PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-286239

(43) Date of publication of application: 31.10.1995

(51)Int.Cl.

C22C 38/00

C22C 38/18

C22C 38/22 C22C 38/28

C22C 38/38

(21)Application number: 06-104483

(71)Applicant: NISSHIN STEEL CO LTD

(22)Date of filing:

20.04.1994

(72)Inventor: ASADA HIROSHI

SOGA SATOSHI

INOUE SHOJI

(54) FERRITIC STAINLESS STEEL EXCELLENT IN LASER WELDABILITY

(57)Abstract:

PURPOSE: To suppress the formation of nonmetallic inclusions such as oxides and nitrides precipitated in the laser-weld zone and to improve the toughness of the weld zone by regulating the contents of C, N and O in the base metal in specified correlation.

CONSTITUTION: This steel is a ferritic stainless steel contg., by weight, ≤0.03% C, ≤0.025% N, ≤0.02% O and 11 to 35% Cr, and in which the relationships in the inequality, (%C)+3(%N)+(%O)<(124.4-(Cr%)/1750 are maintained among the C content (%C), the N content (% N) and the O content (%O) in such a manner that the oxygen concn. in the laser-weld zone is regulated to ≤ 250ppm, the nitrogen concn. to ≤350ppm, the average grain size of the carbides and nitrides to be precipitated to $\leq 3\mu m$ and the total precipitation density to 1×105 pieces/mm2 or below. Moreover, as for the contents of Si, Mn, Ti and Nb in the steel, $\leq 2.0\%$ Si, $\leq 1.0\%$ Mn, $\leq 1.0\%$ in total of Ti and/or Nb and 0.1 to 3% Mo are preferably regulated.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-286239

(43)公開日 平成7年(1995)10月31日

(51) Int.Cl. ⁶	識別記号	FΙ	技術表示簡所
C 2 2 C 38/0	* * *		3,,,,,,,,
38/1	8		
38/2	2		
38/2	8		
38/3	8		
		審査請求	未請求 請求項の数4 FD (全 6 頁)
(21)出顯番号	特顧平6-104483	(71)出願人	000004581
			日新製鋼株式会社
(22)出顧日	平成6年(1994)4月20日		東京都千代田区丸の内3丁目4番1号
		(72)発明者	朝田博
			尼崎市鶴町1番地 日新製鋼株式会社鉄鋼 研究所内
		(72)発明者	曽我 聡
			尼崎市鶴町1番地 日新製鋼株式会社鉄鋼
			研究所内
		(72)発明者	井上 正二
			尼崎市鶴町1番地 日新製鋼株式会社鉄鋼
		'	研究所内
	•	(74)代理人	弁理士 小倉 亘

(54) 【発明の名称】 レーザ溶接性に優れたフェライト系ステンレス鋼

(57)【要約】

【目的】 溶接部靭性に優れ、レーザ溶接に適したフェライト系ステンレス鋼を得る。

【構成】 C:0.03%以下、N:0.025%以下及び0:0.02%以下に規制した $Cr:11\sim35\%$ を含むフェライト系ステンレス鋼であって、レーザ溶接部の酸素濃度及び窒素濃度がそれぞれ250ppm以下及び350ppm以下で、析出する炭化物及び窒化物が平均粒径 $3\mu m$ 以下で合計析出密度 1×10^5 個 $/mm^2$ 以下となるように、C含有量 [% C] ,N含有量 [% N] 及びO含有量 [% O] の間に次式の関係を維持させる。

 $[\%C]^{1} + 3 [\%N] + [\%O] < (124.4 - [\%Cr] / 1750$

1

【特許請求の範囲】

【請求項1】 C:0.03重量%以下,N:0.02 5重量%以下及びO:0.02重量%以下に規制したC r:11~35重量%を含むフェライト系ステンレス鋼 であって、レーザ溶接部の酸素濃度及び窒素濃度がそれ ぞれ250ppm以下及び350ppm以下で、析出す*

