# Dust In The Wind –How Does Sand Mining Affect Air Quality?

2015 Society of Mining Engineers-Minnesota Conference



April 14, 2015
Richard Osa
Duluth, MN
Andrew Rengel
Doug Dziubla
Environmental Resources Management



## What's The Problem?

Community concerns lead to permitting delays, moratoriums, onerous operating constraints.

Responsible developers/operators need ways to

assess impacts.

#### Concerns include:

Truck ffic

Noise

Envired bental

water quality

air quality

crystalline silica





## What We'll Cover...

- Particulate Matter (PM) Characterization
- Sand Mine/Processing PM Emissions Sources
- Air Quality Particulate Matter Criteria
- Ambient Monitoring Methods & Programs
- Monitoring Data & What It Means





# Characterizing PM (Size Matters)



Particle side determines how it disperses and settles...

...and how far it can penetrate into the respiratory system.

| Mesh | Microns | Comment                              |
|------|---------|--------------------------------------|
| 16   | 1,190   | Eye of a Needle = 1,230 microns      |
| 40   | 420     |                                      |
| 50   | 297     |                                      |
| 60   | 250     | Fine Sand                            |
| 100  | 149     | Sand (100 - 2,000 micron)            |
| 140  | 105     |                                      |
| 200  | 74      | Portland Cement                      |
|      | 70      | Average Human Hair (70 - 100 micron) |



# Potential Health Impact Factors



To have the potential to affect health, a particle must:

- 1. Remain suspended until it reaches a person, and
- 2. Penetrate deep into the respiratory system.

If particles reach sensitive tissues in the lungs, potential health consequences depend upon:

- 1. Particle chemistry,
- 2. Morphology, and
- 3. Concentration.





# Sand Mine/Processing PM Emissions Sources

#### Mine

- Working face (surface); Mine mouth/vents (underground)
- Drilling/blasting
  - Process
  - Drill rig engine
- Conveying
- Wet Processing Plant
- Outdoor storage
- Mobile equipment
  - Engine
  - Road dust





# Sand Mine/Processing PM Emissions Sources

## **Dry Processing Plant/Storage/Shipping**

- Dryer
  - Combustion
  - Process
- Conveying
- Storage bins

- Truck receiving
- Outdoor storage
- Mobile equipment
  - Engine
  - Road dust
- Rail Loadout



# Sand Mining PM Emission Characteristics



#### **Combustion Sources**

- Internal combustion engines (diesel, gas)
  - Drill rig, mobile equipment, generators, pumps
- Dryer (typically, natural gas or propane)

#### **Particulate Matter Characteristics**

- Emission rate relatively low for wellcontrolled devices
- Size: < 1.0 micron</li>
- Chemical bioactivity: varies
  - Propane and natural gas combustion products relatively benign
  - Diesel soot is a potential human carcinogen.



## Sand Mining PM Emission Characteristics



#### **Process Sources**

 Material conveyance, processing, loading

#### Particulate Matter Characteristics

- Emission rate varies by source, emission control methods
- Size: large (> 100 micron) to very small (< 2.5 micron)</li>
- Chemical bioactivity: largely inert; exception being (very fine) crystalline silica—causative factor (at occupational exposure concentrations) in silicosis



## We Must Have Standards

## But they are hard to come by...

- Only broadly recognized crystalline silica standard is OSHA's occupational exposure standard. Current proposed limit is 50 micrograms of respirable (i.e., PM<sub>4</sub>) crystalline silica per cubic meter of air (μg/m³), averaged over an 8-hour day.
- U.S. EPA has PM<sub>10</sub> and PM<sub>2.5</sub> particulate matter standards. Since crystalline silica is emitted as particles, PM measurements constitute a conservative ceiling on crystalline silica concentrations.





## **EPA Particulate Matter Standards**

- PM<sub>10</sub>
  - 150 microgram/cubic meter, 24-hour average
- PM<sub>2.5</sub>
  - 35 microgram/cubic meter, 24-hour average
  - 12 microgram/cubic meter, annual average

For comparison—Proposed OSHA PM<sub>4</sub> crystalline silica PEL is 50 microgram/cubic meter, 8-hour average.

