Table of Contents

```
% Caleb Bibb
% Math 341 H9
```

Section 5.3 #1c

```
Use Taylor's method of order two to approx the solution for y' = 1+y/t, 1 < t < 2, y(1) = 2, with t = 0.25 T<sup>(2)</sup>
(t(i),w(i)) = f(t(i),w(i)) + (h/2)*f'(t(i),w(i)) + ... + h^{(n-1)/n}! * f^{(n-1)}(t(i),w(i)) So, f'(t(i),y(t)) = d/dt(1+y/t)
= -y'/t^2 = -(1+y/t)/t^2 Then, T^2(2)(t(i),w(i)) = f(t(i),w(i)) + (h/2)f'(t(i),w(i)) + (h/2)f'(t(i),w(i)) = f(t(i),w(i)) + (h/2)f'(t(i),w(i)) + (h/2)f'(t(i),w(i)) = f(t(i),w(i)) + (h/2)f'(t(i),w(i)) = f(t(i
 f = @(t,w) 1+w./t+(.25/2)*(-(1+w./t)/t.^2); % T^(2)
N = 4; % 4 t-values see below
w(1) = 2; % Initial Condition
 t = 1:.25:2; % t is in [1,2] in .25 increments (h = .25)
 for i = 1:N
    w(i+1) = w(i) + .25*(f(t(i), w(i)));
 end
 t = t'; % Row vector -> Column Vector (Transpose)
Taylor2 = w'; % Row vector -> Column Vector (Transpose)
T2 = table(t, Taylor2); % Make Table
disp(T2); % Display Table
                       t
                                                     Taylor2
                                                                           2
                               7
                  1.25
                                                     2.6563
                      1.5
                                                       3.375
                  1.75
                                                     4.1424
                               2
                                                     4.9498
```

Section 5.3 #3c

Repeat #1c using Taylor's method of order 4. $T^{(4)} = f(t(i), w(i)) + (h/2)f'(t(i), w(i)) + (h/6)f''(t(i), w(i)) + (h/2)f'''(t(i), w(i))$

```
clear all
```

```
f = @(t,w) 1+w./t+(.25/2)*(-(1+w./t)/t.^2)+(.25/6)*(2*(1+w./t)/t.^2)
t.^3)+(.25/24)*(-6*(1+w./t)/t.^4); % <math>T^{(4)}
N = 4; % 4 t-values see below
w(1) = 2; % Initial Condition
t = 1:.25:2; % t is in [1,2] in .25 increments (h = .25)
for i = 1:N
 w(i+1) = w(i)+.25*(f(t(i),w(i)));
t = t'; % Row vector -> Column Vector (Transpose)
Taylor4 = w'; % Row vector -> Column Vector (Transpose)
T4 = table(t, Taylor4); % Make Table
disp(T4); % Display Table
     t
            Taylor4
                  2
       1
    1.25
            2.6719
     1.5
            3.4069
    1.75
            4.1894
       2
            5.0108
```

Section 5.4 #1c

Use the modified Euler method to approx the solution and compare: y' = 1+y/t, 1 <= t <= 2, y(1)=2, with y' = 1 <= t <= 2, y' = 1 <= t <= 2, with y' = 1 <= t <= 1, with y' = 1 <= t <= 1.

```
clear all
f = @(t,w) 1.+w./t;
g = @(t) t.*log(t)+2.*t;
N = 4; % 4 t-values see below
w(1) = 2; % Initial Condition
t = 1:.25:2; % t is in [1,2] in .25 increments (h = .25)
h = 0.25;
for i = 1:N
w(i+1) = w(i)+(h/2)*(f(t(i),w(i))+f(t(i+1),w(i)+h*f(t(i),w(i))));
end
act = g(t); % Actual Values
t = t'; % Row vector -> Column Vector (Transpose)
ModifiedEuler = w'; % Row vector -> Column Vector (Transpose)
Actual = act'; % Row vector -> Column Vector (Transpose)
ME = table(t,ModifiedEuler,Actual); % Make Table
disp(ME); % Display Table
     t
            ModifiedEuler
                             Actual
       1
                 2
    1.25
             2.775
                             2.7789
            3.6008
     1.5
                             3.6082
```

```
      1.75
      4.4688
      4.4793

      2
      5.3729
      5.3863
```

