Projet de Cryptographie : AES, DES RSA

Mohamed Taha Aboumehdi Hassani, Wadie Kadiri Décembre 2024

Résumé

Ce rapport présente un projet de cryptographie implémentant trois algorithmes majeurs : AES (Advanced Encryption Standard), DES (Data Encryption Standard), et RSA (Rivest-Shamir-Adleman). L'objectif est de permettre une démonstration pratique et une compréhension approfondie de ces algorithmes de cryptographie avec des exemples concrets.

Table des matières

1	Introduction	2
2	Présentation du Projet 2.1 Objectifs	2 2 2
3	Structure des Fichiers	3
4	Instructions 4.1 Compilation	4 4 4
5	Exemple de Résultat 5.1 AES 5.2 DES 5.3 RSA	5 5 5
6	Prochaines Étapes	6
7	Conclusion	6

1 Introduction

La cryptographie est une composante essentielle de la sécurité de l'information. Le présent projet vise à implémenter trois algorithmes cryptographiques classiques : AES, DES, et RSA. Ces algorithmes sont étudiés pour permettre une compréhension pratique de leurs principes fondamentaux et de leur mise en œuvre.

2 Présentation du Projet

2.1 Objectifs

L'objectif principal de ce projet est de démontrer l'utilisation des algorithmes de cryptographie symétriques et asymétriques suivants :

- AES (Advanced Encryption Standard): Utilisé pour le chiffrement avec une clé symétrique (128, 192 ou 256 bits).
- **DES (Data Encryption Standard)**: Un algorithme basé sur une structure de Feistel avec 16 tours de chiffrement.
- RSA (Rivest-Shamir-Adleman): Un algorithme asymétrique utilisant une clé publique/privée pour sécuriser les échanges.

2.2 Algorithmes Implémentés

- **AES**: Cet algorithme est implémenté avec les fonctionnalités suivantes :
 - Génération de sous-clés
 - Chiffrement et déchiffrement de données
- **DES**: Fonctionne avec la structure de Feistel sur 16 tours, et inclut :
 - Le chiffrement par blocs
 - Le déchiffrement par blocs
- RSA: Un algorithme asymétrique avec les fonctionnalités suivantes:
 - Génération de clés publiques et privées
 - Chiffrement de messages
 - Déchiffrement de messages

3 Structure des Fichiers

Le projet est organisé comme suit :

- **aes.h** / **aes.c** : Implémentation complète de l'algorithme AES avec ses fonctionnalités.
- **des.h** / **des.c** : Implémentation de l'algorithme DES avec chiffrement et déchiffrement par blocs.
- **rsa.h / rsa.c :** Implémentation de l'algorithme RSA avec chiffrement/déchiffrement et génération de clés.
- **main.c** : Exemple pratique démontrant le fonctionnement des algorithmes AES, DES et RSA.
- Makefile: Permet la compilation rapide du projet.

4 Instructions

4.1 Compilation

Assurez-vous que tous les fichiers du projet sont dans le même répertoire. Utilisez la commande suivante pour compiler le projet :

make

4.2 Exécution

Une fois la compilation terminée, exécutez le programme avec la commande suivante :

./rsa_des_aes

4.3 Nettoyage

Pour supprimer les fichiers intermédiaires, utilisez la commande suivante :

make clean

5 Exemple de Résultat

5.1 AES

Texte clair : 101010...Texte chiffré : 111000...

5.2 **DES**

 $\begin{array}{lll} & - & \text{Texte clair} : 01010101... \\ & - & \text{Texte chiffr\'e} : 11001100... \end{array}$

5.3 RSA

— Clé publique : (e = 17, n = 3233) — Clé privée : (d = 413, n = 3233)

Message original : 65
Message chiffré : 2790
Message déchiffré : 65

6 Prochaines Étapes

- Ajouter un support pour des tailles de clés RSA plus grandes.
- Implémenter le mode CBC pour l'algorithme DES.
- Développer un ensemble de tests automatisés pour valider l'ensemble des fonctions implémentées.

7 Conclusion

Ce projet a permis la mise en pratique de concepts cryptographiques fondamentaux, en explorant l'implémentation de trois algorithmes majeurs : AES, DES et RSA. Ces démonstrations offrent une meilleure compréhension de la cryptographie moderne.