

# Evolução de Dispositivos de Gesto e de Exibição Holográfica para XR

Henrique Sant'Anna de Faria Marcelo da Silva Hounsell 05/05/2025



# Introdução e importância

 A RV precisa de formas de interação que vão além do teclado e mouse, por isso, surgiram as interfaces naturais, onde o usuário usa o corpo para interagir com o mundo virtual. Para reconhecer os gestos, existem tecnologias, como:

(Li et al., 2019).



# Introdução e importância

- A RV precisa de formas de interação que vão além do teclado e mouse, por isso, surgiram as interfaces naturais, onde o usuário usa o corpo para interagir com o mundo virtual. Para reconhecer os gestos, existem tecnologias, como:
  - Sensores Vestíveis (como luvas); Toques em telas; Visão computacional (como câmeras).

(Li et al., 2019).





# Dispositivos de Gesto



## **WiGest**

• Permite controlar **sem usar** sensores físicos.

 Utiliza o sinal Wi-Fi presente nos ambientes para detectar movimento



## WiGest

• Permite controlar **sem usar** sensores físicos.

 Utiliza o sinal Wi-Fi presente nos ambientes para detectar movimento

 O sistema teve precisão entre 87,5% e 96%, dependendo da quantidade de pontos de acesso Wi-Fi no ambiente.



### WiGest

• Permite controlar **sem usar** sensores físicos.

 Utiliza o sinal Wi-Fi presente nos ambientes para detectar movimento

• O sistema teve precisão entre **87,5%** e **96%**, dependendo da quantidade de pontos de acesso Wi-Fi no ambiente.

Sistema feito para mobile.





(a) The user's hand doing a down-up gesture(b) A screenshot of the system gesture extraction and classification interface.

#### (Abdelnasser et al., 2015).





(Abdelnasser et al., 2019).







- Detecta movimento através de ondas Wi-Fi.
- Pode reconhecer os gestos de uma casa inteira, através de paredes.
- Apenas um usuário é monitorado. Requer uma senha de movimentos.





- Detecta movimento através de ondas Wi-Fi.
- Pode reconhecer os gestos de uma casa inteira, através de paredes.
- Apenas um usuário é monitorado. Requer uma senha de movimentos.
- Consegue reconhecer 9 gestos, com uma precisão de 94%.
- Aplicação pode futuramente ser implementada em **roteadores**.







(Pu et al., 2013).

## VR INK [Longitech]

- Caneta para gestos em RM. Usado no Meta Quest.
- Feito para ser similar à **ferramentas** conhecidas (pincel, lápis..)
- Capaz de desenhar, movimentar e manipular objetos.
- Sensível à pressão e ângulos.



## VR INK [Longitech]

- Caneta para gestos em RM. Usado no Meta Quest.
- Feito para ser similar à **ferramentas** conhecidas (pincel, lápis..)
- Capaz de desenhar, movimentar e manipular objetos.
- Sensível à pressão e ângulos.
- Funciona em 2D e em 3D.
- Integrável com ambientes profissionais, como Unity e Unreal.







## Joy-Con, Ring-Con (Nintendo Switch)







- Ring-Con possui 2 inputs principais: Comprimir e Alongar.
  - o O Ring-Con é utilizado no jogo Ring Fit Adventure.







## **Leap Motion**

- Rastreia as mãos e dedos com alta precisão em 3D
- Consiste em: duas câmeras infravermelhas e LEDs infravermelhos
  - A v2 possui 5 LEDs, a v1 possui 2 LEDs
- A segunda versão é compatível com HMDs



# **Leap Motion**





Leap Motion Controller 2



| Quesito          | WiGest         | WiSee          | Leap Motion       | Joy (Con/Ring)  | VR Ink         |
|------------------|----------------|----------------|-------------------|-----------------|----------------|
| DOF              | Limitado       | Limitado       | 6 (pos. e orien.) | 6               | 6              |
| Princípio        | Wi-Fi (RSSI)   | Efeito Doppler | Infravermelho     | IMU             | Sensor Mov.    |
| Fonte Dados      | Mãos           | Corpo inteiro  | Mãos e dedos      | Mãos / Corpo    | Mãos           |
| Entrada háptica  | ×              | ×              | ×                 | <b>√</b>        | ✓              |
| Referencial      | Relativo       | Relativo       | Absoluto          | Relavito        | Absoluto       |
| Lançamento       | 2015           | 2013           | 2013 / 2023       | 2017            | 2024           |
| Status           | Proj. Acadêm.  | Proj. Acadêm.  | Ativo             | Ativo           | Ativo          |
| Disponib. Brasil | ×              | ×              | via Importação    | Disponível      | via Importação |
| Preço            | ×              | ×              | US\$ 219 (2.0)    | 300 - 500 R\$   | US\$ 129       |
| Desvantagens     | Interferências | Mult. usuarios | lluminação        | Precisão, carga | requer HMD     |





## Dispositivos Holográficos



## **Breylon Ultra Reality**

- Monitor que oferece profundidade de imagem
- Promete a RV sem um HMD









#### Monitores autoestéreo SHARP 3.4

- Em 2010, foi feito um display 3D para celulares pela Sharp
- Buscou corrigir problemas de versões anteriores
  - o baixa luminosidade, espessura, ângulo de visão limitado.



