

On Node Classification in Dynamic Content-based Networks

Martin Thoma | 28. Februar 2014

INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

Social Network

Szenario	Überblick	Vokabular	Sprungtypen	Ende
●00	0000	00	00	0000

Partially labeled network

Szenario	Überblick	Vokabular	Sprungtypen	Ende
000	0000	00	00	0000

Partially labeled network with content

 Szenario
 Überblick
 Vokabular
 Sprungtypen
 Ende

 00●
 0000
 00
 00
 000

Vokabular

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

Szenario

3 Sprünge pro Random Walk

Überblick

■ $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

000	●000	00
Martin Thoma -	- On Node Classification i	in Dynamic Content-based Networks

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●000	00
Martin Thoma -	On Node Classification in Dyna	amic Content-based Networks

28. Februar 2014

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●000	00
Martin Thoma -	On Node Classification in Dyna	mic Content-based Networks

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●000	00
Martin Thoma - C	On Node Classification in Dyna	amic Content-based Networks

28. Februar 2014

Vokabular

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

Szenario

3 Sprünge pro Random Walk

Überblick

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

000	●000	00
Martin Thoma -	On Node Classification in D	Avnamic Content based Network

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●000	00
Martin Thoma -	On Node Classification in Dyna	mic Content-based Networks

28. Februar 2014

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●000	00
Martin Thoma -	On Node Classification in Dyna	mic Content-based Networks

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Sze	nario	Überblick	Vokabular
00	0	●000	00
Ma	rtin Thoma - On Node (Classification in Dynamic Conte	ent-based Netwo

28. Februar 2014

Ende

Vokabular

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

Szenario

3 Sprünge pro Random Walk

Überblick

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

000	●000	00	
Martin Thoma	- On Node Classification in	Dynamic Content-based I	Networks

28. Februar 2014

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●000	00
Martin Thoma -	- On Node Classification in Dynan	nic Content-based Networks

28. Februar 2014

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenano	
000	

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

28. Februar 2014

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweiterr
 - lexte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

6/16

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

6/16

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

Erweiterter, semi-bipartiter Graph

Vokabular

Sprungtypen

Ende 0000

Martin Thoma - On Node Classification in Dynamic Content-based Networks

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

ldee

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzer

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

Idee

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

ldee

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

Idee:

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzer

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

Idee:

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzer

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

Idee:

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- ullet q nahe bei $1 \Rightarrow$ Wort ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- g nahe bei $1 \Rightarrow W$ ort ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- $lue{g}$ nahe bei $1 \Rightarrow \text{Wort}$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

10/16

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- g nahe bei $1 \Rightarrow Wort$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- g nahe bei $1 \Rightarrow Wort$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

Sprungtypen

Inhaltlicher Mehrfachsprung

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Mehrfachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'

Inhaltlicher Mehrfachsprung

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Mehrfachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'

Danke!

Gibt es Fragen?

13/16

Bildquellen

Crystal_Clear_app_personal.png von Wikipedia Commons

Literatur

- Charu C. Aggarwal, Nan Li: On Node Classification in Dynamic Content-based Networks
- Smriti Bhagat, Graham Cormode und S. Muthukrishnan. Node Classification in Social Networks
- M. F. Porter. Readings in Information Retrieval. Kapitel An Algorithm for Suffix Stripping
- Jeffrey S. Vitter. Random Sampling with a Reservoir.

Folien, LeTeXund Material

Der Foliensatz und die LATEX und TikZ-Quellen sind unter github.com/MartinThoma/LaTeX-examples/tree/master/presentations/Datamining-Proseminar Kurz-URL: tinyurl.com/Info-Proseminar

Szenario 000 Überblick 0000 Vokabular

Sprungtypen 00

Ende ○○○● 16/16