§ 21.

Systeme von Differentialgleichungen 1. Ordnung

In diesem Paragraphen sei $D \subseteq \mathbb{R}^{n+1}$ und $f = (f_1, ..., f_n) : D \to \mathbb{R}^n$. Für Punkte im \mathbb{R}^{n+1} schreiben wir (x, y), wobei $x \in \mathbb{R}$ und $y = (y_1, ..., y_n) \in \mathbb{R}^n$.

Definition

Ein System von Differentialgleichungen 1. Ordnung hat die Form:

$$\begin{cases} y'_{1} = f_{1}(x, y_{1}, \dots, y_{n}) \\ y'_{2} = f_{2}(x, y_{1}, \dots, y_{n}) \\ \vdots \\ y'_{n} = f_{n}(x, y_{1}, \dots, y_{n}) \end{cases}$$
 oder kurz: $y' = f(x, y)$ (i)

Wir betrachten auch noch das AwP

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
 (wobei $(x_0, y_0) \in D$) (ii)

Satz 21.1 (Integralgleichung zur Lösbarkeit eines Anfangswertproblems)

Sei $I\subseteq\mathbb{R}$ ein Intervall, $D:=I\times\mathbb{R}^n, x_o\in I, y_0\in\mathbb{R}^n$ und $f:D\to\mathbb{R}^n$ sei stetig. Für $y\in C(I,\mathbb{R}^n)$ gilt:

$$y$$
 ist eine Lösung des AwP (ii) $\iff \forall x \in I : y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$

In diesem Fall ist $y \in C^1(I, \mathbb{R}^n)$.

Beweis

 \Longrightarrow "Es gilt: $y'(x) = f(x, y(x)) \forall x \in I$; da y und f stetig sind, folgt: $y' \in C(I, \mathbb{R})$. Weiter:

$$\int_{x_0}^x f(t, y(t)) dt = \int_{x_0}^x y'(t) dt = y(x) - y(x_0) = y(x) - y_0 \quad \forall x \in I.$$

Bringt man y_0 auf die linke Seite, ergibt sich die Behauptung.

", \Leftarrow " Es gelte für alle $x \in I$:

$$y(x) = y_0 + \int_{x_0}^{x} f(t, y(t)) dt$$

Aus dem zweiten Hauptsatz der Differential- und Integral
rechnung folgt: y ist auf I differenzierbar und

 $y'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{x_0}^x f(t, y(t)) \mathrm{d}t = f(x, y(x)) \quad \forall x \in I.$

Also erfüllt y die Differentialgleichung. Klar: $y(x_0) = y_0$. Also löst y das AwP.

Definition

Sei $g: D \to \mathbb{R}^n$ eine Funktion.

(1) g genügt auf D einer Lipschitz-Bedingung (LB) bezüglich y, genau dann wenn gilt:

$$\exists L \ge 0 : \forall (x, y), (x, \bar{y}) \in D : ||g(x, y) - g(x, \bar{y})|| \le L||y - \bar{y}||$$

(2) g genügt auf D einer **lokalen Lipschitz-Bedingung bezüglich** y, genau dann wenn für alle $a \in D$ eine Umgebung U von a existiert, sodass $g_{|_{D \cap U}}$ auf $D \cap U$ einer LB bezüglich y genügt.

Satz 21.2 (Satz über die α -Norm)

Sei $I = [a, b] \subseteq \mathbb{R}, x_o \in I$ und für $y \in C(I, \mathbb{R}^n)$ sei $||y||_{\infty} := \max\{||y(x)|| : x \in I\}$ wie in §17 (also ist $(C(I, \mathbb{R}^n), ||\cdot||_{\infty})$ ein Banachraum).

Sei $\alpha > 0$ mit $\varphi_{\alpha}(x) := e^{-\alpha|x-x_0|}$ $(x \in I)$.

Für $y \in C(I, \mathbb{R}^n)$ sei $||y||_{\alpha} := \max\{\varphi_{\alpha}(x) \cdot ||y(x)|| : x \in I\}.$

Dann:

- (1) $\|\cdot\|_{\alpha}$ ist eine Norm auf $C(I,\mathbb{R}^n)$.
- (2) Seien $c_1 := \min\{\varphi_\alpha(x) : x \in I\}, c_2 := \max\{\varphi_\alpha(x) : x \in I\}.$ Es gilt:

$$|c_1||y||_{\infty} < ||y||_{\alpha} < |c_2||y||_{\infty} \quad \forall y \in C(I, \mathbb{R}^n)$$

- (3) Sei (g_k) eine Folge in $C(I, \mathbb{R}^n)$ und $g \in C(I, \mathbb{R}^n)$.
 - (i) Es gilt:

$$||g_k - g||_{\alpha} \stackrel{k \to \infty}{\longrightarrow} 0 \iff ||g_k - g||_{\infty} \stackrel{k \to \infty}{\longrightarrow} 0$$

 $\iff (g_k)$ konvergiert auf I gleichmäßig gegen g

- (ii) (g_k) ist eine Cauchy-Folge in $(C(I, \mathbb{R}^n), \|\cdot\|_{\alpha})$, genau dann wenn (g_k) eine Cauchy-Folge in $(C(I, \mathbb{R}^n), \|\cdot\|_{\infty})$ ist.
- (iii) $(C(I, \mathbb{R}^n), \|\cdot\|_{\alpha})$ ist ein Banachraum.

