강좌명: 전자정보통신입문설계

6. Fundamentals of Circuit

Yoon-Seok Nam

Dept. of Electronics, Information and Communications Engineering

Dongguk University at Gyeongju

123 Dongdae-ro, Gyeongju-City, Gyeongsangbuk-Do, 38066, Republic of Korea Phone: 054-770-2273(Lab), 054-770-2608(Office), 054-770-2605(fax), 010-7641-5004(CP)

Email: ysnam@dongguk.ac.kr

Contents

- 1. 전기적 성질
- 2. 자력
- 3. Capacitor
- 4. Pull up 저항/ Pull down 저항
- 5. Inductor

dongguk University

1. 전기적 성질

1.1 전기의 본질

■ 전기의 발견

◆ 정전기

- ▶ 기원전 550년경 고대 그리스 철학자 탈레스
- 베 조각을 호박(琥珀)에다 문질러 열을 내어 종이.실.새깃.털 등 가벼운 물건을 끌어 당기는 전기의 원리 발견
- ▶ 호박의 그리이스어 elektron : 전자(electron)

♦ 현대

- 1747년, 미국의 프랭클린: '일류체설'(一流體說)을 발표하면서, 전기유체(電氣流體)는 그것이 여분으로 있으면 (+)전기가 되고, 부족하면 (-)전기가 되는데, '유리전기' 쪽을 '(-)전기'라고 이름을 붙임.
- 1799년 이탈리아의 물리학자인 볼타는 현재 우리들이 이용하고 있는 전지와 같은 원리로 작동하는 전기의 발생장치를 발견하였다
- 1873년에 영국의 맥스웰에 의해 제안된 가설에 의해, 그 이전에 알려져 있던 여러 가지 잡다한 실험적 사실과 입증이 끝난 가설 이 이론적으로 통일되었다
- 1879년, 영국의 물리학자인 J.J.톰슨: 전기는 아주 미세한 입자. 이작은 입자를 전자라고 불렀으며, 전기는 이 전자들의 이동 현상임을 밝힘.
- 1882년 세계 최초의 중앙발전소와 에디슨 전등회사가 창립

■ 원자와 분자

◆ 분자:물체의 특성을 간직하고 있는 최소 단위

◆ 원자 : 분자를 구성

▶ 구성:양자(+), 중성자, 전자(-)

◆ 자유전자의 발생

▶ 전자가 부족한 원자의 상태 : (+) 성질이 생겼으므로 정전하

전자의 상태 : (-) 성질이 생겼으므로 부전하

1.2 도체와 부도체

- 도체
 - ◆ 자유전하를 많이 포함. 전기가 잘 통하는 물체
- 자유전자의 발생
 - ◆ 전자가 부족한 원자의 상태 : (+) 성질이 생겼으므로 정전하
 - ◆ 전자의 상태 : (-) 성질이 생겼으므로 부전하

도체 - 자유전자를 많이 포함

부도체 - 자유전자를 적게 포함

■ 도체에서의 전기 흐름

dongguk

UNIVERSIT

1.3 전류와 전압

- 전류(Current) : 전기가 흐르는 양
 - ◆ 단위: A (Ampere)
 - ◆ 1 A: 1Coulomb / sec
 - ▶ LED : 20 mA가 적정량
 - > 220 VAC : 댁내에서는 수십 A 사용
- 전압(Voltage) : 전자를 움직이는 힘 또는 힘의 차이
 - ◆ 단위: V (Voltage)
 - ◆ 1 V : 1 오옴(Ω : Ohm) 저항에 1A가 흐를 때의 전압

Unit

Amount	Name	Abbreviation	Amount	Name	Abbreviation
10 ⁻¹	deci	d	101	Deka	D
10 ⁻²	centi	С	10^2	Hecto	Н
10^{-3}	mili	m	10^3	Kilo	K
10 ⁻⁶	micro	u	10 ⁶	Mega	M
10 ⁻⁹	nano	n	109	Giga	G
10^{-12}	pico	p	10 ¹²	Tera	Т
10 ⁻¹⁵	femto	f	10 ¹⁵	Peta	P
10 ⁻¹⁸	atto	a	10 ¹⁸	Exa	Е
10^{-21}	zepto	Z	10^{21}	Zetta	Z
10 ⁻²⁴	yocto	У	10 ²⁴	Yotta	Y
10 ⁻²⁷	empto	e	10^{27}	Taxo	Tx

1.4 저항

- 저항(Resistor)
 - ◆ 전기가 잘 통하지 못하게 하는 성분
 - ◆ 종류
 - 소형탄소피막저항: 박막형
 - ▶ SMD 형의 chip 저항
 - Array 저항: 저항의 한쪽 끝을 연결하여 사용.
 - 가변저항
 - ◆ 같은 재질의 도체인 경우
 - ▶ 직경이 크면 저항이 감소
 - ▶ 저항은 단위길이로 표시
 - ✓ 전화선 : 280Ω/Km
 - ✓ 길이가 길수록 저항이 증가

- 저항(Resistor)의 종류
 - ◆ **소형탄소피막저항:** 박막형. Through Hole로 납땜

- ◆ **SMD 형의 chip 저항**: PCB에 납작하게 PCB의 한쪽면에만 납땜.
- ◆ Array 저항: 여러 개의 저항 한쪽 끝을 함 께 연결한 저항. 보통 공통핀은 VCC 또는 홍에 연결하여 사용.

◆ 가변저항: 양끝 두가닥 사용시 저항값은 일정. 가운데 핀과 다른 한쪽 사용시 저항 값이 가변.

