R PROFILING AND OPTIMISATION

GÜNTHER SAWITZKI

Contents

Profiling facilities in R	2
Layout Tools and Utilities	2
1. Profiling	3
1.1. Simple regression example	4
1.1.1. R basic	5
1.1.2. Package sprof	8
1.1.3. Plot	21
1.2. analysis	26
1.3. trimming	28
2. Example data	33
3. A better grip on profile information	35
4. Standard output	37
4.1. Summary	37
4.2. Print	41
4.3. Plot	45
4.4. Graph	48
4.4.1. graph Package	49
4.4.2. igraph Package	50
4.4.3. network Package	51
4.4.4. Rgraphviz Package	52
Index	57

Date: Typeset: July 7, 2013.

Key words and phrases. R programming, profiling, optimisation, R program language. An R vignette for package sprof. Private Version

Profiling facilities in R

R provides the basic instruments for profiling, both for time based samplers as for event based instrumentation. However this source of information seems to be rarely used.

Maybe the supporting tools are not adequate. The summaries provided by R reduce the information beyond necessity. Additional packages are available, but these are not sufficiently action oriented.

With package **sprof** we want to give a data representation that keeps the full profile information. Tools to answer common questions are provided. The data structure should make it easy to extend the tools as required.

The package is currently distributed at r-forge as part of the sintro material.

```
To install this package directly within R, type install.packages("sprof",repos="http://r-forge.r-project.org")
```

To install the recent package from source directly within R, type install.packages("sprof",repos="http://r-forge.r-project.org",type="source")

LATEX LAYOUT TOOLS AND UTILITIES

Print parameters used here:

```
options(width = 72)
options(digits = 6)
```

We want immediate warnings, if necessary. Set to level 2 to handle warnings as error.

For larger tabels and data frames, we use a cludge to avoid long outputs.

```
Input
xcutdata.frame <- function(df, cut, margin){
#! keep3, to add: margin top - random center - margin bottom
if (!is.data.frame(df)) return(df)
nrow <- nrow(df)
# cut a range if it is not empty. Quiet noop else. Does not cut single lines.
cutrng <- function(cutfrom, cutto){
    if (cutfrom<cutto){
        df[cutfrom,] <- NA
        if (!is.null(rownames(df))) rownames(df)[cutfrom] <- "< cut >"
        if (!is.null(df$name)) df$name[cutfrom] <- ""</pre>
```

```
df[-(cutfrom:cutto),]
                 }#if
        }
        if (!missing(cut)) {df <- cutrng(cut[1],cut[2]); return(df)}</pre>
        if (!missing(margin)) {
                 if (length(margin)==1) margin <- c(margin, margin)</pre>
        cut <- c(margin[1]+1,nrow-margin[2])</pre>
        df <-cutrng(cut[1],cut[2]);</pre>
        return(df)}
#
         if (!missing(keep3)) { cut <- c(keep3[1]+1, keep3[1]+1,
                  nrow-keep3[3]-1,nrow-keep3[3]-1)
         if (cut[3]-cut[4] > keep3[2]+2){delta<-(cut[3]-cut[2]) div 2; cut[3]<-0
#
         browser()
         } else df <- cutrng(cut[1],cut[4])</pre>
         cutrng(cut[1],cut[4]) return(df)}
```

We use the R function xtable() for output and LaTeX longtable. A convenient wrapper to use this in out Sweave source is:

This is to be used with <<pre>rint = FALSE, results = tex, label=tab:prxxxx>>=

1. Profiling

The basic information provided by all profilers in is a protocol of sampled stacks. For each recorded event, the protocol has one record, such as a line with a text string showing the sampled stack.

We use profiles to provide hints on the dynamic behaviour of programs. Most often, this is used to improve or even optimise programs. Sometimes, it is even used to understand some algorithm.

Profiles represent the program flow, which is considered to be laid out by the control structure of a program. The control structure is represented by the control graph, and this leads to the common approach to (re)construct the control graph, map the profile to this graph, and used graph based methods for further analysis. The prime example for this strategy is the GNU profiler <code>gprof</code> (see http://sourceware.org/binutils/docs/gprof/) which is used as master plan for many common profilers.

It is only half of the truth that the control graph can serve as a base for the profiled stacks. In R, we have some peculiarities.

- lazy evaluation: Arguments to functions can passed as promises. These are only evaluated when needed, which may be at a later time, and may then lead to insertions in the stack. So we may have information resulting from the data flow, interspersed with the control flow.
- **memory management:** Allocation of memory, and garbage collection, may interfere and leave their traces in the stack. While allocation is closely related to the visible control flow, garbage collection is a collective effect largely out of control of the code to execute.
- **primitives:** Internal functions may escape the usual stack conventions and execute without leaving any identifiable trace on the stack.
- control structures: In R, many control structures are implemented as function. Most notably, the <code>apply()</code> family appear as function calls and lead to cliques in the graph representation that do not correspond to relevnat structures. Since these functions are well know, they can have a special treatment.

So while the stack follows an overall well known dynamics, in R there are exceptions from regularity. The general approach, by <code>summaryRprof()</code> and others, is to reduce

the profile to node information, or two consider single transitions.

We take a different approach. We take the stacks, as recorded in the profiles as our basic information unit. From this, we ask: what are the actions we need to answer our questions? Representation in graphs may come later, if they can help.

If the stacks would come from the control flow only, we could make use of the sequential nature of stacks. But since we have to live with the R specific interferences, we stay with the raw stacks.

In this presentation, we will use a small list of examples Since *Rprof* is not implemented on all systems, and since the profiles tend to get very large, we use some prepared examples that are frozen in this vignette and not included in the distribution, but all the code to generate the examples is provided.

1.1. Simple regression example.

```
n <- 10000
x <- runif(n)
err <- rnorm(n)
y <- 2+ 3 * x + err
regOdata <- data.frame(x=x, y=y, err=err)
rm(x,y,err)</pre>
```

We will use this example to illustrate the basics. Of course the immediate questions are the variance between varying samples, and the influence of the sample size n. We keep everything fixed, so the only issue for now is the computational performance under strict iid conditions.

Still we have parameters to choose. We can determine the profiling granularity by setting the timing interval, and we can use repeated measurements to increase precision below the timing interval.

The timing interval should depend on the clock speed. Using for example 1ms amounts to some 1000 steps on a current CPU, per kernel.

If we use repeated samples, the usual rules of statistics applies. So taking 100 runs and taking the mean reduces the standard deviation by a factor 1/10.

```
profinterval <- 0.001
simruns <- 100
Rprof(filename="RprofsRegressionExpl.out", interval = profinterval)
for (i in 1:simruns) xxx<- summary(lm(y~x, data=reg0data))
Rprof(NULL)
```

We now have the profile data in a file RprofsRegressionExpl.out. For this vignette, we use a frozen version RprofsRegressionExpl01.out.

