

Discrete Fourier Transform

	TOPIC
1	Introduction to DTFT and DFT
2	Relation between DFT and DTFT
3	Properties of DFT
4	DFT computation using DFT properties
5	Linear and Circular Convolution using DFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

1

Kiran TALELE

- @ Bharatiya Vidya Bhavans' Sardar Patel Institute of Technology Andheri(w) Mumbai
 - **Associate Professor,** Electronics Engineering Department (1997)
 - Dean, Students, Alumni & External Relations (2022)
- @ Sardar Patel Technology Business Incubator(SP-TBI), Funded by Department of Science & Technology(DST), Govt. of India
 - **Head**, Academic Relations (2015)
- @ IEEE Bombay Section
 - Treasurer (2020)
 - Executive Committee Member (2015)

Kiran TALELE

Chapter-2: Discrete Fourier Transform

Objective : To explore the properties of DFT in mathematical problem solving

Outcome:

At the end of module, students will be able to,

- Derive DFT from DTFT
- Covert signal from time domain to frequency domain
- Justify the need of DFT
- Evaluate DFT and IDFT equations,
- Apply DFT properties in problem solving
- Perform Linear and Circular Convolution using DFT.

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

E

Discrete Time Fourier Transform (DTFT)

(1) DTFT of DT signal x[n] is defined as ,

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n).e^{-jn\omega}$$

(2) Inverse DTFT of X(w) is is defined as,

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

5

Properties of DTFT

Periodicity: $X(\mathbf{w}+2\pi) = X(\mathbf{w})$

Linearity: $ax_1[n] + bx_2[n] \longleftrightarrow aX_1(\mathbf{w}) + bX_2(\mathbf{w})$

Time Shifting: $x[n-n_0] \longleftrightarrow e^{-j\omega n_0}X(\mathbf{w})$

Frequency Shifting: $e^{j\omega_0 n}x[n] \longleftrightarrow X([\omega-\omega_0])$

Time Reversal: $x[-n] \longleftrightarrow X(-\omega)$

Symmetry: $x[n] \text{ real } \Rightarrow X(\omega) = X^*(-\omega)$

Limitations of DTFT

DTFT is

- Not practical for (real-time) computation on a digital computer
- Solution: Limit the extent of the summation to N points and evaluate the continuous function of frequency at N equi-spaced points.

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Relation between DFT and DTFT.

DFT is frequency sampling of DTFT

$$X[k] = X(w) \bigg|_{w = \frac{2\pi k}{N}}$$
Frequency spacing $w = \frac{2\pi}{N}$

 The DFT is simply a sampling of the DTFT at equi spaced points along the frequency axis.

Kiran TALELE 99870 30 881 talelesir@gmail.com

Derivation of DFT equation

By DTFT,

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n).e^{-jn\omega}$$

Put
$$w = \frac{2\pi k}{N}$$

$$X\left(\frac{2\pi k}{N}\right) = \sum_{n=-\infty}^{\infty} x(n).e^{-jn\left(\frac{2\pi k}{N}\right)}$$

$$X(\omega) = \sum_{n = -\infty}^{\infty} x(n) \cdot e^{-jn\omega}$$

$$X(k) = \sum_{n = -\infty}^{\infty} x(n) \cdot e^{\left(\frac{-j2\rho}{N}\right)nk}$$

$$\text{Put } w = \frac{2\pi k}{N}$$

$$Y(k) = \sum_{n = -\infty}^{\infty} x(n) \cdot e^{\left(\frac{-j2\rho}{N}\right)nk}$$

$$X(k) = \sum_{n = -\infty}^{\infty} x(n) \cdot e^{\left(\frac{-j2\rho}{N}\right)nk}$$

Put
$$W_N^1 = e^{\frac{-2\rho}{N}}$$

$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

9

Cyclic Property of Twiddle factor W_N

Twiddle factor W_N is periodic with period = N

(1) Twiddle factor W_N for N = 4:

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

(2) Twiddle factor W_N^k for N = 8

$$W_N^0 = 1$$

$$W_N^1 = 0.707 - j 0.707$$

$$W_N^2 = -j$$

$$W_N^3 = -0.707 - j 0.707$$

$$W_N^4 = -1$$

$$W_N^5 = -0.707 + j 0.707$$

$$W_N^6 = j$$

$$W_N^7 = 0.707 + j 0.707$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

11

(3) Twiddle factor $W_{N^{-k}}$ for N = 8

$$W_{N}^{0} = 1$$

$$W_{N}^{-1} = 0.707 + j 0.707$$

$$W_{N}^{-2} = j$$

$$W_{N}^{-3} = -0.707 + j 0.707$$

$$W_{N}^{-4} = -1$$

$$W_{N}^{-5} = -0.707 - j 0.707$$

$$W_{N}^{6} = -j$$

$$W_{N}^{7} = 0.707 - j 0.707$$

Ex-1. Let $x[n] = \{1, 2, 3, 4\}$ Find X[k]

Solution: To Find X[k]

By DFT,

$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$

where
$$N = 4$$
 and $W_N^1 = e^{-j\frac{2\pi}{N}}$

$$X[k] = \sum_{n=0}^{3} x[n] w_N^{nk}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

