

EPMs 14142, 14143 and 14340, ERNEST HENRY NORTH PROJECT, NORTHWEST QUEENSLAND ANNUAL REPORT FOR THE PERIOD ENDING 23rd AUGUST 2006

By Neil McLean and Peter Gregory December 2006

On behalf of Teck Cominco Australia Pty Ltd

TABLE OF CONTENTS

SUMMARY		1
1. INTRODU	CTION	2
2. TENEMEN	NT DETAILS	3
3. GEOLOG	ICAL SETTING	4
4. WORK UN	NDERTAKEN ON EPMs 14142, 14143 and 14340	4
4.1 Previo	ous Work	4
4.2 Gravi	ty Surveys 2005	4
4.3 Diamo	ond Drilling Program 2006	5
4.4 Geop	hysical Program 2006	7
5. CONCLUS	SIONS AND RECOMMENDATIONS	8
	<u>LIST OF FIGURES</u>	
Figure 1.	Location of Ernest Henry North Project	2
Figure 2.	Figure 2. Location of drill holes on imaged Bouger gravity data	6
Figure 3.	Reduced-to-the-pole image of ground magnetic data collected in vicinity of hole EHND6	n the 7
	LIST OF TABLES	
Table 1.	Sub-blocks constituting EPM 14142 following relinquishment	3
Table 2.	Sub-blocks constituting EPM 14143 following relinquishment	3
Table 3.	Sub-blocks constituting EPM 14340	3
	<u>APPENDICES</u>	
Appendix 1	Drill hole Logs	
Appendix 2	Analytical Results	
Appendix 3	Magnetic Susceptibility Measurements	
Appendix 4	Specific Gravity Measurements	
Appendix 5	Rock Quality Designations (RQDs)	
Appendix 6	Petrological Report	
Appendix 7	Petrophysical Report	

SUMMARY

Eight diamond drill holes were completed for 2215.4m to test seven combined gravity/magnetic anomalies as Iron Oxide Copper Gold targets and one Broken Hill Type target located beneath significant thicknesses (+200m) of Mesozoic sediments.

In most cases the sources of both the gravity and magnetic responses were explained by the presence of dense lithologies and magnetite. An interesting skarn-like alteration system, with accompanying veins of magnetite, pyrrhotite ± chalcopyrite, chalcopyrite, pyrite, calcite and biotite, was intersected throughout hole EHND6. Copper values of up to 4470 ppm were reported from the sampling.

A detailed ground magnetic survey was completed in the vicinity of hole EHND6 to provide high quality and high resolution data to assist in targeting future drill holes to follow-up the alteration and mineralisation encountered in the hole.

1. INTRODUCTION

This report presents the results of exploration work undertaken on EPMs 14142, 14143 and 14340 during the second year of tenure. Together these tenements form the Ernest Henry North Project. Approval to submit a combined exploration progress report was granted by the Department of Natural Resources and Mines on 19 October 2005.

The contiguous tenements occupy an area of 452km² centred approximately 80km north north-east of Cloncurry in north-west Queensland (Figure 1). Access to the area is via well formed, unpaved, shire roads that link Cloncurry with the homesteads of Clonagh and Cubbaroo in the southern part of the area. Access within the tenements is possible via numerous station tracks.

The exploration target is principally iron-oxide-copper-gold (IOCG) mineralisation akin to the Ernest Henry deposit that lies approximately 35km south of the southern boundary of the project area.

Figure 1. Location of Ernest Henry North Project

2. TENEMENT DETAILS

EPM 14142, Tee Tree Well, was granted to Teck Cominco Australia Pty Ltd on 23rd August 2004 for a period of five years. A 50% reduction in the tenement area, involving 49 sub-blocks, was undertaken at the end of the second term. Following the reduction, EPM 14142 consists of the following 49 sub-blocks (Table 1 and Figure 1).

BIM	Block	Sub-blocks
CLON	30	Z
CLON	31	ABCDEFGHJKLMOPQTUVYZ
CLON	32	ABFGLMQRVW
CLON	103	ADEJK
NORM	3343	Z
NORM	3344	V
NORM	3415	DEJKOPTWXY
NORM	3416	A

Table 1. Sub-blocks constituting EPM 14142 following relinquishment

EPM 14143, Brolga Bore, was granted to Teck Cominco Australia Pty Ltd on 23rd August 2004 for a period of five years. A 50% reduction in the tenement area, involving 40 subblocks, was undertaken at the end of the second term. Following the reduction, EPM 14143 consists of the following 40 sub-blocks (Table 2 and Figure 1).

BIM	Block	Sub-blocks
CLON	32	CDEHJK
CLON	33	ABFGHJNOSTUZ
CLON	34	V
CLON	105	E
CLON	106	A
NORM	3345	YZ
NORM	3416	CDEHJKNOSTUXYZ
NORM	3417	DEV

Table 2. Sub-blocks constituting EPM 14143 following relinquishment

EPM 14340 'Clonagh' was granted on 21 April 2005 for a period of five (5) years. It consists of 51 sub-blocks as shown in Table 3 and Figure 1.

Block ID Map	Block	Sub-blocks
CLON	31	R W
CLON	32	NOSTUX
CLON	33	LMQRVW
CLON	103	BCGMOPRSTUZ
CLON	104	ABCDEFGHJKLMNOPQST
		V W
CLON	105	L
CLON	175	E
CLON	176	ABFG

Table 3. Sub-blocks constituting EPM 14340

3. GEOLOGICAL SETTING

The entire project area is underlain by shallow marine sediments of the Mesozoic Carpentaria Basin. The thickness of these sediments is estimated to be between 100m and 400m as deduced from the drilling described in this report and modelling of aeromagnetic data.

The sediments cover Palaeoproterozoic basement rocks that are interpreted to be metavolcanic, metaintrusive and metasedimentary rocks ascribed to the Corella Formation intruded by felsic intrusions of the Naraku Granite. This sequence is host to the Ernest Henry Cu-Au deposit to the south of the project area.

The basement sequence in the north-eastern part of the project area is interpreted to be mainly metasediments of the Soldiers Cap Group primarily based on the quiet magnetic character discernable in the aeromagnetic data.

4. WORK UNDERTAKEN ON EPMs 14142, 14143 and 14340

4.1 Previous Exploration

In the general region occupied by the three EPMs, previous explorers include the following:

- BHP Exploration (1991-1996) EPMs 8282 and 8440 (parts of Boomera Project).
 A 1995 Geotem survey including the extreme south-western part of the area resulted in no significant anomalies. A single line of ground TEM in EPM 8282 targeting a conductive SEDEX host response found no conductor. At Whitewood, in EPM 8440, 2 RC holes unsuccessfully targeted Ernest Henry mineralisation, encountering only amphibole-bearing magnetic albitite. Excessive depth-to-basement resulted in abandonment.
- <u>Savage Resources</u> (1995) EPM10597. A 1400 line km aeromag survey and follow up ground magnetic traverse, with one mag/grav target tested with a RC drillhole. Basement was not intersected at 264 metres and abandoned.
- <u>Cyprus Gold Australia Corporation</u> (1995) EPM 10459. A review of previous exploration and ground magnetic traverse downgraded area.
- <u>WMC</u> (1993-2003) EPMs 8331 & 8648. From 1993, and ultimately JV'd with MIM/Xstrata, completed extensive ground mag, gravity EM and soil geochemistry predominantly in the southern part of the current tenements. Targets were further Ernest Henry style mineralisation. Also completed was MIMDAS MT/IP/Resistivity surveying at prospect FC11 which corresponds with Target 1 below. Drilled at least 1 percussion hole, 8 RC and 10 diamond cored holes.

4.2 Gravity Surveys 2005

Detailed open-file regional aeromagnetic and gravity data were assessed, and a series of sixteen magnetic and/or gravity targets considered to have potential for either IOCG or BHT mineralisation were selected for follow up.

A program of gravity traverses was devised to investigate selected targets since existing gravity coverage in these areas was quite sparse. Haines Surveys were contracted to complete the surveying, and 2032 stations were subsequently completed during July/August 2005 and reported on in the first annual report. The resultant Bouguer Gravity grided images are shown in Figure 2.

4.3 Diamond Drilling Program 2006

Seven gravity anomalies, generated from the 2005 survey, were selected for drill testing within the combined tenement area. During July-September 2006 eight rotary mud/diamond drill holes were completed by contractors Drill Torque (Qld) including hole EHND9A which was a redrill of EHND2 which was abandoned in coarse gravels. The locations of the drill holes are shown in Figure 2. Drill hole logs, analytical results, magnetic susceptibility measurements, specific gravity measurements and rock quality designations (RQDs) are presented in Appendices 1 to 5 respectively. A petrological report by Pontifex & Associates is presented in Appendix 6.

Half-core samples were collected over 1m intervals from mineralogically interesting sections of drill core and dispatched to ALS Chemex in Townsville for sample preparation and Au analyses, with the pulps being forwarded to ALS Chemex in Brisbane for ICP-AES analyses of a 27 element suite. Some intervals of gabbro were analysed for Pd and Pt using ICP-MS.

The drill hole	e collar	information	ı is preser	nted in Tabl	e 4.

Hole No.	Easting AGD84	Northing AGD84	Azm	Dip	Basement depth m	Depth m
	Zone 54	Zone 54			-	
EHND2	472450	7797800	-	-90	-	43.0
EHND3	458424	7787214	-	-90	272.5	315.3
EHND4	461217	7781508	-	-90	237.3	302.3
EHND5	463150	7781800	-	-90	239.3	336.2
EHND6	465600	7784200	-	-90	212.35	402.7
EHND7	449800	7782000	-	-90	185.0	261.8
EHND8	452000	7787200	-	-90	267.2	292.1
EHND9A	472446	7797815	-	-90	259.5	262.0

Table 4. Drill hole collar information

Hole **EHND2** was drilled to test a subtle coincident gravity and magnetic feature interpreted as a possible Broken Hill Type target. The hole was abandoned in coarse gravels, with cobbles, at 43m. Hole **EHND9A** was collared approximately 15m away and successfully reached Proterozoic basement at 259.5m. The hole was terminated at 262m in highly fractured, leucocratic porphyritic hornblende dacite, locally flow banded. There is no apparent explanation for the subtle gravity and magnetic anomaly.

Hole **EHND3** was designed to test a discrete, coincident gravity and magnetic anomaly as a possible IOCG target. The hole encountered basement at 272.5m and was terminated at 315.3m after intersecting magnetite-bearing gabbro and andesite-microgabbro. A 1m interval of epidote-veined microgabbro returned 509 ppm Cu. The source of the coincident gravity and magnetic anomaly is explained by the presence of dense gabbro and magnetite (SG up to 3.07).

Hole **EHND4** tested a small, discrete gravity high on a north trending magnetic ridge as an IOCG target. The hole encountered basement at 237.3m and then intersected what is logged as albite-magnetite-chlorite-hematite altered metarhyolite with minor pyrite to 302.3m. In the mineralogical report the rock type is described as mafic granofels with magnetite and albite alteration. No anomalous geochemical results are reported. Specific gravity measurements of up to 3.04 assist in explaining the gravity high and the presence of magnetite adequately explains the magnetic source.

Hole **EHND5** tested a discrete gravity anomaly associated with a magnetic high as a potential IOCG target. From the basement at 239.3m the hole intersected albite-magnetite-chlorite-actinolite-hematite altered biotite gneiss with very minor pyrite-chalcopyrite veinlets and one coarse calcite-chalcopyrite vein. An isolated Cu value of 2000ppm was reported over 1m. Very high SGs – up to 4.11 – explain the gravity anomaly. The presence of magnetite explains the magnetic source.

Figure 2. Location of drill holes (prefixed EHND) on imaged Bouger gravity data.

Hole **EHND6** tested a coincident gravity and magnetic anomaly as a potential IOCG target. From the basement, at 212.35m, the hole intersected what was logged as magnetite-actinolite-biotite-albite-epidote-scapolite altered biotite metapsammite and metadiorite with veins of magnetite, pyrrhotite ± chalcopyrite, chalcopyrite, pyrite, calcite and biotite. However the petrographic studies (Appendix 6) suggest that the observed assemblage may be primary coarse-grained gabbros and pyroxenites, with magmatic oxide-phosphate ± sulphide segregations. Patchy intervals of anomalous Cu, up to 4470 ppm over 1m, are present. The hole was terminated at 402.7m.

Although the degree and intensity of alteration is brought into question by the mineralogical report the presence of widespread iron sulphides and, locally, chalcopyrite indicate that mineralising processes are present. High SG measurements – up to 4.9 – explain the gravity anomaly. The magnetic response is mainly due to magnetite with a contribution from the pyrrhotite that is present.

Hole **EHND7** tested a coincident gravity and magnetic anomaly as a possible IOCG target. The hole encountered basement at 185m and then intersected a weakly

altered sericite-epidote ± magnetite gabbro. No anomalous geochemistry was reported. SG measurements of up to 3.09 likely explain the gravity high.

Hole **EHND8** also tested a coincident gravity and magnetic anomaly. Basement was encountered at 267.2m and then medium grained plagioclase-pyroxene-olivine gabbro with actinolite alteration of mafics was intersected to 292.1m, the end of the hole. No anomalous geochemistry was reported. The presence of gabbro, with SGs consistently above 3.0, explains the gravity high.

4.4 Geophysical Program 2006

As a consequence of intersecting significant IOCG-style alteration and associated Fe sulphides in hole EHND6 a detailed ground magnetic survey was completed in the vicinity of the hole. The aim of the survey was to obtain high quality and high resolution magnetic data to assist in siting additional drill holes to follow-up the encouraging alteration and sulphide assemblage intersected in hole EHND6 in 2007. A reduced-to-the-pole image of the magnetic data is presented in Figure 3.

Figure 3. Reduced-to-the-pole image of ground magnetic data collected in the vicinity of hole EHND6.

Seven core samples from hole EHND6 were dispatched to Systems Exploration (NSW) Pty Ltd for petrophysical analyses. The results from the analyses are presented in Appendix 7.

The conclusions from this work are that increases in density are directly related to increasing magnetite and/or pyrrhotite content and consequently there is a direct relationship between density and magnetic susceptibility. Conductivities of the samples are not as high as expected given the amount of pyrrhotite, magnetite, pyrite and chalcopyrite that is present. This is likely due to the metallic minerals being poorly networked and possibly insulated by silicates. This latter conclusion would have a bearing on the usefulness of EM given that there is also in excess of 200m of Mesozoic sediments, some of which are conductive, in the vicinity of hole EHND6.

5. CONCLUSIONS AND RECOMMENDATIONS

The 2006 drilling program successfully tested seven targets generated from an interpretation of detailed gravity data collected in 2005 and open-file aeromagnetic data. In most cases the sources of both the gravity and magnetic responses were explained.

Hole EHND6 intersected a sequence of medium to coarse grained magnetite-bearing mafic rocks with widespread iron sulphide and more local chalcopyrite development. Petrographic studies suggest that the lithology consists of primary coarse-grained gabbros and pyroxenites, with magmatic oxide-phosphate ± sulphide segregations. However the interpretation from logging of the hole is that the assemblage consists of intense skarn-like magnetite-mafic-biotite-albite-epidote-scapolite alteration with associated veins of magnetite-pyrrhotite-pyrite-chalcopyrite-calcite indicative of an IOCG mineralising system.

Consequently a program of drilling is recommended for 2007 to test a number of very interesting magnetic features in the vicinity of hole EHND6 that have been highlighted from a detailed ground magnetic survey.

APPENDIX 1

Drill Hole Logs

DRILL I	IOLE N	UMBER: EHND2	LOGSHEET: 1/1	DATE: 26.07.06	LOGGED BY:	R Sp	roul	е		
GRID / I	PROSPE	ECT: Site 9 Bloodwood Tank Area	R.L. (m):	WATER DEPTH (m):	DEPTH TO BAS	EME	NT (n	າ):		
		RDS: 472450E 7797800N AGD84	COLLAR AZIMUTH:	COLLAR DIP: -90°	TOTAL DEPTH (_ `	,		
FROM (m)	TO (m)	LITUOLOGICAL O MINITUALOGICAL	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	Τ		OXIDE	S & SULI	PHIDES %
` '		())				mt	να	cpv	po si	h mo
0.00	1.00	Dark brown. Siltstone-clay matrix. Non-magne	etic components				17	-1-7	F - 1	
1.00		Dark brown. Siltstone-clay matrix. Non-magne								
2.00		Dark brown. Siltstone-clay matrix. Non-magne								
3.00		Dark brown. Siltstone-clay matrix. Non-magne								
4.00		Dark brown. Siltstone-clay matrix. Non-magne								
5.00		Dark brown. Siltstone-clay matrix. Non-magne								
6.00	7.00	Light brown sandy matrix. Pebbles (~1mm to	natitic quartz.							
7.00		Light brown sandy matrix. Pebbles (~1mm to								
8.00	9.00	Light brown sandy matrix. Pebbles (~1mm to	natitic quartz.							
9.00		Light brown sandy matrix. Pebbles (~1mm to								
10.00		Light brown sandy-clay matrix. Pebbles (~1m								
11.00		Light brown. Mudstone-clay matrix. Quartzite								
12.00	13.00	Light brown. Mudstone-clay matrix. Quartzite	pebbles (mature). Trace magr	netite.						
13.00		Light brown. Mudstone-clay matrix. Quartzite	, ,							
14.00		Light brown. Mudstone-clay matrix. Quartzite	, , ,							
15.00		Light brown. Mudstone-clay matrix. Quartzite								
16.00		Light brown. Mudstone-clay matrix. Quartzite								
17.00	18.00	Light brown. Gravels. ~2mm grains (mature).	Quartzose dominant. Non-ma	gnetic.						
18.00		Light brown. Gravels to large pebbles (~2mm		Ĭ						
19.00	20.00	Light brown. Gravels to large pebbles (~2mm	to 4cm). Mature clasts.							
20.00		Light brown. Gravels to large pebbles (~2mm								
21.00		Light brown clay to sand to large pebbles (ma								
22.00		Light brown clay to sand to large pebbles (ma								
23.00	24.00	Light brown clay to sand to large pebbles (ma	ature).							-
24.00		Light brown clay to sand to large pebbles (ma								-
25.00		Light brown clay to sand to large pebbles (ma								-
26.00		Light brown. Silty-clay. No pebbles. Sandy siz	,							_
27.00		Light brown. Silty-clay. No pebbles. Sandy siz								_
28.00		Light brown. Silty-clay. Rare pebbles (up to 1								_
29.00		Dark grey silty-clay matrix. Sand sized quartz								_
30.00		Dark grey clay matrix. Quartzite pebbles and		size						-
31.00		Dark grey clay matrix. Quartzite pebbles and	, , ,							-
32.00		Dark grey clay matrix. Quartzite pebbles and	, , ,			1		t		_
33.00		Dark grey clay matrix. Red cherty hematitic quality for the same of the same o	, , ,							+
34.00		Dark grey clay matrix. Red cherty hematitic qu								+
35.00		, , , , , , , , , , , , , , , , , , , 				1		1		_
36.00		Dark grey clay matrix. Red cherty hematitic quartzite pebbles and cobbles (mature) ~2-3cm in size. Dark grey clay-sand. Quartzite and red hematitic pebbles (mature). Up to 4-5mm. Some magnetic components.						1		_
37.00		ark grey clay-sand. Quartzite and red hematitic pebbles (mature). Up to 4-5mm. Some magnetic components.							_	
38.00		ark grey sand-clay. Quartzite and red hematitic cobbles (mature). Up to 4cm. Some magnetic components.							_	
39.00		ark grey clay. Quartzite and red hematitic cobbles (mature). Op to 4cm. Some magnetic components.								
40.00		Park grey clay. Quartzite and red hematitic cobbles (mature to slightly immature). Up to 4cm. Some magnetic components.								
41.00		Dark grey clay. Quartzite and red hematitic co								_
42.00		HOLE ABANDONED			_go.o component	Ĭ.		 		_
12.00										+-
	ļ			I.		1				

DRILL H	IOLE N	JMBER: EHND3	LOGSHEET: /	DATE: 29.07.06	LOGGED BY:	R Sp	roule	9	P Gr	egor	у					
GRID / I	PROSPE	CT: Site 16	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASI	EMEN	IT (m) :	273							
COLLA	R COOR	DS: 458454E 7787214N AGD84	COLLAR AZIMUTH:	COLLAR DIP: -90°	TOTAL DEPTH (m):	315									
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	ERATION & VEINING MINERALISATION STRUCTURE & SPECIFIC OXID			ALTEDATION & VEINING L. MINIEDALISATION L			N & VEINING MINEPALISATION STRUCTURE & SPECIE				8 & SU	LPHIC	DES %
						mt	ру	сру	ро	sph	mo					
0.00	1.00	Dark brown. Clay. Trace magnetic fragments														
1.00	2.00	Dark brown. Clay. Trace magnetic fragments														
2.00	3.00	Mid brown. Clay-sand.														
3.00	4.00	Mid brown. Clay-sand.														
4.00	5.00	Mid brown. Sand. Trace gravels.														
5.00	6.00	Light tan. Clay rich. Some mudstone														
		fragments. Rare pieces of quartzite.									l					
6.00	7.00	Light tan. Clay rich. Some mudstone														
		fragments. Rare pieces of quartzite.									1					
7.00	8.00	Light tan. Clay rich. Some mudstone														
		fragments. Rare pieces of quartzite.														
8.00	9.00	Light tan. Clay rich. Some mudstone														
		fragments. Rare pieces of quartzite.														
9.00		Light tan. Clay rich. Some mudstone									1					
		fragments. Rare pieces of quartzite.														
10.00		Light tan. Clay rich. Some mudstone									1					
		fragments. Rare pieces of quartzite.														
11.00	12.00	Light tan. Clay rich. Some mudstone									l					
		fragments. Rare pieces of quartzite.														
12.00	13.00	Light tan. Clay rich. Some mudstone									1					
		fragments. Rare pieces of quartzite.														
13.00	14.00	Light tan. Clay rich. Some mudstone									1					
		fragments. Rare pieces of quartzite.														
14.00	15.00	Light tan. Clay rich. Some mudstone									ĺ					
		fragments. Rare pieces of quartzite.									<u> </u>					
15.00	16.00	Light tan. Clay rich. Some mudstone									İ					
		fragments. Rare pieces of quartzite.									<u> </u>					
16.00	17.00	Light tan. Clay rich. Some mudstone									1					
		fragments. Rare pieces of quartzite.									<u> </u>					
17.00	18.00	Light tan. Clay rich. Some mudstone									ĺ					
		fragments. Rare pieces of quartzite.														

DRILL F	IOLE N	JMBER: EHND3	LOGSHEET:	1	DATE: 29.07.06	LOGGED BY:	R Sp	roule	•	P Gr	egor	у
GRID / F	PROSPE	CT: Site 16	R.L. (m):		WATER DEPTH (m):	DEPTH TO BASI	EMEN	IT (m):	273		
COLLAI	R COOR	DS: 458454E 7787214N AGD84	COLLAR AZIMU	TH:	COLLAR DIP: -90°	TOTAL DEPTH (m):	315				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION 8	ALTERATION & VEINING MINERALISATION STRUCTURE & SPECIFIC OXID			XIDES	& SU	LPHIC	DES %		
							mt	ру	сру	ро	sph	mo
18.00	19.00	Light tan. Clay rich. Some mudstone										
		fragments. Rare pieces of quartzite.										
19.00		Light tan. Clay rich. Some mudstone										
		fragments. Rare pieces of quartzite.										Į.
20.00		Light tan. Clay rich. Some mudstone										İ
		fragments. Rare flakes of muscovite and very										İ
		rare gypsum.										<u> </u>
21.00	22.00	Light tan. Clay rich. Some mudstone										İ
		fragments. Rare flakes of muscovite and very										l
		rare gypsum.										
22.00		Light tan. Clay rich. Some mudstone										
23.00		Light tan. Clay rich. Some mudstone										l
		fragments. Rare flakes of muscovite and very										İ
		rare gypsum.										L
24.00		Light tan. Clay rich. Some mudstone										l
		fragments. Rare flakes of muscovite and very										İ
		rare gypsum.										
25.00		Light tan. Clay rich. Some mudstone										İ
		fragments. Rare flakes of muscovite and very										İ
		rare gypsum.										
26.00	27.00	Light tan. Clay rich. Some mudstone										İ
		fragments. Rare flakes of muscovite and very										İ
07.00	00.00	rare gypsum.										·
27.00		Light tan. Clay rich. Some mudstone										İ
		fragments. Rare flakes of muscovite and very										İ
20.00		rare gypsum.										
28.00	29.00	Light tan. Clay-rich. Some mudstone flakes. Trace muscovite.										
29.00	30.00	Light tan. Clay-rich. Some mudstone flakes.										
		Trace muscovite.										l
30.00	36.00	Dark brown. Clays. Trace clasts of mudstone.										

DRILL F	IOLE NU	JMBER: EHND3	LOGSHEET: /	DATE: 29.07.06	LOGGED BY:	R Sp	roule)	P Gr	egory	у
GRID / F	PROSPE	CT: Site 16	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASI	EMEN	IT (m):	273		
COLLA	R COOR	DS: 458454E 7787214N AGD84	COLLAR AZIMUTH:	COLLAR DIP: -90°	TOTAL DEPTH (m):	315				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC O	XIDES	& SU	LPHIC	DES %
						mt	ру	сру	ро	sph	mo
36.00	42.00	Dark brown. Clays. Trace clasts of mudstone.									
42.00		Light brown clay									1
48.00	54.00	Light brown clay									
54.00	60.00	Dark grey clay. Clasts of grey mudstone. Friable.									
60.00	66.00	Dark grey clay. Clasts of grey mudstone. Friable.									
66.00	72.00	Dark grey clay. Clasts of grey mudstone. Friable.									
72.00	78.00	Dark grey clay. Clasts of grey mudstone. Friable.									
78.00	84.00	Dark grey clay. Clasts of grey mudstone. Friable.									
84.00		Dark grey clay. Clasts of grey mudstone. Friable.									
90.00	96.00	Dark grey clay. Clasts of grey mudstone. Friable.									
96.00	102.00	Dark grey clay. Clasts of grey mudstone. Friable.									
102.00	108.00	Dark grey clay.									
108.00	114.00	Dark grey clay.									1
114.00		Dark grey clay.									1
120.00		Dark grey clay.									
126.00		Dark grey clay. Clasts of grey mudstone. Friable.									
132.00	138.00	Dark grey clay. Clasts of grey mudstone. Friable.									
138.00	144.00	Dark grey clay. Clasts of grey mudstone. Friable.									
144.00	150.00	Dark grey clay. Clasts of grey mudstone. Friable.									

DRILL F	IOLE NU	JMBER: EHND3	LOGSHEET:	1	DATE: 29.07.06	LOGGED BY:	R Sp	roule	•	P Gre	gory	,
GRID / F	PROSPE	CT: Site 16	R.L. (m):		WATER DEPTH (m):	DEPTH TO BASE	MEN	IT (m):	273		
COLLA	R COOR	DS: 458454E 7787214N AGD84	COLLAR AZIMU	ГН:	COLLAR DIP: -90°	TOTAL DEPTH (I	m):	315				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION 8	RATION & VEINING MINERALI		SATION STRUCTURE & SPECIFIC OXIDES & SULP			LPHID	ES %		
							mt	ру	сру	ро	sph	mo
150.00	156.00	Dark grey clay. Clasts of grey mudstone. Friable.										
156.00	162.00	Dark grey clay. Clasts of grey mudstone. Friable.										
162.00	168.00	Dark grey clay. Clasts of grey mudstone. Friable.										
168.00	174.00	Dark grey clay. Clasts of grey mudstone. Friable.										
174.00	180.00	Dark grey clay. Clasts of grey mudstone. Friable.										
180.00	186.00	Dark grey clay. Clasts of grey mudstone. Friable.										
186.00	192.00	Dark grey clay. Clasts of grey mudstone. Friable.										
192.00	198.00	Dark grey clay. Clasts of grey mudstone. Friable.										
198.00	204.00	Dark grey clay. Clasts of grey mudstone. Friable.										
204.00	210.00	Dark grey clay. Clasts of grey mudstone. Friable.										
210.00	216.00	Dark grey clay. Clasts of grey mudstone. Friable.										
216.00	222.00	Dark grey clay. Clasts of grey mudstone. Friable.										
222.00	223.60	Dark grey clay. Clasts of grey mudstone. Friable.										
223.60	226.60	Dark grey. Mudstone to claystone. Massive (first core)										
226.60	228.30	Dark grey. Mudstone to claystone. Massive.										
228.30	232.00	Dark grey. Mudstone to claystone. Massive.										

DRILL F	IOLE NU	JMBER: EHND3	LOGSHEET: /	DATE: 29.07.06	LOGGED BY:	R Sp	roule)	P Gre	gory
GRID / F	PROSPE	CT: Site 16	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASE	MEN	IT (m):	273	
COLLA	R COOR	DS: 458454E 7787214N AGD84	COLLAR AZIMUTH:	COLLAR DIP: -90°	TOTAL DEPTH (m):	315			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPECIFIC OXIDES & SULPHII				PHIDES %
						mt	ру	сру	po s	ph mo
232.00	234.00	Dark grey. Mudstone to claystone. Massive.								
234.00	237.10	Dark grey. Mudstone to claystone. Massive.								
237.10	238.60	Dark grey. Mudstone to claystone. Massive.								
238.60	241.60	Dark grey. Mudstone to claystone. Massive.								
241.60	244.40	Dark grey. Mudstone to claystone. Massive.								
244.40	247.50	Dark grey. Mudstone to claystone. Massive.								
247.50	250.60	Dark grey. Mudstone to claystone. Sandstone layers (~10cm) and 30cm breccia layer.								
250.60	253.60	Pale grey. Sandstone-mudstone. More friable.								
253.60	256.60	Pale grey. Sandstone. More friable.								
256.60		Pale grey. Some sandstone layers.								
259.60		Pale grey. Some sandstone layers.								
262.60		Pale grey. Some sandstone layers.								
265.60	268.60	Pale grey. Some sandstone layers. More bleached.								
268.60	271.60	Pale grey. Some sandstone layers. More bleached. Trace pyrite inclusions.								
271.60	272.50	Medium to darl grey mudstone/claystone, sandy near contact with basement.								
272.50		Part clay weathered, chlorite altered GABBRO to MICROGABBRO	clay, chlorite			Tr				
273.75	275.73	Strongly chloritised GABBRO	chlorite, trace haematite			1	Tr			

DRILL H	IOLE NU	IMBER: EHND3	LOGSHEET: /	DATE: 29.07.06	LOGGED BY:	R Sp	roul	е	P Gr	egory	y
GRID / P	ROSPE	CT: Site 16	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASI	EMEN	IT (m):	273		
COLLAF	R COOR	DS: 458454E 7787214N AGD84	COLLAR AZIMUTH:	COLLAR DIP: -90°	TOTAL DEPTH (m):	315				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC C	XIDES	& SU	LPHID)ES %
						mt	ру	сру	ро	sph	mo
275.73		Plagioclase-pyroxene-olivine-magnetite GABBRO with epidote, chlorite veining, local minor pyrite	chlorite, epidote, trace haematiti albite. Calcite-epidote vein 283.81-283.83, calcite veinlets locally	Pyrite veining and segregations		3	Tr				
286.60		Darker more magnetite-rich pyroxene- magnetite-plagioclase GABBRO	calcite, chlorite veinlets		contact 288.22 at 60°	8	Tr				
288.22	288.75	More leucocratic GABBRO phase	chlorite, calcite veinlets			3	Tr				
288.75		Darker melanocratic magnetite-pyroxene - plagioclase GABBRO	chlorite, calcite veinlets		contact at 289.15 at 50°	9					
289.15		Mesocratic magnetite-pyroxene -plagioclase GABBRO	chlorite veins			3					
289.55		Dark melanocratic magnetite-pyroxene - plagioclase GABBRO	chlorite, calcite veins								
298.30		Fine grained, porphyritic feldspar -hornblende- magnetite ANDESITE dyke			contact at 298.40 at 35°	3	Tr				
298.40	300.50	Mesocratic MICRO-GABBRO	chlorite after pyroxene	trace pyrite dissemination		3					
300.50			actinolite, chlorite, epidote veins trace haematitic albite alteration	,	Flow banding 301.20 at 10°, at 303 at 3°, at 304, at 49°	1					
307.00		Mesocratic layered GABBRO with some local layering defined by mafics			layering 308.10 at 60°, contact 310.20 at 70°	6	Tr				
310.20		Mixed zone of dominantly exotic masses of intergrown plagioclase-pyroxene MICROGABBRO and ANDESITE				1					
310.70		Fine grained, locally flow banded leucocratic ANDESITE? with inclusions and masses of medium mesocratic MICROGABBRO, all cut by actinolite veins	actinolite, weak haematitic albite magnetite-calcite veins		Flow banding 312.90 at 80°, 3313.50 at 45°	1					
		END OF HOLE							Ī		

DRILL H	OLE NU	IMBER: EHND4	LOGSHEET: /	DATE: 06.08.06	LOGGED BY:	Р	GREG	ORY			
GRID / P	ROSPE	CT: Site 17	R.L. (m):	WATER DEPTH (m): 18	DEPTH TO BASE	MEN	T (m):		237.3		
COLLAF	COOR	DS: 461217E 7781508N AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90	TOTAL DEPTH (1	n):	302.3				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC			SULPHI		
	2.22					mt	ру	сру	ро	sph	mo
0.00		Medium brown soil									
2.00		Light tan clayey grit and sand									
3.00		Light brown clayey sand									
4.00		Light brown to grey clayey sand and grit									
5.00	6.00										
6.00		Gravel and weathered claystone									
7.00		Weathered khaki to fawn claystone									
8.00		Weathered fawn claystone									
23.00		Wet fawn claystone									
40.00		Grey to fawn claystone									
45.00		Medium to dark grey claystone									
218.00		Light grey clayey fine grained sandstone									
224.30		Dark grey claystone									
230.00	233.00	Fine grained light to medium grey clayey									
		sandstone									
233.00	237.70	Dark grey claystone									
		END PRECOLLAR, START CORE NQ2									
237.70		RHYOLITIC VOLCANIC. The rock has a foliation defined by biotite and biotite sheaves. The biotite is part chloritised. There are local biotite-chlorite veins which largely parallel the foliation. The section 239-239.45 is largely chlorite veined and altered.	Trace weak magnetite alteration. Biotite-chlorite veins		Foliation 240.30 at 19°	Tr	Tr				
245.30		Variable pale pink albitisation of foliated META- RHYOLITIC VOLCANIC overprinted by fine grained magnetite as dissemination and with some veining 249.30, 250.10	Albite, magnetite, trace haematitic albite. Veining of biotite-chlorite, magnetite		Foliation 253.30m at 22°	2	1				
255.60		Foliated quartz-sericite-feldspar-biotite META=RHYOLITIC VOLCANIC with foliation defined by lensoid biotite sheaves. The rock is little altered.	Trace haematite		Foliation 256 at 15°	Tr					

DRILL H	IOLE NU	JMBER: EHND4	LOGSHEET: /	DATE: 06.08.06	LOGGED BY:	Р	GREG	ORY			
GRID / F	PROSPE	CT: Site 17	R.L. (m):	WATER DEPTH (m): 18	DEPTH TO BASE	MEN	T (m):		237.3		
COLLA	R COOR	DS: 461217E 7781508N AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90	TOTAL DEPTH (I	n):	302.3				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OXI	DES &	SULPHI	DES %	
						mt	ру	сру	ро	sph	mo
256.50	261.00	Moderately altered META-RHYOLITIC VOLCANIC with early pale pink albitisation, fine grained magnetite dissemination, chlorite and patchy brick red haematite. Late quartz-chlorite vein cuts all alteration at 256.62	Albite, magnetite, chlorite, epidote, haematitic albite. Veining of chlorite, quartz-chlorite, calcite			3	Tr				
261.00	262.70	Variably albite-magnetite chlorite altered quartz- sericite-biotite META-RHYOLITIC VOLCANIC	Albite, magnetite, chlorite, trace haematitic albite	disseminated pyrite	Foliation at 10°	1	1				
262.70		with foliation due to biotite often obliterated by strong albitisation which is pervasive, but of	Albite, magnetite, chlorite, haematitic albite. Chlorite and carbonate veins, haematitic albite veining	Local pyrite dissemination and blebs	Foliation 269 at 20°, at 274 at 30°						
276.80	287.00	Moderately to locally strongly altered META-RHYOLITIC VOLCANIC with relics of biotite foliated host largely overprinted by pink albite, fine grained magnetite and all cut by chlorite veins, local epidote. There are veins and zones of late haematic albite. Actinolite0carbonate and magnetite-chlorite-actinolite veins cut all alteration. There are veins of strong fine grained magnetite cutting the albitised host 286.80-286.65.	Albite, magnetite, chlorite, biotite, haematitic albite. Veins of chlorite, carbonate, magnetite, actinolite			8	1				

DRILL H	IOLE NU	IMBER: EHND4	LOGSHEET: /	DATE: 06.08.06	LOGGED BY:	Р	GREG	ORY			
GRID / P	PROSPE	CT: Site 17	R.L. (m):	WATER DEPTH (m): 18	DEPTH TO BASE	MEN	T (m):		237.3		
COLLAF	R COOR	DS: 461217E 7781508N AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90	TOTAL DEPTH (r	n):	302.3				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	DES &	SULPHI	DES %	•
						mt	ру	сру	ро	sph	mo
287.00		Moderately to strongly altered META-RHYOLITE with original quartz-sericite-biotite largely overprinted by albite, then brecciated and microfactured and overprinted by fine grained magnetite, chlorite, local haematitic albite and all cut by magnetite-chlorite-actinolite veins and calcite-magnetite veins.	Albite, magnetite, chlorite, actinolite, haematitic albite	Pyrite dissemination locally, trace chalcopyrite	Relict foliation 288 at 15°, at 284 at 3°	8	1	Tr			
296.40		Stronger "red rock" zone in META-RHYOLITE with brick red colour overprinting the earlier albite, magnetite, chlorite, actinolite. This is all cut by veins of actinolite-magnetite, calcite-magnetite. There is no post red rock mineralisation.	Albite, magnetite, chlorite, actinolite, haematitic albite. Veins of magnetite-actinolite, carbonate-magnetite	Trace pyrite		5	Tr				
		END OF HOLE									
			·	·			·				