1.1.1. R basic. The basic R invites us to get a summary.

```
sumRprofRegressionExpl <- summaryRprof("RprofsRegressionExpl01.out")</pre>
str(sumRprofRegressionExpl, vec.len=3)
                                  _ Output -
List of 4
$ by.self
                  :'data.frame':
                                        41 obs. of 4 variables:
  ..$ self.time : num [1:41] 0.087 0.057 0.051 0.043 0.042 0.04 0.032 0.026 ...
  ..$ self.pct : num [1:41] 16.67 10.92 9.77 8.24 ...
 ..$ total.time: num [1:41] 0.113 0.099 0.069 0.043 0.474 0.045 0.033 0.114 ...
  ..$ total.pct : num [1:41] 21.65 18.97 13.22 8.24 ...
                                        62 obs. of 4 variables:
$ by.total
                  :'data.frame':
  ..$ total.time: num [1:62] 0.522 0.522 0.521 0.521 0.521 0.521 0.521 0.521 ...
  ..$ total.pct : num [1:62] 100 100 99.8 99.8 ...
  ..$ self.time : num [1:62] 0.006 0 0.001 0 0 0 0 0 ...
  ..$ self.pct : num [1:62] 1.15 0 0.19 0 0 0 0 0 ...
$ sample.interval: num 0.001
$ sampling.time : num 0.522
```

The summary reduces the information contained in the profile to marginal statistics per node. This is provided in two data frames giving the same information, only in different order.

The file contains several spurious recordings: nodes that have been recorded only few times. It is worth noting these, but then they better be discarded. We use a

time limit of 4ms, which given our sampling interval of 1ms means we require more than four observations.

	10.4	10		
	self.time	self.pct	total.time	total.pct
${ m "lm.fit"}$	0.087	16.670	0.113	21.650
"[.data.frame"	0.057	10.920	0.099	18.970
"model.matrix.default"	0.051	9.770	0.069	13.220
"as.character"	0.043	8.240	0.043	8.240
"lm"	0.042	8.050	0.474	90.800
"summary.lm"	0.040	7.660	0.045	8.620
"structure"	0.032	6.130	0.033	6.320
"na.omit.data.frame"	0.026	4.980	0.114	21.840
"anyDuplicated.default"	0.022	4.210	0.022	4.210
"as.list.data.frame"	0.022	4.210	0.022	4.210
			•	
< cut >	:	:	:	:
"FUN"	0.001	0.190	0.007	1.340
"%in%"	0.001	0.190	0.004	0.770
"deparse"	0.001	0.190	0.002	0.380
"\$"	0.001	0.190	0.001	0.190
"as.list.default"	0.001	0.190	0.001	0.190
"as.name"	0.001	0.190	0.001	0.190
"coef"	0.001	0.190	0.001	0.190
"file"	0.001	0.190	0.001	0.190
"NCOL"	0.001	0.190	0.001	0.190
"terms.formula"	0.001	0.190	0.001	0.190

Table 1: summaryRprof result: by.self as final stack entry, all records

	total.time	total.pct	self.time	self.pct
" <anonymous>"</anonymous>	0.522	100.000	0.006	1.150
"Sweave"	0.522	100.000	0.000	0.000
"eval"	0.521	99.810	0.001	0.190
"doTryCatch"	0.521	99.810	0.000	0.000
"evalFunc"	0.521	99.810	0.000	0.000
"try"	0.521	99.810	0.000	0.000
"tryCatch"	0.521	99.810	0.000	0.000
"tryCatchList"	0.521	99.810	0.000	0.000
"tryCatchOne"	0.521	99.810	0.000	0.000

"with Visible"	0.521	99.810	0.000	0.000
< cut >	:	:	:	:
"as.list"	0.023	4.410	0.000	0.000
"anyDuplicated.default"	0.022	4.210	0.022	4.210
"as.list.data.frame"	0.022	4.210	0.022	4.210
"sapply"	0.014	2.680	0.001	0.190
"match"	0.011	2.110	0.001	0.190
"[[.data.frame"	0.008	1.530	0.001	0.190
"[["	0.008	1.530	0.000	0.000
"rep.int"	0.007	1.340	0.007	1.340
"FUN"	0.007	1.340	0.001	0.190
"list"	0.005	0.960	0.005	0.960

Table 2: summaryRprof result: by.total, total time > 0.004s

1.1.2. Package sprof. In contrast, in our implementation we take a two step approach. First we read in the profile file to an internal representation.

```
sprof01lm <- readRprof("RprofsRegressionExpl01.out")
sprof01 <- sprof01lm</pre>
```

We keep this example and use the copy **sprof01** of it extensively for illustration.

```
______Input _____save(sprof01lm, file="sprof01lm.RData")
```

To run the vignette with a different profile, replace ircodesprof01 by your example. You still have ircodesprof01lm for reference.

Package **sprof** provides a function **sampleRprof()** to take a sample and create a profile on the fly, as in

```
sprof01temp <- sampleRprof(runif(10000), runs=100)</pre>
```

The basic data structure consists of four data frames. The ircodeinfo section collects global infromation from the input file, such as an identification strings and various global matrix. The nodes section initially gives the same information marginal information as summaryRprof. The stacks section puts the node information into their calling context as found in the input profile file. The profiles section gives the temporal context. It is implemented as a list, but conceptually it is a data frame. Implementing it as a list allows run length encoding of variables, which unfortunately is not allowed by R in data frames.

```
str(sprof01, max.level=2, vec.len=3,nchar.max=40)
                                   Output
List of 4
$ info
           :'data.frame':
                                 1 obs. of 8 variables:
  ..$ id
              : Factor w/ 1 level "\"RprofsRegressionExpl01.out\" 2013-06-" | __truncated__: 1
              : POSIXct[1:1], format: "2013-07-07 00:31:30"
  ..$ nrnodes : int 62
  ..$ nrstacks : int 50
  ..$ nrrecords: int 522
  ..$ firstline: Factor w/ 1 level "sample.interval=1000": 1
  ..$ ctllines : Factor w/ 1 level "sample.interval=1000": 1
  ..$ ctllinenr: num 1
 $ nodes
          :'data.frame':
                                 62 obs. of 5 variables:
               : Factor w/ 62 levels "!","..getNamespace",..: 1 2 3 4 5 6 7 8 ...
  ..$ name
  ..$ self.time : num [1:62] 2 0 2 0 0 57 0 1 ...
  ..$ self.pct : num [1:62] 0.38 0 0.38 0 ...
  ..$ total.time: num [1:62] 2 1 4 26 99 99 8 8 ...
  ..$ total.pct : num [1:62] 0.03 0.01 0.05 0.34 1.29 1.29 0.1 0.1 ...
 $ stacks :'data.frame':
                                 50 obs. of 7 variables:
  ..$ nodes
                    :List of 50
                   : Factor w/ 50 levels "S<A>eFttCtCLtCOdTCwVeesleem.m..n.n..[["| __truncated__,..:
  ..$ shortname
```

```
..$ refcount : num [1:50] 1 5 26 55 13 43 51 87 ...
..$ stacklength : int [1:50] 19 20 19 21 14 15 15 14 ...
..$ stackheadnodes: int [1:50] 52 52 52 52 52 52 52 52 ...
..$ stackleafnodes: int [1:50] 27 28 41 6 39 14 38 30 ...
..$ stacksrc : Factor w/ 50 levels "! [.data.frame [ na.omit.data.frame na."| __truncated__,...:

$ profiles:List of 4
..$ data : int [1:522] 1 2 2 3 4 4 5 5 ...
..$ mem : NULL
..$ malloc : NULL
..$ timesRLE:List of 2
...- attr(*, "class")= chr "rle"
- attr(*, "class")= chr [1:2] "sprof" "list"
```

