Contrast AB

	MET	HOD1	METHOD2
	+		
-		275	0.267

Inverse Contrast  $A(X^*X)^{-1}A^*$ 

1 2 1 0.167 2 : -0.083 0.167

Hypothesis Sum of Product Matrix  $H = B'A' (A(X'X)^{-1}A')^{-1}AB$ 

		MET	HOD	1 P	4ETHOD2	
	- +					
ETHOD			.81		0.44	7

## Error Sum of Product Matrix G = E'E

	1	METHOD1	METHOD2
	+		
METHOD1 METHOD2	1 1	2.728	2.810

#### Univariate F Tests

Source :	Type II	SS	df	Mean	Squares	F-ratio	p-value
METHOD1		815	2		0.908	2.995	0.101
Error METHOD2	0	.728 .447 .810	9 2		0.223 0.312	0.715	0.515
Error	2	.810	3				

## Multivariate Test Statistics

Statistic	 Value	F-ratio	df		p value
Wilks's Lambda Pillar Trace Hotelling-Lawley Tra	0.070 0.972 12.712	11.130 4.25z 22.246	4,	18	0.000 0.013 0.000

THETA	S	M	N	p-value
	+			0 000
0.927	2	-0.500 3	.000	0.000

From the above table we get the four multivariate test statistics corresponding to the null hypothesis. In this example Wilks's  $\Lambda$  is 0.070 and its F approximation is 11.130. The corresponding *p-value* (less than 0.05) implies that there is sufficient evidence against the null hypothesis. All the remaining four tests reveal the same result. The exact test procedure and table value for Roy's greatest root are also displayed.

# Example 2 Two-Way MANOVA

The data in the file MANOVA contains results of a hypothetical experiment on mice assigned randomly to one of three drugs. The weight loss in grams was observed for the first and second weeks of the experiment. The data were analyzed in Morrison (2004) with a two-way multivariate analysis of variance (a two-way MANOVA).

#### The input is:

```
USE MANOVA
MANOVA
CATEGORY SEX, DRUG / EFFECT
MODEL WEEK(1 .. 2) = CONSTANT + SEX + DRUG + SEX*DRUG
PLENGTH SHORT
ESTIMATE
```

#### The output is:

#### Dependent Variable Means

WEEK	(1	)	WEEK	(2)
		~ - ~ .	_	~ -
9.	15	0	8.	667

#### Estimates of Effects $B = (X'X)^{-1}X'Y$

Factor	1	Level	WEEK (1)	WEEK (2)
~ ~ ~	+			-
CONSTANT	1		9.750	8.667
SEX	ł	1	0.167	0.167
DRUG	1	1	-2.750	-1.417
DRUG	1	2	-2.250	-0.167
SEX*DRUG	1	1*1	-0.667	-1.167
SEX*DRUG	1	1*2	-0.417	-0.417

#### Information Criteria

AIC	1 217.701	
AIC (Corrected)	277.701	
Schwarz's BIC	: 235.372	

Notice that each column of the B matrix is now assigned to a separate dependent variable. It is as if we had done two runs of an ANOVA. The numbers in the matrix are the analysis of variance effects estimates.

## Test of Hypotheses

You can test the following three hypotheses. The extended output for the second hypothesis is used to illustrate the detailed output.

### The input is:

HYPOTHESIS EFFECT SEX PLENGTH LONG TEST

HYPOTHESIS EFFECT DRUG PLENGTH SHORT TEST

HYPOTHESIS EFFECT SEX*DRUG TEST

## The output is:

Test for effect called: SEX

## Null Hypothesis Contrast AB

WEEK(1) WEEK(2)
0.167 0.167

Inverse Contrast A(X'X) -1A'

0.042

# Hypothesis Sum of Product Matrix $H = B'A'(A(X'X)^{-1}A')^{-1}AB$

	WEEK(1)	WEEK(2)
	+	
WEEK(1) WEEK(2)	0.667	0.667

#### Error Sum of Product Matrix G = E'E

: WEEK(1) MEEK(2)
WEEK(1) 94.500
WEEK(2): 76.500 114.000

#### Univariate F Tests

Source	! Type	III SS	d£	Mean	Squares	F-ratio	p-value
	+						
WEEK (1)		0.667	1		0.667	0.127	0.726
Error	1	94.500	18		5.250		
WEEK (2)	1	0.667	1		0.667	0.105	0.749
Error	4	114.000	18		6.333		

#### Multivariate Test Statistics

Statistic	1	Value	F-ratio	df		p-value
	+-					
Wilks's Lambda		0.993	0.064	2,		0.938
Pillai Trace	9	0.007	0.064	2,	17	0.938
Hotelling-Lawley Trace	B :	0.008	0.064	2,	17	0.938

#### Test of Residual Roots

Roots : Chi-square df
1 through 1 : 0.157 2

#### Canonical Correlations

0.086

Dependent Variable Canonical Coefficients Standardized by Conditional (within Groups) Standard Deviations

WEEK(1) | 0.698 WEEK(2) | 0.368

Canonical Loadings (Correlations between Conditional Dependent Variables and Dependent Canonical Factors)

WEEK(1) : 0.969 WEEK(2) : 0.882

#### Test for effect called: DRUG

#### Univariate F Tests

Source	1	Type	III	SS	df	Mean	Squares	F-ratio	p-value
	-+-								
WEEK (1)	1	3	301.0	000	2		150.500	28.667	0.000
Error	3 8		94.5	500	18		5.250		
WEEK (2)	1		36.3	333	2		18.167	2.868	0.083
Error	1	1	14.0	000	18		6.333		

#### Multivariate Test Statistics

Statistic	ŀ	Value	F-ratio	df	p-value
	- 4 -				
Wilks's Lambda	1	0.169	12.199	4,	34 0.000
Pillai Trace	- {	0.880	7.077	4,	36 0.000
Hotelling-Lawley Trace	ŀ	4.640	18.558	4,	32 0.000

	THETA	S	M	N	p-value
_					
	0.821	2 -	0.500 7.	500	),000

Test for effect called: SEX*DRUG

Univariate	929	177	on the on

I - Type	III SS	df Me	an Squares	F-r	atio	p-value
,. v	4.00	;	1 + 1		. 46-	< _ M
1111	94.1 J 32.443 1.4. 3	<	1			
Multivariate T	est Stati	istics				
* 11 45* .0		Value	F-rat.c	JÍ.		-74.10
Wilks's Lambda Pillai Trace Hotelling-Lawl			1.152	4, 3 4, 3	6	0.346 0.348 0.347
THETA S	М	и р	-value			
0.221 2 -0	.500 7	.500	0.295			

Matrix formulae (that are sometimes long) make explicit the hypothesis being tested. For MANOVA, hypotheses are tested with sum of squares and cross-products matrices. Before printing the multivariate tests, however, SYSTAT prints the univariate tests. Each of these *F-ratios* is constructed in the same way as in ANOVA model. The sum of squares for the hypothesis and error are taken from the diagonals of the respective sum of squares and product matrices. The univariate F test for the WEEK(1) DRUG effect, for example, is computed from 301.0 / 2 over 94.5 / 18, or hypothesis mean square divided by error mean square.

The next statistics printed are for the multivariate hypothesis. Wilks's lambda (likelihood-ratio criterion) varies between 0 and 1. Schatzoff (1966) has tables for its percentage points. The following F-ratio is Rao's approximate (sometimes exact) F statistic corresponding to the likelihood-ratio criterion (see Rao, 1973). Pillai's trace and its F approximation are taken from Pillai (1960). The Hotelling-Lawley trace and its F approximation are documented in Morrison (2004). The last statistic is the largest root criterion for Roy's union-intersection test (see Morrison, 2004). Charts of the percentage points of this statistic, found in Morrison and other multivariate texts, are taken from Heck (1960).

The probability value printed for THETA is not an approximation. It is what you find in the charts. In the first hypothesis, all the multivariate statistics have the same value for the F approximation because the approximation is exact when there are only two groups (see Hotelling's T² in Morrison, 2004). In these cases, THETA is not printed because it has the same probability value as the F-ratio.

### Bartlett's Residual Root (Eigenvalue) Test

The chi-square statistics follow Bartlett (1947). The probability value for the first chi-square statistic should correspond to that for the approximate multivariate *F-ratio* in large samples. In small samples, they might be discrepant, in which case you should generally trust the *F-ratio* more. The subsequent chi-square statistics are recomputed, leaving out the first and later roots until the last root is tested. These are sequential tests and should be treated with caution, but they can be used to decide how many dimensions (roots and canonical correlations) are significant. The number of significant roots corresponds to the number of significant *p-values* in this ordered list.

## Canonical Coefficients

Dimensions with insignificant chi-square statistics in the prior tests should be ignored in general. Corresponding to each canonical correlation is a canonical variate, whose coefficients have been standardized by the within-groups standard deviations (the default). Standardization by the sample standard deviation is generally used for canonical correlation analysis or multivariate regression when groups are not present to introduce covariation among variates. You can standardize these variates by the total (sample) standard deviations with:

STANDARDIZE TOTAL

inserted prior to TEST. Continue with the other test specifications described earlier. Finally, the canonical loadings are printed. These are correlations and, thus, provide information different from the canonical coefficients. In particular, you can identify suppressor variables in the multivariate system by looking for differences in sign between the coefficients and the loadings (which is the case with these data). See Bock (1975) and Wilkinson (1975, 1977) for an interpretation of these variates.

Since the equality of means for the effect called *DRUG* is rejected, our next concern will be to find the pair of drugs which differ more significantly. You can perform all pairs comparisons by choosing from the menu:

Analyze
MANOVA
Between-Group Testing...

In the dialog box under Specified effect select EFFECT = DRUG and check 'Perform all pairs ('omparison'). Specify the Error term as Model SSCP matrix.

## The input is:

HYPOTHESIS POST DRUG TEST

## The output is:

#### All-pairs Comparison

SEX(i)	SEX(j)	Hotelling's T-square	p-value
1.000	2.000	0.135	0.938

## Example 3 Multivariate Nested Design

We consider an example of a nested design (Timm, 2002) in which teachers are nested within classes. The design for this analysis would be a fixed effects nested design with more than one response variable.

## The input is:

USE TEACHER MANOVA CATEGORY CLASSES\$ TEACHERS\$ / EFFECT MODEL READRATE READCOMPRE = CONSTANT + CLASSES\$ +, TEACHERS\$ (CLASSES\$) ESTIMATE

## The output is:

Test for effect called: CLASSES\$

Null Hypothesis Contrast AB

READRATE READCOMPRE -2.383

Inverse Contrast A(X'X) -1A'

Hypothesis Sum of Product Matrix  $H = B'A'(\lambda(X'X)^{-1}A')^{-1}AB$ 

	1	READRATE	READCOMPRE
READRATE READCOMPRE		7.260 31.460	13+.327

#### Error Sum of Product Matrix G = E'E

	PEADRATE	READCOMPRE
READRATE	42.800	
READCOMPRE	20.800	42.000

#### Univariate F Tests

Source	1	Type	III	SS	df	Mean	Squares	F-ratio	p-value
READRATE Error	1		7.2		1 20		7.260 2.140	3.393	0.080
READCOMPRE Error	1		42.0		20		136.327	64.917	0.000

#### Multivariate Test Statistics

Statistic				df	P
Wilks's Lambda	ì	0.220	33.623	2,	
Pillai Trace		0.780	33.623	2,	19 0.000
Hotelling-Lawley Tr	ace	3.539	33.623	2,	19 0.000

#### Test for effect called: TEACHERS\$ (CLASSES\$)

#### Null Hypothesis Contrast AB

	1	READRATE	READCOMPRE
	+-		
1	1	-0.500	-0.500
2	1	0.200	0.133
3	ŀ	2.600	3.733

#### Inverse Contrast A(X'X) -1A'

	ŀ		1		2		- 4	3
	+					~ 20 10		_
1	1	0.	100					
2	1	0.	000	0	.133			
5		0.	000	-0	.067	0.	133	3

#### Hypothesis Sum of Product Matrix $H = B^{\dagger}A^{\dagger} (A(X^{\dagger}X)^{-1}A^{\dagger})^{-1}AB$

	ì	REA	ADI	RATE	RE	A	DCOL	MPR	ŧΕ
	1 -		-	** ***	 	-			_
READRATE	1	7	75	.700					
READCOMPRE	1	- 10	)5	.300			147	. 03	3

#### Error Sum of Product Matrix G = E'E

		READRATE	READCOMPRE
	- 4		
READRATE		42.800	
READCOMPRE	h	20.800	42.000

#### Univariate F Tests

Source	Type III SS	df	Mean	Squares	F-ratio	p-value
READRATE					11. 4.	
Error	4			1		
READCOMPRE	14			1 . 1	1 - 4 < 1	
Erroi	4					

Statistic	Value	F-ratio	df	p-value
Wilks's Lambda Pillai Trace Hotelling-Lawley Trace	0.210 0.796 3.730	7.487 4.412 11.191	6, 38 6, 40 6, 36	0.000 0.002 0.000
THETA S M	N p-va	lue		
0.788 2 0.000 8.	500 0.	000		

The MANOVA statement performs tests for the effect of classes and for the nested effects of teachers within classes. The above table summarizes the MANOVA output. The overall hypothesis is rejected here. It is due to differences in teachers in contract and not non-contract classes.

# Example 4 Repeated Measures Analysis in the Presence of Subject-Specific Covariates

When the data set contains covariates it is important to design the analysis to incorporate the covariate effects. If the values of the covariates are the same for all the time points for a given subject then they are called subject-specific covariates. This example deals with subject-specific covariates. Three groups of diabetic patients were asked to perform a small physical task at time zero. The groups were without complications (*DINOCOM*), with hypertension (*DIHYPER*), with postural hypotension (*DIHYPOT*) respectively and a control (*CONTROL*) group. The response variable was observed at times -30, -1, 1, 2, 3, 4, 5, 6, 8, 10, 12, and 15 minutes. The corresponding variables are X1, X2 and Y1 through Y10 respectively. The preperformance responses are considered as covariates. Here we use Y1, Y2, Y3 and Y4 as dependent variables.

#### The input is:

USE PHYSICAL

MANOVA

CATEGORY GROUP

MODEL Y1 Y2 Y3 Y4 = CONSTANT+GROUP+X1+X2+

X1*GROUP+X2*GROUP/REPEAT =4(1 2 3 4),

NAMES='Time'

PLENGTH SHORT ESTIMATE

## The output is:

Multivariate Repeate	ed Measures A	Analysis				
Test of: Time						
Statistic				article and and article article article article article article article		
Wilks's Lambda Pillai Trace Hotelling-Lawley	0.920 0.074 Frace 0.080	6 4 0	3 3 3	11 11 11	0.293 0.293 0.293	0.830 0.830 0.830
Test of: Time*GRO	UP					
Statistic	; Value		s df	Error df	F-ratio	p-value
Wilks's Lambda Pillai Trace Hotelling-Lawley	0.676	5 3 1	9	26 39 29	0.523 0.587 0.463	0.845 0.800 0.887
THETA S	M N I	-value				
0.210 3 -0.50	0 4.500	0.698				
Test of: Time*Xl						
Statistic	Value	Hypothesi:	s df	Error df	F-ratio	p-value
Wilks's Lambda Pillai Trace Hotelling-Lawley	0.921 0.072 Frace 0.07	3 2 7	3 3 3	11 11 11	0.283 0.283 0.283	0.837 0.837 0.837
Test of: Time*X2						
Statistic	Value	Hypothesi:	s df	Error df	F-ratio	p-value
Wilks's Lambda Pillai Trace Hotelling-Lawley	0.960 0.034 Trace 0.035	6 ' 4 5 `	3 3 3	11 11 11	0.129 0.129 0.129	0.941 0.941 0.941
Test of: Time*GROU						
Statist1c	Value	Hypothesi	s df	Error df	F-ratio	p-value
Statistic Wilks's Lambda Pillai Trace Hotelling-Lawley	0.816   0.193   0.216	6 2 6 5 5	9 9	26 39 29	0.260 0.295 0.231	0.980 0.972 0.987
0.135 3 -0.500						
Test of: Time*GROU		01003				
Statistic	Value	Hypothesi	s df	Error df	F-ratio	p-value
Wilks's Lambda Pillai Trace Hotelling-Lawley	0.640 0.377 Trace 0.535	7				
THETA S	a N i	o-value				

None of the multivariate tests for Time*X1, Time*X2, Time*X1*GROUP, Time*X2*GROUP appears to be significant.

0.624

0.325 3 -0.500 4.500

# Example 5 Within-Group Testing

In a clinical trial experiment (Crowder and Hand, 1990), two drug treatments, both in tablet form, were compared using five volunteer subjects in a pilot trial. There were two phases: in the first phase Drug A was used, and in the second phase Drug B was used. In each phase, the blood samples were taken at times 1, 2, 3, and 6 hours after medication and the resulting antibiotic serum levels were reported. We can perform a repeated measures analysis on this data set. We can fit a general linear model as follows,

## The input is:

```
USE SERUM
MANOVA
CATEGORY DRUG$ / EFFECT
MODEL TIME1 TIME2 TIME3 TIME6 = CONSTANT + DRUG$
ESTIMATE
```

## The output is:

#### Multivariate Test Statistics

Statistic	! Value	F-ratio	df	p-value
Wilks's Lambda	0.797	0.319	4, 5	
Pillai Trace	0.203	0.319	4, 5	
Hotelling-Lawley Trac	e 0.255	0.319	4, 5	

Here Wilks's  $\Lambda = 0.797$  and its corresponding *p-value* = 0.854; this implies that there is no significant evidence to reject the null hypothesis. We can conclude that there is no difference between phases A and B.

Another question of interest is: Within each phase, are the antibiotic serum levels taken at four different times equal? Let us consider phase A.

## The input is:

```
HYPOTHESIS

EFFECT DRUGS

AMATRIX [ 1 1 ]

CMATRIX [ -1 1 0 0;-1 0 1 0;-1 0 0 1 ]

TEST
```

#### The output is:

#### Multivariate Test Statistics

Statistic	1	Value	F-ratio	df	p-value
	i	0.088 0.912 10.366	20.732 20.732 20.732	3, 3,	6 0.001

Wilks's  $\Lambda$ =0.088 and its p-value is 0.001 showing that there is significant evidence to reject the null hypothesis. Hence we may conclude that within phase A the antibiotic serum levels taken at four different times are not the same. Similarly you can perform the above-mentioned test for phase B also.

#### The input is:

```
HYPOTHESIS

EFFECT DRUG$

AMATRIX [ 1 -1 ]

CMATRIX [ -1 1 0 0;-1 0 1 0;-1 0 0 1 ]

TEST
```

Instead of using commands you can use the dialog box for within group testing. If you use this, there is no need to specify the A matrix. The above-mentioned hypothesis for phase A can be done through the dialog box by checking "Equality of means". In such a case you do not have to specify the matrices A and C.

# Example 6 AIC and Schwarz's BIC

The data set in *ROHWER* consists of the performance of 32 kindergartens in three standardized tests: Peabody Picture Vocabulary Test (*PPVT*), Raven Progressive Matrices Test (*RPMT*), and Student Achievement Test (*SAT*). The independent variables are: Named (*N*), Still (*S*), Named Still (*NS*), Named Action (*NA*), and Sentence Still (*SS*).

This data set illustrates how information criteria can be employed as a tool for model selection.

In this example, analysis is performed by fitting all possible sub-models, and the corresponding information criteria are obtained. All possible sub-models are fitted by

executing the commands in the command file MULTIVARIATE REGRESSION.SYC. The command script for fitting a candidate sub-model is as follows:

MANOVA
USE ROHWER
MODEL PPVT RPMT SAT = CONSTANT + NA
ESTIMATE
MODEL PPVT RPMT SAT = CONSTANT + S + NS + NA
ESTIMATE

The following table presents the models with low information criteria values.

Model number	Model terms	AIC	AIC (corrected)	Schwarz's BIC
1		723.955 .718.159	740.376 770.775	720.750 723.7483

Model 1 corresponds to smaller AIC (corrected) and Schwarz's BIC among all possible candidate sub-models. Model 2 is the model corresponding to smaller AIC value among all possible sub-models. The AIC value for the model with *CONSTANT*, *N*, *S*, *NS* and *NA* as independents is close to the AIC value for the Model 1.

From the analysis, it appears that Model 1 is a better approximation of the true model among all possible sub-models.

## References

- Bartlett, M.S. (1947). Multivariate analysis. *Journal of the Royal Statistical Society*, Series B, 9, 176-197.
- Bock, R.D. (1975). Multivariate statistical methods in behavioral research. New York: McGraw-Hill.
- Crowder, M. J. and Hand, D.J. (1990). Analysis of repeated measures. London: Chapman & Hall.
- Heck, D.L. (1960). Charts of some upper percentage points of the distribution of the largest characteristic root. *Annals of Mathematical Statistics*, 31, 625-642.
- Jackson, J.E. (2003). A user's guide to principal components. New York: Wiley-Interscience.
- Johnson, R.A. and Wichern, D.W. (2002). Applied multivariate statistical analysis, 5th ed. Englewood Cliffs, N.J.: Prentice Hall.
- Morrison, D. F. (2004). Multivariate statistical methods, 4th ed. Pacific Grove, CA:

- Duxbury Press.
- Pillai, K. C. S. (1960). Statistical table for tests of multivariate hypotheses. Manila: The Statistical Center, University of Phillipines.
- Rao, C.R. (1973). Linear statistical inference and its applications, 2nd ed. New York: John Wiely & Sons.
- Rencher, A.C. (2002). *Methods of multivariate analysis*, 2nd ed. New York: John Wiley & Sons.
- Schatzoff, M. (1966). Exact distributions of Wilks's likelihood ratio criterion. *Biometrika*, 53, 347-358.
- Timm, N.H. (2002). Applied multivariate analysis. New York: Springer-Verlag.
- Wilkinson, L. (1975). Response variable hypotheses in the multivariate analysis of variance. *Psychological Bulletin*, 82, 408-412.
- Wilkinson, L. (1977). Confirmatory rotation of MANOVA canonical variates. *Multivariate Behavioral Research*, 12, 487-494.

# Nonlinear Models

Laszlo Engelman

Nonlinear modeling estimates parameters for a variety of nonlinear models using a Gauss-Newton (SYSTAT computes exact derivatives), Quasi-Newton, or Simplex algorithm. In addition, you can specify a loss function other than least-squares, so maximum likelihood estimates can be computed. You can set lower and upper limits on individual parameters. When the parameters are highly intercorrelated, and there is concern about overfitting, you can fix the value of one or more parameters, and Nonlinear Model will test the result against the full model. If the estimates have trouble converging, or if they converge to a local minimum, Marquardting is available.

For assessing the certainty of the parameter estimates, Nonlinear Model offers Wald confidence regions and Cook and Weisberg (1990) confidence curves. The latter are useful when it is unreasonable to assume that the estimates follow a normal distribution. You can also save values of the loss function for plotting contours in a bivariate display of the parameter space. This allows you to study the combinations of parameter estimates with approximately the same loss function values.

When your response contains outliers, you may want to downweight their residuals using one of Nonlinear Model's robust  $\psi$  functions: median, Huber, trim, Hampel, t, Bisquare, Ramsay, Andrews, Tukey, or the  $p^{th}$  power of the absolute value of the residuals.

You can specify functions of parameters (like LD50 for a logistic model). SYSTAT evaluates the function at each iteration, and prints the standard error and the Wald interval for the estimate after the last iteration.

Resampling procedures are available in this feature.

# Statistical Background

The following data are from a toxicity study for a drug designed to combat tumors. The table shows the proportion of laboratory rats dying (*Response*) at each dose level (*Dose*) of the drug. Clinical studies usually scale dose in natural logarithm units, which are listed in the center column (*Log Dose*). We arbitrarily set the *Log Dose* to 4 for zero *Dose* to be able to plot and fit a linear model.

Dose	Log Dose	Respons
0.00	-4.000	0.026
0.10	-2.303	0.120
0.25	-1.386	0.088
0.50	-0.693	0.169
1.00	0.000	0.281
2.50	0.916	0.443
5.00	1.609	0.632
10.00	2.303	0.718
25.00	3.219	0.820
50.00	3.912	0.852
100.00	4.605	0.879

# Modeling the Dose-Response Function

The plot of Response against LOGDOS (Log Dose) is clearly curvilinear.



The S-shaped function suggests that we could use a linear model with linear, quadratic, and cubic terms (that is, a polynomial function) to fit a curved line to the data. Here are the results:



Notice that all the coefficients are highly significant and the overall fit is excellent ( $R^2=0.986$ ). Even the tolerances are relatively large, so we need not worry about collinearity. The residual plots for this function are reasonably well behaved. There is no significant autocorrelation in the residuals.

The following figure shows the observed data and the fitted curve.



How do the researchers interpret this plot? First of all, the curve is consistent with the printed output; it fits extremely well in the range of the data. Putting the fitted curve into ordinary language, we can say that fewer animals die at lower dosages and more at higher. At the extremes, however, more animals die with extremely low dosages and fewer animals die at extremely high dosages.

This is nonsense. While it is possible to imagine some drugs (arsenic, for example) for which dose-response functions are nonmonotonic, the model we fit makes no sense for a clinical drug of this sort. Second, the cubic function we fit extrapolates beyond the 0–1 response interval. It implies that there is something beyond dying and something less than living. Third, the parameters of the model we fit have no theoretical interpretation.

Clinical researchers usually prefer to fit quantal response data like these with a bounded monotonic response function of the following form:

proportion dying = 
$$\alpha + \frac{1-\alpha}{1+e^{[\beta-\gamma \log(\text{dose})]}}$$

where  $\alpha$  is the background response, or rate of dying,  $\beta$  is a location parameter for the curve, and  $\gamma$  is a slope parameter for the curve.

Estimating a quantity called LD50 is the usual purpose of this type of study. LD50 is the dose at which 50 percent of the animals are expected to die. LD50 is:

$$e^{\beta r \gamma} (1 - 2\alpha)^{1/\gamma}$$

Notice how the parameters of this model make theoretical sense. We have a problem, however. We cannot fit an intrinsically nonlinear model like this with a linear regression program. We cannot even transform this equation, using logs or other mathematical operators, to a linear form. The cubic linear model we fit before was nonlinear in the data but linear in the parameters. Linear models involve additive combinations of parameters. The model we want to fit now is nonlinear in the data and nonlinear in the parameters.

We need a program that fits this type of model iteratively. NONLIN begins with initial estimates of parameter values and modifies them in small steps until the fit of the curve to the data is as close as possible.

Here is the result:



Notice how the curve tapers at the ends so that it is bounded by 0 and 1 on the *Response* scale. This behavior fits our theoretical ideas about the effect of this drug. The value for LD50 is 3.262, which is in raw dose units.

Interestingly, this model does not fit significantly better than the cubic polynomial. Both have comparable sum of squared residuals. True, the cubic model has four parameters and we have used only three. Nevertheless, this example should convince you that blind searching for models that produce good fits is not good science. It is even possible that a model with a poorer fit can be the true model generating data and one with a better fit can be bogus.

## Loss Functions

Nonlinear estimation includes a broad variety of statistical procedures. We have performed nonlinear least-squares, which is analogous to ordinary least-squares. Both methods minimize squared deviations of the dependent variable data values from values estimated by the function at the same independent variable data points. In these cases, loss is the sum of least-squares.

Other types of loss functions can be defined which produce different estimates of parameters in the same functions. The most widely used loss is negative log likelihood. This loss is used for maximum likelihood estimation. Other loss functions are used for robust estimators and nonparametric procedures.

#### Maximum Likelihood

A maximum likelihood estimate of a parameter is a value of that parameter in a given distribution that has the highest probability of generating the observed sample data. Sometimes maximum likelihood and least-squares estimators coincide (as in fixed effects, fully crossed, balanced factorial ANOVA), and at other times they diverge. In our quantal response data example, the maximum likelihood estimates are different. They can be computed in NONLIN by using the loss function.

In general, maximum likelihood estimates are found by maximizing the likelihood function L with respect to the parameter vector  $\theta$ :

$$L=\prod_{i=1}^n d(x_i,\theta)$$

where  $d(x, \theta)$  is the density of the response at each value of x. Equivalently, the negative of the log of the likelihood function can be minimized:

$$-\log L = -\sum_{i=1}^{m} \ln(d(x_i, \theta))$$

Here we outline four methods for computing maximum likelihood estimates in NONLIN. To define them, we use a specific model and a specific density. The model is the sum of two exponentials:

$$\hat{y} = p_1 e^{p_2 x} + p_3 e^{p_4 x}$$

and the distribution of y at each x is Poisson:

$$d(x_i,\lambda) = \frac{e^{-\lambda}\lambda^{\nu}}{\nu!}$$

In our definitions, we also use the log of the density:

$$\ln d = -\lambda + y \ln \lambda - LGM(y+1)$$

where LGM is the log gamma function for computing y!.

Method 1. Set the LOSS function to -ln(density). In NONLIN, you can specify your own loss function. Here we specify the negative of the log of the density function:

$$LOSS = \lambda - y \ln \lambda + LGM(y+1)$$

For the estimate of lambda, we use  $\hat{y}$ , or **estimate**, as it is known to Nonlinear Model. Using commands, we type:

Note that for this method, you need to specify only the loss function. This method can be used for any distribution; however, the estimated standard errors may not be correct.

Method 2. Iteratively reweighted least-squares. This method is appropriate for distributions belonging to the exponential family (for example, normal, binomial, multinomial, Poisson, and gamma). It provides meaningful standard errors for the parameter estimates and useful residuals. For this method, you define a case weight that is recomputed at each iteration:

weight = 
$$\frac{1}{\text{variance}(y_i)}$$

For our Poisson distribution, the mean and variance are equal, so lambda is the variance, and our estimate of the variance is *estimate*. Thus, the weight is:

weight 
$$=\frac{1}{\text{estimate}}$$

Here's how to specify this method using NONLIN commands:

The standard deviation of the resulting estimates are the usual information theory standard errors.

Method 3. Estimate In(density) and reset the predicted value to y + 1. For this method, the data may follow any distribution and the standard errors are correct, but the method does not yield correct residuals. You define a dummy outcome variable and estimate the log of the density, and then reset the outcome variable to  $\hat{y} + 1$  at each iteration. For our example, use the commands:

```
LET dummy = 0

MODEL dummy = -p1*EXP(p2*x) - p3*EXP(p4*x),

+ y*LOG(p1*EXP(p2*x) + p3*EXP(p4*x)),

-LGM(y + 1)

RESET dummy = estimate + 1

ESTIMATE / SCALE
```

Method 4. Set the predicted value to zero and define the function as the square root of the negative log density. This method is a variation of method 1, so it is appropriate for data from any distribution and provides estimates of the parameters only. Here we trick NONLIN by setting y=0 for all cases:

$$f = \sqrt{-\ln d(x, \theta)}$$
, so  $\Sigma (y - f)^2$  becomes 
$$\Sigma (0 - \sqrt{-\ln d(x, \theta)})^2 = \Sigma - \ln d(x, \theta)$$

For our example, use the commands:

```
LET dummy = 0

MODEL dummy = SQR(p1*EXP(p2*x) + p3*EXP(p4*x)),

- y*LOG(p1*EXP(p2*x) + p3*EXP(p4*x)),

+ LGM(y + 1)

ESTIMATE
```

## Least Absolute Deviations

As an example of other types of loss functions, consider minimizing least absolute values of deviations of the dependent variable data values from values estimated by the function at the same independent variable data points. This procedure produces estimates which, on the average, are influenced less by outliers than the least-squares estimates. This is because squaring a large value increases its impact. While there are more sophisticated robust procedures, least absolute values estimates are easy to compute in NONLIN and fun to compare with least-squares estimates.

#### Model Estimation

SYSTAT provides three algorithms for estimating your model: Gauss-Newton, Quasi-Newton, and Simplex. The Gauss-Newton method with its exact derivatives produces more accurate estimates of the asymptotic standard errors and covariances and can converge in fewer iterations and more quickly than the other two algorithms.

Both GN and the Quasi-Newton method do not work if the derivatives are undefined in the region in which you are seeking minimum values. Specifically, the first and second derivatives must exist at all points for which the algorithm computes values. However, the algorithms cannot identify situations where the derivatives do not exist. Also, Quasi-Newton cannot detect when derivatives fluctuate rapidly—thus, Gauss-Newton can be more accurate.

The Simplex algorithm does not have this requirement. It calculates a value for your loss function at some point, looks to see if this value is less than values elsewhere, and steps to a new point to try again. When the steps become small, iterations stop.

GN is the fastest method. Simplex is generally slower than the others, particularly for least-squares, because Simplex cannot make use of the information in the derivatives to find how far to move its estimates at each step.

## How Nonlinear Modeling Works

The estimation works as follows: the starting values of the parameters are selected by the program or by you. The model (if stated) is then evaluated for the first case in double precision. The result of this function is called the estimate. Next, the loss function is evaluated for the first case, using the estimate from the model. If you did not include a loss function, then loss is computed by squaring the residual for the first case.

This procedure is repeated for all cases in the file and the loss is summed over cases. The summed loss is then minimized using the Gauss-Newton, Quasi-Newton, or Simplex algorithms. Iterations continue until both convergence criteria are met or the maximum number of iterations is reached.

### **Problems**

You may encounter numerous pitfalls (for example, dependencies, discontinuities, local minima, and so on). Nonlinear Model offers several possibilities to overcome these pitfalls, but, in some instances, even your best efforts may be futile.

- Find reasonable starting values by considering approximately what the values should be. Try plotting the data. For example in the contouring example, you could let DAYS  $\rightarrow \infty$  and estimate  $\theta_1$  to be approximately 20.
- Try Marquardting.
- Use several different starting values for each method before you feel comfortable with the final estimates. This can help you expose local minima. The Simplex method is the most robust against local minima. There is a trade-off, however, because it is considerably slower.
- Try switching back and forth between Gauss-Newton, Quasi-Newton, and Simplex without changing the starting values. That way, one may help you out of a convergence or local minimum problem.
- If you get illegal function values for starting values, try some other estimates. For some functions with many parameters, you may need high quality starting values to even get an estimable function!
- Never trust the output of an iterative nonlinear estimation procedure until you have plotted estimates against predictors and you have tried several different starting values. SYSTAT is designed so that you can quickly save estimates, residuals, and model variables and plot them. All of the examples in this chapter were tested this way. Although most began with default starting values for the parameters, they were checked with other starting values.

## Nonlinear Models in SYSTAT

## Nonlinear Regression: Estimate Model

To open the Nonlinear Regression: Estimate Model dialog box, from the menus choose:

Analyze
Regression
Nonlinear
Estimate Model...



**Model specification.** Specify a general algebraic model to be estimated. Terms that are not variables are assumed to be parameters. If you want to use a function in the model, choose a Function type from the drop-down list, select the function in the functions list, and click Add.

Nonlinear modeling uses models resembling those for General Linear Models (GLM). There is one critical difference, however. The Nonlinear Model statement is a literal algebraic expression of variables and parameters. Choose any name you want for these parameters. Any names you specify that are not variable names in your file are assumed to be parameter names. Suppose you specify the following model for the USSTATES data:

liver = b0 + b1 * wine

Select LIVER as Dependent and specify b0 + b1*WINE as Model expression. Since b0 and b1 are not variables (they are parameters), the following model is the same:

Parameter names can be any names that meet the requirements for SYSTAT's numeric variable names. However, unlike variable names, parameter names may not have subscripts.

Any legal SYSTAT expression can be used in a **Model expression**, including trigonometric and other functions, plus the special variables *CASE* and *COMPLETE*. The only restriction is that the **Dependent** variable must be a variable in your file. Here is a more complicated example:

cardio = 
$$(division < 5) * mu1 + (division \ge 5) * mu2$$

This model has two parameters (mu1 and mu2). Their values are conditional on the value of division. Notice that the remaining parts of this expression involve relational operations (division  $\geq 5$ ). SYSTAT evaluates these to 1 (true) or 0 (false).

You can perform piecewise regression by fitting different curves to different subsets of your data:

$$y = (x \le 0) * 10 + (x > 0 \text{ AND } x < 1) * BETA * x + (x \ge 1) * 20$$

In this model, y is 10 if x is less than or equal to 0, y is BETA*x if x is greater than 0 and less than 1, and y is 20 if x is greater than or equal to 1. These types of constraints are useful for specifying bounded probability functions such as the cumulative uniform distribution;

Weight. Selects the variable as a weight variable, which is to be used for estimating parameters by Iteratively Reweighted Least-Squares.

Estimation. You can specify a loss function other than least-squares. From the drop-down list, select Loss function to perform loss analysis. When your response contains outliers, you may want to downweight their residuals using a robust  $\psi$  function by selecting Robust.

Method. Three model estimation methods are available.

■ Gauss-Newton. Computes exact derivatives.

- Quasi-Newton. Uses numeric estimates of the first and second derivatives.
- Simplex. Uses a direct search procedure.

Save. You can save six sets of statistics to a file.

- Residuals. The estimated values, residuals, and variables in the model.
- Residuals/Data. All of the above.
- Response surface. Five levels of contours of the loss function surrounding the converged minimum (like a response surface for the loss function in a 2-D parameter space).
- Confidence interval. Cook-Weisberg graphical confidence curves. These are useful when it is unreasonable to assume that the estimates follow a normal distribution.
- **Confidence region.** A closed curve that defines the n% confidence region for a pair of parameters surrounding the converged minimum. Type a number, n, between 0 and 0.99 in the Confidence region field to specify the size of the confidence region.
- Parameters. Parameter estimates.

**Parameters.** For Response surface and Confidence region, you must specify names of two parameters. For Confidence interval, you must specify the names of the parameters. Use a comma between each parameter name.

## **Options**

Click the Options tab in the Nonlinear Regression: Estimate Model dialog box to invoke the estimation options.

ৰ্থ Regression:Nonline	ar:Estimate Model	<b>78</b>
Model Options Recom	oute Functions of Parameters	Resampling
Starting values:		
Mînimum		
Maximum.		
Iterations	25	
Step-halvings:	8	1.0
Tolerance.	0 0001	
Loss convergence.	1e-006	
Parameter convergence	1e-005	
Fix:		
Use Marquardi	0 01	
Mean square error sca	e	
		OK Cancel

SYSTAT offers several options for controlling model computation.

**Starting values.** Starting values for model parameters. Specify values for each parameter in the order the parameters appear in your model (or loss statement if no model is specified). Separate the values with commas or blanks. You can specify starting values for some of the parameters and leave blanks for others.

SYSTAT chooses starting values if you do not. Specify starting values that give the general shape of the function you expect as a result. For example, if you expect that the function is a negative exponential function, then specify initial values that yield a negative exponential function. Also, make sure that the starting values are in a reasonable range. For example, if the function contains EXP(P*TIME) and TIME ranges from 10,000 to 20,000, then the initial value of P should be around 1/10,000. If you

specified an initial value such as 0.1, the function would have extremely large values, such as  $e^{1000}$ .

Minimum. Lower limits for the parameters, one number per parameter.

Maximum. Upper limits for the parameters, one number per parameter.

Iterations. Maximum number of iterations for fitting your model. Default value is 25.

Step-halvings. Maximum number of step halvings. If the loss increases between two iterations, Nonlinear Model halves the increment size, computes the loss at the midpoint, and compares it to the residual sum of squares at the previous iteration. This process continues until the residual sum of squares is less than that at the previous iteration or until the maximum number of halvings is reached.

Tolerance. A check for near singularity. SYSTAT cannot invert the matrix of sums of cross-products of the derivatives with respect to the parameters if the matrix is singular. Use Tolerance to guard against this singularity problem. A parameter estimate is not changed at an iteration if more than 1 – TOL proportion of the sum of squares of partial derivatives with respect to that parameter can be expressed with partial derivatives of other parameters.

Loss convergence. When the relative improvement in the loss function for an iteration is less than the specified value, SYSTAT declares that a solution has been found. Note that, for convergence, both loss convergence and parameter convergence must be satisfied.

**Parameter.** When the largest relative improvement of parameters for an iteration is less than the specified value, SYSTAT considers that the estimates of the parameters have converged. Each parameter estimate must satisfy this criterion.

Fix. Specify names of parameters to be held fixed at a constant value. SYSTAT estimates the remaining parameters and tests whether the result differs from that for the full model. An example is p3 = 1.0.

Use Marquardt. The Marquardt method of inflating the diagonal of the (Jacobian'Jacobian) matrix by n. This speeds convergence when initial values are far from the estimates and when the estimates of the parameters are highly intercorrelated. This method is similar to "ridging," except that the inflation factor n is omitted from final iterations.

Mean square error scale. Rescales the mean square error to 1 at the end of the iterations.

## Recompute

The dependent variable or the weight variable can be recomputed after each iteration, using the current values of the parameters.

You can invoke the recompute option by clicking the Recompute tab in the Nonlinear Regression: Estimate Model dialog box.



Select an appropriate variable as Dependent/Weight variable from the list of Available variable(s) by clicking the Add button. If you want to use a function in your expression, choose a Function type from the drop-down list, select the function in the functions list, and click Add.

## Functions of Parameters

To specify the function of the parameter click Functions of Parameters tab.



SYSTAT allows you to estimate functions of parameters. Assign a name to each function in the Parameter field and specify the expression in the Expression field. SYSTAT estimates each function and reports related statistics.

If you want to use a built-in function in the expression, choose a Function type from the drop-down list, select the function in the functions list, and click Add.

#### Robust

When your dependent variable contains outliers, a robust regression procedure can downweight their influence on the parameter estimates. Thus, the resulting estimates reflect the great bulk of the data and are not sensitive to the value of a few unusual cases.

To specify a robust analysis, select Robust under Estimation in the Nonlinear Regression: Estimate Model dialog box.



The available methods include:

- Absolute. The sum of absolute values of residuals.
- Power. The sum of the *n*th power of absolute values of residuals.

- Huber. The sum of MAD standardized residuals weighted by Huber.
- **Trim.** Trims the n proportions of the residuals (those with the largest absolute values) and minimizes the sum of squares of the remaining residuals.
- Hampel. The sum of MAD standardized residuals weighted by Hampel.
- **1.** A t distribution with df (degrees of freedom).
- Bisquare. The sum of MAD standardized residuals weighted by Bisquare.
- Ramsay. The sum of MAD standardized residuals weighted by Ramsay.
- Andrews. The sum of MAD standardized residuals weighted by Andrews.
- Tukey. The sum of MAD standardized residuals weighted by Tukey.

The parameters for Huber, Hampel, t, Bisquare, Ramsay, Andrews, and Tukey are defined in MAD units (median absolute deviations from the median of the residuals).

Each procedure has a  $\psi$  function that is used to construct a weight for each residual (that is recomputed at each iteration). Here is the weighting scheme for the Hampel procedure (the heavy line is the Hampel  $\psi$  function):



for | residual | < a a < | residual | < b b < | residual | < c c < | residual | the weight ((residual)/residual) is 1.0 the weight is m/n the weight is p/q the weight is 0.0

Nonlinear Model's default values for a, b, and c are 1.7, 3.4, and 8.5, respectively. So, if the size of the residual is less than 1.7, the weight is one; if it is over 8.5, the weight is zero. As the residual increases in absolute value, the weight decreases.

## Loss Function for Nonlinear Model Estimation

As an alternative to least-squares and robust regression, you can specify a custom loss function to apply in model estimation. The default (least-squares) loss function is (depvar - estimate)². The word "estimate" in the function is the fitted value from your model. It is a special Nonlinear Model word, so you should not name a variable *ESTIMATE*. The model defines the parameters (so new parameters cannot be introduced in the loss function).

To specify a loss function for a model, select Loss function under the Estimation in the Nonlinear Regression: Estimate Model dialog box.



**Expression.** Specify the desired loss function. If you want to use a function in the expression, choose a Function type from the drop-down list, select the function in the functions list, and click Add.

## Loss Functions for Analytic Function Minimization

You can also use nonlinear estimation to minimize an algebraic function. Such a function requires no model specification. As a result, the loss function defines the parameters and SYSTAT computes no *estimates* for a dependent variable.

To open the Nonlinear Regression: Loss dialog box, from the menus choose:

Analyze Regression Nonlinear Loss...



**Expression.** Enter the desired loss function. If you want to use a function in the expression, choose a Function type from the drop-down list, select the function in the functions list, and click Add.

If estimation problems arise, use an alternative estimation method. The Simplex method generally does better with algebraic expressions that incur roundoff error.

## Using Commands

First, specify your data with USE filename. Continue with:

```
NONLIN
     MODEL var = function
     LOSS function
     RESET depvar = expression or weightvar = expression
     ROBUST argument / ABSOLUTE or POWER-n or TRIM-n or
                       HUBER=n , or HAMPEL=n1, n2, n3 or T=df
                       or BISQUARE=n or ANDREWS = n or RAMSAY =
                       n or TUKEY = n
     FUNPAR namel=function1, name2=function2, ...
     SAVE filename / DATA RESID PARAMS RS=p1,p2 CI=p1,p2
                    CR=p1,p2 CONFI=n
     ESTIMATE / GN or QUASI or SIMPLEX
                MARQUARDT=n START=n1, n2, ... MIN=n1, n2, ...
                MAX=n1,n2,..., ITER=n HALF=n TOL=n LCONV=n
                CONV=n SCALE RESTART SAMPLE= BOOT (m, n)
               SIMPLE (m, n) JACK
     FIX p1=n1, p2=n2, ...
     ESTIMATE
```

## Usage Considerations

Types of data. NONLIN uses rectangular data only.

**Print options.** If you specify the PLENGTH LONG output, casewise predictions and the asymptotic correlation matrix of parameters are printed in addition to the default output.

Quick Graphs. NONLIN produces a scatterplot of the dependent variable against the variables in the model expression. The fitted function appears as either a line or a surface. If the model expression contains three or more variables, only the first two appear in the plot.

Saving files. In nonlinear modeling, you can save residuals, estimated values, and variables from your model statement, parameter values, loss function values surrounding the converged minimum, or data for plotting the Cook-Weisberg confidence intervals or two-parameter confidence region.

BY groups. NONLIN produces separate results for each level of any BY variable.

Case frequencies. NONLIN uses a FREQUENCY variable, if present, to duplicate cases.

Case weights. You can weight cases in NONLIN by specifying a WEIGHT variable.

## Examples

## Example 1 Nonlinear Model with Three Parameters

For this first example, we do not specify any options specific to NONLIN; we simply specify the model using the operators and functions available for SYSTAT's transformations. Here, we use the default Gauss-Newton algorithm that computes exact derivatives.

The Pattison data are from a 1987 JASA article by G. P. Y. Clarke (Clarke took the data from an unpublished thesis by N. B. Pattinson). For 13 grass samples collected in a pasture, Pattison recorded the number of weeks since grazing began in the pasture (TIME) and the weight of grass (GRASS) cut from 10 randomly sited quadrants. He then fit the Mitcherlitz equation. Here is the model with the Quick Graph from its fit:



## The input is:

```
USE PATTISON
NONLIN
PLENGTH LONG
MODEL GRASS = p1 + p2*EXP(-p3*TIME)
ESTIMATE
```

## The output is:

#### Iteration History

No.	1	Loss	P1	P2	P3
0 1 2 3 4 5 6 7	) ; ;	22.082 12.061 11.247 5.301 2.817 0.128 0.054 0.053	1.010 1.170 1.722 2.727 0.971 1.209 0.967 0.963	1.020 0.183 -0.053 -0.315 2.510 2.235 2.515 2.519 2.519	1.030 -0.153 -0.212 0.112 0.186 0.109 0.102 0.103
9		0.053	0.963	2.519	0.103

Dependent Variable

:GRASS

#### Sum of Squares and Mean Squares

Source	SS	df	Mean	Squares
	4			
Regression	70.871	3		23.624
Residual	0.053	10		0.005
Total	70.925	13		
Mean corrected	3,309	12		

#### R-squares

Raw R-square (1-Residual/Total) : 0.999
Mean Corrected R-square (1-Residual/Corrected) : 0.984
R-square(Observed vs Predicted) : 0.984

#### Parameter Estimates

Parameter   E	stimate	ASE	Paramet	er/ASE	Wald	95% Confidence Lower	Interval Upper
P1	2.519 0	.322 .266	r	2.995 9.478 4.041		0.247 1.927 0.046	1.680 3.111 0.160

#### Residuals

1 3.059 3.013 0.046 2 3.059 2.812 0.059 4 2.622 2.631 -0.009 5 2.541 2.468 0.073 6 2.184 2.320 -0.136 7 2.110 2.188 -0.078 8 2.075 2.068 0.007 9 2.018 1.959 0.059 10 1.903 1.862 0.041 11 1.770 1.774 -0.004 11 1.762 1.695 0.067	Case :	GRASS	Observed	GRASS	Predicted	Residual
	3 4 5 6 7 8 9		3.059 2.871 2.622 2.541 2.184 2.110 2.075 2.018 1.903 1.770		3.013 2.812 2.631 2.468 2.320 2.188 2.068 1.959 1.862 1.774	-0.052 0.046 0.059 -0.009 0.073 -0.136 -0.078 0.007 0.059 0.041 -0.004 0.067

## Asymptotic Correlation Matrix of Parameters

-	:	p1	p2	p3
p2	1	1.000 -0.972 0.984	1.000	1.000

The estimates of parameters converged in nine iterations. At each iteration, Nonlinear Model prints the number of the iteration, the loss, or the residual sum of squares (RSS), and the estimates of the parameters. At step 0, the estimates of the parameters are the starting values chosen by SYSTAT or specified by the user with the START option of ESTIMATE. The residual sum of squares is

$$\sum w(y-f)^2$$

where y is the observed value, f is the estimated value, and w is the value of the case weight (its default is 1.0).

