Bases de données Lecture 12

Nabil Mustafa

mustafa@lipn.univ-paris13.fr

new idea

LOSSLESS DECOMPOSITIONS

Given a relation:

say we decompose it into two tables:

$$R2$$
 (a, b, c, e)

Can we 'lose' information by doing this? ... what does that even mean?

Given a relation:

say we decompose it into two tables:

Goal: (R1 NATURAL JOIN R2) must give back exactly R

called a LOSSLESS DECOMPOSITION

Lossless Decompositions

R1 a b c d a1 b1 c1 d1 a1 b1 c1 d2

a	b	С	e	R2
a1	b1	c1	e1	
a1	b1	c1	e2	

JOINING R1 and R2 around a, b, c

Why is this happening?

Reason: Multiple values of d and e for fixed values of a, b, c!

SELECT RI.a, RI.b, RI.c, RI.d, R2.e FROM RI, R2 WHERE BLa = R2.a AND BLb = R2.b AND BLc = R2.c	
WHERE RIA = RZA AIND RIA = RZA AIND RIC = RZC	

× v				
a	b	С	d	е
a1	b1	c1	d1	e1
a1	b1	c1	d1	e2
a1	b1	c1	d2	e1
a1	b1	c1	d2	e2

R1 bda \boldsymbol{c} egb1 f1a1c1g1d1e1 f2g2a2b2 c2Ř2

So the join gives 4 lines instead of 2!

Lossless Decompositions

Ŗ1 bdacegb1 f1a1c1g1d1e1 f2a2b2c2g2

Ř2

d, e \longrightarrow f, g

R1 dbceagb1 f1a1c1g1d1e1c2a2b2Ř2

d, e \longrightarrow f, g

Now, each line of **R1** extends to a unique line in NATURAL JOIN

 \dots the join gives 2 lines, correctly

Lossless Decompositions

R1 bd \boldsymbol{c} aegf1a1b1 c1g1d1e1 f2a2b2c2g2

Ř2

d, e \longrightarrow a, b, c

Now, each line of **R2** extends to a unique line in NATURAL JOIN

 \dots the join gives 2 lines, correctly

Lossless Decompositions

Given a relation R

say we decompose it into two tables:

R1 R2

each row of (R1 NATURAL JOIN R2) gives at least one row of R

to prove: each row of $\Big($ R1 NATURAL JOIN R2 $\Big)$ gives exactly one one row of R

Another way of looking at it:

assume $R1 \cap R2 \longrightarrow R1$

consider the table **R2** line by line:

for each line of R2, exactly one matching line of R1

these together give a line of R

So we cannot get anything 'extra' in R

Recall BCNF decomposition

If there is
$$\alpha \longrightarrow \beta$$
 in F⁺ with
$$(\beta - \alpha) \cap \mathbf{R} \text{ not empty} \quad and \quad \alpha \subseteq \mathbf{R} \text{ not a superkey of } \mathbf{R}$$
 then
$$\mathbf{R1} \qquad \mathbf{R2}$$

$$\alpha \bigcup \beta \qquad \mathbf{R} - \beta$$

Is this lossless? Note that $R1 \cap R2 = \alpha$ and $\alpha \longrightarrow R1$. Therefore,

⇒ decompositions used in **BCNF** are lossless

new idea

3rd NORMAL FORM: DEFINITION

Preserving Dependencies

Given a relation R and a set F of functional dependencies we decompose R into tables $R1, \ldots, Rk$ each table Ri has a list Fi of dependencies for it

Over time, we insert more data into these k tables

each insert, we check new data satisfies ${\sf Fi}$ for table ${\sf Ri}$

$$d \longrightarrow e$$
, f for table **R2**

but unable easily to check dependencies across tables

a, b
$$\longrightarrow$$
 f

to avoid this problem, forced to check by $\ensuremath{\mathsf{JOINS}}$ each time we insert

3RD NORMAL FORMS

Given a relation R and a set F of functional dependencies

R is in BCNF if it has no redundancy with respect to F⁺

R is in BCNF if for all functional dependencies $\alpha \longrightarrow \beta$ in F⁺ either $\alpha \longrightarrow \beta$ is *trivial* ... that is, $(\beta - \alpha) \cap \mathbf{R}$ is empty or α is a superkey of **R**

We now loosen the BCNF condition to allow some dependencies in R

 $\alpha \longrightarrow \beta$ can remain, even if α is not a superkey, **as long as** each attribute in $\beta - \alpha$ is 'important'

3rd Normal Forms

Given a relation R and a set F of functional dependencies

R is in 3NF if for all functional dependencies $\alpha \longrightarrow \beta$ in F⁺ where $\alpha \subseteq \mathbf{R}$ and $\beta \subseteq \mathbf{R}$

either $\alpha \longrightarrow \beta$ is trivial ... that is, $(\beta - \alpha) \cap \mathbf{R}$ is empty

or α is a superkey of **R**

or each attribute in $\beta - \alpha$ is part of some candidate key of **R**

unintuitive condition, will become clear later!

note: all attributes in $\beta-\alpha$ need not be part of the *same* candidate key different attributes can be part of different candidate keys

3rd Normal Forms

Given the relations:

$$\mathtt{a}\,\longrightarrow\,\mathtt{b}$$

c, b
$$\longrightarrow$$
 a, d

Is this in **3NF**? YES

$$a \rightarrow b$$
 a problem for **R** for **3NF**?

