The Muffin Problem- Cheat Sheet

EASY CASES

THEOREM easy:

Theorem 0.1

- 1. If $m \equiv 0 \pmod{s}$ then f(m, s) = 1.
- 2. If $s \equiv 0 \pmod{2m}$ and $\frac{m}{s} \notin \mathbb{N}$ then $f(m, s) = \frac{1}{2}$.
- 3. If $m, s \in \mathbb{N}$ then $f(m, s) \ge \frac{1}{s}$.
- 4. $f(1,s) = \frac{1}{s}$.
- 5. If s is odd then $f(2,s) = \frac{1}{s}$.
- 6. ALEX- I SUSPECT THIS APPROACH WILL NEVER GIVE OPT BOUNDS. BUT MIGHT BE USEFUL IN INITIALLY SHOWING $f(m,s)>\frac{1}{3}$.

If
$$m \ge Ls$$
 then $f(m, s) \ge f(m - Ls, s)$.

PROGRAM1: CHECK if any of the easy cases occur. If so then output f(m, s) and also any one of the following:

- m divides s
- m = 1
- m = 2 and s is odd,

FUTURE- we may want to have a program that, given M, S computes f(m, s) for every $1 \le m \le M$, $1 \le s \le S$. In this case Theorem 0.1.6 may be useful in getting a lower bound on f(m, s).

Upper and Lower Bounds on f(m,s) when f(m,s) is Small THEOREM msUB

Theorem 0.2 Let $m, s \in \mathbb{N}$ such that s does not divide m. Then

$$f(m,s) \le \max \bigg\{$$

- \bullet $\frac{m}{3s}$,
- $\min\left\{\frac{m}{s}, \frac{s-m}{s\lceil m/2(s-m)\rceil}, \frac{m}{s} \frac{s-m}{s\lceil m/2(s-m)\rceil}\right\}$
- $\min\left\{\frac{m}{s}, \frac{s-m}{s\lfloor m/2(s-m)\rfloor}, \frac{m}{s} \frac{s-m}{s\lfloor m/2(s-m)\rfloor}\right\}$
- $\min\left\{\frac{1}{\lceil 2s/m \rceil}, \frac{m}{s} \frac{1}{\lceil 2s/m \rceil}, \frac{m}{2s}\right\}$
- $\min\left\{\frac{1}{\lfloor 2s/m\rfloor}, \frac{m}{s} \frac{1}{\lfloor 2s/m\rfloor}, \frac{m}{2s}\right\}$

}.

THEOREM msLB

Theorem 0.3 Let $m, s \in \mathbb{N}$. For all $1 \le x, y \le s$ let A(x, y) be the least A such that (m - y) divides A(s - xy). Let $x, y \in \mathbb{N}$ such that $xy \le s$ and m - y divides xy. Then there is a procedure that shows

$$f(x,s) \ge \min\left\{\frac{1}{x}, \frac{mx-s}{sx}, \frac{m}{A(x,y)s}\right\}$$

Hence

$$f(x,s) = \max_{\{(x,y): xy \le s \land xy \equiv 0 \pmod{m-y}\}} \min\left\{\frac{1}{x}, \frac{mx-s}{sx}, \frac{m}{A(x,y)s}\right\}$$

PROGRAM2: USE THEOREM msUB and msLB to get upper and lower bounds on f(m, s).

If succeed at finding x, y then output:

MS:
$$XXX \le f(m, s) \le YYY$$
. x:, y:

(That is, also list the parameters x and y.)

If fail then output:

MS:
$$f(m, s) \leq YYY$$
. FAILED to find x,y. :-(

Even if XXX=YYY keep going to PROGRAM3 and PROGRAM 4 since I am curious what they'll say. Will prob take that out in the future.

0.1 Upper and Lower Bounds on f(m, s) when f(m, s) is Large

THEOREM deltaUB

Theorem 0.4

1. Let $m, s, p \in \mathbb{N}$ Let p be the number of pieces in an optimal (m, s)-procedure. Then

$$f(m,s) \le \min \left\{ \frac{m}{s \lceil p/s \rceil}, 1 - \frac{m}{s \lfloor p/s \rfloor} \right\}.$$

- 2. If $f(m,s) > \frac{1}{L}$ and $\frac{m}{s} \notin \mathbb{N}$ then $f(m,s) \leq \max_{2m \leq p \leq (L-1)m} \min \left\{ \frac{m}{s \lceil p/s \rceil}, 1 \frac{m}{s \lfloor p/s \rfloor} \right\}$.
- 3. If $f(m,s) > \frac{1}{3}$ and $\frac{m}{s} \notin \mathbb{N}$ then $f(m,s) \le \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 \frac{m}{s \lfloor 2m/s \rfloor} \right\}$

