

RANGE SPACES OF LINEAR TRANSFORMATIONS

Why

When is a linear transformation *onto*? In other words, when is the range the whole space? This question is a bit more invovled, but we will start with observing in this sheet that the range of a linear map happens to be a subspace.

Definition

For a linear transformation $T \in \mathcal{L}(V, W)$, we refer to range(T) as the range space (or image space) of T.

Proposition 1. Suppose $T \in \mathcal{L}(V, W)$. Then range T is a subspace of W.

Proof. We verify that range(T) contains 0 and is closed under vector addition and scalar multiplication. Clearly T(0) = 0, so $0 \in \text{range } T$. Next, suppose $w_1, w_2 \in \text{range } T \subset W$ So there exists $v_1, v_2 \in V$ so that

$$Tv_1 = w_1$$
 and $Tv_2 = w_2$

We conclude $w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2)$. So $w_1 + w_2 \in \text{range } T$. Likewise, if $w \in \text{range } T$, then there exists $v \in V$ such that w = Tv. So then $\lambda w = \lambda Tv = T(\lambda v)$, and so $\lambda w \in \text{range } T$.

Examples

To come.

