PROYECTOS DE DIBUJO TÉCNICO

Cuadernillo Educativo Inclusivo

Arte Inclusivo Educativo

Transformando la educación a través del arte

Introducción al Dibujo Técnico Inclusivo

¿Qué es el Dibujo Técnico?

El dibujo técnico es una forma de expresión gráfica que utiliza instrumentos de precisión para representar objetos, ideas y conceptos de manera exacta y normalizada. Es el lenguaje universal de ingenieros, arquitectos y diseñadores, pero también una herramienta pedagógica poderosa para desarrollar habilidades espaciales, lógicas y creativas en estudiantes de todas las capacidades.

Importancia en la Educación Inclusiva

El dibujo técnico trasciende las barreras del aprendizaje tradicional al ofrecer:

- Representación visual: Facilita la comprensión de conceptos abstractos
- Desarrollo psicomotor: Mejora la coordinación mano-ojo y la precisión
- Pensamiento espacial: Fortalece la capacidad de visualización tridimensional
- Metodología estructurada: Proporciona rutinas predecibles y organizadas

- Desarrollar habilidades de representación técnica adaptadas a diferentes NEE
- Fomentar la creatividad mediante proyectos constructivos y artísticos
- Fortalecer la autoestima a través del logro de objetivos tangibles
- Promover la inclusión educativa en áreas técnicas
- Integrar arte y técnica como herramientas de aprendizaje universal

Beneficios para Estudiantes con NEE

Este cuadernillo ha sido diseñado considerando las necesidades específicas de estudiantes con diferentes características de aprendizaje, proporcionando múltiples vías de acceso al conocimiento técnico y artístico.

Actividad 1: Arte y Perspectiva

Los estudiantes crearán composiciones artísticas que integren rostros humanos con elementos naturales, desarrollando técnicas de sombreado, contraste y composición mientras fortalecen su comprensión de la perspectiva y las proporciones.

Materiales Necesarios

- Papel bond tamaño carta (mínimo 2 hojas por estudiante)
- Lápices de grafito 2B y 4B
- Difuminos o bastoncillos de algodón
- Borrador amasado y borrador blanco
- Regla de 30 cm
- Plantillas de siluetas (opcional)
- Imágenes de referencia de rostros y elementos naturales

Desarrollo Paso a Paso

- Observación y análisis: Los estudiantes observan imágenes de referencia, identificando las proporciones básicas del rostro humano y elementos naturales como árboles, montañas o animales.
- Boceto inicial: Usando lápiz 2B, crean un boceto ligero integrando siluetas humanas con formas naturales, como rostros que emergen de troncos de árboles.
- 3 **Definición de contornos:** Refinan las líneas principales, estableciendo la composición final y las relaciones espaciales

entre elementos.

Técnicas de sombreado: Aplican diferentes valores tonales usando lápiz 4B y técnicas de difuminado para crear profundidad y volumen.

- Detalles y texturas: Agregan texturas específicas para corteza, cabello, hojas, utilizando diferentes técnicas de rayado y punteado.
- 6 Revisión y refinamiento: Evalúan la composición, ajustan contrastes y añaden detalles finales para completar la obra.

Adaptaciones Específicas por NEE

Cognitiva:

- Plantillas prediseñadas para facilitar el inicio del dibujo
- Instrucciones visuales paso a paso con ejemplos gráficos
- Tiempo extendido y pausas regulares

Wisual:

- Papel con mayor contraste y texturas táctiles en bordes
- Instrumentos con marcas en relieve
- Descripción verbal detallada de técnicas

TEA:

- Rutina estructurada con tiempos específicos para cada paso
- Espacio de trabajo organizado y libre de distracciones
- Objetivos claros y medibles para cada etapa

∳ TDAH:

- Actividad dividida en segmentos de 15-20 minutos
- Movimientos físicos integrados entre etapas
- Variedad de materiales para mantener el interés

Actividad 2: Modelado 3D en Cartón

Los estudiantes construirán modelos tridimensionales de vehículos aplicando principios de desarrollo de superficies, geometría espacial y técnicas de construcción, integrando conceptos matemáticos con habilidades manuales.

