(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 03.07.2002 Bulletin 2002/27
- (21) Application number: 94924384.4
- (22) Date of filing: 17.08.1994

- (51) Int Cl.7: C12N 9/88, C12P 13/04
- (86) International application number: PCT/JP94/01365

(11)

desensitization*

- (87) International publication number: WO 95/06114 (02.03.1995 Gazette 1995/10)
- (54) VARIANT PHOSPHOENOLPYRUVATE CARBOXYLASE, GENE THEREOF, AND PROCESS FOR PRODUCING AMINO ACID

EINE PHOSPHOENOLPYRUVAT-CARBOXYLASEVARIANTE. IHR GEN UND VERFAHREN ZUR HERSTELLUNG VON AMINOSÄUREN

ALLELE DE PHOSPHENOLPYRUVATE CARBOXYLASE, GENE DE CET ALLELE ET PROCEDE DE PRODUCTION DE L'ACIDE AMINE

- (84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE
- (30) Priority: 24.08.1993 JP 20977593 24.08.1993 JP 20977693 05.07.1994 JP 15387694
- (43) Date of publication of application: 24.07.1996 Bulletin 1996/30
- (73) Proprietor: Ajinomoto Co., Inc. Tokyo 104 (JP)
- (72) Inventors:
 - SUGIMOTO, Masakazu Ajinomoto Co., Inc. **Technology** Kawasaki-shi Kanagawa 210 (JP)
 - SUZUKI, Tomoko Ajinomoto Co.Inc.

Central Research Kawasaki-shi Kanagawa 210 (JP)

- MATSUI, Hiroshi Ajinomoto Co.inc. Central Kawasaki-shi Kanagawa 210 (JP)
- IZUI, Katsura Kyoto-shi Kyoto-fu 606 (JP)
- (74) Representative: Strehl Schübel-Hopf & Partner Maximilianstrasse 54 80538 München (DE)
- (56) References cited: EP-A- 0 358 940

- BIOCHEM. BIOPHYS. RES. COMMUN., vol. 45, no. 3, 5 November 1971, pages 689-694, **XP000568814 MORIKAWA ET AL.:** "Phosphoenolpyruvate carboxylase of E. coli: discrimination of regulatory sites for four kinds of allosteric effectors by the method of genetic
- J. BIOCHEM., vol. 81, no. 5, 1977, pages 1473-1485, XP000568820 MORIKAWA ET AL.: "Studies on the allosteric properties of mutationally altered phosphoenolpyruvate carboxylases of Escherichia coli: discrimination of allosteric sites"
- J. BIOCHEM., vol. 85, no. 2, February 1979, pages 423-432, XP000568821 NAIDE: "Phosphoenolpyruvate carboxylase of Escherichia coli: the role of Lysyl residues in the catalytic and regulatory functions"
- J. BIOCHEM., vol. 84, no. 4, 1978, pages 795-803, XP000568817 KAMESHITA ET AL.: "Phosphoenolpyruvate carboxylase of Escherichia coli: essential Arginyl residues for catalytic and regulatory functions"
- AGRIC BIOL CHEM., Vol. 47, No. 7, (1983), HACHIRO OZAKI et al., "Production of lysine by pyruvate kinase mutants of Brevibacterium flavum", p. 1569-1576.
- J. BIOCHEM., Vol. 95, No. 4, (1984), FUJITA NUBUUKI et al., "The Primary structure of phophoenolpyruvate carboxylase of Escherichia coli Nucleotide Sequence of the ppe gene and deduced aminoacid Sequence", p. 909-916.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

 J. BIOL. CHEM., Vol. 265, No. 26, (1990), SHERRYL MOWBRAY et al., "Mutations in the Aspartate Receptor of Escherichia coll Which Affect Aspartate Binding", p. 15638-15643.

Description

TECHNICAL FIELD

[0001] The present invention relates to a mutant phosphoenolpyruvate carboxylase, a gene coding for it, and a production method of an amino acid, and in particular relates to a gene having mutation to desensitize feedback inhibition by aspartic acid, and utilization thereof.

BACKGROUND ART

10

30

[0002] Phosphoenolpyruvate carboxylase is an enzyme which is found in almost all bacteria and all plants. The role of this enzyme resides in biosynthesis of aspartic acid and glutamic acid, and supply of C4 dicarboxylic acid to the citric acid cycle for maintaining its turnover. However, in the fermentative production of an amino acid using a microorganisms, there have been few reports on effects of this enzyme has not been made clear (Atsushi Yokota and Isamu Shiio, Agric. Biol. Chem., 52, 455-463 (1988), Josef Cremer et al., Appl. Environ. Microbiol.,57, 1746-1752 (1991), Petra, G. Peters-Weintisch, FEMS Microbiol. Letters, 112, 269-274 (1993)).

[0003] By the way, the amino acid is a compound which universally exists in cells as components of proteins, however, for the sake of economic energy metabolism and substance metabolism, its production is strictly controlled. This control is principally feedback control, in which the final product of a metabolic pathway inhibits the activity of an enzyme which catalyzes the earlier step of the pathway. Phosphoenolpyruvate carboxylase also undergoes various regulations in expression of its activity.

[0004] For example, in the case of phosphoenolpyruvate carboxylase of microorganisms belonging to the genus <u>Corynebacterium</u> or the genus <u>Escherichia</u>, the activity is inhibited by aspartic acid. Therefore, the aforementioned amino acid biosynthesis, in which phosphoenolpyruvate carboxylase participates, is also inhibited by aspartic acid.

[0005] In the prior art, various techniques have been developed for efficient production in amino acid fermentation, and fermentative production has been carried out for leucine, isoleucine, tryptophan, phenylalanine and the like by using mutant strains converted to be insensitive to feedback control. However, there has been known neither mutant phosphoenolpyruvate carboxylase converted to be insensitive to inhibition by aspartic acid, nor attempt to utilize it for fermentative production of amino acids of the aspartic acid family and the glutamic acid family.

[0006] On the other hand, ppc gene, which is a gene coding for phosphoenolpyruvate carboxylase of Escherichia coli, has been already cloned, and also determined for its nucleotide sequence (Fujita, N., Miwa, T., Ishijima, S., Izui, K. and Katsuki, H., J. Biochem., 95, 909-916 (1984)).

[0007] Morikawa, M. et al. (1971) Biochem. Biophys. Res. Com., vol. 45, no. 3, pages 689 to 694 discloses the use of a PEP-minus strain to obtain PEP revertants.

[0008] Naide, A. et al. (1979) *J. Biochem.*, vol. 85, no. 2, pages 423 to 432 discloses PEP mutants that have been inactivated by a chemical reagent and which show no sensitivity to the allosteric inhibitor, L-aspartate.

[0009] Kameshita, I. et al. (1978), *J. Biochem.*, vol. 84, no. 4, pages 795 to 803 discloses chemically modified PEP mutants that are desensitised against L-aspartate.

[0010] An object of the present invention is to provide a mutant phosphoenolpyruvate carboxylase with substantially desensitized feedback inhibition by aspartic acid, a gene conding for it, and a utilization method thereof.

DISCLOSURE OF THE INVENTION

[0011] As a result of diligent investigation in order to achieve the aforementioned object, the present inventors have found that the inhibition by aspartic acid is substantially desensitized by replacing an amino acid at a specified site of phosphoenolpyruvate carboxylase of Escherichia coli with another amino acid, succeeded in obtaining a gene coding for such a mutant enzyme, and arrived at completion of the present invention.

[0012] Namely, the present invention lies in a mutant phosphoenolpyruvate carboxylase, which originates from a microorganism belonging to the genus Escherichia and a mutant phosphoenolpyruvate carboxylase originating from a microorganism belonging to the genus Escherichia and being desensitised in its feedback inhibition by aspartic acid, wherein said mutant phosphoenolpyruvate carboxylase is resistant to a compound selected from 3-bromopyruvate, aspartic acid-β-hydrazide and DL-threo-β-hydroxyaspartic acid.

[0013] The present invention further provides microorganisms belonging to the genus <u>Escherichia</u> or coryneform bacteria harboring the DNA fragment, and a method of producing an amino acid wherein any of these microorganisms is cultivated in a preferable medium, and the amino acid selected from L-lysine, L-threonine, L-methionine, L-isoleucine, L-glutamic acid, L-arginine and L-proline is separated from the medium.

[0014] Incidentally, in this specification, the DNA sequence coding for the mutant phosphoenolpyruvate carboxylase, or a DNA sequence containing a promoter in addition thereto is occasionally merely referred to as *DNA sequence of

the present invention", "mutant gene" or "phosphoenolpyruvate carboxylase gene."
[0015] The present invention will be explained in detail hereinafter.

<1> Mutant phosphoenolpyruvate carboxylase

[0016] The mutant phosphoenolpyruvate carboxylase of the present invention (hereinafter simply referred to as "mutant enzyme") lies in the phosphoenolpyruvate carboxylase of the microorganism belonging to the genus <u>Escherichia</u>, which has mutation to desensitize the feedback inhibition by aspartic acid.

[0017] Such mutation may be any one provided that the aforementioned feedback inhibition is substantially desensitized without losing the enzyme activity of the phosphoenolpyruvate carboxylase.

[0018] More concretely, there may be exemplified, as counted from the N-terminus of the phosphoenolpyruvate carboxylase:

- (1) mutation to replace 625th glutamic acid with lysine;
- (2) mutation to replace 222th arginine with histidine and 223th glutamic acid with lysine, respectively;
- (3) mutation to replace 288th serine with phenylalanine, 289th glutamic acid with lysine, 551th methionine with isoleucine and 804th glutamic acid with lysine, respectively;
- (4) mutation to replace 867th alanine with threonine;
- (5) mutation to replace 438th arginine with cysteine; and
- 20 (6) mutation to replace 620th lysine with serine.

15

45

[0019] Incidentally, as the phosphoenolpyruvate carboxylase of the microorganism belonging to the genus <u>Escherichia</u>, an amino acid sequence, which is deduced from a phosphoenolpyruvate carboxylase gene of <u>Escherichia coli</u> (Fujita, N., Miwa, T., Ishijima, S., Izui, K. and Katsuki, H., <u>J. Biochem.</u>, 95, 909-916 (1984)), is shown in SEQ ID NO:2 in the Sequence listing. In addition, an entire nucleotide sequence of a plasmid pT2, which contains the phosphoenolpyruvate carboxylase gene of <u>Escherichia coli</u>, is shown in SEQ ID NO:1 together with the amino acid sequence. [0020] The aforementioned mutant enzymes are encoded by DNA sequences of the present invention described below, which are produced by expressing the DNA sequences in <u>Escherichia coli</u> and the like.

<2> DNA sequence of the present invention and microorganisms harboring the same

[0021] The DNA sequence of the present invention is DNA sequences coding for the aforementioned mutant enzymes, and has mutation to desensitize feedback inhibition of phosphoenolpyruvate carboxylase by aspartic acid in coding regions in DNA fragments coding for phosphoenolpyruvate carboxylase of the microorganism belonging to the genus Escherichia.

[0022] Concretely, there may be exemplified a DNA Sequence coding for the phosphoenolpyruvate carboxylase having the mutation of any one of the aforementioned (1) to (6), for example, with respect to the nucleotide sequence of SEQ ID NO:1, there may be exemplified a DNA sequence having any one of:

- i) mutation to convert GAA of base Nos. 2109-2111 into AAA or AAG;
 - ii) mutation to convert CGC of base Nos. 900-902 into CAT or CAC, and GAA of 903-905 into AAA or AAG, respectively;
 - iii) mutation to convert TCT of base Nos. 1098-1100 into TTT or TTC, GAA of 1101-1103 into AAA or AAG, ATG of 1887-1889 into ATT, ATC or ATA, and GAA of 2646-2648 into AAA or AAG, respectively;
- iv) mutation to convert GCG of 2835-2837 into any one of ACT, ACC, ACA and ACG; and
 - v) mutation to convert CGT of 1548-1550 into TGT or TGC; and
 - vi) mutation to convert AAA of 2094-2096 into TCT, TCC, TCA or TCG.

[0023] Such a mutant gene is obtained such that a recombinant DNA, which is obtained by ligating a phosphoenolpyruvate carboxylase gene as a wild type enzyme gene or having another mutation with a vector DNA adaptable
to a host, is subjected to a mutation treatment, to perform screening from transformants by the recombinant DNA.
Alternatively, it is also acceptable that a microorganism which produces a wild type enzyme is subjected to a mutation
treatment, a mutant strain which produces a mutant enzyme is created, and then a mutant gene is screened from the
mutant strain. For the mutation treatment of the recombinant DNA, hydroxylamine and the like may be used. Further,
when an microorganism itself is subjected to a mutation treatment, a drug or a method usually used for artificial mutation
may be used.

[0024] Further, in accordance with methods such as the Overlapping Extension method (Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. and Pease, L. R., Gene, 77, 51-59 (1989)), the site specific mutation method (Kramer, W.

and Frits, H. J., Meth. in Enzymol., 154, 350 (1987); Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987)) and the like, the aforementioned mutant gene can be also obtained by introducing mutation such as amino acid replacement, insertion, deletion and the like into a phosphoenolpyruvate carboxylase gene as a wild type enzyme gene or having another mutation. These methods are based on a principle that a non-mutated gene DNA is used as a template, and a synthetic DNA containing a mismatch at a mutation point is used as one of primers so as to synthesize complemental strands of the aforementioned gene DNA, thereby mutation is introduced. By using these methods, it is possible to cause intended mutation at an aimed site.

[0025] Alternatively, a sequence, which has restriction enzyme cleavage ends at both termini and includes both sides of a mutation point, is synthesized, and exchanged for a corresponding portion of a non-mutated gene, thereby mutation can be introduced (cassette mutation method).

[0026] The phosphoenolpyruvate carboxylase gene, which is the wild type enzyme gene or has another mutation to be used for introduction of mutation, may be any one provided that it is a gene coding for the phosphoenolpyruvate carboxylase of the microorganism belonging to the genus <u>Escherichia</u>, which is preferably determined for its base sequence and cloned. When it has not been cloned, a DNA fragment containing the gene can be amplified and isolated by using the PCR method and the like, followed by using a suitable vector to achieve cloning.

[0027] As the gene as described above, for example, there may be exemplified a gene of Escherichia coli having been cloned and determined for its base sequence (Fujita, N., Miwa, T., Ishijima, S., Izui, K. and Katsuki, H., J. Biochem., 95, 909-916 (1984)). The sequence in the coding region of this gene is as shown in SEQ ID NO: 1 (base Nos. 237-2888). [0028] Screening of a host harboring the mutant gene can be performed by using an analog compound of aspartic acid. The analog compound preferably has the following properties. Namely, it exhibits a growth inhibitory action against a microorganism belonging to the genus Escherichia which produces a wild type phosphoenolpyruvate carboxylase, the aforementioned growth inhibitory action is recovered by existence of L-glutamic acid or L-aspartic acid, and it inhibits wild type phosphoenolpyruvate carboxylase activity.

[0029] If a mutant strain beeing resistant to the analog compound mentioned above is selected from microorganism belonging to the genus <u>Escherichia</u>, for example, <u>Escherichia coli</u> HB101 producing wild type phosphoenolpyruvate carboxylase using inhibition of growth of the microorganism as an index, it is much likely to obtain a host microorganism which produces phosphoenolpyruvate carboxylase with desensitized feedback inhibition by aspartic acid.

