Лабораторная работа №3.2.2

Резонанс напряжений в последовательном контуре

Маслов Артём Симанкович Александр Б01-104

01.12.2022

Аннотация

В работе исследуется резонанс напряжений в последовательном колебательном контуре. Измеряются амплитудно-частотные и фазо-частотные характеристики, определяются основные параметры контура.

Ключевые слова: последовательный колебательный контур, резонанс, АЧХ, ФЧХ, добротность, коэффициент затухания, постоянная времени.

Теория

Уравнение колебательного контура

При рассмотрении физических процессов в электрических цепях используются следующие предположения. Во-первых, все элементы электрической цепи считаются идеальными. Предполагается, что у катушек индуктивности и конденсаторов нет омического сопротивления, источник напряжения обладает нулевым сопротивлением, а источник тока бесконечно большим, и т.д. Такое представление упрощает анализ физических процессов в электрических цепях. Если же такие предположения вносят большую погрешность, то в схему добавляются дополнительные идеальные элементы, которые учитывают особенности физических процессов в конкретных случаях.

Во-вторых, рассматриваются *квазистационарные процессы*. Известно, что электромагнитные колебания распространяются с конечной скоростью. В данной работе рассматриваются такие электрические цепи, в которых время установления электромагнитных колебаний пренебрежимо мало.

Рассмотрим последовательный колебательный контур без источника ЭДС (рис. 1). Пусть напряжение на конденсаторе меняется по закону U=U(t). Тогда, согласно второму правилу Кирхгофа, сумма падений напряжений равна 0:

 $L\frac{dI}{dt} + U + RI = 0$

Рис. 1: Последовательный контур

Ток через конденсатор определяется из соотношения

$$I = \frac{dq}{dt} = C\frac{dU}{dt}$$

Тогда получим дифференциальное уравнения второго порядка, описывающее *свободные коле- бания* в линейной системе:

 $LC\frac{d^2U}{dt^2} + RC\frac{dU}{dt} + U = 0$

Данное уравнение можно переписать в виде:

$$\ddot{U} + 2\gamma \dot{U} + \omega_0^2 U = 0$$

где введены обозначения $\gamma=\frac{R}{2L}$ — коэффициент затухания, $\omega_0=\frac{2\pi}{T_0}=\frac{1}{\sqrt{LC}}$ — собственная частота колебательной системы, $T_0=2\pi\sqrt{LC}$ — период собственных колебаний.

Найдём решение однородного дифференциального уравнения с постоянными коэффициентами. Запишем характеристическое уравнение:

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0$$

$$D_1 = \frac{D}{4} = \gamma^2 - \omega_0^2$$

В зависимости от знака дискриминанта квадратного уравнения возможны три случая.

1. Затухающие колебания.

Рассмотрим случай, когда $D_1 < 0$. Тогда $0 < \gamma < \omega_0$, что эквивалентно

$$0 < R < 2\sqrt{\frac{L}{C}} = R_{\rm kp}$$

Сопротивление $R_{\rm kp}=2\sqrt{\frac{L}{C}}$ называется критическим, а $\rho=\sqrt{\frac{L}{C}}$ – волновым.

В рассматриваемом случае характеристическое уравнение имеет два комплексных корня

$$\lambda_{1,2} = -\gamma \pm j\sqrt{\omega_0^2 - \gamma^2}$$

Величину $\omega = \sqrt{\omega_0^2 - \gamma^2}$ называют частотой свободных колебаний. Решением уравнения будет

$$U(t) = U_1 \cdot e^{-\gamma t} \cdot e^{-j\omega t} + U_2 \cdot e^{-\gamma t} \cdot e^{j\omega t}$$

где U_1 и U_2 – произвольные постоянные.

Полученное уравнение можно представить в виде

$$U(t) = U_0 e^{-\gamma t} \sin(\omega t + \varphi_0)$$

Данное уравнение является гармоническим с фазой $\omega t + \varphi_0$ и экспоненциально убывающей амплитудой $U_0 e^{-\gamma t}$.

График зависимости напряжения от времени представлен на рисунке 2.

Рис. 2: Затухающие колебания

С точки зрения математики данный колебательный процесс не периодичен. Тем не менее функция U(t) обращается в ноль или достигает экстремумов через один и тот же промежуток времени, который называю $nepuodom\ samyxaющиx\ колебаний$.

2. Критический режим.

Рассмотрим случай, когда $D_1 = 0$. Тогда

$$\gamma = \omega_0$$

Характеристическое уравнение имеет один корень

$$\lambda = -\gamma$$

Решением исходного уравнения будет

$$U(t) = U_0 e^{-\gamma t}$$

где U_0 – постоянная, определяемая из начальных условий.

