MAT4010: Functional Analysis

Tutorial 4: The Dual Spaces*

Mou, Minghao The Chinese University of Hong Kong, Shenzhen

February 11, 2023

1 Exercises

Problem 1.1 (Sequences Converging to Zero). Let

$$c_0 := \left\{ x = (x_n)_{n \in \mathbb{N}} \middle| \lim_{n \to \infty} x_n = 0 \right\}.$$

Prove that

- (a). c_0 is a closed linear subspace of ℓ^{∞} .
- **(b).** Let $e_i := (\delta_{ij})_{j \in \mathbb{N}} \in c_0$, prove that the linear subspace $span\{e_i | i \in \mathbb{N}\}$ is dense in c_0 .
- (c). Show that $\ell^1 = c_0^*$.

Problem 1.2 (Bounded Linear Functional). Let X be an infinite dimensional normed vector space and let $\Lambda: X \to \mathbb{R}$ be a nonzero linear functional. Show that the following are equivalent.

- 1. Λ is bounded.
- 2. The kernel of Λ is a closed linear subspace of X.
- 3. The kernel of Λ is **not** dense in X.

Problem 1.3 $(X^* \neq X')$. If X is an infinite-dimensional normed vector space. show that $X^* \neq X'$.

Problem 1.4 (Bounded Linear Operator). (a). If $T \neq 0$ is a bounded linear operator, show that for any $x \in D(T)$ such that ||x|| < 1 we have ||Tx|| < ||T||.

- (b). Given T a bounded linear operator, show that $\sup_{\|x\|=1} \frac{\|Tx\|}{\|x\|} = \sup_{\|x\|\leq 1} \frac{\|Tx\|}{\|x\|}$. (c). Show that the operator $T: \ell^{\infty} \to \ell^{\infty}$ defined by y = Tx, $y_j = x_j/j$, $x = (x_j)_{j \in \mathbb{N}}$ is
- linear and bounded.
- (d). Show that the range of T of a bounded linear operator need not be closed.

^{*}The presentation of this note is based on [BS18], [Sal16], and [Kre91].

Problem 1.5. If X and Y are normed spaces over \mathbb{R} and B(X,Y) is complete, show that Y is complete.

Problem 1.6. (a). If x and y are different vectors in a finite dimensional vector space X, show that there is a linear functional f on X such that $f(x) \neq f(y)$.

- (b). If $f_1, ..., f_p$ are linear functionals on an n-dimensional vector space X, where p < n, show that there is a vector $x \neq 0$ in X such that $f_1(x) = 0, ..., f_p(x) = 0$.
- (c). Let Z be a proper subspace of an n-dimensional vector space X, and let f be a linear functional on Z. Show that f can be extended linearly to X, that is, there is a linear functional \tilde{f} on X such that $\tilde{f}|_Z = f$.
- (d). Let Z be a proper subspace of an n-dimensional vector space X, and let $x_0 \in X \setminus Z$. Show that there is a linear functional f on X such that $f(x_0) = 1$ and f(x) = 0 for all $x \in Z$.

Problem 1.7 (Annihilator). Let $M \neq \emptyset$ be any subset of a normed space X. The **annihilator** of M^{\perp} of M is the set of bounded linear functionals on X which vanish on M,

$$M^{\perp} := \left\{ f \in X' \middle| f|_{M} = 0 \right\}.$$

Show that

- (a). M^{\perp} is a closed linear subspace.
- (b). M is dense if and only if $M^{\perp} = \{0\}$.

2 The Dual Spaces of $L^p(\mu)$

When $1 it turns out that the dual space of <math>L^p(\mu)$ is always isomorphic to $L^q(\mu)$ where 1/p+1/q=1. For $p=\infty$ the natural homomorphism $L^1(\mu) \to L^\infty(\mu)^*$ is an isometric embedding. However, in most cases, the dual space of $L^\infty(\mu)$ is much larger than $L^1(\mu)$. For p=1 situation is more subtle. The natural homomorphism $L^\infty(\mu) \to L^1(\mu)^*$ need not be injective or surjective. However, it is bijective for a large class of measure spaces and one can characterize those measure spaces for which it is injective, respectively bijective. This requires the following definitions.