[0030] It is proposed, as a general structure of an inhibitor of phosphoenolpyruvate carboxylase, that a C4 dicarboxylic acid structure is essentially provided. From such a viewpoint, various compounds were subjected to screening by the present inventors. Escherichia coli HB101 was cultivated in an LB medium, and transferred to M9 media (containing 20 μ g/ml of thiamine and 3 μ g/ml of each of Leu and Pro) containing any one of DL-2-amino-4-phosphonobutyric acid, bromosuccinic acid, meso-2,3-dibromosuccinic acid, 2,2-difluorosuccinic acid, 3-bromopyruvic acid, α -ketobutyric acid, α -ketoadipinic acid DL-threo- β -hydroxyaspartic acid L-aspartic acid β -metyl ester α -metyl-DL-aspartic acid, 2,3-diaminosuccinic acid or aspartic acid- β -hydrazide, and absorbance of the medium was measured at 660 nm with the passage of time, thereby growth was monitored.

[0031] Further, when these compounds were present at their growth inhibitory concentrations, it was investigated whether or not the inhibition was recovered by addition of nucleic acids (each of uridine, adenosine: 10 mg/dl), glutamic acid or amino acids of the aspartic acid family (Asp: 0.025 %, each of Met, Thr, Lys: 0.1 %).

[0032] As a result, three compounds: 3-bromopyruvate (3BP) (1), aspartate-β-hydrazide (AHY) (2), and DL-threo-β-hydroxyaspartate (βHA) (3) were selected.

55

50

45

25

5

10

15

20

[0033] Growth inhibition of Escherichia coli by these analog compounds is shown in Figs. 1-3. Further, growth recovery of Escherichia coli, in the case of addition of the aforementioned inhibition recovering substances alone or as a mixture of 2 species or 3 species, is shown in Figs. 4-6. In addition, as a control, growth in the case of addition of the inhibition recovering substance in the absence of the inhibitory substance is shown in Fig. 7. Incidentally, in Figs. 4-7, additives 1, 2 and 3 indicate nucleic acids, glutamic acid or amino acids of the aspartic acid family, respectively. [0034] Further, inhibition of activity by the analog compound on phosphoenolpyruvate carboxylase was investigated. Crude enzyme was prepared from an Escherichia coli HB101 strain in accordance with a method described in The Journal of Biochemistry, Vol. 67, No. 4 (1970), and enzyme activity was measured in accordance with a method described in Eur. J. Biochem., 202, 797-803 (1991).

35

[0035] Escherichia coli HB101 cultivated in an LB medium was disrupted, and a suspension was centrifuged to obtain a supernatant which was used as a crude enzyme solution. Measurement of enzyme activity was performed by measuring decrease in absorbance at 340 nm while allowing acetyl-coenzyme A known to affect the activity to exist at a concentration of 0.1 mM in a measurement system containing 2 mM potassium phosphoenolpyruvate, 0.1 mM NADH, 0.1 M Tris-acetate (pH 8.5), 1.5 U malate dehydrogenase and crude enzyme. Results are shown in Fig. 8.

40

[0036] According to the results as above, it is apparent that the aforementioned three compounds inhibit growth of Escherichia coli, this inhibition cannot be recovered by nucleic acids alone, but the inhibition can be recovered by addition of glutamic acid or amino acids of the aspartic acid family. Therefore, these analog compounds were postulated to be selective inhibitors of phosphoenolpyruvate carboxylase. As shown in Examples described below, by using these compounds, the present invention has succeeded in selection of an Escherichia coli which produces the mutant phosphoenolpyruvate carboxylase.

45

[0037] When a transformant having an aimed mutant enzyme gene is screened by using the aforementioned compounds, and a recombinant DNA is recovered, then the mutant enzyme gene is obtained. Alternatively, in the case of a mutation treatment of an microorganism itself, when a mutant strain having an aimed mutant enzyme gene is screened by using the aforementioned compounds, a DNA fragment containing the aimed mutant enzyme gene is isolated from the strain, and it is ligated with a suitable vector, then the mutant enzyme gene is obtained.

[0038] In accordance with methods such as the Overlapping Extension method (Ho, S. N., Hunt, H. D., Horton, R.

M., Pullen, J. K. and Pease, L. R., <u>Gene</u>, 77, 51-59 (1989)), the site specific mutation method (Kramer, W. and Frits, H. J., <u>Meth. in Enzymol.</u>, 154, 350 (1987); Kunkel, T. A. et al., <u>Meth. in Enzymol.</u>, 154, 367 (1987)) and the like, conversion of the codon can be also achieved by introducing mutation such as amino acid replacement, insertion, deletion and the like into a phosphoenolpyruvate carboxylase gene as a wild type enzyme gene or having another mutation. These methods are based on a principle that a non-mutated gene DNA is used as a template, and a synthetic DNA containing a mismatch at a mutation point is used as one of primers so as to synthesize complemental strands of the aforementioned gene DNA, thereby mutation is introduced. By using these methods, it is possible to cause intended

mutation at an aimed site.

20

[0039] Alternatively, a sequence, which has restriction enzyme cleavage ends at both termini and contains both sides of a mutation point, is synthesized, and exchanged for a corresponding portion of a non-mutated gene, thereby mutation can be introduced (cassette mutation method).

[0040] The DNA fragment coding for the phosphoenolpyruvate carboxylase with mutation introduced as described above is expressed by using a suitable host-vector system, thereby it is possible to produce a mutant enzyme. Alternatively, even by performing transformation by integrating the DNA fragment of the present invention into a host chromosomal DNA, an aimed mutant enzyme can be produced.

[0041] As the host, there may be exemplified microorganisms belonging to the genus Escherichia, for example, Escherichia coli, coryneform bacteria and the like. The coryneform bacteria include bacteria belonging to the genus Corynebacterium, bacteria belonging to the genus Brevibacterium having been hitherto classified into the genus Brevibacterium but being united as bacteria belonging to the genus Corynebacterium at present, and bacteria belonging to the genus Brevibacterium closely related to bacteria belonging to the genus Corynebacterium. Incidentally, hosts which are preferable for amino acid production will be described below.

[0042] On the other hand, as the vector DNA, a plasmid vector is preferable, and those capable of self-replication in a host cell are preferable. When the host is <u>Escherichia coli</u>, for example, pUC19, pUC18, pBR322, pHSG299, pHSG399, RSF1010 and the like are exemplified. Alternatively, a vector of phage DNA can be also utilized.

[0043] Further, when the host is the coryneform bacteria, vectors which can be used and hosts which harbor them are exemplified below. Incidentally, deposition numbers of international depositories are shown in parentheses.

pAJ655 Escherichia coli AJ11882 (FERM BP-136)

Corynebacterium glutamicum SR8201 (ATCC 39135)

pAJ1844 Escherichia coli AJ11883 (FERM BP-137)

Corynebacterium glutamicum SR8202 (ATCC 39136)

pAJ611 Escherichia coli AJ11884 (FERM BP-138)

pAJ3148 Corynebacterium glutamicum SR8203 (ATCC 39137)

pAJ440 Bacillus subtilis AJ11901 (FERM BP-140)

[0044] These vectors may be obtained from the deposited microorganisms as follows. Cells collected at the logarithmic growth phase are subjected to bacteriolysis by using lysozyme and SDS, and centrifuged at 30000 x g to obtain a supernatant solution from a lysate, to which polyethylene glycol is added to perform separation and purification of the vectors by means of cesium chloride-ethidium bromide equilibrium density gradient centrifugation.

[0045] In order to transform Escherichia coli with a recombinant vector obtained by inserting the DNA sequence of the present invention into the aforementioned vector, it is possible to use a method usually used for transformation of Escherichia coli, such as a method in which cells are treated with calcium chloride to enhance permeability of DNA (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1977)) and the like.

[0046] Further, as a method for transforming the coryneform bacteria, there is the aforementioned method in which cells are treated with calcium chloride, or a method in which incorporation is performed at a specified growth period in which cells can incorporate DNA (report in relation to Bacillus subtilis by Duncan, C. H. at al.). Further, incorporation into bacterial cells can be achieved by forming protoplasts or spheroplasts of DNA recipients which easily incorporate plasmid DNA. These are known for Bacillus subtilis, Actinomyces and yeast (Chang, S. et al., Molec. Gen. Genet., 168, 111 (1979), Bibb et al., Nature, 274, 398 (1978), Hinnen, A. et al., <a href="Proc. Natl. Acad. Sci. USA, 75 1929 (1978)). Additionally, a method for transforming coryneform bacteria is disclosed in Japanese Patent Laid-open No. 2-207791. 19047] In order to express the DNA sequence of the present invention in the aforementioned hosts, a promoter such as lac, trp, PL and the like which efficiently works in microorganisms may be used, or when the DNA sequence of the present invention contains a promoter of the phosphoenolpyruvate carboxylase gene, it may be used as it is. Alternatively, when the coryneform bacterium is used as the host, it is also possible to use a known trp promoter originating from a bacterium belonging to the genus Brevibacterium (Japanese Patent Laid-open No. 62-244382) and the like.

[0048] Further, as described above, it is acceptable that the DNA sequence of the present invention is inserted into the vector DNA capable of self-replication and introduced into the host to allow the host to harbor it as a plasmid, and it is also acceptable that the DNA sequence of the present invention is integrated into a chromosome of an microorganism by means of a method using transposon (Berg, D. E. and Berg, C. M., Bio/Technol., 1, 417 (1983)), Mu phage (Japanese Patent Laid-open No. 2-109985) or homologous recombination (Experiments in Molecular Genetics, Cold Spring Harbor Lab. (1972)). In addition, in order to integrate the DNA of the present invention into the coryneform bacteria, it is possible to utilize a temperature-sensitive plasmid disclosed in Japanese Patent Laid-open No. 5-7491. [0049] When the microorganism transformed with the DNA sequence of the present invention as described above is cultivated, and this DNA sequence is expressed, then a mutant enzyme is obtained. It becomes apparent, by measuring the activity by adding aspartic acid to an enzyme reaction system, whether or not the mutant enzyme thus obtained

has desensitized feedback inhibition by aspartic acid. It is possible for the measurement of the enzyme activity to use a spectrometric method (Yoshinage, T., Izui, K. and Katsuki, H., J. Biochem., 68, 747-750 (1970)) and the like.

[0050] Further, the DNA sequence of the present invention codes for the mutant enzyme in which feedback inhibition by aspartic acid is desensitized, so that the microorganism harboring this DNA sequence can be utilized for efficient fermentative production of amino acids of the aspartic acid family and the glutamic acid family as described below.

[0051] Escherichia coli AJ12907, AJ12908, AJ12909 and AJ12910 harboring the mutant enzyme genes obtained in Examples described below are deposited in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan; zip code 305) on August 3, 1993 under the deposition numbers of FERM P-13774, FERM P-13775, FERM P-13776 and FERM P-13777, transferred from the original deposition to international deposition based on Budapest Treaty on July 11, 1994 and has been deposited as deposition numbers of FERM BP-4734, FERM BP-4735, FERM BP-4736, FERM BP-4737, respectively in this order.

<3> Production method of amino acids

15

20

[0052] Amino acids can be produced by cultivating the microorganism harboring the DNA sequence of the present invention in a preferable medium, and separating generated amino acids. As such amino acids, there may be exemplified L-lysine, L-threonine, L-methionine, L-isoleucine, L-glutamic acid, L-arginine and L-proline.

[0053] Preferable hosts into which the DNA sequence of the present invention is introduced to be used for production of each of the amino acids, and a cultivation method will be exemplified below.

- (1) Hosts preferable for the amino acid production method of the present invention
- (i) Hosts preferable for L-lysine production

25

55

[0054] As the host to be used for L-lysine production according to the present invention, there may be exemplified bacteria belonging to the genus Escherichia, preferably L-lysine-producing Escherichia coli. Concretely, a mutant strain having resistance to a lysine analog can be exemplified. Such a lysine analog is those which inhibit growth of microorganisms belonging to the genus Escherichia, however, the suppression is totally or partially desensitized provided that L-lysine co-exits in the medium. For example, there are oxalysine, lysine hydroxamate, S-(2-aminoethyl)-cystelne (hereinafter abbreviated as "AEC"), γ-methyllysine, α-chlorocaprolactam and the like. Mutant strains having resistance to these lysine analogs can be obtained by applying an ordinary artificial mutation treatment to microorganisms belonging to the genus Escherichia. Concretely, as a bacterial strain to be used for L-lysine production, there may be exemplified Escherichia coli AJ11442 (deposited as FERM P-5084, see lower-left column on page 471 in Japanese Patent Laid-open No. 56-18596).

[0055] On the other hand, various artificial mutant strains of coryneform bacteria which have been used as L-lysine-producing bacteria can be used for the present invention. Such artificial mutant strains are as follows: AEC resistant mutant strain; mutant strain which requires amino acid such as L-homoserine for its growth (Japanese Patent Publication Nos. 48-28078 and 56-6499); mutant strain which exhibits resistance to AEC and requires amino acid such as L-leucine, L-homoserine, L-proline, L-serine, L-arginine, L-alanine, L-valine and the like (United States Patent Nos. 3708395 and 3825472); L-lysine-producing mutant strain which exhibits resistance to DL-α-amino-ε-caprolactam, α-amino-lauryllactam, quinoid and N-lauroylleucine; L-lysine-producing mutant strain which exhibits resistance to an inhibitor of oxaloacetate decarboxylase or respiratory system enzyme (Japanese Patent Laid-open Nos. 50-53588, 50-31093, 52-102498, 53-86089, 55-9783, 55-9759, 56-32995 and 56-39778, and Japanese Patent Publication Nos. 53-43591 and 53-1833); L-lysine-producing mutant strain which requires inositol or acetic acid (Japanese Patent Laid-open Nos. 55-9784 and 56-8692); L-lysine-producing mutant strain which exhibits sensitivity to fluoropyruvate or temperature not less than 34 °C (Japanese Patent Laid-open Nos. 55-9783 and 53-86090); and mutant strain of Brevibacterium or Corynebacterium which exhibits resistance to ethylene glycol and produces L-lysine (see United States Patent Application Serial No. 333455).

[0056] Followings are exemplified as concrete coryneform bacteria to be used for lysine production:

Brevibacterium lactofermentum AJ12031 (FERM-BP277), see page 525 in Japanese Patent Laid-open No. 60-62994;

Brevibacterium lactofermentum ATCC 39134, see lower-right column on page 473 in Japanese Patent Laid-open No. 60-62994;

Brevibacterium lactofermentum AJ3463 (FERM-P1987), see Japanese Patent Publication No. 51-34477.

[0057] In addition, wild strains of coryneform bacteria described below can be also used for the present invention in

the same manner.

