Løs
$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, hvor u(x, 0) = 6e^{-3x}$$

Der prøves her at at løse denne med seperation af variable hvilket betyder vores resultat bliver af formen

Dette betyder også at

Dette indsættes så ind i vores ligning:

$$\frac{dX}{dx}$$
 ·7 = 2° × « $\frac{dT}{dt}$ + × t

Her er u også subsitureret ud med u=XT

$$\frac{dX}{dx} \circ \frac{1}{X} = 2 \cdot \frac{1}{1} \frac{dT}{dt} + 1$$

Her er variablerne nu sepereret og det kan nu sættes lig med 1 konstant

$$T' = T_{\bullet} \left(\frac{\kappa - 1}{2} \right)$$

Vi har her 2 differentialligninger som kan løses individuelt

Den første:

Her kan man at løsningen er:

Den næste

$$T' = T_{o}\left(\frac{|\kappa-1|}{2}\right)$$

Her kan en løsning ses ligesom før

Vi har nu fra tidligere at løsningen ville være produktet af disse 2 funktioner

Vi kalder nu (,.(¿for (

Vi kan nu undersøge det nærmere ved at kigge på startbetingelsen

Vi ser her at

Vi kan nu skrive løsningen op

2–13 VERIFICATION OF SOLUTIONS

Verifiy (by substitution) that the given function is a solution of the PDE. Sketch or graph the solution as a surface in space.

2–5 Wave Equation (1) with suitable
$$c$$

2.
$$u = x^2 + t^2$$

Vi har her Wave equation (1):

$$\frac{\partial^2 U}{\partial t^2} = \frac{2}{2} \frac{\partial^2 U}{\partial x^2}$$

Her finder vi først den dobbelt afledte i forhold til x og t

Dette kan så indsættes

Det er derfor en løsning når c=1

5–13 DEFLECTION OF THE STRING

Find u(x, t) for the string of length L = 1 and $c^2 = 1$ when the initial velocity is zero and the initial deflection with small k (say, 0.01) is as follows. Sketch or graph u(x, t) as in Fig. 291 in the text.

5. $k \sin 3\pi x$

Vi har fra bogen at en streng som er spændt ud med længden L og som ikke har nogen start hastighed, men har en start afvgielse kan findes som:

$$V(x^{\prime}x) = \underbrace{V_{\mathbf{x}}(x-C_{+})}_{\mathbf{x}} + \underbrace{V_{\mathbf{x}}(x+C_{+})}_{\mathbf{x}}$$

Hvor $\vec{f}(x)$ er

$$f(x) = \sum_{h=1}^{\infty} \beta_h \cdot Sih \left(\frac{n\pi}{L} \times\right)$$

Hvor vi igen har at:

$$B_n = \frac{Z}{L} \int_0^L f(x) \cdot Sin(\frac{n\pi x}{L}) dx$$

Hvor L er længden

Vi skal derfor først finde B_n

$$B_{n} = Z \int_{(x,y)}^{(x,y)} (3\pi x) e^{SiN} (n\pi x) dy$$

Vi har her at:

$$Sin(3\pi \times) \cdot Sin(m\pi) = (02) \cdot (2\pi \times 10) \cdot$$

$$\beta_{n} = Z k \cdot \int_{0}^{\infty} \frac{\cos(\pi x \cdot (3 + n)) - \cos(\pi x \cdot (3 + n))}{Z} dx$$

$$\beta_{n} = K \cdot \int_{0}^{\infty} \cos(\pi x \cdot (3-n)) - \cos(\pi x \cdot (3+n)) dx$$

$$B_{n} = \frac{k \cdot \left(\frac{5 i n (\pi x \cdot (3-n))}{5 i n (\pi x \cdot (3+n))} \right) \frac{5 i n (\pi x \cdot (3+n))}{3 + n}$$

$$B_{n} = \frac{k}{h} \cdot \left(\frac{5! n (\pi \cdot (3+n))}{3-n} - \frac{5! n (\pi \cdot (3+n))}{3+n} - \frac{5! n (\pi \cdot (3+n))}{3-n} - \frac{5! n (\pi \cdot (3+n))}{3+n} \right)$$