- 저항의 값 표시
 - Color Code
 - ◆ 직접 명시
- 저항의 Color Code
 - ◆ 숫자:0~9
 - 오차 : 금색, 은색, 갈색
 - ♦ 4~5개의 때
 - ▶ 마지막 하나는 띄어 있음 : 오차
 - 오차와 가장 가까운 수 : 10의 승수를 나 타냄

청색 보라 적색 금색 6 7 2 5

색싱	색상		비고
흑색		0	
갈색		1	
적색		2	
주황색		3	
노란색		4	
녹색		5	
청색		6	
보라색		7	
회색		8	
흰색		9	
금색		5%	=
은색		10%	찾기 어려움

 $67 \times 10^2 : 670 \Omega \pm 5\%$

녹색 청색 황색 금색 5 6 3 5

 $56x10^3$: 56 kΩ ±5%

황색 황색 황색 금색 3 3 3 5

 $33x10^3:33~k\Omega~\pm5\%$

갈색 적색 갈색 금색 1 2 1 5

 $12 \times 10^{1} : 120 \Omega \pm 5\%$

노란색 보라색 흑색 갈색 갈색 4 7 0 1 1

 $470 \times 10^{1} : 4.7 \text{ k}\Omega \pm 1\%$

색명		제 1색대	제 2색대	제 3색대	승수	허용차
(Color)		(1st Band)	(2nd Band)	(3rd Band)	(Multiplier)	(Tolerance)
검정 (Black)	흑색 (Black)	0	0	0	10°	
랄색 (Brown)	갈색 (Brown)	1	1	1	101	±1%(F)
빨강 (Red)	적색 (Red)	2	2	2	102	±2%(G)
오랜지 (Orange)	동색 (Orange)	3	3	3	108	
노랑 (Yellow)	활색 (Yellow)	4	4	4	104	
녹색 (Green)	녹색 (Green)	5	5	5	105	±0.5%(D)
파랑 (Blue)	청색 (Blue)	6	6	6	109	±0,25%(C)
보라 (Violet)	자색 (Violet)	7	7.	7.	10 ^r	±0,1%(B)
회색 (Gray)	회색 (Gray)	8	8	8	10 ^a	±0,05%(A)
흰색 (White)	백색 (White)	9	9	9	10°	
금색 (Gold)	급색 (Gold)				10-1	±5%(J)
은색 (Silver)	은색 (Silver)				10-2	±10%(K)

(붉은 박스만의 색명은 1열의 것으로 대체하세요)

표준저항값 표

Standard Resistor Values:

	1%	Sta	ndard	Valu	ies
--	----	-----	-------	------	-----

Decade multiples are available from 10.0 Ω through 1.00 M Ω (also 1.10 M Ω , 1.20 M Ω , 1.30 M Ω , 1.50 M Ω , 1.60 M Ω , 1.80 M Ω , 2.00 M Ω and 2.20 M Ω)

						/					
10.0	10.2	10.5	10.7	11.0	11.3	11.5	11.8	12.1	12.4	12.7	13.0
13.3	13.7	14.0	14.3	14.7	15.0	15.4	15.8	16.2	16.5	16.9	17.4
17.8	18.2	18.7	19.1	19.6	20.0	20.5	21.0	21.5	22.1	22.6	23.2
23.7	24.3	24.9	25.5	26.1	26.7	27.4	28.0	28.7	29.4	30.1	30.9
31.6	32.4	33.2	34.0	34.8	35.7	36.5	37.4	38.3	39.2	40.2	41.2
42.2	43.2	44.2	45.3	46.4	47.5	48.7	49.9	51.1	52.3	53.6	54.9
56.2	57.6	59.0	60.4	61.9	63.4	64.9	66.5	68.1	69.8	71.5	73.2
75.0	76.8	78.7	80.6	82.5	84.5	86.6	88.7	90.9	93.1	95.3	97.6

		Decade	multipl			rd Value from 1		ough 22	2 ΜΩ		
10	11	12	13	15	16	18	20	22	24	27	30
33	36	39	43	47	51	56	62	68	75	82	91