13

$$X[k] = X[0] + X[1] W_N^k + X[2] W_N^{2k} + X[3] W_N^{3k}$$

 $X[k] = 1 + 2 W_N^k + 3 W_N^{2k} + 4 W_N^{3k}$

(i)
$$X[0] = 1 + 2 + 3 + 4$$

= 10

(iv)

(ii)
$$X[1] = 1 + 2 W_N^1 + 3 W_N^2 + 4 W_N^3$$

= 1 + 2(-j) + 3(-1) + 4(j)
 $X[1] =$

(iii)
$$X[2] = 1 + 2 W_N^2 + 3 W_N^4 + 4 W_N^6$$

= 1 + 2(-1) + 3(1) + 4(-1)
 $X[2] =$

$$X[2] =$$
 $X[k] = \begin{bmatrix} 10 & k=0 \\ k=1 & k=2 \\ & = 1 + 2(j) + 3(-1) + 4(-j) \end{bmatrix}$
 $X[k] = \begin{bmatrix} 10 & k=0 \\ k=1 & k=2 \\ & k=3 \end{bmatrix}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Matrix Representation of DFT and Inverse DFT

Let
$$x[n] = \{1, 2, 3, 4\}$$

By DFT,
$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$

DFT Matrix

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

15

x[n]

By Substituting:

X[k]

$$X[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

$$X[k] = \begin{bmatrix} (1) + (2) + (3) + (4) \\ (1) + (-2j) + (-3) + (4j) \\ (1) + (-2) + (3) + (-4j) \\ (1) + (-2j) + (-3) + (4j) \end{bmatrix}$$

 W_{N}^{2} $\begin{array}{c|c}
W_{N}^{3} \\
\hline
 & j \\
W_{N}^{1}
\end{array}$ W_{N}^{0}

Ex-1. Let $x[n] = \{1, 2, 3, 2\}$ Find X[k]

Solution: To Find X[k]

By DFT,

$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$

where
$$N = 4$$
 and $W_N^1 = e^{-j\frac{2\pi}{N}}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

17

In Matrix Form:

$$X[k] = \begin{bmatrix} W_{N}^{0} & W_{N}^{0} & W_{N}^{0} & W_{N}^{0} \\ W_{N}^{0} & W_{N}^{1} & W_{N}^{2} & W_{N}^{3} \\ W_{N}^{0} & W_{N}^{2} & W_{N}^{4} & W_{N}^{6} \\ W_{N}^{0} & W_{N}^{3} & W_{N}^{6} & W_{N}^{9} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$$

$$X[k] = \begin{bmatrix} (1) + (-2j) + (3) + (2j) \\ (1) + (-2j) + (-3) + (-2j) \\ (1) + (-2j) + (-3) + (-2j) \end{bmatrix}$$
Page Substituting x :

By Substituting:

$$X[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$

$$X[k] = \begin{bmatrix} 8 & k=0 \\ -2 & 0 \\ -2 & 0 \\ -2 & 0 \end{bmatrix}$$

$$X[k] = \begin{bmatrix} 8 & k=0 \\ -2 & 0 \\ -2 & -2 \end{bmatrix}$$

Ex-2. Given
$$X[k] = \begin{bmatrix} 10 & k=0 \\ -2+2j & -2 \\ -2 & -2-2j \end{bmatrix}$$
 Find $x[n]$.

Solution: To Find x[n]

By IDFT,

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \bar{w}_{N}^{nk}$$

where
$$N = 4$$
 and $W_N^1 = e^{-j\frac{2\pi}{N}}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

19

In Matrix Form:

$$x[n] = \frac{1}{N} \begin{bmatrix} w_{N}^{0} & w_{N}^{0} & w_{N}^{0} & w_{N}^{0} \\ w_{N}^{0} & w_{N}^{-1} & w_{N}^{-2} & w_{N}^{-3} \\ w_{N}^{0} & w_{N}^{-2} & w_{N}^{-4} & w_{N}^{-6} \\ w_{N}^{0} & w_{N}^{-3} & w_{N}^{-6} & w_{N}^{-9} \end{bmatrix} \begin{bmatrix} X[O] \\ X[1] \\ X[2] \\ X[3]$$

By Substituting:

$$\mathbf{x[n]} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & j \end{bmatrix} \begin{bmatrix} 10 \\ -2+2j \\ -2 \\ -2-2j \end{bmatrix}$$

$$x[n] = \{1, 2, 3, 4\} \leftarrow ANS$$

Ex-2. Let $x[n] = \{1, 0, 2, 0, 3, 0, 4, 0\}$ Find X[k]

Solution: To Find X[k]

By DFT, $X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$

where N = 8 and $W_N^1 = e^{-j\frac{2\pi}{N}}$

$$X[k] = \sum_{n=0}^{7} x[n] w_N^{nk}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

21

$$X[k] = x[0] + x[1] W_N^k + x[2] W_N^{2k} + x[3] W_N^{3k} + x[4] W_N^{4k} + x[5] W_N^{5k} + x[6] W_N^{6k} + x[7] W_N^{7k}$$

$$X[k] = 1 + 2 W_N^{2k} + 3 W_N^{4k} + 4 W_N^{6k}$$

x[n] =

(i)
$$X[0] = 1 + 2 + 3 + 4$$

 $X[0] = 10$

(ii)
$$X[1] = 1 + 2 W_N^2 + 3 W_N^4 + 4 W_N^6$$

= 1 + 2(-j) + 3(-1) + 4(j)