Is b part of *some* candidate key for **R**? **yes**

c, b
$$\longrightarrow$$
 a, d

3rd Normal Forms: Algorithm

Given a set of functional dependencies F the algorithm for computing a **3NF** decomposition:

An Overview (details later)

Step 1. Simplify F to a 'minimal' list of dependencies F_c

Step 2. for each dependency $\alpha \rightarrow \beta$ in F_c , add relation

Theorem: The above algorithm gives **3NF**, and preserves all dependencies!

new idea

EXTRANEOUS ATTRIBUTES


```
def isAttributeExtraneous(F, alpha, beta, a):
    if a in beta:
        beta_prime = beta.difference({a})
        _F = list(F)
        _F.remove([alpha, beta])
        _F.append([alpha, beta_prime])
        if a in computeAttributeClosure(_F, alpha):
            return True, [alpha, beta_prime]

if a in alpha:
    alpha_prime = alpha.difference({a})
    if beta.issubset(computeAttributeClosure(F, alpha_prime)):
        return True, [alpha_prime, beta]

return False, [{}, {}]
```

To remove b, check if

 $\alpha \longrightarrow$ b, β

the closure of α in $[\alpha \longrightarrow b, \beta] + [\alpha \longrightarrow \beta]$

contains b

a, $\alpha \longrightarrow \beta$

To remove a, check if

 β is contained in the attribute closure of α in F

```
import itertools
def powerSet(inputset):
def computeAttributeClosure(F, X):
def isAttributeExtraneous(F, alpha, beta, A):
    if A in beta:
        beta_prime = beta.difference({A})
        _F = list(F)
        _F.remove( [alpha, beta] )
        _F.append([alpha, beta_prime])
        if A in computeAttributeClosure(_F, alpha):
            return True, [ alpha, beta_prime ]
    if A in alpha:
        alpha_prime = alpha.difference({A})
        if beta.issubset( computeAttributeClosure(F, alpha_prime) ):
            return True, [ alpha_prime, beta ]
    return False, [ {}, {} ]
d = [
           [ {'A'}, {'B', 'C'}],
           [ {'B'}, {'C'} ],
[ {'A', 'B'}, {'C'} ]
print( isAttributeExtraneous(d, *[{'A'}, {'B', 'C'}], 'C') )
print( isAttributeExtraneous(d, *[{'A'}, {'B', 'C'}], 'B') )
                    (True, [{'A'}, {'B'}])
                    (False, [{}, {}])
```

new idea

CANONICAL FORMS

ALGORITHM

Given a set of functional dependencies F

 F_c is a Canonical Form of F if :

- \bullet \mathbf{F}_{c} is a minimal list of dependencies for F
- \bullet no two dependencies in ${\bf F}_c~$ have same left side

In other words: from F, we want to construct F^c such that

closure (F) = closure (F_c)

