

CMPT 3830: Machine Learning Work Integrated Learning-1

Project Report: Phase 1
Project Title: The Data Pit Crew

In collaboration with

Submitted By:

Name	ID	Email
Gurleen kaur	3105332	gkaur@norquest.ca
Jashraj vashisht	3104596	jvashisht@norquest.ca
Tanish dhawan	3108427	tdhawan27@norquest.ca
Mankaran singh	3106501	msingh501@norquest.ca
Navanjot singh	3108144	nsingh144@norquest.ca

Submission: Date: 27 February 2025 Winter 2025

Table of Contents:

A table of content is required with section numbers, names with correct page numbers. An example is shown below.

Contents

List	of Figures:	3
List	of Tables:	8
1.	Project Phase:	8
2.	Team Members' Name with specific roles	8
3. brea	Reporting Period: [Specify the reporting period, e.g., Month/Year to Month/Year]Key akdown of each part submission.	. 10
	Project Overview: Overview with the problem statement and solution approach you owed	. 10
5.	Dataset	. 10
5.1	Exploratory Data Analysis (EDA) Highlights:	. 10
5.2	Visualization:	. 11
6.	Challenges Encountered:	. 11
7.	Stakeholder Engagement:	. 11
8.	Lessons Learned:	. 11
9.	Future Recommendations:	. 12
10.	Impact on the Community:	. 12
11.	Project Conclusion:	. 12
12.	Acknowledgments:	. 12
13.	1Appendices:	. 12
14	References	14

List of Figures:

Figures in each page (if any) MUST be listed in this section.

Drivetrain Type Distribution

List of Tables:

We did not used tables in our project

1. Project Phase:

In this phase, we focused on preparing and understanding the dataset before applying machine learning techniques. Our main tasks included cleaning the data, filling in missing values, detecting and fixing outliers, and performing exploratory data analysis (EDA) to find patterns. This step is very important because it helps make sure the data is good for further analysis.

2. Team Members' Name with specific roles

S	NAME	STUDENT	ROLES	Responsibilities	EMAIL
NO.		ID			
1.	MANKARAN	3106501	Data	- Design initial	msingh501@norquest.ca
	SINGH		Preparation	dataset	
			Specialist	preparation steps	
				- Study data to	
				discover useful	
				insights	
2.	JASHRAJ	3104596	Team Leader	- Manage project	jvashisht@norquest.ca
	VASHISHT			schedule and	
				assign tasks	
				- Monitor key	
				progress points	
				- Communicate	
				with the teacher	
				for any doubts	
				- Lead dataset	
				preparation	
3.	GURLEEN	3105332	Data	- Design	gkaur22@norquest.ca
	KAUR		Visualization	dashboards and	
			Specialist	visual graphs for	
				analysis	
				- Create	
				interactive	
				discovery tools	
4.	TANISH	3108427	Machine	- Create and	tdhawan27@norquest.ca
	DHAWAN		Learning	optimize machine	
			Engineer	learning systems	
				- Use clustering	
				methods to	
				uncover key	
				insights	
5.	NAVANJOT	3108144	Documentation	- Write	nsingh144@norquest.ca
	SINGH		& Presentation	explanations and	
			Lead	prepare	
				presentation	
				materials	

- Document	
findings and lead	
demos &	
presentations	

3. Reporting Period:

Data Collection	January 16, 2025
Problem Definition	January 20, 2025
Team Charter Submission	January 23, 2025
Exploratory Data Analysis (EDA)	January 30, 2025
Data Preprocessing	February 3, 2025
Feature Engineering	February 7, 2025
Demo 1: EDA & Feature Engineering	February 13, 2025
Model Selection	February 17, 2025
Model Training & Evaluation	February 20, 2025
Model Deployment	February 25, 2025
Phase 1 Report Submission	February 27, 2025

4. Project Overview:

This project aims to understand which cars are more popular in the market based on factors like price, mileage, year, and days on the market. By analyzing data, we hope to find trends that show why some cars sell faster than others. This will help car dealerships and buyers make better decisions

5. Dataset

- **Dataset Source**: The data comes from CBB Listings.
- **Dataset Size**: 145,114 rows (cars) and 46 columns (different details about each car).
- Key Features Used:
 - o **Numerical Features**: Price, mileage, model year, days on market.
 - Categorical Features: Make (brand), model, stock type, exterior color, interior color.

Target Variable: Popularity is measured by how many days a car stays on the market. Fewer days mean a car is more popular

5.1 Exploratory Data Analysis (EDA) Highlights:

- **Missing Values**: We checked for missing values using the df.isnull().sum() function.
- **Handling Missing Values**: We used different methods to fill missing values. Categorical values were filled with the most common category (mode), and numerical values were filled with the average (mean).
- **Zero Values**: Some cars had zero values in important features like mileage. We fixed this by using averages based on the stock type.
- **Outliers**: We found and removed extreme values in price and mileage using the Interquartile Range (IQR) method to make sure they didn't affect our analysis.