Sums of squares (SS) appearing in the output include:

Regression:  $\sum wy^2 - \sum w(y - f)^2$ 

Residual:  $\sum w(y-f)^2$ 

Total:  $\sum wy^2$ 

Mean corrected:  $\sum w(y-y)^2$ 

The Raw  $R^2$  (Regression SS / Total SS) is the proportion of the variation in y that is explained by the sum of squares due to regression. Some researchers object to this measure because the means are not removed. The Mean corrected  $R^2$  tries to adjust for this. Many researchers prefer the last measure of  $R^2$  (R(observed vs. predicted) squared). It is the correlation squared between the observed values and the predicted values.

A period (there is none here) for the asymptotic standard error indicates a problem with the estimate (the correlations among the estimated parameters may be very high, or the value of the function may not be affected if the estimate is changed). Read Parameter/ASE, the estimate of each parameter divided by its asymptotic standard error, roughly as a t statistic.

The Wald Confidence Intervals for the estimates are defined as EST  $\pm$   $t^*ASF$  for the t distribution with residual degrees of freedom (df - 10 in this example). SYSTAT prints the  $95^{\circ}$  confidence intervals. Use CONFI=n to specify a different confidence level.

SYSTAT computes asymptotic standard errors and correlations by estimating the INV(J'J) matrix after iterations have terminated. The matrix is computed from the asymptotic covariance matrix that inverts INV(J'J) * RMS, where J is the Jacobian and RMS is the residual mean squared. You should examine your model for redundant

parameters. If the J'J matrix is singular (parameters are very highly intercorrelated). SYSTAT prints a period to mark parameters with problems. In this example, the parameters are highly intercorrelated; the model may be overparameterized.

## Example 2 Confidence Curves and Regions

Confidence curves and regions provide information about the certainty of your parameter estimates. The usual Wald confidence intervals can be misleading when intercorrelations among the parameters are high.

Confidence curves. Cook and Weisberg construct confidence curves by plotting an assortment of potential estimates of a specific parameter on the y axis against the absolute value of a t statistic derived from the residual sum of squares (RSS) associated with each parameter estimate. To obtain the values for the x axis, SYSTAT:

- Computes the model as usual and saves RSS.
- Fixes the value of the parameter of interest (of, for example, the estimate plus half the standard error of the estimate), recomputes the model, and saves RSS*.
- $\blacksquare$  Computes the t statistic:

$$t = \sqrt{\frac{\frac{RSS^* - RSS}{1}}{\frac{RSS}{n - p}}}$$

Repeats the above steps for other estimates of the parameter.

Now SYSTAT plots each parameter estimate against the absolute value of its associated  $t^*$  statistic. Vertical lines at the 90, 95, and 99 percentage points of the t distribution with (n-p) degrees of freedom provide a useful frequentist calibration of the plot.

To illustrate the usefulness of confidence curves, we again use the Pattison data used in the three-parameter nonlinear model example. Recall that the parameter estimates were:

$$p1 = 0.93$$
  
 $p2 = 2.519$   
 $p3 = 0.103$ 

To produce the Cook-Weisberg confidence curves for the model,

## the input is:

```
USE PATTISON
NONLIN
MODEL GRASS = p1 + p2*EXP(-p3*TIME)
SAVE PATTCI / CI=p1, p2, p3
ESTIMATE
SUBMIT '&SAVE\PATTCI'
```

## The output is:



The nonvertical straight lines (blue on a computer monitor) are the Wald 95% confidence intervals and the solid curves are the Cook-Weisberg confidence curves. The vertical lines show the 90th, 95th, and 99th percentiles of the t distribution with n-p=10 degrees of freedom.

For PI and P2, the coverage of the Wald intervals differs markedly from that of the Cook-Weisberg (C-W) curves. The 95% interval for PI on the C-W curve is approximately from -0.58 to 1.45; the Wald interval extends from 0.247 to 1.68. The steeply descending lower C-W curve indicates greater uncertainty for smaller estimates of PI. For P2, the C-W interval ranges from 2.12 to 3.92; the Wald interval ranges from 1.9 to 3.1. The agreement between the two methods is better for P3. The C-W curves show that the distributions of estimates for P1 and P2 are quite asymmetric.

Confidence region. SYSTAT also provides the CR option for confidence regions. When there are more than two parameters in the model, this feature causes Nonlinear Model to search for the best values of the additional parameters for each combination of estimates for the first two parameters.

## The input is:

```
USE PATTISON
NONLIN
MODEL GRASS = p1 + p2*EXP(-p3*TIME)
SAVE PATTCR / CR=p1, p2
ESTIMATE
SUBMIT '&SAVE\ PATTCR'
```

## The output is:



You can also specify the level of confidence. For example,

SAVE PATTCR / CR=p1, p2 CONFI=.90

## Example 3 Fixing Parameters and Evaluating Fit

In the three-parameter nonlinear model example, the  $R^2$  between the observed and predicted values is 0.984, indicating good agreement between the data and fitted values. However, there may be consecutive points across time where the fitted values are consistently overestimated or underestimated. We can look for trends in the residuals by plotting them versus TIME and connecting the points with a line. A stemand-leaf plot will tell us if extreme values are identified as outliers (outside values or far outside values).

## The input is:

USE PATTISON
NONLIN
MODEL GRASS = pl + p2*EXP(-p3*TIME)
SAVE MYRESIDS / DATA
ESTIMATE
USE MYRESIDS
PLOT RESIDUAL*TIME / LINE YLIMIT=0
STEM RESIDUAL

## The output is:



```
Stem and Leaf Plot of Variable: RESIDUAL, N = 13

Minimum : -0.136
Lower Hinge : -0.052
Median : 0.007
Upper Hinge : 0.059
Maximum : 0.073

-1 3
-0 H 775
-0 H 00
0 M 044
0 H 5567
```

The results of a runs test would not be significant here. The large negative residual in the center of the plot, -0.137, is not identified as an outlier in the stem-and-leaf plot.

We should probably be more concerned about the fact that the parameters are highly intercorrelated: The correlation between PI and P2 is -0.972, and the correlation between PI and P3 is 0.984. This might indicate that our model has too many parameters. You can fix one or more parameters and let SYSTAT estimate the remaining parameters. Suppose, for example, that similar studies report a value of PI close to 1.0. You can fix PI at 1.0 and then test whether the results differ from the results for the full model.

To do this, first specify the full model. Use FIX to specify the parameter as PI with a value of 1. Then initiate the estimation process.

#### The input is:

```
USE PATTISON

NONLIN

MODEL GRASS = p1 + p2*EXP(-p3*TIME)

ESTIMATE

FIX p1=1

SAVE PATTCI / CI=p2, p3

ESTIMATE

SUBMIT '&SAVE\PATTCI'
```

#### The output is:

#### Parameter Estimates

Parameter	Estimate	ASE	Parameter/ASE	Wald 95% Confidence Lower	Interval Upper
P1 P2 P3 Analysis of	0.106	0.000 0.060 0.004 of Fixi	41.662 23.728 ag Parameter(s)	2.358 0.096	2.621 0.116
Source	1	SS c	lf Mean Squares	F-ratio p-value	
Fixed Param Residual		.000 .053 1	1 0.000 0 0.005	0.014 0.908	

In the analysis of the effect of fixing parameter(s), F test tests the hypothesis that Pl=1. In our output, F=0.014 (p-value = 0.908), indicating that there is no significant difference between the two models. This is not surprising, considering the similarity of the results:

	Three parameters	P1 fixed at 1.0
P1	0.963	1.000
P2	2.519	2.490
P3	0.103	0.106
RSS	0.053	0.054
$\mathbb{R}^2$	0.984	0.984

There are some differences between the two models. The correlation between P2 and P3 is 0.923 for the full model and 0.810 when P1 is fixed. The most striking difference is in the Wald intervals for P2 and P3. When P1 is fixed, the Wald interval for P2 is less than one-fourth of the interval for the full model. The interval for P3 is less than one-fifth the interval for the full model. Let's see what information the C-W curves provide about the uncertainty of the estimates. Here are the curves for the model with P1 fixed:



Compare these curves with the curves for the full model. The C-W curve for P2 has straightened out and is very close to the Wald interval. If we were to plot the P2 C-W curve for both models on the same axes, the wedge for the fixed P1 model would be only a small slice of the wedge for the full model.

## Example 4 Functions of Parameters

Frequently, researchers are not interested in the estimates of the parameters themselves, but instead want to make statements about functions of parameters. For example, in a logistic model, they may want to estimate LD50 and LD90 and determine the variability of these estimates. You can specify functions of parameters in Nonlinear Model. SYSTAT evaluates the function at each iteration and prints the standard error and the Wald interval for the estimate after the last iteration.

We look at a quadratic function described by Cook and Weisberg. Here is the Quick Graph that results from fitting the model:





This function reaches its maximum at -b/2c. However, for the data given by Cook and Weisberg, this maximum is close to the smallest x. That is, to the left of the maximum, there is little of the response curve.

In SYSTAT, you can estimate the maximum (and get Wald intervals) directly from the original quadratic by using FUNPAR.

## The input is:

```
USE QUAD
NONLIN
MODEL y = a + b*x + c*x^2
FUNPAR MAX =-b/(2*c)
ESTIMATE
```

## The output is:

#### Parameter Estimates

Parameter	Estimate	ASE	Parameter/ASE	Wald	95% Confidence Lower	Interval Uppr
A	0.034	0.117	0.292		-0.213	0.282
B	0.524	0.555	0.944		-0.647	1.694
C	-1.452	0.534	-2.718		-2.579	-0.32
MAX	0.180	0.128	1.409		-0.090	0.45

Using the Wald interval, we estimate that the maximum response occurs for an x value between -0.09 and 0.45.

## C-W Curves

To obtain the C-W confidence curves for MAX, we have to re-express the model so that MAX is a parameter of the model:

$$b = -2cMax$$

SO

$$y = a - (2cMax)x + cx^2$$

The original model is easy to compute because it is linear. The reparameterized model is not as well-behaved, so we use estimates from the first run as starting values and request C-W confidence curves.

The input is:

The C-W confidence curves describe our uncertainty about the x value at which the expected response is maximized much better than the Wald interval does.

The output is:



The picture provides clear information about the *MAX* response in the positive direction. We can be confident that the value is less than 0.4 because the C-W curve is lower than the Wald interval on the 95th percentile line. The lower bound is much less clear; it could certainly be lower than the Wald interval indicates.

## Example 5 Contouring the Loss Function

You can save loss function values along contour curves and then plot the loss function. For this example, we use the *BOD* data (Bates and Watts, 1988). These data were taken from stream samples in 1967 by Marske. Each sample bottle was inoculated with a mixed culture of microorganisms, sealed, incubated, and opened periodically for analysis of dissolved oxygen concentration.

The data are:



where *DAYS* is time in days and *BOD* is the biochemical oxygen demand. The six *BOD* values are averages of two analyses on each bottle. An exponential decay model with a fixed rate constant was estimated to predict biochemical oxygen demand.

Let's look at the contours of the parameter space defined by *THETA 2* with *THETA 1*. We use loss function data values stored in the *BODRS* data file.

## The input is:

USE BOD
NONLIN
 MODEL BOD = theta_1*(1-EXP(-theta_2*DAYS))
 PLENGTH LONG
 SAVE BODRS / RS
 ESTIMATE
SUBMIT `&SAVE\BODRS'

## The output is:

Dependent Variable

:BOD

## Sum of Squares and Mean Squares

Source	SS	df	Mean Squares
Regression Residual Total Mean corrected	1401.390 25.990 1427.380 107.213	24 6 5	700.695 6.498

#### R-squares

Raw R-square (1-Residual/Total) Mean Corrected R-square (1-Residual/Corrected) R-square(Observed vs Predicted)	0.982 0.758 0.758
R-square (Observed vs Predicted)	-

## Parameter Estimates

Parameter   Estimate	ASE	Parameter/ASE	Wald 95% Confidence Lower	Interval Upper
THETA 1 19.143	2.496	7,670	12.213	26.072
THETA 2 0.531	0.203	2,615	-0.033	1.095

#### Residuals

Case   BOD Observed B	
8.300	7.887 0.413
2 10.300	12.525 -2.225
3 19.000	15.252 3.748
4 16.000	16.855 -0.855
5 15.600	17.797 -2.197
6 19.800	18.678 1.122

## Asymptotic Correlation Matrix of Parameters

	í	THETA 1	THETA Z
	ŧ		
THETA_1		1.000	1.000



The kidney-shaped area near the center of the plot is the region where the loss function is minimized. Any parameter value combination (that is, any point inside the kidney) produces approximately the same loss function.

## Example 6 Maximum Likelihood Estimation

Because NONLIN includes a loss function, you can maximize the likelihood of a function in the model equation. The way to do this is to minimize the negative of the log-likelihood.

Here is an example using the *IRIS* data. Let's compute the maximum likelihood estimates of the mean and variance of *SEPALWID* assuming a normal distribution for the first species in the *IRIS* data. For a sample of *n* independent normal random variables, the log-likelihood function is:

$$L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i} (X - \mu)^2$$

However, we can use the ZDF function as a shortcut. In this example, we minimize the negative of the log-likelihood with LOSS and thus maximize the likelihood. SYSTAT'S small default starting values for *MEAN* and *SIGMA* (0.101 and 0.100) will produce very large z scores ((x mean) sigma) and values of the density close to 0, so we

arbitrarily select larger starting values. We use the *IRIS* data. Under SELECT, we specify SPECIES = 1. Then, we type in our LOSS statement. Finally, we use ESTIMATE's START option to specify start values (2,2).

### The input is:

```
USE IRIS
NONLIN
SELECT SPECIES=1
LOSS -log(ZDF(SEPALWID, MEAN, SIGMA))
ESTIMATE / START=2,2
```

### The output is:

#### Parameter Estimates

Parameter Est	Tima ceo					
Parameter !	Estimate	ASE	Parameter/ASE	Wald	95% Confidence Lower	Upper
1						
MEAN SIGMA	3.428 0.375	0.053 0.037	65.255 10.102		3.322 0.301	3.534 0.450

Note that the least-squares estimate of sigma (0.379) computed using CSTATISTICS is larger than the biased maximum likelihood estimate here (0.375).

# Example 7 Iteratively Reweighted Least-Squares for Logistic Models

Cox and Snell (1989) report the following data on tests among objects for failures after certain times. These data are in the *COX* data file—*FAILURE* is the number of failures and *COUNT* is the total number of tests.

Cox uses a logistic model to fit the failures:

estimate = (count) 
$$\frac{e^{\beta_0 + \beta_1 \text{time}}}{1 + e^{\beta_0 + \beta_1 \text{time}}}$$

The log-likelihood function for the logit model is:

$$L(\beta_0, \beta_1) = \sum \left[ p \ln(estimate) + (1-p) \ln(1-estimate) \right]$$

where the sum is over all observations. Because the counts differ at each time, the variances of the failures also differ. If *FAILURE* is randomly sampled from a binomial, then.

```
VAR(failure) = estimate * (count - estimate)/count
```

Therefore, the weight is 1/variance:

```
w_i = count/(estimate * (count - estimate))
```

We use these variances to weight each case in the estimation. On each iteration, the variances are recalculated from the new estimates and used anew in computing the weighted loss function.

In the following commands, we use RESET to recompute the weight after each iteration. The SCALE option of ESTIMATE rescales the mean square error to 1 at the end of the iterations.

#### The input is:

```
USE COX
NONLIN

PLENGTH LONG

LET w = 1

WEIGHT w

MODEL FAILURE = COUNT*EXP(-b0-b1*TIME)/,

(1 + EXP(-b0-b1*TIME))

RESET W = COUNT / (ESTIMATE*(COUNT-ESTIMATE))

ESTIMATE / SCALE
```

## The output is:

#### Iteration History

No.	Loss	В0	B1
	162.222	0.101	0.102
	16.178	2.723	-0.011
	3.254	4.196	-0.051
	0.754	5.106	-0.074
	0.666	5.391	-0.080
	0.675	5.415	-0.081

Dependent Variable

#### Sum of Squares and Mean Squares

. 1			df i	Mean Squares
. ; .	7.6	79	2	6.519
44.3			2	0.337
			4	
M	7.1		3	

: FAILURE

#### R-squares

Raw R-square (1-Residual/Total) : 0.951
Mean Corrected R-square (1-Residual/Corrected) : 0.936
R-square(Observed vs Predicted) : 0.988

Standard Errors of Parameters are rescaled

#### Parameter Estimates

E GT (MDC CO.	-						
Parameter	1	Estimate	ASE	Parameter/ASE	Wald	95% Confidence Lower	Interval Upper
	-						
B0 B1	-	5.415 -0.081	0.728	7.443 -3.610		3.989 -0.125	6.841 -0.037

#### Residuals

Case	FAILURE Observed	FAILURE Predicted	Residual	Case Weight	
1 2 3		0.427 2.132 6.013 3.427	-0.427 -0.132 0.987 -0.427	2.360 0.475 0.173 0.371	

Jennrich and Moore (1975) show that this method can be used for maximum likelihood estimation of parameters from a distribution in the exponential family.

# Example 8 Robust Estimation (Measures of Location)

Robust estimators provide methods other than the mean, median, or mode to estimate the center of a distribution. The sample mean is the least-squares estimate of location; that is, it is the point at which the squared deviations of the sample values are at a minimum. (The sample medians minimize absolute deviations instead of squared deviations.) In terms of  $\psi$  weights, the usual mean assigns a weight of 1.0 to each observation, while the robust methods assign smaller weights to residuals far from the center.

In this example, we use sepal width of the Setosa iris flowers and SELECT SPECIES = 1. We request the usual sample mean and then ask for a 10% trimmed mean, a Hampel estimator, and the median. But first, let's view the distribution graphically. Here is a box-and-whisker display together with a dit plot of the data.





Except for the outlier at the left, the distribution of SEPALWID is slightly right-skewed.

#### Mean

In the maximum likelihood example, we requested maximum likelihood estimates of the mean and standard deviation.

## The input is:

```
USE IRIS
NONLIN
SELECT SPECIES = 1
MODEL SEPALWID = MEAN
ESTIMATE
```

## The output is:

#### Iteration History

No.	1	Loss	MEAN
	+		-
0	1	299.377	1.010
1	1	7.041	3.428
2	1	7.041	3.428
3	- [	7.041	3.428

Dependent Variable

: SEPALWID

#### Sum of Squares and Mean Squares

Source	T			SS	df	Mean Squares
	-+					
Regression		587	. 1	559	1	587.559
Residual	1	7	. (	041	49	0.144
Total		594	. (	600	50	
Mean corrected		7	. (	041	4.9	

#### R-squares

Raw R-square (1-Residual/Total) : 0.988
Mean Corrected R-square (1-Residual/Corrected) : 0.000
R-square(Observed vs Predicted) : 0.000

#### Parameter Estimates

Lat anna car	700 CZ3000				
Parameter	Estimate	ASE	Parameter/ASE	Wald 95% Confidence Lower	Interval Upper
	1				
	-+		63.946	3.320	3.536
MEAN	3.428	0.054	63.540	0,000	

## Trimmed Mean

We enter the following commands after viewing the results for the mean. Note that SYSTAT resets the starting values to their defaults when a new model is specified. If MODEL is not given, SYSTAT uses the final values from the last calculation as starting values for the current task.

For this trimmed mean estimate, SYSTAT deletes the five cases (0.1 * 50 = 5) with the most extreme residuals.

## The input is:

```
MODEL SEPALWID = TRIMMEAN
ROBUST TRIM = 0.1
ESTIMATE
```

## The output is:

### Iteration History

No.	Loss	TRIMMEAN
0   1   2   3   4   5	560.487 7.041 3.449 3.372 3.372 3.372	0.101 3.428 3.428 3.387 3.387

#### TRIM

Robust Regression

45 cases have positive psi-weights.
The Average Psi-weight: 1.00000
Dependent Variable : SEPALWID
Lene weights, missing data or estimates reduced degrees of freedom

## Sum of Squares and Mean Squares

	55	df	Mean Squares
Source			
Regression	587.474 7.126 594.600 7.041	1 44 45 44	587.474 0.162

#### R-squares

Mean Corrected R-square (1-Residual/Total) Mean Corrected R-square (1-Residual/Corrected) R-square (Observed vs Predicted)	0.000	
R-square (ODServer		

Parameter :	Estimates					
Parameter	Estimate	ASE	Parameter/ASE	Wald	954 Confidence	
					Lower	Upper

The trimmed estimate deletes the outlier, plus the four flowers on the right side of the distribution with width equal to or greater than 4.0 (if you select the LONG mode of output, you would see that these flowers have the largest residuals).

5 . . . t n

## Hampel

We now request a Hampel estimator using the default values for its parameters.

### The input is:

```
MODEL SEPALWID = HAMP_EST
ROBUST HAMPEL
ESTIMATE
```

### The output is:

#### Iteration History

0 , 560.487			
1	No.	:.>ss	HAMP EST
7   5.068 3 414	1 2 3 4 5	560.487 7.041 5.092 5.072 5.069	~

HAMPEL Robust Regression

50 cases have positive psi-weights.
The Average Psi-weight : 0.94551
Dependent Variable : SEPALWID

#### Sum of Squares and Mean Squares

Source	l ss	df Meas	n Squares
	+		
Regression	: 587.550	1	587.550
Residual	7.050	49	0.144
Total	594.600	50	
Mean corrected	7.041	49	

#### R-squares

Raw R-square (1-Residual/Total)	2	0.988
Mean Corrected R-square (1-Residual/Corrected)	-	0.000
R-square (Observed vs Predicted)		0.000

#### Parameter Estimates

Parameter : E	stimate	ASE	Parameter/ASE	Wald 95% Confidence Lower	
. 28	3.414	0.054	63.648	3.306	3.522

#### Median

We let NONLIN minimize the absolute value of the residuals for an estimate of the median.

## The input is:

MODEL SEPALWID = MEDIAN ROBUST ABSOLUTE ESTIMATE

#### The output is:

#### Iteration History

No.	1	Loss	MEDIAN
	+		
0		~ 4 G + "	1. :
1		19.414	4.4.4
2		14.299	5,421
3		4. 5	4 4 19
4		141	4,454
5		14 %	4 1
6	i	14.203	3.400
7	i	14.201	3.400
8	1	14.200	3.400
9	0	14.200	3.400
10	i	14.200	3,400
11	i	14.200	3.400
12	1	14.200	3.400
13	i	14.200	3.400

#### ABSOLUTE Robust Regression

50 cases have positive psi-weights.
The Average Psi-weight :2.41862E+006
Dependent Variable :SEPALWID

## Sum of Squares and Mean Squares

Fourte			35	if Me	a".	3	01	12	5- 5
Source						-			
				1		e 90		E	
Regression		E81.		44			3.		44
Residual	ì	£ 94 .	8.	5.0					
Total			(41	44					
Mean corrected	į.		1 4 7	3 .					

#### R-squares

Raw R-square (1-Residual/Total)		0.988 0.000 0.000	
---------------------------------	--	-------------------------	--

Parameter	Estimates			
	4		95% Confidence	Interval
MEDIAN	1 3.400	 	 	-

If you request the median for these data in the Basic Statistics procedure, the value is 3.4

## Example 9 Regression

Usually, you would not use NONLIN for linear regression because other procedures are available. If, however, you are concerned about the influence of outliers on the estimates of the coefficients, you should try one of Nonlinear Model's robust procedures.

The example uses the *OURWORLD* data file and we model the relation of military expenditures to gross domestic product using information reported by 57 countries to the United Nations. Each country is a case in our file and *MIL* and *GDP CAP* are our two variables. In the transformation example for linear regression, we discovered that both variables require a log transformation, and that Iraq and Libya are outliers.

Here is a scatterplot of the data. The solid line is the least-squares line of best fit for the complete sample (with its corresponding confidence band); the dotted line (and its confidence band) is the regression line after deleting Iraq and Libya from the sample. How do robust lines fit within original confidence bands?



Visually, we see the dotted line-of-best fit falls slightly below the solid line for the complete sample. More striking, however, is the upper curve for the confidence band the dotted line is considerably lower than the solid one.

We can use NONLIN to fit a least-squares regression line.

#### The input is:

```
USE OURWORLD

NONLIN

LET LOG_MIL = L10 (MIL)

LET LOG_GDP = L10 (GDP_CAP)

MODEL LOG_MIL = INTERCEPT + SLOPE*LOG_GDP

ESTIMATE
```

#### The output is:

Dependent Variable :LOG_MIL
Zero weights, missing data or estimates reduced degrees of freedom

#### Sum of Squares and Mean Squares

Source	1	SS	df	Mean	Squares
	+				
Regression	194.	332	2		97.166
Residual	6.	481	54		0.120
Total	200.	813	56		
Mean corrected	24.	349	55		

#### R-squares

```
Raw R-square (1-Residual/Total) : 0.968
Mean Corrected R-square (1-Residual/Corrected) : 0.734
R-square (Observed vs Predicted) : 0.734
```

#### Parameter Estimates

Parameter   Estimate	ASE	Parameter/ASE	Wald 95% Confidence Lower	Interval Upper
	0.257	-5.091 12.201	-1.822 0.760	-0.793 1.058

The estimate of the intercept (-1.308) and the slope (0.909) are the same as those produced by GLM. The residual for Iraq (1.216) is identified as an outlier its Studentized value is 4.004. Libya's residual is 0.77.

#### 1st Power

We now estimate the model using a least absolute values loss function (first power regression). We do not respecify the model, so by default, SYSTAT uses our last estimates as starting values. To avoid this, we specify START without an argument.

### Chapter 7

## The input is:

ROBUST ABSOLUTE ESTIMATE / START

### The output is:

### Iteration History

No.	Loss	INTERCEPT	SLOPE
0   1   2   3   4   5   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   19   19   19   19   19   19	119.361 14.708 14.658 14.630 14.614 14.614 14.613 14.612 14.611 14.610 14.610 14.609 14.608 14.609 14.607 14.607	0.101 -1.308 -1.352 -1.381 -1.402 -1.406 -1.409 -1.416 -1.420 -1.425 -1.425 -1.434 -1.434 -1.434 -1.445 -1.445 -1.445	0.102 0.902 0.922 0.932 0.933 0.934 0.935 0.935 0.936 0.937 0.938 0.939 0.940 0.941 0.942 0.942 0.943
20	14.607 14.607	-1.447 -1.447	0.943

### ABSOLUTE Robust Regression

56 cases have positive psi-weights.
The Average Psi-weight: 4.02107E+013
Dependent Variable: LOG_MIL
Zero weights, missing data or estimates reduced degrees of freedom

### Sum of Squares and Mean Squares

Source	4 0	SS	df	Mean Squares
Regression	194	.271	2	97.136
Residual	: 6	.542	54	6.1.1
Total	: 200	.813	56	
Mean corrected	: 24	.349	55	

### R-squares

Raw R-square (1-Residual/Total) : C.16 Mean Corrected R-square (1-Residual/Corrected) : G.31 R-square (Observed vs Predicted) : 0.34

### Parameter Estimates

Parameter	Estimate	ACF	Parameter/ASE	Wald	95% Confidence Lower	
	4 -			_		- 1 4
INTERCEPT	1.11					
SLOPE	1 0.943					

### Huber

For the Hampel estimator, the weights begin to be less than 1.0 after the value of the first parameter (1.7). For this Huber estimate, we let the weight taper off sooner by setting the parameter at 1.5.

## The input is:

ROBUST HUBER = 1.5 ESTIMATE / START

## The output is:

### Iteration History

No.	Loss	INTER 'SPI	SLOPE
0 1 2 3 4 5 6 7 8 9	119.361 6.481 4.289 4.267 4.180 4.182 4.183 4.183 4.183	C.1 1 -1.30 -1.30 -1.30 -1.30 -1.30 -1.30 -1.30 -1.30 -1.30 -1.30 -1.30 -1.30	0.102 0.909 0.909 0.914 0.918 0.921 0.922 0.923 0.923 0.923
12	4.183	-1.374 -1.374	0.923

HUPER Robust Regression

56 cases have positive psi-weights. The Average Psi-weight: 0.92050 Dependent Variable: LOG_MIL

Zero weights, missing data or estimates reduced degrees of freedom

### Sum of Squares and Mean Squares

Source	55	df	Mean Squares
	+		
Regression Residual	194.305	54	97.154 0.121
Total Mean corrected	200.813	55	

### R-squares

Raw R-square (1-Residual/Total) : 0.969
Mean Corrected R-square (1-Residual/Corrected) : 0.734
R-square (Observed vs Predicted) : 0.734

### Parameter Estimates

Parameter :	Estimate	ASE	Parameter/ASE	Wald 95% Confidence	4.0
INTERCEPT '	-1.;74	0.455	-5.398 12.557	-1.885 C.:35	-0,864 1,070

## 5% Trim

In the linear regression version of this example, we removed Iraq from the sample by specifying:

SELECT mil < 700 or SELECT country\$ <> 'Iraq'

Here, we ask for 5% trimming (0.05*56=2.8 or 2 cases).

## The input is:

ROBUST TRIM = .05 ESTIMATE / START

# The output is:

### Iteration History

No.	Loss	INTERCEPT	SLOPE
0 1 2 3 4 5	119.361 6.481 4.406 4.333 4.333	0.101 -1.308 -1.308 -1.332 -1.332	0.102 0.909 0.909 0.905 0.905

### TRIM Robust Regression

54 cases have positive psi-weights. The Average Psi-weight: 1.00000 Dependent Variable: 1.00 MIL Zero weights. missing data of exting

Zero weights, missing data or estimates reduced degrees of freedom

# Sum of Squares and Mean Squares

Source	SS	df	Mean Squares
Residual	194.256 6.557 200.813 24.349	2 52 54 53	97.128 0.126

#### R-squares

Raw R-square (1-Residual/Total)
Mean Corrected R-square (1-Residual/Corrected)
R-square (Observed vs Predicted)

### Parameter Estimates

Parameter :	Estimate	ASE	Parameter/ASE	Wald 95% Confidence	Interval
INTERCEPT : SLOPE	-1.332		-5.049 11.829	Lower -1.861 0.752	-0.80 t

# Example 10 Piecewise Regression

Sometimes we need to fit two different regression functions to the same data. For example, sales of a certain product might be strongly related to quality when advertising budgets are below a certain level—that is, when sales are generated by "word of mouth." Above this advertising budget level, sales may be less strongly related to quality of goods and more by marketing and advertising factors. In these cases, we can fit different sections of the data with different models. It is easier to combine these into a single model, however.

Here is an example of a quadratic function with a ceiling using data from Gilfoil (1982). This particular study is one of several that show that dialog menu interfaces are preferred by inexperienced computer users and that command based interfaces are preferred by experienced users. The data for one subject are in the file *LEARN*. The variable *SESSION* is the session number and *TASKS* is the number of user-controlled tasks (as opposed to dialog) chosen by the subject during a session.

We fit these data with a quadratic model for earlier sessions and a ceiling for later sessions. We use NONLIN to estimate the point where the learning hits this ceiling (at six tasks).

```
The input is:
```

```
USE LEARN
NONLIN
PLENGTH LONG
MODEL TASKS = b*SESSION^2*(SESSION<KNOWN) +,
b*KNOWN^2*(SESSION>=KNOWN)
ESTIMATE
```

Note that the expressions (SESSION<KNOWN and SESSION>=KNOWN) control which function is to be used the quadratic or the horizontal line.

### The output is: Iteration History

13	1, 15	FR	FNC WN
		1.6	-
-0	. 7 . 4 1	1	1.0.0
1	201.279	0. (5	2. 4.
2	, , н	0 1 4	3.1:4
	11 4	0	4.
3 4 5	1111166	0 45	8
5	27.032	0.055	11
6	10.11	0 054	10.537
7	14. 14	0	9.1 "
8	4.418	0 / 1	9., 4
9	14.11=	0. (1	9 1
. ó	, 1. 1.	0 '	9

## Chapter 7

Dependent Variable

:TASKS

### Sum of Squares and Mean Squares

Source		SS	df N	de an	Squares
Regression	445.5	82	2		222.791
Residual	14.4	18	18		0.801
Total	460.0	0.0	20		
Mean corrected	140.0	00	19		

### R-squares

Raw R-square (1-Residual/Total) : 0.969
Mean Corrected R-square (1-Residual/Corrected) : 0.897
R-square(Observed vs Predicted) : 0.912

### Parameter Estimates

Parameter	Estimate	ASE	Parameter/ASE	Wald 95% Confidence Lower	
R KNGWN	0.063	0.007	8.762 16.269	0.048 8.412	0.079 10.907

### Residuals

Case !	TASKS Observed	TASKS Predicted	Residual
1 !	0.000	0.063	-0.763
2	0.000	0.253	~( , < 1 3
3	0.000	0.570	-0.50
4	1.000	1.013	-0,111
5 1	0.000	1.583	1. * 8 3
6	1.000	2.280	18)
7	1.000	3.103	~1.133
8 1	6.000	4.053	1. 24/
9	6.000	5.130	0.83
10 !	6.000	5.909	), ( 41
11	5.000	5.909	-0.4
12	6.000	5.909	0. "1
13	6.000	5.909	, , = 91
14	6.000	5.909	6.991
15	6.000	5.909	. 01
16 :	6.000	5.909	0.91
1 3	6.000	5,909	19.
18,	6.000	5.909	n. +1
1 +	6.000	5.909	
20 1	6.000	5.909	0.991

### Asymptotic Correlation Matrix of Parameters

		F-	FN WN
	+		
		1.000	
p³← V	yta	, c, p	7 4





From the Quick Graph, we see that the fit at the lower end is not impressive. We might want to fit a truncated logistic model instead of a quadratic because learning is more often represented with this type of function. This model would have a logistic curve at the lower values of SESSION and a flat ceiling line at the upper end. We should use a LOSS also to make the maximum likelihood fit.

Piecewise linear regression models with known breakpoints can be fitted similarly. These models look like this:

$$y = b0 + b1*x + b2*(x-break)*(x>break)$$

If the break point is known, then you could also use GLM to do ordinary regression to fit the separate pieces. See Kutner et al. (2004) for an example.

# Example 11 Kinetic Models

You can also use NONLIN to test kinetic models. The following analysis models competitive inhibition for an enzyme inhibitor. The data are adapted from a conference session on statistical computing with microcomputers (Greco, et al., 1982). We will fit three variables: initial enzyme velocity (V), concentration of the substrate (S), and concentration of the inhibitor (I). The parameters of the model are the maximum velocity (VMAX), the Michaelis constant (KM) and the dissociation constant of the enzyme-inhibitor complex (KIS).

### Chapter 7

# The input is:

```
USE ENZYME
NONLIN
PLENGTH LONG
MODEL V = VMAX*S / (KM*(1 + I/KIS) + S)
ESTIMATE / MIN = 0,0,0
```

### The output is:

### Iteration History

No. !	Loss	VMAX	KM	KIS
0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1	3.568 2.289 2.286 2.082 0.027 0.014 0.014 0.014	1.010 1.008 1.008 1.020 1.256 1.258 1.259 1.260	1.020 0.933 0.933 0.927 0.818 0.845 0.847 0.847	1.030 0.000 0.000 0.001 0.023 0.027 0.027

Dependent Variable

:V

### Sum of Squares and Mean Squares

Source		ı					* 1		j	f	Mover.	1.	1 -2
		+-				-		~ ~	-				
Regress	sion	1	4	ç	i	-1	4			5		r	. 1
Residua	11	9		11	,		14		4	1			
Total		1	1	5		4	18		4	6			
Mean co	orrected	1		5	į.	7	63		4	5			

### R-squares

Raw R-square (1-Residual/Total) : 0.999
Mean Corrected R-square (1-Residual/Corrected) : 0.998
R-square(Observed vs Predicted) : 0.998

### Parameter Estimates

Parameter	1	Estimate	ASE	Parameter/ASE	Wald 95% Confidence Lower	Interval Upper
VMAX KM KIS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.847	0.027	104.191 31.876 31.033	1.235 0.793 0.025	1.284 0.900 0.029

You could try alternative models for these data such as one for uncompetitive inhibition,

```
MODEL V = VMAX*S / (KM + S + S*I/KII)
```

or one for noncompetitive inhibition,

```
MODEL V = VMAX*S / (KM + KM/KIS + S + S*I/KII)
```

where KII is the dissociation constant of the enzyme-inhibitor-substrate complex.

# Example 12 Minimizing an Analytic Function

You can also use NONLIN to find the minimum of an algebraic function. Since this requires no data, you need a trick. Use any data file. We do not use any of the variables in this file, but SYSTAT requires a data file to be open to do a nonlinear estimation.

# The input is:

```
USE DOSE
NONLIN
LOSS 100*(U-V^2)^2+(1-V)^2
ESTIMATE / SIMPLEX
```

This particular function is from Rosenbrock (1960). We are using SIMPLEX to save space and because it generally does better with algebraic expressions which incur roundoff error.

# The output is:

# Iteration History

No.   Loss	U	V
0   1.021 1   0.931 2   0.002 3   0.000 4   0.000 5   0.000 6   0.000 7   0.000 8   0.000 9   0.000	1.010 1.262 1.005 0.999 1.000 1.000 1.000 1.000 1.000	1.126 1.003 1.000 1.000 1.000 1.000 1.000 1.000

Final Value of Loss Function: 0.000

Parameter	Estimates		/3.0E	Wald	95% Confidence	Interval
Parameter	Estimate		Parameter/ASE		Tower	Upper
(1	1. nc i	•	p.			

Chapter 7

# Computation

# Algorithms

The Quasi-Newton method is described in Fletcher (1972) and is sometimes called modified Fletcher/Powell. Modifications include the LDL' Cholesky factorization of the updated Hessian matrix. It is the same algorithm employed in SERIES for ARIMA estimation. The Simplex method is adapted from O'Neill (1971), with several revisions noted in Griffiths and Hill (1985).

The loss function is computed in two steps. First, the model statement is evaluated for a case using current values of the parameters and data. Second, the LOSS statement is evaluated using ESTIMATE (computed as the result of the model statement evaluation) and other parameter and data values. These two steps are repeated for all cases, over which the result of the loss function is summed. The summed LOSS is then minimized by the Quasi-Newton or Simplex procedure. Step halvings are used in the minimizations when model or loss statement evaluations overflow or result in illegal values. If repeated step halvings down to machine epsilon (error limit) fail to remedy this situation, iterations cease with an "Illegal values" message.

Asymptotic standard errors are computed by the central differencing finite approximation of the Hessian matrix. Some nonlinear regression programs compute standard errors by squaring the Jacobian matrix of first derivatives. Others use different methods altogether. For linear models, all valid methods produce identical results. For some nonlinear models, however, the results may differ. The Hessian approach, which works well for nonlinear regression, is also ideally suited for NONLIN's maximum likelihood estimation.

# Missing Data

Missing values are handled according to the conventions of SYSTAT. That is, missing values propagate in algebraic expressions. For example, "X + ." is a missing value. The expression "X ..." is not missing, however. It is 1 if X is missing and 0 if not. Thus, you can use logical expressions to put conditions on model or loss functions; consider the following loss function:

 $(X^{-})*(Y - ESTIMATE)^2 + (X^{-})*(Z - ESTIMATE)^2$ 

Illegal expressions (such as division by 0 and negative square roots) are set to missing values. If this happens when computing the loss statement for a particular case, the loss function is set to an extremely large value  $(10^{299})$ . This way, parameter estimates are forced to move away from regions of the parameter space that yield illegal function evaluations.

Overflows (such as a positive number with an extremely large exponent) are set to machine overflow ( $10^{299}$ ). Negative overflows are set to the negative of this value. Overflows usually cause the loss function to be large, so the program is forced to move away from estimates that produce overflows.

These features mean that NONLIN tends to "crash" less frequently than most other nonlinear estimation programs. It will continue for several iterations to try parameter values that lower the loss value, even when some of these lead to a seemingly hopeless result. It is your responsibility to check whether final estimates are reasonable, however, by using both estimation methods, different starting values, and other options.

# References

- Bates, D. M. and Watts, D. G. (1988). *Nonlinear regression and its applications*. New York: John Wiley & Sons.
- Clarke, G. P. Y. (1987). Approximate confidence limits for a parameter function in nonlinear regression, *Journal of the American Statistical Association*, 82, 221–230.
- Cook, R. D. and Weisberg, S. (1990). Confidence curves in nonlinear regression, *Journal of the American Statistical Association*, 85, 544-551.
- Cox, D. R. and Snell, E. J. (1989). *The analysis of binary data*. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC.
- Fletcher, R. (1972). FORTRAN subroutines for minimization by Quasi-Newton methods. AERE R, 7125.
- Griffiths, P. and Hill, I. D. (1985). *Applied statistics algorithms*. Chichester: Ellis Horwood Limited.
- Gilfoil, D. M. (1982). Warming up to computers: A study of cognitive and affective interaction over time. In *Proceedings: Human factors in computer systems*. Washington, D.C.: Association for Computing Machinery.
- Greco, W. R., Priore, R.L., Sharma, M., and Korytnyk, W. (1982). ROSFIT: An enzyme kinetics nonlinear regression curve fitting package for a microcomputer. *Computers and Biomedical Research*, 15, 39–45.
- * Hill, M. A. and Engelman, L. (1992). Graphical aids for nonlinear regression and discriminant analysis. *Computational Statistics*, vol. 2, Y. Dodge and J. Whittaker, eds. Proceedings of the 10th Symposium on Computational Statistics Physica-Verlag, 111–126.
  - Jennrich, R. I. and Moore, R. H. (1975). Maximum likelihood estimation by means of nonlinear least-squares. *Proceedings of the Statistical Computing Section*, American Statistical Association, 57–65
  - Kutner, M.H., Nachtsheim, C.J., Neter, J., and Li, W (2004). *Applied linear statistical models*, 5th ed. New York: McGraw-Hill/Irwin.
- * Montgomery, D.C., Peck, E.A., and Vining, G.G. (2006). *Introduction to linear regression analysis*, 4th ed. Hobokar, N.J.: Wiley-Interscience.
  - O'Neill, R. (1971). Functions minimization usign a simplex procedure. Algorithms AS 47. *Applied Statistics*, 338.
  - Rosenbrock, H. H. (1960). An automatic method for finding the gratest or least value of a function. *Journal of Computing*, 3, 175-184.
- * Rousseeuw, P. J. and Leroy, A. M. (1987). Robust regression and outlier detection. New York: John Wiley & Sons.
  - (* indicates additional references.)

# Nonparametric Tests

Leland Wilkinson (modified by Mangalmurti Badgujar and Ravindra Jore)

Nonparametric Tests perform nonparametric tests for groups of cases and pairs of variables. Tests are available for two or more independent groups of cases, two or more dependent variables, and for the distribution of a single variable.

Nonparametric tests do not assume that the data conform to a particular probability distribution. Nonparametric models are often appropriate when the usual parameters, such as mean and standard deviation based on normal theory, do not apply. Usually, however, some other assumptions about shape and continuity are made. Note that if you can find normalizing transformations for your data that allow you to use parametric tests, you will usually be better off doing so.

Several nonparametric tests are available. The Kruskal-Wallis test and the twosample Kolmogorov-Smirnov test measure differences of a single variable across two or more independent groups of cases. The sign test, the Wilcoxon signed-rank test, the Friedman test, and the Quade test measure differences among related samples. The one-sample Kolmogorov-Smirnov test, the Anderson-Darling test, and the Wald-Wolfowitz runs test examine the distribution of a single variable.

Many nonparametric statistics are computed elsewhere in SYSTAT. Correlations calculates matrices of coefficients, such as Spearman's rho, Kendall's tau-h, Guttman's mu2, Goodman-Kruskal gamma, Goodman-Kruskal lambda and Cramer's V. Descriptive Statistics offers stem-and-leaf plots, and Box Plot offers box plots with medians and quartiles. Time Series can perform nonmetric smoothing. Crosstabs can be used for chi-square tests of independence. Multidimensional Scaling (MDS) and Cluster Analysis work with nonmetric data matrices. Finally, you can use Rank to compute a variety of rank-order statistics.

Resampling procedures are available in this feature.

Chapter 8

**Note:** Beware of using nonparametric procedures to rescue bad data. In most cases, these procedures were designed to apply to categorical or ranked data, such as rank judgments and binary data. If you have data that violate distributional assumptions for linear models, you should consider transformations or robust models before retreating to nonparametrics.

# Statistical Background

Nonparametric statistics is a misnomer. The term is ordinarily used to describe a heterogeneous group of procedures that require relatively minimal assumptions about the shape of distributions underlying an analysis. Frequently, however, nonparametric models include parameters. These parameters are not necessarily ones like  $\mu$  and  $\sigma$ , which we see in typical parametric tests based on normal theory, but they are parameters in a class of mathematical functions nonetheless.

In this context, a better term for nonparametric is **distribution-free**. That is, the data for this class of statistical tests are not assumed to follow a specific probability distribution. This does not mean, however, that we make *no* assumptions about distributions in nonparametric methods. For example, in the Mann-Whitney and Kruskal-Wallis tests, we assume that the underlying populations are continuous and have the same shape.

# Rank (Ordinal) Data

An aspect of many nonparametric tests is that they are invariant under rank-order transformations of the data values. In other words, we may change actual data values as long as we preserve relative ranks, and the results of our hypothesis tests will not change. Data that can be replaced by rank-order values without losing information are often called rank or ordinal data. For example, if we believe that the list (25, 54, 107.6, 3400) contains only ordinal information, then we can replace it with the list (1, 2, 3, 4) without loss of information.

# Categorical (Nominal) Data

Some nonparametric methods are invariant under *permutation* transformations. That is, we can interchange data values and get the same results, provided we keep all cases with one value before transformation and single valued after transformation. Data that can be treated like this are often called **categorical** or **nominal**. For example, if we believe the list (1, 1, 5, 5, 10, 10, 10) contains only nominal information, then we can replace it with the list (red, red, green, green, blue, blue, blue) without loss of information.

# Robustness

Sometimes, we may think our data contain more than nominal or ordinal information, but we want to be extremely conservative. For example, our data may contain extreme outliers. We could eliminate these outliers, downweight them, or apply some nonlinear transformation to reduce their influence. An alternative, however, would be to use a nonparametric test based on ranks. If we can afford to lose some power by using a nonparametric test, we can gain robustness. If we find significant results with a nonparametric test, no skeptic can challenge us on the basis of scale artifacts or outliers. This is not to say that you should retreat to nonparametric methods every time you find a histogram that does not look normal. If you can find a simple normalizing transformation that works, such as logging the data, you will almost always be better off using normal parametric methods. For more information about nonparametric statistical methods, see Hollander and Wolfe (1999), Lehmann and D'Abrera (1998), Mosteller and Rourke (1973), Siegel and Castellan (1988).

# Nonparametric Tests for Independent Samples in SYSTAT

# Kruskal-Wallis Test Dialog Box

For the Kruskal-Wallis test, the values of a variable are transformed to ranks (ignoring group membership) to test that there is no shift in the center of the groups (that is, the centers do not differ). This is the nonparametric analog of a one-way analysis of variance. When there are only two groups, this procedure reduces to the Mann-Whitney test, the nonparametric analog of the two-sample *t* test.

To open the Kruskal-Wallis Test dialog box, from the menus choose:

Analyze
Nonparametric Tests
Kruskal-Wallis...



Selected variable(s). SYSTAT computes a separate test for each variable in the Selected variable(s) list.

Grouping variable. The grouping variable can be a string or numeric.

Save statistic. Saves the Kruskal-Wallis test statistic and p-value to a data file.

# Two-Sample Kolmogorov-Smirnov Test Dialog Box

The two-sample Kolmogorov-Smirnov (KS) test tests whether two independent samples come from the same distribution by comparing the two-sample cumulative distribution functions. The test assumes that both samples come from exactly the same distribution. The samples can be organized as two variables (two columns) or as a single variable (column) with a second variable that identifies group membership. The latter layout is necessary when sample sizes differ.