ATCC 13870 Corynebacterium acetoacidophilum Corynebacterium acetoglutamicum ATCC 15806 ATCC 15991 Corynebacterium callunae Corynebacterium glutamicum ATCC 13032 ATCC 13060 ATCC 14020 (Brevibacterium divaricatum) (Brevibacterium lactofermentum) ATCC 13869 (Corynebacterium lilium) ATCC 15990 Corynebacterium melassecola ATCC 17965 ATCC 14066 Brevibacterium saccharolyticum Brevibacterium immariophilum ATCC 14068 Brevibacterium roseum ATCC 13825 ATCC 13826 Brevibacterium flavum Brevibacterium thiogenitalis ATCC 19240 ATCC 15354 Microbacterium ammoniaphilum

20

25

30

35

40

45

50

10

15

(ii) Hosts preferable for L-threonine production

[0058]

Escherichia coli B-3996 (RIA 1867), see Japanese Patent Laid-open No. 3-501682 (PCT);

Escherichia coli AJ12349 (FERM-P9574), see upper-left column on page 887 in Japanese Patent Laid-open No. 2-458;

Escherichia coli AJ12351 (FERM-P9576), see lower-right column on page 887 in Japanese Patent Laid-open No. 2-458;

Escherichia coli AJ12352 (FERM P-9577), see upper-left column on page 888 in Japanese Patent Laid-open No. 2-458:

Escherichia coli AJ11332 (FERM P-4898), see upper-left column on page 889 in Japanese Patent Laid-open No. 2-458:

Escherichia coli AJ12350 (FERM P-9575), see upper-left column on page 889 in Japanese Patent Laid-open No. 2-458:

Escherichia coli AJ12353 (FERM P-9578), see upper-right column on page 889 in Japanese Patent Laid-open No. 2-458;

Escherichia coli AJ12358 (FERM P-9764), see upper-left column on page 890 in Japanese Patent Laid-open No. 2-458:

Escherichia coli AJ12359 (FERM P-9765), see upper-left column on page 890 in Japanese Patent Laid-open No. 2-458;

Escherichia coli AJ11334 (FERM P-4900), see column 6 on page 201 in Japanese Patent Publication No. 1-29559; Escherichia coli AJ11333 (FERM P-4899), see column 6 on page 201 in Japanese Patent Publication No. 1-29559; Escherichia coli AJ11335 (FERM P-4901), see column 7 on page 202 in Japanese Patent Publication No. 1-29559.

[0059] Following bacterial strains are exemplified as the coryneform bacteria:

Brevibacterium lactofermentum AJ11188 (FERM P-4190), see upper-right column on page 473 in Japanese Patent Laid-open No. 60-87788;

Corynebacterium glutamicum AJ11682 (FERM BP-118), see column 8 on page 230 in Japanese Patent Publication No. 2-31956;

Brevibacterium flavum AJ11683 (FERM BP-119), see column 10 on page 231 in Japanese Patent Publication No.

2-31956.

55

(iii) Hosts preferable for L-methionine production

[0060] Following bacterial strains are exemplified for L-methionine production:

Escherichia coli AJ11457 (FERM P-5175), see upper-right column on page 552 in Japanese Patent Laid-open No. 56-35992;

Escherichia coli AJ11458 (FERM P-5176), see upper-right column on page 552 in Japanese Patent Laid-open No. 56-35992:

Escherichia coli AJ11459 (FERM P-5177), see upper-right column on page 552 in Japanese Patent Laid-open No. 56-35992:

Escherichia coli AJ11539 (FERM P-5479), see lower-left column on page 435 in Japanese Patent Laid-open No. 56-144092:

Escherichia coli AJ11540 (FERM P-5480), see lower-left column on page 435 in Japanese Patent Laid-open No. 56-144092;

Escherichia coli AJ11541 (FERM P-5481), see lower-left column on page 435 in Japanese Patent Laid-open No. 56-144092;

Escherichia coli AJ11542 (FERM P-5482), see lower-left column on page 435 in Japanese Patent Laid-open No. 56-144092.

5

10

15

(iv) Hosts preferable for L-aspartic acid production

[0061] Following bacterial strains are exemplified for L-aspartic acid production:

20 Brevibacterium flavum AJ3859 (FERM P-2799), see upper-left column on page 524 in Japanese Patent Laid-open No. 51-61689;

<u>Brevibacterium lactofermentum</u> AJ3860 (FERM P-2800), see upper-left column on page 524 in Japanese Patent Laid-open No. 51-61689;

Corynebacterium acetoacidophilum AJ3877 (FERM-P2803), see upper-left column on page 524 in Japanese Patent Laid-open No. 51-61689;

Corynebacterium glutamicum AJ3876 (FERM P-2802), see upper-left column on page 524 in Japanese Patent Laid-open No. 51-61689.

(v) Hosts preferable for L-isoleucine production

30

25

[0062] Escherichia coli KX141 (VKPM-B4781) (see 45th paragraph in Japanese Patent Laid-open No. 4-33027) is exemplified as the bacteria belonging to the genus Escherichia, and Brevibacterium lactofermentum AJ12404 (FERM P-10141) (see lower-left column on page 603 in Japanese Patent Laid-open No. 2-42988) and Brevibacterium flavum AJ12405 (FERM P-10142) (see lower-left column on page 524 in Japanese Patent Laid-open No. 2-42988) are exemplified as the coryneform bacteria.

(vi) Hosts preferable for L-glutamic acid production

[0063] Following bacterial strains are exemplified as the bacteria belonging to the genus Escherichia:

40

35

Escherichia coli AJ12628 (FERM P-12380), see French Patent Publication No. 2 680 178 (1993); Escherichia coli AJ12624 (FERM P-12379), see French Patent Publication No. 2 680 178 (1993).

[0064] Following bacterial strains are exemplified as the coryneform bacteria:

45

<u>Brevibacterium lactofermentum</u> AJ12745 (FERM BP-2922), see lower-right column on page 561 in Japanese Patent Laid-open No. 3-49690;

<u>Brevibacterium lactofermentum</u> AJ12746 (FERM BP-2923), see upper-left column on page 562 in Japanese Patent Laid-open No. 3-49690;

50 Brevibacterium lactofermentum AJ12747 (FERM BP-2924), see upper-left column on page 562 in Japanese Patent Laid-open No. 3-49690;

<u>Brevibacterium lactofermentum</u> AJ12748 (FERM BP-2925), see upper-left column on page 562 in Japanese Patent Laid-open No. 3-49690;

Brevibacterium flavum ATCC 14067, see Table 1 on page 3 in Japanese Patent Laid-open No. 5-3793;

55 Corynebacterium glutamicum ATCC 21492, see Table 1 on page 3 in Japanese Patent Laid-open No. 5-3793.

(vii) Hosts preferable for L-arginine production

[0065] Following bacterial strains are exemplified as the bacteria belonging to the genus Escherichia:

5 Escherichia coli AJ11593 (FERM P-5616), see upper-left column on page 468 in Japanese Patent Laid-open No. 57-5693:

Escherichia coli AJ11594 (FERM P-5617), see upper-right column on page 468 in Japanese Patent Laid-open No. 57-5693.

[0066] Following bacterial strains are exemplified as the coryneform bacteria:

Brevibacterium flavum AJ12144 (FERM P-7642), see column 4 on page 174 in Japanese Patent Publication No. 5-27388:

Corynebacterium glutamicum AJ12145 (FERM P-7643), see column 4 on page 174 in Japanese Patent Publication No. 5-27388;

Brevibacterium flavum ATCC 21493, see Table 1 on page 3 in Japanese Patent Laid-open No. 5-3793; Corynebacterium glutamicum ATCC 21659, see Table 1 on page 3 in Japanese Patent Laid-open No. 5-3793.

(viii) Hosts preferable for L-proline production

[0067] Following bacterial strains are exemplified as the bacteria belonging to the genus Escherichia:

Escherichia coli AJ11543 (FERM P-5483), see lower-left column on page 435 in Japanese Patent Laid-open No. 56-144093;

Escherichia coli AJ11544 (FERM P-5484), see lower-left column on page 435 in Japanese Patent Laid-open No. 56-144093.

[0068] Following bacterial strains are exemplified as the coryneform bacteria:

Brevibacterium lactofermentum AJ11225 (FERM P-4370), see upper-left column on page 473 in Japanese Patent Laid-open No. 60-87788;

Brevibacterium flavum AJ11512 (FERM P-5332), see column 2 on page 185 in Japanese Patent Publication No. 62-36679;

Brevibacterium flavum AJ11513 (FERM P-5333), see column 2 on page 185 in Japanese Patent Publication No. 62-36679:

Brevibacterium flavum AJ11514 (FERM P-5334), see column 2 on page 185 in Japanese Patent Publication No. 62-36679:

Corynebacterium glutamicum AJ11522 (FERM P-5342), see column 2 on page 185 in Japanese Patent Publication No. 62-36679;

Corynebacterium glutamicum AJ11523 (FERM P-5343), see column 2 on page 185 in Japanese Patent Publication No. 62-36679.

(2) Cultivation method

[0069] The method for cultivating the aforementioned hosts is not especially different from a cultivation method for amino acid-producing microorganisms in the prior art. Namely, an ordinary medium is used containing a carbon source, a nitrogen source and inorganic ions, and optionally organic trace nutrients such as amino acids, vitamins and the like.

[0070] As the carbon source, glucose, sucrose, lactose and the like, as well as starch hydrolysate, whey, molasses and the like containing them may be used. As the nitrogen source, ammonia gas, aqueous ammonium, ammonium salt and the like can be used. Incidentally, when a nutrient requiring mutant strain for amino acids or the like is used as the host, it is necessary to suitably add the nutrient such as amino acid or the like required by the strain to the medium. An example of the medium for lysine production is shown in Table 1 below as a medium to be used for amino acid production. Incidentally, calcium carbonate is added to other components after being separately sterilized.

Table 1

Medium component	Blending amount
glucose	5 g/dl

15

20

25

30

35

Table 1 (continued)

Medium component	Blending amount
(NH ₄) ₂ SO ₄	2.5 g/dl
KH ₂ PO ₄	0.2 g/dl
MgSO ₄ •7H ₂ O	0.1 g/dl
yeast extract	0.05 g/dl
thiamine hydrochloride	1 μg/l
biotin	300 μg/l
FeSO ₄ ·7H ₂ O	1 mg/dl
MnSO ₄ ·4H ₂ O	1 mg/dl
calcium carbonate	2.5 g/dl
(pH 7.0)	

[0071] The cultivation is performed until generation and accumulation of amino acids substantially stop while suitably controlling pH and temperature of the medium under an aerobic condition. In order to collect amino acids thus accumulated in the cultivated medium, an ordinary method can be applied.

BRIEF DESCRIPTION OF THE DRAWINGS

10

15

20

25

35

45

[0072]	Fig. 1	shows	arowth	inhibition	bv	3-bromopyruvate.
--------	--------	-------	--------	------------	----	------------------

- [0073] Fig. 2 shows growth inhibition by aspartate-β-hydrazide.
- [0074] Fig. 3 shows growth inhibition by DL-threo-β-hydroxyaspartate.
- [0075] Fig. 4 shows effects of inhibition recovering substances on 3-bromopyruvate.
- [0076] Fig. 5 shows effects of inhibition recovering substances on aspartate-β-hydrazide.
- [0077] Fig. 6 shows effects of inhibition recovering substances on DL-threo-β-hydroxyaspartate.
- [0078] Fig. 7 shows influences exerted on growth by growth recovering factors.
- [0079] Fig. 8 shows inhibition of phosphoenolpyruvate carboxylase by growth inhibitory substances.
- [0080] Fig. 9 shows inhibition of phosphoenolpyruvate carboxylase of the present invention by aspartic acid.
- [0081] Fig. 10 shows inhibition of phosphoenolpyruvate carboxylase of the present invention by aspartic acid.

BEST MODE FOR CARRYING OUT THE INVENTION

[0082] The present invention will be explained more concretely below with reference to Examples.

Example 1: acquisition of mutant phosphoenolpyruvate carboxylase gene

- [0083] A mutant gene was prepared by using a plasmid pS2 obtained by inserting a phosphoenolpyruvate carboxylase gene having been cloned and determined for its base sequence into a <u>Sall</u> site of a vector plasmid pBR322. pS2 has an ampicillin resistance gene as a drug resistance marker gene (Sabe, H. et al., <u>Gene</u>, 31, 279-283 (1984)). The nucleotide sequence of the phosphoenolpyruvate carboxylase gene contained in pS2 is the same as that contained in the aforementioned plasmid pT2.
- [0084] pS2 DNA was treated at 75 °C for 2 hours with a hydroxylamine treating solution (20 μg/ml pS2 DNA, 0.05 M sodium phosphate (pH 6.0), 1 mM EDTA, 0.4 M hydroxylamine). Because of influence by pH on the hydroxylamine treatment, 80 μl of 1 M hydroxylamine HCl and 1 mM EDTA solution having a pH adjusted to 6.0 with sodium hydroxide, 100 μl of 0.1 M sodium phosphate (pH 6.0) and 1 mM EDTA solution, and TE (10 mM Tris-HCl, 1 mM EDTA) buffer containing 2 μg of pS2 DNA were mixed, to finally provide 200 μl with water.
- [0085] The aforementioned condition is a condition in which transformants has a survival ratio of 0.2 % based on a state before the treatment in an ampicillin-containing medium when Escherichia coli HB101 is transformed with pS2 after the treatment.
 - [0086] Escherichia coli HB101 was transformed with pS2 treated with hydroxylamine, which was spread on a solid plate medium containing ampicillin to obtain about 10000 colonies of transformants. They were suspended in a liquid medium, and spread on a solid plate medium containing any one of 3-bromopyruvate (3BP), aspartate-β-hydroxamate (AHX), aspartate-β-hydrazide (AHY) and DL-threo-β-hydroxyaspartate (βHA) as the analog compounds of aspartic acid at a concentration near a minimal inhibitory concentration to give 10³ to 10⁵ cells per one medium plate, and growing colonies were selected.

[0087] From 100 strains of analog compound resistant strains thus obtained, phosphoenolpyruvate carboxylase produced by each of them was partially purified in accordance with a method described in The Journal of Biochemistry, Vol. 67, No. 4 (1970), and inhibition of enzyme activity by the analog compounds was investigated. Measurement of the enzyme activity was performed in the same manner as described above.

[0088] Further, plasmids were isolated from bacterial strains producing mutant enzymes with activities not inhibited by the analog compounds, and were introduced into <u>Escherichia coli</u> PCR1 as a phosphoenolpyruvate carboxylase deficient strain (Sabe, H. et al., Gene, 31, 279-283 (1984)), to confirm production of the mutant enzymes.

[0089] Five transformants harboring mutant enzyme genes were thus obtained. As a result of determination of base sequences of these genes, 2 strains had the same mutation, and 4 kinds of mutant genes were obtained. The transformants harboring them were designated as AJ12907, AJ12908, AJ12909 and AJ12910, and were deposited in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technologyl-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan; zip code 305) on August 3, 1993 under the deposition numbers of FERM P-13774, FERM P-13775, FERM P-13776 and FERM P-13777, transferred from the original deposition to international deposition based on Budapest Treaty on July 11, 1994 and has been deposited as deposition numbers of FERM BP-4734, FERM BP-4735, FERM BP-4736, FERM BP-4737, respectively in this order. Further, the plasmids possessed by them were designated as pBP5, pHA19, pBP122 and pR6 respectively in this order. Mutations possessed by the phosphoenolpyruvate carboxylase genes contained in each of the plasmids are shown in Table 2. Numerical values in the table indicate nucleotide numbers or amino acid numbers in SEQ ID NO:1.