			Decad	e multi			dard Va		through	1 ΜΩ		
1	10	12	15	18	22	27	33	39	47	56	68	82

표준저항값 표

0Ω 1. 1Ω 11Ω 11Ω 110Ω 1. 1K 11K 110K 1. 2Ω 12Ω 120Ω 1. 2K 12K 120K 1. 3Ω 13Ω 130Ω 1. 3K 13K 130K 1. 5Ω 15Ω 15Ω 1. 5K 15K 15K 150K 1. 6Ω 16Ω 16Ω 1. 6K 16K 16K 160K 1. 8Ω 18Ω 180Ω 1. 8K 18K 180K 2Ω 20Ω 20Ω 20ΩΩ 2K 20K 200K 2. 2Ω 22Ω 22ΩΩ 2. 2K 22K 22CK 2. 4Ω 24Ω 24ΩΩ 2. 4K 24K 240K 2. 7Ω 27Ω 27ΩΩ 2. 7K 27K 27OK 3Ω 30Ω 30ΩΩ 30ΩΩ 3K 30OK 3. 3Ω 33Ω 33ΩΩ 3. 3K 33OK 30OK 3. 3Ω 33Ω 33ΩΩ 3. 3K 33OK 30OK 3. 9Ω 39Ω 39ΩΩ 3. 9K 39K 39OK 4. 3Ω 43Ω 43Ω 43ΩΩ 4. 3K 43K 43OK 4. 7Ω 47Ω 47Ω 47ΩΩ 4. 7K 47K 47OK 5. 1Ω 51Ω 51ΩΩ 5. 1K 51K 51OK 5. 6Ω 56Ω 56Ω 56ΩΩ 6. 2K 62K 62OK 6. 8Ω 68Ω 68Ω 68ΩΩ 6. 8K 68K 68OK 7. 5Ω 75Ω 75ΩΩ 7. 5K 75K 75OK	x1M	x100K	x10K	x1K	x100	x10	x1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•			Ċ	οΩ
1. 3Ω 13Ω 130Ω 1. 3K 13K 130K 1. 5Ω 15Ω 150Ω 1. 5K 15K 150K 1. 6Ω 16Ω 160Ω 1. 6K 16K 160K 1. 8Ω 18Ω 180Ω 1. 8K 18K 180K 2Ω 20Ω 200Ω 2K 20K 200K 2. 2Ω 22Ω 220Ω 2. 2K 22K 220K 2. 4Ω 24Ω 240Ω 2. 4K 24K 240K 2. 7Ω 27Ω 270Ω 2. 7K 27K 270K 3Ω 30Ω 300Ω 3K 30K 300K 3. 3Ω 33Ω 330Ω 3. 3K 33K 330K 3. 6Ω 36Ω 360Ω 3. 6K 36K 36K 3. 9Ω 39Ω 390Ω 3. 9K 39K 390K 4. 3Ω 43Ω 43Ω 4. 3K 43K 430K 4. 7Ω 47Ω 470Ω 4. 7K 47K 47K 5. 6Ω 56Ω 56Ω 56K 56K<	1.1M	110K	11K	1.1K	110Ω	11Ω	1.1Ω
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2M	120K	12K	1.2K	120Ω	12Ω	1.2Ω
1. 6Ω 16 Ω 1. 6K 16K 160K 1. 8Ω 18 Ω 18 Ω 1. 8K 18K 180K 2 Ω 20 Ω 200 Ω 2K 20K 200K 2. 2 Ω 22 Ω 220 Ω 2. 2K 22K 220K 2. 4 Ω 24 Ω 24 Ω 2. 4K 24K 24OK 2. 7 Ω 27 Ω 270 Ω 2. 7K 27K 270K 3 Ω 30 Ω 300 Ω 3K 30K 300K 3. 3 Ω 33 Ω 330 Ω 3. 3K 33K 330K 3. 6 Ω 36 Ω 360 Ω 3. 6K 36K 360K 3. 9 Ω 390 Ω 3. 9K 39K 390K 4. 3 Ω 43 Ω 430 Ω 4. 3K 43K 430K 4. 7 Ω 47 Ω 470 Ω 4. 7K 47K 47K 470K 5. 1 Ω 51 Ω 510 Ω 5. 1K 51K 510K 5. 6 Ω 56 Ω 560 Ω 5. 6K 56K 56K 56OK	1.3M	130K	13K	1.3K	130Ω	13Ω	1.3Ω
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5M	150K	15K	1.5K	150Ω	15Ω	1.5Ω
2Ω	1.6M	160K	16K	1.6K	160Ω	16Ω	1.6Ω
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8M	180K	18K	1.8K	180Ω	18Ω	1.8Ω
2. 4Ω 24Ω 24Ω $2.4K$ $24K$ $240K$ 2. 7Ω 27Ω 270Ω $2.7K$ $27K$ $270K$ 3Ω 30Ω 300Ω $3K$ $30K$ $300K$ 3. 3Ω 33Ω 330Ω $3.3K$ $33K$ $330K$ 3. 6Ω 36Ω 360Ω $3.6K$ $36K$ $360K$ 3. 9Ω 39Ω 390Ω $3.9K$ $39K$ $390K$ 4. 3Ω 43Ω 430Ω $4.3K$ $43K$ $430K$ 4. 7Ω 47Ω 470Ω $4.7K$ $47K$ $470K$ 5. 1Ω 51Ω 510Ω $5.1K$ $51K$ $510K$ 5. 6Ω 56Ω 560Ω $5.6K$ $56K$ $560K$ 6. 2Ω 62Ω 620Ω $6.2K$ $62K$ $620K$ 6. 8Ω 68Ω 680Ω $6.8K$ $68K$ $680K$ 7. 5Ω 75Ω $750K$ $750K$ $750K$	2M	200K	20K	2K	200Ω	20Ω	2Ω
2. 7Ω 27 Ω 2. $7K$ 27 K 27 $0K$ 3 Ω 30 Ω 300 Ω 3 K 30 K 300 K 3. 3 Ω 33 Ω 330 Ω 3. 3 K 33 K 330 K 3. 6 Ω 36 Ω 360 Ω 3. 6 K 36 K 360 K 3. 9 Ω 390 Ω 3. 9 K 39 K 390 K 4. 3 Ω 43 Ω 430 Ω 4. 3 K 43 K 430 K 4. 7 Ω 47 Ω 470 Ω 4. 7 K 47 K 47 K 47 K 5. 1 Ω 51 Ω 510 Ω 5. 1 K 51 K 510 K 5. 6 Ω 56 Ω 560 Ω 5. 6 K 56 K 560 K 6. 2 Ω 62 Ω 620 Ω 6. 2 K 62 K 62 K 6. 8 Ω 68 Ω 68 Ω 68 Ω 68 Ω 7. 5 K 75 K 75 Ω	2. 2M	220K	22K	2. 2K	220Ω	22Ω	2.2Ω
3Ω 30Ω 300Ω $3K$ $30K$ $300K$ 3.3Ω 3.3Ω 33Ω 330Ω $3.3K$ $33K$ $330K$ 3.6Ω 3.6Ω 36Ω $3.6K$ $36K$ $36K$ $36OK$ 3.9Ω 39Ω 39Ω 390Ω $3.9K$ $39K$ $390K$ 4.3Ω 43Ω 43Ω 43Ω $4.3K$ $43K$ $43K$ $430K$ 4.7Ω 47Ω 47Ω 47Ω 47Ω $4.7K$ $47K$ $47K$ $47OK$ 5.1Ω 51Ω 51Ω 510Ω $5.1K$ $51K$ $51OK$ 5.6Ω 56Ω 56Ω 56Ω 560Ω $5.6K$ $56K$ $56K$ $56OK$ 6.2Ω 62Ω 63Ω 68Ω 68Ω $68R$ $68K$ $68K$ $68OK$ 7.5Ω 75Ω 750Ω $7.5K$ $75OK$	2. 4M	240K	24K	2. 4K	240Ω	24Ω	2.4Ω
3.3Ω 33Ω 330Ω $3.3K$ $33K$ $330K$ 3.6Ω 3.6Ω 3.6Ω $3.6K$ $36K$ $360K$ 3.9Ω 3.9Ω 3.9Ω $3.9K$ $390K$ $3.9K$ $390K$ $3.9K$ $390K$ 4.3Ω 4.3Ω 4.3Ω $4.3K$ $4.3K$ $4.3K$ $4.3K$ $4.3OK$ 4.7Ω 4.7Ω 4.7Ω $4.7D$ 4	2. 7M	270K	27K	2.7K	270Ω	27Ω	2.7Ω
3.6Ω 36Ω 360Ω $3.6K$ $36K$ $36OK$ 3.9Ω 39Ω 390Ω $3.9K$ $39K$ $390K$ 4.3Ω 43Ω 43Ω 470Ω $4.7K$ $47K$ $47K$ $470K$ 5.1Ω 51Ω 51Ω 510Ω $5.1K$ $51K$ $510K$ 5.6Ω 56Ω 56Ω 560Ω $5.6K$ $56K$ $56OK$ 6.2Ω 62Ω 62Ω 62Ω 62Ω 68Ω 68Ω 68Ω $68K$ $68K$ $68K$ $680K$ 7.5Ω 75Ω $750K$	3M	300K	30K	3K	300Ω	30Ω	3Ω
3.9Ω 39Ω 390Ω $3.9K$ $39K$ $390K$ 4.3Ω 4.3Ω 43Ω 430Ω $4.3K$ $43K$ $430K$ 4.7Ω 47Ω 47Ω 470Ω $4.7K$ $47K$ $47K$ $470K$ 5.1Ω 51Ω $51\Omega\Omega$ $5.1K$ $51K$ $510K$ 5.6Ω 56Ω 56Ω 56Ω 56Ω $5.6K$ $56K$ $56K$ $56OK$ 6.2Ω 62Ω 62Ω 62Ω 62Ω $6.2K$ $62K$ $62K$ $62OK$ 6.8Ω 68Ω 68Ω 680Ω $6.8K$ $68K$ $680K$ 7.5Ω 75Ω 750Ω $7.5K$ $750K$	3. 3M	330K	33K	3. 3K	330Ω	33Ω	3.3Ω
4. 3Ω 43Ω 430Ω 4. 3K 43K 430K 4. 7Ω 47Ω 470Ω 4. 7K 47K 470K 5. 1Ω 51Ω 510Ω 5. 1K 51K 510K 5. 6Ω 56Ω 560Ω 5. 6K 56K 560K 6. 2Ω 62Ω 620Ω 6. 2K 62K 620K 6. 8Ω 68Ω 680Ω 6. 8K 68K 680K 7. 5Ω 75Ω 750Ω 7. 5K 75K 750K	3.6M	360K	36K	3. 6K	360Ω	36Ω	3.6Ω
4. 7Ω 47 Ω 4. $7K$ 47 K 47 $0K$ 5. 1Ω 51 Ω 51 $0K$ 51 $0K$ 51 $0K$ 5. 6Ω 56 Ω 56 $0K$ 56 $0K$ 56 $0K$ 6. 2Ω 62 Ω 62 $0K$ 62 $0K$ 62 $0K$ 6. $0K$ 68 $0K$ 68 $0K$ 68 $0K$ 68 $0K$ 7. $0K$ 75 $0K$ 75 $0K$ 75 $0K$	3.9M	390K	39K	3. 9K	390Ω	39Ω	3.9Ω
5. 1Ω 51Ω 510Ω 5. 1K 51K 510K 5. 6Ω 56Ω 560Ω 5. 6K 56K 560K 6. 2Ω 62Ω 620Ω 6. 2K 62K 620K 6. 8Ω 68Ω 680Ω 6. 8K 68K 680K 7. 5Ω 75Ω 750Ω 7. 5K 75K 750K	4.3M	430K	43K	4.3K	430Ω	43Ω	4.3Ω
5. 6Ω $56Ω$ $560Ω$ 5. 6K $56K$ $560K$ 6. 2Ω $62Ω$ $62Ω$ $6.2K$ $62K$ $620K$ 6. 8Ω $68Ω$ $680Ω$ $6.8K$ $68K$ $680K$ 7. 5Ω $75Ω$ $750Ω$ $7.5K$ $750K$	4. 7M	470K	47K	4.7K	470Ω	47Ω	4.7Ω
6. 2Ω 62 Ω 62 Ω 6. 2K 62 K 62 0K 6. 8Ω 68 Ω 68 Ω 6. 8K 68 K 68 0K 7. 5Ω 75 Ω 75 Ω 7. 5K 75 K 75 0K	5. 1M	510K	51K	5. 1K	510Ω	51 Ω	5.1Ω
6. 8Ω 68Ω 680Ω 6. 8K 68K 680K 7. 5Ω 75Ω 750Ω 7. 5K 75K 750K	5. 6M	560K	56K	5. 6K	560Ω	56Ω	5.6Ω
7. 5Ω 75Ω 750Ω 7. 5K 75K 750K	6. 2M	620K	62K	6. 2K	620Ω	62Ω	6.2Ω
	6.8M	680K	68K	6. 8K	680Ω	68Ω	6.8Ω
9 2 0 92 0 92 0 92 92 92 92 92 92 92 92 92 92 92 92 92	7.5M	750K	75K	7.5K	750Ω	75Ω	7.5Ω
8. 252 82 92 82 92 82 N	8. 2M	820K	82K	8. 2K	820Ω	82Ω	8.2Ω
9. 1Ω 91 Ω 910 Ω 9. 1K 91K 910K	9.1M	910K	91K	9.1K	910Ω	91Ω	9.1Ω

