Assignment 8

November 21, 2023

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(x,y) = 1 if x = 0 or y = 0 and f(x,y) = 0otherwise. Show that $f_x(0,0) = f_y(0,0) = 0$ but f is not continuous at
- 2. Let $f,g:\mathbb{R}^2\to\mathbb{R}$ be defined by f(x,y)=|x|+|y| and g(x,y)=|xy| for $(x,y) \in \mathbb{R}^2$. Show that
 - (a) $f_x(0,0)$ and $f_y(0,0)$ do not exist whereas $g_x(0,0)$ and $g_y(0,0)$ exist.
 - (b) for $x_0 \neq 0$, $g_y(x_0, 0)$ does not exist and for $y_0 \neq 0$, $g_x(0, y_0)$ does not
- 3. Discuss the differentiability of $f(x,y) = x^2 + \sin y + y^2 e^x$ at (0,0).
- 4. Discuss the differentiability of

$$f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

at (0,0).

5. Discuss the differentiability of

$$f(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

at (0,0).

- 6. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = (x-y)^2 \sin \frac{1}{(x-y)^2}$ if $x \neq y$ and f(x, x) = 0. Show that
 - (a) f_x and f_y exist at all points of \mathbb{R}^2 .
 - (b) f is differentiable at (0,0).
 - (c) f_x and f_y are not continuous on the line y = x..
- 7. Let $z = f(x,y), \ x = rcos\theta$ and $y = rsin\theta$.

 (a) Show that $\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$ and $\frac{1}{r}\frac{\partial z}{\partial \theta} = -\frac{\partial f}{\partial x}\sin\theta + \frac{\partial f}{\partial y}\cos\theta$.

 (b) If $f(x,y) = x^2 + 2xy$, show that $\frac{\partial z}{\partial \theta} = 2(x^2 xy y^2)$.
- 8. (a) express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ as functions of u and v both by using the Chain Rule and by expressing z directly in terms of u and v before differentiating. Then (b) evaluate $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ at the given point (u,v) Consider $z=4e^xlny, \quad x=ln(u\cos v), \quad y=u\sin v; \quad (u,v)=(2,\pi/4).$