Predicting Storage Failures

by Ahmed El-Shimi

aelshimi@alum.bu.edu

VAULT - Linux Storage and File Systems Conference Cambridge MA. March 22, 2017

This Talk

- Part I: Motivation
 - Drive Failure & Common Mitigations
 - Seeking a Better Recover/Rebuild
 - Use Cases & Goals
- Part II: Examining the Data
 - Dataset
 - Features, Trends, Challenges
- Part III: Predicting Drive Failure
 - How to Evaluate
 - Baseline
 - Approach & Models
 - Evaluation & Results

Part I

Disks fail. And even with redundancy failure has costs.

The Problem

Drive Annual Failure Rate by Manufacturer and Model

Today's Mitigation

Assume: "Everything that can fail will fail"

<u>Design:</u> Redundancy at every point of failure

But Rebuild is not free

	2012	2015	2017
Capacity	4TB HDD	8TB HDD	16TB HDD
Throughput	100 MB / Sec	150 MB / Sec	200 MB / Sec
1-Disk Rebuild Time	11 hours	15 hours	22 hours

Rebuild Inflation has consequences:

- Availability and Durability 9s
- Rebuild is a workload!
- Resilience, Reliability
- Disk Capacity & Network Management
- Failure Modes
- Lots of complexity to address edge cases

Can we do better if we had an early warning?

Use Cases & Goals

Cloud

- Proactive Rebuild
- Smarter Ops Scheduling

Enterprise/Field

- Proactive Rebuild
- Better FRU SLA

End-User PC

- Backup Now
- Contingency planning

Part II

Examining the Data.

The Backblaze Dataset

- Backblaze.com: Online Backup and Cloud Storage provider.
- 83+K drives
- 2013-2016
- Seagate, Hitachi, HGST, Western Digital, Toshiba, Samsung

https://www.backblaze.com/b2/hard-drive-test-data.html

Hats off to them for sharing their data openly.

Understanding the Data

	date	serial_number	model	capacity_bytes	failure	smart_1_normalized	smart_1_raw	smart_2_normalized	smart_2_raw	smart_3_n
2	2016-04-01	Z305B2QN	ST4000DM000	4000787030016	0	117	140875840			
3	2016-04-01	MJ0351YNG9Z7LA	Hitachi HDS5C3030ALA630	3000592982016	0	100	0	136	104	
4	2016-04-01	MJ0351YNGABYAA	Hitachi HDS5C3030ALA630	3000592982016	0	100	0	136	104	
5	2016-04-01	WD-WMC4N2899475	WDC WD30EFRX	3000592982016	0	200	0			
6	2016-04-01	Z305DTP7	ST4000DM000	4000787030016	0	117	118868640			

Dataset:

- 83K drives
- 46M Drive Days (2013-2016)
- >5000 failures
- Daily snapshot for each drive's health state + SMART metrics
- SMART (Self-Monitoring, Analysis and Reporting Technology) a standard monitoring system included in HDDs and SSDs

Example SMART Attributes:

- SMART_1: Read Error Rate
- SMART_5: Reallocated Sectors Count
- SMART 9: Power On Hours
- SMART_7: Seek Error Rate
- SMART_197: Current Pending Sector Count

https://en.wikipedia.org/wiki/S.M.A.R.T.

Copyright Minima Inc. 2017

SMART5: Reallocated Sector Count

Sample of 7678 drives (50% failed/50% healthy)

Copyright Minima Inc. 2017

SMART1: Read Error Rate

Sample of 7678 drives (50% failed/50% healthy)

SMART9: Power On Hours

Sample of 7678 drives (50% failed/50% healthy)

SMART197: Current Pending Sector Count over 30 days

Sample of 7678 drives (50% failed/50% healthy)

Copyright Minima Inc. 2017

Part III

Disk failures can be predicted. Not perfectly. But better than simple heuristics.

