Data Representation

Topics:

Representing Information
The Binary Numbering System

Prof. Dr. Slim Abdennadher

13.12.2007

External Representation of Information

- When we communicate with each other, we need to represent the information in an understandable notation, e.g.
 - Digits to represent numbers
 - Letters to represent text
- Same applies when we communicate with a computer:
 - Enter text and numbers on the keyboard
 - Computers displays text, images and numbers on the screen
- This is an **External Representation**.
- How do computers store the information "internally"?

Computers work in Binary

Computers are not only powered by electricity they **compute** with electricity

- They shift voltage pulses around internally
- Circuits allow for electricity to flow or to be blocked depending on the type of circuit. Computer circuit is made out of **transistors**. Transistors have only two states, **ON** and **OFF**.
- ON can be interpreted as 1, while OFF can be interpreted as 0.

Internal Representation of Information

- Computer can represent 0's and 1's. It uses **binary system** for value representation: digit (0/1) sequences
- We need to represent considerably more than that:
 - **Numbers**: 1420, 12.456,-33
 - Characters: letters, symbols
 - Visual Data
 - Audio Data
- We need to do it with only 0's and 1's
- Mapping to binary requires coding: binary coding schemes

Representation of Numbers: Decimal Review

- People generally represent numbers in a decimal system (base 10).
- Decimal numbers consist of digits from 0 to 9, each with a weight.
 - 1 5 3 digits
 100 10 1 weights
- The weights are all powers of the base, which is 10.
- To find the value of a number, multiply each digit by its weight and sum the products.

$$1 \times 10^2 + 5 \times 10^1 + 3 \times 10^0 = 153$$

Binary System

- Binary is a base-2 number system.

 Numbers consist of only the digits 0 and 1.
- Example: 101011₂

• Decimal value:

$$101011_{2} = 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= 32 + 0 + 8 + 0 + 2 + 1$$

$$= 43_{10}$$

• In general, a base-n number system encodes integers as follows

$$(x_i x_{i-1} \dots x_1 x_0)_n = x_i \times n^i + x_{i-1} \times n^{i-1} + \dots + x_1 \times n^1 + x_0 \times n^0$$

Converting form Binary to Decimal

• Problem: Convert the binary number (1101101)₂ to a decimal number

• Solution:

- Write down the binary number
- Write down the weight (power of 2) corresponding to each position in the binary number
- Multiply each digit by its weight
- Add all products

Weights	2^{6}	2^5	2^4	2^3	2^2	2^1	2^0
	64	32	16	8	4	2	1
Binary number	1	1	0	1	1	0	1

Conversion:

$$1 \times 64 + 1 \times 32 + 1 \times 8 + 1 \times 4 + 1 \times 1 = 109$$

Converting form any system to Decimal

• Problem: Convert the number 1315₆ to a decimal number

• Solution:

Weights	6^3	6^2	6^1	6^{0}
	216	36	6	1
Number	1	3	1	5

Conversion:

$$1 \times 216 + 3 \times 36 + 1 \times 6 + 5 \times 1 = 335$$

Octal and Hexadecimal

- For ease of **representation** some computers display their binary number representation in base 8 (octal) or base 16 (hexadecimal).
- Hexadecimal (Base-16) requires inventing a few new digits.

Decimal	Binary	Octal/Hexa
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	G
6	0110	6
7	0111	7

Decimal	Binary	Hexa
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	\mathbf{C}
13	1101	D
14	1110	\mathbf{E}
15	1111	${f F}$

Binary and Octal

• Every octal digit can be converted to exactly three binary digits (8 is 2^3).

$$3_8 = 011_2$$
 $7_8 = 111_2$
 $37_8 = 011 \ 111_2$

- Converting from binary to octal: Partition the binary number into groups of three bits, starting with the rightmost bit. Then replace each three-bit group by the corresponding octal digit.
- Example: 001011110₂

```
001 \quad 011 \quad 110 \quad = 136_8
1 \quad 3 \quad 6
```

Binary and Hexadecimal

• Since 16 is 2^4 , every hexadecimal digit can be converted to exactly four binary digits.

$$C_{16} = 1100_2$$
 $7_{16} = 0111_2$
 $C_{16} = 1100 \ 0111_2$

- Converting from binary to hexadecimal: Partition the binary number into groups of four bits, starting with the rightmost bit. Then replace each four-bit group by the corresponding hex digit.
- Example: 1101010010110110₂

Converting from Decimal to Binary: Successive Division

Algorithm:

- Divide by the base number, in this case 2, and write down the remainder
- Repeat division and writing down the remainder until the quotient equals 0
- Read the binary number by reading the remainders from bottom to top.

