Teoría de colas

Modelado de sistemas de colas

Modelado de Sistemas

Sistemas Discretos

Sistemas Continuos

Ejemplos de utilización

- Una línea de cajas de un supermercado.
- Un aeropuerto.
- Una planta fabril.
- Pacientes que llegan a la guardia médica de un hospital para ser atendidos.

Sistemas de colas

Se deben identificar:

Objetos

Eventos

Colas

Tipos de Objetos

Cliente

Servidor

Ambos pueden ser temporarios o permanentes.

Tipos de Eventos

- Llegada
- Fin de Atención
- Eventos temporizados:
 - Fin de la simulación
 - Interrupción de la atención
 - Interrupción de las llegadas
 - Tareas programadas. (Mantenimiento, Descanso)

Características de las Colas

- ¿Tienen longitud máxima?
- FIFO/LIFO
- Impaciencia
- Prioridades

Es necesario establecer:

- Distribuciones estadísticas asociadas a los tiempos entre llegadas, y a los tiempos de atención
- Tipos de clientes, estados, atributos.
- Disciplina del servicio (interrupciones, prioridades).
- Distribución y cantidad de colas.
- Disposición de los servidores, estados, atributos.

Disposición de los Servidores

<u>Serie</u>

<u>Paralelo</u>

Disposición de los Servidores

Combinados

un servidor, un solo tipo de clientes y una cola

Cola de clientes en espera

Cliente siendo atendido

Servidor (ocupado)

un servidor, un solo tipo de clientes y una cola

Cola de clientes en espera

un servidor, un solo tipo de clientes y una cola

un servidor, un solo tipo de clientes y una cola

un servidor, un solo tipo de clientes y una cola

Cola de clientes en espera

El Servidor está ocupado

Cliente siendo atendido

Cliente recién llegado

Cliente recién llegado

Llegada al sistema:

Cambios originados por el evento

Fin de servicio:

Cambios originados por el evento

Medidas de Desempeño

Tiempo promedio en cola (y en sistema) =
$$\frac{\displaystyle\sum_{i=1}^{n}t_{i}}{n}$$

t_i: tiempo de permanencia del cliente i en cola

n: cantidad de clientes pasibles de entrar en cola

Medidas de Desempeño

Cantidad promedio de clientes en cola (y en sistema) =
$$\frac{\sum_{i=1}^{n} t_i}{t_{total}}$$

t_i: tiempo de permanencia del cliente i en cola

t_{total}: tiempo total de la simulación

Medidas de Desempeño

Porcentaje de ocupación del Servidor =
$$\frac{\sum t_{ocup}}{t_{total}} \times 100$$

 t_{ocup} : intervalo de tempo en que el servidor está ocupado

t_{total}: tiempo total de la simulación

Otras Medidas de Desempeño

- Porcentaje de clientes atendido
- Tiempo máximo de permanencia en cola
- Tiempo máximo de permanencia en el sistema
- Tiempo ocioso del servidor
- Probabilidad de que la espera sea mayor a...
- Probabilidad de que no sea atendido.

Ejemplo de aplicación

Una librería con un empleado atiende la demanda de sus clientes.

Objetivos:

- Determinar el tiempo promedio de permanencia de clientes en cola.
- Conocer el porcentaje de ocupación del empleado.

Ejemplo de aplicación

Objetos

Cliente

- Temporario
- Estados:
 - Siendo atendido
 - Esperando en cola

Empleado(servidor)

- Permanente
- Estados:
 - Libre
 - Ocupado

Ejemplo: Una librería con un empleado atiende la demanda de sus clientes.

Eventos

- Llegada de clientes al sistema
- Fin de atención al cliente
- Fin de la simulación (Temporizado)

Variables necesarias de acuerdo a los Objetivos:

- Determinar el tiempo promedio de permanencia de clientes en cola.
 - >Acumulador de tiempos de permanencia en cola
 - ➤ Contador de clientes que llegan al sistema
- Conocer el porcentaje de ocupación del empleado.
 - >Acumulador de tiempos de ocupación del empleado
 - ➤ Tiempo total de la simulación

Llegada al sistema:

Cambios originados por el evento

Fin de servicio:

Cambios originados por el evento

Vector de estado

Vector estado: Una librería con un empleado atiende la demanda de sus clientes

		Llegada cliente					Fin de Atención					Acumuladores		Hora de llegada a la cola			
Evento	Reloj	Nº Rando m	Tiempo entre llegadas	Próxima llegada	Cola de clientes	Estado Servidor	N° Random	Tiempo de Atención	Fin de Atención	Cont. Clientes	Inicio de ocup.	Tiempo de Ocup.	Tpo de Perman. en cola	Cte 2	Cte 3	Cte 5	Cte 6
Inicio	0			1,23	0	Libre				0							

Estadísticas del ejemplo

• Tiempo promedio de permanencia de clientes en cola:

• Tiempo de ocupación del empleado:

$$(24,28 / 30) \times 100 = 80,94 \%$$

Conclusiones

El tiempo medio de espera parece excesivo.

Sería conveniente agregar otro empleado que colabore con la venta, en momentos en que la cola tenga más de un cliente.