X[1] =

(iii) $X[2] = 1 + 2 W_N^4 + 3 W_N^8 + 4 W_N^{12}$ = 1 + 2(-1) + 3(1) + 4(-1)

$$X[2] =$$

$$X[k] = 1 + 2 W_N^{2k} + 3 W_N^{4k} + 4 W_N^{6k}$$

(iv)
$$X[3] = 1 + 2 W_N^6 + 3 W_N^{12} + 4 W_N^{18}$$

 $= 1 + 2(j) + 3(-1) + 4(-j)$
 $X[3] = 0$

(v) $X[4] = 1 + 2 W_N^8 + 3 W_N^{16} + 4 W_N^{24}$

(v)
$$X[4] = 1 + 2 W_N^8 + 3 W_N^{16} + 4 W_N^{24}$$

= 1 + 2(1) + 3(1) + 4(1)
 $X[4] =$

(vi)
$$X[5] = 1 + 2 W_N^{10} + 3 W_N^{20} + 4 W_N^{30}$$

= 1 + 2(-j) + 3(-1) + 4(j)
 $X[5] =$

vii)
$$X[6] = 1 + 2 W_N^{12} + 3 W_N^{24} + 4 W_N^{36}$$

= 1 + 2(-1) + 3(1) + 4(-1)
 $X[6] =$

23

$$X[k] = 1 + 2 W_N^{2k} + 3 W_N^{4k} + 4 W_N^{6k}$$

(viii)
$$X[7] = 1 + 2 W_N^{14} + 3 W_N^{28} + 4 W_N^{42}$$

= 1 + 2(j) + 3(-1) + 4(-j)
 $X[7] = -2 - 2j$

ANS
$$X[k] = \begin{bmatrix} 10 & k=0 \\ -2+2j & -2 \\ -2-2j & 10 \\ -2+2j & -2 \\ -2 & -2-2j \end{bmatrix}$$

Ex-2: Find DFT of the following Sequences:

(a)
$$x[n] = \{1, 1, 1, 1, 1\}$$

(a)
$$x[n] = \{ 1, 1, 1, 1 \}$$
 (b) $x[n] = \{ 1, 0, 0, 0 \}$

Solution:

$$X[k] = \begin{bmatrix} 4 & k=0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

25

Note:

- 1. What is the DFT of $\delta[n]$?
- Ans: **DFT** { $\delta[n]$ } = 1
- 2. What is the DFT of N pt signal u[n]
- Ans: DFT $\{u[n]\} = N \delta[k]$ Where

$$\delta[\mathbf{k}] = \begin{bmatrix}
1 & k=0 \\
0 & 0 \\
0 & 0
\end{bmatrix}$$

Ex-3 Find DFT x[n] where
$$x(n) = \{1, 2, 3, 4\}$$

Solution:

Step-1: Find X(w) i.e. DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n) \cdot e^{-jn\omega}$$

$$X(w) = x[-1] e^{jw} + x[0] + x[1] e^{-jw} + x[2] e^{-j2w}$$

$$X(w) = e^{jw} + 2 + 3 e^{-jw} + 4 e^{-j2w}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

$$X(w) = e^{jw} + 2 + 3 e^{-jw} + 4 e^{-j2w}$$

$$X(w) = Cos(w) + j Sin(w) + 2$$

$$+ 3 Cos(w) - 3j Sin(w) e^{-jw}$$

$$+ 4 Cos(2w) - 4j Sin(2w)$$

$$X(w) = [2 + 4 Cos(w) + 4 Cos(2w)]$$

$$-j [2 Sin(w) + 4 Sin (2w)]$$
DTFT of x[n]

Step-2: Find X[k] by Sampling X(w)

Now
$$X(w) = [2 + 4 Cos(w) + 4 Cos(2w)]$$

-j [2 Sin(w) + 4 Sin (2w)]

$$X[k] = X(w) \bigg|_{w = \frac{2\pi k}{N}}$$

Put
$$w = \frac{2\pi k}{N} = \frac{2\pi k}{4} = \frac{\pi k}{2}$$

$$\mathbf{X}[k] = \left[2 + 4\cos\left(\frac{\pi k}{2}\right) + 4\cos\left(\pi k\right) \right] - j \left[2\sin\left(\frac{\pi k}{2}\right) + 4\sin\left(\pi k\right) \right]$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

29

$$\mathbf{X}[k] = \left[2 + 4\cos\left(\frac{\pi k}{2}\right) + 4\cos\left(\pi k\right) \right] - j \left[2\sin\left(\frac{\pi k}{2}\right) + 4\sin\left(\pi k\right) \right]$$

By evaluating X[k] for k = 0,1, 2, 3 We get,

Properties of DFT

[1] Scaling and Linearity Property

If
$$x_1[n] \rightarrow X_1[k]$$

 $x_2[n] \rightarrow X_2[k]$

Then

DFT {
$$a x_1[n] + b x_2[n] } =$$

Where a and b are any constant

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

31

Ex. Let
$$x[n] = \{1, 2, 3, 4\}$$

(a) Find X[k]

