5_Verification of Onsager Relations_Irreversible Thermodynamics

Link: https://www.youtube.com/watch?
v=PAWX0WUoHWg&list=PLdBDmcnzLC_ZMUWMdy7SmcTgnnzyiRpql&index=5">JMUWMdy7SmcTgnnzyiRpql&index=5

In both kinetic & Thermodynamic way.

$$A \rightleftharpoons \begin{matrix} k_1 \\ \hline k_{-1} \end{matrix} B$$

$$-\frac{dC_A}{dt} = k_1 C_A - k_{-1} C_B$$

$$\frac{dC_B}{dt} = k_1 C_A - k_{-1} C_B$$

Local Equilibrium Postulate:

In irreversible Thermodynamics, no are considering that our system is divided into large numbers of very small systems and these small systems are under their own equilibrium

@ Equilibrium,
$$\int_{Ch} = -\frac{dC_{a}}{dt} = \frac{dC_{B}}{dt} = 0$$

Macroscopic
Chemical reaction rate.

Hence, we can write
$$k_1 C_A^e = k_{-1} C_B^e$$
Equilibrium
$$Constant \\ ration \rightarrow \mathcal{K} = \frac{k_1}{k_{-1}} = \frac{C_B^e}{C_A^e}$$

If α is the extent to which $\alpha = C_A - C_A^e$, $\alpha_B = C_B - C_B^e$ the reaction has reacted.

If we assumed that when thermodynamic equilibrium is attained, χ moles of A have been consumed to form χ moles of B

We then get $C_A^e = C_A - \chi$, $C_B^e = C_B + \chi$ 0 0 $C_A^e + C_B^e = C_A - \chi + C_B + \chi = C_A + C_B$

Thus,
$$CA + CB = CA - CA^e + CB - CB^e$$

= $CCA + CB) - CCA^e + CB^e = 0$

Hence $\alpha_A = -\alpha_B$