To open the Two-Sample Kolmogorov-Smirnov Test dialog box, from the menus choose:

Analyze
Nonparametric Tests
Two-Sample KS...



Selected variable(s). If each sample is a separate variable, both variables must be selected. Selecting three or more variables yields a separate test for each pair of variables. If you select only one variable, you must identify the grouping variable. If you do not select any of the variables, two sample tests are computed using numeric variables.

**Grouping variable.** If the grouping variable has three or more levels, separate tests of each pair of levels result. Selecting multiple variables and a grouping variable yields a test comparing the groups for the first variable only.

**Save statistic.** Saves the KS test statistics and *p*-values for all pairs of groups to a data file.

# **Using Commands**

First, specify your data with USE filename. Continue with:

```
NPAR

SAVE or WORK filename

KRUSKAL varlist*grpvar /SAMPLE = BOOT(m,n)

= JACK
= SIMPLE(m,n)

KS varlist*grpvar /SAMPLE = BOOT(m,n)

= JACK
= SIMPLE(m,n)
```

# Nonparametric Tests for Related Variables in SYSTAT

A need for comparing variables frequently arises in 'before' and 'after' studies, where each subject is measured before and after a treatment. Here your goal is to determine if any difference in response can be attributed to chance alone. As a test, researchers often use the sign test or the Wilcoxon signed-rank test. For these tests, the measurements need not be collected at different points in time; they simply can be two measures on the same scale for which you want to test differences. If you have more than two measures for each subject, the Friedman test can be used.

# Sign Test Dialog Box

The sign test compares two related samples and is analogous to the paired *t* test. For each case, the sign test computes the sign of the difference between two variables. This test is attractive because of its simplicity and the fact that the variance of the first measure in each pair may differ from that of the second. However, you may be losing information since the magnitude of each difference is ignored.

To open the Sign Test dialog box, from the menus choose:

Analyze
Nonparametric Tests
Sign...



Selected variable(s). Selecting three or more variables yields separate tests for each pair of variables.

Save statistic. Saves the matrix of test statistics and the matrix of p-values to a data file.

# Wilcoxon Signed-Rank Test Dialog Box

The Wilcoxon test compares the rank values of the variables you select, pair by pair, and displays the count of positive and negative differences. For ties, the average rank is assigned. It then computes the sum of ranks associated with positive differences and the sum of ranks associated with negative differences. The test statistic is the lesser of the two sums of ranks. To open the Wilcoxon Signed-Rank Test dialog box, from the menus choose:

Analyze
Nonparametric Tests
Wilcoxon...



Selected variable(s). All pairs of these variables are used for the test.

Save statistic. Saves the Wilcoxon Signed-Rank test statistic and p-value for all pairs of groups to a data file.

# Friedman Test Dialog Box

To open the Friedman Test dialog box, from the menus choose:

Analyze Nonparametric Tests Friedman...



**Selected variable(s)**. The Friedman test is performed separately for each of the selected variables using grouping and blocking variables, if specified.

**Grouping variable.** Select the grouping variable to define the levels of the first factor of the two-way data. The Friedman test tests the equality of the levels of the grouping effect. If you specify the grouping variable, you must specify the blocking variable also.

Blocking variable. Select the blocking variable to define the levels of the second factor of the two-way data. If you specify the blocking variable, you must specify the grouping variable also.

Save statistic. Saves the Friedman test statistic and p-value to a data file.

**Note:** If you do not specify the grouping and blocking variables, the Friedman test considers the selected variables as the groups and rows of data file as the blocks.

# Quade Test Dialog Box

Like the Friedman test, the Quade test carries out a test of significance of one factor in a randomized block design. The Quade test makes use of the within-block range to assign weights to each block, whereas the Friedman test gives equal weights to all the blocks.

To open the Quade Test dialog box, from the menus choose:

Analyze
Nonparametric Tests
Quade...



Selected variable(s). If more than one variable is selected, Quade's analysis is carried out separately for each variable.

**Grouping variable.** Select the grouping variable to define the levels of the first factor of the two-way data. The Quade test tests the equality of the levels of the grouping effect. If you specify the grouping variable, you must specify the blocking variable also.

**Blocking variable.** Select the blocking variable to define the levels of the second factor of the two-way data. If you specify the blocking variable, you must specify the grouping variable also.

**Note:** If you do not specify the grouping and blocking variables, the Quade test considers the selected variables as the groups and rows of data file as the blocks.

**Pairwise comparisons.** Check the Pairwise comparisons option to perform the pairwise (multiple) comparisons test among different levels of the grouping variable.

Save statistic. Saves the Quade test statistic and p-value to a data file. If the Pairwise comparisons option is selected it saves the statistics and p-value for each pair of group levels.

# **Using Commands**

```
First, specify your data with USE filename. Continue with:
```

```
SAVE or WORK filename
SIGN varlist/SAMPLE = BOOT(m,n)
= JACK
= SIMPLE(m,n)
WILCOXON varlist/SAMPLE = BOOT(m,n)
= JACK
= SIMPLE(m,n)
FRIEDMAN varlist=groupvar blockvar
QUADE varlist=groupvar blockvar/MULTIPLE
```

# Nonparametric Tests for Single Samples in SYSTAT

# One-Sample Kolmogorov-Smirnov Test Dialog Box

The one-sample Kolmogorov-Smirnov test is used to compare the shape and location of a sample distribution to a specified distribution. The Kolmogorov-Smirnov test and its generalizations are among the handiest of distribution-free tests. The test statistic is based on the maximum difference between two cumulative distribution functions (CDF). In the one-sample test, one of the CDF's is continuous and the other is discrete. Thus, it is a companion test to a probability plot.

To open the One-Sample Kolmogorov-Smirnov Test dialog box, from the menus choose:

Analyze
Nonparametric Tests
One-Sample KS...



**Selected variable(s).** The One-Sample Kolmogorov-Smirnov test is performed separately for each of the variables in the selected list.

**Distribution.** Allows you to choose the test distribution. Many options allow you to specify parameters of the hypothesized distribution. For example, if you choose a Uniform distribution, you can specify values for min and max. Distributions include:

- Benford's Law. Compares the data to the Benford's law(B) distribution.
- **Binomial.** Compares the data to the binomial (n, p) distribution.
- **Discrete uniform.** Compares the data to the discrete uniform(N) distribution.
- Geometric. Compares the data to the geometric (p) distribution.
- $\blacksquare$  Hypergeometric. Compares the data to the hypergeometric (N, m, n) distribution.
- Logarithmic series. Compares the data to the logarithmic series (theta) distribution

- Negative binomial. Compares the data to the negative binomial (k, p) distribution
- Poisson. Compares the data to the Poisson (lambda) distribution.
- Zipf. Compares the data to the Zipf(shp) distribution.
- Beta. Compares the data to the beta(shp1, shp2) distribution.
- Cauchy. Compares the data to the Cauchy(loc, se) distribution.
- Chi-square. Compares the data to the chi-square(df) distribution.
- Double exponential (Laplace). Compares the data to the Laplace (loc, sc) distribution.
- Erlang. Compares the data to the Erlang(shp, sc) distribution.
- **Exponential.** Compares the data to the exponential(loc, sc) distribution.
- **F.** Compares the data to the F(df1, df2) distribution.
- Gamma. Compares the data to the gamma (shp, sc) distribution.
- Gompertz. Compares the data to the Gompertz (b, c) distribution.
- Gumbel. Compares the data to the Gumbel (loc, sc) distribution.
- Inverse Gaussian (Wald). Compares the data to the Wald (loc, sc) distribution.
- Logistic. Compares the data to the logistic (loc.sc) distribution.
- Loglogistic. Compares the data to the loglogistic (logse, shp) distribution.
- Lognormal. Compares the data to the lognormal (loc, sc) distribution.
- Logitnormal. Compares the data to the logit normal (loc, sc) distribution.
- Non-central chi-square. Compares the data to the non-central chi-square(df, delta) distribution.
- Non-central F. Compares the data to the non-central F(df1, df2, delta) distribution.
- Non-central t. Compares the data to the non-central t(df, delta) distribution.
- Normal. Compares the data to the normal (loc, sc) distribution.
- Pareto. Compares the data to the Pareto (thr, shp) distribution.
- Rayleigh. Compares the data to the Rayleigh(sc) distribution.
- Smallest extreme value. Compares the data to the smallest extreme value (loc,sc)
- Studentized maximum modulus. Compares data to the studentized maximum modulus (k, v) distribution.
- **Studentized range.** Compares the data to the Studentized range (k, df) distribution.
- t. Compares the data to the t(df) distribution.

- Triangular. Compares the data to the triangular(a, b, c) distribution.
- Uniform. Compares the data to the uniform(min, max) distribution.
- Weibull. Compares the data to the Weibull(sc, shp) distribution.
- Lilliefors. The Lilliefors test uses the standard normal distribution. The variables
  you select are automatically standardized, and the test determines whether the
  standardized versions are normally distributed.

**Note:** Lilliefors is not a distribution but is included under 'distributions' for convenience. It can be used to test normality when the parameters are not specified

**Save statistic.** Saves the KS test statistic and *p*-value to a data file.

# Anderson-Darling Test Dialog Box

The Anderson-Darling test (Anderson and Darling, 1952, 1954) is a standard goodness-of-fit test. It is based on the squared difference between the theoretical and empirical distribution functions, weighted by  $[F(x)(1-F(x))]^{-1}$ . This test has good power properties over a wide range of alternative distributions.

To open the Anderson-Darling Test dialog box, from the menus choose:

Analyze
Nonparametric Tests
Anderson-Darling...



Selected variable(s). The Anderson-Darling test is performed separately for each of the variables in the selected list.

**Distribution.** Allows you to choose the test distribution. Many options allow you to specify parameters of the hypothesized distribution. For example, if you choose a Uniform distribution, you can specify values for min and max. Distributions include:

- Beta. Compares the data to the beta(shp1, shp2) distribution.
- Cauchy. Compares the data to the Cauchy(loc, sc) distribution.
- Chi-square. Compares the data to the chi-square(df) distribution.
- Double Exponential(Laplace). Compares the data to the Laplace (loc, sc) distribution.
- Erlang. Compares the data to the Erlang(shp, sc) distribution.

- **Exponential.** Compares the data to the exponential (loc, sc) distribution.
- **F.** Compares the data to the F(df1, df2) distribution.
- Gamma. Compares the data to the gamma(shp, sc) distribution.
- Gompertz. Compares the data to the Gompertz(b, c) distribution.
- Gumbel. Compares the data to the Gumbel(loc, sc) distribution.
- Inverse Gaussian (Wald). Compares the data to the Wald(loc, sc) distribution.
- **Logistic.** Compares the data to the logistic(loc,se) distribution.
- Loglogistic. Compares the data to the loglogistic (logsc, shp) distribution.
- Logitnormal. Compares the data to the logit normal(loc, sc) distribution.
- Lognormal. Compares the data to the lognormal(loc, sc) distribution.
- Non-central chi-square. Compares the data to the non-central chi-square(dt,delta) distribution.
- **Non-central F.** Compares the data to the non-central F(df1, df2, delta) distribution.
- Non-central t. Compares the data to the non-central t(df, delta) distribution.
- Normal. Compares the data to the normal(loc, sc) distribution.
- Pareto. Compares the data to the Pareto(thr, shp) distribution.
- Rayleigh. Compares the data to the Rayleigh(sc) distribution.
- Smallest extreme value. Compares the data to the smallest extreme value (loc.sc)
- **Studentized maximum modulus.** Compares data to the Studentized maximum modulus (k, v) distribution.
- **Studentized range.** Compares the data to the Studentized range(k, df) distribution.
- **t.** Compares the data to the t(df) distribution.
- Triangular. Compares the data to the triangular(a, b, c) distribution.
- Uniform. Compares the data to the uniform(min, max) distribution.
- Weibull. Compares the data to the Weibull(sc, shp) distribution.

**Save statistic.** Saves the Anderson-Darling test statistic and *p*-value to a data file.

# Wald-Wolfowitz Runs Test Dialog Box

The Wald-Wolfowitz runs test detects serial patterns in a run of numbers (for example, runs of heads or tails in a series of coin tosses). The runs test measures such behavior for dichotomous (or binary) variables.

To open the Wald-Wolfowitz Runs Test dialog box, from the menus choose:

Analyze
Nonparametric Tests
Wald-Wolfowitz Runs...



Selected variable(s). Runs are calculated separately for each of the variables selected into the selected variables text box.

Cut. Specify a cut point value for continuous variables to determine whether values fluctuate in patterns above and below this cutpoint. This feature is useful for studying trends in residuals from a regression analysis.

**Save statistic.** Saves the number of runs, test statistic and *p*-value to a data file.

# **Using Commands**

First, specify your data with USE filename. Continue with:

```
NPAR

SAVE or WORK filename

AD varlist / distribution=parameters SAMPLE = BOOT m, n = JACK = SIMPLE(m,n)

RUNS varlist / CUT=n SAMPLE = BOOT(m,n) = JACK = SIMPLE(m,n)

KS varlist / distribution=parameters SAMPLE - BOOT(m,n) = JACK = SIMPLE(m,n)
```

Possible distributions for the Kolmogorov-Smirnov test and Anderson-Darling test include ('*' below indicates distributions available for Anderson-Darling test):

Distribution	Parameters
BENFORD	В
*BETA	shp1,shp2
BINOMIAL	n, p
*CAUCHY	loc,sc
*CHISQ	df
DUNIFORM	N
*DEXP	loc,sc
ERLANG	shp, sc
*EXP	loc,sc
*F	dfl, df2
*GAMMA	shp,sc
GEOMETRIC	р
*GOMPERTZ	b,c
*GUMBEL	loc,sc
HGEOMETRIC	N,m,n
*IGAUSSIAN	loc,sc
LILLIEFORS	

LSERIES	theta
*LOGISTIC	loc,sc
*ENORMAL	loc,sc
*LLOGISTIC	logse, shp
*LNORMAL	loc,sc
NBINOMIAL	k,p
*NCCHISQ	df, delta
*NCF	df1, df2, delta
*NCT	df, delta
*NORMAL	loc,sc
*PARETO	thr,shp
POISSON	lambda
*RAYLEIGH	sc
*SEV	loc,sc
*SMM	k,df
*RANGE	k,df
* [	df
*TRIANGULAR	a,b,c
*UNIFORM	min, max
*WEIBULL	sc.shp
ZIPF	shp

Note: min= Minimum; max - Maximum; loc Location parameter; se=Scale parameter; shp Shape parameter; thr= Threshold parameter

# Usage Considerations

Types of data. NPAR uses rectangular data only.

Print options. The output is standard for all PLENGTH options.

Quick Graphs. NPAR produces no Quick Graphs.

Saving files. NPAR saves test statistics and p-values into a SYSTAT data file.

BY groups. You can perform tests using a BY variable. The output includes separate tests for each level of the BY variable.

Case frequencies. NPAR uses a FREQUENCY variable (if present) to increase the number of cases in the analysis.

Case weights. WEIGHT is not available in NPAR.

# Examples

# Example 1 Kruskal-Wallis Test

For two or more independent groups, the Kruskal-Wallis test statistic tests whether the k samples come from identically distributed populations. If the grouping variable has only two levels, the Mann-Whitney (Wilcoxon) statistic is reported. For two groups, the Kruskal-Wallis test and the Mann-Whitney U statistic are analogous to the independent groups t test.

In this example, we compare the percentage of people who live in cities (*LRBAN*) for three groups of countries: European, Islamic, and New World. We use the *OURWORLD* data file that has one record for each of the 57 countries with the variables *URBAN* and *GROUP*\$. We include a box plot of *URBAN* grouped by *GROUP*\$ to illustrate the test.

## The input is:

NPAR USE OURWORLD DENSITY URBAN * GROUP\$ / BOX TRANS KRUSKAL URBAN * GROUP\$

# The output is:



# Kruskal-Wallis One-way Analysis of Variance for 57 Cases

# Categorical Values Encountered during Processing are

Variables GROUP\$ (3levels)	Levels Europe	Islamic	NewWorld		
Dependent Variable Grouping Variable	URBAN GROUP:	ş			
Group Count Europe 19 Islamic 16 NewWorld 21	Rank 5ui 765.00 198.00 633.00	0			
Kruskal-Wallis Test	Statistic	: 25.759	3° 7 7 % 1°	, w. t.t	*

In the box plot, the median of each distribution is marked by the vertical bar inside the box: the median for European countries is 69%; for Islamic countries, 24.5%; and for New World countries, 50%. We ask, "Is there a difference in typical values of *URBAN* among these groups of countries?"

Looking at the Kruskal-Wallis results, we find a p-value < 0.0005. We conclude that urbanization differs markedly across the three groups of countries.

# Example 2 Mann-Whitney Test

When there are only two groups, Kruskal-Wallis provides the Mann-Whitney test. Note that your grouping variable must contain exactly two values. Here we modify the Kruskal-Wallis example by deleting the Islamic group. We ask, "Do European nations tend to be more urban than New World countries?"

### The input is:

```
NPAR
USE OURWORLD
SELECT GROUPS <> 'ISLAMIC'
KRUSKAL URBAN * GROUPS
```

# The output is:

# Kruskal-Wallis One-way Analysis of Variance for 57 Cases

```
Categorical Values Encountered during Processing are

Variables Levels Europe NewWorld

Data for the following results were selected according to SELECT group$ <> 'Islamic'

Dependent Variable ' URBAN Grouping Variable ' GROUP$

Group Count Rank Sum Europe 19 475.000 345.000

Mann-Whitney U Test Statistic: 285.000

Mann-Whitney U Test Statistic: 5.370

df : 1
```

The percentage of the population living in urban areas is significantly greater for European countries than for New World countries (*p*-value 0.02).

# Two-Sample Kolmogorov-Smirnov Test

The two-Sample Kolmogorov-Smirnov test measures the discrepancy between two-sample cumulative distribution functions.

In this example, we test if the distributions of URBAN, the proportion of people living in cities, for European and New World countries have the same mean, standard deviation, and shape.

### The input is:

NPAR
USE OURWORLD
SELECT GROUP\$ <> 'ISLAMIC'
KS URBAN * GROUP\$

### The output is:

### Kolmogorov-Smirnov Two Sample Test Results

Categorical Values Encountered during Processing are

Variables Levels GROUP\$ (2 levels) Europe NewWorld

Data for the following results were selected according to SELECT group\$ <> 'Islamic'

### Maximum Differences for Pairs of Groups

Europe NewWorld
Europe 0.000
NewWorld 0.519 0.000

### Two-Sided Probabilities

Europe | 1.000 NewWorld | 0.009 1.000

From the *p*-value, we can conclude that the population distributions for European and New World countries are different.

# Example 3 Sign Test

Here, for a sample of countries (not subjects), we ask, "Does life expectancy differ for males and females?" Using the *OURWORLD* data, we compare *LIFEEXPF* and *LIFEEXPM*, using stem-and-leaf plots to illustrate the distributions. The sign test counts the number of times male life expectancy is greater than that for females and vice versa.

## The input is:

USE OURWORLD STEM LIFEEXPF LIFEEXPM / LINES=10 NPAR SIGN LIFEEXPF LIFEEXPM

#### The output is:

```
Stem and Leaf Plot of Variable: LIFEEXPF. N = 57
 Minimum : 44.000
 Lower Hinge : 65.000
 Median
 Upper Hinge: 79.000
 Maximum : 83.000
                    679
                    0234
                5
                   55667
                6 H 567788889
                   01344
                7 M 5666777778889999
                8 0000111111223
 Stem and Leaf Plot of Variable: LIFEEXPM, N = 57
 Minimum : 40.000
Lower Hinge : 61.000
 Median : 68.000
 Upper Hinge: 73.000
 Maximum : 75,000
    * * * Outside Values * * *
               4 56789
                  122334
               6 H 01222444
               6 M 5556778899
               7 H 0011112233333333334444
                  55555
Sign Test Results
Counts of Differences (Row Variable Greater than Column)
           : LIFEEXPM LIFEEXPF
  LIFEEXPM :
             0.000
                          2.000
  LIFEEXPF !
               55.000
                          0.000
Two-Sided Probabilities for Each Pair of Variables
           LIFEEXPM LIFEEXPF
 LIFEEXPM :
               1.000
 LIFEEXPF
              0.000
                        1.000
```

For each case, SYSTAT first reports the number of differences that were positive and the number that were negative. In two countries (Afghanistan and Bangladesh), the males five longer than the females; the reverse is true for the other 55 countries. Note that the layout of this output allows reports for many pairs of variables.

In the two-sided probabilities panel, the smaller count of differences (positive or negative) is compared to the total number of nonzero differences. SYSTAT computes a sign test on all possible pairs of specified variables. For each pair, the difference

between values on each case is calculated, and the number of positive and negative differences is printed. The lesser of the two types of differences (positive or negative) is then compared to the total number of nonzero differences. From this comparison, the probability is computed according to the binomial (for a total less than or equal to 25) or a normal approximation to the binomial (for a total greater than 25). A correction for continuity (0.5) is added to the normal approximation's numerator, and the denominator is computed from the null value of 0.5. The large sample test is thus equivalent to a chi-square test for an underlying proportion of 0.5. The probability for our test is 0.000 (or · 0.0005). We conclude that there is a significant difference in life expectancy; females tend to live longer.

# Example 4 Wilcoxon Test

Here, as in the sign test example, we ask, "Does life expectancy differ for males and females?"

#### The input is:

USE OURWORLD
NPAR
WILCOXON LIFEEXPF LIFEEXPM

#### The output is:

Wilcoxon Signed Ranks Test Results

Counts of Differences (Row Variable Greater than Column)

; LIFEEXPM LIFEEXPF
LIFEEXPM : 0.000 2.000
LIFEEXPF : 55.000 0.000

2 = (Sum of Signed ranks)/Square root(Sum of Squared ranks)

LIFBEXPM LIFBEXPF
LIFBEXPM ( 0.000
LIFBEXPF ( 6.535 0.000

Two-Sided Probabilities using Normal Approximation

LIFEEXPM LIFEEXPF
LIFEEXPM : 1.000
LIFEEXPF : 0.000 1.000

Two-sided probabilities are computed from an approximate normal variate (Z in the output) constructed from the lesser of the sum of the positive ranks and the sum of the

negative ranks (for example, Marascuilo and McSweeney, 1977, p. 338). The Z for our test is 6.535 with a probability less than 0.0005. As with the sign test, we conclude that females tend to live longer.

# Example 5 Sign and Wilcoxon Tests for Multiple Variables

SYSTAT can compute a sign or Wilcoxon test on all pairs of specified variables (or all numeric variables in your file). To illustrate the layout of the output, we add two more variables to our request for a sign test: the birth-to-death ratios in 1982 and 1990.

#### The input is:

```
NPAR
USE OURWORLD
SIGN B_TO_D82 B_TO_D LIFEEXPM LIFEEXPF
```

#### The output is:

#### Sign Test Results

#### Counts of Differences (Row Variable Greater than Column)

	: B_TO_D82	LIFEEXPM	LIFEEXPF	E	
B_TO_D82 LIFEEXPM LIFEEXPF B_TO_D	0.000 57.000 57.000 36.000	0.000 0.000 55.000 0.000	0.000 2.000 0.000 0.000		-

#### Two-Sided Probabilities for Each Pair of Variables

	٠,	T 4.	TrELL M	1 . 5 + 5	er Iv.
9	+ ~				
B TO D82	4	1.000			
LĨFEĒXPM	1	0.000	1.000		
LIFEEXPF	5	0.000	0.000	1.000	
B_TO_D	į	0.013	0.000	0.000	1.000

The results contain some meaningless data. SYSTAT has ordered the variables as they appear in the data file. When you specify more than two variables, there may be just a few numbers of interest. In the first column, the birth-to-death ratio in 1982 is compared with the birth-to-death ratio in 1990—and with male and female life expectancy! Only the last entry is relevant—36 countries have larger ratios in 1990 than they did in 1982. In the last column, you see that 17 countries have smaller ratios in 1990. The life expectancy comparisons you saw in the last example are in the middle of this table. In the two-sided probabilities panel, the probability for the birth-to-death ratio comparison (0.013) is at the bottom of the first column. We conclude that the ratio

is significantly larger in 1990 than it was in 1982. Does this mean that the number of births is increasing or that the number of deaths is decreasing?

# Example 6 Friedman Test

The following example is from Kutner, Nachtsheim, Neter and Li (2004). Five blocks of judges were given the task of analyzing three treatments. We are interested in testing the equality of the treatments. These data are in the file *BLOCK*.

#### The input is:

NPAR USE BLOCK FRIEDMAN JUDGMENT=TREAT BLOCK

#### The output is:

## Friedman Two-Way Analysis of Variance Results for 15 Cases

Categorical Values Encountered during Processing are

```
Levels
 Variables
                               2.000
                                         3.000
                     1.000
 TREAT (3levels)
                                                   4.000
                                                             5,000
                                         3.000
                     1.000 2.000
 BLOCK (5levels)
 Dependent Variable : JUDGMENT
                          TREAT
 Grouping Variable
                          BLOCK
 Blocking Variable
 Number of Groups
Number of Blocks
  TREAT Rank Sum
         5.000
            15,000
Friedman Test Statistic
Kendall Coefficient of Concordance : 1.000
p-value is 0.007 assuming Chi-square Distribution with 2 df
```

Friedman's test rejects the hypothesis at the 5% level.

#### Chapter 8

# Example 7 Friedman Test for the Case with Ties

In this example, we study the number of books sold in a week in 12 bookstores of four booksellers and ask the question: "Is there a differential preference for the books in the stores?" Friedman's test depends only on the ranks of the books in each shop and notice that there are ties in the data set. The computation for the tied case is somewhat different and SYSTAT performs this computation. The data are fictitious, but made to correspond to Example 1 in Conover (1999, pp 371-373).

#### The input is:

```
NPAR
USE BOOKPREF
FRIEDMAN BOOKS = BOOKSELLER STORE
```

#### The output is:

## Friedman Two-Way Analysis of Variance Results for 48 Cases

Categorical Values Encountered during Processing are

```
Variables
BOOKSELLER (41evels)
1 2 3 4 5
1 1 2 3 4 5
1 1 12

Dependent Variable BOOKS Grouping Variable Blocking Variable Number of Groups Anumber of Blocks 12

BOOKSELLER Rank Sum 1 38.000
2 23.500
3 24.500
4 34.000

Friedman Test Statistic Rendall Coefficient of Concordance : 0.225
```

Friedman's test in this case rejects the hypothesis at the 5% level.

p-value is 0.044 assuming Chi-square Distribution with 3 df

You may note that while computing the test statistic, SYSTAT has taken note of the ties in the data. When there is a tie, the tied observations receive the same rank, which is the average of the ranks they would get in the situation with no ties. The subsequent observations get ranks that they would have got had there been no ties. Thus the sum of the ranks remains the same whether there are ties or no ties.

# Example 8 Quade Test for Cases with Ties

The data were collected in a survey conducted in 7 hospitals of a certain city over a 12-month period divided into 4 seasons, and the numbers of newborn babies in each season were obtained. The data set is taken from Conover (1999). The question of interest is whether the seasonal factor has any influence on the number of births.

#### The input is:

```
NPAR
USE BIRTHS2
QUADE BIRTHS = SEASON$ HOSPITAL$
```

#### The output is:

#### Quade Two-Way Analysis of Variance Results for 28 Cases

Dependent Variable	BIRTHS
Grouping Variable	SEASONS
Blocking Variable	HOSPITAL\$
Number of Groups	4
Number of Blocks !	7

#### Categorical Values Encountered during Processing are

Variables		Leve.	ls			
SEASON\$ (	llevels)	FALL	SPRING	SUMMER	WINTER	
HOSPITAL\$	(7levels)	A	В	C	Ð	E
		F	G			
SEASON\$	Weight	ed				
	Midranks S	um				
FALL	-23.0	00				
SPRING	37.5	00				
SUMMER	-5.2	50				
WINTER	-9.2	50				

Quade Test Statistic: 4.431 p-value is 0.017 approximated by F(3, 18) Distribution.

The Quade test rejects the null hypothesis at 5% level.

# Example 9 Quade Test for Multiple Comparisons

We continue with the previous example. For the *BIRTHS2* data, the Quade test rejects the null hypothesis at 5% level. We therefore need to perform a multiple comparisons test to see which pairs of means differ significantly.

#### Chapter 8

#### The input is:

NPAR
USE BIRTHS2
QUADE BIRTHS = SEASON\$ HOSPITAL\$ / MULTIPLE

#### The output is:

#### Quade Multiple Comparisons Test for 28 Cases

Dependent Variable BIRTHS
Grouping Variable SEASONS
Blocking Variable HOSPITALS
Number of Groups 4
Number of Blocks 7

#### Categorical Values Encountered during Processing are

Variables	Levels				
SEASON\$ (41evels) HOSPITAL\$ (71evels)	FALL	SPRING	SUMMER	WINTER	Ε
(10011111111111111111111111111111111111	F	G			

#### Matrix of Pairwise Differences (of Weighted Midranks)

SEASON\$	FALL	SPRING	SUMMER	WINTER
FALL	0.000			
SPRING	60.500	0.000		
SUMMER	17.750	-42.750	0.000	
WINTER	13.750	-46.750	-4.000	0.000

#### Matrix of p-values

SEASON\$	FALL	SPRING	SUMMER	WINTER
FALL	1.000			
SPRING	0.003	1.000		
SUMMER	0.325	0.026	1.000	
WINTER	0.444	0.016	0.822	1.000

Thus the 4 seasons can be divided into 2 groups, one comprising WINTER, SUMMUR and FALL, and the other SPRING.

# Example 10 One-Sample Kolmogorov-Smirnov Test for Normal Distribution

In this example, we use SYSTAT's random number generator to make a normally distributed random number and then test it for normality. We use the variable Z as our normal random number and the variable ZS as a standardized copy of Z. This may seem strange because normal random numbers are expected to have a mean of 0 and a standard deviation of L. This is not exactly true in a sample, however, so we standardize the observed values to make a variable that has exactly a mean of 0 and a standard deviation of 1.

#### The input is:

```
WANDSAMP
UNIVARIATE ZRN(0,1) / SIZE = 50 NSAMP = 1 RSEED = 16
LET Z = S1
LET ZS = Z
STANDARDIZE ZS / SD
CSTATISTICS
DSAVE NORMAL
USE NORMAL
NPAR
KS Z ZS / NORMAL = 0,1
```

We use CSTATISTICS to examine the mean and standard deviation of our two variables. Remember, if you correlated these two variables, the Pearson correlation would be 1. Only their mean and standard deviations differ. Finally, we test *Z* for normality.

## The output is:

N of Cases Minimum Maximum Arithmetic Mean Standard Deviation		\$1 50.000 -2.118 2.103 0.105 0.981	50.000 -2.118 2.103 0.105 0.981	50.000 -2.266 2.036 0.000 1.000
---------------------------------------------------------------------------	--	----------------------------------------------------	---------------------------------------------	---------------------------------------------

Kolmogorov-Smirnov One Sample Test using Normal(0.000, 1.000) Distribution

O'Emogra-				1 (2 tail)
Variable Z	N o	E Cases 50 50	Maximum Difference 0.150 0.112	p-value(2-tail) 0.210 0.553
2S				

Why are the probabilities different? The one-sample Kolmogorov-Smirnov test pays attention to the shape, location, and scale of the sample distribution. Z and ZS have the same shape in the population (they are both normal). Because ZS has been standardized, however, it has a different location.

Thus, you should never use the Kolmogorov-Smirnov test with the normal distribution on a variable you have standardized. The probability printed for ZS is misleading. If you select Chi-Square, Normal or Uniform, you are assuming that the variable you are testing has been randomly sampled from a chi-square (with stated degrees of freedom), standard normal or uniform (0,1) population.

#### Lilliefors Test

Here we perform a Lilliefors test using the data generated for the one-sample Kolmogorov-Smirnov example. Note that Lilliefors automatically standardizes the variables you list and tests whether the standardized versions are normally distributed.

#### The input is:

USE NORMAL NPAR KS Z ZS / LILLIEFORS

#### The output is:

Kolmogorov-Smirnov One Sample Test using Normal (0.000, 1 000) Distribution

Variable	i N	of Cases	Maximum Difference	Lilliefors Probability (2	tail)
Z	1	50	0.112	0.113	
25	1	50	0.112	0.113	

Notice that the probabilities are smaller this time even though the Maximum Difference is the same as before. The probability values for Z and ZS are the same because this test pays attention only to the shape of the distribution and not to the location or scale. Neither significantly differs from normal.

This example was constructed to contrast Normal and Lilliefors. Many statistical package users do a Kolmogorov-Smirnov test for normality on their standardized data without realizing that they should instead do a Lilliefors test.

One last point: The Lilliefors test can be used for residual analysis in regression. Just standardize your residuals and use Nonparametric Tests to test them for normality. It you do this, you should always look at the corresponding normal probability plot.

# Example 11 One-Sample Kolmogorov-Smirnov Test for Non-Central Chi-square Distribution

Suppose a researcher wants to test if the following observations are realizations from the non-central chi-square distribution with parameters (df, delta) as (1, 3.5) 0.01, 0.61, 0.30, 3.06, 0.02, 0.87, 6.50, 3.28, 0.14, 0.19, 0.39, 2.41, 1.49, 1.02, 1.67 Input this data in a column and name it as  $\Lambda$ . We will use one-sample Kolmogorov-Smirnov test.

## The input is:

```
NPAR
KS X / NCCHISQ=1, 3.5
```

#### The output is:

Kolmogorov-Smirnov One Sample Test using Non-central Chi-square(1.00, 3.50)Distribution

From the *p*-value, the researcher can easily conclude that the data differ significantly from the non-central chi-square distribution with the parameters specified.

# Example 12 Anderson-Darling Test

An electrical engineer wants to test whether the life of a certain equipment is exponentially distributed with a mean life of one year. From the testing department he collects lifetimes of 20 units of that equipment as: 0.98, 2.12, 3.65, 0.65, 0.33, 0.64, 1.02, 0.25, 0.40, 1.04, 2.12, 0.58, 1.21, 0.71, 0.17, 0.14, 0.55, 0.54, 2.06, and 0.63. He then plots the data on an exponential probability paper, but is not completely satisfied with the visual inspection of the probability plot. He therefore uses the Anderson-Darling test.

## The input is:

```
USE LIFE
NPAR
AD LIFE / EXP = 0,1
```

## The output is:

Anderson-Darling Test using Exponential (0.00, 1.00) Distribution

```
Variable N of Cases AD Statistic p-value 0.556
```

The Anderson-Darling test indicates that equipment data can indeed be modeled as an exponential distribution with a mean life of one year.

# Example 13 Wald-Wolfowitz Runs Test

We use the *OURWORLD* file and cut *MIL* (dollars per person each country spends on the military) at its median and see whether countries with higher military expenditures are grouped together in the file. (Be careful when you use a cutpoint on a continuous variable, however. Your conclusions can change depending on the cutpoint you use.) We include a scatterplot of the military expenditures against the case number (order of each country in the file), adding a dotted line at the cutpoint of 53.889.

#### The input is:

```
NPAR
USE OURWORLD
RUNS MIL / CUT=53.889
IF (COUNTRYS='Iraq' or COUNTRYS='Libya' or COUNTRYS='Canada',
THEN LET COUNTRY2$=COUNTRY$
PLOT MIL / LINE DASH=11 YLIM=53.9 LABEL=COUNTRY2$ SYMBOL=2.
CSIZE=2
```

#### The output is:

#### Wald-Wolfowitz Runs Test using Cut Point : 53.889





The test is significant (p-value 0.001). The military expenditures are not ordered randomly in the file.

The Furopean countries are first in the file, followed by Islamic and New World countries. Looking at the plot, notice that the first 20 cases exceed the median. The remaining cases are for the most part below the median. Iraq, Libya, and Canada stand apart from the other countries in their group. When the line joining the MIL values crosses the median line, a new run begins. Thus, the plot illustrates the 17 runs.

## Computation

## Algorithms

Probabilities for the Kolmogorov-Smirnov statistic for  $n \le 25$  are computed with an asymptotic negative exponential approximation.

Lilhefors probabilities are computed by a nonlinear approximation to Lilliefors's values. Dallal and Wilkinson (1986) recomputed the Lilliefors's table using up to a million replications for estimating critical values. They found a number of Lilliefors' values to be incorrect. Consequently, the SYSTAT approximation uses the corrected values. The approximation discussed in Dallal and Wilkinson and used in SYSTAT differs from the tabled values by less than 0.01 and by less than 0.001 for p < 0.05.

For the *p*-value associated with the Anderson-Darling test statistic we use formulae from Marsagilia and Marsagilia (2004).

## References

- Anderson, T. W. and Darling, D. A. (1952). Asymptotic theory of certain 'goodness-of-fit' criteria based on stochastic processes, Annals of Mathematical Statistics, 23, 193-212.
- Anderson, T. W. and Darling, D. A. (1954). A test of goodness of fit. *Journal of the American Statistical Association*, 49, 765-769.
- Conover, W. J. (1999). Practical nonparametric statistics, 3rd ed. New York: John Wiley & Sons.
- Dallal, G.E. and Wilkinson, L. (1986). An analytic approximation to the distribution of Lilliefors' test for normality. *The American Statistician*, 40, 294-296.
- Hollander, M. and Wolfe, D. A. (1999). *Nonparametric statistical methods*, 2nd ed. New York: John Wiley & Sons.
- Lehmann, E. L. and D'Abrera, H. J. M (2006). Nonparametrics: Statistical methods based on ranks. New York: Springer-Verlag.

- Marascuilo, L. A. and McSweeney, M. (1977). Nonparametric and distribution free methods for the social sciences. Belmont, Calif.: Wadsworth Publishing
- Marsagilia, G. and Marsagilia, J. C. W. (2004). Evaluating the Anderson-Darling Distribution. *Journal of Statistical Software*, Vol. 9 -2.
- Mosteller, F. and Rourke, R. E. K. (1973). Sturdy statistics. Reading, Mass. Addison-Wesley.
- Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2004) Applied linear regression models. 5th ed. New York: McGraw-Hill / Irwin.
- Siegel, S. and Castellan, N.J. (1988). *Nonparametric statistics for the behavioral sciences*. 2nd ed. New York: McGraw-Hill.
- * Stephens, M. A. (1982). Anderson-Darling test of goodness of fit. *Encyclopedia of Statistical Sciences*: Volume I (Edited by Kotz, S. and Johnson, N.I.). New York John Wiley & Sons, 81-85.

(* indicates additional references)

# Partial Least Squares Regression

Moumita Mitra and Suresh Konapalli

The Partial Least Squares (PLS) technique is one way to construct regression equations; in fact, it can be looked upon as an extension of the multiple linear regression technique. PLS has recently gained importance in many areas of application such as chemometry and economics, especially in situations where the number of variables is large relative to the number of cases, or when there is likely to be multicollinearity among the predictor variables. The PLS method extracts some latent factors from the response and predictor variables separately, and then fits a regression of the response factors on the predictor factors.

SYSTAT offers two of the most popular algorithms for PLS: the Nonlinear lterative PArtial Least Squares (NIPALS) algorithm and the Straight-forward IMplementation of Partial Least Squares (SIMPLS) algorithm. The standard errors of the estimated regression coefficients (rather, mean squared errors of these biased the estimators) are calculated by the Jackknife procedure. The user is offered two cross-estimators) are calculated by the Jackknife procedure. The user is offered two cross-estimators) are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure. The user is offered two cross-estimators are calculated by the Jackknife procedure and Random exclusion, to validate the validation procedures, viz., Leave-one-out and Random exclusion, to validate the titted regression model. SYSTAT provides score plot(s) as Quick Graphs. Further, the coefficient matrix, residuals, predicted values and latent scores can be saved to a SYSTAT file for further analysis.

As cross-validation techniques are available, resampling techniques are not offered in SYSTAT under the PLS regression feature.

## Statistical Background

Wold (1966) introduced the PLS technique in the field of econometrics. The use of PLS in chemical applications was pioneered by Wold, Martens and Wold (1983). The

PLS technique is more robust than classical multiple linear regression (univariate or multivariate) and principal component regression. It is robust in the sense that the estimates of model parameters do not change very much when new calibration samples are taken from the population (Geladi and Kowalski, 1986).

When the number of predictors is large, multicollinearity among them is expected. In that case, an ordinary multiple regression technique is unsuitable. Moreover, for a successful application of the multiple regression technique, the number of cases (observations) needs to be much more than the number of variables or the number of parameters to be estimated. PLS is a method intended to alleviate these difficulties in ordinary multiple regression.

## Model Building

The chief purpose of PLS regression is to build a linear model,

$$Y = XB + E^*$$

where **Y** is an  $n \times m$  response matrix (n cases, m variables), **X** is an  $n \times p$  predictor or design matrix (n cases, p predictors), **B** is a  $p \times m$  matrix of regression coefficients, and **E*** is an  $n \times m$  matrix of noise or error terms.

Usually, before fitting the model, we transform all the observations to a meancentered or a scaled form in respect of the corresponding variables.

The main approach of PLS is to form components that capture most of the information in the X variables that is useful to predict Y variables, while reducing the dimensionality of the regression problem by using fewer components than the number of X variables (Garthwaite, 1994). In PLS, if the number of extracted factors is greater than or equal to the rank of the X matrix, then PLS reduces to Multiple Linear Regression.

PLS builds a decomposition of the X variables as:

$$X = TP' + E = \sum t_h p_h' + E$$

where **E** is  $n \times p$ , **T** is  $n \times c$  and **P** is  $p \times c$  matrix, with c being the number of **X**-factors. This relation is often called the *outer* relation for **X**. A similar outer relation is formed for **Y** (see Geladi and Kowalski, 1986):

$$Y = UQ' + F = \sum u_h q'_h + F$$

where  $\mathbf{F}$  is  $n \times m$ ,  $\mathbf{U}$  is  $n \times c$  and  $\mathbf{Q}$  is  $m \times c$  matrix, and c is the number of Y-factors.

In both the cases the summation is taken over k=1, 2, ..., c. The matrices E and F are called the residual matrices. One could take c=p to make  $\mathbf{E}=\mathbf{F}=0$ . In general, our intention is to minimize ||E|| and ||F||.

Then a relation between X and Y (called the inner relation) is developed using the multivariate regression of U on T.

## Choice of Number of Factors to Extract

A number of latent factors are to be extracted separately from the predictors and the responses. A choice is to be made on the number of such factors. In general, this choice is subjective. It can be any integer between 1 and the rank of the matrix X'X. However, it would be useful to have c as somewhat smaller than this rank. If c is too small, then there is a certain loss of information, and if c is too large, besides the complexity of computation, we may run into the same problems that we seek remedy from PLS. So, there has to be a trade-off between these two aspects to decide on an optimal value of c.

We can see how well the extracted factors represent the relationship between predictors and responses by plotting Y-scores vs. X-scores. Let us look at an example of such factors by means of scatter plots of X, Y factors.

## Score Plots





The graph on the left is the plot of the first X-factor scores vs. the first Y-factor scores. There is a high level of correlation between them. Thus the first factor pair derived from the data explains the relation between the predictors and responses very well. On the other hand, the plot of the second X-factor scores vs. the second Y-factor scores

Chapter 9

shows a fairly small level of correlation. Thus the second factor pair does not explain the relation between the predictors and responses well. Generally, the more factors we extract, the less the latter factors are likely to be useful for prediction. In order to decide how many factors are useful, PRESS and R²_{prediction} statistics are used.

## Cross-Validation

Cross-validation is a model evaluation technique that is better than the method using residuals. In residual analysis, we evaluate the efficiency of the model by using the same data which have been used to fit the model. Thus the analysis is likely to be optimistic. The best way to overcome this problem is to use separate datasets for the estimation of the model and for the validation of the model. But, in practical situations we have only one dataset. The most primitive method is the controlled or uncontrolled division of the sample data into two subsamples (Stone, 1977). One part of the dataset is used to fit a model, while the other is used to check the fitting. The first part is known as the 'training set' and the other one as the 'test set'. This is the basic idea for a whole class of model evaluation methods called cross-validation.

SYSTAT offers two types of cross-validation:

- Leave-one-out. Here, one observation is removed at each step from the total of n observations. The remaining (n-1) observations are used to fit the model and the removed one is used to validate it. This process is repeated n times, omitting each observation in turn. Mosteller and Tukey (1968) termed this as "simple cross-validation".
- Random exclusion. A cautious statistician would like to set aside a randomly selected part of the data. This is what is done in this method. At each step, we select a specified number of observations (say s) without replacement. Then we exclude these selected observations and proceed as before. We repeat this process *t* times. By default, SYSTAT does this step only once.

After cross-validation, SYSTAT calculates two different statistics to indicate the goodness of fit of the regression model by summarizing the results of cross-validation. SYSTAT gives values of the PRESS statistic along with the  $R^2_{\text{prediction}}$ 

**PRESS statistic.** This statistic is the sum of squares of residuals. Let Y be the observed value of the response for the ith individual, and Y be the corresponding predicted value. Then the statistic is given by:

$$PRESS = \sum_{i} (y_i - \hat{y}_i)^2$$

the sum being taken over all the observations under cross-validation.

These PRESS residuals are useful for many purposes. The PRESS statistic is useful for computing the predictive ability of the fitted model which is found by calculating the  $R^2$  statistic for prediction ( $R^2_{\text{prediction}}$ ). This is very similar to the usual  $R^2$  statistic. This statistic is given by:

$$R_{predction}^2 = 1 - \frac{PRESS}{SST}$$

where, SST is the total sum of squares.

Note that  $R^2_{\text{prediction}}$  lies in the interval [0, 1]: the larger the value of the statistic, the better is the model.

Suppose after fitting a model, the  $R^2_{\text{prediction}}$  statistic turns out to be 0.946. It implies that we can expect the fitted model to "explain" about 94.6% of the variability in predicting new observations.

# Partial Least Squares Regression in SYSTAT

# Partial Least Squares Regression Dialog Box

To open the Partial Least Squares Regression dialog box, from the menus choose:

Analyze Regression Partial Least Squares...



**Dependent(s).** Select the dependent variable(s) for your study. The dependent variable(s) should be numeric.

**Independent(s).** Select one or more independent variable(s). The independent variable(s) should be numeric.

Algorithm. You can choose any of the following algorithms for fitting the data:

- SIMPLS. Estimates the model by Straight-forward IMplementation of Partial Least-Squares method. This is the default option.
- NIPALS. Estimates the model by Nonlinear Iterative PArtial Least Squares method.

Number of factors. Specify the number of latent factors to derive. The number specified should be a positive integer.

**Save.** Saves the specified results by checking the check-box corresponding to the Save option. The following options are available for saving.

■ Coefficients. Saves the estimated coefficient matrix. If there is only one response variable, then it is the coefficient vector.

- Residuals. Saves the residuals and predicted values.
- Residuals/data. Saves all the residuals, predicted values and also the data from the original file.
- Scores. Saves X-scores and Y-scores for all the factors extracted.
- Scores/data. Saves X-scores, Y-scores and also the data from the original file.

#### Cross-validation

You can specify different cross-validation options by clicking the Cross-validation tab in the Partial Least Squares regression dialog box.



The following options are available:

No validation. No cross-validation is performed.

Leave-one-out. The cross-validation is performed by the Leave-one-out technique.

Random exclusion. Cross-validation is performed by the random exclusion technique. You can specify the following options:

- Number of repetitions. Specify the number of times it should be repeated. By default it is one.
- Test set size. Specify the number of observations to be excluded at each step. By default it is half of the total number of observations.
- Random seed. Specify any integer from 1 to 4294967295. Otherwise it is based on the system time.

## Using Commands

PLS
USE filename
MODEL Y varlist = X varlist / N = n
SAVE filename / COEFF or RESID or DATA or SCORE
ESTIMATE/ NIPALS
SIMPLS
CV = LOUT or RAN(r,s)

## **Usage Considerations**

Types of data. PLS uses rectangular data only.

**Print options.** Estimated values of the coefficients, standard error of the estimated coefficients, the cross-validation statistics, the PRESS statistic, and  $R^2_{\text{prediction}}$  form the short output. For PLENGTH MEDIUM/LONG, the output includes X-loadings, Y-loadings, besides the short output.

**Quick Graphs.** PLS plots the **X**-factor scores vs. **Y**-factor scores separately for each factor as quick graphs. Beside these graphs PLS plots residuals vs. predicted values separately for each response variable as quick graphs.

Saving files. In Partial Least Squares regression, you can save the coefficient matrix, the residuals, the predicted values, X-scores and Y-scores (with or without data).

By groups. PLS analyzes data by groups.

Case frequencies. FREQ is not available in PLS.

Case weights. WEIGHT is not available in PLS.