20

25

30

35

10

Table 2

Transformant	Plasmid	Mutation	Amino acid replacement associated with mutation
AJ12907	pBP5	²¹⁰⁹ G→A	⁶²⁵ Glu→Lys
AJ12908	pHA19	⁹⁰¹ G→A	²²² Arg→His
		⁹⁰³ G→A	²²³ GluLys
AJ12909	pBP122	¹⁰⁹⁹ C→T	²⁸⁸ Ser→Phe
		¹¹⁰¹ G→A	²⁸⁹ Glu→Lys
		¹⁸⁸⁹ G→A	⁵⁵¹ Met→lle
		²⁶⁴⁶ G→A	⁸⁰⁴ Glu→Lys
AJ12910	pR6	²⁸³⁵ G→A	⁸⁶⁷ Ala→Thr

[0090] Incidentally, selection was performed for AJ12907 and AJ12909 in a medium containing 500 μ g/ml of 3BP, for AJ12908 in a medium containing 1000 μ g/ml of β HA, and for AJ12910 in a medium containing 500 μ g/ml of AHY.

Example 2: mutant phosphoenolpyruvate carboxylase

[0091] Sensitivity to aspartic acid was investigated for phosphoenolpyruvate carboxylases produced by the aforementioned 4 transformants. These bacterial strains are deficient in the phosphoenolpyruvate carboxylase gene originating from the host, so that produced phosphoenolpyruvate carboxylase originates from the plasmid.

[0092] Sensitivity to aspartic acid was investigated in accordance with a known method (Yoshinaga, T., Izui, K. and Katsuki, H., <u>J. Biochem.</u>, 68, 747-750 (1970)). Namely, as a result of measurement of the enzyme activity produced by each of the transformants or <u>Escherichia coli</u> harboring pS2 in the presence of acetyl-coenzyme A known to affect the activity in an activity measurement system at a concentration of 0.1 mM or 1 mM, sensitivity to aspartic acid was measured as shown in Figs. 9 and 10.

[0093] According to the result, it is apparent that the wild type enzyme loses its activity when aspartic acid is at a high concentration, while the mutant phosphoenolpyruvate carboxylase of the present invention substantially continues to maintain its activity.

Example 3: fermentative production of L-threonine by Escherichia coli with introduced mutant phosphoenolpyruvate carboxylase

[0094] As threonine-producing bacteria of Escherichia coli, B-3996 strain (Japanese Patent Laid-open No. 3-501682 (PCT)) has the highest production ability among those known at present. Thus upon evaluation of the mutant phosphoenolpyruvate carboxylase, B-3996 was used as the host. This B-3996 strain has been deposited in Research Institute for Genetics and Industrial Microorganism Breeding under a registration number of RIA 1867. Further, pBP5 was selected as the mutant phosphoenolpyruvate carboxylase to be evaluated, which was subjected to an experiment. [0095] The plasmid pBP5 having the mutant phosphoenolpyruvate carboxylase was introduced into Escherichia coli

B-3996 in accordance with a method of Hanahan (J. Mol. Biol., Vol. 106, p577 (1983)), and a transformant was isolated. As a control, Escherichia coli B-3996 was transformed in the same manner with pS2 as the plasmid to express the wild type phosphoenolpyruvate carboxylase gene.

[0096] When Escherichia coli B-3996 and the transformants therefrom were respectively inoculated in a 500 ml of Sakaguchi flask poured with 20 ml of a medium having a composition in Table 3, and cultivated at 37 °C for 40 hours to investigate a production amount of L-threonine, then results shown in Table 4 were obtained. Incidentally, the aforementioned medium was separated into two: glucose and MgSO₄•7H₂O, and the other components, and adjusted to have a pH of 7.0 with KOH followed by autoclaving at 115 °C for 10 minutes, and then, after mixing them, separately sterilized CaCO₃ was added by 30 g/l.

Table 3

Component	Blending amount (g/l)
glucose	40
(NH ₄) ₂ SO ₄	16
KH ₂ PO ₄	1
MgSO ₄ •7H ₂ O	1.
FeSO ₄ •7H ₂ O	0.01
MnSO ₄ •5H ₂ O	0.01
yeast extract (Difco)	2
L-Met	0.5
CaCO ₃	30

Table 4

Bacterial strain (g/l)	Threonine production amount
Escherichia coli B-3996	15.7
Escherichia coli B-3996/pS2	15.8
Escherichia coli B-3996/pBP5	16.8

[0097] As clarified from the result, <u>Escherichia coli</u> B-3996/pBP5 harboring the mutant enzyme expression plasmid having the DNA sequence of the present invention had an improved threonine-producing ability as compared with <u>Escherichia coli</u> B-3996/pS2 harboring the plasmid to express the wild type enzyme.

Example4: fermentative production of L-glutamic acid by Escherichia coli with introduced mutant phosphoenolpyruvate carboxylase

[0098] As glutamic acid-producing bacteria of <u>Escherichia coli</u>, <u>Escherichia coli</u> AJ-12628 described in Japanese Patent Laid-open No. 4-11461 has the highest production ability among those known at present. Thus upon evaluation of the mutant phosphoenolpyruvate carboxylase, AJ-12628 was used as the host.

[0099] The AJ-12628 strain has been deposited in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology under a registration number of FERM BP-385 Further, pBP5 was selected as the mutant phosphoenolpyruvate carboxylase to be evaluated, which was subjected to an experiment.

[0100] The plasmid pBP5 having the mutant phosphoenolpyruvate carboxylase was introduced into <u>Escherichia coli</u> AJ-12628 in accordance with a method of Hanahan (<u>J. Mol. Biol.</u>, Vol. 106, p577 (1983)), and a transformant was isolated. In the same manner, a transformant of <u>Escherichia coli</u> AJ-12628 with pS2 was isolated.

[0101] When Escherichia coli AJ-12628 and the transformants therefrom were respectively inoculated in a 500 ml of Sakaguchi flask poured with 20 ml of a medium having a composition in Table 5, and cultivated at 37 °C for 36 hours to investigate a production amount of L-glutamic acid, then results shown in Table 6 were obtained. Incidentally, the aforementioned medium was separated into two: glucose and MgSO₄•7H₂O, and the other components, and adjusted to have a pH of 7.0 with KOH followed by autoclaving at 115 °C for 10 minutes, and then, after mixing them, separately sterilized CaCO₃ was added by 30 g/l.

55

10

15

20

25

Table 5

Component	Blending amount (g/l)
glucose	40
(NH ₄) ₂ SO ₄	16
KH ₂ PO ₄	1
MgSO ₄ •7H ₂ O	1
FeSO ₄ •7H ₂ O	0.01
MnSO ₄ •5H ₂ O	0.01
yeast extract (Difco)	2
CaCO ₃	30

5

10

15

20

25

30

Table 6

Bacterial strain	Glutamic acid production amount (g/l)
Escherichia coli AJ-12628	18.0
Escherichia coli AJ-12628/pS2	18.3
Escherichia coli AJ-12628/pBP5	19.6

[0102] As clarified from the result, <u>Escherichia coli</u> AJ-12628/pBP5 harboring the mutant enzyme expression plasmid having the DNA sequence of the present invention had an improved glutamate-producing ability as compared with Escherichia coli AJ-12628/pS2 harboring the plasmid to express the wild type enzyme.

Example 5: production of L-lysine by coryneform bacterium with introduced mutant phosphoenolpyruvate carboxylase

[0103] In order to introduce and express the mutant gene in a coryneform bacterium, a promoter originating from a bacterium belonging to the genus <u>Brevibacterium</u> was obtained, and was ligated with the mutant gene to prepare an expression type plasmid. Further, it was introduced into a bacterium belonging to the genus <u>Brevibacterium</u> to perform production of L-lysine.

<1> Acquisition of aspartokinase (AK) gene originating from bacterium belonging to the genus Brevibacterium

[0104] Chromosomal DNA was prepared according to an ordinary method from a Brevibacterium lactofermentum (Corynebacterium glutamicum) wild strain (ATCC 13869). An AK gene was amplified from the chromosomal DNA by PCR (polymerase chain reaction; see White, T. J. et al., Trends Genet., 5, 185 (1989)). For DNA primers used in the amplification, an oligonucleotide of 23 mer (SEQ ID NO:3) and an oligonucleotide of 21 mer (SEQ ID NO:4) were synthesized to amplify a region of about 1643 bp coding for the AK gene based on a sequence known in Corynebacterium glutamicum (see Molecular Microbiology (1991) 5 (5), 1197-1204, Mol. Gen. Genet. (1990) 224, 317-324).

[0105] The synthesis of DNA was performed in accordance with an ordinary phosphoamidite method (see <u>Tetrahedron Letters</u> (1981), 22, 1859) using a DNA synthesizer model 380B produced by Applied Biosystems Co. In the PCR reaction, DNA Thermal Cycler PJ2000 type produced by Takara Shuzo Co., Ltd. was used, and gene amplification was performed by using <u>Taq</u> DNA polymerase in accordance with a method designated by the manufacturer.

[0106] An amplified gene fragment of 1643 kb was confirmed by agarose gel electrophoresis, and then the fragment cut out from the gel was purified by an ordinary method, and was cleaved with restriction enzymes Nrul (produced by Takara Shuzo Co., Ltd.) and EcoRl (produced by Takara Shuzo Co., Ltd.) pHSG399 (see Takeshita, S. et al.; Gene (1987), 61, 63-74) was used for a cloning vector for the gene fragment. pHSG399 was cleaved with a restriction enzyme Smal (produced by Takara Shuzo Co., Ltd.) and a restriction enzyme EcoRl, and ligated with the amplified AK gene fragment.

[0107] Ligation of DNA was performed by a designated method by using a DNA ligation kit (produced by Takara Shuzo Co., Ltd.). In such a manner, a plasmid was manufactured in which pHSG399 was ligated with the AK gene fragment amplified from Brevibacterium chromosome. The plasmid having the AK gene originating from ATCC 13869 as the wild strain was designated as p399AKY.

<2> Determination of base sequence of AK gene of Brevibacterium lactofermentum

[0108] The AK plasmid, p399AKY was prepared, and the base sequence of the AK gene was determined. Determination of the base sequence was performed in accordance with the method of Sanger et al. (F. Sanger et al.: Proc. Natl. Acad. Sci. USA, 74, 5463 (1977) and so forth). Results are shown in SEQ ID NO:5 and SEQ ID NO:7. The DNA fragments have two open reading frames which correspond to α -subunit and β -subunit of AK, respectively. In SEQ ID NO:5 and SEQ ID NO:7, amino acid sequences corresponding to each of the open reading frames with nucleotide sequences. Further, only the amino acid sequences corresponding to each of the open reading frames are shown in SEQ ID NO:6 and SEQ ID NO:8.

<3> Preparation of phosphoenolpyruvate carboxylase expression plasmid

[0109] Sall fragments of about 4.4 kb containing phosphoenolpyruvate carboxylase genes were extracted from pS2 as the plasmid having the wild type phosphoenolpyruvate carboxylase gene and pBP5 as the plasmid having the obtained mutant phosphoenolpyruvate carboxylase gene, and inserted into a Sall site of a plasmid vector pHSG399 universally used for Escherichia coli. Manufactured plasmids were designated as pHS2 for the wild type and as pHBP5 for the mutant.

[0110] In order to convert pHS2 and pHPB5 into plasmids to express in <u>Brevibacterium</u>, a promoter and a replication origin of a plasmid for functioning in <u>Brevibacterium</u> were introduced. As the promoter, a gene fragment containing one from 1st <u>Nrul</u> site to 207th <u>ApaLI</u> site of the base sequence, which was postulated to be a promoter region of the cloned AK gene, was extracted from p399AKY, and inserted into an <u>Aval</u> site located about 60 bp before the structural genes of pHS2 and pHBP5 to allow the transcription direction to be in a regular direction.

[0111] Further, a gene fragment to enable autonomously replication of the plasmid in <u>Brevibacterium</u>, namely the replication origin of the plasmid was introduced into a site located on the vector. A gene fragment containing the replication origin of the plasmid was extracted from a vector pHC4 for <u>Brevibacterium</u> (see paragraph No. 10 in Japanese Patent Laid-open No. 5-7491; <u>Escherichia coli</u> AJ12039 harboring the same plasmid is deposited in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology, to which a deposition number of FERM P12215 is given), and restriction enzyme sites at both termini were modified into <u>Pst</u>I sites by introduction of linkers.

[0112] This fragment was introduced into a <u>Pstl</u> site in a vector portion of the plasmid added with the promoter derived from <u>Brevibacterium</u>. Constructed phosphoenolpyruvate carboxylase-expressing plasmids were designated as pHS2B for a wild type phosphoenolpyruvate carboxylase plasmid originating from pS2 and as pHBP5B for a mutant phosphoenolpyruvate carboxylase plasmid originating from pBP5, respectively.

<4> Production of L-lysine by using phosphoenolpyruvate carboxylase expression type plasmid

[0113] Prepared pHS2B and pHBP5B were respectively introduced into AJ3463 as an L-lysine-producing bacterium of <u>Brevibacterium lactofermentum</u> (see Japanese Patent Publication No. 51-34477). For introduction of the gene, a transformation method employing electric pulse was used (see Japanese Patent Laid-open No. 2-207791). The host strain and transformants were cultivated with shaking for 72 hours at 31.5 °C in a lysine production medium having a composition in Table 7. The aforementioned medium was prepared such that those except for CaCO₃ among the components listed in the table were added to 1 1 of water, and adjusted to have a pH of 8.0 with KOH followed by autoclaving at 115 °C for 15 minutes, and then CaCO₃ having been subjected to heat sterilization was further added. Accumulated amounts of L-lysine in the medium after cultivation are shown in Table 8.

Table 7

Blending amount in 1 L		
100 g		
55 g		
35 ml		
1 g		
1 g		
20 g		
5 g		

*: product of Ajinomoto Co., Ltd. (trade name: Mamenou)

55

50

45

10

30

Table 7 (continued)

Component	Blending amount in 1 L
nicotinic acid amide	5 mg
FeSO ₄ •7H ₂ O	0.01 g
MnSO ₄ •5H ₂ O	0.01 g
CaCO ₃	50g

10

15

20

30

35

40

45

50

55

Table 8

Bacterial strain	Lysine production amount (g/l)
Brevibacterium lactofermentum AJ3463	20.0
Brevibacterium lactofermentum AJ3463/pHS2B	22.0
Brevibacterium lactofermentum AJ3463/pHBP5B	25.0

[0114] As shown in the result, <u>Brevibacterium lactofermentum</u> AJ3463/pHBP5B harboring the mutant enzyme expression plasmid having the DNA sequence of the present invention had an improved lysine-producing ability as compared with <u>Brevibacterium lactofermentum</u> AJ3463/pHS2B harboring the plasmid to express the wild type enzyme.

INDUSTRIAL APPLICABILITY

[0115] The DNA sequence of the present invention codes for the mutant phosphoenolpyruvate carboxylase, and the microorganism harboring this DNA sequence produces the aforementioned enzyme.

[0116] The mutant phosphoenolpyruvate carboxylase of the present invention does not substantially undergo activity inhibition by aspartic acid, so that it can be utilized for fermentative production of amino acids subjected to regulation of biosynthesis by aspartic acid and the like.