Заметим, что данный режим физически не реализуем, так как равенство $\gamma = \omega_0$ не может быть выполнено точно. Данный случай нужно рассматривать как переходный между затухающими колебаниями и апериодическим режимом.

3. Апериодический режим.

Рассмотрим случай, когда $D_1>0$. Тогда $0<\omega_0<\gamma$. Характеристическое уравнение имеет два действительных корня

$$\lambda_{1,2} = -\gamma \pm \sqrt{\omega_0^2 - \gamma^2}$$

Решением дифференциального уравнения будет

$$U(t) = e^{-\gamma t} \cdot (U_1 e^{-j\omega t} + U_2 e^{j\omega t})$$

где U_1 и U_2 – произвольные постоянные.

Характеристики затухающих колебаний

Важными характеристиками колебательных систем являются добротность Q и логарифмический декремент d.

Логарифм отношения амплитуд колебаний в двух последовательных максимумах называется логарифмическим декрементом

$$d = \ln\left(\frac{A_n}{A_{n+1}}\right)$$

Определив положения последовательных максимумов из формулы 1, можно получить следующее соотношение

$$d = \gamma T$$

где T – период затухающих колебаний.

Постоянной времени затухания au называется время, за которое амплитуда колебаний убывает в e раз. Коэффициент затухания и постоянная времени связаны соотношением

$$au = \frac{1}{\gamma}$$

Из уравнений и следует, что логарифмический декремент можно определить как число полных колебаний $N=\frac{\tau}{T}$ за время затухания τ :

$$d = \frac{1}{N}$$

Добротностью колебательной системы Q называется

$$Q \equiv \frac{\pi}{d} = \frac{\pi}{\gamma T} = \frac{\omega}{2\gamma}$$

Чем выше добротность колебательной системы, тем меньше будут потери энергии. Докажем данное утверждение.

Амплитуда колебаний напряжение за период уменьшается в $e^{\gamma T}$ раз. Полная энергия системы W определяется как максимальная энергия электрического поля конденсатора или магнитного поля индуктивности

$$W = \frac{CU^2}{2} = \frac{LI^2}{2}$$

Из этого соотношения видно, что за период энергия системы уменьшается как квадрат амплитуды в $e^{2\gamma T}$ раз. Тогда потери энергии системы равно

$$\Delta W = W(t_0) - W(t_0 + T) = (1 - e^{-2\gamma T})W(t_0)$$

Если затухание мало, то есть $\gamma T \ll 1 \Rightarrow Q \gg 1$, то экспоненту можно разложить по формуле Тейлора

$$\Delta W \approx 2\gamma TW$$

$$\frac{W}{\Delta W} = \frac{1}{2\gamma T} = \frac{1}{2\pi}Q$$

Таким образом, добротность с энергетической точки зрения определяет отношении энергии системы к потерям за период.

Вынужденные колебания

Если в цепь последовательного колебательного контура включен гармонический источник ЭДС $\varepsilon(t) = \varepsilon_0 \cos{(\omega t)}$, то

$$\ddot{U} + 2\gamma \dot{U} + \omega_0^2 U = \frac{\varepsilon_0}{LC} \cos(\omega t)$$

Решением неоднородного дифференциального уравнения будет сумма однородного и частного решений

$$U_{\text{общ}}(t) = U_{\text{одн}}(t) + U_{\text{част}}(t)$$

Решением однородного уравнения будут затухающие колебания

$$U_{\text{одн}}(t) = U_0 e^{-\gamma t} sin(\omega t + \varphi_0)$$

Частное решение неоднородного уравнения будем искать в виде:

$$U_{\text{\tiny YACT}}(t) = Ae^{j\omega t}$$

Неоднородность уравнения в комплексной форме равна

$$\varepsilon = \frac{\varepsilon_0}{LC} e^{j\omega t}$$

Подставив частное решение в исходное уравнение находим

$$U_{\text{\tiny \tiny HACT}}(t) = \frac{\varepsilon_0 e^{j\omega t}}{LC(\omega_0^2 + 2j\gamma\omega - \omega^2)}$$

Решением является только действительная часть, тогда

$$U_{\text{\tiny \tiny \tiny HACT}}(t) = \frac{\varepsilon_0}{LC} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2 \gamma^2}} \cos\left(\omega t - \arctan\frac{2\omega\gamma}{\omega_0^2 - \omega^2}\right)$$

Итого уравнением вынужденных колебаний будет

$$U(t) = U_0 e^{-\gamma t} \sin(\omega t + \varphi_0) + \frac{\varepsilon_0}{LC} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2 \gamma^2}} \cos\left(\omega t - \arctan\frac{2\omega\gamma}{\omega_0^2 - \omega^2}\right)$$

Заметим, что амплитуда однородного решения убывает экспоненциально, а амплитуда частного решения остается постоянной. Поэтому, через большой промежуток времени, напряжение будет изменяться по закону $U(t) \approx U_{\text{част}}(t)$. Итого, установившимися вынужденными колебаниями будут гармонические колебания с частотой вынуждающей ЭДС.

