Lista de Exercícios – Processador MIPS, Desempenho, Mono-ciclo e Multi-ciclo

- 1. Descreva a arquitetura do processador MIPS considerando os seguintes aspectos:
 - a. tamanho do dado a ser processado
 - b. espaço de endereçamento de memória
 - c. número de registradores
 - d. formato e tamanho das instruções
- Faça um estudo comparativo entre uma implementação monociclo e uma implementação multiciclo, considerando desempenho e custo de implementação em função da área de silício.
- 3. Tanto na arquitetura projetada em sala de aula como na descrita no livro todas as instruções aritméticas envolvem três registradores e possuem o mesmo formato. Na sua opinião de projetista, quais as vantagens e desvantagens desta decisão de projeto?
- 4. Porque o processador MIPS se caracteriza como uma arquitetura LOAD/STORE? Quais as vantagens e desvantagens desta arquitetura?
- 5. Considere três processadores P₁, P₂, e P₃ executando o mesmo conjunto de instruções com as frequências de clocks descritas na tabela abaixo.

Processador	Clock	CPI
P_1	2 GHz	1,5
P_2	1,5 GHz	1,0
P ₃	3 GHz	2,5

- a. Qual processador tem o melhor desempenho?
- b. Se os processadores executam um programa em 10 segundos, encontre o número de ciclos e de instruções para cada um.
- c. Estamos tentando reduzir o tempo em 30%, mas isto levaria a um aumento de 20% no CPI. Qual a taxa de clock para conseguir esta redução?
- 6. Considere duas implementações diferentes do mesmo conjunto de instruções, que pode ser classificado em 4 classes de instruções: A, B, C, e D. A frequência de clock e CPI para cada uma das implementações é dada na tabela abaixo.

Implementação	Clock	Classe A	Classe B	Classe C	Classe D
P_1	1,5 GHz	1	2	3	4
P_2	2 GHz	2	2	2	2

Dada uma aplicação com 10⁶ instruções sendo 10% de instruções da classe A, 20% de instruções da classe B, 50% de instruções da classe C e 20% de instruções da classe D.

- a. Qual implementação tem melhor desempenho?
- b. Qual o CPI global para cada implementação?
- c. Calcule o número de ciclos de clock para cada implementação.
- 7. Suponha que foi inserida a instrução move r_d, r_s, que copia o conteúdo do registrador r_s para o registrador r_d. Considerando a implementação apresentada no livro texto, como se poderia implementar esta instrução preservando todos os outros registradores. Quais as modificações na unidade de processamento e na unidade de controle para a implementação desta instrução com o menor CPI possível?

Figura 1 - Unidade de processamento do MIPS (CPU do Livro)

8. Considere a instrução move r_d, r_s do MIPS, que copia o conteúdo do registrador r_s no registrador r_d. Esta instrução é frequentemente utilizada junto com a instrução de desvio condicional conforme a sequencia mostrada abaixo

 $\begin{array}{l} bne \; r_t, \, rzero, \; X \\ move \; r_d, r_s \end{array}$

X:

Face à crescente utilização da sequencia de instruções acima, foi incluída uma nova instrução cmove r_d , r_s , r_t que copia o conteúdo do registrador r_s no registrador r_t se o conteúdo do registrador r_t for igual a zero. Esta instrução substitui a sequencia de instruções mostrada acima.

Para uma determinada aplicação a frequência de execução das instruções é dada pela tabela abaixo:

Classe de instrução	Frequência	CPI médio
Aritmética	43%	4
Acesso à memória	26%	5
Desvio condicional	15%	3
Outras	16%	3

- a. Implemente a instrução cmove de forma que ela possua o mesmo CPI da instrução move. Quais as modificações na unidade de processamento e na unidade de controle?
- b. Considerando que a instrução cmove possui o mesmo CPI da instrução move e que esta instrução substitui 20% das instruções de desvio condicional, a inclusão desta instrução melhoraria o desempenho da máquina?? Justifique. Se sim, qual o speedup?
- 9. Suponha que foram sugeridas algumas modificações na arquitetura projetada em sala de aula dadas por:
 - a. inclusão do tipo de dado int_long (64bits), sendo que o número de registradores não foi modificado.
 - b. inclusão de instruções aritméticas (add_long, sub_long), lógicas (and_long, or_long),
 - c. inclusão de instruções de comparação (slt_long) e de leitura e escrita de memória (lw_long, sw_long).

Quais as modificações que devem ser feitas na implementação da CPU projetada em sala de aula para se implementar estas novas características:

- a. Na unidade de processamento.
- b. Na unidade de controle