Name: Vidhi Shah Reg. No: 21BCE1297 Date: 14/03/22 Batch: L3-L4

Experiment 4: Phase and Group velocity of EM waves

Tools required:

http://demonstrations.wolfram.com/GroupAndPhaseVelocity/

Objective:

To understand the nature of EM waves travelling in a medium with the help of Phase and Group velocities.

Observation table:

Name: Vidhi Shah Reg. No: 21BCE1297 Date: 14/03/22 Batch: L3-L4

S. No	Δω	Δk	Wave pattern of the resultant waves	$\mathbf{V}_{\mathbf{g}}$
6	2.75	0.6	v _g = 4.58	4.58
7	3	0.1	$v_g = 30.$	30
8	3	0.4	v _g = 7.5	7.5
9	-0.92	0.24	$v_g = -3.83$	-3.83
10	-2.45	0.38	$v_g = -6.45$	-6.45

1. Are the wave patterns for various values of $\Delta \omega$ and Δk same? If not, why?

Reg. No: 21BCE1297

No, the wave patterns for various values of $\Delta\omega$ and Δk are not same even if V_g is same. The resultant wave formed by the superposition of two waves is dependent on the values of $\Delta\omega$ and Δk . The resultant wave of the two waves is:

$$2\cos\left(\frac{\Delta k}{2}z-\frac{\Delta\omega}{2}t\right)\cos\left(\overline{k}\cdot z-\overline{\omega}\cdot t\right)$$

2. Comment on the Phase velocity (Vp) of the waves for increased values of $\Delta\omega$ and

Phase Velocity (V_p) remains the same for a wave in a given medium. It does not get affected by the increased values of $\Delta\omega$ and Δk .

3. When do we see V_p and V_g being the same?

If the phase velocity does not depend on the wavelength of the propagating wave,

 $V_g = V_p$. This happens in non-dispersive media.

4. Draw a typical dispersion relation curve (ω -k curve) for $V_p = V_g$ and $V_p \neq V_g$ cases.

 $V_p = V_g - No dispersion$

 $V_p \neq V_g$ – Anomalous Dispersion and Normal Dispersion

