- exactly 3 distinct literals. Whether p = 0 or p = 1, one of the clauses is equivalent to $l_1 \lor l_2$, and the other evaluates to 1, which is the identity for AND.
- If C_i has just 1 distinct literal l, then include $(l \lor p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor q) \land (l \lor \neg p \lor \neg q)$ as clauses of ϕ''' . Regardless of the values of p and q, one of the four clauses is equivalent to l, and the other 3 evaluate to 1.

We can see that the 3-CNF formula ϕ''' is satisfiable if and only if ϕ is satisfiable by inspecting each of the three steps. Like the reduction from CIRCUIT-SAT to SAT, the construction of ϕ' from ϕ in the first step preserves satisfiability. The second step produces a CNF formula ϕ'' that is algebraically equivalent to ϕ' . The third step produces a 3-CNF formula ϕ''' that is effectively equivalent to ϕ'' , since any assignment to the variables p and q produces a formula that is algebraically equivalent to ϕ'' .

We must also show that the reduction can be computed in polynomial time. Constructing ϕ' from ϕ introduces at most 1 variable and 1 clause per connective in ϕ . Constructing ϕ'' from ϕ' can introduce at most 8 clauses into ϕ'' for each clause from ϕ' , since each clause of ϕ' has at most 3 variables, and the truth table for each clause has at most $2^3 = 8$ rows. The construction of ϕ''' from ϕ'' introduces at most 4 clauses into ϕ''' for each clause of ϕ'' . Thus, the size of the resulting formula ϕ''' is polynomial in the length of the original formula. Each of the constructions can easily be accomplished in polynomial time.

Exercises

34.4-1

Consider the straightforward (nonpolynomial-time) reduction in the proof of Theorem 34.9. Describe a circuit of size n that, when converted to a formula by this method, yields a formula whose size is exponential in n.

34.4-2

Show the 3-CNF formula that results when we use the method of Theorem 34.10 on the formula (34.3).

34.4-3

Professor Jagger proposes to show that SAT \leq_P 3-CNF-SAT by using only the truth-table technique in the proof of Theorem 34.10, and not the other steps. That is, the professor proposes to take the boolean formula ϕ , form a truth table for its variables, derive from the truth table a formula in 3-DNF that is equivalent to $\neg \phi$, and then negate and apply DeMorgan's laws to produce a 3-CNF formula equivalent to ϕ . Show that this strategy does not yield a polynomial-time reduction.

34.4-4

Show that the problem of determining whether a boolean formula is a tautology is complete for co-NP. (*Hint:* See Exercise 34.3-7.)

34.4-5

Show that the problem of determining the satisfiability of boolean formulas in disjunctive normal form is polynomial-time solvable.

34.4-6

Suppose that someone gives you a polynomial-time algorithm to decide formula satisfiability. Describe how to use this algorithm to find satisfying assignments in polynomial time.

34.4-7

Let 2-CNF-SAT be the set of satisfiable boolean formulas in CNF with exactly 2 literals per clause. Show that 2-CNF-SAT \in P. Make your algorithm as efficient as possible. (*Hint:* Observe that $x \lor y$ is equivalent to $\neg x \to y$. Reduce 2-CNF-SAT to an efficiently solvable problem on a directed graph.)

34.5 NP-complete problems

NP-complete problems arise in diverse domains: boolean logic, graphs, arithmetic, network design, sets and partitions, storage and retrieval, sequencing and scheduling, mathematical programming, algebra and number theory, games and puzzles, automata and language theory, program optimization, biology, chemistry, physics, and more. In this section, we shall use the reduction methodology to provide NP-completeness proofs for a variety of problems drawn from graph theory and set partitioning.

Figure 34.13 outlines the structure of the NP-completeness proofs in this section and Section 34.4. We prove each language in the figure to be NP-complete by reduction from the language that points to it. At the root is CIRCUIT-SAT, which we proved NP-complete in Theorem 34.7.

34.5.1 The clique problem

A *clique* in an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices, each pair of which is connected by an edge in E. In other words, a clique is a complete subgraph of G. The *size* of a clique is the number of vertices it contains. The *clique problem* is the optimization problem of finding a clique of maximum size in

Figure 34.13 The structure of NP-completeness proofs in Sections 34.4 and 34.5. All proofs ultimately follow by reduction from the NP-completeness of CIRCUIT-SAT.

a graph. As a decision problem, we ask simply whether a clique of a given size k exists in the graph. The formal definition is

CLIQUE = $\{(G, k) : G \text{ is a graph containing a clique of size } k\}$.

A naive algorithm for determining whether a graph G=(V,E) with |V| vertices has a clique of size k is to list all k-subsets of V, and check each one to see whether it forms a clique. The running time of this algorithm is $\Omega(k^2\binom{|V|}{k})$, which is polynomial if k is a constant. In general, however, k could be near |V|/2, in which case the algorithm runs in superpolynomial time. Indeed, an efficient algorithm for the clique problem is unlikely to exist.

Theorem 34.11

The clique problem is NP-complete.

Proof To show that CLIQUE \in NP, for a given graph G = (V, E), we use the set $V' \subseteq V$ of vertices in the clique as a certificate for G. We can check whether V' is a clique in polynomial time by checking whether, for each pair $u, v \in V'$, the edge (u, v) belongs to E.

We next prove that 3-CNF-SAT \leq_P CLIQUE, which shows that the clique problem is NP-hard. You might be surprised that we should be able to prove such a result, since on the surface logical formulas seem to have little to do with graphs.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$ be a boolean formula in 3-CNF with k clauses. For $r = C_1 \wedge C_2 \wedge \cdots \wedge C_k$

Figure 34.14 The graph G derived from the 3-CNF formula $\phi = C_1 \wedge C_2 \wedge C_3$, where $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3)$, $C_2 = (\neg x_1 \vee x_2 \vee x_3)$, and $C_3 = (x_1 \vee x_2 \vee x_3)$, in reducing 3-CNF-SAT to CLIQUE. A satisfying assignment of the formula has $x_2 = 0$, $x_3 = 1$, and x_1 either 0 or 1. This assignment satisfies C_1 with $\neg x_2$, and it satisfies C_2 and C_3 with x_3 , corresponding to the clique with lightly shaded vertices.

 $1, 2, \ldots, k$, each clause C_r has exactly three distinct literals l_1^r, l_2^r , and l_3^r . We shall construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k. We construct the graph G = (V, E) as follows. For each clause $C_r = (l_1^r \vee l_2^r \vee l_3^r)$ in ϕ , we place a triple of vertices v_1^r, v_2^r , and v_3^r into V. We put an edge between two vertices v_i^r and v_j^s if both of the following hold:

- v_i^r and v_i^s are in different triples, that is, $r \neq s$, and
- their corresponding literals are *consistent*, that is, l_i^r is not the negation of l_j^s .

We can easily build this graph from ϕ in polynomial time. As an example of this construction, if we have

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3),$$

then G is the graph shown in Figure 34.14.

We must show that this transformation of ϕ into G is a reduction. First, suppose that ϕ has a satisfying assignment. Then each clause C_r contains at least one literal l_i^r that is assigned 1, and each such literal corresponds to a vertex v_i^r . Picking one such "true" literal from each clause yields a set V' of k vertices. We claim that V' is a clique. For any two vertices v_i^r , $v_j^s \in V'$, where $r \neq s$, both corresponding literals l_i^r and l_j^s map to 1 by the given satisfying assignment, and thus the literals

cannot be complements. Thus, by the construction of G, the edge (v_i^r, v_j^s) belongs to E.

Conversely, suppose that G has a clique V' of size k. No edges in G connect vertices in the same triple, and so V' contains exactly one vertex per triple. We can assign 1 to each literal l_i^r such that $v_i^r \in V'$ without fear of assigning 1 to both a literal and its complement, since G contains no edges between inconsistent literals. Each clause is satisfied, and so ϕ is satisfied. (Any variables that do not correspond to a vertex in the clique may be set arbitrarily.)

In the example of Figure 34.14, a satisfying assignment of ϕ has $x_2 = 0$ and $x_3 = 1$. A corresponding clique of size k = 3 consists of the vertices corresponding to $\neg x_2$ from the first clause, x_3 from the second clause, and x_3 from the third clause. Because the clique contains no vertices corresponding to either x_1 or $\neg x_1$, we can set x_1 to either 0 or 1 in this satisfying assignment.

Observe that in the proof of Theorem 34.11, we reduced an arbitrary instance of 3-CNF-SAT to an instance of CLIQUE with a particular structure. You might think that we have shown only that CLIQUE is NP-hard in graphs in which the vertices are restricted to occur in triples and in which there are no edges between vertices in the same triple. Indeed, we have shown that CLIQUE is NP-hard only in this restricted case, but this proof suffices to show that CLIQUE is NP-hard in general graphs. Why? If we had a polynomial-time algorithm that solved CLIQUE on general graphs, it would also solve CLIQUE on restricted graphs.