표준저항값 표: chip 저항

0R	1R0	1R3	1R5	1R6	1R8	2R0	2R2	2R7	3R	3R3	3R6	3R9	4R3
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
4R7	5R1	5R6	6R8	7R5	8R2	9R1	10R	12R	15R	16R	18R	20R	22R
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
27R	30R	33R	36R	39R	43R	47R	51R	56R	62R	68R	75R	82R	100R
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
110R	120R	130R	150R	160R	180R	200R	220R	240R	270R	300R	330R	360R	390R
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
430R	470R	510R	560R	620R	680R	750R	820R	910R	1K	1K1	1K2	1K3	1K5
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
1K6	1K8	2K0	2K2	2K4	2K7	3K0	3K3	3K6	3K9	4K3	4K7	5K1	5K6
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
6K2	6K8	7K5	8K2	9K1	10K	11K	12K	13K	15K	16K	18K	20K	22K
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
27K	30K	33K	36K	39K	43K	47K	51K	56K	62K	68K	75K	82K	91K
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
100K	120K	130K	150K	160K	180K	200K	220K	240K	270K	300K	330K	360K	390K
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
470K	510K	560K	620K	680K	750K	820K	910K	1M	1M2	1M3	1M5	1M8	2M0
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
2M2	2M7	3M	3M3	3M9	4M7	5M1	5M6	6M8	10M				
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216]			

