浙江大学 2008-2009 学年 秋冬 学期

研究生《计算理论》课程期终考试试卷

开课学院: <u>计算机学院</u> 考试形式:闭卷,允许带 _____入场

	<u></u>									
	考试时	试时间: <u>2009</u> 年 <u>1</u> 月 <u>11</u> 日,所需时间: <u>120</u> 分钟,任课教师:								
考生	姓名: _			学号: _			_ 专业:			
	题序	1	2	3	4	5	6	7	总分	
	得分									
	评卷人									

Zhejiang University Theory of Computation, Fall-Winter 2008 Final Exam

- 1. (20%) Determine whether the following statements are true or false. If it is true write a T otherwise a F in the bracket before the statement.
 - (a) () For all languages L_1 , L_2 and L_3 , if $L_1 \subseteq L_2 \subseteq L_3$ and both L_1 and L_3 are regular, then L_2 is also regular.
 - (b) () For a given context-free language L and a string x, the decision problem for whether $x \in \overline{L}$ is decidable.
 - (c) () The complement of every recursive enumerable language is necessarily nonrecursive enumerable.
 - (d) () Languages $\{$ "M": Turing machine M accepts at least 2009 distinct inputs $\}$ is recursive enumerable.
 - (e) () Let L be a language and there is a Turing machine M halts on x for every $x \in L$, then L is decidable.
 - (f) () For all languages L_1 and L_2 , if L_1 is in \mathcal{P} and $L_1 <_p L_2$, then L_2 is in \mathcal{NP} .
 - (g) () The class \mathcal{NP} is closed under complementation.
 - (h) () Checking equivalence of two propositional formulas is in \mathcal{NP} .
 - (i) () If L is polynomial time reducible to a finite language, then L is in \mathcal{P} .
 - (j) () If SAT reduces to a language L, then L is \mathcal{NP} -complete.

2. On Regular Languages

(12%) Consider two deterministic finite automata $M_1 = (K_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (K_2, \Sigma, \delta_2, p_1, F_2)$, where

$$\Sigma = \{a, b\}$$

$$K_1 = \{q_1, q_2\} \text{ and } K_2 = \{p_1, p_2, p_3\}$$

$$F_1 = \{q_2\} \text{ and } F_2 = \{p_3\}$$

and δ_1 and δ_2 are the functions tabulated below.

δ_1	a	b
q_1	q_2	q_1
q_2	q_1	q_2

δ_2	a	b
p_1	p_1	p_3
p_2	p_3	p_2
p_3	p_2	p_1

Use the Cartesian product(笛卡尔积) construction to produce deterministic automata accepting the union of the two languages accepted by these automata.

3. On Context-free Languages (18%)

(a) Give a context-free grammar for language:

$$L_1 = \{a^m b^n cww^R | m, n \in \mathbb{N}, n \le m \le 2n, w \in \{a, b\}^*\}$$

(b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_1 . Solution: (b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

	(q,σ,eta)	(p, γ)
K =		
$\Sigma = \{a, b, c\}$		
Γ =		
s =		
F =		

4. On Turing Machines

(10%) Design a Turing Machine to decide the following language:

$$L_2 = \{ww^R | w \in \{a, b, c\}^*\}$$

where the initial configuration in form of $\triangleright \underline{\sqcup} ww^R$.

5. On Undecidability

(16%) Consider the language $L_3 = \{ M'' | M \}$ when started on a blank tape eventually writes a 1 somewhere on the tape.

- (a) Show that L_3 is recursively enumerable.
- (b) Show that L_3 is not recursive by a reduction from the halting problem.

6. On Primitive Recursive Functions

(10%) Let g(x,y) be a primitive recursive function. Show that the function

$$e(x,y) = \begin{cases} 1, & \text{if } \exists t_{(0 \le t < y)} (g(x,t) = 0) \\ 0, & \text{otherwise} \end{cases}$$

is primitive recursive.

7. On \mathcal{P} and \mathcal{NP} Problems

(14%) The clique problem is defined as follows: given a graph G = (V, E) with n vertices, is there a set of k vertices such that there is edge between any two vertices in the set?

- (a) Prove that **clique** problem is \mathcal{NP} Problem.
- (b) Prove that **clique** problem is \mathcal{NP} -complete.

For showing hardness, you can assume that the VERTEX-COVER problem is $\mathcal{NP}\text{-}$ complete.