THEOREM delta1LB

Theorem 0.5 Let $m, s \in \mathbb{N}$ and $0 < \delta < \frac{1}{2} < 1 - \delta < 1$. Assume there exists $x_1, y_1, x_2, y_2, z_1, z_2 \in \mathbb{N}$ such that the following hold:

- 1. $x_1y_1 = x_2y_2 < m$
- 2. $x_1 + x_2 = s$
- 3. $z_1x_1 + z_2x_2 = 2(m x_1y_1) = 2(m x_2y_2)$.
- 4. $y_1\delta + \frac{z_1}{2} = \frac{m}{s}$
- 5. $y_2\delta + \frac{z_2}{2} = \frac{m}{s}$

Then $f(m,s) > \delta$.

THEOREM deltatwoLB

Theorem 0.6 Let $m, s \in \mathbb{N}$ and $0 < \delta_1 < \delta_2 < \frac{1}{s} < 1 - \delta_2 < 1 - \delta_1 < 1$. Assume there exists: for $1 \le i \le 4$, x_i ; for $1 \le i \le 4$, x_i ; for $1 \le i \le 4$, x_i ; for $1 \le i \le 4$, x_i : such that the following hold:

- 1. $x_1y_{11} + x_2y_{21} = x_3y_{31} + x_4y_{41}$. (Number of δ_1 -pieces equals the number of $(1 \delta_1)$ pieces.)
- 2. $x_1y_{12} + x_3y_{32} = x_2y_{22} + x_4y_{42}$. (Number of δ_2 -pieces equals the number of $(1 \delta_2)$ pieces.)
- 3. $2(m-x_1y_1)=z_1x_1+z_2x_2$.
- 4. $x_1 + x_2 + x_3 + x_4 = s$.
- 5. $y_{11}\delta_1 + y_{12}\delta_2 + \frac{z_1}{2} = \frac{m}{s}$
- 6. $y_{21}\delta_1 + y_{22}(1-\delta_2) + \frac{z_2}{2} = \frac{m}{s}$
- 7. $y_{31}(1-\delta_1)+y_{32}\delta_2+\frac{z_3}{2}=\frac{m}{s}$
- 8. $y_{41}(1-\delta_1) + y_{42}(1-\delta_2) + \frac{z_4}{2} = \frac{m}{s}$

Then $f(m,s) \geq \delta_1$.

PROGRAM HONEST 3: By PROGRAM2 we have f(m,s) > YYY. Find smallest L such that YYY > 1/L. Use that L to properly use THEOREM deltaUB.2 to find $f(m,s) > \delta$. (In the past I think you were just assuing L=3 and that was probably always correct but lets do this right and see what happens.) I call this the honest lower bound approach. Then use Theorem deltaUB with this value of δ .

If succeed then output:

HONEST DELTA: $f(m,s)=\delta 1.$ x1: x2: y1: y2: z1: z2: (THEN YOU ARE DONE) If it fails output

HONEST DELTA: $f(m, s) > \delta 1$. FAILED TO FIND xi,yi,zi :-(

PROGRAM HONEST 4: If PROGRAM HONEST 3 failes then try to find procedure using THEOREM deltatwoUB. To use THEOREM deltatwoUB you need to go over all possible value of $\delta 2$ with same denom as $\delta 1$.

If succeed then output (and this includes stuff from PROGRAM 3)

HONEST DELTATWO: $f(m, s) = \delta 1$. x1: x2: x3: x4: y11: y12: y13: y14: y21: y22: y23: y24: z1: z2: z3: z4:

(WE might look into making this more compact later)

If it fails output

DELTATWO: $f(m,s) > \delta 1$. FAILED TO FIND xi,yij,zi. YOU ARE A BIG FAT FAILURE!!! TWO THOUGHTS FOR LATER:

- 1) We currently do the following: If delta1 = 11/30 then we look at delta2 = 12/30, 13/30/14/30. BUT if we instead took delta1 = 22/60 then could look at $delta2 = 23/60, \dots, 29/60$.
- 2) We could look at using $\delta 1, \delta 2, \delta 3$.

BOTH (1) and (2) would be easy to do, but lets first see how far we get as is for s = 5.

PROGRAM DISHONEST 5: If L=3 in the above then DO NOT DO THIS STEP, you have already failed. If $L\geq 4$ then Calculate δ AS IF L=3 and then do PROGRAM HONEST 3, PROGRAM HONEST 4 from there, though with a dishonest value for δ .