

Chapter

5

RNN

- 1. RNN(Recurrent Neural Network)
- 2. LSTM(Long-Short Term Memory)
- 3. LSTM 모델을 사용한 날씨 예측(Keras)

강의에 앞서서..

❖ 본 문서는 아래의 자료들을 활용하여 만들어 졌음을 알립니다

- * 모두를 위한 딥러닝 강좌
 - 네이버 Search & Clova AI 부분 리더 김성훈 교수님
 - https://www.youtube.com/playlist?list=PLIMkM4tgfjnLSOjrEJN31gZATbcj_MpUm
 - https://www.edwith.org/boostcourse-dl-tensorflow/lecture/43739/
- ❖ 스탠포드 대학 CNN 강좌
 - Fei-Fei Li & Andrej Karpathy & Justin Johnson
 - http://cs231n.stanford.edu/slides/2020/

CS231n: Convolutional Neural Networks for Visual Recognition

- This course, Prof. Fei-Fei Li & Justin Johnson & Serena Yeung
- Focusing on applications of deep learning to computer vision

강의에 앞서서..

Hands on Machine Learning

- https://github.com/ExcelsiorCJH/Hands-On-ML/blob/master/Chap14 Recurrent_Neural_Networks/Chap14_1-Recurrent_Neural_Networks.md
- https://excelsior-cjh.tistory.com/185

Understanding LSTM Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

❖ 순환 신경망(RNN, Recurrent Neural Network)

- Sequencial data를 위한 모델
- 음성인식, 자동변역, 주가예측
- Sequencial data
 - 데이터 집합 안에 순서를 가지는 데이터
 - 예 , "Hello" : H,e,l,l,o의 순서로 구성
 - 종류:

$$x = (x0, x1,...xt, ...), t : time$$

- 시계열(time serie) : 시간을 기준으로 생성된 연속 데이터 » 주가변동, 온도변화, 질병발생현황, 센서신호데이터
- 자연어(NL, Natural Language)
- 음성신호
- DNA염기서열

❖ 순환 신경망(RNN, Recurrent Neural Network`

- 순환 뉴런(Recurrent Neurons)으로 Layer 구성
- 출력이 다시 입력으로 순환되는 형태
- 이전 상태가 현재상태에 영향을 주는 체인구조
- 타임스텝(time step)마다 순환 뉴런이 펼쳐짐

❖ 순환뉴런의 상태값 계산

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

'hello' 라는 단어의 순환뉴런 상태 값 계산 과정

$$y_t = W_{hy}h_t$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

❖ RNN 계층 계산 그래프

- Forward propagation
 - 이전 상태 값 (h_{prev}) 에 가중치 (W_h) 를 곱하고 입력(x)에 가중치 $((W_x))$ 를 곱한 값을 결합하고 바이어스를 결합하여 탄젠트 활성화 함수로 다음 상태값 (h_{next}) 계산
- Back propagation
 - 다음 상태값 (h_{next})과 정답의 오차를 계산하여 역전파하면서 가중치와 상태값을 수 정

one to many

e.g. **Image Captioning** image -> sequence of words

e.g. **Sentiment Classification** sequence of words -> sentiment

many to one

many to many

e.g. **Machine Translation** seq of words -> seq of words

many to many

Music

Sean Paul Feat. Wayne Marshall -... by MZZMPOP

Entertainment

- 2 המרוץ למיליון עונה שושה ושוש... by reshettv

Sports

Real Oviedo 2 Coruxo FC 0 (Temp ... by Jmldlr

Tudo que está ruim pode piorar! ... by w1tvSports

e.g. Video classification on frame level

Multilayer RNNs

$$h_t^l = \tanh W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$h \in \mathbb{R}^n. \qquad W^l \ [n \times 2n]$$

depth

Transfer Learning

CNN+RNN

use weights pretrained from ImageNet

LSTM

- LSTM(Long-Short Term Memory)
 - RNN에서의 기울기 소실(Gradient Vanishing) 문제를 해결하고자 메모리를 도입 한 모델

Layer

Concatenate

LSTM

- ❖ 두 개의 상태 벡터를 이용하여 장기, 단기 상태를 저장
 - h : 단기 상태(short-term state),
 - C : 장기 상태(long-term state)

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

$$h_t = o_t * \tanh(C_t)$$

https://excelsior-cjh.tistory.com/185

Keras를 사용한 RNN

keras.layers.SimpleRNN

이전 타임 스텝의 출력이 다음 타임 스텝으로 공급되는 완전 연결된 RNN.

keras.layers.LSTM

- 1997 년 Hochreiter & Schmidhuber 에서 처음 제안.
- RNN의 장기상태 소멸에 대한 문제점 보완 모델

Keras를 사용한 RNN

❖ LSTM 모델을 사용한 날씨 예측

- 날씨 시계열 데이터 사용
- 단일변수(온도)로 온도 예측
 - Lab14_1_time_series_univariate.ipynb)
- 다중변수(온도, 대기압 및 공기 밀도)로 온도 예측
 - Lab14_2_time_series_multivariate.ipynb
- https://www.tensorflow.org/tutorials/structured_data/time_series?hl=ko