

Business Problem-Introduction

How To Give The Personalised Experience And Recommendations for a User Based on his/her Interests.

- Benefitting users to find their own interests
- Helping the product providers to deliver to the right user
- Providing items that are most relevant to the user
- Predicting the products that user might use
- Making mood or Time based recommendations for user

algorithms Involved

- A9 Algorithm (Specially for Amazon)
 - Netflix Recommendation Engine(NRE)
 - Content Based Filtering
 - TF-IDF
 - Classifiers(ANN, Naive Bayes)
 - Collaborative Filtering
 - Matrix Factorization
 - Nearest Neighbours

Multinomial VAE

MATHS BEHIND THE ALGORITHMS:

fractal

CONTENT BASED FILTERING:

Movie 1 (Adventure, Super Hero)

Movie 2 (Comedy, Adventure, Super Hero, Sci-Fi)

Movie 3 (Comedy, Super Hero)

Movie 4 (Comedy, Adventure, Sci-Fi)

Movie 5 (Super Hero)

Movie 6 (Comedy, Super Hero)

Movie 6 (Comedy, Super Hero)

Movie 6 (Comedy, Super Hero)

Movie 7 User Rating Matrix

	Comedy	Adventur e	Super Hero	Sci-Fi
Movie 1	0	1 1	1	0
Movie 2	1	1	1	1
Movie 3	1	0	1	0

Movie Genre Matrix

	Comed y	Adventure	Super Hero	Sci-Fi
User	18	12	20	10

User Profile

	Comedy	Adventure	Super Hero	Sci-Fi
User	0.3	0.2	0.33	0.16

Normalised User Profile

MATHS BEHIND THE ALGORITHMS:

	Comedy	Adventure	Super Hero	Sci-Fi
User	0.3	0.2	0.33	0.16

Normalised User Profile

	Comedy	Adventure	Super Hero	Sci-Fi
Movie 4	1	\subseteq 1	0	1
Movie 5	0	0	1	0
Movie 6	1	0	1	0

Movie Matrix

	11:-11	\	: []	Recomm	
	HIODAST	WALCHT	WIII DA	RECOMM	ended -
$\overline{}$	Indicat	VVCIGIT			CHOCO.

- Calculation of rating using streaming time,
 Times watched, Search history...etc
- Disadvantage of this is the genre which user has never watched will not be in their profile.

Movie 4	0.66
Movie 5	0.33
Movie 6	0.63

Final Recommendation Matrix

Т

Maths Behind The algorithms

COLLABORATIVE FILTERING:

- User based or Item based, identify the similarity/Correlation between them
- By using several distance and similarity measurements like Euclidean distance,
 Pearson Correlation, Cosine Similarity etc
- Consider the Table:

ď,	User 1	User 2	User 3
Active User	0.4	0.9	0.7

 These numbers represent the similarity weights or the proximity of the active user to the other users in the dataset

MATHS BEHIND THE ALGORITHMS:

	Movi e 1	Movi e 2	Movi e 3	Movi e 4	Movi e 5
User 1	9	6	8	4	
User 2	2	10	6	-	8
User 3	5	9	-	10	7
Activ e User	??	10	7	8	??

Users Rating Matrix

	Movie 1	Movie 5
Active User	8.9/2.0 = 4.45	12.1/1.6 = 7.5

Final Recommendation Matrix

		Movie 1	Movie 5	ı
Usei	- 1	9	1/-	ı
User	· 2	2	8	ı
User	. 3	5	7	

	Similarity Index
User 1	0.4
User 2	0.9
User 3	0.7

	Movie 1	Movie 5
User 1	3.6	-
User 2	1.8	7.2
User 3	3.5	4.9

Weighted Rating Matrix

	Movie 1	Movie 5	Weighted Sum
Users 1,2,3	3.6+1.8+3.5 = 8.9	-	0.9+0.7+0.4 = 2.0
Users 2,3	-	7.2+4.9 = 12.1	0.9+0.7 = 1.6

FACTORS FOR GOOD CUSTOMER EXPERIENCE

COLLABORATIVE RANKING

- Ranking movies based on prediction of what user wants to watch
- Aspirational star rating
- User-product matrix
- Multinomial VAE
 - Non-linear
 - Probabilistic approach

FACTORS FOR GOOD CUSTOMER EXPERIENCE

CASUAL LEARNING

- Who to send message to?
- Small perturbations to messaging policy
- Hidden confounders
- Keeps track of viewership by
 - Push notifications
 - Email reading
 - In-app notifications

FACTORS FOR GOOD CUSTOMER EXPERIENCE

THUMBNAIL IMAGE

- Contextual Bandit
- Personalised image
 - Based on user view history
 - Action
 - Romance
 - Comedy...etc
 - Based on region
 - Based on user's favourite actor/actress

SOFTWARES AND DATA ENGINEERING USED

- Helps to run queries on big data distributed fashion.
- Either use Hadoop Hive or Hadoop Pig.

- They are primary data stores.
- EV Cache is used by Netflix.

 Hermes is a inhouse Netflix software which delivers data to users in near real time.

 AWS is the software used by both Netflix and Amazon

DATA USED FOR THE SYSTEM

NETFLIX

User Behaviour Data (historical data)

- Shows paused, rewound, fast forwarded, repeated by user
- Series not completed or partially completed like a few episodes
- Time taken to complete series and reviews given
- Similar people likes and dislikes

Particular Movie/Show Details

- Movies/Shows similar to one another in ways of cast, genre, content, release year etc
- Movie Credentials like director, cast and crew
- Movies description

Contextual information

- Time and date user opened the Netflix
- User Profile information as Age, Gender, location, selected content.
- the devices user is watching Netflix on

DATA USED FOR THE SYSTEM

amazon

User Behaviour Data (historical data)

- Log on-site activity: clicks, searches, page, and item views, reviews, product buying and cart history
- Off-site activities: tracking clicks in emails, in mobile applications, and in their push notifications

Particular Item Details

- Item title, category, price, description and style
- Sales rank for a particular product
 - Item to Item
 relationship (such as
 for laptop we get bag
 and mouse)
- Product Images and CNN features

Contextual information

- User profile data like
 Age, Gender, Products
 they like (Such as
 chocolates, dresses etc)
- User's location, Seasonal and time data (In winter no one looks to buy cooler)
- Device used

 Referral URL

Modelling Problem