n		<u> </u>	8		200						ng		<u> </u>
0R	1R0	1R3	1R5	1R6	1R8	2R0	2R2	2R7	3R	3R3	3R6	3R9	4R3
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
4R7	5R1	5R6	6R8	7R5	8R2	9R1	10R	12R	15R	16R	18R	20R	22R
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
27R	30R	33R	36R	39R	43R	47R	51R	56R	62R	68R	75R	82R	100R
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
110R	120R	130R	150R	160R	180R	200R	220R	240R	270R	300R	330R	360R	390R
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
430R	470R	510R	560R	620R	680R	750R	820R	910R	1K	1K1	1K2	1K3	1K5
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
1K6	1K8	2K0	2K2	2K4	2K7	3K0	3K3	3K6	3K9	4K3	4K7	5K1	5K6
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
6K2	6K8	7K5	8K2	9K1	10K	11K	12K	13K	15K	16K	18K	20K	22K
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
27K	30K	33K	36K	39K	43K	47K	51K	56K	62K	68K	75K	82K	91K
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
100K	120K	130K	150K	160K	180K	200K	220K	240K	270K	300K	330K	360K	390K
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
470K	510K	560K	620K	680K	750K	820K	910K	1M	1M2	1M3	1M5	1M8	2M0
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216	3216
2M2	2M7	3M	3M3	3M9	4M7	5M1	5M6	6M8	10M				
3216	3216	3216	3216	3216	3216	3216	3216	3216	3216]			
		7. 522		277	12077	7. 5	ix.	AC Y	AUG Y	7.0	JIL.		

dongguk V

 7.512
 7512
 7502
 7.5K
 75K
 750K
 7.5M

 8.2Ω
 82Ω
 82ΩΩ
 8.2K
 82K
 820K
 8.2M

 9.1Ω
 91Ω
 91ΩΩ
 9.1K
 91K
 910K
 9.1M

UNIVERSIT

1.5 직렬회로의 계산

- 옴의 법칙(Ohm's Law)
 - 전압, 전류, 저항의 상관관계를 명시
 - 전압(V), 전류(I), 저항(R)
 - V=IR, I=V/R, R=V/I
 - 전압은 전류와 저항에 비례
 - 전류는 전압에 비례, 저항에 반비례
 - 저항은 전압에 비례, 전류에 반비례

■ 전압강하(Voltage Drop)

- ◆ 저항에 의하여 전압차이가 발생
- ◆ 전압강하 : 두 단자간에 저항 등에 의 하여 발생하는 전압의 차이
- ◆ 저항 양단간의 전압강하=저항 양단 에서 발생하는 전압

전압강하: ????? V

1.6 병렬회로의 계산

$$|1=V/R1, |2=V/R2|$$

 $|=|1 + |2 = V(1/R1 + 1/R2)|$

$$=V/R$$

 $V/R = V(1/R1 + 1/R2)$
 $1/R = 1/R1 + 1/R2$

$$R=R1R2/(R1+R2)$$

다수의 병렬저항은

$$1/R = 1/R1 + 1/R2 + \cdots + 1/Rn$$

 $1150=10V/150\Omega=66mA$

R=R1R2/(R1+R2) R=600/50 Ω =12 Ω

 $=12V/12\Omega = 1A=1000mA$

 $120=12V/20\Omega=600mA$ $130=12V/30\Omega=400mA$

= 3/50

 $R=50/3=16.6 \Omega$

 $I=10V/16.6 \Omega = 0.6A = 600 mA$

2. 자력

2.1 자석

- 자석과 자기
 - ◆ 자성: 자석이 철, 니켈 등의 금속을 끌어당기는 힘
 - ◆ 자력: 자석이 서로 당기거나 미는 힘

■ 철

- ◆ 혼자서는 자석의 성질(자성)이 없음
- ◆ 자석과 연결되면…. 자성을 띰

■ 자력선과 지자기

- ♦ 나침반
 - ▶ N극 : 북극
 - > S극: 남극
- ◆ 지구는 하나의 거대한 자석
 - > 지자기
- ◆ 자력선
 - N극에서 시작하여 S극으로 들어가는 본 향으로 생성
 - ▶ 자계, 자장: 자력선이 미치는 범위

2.2 Speaker의 원리

■ 도체에 전기가 흐르면

- ◈ 주변에 자기장이 형성됨
- ◈ "전자유도"라 함.

■ 오른나사의 법칙

- ◈ 자기장의 방향
 - ▶ 전류가 (+)극에서 (-)극으로 흐르는 방향을 나사가 뚫고 지나가는 방향 에 비유하면
 - ▶ 나사를 오른쪽으로 돌려 죄는 방향

■ 오른손 법칙

- ◈ 주변에 자기장이 형성됨
- ◈ 전자석 : 철+코일+전류

- ◆ 전류의 방향: 오른손가락으로 감싼다.
- ◆ N극 : 엄지손가락 방향

■ 자력의 세기

- ◆ 코일만 사용 : 자력이 약하다
- ♦ 철 + 코일 사용 : 자력이 강하다.
 - 철의 분자자석이 정렬

강력한 자력을 발생하는 코일을 만들기 위해서는…

- 철심넣기
- 코일을 많이 감기
- → Inductance 증가

■ 자력과 스피커의 원리

- ◆ 자석과 전자석: 2개의 자석임.
- ◆ 전자석을 띄워 놓고, 전류의 방향을 제어한다.
 - ▶ 같은 극 끼리는 민다.
 - ▶ 다른 극 끼리는 당긴다.

오른손 법칙

dongguk)

■ 스피커의 원리

- ◆ 전자석이 띄워진 상태
- ◆ 전자석의 움직임에 따라 종이 판이 진동

2.3 Motor의 원리

■ 플레밍의 왼손법칙

- ◆ 자기장 내의 도선에 전류를 흘리면 도선이 움직인다.
- 자기장의 방향, 전류의 방향, 힘의 방향
 - ▶ 자기장은 고정. 전류의 방향에 따른 힘의 방향에 관심
 - > FBI

- 모터의원리
 - ◆ 회전하면서 도선의 극성이 바뀐 다.
 - > 그림에서 N-S 극이 바뀌어 있음 !!!