Resolución Analítica

Notación de Kendall:

A/B/s/k/t/d

A: distribución de tiempos entre llegadas

B: distribución de tiempos de servicio

s: número de servidores en paralelo (canales)

k: capacidad del sistema

t: tamaño de la fuente de entrada

d: disciplina de la cola

Modelos típicos

- M/M/1
- \bullet M/M/s
- M/M/1/k
- $M/M/1/\infty/\infty/FCFS$

Notación:

$$\lambda \equiv \text{Tasa de llegadas}$$

$$\mu \equiv \,$$
 Tasa de servicio

$$ho = \frac{\lambda}{S\mu} \equiv \text{ Factor de utilización del sistema}$$

Si ρ < 1, entonces el sistema se estabiliza

Notación:

 $L\equiv\,$ valor esperado del nro. de clientes en el sistema

 $L_{\boldsymbol{a}} \equiv \,$ valor esperado del nro. de clientes en cola

 $W \equiv \text{tiempo medio de respuesta (espera en sistema)}$

 $W_{_{\scriptstyle g}}\equiv {}$ tiempo medio de espera en cola

 $p_n \equiv \text{Prob. de que "n" clientes estén en el sistema}$

Relaciones básicas: Modelo general

Fórmula de Little:
$$L=\lambda W$$
 y $L_q=\lambda W_q$

además,
$$W=W_q+rac{1}{\mu}$$

de donde se deduce:
$$L = L_q + \frac{\lambda}{\mu}$$

Estado "n"

$$p_n = ?$$

Ecuaciones de balance de flujo:

$$p_0 \lambda_0 = p_1 \mu_1$$

$$p_0 \lambda_0 + p_2 \mu_2 = p_1 \lambda_1 + p_1 \mu_1$$

$$p_1 \lambda_1 + p_3 \mu_3 = p_2 \lambda_2 + p_2 \mu_2$$

$$\cdots = \cdots$$

$$p_{n-1}\lambda_{n-1} + p_{n+1}\mu_{n+1} = p_n\lambda_n + p_n\mu_n$$

$$\cdots = \cdots$$

Si resolvemos la ecuaciones...

$$p_{1} = \frac{\lambda_{0}}{\mu_{1}} p_{0}$$

$$p_{2} = \frac{\lambda_{1} \lambda_{0}}{\mu_{2} \mu_{1}} p_{0}$$

$$p_{3} = \frac{\lambda_{2} \lambda_{1} \lambda_{0}}{\mu_{3} \mu_{2} \mu_{1}} p_{0}$$

$$\cdots = \cdots$$

$$p_{n} = \frac{\lambda_{n-1} \cdots \lambda_{1} \lambda_{0}}{\mu_{n} \cdots \mu_{2} \mu_{1}} p_{0}$$

Para calcular p_0 , se utiliza:

$$p_0 + p_1 + p_2 + \dots + p_n + \dots = 1$$

Modelo M/M/1

En este caso,
$$\lambda_n = \lambda$$
, $\mu_n = \mu$, $\rho = \frac{\lambda}{\mu} < 1$ para todo n.

Entonces,
$$p_{\scriptscriptstyle n} = \rho^{\scriptscriptstyle n} p_{\scriptscriptstyle 0}, \qquad p_{\scriptscriptstyle 0} = 1 - \rho,$$
 por lo que
$$p_{\scriptscriptstyle n} = \rho^{\scriptscriptstyle n} \left(1 - \rho\right)$$

Por lo tanto,
$$L = \sum_{n=0}^{\infty} np_n = \frac{\rho}{1-\rho}$$

y de la misma forma,
$$L_q = \sum_{n=1}^{\infty} (n-1) p_n = \frac{\rho^2}{1-\rho}$$

Modelo M/M/1

Por la fórmula de Little:

$$W = \frac{L}{\lambda} = \frac{1}{\mu(1-\rho)}$$

$$W_q = W - \frac{1}{\mu} = \frac{\rho}{\mu(1-\rho)}$$

La probabilidad de que haya k o más clientes en el sistema es:

$$P(N \ge k) = 1 - \sum_{n=0}^{k-1} p_k = 1 - \sum_{n=0}^{k-1} \rho^n (1 - \rho) = 1 - \frac{(1 - \rho)(1 - \rho^k)}{(1 - \rho)} = \rho^k$$

Por lo tanto,

$$P(N < k) = 1 - \rho^k$$

Modelo M/M/1

Resumiendo...

$$L = \frac{\rho}{1 - \rho}$$

$$W = \frac{1}{\mu(1-\rho)}$$

$$L_q = \frac{\rho^2}{1 - \rho}$$

$$W_q = \frac{\rho}{\mu(1-\rho)}$$

$$P(N < k) = 1 - \rho^k$$

Modelo M/M/s (múltiples servidores)

La tasa de servicio depende del numero de servidores del sistema, En este caso:

$$\rho = \frac{\lambda}{s\mu} < 1$$

y se puede probar que $p_0 = \frac{1}{\sqrt{1 + \frac{s-1}{s}}} \left(\frac{\lambda}{s} \right)$

$$p_0 = \frac{1}{\sum_{n=0}^{s-1} \frac{\left(\lambda/\mu\right)^n}{n!} + \frac{\left(\lambda/\mu\right)^s}{s!(1-\rho)}}$$

$$y p_n = \frac{\left(\lambda / \mu\right)^n p_0}{n!}, si 0 \le n \le s$$

$$p_n = \frac{\left(\lambda / \mu\right)^n p_0}{s! s^{n-s}}, \quad si \quad n > s$$

Modelo M/M/s (múltiples servidores)

Además:

$$L_q = \frac{(\lambda / \mu)^s p_0 \rho}{s!(1-\rho)^2}$$

$$L = L_q + \frac{\lambda}{\mu}$$

 $W_q = \frac{L_q}{2}$

$$W = W_q + \frac{1}{\mu}$$

Probabilidad de que un nuevo cliente tenga que esperar:

$$p_{w} = \left(\frac{\lambda}{\mu}\right)^{s} \frac{p_{0}}{s!(1-\rho)}$$