Solution: (a) To Find X[k]

- (i) Formula
- (ii) Matrix Representation
- (iii) Matrix Substitution
- (iv) Matrix Multiplication

(b) Let
$$p[n] = 2 \delta[n] + x[n]$$
 Find $P[k]$ using $X[k]$

Solution (b): To find P[k] using X[k]

Given
$$p[n] = 2 \delta[n] + x[n]$$

By Linearity Property of DFT,
 $P[k] = 2 DFT{\delta[n]} + DFT{x[n]}$
 $P[k] =$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

33

$$P[k] = 2 + X[k] \quad \text{where} \quad X[k] = \begin{bmatrix} 10 & k=0 \\ -2+2j & -2 \\ -2 & -2-2j \end{bmatrix}$$

$$k=0, P[0] = 2 + X[0] == \\ k=1, P[1] = 2 + X[1] == \\ k=2, P[2] = 2 + X[2] == \\ k=3, P[3] = 2 + X[3] ==$$

$$P[k] = \begin{bmatrix} k=0 \\ -2+2j \\ -2 \\ -2-2j \end{bmatrix}$$

(C) Let
$$q[n] = 2 + x[n]$$
 Find $Q[k]$ using $X[k]$

Solution (c): To find Q[k] using X[k]

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

35

HW-1. Let
$$X[k]$$
 be 4 point DFT of $x[n]$ with $X[k] = \{1, 2, 3, 4\}$. Find 4 point DFT of $p[n]$ such that $p[n] = 2 + 3 \delta[n] + 4 x[n]$

- HW-2. Let $x[n] = \{1, 2, 3, 4\}$ and $x[n] \longleftrightarrow X[k]$. Find inverse DFT of the following without using DFT/iDFT equations.
 - (a) P[k] = 8 X[K] (b) Q[k] = 8 + X[k]

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

37

[2] Periodicity Property

If
$$x[n] \rightarrow X[k]$$

Then

(i)
$$x[n] = x[n+N]$$
 i.e. $x[n]$ is periodic
= $x[n \text{ Mod } N]$

$$= x[((n))]_N$$

(ii)
$$X[k] = X[k+N]$$
 i.e. $X[k]$ is periodic

= X[k Mod N]

 $= X[((k))]_N$

NOTE:

Both DFT and IDFT equations

produce periodic results with

Kiran TALELE 99870 30 881 kiran taleie@spit.ac.in

[3] Time Shift Property

If
$$x[n] \rightarrow X[k]$$

Then
DFT { $x[n-m]$ } =

[4] Frequency Shift Property

If
$$x[n] \rightarrow X[k]$$

Then
DFT { $W_N^{-mn} x[n]$ } =

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

39

Ex. Let
$$x[n] = \{1, 2, 3, 4\}$$

(a) Find X[k]

Solution: (a) To Find X[k]

(b) Let
$$p[n] = \{4, 1, 2, 3\}$$
. Find $P[k]$ using $X[k]$.

Solution:

(b) To find P[k]

By comparing x[n] and p[n] we get, p[n] =

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

41

Now p[n] = x[n - 1]

By Time Shift Property of DFT,

$$P[k] = W_{N}^{k} X[k]$$

$$P[k] = \begin{bmatrix} W_{N}^{0} \\ W_{N}^{1} \\ W_{N}^{2} \\ W_{N}^{3} \end{bmatrix} \begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix}$$

$$P[k] = \begin{bmatrix} 1 \\ -j \\ -1 \\ j \end{bmatrix} \begin{bmatrix} 10 \\ -2+2j \\ -2 \\ j \end{bmatrix} P[k] = \begin{bmatrix} 10 \\ k=0 \\ 2+2j \\ 2 \\ 2-2j \end{bmatrix}$$

(c) Let $p[n] = (-1)^n x[n]$ Find P[k] using X[k].

Solution (b): To find P[k]

Given
$$p[n] = (-1)^n x[n]$$

For
$$N = 4$$
, $W_N^2 = -1$

By Substituting,

$$p[n] = W_N^{2n} x[n]$$

By Frequency Shift Property of DFT,

$$P[k] =$$

 W_N^3

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

43

Solution (b): To find P[k]

Given
$$p[n] = (-1)^n x[n]$$

For
$$N = 4$$
, $W_N^2 = -1$

By Substituting,

$$p[n] = W_{N}^{2n} x[n]$$

By Frequency Shift Property of DFT,

$$P[k] = X[k+2]$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Solution (a): To find Inverse DFT { X[k-2] }

Let
$$P[k] = X[k-2]$$

By Frequency Shift Property
of IDFT,
$$p[n] = \overline{W}_{N}^{2n} \times [n]$$

$$p[n] = (-1)^{n} \times [n]$$

ANS: $p[n] = \{1, \}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

45

Solution (b): To find Inverse DFT { X[k+2] }

Let
$$P[k] = X[k+2]$$

By Frequency Shift Property of IDFT,

of IDFT,

$$p[n] = W_N^{-2n} \times [n]$$

$$p[n] = (-1)^n \times [n]$$

Here,
$$x[n] = \{1, 2, 3, 4\}$$

ANS: $p[n] = \{1, 2, 3, 4\}$

HW-1. Find the DFT of the following sequences:

(a)
$$x[n] = cos(0.5 \pi n)$$

(b)
$$x[n] = \sin (0.25 \pi n)$$

Hint:

- 1. Calculate one Period of Periodic x[n]
- 2. Calculate X[k] by DFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

47

HW-2. Find the DFT of the following sequences:

(a)
$$x[n] = cos(0.5 \pi n) u[n]$$

(b)
$$x[n] = \sin (0.25 \pi n) u[n]$$

Hint:

1. Let
$$x[n] = \left(\frac{e^{j0.5\rho n} + e^{-j0.5\rho n}}{2}\right) u[n]_{4pt}$$

2. Calculate X[k] by Frequency Shift Property of DFT

[5] Time Reversal Property

If
$$x[n] \rightarrow X[k]$$

Then
DFT { $x[-n]$ } =

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

49

Ex. Let
$$x[n] = \{1, 2, 3, 4\}$$

- (a) Find X[k]
- (b) Let $p[n] = \{ 1, 4, 3, 2 \}$ Find P[k] using X[k]

Solution (a) To Find X[k]:

Solution (b): To find P[k]

Given $p[n] = \{ 1, 4, 3, 2 \}$

By comparing p[n] and x[n] we get,

$$x[n] = \{1, 2, 3, 4\}$$

 $p[n] = \{1, 4, 3, 2\}$

p[n] = x[-n]

By Time Reversal Property of DFT,

Time Reversal Property of DFT

 $DFT \{x[-n]\} = X[-k]$

$$P[k] =$$

10 k=0 X[k] = -2+2j k=1 -2 k=2 -2-2i k=3

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

51

Ex-2 Let
$$X[k] = \{1, 2, 3, 4\}$$
.

Find the DFT of the following sequences using X[k] and not otherwise

(a)
$$x[-n]$$
 (b) $x[-n+1]$ (c) $x[-n-1]$

Solution (a): To find DFT { x[-n]}

Let
$$p[n] = x[-n]$$

By Time Reversal Property of DFT,

$$P[k] = X[-k]$$

$$P[k] = \begin{bmatrix} 1 & k=0 \\ 4 & 3 \\ 2 & 2 \end{bmatrix}$$

99870 30 881 kiran.talele@spit.ac.in Kiran TALELE

Solution (b): To find DFT { x[-n+1] }

Let
$$p[n] = x[-n]$$

Replace (n) by (n-1)

 $p[n-1] = x[-(n-1)]$
 $p[n-1] = x[-n+1]$

By DFT,

DFT (p[n-1]) = DFT(x[-n+1])

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

53

To find DFT { x[-n+1] }...

DFT (p[n-1]) = DFT(x[-n+1])

DFT (x[-n+1]) = DFT(p[n-1])

By Time Shift Property of DFT,

DFT {x[n-m]} = W_N^m X[k]

DFT (x[-n+1]) = W_N^k X[-k]

DFT (x[-n+1]) =
$$\begin{bmatrix} 1 \\ -j \\ -1 \\ -j \\ -1 \\ -j \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 4 \\ 3 \\ 2 \end{bmatrix}$$

ANS

Kiran TALELE 99870 30 881 kiran.talele@snit.ac.in

[6] Symmetry Property

If x[n] is **Real valued** sequence Then

$$X[k] =$$

=

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

55

Ex-1 The first five points of the eight point DFT of a real valued sequence are $X[k] = \{ 25, 0.12 - j 0.30, 6.4, 0.20 + j 0.18, 10 \}$. Determine the remaining three points.

Solution:

Here x[n] is real valued N=8 point DT Signal.

By symmetry property of DFT,
If DFT
$$\{x[n]\} = X[k]$$

Then
 $X[k] =$
 $X[k] =$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

57

NOTE: X[k] =25 k=0 ▶ 0.12 – j 0.30 NOTE: **▶** 6.4 If x[n] is Real valued 0.25 + j 0.18sequence, Then 10 Real { X[k] } is Symmetric @ k = N/20.25 - j 0.18 And Imaginary {X[k]} is Anti-6.4 Symmetric @ k = N/20.12 + j 0.30

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Ex-2 The Find the unknown values of x[n] and X[k]

(a)
$$x[n] = \{ ?, 3, -4, 0, 2 \}$$

 $X[k] = \{ 5, ?, -1.28+4.39j, ?, 8.78-1.4j \}$

(b)
$$x[n] = \{ 2, 3, -4, 2, 0, 1 \}$$

 $X[k] = \{ 4, ?, 4-5.2j, -8, ?, 4+1.73j \}$

•

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

59

[7] Even Signal Property

If
$$x[n] =$$

Then $X[k] =$

[8] Odd Signal Property

If
$$x[n] =$$

Then $X[k] =$

Ex-1: Let $x[n] = \{1, 2, 3, 4\}$

- (a) Find X[k].
- (b) Find DFT of $x_e[n]$ and $x_o[n]$ using X[k] and not otherwise

Solution (a) To Find X[k]:

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

61

Solution: To find DFT of $x_e[n]$ using X[k]

$$x_e[n] = \frac{1}{2} (x[n] + x[-n])$$

By Linearity Property of DFT,

$$X_{e}[k] = \frac{1}{2} (X[k] + X[-k])$$

$$X_{e}[k] = \frac{1}{2} \left(\begin{bmatrix} 10 \\ -2+2j \\ -2 \\ -2-2j \end{bmatrix} + \begin{bmatrix} 10 \\ -2-2j \\ -2 \\ -2+2j \end{bmatrix} \right)$$

$$X_{e}[k] = \begin{bmatrix} 10 & k=0 \\ -2 & \\ -2 & \\ -2 & \end{bmatrix}$$

 $\begin{cases} x[n] = x_{e}[n] + x_{0}[n] \\ x_{e}[n] = \frac{1}{2} (x[n] + x[-n]) \end{cases}$

$$x_0[n] = \frac{1}{2} (x[n] - x[-n])$$

$$X[k] = \begin{bmatrix} 10 & k=0 \\ -2+2j & \\ -2 & \\ -2-2j & \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Solution: To find DFT of $x_o[n]$ using X[k]

$$\begin{aligned} &\textbf{x}_0[\textbf{n}] = \frac{1}{2} \; \left(\begin{array}{c} \textbf{x}[\textbf{n}] - \textbf{x}[-\textbf{n}] \right) \\ &\textbf{By Linearity Property of DFT,} \\ &\textbf{X}_o[\textbf{k}] = \frac{1}{2} \; \left(\begin{array}{c} \textbf{x}[\textbf{k}] - \textbf{X}[-\textbf{k}] \right) \\ &\textbf{X}_o[\textbf{k}] = \frac{1}{2} \; \left(\begin{bmatrix} 10 \\ -2+2j \\ -2 \\ -2-2j \end{bmatrix} - \begin{bmatrix} 10 \\ -2-2j \\ -2 \\ -2+2j \end{bmatrix} \right) \\ &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{bmatrix} \end{aligned}$$

$$\begin{aligned} &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{aligned}$$

$$\begin{aligned} &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{aligned} \end{aligned}$$

$$\begin{aligned} &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{aligned} \end{aligned}$$

$$\begin{aligned} &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{aligned} \end{aligned}$$

$$\begin{aligned} &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{aligned} \end{aligned} \end{aligned}$$

$$\begin{aligned} &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{aligned} \end{aligned} \end{aligned}$$

$$\begin{aligned} &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{aligned} \end{aligned} \end{aligned}$$

$$\begin{aligned} &\textbf{X}_o[\textbf{k}] = \begin{bmatrix} 0 \\ \textbf{k} = \\ 0 \\ -2j \\ 0 \end{aligned} \end{aligned} \end{aligned} \end{aligned} \end{aligned}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

63

[9] Complex Conjugate Sequence Property

If
$$x[n] \rightarrow X[k]$$

Then
DFT { $x^*[n]$ } =

Ex: Let
$$x[n] = \begin{bmatrix} 1+j & n=0 \\ 2+2j & 3+3j \\ 4+2j & \end{bmatrix}$$

- (a) Find X[k]
- (b) Let $p[n] = \{1,2,3,4\}$ and $q[n] = \{1,2,3,2\}$ Find P[k] and Q[k] using X[k]

Solution (a) To Find X[k]:

By DFT,
$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$
 where $N=4$ and $W_N^1 = e^{-j\frac{2\pi}{N}}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

65

In Matrix Form:

$$X[k] = \begin{bmatrix} W_{N}^{0} & W_{N}^{0} & W_{N}^{0} & W_{N}^{0} \\ W_{N}^{0} & W_{N}^{1} & W_{N}^{2} & W_{N}^{3} \\ W_{N}^{0} & W_{N}^{2} & W_{N}^{4} & W_{N}^{6} \\ W_{N}^{0} & W_{N}^{3} & W_{N}^{6} & W_{N}^{9} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{W}_{\mathsf{N}}^{0} & \mathbf{W}_{\mathsf{N}}^{0} & \mathbf{W}_{\mathsf{N}}^{0} & \mathbf{W}_{\mathsf{N}}^{0} \\ \mathbf{W}_{\mathsf{N}}^{0} & \mathbf{W}_{\mathsf{N}}^{1} & \mathbf{W}_{\mathsf{N}}^{2} & \mathbf{W}_{\mathsf{N}}^{3} \\ \mathbf{W}_{\mathsf{N}}^{0} & \mathbf{W}_{\mathsf{N}}^{2} & \mathbf{W}_{\mathsf{N}}^{4} & \mathbf{W}_{\mathsf{N}}^{6} \\ \mathbf{W}_{\mathsf{N}}^{0} & \mathbf{W}_{\mathsf{N}}^{3} & \mathbf{W}_{\mathsf{N}}^{6} & \mathbf{W}_{\mathsf{N}}^{9} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$$

$$X[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1+1j \\ 2+2j \\ 3+3j \\ 4+2j \end{bmatrix}$$

$$X[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1+1j \\ 2+2j \\ 3+3j \\ 4+2j \end{bmatrix}$$

$$X[k] = \begin{bmatrix} 10+8j & k=0 \\ -2 & \\ -2 & \\ -2-4i & \end{bmatrix}$$

(b) Let p[n] = { 1, 2, 3, 4} and q[n] = { 1, 2, 3, 2} Find P[k] and Q[k] using X[k]

Solution (b) To Find P[k] and Q[k]

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

67

To Find P[k] using X[k]

Now,
$$x[n] = p[n] + j q[n]$$
 (I)
By Complex Conjugate on both sides :
 $x^*[n] = p[n] - j q[n]$ (II)

$$x[n] + x^*[n] = 2 p[n]$$

So,
$$p[n] = \frac{1}{2} (x[n] + x^*[n])$$

To Find P[k] using X[k].....