Definition 2.1 (σ -finite / Semi-finite / Localizable). A measure space (X, \mathcal{F}, μ) is called σ -finite if there exists a partition $\{X_i\}_{i\in\mathbb{N}}\subset\mathcal{F}$ such that

$$X = \bigcup_{n \in \mathbb{N}} X_i, \quad \mu(X_i) < \infty, \forall i \in \mathbb{N}.$$

It is called **semi-finite** if for any measurable set $A \in \mathcal{F}$ satisfies

$$\mu(A) > 0 \implies \exists E \in \mathcal{F} \text{ such that } E \subset A \text{ and } 0 < \mu(E) < \infty.$$

It is called **localizable** if it is semi-finite and, for every collection of measurable sets $\Xi \subset \mathcal{F}$, there is a $H \in \mathcal{F}$ such that

(L1). $\mu(E \backslash H) = 0, \forall E \in \Xi$.

(L2). If $G \in \mathcal{F}$ such that $\mu(E \setminus G) = 0, \forall E \in \Xi$, then $\mu(H \setminus G) = 0$.

Lemma 2.1. Let (X, \mathcal{F}, μ) be a measure space and let 1/p + 1/q = 1. Let $g: X \to [0, \infty)$ be a measurable function and suppose that there exists a constant $c \ge 0$ such that

$$f \in \mathcal{L}^p(\mu), \quad f \ge 0 \quad \Rightarrow \quad \int_X fg d\mu \le c \|f\|_p.$$
 (1)

Then the following holds.

- 1. If q = 1 then $||q||_q < c$.
- 2. If $1 < q < \infty$ and $||g||_q < \infty$ then $||g||_q \le c$.
- 3. If $1 < q < \infty$ and (X, \mathcal{F}, μ) is semi-finite then $||g||_q \leq c$.
- 4. If $q = \infty$ and (X, \mathcal{F}, μ) is semi-finite then $||g||_q \leq c$.

Proof. (i). If q = 1, take f = 1, then we have $||g||_1 \le c$.

(ii). Since $g \in L^q(\mu)$, we know that the set $A := \{x \in X | g(x) = \infty\}$ has measure zero. Define the function $h: X \to [0, \infty)$ by $h:=g \cdot \mathbb{I}(X \setminus A)$. Then h is measurable and

$$||h||_q = ||g||_q < \infty, \quad \int_X fhd\mu = \int_X fgd\mu \le c||f||_p.$$

for all $f \in \mathcal{L}^p(\mu)$ with $f \ge 0$. Define $f: X \to [0, \infty)$ by $f(x) := h(x)^{q-1}$ for all $x \in X$. Then $f^p = h^{p(q-1)} = h^q = fh$ and hence

$$||f||_p = \left(\int_X h^q d\mu\right)^{1-1/q} = ||h||_q^{q-1}, \quad \int_X fh d\mu = ||h||_q^q.$$

Thus, $f \in \mathcal{L}^p(\mu)$ and so $||h||_q^q = \int_X fhd\mu \le c||f||_p = c||h||_q^{q-1}$. Since $||h||_q < \infty$ it follows that $||g||_q = ||h||_q \le c$.

(iii). Suppose for contradiction that $||g||_q > c$, we claim that there is a nonnegative function h such that

$$0 \le h \le g, \quad c \le ||h||_q < \infty.$$

Therefore, $\int fhd\mu \leq \int ghd\mu \leq c\|f\|_p$. Since $\|h\|_q < \infty$, by (ii), we conclude that $\|h\|_q \leq c$, which yields a contradiction. Next, we prove the existence of such h. There exists a measurable step function $s: X \to [0,\infty)$ such that $0 \leq s \leq g$ and $\int_X s^q d\mu > c^q$ since $\|g\|_q > c$. If $\|s\|_q < \infty$, take h = s. Otherwise there exists a $A \in \mathcal{F}$ and $\delta > 0$ such that $\mu(A) = \infty$ and $\delta \mathbb{I}(A) \leq s \leq g$. Since the space is semi-finite, there exists a $E \subset A$, measurable such that $c^q < \delta^q \mu(E) < \infty$. Then the function $h := \delta \mathbb{I}(E)$ satisfies $0 \leq h \leq g$ and $\|h\|_q = \delta \mu(E)^{1/q} > c$.

