

Fakultät Informatik

Infrastruktur-agnostische Entwicklung und Bereitstellung von Webanwendung

Niklas Röske

Matrikel-Nr. 70456600

Masterarbeit im Studiengang Informatik zur Erlangung des akademischen Grades: Master of Science

Ostfalia Hochschule für angewandte Wissenschaften

Prüfer: Prof. Dr. Hans Grönniger
 Prüfer: Prof. Dr. Bernd Müller

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbei	t selbständig verfasst und keine anderer
als die angegebenen Quellen und Hilfsmittel benutzt h	nabe. Ich versichere, dass ich alle wörtlich
oder sinngemäß aus anderen Werken übernommenen .	Aussagen als solche gekennzeichnet habe
und dass die eingereichte Arbeit weder vollständig noc	h in wesentlichen Teilen Gegenstand eines
anderen Prüfungsverfahrens gewesen ist.	
Ort. Datum	Unterschrift
VIII. Daliiii	OTHERSCHILL

Abstract

Your abstract goes here..

Inhaltsverzeichnis

Αŀ	bkürzungsverzeichnis		IV
1	Einleitung		1
	1.1 Hintergrund und Motivation		. 1
	1.2 Zielsetzung der Arbeit		. 1
2	Theoretischer Hintergrund		2
	2.1 Web-Anwendungen		. 2
	2.2 Infrastruktur-agnostische Entwicklung?		. 2
	2.3 Herausforderungen bei der Entwicklung		. 2
3	Methodik		3
	3.1 Auswahl Entwicklungstechnologien		. 3
	3.2 Architektur und Design der Web-Anwendung		. 3
	3.3 Implementierung un Testing?		. 3
4	Empfehlungen und bewährte Praktiken		4
	4.1 Best Practices		. 4
	4.2 Technische Aspekte		. 4
5	Fallstudie		5
	5.1 Beschreibung der Anwendung		. 5
	5.2 Bewertung der Ergebnisse 5
6	Diskussion		6
	6.1 Wichtigste Erkenntnisse		. 6
	6.2 Beantwortung der Forschungsfrage		. 6
	6.3 Kritische Bewertung der Empfehlung		. 6
7	Ausblick		7
Lit	iteraturverzeichnis		8
Ar	nhang		9

Abkürzungsverzeichnis

- SC...Star Coordinates
- CO...Composition Operators
- DSC...Distance Consistency
- CD...Centroid Density
- CDC...Centroid Distance Change
- VML...Visual Machine Learning

1. Einleitung

1.1. Hintergrund und Motivation

Selbst in einer schnelllebigen technologischen Landschaft bleibt eine Konstante bestehen: die kontinuierliche Evolution von Webanwendungen und ihrer zugrunde liegenden Infrastrukturen. Mit der stetigen Weiterentwicklung von Softwareentwicklungsmethoden, Bereitstellungstechnologien und Cloud-Plattformen haben sich auch die Ansätze zur Entwicklung und Bereitstellung von Webanwendungen stark verändert. In diesem Kontext gewinnt das Konzept der infrastrukturagnostischen Entwicklung und Bereitstellung zunehmend an Bedeutung. Infrastruktur-agnostische Ansätze ermöglichen es, Webanwendungen unabhängig von den spezifischen technologischen Details der zugrunde liegenden Infrastruktur zu gestalten und bereitzustellen. Dies eröffnet Chancen für eine erhöhte Flexibilität, Skalierbarkeit und Effizienz in der Softwareentwicklung und -bereitstellung.

1.2. Zielsetzung der Arbeit

In dieser Masterarbeit wird die Thematik der infrastruktur-agnostischen Entwicklung und Bereitstellung von Webanwendungen umfassend untersucht. Dabei werden die zugrunde liegenden Konzepte, Methoden und Technologien analysiert, die es ermöglichen, Webanwendungen von den Details der Infrastruktur zu abstrahieren. Ein besonderer Fokus liegt dabei auf der Identifizierung von Best Practices, Herausforderungen und potenziellen Lösungsansätzen im Zusammenhang mit der Umsetzung infrastruktur-agnostischer Ansätze. Des Weiteren werden Fallstudien und Praxisbeispiele aus verschiedenen Industriezweigen betrachtet, um ein umfassendes Verständnis für die Anwendung und Auswirkungen dieser Ansätze zu entwickeln.

Indem diese Arbeit die Vor- und Nachteile, die möglichen Auswirkungen auf die Softwareentwicklung und die langfristigen Perspektiven der infrastruktur-agnostischen Entwicklung und Bereitstellung von Webanwendungen beleuchtet, trägt sie zur Erweiterung des Wissens in diesem sich rasch entwickelnden Bereich bei. Letztendlich wird diese Arbeit dazu beitragen, Entwicklern, Unternehmen und Entscheidungsträgern dabei zu helfen, fundierte Entscheidungen im Hinblick auf die Wahl geeigneter Ansätze für die Entwicklung und Bereitstellung ihrer Webanwendungen zu treffen, während sie von den Vorteilen einer infrastruktur-agnostischen Herangehensweise profitieren.