The opposite approach—reducing instances of 3-CNF-SAT with a special structure to general instances of CLIQUE—would not have sufficed, however. Why not? Perhaps the instances of 3-CNF-SAT that we chose to reduce from were "easy," and so we would not have reduced an NP-hard problem to CLIQUE.

Observe also that the reduction used the instance of 3-CNF-SAT, but not the solution. We would have erred if the polynomial-time reduction had relied on knowing whether the formula ϕ is satisfiable, since we do not know how to decide whether ϕ is satisfiable in polynomial time.

34.5.2 The vertex-cover problem

A *vertex cover* of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ (or both). That is, each vertex "covers" its incident edges, and a vertex cover for G is a set of vertices that covers all the edges in E. The *size* of a vertex cover is the number of vertices in it. For example, the graph in Figure 34.15(b) has a vertex cover $\{w, z\}$ of size 2.

The *vertex-cover problem* is to find a vertex cover of minimum size in a given graph. Restating this optimization problem as a decision problem, we wish to

Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G = (V, E) with clique $V' = \{u, v, x, y\}$. (b) The graph \overline{G} produced by the reduction algorithm that has vertex cover $V - V' = \{w, z\}$.

determine whether a graph has a vertex cover of a given size k. As a language, we define

VERTEX-COVER = $\{\langle G, k \rangle : \text{graph } G \text{ has a vertex cover of size } k \}$.

The following theorem shows that this problem is NP-complete.

Theorem 34.12

The vertex-cover problem is NP-complete.

Proof We first show that VERTEX-COVER \in NP. Suppose we are given a graph G = (V, E) and an integer k. The certificate we choose is the vertex cover $V' \subseteq V$ itself. The verification algorithm affirms that |V'| = k, and then it checks, for each edge $(u, v) \in E$, that $u \in V'$ or $v \in V'$. We can easily verify the certificate in polynomial time.

We prove that the vertex-cover problem is NP-hard by showing that CLIQUE \leq_P VERTEX-COVER. This reduction relies on the notion of the "complement" of a graph. Given an undirected graph G = (V, E), we define the *complement* of G as $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{(u, v) : u, v \in V, u \neq v, \text{ and } (u, v) \notin E\}$. In other words, \overline{G} is the graph containing exactly those edges that are not in G. Figure 34.15 shows a graph and its complement and illustrates the reduction from CLIQUE to VERTEX-COVER.

The reduction algorithm takes as input an instance $\langle G, k \rangle$ of the clique problem. It computes the complement \overline{G} , which we can easily do in polynomial time. The output of the reduction algorithm is the instance $\langle \overline{G}, |V| - k \rangle$ of the vertex-cover problem. To complete the proof, we show that this transformation is indeed a

reduction: the graph G has a clique of size k if and only if the graph \overline{G} has a vertex cover of size |V| - k.

Suppose that \underline{G} has a clique $V' \subseteq V$ with $|\underline{V'}| = k$. We claim that V - V' is a vertex cover in \overline{G} . Let (u, v) be any edge in \overline{E} . Then, $(u, v) \not\in E$, which implies that at least one of u or v does not belong to V', since every pair of vertices in V' is connected by an edge of E. Equivalently, at least one of u or v is in V - V', which means that edge (u, v) is covered by V - V'. Since (u, v) was chosen arbitrarily from \overline{E} , every edge of \overline{E} is covered by a vertex in V - V'. Hence, the set V - V', which has size |V| - k, forms a vertex cover for \overline{G} .

Conversely, suppose that \overline{G} has a vertex cover $V' \subseteq V$, where |V'| = |V| - k. Then, for all $u, v \in V$, if $(u, v) \in \overline{E}$, then $u \in V'$ or $v \in V'$ or both. The contrapositive of this implication is that for all $u, v \in V$, if $u \notin V'$ and $v \notin V'$, then $(u, v) \in E$. In other words, V - V' is a clique, and it has size |V| - |V'| = k.

Since VERTEX-COVER is NP-complete, we don't expect to find a polynomial-time algorithm for finding a minimum-size vertex cover. Section 35.1 presents a polynomial-time "approximation algorithm," however, which produces "approximate" solutions for the vertex-cover problem. The size of a vertex cover produced by the algorithm is at most twice the minimum size of a vertex cover.

Thus, we shouldn't give up hope just because a problem is NP-complete. We may be able to design a polynomial-time approximation algorithm that obtains near-optimal solutions, even though finding an optimal solution is NP-complete. Chapter 35 gives several approximation algorithms for NP-complete problems.

34.5.3 The hamiltonian-cycle problem

We now return to the hamiltonian-cycle problem defined in Section 34.2.

Theorem 34.13

The hamiltonian cycle problem is NP-complete.

Proof We first show that HAM-CYCLE belongs to NP. Given a graph G = (V, E), our certificate is the sequence of |V| vertices that makes up the hamiltonian cycle. The verification algorithm checks that this sequence contains each vertex in V exactly once and that with the first vertex repeated at the end, it forms a cycle in G. That is, it checks that there is an edge between each pair of consecutive vertices and between the first and last vertices. We can verify the certificate in polynomial time.

We now prove that VERTEX-COVER \leq_P HAM-CYCLE, which shows that HAM-CYCLE is NP-complete. Given an undirected graph G = (V, E) and an

Figure 34.16 The widget used in reducing the vertex-cover problem to the hamiltonian-cycle problem. An edge (u, v) of graph G corresponds to widget W_{uv} in the graph G' created in the reduction. (a) The widget, with individual vertices labeled. (b)–(d) The shaded paths are the only possible ones through the widget that include all vertices, assuming that the only connections from the widget to the remainder of G' are through vertices [u, v, 1], [u, v, 6], [v, u, 1], and [v, u, 6].

integer k, we construct an undirected graph G' = (V', E') that has a hamiltonian cycle if and only if G has a vertex cover of size k.

Our construction uses a *widget*, which is a piece of a graph that enforces certain properties. Figure 34.16(a) shows the widget we use. For each edge $(u, v) \in E$, the graph G' that we construct will contain one copy of this widget, which we denote by W_{uv} . We denote each vertex in W_{uv} by [u, v, i] or [v, u, i], where $1 \le i \le 6$, so that each widget W_{uv} contains 12 vertices. Widget W_{uv} also contains the 14 edges shown in Figure 34.16(a).

Along with the internal structure of the widget, we enforce the properties we want by limiting the connections between the widget and the remainder of the graph G' that we construct. In particular, only vertices [u, v, 1], [u, v, 6], [v, u, 1],and [v, u, 6] will have edges incident from outside W_{uv} . Any hamiltonian cycle of G' must traverse the edges of W_{uv} in one of the three ways shown in Figures 34.16(b)–(d). If the cycle enters through vertex [u, v, 1], it must exit through vertex [u, v, 6], and it either visits all 12 of the widget's vertices (Figure 34.16(b)) or the six vertices [u, v, 1] through [u, v, 6] (Figure 34.16(c)). In the latter case, the cycle will have to reenter the widget to visit vertices [v, u, 1] through [v, u, 6]. Similarly, if the cycle enters through vertex [v, u, 1], it must exit through vertex $[\nu, u, 6]$, and it either visits all 12 of the widget's vertices (Figure 34.16(d)) or the six vertices $[\nu, u, 1]$ through $[\nu, u, 6]$ (Figure 34.16(c)). No other paths through the widget that visit all 12 vertices are possible. In particular, it is impossible to construct two vertex-disjoint paths, one of which connects [u, v, 1] to [v, u, 6] and the other of which connects [v, u, 1] to [u, v, 6], such that the union of the two paths contains all of the widget's vertices.

Figure 34.17 Reducing an instance of the vertex-cover problem to an instance of the hamiltonian-cycle problem. (a) An undirected graph G with a vertex cover of size 2, consisting of the lightly shaded vertices w and y. (b) The undirected graph G' produced by the reduction, with the hamiltonian path corresponding to the vertex cover shaded. The vertex cover $\{w, y\}$ corresponds to edges $(s_1, [w, x, 1])$ and $(s_2, [y, x, 1])$ appearing in the hamiltonian cycle.

The only other vertices in V' other than those of widgets are **selector vertices** s_1, s_2, \ldots, s_k . We use edges incident on selector vertices in G' to select the k vertices of the cover in G.