Her eftersom at sinus til pi ganget med et helt tal altid giver 0 og n er et helt tal giver dette altid 0

$$\beta_n \leq 0$$

Men eftersom at der står 3-n gælder det ikke for n=3 og det skal derfor undersøges

$$B = 7$$

$$A = 5 \text{ in } (3 \text{ tr} \times) = 5 \text{ in } (3 \text{ tr} \times) = 6$$

$$B_3 = 2 k \cdot \int_0^1 1 - (05(6\pi x)) dx$$

$$B_2 = 2k \cdot \left(\times \frac{2}{2} - \frac{2\pi}{12\pi} \right)$$

$$p_{g} = \frac{7}{2} \left(\frac{1}{2\pi} + \frac{0.05(0)}{1.2\pi} \right)$$

$$b_3 = 2K'\left(\frac{1}{2} - \frac{1}{1211} + \frac{1}{1211}\right)$$

Vi har nu at alle B_n er 0, bortset fra B_ n hvilket også betyder:

Ud fra dette har vi så også vores funktion som kommer til at hede:

$$V(x,t) = \frac{F''(x-c+) + F''(x+c+)}{2}$$

$$V(x,+) = \frac{1}{2} \left(\sin(3\pi(x-ct)) + 5 \sin(3\pi(x+ct)) \right)$$

Vi kan så her indsætte k til at være 0,01 og c=1

$$\frac{V(X,t)-5in(3\pi(x-t))+5in(3\pi(x+t))}{200}$$

Den kan her ses tegnet med forskellige værdier for t

$$b(x) = Hvis\left(0 \le x \le 1, \frac{\sin(3\pi(x)) + \sin(3\pi(x))}{20}\right)$$

Vi har nu denne som vi kan beskrive som:

$$C(x) = \begin{cases} 0.7 \times 1 & 0.5 \times 1 \\ 0.7 - 0.7 \times 1 & 0.5 \times 1 \end{cases}$$

Ligesom før skal vi først finde B_n

$$B_{n} = Z \int_{0}^{0} \left(\int_{0}^{\infty} \left(\int_{0}^$$

Vi kigger her nærmere på det ene integral

Det integral er løst utallige gange i tidligere opgave så svaret skrives bare op her

bare op her
$$\int x^{n} S_{1} N(xx) A = \int x^{n} (xx) - xx \cdot (x) (xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} (xx) - xx \cdot (x) (xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} (xx) - xx \cdot (x) (xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} (xx) - xx \cdot (x) (xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} (xx) - xx \cdot (x) (xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} (xx) - xx \cdot (x) (xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S_{1} N(xx) A = \int x^{n} S_{1} N(xx)$$

$$\int x^{n} S$$

$$-\frac{\cos(n\pi x)}{\sin(n\pi x)} - \frac{\sin(n\pi x) - n\pi x \cdot \cos(n\pi x)}{n^2 \pi^2}$$

$$-\frac{\cos(n\pi)}{n\pi} + \frac{\cos(n.5n\pi)}{n\pi}$$

$$B_{N} = 0.9 \cdot \left(\frac{\sin(0.5 \cdot n\pi)}{\ln^{2} \pi^{2}} \right) = \frac{0.9 \cdot \left(\frac{\sin(0.5 \cdot n\pi)}{\ln \pi} \right)}{\ln \pi}$$

$$= \frac{\cos(n\pi)}{\ln \pi} + \frac{\cos(0.5 \pi n)}{\ln \pi} = \frac{0.5 \cdot \cos(0.5 n\pi)}{\ln \pi}$$

$$= \frac{\cos(n\pi)}{\ln \pi} + \frac{\sin(0.5 \pi n)}{\ln^{2} \pi^{2}} = \frac{0.5 \cdot \cos(0.5 n\pi)}{\ln \pi}$$

Vi kan nu opskrive løsningen:

Vi kan nu tegne dette:

