

Поиск оптимального алгоритма сжатия сигнала на системах с общей памятью

Выполнили: Данилова А.В., Теплякова М.А., Пауков Н.В.

Научный руководитель: Киселев Е.А.

Москва 23 сентября 2019

Цели и задачи

<u>Цель</u> – создать алгоритм автоматического отыскания оптимального способа сжатия для определенного типа сигналов.

Задачи:

- - выбрать критерий для определения оптимальности конкретных способов сжатия;
- - создать эффективный алгоритм для поиска оптимальных методов сжатия.

Методика

$$\sigma = \left\| F - \tilde{F} \right\| = \sqrt{\frac{\sum_{k=0}^{n} (f_k - \tilde{f}_k)^2}{n+1}}$$

Оценка степени соответствия исходного F и \widetilde{F} восстановленного сигнала по среднеквадратичной норме σ .

Методика

$$\hat{f}_{m} = \frac{1}{\sqrt{2n+1}} \left(f_{0} + 2 \sum_{k=1}^{n} f_{k} \cos \left(\frac{2\pi km}{2n+1} \right) \right), m = 0, 1, ...n$$

$$f_k = \frac{1}{\sqrt{2n+1}} \left(\hat{f}_0 + 2 \sum_{m=1}^n \hat{f}_m \cos\left(\frac{2\pi km}{2n+1}\right) \right), k = 0, 1, ..., n$$

Методика

Матрица, соответствующая дискретному косинусному преобразованию Фурье.

$$S = \frac{1}{\sqrt{2n+1}} \begin{pmatrix} 1 & 2 & 2 & \cdots & 2 \\ 1 & 2\cos\left(\frac{2\pi}{2n+1}\right) & 2\cos\left(\frac{4\pi}{2n+1}\right) & \cdots & 2\cos\left(\frac{2\pi n}{2n+1}\right) \\ 1 & 2\cos\left(\frac{4\pi}{2n+1}\right) & 2\cos\left(\frac{8\pi}{2n+1}\right) & \cdots & 2\cos\left(\frac{4\pi n}{2n+1}\right) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2\cos\left(\frac{2\pi n}{2n+1}\right) & 2\cos\left(\frac{4\pi n}{2n+1}\right) & \cdots & 2\cos\left(\frac{2\pi n^2}{2n+1}\right) \end{pmatrix}$$

Выбор тестовых сигналов и уровня сжатия

Рис. 1. Кардиоцикл ЭКГ

Алгоритм поиска оптимального преобразования

Генерация матриц по і-ой строке Сжатие сигналов сгенерированными матрицами $i = (i+1) \mod (n+1)$ Выбор наиболее эффективной матрицы из сгенерированных Эффективнее Да матрицы на предыдущем шаге? Нет Да Число итераций без повышения эффективности < n + 1?Нет Окончание

Рис. 2. Блок-схема алгоритма

Анализ полученного результата

Рис. 3. График ????

Рис. 4. График ???? для обучающей выборки

Анализ полученного результата

Рис. 5. График ???? для контрольной выборки

ДΠФ

Заключение

Достоинства предложенного подхода:

- универсальность программа в автоматическом режиме должна осуществлять поиск наиболее эффективной матрицы преобразования;
- алгоритм достаточно прост в реализации.

Спасибо за внимание