

Quantifying Uncertainty

NOTICE

Presentation slides will be available for download along with the recording of this review session.

You are free to take pictures regardless if you'd like.

DISCLAIMER

I have tried to pull all information from the slides, the textbook, and other authorized resources, but I cannot guarantee the veracity of any information in the slides hereafter.

See presentation notes for sources

EDITION DIFFERENCES

- Chapter 13 in 3rd edition is now chapter 12 in 4th edition.
- I will continue to use 4th edition pgs.
- The chapter we're covering is "Quantifying Uncertainty."

OUTLINE

- Uncertainty
- Probability
- Syntax and Semantics
- Inference

When we don't know everything

- **Uncertainty** in driving to school:
 - Traffic

- **Uncertainty** in driving to school:
 - Traffic
 - Flat/deflated tire

- **Uncertainty** in driving to school:
 - Traffic
 - Flat/deflated tire
 - FIT Parking

- **Uncertainty** in driving to school:
 - Traffic
 - Flat/deflated tire
 - FIT Parking
 - When your car makes a weird noise and you're pretty sure it's fine but you let it run for a while to make sure there's no popping or burning sounds, but then the car shudders, so like what is that supposed to mean? I'm a CS major, not a mechanic for heaven's sake! I don't

INTO THE UNKNOWN (ELSA WOULD BE PROUD)

Default/Nonmonotonic Logic

Fudge Factors

 $Sprinkler \mapsto_{0.99} WetGrass$ $WetGrass \mapsto_{0.7} Rain$

THE UTILITY OF PROBABILITY

- Probabilistic assertions summarize effects of **laziness** and **ignorance**.
- In **Bayesian** or **subjective** probability, probabilities relate propositions to one's own state of knowledge.
 - This means probabilities change with new evidence.

PARKING WITH BAYES

OpenSpot = The event where there's an open spot
between the Olin buildings and Clemente/PDH

P(OpenSpot | no events, 9:50 a.m.) = 0.05

Driving into campus

 $P(OpenSpot|career fair/senior design/other event, 9:50 a.m.) = 10^{-6}$

BUT THAT'S JUST A THEORY (A DECISION THEORY)

BATTLEMAP

Time of Arrival	Probability of Success
9:50	0.04
8:50	0.7
6:00	0.95
2:00	0.9999

Utility Theory = Preferences
Decision Theory = Utility
Theory + Probability Theory

PROBABILITY

They never want you to tell them the odds, but what about the evens?

INTRO TO SMART GAMBLING PROBABILITY

- Sample space = Ω
- Sample point = $\omega \in \Omega$
- Probability space/model = $P(\omega)$ exists for all $\omega \in \Omega$
 - $0 \le P(\omega) \le 1$
 - $\sum_{\omega} P(\omega) = 1$
- An **event** = subset of Ω
 - For event A
 - $P(A) = \sum_{\{\omega \in A\}} P(\omega)$

RANDOM VARIABLES

- Random variable = function
 - Domain: sample points
 - Range: any (reals, booleans, etc.)
- P induces a probability
 distribution for any r.v. X:
 - $P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$

$$Odd([1]) = true$$

$$Odd(2) = false$$

$$P(Odd = true) = P(1) + P(3) + P(5) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

PROPOSITIONS

- Think of a proposition as the event where the proposition is true.
- Given Boolean random variables *GoodSpot* and *OnTime*:
 - Event goodspot = set of days (sample points) where I parked in a spot I wanted $(GoodSpot(\omega) = true)$
 - Event $\neg goodspot = set of points where <math>GoodSpot(\omega) = false$
 - Event $goodspot \land ontime = set of all days where I parked in a spot I wanted and was on time for class.$
- Sample points defined by values of R.V.s
- With Boolean R.V.s, sample point = propositional logic expression
 - Ex. A = true, $B = false = a \land \neg b$

A NOTABLE IMPLICATION

•
$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

PROPOSITIONAL CATEGORIZATION (I JUST LIKE USING BIG WORDS)

Random Variable Type	Range	Example
Propositional/Boolean	true, false	 Cavity Range: true, false Proposition: Cavity = true Also Written as: cavity
Discrete	$< assignment(1), assignment(2), \\ assignment(n-1), assignment(n) >$	 Weather Range: < sunny, rain, cloudy, snow > Proposition: Weather = rain
Continuous (Bounded)	[x,y]	 CreditHours Range: [0, 18] Proposition: CreditHours = 13 Proposition: CreditHours ≥ 12
Continuous (Unbounded)	$[-\infty,\infty]$	$Temp$ • Range: $[-\infty, \infty]$ • Proposition: $Temp = 21.6$ • Proposition: $Temp < 22.0$

PRIOR PROBABILITIES PRESENTED

- Prior or unconditional probabilities of propositions
 - Probabilities **prior** to evidence being **given (|)**.
 - Probabilities without conditions
- Examples:
 - P(Cavity = true) = 0.1
 - P(Weather = sunny) = 0.72

PROBABILITY DISTRIBUTION

- **Probability distribution,** probability for each assignment of an R.V.
 - Ex. P(Weather) = < 0.72, 0.1, 0.08, 0.2 >
 - Ex. P(Cavity) = < 0.1,0.9 >
- These probabilities are normalized to 1.

