ALGORISME DEL SIMPLEX PRIMAL

(tableau en forma canónica. Las fòrmulas de la derecha constituyen las fórmulas matriciales básicas en que es basan los algoritmos del símplex primal.)

- **0)** Inicialización. Determinar s.b.f. inicial $B_{(0)}$. k=0
- 1) Calcular costes reducidos para $B = B_{(k)}$: $r_N = c_N - Y^{\mathsf{T}} c_B = c_N - N^{\mathsf{T}} B^{-\mathsf{T}} c_B$
- 2) Si $r_N \geq 0 \Rightarrow B_{(k)}$ base óptima. STOP.
- **3)** Si $\exists q \ t.q. \ (r_N)_q < 0 \& \ y_{iq} \leq 0 \ (1 \leq i \leq m) \Rightarrow$

 \Rightarrow Problema no Acotado. STOP.

- 4) Seleccionar variable no básica de entrada x_{j_q} . (q tal que $r_q = Min \{ r_\ell \mid 1 \le \ell \le n m \})$
- 5) Encontrar variable básica de salida x_{i_s} y Efectuar cambio de base .

Determinar $p = i_s \in I_B$ según:

$$\hat{x}_{j_q} = \frac{y_{s,0}}{y_{s,q}} = Min\{ \frac{y_{t,0}}{y_{t,q}} \mid y_{tq} > 0 \}$$

$$I_{B_{(k+1)}} = I_{B_{(k)}} \cup \{j_q\} - \{i_s\}$$

6) $k \leftarrow k+1$. Volver a 1)

ALGORISME DEL SIMPLEX DUAL

(tableau en forma canònica. Les fòrmules de la dreta constitueixen les fòrmules matricials bàsiques en que es basen els algorismes del símplex primal i dual)

0) Inicialització. Determinar base factible dual inicial $B_{(0)}$. k=0

$$(\lambda = B^{-\top}c_B, r_N = c_N - N^{\top}\lambda \ge 0)$$

- 1) Si $x_B = B_{(k)}^{-1}b \ge 0 \implies B_{(k)}$ base òptima. STOP.
- **2)** Per lo tant: $J_{-} = \{ 1 \le s \le m \mid x_{i_s} < 0, i_s \in I_B \} \ne \emptyset$
- **3)** Si $\exists s \in J_- \ t.q. \ I_-^{i_s} = \{ 1 \le t \le n-m \mid y_{s,t} < 0 \} = \emptyset$

⇒ Problema DUAL no Acotat. (Problema PRIMAL infactible) STOP.

- 4) Seleccionar variable bàsica de sortida x_{i_s} (la més negativa).
 - 5.1) Formar $I_{-}^{i_s} = \{ 1 \le t \le m \mid y_{s,t} < 0 \}$
- 5) Seleccionar variable no bàsica de entrada x_{j_q}

Determinar $j_q \in I_N$ segons:

$$\underline{r}_{s} = \frac{r_{q}}{y_{s,q}} = Max\{ \frac{r_{t}}{y_{s,t}} \mid t \in I_{-}^{i_{s}} \}$$

5.1) Efectuar canvi de base.

$$I_{B_{(k+1)}} = I_{B_{(k)}} \cup \{j_q\} - \{i_s\}$$

6) $k \leftarrow k+1$. Tornar a 1)

ALGORISME DEL SIMPLEX PRIMAL (Forma Revisada)

Sigui y_q la columna de la matriu Y corresponent a la variable x_{j_q} . Siguin $y_{p,q}$ l'element pivotal corresponent al canvi de base p < -> q i $y_{i,q}$ qualsevol altre element del vector y_q

Llavors la matriu $B_{(k+1)}$ per la nova base $I_{B_{(k+1)}}=\{x_{i_1},x_{i_2},\ldots x_{j_q},\ldots,x_{i_m}\}$ verifica l'expressió:

$$B_{(k+1)} = B_{(k)\eta}$$

essent η la matriu donada per:

Fòrmula d'actualització de l'inversa:
$$B_{(k+1)}^{-1} = \eta^{-1} B_{(k)}^{-1}$$
 (3)

- 0) Es disposa de: s.b.f. inicial $B_{(0)}^{-1}$, $x_B^{(0)}$, I_{B_0} , I_N . k=0
- 1) Calcular Multiplicadors $\lambda = B^{-\top}c_B$:
- 2) Seleccionar $j_q \in I_N$ t.q: $r_q = c_{j_q} a_{j_q}^\top \lambda < 0.$ (Si es impossible $\Rightarrow r_N \ge 0$) $\Rightarrow B_{(k)}$ base òptima. STOP.
- 3) Calcular $y_q = B^{-1} a_{j_q}$
- 4) Formar $I_{j_q}^+ = \{ 1 \le t \le m \mid y_{tq} > 0 \}$

(Si
$$I_{j_q}^+ = \emptyset \Rightarrow$$
 Problema no Acotat. STOP.)

5) Calcular:
$$\hat{x}_{j_q} = \frac{y_{s,0}}{y_{s,q}} = Min\{ \frac{y_{t,0}}{y_{t,q}} \mid t \in I_{j_q}^+ \}$$

6) Efectuar canvi de base: $I_{B_{(k+1}} = I_{B_{(k}} \cup \{j_q\} - \{i_s\}$

(Entra
$$x_{i_a}$$
, surt x_{i_s})

- 6.1) Formar η^{-1}
- 6.1) Calcular $B_{(k+1}^{-1} \, = \, \eta^{-1} B_{(k}^{-1}$
- 6.1) Calcular $x_B^{(k+1)} = \eta^{-1} x_B^{(k)}$
- 6.1) Calcular $z_0^{k+1}\,=\,z_0^k+r_q\cdot \hat{x}_{j_q}$
- 7) $k \leftarrow k + 1$. Tornar a 1)