(iv). Suppose by contradiction that $||g||_q > c$, then there exists a $\delta > 0$ such that the set $A := \{x \in X | g(x) \ge c + \delta\}$ has positive measure. There exists a $E \subset A$ such that $0 < \mu(E) < \infty$. Hence $f := \mathbb{I}(E) \in \mathcal{L}^1(\mu)$ and $\int_X fgd\mu \ge (c + \delta)\mu(E) > c\mu(E) = c||f||_1$, which is a contradiction to the assumption.

Theorem 2.2. Let (X, \mathcal{F}, μ) be a measure space and fix constants

$$1 \le p \le \infty$$
, $1 \le q \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$.

Then the following holds.

1. Let $g \in \mathcal{L}^q(\mu)$. Then the formula

$$\Lambda_g([f]_{\mu}) := \int_X fg d\mu, \quad \forall f \in \mathcal{L}^p(\mu)$$
 (2)

defines a bounded linear functional $\Lambda_q: L^p(\mu) \to \mathbb{R}$ and

$$\|\Lambda_g\| \le \|g\|_q.$$

2. The map $g \mapsto \Lambda_q$ in (2) descends to a bounded linear operator

$$L^q(\mu) \to L^p(\mu)^* : [g]_{\mu} \mapsto \Lambda_g.$$
 (3)

- 3. Assume that $1 , then <math>\|\Lambda_g\| = \|g\|_q$ for all $g \in L^q(\mu)$.
- 4. Assume p = 1. Then the map $L^{\infty}(\mu) \to L^{1}(\mu)^{*}$ is injective if and only if it is an isometric embedding if and only if (X, \mathcal{F}, μ) is semi-finite.

Proof. Step 1. Given $f \in \mathcal{L}^p$ and $g \in \mathcal{L}^q$, we have $fg \in \mathcal{L}^1$ by Holder's inequality. If $1 , <math>\int_X |fg| d\mu \le ||f||_p ||g||_q$. If p = 1, $|fg| \le |f| ||g||_{\infty} \mu$ -a.e., so $fg \in \mathcal{L}^1$ and $||fg||_1 \le ||f||_1 ||g||_{\infty}$. If $p = \infty$, exchange the role of f and g.

Step 2. We prove that (1) implies (2). By step 1 the map (2) is well-defined and it depends only on the equivalence class of f. The linearity is obvious and $\|\Lambda_g\| \leq \|g\|_q$ follows from step 1. The bounded linear operator Λ_g depends on g only through its equivalence class. Therefore, the map (3) is well-defined and has norm less than or equal to 1.

Step 3. Let $1 and <math>g \in \mathcal{L}^q$. If $f \in \mathcal{L}^p$ is nonnegative then the function $f \cdot sgn(g)$ is p-integrable and

$$\int_X f|g|d\mu = \Lambda_g(f \cdot sgn(g)) \le ||\Lambda_g|| ||f \cdot sgn(f)||_p = ||\Lambda_g|| ||f||_p.$$

Hence $||g||_q \leq ||\Lambda_g||$ by Lemma 2.1 and so $||\Lambda_g|| = ||g||_q$ by step 2.

Step 4. We prove that the map $L^{\infty}(\mu) \to L^{1}(\mu)^{*}$ is injective implies (X, \mathcal{F}, μ) is semi-finite. Let $A \in \mathcal{F}$ be such that $\mu(A) > 0$ and define $g := \mathbb{I}(A)$. Then $\Lambda_g : L^{1}(\mu) \to \mathbb{R}$ is nonzero by assumption. Hence there is a function $f \in \mathcal{L}^1$ such that

$$0 < \Lambda_g(f) = \int_A f d\mu.$$

For $i \in \mathbb{N}$ define $E_i = \{x \in A | f(x) > 2^{-i}\}$, then $E_i \subset A$ and $E_i \in \mathcal{F}$, we also have

$$\mu(E_i) \le 2^i \int_{E_i} f d\mu \le 2^i ||f||_1 < \infty.$$

Moreover, $E := \bigcup_{i=1}^{\infty} E_i = \{x \in A | f(x) > 0\}$ has nonzero measure. Hence one of the sets E_i must have nonzero measure. Therefore, (X, \mathcal{F}, μ) is semi-finite.