no dependency in F_c has an extraneous attribute

no two dependencies in ${\bf F}_c\,$ have same left side

ALGORITHM

Given a set of functional dependencies F, algorithm to compute F_c

$compute Canonical Cover \left(\ \mathsf{F} \ \right)$

```
\begin{split} F_c &= \mathsf{F} \\ \text{While } F_c \text{ keeps changing :} \\ \text{for each dependency } & \alpha \longrightarrow \beta \quad \text{in } F_c : \\ \text{for each attribute a in } & \alpha \bigcup \beta : \\ \text{if a is extraneous in } & \alpha \longrightarrow \beta \quad : \\ \text{delete it from } & \alpha \longrightarrow \beta \quad : \\ \text{delete it from } & \alpha \longrightarrow \beta \quad \text{in } F_c : \\ \text{combine into one dependency } & \alpha \longrightarrow \beta_1, \beta_2 \end{split}
```

```
def computeCanonicalCover(F):
    OUT, changed = list(F), True
     while changed:
         changed = False
          for alpha_i, beta_i in OUT:
              for alpha_j, beta_j in OUT:
    if not changed and alpha_i == alpha_j and beta_i != beta_j:
                        OUT.append([alpha_i, beta_i.union(beta_j)])
OUT.remove([alpha_i, beta_i])
                        OUT.remove([alpha_j, beta_j])
                        changed = True
         for alpha, beta in OUT:
              for A in (alpha beta):
                   to_update,[new_alpha,new_beta]=isAttributeExtraneous(OUT,*[alpha,beta],A)
                   if not changed and to_update:
                        if new_alpha != set() and new_beta != set():
                            OUT.append( [new_alpha, new_beta] )
                        OUT.remove([alpha, beta])
                        changed = True
                        break
    return OUT
d = [
             [ {'A'}, {'B'} ], #A->B
[ {'A'}, {'C'} ], #A->C
[ {'C', 'G'}, {'H'} ], #CG->H
[ {'C', 'G'}, {'I'} ], #CG->I
[ {'B'}, {'H'} ] #B->H
print( computeCanonicalCover(d) )
      [[{'B'}, {'H'}], [{'A'}, {'B', 'C'}], [{'G', 'C'}, {'H', 'I'}]]
```

```
def computeCanonicalCover(F):
                                                                                          d \longrightarrow g, e
   d = [
                [ {'A', 'C'}, {'G'} ],
[ {'D'}, {'E', 'G'} ],
[ {'B', 'C'}, {'D'} ],
[ {'C', 'G'}, {'B', 'D'} ],
[ {'A', 'C', 'D'}, {'B'} ],
[ {'C', 'E'}, {'A', 'G'} ]
                                                                                          c, b \longrightarrow d
                                                                                                              \rightarrow b
                                                                                          c, g -
                                                                                          a, c -
                                                                                                                   b
                                                                                          c, e -
   print( computeCanonicalCover(d) )
[[{'D'}, {'G', 'E'}], [{'B', 'C'}, {'D'}], [{'G', 'C'}, {'B'}], [{'E', 'C'}, {'A'}], [{'C', 'A'}, {'B'}]]
 a, c \longrightarrow g since can get from: a, c \longrightarrow b + c, b \longrightarrow d + d \longrightarrow g, e
 d \longrightarrow g, e
 c, b \longrightarrow d
 c, g \longrightarrow b, d since can get from: c, g \longrightarrow b + c, b \longrightarrow d
 a, c, d \longrightarrow b since can get from: a, c \longrightarrow g + c, g \longrightarrow b, d
                                                                                                                   d \longrightarrow g, e
 c, e \longrightarrow a, g since can get from: c, e \longrightarrow a + a, c \longrightarrow b + c, b \longrightarrow d
```

```
def computeCanonicalCover(F):
                                                                                         d \longrightarrow g,
d = [
             [ {'A', 'C'}, {'G'} ],
[ {'D'}, {'E', 'G'} ],
[ {'B', 'C'}, {'D'} ],
[ {'C', 'G'}, {'B', 'D'} ],
[ {'A', 'C', 'D'}, {'B'} ],
[ {'C', 'E'}, {'A', 'G'} ]
                                                                                         c, b \longrightarrow d
                                                                                         c, g \longrightarrow b
                                                                                                                  b
                                                                                         a, c
                                                                                                  e -
print( computeCanonicalCover(d) )
 Depending on the order chosen by algorithm, can get different but also good results!
```

```
[[{'C', 'A'}, {'G'}], [{'D'}, {'E', 'G'}], [{'B', 'C'}, {'D'}], [{'C', 'G'}, {'D'}], [{'C', 'D'}], [{'C', 'D'}, {'B'}], [{'E', 'C'}, {'A'}]]
```

```
[[{'D'}, {'E', 'G'}], [{'C', 'B'}, {'D'}], [{'C', 'G'}, {'D'}], [{'C', 'E'}, {'A'}], [{'C', 'A'}, {'B'}]]
```

```
[[{'C', 'A'}, {'G'}], [{'D'}, {'E', 'G'}], [{'B', 'C'}, {'D'}], [{'C', 'G'}, {'D'}], [{'C', 'D'}], [{'E', 'C'}, {'A'}]]
```

Another example: $a \longrightarrow b$, c $b \longrightarrow a$, c $c \longrightarrow a$, b is this a valid canonical form? $\mathtt{a}\,\longrightarrow\,\mathtt{b}$ $b \longrightarrow a$, c $c \longrightarrow b$ Yes is this a valid canonical form? $\mathtt{a}\,\longrightarrow\,\mathtt{c}$ $c \longrightarrow b$ $b \longrightarrow a$ Yes is this a valid canonical form? $b \, \longrightarrow \, c$ $c \, \longrightarrow \, a$ Yes $\mathtt{a}\,\longrightarrow\,\mathtt{b}$ is this a valid canonical form? $a \longrightarrow c$ $b \longrightarrow c$ $c \longrightarrow a$, bYes

new idea

3rd NORMAL FORM: ALGORITHM

FUNCTIONAL DEPENDENCY

Given a set of functional dependencies F

the algorithm for computing a **3NF** decomposition:

$$compute 3 NFD ecomposition \left(\ \mathsf{F} \ \right)$$

 F_c = canonical cover of F

 $OUT = \emptyset$

for each dependency $\alpha \longrightarrow \beta$ in F_c :

if $\alpha \bigcup \beta$ not already part of some relation in OUT:

OUT +=
$$\alpha \bigcup \beta$$

Add a relation with a candidate key of all attributes (if required)

to ensure that the decomposition is lossless $% \left\{ 1,2,...,n\right\}$

Theorem: The following algorithm gives **3NF** with **no** lost dependencies

```
def computeCanonicalCover(F):
    def compute3NFDecomposition(F):
        OUT = []
        F_c = computeCanonicalCover(F)
        for alpha, beta in F_c:
            if ( [ R for R in OUT if (alphabeta).issubset( R ) ] == list() ):
            OUT.append( alpha beta )

r = [ {'A', 'B', 'C', 'D'}, {'A', 'B'} ]
            [ {'C', 'B'}, {'B'}], #A->B
            [ {'C', 'B'}, {'A', 'D'}] #CB->AD
            ]
    print( computeBCNFDecomposition(d, r) )
    print( compute3NFDecomposition(d) )
```

BCNF: [{'A', 'B'}, {'A', 'C', 'D'}]
3NF: [{'A', 'B'}, {'A', 'C', 'D', 'B'}]

Theorem: The following algorithm gives **3NF** with **no** lost dependencies

Proof:

Given a set of dependencies F_c in canonical form

for each dependency $\alpha \longrightarrow \beta$ in F_c , we added the relation $\alpha \cup \beta$ no lost dependencies—added a relation for each dependency! hard part: show that $\alpha \cup \beta$ is in 3NF

Have to show that it cannot happen that there is a table that is not in 3NF:

```
\begin{array}{cccc} \text{table} & \alpha \bigcup \beta & \text{from} & \alpha \longrightarrow \beta & \text{in } \mathbf{F}_c \\ \\ \text{with} & & & \\ & \gamma \longrightarrow a \text{ derivable from } \mathbf{F}_c \\ & & & \\ & \gamma \cup \{a\} \subseteq \alpha \cup \beta \\ \\ & & \text{yet } \gamma \text{ is not a superkey of } \alpha \cup \beta \\ \\ & & \text{and } a \text{ not in any candidate key of } \alpha \cup \beta \end{array}
```

$$\alpha \longrightarrow \beta$$

with

 $\gamma \longrightarrow a$ derivable from F_c

$$\gamma \cup \{a\} \subseteq \alpha \cup \beta$$

yet γ is not a superkey of $\alpha \cup \beta$

and a not in any candidate key of $\alpha \cup \beta$

Key question: Did we derive $\gamma \longrightarrow a$ from \mathcal{F}_c using $\alpha \longrightarrow \beta$?

 $\mathbf{yes} \implies \gamma \text{ is a superkey in } \alpha \cup \beta, \text{ since then} \quad \text{all } \alpha \text{ is derivable from } \gamma$

no \implies a is redundant in $\alpha \longrightarrow \beta$, since knowing α , get γ_2 + knowing γ , get a

either way, we get a contradiction to our starting assumptions

$\alpha \longrightarrow \beta$

with

 $\gamma \longrightarrow a$ derivable from F_c

$$\gamma \cup \{a\} \subseteq \alpha \cup \beta$$

yet γ is not a superkey of $\alpha \cup \beta$

and a not in any candidate key of $\alpha \cup \beta$

but then a is part of the candidate key α , so satisfies 3NF property

End of proof.

BCNF vs 3NF

In a perfect world, we want three things:

- 1. No redundancy: no non-trivial non-superkey dependency in any table
- 2. Dependency preservation: each dependency verifiable in some table
- **3.** Losslessness: recover original table from JOINS of smaller tables

... but not always possible!

If we cannot have all three, then either:

3NF: satisfies **2**. and **3**., but can have redundancy *or*

BCNF: satisfies 1. and 3., but lose verifying some dependencies

SUMMARY

- 1. Switched to a completely data dependencies point of view
- **2.** Notion of functional dependency
- **3.** Closure of functional dependencies
- **4.** Closure of attributes
- **5.** Boyce-Codd Normal Form (BCNF)
- **6.** Lossless decompositions, BCNF is lossless
- 7. Dependency preservation when splitting tables
- 9. Canonical covers
- **8.** Extraneous attributes
- 10. 3NF: definition and algorithm

I gave you Python code for each algorithm

you should try examples by running code.

test with your own calculations and results.

