Effects of Taxes and Safety-Net Pensions on Life-cycle Labor Supply, Savings and Human Capital: The Case of Australia

Fedor Iskhakov, Australian National University and CEPAR

Michael Keane, University of New South Wales and CEPAR

Summer School in Dynamic Structural Econometrics Chicago Booth, 2019

The Australian Social Security System

The Australian social security system is ranked among the best in the world by Mercer, the OECD, IMF etc.

Two components:

- "Superannuation"
 - Defined contribution pension plan
 - Mandatory employer contributions to private accounts (9.5%)
 - Workers choose among investment options
 - Accessible from age 65 (Age 60 if retired)
 - Avoids fiscal burden on government
- Age Pension
 - \bullet Provides safety net at ages 65 +
 - Benefits do not depend on work history (unlike SS in US)
 - Pure means-tested transfer ("welfare") program

Age Pension Benefits

Using HILDA Data, we estimate effective Pension taper rates of only:

- 27.8% on Income
- 0.5% on Assets

The low taper rates lead to very poor targeting (75% get some benefits). This means the Age Pension is a large program:

- Income Taxes = \$ 180 bil. (2014)
- Age Pension = \$ 50 bil. (2014)

Goal: Use structural model to assess:

- Effects of Age Pension on:
 - Labor supply
 - Asset and human capital accumulation
- Effects of changes in Age Pension rules designed to <u>improve</u> targeting of benefits

Literature

Means-tested transfers have potentially important effects on asset and human capital accumulation.

Yet there are very few papers estimating dynamic models with means-tested transfers:

- Keane and Wolpin (IER, 2010)
- Blundell, Costa-Dias, Meghir, Shaw (ECMA, 2016)

These papers do not focus on the targeting issue we emphasize here.

Our Life-Cycle Labor Supply Model

- Discrete time = Age from 19 to 100 (stochastic survival)
- Annual decisions on:
 - Consumption/Saving (continuous choice)
 - Hours chosen from [0, 24, 40, 45, 50, 60] per week (discrete choice)
 - Previous Life-cycle labor supply models have not accounted for bunching of hours
- Human capital accumulation
 - Learning-by-doing
- Consumers are subject to borrowing constraints
- **5** We model Age Pension, Superannuation and Tax Rules
- Observed and unobserved heterogeneity
 - ullet Education o Shifts human capital production function
 - ullet Unobserved types o Shifts skill endowment and tastes for leisure

Our Life-cycle labor Supply Model

Hours of labor supply $h_t \in H$ (choice variable)

Human capital: $K_t = f\left(\sum_{\tau=1}^{t-1} h_{\tau}, \mathsf{age}, \mathsf{education}, \mathsf{type}\right)$

Wage:
$$wage_{t+1} = K_t \cdot R_t \cdot \epsilon_{t+1}^{wage}$$
,

- $R_t = 1$ is rental rate on human capital,
- Wage draw: $\epsilon_t^{wage} \sim InN(0, \sigma_t^{wage})$
- ullet Timing: h_t chosen based on K_t , wage draw revealed at t+1

 M_t = Consumable wealth in the beginning of the period

Consumption $c_t \leq M_t + a_0$ (credit constraint)

Intertemporal budget constraint

$$M_{t+1} = (M_t - c_t)(1+r) + h_t \cdot wage_{t+1} - Tax_{t+1} + transfers_{t+1}$$

Our Life-cycle Labor Supply Model

Intertemporal budget constraint (Details on Transfers)

$$\begin{aligned} \textit{M}_{t+1} &= (\textit{M}_t - c_t) \, (1 + r) + \textit{h}_t \cdot \textit{wage}_{t+1} - \textit{Tax}_{t+1} + \textit{transfers}_{t+1} \\ \textit{M}_{t+1} &= (\textit{M}_t - c_t) \, (1 + r) + \textit{h}_t \cdot \textit{wage}_{t+1} - \textit{Tax}_{t+1} \\ &+ \textit{pens}_{t+1} \cdot \mathbb{1} \{t + 1 \geq 65\} \\ &+ \textit{super}_{t+1} \cdot \mathbb{1} \{t + 1 = 65\} \\ &+ \textit{tr}_{t+1} \cdot \mathbb{1} \{t + 1 \leq 22\} \end{aligned}$$

where:

- pens_{t+1} denotes Age Pension benefits,
- $super_{t+1}$ denotes the superannuation payment
- tr_{t+1} denotes transfers from parents to youth

The Pension and Super rules are estimated from data (see below)

Our Life-cycle Labor Supply Model

- Human Capital Production Function
- Let \mathcal{E}_t denote the ratio of total work time to maximum work time up through t-1, i.e. "normalized" work experience, $0 \le \mathcal{E}_t \le 1$

$$\mathcal{E}_t = rac{1}{t \cdot h_{ extit{max}}} \sum_{ au=1}^{t-1} h_{ au}$$

$$K_t = \exp\left(\eta_{0,edu} + \eta_{0,type} + \eta_{1,edu} \cdot t\mathcal{E}_t + \eta_{2,edu} \cdot (t\mathcal{E}_t)^2 + \eta_3 t + \eta_4 t^2\right)$$

where $t \cdot \mathcal{E}_t$ is total work experience.

 Heterogeneity: education and type specific intercepts in wage function

Our Life-Cycle Labor Supply Model

• Preferences for Consumption and Bequests

$$u(c_t) = \frac{c_t^{1-\zeta}-1}{1-\zeta}$$

$$w(B_t) = b_{scale} \cdot \frac{(B_t + a_0)^{1-\xi} - a_0^{1-\xi}}{1-\xi}$$

- $B_t = M_t c_t$ is bequeathed wealth (if person dies at age t)
- $\zeta > 0$, $\xi > 0$, $b_{scale} > 0$ are parameters to be estimated
- $a_0 = \text{credit constraint (maximum amount of borrowing)}$

Our Life-cycle Labor Supply Model

• Preferences: Disutility of Work Hours

$$v_t(h_t) = \mathbb{1}\{h_t > 0\} \cdot \kappa_{type}(\tau_{uh}) \cdot \kappa_{age}(t) \cdot \gamma(h_t)$$

 $\gamma = (\gamma^{(1)}, \dots, \gamma^{(5)})$ disutilities of the five discrete hours levels

Type: high
$$(\kappa_{type} = 1)$$
 or low $(\kappa_{type} = \kappa_1 > 1)$

Age effects:

$$\kappa_{age}(t) = 1 + \kappa_2(t - 40)^2 \cdot \mathbb{1}\{t > 40\} + \kappa_3(t - 25) \cdot \mathbb{1}\{t < 25\}$$

Age effects may proxy for declining health at older ages

Our Life-Cycle Labor Supply Model

- State vector $X_t = (M_t, \mathcal{E}_t, \text{education}, \text{type})$
- Bellman Equation

$$V_t(X_t) = \max_{\substack{0 \leq c_t \leq M_t + a_0, \\ h_t \in H_t}} \left\{ \frac{u(c_t) - v_t(h_t, \tau_{uh})}{+ \delta_t \beta(\tau_{edu}) E[V_{t+1}(X_{t+1}) | X_t, c_t, h_t]} + (1 - \delta_t) w(M_t - c_t) \right\},$$

Note: c_t continuous, h_t discrete

 $au = (au_{uh}, au_{edu})$ types for education and taste of work H_t choice set in period t $eta(au_{edu})$ discount factor dependent on education δ_t survival probability

HILDA Data

Household, Income and Labor Dynamics in Australia survey (HILDA)

- The primary source of data is the Household, Income and Labor Dynamics in Australia Survey (HILDA).
- Annual waves 2001-2016, Australian national representative sample
- Data on income, wages and labor supply (each year)
- Data on wealth in particular years
- First wave administered to 19,914 people

Structural estimation sample:

- Single and married men between age 19 and 89
 - 10,133 individuals, unbalanced panel of 81,197 observations
 - Born 1916 1997

Putting Institutional Settings in the Model

Approximate Pension, Super and Tax Rules

- We approximate the rules as functions of variables in our model
- We fit the approximate rules using the HILDA data