## Examples

## Example 1 Univariate Regression by PLS Technique

We use the SPECTRO data to illustrate the Partial Least Squares Regression. Suppose, we want to predict the amount of Lignin Sulfonate (*LS*) in the Baltic sea with some spectroscopic observations, viz. *VI* to *V27*. We notice that the number of independent variables is larger than the number of observations and so we cannot perform ordinary least-squares regression. Therefore, we perform PLS regression.

#### The input is:

```
PLS
USE SPECTRO
MODEL LS =V1..V27/N=5
ESTIMATE
```

Note that we have opted for extraction of 5 latent factors.

### The output is:

```
Partial Least Squares Regression
```

```
Dependent Variable(s) : LS
```

```
V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27
```

Number of Observations : 16 Number of Factors Extracted : 5

The SIMPLS Algorithm is used to Estimate the Model.

## Estimates of Regression Coefficients

	ESTIMATE	Standard Error
Constant   V1   V2   V3   V4   V5   V7   V8   V9   V10   V11   V12   V13   V14   V15   V15	0.518261 -0.00010 -0.000476 -0.000111 0.00007 0.000193 0.000267 0.000279 0.000228 -0.000072 -0.000211 -0.000358 -0.000377 -0.000287 -0.000287	0.194749 0.000245 0.000187 0.000143 0.000075 0.000085 0.000088 0.000146 0.000179 0.000201 0.000162 0.000135 0.000085 0.000085

## Chapter 9

V24   0.000361			
V17 0.000058 0.000302 V18 0.000058 0.000282 V19 0.000195 0.000335 V20 0.000290 0.000311 V21 0.000190 0.000118 V22 0.000294 0.000234 V23 0.000334 0.000194 V24 0.000361 0.000189 V25 0.000603 0.000568 V26 0.000770 0.000451		: -0.000026	0.000236
V18   0.000058   0.000282   V19   0.000195   0.000335   V20   0.000290   0.000311   V21   0.000190   0.000118   V22   0.000248   0.000234   V23   0.000334   0.000194   V24   0.000361   0.000189   V25   0.000603   0.000568   V26   0.000770   0.000451   V26   0.000770   0.000451		0.000058	
V19	V18	0.000058	
\( \begin{array}{cccccccccccccccccccccccccccccccccccc	V19	0.000195	
V21   0.000190   0.000118 V22   0.000248   0.000234 V23   0.000334   0.000194 V24   0.000361   0.000189 V25   0.000603   0.000568 V26   0.000770   0.000451	V20		
V22	V21		
V23	V22		
V24   0.000361   0.000189 V25   0.000603   0.000568 V26   0.000770   0.000451	V23		
V25 : 0.000603	V24		
V26 : 0.000770 0.000451	V25		
0.000451	V26		
	V27	0.000730	0.000451

## Analysis of Variance for LS

Source	1	SS	df	Mean Squares	1 - v 1 *	ţ , , , , , ,
Regression Error	ĺ		5	5.014732 0.006338	791.198393	0.000000

## Percent Variation Explained by Factors for Predictors and Responses

Factors	Variation 1 Pred: Percentage	Explained for ictor(s) Cum, Percentage	Variation Ex Respon	plained for
, 1 ,	2.183130 0.145927 0.137574 0.055504	99.642197 99.788124 99.925698 99.981202	4.563171 1.362918 0.319522 0.218262	93.283983 97.847154 99.210072 99.529594 99.747856

## Score Plots



Plot of Residuals vs Predicted Values



# Example 2 Multivariate Regression by PLS Technique

For the same SPECTRO data, suppose we want to predict the amount of Lignin Sulfonate (LS), Humic Acids (HA) and optical whitener from detergent (D1) in the Baltic Sea with some spectroscopic observations, viz. V1 to V27.

#### The input is:

```
PLS
USE SPECTRO
MODEL LS HA DT=V1..V27/N=5
ESTIMATE
```

Note that we have opted for extraction of 5 latent factors.

#### The output is:

Partial Least Squares Regression

Dependent Variable(s) : LS HA DT

Independent Variable(s): V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27

Number of Observations : 16 Number of Factors Extracted : 5

The SIMPLS Algorithm is used to Estimate the Model.

#### Estimates of Regression Coefficients

	LS	HA	DT
Constant   V1   V2   V3   V4   V5   V6   V7   V8   V9   V10   V11   V12   V13   V14   V15   V16   V17   V18   V19   V19	0.426815 0.000007 -0.000446 -0.000093 0.000258 0.000221 0.000220 0.00195 0.000082 -0.000050 -0.000161 -0.000296 -0.000307 -0.000248 -0.000248 -0.000248 -0.000047 -0.000021	-0.024251 -0.000189 0.000132 -0.000007 -0.000060 -0.00013 -0.000120 -0.000089 -0.000077 0.000177 0.000234 0.000297 0.000284 0.000221 0.000227 0.000107 0.000066	-72.809052 0.034156 0.027799 0.010768 0.003813 -0.000312 -0.005677 -0.005869 -0.005869 -0.005869 -0.001054 0.0005869 0.002215 0.004407 0.001800 0.001790
V19 V20 V21 V22 V23	0.000052 0.000212 0.000256 0.000281 0.000280	-0.000008 -0.000109 -0.000153 -0.000182 -0.000166	0.001529 -0.001725 -0.001145 -0.001520 -0.002884

724 V25 V26 V27	0.00035 0.00081 0.00087 0.00089	5 -0.000526 6 -0.000559	-0.002866 -0.011565 -0.013337 -0.012934
--------------------------	------------------------------------------	----------------------------	--------------------------------------------------

## Standard Error of the Estimated Coefficients

	LS	HA	ĐT
Constant V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V22 V23 V24 V25 V26 V27	0.316011 0.000388 0.000369 0.000202 0.000114 0.000063 0.000191 0.000133 0.000209 0.000316 0.000305 0.000227 0.000142 0.000424 0.000424 0.000425 0.000424 0.00045 0.00035 0.000145 0.00035 0.000145 0.00035 0.000173 0.000173	0.161005 0.000269 0.000186 0.000117 0.000066 0.000034 0.000082 0.000048 0.000115 0.000115 0.000127 0.000127 0.000126 0.00066 0.00066 0.00066 0.000146 0.00173 0.000320 0.000159 0.000320 0.000223 0.000223 0.000293	57.622733 0.060957 0.050844 0.0225321 0.009864 0.015814 0.022328 0.022533 0.021109 0.024917 0.027643 0.02389 0.015533 0.019092 0.04954 0.037095 0.039827 0.076063 0.065644 0.019493 0.013095 0.076940 0.066951 0.037164 0.090291

## Analysis of Variance for LS

100001-000			 Squares	F-ratio	p-value
Source !	SS	df	 		0.000000
Regression : Error	25.05000:	10	0.008618		

## Analysis of Variance for HA

WHETAPPS OF .					p-value
G	SS	df	Mean Squares	F-ratio	
Source			0 110522	41.460927	0.000002
Regression :	0.026657	10	0.002666		

## Analysis of Variance for DT

WHETAETS OF AMERICA				F-ratio	p-value
			as to		
Regression   20546.4	18272	10	193.941827		

# Percent Variation Explained by Factors for Predictors and Responses

Percent	Vari	Tation Pabrasa		wariation E	explained for
4 * r	1	Variation Expredic	plained ivi	Respo	Cum.I
Ī	5 i	0.119751 0.041593	99.941343	0.990623	95.476730

## Score Plots



## Plot of Residuals vs Predicted Values



# Example 3 Cross-Validation

To assess the fitted model, we can use any one of the cross-validation techniques (say "Leave-one-out") available in PLS.

## The input is:

PLS
USE SPECTRO
MODEL LS=V1..V27/N=5
ESTIMATE/CV=LOUT

#### Chapter 9

#### The output is:

Partial Least Squares Regression

Dependent Variable(s) : LS

Independent Variable(s): V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27

Number of Observations : 16 Number of Factors Extracted : 5

The SIMPLS Algorithm is used to Estimate the Model.

#### Estimates of Regression Coefficients

	ESTIMATE	Standard Error
Constant	0.518261	0.194749
V1	-0.000010	0.000245
V2	-0.000476	0.000187
V3	-0.000111	0.000143
V4	0.000007	0.000075
V5	0.000193	0.000089
V6	0.000267	0.000085
V7	0.000279	0.000088
V8	0.000228	0.000146
V9	0.000087	0.000179
V10	-0.000072	0.000201
V11	-0.000211	0.000162
V12	; -0.000358	0.000135
V13	-0.000377	0.000085
V14	-0.000287	0.000052
V15	-0.000269	0.000097
V16	-0.000026	0.000236
V17	0.000058	0.000302
V18	0.000058	0.000282
V19	0.000195	0.000335
V20	0.000290	0.000311
V21	0.000190	0.000118
V22	0.000248	0.000234
V23	0.000334	0.000194
V24	0.000361	0.000189
V25	0.000603	0.000568
V26	0.000770	0.000451
V27	0.000730	0.000600

#### Analysis of Variance for LS

Source	1	SS	df	Mean	Squares	F-ratio	p-value
Regression			5			791.198393	0.000000
Error	0.06	3381	10	(	0.006338		

#### Percent Variation Explained by Factors for Predictors and Responses

	Variation E Predi	Variation Explained for Response(s)			
Factors	Percentage	Cum. Percentage	Percentage	Cum. Percentage	
1 1	97.459066	97.459066	93.283983	93.283963	
2 ;	2.183130	99.642197	4.563171	97.847154	
3 ;	0.145927	99.788124	1.362918	99.210072	
4 1	0.137574	99.925698	0.319522	99.529594	
5 :	0.055504	99.981202	0.218262	99.747856	

## Score Plots



Plot of Residuals vs Predicted Values



#### Chapter 9

```
The "Leave One Out" method is used for Cross-Validation.
```

Number of Factors Extracted after Cross-Validation : 5

#### Cross-Validation Statistics

	i	LS
	+	
	0.4514	
R-square (Prediction)	0.9820	39

We can also use the "Random Exclusion" option for cross-validation.

#### The input is:

```
PLS
USE SPECTRO
MODEL LS = V1..V27 / N=5
RSEED 459
ESTIMATE / CV = RAN (10, 9)
```

## The corresponding cross-validation output is:

The "Random Exclusion" method is used for Cross-Validation.

```
Number of Repetitions : 10
Test Set Size : 9
Number of Factors Extracted after Cross-Validation : 5
```

#### Cross-Validation Statistics

```
Average PRESS | 0.581181
R-square(Prediction) | 0.976879
```

## Example 4 Optimum Choice of Number of Factors

We now demonstrate how to determine the optimum number of factors. Look at the score plots in the "Cross-Validation" example. We can see that the X-scores and the Yscores are very closely, and linearly, related for the first and second factors. But from the third factor onwards, they become more or less dispersed. So the last three factors are not really of much use. We can thus repeat the same analysis by extracting only two factors. The explained variance table also indicates that the explained variance due to the last three factors is very small.

#### The input is:

```
PLS
    USE SPECTRO
    MODEL LS=V1..V27/N=2
    ESTIMATE/CV=LOUT
```

## The output is:

```
Partial Least Squares Regression
```

```
Dependent Variable(s) : LS
```

Independent Variable(s): V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27

```
Number of Observations
Number of Factors Extracted :
```

The SIMPLS Algorithm is used to Estimate the Model.

## Estimates of Regression Coefficients

		Standard Error
Constant V1 V2 V3 V4 V5 4	-0.003824 -0.000140 -0.00087 -0.000035 -0.000019 -0.000014 0.000022 0.000031 0.000031 0.000031 0.000040 0.000040 0.00069 0.00069 0.00069 0.000083 0.00069	0.200336 0.000046 0.000044 0.000034 0.000025 0.000023 0.000021 0.000018 0.000016 0.000017 0.000007 0.000008 0.000014 0.000016 0.000016 0.000016 0.000016 0.000016 0.000022 0.000029 0.000029

## Chapter 9

V21	0.000153	0.000042
V22	0.000182	0.000043
V23	0.000207	0.000049
V24	0.000237	0.000064
V25	0.000269	0.000063
V26	0.000301	0.000074
V27	0.000321	0.000079

#### Analysis of Variance for LS

Source	SS d	f Mean	Squares	F-ratio	p-value
Regression   24.5	95879	2 1:	2.297940	295.425923	0.000000
Error   0.5	41162 1	3	0.041628		

#### Percent Variation Explained by Factors for Predictors and Responses

1		Explained for ictor(s)		Explained for onse(s)
Factors	Percentage	Cum. Percentage	Percentage	Cum. Per errir
			~ ~ ~ ~ ~ ~ ~	
1 1	97.459066	97.459066	93.283983	93.283983
2 :	2.183130	99.642197	4.563171	97.847154

## Score Plots





#### Plot of Residuals vs Predicted Values



The "Leave One Out" method is used for Cross-Validation.

Number of Factors Extracted after Cross-Validation : 2

#### Cross-Validation Statistics

					1
	4 -		0.7	21	67
PRESS	į.	0.	97	31 12	86
P-square (Prediction)	i.	Ψ,	70	T 60	00

Note that the X and Y scores for the two factors extracted are more or less linearly related. As far as the goodness of the model is concerned we can say that we have not lost much by reducing the number of factors. (Note that the  $R^2$  prediction of the second model is 0.961286 compared to 0.982039 of first model.) We can therefore say that the extraction of two factors is satisfactory.

## Computation

## Algorithms

SYSTAT provides two options for fitting the Partial Least Squares regression model: SIMPLS (Straight-forward IMplementation of Partial Least Squares) and NIPALS (Nonlinear Iterative PArtial Least Squares).

The NIPALS algorithm was proposed by H. Wold (1966) in the context of estimation of principal components in Multivariate Analysis. Geladi and Kowalski (1986) gave a clear exposition of the NIPALS algorithm. The basic idea of the algorithm is to find orthogonal Y-factors and X-factors iteratively by deflating the centered data matrix. This algorithm is also known as the classical algorithm of the PLS method.

de Jong (1993) proposed the SIMPLS algorithm and proved that it is better than the original classical algorithm. This method calculates the PLS factors directly as linear combinations of original variables without any breakdown of the dataset. Factors are determined so as to maximize a covariance criterion while obeying the orthogonality and normalization restrictions, de Jong also called the SIMPLS algorithm Statistically Inspired Method of Partial Least Squares.

The standard error calculation using the Jackknife method is a time-consuming exercise.

## Missing Data

SYSTAT deletes missing values by the list-wise deletion technique, i.e., it ignores those cases which have at least one missing value (whether in response or in predictors).

## References

- * Burnham, A.J., MacGregor, J.F., and Viveris, R. (1999). Latent variable regression tools. Chemometrics and Intelligent Laboratory Systems, 48, 167-180.
- de Jong, S.(1993). SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18, 251-263.
- * Denham, M. C. (1997). Prediction intervals in partial least squares. *Journal of Chemometrics*, 11, 39-52.
- Garthwaite, P.H. (1994). An interpretation of partial least squares. *Journal of the American Statistical Association*, 89, 122-127.
- Geladi, P., and Kowalski B.R. (1986). Partial least-squares regression: A tutorial. *Analytica Chimica Acta*, 185, 1-17.
- * Montgomery D.C., Peck E.A., and Vining G.G. (2006). *Introduction to linear regression analysis*. 4th ed. Hoboken, N.J.: Wiley-Interscience.
- Mosteller, F. and Tukey, J.W. (1968). Data analysis including statistics. Handbook of

- Social Psychology (G. Lindzey and E. Aronson, eds). Reading. Mass. Addison-Wesley.
- * Srivastava M.S. (2002). *Methods of multivariate statistics*. New York: John Wiley & Sons.
- Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. *Journal of the Royal Statistical Society*. B, 39, 44-47.
- * Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. B, 36,111-147.
- Wold, H. (1966). Estimation of principal components and related models by iterative least squares. *Multivariate Analysis* (P.R. Krishnaiaah, ed.), 391-420. New York: Academic Press.
- Wold, H. and Strotz, R. (1960). Recursive versus nonrecursive systems: an attempt at synthesis. *Econometrica*, 28, 417-427.
- Wold, S., Martens, H. and Wold, H. (1983). The Multivariate Calibration Problem in Chemistry solved by the PLS Method. Proc. Conf. Matrix Pencils. (A. Ruhe and B. Kågström, eds.), March 1982. Lecture Notes in Mathematics, Springer Verlag, Heidelberg, 286 293.

(* indicating additional reference)



# Partially Ordered Scalogram Analysis with Coordinates

Leland Wilkinson, Samuel Shye, Reuben Amar, and Louis Guttman

The POSAC module calculates a partial order scalogram analysis on a set of multicategory items. It consolidates duplicate data profiles, computes profile similarity coefficients, and iteratively computes a configuration of points in a two-dimensional space according to the partial order model. POSAC produces Quick Graphs of the configuration, labeled by either profile values or an ID variable. Shye (1985) is the authoritative reference on POSAC. See also Borg's review (1987) for more information. The best approach to set up a study for POSAC analysis is to use facet theory (see Canter, 1985).

Resampling procedures are available in this feature.

# Statistical Background

The following figure shows a pattern of bits in two dimensions, an instance of a partially ordered set (POSET). There are several interesting things about this pattern.

- The vertical dimension of the pattern runs from four 1's on the top to no 1's on the bottom.
- The horizontal dimension runs from 1's on the left to 1's in the center to 1's on the right.
- Except for the bottom row, each bit pattern is the result of an OR operation of the two bit patterns below itself, as denoted by the arrows in the figure. For example, (1111) = (1110) or (0111).

- There are 2' = 16 possible patterns for four bits. Only 11 patterns meet the above requirements in two dimensions. The remaining patterns are (1011), (1101) (1010), (0101), and (1001).
- This structure is a *lattice*. We can move things around and still represent the POSE! geometrically as long as none of the arrows cross or head down instead of up.



Suppose we had real binary data involving the presence or absence of attributes and wanted to determine whether our data fit a POSET structure. We would have to do the following:

- Order the attributes from left to right so that the horizontal dimension would show 1's moving from left to right in the plotted profile, as in the figure above.
- Sort the profiles of attributes from top to bottom.
- Sort the profiles from left to right.
- Locate any profiles not fitting the pattern and make sure the overall solution was not influenced by them.

The fourth requirement is somewhat clusive and depends on the first. That is, if we had patterns (1010) and (0101), exchanging the second and third bits would yield (1100) and (0011), which would give us two extreme profiles in the third row rather than two ill-fitting profiles. If we exchange bits for one profile, we must exchange them for all, however. Thus, the global solution depends on the order of the bits as well as their positioning.

POSAC stands for partially ordered scalogram analysis with coordinates. The algorithm underlying POSAC computes the ordering and the lattice for cases-by-attributes data. Developed originally by Louis Guttman and Samuel Shye, POSAC fits, not only binary but also multivalued, data into a two-dimensional space according to the constraints we have discussed.

The following figure (a multivalue POSET) shows a partial ordering on some multivalue profiles. Again, we see that the marginal values increase on the vertical dimension (from 0 to 1 to 2 to 4 to 8) and the horizontal dimension distinguishes left and right skew.

The following figure shows this distributional positioning more generally. For ordered profiles with many values on each attribute, we expect the central profiles in the POSAC to be symmetrically distributed, profiles to the left to be right-skewed, and profiles to the right to be left-skewed.



#### Coordinates

There are two standard coordinate systems for displaying profiles. The first uses joint and lateral dimensions to display the profiles as in the figures above. Profiles that have similar sum scores fall at approximately the same latitude in this coordinate system. Comparable profiles differing in their sum scores (for example, 112211 and 223322) fall above and below each other at the same longitude.

The second coordinate display, the one printed in the SYSTAT plots, is a 45-degree rotation of this set. These base coordinates have the joint dimension running from

Chapter 10

southwest to northeast and the lateral dimension running from northwest to southeast. The diamond pattern is transformed into a square.

#### POSAC in SYSTAT

#### **POSAC Dialog Box**

To open the POSAC dialog box, from the menus choose:

Advanced

POSAC



Model variables. Specify the items to be scaled. Select at least three items.

**Iterations.** Enter the maximum number of iterations that you wish to allow the program to perform in order to estimate the parameters.

**Convergence.** Enter the convergence criterion. This is the largest relative change in any coordinate before iterations terminate.

Save configuration. You can save the configuration into a SYSTAT file.

# **Using Commands**

After selecting a file with USE filename, continue with:

POSAC

MODEL varlist
ESTIMATE / ITER=n, CONVERGE=d
SAMPLE =BOOT(m,n) or
SIMPLE(m,n) or JACK

The FREQ command is useful when data are aggregated and there is a variable in the file representing frequency of profiles.

# Usage Considerations

Types of data. POSAC only uses rectangular data. It is most suited for data with up to nine categories per item. If your data have more than nine categories, the profile labels will not be informative, since each item is displayed with a single digit in the profile labels. If your data have many more categories in an item, the program may refuse the computation. Similarly, POSAC can handle many items, but its interpretability and usefulness as an analytical tool declines after 10 or 20 items. These practical limitations are comparable to those for loglinear modeling and analysis of contingency tables, which become complex and problematic for multiway tables.

Print options. The output is the same for all PLENGTH options.

Quick Graphs. POSAC produces a Quick Graph of the coordinates labeled either with value profiles or an ID variable.

Saving files. POSAC saves the configuration into a file.

**BY groups.** POSAC analyzes data by groups. Your file need not be sorted on the BY variable(s).

Case frequencies. FREQ <variable> increases the number of cases by the FREQ variable.

Case weights. WEIGHT is not available in POSAC.

# Examples

The following examples illustrate the features of the POSAC module. The first example involves binary profiles that fit the POSAC model perfectly. The second example shows an analysis for real binary data. The third example shows how POSAC works for multicategory data.

# Example 1 Scalogram Analysis—A Perfect Fit

The file *BIT5* contains five-item binary profiles fitting a two-dimensional structure perfectly.

#### The input is:

```
USE BIT5
POSAC
MODEL X(1)..X(5)
ESTIMATE
```

#### The output is:

#### Partially Ordered Scalogram

#### Reordered Item Weak Monotonicity Coefficients

	1 4	X (5)	X(4)	X(3)	X(2)	X(1)
⊀(^) ⊀(4)		1 , 7	1,01)			
X(2) X(1)		0.111 -0.286 -0.391	0.667 0.000 -0.286	1.000 0.667 0.111	1.000	1 000

#### Iteration History

Iteration	*
resacton	Loss
1	0.017
2	0.007
3	0.002
4	0.000
5	0.000
6	0.000

Final Loss Value : 0.000
Proportion of Profile Pairs Correctly Represented : 1.000
Score-distance Weighted Coefficient : 1.000

LABELS	DIM(1)	DIM(2)	JOINT	LATERAL	FIT
	1.000 0.966 0.816	1.000 0.816 0.966	1.000 0.891 0.891	0.500 0.575 0.425	0.000

00111 : 0.931	
01100	000000000000000000000000000000000000000

#### POSAC Profile Plot



POSAC first computes Guttman monotonicity coefficients and orders the corresponding matrix using an SSA (multidimensional scaling) algorithm. These monotonicity coefficients, which Shye (1985) discusses in detail, are similar to the MU2 coefficients in the SYSTAT CORR module.

The next section of the output shows the iteration history and computed coordinates. SYSTAT's POSAC module calculates the square roots of the coordinates before display and plotting. This is done in order to make the lateral direction linear rather than curvilinear. Notice that for the perfect data in this example, the profiles are confined to the upper right triangle of the plot, as in the theoretical examples in Shye (1985). If you are comparing output with the earlier Jerusulem program, remember to include this transformation. Notice that the profiles are ordered in both the joint and lateral directions.

# Example 2 Binary Profiles

The following data are reports of fear symptoms by selected United States soldiers after being withdrawn from World War II combat. The data were originally reported by Suchman in Stouffer et al. (1950). Notice that we use FREQ to represent duplicate profiles.

#### The input is:

USE COMBAT
PREQ COUNT
POSAC
MODEL POUNDING..URINE
ESTIMATE

#### The output is:

#### Partially Ordered Scalogram

#### Reordered Item Weak Monotonicity Coefficients

	STIFF	VOMIT	NAUSEOUS	FAINT	SINKING
STIFF VOMIT NAUSEOUS FAINT SINKING SHAKING BOWELS URINE POUNDING	1.000 0.682 0.728 0.716 0.583 0.829 0.751 0.782 0.290	1.000 0.815 0.665 0.381 0.495 0.780 0.589 0.443	1.000 0.844 0.706 0.661 0.780 1.000 0.615	1.000 0.644 0.729 0.761 0.846 0.569	1.000 0.705 0.513 1.000 0.449

#### Reordered Item Weak Monotonicity Coefficients (contd...)

		, mad . 15 -	VI	THINE	1 115 1 11
	+				~ ~ ~ ~
SHAKING	2	1.000			
BOWELS	1	0.617	1.000		
URINE	1	0.763	0.960	1.000	
POUNDING	2.	0.709	1.000	1.000	1.000

#### Iteration History

Iteration	Loss
1	4.612
2	2.260
3	1.194
4	0.878
5	0.898

Final Loss Value : 0.878
Proportion of Profile Pairs Correctly Represented : 0.810
Score-distance Weighted Coefficient : 0.977

LABELS	* /	714	**	JATTER!	1)4
1			-	71111	
111111111		2.000	. 77	2 404	100
111111101	14.5	0.990		1 = 1	- 24
101111111	110	0.937		100	111.751
111111001	1117	0.948	,	0.014	11.000
111110101	P421	0.869			19.311
101111101	( 1	0.904	*	1.41	5.2115
101111011	. 4 *	0.969			
111101001		0.714	. 74		9.4
011111001		0.808	1.841	10.0	100 411
111011001		0.892	- 111		
110111001		0.845	. 14	. 1. 3 1	
011110001	4.	0.623	270		111
001111001	. 9.	0.700	The Later Control		1.
100111001	10 700	0.821		. , 1	11.001
111001001	. 1 1 1	0.958		1000	
011011001	1110	0.589			
111100001		0.926		4 4 4	II. DO
111010001	, 60	0.833			. ( , ()
011010101	4 A 4	0.495		- 1	
001010111	A	0.429			4,111
101011001		0.762	1111	4	
101011000		0.979	1	1,00	1. 1.
111010000	7 4	0.553	= 111	1.11	A
001011001		0.881	1,114	1.81	
100001101		0.742	1	. 4 3 14	
101010001		5 1 4	. • 1	. "	10 21
011010001	2.45	- 11	.t *t	0.000	4. )
110010001	= 114	. 111		2.111	40.4
000111001	н	- 46	. f ' H	, 4	
101001001	. 4		1.000		
100011001			( . e 1.		3.111
001010001	1 , r	1	. 3	, .	
000011001	C	7. 115		1.0	1.00
000110001	- 1 P	. 1 . 1	. 15 .	100	2.110
000010001	, F 1	r + 1	7. 10 a		
100000001	. * t		4.4	1 -	1847
001000001	; .m :	0.00		1.1.	^ . ~ ~ ~
000011000	\$ C12	. 8	181	, 1 7 .	1 . * *
001100000	0.4.	75,,	.44 *	. 1 * *	144
100010000	5 - A	4	1.1.1	1 2 21	** = A AA
000001001	017	0.00	. " 3		
000000101	J. 15 F	. 31 3	6.548	. 11 4	5 F + + + ,
0100000001	4 1	1.14			. 4 1
000100000			4 +4	. 🔨 6	
010000000	, , 14	1,250	. 19	12. 50	11. 5
000010000	. (,313	( 47	1. 8.	) . " . s, <	1
000000000	0.1	1, ,		1.6	

#### POSAC Profile Plot



The output shows an initial ordering of the symptoms that, according to the SSA, runs from stiffness to loss of urine and bowel control and a pounding heart. The lateral dimension follows this general ordering. Notice that the joint dimension runs from absence of symptoms to presence of all symptoms.

# Example 3 Multiple Categories

This example uses crime data to construct a 2D solution of crime patterns. We first recode the data into four categories for each item by using the CUT function. The cuts are made at each standard deviation and the mean. Then, POSAC computes the coordinates for these four category profiles.

#### The input is:

```
USE CRIME
STANDARDIZE MURDER..AUTOTHFT
LET (MURDER..AUTOTHFT) = CUT(@,-1,0,1,4)
POSAC
MODEL MURDER..AUTOTHFT
ESTIMATE
```

## The output is:

#### Partially Ordered Scalogram

# Reordered Item Weak Monotonicity Coefficients

	LARCENY	AUTOTHET	BURGLARY	ROBBERY	RAPE
LARCENY AUTOTHFT BURGLARY ROBBERY RAPE ASSAULT MURDER	1.6 0 0.821 0.930 0.806 0.786 0.516 0.280	1.000 0.950 0.900 0.731 0.667 0.483	1.000 0.868 0.850 0.742 0.579	1.000 0.922 0.879 0.650	1.000 0.921 0.823

# Reordered Item Weak Monotonicity Coefficients (contd...)

	4	ASSAULT	MI	JRLER
	+-		~ -	
ASSAULT MURDER	-	1.000 0.965	1	1.000

#### Iteration History

	Loss 0.451 0.333 0.131 0.102 0.085 0.091
0	

Score-dis	rance were				m a di	
LABEL\$	pIM(1)	DIM(2)	JOINT	LATERAL	FIT	
444444 4444443 434344433 4344433 4443432 4443333 344443 3334443 3334443 33324333 3322434 3332233 442212 2222244 1222344 33223322 2222244 1222344 3323322 2222244 1222344 3323322 2222244 1222344 3323322 2222244 1222344 3323322 2222244 1222344 3323322 2222244 1222344 3323322 2222244 1222344 3323322 2333222 2333222 2432222	1.000 0.924 0.957 0.829 0.816 0.707 0.854 0.764 0.866 0.777 0.804 0.777 0.804 0.736 0.382 0.595 0.990 0.777 0.906 0.736 0.990 0.777 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.966 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.977 0.968 0.968 0.977 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968	1.000 0.990 0.842 0.946 0.935 0.979 0.968 0.801 0.878 0.816 0.645 0.829 0.804 0.707 0.757 0.957 0.924 0.629 0.354 0.702 0.702 0.703 0.703 0.703 0.707 0.777 0.777 0.776 0.7764 0.677 0.764	1.000 0.957 0.900 0.808 0.876 0.843 0.872 0.848 0.876 0.818 0.803 0.757 0.670 0.760 0.760 0.718 0.666 0.718 0.6653 0.713	0.500 0.467 0.558 0.441 0.441 0.494 0.494 0.559 0.672 0.474 0.500 0.591 0.479 0.212 0.335 0.659 0.332 0.705 0.613 0.427 0.272 0.515 0.470 0.494 0.494	0.000 2.015 4.770 2.576 1.995 1.045 2.559 3.171 1.569 1.148 2.027 0.563 3.832 4.2.577 2.154 3.045 0.692 2.624 2.340 2.170 4.266 2.677 2.352 1.941 2.052 6.825 2.881 0.920	

#### Chapter 10

1122333	- 1	0.791	0.479	0.635	0.656	4.239
3222222	0	0.540	0.750	0.645	0.395	1.711
1222233	- 1	0.722	0.408	0.565	0.657	2.231
	1					
1222224		0.901	0.289	0.595	0.806	1.819
1223222		0.612	0.612	0.612	0.500	6.108
1112234		0.878	0.204	0.541	0.837	1.259
2222222		0.520	0.540	0.530	0.490	1.193
3122222		0.354	0.692	0.523	0.331	5.871
2222211		0.456	0.500	0.478	0.478	2.515
2212221		0.500	0.520	0.510	0.490	2.936
2112212	- 1	0.479	0.456	0.468	0.511	3.532
2212111	1	0.250	0.595	0.423	0.327	2.841
1112122	1	0.408	0.250	0.329	0.579	2.135
1212111	1	0.323	0.382	0.352	0.470	2.938
1121211	1	0.269	0.323	0.306	0.483	3.621
2111111	1	0.144	0.433	0.289	0.356	3.497
1112111	1	0.204	0.144	0.174	0.530	0.309
1111111	- 1	0.000	0.000	0.000	0.500	0.000

#### POSAC Profile Plot



The configuration plot is labeled with the profile values. We can see that the larger values generally fall in the upper extreme of the joint (diagonal) dimension. The lateral dimension runs basically according to the ordering of the initial SSA, from property crimes at the left end of each profile to person crimes at the right end. POSAC thus has organized the states in two dimensions by frequency (low versus high) and by type of crime (person versus property).

#### If we add

#### IDVAR STATE\$

before the ESTIMATE command, we can label the points with the state names. The result is shown in the following POSAC profile plot.





#### POSAC and MDS

To see how the POSAC compares to a multidimensional scaling (MDS), we ran an MDS on the transposed crime data. The following input program illustrates several important points about SYSTAT and data analyses in this context. Our goal is to run an MDS on the distances (differences) between states on crime incidence for the seven crimes. First, we standardize the variables so that all of the crimes have a comparable influence on the differences between states. This prevents a high-frequency crime, like auto theft, from unduly influencing the crime differences. Next, we add a *LABEL\$* variable to the file because TRANSPOSE renames the variables with its values if a variable with this name is found in the source file. We save the transposed file into *TCRIME* and then use CORR to compute Euclidean distances between the states. MDS is then used to analyze the matrix of pairwise distances of the states ranging from Maine to Hawaii (the two-letter state names are from the U.S. Post Office designations).

designations).

We save the MDS configuration instead of looking at the plot immediately because we want to do one more thing. We are going to make the symbol sizes proportional to the standardized level of the crimes (by summing them into a TOTAL crime variable). States with the highest value on this variable rank highest, in general, on all crimes. By merging SCRIME (produced by the original standardization) and CONF (produced by MDS), we retain the labels, the crime values and the configuration coordinates.

#### The input is:

USE CRIME STANDARDIZE MURDER..AUTOTHFT DSAVE SCRIME CORR USE SCRIME LET LABELS=STATES TRANSPOSE MURDER..AUTOTHFT SAVE TCRIME EUCLID ME..HI MDS USE TCRIME MODEL ME..HI SAVE CONF / CONFIG ESTIMATE MERGE CONF SCRIME LET TOTAL=SUM (MURDER . . AUTOTHFT) PLOT DIM(2)*DIM(1)/SIZE=TOTAL, LAB=STATE\$, LEGEND=NONE

#### The output is:



Notice that the first dimension comprises a frequency of crime factor since the size of the symbols is generally larger on the left. This dimension is not much different from the joint dimension in the POSAC configuration. The second dimension, however, is less interpretable than the POSAC lateral dimension. It is not clearly person versus property.

# Computation

# Algorithms

POSAC uses algorithms developed by Louis Guttman and Samuel Shye. The SYSTAT program is a recoding of the Hebrew University version using different minimization algorithms, an SSA procedure to reorder the profiles according to a suggestion of Guttman, and a memory model which allows large problems.

# Missing Data

Profiles with missing data are excluded from the calculations.

# References

- Borg, I. (1987). Review of S. Shye, Multiple scaling. Psychometrika, 52, 304-307.
- * Borg, I. and Shye, S. (1995). Facet theory: Form and content. Thousand Oaks, Calif.: Sage Publications.
  - Canter, D. [Ed]. (1985). Facet theory approaches to social research. New York: Springer Verlag.
- * Shye, S. [Ed]. (1978). Theory construction and data analysis in the behavioral sciences.

  San Francisco, Calif.: Jossey-Bass.
  - Shye, S. (1985). Multiple scaling: The theory and application of partial order scalogram analysis. Amsterdam: North-Holland.
  - Stouffer, S. A., Guttman, L., Suchman, E. A., Lazarsfeld, P. F., Staf, S. A., and Clausen, J. A. (1950). Measurement and prediction. Princeton, N.J.: Princeton University Press.

(* indicates additional references)



# Path Analysis (RAMONA)

Michael W. Browne

RAMONA implements the McArdle and McDonald Reticular Action Model (RAM) for path analysis with manifest and latent variables. Input to the program is coded directly from a path diagram without reference to any matrices.

RAMONA stands for *RAM Or Near Approximation*. The deviation from RAM is minor—no distinction is made between residual variables and other latent variables. As in RAM, only two parameter matrices are involved in the model. One represents single-headed arrows in the path diagram (path coefficients) and the other, double-headed arrows (covariance relationships).

RAMONA can correctly fit path analysis models to correlation matrices, and it avoids the errors associated with treating a correlation matrix as if it were a covariance matrix (Cudeck, 1989). Furthermore, you can request that both exogenous and endogenous latent variables have unit variances. Consequently, estimates of standardized path coefficients, with the associated standard errors, can be obtained, and difficulties associated with the interpretation of unstandardized path coefficients (Bollen, 1989) can be avoided.

# Statistical Background

# The Path Diagram

The input file for RAMONA is coded directly from a path diagram. We first briefly review the main characteristics of path diagrams. More information can be found in texts dealing with structural equation modeling (Bollen, 1989; Everitt, 1984; and McDonald, 1985).

Look at the following path diagram. This is a model, adapted from Jöreskog (1977), for a study of the stability of attitudes over time conducted by Wheaton, Muthen, Alwin, and Summers (1977). Attitude scales measuring anomia (ANOMIA) and powerlessness (POWRLS) were regarded as indicators of the latent variable alienation (ALNTN) and administered to 932 persons in 1967 and 1971. A socioeconomic index (SEI) and years of school completed (EDUCTN) were regarded as indicators of the latent variable socioeconomic status (SES).



In the path diagram, a manifest (observed) variable is represented by a square or rectangular box:



while a circle or ellipse signifies a latent (unobservable) variable:



A **dependence path** is represented by a single-headed arrow emitted by the *explanatory* variable and received by the *dependent* variable:



while a covariance path is represented by a double-headed arrow:



Chapter 11

In many diagrams, variance paths are omitted. Because variances form an essential part of a model and must be specified for RAMONA, we represent them here explicitly by curved double-headed arrows (McArdle, 1988) with both heads touching the same circle or square:



If a path coefficient, variance, or covariance is fixed (at a nonzero value), we attach the value to the single- or double-headed arrow:



A variable that acts as an explanatory variable in all of its dependence relationships (emits single-headed arrows but does not receive any) is **exogenous** (outside the system):



A variable that acts as a dependent variable in at least one dependence relationship (receives at least one single-headed arrow) is **endogenous** (inside the system), whether or not it ever acts as an explanatory variable (emits any arrows):



A parameter in RAMONA is associated with each dependence path and covariance path between two exogenous variables. Covariance paths are permitted only between exogenous variables. For example, the following covariance paths are permissible:

#### Permissible



Variances and covariances of endogenous variables are implied by the corresponding explanatory variables and have no associated parameters in the model. Thus, an endogenous variable may not have a covariance path with any other variable. The covariance is a function of path coefficients and variances or covariances of exogenous variables and is not represented by a parameter in the model. The following covariance paths, for example, are not permissible:

#### Not permissible



Also, an endogenous variable does not have a free parameter representing its variance. Its variance is a *function* of the path coefficients and variances of its explanatory variables. Therefore, it may not have an associated double-headed arrow with no fixed value:

#### Not Permissible



Exogenous variables alone may have free parameters representing their variances:

#### Permissible



We do, however, allow *fixed* variances for both endogenous and exogenous variables. These two types of fixed variances are interpreted differently in the program:

A fixed variance for an endogenous variable is treated as a nonlinear equality constraint on the parameters in the model:





The fixed implied variance is represented by a dotted two-headed arrow instead of a solid two-headed arrow because it is a nonlinear constraint on several other parameters in the model and does not have a single fixed parameter associated with it.

A fixed variance for an exogenous variable is treated as a model parameter with a fixed value:

Parameter



Every latent variable must emit at least one arrow. No latent variable can receive arrows without emitting any:

Not permissible



The scale of every latent variable (exogenous or endogenous) should be fixed to avoid indeterminate parameter values. Some ways for accomplishing this are:

To fix one of the path coefficients, associated with an emitted arrow, to a nonzero value (usually 1.0):



■ To fix both the variance and the path coefficient of an associated error term, if the latent variable is endogenous:



■ To fix the variance of the latent variable:



If a latent variable is endogenous and the third method is used, RAMONA fixes the implied variance by means of equality constraints. Programs that do not have this facility require the user to employ the first or second method to determine the scales of endogenous latent variables.

Consider ALVTV67 in the path diagram. This latent variable is endogenous (it receives arrows from SES and ZI). It also emits arrows to AVOMIA67 and POWRLS67. Consequently, it is necessary to fix either the variance of 4LVTV67, the

path coefficient from ALNTN67 to ANOMIA67, the path coefficient from ALNTN67 to POWRLS67, or the variance of Z1. It is conventional to use 1.0 as the fixed value. Our preference is to use the third method and fix the variance of ALNTN67 rather than use the first or second method because we find standardized path coefficients easier to interpret (Bollen, 1989). The first two methods result in latent variables with non-unit variances. RAMONA does, however, allow the use of these methods.

The model shown in the path diagram is equivalent to Jöreskog's (1977) model but makes use of different identification conditions. We apply nonlinear equality constraints to fix the variances of the endogenous variables *ALNTN67* and *ALNTN71*, but treat the path coefficients from *ALNTN67* to *ANOMIA67* and from *ALNTN67* to *ANOMIA71* as free parameters. Jöreskog fixed the path coefficients from *ALNTN67* to *ANOMIA67* and from *ALNTN71* to *ANOMIA71* and did not apply any nonlinear equality constraints.

An error term is an exogenous latent variable that emits only one single-headed arrow and shares double-headed arrows only with other error terms. In the path diagram, the variables E1, E2, E3, E4, D1, D2, Z1, and Z2 are error terms. RAMONA treats error terms in exactly the same manner as other latent variables.

# Path Analysis in SYSTAT

# Instructions for using RAMONA

In order to run RAMONA you will need two files: a data file (.syd) and a command file (.syc).

The data file may contain a symmetric covariance or correlation matrix or a rectangular matrix with cases as rows and variables as columns. It may be entered with the data editor, File -> New -> Data or an existing file may be employed, File -> Open -> Data. The default option for entry of data is for a rectangular matrix. Consequently it is advisable to make sure that a correlation or covariance matrix is not specified as a data matrix. From the path File -> Save As, click on Options and ensure that Correlation or Covariance is selected.

The command file gives a full specification of the analysis to be carried out. To create a new command file click File -> New -> Command and enter the statements. To save the command file click File -> Save As and provide a file name.

An example of a path diagram follows. It represents the Wheaton-Muthen-Alwin-Summers model shown in the path diagram in the section headed The Path Diagram

```
RAMONA
USE EX1
TITLE 'Wheaton, Muthen, Alwin and Summers (1977)
MANIFEST ANOMIA67 POWRLS67 ANOMIA71 POWRLS71 EDUCTN
SEI
LATENT
         ALNTN67 ALNTN71 SES E1 E2 E3 E4 D1 D2 Z1 Z2
MODEL
        ANOMIA67 <- ALNTN67
                                E1(0, 1.0),
                                E2(0, 1.0)
         POWRLS67 <- ALNTN67
        ANOMIA71 <- ALNTN71
                                E3(0, 1.0)
         POWRLS71 <- ALNT
EDUCTN <- SES
                      ALNTN71
                                E4(0, 1.0)
                                D1(0, 1.0)
         SEI
                 <- SES
                                D2(0, 1.0)
        ALNTN67 <- SES
                                Z1(0, 1.0)
        ALNTN71 <- ALNTN67 SES
                                      Z2(0, 1.0)
         SES
                 <-> SES(0, 1.0)
         El
                  <-> E1
                          E3 .
         E2
                  <-> E2
         E3
                  <-> E3
         E4
                  <-> E4
         D1
                  <-> D1
        D2
                  <-> D2
         Z1
                  <-> Z1
         Z2
                  <-> Z2
        ALNTN71
                 <-> ALNTN71(0, 1.0) ,
        ALNTN67 <-> ALNTN67(0, 1.0)
PLENGTH MEDIUM
ESTIMATE / DISP=CORR METHOD=MWL NCASES=932,
         START=ROUGH CONVG=0.0001 ITER=500 CONFI=.90
```

Note that the input is not case sensitive so that lower and/or upper case symbols may be used as desired. RAMONA replaces all lower case names by their upper case equivalents before output.

A brief introduction to the statements in the command file follows.

The first statement "RAMONA" instructs SYSTAT which program to use.

The next statement "USE EX1" specifies the data set to be used.

The next statement "TITLE ... " provides a title for the job (optional).

The next statement "MANIFEST ..." lists the names of the manifest variables, represented in squares in the path diagram. (Optional but recommended)

The next statement "LATENT ..." lists the names of the latent variables, represented in circles in the path diagram. (Optional but recommended).

The following three statements "MODEL ..." for specifying the model from the path diagram, "PLENGTH ..." for specifying the amount of output required and "ESTIMATE ..." will be described in detail in the subsections that follow:

## The MODEL statement

## Dependence Relationships

Each single headed arrow (dependence path) in the path diagram must be indicated by a statement with the symbol <-. To code a dependence path, enter the descriptive name of the dependent variable followed by the symbol <-. Then name the explanatory variable, followed by two symbols in parentheses separated by a comma, for example:

If the first symbol in parentheses is a positive integer, 1 in this example, it refers to the parameter group number. The parameter associated with it is constrained to be equal to every other parameter with the same parameter group number. Thus the regression paths associated with

```
ANOMIA67 <- ALNTN67(1, 0.6)
ANOMIA67 <- ALNTN67(1, 0.6)
```

will have the same value of the associated parameter, or regression weight even though the paths are not the same. If the first symbol in parentheses is an asterisk* then the parameter is regarded as a free parameter that is not constrained to be equal to any other parameter and is not constrained to have any specified value. If the first symbol in parentheses is a 0 then the parameter is regarded as fixed with the value assigned by the second symbol, which should be a real number, for example 3.6.

The second symbol in parentheses specifies a starting value for the parameter associated with the corresponding path. If the first symbol in parentheses is an asterisk or positive integer the second symbol specifies a starting value that will change during the course of iteration. If the first symbol is a 0 then the second symbol specifies a path equal to the value of the second symbol. If the second symbol is an asterisk then the starting value is chosen by the program. Thus:

(0, 1.0) specifies a path fixed to 1.0

#### Chapter 11

- (*, 1.0) specifies a starting value of 1.0 that will change during iteration
- (5, 1.0) represents a starting value for all parameters in group 5.

Contradictory specifications (5, 1.0) and (5, 2.0) should be avoided. Also specifications (0,*) assigning an unspecified value to a parameter should be avoided. The (*, *) specification is a default and may be omitted. Thus "ANOMIA67 <- ALNTN67(*, *)" and "ANOMIA67 <- ALNTN67" mean the same thing.

An inspection of the path diagram in the "Statistical Background" section shows that the endogenous manifest variable *POWRLS67* receives single-headed arrows from the latent variable *ALNTN67* and the measurement error *Z1*. These dependence relationships can be coded as:

```
POWRLS67 <- ALNTN67(*,*),
POWRLS 67 <- E2(0,1.0)
```

In the first path, the parameter is free and not constrained to equality with any other parameter. The parameter number is replaced by an asterisk*. No starting value is specified either; this too is replaced by an asterisk*. The parameter in the second path is fixed at 1.0 so that the parameter number is 0 and the parameter value is 1.0.

It is not necessary to have a different statement for each path. Several paths with the same dependent (receiving) variable can be combined into one statement. Since the same endogenous variable, *POWRLS67*, is involved in two dependence relationships, the two paths can be coded in a single statement as:

```
POWRLS67 <- ALNTN67 E2 (0,1.0)
```

Suppose that it is known from a previous run that the path coefficient of ALNTN67 to ALNTN71 is approximately 0.6. In this case, you can specify the following:

```
ALNTN71 <- ALNTN67(*,0.6) SES(7,*) Z2(0,1.0)
```

When specifying dependence relationships, bear in mind that:

- Dependence relationships can be specified in any order.
- A statement can specify several dependence paths involving the same dependent variable.
- Specified path numbers need not be sequential; for example, 5, 3, 9 can be used Sequential path numbers will be reassigned by the program.

## Covariance Relationships

A variance or a covariance relationship is indicated by the symbol <->, which relates directly to the double-headed arrow in the path diagram. To specify a covariance path, enter the name of one of the variables in the path, followed by the symbol <->. Then enter the name of the other variable, and include the path number and the starting value within parentheses. Unlike the dependence relationship, it does not matter which variable is given first. For example,

Other conventions, however, are similar to those for dependence relationships. You can replace the number and/or the starting value of a free parameter with the symbol *. In this case, they are provided by the program. In the case of a fixed parameter, however, you must specify 0 as the number of the parameter and provide the fixed value of the parameter. An inspection of the path diagram shows that double-headed arrows are used from the measurement error E1 to itself to specify a variance and to E3 to specify a covariance. These relationships are specified in the statement:

OF

The same covariance should not be specified twice. Thus the statement E1 <->E3 should not be duplicated with E3 <-> E1. Covariance paths can be constrained to be equal in the same manner as dependence paths. Suppose you want to specify that the variances of the measurement errors E1, E2, and E3 must be equal:

You can again provide starting values for free parameters:

Variances of both exogenous and endogenous variables can be required to have fixed values. Thus, both

and

ALTNTN67 <-> ALTNTN67(0,1.0)

are acceptable. They are, however, treated differently within the program. The exogenous latent variable, SES, has a parameter associated with its variance and it is set equal to 1.0. There is no parameter representing the variance of the endogenous latent variable, ALNTN67. This variance is a function of the path coefficient, ALNTN67 <- SES, the variance of SES, and the variance of Z1. It is constrained to have a value of 1.0 by RAMONA.