The nodes do not come in a specific order. Access via an access vector is preferred. For example table 3 (compare to table 2 on page 7).

	name	self.time	self.pct	total.time	total.pct
10	<anonymous></anonymous>	6.000	1.150	522.000	6.790
52	Sweave	0.000	0.000	522.000	6.790
21	doTryCatch	0.000	0.000	521.000	6.780
22	eval	1.000	0.190	521.000	6.780
23	evalFunc	0.000	0.000	521.000	6.780
55	try	0.000	0.000	521.000	6.780
56	tryCatch	0.000	0.000	521.000	6.780
57	tryCatchList	0.000	0.000	521.000	6.780
58	tryCatchOne	0.000	0.000	521.000	6.780
62	withVisible	0.000	0.000	521.000	6.780
< cut >	\vdots	:	:	:	:
61	vapply	3.000	0.570	23.000	0.300
13	anyDuplicated.default	22.000	4.210	22.000	0.290
16	as.list.data.frame	22.000	4.210	22.000	0.290
47	sapply	1.000	0.190	14.000	0.180
31	match	1.000	0.190	11.000	0.140
7		0.000	0.000	8.000	0.100
8	[[.data.frame	1.000	0.190	8.000	0.100
25	FUN	1.000	0.190	7.000	0.090
46	rep.int	7.000	1.340	7.000	0.090
28	list	5.000	0.960	5.000	0.070

Table 3: splot result: by.total, total time > 0.004s

Common rearrangement as by total time and by self time are supplied by the display functions. Plot, for example, currently gives a choice of four displays.

_ Input

oldpar <- par(mfrow=c(2,2))
plot_nodes(sprof01)
par(oldpar)</pre>

seir "RprofsRegressionExpl01.out" 2013–06–13 23:46:04 "RprofsRegressionExpl01.out" 2013–06–13 23:46:04

As a convention, we do not re-arrange items for ad-hoc choices, but use a permutation vector instead.

Selections are recorded as selection vectors, with reference to the original order. This needs some caution to align them with the order choices.

```
nodesnrobsok <- sprof01$nodes$total.time > 4

sp <- sprof01$nodes$total.time[nodesperm] [nodesnrobsok[nodesperm]]

names(sp) <- sprof01$nodes$name[nodesperm] [nodesnrobsok[nodesperm]]

barplot(sp,

main="Nodes, by total time", ylab="total time")
```

Nodes, by total time

Stacks, by reference count

stacksnrobsok <- sprof01\$stacks\$refcount > 4
sp4 <- sprof01\$stacks\$refcount[stacksperm][stacksnrobsok[stacksperm]]
names(sp4) <- sprof01\$stacks\$shortname[stacksperm][stacksnrobsok[stacksperm]]
barplot(sp4,
main="Stacks, by reference count (4 obs. minimum)", ylab="count > 4")

Stacks, by reference count (4 obs. minimum)

On the first look, information on the profile level is not informative. Profile records are just recordings of some step, taken at regular intervals. We get a minimal information, if we encode the stacks in colour.

We now do a step down analysis. Aggregating the information from the profiling events, we have the frequency of stack references. On the stack level, we encode the frequency in colour, and linking propagates this to the profile level.

Input

stackfreqscore <- rank(sprof01\stacks\refcount, ties.method="random")

stackfreqscore4<- stackfreqscore[stacksperm][stacksnrobsok[stacksperm]]

barplot(sp[stacksnrobsok[stacksperm]], main="Stacks, by reference count (4 obs. minimum)", ylab="count col=rainbow(80)[stackfreqscore4])

Stacks, by reference count (4 obs. minimum)

_____ Input ___

	name	self.time	self.pct	total.time	total.pct
1	!	2.000	0.380	2.000	0.030
2	get Name space	0.000	0.000	1.000	0.010
3	. departs = Opts	2.000	0.380	4.000	0.050
4	.getXlevels	0.000	0.000	26.000	0.340
5	[0.000	0.000	99.000	1.290
6	[.data.frame	57.000	10.920	99.000	1.290
7	[[0.000	0.000	8.000	0.100
8	[[.data.frame	1.000	0.190	8.000	0.100
9	$\% \mathrm{in}\%$	1.000	0.190	4.000	0.050
10	<anonymous></anonymous>	6.000	1.150	522.000	6.790
< cut >	$\setminus vdots$	i	:	:	:
53	terms	0.000	0.000	2.000	0.030
54	terms.formula	1.000	0.190	1.000	0.010
55	try	0.000	0.000	521.000	6.780
56	tryCatch	0.000	0.000	521.000	6.780
57	tryCatchList	0.000	0.000	521.000	6.780
58	tryCatchOne	0.000	0.000	521.000	6.780
59	unique	3.000	0.570	4.000	0.050
60	unlist	0.000	0.000	1.000	0.010
61	vapply	3.000	0.570	23.000	0.300
62	withVisible	0.000	0.000	521.000	6.780

Table 4: nodes

```
_ Input _
str(sprof01$stacks, max.level=1)
                                  Output_-
                   50 obs. of 7 variables:
'data.frame':
               :List of 50
$ nodes
$ shortname
               : Factor w/ 50 levels "S<A>eFttCtCLtCOdTCwVeesleem.m..n.n...[[.",..: 27 17 19 1 35 36
$ refcount
               : num 1 5 26 55 13 43 51 87 1 15 ...
$ stacklength : int 19 20 19 21 14 15 15 14 15 18 ...
$ stackheadnodes: int 52 52 52 52 52 52 52 52 52 52 ...
$ stackleafnodes: int 27 28 41 6 39 14 38 30 27 49 ...
              : Factor w/ 50 levels "! [.data.frame [ na.omit.data.frame na.omit model.frame.default
                             _____ Input ___
                                   Input -
str(sprof01$profiles, max.level=1)
                                 _{-} Output _{-}
List of 4
$ data
          : int [1:522] 1 2 2 3 4 4 5 5 6 7 ...
$ mem
          : NULL
$ malloc : NULL
$ timesRLE:List of 2
 ..- attr(*, "class")= chr "rle"
                                ___ Input ____
A summary is provided on request.
                                   Input _
 sumsprof01 <- summary.sprof(sprof01)</pre>
str(sumsprof01, max.level=2)
                          _____ Output __
List of 4
$ info
          :'data.frame':
                            1 obs. of 8 variables:
              : Factor w/ 1 level "\"RprofsRegressionExpl01.out\" 2013-06-13 23:46:04": 1
              : POSIXct[1:1], format: "2013-07-07 00:31:30"
 ..$ nrnodes : int 62
  ..$ nrstacks : int 50
  ..$ nrrecords: int 522
  ..$ firstline: Factor w/ 1 level "sample.interval=1000": 1
  ..$ ctllines : Factor w/ 1 level "sample.interval=1000": 1
 ..$ ctllinenr: num 1
$ nodes :'data.frame':
                                62 obs. of 5 variables:
 ..$ name : Factor w/ 62 levels "!","..getNamespace",..: 1 2 3 4 5 6 7 8 9 10 ...
  ..$ self.time : num [1:62] 2 0 2 0 0 57 0 1 1 6 ...
 ..$ self.pct : num [1:62] 0.38 0 0.38 0 0 ...
 ..$ total.time: num [1:62] 2 1 4 26 99 99 8 8 4 522 ...
 ..$ total.pct : num [1:62] 0.03 0.01 0.05 0.34 1.29 1.29 0.1 0.1 0.05 6.79 ...
$ stacks :'data.frame':
                              50 obs. of 7 variables:
```

```
..$ nodes
                   :List of 50
..$ shortname
                  : Factor w/ 50 levels "S<A>eFttCtCLtCOdTCwVeesleem.m..n.n...[[.",..: 27 17 19 1 35
..$ refcount
                   : num [1:50] 1 5 26 55 13 43 51 87 1 15 ...
..$ stacklength : int [1:50] 19 20 19 21 14 15 15 14 15 18 ...
..$ stackheadnodes: int [1:50] 52 52 52 52 52 52 52 52 52 ...
..$ stackleafnodes: int [1:50] 27 28 41 6 39 14 38 30 27 49 ...
                  : Factor w/ 50 levels "! [.data.frame [ na.omit.data.frame na.omit model.frame.defa
 ..$ stackssrc
$ profiles:List of 4
 ..$ data
            : int [1:522] 1 2 2 3 4 4 5 5 6 7 ...
            : NULL
 ..$ mem
 .. $ malloc : NULL
..$ timesRLE:List of 2
.. ..- attr(*, "class")= chr "rle"
- attr(*, "class")= chr [1:2] "sprof" "list"
```