5.2 Visualization:

- **Box Plots**: Used to show how we handled outliers in price and mileage.
- **Graphs and Charts**: Created to show relationships between features, such as how price changes with mileage or model year.
- **Feature Analysis**: We created graphs to see which car brands and models are the most popular.

6. Challenges Encountered:

- **Missing Data**: Some important information was missing, and we had to decide the best way to fill it.
- **Outliers**: Extreme values in the dataset had to be handled properly so they didn't affect the analysis.
- **Balancing Data**: Some brands and models had very few entries, making it harder to analyze them properly.

7. Stakeholder Engagement:

- We shared our findings with stakeholders to get feedback.
- They suggested adding more data points to improve accuracy
- Their insights helped us refine our analysis

8. Lessons Learned:

• **Data Cleaning is Essential**: Without handling missing values and outliers, the analysis can be misleading.

- **Visualization Helps Understand Data**: Graphs and charts make it easier to see patterns in the data.
- **Feature Selection Matters**: Choosing the right variables improves model accuracy.

9. Future Recommendations:

- Use clustering algorithms to group cars based on features and popularity.
- **Improve data collection** to get more details on features affecting car sales.
- **Test different machine learning models** to predict car popularity more accurately.

10.Impact on the Community:

- **Better Decision-Making for Buyers**: Helps customers understand which cars sell fast and which hold their value.
- **Optimized Pricing for Dealerships**: Car dealers can adjust prices based on market trends.
- **Improved Inventory Management**: Helps car sellers know which models are in high demand.

11.Project Conclusion:

We successfully prepared the dataset, handled missing values, fixed outliers, and performed data analysis. We identified trends in vehicle popularity based on key features like price and mileage. In the next phase, we will apply machine learning models to segment cars and predict demand

12.Acknowledgments:

We would like to thank our team members, stakeholders, and our instructors for their guidance and support throughout the project.

13.Appendices:

Missing values checked by using : df.isnull().sum()

has_navigation	0
exterior_color	6049
exterior_color_category	34947
interior_color	51663
interior_color_category	58781
price_analysis	0

• To handle missing values, we mainly used mode and mean imputation

```
df['exterior_color_category'] = df['exterior_color_category'].fillna(df['exterior_color_category'].mode()[0])
df['interior_color_category'] = df['interior_color_category'].fillna(df['interior_color_category'].mode()[0])
```

Based on stock type we handled zeros in mileage column

```
zeros_count = df[df['mileage'] == 0].groupby('stock_type').size()
print(zeros_count)

stock_type
NEW 10147
USED 28
```

 Checking outliers in price columns, code will count the outliers which are 3797

```
# Calculate Q1, Q3, and IQR
Q1_price = df['price'].quantile(0.25)
Q3_price = df['price'].quantile(0.75)
IQR_price = Q3_price - Q1_price

# Define lower and upper bounds for outliers
lower_bound_price = Q1_price - 1.5 * IQR_price
upper_bound_price = Q3_price + 1.5 * IQR_price

# Identify outliers
outliers_price = df['price'][(df['price'] < lower_bound_price) | (df['price'] > upper_bound_price)]

# Display the number of outliers
outliers_price_count = len(outliers_price)
print("outliers_price_count:", outliers_price_count)
```

outliers price count 3797

Capping outliers by using IQR METHOD


```
# Calculate median price using the 'price' column from the dataframe 'df'
median_price = df['price'].median()

# Replace outliers with median

df['price'] = np.where(
    (df['price'] < lower_bound_price) | (df['price'] > upper_bound_price),
    median_price,
    df['price']
)

# Verify if outliers remain after replacement
price_data_after = df['price'].dropna()
outliers_price_after = price_data_after[(price_data_after < lower_bound_price) |
# Count remaining outliers
remaining_outliers_price = len(outliers_price_after)
print("remaining_outliers_price:", remaining_outliers_price)</pre>
```

r remaining_outliers_price: 0

CODE OR SYNTIX EXAMPLE FOR VISUALS

```
import matplotlib.pyplot as plt
import seaborn as sns

# Compute average days on market per brand (make)
avg_days_on_market = df.groupby("make")["days_on_market"].mean().sort_values()

# Plot bar chart with same color for all bars
plt.figure(figsize=(14, 6))
sns.barplot(x=avg_days_on_market.index, y=avg_days_on_market.values, color="red") # Uniform color
plt.xlabel("Vehicle Brand (Make)", fontsize=12, fontweight="bold")
plt.ylabel("Average Days on Market", fontsize=12, fontweight="bold")
plt.title("Average Days on Market by Vehicle Brand", fontsize=14, fontweight="bold")
plt.xticks(rotation=90) # Rotate labels for readability
plt.grid(axis="y", linestyle="--", alpha=0.5)
plt.show()
```

14. References

• Google Colab. (n.d.-b).

https://colab.research.google.com/drive/1CUQibqRgAwYaKBBbStywTJFqEE_1QEwL

?usp=sharing