2.4 발전기의 원리

■ 플레밍의 오른손법칙

- ◆ 자기장 내에 도선을 삽입하면, 도선에 전류를 흐른다.
- ◆ 자기장의 방향, 전류의 방향, 힘의 방향
 - 자기장의 방향은 고정. 힘의 방향에 따라 발생하는 전류의 방향에 관심.

■ 직류 발전기의 원리

◆ 그림에서 회전 방향이 명확해야 함.

■ 직류 발전기의 원리

- 모터가 회전함에 따라 도선에 인가되는 전류 의 방향은 항상 일정
- ◆ 크기만 감소, 증가를 반복
- ◆ 크기의 변화를 평균으로 변환하면**→**직류발전 기

■ 교류 발전기의 원리

- ◆ 직류와 비교하면
 - ▶ 모터가 회전하더라도 연결선을 교체하지 않음
 - ▶ 모터 회전에 따라 도선의 극성이 바뀔 것임.

■ 교류 발전기의 원리

- ◆ 직류와 비교하면
 - ▶ 모터의 회전 방향 확인 필요.
 - ▶ 그래프와 일치하려면, 회전 방향이 반대로 되어야 함!!!

■ 교류 발전기의 원리

- ◆ 직류와 비교하면
 - ▶ 모터의 회전 방향 확인 필요.
 - ▶ 그래프와 일치하려면, 회전 방향이 반대로 되어야 함!!!

2.5 마이크의 원리

- 자석의 이동과 전류의 관계
 - ◆ 코일 사이에 자석을 왕복시키면, 전류가 발생
 - ▶ 자석의 움직임을 방해하는 방향으로 전류 발생
 - ◆ 발전기 경우와 유사
 - ◆ 소리가 입력되면 자석이 움직임.
 - ▶ 교류 발생

2. Capacitor

3.1 Capacitor 개요

- Capacitor / Condenser
 - ◆ 전기를 축적하는 기능을 가지고 있다.
 - ◆ 전기를 축적하는 기능 이외에 직류전류를 차단하고 교류전류를 통과시키려는 목적에도 사용된다.
 - ◆ 2장의 전극판을 대향시킨 구조로 되어 있다. 여기에 직류전압을 걸면, 각 전극에 전하(電荷)라고 하는 전기가 축적되며, 축적하고 있는 도중에는 전류가 흐른다. 축적된 상태에서는 전류는 흐르지 않게 된다.
- 회로 표시
 - ◆ 무극성
 - ◆ 극성

■ 종류

- ◆ 전해콘덴서 또는 케미콘(chemical condenser)
- ◆ 적층 세라믹 콘덴서
- ◆ 폴리에스테르 필름 콘덴서(마일러 콘덴서)
- 탄탈 전해콘덴서(탄탈 콘덴서)

■ 용량 표시

- ◆ 콘덴서의 용량 표시에 3자리의 숫자가 사용된다. 부품 메이커에 따라 용량을 3자리의 숫자로 표시하든가, 그대로 표시하기도 한다.
- ◆ 3자리 숫자로 나타내는 경우에는 앞의 2자리 숫자가 용량의 제1숫자와 제 2숫자이고, 3자리째가 승수가 된다. 표시의 단위는 pF(피코 패러드)로 되 어 있다.
- (예)
 - \rightarrow 103: 10×10³ pF=10,000pF=0.01µF
 - \triangleright 224: 22×10⁴pF=220,000pF=0.22µF
- ◆ 100pF 이하의 큰 콘덴서는 용량을 그대로 표시한다. 즉, 47은 47pF를 의미한다.

■ 전해콘덴서 또는 케미콘(chemical condenser)

- ◆ 유전체로 얇은 산화막을 사용하고, 전극으로는 알루미늄을 사용하고 있다.
- ◆ 유전체를 매우 얇게 할 수 있으므로 콘덴서의 체적에 비해 큰 용량을 얻 을 수 있다.
- ◆ 국성(플러스 전극과 마이너스 전극이 정해져 있다)이 있다. 콘덴서 자체에 마이너스측 리드를 표시하는 마크가 있다. (회로도에도 + 극성을 표시)
- ◆ 전압, 용량(전기를 축적할 수 있는 양)도 표시되어 있다. 극성을 잘못 접 속하거나, 전압이 너무 높으면 콘덴서가 파열(평하는 소리가 나며, 매우 위험)된다.
- ◆ 1µF부터 수천µF, 수만µF라는 식으로 비교적 큰 용량이 얻어지며, 주로 전원의 평활회로, 저주파 바이패스(저주파 성분을 어스 등에 패스시켜 회로 동작에 악영향을 주지 않는다) 등에 사용된다.
- ◆ 단, 코일 성분이 많아 고주파에는 적합하지 않다. (주파수 특성이 나쁘 다..

■ 탄탈 전해콘덴서(tantalum condenser)

- ◆ 전극에 탄탈륨이라는 재료를 사용하고 있는 전해콘덴서이다.
- ◆ 알루미늄 전해콘덴서와 마찬가지로, 비교적 큰 용량을 얻을 수 있다.
- ◆ 온도 특성(온도의 변화에 따라 용량이 변화. 용량이 변화하지 않 을수록 특성이 좋다), 주파수 특성 모두 전해콘덴서 보다 우수하 다.
- ◆ 알루미늄 전해콘덴서는 크라프트(kraft)지 등에 전해액이 스며 들 게 한 것을 금속 알루미늄으로 삽입하여 감아 붙인 구조로 되어 있지만, 탄탈 전해콘덴서의 경우는 tantalum powder를 소결하여 굳혔을 때에 나오는 빈틈을 이용하는 구조로 되어 있어, 두루마 리 구조가 아니므로 알루미늄 전해콘덴서와 비교하여 특성이 우 수하다.
- ◆ 극성이 있으며, 콘덴서 자체에 +의 기호로 전극을 표시하고 있다.

