Ćwiczenia 12

- 9.0 Podaj przykład najmniejszej uniwersalnej rodziny funkcji haszujących z uniwersum $\{1, 2, \dots, 9\}$ w przestrzeń adresową $\{1, 2, 3\}$.
- 9.1 Podaj przykład najmniejszej uniwersalnej rodziny funkcji haszujących z uniwersum $\{1, 2, 3, 4, 5\}$ w przestrzeń adresową $\{1, 2\}$ (w postaci tabelki z wartościami każdej z funkcji).
- 9.4 W tym zadaniu zakładamy, że uniwersum kluczy $U = \{0, 1, ..., p-1\}$, gdzie p jest dużą liczbą pierwszą. Niech m < p będzie rozmiarem tablicy haszowanej. Dla $a \in \{1, 2, ..., p-1\}$ i $b \in \{0, 1, 2, ..., p-1\}$ definiujemy funkcję $h_{a,b}$, jak następuje:

$$h_{a,b}(x) = ((ax+b) \mod p) \mod m.$$

Wykaż, że rodzina $\mathcal{H}_{a,b} = \{h_{a,b} : a \in \{1, 2, \dots, p-1\} \text{ i } b \in \{0, 1, 2, \dots, p-1\}\}$ jest uniwersalną rodziną funkcji haszujących.

- 9.5 Zaproponuj rozszerzenie algorytmu Floyda-Warshalla tak, żeby można było odzyskać w czasie O(n) najlżejszą ścieżkę pomiędzy dowolnymi wierzchołkami a, b w danym grafie.
- 10.3 Marszrutą w grafie G nazywamy każdy skończony ciąg wierzchołków grafu, taki że każde dwa kolejne wierzchołki są połączone krawędzią w tym grafie. Marszruta jest zamknięta, gdy rozpoczyna się i kończy w tym samym wierzchołku. Powiemy, że graf G jest eulerowski, jeśli istnieje w nim marszruta zamknięta, w której każda krawędź z grafu pojawia się dokładnie raz. Marszrutę o takiej własności nazywamy cyklem Eulera. Zaproponuj algorytm, który w czasie liniowym sprawdza, czy dany graf nieskierowany jest eulerowski i jeśli tak, to znajduje w nim cykl Eulera.
- 10.4 Dane jest n-wierzchołkowe drzewo z wagami na krawędziach (liczby całkowite). Dla każdego wierzchołka v różnego od korzenia dane są rodzic p[v] w drzewie i waga w[v] krawędzi v p[v]. Przyjmujemy też, że wierzchołki są ponumerowane w porządku "preorder" i utożsamiamy je z tymi numerami v oznacza zarówno wierzchołek, jak i jego numer.
 - Zaproponuj algorytm, który w czasie O(n+k) udzieli odpowiedzi na k zapytań o wagę ścieżki między parą wierzchołków (u,v), przy czym w każdym z tych pytań u będzie przodkiem v?

Do samodzielnej pracy

9.2 W tym zadaniu należy udowodnić, że opisana poniżej rodzina funkcji haszujących jest rodziną uniwersalną. Niech m będzie liczbą pierwszą. Przyjmijmy, że klucze pochodzą z uniwersum $U = \{0, 1, \ldots, m-1\}^{r+1}$. Innymi słowy, każdy element U to krotka $x = \langle x_0, x_1, \ldots, x_r \rangle$, gdzie x_i jest liczbą ze zbioru $\{0, 1, \ldots, m-1\}$. Dla ustalonej krotki $a = \langle a_0, a_1, \ldots, a_r \rangle$, definiujemy funkcje haszującą:

$$h_a(x) = \sum_{i=0}^r a_i x_i \mod m.$$

Udowodnij, że rodzina $\mathcal{H}_m = \{h_a : a \in \{0, 1, \dots, m-1\}^{r+1}\}$ jest uniwersalną rodziną funkcji haszujących.

Wskazówka: rozważ dwa różne klucze x oraz y i bez straty ogólności załóż, że $x_0 \neq y_0$. Wykaż, że liczba tych a, dla których $h_a(x_0) = h_a(y_0)$ wynosi m_r . W tym celu pokaż, że dla każdego z m_r wyborów ciągu $\langle a_1, \ldots, a_r \rangle$ istnieje tylko jedno a_0 , takie że $h_a(x) = h_a(y)$.

9.3 Przygotowanie tablicy haszowanej z zadania 9.2 wymaga wygenerowania liczby pierwszej m i zainicjowania tablicy o rozmiarze m. W tym zadaniu zaproponujemy algorytm znajdowania liczby pierwszej m działający w czasie o(m). W tym celu skorzystamy z faktu, że dla każdej dodatniej liczby całkowitej k, w przedziale $[k^3, (k+1)^3]$ znajduje się co najmniej jedna liczba pierwsza. Zastosuj metodę Sita Eratostenesa i wykaż, że można ją zaimplementować w czasie $O(k^2 \ln k) = o(m)$.