The Radial Kernel (RBF)

The Radial Kernel

$$K(a,b) = e^{-\gamma}(a-b)^2$$

projects to infinite dimensional space works similar to nearest neighbors classifier

we can use the Polynomial Kernel to get the intuition behind how Radial Kernel works in infinite dimensions

$$K(a,b) = (a \cdot b)^d$$

$$ab + a^2b^2 + a^3b^3 + \dots + a^\infty b^\infty = (a, a^2, a^3, \dots, a^\infty)(b, b^2, b^3, \dots, b^\infty)$$

take sum for infinite terms gives dot product with infinite dimensions!

The Radial Kernel: Taylor Series Expansion

$$K(a,b) = e^{-\gamma}(a-b)^2 = e^{-\gamma(a^2+b^2-2ab)} = e^{-\gamma(a^2+b^2)}e^{\gamma 2ab}$$
 set $\gamma = \frac{1}{2} \implies e^{-\frac{1}{2}\gamma(a^2+b^2)}e^{ab}$ Taylor expansion of this term

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \dots + \frac{f^{(\infty)}(a)}{\infty!}(x - a)^{\infty}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{\infty}}{\infty!}$$

$$e^{ab} = 1 + (ab) + \frac{(ab)^2}{2!} + \frac{(ab)^3}{3!} + \dots + \frac{(ab)^\infty}{\infty!}$$

each term contains Polynomial Kernel with r=0 and d from 0 to $d=\infty$