2. Theoretischer Hintergrund

2.1. Web-Anwendungen

- Viele unterschiedliche Frameworks
- Unterschiedliche Artitekturen

2.2. Infrastruktur-agnostische Entwicklung?

- First item
- Second item

2.3. Herausforderungen bei der Entwicklung

- Anfangs eventuell unsicher für welche Infrastruktur man sich entscheidet.
- Auswahl jedoch nötig für Entwicklung.
- Wechsel während der Entwicklung führt zu mehr Aufwand.

[2]

[1]

3. Methodik

- 3.1. Auswahl Entwicklungstechnologien
- 3.2. Architektur und Design der Web-Anwendung
- 3.3. Implementierung un Testing?

4. Empfehlungen und bewährte Praktiken

- 4.1. Best Practices
- 4.2. Technische Aspekte

5. Fallstudie

- 5.1. Beschreibung der Anwendung
- 5.2. Bewertung der Ergebnisse

6. Diskussion

- 6.1. Wichtigste Erkenntnisse
- 6.2. Beantwortung der Forschungsfrage
- 6.3. Kritische Bewertung der Empfehlung

7. Ausblick

Your discussion goes here \dots

Literaturverzeichnis

- [1] Demartines, P.; Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. In: *IEEE transactions on neural networks* 8 (1997), Nr. 1, S. 148–154. ISSN 1045-9227
- [2] Sammon, J. W.: A nonlinear mapping for data structure analysis. In: *IEEE Transactions on Computers* 18 (1969), Nr. 5, S. 401–409

Anhang

Anhang A:

Pseudocode for Heuristics

```
Heuristic 1: Random Selection Shift RSS
1 function heuristic_random_selection_shift(df_p, iterator, num_classes):
      Data: df_p is the dataframe in projection space, iterator is the current iteration
            step, num\_classes is the amount of different classes in the dataset
      Result: dp shift vector, selected class to be shifted, calculated DSC value,
              calculated CD value, calculated total dist
      /* extract star coords and class of data to a new dataframe
                                                                                    */
      df star = df p[['X', 'Y', 'class']]
2
      /* calculate class centroids and save them in a new dataframe
      df centroids = df star.groupby('class', sort=True).mean().reset index()
3
      /* calculate coordinates of the central centroid
      central_centroid = df_centroids[['X', 'Y']].mean()
4
      /* call a function to calculate all distances between centroids
      df distances = calc centroid distances(df centroids)
      /* calculate the distance from each point to its associated centroid */
      df_centroid_distances = calc_dist_p_to_assoc_centroid(df_centroids, df_star)
6
      /* calculate CD, DSC and total_dist for result
                                                                                    */
      CD value = df centroid distances['distance'].sum()
7
      DSC_{value} = calc_{dsc}(df_{centroids}, df_{star})
      total dist = df distances['distance'].sum()
      /* randomly choose a class to be shifted
      selected class = np.random.randint(num classes)
10
      /* select all distances for selected class
      selected class distances = df distances.(df distances[selected class])
11
      /* other_class is the nearest class to selected_class
      min selected class distance = selected class distances['distance'].idxmin()
12
      /* calculate the new shifting vector dp
      dp = calc_dp(df_centroids, selected_class, other_class, central_centroid, num_iter)
13
```

Abbildung 1:: Pseudocode for RSS

Heuristic 2: Order Selection Shift - OSS 1 function heuristic_order_selection_shift(df_p, iterator, num_classes): **Data:** df_p is the dataframe in projection space, iterator is the current iteration step, $num_classes$ is the amount of different classes in the dataset **Result:** dp shift vector, selected_class to be shifted, calculated DSC_value, calculated CD value, calculated total dist /* extract star coords and class of data to a new dataframe */ $df_star = df_p[['X', 'Y', 'class']]$ 2 /* calculate class centroids and save them in a new dataframe df centroids = df star.groupby('class', sort=True).mean().reset index() 3 /* calculate coordinates of the central centroid central_centroid = df_centroids[['X', 'Y']].mean() 4 /* call a function to calculate all distances between centroids df distances = calc centroid distances(df centroids) 5 /* calculate the distance from each point to its associated centroid df centroid distances = calc dist p to assoc centroid(df centroids, df star) 6 /* calculate CD, DSC and total dist for result CD_value = df_centroid_distances['distance'].sum() 7 DSC value = calc dsc(df centroids, df star)8 $total_dist = df_distances['distance'].sum()$ 9 /* choose a class to be shifted by order selected class = num iter % num classes) 10 /* select all distances for selected class selected class distances = df distances.(df distances[selected class]) 11 /* other_class is the nearest class to selected_class min_selected_class_distance = selected_class_distances['distance'].idxmin() 12/* calculate the new shifting vector dp dp = calc dp(df centroids, selected class, other class, central centroid, num iter) **13**