Age Pension Benefit Rule, 2001-2016

• We use the same equation we presented in the Intro:

```
\begin{array}{lll} \mathsf{benefit}_{\mathsf{max}} & = & 10,759.73 + 1,846.92 (\mathsf{when year} \geq 2010), \\ & & (183.96) & (173.52) \\ \\ \mathsf{pension} & = & \mathsf{max} \left\{ \mathsf{benefit}_{\mathsf{max}} - \mathsf{max} \left[ \, \mathsf{max} \{ 0.27794 \, \mathsf{income}, 0.00499 (\mathsf{wealth} - 117,082.60) \}, 0 \right] \right\} \\ & & \left\{ \mathsf{constant} \left[ \, \mathsf{max} \left\{ 0.27794 \, \mathsf{income}, 0.00499 (\mathsf{wealth} - 117,082.60) \right\}, 0 \right] \right\} \\ & & \left\{ \mathsf{constant} \left[ \, \mathsf{max} \left\{ 0.27794 \, \mathsf{income}, 0.00499 (\mathsf{wealth} - 117,082.60) \right\}, 0 \right] \right\} \\ & & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{income}, 0.00499 (\mathsf{wealth} - 117,082.60) \right], 0 \right\} \\ & & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{income}, 0.00499 (\mathsf{wealth} - 117,082.60) \right\}, 0 \right\} \\ & & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{income}, 0.00499 (\mathsf{constant} - 117,082.60) \right\}, 0 \right\} \\ & & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{income}, 0.00499 (\mathsf{constant} - 117,082.60) \right\}, 0 \right\} \\ & & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{income}, 0.00499 (\mathsf{constant} - 117,082.60) \right\}, 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{constant} \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{constant} \right\}, 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{constant} \right\}, 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{constant} \right\}, 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{constant} \right\}, 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0.27794 \, \mathsf{constant} \right\}, 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\} \\ & \left\{ \mathsf{constant} \left[ \, \mathsf{constant} \right], 0 \right\}
```

Putting Institutional Settings in the Model

Superannuation:

- Superannuation is a function of earnings throughout one's career
 - → Human capital at age 65 is a good proxy for lifetime earnings
 - → Both depend on skill endowment and lifetime hours
- Disregard the details of retirement income products (e.g. annuities)
 - → Assume super is paid as lump sum at age 65

$$super_t = \rho_0 + \rho_1(\tau_{edu}) \cdot K_t, t = 65$$

- Not an unrealistic assumption:
 - Market for annuities is very thin,
 - Most people take lump sum payout.

Putting Institutional Settings in the Model

Income Tax Rule, 2001-2016 Tax rules

Tax data

Estimation: Method of Simulated Moments

	High school		Dropouts		College	
Moments	Ages	N	Ages	N	Ages	N
Work status by age	19 - 86	67	19 - 88	70	23 - 89	64
hours when working	19 - 70	48	19 - 70	48	23 - 70	44
wage when working	19 - 70	48	19 - 70	48	23 - 70	44
variance of wage	19 - 70	10	19 - 70	10	23 - 70	10
skewness of earnings	19 - 85	13	19 - 85	13	23 - 85	13
hours = 20	19 - 86	67	19 - 86	68	23 - 89	64
hours = 40	19 - 82	61	19 - 84	64	23 - 79	57
hours = 45	19 - 77	55	19 - 83	56	23 - 76	51
hours = 50	19 - 76	58	19 - 88	66	23 - 77	53
wealth	25 - 85	13	25 - 85	13	25 - 85	13
work to work	19 - 70	48	19 - 70	48	23 - 70	44
nowork to nowork	19 - 70	48	19 - 70	48	23 - 70	44
super	65	1	65	1	65	1
Total		537		553		502

Estimates of the preference parameters

Parameter	Description	Estimate	Std.Err.
ζ	CRRA coefficient in consumption	0.79488	0.07327
γ_1	Disutility of working 1000 hours (20 per week)	1.4139	0.38508
γ_2	Disutility of working 2000 hours (40 per week)	2.0088	0.59712
γ_3	Disutility of working 2250 hours (45 per week)	2.9213	0.78915
γ_4	Disutility of working 2500 hours (50 per week)	2.8639	0.80946
γ_5	Disutility of working 3000 hours (60 per week)	3.8775	1.05032
κ_1	Correction coefficient for low type with disutility of work	0.50321	0.17973
κ_2	Quadratic coefficient on age for older workers	0.00008	0.00004
κ_3	Linear coefficient on age for young workers	0.05083	0.01554
ξ	CRRA coefficient in utility of bequest	0.48834	0.34766
b _{scale}	Scale multiplicator of the utility of bequest	0.68659	1.42044
$\beta_{\sf cg}$	Discount factor, college	0.96963	0.00238
eta_{hs}	Discount factor, highschool	0.96732	0.00189
eta_{dr}	Discount factor, dropouts	0.96806	0.00138
λ	Scale of EV taste shocks	0.29950	0.08825

