Exploring Data with Statistics

By Joe Ganser

What is statistics?

What is probability?

Statistics versus probabilities

Descriptive vs inferential statistics

measures of central tendency

measures of variability

frequency distribution

What is statistics?

Statistics is the mathematical science of drawing conclusions about the world using data, where our conclusions have a level of certainty relative to the quantity/quality of our data and analytical methods.

 Describe the average age, income and purchase behavior of a group of customers

Predict when herd immunity will occur from a pandemic

• Determine if a drug had any effect better than placebo

Source [5]

 Identify stock trends and correlations - when one market rises, which one falls?

 Take a random sample of people - use it to draw conclusions about their greater population

We use math to...

Summarize properties of data (e.g. mean, number data points)

- Summarize properties of data
- Describe anomalies and patterns of data (e.g. find outliers)

- Summarize properties of data
- Describe anomalies and patterns of data
- Test hypothesis about data (did the drug lower blood pressure?)

- Summarize properties of data
- Describe anomalies and patterns of data
- Test hypothesis about data
- Identify patterns & relationships between variables

- Summarize properties of data
- Describe anomalies and patterns of data
- Test hypothesis about data
- Identify patterns & relationships between variables
- Draw population conclusions using a sample

- Summarize properties of data
- Describe anomalies and patterns of data
- Test hypothesis about data
- Identify patterns & relationships between variables
- Draw population conclusions using a sample
- Predict the long term results of a statistical trend

 Probability is a mathematical way of describing how likely some event is to happen

- Probability is a mathematical way of describing how likely some event is to happen
- Probability p; 0<=p<=1

- Probability is a mathematical way of describing how likely some event is to happen
- Probability p; 0<=p<=1
- We use probability to describe our statistical results

- Probability is a mathematical way of describing how likely some event is to happen
- Probability p; 0<=p<=1
- We use probability to describe our statistical results
- P(something specific) = #number of ways specific result can happen/ number of all possibilities

What's the probability a single die rolls an even number?

What we're looking for = [2,4,6]

All possibilities = [1,2,3,4,5,6]

What's the probability a single die rolls an even number?

What we're looking for = [2,4,6] (3 possibilities)

All possibilities = [1,2,3,4,5,6] (6 possibilities)

What's the probability a single die rolls an even number?

What we're looking for = [2,4,6] (3 possibilities)

All possibilities = [1,2,3,4,5,6] (6 possibilities)

$$P = 3/6 = 0.5$$

Probability & Statistics

We use probability to describe the results of statistics;

E.g.

- "95% chance the weight of a GMO fish in a special pond is between 1-1.3lbs"
- "1% chance we observed these measurements due to pure coincidence"

Descriptive & Inferential statistics

- Two main genres of statistics
- Descriptive: goal is to summarize and visualize the data
 - Describe a dataset
 - Relies more on metrics and graphs
- Inferential: goal is to make inferences/generalizations about a population using a sample
 - Draw conclusions about a population
 - Relies more on probability

Descriptive Statistics: some applications

- Average age of a customer group
- Median (middle number): median age people who received a medical treatment
- Mode (most frequent data point): blood type of people who tested positive for covid
- Range: the spectrum of possible investment returns
- Standard deviation: measuring the variability of blood pressure measurements in treatment groups
- Histograms (frequency plots): The count of each age group that signed up for a gym membership

Measures of central tendency

Suppose we weigh a bunch of athletes before and after a weight training program. How do we describe these numbers?

Data = [100kg, 77kg, 93kg, 93kg, 115kg]

Mean, median, mode

Measures of central tendency: Mean

Data = [100kg, 77kg, 93kg, 93kg, 115kg]

Measures of central tendency: Mean

Data = [100kg, 77kg, 93kg, 93kg, 115kg]

Mean =
$$(100+77+93+93+115)/5 = 95.6$$

Measures of central tendency: Median

Data = [100kg, 77kg, 93kg, 93kg, 115kg]

First sort the data in increasing order, then use median formula

Data = [77kg, 93kg, 93kg, 100kg, 115kg]

Median =
$$\begin{cases} \frac{(N+1)^{th}}{2} \text{ term;when N is odd} \\ \frac{N^{th}}{2} \text{ term} + \left(\frac{N}{2} + 1\right) \text{term} \\ \frac{1}{2} \text{ ;when N is even} \end{cases}$$

Measures of central tendency: Median

Data = [77kg, 93kg, 93kg, 100kg, 115kg]

First sort the data in increasing order, then use median formula

Median = 93kg

Mode (most frequent value)

Data = [77kg, 93kg, 93kg, 100kg, 115kg]

- 1. find a count of each value.
- 2. find the value with the highest count

Mode (most frequent value)

Data = [77kg, 93kg, 93kg, 100kg, 115kg]

- 1. find a count of each value.
- 2. find the value with the highest count

Mode: 93kg

Data point count = {77:1, 93:2, 100:1, 115kg:1}

Central Tendency Measures: summary

Mean
$$\bar{x} = \frac{\sum XI}{N}$$

$$Median = \begin{cases} \frac{(N+1)^{th}}{2} \text{ term; when N is odd} \\ \frac{N^{th}}{2} \text{ term} + (\frac{N}{2} + 1) \text{ term} \\ \frac{2}{2} \text{ ; when N is even} \end{cases}$$

Mode = The value in the data set that occurs most frequently

Variability Measures

Suppose our goal is to describe how our dataset varies. We can use the;

- Range
- Standard deviation/Variance

Variability Measures: Range

To find the range, we simply look at the min value, the max value and their difference.