SEQUENCE LISTING

[0117]

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Ajinomoto Co. Inc.
 - (A) NAME:
 - (B) STREET: 15-1, Kyobashi 1-chome, Chuo-ku
 - (C) CITY: Tokyo
 - (D) STATE OR PROVINCE:
 - (E) COUNTRY: Japan
 - (F) POSTAL CODE: 104
 - (ii) TITLE OF INVENTION: Mutant Phosphoenolpyruvate Carboxylase, Its gene, and Production Method of Amino Acid
 - (iii) NUMBER OF SEQUENCES:12
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (v) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:

	(C) CLASSIFICATION:	
	(vi) PRIOR APPLICATION DATA:	
5	(A) APPLICATION NUMBER: (B) FILING DATE:	
	(2) INFORMATION FOR SEQ ID NO:1:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 5186 (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: circular (ii) MOLECULAR TYPE: othergenomic DNA and vector DNA (iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Escherichia coli	
25	(ix) FEATURE:	
20	(A) NAME/KEY: CDS (B) LOCATION: 2372888	
30	(xi) SEQUENCE DESCRIFTION: SEQ ID NO:2:	
•	TOGACOGOG ATTITITAAC ATTITCCATAA GITAOGCITA TITAAAGOGT OGIGAATITA ATGACGIAAA TITOCIGCIAT TIATTOGITT GCTGAAGOGA TITOGCAGCA TITIGAOGICA COGCITITAC GTGGCITTAT AAAAGAOGAC GAAAAGCAAA GCCCGAGCAT ATTOGCGCCA	60 120 180
35		
40		

	ATG	CGACC	erg 1	\AGG/	ATAC	AG GO	CTA?	CAA	A CG	ATAA(GATG	GGG	rgrc:	rgg (GGTA	AT	236
	ATG	AAC	GAA	CAA	TAT	TCC	GCA	TTG	CGT	AGT	AAT	GTC	AGT	ATG	CTC	GGC	284
	Met	Asn	Glu	Gln	Tyr	Ser	Ala	Leu	Arg	Ser	Asn	Val	Ser	Met	Leu	Gly	
5	1				5					10					15		
	AAA	GTG	CTG	GGA	GAA	ACC	ATC	AAG	GAT	GCG	TTG	GGA	GAA	CAC	ATT	CTT	332
	Lys	Val	Leu	Gly	Glu	Thr	Ile	Lys	Asp	Ala	Leu	Gly	Glu	His	Ile	Leu	
				20					25					30			
10	GAA	CCC	GTA	GAA	ACT	ATC	CGT	AAG	TTG	TOG	AAA	TCT	TCA	CCC	GCT	GGC	380
	Glu	Arg	Val	Glu	Thr	Ile	Arg	Lys	Leu	Ser	Lys	Ser	Ser	Arg	Ala	Gly	
			35					40					45				
	AAT	Gat	CCT	AAC	CCC	CAG	GAG	TTG	CIC	ACC	ACC	TTA	CAA	AAT	TTG	TCG	428
15	Asn	Asp	Ala	Asn	Arg	Gln	Glu	Leu	Leu	Thr	Thr	Leu	Gln	Asn	Leu	Ser	
		50					55					60					
		GAC															476
		ysb	Glu	Leu	Leu		Val	Ala	Arg	Ala		Ser	Gln	Phe	Leu		
20	65					70					75					80	
20		GCC															524
	Leu	Ala	Asn	Inr		GIU	GIN	JAL	HIS		TTG	Ser	PTO	rys	-	GIU	
	~~	~~	300	220	85	CAA	cmc	7 MC	~~	90	200	CITIC	CCIII		95	222	E72
		GCC															572
25	WIG	Ala	Ser.	100	PIO	Giu	Va1.	IIG	105	Aty	TILL	Leu	Arg	110	Leu	råa	
	220	CAG	ccc		CTC	ACC	GAA	GAC		איזיב	444	222	CCA		CAA	TCC	620
		Gln															020
			115					120			-70	~,,~	125	•	014	-	
30	CTG	TCG		GAA	CTG	GTC	CTC		GCT	CAC	CCA	ACC		ATT	ACC	CGT	668
		Ser															٠,
		130					135					140			,	•	
	CCT	ACA	CTG	ATC	CAC	AAA	ATG	GTG	GAA	GTG	AAC	GCC	TGT	TTA	AAA	CAG	716
35	Arg	Thr	Leu	Ile	His	Lys	Met	Val	Glu	Val	Asn	Ala	Cys	Leu	Lys	Gln	
	145	•				150					155					160	
	CTC	GAT	AAC	AAA	GAT	ATC	GCT	GAC	TAC	GAA	CAC	AAC	CAG	CTG	ATG	CCT	764
	Leu	Asp	Asn	Lys	Asp	Ile	Ala	Asp	Tyr	Glu	His	Asn	Gln	Leu	Met	Arg	
40					165					170					175		
		CTG															812
	Arg	Leu	Arg		Leu	Ile	Ala	Gln	Ser	Trp	His	Thr	Asp		Ile	Arg	
				180					185					190			
		CTG															860
45	Lys	Leu		Pro	Ser	Pro	Val		Glu	Ala	Lys	Trp		Phe	Ala	Val	
		~ >-	195					200					205				202
		GAA															908
	Val	Glu	ASN	ser	Leu	TTP		GTĀ	val	Pro	ASN		Leu	Arg	GLu	rea	
50		210					215					220					

	AAC	GAA	CAA	CTG	GAA	GAG	AAC	CTC	GGC	TAC	AAA	CTG	∞	GTC	GAA	TTT	956
					Glu												
5	225					230			_	_	235					240	
•	GTT	∞	GTC	CGT	TTT	ACT	TCG	TGG	ATG	GGC	GGC	GAC	œ	GAC	GGC	AAC	1004
	Val	Pro	Val	Arg	Phe	Thr	Ser	Trp	Met	Gly	Gly	Asp	Arg	Asp	Gly	Asn	
					245					250					255		
10	∞	AAC	GTC	ACT	GCC	GAT	ATC	ACC	CCC	CAC	GTC	CTG	CTA	CTC	AGC	CGC	1052
10	Pro	Asn	Val		Ala	Asp	Ile	Thr	_	His	Val	Leu	Leu		Ser	Arg	
				260					265		•			270			
	_				GAT												1100
	Trp	Lys		Thr	Asp	Leu	Phe		Lys	yab	Ile	Gln		Leu	Val	Ser	
15		~~~	275		~~~	~~ •	~~~	280	~~		~~~		285	~~~	~~~	~~~	
					GTT												1148
	GIU	290	ser	met	Val	GIU	295	THE	PIO	GIU	Leu	300	AIG	Leu	vaı	GIĀ	
	CAA		ىلى	ccc	GCA	GAA		ጥልጥ	CCC	ጥልጥ	CIIC		222	220	CINC	CCT	1196
20	_				Ala												1190
	305	024	013	744		310		-1-	.ug	-3~	315	.~•	2,3		سجد	320	
		œ	CTG	ATG	GCG		CAG	GCA	TGG	CTG		GCG	CCC	CTG	AAA		1244
					Ala												
25		•			325				_	330					335		
	GAA	GAA	CTG	CCA	AAA	CCA	GAA	GGC	CTG	CTG	ACA	CAA	AAC	GAA	GAA	CTG	1292
	Glu	Glu	Leu	Pro	Lys	Pro	Glu	Gly	Leu	Leu	Thr	Gln	Asn	Glu	Glu	Leu	
				340					345					350			
30					TAC	_							_				1340
	Trp	Glu		Leu	Tyr	Ala	Cys		Gln	Ser	Leu	Gln		Cys	Gly	Met	
	~~		355	~~~		~~~	O> #	360	~~~	~~	.~	~~~	365	~~~	~~~		1000
					AAC												1388
35	GIA	370	TTE	YIA	Asn	GIĀ	75 375	Leu	Den	Asp	THE	380	AIG	Arg	AST	гÃе	
	יובאה		œ	لابلت	<u></u>	CIRC		CCT	יועדע	СУТ	ATY		CAG	GAG	AGC	ACC	1436
					Pro												1400
	385		2			390		3			395	5				400	
40		CAT	ACC	GAA	GCG		GGC	GAG	CTG	ACC		TAC	CTC	GGT	ATC		1484
40	Arg	His	Thr	Glu	Ala	Leu	Gly	Glu	Leu	Thr	Arg	Tyr	Leu	Gly	Ile	Gly	
					405		•			410	_	-		_	415		
	GAC	TAC	GAA	AGC	TGG	TCA	GAG	GCC	GAC	AAA	CAG	GCG	TTC	CTG	ATC	CCC	1532
4=	Asp	Tyr	Glu	Ser	Trp	Ser	Glu	Ala	Asp	Lys	Gln	Ala	Phe	Leu	Ile	Arg	
45				420					425					430			
					AAA												1580
	Glu	Leu		Ser	Lys	Arg	Pro		Leu	Pro	Arg	Asn	_	Gln	Pro	Ser	
			435					440			 -		445		-		
50					GAA												1628
	ATA		TUL	Arg	Glu	vaT		ASP	JIJI.	cys	GIN		тте	W19	GIU	vTg	
		450					455					460					

			GGC Gly														1676
	465	0111	OLJ			470		-1-			475			-1-		480	
5		GAC	GTA	CTG	GCT	-	CAC	CTG	CTG	CTG	AAA	GAA	GCG	GGT	ATC	GGG	1724
			Val														
		•			485					490					495		
	TTT	GCG	ATG	∞	GTT	CCT	∞	CTG	TTT	GAA	ACC	CTC	GAT	GAT	CTG	AAC	1772
10	Phe	Ala	Met	Pro 500	Val	Ala	Pro	Leu	Phe 505	Glu	Thr	Leu	Asp	Asp 510	Leu	Asn	
	AAC	CCC	AAC	GAT	GTC	ATG	ACC	CAG	CTG	CTC	AAT	ATT	GAC	TGG	TAT	CGT	1820
	Asn	Ala	Asn	Asp	Val	Met	Thr	Gln	Leu	Leu	Asn	Ile	Asp	Trp	Tyr	Arg	
15			515					520					525				
15	GGC	CTG	ATT	CAG	GGC	AAA	CAG	ATG	GTG	ATG	ATT	GGC	TAT	TCC	GAC	TCA	1868
	Gly		Ile	Gln	Gly	Lys		Met	Val	Met	Ile		Tyr	Ser	Asp	Ser	
		530				~~~	535		~~	maa		540	~	~~	~~~	221	.016
20			GAT														1916
20	545	гÃа	Asp	YTA	GTĀ	550	Met	VIG	MIG	Ser	555	wra	GIN	TYL	GIN	560	
		CAT	GCA	בידים	ATC:		ACC	TCC	GAA	AAA		CCT	ልጥጥ	GAG	CTG		1964
			Ala														1,04
05					565	- 4 -		- 4		570	_				575		
25	TTG	TTC	CAC	GGT	œc	GGC	GGT	TCC	ATT	GGT	CCC	GGC	GGC	GCA	CCT	CCT	2012
	Leu	Phe	His	Gly	Arg	Gly	Gly	Ser	Ile	Gly	Arg	Gly	Gly	Ala	Pro	Ala	
				580					585					590			
			GCC														2060
30	His	Ala	Ala	Leu	Leu	Ser	Gln		Pro	Gly	Ser	Leu		Gly	Gly	Leu	
		~	595		010	~~~	~~	600		~~~	mmm		605	~~	~~~	001	2100
			ACC														2108
	Aty	610	Thr	GIU	GIII	GIŞ	615	rec	TTE	Arg	FIRE	620	ığı	GIY	Leu	PLO	
35	GAA		ACC	GTC	AGC	AGC		TCG	CTT	TAT	ACC		GCG	ATT	CTG	GAA	2156
			Thr														
	625					630				•	635	•				640	
	GCC	AAC	CTG	CTG	CCA	∞	∞	GAG	∞	AAA	GAG	AGC	TGG	CCT	\cos	ATT	2204
40	Ala	Asn	Leu	Leu	Pro	Pro	Pro	Glu	\mathbf{Pro}	Lys	Glu	Ser	Trp	Arg	Arg	Ile	
					645					650					655		
			GAA														2252
	Met	Asp	Glu		Ser	Val	Ile	Ser		yab	Val	Tyr	Arg		Tyr	Val	
45				660	~~ -			~~	665				~~	670			0000
			AAC														2300
	Arg	GTA	Asn 675	гÃ2	Asp	rne	AST	680	TYP	rne	AIY	ser	685	THE	PIO	GIU	
	440	CAA	CTG	ccc	444	Calica	œ		යයා	ጥሮል	ىرى	CCC:		444	ىرى	ccc	2348
50			Leu														2010
		690	40	~~3	~, 0		695		~_1		9	700		_,_	9	9	

	CA	ACC	CCC	CCC	GTC	GAG	TYCA	CTA	ന്ദ്ര	GCC	חיידים	ന്ന	TCC	ATC	TTC	GCC	2396
					Val												20,70
	705	11111	GLY	OLY	Vul	710	-		9		715	110		110	1 116	720	
5		»CC	CAA	AAC	CGT		ΔTYC	CHC	ccc	CCC		CALC	CCT	CCJ	CCT		2444
					Arg												2444
	пр	ти	GIII	NSII	725	Deu	r.e.c	Leu	FIO	730	ııp	Deu	GLY	Ma	735	1111.	
40					GTG												2492
10	Ala	Leu	Gln	Lys 740	Val	Val	Glu	Asp	Gly 745	Lys	Gln	Ser	Glu	Leu 750	Glu	Ala	
	ATG	TGC	∞	GAT	TGG	CCA	TTC	TTC	TCG	ACG	CGT	CTC	GGC	ATG	CTG	GAG	2540
15	Met	Cys	Arg 755	Asp	Trp	Pro	Phe	Phe 760	Ser	Thr	Arg	Leu	Gly 765	Met	Leu	Glu	
	ATG	GTC		GCC	AAA	GCA	GAC		TGG	CTG	GCG	GAA		TAT	GAC	CAA	2588
			_	_	Lys												
		770			•	-	7 75	-	•			780	-	•			
	CGC		GTA	GAC	AAA	GCA		TGG	∞	TTA	GGT	AAA	GAG	TTA	CGC	AAC	2636
20	Arg	Leu	Val	Asp	Lys	Ala	Leu	Trp	Pro	Leu	Gly	Lys	Glu	Leu	Arg	Asn	
	785			•	•	790		-			795	-			Ū	800	
		CAA	GAA	GAA	GAC	ATC	AAA	GTG	GTG	CTG	GCG	ATT	GCC	AAC	GAT	TCC	2684
	Leu	Gln	Glu	Glu	Asp	Ile	Lys	Val	Val	Leu	Ala	Ile	Ala	Asn	Asp	Ser	
25					805		_	٠.		810					815		
	CAT	CTG	ATG	GCC	GAT	CTG	∞	TGG	ATT	GCA	GAG	TCT	ATT	CAG	CTA	CCC	2732
	His	Leu	Met	Ala	Asp	Leu	Pro	Trp	Ile	Ala	Glu	Ser	Ile	Gln	Leu	Arg	
				820					825					830			
30	AAT	ATT	TAC	ACC	GAC	∞	CTG	AAC	GTA	TTG	CAG	α	GAG	TTG	CIG	CAC	2780
	Asn	Ile	Tyr	Thr	Asp	\mathbf{Pro}	Leu	Asn	Val	Leu	Gln	Ala	Glu	Leu	Leu	His	
	•		835					840				•	845				
	CCC	TCC	CCC	CAG	GCA	GAA	AAA	GAA	GGC	CAG	GAA	∞	GAT	CCT	œc	GTC	2828
	Arg	Ser	Arg	Gln	Ala	Glu	Lys	Glu	Gly	Gln	Glu	Pro	Asp	Pro	Arg	Val	
35		850					855					860					
					ATG												2876
		Gln	Ala	Leu	Met	_	Thr	Ile	Ala	Gly		Ala	Ala	Gly	Met		
	865					870					875					880	0005
40				TAAT	CTIC	CT (FITC.	IGCA	AA CX	XIQ.	FIGC	r Telej	rgcg	CGAG			2925
		Thr	-		~~~~	n	.~	~	- ~~~	~~~		20020		n~m /	~~~	~~~	2005
																CATTT	2985
				_			-			-			_	_		ATTTTT	3045
45																EGGAAA	3105
																ETCAT FATTCA	3165
																IGCTCA	3225 3285
																GGTTA	3345
																ACGTTT	3405
50																	3405
																IGACGC STACTC	3525
	انانانا)AA() לנואל	AAC.	الحاجب	יר פ	لتجدد	JIMU	- C17	31 IU	CHO	MAIL	2MC.T.	100	LIGAL	JINCIC.	3323

