

First Wind Farm Layout Optimization Competition

D. Wilson, S. Cussat-Blanc,

Wind farm layout optimization

Objectives:

- Optimize a layout of
- Optimizer in the middle of a design loop that include
- Multiple
 - Wind distribution and wake effects
 - Safety constraints
 - Turbine power curve
 - Economic constraints (construction and maintenance) cost, cable and road optimization, etc.)
 - Topographic constraints (lakes, mountains, roads, buildings, etc.)

Wind farm layout optimization

- Energy capture model from
 - Each turbine generates for other turbines behind it
 - Based on a Weibull distribution, reduced by the wake generated per the turbines:

$$E^{i}[\eta] = \int_{\theta} P(\theta) \int_{v} p_{v}^{\theta}(v, c_{i}, k, i x_{i}, y_{i}, X, Y) \beta^{i}(v)$$

- P(θ)
- $p\theta_{V}$
- β(v)
- Provides the global energy capture of the layout and for each turbines
- Compute the wake free ratio: $R_{wf} = \frac{E_{tot}}{E_{wf}*n}$
 - Etot
 - ► E_{wf}
 - n: number of turbines in the layout

Wind farm layout optimization

- Energy capture model from
 - Implemented in the open-source WindFLO API
 - Matlab
 - C++
 - Java
 - Available online: https://github.com/d9w/WindFLO
 - Provides a set of random and real test scenarios

Competition

2 tracks:

- Track 1:
 - Position a given number of turbines
 - Optimize the energy output of the layout (wake free ratio)
 - 5 scenarios with different wind scenarios and layout sizes
 - 5000 layout evaluation credits for all 5 scenarios
- Track 2:
 - Position as much as possible turbines
 - keep the wake free ratio over a threshold
 - 5 scenarios with different wind scenarios and layout sizes
 - 5000 layout evaluation credits for all 5 scenarios

Evaluation:

- Competitors ranked per wake free ratio (track 1) and number of turbines (track 2)
- Points given for each scenarios according to the position of the competitors
 - 1st = 10 pts, 2nd = 6 pts, 3rd = 4 pts, 4th = 3 pts, 5th = 2 pts, 6th = 1 pt

Competitors

- For this first instance, 2 competitors:
 - Markus Wagner, University of Adelaide, Australia
 - Start with a gridded layout in a continuous space
 - Randomly select one turbine in the layout
 - Move this turbine away from the n-closest neighbors
 - Repeat multiple time
 - Stop criteria: 1000 evaluations per scenario
 - Ilya Loshchilov, Ecole Polytechnique Fédérale de Lausanne, Switzerland
 - Fill up the space with a gridded layout of turbines
 - Remove extra turbines until reaching the required conditions (number of turbines or wake free ratio threshold)
 - 3 removing strategy: random, random with moving the turbines on the same column and random with moving the turbines on the same line
 - Stop criteria: 1000 evaluations per scenario

State-of-the-art approaches

- To improve the comparison, 2 state-of-the-art algorithms are added:
 - Genetic algorithm:
 - Track 1: fixed-size vector of 2*n floating-point values, variation around a central position, fitness=wake free ratio
 - Track 2: matrix of boolean, on/off of turbines in a discretised environment, fitness=number of turbines
 - CMA-ES (track 1 only):
 - Track 1: use of a CMA-ES on a 2*n floating-point values, reparation mechanism in case of invalid layout, fitness=wake free ratio

Results

Track 1: Fixed number of turbines

Wake free ratio	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Score
Wagner	0.9157 6pts	0.9112 6pts	0.8535 4pts	0.8777 6pt	0.8373 s 4pts	26
Loshchilov	0.9402 10pts	0.9305 10pts	0.8798 10pts	0.9076 s 10pt	0.8649 ts 10pt	50
CMA-ES	0.8996 3pts	0.9100 4pts	0.8453 3pts	0.8768 3pt	0.8269 s 3pts	16
GA	0.9021 4pts	0.9051 3pts	0.8570 6pts	0.8775 4pts	0.8482 6pts	23

Results

Track 2: Variable number of turbines

# turbines	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Score
Wagner	373	238	793	427	969	24
	6pts	4pts	4pts	s 6ր	ots 4	pts
Loshchilov	489 10pts	310 10pts	974 s 10pt		1133 pts 10	50 Opts
GA	358	243	820	397	1081	26
	4pts	6pts	6pts	s 4p	ots 6	pts

Conclusion

We want you!

- There is a lot to do to solve this complex problem
- A lot of constraints can be added to increase the complexity of the optimization