

The XOR Gate

$$A \longrightarrow = 1$$
 X

The **XOR** gate produces a HIGH output only when both inputs are at opposite logic levels. The truth table is

Inputs	Output
A B	X
0 0	0
0 1	1
1 0	1
1 1	0

The **XOR** operation is written as $X = \overline{AB} + A\overline{B}$. Alternatively, it can be written with a circled plus sign between the variables as $X = A \oplus B$.

The XOR Gate

$$A \longrightarrow X$$

$$A \longrightarrow B \longrightarrow X$$

Example waveforms:

Notice that the XOR gate will produce a HIGH only when exactly one input is HIGH.

Question

If the A and B waveforms are both inverted for the above waveforms, how is the output affected?

Solution

Summary

The XNOR Gate

$$A \longrightarrow B \longrightarrow X$$

The **XNOR** gate produces a HIGH output only when both inputs are at the same logic level. The truth table is

Inputs	Output
A B	X
0 0	1
0 1	0
1 0	0
1 1	1

The **XNOR** operation shown as $X = \overline{AB} + AB$. Alternatively, the XNOR operation can be shown with a circled dot between the variables. Thus, it can be shown as $X = A \odot B$.

Summary

The XNOR Gate

$$A \longrightarrow B \longrightarrow X$$

Example waveforms:

Notice that the XNOR gate will produce a HIGH when both inputs are the same. This makes it useful for comparison functions.

Question

If the A waveform is inverted but B remains the same, how is the output affected?

Solution

100

EXAMPLE 3-20

Determine the output waveforms for the XOR gate and for the XNOR gate, given the input waveforms, *A* and *B*, in Figure 3–47.

Note: Active states are shown in yellow.

Selected Key Terms

Inverter A logic circuit that inverts or complements its

inputs.

Truth table A table showing the inputs and corresponding

output(s) of a logic circuit.

Timing A diagram of waveforms showing the proper time

diagram relationship of all of the waveforms.

Boolean The mathematics of logic circuits.

algebra

AND gate A logic gate that produces a HIGH output only

when all of its inputs are HIGH.

Selected Key Terms

OR gate A logic gate that produces a HIGH output when

one or more inputs are HIGH.

NAND gate A logic gate that produces a LOW output only

when all of its inputs are HIGH.

NOR gate A logic gate that produces a LOW output when one

or more inputs are HIGH.

Exclusive-OR A logic gate that produces a HIGH output only

gate when its two inputs are at opposite levels.

Exclusive-NOR A logic gate that produces a LOW output only

gate when its two inputs are at opposite levels.