When specifying covariance relationships, bear in mind that:

- Covariance paths can be specified in any order.
- Several covariance paths per statement can be specified. For example, the variance
  of an exogenous variable as well as its covariances with other exogenous variables
  can be specified in the same statement.
- The same covariance should not be specified twice. Thus the statement E1 · · · E3 should not be duplicated with E3 <-> E1.
- Dependence paths and covariance paths must be specified in separate substatements. The dependence path subparagraph must precede the covariance path subparagraph.
- If every manifest endogenous variable has a corresponding measurement error with an unconstrained variance, the coding of these variances can be omitted. When all error path coefficients are fixed and no error variance paths are input for the measurement errors, the program will automatically provide the error variance paths.
- If there are exogenous manifest variables and if all of their variances and covariances are present in the system and are unrestricted, the coding of these variance and covariance paths can be omitted. When no variance and covariance paths for exogenous manifest variables are entered, the program will automatically provide them.

The MODEL statement will typically consist of a number of lines. It is important to remember to have a comma at the end of every line except the last line.

# RAMONA Options

#### The PLENGTH statement

Three lengths of output are available and are specified with the PLENGTH statement.

- PLENGTH SHORT. The sample covariance (correlation) matrix, path coefficient estimates, 90% confidence intervals, standard errors and t statistics, and variance/covariance or correlation estimates.
- PLENGTH MEDIUM. The panels listed for SHORT, plus details of the iterative procedure, the reproduced covariance or correlation matrix, the matrix of residuals, and information about equality constraints on variances (if applicable).
- PLENGTH LONG. The panels listed for MEDIUM, plus the asymptotic correlation matrix of the estimators.

  PLENGTH MEDIUM is recommended for general use.

#### The ESTIMATE statement

This statement is of the form

ESTIMATE /

It is followed by some or all of the following statements in arbitrary order:

DISP This specifies the type of dispersion matrix to be analysed.

If DISP—COV (Default) an analysis appropriate for a covariance matrix is carried out. If the input matrix is a correlation matrix (has unit diagonal elements), an analysis appropriate for a covariance matrix is performed, but RAMONA prints a warning in the output.

If DISP CORR an analysis appropriate for a correlation matrix is carried out. If a covariance matrix has been input from the data file it is converted to a correlation matrix before any analysis is carried out.

Note that if this option is not correctly specified some results provided by the program will be incorrect. See Cudeck (1989).

METHOD This specifies the method of estimation used.

If METHOD MWL (Default) Maximum Wishart likelihood estimates are obtained.

If METHOD - GLS Generalized least squares estimates appropriate for a Wishart distribution are obtained.

If METHOD · OLS Ordinary least squares estimates are obtained. No measures of fit and no standard errors of estimators are provided.

If METHOD = ADFG Asymptotically distribution-free estimates are provided. These use a biased but Gramian (non-negative definite) estimate of the asymptotic covariance matrix of sample covariances.

If METHOD — ADFU Asymptotically distribution-free estimates are provided. These use an unbiased estimate of the asymptotic covariance matrix of sample covariances.

NCASES = The number of cases used to compute the covariance or correlation matrix must be provided (e.g. NCASES=932) unless a rectangular data matrix has been provided in the data file. The number of cases should exceed the number of p manifest variables if you use the maximum Wishart likelihood method or the generalized least squares method. If you use the ADF Gramian method or the ADF unbiased method the number of cases must exceed 0.5 p(p + 1).

START = This designates how starting values are to be scaled for all estimation methods.

If START = ROUGH, starting values are assumed to be inaccurate. They are rescaled so as to yield an implied disperson matrix with diagonal elements equal to those of the input dispersion matrix. RAMONA applies ordinary least-squares initially. After partial convergence, RAMONA switches to the method you specify. If you are not sure about the starting values you specify, or if you are using the * option because the starting values are poor, you are advised to use this option.

If START = CLOSE, RAMONA uses the estimation procedure specified under the Method from the beginning of the iterative procedure. This option should always be used with OLS.

CONVG = A convergence criterion is provided. If the default of CONVG 0.0001 is used, results will be accurate to about three decimal places.

ITER = The maximum number of iterations is provided. The default is ITER = 100 CONFI = The coverage probability for all confidence intervals is provided. The default is CONFI = 0.9.

### Running RAMONA

RAMONA may be run either by reading the command file to the Command Window (File - * Open -> Command) and executing (File -> Submit -> Window) or by executing directly (File -> Submit -> File). The output may then be printed or saved to a file from the output pane (see output in the SYSTAT index).

# **Usage Considerations**

Types of data. RAMONA uses a correlation or covariance matrix either read from a file or computed from a rectangular file. When specifying ADFG or ADFU, a cases-by-variables input file must be used.

Print options. Three lengths of output are available. You can specify using PLENGTH:

- PLENGTH SHORT. The sample covariance (correlation) matrix, path coefficient estimates, 90% confidence intervals, standard errors and t statistics, and variance/covariance or correlation estimates.
- PLENGTH MEDIUM. The panels listed for SHORT, plus details of the iterative procedure, the reproduced covariance or correlation matrix, the matrix of residuals, and information about equality constraints on variances (if applicable).
- PLENGTH LONG. The panels listed for MEDIUM, plus the asymptotic correlation matrix of the estimators.

Quick Graphs. RAMONA produces no Quick Graphs.

Saving files. You cannot save specific RAMONA results to a file.

BY groups. For a rectangular file, RAMONA produces separate results for each BY variable.

Case frequencies. RAMONA uses a FREQUENCY variable, if present, to duplicate cases.

Case weights. RAMONA ignores WEIGHT variables.

# **Examples**

# Example 1 Path Analysis Basics

The covariance matrix of six manifest variables is shown below. These covariances and variances were computed from a sample of 932 respondents and are stored in the EX1 data file.

	ANOMIA67	POWRLS67	ANOMIA71	POWRLS71	EDUCTN	SEI
ANOMIA67	11.834					
POWRLS67	6.947	9.364				
ANOMIA71	6.819	5.091	12.532			
POWRLS71	4.783	5.028	7.495	9.986		
EDUCTN	-3.839	-3.889	-3.841	-3.625	9.610	
SEI	-21.899	-18.831	-21.748	-18.755	35.522	450.288

In this example, we specify the model illustrated in "Statistical Background" on p. 307. The command file is listed in the section "Instructions for using RAMONA" on page 405. The role of the manifest and latent variables is clear from the MODEL statement below. Manifest variables are in the SYSTAT file (latent variables are not).

We use the default maximum Wishart likelihood method (METHOD = MWL) to analyze the correlation matrix. Our analysis differs from Jöreskog's analysis in that the model is treated as a correlation structure rather than a covariance structure. The display correlation option of ESTIMATE (TYPE = CORR) identifies that the input is a correlation matrix, and NCASES = 932 denotes the sample size used to compute it.

#### The output is:

There are 6 Manifest Variables in the Model. They are ANOMIA67 POWRLS67 ANOMIA71 POWRLS71 EDUCTN SEI

There are 11 Latent Variables in the Model. They are ALNTN67 E1 E2 ALNTN71 E3 E4 SES D1 D2 Z1 Z2

#### RAMONA Options in Effect are

Display	Corr
Method	1 MWL
Start	Rough
Convergence Limit	0.0001
Maximum Iterations	: 100
N of Cases	932
Restart	l No
t Confidence Level	1 90

Number of Manifest Variables : 6 Total Number of Variables in the System : 23

Reading Covariance Matrix...

#### Details of Iterations

Iteration	Method	Discr. Funct.	Max.F. 's.	Max. Tonk'.	NRP	NBD
0 1 (0) 1 (1) 1 (2) 2 (0) 3 (0) 4 (0) 5 (0) 5 (0) 5 (0) 6 (0) 7 (0) 8 (0) 9 (0) 10 (0)	OLS OLS OLS OLS OLS OLS OLS OLS MWI MWL MWL MWL MWL MWL		0.64 	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000

Iterative procedure complete.

Convergence Limit for Residual Cosines: 1.000E-04 on 2 Consecutive Iterations Convergence Limit for Variance Constraint Violations: 5.000E-07 Value of the Maximum Variance Constraint Violations: 1.293E-11

#### Sample Correlation Matrix

Sampre cor.						027
!	ANOMIA67	POWRLS67	ANOMIA71	P WRLJ71	EDUCTN	SEI
ANOMIA67   POWRLS67   ANOMIA71   POWRLS71   EDUCTN   SEI	1.000 0.660 0.560 0.440 -0.360 -0,300	1.000 0.470 0.520 -0.410 -0.290	1.000 0.670 -0.350 -0.290	1*C -).s*0 -080	1.000	1.000

Number of Cases: 932

#### Reproduced Correlation Matrix

		ANOMIA67	POWRLS67	ANOMIA71	POWRLS71	EDUCTN	SEI
ANOMIA6 POWRLS6 ANOMIA7 POWRLS7 EDUCTN SEI	57 : 57 : 71 .	1.600	1.000 0.469 0.520 -(.404 -0.368	1.030 0.670 -0.557 -0.272	1.000 -).169 -0.281	1. )C 0.540	1.000

#### Residual Matrix (correlations)

Vestorer	-					EDUCTN	SEI
	1	ANOMIA67	POWRLS6/	ANOMIA71	PCWkLS7!	Fing M	
ANOMIA67 POWRLS67 ANOMIA71 POWRLS71 EDUCTN		0.(00	0.000 0.01 0.000 -0.06 0.018	0.000 0.000 0.000 -0.000	(.300 -(.3)1 (.3)1	0.000	0.000

Value of the Maximum Absolute Residual: 0.020

## ML Estimates of Free Parameters in Dependence Relationships

			-	
Path	Parameter Number	Point Estimate	90.00% Confidence Lower	Interval Upper
ANOMIA67 <- ALNTN67 POWRLS67 <- ALNTN67 ANOMIA71 <- ALNTN71 POWRLS71 <- ALNTN71 EDUCTN <- SES SEI <- SES ALNTN67 <- SES ALNTN71 <- ALNTN67 ALNTN71 <- SES	12 3 4 5 6 7 8 9	0.774 0.852 0.805 0.832 0.842 0.642 -0.563 0.567 -0.207	0.733 0.810 0.763 0.788 0.789 0.592 -0.620 0.500	0.816 0.894 0.845 0.876 0.894 0.691 -0.506 0.634

## ML Estimates of Free Parameters in Dependence Relationships (contd...)

Path	, 'tantari Error	4
	+	
ANOMIA67 <- ALNTN67 POWRLS67 <- ALNTN67 ANOMIA71 <- ALNTN71 POWRLS71 <- ALNTN71 EDUCTN <- SES SEI <- SES ALNTN67 <- SES ALNTN71 <- ALNTN67 ALNTN71 <- SES ALNTN71 <- SES	0.026 0.026 0.03 0.03 0.04 0.045	30.732 33.064 31.026 31.38 26.479 21.297 -16.63

## Scaled Standard Deviation (nuisance parameters)

Variable	Estimate
ANOMIA67	1.000
POWRLS67	1,000
ANOMIA71	1.000
POWRLS71	1.000
EDUCTN	1.000
SEI	1.000

## Values of Fixed Parameters in Dependence Relationships

Path	; Value
	-+
ANOMIA67 <- E1	11.70
POWRLS67 <- E2	1.000
ANOMIA71 <- E3	1 1.000
POWRLS71 <- E4	1.000
EDUCTN <- D1	1.000
SEI <- D2	1.000
ALNTN67 <- Z1	1.000
ALNTN71 <- 22	1 1 000

## ML Estimates of Free Parameters in Variance/Covariance Relationships

				oromen's ba	
Path ;	Parameter Number	Point Estimate	90.00% Confidence Lower	Interval Upper	Standard Error
E1 <-> E1 E1 <-> E3 E2 <-> E2 E2 <-> E4 E3 <-> E4 E3 <-> E4 D1 <-> D1 D2 <-> D2 21 <-> Z1 Z2 <-> Z2	10 11 12 13 14 15 16 17 18 19	0.400 0.133 0.274 0.035 0.351 0.308 0.292 0.588 0.683 0.503	0.341 0.091 0.211 -0.009 0.289 0.243 0.216 0.528 0.616	0.470 0.175 0.357 0.080 0.427 0.390 0.395 0.656 0.743	0.039 0.026 0.044 0.027 0.042 0.044 0.054 0.039

## ML Estimates of Free Parameters in Variance/Covariance Relationships (contd...)

Path		1	t
		+-	
E1 <-	> E1	1	10.252
E1 <-:	> E3	1	5.216
E2 <-	> E2	1	6.241
E2 <-	> E4	1	1.299
E3 <-	> E3	1	8.400
E4 <-	> E4	1	6.936
D1 <-	> D1	9	5.443
D2 <-	> D2	1	15.219
21 <-	> Z1	- 1	17.518
22 <-	> 22	1	15.084

## Values of Fixed Parameters in Variance/Covariance Relationships

	ď	d														Je	
_	-	_	_	_	-	-	-	40	-	-	(top vill	-d-	 -	-	-		b
	S	Ε	S		<	edi	>		S	E	S	1	9		(	00	

### Equality Constraints on Variances

Constraint	Value	Lagrange Multiplier	Standard Error
ALNTN71 <-> ALNTN71 ALNTN67 <-> ALNTN67 ANOMIA67 <-> ANOMIA67 POWRLS67 <-> POWRLS67 ANOMIA71 <-> ANOMIA71 POWRLS71 <-> POWRLS71 EDUCTN <-> EDUCTN SEI <-> SEI	1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	(.0° 0.0° 0.0° 0.0° 0.0° 0.0° 0.0° 0.0°

## Maximum Likelihood Discrepancy Function

## Measures of Fit of the Model

Sample	Discrepancy	Function	Value	:	0.005	(0.005)
COMMINATO	DEDONELL					

## Population Discrepancy Function Value, Fo

	0.001
Bias Adjusted Point Estimate 90% Confidence Interval	: (0.000, 0.011)

## Root Mean Square Error of Approximation (RMSEA)

Steiger-Lind:	RMSEA = SQRT(Fo/df)	n	0.014 (0.000,0.053)
Point Estimate	(modified AIC)	u	
90% Confidence	Interval	d	

## Expected Cross-Validation Index (CVI)

Effective Number of Parameters

Point Estimate (modified AIC) 90% Confidence Interval CVI (modified AIC) for the Saturated Model	: (0.041, 0.052) : (0.045
Test Statistic	: 4.739
Exceedance Probabilities Ho: Perfect Fit (RMSEA = 0.0) Ho: Close Fit (RMSEA <=0.050)	: 0.315 : 0.929
Multiplier for Obtaining Test Statistic Degrees of Freedom Degrees of Freedom	: 931.000 : 4 : 17

After a summary of the input specifications, SYSTAT produces details of the iteration process. The number of the step-halving step, carried out to yield a reduction in the discrepancy function plus a penalty for constraint violations, is given in parentheses next to the iteration number. *Method* indicates the method of estimation. *Discr Funct* reports the discrepancy function value. *Max. R. Cos.* equals the absolute value of the maximum residual cosine used to indicate convergence. *Max. Const.* is the absolute value of the maximum violated variance constraint. This panel also includes the number of apparently redundant parameters (number of zero pivots of the coefficient matrix of the normal equations —*NRP*) and the number of active bounds on parameter values (*NBD*).

The values of *NRP* and *NBD* can change from iteration to iteration. If *NRP* has a constant nonzero value for several iterations prior to convergence, this suggests that the model could be overparameterized. The value of *NBD* indicates the number of variance or correlation estimates on bounds at any iteration.

Next, the output includes three matrices: the sample correlation (covariance) matrix, the correlation (covariance) matrix reproduced by the model, and the matrix of residuals. The residual matrix is the difference between the sample correlation (covariance) matrix and the reproduced correlation (covariance) matrix. If the input is a correlation matrix (TYPE = CORR), the residual matrix will have null diagonal elements.

For both the dependence and covariance relationships, SYSTAT prints estimates of the free-path coefficients and the values of all fixed-path coefficients involved in the model. The following values are reported for the free parameters:

- Path.
- Param #. The number of the parameter. This number need not be the same as the number in the input file. (It is the number assigned to the parameter name in the asymptotic covariance matrix of estimators given subsequently.)
- Point Estimate. The estimate of the path coefficient.
- 90.00% Conf. Int. A 90% confidence interval for the path coefficient (the default). If you want to alter the confidence level, specify, for example, CONFI = 0.95.
- Standard Error. An estimate of the standard error of the estimator.
- $\blacksquare$  T value. The value of the t statistic (ratio of estimate to standard error).

If the input is a correlation matrix, the scaled standard deviations (nuisance parameters) are reported with:

■ The name of the manifest variable.

■ The ratio of the standard deviation reproduced from the model to the sample standard deviation.

After the covariance relationship output, SYSTAT presents information about equality constraints on endogenous variable variances (if applicable):

- Constraint. The variance path that is constrained.
- Value. The value of the endogenous variable variance at convergence.
- Lagrange Multiplier. The value of the Lagrange multiplier at convergence.
- Standard Error. An estimate of the standard error of the Lagrange multiplier.

In most applications, the constraints on endogenous variable variances serve as identification conditions and all Lagrange multipliers and standard errors are 0.

# Example 2 Path Analysis with a Restart File

This example is based on Jöreskog's (1977) path analysis model for the Duncan, Haller, and Portes (1971) data on peer influences on ambition. It illustrates a situation where some manifest variables are exogenous. It also illustrates the use of a restart file for creating a data file for a second run where some modifications have been made.

The example consists of two runs. Jöreskog's original model is used for the first run. The model is treated as a covariance structure—this is inappropriate because a correlation matrix is used as input. In the second run, we use a restart file that treats the model as a correlation structure.

The six manifest exogenous variables are:

RPARASP RESOCIEC	Respondent's parental aspiration Respondent's socioeconomic status
REINTGCE	Respondent's intelligence
BFINTGCE BFSOCIEC	Best friend's intelligence Best friend's socioeconomic status
BFPARASP	Best friend's parental aspiration

### Chapter 11

### The four endogenous variables are:

REOCCASP	Respondent's occupational aspiration
BFEDASP	Best friend's educational aspiration
REEDASP	Respondent's educational aspiration
BFOCCASP	Best friend's occupational aspiration

## The latent endogenous variables are:

REAMBITN	Respondent's ambition
BFAMBITN	Best friend's ambition

And the exogenous error variables are E1, E4, E2, Z1, E3, and Z2.



The correlation matrix for the manifest variables is stored in the file EX2.

#### The input is:

```
RAMONA
   MANIFEST reintgce reparasp resocied reoccasp,
           reedasp bfintgce bfparasp bfsociec,
             bfoccasp bfedasp
    LATENT reambitn bfambitn el e2 e3 e4 zl z2
    MODEL reoccasp <- reambitn(0,1.0) e1(0,1.0),
          reedasp <- reambitn e2(0,1.0),
          bfedasp <- bfambitn e3(0,1.0),
          bfoccasp <- bfambitn(0,1.0) e4(0,1.0),
          reambitn <- bfambitn z1(0,1.0) reparasp,
          reambitn <- reintgce resociec bfsociec,
          bfambitn <- reambitn z2(0,1.0) resociec,
          bfambitn <- bfsociec bfintgce bfparasp,
          reparasp <-> reparasp reintgce resociec,
          reparasp <-> bfsociec bfintgce bfparasp,
          reintgce <-> reintgce resociec bfsociec,
          reintgce <-> bfintgce bfparasp.
          resociec <-> resociec bfsociec bfintgce,
          resociec <-> bfparasp,
          bfsociec <-> bfsociec bfintgce bfparasp,
          bfintgce <-> bfintgce bfparasp,
          bfparasp <-> bfparasp,
                el <-> el,
                e2 <-> e2,
                e3 <-> e3,
                e4 <-> e4,
                Z1 <-> Z1,
                z2 <-> z2
    PLENGTH MEDIUM
    OUTPUT BATCH = 'EX2B.SYC'
    ESTIMATE / TYPE=COVA NCASES=329
                                     RESTART
```

You would specify the default values of other options for ESTIMATE as:

```
ESTIMATE / TYPE=COVA METHOD=MWL START=ROUGH ITER=500, CONVG=0.0001 NCASES RESTART
```

The RESTART option of ESTIMATE creates a restart command file, *EX2B.SYC*, that is submitted as the input in the second run. RESTART tells RAMONA to take the estimated parameter values and insert them as starting values in the MODEL statement. Note that we must also type OUTPUT BATCH = *filename* to do this. Before the second run, we modify *EX2B.SYC* to treat the model as a correlation structure.

Following Jöreskog's model, the path coefficients REOCCASP <- REAMBITN and BFOCCASP <- BFAMBITN are set equal to 1 for identification purposes.

#### The output is:

There are 10 Manifest Variables in the Model. They are PEINTGCE REPARASP RESOCIEC REOCCASP REEDASP BFINTGCE PEPARASP BESOCIEC BEOCCASP BEEDASP

There are 8 Latent Variables in the Model. They are PFAMBITN El E2 BFAMBITN E3 E4 21 E2

#### RAMONA Options in Effect are

Display	Covar
Method	Rough
Start Convergence Limit	0.0001
Maximum Iterations	
N of Cases	329 Yes
Restart	90

Number of Manifest Variables : 10 Total Number of Variables in the System : 18

Reading Correlation Matrix...

*** WARNING *** : A Julio 181 standard errors may be inappropriate.

#### Details of Iterations

December 1	Method	Discr. Funct.	Max.R.Cos.	Max.Const.	NRP	NBD
1 (0) 2 (0) 3 (0) 3 (0) 4 (0) 5 (0) 6 (0) 7 (0) 8 (0) 9 (0)	OLS OLS OLS OLS OLS MNL MNL MNL MNL MWL MWL MWL MWL	1.501 0.325 0.023 0.020 0.085 0.082 0.082 0.082 0.082 0.082	0.720 0.191 0.007 0.060 0.017 0.004 0.001 0.000 0.000		000000000000000000000000000000000000000	000000000000000000000000000000000000000

Iterative procedure complete.

· with elight to several

## Sample Covariance Matrix

Sample Con	variance Mat	rix			0000000	BEINTGCE	BFPARASP
	FFINT F	PETABLIT	F1. 1.	1 2 2	REEDASP	BITHTOGO	-
REINTGCE REPARASP RESOCIEC REOCCASP REEDASP 11 11 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1.000 0.184 0.222 0.410 0.404	1.000 0.049 0.214 0.274	1,000 0.324 0.405 0.230	1.000 0.625 0.299	1.000	·	· · · · · · · · · · · · · · · · · · ·

#### Sample Covariance Matrix (contd...)

	F : :	HF ALF	RESTACE
Fi t F			
ar a rip			
. "			
21 JE 0			
A c E L A			
E 9 1 1			
I fight t			
BESOCIEC	1.000		
BFOCCASP	0.361	1.000	
BFEDASP	0.410	0.640	1.000

Number of Cases: 329

#### Reproduced Covariance Matrix

	0 0	REINTGCE	REPARASP	RESOCIEC	REOCCASP	REEDASP	BFINTGCE	BFPARASP
REINTGCE REPARASP RESOCIEC REOCCASP REEDASP BFINTGCE BFPARASP BFSOCIEC BFOCCASP BFEDASP		1.000 0.184 0.222 0.393 0.417 0.336 0.102 0.186 0.255 0.273	1.000 0.049 0.239 0.254 0.078 0.115 0.019 0.095	1.000 0.357 0.379 0.230 0.093 0.271 0.282 0.303	0.999 0.623 0.258 0.103 0.255 0.330 0.354	0.999 0.274 0.110 0.270 0.351 0.376	1.000 0.209 0.295 0.489 0.525	1.000 -0.044 0.237 0.254

### Reproduced Covariance Matrix (contd...)

1	DESON	-100	Brockasr	BREDASP
PRINT 'R				
PEPARA '				
RESOCIEC	1			
REOCCASP	1			
REEDASP	1			
BFINTGCE	1			
BFPARASP	1			
BFSOCIEC	1	1.000		
BFOCCASP		0.374	0.99	19
BFEDASP	1	0.401	0.63	_

#### Residual Matrix (covariances)

	REINTGRE	REPARASP	RESOCIEC	REOCCASP	REEDASP	BFINTGCE	BFPARASP
REINTGCE REPARASP RESOCIEC RECCASP REEDASP BFINTGCE BFPARASP BFSOCIEC BFOCCASP BFEDASP	0.000 0.000 0.018 -0.013 0.000 0.000 0.000 0.005 0.017	0.000 0.000 -0.026 0.020 0.000 0.000 -0.011 0.010	0.000 -0.033 0.026 0.000 0.000 -0.004 0.003	0.001 0.001 0.042 -0.027 0.038 0.091 -0.027	0.001 0.013 -0.039 -0.030 -0.023	0.000 0.000 0.000 0.011	. 20

### Residual Matrix (covariances) (contd...)

	BESOCIEC	BFOCCASP	BFEDASP
REINTGCE REPARASP RESOCIEC REOCCASP REEDASP BFINTGCE REPARASP BFSOCIEC BFOCCASP BFEDASP	0.000	0.001	0.001

Value of the Maximum Absolute Residual: 0.091

## ML Estimates of Free Parameters in Dependence Relationships

Path.	. Parameter Number	Point Estimate	90.00% Confidence Lower	Upper
REEDASP <- REAMBITN BFEDASP <- BFAMBITN REAMBITN <- BFAMBITN REAMBITN <- REPARASP REAMBITN <- REINTGCE REAMBITN <- RESOCIEC REAMBITN <- BFSOCIEC BFAMBITN <- REAMBITN BFAMBITN <- RESOCIEC BFAMBITN <- BFSOCIEC BFAMBITN <- BFFARASP	. 5	0.222 0.079 0.185 0.067 0.218 0.330 0.152	0.914 0.940 0.032 0.100 0.185 0.151 0.001 0.054 -0.004 0.151 0.262 0.092	1 b

## ML Estimates of Free Parameters in Dependence Relationships (contd...)

Eath	Standard	Error	Į.
REEDASP <- REAMBITN BFEDASP <- BFAMBITN REAMBITN <- BFAMBITN REAMBITN <- REPARASP REAMBITN <- RESOCIEC REAMBITN <- RESOCIEC REAMBITN <- REAMBITN BFAMBITN <- RESOCIEC BFAMBITN <- BFSOCIEC BFAMBITN <- BFFARASP	:	0.043 0.081 0.086 0.034 0.044 0.044 0.047 0.043 0.140 0.140 0.036	1

## Values of Fixed Farameters in Dependence Relationships

Fath		Value
REOCCASP <- REAMBITN REOCCASP <- E1 REEDASP <- E2 BFEDASP <- E3 BFOCCASP <- BFAMBITN BFOCCASP <- E4 REAMBITN <- 21 BFAMBITN <- 27	:	1.000 1.000 1.000 1.000 1.000 1.000

ML Estimates of Free Parameters in Variance/Covariance Relationships

Path
REPARASP <-> REPARASP REPARASP <-> REINTGCE REPARASP <-> RESOCIEC REPARASP <-> BFSOCIEC REPARASP <-> BFINTGCE REPARASP <-> BFINTGCE REPARASP <-> BFINTGCE REPARASP <-> BFINTGCE REINTGCE <-> RESOCIEC REINTGCE <-> BFINTGCE REINTGCE <-> BFINTGCE REINTGCE <-> BFOCIEC RESOCIEC <-> BFINTGCE BFSOCIEC <-> BFINTGCE BFINTGCE BFINTGCE <-> B

## ML Estimates of Free Parameters in Variance/Covariance Relationships (contd...)

Eath	Standarl Error	t
	1	
	+	
PEFARACI <-> PEFARACE		12.806
RELARACE <-> PEINT TOE	1 0.056	3.216
PERALANP K- PESCOREC	0.055	0.884
RELARALE> BFSOCIEC	0.055	0.357
PEFAFACE> BFINTGCE	0.(=5	1.412
RE: AFAGE BFPARASP	0.556	2.164
FFINT 'E < > REINTGCE	0.078	12.406
FFINT ": · · · RESOCIEC	0.057	3. 1. 5
FEINT FOF BFSOCIEC	9.166	1. 114
REINTGCE <-> BFINTGCE	0.658	5,761
REINTGCE BFPARASP		1.846
RESOCIEC RESOCIEC	0.076	12.806
RESOCIEC <-> BFSOCIEC	2.057	4./12
RESOCIEC BFINTGCE	0.057	4.663
RESOCIEC BFPARASP	0.055	1.679
BFSOCIEC · · BFSOCIEC	0.078	12.40€
BFSOCIEC · - · BFINTGCE	0.0%	1.1.4
BFSOCIEC BFPARASP	0.155	/9,
BFINTGCE · > BFINTGCE	0.378	12.400
BFINTGCE · · · BFPARASP	()56	3. 100
BFPARASP BFPARASP	1. 18	12.476
E1 <-> E1	0.051	t. 10m
E2 <-> E2	0.052	6. 43
E3 <-> E3	0.645	6.844
E4 <-> E4	11.046	8.154
Z1 <-> Z1	0.4	
Z2 <-> Z2	0.03+	E. K. S. E. M. E. G.

#### Maximum Likelihood Discrepancy Function

#### Measures of Fit of the Model

Sample Discrepancy Function Value : 0.082 (0.082)

#### Population Discrepancy Function Value, Fo

Bias Adjusted Point Estimate : 0.033 90% Confidence Interval : (0.001,0.089)

### Root Mean Square Error of Approximation (RMSEA)

Steiger-Lind: RMSEA = SQRT(Fo/df)
Point Estimate (modified AIC) : 0.046
90% Confidence Interval : (0.008,0.075)

#### Expected Cross-Validation Index (CVI)

Foint Estimate (modified AIC) : 0.320 90% Confidence Interval : (0.288,0.376) CVI (modified AIC) for the Saturated Model : 0.335 Test Statistic : 26.893

Exceedance Probabilities
Ho: Perfect Fit (RMSEA = 0.0)
Ho: Close Fit (RMSEA <=0.050)

Multiplier for Obtaining Test Statistic
Degrees of Freedom
Effective Number of Parameters

1 0.043
1 0.560
2 328,000
2 16
3 39

### Using the Restart File

A restart file was created during the first run to form an input file that specifies the model represented in the path diagram. Now type the following modifications into the *EX2B* restart file and save the file:

- DISP = COVA is replaced by DISP = CORR.
- START = ROUGH is replaced by START = CLOSE.
- REOCCASP <- REAMBITN(0,1.0) is replaced by REOCCASP <- REAMBITN(*,1.0), freeing a fixed-path coefficient.
- BFOCCASP <- BFAMBITN(0,1.0) is replaced by BFOCCASP <- BFAMBITN(*,1.0), freeing a fixed-path coefficient.
- REAMBITN <-> REAMBITN(0,1.0) is added, imposing a variance constraint on an endogenous latent variable.
- BFAMBITN <-> BFAMBITN(0,1.0) is added, imposing a variance constraint on an endogenous latent variable.
- The output is displayed for PLENGTH MEDIUM.

## The modified restart file is shown below:

```
RAMONA
  USE EX2
  MODEL reoccasp <-
                     reambitn(*,1.000),
        reoccasp <-
                     el(0,1.000),
        reedasp <- reambitn(1,1.062),
        reedasp <- e2(0,1.000),
        bfedasp <- bfambitn(2,1.073),
        bfedasp <- e3(0,1.000),
        bfoccasp <- bfambitn(*,1.000),
        bfoccasp <- e4(0,1.000),
        reambitn <- bfambitn(3,0.174),
        reambitn <- z1(0,1.000),
        reambitn <- reparasp(4,0.164),
        reambitn <- reintgce(5,0.255),
        reambitn <-
                    resociec(6,0.222),
        reambitn <-
                    bfsociec(7,0.079),
        bfambitn <-
                    reambitn(8,0.185),
        bfambitn <-
                    z2(0,1.000),
        bfambitn <-
                    resociec(9,0.067)
       bfambitn <-
                    bfsociec(10,0.218),
       bfambitn <-
                    bfintgce(11,0.330),
       bfambitn <-
                    bfparasp(12,0.152),
       reparasp <-> reparasp(13,1.000),
       reparasp <-> reintgce(14,0.184),
       reparasp <-> resociec(15,0.049),
       reparasp <-> bfsociec(16,0.019),
       reparasp <-> bfintgce(17,0.078),
       reparasp <-> bfparasp(18,0.115),
       reintgce <-> reintgce(19,1.000),
       reintgce <-> resociec(20,0.222),
       reintgce <-> bfsociec(21,0.186),
       reintgce <-> bfintgce(22,0.336),
       reintgce <-> bfparasp(23,0.102),
       resociec <-> resociec(24,1.000),
       resociec < > bfsociec(25,0.271),
       resociec <-> bfintgce(26,0.230),
       resociec <-> bfparasp(27,0.093),
       bfsociec < > bfsociec(28,1.000),
      bfsociec <-> bfintgce(29,0.295),
      bfsociec <-> bfparasp(30,-0.044),
      bfintgce < > bfintgce(31,1.000),
      bfintgce < > bfparasp(32,0.209),
      bfparasp < > bfparasp(33,1.000),
              < > e1(34,0.412),
```

<-> e4(37, e4<-> z1(38, 21 <-> z2(39)22 reambitn <-> reambi bfambitn <-> bfambi PLENGTH MEDIUM ESTIMATE / CONVG =0.0001,

METHOD =MWL, S'

Note that we rounded some paramet START setting, ROUGH, has been ch restart file is used.

Now execute this modified fil the Commandspace or another t

## The input is:

SUBMIT EX2B

### The output is:

Itero are 10 Marifest Variables in t PECC RES CIEC REINI T PETAFACE BFED REOCCAGE BELARASE BESCHIEC Heambirn El E2 Brambirn E3 E4

#### RAMONA Options in Effect are Corr Display

MWL Method Close Start Univergence Limit Maximum Iterations 329 N of Cases No Restart 90 % Confidence Level

Winter ! Maritos Variables I til Number of Variables in the Sys reiling pirelation Matrix...

### Details of Iterations

Iterata D		· 1. « [[,	
0	MMEL		0.082

0.082 MNL 1(0) MWL 2(0) 0,082

```
0.404),

0.281),

0.229),

tn(0,1.000),

tn(0,1.000)

MAXIT =100, RELKURT =1.000, DISP =CORR,

TART =CLOSE, NCASES =329, CONFI=0.900
```

er values to shorten the commands. Also, the anged to CLOSE (under ESTIMATE) because a

e (after you have edited it and saved it using ext editor.

Model. They are Z1 Z2

ASP

ne Model. They are CASP REEDASP BFINTGCE

tem : 20

Max.P. 's. Max.' rst. NRP NPD 0.000 0.000 0.000 0 0 0.000 0.000 0 0

0.000

#### Sample Correlation Matrix

	REINTGCE	REPARASP	RESOCIEC
REINTGCE REPARASP PEROCIEC REOCCASP REEDASP BEINTGIE BFPARASP BFSCIEC BFOIASP BFEDASP	 1.000 0.184 0.227 0.410 0.404 0.336 0.102 0.186 0.260	1.000 0.049 0.214 J.274 0.778 0.115 0.019 0.084 0.112	1.000 0.424 9.405 0.239 0.043 0.271 0.279

## Sample Correlation Matrix (contd...)

	BESOCIEC	BFOCCASP	BFEDAJP
REINT JOE REPARASP RESOCIEC REOCCASP REEDASP BFINTGCE BFPARASP BFSOCIEC BFOCCASP	1.000	1,000	
BFEDASP	0.410	0.640	1 000

Number of Cases : 329

#### Reproduced Correlation Matrix

	REINTGCE	REPARACE	RF., 'IE;
REINTGCE REPARASP RESOCIEC REOCCASP REEDASP BFINTGCE BFPARASP BFSOCIEC BFOCCASP BFEDASP	1.^)* C.1*4 02 03 1.41 0.33 (.1c,1855	1. 707 . 44 7. 43 2. 54 . 378 (.117	1

webroduced	Correlation	Matrix	(contd)
	BF, TET	BF CAF	HEELA.
REINTGCE			* * * * * * * * * *
REPARASP			
RESOCIEC			
REOCCASP			
REEDASP			
BFINTGCE			
REPARAGO			

REOCCASP	PEPDAGE	B 1161 + 1	3 5, 3 
1.000 0.625 0.299 0.076 0.293 0.422 0.327	1.000 0.286 0.070 0.241 0.328 0.367	1.000 0.209 0.295 0.501 0.519	1.000 -0.044 0.199 0.278

1.000 0.624 0.258 0.103 0.255 0.330 0.355	1.000 0.274 0.110 0.270 0.351 0.376	1.000 0.209 0.295 0.489 0.525	1.000 -0.044 0.237 0.254
-------------------------------------------------------------	----------------------------------------------------	-------------------------------------------	-----------------------------------

	RE:	INTGCE	REPARASP	B
REF	INTGCE : PARASP : SOCIEC : OCCASP : EDASP : INTGCE : PARASP : SOCIEC : OCCASP : EDASP : Sidual Matr:	0.000 0.000 0.000 0.017 -0.013 0.000 0.000 0.000 0.005	0.000 0.000 -0.026 0.020 0.000 0.000 -0.011 0.010	E 0
REI RE: RE: BF: BF: BF: BF: BF: Value	OCCASP .			
Pa	th		Parameter Number	
REC BFF BFF REC REC REC BFF BFF BFF BFF	OCCASP <- REDASP <- REDASP <- BF EDASP <- BF OCCASP <- B AMBITN <- B AMBITN <- R AMBITN <- B	AMBITN FAMBITN FAMBITN EPARASP EINTGCE ESOCIEC EAMBITN ESOCIEC FAMBITN ESOCIEC FAMBITN	Parameter Number 1 2 3 4 5 6 7 7 8 9 10 11 12 13	
RECRESSES OF THE PROPERTY OF T	OCCASP <- R EDASP <- RE EDASP <- BF OCCASP <- B AMBITN <- B AMBITN <- R	AMBITN FAMBITN FAMBITN EPARASP EINTGCE ESOCIEC EAMBITN ESOCIEC FAMBITN ESOCIEC FAMBITN	Parameter Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14	41
RECEPTION OF THE PROPERTY OF T	OCCASP <- REDASP <- REDASP <- BF EDASP <- BF OCCASP <- B AMBITN <- B AMBITN <- R AMBITN <- B	AMBITN FAMBITN FAMBITN EPARASP EINTGCE ESOCIEC EAMBITN ESOCIEC FAMBITN ESOCIEC FAMBITN	Parameter Number 1 2 3 4 5 6 7 7 8 9 10 11 12 13	41

ESCCIEC	REOCCASP	REELASP	BFINTGCE	BFIARASI
0.000 -0.033 0.025 0.000 0.000 -0.004 0.002		0.000 0.012 -0.039 -0.030 -0.023 -0.010	0.000 0.000 0.000 0.011 -0.006	0.000 0.000 -C.038 0.024
FEDASP				
0.000				
al : 0.	091			
Depend	ence Relatio	nships		
Point :	Estimate	90.00% C	Confidence	Interval Upper
	0.766 0.814 0.828 0.772 0.175 0.214 0.332 0.290 0.103 0.184 0.087 0.282 0.428 0.197	0.7; 0.7; 0.7; 0.7; 0.0; 0.1; 0.2; 0.2; 0.0; 0.0; 0.0; 0.0; 0.3; 0.1;	59 91 94 33 33 90 10 10 20 55 50 50 60 90 91	0.823 0.868 0.876 0.823 0.317 0.294 0.417 0.378 0.204 0.313 0.178 0.365 0.506
n Depend	ence Relatio	nships (co	ntd)	
cror	t			
.033 2 .029 2 .031 2 .086 .049	2.215 4.523 8.486 4.748 2.036 4.363 6.465 5.386 1.685			

	no comace
~	
REOCCASP	1.000
REEDASP	1.000
BFOCCASP	1.000
BFEDASP	1.000
REPARASP	1.000
BFINTGCE	1.000
BFPARASP	1.000
BFSOCIEC	1.000
RESOCIEC	1.000
REINTGCE	1.000
	-1000
Values of	Fived Dane
	TAMU PELS

## Values of Fixed Parameters in Dependence R

Fath	Value
REOCCASP <- E1 REEDASP <- E2 BFEDASP <- E3 BFOCCASP <- E4 REAMBITN <- Z1 BFAMBITN <- Z2	1.000 1.000 1.000 1.000 1.000
Mr. David	20000

## ML Estimates of Free Parameters in Variance

Doch	
Path	Parameter Point E Number
REPARASP <-> REINTGCE REPARASP <-> RESOCIEC REPARASP <-> BFSOCIEC REPARASP <-> BFSOCIEC REPARASP <-> BFINTGCE REPARASP <-> BFPARASP REINTGCE <-> BFSOCIEC REINTGCE <-> BFSOCIEC REINTGCE <-> BFSOCIEC RESOCIEC <-> BFSOCIEC RESOCIEC <-> BFINTGCE RESOCIEC <-> BFINTGCE BFSOCIEC <-> BFINTGCE BFSOCIEC <-> BFINTGCE BFSOCIEC <-> BFINTGCE BFSOCIEC <-> BFPARASP BFINTGCE <-> BFINTGC	16

## ML Estimates of Free Parameters in Variance/

					 DELVE	
				4		
PELVS	8 5		OF THE	16	 	-
P	5 1 1	400		τ.	10.00	4
r1111	3 11 6	111	. 2			
					^	-

1. 4

4 6

FE Notes and the special section of the section of

FRINT : F 15 FRIN : F 18 FRIN : C 10 N. F

#### elationships

### /Covariance Relationships

"mate	G(1, t r + ar t	, , , ,
	Lower	Upper
		-11
U . 1 × 4	Ů, -^~	
(.149	· 1	· ,
()		
1, 11195	(	
0.11	4	
0.7.7		
7 40		
0.066		
1.1.	, , , , ,	1
C., i		
	- 1	
1.77 +3	. 1 14 1	4
1, 745		
0. 44		
	.   3   3	
. i 15	. 1.	
v.4.3	4	
1 4 44		
14	. 7.3	
2.404	,	
. 4 14	4	100
2. 444		

Covariance Relationships (contd )

```
E3 <-> E3
      E4 <-> E4
       21 <-> 21
       22 <-> 22
      Values of Fixed Parameters in Varia
                                                                                    1 Value
       Path
      REPARASP <-> REPARASP ; 1.000
      REINTGCE <-> REINTGCE | 1.000
RESOCIEC <-> RESOCIEC | 1.000
      BFSOCIEC <-> BFSOCIEC | 1.000
     BFINTGCE <-> BFINTGCE |
HELARASP <-> BFPARASP
      Equality Constraints on Variances
                                                                                              Value
     Constraint
      PEAMBIEN --> REAMBIEN 1.000
PEAMBIEN --> REAMBIEN 1.000
PE 'AMB --> REACASE 1.000
      REEDASP <-> REEDASP | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 
Maximum Likelihood Discrepancy Funct.
Measures of Fit of the Model
: ample Discrepancy Function Value
Population Discrepancy Function Value
B. 4. Airisted Frint Estimate
 90% Confidence Interval
Root Mean Square Error of Approximat
Person Lini: RMJEA = 3QRT(Fo/ if)
Pant Educate (m diffed ALD)
 90% Confidence Interval
Expected Cross-Validation Index (CVI
F' in Fit mate (m. sified AIC)
 90% Confidence Interval
 .1 (m 1.11e) All) fr the bitura ed
Test Statistic
 Exceedance Probabilities
 A : French & F. P. PM FA ( C. ()
```

For: 1 or F.* (FM.*FA =1, 50)

BFINTGCE <-> BFPARASP

E1 <-> E1

E2 <-> E2

0.

0.

0. 0.

0.

O.

M:

```
3.952
053
053
       7.804
       6.250
054
       6.511
048
       8.389
048
055
       8.640
       7.591
051
nce/Covariance Relationships
           Standard Error
Lagrange
iltiplier
                     0.000
  0.000
                     0.000
  0.000
                     0.000
                     0.000
  0.000
                     0.000
  0.000
                     0.000
  0.000
ion
        : 0.082 (0.082)
  Fo
        : 0.033
        : (0.001,0.089)
ion (RMSEA)
        : 0.046
        : (0.008,0.075)
          0.320
        : (0.288,0.376)
          0.335
Model
        : 26.893
         0.043
        : 0.560

    328,000
```

runs, but the maximum likelihood estimates conditions. The standard errors in the secon incorrect). An appropriate warning has been last run the Lagrange multipliers and the coall equality constraints on endogenous varia conditions, not constraints on the model. Th applications.

## cample 3 ath Analysis Using Rectangular Input

This example (Mels and Koorts, 1989) illustriby-variables SYSTAT data file. Asymptotical

A questionnaire concerned with job satisfa are 10 manifest variables that serve as indica (*JOBSEC*), attitude toward training (*TRAINO (PROMOT*), and relations with superiors (*RE* to account for causal relationships between the

d run differ (those in the first run were a output by RAMONA. Notice that in the cresponding standard errors are 0 because ble variances act as identification is is the case in most, but not all, practical

differ because of different identification

ction was completed by 213 nurses. There cors of 4 latent variables: job security (2), opportunities for promotion (LSUP). The path diagram shows a model are three latent variables.

ates how RAMONA uses the usual casesly distribution-free estimates are obtained.





```
RAMONA
   USE EX3
  MANIFEST unfair dcharg unemp
              ipromot opromot i
          jobsec traing promot
   LATENT
            e6 e7 e8 e9 e10 z1
         unfair <-
  MODEL
                    jobsec el (0
                    jobsec e2(0
         dcharg <-
         unemp <-
                    jobsec e3(0
         itrain <-
                    traing e4(0
         strain <- traing e5(0
         etrain <-
                    traing e6(0
                   promot e7(0
        ipromot <-
        opromot <-
                    promot e8(0
                   relsup e9(0
           isup <-
                    relsup el0(
         prosup <-
         jobsec <- traing prom
         traing <-> traing (0,1
         promot <-> promot (0,1
         relsup <-> relsup (0,1
         traing <-> promot.
         traing <-> relsup,
         promot <-> relsup.
           el <-> el,
             e2 <-> e2,
            e3 <-> e3,
             e4 <-> e4,
            e5 <-> e5,
            e6 <-> e6.
            e7 <-> e7,
            e8 <-> e8,
            e9 <-> e9,
```

e10 <-> e10, z1 <-> z1, jobsec <-> jobsec(0,1.

