SRN							
OILIA		 					

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE18EC203

DEC 2019: END SEMESTER ASSESSMENT (ESA) B.Tech III SEMESTER

UE18EC203: CMOS Analog Circuit Design

Time: 3 Hrs

Answer All Questions

Max Marks: 100

1. a)	From the fundamental concepts of channel charge density, derive an expression for drain current (I_D) of NMOS transistor and also obtain the expression for $I_{D,MAX}$ and R_{ON} from the same.	08
b)	Determine the region of operation of M_1 in each of the circuits shown in Fig. (1) . Assume $V_{TH} = 0.4 \text{ V}$ for NMOS and $V_{TH} = -0.4 \text{ V}$ for PMOS $ = \frac{1.5 \text{ V} + \frac{1}{1} \text{ V}}{\frac{1}{1} \text{ V}} = \frac{1.5 \text{ V} + \frac{1}{1} \text{ V}}{\frac{1}{1} \text{ V}} = \frac{1.5 \text{ V}}{\frac{1} \text{ V}} = \frac{1.5 \text{ V}}{\frac{1}$	04
	Fig(1).	
c)	Two current sources realized by identical MOSFETs Fig.(2) match to within 1%, i.e., 0.99 $I_{D2} < I_{D1} < 1.01 I_{D2}$. If $V_{DS1} = 0.5$ V and $V_{DS2} = 1$ V, what is the maximum tolerable value of λ ? Assume μ_n C $_{ox} = 200 \ \mu\text{A/V}^2$, V $_{TH} = 0.4$ V $V_{B} = 0.4 \ V_{B} = 0.4 $	04
d)	An NMOS current source with $I_D=0.5mA$ must operate with drain – source voltage of 0.4V. If the output impedance is 20K ohms , determine the (W/L) ratio and gate voltage of the device. Assume μ_n . $C_{ox}=134\mu A/\ V^2$, $V_{th}=0.7V$	04
		Ī
2. a)	Design CS stage with resistive load to provide an output swing from 1V to 2.5V. Assume (W/L) = $50/0.5$, $R_D = 2K$ ohms, $\lambda = 0$, $V_{DD} = 3V$, μ_n . $C_{ox} = 134\mu A/V^2$, $V_{th} = 0.7V$ 1. Calculate the input voltages that yield desired output swing. 2. Calculate the drain current and the transconductance of the MOS device for both cases.	06
b)	In the circuit shown below Fig.(3), $(W/L)_1 = 10/0.18$ and $I_{D1} = 0.5$ mA.(a) If $\lambda = 0$, determine $(W/L)_2$ such that M_1 operates at the edge of saturation.(b) Now calculate the voltage gain. (c) Explain why this choice of $(W/L)_2$ yields the maximum gain. Assume μ_n . $C_{ox} = 200 \ \mu\text{A/V}^2$, $V_{TH} = 0.4 \ \text{V}$ $V_{in} \sim V_{out}$ Fig.(3)	04

		SRN SRN	
	c)	Show that in the case of CS stage with source degeneration, A_V equation becomes weaker function of g_m , and also drain current is "linearized" function of input voltage.	06
	d)	Derive an expression for voltage gain of a source follower with the aid of a small signal circuit taking body effect into account and λ = 0.	04
3.	a)	Obtain the relationship between I_{out} and I_{ref} in case of basic current mirror circuit .What is the effect of channel length modulation on output current I_{out} ? How can the effect of channel length modulation on output current can be suppressed? Redraw the modified current mirror circuit and explain how the effect of channel length modulation is minimized.	06
	b)	In the circuit shown below Fig.(4), does virtual ground exist at node 'P'? Explain the reason. Further, calculate G _M , R _{out} and small-signal voltage gain A _V of the circuit. Fig.(4) Fig.(4)	06
	c)	1. Determine the value of R _P in the circuit of Fig.(5) such that I ₁ = I _{REF} / 2. $I_{REF} \stackrel{V_{DD}}{\downarrow} I_{L}$ $I_{REF} \stackrel{W}{\downarrow} I_{L}$	08
		Fig.(5) Fig.(6) 2.Determine the value of R $_{\rm P}$ in the circuit of Fig.(6) such that I $_{\rm I}$ = 2I $_{\rm REF}$.	
4.	a)	Why differential paths are important for sensitive and noisy signals? Also explain the effect of differential signal on output voltage swings.	06
	b)	Obtain the expression for common mode to differential mode conversion of an differential amplifier owing to device dimension and threshold voltage mismatch.	0
	c)	Design differential pair with PMOS Loads for a voltage gain of 20 and a power budget of 1 mW with $V_{DD}=1.8$ V. Find g_{mN} , (W/L) ratio of both NMOS and PMOS devices. Assume ,input common-mode level is 1 V, $\mu_n.C_{ox}=2\mu_p.C_{ox}=100$ μ A/V 2 , V $_{TH,n}=0.5$ V, V $_{TH,p}=-0.4$ V, $\lambda_n=0.5\lambda_p=0.1$ V $^{-1}$.	1

	SRN	
a)	For the following circuit Fig.(7), find ω_{in} and ω_{out} using Miller's Theorem. Using these two poles obtain the transfer function of the circuit. Also explain what will be the error and possible concern in estimation of the transfer function with this approach.	
	$c_{GD} \neq R_{D}$ $v_{in} = \sum_{\underline{z}} c_{GS} \neq \sum_{\underline{z}} C_{DB}$ $Fig.(7)$	06
b)	With suitable examples explain the effect of negative feedback on Gain desensitization and Bandwidth modification.	06
c)	Derive an expression for the transfer function of Voltage- Current feedback system and also obtain the expression for R_{out} and R_{in} with negative feedback.	08