#### Monitores autoestéreo SHARP 3.4

- Em 2010, foi feito um display 3D para celulares pela Sharp
- Buscou corrigir problemas de versões anteriores
  - o baixa luminosidade, espessura, ângulo de visão limitado.
- Não requer óculos
- Touchscreen opcional
- Permite alternar entre 2D e 3D via polarização da luz





Sharp AQUOS Phone THE HYBRID 007SH (2011)



# Sony Holographic Display

- Exibe imagens 3D sem necessitar de HMDs
- O objeto interage conforme o movimento da pessoa
- Utiliza um sensor de alta velocidade para seguir a visão
- Utiliza algoritmos e lentes para processar e exibir a imagem para cada olho











## **Looking Glass Portrait**

- Produz cenas 3D para múltiplas pessoas
- Converte imagens 2D em hologramas 3D
- Não necessita de HMD



## **Looking Glass Portrait**

- Produz cenas 3D para múltiplas pessoas
- Converte imagens 2D em hologramas 3D
- Não necessita de HMD
- Compatível com Unity, Unreal e Blender
- Foi descontinuado !!
  - A empresa possui outros displays holográficos disponíveis











### Leia Lume Pad 2

- Tablet que oferece display de objetos 3D
- Faz o rastreamento de rostos
- Sem HMD's







# Comparativo

- Todos os dispositivos:
  - Possuem Imagem Emitida; Forward Projection; Optical See Through; Uso individual; Lagging, Flickering e Blur baixo.



| Quesito               | Breylon U.R. | Sharp 3.4                          | Sony Holo. Di.                       | Looking G. P.  | Leia L. Pad 2                              |
|-----------------------|--------------|------------------------------------|--------------------------------------|----------------|--------------------------------------------|
| Fov X/Y               | 110° / N/D   | N/D                                | N/D                                  | 58° / N/D      | 77.2° / 105°                               |
| Brilho e<br>Contraste | N/D          | 500 cd/m2<br>1000:1                | N/D                                  | 200 cd/m2      | 450 cd/m2 (2D)<br>300 cd/m2 (3D)<br>1200:1 |
| Tecnologia            | OLED         | LCD com<br>barreira de<br>paralaxe | LCD com<br>sensor de<br>profundidade | Light Field    | LCD com<br>retroiluminação<br>3D           |
| Frame Rate            | 60 Hz        | N/D                                | N/D                                  | 60 Hz          | 120 Hz                                     |
| Uso                   | RV           | RV                                 | RA e RV                              | RA e RV        | RA e RV                                    |
| Disp. Brasil          | ×            | Descontinuado                      | via Importação                       | via Importação | via Importação                             |
| Preço aprox.          | US\$ 12.000  | N/D                                | US\$ 5.000                           | US\$ 399       | US\$ 499                                   |





## **Dispositivos Extras**



## Holobox











## **Google Soli**

- Faz a captura de gestos
- Utiliza ondas de rádio emitidas através de dispositivos (como relógio)
  - Mede as reflexões das ondas
- A aplicação consiste no chip Soli







Pixel 4





## Referências

ABDELNASSER, Heba; HARRAS, Khaled; YOUSEFF, Moustafa. (2019). A ubiquitous WiFi-based fine-grained gesture recognition system. IEEE Transactions on Mobile Computing, v. 18, n. 11, p. 2474–2487.

ABDELNASSER, Heba; HARRAS, Khaled; YOUSEFF, Moustafa. (2015). WiGest demo: A ubiquitous WiFi-based gesture recognition system. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Anais. Hong Kong: IEEE, p. 17–18.

LI, Yang; HUANG, Jin; TIAN, Feng; WANG, Hong-An; DAI, Guo-Zhong. (2019). Gesture interaction in virtual reality. Virtual Reality & Intelligent Hardware, v. 1, n. 1, p. 84–112. ISSN 2096-5796.



## Referências

PU, Qifan; GUPTA, Sidhant; GOLLAKOTA, Shyamnath; PATEL, Shwetak. (2013). Whole-home gesture recognition using wireless signals. In: Annual International Conference on Mobile Computing & Networking (MobiCom), 19., 2013, Miami, Florida. Anais... New York: ACM, p. 27–38. DOI: 10.1145/2500423.2500436.





# Evolução de Dispositivos de Gesto e de Exibição Holográfica para XR

Henrique Sant'Anna de Faria Marcelo da Silva Hounsell 05/05/2025