【請求項2】 Si含有量及びMn含有量をそれぞれ 2. 0重量%以下及び1. 0重量%以下に規制した請求 項1記載のフェライト系ステンレス鋼。

【請求項3】 Ti及び/又はNbを合計量で1.0重 量%以下含む請求項1又は2記載のフェライト系ステン レス鋼。

【請求項4】 Mo:0.1~3重量%を含む請求項1 ~3の何れかに記載のフェライト系ステンレス鋼。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、溶接部靭性に優れたフ ェライト系ステンレス鋼に関する。

[0002]

【従来の技術】 SUS430を始めとするフェライト系 ステンレス鋼は、オーステナイト系ステンレス鋼に比較 して安価であることから、広範な分野において建材、構 造材、各種部品等として使用されている。フェライト系 ステンレス鋼板を使用して構造物を組立てる場合、鋼板 を他の構造部材に溶接することが多い。また、ステンレ ス鋼板から製造された溶接管を建材、構造材、各種部品 等として使用することもある。フェライト系ステンレス 鋼板の溶接には、従来から T I G溶接が採用されてい る。しかし、TIG溶接では溶接速度に限界があるた め、レーザ溶接に置き換えることが検討されている。本 出願人も、特開昭56-168988号公報でフェライ ト系ステンレス鋼のレーザ溶接を紹介した。

[0003]

【発明が解決しようとする課題】レーザ溶接は、ビーム 径の小さな熱エネルギーで母材を加熱することから、T・ I G溶接に比較して格段に早い溶接速度を示す。しか し、ビーム径の小さな熱エネルギーは、母材の極めて狭 い領域を極めて高い温度まで加熱するため、従来のTI※

このフェライト系ステンレス鋼は、更にTi及び/又は N bを合計量で1. 0重量%以下、Mo:0.1~3重 量%を含むことができる。また、Si含有量及びMn含 有量は、それぞれ2.0重量%以下及び1.0重量%以 下に規制することが好ましい。

[0006]

【作用】一般的にいって、窒化物、酸化物等の非金属介 在物が少ないほど、溶接部の靭性が向上する。しかし、 極めて高温の溶融金属が生成するレーザ溶接にあって

* る炭化物及び窒化物が平均粒径 3 μ m以下で合計析出密 度1×10⁵ 個/mm² 以下となるように、C含有量 [%C], N含有量 [%N] 及びO含有量 [%O] の間 に次式の関係を維持させたレーザ溶接性に優れたフェラ イト系ステンレス鋼。

[%C] + 3 [%N] + [%O] < (124.4 - [%Cr]) / 1750

※ G 溶接とは異なった熱履歴を溶接部が受ける。レーザビ ームで加熱された母材は、Feの沸点に近い2900℃ 10 程度まで最高温度が到達する場合がある。このような高 温に加熱された溶融金属は、雰囲気から盛んにガスを吸 収する。その結果、得られた溶接部は、酸化物、窒化物 等を多量に介在させた脆い組織になり易い。雰囲気から のガス吸収は、溶接雰囲気をガスシールドすることによ り、ある程度まで抑制できる。

【0004】雰囲気制御によっても依然として酸化物、 窒化物等の非金属介在物の生成が避けられず、母材に比 較して溶接部の靭性が劣る。このような溶接部をもつス テンレス鋼板に曲げ加工、バルジ加工等の高度の加工を 施すと、溶接部に亀裂、破断が発生し、溶接製品として 使用することができない。本発明は、このような問題を 解消すべく案出されたものであり、特定された相関関係 の下で母材のC、N及びO含有量を規制することによ り、レーザ溶接部に析出する酸化物、窒化物等の非金属 介在物の生成を抑制し、溶接部の靭性を向上させること を目的とする。

[0005]

【課題を解決するための手段】本発明のフェライト系ス テンレス鋼は、その目的を達成するため、C:0.03 30 重量%以下, N:0.025重量%以下及びO:0.0 2重量%以下に規制したCr:11~35重量%を含む フェライト系ステンレス鋼であって、レーザ溶接部の酸 素濃度及び窒素濃度がそれぞれ250ppm以下及び3 50ppm以下で、析出する炭化物及び窒化物が平均粒 径3 μm以下で合計析出密度1×10°個/mm²以下 となるように、C含有量「%C]、N含有量「%N]及 び〇含有量[%0]の間に次式(1)の関係を維持させ ている。