DRILL H	IOLE NU	IMBER: EHND5	LOGSHEET: /	DATE: 09.08.06	LOGGED BY:	P G	REGO	DRY			
GRID / I	PROSPE	CT: Site 15	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASE	MEN	IT (m): 239	9.30		
COLLA	R COOR	DS:463150E 7781800N AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH (m): 3	36.20)			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE				S & SL	JLPHIC	DES %
						mt	ру	сру		sph	mo
0.00	2.00	Medium grey clay soil and clayey gravel									
2.00		Fawn coloured clays									
7.00	13.00	Fawn clays locally with fine to medium grained									
		gravel bands									
13.00		Sandy clayey gravels									
19.00		Fawn clays									
24.50		Sand with gritty zones									
28.00		Fawn to medium brown weathered claystone (top of Mesozoic?)									
47.00	52.00	Slightly weathered grey brown claystone									
52.00		Fresh medium to dark grey claystone									
239.30		BIOTITE GNEISS with magnetite following the foliation. Siderite veining follows the foliation and is cut by later calcite veins to 3mm. Chlorite forms a local alteration of biotite.	Magnetite, chlorite, biotite? Alteration, veining of siderite, calcite		Foliation at 240.50 is sub-parallel to axis, at 245.50 at 5°, at 248.40 is at 30°	35					
248.54		Mainly BIOTITE GNEISS and SCHIST zone with a few magnetite veins and dissemination, strong chlorite patches after biotite.	Magnetite, chlorite, biotite		Foliation at 249.90 at 25° to axis	6					
250.00		BIOTITE SCHIST with minor magneitte alteration, weak chlorite.	Magneite, chlorite, biotite		Foliation at 10°	2					
251.50		chlorite.	Magnetite, chlorite, biotite segregations and veins			30					
256.65	257.20	Pink, partially albitised host BIOTITE GNEISS cut by biotite veins and with local pyrite±chalcopyrite veining.	Albite, bioite, chlorite alteration, calcite veins	pyrite±chalcopyrite veins and disseminations	Foliation at 257 at 17° to axis	1	1	Tr			

DRILL I	HOLE NU	JMBER: EHND5	LOGSHEET: /	DATE: 09.08.06	LOGGED BY:	P G	REGO	DRY			
GRID / I	PROSPE	CT: Site 15	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASE	EMEN	IT (m): 239	9.30		
COLLA	R COOR	DS:463150E 7781800N AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH (m): 3	36.20)			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC C	XIDES	S & SUI	_PHID	ES %
						mt	ру	сру		sph	mo
257.20	263.33	BIOTITE GNEISS with moderate magnetite alteration veining and dissemination largely along foliation, some biotite veining and patches chlorite, minor relict early albite.	Magnetite, bioitte, chlorite	Pyrite veining and local dissemination, trace chalcopyrite	Foliation 261 at 30°	20	1 Tr				
263.33	264.15	Weak magnetite, chlorite±albite altered BIOTITE GNEISS.	Magnetite, chlorite, weak albite locally	Trace pyrite dissemination	Foliation at 30°	5	Tr				
264.15	274.00	Weak to moderate magnetiet veining and dissemination as replacement of BIOTITE GNEISS and SCHIST zones, local holorite after biotite.	Magnetite, chlorite alteration, calcite veins to 4mm		Foliation at 271.30 at 20°	15					
274.00	276.70	BIOTITE SCHIST with weak magnetite overprint as dissemination and veins.	Magnetite		Foliaiton at 276.70 at 20°	4					
276.70	284.00	Albitised leucocratic BIOTITE GNEISS with destruction of biotite and overprint by fine grained magnetite dissemination, chlorite veins.	Albite,magnetite, chlorite alteration, veining of chlorite, actinolite, carbonate		Foliation at 279.50 at 27°	5					
284.00	295.10	Variably albitised BIOTITE GNEISS and SCHIST with overprinting weak to moderate magnetite, moderate chlorite after biotite all tending to follow cleavage. There is minor brick red haematite overprinting the albite.	weak haematite locally		Foliation at 290 at 17°	5					
295.10		FAULT ZONE with broken and brecciated material, some clays in an albite-magnetite-chlorite altered gneiss. Contacts of fault at ~3-5° to core axis.									
296.45	299.40	Albitised BIOTITE GNEISS with fine grained magnetite overprint, chlorite veining, some albite or K-spar veins, weak haematite overprint giving brick red colour locally.	Albite, magnetite, chlorite, weak haematite locally			6	Tr				

DRILL H	IOLE NU	MBER: EHND5	LOGSHEET: /	DATE: 09.08.06	LOGGED BY:	P G	REGO	DRY			
GRID / I	PROSPE	CT: Site 15	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASE	EME	NT (m): 239	9.30		
COLLA	R COOR	DS: 463150E 7781800N AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH (I	m): 3	36.20)			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	CIFIC C	XIDES	8 & SU	LPHI	DES %
						mt	ру	сру		sph	mo
299.40		Variable albite, magnetite, chlorite, epidote, haematie altered BIOTITE GNEISS.	Albite, magnetite, chlorite, epidote, weak haematite locally, albite or K-spar veins, chlorite and calcite veins		Foliaiton 313 at 12°, at 309 at 13°, core fractures 314.42-315	8	Tr				
315.60		Coarse CALCITE VEIN with coarse chalcopyrite masses		Chalcopyrite -calcite vein				20			
315.68		Moderate to strong magnetite replacing partially albitised BIOTITE GNEISS, some strong chlorite, minor local veinlets, blebs chalcopyite, pyrite	Albite, magnetite, chlorite, epidote, weak haematite alteration, veins of magnetite, chlorite, calcite	Minor to trace veinlets chalcopyrite, pyrite	Foliation at 321 at 25°, at 325 at 37°, at 327 at 22°	14	Tr	Tr			
330.13		Weak magnetite dissemination and veining of partially albitised BIOTITE GNEISS, chlorite and minor haematite overprint.	Magnetite, chlorite, haematite	Trace pyrite, chalcopyrite dissemination	Foliation at 333 at 20°	4	Tr	Tr			
333.60		Weak to moderate albitised BIOTITE GNEISS with moderate magnetite, chlorite, haematite alteration		Trace pyrite, chalcopyrite dissemination		8	Tr	Tr			
		END OF HOLE					I				1

DRILL	HOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	egory	, Q Hi	lls, R	Sproul	е	\neg
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2	12.35			
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	: 402	.7				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	(IDES &	SULPH	IDES 9	%
						mt	ру	сру	ро	sph	mo
0.00	1.00	Medium brown sandy to clayey soil									
1.00	2.00	Medium brown sand and gravel									
2.00		Fawn coloured sand									
5.00	6.00	Fawn coloured sand, gravelly in part									
6.00		Fawn sandy to gritty clay									
11.00	16.00	Khaki coloured weathered clay/claystone (Mesozoic?)									
16.00	41.00	Part weathered fawn to grey claystone									
41.00	43.00	Part weathered grey claystone									
43.00	65.00	Medium grey claystone									
65.00	75.00	Sandy light grey claystone									
75.00	212.35	medium grey claystone									
		END PCD PRECOLLAR, COMMENCE CORING									
		NQ2									
212.35	236.00	Medium to coarse-grained actinolite-magnetite- epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite. Also, contains fragments of intermediately chlorite- actinolite altered, fine grained biotite-quartz PSAMMITE, which is preserved as varying sized fragments (1-10cm) that still preserve the tectonic layering. These fragments of PSAMMITE are enclosed by medium grained alteration mix. Fragments are interpreted to be enclaves in an amphibolite, both of which have then been pervasively overprinted by greenschist alteration. Overprinted by pervasive to abundant veins of calcite-siderite, magnetite, agate, pyrite-calcite, biotite-calcite, pyrrhotite-chlorite, pyrrhotite- chalcopyrite, actinolite, chlorite.	Magnetite, actinolite, epidote, scapolite alteration. Veins of pyrite-calcite 213.80m, coarse biotite-calcite veins 215-215.01m, 216.69-216.78m. Pyrrhotite vein 219.12-219.14m with chalcopyrite. Calcite-biotite vein cut by pyrrhotite-chalcopyrite 219.70-219.77m. At 226.86-226.93m magnetite-pyrrhotite vein with pyrite epidote. 231.18-231.21m a magnetite-pyrrhotite-chalcopyrite vein, 230.16-230.18m biotite-pyrrhotite veins	veins, local pyrite veinlets	Medium to coarse-grained, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss. Pyrrhotite vein 219.20m at 88°, magnetite vein 219.78m at 80°, magnetite-pyrrhotite vein at 222.15m at 228°, at 226.86m pyrrhotite vein at 55°, at 229.41m magnetite-pyrite-pyrrhotite vein at 70°, 231.21m pyrrhotite-chalcopyrite vein at 60°, 234.30m, pyrrhotite-biotite vein at 40°		1	0.50	6		

DRILL I	HOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	GED BY: P Gregory, Q Hills, R Sproule IH TO BASEMENT (m): 212.35				
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT ((m): 21	2.35		
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	402.	7			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &	SULPHIE	
						mt	ру	сру		sph mo
236.00	236.35	Massive magnetite-pyrrhotite-pyrite-trace chalcopyrite zone within the actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite.	Actinolite-magnetite-epidote- biotite-scapolite SKARN alteration. Pervasive to abundant Actinolite-magnetite-epidote- biotite-pyrrhotite-pyrite-trace chalcopyrite veins.	Magnetite-pyrrhotite- pyrite-trace chalcopyrite	Boundaries of massive mineralisation zone are irregular but between 70-90° from the core axis.	30	10	tr	20	
236.35	236.98	Strongly developed, medium to coarse-grained chlorite-actinolite-sericite alteration overprinting fine grained biotite-quartz PSAMMITE. Tectonic layering still apparent.	Strongly developed chlorite- actinolite-sericite alteration. Abundant 1-5mm wide bitoite- chlorite-pyrrhotite-pyrite- magnetite-trace chalcopyrite	Pyrrhotite-pyrite- magnetite-chalcopyrite disseminated and in veins	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in psammitic gneiss. Also, tectonic layering is not consistent throughout. Might indicate rotation as enclaves.	3	5	tr	10	
236.98	237.27	Massive magnetite-pyrrhotite-pyrite-trace chalcopyrite zone within the actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite.	Actinolite-magnetite-epidote- biotite-scapolite SKARN alteration. Pervasive to abundant Actinolite-magnetite-epidote- biotite-pyrrhotite-pyrite-trace chalcopyrite veins.	Magnetite-pyrrhotite- pyrite-trace chalcopyrite	Boundaries of massive mineralisation zone are irregular but between 70-90° from the core axis.	30	10	tr	20	
237.27	239.53	Strongly developed, medium to coarse-grained chlorite-actinolite-sericite alteration overprinting fine grained biotite-quartz PSAMMITE. Tectonic layering still apparent.	Strongly developed chlorite- actinolite-sericite alteration. Abundant 1-5mm wide bitoite- chlorite-pyrrhotite-pyrite- magnetite-trace chalcopyrite	Pyrrhotite-pyrite- magnetite-trace chalcopyrite disseminated and in veins.	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in psammitic gneiss. Also, tectonic layering is not consistent throughout. Might indicate rotation as enclaves.	3	5	tr	10	

DRILL	HOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	gory	, Q Hi	lls, R	Sprou	le	
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT ((m): 2′	12.35			
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	402.	7				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &			
						mt	ру		ро	sph	mo
239.53		Medium to coarse-grained actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite. Also, contains fragments of intermediately chlorite-actinolite altered, fine grained biotite-quartz PSAMMITE, which is preserved as varying sized fragments (1-10cm) that still preserve the tectonic layering. These fragments of PSAMMITE are enclosed by medium grained alteration mix. Fragments are interpreted to be enclaves in an amphibolite, both of which have then been pervasively overprinted by greenschist alteration. Overprinted by pervasive to abundant veins of magnetite-pyrrhotite-pyrite-calcite-actinolite-biotite-chlorite-trace chalcopyrite.	Magnetite, actinolite, epidote, scapolite alteration. 242.12-242.14m: pyrrhotite (60%)-magnetite (40%) vein. 242.56-242.63m: pyrrhotite (90%)-magnetite (9%)-chalcopyrite (1%) vein. 247.31-247.41m: pyrrhotite (50%)-magnetite (40%)-host rock (10%)-chalcopyrite (trace) vein.	Pyrrhotite-trace pyrite- trace chalcopyrite veins mainly in veins with magnetite, local pyrite veinlets	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss.	15	1	0.50	6		
248.04	254.12	Strongly developed, medium to coarse-grained chlorite-actinolite-sericite alteration overprinting fine grained biotite-quartz PSAMMITE. Tectonic layering still apparent.	Strongly developed chlorite-actinolite-sericite alteration. Abundant, 1-100mm wide calcite magnetite-pyrrhotite-pyrite-trace chalcopyrite veins. 249.75-249.86m: magnetite (50%)-calcite (20%) vein. 252.27-252.47m: pyrrhotite (90%)-magnetite (6%)-calcite (3%)-chalcopyrite (1%) vein, orientated 70-90° from core axis. 252.77-252.79m: magnitite (55%)-pyrrhotite (40%)-pyrite (4%)-chalcopyrite (1%) vein, orientated 70-90° from core axis.	magnetite-pyrrhotite- trace pyrite-trace chalcopyrite in veins and disseminated associated with pervasive alteration.	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in psammitic gneiss.	20	tr	tr	3		

DRILL I	HOLE N	UMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	gory	, Q Hi	lls, R	Sprou	le	
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2 ⁻	12.35			
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	402.	7				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &	SULPH	IDES 9	6
						mt	ру	сру	ро	sph	mo
254.12	280.45	Medium to coarse-grained actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite. Also, contains fragments of intermediately chlorite-actinolite altered, fine grained biotite-quartz PSAMMITE, which is preserved as varying sized fragments (1-10cm) that still preserve the tectonic layering. These fragments of PSAMMITE are enclosed by medium grained alteration mix. Fragments are interpreted to be enclaves in an amphibolite, both of which have then been pervasively overprinted by greenschist alteration. Overprinted by pervasive to abundant veins of magnetite-pyrrhotite-pyrite-calcite-actinolite-biotite-chlorite-trace chalcopyrite. This zone includes: a chlorite-biotite shearzone orientated at ~20° from the core axis at 267.46-267.49m.	Magnetite, actinolite, epidote, scapolite, sericite alteration. Abundant, 1-100mm wide calcite magnetite-pyrrhotite-pyrite-trace chalcopyrite veins. 254.28-254.43m: magnetite (60%)-host rocks (25%)-calcite (10%)-pyrite (5%) vein. 254.96-254.97m: magnetite (50%)-calcite (50%) vein. 256.70-256.81m: pyrrhotite (85%)-magnetite (10%)-host rock (5%)-trace chalcopyrite vein, orientated 50-90° from core axis. 257.39-257.42m: magnetite (90%)-host rocks (5%)-pyrrhotite (3%)-pyrite (2%)-trace chalcopyrite vein. 259.09-259.12m: pyrrhotite(95%)-pyrite (3%)-magnetite (2%)-trace chalcopyrite vein. 262.64-262.67m: magnetite (60%)-calcite (25%)-pyrrhotite (45%)-calcite (45%)-calcite (45%)-calcite (45%)-calcite (45%)-calcite (45%)-calcite (15%)-host rocks (3%)-chalcopyrite (2%) vein. 270.16-270.19m: magnetite (15%)-host rocks (3%)-calcite (50%)-trace pyrrhotite (50%)-calcite (50%)-trace pyrrhotite (50%)-calcite (50%)-trace pyrrhotite (50%)-calcite (50%)-trace pyrrhotite (50%)-calcite (50%)-trace pyrrhotite (50%)-calcite (50%)-trace pyrrhotite (50%)-pyrrhotite (5	magnetite, local pyrite veinlets	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss.	20	tr	tr	3		
280.45	281.75	Massive magnetite (75%)-pyrrhotite (20%)-hostrock (5%)-trace chalcopyrite layer.	Magnetite, actinolite, epidote, scapolite, sericite alteration.	Pyrrhotite-trace pyrite- trace chalcopyrite in massive magnetite.	Boundaries of massive magnetite-pyrrhotite zone are irregular but between 20-30° from the core axis.	75	tr	tr	20		

DRILL I	HOLE N	NUMBER: EHND6 LOGSHEET: / DATE: 13.08.06 LOGGED SPECT: Site 5 R.L. (m): WATER DEPTH (m): DEPTH TO			LOGGED BY: P Gre	gory	, Q Hi	lls, R	Sproul	e	
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2 ⁻	12.35			
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m):	402.	7				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &	SULPH	IDES 9	6
						mt	ру	сру	ро	sph	mo
281.75	298.67	Medium to coarse-grained actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite. Overprinted by pervasive to abundant veins of magnetite-pyrite-trace chalcopyrite. This zone includes: a chlorite-trace chalcopyrite. This zone includes: a chlorite-biotite shearzone with calcite infilling, orientated at ~40° from the core axis at 287.29-287.52m.	Magnetite, actinolite, epidote, scapolite, sericite alteration. Abundant, 1-200mm wide magnetite-calcite-pyrrhotite-trace pyrite-trace chalcopyrite veins. These veins are cross-cut by later again mainly calcite veins. 282.12-282.14m: magnetite (60%)-pyrrhotite (40%) vein, orientated ~40° from the core axis. 284.40-284.65m: massive magnetite (80%)-calcite (10%)-host rock (7%)-pyrrhotite (3%)-trace chalcopyrite vein/zone. 286.35-286.39m: pyrrhotite (45%) vein with magnetite (45%) vein with magnetite (45%) selvage+ host rock (3%)-chalcopyrite (2%). Vein is orientated ~35° from the core axis. 288.62-288.76m: magnetite (50%)-pyrrhotite (40%)-host rock (10%) vein, orientated ~25° from the core axis. 289.39-289.50m: magnetite (60%)-pyrrhotite (10%) vein. 289.64-289.67m: magnetite (90%)-pyrrhotite (10%) vein, orientated ~20° from the core axis. 291.25-291.28m: magnetite (95%)-pyrrhotite (55%) vein, orientated ~70° from the core axis. 294.70-294.82m: magnetite (70%)-pyrrhotite (15%)-host rock (15%) vein, orientated ~85° from the core axis. 294.70-294.82m: magnetite (70%)-pyrrhotite (15%)-host rock (15%) vein, orientated ~85° from the core axis. 294.71-296.19m:	trace chalcopyrite veins mainly in veins with magnetite, local pyrite veinlets	Medium to coarse-, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss.	20	tr	tr	3		
298.67	301.39	Magnetite-rich (40%) zone but same host rock (Medium to coarse-grained actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite).	Medium to coarse-grained actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite.	pyrrhotite-trace pyrite- trace chalcopyrite associated with magnetite	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss.	40	tr	tr	10		

DRILL I	IOLE N	UMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	egory	, Q Hi	lls, R S	Sproul	е	
GRID / I	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2	12.35			
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	: 402.	7				
FROM (m)	TO (m)	O (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPECIFIC OXIDES & SULPHIL					
						mt	ру	сру		sph	mo
301.39	304.89	Medium to coarse-grained actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite. Overprinted by pervasive to abundant veins of magnetite-pyrithe-calcite-actinolite-biotite-chlorite-trace chalcopyrite. This zone includes: a chlorite-biotite shearzone with calcite infilling, orientated at ~40° from the core axis at 287.29-287.52m.	Magnetite, actinolite, epidote, scapolite, sericite alteration. Abundant, 1-200mm wide magnetite-calcite-pyrrhotite-trace pyrite-trace chalcopyrite veins. 303.46-303.57m: magnetite (95%)-pyrrhotite (5%) vein, orientated at ~40° from core axis. 303.95-304.14m: magnetite (80%)-pyrrhotite (20%)-trace chalcopyrite vein, orientated at ~40° from core axis.		Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss.	20	tr	tr	3		
304.89	306.26	medium to coarse-grained amphibolite. Also, contains fragments of intermediately chlorite-actinolite altered, fine grained biotite-quartz PSAMMITE, which is preserved as varying sized	actinolite-magnetite-epidote-biotite-scapolite SKARN alteration. Abundant 1-10mm wide, biotite-chlorite-magnetite-pyrrhotite veins, orientated at 10-30° from core axis, but criss-crossing across each other (same dip but not strike).	pyrrhotite-pyrite-trace chalcopyrite associated with magnetite.	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss.	25	tr	tr	2		
306.26	307.40	Strongly chlorite-biotite-sericite-magnetite-altered coarse-grained feldspar-quartz-biotite rock with a granitic texture	chlorite-biotite-sericite-magnetite alteration. Associated with abundant 1-10mm wide, chlorite- biotite-epidote-magnetite- pyrrhotite-pyrite veins.	,,	relict granitic texture, no apparent fabric.	10	5	tr	2		
1				1							Į.

DRILL	HOLE N	UMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	gory	, Q Hi	lls, R	Sproul	le			
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM								
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	402	.7						
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPECIFIC OXIDES & SULPH							
						mt	ру	сру	ро	sph	mo		
307.40	307.80	Medium to coarse-grained actinolite-magnetite- chlorite alteration of a fine grained biotite-quartz PSAMMITE, which is preserved as varying sized fragments (1-10cm) that still preserve the tectonic layering.	Medium to coarse-grained actinolite-magnetite-chlorite alteration. Associated with abundant 1-10mm wide, chlorite-biotite-epidote-magnetite-pyrrhotite-pyrite veins.	pyrrhotite-pyrite	relict tectonic fabric in the psammite.	5	tr		2				
307.80	319.32	Medium to coarse-grained actinolite-magnetite-epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite. Also, contains fragments of intermediately chlorite-actinolite altered, fine grained biotite-quartz PSAMMITE, which is preserved as varying sized fragments (1-10cm) that still preserve the tectonic layering. These fragments of PSAMMITE are enclosed by medium grained alteration mix. Fragments are interpreted to be enclaves in an amphibolite, both of which have then been pervasively overprinted by greenschist alteration. Overprinted by pervasive to abundant veins of magnetite-pyrrhotite-pyrite-calcite-actinolite-biotite-chlorite-trace chalcopyrite.	Magnetite, actinolite, epidote, scapolite, sericite alteration. Abundant, 1-200mm wide magnetite-pyrrhotite-calcite-trace pyrite-trace chalcopyrite veins. 308.30-308.36m: magnetite (90%)-host rock (10%)-trace pyrrhotite & chalcopyrite vein, orientated 70-90° from the core axis. 313.72-313.98m: magnetite (80%)-pyrrhotite (20%)-trace chalcopyrite vein, orientated 35° from the core axis. 314.27-314.30m: pyrrhotite (30%)- calcite (20%) magnetite (20%) vein, orientated 30° from the core axis. 318.92-319.00m: pyrrhotite (40%)-magnetite (40%)-pyrite (10%)-host rock rock (10%) vein, orientated 45° from the core axis.	veinlets	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss.	25	tr	tr	2				
319.32	323.36	Sharp contact into fine grained ultramafic rock with pervasive to strong serpentinite-epidote alteration.		pyrrhotite-trace pyrite-trace chalcopyrite	most veins 30-45° from the core axis.	10	tr	tr	10				

DRILL I	IOLE N	IUMBER: EHND6	LOGSHEET: /	0 3/ / 1											
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT ((m): 2	12.35							
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m):	402.	7								
FROM (m)	TO (m)	(m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	(IDES &	SULPHI	DES %	6				
						mt	ру	сру	ро	sph	mo				
323.36	324.11	Medium to coarse-grained actinolite-magnetite- epidote-biotite-scapolite SKARN alteration of a medium to coarse-grained amphibolite. Overprinted by pervasive to abundant veins of magnetite-pyrrhotite-calcite-actinolite-biotite- chlorite-trace pyrite-trace chalcopyrite.	Magnetite, actinolite, epidote, scapolite, sericite alteration. Abundant, 1-200mm wide magnetite-pyrrhotite-calcite-trace pyrite-trace chalcopyrite veins.	trace chalcopyrite	Medium to coarse- grained, ragged, irregularly orientated alteration destroys foliation in amphibolite gneiss. Most veins 30- 45° from the core axis.	25	tr	tr	5						
324.11	330.70	Sharp contact again. Into fine grained ultramafic rock with pervasive to strong serpentinite-epidote alteration.	pervasive to strong serpentinite- epidote alteration. Prevasive to abundant calcite-magnetite- pyrrhotite-pyrite-chalcopyrite veins. Veins appear to be becoming more calcite-rich towards the end of hole. Maybe to do with calcic ultramafic rock.	pyrrhotite-trace pyrite-trace chalcopyrite	most veins 30-45° from the core axis.	10	tr	tr	10						
330.70	332.50	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Variable proportions of plagioclase:pyroxenes (now epidote and actinolite) from ~70:30 to 40:60. Gradational change.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis. 1mm wide fault with chlorite @ 20° @ 331.37m. 5mm wide fault with calcite @ 45° @ 331.75m	5		tr	2						
				Vein @ 330.78- 330.79m (magnetite)		70									
				Vein @ 330.85- 330.86m (magnetite+chalcopyrite)		60		tr							
				Vein @ 331.17- 331.18m (magnetite+chalcopyrite)		60		tr							
				Disseminated @ 331.24-331.27m (chalcopyrite)				tr							
			1	l		L I			l .						

DRILL I	HOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gro	gory	, Q Hi	lls, R	Sproul	е			
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2	12.35					
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	: 402	.7						
FROM (m)	TO (m)	LITUOLOGICAL & MINERALOGICAL	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPECIFIC OXIDES & SULPHIDES %							
						mt	ру	сру	ро	sph	mo		
332.50	334.60	Gradational contact with previous unit. Pervasively altered. Up to 7mm pseudomorphed crystals. Equigranular texture.	Pervasive K feldspar+magnetite+albite+epido te+pyrrohotite+pyrite+chalcopyrit e alteration.		Foliation @ ~20° from the core axis. 70cm wide rubbly fault with chlorite, calcite, actinolite @ 333.0 - 333.70m.	5		tr	2				
334.60	338.58	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Variable proportions of plagioclase:pyroxenes (now epidote and actinolite) from ~70:30 to 40:60. Gradational change.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~0° from the core axis.	tr			tr				
				Vein @ 335.60-335.61 (magnetite+pyrite)		60	5						
				Vein @ 335.80-335.82 (magnetite+pyrite)		60	5						
				Vein @ 336.60-336.62 (magnetite+pyrite)		60	tr						
				Vein @ 336.85-336.90 (magnetite+pyrrhotite)		20			60				
				Vein @ 337.20-337.30 (magnetite)		90							
				Vein @ 337.78-337.83 (magnetite+pyrrhotite)		90			tr				
				Vein @ 338.27 - 338.35m (magnetite+pyrrhotite)		80			tr				
338.58	339.25	Breccia zones composed of ~15% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~0° from the core axis.	70	tr	tr	15				

DRILL I	HOLE N	UMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	egory	, Q Hi										
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2	12.35									
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	: 402	.7										
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &	SULPH	IIDES 9	6						
						mt	ру	сру	ро	sph	mo						
339.25	340.80	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Variable proportions of plagioclase:pyroxenes (now epidote and actinolite) from ~70:30 to 40:60. Gradational change.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~0° from the core axis.	20		1	10								
				Vein @ 339.40- 339.42m (pyrrhotite+magnetite)		50			30								
				Vein @ 339.75- 339.77m (magnetite)		90											
				Vein @ 339.80- 339.82m (magnetite)		90											
				Vein @ 340.15- 340.16m (magnetite)		90											
				Vein (partly brecciated) @ 340.25-340.30m (magnetite+pyrrhotite)		80			15								
				Vein (partly brecciated) @ 340.61-340.66m (magnetite+pyrrhotite+c halcopyrite)		70		tr	10								
340.80	341.70	Breccia zones composed of ~20% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~0° from the core axis.	70	tr	1	10								

DRILL I	HOLE N	UMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gr	egory	, Q Hi	lls, R	Sproul	е	
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT ((m): 2	12.35	_		
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	: 402.	7				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX		SULPH		
						mt	ру	сру	ро	sph	mo
341.70	350.09	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Variable proportions of plagioclase:pyroxenes (now epidote and actinolite) from ~70:30 to 40:60. Gradational change.	Pervasively actinolite, magnetite epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ -0° from the core axis. 3mm wide fault with calcite @ 75° @ 346.95m. 4mm wide fault with chlorite @ 10° @ 356.5m. Rubbly fault with calcite and chlorite @ 359.12m. Rubbly fault with calcite and chlorite and chlorite @ 359.70m.	1	tr	Ħ	tr		
				Vein @ 343.65- 343.68m (magnetite+pyrrhotite)		90			tr		
				Brecciated vein @ 344.73-344.90m (magnetite+pyrrhotite+calcite+cpy+py)		50	5	tr	10		
				Vein @ 346.01- 346.05m (magnetite+pyrrhotite)		95			tr		
				Brecciated vein @ 346.22-346.29m (magnetite+pyrrhotite+c py+py)		60	tr	tr	40		
				Vein @ 346.84- 346.90m (magnetite)		70					
				Vein @ 349.45- 346.50m (magnetite+calcite+pyrie)		60	tr				
			1	1	i	1		1			

DRILL	HOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gr	egory	, Q Hi	lls, R	Sproul	roule								
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2	12.35		SULPHIDES % po sph m 10								
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	: 402	.7											
FROM (m)	TO (m)	TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &	SULPH	IDES %	6							
						mt	ру	сру		sph	mo							
350.09	350.20	Breccia zones composed of ~40% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.				50		tr	10									
350.20	355.05	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Variable proportions of plagioclase:pyroxenes (now epidote and actinolite) from ~70:30 to 40:60. Gradational change.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration			5	tr	tr	2									
				Vein @ 350.30- 350.32m (~1-2cm wide magnetite+pyrrhotite)		50			tr									
				Vein @ 353.25- 353.28m (~pyrrhotite+magnetite)		60		1	30									
				Vein @ 353.95- 354.28m (~pyrrhotite+magnetite)		50		1	40									
355.05	355.25	Breccia zones composed of <10% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration			80		tr	10									
355.25	359.20	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Variable proportions of plagioclase:pyroxenes (now epidote and actinolite) from ~70:30 to 40:60. Gradational change.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration			5	tr	tr	2									

DRILL I	HOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	egory	, Q Hi	lls, R	Sproule)	
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT ((m): 2 ⁻	12.35			
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	: 402.	7				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &	SULPHI	DES %	
						mt	ру	сру	ро	sph	mo
				Vein @ 357.80- 357.85m (magnetite + pyrrhotite + calcite) Vein @ 358.80- 358.90m (magnetite)		70 80			30		
359.20	250.00	Breccia zones composed of ~55%	Pervasively actinolite, magnetite			40		tr	5		
339.20	339.60	pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	, ,			40		u	5		
359.80	362.60	Massive diorite-gabbro. Up to 8mm pseudomorphed crystals. Equigranular texture.Gradational change.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration			5	tr	tr	2		
362.60	362.70	Breccia zones composed of ~55% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~0° from the core axis.	30	tr	tr	15		
362.70	363.88	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Gradational change.	Pervasively actinolite, magnetite epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~0° from the core axis.	5	tr	tr	2		
363.88	364.25	Breccia zones composed of ~40% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis.	40	tr	tr	20		
					Ì						

DRILL HOLE NUMBER: EHND6 LOGSHEET: / DATE: 13.08.06 LOGGED BY: P Gregory, Q Hills, R Sproule GRID / PROSPECT: Site 5 R.L. (m): WATER DEPTH (m): DEPTH TO BASEMENT (m): 212.35 COLLAR COORDS: 465600E, 7784200N COLLAR AZIMUTH: - COLLAR DIP: 90° TOTAL DEPTH (m): 402.7											
RID / I	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT ((m): 2′	12.35			
OLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	402.	7				_
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &	SULPH	IDES 9	%
						mt	ру	сру	ро	sph	me
364.25		Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Inclusions of psammite @ 364.28m, 364.94m, 365.55m, 365.55m, 365.84m, 367.27m, 369.20-370.60m (~20% clasts), 370.85m, 371.88-374.94m (~60% clasts), 376.26m (mediumgrained, quartz,amphibole). Altered margins. Sharp boundaries. Semiround to elongate and partly disaggregated.	Pervasively actinolite, magnetite epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m.	8	tr	tr	2		
				Vein @ 364.70- 364.78m (magnetite+pyrrhotite+c halcopyrite)		70		tr	10		
				Vein @ 365.95- 365.96m (magnetite+pyrrhotite)		70			10		
				Disseminations @ 368.62-368.92 (magnetite, pyrrhotite)		15			5		
				Disseminations @ 370.30-370.31 (magnetite, pyrrhotite)		10			10		
				Disseminations @ 371.02-371.03 (pyrrhotite)					10		
				Disseminations/vein @ 372.95-373.10 (pyrrhotite)					20		
				Disseminations @ 373.57-373.75 (pyrrhotite)		-			10		
				Disseminations/vein @ 374.12-380.05 (pyrrhotite+magnetite)		5			3		

R COO TO (m)	Breccia zones composed of ~80% pervasively altered clasts. Located in a matrix	R.L. (m): COLLAR AZIMUTH: - ALTERATION & VEINING	WATER DEPTH (m): COLLAR DIP: 90° MINERALISATION	DEPTH TO BASEM TOTAL DEPTH (m): STRUCTURE & TEXTURE	402.			SULPH	IDES %	
TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) Breccia zones composed of ~80% pervasively altered clasts. Located in a matrix	ALTERATION & VEINING		STRUCTURE &			IDES &	SULPH	IDES %	
	DESCRIPTION (+ General Comments) Breccia zones composed of ~80% pervasively altered clasts. Located in a matrix		MINERALISATION		SPEC	IFIC OX	IDES &	SULPH	IDES %	
376.90	pervasively altered clasts. Located in a matrix	Ponyogiyahy actinalita maga-tit-								6
376.90	pervasively altered clasts. Located in a matrix	Donyogiyaly actinalita magazatta			mt	ру	сру	ро	sph	mo
	of magnetite + pyrrhotite (±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ -20° from the core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m.	15		tr	5		
379.70	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Inclusions of psammite @ 376.98-377.38m (single large clasts), 378.99-379.28 (-10% clasts) (medium-grained, quartz,amphibole). Altered margins. Sharp boundaries. Semiround to elongate and partly disaggregated.	alteration		Foliation @ ~20° from the core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m.	2			tr		
										-
380.05				Foliation @ ~20° from the core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m.	50	tr	tr	5		
381.05	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite)		Foliation @ ~20° from the core axis.	2			tr		
		of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. 881.05 Massive diorite-gabbro. Up to 7mm	pervasively altered clasts. Located in a matrix epidote, calcite, trace pyrrhotite of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. 381.05 Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture.	pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. Application Pervasively actinolite, magnetite, pseudomorphed crystals. Equigranular texture.	Breccia zones composed of ~45% pervasively altered clasts. Located in a matrix epidote, calcite, trace pyrrhotite of magnetite + pyrrhotite (± chalcopyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. Brevasively actinolite, magnetite, trace pyrrhotite the core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m. Brevasively actinolite, magnetite, pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite the core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50 and 70° @ 376.50 and 377.96m.	Breccia zones composed of ~45% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. Breccia zones composed of ~45% pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration Breccia zones composed of ~45% pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m. Browsively actinolite, magnetite, pseudomorphed crystals. Equigranular texture.	Breccia zones composed of ~45% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. Pervasively actinolite, magnetite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration Pervasively actinolite, magnetite, that core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m. Pervasively actinolite, magnetite, pseudomorphed crystals. Equigranular texture. Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite Foliation @ ~20° from the core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m.	Breccia zones composed of ~45% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. Breccia zones composed of ~45% pervasively actinolite, magnetite, (± trace pyrrhotite (± trace pyrrhotite (± trace chalcopyrite and pyrite) alteration Breccia zones composed of ~45% pervasively actinolite, magnetite, (± trace pyrrhotite (± trace pyrrhotite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m. Broliation @ ~20° from wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m. Broliation @ ~20° from the core axis / and pyrite	Breccia zones composed of ~45% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. Breccia zones composed of ~45% pervasively actinolite, magnetite, (± trace pyrrhotite (± trace chalcopyrite and pyrite) alteration Breccia zones composed of ~45% pervasively actinolite, magnetite, (± trace pyrrhotite (± trace chalcopyrite and pyrite) wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m. Breccia zones composed of ~45% pervasively actinolite, magnetite, pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite the core axis.	Breccia zones composed of ~45% pervasively actinolite, magnetite, pervasively altered clasts. Located in a matrix epidote, calcite, trace pyrrhotite of magnetite + pyrrhotite (± trace chalcopyrite and pyrite) alteration Breccia zones composed of ~45% pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite the core axis. ~8mm wide fault with chlorite and slickensides @ 20° and 70° @ 376.50m. 1-2mm wide fault with chlorite @ 45° to core axis @ 376.50 and 377.96m. Brevasively actinolite, magnetite, pervasively actinolite, pervasively actinolite, magnetite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively actinolite, pervasively ac

DRILL I	IOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	gory	, Q Hi	lls, R	Sproul	е	
GRID / I	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2	12.35	•		
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)		•				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	IDES &	SULPH	IDES %	%
						mt	ру	сру	ро	sph	mo
381.05	382.23	Breccia zones composed of ~30% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis.	20	tr	tr	15		
382.23	387.40	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Inclusions of psammite @ 382.30m, 383.20-387.70m (-15% clasts) (medium-grained, quartz,amphibole). Altered margins. Sharp boundaries. Semiro	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis.	10			1		
				Vein @ 384.07- 384.09m (magnetite+pyrrhotite)		60			10		
				Brecciated vein @ 386.65-386.73 (pyrrhotite+pyrite+chalc opyrite)		10		2	10		
387.40	389.30	Breccia zones composed of ~60% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis.	30	tr	tr	10		
389.30	392.07	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Inclusion of psammite @ 390.62-391.42m.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis.	2		tr	1		
				Disseminations @ 390.60-390.70m (pyrrhotite) Vein @ 391.34- 391.35m		tr	tr		10		
				(chalcopyrite+magnetite)							

DRILL I	HOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	gory	, Q Hi	lls, R	Sproul	е	
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT	(m): 2	12.35			$\overline{}$
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	402.	7				\neg
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	(IDES &	SULPHI	DES %	6
` ^		· · ·				mt	ру	сру	ро	sph	mo
392.07	392.65	Breccia zones composed of ~78% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis.	20			2		
392.65	394.30	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Inclusions of psammite @ 393.58-393.85m. Semiround to elongate and partly disaggregated.	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis.	2		tr	1		
394.30	396.22	Breccia zones composed of ~30% pervasively altered clasts. Located in a matrix of magnetite + pyrrhotite (± chalcopyrite±pyrite). Clasts are typically moderately mature with semi-rounded shapes and smooth edges. Inclusions of psammite (@394.90-394.97m).	Pervasively actinolite, magnetite, epidote, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration		Foliation @ ~20° from the core axis.	30		tr	2		
396.22	399.72	Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture. Inclusions of psammite @ 396.34-396.65m (-10% clasts), 397.08m, 398.02-399.72m (-40% clasts) (fine-medium-grained, quartz,amphibole). Altered margins. Sharp boundaries. Semiround to elongate and partly disaggregated.	alteration		Foliation @ ~20° from the core axis.	7	tr	tr	1		
				Vein @ 397.55- 397.60m (calcite+magnetite)		10			10		
				Vein @ 398.48- 398.51m (calcite+magnetite)		10			10		
399.72	400.25	Gradational contact with previous unit. Pervasively altered. Up to 7mm pseudomorphed crystals. Equigranular texture. Psammite inclusions.	Pervasive K feldspar+magnetite+albite+epido te+pyrrohotite+pyrite+chalcopyrit e alteration.		Foliation @ ~20° from the core axis.	7	tr	tr	1		