Abbildung 2:: Pseudocode for OSS

```
Heuristic 3: Point Selection Shift - PSS
1 function heuristic_order_selection_shift(df_p, iterator, num_classes):
      Data: df_p is the dataframe in projection space, iterator is the current iteration
            step, num classes is the amount of different classes in the dataset
      Result: dp shift vector, selected_class to be shifted, calculated DSC_value,
              calculated CD value, calculated total dist
      /* extract star coords and class of data to a new dataframe
                                                                                      */
      df_star = df_p[['X', 'Y', 'class']]
2
      /* calculate class centroids and save them in a new dataframe
                                                                                      */
      df centroids = df star.groupby('class', sort=True).mean().reset index()
3
      /* calculate coordinates of the central centroid
      central_centroid = df_centroids[['X', 'Y']].mean()
4
      /* call a function to calculate all distances between centroids
      df distances = calc centroid distances(df centroids)
5
      /* calculate the distance from each point to its associated centroid */
      df centroid distances = calc dist p to assoc centroid(df centroids, df star)
6
      /* calculate CD, DSC and total dist for result
      CD_value = df_centroid_distances['distance'].sum()
7
      DSC value = calc dsc(df centroids, df star)
8
      total dist = df distances['distance'].sum()
9
      /* find the maxmimum distance
      \max_{\text{dist\_idx}} = \text{df\_centroid\_distances}['distance'].idxmax()
10
      /* select the point that is to be shifted
      centroid id = df centroid distances.loc[max dist idx, 'class']
      centroid coords = [df centroids.loc[centroid id, 'X'], df centroids.loc[centroid id,
12
       'Y']]
      point coord = [df centroid distances.loc[max dist idx, 'X'],
13
       df centroid distances.loc[max dist idx, 'Y']]
      /* create noise
      noise = np.random.normal(0, 1, 1) * 100 / (1000 + num_iter)
14
      /* calculate the new shifting vector dp
      dp = [centroid\_coords[0] - point\_coord[0] + noise, centroid\_coords[1] -
15
       point\_coord[1] + noise]
```

Abbildung 3:: Pseudocode for PSS

Anhang B:

Key values for all heuristics for each dataset

dataset	DSC_{start}	DSC_{end}	CD_{start}	CD_{end}	$d_{c,total,start}$	$d_{c,total,end}$
ecoli	63.88%	65.07%	11636	11651	3073	3086
iris	89.93%	89.93%	3585	3498	340	358
statlog	21.06%	28.76%	65743	65963	112	222
wdbc	86.27%	94.72%	22820	16437	79	66
wine	72.32%	92.66%	7703	7539	201	353
yeast	27.44%	27.38%	44547	44911	2613	2635

Tabelle 1:: Key values for RSS for each dataset

dataset	DSC_{start}	DSC_{end}	CD_{start}	CD_{end}	$d_{c,total,start}$	$d_{c,total,end}$
ecoli	63.88%	63.88%	11636	11652	3073	3078
iris	89.93%	90.6%	3585	3483	340	364
statlog	21.06%	22.76%	65743	65784	112	132
wdbc	86.27%	94.72%	22820	16399	79	65
wine	72.32%	93.22%	7703	7549	201	357
yeast	27.44%	27.44%	44547	44713	2613	2616

Tabelle 2:: Key values for OSS for each dataset

dataset	DSC_{start}	DSC_{end}	CD_{start}	CD_{end}	$d_{c,total,start}$	$d_{c,total,end}$
ecoli	63.88%	67.76%	11636	11545	3073	3136
iris	89.93%	93.29%	3585	3111	340	444
statlog	21.06%	41.27%	65743	62631	112	415
wdbc	86.27%	96.3%	22820	18776	79	98
wine	72.32%	93.22%	7703	7389	201	384
yeast	27.44%	28.32%	44547	46156	2613	2765

Tabelle 3:: Key values for MSS for each dataset

Anhang B. Key values for all heuristics for each dataset

dataset	DSC_{start}	DSC_{end}	CD_{start}	CD_{end}
ecoli	63.88%	63.39%	11636	11729
iris	89.93%	89.93%	3585	3585
statlog	21.06%	22.51%	65743	57698
wdbc	86.27%	91.37%	22820	17566
wine	72.32%	100%	7703	5641
yeast	27.44%	24.81%	44547	43926

Tabelle 4:: Key values for PSS for each dataset