■ 세라믹콘덴서

- ◆ 세라믹 콘덴서는 전극간의 유전체로 티탄산 바륨(Titanium-Barium)과 같은 유전율이 큰 재료가 사용되고 있다.
- 인덕턴스(코일의 성질)가 적어 고주파 특성이 양호하다는 특징을 가지고 있어, 고주파의 바이패스(고주파 성분 또는 잡음을 어스로 통과시킨다)에 흔히 사용된다.
- ◆ 모양은 원반형으로 되어 있으며, 용량은 비교적 작다.
- ◆ 전극의 극성은 없다.
- 세라믹은 강유전체의 물질로 아날로그 신호계 회로에 사용하면 신호에 일그러짐이 나오므로 이와 같은 회로에는 사용할 수 없다.

일반세라믹 콘덴서

적층세라믹 콘덴서

■ 폴리에스테르필름 콘덴서(마일러 콘덴서)

◆ 마일러(Mylar) 콘덴서라고도 하며, 얇은 폴리에스테르(polyester) 필름을 양측에서 금속으로 삽입하여, 원통형으로 감은 것이다. 저가격으로 사용하기 쉽지만, 높은 정밀도는 기대할 수 없다. 오차는 대략 ±5%에서 ±10% 정도이다. 저주파 필터용

◆ 폴리프로필렌 콘덴서

폴리에스테르 콘덴서 보다 높은 정밀도가 요구되는 경우에 사용한다. 유전체 재료는 폴리프로필렌(polypropylene) 필름을 사용하며, 100kHz 이하의 주파수에서 사용하면 거의 용락이 변화가 어디고 한다

■ 마이카 콘덴서

- ◆ 유전체로 운모(mica)를 사용한 콘덴서이다. 운모는 온도계수가 작고 안정성이 우수하며, 주파수 특성도 양호하기 때문에, 고주파에서의 공 진회로나 필터회로 등에 사용된다.
- ◆ 절연내압이 우수하므로 고압회로에도 사용된다.이전에는 진공관식 무선송신기 등에는 흔히 사용되었다.
- ◆ 결점으로는 용량이 그다지 크지 않고, 비싸다.

Capacitor 범위

표준 Capacitor 값 표

Standard Capacitor Values:

Standard capacitor values from 1pF to 9100µF										
pF	pF	pF	pF	μF	μF	μF	μF	μF	μF	μF
1.0	10	100	1000	0.01	0.1	1.0	10	100	1000	10,000
1.1	11	110	1100							
1.2	12	120	1200							
1.3	13	130	1300							
1.5	15	150	1500	0.015	0.15	1.5	15	150	1500	
1.6	16	160	1600							
1.8	18	180	1800							
2.0	20	200	2000							
2.2	22	220	2200	0.022	0.22	2.2	22	220	2200	
2.4	24	240	2400							
2.7	27	270	2700							
3.0	30	300	3000							
3.3	33	330	3300	0.033	0.33	3.3	33	330	3300	
3.6	36	360	3600							
3.9	39	390	3900							
4.3	43	430	4300							
4.7	47	470	4700	0.047	0.47	4.7	47	470	4700	
5.1	51	510	5100							
5.6	56	560	5600							
6.2	62	620	6200							
6.8	68	680	6800	0.068	0.68	6.8	68	680	6800	
7.5	75	750	7500							
8.2	82	820	8200							
9.1	91	910	9100							

UNIVERSI

3.2 콘덴서의 동작과 용량

■ 콘덴서의 동작

- ◆ 각 금속판에 (+) 및 (-) 전하가 쌓임(충전) : 극성이 있는 전해콘덴서 등을 사용
- ◆ 충전상태에서 두 단자를 연결하면 : (+) 전하와 (-) 전하가 중화되어 방전됨.
- ◆ 전원의 극성을 바꾸어 연결 : 먼저, 방전. 이후 충전될 것임.
- ◆ 얼마나 빨리 충전/방전되는지
 - ▶ 회로의 R, C 값에 따름.
 - ▶ RxC가 크면, 느리게 동작

■ 콘덴서의 전하량과 용량

- ◆ 콘덴서에 축적되는 전하량 : Q=CV
 - ▶ Q(전하량), C(콘덴서 용량), V(전압)
- ◆ 콘덴서 용량
 - 절연체의 유전율, 전극판의 면적, 전극판 간의 거리

$$C = \varepsilon \frac{A}{l}$$

- 콘덴서의 병렬 연결
 - ◆ 전극판의 면적이 늘어났으므로 용량은 증가
 - \bullet C = C1 + C2
- 콘덴서의 직렬 연결
 - ◆ 콘덴서의 합성 용량은 감소
 - \bullet 1/C = 1/C1 + 1/C2

3.3 콘덴서의 역할

- 전하를 저장
- 직류를 막고, 교류를 통과
 - ◆ 직류
 - ▶ 충전 완료 : 전류의 흐름 없음 → 직류 차단
 - ◆ 교류
 - ▶ 충전과 방전을 계속 → 교류 통과
 - Coupling Condenser

충전되어 가득차면 차단됨

충전, 방전을 계속한다.

- 회로상에서 교류 성분을 없앤다.
 - ◆ 남는 전류를 보관, 전류량은 낮아진다.
 - ◆ 직류만 필요하고, 고주파 교류는 차단하는데 사용

4. Pull up 저항 / Pull down 저항

4.1 Floating 상태

- 디지털 Data
 - ◆ 1: VCC(5V, 3.3V, 2.5V 등), 0: GND(0V)
- Floating
 - ◆ IC(Integrated Circuit) Chip의 핀에 신호가 연결되지 않았을 경우
 - > 오동작이 가능
 - ◆ 핀이 회로 연결에 사용시
 - ▶ Floating은 Tristate-Buffer에 의하여 만들어 짐.

3(Tri)-State Buffer

- Signals : Input, Output, Control
- Output with 3-state according to input and control signals.
 - > 0, 1, Z(High Impedance)
- Types of Tri-State Buffer
 - Control and output with Inverter.