Резонанс в последовательном колебательном контуре

Рассмотрим последовательный колебательный контур. Пусть к нему подключен идеальный источник ЭДС, обладающий бесконечно малым внутренним сопротивлением, задающий во внешней цепи напряжение, изменяющееся по гармоническому закону $\varepsilon = \varepsilon_0 \cos{(\omega t + \phi_0)}$.

Рис. 3: Последовательный колебательный контур

Методом комплексных амплитуд определим зависимости напряжения и тока на элементах цепи:

$$U_C = \varepsilon_0 \frac{\rho}{Z_0} \frac{\omega_0}{\omega} \cos(\omega t - \varphi_C)$$

$$U_L = \varepsilon_0 \frac{\rho}{Z_0} \frac{\omega}{\omega_0} \cos(\omega t - \varphi_L)$$

$$I = \frac{\varepsilon_0}{Z_0} \cos(\omega t - \varphi_I)$$

$$Z_0 = R \sqrt{1 + \left[\frac{\rho}{R} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right]^2}$$

$$\varphi_I = \arctan\left[\frac{\rho}{R} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right]$$

$$\varphi_C = \varphi_I + \frac{\pi}{2}$$

$$\varphi_L = \varphi_I - \frac{\pi}{2}$$

Далее будем рассматривать высокодобротный колебательный контур вблизи резонансной частоты $Q \approx \frac{\rho}{R} \gg 1$. Тогда полученные уравнения можно упростить:

$$U_C = \frac{Q\varepsilon_0\omega_0}{\omega\sqrt{1 + (\tau\Delta\omega)^2}}\cos(\omega t - \varphi_C)$$

$$U_L = \frac{Q\varepsilon_0\omega}{\omega_0\sqrt{1 + (\tau\Delta\omega)^2}}\cos(\omega t - \varphi_L)$$

$$I = \frac{\varepsilon_0}{R\sqrt{1 + (\tau\Delta\omega)^2}}\cos(\omega t - \varphi_I)$$

$$Z_0 = R\sqrt{1 + (\tau\Delta\omega)^2}$$

$$\varphi_I = \operatorname{arctg} \tau\Delta\omega$$

При резонансе $\omega = \omega_0$, $\Delta \omega = 0$ и формулы можно упростить:

$$I = \frac{\varepsilon_0}{R} \cos(\omega_0 t - \varphi_I)$$

$$U_L = Q\varepsilon_0 \cos(\omega_0 t - \varphi_L)$$

$$U_C = Q\varepsilon_0 \cos(\omega_0 t - \varphi_C)$$

$$\varphi_I = 0$$

$$\varphi_C = \frac{\pi}{2}$$

$$\varphi_L = -\frac{\pi}{2}$$

Из полученных соотношений следует, что напряжение на конденсаторе U_C отстает от внешнего тока по фазе на $\frac{\pi}{2}$. Напряжение на индуктивности опережает внешний ток по фазе на $\frac{\pi}{2}$.

Напряжение на конденсаторе и индуктивности в Q раз больше внешнего напряжения. Поэтому резонанс в последовательном колебательном контуре называют резонансном напряжений.

Схема экспериментальной установки

Схема экспериментальной установки изображена на рисунке:

Оборудование

- 1. Генератор сигналов GFG-8255A.
- 2. Источник напряжения
- 3. Последовательный колебательный контур.
- 4. Осциллограф GOS-620.

5. Цифровые вольтметры GDM-8245.

Экспериментальные результаты

Для контуров с различными ёмкостями C_n , меняя их с помощью переключателя на блоке, измерим резонансные частоты f_0 и напряжения U_C при установленном в напряжении $\mathscr E$ на выходе генератора. Для каждого значения C_n по данным эксперимента проведем расчёт параметров стенда (см. таблицу 1).

Рассчитаем средние значения L и R_L и их случайные погрешности для использования в дальнейшем (см. таблицу 2).

