LSML #3

Онлайн-обучение и линейные модели

Онлайн-обучение

Онлайн-обучение – данные поступают последовательно, улучшаем модель после каждого нового примера

Когда используется:

- Вся выборка не помещается в память
- Нужно быстро адаптироваться к новым зависимостям в данных

На примере линейной регрессии

• Обучение на всей выборке:

$$w^* = (X^T X)^{-1} X^T Y$$

• Можно обновлять веса рекурсивно:

$$egin{aligned} w_0 &= 0 \in \mathbb{R}^d & \Gamma_i &= \Gamma_{i-1} - rac{\Gamma_{i-1} x_i x_i^T \Gamma_{i-1}}{1 + x_i^T \Gamma_{i-1} x_i} \ \Gamma_0 &= I \in \mathbb{R}^{d imes d} & w_i &= w_{i-1} - \Gamma_i x_i (x_i^T w_{i-1} - y_i) \end{aligned}$$

• Стохастический градиентный спуск (SGD):

Похожи

$$w_i = w_{i-1} - \gamma_i x_i (x_i^T w_{i-1} - y_i)$$

Vowpal Wabbit (VW)

- Открытая реализация алгоритмов онлайн-обучения
- Не только линейные модели (парные взаимодействия, нейросети)
- Много функций потерь
- Обычная строка текста это валидное описание объекта. Применяет хэширование признаков.
 - 1 | The dog ate my homework
- Эффективно масштабируется на 1000 машин при помощи AllReduce.
- Может работать в режиме с обратной связью (Contextual Bandit)
- Может работать в режиме активного обучения

•

Хэширование признаков

- Требуется one-hot кодирование признаков
 - Категориальные признаки
 - Слова текста в модели мешка слов
- Храним "word" → index
 - Словарь должен быть общим для всех машин
 - Может не поместиться в RAM
- Считаем "word" → hash("word")
 - Большое число корзинок хэш-функции ($^22^{24}$), качество растет по log(hash bits)
 - Значительно быстрее, не занимает памяти и легко распараллеливается

Пример хэш-функции

• Полиномиальная:

```
hash(s) = s[0] + s[1]p^1 + \dots + s[n]p^n s — строчка p — фиксированное простое число s[i] — код символа
```

Пример векторизации текстов

• Без хэширования:

good movie		
not a good movie		
did not like		

good	movie	not	а	did	like
1	1	0	0	0	0
1	1	1	1	0	0
0	0	1	0	1	1

• С хэшированием:

good movie	
not a good movie	
did not like	

0	1	2	3	4
1	1	0	0	0
1	1	1	1	0
0	0	1	1	1

hash
$$(good) = 0$$

hash $(movie) = 1$
hash $(not) = 2$
hash $(a) = 3$
hash $(did) = 3$
hash $(like) = 4$

коллизия

Хэширование в детекции спама

- 0.4 млн пользователей, 3.2 млн писем, 40 млн слов
- 16 трлн пар (пользователь, слово) поможет только хэширование

Хэширование в детекции спама

- Хэшированные 16 трлн признаков дают существенный прирост качества
- Хэширование перестает влиять на качество не персональной модели

Хэширование в детекции спама

- Хорошо работает даже на пользователях, которых не было в обучении!
- Гипотеза: все «локальные» зависимости были учтены новыми признаками, «глобальные» зависимости стали более универсальными

Количество писем пользователя в обучении

Как можно распараллелить работу VW

Делим объекты

Делим признаки

Делим признаки на многоядерной машине

• Нужно сделать шаг:

$$w_i = w_{i-1} - \gamma_i x_i (x_i^T w_{i-1} - y_i)$$

- Результат аналогичен однопоточному варианту
- На 4 ядрах дает ускорение в 3 раза, дальше слабо масштабируется

Делим признаки на много машин

• Нужно сделать шаг:

$$w_i = w_{i-1} - \gamma_i x_i (x_i^T w_{i-1} - y_i)$$

- На каждой машине учится модель, которая использует только свою часть признаков.
- Предсказания пересылаются на мастер машину, которая учит линейную модель, итоговая модель – линейная.
- Отличается от back-propagation, нет пересылки градиентов, модели учатся независимо, по bueno.

Надо делить объекты на много машин!

Делим объекты

Делим признаки

Tree AllReduce в VW

• Каждая машина считает вектор (градиент или веса) по своим объектам

• На каждой машине хочется получить сумму этих векторов от всех машин

Конвейеризация в AllReduce

- Не надо передавать весь вектор целиком и ждать, когда мастер машина посчитает сумму.
- Будем отправлять вектор поэлементно (или пачками) и по ходу получать обновленные значения.