ESTIMATE / TYPE=CORR METHOD

PLENGTH MEDIUM

```
itrain strain etrain,
sup prosup
relsup el e2 e3 e4 e5,
,1.0),
,1.0),
,1.0),
,1.0),
,1.0),
,1.0),
,1.0).
,1.0),
,1.0),
0,1.0),
ot relsup z1(0,1.0),
.0),
.0),
.0),
```

=ADFU

0)

```
Trein ate 1 Manifest Variables in the NAIR DEAR UNEMP ITRAIN STRA
  ISUP PROSUP
.r. re are 15 Latent Variables in the
 F AF F1 E2 E3 TRAING E4 E5
 E10
       Z1
 RAMONA Options in Effect are
  Display
                                   ADI
  Method
                                  Rous
  Start
                                  0.000
  Chart leice Limit
  Mazinim Iterations
                       determined who
  1 ases
                       data are re
  Restart
  % Confidence Level
Number of Manifest Variables
 final Number of Variables in the Sys
 Computing Mean Vector...
 Guring a variance Matrix and Foir
 mputing ADF Weight Matrix...
 Overall Kurtosis : 19.754
Normalized : 9.305
                   : 1.165
 Relative
                            Kurtosis
   Variable
                           Normalized
              Individual
                                 4.155
                  1.395
    UNFAIR
                                 5.560
   . AF
                                 ) F4(
                    0.181
    13ME M1
                                 -1.66
                   -0.560
    ITEAIN
                                 -3.78.
   "IF VIN
                                -2.17
                   -0.13(
   ELTRIN
                                -2.99
                   -1,006
   THE MIT
                   -6. 57
   PROMUT
                                 -2.81
                   -0.945
   ISUP
                                 -1.62
                   -0.547
   PROSUP
  undailed telarive prv tof ovarian
 covariances : 0.149
   Details of Iterations
                Method Discr. Funct
   Iteration
                                  1.25
                OLS
                                  0.39
    1(0)
                                  0.07
    2(0)
                                  0.07
                OLS
                                  0.07
    3(0)
                OLS
                                  0.39
    4(0)
                ADFU
                                  0.19
     4 (0)
                ADFU
     5(0)
                                  0.18
                ADFU
                                  0.1
     6(0)
                 ADFU
                                  0.1
                ADFU
                                  0.1
     8 (0)
                 ADFU
     9(0)
                                   0.1
                 ADFU
                                   0.1
```

e e	ETRAIN	IPROMOT	TOMOT			
Mod E 6	lel. They	E7 E8	PELCUF	E9		
r U						
th.						
1						
en en						
be						
90						
, ,	. 10					
tem	: 10					
th	Order Mon	ments				
	Relative					
	1.465					
)	1.627					
7 6 5	1.067					
2	0.633					
1	0.757 0.665					
/ 6	0.748					
5	0.685	>				
В	0.818					
0.6	matrix of	sample				
			2	NED	NBD	
	Max.R.Co	ns. Ma:	x.Const.	147/1		
5			0.000	0	0	
9		556 115	0.405	0	0	
9		311	0.000	0	0	
5,	0.	002	0.000	9	0	
13	0.	161	0.341	0	Ç	
10	0.	12	0. 001	0	0	
15	0.	0.3	0.660	0		
35 35 35	0.	n )	0.00	0	î n	
Ž e	0.	(	0.00	0	7	
15	V.	000	0.000	0	0	

#### Sample Correlation Matrix

		(151 PS C P)	Dausna	*131531453	rmn s
	i	UNFAIR	OCHARG	UNEMP	ITRA
	-+				
UNFAIR	1	1.000			
DCHARG	1	0.438	1.000		
UNEMP	1	0.249	0.455	1.000	
ITRAIN	- 1	0.150	0.110	0.056	1.0
STRAIN	1	0.173	0.209	0.028	0.5
ETRAIN	1	0.184	0.168	-0.006	0.5
I PROMOT	1	0.134	0.210	0.169	0.0
OPROMOT	1	0.099	0.179	0.159	0.1
ISUP	1	0.154	0.177	0.140	0.2
PROSEIP	ij	0.213	0.212	0.038	0.2

### Sample Correlation Matrix (contd...)

		ISUP	PROSUE
	-+-		
UNFAIR	>		
DCHARG	>		
UNEMP			
ITRAIN	,		
STRAIN	,		
ETRAIN	,		
IPROMOT	>		
OPROMOT			
ISUP	2	1.000	
PROSUP		0.475	1 000

Number of Cases: 213

#### Reproduced Correlation Matrix

	,	UNFAIR	DOHAR :	UNEMP	TTRAIL
~	-+				
UNFAIR		1.000			
DCHARG		7.481	1.000		
UNEMP		1.382	0.607	1.000	
ITRAIN		0.581	0.128	0.102	1.(0
STRAIN		1.143	0.146	0.1.0	6. 4 4
ETRAIN	:	Ð. H ₹	0.14)	1,111	
IPROMOT	i	0.140	0.221	a. 17e	n.[]
OPROMOT		3.121	0.192	0 1	r.14
ISUP		( . 1 . 4	7	1 6	
PROSUP	4	f , 18	(.1.4	-122	

### Reproduced Correlation Matrix (contd...)

Repro	duc	:ed	Cor	rel	at	ion	
		I.	111	ī	F	**1	
		-					
UNFAIR							
DCHARG							
UNEMP							
ITRAIN							
JTRAIN							
ETRAIN							
IPROMOT							
OPP- MOT							
ISUP							

lations : 1.138E-08

	STPAIN	ETRAIN	IIF M I	t '' :
001314	1.000 0.694 0.240 0.184 0.456 0.337	1.000 0.237 0.208 0.348 0.262	1.000 0.683 0.389 0.263	1.000 0.319 0.185
77	APPAIN	ETPATI	I.P. M. T	
O M M at M M IN	1.000 0.695 0.195 0.169 0.415 0.326	1.000 0.186 0.161 0.396 0.311	1.000 0.743 0.377 0.296	1.000 0.327 0.257

UNFAIR   0.000   0.000   0.000   UNEMP   -0.133   -0.148   0.000   UNEMP   -0.133   -0.148   0.000   UNEMP   -0.133   -0.148   0.000   UNEMP   -0.133   -0.045   -0.088   ETRAIN   0.095   0.028   -0.117   IPROMOT   -0.007   -0.011   -0.007   -0.011   -0.007   -0.011   -0.007   -0.011   -0.007   -0.014   -0.007   -0.023   -0.013   0.007   ISUP   0.030   -0.020   -0.016   PROSUP   -0.115   -0.057   -0.084   Residual Matrix (correlations) (compared to the corresponding t			DCHARG	UNEMP
UNEMP				
UNEMP	UNFAIR	0.000	0.000	
CORRECT   CORR	DCHARG	-0.04	-0.000	0.000
CORRECT   CORR	UNEMP	-0.153	-0.018	
Residual Matrix (correlations) (corr	ITRAIN	0.000	0.010	-0.088
Residual Matrix (correlations) (corr	2116A10	0.005	0.028	-0.117
Residual Matrix (correlations) (corr	ETRAIN	0.033	-0.020	-0.007
Residual Matrix (correlations) (corr	I PROMU	0.007	-0.013	0.007
Residual Matrix (correlations) (corr	OPROM	0.023	-0.020	-0.016
ISUP PROSUF  UNFAIR DCHARG UNEMP ITRAIN STRAIN STRAIN IPROMOT OPROMOT ISUP PROSUP O.000 PROSUP ORSEC UNEMP < JOBSEC UNEMP < JOBSEC UNEMP < JOBSEC UNEMP < FAING STRAIN < TRAING STRAIN < TRAING ETRAIN < TRAING IPROMOT < PROMOT OPROMOT < PROMOT OPROMOT < PROMOT OPROMOT < PROMOT ISUP < RELSUP PROSUP < RELSUP ORSEC < TRAING JOBSEC < TRAING JOBSEC < PROMOT JOBSEC < RELSUP  ADFU Estimates of Free Parameters Path UNFAIR < JOBSEC O.00 O.00 O.00 O.00 O.00 O.00 O.00 O.0	ISUP	0.030	0.057	-0.084
UNFAIR DCHARG UNEMP ITRAIN STRAIN STRAIN IPROMOT OPROMOT OPROSUP -0.085 0.000  ADFU Estimates of Free Parameters  Lith Parame er Number  UNFAIR <- JOBSEC   1	PROBU	, 0,110		
UNFAIR DCHARG UNEMP ITRAIN STRAIN ETRAIN IPROMOT OPROMOT ISUP OPROSUP	Resid			ons) (co
DCHARG UNEMP ITRAIN STRAIN ETRAIN IPROMOT OPROMOT ISUP PROSUP   -0.085   0.000  ADFU Estimates of Free Parameters Lith Parameter  UNFAIR <- JOBSEC UNEMP <- JOBSEC UNEMP <- JOBSEC UNEMP <- JOBSEC ITRAIN <- TRAING STRAIN <- TRAING ETRAIN <- TRAING IPROMOT <- PROMOT OPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- PROMOT		ISUP	PROSUP	
DCHARG UNEMP ITRAIN STRAIN ETRAIN IPROMOT OPROMOT ISUP PROSUP   -0.085   0.000  ADFU Estimates of Free Parameters Lith Parameter  UNFAIR <- JOBSEC DCHARG <- JOBSEC UNEMP <- JOBSEC UNEMP <- JOBSEC ITRAIN <- TRAING STRAIN <- TRAING STRAIN <- TRAING ETRAIN <- TRAING IPROMOT <- PROMOT OPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- RELSUP FROM STRAING JOBSEC <- PROMOT	UNFAI	R		
UNEMP ITERAIN STRAIN ETRAIN IPROMOT OPROMOT ISUP 0.000 PROSUP -0.085 0.000  ADFU Estimates of Free Parameters  Lith Parameter  UNFAIR <- JOBSEC 1 DCHARG <- JOBSEC 2 UNEMP <- JOBSEC 3 ITRAIN <- TRAING 5 ETRAIN <- TRAING 5 ETRAIN <- TRAING 6 IPROMOT <- PROMOT 6 ISUP <- RELSUP 9 PROSUP <- RELSUP 10 JOBSEC <- PROMOT 12 JOBSEC <- PROMOT 12 JOBSEC <- PROMOT 12 JOBSEC <- PROMOT 12 JOBSEC <- PROMOT 13 JOBSEC <- PROMOT 12 JOBSEC <- RELSUP 10 JOBSEC <- PROMOT 12 JOBSEC <- PROMOT 13 JOBSEC <- PROMOT 13 JOBSEC <- PROMOT 12 JOBSEC <- PROMOT 13 JOBSEC <- PROMOT 12 JOBSEC <- PROMOT 12 JOBSEC <- PROMOT 13 JOBSEC <- PROMOT 13 JOBSEC <- PROMOT 10 JOBSEC <-				
ITRAIN STRAIN IPROMOT OPROMOT OPROMOT ISUP O.000 PROSUP -0.085 0.000  ADFU Estimates of Free Parameters  Lith Parameter Parameters  Lith Parameter Parameters  Lith Parameter Parameters  LITHAIN CALL TARING STRAIN S				
STRAIN ETRAIN IPROMOT OPROMOT ISUP PROSUP -0.085 0.000 PROSUP -0.085 0.000  In a 1 he Maximum Absolute Residu  ADFU Estimates of Free Parameters  Lith Parameter Number  UNFAIR <- JOBSEC DCHARG <- JOBSEC UNEMP <- JOBSEC UNEMP <- JOBSEC ITRAIN <- TRAING STRAIN <- TRAING ETRAIN <- TRAING IPROMOT <- PROMOT OPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- RELSUP IN JOBSEC <- RELSUP JOBSEC <- RELSUP JOBSEC <- RELSUP JOBSEC <- PROMOT JOBSEC PROMOT JOBSE				
ETRAIN IPROMOT OPROMOT ISUP PROSUP O.000 PROSUP O.005 O.000  In F				
IPROMOT   O.000   FROSUP   O.000   O.0				
OPROMOT   0,000   PROSUP   -0.085   0.000    ADFU Estimates of Free Parameters   Pa				
ADFU Estimates of Free Parameters  Lath Parameter Pomber  UNFAIR <- JOBSEC 1 DCHARG <- JOBSEC 2 UNEMP <- JOBSEC 3 LITRAIN <- TRAING 5 ETRAIN <- TRAING 6 LIPROMOT <- PROMOT 1 OPROMOT <- PROMOT 1 SUP <- RELSUP 7 JOBSEC <- TRAING 10 JOBSEC <- RELSUP 10 JOBSEC <- RELSUP 10 JOBSEC <- RELSUP 11 JOBSEC <- RELSUP 11 JOBSEC <- RELSUP 12 JOBSEC <- RELSUP 13 ADFU Estimates of Free Parameters  Path Standard Error  UNFAIR <- JOBSEC 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06				
ADFU Estimates of Free Parameters  Lith Parameter Parameter  UNFAIR <- JOBSEC				
ADFU Estimates of Free Parameters  Lith Parameter Parameter  UNFAIR <- JOBSEC	PROSU	P -0.085	0.000	
ADFU Estimates of Free Parameters  Lith Parameter Pounther  UNFAIR <- JOBSEC			m Abenlut	e Residua
ADFU Estimates of Free Parameters  UNFAIR <- JOBSEC UNEMP <- TRAING STRAIN <- TRAING ETRAIN <- TRAING ETRAIN <- TRAING IPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP JOBSEC <- TRAING JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT STRAING JOBSEC <- PROMOT JO	J 1 x 160	i , He Waximum	II ADBOTOC	C ,
UNFAIR <- JOBSEC  DCHARG <- JOBSEC  UNEMP <- JOBSEC  UNEMP <- JOBSEC  ITRAIN <- TRAING  STRAIN <- TRAING  ETRAIN <- TRAING  IPROMOT <- PROMOT  OPROMOT <- PROMOT  ISUP <- RELSUP  PROSUP <- RELSUP  JOBSEC <- TRAING  JOBSEC <- TRAING  JOBSEC <- PROMOT  JOBSEC <- RELSUP  ADFU Estimates of Free Parameters  Path  UNFAIR <- JOBSEC  UNFAIR <- JOBSEC  O.O.  O.O	ADFU	Estimates of	Free Par	ameters :
UNFAIR <- JOBSEC   2   2   1   2   2   2   2   2   2   2	Eath			er Po
UNEMP <- JOBSEC UNEMP <- JOBSEC UNEMP <- JOBSEC ITRAIN <- TRAING STRAIN <- TRAING STRAIN <- TRAING ETRAIN <- TRAING IPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT STRAING UNFAIR <- JOBSEC UNFAIR <- JOBSEC OOG OOG OOG OOG OOG OOG OOG OOG OOG OO	Eath			er Po
UNEMP <- JOBSEC  ITRAIN <- TRAING STRAIN <- TRAING ETRAIN <- TRAING ETRAIN <- TRAING IPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP JOBSEC <- TRAING JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT STRAING JOBSEC <- PROMOT JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMO			Num	ter Pr
ITRAIN <- TRAING STRAIN <- TRAING STRAIN <- TRAING ETRAIN <- TRAING IPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT  JOBSEC <- RELSUP  ADFU Estimates of Free Parameters  Path  UNFAIR <- JOBSEC  UNFAIR <- JOBSEC  O.06 O.07 O.07 O.07 O.07 O.07 O.07 O.07 O.07	IMEA	IR <- JOBSEC	Num	er Po
STRAIN <- TRAING ETRAIN <- TRAING ETRAIN <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- PROMOT STRAING ADFU Estimates of Free Parameters  Path  UNFAIR <- JOBSEC O.O. O.O. O.O. O.O. O.O. O.O. O.O. O.	UNFAI	IR <- JOBSEC	Num	er Po
ETRAIN < TRAING IPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- PROMOT Free Parameters  Path  UNFAIR <- JOBSEC  UNFAIR <- JOBSEC  October Standard Error  Standard Error  October Standard  UNFAIR <- JOBSEC October Standard  October Standa	UNFA) DCHAE UNEM	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC	Num	er Po
IPROMOT <- PROMOT OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- RELSUP  ADFU Estimates of Free Parameters  Path  UNFAIR <- JOBSEC  UNFAIR <- JOBSEC  O.04  O.14  O.15  O.16  O.16  O.17  O.17  O.18  O.	UNFA DCHAF UNEMI	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING	Num	ter Po
OPROMOT <- PROMOT ISUP <- RELSUP PROSUP <- RELSUP JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- PRELSUP  ADFU Estimates of Free Parameters  Path  UNFAIR <- JOBSEC  O.06  O.06  O.07  O.06  O.07  O.06  O.07  O	UNFAI DCHAI UNEMI ITRAI	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING	Num	ter Po ter 1 2 3 4 5
PROSUP <- RELSUP  JOBSEC <- TRAING  JOBSEC <- PROMOT  JOBSEC <- RELSUP  ADFU Estimates of Free Parameters  Path  UNFAIR <- JOBSEC  DOMESTICATION  OUTPAIR  O	UNFAI DCHAE UNEMI I TRAI STRAI	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING	Num	1 2 3 4 5 6 7
PROSUP <- RELSUP  JOBSEC <- TRAING  JOBSEC <- PROMOT  JOBSEC <- RELSUP  ADFU Estimates of Free Parameters  Path  UNFAIR <- JOBSEC  DOMESTICATION  OUTPAIR  O	UNFA DCHAF UNEM I TRA STRA ETRA I PROI	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT	Num	ter Po
JOBSEC <- TRAING JOBSEC <- PROMOT JOBSEC <- PROMOT JOBSEC <- RELSUP 13  ADFU Estimates of Free Parameters  Path UNFAIR <- JOBSEC 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	UNFAI DCHAE UNEME ITRAI STRAI ETRAI I PROI OPROI	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT <- PROMOT <- RELSUP	Num	1 2 3 4 5 6 6 9
JOBSEC <- PROMOT   13  ADFU Estimates of Free Parameters  Path   Standard Error  UNFAIR <- JOBSEC   0.06 0.07 1.	UNFAI DCHAE UNEME ITRAI STRAI ETRAI I PROI OPROI	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT <- PROMOT <- RELSUP	Num	1 2 3 4 5 6 7 8 9 10
Path  UNFAIR <- JOBSEC  IN THE TEATH  UNFAIR JOBSEC  OCCUPANT	UNFA) DCHAF UNEMI ITRA STRA. ETRA IPROI OPROI ISUP PROS	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT M<- PROMOT M<- RELSUP UP <- RELSUP UP <- RELSUP EC <- TRAING	Num	1 2 3 4 5 6 7 8 9 10 11
Path  UNFAIR <- JOBSEC  IN THE TEATH  UNFAIR JOBSEC  OCCUPANT	UNFA) DCHAF UNEMI ITRA STRA. ETRA IPROI OPROI ISUP PROS	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT M<- PROMOT M<- RELSUP UP <- RELSUP UP <- RELSUP EC <- TRAING	Num	Per
Path  UNFAIR <- JOBSEC 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70 0.00 70	UNFA) DCHAF UNEMI ITRA STRA. ETRA IPROI OPROI ISUP PROS	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT M<- PROMOT M<- RELSUP UP <- RELSUP UP <- RELSUP EC <- TRAING	Num	Per
UNFAIR <- JOBSEC 0.06 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7 0.07 7	UNFAI DCHAF UNEMI ITRAI STRA- ETRAI IPROI OPROI ISUP PROS JOBSI JOBSI JOBSI	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING OF - PROMOT WOT <- PROMOT WOT <- PRELSUP UP <- RELSUP UP <- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP	Neits	Per
UNFAIR < JOBBEC 0.00 7	UNFAI DCHAF UNEMI ITRAI STRA- ETRAI IPROI OPROI ISUP PROS JOBSI JOBSI JOBSI	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING OF - PROMOT WOT <- PROMOT WOT <- PRELSUP UP <- RELSUP UP <- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP	Non	1 2 3 4 5 6 6 7 8 9 10 11 12 13
UNFAIR < JOBBEC 0.00 72	UNFAJ DCHAF UNEMI ITRA STRA. ETRA: IPROI OPROI ISUP PROS: JOBS: JOBS: JOBS:	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING OF COMMOT <- PROMOT OF COMMOT <- PROMOT OF COMMOT <- PROMOT OF COMMOT <- PROMOT OF COMMOT COMMOT OF	Non	1 2 3 4 5 6 6 7 8 9 10 11 12 13
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UNFAI DCHAF UNEMI ITRAI STRAI ETRAI IPROI OPROI ISUP PROSI JOBSI JOBSI JOBSI ADFU	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING OF COMMOT ROMOT RELSUP UP <- RELSUP UP <- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP RELSUP RELSUP RELSUP RELSUP RELSUP	Non	1 2 3 4 5 6 7 7 8 9 10 11 12 13 rameters
17, V P. D.  11 1. V P. D.  11 1. V P. D.  12 1. V P. D.  13 1. V P. D.  14 1. V P. D.  15 1. V P. D.  16 1. V P. D.  17 1. V P. D.  18 1. V P. D.  18 1. V P. D.  19 1. V P. D.  19 1. V P. D.  10 1. V P. D.  10 1. V P. D.  11 1. V P. D.  12 1. V P. D.  13 1. V P. D.  14 1. V P. D.  15 1. V P. D.  16 1. V P. D.  17 1. V P. D.  18 1. V P.  18 1. V	UNFAI DCHAF UNEMI ITRAI STRAI ETRA IPROI OPROI ISUP PROSI JOBSI JOBSI JOBSI ADFU Path	IR <- JOBSEC RG <- JOBSEC RG <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING OT <- PROMOT <- PROMOT <- RELSUP UP <- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP EX - JOBSEC	Non	1 2 3 4 5 6 6 7 8 9 10 11 12 13 rameters
11 1. V - 1 1. V.	UNFAI DCHAF UNEM UNEM ITRAI STRAI ETRAI IPROI OPROI ISUP PROS JOBS JOBS JOBS ADFU  Path	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING OT <- PROMOT MOT <- PROMOT <- RELSUP UP <- RELSUP EC <- TRAING EC <- PROMOT EC <- PROMOT EC <- RELSUP Estimates Of	Non	ter Politics 1 2 3 4 5 6 6 7 8 9 10 11 12 13 rameters 2 13 rameters 2 0.061 0.061
PI FIN TEATH G. T	UNFAL DCHAF UNEMI ITRA STRA: ETRA IPROI OPROI ISUP PROSS JOBS: JOBS: JOBS: JOBS: UNFA	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT WOT <- PROMOT C- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP ESTIMATES  ESTIMATES  IR <- JOBSEC	Non	1 2 3 4 5 6 6 7 8 9 10 11 12 13 rameters
F: 71M	UNFAI DCHAF UNEMI ITRA STRA: ETRA IPROI OPROI ISUP PROSI JOBS: JOBS: JOBS: JOBS: UNFA	IR <- JOBSEC RG <- JOBSEC RG <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING OT <- PROMOT ACT RELSUP UP <- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP EC <- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP RETIMATES OF	Non	1 2 3 4 5 6 6 7 8 9 10 11 12 13 13 rameters
the Martin MI	UNFA DCHAF UNEM ITRA: STRA: ETRA: IPROI OPROI ISUP PROSI JOBS: JOBS: JOBS: JOBS: JOBS: JOBS: JOBS:	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING OT <- PROMOT MOT <- PROMOT <- RELSUP UP <- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP Estimates of  IR <- JOBSEC IR <- JOBSEC	Non	1 2 3 4 5 6 6 7 8 9 10 11 12 13 rameters
	UNFAL DCHAF UNEMI ITRA STRA: ETRA IPROI OPROI ISUP PROSS JOBS: JOB	IR <- JOBSEC RG <- JOBSEC P <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT WOT <- PROMOT C- PROMOT C- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP Estimates Of  IR <- JOBSEC IR I	Non	1 2 3 4 5 6 6 7 8 9 10 11 12 13 rameters   2 n 0 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
OPROMOT <- PROMOT	UNFAL DCHAF UNEMI ITRA STRA: ETRA IPROI OPROI ISUP PROSI JOBS: JOBS: JOBS: JOBS: UNFA	IR <- JOBSEC RG <- JOBSEC RG <- JOBSEC IN <- TRAING IN <- TRAING IN <- TRAING MOT <- PROMOT MOT <- PROMOT C- PROMOT C- RELSUP EC <- TRAING EC <- PROMOT EC <- RELSUP Extimates of	Free Pai	1 2 3 4 5 6 6 7 8 9 9 10 11 12 13 rameters ard Error

```
0.000
            0.000
                      0.000
            0.000
  -0.065
                                 0.000
                      0.051
            0.045
  -0.089
                                             0.000
                      0.047
                                -0.060
            0.016
  -0.033
                                0.011
                                           -0.008
                     -0.047
             0.042
  -0.080
                                            -0.072
            0.012
                     -0.049
  -0.023
ntd...)
```

## 1 : 0.148

### in Dependence Relationships

SIKAIN

oint Estimate	90.00% Confidence Lower	Interval Upper
0.552	0.451	0.653
0.871	0.770	0.972
0.692	0.592	0.791
0.748	0.670	0.826
0.853	0.308	0.899
0.914	0.756	0.873
0.926	0.242	1.011
0.802	0.714	0.891
0.844	0.752	0.937
0.663	0.568	0.758
0.074	-0.129	0.277
0.132	0.075	0.310

## in Dependence Relationships (contd...)

9.011 14.218 11.416 15.780 3(.814 23.(35 17.981 14.46 14.968

```
Variable Estimate
                  1.008
                  0.962
 DCHARG
 UNEMP
                  0.974
 ITRAIN
                  1.000
 STRAIN
                  1.002
 ETRAIN
                  0.983
 IPROMOT
                  0.989
 OPROMOT
                   1.001
 ISUP
                  0.998
PROSUP
                  0.970
 Values of Fixed Parameters in Dependence !
 Path
                   ! Value
 UNFAIR <- E1 | 1.000
DCHARG <- E2 | 1.000
UNEMP <- E3 | 1.000
ITRAIN <- E4 | 1.000
STRAIN <- E5 | 1.000
ETRAIN <- E6 | 1.000
IPROMOT <- E7 | 1.000
 OPROMOT <- E8 | 1.000
 ISUP <- E9 | 1.000
PROSUP <- E10 | 1.000
JOBSEC <- Z1 ! 1.000
 ADFU Estimates of Free Parameters in Varia
Path
                          Parameter Point Est:
                         Number
TRAING <-> FRUMET
 TRAING <-> RELSUP
 PROMOT <-> RELSUP
 E1 <-> E1
 E2 <-> E2
 E3 <-> E3
 E4 <-> E4
 E5 <-> E5
 E6 <-> E6
 E7 <-> E7
 E8 <-> E8
```

21 <-> 21

E1 <-> E1

E2 <-> E2

E3 <-> E3

E4 <-> E4

E5 <-> E5

E6 <-> E6

E7 <-> E7

22 23 24 E9 <-> E9 E10 <-> E10

14

15

16

17

18

19

21

0.068

0.107

0.084

0.071

0.047

0.058

10.28

6.22

6.20

5.75

5.84

1.48

2.28

ADFU Estimates of Free Parameters in Varia

			4	
TRAING	<->	PROMOT		7.
TRAING	<->	RELSUP		1 F
PROMOT	<->	RELSUP		1.00

! Standard Error

#### Relationships

#### ance/Covariance Relationships

97,00× 11, term	The state of
Liwei	,
(1,1,1)	
4 . 4	0.677
0.354	0.593
0.593	0.816
	0.499
	0.679
	0.574
	0.362
	0.446
	0.429
	0.530
	0.495
	0.702
0.818	0.945
	0.1.0 1.41. 0.354

nce/Covariance Relationships (contd )

```
TRAING <-> TRAING ' 1.000
PROMOT <-> PROMOT 1.000
RELSUP <-> RELSUP 1.000
 Equality Constraints on Variances
                          Value
                                     Lag
  Constraint
                                   Multi
  JOBSEC <-> JOBSEC : 1.000
  UNFAIR <-> UNFAIR | 1.000
  DCHARG <-> DCHARG 1.000
UNEMP <-> UNEMP 1.000
  ITRAIN <-> ITRAIN : 1.000
  STRAIN (-> STRAIN | 1.000
ETRAIN (-> ETRAIN | 1.000
ETRAIN (-> ETRAIN | 1.000
IPROMOT (-> IPROMOT | 1.000
OPROMOT (-> OPROMOT | 1.000
ISUP (-> ISUP | 1.000
  ISUP <-> ISUP
  PROSUP <-> PROSUP 1.000
ADFU Discrepancy Function
Measures of Fit of the Model
'14.6 Discrepancy Fun tion Value
Population Discrepancy Function Value
Fin Aijusted Point Est, mate
90% Confidence Interval
Root Mean Square Error of Approximati
.. Her land : RMTEA = SOPT(Fo, df)
: .: " t. nite (m lifted AIC)
90% Confidence Interval
Expected Cross-Validation Index (CVI)
in Estimate (med.(iel AIC)
90% Confidence Interval
V (m diffied Al') i r the Saturated
Test Statistic
Exceedance Probabilities
FILE FOR CHARACTERS
o . . . . of f : itinning Test Statis
 Degrees of Freedom
 tite : ... Name: tlarameters
 If the usual SYSTAT cases-by-variab
 are printed before the iteration detail
 of normality assumptions. They can
statistics and standard errors if the u
```

```
Standard Error
range
plier
                  0.000
                  0.000
                  0.000
                  0.000
                  0.000
                  0.000
                  0.000
                  0.000
       · 0.185 (0.185)
, Fo
       : 0.048
       : (0.000,0.144)
on (RMSEA)
        : 0.041
        : (0.000,0.071)
        : 0.430
       : (0.382, 0.526)
       : 0.519
Model
         39.136
        : 0.099
        : 0.662
          212,000
oles file is used as input, then the kurtosis estimates
```

s. These can be used to judge the appropriateness also be used to manually apply corrections to test ser is willing to accept that the assumption of an for the data (Shapiro and Browne, 1987).

#### ath Analysis and Standard Errors

Lawley and Maxwell (1971) gave correct parameter estimates in a restricted factor a example shows how RAMONA can produce used for calculating the standard errors differ RAMONA makes use of constrained optimate formula by applying the delta method however, that the two methods are equivalent and Maxwell made use of a sample correlated administered to 72 children.

standard errors for maximum likelihood nalysis model for a correlation matrix. This ce these correct standard errors. The method ers from that of Lawley and Maxwell in that nization and Lawley and Maxwell obtained to standardized estimates. It can be shown, ent and produce the same results. Lawley ation matrix between nine ability tests



1.6

1.0

1.0

El

E2

E3

¥1

Y2

¥3



path diagram using the correlation matrix. The that we first treat the model (inappropriately) as a correlation structure. We specify TYPE as COVA in ad.

```
USE EX4A
MANIFEST y1 y2 y3 y4 y5 y6
LATENT visual verbal speed
                              0
 MODEL y1 <- visual e1(0, y2 <- visual e2(0,
        y3 <- visual e3(0,:
       y4 <- verbal e4(0,:
y5 <- verbal e5(0,:
y6 <- verbal e6(0,:
       y7 <- speed e7(0,1,
y8 <- speed e8(0,1,
       y9 <- visual speed
  visual <-> visual(0,1.0
  verbal <-> verbal(0,1.0)
   speed <-> speed(0,1.0),
  visual <-> verbal,
  visual <-> speed,
  verbal <-> speed
PLENGTH MEDIUM
ESTIMATE / TYPE=COVA NCASE
```

## The output is:

RAMONA

There are 9 Marifest Variables in the Mone! Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

There are 1. Latent Variables in the Mode... VISUAL D. EZ EN VERBAL E4 E5 FF ...

#### RAMONA Options in Effect are

Display	0
Method	Covar
Start	MWI
0	Rough
Maximum Iterations	0.0001
N of Cases	
Restart	72
	No
& Confidence Level	90

of the feet life . . . AV NA.

Control of the performance of the system is

Reading Correlation Matrix...

*** WARNING ***

```
y7 y8 y9
e1 e2 e3 e4 e5,
6 e7 e8 e9
1.0),
1.0),
1.0),
1.0),
1.0),
1.0),
1.0),
1.0),
1.0),
1.0),
1.0),
```

S=72

. They are

They are PEED E7 E8 E9

the job specification

"Att 1 Extl., p. 1

Ite	eration	Method	Discr.	Funct.
		OLS		1.013
1 (	13	OLS		0.457
		OLS		0.144
4 (1		IS		0.135
3 t		LS		0.135
4		MWL		0.472
٤ (		MWL		0.426
	)	MWI		0.427
				0.421
1	*	MWL		0.421
11 5	*	MWI		0.421
. (		MWL		0.421
	( )	MWI		0.421
1 1	1	MWL		
) a.	( )	MWL		0.421
1 -	( + )	MW1		0.421
	1 }	MWL		0.421
1 %	( )	MWL		0.421
	(←)	MWL		0.421
		credute		[ [ 19] ]
٠,	of Jelle	I:mit [ :	Kep I alla	1 ( )2111
Sa	mple Cov	variance )	fatrix	
	¥1	Ye	Y s	¥4
	. }			
	(1)	2		
YJ	· 4 E	1.000		
Y		0.566	1.000	
: 1	1,,8,	017	0.425	1.000
1"	11 . 5 9			
			6.116	
Y'		U.14P	065	).18°
2 V H		( 8 s	6. 00	1 , 1, 1
1		3 (43	6.136 065 0455	0.481
'rt	ert f "	ises : 12		
		i Covaria	nce Matri	×
			Y 3	¥4
-	+			
1	1.	1 0/1		
	1 1	1,0(1	1 100	
I f				1.000
3 4		. 1.1/1		1.000
: 1		1,15	7. 71	. 45
7 4		. 115	1. < (1)	. 11 %
: 1		. 10.	î., i	1, .
		6	0.284	
v			1.471	1, 1, 1
Re	sidual	Matrix (c	ovariance	s)
		Y1		¥3
X.	: 0.0	13 0.0	00	
8.4	0.0	13 0.0	·- (.	3
			40	

0	0 NKL	.Const.		Max.R.C
0	0 0		650 092 054 005 165 031	0.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0		006 006 001 002 000 000	0. 0. 0.
0	0		000	0.
ations	tive Iter	Consecut	E-04 en 2	: 1.000E
49	 48	Y /	¥6	Υ.5
1.000	1.000 0.462	1.000 0.601 0.385	1.300 0.118 -0.027 0.235	1.000 0.130 0.221 0.139
1.000 Y9	1.000 0.462 Y8	0.601	0.118	0.221
	0.462	0.601 0.385 Y7	0.118 -0.027 0.235	0.130

1 0.

ML	Es	timates	O.	Free	Pa	ramete	rs i	n I	)epe
Pat	h			Param Nu		r Po:	ınt	Est	ıma
Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9	< <- <- <- <-	VISUAL VISUAL VISUAL VERBAL VERBAL VERBAL SPEED SPEED VISUAL SPEED	*************************			1 2 3 4 5 6 6 7 8 9			0.6 0.3 0.6 0.9 0.8 0.8 0.6 0.8
ML	Est	imates	of	Free	Pa	rameter	s i	n D	eper
Pat	h		2 0 1 1	Standa	ırd	Error			t
Y2 Y3 Y4 Y5	<- <- <-	VISUAL VISUAL VISUAL VERBAL VERBAL VERBAL				0.119 0.130 0.120 0.095 0.098 0.100	5.	63 49 51 87	0 9 4

ML Es	timates	of	Free	Par	rameters	in	Depo
Path		1 1	Standa	rd	Error		t
Y2 <- Y3 <- Y4 <- Y5 <- Y6 <- Y7 <-	VISUAL VISUAL VISUAL VERBAL VERBAL VERBAL SPEED SPEED	***			0.119 0.130 0.120 0.095 0.098 0.100 0.131	5.6 5.4 9.5 8.8 8.2 4.9	30 199 114 170 129

#### Y9 <- VISUAL Y9 <- SPEED 0.135 4.978 Values of Fixed Param

		_	_		r or omis (	-679	TH	nebel
				Value				
Yl Y2	<- <-	E1 E2	-	1.000				
¥4 ¥5	<-	E4 E5	-	1.000				
				1-000				

Y6 <- E6 ; 1.000 Y7 <- E7 ; 1.000 Y8 <- E8 ; 1.000 Y9 <- E9 ; 1.000		
ML Estimates of Fr	ree Parameters	in Vari
Path	Parameter Number	Point E
VISUAL <-> VERBAL VISUAL <-> SPEED VERBAL <-> SPEED El <-> El E2 <-> E2 E3 <-> E3 E4 <-> E4 E5 <-> E5 E6 <-> E6 E7 <-> E7 E8 <-> E8 E9 <-> E9	11 12 13 14 15 16 17 18 19 20 21	

# 90.00% Confidence Interval te Lower

ndence Relationships

9	0.483	1.0
1	0.128	
9	0.462	( , -
8	0.751	, ,
7	0.707	1
4	0.659	(
1	0.435	( , +>
4	0.691	1.10
0	0.449	
2	-0.023	( 4,

Upper

# ndence Relationships (contd...)

# Relationships

1 mate

nce/Covariance Relationships

0.552	0.344	0.708
0.474	0.210	0.674
0.088	-0.132	0.299
0.538	0.373	0.777
0.884	0.664	1.177
0.566	0.398	0.806
0.175	0.100	0.308
0.248	0.162	0.378
0.321	0.224	0.459
0.577	0.387	0.859
0.146	0.014	1.473
0.392	0.255	0.604

90.000 1 75.101 1

Lower

#### ML Estimates of Free Parameters in

Path				Standard	Erro
L. qi miri			,	Standard	2110
			-+-		
VISUA	1. <->	VERBAL	1		0.11
VISUA	L <->	SPEED	í		0.14
VERBA	L <->	SPEED	1		0.1:
E1 <-	> E1		1		0.1.
r' <-	> E2		1		3.15
r. <	> E3		1		J
14 <-	> E4		1		() , le
E <	> E5		1		0.16
F6 <-	> E6		1		0.7
F' <-	> E7		1		0.14
1 8 <	> E8		-		9.2
F1 <-	> E9		1		7.11

#### Values of Fixed Parameters in Var-

	Value
VISUAL <-> VISUAL VERBAL <-> VERBAL	1.000

# Maximum Likelihood Discrepancy Func

# Measures of Fit of the Model

# Population Discrepancy Function Value

Bias Adjusted Point Estimate 90% Confidence Interval

# Root Mean Square Error of Approximat

Point Estimate (modified AIC)
90% Confidence Interval

# Expected Cross-Validation Index (CV

Point Estimate (modified AIC)
90% Confidence Interval

#### Test Statistic

Exceedance Probabilities No: Perfect Fit (RMSEA = 0.0) No: Close Fit (RMSEA <=0.050)

Degrees of Freedom Effective Number of Parameters

# Analyzing the Correlation Structure

The maximum likelihood estimates the standard errors differ. Those fro errors in Lawley and Maxwell; tho

```
Variance/Covariance Relationships (contd...)
```

```
4. +'4

3. 5. 4

7. + 61

4. 5 - 7

5. 45
 1.919
 4.592
```

iance/Covariance Relationships

tion

```
: 0.421 (0.421)
```

ue, Fo

: 0.097 : (0.000,0.354)

cion (RMSEA)

: 0.065 : (0.000,0.124)

I)

stic

: 1.041 : (0.944,1.298) : 1.268 d Model

29.891

: 71.000 : ...

and measures of t from the two jobs are the same; om the first job agree with the incorrect standard se from the second job agree with Lawley and

#### Chapter 11

Maxwell's correct standard errors. A c shows that the introduction of addition multipliers (TYPE = CORR) results in s run differs from the first only in that w COVA.

## The input is:

RAMONA

```
USE EX4B
MANIFEST y1 y2 y3 y4 y5
LATENT visual verbal sp
 MODEL y1 <-
                 visual el
                 visual e2
        y2 <-
        y3 <-
                 visual e3
                 verbal e4
        y4 <-
        v5 <-
        y6 <- verbal e6
y7 <- speed e7(0
y8 <- speed e8(0
y9 <- visual spe
   visual <-> visual(0, verbal <-> verbal(0,
    speed <-> speed(0,1.
   visual <-> verbal,
   visual
            <-> speed,
   verbal <-> speed
PLENGTH MEDIUM
```

ESTIMATE / TYPE=CORR

2

## The output is:

There are 9 Manifest Variables in the 1 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

There are 12 Latent Variables in the MC VISUAL E1 E2 E3 VERBAL E4 E5

#### RAMONA Options in Effect are

Display	ŀ	Corr
Method	ŀ	MWL
Start		Rough
Convergence Limit	1	0.0001
Maximum Iterations	1	100
N of Cases	2	72
Restart	1	No
% Confidence Level	1	90

Variance paths for errors were omitted and have been added by RAMONA.

Number of Manifest Variables Total Number of Variables in the System

Reading Correlation Matrix..

comparison of iteration times in the two jobs and (nuisance) parameters and Lagrange substantially slower iteration times. The second we specified TYPE = CORR instead of TYPE =

#### CASES=72

```
Model. They are
odel. They are
26 SPEED E7 E8 E9
```

```
from the job specification
```

#### Details of Iterations

Irerati n	Method	Discr.	Fu
	1		1
	- 444		^
14	CLC		
* 1 112	LS		-
4(1)	L-		-
4 .	MWI		0
5	MAL		3
F (	MNL		0
£ 11	MWL		,
h ( , )	MW:		17
11 71	MWI		-
10,()	MWL		63
1 . 1 - 1	MWI		
: ( )	MWL		()
1 . ( )	MWI		6
14(0)	SW		
15(-)	MWL		0
16()	MWI		

Iterative procedure complete.
Convergence Limit for Residual Co
Convergence Limit for Variance Co
Value of the Maximum Variance Co

#### Sample Correlation Matrix

2 2	Y1	¥2	¥3	
+				
Y :	1.000			
	0.245	1.000		
	0.418	0.362	1.000	
Y4 !	0.282	0.217	0.425	1.
7. 1	0.257	0.125	0.304	0.
Y6 !	0.239	0.131	0.330	0.
Y 7 1	0.122	0.149	0.265	0.
1 84	0.253	0.183	0.329	0.
Ya	0.583	0.147	0.455	0.

Number of Cases: 72

#### Reproduced Correlation Matrix

	Yl	Y∠	Y3	
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	1.000 6.247 6.448 6.441 6.321 6.309 6.210 6.218 6.517	1.000 0.225 0.171 	1.00 0.330 6.41 0.300 0.239 0.239	1 6 0 0 0

### Residual Matrix (correlations)

	Y1	Υ2	γ.
Yl	0.000	, , ,	
Y., Y∃	-0.040	0.137	0.000
Y4 YF	-0,04	-J.J38	ი.r∋5 -a.111
Yé Y	-C.010	-0.024 44	(. 140 5.16/
A8 .	-6.045 0.166	0.034 -0.113	-0.046

# Path Analysis (RAMONA)

1000

MAI

Max.e. 1 ..

.437	(	.650	0.193	0	-0	
144	10	.092	0.018	0	0	
135		.054	0.007	0	0	
. 133			0.007			
.135	C	.005	0.000	0	0	
472	0	.165	0.000	0	0	
.426		.031	0.003	0	0	
.422		.020	0.001	0	0	
.421	0	.006	0.000	0	0	
421		.006	0.000	0	0	
		.000		0	0	
421		.001	0.000			
421	0	.002	0.000	0	0	
421		.000	0.000	0	0	
421		.000	0.000	0	0	
				0	0	
421		.000	0.000			
421	0	0.000	0.000	0	0	
421		.000	0.000	0	0	
			0.000	0	0	
421		0.000	0.000			
nstr	aint Vio	lations:	5.000E-07 2.142E-09		Id [†] . ('	
¥4	¥5	¥6	¥7	Y8	¥9	
.000 .784 .743 .165 .021	1.000 0.730 0.221 0.139 0.400	1.000 0.118 -0.027 0.235	1.000 0.601 0.385	1.000	1.000	
¥4	¥5	¥6	¥7	¥8	¥9	
.000 .788 .48 .052 .074 .351	1.000 0.715 0.050 0.070 0.336		1.000 0.601 0.331	1.000	1.000	
	¥4	¥5	¥6	¥ 7	£8	¥ 9
0.	005 0. 133 0. 053 0.	171 0. 069 -0	.000 .071 0.0 .094 0.0		.000	000

#### Chapter 11

Value of the Maximum Absolute Residua

ML Estimates of Free Parameters in

Path	Number	Point Es
Y1 <- VISUAL   Y2 <- VISUAL   Y3 <- VISUAL   Y3 <- VISUAL   Y4 <- VERBAL   Y5 <- VERBAL   Y6 <- VERBAL   Y6 <- VERBAL   Y7 <- SPEED   Y8 <- SPEED   Y9 <- VISUAL   Y9 <- SPEED   Y9 <- S	123345678899	

## ML Estimates of Free Parameters in

Pat	h		į	Standard	Error	
YI	<-	VISUAL	1		0.086	7.
Y2	<-	VISUAL	1		0.121	2.
Y3	<-	VISUAL	1		0.089	7.
Y4	<-	VERBAL	1		0.036	25.
Y5	<	VERBAL	1		0.041	21.
Y6	<-	VERBAL	i		0.047	17.
77	<-	SPEED	è		0.103	€.
YB	<-	SPEED	i		0.111	8.
Y9	<-	VISUAL	1		0.113	5.
		SPEED	0		0.129	1.

#### Scaled Standard Deviation (nuisance

Variable	Estimate
Yl	1.000
¥2	1.000
Y3 Y4	1.000
Y5	1.000
Y6	1.000
¥7	1.000
Y8 Y9	1.000

#### Values of Fixed Parameters in Depend

Pat	h			Value
			- 4 -	
Y1	< -	E1	;	1,000
Y2	< -	E2		1.000
Y i	< -	Eβ		1.000
¥4	< -	E4		1.000
Y5	< -	E5		1.(00
YE	< -	£6		1.000
Y 2	< -	E7		1.000
8 Y	•	E.8	,	1.000
YG	<-	F. 9	1	1.000

#### 1 : 0.171

#### Dependence Relationships

timate	90.00% C	Confidence ver	Interval Upper
0.679	0.5		0.822
0.659	0.5	13	0.804
0.867	0.8	301	0.934
0.651	0.4	180	0.821
0.670	0.4	185	0.856

#### Dependence Relationships (contd...)

t	
68	
127	
42	
20	
14	
56	
91	
96	
157	
83	

#### parameters)

ience Relationships

Path		Parameter Number
VISUAL VISUAL VERBAL E1 <-> E2 <-> E3 <-> E4 <-> E5 <-> E6 <-> E7 <-> E7 <-> E8 <-> E8 <-> E9 <->	<-> VERBAL <-> SPEED <-> SPEED E1 E2 E3 E4 E5 E6 E7 E8	11 12 13 14 15 16 17 18 19 20 21 22

# ML Estimates of Free Parameters

Path		1	Standard	E
VISUAL <-> VISUAL <-> VISUAL <-> VERBAL <-> E1 <-> E1 E2 <-> E2 E3 <-> E3 E4 <-> E5 E6 <-> E5 E6 <-> E6 E7 <-> E7 E8 <-> E8 E9 <-> E9	VERBAL SPEED			000000000000000000000000000000000000000
			2	

# Values of Fixed Parameters in '

Path	· Value
ratii	+
UTSHAL <-> VISUAL	1.000
TERRAL Z-> VERBAL	1.000
SPEED <-> SPEED	1 1.000

# Equality Constraints on Varian

Equality Con	19 CTGTTTT	
Constraint		Lagrand
Y1 <-> Y1 Y2 <-> Y2 Y3 <-> Y3 Y4 <-> Y4 Y5 <-> Y5 Y6 <-> Y6 Y7 <-> Y7 Y8 <-> Y8 Y9 <-> Y9	1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00

# Maximum Likelihood Discrepancy

Measures of Fit of the Model

# Sample Discrepancy Function Val

Bias Adjusted Point Estimate 90% Confidence Interval

Root Mean Square Error of Appro

## Path Analysis (RAMONA)

Fourt Fitimate	Lower	Upper
0.552 0.474 0.088 0.538 0.884 0.566 0.175 0.248 0.321 0.577 0.146	0.344 0.210 -0.132 0.376 0.758 0.403 0.096 0.155 0.216 0.393 0.014 0.250	0.708 0.674 0.299 0.771 1.030 0.794 0.322 0.395 0.476 0.847 1.491

in	Variance/Covariance	Relationships	(conta)
ror	t		
111 143 133 11' ,82 117 065 070 070 135	1.124 0.551 4.587 10.140 4.854 2.715 3.540 4.170 4.286 6.0.707		
	/Coverience Rela	tionships	

## Variance/Covariance Relationships

#### Standard Error er 0.000 0 0 0 0.000 0.000 0.000 0.000 0.000 00000 0.000

### Punction -

ces

: 0.421 (0.421) 18

Value, Fo

: 0.097 : (0.000,0.354)

ximation (RMSEA)

#### Chapter 11

Steiger-Lind : RMSEA = SQRT(Fo/df) Point Estimate (modified AIC) 90% Confidence Interval

#### Expected Cross-Validation Index (CVI)

Point Estimate (modified AIC) 90% Confidence Interval CVI (modified AIC) for the Saturated N

Test Statistic

Exceedance Probabilities Ho: Perfect Fit (RMSEA = 0.0) Ho: Close Fit (RMSEA <=0.050)

Multiplier for Obtaining Test Statist Degrees of Freedom Effective Number of Parameters

# Computation

## RAMONA's Model

Let  $v_1$  be a  $p \times 1$  vector of manifest variables, and let

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

be the  $t \times 1$  vector (t = p + m) representation. Suppose that B is a  $t \times t$  matrix corresponding to the directed arrow for v, will appear in the ith row and jth from v by replacing all elements corresponding to the consists of exogenous variables we system of directed paths represented

$$v = Bv + v_r$$

The formulation of the model given is of RAM (McArdle and McDonald, ledements of v. Also, the non-null elements rather than residuals. Let

: 0.065 : (0.000,0.124) : 1.041 : (0.944,1.298) : 1.268 : 29.891 : ...: : 71.77) : 23

variables,  $v_2$  be an  $m \times 1$  vector of latent

(11-1)

senting all variables in the system, manifest and x of path coefficients. The path coefficient from the *j*th element,  $v_j$ , of v to the *i*th element, column of B. Let  $v_x$  be a  $t \times 1$  vector formed esponding to non-null rows of B by zeros. Thus, ith endogenous variables replaced by zeros. The in the path diagram is then given by:

(11-2)

n equation (11-1) differs only slightly from that 984). All non-null elements of  $v_x$  are also nents of  $v_x$  can, in some situations, be common

$$\Phi = \operatorname{Cov}(v_x, v_x')$$

be the  $t \times t$  covariance matrix of associated with two-headed arrowill be associated with endogen

Let Y = Cov(v,v'). It follows

$$\Upsilon = (I - B)^{-1} \Phi (I - B')^{-1}$$

The manifest variable covariance of  $\Upsilon$  (see equation (11-1)). Specovariances by applying constra

The structural model employs and  $\Phi$  are large matrices with nelements alone are stored in RA computation of  $(I - B)^{\top}$  and Y

The covariance structure in eand Weeks (1980) in that there is two.

