Homework 1 Solutions

1

Claim: Let G be a finite Abelian group with identity e and a_1, a_2, \dots, a_n in G, and let $x = a_1 a_2 \cdots a_n$. Then $x^2 = e$.

Proof. Let some a_i in G be given. Since G is finite, there is some k_i in \mathbb{Z}^+ such that $a_i^{k_i} = e$. Consider the values of k_i .

Case 1: $k_i = 1$. Then a_i is the identity.

Case 2: $k_i = 2$. Since G is Abelian, we have

$$x^{2} = (a_{1}a_{2} \cdots a_{i} \cdots a_{n})^{2}$$
$$= a_{i}^{2}(a_{1}a_{2} \cdots a_{n})^{2}$$
$$= e(a_{1}a_{2} \cdots a_{n})^{2},$$

assuming without loss of generality that 2 < i < n. The remaining factors of x^2 are considered in case 3.

Case 3: $k_i > 2$. Then there is some $a_i^{-1} \neq a_i$ in G such that $a_i^{-1} = a_i^{k-1}$. Since inverses are unique, a_i and a_i^{-1} are unique inverses of one another. G is Abelian, so every a_i and a_i^{-1} in x produce the identity.

$\mathbf{2}$

Claim: Let G be a group such that for every a, b, c in G where ab = ca then b = c. Then G is Abelian.

Proof. Let a, b in G be given, and consider the product aba^{-1} . By the closure property, there is some c in G such that $aba^{-1} = c$. Multiplying both terms of this equation by a on the right side yields

$$aba^{-1}a = ca$$

$$\rightarrow abe = ca$$

$$\rightarrow ab = ca,$$

so b = c, and ab = ba.

3

Claim: Let G be a group where every nonidentity element a in G has order 2. Then G is Abelian.

Proof. Let elements a,b of G be given. Then for the product ab, we have

$$ab(ab)^{-1} = ab(b^{-1}a^{-1})$$

= e .

Since $a^2 = e$ and $b^2 = e$, we have $a^{-1} = a$ and $b^{-1} = b$ by uniqueness of inverses, so

$$ab(b^{-1}a^{-1}) = e$$

$$\rightarrow ab(ba) = e$$

$$\rightarrow ab(ba) = (ab)^{2}.$$

By the cancellation property, the equation ab(ba) = ab(ab) implies ba = ab.