Odpowiedzi i schematy oceniania

Arkusz 8

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania	
zadania	odpowiedź		
1.	В.	$\frac{4}{12} = \frac{1}{3} = 0,(3)$	
2.	A.	$K \cdot \left(1 + \frac{7}{100}\right) = 13375 \Longrightarrow K = 12500$	
3.	D.	$\log_3 \frac{1}{81} \log_9 3 = -4 \cdot \frac{1}{2} = -2$	
4.	D.	$ x \ge 10 \Leftrightarrow x \le -10 \lor x \ge 10$	
5.	В.	$W = \left 1 + \sqrt{2} \right - \left 1 - \sqrt{2} \right = 1 + \sqrt{2} + 1 - \sqrt{2} = 2$	
6.	C.	$x - x\sqrt{3} = 1 - 2\sqrt{3} \Rightarrow x\left(1 - \sqrt{3}\right) = 1 - 2\sqrt{3} \Rightarrow x = \frac{1 - 2\sqrt{3}}{1 - \sqrt{3}} \Rightarrow$	
		$\Rightarrow x = \frac{\left(1 - 2\sqrt{3}\right)\left(1 + \sqrt{3}\right)}{\left(1 - \sqrt{3}\right)\left(1 + \sqrt{3}\right)} \Rightarrow x = \frac{5 + \sqrt{3}}{2}$	
7.	В.	$x + 2 = \frac{7}{3}x \Rightarrow x = \frac{3}{2}$	
8.	A.	$\Delta = 9 - 16 = -7$	
9.	C.	Skorzystaj z zasady grupowania wyrazów.	
10.	A.	x = 0 – nie spełnia warunku $x < 0$,	
		$x = -1$ – nie spełnia warunku $0 \le x < 2$,	
		$x = -6$ – nie spełnia warunku $x \ge 2$.	
11.	D.	$x^2 - 4x = 0 \Rightarrow x(x - 4) = 0$	
12.	D.	Funkcja liniowa nie ma miejsc zerowych, gdy jest stała, ale nie równa	
		tożsamościowo zero, zatem $-\frac{1}{3}m-6=0 \Rightarrow m=-18$.	
13.	D.	$f(x) = x^2 - 9 \Rightarrow f(x) = (x - 3)(x + 3),$	
		więc $x_1 = -3, x_2 = 3$ – liczby przeciwne.	
14.	В.	$y = \log_2(4x) = \log_2 4 + \log_2 x \Rightarrow y = \log_2 x + 2$	

15.	D.	$a_5 = (-\sqrt{2})^5 (25 - 9) = -4\sqrt{2} \cdot 16 = -64\sqrt{2}$
16.	C.	$a_1 = S_1 = -4, S_2 = -4, a_2 = S_2 - a_1 = 0 \Rightarrow r = 0 - (-4) \Rightarrow r = 4$
17.	C.	$(x+2)^2 = x \cdot (x+3) \Rightarrow x^2 + 4x + 4 = x^2 + 3x \Rightarrow x = -4$
18.	A.	Skorzystaj z definicji funkcji trygonometrycznych kąta ostrego i własności trójkąta prostokątnego.
19.	D.	$\cos \alpha = \sqrt{1 - \frac{4}{9}} \Rightarrow \cos \alpha = \frac{\sqrt{5}}{3} \Rightarrow \operatorname{tg} \alpha = \frac{2}{3} \cdot \frac{3}{\sqrt{5}} \Rightarrow \operatorname{tg} \alpha = \frac{2\sqrt{5}}{5}$
20.	C.	$ \angle ABC = 40^{\circ} \land \angle DBO = 20^{\circ} \Rightarrow \angle DOB = 70^{\circ}$
21.	A.	$a^2 \sin 30^\circ = 18 \Rightarrow a = 6 \Rightarrow h = 3$
22.	C.	90 – liczba wszystkich liczb dwucyfrowych, 9 – liczba wszystkich liczb dwucyfrowych o jednakowych cyfrach, 90 – 9 = 81.
23.	B.	$h = 6, r = 3 \Rightarrow V = 54\pi$

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
24.	Zapisanie równania: $-8-4m+6+m=0$.	1
	Wyznaczenie parametru: $m = -\frac{2}{3}$.	1
25	Zapisanie równania: $a^2 = \frac{1}{4}$.	1
	Wyznaczenie parametru: $a = \frac{1}{2} \lor a = -\frac{1}{2}$.	1
26.	Wyznaczenie współrzędnych środka i promienia okręgu:	1
	$S = (3, -2), r = \sqrt{5}$.	
	Obliczenie odległości punktu S od prostej i skorzystanie z	1
	warunku styczności okręgu i prostej: $d(S, l) = \sqrt{5} = r$.	

27.	Zapisanie równania: $\left(\frac{x+9}{2}, \frac{y-3}{2}\right) = (-5, -11)$.	1
	Wyznaczenie współrzędnych punktu $A: A = (-19, -19)$.	1
28.	Wyznaczenie długości przeciwprostokątnej: $ AB = 2\sqrt{10}$.	1
	Wyznaczenie wartości wyrażenia: $W = \frac{2\sqrt{10}}{5}$.	1
29.	Wprowadzenie oznaczeń i wykorzystanie twierdzenia Pitagorasa:	1
	a, b, c, x, y – odpowiednio podstawy trapezu, ramię prostopadłe i	
	przekątne,	
	$x^2 = a^2 + c^2$, $y^2 = c^2 + b^2$.	
	Wykazanie tezy zadania: $x^2 - y^2 = a^2 - b^2$.	1
30.	Wyznaczenie liczebności zbioru Ω : $\overset{=}{\Omega}$ = 30 · 29 .	1
	Wyznaczenie liczebności zbioru $A: \overline{A} = n \cdot (n-1)$.	1
	Wyznaczenie prawdopodobieństwa i zapisanie równania:	1
	$\frac{n \cdot (n-1)}{30 \cdot 29} = \frac{1}{29}, \in N_{+}.$	
	Rozwiązanie równania: $n = 6$.	1
31.	Wyznaczenie wartości trójmianu na krańcach przedziałów:	1
	f(-3) = 1, $f(2) = 11$.	
	Sprawdzenie, że $x_W \in \langle -3, 2 \rangle$, i obliczenie $y_W : y_W = -7$.	1
	Zapisanie odpowiedzi do pierwszej części zadania:	2 (po 1
	m = -7, M = 11.	punkcie)
	Zapisanie trójmianu w postaci iloczynowej:	1
	f(x) = a(x+3)(x-4).	
	Wyznaczenie parametru i zapisanie odpowiedzi do drugiej części	1
	zadania: $f(x) = 2(x+3)(x-4)$.	
32.	Wprowadzenie oznaczeń krawędzi prostopadłościanu: a , aq , aq^2 .	1
	Zapisanie układu równań: $\begin{cases} a + aq + aq^2 = 19 \\ a \cdot aq \cdot aq^2 = 216 \end{cases}$.	1
	Przekształcenie układu do równania	1
	r izeksztaiceme ukiadu do fownama	1

kwadratowego: $6q^2 - 13q + 6 = 0$.	
Rozwiązanie równania: $q_1 = \frac{2}{3}$, $q_2 = \frac{3}{2}$.	1
Wyznaczenia pola całkowitego prostopadłościanu: $P = 228$.	1