The classical approach hides the work that has been done. Actually it breaks down the data to record items. This figure is not reported anywhere. In our case, it can be reconstructed. The profile data have 8456 words in 524 lines.

In our approach, we break down the information. Two lines of control information are split off. We have 522 lines of profile with 50 unique stacks, referencing 62 nodes. Instead of reducing it to a summary, we keep the full information. Information is always kept on its original level.

On the profiles level, we know the sample interval length, and the id of the stack recorded. On the stack level, for each stack we have a reference count, with the sample interval lengths used as weights. This reference count is added up for each node in the stack to give the node timings.

Cheap statistics are collected as the come by. For example, from the stacks table it is cheap to identify root and leaf nodes, and this mark is propagated to the nodes table.

1.1.3. *Plot.* Looking at lists of numbers is not too informative. We get a first impression by plotting the data.

```
#plot_nodes(sprof01, col=nodescol[nodescore])
oldpar <- par(mfrow=c(2,2))
plot_nodes(sprof01)
par(oldpar)</pre>
```


_______Input ______stacks_nodes <- list.as.matrix(sprof01\$stacks\$nodes)

nodes by stack

profile_nodes <- profiles_matrix(sprof01)</pre>

nodes by event

The ${\it plot}$ () method for ${\it sprof}$ objects concatenates these three functions.

1.2. analysis.

```
profile_nodes_rrle <- rrle(profile_nodes)
str(profile_nodes_rrle)

List of 25
$ :List of 2
...$ lengths: int 522
...$ values : int 52
... attr(*, "class")= chr "rle"
$ :List of 2
...$ lengths: int 522
...$ values : int 52
...$ lengths: int 522
...$ lengths: int 522
...$ values : int 10
... attr(*, "class")= chr "rle"
$ :List of 2
...$ lengths: int [1:2] 521 1</pre>
```

```
..$ values : int [1:2] 23 24
..- attr(*, "class")= chr "rle"
$:List of 2
 ..$ lengths: int [1:2] 521 1
..$ values : int [1:2] 55 NA
 ..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:2] 521 1
 ..$ values : int [1:2] 56 NA
..- attr(*, "class")= chr "rle"
$ :List of 2
..$ lengths: int [1:2] 521 1
..$ values : int [1:2] 57 NA
 ..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:2] 521 1
..$ values : int [1:2] 58 NA
..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:2] 521 1
 ..$ values : int [1:2] 21 NA
..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:2] 521 1
..$ values : int [1:2] 62 NA
..- attr(*, "class")= chr "rle"
$ :List of 2
..$ lengths: int [1:2] 521 1
..$ values : int [1:2] 22 NA
..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:2] 521 1
..$ values : int [1:2] 22 NA
 ..- attr(*, "class")= chr "rle"
$ :List of 2
..$ lengths: int [1:4] 45 1 475 1
..$ values : int [1:4] 50 NA 50 NA
 ..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:62] 18 1 3 23 1 14 1 22 1 13 ...
 ..$ values : int [1:62] 29 27 51 29 NA 29 51 29 51 29 ...
 ..- attr(*, "class")= chr "rle"
 ..$ lengths: int [1:361] 6 3 1 7 1 1 1 1 6 ...
 ..$ values : int [1:361] 22 39 37 30 4 2 NA NA NA 22 ...
..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:407] 6 1 1 1 1 1 1 1 1 1 ...
 ..$ values : int [1:407] 22 NA NA 14 38 NA 27 NA NA NA ...
..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:427] 6 1 1 1 1 1 1 1 1 1 ...
 ..$ values : int [1:427] 35 NA ...
```

```
..- attr(*, "class")= chr "rle"
$:List of 2
 ..$ lengths: int [1:427] 6 1 1 1 1 1 1 1 1 1 ...
 ..$ values : int [1:427] 36 NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "class")= chr "rle"
$ :List of 2
  ..$ lengths: int [1:450] 1 2 3 1 1 1 1 1 1 1 ...
  ..$ values : int [1:450] 53 22 40 NA NA NA NA NA NA NA ...
  ..- attr(*, "class")= chr "rle"
$:List of 2
 ..$ lengths: int [1:466] 1 2 3 1 1 1 1 1 1 1 ...
 ..$ values : int [1:466] 27 22 41 NA NA NA NA NA NA NA ...
  ..- attr(*, "class")= chr "rle"
$ :List of 2
  ..$ lengths: int [1:489] 1 2 1 2 1 1 1 1 1 1 ...
 ..$ values : int [1:489] NA 28 NA 5 NA NA NA NA NA NA ...
 ..- attr(*, "class")= chr "rle"
$ :List of 2
  ..$ lengths: int [1:494] 1 1 1 1 2 1 1 1 1 1 ...
  ...$ values : int [1:494] NA NA NA NA 6 NA NA NA NA NA ...
 ..- attr(*, "class")= chr "rle"
 $ :List of 2
  ..$ lengths: int [1:508] 1 1 1 1 1 1 1 1 1 ...
  ...$ values : int [1:508] NA ...
 ..- attr(*, "class")= chr "rle"
$ :List of 2
 ..$ lengths: int [1:512] 1 1 1 1 1 1 1 1 1 ...
 ...$ values : int [1:512] NA ...
 ..- attr(*, "class")= chr "rle"
$ :List of 2
  ..$ lengths: int [1:522] 1 1 1 1 1 1 1 1 1 1 ...
 ...$ values : int [1:522] NA ...
  ..- attr(*, "class")= chr "rle"
$ :List of 2
  ..$ lengths: int [1:522] 1 1 1 1 1 1 1 1 1 1 ...
  ..$ values : int [1:522] NA ...
  ..- attr(*, "class")= chr "rle"
1.3. trimming.
trimstacks <- function(sprof, level){</pre>
lapply(sprof$stacks$nodes, function(x) {x[-(1:level)]})
sprof01Tr <- trimstacks(sprof01, 11)</pre>
 #profile_nodesTr <- profiles_matrix(sprof01Tr)</pre>
#image(x=1:ncol(profile_nodesTr),y=1:nrow(profile_nodesTr), t(profile_nodesTr),xlab="event", ylab="dep
```