[%C] + 3 [%N] + [%O] < (124.4 - [%Cr]) / 1750 \cdots (1)

は、溶融金属が雰囲気から盛んにO、N等のガス成分を 吸収するため、従来のTIG溶接における窒化物、酸化 物等に関する考察が当てはまらない。そのため、OやN 等を極低下させたフェライト系ステンレス鋼を母材とし て使用すると共に、酸素濃度及び窒素濃度が低い溶接雰 囲気を使用することが考えられる。しかし、このような 対策では、素材コスト及び溶接コストの上昇を招き、実 用的な解決策ではない。この点、本発明者等は、レーザ 溶接部の酸素濃度及び窒素濃度を規制し、且つ析出した

40

酸化物や窒化物の分布を制御するとき、靭性に優れた溶接部が得られることを多数の実験から見い出した。この知見に基づき、N及びOを極低下することなく、式

(1) の条件を満足させるとき、フェライト系ステンレス鋼のレーザ溶接性が改善されることを解明した。

【0007】以下、本発明で規定した成分の含有量, 関係式等について説明する。

C:0.03重量%以下

フェライト系ステンレス鋼においては、粒内に固溶して素地の加工性を低下させるばかりでなく、炭化物、窒化 10 物等の生成することによって靭性も損なわれる。そのため、C含有量は、低いほど好ましく、上限を0.03重量%に設定した。また、N及びOと共同して溶接部の加工性を低下させることから、式(1)が満足されるようにC含有量を設定する必要がある。

N:0.025重量%以下

窒化物, 炭窒化物等の生成により、溶接部の加工性及び 靭性を低下させる主たる原因となる。したがって、N含 有量は、特に低下させる必要があることから、上限を 0.025重量%に設定した。また、C及びOと共同し 20 て溶接部の加工性や靭性を低下させることから、式

(1) が満足されるようにN含有量を設定する。

【0008】0:0.02重量%以下

割れの起点となる酸化物系の介在物を生成し、溶接部の 靭性を低下させる。そのため、〇含有量は、低いほど好 ましく、上限を0.02重量%に設定した。また、C及 び〇と共同して溶接部の加工性を低下させることから、 式(1)が満足されるように〇含有量を設定する。

S i: 2. 0重量%以下

脱酸剤として有効な元素であり、耐高温酸化性を改善する作用も呈する。更に、溶鋼中の飽和窒素量を減少させる働きがあり、溶接部の加工性及び靭性改善に有効である。しかし、過度に S i を添加すると素材の加工性が損なわれることから、 S i 含有量の上限を 2. 0重量%に設定した。

Mn: 1. 0重量%以下

脱酸剤として有効な元素であり、素地を強化する作用も呈する。しかし、過度にMnを添加すると耐食性を低下させる原因となるので、Mn含有量の上限を1.0重量%に設定した。

【0009】Cr:11~35重量%

フェライト系ステンレス鋼の主要元素であり、耐食性を確保する上から 11 重量%以上のC r 含有量が必要である。しかし、過剰にC r を添加すると素材の脆化を招き、製造が極めて困難になる。そのため、C r 含有量は、上限を 35 重量%に定めた。

Ti及び/又はNb:合計量で1.0重量%以下 必要に応じて添加される合金元素であり、C,N及びO を固定化して無害化すると共に、高温強度の向上にも有 効である。しかし、C及びNとの関係で過度に添加する 50 と、靭性の低下を招くと共に、非金属介在物の発生に起因する表面疵を生じさせる。そのため、Ti及びNbの含有量は、合計量で1.0重量%以下にする必要がある。

【0010】Mo:0.1~3重量%

必要に応じて添加される合金元素であり、耐食性の向上に有効である。しかしながら、過度にMoを添加すると素材の加工性や靭性が低下するため、Mo含有量の上限を3重量%に設定した。本発明のフェライト系ステンレス鋼は、更に所定の性質を付与するため種々の合金元素を添加することができる。このような合金元素としては、耐酸化性向上ためのAl:3重量%以下,耐食性及び加工性を向上させるためのCu:1重量%以下,C及びNを固定するためのV及び/又はZr:0.5重量%以下,耐粒界腐食性を改善するためのB:0.1重量%以下,耐性及び耐酸化性向上のための希土類元素やY:0.5重量%以下等がある。

【0011】関係式(1):関係式(1)は、本発明者等の多数の実験結果から求められたものであるが、溶接部の加工性や靭性低下に対してC及びOよりもNの影響が大きいことを見い出し、3倍の係数でNをC及びOとの関連で整理することにより、加工性及び靭性低下が効果的に防止できる。具体的には、従来から一般的に用いられているC+Nで整理した場合、図1に示すようにおおむねC+Nの限界値が得られるものの、限界値付近では逆転がかなり生じる。これに対し、C+3N+Oで整理するとき、図2に示すように明確な限界値が得られる。この関係式(1)を維持することにより、レーザ溶接部の酸素濃度及び窒素濃度がそれぞれ250ppm以下及び350ppm以下で、析出する炭化物及び窒化物が平均粒径3 μ m以下で合計析出密度 1×10^5 個/mm²となる。

【0012】また、図3に示すように、酸素濃度が25 0 p p mを超えると、酸化物系介在物が大量に発生し、 靭性の低下を引き起こす。そこで、溶接部の酸素濃度を 250ppm以下とすることが必要である。他方、窒素 濃度が350ppmを超えると析出物の粒径が大きくな り密度の高くなるため、溶接部の窒素濃度を350pp m以下にする必要がある。析出物は、板状の形状をもっ ているが、その径が大きくなると破壊の起点となり、靭 性を低下させる。この点、図4に示すように、析出物の 平均粒径が3μm以下では、発生しても破壊の起点とし ての作用が小さい。析出物の密度が大きくなると、破壊 の起点が連続した状態になるので靭性が低下する。隣接 する介在物が相互的に作用して靭性の大きな低下をもた らさないためには、図5から明らかなように1×10° 個/mm^{*}以下の析出密度が好ましい。その結果、得ら れた溶接部は、高度の加工を施しても加工割れを生じな い優れた靭性を示す。以上のように成分調整されたフェ ライト系ステンレス鋼は、通常の条件下でレーザ溶接す

ることができるが、板厚方向に関し全厚にわたる溶接部 が得られる条件下で可能な限り少ない入熱で溶接するこ とが好ましい。たとえば、溶接入熱の増加によりビード 幅を大きくすると、溶接トーチの狙い精度を低くしても 溶接可能であり、施工面から有利となる。しかし、溶接 金属の冷却速度が小さいために結晶粒の粗大化を招き、 靭性の低下を引き起こす。

[0013]

【実施例】

実施例1:13%Crを主成分とする低炭素フェライト 系ステンレス鋼について、C, N及びOレベルが種々異 なる板厚1mmの鋼板を用意した。この鋼板をレーザ出* *力5kW及び溶接速度3m/分で溶接した後、溶接部の 曲げ試験により加工性を調査した。調査結果を示す表1 にみられるように、C、N及びN含有量が本発明で規定 した関係式(1)を満足する材料では、溶接部の酸素濃 度及び窒素濃度が低く、非金属介在物の量が極めて少な いことから、密着曲げ試験においても割れを発生するこ とがなかった。これに対し、関係式(1)を満足しない 材料では、介在物が多量になり、粒径も約5 u mと大き くなっていた。この材料では、曲げ試験によって割れが 発生した。

[0014]

【表 1 】

表1:C.N及びOが溶接部の加工性に与える影響

i	X .	分		本 発	明例	比(技 例
試験番号			1	2	3	4	
母材部。		Ċ	ppm	120	160	100	120
		N	ррш	110	110	160	150
		0	ррт	100	104	95	80
		C+N	ppm	230	270	260	270
		C+3N+0	ppm	B 9 0	594	675	650
	酸素	門漢度	ppm	220	210	190	185
海	窒剥	清 渡	ppm	260	245	360	375
接	介在	E物の径	μm	1	1	4	5
部	介包	E物の分布密度	(注)	10	Б	200	500
	曲り	『試験後の割れ	_	なし	なし	あり	あり