In addition to the edges in widgets, E' contains two other types of edges, which Figure 34.17 shows. First, for each vertex $u \in V$, we add edges to join pairs of widgets in order to form a path containing all widgets corresponding to edges incident on u in G. We arbitrarily order the vertices adjacent to each vertex $u \in V$ as $u^{(1)}, u^{(2)}, \ldots, u^{(\deg \operatorname{ree}(u))}$, where $\deg \operatorname{ree}(u)$ is the number of vertices adjacent to u. We create a path in G' through all the widgets corresponding to edges incident on u by adding to E' the edges $\{([u, u^{(i)}, 6], [u, u^{(i+1)}, 1]) : 1 \le i \le \operatorname{degree}(u) - 1\}$. In Figure 34.17, for example, we order the vertices adjacent to u as u, u, u, u, and so graph u in part u of the figure includes the edges

([w, x, 6], [w, y, 1]) and ([w, y, 6], [w, z, 1]). For each vertex $u \in V$, these edges in G' fill in a path containing all widgets corresponding to edges incident on u in G.

The intuition behind these edges is that if we choose a vertex $u \in V$ in the vertex cover of G, we can construct a path from $[u, u^{(1)}, 1]$ to $[u, u^{(\text{degree}(u))}, 6]$ in G' that "covers" all widgets corresponding to edges incident on u. That is, for each of these widgets, say $W_{u,u^{(i)}}$, the path either includes all 12 vertices (if u is in the vertex cover but $u^{(i)}$ is not) or just the six vertices $[u, u^{(i)}, 1], [u, u^{(i)}, 2], \ldots, [u, u^{(i)}, 6]$ (if both u and $u^{(i)}$ are in the vertex cover).

The final type of edge in E' joins the first vertex $[u, u^{(1)}, 1]$ and the last vertex $[u, u^{(\text{degree}(u))}, 6]$ of each of these paths to each of the selector vertices. That is, we include the edges

$$\{(s_j, [u, u^{(1)}, 1]) : u \in V \text{ and } 1 \le j \le k\}$$

 $\cup \{(s_j, [u, u^{(\text{degree}(u))}, 6]) : u \in V \text{ and } 1 \le j \le k\}.$

Next, we show that the size of G' is polynomial in the size of G, and hence we can construct G' in time polynomial in the size of G. The vertices of G' are those in the widgets, plus the selector vertices. With 12 vertices per widget, plus $k \leq |V|$ selector vertices, we have a total of

$$|V'| = 12 |E| + k$$

 $\leq 12 |E| + |V|$

vertices. The edges of G' are those in the widgets, those that go between widgets, and those connecting selector vertices to widgets. Each widget contains 14 edges, totaling 14 |E| in all widgets. For each vertex $u \in V$, graph G' has degree(u) - 1 edges going between widgets, so that summed over all vertices in V,

$$\sum_{u \in V} (\text{degree}(u) - 1) = 2 |E| - |V|$$

edges go between widgets. Finally, G' has two edges for each pair consisting of a selector vertex and a vertex of V, totaling 2k |V| such edges. The total number of edges of G' is therefore

$$|E'| = (14 |E|) + (2 |E| - |V|) + (2k |V|)$$

$$= 16 |E| + (2k - 1) |V|$$

$$\leq 16 |E| + (2 |V| - 1) |V|.$$

Now we show that the transformation from graph G to G' is a reduction. That is, we must show that G has a vertex cover of size k if and only if G' has a hamiltonian cycle.

Suppose that G=(V,E) has a vertex cover $V^*\subseteq V$ of size k. Let $V^*=\{u_1,u_2,\ldots,u_k\}$. As Figure 34.17 shows, we form a hamiltonian cycle in G' by including the following edges 10 for each vertex $u_j\in V^*$. Include edges $\{([u_j,u_j^{(i)},6],[u_j,u_j^{(i+1)},1]):1\leq i\leq \text{degree}(u_j)-1\}$, which connect all widgets corresponding to edges incident on u_j . We also include the edges within these widgets as Figures 34.16(b)–(d) show, depending on whether the edge is covered by one or two vertices in V^* . The hamiltonian cycle also includes the edges

$$\{(s_{j}, [u_{j}, u_{j}^{(1)}, 1]) : 1 \leq j \leq k\}$$

$$\cup \{(s_{j+1}, [u_{j}, u_{j}^{(\text{degree}(u_{j}))}, 6]) : 1 \leq j \leq k-1\}$$

$$\cup \{(s_{1}, [u_{k}, u_{k}^{(\text{degree}(u_{k}))}, 6])\}.$$

By inspecting Figure 34.17, you can verify that these edges form a cycle. The cycle starts at s_1 , visits all widgets corresponding to edges incident on u_1 , then visits s_2 , visits all widgets corresponding to edges incident on u_2 , and so on, until it returns to s_1 . The cycle visits each widget either once or twice, depending on whether one or two vertices of V^* cover its corresponding edge. Because V^* is a vertex cover for G, each edge in E is incident on some vertex in V^* , and so the cycle visits each vertex in each widget of G'. Because the cycle also visits every selector vertex, it is hamiltonian.

Conversely, suppose that G' = (V', E') has a hamiltonian cycle $C \subseteq E'$. We claim that the set

$$V^* = \{ u \in V : (s_j, [u, u^{(1)}, 1]) \in C \text{ for some } 1 \le j \le k \}$$
(34.4)

is a vertex cover for G. To see why, partition C into maximal paths that start at some selector vertex s_i , traverse an edge $(s_i, [u, u^{(1)}, 1])$ for some $u \in V$, and end at a selector vertex s_j without passing through any other selector vertex. Let us call each such path a "cover path." From how G' is constructed, each cover path must start at some s_i , take the edge $(s_i, [u, u^{(1)}, 1])$ for some vertex $u \in V$, pass through all the widgets corresponding to edges in E incident on u, and then end at some selector vertex s_j . We refer to this cover path as p_u , and by equation (34.4), we put u into V^* . Each widget visited by p_u must be W_{uv} or W_{vu} for some $v \in V$. For each widget visited by p_u , its vertices are visited by either one or two cover paths. If they are visited by one cover path, then edge $(u, v) \in E$ is covered in G by vertex u. If two cover paths visit the widget, then the other cover path must be p_v , which implies that $v \in V^*$, and edge $(u, v) \in E$ is covered by both u and v.

¹⁰Technically, we define a cycle in terms of vertices rather than edges (see Section B.4). In the interest of clarity, we abuse notation here and define the hamiltonian cycle in terms of edges.

Figure 34.18 An instance of the traveling-salesman problem. Shaded edges represent a minimum-cost tour, with cost 7.

Because each vertex in each widget is visited by some cover path, we see that each edge in E is covered by some vertex in V^* .

34.5.4 The traveling-salesman problem

In the *traveling-salesman problem*, which is closely related to the hamiltonian-cycle problem, a salesman must visit n cities. Modeling the problem as a complete graph with n vertices, we can say that the salesman wishes to make a *tour*, or hamiltonian cycle, visiting each city exactly once and finishing at the city he starts from. The salesman incurs a nonnegative integer cost c(i, j) to travel from city i to city j, and the salesman wishes to make the tour whose total cost is minimum, where the total cost is the sum of the individual costs along the edges of the tour. For example, in Figure 34.18, a minimum-cost tour is $\langle u, w, v, x, u \rangle$, with cost 7. The formal language for the corresponding decision problem is

```
TSP = \{\langle G, c, k \rangle : G = (V, E) \text{ is a complete graph,}
c \text{ is a function from } V \times V \to \mathbb{Z},
k \in \mathbb{Z}, \text{ and}
G \text{ has a traveling-salesman tour with cost at most } k \}.
```

The following theorem shows that a fast algorithm for the traveling-salesman problem is unlikely to exist.

Theorem 34.14

The traveling-salesman problem is NP-complete.

Proof We first show that TSP belongs to NP. Given an instance of the problem, we use as a certificate the sequence of n vertices in the tour. The verification algorithm checks that this sequence contains each vertex exactly once, sums up the edge costs, and checks whether the sum is at most k. This process can certainly be done in polynomial time.

To prove that TSP is NP-hard, we show that HAM-CYCLE \leq_P TSP. Let G = (V, E) be an instance of HAM-CYCLE. We construct an instance of TSP as follows. We form the complete graph G' = (V, E'), where $E' = \{(i, j) : i, j \in V \text{ and } i \neq j\}$, and we define the cost function c by

$$c(i,j) = \begin{cases} 0 & \text{if } (i,j) \in E, \\ 1 & \text{if } (i,j) \notin E. \end{cases}$$

(Note that because G is undirected, it has no self-loops, and so $c(\nu, \nu) = 1$ for all vertices $\nu \in V$.) The instance of TSP is then $\langle G', c, 0 \rangle$, which we can easily create in polynomial time.