	ACCAGTCACA	GAAAAGCATC	TTACGGATGG	CATGACAGTA	AGAGAATTAT	GCAGTGCTGC	3585
	CATAACCATG	AGTGATAACA	CTGCGGCCAA	CTTACTTCTG	ACAACGATCG	GAGGACCGAA	3645
_	GGAGCTAACC	GCTTTTTTGC	ACAACATGGG	GGATCATGTA	ACTOGCCTTG	ATCCTTCCCA	3705
5	ACCGGAGCTG	AATGAAGCCA	TACCAAACGA	CGAGCGTGAC	ACCACGATGC	CTGTAGCAAT	3765
	GGCAACAACG	TTGCGCAAAC	TATTAACTGG	CGAACTACTT	ACTCTAGCTT	CCCGGCAACA	3825
	ATTAATAGAC	TGGATGGAGG	CGGATAAAGT	TGCAGGACCA	CTTCTGCGCT	CCCCCTTCC	3885
	GCCTGGCTGG	TTTATTGCTG	ATAAATCTGG	AGCCGGTGAG	CCTCCCTCTC	GCGGTATCAT	3945
10	TGCAGCACTG	GGGCCAGATG	GTAAGCCCTC	COGTATOGTA	GTTATCTACA	CGACGGGGAG	4005
	TCAGGCAACT	ATGGATGAAC	GAAATAGACA	GATCGCTGAG	ATAGGTGCCT	CACTGATTAA	4065
	GCATTGGTAA	CTGTCAGACC	AAGTTTACTC	ATATATACTT	TAGATTGATT	TAAAACTTCA	4125
	TTTTTAATTT	AAAAGGATCT	AGGTGAAGAT	CCTTTTTGAT	AATCTCATGA	CCAAAATCCC	4185
15	TTAACGTGAG	TITTCGTTCC	ACTGAGCGTC	AGACCCCGTA	GAAAAGATCA	AAGGATCTTC	4245
15	TTGAGATCCT	TTTTTTCTGC	GOGTAATCTG	CTGCTTGCAA	ACAAAAAAAC	CACCGCTACC	4305
•	AGCGGTGGTT	TGTTTGCCGG	ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT	4365
	CAGCAGAGCG	CAGATACCAA	ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG	GCCACCACTT	4425
	CAAGAACTCT	GTAGCACCGC	CTACATACCT	CCCTCTCCTA	ATCCTGTTAC	CAGTGGCTGC	4485
20	TGCCAGTGGC	GATAAGTCGT	GTCTTACCGG	GTTGGACTCA	AGACGATAGT	TACCGGATAA	4545
	GGCGCAGCGG	TOGGGCTGAA	CGGGGGTTC	GTGCACACAG	CCCAGCTTGG	AGCGAACGAC	4605
	CTACACCGAA	CTGAGATACC	TACAGCGTGA	GCATTGAGAA	AGCGCCACGC	TTCCCGAAGG	4665
	GAGAAAGGCG	GACAGGTATC	CGGTAAGCGG	CAGGGTCGGA	ACAGGAGAGC	GCACGAGGGA	4725
25	GCTTCCAGGG	GGAAACGCCT	GGTATCTTTA	TAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	4785
	TGAGOGTOGA	TTTTTGTGAT	GCTCGTCAGG	GGGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	4845
	CCCCCCTTT	TTACGGTTCC	TGGCCTTTTG	CTGGCCTTTT	GCTCACATGT	TCTTTCCTGC	4905
	GTTATCCCCT	GATTCTGTGG	ATAACCGTAT	TACCGCCTTT	GAGTGAGCTG	ATACCGCTCG	4965
	CCGCAGCCGA	ACGACCGAGC	GCAGCGAGTC	AGTGAGCGAG	GAAGCGGAAG	AGCGCCCAAT	5025
30	ACGCAAACCG	CCTCTCCCCG	CCCCTTCCCC	GATTCATTAA	TGCAGAAGGG	TTGGTTTGCG	5085
•	CATTCACAGT	TCTCCGCAAG	AATTGATTGG	CTCCAATTCT	TGGAGTGGTG	AATCCGTTAG	5145
	CGAGGTGCCG	COGGCTTCCA	TTCAGGTCGA	GCIGGCCCCC	G		5186
				·			

(2) INFORMATION FOR SEQ ID NO:2:

35

40

45

50

55

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 883 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

 Met Asn Glu Gln Tyr Ser Ala Leu Arg Ser Asn Val Ser Met Leu Gly

 1
 5
 10
 15

 Lys Val Leu Gly Glu Thr Ile Lys Asp Ala Leu Gly Glu His Ile Leu 20
 25
 30

 Glu Arg Val Glu Thr Ile Arg Lys Leu Ser Lys Ser Ser Arg Ala Gly 35
 40
 45

 Asn Asp Ala Asn Arg Gln Glu Leu Leu Thr Thr Leu Gln Asn Leu Ser 50
 55
 60

	Asn 65	Asp	Glu	Leu	Leu	Pro 70	Val	Ala	Arg	Ala	Phe 75	Ser	Gln	Phe	Leu	Asn 80
5	Leu	Ala	Asn	Thr	Ala 85	Glu	Gln	Tyr	His	Ser 90	Ile	Ser	Pro	Lys	Gly 95	Glu
	Ala	Ala	Ser	Asn 100	Pro	Glu	Val	Ile	Ala 105	Arg	Thr	Leu	Arg	Lys 110	Leu	Lys
10	Asn	Gln	Pro 115		Leu	Ser	Glu	Asp 120		Ile	Lys	Lys	Ala 125		Glu	Ser
	Leu	Ser 130		Glu	Leu	Val	Leu 135	Thr	Ala	His	Pro	Thr 140	Glu	Ile	Thr	Arg
15	Arg 145	Thr	Leu	Ile	His	Lys 150	Met	Val	Glu	Val	Asn 155	Ala	Суз	Leu	Lys	Gln 160
	Leu	Asp	Asn	Lys	Asp 165	Ile	Ala	Asp	Tyr	Glu 170	His	Asn	Gln	Leu	Met 175	Arg
20	Arg	Leu	Arg	Gln 180	Leu	Ile	Ala	Gln	Ser 185	Trp	His	Thr	Asp	Glu 190	Ile	Arg
	-		195					200				_	205		Ala	
25		210				_	215	_				220			Glu	
	225					230			•		235				Glu	240
20					245			_		250		_	_	_	Gly 255	
30				260		_			265					270	Ser	
		_	275		_			280	_	_			285		Val	
35		290					295					300			Val	_
	305		_			310		_			315		_		Leu	320
40					325				_	330			_		Lys 335	_
				340	_			_	345					350	Glu	
45	_		355					360					365		Gly	
		370				_	375			_		380			Val	
50	385					390					395				Ser	400
					405					410					11e 415	
55	Asp	Tyr	Glu	Ser	Trp	Ser	Glu	Ala	Asp	Lys	Gln	Ala	Phe	Leu	Ile	Arg

		420	425		430
	Glu Leu Asr	Ser Lys Arg	Pro Leu Leu	Pro Arg Asn Trp	Gln Pro Ser
5	435		440	445	
	•	Arg Glu Val		Cys Gln Val Ile	Ala Glu Ala
	450	Sor Ilo Ala	455	460 Ile Ser Met Ala	Taxo When Dron
	465	470	wra ili Aar	475	480
10			His Leu Leu	Leu Lys Glu Ala	
		485		490	495
	Phe Ala Met	Pro Val Ala	Pro Leu Phe	Glu Thr Leu Asp	Asp Leu Asn
15		500	505	<u></u> -	510
		_		Leu Asn Ile Asp	Trp Tyr Arg
	515		520	525 Met Ile Gly Tyr	Ser Jen Ser
	530	GIN GIY DYS	535	540	per wah per
20		Ala Gly Val		Ser Trp Ala Gln	Tyr Gln Ala
	545	550		555	560
	Gln Asp Ala		Thr Cys Glu	Lys Ala Gly Ile	
		565	G1 G Y1-	570	575
25	Leu Phe His	580	585	Gly Arg Gly Gly	590
	His Ala Ala			Gly Ser Leu Lys	
	595		600	605	- -
30	-	Glu Gln Gly		Arg Phe Lys Tyr	Gly Leu Pro
	610	Com Com	615	620	T10 You 01
	625	van ser ser 630	Leu ser Leu	Tyr Thr Gly Ala 635	640
			Pro Glu Pro	Lys Glu Ser Trp	
35		645		650	655
	Met Asp Glu		-	Asp Val Tyr Arg	
		660	665	mb - 1 0 11-	670
40	Arg Giu Asn		680	Phe Arg Ser Ala 685	The Pro Glu
				Ser Arg Pro Ala	Lys Arg Arg
	690		695	700	
	Pro Thr Gly	Gly Val Glu	Ser Leu Arg	Ala Ile Pro Trp	Ile Phe Ala
45	705	710		715	720
	Trp Thr Gln	_	Met Leu Pro	Ala Trp Leu Gly	
	Ala Leu Gla	725 Tare Val Val	Clu Am Gly	730 Lys Gln Ser Glu	735 Leu Glu Ala
50	ind bed only	740	745		750
50	Met Cys Arg			Thr Arg Leu Gly	
	755		760	765	
		Ala Lys Ala	_	Leu Ala Glu Tyr	Tyr Asp Gln
55	770		775	780	

		Arg 785	Leu	Val	Asp	Lys	Ala 790	Leu	Trp	Pro	Leu	Gly 795	Lys	Glu	Leu	Arg	Asn 800
5	;	Leu	Gln	Glu	Glu	Asp 805	Ile	Lys	Val	Val	Leu 810	Ala	Ile	Ala	Asn	Asp 815	Ser
•	1	Ris	Leu	Met	Ala 820	yab	Leu	Pro	Trp	Ile 825	Ala	Glu	Ser	Ile	Gln 830	Leu	Arg
10 ·	1	Asn	Ile	Tyr 835	Thr	yab	Pro	Leu	Asn 840	Val	Leu	Gln	Ala	Glu 845	Leu	Leu	His
	i	Arg	Ser 850	Arg	Gln	Ala	Glu	Lys 855	Glu	Gly	Gln	Glu	Pro 860	Asp	Pro	Arg	Val
15		Glu 865	Gln	Ala	Leu	Met	Val 870	Thr	Ile	Ala	Gly	Ile 875	Ala	Ala	Gly	Met	Arg 880
	i	Asn	Thr	Gly													
			-		• • •	•	• -	~					~			-	-
20	(2)	NFOF	TAMF	ON FC	R SEC	O ID N) :3:										
				ICE CI		CTERIS	STICS	•		•							
25				NGTH:		rid											
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single																
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear																
		/ii\ B.4/	OI ECI	II AD .	TVDE:	othor	cuntho	stic DN	۱۸								
30				ULAR ' HETIC			Syriane	THE DIV	· A								
				NCE D			N: SEC	N DI C	O:3:								
	5000	~~ * *															
	TOGO	GAAC	FIA G	CACC	TGTC	a CP											23
35	(2) 1	NEOE	DAAATI	ON EO	D CE	א בו אי	D. 4 :										
	(2) 1	INFOR	יו ו אואר	ON FO	n sec	או טו ג	J:4:										
		(i) SE	QUEN	ICE CI	HARAC	CTERIS	STICS	:									
40		•	•	IGTH:													
				PE: nuc RANDE			ıle										
		•	•	POLOG		•	,.0										
45		(ii) M	OLECI	JLAR ⁻	TYPE:	Other:	.svnthe	etic DN	IA								
		٠,		HETIC													
		(xi) S	EQUE	NCE D	ESCR	IPTIO	N: SEC) ID N	0:4:								
50	ACGG.	AATT	CA A	TCTT	ACGGC	сс											21
	(2) I	NFOF	RMATIO	ON FO	R SEC	ID NO	D:5:										
55		(i) SE	QUEN	ICE CH	HARAC	TERIS	STICS:										
		(/	A) LEN	IGTH:	1643												
		(E	3) TYP	E: nuc	leic ac												
		((C) STF	RANDE	DNES	S: dou	ble										

	(D) TOPOLOGY: linear
5	(ii) MOLECULAR TYPE: genomic DNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:
10	(A) ORGANISM: Corynebacterium glutamicum(C) STRAIN: ATCC13869(ix) FEATURE:
15	(A) NAME/KEY: mat peptide (B) LOCATION: 2171482 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
20	
25	
30	
35	
40	
45	
50	

	TCG	CGAAC	TA (GCAC	CTGT	CA C	TTT	FICTO	C AA	ATAT?	AAA?	TCG	ATA!	CA A	TAT	ACGGTC	60
	TGT	TAT.	rgg i	AACG	CATC	C A	FTGG	CTGAC	G ACC	CATO	CCC	TAA	AGCCC	CA (GAA(CCIGI	120
																GAGCGG	180
5				GCAC													234
												Ala					
,											1				5		
	AAA	TAT	GGC	GGT	TCC	TCG	CIT	GAG	AGT	GCG	GAA	α	ATT	AGA	AAC	GTC	282
10	Lys	Tyr	Gly	Gly	Ser	Ser	Leu	Glu	Ser	Ala	Glu	Arg	Ile	Arg	Asn	Val	
	•			10					15					20			
	CCT	GAA	CCG	ATC	GTT	α	ACC	AAG	AAG	CCT	GGA	AAT	GAT	GTC	GTG	GTT	330
	Ala	Glu	Arg	Ile	Val	Ala	Thr	Lys	Lys	Ala	Gly	Asn	Asp	Val	Val	Val.	
			25					30					35				
15				GCA													378
•	Val	Cys	Ser	Ala	Met	Gly		Thr	Thr	Asp	Glu		Leu	Glu	Leu	Ala	
		40					45	-				50					
				AAT													426
20		Ala	Val	Asn	Pro		Pro	Pro	Ala	Arg		Met	Asp	Met	Leu		
	55					60					65	~~~				70	4-4
				GAG													474
	Thr	АТа	GIĀ	Glu		TTE	ser	ASN	vra	Leu 80	vaı	ATS	met	ATS	85 116	GIU	
25	m~~		~~	GCA	75	~==	CAA	mean .			~~	m~m	CNC	~m		CIIIC	522
				Ala													JZZ
	Ser	Leu	GIY	90	GIU	ALG.	GIII	361	95	****	GLY	301	021.	100	OLY	VGI	
	CITC	ACC	ACC	GAG	CCC.	CAC	GGA	AAC		ccc	ATT	CIPI	GAC		ACA	ന്നു	570
30				Glu													0,0
			105		9		2	110		9		·	115				
	GGT	CCT		CCT	GAA	GCA	CTC	GAT	GAG	GGC	AAG	ATC	TGC	ATT	GTT	GCT	618
	Gly	Arg	Val	Arg	Glu	Ala	Leu	Asp	Glu	Gly	Lys	Ile	Суз	Ile	Val	Ala	
05	-	120					125	-		_	_	130	-				
35	GGT	TTT	CAG	GGT	GIT	AAT	AAA	GAA	ACC	CCC	GAT	GTC	ACC	ACG	TTG	GGT	666
	Gly	Phe	Gln	Gly	Val	Asn	Lys	Glu	Thr	Arg	Asp	Val	Thr	Thr	Leu	Gly	
	135					140					145					150	
				TCT													714
40	Arg	Gly	Gly	Ser	Asp	Thr	Thr	Ala	Val	Ala	Leu	Ala	Ala	Ala	Leu	Asn	
					155					160					165		
		~~	~~~	~~~	~	~~		~~~	~~~	~~~	••~	- m	~~~	-	-	~~~	