Beweis

- (1), (2) Nachrechnen.
- (3) (i) und (ii) folgen aus (2); (iii) folgt aus (i) und (ii).

Bezeichnung: EuE = Existenz und Eindeutigkeit.

Satz 21.3 (EuE-Satz von Picard-Lindelöf (Version I))

Sei $I=[a,b], x_o\in I, y_0\in\mathbb{R}^n, D:=I\times\mathbb{R}^n, f\in C(D,\mathbb{R}^n)$ und f genüge auf D einer LB bezüglich y. Dann ist das AwP

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
 (ii)

auf I eindeutig lösbar.

Ist $g_0 \in C(I, \mathbb{R}^n)$ und (g_k) definiert durch

$$g_{k+1}(x) := y_0 + \int_{x_0}^x f(t, g_k(t)) dt \quad (x \in I, k \ge 0),$$

dann konvergiert (g_k) auf I gleichmäßig gegen die Lösung des AwPs (ii).

Beweis

Da f auf D einer Lipschitz-Bedingung genügt, gilt:

$$\exists L > 0 : ||f(x,y) - f(x,\bar{y})|| \le L||y - \bar{y}|| \quad \forall (x,y), (x,\bar{y}) \in D.$$

Es sei $\alpha:=2L;\ \varphi_{\alpha}$ und $\|\cdot\|_{\alpha}$ seien wie in 21.2, $X:=C(I,\mathbb{R}^n)$. Definiere $F:X\to X$ durch

$$(F(y))(x) := y_0 + \int_{x_0}^x f(t, y(t)) dt$$

Für $y \in X$ gilt dann:

$$F(y) = y \iff y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt \quad \forall x \in I$$

 $\stackrel{\text{21.1}}{\iff} y \text{ löst das AwP (ii)}$

Wir zeigen: $||F(y) - F(z)|| \le \frac{1}{2} ||y - z||_{\alpha} \quad \forall y, z \in X$. Alle Behauptungen folgen dann aus 17.2. Seien $y, z \in X, x \in I$. Dann ist

$$\|(F(y))(x) - (F(z))(x)\| = \left\| \int_{x_0}^x (f(t, y(t)) - f(t, z(t))) \, \mathrm{d}t \right\|$$

$$\stackrel{12.4}{\leq} \left| \int_{x_0}^x \|f(t, y(t)) - f(t, z(t))\| \, \mathrm{d}t \right|$$

$$\leq \left| \int_{x_0}^x L \|y(t) - z(t)\| \, \mathrm{d}t \right|$$

$$= L \left| \int_{x_0}^x \|y(t) - z(t)\| \, \mathrm{d}t \right|$$

$$= L \left| \int_{x_0}^x \|y(t) - z(t)\| \varphi_\alpha(t) \cdot \frac{1}{\varphi_\alpha(t)} \, \mathrm{d}t \right|$$

$$\leq L \left| \int_{x_0}^x \|y - z\|_\alpha \cdot \frac{1}{\varphi_\alpha(t)} \, \mathrm{d}t \right|$$

$$\leq L \|y - z\|_{\alpha} \left| \int_{x_0}^{x} \frac{1}{\varphi_{\alpha}(t)} dt \right|$$

$$= \frac{L}{\alpha} \|y - z\|_{\alpha} \left(\frac{1}{\varphi_{\alpha}(x)} - 1 \right)$$

$$\leq \frac{1}{2} \|y - z\|_{\alpha} \frac{1}{\varphi_{\alpha}(x)}$$

Also gilt:

$$\|(F(y))(x) - (F(z))(x)\| \le \frac{1}{2} \|y - z\|_{\alpha} \frac{1}{\varphi_{\alpha}(x)} \quad \forall x \in I$$
$$\Longrightarrow \varphi_{\alpha}(x) \|(F(y))(x) - (F(z))(x)\| \le \frac{1}{2} \|y - z\|_{\alpha} \quad \forall x \in I$$

Fazit: $||F(y) - F(z)||_{\alpha} \le \frac{1}{2} ||y - z||_{\alpha}$.

Frage: Warum haben wir in obigem Beweis nicht die $\|\cdot\|_{\infty}$ -Norm benutzt?

$$||(F(y))(x) - (F(z))(x)|| \stackrel{\text{wie oben}}{\leq} L \left| \int_{x_0}^x ||y(t) - z(t)|| dt \right|$$

$$\leq L \left| \int_{x_0}^x ||y - z||_{\infty} dt \right|$$

$$\leq L ||y - z||_{\infty} \left| \int_{x_0}^x 1 dt \right|$$

$$= L ||y - z||_{\infty} |x - x_0|$$

$$\leq L(b - a) ||y - z||_{\infty} \quad \forall x \in I$$

Dann: $||F(y) - F(z)||_{\infty} \le L(b-a)||y-z||_{\infty}$ I.A. wird L(b-a) nicht kleiner 1 sein!

