OBJECTIFS 👌

- Connaître l'unité centimètre cube.
- Comparer des volumes.
- Déterminer un volume.
- Effectuer des calculs sur des horaires et des durées.
- Résoudre des problèmes impliquant des horaires et des durées.
- Convertir des durées.

Solides

À RETENIR 99

Définitions

- Un **solide** est une forme géométrique à trois dimensions.
- Un patron d'un solide est une figure en grandeur réelle permettant de construire ce solide après découpage et pliage.

1. Polyèdres

À RETENIR 👀

Définitions

- Un **polyèdre** est un solide dont les **faces** sont des polygones.
- Les côtés de ces polygones sont appelés arêtes, ils sont délimités par des points appelés sommets.

EXERCICE 1

- 2. Citer trois solides qui ne sont pas des polyèdres.

Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/espace-temps/#correction-1.

2. Représenter un solide

À RETENIR 99

Méthode

Pour représenter un solide dans un plan, on peut utiliser la **perspective cavalière**, dans laquelle les arêtes parallèles et de même longueur sont représentées par des segments parallèles et de même longueur, et les arêtes cachées sont représentées en pointillés.

EXEMPLE 🔋

Dans la partie précédente, on a représenté un polyèdre en perspective cavalière.

3. Solides usuels

À RETENIR 99

Définition

Un cube est un polyèdre dont les faces sont des carrés.

À RETENIR 99

Définition

Un pavé droit est un polyèdre dont les faces sont des rectangles.

À RETENIR 99

Définition

Un **prisme droit** est un polyèdre qui a deux faces superposables et parallèles, et dont les autres faces sont des rectangles.

EXERCICE 2

Réaliser deux patrons différents d'un pavé droit de longueur 2 cm, de largeur 1 cm, et de hauteur 1 cm.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/espace-temps/#correction-2.

EXERCICE 3 🛮
Un cube est-il un pavé droit? Justifier

◆ Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/espace-temps/#correction-3.

4. Volumes

À RETENIR 99

Définition

Le **volume** est une grandeur mesurant la place qu'un solide prend dans l'espace. L'unité de référence est le **mètre cube**, noté m³ mais en classe de Sixième, nous utiliserons le **centimètre cube**, noté cm³. Il s'agit du volume d'un cube d'un centimètre d'arête.

EXER		
	JICE 4	1

1. Comb	oien de petits cubes composent le grand cube ci-contre?	
	onsidère que les arêtes de ces petits cubes mesurent 1 cm. Quel est le ne du grand cube?	
• • • • •		

Ш

Durées

1. Conversion

À RETENIR 👀

Définition

Le temps écoulé entre deux instants s'appelle une **durée**. L'unité de référence pour mesurer une durée est la seconde, mais on en a d'autres :

Multiples de l'unité			Unité
Jour	Heure	Minute	Seconde
1 j = 24 h	1 h = 60 min	1 min = 60 sec	1 sec

Il est plus compliqué de travailler avec des unités de temps qu'avec des unités de longueur ou de masse.

EXERCICE 5
1. Combien y a-t-il de minutes dans 5 h 27 min?
1. Combienty at the dimitates dails of 121 mm.
2. Combien y a-t-il de secondes dans 2 h 47 min 53 sec?
3. Combien y a-t-il d'heures, de minutes et secondes dans 41 000 sec?
0. 00

2. Écritures décimales et fractionnaires

À RETENIR 99

Méthode

Pour exprimer des durées, on peut utiliser une écriture décimale ou fractionnaire.

EXERCICE 6

Dans chacun des cas ci-dessous, compléter par la durée manquante.

2.
$$0.75 \text{ h} = \dots$$
 min **4.** $\frac{1}{10} \text{ h} = \dots$ min

√Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/espace-temps/#correction-6.

3. Calcul avec des durées

À RETENIR 99

Méthode

Pour additionner (ou soustraire) des durées, on peut traiter d'abord les jours, puis les heures, puis les minutes, puis les secondes.

EXERCICE 7

Compléter.

1. $16 \text{ h} 30 \text{ min} + 2 \text{ h} 15 \text{ min} = \dots$

2. 18 h 20 min - 3 h 25 min =

