Modellazione funzionale con Data Flow Diagram

1

I Data Flow Diagram

- □ Traggono origine dalla teoria dei grafi e sono stati utilizzati anche precedentemente all'avvento dei computer per la gestione delle informazioni.
- Sono stati impiegati per la prima volta, nel settore dell'ingegneria del software, solo verso la metà degli anni 70.
- Non esiste in letteratura a tutt'oggi una definizione universalmente accettata e sono presenti molteplici differenti formulazioni operative.

Che cosa modella un DFD?

- ☐ Un sistema è visto come una rete di processi funzionali interconnessi da depositi di dati.
- □ I DFD enfatizzano le operazioni effettuate sulle informazioni e le dipendenze funzionali che vengono a crearsi fra i vari processi in base ai flussi di informazione.
- □ I processi possono essere definiti a qualunque livello di astrazione, raffinabili mediante scomposizione gerarchica in un insieme di processi più elementari.

3

Entità rappresentate in un DFD

	processi (detti anche bolle) che trasformano dati;	\bigcirc
	flussi che muovono dati;	•
0	agenti esterni (detti anche terminatori) che producono e consumano dati;	
	depositi di dati che memorizzano informazioni in modo passivo.	

Sintassi

- - \square P = { $p_1, p_2, ..., p_n$ } è un insieme finito, non vuoto, di processi;
 - \square D = { $d_1, d_2, ..., d_r$ } è un insieme finito di depositi;
 - \square A = $\{a_1, a_2, ..., a_s\}$ è un insieme finito di agenti;
 - \square F= { f ∈ (P×(P∪D∪A)) ∪ ((P∪D∪A)×P) } è un insieme finito di flussi.

5

Rappresentazione

□ Tramite un grafo orientato in cui ogni nodo appartiene a uno dei tre insiemi P,D o A, e ogni arco orientato rappresenta un flusso di dati.

Un DFD che descrive i rapporti fra una libreria e i suoi clienti

Consigli

- Nomi univoci per identificare processi, flussi di dati, agenti e depositi.
- Non rappresentare le eccezioni e il trattamento degli errori, rimandando questi dettagli alle fasi finali dell'analisi.
- Un DFD non è un diagramma di flusso, dove le frecce indicano un ordinamento negli eventi.
- In alcune estensioni, come nella notazione OMT è possibile rappresentare anche flussi di controllo; anticiparli in un DFD comporta di fatto una duplicazione se si usa anche un modello dinamico.

7

Regole da rispettare

- Scegliere nomi significativi per i processi, flussi, depositi, e agenti.
- Numerare i processi.
- Disegnare i DFD seguendo criteri estetici.
- Evitare DFD eccessivamente complessi.
- Accertarsi della coerenza interna di un DFD e che sia coerente con quelli ad esso associati.

Vincoli

- Evitare processi a consumo infinito (pozzi).
- Sospettare di processi a generazione spontanea.
- Depositi a sola lettura o a sola scrittura sono rari.
- Non devono esistere flussi di dati fra :
 - due agenti esterni,
 - due depositi,
 - un'entità esterna e un deposito.

c

Avvertenze

- L'assenza di nomi per flussi, processi e depositi può essere indice di trascuratezza, di indecisione ma può nascondere anche insidie più gravi, ad esempio che l'analista confonde tra un flow-chart e un DFD.
- C'è una convenzione, spesso accettata in molte versioni dei DFD, che un flusso da o verso un deposito possa essere non etichettato quando i dati trasferiti corrispondono ad un oggetto (record) intero.

DFD con flussi di controllo

11

DFD multilivello

- Non è sensato pensare di sviluppare un singolo DFD per modellare con sufficiente dettaglio un ambiente reale.
- Un'applicazione di medie dimensioni richiede da tre a sei livelli.
- Non esiste una ricetta per dire quanti livelli sono necessari per modellare una certa realtà e anche qui valgono considerazioni dettate dal buon senso.

Esempio

11

Consigli pratici

- 1 Evitare di costruire DFD molto sbilanciati.
 - Se in un DFD compaiono bolle atomiche e bolle che richiedono successivi livelli di dettaglio ciò è sintomo di trascuratezza nel modellare il sistema.
- Prestare attenzione al problema della presentazione dei DFD.
 - Può essere molto utile affiancare a documenti cartacei strumenti di visualizzazione che consentano di navigare la gerarchia mostrandone viste a vari livelli di astrazione.

Consigli pratici

- 3 Verificare che i DFD siano fra loro coerenti.
 - Al fine di garantire che ciascun DFD sia coerente con il DFD genitore si verifichi che i flussi di dati relativi a una bolla a un livello corrispondano ai flussi di dati evidenziati nel DFD che esplode quella bolla.

15

Consigli pratici

Mostrare un deposito al livello più alto di astrazione, quando se ne scopre la necessità come interfaccia fra due o più processi, quindi riportare il deposito in ogni diagramma di livello inferiore che descrive quei processi.

Consigli pratici

6 Verificare che un agente esterno collegato a un processo in un certo livello compaia e resti connesso a un discendente di quel processo nel livello gerarchico inferiore.

Strategie per la costruzione di DFD

□ top-down

decomposizione di un processo in una serie di sottoprocessi chiaramente identificabili e indipendenti.

bottom-up

a partire da una collezione di concetti elementari si costruiscono via via le connessioni fra essi.

mixed

raffinamento di un DFD di massima in stadi successivi con tecniche top-down e bottom-up

outside-in

parte dalle interfacce con il sistema e propaga in avanti gli ingressi evidenziando i processi coinvolti nei flussi di dati o, in alternativa, propaga all'indietro le uscite.

Notazione DFDEditor

elementi a livello superiore a cui un processo invia dati

elementi a livello superiore da cui un processo riceve dati

19

Bridge

Un DFD