We now show that graph G has a hamiltonian cycle if and only if graph G' has a tour of cost at most 0. Suppose that graph G has a hamiltonian cycle h. Each edge in h belongs to E and thus has cost 0 in G'. Thus, h is a tour in G' with cost 0. Conversely, suppose that graph G' has a tour h' of cost at most 0. Since the costs of the edges in E' are 0 and 1, the cost of tour h' is exactly 0 and each edge on the tour must have cost 0. Therefore, h' contains only edges in E. We conclude that h' is a hamiltonian cycle in graph G.

34.5.5 The subset-sum problem

We next consider an arithmetic NP-complete problem. In the *subset-sum problem*, we are given a finite set S of positive integers and an integer *target* t > 0. We ask whether there exists a subset $S' \subseteq S$ whose elements sum to t. For example, if $S = \{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993\}$ and t = 138457, then the subset $S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$ is a solution.

As usual, we define the problem as a language:

SUBSET-SUM =
$$\{\langle S, t \rangle : \text{there exists a subset } S' \subseteq S \text{ such that } t = \sum_{s \in S'} s \}$$
.

As with any arithmetic problem, it is important to recall that our standard encoding assumes that the input integers are coded in binary. With this assumption in mind, we can show that the subset-sum problem is unlikely to have a fast algorithm.

Theorem 34.15

The subset-sum problem is NP-complete.

Proof To show that SUBSET-SUM is in NP, for an instance $\langle S, t \rangle$ of the problem, we let the subset S' be the certificate. A verification algorithm can check whether $t = \sum_{s \in S'} s$ in polynomial time.

We now show that 3-CNF-SAT \leq_P SUBSET-SUM. Given a 3-CNF formula ϕ over variables x_1, x_2, \ldots, x_n with clauses C_1, C_2, \ldots, C_k , each containing exactly

three distinct literals, the reduction algorithm constructs an instance $\langle S, t \rangle$ of the subset-sum problem such that ϕ is satisfiable if and only if there exists a subset of S whose sum is exactly t. Without loss of generality, we make two simplifying assumptions about the formula ϕ . First, no clause contains both a variable and its negation, for such a clause is automatically satisfied by any assignment of values to the variables. Second, each variable appears in at least one clause, because it does not matter what value is assigned to a variable that appears in no clauses.

The reduction creates two numbers in set S for each variable x_i and two numbers in S for each clause C_j . We shall create numbers in base 10, where each number contains n+k digits and each digit corresponds to either one variable or one clause. Base 10 (and other bases, as we shall see) has the property we need of preventing carries from lower digits to higher digits.

As Figure 34.19 shows, we construct set S and target t as follows. We label each digit position by either a variable or a clause. The least significant k digits are labeled by the clauses, and the most significant n digits are labeled by variables.

- The target t has a 1 in each digit labeled by a variable and a 4 in each digit labeled by a clause.
- For each variable x_i , set S contains two integers v_i and v_i' . Each of v_i and v_i' has a 1 in the digit labeled by x_i and 0s in the other variable digits. If literal x_i appears in clause C_j , then the digit labeled by C_j in v_i contains a 1. If literal $\neg x_i$ appears in clause C_j , then the digit labeled by C_j in v_i' contains a 1. All other digits labeled by clauses in v_i and v_i' are 0.
 - All v_i and v_i' values in set S are unique. Why? For $l \neq i$, no v_l or v_l' values can equal v_i and v_i' in the most significant n digits. Furthermore, by our simplifying assumptions above, no v_i and v_i' can be equal in all k least significant digits. If v_i and v_i' were equal, then x_i and $\neg x_i$ would have to appear in exactly the same set of clauses. But we assume that no clause contains both x_i and $\neg x_i$ and that either x_i or $\neg x_i$ appears in some clause, and so there must be some clause C_i for which v_i and v_i' differ.
- For each clause C_j , set S contains two integers s_j and s'_j . Each of s_j and s'_j has 0s in all digits other than the one labeled by C_j . For s_j , there is a 1 in the C_j digit, and s'_j has a 2 in this digit. These integers are "slack variables," which we use to get each clause-labeled digit position to add to the target value of 4.
 - Simple inspection of Figure 34.19 demonstrates that all s_j and s'_j values in S are unique in set S.

Note that the greatest sum of digits in any one digit position is 6, which occurs in the digits labeled by clauses (three 1s from the v_i and v'_i values, plus 1 and 2 from

		x_1	χ_2	χ_3	C_1	C_2	C_3	C_4
ν_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
s_3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
S ₄	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is $\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$, where $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3)$, $C_2 = (\neg x_1 \vee \neg x_2 \vee \neg x_3)$, $C_3 = (\neg x_1 \vee \neg x_2 \vee x_3)$, and $C_4 = (x_1 \vee x_2 \vee x_3)$. A satisfying assignment of ϕ is $\langle x_1 = 0, x_2 = 0, x_3 = 1 \rangle$. The set S produced by the reduction consists of the base-10 numbers shown; reading from top to bottom, $S = \{1001001, 1000110, 100001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1, 2\}$. The target t is 1114444. The subset $S' \subseteq S$ is lightly shaded, and it contains v_1', v_2' , and v_3 , corresponding to the satisfying assignment. It also contains slack variables $s_1, s_1', s_2', s_3, s_4$, and s_4' to achieve the target value of 4 in the digits labeled by C_1 through C_4 .

the s_j and s'_j values). Interpreting these numbers in base 10, therefore, no carries can occur from lower digits to higher digits.¹¹

We can perform the reduction in polynomial time. The set S contains 2n + 2k values, each of which has n + k digits, and the time to produce each digit is polynomial in n + k. The target t has n + k digits, and the reduction produces each in constant time.

We now show that the 3-CNF formula ϕ is satisfiable if and only if there exists a subset $S' \subseteq S$ whose sum is t. First, suppose that ϕ has a satisfying assignment. For i = 1, 2, ..., n, if $x_i = 1$ in this assignment, then include v_i in S'. Otherwise, include v_i' . In other words, we include in S' exactly the v_i and v_i' values that cor-

¹¹In fact, any base b, where $b \ge 7$, would work. The instance at the beginning of this subsection is the set S and target t in Figure 34.19 interpreted in base 7, with S listed in sorted order.

respond to literals with the value 1 in the satisfying assignment. Having included either v_i or v_i' , but not both, for all i, and having put 0 in the digits labeled by variables in all s_i and s_i' , we see that for each variable-labeled digit, the sum of the values of S' must be 1, which matches those digits of the target t. Because each clause is satisfied, the clause contains some literal with the value 1. Therefore, each digit labeled by a clause has at least one 1 contributed to its sum by a v_i or v_i' value in S'. In fact, 1, 2, or 3 literals may be 1 in each clause, and so each clauselabeled digit has a sum of 1, 2, or 3 from the v_i and v_i' values in S'. In Figure 34.19 for example, literals $\neg x_1$, $\neg x_2$, and x_3 have the value 1 in a satisfying assignment. Each of clauses C_1 and C_4 contains exactly one of these literals, and so together ν'_1 , v_2' , and v_3 contribute 1 to the sum in the digits for C_1 and C_4 . Clause C_2 contains two of these literals, and ν'_1 , ν'_2 , and ν_3 contribute 2 to the sum in the digit for C_2 . Clause C_3 contains all three of these literals, and ν'_1 , ν'_2 , and ν_3 contribute 3 to the sum in the digit for C_3 . We achieve the target of 4 in each digit labeled by clause C_i by including in S' the appropriate nonempty subset of slack variables $\{s_i, s_i'\}$. In Figure 34.19, S' includes $s_1, s_1', s_2', s_3, s_4$, and s_4' . Since we have matched the target in all digits of the sum, and no carries can occur, the values of S' sum to t.

Now, suppose that there is a subset $S' \subseteq S$ that sums to t. The subset S' must include exactly one of v_i and v_i' for each $i=1,2,\ldots,n$, for otherwise the digits labeled by variables would not sum to 1. If $v_i \in S'$, we set $x_i=1$. Otherwise, $v_i' \in S'$, and we set $x_i=0$. We claim that every clause C_j , for $j=1,2,\ldots,k$, is satisfied by this assignment. To prove this claim, note that to achieve a sum of 4 in the digit labeled by C_j , the subset S' must include at least one v_i or v_i' value that has a 1 in the digit labeled by C_j , since the contributions of the slack variables s_j and s_j' together sum to at most 3. If S' includes a v_i that has a 1 in C_j 's position, then the literal x_i appears in clause C_j . Since we have set $x_i=1$ when $v_i \in S'$, clause C_j is satisfied. If S' includes a v_i' that has a 1 in that position, then the literal $\neg x_i$ appears in C_j . Since we have set $x_i=0$ when $v_i' \in S'$, clause C_j is again satisfied. Thus, all clauses of ϕ are satisfied, which completes the proof.

Exercises

34.5-1

The *subgraph-isomorphism problem* takes two undirected graphs G_1 and G_2 , and it asks whether G_1 is isomorphic to a subgraph of G_2 . Show that the subgraph-isomorphism problem is NP-complete.