Section 5.4 #5c

Repeat using the Midpoint Method

```
clear all
f = @(t,w) 1.+w./t;
g = @(t) t.*log(t)+2.*t;
N = 4; % 4 t-values see below
w(1) = 2; % Initial Condition
t = 1:.25:2; % t is in [1,2] in .25 increments (h = .25)
h = 0.25;
for i = 1:N
 w(\texttt{i+1}) \ = \ w(\texttt{i}) \ + \ h*f(\texttt{t}(\texttt{i})+h/2,w(\texttt{i})+h/2*f(\texttt{t}(\texttt{i}),w(\texttt{i})));
end
act = g(t); % Actual Values
t = t'; % Row vector -> Column Vector (Transpose)
Midpoint = w'; % Row vector -> Column Vector (Transpose)
Actual = act'; % Row vector -> Column Vector (Transpose)
MP = table(t,Midpoint,Actual); % Make Table
disp(MP); % Display Table
            Midnoint
```

t	Midpoint	Actual
		
1	2	2
1.25	2.7778	2.7789
1.5	3.6061	3.6082
1.75	4.4763	4.4793
2	5.3824	5.3863

Section 5.4 #13c

Repeat Exercise 1 using Runge-Kutta method of order 4:

```
%RK4 (Function, LeftEndpoint, RightEndpoint, Iterations, InitialVal, ActualSoln) RK4(@(t,w)1.+w./t,1,2,4,2,@(t)t.*log(t)+2.*t);
```

t	RK4	Actual
1.25	2.7789	2.7789
1.5	3.6082	3.6082
1.75	4.4793	4.4793
2	5.3862	5.3863

Section 5.9 #1a

Use the Runge-Kutta for Systems Algorithm to approx the solutions of the following differential equation and compare the result to the actual solution. $u1' = 3u1 + 2u2 - (2t^2 + 1)exp(2t)$, u1(0) = 1; $u2' = 4u1 + u2 + (t2 + 2t^2 + 2t^2)exp(2t)$, u2(0) = 1; $u2' = 2t^2 + 2t^2$

```
%actual solutions ul(t) = 1/3*\exp(5t) ? 1/3*\exp(?t) + \exp(2t) and u2(t) = 1/3*\exp(5t) + 2/3\exp(?t) + 2/3\exp(?t) + 2/3\exp(2t) RKSystem ({@(t,u1,u2) 3.*ul+2.*u2-(2.*t.^2+1).*exp(2.*t);@(t,u1,u2) 4.*ul+u2+(t.^2+2.*t-4).*exp(2.*t)}, {@(t) (1/3.*exp(5.*t)-1/3.*exp(-t)+exp(2.*t));@(t) (1/3.*exp(5.*t)+2/3.*exp(-t)+t.^2.*exp(2.*t))}, 0, 1, .2, [0;0], 2);
```

t	w1	Actual1	w2	Actual2
				
0	0	1	0	1
0.2	-0.58797	2.125	-1.2013	1.5116
0.4	-2.8938	4.4651	-4.0928	3.266
0.6	-10.127	9.8324	-11.702	8.2563
0.8	-31.127	23.003	-32.46	21.669
1	-90.056	56.737	-89.687	57.105

Section 5.9 #3a

Use the Runge-Kutta for Systems Algorithm to approx the solutions of the following differential equation and compare the result to the actual solution. $y'' -2y' + y = te^t - t$, 0 < t < 1, y(0) = 0, y'(0) = 0, with y'(0) = 0, with y'(0) = 0 and y'(0) = 0, with y'(0) = 0 and y'(0) = 0 are y''(0) = 0. We have y''(0) = 0 and y''(0) = 0 are y''(0) = 0.