Гибридная схема работы распределенного VW

Онлайн обучение на локальных объектах

- Мар-задачи в Hadoop
- SGD algorithm using adaptive gradient update:

```
Require: Invariance update function s
                  (see Karampatziakis and Langford, 2011)
   w = 0, G = I
   for all (x, y) in training set do
        \mathbf{g} \leftarrow \nabla_{\mathbf{w}} \, \ell(\mathbf{w}^{\top} \mathbf{x}; \, y)
        \mathbf{w} \leftarrow \mathbf{w} - s(\mathbf{w}, \mathbf{x}, y) \mathbf{G}^{-1/2} \mathbf{g}
        G_{jj} \leftarrow G_{jj} + g_j^2 \text{ for all } j = 1, \dots, d
   end for
```

AllReduce для вектора весов

• Пусть у нас m машин, тогда средний вектор весов будем считать так:

$$ar{\mathbf{w}} = \left(\sum_{k=1}^m \mathbf{G}^k\right)^{-1} \left(\sum_{k=1}^m \mathbf{G}^k \mathbf{w}^k\right)^{-1}$$

- G^k диагональные матрицы, диагональ такого же размера как w^k
- Две операции AllReduce. Работает быстрее агрегации при помощи Мар-Reduce:

	Full size	10% sample
MapReduce	1690	1322
AllReduce	670	59

Градиентный спуск

Gradient descent update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t)$$

gradient

$$\mathbf{g}_t = \nabla f(\mathbf{w}_t)$$

Equivalently:

approximate

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2\eta} \|\mathbf{w}_t - \mathbf{w}\|^2$$

optimize approximation:

$$\mathbf{w}_{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2\eta} \|\mathbf{w}_t - \mathbf{w}\|^2 \right)$$

Can we replace quadratic term by a tighter approximation?

Метод Ньютона

Hessian

$$\mathbf{H}_t = \nabla^2 f(\mathbf{w}_t)$$

Better approximation

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2}(\mathbf{w}_t - \mathbf{w})^{\mathsf{T}} \mathbf{H}_t(\mathbf{w}_t - \mathbf{w})$$

Update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{H}_t^{-1} \mathbf{g}_t$$

Problem: Hessian can be too big (matrix of size dxd)

L-BFGS

Instead of the Newton update

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{H}_t^{-1} \mathbf{g}_t$$

Perform a *quasi-Newton* update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \mathbf{K}_t \mathbf{g}_t$$

where: K_t is a low-rank approximation of H_t^{-1} η_t is obtained by line search

- rank m specified by user (default m=15)
- instead of storage d², only storage 2dm required (update of K_t also has running time O(dm) per iteration)

L-BFGS B VW

```
--bfgs
turn on LBFGS optimization
```

--I2 0.0 L2 regularization coefficient

--mem 15 rank of the inverse Hessian approximation

--termination 0.001
termination threshold for the relative loss decrease

VW выводит ошибку модели

• Стандартный путь: обучение на train, качество на test

- При одном проходе по данным достаточно progressive validation
 - Для каждого нового объекта считается ошибка до обновления параметров
 - Выводится средняя ошибка по таким объектам
 - Доказано, что приближает ошибку на тесте
- При втором проходе по данным не будет иметь смысла
 - VW сам откладывает 10% данных в holdout, если указали больше одного прохода по данным (эпохи)
 - Можно отключить при помощи --holdout_off

Задача предсказания кликов по рекламе

- 2.1Т разреженных признаков
- 17В примеров
- **16М** параметров (24 hash bits)
- **1К** машин
- Оптимальный линейный классификатор за 70 минут

	1%	10%	100%
auROC	0.8178	0.8301	0.8344
auPRC	0.4505	0.4753	0.4856
NLL	0.2654	0.2582	0.2554

Сэмплирование ухудшает качество – нужно учиться на всех данных!

Задача предсказания кликов по рекламе

Ссылки

- A Reliable Effective Terascale Linear Learning System https://arxiv.org/pdf/1110.4198.pdf
- http://cilvr.cs.nyu.edu/diglib/lsml/lecture01-online-linear.pdf
- https://github.com/JohnLangford/vowpal_wabbit/wiki/Tutorial
- http://www.zinkov.com/posts/2013-08-13-vowpal-tutorial/
- http://mlwave.com/predicting-click-through-rates-with-online-machinelearning/
- http://aria42.com/blog/2014/12/understanding-lbfgs