Leistungsstarke IR-Lumineszenzdiode High Power Infrared Emitter Lead (Pb) Free Product - RoHS Compliant

SFH 4203

Wesentliche Merkmale

- Leistungsstarke GaAs-LED (35 mW)
- Hoher Wirkunsgrad bei kleinen Strömen
- Homogene Abstrahlung
- Typische Peakwellenlänge 950 nm

Anwendungen

- Industrieelektronik
- "Messen/Steuern/Regeln"
- Automobiltechnik
- Sensorik
- Alarm- und Sicherungssysteme
- IR-Freiraumübertragung

Features

- High Power GaAs-LED (35 mW)
- · High Efficiency at low currents
- Homogeneous Radiation Pattern
- Typical peak wavelength 950 nm

Applications

- Industrial electronics
- For drive and control circuits
- Automotive technology
- Sensor technology
- Alarm and safety equipment
- IR free air transmission

71	Bestellnummer Ordering Code	Strahlstärkegruppierung ¹⁾ ($I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms) Radiant Intensity Grouping ¹⁾ $I_{\rm e}$ (mW/sr)
SFH 4203	Q65110A2499	8 (> 4)

¹⁾ gemessen bei einem Raumwinkel Ω = 0.01 sr / measured at a solid angle of Ω = 0.01 sr

Grenzwerte ($T_A = 25$ °C) Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	3	V
Durchlassstrom Forward current	I _F (DC)	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	1	А
Verlustleistung Power dissipation	P _{tot}	180	mW
Wärmewiderstand Sperrschicht - Umgebung bei Montage auf FR4 Platine, Padgröße je 16 mm² Thermal resistance junction - ambient mounted on PC-board (FR4), padsize 16 mm² each Wärmewiderstand Sperrschicht - Lötstelle bei Montage auf Metall-Block Thermal resistance junction - soldering point, mounted on metal block	$R_{ m thJA}$	200	K/W

Kennwerte ($T_A = 25$ °C) Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}=100$ mA, $t_{\rm p}=20$ ms	λ_{peak}	950	nm
Spektrale Bandbreite bei 50% von $I_{\rm max}$ Spectral bandwidth at 50% of $I_{\rm max}$ $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Δλ	40	nm
Abstrahlwinkel Half angle	φ	± 65	Grad deg.
Aktive Chipfläche Active chip area	A	0.09	mm ²
Abmessungen der aktiven Chipfläche Dimensions of the active chip area	$L \times B$ $L \times W$	0.3 × 0.3	mm

Kennwerte ($T_A = 25$ °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Schaltzeiten, $I_{\rm e}$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms, $R_{\rm L}$ = 50 Ω Switching times, $I_{\rm e}$ from 10% to 90% and from 90% to10%, $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms, $R_{\rm L}$ = 50 Ω	$t_{\rm r},t_{\rm f}$	10	ns
Durchlassspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$V_{F} \ V_{F}$	1.5 (≤ 1.8) 3.2 (≤ 4.3)	V V
Sperrstrom Reverse current $V_{\rm R} = 3 \text{ V}$	I_{R}	0.01 (≤ 10)	μΑ
Gesamtstrahlungsfluss Total radiant flux $I_{\rm F}=100$ mA, $t_{\rm p}=20$ ms	Φ_{e}	35	mW
Temperaturkoeffizient von $\rm I_e$ bzw. $\rm \Phi_e$, $\rm \it I_F=100$ mA Temperature coefficient of $\rm I_e$ or $\rm \Phi_e$, $\rm \it I_F=100$ mA	TC_1	- 0.44	%/K
Temperaturkoeffizient von $V_{\rm F},I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F},I_{\rm F}$ = 100 mA	TC_{V}	– 1.5	mV/K
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	+ 0.2	nm/K

Strahlstärke I_e in Achsrichtung

gemessen bei einem Raumwinkel Ω = 0.01 sr

Radiant Intensity I_e in Axial Direction

at a solid angle of Ω = 0.01 sr

Bezeichnung Parameter	Symbol	Werte Values	Einheit Unit
Strahlstärke Radiant intensity $I_{\rm F} = 100 \; {\rm mA}, \; t_{\rm p} = 20 \; {\rm ms}$	$\begin{matrix} I_{\text{e min.}} \\ I_{\text{e typ.}} \end{matrix}$	4 8	mW/sr mW/sr
Strahlstärke Radiant intensity $I_{\rm F}=1~{\rm A},~t_{\rm p}=100~{\rm \mu s}$	I _{e typ.}	48	mW/sr

Relative Spectral Emission

 $I_{rel} = f(\lambda)$

Max. Permissible Forward Current $I_{\rm F} = f(T_{\rm A}), \, R_{\rm th, JA}^{\ 1)}$

Radiation Characteristics $I_{rel} = f(\varphi)$

2007-03-29 4

Radiant Intensity $\frac{I_{\rm e}}{I_{\rm e}\,{\rm 100~mA}}$ = f ($I_{\rm F}$),

single pulse, $t_p = 20 \mu s$

Permissible Pulse Handling Capability

 $I_{\rm F} = f(t_{\rm p}), T_{\rm A} = 25 \, ^{\circ}{\rm C},$ Duty cycle $D = {\rm parameter}$

Forward Current $I_{\rm F} = f(V_{\rm F})$, single pulse, $t_{\rm p} = 20~{\rm \mu s}$

Permissible Pulse Handling Capability

 $I_{\rm F} = f(t_{\rm p}), T_{\rm A} = 85 \,^{\circ}\text{C},$ Duty cycle D = parameter

¹⁾ Thermal resistance junction - ambient mounted on PC-board (FR4), pad size 16 mm² (each).

Maßzeichnung Package Outlines

Maße in mm (inch) / Dimensions in mm (inch).

Empfohlenes Lötpaddesign Recommended Solder Pad

Reflow Löten Reflow Soldering

Maße in mm (inch) / Dimensions in mm (inch).

Lötbedingungen Soldering Conditions Reflow Lötprofil für bleifreies Löten Reflow Soldering Profile for lead free soldering Vorbehandlung nach JEDEC Level 2 Preconditioning acc. to JEDEC Level 2 (nach J-STD-020C) (acc. to J-STD-020C)

Wellenlöten (TTW) TTW Soldering

(nach CECC 00802) (acc. to CECC 00802)

Published by **OSRAM Opto Semiconductors GmbH** Wernerwerkstrasse 2, D-93049 Regensburg www.osram-os.com

EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求;

© All Rights Reserved.

按照中国的相关法规和标准,不含有毒有害物质或元素。 The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component usedin a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

2007-03-29