OSHA regulations are geared to protect healthy workers exposed for a maximum of 8 hours at a time.

EPA standards, by statute, must protect even the most sensitive populations—with an ample margin of safely.



# Measuring the Air

- State and federal environmental agencies have been monitoring PM in outside air for decades.
- Some states require mines to monitor PM—either as a permit or regulatory requirement.
- Monitors have been established near some mines and processing plants.
- We have synthesized the monitoring data collected near industrial sand facilities and compared them with typical ambient levels.
- Analysis was limited to PM<sub>10</sub> mass measurements—not enough PM<sub>2.5</sub> data near sand facilities; ambient air PM<sub>4</sub> crystalline silica data too few to allow comparison.



### How to...

- PM<sub>10</sub> and PM<sub>2.5</sub> can be measured continuously or with 24-hour integrated filter samples—followed by lab analysis.
- Most of the data analyzed for this study were PM<sub>10</sub>, and were collected using filter samplers.
- Data were drawn from Minnesota and Wisconsin monitoring programs; Illinois was contacted and found to have no relevant data.







# Wisconsin and Minnesota PM<sub>10</sub> Monitoring

- PM<sub>10</sub> measured over 24 hours, typically, once every 6 days using filter sampler/laboratory gravimetric analysis
- From one to three monitors per sand facility—total of 18 monitors (14 in WI; 4 in MN) at 14 sand processing plants (12 in WI; 2 in MN)
- Period of record varies by monitor, earliest data from 2011
- Total of 2135 valid measurements

## **Summary Statistics**

- Statistics
- Average: 15 μg/m³
- # values > 150 μg/m³: 0
- # values > 50 μg/m³: 27 (< 2% of values)</li>
- Max. value: 105 µg/m³,
   2/3rds of ambient standard



# Detailed PM<sub>10</sub> Monitoring Results

#### Total combined WI and MN Measurements



| Number of |           |
|-----------|-----------|
| Samples = | 2135      |
| Bin       | Frequency |
| 0         | 8         |
| 10        | 772       |
| 20        | 834       |
| 30        | 324       |
| 40        | 116       |
| 50        | 53        |
| 70        | 21        |
| 100       | 5         |
| 130       | 2         |
| 150       | 0         |
| More      | 0         |

#### All WI Measurements

| Number of |           |
|-----------|-----------|
| Samples = | 1612      |
| Bin       | Frequency |
| 0         | 8         |
| 10        | 650       |
| 20        | 667       |
| 30        | 195       |
| 40        | 58        |
| 50        | 22        |
| 70        | 8         |
| 100       | 2         |
| 130       | 2         |
| 150       | 0         |
| More      | 0         |





# Detailed PM<sub>10</sub> Monitoring Results

#### All MN Measurements



| Number of |           |
|-----------|-----------|
| Samples = | 523       |
| Bin       | Frequency |
| 0         | 0         |
| 10        | 122       |
| 20        | 167       |
| 30        | 129       |
| 40        | 58        |
| 50        | 31        |
| 70        | 13        |
| 100       | 3         |
| 130       | 0         |
| 150       | 0         |
| More      | 0         |

## Example Individual WI Site (ID# 55-005-1001)

| Number of |           |
|-----------|-----------|
| Samples = | 177       |
| Bin       | Frequency |
| 0         | 0         |
| 10        | 41        |
| 20        | 81        |
| 30        | 37        |
| 40        | 12        |
| 50        | 2         |
| 70        | 3         |
| 100       | 1         |
| 130       | 0         |
| 150       | 0         |
| More      | 0         |





# Minnesota Respirable Crystalline Silica Monitoring

- The Minnesota Pollution Control Agency has conducted PM at 12 sites, associated with 3 sand processing facilities.
- Monitored species included respirable crystalline silica (PM<sub>4</sub>) at several sites
- Period of record varies by monitor, earliest data from mid-2012.
- No high crystalline silica concentrations were found in ambient air



## Questions?

Rick Osa

**ERM** 

847.217.7238

rick.osa@erm.com



# HOW About NOW?