Human capital accumulation process

Parameter	Description	Estimate	Std.Err.
$\eta_{0,cg}$	Constant for college	2.78766	0.41169
$\eta_{0, hs}$	Constant for high school	2.56761	0.36634
$\eta_{0,\mathrm{dr}}$	Constant for dropouts	2.45647	0.33269
$\eta_{0,high}$	Constant for high type	0.39311	0.41893
$\eta_{1, cg}$	Work experience for college	0.03041	0.00796
$\eta_{1,\mathrm{hs}}$	Work experience for high school	0.02164	0.00768
$\eta_{1,\mathrm{dr}}$	Work experience for dropout	0.01974	0.00682
$\eta_{2, cg}$	Work experience square for college	-0.00017	0.00021
$\eta_{2,\mathrm{hs}}$	Work experience square for high school	-0.00002	0.00018
$\eta_{2,\mathrm{dr}}$	Work experience square for dropout	0.00000	0.00010
η_3	Age (time index)	0.02676	0.00280
η_4	Age (time index) square	-0.00076	0.00004

Estimates of other structural parameters

Parameter	Description	Estimate	Std.Err.
ς0	St.dev. in shock distribution: constant	0.24485	0.24055
ς_1	St.dev. in shock distribution: age	0.00421	0.00935
tr	Transfer from parents	5.51308	1.43804
$ ho_{\sf cg}$	Superannuation: human capital — college	6.30347	2.58472
$ ho_{hs}$	Superannuation: human capital — high school	5.43473	3.30737
$ ho_{dr}$	Superannuation: human capital — dropouts	6.47838	3.95647
ς_{w_0}	Initial wealth sigma	1.48960	6.69399
p_{cg}	High type proportion — college	0.90089	0.04952
p_{hs}	High type proportion — high school	0.80130	0.04366
p_{dr}	High type proportion — dropout	0.69306	0.04411

Goodness of fit: total hours and participation

Goodness of fit: discrete level of hours

Goodness of fit: earnings and wealth

Policy simulations

The good fit of the model gives us some confidence in using it to predict policy impacts

Policies to be simulated:

- Transitory wage/tax changes
- Improved Targeting of Age Pension
 - Change income and asset taper rates

Frisch Elasticities

Transitory 10% wage decrease → % change in hours

(Anticipated effects)

Frisch elasticities

- Results for inter-temporal substitution elasticities:
- Frisch elasticities increase with age, very large at 65+
- The increase is greater for the more educated
- Consistent with Imai-Keane (2004) and Keane-Wasi (2016)
- \bullet Implication is that labor supply at 65+ will be very sensitive to relative wage at 65+
- A higher relative wage at 65+ will cause people to shift labor supply towards those years

Program Changes we Simulate:

- Double Income and Asset taper rates:
- Double effective income taper rate from 27.7% to 55.5%
- ullet Double effective asset taper rate from 1/2 cent on the dollar to one cent on the dollar
- In budget neutral simulation we can cut income tax rates by 5.9% i.e., top rate reduced from 37.9% to 35.7%

Important: The effect of higher taper rates on labor supply is theoretically ambiguous

Doubling of income/asset tapers → Effects on Hours of Work

(Note: Change in annual hours)

Doubling of income/asset tapers → Effects on Assets

(Note: Change in \$1000 AUD)

Double Taper Rates + Tax cut → Results:

- At age 65+ labor supply of college grads increases by 20% while that of dropouts falls by 8%
 - With higher tapers, college grads lose eligibility so they work more
- College grads rely on age pension less while dropouts rely on it more - better targeting
- In budget neutral simulation we cut income tax rates by 5.9% i.e., top rate reduced from 37.9% to 35.7%
 - This causes small increase in labor supply prior to age 65
- All types better off CEVs are \$1.4k, \$1.5k, \$1.7k for dropouts, HS, college types, respectively

Results and conclusions

Age Pension

- The program has large negative labor supply effects
- The program is expensive (Largest welfare item in budget)
- It is poorly targeted ⇒ Very low effective taper rates
- Doubling of Taper Rates combined with 5.9% tax cut would be Pareto improvement

Limitations

- Our results are only for men
 - Need to verify same result for women
- In practice, increase in effect taper rates means reducing exemptions

