

2021

Nội dung bổ sung

- 1. Ma trận hiệp phương sai
- 2. Principal Component Analysis

1. Ma trận hiệp phương sai

☐ Kỳ vọng (expectation)

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

trung bình cộng (*mean*)

☐ Phương sai (variance) và độ lệch chuẩn (standard deviation)

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$
 trung bình khoảng cách đến kỳ vọng

- σ: độ lệch chuẩn
- phương sai càng NHỞ thì các điểm dữ liệu càng gần kỳ vọng
- phương sai càng LỚN thì các điểm dữ liệu càng phân tán

B3. PCA

Bổ sung thêm cho bài giảng

1. Ma trận hiệp phương sai (tt.)

- \square Vector cột $x_1, x_2, ..., x_n \in \mathbb{R}^m$, ma trận $X = (x_1 x_2 ... x_n) \in \mathbb{R}_{m,n}$
 - ma trận trung tâm (center matrix \neq centering matrix) $\hat{X} \in \mathsf{R}_{\mathsf{m,n}}$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\hat{x}_{ij} = (x_{ij} - \overline{x})$$

$$\hat{x}_{ij} = (X_{ij} - \overline{x})$$

$$có thể tính trung bình trên mỗi cột
$$\overline{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij} \longrightarrow \hat{x}_{ij} = (x_{ij} - \overline{x}_{j})$$

$$\hat{X} = (X - \overline{x}) = ((x_{1} - \overline{x}) \quad (x_{2} - \overline{x}) \quad \cdots \quad (x_{n} - \overline{x}))$$$$

• ma trận hiệp phương sai (covariance matrix) của X

$$V(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^T . (x_i - \bar{x}) = \frac{1}{n} \hat{X}^T . \hat{X} \equiv V$$

1. Ma trận hiệp phương sai (tt.)

- ☐ Một số tính chất của ma trận hiệp phương sai V
 - ma trận đối xứng
 - ma trận nửa xác định dương
 - hệ số không âm trên đường chéo: phương sai trên từng chiều
 - hiệp phương sai v_{ij} (i ≠ j): mối tương quan giữa x_i và x_i
 - nếu V là ma trận đường chéo \Rightarrow hoàn toàn không tương quan

B3. PCA

Bổ sung thêm cho bài giảng

1. Ma trận hiệp phương sai

Nội dung bổ sung

2. Principal Component Analysis

2. Principal Component Analysis (tt.)

☐ Tìm không gian đặc trưng mới F' tạo phân hoạch trên items tốt hơn không gian đặc trưng ban đầu F

B3. PCA

Bổ sung thêm cho bài giảng

2. Principal Component Analysis (tt.)

☐ Hệ cơ sở – Tọa độ trong không gian vectơ V

Cơ sở "có thứ tự" B gồm các vectơ độc lập tuyến tính:

$$B = \{ u_1, u_2, ..., u_n \}$$

$$\forall v \in V$$
: $v = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n$ $\alpha_i \in \}$

Ma trận cơ sở của không gian V: $B = \begin{pmatrix} u_1^T & u_2^T & \cdots & u_n^T \end{pmatrix}$

Tọa độ của v theo B:

$$[v]_{B} = \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

B3. PCA

Bổ sung thêm cho bài giảng

30

2. Principal Component Analysis (tt.)

☐ Hệ cơ sở – Tọa độ trong không gian vectơ V

Cơ sở "có thứ tự" B' gồm các vectơ độc lập tuyến tính:

$$B = \{ u'_1, u'_2, ..., u'_n \}$$

Ma trận chuyển đổi cơ sở từ B sang B':

$$(B \to B') = ([u'_1]_B \quad [u'_2]_B \quad \cdots \quad [u'_n]_B)$$

 $(B \to B')$ khả nghịch

Công thức chuyển đổi tọa độ:

$$[v]_{B'} = (B \to B')^{-1} [v]_{B}$$

$$[v]_B = (B \to B')[v]_{B'}$$

Tài liệu tham khảo

32

Vũ Hữu Tiệp, *Machine Learning cơ bản*, 2018