Example 1: Convert 43 to binary system

Division	Quotient	Remainder
43/2	21	1
21/2	10	1
10/2	5	0
5/2	2	1
2/2	1	0
1/2	0	1

The binary representation of 43 is 101011₂

Converting from Decimal to Binary

Example 2: Convert 26 to binary system

Division	Quotient	Remainder
26/2	13	0
13/2	6	1
6/2	3	0
3/2	1	1
1/2	0	1

The binary representation of 26 is 11010_2

Converting from Decimal to Hexadecimal

- Now divide by 16
- Example: Convert 43 to hexadecimal:

```
Division Quotient Remainder 43/16 2 11 2/16 0 2
```

The hexadecimal representation of 43 is $2B_{16}$

• Convert 26 to hexadecimal:

```
Division Quotient Remainder 26/16 1 10 1/16 0 1
```

The hexadecimal representation of 26 is $1A_{16}$

Converting from Base to Base

Problem: Given a number N1 in Base b_1 . Convert N1 to a number N2 in base b_2

Solution:

- Convert N1 to the number N in base 10
- Convert N to the number N2 in base b_2

Example 1: Convert 10101₂ to a number in base 8

- $10101_2 = 21_{10}$: multiply by weights
- $21_{10} = 25_8$: successive division

Division Quotient Remainder

21/8 2 5

2/8 0 2

• Thus $10101_2 = 25_8$

Converting from Base to Base

Example 2: Convert the number 1315₆ to a number in base 11

Solution:

- $1315_6 = 335_{10}$: multiply by weights
- $335_{10} = 285_{11}$: successive division

```
      Division
      Quotient
      Remainder

      335/11
      30
      5

      30/11
      2
      8

      2/11
      0
      2
```

• Thus $1315_6 = 285_{11}$

Decimal Floating Points

- A floating point number is a number that can contain a fractional part, e.g. 30.875.
- In the decimal system, digits appearing in the right of the floating point represent a value between zero and nine, times an increasing negative power of ten.
- For example the value 30.875 is represented as follows:

$$3 \times 10^{1} + 0 \times 10^{0} + 8 \times 10^{-1} + 7 \times 10^{-2} + 5 \times 10^{-3}$$

• Similarly, the value 10.110011_2 is represented as follows:

$$1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 1 \times 2^{-6}$$

Converting Decimal Floating Points to Binary

- Integer part: successive division
- Fraction Part: Multiply decimal fraction by 2 and collect resulting integers from top to bottom

Example 1: Convert 30.875

 $30 = 11110_2$ (successive division)

$$0.875 \times 2 = 1.750$$

 $0.75 \times 2 = 1.5$
 $0.5 \times 2 = 1.0$

Therefore 30.875 = 11110.111

Converting Decimal Floating Points to Binary

Example 2: Convert 43.828125

•
$$43 = 101011_2$$

$$0.828125 \times 2 = 1.65625$$
 $0.65625 \times 2 = 1.3125$
 $0.3125 \times 2 = 0.625$
 $0.625 \times 2 = 1.25$
 $0.25 \times 2 = 0.5$
 $0.5 \times 2 = 1.0$

Therefore 43.828125 = 101011.110101

Connection to the World of Hardware

- Internally, computers represent all information using the binary number system
- Why? Electronic devices that are based on only two easily distinguishable states are **cheaper** and **more reliable** than devices based on more than two states.
- It does not matter if the two states are 0 and 1, or "off" and "on", or "closed" and "open" or "low" and "high", or whatever.
- All that matters is that the two states be **distinguishable** and **stable**.

Summary

- Representing Information
 - External vs. Internal representation
- Computers represent information internally as binary numbers
- We saw how to convert numbers from:
 - Decimal to any system of base N
 - System of base N to decimal
 - System of base N1 to system of base N2
- Converting a floating point number to binary