Objetivos de aprendizaje Tema 2

Análisis Matemático I

Javier Gómez López

29 de noviembre de 2021

- 1. Conocer y comprender las siguientes definiciones:
 - a) Conjunto abierto y conjunto cerrado

Conjunto abierto: Sea E un espacio métrico y $U \subset E$. Decimos que U es un subconjunto abierto de E, o simplemente un abierto de E, cuando U contiene una bola abierta centrada en cada uno de sus puntos, es decir,

$$\forall x \in U \quad \exists \varepsilon \in \mathbb{R}^+ : B(x, \varepsilon) \subset U$$

Es obvio que el conjunto vacío y el propio E son conjuntos abiertos y las bolas abiertas son conjuntos abiertos.

Conjunto cerrado: Dado $C \subset E$, decimos que C es un subcojunto cerrado de E cuando su complemento $E \setminus C$ es abierto.

b) Interior, cierre y frontera de un conjunto

Interior: Se define el **interior** de A, que se denota por A° , como la unión de todos los abiertos incluidos en A:

$$A^{\circ} = \bigcup \{ U \in \mathcal{T} : U \subset A \}$$

Claramente A° es abierto y $A^{\circ} \subset A$. De hecho, A° es el máximo abierto incluido en A, pues si $U \in \mathcal{T}$ y $U \subset A$, se tiene que $U \subset A^{\circ}$. Por tanto A es abierto si, y sólo si, $A = A^{\circ}$. Cuando $x \in A^{\circ}$, decimos que x es un **punto interior** de A, o que A es un **entorno** de x, y denotamos por $\mathcal{U}(x)$ al conjunto de todos los entornos de x.

Cierre: Se define el cierre de A, que se denota por \bar{A} , como la intersección de todos los cerrados en los que A está incluido:

$$\bar{A} = \bigcap \{ C \in \mathcal{C} : A \subset C \}$$

Vemos claramente que \bar{A} es cerrado y $A\subset \bar{A}$. De hecho, \bar{A} es el *mínimo cerrado* que contiene al conjunto A, pues si C es cerrado y $A\subset C$, se tiene que $\bar{A}\subset C$. Por tanto, A es cerrado si, y sólo si, $A=\bar{A}$. Las operaciones de cierre e interior están claramente relacionadas:

$$E \setminus \bar{A} = (E \setminus A)^{\circ}$$
 y $E \setminus A^{\circ} = \overline{E \setminus A}$

Usando el resultado anterior podemos caracterizar los puntos del cierre de un conjunto A. Para $x \in E$ tenemos $x \in \bar{A}$ si, y sólo si, $E \setminus A$ no es entorno de x. Obtenemos el siguiente resultado:

$$x \in \bar{A} \iff U \cap A \neq \emptyset \ \forall U \in \mathcal{U}(x) \iff B(x, \varepsilon) \cap A \neq \emptyset \ \forall \varepsilon \in \mathbb{R}^+$$

Cuando esto ocurre, decimos que x es un **punto adherente** al conjunto A, así que \bar{A} es el conjunto de todos los puntos adherentes al conjunto A.

Frontera: Definimos la **frontera** de un conjunto $A \subset E$, que se denota por Fr(A), como el conjunto de todos los puntos adherentes al conjunto A que no sean interiores. Por tanto

$$\operatorname{Fr}(A) = \bar{A} \setminus A^{\circ} = \bar{A} \cap (E \setminus A^{\circ}) = \bar{A} \cap \overline{E \setminus A}$$

Como consecuencia, Fr(A) es un conjunto cerrado y $Fr(A) = Fr(E \setminus A)$.

c) Punto de acumulación y punto aislado de un conjunto

Punto de acumulación: Decimos que $x \in E$ es un **punto de acumulación** de A, cuando x es adherente al conjunto $A \setminus \{x\}$, esto es, $x \in A \setminus \{x\}$. Esto significa que todo entorno de x, o toda bola abierta de centro x, contiene puntos de A distintos de x. Denotamos por A' al conjunto de todos los puntos de acumulación de A:

$$x \in A' \iff U \cap (A \setminus \{x\}) \neq \emptyset \ \forall U \in \mathcal{U}(x) \iff B(x, \varepsilon) \cap (A \setminus \{x\}) \neq \emptyset \ \forall \varepsilon \in \mathbb{R}^+$$

Punto aislado: Tenemos $x \in \overline{A} \setminus A'$ si, y sólo si, existe $U \in \mathcal{U}(x)$ tal que $U \cap A = \{x\}$, o lo que es lo mismo, existe $\varepsilon > 0$ tal que $B(x, \varepsilon) \cap A = \{x\}$.

d) Sucesión convergente

Una sucesión de elementos de un conjunto $E \neq \emptyset$ es una aplicación $\varphi : \mathbb{N} \to E$, que se denota por $\{x_n\}$, donde $x_n = \varphi(n)$ para todo $n \in \mathbb{N}$.