Performance Metric

• Goals:

- Detect rare event (1/20 or less)
- Tune depending on Use Case
 - Tolerance for False Positives
 - vs. Tolerance for False Negatives
- We want to maximize our ability to make better tradeoffs
- Performance Metric:
 - PR.AUC: Area Under Precision-Recall curve

Recall

Baseline Heuristic

• If any of the critical SMART attributes > 0 then the drive is likely to fail

- SMART_5: Reallocated Sectors Count
- SMART_187: Reported Uncorrectable
- SMART_188: Command Timeout
- SMART_197: Current Pending Sector Count
- SMART_198: Offline Uncorrectable

Baseline Performance

- Evaluation dataset:
 - 13980 drives
 - 699 failed
 - 13281 healthy
- Precision: 42%
 - (i.e. 58% false positives)
- Recall: 68%
 - (i.e. 32% false negatives)

Confusion Matrix					
		Baseline Prediction			
		Healthy	Failed		
<u>Truth</u>	Healthy	12625	656		
	Failed	223	476		

Approach

- Split the data into train/test and Eval
 - 2013-2015: Train/Test
 - 2016: Eval

- Sample from the train data at 50/50
 - (Learn equally from failure/health)
- Sample from the Eval data at 95/05
 - (Evaluate at a fixed real-life failure/healthy mix)

Feature management challenges

- Inconsistency of SMART data support across vendors and drive models
- Data Sparseness
- Opacity of most SMART metrics
- Further opacity of Normalized SMART values
- Wide Range for most SMART values
- Dataset skewness by vendor and model
- Some gaps and inconsistencies in the telemetry data

Feature Selection & Models

Feature Selection:

- Raw over Normalized SMART Data
- Created model_fam feature to collapse vendor/model
- Z-Score Normalization of RAW values
- 3-day, 5-day rolling Variance for all SMART RAW values
- and a few things which didn't work as well as initially hoped ©

Models:

- Random Forests
- Logistic Regression
- Support Vector Machines

• Goal:

- Improve on the baseline
- Expand options to tune Decision Threshold for various Precision vs. Recall tradeoffs (based on Use Case)

Model 1: Random Forests

Single Decision Tree

Random Forest

Model 2: Logistic Regression

- Sigmoid (Step) function to model a binomial output (0/1)
- Works well for linear continuous numerical inputs
 - Corollary: Horribly for categorical nonlinear variables appearing to be continuous numerical

- In our case the key is to:
 - Isolate right SMART metrics
 - Normalize where needed

Model 3: Support Vector Machines

- Binary Classifier based on mapping non-linear data into a higher dimension to make linear separation possible
- Maximizes margin of separation between +/categories
- In our case the key was still to isolate right SMART metrics before training

By Alisneaky, svg version by User:Zirguezi - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47868867

Model: rf_ST_raw EvalData: 2016_ST_n0 Best Acc: 0.9735 @cutoff: 0.8074

Model: glm_ST_base EvalData: 2016_ST_n0 Best Acc: 0.9726 @cutoff: 0.950

Model: rf_ST_raw EvalData: 2016_ST_n2 Best Acc: 0.9612 @cutoff: 0.7147

Model: rf_ST_raw EvalData: 2016_ST_n4 Best Acc: 0.9581 @cutoff: 0.6706

Results: Hitachi drives. Day Zero

Model: rf_all_raw EvalData: 2016_Hi_n0 Best Acc: 0.9655 @cutoff: 0.9

Results: Hitachi drives. Day -1

Model: rf_all_raw EvalData: 2016_Hi_n1 Best Acc: 0.9642 @cutoff: 0.9

Feature Importance – SMART Raw – All Models

Feature Importance – SMART Variance - Seagate

Summary

- 2% of Disks fail annually, on average. Mileage varies by model.
- SMART metrics can clearly signal failures, sometimes days before it happens
- We can train/predict across some of the drive models overcoming training data sparsity
- We can reasonably train models to predict drive failure using SMART data and improve upon existing heuristics
- Picking and tuning the right model depends on Use Case and goals
 - Precision vs. Recall tradeoff
 - Different models give you more options
- More Data is better. Duh!