34.5-2

Given an integer $m \times n$ matrix A and an integer m-vector b, the **0-1 integer-programming problem** asks whether there exists an integer n-vector x with ele-

ments in the set $\{0, 1\}$ such that $Ax \le b$. Prove that 0-1 integer programming is NP-complete. (*Hint*: Reduce from 3-CNF-SAT.)

34.5-3

The *integer linear-programming problem* is like the 0-1 integer-programming problem given in Exercise 34.5-2, except that the values of the vector x may be any integers rather than just 0 or 1. Assuming that the 0-1 integer-programming problem is NP-hard, show that the integer linear-programming problem is NP-complete.

34.5-4

Show how to solve the subset-sum problem in polynomial time if the target value *t* is expressed in unary.

34.5-5

The *set-partition problem* takes as input a set S of numbers. The question is whether the numbers can be partitioned into two sets A and $\overline{A} = S - A$ such that $\sum_{x \in A} x = \sum_{x \in \overline{A}} x$. Show that the set-partition problem is NP-complete.

34.5-6

Show that the hamiltonian-path problem is NP-complete.

34.5-7

The *longest-simple-cycle problem* is the problem of determining a simple cycle (no repeated vertices) of maximum length in a graph. Formulate a related decision problem, and show that the decision problem is NP-complete.

34.5-8

In the *half 3-CNF satisfiability* problem, we are given a 3-CNF formula ϕ with n variables and m clauses, where m is even. We wish to determine whether there exists a truth assignment to the variables of ϕ such that exactly half the clauses evaluate to 0 and exactly half the clauses evaluate to 1. Prove that the half 3-CNF satisfiability problem is NP-complete.

Problems

34-1 Independent set

An *independent set* of a graph G = (V, E) is a subset $V' \subseteq V$ of vertices such that each edge in E is incident on at most one vertex in V'. The *independent-set problem* is to find a maximum-size independent set in G.

- **a.** Formulate a related decision problem for the independent-set problem, and prove that it is NP-complete. (*Hint:* Reduce from the clique problem.)
- **b.** Suppose that you are given a "black-box" subroutine to solve the decision problem you defined in part (a). Give an algorithm to find an independent set of maximum size. The running time of your algorithm should be polynomial in |V| and |E|, counting queries to the black box as a single step.

Although the independent-set decision problem is NP-complete, certain special cases are polynomial-time solvable.

- c. Give an efficient algorithm to solve the independent-set problem when each vertex in G has degree 2. Analyze the running time, and prove that your algorithm works correctly.
- **d.** Give an efficient algorithm to solve the independent-set problem when *G* is bipartite. Analyze the running time, and prove that your algorithm works correctly. (*Hint:* Use the results of Section 26.3.)

34-2 Bonnie and Clyde

Bonnie and Clyde have just robbed a bank. They have a bag of money and want to divide it up. For each of the following scenarios, either give a polynomial-time algorithm, or prove that the problem is NP-complete. The input in each case is a list of the n items in the bag, along with the value of each.

- a. The bag contains n coins, but only 2 different denominations: some coins are worth x dollars, and some are worth y dollars. Bonnie and Clyde wish to divide the money exactly evenly.
- **b.** The bag contains *n* coins, with an arbitrary number of different denominations, but each denomination is a nonnegative integer power of 2, i.e., the possible denominations are 1 dollar, 2 dollars, 4 dollars, etc. Bonnie and Clyde wish to divide the money exactly evenly.
- c. The bag contains n checks, which are, in an amazing coincidence, made out to "Bonnie or Clyde." They wish to divide the checks so that they each get the exact same amount of money.
- **d.** The bag contains *n* checks as in part (c), but this time Bonnie and Clyde are willing to accept a split in which the difference is no larger than 100 dollars.

34-3 Graph coloring

Mapmakers try to use as few colors as possible when coloring countries on a map, as long as no two countries that share a border have the same color. We can model this problem with an undirected graph G = (V, E) in which each vertex represents a country and vertices whose respective countries share a border are adjacent. Then, a k-coloring is a function $c: V \to \{1, 2, \dots, k\}$ such that $c(u) \neq c(v)$ for every edge $(u, v) \in E$. In other words, the numbers $1, 2, \dots, k$ represent the k colors, and adjacent vertices must have different colors. The graph-coloring problem is to determine the minimum number of colors needed to color a given graph.

- a. Give an efficient algorithm to determine a 2-coloring of a graph, if one exists.
- **b.** Cast the graph-coloring problem as a decision problem. Show that your decision problem is solvable in polynomial time if and only if the graph-coloring problem is solvable in polynomial time.
- c. Let the language 3-COLOR be the set of graphs that can be 3-colored. Show that if 3-COLOR is NP-complete, then your decision problem from part (b) is NP-complete.

To prove that 3-COLOR is NP-complete, we use a reduction from 3-CNF-SAT. Given a formula ϕ of m clauses on n variables x_1, x_2, \ldots, x_n , we construct a graph G = (V, E) as follows. The set V consists of a vertex for each variable, a vertex for the negation of each variable, 5 vertices for each clause, and 3 special vertices: TRUE, FALSE, and RED. The edges of the graph are of two types: "literal" edges that are independent of the clauses and "clause" edges that depend on the clauses. The literal edges form a triangle on the special vertices and also form a triangle on $x_i, \neg x_i$, and RED for $i = 1, 2, \ldots, n$.

d. Argue that in any 3-coloring c of a graph containing the literal edges, exactly one of a variable and its negation is colored c(TRUE) and the other is colored c(FALSE). Argue that for any truth assignment for ϕ , there exists a 3-coloring of the graph containing just the literal edges.

The widget shown in Figure 34.20 helps to enforce the condition corresponding to a clause $(x \lor y \lor z)$. Each clause requires a unique copy of the 5 vertices that are heavily shaded in the figure; they connect as shown to the literals of the clause and the special vertex TRUE.

- e. Argue that if each of x, y, and z is colored c(TRUE) or c(FALSE), then the widget is 3-colorable if and only if at least one of x, y, or z is colored c(TRUE).
- *f.* Complete the proof that 3-COLOR is NP-complete.

Figure 34.20 The widget corresponding to a clause $(x \lor y \lor z)$, used in Problem 34-3.

34-4 Scheduling with profits and deadlines

Suppose that we have one machine and a set of n tasks a_1, a_2, \ldots, a_n , each of which requires time on the machine. Each task a_j requires t_j time units on the machine (its processing time), yields a profit of p_j , and has a deadline d_j . The machine can process only one task at a time, and task a_j must run without interruption for t_j consecutive time units. If we complete task a_j by its deadline d_j , we receive a profit p_j , but if we complete it after its deadline, we receive no profit. As an optimization problem, we are given the processing times, profits, and deadlines for a set of n tasks, and we wish to find a schedule that completes all the tasks and returns the greatest amount of profit. The processing times, profits, and deadlines are all nonnegative numbers.

- a. State this problem as a decision problem.
- **b.** Show that the decision problem is NP-complete.
- *c.* Give a polynomial-time algorithm for the decision problem, assuming that all processing times are integers from 1 to *n*. (*Hint:* Use dynamic programming.)
- **d.** Give a polynomial-time algorithm for the optimization problem, assuming that all processing times are integers from 1 to *n*.

Chapter notes

The book by Garey and Johnson [129] provides a wonderful guide to NP-completeness, discussing the theory at length and providing a catalogue of many problems that were known to be NP-complete in 1979. The proof of Theorem 34.13 is adapted from their book, and the list of NP-complete problem domains at the beginning of Section 34.5 is drawn from their table of contents. Johnson wrote a series

of 23 columns in the *Journal of Algorithms* between 1981 and 1992 reporting new developments in NP-completeness. Hopcroft, Motwani, and Ullman [177], Lewis and Papadimitriou [236], Papadimitriou [270], and Sipser [317] have good treatments of NP-completeness in the context of complexity theory. NP-completeness and several reductions also appear in books by Aho, Hopcroft, and Ullman [5]; Dasgupta, Papadimitriou, and Vazirani [82]; Johnsonbaugh and Schaefer [193]; and Kleinberg and Tardos [208].

The class P was introduced in 1964 by Cobham [72] and, independently, in 1965 by Edmonds [100], who also introduced the class NP and conjectured that $P \neq NP$. The notion of NP-completeness was proposed in 1971 by Cook [75], who gave the first NP-completeness proofs for formula satisfiability and 3-CNF satisfiability. Levin [234] independently discovered the notion, giving an NP-completeness proof for a tiling problem. Karp [199] introduced the methodology of reductions in 1972 and demonstrated the rich variety of NP-complete problems. Karp's paper included the original NP-completeness proofs of the clique, vertex-cover, and hamiltonian-cycle problems. Since then, thousands of problems have been proven to be NP-complete by many researchers. In a talk at a meeting celebrating Karp's 60th birthday in 1995, Papadimitriou remarked, "about 6000 papers each year have the term 'NP-complete' on their title, abstract, or list of keywords. This is more than each of the terms 'compiler,' 'database,' 'expert,' 'neural network,' or 'operating system.'"