Decimos que la sucesión $\{x_n\}$ converge a un punto $x \in E$, y escribimos $\{x_n\} \to x$, cuando cada entorno de x contiene a todos los términos de la sucesión, a partir de uno en adelante:

$$\{x_n\} \to x \iff [\forall U \in \mathcal{U}(x) \; \exists m \in \mathbb{N} : n \ge m \Rightarrow x_n \in U]$$
 (1)

Por otra parte, es claro que en (1), en vez de entornos, podemos usar sólo bolas abiertas,

$$\{x_n\} \to x \iff [\forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \ge m \Rightarrow d(x_n, x) < \varepsilon]$$
 (2)

- 2. Conocer y comprender los siguientes resultados:
 - a) Caracterización de la topología de un espacio métrico mediante las sucesiones convergentes.

Es muy importante observar que la convergencia de sucesiones determina la topología de cualquier espacio métrico:

En todo espacio métrico E, un punto $x \in E$ es adherente a un conjunto $A \subset E$ si, y sólo si, existe una sucesión de puntos de A que converge a x.

Si $x \in \overline{A}$, para cada $n \in \mathbb{N}$ podemos tomar $x_n \in B(x, 1/n) \cap A$, obteniendo una sucesión $\{x_n\}$ de puntos de A tal que $\{d(x_n, x)\} \to 0$, luego $\{x_n\} \to x$. Pero recíprocamente, si $\{x_n\} \to x$ con $x_n \in A$ para todo $n \in \mathbb{N}$, es obvio que $U \cap A \neq \emptyset$ para todo $U \in \mathcal{U}(x)$, luego $x \in A$.

Deducimos que un conjunto $A \subset E$ es cerrado si, y sólo si, A contiene a los límites de todas las sucesiones de puntos de A que sean convergentes. Así pues, la topología

de un espacio métrico queda caracterizada por la convergencia de sucesiones: si conocemos la convergencia de sucesiones, conocemos los conjuntos cerrados, luego conocemos la topología.

b) Criterio de equivalencia entre dos distancias, basado en la convergencia de sucesiones

Si d_1 y d_2 son dos distancias en un conjunto E, equivalen las afirmaciones siquientes:

- (I). La topología generada por d_1 está incluida en la generada por d_2 .
- (II). Toda sucesión convergente para la distancia d₂ es convergente para d₁
 Por tanto, d₁ y d₂ son equivalentes si, y sólo si, dan lugar a las mismas sucesiones convergentes
- (I) \Rightarrow (II). Sea $\{x_n\}$ una sucesión de puntos de E y supongamos que $\{x_n\} \to x \in E$ para la distancia d_2 . Si U es un entorno de x para la distancia d_1 , aplicando (I) tenemos que U también es entorno de x para d_2 . Por tanto, existe $m \in \mathbb{N}$ tal que $x_n \in U$ para $n \geq m$, y esto nos dice que $\{x_n\} \to x$ para la distancia d_1 .
- (II) \Rightarrow (I). Si $A \subset E$ es cerrado para d_1 , bastará ver que también lo es para d_2 . Sea pues x un punto adherente al conjunto A para d_2 y veamos que $x \in A$. Por el resultado anterior, existe una sucesión $\{x_n\}$ de puntos de A tal que $\{d_2(x_n,x)\} \to 0$. Tomamos $y_{2n-1} = x_n$ e $y_{2n} = x$ para todo $n \in \mathbb{N}$, con lo que también tenemos que $\{d_2(y_n,x)\} \to 0$. Aplicando (II) sabemos que la sucesión $\{y_n\}$ es convergente para la distancia d_1 , pero su límite no puede ser otro que x, puesto que $y_{2n} = x$ para todo $n \in \mathbb{N}$. Así pues, tenemos $\{d_1(y_n,x)\} \to 0$, de donde deducimos que $\{d_1(x_n,x)\} = \{d_1(y_{2n-1},x)\} \to 0$. Por ser A cerrado para d_1 , concluimos que $x \in A$, como se quería.
- 3. Conocer el criterio para la equivalencia de dos normas, incluida su demostración, y conocer la forma en que se usa para definir la topología usual de \mathbb{R}^N .