Variability Measures: Range

To find the range, we simply look at the min value, the max value and their difference.

Data = [77kg, 93kg, 93kg, 100kg, 115kg]

Variability Measures: Range

To find the range, we simply look at the min value, the max value and their difference.

Data = [77kg, 93kg, 93kg, 100kg, 115kg]

```
Min = 77kg
```

Max = 115kg

range = [77kg, 115kg]

Diff = 38kg

Variability Measures: Standard deviation/Variance formula

	Sample	Population
Standard deviation	S	σ
Variance	s^2	σ^2
Datapoint	x_i	x_i
Average	\bar{x}	μ
Total dataset number	n	N
Standard deviation formula	$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$	$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$
Variance formula	$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$	$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$

Source [2]

Variability Measures: Standard deviation/Variance

To find the variance, we

- subtract the mean from each value
- Square that new value
- Find the average of all these new data points

	Sample	Population
Standard deviation	S	σ
Variance	s^2	σ^2
Datapoint	x_i	x_i
Average	\bar{x}	μ
Total dataset number	n	N
Standard deviation formula	$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$	$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$
Variance formula	$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$	$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$

Variability Measures: Variance/standard dev

Find the variance

Data = [77kg, 93kg, 93kg, 100kg, 115kg]

Mean = 95.6

 $Var = ((77-95.6)^2 + (93-95.6)^2 + (93-95.6)^2 + (100-95.6)^2 + (115-95.6)^2)/5$

Var = 151.04

 $Std = Var^{(0.5)} = 12.29$

Data = [7, 9, 11, 12, 13, 14, 14, 15, 19]

We have an odd number of elements - what's our median?

[7, 9, 11, 12, 13, 14, 14, 15, 19]

Median is 13

Data = [7, 9, 11, 12, 13, 14, 14, 15, 19]

[7, 9, 11, 12, 13, 14, 14, 15, 19]

Bottom half = [7,9,11,12]

Bottom median = (9+11)/2 = 10

01 = 10

03 = 14.5

```
Data = [7, 9, 11, 12, 13, 14, 14, 15, 19]

[7, 9, 11, 12, 13, 14, 14, 15, 19]

Top half = [14, 14, 15, 19]

top median = (14+15)/2 = 14.5
```

Data = [7, 9, 11, 12, 13, 14, 14, 15, 19]

[7, 9, 11, 12, 13, 14, 14, 15, 19]

Interquartile range = Q3 - Q1 = 14.5 - 10 = 4.5

We previously learned that the mode of a dataset is simply the most frequently observed number

```
Data = [1,2,1,1,1,4,5,6]
```

Observations = {1:4,2:1,4:1,5:1,6:1} {number: count}

Mode = 1

Histograms are convenient ways of representing the count of each data point, or of each data group

Consider a (sorted) dataset:

Data = [2, 9, 14, 25, 27, 28, 35, 37, 46, 47, 47, 49, 52, 54, 63, 76, 87, 87, 91, 98]

Data = [2, 9, 14, 25, 27, 28, 35, 37, 46, 47, 47, 49, 52, 54, 63, 76, 87, 87, 91, 98]

Now suppose we made bins;

bin	count
(2,26)	4
(26,50)	8
(50,74)	3
(74,98)	5

Data = [2, 9, 14, 25, 27, 28, 35, 37, 46, 47, 47, 49, 52, 54, 63, 76, 87, 87, 91, 98]

And we can also make percentages

bin	count	%
(2,26)	4	20
(26,50)	8	40
(50,74)	3	15
(74,98)	5	25

Data = [2, 9, 14, 25, 27, 28, 35, 37, 46, 47, 47, 49, 52, 54, 63, 76, 87, 87, 91, 98]

Now we use this to make a histogram

bin	count	%
(2,26)	4	20
(26,50)	8	40
(50,74)	3	15
(74,98)	5	25

Sources

- 1. https://dataanalyze.wordpress.com/a/
- 2. https://s4be.cochrane.org/blog/2022/02/24/using-measures-of-variability-to-inspect-homogeneity-of-a-sample-part-1/
- 3. https://fashinza.com/textile/tips-for-fashion-brands/demographics-and-psychographics-how-to-know-your-customers-inside-out/
- 4. https://www.medpagetoday.com/infectiousdisease/covid19/88401
- 5. https://www.researchgate.net/figure/SHAPS-and-PRT-results-a-Effects-of-study-drug-versus-placebo-on-mean-SHAPS-score-ITT fig4 340287074
- 6. https://www.ngpf.org/blog/question-of-the-day/qod-coke-vs-pepsi-which-companys-stock-has-performed-better-over-the-past-five-years/
- 7. https://datatab.net/tutorial/descriptive-inferential-statistics