Recent work in complexity theory has shed light on the complexity of computing approximate solutions. This work gives a new definition of NP using "probabilistically checkable proofs." This new definition implies that for problems such as clique, vertex cover, the traveling-salesman problem with the triangle inequality, and many others, computing good approximate solutions is NP-hard and hence no easier than computing optimal solutions. An introduction to this area can be found in Arora's thesis [20]; a chapter by Arora and Lund in Hochbaum [172]; a survey article by Arora [21]; a book edited by Mayr, Prömel, and Steger [246]; and a survey article by Johnson [191].

35 Approximation Algorithms

Many problems of practical significance are NP-complete, yet they are too important to abandon merely because we don't know how to find an optimal solution in polynomial time. Even if a problem is NP-complete, there may be hope. We have at least three ways to get around NP-completeness. First, if the actual inputs are small, an algorithm with exponential running time may be perfectly satisfactory. Second, we may be able to isolate important special cases that we can solve in polynomial time. Third, we might come up with approaches to find *near-optimal* solutions in polynomial time (either in the worst case or the expected case). In practice, near-optimality is often good enough. We call an algorithm that returns near-optimal solutions an *approximation algorithm*. This chapter presents polynomial-time approximation algorithms for several NP-complete problems.

Performance ratios for approximation algorithms

Suppose that we are working on an optimization problem in which each potential solution has a positive cost, and we wish to find a near-optimal solution. Depending on the problem, we may define an optimal solution as one with maximum possible cost or one with minimum possible cost; that is, the problem may be either a maximization or a minimization problem.

We say that an algorithm for a problem has an *approximation ratio* of $\rho(n)$ if, for any input of size n, the cost C of the solution produced by the algorithm is within a factor of $\rho(n)$ of the cost C^* of an optimal solution:

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \le \rho(n) \ . \tag{35.1}$$

If an algorithm achieves an approximation ratio of $\rho(n)$, we call it a $\rho(n)$ -approximation algorithm. The definitions of the approximation ratio and of a $\rho(n)$ -approximation algorithm apply to both minimization and maximization problems. For a maximization problem, $0 < C \le C^*$, and the ratio C^*/C gives the factor by which the cost of an optimal solution is larger than the cost of the approximate

solution. Similarly, for a minimization problem, $0 < C^* \le C$, and the ratio C/C^* gives the factor by which the cost of the approximate solution is larger than the cost of an optimal solution. Because we assume that all solutions have positive cost, these ratios are always well defined. The approximation ratio of an approximation algorithm is never less than 1, since $C/C^* \le 1$ implies $C^*/C \ge 1$. Therefore, a 1-approximation algorithm produces an optimal solution, and an approximation algorithm with a large approximation ratio may return a solution that is much worse than optimal.

For many problems, we have polynomial-time approximation algorithms with small constant approximation ratios, although for other problems, the best known polynomial-time approximation algorithms have approximation ratios that grow as functions of the input size n. An example of such a problem is the set-cover problem presented in Section 35.3.

Some NP-complete problems allow polynomial-time approximation algorithms that can achieve increasingly better approximation ratios by using more and more computation time. That is, we can trade computation time for the quality of the approximation. An example is the subset-sum problem studied in Section 35.5. This situation is important enough to deserve a name of its own.

An *approximation scheme* for an optimization problem is an approximation algorithm that takes as input not only an instance of the problem, but also a value $\epsilon>0$ such that for any fixed ϵ , the scheme is a $(1+\epsilon)$ -approximation algorithm. We say that an approximation scheme is a *polynomial-time approximation scheme* if for any fixed $\epsilon>0$, the scheme runs in time polynomial in the size n of its input instance.

The running time of a polynomial-time approximation scheme can increase very rapidly as ϵ decreases. For example, the running time of a polynomial-time approximation scheme might be $O(n^{2/\epsilon})$. Ideally, if ϵ decreases by a constant factor, the running time to achieve the desired approximation should not increase by more than a constant factor (though not necessarily the same constant factor by which ϵ decreased).

We say that an approximation scheme is a *fully polynomial-time approximation scheme* if it is an approximation scheme and its running time is polynomial in both $1/\epsilon$ and the size n of the input instance. For example, the scheme might have a running time of $O((1/\epsilon)^2 n^3)$. With such a scheme, any constant-factor decrease in ϵ comes with a corresponding constant-factor increase in the running time.

¹When the approximation ratio is independent of n, we use the terms "approximation ratio of ρ " and " ρ -approximation algorithm," indicating no dependence on n.

Chapter outline

The first four sections of this chapter present some examples of polynomial-time approximation algorithms for NP-complete problems, and the fifth section presents a fully polynomial-time approximation scheme. Section 35.1 begins with a study of the vertex-cover problem, an NP-complete minimization problem that has an approximation algorithm with an approximation ratio of 2. Section 35.2 presents an approximation algorithm with an approximation ratio of 2 for the case of the traveling-salesman problem in which the cost function satisfies the triangle inequality. It also shows that without the triangle inequality, for any constant $\rho > 1$, a ρ -approximation algorithm cannot exist unless P = NP. In Section 35.3, we show how to use a greedy method as an effective approximation algorithm for the set-covering problem, obtaining a covering whose cost is at worst a logarithmic factor larger than the optimal cost. Section 35.4 presents two more approximation algorithms. First we study the optimization version of 3-CNF satisfiability and give a simple randomized algorithm that produces a solution with an expected approximation ratio of 8/7. Then we examine a weighted variant of the vertex-cover problem and show how to use linear programming to develop a 2-approximation algorithm. Finally, Section 35.5 presents a fully polynomial-time approximation scheme for the subset-sum problem.

35.1 The vertex-cover problem

Section 34.5.2 defined the vertex-cover problem and proved it NP-complete. Recall that a *vertex cover* of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that if (u, v) is an edge of G, then either $u \in V'$ or $v \in V'$ (or both). The size of a vertex cover is the number of vertices in it.

The *vertex-cover problem* is to find a vertex cover of minimum size in a given undirected graph. We call such a vertex cover an *optimal vertex cover*. This problem is the optimization version of an NP-complete decision problem.

Even though we don't know how to find an optimal vertex cover in a graph G in polynomial time, we can efficiently find a vertex cover that is near-optimal. The following approximation algorithm takes as input an undirected graph G and returns a vertex cover whose size is guaranteed to be no more than twice the size of an optimal vertex cover.

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7 vertices and 8 edges. (b) The edge (b,c), shown heavy, is the first edge chosen by APPROX-VERTEX-COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover being created. Edges (a,b), (c,e), and (c,d), shown dashed, are removed since they are now covered by some vertex in C. (c) Edge (e,f) is chosen; vertices e and f are added to f. (d) Edge f0 is chosen; vertices f0 and f1 are added to f2. (e) The set f3 which is the vertex cover produced by APPROX-VERTEX-COVER, contains the six vertices f3, f4, f7, f7. The optimal vertex cover for this problem contains only three vertices: f3, f4, and f6.