4.2 Pull up 저항

- Pull up 저항
 - ◆ Chip의 앞 소자에서 Floating일 경우, VCC 상태를 유지 필요 시
 - ◆ 이 용도로 사용된 저항 : Pull up 저항
- Chip의 앞 소자에서
 - ◆ VCC 출력하면, Chip의 입력은 '1'
 - ◆ GND 출력하면, Chip의 입력은 '0'

앞 소자가 'Z'(High Impedance) 상태일 때, 뒤 소자에게 '1'(High) 신호를 주는데 사용된 저항

사용방법 🗲

- Pull up 저항 값 선정
 - ◈ 입력 핀의 요구 전류량에 따름
 - ➤ 5V, 1~2mA이면
 - > I=V/R에서, R=2.5k~5kΩ
 - ◈ 주로 1.2k, 3.3k, 4.7k, 10kΩ 등을 사용

(a)

(b)

4.3 Pull down 저항

- Pull down 저 항
 - ◆ Chip의 앞 소자에서 Floating일 경우, GND 상태를 유지 필요 시
 - ◆ 이 용도로 사용된 저항 : Pull down 저항
- Chip의 앞 소자에서
 - ◆ VCC 출력하면, Chip의 입력은 '1'
 - ◆ GND 출력하면, Chip의 입력은 '0'

앞 소자가 'Z'(High Impedance) 상태일 때, 뒤 소자에게 '0'(Low) 신호를 주는데 사용된 저항

사용방법 →

- Pull down 저항 값 선정
 - ◈ 핀의 요구에 따름
 - ◆ 주로 100Ω으로 50~150Ω 등을 사용

(a)

(b)

5. Inductance

■ 용어

- ◆ Impeadance : 교류전류의 흐름을 방해하는 요소. Resistance 와 Reactance가 있음.
- ◆ Reactance: 교류전압을 가했을 때만 전류를 방해하는 요소
- ♦ Inductance: 유도성 Reactance
- ◆ Capacitance: 용량성 Reactance

$$\dot{Z} = \dot{V}/\dot{I} = R + jX = R + j(\omega L - 1/\omega C)$$

$$|\dot{Z}| = \sqrt{R^2 + X^2} = \sqrt{R^2 + (\omega L - 1/\omega C)^2} [\Omega]$$

$$w = 2 \times 3.14 \times f$$

Inductor

- Inductance (출처: http://deneb21.tistory.com/371)
 - 회로에 흐르는 전류의 변화에 의해 전자기유도로 생기는 역 기전력의 비율을 나타내는 양. 단위는 H(Henry)
- (1) Air core inductor
 - 코일의 중심에 아무것도 없거나 플라스틱, 세라믹 등의 자성 을 가지지 않는 물체를 이용한 인덕터 종류
 - RF 회로등에 쓰이는 공심코일 인덕터, RF 수신 동조역할에 쓰이는 스파이더웹 인덕터, 도넛 형태로 시작과 끝 부분이 마 주보게 솔레노이드 권선을 하여 인덕턴스가 높고 효율이 좋 은 트로이달 인덕터 등

공심코일 인덕터

스파이더웹인덕터 트로이달 인덕터

(2) Ferromagnetic Core Inductor

◆ 코일의 중심에 철이나 페라이트 등의 강자성체를 이용하여 인덕턴스를 높인 인덕터. 광대역 회로에 주<u>로 사용되며, 전자</u>

부품에 많이 이용됨.

•

(3) Variable Inductor

- ◆ 가변적으로 값을 변경시킬 수 있는 인덕터. 도선 사이의 거리 혹은 인덕터와 주위에 형성된 금속판 사이의 거리를 변화시 킴으로써 값의 변경이 가능. 라디오 등에 쓰여서 동조 역할을 하기도 함.
- ◆ 네모난 모양의 옛날 라디오, TV 등에 많이 쓰였던 가변 인덕 터는 드라이버로 가운데 부분을 돌려주면 값이 변한다.

기호

표준 Inductor 값 표

Capacitor and inductor specifications

TABLE 6.1 Standard capacitor values

pF	pF	pF	pF	μF	μF	μF	μF	μF	μF	μF
1	10	100	1000	0.010	0.10	1.0	10	100	1000	10,000
	12	120	1200	0.012	0.12	1.2	12	120	1200	12,000
1.5	15	150	1500	0.015	0.15	1.5	15	150	1500	15,000
	18	180	1800	0.018	0.18	1.8	18	180	1800	18,000
2	20	200	2000	0.020	0.20	2.0	20	200	2000	20,000
	22	220	2200	0.022	0.22	2.2	22	220	2200	22,000
	27	270	2700	0.027	0.27	2.7	27	270	2700	27,000
3	33	330	3300	0.033	0.33	3-3	33	330	3300	33,000
4	39	390	3900	0.039	0.39	3.9	39	390	3900	39,000
5	47	470	4700	0.047	0.47	4.7	47	470	4700	47,000
6	51	510	5100	0.051	0.51	5.1	51	510	5100	51,000
7	56	560	5600	0.056	0.56	5.6	56	560	5600	56,000
8	68	680	6800	0.068	0.68	6.8	68	680	6800	68,000
9	82	820	8200	0.082	0.82	8.2	82	820	8200	82,000

Standard tolerance values are; 5%,; 10%, and; 20%.

24

TABLE 6.2 Standard inductor values

nH	nH	nH	μН	μН	μН	mH	mH	mH
1	10	100	1.0	10	100	1.0	10	100
1.2	12	120	1.2	12	120	1.2	12	
1.5	15	150	1.5	15	150	1.5	15	
1.8	18	180	1.8	18	180	1.8	18	
2	20	200	2.0	20	200	2.0	20	
2.2	22	220	2.2	22	220	2.2	22	
2.7	27	270	2.7	27	270	2.7	27	
3	33	330	3.3	33	330	3.3	33	
4	39	390	3.9	39	390	3.9	39	
5	47	470	4.7	47	470	4.7	47	
6	51	510	5.1	51	510	5.1	51	
7	56	560	5.6	56	560	5.6	56	
8	68	680	6.8	68	680	6.8	68	
9	82	820	8.2	82	820	8.2	82	

Tolerances are typically 5% or 10% of the specified value.

dongguk UNIVERSITY **EMLAB**