Lista de Materiales

- Cartón corrugado (mínimo 40×40 cm por estudiante)
- Reglas metálicas de 30 cm
- Cúter de seguridad con hojas de repuesto
- Pegamento en barra y pegamento líquido
- Lápices 2H para marcado
- Plantillas de desarrollo de superficies
- Base de corte (cartón grueso o tabla)
- Compás para trazos curvos

Proceso de Construcción

- Análisis del objeto: Estudian la forma del vehículo, identificando las superficies básicas (caras, aristas, vértices) y su relación espacial.
- **Desarrollo de plantillas:** Crean el patrón bidimensional que, al plegarse, formará la estructura tridimensional del vehículo.
- Transferencia al cartón: Marcan cuidadosamente la plantilla sobre el cartón, considerando la dirección de las ondulaciones para facilitar el plegado.

Corte preciso: Utilizan el cúter de seguridad para cortar siguiendo las líneas marcadas, aplicando técnicas seguras de corte.

- Marcado de pliegues: Señalan las líneas de plegado usando la regla y la punta del cúter sin cortar completamente el cartón.
- **Ensamblaje:** Pliegan y ensamblan las piezas siguiendo una secuencia lógica, aplicando pegamento en las pestañas de unión.
- Detalles finales: Agregan elementos como ventanas, ruedas, puertas, usando técnicas de recorte y superposición de capas.

Medidas de Seguridad

- Supervisión constante durante el uso del cúter
- Base de corte obligatoria para proteger superficies
- Demostración previa de técnicas seguras de corte
- Primeros auxilios básicos disponibles

Adaptaciones por NEE

- Cognitiva: Plantillas pre-cortadas, instrucciones con códigos de colores, asistente par para apoyo.
- Visual: Texturas táctiles en líneas de corte, instrumentos con contraste alto, asistencia verbal detallada.
- TEA: Secuencia estructurada, espacio organizado, tiempo flexible para cada etapa.
- **TDAH:** Tareas cortas, movimiento permitido, compañero de trabajo para mantener enfoque.

Actividad 3: Proyecciones Ortogonales

Los estudiantes aprenderán a representar objetos tridimensionales mediante vistas múltiples (planta, alzado, perfil), desarrollando la visión espacial y comprensión de la normalización técnica.

Conceptos Básicos

Proyección Ortogonal: Método de representación que muestra un objeto desde diferentes ángulos perpendiculares, proporcionando información completa sobre sus dimensiones y forma.

- Vista Frontal (Alzado): Vista principal del objeto desde el frente
- Vista Superior (Planta): Vista del objeto desde arriba
- Vista Lateral (Perfil): Vista del objeto desde un lado

Materiales para Proyecciones

- Papel técnico milimetrado A4
- Escuadras de 45° y 60°
- Regla graduada de 30 cm
- Lápices técnicos (2H, H, HB)
- Objetos de referencia (cubos, prismas, cilindros)
- Borrador técnico

Ejercicios Prácticos

- Observación sistemática: Los estudiantes examinan un objeto simple desde los tres ángulos principales, identificando aristas y superficies visibles.
- Distribución de vistas: Aprenden la disposición normalizada de las vistas en el papel técnico siguiendo estándares internacionales.
- Trazado de contornos: Dibujan los contornos principales de cada vista, manteniendo proporcionalidad y alineación entre vistas.

- Líneas auxiliares: Utilizan líneas de construcción para mantener la correspondencia dimensional entre las diferentes vistas.
- **Definición final:** Repasan las líneas definitivas con el grosor apropiado, diferenciando entre líneas vistas y ocultas.

☐ Criterios de Evaluación

- Precisión geométrica (30%): Exactitud en formas y proporciones
- Correspondencia entre vistas (25%): Alineación correcta de elementos
- Calidad de líneas (20%): Limpieza y diferenciación de tipos de línea
- Organización espacial (15%): Distribución apropiada en el papel
- Proceso de trabajo (10%): Metodología y uso de instrumentos

嶐 Recursos Adicionales

- Videos tutoriales: Grabaciones paso a paso de técnicas básicas
- Plantillas de práctica: Ejercicios graduados por nivel de dificultad
- Software de apoyo: Aplicaciones 3D para visualización de objetos
- Biblioteca de objetos: Colección física para práctica adicional

6 Extensiones Curriculares

Conexiones interdisciplinarias: Matemáticas (geometría espacial), Física (volúmenes y superficies), Arte (composición y proporción), Tecnología (diseño asistido por computador).

Proyectos avanzados: Diseño de objetos funcionales, análisis de productos industriales, introducción al dibujo arquitectónico.

Arte Inclusivo Educativo

Transformando la educación técnica a través del arte inclusivo

Para más recursos: arteinclusivoeducativo.com