C , н Φ	f_0 , Гц	U_C , B	\mathcal{E} , B	L , мк Γ н	Q	ρ , Om	R_{Σ}, Om	R_L , Om	<i>I</i> , A
25.0	32000	5.03	0.2	989.5	24.9	198.9	8.0	4.3	0.025
33.2	27700	4.27	0.2	994.4	21.1	173.1	8.2	4.6	0.025
47.5	23200	3.89	0.2	990.8	19.3	144.4	7.5	3.9	0.027
57.2	21100	3.61	0.2	994.7	17.9	131.9	7.4	3.8	0.027
67.4	19400	3.27	0.2	998.6	16.2	121.7	7.5	3.9	0.027
82.1	17600	3.08	0.2	996.0	15.2	110.1	7.2	3.7	0.028
99.6	16100	2.83	0.2	981.1	14.0	99.3	7.1	3.5	0.029

Таблица 1: Параметры контура

	Среднее значение	Среднеквадратичное	Случайная погрешность	Погрешность
L , мк Γ н	992.1	5.3	4.8	5.1
R_L , Om	4.0	0.3	0.3	0.3

Таблица 2: Погрешности параметров

Построим графики амплитудно-частотные характеристик $U_C(f)$ для выбранных контуров (см. рис. 4).

Рис. 4: Графики амплитудно-частотные характеристик

Для контуров с двумя разными ёмкостями измерим амплитудно-частотные $U_C(f)$ и фазово-частотные $\varphi(f)$ характеристики (см. таблицу 3).

Построим на одном графике амплитудно-частотные характеристики в безразмерных координатах $x=\frac{f}{f_0},\ y=\frac{U_C}{U_C(f_0)}$. По ширине резонансных кривых на уровне 0,707 определим добротности $\mathcal Q$ соответствующих контуров:

$$Q(33.2 \text{ H}\Phi) = 22.6 \pm 0.5$$

$$Q(68 \text{ H}\Phi) = 16.6 \pm 0.3$$

Рис. 5: Графики амплитудно-частотные характеристик в нормированных координатах

Построим на одном графике фазово-частотные характеристики в безразмерных координатах $x=\frac{f}{f_0},\,y=\frac{\varphi}{\pi}.$ По этим характеристикам определим добротности контуров по расстоянию между точками по оси x, в которых y меняется от 1/4 до 3/4:

$$Q(33.2 \text{ н}\Phi) = 20.7 \pm 0.4$$

$$Q(68 \text{ H}\Phi) = 14.5 \pm 0.2$$

$C=33.2~{\rm H}\Phi$					$C=67.4$ н Φ			
f_0 , Гц	U_C , B	x, дел.	x_0 , дел.	$\frac{\varphi}{\pi}$, дел.	f_0 , Гц	U_C , B	x, дел.	x_0 , дел.
25400	1.11	1.0	20.0	0.05	17170	0.81	1.5	29.0
25960	1.37	1.5	19.0	0.08	17830	1.07	2.0	28.0
26500	1.87	2.0	19.0	0.11	18270	1.36	3.0	27.5
26770	2.18	3.0	19.0	0.16	18350	1.43	3.0	27.5
26900	2.40	3.0	18.5	0.16	18400	1.52	3.5	27.0
26960	2.53	3.0	18.5	0.16	18500	1.58	4.0	27.0
27130	2.91	4.0	18.0	0.22	18600	1.73	4.0	27.0
27200	3.10	4.0	18.5	0.22	18750	1.94	5.0	27.0
27400	3.78	6.0	18.0	0.33	18820	2.08	5.0	27.0
27500	3.90	6.0	18.0	0.33	18860	2.13	5.5	26.5
27700	4.32	7.5	18.0	0.42	19040	2.55	7.0	26.5
27800	4.35	8.5	18.0	0.47	19150	2.79	7.5	26.0
27890	4.29	9.5	18.0	0.53	19450	3.31	11.5	26.0
27960	4.20	10.0	18.0	0.56	19820	2.99	16.0	25.0
28120	3.89	11.0	18.0	0.61	20000	2.60	17.5	25.0
28280	3.52	12.0	18.0	0.67	20240	2.18	19.0	25.0
28350	3.37	12.5	17.5	0.71	20450	1.86	19.5	24.5
28570	2.87	13.0	17.5	0.74	20580	1.68	20.0	24.0
28750	2.53	13.5	17.5	0.77	20880	1.38	20.0	24.0
29000	2.16	14.0	17.0	0.82	21400	1.02	20.0	23.0
29500	1.64	14.5	17.0	0.85	22000	0.76	20.0	22.5
30000	1.26	15.0	16.5	0.91	22500	0.64	20.0	22.0
30500	1.01	15.0	16.0	0.94	22940	0.55	20.0	21.5

Таблица 3: Погрешности параметров

Рис. 6: Пробная катушка и ее положение относительно магнита

Обсуждение результатов и выводы