DRILL	HOLE N	IUMBER: EHND6	LOGSHEET: /	DATE: 13.08.06	LOGGED BY: P Gre	egory	, Q Hi	lls, R S	Sprou	le	
GRID /	PROSP	ECT: Site 5	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASEM	ENT ((m): 2	12.35			
COLLA	R COO	RDS: 465600E, 7784200N	COLLAR AZIMUTH: -	COLLAR DIP: 90°	TOTAL DEPTH (m)	: 402.	7				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	(IDES &	SULPH	IIDES '	%
		·				mt	ру	сру	ро	sph	mo
400.25		Massive diorite-gabbro. Up to 7mm pseudomorphed crystals. Equigranular texture.	Pervasively actinolite, magnetite, epidote, chlorite, calcite, trace pyrrhotite (± trace chalcopyrite and pyrite) alteration	Disseminations and veinlets (magnetite + pyrrhotite + chalcopyrite)	Foliation @ ~20° from the core axis. 1mm wide fault with chlorite + calcite @ 45° to core axis @ 400.38m.			tr	5		
401.70	402.55	Gradational contact with previous unit. Pervasively altered. Up to 7mm pseudomorphed crystals. Equigranular texture.	Pervasive K feldspar+magnetite+albite+epido te+pyrrohotite+pyrite alteration.	Disseminations and veinlets (magnetite + pyrrhotite + chalcopyrite)	Foliation @ ~20° from the core axis.	5		tr	5		
402.55	402.70	Sharp contact with an intensely altered microgranite with K-feldspar, epidote, and albite alteration. ~1-3mm crystals. Equigranus. Psammite inclusions.				tr			tr		

End of Hole

IOLE NU	MBER: EHND7	LOGSHEET: /	DATE: 14.08.06	LOGGED BY:	Q Hi	lls				
PROSPEC	CT: Site 13	R.L. (m):	WATER DEPTH (m):	DEPTH TO BA	SEMI	ENT ((m): 18	35.0		
R COORE	OS: 449800mE 7782000mN AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH	l (m):	261.	8			
TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC C	XIDES	& SUL	.PHIDE	ES %
					mt	ру	сру	ро	sph	mo
	coarse-grained amphibolite with irregularly	Albite alteration. Contains minor chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide).	pyrite-trace chalcopyrite	coarse to very coarse-grained, irregularly orientated amphiboles - metamorphic aphibolite recrystallisation texture		1	tr			
	depth) mafic rock (dolerite). Sharp contact on bottom of unit but more diffuse on top. Does not appear to be significantly affected by the albite alteration, therefore the albite alteration probably occurred prior to the intrusion of this mafic rock. Also, some minor chlorite-epidote-pyrite trace	•	pyrite-trace chalcopyrite	Fine to medium- grained, but no foliation apparent.		tr	tr			
	194.42	194.42 Fine to medium-grained (progressively with depth) mafic rock (dolerite). Sharp contact on bottom of unit but more diffuse on top. Does not appear to be significantly affected by the albite alteration, therefore the albite alteration probably occurred prior to the intrusion of this mafic rock.	ROSPECT: Site 13 R COORDS: 449800mE 7782000mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) END PCD PRECOLLAR, COMMENCE CORING NQ2 190.53 Mildly to strongly albite altered, coarse to very coarse-grained amphibolite with irregularly orientated amphiboles (hornblende-actinolite). Albite alteration. Contains minor chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein, orientated 10° from core	ROSPECT: Site 13 R.L. (m): WATER DEPTH (m): COURDS: 449800mE 7782000mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) ROSPECT: Site 13 R.L. (m): WATER DEPTH (m): COLLAR DIP: 90° ALTERATION & VEINING MINERALISATION MINERALISATION ALTERATION & VEINING MINERALISATION ALTERATION & VEINING MINERALISATION Albite alteration. Contains minor chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). Pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). Pyrite-trace chalcopyrite veins (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39-192.41m: c	ROSPECT: Site 13 R.L. (m): WATER DEPTH (m): DEPTH TO BA ROORDS: 449800mE 7782000mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) 185.00 END PCD PRECOLLAR, COMMENCE CORING NQ2 190.53 Mildly to strongly albite altered, coarse to very coarse-grained amphibolite with irregularly orientated amphiboles (hornblende-actinolite). 185.00 End PCD PRECOLLAR, COMMENCE CORING NQ2 Albite alteration. Contains minor chlorite-epidote-pyrite trace chalcopyrite veins (1-3mm wide). 194.42 Fine to medium-grained (progressively with depth) mafic rock (dolerite). Sharp contact on bottom of unit but more diffuse on top. Does not appear to be significantly affected by the albite alteration, therefore the albite alteration probably occurred prior to the intrusion of this mafic rock. Also, some minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein (1-3mm wide). 192.39-192.41m: chlorite-epidote-quartz-pyrite-trac	ROSPECT: Site 13 R.L. (m): WATER DEPTH (m): DEPTH TO BASEMI COORDS: 449800mE 7782000mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) ROSPECT: Site 13 R.L. (m): WATER DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: DEPTH (m): DEPTH TO BASEMI COLLAR AJMUTH: DEPTH (m): DEPTH TO BASEMI COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR DIP: 90° TOTAL DEPTH (m): DEPTH TO BASEMI COLLAR DJASEMI COLLAR	ROSPECT: Site 13 R.L. (m): WATER DEPTH (m): DEPTH TO BASEMENT (R.L. (m): COLLAR DIP: 90° TOTAL DEPTH (m): 261. ROORDS: 449800mE 7782000mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) 185.00 END PCD PRECOLLAR, COMMENCE CORING NQ2 190.53 Mildly to strongly albite altered, coarse to very coarse-grained amphibolite with irregularly orientated amphiboles (hornblende-actinolite). Albite alteration. Contains minor chlorite-epidote-pyrite trace chalcopyrite veins (1-3mm wide). 194.42 Fine to medium-grained (progressively with depth) mafic rock (dolerite). Sharp contact on bottom of unit but more diffuse on top. Does not appear to be significantly affected by the albite alteration probably occurred prior to the intrusion of this mafic rock. Also, some minor chlorite-epidote-pyrite trace RL. (m): RLITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) ALTERATION & VEINING MINERALISATION STRUCTURE & TEXTURE TEXTURE ALTERATION & VEINING MINERALISATION Coarse to very coarse-grained, irregularly orientated amphiboles metamorphic aphibolite recrystallisation texture 194.42 Fine to medium-grained (progressively with depth) mafic rock (dolerite). Sharp contact on bottom of unit but more diffuse on top. Does not appear to be significantly affected by the albite alteration probably occurred prior to the intrusion of this mafic rock. Also, some minor chlorite-epidote-pyrite trace Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite vein	ROSPECT: Site 13 R.L. (m): WATER DEPTH (m): DEPTH TO BASEMENT (m): 18 ROORDS: 449800mE 7782000mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) 185.00 END PCD PRECOLLAR, COMMENCE CORING NQ2 190.53 Mildly to strongly albite altered, coarse to very coarse-grained amphibolite with irregularly orientated amphiboles (hornblende-actinolite). Albite alteration. Contains minor chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 194.42 Fine to medium-grained (progressively with depth) mafic rock (dolerite). Sharp contact on bottom of unit but more diffuse on top. Does not appear to be significantly affected by the albite alteration probably occurred prior to the intrusion of this mafic rock. Also, some minor chlorite-epidote-pyrite trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 192.41m: chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 193.41m: chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 193.41m: chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). 192.39- 193.41m: chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). 192.41m: chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide). 192.41m: chlorite-epidote-pyrite-trace chalcopyrite	ROSPECT: Site 13 R.L. (m): ROSPECT: Site 13 ROSPECT: Site 15 ROSPECT: Site	ROSPECT: Site 13 R.L. (m): ROSPECT: Site 13 RATERATION & VEINING MINERALISATION STRUCTURE & TEXTURE Rot py log sph sph sprite-trace chalcopyrite Roarse-grained, irregularly orientated amphiboles (hornblende-actinolite). Roarse-grained, irregularly orientated amphiboles aphibolite recrystallisation texture ROSPECT: Site 13 RATERATION & VEINING Albite alteration. Contains minor chlorite-epidote-pyrite veins (1-3mm wide). ROSPECT: Site 13 RATERATION & VEINING Albite alteration. Contains minor chlorite-epidote-quartz-pyrite-trace chalcopyrite veins (1-3mm wide). ROSPECT: Collean DIP: 90° ROTAL DEPTH (m): 261.8 RECUTURE & TEXTURE ROSPECT: Collean DIP: 90° ROTAL DEPTH (m): 261.8 RECUTURE & TEXTURE ROSPECT: Collean DIP: 90° ROTAL DEPTH (m): 261.8 RECUTURE & TEXTURE ROSPICATION & VEINING ROSPECT: Collean DIP: 90° ROTAL DEPTH (m): 261.8 RECUTURE & TEXTURE ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION & VEINING ROSPICATION

DRILL H	OLE NU	MBER: EHND7	LOGSHEET: /	DATE: 14.08.06	LOGGED BY:	Q Hi	lls				
GRID / P	ROSPEC	CT: Site 13	R.L. (m):	WATER DEPTH (m):	DEPTH TO BA	SEME	NT (m): 18	35.0		
COLLAF	COORE	OS: 449800mE 7782000mN AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH	l (m):	261.	8			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC O	XIDES	& SUL	PHIDE	S %
						mt	ру	сру	ро	sph	mo
194.42		Mildly to strongly albite altered, coarse to very coarse-grained amphibolite with irregularly orientated amphiboles (hornblende-actinolite).	Albite alteration. Contains minor chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide).	pyrite-trace chalcopyrite	coarse to very coarse-grained, irregularly orientated amphiboles - metamorphic aphibolite recrystallisation texture		1	tr			
216.86		Pervasively albite altered, coarse to very coarse- grained amphibolite with irregularly orientated amphiboles (hornblende-actinolite).	Albite alteration. Contains minor chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide).	pyrite-trace chalcopyrite	coarse to very coarse-grained, irregularly orientated amphiboles - metamorphic aphibolite recrystallisation texture		1	tr			
219.80	230.00	Mildly to strongly albite altered, coarse to very coarse-grained amphibolite with irregularly orientated amphiboles (hornblende-actinolite).	Albite alteration. Contains minor chlorite-epidote-pyrite-trace chalcopyrite veins (1-3mm wide).	pyrite-trace chalcopyrite	coarse to very coarse-grained, irregularly orientated amphiboles - metamorphic aphibolite recrystallisation texture		1	tr			

DRILL H	IOLE NU	MBER: EHND7	LOGSHEET: /	DATE: 14.08.06	LOGGED BY: Q Hills DEPTH TO BASEMENT (m): 185.0						
GRID / F	PROSPE	CT: Site 13	R.L. (m):	WATER DEPTH (m):	DEPTH TO BA	SEMI	ENT (m): 18	35.0		
COLLA	R COORE	DS: 449800mE 7782000mN AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH	l (m):	261.	8			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE			XIDES			
						mt	ру	сру	ро	sph	mo
230.00	238.50	Mild to locally pervasive albite altered, coarse- grained amphibolite with irregularly orientated amphiboles (hornblende).	Albite alteration. Contains minor chlorite-epidote veins (1-3mm wide).		coarse, irregularly orientated amphiboles - metamorphic aphibolite recrystallisation texture						
238.50	256.90	Mildly albite altered, coarse-grained amphibolite with irregularly orientated amphiboles (hornblende).	Albite alteration. Contains minor chlorite-epidote veins (1-3mm wide).		coarse, irregularly orientated amphiboles - metamorphic aphibolite recrystallisation texture						
256.90	261.80	Mildly to intermediately albite altered, coarse- grained amphibolite with irregularly orientated amphiboles (hornblende).	Albite alteration. Contains minor chlorite-epidote veins (1-3mm wide).		coarse, irregularly orientated amphiboles - metamorphic aphibolite recrystallisation texture						

EOH

OLE NO	MBER: EHND8	LOGSHEET: /	DATE: 17.08.06	LOGGED BY: Q Hills & P Gregory DEPTH TO BASEMENT (m): 267.0						
ROSPEC	CT: Site 3	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASE	MEN	IT (m)	: 267.	0		
COORE	OS: 452000mE 7787200mN AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH (I	m): 29	92.1				
TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	(IDES 8	& SULP	HIDES	6 %
					mt	ру	сру	ро	sph	mo
29	Completely oxidised, tan clay and organic fragments									
35.00	Semi-oxidised, tan clay to soft dark grey shale material.									
47.00	Mainly soft, dark grey shale, with some minor quartz-pyrite haematite fragments. Could be falling down hole from the surface, where there are quartz-haematite rocks.									
142.00	Dark grey shales with minor quartz-pyrite haematite fragments.									
160.00	Dark grey shales with minor quartz-pyrite veins (1-3mm).	minor quartz-pyrite veins (1- 3mm).				tr				
251.00	Dark grey shales with no quartz-pyrite veins.									
267.20	Dark grey shales with minor albite altered amphibolite near end of interval.									
	END PCD PRECOLLAR, COMMENCE CORING NQ2									
	29 35.00 47.00 160.00	Completely oxidised, tan clay and organic fragments 35.00 Semi-oxidised, tan clay to soft dark grey shale material. 47.00 Mainly soft, dark grey shale, with some minor quartz-pyrite haematite fragments. Could be falling down hole from the surface, where there are quartz-haematite rocks. 142.00 Dark grey shales with minor quartz-pyrite haematite fragments. 160.00 Dark grey shales with minor quartz-pyrite veins (1-3mm). 251.00 Dark grey shales with no quartz-pyrite veins.	COORDS: 452000mE 7787200mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) Completely oxidised, tan clay and organic fragments 35.00 Semi-oxidised, tan clay to soft dark grey shale material. 47.00 Mainly soft, dark grey shale, with some minor quartz-pyrite haematite fragments. Could be falling down hole from the surface, where there are quartz-haematite rocks. 142.00 Dark grey shales with minor quartz-pyrite haematite fragments. 160.00 Dark grey shales with minor quartz-pyrite veins (1-3mm). 251.00 Dark grey shales with no quartz-pyrite veins.	COORDS: 452000mE 7787200mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) Completely oxidised, tan clay and organic fragments 35.00 Semi-oxidised, tan clay to soft dark grey shale material. 47.00 Mainly soft, dark grey shale, with some minor quartz-pyrite haematite fragments. Could be falling down hole from the surface, where there are quartz-haematite rocks. 142.00 Dark grey shales with minor quartz-pyrite veins (1-3mm). 160.00 Dark grey shales with minor quartz-pyrite veins (1-3mm).	COORDS: 452000mE 7787200mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) Completely oxidised, tan clay and organic 29 fragments 35.00 Semi-oxidised, tan clay to soft dark grey shale material. 47.00 Mainly soft, dark grey shale, with some minor quartz-pyrite haematite fragments. Could be falling down hole from the surface, where there are quartz-haematite rocks. 142.00 Dark grey shales with minor quartz-pyrite veins (1-3mm). 160.00 Dark grey shales with minor quartz-pyrite veins (1-3mm). 251.00 Dark grey shales with no quartz-pyrite veins.	COORDS: 452000mE 7787200mN AGD84 TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) Completely oxidised, tan clay and organic 29 fragments 35.00 Semi-oxidised, tan clay to soft dark grey shale material. 47.00 Mainly soft, dark grey shale, with some minor quartz-pyrite haematite fragments. Could be falling down hole from the surface, where there are quartz-haematite rocks. 142.00 Dark grey shales with minor quartz-pyrite veins (1-3mm). 160.00 Dark grey shales with minor quartz-pyrite veins (1-3mm). 267.20 Dark grey shales with minor albite altered amphibolite near end of interval.	COORDS : 452000mE 7787200mN AGD84 COLLAR AZIMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): 292.1	COORDS : 452000mE 7787200mN AGD84 COLLAR AZIMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): 292.1	COORDS : 452000mE 7787200mN AGD84 COLLAR AZIMUTH: COLLAR DIP: 90° TOTAL DEPTH (m): 292.1	TO (m) LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments) Completely oxidised, tan clay and organic 29 fragments 35.00 Semi-oxidised, tan clay to soft dark grey shale material. 47.00 Mainly soft, dark grey shale, with some minor quartz-pyrite haematite fragments. Could be falling down hole from the surface, where there are quartz-haematite rodges. All the material. 142.00 Dark grey shales with minor quartz-pyrite veins (1-3mm). 251.00 Dark grey shales with mor quartz-pyrite veins. 1-3mm). 267.20 Dark grey shales with minor albite altered amphibolite near end of interval.

DRILL H	OLE NUI	MBER: EHND8	LOGSHEET: /	DATE: 17.08.06	LOGGED BY:	Q Hi	lls & F	Greç	jory		
GRID / P	ROSPEC	CT: Site 3	R.L. (m):	WATER DEPTH (m):	DEPTH TO BASE	MEN	T (m):	267.0	0		
COLLAR	COORD	S: 452000mE 7787200mN AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH (m): 29	92.1				
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC OX	(IDES 8	SULP	HIDES	5 %
						mt	ру	сру	ро	sph	mo
267.20		Medium grained plagioclase-pyroxene-olivine-magnetite GABBRO with partial alteration of mafics to actinolite and chlorite. The rock is massive, unfoliated, shows chlorite alteration along fractures and joints, local carbonate and epidote veins. Pyrite is locally finely disseminated with trace chalcopyrite. Trace chalcopyrite also occurs in feldspar-quartz-carbonate vein at 280.60.	chlorite, carbonate, feldspar veining.	chalcopyrite dissemination locally. Chalcopyrite occurs in quartz-carbonate- feldspar vein at 280.60.	epidote-chlorite- carbonate vein at 270.90 at 30°, carbonate-epidote veins at 267.65 at 35° and 50°, feldspar-quartz- carbonate-epidote vein at 280.60 at 14°	5	0.5	Tr			
		END OF HOLE									

DRILL I	HOLE N	UMBER: EHND9A	LOGSHEET: /	DATE: 31.08.06	LOGGED BY:	P Gr	egor	у			
GRID /	PROSPE	ECT: Site 9	R.L. (m):	WATER DEPTH (m):	DEPTH TO BAS	SEME	NT (ı	m): 25	59.5		
COLLA	R COOF	RDS: 472446E 7797815N AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH	(m):	262.0)			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE				S & SUL		
0.00	2.00	Medium brown soil				mt	ру	сру	ро	spn	mo
3.00		Fawn coloured clays									
6.00		Medium grained fawn to khaki sand									\vdash
9.00		Fine gravelly sand to pebbly sand									\vdash
12.00		Coarse sandy gravel									\vdash
16.00		Medium brown sandy clay									\vdash
18.00		Coarse gravelly sand									\vdash
21.00		Grey medium grained clayey gravel									\vdash
27.00		Grey coarse clayey sandy gravel									\vdash
30.00		Very coarse grey clayey gravel									\vdash
00.00		Change blade bit to PCD bit									
		Base of Quaternary									
39.00		Mesozoic grey claystone/shale									
00.00		Commence coring due to hole blowout									
191.00		Medium grey SHALE									
		SHALE with carbonate tepee structures									
220.10		Medium grey SHALE									
240.00		SHALE with SANDSTONE intervals									
243.00		Grey SHALE									
244.50	244.95	Medium to coarse grained quartzose									
		SANDSTONE with abundant green glauconite									
		grains disseminated throughout. The unit									
		becomes lithic with fine grained quartzose lithics									
		towards end of interval, i.e uphole facing.									
244.95		Mix of grey to green shaly, glauconitic			Bedding at 70-]
		SANDSTONE (lithic in part) with fine grained silty			80° to core axis						i
		to shaly bands to 0.05m									
248.00	248.78	Dark green to green grey glauconitic, lithic									
2.3.30		SANDSTONE.									
248.78		Mainly lithic, glauconitic SANDSTONE with local									
		siltstone bands.									
248.40		Coarse dark green grey glauconitic SANDSTONE									
249.68		Lithic SANDSTONE with disseminated glauconition									
		grains, siltstone bands.									

DRILL	HOLE N	UMBER: EHND9A	LOGSHEET: /	DATE: 31.08.06	LOGGED BY:	P Gr	egor	у			
GRID /	PROSPE	ECT: Site 9	R.L. (m):	WATER DEPTH (m):	DEPTH TO BAS	SEME	NT (ı	m): 2	59.5		
COLLA	R COOF	RDS: 472446E 7797815N AGD84	COLLAR AZIMUTH:	COLLAR DIP: 90°	TOTAL DEPTH	(m):	262.0)			
FROM (m)	TO (m)	LITHOLOGICAL & MINERALOGICAL DESCRIPTION (+ General Comments)	ALTERATION & VEINING	MINERALISATION	STRUCTURE & TEXTURE	SPEC	IFIC C	XIDES	& SUI	PHIDE	ES %
						mt	ру	сру	ро	sph	mo
249.95		Dark green grey, medium grained glauconitic SANDSTONE.									
250.30		Mix of fine to medium grained glauconitic SANDSTONE with local siltstone bands and lithics.			Bedding 253.30 qt 87°, at 254.60 at 80°						
256.10		Coarse dark green to grey, glauconitic SANDSTONE									
256.85		Mix of glauconitic SANDSTONE and SILTSTONE/SHALE bands.									
257.45		Coarse glauconitic, quartzose SANDSTONE									
257.80		Mainly dark grey SHALE with SANDSTONE bands, local lithics.			Bedding at 80°						
259.00		CONGLOMERATE with shale, quartzite, sandstone and volcanic fragments, the latter towards the end of he interval.									
259.50		Highly fractured, fine grained, leucocratic porphyritic hornblende DACITE, probably a dyke in Proterozoic basement. There is local flow banding near 262m at 10° to core axis.	Alteration of hornblende to chlorite								
		END OF HOLE									

APPENDIX 2

Analytical Results

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	Al	As	Ва	Ве	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND3	EHND3 -001	278	279	1	0.002	<0.5	9.83	8	250	0.6	2
EHND3	EHND3 -002	287	288	1	0.003	<0.5	5.9	<5	180	<0.5	4
EHND3	EHND3 -003	289	290	1	0.002	<0.5	7.91	5	230	<0.5	2
EHND3	EHND3 -004	290	291	1	0.001	<0.5	7.94	<5	200	<0.5	<2
EHND3	EHND3 -005	299	300	1	0.001	<0.5	9.25	8	430	0.6	2
EHND3	EHND3 -006	301	302	1	0.002	<0.5	8.34	7	310	1.2	<2
EHND3	EHND3 -007	309	310	1	0.001	<0.5	8.76	5	610	0.5	<2
EHND3	EHND3 -008	312	313	1	0.001	<0.5	7.51	<5	280	0.7	<2
EHND3	EHND3 -009	294	295	1	0.001	<0.5	6.31	<5	130	<0.5	6
EHND4	EHND4 - 001	246	247	1	0.005	<0.5	8.95	7	50	1.5	<2
EHND4	EHND4 - 002	247	248	1	0.002	<0.5	8.42	<5	80	1.7	<2
EHND4	EHND4 - 003	257	258	1	0.006	<0.5	8.64	<5	100	1.6	<2
EHND4	EHND4 - 004	258	259	1	0.001	<0.5	9.25	<5	40	1.5	3
EHND4	EHND4 - 005	259	260	1	0.001	<0.5	8.66	<5	120	1.6	<2
EHND4	EHND4 - 006	260	261	1	<0.001	<0.5	9.11	5	120	1.3	2
EHND4	EHND4 - 007	261	262	1	0.007	<0.5	9.06	<5	70	1.8	<2
EHND4	EHND4 - 008	265	266	1	0.001	<0.5	8.85	5	100	1.6	<2
EHND4	EHND4 - 009	266	267	1	0.006	<0.5	9.05	<5	100	1.9	2
EHND4	EHND4 - 010	267	268	1	0.003	<0.5	8.66	9	150	1.4	<2
EHND4	EHND4 - 011	276	277	1	0.002	<0.5	8.67	8	100	1.6	4
EHND4	EHND4 - 012	277	278	1	0.002	<0.5	8.33	8	90	1.2	2
EHND4	EHND4 - 013	278	279	1	0.002	<0.5	8.43	<5	250	1.3	<2
EHND4	EHND4 - 014	279	280	1	0.002	<0.5	9.24	5	200	1.4	<2
EHND4	EHND4 - 015	282	283	1	< 0.001	<0.5	8.46	<5	20	1.2	<2
EHND4	EHND4 - 016	283	284	1	0.001	<0.5	8.78	5	100	1.7	<2
EHND4	EHND4 - 017	288	289	1	0.002	<0.5	7.62	<5	20	1.7	2
EHND4	EHND4 - 018	289	290	1	0.001	<0.5	7.27	<5	10	1.8	<2
EHND4	EHND4 - 019	290	291	1	<0.001	<0.5	7.6	<5	100	2	4
EHND4	EHND4 - 020	291	292	1	< 0.001	<0.5	7.74	<5	340	1.5	<2
EHND4	EHND4 - 021	292	293	1	0.004	<0.5	6.62	<5	30	1.6	<2
EHND4	EHND4 - 022	293	294	1	<0.001	<0.5	6.64	<5	130	1.4	<2
EHND4	EHND4 - 023	294	295	1	0.001	<0.5	5.83	<5	1110	1.2	<2
EHND4	EHND4 - 024	295	296	1	<0.001	<0.5	5.92	<5	90	2	<2

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	ΑI	As	Ва	Be	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND4	EHND4 - 025	296	297	1	<0.001	<0.5	6.8	<5	440	1.6	<2
EHND4	EHND4 - 026	297	298	1	0.002	<0.5	6.17	<5	340	1.4	<2
EHND4	EHND4 - 027	298	299	1	0.001	<0.5	6.84	<5	20	0.9	<2
EHND4	EHND4 - 028	299	300	1	< 0.001	<0.5	7.87	<5	80	1.1	<2
EHND4	EHND4 - 029	300	301	1	0.001	<0.5	8.64	<5	100	1.8	<2
EHND4	EHND4 - 030	301	302.3	1.3	0.001	<0.5	8.64	<5	190	1.4	<2
EHND5	EHND5 - 001	240	241	1	0.009	<0.5	0.24	46	30	<0.5	<2
EHND5	EHND5 - 002	241	242	1	0.006	<0.5	0.21	40	30	<0.5	<2
EHND5	EHND5 - 003	242	243	1	0.007	<0.5	0.26	35	30	<0.5	<2
EHND5	EHND5 - 004	243	244	1	0.007	<0.5	0.21	26	30	<0.5	<2
EHND5	EHND5 - 005	244	245	1	0.009	<0.5	0.25	35	30	0.5	<2
EHND5	EHND5 - 006	248	249	1	0.005	<0.5	2.47	22	90	2	<2
EHND5	EHND5 - 007	249	250	1	0.004	<0.5	5.02	6	90	3.3	<2
EHND5	EHND5 - 008	250	251	1	0.004	<0.5	4.95	11	210	2.9	<2
EHND5	EHND5 - 009	251	252	1	0.005	<0.5	2.62	37	130	1.8	<2
EHND5	EHND5 - 010	252	253	1	0.002	<0.5	0.59	63	30	<0.5	<2
EHND5	EHND5 - 011	253	254	1	0.003	<0.5	1.3	36	50	0.5	<2
EHND5	EHND5 - 012	254	255	1	0.003	<0.5	3.26	25	200	2.2	<2
EHND5	EHND5 - 013	255	256	1	0.005	<0.5	3.97	26	330	2.8	<2
EHND5	EHND5 - 014	256	257	1	0.01	<0.5	3.92	19	190	2.4	<2
EHND5	EHND5 - 015	257	258	1	0.005	<0.5	3.93	20	160	2.8	<2
EHND5	EHND5 - 016	264	265	1	0.003	<0.5	5.53	10	270	2.8	<2
EHND5	EHND5 - 017	265	266	1	< 0.001	<0.5	7.66	5	220	3.2	2
EHND5	EHND5 - 018	266	267	1	0.001	<0.5	6.76	6	330	3.4	<2
EHND5	EHND5 - 019	267	268	1	0.001	<0.5	6.74	<5	350	4.7	<2
EHND5	EHND5 - 020	268	269	1	0.002	<0.5	7.24	<5	190	4.1	<2
EHND5	EHND5 - 021	269	270	1	0.002	<0.5	6.72	<5	210	3.6	<2
EHND5	EHND5 - 022	274	275	1	0.002	<0.5	6.08	<5	120	2.5	<2
EHND5	EHND5 - 023	275	276	1	0.002	<0.5	5.8	8	80	2.1	<2
EHND5	EHND5 - 024	278	279	1	<0.001	<0.5	7.32	<5	90	3.2	<2
EHND5	EHND5 - 025	279	280	1	0.001	<0.5	7.49	<5	60	2.6	<2
EHND5	EHND5 - 026	280	281	1	<0.001	<0.5	7.43	<5	100	2	<2
EHND5	EHND5 - 027	281	282	1	<0.001	<0.5	7.35	<5	50	2.1	<2

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	Al	As	Ва	Be	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND5	EHND5 - 028	282	283	1	< 0.001	<0.5	7.21	<5	70	1.8	<2
EHND5	EHND5 - 029	283	284	1	0.001	<0.5	6.69	8	160	2.2	<2
EHND5	EHND5 - 030	284	285	1	0.001	<0.5	4.75	21	230	1.9	<2
EHND5	EHND5 - 031	290	291	1	< 0.001	<0.5	6.97	11	340	2.9	<2
EHND5	EHND5 - 032	291	292	1	< 0.001	<0.5	6.15	17	220	1.9	<2
EHND5	EHND5 - 033	292	293	1	< 0.001	<0.5	5.61	9	140	2.2	<2
EHND5	EHND5 - 034	293	294	1	< 0.001	<0.5	5.91	9	190	2	<2
EHND5	EHND5 - 035	294	295	1	0.001	<0.5	6.63	7	160	2.6	<2
EHND5	EHND5 - 036	297	298	1	0.001	<0.5	6.74	7	150	1.4	<2
EHND5	EHND5 - 037	298	299	1	0.002	<0.5	7.19	<5	70	1.6	<2
EHND5	EHND5 - 038	299	300	1	0.001	<0.5	7.03	18	90	1.6	<2
EHND5	EHND5 - 039	300	301	1	< 0.001	<0.5	6.99	6	190	1.9	<2
EHND5	EHND5 - 040	301	302	1	< 0.001	<0.5	6.03	5	400	1.8	<2
EHND5	EHND5 - 041	311	312	1	0.001	<0.5	6.14	13	450	2.4	<2
EHND5	EHND5 - 042	312	313	1	< 0.001	<0.5	6.61	7	630	1.9	<2
EHND5	EHND5 - 043	313	314	1	0.001	<0.5	6.02	6	710	1.9	3
EHND5	EHND5 - 044	314	315	1	< 0.001	<0.5	6.12	5	870	2.3	<2
EHND5	EHND5 - 045	315	316	1	0.02	<0.5	3.05	<5	170	1.4	<2
EHND5	EHND5 - 046	316	317	1	0.001	<0.5	1.82	19	140	0.9	<2
EHND5	EHND5 - 047	317	318	1	0.002	<0.5	2.69	19	180	1.4	<2
EHND5	EHND5 - 048	318	319	1	0.013	<0.5	2.2	25	660	1	<2
EHND5	EHND5 - 049	319	320	1	0.002	<0.5	2.81	11	190	1.4	<2
EHND5	EHND5 - 050	320	321	1	0.01	<0.5	3.44	11	230	1.9	<2
EHND5	EHND5 - 051	321	322	1	0.002	<0.5	3.65	9	250	2.1	<2
EHND5	EHND5 - 052	322	323	1	< 0.001	0.5	3.44	15	180	2.3	2
EHND5	EHND5 - 053	323	324	1	0.002	<0.5	3.44	16	190	2.1	4
EHND5	EHND5 - 054	324	325	1	0.001	0.5	3.8	12	230	2	4
EHND5	EHND5 - 055	325	326	1	<0.001	<0.5	3.41	10	200	1.6	<2
EHND5	EHND5 - 056	326	327	1	0.001	<0.5	5.68	6	220	3.1	2
EHND5	EHND5 - 057	327	328	1	<0.001	<0.5	5.05	12	380	2	6
EHND5	EHND5 - 058	328	329	1	0.001	<0.5	4.52	14	370	2.1	5
EHND5	EHND5 - 059	329	330	1	0.002	<0.5	4.91	14	430	2.6	5
EHND5	EHND5 - 060	330	331	1	<0.001	<0.5	6.09	<5	260	1.6	5

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	ΑI	As	Ва	Be	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND5	EHND5 - 061	331	332	1	<0.001	<0.5	5.96	7	260	1.5	3
EHND5	EHND5 - 062	332	333	1	< 0.001	<0.5	6.41	13	360	2.4	<2
EHND5	EHND5 - 063	333	334	1	< 0.001	<0.5	5.83	12	410	3.3	3
EHND5	EHND5 - 064	334	335	1	< 0.001	<0.5	5.5	10	220	3.7	3
EHND5	EHND5 - 065	335	336.2	1.2	0.008	<0.5	5.42	7	300	1.5	2
EHND6	EHND6 - 001	212.35	213	0.65	0.307	<0.5	1.51	<5	90	<0.5	<2
EHND6	EHND6 - 002	213	214	1	0.025	<0.5	2.08	<5	160	<0.5	2
EHND6	EHND6 - 003	214	215	1	0.011	<0.5	2.53	<5	90	<0.5	<2
EHND6	EHND6 - 004	215	216	1	0.013	<0.5	2.33	<5	80	<0.5	<2
EHND6	EHND6 - 005	216	217	1	0.018	<0.5	2.15	<5	80	<0.5	<2
EHND6	EHND6 - 006	217	218	1	0.014	<0.5	2.36	<5	100	<0.5	<2
EHND6	EHND6 - 007	218	219	1	0.002	<0.5	2.4	<5	70	<0.5	5
EHND6	EHND6 - 008	219	220	1	0.091	<0.5	2.18	<5	70	<0.5	<2
EHND6	EHND6 - 009	220	221	1	0.007	<0.5	2.14	<5	60	<0.5	7
EHND6	EHND6 - 010	221	222	1	0.005	<0.5	2.21	<5	60	<0.5	<2
EHND6	EHND6 - 011	222	223	1	0.003	<0.5	1.96	<5	40	<0.5	2
EHND6	EHND6 - 012	223	224	1	0.003	<0.5	2.32	<5	30	0.6	<2
EHND6	EHND6 - 013	224	225	1	0.007	<0.5	2.25	<5	60	<0.5	3
EHND6	EHND6 - 014	225	226	1	0.007	<0.5	2.23	<5	90	<0.5	6
EHND6	EHND6 - 015	226	227	1	0.003	<0.5	2.12	5	90	<0.5	3
EHND6	EHND6 - 016	227	228	1	0.001	<0.5	3.91	<5	120	<0.5	2
EHND6	EHND6 - 017	228	229	1	0.004	<0.5	3.53	<5	90	<0.5	<2
EHND6	EHND6 - 018	229	230	1	0.011	<0.5	3.12	<5	40	0.9	6
EHND6	EHND6 - 019	230	231	1	0.001	<0.5	3.26	<5	100	<0.5	<2
EHND6	EHND6 - 020	231	232	1	0.003	<0.5	3.57	<5	120	<0.5	<2
EHND6	EHND6 - 021	232	233	1	0.01	<0.5	4.14	<5	130	<0.5	5
EHND6	EHND6 - 022	233	234	1	0.002	<0.5	5.19	<5	220	<0.5	2
EHND6	EHND6 - 023	234	235	1	0.004	<0.5	5.18	<5	220	0.6	<2
EHND6	EHND6 - 024	235	236	1	0.002	<0.5	4.9	<5	150	0.9	4
EHND6	EHND6 - 025	236	237	1	0.012	<0.5	4.27	<5	160	0.8	<2
EHND6	EHND6 - 026	237	238	1	0.005	<0.5	2.2	<5	90	0.9	<2
EHND6	EHND6 - 027	238	239	1	0.006	<0.5	4.1	<5	200	0.7	6
EHND6	EHND6 - 028	239	240	1	0.003	<0.5	4.88	<5	260	0.5	<2