	CCM	CATE	CIIC	ut⊊itr	GAG	אוואווי ע	ሞልሮ	WCC.	GAC	Cगमा	GAC	CCT	CTC	ጥልጥ	λCC	CCAI	762
			-		Glu												/02
				170			-1-		175			1		180			
5	GAC	œ	CGC		GTT	CCT	AAT	GCA		AAG	CTG	GAA	AAG	_	AGC	TTC	810
	Asp	Pro	Arg	Ile	Val	Pro	Asn	Ala	Gln	Lys	Leu	Glu	Lys	Leu	Ser	Phe	
			185				•	190					195				
					GAA												858
10	Glu		Met	Leu	Glu	Leu		Ala	Val	Gly	Ser	Lys	Ile	Leu	Val	Leu	
		200					205					210					
					TAC												906
	_	ser	vaı	GIU	Tyr		AIG	ATA	rne	ASN		PTO	Leu	Arg	vaı	230	
15	215	uv~u	መልጥ	a Cath	AAT	220 CAT	\sim	CCC	ልርጥ	TAIAC	225	ccc	CCC	יוואייאנוי	בעויה		954
					Asn												754
	-	-	-1-		235			,	*	240			0_1		245		
	GAT	TTA	CCT	GTG	GAA	GAA	GCA	GTC	CTT	ACC	GGT	GTC	GCA	ACC	GAC	AAG	1002
20	Asp	Ile	Pro	Val	Glu	Glu	Ala	Val	Leu	Thr	Gly	Val	Ala	Thr	Asp	Lys	
	_			250					255					260			
	TCC	GAA	ecc	AAA	GTA	ACC	GTT	CTG	GGT	ATT	TCC	GAT	AAG	CCA	GGC	GAG	1050
	Ser	Glu	Ala	Lys	Val	Thr	Val	Leu	Gly	Ile	Ser	Asp	Lys	Pro	Gly	Glu	
25			265					270					275				
					TTC		_				_	_					1098
	ATS	280	ràs	AST	Phe	Arg	285	Leu	ATS	ASP	ATA	290	тте	ASN	TTE	Asp	
	ΔMC		CTY	CAG	AAC	CTC		יוביאוי	CTC	GAA	GAC		ACC	ACC	GAC	ATYC	1146
30		-			Asn												
	295					300					305					310	
	ACG	TTC	ACC	TGC	CCT	CGC	GCT	GAC	GGA	CCC	CGT	GCG	ATG	GAG	ATC	TTG	1194
	Thr	Phe	Thr	Cys	Pro	Arg	Ala	Asp	Gly	Arg	Arg	Ala	Met	Glu	Ile	Leu	
35					315					320					325		
					GIT							_					1242
	Lys	Lys	Leu		Val	Gln	GIY	Asn		Thr	Asn	Val	Leu		Asp	Asp	
	030	~m~	~~~	330	~~~	moo.	OTTIC	cmc	335	~~	~~	2000	220	340	CNC	CCX	1200
40					GTC Val												1290
	GIII	AGT	345	nys	VOI	SEL	Deu	350	GIY	Ma	Gry	riec	355	Ser	ms	FIU	
	GGT	CTPT		GCA	GAG	ттс	ATG		GCT	CTG	CGC	GAT		AAC	GIG	AAC	1338
					Glu												
45	•	360					365				J	370					
	ATC	GAA	TTG	ATT	TCC	ACC	TCT	GAG	ATC	CGC	ATT	TCC	GTG	CTG	ATC	CCT	1386
	Ile	Glu	Leu	Ile	Ser	Thr	Ser	Glu	Ile	Arg	Ile	Ser	Val	Leu	Ile	Arg	
	375					380					385					390	
50					GAT												1434
	Glu	Asp	Asp	Leu	Asp	Ala	Ala	Ala	Arg		Leu	His	Glu	Gln		Gln	
					395				•	400					405		

	EP 0 723 011 B1	
	CTG GGC GGC GAA GAC GAA GCC GTC GTT TAT GCA GGC ACC GGA CGC TAA Leu Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg 410 415 420	1482
5	AGTITTAAAG GAGTAGTITT ACAATGACCA CCATCGCAGT TGTTGGTGCA ACCGGCCAGG TOGGCCAGGT TATGCGCACC CTTTTGGAAG AGCGCAATIT COCAGCTGAC ACTGTTOGTT TCTTTGCTTC CCCGCGTTCC GCAGGCCGTA AGATTGAATT C	1542 1602 1643
10	(2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 421 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	

	Met	Ala	Leu	Val	Val	Gln	Lys	Tyr	Gly	Gly	Ser	Ser	Leu	Glu	Ser	Ala
	1				5					10					15	
5	Glu	Arg	Ile	Arg 20	Asn	Val	Ala	Glu	Arg 25	Ile	Val	Ala	Thr	Tys	Lys	Ala
-	Gly	Asn	Asp 35	Val	Val	Val	Val	Cys 40	Ser	Ala	Met	Gly	Asp 45	Thr	Thr	Asp
10	Glu	Leu 50	Leu	Glu	Leu	Ala	Ala 55	Ala	Val	Asn	Pro	Val 60	Pro	Pro	Ala	Arg
	Glu 65	Met	Asp	Met	Leu	Leu 70	Thr	Ala	Gly	Glu	Arg 75		Ser	Asn	Ala	Leu 80
15		Ala	Met	Ala	Ile 85	Glu	Ser	Leu	Gly	Ala 90	Glu	Ala	Gln	Ser	Phe 95	Thr
	Gly	Ser	Gln	Ala 100	Gly	Val	Leu	Thr	Thr 105	Glu	Arg	His	Gly	Asn 110	Ala	Arg
20	Ile	Val	Asp 115	Val	Thr	Pro	Gly	Arg 120	Val	Arg	Glu	Ala	Leu 125	Asp	Glu	Gly
	Lys	Ile 130	Cys	Ile	Val	Ala	Gly 135	Phe	Gln	Gly	Val	Asn 140	Lys	Glu	Thr	Arg
25	Asp 145	Val	Thr	Thr	Leu	Gly 150	Arg	Gly	Gly	Ser	Asp 155	Thr	Thr	Ala	Val	Ala 160
20		Ala	Ala	Ala	Leu 165	Asn	Ala	Asp	Val	Cys 170	Glu	Ile	Tyr	Ser	Asp 175	Val
	Asp	Gly	Val	Tyr 180	Thr	Ala	Asp	Pro	Arg 185	Ile	Val	Pro	Asn	Ala 190	Gln	Lys
30	Leu	Glu	Lys 195	Leu	Ser	Phe	Glu	Glu 200	Met	Leu	Glu	Leu	Ala 205	Ala	Val	Gly
	Ser	Lys 210	Ile	Leu	Val	Leu	Arg 215	Ser	Val	Glu	Tyr	Ala 220	Arg	Ala	Phe	Asn
35	Val 225		Leu	Arg	Val	Arg 230	Ser	Ser	Tyr	Ser	Asn 235	Asp	Pro	Gly	Thr	Leu 240

	Ile	Ala	Gly	Ser	Met 245	Glu	Asp	Ile	Pro	Val 250	Glu	Glu	Ala	Val	Leu 255	Thr
5	Gly	Val	Ala	Thr 260	Asp	Lys	Ser	Glu	Ala 265	Lys	Val	Thr	Val	Leu 270	Gly	Ile
		_	Lys 275					280	-				285			•
10		290	Ile			_	295					300				
	305	_	Thr		_	310				_	315			_	_	320
15	Arg	Ala	Met	Glu	11e 325	Leu	Lys	Lys	Leu	Gln 330	Val	Gln	Gly	Asn	Trp 335	Thr
	Asn	Val	Leu	Tyr 340	Asp	Asp	Gln	Val	Gly 345	Lys	Val	Ser	Leu	Val 350	Gly	Ala
	Gly	Met	Lys 355	Ser	His	Pro	Gly	Val 360	Thr	Ala	Glu	Phe	Met 365	Glu	Ala	Leu
20	Arg	Asp 370	Val	Asn	Val	Asn	Ile 375	Glu	Leu	Ile	Ser	Thr 380	Ser	Glu	Ile	Arg
	11e 385	Ser	Val	Leu	Ile	Arg 390	Glu	Asp.	Asp	Leu	Asp 395	Ala	Ala	Ala	Arg	Ala 400
25	Leu	His	Glu	Gln	Phe 405	Gln	Leu	Gly	Gly	Glu 410	Asp	Glu	Ala	Val	Val 415	Tyr
	Ala	Gly	Thr	Gly 420	Arg											
30																
	(2) 1	NFOR	MATIC	ON FO	R SE	A DI C	O:7:									
		(i) SE	QUEN	CE CH	IARA	CTERI	STICS	S :	•							
35		,) LEN 3) TYP			cid										
) STR) TOP				uble									
40		` '	DLECU			_	nic DN	łA								
		(iv) Al	POTH NTI-SE	NSE:	NO											
45			RIGINA				otoriu	m alut	omiou							
40			() ORG () STR				·	iii giut	amou	111						
		(ix) FE	ATUR	E:												
50) NAM) LOC				le									
		(xi) SE	QUEN	NCE D	ESCR	IPTIO	N: SE	QIDN	10:7:							

5	TGTTTATTGG GCAGAAAGAA	GCACCTGTCA AACGCATCCC AACACTCCTC GCACGTAGAT	AGTGGCTGAG TGGCTAGGTA	ACGCATCCGC GACACAGTTT	TAAAGCCCCA ATAAAGGTAG	GGAACCCTGT AGTTGAGCGG	60 120 180 240
10							
15						,	
20		·					
25							
30	·						
35							
40 45	. •				·		
50	·						
55							

	GCCGCTTCCT CGCTTGAGAG TGCCGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC	300
	ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT	360
5	GAACTICTAG AACTIGCAGC GGCAGTGAAT CCCGTTCCGC CAGCTCGTGA AATGGATATG	420
	CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT	480
	GGCGCAGAAG CTCAATCTTT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC	540
	GGAAACGCAC GCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC	600
	AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG	660
10	TTGGGTCGTG GTGGTTCTGA CACCACTGCA GTTGCGTTGG CAGCTGCTTT GAACGCTGAT	720
	GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT	780
	AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC	840
	TCCAAGATTT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC	900
15	GTACGCTCGT CTTATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT CCT GTG GAA GAA GCA GTC CTT ACC GGT GTC GCA ACC GAC AAG TCC GAA	960
	CCT GTG GAA GAA GCA GTC CTT ACC GGT GTC GCA ACC GAC AAG TCC GAA Met Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp Lys Ser Glu	1008
	1 5 10 15	
	GCC AAA GTA ACC GIT CTG GGT ATT TCC GAT AAG CCA GGC GAG GCT GCC	1056
20	Ala Lys Val Thr Val Leu Gly Ile Ser Asp Lys Pro Gly Glu Ala Ala	1000
	20 25 30	
	AAG GTT TTC CGT GCG TTG GCT GAT GCA GAA ATC AAC ATT GAC ATG GTT	1104
	Lys Val Phe Arg Ala Leu Ala Asp Ala Glu Ile Asn Ile Asp Met Val	
25	35 40 45	
	CTG CAG AAC GTC TCC TCT GTG GAA GAC GGC ACC ACC GAC ATC ACG TTC	1152
	Leu Gln Asn Val Ser Ser Val Glu Asp Gly Thr Thr Asp Ile Thr Phe	
	50 55 60	
30	ACC TGC CCT CGC GCT GAC GGA CGC CGT GCG ATG GAG ATC TTG AAG AAG	1200
00	Thr Cys Pro Arg Ala Asp Gly Arg Arg Ala Met Glu Ile Leu Lys Lys	
	65 70 75	
	CTT CAG GTT CAG GGC AAC TGG ACC AAT GTG CTT TAC GAC GAC CAG GTC	1248
	Leu Gln Val Gln Gly Asn Trp Thr Asn Val Leu Tyr Asp Asp Gln Val	
35	80 85 90 95	1006
	GGC AAA GTC TCC CTC GTG GGT GCT GGC ATG AAG TCT CAC CCA GGT GTT	1296
	Gly Lys Val Ser Leu Val Gly Ala Gly Met Lys Ser His Pro Gly Val 100 105 110	
	ACC GCA GAG TTC ATG GAA GCT CTG CGC GAT GTC AAC GTG AAC ATC GAA	1344
40	Thr Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val Asn Ile Glu	1244
	115 120 125	
	TTG ATT TOO ACC TOT GAG ATC CGC ATT TOO GTG CTG ATC CGT GAA GAT	1392
	Leu Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile Arg Glu Asp	-07-
45	130 135 140	
	GAT CTG GAT GCT GCA CGT GCA TTG CAT GAG CAG TTC CAG CTG GGC	1440
	Asp Leu Asp Ala Ala Ala Arg Ala Leu His Glu Gln Phe Gln Leu Gly	
	145 150 155	
50	GGC GAA GAC GAA GCC GTC GTT TAT GCA GGC ACC GGA CGC TAAAGTTTTAA	1490
	Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg	
	160 165 170 172	
55	HERE AND DESCRIPTIONS FROM CONTRACT AND CONTRACT FROM CONTRACT FROM CONTRACT FROM CONTRACT FROM CONTRACT FROM	1 44 /
00		

AGGAGTAGTT TTACAATGAC CACCATCGCA	GTTGTTGGTG	CAACCGGCCA	GGTCGGCCAG	1550
GTTATGCGCA CCCTTTTGGA AGAGCGCAAT	TTCCCAGCTG	ACACTGTTCG	TITCTTTGCT	1610
TOCCOGCGTT CCGCAGGCCG TAAGATTGAA	TTC	•		1643
v.				

