Solve
$$\frac{dx}{dx} = xe^{x}$$
 $\frac{dy}{dx} = x \frac{dy}{dx}$
 $e^{y} dy = \int x dx$
 $e^{y} = \frac{1}{2}x^{2} + C$
 $\ln(e^{y}) = \ln(\frac{1}{2}x^{2} + C)$

Find the family of implicit solutions for $\frac{dx}{dx} = \frac{x}{2}$
 $\frac{dy}{dx} = \frac{x}{2} + \frac{x}{2} + C$
 $y^{2} = x^{2} + C$
 $y^{2} = x^{2} + C$

Solve
$$2xy + 10x + (x^2 - 4) \frac{dx}{dx} = 0$$

$$(x^2 - 4) \frac{dx}{dx} = x(-2y - 10)$$

$$\frac{1}{-2y - 10} \frac{dy}{dy} = \frac{x}{x^2 - 4} \frac{dx}{dx}$$

$$-\frac{1}{2} \frac{1}{y - 15} \frac{1}{y - 5} \frac{x}{x^2 - 4} \frac{dx}{dx}$$

$$-\frac{1}{2} \ln(|y + 5|) = \int \frac{x}{x^2 - 4} dx$$

$$V = x^2 - 4$$

$$\frac{1}{2} \ln(|y + 5|) = \int \frac{x}{x^2 - 4} dx$$

$$V = x^2 - 4$$

$$\frac{1}{2} \ln(|y + 5|) = \int \frac{1}{2} \ln(|x^2 - 4|) + C$$

$$-\frac{1}{2} \ln(|y + 5|) = \int \frac{1}{2} \ln(|x^2 - 4|) + C$$

Find the unique solution to
$$\frac{dy}{dx} = \frac{y^2}{x^2}$$
 where $y(1) = 1$
 $\frac{1}{7^2} dy = \frac{1}{x^2} dx$

$$\int y^{-2} dy = \int x^{-3} dx$$

$$-y^{-1} + C = \frac{1}{2}x^{-2} + C$$

$$\frac{1}{y} = \frac{1}{2x^{-2}} + C$$

$$y = \frac{1}{2}x^{-2} + C$$

$$\frac{1}{z} + C = 1$$

$$C = \frac{1}{z}$$

$$Y = \frac{1}{z^{2}x^{2}} + C$$

$$y = \frac{1}{\frac{1}{2A^{2}}} \frac{x^{2}}{2x^{2}}$$

$$y = \frac{2x^{2}}{1+x^{2}}$$
Find the unique solution to $\frac{dy}{dx} = \frac{2x+5ec^{2}(x)}{2y}$ with $y(0) = -6$

$$2y dy = 2x + 5ec^{2}(x) dx$$

$$2 \int y dy = \int 2x + 5ec^{2}(x) dx$$

$$2 \frac{1}{2}y^{2} + C = 2 \frac{1}{2}x^{2} + ton(x) + C$$

$$y^{2} = x^{2} + ton(x) + C$$

$$y = \frac{1}{\sqrt{x^{2} + ton(x)}} + ton(x) + C$$

$$y(0) = -6$$

$$-6 = \frac{1}{2}\sqrt{C^{2} + ton(x)} + 36$$

Find the unique sele	ution to	gk gå	= IN(D	Witl	h yl	1) = 7		-
$y dy = \frac{1}{x} \ln(x)$	дx							
Sydy=StINC	x) gx							-
U= ln(x)								
$dy = \frac{1}{x}$								
$dv = \frac{1}{x} dx$								-
$\int_{Y} dy = \int_{V} U du$								
¥ y 2 + C = \(\frac{1}{2} \overline{0}^2 \)	+C							-
$y^2 = n(x)^2 + C$								
Y= \[\((x)^2 + C								
y(1) = 7								
7=\(\(\lambda(\)\)^2 +C								
C=49								
Y= (\n(x)2 + 49								-

Find	the	ortl	N 090	mal	tvaj	ectevy	r for	χ²	+5	y 2 =	k			
2	x + (C	A gx	= 0											
	Jy dx	= - 24	(
d;	X = -	2x 101												
dy dy	= - 5	X												
F	lip o	and n	egol	ed	Ž X									
	(<u>S</u> x													
Š	1 44 T	= <u>X</u>	dχ											
] / =		Jx										
		y)=												
		; ; ; ; ; ; ; ;												
) = (N) 1 (
		ecx												
4	= C	x 5												

Find	the o	rthogo	nal t	ra jec	tory.	for x	iy=k		
Х	dy + y	=0							
X	dx = -x								
dx dx	= - X								
F	lip and	Nego	te dy						
gx gx	= y								
γ	91 = X	dx							
S	x dy =)	$\int x dx$							
1/2	$y^2 = \frac{1}{2}$	x2 + C							
À	2 = X 2 +	C							
Find	the o	rthogo	nal tro	ijectoi	ry for	y = k	e^{-x}		
lv	n(y)=	In Cke	e-k)						
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	n(y) = v	n(k)-	xInle						
\\v	n(y) =	n(k)-	- X						

$\frac{\lambda}{1} \frac{dx}{dx} = -1$				
$\frac{dx}{dx} = -\lambda$				
Flip and negate \$	<u> </u>			
$\frac{dx}{dy} = \frac{y}{1}$				
y dy = dx				
$\int_{Y} d_{Y} = \int_{X} d_{X}$				
$\frac{1}{2}y^2 = X + C$				
y2 = 2x + C				