Top frequent stacks.

```
x <- sprof01
xsrc <- as.matrix(x$stacks$refcount)
rownames(xsrc) <- rownames(xsrc, do.NULL=FALSE, prefix="S")
#stf <- x$stacks$refcount[x$stacks$refcount>1]
#names(stf) <- x$stacks$shortname[x$stacks$refcount>1]
stf <- xsrc[xsrc>1]
names(stf) <- rownames(xsrc)[xsrc>1]
ostf <- order(stf,decreasing=TRUE)
barplot(stf[ostf])</pre>
```


There is no statistics on profiles. Profiling are our elementary data. However we can lnk to our derived data to get a more informative display. For example, going one step back we can encode stacks and use these colour codes in the display of a profile.

Or going two steps back, we can encode nodes in colour, giving coloured stacks, and use these in the display of profile data.

2. Example data

getwd()	Input
[1] "/Users/gs/projects/rforge/sint	Outputro/pkg/sprof/work/vignettes"
dir()	Input

Output . [1] "gssda_old.sty" [2] "Makefile" [3] "rpo.out" [4] "Rprof.out" [5] "Rprofsr01.out" [6] "RprofsRegressionExpl.out" [7] "RprofsRegressionExpl01.out" [8] "SIntro_old.sty" [9] "sintro01lm.rda" [10] "sintroO1lm.RData" [11] "sprof01.Rdata" [12] "sprof01lm.RData" [13] "sprofiling-barplotNodes.pdf" [14] "sprofiling-barplotNodes4.pdf" [15] "sprofiling-barplotStacks.pdf" [16] "sprofiling-barplotStacks4.pdf" [17] "sprofiling-nwrpoadj.pdf" [18] "sprofiling-rpoadjNEL.pdf" [19] "sprofiling-rpoadjvizcirco.pdf" [20] "sprofiling-rpoadjvizdot.pdf" [21] "sprofiling-rpoadjvizfdp.pdf" [22] "sprofiling-rpoadjvizneato.pdf" [23] "sprofiling-rpoadjviztwopi.pdf" [24] "sprofiling-rpoig.pdf" [25] "sprofiling-rpoplotnodes.pdf" [26] "sprofiling-rpoplotprofiles.pdf" [27] "sprofiling-rpoplotstacks.pdf" [28] "sprofiling-sREimgprofiles.pdf" [29] "sprofiling-sREimgstacks.pdf" [30] "sprofiling-sREplotnodefreq.pdf" [31] "sprofiling-sREplotnodefreq1.pdf" [32] "sprofiling-sREplotnodes.pdf" [33] "sprofiling-sREplotnodes01.pdf" [34] "sprofiling-sREplotprofiles.pdf" [35] "sprofiling-sREplotprofiles242.pdf" [36] "sprofiling-sREplotprofiles323.pdf" [37] "sprofiling-sREplotprofiles4.pdf" [38] "sprofiling-sREplotstackfreq.pdf" [39] "sprofiling-sREplotstackfreq1.pdf" [40] "sprofiling-sREplotstackfreq2.pdf" [41] "sprofiling-sREplotstacks.pdf" [42] "sprofiling-sREplotstacks4col.pdf" [43] "sprofiling.aux" [44] "sprofiling.idx" [45] "sprofiling.ilg" [46] "sprofiling.ind"

[47] "sprofiling.log"
[48] "sprofiling.pdf"
[49] "sprofiling.tex"
[50] "sprofiling.toc"

3. A BETTER GRIP ON PROFILE INFORMATION

The basic information provided by all profilers in R is a protocol of sampled stacks. For each recorded event, the protocol records one line with a text string showing the sampled stack (in reverse order: most recent first). The stack lines may be preceded by header lines with event specific information. The protocol may be interspersed with control information, such as information about the timing interval used.

We know that the structural information, static information as well as dynamic information, can be represented with the help of a graph. For a static analysis, the graph representation may be the first choice. For a dynamic analysis, the stack information is our first information. A stack is a connected path in the program graph. If we start with nodes and edges, we loose information which is readily available in record of stacks.

As we know that we are working with stacks, we know that they have their peculiarities. Stacks tend to grow and shrink. Subsequent events will have extensions and shrinkages of stacks (if the recording is on a fine scale), or stack sharing common stumps (if the recording is on a coarser scale).

There have always been interrupts, and these show up in profiles. In R, this is related problem (GC)

The graph is a second instance that is (re)constructed from the stack recording.

Here is the way we represent the profile information:

The profile log file is sanitised:

- Control lines are extracted and recorded in a separate list.
- Head parts, if present, ere extracted and recorded in a matrix that is kept line-aligned with the remainder
- Line content is standardised, for example by removing stray quotation marks etc.

After this, the sanitised lines are encoded as a vector of stacks, and references to this.

If necessary, these steps are done by chunks to reduce memory load.

From the vector of stacks, a vector of nodes (or rather node names) is derived.

The stacks are now encoded by references to the nodes table. For convenience, we keep the (sanitised) textual representation of the stacks.

So far, texts are in reverse order. For each stack, we record the trailing leaf, and then we reverse order. The top of stack is now on first position.

Several statistics can be accumulated easily as a side effect.

Conceptually, the data structure consist of three tables (the implementation may differ, and is subject to change).

The profiles table is the representation of the input file. Control lines are are collected in a special table. With the control lines removed, the rest is a table, one

row per input line. The body of the line, the stack, is encoded as a reference to a stacks table (obligatory) and header information (optional).

The stacks table contains the collected stacks, each stack encoded as a list of references to the node table. This is obligatory. This list is kept in reverse order (root at position 1). A source line representing the stack information may be kept (optional).

The nodes table keeps the names at the nodes.

To illustrate our data structure, we use *Rprofsr01.out* as provided in section 1.1 on page 4.

vref:

section 1.1 on page 4

This is a temporary hack to get a most recent private recent version of library(sprof).

```
Input
 rpo <- readRprof("Rprofsr01.out")</pre>
 str_prof(rpo)
                                    _ Output
First line:
O Sampling intervals in micros: NULL
64 nodes in 47 stacks
36 Terminals
1 Roots:
         .deparseOpts
                                  .getXlevels
                                                     .row_names_info
                     [.data.frame
                                                                   0
        [[.data.frame
                                         %in%
                                                         <Anonymous>
                                            0
                     0
                     $
                               anyDuplicated anyDuplicated.default
                     0
                                            0
         as.character
                                      as.list
                                                 as.list.data.frame
                     0
                                            0
                                                                   0
            as.vector
                                            С
                                                                  cat
                     0
                                            0
                                                                   0
                                                          doTryCatch
             chol2inv
                                      deparse
                                            0
                     0
                                                                   0
                                     evalFunc
                                                                 FUN
                  eval
                     0
                                            0
                                                                   0
            getOption
                                       lapply
                                                     lazyLoadDBfetch
                     0
                                            0
                                                                   0
                  list
                                           lm
                                                              lm.fit
                     0
                                            0
                                                                   0
                match
                                    match.fun
                                                                mean
                     0
                                            0
                                                                   0
         mean.default
                                         mode
                                                         model.frame
                                            0
 model.frame.default
                                model.matrix model.matrix.default
                                            0
                     0
                                                                   0
```

na.omit

options

rep.int

0

0

```
0
               0
                                                    0
     simplify2array
                            structure
                                                  summary
                              0
                                                   0
        summary.lm
                               Sweave
                                                   terms
                                  47
      terms.formula
                                                 tryCatch
                                  try
                                  0
       tryCatchList
                          tryCatchOne
                                                   unique
                            0
                0
     unique.default
                              unlist
                                                   vapply
                               0
        withVisible
rpo Structure: List of 4
                           1 obs. of 8 variables:
$ info :'data.frame':
$ nodes :'data.frame':
                           64 obs. of 5 variables:
$ stacks :'data.frame':
                           47 obs. of 7 variables:
$ profiles:List of 4
- attr(*, "class")= chr [1:2] "sprof" "list"
                                 47 obs. of 7 variables:
stacks Structure: 'data.frame':
       :List of 47
             : Factor w/ 47 levels "S<A>eFttCtCLtCOdTCwVeesleem.m..n.n...[[.",..: 3 18 14 20 23 ...
$ shortname
$ refcount
             : num 1 1 16 23 1 ...
```

\$ stackssrc : Factor w/ 47 levels ".deparseOpts FUN lapply sapply match model.matrix.default model

na.omit.data.frame

paste

sapply

4. Standard output

4.1. Summary.

model.response

names

pmatch

\$ stacklength : int 13 18 17 19 21 ... \$ stackheadnodes: int 53 53 53 53 ... \$ stackleafnodes: int 27 27 37 42 27 ...

summary_nodes(rpo)]	Input			
			utput	16 +	16	*****
				sell.time	-	total.time
.deparseOpts	.dpO	-	LEAF	1	Inf	0
.getXlevels	.gtX	_	_	0	NaN	0
.row_names_info	.r	-	LEAF	1	Inf	0
[]	-	-	0	NaN	0
[.data.frame	[.d.	-	LEAF	48	Inf	0
]]	11	-	-	0	NaN	0
[[.data.frame	[[-	LEAF	2	Inf	0
%in%	%in%	_	LEAF	1	Inf	0

<anonymous></anonymous>	<an></an>	-	-	0	NaN	0
\$	\$	-	LEAF	2	Inf	0
${ t any Duplicated}$	anyD	-	LEAF	1	Inf	0
anyDuplicated.default	anD.	-	LEAF	9	Inf	0
as.character	as.c	-	LEAF	35	Inf	0
as.list	as.l	-	LEAF	1	Inf	0
as.list.data.frame	a	-	LEAF	33	Inf	0
as.vector	as.v	-	-	0	NaN	0
С	С	-	LEAF	1	Inf	0
cat	cat	-	LEAF	1	Inf	0
chol2inv	ch12	-	LEAF	2	Inf	0
deparse	dprs	-	-	0	NaN	0
doTryCatch	dTrC	_	_	0	NaN	0
eval	eval	-	_	0	NaN	0
evalFunc	evlF	_	_	0	NaN	0
FUN	FUN	_	LEAF	1	Inf	0
getOption	gt0p	_	_	0	NaN	0
lapply	lppl	_	_	0	NaN	0
lazyLoadDBfetch	1LDB	_	LEAF	7	Inf	0
list	list		LEAF	14	Inf	0
lm	lm		LEAF	43	Inf	0
lm.fit	lm.f		LEAF	114	Inf	0
match	mtch		LEAF	2	Inf	0
match.fun	mtc.	_	LLAI	0	NaN	0
mean	mean	_	_	0	NaN	0
mean.default	mn.d		LEAF	1	Inf	0
mode	mode		LEAF	1	Inf	0
model.frame	mdl.f		LEAF	0	NaN	0
model.frame.default	mdl.f.		LEAF	16		0
	mdl.m	_	LEAF		Inf	
model.matrix		_	TEAE	0	NaN	0
model.matrix.default	mdl.m.		LEAF	55	Inf	0
model.response	mdl.r		LEAF	2	Inf	0
na.omit	n.mt		LEAF	15	Inf	0
na.omit.data.frame	n		LEAF	23	Inf	0
names	nams		LEAF	1	Inf	0
options	optn	_	LEAF	1	Inf	0
paste	past	_	-	0	NaN	0
pmatch	pmtc		LEAF	1	Inf	0
rep.int	rp.n	-	LEAF	1	Inf	0
sapply	sppl	-	-	0	NaN	0
simplify2array	smp2	_	-	0	NaN	0
structure	strc	-	LEAF	33	Inf	0
summary	smmr	_		0	NaN	0
summary.lm	smm.		LEAF	36	Inf	0
Sweave		ROOT	_	0	NaN	0
terms	trms	-		0	NaN	0
terms.formula	trm.	-	LEAF	1	Inf	0
try	try	-	-	0	NaN	0
tryCatch	tryC	-	-	0	NaN	0
tryCatchList	trCL	-	-	0	NaN	0
tryCatchOne	trCO	-	-	0	NaN	0
unique	uniq		-	0	NaN	0
unique.default	unq.	-	LEAF	1	Inf	0

	-				.	
unlist	unls	-	LEAF	1	Inf	0
vapply	vppl	-	-	0	NaN	0
withVisible	wthV	-	-	0	NaN	0
	total.pct					
.deparseOpts	NaN					
.getXlevels	NaN					
.row_names_info	NaN					
	NaN					
[.data.frame	NaN					
[[NaN					
[[.data.frame	NaN NaN					
%in%	NaN					
<anonymous></anonymous>	NaN N-N					
\$	NaN					
anyDuplicated	NaN					
anyDuplicated.default	NaN					
as.character as.list	NaN NaN					
as.list.data.frame	NaN NaN					
as.vector	NaN					
C C	NaN					
cat	NaN					
chol2inv	NaN					
deparse	NaN					
doTryCatch	NaN					
eval	NaN					
evalFunc	NaN					
FUN	NaN					
getOption	NaN					
lapply	NaN					
lazyLoadDBfetch	NaN					
list	NaN					
lm	NaN					
lm.fit	NaN					
match	NaN					
match.fun	NaN					
mean	NaN					
mean.default	NaN					
mode	NaN					
model.frame	NaN					
model.frame.default	NaN					
model.matrix	NaN					
model.matrix.default	NaN					
model.response	NaN					
na.omit	NaN					
na.omit.data.frame	NaN					
names	NaN					
options	NaN					
paste	NaN					
pmatch rop int	NaN NaN					
rep.int	NaN NaN					
sapply	NaN NaN					
simplify2array	INAIN					

structure	NaN
summary	NaN
summary.lm	NaN
Sweave	NaN
terms	NaN
terms.formula	NaN
try	NaN
tryCatch	NaN
tryCatchList	NaN
tryCatchOne	NaN
unique	NaN
unique.default	NaN
unlist	NaN
vapply	NaN
withVisible	NaN

summary_stacks(rpo)