(2) INFORMATION FOR SEQ ID NO:8:

5

10

15

20

25

30

35

45

50

55

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 172 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met	Glu	Glu	Ala	Val	Leu	Thr	Gly	Val	Ala	Thr	Asp	Lys	Ser	Glu	Ala
1				5		•			10	٠.				15	
Lys	Val	Thr	Val	Leu	Gly	Ile	Ser	Asp	Lys	Pro	Gly	Glu	Ala	Ala	ГЛЗ
			20		•			25					30		
Val	Phe	Arg	Ala	Leu	Ala	Asp	Ala	Glu	Ile	Asn	Ile		Met	Val	Leu
		35					40					45			
Gln	Asn	Val	Ser	Ser	Val		Asp	Gly	Thr	Thr		Ile	Thr	Phe	Thr
	50					55					60				
- -	Pro	Arg	Ala	Asp	Gly	Arg	Arg	Ala	Met		Ile	Leu	Lys	Lys	
65					70					75					80
Gln	Val	Gln	Gly		Trp	Thr	Asn	Val		Tyr	Asp	Asp	Gln		Gly
				85					90					95	•
Lys	Val	Ser		Val	Gly	Ala	Gly		Lys	Ser	His	Pro	_		Thr
_		_	100				_	105		_			110		
Ala			Met	Glu	Ala	Leu		Asp	Val	Asn	Val		Ile	Glu	Leu
		L15		٠.	_		120				_	125	_		
Ile		Thr	Ser	Glu	Ile	_	Ile	Ser	Val	Leu		·Arg	Glu	Asp	qaA
- ·	130					135				_	140				
	Asp	Ala	Ala	Ala	Arg	Ala	Leu	His	٠.		Phe	Gln	Leu	Gly	_
145			•	•	150		•			155	٠.	•	,	•	160
Glu	Asp	Glu	Ala		Val	Tyr	Ala	Gly	•	Gly	Arg				
				165					170					·-·	*** * * *

Claims

- A mutant phosphoenolpyruvate carboxylase originating from a microorganism belonging to the genus Escherichia
 and being desensitised in its feedback inhibition by aspartic acid, wherein said mutant phosphoenolpyruvate carboxylase is resistant to a compound selected from 3-bromopyruvate, aspartic acid-β-hydrazide and DL-threo-βhydroxyaspartic acid.
- 2. A mutant phosphoenolpyruvate carboxylase according to claim 1, wherein 625th glutamic acid is replaced with lysine as counted from the N-terminus of the phosphoenolpyruvate carboxylase.
- 3. A mutant phosphoenolpyruvate carboxylase according to claim 1, wherein 222th arginine is replaced with histidine and 223th glutamic acid is replaced with lysine, respectively, as counted from the N-terminus of the phosphoe-

nolpyruvate carboxylase.

5

20

40

- 4. A mutant phosphoenolpyruvate carboxylase according to claim 1, wherein 288th serine is replaced with phenylalanine, 289th glutamic acid is replaced with lysine, 551th methionine is replaced with isoleucine and 804th glutamic acid is replaced with lysine, respectively, as counted from the N-terminus of the phosphoenolpyruvate carboxylase.
- A mutant phosphoenolpyruvate carboxylase according to claim 1, wherein 867th alanine is replaced with threonine as counted from the N-terminus of the phosphoenolpyruvate carboxylase.
- A DNA fragment which codes for the mutant phosphoenolpyruvate carboxylase according to any one of claims 1 to 5.
 - A microorganism having the accession number FERM BP-4734.
- 15 8. A microorganism having the accession number FERM BP-4735.
 - 9. A microorganism having the accession number FERM BP-4736.
 - 10. A microorganism having the accession number FERM BP-4737.
 - 11. A microorganism belonging to the genus Escherichia or coryneform bacteria, transformed by allowing the DNA fragment according to claim 6 to be integrated in chromosomal DNA.
- 12. A recombinant DNA formed by ligating the DNA fragment according to claim 6 with a vector DNA capable of autonomously replication in cells of bacteria belonging to the genus Escherichia or coryneform bacteria.
 - 13. A microorganism belonging to the genus Escherichia or coryneform bacteria, transformed with the recombinant DNA according to claim 12.
- 30 14. A method of selecting E.coli which produces a mutant phosphoenolpyruvate carboxylase having a mutation to desensitise feedback inhibition of the phosphoenolpyruvate carboxylase by aspartic acid, comprising the step of culturing said E.coli in the presence of a compound selected from 3-bromopyruvate, aspartic acid-β-hydrazide and DL-threo-β-hydroxyaspartic acid.
- 35 **15.** A method according to claim 14, wherein said mutant phosphoenolpyruvate carboxylase is one according to any one of claims 1 to 5.
 - 16. A method of producing a mutant phosphoenolpyruvate carboxylase, comprising the step of isolating a phosphoenolpyruvate carboxylase from E. coli selected by the method according to claim 14.
 - 17. A method of producing a DNA fragment which codes for a mutant phosphoenolpyruvate carboxylase, comprising the step of isolating a DNA fragment which codes for a mutant phosphoenolpyruvate carboxylase from *E. coli* selected by the method according to claim 14.
- 45 18. A method of producing a microorganism having a mutant phosphoenolpyruvate carboxylase, comprising the step of introducing a DNA fragment produced by the method according to claim 17 into a microorganism belonging to the genus Escherichia or coryneform bacteria.
 - 19. A method of producing an amino acid, comprising . the steps of:
 - cultivating a microorganism according to any one of the claims 7 to 11 or as obtained in the method according to claim 18, in a suitable medium; and,
- separating, from the medium; an amino acid selected from the group consisting of L-lysine, L-threonine, L-55 methionine, L-isoleucine, L-glutamic acid, L-arginine and L-proline.

EP 0 723 011 B1

Patentansprüche

- 1. Variante von Phosphoenolpyruvatcarboxylase, die aus einem zur Gattung Escherichia gehörenden Mikroorganismus stammt und unempfindlich gegen Rückkopplungshemmung durch Asparaginsäure ist, wobei die Variante von Phosphoenolpyruvatcarboxylase gegen eine Verbindung resistent ist, die unter 3-Brompyruvat, Asparaginsäureβ-hydrazid und DL-Threo-β-hydroxyasparaginsäure ausgewählt ist.
- 2. Variante von Phosphoenolpyruvatcarboxylase nach Anspruch 1, worin die Glutaminsäure 625, gezählt vom N-Terminus der Phosphoenolpyruvatcarboxylase, durch Lysin ersetzt ist.
- Variante von Phosphoenolpyruvatcarboxylase nach Anspruch 1, worin Arginin 222 und Glutaminsäure 223, gezählt vom N-Terminus der Phosphoenolpyruvatcarboxylase, durch Histidin bzw. Lysin ersetzt sind.
- 4. Variante von Phosphoenolpyruvatcarboxylase nach Anspruch 1, worin Serin 288 durch Phenylalanin, Glutamin-15 säure 289 durch Lysin, Methionin 551 durch Isoleucin bzw. Glutaminsäure 804 durch Lysin ersetzt ist, jeweils gezählt vom N-Terminus der Phosphoenolpyruvatcarboxylase.
 - Variante von Phosphoenolpyruvatcarboxylase nach Anspruch 1, worin Alanin 867, gezählt vom N-Terminus der Phosphoenolpyruvatcarboxylase, durch Threonin ersetzt ist.
 - 6. DNA-Fragment, das für eine Variante von Phosphoenolpyruvatcarboxylase nach einem der Ansprüche 1 bis 5 kodiert.
 - Mikroorganismus mit der Hinterlegungsnummer FERM BP-4734.
 - Mikroorganismus mit der Hinterlegungsnummer FERM BP-4735.
 - Mikroorganismus mit der Hinterlegungsnummer FERM BP-4736.
- 10. Mikroorganismus mit der Hinterlegungsnummer FERM BP-4737.
 - 11. Mikroorganismus der Gattung Escherichia oder coryneforme Bakterien, transformiert durch Einverleibung des DNA-Fragments nach Anspruch 6 in chromosomale DNA.
- 12. Rekombinante DNA, gebildet durch Ligieren des DNA-Fragments nach Anspruch 6 mit einer Vektor-DNA, die in 35 Zellen der Gattung Escherichia oder coryneforme Bakterien autonom replizieren kann.
 - 13. Mikroorganismus der Gattung Escherichia oder coryneforme Bakterien, transformiert mit der rekombinanten DNA nach Anspruch 12.
 - 14. Verfahren zum Selektieren von E. coli, welche eine Mutante von Phosphoenolpyruvatcarboxylase mit einer Mutation produzieren, die dazu führt, daß die Phosphoenolpyruvatcarboxylase unempfindlich gegen Rückkopplungshemmung durch Asparaginsäure wird, wobei das Verfahren das Kultivieren der E. coli in Anwesenheit einer Verbindung umfaßt, die unter 3-Brompyruvat, Asparaginsäure-β-hydrazid und DL-Threo-β-hydroxyasparaginsäure ausgewählt ist.
 - 15. Verfahren nach Anspruch 14, wobei die Variante von Phosphoenolpyruvatcarboxylase eine Variante nach einem der Ansprüche 1 bis 5 ist.
- 16. Verfahren zur Herstellung einer Variante von Phosphoenolpyruvatcarboxylase, welches das Isolieren einer Phos-50 phoenolpyruvatcarboxylase aus E. coli, ausgewählt durch das Verfahren nach Anspruch 14, umfaßt.
 - 17. Verfahren zur Herstellung eines DNA-Fragments, das für eine Variante von Phosphoenolpyruvatcarboxylase kodiert, welches das Isolieren eines DNA-Fragments umfaßt, das für eine Variante von Phosphoenolpyruvatcarboxylase aus E. coli, ausgewählt durch das Verfahren nach Anspruch 14, kodiert.
 - 18. Verfahren zur Herstellung eines Mikroorganismus mit einer Variante von Phosphoenolpyruvatcarboxylase, welches das Einführen eines DNA-Fragments, hergestellt durch das Verfahren nach Anspruch 17, in einen Mikroor-

10

5

20

25

45

55

EP 0 723 011 B1

ganismus der Gattung Escherichia oder coryneforme Bakterien umfaßt.

19. Verfahren zur Herstellung einer Aminosäure, welches die folgenden Stufen umfaßt:

Kultivieren eines Mikroorganismus nach einem der Ansprüche 7 bis 11 oder eines Mikroorganismus, der nach dem Verfahren gemäß Anspruch 18 erhalten wird, in einem geeigneten Medium und Abtrennen einer Aminosäure, die aus der aus L-Lysin, L-Threonin, L-Methionin, L-Isoleucin, L-Glutaminsäure, L-Arginin und L-Prolin bestehenden Gruppe ausgewählt ist, aus dem Medium.

10

15

5

Revendications

- Phosphoénolpyruvate carboxylase mutante issue d'un micro-organisme appartenant au genre Escherichia et désensibilisée concernant sa rétro-inhibition par l'acide aspartique, où ladite phosphoénolpyruvate carboxylase mutante est résistante à un composé choisi parmi le 3-bromopyruvate, le β-hydrazide de l'acide aspartique et l'acide DL-thréo-β-hydroxyaspartique.
- 2. Phosphoénolpyruvate carboxylase mutante selon la revendication 1, où le 625ème acide glutamique, compté à partir de l'extrémité N-terminale de la phosphoénolpyruvate carboxylase, est remplacé par la lysine.

20

- 3. Phosphoénolpyruvate carboxylase mutante selon la revendication 1, où la 222ème arginine et le 223ème acide glutamique, comptés à partir de l'extrémité N-terminale de la phosphoénolpyruvate carboxylase, sont remplacés respectivement par l'histidine et la lysine.
- 4. Phosphoénolpyruvate carboxylase mutante selon la revendication 1, où la 288ème sérine, le 289ème acide glutamique, la 551ème méthionine et le 804ème acide glutamique, comptés à partir de l'extrémité N-terminale de la phosphoénolpyruvate carboxylase, sont remplacés respectivement par la phénylalanine, la lysine, l'isoleucine et la lysine.
- 5. Phosphoénolpyruvate carboxylase mutante selon la revendication 1, où la 867ème alanine, comptée à partir de l'extrémité N-terminale de la phosphoénolpyruvate carboxylase, est remplacée par la thréonine.
 - fragment d'ADN qui code la phosphoénolpyruvate carboxylase mutante selon l'une quelconque dès revendications
 1 à 5.

35

- 7. Micro-organisme avant le numéro d'ordre FERM BP-4734.
- 8. Micro-organisme ayant le numéro d'ordre FERM BP-4735.
- Micro-organisme ayant le numéro d'ordre FERM BP-4736.
 - 10. Micro-organisme ayant le numéro d'ordre FERM BP-4737.
 - 11. Micro-organisme appartenant au genre Escherichia ou des bactéries corynéformes, transformé par intégration dans l'ADN chromosomique du fragment d'ADN selon la revendication 6.
 - 12. ADN recombiné formé par ligature du fragment d'ADN selon la revendication 6 avec un ADN vecteur capable de réplication autonome dans des cellules de bactéries appartenant au genre Escherichia ou des bactéries corynéformes.

50

45

- 13. Micro-organisme appartenant au genre Escherichia ou des bactéries corynéformes transformé avec l'ADN recombiné selon la revendication 12.
- 14. Procédé de sélection de E. coli qui produit une phosphoénolpyruvate carboxylase mutante ayant une mutation pour désactiver la rétroinhibition de la phosphoénolpyruvate carboxylase par l'acide aspartique, comprenant l'étape de culture dudit E. coli en présence d'un composé choisi parmi le 3-bromopyruvate, le β-hydrazide d'acide aspartique et l'acide DL-thréo-β-hydroxyaspartique.

EP 0 723 011 B1

- 15. Procédé selon la revendication 14, où ladite phosphoénolpyruvate carboxylase mutante est une phosphoénolpyruvate carboxylase mutante selon l'une quelconque des revendications 1 à 5.
- 16. Procédé de production d'une phosphoénolpyruvate carboxylase mutante comprenant l'étape d'isolement d'une phosphoénoipyruvate carboxylase à partir de E. coli sélectionné par le procédé selon la revendication 14.
 - 17. Procédé de production d'un fragment d'ADN qui code une phosphoénolpyruvate carboxylase mutante, comprenant l'étape d'isolement d'un fragment d'ADN qui code une phosphoénolpyruvate carboxylase mutante à partir de E. coli sélectionné par le procédé selon la revendication 14.
 - 18. Procédé de production d'un micro-organisme ayant une phosphoénolpyruvate carboxylase mutante comprenant l'étape d'introduction d'un fragment d'ADN produit par le procédé selon la revendication 17 dans un micro-organisme appartenant au genre Escherichia ou des bactéries corynéformes.
- 19. Procédé de production d'un acide aminé comprenant les étapes de :

5

10

15

20

25

30

35

45

50

55

culture d'un micro-organisme selon l'une quelconque des revendications 7 à 11 ou obtenu dans le procédé selon la revendication 18, dans un milieu approprié; et séparation à partir du milieu d'un acide aminé choisi dans le groupe consistant en la L-lysine, la L-thréonine, la L-méthionine, la L-isoleucine, l'acide L-glutamique, la L-arginine et la L-proline.

GROWTH INHIBITION BY 3-BROMOPYRUVATE

Fig. 1

GROWTH INHIBITION BY β -Asp-HYDROXAZIDE

Fig. 3

GROWTH INHIBITION RECOVERING SUBSTANCE FOR 3-BROMOPYRUVATE

Fig. 4

Fig. 5

Fig. 6

INVESTIGATION ON GROWTH RECOVERING FACTOR (NO ADDITION OF DRUG)

Fig. 7

INHIBITION OF PEPC ACTIVITY BY SELECTED DRUGS

CONCENTRATION OF ADDITIVE (mM)

ADDED DRUG

Fig. 8

INHIBITION OF MUTANT TYPE PEPC BY Asp (AcCoA: 0.1 mM)

Fig. 9

INHIBITION OF MUTANT TYPE PEPC BY Asp (AcCoA: 1 mM)

Fig. 10