EME 199 WQ 2023: Undergraduate Research

Donjel Anthony Brox Yizheng Chen

Masakazu Soshi

University of California Davis

Agenda

- CCD Camera Thermal Management (CTM) Experiment
- Substrate Manufacturing
- Securing Current CCD Camera Fixture
- New CCD Camera Fixture

CTM Experiment: Description

Problem:

 Current CCD camera overheats after ~170 thin-wall layers, causing the camera to turn off

Solution:

- Identify which part of the camera is overheating by attaching thermocouples to camera and performing depositions
- Design thermal management solution to mitigate overheating

CTM Experiment: Setup

- Use **five** thermocouples to characterize temperature across entire camera
- Use **one** thermocouple for nozzle temperature
- Can improve accuracy by using two thermocouples at each location and using average temperature

Figure 1: Current camera mounting on laser head

Figure 2: Thermocouple locations on camera

CTM Experiment: Depositions

Three 10-layer and one 50-layer thin-wall depositions

5-20 minute intervals in between

Figure 3: Thermocouples taped on camera

Figure 4: Wide view of thermocouple setup

Observations:

- Camera is protected by shield, but slowly heats up from shield radiating absorbed heat
- Shield temperature increases linearly then drops slowly after deposition ends
- Due to internal cooling, the nozzle has a controlled, oscillating temperature

Observations:

- Incomplete data for shield since DAC temperature range not set high enough
- Camera is protected by shield, but slowly heats up from shield radiating absorbed heat
- Shield temperature increases linearly then drops slowly after deposition ends
- Due to internal cooling, the nozzle has an oscillating temperature that slowly increases

Observations:

- Camera slowly heats up after deposition due to shield radiating heat absorbed earlier
- Nozzle drops to room temperature quickly after deposition ends, at which point the camera is only being heated by the shield

CTM Experiment: Analysis

Potential reasons for camera overheating:

- 1. CCD camera circuit board overheats and malfunctions
- 2. Thermal expansion of shield's metal frame cover and base

Maximum temperature specs:
• Camera circuit: 70 deg C

• Welding glass: 260 deg C

Picture format	MJPEG or YUY2(YUYV)	
Lens Parameter	4mm manual focus lens	
Cable	Standard 3M/	
	Optional 2m,3m,5m	
Board Size/Weight	41*41mm optional /	
	about 200g	
Sensitivity	5.5V/lux-sec@550nm	
Shutter Type	Rolling shutter/	
	Frame exposure	
Connecting Port Type	USB2.0 High speed	
OTG protocol	USB2.0 OTG	
Free Drive Protocol	USB Video Class(UVC)	
Work Temperature	0~70 Degree	
Storage Temperature	-20~75 Degree	

Figure 5: CCD camera specs

Figure 6: Camera shield CAD

Manufacturer	Forney
Part Number	57011
Item Weight	0.48 ounces
Product Dimensions	0.13 x 4.25 x 2 inches
Item model number	57011
Is Discontinued By Manufacturer	No
Size	4-1/2"
Color	Black
Finish	Uv-protection
Material	Glass

Figure 7: Welding glass specs

CTM Experiment: Data Analysis

Takeaways from experimental data and equipment specs:

- Use curve fitting to estimate shield and camera temperature after any number of layers
 - Allows us to estimate when the camera will fail, which we'll use to determine thermal management solution
 - Among all camera thermocouples, use camera lens data for curve fitting since it reads highest temperatures and absorbs most heat

CTM Experiment: Data Analysis

CTM Experiment: Data Analysis

Maximum working temperature for camera: 70 deg C

- Camera lens predicted to reach 70 deg after $\sim 1310~s 40~s~(start~delay) = 1270~s$
 - $(1270 \ s) * \frac{10 \ layers}{102 \ s} = \sim 125 \ layers$

CTM Experiment: Thermal Management

Investigate whether **heat sinks** will suffice by quantifying theoretical heat dissipation provided

- Geometry constraints: plates above camera constrain heat sink to 129 x 36 mm area
- Optimize heat dissipation performance by developing MS Excel sheet

Investigate if a larger air gap between camera and shield provides sufficient insulation

Figure 8: CAD draft of heat sink atop CCD camera shield

Substrate Manufacturing

Use ESDC vertical bandsaw to cut 4"x4"x1" substrates from steel stock

- **12-15 mins** per cut
- 15 substrates produced

Cutting parameters

• Blade speed: 85 ft/min, material feed: 70 lbs

Figure 9: Wide view of stock in bandsaw

Figure 10: Cutting process with coolant

Securing Current CCD Camera Fixture

Problem:

- Screwing the fixture into the laser head causes fixture to tilt, making the camera position inaccurate each time it's installed
- Issue is due to laser head not being flush with fixture (see Figure 11)

Possible solutions:

- L-shaped metal piece
 - Fixes fixture in a new plane, preventing rotation
- Thin metal spacer
 - Fills the space in between the laser head and fixture, making them flush

Figure 11: 1mm discrepancy on laser head mating face

Current CCD Camera Fixture: Spacer

Figure 12: 1mm discrepancy on laser head mating face (zoomed out)

Current CCD Camera Fixture: Spacer

Figure 13: CAD draft of spacer

Figure 14: CAD draft of spacer

Current CCD Camera Fixture: Spacer

Figure 15: Isometric view of spacer in fixture assembly

Figure 16: Front view of spacer in fixture assembly

Current CCD Camera Fixture: Angle Bracket

Figure 17: CAD draft for angle bracket

Figure 18: CAD drawing of angle bracket

Current CCD Camera Fixture: Angle Bracket

Figure 19: Isometric view of angle bracket in fixture assembly

Figure 20: Front view of angle bracket in fixture assembly

New CCD Camera Fixture: Fixture Points

Problem:

Clad needs to be viewed from another angle to provide more data

Solution:

• New fixture oriented perpendicular to existing camera using six fixture points

Figure 21: Front fixture points

Figure 22: Rear fixture points

Figure 23: Top fixture points

New CCD Camera Fixture: Draft Assembly

Solution:

New fixture oriented perpendicular to existing camera

Figure 24: Rear view of CAD draft with new CCD camera

Figure 25: Isometric view of CAD draft with new CCD camera

Future Work

Experiment

- Finish analysis of results
 - Research properties of welding glass and temperature tolerances of camera
- Continue designing thermal management solution
- Manufacture/order and implement solution
- Perform CFD and/or FEA analysis on working solution
- Write report on finished solution

Continue developing current CCD camera fixture addition and new CCD camera fixture