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	ΑI	As	Ва	Ве	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND6	EHND6 - 029	240	241	1	0.011	<0.5	3.42	<5	130	0.5	3
EHND6	EHND6 - 030	241	242	1	< 0.001	<0.5	3.99	<5	160	0.5	4
EHND6	EHND6 - 031	242	243	1	0.003	<0.5	3.27	<5	90	0.5	<2
EHND6	EHND6 - 032	243	244	1	0.001	<0.5	4.8	<5	170	0.6	4
EHND6	EHND6 - 033	244	245	1	0.003	<0.5	4.36	<5	140	<0.5	3
EHND6	EHND6 - 034	245	246	1	0.003	<0.5	3.86	<5	110	<0.5	<2
EHND6	EHND6 - 035	246	247	1	0.003	<0.5	4.57	<5	130	<0.5	<2
EHND6	EHND6 - 036	247	248	1	0.001	<0.5	4.01	<5	170	<0.5	<2
EHND6	EHND6 - 037	248	249	1	0.002	<0.5	5.46	<5	220	0.6	<2
EHND6	EHND6 - 038	249	250	1	0.002	<0.5	4.74	<5	170	0.5	<2
EHND6	EHND6 - 039	250	251	1	<0.001	<0.5	3.91	5	140	<0.5	<2
EHND6	EHND6 - 040	251	252	1	0.001	<0.5	4.72	<5	190	<0.5	<2
EHND6	EHND6 - 041	252	253	1	0.005	<0.5	3.89	<5	120	<0.5	<2
EHND6	EHND6 - 042	253	254	1	0.005	<0.5	5.23	<5	190	0.6	<2
EHND6	EHND6 - 043	254	255	1	0.001	<0.5	4.02	<5	100	<0.5	<2
EHND6	EHND6 - 044	255	256	1	<0.001	<0.5	4.68	<5	100	0.6	<2
EHND6	EHND6 - 045	256	257	1	0.001	<0.5	3.91	<5	70	0.7	<2
EHND6	EHND6 - 046	257	258	1	0.002	<0.5	4.77	<5	170	<0.5	2
EHND6	EHND6 - 047	258	259	1	0.002	<0.5	4.73	<5	190	0.5	4
EHND6	EHND6 - 048	259	260	1	0.003	<0.5	4.6	<5	130	0.6	<2
EHND6	EHND6 - 049	260	261	1	0.001	<0.5	4.43	<5	170	<0.5	2
EHND6	EHND6 - 050	261	262	1	0.003	<0.5	4.2	<5	150	<0.5	6
EHND6	EHND6 - 051	262	263	1	0.001	<0.5	4.29	<5	150	<0.5	<2
EHND6	EHND6 - 052	263	264	1	0.004	<0.5	4.89	<5	160	<0.5	<2
EHND6	EHND6 - 053	264	265	1	0.002	<0.5	3.36	<5	110	<0.5	2
EHND6	EHND6 - 054	265	266	1	0.001	<0.5	2.59	<5	80	<0.5	3
EHND6	EHND6 - 055	266	267	1	0.002	<0.5	2.33	<5	60	<0.5	<2
EHND6	EHND6 - 056	267	268	1	< 0.001	<0.5	2.74	<5	70	<0.5	7
EHND6	EHND6 - 057	268	269	1	0.003	<0.5	2.5	<5	80	<0.5	<2
EHND6	EHND6 - 058	269	270	1	0.011	<0.5	2.87	<5	90	<0.5	<2
EHND6	EHND6 - 059	270	271	1	0.001	<0.5	2.11	<5	60	<0.5	<2
EHND6	EHND6 - 060	271	272	1	0.001	<0.5	2.34	<5	70	<0.5	<2
EHND6	EHND6 - 061	272	273	1	<0.001	<0.5	2.87	<5	80	<0.5	8

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	ΑI	As	Ва	Be	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND6	EHND6 - 062	273	274	1	0.003	<0.5	2.03	<5	60	<0.5	2
EHND6	EHND6 - 063	274	275	1	< 0.001	<0.5	1.82	<5	50	<0.5	4
EHND6	EHND6 - 064	275	276	1	0.001	<0.5	1.9	<5	60	<0.5	<2
EHND6	EHND6 - 065	276	277	1	< 0.001	<0.5	1.85	<5	50	<0.5	<2
EHND6	EHND6 - 066	277	278	1	0.004	<0.5	1.73	<5	40	<0.5	3
EHND6	EHND6 - 067	278	279	1	< 0.001	<0.5	2.61	<5	70	<0.5	2
EHND6	EHND6 - 068	279	280	1	< 0.001	<0.5	3.15	<5	80	<0.5	4
EHND6	EHND6 - 069	280	281	1	0.002	<0.5	0.83	<5	20	<0.5	<2
EHND6	EHND6 - 070	281	282	1	0.004	<0.5	1.23	<5	20	<0.5	<2
EHND6	EHND6 - 071	282	283	1	0.001	<0.5	2.51	<5	70	<0.5	9
EHND6	EHND6 - 072	283	284	1	< 0.001	<0.5	2.09	<5	50	<0.5	2
EHND6	EHND6 - 073	284	285	1	0.001	<0.5	2.17	<5	60	<0.5	2
EHND6	EHND6 - 074	285	286	1	< 0.001	<0.5	2.43	<5	70	<0.5	2
EHND6	EHND6 - 075	286	287	1	0.002	<0.5	2.34	<5	90	<0.5	<2
EHND6	EHND6 - 076	287	288	1	0.001	<0.5	1.29	<5	30	<0.5	3
EHND6	EHND6 - 077	288	289	1	< 0.001	<0.5	1.06	<5	20	<0.5	7
EHND6	EHND6 - 078	289	290	1	0.001	<0.5	1.14	<5	30	<0.5	<2
EHND6	EHND6 - 079	290	291	1	0.003	<0.5	2.13	<5	60	<0.5	4
EHND6	EHND6 - 080	291	292	1	0.001	<0.5	2.35	<5	70	<0.5	<2
EHND6	EHND6 - 081	292	293	1	0.002	<0.5	2.3	<5	60	<0.5	2
EHND6	EHND6 - 082	293	294	1	< 0.001	<0.5	2.15	<5	60	<0.5	2
EHND6	EHND6 - 083	294	295	1	< 0.001	<0.5	2.12	<5	60	<0.5	<2
EHND6	EHND6 - 084	295	296	1	0.002	<0.5	3.01	<5	80	<0.5	2
EHND6	EHND6 - 085	296	297	1	0.005	<0.5	2.02	<5	60	<0.5	2
EHND6	EHND6 - 086	297	298	1	0.006	<0.5	1.89	<5	40	<0.5	<2
EHND6	EHND6 - 087	298	299	1	0.005	<0.5	1.53	<5	40	<0.5	<2
EHND6	EHND6 - 088	299	300	1	0.002	<0.5	1.74	<5	30	<0.5	3
EHND6	EHND6 - 089	300	301	1	0.003	<0.5	2.71	<5	70	<0.5	<2
EHND6	EHND6 - 090	301	302	1	0.004	<0.5	1.74	<5	40	<0.5	<2
EHND6	EHND6 - 091	302	303	1	0.004	<0.5	2.62	<5	70	<0.5	3
EHND6	EHND6 - 092	303	304	1	0.001	<0.5	1.99	<5	100	<0.5	3
EHND6	EHND6 - 093	304	305	1	0.004	<0.5	1.78	<5	70	<0.5	2
EHND6	EHND6 - 094	305	306	1	0.001	<0.5	2.95	<5	90	<0.5	4

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	ΑI	As	Ва	Be	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND6	EHND6 - 095	306	307	1	0.002	<0.5	5.95	<5	140	2.1	<2
EHND6	EHND6 - 096	307	308	1	0.002	<0.5	7.03	5	130	3.1	<2
EHND6	EHND6 - 097	308	309	1	0.002	<0.5	3.32	<5	80	1.2	4
EHND6	EHND6 - 098	309	310	1	0.002	<0.5	3.05	<5	170	<0.5	<2
EHND6	EHND6 - 099	310	311	1	0.001	<0.5	2.16	<5	60	<0.5	2
EHND6	EHND6 - 100	311	312	1	0.002	<0.5	2.74	<5	80	<0.5	<2
EHND6	EHND6 - 101	312	313	1	0.001	<0.5	2.45	<5	70	<0.5	<2
EHND6	EHND6 - 102	313	314	1	0.003	<0.5	1.86	<5	50	<0.5	<2
EHND6	EHND6 - 103	314	315	1	0.001	<0.5	2.47	<5	60	<0.5	<2
EHND6	EHND6 - 104	315	316	1	0.001	<0.5	2.57	<5	90	<0.5	<2
EHND6	EHND6 - 105	316	317	1	0.001	<0.5	3	<5	110	<0.5	5
EHND6	EHND6 - 106	317	318	1	0.002	<0.5	2.82	<5	80	<0.5	2
EHND6	EHND6 - 107	318	319	1	0.002	<0.5	3.16	<5	90	0.5	<2
EHND6	EHND6 - 108	319	320	1	0.001	<0.5	7.12	<5	230	0.5	<2
EHND6	EHND6 - 109	320	321	1	0.001	<0.5	6.77	<5	140	2.5	<2
EHND6	EHND6 - 110	321	322	1	0.001	<0.5	7.11	<5	200	2.3	<2
EHND6	EHND6 - 111	322	323	1	0.001	<0.5	6.27	<5	160	1.3	<2
EHND6	EHND6 - 112	323	324	1	0.001	<0.5	4.68	<5	110	0.5	3
EHND6	EHND6 - 113	324	325	1	< 0.001	<0.5	6.5	<5	150	0.7	<2
EHND6	EHND6 - 114	325	326	1	0.002	<0.5	6.1	<5	150	0.5	<2
EHND6	EHND6 - 115	326	327	1	< 0.001	<0.5	7.02	<5	190	0.6	<2
EHND6	EHND6 - 116	327	328	1	0.001	<0.5	4.67	<5	130	0.5	<2
EHND6	EHND6 - 117	328	329	1	0.001	<0.5	6.86	<5	170	0.6	2
EHND6	EHND6 - 118	329	330	1	0.001	<0.5	7	<5	320	1.7	<2
EHND6	EHND6 - 119	330	330.7	0.7	< 0.001	<0.5	6.54	<5	160	0.8	<2
EHND6	EHND6 - 120	330.7	332	1.3	< 0.001	<0.5	6.71	7	170	0.8	<2
EHND6	EHND6 - 121	332	333	1	0.001	<0.5	6.57	<5	90	0.8	<2
EHND6	EHND6 - 122	333	334	1	0.001	<0.5	6.72	<5	80	0.9	<2
EHND6	EHND6 - 123	334	335	1	<0.001	<0.5	7.72	6	150	0.7	<2
EHND6	EHND6 - 124	335	336	1	<0.001	<0.5	7.35	8	180	0.6	<2
EHND6	EHND6 - 125	336	337	1	0.003	<0.5	6.62	<5	160	0.7	3
EHND6	EHND6 - 126	337	338	1	<0.001	<0.5	6.17	6	150	0.7	2
EHND6	EHND6 - 127	338	339	1	<0.001	<0.5	4.1	7	120	0.5	2

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	Al	As	Ва	Be	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND6	EHND6 - 128	339	340	1	0.001	<0.5	4.56	<5	130	0.6	<2
EHND6	EHND6 - 129	340	341	1	< 0.001	<0.5	4.42	<5	110	0.7	<2
EHND6	EHND6 - 130	341	342	1	< 0.001	<0.5	0.78	8	10	<0.5	2
EHND6	EHND6 - 131	342	343	1	< 0.001	<0.5	2.7	<5	100	<0.5	2
EHND6	EHND6 - 132	343	344	1	0.002	<0.5	2.54	<5	80	<0.5	<2
EHND6	EHND6 - 133	344	345	1	< 0.001	<0.5	2.26	<5	70	<0.5	<2
EHND6	EHND6 - 134	345	346	1	< 0.001	<0.5	3.6	<5	80	1	2
EHND6	EHND6 - 135	346	347	1	< 0.001	<0.5	2.11	<5	30	1.1	<2
EHND6	EHND6 - 136	347	348	1	< 0.001	<0.5	2.5	<5	40	1.5	<2
EHND6	EHND6 - 137	348	349	1	< 0.001	<0.5	2.47	<5	70	0.5	<2
EHND6	EHND6 - 138	349	350	1	< 0.001	<0.5	2.33	<5	70	<0.5	<2
EHND6	EHND6 - 139	350	351	1	0.001	<0.5	1.92	<5	50	<0.5	<2
EHND6	EHND6 - 140	351	352	1	< 0.001	<0.5	2.97	<5	90	<0.5	2
EHND6	EHND6 - 141	352	353	1	< 0.001	<0.5	2.62	<5	80	<0.5	<2
EHND6	EHND6 - 142	353	354	1	< 0.001	<0.5	2.52	<5	70	<0.5	<2
EHND6	EHND6 - 143	354	355	1	0.01	<0.5	2.91	<5	90	<0.5	<2
EHND6	EHND6 - 144	355	356	1	0.002	<0.5	1.83	<5	60	<0.5	<2
EHND6	EHND6 - 145	356	357	1							
EHND6	EHND6 - 146	357	358	1	< 0.001	<0.5	2.24	<5	100	<0.5	<2
EHND6	EHND6 - 147	358	359	1	< 0.001	<0.5	2.54	7	120	<0.5	<2
EHND6	EHND6 - 148	359	360	1	< 0.001	<0.5	2.09	7	80	<0.5	3
EHND6	EHND6 - 149	360	361	1	<0.001	<0.5	2.3	<5	60	<0.5	<2
EHND6	EHND6 - 150	361	362	1	< 0.001	<0.5	2.43	<5	70	<0.5	<2
EHND6	EHND6 - 151	362	363	1	< 0.001	<0.5	2.08	<5	120	<0.5	<2
EHND6	EHND6 - 152	363	364	1	0.002	<0.5	2.03	7	70	<0.5	<2
EHND6	EHND6 - 153	364	365	1	0.002	<0.5	2.05	<5	110	<0.5	<2
EHND6	EHND6 - 154	365	366	1	< 0.001	<0.5	2.81	<5	90	<0.5	2
EHND6	EHND6 - 155	366	367	1	<0.001	<0.5	2.57	<5	90	<0.5	<2
EHND6	EHND6 - 156	367	368	1	<0.001	<0.5	2.81	<5	100	<0.5	<2
EHND6	EHND6 - 157	368	369	1	<0.001	<0.5	2.58	6	70	0.5	<2
EHND6	EHND6 - 158	369	370	1	<0.001	<0.5	3.43	<5	110	<0.5	<2
EHND6	EHND6 - 159	370	371	1	0.002	<0.5	2.71	<5	100	<0.5	<2
EHND6	EHND6 - 160	371	372	1	< 0.001	<0.5	3.18	<5	100	<0.5	<2

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	Al	As	Ва	Ве	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND6	EHND6 - 161	372	373	1	<0.001	<0.5	3.72	<5	90	<0.5	<2
EHND6	EHND6 - 162	373	374	1	0.001	<0.5	3.05	<5	100	<0.5	<2
EHND6	EHND6 - 163	374	375	1	0.001	<0.5	3.93	<5	120	<0.5	<2
EHND6	EHND6 - 164	375	376	1	< 0.001	<0.5	2.95	<5	60	0.5	<2
EHND6	EHND6 - 165	376	377	1	0.001	<0.5	2.39	<5	60	<0.5	<2
EHND6	EHND6 - 166	377	378	1	< 0.001	<0.5	4.25	<5	140	<0.5	<2
EHND6	EHND6 - 167	378	379	1	< 0.001	<0.5	3.54	6	110	<0.5	<2
EHND6	EHND6 - 168	379	380	1	0.001	<0.5	3.16	7	90	<0.5	<2
EHND6	EHND6 - 169	380	381	1	< 0.001	<0.5	2.96	<5	90	<0.5	3
EHND6	EHND6 - 170	381	382	1	0.002	<0.5	1.28	7	30	<0.5	<2
EHND6	EHND6 - 171	382	383	1	0.001	<0.5	2.69	<5	90	<0.5	<2
EHND6	EHND6 - 172	383	384	1	0.001	<0.5	3.46	<5	100	<0.5	<2
EHND6	EHND6 - 173	384	385	1	<0.001	<0.5	3.07	<5	90	<0.5	<2
EHND6	EHND6 - 174	385	386	1	<0.001	<0.5	4.96	<5	170	<0.5	<2
EHND6	EHND6 - 175	386	387	1	<0.001	<0.5	6.07	<5	260	0.6	<2
EHND6	EHND6 - 176	387	388	1	0.001	<0.5	3.88	5	110	0.6	<2
EHND6	EHND6 - 177	388	389	1	0.006	<0.5	2.02	<5	50	<0.5	<2
EHND6	EHND6 - 178	389	390	1	< 0.001	<0.5	3.72	<5	90	0.6	<2
EHND6	EHND6 - 179	390	391	1	0.001	<0.5	6.1	<5	150	0.5	<2
EHND6	EHND6 - 180	391	392	1	0.001	<0.5	4.87	7	130	0.5	<2
EHND6	EHND6 - 181	392	393	1	<0.001	<0.5	3.38	<5	80	0.8	<2
EHND6	EHND6 - 182	393	394	1	<0.001	<0.5	4.74	<5	160	<0.5	<2
EHND6	EHND6 - 183	394	395	1	<0.001	<0.5	3.03	<5	80	0.6	<2
EHND6	EHND6 - 184	395	396	1	0.001	<0.5	1.43	<5	30	0.6	<2
EHND6	EHND6 - 185	396	397	1	<0.001	<0.5	4.55	<5	150	<0.5	<2
EHND6	EHND6 - 186	397	398	1	0.001	<0.5	5.06	5	160	0.5	<2
EHND6	EHND6 - 187	398	399	1	0.001	<0.5	4.27	<5	150	0.6	<2
EHND6	EHND6 - 188	399	400	1	0.002	<0.5	4.09	<5	100	0.8	<2
EHND6	EHND6 - 189	400	401	1	0.001	<0.5	5.85	<5	160	0.8	<2
EHND6	EHND6 - 190	401	402	1	0.001	<0.5	7.81	5	250	0.8	<2
EHND6	EHND6 - 191	402	402.7	0.7	< 0.001	<0.5	5.95	<5	230	1.2	<2
EHND7	EHND7 - 001	186	187	1	< 0.001	<0.5	7.4	<5	130	<0.5	<2
EHND7	EHND7 - 002	192	193	1	0.001	<0.5	7.11	<5	50	<0.5	<2

Page 10 of 40

					PGM-MS23	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
					Au	Ag	Al	As	Ва	Be	Bi
Hole No	Sample Number	From	То	Interval	ppm	ppm	%	ppm	ppm	ppm	ppm
EHND7	EHND7 - 003	234	235	1	0.001	<0.5	8.74	<5	100	<0.5	<2
EHND7	EHND7 - 004	242	243	1	< 0.001	<0.5	9.44	<5	60	<0.5	<2
EHND7	EHND7 - 005	245	246	1	0.001	<0.5	8.9	<5	50	<0.5	<2
EHND8	EHND8 - 001	269	270	1	0.003	< 0.5	7.66	<5	190	0.7	2
EHND8	EHND8 - 002	275	276	1	0.01	< 0.5	7.14	<5	110	0.5	<2
EHND8	EHND8 - 003	280	281	1	0.011	< 0.5	7.3	<5	100	0.5	<2
EHND8	EHND8 - 004	286	287	1	0.006	<0.5	8.96	6	120	0.6	<2
EHND8	EHND8 - 005	289	290	1	0.005	<0.5	7.47	<5	90	0.5	<2

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s		ME-ICP61s	ME-ICP61s
		Ca	Cd	Со	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND3	EHND3 -001	3.6	<0.5	45	9	509	7.09	1.55	1.1	1290	1
EHND3	EHND3 -002	5.44	<0.5	80	10	92	19	0.66	3.84	1570	<1
EHND3	EHND3 -003	4.95	<0.5	69	8	95	13.2	0.84	3.37	1125	<1
EHND3	EHND3 -004	4.45	<0.5	82	5	113	15.65	0.88	3.96	1275	<1
EHND3	EHND3 -005	4.78	<0.5	25	1	47	7.24	0.59	1.58	714	<1
EHND3	EHND3 -006	7.96	<0.5	26	62	32	5.4	0.72	3.78	752	<1
EHND3	EHND3 -007	4.37	<0.5	19	1	39	7.51	0.6	1.29	659	<1
EHND3	EHND3 -008	8.14	<0.5	18	62	23	5.93	0.91	2.46	881	<1
EHND3	EHND3 -009	4.79	<0.5	83	12	73	16.85	0.57	4.53	1370	<1
EHND4	EHND4 - 001	3.11	<0.5	14	6	28	5.27	0.29	0.82	350	<1
EHND4	EHND4 - 002	3	<0.5	10	7	12	3.04	0.43	1.13	316	<1
EHND4	EHND4 - 003	3.11	<0.5	26	8	78	4.15	0.86	1.43	374	<1
EHND4	EHND4 - 004	2.78	<0.5	11	11	21	2.46	0.29	1.07	314	<1
EHND4	EHND4 - 005	3.44	<0.5	10	8	23	3.44	0.66	1.27	315	<1
EHND4	EHND4 - 006	3.79	<0.5	9	8	11	2.75	0.81	1.33	349	<1
EHND4	EHND4 - 007	3.98	<0.5	15	9	62	4.09	0.66	1.71	346	<1
EHND4	EHND4 - 008	4.35	<0.5	17	9	15	3.66	0.59	1.32	383	<1
EHND4	EHND4 - 009	3.35	<0.5	20	9	49	4.42	0.58	1.61	366	<1
EHND4	EHND4 - 010	3.45	<0.5	15	9	37	4.07	0.9	1.5	349	<1
EHND4	EHND4 - 011	3.28	<0.5	18	7	44	3.36	0.75	1.54	314	1
EHND4	EHND4 - 012	2.77	<0.5	14	7	32	3.44	0.87	1.24	250	1
EHND4	EHND4 - 013	3.86	<0.5	24	7	28	4.9	1.59	1.99	379	1
EHND4	EHND4 - 014	2.88	<0.5	20	12	28	5.17	1.2	2.07	326	<1
EHND4	EHND4 - 015	3.22	<0.5	8	1	34	2.97	0.3	0.28	202	1
EHND4	EHND4 - 016	3.46	<0.5	20	8	30	4.46	0.99	1.62	302	1
EHND4	EHND4 - 017	3.19	<0.5	22	53	38	9.11	0.45	1.57	347	1
EHND4	EHND4 - 018	4.84	<0.5	20	53	37	9.72	0.26	1.7	324	1
EHND4	EHND4 - 019	3.95	<0.5	18	52	20	7.35	0.63	2.76	331	1
EHND4	EHND4 - 020	3.98	<0.5	25	34	18	7.84	1.85	3.08	357	1
EHND4	EHND4 - 021	3.45	<0.5	28	50	94	10.4	0.22	2.38	411	1
EHND4	EHND4 - 022	4.32	<0.5	21	34	15	9.68	0.9	2.4	402	1
EHND4	EHND4 - 023	5.92	<0.5	33	38	4	11.4	2.54	3.73	495	1
EHND4	EHND4 - 024	3.73	<0.5	22	46	32	13.65	0.45	2.87	397	2

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s		ME-ICP61s	ME-ICP61s
		Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND4	EHND4 - 025	5.95	<0.5	17	30	11	5.28	2.12	2.7	406	1
EHND4	EHND4 - 026	6.28	<0.5	30	34	61	6.35	1.56	3.95	478	1
EHND4	EHND4 - 027	6.13	<0.5	17	36	6	6.45	0.4	2.45	497	1
EHND4	EHND4 - 028	4.67	<0.5	16	41	2	6.54	1.39	1.58	338	1
EHND4	EHND4 - 029	6.32	<0.5	10	44	3	3.73	2.36	1.62	398	1
EHND4	EHND4 - 030	5.45	<0.5	12	48	11	4.61	2.83	1.7	373	2
EHND5	EHND5 - 001	3.6	<0.5	90	5	149	>50	0.01	0.36	1865	1
EHND5	EHND5 - 002	4.55	0.6	79	7	123	>50	<0.01	0.24	1740	<1
EHND5	EHND5 - 003	4.1	1.1	56	9	103	>50	<0.01	0.18	927	1
EHND5	EHND5 - 004	4.07	<0.5	64	7	116	>50	<0.01	0.15	1170	1
EHND5	EHND5 - 005	6.18	0.7	66	10	94	49.9	<0.01	0.16	939	1
EHND5	EHND5 - 006	7.17	0.5	56	6	98	28.3	1.01	1.7	808	1
EHND5	EHND5 - 007	4.05	<0.5	54	1	138	16.1	0.98	3.55	683	<1
EHND5	EHND5 - 008	3.19	0.6	50	15	115	25.7	1.98	2.39	494	<1
EHND5	EHND5 - 009	4.18	<0.5	51	13	128	37.4	1.35	1.66	654	1
EHND5	EHND5 - 010	6.24	0.6	47	9	54	43.6	0.22	0.49	732	1
EHND5	EHND5 - 011	5.55	<0.5	52	5	88	42.4	0.44	0.94	768	1
EHND5	EHND5 - 012	4.12	<0.5	51	11	73	32.3	2.19	2	636	<1
EHND5	EHND5 - 013	5.04	0.6	46	5	110	27.2	3.66	2.2	948	1
EHND5	EHND5 - 014	4.97	<0.5	40	5	56	21.7	1.57	1.61	808	<1
EHND5	EHND5 - 015	4.71	<0.5	40	13	143	30.6	1.47	1.78	686	1
EHND5	EHND5 - 016	2.72	0.5	36	15	38	24.9	1.86	1.77	517	3
EHND5	EHND5 - 017	1.85	<0.5	26	12	18	14.25	1.92	1.77	320	1
EHND5	EHND5 - 018	2.19	<0.5	34	15	21	17.9	2.49	2.16	335	1
EHND5	EHND5 - 019	1.88	<0.5	32	15	20	18.2	2.59	2.17	368	1
EHND5	EHND5 - 020	1.44	<0.5	42	7	31	14.2	1.7	1.74	294	1
EHND5	EHND5 - 021	1.55	<0.5	54	6	30	17.8	1.92	2.08	276	<1
EHND5	EHND5 - 022	1.16	<0.5	40	5	19	23.6	1.27	1.82	249	<1
EHND5	EHND5 - 023	1.22	<0.5	35	5	16	23.1	0.89	1.37	225	<1
EHND5	EHND5 - 024	0.81	<0.5	18	1	20	7.89	0.78	1.08	165	<1
EHND5	EHND5 - 025	0.75	<0.5	17	1	18	7.59	0.62	1.08	103	<1
EHND5	EHND5 - 026	0.78	<0.5	11	2	38	7.56	0.42	0.62	91	<1
EHND5	EHND5 - 027	1.15	<0.5	18	1	42	8.46	0.39	1.17	138	<1

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s		ME-ICP61s	ME-ICP61s
		Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND5	EHND5 - 028	1.39	<0.5	21	1	11	11.75	0.71	1.3	257	<1
EHND5	EHND5 - 029	2.22	<0.5	27	2	59	15.65	1.36	1.82	462	<1
EHND5	EHND5 - 030	4.04	<0.5	34	2	53	21.5	1.95	2.41	494	<1
EHND5	EHND5 - 031	3.48	<0.5	32	34	3	16.35	2.27	3.91	559	<1
EHND5	EHND5 - 032	3.62	<0.5	32	28	4	19.95	1.72	2.76	487	<1
EHND5	EHND5 - 033	3.17	<0.5	28	20	3	18.55	1.69	3.1	451	<1
EHND5	EHND5 - 034	3.13	<0.5	23	25	8	20.2	2.13	2.4	428	<1
EHND5	EHND5 - 035	1.73	<0.5	25	31	8	19.05	2.18	2.73	281	2
EHND5	EHND5 - 036	2.14	<0.5	24	29	6	21.1	1.54	2.71	389	<1
EHND5	EHND5 - 037	2.68	<0.5	15	7	30	13.55	0.87	1.68	380	1
EHND5	EHND5 - 038	2.89	<0.5	26	27	48	18.65	1.38	1.87	288	<1
EHND5	EHND5 - 039	2.11	<0.5	27	31	7	20.1	1.94	2.34	330	<1
EHND5	EHND5 - 040	2.54	<0.5	27	27	86	20.5	2.37	2.45	480	<1
EHND5	EHND5 - 041	4.08	<0.5	29	14	16	17.05	2	2.48	586	<1
EHND5	EHND5 - 042	2.04	<0.5	24	21	7	18.6	2.6	1.86	503	<1
EHND5	EHND5 - 043	2.93	<0.5	28	19	19	18.95	2.13	2.21	594	<1
EHND5	EHND5 - 044	2.83	<0.5	33	14	46	17.3	2.8	1.75	494	<1
EHND5	EHND5 - 045	5.15	<0.5	23	11	2000	32.9	1.22	1.26	941	1
EHND5	EHND5 - 046	3.69	<0.5	35	2	32	40.6	1.12	1	427	1
EHND5	EHND5 - 047	3.78	<0.5	52	2	92	38.3	1.68	1.43	426	1
EHND5	EHND5 - 048	3.39	<0.5	59	2	363	40.4	1.29	1.35	421	1
EHND5	EHND5 - 049	3.48	<0.5	39	3	112	36.7	1.58	1.61	430	1
EHND5	EHND5 - 050	2.96	<0.5	49	7	227	34.9	1.85	1.5	448	1
EHND5	EHND5 - 051	3.17	<0.5	44	2	78	32.9	1.95	1.91	571	1
EHND5	EHND5 - 052	4.25	<0.5	45	8	12	32.1	1.43	1.84	619	2
EHND5	EHND5 - 053	4.12	<0.5	44	8	39	31	1.71	1.93	642	2
EHND5	EHND5 - 054	2.85	<0.5	36	4	63	26.9	1.58	1.93	454	1
EHND5	EHND5 - 055	2.43	<0.5	40	3	32	31.9	1.78	1.68	482	3
EHND5	EHND5 - 056	2.53	<0.5	28	23	13	20	1.84	1.71	370	1
EHND5	EHND5 - 057	3.72	<0.5	37	8	20	22	1.54	1.82	531	1
EHND5	EHND5 - 058	3.52	<0.5	41	11	28	23.4	1.54	1.83	560	1
EHND5	EHND5 - 059	3.48	<0.5	42	7	26	23.1	1.68	1.9	551	<1
EHND5	EHND5 - 060	3.78	<0.5	27	5	4	13.7	1.37	1.76	480	1

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND5	EHND5 - 061	3.4	<0.5	30	18	5	18.3	1.46	1.76	483	<1
EHND5	EHND5 - 062	4.33	<0.5	30	22	6	15.15	2.07	1.99	450	1
EHND5	EHND5 - 063	4.16	<0.5	29	26	4	18.75	2.02	2.09	420	<1
EHND5	EHND5 - 064	3.13	<0.5	28	29	2	22.2	1.87	2	381	<1
EHND5	EHND5 - 065	3.29	<0.5	25	27	151	23.5	1.8	1.58	384	<1
EHND6	EHND6 - 001	7.36	<0.5	88	18	456	22.9	0.25	2.22	3350	<1
EHND6	EHND6 - 002	6.28	<0.5	67	21	161	20.9	0.29	3.96	2260	<1
EHND6	EHND6 - 003	7.15	<0.5	61	21	157	19.6	0.24	4.41	2400	<1
EHND6	EHND6 - 004	6.99	<0.5	53	20	189	20.7	0.24	4.6	2180	<1
EHND6	EHND6 - 005	7.47	<0.5	62	21	204	21.6	0.21	4.65	2570	<1
EHND6	EHND6 - 006	6.59	<0.5	65	24	89	19.9	0.22	4.77	2970	<1
EHND6	EHND6 - 007	6.64	<0.5	52	23	126	19.45	0.18	4.58	2750	<1
EHND6	EHND6 - 008	6.74	<0.5	54	21	84	20.1	0.17	4.44	2630	<1
EHND6	EHND6 - 009	8.23	<0.5	58	21	120	20.4	0.2	4.75	2580	<1
EHND6	EHND6 - 010	8.19	<0.5	57	23	127	20.3	0.21	4.64	2580	<1
EHND6	EHND6 - 011	9.22	<0.5	55	21	190	21	0.17	4.73	2320	<1
EHND6	EHND6 - 012	11.9	<0.5	45	18	146	15.35	0.18	4.78	1820	<1
EHND6	EHND6 - 013	8.09	<0.5	44	22	114	20.6	0.12	4.37	2510	<1
EHND6	EHND6 - 014	6.96	<0.5	53	21	110	20.9	0.2	4.17	3210	1
EHND6	EHND6 - 015	7.04	<0.5	101	19	269	23.3	0.22	3.87	3040	<1
EHND6	EHND6 - 016	5.61	<0.5	47	13	93	20.2	0.22	3.56	2680	<1
EHND6	EHND6 - 017	6.42	<0.5	71	13	356	20.8	0.23	3.5	2180	<1
EHND6	EHND6 - 018	8.32	<0.5	48	14	447	19.55	0.22	3.54	1465	<1
EHND6	EHND6 - 019	5.59	<0.5	61	12	133	22.2	0.28	4.01	2870	<1
EHND6	EHND6 - 020	5.82	<0.5	86	12	585	21	0.35	3.8	2610	<1
EHND6	EHND6 - 021	5.63	<0.5	51	12	104	20.2	0.36	3.78	2390	<1
EHND6	EHND6 - 022	4.98	<0.5	54	12	55	19.2	0.52	3.83	2580	<1
EHND6	EHND6 - 023	6.59	<0.5	57	12	173	13.95	0.42	3.75	1640	<1
EHND6	EHND6 - 024	8.43	<0.5	96	16	356	12.4	0.33	3.41	1405	<1
EHND6	EHND6 - 025	5.65	<0.5	130	33	668	19.4	0.34	2.91	1370	1
EHND6	EHND6 - 026	10.5	<0.5	155	34	1210	21.2	0.2	3.26	1455	<1
EHND6	EHND6 - 027	5.92	<0.5	41	33	190	13.6	0.31	4.51	2280	<1
EHND6	EHND6 - 028	5.65	<0.5	49	42	225	13.5	0.48	4.35	1990	<1

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Ca	Cd	Со	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND6	EHND6 - 029	6.86	<0.5	69	37	346	16.1	0.24	4.4	2310	1
EHND6	EHND6 - 030	6.24	<0.5	50	20	118	17.55	0.29	4	2670	<1
EHND6	EHND6 - 031	6.48	0.5	153	21	550	19.45	0.25	3.3	1655	1
EHND6	EHND6 - 032	6.11	<0.5	88	12	332	19	0.44	2.81	1605	<1
EHND6	EHND6 - 033	5.79	<0.5	55	15	146	19.9	0.42	3.7	2690	1
EHND6	EHND6 - 034	5.87	<0.5	47	14	110	18.5	0.26	3.39	2360	<1
EHND6	EHND6 - 035	5.86	<0.5	41	16	98	17.35	0.28	3.03	1945	<1
EHND6	EHND6 - 036	5.28	<0.5	140	16	330	22	0.24	2.7	1245	<1
EHND6	EHND6 - 037	5.86	<0.5	68	49	180	11.5	0.74	3.81	952	1
EHND6	EHND6 - 038	5.7	<0.5	43	39	186	11.9	0.43	4.11	1535	<1
EHND6	EHND6 - 039	5.74	<0.5	37	19	118	15.85	0.39	4.02	2370	<1
EHND6	EHND6 - 040	5.31	<0.5	43	18	96	16.2	0.56	3.66	2390	<1
EHND6	EHND6 - 041	4.65	<0.5	390	31	1720	23.7	0.43	2.67	886	1
EHND6	EHND6 - 042	5.31	<0.5	140	62	595	11.5	0.61	4.39	1025	<1
EHND6	EHND6 - 043	5.3	<0.5	45	20	283	19.05	0.22	3.08	1650	<1
EHND6	EHND6 - 044	6.58	<0.5	43	13	181	14.7	0.25	3.52	1735	<1
EHND6	EHND6 - 045	6.2	<0.5	182	14	341	18.35	0.25	2.67	1280	<1
EHND6	EHND6 - 046	5.08	<0.5	40	16	119	17.2	0.42	3.25	2030	<1
EHND6	EHND6 - 047	5.13	<0.5	36	14	108	15.4	0.41	3.39	2300	<1
EHND6	EHND6 - 048	5.4	<0.5	110	19	399	15.45	0.21	3.04	1880	<1
EHND6	EHND6 - 049	5.03	0.5	39	13	66	17	0.41	3.17	2510	<1
EHND6	EHND6 - 050	5.11	<0.5	64	14	145	19.15	0.4	3.32	2730	1
EHND6	EHND6 - 051	5.1	<0.5	47	18	78	18.85	0.41	3.24	2610	<1
EHND6	EHND6 - 052	5.11	<0.5	51	14	69	17.2	0.44	3.41	2520	<1
EHND6	EHND6 - 053	5.41	0.5	54	18	112	19.7	0.31	4.27	2770	<1
EHND6	EHND6 - 054	6.17	<0.5	44	21	117	18.8	0.17	4.4	2630	3
EHND6	EHND6 - 055	6.44	<0.5	51	22	136	19.8	0.14	4.49	2590	1
EHND6	EHND6 - 056	6.2	<0.5	61	20	171	19.55	0.15	4.46	2500	<1
EHND6	EHND6 - 057	5.55	1.1	141	18	877	24.9	0.16	3.78	2370	<1
EHND6	EHND6 - 058	5.88	0.7	202	18	406	22.4	0.17	3.34	1770	<1
EHND6	EHND6 - 059	6.43	0.7	48	20	276	22.9	0.14	4.3	2280	<1
EHND6	EHND6 - 060	6.14	<0.5	53	20	112	19.65	0.12	4.73	2760	<1
EHND6	EHND6 - 061	6.6	<0.5	44	22	128	18.75	0.18	4.46	2460	<1

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND6	EHND6 - 062	6.22	0.5	52	22	94	23.2	0.15	4.64	2620	<1
EHND6	EHND6 - 063	5.64	<0.5	59	20	188	21.6	0.11	5.11	3110	<1
EHND6	EHND6 - 064	4.79	1.2	67	16	222	31.7	0.14	3.62	2220	<1
EHND6	EHND6 - 065	5.64	1.8	71	21	424	22.3	0.11	4.16	2350	<1
EHND6	EHND6 - 066	6.39	<0.5	74	21	142	23.1	0.09	4.42	2470	<1
EHND6	EHND6 - 067	6.44	0.6	48	25	328	19.45	0.15	4.69	2600	<1
EHND6	EHND6 - 068	6.82	<0.5	53	33	186	17.35	0.23	4.56	2070	<1
EHND6	EHND6 - 069	3.06	3.1	146	6	631	>50	0.04	1.45	1175	<1
EHND6	EHND6 - 070	3.05	2.9	132	8	1420	>50	0.05	1.23	926	<1
EHND6	EHND6 - 071	6.42	<0.5	56	25	240	19.35	0.14	4.74	2560	<1
EHND6	EHND6 - 072	6.72	<0.5	69	23	366	20.5	0.13	4.91	2510	<1
EHND6	EHND6 - 073	5.59	1.4	61	16	242	28.7	0.15	3.4	1955	<1
EHND6	EHND6 - 074	6.32	<0.5	58	20	126	20.3	0.13	4.9	2900	<1
EHND6	EHND6 - 075	6.44	<0.5	60	22	341	21.3	0.14	4.73	2620	<1
EHND6	EHND6 - 076	8.03	<0.5	56	25	156	19.8	0.09	4.69	2450	<1
EHND6	EHND6 - 077	7.36	0.8	82	27	247	23.5	0.09	4.99	2290	<1
EHND6	EHND6 - 078	6.27	1.2	85	21	339	27.4	0.11	4.4	2090	<1
EHND6	EHND6 - 079	6.12	<0.5	62	20	178	22.4	0.14	4.48	2240	<1
EHND6	EHND6 - 080	6.39	<0.5	60	21	204	20.6	0.14	4.64	2280	<1
EHND6	EHND6 - 081	6.86	0.7	49	23	192	19.05	0.22	4.85	2240	<1
EHND6	EHND6 - 082	7.48	<0.5	61	25	175	19.85	0.24	5.31	2430	<1
EHND6	EHND6 - 083	6	1	97	22	247	23.8	0.15	4.27	2240	<1
EHND6	EHND6 - 084	6.61	<0.5	56	24	233	20.2	0.18	4.8	2530	<1
EHND6	EHND6 - 085	5.61	1.1	98	23	4470	23.9	0.14	4.34	2430	<1
EHND6	EHND6 - 086	6	1.4	73	22	492	27.7	0.12	3.9	2080	<1
EHND6	EHND6 - 087	4.52	1.7	195	15	495	38.8	0.09	2.55	1400	<1
EHND6	EHND6 - 088	3.84	2.3	116	8	628	44.7	0.1	1.71	1115	<1
EHND6	EHND6 - 089	5.6	<0.5	103	24	543	24.2	0.16	3.81	1940	<1
EHND6	EHND6 - 090	4.97	1.8	116	18	283	35.2	0.14	2.94	1610	<1
EHND6	EHND6 - 091	6.36	<0.5	56	24	221	20.2	0.15	4.76	2590	<1
EHND6	EHND6 - 092	5.43	1.3	68	19	200	25.4	0.14	3.9	2140	<1
EHND6	EHND6 - 093	5.24	1.5	84	18	364	33.7	0.24	3.22	1780	<1
EHND6	EHND6 - 094	6.69	<0.5	56	27	125	19.7	0.18	5	2760	<1

