CONFIGURACIÓN DE REFERENCIA

Parámetro	Valor
Capacidad	256 bytes
Correspondencia	Directa
Bloque o línea	16 bytes
Política de escritura	Directa (write througth) con ubicación (write allocate)

1. Teniendo en cuenta las características anteriores, indique cuántas líneas hay en la memoria cache y cuántas líneas ocupa cada vector.

Dentro de la memoria cache encontramos 16 líneas. El vector A contiene 8 valores que ocupan 4 bytes por cada valor con lo que ocupa 2 líneas. El vector B ocupa 1 línea

2. Indique cuál será la interpretación que esta memoria cache hará de las direcciones que reciba (campos de etiqueta, línea y desplazamiento).

El campo desplazamiento son 4 bits, el campo conjunto son 16 bits y el campo etiqueta son 12 bits

3. Indique en qué líneas de la cache se ubican los vectores A y B.

Los vectores se encuentran originalmente en las mismas líneas

4. Ejecutar el programa original paso a paso y rellenar la siguiente tabla:

Accesos al segmento de datos	8 accesos
Aciertos	1 acierto
Fallos	7 fallos
Tasa de aciertos (H)	0.125

- 5. Cuál ha sido el acceso que ha provocado el único acierto en la memoria cache de datos?
- 6. ► ¿Por qué se ha producido una tasa tan baja de aciertos?

NOTA. Las siguientes alternativas de configuración se hacen siempre SOBRE LA CONFIGURACIÓN INICIAL, es decir NO SE HA DE COMBINAR ENTRE SI.

Primera alternativa: cambio en la política de escritura

7. Configure la memoria cache de datos con una política de escritura directa (*write through*) sin ubicación (*no write allocate*). Ejecute ahora el *programa original* mediante la opción F10 (paso a paso) a fin de analizar su comportamiento. Complete la siguiente tabla:

Accesos al segmento de datos	
Aciertos	
Fallos	
Tasa de aciertos (H)	

Segunda alternativa: cambio en la ubicación de los vectores

- 8. ► Cambie la directiva .data 0x10001000 de forma que el vector B se ubique en las líneas 4 y 5. Cambiada
- 9. È Ejecute el programa con el cambio anterior (recuerde que debe mantener la política de escritura **con ubicación**) y complete la siguiente tabla:

Accesos al segmento de datos	
Aciertos	
Fallos	
Tasa de aciertos (H)	

Tercera alternativa: aumento de la asociatividad de la cache

Parámetro	Valor
Capacidad	256 bytes
Correspondencia	Asociativa por conjuntos
Número de vías	2
Bloque o línea	16 bytes
Política de escritura	Directa con ubicación
Política de reemplazo	LRU

10. ► Sin utilizar el simulador obtenga los campos de etiqueta, conjunto y desplazamiento.

El campo desplazamiento son 4 bits, el campo conjunto son 3 bits y el campo etiqueta son 25 bits

- 11. ► Indique en qué conjuntos se ubicarán ahora los vectores A y B del *programa original*.
- 12. ► Cargue en el simulador y ejecute el *programa original* con la nueva configuración de la cache y complete la siguiente tabla:

Accesos al segmento de datos	
Aciertos	
Fallos	
Tasa de aciertos (H)	