_____ Input __

Output _____

					Uutput
		${\tt refcount}$		leafs	. ***
1	13	1	53	27	
2	18	1	53	27	
3	17	16	53	37	
4	19	23	53	42	
5	21	1	53	27	
6	21	48	53	5	
7	20	1	53	27	
8	15	1	53	27	
9	18	25	53	15	
10	15	55	53	39	
11	14	1	53	27	
12	14	114	53	30	
13	15	23	53	50	
14	13	43	53	29	
15	18	10	53	50	
16	14	1	53	27	
17	14	2	53	19	
18	13	36	53	52	
19	25	1	53	35	
20	15	35	53	13	
21	18	15	53	41	
22	20	1	53	1	
23		7	53	15	
24		2	53	40	
25	20	1	53	62	
26		9	53	12	
27	20	14	53	28	
28	19	1	53	24	
29	22	1	53	17	
30		1	53	47	
31		2	53	10	
32	21	1	53	7	

33	17	1	53	15
34	16	1	53	43
35	15	1	53	34
36	22	1	53	11
37	19	1	53	55
38	21	1	53	46
39	16	1	53	7
40	18	1	53	3
41	24	1	53	31
42	16	1	53	8
43	19	1	53	44
44	19	1	53	31
45	17	1	53	14
46	20	1	53	61
47	3	1	53	18

summary_profiles(rpo)

_____Output ___

[1] "Profile Summary Sun Jul 7 00:31:33 2013"

\$len

[1] 508

\$uniquestacks

[1] 47

\$nr_runs

[1] 373

The summary() method for sprof objects concatenates these three functions.

4.2. **Print.**

Input							
<pre>print_nodes(rpo)</pre>			1				
	-hh		utput	16 +	16	*****	
				sell.time	-	total.time	
$. exttt{deparseOpts}$.dpO	-	LEAF	1	Inf	0	
.getXlevels	.gtX	_	-	0	NaN	0	
.row_names_info	.r	_	LEAF	1	Inf	0	
[[-	-	0	NaN	0	
[.data.frame	[.d.	-	LEAF	48	Inf	0	
[[11	-	-	0	NaN	0	
[[.data.frame	[[-	LEAF	2	Inf	0	
%in%	%in%	-	LEAF	1	Inf	0	
<anonymous></anonymous>	<an></an>	-	-	0	NaN	0	
\$	\$	-	LEAF	2	Inf	0	
${\tt anyDuplicated}$	anyD	-	LEAF	1	Inf	0	
anyDuplicated.default	anD.	-	LEAF	9	Inf	0	

as.character	as.c	-	LEAF	35	Inf	0
as.list	as.l	-	LEAF	1	Inf	0
as.list.data.frame	a	-	LEAF	33	Inf	0
as.vector	as.v	-	_	0	NaN	0
С	С	-	LEAF	1	Inf	0
cat	cat	-	LEAF	1	Inf	0
chol2inv	ch12	-	LEAF	2	Inf	0
deparse	dprs	-	-	0	NaN	0
doTryCatch	dTrC	-	_	0	NaN	0
eval	eval	-	_	0	NaN	0
evalFunc	evlF	-	-	0	NaN	0
FUN	FUN	-	LEAF	1	Inf	0
getOption	gt0p	-	_	0	NaN	0
lapply	lppl	-	_	0	NaN	0
${\tt lazyLoadDBfetch}$	1LDB	-	LEAF	7	Inf	0
list	list	-	LEAF	14	Inf	0
lm	lm	-	LEAF	43	Inf	0
lm.fit	lm.f	-	LEAF	114	Inf	0
match	mtch	-	LEAF	2	Inf	0
match.fun	mtc.	-	_	0	NaN	0
mean	mean	-	_	0	NaN	0
mean.default	mn.d	-	LEAF	1	Inf	0
mode	mode	-	LEAF	1	Inf	0
model.frame	mdl.f	-	-	0	NaN	0
model.frame.default	mdl.f.	-	LEAF	16	Inf	0
model.matrix	mdl.m	-	_	0	NaN	0
model.matrix.default	mdl.m.	-	LEAF	55	Inf	0
model.response	mdl.r	-	LEAF	2	Inf	0
na.omit	n.mt	-	LEAF	15	Inf	0
na.omit.data.frame	n	-	LEAF	23	Inf	0
names	nams	-	LEAF	1	Inf	0
options	optn	-	LEAF	1	Inf	0
paste	past	-	-	0	NaN	0
pmatch	pmtc	-	LEAF	1	Inf	0
rep.int	rp.n	-	LEAF	1	Inf	0
sapply	sppl	-	-	0	NaN	0
simplify2array	smp2	-	-	0	NaN	0
structure	strc	-	LEAF	33	Inf	0
summary	smmr	-	-	0	NaN	0
summary.lm	smm.	-	LEAF	36	Inf	0
Sweave	Swev	ROOT	_	0	NaN	0
terms	trms	-	_	0	NaN	0
terms.formula	trm.	-	LEAF	1	Inf	0
try	try	-	_	0	NaN	0
tryCatch	tryC	-	_	0	NaN	0
tryCatchList	trCL	-	_	0	NaN	0
tryCatchOne	trC0	-	_	0	NaN	0
unique	uniq	-	-	0	NaN	0
unique.default	unq.	-	LEAF	1	Inf	0
unlist	unls	-	LEAF	1	Inf	0
vapply	vppl	-	-	0	NaN	0
withVisible	wthV	-	-	0	NaN	0

total.pct

.deparseOpts	NaN
.getXlevels	NaN
.row_names_info	NaN
	NaN
[.data.frame	NaN
[[NaN
[[.data.frame	NaN
%in%	NaN
<anonymous></anonymous>	${\tt NaN}$
\$	${\tt NaN}$
anyDuplicated	${\tt NaN}$
anyDuplicated.default	${\tt NaN}$
as.character	NaN
as.list	${\tt NaN}$
as.list.data.frame	NaN
as.vector	NaN
С	NaN
cat	NaN
chol2inv	NaN
deparse	NaN
doTryCatch	NaN
eval	NaN
evalFunc	NaN
FUN	NaN
getOption	NaN
lapply	NaN
lazyLoadDBfetch	NaN
list	NaN
lm	NaN
lm.fit	NaN
match	NaN
match.fun	NaN
mean	NaN
mean.default	NaN
mode	NaN
model.frame	NaN
model.frame.default	NaN
model.natrix	
	NaN
model.matrix.default	NaN
model.response	NaN
na.omit	NaN NaN
na.omit.data.frame	
names	NaN
options	NaN
paste	NaN
pmatch	NaN
rep.int	NaN
sapply	NaN
simplify2array	NaN
structure	NaN
summary	NaN
summary.lm	NaN
Sweave	NaN

terms	NaN
terms.formula	NaN
try	NaN
tryCatch	NaN
tryCatchList	NaN
tryCatchOne	NaN
unique	NaN
unique.default	NaN
unlist	NaN
vapply	NaN
withVisible	NaN

print_stacks(rpo)

_____ Input _____

____ Output _____

len	refcount	root	leafs	
13	1	53	27	
18	1	53	27	
17	16	53	37	
19	23	53	42	
21	1	53	27	
21	48	53	5	
20	1	53	27	
15	1	53	27	
18	25	53	15	
15	55	53	39	
14	1	53	27	
14	114	53	30	
15	23	53	50	
13	43	53	29	
18	10	53	50	
14	1	53	27	
14	2	53	19	
13	36	53	52	
25	1	53	35	
15	35	53	13	
18	15	53	41	
20	1	53	1	
20	7	53	15	
14	2	53	40	
20	1	53	62	
23	9	53	12	
20	14	53	28	
19	1	53	24	
22	1	53	17	
15	1	53	47	
14	2	53	10	
21	1	53	7	
17	1	53	15	
16	1	53	43	
15	1	53	34	
22	1	53	11	
	13 18 17 19 21 20 15 18 15 14 14 15 13 18 14 14 13 25 18 20 19 20 19 21 21 21 21 21 21 21 21 21 21	13 1 18 1 17 16 19 23 21 1 21 48 20 1 15 1 18 25 15 55 14 1 14 23 13 43 18 10 14 1 14 2 13 36 25 1 15 35 18 15 20 7 14 2 20 1 23 9 20 14 19 1 22 1 15 1 14 2 21 1 17 1 16 1 15 1	13 1 53 18 1 53 17 16 53 19 23 53 21 1 53 21 48 53 20 1 53 15 1 53 18 25 53 15 55 53 14 1 53 14 114 53 15 23 53 13 43 53 14 1 53 15 35 53 14 2 53 15 35 53 15 35 53 15 35 53 18 15 53 25 1 53 20 1 53 20 1 53 20 1 53 20 1 53 20 1 53 20 1 53	13 1 53 27 18 1 53 27 17 16 53 37 19 23 53 42 21 1 53 27 21 48 53 5 20 1 53 27 15 1 53 27 18 25 53 15 15 55 53 39 14 1 53 27 14 14 53 30 15 23 53 50 13 43 53 29 18 10 53 50 13 43 53 29 18 10 53 50 14 1 53 27 14 2 53 19 13 36 53 52 25 1 53

```
37 19
           1
              53
                   55
38 21
           1
              53
                   46
                   7
39 16
              53
40 18
           1 53
                   3
              53
                   31
41 24
           1
42 16
              53
                   8
           1
              53
43 19
           1
                   44
           1
              53
                   31
44 19
              53
45 17
                   14
46 20
           1
              53
                   61
47
   3
           1
              53
                   18
```

```
______ Output _____
```

\$id

[1] "Profile Summary Sun Jul 7 00:31:33 2013"

\$len

[1] 508

\$uniquestacks

[1] 47

\$nr_runs

[1] 373

The <code>print()</code> method for <code>sprof</code> objects concatenates these three functions.

4.3. **Plot.**

```
oldpar<- par(mfrow=c(2,2))
plot_nodes(rpo)
par(oldpar)
```


_ Input _

oldpar<- par(mfrow=c(2,2))
plot_profiles(rpo)
par(oldpar)</pre>

The ${\it plot}$ () method for ${\it sprof}$ objects concatenates these three functions.

4.4. **Graph.** To interface *sprof* to a graph handling package, *until()* can extract the adjacency matrix from the profile.

rpoadj <- adjacency(rpo)

- Input

This is a format any graph package can handle.

$4.4.1. \ graph \ Package.$

```
library(graph)
rpoadjNEL <- as(rpoadj, "graphNEL")

plot(rpoadjNEL, main="graph layout", cex.main=5)
#detach("package:graph")</pre>
```

graph layout

$4.4.2.\ igraph\ Package.$

```
library(igraph)
rpoig <- graph.adjacency(rpoadj)

#plot(rpoig, main="igraph layout", cex.main=5)
plot(rpoig, main="igraph layout")
detach("package:igraph")</pre>
```

igraph layout

4.4.3. network Package.

```
library(network)
nwrpoadj <- as.network(rpoadj) # names is not imported
network.vertex.names(nwrpoadj) <- rownames(rpoadj) # not honoured by plot
plot(nwrpoadj, label=rownames(rpoadj), main="network layout", cex.main=5)
#plot(nwrpoadj, label=rownames(rpoadj), edge.lwd=rpoadj)
detach("package:network")</pre>
```

network layout

$4.4.4.\ Rgraph viz\ Package.$

```
library(Rgraphviz)
rpoadjRag <- agopen(rpoadjNEL, name="Rprof Example")

plot(rpoadjRag, main="Graphviz dot layout", cex.main=5)</pre>
```

Graphviz dot layout

plot(rpoadjRag, "neato", main="Graphviz neto layout", cex.main=5)

Graphviz neto layout

plot(rpoadjRag,"twopi", main="Graphviz twopi layout", cex.main=5)

Graphviz twopi layout

plot(rpoadjRag,"circo", main="Graphviz circo layout", cex.main=5)

Graphviz circo layout

plot(rpoadjRag, "fdp", main="Graphviz fdp layout", cex.main=5)

Graphviz fdp layout

INDEX

Topic adjacency until, 48 Topic misc apply, 4 plot, 26, 48 print, 45 sampleRprof, 8 summary, 41 summaryRprof, 4 Index01, 56 plot, 26, 48 print, 45 sampleRprof, 8 summary, 41 summaryRprof, 4 until, 48

R session info:

- R version 3.0.1 (2013-05-16), x86_64-apple-darwin10.8.0
- Locale:

en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

- Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils
- Other packages: graph 1.38.2, RColorBrewer 1.0-5, Rcpp 0.10.3, Rgraphviz 2.4.0, sprof 0.0-4, wordcloud 2.4, xtable 1.7-1
- Loaded via a namespace (and not attached): BiocGenerics 0.6.0, igraph 0.6.5-2, network 1.7.2, parallel 3.0.1, slam 0.1-28, stats4 3.0.1, tools 3.0.1

svn repository info:

\$Source: /u/math/j40/cvsroot/lectures/src/insider/profile/Rnw/profile.Rnw,v \$

\$Id: sprofiling.Rnw 159 2013-07-06 22:14:15Z gsawitzki \$

\$Revision: 159 \$

 $\mathtt{\$Date:}\ \ \mathtt{2013-07-07}\ \ \mathtt{00:14:15}\ \ 0200(Sun,07Jul2013) +$

\$name: \$

\$Author: gsawitzki \$

GÜNTHER SAWITZKI STATLAB HEIDELBERG IM NEUENHEIMER FELD 294 D 69120 HEIDELBERG

E-mail address: gs@statlab.uni-heidelberg.de

URL: http://sintro.r-forge.r-project.org/