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND6	EHND6 - 095	4.53	<0.5	75	8	230	15.25	0.34	2.06	1205	<1
EHND6	EHND6 - 096	4.77	<0.5	45	4	148	9.67	0.3	1.5	1060	<1
EHND6	EHND6 - 097	6.44	<0.5	47	20	177	19.05	0.19	4.01	2280	<1
EHND6	EHND6 - 098	6.33	<0.5	60	29	206	18.4	0.18	4.68	2470	<1
EHND6	EHND6 - 099	6.08	<0.5	60	22	240	20.4	0.14	4.6	2570	<1
EHND6	EHND6 - 100	6.28	<0.5	53	23	178	19.85	0.18	4.47	2500	<1
EHND6	EHND6 - 101	6.23	<0.5	59	24	206	20.3	0.13	4.8	2790	<1
EHND6	EHND6 - 102	4.81	<0.5	96	18	1020	33.3	0.1	3.44	1975	<1
EHND6	EHND6 - 103	6.36	<0.5	72	22	3030	21.9	0.16	4.38	2400	<1
EHND6	EHND6 - 104	6.62	<0.5	61	21	190	19.85	0.19	4.83	2920	<1
EHND6	EHND6 - 105	5.97	<0.5	51	21	248	19.25	0.25	4.34	2670	<1
EHND6	EHND6 - 106	6.65	<0.5	48	23	177	20.3	0.24	4.62	2610	1
EHND6	EHND6 - 107	6.34	<0.5	115	21	367	22.3	0.3	3.79	1850	<1
EHND6	EHND6 - 108	4.8	<0.5	39	12	238	12.7	0.38	2.36	1265	<1
EHND6	EHND6 - 109	5.04	<0.5	48	7	158	11	0.4	2.13	839	<1
EHND6	EHND6 - 110	5.41	<0.5	28	4	81	9.96	0.54	2	880	<1
EHND6	EHND6 - 111	5.48	<0.5	52	15	302	15.95	0.35	1.9	1005	<1
EHND6	EHND6 - 112	7.33	<0.5	56	21	264	16.25	0.29	3.26	1445	<1
EHND6	EHND6 - 113	6.56	<0.5	45	12	176	13.35	0.4	2.36	975	<1
EHND6	EHND6 - 114	5.7	<0.5	118	10	349	20.5	0.4	1.41	694	1
EHND6	EHND6 - 115	5.95	<0.5	27	24	151	11.85	0.35	1.98	999	<1
EHND6	EHND6 - 116	4.82	0.7	172	15	2140	26.2	0.35	1.69	918	<1
EHND6	EHND6 - 117	5.28	<0.5	29	19	1270	17.45	0.43	1.86	969	<1
EHND6	EHND6 - 118	4.46	<0.5	39	8	151	14	0.82	1.95	1070	<1
EHND6	EHND6 - 119	4.92	<0.5	83	20	365	17.7	0.34	1.73	938	<1
EHND6	EHND6 - 120	5.12	<0.5	80	25	578	12.35	0.34	1.78	866	<1
EHND6	EHND6 - 121	4.46	<0.5	84	24	264	9.08	0.27	1.83	883	<1
EHND6	EHND6 - 122	4.32	<0.5	70	23	1220	8.96	0.37	2.04	974	<1
EHND6	EHND6 - 123	5	<0.5	18	28	50	5.94	0.53	1.85	994	<1
EHND6	EHND6 - 124	5.1	<0.5	40	28	143	8.06	0.37	1.8	918	<1
EHND6	EHND6 - 125	5.2	<0.5	118	24	208	13.25	0.34	1.7	815	<1
EHND6	EHND6 - 126	4.84	<0.5	29	22	85	16.25	0.3	1.53	842	<1
EHND6	EHND6 - 127	4.73	<0.5	52	15	171	29.2	0.27	1.74	1120	<1

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND6	EHND6 - 128	3.86	<0.5	81	12	448	29.3	0.23	1.16	844	<1
EHND6	EHND6 - 129	4.59	<0.5	54	11	220	29.7	0.26	1.27	871	<1
EHND6	EHND6 - 130	2.75	<0.5	82	3	347	>50	0.05	0.88	897	<1
EHND6	EHND6 - 131	5.93	<0.5	63	21	155	18.25	0.25	4.28	2600	<1
EHND6	EHND6 - 132	5.93	<0.5	80	23	346	19.7	0.24	4.03	2180	<1
EHND6	EHND6 - 133	6.13	<0.5	109	19	277	21.2	0.19	3.68	2000	<1
EHND6	EHND6 - 134	6.61	<0.5	57	17	223	15.45	0.24	3.48	1665	<1
EHND6	EHND6 - 135	7.47	<0.5	66	19	244	21.3	0.15	2.93	1170	<1
EHND6	EHND6 - 136	9.74	<0.5	47	23	209	13.3	0.17	3.91	1320	<1
EHND6	EHND6 - 137	6.59	<0.5	59	19	220	17.3	0.24	3.98	1960	<1
EHND6	EHND6 - 138	5.96	<0.5	58	19	182	20.3	0.18	3.54	2030	<1
EHND6	EHND6 - 139	5.83	<0.5	77	17	371	29.9	0.2	3.33	1835	<1
EHND6	EHND6 - 140	6.36	<0.5	56	25	277	20.4	0.23	3.92	2110	<1
EHND6	EHND6 - 141	6.07	<0.5	57	22	185	19.3	0.24	4.06	2220	<1
EHND6	EHND6 - 142	5.56	<0.5	147	20	285	21.5	0.21	3.78	2110	<1
EHND6	EHND6 - 143	5.81	<0.5	110	20	299	19.4	0.28	3.67	2130	<1
EHND6	EHND6 - 144	5.18	<0.5	174	15	271	33.1	0.16	2.8	1720	<1
EHND6	EHND6 - 145										
EHND6	EHND6 - 146	6.09	<0.5	65	20	271	21.2	0.21	4.07	2200	<1
EHND6	EHND6 - 147	5.61	<0.5	49	20	123	18.25	0.31	4.18	2290	<1
EHND6	EHND6 - 148	8.13	<0.5	53	20	183	18.65	0.3	3.66	2060	<1
EHND6	EHND6 - 149	7.16	<0.5	50	19	131	17.7	0.15	3.97	2210	<1
EHND6	EHND6 - 150	6.83	<0.5	57	23	153	18	0.19	4.56	2430	<1
EHND6	EHND6 - 151	6.51	<0.5	45	20	138	24	0.24	3.83	2420	<1
EHND6	EHND6 - 152	5.95	<0.5	77	21	216	25	0.19	3.78	2180	<1
EHND6	EHND6 - 153	4.92	<0.5	86	18	259	31.5	0.22	2.88	1990	<1
EHND6	EHND6 - 154	6.63	<0.5	52	25	150	19.35	0.3	4.87	2690	<1
EHND6	EHND6 - 155	6.3	<0.5	62	20	93	18.15	0.22	4.7	2830	<1
EHND6	EHND6 - 156	6.34	<0.5	51	22	123	18.1	0.26	4.71	2780	<1
EHND6	EHND6 - 157	8.66	<0.5	53	15	139	17.95	0.25	3.87	2120	<1
EHND6	EHND6 - 158	6.24	<0.5	69	25	172	18.75	0.32	4.33	2300	<1
EHND6	EHND6 - 159	6.85	<0.5	70	23	228	19.4	0.4	4.37	2200	<1
EHND6	EHND6 - 160	6.45	<0.5	55	32	168	18.05	0.27	4.72	2660	<1

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND6	EHND6 - 161	7	<0.5	105	46	475	15.25	0.3	4.32	1850	1
EHND6	EHND6 - 162	7.44	<0.5	107	32	381	15.05	0.39	4.25	1900	<1
EHND6	EHND6 - 163	6.45	<0.5	72	27	354	14.8	0.3	4.17	1890	<1
EHND6	EHND6 - 164	7.7	<0.5	46	22	110	17.9	0.25	4.19	1975	<1
EHND6	EHND6 - 165	6.96	<0.5	49	21	152	19.6	0.21	3.77	1735	<1
EHND6	EHND6 - 166	6.77	<0.5	51	33	188	16.05	0.29	4.19	2230	<1
EHND6	EHND6 - 167	6.3	<0.5	59	22	169	18.3	0.25	4.19	2640	<1
EHND6	EHND6 - 168	6.36	<0.5	58	34	180	22.9	0.28	3.41	1855	<1
EHND6	EHND6 - 169	5.43	<0.5	68	37	252	24.6	0.24	2.65	1365	<1
EHND6	EHND6 - 170	11.85	<0.5	278	28	644	28.1	0.1	1.97	726	<1
EHND6	EHND6 - 171	5.87	<0.5	74	27	451	27	0.22	3.38	1975	<1
EHND6	EHND6 - 172	5.93	<0.5	70	19	185	18.6	0.2	3.57	2060	<1
EHND6	EHND6 - 173	6.89	<0.5	74	17	387	20.9	0.17	3.01	2080	1
EHND6	EHND6 - 174	6.48	<0.5	46	19	163	16.9	0.28	3.9	2540	1
EHND6	EHND6 - 175	5.84	<0.5	105	21	356	13.95	0.77	3.72	1820	<1
EHND6	EHND6 - 176	7.61	<0.5	44	29	355	18.95	0.26	3.81	1840	<1
EHND6	EHND6 - 177	4.26	<0.5	72	101	467	43.3	0.18	1.84	1185	<1
EHND6	EHND6 - 178	8.07	<0.5	83	41	224	20.6	0.19	2.99	1440	<1
EHND6	EHND6 - 179	6.97	<0.5	69	28	342	12.6	0.31	3.1	1460	<1
EHND6	EHND6 - 180	6.5	<0.5	88	25	473	13.8	0.27	3.07	1410	1
EHND6	EHND6 - 181	7.66	<0.5	49	54	134	21.3	0.2	3.44	1390	<1
EHND6	EHND6 - 182	6.22	<0.5	49	22	264	13.75	0.32	3.55	1745	<1
EHND6	EHND6 - 183	6.65	<0.5	48	30	162	22.9	0.2	3.17	1460	<1
EHND6	EHND6 - 184	6.75	<0.5	87	51	191	35	0.11	2.72	1135	<1
EHND6	EHND6 - 185	6.38	<0.5	45	17	148	14.75	0.34	3.13	1620	<1
EHND6	EHND6 - 186	6.91	<0.5	64	18	181	17.4	0.42	3.71	1790	<1
EHND6	EHND6 - 187	7.31	<0.5	68	22	1010	13.95	0.33	3.19	1520	<1
EHND6	EHND6 - 188	8.65	<0.5	88	19	438	12.55	0.2	3.36	1360	<1
EHND6	EHND6 - 189	7.97	<0.5	67	27	406	8.91	0.27	3.07	1025	<1
EHND6	EHND6 - 190	7.6	<0.5	63	20	379	8.36	0.37	2.43	1045	<1
EHND6	EHND6 - 191	7.76	<0.5	78	27	223	8.04	0.41	2.7	911	1
EHND7	EHND7 - 001	7.05	<0.5	56	44	291	11.75	0.41	4.02	1420	<1
EHND7	EHND7 - 002	7.23	<0.5	43	125	189	9.09	0.24	3.65	1070	2

Page 20 of 40

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Ca	Cd	Со	Cr	Cu	Fe	K	Mg	Mn	Мо
Hole No	Sample Number	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm
EHND7	EHND7 - 003	7.17	<0.5	41	100	147	7.36	0.3	4.46	1220	<1
EHND7	EHND7 - 004	7.11	<0.5	42	142	158	7.49	0.16	5.1	1225	<1
EHND7	EHND7 - 005	6.53	<0.5	39	117	135	7.07	0.15	4.76	1095	<1
EHND8	EHND8 - 001	6.59	<0.5	38	59	139	8.92	0.85	3.25	1430	<1
EHND8	EHND8 - 002	7.4	<0.5	43	72	197	9.97	0.45	3.98	1460	<1
EHND8	EHND8 - 003	6.97	<0.5	37	61	138	8.93	0.45	3.48	1425	<1
EHND8	EHND8 - 004	9	<0.5	50	89	159	10.85	0.44	4.5	1570	<1
EHND8	EHND8 - 005	7.54	<0.5	42	76	136	9.13	0.35	3.8	1400	<1

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	
		Na	Ni	Р	Pb	S	Sb	Sr	Ti	V	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND3	EHND3 -001	3.33	14	50	9	1.62	<5	251	0.67	147	<10
EHND3	EHND3 -002	1.74	20	180	4	0.01	<5	246	2.01	646	<10
EHND3	EHND3 -003	2.67	21	210	8	0.36	<5	292	1.36	442	<10
EHND3	EHND3 -004	2.34	13	190	7	0.03	<5	281	1.57	551	<10
EHND3	EHND3 -005	4.61	5	810	5	0.17	<5	365	0.78	107	<10
EHND3	EHND3 -006	3.27	42	650	5	0.03	<5	262	0.39	122	<10
EHND3	EHND3 -007	4.91	4	1650	6	0.25	<5	264	0.66	82	<10
EHND3	EHND3 -008	3.37	38	920	4	0.07	<5	195	0.31	134	<10
EHND3	EHND3 -009	1.96	17	150	10	<0.01	<5	231	1.74	564	<10
EHND4	EHND4 - 001	6.31	28	560	8	0.17	<5	66	0.49	151	<10
EHND4	EHND4 - 002	6.02	15	670	10	0.03	<5	67	0.51	102	<10
EHND4	EHND4 - 003	5.72	29	620	10	0.2	<5	102	0.53	135	<10
EHND4	EHND4 - 004	6.7	15	740	7	0.07	<5	50	0.53	91	<10
EHND4	EHND4 - 005	6.22	16	690	4	0.08	<5	87	0.5	119	<10
EHND4	EHND4 - 006	6.21	13	690	2	0.04	<5	106	0.51	108	<10
EHND4	EHND4 - 007	6.08	45	700	4	0.25	<5	107	0.5	150	<10
EHND4	EHND4 - 008	5.6	22	540	6	0.05	<5	71	0.5	120	<10
EHND4	EHND4 - 009	5.87	39	680	9	0.25	<5	84	0.5	143	<10
EHND4	EHND4 - 010	5.51	30	650	5	0.14	<5	95	0.5	130	<10
EHND4	EHND4 - 011	6.06	26	810	6	0.17	<5	82	0.56	127	<10
EHND4	EHND4 - 012	5.77	21	710	7	0.1	<5	75	0.45	109	<10
EHND4	EHND4 - 013	4.69	21	630	28	0.11	<5	94	0.54	130	<10
EHND4	EHND4 - 014	5.24	37	640	5	0.14	<5	100	0.5	153	<10
EHND4	EHND4 - 015	6.89	5	740	7	0.09	<5	25	0.44	68	<10
EHND4	EHND4 - 016	5.46	24	710	6	0.09	<5	84	0.53	113	<10
EHND4	EHND4 - 017	5.72	26	250	9	0.15	<5	33	0.45	146	<10
EHND4	EHND4 - 018	5.44	28	220	10	0.23	<5	32	0.4	161	<10
EHND4	EHND4 - 019	5.21	27	380	6	0.13	<5	71	0.4	117	<10
EHND4	EHND4 - 020	4.17	28	500	9	0.08	<5	118	0.36	132	<10
EHND4	EHND4 - 021	5.24	46	150	5	0.4	<5	35	0.36	151	<10
EHND4	EHND4 - 022	4.7	20	10	4	0.06	<5	49	0.21	127	<10
EHND4	EHND4 - 023	2.35	28	20	5	0.05	<5	85	0.24	154	<10
EHND4	EHND4 - 024	4.41	32	60	8	0.15	<5	35	0.24	176	<10

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Na	Ni	Ь	Pb	S	Sb	Sr	Ti	٧	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND4	EHND4 - 025	3.84	17	270	5	0.05	<5	130	0.27	90	<10
EHND4	EHND4 - 026	3.74	37	130	8	0.21	<5	93	0.27	99	<10
EHND4	EHND4 - 027	5.06	17	180	7	0.03	<5	74	0.35	107	<10
EHND4	EHND4 - 028	4.9	16	330	9	0.02	<5	128	0.32	108	<10
EHND4	EHND4 - 029	3.95	18	770	8	0.03	<5	179	0.35	107	<10
EHND4	EHND4 - 030	4.21	21	880	14	0.05	<5	165	0.34	103	<10
EHND5	EHND5 - 001	0.02	80	13900	10	0.41	<5	41	0.33	960	<10
EHND5	EHND5 - 002	0.02	57	15200	13	0.1	<5	54	0.23	990	10
EHND5	EHND5 - 003	0.03	56	13000	8	0.07	<5	51	0.32	1135	10
EHND5	EHND5 - 004	0.01	62	10400	5	0.05	<5	56	0.36	1130	10
EHND5	EHND5 - 005	0.02	77	17600	9	0.03	<5	76	0.33	1050	10
EHND5	EHND5 - 006	0.37	51	13200	13	0.05	<5	95	0.27	602	10
EHND5	EHND5 - 007	1.01	27	2190	10	0.01	<5	70	0.12	247	<10
EHND5	EHND5 - 008	0.81	40	5450	14	0.02	<5	81	0.46	468	<10
EHND5	EHND5 - 009	0.28	56	12000	9	0.02	<5	87	0.41	732	<10
EHND5	EHND5 - 010	0.08	67	22000	10	0.01	<5	72	0.29	841	10
EHND5	EHND5 - 011	0.17	73	13600	13	0.02	<5	86	0.32	801	<10
EHND5	EHND5 - 012	0.36	50	11400	14	0.02	5	98	0.44	630	<10
EHND5	EHND5 - 013	0.39	55	8810	8	0.01	<5	131	0.28	554	<10
EHND5	EHND5 - 014	0.88	39	7900	11	0.01	<5	123	0.2	413	<10
EHND5	EHND5 - 015	1.04	48	7770	12	0.18	<5	97	0.46	606	10
EHND5	EHND5 - 016	2.13	46	4360	12	0.14	<5	67	0.6	502	<10
EHND5	EHND5 - 017	3.79	32	1310	5	80.0	<5	80	0.69	237	<10
EHND5	EHND5 - 018	2.97	31	2940	9	0.13	<5	86	0.6	314	<10
EHND5	EHND5 - 019	2.78	29	1630	11	0.08	<5	79	0.48	319	<10
EHND5	EHND5 - 020	3.82	39	400	7	0.21	<5	67	0.62	223	<10
EHND5	EHND5 - 021	3.23	34	1970	9	0.01	<5	72	0.59	302	<10
EHND5	EHND5 - 022	3.05	48	1990	8	0.01	<5	47	0.43	430	<10
EHND5	EHND5 - 023	3.17	31	2860	10	0.01	<5	37	0.55	413	<10
EHND5	EHND5 - 024	4.61	15	870	4	0.01	<5	38	0.44	88	<10
EHND5	EHND5 - 025	4.84	15	950	6	<0.01	<5	31	0.33	87	<10
EHND5	EHND5 - 026	5.11	12	900	6	0.01	<5	20	0.21	94	<10
EHND5	EHND5 - 027	4.93	13	1010	5	<0.01	<5	21	0.28	88	<10

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Na	Ni	P	Pb	S	Sb	Sr	Ti	V	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND5	EHND5 - 028	4.72	19	1620	6	<0.01	<5	25	0.48	175	<10
EHND5	EHND5 - 029	3.69	24	4290	10	0.03	<5	44	0.76	303	<10
EHND5	EHND5 - 030	1.85	34	12600	10	0.01	<5	72	0.6	439	<10
EHND5	EHND5 - 031	2.58	26	4210	13	0.01	<5	153	0.53	318	<10
EHND5	EHND5 - 032	2.67	29	7300	11	0.01	<5	118	0.47	417	<10
EHND5	EHND5 - 033	2.53	34	4970	11	0.01	<5	76	0.44	356	<10
EHND5	EHND5 - 034	2.72	33	5970	10	0.01	<5	65	0.51	385	<10
EHND5	EHND5 - 035	2.94	27	3920	11	0.01	<5	57	0.52	374	30
EHND5	EHND5 - 036	3.16	30	6080	8	<0.01	<5	62	0.56	431	10
EHND5	EHND5 - 037	4.15	18	1990	10	<0.01	<5	50	0.67	267	<10
EHND5	EHND5 - 038	3.68	23	7880	8	0.01	<5	76	0.5	352	<10
EHND5	EHND5 - 039	3.35	28	3840	10	0.01	<5	86	0.48	364	<10
EHND5	EHND5 - 040	2.13	29	5130	11	0.01	<5	103	0.47	377	<10
EHND5	EHND5 - 041	2.58	26	7790	8	0.01	<5	101	0.55	320	<10
EHND5	EHND5 - 042	2.44	26	2040	8	<0.01	<5	76	0.48	334	<10
EHND5	EHND5 - 043	1.96	25	7070	10	<0.01	<5	78	0.54	338	<10
EHND5	EHND5 - 044	1.08	29	7780	9	<0.01	<5	69	0.5	318	<10
EHND5	EHND5 - 045	0.59	43	7120	11	0.21	<5	51	0.38	583	<10
EHND5	EHND5 - 046	0.33	55	10800	11	0.2	<5	40	0.37	739	<10
EHND5	EHND5 - 047	0.56	56	9300	10	0.32	<5	41	0.41	662	<10
EHND5	EHND5 - 048	0.44	60	11200	12	0.47	<5	37	0.47	703	<10
EHND5	EHND5 - 049	0.7	48	9490	18	0.1	<5	41	0.48	661	<10
EHND5	EHND5 - 050	1.09	47	8260	8	0.17	<5	50	0.49	596	<10
EHND5	EHND5 - 051	1.13	49	6760	13	0.06	<5	54	0.47	571	<10
EHND5	EHND5 - 052	1.38	49	9620	9	0.12	<5	56	0.52	607	10
EHND5	EHND5 - 053	1.32	45	7840	6	0.06	<5	51	0.47	590	<10
EHND5	EHND5 - 054	1.32	39	6260	4	0.06	<5	43	0.42	468	<10
EHND5	EHND5 - 055	1.13	45	5540	5	0.03	<5	36	0.48	578	<10
EHND5	EHND5 - 056	2.86	32	2510	<2	0.02	<5	60	0.48	389	<10
EHND5	EHND5 - 057	2.04	35	5540	6	0.06	<5	70	0.53	408	<10
EHND5	EHND5 - 058	1.77	41	7230	4	0.04	<5	69	0.48	427	<10
EHND5	EHND5 - 059	1.96	39	5610	4	0.04	<5	63	0.53	441	<10
EHND5	EHND5 - 060	3.25	23	2190	4	0.03	<5	61	0.66	239	<10

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Na	Ni	Р	Pb	S	Sb	Sr	Ti	٧	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND5	EHND5 - 061	2.94	31	3680	4	0.01	<5	62	0.57	344	<10
EHND5	EHND5 - 062	3.01	21	6040	5	0.02	<5	90	0.6	273	<10
EHND5	EHND5 - 063	2.5	29	7380	4	0.02	<5	76	0.48	350	<10
EHND5	EHND5 - 064	2.62	33	4900	3	0.01	<5	63	0.51	431	<10
EHND5	EHND5 - 065	2.65	31	6050	2	0.04	<5	54	0.45	445	<10
EHND6	EHND6 - 001	0.36	31	6860	13	2.91	8	105	2.26	317	10
EHND6	EHND6 - 002	0.69	19	8260	4	1.15	<5	89	2.5	240	<10
EHND6	EHND6 - 003	1.29	18	6330	5	0.93	<5	104	2.18	243	<10
EHND6	EHND6 - 004	1.04	12	6700	9	0.47	7	96	2.3	247	<10
EHND6	EHND6 - 005	0.98	15	6960	8	0.54	<5	91	2.38	278	<10
EHND6	EHND6 - 006	1.16	15	9210	7	0.73	<5	88	2.87	268	<10
EHND6	EHND6 - 007	1.27	9	9490	5	0.77	<5	99	2.74	254	<10
EHND6	EHND6 - 008	1.06	10	7340	6	0.48	<5	88	2.43	252	<10
EHND6	EHND6 - 009	1.42	17	7470	6	0.7	6	82	2.43	225	<10
EHND6	EHND6 - 010	1.46	13	9090	12	0.78	6	84	2.74	222	<10
EHND6	EHND6 - 011	1.22	13	7300	16	0.69	<5	85	2.52	238	<10
EHND6	EHND6 - 012	1.59	11	6170	8	0.45	5	86	2.36	199	<10
EHND6	EHND6 - 013	1.4	9	9020	5	0.5	<5	87	2.78	229	<10
EHND6	EHND6 - 014	1.32	14	8890	12	0.82	<5	76	2.68	228	<10
EHND6	EHND6 - 015	1.31	35	10400	10	2.26	<5	78	2.39	238	<10
EHND6	EHND6 - 016	2.4	6	8230	10	0.55	5	131	2.41	175	<10
EHND6	EHND6 - 017	2.07	16	6980	8	1.45	<5	119	2.47	215	<10
EHND6	EHND6 - 018	2.08	13	3420	11	1.02	7	98	2.6	253	<10
EHND6	EHND6 - 019	2.01	10	9510	10	0.85	<5	116	2.64	197	<10
EHND6	EHND6 - 020	2.11	18	9010	9	1.68	<5	119	2.56	188	<10
EHND6	EHND6 - 021	2.3	8	8340	10	0.57	<5	132	2.53	209	<10
EHND6	EHND6 - 022	2.35	7	8890	7	0.47	<5	154	2.49	182	<10
EHND6	EHND6 - 023	3.08	16	8060	11	1.11	<5	181	2.44	155	<10
EHND6	EHND6 - 024	3.27	34	8380	10	2.19	<5	182	1.84	139	<10
EHND6	EHND6 - 025	2.79	53	9440	14	3.33	<5	120	1.18	265	<10
EHND6	EHND6 - 026	1.64	68	26200	18	4.38	<5	115	0.79	313	<10
EHND6	EHND6 - 027	2.7	16	6050	9	0.85	<5	118	1.76	166	<10
EHND6	EHND6 - 028	2.94	18	4580	9	1.01	<5	122	1.24	156	<10

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Na	Ni	P	Pb	S	Sb	Sr	Ti	٧	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND6	EHND6 - 029	2.21	22	6110	8	1.53	<5	116	1.86	200	<10
EHND6	EHND6 - 030	2.46	9	7560	10	0.7	<5	130	2.51	199	<10
EHND6	EHND6 - 031	2.26	60	5240	12	3.61	<5	111	2.11	222	<10
EHND6	EHND6 - 032	3.03	29	6740	10	2.15	6	155	1.92	160	<10
EHND6	EHND6 - 033	2.74	11	8680	12	0.78	<5	143	2.44	174	<10
EHND6	EHND6 - 034	2.16	9	8580	10	0.61	<5	123	2.43	174	<10
EHND6	EHND6 - 035	2.52	6	7880	10	0.63	<5	141	2.2	157	<10
EHND6	EHND6 - 036	2.15	54	6510	11	3.39	<5	115	1.6	184	<10
EHND6	EHND6 - 037	3.1	25	2360	9	1.36	<5	135	0.55	143	<10
EHND6	EHND6 - 038	2.7	13	6020	7	1	<5	121	1.78	183	<10
EHND6	EHND6 - 039	2.31	8	8510	10	0.59	6	117	2.45	170	<10
EHND6	EHND6 - 040	2.59	8	8050	10	0.53	<5	132	2.22	156	<10
EHND6	EHND6 - 041	2.25	174	3510	10	10.45	<5	91	0.97	137	<10
EHND6	EHND6 - 042	3.12	62	3480	7	4	<5	130	0.28	121	<10
EHND6	EHND6 - 043	2.27	14	6990	30	0.79	<5	129	1.79	198	<10
EHND6	EHND6 - 044	2.92	8	7430	9	0.82	<5	163	2.29	142	<10
EHND6	EHND6 - 045	2.65	84	6030	10	4.39	<5	132	1.91	128	<10
EHND6	EHND6 - 046	2.9	8	7550	11	0.63	<5	137	2.03	185	<10
EHND6	EHND6 - 047	2.88	8	7900	7	0.57	<5	139	2.13	154	<10
EHND6	EHND6 - 048	3.07	45	6160	9	2.8	<5	143	1.79	151	<10
EHND6	EHND6 - 049	2.42	6	7920	11	0.43	<5	130	2.17	154	<10
EHND6	EHND6 - 050	2.18	14	8030	9	1.14	<5	125	2.22	155	<10
EHND6	EHND6 - 051	2.13	7	7790	10	0.63	6	131	2.1	150	<10
EHND6	EHND6 - 052	2.27	10	8450	10	0.68	5	148	2.21	161	<10
EHND6	EHND6 - 053	1.68	9	9490	8	0.63	7	110	2.55	207	<10
EHND6	EHND6 - 054	1.6	12	8580	10	0.6	<5	97	2.36	235	20
EHND6	EHND6 - 055	1.43	9	9990	7	0.7	<5	96	2.68	246	10
EHND6	EHND6 - 056	1.6	17	9500	5	1	<5	106	2.54	231	<10
EHND6	EHND6 - 057	1.44	51	9680	12	3.35	<5	99	2.42	251	<10
EHND6	EHND6 - 058	1.66	89	6800	16	5.8	<5	110	1.86	215	<10
EHND6	EHND6 - 059	1.33	15	9630	9	0.79	<5	95	2.47	273	<10
EHND6	EHND6 - 060	1.45	14	8310	10	0.46	<5	103	2.46	255	<10
EHND6	EHND6 - 061	1.73	13	8970	9	0.62	7	127	2.42	236	<10

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s		ME-ICP61s	
		Na	Ni	P	Pb	S	Sb	Sr	Ti	V	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND6	EHND6 - 062	1.32	13	9720	8	0.53	<5	95	2.73	272	<10
EHND6	EHND6 - 063	1.12	15	9450	10	0.94	11	88	2.65	241	<10
EHND6	EHND6 - 064	1.1	19	8110	8	1.33	<5	78	2.12	250	<10
EHND6	EHND6 - 065	1.19	21	9100	9	1.28	<5	93	2.51	264	<10
EHND6	EHND6 - 066	1.18	22	10700	9	1.35	<5	96	2.56	262	<10
EHND6	EHND6 - 067	1.73	14	9800	4	0.78	5	120	2.55	246	<10
EHND6	EHND6 - 068	1.97	17	7780	13	0.9	5	128	2.04	236	<10
EHND6	EHND6 - 069	0.45	59	7000	12	3.71	<5	42	1.13	491	<10
EHND6	EHND6 - 070	0.63	49	5150	11	3.34	<5	44	0.65	491	<10
EHND6	EHND6 - 071	1.62	17	9800	10	1.02	<5	120	2.55	236	<10
EHND6	EHND6 - 072	1.35	23	9840	10	1.41	12	112	2.86	285	<10
EHND6	EHND6 - 073	1.33	23	8970	17	1.08	<5	92	1.97	336	<10
EHND6	EHND6 - 074	1.53	11	10500	7	0.67	6	119	2.83	256	<10
EHND6	EHND6 - 075	1.5	15	9770	4	0.97	5	116	2.74	255	<10
EHND6	EHND6 - 076	0.87	17	7890	6	0.81	<5	84	2.35	295	<10
EHND6	EHND6 - 077	0.84	30	8040	6	1.77	<5	67	2.61	314	<10
EHND6	EHND6 - 078	0.77	29	8430	12	1.85	7	67	2.52	340	<10
EHND6	EHND6 - 079	1.36	23	9260	9	1.27	5	108	2.55	263	<10
EHND6	EHND6 - 080	1.51	18	9520	9	1.12	7	118	2.74	273	10
EHND6	EHND6 - 081	1.46	16	8240	8	0.67	<5	114	2.63	285	<10
EHND6	EHND6 - 082	1.33	19	9820	8	1	5	104	2.94	271	<10
EHND6	EHND6 - 083	1.39	41	9800	6	2.65	<5	104	2.49	274	<10
EHND6	EHND6 - 084	1.96	21	9830	8	1.1	<5	135	2.63	251	<10
EHND6	EHND6 - 085	1.25	44	9210	6	2.81	<5	99	2.56	239	<10
EHND6	EHND6 - 086	1.2	33	10100	14	1.66	<5	93	2.3	291	<10
EHND6	EHND6 - 087	0.92	85	6050	10	5.05	<5	65	1.4	318	<10
EHND6	EHND6 - 088	1.06	45	5830	14	2.84	<5	53	0.9	366	<10
EHND6	EHND6 - 089	1.53	42	7410	10	2.57	<5	97	1.89	271	<10
EHND6	EHND6 - 090	0.88	48	6880	16	2.79	<5	62	1.53	314	<10
EHND6	EHND6 - 091	1.69	15	9240	9	1.06	5	111	2.51	247	<10
EHND6	EHND6 - 092	1.22	23	9440	13	1.37	<5	92	2.34	298	<10
EHND6	EHND6 - 093	0.97	31	10300	11	1.9	<5	77	2.12	336	<10
EHND6	EHND6 - 094	1.83	16	8790	9	0.72	7	117	2.53	255	<10

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s		ME-ICP61s	
		Na	Ni	P	Pb	S	Sb	Sr	Ti	V	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND6	EHND6 - 095	4	29	3530	11	1.77	<5	142	0.78	131	<10
EHND6	EHND6 - 096	4.66	21	870	10	1.01	<5	159	0.18	80	<10
EHND6	EHND6 - 097	2.03	15	7730	10	0.79	<5	107	2.04	226	<10
EHND6	EHND6 - 098	1.94	20	8520	4	1.12	<5	120	2.27	231	<10
EHND6	EHND6 - 099	1.42	20	8160	9	0.99	<5	100	2.4	246	<10
EHND6	EHND6 - 100	1.75	17	9270	6	0.86	5	112	2.62	241	<10
EHND6	EHND6 - 101	1.51	15	9350	7	0.89	5	101	2.65	255	<10
EHND6	EHND6 - 102	1.1	36	7870	6	2.13	<5	81	2.03	279	<10
EHND6	EHND6 - 103	1.56	23	8790	8	1.6	5	95	2.45	262	<10
EHND6	EHND6 - 104	1.48	17	8010	8	0.65	<5	96	2.19	244	<10
EHND6	EHND6 - 105	1.8	10	8430	6	0.7	<5	109	2.42	239	<10
EHND6	EHND6 - 106	1.69	14	9290	12	0.67	<5	108	2.62	251	10
EHND6	EHND6 - 107	1.85	58	8150	7	3.16	5	118	2.25	233	<10
EHND6	EHND6 - 108	3.76	12	5200	7	0.66	<5	241	1.26	122	<10
EHND6	EHND6 - 109	4.28	19	1760	9	0.93	<5	203	0.37	99	<10
EHND6	EHND6 - 110	4.01	9	1600	13	0.44	<5	209	0.5	84	<10
EHND6	EHND6 - 111	3.1	23	3020	7	1.26	<5	192	0.78	180	<10
EHND6	EHND6 - 112	2.62	22	4800	8	1.16	5	157	2.05	256	<10
EHND6	EHND6 - 113	3.56	16	3010	8	0.93	<5	219	1.55	187	<10
EHND6	EHND6 - 114	3.19	48	7380	10	2.74	<5	196	0.86	186	<10
EHND6	EHND6 - 115	3.94	8	1760	8	0.4	<5	222	1.15	176	<10
EHND6	EHND6 - 116	2.29	80	1980	9	4.17	<5	128	0.88	248	<10
EHND6	EHND6 - 117	3.55	9	1800	7	0.57	<5	200	1.05	213	<10
EHND6	EHND6 - 118	3.68	13	590	10	0.8	<5	190	0.46	140	<10
EHND6	EHND6 - 119	3.25	34	1500	15	2.18	<5	179	0.94	226	<10
EHND6	EHND6 - 120	3.54	41	1770	7	2.41	<5	215	1.02	154	<10
EHND6	EHND6 - 121	3.61	35	2400	4	2.53	<5	164	1.13	163	<10
EHND6	EHND6 - 122	3.74	30	2110	5	2.37	<5	117	1.11	179	<10
EHND6	EHND6 - 123	4.14	6	1640	3	0.31	<5	212	1.21	147	<10
EHND6	EHND6 - 124	3.81	15	1770	4	0.96	<5	224	1.18	144	<10
EHND6	EHND6 - 125	3.75	33	2060	2	2.06	<5	231	1.02	160	<10
EHND6	EHND6 - 126	3.55	9	1810	2	0.36	<5	203	0.99	195	<10
EHND6	EHND6 - 127	2.27	17	3970	2	0.92	<5	135	1.08	242	<10