介在物の分布密度は、×10 個/mm で表す。

【0015】実施例2:18%Cr-0.5%Cu-0.5%Nbを主成分とする低炭素フェライト系ステン レス鋼について、C, N及びOレベルが異なる板厚2m mの鋼板を用意した。この鋼板をレーザー出力5kW及 び溶接速度2m/分で溶接した後、溶接部の2t曲げ試 験で加工性を調査した。調査結果を示す表2にみられる 40 試験後に割れが発生した。 ように、C、N及びOが本発明で規定した関係式(1) を満足する鋼板では、溶接部の酸素濃度及び窒素濃度が

低く、有害な非金属介在物は観察されなかった。また、 2 t 曲げ試験後も溶接部に割れが発生せず、良好な加工 性を示すことが判った。他方、関係式(1)を満足しな い鋼板では、粒径が約4~7μmと大きな介在物が多量 に分散した溶接部が形成された。この溶接部には、曲げ

[0016]

【表2】

表2:C, N及びOが溶接部の加工性に与える影響

	X	Я		本 発	明例	比(校 例
	試験番号			5	6	7	8
		С	ърш	145	170	120	100
		N	ррт	100	90	140	150
母相	材部	0	ppm	75	94	107	102
		C+N	ppm	245	.260	260	250
		C+3N+0	ppm	520	534	647	652
	跛刀	表演度	ppm	200	210	253	240
浴	選業	清濃度	ppm	240	195	385	410
接			μm	1	-	4	7
部			(注)	< 1	<1	100	200
	曲り	『試験後の割れ	-	なし	なし	a b 19	8 9

介在物の分布密度は、×10*個/mm*で表す。

【0017】実施例3:30%Cr-2%Moを主成分 とする低炭素フェライト系ステンレス鋼について、C、 N及びOレベルが異なる板厚O.8mmの鋼板を用意し た。この鋼板をレーザー出力5kW及び溶接速度4m/ 分で溶接した後、溶接部の密着曲げ試験で加工性を調査 した。調査結果を示す表3にみられるように、C, N及 び〇が本発明で規定した関係式 (1) を満足する鋼板で は、溶接部の酸素濃度及び窒素濃度が低く、有害な非金* 【表 3 】 表3:C, N及びOが溶接部の加工性に与える影響

* 属介在物は観察されなかった。また、密着曲げ試験後も、 溶接部に割れが発生せず、良好な加工性を示すことが判 った。他方、関係式(1)を満足しない鋼板では、粒径 が約4μmと大きな介在物が多量に分散した溶接部が形 成された。この溶接部には、曲げ試験後に割れが発生し た。

[0 0.1 8]

	区 分			本 発	明例	比較例
1	試験書号			9	10	11
		С	ppm	80	110	90
		N	ppm	100	105	120
母相	才部	0	ppm	120	101	100
		C + N	ppm	180	210	210
		C+3N+0	ppm	500	516	550
			ррш	190	210	280
潴			ррш	230	190	420
接			μm	<1	< 1	4
#5	介在物の分布密度		(柱)	< 1	<1	1000
	曲句	『試験後の割れ	_	なし	なし	あり

介在物の分布密度は、×10°個/mm°で表す。

[0019]

【発明の効果】以上に説明したように、本発明のフェライト系ステンレス鋼は、C含有量、N含有量及びO含有量の上限をそれぞれ規制すると共に、相互の間にバランスをとることにより、レーザ溶接部に含まれるN及びOが靭性低下に与える影響を抑制している。その結果、高度の加工を施しても加工割れを発生することがない優れた溶接部靭性をもつフェライト系ステンレス鋼となり、広範な分野で建材、構造材、部品等として使用される。*

* 【図面の簡単な説明】

【図1】 溶接部の割れ発生状況をC+N量で整理したグラフ

【図2】 溶接部の割れ発生状況をC+3N+O量で整理したグラフ

【図3】 溶接部の酸素濃度及び窒素濃度が割れ発生に 与える影響

【図4】 介在物の径と曲げ角度との関係

【図5】 介在物の密度と曲げ角度との関係

