Deep Learning

Deep Learning

Why is deep learning a growing trend?

- few feature engineering
- state-of-the-art performance

Deep Learning

Deep Learning Heroes

Geoffrey Hinton

Yann LeCun

Andrew Ng

<u>Yoshua Bengio</u>

Lectures for Neural Network

Neural Networks for Machine Learning - University of Toronto

Lectures for Neural Network

Machine Learning - Stanford University

Game Al

Face Detection & Recognition

Object Detection & Recognition

Image Captioning

https://github.com/yunjey/show-attend-and-tell

Image Captioning

DenseCap: Fully Convolutional Localization Networks for Dense Captioning

Machine Translation

X_1	X_2	J
0	0	(
0	1	1
1	0	1
1	1	1

XOR Gate

Is it possible to solve XOR problem using a single layer perceptron?

No. Single layer perceptron can only solve linear problem. XOR problem is non-linear.

XOR Gate			
X_1	X_2	У	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Multi Layer Perceptron

But if we use 2 single layer perceptron, we can solve XOR problem. This model is called multi layer perceptron.

input layer hidden layer output layer

Multi Layer Perceptron

Neural Network Architecture

"2-layer Neural Network" or "1-hidden-layer Neural Network"

"3-layer Neural Network" or
"2-hidden-layer Neural Network"

Forward Propagation

 a_i^j : "activation" of i-th unit in j-th layer

 $\Theta^{(j)}$: matrix of weights controlling function mapping form j-th layer to (j+1)-th layer

input layer

hidden layer

output layer

Forward Propagation

$$Z_1^{(2)} = \Theta_{10}^{(1)} X_0 + \Theta_{11}^{(1)} X_1 + \Theta_{12}^{(1)} X_2$$

$$a_1^{(2)} = g(z_1^{(2)})$$

$$g(x) = \frac{1}{1 + e^{-x}}$$

logistic sigmoid

Gradient Descent

compute
$$\frac{\partial J}{\partial \theta_0}$$
 and $\frac{\partial J}{\partial \theta_1}$

update weights with

$$\theta_0 := \theta_0 - \alpha \cdot \frac{\partial J}{\partial \theta_0}$$

$$\theta_1 := \theta_1 - \alpha \cdot \frac{\partial J}{\partial \theta_1}$$

Gradient "descent" optimization with learning rate 'alpha' (e.g. 0.01)

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

 $\frac{\partial f}{\partial y}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

 $\frac{\partial f}{\partial x}$