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Na	Ni	Р	Pb	S	Sb	Sr	Ti	٧	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND6	EHND6 - 128	2.59	36	1970	3	2	<5	147	0.9	317	<10
EHND6	EHND6 - 129	2.56	20	2420	2	1.11	<5	150	0.87	346	<10
EHND6	EHND6 - 130	0.39	29	5310	4	1.36	<5	32	0.92	618	<10
EHND6	EHND6 - 131	1.69	14	9670	4	0.79	<5	105	2.66	248	<10
EHND6	EHND6 - 132	1.64	25	8710	2	1.52	<5	107	2.36	241	<10
EHND6	EHND6 - 133	1.39	48	8380	5	2.73	<5	97	2.36	241	<10
EHND6	EHND6 - 134	2.42	23	7020	4	1.16	<5	131	2.17	203	<10
EHND6	EHND6 - 135	1.45	27	4480	12	1.51	<5	80	2.28	255	<10
EHND6	EHND6 - 136	1.68	19	4890	5	0.92	<5	101	2.83	220	<10
EHND6	EHND6 - 137	1.54	20	7910	2	0.96	<5	113	2.33	231	<10
EHND6	EHND6 - 138	1.23	20	8110	4	0.9	<5	102	2.16	240	<10
EHND6	EHND6 - 139	1.21	34	7600	2	1.68	<5	86	2.14	257	<10
EHND6	EHND6 - 140	1.9	20	8830	<2	1.13	<5	122	2.33	229	<10
EHND6	EHND6 - 141	1.62	14	9130	7	0.84	<5	110	2.54	236	<10
EHND6	EHND6 - 142	1.53	72	8670	4	3.77	<5	104	2.49	224	<10
EHND6	EHND6 - 143	1.85	49	8210	2	2.65	<5	115	2.26	219	<10
EHND6	EHND6 - 144	0.92	40	7710	7	2.47	<5	79	1.86	328	<10
EHND6	EHND6 - 145										
EHND6	EHND6 - 146	1.07	24	8520	5	1.14	<5	98	2.43	246	<10
EHND6	EHND6 - 147	1.19	13	9120	2	0.55	<5	104	2.55	242	<10
EHND6	EHND6 - 148	0.4	21	8130	4	0.62	<5	74	2.21	217	<10
EHND6	EHND6 - 149	0.8	14	7200	3	0.36	<5	85	2.22	237	<10
EHND6	EHND6 - 150	1.25	13	8970	2	0.73	<5	91	2.55	247	<10
EHND6	EHND6 - 151	0.99	10	9130	6	0.63	<5	95	2.55	275	<10
EHND6	EHND6 - 152	1.16	31	9140	7	1.55	<5	85	2.41	287	<10
EHND6	EHND6 - 153	1.08	35	8250	8	1.8	<5	83	1.89	311	<10
EHND6	EHND6 - 154	1.69	14	9830	10	0.62	<5	115	2.78	259	<10
EHND6	EHND6 - 155	1.37	14	7690	5	0.5	<5	98	2.4	253	<10
EHND6	EHND6 - 156	1.57	13	7680	4	0.47	<5	106	2.38	253	<10
EHND6	EHND6 - 157	1.17	14	10900	6	0.5	<5	106	1.21	244	<10
EHND6	EHND6 - 158	2.03	25	8980	<2	1.3	<5	127	2.42	241	<10
EHND6	EHND6 - 159	1.71	27	8980	2	1.34	<5	109	2.47	238	<10
EHND6	EHND6 - 160	1.88	17	9310	3	0.88	<5	125	2.61	235	<10

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Na	Ni	P	Pb	S	Sb	Sr	Ti	V	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND6	EHND6 - 161	2.38	44	5820	3	2.71	<5	143	1.49	207	<10
EHND6	EHND6 - 162	2.06	51	6760	2	2.55	<5	121	1.78	214	<10
EHND6	EHND6 - 163	2.36	28	6990	<2	1.47	<5	140	1.83	197	<10
EHND6	EHND6 - 164	1.77	14	8640	5	0.57	<5	116	2.47	217	<10
EHND6	EHND6 - 165	1.05	17	8870	4	0.72	<5	94	2.11	238	<10
EHND6	EHND6 - 166	2.71	16	7680	3	0.86	<5	142	2.02	213	<10
EHND6	EHND6 - 167	2.23	16	9130	<2	0.82	<5	125	2.56	227	<10
EHND6	EHND6 - 168	1.93	14	5710	37	0.84	<5	111	1.96	302	<10
EHND6	EHND6 - 169	1.8	28	5180	3	1.25	<5	100	1.83	321	<10
EHND6	EHND6 - 170	0.89	142	40500	11	7.25	<5	114	0.49	235	<10
EHND6	EHND6 - 171	1.72	27	8490	2	1.39	<5	91	1.95	325	<10
EHND6	EHND6 - 172	2.03	27	7690	<2	1.31	<5	126	2.13	192	<10
EHND6	EHND6 - 173	1.72	30	6900	5	1.45	<5	115	1.84	231	10
EHND6	EHND6 - 174	2.92	10	8510	5	0.59	<5	180	2.43	208	<10
EHND6	EHND6 - 175	3.47	53	6670	<2	2.3	<5	216	1.65	166	<10
EHND6	EHND6 - 176	2.15	14	5100	4	0.55	<5	116	1.55	253	<10
EHND6	EHND6 - 177	1.04	32	2600	2	1.05	<5	50	1.67	669	<10
EHND6	EHND6 - 178	2.25	43	11900	6	1.46	<5	142	1.72	315	<10
EHND6	EHND6 - 179	3.54	50	5410	5	1.44	<5	201	1.58	171	<10
EHND6	EHND6 - 180	2.99	61	5390	4	1.97	<5	162	1.51	175	<10
EHND6	EHND6 - 181	1.92	21	3150	3	0.43	<5	84	1.41	329	<10
EHND6	EHND6 - 182	2.88	24	6240	4	0.89	<5	156	1.71	170	<10
EHND6	EHND6 - 183	1.88	18	4620	6	0.6	5	98	1.66	366	<10
EHND6	EHND6 - 184	0.95	45	3890	4	1.5	<5	47	1.41	515	<10
EHND6	EHND6 - 185	2.52	17	8030	3	0.57	<5	153	1.93	180	<10
EHND6	EHND6 - 186	2.69	32	8860	4	1.21	<5	165	2.49	203	<10
EHND6	EHND6 - 187	2.64	46	5740	4	1.44	<5	135	1.9	219	<10
EHND6	EHND6 - 188	2.72	61	7420	10	2.04	<5	131	1.31	211	<10
EHND6	EHND6 - 189	3.84	44	2900	13	1.55	<5	161	0.22	135	<10
EHND6	EHND6 - 190	4.52	42	4280	3	1.61	<5	234	0.47	146	<10
EHND6	EHND6 - 191	3.73	57	8840	4	1.45	<5	149	0.21	96	<10
EHND7	EHND7 - 001	1.7	104	210	7	0.14	<5	87	0.81	766	<10
EHND7	EHND7 - 002	2.58	119	290	4	0.55	<5	138	0.7	240	<10

Page 30 of 40

		ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s	ME-ICP61s
		Na	Ni	Р	Pb	S	Sb	Sr	Ti	٧	W
Hole No	Sample Number	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
EHND7	EHND7 - 003	1.68	108	260	7	0.16	<5	90	0.34	195	<10
EHND7	EHND7 - 004	1.59	129	170	6	0.13	<5	87	0.28	167	<10
EHND7	EHND7 - 005	1.67	110	200	8	0.13	<5	96	0.26	142	<10
EHND8	EHND8 - 001	2.53	43	620	5	0.11	<5	161	0.8	342	<10
EHND8	EHND8 - 002	2.17	63	450	2	0.13	<5	174	0.83	440	<10
EHND8	EHND8 - 003	2.39	55	400	3	0.11	<5	153	0.76	392	<10
EHND8	EHND8 - 004	2.75	72	460	3	0.14	<5	218	0.94	495	<10
EHND8	EHND8 - 005	2.18	62	410	4	0.11	<5	180	0.77	397	<10

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND3	EHND3 -001	29	0.0026	0.001
EHND3	EHND3 -002	107	0.0012	0.001
EHND3	EHND3 -003	75	0.0015	0.001
EHND3	EHND3 -004	93	0.0007	0.001
EHND3	EHND3 -005	32	0.0016	0.001
EHND3	EHND3 -006	29	0.0023	0.003
EHND3	EHND3 -007	25	< 0.0005	0.001
EHND3	EHND3 -008	29	0.0013	0.003
EHND3	EHND3 -009	105	< 0.0005	0.001
EHND4	EHND4 - 001	5		
EHND4	EHND4 - 002	3		
EHND4	EHND4 - 003	7		
EHND4	EHND4 - 004	2		
EHND4	EHND4 - 005	3		
EHND4	EHND4 - 006	3		
EHND4	EHND4 - 007	4		
EHND4	EHND4 - 008	4		
EHND4	EHND4 - 009	6		
EHND4	EHND4 - 010	5		
EHND4	EHND4 - 011	2		
EHND4	EHND4 - 012	<2		
EHND4	EHND4 - 013	5		
EHND4	EHND4 - 014	6		
EHND4	EHND4 - 015	<2		
EHND4	EHND4 - 016	5		
EHND4	EHND4 - 017	3		
EHND4	EHND4 - 018	7		
EHND4	EHND4 - 019	9		
EHND4	EHND4 - 020	17		
EHND4	EHND4 - 021	7		
EHND4	EHND4 - 022	9		
EHND4	EHND4 - 023	27		
EHND4	EHND4 - 024	9		

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND4	EHND4 - 025	7		
EHND4	EHND4 - 026	10		
EHND4	EHND4 - 027	7		
EHND4	EHND4 - 028	8		
EHND4	EHND4 - 029	9		
EHND4	EHND4 - 030	12		
EHND5	EHND5 - 001	8		
EHND5	EHND5 - 002	5		
EHND5	EHND5 - 003	6		
EHND5	EHND5 - 004	6		
EHND5	EHND5 - 005	6		
EHND5	EHND5 - 006	6		
EHND5	EHND5 - 007	6		
EHND5	EHND5 - 008	6		
EHND5	EHND5 - 009	6		
EHND5	EHND5 - 010	6		
EHND5	EHND5 - 011	6		
EHND5	EHND5 - 012	6		
EHND5	EHND5 - 013	8		
EHND5	EHND5 - 014	5		
EHND5	EHND5 - 015	6		
EHND5	EHND5 - 016	8		
EHND5	EHND5 - 017	5		
EHND5	EHND5 - 018	6		
EHND5	EHND5 - 019	5		
EHND5	EHND5 - 020	5		
EHND5	EHND5 - 021	4		
EHND5	EHND5 - 022	5		
EHND5	EHND5 - 023	4		
EHND5	EHND5 - 024	4		
EHND5	EHND5 - 025	5		
EHND5	EHND5 - 026	3		
EHND5	EHND5 - 027	4		

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND5	EHND5 - 028	4		
EHND5	EHND5 - 029	5		
EHND5	EHND5 - 030	9		
EHND5	EHND5 - 031	14		
EHND5	EHND5 - 032	11		
EHND5	EHND5 - 033	9		
EHND5	EHND5 - 034	8		
EHND5	EHND5 - 035	9		
EHND5	EHND5 - 036	10		
EHND5	EHND5 - 037	6		
EHND5	EHND5 - 038	10		
EHND5	EHND5 - 039	7		
EHND5	EHND5 - 040	18		
EHND5	EHND5 - 041	12		
EHND5	EHND5 - 042	11		
EHND5	EHND5 - 043	16		
EHND5	EHND5 - 044	21		
EHND5	EHND5 - 045	20		
EHND5	EHND5 - 046	11		
EHND5	EHND5 - 047	9		
EHND5	EHND5 - 048	10		
EHND5	EHND5 - 049	12		
EHND5	EHND5 - 050	9		
EHND5	EHND5 - 051	13		
EHND5	EHND5 - 052	12		
EHND5	EHND5 - 053	11		
EHND5	EHND5 - 054	9		
EHND5	EHND5 - 055	8		
EHND5	EHND5 - 056	8		
EHND5	EHND5 - 057	11		
EHND5	EHND5 - 058	10		
EHND5	EHND5 - 059	9		
EHND5	EHND5 - 060	8		

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND5	EHND5 - 061	8		
EHND5	EHND5 - 062	8		
EHND5	EHND5 - 063	6		
EHND5	EHND5 - 064	7		
EHND5	EHND5 - 065	8		
EHND6	EHND6 - 001	25		
EHND6	EHND6 - 002	33		
EHND6	EHND6 - 003	46		
EHND6	EHND6 - 004	37		
EHND6	EHND6 - 005	59		
EHND6	EHND6 - 006	85		
EHND6	EHND6 - 007	51		
EHND6	EHND6 - 008	60		
EHND6	EHND6 - 009	58		
EHND6	EHND6 - 010	57		
EHND6	EHND6 - 011	44		
EHND6	EHND6 - 012	31		
EHND6	EHND6 - 013	37		
EHND6	EHND6 - 014	88		
EHND6	EHND6 - 015	79		
EHND6	EHND6 - 016	55		
EHND6	EHND6 - 017	43		
EHND6	EHND6 - 018	35		
EHND6	EHND6 - 019	57		
EHND6	EHND6 - 020	74		
EHND6	EHND6 - 021	56		
EHND6	EHND6 - 022	97		
EHND6	EHND6 - 023	32		
EHND6	EHND6 - 024	20		
EHND6	EHND6 - 025	29		
EHND6	EHND6 - 026	31		
EHND6	EHND6 - 027	37		
EHND6	EHND6 - 028	42		

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND6	EHND6 - 029	43		
EHND6	EHND6 - 030	57		
EHND6	EHND6 - 031	25		
EHND6	EHND6 - 032	33		
EHND6	EHND6 - 033	51		
EHND6	EHND6 - 034	42		
EHND6	EHND6 - 035	35		
EHND6	EHND6 - 036	23		
EHND6	EHND6 - 037	18		
EHND6	EHND6 - 038	21		
EHND6	EHND6 - 039	40		
EHND6	EHND6 - 040	60		
EHND6	EHND6 - 041	22		
EHND6	EHND6 - 042	22		
EHND6	EHND6 - 043	31		
EHND6	EHND6 - 044	26		
EHND6	EHND6 - 045	21		
EHND6	EHND6 - 046	39		
EHND6	EHND6 - 047	54		
EHND6	EHND6 - 048	30		
EHND6	EHND6 - 049	75		
EHND6	EHND6 - 050	85		
EHND6	EHND6 - 051	82		
EHND6	EHND6 - 052	81		
EHND6	EHND6 - 053	86		
EHND6	EHND6 - 054	57		
EHND6	EHND6 - 055	56		
EHND6	EHND6 - 056	57		
EHND6	EHND6 - 057	67		
EHND6	EHND6 - 058	47		
EHND6	EHND6 - 059	45		
EHND6	EHND6 - 060	60		
EHND6	EHND6 - 061	45		

MIE-ICPO PGM-MS23 PGM-MS23 PGM-MS23 PGM-MS23 PM PM PM PM PM PM PM P			ME ICD64a	DCM MCCC	DCM MCCC
Hole No Sample Number ppm ppm ppm EHND6 EHND6 - 062 61			ME-ICP61s	PGM-MS23	PGM-MS23
EHND6 EHND6 - 062 61 EHND6 EHND6 - 063 63 EHND6 EHND6 - 064 61 EHND6 EHND6 - 065 56 EHND6 EHND6 - 066 50 EHND6 EHND6 - 067 43 EHND6 EHND6 - 068 34 EHND6 EHND6 - 069 50 EHND6 EHND6 - 070 96 EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44		0			
EHND6 EHND6 - 063 63 EHND6 EHND6 - 064 61 EHND6 EHND6 - 065 56 EHND6 EHND6 - 066 50 EHND6 EHND6 - 067 43 EHND6 EHND6 - 068 34 EHND6 EHND6 - 069 50 EHND6 EHND6 - 070 96 EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 078 48 EHND6 EHND6 - 078 48 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 099 44 EHND6 EHND6 - 099 44 EHND6 EHND6 - 099 34 EHND6 EHND6 - 099 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45		•		ppm	ppm
EHND6 EHND6 - 064 61 EHND6 EHND6 - 065 56 EHND6 EHND6 - 066 50 EHND6 EHND6 - 067 43 EHND6 EHND6 - 068 34 EHND6 EHND6 - 069 50 EHND6 EHND6 - 070 96 EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 078 48 EHND6 EHND6 - 078 48 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44			_		
EHND6 EHND6 - 065					
EHND6 EHND6 - 066 50 EHND6 EHND6 - 067 43 EHND6 EHND6 - 068 34 EHND6 EHND6 - 069 50 EHND6 EHND6 - 070 96 EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45			-		
EHND6 EHND6 - 067 43 EHND6 EHND6 - 068 34 EHND6 EHND6 - 069 50 EHND6 EHND6 - 070 96 EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 084 40 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45					
EHND6 EHND6 - 068 34 EHND6 EHND6 - 069 50 EHND6 EHND6 - 070 96 EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45					
EHND6 EHND6 - 069 50 EHND6 EHND6 - 070 96 EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45					
EHND6 EHND6 - 070 96 EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45					
EHND6 EHND6 - 071 44 EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6		50		
EHND6 EHND6 - 072 47 EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45			96		
EHND6 EHND6 - 073 54 EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 071	44		
EHND6 EHND6 - 074 62 EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 072	47		
EHND6 EHND6 - 075 54 EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 073	54		
EHND6 EHND6 - 076 47 EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 074	62		
EHND6 EHND6 - 077 43 EHND6 EHND6 - 078 48 EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 075	54		
EHND6 EHND6 - 078	EHND6	EHND6 - 076	47		
EHND6 EHND6 - 079 40 EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 077	43		
EHND6 EHND6 - 080 39 EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 078	48		
EHND6 EHND6 - 081 36 EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 079	40		
EHND6 EHND6 - 082 57 EHND6 EHND6 - 083 44 EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 080	39		
EHND6 EHND6 - 083	EHND6	EHND6 - 081	36		
EHND6 EHND6 - 084 40 EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 082	57		
EHND6 EHND6 - 085 50 EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 083	44		
EHND6 EHND6 - 086 46 EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 084	40		
EHND6 EHND6 - 087 40 EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 085	50		
EHND6 EHND6 - 088 50 EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 086	46		
EHND6 EHND6 - 089 35 EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 087	40		
EHND6 EHND6 - 090 34 EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 088	50		
EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 089	35		
EHND6 EHND6 - 091 38 EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6	EHND6 - 090	34		
EHND6 EHND6 - 092 44 EHND6 EHND6 - 093 45	EHND6		38		
	EHND6				
	EHND6	EHND6 - 093	45		
	EHND6		50		

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND6	EHND6 - 095	24		
EHND6	EHND6 - 096	35		
EHND6	EHND6 - 097	43		
EHND6	EHND6 - 098	48		
EHND6	EHND6 - 099	54		
EHND6	EHND6 - 100	49		
EHND6	EHND6 - 101	58		
EHND6	EHND6 - 102	55		
EHND6	EHND6 - 103	54		
EHND6	EHND6 - 104	69		
EHND6	EHND6 - 105	67		
EHND6	EHND6 - 106	44		
EHND6	EHND6 - 107	36		
EHND6	EHND6 - 108	30		
EHND6	EHND6 - 109	21		
EHND6	EHND6 - 110	24		
EHND6	EHND6 - 111	28		
EHND6	EHND6 - 112	36		
EHND6	EHND6 - 113	22		
EHND6	EHND6 - 114	20		
EHND6	EHND6 - 115	18		
EHND6	EHND6 - 116	30		
EHND6	EHND6 - 117	19		
EHND6	EHND6 - 118	22		
EHND6	EHND6 - 119	19		
EHND6	EHND6 - 120	17		
EHND6	EHND6 - 121	13		
EHND6	EHND6 - 122	15		
EHND6	EHND6 - 123	15		
EHND6	EHND6 - 124	19		
EHND6	EHND6 - 125	15		
EHND6	EHND6 - 126	26		
EHND6	EHND6 - 127	40		

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND6	EHND6 - 128	41		
EHND6	EHND6 - 129	40		
EHND6	EHND6 - 130	46		
EHND6	EHND6 - 131	67		
EHND6	EHND6 - 132	37		
EHND6	EHND6 - 133	36		
EHND6	EHND6 - 134	27		
EHND6	EHND6 - 135	33		
EHND6	EHND6 - 136	26		
EHND6	EHND6 - 137	33		
EHND6	EHND6 - 138	46		
EHND6	EHND6 - 139	42		
EHND6	EHND6 - 140	36		
EHND6	EHND6 - 141	44		
EHND6	EHND6 - 142	42		
EHND6	EHND6 - 143	37		
EHND6	EHND6 - 144	65		
EHND6	EHND6 - 145			
EHND6	EHND6 - 146	83		
EHND6	EHND6 - 147	83		
EHND6	EHND6 - 148	59		
EHND6	EHND6 - 149	48		
EHND6	EHND6 - 150	62		
EHND6	EHND6 - 151	62		
EHND6	EHND6 - 152	45		
EHND6	EHND6 - 153	65		
EHND6	EHND6 - 154	61		
EHND6	EHND6 - 155	90		
EHND6	EHND6 - 156	71		
EHND6	EHND6 - 157	34		
EHND6	EHND6 - 158	45		
EHND6	EHND6 - 159	39		
EHND6	EHND6 - 160	60		

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND6	EHND6 - 161	29		
EHND6	EHND6 - 162	26		
EHND6	EHND6 - 163	29		
EHND6	EHND6 - 164	32		
EHND6	EHND6 - 165	32		
EHND6	EHND6 - 166	38		
EHND6	EHND6 - 167	58		
EHND6	EHND6 - 168	42		
EHND6	EHND6 - 169	38		
EHND6	EHND6 - 170	25		
EHND6	EHND6 - 171	45		
EHND6	EHND6 - 172	33		
EHND6	EHND6 - 173	34		
EHND6	EHND6 - 174	51		
EHND6	EHND6 - 175	32		
EHND6	EHND6 - 176	35		
EHND6	EHND6 - 177	132		
EHND6	EHND6 - 178	30		
EHND6	EHND6 - 179	23		
EHND6	EHND6 - 180	23		
EHND6	EHND6 - 181	28		
EHND6	EHND6 - 182	31		
EHND6	EHND6 - 183	37		
EHND6	EHND6 - 184	47		
EHND6	EHND6 - 185	27		
EHND6	EHND6 - 186	33		
EHND6	EHND6 - 187	29		
EHND6	EHND6 - 188	21		
EHND6	EHND6 - 189	18		
EHND6	EHND6 - 190	21		
EHND6	EHND6 - 191	108		
EHND7	EHND7 - 001	113		
EHND7	EHND7 - 002	59		

		ME-ICP61s	PGM-MS23	PGM-MS23
		Zn	Pt	Pd
Hole No	Sample Number	ppm	ppm	ppm
EHND7	EHND7 - 003	77		
EHND7	EHND7 - 004	80		
EHND7	EHND7 - 005	74		
EHND8	EHND8 - 001	73	0.0025	0.006
EHND8	EHND8 - 002	84	0.0458	0.052
EHND8	EHND8 - 003	65	0.0236	0.029
EHND8	EHND8 - 004	77	0.0118	0.016
EHND8	EHND8 - 005	89	0.017	0.021

APPENDIX 3

Magnetic Susceptibility Measurements

AGNETIT	C SUSC	EPTIBILITES				
IOLE : EH	ND3					
			x10-3 SI			
From	То	Reading 1	Reading 2	Reading 3	Average	Comments
272.4	273	21.3	6.85	2.24	10.13	
273	274	0.7	2.26	2.32	1.76	
274	275	0.3	1.59	0.43	0.77	
275	276	1.22	10.4	0.97	4.20	
276	277	0.84	0.42	0.28	0.51	
277	278	5.87	2.86	2.60	3.78	
278	279	1.22	6.59	5.04	4.28	
279	280	7.01	13.1	30.9	17.00	
280	281	28.4	18	16.5	20.97	
281	282	19.6	18.1	12.6	16.77	
282	283	27.2	15.6	5.38	16.06	
283	284	28.2	33.9	24.8	28.97	
284	285	18.1	16.7	10.4	15.07	
285	286	14.5	23.3	10.9	16.23	
286	287	23.7	22.9	35.7	27.43	
287	288	28.5	4.15	25.2	19.28	
288	289	23.8	16.2	6.45	15.48	
289	290	14.7	26	22.8	21.17	
290	291	24.7	30.1	24.7	26.50	
291	292	33.6	27.3	29	29.97	
292	293	34.5	3.35	3.39	13.75	
293	294	46	44.3	16.7	35.67	
294	295	44.1	47.7	38.3	43.37	
295	296	53.1	40.9	30.7	41.57	
296	297	40.4	87.5	92.3	73.40	
297	298	15.7	75.1	51.5	47.43	
298	299	16.6	34.3	20.2	23.70	
299	300	18.3	60.6	37.5	38.80	
300	301	1.94	18.8	4.04	8.26	
301	302	1.74	0.23	2.78	1.58	
302	303	8.44	11.9	15.4	11.91	
303	304	1.83	1.53	4.21	2.52	
304	305	7.98	13.8	7.3	9.69	
305	306	9.28	6.38	15.8	10.49	
306	307	5.83	2.07	10	5.97	
307	308	13.1	11.3	1.54	8.65	
308	309	24.6	20.4	40.2	28.40	
309	310	53.3	43.6	50.2	49.03	
310	311	0.68	1.25	3.38	1.77	
311	312	1.45	2.97	1.47	1.96	
312	313	6.39	17.2	8.7	10.76	
313	314	11.9	11.1	24.7	15.90	
314	315.3	14.4	11.3	7.04	10.91	

MAGNET	TC SUSC	EPTIBILITES				
MACINET	110 0000	EI IIBIEITEO				
HOLE :	EHND4					
			x10-3 SI			
From	То	Reading 1	Reading 2	Reading 3	Average	Comments
237.7	239	0.51	6.45	8.65	5.20	
239	240	11.5	15.2	8.61	11.77	
240	241	4.15	1.88	0.84	2.29	
241	242	0.86	0.24	0.93	0.68	
242	243	1.29		0.48	1.01	
243	244	2.02		1.37	2.66	
244	245	0.71	1.33	1.22	1.09	
245	246	5.54		16.3	11.78	
246	247	13.2		75.2	36.87	
247	248	12.8		1.17	12.36	
248	249	11.7		5.87	7.44	
249	250	22.5		97.4	49.00	
250	251	88		2.06	35.79	
251	252	6.25	5.7	15.4	9.12	
252	253	77.7	18.6	8.3	34.87	
253	254	9.52		18.8	11.10	
254	255	12.7	10.8	13.3	12.27	
255	256	13.1		4.47	8.18	
256	257	2.57		7.64	8.24	
257	258	2.46		59.80	25.02	
258	259	5.55		6.38	6.21	
259	260	14.9		7.18	10.02	
260	261	9.28		8.14	8.68	
261	262	19.8		9.6	15.07	
262	263	16.1		11	14.80	
263	264	13.4		18	14.67	
264 265	265	19.5		20.8	20.53	
266	266 267	19 24.5		26.3 12.5	18.80 16.73	
267	268	48.6		12.5	25.79	
268	269	20.1	22.7	29.7	24.17	
269	270	29.5		22.6	25.80	
270	271	27.8		30.4	33.23	
271	272	34.5		35	28.47	
272	273	30		42	31.00	
273	274	33.2		19.1	25.83	
274	275	24	27.2	22.9	24.70	
275	276	12.8		16.5	16.83	
276	277	2.89		6.73	8.91	
277	278	2.04		20.8	13.91	
278	279	12	15.9	32.8	20.23	
279	280	11.7		41.8	22.47	
280	281	9.35		24.2	13.16	
281	282	20.9		2.27	18.82	
282	283	30.1		5.46	13.38	
283	284	1.74		2.22	4.37	
284	285	1.92	26.8	6.24	11.65	
285	286	20.2	5	24	16.40	
286	287	224	92.1	3.82	106.64	
287	288	146		100	135.33	
288	289	24.9	23.8	161	69.90	

Page 2 of 2

From	То	Reading 1	Reading 2	Reading 3	Average	Comments
289	290	328	26.2	3.9	119.37	
290	291	35.5	8.6	55.4	33.17	
291	292	88.8	46.7	2.75	46.08	
292	293	59	50.5	88.3	65.93	
293	294	2.35	81.3	81.9	55.18	
294	295	65.4	9.69	20.7	31.93	
295	296	160	190	3210	1186.67	
296	297	36.9	4.23	22.8	21.31	
297	298	5.42	30.3	2.99	12.90	
298	299	42	16.6	30.7	29.77	
299	300	4.86	87.5	95.7	62.69	
300	301	0.8	0.43	1.97	1.07	
301	302.3	1.55	1.42	0.33	1.10	

MAGNETI	TC SUSC	EPTIBILITIES				
HOLE: EH	ND5					
			x10-3 SI			
From	To	Reading 1	Reading 2	Reading 3	Average	Comments
239.3	240	294	339	576	403.00	
240	241	661	503	377	513.67	
241	242	312	315	351	326.00	
242	243	389	441	342	390.67	
243	244	352	293	308	317.67	
244	245	437	266	345	349.33	
245	246	278	261	522	353.67	
246	247	328	315	570	404.33	
247	248	495	240	322	352.33	
248	249	251	7.21	42.5	100.24	
249	250	21.7	34.8	20.3	25.60	
250	251	71.5	31.4	46.3	49.73	
251	252	71	218	279	189.33	
252	253	335	318	387	346.67	
253	254	180	369	301	283.33	
254	255	29	229	198	152.00	
255	256	14	66.6	297	125.87	
256	257	279	9.75	14.1	100.95	
257	258	4.41	119	423	182.14	
258	259	217	32.4	350	199.80	
259	260	144	103	98.1	115.03	
260	261	58.1	63.6	270	130.57	
261	262	44.1	62.4	140	82.17	
262	263	373	460	47.7	293.57	
263	264	563	129	338	343.33	
264	265	91.5	526	479	365.50	
265	266	86.2	108	43.5	79.23	
266	267	72.8	114	141	109.27	
267	268	60.3	117	204	127.10	
268	269	52.5	206	28.7	95.73	
269	270	13.9		29.6	68.17	
270	271	21.3	54.6	54.1	43.33	
271	272	94.5	69.7	126	96.73	
272	273	158	115	111	128.00	
273	274	51.4		117	96.47	
274	275	58.3	100	35.3	64.53	
275	276	69.7	82.6	95.7	82.67	
276	277	61.4		75.4	86.60	
277	278	43.5	54.7	29.6	42.60	
278	279	14.2	38.9	32.7	28.60	
279	280	26.7	34.9	19.7	27.10	
280	281	66.1	37.3	33.9	45.77	
281	282	33.4	40.1	97.4	56.97	
282	283	56.3	50.4	97.8	68.17	
283	284	81.9	48.6	110	80.17	
284	285	116	127	196	146.33	
285	286	137	113	186	145.33	
286	287	166	100	139	135.00	
287	288	78.6	139	186	134.53	
288	289	311	239	304	284.67	
289	290	155	104	112	123.67	

From	То	Reading 1	Reading 2	Reading 3	Average	Comments
290	291	66.9	47.8	158	90.90	
291	292	144	128	129	133.67	
292	293	203	178	126	169.00	
293	294	172	127	159	152.67	
294	295	171	38.3	190	133.10	
295	296	11.3	12.2	3.6		Broken core
296	297	3.4	24.9	74		Broken core
297	298	90.8	96.7	39	75.50	2.0.0
298	299	42.4	86.8	154	94.40	
299	300	47.2	57.4	111	71.87	
300	301	91.8	72.9	73	79.23	
301	302	96.6	68.3	84.6	83.17	
302	303	70.1	47	54.1	57.07	
303	304	192	150	149	163.67	
303	305	207	106	193	168.67	
305	306	163	159	183	168.33	
306	307					
		254	292	273	273.00	
307	308	211	156	1138	501.67	
308	309	143	270	245	219.33	
309	310	41.7	131	32.3	68.33	
310	311	30.2	72.6	64.7	55.83	
311	312	71.7	141	91.4	101.37	
312	313	139	108	98.6	115.20	
313	314	159	103	46.6	102.87	
314	315	73.1	14.1	137	74.73	
315	316	437	119	576	377.33	
316	317	292	501	4468	1753.67	
317	318	297	466	428	397.00	
318	319	576	315	429	440.00	
319	320	319	435	604	452.67	
320	321	446	562	543	517.00	
321	322	432	400	134	322.00	
322	323	633	233	432	432.67	
323	324	414	227	263	301.33	
324	325	99.9	244	173	172.30	
325	326	417	341	583	447.00	
326	327	237	311	203	250.33	
327	328	45.9	583	66.8	231.90	
328	329	49.2	274	356	226.40	
329	330	94.2	187	426	235.73	
330	331	131	47.7	75.6	84.77	
331	332	209	278	111	199.33	
332	333	41.1	177	280	166.03	
333	334	200	381	169	250.00	
334	335	147	216	385	249.33	
334						
333	336.2	128	153	329	203.33	

MAGNET	ITC SUSC	EPTIBILITES				
HOLE	EHND6		×40.2 CI			
From	То	Reading 1	x10-3 SI Reading 2	Reading 3	Average	Comments
212.35	213	101	75.1	116	97.37	Comments
213	214	84.8	123	460	222.60	
214	215	148	196	81.5	141.83	
215	216	221	210	99.7	176.90	
216	217	200	156	184	180.00	
217	218	166	186	147	166.33	
218	219	143	250	188	193.67	
219	220	190		139	169.67	
220	221	187	221	219	209.00	
221	222	180	309	256	248.33	
222	223	58.6		112	68.57	
223	224	235	227	162	208.00	
224	225	125	218	212	185.00	
225	226	235	216	132	194.33	
226	227	246		161	218.67	
227	228	274	255	272	267.00	
228	229	302	558	219	359.67	
229	230	142	60.4	185	129.13	
230	231	321	254	232	269.00	
231	232	245	181	302	242.67	
232	233	217	229	204	216.67	
233	234	195	34.8	96.3	108.70	
234	235	168	139	16.3	107.77	
235	236	8.46	23.3	4.49	12.08	
236	237	513	229	14.1	252.03	
237	238	869	5.16	3.98	292.71	
238	239	0.57	8.87	15.6	8.35	
239	240	127	35.1	18.2	60.10	
240	241	249	5.52	159	137.84	
241	242	274	179	137	196.67	
242	243	35.1	157	326	172.70	
243	244	312	182	179	224.33	
244	245	226	204	187	205.67	
245	246	169	198	202	189.67	
246	247	150	203	232	195.00	
247	248	543	268	227	346.00	
248	249	187	39	384	203.33	
249	250	6.23	530	9.96	182.06	
250	251	15.2	95.2	190	100.13	
251	252	27.1	200	89.4	105.50	
252	253	140	168	87.9	131.97	
253	254	3.82	24	6.13	11.32	
254	255	7.04	729	163	299.68	
255	256	222	6.36	3.02	77.13	
256	257	4.52		256	162.17	
257	258	240	278	200	239.33	
258	259	203	140	15.1	119.37	
259	260	27.7	199	229	151.90	
260	261	128	198	413	246.33	
261	262	267	159	117	181.00	
262	263	108	151	314	191.00	

From	То	Reading 1	Reading 2	Reading 3	Average	Comments
263	264	128	112	138	126.00	
264	265	143	238	191	190.67	
265	266	279	290	262	277.00	
266	267	527	234	273	344.67	
267	268	261	238	153	217.33	
268	269	190	255	628	357.67	
269	270	42.2	189	261	164.07	
270	271	237	305	206	249.33	
271	272	197	228	225	216.67	
272	273	218	222	61.7	167.23	
273	274	812	242	236	430.00	
274	275	219	599	284	367.33	
275	276	310	887	932	709.67	
276	277	296	291	310	299.00	
277	278	236	441	320	332.33	
278	279	222	335	210	255.67	
279	280	221	251	193	221.67	
280	281	609	682	1000	763.67	
281	282	1000	1000	45.1	681.70	
282	283	294	262	14.3	190.10	
283	284	188	237	173	199.33	
284	285	270	201	152	207.67	
285	286	22	205	226	151.00	
286	287	205	205	224	211.33	
287	288	248	21.9	164	144.63	
288		23		236	406.33	
	289		960			
289	290	605	318	218	380.33	
290	291	464	322	576	454.00	
291	292	425	109	166	233.33	
292	293	296	214	205	238.33	
293	294	175	249	241	221.67	
294	295	217	194	635	348.67	
295	296	207	248	266	240.33	
296	297	330	256	275	287.00	
297	298	217	636	435	429.33	
298	299	488	636	313	479.00	
299	300	484	1000	1000	828.00	
300	301	258	176	376	270.00	
301	302	1000	813	255	689.33	
302	303	332	302	236	290.00	
303	304	260	268	237	255.00	
304	305	394	396	272	354.00	
305	306	234	237	72.8	181.27	
306	307	254	10.8	70	111.60	
307	308	190	43	36	89.67	
308	309	27.9	615	259	300.63	
309	310	174	256	42.5	157.50	
310	311	365	255	193	271.00	
311	312	202	258	205	221.67	
312	313	262	447	247	318.67	
313	314	327	245	1000	524.00	
314	315	491	218	256	321.67	
315	316	167	244	108	173.00	
316	317	215	206	256	225.67	
317	318	296	248	243	262.33	
0	0.0	200	2 10	2.0	202.00	

From	То	Reading 1	Reading 2	Reading 3	Average	Comments
318	319	213	260	196	223.00	
319	320	164	79.6	168	137.20	
320	321	107	109	88.6	101.53	
321	322	154	49.8	26.8	76.87	
322	323	22.5	62.1	429	171.20	
323	324	156	321	115	197.33	
324	325	20.3	133	11.4	54.90	
325	326	199	105	112	138.67	
326	327	281	82.4	304	222.47	
327	328	538	272	104	304.67	
328	329	187	119	93.9	133.30	
329	330	59.3	29.3	167	85.20	
330	331	251	324	129	234.67	
			37			
331	332	41.7		18.4	32.37	
332	333	1.14	1.69	0.53	1.12	
333	334	0.55	0.36	0.45	0.45	
334	335	0.63	3.53	8.6	4.25	
335	336	2.73	2.85	10.5	5.36	
336	337	10.8	15.3	30.2	18.77	
337	338	300	57.2	229	195.40	
338	339	81.4	452	499	344.13	
339	340	68.3	206	158	144.10	
340	341	39.4	19.6	550	203.00	
341	342	464	653	668	595.00	
342	343	111	95.5	99	101.83	
343	344	144	115	151	136.67	
344	345	114	125	182	140.33	
345	346	134	156	73.1	121.03	
346	347	208	471	29.1	236.03	
347	348	85.2	66.5	38.5	63.40	
348	349	75.5	84.9	115	91.80	
349	350	149	319	61.3	176.43	
350	351	346	190	202	246.00	
351	352	349	127	124	200.00	
352	353	111	318	149	192.67	
353	354	103	93	100	98.67	
354	355	110	97.5	99.5	102.33	
355	356	280	225	133	212.67	
356	357	96.7	78.8	98.8	91.43	
357	358	139	102	245	162.00	
358	359	107	110	150	122.33	
359	360	64	18.9	103	61.97	
360	361	68.9	98.8	95.8	87.83	
361	362	124	104	105	111.00	
362	363	106	489	121	238.67	
363	364	125	108	132	121.67	
364	365	123	112	125	119.67	
365	366	132	123	82.9	112.63	
366	367	116	100	92.1	102.70	
367	368	86.8	60.3	101	82.70	
368	369	40.8	55.3	94.6	63.57	
369	370	104	147	113	121.33	
370	371	152	106	92.3	116.77	
371	372	113	102	102	105.67	
372	373	39.1	98.5	125	87.53	

