Computational optics and imaging hackathon

Использование генетических алгоритмов для генерации и оптимизации оптических схем

MAD Team

Состав команды

Егоров Максим Сергеевич tg: @klop1007

Ильин Андрей Александрович tg: @andruxannn

Кереселидзе Давид Кобаевич tg: @DoohNibor30k

Оптимизация.
В начале работы мы задумывались о разных способах оптимизации данной задачи.

Генерация оптических схем. Помимо оптимизации схем, мы работали над моделью, которая будет создавать схему, и далее оптимизировать ее.

Оптимизация

Перебрав множество методов поиска глобального минимума для нашей функци потерь, мы остановились на генетическом алгоритме.

Данный алгоритм находит минимум имитируя процесс биологической эволюции.

Работа с генетическим алгоритмом.

Определим начальную популяцию - вектор чисел, заданных в строгом порядке, состоящим из n - толщин, n-1 - кривизны, n / 2 - коэффициентов k для вычисления abbe, M_xK - коэффициентов полиномов.

Наш итоговый вектор имеет вид:

Толщ. 1	Толщ. 2		Крив. 1	Крив. 2		K. 1		Коэф. 1		
---------	---------	--	---------	---------	--	------	--	---------	--	--

Вообще говоря, мы можем задавать произвольное количество параметров, включая или отключая оптимизацию по некоторым.

Работа с генетическим алгоритмом.

Определившись с тем, что мы оптимизируем, определим начальную популяцию, как состоящую из случайных чисел в некоторых диапазонах (соблюдая логику оптических схем).

Зададим вероятности и способы кроссинговера (скрещивания), мутации, и отбора лучших особей. Для кроссинговера был выбран метод двухточечного скрещивания, для мутации - полиномиального. Отбор - турнирный.

Установим размер популяции = 1000, эпох = 20, запустим алгоритм с нашей функцией потерь.

3

Анализ результатов оптимизации.

Для случайно сгенерированной оптической схемы из лосса=1300 был получен лосс = 12.

Далее мы можем еще более уменьшить лосс, используя стандартные функции оптимизации.

Генерация оптических

cxem.

Параллельно с оптимизацией схем, мы задумались, что если генерировать схемы и далее, с помощью ранее описанного генетического алгоритма доводить их до маленького лосса?

Мы генерируем случайную линзу со случайными параметрами, границы случайных величин не нарушают логику опт. схем.

Пример случайной схемы

Генерация оптических схем.

Оптимизируя данную схему генетическим алгоритмом, мы получили loss = 15, однако если увеличить размер популяции и число эпох, данный loss можно снизить вплоть до 8. И уже далее работать стандартными методами оптимизации.

Спасибо за внимание!