WAKISSHA JOINT MOCK EXAMINATIONS SCORING GUIDE Uganda Certificate of Education PHYSICS 535/3 July/August 2024

Aim; determination of the resistance of the wire provided.

Hypothesis; the resistance of the wire was between 2.0 and 4.0Ω .

Apparatus

- Meter rule
- Constantin wire
- Rheostat
- Voltmeter
- Dry cells
- Ammeter

Procedure

- (i) Arrange the apparatus as shown above.
- (ii) Close switch K
- (iii) Adjust the value of the rheostat such that the ammeter reads 0.10A.
- (iv) Read and record the corresponding value of the voltmeter, V.
- (v) Repeat iii and iv for ammeter readings 0.20A, 0.30A, 0.40A, 0.50A.

Variables: Independent; current flowing I.

Dependent, Pd a cross the wire, V.

Controlled; constant e.m.f of the cell.

Sources of error

- Increased resistance from the connecting wires.
- Errors due to parallax

Mitigations

- Using fewer wires.
- Reading the scale from directly above it.

I(A)	V(V)
0.10	0.95
0.20	0.90
0.30	1.35
0.40	1.70
0.50	2.10

A graph of V against I

Any student with more than half the marks scores 2.

Those with less than half score 1

Slope =
$$\frac{2.10-0.40}{0.50-0.10} = \frac{1.70}{0.40} = 4.3\Omega$$
 (2sf)
4.0 Ω so it will not work and the toy would not be

The res...

repaired.

Aim: Determination of the force constant of the spring provided.

Hypothesis: the spring had a force constant in the range $17 - 23 \text{ Nm}^{-1}$ Apparatus

- Meter rule
- Spring
- Masses
- Stop clock

Procedure

- (i) Arrange the apparatus as shown above.
- (ii) Suspend a mass M of 0.200kg on the spring.
- (iii) Give the mass a vertical displacement and determine the time taken, t for 20 oscillations.
- (iv) Determine the time taken T for 1 oscillation.
- (v) Repeat procedures ii o iv for M = 0.300kg, 0.400kg, 0.500g and 0.600 kg. Variables; Independent Mass M

Dependent - Time of oscillation, t

Controlled - Ensuring the spring doesn't stretch beyond its proportional limit.

Sources of error

- (i) Parallax when reading the stop clock
- (ii) Inaccurate readings due to wind.

Mitigations

- (i) Taking readings from directly above.
- (ii) Shielding the apparatus from wind.

M(kg)	T(l)	T(s)	$T^2(s^2)$
0.200	12.5	0.63	0.40
0.300	15.5	0.75	0.61
0.400	18.0	0.90	0.81
0.500	20.0	1.00	1.00

- 02 recording of quantities and units
- 03 More than 3 sets of data.
- 02 More than half the values in range.

A graph of T2 against M

The force of constant of the spring was within range so the spring could be used.

END