t	w1	Actual1	w2	Actual2
0	0	0	0	0
0.1	8.9724e-06	8.9395e-06	0.00036392	0.1
0.2	0.00015352	0.0001535	0.0031788	0.2
0.3	0.00083427	0.00083434	0.011719	0.3
0.4	0.0028321	0.0028323	0.030353	0.4
0.5	0.0074297	0.0074303	0.064798	0.5
0.6	0.016561	0.016563	0.12242	0.6
0.7	0.032996	0.032998	0.21261	0.7
0.8	0.060559	0.060562	0.34719	0.8
0.9	0.1044	0.10441	0.54094	0.9
1	0.17132	0.17133	0.81218	1

ans =

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

Section 5.9 #9

This problem is a predator/prey model. With x1'(t) = k1x1(t)-k2x2(t) for the prey and x2'(t) = k3x1(t)x2(t)-k4x2(t). We want to solve for 0 < = t < = 4. Assuming Initial prey = 1000 and preditors = 500 and k1 = 3, k2 = .002, k3 = .0006, and k4 = .5. Substituting gets us: x1'(t) = 3*x1(t)-.002x2(t), x2'(t) = .0006x1(t)*x2(t)-.5x2(t)

```
clear all
[t,C,Act1,Act2]=RKSystem(\{@(t,x1,x2)3.*x1-.002.*x1.*x2;@(t,x1,x2).0006.*x1.*x2-.5.
\{@(t)t;@(t)t;\},0,4,.1,[1000;500],2);
figure
plot(t,C(:,1),t,C(:,2));
legend('Prey', 'Predator', 'Location', 'NorthEast')
xlabel('Time')
ylabel('Population')
title('Predator/Prey Model')
% We can see that at t=4, the number of prey is approximately 25 and
the
% number of predators is approximately 1258. There are two "stable
% solutions", one at x1'=x2'=0 (When there are no predators or prey),
 and
% k1-k2*k2(t)=0 and k3x1(t)-k4=0 which can mean that x1(t)=k4/k3 and
% x2(t)=k1/k2. This occurs ar x1(t)=833.3333333 and x2(t)=1500.00.
 (this
```

% can't ever happen since we can't have a third of an animal).

w1	Actual1	w2	Actual2
1000	0	500	0
1220.5	0.1	508.27	0.1
1486.1	0.2	524.25	0.2
1802	0.3	550.24	0.3
2171	0.4	589.51	0.4
2590.7	0.5	646.71	0.5
3049.2	0.6	728.48	0.6
3519.4	0.7	843.92	0.7
3952.3	0.8	1004.8	0.8
4273.6	0.9	1224.3	0.9
4392.9	1	1512.2	1
	1000 1220.5 1486.1 1802 2171 2590.7 3049.2 3519.4 3952.3 4273.6	1000 0 1220.5 0.1 1486.1 0.2 1802 0.3 2171 0.4 2590.7 0.5 3049.2 0.6 3519.4 0.7 3952.3 0.8 4273.6 0.9	1000 0 500 1220.5 0.1 508.27 1486.1 0.2 524.25 1802 0.3 550.24 2171 0.4 589.51 2590.7 0.5 646.71 3049.2 0.6 728.48 3519.4 0.7 843.92 3952.3 0.8 1004.8 4273.6 0.9 1224.3

1.1	4233.9	1.1	1866.2	1.1
1.2	3783.9	1.2	2260.8	1.2
1.3	3124.5	1.3	2647.7	1.3
1.4	2400.9	1.4	2972.5	1.4
1.5	1745.1	1.5	3200.2	1.5
1.6	1224.7	1.6	3325.3	1.6
1.7	845.84	1.7	3363.6	1.7
1.8	583.68	1.8	3338.1	1.8
1.9	406.7	1.9	3269.9	1.9
2	288.09	2	3175.1	2
2.1	208.33	2.1	3065.1	2.1
2.2	154.13	2.2	2947.2	2.2
2.3	116.8	2.3	2826.1	2.3
2.4	90.684	2.4	2705	2.4
2.5	72.123	2.5	2585.6	2.5
2.6	58.731	2.6	2469.1	2.6
2.7	48.935	2.7	2356.2	2.7
2.8	41.688	2.8	2247.4	2.8
2.9	36.28	2.9	2142.8	2.9
3	32.227	3	2042.5	3
3.1	29.195	3.1	1946.4	3.1
3.2	26.949	3.2	1854.6	3.2
3.3	25.327	3.3	1766.9	3.3
3.4	24.214	3.4	1683.2	3.4
3.5	23.531	3.5	1603.4	3.5
3.6	23.227	3.6	1527.4	3.6
3.7	23.269	3.7	1454.9	3.7
3.8	23.644	3.8	1385.9	3.8
3.9	24.35	3.9	1320.2	3.9
4	25.401	4	1257.7	4

Published with MATLAB® R2016b