Example 2.1. Define (X, \mathcal{F}, μ) by

$$X := \{a, b\}, \quad \mathcal{F} := 2^X, \quad \mu(\{a\}) = 1, \quad \mu(\{b\}) = \infty.$$

This measure space is not semi-finite. Thus the linear map $L^{\infty}(\mu) \to L^{1}(\mu)^{*}$ is not injective. In fact, $L^{\infty}(\mu)$ has dimension two while $L^{1}(\mu)$ has dimension one.

Theorem 2.3 (The Dual Space of L^p). Let (X, \mathcal{F}, μ) be a measure space and fix constants

$$1 \le p < \infty, \quad 1 < q \le \infty, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

Then the following holds.

- 1. Assume $1 . Then the map <math>L^q(\mu) \to L^p(\mu)^* : [g]_{\mu} \mapsto \Lambda_g$ defined by (2) is bijective and hence a Banach space isomorphism.
- 2. Assume p = 1. Then the map $L^{\infty}(\mu) \to L^{1}(\mu)^{*} : [g]_{\mu} \to \Lambda_{g}$ defined by (2) is bijective if and only if (X, \mathcal{F}, μ) is localizable.

Proof. The proof requires Radon-Nikodym theorem, for interested readers please refer to Chapter 5.2 of [Sal16]. \Box

Example 2.2 (The Dual Space of ℓ^1). Consider the measure space $(\mathbb{N}, 2^{\mathbb{N}}, \#)$. It is not difficult to see that \mathbb{N} is localizable. (**Exercise:** prove this!) Therefore, according to theorem 2.3, the map $L^{\infty}(\#) = \ell^{\infty} \to L^1(\#)^* := \ell^1 : x \to \Lambda_x$ is a Banach space isomorphism.

Example 2.3 (The Dual Space of ℓ^p , $1). By theorem 2.3, <math>\ell^p = \ell^q$.

Problem 2.4 shows that, in general, theorem 2.3 does not extend to the case $p = \infty$. Note that by theorem 2.2 the Banach space $L^1(\mu)$ is equipped with an isometric inclusion $L^1(\mu) \to L^{\infty}(\mu)^*$, however, the dual space of $L^{\infty}(\mu)$ is typically much larger than $L^1(\mu)$.

Problem 2.4 $((\ell^{\infty})^* \neq \ell^1)$. Let $\mu : 2^{\mathbb{N}} \to [0, \infty)$ be the counting measure on the postive integers. Then $\ell^{\infty} := L^{\infty}(\mu) = \mathcal{L}^{\infty}(\mu)$ is the Banach space of bounded sequences $x = (x_n)_{n \in \mathbb{N}}$ of real numbers equipped with the supremum norm $||x||_{\infty} := \sup_{n \in \mathbb{N}} |x_n|$. An interesting subspace is

$$c := \left\{ x = (x_n)_{n \in \mathbb{N}} \middle| x \text{ is a Cauchy sequence} \right\}.$$

It is equipped with a functional $\Lambda_0: c \to \mathbb{R}$, defined by

$$\Lambda_0(x) := \lim_{n \to \infty} x_n, \quad for \ x \in c. \tag{4}$$

- (a). Show that Λ_0 is a bounded linear functional.
- **(b).** Use (4) to show that $\ell^1 \neq (\ell^{\infty})^*$.

Remark 2.1. Part (b) of problem 2.4 shows that even though the underlying measure space has a very nice property (i.e. it is σ -finite, which also implies it is localizable), the map $\ell^1 \to (\ell^{\infty})^*$ is not surjective.

Example 2.4 (Nonreflexive Spaces). By problem 1.1, we see

$$\ell^1 = (c_0)^*, \quad c_0 \neq \ell^\infty = (\ell^1)^* = (c_0)^{**}, \quad \ell^1 \neq (\ell^\infty)^* = (\ell^1)^{**}.$$

Therefore, the Banach spaces ℓ^1 and c_0 are not reflexive.

References

- [BS18] Theo Bühler and Dietmar A Salamon. Functional analysis, volume 191. American Mathematical Soc., 2018.
- [Kre91] Erwin Kreyszig. Introductory functional analysis with applications, volume 17. John Wiley & Sons, 1991.
- [Sal16] Dietmar Salamon. Measure and integration. Citeseer, 2016.