Page 4 of 4

From	То	Reading 1	Reading 2	Reading 3	Average	Comments
373	374	58.4	79.7	80.2	72.77	
374	375	115	39.7	50.1	68.27	
375	376	66.2	109	126	100.40	
376	377	116	341	134	197.00	
377	378	6.48	121	85.3	70.93	
378	379	126	93.4	115	111.47	
379	380	83.2	86.8	320	163.33	
380	381	135	591	83.5	269.83	
381	382	191	309	39.8	179.93	
382	383	10.4	113	109	77.47	
383	384	121	120	257	166.00	
384	385	201	130	106	145.67	
385	386	100	74.9	81.9	85.60	
386	387	67.9	0.37	9.05	25.77	
387	388	87.3	35.3	97	73.20	
388	389	120	441	765	442.00	
389	390	210	82.5	72	121.50	
390	391	89.1	101	34.2	74.77	
391	392	21.3	78.6	82.8	60.90	
392	393	172	66.9	94.4	111.10	
393	394	93.9	71.8	55.9	73.87	
394	395	349	360	70.3	259.77	
395	396	205	481	432	372.67	
396	397	66.1	75.9	87.2	76.40	
397	398	106	69.8	79.9	85.23	
398	399	41.7	60.8	37.5	46.67	
399	400	42.1	23.2	108	57.77	
400	401	9.74	12.3	16.2	12.75	
401	402	10.9	8.72	12.2	10.61	
402	402.7	10.6	1.36	3.23	5.06	

HOLE	EHND7		**40.2.C!			
From	То	Reading 1	x10-3 SI Reading 2	Reading 3	Average	Comments
185	186	40.6		34.7	38.10	Comments
186	187	41.4		27.6	36.97	
187	188	19.8		39.2	29.33	
188	189	22.3		33.3	25.37	
189	190	29.9		28.5	31.70	
190	190	13.1	5.62	15.3	11.34	
190	192	16.1	10.3	17.9	14.77	
191	193	21.8		21	22.33	
193	193	18.5	9.88	8.78	12.39	
194 195		32.1 15.2	24	19.2	25.10 12.53	
	196 197		11.7	10.7		
196		16.6	11.7	17.7	15.33	
197	198	3.38	19.2	7.87	10.15	
198	199	11.6	10.8	5.17	9.19	
199	200	9.7	10.9	8.6	9.73	
200	201	0.51	0.62	6.99	2.71	
201	202	7.39		8.36	8.16	
202	203	2.01	9.48	7.36	6.28	
203		8.3		4.73	5.75	
204		5.83	8.99	4.6	6.47	
205	206	3.77	6.1	5.22	5.03	
206	207	4.44		4.1	5.26	
207	208	8.44		10.3	8.77	
208	209	1.98		4.33	3.08	
209	210	11.4	13.4	2.86	9.22	
210	211	12.3			12.30	
211	212	14.4	1.98		8.19	
212	213	0.39			0.39	
213	214	1.02			0.69	
214	215	0.26			0.25	
215	216	3.47	7.81		5.64	
216	217					
217	218	8.41	5.04		6.73	
218	219	0.17	0.19	0.2	0.19	
219		7.32		17	9.87	
220		3.07		2.48	3.27	
221	222	0.21			0.22	
222	223	0.19		0.35	0.27	
223		5.42		5.94	6.04	
224		1.42		2.89	3.22	
225		2.29			3.30	
226		4.49			4.87	
227	228	4.58			4.58	
228		0.04			0.13	
229	230	1.95			1.95	
230	231	6.67	4.42		5.55	
231	232	6.39	3.81		5.10	
232	233	0.16	0.23		0.20	
233		0.19	0.2	7.04	2.48	
234		6.48			4.90	
235		5.17			4.57	

Page 2 of 2

From	То	Reading 1	Reading 2	Reading 3	Average	Comments
236	237	2.85	6.75	5.4	5.00	
237	238	5.51	3.85	0.65	3.34	
238	239	6.48	6.08	5.96	6.17	
239	240	6.86	7.19		7.03	
240	241	6.67			6.67	
241	242	6.02			6.02	
242	243	6.94			6.94	
243	244	6.19			6.19	
244	245	3.48			3.48	
245	246	4.68			4.68	
246	247	5.49	6.12		5.81	
247	248	10.6	7.38	8.99	8.99	
248	249	6.56	9.83	12	9.46	
249	250	7.69			7.69	
250	251	8.15	8.07	5.36	7.19	
251	252	6	8.63		7.32	
252	253	9.15	9.79	9.84	9.59	
253	254	8.74	7.25		8.00	
254	255	5.62	4.58		5.10	
255	256	7.56	7.63		7.60	
256	257	10.9	6.7		8.80	
257	258	8.82	8.07		8.45	
258	259	12.6	7.54		10.07	
259	260	10.9	11.5		11.20	
260	261	11	9.85		10.43	

Page 1 of 1

MAGNET	TTC SUSC	EPTIBILITES				
HOLE	EHND8					
			x10-3 SI			
From	То	Reading 1	Reading 2	Reading 3	Average	Comments
267.2	268	13.2	16.4	11.4	13.67	
268	269	20.3	23.2	17.5	20.33	
269	270	8.07	28.4	23.1	19.86	
270	271	18.4	24.3	27.6	23.43	
271	272	28.8	32.7	26.3	29.27	
272	273	28.7	28.2	26.7	27.87	
273	274	30.4	28.8	28.6	29.27	
274	275	27.1	27.5	24.4	26.33	
275	276	25.6	33.5	30.7	29.93	
276	277	30.6	28	28.8	29.13	
277	278	31	30	29.9	30.30	
278	279	28.7	27.1	29.8	28.53	
279	280	28.7	28	29.7	28.80	
280	281	30.3	34	24.4	29.57	
281	282	30.2	28.6	33.9	30.90	
282	283	28.5	27.7	28.3	28.17	
283	284	26.3	29	27.6	27.63	
284	285	26.7	29.6	22.3	26.20	
285	286	29.1	28.9	26.8	28.27	
286	287	27.7	28.6	16.9	24.40	
287	288	30.4	27.2	25.7	27.77	
288	289	25.7	28.3	28.1	27.37	
289	290	25.9	27.7	27.1	26.90	
290	291	26.3	25.7	26.4	26.13	
291	291.9	25.3	27	7.27	19.86	

Page 1 of 1

MAGNET	TTC SUSC	EPTIBILITES				
HOLE	EHND9A					
			x10-3 SI			
			-			
From	То	Reading 1	Reading 2	Reading 3	Average	Comments
From 259		Reading 1 0.17	Reading 2 0.16		Average 0.19	Comments
	260		•			Comments

APPENDIX 4

Specific Gravity Measurements

Drill Hole:	EHND3		Date logged:	05.08.06	Technician:	A LAWRENCE
Rock Type	From	То	Dry Weight (g)	Weight in water (g)	Volume	SG
Mesocratic gabbro	279.58	279.82	1205.1	728	477.1	2.53
Mesocratic gabbro	284.94	284.95	1259.7	824.2	435.5	2.89
Melanocratic gabbro	292.2	292.38	1028.3	682.4	345.9	2.97
Melanocratic gabbro	293.04	294	1068.8	720.7	348.1	3.07
Mesocratic gabbro	300	300.27	962.1	617.2	344.9	2.79
Leucocratic andesite	303.3	303.51	1257.6	819.8	437.8	2.87
Leucocratic andesite	306	306.19	1133.4	738.7	394.7	2.87
Mesocratic gabbro	308.76	308.9	890.2	578.6	311.6	2.86
Leucocratic andesite	311.66	311.88	1416.7	934.3	482.4	2.94
Mesocratic gabbro	313.78	314.07	1667.3	1108.8	558.5	2.99

ckCominco: I	Bulk Dens	ity Meas	urement Sprea	dsheet		
Drill Hole:	EHND4		Date logged:	07.08.06	Technician:	P Gregory
Rock Type	From	То	Dry Weight (g)	Weight in water (g)	Volume	SG
Metarhyolite	241	241.26	1270.2	743.4	526.8	2.41
Metarhyolite	244.13	244.94	991.1	589.2	401.9	2.47
Metarhyolite	247.32	247.5	974.5	604.4	370.1	2.63
Metarhyolite	249.39	249.7	1669	1060	609	2.74
Metarhyolite	251.35	251.59	1320.9	822.4	498.5	2.65
Metarhyolite	253.97	254.14	924.5	582.6	341.9	2.70
Metarhyolite	256.16	256.5	1739.1	1091.2	647.9	2.68
Metarhyolite	258.75	258.94	982	615.2	366.8	2.68
Metarhyolite	263.09	263.3	1160	724.7	435.3	2.66
Metarhyolite	265.44	265.68	1265.9	791.3	474.6	2.67
Metarhyolite	267.8	268.05	1273.7	800.1	473.6	2.69
Metarhyolite	269.09	269.29	1076.6	681.5	395.1	2.72
Metarhyolite	276.06	276.38	1777.5	1106	671.5	2.65
Metarhyolite	278.03	278.23	1095.6	686.2	409.4	2.68
Metarhyolite	278.91	279.1	1020.2	655.3	364.9	2.80
Metarhyolite	282.14	282.44	1599	1014.1	584.9	2.73
Metarhyolite	283.6	283.83	1146	720.2	425.8	2.69
Metarhyolite	286.34	286.74	2396.5	1608	788.5	3.04
Metarhyolite	289.76	290	1480	978.3	501.7	2.95
Metarhyolite	293.07	293.24	1030.3	690.3	340	3.03
Metarhyolite	294.22	294.44	1306.9	875.7	431.2	3.03
Metarhyolite	296.3	296.57	1515.9	990	525.9	2.88
Metarhyolite	297	297.32	1741	1130.6	610.4	2.85
Metarhyolite	297.95	298.15	1130	748.3	381.7	2.96
Metarhyolite	299.6	299.86	1492.3	960.8	531.5	2.81
Metarhyolite	301.41	302.65	1312.1	831.5	480.6	2.73

Drill Hole:	EHND5		Date logged:	09.08.06	Technician:	P Gregory
21110.01	220		Date logged!	00100100	- Commonani	. 0.090.9
Rock Type	From	То	Dry Weight (g)	Weight in	Volume	SG
				water (g)		
Altered biotite gneiss	240.84	241.08	1914.9	1433.9	481	3.98
Altered biotite gneiss	242.14	242.31	1544.8	1168.9	375.9	4.11
Altered biotite gneiss	246	246.2	1381.7	1005.9	375.8	3.68
Biotite gneiss	248.55	148.76	1121.4	729.5	391.9	2.86
Biotite gneiss	252.4	253.12	1330.8	983.6	347.2	3.83
Biotite gneiss	254.98	255.14	949.4	640.5	308.9	3.07
Biotite gneiss	256.73	257.02	1617.5	1027.5	590	2.74
Biotite gneiss	258.53	258.76	1274.1	820.5	453.6	2.81
Biotite gneiss	260.82	261.05	1660.9	1168.8	492.1	3.38
Biotite gneiss	264.67	264.89	1431.8	996.5	435.3	3.29
Biotite gneiss	267.57	267.74	1216.9	819.2	397.7	3.06
Biotite gneiss	269.41	269.61	1270.4	866.8	403.6	3.15
Biotite gneiss	270.2	270.4	1107.4	724.9	382.5	2.90
Biotite schist	275.29	275.48	1124.1	734.3	389.8	2.88
Biotite schist	276.55	276.73	1064.8	703.2	361.6	2.94
Biotite gneiss	279.69	279.86	919.8	580.5	339.3	2.71
Biotite gneiss	281.51	281.72	1279.6	831.6	448	2.86
Biotite gneiss	284.9	285.09	1375.6	940.2	435.4	3.16
Biotite gneiss	286.16	286.3	805.7	540.4	265.3	3.04
Biotite gneiss	287.95	288.2	1419.3	958.4	460.9	3.08
Biotite gneiss	291.6	291.84	1488.6	1020.9	467.7	3.18
Biotite gneiss	296.64	296.85	1059	715.6	343.4	3.08
Biotite gneiss	298.03	298.2	946.6	594	352.6	2.68
Biotite gneiss	300.03	300.2	1079.5	732	347.5	3.11
Biotite gneiss	303.72	303.9	948.8	629.9	318.9	2.98
Biotite gneiss	305.03	305.25	1391.2	942.8	448.4	3.10
Biotite gneiss	308.65	308.86	1308.1	905.6	402.5	3.25
Biotite gneiss	313	313.22	1436.6	981	455.6	3.15
Biotite gneiss	315.7	315.93	1766	1299.7	466.3	3.79
Biotite gneiss	317.12	317.3	1040.6	750.8	289.8	3.59
Biotite gneiss	319.6	319.81	1368	1006	362	3.78
Biotite gneiss	322	322.15	1280.6	961.8	318.8	4.02
Biotite gneiss	323.39	323.6	1554.5	1133	421.5	3.69
Biotite gneiss	326.14	326.34	1329.7	901.9	427.8	3.11
Biotite gneiss	330.7	330.92	1350	882.8	467.2	2.89
Biotite gneiss	332.12	332.38	952.6	632.1	320.5	2.97
Biotite gneiss	332.45	3332.6	931.8	623	308.8	3.02
Biotite gneiss	335.2	335.41	1422.8	1009.6	413.2	3.44

Drill Hole:	EHND6		Date logged:	13.08.06	Technician:	T Hayward
Rock Type	From	То	Dry Weight (g)	Weight in water (g)	Volume	SG
Mt-act skarn altered gneiss	213.70	213.89	1218.2	826.7	391.5	3.11
Mt-act skarn altered gneiss	216.44	216.67	1520.7	1064.3	456.4	3.33
Mt-act skarn altered gneiss	219.38	219.72	2313.4	1616.1	697.3	3.32
Mt-act skarn altered gneiss	224.80	224.42	1674.2	1191.2	483	3.47
Mt-act skarn altered gneiss	226.85	227.09	1715.1	1238.9	476.2	3.60
Mt-act skarn altered gneiss	230.08	230.27	1245.6	883.3	362.3	3.44
Mt-act skarn altered gneiss	232.77	232.89	837.3	582.2	255.1	3.28
Mt-act skarn altered gneiss	235.70	235.87	1185.6	845.3	340.3	3.48
Mt-act skarn altered gneiss	237.85	238.10	1522.1	1020.8	501.3	3.04
Mt-act skarn altered gneiss	242.50	242.72	1594.2	1152.1	442.1	3.61
Ţ Ţ	242.50	245.67	1053	712.2	340.8	3.09
Mt-act skarn altered gneiss	245.50	247.53	1962.9	1427	535.9	
Mt-act skarn altered gneiss						3.66
Mt-act skarn altered gneiss	250.42	250.62	1285.1	875	410.1	3.13
Mt-act skarn altered gneiss	251.53	251.66	922.1	702.8	219.3	4.20
Mt-act skarn altered gneiss	253.30	253.51	1268.8	873.1	395.7	3.21
Mt-act skarn altered gneiss	255.68	255.82	860.5	573.3	287.2	3.00
Mt-act skarn altered gneiss	259.09	259.43	2139.2	1457.8	681.4	3.14
Mt-act skarn altered gneiss	261.29	261.59	1386.3	958.9	427.4	3.24
Mt-act skarn altered gneiss	265.09	265.31	1489.1	1052.7	436.4	3.41
Mt-act skarn altered gneiss	268.86	269.04	1537.4	1180.6	356.8	4.31
Mt-act skarn altered gneiss	270.48	270.71	1617.3	1171.9	445.4	3.63
Mt-act skarn altered gneiss	273.71	273.83	784.7	555.1	229.6	3.42
Mt-act skarn altered gneiss	276.15	276.31	1117.7	801	316.7	3.53
Mt-act skarn altered gneiss	278.63	278.79	1150.2	821.6	328.6	3.50
Mt-act skarn altered gneiss	280.60	280.81	2054.4	1635	419.4	4.90
Mt-act skarn altered gneiss	283.87	284.00	881.7	626.5	255.2	3.45
Mt-act skarn altered gneiss	287.66	287.81	1029.8	734.2	295.6	3.48
Mt-act skarn altered gneiss	290.03	290.29	1692.6	1217.6	475	3.56
Mt-act skarn altered gneiss	292.52	292.65	830.9	588.7	242.2	3.43
Mt-act skarn altered gneiss	294.69	294.80	828.6	629.1	199.5	4.15
Mt-act skarn altered gneiss	297.52	297.70	1289.3	926.8	362.5	3.56
Mt-act skarn altered gneiss	301.32	301.48	1110.4	813.8	296.6	3.74
Mt-act skarn altered gneiss	302.29	302.53	1663.9	1184.1	479.8	3.47
Mt-act skarn altered gneiss	304.04	304.29	2049.5	1546	503.5	4.07
Mt-act skarn altered gneiss	308.27	308.38	779.2	560.1	219.1	3.56
Mt-act skarn altered gneiss	309.70	309.87	927	621.1	305.9	3.03
Mt-act skarn altered gneiss	313.83	313.97	1252.4	994	258.4	4.85
Mt-act skarn altered gneiss	316.86	317.02	1102.4	779.9	322.5	3.42
Epidote-serpentinite altered						0112
ultramafic	320.58	320.75	950.1	625.2	324.9	2.92
Mt-act skarn altered gneiss	323.28	323.47	1275.6	890.9	384.7	3.32
Mt-act skarn altered gneiss	325.00	325.26	1589.5	1085	504.5	3.15
Epidote-serpentinite altered	323.00	020.20	1000.0	1000	304.5	0.10
ultramafic	329.85	330.00	902.5	593.6	308.9	2.92
Altered diorite	332.00	332.20	913.7	609.2	304.5	3.00
Altered diorite	335.15	335.25	768.8	498.9	269.9	2.85
Altered diorite	338.15	338.40	1479.5	1005.8	473.7	3.12
Mt-act skarn altered gneiss	341.25	341.40	1586.5	1254.9	331.6	4.78
Altered diorite	342.55	342.70	903.7	632.8	270.9	3.34
Altered diorite	345.70	345.85	996.9	673	323.9	3.08
Altered diorite	348.45	348.55	746.1	526.2	219.9	3.39
Altered diorite	350.88	351.00	960.6	688.4	272.2	3.53

Page 2 of 2

Rock Type	From	То	Dry Weight (g)	Weight in	Volume	SG
				water (g)		
Altered diorite	354.40	354.55	931.1	649.2	281.9	3.30
Altered diorite	355.65	355.75	871.8	616.8	255	3.42
Altered diorite	360.50	360.65	1045.4	727.5	317.9	3.29
Altered diorite	360.95	361.00	935.1	651.2	283.9	3.29
Altered diorite	366.15	366.30	1015.7	727.8	287.9	3.53
Altered diorite	366.55	366.70	1151.9	826.8	325.1	3.54
Altered diorite	369.23	369.37	921.5	651.3	270.2	3.41
Altered diorite	373.13	373.28	997.4	703.1	294.3	3.39
Altered diorite	375.55	375.70	989	691.6	297.4	3.33
Altered diorite	377.65	377.79	821.6	584.5	237.1	3.47
Mt-act skarn altered gneiss	381.70	381.83	913.6	662.3	251.3	3.64
Altered diorite	383.69	383.82	818.3	574.4	243.9	3.36
Mt-act skarn altered gneiss	388.12	388.21	803	561.7	241.3	3.33
Mt-act skarn altered gneiss	389.18	389.32	1033.7	755.2	278.5	3.71
Altered diorite	393.59	393.70	669.6	454.5	215.1	3.11
Mt-act skarn altered gneiss	396.00	396.11	743.6	505.1	238.5	3.12
Altered diorite	396.71	396.83	861.5	596.2	265.3	3.25
Altered diorite	401.82	402.00	1054.1	697.6	356.5	2.96
Altered diorite	402.10	402.20	603.5	400.3	203.2	2.97

eckCominco: Bulk Der	sity Meas	suremen	t Spreadsheet			
Drill Hole:	EHND7		Date logged:	17.08.06	Technician:	T Hayward
Rock Type	From	То	Dry Weight (g)	Weight in water (g)	Volume	SG
Albite altered, amphibolite	185.82	185.95	722.4	488.9	233.5	3.09
Albite altered, amphibolite	188.93	189.04	726.4	487.9	238.5	3.05
mafic intrusive	190.82	190.95	772.1	516.5	255.6	3.02
mafic intrusive	194.23	194.36	722.5	483.8	238.7	3.03
Albite altered, amphibolite	196.76	197.01	1442.5	958.6	483.9	2.98
Albite altered, amphibolite	204.03	204.25	1268.7	845	423.7	2.99
Albite altered, amphibolite	211.47	211.65	1056.6	699.9	356.7	2.96
Albite altered, amphibolite	216.13	216.25	677.1	477.7	199.4	3.40
Albite altered, amphibolite	221.68	221.83	791.3	523.3	268	2.95
Albite altered, amphibolite	226.13	226.37	1410.7	934.6	476.1	2.96
Albite altered, amphibolite	229.80	229.98	1050.3	692.9	357.4	2.94
Albite altered, amphibolite	237.37	237.68	1607.6	1054.6	553	2.91
Albite altered, amphibolite	241.83	242	959.40	639.50	319.9	3.00
Albite altered, amphibolite	246.10	246.35	1483.9	992.9	491	3.02
Albite altered, amphibolite	257.37	257.65	1603.1	1064.1	539	2.97
Albite altered, amphibolite	259.81	260.09	1623	1080.3	542.7	2.99

Page 1 of 1

TeckCominco: E						
Drill Hole:	EHND8		Date logged:	22.08.06	Technician:	P Gregory
Rock Type	From	То	Dry Weight (g)	Weight in water (g)	Volume	SG
Gabbro	268.75	268.92	1116.7	745.1	371.6	3.01
Gabbro	272.4	272.67	1802.9	1211	591.9	3.05
Gabbro	277.8	278.02	1236.9	830.3	406.6	3.04
Gabbro	280.1	280.4	1850.3	1245.8	604.5	3.06
Gabbro	284.85	255	998.9	671.9	327	3.05
Gabbro	290.63	290.89	1563.2	1054	509.2	3.07

Page 1 of 1

eckCominco:	Bulk Densi	ity Meas	urement Sprea	dsheet		
Drill Hole:	EHND9A		Date logged:	31.08.07	Technician:	P Gregory
Rock Type	From	То	Dry Weight (g)	Weight in water (g)	Volume	SG
Dacite	259.2	259.8	452.1	277.6	174.5	2.59
Dacite	260.1	260.2	408	250	158	2.58
Dacite	261.9	262	355.5	219.2	136.3	2.61

APPENDIX 5

Rock Quality Designations (RQDs)

	RQD										
Prosp	ect:			Project: Ernest Henry North							
Hole No	o: EHND)3	Core Diameter: NQ2			A Lawrence	Date: 05.08.06				
Dept	h (m)			Depth	n (m)						
From	То	RQD %	Comments	From To RQD		RQD %	Comments				
272.4	273	92									
273	274	34									
274	275	80									
275	276	41									
276	277	79									
277	278	62									
278	279	91									
279	280	83									
280	281	82									
281	282	42									
282	283	100									
283	284	51									
284	285	61									
285	286	65									
286	287	79									
287	288	100									
288	289	91									
289	290	48									
290	291	100									
291	292	100									
292	293	72									
293	294	95									
294	295	100									
295	296	48									
296	297	47									
297	298	60									
298	299	79									
299	300	54									
300	301	35									
301	302	100									
302	302	100									
302	303	100									
303	304	91									
304	305	100									
306		84									
	307										
307	308	69									
308	309	66									
309	310	10									
310	311	36									
311	312	78									
312	313	100									
313	314	100									
314	315.3	100									

	RQD										
Prospe	ect: Eı	nest Hen	ry North	Projec	t: Ern	est Henry	North				
Hole No	· FHND	14	Core Diameter: NQ2	Measu	red by:	Adam	Date:06.08.06				
Depth		•	COTO DIAMIOTOTI INCL		h (m)	· ·	24.0.00.00.00				
From	To	RQD %	Comments	From	To	RQD %	Comments				
237.7	239	73		288	289	100					
239	240	45		289	290	100					
240	241	91		290	291	100					
241	242	98		291	292	100					
242	243	80		292	293	100					
243	244	95		293	294	100					
244	245	96		294	295	100					
245	246	93		295	296	100					
246	247	100		296	297	100					
247	248	100		297	298	100					
248	249	84		298	299	100					
249	250	100		299	300	90					
250	251	95		300	301	100					
251	252	94		301	302.3	100					
252	253	100									
253	254	93									
254	255	100									
255	256	100									
256	257	98									
257	258	82									
258 259	259	100 100									
260	260 261	100									
261	262	100									
262	263	100									
263	264	100									
264	265	100									
265	266	87									
266	267	100									
267	268	100									
268	269	100									
269	270	100									
270	271	100									
271	272	100									
272	273	100									
273	274	100									
274	275	100									
275	276	100									
276	277	100									
277	278	100									
278	279	100									
279	280	95									
280 281	281 282	100 91									
282	283	100									
283	284	98									
284	285	87									
285	286	89									
286	287	94									
287	288	100									

			R	QD					
Prospe	ect: Er	nest Hen	ry North	Projec	t: Erne	est Henry	North		
Hole No			Core Diameter: NQ2		Measured by: Date:				
Depth			Oore Diameter. 1442		h (m)		Date.		
From	To	RQD %	Comments	From	To	RQD %	Comments		
239.3	240	33		289	290	100			
240	241	95		290	291	79			
241	242	100		291	292	100			
242	243	90		292	293	96			
243	244	79		293	294	94			
244	245	100		294	295	94			
245	246	100		295	296	11			
246	247	100		296	297	19			
247	248	100		297	298	58			
248	249	100		298	299	42			
249	250	100		299	300	28			
250	251	100		300	301	56			
251	252	100		301	302	64			
252	253	92	_	302	303	82			
253	254	90		303	304	74			
254 255	255	100		304	305	87			
256	256 257	100 87		305 306	306 307	100 79			
257	258	100	+	307	308	92			
258	259	100	+	308	309	100			
259	260	100		309	310	96			
260	261	90		310	311	86			
261	262	100		311	312	47			
262	263	100		312	313	62			
263	264	100		313	314	96			
264	265	100		314	315	43			
265	266	98		315	316	78			
266	267	99		316	317	23			
267	268	94		317	318	27			
268	269	86		318	319	28			
269	270	100		319	320	48			
270	271	82		320	321	80			
271	272	96		321	322	98			
272	273	74		322	323	72			
273	274	40		323	324	100			
274	275	95		324	325	90			
275	276	100		325	326	91			
276	277	65		326	327	88			
277	278	38		327	328	100			
278	279	95		328	329	100			
279	280	51		329	330	100			
280 281	281 282	74		330	331	100			
282	283	90		331 332	332 333	100 88			
283	284	100		333	334	100			
284	285	100		334	335	100			
285	286	89		335	336.2	90			
286	287	99		333	000.2	30			
287	288	95							
288	289	100							

	RQD									
Prospe	ect:			Proiec	t: Ern	est Henry	North			
Hole No		16	Core Diameter: NQ2	Measur			Date:			
Depth			Core Diameter. NQ2	Dept			Date.			
From	To	RQD %	Comments	From	To	RQD %	Comments			
212.35	213	100		264	265	97				
213	214	100		265	266	100				
214	215	100		266	267	100				
215	216	100		267	268	100				
216	217	100		268	269	100				
217	218	100		269	270	100				
218	219	100		270	271	100				
219	220	100		271	272	100				
220	221	100		272	273	100				
221	222	100		273	274	100				
222	223	100		274	275	100				
223	224	100		275	276	100				
224	225	100		276	277	100				
225	226	100		277	278	100				
226	227	100		278	279	95				
227	228	100		279	280	100				
228	229	95		280	281	94				
229	230	100		281	282	100				
230	231	100		282	283	100				
231	232	100		283	284	100				
232	233	100		284	285	100				
233	234	100		285	286	100				
234	235	100		286	287	100				
235	236	100		287	288	89				
236	237	100		288	289	100				
237	238	100		289	290	84				
238	239	100		290	291	100				
239 240	240 241	100 100		291 292	292 293	100 100				
240	241	100		292	293	100				
241	243	100		293	295	100				
242	244	100		295	296	100				
243	244	100		295	296	100				
244	246	100		290	298	100				
246	247	100		298	299	100				
247	248	100		299	300	100				
248	249	93		300	301	100				
249	250	100		301	302	100				
250	251	100		302	303	100				
251	252	100		303	304	100				
252	253	100		304	305	100				
253	254	100		305	306	100				
254	255	100		306	307	100				
255	256	100		307	308	100				
256	257	100		308	309	100				
257	258	100		309	310	100				
258	259	100		310	311	100				
259	260	100		311	312	100				
260	261	100		312	313	100				
261	262	100		313	314	100				
262	263	100		314	315	100				
263	264	100		315	316	100				

Depth	n (m)			Dept	h (m)		
From	То	RQD %	Comments	From	То	RQD %	Comments
316	317	100		373	374	100	
317	318	100		374	375	100	
318	319	84		375	376	98	
319	320	100		376	377	85	
320	321	100		377	378	87	
321	322	100		378	379	100	
322	323	100		379	380	93	
323	324	100		380	381	100	
324	325	100		381	382	93	
325	326	100		382	383	100	
326	327	100		383	384	100	
327	328	95		384	385	94	
328	329	100		385	386	100	
329	330	100		386	387	100	
330	331	100		387	388	100	
331	332	73		388	389	100	
332 333	333	91		389	390 391	100	
	334	30		390		100	
334 335	335 336	66 92		391 392	392 393	100 100	
336	337				393		
337	338	100		393 394	395	90 100	
338	339	100		395	396		
339	340	96 95		396	397	100 100	
340	341	100		397	398	100	
341	342	100		398	399	100	
342	343	100		399	400	93	
343	344	100		400	401	91	
344	345	100		401	402	100	
345	346	90		402	402.7	98	
346	347	100		102	102.1	00	
347	348	100					
348	349	89					
349	350	100					
350	351	100					
351	352	98					
352	353	100					
353	354	93					
354	355	89					
355	356	100					
356	357	45					
357	358	78					
358	359	91					
359	360	81					
360	361	94					
361	362	100					
362	363	100					
363	364	100					
364	365	100					
365	366	100					
366	367	100					
367	368	100					
368	369	90					
369	370	100					
370	371	100					
371	372	100					
372	373	88					

	RQD									
Prosp	ospect: Project: Ernest Henry North						orth			
Hole No	o: EHND	8	Core Diameter: NQ2	Measur	ed by:	A Lawrence	Date: 22.08.06			
Dept	h (m)	RQD %	Comments	Dept	h (m)	RQD %	Comments			
From	То	KQD %	Comments	From	То	RQD %				
267.2	268	100								
268	269	98								
269	270	100								
270	271	80								
271	272	100								
272	273	92								
273	274	100								
274	275	100								
275	276	82								
276	277	100								
277	278	64								
278	279	100								
279	280	88								
280	281	100								
281	282	100								
282	283	81								
283	284	93								
284	285	98								
285	286	28								
286	287	93								
287	288	100								
288	289	95								
289	290	100								
290	291	100								
291	291.90	100								
		E.O.H.								

APPENDIX 6

Petrological Report

MINERALOGICAL REPORT No. 8935

by Alan C. Purvis, PhD.

October 5th, 2006

TO: Peter Gregory

Principal Geologist Geo Discovery Group

PO Box 59

SHERWOOD QLD 4075

COPY TO: Ian Sandl

Teck Cominco PO Box 1677

WEST PERTH WA 6872

YOUR REFERENCE: E-mail from Peter Gregory 5/9/06.

MATERIAL: Ernest Henry North Drill Core Samples

IDENTIFICATION: EHND3 - 313.40 to EHND8 - 276.70

WORK REQUESTED: Polished thin section preparation, description

and report with comments as specified.

SAMPLES & SECTIONS: Returned to Sherwood with hard copy of this

report.

DIGITAL COPY: E-mail 5/10/06 to

<pwg@geodiscovery.com.au>.

PONTIFEX & ASSOCIATES PTY. LTD.

Page 2 5/10/06

SUMMARY COMMENTS

Fourteen core samples described in this report from polished thin section are from six drill holes labelled EHND3 to EHND8, in the Ernest Henry North area, Mt Isa Inlier, Queensland. These were received from Geo Discovery, consultants to Teck Cominco.

Drill hole numbers and depths of the samples are:

EHND3: 284.9, 291.85, 308.60, 313.4m

EHND4: 290.90m

EHND5: 77.30, 320.7, 329.90m

EHND6: 262.10, 268.89, 296.10, 330.20m

EHND7: 260.60m EHND8: 270.70m

Samples from EHND4 and 5 apparently represent metamorphosed and metasomatised country rock. Cumulus mafic and ultramafic lithologies occur in drill holes EHND3 and 6, and in drill hole 6 particularly, these are locally rich in opaque oxide minerals and sulphides. Ophitic gabbros occur in EHND7 and 8.

The country rock in EHN4 and 5 includes a layered mafic (plagioclase-hornblende-clinopyroxene-biotite) granofels in EHND4 (290.4m) with minor reddish K-spar. Granular albitite in EHND5 at 77.3m contains varied opaque oxides, magnetite, ilmenite and exsolved ilmenite-hematite grains, as well as abundant allanite and minor altered biotite. Deeper samples in EHND5 are heterogeneous, but magnetite-rich with K-spar rather than albite. Carbonate, pyroxenes, actinolite or hornblende and biotite occur as well as pyrite and chalcopyrite. In EHND5 at 320.7m, 320.7m most of the K-spar is of low temperature origin. Most K-spar at 329.9m is of high temperature origin (but with reddish low temperature K-spar at one end of this thin section). The sample at 320.7m has abundant clouded hexagonal prisms, intergrown with carbonate and chalcopyrite, and which could not be identified optically. X-ray diffraction or microprobe analysis should achieve this. The possible skarn or calc-silicate sample from EHND3 at 313.40m may also represent country rock, as a banded granofels with plagioclase and pale to dark clinopyroxene (diopside to hedenbergite-rich) but with accessory pyrite and trace chalcopyrite.

Three gabbros in EHND3 to 308.6m, and the possible skarn or calc-silicate at 313.4m, are not particularly mineralised or altered, although there is minor hornblende, biotite and scapolite at 291.85m and minor amphibole, biotite and zoned epidote/allanite at 308.6m.

Page 3 5/10/06

Rare pyrite occurs at 284.9m and as noted above, the sample at 313.4m may represent country rock.

Mafic and ultramafic cumulate rocks in EHND6 contain zones rich in magnetite and/or sulphide, but without the actinolite alteration indicated in the notes suppled. Gabbronorite at 262.10m is cut by veins of microgabbro, with minor sulphide (pyrrhotite > pyrite, chalcopyrite). The deeper samples, at 268.89, 296.10 and 330.20m, contain fresh or altered pyroxenite (268.89 and 296.10m), or gabbro (330.20m), with some replacement of plagioclase by scapolite in all three samples. Alteration is largely to massive and microspherulitic smectite as well as quartz and carbonate, especially at 296.10m, rather than to actinolite. At 268.89m a magnetite-rich zone has pyroxene and apatite, suggesting a magnatic segregation, with pyrrhotite possibly replaced by chalcopyrite with lenses of low-temperature hydrothermal quartz, carbonate and smectite.

At 296.10m an irregular lens of chalcopyrite may have replaced magnetite and there are chalcopyrite-filled microfissures extending from this mass into the host-rock. Disseminated sulphide is all pyrite, however. This sample also has quartz and carbonate as well as abundant smectite, replacing magnetite-apatite-rich pyroxenite. At 330.20m a band of magnetite with interstitial pyrrhotite and coarse-grained apatite (magmatic) is overprinted by abundant low-temperature pyrite, and passes into gabbro with minor scapolite as well as or instead of plagioclase.

Regarding genesis, in most sample discussed above, pyroxenes, plagioclase, magnetite, ilmenite, apatite and pyrrhotite seem to be magmatic, with chalcopyrite of ambiguous origin and low-temperature pyrite as well as other low-temperature hydrothermal and supergene minerals. The petrography does not support the theory questioned in the letter accompanying the samples suggesting actinolite-magnetite alteration of fine-grained mafic rocks, followed by hydrothermal sulphides. Rather it indicates primary coarse-grained gabbros and pyroxenites, with magmatic oxide-phosphate \pm sulphide segregations. Some of the chalcopyrite however may have been modified or formed during alteration.

The gabbroic rocks in EHND7 and 8 are subophitic, weakly altered and have only sparse sulphide (pyrrhotite > pyrite, chalcopyrite). Weak amphibole alteration is evident.

Page 4 5/10/06

INDIVIDUAL DESCRIPTIONS

EHND3 – 284.9m

Plagioclase-rich gabbro with clinopyroxene > hornblende and disseminated opaque oxide; albite-sericite alteration is common in the plagioclase and there are prehnite-filled fractures.

Field Note: *Mesocratic plagioclase-olivine-magnetite-biotite gabbro with pyrite*

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
	(0)	
Plagioclase + albite-sericite	68	Cumulus
Clinopyroxene	14	0.00000
Hornblende, pale brown	12.5	Postcumulus
Oxide (magnetite > ilmenite)	5	Fostcumurus
Chlorite + smectite	0.5	Ex-pyroxene
Prehnite	<1	In fractures
Pyrite	Trace	Partly oxidised

This sample has abundant cumulus plagioclase to 6mm in grainsize and less abundant clinopyroxene to 3mm long, both aligned and defining a cumulus layering. About $^2/_3$ of the abundant plagioclase in this thin section has been altered to albite and sericite, but the clinopyroxene shows only weak alteration to chlorite and clay. Minor hornblende occurs in the pyroxene, but most of the hornblende is in the form of poikilitic grains to 8mm long. There is also disseminated interstitial opaque oxide to 4mm in diameter, partly enclosing pyroxene or plagioclase. This is mostly magnetite with sparse hematite lamellae but there is also partly leucoxenised ilmenite and rare pyrite with limonite in fractures. Narrow fractures contain prehnite \pm sericite.

Page 5 5/10/06

EHND3 – 291.85m

Partly recrystallised hornblende-biotite-rich gabbro with scapolite and albite-sericite as well as an area rich in recrystallised clinopyroxene.