Now,
$$p[n] = \frac{1}{2} (x[n] + x^*[n])$$

By Linearity & Complex Conjugate Property of DFT,

$$P[k] = \frac{1}{2} (X[k] + X^*[-k])$$

$$P[k] = \frac{1}{2} (\begin{bmatrix} 10+8j \\ -2 \\ -2 \\ -2-4j \end{bmatrix} + \begin{bmatrix} 10-8j \\ -2-4j \\ -2 \\ -2 \\ -2 \end{bmatrix})$$

$$P[k] = \begin{bmatrix} 10 & k=0 \\ -2+2j & \\ -2 & \\ -2-2j & \end{bmatrix}$$
 ANS

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

69

To Find Q[k] using X[k]

Now,
$$x[n] = p[n] + j q[n]$$
 (I)

By Complex Conjugate on both sides:

$$x^*[n] = p[n] - i q[n]$$
 (II)

$$x[n] - x^*[n] = 2j q[n]$$

So,
$$q[n] = \frac{1}{2}j (x[n] - x^*[n])$$

To Find Q[k] using X[k].....

Now,
$$q[n] = \frac{1}{2}j (x[n] - x^*[n])$$

By Linearity & Complex Conjugate Property of DFT,

$$Q[k] = \frac{1}{2}j (X[k] - X^*[-k])$$

$$Q[k] = \frac{1}{2}j (\left[\begin{array}{c} 10 + 8j \\ -2 \\ -2 \\ -2 - 4j \end{array}\right] - \left[\begin{array}{c} 10 - 8j \\ -2 + 4j \\ -2 \\ -2 \end{array}\right]$$

$$Q[k] = \begin{bmatrix} 8 & k = 0 \\ -2 & 0 \\ 0 & -2 \end{bmatrix}$$
ANS

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

71

[10] Circular Convolution Property

If
$$x[n] \rightarrow X[k]$$
And $h[n] \rightarrow H[k]$
Then

DFT $\{x[n] \otimes h[n]\} = X[k] H[k]$

Circular
Convolution
in Time

Multiplication in Freq. Domain

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Ex-1 Let
$$x[n] = [1, 2, 3, 4]$$
 and $h[n] = \{5, 6, 7\}$
Find Circular Convolution using DFT

Solution:

Here x[n] is L=4 point and h[n] is M=3 point

I. Select N

$$N = Max (L,M)$$

 $N = Max (4,3) == 4$

II. Zero Padding

$$x[n] = [1, 2, 3, 4]$$

 $h[n] = \{5, 6, 7, 0\}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

(1) Find X[k]

By DFT,

$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$

$$H[k] = \sum_{n=0}^{N-1} h[n] w_N^{nk}$$

$$X[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

$$X[k] = \begin{bmatrix} 10 & k=0 \\ -2+2j & \\ -2 & \\ -2-2i & \end{bmatrix}$$

(2) Find H[k]

$$H[k] = \sum_{n=0}^{N-1} h[n] w_N^{nk}$$

$$\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \quad H[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 7 \\ 0 \end{bmatrix}$$

$$H[k] = \begin{bmatrix} 18 & k=0 \\ -2-6j & 6 \\ -2+6i & \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

75

(3) Find Y[k]

$$Y[k] = X[k] H[k]$$

$$Y[k] = \begin{bmatrix} 10 \\ -2-2j \\ -2 \\ -2+2j \end{bmatrix} \begin{bmatrix} 18 \\ -2-6j \\ 6 \\ -2+6j \end{bmatrix}$$

(4) Find y[n]
$$y[n] = \frac{1}{N} \sum_{k=0}^{N-1} Y[k] \ \bar{w}_{N}^{nk}$$

$$Y[k] = \begin{bmatrix} 10 \\ -2-2j \\ -2 \\ -2+2j \end{bmatrix} \begin{bmatrix} 18 \\ -2-6j \\ 6 \\ -2+6j \end{bmatrix} \qquad y[n] = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 180 \\ 16+8j \\ -12 \\ 16-8j \end{bmatrix}$$

$$Y[k] = \begin{bmatrix} 180 & k=0 \\ 16+8j \\ -12 \\ 16-8j \end{bmatrix} \qquad y[n] = \begin{bmatrix} 50 & n=0 \\ 44 \\ 34 \\ 52 \end{bmatrix} \leftarrow ANS$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Solution:

Here x[n] is L=3 point and h[n] is M=2 point

I. Select N

$$N \ge L + M - 1$$

$$N \ge 3+2-1 == 4$$

II. Zero Padding

$$x[n] = [1, 2, 3, 0]$$

$$h[n] = \{ 5, 6, 0, 0 \}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

77

III Find
$$y[n] = x[n] \otimes h[n]$$
 using DFT

 $y[n] = x[n] \otimes h[n]$

(1) Find X[k]

By DFT,

$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$

$$H[k] = \sum_{n=0}^{N-1} h[n] w_N^{nk}$$

$$X[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$$

(2) Find H[k]

$$H[k] = \sum_{n=0}^{N-1} h[n] w_N^{nk}$$

$$X[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -i \\ 1 & i & -1 & -i \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} \quad H[k] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 0 \\ 0 \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

79

(3) Find Y[k]

$$Y[k] = X[k] H[k]$$

$$Y[k] = \begin{bmatrix} 6 \\ -2-2j \\ 2 \\ -2+2j \end{bmatrix} \begin{bmatrix} 11 \\ 5-6j \\ -1 \\ 5+6j \end{bmatrix}$$

(3) Find Y[k] (4) Find y[n]
$$Y[k] = X[k] H[k] \qquad y[n] = \frac{1}{N} \sum_{k=0}^{N-1} Y[k] \bar{w}_{N}^{nk}$$

$$Y[k] = \begin{bmatrix} 6 \\ -2-2j \\ 2 \\ -2+2j \end{bmatrix} \begin{bmatrix} 11 \\ 5-6j \\ -1 \\ 5+6j \end{bmatrix} y[n] = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 66 \\ -22+2j \\ -2 \\ -22-2j \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

[11] Parseval's Energy Theorem

Energy in == Energy in Frequency Domain

(i) Energy in Time Domain:

$$\mathsf{E} = \sum_{n=0}^{N-1} |x[n]|^2$$

(ii) Energy in Frequency Domain:

$$E = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

81

Ex. Let $x[n] = \{1, 2, 3, 2\}$

(i) Find Energy in Time Domain:

$$E = \sum_{n=0}^{N-1} |x[n]|^2$$

$$E = (1)^2 + (2)^2 + (3)^3 + (2)^2$$

$$E = 18$$

(ii) Find Energy in Frequency Domain:

$$\mathsf{E} = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

To Find X[k]

$$X[k] = \begin{bmatrix} 8 & k=0 \\ -2 & 0 \\ -2 & \end{bmatrix}$$

To Find Energy:

$$E = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

$$E = \frac{1}{4} \{ (8)^2 + (-2)^2 + (0)^3 + (-2)^2 \}$$

$$E = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

83

Find Complex Multiplications and Complex additions in DFT

By DFT,

$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$

Total Complex Multi $= N^2$

Total Complex Additions = $N^2 - N$

Find Real Multiplications and Real additions in DFT

By DFT,

$$X[k] = \sum_{n=0}^{N-1} x[n] w_N^{nk}$$

Total Complex Multi $= N^2$

Total Complex Additions = $N^2 - N$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

85

For 1 Complex Addition we require 2 Real Additions

= (a + c) + i(b + d)

(2) P + Q = (a+jb) + (c+jd)

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

2 Real Additions

In DFT,

- (1) Total Complex Multi = N^2
- For N² Complex Multiplications we require
- 4 N² Real Multiplications
- 2 N² Real Additions(I)
- (2) Total Complex Additions = N²-N
- For N^2 –N Complex Additions we require 2 (N^2 -N) = $2N^2$ - 2N Real Additions----(II)
- (3) Adding (I) and (II) we get

Total Real Additions = $2N^2 + 2N^2 - 2N$ == $4N^2 - 2N$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

87

For 1 Complex Multi:

For 1 Complex Additions:

2 Real Additions

4 Real Multi
2 Real Additions

By DFT:-

Total Real Multiplications = $4 N^2$

Total Real Additions = $4 N^2 - 2 N$

By FFT:-

- (i) Total Real Multiplications = $2 N \log_2 N$
- (ii) Total Real Additions = $3 \text{ N} \log_2 N$

Dr. Kiran TALELE

- Head-Academic Relation @ Sardar Patel Technology Business Incubator (SP-TBI), Mumbai
- Treasurer-IEEE Bombay Section

091-9987030881

kiran.talele@spit.ac.in / ktvtalele@gmail.com https://www.linkedin.com/in/k-t-v-talele/

www.facebook.com/Kiran-Talele-1711929555720263

Stay Connected

- **Dr. Kiran TALELE** is an Associate Professor in Electronics & Telecommunication Engineering Department of Bharatiya Vidya Bhavans' Sardar Patel Institute of Technology, Mumbai with 33+ years experience in Academics.
- He is a Dean of Students, Alumni and External Relations at Sardar Patel Institute of Technology, Andheri Mumbai.
 He is also a Head of Sardar Patel Technology Business Incubator, Mumbai.
- His area of research is Digital Signal & Image Processing, Computer Vision, Machine Learning and Multimedia System Design.
- He has published 85+ research papers at various national & international refereed conferences and journals. He has filed published 12+ patents at Indian Patent Office.
 One patent is granted in 2021.
- He is a Treasurer of IEEE Bombay Section and Mentor for Startup Incubation & Intellectual Asset Creation.
- He received incentives for excellent performance in academics and research from Management of S.P.I.T. in 2008-09. He is a recipient of P.R. Bapat IEEE Bombay Section Outstanding Volunteer Award 2019.