NORMALIZATION

- Normalizing a set of probabilities = multiplying them to sum to 1
- Normalization constant α

•
$$\alpha$$
 < 0.12, 0.08 > = < 0.6, 0.4 >

•
$$\alpha = \frac{1}{\sum_{i} probability_{i}}$$

$$\bullet \ \frac{0.12}{0.12 + 0.08} = 0.6$$

 Normalization is relative to the set of sample points.

JOINT PROBABILITY DISTRIBUTION

- Joint probability distribution for a set of R.V.s gives every sample point by enumerating through all possible assignments of the R.V.s
- Syntax: P(Weather, Cavity)

Weather =	sunny	rain	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

POP QUIZ!

How many values must be known to complete this table?

Weather =	sunny	rain	cloudy	snow
Cavity = true	?	?	?	?
Cavity = false	?	?	?	?

PROBABILITY FOR CONTINUOUS VARIABLES

Covered in chapter 13. pdf slides 13-14

ADDING CONDITIONS

- We have unconditional probabilities, let's talk conditional/posterior probabilities.
 - i.e. The probability of x given some proposition
- Ex. P(cavity|toothache) = 0.8
 - Given (|) that I have a toothache, update the probability of cavity

$$P(cavity) = 0.1 \xrightarrow{\text{New Evidence}} P(cavity|toothache) = 0.8$$

CONDITIONAL DISTRIBUTION

P(Cavity|Toothache)

	toothache	¬toothache
cavity	0.08	0.02
$\neg cavity$	0.02	0.88

ON THE TOPIC OF USELESSNESS

P(cavity|toothache, cavity) = 1

Valid, relevant, but useless

P(cavity|toothache, 49ersWin)

= P(cavity|toothache)

= 0.8

Valid, but irrelevant and useless

UNDER THE HOOD

• Defining conditional probability:

•
$$P(a|b) = \frac{P(a \land b)}{P(b)}$$
 if $P(b) \neq 0$

PRODUCT RULE FOR CONDITIONAL PROBABILITY (NOT CALCULUS, DON'T CRY YET)

$$P(a|b) = \frac{P(a \land b)}{P(b)}, \frac{P(a \land b)}{P(b)} * \frac{P(b)}{P(b)} = P(a \land b)$$

Therefore,

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

CHAIN RULE FOR CONDITIONAL PROBABILITY

(FOR REAL, STILL NOT CALCULUS)

Product Rule holds for whole distributions:

$$P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)$$

Chain rule derived from successive application:

$$P(A, B, C, D) = P(A|B, C, D)P(B, C, D)$$

$$= P(A|B, C, D)P(B|C, D)P(C, D)$$

$$= P(A|B, C, D)P(B|C, D)P(C|D)P(D)$$

$$= \prod_{i=1}^{n} P(X_i|X_1, ..., X_{i-1})$$

INFERENCE BY ENUMERATION

(OUR OLD FRIEND)

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	.108	.012	. 072	.008
$\neg cavity$.016	. 064	. 144	.576

alon: event

- For a proposition like toothache, P(toothache) is the sum of the probability of every atomic event where it's true.
 - $P(proposition) = \sum_{event:event \mid proposition} P(event)$
 - P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

INFERENCE BY ENUMERATION (OUR OLD FRIEND)

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	.108	.012	. 072	.008
$\neg cavity$.016	. 064	. 144	. 576

• $P(toothache \lor cavity) = 0.108 + 0.012 + 0.016 + 0.064 + 0.072 + 0.008 = 0.28$

INFERENCE BY ENUMERATION

(OUR OLD FRIEND)

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	.108	.012	. 072	. 008
¬cavity	.016	.064	. 144	. 576

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

NORMALIZATION RETURNS

	toothache		$\neg toothache$	
	catch ¬catch		catch	$\neg catch$
cavity	.108	.012	. 072	.008
$\neg cavity$.016	. 064	. 144	. 576

- Denominator like normalization constant α
- $P(Cavity \mid toothache) = \frac{1}{P(toothache)} * P(Cavity \land toothache)$ = $\alpha P(Cavity, toothache)$

$$= \alpha \sum_{catch} P(Cavity, toothache, Catch = catch)$$

 $= \alpha [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]$

$$= \alpha[< 0.108,0.016 > + < 0.012,0.064 >]$$

$$= \alpha < 0.12, 0.08 > = < 0.6, 0.4 >$$

EXPANDING CONDITIONAL PROBABILITIES

- Ω = all variables
- Q = query variables
- E = evidence variables
- H = hidden variables

•
$$H = \Omega - Q - E$$

• Start with probability:

$$P(Q|E=e)$$

- Apply product rule:
 - P(Q|E=e)= $\frac{1}{P(E=e)}P(Q \land E=e)$ = $\alpha P(Q, E=e)$
- Sum the hidden variables:
 - $\alpha \sum_{h} P(Q, E = e, H = h)$

THANK YOU

Joshua Sheldon

jsheldon2022@my.fit.edu