Beispiel (zu 21.3)

Zeige, dass das AwP

$$\begin{cases} y' = 2x(1+y) \\ y(0) = 0 \end{cases}$$

auf \mathbb{R} genau eine Lösung hat.

Sei a > 0 und I := [-a, a]; f(x, y) = 2x(1 + y). Dann gilt $\forall x \in I, \forall y, \bar{y} \in \mathbb{R}$:

$$|f(x,y) - f(x,\bar{y})| = |2xy - 2x\bar{y}|$$

$$= 2|x||y - \bar{y}|$$

$$\leq 2a|y - \bar{y}|.$$

Aus 21.3 folgt dann: das Anfangswertproblem hat auf I genau eine Lösung $y: [-a, a] \to \mathbb{R}$. Setze nun $g_0(x) := 0$ und (g_k) sei definiert wie in 21.3. Induktiv sieht man (Übung!):

$$g_k(x) = x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \dots + \frac{x^{2k}}{k!}$$

Aus 21.3 folgt: (g_k) konvergiert auf I gleichmäßig gegen y.

Aus Analysis I folgt: (g_k) konvergiert auf I gleichmäßig gegen $e^{x^2} - 1$.

Also: Lösung des AwPs auf [-a, a]: $y(x) = e^{x^2} - 1$. Es war a > 0 beliebig, also ist $y(x) = e^{x^2} - 1$ die Lösung des AwPs auf \mathbb{R} .

Ohne Beweis:

Satz 21.4 (EuE-Satz von Picard-Lindelöf (Version II))

Sei $I = [a, b] \subseteq \mathbb{R}, x_0 \in I, y_0 \in \mathbb{R}^n, s > 0$, es sei

$$D := \{(x, y) \in \mathbb{R}^{n+1} : x \in I, ||y - y_0|| \le s\}$$

und $f \in C(D, \mathbb{R}^n)$. Weiter sei

$$M := \max\{\|f(x,y)\| : (x,y) \in D\} > 0$$

und f genüge auf D einer Lipschitz-Bedingung bezüglich y. Außerdem sei

$$J:=I\cap [x_0-\frac{s}{M},x_0+\frac{s}{M}]$$

Dann hat das AwP

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

auf J genau eine Lösung.

Ohne Beweis:

Satz 21.5 (EuE-Satz von Picard-Lindelöf (Version III))

Es sei $D \subseteq \mathbb{R}^{n+1}$ offen, $(x_0, y_0) \in D$, $f \in C(D, \mathbb{R}^n)$ und f genüge auf D einer lokalen LB bezüglich y.

Dann hat das AwP

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

genau eine Lösung.

(Nochmals, das heißt: Das AwP (ii) hat eine Lösung $y: J \to \mathbb{R}^n$ ($J \subseteq \mathbb{R}$ Intervall) und für je zwei Lösungen $\hat{y}: \hat{J} \to \mathbb{R}, \tilde{y}: \tilde{J} \to \mathbb{R}$ von (ii) gilt: $\hat{y} = \tilde{y}$ auf $\hat{J} \cap \tilde{J}$ (\hat{J}, \tilde{J} Intervalle in \mathbb{R}))

Definition

Sei $y: J \to \mathbb{R}^n$ ($J \subseteq \mathbb{R}$ ein Intervall) eine Lösung des AwPs (ii).

y heißt **nicht fortsetzbar**, genau dann wenn aus $\hat{y}: \hat{J} \to \mathbb{R}^n(\hat{J} \text{ ein Intervall in } \mathbb{R})$ ist Lösung von (ii) stets folgt, dass $\hat{J} \subseteq J$ und auf \hat{J} $\hat{y} = y$ ist.

Satz 21.6 (Eindeutigkeit einer nicht fortsetzbaren Lösung)

Es seien $D, (x_0, y_0)$ und f wie in 21.5. Dann besitzt das AwP (ii) eine eindeutig bestimmte, nicht fortsetzbare Lösung.

Beweis

Es sei

$$\mathfrak{M}:=\{(y,I_y):I_y\subseteq\mathbb{R}\text{ Intervall, }x_0\in I_y,y:I_y\to\mathbb{R}^n\text{ ist L\"osung von (ii)}\}$$

Aus 21.5 folgt, dass $\mathfrak{M} \neq \emptyset$ ist und für $(y_1, I_{y_1}), (y_2, I_{y_2}) \in \mathfrak{M}$ gilt: $y_1 = y_2$ auf $I_{y_1} \cap I_{y_2}$.

$$I := \bigcup_{(y,I_y) \in \mathfrak{M}} I_y$$

ist ein Intervall. Definiere $y:I\to\mathbb{R}^n$ wie folgt: zu $x\in I$ existiert ein $(y_1,I_{y_1})\in\mathfrak{M}$, sodass für $x\in I_{y_1}$ gilt: $y(x):=y_1(x)$.

Übung: $y:I\to\mathbb{R}^n$ leistet das Gewünschte.