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

remove from E' every edge incident on either u or v

7 return C
```

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example graph. The variable C contains the vertex cover being constructed. Line 1 initializes C to the empty set. Line 2 sets E' to be a copy of the edge set G.E of the graph. The loop of lines 3–6 repeatedly picks an edge (u, v) from E', adds its

endpoints u and v to C, and deletes all edges in E' that are covered by either u or v. Finally, line 7 returns the vertex cover C. The running time of this algorithm is O(V+E), using adjacency lists to represent E'.

Theorem 35.1

APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof We have already shown that APPROX-VERTEX-COVER runs in polynomial time.

The set C of vertices that is returned by APPROX-VERTEX-COVER is a vertex cover, since the algorithm loops until every edge in G.E has been covered by some vertex in C.

To see that APPROX-VERTEX-COVER returns a vertex cover that is at most twice the size of an optimal cover, let A denote the set of edges that line 4 of APPROX-VERTEX-COVER picked. In order to cover the edges in A, any vertex cover—in particular, an optimal cover C^* —must include at least one endpoint of each edge in A. No two edges in A share an endpoint, since once an edge is picked in line 4, all other edges that are incident on its endpoints are deleted from E' in line 6. Thus, no two edges in A are covered by the same vertex from C^* , and we have the lower bound

$$|C^*| \ge |A| \tag{35.2}$$

on the size of an optimal vertex cover. Each execution of line 4 picks an edge for which neither of its endpoints is already in C, yielding an upper bound (an exact upper bound, in fact) on the size of the vertex cover returned:

$$|C| = 2|A|. (35.3)$$

Combining equations (35.2) and (35.3), we obtain

$$|C| = 2|A|$$

$$\leq 2|C^*|,$$

thereby proving the theorem.

Let us reflect on this proof. At first, you might wonder how we can possibly prove that the size of the vertex cover returned by APPROX-VERTEX-COVER is at most twice the size of an optimal vertex cover, when we do not even know the size of an optimal vertex cover. Instead of requiring that we know the exact size of an optimal vertex cover, we rely on a lower bound on the size. As Exercise 35.1-2 asks you to show, the set *A* of edges that line 4 of APPROX-VERTEX-COVER selects is actually a maximal matching in the graph *G*. (A *maximal matching* is a matching that is not a proper subset of any other matching.) The size of a maximal matching

is, as we argued in the proof of Theorem 35.1, a lower bound on the size of an optimal vertex cover. The algorithm returns a vertex cover whose size is at most twice the size of the maximal matching A. By relating the size of the solution returned to the lower bound, we obtain our approximation ratio. We will use this methodology in later sections as well.

Exercises

35.1-1

Give an example of a graph for which APPROX-VERTEX-COVER always yields a suboptimal solution.

35.1-2

Prove that the set of edges picked in line 4 of APPROX-VERTEX-COVER forms a maximal matching in the graph G.

35.1-3 ★

Professor Bündchen proposes the following heuristic to solve the vertex-cover problem. Repeatedly select a vertex of highest degree, and remove all of its incident edges. Give an example to show that the professor's heuristic does not have an approximation ratio of 2. (*Hint:* Try a bipartite graph with vertices of uniform degree on the left and vertices of varying degree on the right.)

35.1-4

Give an efficient greedy algorithm that finds an optimal vertex cover for a tree in linear time.

35.1-5

From the proof of Theorem 34.12, we know that the vertex-cover problem and the NP-complete clique problem are complementary in the sense that an optimal vertex cover is the complement of a maximum-size clique in the complement graph. Does this relationship imply that there is a polynomial-time approximation algorithm with a constant approximation ratio for the clique problem? Justify your answer.

35.2 The traveling-salesman problem

In the traveling-salesman problem introduced in Section 34.5.4, we are given a complete undirected graph G = (V, E) that has a nonnegative integer cost c(u, v) associated with each edge $(u, v) \in E$, and we must find a hamiltonian cycle (a tour) of G with minimum cost. As an extension of our notation, let c(A) denote the total cost of the edges in the subset $A \subseteq E$:

$$c(A) = \sum_{(u,v)\in A} c(u,v) .$$

In many practical situations, the least costly way to go from a place u to a place w is to go directly, with no intermediate steps. Put another way, cutting out an intermediate stop never increases the cost. We formalize this notion by saying that the cost function c satisfies the *triangle inequality* if, for all vertices $u, v, w \in V$,

$$c(u, w) \le c(u, v) + c(v, w)$$
.

The triangle inequality seems as though it should naturally hold, and it is automatically satisfied in several applications. For example, if the vertices of the graph are points in the plane and the cost of traveling between two vertices is the ordinary euclidean distance between them, then the triangle inequality is satisfied. Furthermore, many cost functions other than euclidean distance satisfy the triangle inequality.

As Exercise 35.2-2 shows, the traveling-salesman problem is NP-complete even if we require that the cost function satisfy the triangle inequality. Thus, we should not expect to find a polynomial-time algorithm for solving this problem exactly. Instead, we look for good approximation algorithms.

In Section 35.2.1, we examine a 2-approximation algorithm for the traveling-salesman problem with the triangle inequality. In Section 35.2.2, we show that without the triangle inequality, a polynomial-time approximation algorithm with a constant approximation ratio does not exist unless P = NP.

35.2.1 The traveling-salesman problem with the triangle inequality

Applying the methodology of the previous section, we shall first compute a structure—a minimum spanning tree—whose weight gives a lower bound on the length of an optimal traveling-salesman tour. We shall then use the minimum spanning tree to create a tour whose cost is no more than twice that of the minimum spanning tree's weight, as long as the cost function satisfies the triangle inequality. The following algorithm implements this approach, calling the minimum-spanning-tree algorithm MST-PRIM from Section 23.2 as a subroutine. The parameter G is a complete undirected graph, and the cost function c satisfies the triangle inequality.

APPROX-TSP-TOUR (G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- 4 **return** the hamiltonian cycle *H*

Figure 35.2 The operation of APPROX-TSP-TOUR. (a) A complete undirected graph. Vertices lie on intersections of integer grid lines. For example, f is one unit to the right and two units up from h. The cost function between two points is the ordinary euclidean distance. (b) A minimum spanning tree T of the complete graph, as computed by MST-PRIM. Vertex a is the root vertex. Only edges in the minimum spanning tree are shown. The vertices happen to be labeled in such a way that they are added to the main tree by MST-PRIM in alphabetical order. (c) A walk of T, starting at a. A full walk of the tree visits the vertices in the order a, b, c, b, h, b, a, d, e, f, e, g, e, d, a. A preorder walk of T lists a vertex just when it is first encountered, as indicated by the dot next to each vertex, yielding the ordering a, b, c, h, d, e, f, g. (d) A tour obtained by visiting the vertices in the order given by the preorder walk, which is the tour H returned by APPROX-TSP-TOUR. Its total cost is approximately 19.074. (e) An optimal tour H^* for the original complete graph. Its total cost is approximately 14.715.

Recall from Section 12.1 that a preorder tree walk recursively visits every vertex in the tree, listing a vertex when it is first encountered, before visiting any of its children.

Figure 35.2 illustrates the operation of APPROX-TSP-TOUR. Part (a) of the figure shows a complete undirected graph, and part (b) shows the minimum spanning tree T grown from root vertex a by MST-PRIM. Part (c) shows how a preorder walk of T visits the vertices, and part (d) displays the corresponding tour, which is the tour returned by APPROX-TSP-TOUR. Part (e) displays an optimal tour, which is about 23% shorter.

By Exercise 23.2-2, even with a simple implementation of MST-PRIM, the running time of APPROX-TSP-TOUR is $\Theta(V^2)$. We now show that if the cost function for an instance of the traveling-salesman problem satisfies the triangle inequality, then APPROX-TSP-TOUR returns a tour whose cost is not more than twice the cost of an optimal tour.

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for the traveling-salesman problem with the triangle inequality.

Proof We have already seen that APPROX-TSP-TOUR runs in polynomial time. Let H^* denote an optimal tour for the given set of vertices. We obtain a spanning tree by deleting any edge from a tour, and each edge cost is nonnegative. Therefore, the weight of the minimum spanning tree T computed in line 2 of APPROX-TSP-TOUR provides a lower bound on the cost of an optimal tour:

$$c(T) \le c(H^*) . \tag{35.4}$$

A *full walk* of T lists the vertices when they are first visited and also whenever they are returned to after a visit to a subtree. Let us call this full walk W. The full walk of our example gives the order

$$a, b, c, b, h, b, a, d, e, f, e, g, e, d, a$$
.

Since the full walk traverses every edge of T exactly twice, we have (extending our definition of the cost c in the natural manner to handle multisets of edges)

$$c(W) = 2c(T). (35.5)$$

Inequality (35.4) and equation (35.5) imply that

$$c(W) \le 2c(H^*), \tag{35.6}$$

and so the cost of W is within a factor of 2 of the cost of an optimal tour.

Unfortunately, the full walk W is generally not a tour, since it visits some vertices more than once. By the triangle inequality, however, we can delete a visit to any vertex from W and the cost does not increase. (If we delete a vertex v from W between visits to u and w, the resulting ordering specifies going directly from u to w.) By repeatedly applying this operation, we can remove from W all but the first visit to each vertex. In our example, this leaves the ordering

$$a,b,c,h,d,e,f,g$$
.

This ordering is the same as that obtained by a preorder walk of the tree T. Let H be the cycle corresponding to this preorder walk. It is a hamiltonian cycle, since ev-

ery vertex is visited exactly once, and in fact it is the cycle computed by APPROX-TSP-TOUR. Since H is obtained by deleting vertices from the full walk W, we have

$$c(H) \le c(W) . \tag{35.7}$$

Combining inequalities (35.6) and (35.7) gives $c(H) \le 2c(H^*)$, which completes the proof.

In spite of the nice approximation ratio provided by Theorem 35.2, APPROX-TSP-TOUR is usually not the best practical choice for this problem. There are other approximation algorithms that typically perform much better in practice. (See the references at the end of this chapter.)

35.2.2 The general traveling-salesman problem

If we drop the assumption that the cost function c satisfies the triangle inequality, then we cannot find good approximate tours in polynomial time unless P = NP.

Theorem 35.3

If $P \neq NP$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general traveling-salesman problem.

Proof The proof is by contradiction. Suppose to the contrary that for some number $\rho \geq 1$, there is a polynomial-time approximation algorithm A with approximation ratio ρ . Without loss of generality, we assume that ρ is an integer, by rounding it up if necessary. We shall then show how to use A to solve instances of the hamiltonian-cycle problem (defined in Section 34.2) in polynomial time. Since Theorem 34.13 tells us that the hamiltonian-cycle problem is NP-complete, Theorem 34.4 implies that if we can solve it in polynomial time, then P = NP.

Let G = (V, E) be an instance of the hamiltonian-cycle problem. We wish to determine efficiently whether G contains a hamiltonian cycle by making use of the hypothesized approximation algorithm A. We turn G into an instance of the traveling-salesman problem as follows. Let G' = (V, E') be the complete graph on V; that is,

$$E' = \{(u, v) : u, v \in V \text{ and } u \neq v\}$$
.

Assign an integer cost to each edge in E' as follows:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise}. \end{cases}$$

We can create representations of G' and c from a representation of G in time polynomial in |V| and |E|.

Now, consider the traveling-salesman problem (G',c). If the original graph G has a hamiltonian cycle H, then the cost function c assigns to each edge of H a cost of 1, and so (G',c) contains a tour of cost |V|. On the other hand, if G does not contain a hamiltonian cycle, then any tour of G' must use some edge not in E. But any tour that uses an edge not in E has a cost of at least

$$(\rho |V| + 1) + (|V| - 1) = \rho |V| + |V|$$

> $\rho |V|$.

Because edges not in G are so costly, there is a gap of at least $\rho |V|$ between the cost of a tour that is a hamiltonian cycle in G (cost |V|) and the cost of any other tour (cost at least $\rho |V| + |V|$). Therefore, the cost of a tour that is not a hamiltonian cycle in G is at least a factor of $\rho + 1$ greater than the cost of a tour that is a hamiltonian cycle in G.

Now, suppose that we apply the approximation algorithm A to the traveling-salesman problem (G',c). Because A is guaranteed to return a tour of cost no more than ρ times the cost of an optimal tour, if G contains a hamiltonian cycle, then A must return it. If G has no hamiltonian cycle, then A returns a tour of cost more than $\rho |V|$. Therefore, we can use A to solve the hamiltonian-cycle problem in polynomial time.

The proof of Theorem 35.3 serves as an example of a general technique for proving that we cannot approximate a problem very well. Suppose that given an NP-hard problem X, we can produce in polynomial time a minimization problem Y such that "yes" instances of X correspond to instances of Y with value at most X (for some X), but that "no" instances of X correspond to instances of X with value greater than X0. Then, we have shown that, unless X1 PNP, there is no polynomial-time X2-approximation algorithm for problem X3.

Exercises

35.2-1

Suppose that a complete undirected graph G = (V, E) with at least 3 vertices has a cost function c that satisfies the triangle inequality. Prove that $c(u, v) \ge 0$ for all $u, v \in V$.

35.2-2

Show how in polynomial time we can transform one instance of the traveling-salesman problem into another instance whose cost function satisfies the triangle inequality. The two instances must have the same set of optimal tours. Explain why such a polynomial-time transformation does not contradict Theorem 35.3, assuming that $P \neq NP$.

35.2-3

Consider the following *closest-point heuristic* for building an approximate traveling-salesman tour whose cost function satisfies the triangle inequality. Begin with a trivial cycle consisting of a single arbitrarily chosen vertex. At each step, identify the vertex u that is not on the cycle but whose distance to any vertex on the cycle is minimum. Suppose that the vertex on the cycle that is nearest u is vertex v. Extend the cycle to include u by inserting u just after v. Repeat until all vertices are on the cycle. Prove that this heuristic returns a tour whose total cost is not more than twice the cost of an optimal tour.

35.2-4

In the *bottleneck traveling-salesman problem*, we wish to find the hamiltonian cycle that minimizes the cost of the most costly edge in the cycle. Assuming that the cost function satisfies the triangle inequality, show that there exists a polynomial-time approximation algorithm with approximation ratio 3 for this problem. (*Hint:* Show recursively that we can visit all the nodes in a bottleneck spanning tree, as discussed in Problem 23-3, exactly once by taking a full walk of the tree and skipping nodes, but without skipping more than two consecutive intermediate nodes. Show that the costliest edge in a bottleneck spanning tree has a cost that is at most the cost of the costliest edge in a bottleneck hamiltonian cycle.)

35.2-5

Suppose that the vertices for an instance of the traveling-salesman problem are points in the plane and that the cost c(u, v) is the euclidean distance between points u and v. Show that an optimal tour never crosses itself.

35.3 The set-covering problem

The set-covering problem is an optimization problem that models many problems that require resources to be allocated. Its corresponding decision problem generalizes the NP-complete vertex-cover problem and is therefore also NP-hard. The approximation algorithm developed to handle the vertex-cover problem doesn't apply here, however, and so we need to try other approaches. We shall examine a simple greedy heuristic with a logarithmic approximation ratio. That is, as the size of the instance gets larger, the size of the approximate solution may grow, relative to the size of an optimal solution. Because the logarithm function grows rather slowly, however, this approximation algorithm may nonetheless give useful results.

Figure 35.3 An instance (X, \mathcal{F}) of the set-covering problem, where X consists of the 12 black points and $\mathcal{F} = \{S_1, S_2, S_3, S_4, S_5, S_6\}$. A minimum-size set cover is $\mathcal{C} = \{S_3, S_4, S_5\}$, with size 3. The greedy algorithm produces a cover of size 4 by selecting either the sets S_1, S_4, S_5 , and S_3 or the sets S_1, S_4, S_5 , and S_6 , in order.

An instance (X, \mathcal{F}) of the **set-covering problem** consists of a finite set X and a family \mathcal{F} of subsets of X, such that every element of X belongs to at least one subset in \mathcal{F} :

$$X = \bigcup_{S \in \mathcal{F}} S.$$

We say that a subset $S \in \mathcal{F}$ *covers* its elements. The problem is to find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$ whose members cover all of X:

$$X = \bigcup_{S \in \mathcal{C}} S . \tag{35.8}$$

We say that any \mathcal{C} satisfying equation (35.8) *covers* X. Figure 35.3 illustrates the set-covering problem. The size of \mathcal{C} is the number of sets it contains, rather than the number of individual elements in these sets, since every subset \mathcal{C} that covers X must contain all |X| individual elements. In Figure 35.3, the minimum set cover has size 3.

The set-covering problem abstracts many commonly arising combinatorial problems. As a simple example, suppose that X represents a set of skills that are needed to solve a problem and that we have a given set of people available to work on the problem. We wish to form a committee, containing as few people as possible, such that for every requisite skill in X, at least one member of the committee has that skill. In the decision version of the set-covering problem, we ask whether a covering exists with size at most k, where k is an additional parameter specified in the problem instance. The decision version of the problem is NP-complete, as Exercise 35.3-2 asks you to show.

A greedy approximation algorithm

The greedy method works by picking, at each stage, the set S that covers the greatest number of remaining elements that are uncovered.