Field Note: *Melanocratic plagioclase-magnetite-pyroxene-olivine-biotite gabbro*

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
Plagioclase + albite-sericite	55	Cumulus, altered
Hornblende	22	Postcumulus/metamorphic,
Oxide (magnetite > ilmenite)	10	partly recrystallised
Biotite	7	partif recificantified
Clinopyroxene	4	Cumulus
Scapolite	2	Ex-plagioclase
Clay	<1	Ex-mafic, in fractures

Most of this sample is occupied by less plagioclase-rich gabbro compared to the previous sample, with largely albite-sericite-altered feldspar to 5mm in grainsize, but along one edge of the thin section there is a band of recrystallised fine-grained clinopyroxene with very minor plagioclase, hornblende, clinopyroxene, clays and opaque oxide. Close to this band some of the plagioclase has been recrystallised and partly replaced by finely polygonised scapolite. Clinopyroxene is not abundant and mostly enclosed on brown hornblende to 5mm in grainsize or aggregates of recrystallised biotite to 4mm. Some of the biotite has developed around interstitial aggregates of opaque oxide to 3mm long. The oxide is mostly magnetite with sparse hematite lamellae but there is also degraded ilmenite. Any sulphide hs been altered to limonite. The pyroxene-rich zone includes areas with low-angle grain boundaries (partly polygonised) and with high-angle grain boundaries (recrystallised) as well as areas with abundant interstitial smectite. This area may represent a dyke or xenolith.

Page 6 5/10/06

EHND3 – 308.60m Leucogabbro with partly uralitised clinopyroxene, magnetite, apatite, epidote, allanite and limonite partly expyrite.

Field Note: Leucogabbro with magnetite, altered olivine (?), chlorite and pyrite

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
Plagioclase + albite-sericite	82	Cumulus
Clinopyroxene	12	Cumulus
Tremolite-actinolite	2.5	Ex-pyroxene
Oxide(hematite, magnetite, ilmenite)	1	Postcumulus
Apatite	1	Cumulus?
Clay	1.5	Ex-pyroxene, amphibole
Epidote, allanite	Trace	Metamorphic?
Limonite ± clay	Sparse	Ex-pyrite?

This sample represents leucogabbro with abundant partly albite-sericite-altered plagioclase to and granular clinopyroxene4mm in grainsize. The pyroxene has patches, veins and rims of very pale tremolite-actinolite and is accompanied by interstitial opaque oxide and unusually abundant granular to prismatic apatite to 3mm in grainsize. The oxide is mostly magnetite with hematite lamellae but there is also highly degraded ilmenite and partly colloform-banded aggregates of granular and earthy hematite. Large masses of degraded ilmenite (with leucoxene and hematite) are intergrown and rimmed with titanite. Minor epidote is disseminated and there are rare small grains of probable epidote or REE-rich epidote as well as limonite \pm clay. The massive limonite may have replaced pyrite but the clay may be partly derived from pyroxene.

Page 7 5/10/06

EHND3 – 313.4m

Veined plagioclase-clinopyroxene aggregates with Mg to Fe-rich pyroxene and opaque oxide. Possible skarn or calc-silicate.

Field Note: Fine-grained leucocratic andesite and microgabbro as inclusions; fine-grained magnetite and chlorite in matrix

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
Plagioclase ± sericite	30-90%	
Clinopyroxene Oxide, sulphide	5-65% 3-5%	Metamorphic
Clays	0-1%	Ex-pyroxene?
Carbonate, heulandite	Very minor	In fractures

This sample has coarse-grained pyroxene-plagioclase-rich material with dark green Fe-rich pyroxene with a probable vein of fine-grained plagioclase-rich material containing paler pyroxene and a vein 6-8mm wide with fine-grained plagioclase and darker microcrystalline clinopyroxene. The most plagioclase-rich vein has a micromosaic of clear or sericite-clouded plagioclase to 0.5mm in grainsize with rare to minor clinopyroxene, sparse opaque oxide and sparse fine-grained pyrite \pm chalcopyrite. The pyroxene in this layer is pale and probably more magnesian than in other layers. A layer with clouded and minor clear plagioclase to 2mm in grainsize also has pale clinopyroxene but passes into a layer with darker green possible hedenbergite to 1mm in grainsize and clouded plagioclase. The second probable vein, with microcrystalline (~0.1mm grainsize) pyroxene and plagioclase, seems to pass rapidly into layers with inequigranular hedenbergite, rarely elongate and 5mm in grainsize, as well as granular clouded or clear plagioclase. There are late carbonate veins and veins with probable heulandite as well as less abundant carbonate, partly parallel to the cleavage in the zeolite. Pyrite is relatively rare in areas with more iron-rich clinopyroxene, but there is disseminated magnetite and partly degraded ilmenite. This sample seems to represent a skarn or calc-silicate derived from a gabbroic rock cut by fine-grained veins or dykelets.

Page 8 5/10/06

EHND4 – 290.90m Layered plagioclase-hornblende-clinopyroxene-biotite granofels with partly clay-leucoxene-altered biotite, red-stained K-spar and sparse sulphide.

Field Note: Albite-chlorite-magnetite-hematite-altered metarhyolite with pyrite in veins and disseminated

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
Plagioclase	40	
Hornblende/actinolite	32	Matanaguhia
Biotite	5	> Metamorphic
Clinopyroxene ± chlorite	8	
Clay-leucoxene ± K-spar	12	Ex-biotite
Reddish clouded K-spar	3	Secondary?
Pyrite, chalcopyrite	<1	Secondary?
Fluorite	<1	In biotite

This sample has partly lenticular layers on a millimetre to centimetre-scale with layers and lenses of plagioclase-rich micromosaic alternating with layers rich in fine-grained hornblende, biotite and/or clinopyroxene in various proportions. The main minerals are from 0.1mm to 1mm in grainsize with only biotite commonly more than 0.5mm. Along one side there is a layer rich in hornblende and clinopyroxene, passing into plagioclase-rich areas some of which contain interstitial reddish K-spar. Minor clinopyroxene occurs in these layers and there is a lens largely composed of decussate biotite with very minor fluorite. This area also has granular and skeletal pyrite and very minor chalcopyrite, with very sparse granular and porous low-temperature pyrite \pm chalcopyrite. Some of the biotite in and adjacent to this layer has been altered to lamellar clay-leucoxene aggregates possibly with K-spar. There are also lenses of actinolite with granular K-spar and patches of chlorite possibly derived from pyroxene. This area passes into hornblende-rich areas with lenses of plagioclase and reddish K-spar as well as fresh and altered biotite. Clay-leucoxene-altered biotite is more abundant than fresh or weakly chloritised biotite in these areas.

Page 9 5/10/06

EHND5 - 77.30

Albite-opaque oxide-allanite-biotite micromosaic rock with chlorite ex-pyroxene or amphibole, partly chloritised biotite and rare apatite

Field Note: Partly albite-magnetite-altered biotite gneiss

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
)	
Albite	85	
Quartz	5	
Magnetite	2	Motomorphia/motosometia
Ilmenite and titanhematite	0.5	Metamorphic/metasomatic
Allanite	5	
Biotite	0.5	
Chlorite ± titanite	1	Ex-biotite
Chlorite ± smectite	1	Ex-pyroxene/amphibole
Apatite	Trace	Accessory

This sample is largely composed of albite micromosaic with lenses and layers varying in grainsize from 0.05mm to 1mm. Very minor quartz is present in some layers as part of the micromosaic and there is rare apatite. Poorly defined lamellae are mostly rich in opaque oxide. The oxide is mostly magnetite with hematite lamellae, but there are also separate ilmenite grains and complex exsolved grains with two generations of lamellae of ilmenite and titanhematite. There is also dark brown allanite as fine-grained aggregates and rare chalcopyrite is disseminated. There is also very minor schistose biotite, largely altered to chlorite \pm titanite but not residual or obviously gneissic, but chlorite aggregates have replaced equant mafic grains (pyroxene or amphibole?) to 3mm in diameter on one side of the thin section.

Page 10 5/10/06

EHND5 – 320.7m Heterogeneous K-spar-magnetite-carbonate-pyroxeneactinolite-quartz-biotite-pyrite-chalcopyrite aggregates with abundant unidentified hexagonal crystals

Field Note: Albite-magnetite-actinolite-chlorite-biotite altered biotite gneiss with weak hematite albite overprint; minor pyrite, chalcopyrite

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
	,	
K-spar, reddish	30	
Reddish feldspar/zeolite?	35	
Magnetite ± ilmenite ± titanite	15	
Carbonate	5	
Clinopyroxene	3	
Actinolite	3	Metasomatic
Quartz	4	
Biotite	<1	
Chalcopyrite	3	
Pyrite	$_{2}$	

This sample is heterogeneous with a zone of reddish K-spar along one side of the thin section, with disseminated oxide and rare partly chloritised biotite. The oxide is mostly magnetite with sparse hematite as patches and separate grains, but there is also very minor partly degraded ilmenite, partly altered to leucoxene ± hematite, with rims of titanite. There are elsewhere irregular lenses rich in K-spar and magnetite, but there is also abundant granular to prismatic reddish material that has failed to stain with HF and sodium cobaltinitrite. This is partly intergrown with carbonate and partly poikiloblastic but has not been identified, being possibly feldspar or zeolite, but seems to be hexagonal and uniaxial negative. Clinopyroxene, actinolite and carbonate occur as sparsely disseminated grains and patches to 4 or 5mm long with fibrous actinolite as inclusions in partly euhedral quartz. Smaller grains of pyroxene, amphibole and altered biotite are disseminated. Minor sulphide is also disseminated, with chalcopyrite to 6mm or more in diameter, with small cubic inclusions of pyrite, and smaller masses of sulphide, either chalcopyrite or pyrite. The largest chalcopyrite mass has inclusions orf hexagonal crystals and K-spar set in carbonate.

Page 11 5/10/06

EHND5 - 329.9m

Layered magnetite-K-spar-clinopyroxene-amphibolequartz-biotite aggregate with actinolite after clinopyroxene and minor hornblende. Part of the rock has been flooded by low-temperature hydrothermal K-spar with hornblende, carbonate and chlorite.

Field Note: Albite-magnetite-actinolite-chlorite-biotite-altered biotite gneiss with weak hematite-albite overprint; minor pyrite, chalcopyrite.

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
	,	
K-spar-I (orthoclase/microcline)	Abundant	
Hornblende	Very minor	
Clinopyroxene	Minor	
Biotite	Very minor	Metasomatic
Quartz	Very minor	
Magnetite > hematite	Abundant	
Carbonate	Very minor	
Actinolite	Very minor	Ex-clinopyroxene
K-spar-II (reddish, low temperature)	Common	Secondary
Chlorite	Minor	Ex-biotite?

This sample is to some extent similar to the previous section but lacks the prismatic hexagonal mineral. In one corner there is a layer with abundant magnetite, locally enclosing granular hematite, as well as minor quartz and K-spar, accompanied by fractured fine-grained clinopyroxene and partly chloritised biotite. This passes into a layer rich in granular clear K-spar, partly twinned (microcline) but mostly untwinned, with minor quartz, magnetite, clinopyroxene, hornblende and mostly fresh biotite. The next zone is rich in coarse-grained actinolite but has apparently residual clinopyroxene along the margins of the zone, with coarse-grained actinolite and mostly fine-grained clinopyroxene. Quartz, magnetite and K-spar are disseminated through this zone. Some clinopyroxene is also present on the other side of this zone, which passes into an area rich in fine-grained adularia-like K-spar with

Page 12 5/10/06

carbonate, quartz and granular to prismatic and even fibrous dark green amphibole. The amphibole persists into a large area of granular, reddish, hematite-stained K-spar with chlorite and minor biotite. In this area the chlorite is partly derive d from biotite and partly in irregular lenses possibly derived from amphibole. The K-spar in this area, together with carbonate and chlorite, may represent a later low-temperature hydrothermal pulse with more oxidised fluids.

Page 13 5/10/06

EHND6 - 262.10m

Layered gabbronorite with microgabbro veins: the gabbronorite is rich in oxide and apatite and has orthopyroxene-magnetite aggregates possibly ex-olivine.

Field Note: Relict fine-grained mafic unit cut by medium-grained strong actinolite-magnetite alteration: the fine-grained mafic unit is also actinolite-altered and cut by a pyrrhotite vein; fine-grained pyrrhotite is disseminated.

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance		Origin/location
	Gabbronorite	Microgabbro	
Plagioclase	64	65	
Clinopyroxene	18	33	
Orthopyroxene ± magnetite	12	>	Primary igneous
Oxide (magnetite > ilmenite	4	1	
Apatite	2	J	
Sulphide	<1		Altered primary
Hornblende	Trace		Late magmatic or deuteric
Biotite	Trace		Late magmatic or deuteric

This sample represents layered gabbronorite with three lenticular veins of microgabbro and very minor sulphide. The gabbro has abundant plagioclase to 5mm in grainsize and large parallel aggregates of clinopyroxene, orthopyroxene, oxide and apatite. The clinopyroxene is granular and fresh with very little amphibole. Most of the orthopyroxene is intergrown with magnetite at various scales, with lamellar, fingerprint and myrmekite-like symplectites, and may represent oxidised Fe-rich olivine, but there are lenses with granular to prismatic orthopyroxene as a primary igneous component. Primary oxides include magnetite and less abundant ilmenite. There is abundant apatite, suggesting derivation from a fractionated magma. Sparse sulphide is fine-grained and mostly pyrrhotite with rare pyrite and chalcopyrite. The fine-grained rocks are microgranular with abundant plagioclase, less abundant clinopyroxene and very minor opaque oxide, with grains averaging 025 to 0.5mm in different veins. These seem to represent microcumulate dykes and are not uncommon in layered intrusions.

Page 14 5/10/06

EHND6 - 268.89m

Partly altered feldspathic, magnetite-apatite-rich pyroxenite with decussate biotite, scapolite and largely altered orthopyroxene, passing into a magnetite-pyrrhotite-rich area (segregation or vein) with chalcopyrite, biotite, apatite, altered orthopyroxene, clinopyroxene and scapolite as well as carbonate and clay.

Field Note: Coarse actinolite-magnetite-altered fine-grained mafic unit cut by magnetite-biotite-carbonate vein and overprinted by pyrrhotite-chalcopyrite

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
Mafic Host		
Clinopyroxene	46	Cumulus
Clay/amphibole or pyroxene (?)/opaque oxide	14	Largely altered
and rare orthopyroxene		orthopyroxene ± olivine
Scapolite	14	Ex-plagioclase
Plagioclase	8	Post cumulus
Oxide	8	Cumulus and secondary
Biotite	7	Metamorphic
Apatite	2.5	Primary magmatic
Actinolite	0.5	Metamorphic
Oxide-Sulphide Zone	_	
Magnetite	66	
Pyrrhotite	17	Vein or magmatic
Chalcopyrite	2.5	segregation?
Apatite	2.5	
Carbonate	8	Hydrothermal
Orthopyroxene-clay-carbonate	1.5	Partly altered pyroxene

This sample is divided into two parts as suggested in your notes but the host is relatively coarse-grained feldspathic pyroxenite with very little amphibole and the opaque-rich zone

Page 15 5/10/06

(with magnetite and sulphides) may be a modified magnatic segregation rather than a hydrothermal vein. The pyroxenite has abundant clinopyroxene to 3mm in grainsize as well as magnetite-clinopyroxene and clay/talc areas that seem to have replaced orthopyroxene. Rare residual orthopyroxene occurs in smectite-rich areas but no residual material occurs in the magnetite-actinolite/clinopyroxene aggregates. Most of the altered probable orthopyroxene is distal from the opaque zone, where there is also interstitial plagioclase and patches of decussate biotite. Closer to the opaque zone the plagioclase has been partly and then completely altered to partly polygonised scapolite and there is no biotite. Altered orthopyroxene is also rare in this area, but granular opaque oxide and rounded prisms of apatite occur throughout. The disseminated oxide is mostly magnetite with more abundant ilmenite than usual, and there is disseminated sulphide (pyrrhotite > chalcopyrite)

The opaque zone is largely composed of coarse-grained magnetite with inequigranular masses of pyrrhotite usually accompanied by ragged patches of chalcopyrite, with the possibility of chalcopyrite replacing pyrrhotite. Interstitial carbonate is present as well as flakes of biotite and interstitial apatite to 3mm in grainsize. Rare orthopyroxene has been largely altered to carbonate and patches of clay are attached to interstitial carbonate. Very minor scapolite and clinopyroxene are enclosed in the margins of the magnetite, which is partly continuous with that in the host pyroxenite. This suggests that magnetite, apatite, pyroxene and biotite in this area are magmatic, probably as well as the pyrrhotite and possibly the chalcopyrite, but carbonate and clay are of later hydrothermal or supergene origin and the chalcopyrite may have replaced pyrrhotite. Green crystals in the chalcopyrite may be Fe-rich pumpellyite or chlorite/smectite.

Page 16 5/10/06

EHND6 - 296.10m

Smectite-carbonate-quartz-altered magnetite-apatiteilmenite-rich probable pyroxenite with residual biotite, plagioclase, scapolite and clinopyroxene as well as a large mass of chalcopyrite and rare disseminated pyrite.

Field Note: Chalcopyrite cutting magnetite-actinolite-carbonate vein in actinolite-magnetite-scapolite-altered mafic intrusive?

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
	,	
Smectite	45	
Carbonate	8	Mostly ex-pyroxene
Quartz	5	
Magnetite	7	
Ilmenite	3	
Apatite	3	
Plagioclase	2	Primary/metamorphic
Scapolite	3	
Clinopyroxene	1.5	
Biotite	2	
Chalcopyrite	20	Remobilised/hydrothermal
Pyrite	1	

The host rock in this sample seems to represent altered magnetite-apatite-rich mafic or ultramafic rock, possibly pyroxenite, with sparse interstitial plagioclase partly altered to scapolite as in the previous sample. Large areas of massive or microspherulitic smectite occur and seem to have been derived from pyroxene, although other areas have granular carbonate and areas of quartz with opaque material along microfissures, also probably after pyroxene. Some of the microspherulitic smectite also encloses pyrite and may have formed independently of pyroxene. Rare residual clinopyroxene occurs, to 3mm in grainsize, veined by smectite and carbonate, and sparse decussate biotite is disseminated as dark reddish brown crystals, suggesting high Fe and/or Ti. Minor coarse-grained ilmenite occurs as well as

Page 17 5/10/06

magnetite and most of the abundant apatite in this thin section is in and adjacent to opaque oxide, suggesting the possibility of an immiscible oxide-phosphate magma.

The chalcopyrite occurs as a large lens locally more than 10mm wide. This has abundant inclusions of magnetite, commonly fractured and fragmented and veined by chalcopyrite, and extends along microfissures in the altered host rock, suggesting some remobilisation or a hydrothermal origin for this sulphide. Sulphide in the host rock is mostly granular, skeletal or porous low-temperature pyrite, probably of low-temperature hydrothermal origin. Also, lenses of carbonate and vein-quartz occur in and adjacent to the chalcopyrite, suggesting a hydrothermal influence. Very minor pyrite occurs in the host rock and may be of secondary origin.

Page 18 5/10/06

EHND6 - 330.20m

Magnetite-ilmenite-pyrrhotite-apatite band or vein with clinopyroxene and largely smectite-altered orthopyroxene, passing into plagioclase and/or scapolite-rich gabbro with magnetite, apatite and biotite. Low-temperature pyrite has replaced pyrrhotite and flooded large areas of the oxide-rich band, extending into the gabbro.

Field Note: Magnetite-carbonate-chlorite vein cutting actinolite-magnetite-altered finegrained mafic and a pyrrhotite-pyrite \pm chalcopyrite vein

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
	`	
Magnetite	51	
Ilmenite	2	Oxide-apatite component
Apatite	2	
Clinopyroxene	5	
Orthopyroxene	1	Residual silicates
Plagioclase	7.5	
Scapolite	4	Metamorphic
Biotite	1	Metamorphic?
Pyrrhotite	4	Magmatic/hydrothermal
Smectite; carbonate-quartz-smectite.	8	Low-temperature
Low-temperature pyrite	11.5	hydrothermal

This sample has a wide band or vein composed largely of coarse-grained magnetite with minor ilmenite and granular apatite to 3mm in grainsize. Largely smectite-altered orthopyroxene is abundant in some areas with granular fresh clinopyroxene to 3mm in grainsize in other areas. Small grains of pyrrhotite occur within the magnetite and are rimmed by aggregates of carbonate, quartz and smectite in various proportions. Some of the pyrrhotite is also rimmed by partly porous aggregates of low-temperature pyrite. Pyrite also occurs in patches of colloform-banded smectite possibly ex-pyroxene.

Page 19 5/10/06

One each side of the opaque oxide-apatite layer are areas of plagioclase-rich or scapolite-rich mafic material with plagioclase to 3mm in grainsize accompanied by clinopyroxene, opaque oxide, biotite and apatite in plagioclase-rich areas. Scapolite occurs as well as or instead of plagioclase close to the oxide band or vein. Low-temperature pyrite also extends into these gabbroic areas, especially where there is abundant scapolite or smectite.

This sample may have a magmatic opaque oxide-apatite-sulphide segregation modified by later low-temperature hydrothermal processes to form low-temperature pyrite, smectite, quartz and carbonate.

Page 20 5/10/06

EHND7 – 260.60m Altered hypersthene gabbro with primary and secondary amphibole as well as opaque oxide and rare pyrite.

Field Note: Actinolite-altered plagioclase-pyroxene-magnetite-olivine gabbro with disseminated pyrite ± chalcopyrite

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location
Plagioclase	67	Primary, euhedral
Clinopyroxene	15	Subophitic
Orthopyroxene	6.5	Granular to prismatic
Amphiboles	10	Ex-pyroxene, deuteric
Opaque oxide	1	Magmatic
Pyrite	0.5	secondary

This sample has a subophitic texture and is gabbronorite or hypersthene gabbro with abundant euhedral plagioclase to 6mm in grainsize showing primary igneous zoning and weak clouding by clinozoisite. Subophitic and granular to prismatic pyroxenes to 4mm in grainsize are partly altered to green and/or colourless amphibole and there us minor brown or green interstitial amphibole that may be partly late magmatic and partly deuteric. Interstitial opaque oxide is also disseminated, mostly pale magnetite or maghemite with ilmenite as lamellae and as separate grains, as well as rare ragged grains of pyrite. Late clay-filled fractures occur and indicate deep supergene fluids.

Page 21 5/10/06

EHND8 - 276.60m

Weakly altered ophitic gabbro with rare sulphide and lowtemperature hydrothermal veins with chlorite-carbonate and smectite infills.

Field Note: Actinolite-altered plagioclase-pyroxene-magnetite-olivine gabbro with disseminated pyrite ± chalcopyrite

PETROGRAPHY:

A visual estimate of the modal mineral abundances:

Mineral	Abundance	Origin/location		
Plagioclase	60			
Clinopyroxene	25			
Brown hornblende	0.5	Magmatic		
Oxide	5			
Quartz	1.5			
Biotite	1.5	T (1)		
Green hornblende	7	Late magmatic/deuteric		
Chlorite-carbonate	Very minor	Early veins		
Smectite	Very minor	Late veins		

This sample is a typical subophitic gabbro with clouded plagioclase as laths to 4mm long and partly subophitic clinopyroxene to 3mm in grainsize. Minor brown hornblende and biotite occur as well as opaque oxides and the pyroxene is commonly spotted and rimmed with pale or dark green amphibole. Disseminated magnetite has been partly altered to hornblende and biotite and has lamellae of ilmenite, as in the previous sample, with sparse separate ilmenite grains. There is very minor sulphide and minor late magmatic quartz. Two veins occur in the thin section, one has chlorite \pm smectite and carbonate and the other is filled with smectite.

The fourteen core samples described in this report are from six drillholes labelled EHND3 to EHND8, in the Ernest Henry North area in the Mount Isa Inlier in Queensland. These were made into fourteen polished thin sections and two offcuts were stained with HF and sodium cobaltinitrite to show K-spar with a deep yellow colour.

Page 22 5/10/06

Two of the drillholes contain (EHND4 and 5) apparent country metamorphic rocks, with cumulus mafic and ultramafic rocks in drillholes EHND3 and 6, locally rich in opaque oxide and sulphide, and ophitic gabbros in EHND7 and 8.

APPENDIX 7

Petrophysical Report

PETROPHYSICAL RESULTS MESOSCALE LABORATORY DATA

Systems Exploration (NSW) Pty Limited

Postal Address: Box 6001 Telephone: (02) 4579 1183

Dural Delivery Centre Fax: (02) 4579 1290

NSW 2158, Australia email: systems@lisp.com.au

STUDY:	Teck Cominco	Project # 41/2006
--------	--------------	-------------------

DATE: 19 October 2006 **AREA:** Ernest Henry North

REFERENCE: Geodiscovery, G Mackie 05.09.05 (for Lisa Vella)

METHODS: mass, inductive, galv. elec.

DATA:	Tables	Crossplots
mass properties (density, porosity)	1	Fig P-D
ind. properties (mag k, em cond.)	2	Fig k-D
galv. elec (res., IP)	3	Fig C-D, IP-D

SAMPLES: seven (7) core samples sent by G Mackie

References on Techniques see:

Bertin, J & Loeb, J, 1976. Experimental and Theoretical Aspects of Induced Polarisation. Vol.1 [see 9.14: high resistivity -> high IP] Geopubl. Assoc. Geoexpl. Mon. 7; for IP see also Olhoeft, G, 1985, 2492; Nelson & VV, G 1983, 62; Mahan, R & S, GP, 1986, 743]

Clark, DA & Emerson, DW, 1991. Notes on rock magnetisation characteristics in applied geophysical studies. Explor. Geophys., 22, 547-555.

Emerson, DW, 1969. Laboratory electrical resistivity measurements of rocks.

Proc. Aust. Inst. Min. & Metal., 230, 51-62 (incl. 4 electrode water bath IP technique).

Emerson, DW, 1990. Notes on mass properties of rocks - density, porosity, permeability.

Explor. Geophys., 21, 209-216.

Emerson, DW & Yang, YP, 1997. Insights from laboratory mass property crossplots. ASEG Preview, 70, 10-14.

Yang, YP & Emerson, DW, 1997. *Electromagnetic conductivities of rock cores: Theory and analog results.* Geophysics, 62/6, 1779-1793 (incl. mag. k by induction coil).

Reference to high resistivity terrains:

Emerson, DW & Yang, YP, 1998. *Physical properties of fractured rock - bulk resistivity*. ASEG Preview, 77, 26-27.

Important Notes:

_ These petrophysical data results relate to laboratory measurements on small samples. The extrapolation of these results to large masses of in situ material should take account of sampling statistics, rock texture, structure (e.g. jointing) and other relevant variables e.g. water saturation in electrical studies, and anisotropy.

_ The results contained herein relate only to the material submitted for testing and no responsibility is accepted for the representivity of the material submitted.

_It is well known that the physical and electromagnetic properties of the earth are highly non-uniform. Consequently the use of parameters to describe the earth must take into account the fact that they will be a function of spatial dimensions or will represent a composite value which is directly affected by the non-uniformity of the sample. In rock mechanics, these differences are described by the terms "rock mass" to represent the non-uniform composite structure, and "rock material" to represent the uniform material. [from IEE 1999: Guide for measurements of EM properties of earth media]

_Errors: Usually on a given sample or subsample, and under fixed conditions, the root mean square error of an individual measurement is better than 1% when taking into account uncertainties in geometry of the specimen of rock material and the instrument specifications between calibrations. However, in no way can this indicative measured value be described as the definitive characteristic of the rock mass for which the accurate depiction of a physical property requires adequate and careful sampling (rarely done in routine test programs owing to considerations of cost and time) and cognisance of other variables, including lab. artefacts.

⊙ I ⊏IVI .	S EXPLOR	RATION (NSW) PT	YLIMITED			l	Table 1
		6001, Dural Deliver		, 2158			
enhone	· (02) 4579	1183: Fax: (02) 45	79 1290	1	MASS		Project: 41/2006
opilone	(02) 4070	1100: 1 44: (02) 40	10 1200		PROPERTIES		1110,000. 41/2000
	ļ				T KOT EKTIEG		Date: 15 October 2006
							Date: 10 October 2000
JDY	Teck Com	inco Ernest H	lenry North	<u> </u>		Sw: water sat.	level in nores
		ss properties, vac sa		cluded voide assum	ned minor	1	(fresh)
CEDEN	ICE G M	ackie, Geodiscover	y (for I Vella	\		eaturant (in va	cuum): 20 ohm m solution
	OL O W	ackie, Geodiscovei	y(IOI L VEIIA	/		Saturant (iii va	i
						VALUES ROU	: INDED
						VALUES ROC	
SVM	PLES		MESOSCAL	E PHYSICAL PRO	DEDTIES		
			Sw -> 0%	L FITT SICAL FRO		Sw->100%	
CO	res				(inferred)		
			dry bulk	apparent	SGGA	WBD	
			density	porosity P _A	(composite,	wet (sat.)	
	EHN		DBD	(water accessible	apparent)	bulk dens.	
#	D6	lithology	(105°C dry)	void vol. wrt total vol)	grain dens.		
	m	altered mafics	g/cm ³	%	g/cm ³	g/cm ³	<u> </u>
1	252.40	po vein, cpy, mtt	4.08	3.0	4.21	4.11	
2b	259.20	dissem. po, cpy, py	3.31	0.3	3.32	3.32	
		1 / 12/12					
3t	269.05	po-cpy vein, mtt	3.44	0.1	3.44	3.44	
		p =		• • • • • • • • • • • • • • • • • • • •			
4	309.90	po vein, dissem.	3.43	< 0.1	3.43	3.43	
		p					
				1			
5	313.90	mtt vein + po	4.85	< 0.1	4.85	4.85	
	2.3.00	alt. mafic		1			
6	314.25	cpy-po-carbonate	3.34	0.1	3.34	3.34	
		+ mtt			-		
7b	327.10	ро-ру-сру	3.06	2.1	3.09	3.08	
		carbonate	0.00		0.00	3.55	
		30.23100		 			
							1
							†
				 			
				 			+
				 			1
							+

Figure IP-D

Figure Cond-D

SYSTEMS	EXPLORATI	ON (NSW) PTY LIM	IITED			<u> </u>		Table 3	
		1, Dural Delivery Cent		58		GALVANIC		1	
Telephone:	(02) 4579 118	3: Fax: (02) 4579 12	90			TESTS		Project: 41/2	2006
								Date: 19 Oc	tober 2006
STUDY	Teck Cominco	Ernest Henry I	l North			-	ļ		
TECHNIQU	JESgalvanic	electric resistivity and	d IP				SAMPLE TRE	ATMENT:	
REFEREN	CE_G Macki	e, Geodiscovery_, L	Vella Tech Co	ominco				for sat state	
								L	
	samples het	erogeneous and varia	ably magnetic		VACU	JM SATURANT	20 ohm m solu	ution	
241	MPLES			MESOSCALE	DHASICVI	PROPERTIES (I A B \		
JAI		samples measured a	long 1/ coro a		TITIOICAL	KOLEKTIES (
		generally oblique or r			nalva	 anic electrical re	I sistivity		
½ core		generally exhique en .	10111101110110111	meas. air d			sat		IP effect
	EHN			DC	ρ _t	bulk density	ρο		as equiv.
#	D6	lithology	texture	galv cond.	1 kHz	approx	1 kHz		chargeability
	m	altered mafics		S/m	ohm m	g/cc	ohm m		ms
b,t refer to				201:5	DE0	-			
	f core supplied			COND	RES	4	1		
(arrow assu	umed uphole) 252.40	po vein, cpy, mtt		(0.5)	2	4.09	 		71
-	202.40	po voin, opy, nitt		(0.0)		7.03			11
2b	259.20	dissem. po, cpy, py		34		3.31			272
2t				(0.0015)	653	3.02	429		
Zt				(0.0013)	000	3.02	429		
				(good po. net)					
3b	269.05	po-cpy vein, mtt	textures	29375		4.6			
- 01			poor for	(0.0400)		0.44			404
3t			galvanic core axial	(0.0182)	55	3.44			191
			cond:						
4	309.90	po vein, dissem.	fragmented,	(0.0035)	283	3.41			245
			discont.,						
			stringer,						
			bx			+			
5	313.90	mtt vein + no		3394		4.84			193
	313.30	mtt vein + po alt. mafic		3334		4.04			133
	0446=			(0.04.45)	70	1 22:	ļ		116
6	314.25	cpy-po-carbonate		(0.0143)	70	3.34			119
		+ mtt							
						1	1		
7b	327.10	ро-ру-сру		(0.0002)	4610	3.07			48
				(0.0005.)	100	2.00	170		
7t		carbonate		(0.0023)	439	3.26	173		
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	where no		regard as
		() in) inverted AC res			value cited use air dry		relative
							value for very		maxima
			ļ			 	low porosity		
							&/or solid		
						+	sulphidic		
						<u> </u>	conducting		
							samples		

Figure k-D

SYSTEM	IS EX	(PLORA	TION (NSW) PTY L	IMITED					Table 2
Postal Ad	dress	: Box 60	01, Dural Delivery C	entre, NSW.	2158		INDUCTIVE		
Telephon	ie: (02	2) 4579 11	83: Fax: (02) 4579	1290			TESTS		Project: 41/2006
	\Box		<u> </u>						
									Date: 6 October 2006
	اا				L				
STUDY_		k Cominc		ry North	400111 /	IDM .	<u> </u>		
			on coils mag k 460 F	1z, EM cond≥	100 KHZ(I	NRIVI approx	scan: spinner ma	ag)	<u> </u>
KEFEKE	NCE_	_G Maci	kie, Geodiscovery		Г		SAMDL	= TDEATMENI	none, measured
t b refer to	o sub	samples f	rom top and bottom	of% core sun	i olied (assum	ning arrow or		_ IIXLATIVILINI	as received / air dry
1,6 10101 10	o oub	Jampioo i		01/2 0010 0up	onou, (accum	iing arrow or	rooro lo apriolo }		ias received / air ary
SA	MPL	ES			MESOSCAL	E PHYSICA	L PROPERTIES	(LAB.	
					all subsamp		large core		these comments based
					NRM	density		ab limit 0.1 S/n	on galvanic microprobing
		EHN		mag k	(quickscan)	approx.	ind. responses	EM cond.	comments
#		D6	lithology		est. wrt	g/cc		σ	samples not homogen.
		m	altered mafics	Slx10⁵	ind mag	t/m ³		S/m	and variably magnetic
1	bi	252.40	po vein, cpy, mtt	51744	greater	4.56	1		EM cond responses
	bii			41082		4.56	1		dominated by magnetic
	ti			294440		4.37	 		loss, see comments
	tii			145318		3.58	1		below and Table 3 galv. data
	uii			140010		5.56	1		uala
2	bi	259.20	dissem. po, cpy, py	2240		3.04	2b		
	bii			1835		2.88			independent po network
							<u> </u>		poor, patchy
	ti	-		5580	less	3.09	2t	· · · · · · · · · · · · · · · · · · ·	
	tii			10087		3.06			
3	bi	269.05	po-cpy vein, mtt	4251		4.45	3b		excellent po cond.
	bii			10498	comparable	4.42			network
(middle)	mi			1185646	less ?	4.73	 		
(middle)	mii	aniso? p	oor	747183?	1622 (4.73	1		
	mii	, 		375277?		4.85			
	miii	geomen	Í	876667		4.88			
	ti			12345		3.09	3t		poor po network
	tii			21367		3.12			
4	bi	309.90	po vein, dissem.	6214		2.87	4		po. patchy cond. along
	bii			3869		2.93			oblique foliation
	4:			40000		2.20			·
	ti tii			19962 30203	less	3.36 3.38			
	uii			30203	1033	5.30	1		
5	bi	313.90	mtt vein + po	636256		4.85	5		
	bii	0.0.00	alt. mafic	910169	less	4.97	T T		heterogeneous good po
									cond. poorer mtt cond.
	ti			496251		4.75			
-	tii	-		361958		4.35		· · · · · · · · · · · · · · · · · · ·	
6	bi	314.25	cpy-po-carbonate	45388		3.38	6b		poor po network patchy
	bii		+ mtt	47848	comparable	3.43	1		, , , , , , , , , , , , , , , , , , , ,
	4:			40400		2 47	St culphide		quito conductive but
	ti tii			49499 78595		3.47 3.40	6t sulphide fragment		quite conductive but small
	ul		 	1 0090		3.40	nagment		SIIIali
7	bi	327.10	ро-ру-сру	2057		2.86	7b		patchy frag. po overall
	bii	00	carbonate	2238		2.87			poor cond.
	1		5557						
	ti			165051		4.06	7t		frag. po. clasts overall
	tii			18086	greater	4.20	<u> </u>		poor cond.
					qualitative				
	ļ				and v.				
	2 [approx				
			;						
					only, NRM				
					only, NRM (raw estimates)				

Figure k-D			Fig P-D							
			felsic		mafic		сру		ру	
mineral	k	D	DBD	Pa	DBD	Pa	DBD	Pa	DBD	Pa
			2.65	0			4.2	0	5	0
mon po	60000	4.6	2.6235					1	4.95	1
hex po	140	4.65	2.597	2	3.136	2	4.116	2	4.9	2
mtt	3000000	5.18	2.5705	3	3.104	3				3
hem	150	5.26	2.544	4		4				4
ру	4	5	2.5175	5		5				
сру	38	4.2	2.491	6	3.008	6				6
1,7			2.4645	7						7
			2.438			8				8
			2.4115	9		9				9
			2.385	10					4.5	10
			2.3585	11	2.848	11			4.45	11
			2.332	12		12			4.4	12
			2.3055	13		13				
			2.279			14		14	4.3	
Figure Cond-D			2.2525	15				15		
J			2.226	16		16				16
mineral	С	D	2.1995	17					4.15	
gr	70000	2.2	2.173	18		18		18		18
aspy	1000	6.16	2.1465							19
agt	10000	7.3	2.12							
bn	1000	5.09	2.0935	21			3.318		3.95	21
cob	1000	6.33	2.067	22						
cc	1000	5.79	2.0405	23		23				23
cupr	0.3	6.1	2.014							
сру	1000	4.2	1.9875	25					3.75	
cass	1	7								
cv	1000000	4.7								
cub	10000	4.1								
gal	1000	7.5								
Fe crt	100	5.1								
mb	1	4.8								
mill	3000000	5.38								
nicc	10000000	7.78								
pn	1000000	4.96								
po	100000	4.6								
ру	1000	5.01								
pyrol	10	4.8								
hem/spec	10	5.26								
hemo ilm	100	4.7								
mtt	10000	5.2								
Fe	10000000	7.5								
		-								
sph	insul	4								
crt	insul	5.1		1		1	1			1