Structural equation models are many published studies where the RAMONA fits a correlation structure, with unit variance to correspond taking

$$v_i = \sigma_i v_i^* \text{ for } i \leq p$$

where  $\sigma$ , stands for the standard the same way as latent variables endogenous and fixed at unity if is treated in the same way as a paexpressing the manifest variable

$$\Sigma = D_{\alpha} P D_{\alpha}$$

where  $D_{\sigma}$  is a diagonal matrix w manifest variable correlation mat standardized duplicate variables

If  $v_x$ . Thus, the nonzero elements of  $\Phi$  are parameters ows in the path diagram. Null rows and columns of  $\Phi$  ous variables in v.

from equation (11-2) that (McArdle and McDonald)

(11-3)

ematrix  $\Sigma = \text{Cov}(v_1, v')$  is the first  $p \times p$  submatrix cified values may be assigned to exogenous variable ints to appropriate diagonal elements of  $\Upsilon$ , and by RAMONA is given in equation (11-3). Both B most of their elements equal to 0. Their nonzero MONA. Sparse matrix methods are used in the  $\Gamma$ . Details can be found in Mels (1989), quation (11-3) differs from a formulation of Bentler is a single matrix, B, for path coefficients instead of

e often fitted to sample correlation matrices. There are als has been done incorrectly (Cudeck, 1989). Sture by introducing a duplicate standardized variable.

ond to each manifest variable  $v_i$ ,  $i \le p$ , and then

deviation of v. The duplicate variables are treated in — with variances constrained to unity if they are they are exogenous. Also, the standard deviation,  $\sigma$ , at coefficient. This procedure is equivalent to covariance matrix in the form

ith the  $\sigma_i$ ,  $i \le p$ , as diagonal elements, and P is the rix, which is treated as the covariance matrix of the  $v_i$ ,  $i \le p$ . Fitting the model to a sample correlation

matrix instead of a sample covariance matrix results in the estimates  $\hat{\sigma}$ , being replaced by  $\hat{\sigma}_i s_i$ , where  $s_i$  is a sample standard deviation. These quantities are referred to as *Scaled Standard Deviations (nuisance parameters)* in the output. Other parameter estimates are not affected.

This approach involves the introduction of p additional parameters,  $\sigma_i$ , and p additional constraints on the variances of  $v_i$ . The number of degrees of freedom is not affected (unless some parameters or constraints are redundant), but computation time is increased because of the additional parameters and additional constraints.

# Algorithms

Let  $\gamma$  be the parameter vector and  $\Sigma = \Sigma(\gamma)$  the covariance structure. Parameter estimates are obtained by minimizing a discrepancy function,  $F(S, \Sigma(\gamma))$ , specified using METHOD. Alternatives are:

MWL Maximum Wishart likelihood.  $F(S, \Sigma) = \ln|\Sigma| - \ln|S| + tr[S \Sigma^{-1}] - p$ 

GLS Generalized least squares assuming a Wishart distribution for S.

 $F(S, \Sigma) = \frac{1}{2} \operatorname{tr}[S^{-1}(S - \Sigma)]^2$ 

OLS Ordinary least squares.

 $F(S, \Sigma) = \frac{1}{2} \operatorname{tr}[(S - \Sigma)]^2$ 

ADFU, ADFG Asymptotically distribution-free methods

 $F(S, \Sigma) = (s - \sigma)^t \Gamma^{-1}(s - \sigma)$ 

where s and  $\sigma$  are column vectors with p (p+1)/2 elements formed from the distinct elements of S and  $\Sigma$ , respectively, and  $\Gamma$  is an estimate of the asymptotic covariance matrix of sample covariances. For ADFU,  $\Gamma$  is unbiased (Browne, 1982) but need not be positive definite. If  $\Gamma$  is indefinite, the program moves automatically from ADFU to ADFG. With

ADFG, T is biased but Gramian (Browne, 1982).

An iterative Gauss-Newton computing procedure with constraints (Browne and Du Toit, 1992) is used to obtain parameter estimates. With MWL, the weight matrix is re-

specified on each iteration. The procedure is then equivalent to the Aitchison and Silvey (1960) adaptation of the Fisher scoring method to deal with equality constraints.

Some computer programs can yield negative estimates of variances. This does not happen with RAMONA. Bounds are imposed to ensure that variance estimates are non-negative and that all correlation estimates lie between -1 and +1. The imposition of these bounds can result in the convergence of RAMONA in situations where programs that do not impose them fail to converge. In some cases, a program that allows negative variance estimates and does converge will yield a smaller discrepancy function value than RAMONA.

Iteration is continued until the largest absolute residual cosine (Browne, 1982) falls below a tolerance, specified in CONVG, on two consecutive iterations.

## Confidence Intervals

Approximate 90% confidence intervals are given for parameter estimates associated with dependence paths and with covariance paths. Confidence intervals for path coefficients and covariances (variances unrestricted) are provided under the assumption of a normal distribution for the estimator  $\hat{\gamma}$  (Browne, 1974) and are symmetric about the parameter estimate. Confidence intervals for other parameters are nonsymmetric about the parameter estimate (Browne, 1974) and are obtained under the following assumptions:

- Correlation coefficients (covariances with both corresponding variances restricted to unity): a normal distribution is assumed for the z-transform,  $\frac{1}{2} \ln[(1+\hat{\gamma})/(1-\hat{\gamma})]$ , (Browne, 1974).
- Variances: a normal distribution is assumed for the natural logarithm,  $\ln \gamma$ , (Browne, 1974).
- Error variances under a correlation structure (corresponding dependent variable variances are constrained to unity): a normal distribution is assumed for  $-\ln(\hat{\gamma}^{-1} 1)$  (Browne, 1974).

# Measures of Fit of a Model

This section provides a brief description of the measures of fit output by RAMONA. Further information concerning these measures of fit can be found in Browne and Cudeck (1993).

Chapter 11

Let N = n + 1 be the sample size; p, the number of manifest variables; and q, the number of free parameters in the model. Then the number of degrees of freedom is  $d = \frac{1}{2} p(p+1) - q$ . The sample covariance matrix is denoted by S and the corresponding population covariance matrix by  $\Sigma_0$ .

The minimal sample discrepancy function value is:

$$\hat{F} = \underset{\gamma}{\text{Min }} F(S, \sum_{\gamma} (\gamma))$$

and the corresponding minimal population discrepancy function value is:

$$F = \min_{\gamma} F(\Sigma_0, \Sigma(\gamma))$$

Now  $F_0$  is bounded below by 0 and takes on a value of 0 if and only if  $\Sigma_0$  satisfies the structural model exactly. Therefore, we can regard  $F_0$  as a measure of badness-of-fit of the model,  $\Sigma(\gamma)$ , to the population covariance matrix,  $\Sigma_0$ .

We assume that the test statistic  $n \not F$  has an approximate noncentral chi-square distribution with d degrees of freedom and a noncentrality parameter  $\sigma = nF_0$ . This will be true if the discrepancy function is correctly specified for the distribution of the data,  $F_0$  is small enough, and N is large enough (Steiger, Shapiro, and Browne, 1985). Then the expected value of f will be approximately  $F_0 + d/n$ , so that f is a biased estimator of  $F_0$ . As a less biased point estimator of  $F_0$  we use:

$$\hat{F}_0 = \text{Max} \{ \hat{F}_{-}(d/n), 0 \}$$

We also provide a 90% confidence interval on  $F_0$  as suggested by Steiger and Lind (1980). Let  $\Phi(x \mid \delta, d)$  be the cumulative distribution function of a noncentral chisquare distribution with noncentrality parameter  $\delta$  and d degrees of freedom. Given  $x = n \times F$  and d, the lower limit,  $\delta_I$ , of the 90% confidence interval on  $n \times F_0$  is the solution for  $\delta$  of the equation

$$\Phi(x | \delta, d) = 0.95$$

and the upper limit  $\delta_U$  is the solution for  $\delta$  of

$$\Phi(x \mid \delta, d) = 0.05$$

A 90% confidence interval on  $F_0$  is then given by  $(n^{-1}\delta_L; n^{-1}\delta_U)$ .

Because  $F_0$  cannot increase if additional parameters are added, it gives little guidance about when to stop adding parameters. It is preferable to use the root mean square error of approximation (Steiger and Lind, 1980):

$$RMSEA = \sqrt{\frac{\hat{F}_0}{d}}$$

as a measure of the fit per degree of freedom of the model. This population measure of badness-of-fit is also bounded below by 0 and will be 0 only if the model fits perfectly. It will decrease if the inclusion of additional parameters substantially reduces  $F_0$  but will increase if the inclusion of additional parameters reduces  $F_0$  only slightly. Consequently, it can give some guidance as to how many parameters to use. Practical experience has suggested that a value of the RMSEA of about 0.05 or less indicates a close fit of the model in relation to the degrees of freedom. A value of about 0.08 or less indicates a reasonable fit of the model in relation to the degrees of freedom.

A point estimate of the RMSEA is given by:

Estimate (RMSEA) = 
$$\sqrt{\frac{\hat{F}_0}{d}}$$

and a 90% confidence interval by:

Interval Estimate (RMSEA) = 
$$\left(\sqrt{\frac{\delta_L}{nd}}, \sqrt{\frac{\delta_U}{nd}}\right)$$
 (11-4)

The RMSEA does not depend on sample size and therefore does not take into account the fact that it is unwise to fit a model with many parameters if N is small. A measure of fit that does this is the expected cross-validation index (ECVI). Consider two samples of size N—a calibration sample C and a validation sample V. Suppose that the model is fitted to the calibration sample yielding a reproduced covariance matrix  $\hat{\Sigma}_{V}$ . The discrepancy between  $\hat{\Sigma}_{C}$  and the validation sample covariance matrix  $S_{V}$  is then measured with the discrepancy function yielding  $F(S_{\mu}\hat{\Sigma}_{C})$  as a measure of stability under cross-validation. A difficulty with this approach is that two samples are required. One can avoid a second sample by estimating the expected value of  $F(S_{\mu}\hat{\Sigma}_{C})$  from a single sample. Assume that the discrepancy function is correctly specified for the

distribution of the data. Taking expectations over calibration samples and validation samples gives the expected cross-validation index:

$$ECVI = \xi \xi F(SV, \hat{\Sigma}_C) \approx F_0 + (d + 2q)/n$$
(11-5)

A point estimate of the ECVI is given by (Browne and Cudeck, 1990):

Estimate (ECVI) = 
$$\hat{F} + 2q/n$$
 (11-6)

If METHOD is set to MWL, this point estimate of the ECVI is related by a linear transformation to the Akaike Information Criterion (Akaike, 1973) and will lead to the same conclusions.

The point estimate in equation (11-6) will decrease if an additional parameter reduces  $\hat{F}$  sufficiently and increases otherwise. This will give some guidance as to the number of parameters to retain. However, the amount of reduction in  $\hat{F}$  required before an increase in the point estimate occurs is affected by the sample size. If n is very large, increasing the number of parameters will tend to reduce the point estimate of the ECVI. One should also bear in mind that sampling variability affects the point estimates.

An approximate 90% confidence interval on the ECVI may be obtained from:

Interval Estimate (ECVI) = 
$$\left(\frac{\delta_L + d + 2q}{n}; \frac{\delta_U + d + 2q}{n}\right)$$
 (11-7)

It can happen that  $(\hat{F} - d) < \delta_t$ , so that the point estimate in equation (11-6) is smaller than the lower limit of the confidence interval in equation (11-7). In particular, this will be true if the (approximately unbiased) point estimate in equation (11-6) is less than the lower bound (d+2q)/n for the approximation to the ECVI given in equation (11-5)

For comparative purposes, RAMONA also provides the ECVI of the saturated model where no structure is imposed on  $\Sigma$ :

ECVI (Saturated Model) = 
$$\frac{2 \times (d+q)}{n}$$

The test statistic  $n \times F$  is also output by RAMONA. We follow convention in providing the exceedance probability,  $1 - \Phi(n\hat{F} \mid 0, d)$ , for a test of the point hypothesis

$$H_0: F_0 = 0$$
 (11-8)

which implies that the model holds exactly. Our opinion, however, is that this null hypothesis is implausible and that it does not much help to know whether or not the statistical test has been able to detect that it is false. More relevant is the exceedance probability for an interval hypothesis of close fit, which we define by

$$H_0: RMSEA \le 0.05$$
 (11-9)

and which implies that  $\delta \leq \delta^{\circ} = n \times d \times 0.05^{2}$ .

The exceedance probability output by RAMONA is given by  $1 - \Phi$   $(n\hat{F}|\delta^*,d)$ .

Note that the null hypothesis of perfect fit in equation (11-8) is not rejected at the 5% level if  $\delta_L = 0$  or, equivalently, the lower limit of the confidence interval in equation (11-4) is 0. The null hypothesis of a close fit in equation (11-9) is not rejected at the 5% level if the lower limit of the confidence interval in equation (11-4) is not greater than 0.05.

When METHOD is set to MWL, two sets of measures of fit are output. One is based on the maximum likelihood discrepancy function value

$$\hat{F} = \ln |\hat{\Sigma}| - \ln |S| + \text{tr}[\hat{S\Sigma}^{-1}] - p$$

and the other on the generalized least squares discrepancy function value

$$\hat{F} = \frac{1}{2} \text{tr}[\hat{\Sigma}^{-1}(S - \hat{\Sigma})]$$

When the model fits well, the differences between the two sets of fit measures should be small (Browne, 1974).

# References

- Aitchison, J. and Silvey, S. D. (1960). Maximum likelihood estimation procedures and associated tests of significance. *Journal of the Royal Statistical Society*, Series B, 22, 154–171.
- Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov and F. Csaki (eds), *Proceedings of the Second International Symposium on Information Theory*, 267-281. Budapest: Akademiai Kiado.
- Bentler, P. M. and Weeks, D. G. (1980). Linear structural equations with latent variables. *Psychometrika*, 45, 289–308.
- Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley & Sons.
- Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8, 1–24. (Reprinted in Aigner, D.J. and Goldberger, A.S. (eds), Latent Variables in Socioeconomic Models, 205–226. Amsterdam: North Holland.)
- Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (ed), *Topics in Applied Multivariate Analysis*, 72–141. Cambridge: Cambridge University Press.
- Browne, M. W. and Cudeck, R. (1990). Single sample cross-validation indices for covariance structures. *Multivariate Behavioral Research*, 24, 445–455.
- Browne, M. W. and Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen and J. S. Long (eds), *Testing Structural Equation Models*, Beverly Hills, Calif. Sage.
- Browne, M. W. and Du Toit, S. H. C. (1992). Automated fitting of nonstandard models *Multivariate Behavioral Research*, 27, 269-300.
- Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological Bulletin, 105, 317–327.
- Duncan, O. D., Haller, A. O., and Portes, A. (1971). Peer influence on aspirations, a reinterpretation. Causal Models in the Social Sciences, H. M. Blalock, ed. 219–244 Aldine-Atherstone.
- Everitt, B. S. (1984). An introduction to latent variable models. London. Chapman and Hall.
- *Guttman, L. (1954). A new approach to factor analysis: The radex. In P. F. Lazarsteld (ed). *Mathematical Thinking in the Social Sciences*, 258–348. Glencoe: The Free Press.
- Jöreskog, K. G. (1977) Structural equation models in the social sciences. Specification estimation and testing. In P. R. Krishnaiah (ed), *Applications of Statistics*, 265–287. Amsterdam: North Holland.

- Lawley, D. N. and Maxwell, A. E. (1971). Factor analysis as a statistical method. 2nd ed. New York: American Elsevier.
- McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade and R. B. Cattell (eds), *The Handbook of Multivariate Experimental Psychology*, 2nd ed., 561–614. New York: Plenum Press.
- McArdle, J. J., and McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. *British Journal of Mathematical and Statistical Psychology*, 37, 234–251.
- McDonald, R. P. (1985). Factor analysis and related methods. Hillsdale: Erlbaum.
- Mels, G. (1989). A general system for path analysis with latent variables. M. S. thesis, University of South Africa.
- Mels, G. and Koorts, A. S. (1989). Causal Models for various job aspects. SAIPA, 24, 144–156.
- Shapiro, A. and Browne, M. W. (1987). Analysis of covariance structures under elliptical distributions. *Journal of the American Statistical Association*, 82, 1092-1097.
- Steiger, J. H. and Lind, J.C. (1980). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society: Iowa City.
- Steiger, J. H., Shapiro, A., and Browne, M. W. (1985). On the asymptotic distribution of sequential chi-square statistics. *Psychometrika*, 50, 253-264.
- Wheaton, B., Muthén, B., Alwin, D. F., and Summers, G. F. (1977). Assessing reliability and stability in panel models. In D. R. Heise (ed), *Sociological Methodology*, 84–136. San Francisco: Jossey-Bass.

(*indicates additional reference.)

# Acknowledgments

The development of this program was partially supported by the Institute of Statistical Research of the South African Human Sciences Research Council, the South African Foundation for Research Development, and the University of South Africa.

The authors are indebted to Professor S.H.C. Du Toit and to Mrs. Yvette Seymore for a number of subroutines used in the program.

# Acronym & Abbreviation Expansions

A

ABS - absolute value

ACF - autocorrelation function

ACOLOR - color axes

ACS - arccosine

ACT - actuarial life table

AD test - Anderson Darling test

ADDTREE - additive trees

ADFG - asymptotically distribution free estimate biased, Gramian

ADFU - asymptotically distribution free estimate unbiased

ADJSEASON - seasonal adjustment

AHMAX - maximum extent

AHMIN - minimum extent

AIC - Akaike information criterion

AID - automatic interaction detection

ALT - alternative

ANCOVA - analysis of covariance

ANG1 - deviation of angles from north in a

clockwise direction

ANG2 - deviation of angles from horizontal (for

3D models)

ANG3 - tilt angle

ANOVA - analysis of variance

ANOVAHYPO - hypothesis tests in analysis of

variance

AR - autoregressive

ARIMA - autoregressive integrated moving

average

ARL - average run length

ARMA - autoregressive moving average

ARS - adaptive rejection sampling

ASCII - American Standard Code for

Information Interchange

ASE - asymptotic standard error

ASN - arcsine

ATH - arc hyperbolic tangent

ATN - arctangent

AVERT - vertical extent

AVG - average

B

BC - Bray-Curtis similarity measure

BCa - Bias Corrected and accelerated

BCF - Beta cumulative function

BDF - Beta density function

BETACORR - beta correction

BIC - Bayesian information criterion

BIF - Beta inverse function

BMP - Windows bitmap

BOF - beginning-of-file

BOG - beginning-of-BY group

BONF - Bonferroni

BOOT - bootstrap

BRN - Beta random number

C

CART - classification and regression trees

CBSTAT - column basic statistics

CCF - Cauchy cumulative function

CCF - cross-correlation function

CDF - Cauchy density function

cdf/CF - cumulative distribution function

CDFUNC - coefficients for canonical variables

Acronyms

CFUNC - coefficients for the classification functions

CGM - Computer graphics metafile: binary or clear text

CHAZ - cumulative hazard

CHISQ - Chi-square distribution

CHOL - Cholesky decomposition

CI - confidence interval

CIF - Cauchy inverse function

CIM - confidence interval of mean

CLASS - classification

CLSTEM - stem and leaf plot for column

CMeans - canonical scores of group means

CMULTIVAR - multiple string variables

COEF - coefficients COL/col - column

COLPCT - Column percentages

CONFIG - configuration

CONT - Contingency coefficient

CONV - convergence

CORAN - correspondence analysis

CORR - correlations

CORR1 - single correlation coefficient

CORR2 - equality of two correlations

COV - covariance

Cp - process capability index

CPL - process capability based on lower

specification limit

CPU - process capability based on upper

specification limit

Cpk-Process capability index for off-centered process

CR - confidence region

CRA - cost of response above UTL

CRB - cost of response below LTL

CRN - Cauchy random number

CSCORE - canonical scores CSIZE - size of characters

CSQ - Chi-square

**CSTATISTICS** - column statistics

CSV - comma separated values

CUSUM - cumulative sum

CUSUM HI - Upper cumulative sum

CUSUM LO - Lower cumulative sum

CV - coefficient of variation

CVI - cross validation index

D

DBF - Dbase files

DC - deciles of risk

DECF - Double exponential cumulative function

DEDF - Double exponential density function

DEIF - Double exponential inverse function

**DENFUN** - density function

dep. - dependent

DERN - Double exponential random number

DET - determinant

DEVI - deviates (observed values - expected

values)

DEXP - Double exponential distribution

df - degrees of freedom

DF - distribution function

DHAT - estimated distance

DIF - data interchange format

DIM - dimension

DISCRIM - discriminant analysis

DIST - distance

DIT - dot histogram

DOE - design of experiments

DOS - disc operating system

DPMO - defects per million opportunities

DPU - defects per unit

DTA - Stata files

DUCF - Discrete uniform cumulative function

DUDF - Discrete uniform density function

DUIF - Discrete uniform inverse function

DUNIFORM - Discrete uniform

DURN - Discrete uniform random number

DWLS - distance weighted least-squares

Е

ECF - Exponential cumulative function

EDF - Exponential density function

EEXP - extreme value exponential

EIF - Exponential inverse function

EIGEN - eigenvalues

ELAMBDA - exp(lambda)

EM - expectation-maximization

EMF - Windows enhanced metafile

ENCF - Logit normal cumulative function

ENDF - Logit normal density function

ENIF - Logit normal inverse function

ENORMAL - Logit normal

ENRN - Logit normal random number

EOF - end-of-file

EOG - end-of-BY group

EPS - Encapsulated postscript

ERN - Exponential random number

ES - exhaustive search

ESS - error sum of squares

EW - extreme value Weibull

EWMA - exponentially weighted moving average

EXP/exp - exponential/ expected

F

FAR - false-alarm rates

FCF - F cumulative function

FCOLOR - color foreground

FDF - F density function

FIF - F inverse function

FINV - inverse of the F cumulative

FITC - fitting distribution: continuous

FITD - fitting distribution: discrete

FITDIST - fitting distributions

Flexibeta - flexible beta

FPLOT - function plots

FRN - F random number

FTD - folded trellis detector

FTDEV - Freeman-Tukey deviate

FULLCOND - full conditional

FUN - function

GCF - Gamma cumulative function

GCOR - groupwise correlation matrix

GCOV - groupwise covariance matrix

GCV - generalized cross validation

GDF - Gamma density function

GECF - Geometric cumulative function

GEDF - Geometric density function

GEIF - Geometric inverse function

GEN - general Toeplitz structure

GERN - Geometric random number

GG - Greenhouse Geisser

GIF - Gamma inverse function

GIF - Graphics Interchange Format

GLM - generalized linear models

GLMHYPO - hypothesis tests in general linear model

GLMPOST - post hoc estimate for repeated

measures in general linear model

GLS - generalized least-squares GMA - geometric moving average

GN - Gauss-Newton method

GOCF - Gompertz cumulative function

GODF - Gompertz density function

GOIF - Gompertz inverse function

GORN - Gompertz random number

GRN - Gamma random number

GUCF - Gumbell cumulative function

GUDF - Gumbell density function

GUIF - Gumbell inverse function

GURN - Gumbell random number

H

H & L - Hosmer and Lemeshow

HC - heteroscedasticity-consistent

HCF - Hypergeometric cumulative function

HDF - Hypergeometric density function

HF- Huynh-Feldt

HGEOMETRIC - hypergeometric

HIF - Hypergeometric inverse function

HIST - histogram

HKB - Hoerl, Kennard, and Baldwin

Acronyms

H-L trace - Holding-Lawley trace
HR - hit-rates
HRN - Hypergeometric random number
HSD - honestly significant differences
HTERM - terms tested hierarchically
HTML - hyper text markup language
HYMH - hybrid Metropolis-Hastings

Ī IF - Inverse cumulative distribution function IGALISSIAN - inverse Gaussian IGCF - Inverse Gaussian cumulative function IGDF - Inverse Gaussian density function IGIF - Inverse Gaussian inverse function IGRN - Inverse Gaussian random number IIDMC - independently and identically distributed Monte Carlo IMPSAMPI - importance sampling integration IMPSAMPR - importance sampling ratio I-MR - individual and moving range Ind/indep - independent IndMH - Independent Metropolis-Hastings INDSCAL - individual differences scaling INITSAMP - initial sample INTEG FUN - integrated function IPA - iterated principal axis ITER - iterations

J
JACK - jackknife
JCLASS - jackknifed classification
JMP - JMP v3.2 data files
JPEG/JPG - joint photographic experts group

K
K-M - Kaplan-Meier
KNBD - kth nearest neighborhood
KRON - Kronecker product
K-S test - Kolmogorov-Smirnov test
KS1 - one sample Kolmogorov-Smirnov tests
KS2 - two sample Kolmogorov-Smirnov tests

L LAD - least absolute deviations LB - larger the better LCF - Logistic cumulative function LCHAZ - log cumulative hazard LCL - lower control limit LCONV - log-likelihood convergence criteria LDF - Logistic density function LGM - log gamma LGST - logistic LIF - Logistic inverse function L-L/LL - log likelihood LMS- least median of squares LMSREG - least median of squares regression LNCF - Lognormal cumulative function LNDF - Lognormal density function LNIF - Lognormal inverse function LNOR/LNORMAL - lognormal LNRN - Lognormal random number loc - location LOG1 - one-parameter logistic (Rasch) LOG2 - two-parameter logistic LOGIT - logistic regression LOGITHYPO - hypothesis tests in logistic regression LOGLIN - loglinear modeling LR - likelihood ratio LRCHI - likelihood ratio chi-square LRDEV - likelihood ratio of deviate LRN - Logistic random number LS - least-squares LSD - least significant difference LSL - lower specification limit LSQ - least-squares

M MA - moving average

LTL - lower tolerance limit

LW - Lawless and Wang

LTAB - life tables

MAD - mean absolute deviation

MAHAL - Mahalanobis distances

MANCOVA - multivariate analysis of covariance

MANOVA - multivariate analysis of variance

MANOVAHYPO - hypothesis tests in

MANOVA

MANOVAPOST - post hoc estimate for repeated measures in MANOVA

MAR - missing at random

MAX - maximum

MAXSTEP - maximum number of steps

MCAR - missing completely at random

MCMC - Markov Chain Monte Carlo

MDPREF - multidimensional preference

MDS - multidimensional scaling

MIN - minimum

M-H- Metropolis-Hastings

MIS - number of missing values

MIX - mixed regression

MIXHIER - mixed regression for data having a

hierarchical structure

MIXMULTY - mixed regression for data having a multivariate structure

ML - Maximum Likelihood

MLA - maximum likelihood analysis

MLE - maximum likelihood estimate

MML - maximum marginal likelihood

MRC - Multiple Regression and Correlation

MS - mean squares

MSE - mean square error

MSIGMA - sigma measurement

MT - Mersenne-Twister

MTW - MINITAB v11 data files

MU2 - Guttman's mu2 monotonicity coefficients

MULTIVAR - multiple variables

MW - minimum within sum of squares deviations

MWL - maximum Wishart likelihood

NAR - non-stationary first-order autoregressive

NB - nominal the best

NBB - nominal-the-best: bilateral tolerance

NBCF - Negative binomial cumulative function

NBD - number of active bounds on parameter

NBDF - Negative binomial density function

NBIF - Negative binomial inverse function

NBINOMIAL - Negative binomial

NBRN - Negative binomial random number

NBU - nominal-the-best: unilateral tolerance

NCAT - number of categories

NCF - Binomial cumulative function

NCOL - number of columns

NDF - Binomial density function

NDMAX - maximum number of points

NDMIN - minimum number of points

NEM - number of EM iterations

NEXPO - negative exponential

NIF - Binomial inverse function

NIPALS - Nonlinear iterative partial least Squares

NLAG - number of lags

NLLOSS - nonlinear loss functions

NLMODEL - nonlinear models

NMIN - minimum count

NMULTIVAR - multiple numeric variables

NONLIN - nonlinear models

NP-Number nonconforming

NPAR - nonparametric NREC - non-recreationist

NRN - Binomial random number

NROW - number of rows

NRP - number of apparently redundant parameters

NSAMP - number of sub-samples

NSPLIT - maximum number of splits

NX - number of nodes along the x axis

NXDIS - number of discretization points in the x

(North) direction

NY - number of nodes along the y axis

NYDIS - number of discretization points in the y

(East) direction

NZ - number of nodes along the z axis

Acronyms

NZDIS - number of discretization points in the z (Depth) direction

0

Obs-observed

OBSFREQ - observed frequency

OC - operating characteristic

ODBC - open database capture and connectivity

OFREQ - outlier frequencies

OLS - ordinary least-squares

**ORTHEQ-Equally Spaced Orthogonal** 

component

ORTHUN- Unequally Spaced Orthogonal

component

P

P - Proportion nonconforming

PACF - Pareto cumulative function

PACF - partial autocorrelation function

PADF - Pareto density function

PAIF - Pareto inverse function

PARAM - parameters

PARN - Pareto random number

PCA - process capability analysis

PCF - iterated principal axis factoring

PCF - Poisson cumulative function

PCNTCHANGE - percentage change

PCT - Macintosh PICT

PDF - Poisson density function

pdf - probability density function

PDL - polynomial distributed lag

PERMAP - perceptual mapping

PIF - Poisson inverse function

PLIMITS - probability limits

PLS - partial least squres

pmf - probability mass function

PMIN - minimum proportion

PNG - Portable Network Graphics

POLY - polygon

POSAC - partially ordered scalogram analysis

with coordinates

P-P - probability plot

PP - process performance

Ppk - Process performance index for off-centered process

PPL - process performance based on lower

specification limit

PPM - parts per million

PPU - process performance based on upper

specification limit

PRE - percentage reduction error

PREFMAP - preference mapping

PRN - Poisson random number

PROB - probability

PROP1 - single proportion

PROP2 - equality of two proportions

PS - PostScript

PVAF/p.v.a.f. - present value annuity factor

p-value - probability value

0

QC - quality control

QMLE - quasi maximum likelihood estimate

QNTL - quantiles

QPLOT - quantile plots

Q-QPLOT - two sample quantile plot

QRD - QR decomposition

QS - quick search

QSK - quantitative symmetric similarity

coefficients (or Kulczynski measure)

QUASI - Quasi-Newton method

R

R & R - repeatability and reproducibility

R chart - range chart

RADMAX - maximum horizontal direction for

the search radius

RADMIN - minimum horizontal direction for the

search radius

RAND - random

RANDSAMP - random sampling

RANKREG - rank regression

RBSTAT - row basic statistics

RCF - Rayleigh cumulative function

RDF - Rayleigh density function

RDISCRIM - robust discriminant

RDIST - robust distance

RDVER - vertical direction for the search radius

REPAR - reparametrize

REPS - replicates

RESID - residuals

RIF - Rayleigh inverse function

RJS - rejection sampling

RMS - root mean square

RMSEA - root mean square error of

approximation

RMSSTD - root mean square standard deviation

ROC - receiver operating characteristic

ROWPCT - Row percentages

RRN - Rayleigh random number

RS - response surface

RSE- robust standard errors

RSEED - random seed

RSM- response surface methods

RSQ - stress and squared correlation

RSS - residual sum of squares

RSTATISTICS - row statistics

RTF - rich text format

RWM-H - random walk Metropolis-Hastings

RWSTEM - stem and leaf plot for rows

S

S chart - standard deviation control chart

SANG1 - angle (in degrees) of the first minor axis

of the search ellipsoid

SANG2 - angle (in degrees) of the major axis of

the search ellipsoid

SANG3 - angle (in degrees) of the second minor

axis of the search ellipsoid

SAV - SPSS files

SB - smaller the better

sc - scale

SC - set correlation

SCDFUNC - standardized coefficients for

canonical variables

SCF - Studentized cumulative function

SD - standard deviations

sd2/sas7bdat - SAS v9 files

SDF - Studentized density function

SE/se/S.E. - standard error

SEK - standard error of kurtosis

SEM - standard error of mean

SES - standard error of skewness

shp - shape

SIF - Studentized inverse function

SIMPLS - Straight-forward Implementation of

Partial Least Squares

SKMEAN - simple kriging mean

SL - specification limit

SMIN - minimum split value

SPLOM - scatter plot matrix

SQL - structured query language

SQRT/SQR - square-root

SRN - Studentized random number

SRWR - sum of rank weighted residuals

SS - sum of squares

SSCP - sum of squares and cross products

STA - Statistica v5 data files

STAND - standardized deviates

SVD - singular value decomposition

SW - Shapiro-Wilks

SYC/CMD - SYSTAT command Files SYZ/SYD/SYS - SYSTAT data files

SYO - SYSTAT output files

T

T1 - one-sample t-test

T2 - two-sample t-test

TANALYZE - Taguchi design: analyze

TCF - t cumulative function

TCOR - total correlation

TCOV - total covariance

TDF -t density function

TESTAT - Test Item Analysis

Acronyms

TESTATCL - classical test item analysis

TESTATLOG - logistic item response analysis

TETRA - tetrachoric correlations

TGENERATE - Taguchi design: generate

TIF - t inverse function

TIFF - Tagged Image File Format

TLOG - log time

TLOSS - Taguchi's Loss Function

TNH - hyperbolic tangent

TOHC0 - Hypothesis Testing: Zero correlation

TOHC1 - Hypothesis Testing: Specific

correlation

TOHC2 - Hypothesis Testing: Equality of two

correlation coefficients

TOHP1 - Hypothesis Testing: Single proportion

TOHP2 - Hypothesis Testing: Equality of two proportions

TOHT1 - Hypothesis Testing: One sample t-test

TOHT2 - Hypothesis Testing: Two sample t-test TOHTPAIRED - Hypothesis Testing: Paired t-

test

TOHV1 - Hypothesis Testing: Single variance

TOHV2 - Hypothesis Testing: Two variances

TOHVN - Hypothesis Testing: Several variances TOHZ1 - Hypothesis Testing: One sample z-test

TOHZ2 - Hypothesis Testing: Two sample z-test

TOL - tolerance

TPLOT - time series plot

TPREDICT - Taguchi design: predict

TRCF - Triangular cumulative function

TRDF - Triangular density function

TRI - triangular

TRIF - Triangular inverse function

TRIM - trimmed mean

TRN - t random number

TRP - transpose

TRRN - Triangular random number

TSFOURIER - Fourier decomposition of time series

TSIV - Two-Stage Instrumental Variables

TSLS - Two-Stage Least Squares

TSP - traveling salesman path
TSQ chart - Hotelling's T² chart

TSSMOOTH - smoothing time series

TXT - text format

U

U chart - chart showing defects per unit

UCF - Uniform cumulative function

UCL - upper control limit

UDF - Uniform density function

UIF - Uniform inverse function

UNCE - uncertainty coefficient

URN - Uniform random number

USL - upper specification limit

UTL - upper tolerance limit

V

VAR - variance

VIF - variance inflation factor

W

WB - Weibull

WCF - Weibull cumulative function

WCOR - pooled within-group correlation

WCOV - pooled within-group covariance

WDF - Weibull density function

WHISKER - Box-and-Whisker plot

WIF - Weibull inverse function

WMF - Windows metafile

WRN - Weibull random number

X

XCF - Chi-square cumulative function

XDF - Chi-square density function

XIF - Chi-square inverse function

XLAG - separation distance between lags

XLS - excel format

XLTOL - tolerance for lags

XMAX - maximum along x axis

XMIN - minimum along x axis

X-MR chart - Individuals and moving range chart XPT/TPT - SAS transport files XRN - Chi-square random number XTAB - Crosstabulations

Y YMAX - maximum along y axis YMIN - minimum along y axis

Z
Z1 - one-sample z-test
Z2 - two-sample z-test
ZCF - Normal cumulative function
ZDF - Normal density function
ZICF - Zipf cumulative function
ZIDF - Zipf density function
ZIF - Normal inverse function
ZIF - Zipf inverse function
ZIRN - Zipf random number
ZMAX - maximum along z axis
ZMIN - minimum along z axis
ZRN - Normal random number

A matrix, II-192 accelerated failure time distribution, IV-433 ACF plots, IV-529 additive trees, I-80, I-91 AIC and Schwarz's BIC, II-39, II-108, II-292, II-300, II-344, II-385, III-1, III-258, IV-99, IV-427 see linear models, II-17 Akaike Information Criterion, III-458 alpha level, IV-22, IV-28 alternative hypothesis, I-13, IV-20 analysis of covariance, II-107 AIC and Schwarz's BIC, II-108 algorithms, II-171 assumptions, II-25 between-group differences, II-32 commands, II-121 compared to loglinear modeling, III-95 compared to regression trees, I-45 contrasts, II-28, II-113, II-115, II-116 data format, III-121 examples, II-122, II-126, II-132, II-145, II- 146, II-148, II-151, II-155, II-160, II-163, II-166, II-170 factorial, II-24 homogeneity tests, II-113 hypothesis tests, II-23, II-113, II-115, II-116 interactions, II-25 normality tests, II-11 pairwise comparisons, II-17 power analysis, IV-19, IV-26, IV-55, IV-57, IV-77, IV-80 Quick Graphs, II-121	repeated measures, II-31, II-110 resampling, II-108 residuals, II-110 sums of squares, II-113 two-way ANOVA, IV-26, IV-57, IV-80 unbalanced designs, II-29 unequal variances, II-26 usage, II-121 within-subject differences, II-32 Anderberg dichotomy coefficients, I-164, I-173 Anderberg's binary similarity coefficient, I-164 Anderson-Darling test, I-303 Andrews procedure, III-279 angle tolerance, IV-388 anisotropy, IV-392, IV-405 geometric, IV-392 zonal, IV-393 A-optimality, I-364 ARIMA models, IV-514, IV-523, IV-540 algorithms, IV-578 arithmetic mean, I-299, I-308 ARMA models, IV-519 asymptotically distribution-free estimates, III-412 autocorrelation plots, II-11, IV-516, IV-520 Automatic Interaction Detection(AID), I-45, I-47 autoregressive models, IV-516 average run length curves, IV-134 chart types, IV-137 continuous distributions, IV-139 discrete distributions, IV-140 overview, IV-134 probability limits, IV-137 axial designs, I-360
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

backward elimination, II-15 bandwidth, IV-350, IV-355, IV-388 optimal values, IV-356 relationship with kernel function, IV-357 basic statistics  Anderson-Darling test, I-303, I-309 columns, I-307 commands, I-322 Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I-338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50 gamma prior, II-52  box Benkreroni inequality, I-47 Bonferroni inequality, I-47 Bonferroni inequality, I-47 Bonferroni inequality, I-47 Bonferroni inequality, II-47 Bonferroni inequality, II-29, III-118, II-196, II-307, III-394 bootstrap, I-19, I-21 box plot, I-305 Box-and-Whisker plots, IV-112 Box-Behnken designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter
bandwidth, IV-350, IV-355, IV-388 optimal values, IV-356 relationship with kernel function, IV-357 basic statistics  Anderson-Darling test, I-303, I-309 columns, I-307 commands, I-322 Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I-338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  Bonferroni test, I-175, II-27, II-118, II-196, II-307, III-394 bootstrap, I-19, I-21 box plot, I-305 Box-and-Whisker plots, IV-112 Box-Behnken designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter designs, I-353, I-373 Bray-Curtis measure, I-162, I-172 broad inference space, II-280  C C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 overview, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
optimal values, IV-356 relationship with kernel function, IV-357 basic statistics  Anderson-Darling test, I-303, I-309 columns, I-307 commands, I-322 Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I- 338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  II-394 bootstrap, I-19, I-21 box plot, I-305 Box-and-Whisker plots, IV-112 Box-Behnken designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter designs, I-353, I-373 Bray-Curtis measure, I-162, I-172 broad inference space, II-280  C C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-304 overview, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
basic statistics  Anderson-Darling test, I-303, I-309 columns, I-307 commands, I-322 Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I-338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-399 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  box Plot, I-305 Box-and-Whisker plots, IV-112 Box-Behnken designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter designs, I-353, I-373 Bray-Curtis measure, I-162, I-172 broad inference space, II-280  c charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-305
basic statistics  Anderson-Darling test, I-303, I-309 columns, I-307 commands, I-322 Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I- 338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-399 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  box plot, I-305 Box-and-Whisker plots, IV-112 Box-Behnken designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter designs, I-353, I-373 Bray-Curtis measure, I-162, I-172 broad inference space, II-280  c charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
Anderson-Darling test, I-303, I-309 columns, I-307 commands, I-322 Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I- 338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  Box-and-Whisker plots, IV-112 Box-Behnken designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter designs, I-357, I-380 Box-and-Whisker plots, IV-112 Box-Behnken designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter designs, I-353, I-373 Bray-Curtis measure, I-162, I-172 broad inference space, II-280  C charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 overview, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
columns, I-307 commands, I-322 Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I- 338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50  conbach's alpha, I-321 Box-Behnken designs, I-357, I-380 Box-Cox power transformation, IV-157 Box-Hunter designs, I-353, I-373 Bray-Curtis measure, I-162, I-172 broad inference space, II-280  C Cmatrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
commands, I-322 Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I- 338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  Box-Cox power transformation, IV-157 Box-Hunter designs, I-353, I-373 Bray-Curtis measure, I-162, I-172 broad inference space, II-280  C c charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 overview, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-305
Cronbach's alpha, I-321 examples, I-324, I-326, I-327, I-328, I-333, I- 338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  Box-Hunter designs, I-353, I-373 Bray-Curtis measure, II-162, I-172 broad inference space, II-280  C  c charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 overview, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-305
examples, I-324, I-326, I-327, I-328, I-333, I- 338, I-340, I-341, I-342 geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  Bray-Curtis measure, I-162, I-172 broad inference space, II-280  C C multivariate normality assessment, I-303 c c charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
geometric mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  broad inference space, II-280  C  c charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-304, IV-308 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
harmonic mean, I-300, I-308 harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  C matrix, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-304, IV-312 interactions, IV-308, IV-312 interactions, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-300 Quick Graphs, IV-300
harmonic mean, I-300, I-308 multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  C charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-304, IV-305 interactions, IV-308, IV-312 interactions, IV-304 overview, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
multivariate normality assessment, I-303 N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  c charts, IV-131 C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-304, IV-312 interactions, IV-308, IV-312 interactions, IV-304 overview, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
N-&P-tiles, I-309 overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-300
overview, I-297 Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  C matrix, II-193 candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-304, IV-305, IV-308, IV-312 interactions, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
Quick Graphs, I-323 resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  candidate sets for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-300
resampling, I-298 rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  for optimal designs, I-363 canonical correlation analysis data format, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-300
rows, I-316 Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  canonical correlation analysis data format, IV-304 examples, IV-305, IV-308, IV-312 interactions, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  data format, IV-304 examples, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
Shapiro-Wilk test, I-302, I-309 stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  data format, IV-304 examples, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
stem-and-leaf for columns, I-314 stem-and-leaf for rows, I-320 test for normality, I-302 trimmed mean, I-299, I-308 usage, I-323 bayesian regression, II-50 credibility intervals, II-50  examples, IV-305, IV-308, IV-312 interactions, IV-304 model, IV-299 nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-305
stem-and-leaf for rows, I-320 interactions, IV-304 test for normality, I-302 model, IV-299 trimmed mean, I-299, I-308 overview, IV-304 overview, IV-291 bayesian regression, II-50 partialled variables, IV-300 credibility intervals, II-50 Quick Graphs, IV-305
test for normality, I-302 model, IV-299 trimmed mean, I-299, I-308 nominal scales, IV-304 usage, I-323 overview, IV-291 bayesian regression, II-50 partialled variables, IV-300 credibility intervals, II-50 Quick Graphs, IV-305
trimmed mean, I-299, I-308 usage, I-323  bayesian regression, II-50 credibility intervals, II-50  nominal scales, IV-304 overview, IV-291 partialled variables, IV-300 Quick Graphs, IV-300
usage, I-323 overview, IV-291 bayesian regression, II-50 partialled variables, IV-300 credibility intervals, II-50 Quick Graphs, IV-305
bayesian regression, II-50 partialled variables, IV-300 Quick Graphs, IV-305
credibility intervals, II-50 Quick Graphs, IV-305
12 72 701
gamma prior, II-52 resampling, IV-291 rotation, IV-303
nominal provision of the contract of the contr
commind states of the state of
500
cotegorical predictors I 46
Couchy komel DI 265
CCE plane By 621
between-group differences
in analysis of variance, II-32 central composite designs, I-356, I-384
bias, II-15 centroid designs, I-359
binary logit, III-2 CHAID, I-46, I-47
compared to multinomial logit, HI-5 chi-square tests for independence, I-229, I-233, I-
binary trees, I-43
biplots, IV-6, IV-8 circle model