```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```

In the example of Figure 35.3, GREEDY-SET-COVER adds to \mathcal{C} , in order, the sets S_1 , S_4 , and S_5 , followed by either S_3 or S_6 .

The algorithm works as follows. The set U contains, at each stage, the set of remaining uncovered elements. The set \mathcal{C} contains the cover being constructed. Line 4 is the greedy decision-making step, choosing a subset S that covers as many uncovered elements as possible (breaking ties arbitrarily). After S is selected, line 5 removes its elements from U, and line 6 places S into \mathcal{C} . When the algorithm terminates, the set \mathcal{C} contains a subfamily of \mathcal{F} that covers X.

We can easily implement GREEDY-SET-COVER to run in time polynomial in |X| and $|\mathcal{F}|$. Since the number of iterations of the loop on lines 3–6 is bounded from above by $\min(|X|, |\mathcal{F}|)$, and we can implement the loop body to run in time $O(|X| |\mathcal{F}|)$, a simple implementation runs in time $O(|X| |\mathcal{F}|)$. Exercise 35.3-3 asks for a linear-time algorithm.

Analysis

We now show that the greedy algorithm returns a set cover that is not too much larger than an optimal set cover. For convenience, in this chapter we denote the dth harmonic number $H_d = \sum_{i=1}^d 1/i$ (see Section A.1) by H(d). As a boundary condition, we define H(0) = 0.

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -approximation algorithm, where $\rho(n) = H(\max\{|S|: S \in \mathcal{F}\})$.

Proof We have already shown that GREEDY-SET-COVER runs in polynomial time.