

— Sets —

Silvio Jamil F. Guimarães

— Independent sets —

Silvio Jamil F. Guimarães

Let G = (V, E) be an undirected connected graph.

- ▶ A subset $S \subseteq V$ is an independent set if $\forall u, v \in S$ there exist an edge $(u, v) \in E$.
- ► Independent sets have also been called internally stable sets.

Let G = (V, E) be an undirected connected graph, and S an independent set of G

- ▶ We say that the subset $S \subseteq V$ is a maximal independent set if there is no other independent set A in which $S \subset A$;
- ► The number of internal stability $\beta(G)$ is equal to the cardinality of the largest maximal independent set.

As S is an independent set of G, then S is a clique in the complement graph.

Let G = (V, E) be an undirected connected graph, and S an independent set of G

- ▶ We say that the subset $S \subseteq V$ is a maximal independent set if there is no other independent set A in which $S \subseteq A$;
- ► The number of internal stability $\beta(G)$ is equal to the cardinality of the largest maximal independent set.

As S is an independent set of G, then S is a clique in the complement graph.

Let G = (V, E) be an undirected connected graph. Design a method for computing an independent set of G

Let G = (V, E) be an undirected connected graph. Design a method for computing an independent set of G

— Dominating sets —

Silvio Jamil F. Guimarães

Dominating sets

Let G = (V, E) be an undirected connected graph.

- ▶ A subset $S \subseteq V$ is an dominating set if $\forall u \in S$ there exist a $v \in V S$ such that $(u, v) \in E$.
- ▶ Dominating sets have also been called externally stable sets.

Let G = (V, E) be an undirected connected graph, and S a dominating set of G

- ▶ We say that the subset $S \subseteq V$ is a minimal dominating set if there is no other dominating set A in which $A \subset S$;
- ► The number of external stability $\beta(G)$ is equal to the cardinality of the smallest minimal dominating set.

Let G = (V, E) be an undirected connected graph. Design a method for computing a dominance set of G

Let G = (V, E) be an undirected connected graph. Design a method for computing a dominance set of G

— Vertex cover —

Silvio Jamil F. Guimarães

Let G = (V, E) be an undirected connected graph.

▶ A subset $S \subseteq V$ is an vertex cover if $\forall (u, v) \in E$, either $u \in S$ or $v \in S$.

Let G = (V, E) be an undirected connected graph, and S a vertex cover of G

As S is a vertex cover of G, then V-S is an independent set.

Let G = (V, E) be an undirected connected graph. Design a method for computing a vertex cover in G

Let G = (V, E) be an undirected connected graph. Design a method for computing a vertex cover in G