1 - 1 marries IV-5	saving files, I-95
in perceptual mapping, IV-5	usage, I-95
city-block distance, I-172, III-191	clustered data, II-421
classical analysis, IV-400	clustering
classification and regression dees, 200	hierarchical clustering, 1-68
classification functions, I-396	k-clustering, I-78
classification trees	validity, I-87
algorithms, I-62	Cochran's test of linear trend, I-234
basic tree model, I-42	coefficient of alienation, III-190, III-212
commands, I-54	coefficient of determination
compared to discriminant analysis, 1-46, 1-49	see multiple correlation
, I-46	coefficient of variation, I-307
data format, I-54	Cohen's kappa, I-226, I-234
displays, I-51	communalities, I-458
examples, I-55, I-57, I-59	compound symmetry, II-32
loss functions, I-51	conditional logistic regression, III-5
missing data, I-62	confidence curves, III-273
mobiles, I-41	confidence intervals, I-11, I-307
model, I-51	path analysis, III-455
overview, I-41	conjoint analysis
pruning, I-47	additive tables, I-126
Quick Graphs, I-54	algorithms, I-152
resampling, I-41	mande I-135
saving files, I-54	compared to logistic regression, I-132
stopping criteria, 1-47, I-53	data format 1-135
usage, I-54	examples, I-136, I-140, I-143, I-147
cluster analysis	missing data, I-153
additive trees, I-91	model, I-133
algorithms, I-122	multiplicative tables, I-128
clustering, I-65	overview, I-125
commands, I-93	Quick Graphs, I-135
data types, I-95	resampling, I-125
T 0.4	wine files Lai35
1-106 1-105 1-108, 1-109, 1-119	usage, I-135
112, I-115, I-116, I-118, I-120	constraints
exclusive clusters, I-66	in mixture designs, 1-360
hierarchical clustering, I-82	contingency coefficient, I-227
k-means clustering, 1-78	contour plot, IV-243
k-medians clustering, 1-79	contour plots, IV-401
missing values, I-122	contrast coefficients, II-31
overlapping clusters, I-66	contrasts
overview, I-65	in analysis of variance, II-28
Quick Graphs, I-95	control charts
resampling, I-66	Commercial
resampling, 1-00	

aggregated data, IV-120	overview, 1-201
average run length curves, IV-136	Quick Graphs, I-206
control limits, IV-121	resampling, I-201
discrete control limits, IV-121	simple correspondence analysis, I-204
operating characteristic curves, IV-135	usage, I-206
raw data, IV-120	covariance matrix, I-171, III-135
regression charts, IV-152	covariance matrix, 1-1/1, 111-133
sigma limits, IV-122	•
convergence, III-98	path analysis, III-401
convex hulls, IV-398	covariograms, IV-387
Cook's distance, II-12	Cox-Snell residual plot, IV-434
Cook-Weisberg graphical confidence curves, III-	Cramer's V, I-227
273	Critical level, I-13
coordinate exchange method, I-363, I-386	Cronbach's alpha, IV-488, IV-489
correlations, I-67, I-157	see basic statistics, I-321
algorithms, I-199	crossover designs, II-175
binary data, I-173	crosstabulation
canonical, IV-291	commands, I-244
commands, I-177	data format, I-246
continuous data, I-171	examples, I-248, I-250, I-253, I-256, I-257, I-
data format, I-178	258, I-261, I-263, I-269, I-271, I-
dissimilarity measures, I-172	273, I-275, I-277, I-279, I-293
distance measures, I-172	multiway, I-237
examples, I-179, I-182, I-185, I-186, I-188, I-	one-way, I-220, I-222, I-228
192, I-195, I-196, I-198	overview, I-219
missing values, I-170, I-199, III-135	Quick Graphs, I-247
options, I-174	resampling, I-219
overview, I-157	standardizing tables, I-221
power analysis, IV-19, IV-25, IV-42, IV-44	two-way, I-220, I-223, I-231
Quick Graphs, I-178	usage, I-246
rank-order data, I-172	cross-validation, I-48, I-396, II-16, III-360
resampling, I-158	cumulative sum charts
saving files, I-179	see cusum charts, IV-142
	D
usage, I-178	
correlograms, IV-403	D matrix, II-194, II-288, II-309, II-355, II-397
correspondence analysis, IV-2, IV-6	D SUB-A (d _a ), IV-321
algorithms, I-218	dates, IV-430
commands, I-206	dendrograms, I-65, I-107
data format, 1-206	dependence paths
examples, 1-207, 1-214	path analysis, III-399
missing data, I-218	descriptive statistics, 1-1
model. I-204	see basic statistics, 1-307

design of experiments, I-132, I-368, I-369	Quick Graphs, 1-408
axial designs, I-360	resampling, I-391
Box-Behnken designs, I-357	robust discriminant analysis, 1-399
central composite designs, I-356	statistics, 1-404
centroid designs, I-359	stepwise estimation, I-401
commands, I-370	usage, I-408
examples, I-371, I-372, I-373, I-375, I-377, I-	discrimination parameter, IV-507
379, I-380, I-381, I-382, I-384, I-386	dissimilarities
factorial designs, I-349, I-350	direct, III-187
lattice designs, I-359	indirect, III-187
mixture designs, I-350, I-357	distance measures, I-67, I-157
optimal designs, I-350, I-362	distances
	nearest-neighbor, IV-396
overview, I-345	distance-weighted least squares (DWLS) smoother,
Quick Graphs, I-371 response surface designs, I-350, I-354	IV-361
response surface designs, 1990, 199	distributions
screening designs, I-360	Benford's law, I-499, III-332, IV-86, IV-221
usage, I-370	beta, I-500, III-333, III-335, IV-88, IV-222
determinant criterion	binomial, 1-499, III-332, IV-86, IV-221
see D-optimality	Cauchy, I-500, III-333, III-335, IV-88, IV-222
Dice's binary similarity coefficient, I-164	chi-square, I-500, III-333, III-335, IV-88, IV-
dichotomy coefficients, I-164	2.22
Anderberg, I-173	discrete uniform, I-499, III-332, IV-86, IV-
Jaccard, I-173	221
positive matching, I-173	double exponential, I-501, III-335, IV-88, IV-
simple matching, I-173	222
Tanimoto, I-173	Erlang, I-501, III-335, IV-88, IV-222
difficulty, IV-507	exponential, I-501, III-333, III-336, IV-88,
discrete choice model, III-7	IV-222
compared to polytomous logit, III-8	F, III-333, III-336, IV-88, IV-222
discrete gaussian convolution, IV-361	gamma, I-501, III-333, III-336, IV-89, IV-222
discriminant analysis	generalized lambda, IV-222
classical discriminant analysis, I-400	accompanie 1-499, III-332, IV-86, IV-221
commands, I-407	Gompertz, I-501, III-333, III-336, IV-89, IV-
data format, I-408	2.22
estimation, 1-401	Gumbel, I-501, III-333, III-336, IV-89, IV-
examples, I-409, I-413, I-420, I-427, I-435,	22.2
438, I-444, I-449	hypergeometric, I-499, III-332, IV-86, IV-221
linear discriminant function, I-397	inverse Gaussian, 1-501, III-333, III-336, IV-
model, I-400	89. IV-222
multiple groups, 1-399	logarithmic series, I-499, III-332, IV-87, IV-
options, I-401	221
overview, I-391	
prior probabilities, 1-398	logistic, I-501, III-333, III-336, IV-89, IV-222

logit normal, I-501, III-333, III-336, IV-89, E IV-222 ECVI, III-458 loglogistic, I-501, III-333, III-336, IV-89, IVedge effects, IV-398 222 lognormal, I-501, III-333, III-336, IV-89, IVeffect size in power analysis, IV-22, IV-23 effects coding, II-20, II-180 negative binomial, I-499, III-333, IV-87, IVefficiency, I-362 non-central chi-square, III-333, III-336, IV-89, eigenvalues, I-405 IV-222 ellipse model non-central F, III-333, III-336, IV-89, IV-222 in perceptual mapping, IV-6 non-central t, III-333, III-336, IV-89, IV-222 EM algorithm, I-492 normal, I-501, III-333, III-336, IV-89, IV-222 EM estimation, III-130 Pareto, I-501, III-333, III-336, IV-89, IV-222 for correlations, I-175, III-135 Poisson, I-499, III-333, IV-87, IV-221 for covariance, III-135 Rayleigh, I-501, III-333, III-336, IV-89, IVfor SSCP matrix, III-135 223 endogenous variables smallest extreme value, I-501, III-333, III-336, path analysis, III-400 IV-89, IV-223 Epanechnikov kernel, IV-364 studentized maximum modulus, III-333, IIIequamax rotation, I-460, I-464 336, IV-89 Erlang, III-333 Studentized range, III-336 Estimation, III-135 studentized range, III-333, IV-89, IV-223 Euclidean distances, III-188 t, III-333, III-336, IV-89, IV-223 exogenous variables triangular, I-501, III-334, III-336, IV-89, IVpath analysis, III-400 expected cross-validation index, III-458 uniform, I-501, III-334, III-336, IV-89, IV-Exponential, III-336 223 exponential distribution, IV-432 Weibull, I-501, III-334, III-336, IV-89, IVexponential model, IV-390, IV-404 223 exponential smoothing, IV-524 exponentially weighted moving average charts, IVzipf, I-499, III-333, IV-87, IV-221 dit plots, I-14 146 D-optimality, I-364 control limits, IV-147 external unfolding, IV-4 dot histogram plots, I-14 Double, III-333 F D-Prime (d'), IV-320 dummy codes, II-180 F, III-333 Duncan test, II-27, II-119, II-197 F and R matrices, II-308, II-354, II-396 Dunnett test, II-27, II-119, II-197 F distribution Dunnett's T3 test, II-27, II-119, II-197 F matrix, II-287 Dunn-Sidak test, I-175 factor analysis, I-457, IV-2 algorithms, I-492 commands, I-468

compared to principal components analysis, I-	maximum likelihood method, 1-497
460	method of moments, 1-497
convergence, I-463	method of quantiles or order statistic, 1-497
correlations vs covariances, 1-457	overview, I-495
eigenvalues, I-463	Quick Graphs, I-503
	Shapiro-Wilk's test for normality, I-497
eigenvectors, I-467 examples, I-469, I-473, I-476, I-478, I-482, I-	usage, I-503
	fixed effects, II-279
485	fixed variance
iterated principal axis, I-463	path analysis, III-402
loadings, I-467	fixed-bandwidth method
maximum likelihood, I-463	compared to KNN method, IV-357
missing values, 1-492	for smoothing, IV-355, IV-357, IV-364
number of factors, I-463	
overview, I-453	Fletcher-Powell minimization, IV-507
principal components, I-463	forward selection, II-15
Quick Graphs, I-468	Fourier analysis, IV-526, IV-545
resampling, I-453	fractional factorial designs
residuals, I-465	Box-Hunter designs, I-353
rotation, I-459, I-464	examples, I-372, I-373, I-375, I-377, I-379
save, I-466	homogeneous fractional designs, I-353
scores, I-466	Latin square designs, I-353
usage, I-468	mixed-level fractional designs, I-353
factor loadings, IV-488	Plackett-Burman designs, I-353
factorial analysis of variance, II-24	Taguchi designs, I-353
factorial designs, I-349, I-350	Freeman-Tukey deviates, III-93, III-102
analysis of, I-353	frequencies, I-23, I-54, I-135, I-179, I-206, I-246
examples, I-371	I-248, I-323, I-408, I-468, I-469, I-503, I-544, I
fractional factorials, I-352	54, II-121, II-122, II-202, II-310, II-357, II-399
full factorial designs, 1-352	II-441, III-23, III-103, III-104, III-137, III-194, II
	217, III-283, III-339, III-364, III-385, III-413, IV
F-distribution	9, IV-62, IV-63, IV-103, IV-162, IV-244, IV-286
non-centrality parameter, IV-60	IV-305, IV-325, IV-328, IV-366, IV-410, IV-44
Fedorov method, I-363	IV-495, IV-498, IV-547, IV-587
Fieller bounds, III-48	frequency tables, III-93, III-102
filters, IV-527	see crosstabulation
Fisher's exact test, I-226, I-233	Friedman test, III-328
Fisher's linear discriminant function, IV-2	1 Household to be a second to the second to
Fisher's LSD, II-197	G
Fisher's LSD test, II-27, II-118, II-307, II-395	
fitting distributions	Gabriel test, II-27, II-119, II-197
commands I-501	Games-Howell test, II-27, II-119, II-197
examples, I-504, I-505, I-507, I-508, I-510, I-	Gaussian kernel, IV-364, IV-365
511, I-513	Gaussian model, IV-390, IV-404
goodness-of-fit tests, I-496	,
6-2-2-1	

Gauss-Newton method, III-269, III-272 Guttman-Rulon coefficient, IV-489 general linear models, II-175 H algorithms, II-249 categorical variables, II-179 Hadi outlier detection, I-168 commands, II-200 Hamman's binary similarity coefficient, I-164 contrasts, II-189, II-191 Hampel procedure, III-279 data format, II-201 Hanning weights, IV-512 examples, II-203, II-211, II-212, II-213, IIharmonic mean, I-300, I-308 215, H-217, H-220, H-222, H-224, hazard function II-234, II-237, II-238, II-242, II-246, heterogeneity, IV-435 II-247, II-248 Henderson's mixed model equations, II-279, II-293 hypothesis options, II-188 Henze-Zirkler test, I-303 hypothesis tests, II-186 heteroskedasticity, IV-583 mixture model, II-184 heteroskedasticity-consistent standard errors, IVmodel estimation, II-177 overview, II-175 hierarchical clustering, 1-68, 1-82 pairwise comparisons, II-195 distances, I-84 post hoc tests, II-199 validity index, I-75 Quick Graphs, II-202 hierarchical linear mixed models resampling, II-176 categorical variables, II-389 stepwise regression, II-183 commands, II-398 usage, II-201 examples, II-399, II-402, II-406, II-408, IIgeneralized least squares, III-412, IV-584 412, II-414, II-417 generalized variance, IV-294 hypothesis testing, II-394 geometric mean, I-300, I-308 geostatistical models, IV-386, IV-387 model estimation, II-387 options, II-392 getween-groups testing, III-239 overview, II-385 Gini index, I-48, I-51 Quick Graphs, II-398 GLM random effects, II-390 see general linear models, II-175 usage, II-398 global criterion hierarchical linear models see G-optimality see mixed regression GMA chart, IV-146 hinge, 1-301 Goodman-Kruskal gamma, I-227, I-234 Hochberg's GT2 test, II-27, II-119, II-197, II-307, Goodman-Kruskal lambda, I-234 II-395 goodness-of-fit tests, I-496 hole model, IV-391, IV-405 G-optimality, I-364 Holt's method, IV-524 Gower2 binary similarity coefficient, I-164 homogeneity tests, II-113 Graeco-Latin square designs, I-353 Levene's test, II-113 Greenhouse-Geisser statistic, II-33 Hotelling's T squared charts, IV-153 Guttman mu2 monotonicity coefficients, I-162 Hotelling-Lawley trace, III-226 Guttman's coefficient of alienation, III-190 Huber procedure, III-279 Guttman's loss function, III-212

Huynh-Feldt statistic, II-33	interval censored data, IV-428
hyper-Graeco-Latin square designs, I-353	inverse-distance smoother, IV-360
hypothesis	isotropic, IV-387
alternative, I-13	item-response analysis
	see test item analysis
null, I-13	item-test correlations, IV-488
testing, I-12, II-7	,
hypothesis testing	J
Bartlett's test, 1-521	
commands, I-541	Jaccard dichotomy coefficients, 1-164, I-173
confidence intervals, I-520, I-521, I-522	jackknife, I-18, I-22
data format, I-543	jackknifed classification matrix, I-396
examples, I-544, I-545, I-547, I-548, I-549, I-	17
551, 1-552, 1-556, 1-557, 1-560, 1-	K
562, I-564	k nearest-neighbors method
Levene's tests, 1-521	compared to fixed-bandwidth method, IV-35
multiple tests, I-522	for smoothing, IV-356, IV-362
overview, I-519	k-clustering, I-78
Quick Graphs, I-544	
resampling, I-519	k-means, I-78 k-medians, I-79
test for means, I-520	
tests for correlation, I-522	Kendall's Tau b, I-172
tests for mean, I-520	Kendall's tau-b coefficient, I-227
tests for proportion, I-520, I-538	kernel functions, IV-350, IV-352
tests for variance, I-521	biweight, IV-364
usage, I-543	Cauchy, IV-364
	Epanechnikov, IV-364
I	Gaussian, IV-364
1130 1 47	plotting, IV-354
ID3, I-47	relationship with bandwidth, IV-357
I-MR chart	tricube, IV-364
see X-MR chart, IV-150	triweight, IV-362, IV-364
incomplete block designs, II-175	k-exchange method, I-363
independence, 1-223	Kolmogorov-Smirnov test, III-319
in loglinear models, III-94	KR20, IV-489
individual cases charts	kriging, IV-405
See X charts, IV-129	ordinary, IV-394, IV-405, IV-407
INDSCAL model, III-185	simple, IV-393, IV-407
inertia, I-202	trend components, IV-394
inferential statistics, I-7, IV-20	universal, IV-394, IV-407
instrumental variables, IV-582	Kruskal's loss function, III-211
intermediate inference space, II-280	Kruskal's STRESS, III-190
internal-consistency, IV-489	Kruskal-Wallis test, III-319
interquartile range, 1-301	K-Stest III-319

Kulczynski's binary similarity coefficient, I-164 Kulczynski's binary similarity coefficient, I-173	bayesian, II-50 commands, II-53
kurtosis, I-307	data format, II-54
L	examples, II-55, II-60, II-63, II-67, II-71, II-75, II-81, II-83, II-85, II-86, II-87,
Latin trait model, IV-488, IV-490 Latin square designs, I-353, I-375 lattice, III-382 lattice designs, I-359 least absolute deviations, III-268 least absolute deviations regression, IV-260 least median of squares regression, IV-261 search method, IV-269 least trimmed squares regression, IV-261 Levene test, II-25 leverage, II-12 likelihood ratio chi-square, I-233, III-96, III-101 compared to Pearson chi-square, III-96 likelihood-ratio chi-square, I-226 Lilliefors test, III-334, III-355 linear contrasts, II-28 linear discriminant model, I-392 linear mixed models categorical variables, II-347 commands, II-356 examples, II-357, II-362, II-366, II-369, II-372, II-379, II-382 hypothesis testing, II-352 model estimation, II-345 options, II-350 overview Quick Graphs, II-356 random effects, II-348 usage, II-356 inear models	75, II-81, II-83, II-85, II-86, II-87, II-89, II-95, II-97, II-99 Kolmogorov-Smirnov test, II-45 model, II-41 normality tests, II-45 overview, II-39 prediction intervals, II-40, II-46 Quick Graphs, II-54 resampling, II-40, II-47 residuals, II-9, II-41 ridge, II-48 Shapiro-Wilk test, II-45 stepwise, II-15 tolerance, II-43 usage, II-54 using correlation matrix as input, II-18, II-89 using covariance matrix as input, II-18, II-89 using SSCP matrix as input, II-18, II-89 variance inflation factor, II-70 listwise deletion, I-492, III-125 Little's MCAR test, III-123, III-133 loadings, I-456, I-457 LOESS smoothing, IV-361, IV-363, IV-367, IV-368, IV-370, IV-380 logistic item-response analysis, IV-506 one-parameter model, IV-490 two-parameter model, IV-490 logistic regression AIC and Schwarz's BIC, III-1 algorithms, III-85 categorical predictors, III-11
general linear models, II-175 hierarchical, II-421	classification table, III-17 compared to conjoint analysis, I-132
linear discriminant model, I-392	conditional variables, III-10 confidence intervals, III-48
linear regression, II-39, II-299, II-385	data format, III-22
inear regression, I-11, II-7, II-39	deciles of risk, III-17
AIC and Schwarz's BIC, II-39	discrete choice, III-13
Anderson-Darling test, II-45	dummy coding, III-11, III-12

longitudinal data, II-421 effect coding, III-11, III-12 loss function, 111-265 estimation, III-15 multidimensional scaling, 111-210 examples, III-24, III-27, III-33, III-39, III-45, loss functions, 1-48 III-50, HI-60, III-69, III-70, III-77, LOWESS smoothing, IV-513 III-81 low-pass filter, IV-527 missing data, III-86 LSD test, II-197 model, III-10 options, III-14 M overview, III-1 post hoc tests, III-20 madograms, IV-403 prediction table, III-16 Mahalanobis distances, I-392 quantiles, III-18, III-49 Mann-Whitney, III-342 Quick Graphs, III-23 Mantel-Haenszel test, I-238 regression diagnostics, III-87 Mardia skewness and kurtosis, 1-298, 1-303 robust standard errors, III-16 Marquardt method, III-275 Marron & Nolan canonical kernel width, IV-357, ROC curve, III-1 simulation, III-19 IV-364 usage, III-22 mass, I-202 matrix displays, I-70 weights, III-23 maximum likelihood estimates, II-385, III-266 logit maximum likelihood factor analysis, 1-461 binary logit, III-2 Maximum Wishart likelihood, III-411 conditional logit, III-5 McFadden's conditional logit model, III-7 discrete choice logit, III-7 multinomial logit, III-5 McNemar's test, I-226, I-234 stepwise logit, III-9 MDPREF, IV-6, IV-8 loglinear modeling **MDS** see multidimensional scaling, III-185 commands, III-103 compared to analysis of variance, IH-95 mean, I-3, I-307 compared to Crosstabs, III-102 mean smoothing, IV-358, IV-365 convergence, III-96 means coding, II-21 median, I-4, I-299, I-307 data format, III-103 examples, III-105, III-114, III-117, III-121 median smoothing, IV-358 frequency tables, III-102 meta-analysis, II-19 midrange, I-301 model, III-96 minimum spanning trees, IV-396 overview, III-93 Minkowski metric, III-191 parameters, III-100 MIS function, III-142 Quick Graphs, III-104 Missing At Random(MAR), III-131 saturated models, III-95 Missing Completely At Random(MCAR), III-131 statistics, III-100 missing value analysis structural zeros, III-98 casewise pattern table, III-142 usage, III-103 log-logistic distribution, IV-432 data format, III-137 lognormal distribution, IV-432

EM algorithm, III-130, III-134, III-135, III-Quick Graphs, II-441 154, III-168, III-176 usage, II-441 examples, III-137, III-142, III-154, III-168, mixture designs, I-350, I-357 III-176 analysis of, I-361 listwise deletion, III-125, III-154, III-168 axial designs, I-360 MISSING command, III-136 centroid designs, I-359 missing value patterns, III-137 constraints, I-360 model, III-134 examples, I-381, I-382 outliers, III-135 lattice designs, I-359 overview, III-123 Scheffé model, I-361 pairwise deletion, III-125, III-154, III-168 screening designs, I-360 pattern variables, III-124, III-176 simplex, I-359 Quick Graphs, III-137 models, I-10, II-301 randomness, III-131 estimation, I-10 regression imputation, III-127, III-134, IIImoving average, IV-355, IV-511, IV-517 154, III-176 moving average chart, IV-144 resampling, III-123 moving-averages smoother, IV-360 saving estimates, III-134, III-137 M-regression, IV-261 unconditional mean imputation, III-126 multidimensional scaling, III-185, IV-2 usage, III-137 algorithms, III-211 mixed models, II-251 assumptions, III-186 AIC and Schwarz's BIC, II-292 commands, III-194 ANOVA Method, II-281 configuration, III-189, III-193 compound symmetry structure, II-270 confirmatory, III-193 covariance structures, II-269 convergence, III-192 diagonal structure, II-271 data format, III-194 estimation methods, II-281 dissimilarities, III-187 hypothesis testing, II-286 distance metric, III-189 MIVQUE(0) method, II-283 examples, III-195, III-198, III-200, III-203, ML method, II-284 III-208 pairwise comparison, II-290 Guttman method, III-212 post hoc tests, II-290 individual differences, III-185 REML method, II-285 Kruskal method, III-211 setup, II-267 log function, III-191 unstructured (general symmetric structure), IIloss function, III-190 272 metric, III-189 variance components structure, II-270 missing values, III-212 mixed regression nonmetric, III-189 algorithms, II-484 overview, III-185 commands, II-441 power function, III-191 data format, II-441 Quick Graphs, III-194 examples, II-442, II-449, II-457, II-473 residuals, III-192 overview, II-421 R-metric, III-191

mutually exclusive, I-222 Shepard diagrams, III-189, III-194 usage, III-194 N multilevel models see mixed regression N- & P-tiles, 1-309 multinomial logit, III-5 methods, I-311 compared to binary logit, III-5 transformation, 1-309 multinormal tests, III-215 Nadaraya-Watson smoother, IV-360 examples, III-218, III-219 narrow inference space, II-280 Nelson-Aalen cumulative hazard estimator, IV-438 Henze-Zirkler test, III-215 Mardia skewness and kurtosis, III-215 nesting, II-175 Newton-Raphson method, III-93 overview, III-215 NIPALS (Nonlinear Iterative PArtial Least Squares) Quick Graphs, III-217 see partial least squares regression, III-377 usage, III-217 using commands, III-217 nodes, I-43 multiple comparison tests nominal data, III-321 non-central F-distribution, IV-34, IV-60 see pairwise comparisons, II-117, II-195 non-centrality parameters, IV-34 multiple correlation, II-8 multiple correspondence analysis, I-203 nonlinear models, III-261 algorithms, III-316 multiple regression, II-12 commands, III-283 multiple tests computation, III-274, III-316 Bonferroni adjustment, I-522 convergence, III-274, III-275 Dunn-Sidak adjustemnt, I-522 multivariate analysis of variance, III-223 data format, III-283 between-groups testing, III-239 estimation, III-269 examples, III-284, III-287, III-290, III-293, categorical variables, III-229 Ш-296, Ш-298, Ш-299, П-301, Шcommands, III-244 306, III-311, III-313, III-315 data format, III-244 examples, III-246, III-248, III-253, III-255, functions of parameters, III-277 loss functions, III-265, III-270, III-280, III-III-257, III-258 Hotelling-Lawley trace, III-226 281 missing data, III-316 hypothesis test, III-232 model, III-270 overview, III-223 parameter bounds, III-274 Pillai trace, III-225 problems, III-269 post hoc test, III-242 Quick Graphs, III-283 Quick Graphs, III-245 recalculation of parameters, III-276 repeated measures, III-230 resampling, III-261 Roy's Greatest root, III-226 robust estimation, III-278 usage, III-244 starting values, III-274 Wilks' lambda, III-225 usage, III-283 within-group testing, III-241 nonmetric unfolding model, III-185 multivariate normality assessment nonparametric statistics, III-325 Henze-Zirkler test, I-303 Mardia's skewness, I-303

nonparametric tests	chart type, IV-136
algorithms, III-355	continuous distributions, IV-139
Anderson-Darling test, III-334	discrete distributions, IV-140
commands, III-325, III-331, III-338	overview, IV-134
data format, III-339	probability limits, IV-136
examples, III-340, III-342, III-343, III-345,	sample size, IV-138
III-346, III-347, III-348, III-349, III-	scaling, IV-138
350, III-353, III-354	optimal designs, I-350, I-362
Friedman test, III-328	analysis of, I-364
independent samples test, III-322, III-323	A-optimality, I-364
Kolmogorov-Smirnov test, III-323, III-331	candidate sets, I-363
Kruskal-Wallis test, III-322	coordinate exchange method, I-363, I-386
Mann-Whitney test, III-322	D-optimality, I-364
overview, III-319	efficiency criteria, 1-364
Quade test, III-329	Fedorov method, I-363
Quick Graphs, III-339	G-optimality, I-364
related variables tests, III-325, III-326, III-328	k-exchange method, 1-363
resampling, III-319	model, I-365
sign test, III-325, III-326	optimality criteria, I-364
usage, III-339	optimality, I-362
Wald-Wolfowitz runs test, III-337	ORDER, IV-431
Wilcoxon Signed-Rank test, III-326	ordinal data, III-320
normal distribution, I-301	Ordinary least squares, III-412
normality tests, II-45, II-112	orthomax rotation, I-460, I-464
Anderson-Darling, II-113	Output, IV-99
Anderson-Darling test, II-45	Surpris 1 //
Kolmogorov-Smirnov test, II-45, II-112	P
Shapiro-Wilk, II-112	
Shapiro-Wilk test, II-45	p charts, IV-130
np charts, IV-129	PACF plots, IV-530
NPAR, IV-320	pairwise comparisons, II-26, II-107, II-117
null hypothesis, I-12, IV-20	Bonferroni test, II-118, II-196
	Duncan test, II-119, II-197
0	Dunnett test, II-119, II-197
Oblimin rotation I 460 I 464	Dunnett's T3 test, II-119, II-197
oblimin rotation, I-460, I-464	Fisher's LSD, II-197
observational studies, I-347	Fisher's LSD test, II-118
OC curves, IV-134	Gabriel test, II-119, II-197
Occam's razor, I-130	Games - Howell test, II-197
Ochiai's binary similarity coefficient, I-164	Games-Howell test, II-119
odds ratio, I-233	Hochberg's GT2 test, II-119
omni-directional variograms, IV-388	Hochberg's test GT2, II-197
operating characteristic curves	R-E-G-W O test, II-197

	POT BOE
R-E-G-W-Q test, II-119	usage, III-385
Scheffé test, II-27, II-118, II-197	path analysis algorithms, III-454
Sidak test, II-118, II-197	confidence intervals, III-455
Student-Newman-Keuls test, II-119, II-197	
Tamhane's T2 test, II-119, II-197	covariance paths, III-401
Tukey test, II-118, II-196	covariance relationship, III-409
Tukey's b test, II-119, II-197	data format, III-413
pairwise deletion, I-492, III-125	dependence paths, III-399
parameters, I-10	dependence relationship, III-407
parametric modeling, IV-432	endogenous variables, III-400
Pareto charts, IV-111	estimate, III-411
partial autocorrelation plots, IV-519, IV-520	examples, III-414, III-419, III-434, III-442
partial least squares regression	exogenous variables, III-400
algorithms, III-377	fixed variance, III-402
cross-validation, III-363	free parameters, III-418
examples, III-365, III-368, III-371, III-375	latent variables, III-404
latent factors, III-357, III-359	manifest variables, III-410
leave-one-out, III-360, III-363	measures of fit, III-455
NIPALS, III-362	method of estimation, III-411
PRESS statistic, III-360	model, III-452
Quick Graphs, III-364	model statement, III-407
random exclusion, III-360, III-364	options, III-411
SIMPLS, III-362	overview, III-397
test set, III-360	path diagrams, III-397
training set, III-360	Quick Graphs, III-413
usage, III-364	starting values, III-412
using commands, III-364	usage, III-413
partialing	variance paths, III-401
in set correlation, IV-295	Pearson chi-square, I-223, I-228, I-233, III-94, III-
partially ordered scalogram analysis with coordi-	101
	compared to likelihood ratio chi-square, III-96
algorithms, III-395	Pearson correlation, I-160, I-171
commands, III-385	perceptual mapping
Convergence, III-384	algorithms, IV-16
convergence, III-384	commands, IV-9
	data format, IV-9
data format, III-385	examples, IV-9, IV-11, IV-12, IV-14
displays, III-383	methods, IV-8
examples, III-386, III-388, III-390	missing data, IV-16
missing data, III-395	model, IV-7
model, III-384	overview, IV-1
overview, III-381	PREFMAP, IV-1
Quick Graphs, III-385	Quick Graphs, IV-9
resampling, III-381	

usage, IV-9	prediction intervals, II-40, II-46
periodograms, IV-527	preference curves, IV-4
permutation tests, I-222	preference mapping, IV-2
phi coefficient, I-48, I-51, I-52, I-227	PREFMAP, IV-7
Pillai trace, III-225	PRESS statistic
Plackett-Burman designs, I-353, I-379	in partial least squares regression, III-360
point processes, IV-386, IV-395	principal components, I-463
polynomial contrasts, II-28, II-31, II-192	principal components analysis
polynomial smoothing, IV-358, IV-365	coefficents, I-456
populations, I-7	compared to factor analysis, I-460
POSET, III-381	compared to linear regression, I-455
positive matching dichotomy coefficients, I-164, I-	loadings, I-456
173	prior probabilities, I-398
Post hoc Test for Repeated measures, III-242	probability calculator
power, IV-22	examples, IV-90, IV-93, IV-94, IV-95
power analysis	overview, IV-85
analysis of variance, IV-19	usage, IV-90
commands, IV-62	probability limits, IV-121
correlation coefficients, IV-25, IV-42, IV-44	probability plots, I-15, II-9
correlations, IV-19	probit analysis
data format, IV-62	AIC and Schwarz's BIC, IV-99
examples, IV-63, IV-67, IV-72, IV-77, IV-80	algorithms, IV-107
generic, IV-34, IV-60, IV-77	categorical variables, IV-102
one-sample t-test, IV-26	commands, IV-103
one-sample z-test, IV-46	data format, IV-103
one-way ANOVA, IV-26, IV-55, IV-77	dummy coding, IV-102
overview, IV-19	effect coding, IV-103
paired t-test, IV-26, IV-51, IV-67	examples, IV-104, IV-106
power curves, IV-62	interpretation, IV-100
proportions, IV-19, IV-25, IV-39, IV-40, IV-	missing data, IV-107
63	model, IV-100
Quick Graphs, IV-62	overview, IV-99
randomized block designs, IV-19	Quick Graphs, IV-103
t-tests, IV-19	saving files, IV-103
two-sample t-test, IV-53, IV-72	
two-sample z-test, IV-48	usage, IV-103
two-way ANOVA, IV-26, IV-57, IV-80	process capability analysis, IV-155
usage, IV-62	Box-Cox power transformation, IV-157
z-tests, IV-19	non-normal data, IV-157, IV-158
power curves, IV-62	process performance, IV-158
overlaying curves, IV-67	Procrustes rotations, IV-7
response surfaces, IV-67	proportional hazards models, IV-433
Power model, IV-391, IV-405	proportions
	power analysis, IV-19, IV-25, IV-39, IV-4

IV-63	TSQ charts, IV-153
p-value, IV-20	usage, IV-162
p-value, 1 v-20	X-MR charts, IV-149
0	quantile plots, IV-434
V	quantitative symmetric dissimilarity coefficient,
QSK	162
coefficients, I-172	quartimax rotation, I-460, I-464
Quade test, III-329	quasi-independence, III-98
multiple comparisons, III-329	Quasi-Newton method, III-269, III-273
pairwise comparisons, III-330	Quasi Monda and and
quadrat counts, IV-385, IV-398	R
quadrat counts, 14-365, 14-38	
quadratic contrasts, II-28	R charts, IV-128
quality analysis, IV-109	R charts:plotting with X-bar charts, IV-129
aggregated data, IV-120	R matrix, II-289
average run length curves, IV-136	Ramsay procedure, III-279
Box-and-Whisker plots, IV-112	random coefficient models
commands, IV-161	see mixed regression
control charts, IV-114	random effects, II-259, II-390
control limits, IV-121	in mixed regression, II-421
cusum charts, IV-142	random fields, IV-386
data format, IV-162	random samples, I-8
discrete control limits, IV-121	random sampling
ovembles IV-163, IV-164, IV-165, IV-166,	algorithms, IV-228
IV_167_[V-168, IV-176, IV-176, IV	commands, IV-223
100 IV_183 IV-189, IV-191, IV-	examples, IV-225, IV-226
105 TV-197, TV-198, IV-199, IV-	overview
201 IV-203, IV-204, IV-200, IV-	Quick Graphs, IV-224
207, IV-209, IV-212, IV-213, IV-	univariate continuous, IV-222
215	univariate discrete, IV-220
histogram, IV-110	
moving average chart, IV-144	usage, IV-224
maying range IV-149	random variables, II-6
operating characteristic curves, IV-135	random walk, IV-517
overview, IV-109	randomized block designs, IV-37
Pareto charts, IV-111	power analysis, IV-19
process capability analysis, IV-155	range, I-301, I-307, IV-392
process capability and years	Rank, IV-262
quick graphs, IV-162	rank regression, IV-262
raw data, IV-120	rank-order coefficients, I-172
regression charts, IV-152	Rasch model, IV-490
run charts, IV-114	receiver operating characteristic curves
run tests, IV-118	See signal detection analysis
shewhart control charts, IV-116	regression
sigma limits, IV-122	

bayesian regression, II-50	command, I-22
LAD regression, IV-260	examples, I-23, I-27, I-28, I-33, I-34, I-36
Least-squares regression, IV-256	
linear, I-11	missing data, I-38
LMS regression, IV-261	naive bootstrap, I-19
logistic, III-1	overview, I-17
LTS regression, IV-261	Quick Graphs, I-22
M-regression, IV-261	usage, I-22
rank regression, IV-262	response optimization, IV-234
ridge regression, II-48	canonical analysis, IV-234
	desirability analysis, IV-236
S regression, IV-262 TSLS regression, IV-581	ridge analysis, IV-235
-	response surface designs, I-350, I-354
two-stage least squares, IV-581	analysis of, I-357
regression charts, IV-152 regression trees, I-45	Box-Behnken designs, 1-357
algorithms, I-62	central composite designs, I-356
	examples, I-380, I-384
basic tree model, I-42	rotatability, I-355, I-356
commands, I-54	response surface methods, IV-231
compared to analysis of variance, I-45	commands, IV-244
compared to stepwise regression, I-46	contour and surface plot, IV-233, IV-243
data format, I-54	customization, IV-238
displays, I-51	estimate model, IV-237, IV-238
examples, I-55, I-57, I-59	examples, IV-245, IV-247, IV-249, IV-250
loss functions, I-48, I-51	lack of fit, IV-233
missing data, I-62	optimize, IV-240
mobiles, I-41	overview, IV-231
model, I-51	Quick Graphs, IV-244
overview, I-41	usage, IV-244
pruning, I-47	response surfaces, I-132, III-273
Quick Graphs, I-54	restricted/residual maximum likelihood estimates
resampling, 1-41	II-385
saving files, I-54	ridge regression, II-48
stopping criteria, I-47, I-53	right censored data, IV-428
usage, I-54	RMSEA, III-457
R-E-G-W Q test, II-197	robust discriminant analysis, 1-399
R-E-G-W-Q test, II-27, II-119	robust regression
reliabilities, IV-492	commands, IV-279
reliability, IV-489	examples, IV-280, IV-283, IV-284
repeated measures, II-31	LAD regression, IV-260
assumptions, II-32	LMS regression, IV-261
resampling	LTS regression, IV-261
algorithms, I-38	M-regression, IV-261
hootetran-t-method_T-10	200

Quick Graphs, IV-279	measures of association, IV-293
rank regression, IV-262	missing data, IV-316
S regression, IV-262	overview, IV-291
usage, IV-279	partialing, IV-292
robust smoothing, IV-358, IV-365	usage, IV-304
robustness, III-321	Shapiro-Wilk test, I-302
ROC curves, IV-320	Shepard diagrams, III-189, III-194
root mean square error of approximation, III-457	Shepard's smoother, IV-360
	Shewhart control charts
rotatability in response surface designs, I-355	c charts, IV-131
	np charts, IV-129
rotatable designs in response surface designs, I-356	p charts, IV-130
	R charts, IV-128
rotation, 1-459	s charts, IV-126
Roy's Greatest root, III-226 running median smoothers, IV-512	u charts, IV-133
running median smoother, IV-360	variance charts, IV-124
running-means smoother, IV-360	X charts, IV-129
S	X-bar charts, IV-123
5	Sidak test, II-27, II-118, II-197, II-307, II-395
s charts, IV-126	sign test, III-325, III-326
plotting with X-bar charts, IV-129	signal detection analysis
Sakitt D, IV-321	algorithms, IV-346
sample size, IV-23, IV-30	chi-square model, IV-323
samples, I-8	commands, IV-324
saturated models	convergence, IV-324
loglinear modeling, III-95	data format, IV-325
scale regression, IV-262	examples, IV-328, IV-333, IV-335, IV-336,
ccalogram	IV-340, IV-342, IV-344
see partially ordered scalogram analysis with	exponential model, IV-323
coordinates	gamma model, IV-323
scatterplot matrix, I-160	logistic model, IV-323
Scheffé model	missing data, IV-346
in mixture designs, I-361	nonparametric model, IV-323
Scheffé test, II-27, II-118, II-197, II-307, II-395	normal model, IV-323
screening designs, I-360	overview, IV-319
SD-RATIO, IV-321	poisson model, IV-323
seasonal decomposition, IV-523	Quick Graphs, IV-327
second-order stationarity, IV-387	ROC curves, IV-327
semi-variograms, IV-388	usage, IV-325
set correlations	sill, IV-392
assumptions, IV-292	similarity measures, I-157
categorical variables, IV-301	similarity measures, 1-157 simple matching dichotomy coefficients, 1-164, I
data format, IV-304	173

simplex, I-359 overview, IV-349 polynomial smoothing, IV-358, IV-365 Simplex method, III-269, III-273 SIMPLS (Straight-forward IMplementation of Par-Quick Graphs, IV-366 tial Least Squares) resampling, IV-349 see partial least squares regression residuals, IV-362, IV-366 robust smoothing, IV-358, IV-365 , III-377 running-means, IV-360 simulation, IV-394 saving results, IV-364, IV-366, IV-367 singular value decomposition, I-201, IV-6, IV-16 Shepard's smoother, IV-360 skewness, I-307 step, IV-361 positive, I-4 tied values, IV-361 slope, II-13 tricube kernel, IV-364, IV-365 smoothing, IV-362, IV-510 trimmed mean smoothing, IV-365 bandwidth, IV-350, IV-355 triweight kernel, IV-364, IV-365 biweight kernel, IV-362, IV-364, IV-365 uniform kernel, IV-364 Cauchy kernel, IV-362, IV-365 usage, IV-366 commands, IV-366 window normalization, IV-357, IV-364 confidence intervals, IV-368 Sneath and Sokal's binary similarity coefficient, Idata format, IV-366 discontinuities, IV-360 Somers' d coefficients, I-227, I-235 discrete gaussian convolution, IV-361 Sorting, I-5 distance-weighted least squares (DWLS), TVspaghetti plot, II-458 361 spatial statistics, IV-385 Epanechnikov kernel, IV-362, IV-364 algorithms, IV-426 examples, IV-367, IV-368, IV-370, IV-380 azimuth, IV-403 fixed-bandwidth method, IV-355, IV-362, IVcommands, IV-408 364 data, IV-410 Gaussian kernel, IV-362, IV-364, IV-365 dip, IV-403 grid points, IV-361, IV-362, IV-382 inverse-distance, IV-360 examples, IV-411, IV-417, IV-418, IV-424 grid, IV-407 k nearest-neighbors method, IV-356 kernel functions, IV-350, IV-352, IV-362, IVkriging, IV-393, IV-400, IV-405 lags, IV-402 364 missing data, IV-426 LOESS smoothing, IV-361, IV-362, IV-367, model, IV-385, IV-403 IV-368, IV-370, IV-380 Marron & Nolan canonical kernel width, IVnested models, IV-392 nesting structures, IV-403 357, IV-362, IV-364 nugget, IV-392 mean smoothing, IV-358, IV-365 nugget effect, IV-392, IV-405 median smoothing, IV-358 methods, IV-350, IV-358, IV-365 plots, IV-401 point statistics, IV-400 model, IV-362 Quick Graphs, IV-410 moving-averages, IV-360 Nadaraya-Watson, IV-360 resampling, IV-385 nonparametric vs. parametric, IV-350 sill, IV-405

simulation, IV-394, IV-401 spherical model, IV-404 trends, IV-406 usage, IV-410 variogram, IV-400 Spearman coefficients, I-162, I-172, I-227 Spearman-Brown coefficient, IV-489 specificities, I-458 spectral models, IV-510 spherical model, IV-389 split plot designs, II-175 split-half reliabilities, IV-492 SSCP matrix, III-135 standard deviation, I-3, I-301, I-307 standard error of estimate, II-7 standard error of skewness, I-307 standard error of the mean, I-11, I-307 standardization, I-67 standardized alpha, IV-489 standardized deviates, I-202 standardized values, I-6 stationarity, IV-387, IV-520 statistics defined, I-1 descriptive, I-1 inferential, I-7 stem-and-leaf plots, I-3, I-299 step smoother, IV-361 stepwise regression, II-15, II-30, III-9 stochastic processes, IV-386 stress, III-188, III-211 structural equation models see path analysis Stuart's tau-c coefficients, I-227, I-234 Student, II-197 studentized residuals, II-10 Student-Newman-Keuls test, II-27, II-119 subpopulations, I-305 subsampling, I-18 sum of cross-products matrix, I-171 sums of squares type I, II-29, II-34, II-113 type II, II-35, II-113

type III, II-30, II-36, II-113 type IV, II-36 surface plot, IV-243 surface plots, IV-401 survival analysis AIC and Schwarz's BIC, IV-427 algorithms, IV-476 censoring, IV-428, IV-435, IV-479 centering, IV-477 coding variables, IV-437 commands, IV-447 convergence, IV-481 Cox regression, IV-441 data format, IV-448 estimation, IV-442 examples, IV-449, IV-453, IV-455, IV-459, IV-462, IV-464, IV-468, IV-472 exponential model, IV-441 graphs, IV-437, IV-444 logistic model, IV-441 log-likelihood, IV-477 lognormal model, IV-435, IV-477 missing data, IV-476 model, IV-435 models, IV-479 Nelson-Aalen cumulative hazard estimator, IV-438 overview, IV-427 parameters, IV-476 plots, IV-481 proportional hazards models, IV-479 Quick Graphs, IV-448 Singular Hessian, IV-478 stepwise, IV-482 stepwise estimation, IV-443 tables, IV-437, IV-444 time dependent covariates, IV-446 usage, IV-448 variances, IV-483 weibull model, IV-472 symmetric matrix, I-160

T	Shapiro-Wilk's test, I-497
t tests	tests for proportion, I-538 equality of proportions, I-521
Taguchi designs, I-353, I-377	equality of two proportions, I-540
Tamhane's T2 test, II-27, II-119, II-197	single proportion, I-520, I-538
Tanimoto dichotomy coefficients, I-164, I-173	tests for variance, I-531
tau-b coefficients, I-234	Bartlett's test, I-521
tau-c coefficients, I-234	equality of several variances, I-534
test for normality, I-302	equality of two variances, I-521, I-532
Anderson-Darling test, I-303	Levene's test, I-521
Shapiro-Wilk test, I-302	single variance, I-531
test item analysis	tetrachoric correlation, I-164, I-166
algorithms, IV-506	theory of signal detectability (TSD), IV-319
classical analysis, IV-488, IV-489, IV-491,	time domain models, IV-510
IV-506	time series, IV-509
commands, IV-494	algorithms, IV-578
data format, IV-495	ARIMA models, IV-514, IV-540
examples, IV-498, IV-500, IV-503	clear series, IV-534
logistic item-response analysis, IV-490, IV-	commands, IV-532, IV-534, IV-539, IV-540
493, IV-506	IV-542, IV-544, IV-546
missing data, IV-507	data format, IV-546
overview, IV-487	examples, IV-547, IV-548, IV-549, IV-550
Quick Graphs, IV-497	IV-552, IV-555, IV-557, IV-558, IV
reliabilities, IV-492	560, IV-561, IV-566, IV-575
resampling, IV-487	forecasts, IV-538
scoring items, IV-492, IV-493	Fourier transformations, IV-545
statistics, IV-495	missing values, IV-509
usage, IV-495	moving average, IV-511, IV-535
tests for correlation, I-535	overview, IV-509
equality of two correlations, I-522, I-537	plot labels, IV-528
specific correlation, I-522, I-536	plots, IV-528, IV-529, IV-530, IV-531
zero correlation, I-522, I-535	Quick Graphs, IV-546
tests for mean, I-523	running means, IV-512, IV-535
one-sample t, I-520, I-526	running medians, IV-512, IV-536
one-sample z, I-520, I-523	seasonal adjustments, IV-523, IV-539
paired t, I-521, I-527	smoothing, IV-510, IV-535, IV-536, IV-537
poisson, I-520, I-530	stationarity, IV-520
two-sample t, I-521, I-528	transformations, IV-532, IV-534
two-sample z, I-520, I-524	trend analysis IV 525 IV 542
tests for normality	trend analysis, IV-525, IV-542 trends, IV-538
AD test, III-334	usage, IV-546
K-S test, III-331	tolerance, II-16
Lilliefors test, III-334	T-plots, IV-529
	1-biots, 14-329

trace criterion		U
see A-optimality		u charts, IV-133, IV-134
tree clustering methods, I-47		unbalanced designs
tree diagrams, I-70		in analysis of variance, II-29
trend analysis, IV-525, IV-542		uncertainty coefficient, I-234
Homogeneity test, IV-544		unfolding models, IV-3
Mann-Kendall test, IV-526, IV	7-543	uniform kernel, IV-364
Modified Seasonal Kendall tes	t, IV-543	uniform kernet, 17-30-7
Seasonal Kendall test, IV-526,	IV-543	V
slope estimator, IV-573		THE RESERVE OF THE PARTY OF THE
triangle inequality, III-186		validity, I-87
tricube kernel, IV-364		variance, I-307
trimmed mean, I-299, I-308		of estimates, I-355
trimmed mean smoothing, IV-365		variance charts, IV-124
triweight kernel, IV-364		variance component models
t-tests, IV-19		see mixed regression
one-sample, I-526, IV-50		variance components
paired, I-527, IV-51		categorical variables, II-303
power analysis, IV-26		annuande II-310
two-sample, I-528, IV-53		examples, II-311, II-315, II-320, II-323, II-
Tukey procedure, III-279		326, II-328, II-334, II-340
Tukey test, II-27, II-118, II-196		hypothesis test, II-306
Tukey's b test, II-27, II-119, II-19	7	model estmation, II-301
Tukey's HSD test, II-307, II-395		models, II-301
Tukey's HSD test, 11-307, 11-307		options, II-304
Tukey's jackknife, I-18		overview, II-299
twoing, I-48		Quick Graph, II-310
two-stage least squares		usage, II-310
algorithms, IV-597		variance inflation factor, II-70
commands, IV-586		variance of prediction, I-356
estimation, IV-582 examples, IV-587, IV-590,	IV-592, IV-593,	variance paths
examples, 1V-587, 1V-596,	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	path analysis, III-401
IV-595, IV-596 heteroskedasticity-consistent	standard errors,	varimax rotation, I-460, I-464
heteroskedasticity-consistent	Starona	variograms, IV-388, IV-401
IV-586		model, IV-389
lagged variables, IV-586		vector model
missing data, IV-597		in percentual mapping, IV-5
model, IV-585		Voronoi polygons, IV-385, IV-397, IV-400
overview, IV-581		Volonor porygona,
Quick Graphs, IV-586		W
usage, IV-586		
Type I error, IV-21		Wald-Wolfowitz runs test, III-337
Type II error, IV-22		wave model, IV-391

Weibull, III-334
Weibull distribution, IV-432
weighted running smoothing, IV-512
weights, I-23, I-54, I-135, I-179, I-206, I-246, I248, I-323, I-371, I-408, I-469, I-503, I-544, II-54,
II-121, II-122, II-202, II-311, II-357, II-399, II441, II-442, III-23, III-103, III-104, III-137, III194, III-217, III-283, III-339, III-340, III-364, III385, III-413, IV-9, IV-63, IV-104, IV-162, IV244, IV-280, IV-305, IV-325, IV-328, IV-366, IV367, IV-410, IV-449, IV-495, IV-498, IV-547, IV-587

Wilcoxon Signed-Rank test, III-326
Wilcoxon test, III-326
Wilk's trace, I-405
Wilks' lambda, I-405, III-225
Winter's three-parameter model, IV-524
Within-Group Testing, III-241, III-257
within-subjects differences
in analysis of variance, II-32

## X

X charts, IV-129
X-bar charts, IV-123
plotting with R charts, IV-129
plotting with s charts, IV-129
X-MR charts, IV-149
control limits, IV-149

## Y

Yates' correction, I-226, I-233 y-intercept, II-12 Young's S-STRESS, III-190 Yule's Q, I-228 Yule's Q coefficient, I-164 Yule's Y, I-228, I-234

## Z

z tests z-tests, IV-19 one-sample, IV-46 two-sample, IV-48