Se dice que dos distancias en un conjunto E son **equivalentes**, cuando generan la misma topología, es decir, los conjuntos abiertos para ambas distancias son los mismos. Decimos que dos normas en un mismo espacio vectorial X son *equivalentes* cuando lo son las distancias asociadas, esto es, cuando las topologías de ambas normas coinciden.

Para dos normas $||\cdot||_1$ y $||\cdot||_2$ definidas en un mismo espacio vectorial X, las siguientes afirmaciones son equivalentes:

- (I) Existe una constante $\rho \in \mathbb{R}^+$ tal que $||x||_2 \le \rho ||x||_1$ para todo $x \in X$.
- (II) La topología de la norma $||\cdot||_2$ está incluida en la de $||\cdot||_1$.

Para la demostración, dados $x \in X$ y $r \in \mathbb{R}^+$, denotamos por $B_1(x,r)$ y $B_2(x,r)$ a las bolas abiertas de centro x y radio r para las normas $||\cdot||_1$ y $||\cdot||_2$, respectivamente.

(I) \Rightarrow (II). Si U es un conjunto abierto para la norma $||\cdot||_2$, para cada $x \in U$ existe $\varepsilon > 0$ tal que $B_2(x,\varepsilon) \subset U$. de (I) deducimos entonces claramente que $B_1(x,\varepsilon/\rho) \subset B_2(x,\varepsilon) \subset U$, luego U es abierto para la norma $||\cdot||_1$, como queríamos.

(II) \Rightarrow (I). Como $B_2(0,1)$ es abierto para $||\cdot||_2$, también lo es para $||\cdot||_1$, luego existe $\delta > 0$ tal que $B_1(0,\delta) \subset B_2(0,1)$. Tomando $\rho = 1/\delta > 0$ conseguimos la desigualdad buscada. En efecto, si $x \in X$ verificase que $||x|| > \rho ||x||_1$, tomando $y = x/||x||_2$ tendríamos

$$||y||_1 = \frac{||x||_1}{||x||_2} < \frac{1}{\rho} = \delta$$

de donde $||y||_2 < 1$, lo cual es una contradicción, puesto que claramente $||y||_2 = 1$. Así, pues, tenemos $||x||_2 \le \rho ||x||_1$ para todo $x \in X$.

Aplicando el criterio antes obtenido, vemos fácilmente que las tres normas que hasta ahora hemos considerado en \mathbb{R}^N son equivalentes:

• En \mathbb{R}^n , la norma euclídea, la de la suma y la del máximo, son equivalentes.

La relación entre la norma del máximo $||\cdot||_{\infty}$ y la de la suma $||\cdot||_{1}$ es evidente:

$$||x||_{\infty} \le ||x||_1 \le N||x||_{\infty} \qquad \forall x \in \mathbb{R}^N$$

Para la norma euclídea $||\cdot||$, el razonamiento es también evidente, incluso mejorando la segunda desigualdad:

$$||x||_{\infty} \le ||x|| \le N^{1/2} ||x||_{\infty} \qquad \forall x \in \mathbb{R}^N$$

Por supuesto, la norma euclídea y la de la suma son equivalentes, pues hemos visto que ambas son equivalentes a la del máximo.

La topología común a las tres normas cuya equivalencia acabamos de comprobar, se conoce como **topología usual** de \mathbb{R}^N , por ser la que siempre se usa en \mathbb{R}^N . A sus elementos se les llama simplemente **abiertos** de \mathbb{R}^N . Usando la norma del máximo obtenemos ahora una útil descripción de los mismos.

• Si U_1, U_2, \ldots, U_N son abiertos de \mathbb{R} , entonces el producto cartesiano $U = \prod_{k=1}^N U_k$ es un abierto de \mathbb{R}^N . DE hecho, todo abierto de \mathbb{R}^N se puede expresar como unión de una familia de productos cartesianos de abiertos de \mathbb{R} .