Fundamental Theorem of Finitely Generated Abelian Groups

1. Fundamental Theorem of Finitely Generated Abelian Groups

Presentation of a group Solutions to exercises

Presentation of a group

Definition 1

Suppose $\varphi: \mathbb{Z}^n \to \mathbb{Z}^m$ is a homomorphism.

- (a) The cokernel of φ is the quotient group coker $(\varphi) := \mathbb{Z}^m / \operatorname{image}(\varphi)$.
- (b) Suppose φ is given by an $m \times n$ matrix A. Write $A\mathbb{Z}^n \triangleleft \mathbb{Z}^m$ to denote image (φ) . Any isomorphism

$$\psi: \mathbb{Z}^m/A\mathbb{Z}^n \stackrel{\cong}{\to} G$$

is called a presentation of a finitely generated abelian group G, and A is called a presentation matrix for G.

Exercise 1

Let $\varphi: \mathcal{G} \to \mathcal{H}$ denote a group homomorphism. Prove the following:

- (a) φ is injective if and only if $\ker \varphi = \{1_G\}$.
- (b) φ is surjective if and only if $\operatorname{coker} \varphi = \{1_H\}.$

Question

Compute the determinants for the matrices in Exercises ?? and ??. What is the pattern?

Exercise 2 (cf. Problem 83)

For any positive integer n, consider an $n \times n$ matrix A_n described by Pascal's triangle, exemplified by

$$A_5 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{pmatrix}.$$

What finitely generated abelian group G_n is presented by the matrix A_n ?

Solutions to exercises

Exercise 1

Solution:

(a) First, suppose φ is injective. Since $1_G \in \ker \varphi$, if $g \in \ker \varphi$ then $\varphi(g) = 1_H = \varphi(1_G)$ implies $g = 1_G$. On the other hand, if the kernel is trivial then suppose $\varphi(g) = \varphi(h)$. Multiply both sides by $\varphi(g)^{-1}$:

$$\varphi(g) = \varphi(h)$$

$$\varphi(g)\varphi(g)^{-1} = \varphi(h)\varphi(g)^{-1}$$

$$1_H = \varphi(hg^{-1}).$$

This means $hg^{-1} \in \ker \varphi$ so $hg^{-1} = 1_G$. Multiply both sides by g:

$$hg^{-1} = 1_G$$

 $hg^{-1}g = 1_G g$
 $h = g$,

and so φ is injective.

(b) Say φ is surjective. Then $\varphi(G)=H$ implies coker $\varphi=H/\varphi(G)=H/H=\{1_H\}$. Conversely, suppose the cokernel is trivial. By Lagrange's Theorem, the order of the subgroup $\varphi(G)$ must divide |H| and since the cosets of a subgroup partition the group evenly, we must have

$$|H/\varphi(G)| \cdot |\varphi(G)| = |H|.$$

A trivial cokernel means $|H/\varphi(G)|=1$ and it follows that $|\varphi(G)|=|H|$ and hence, $\varphi(G)=H$. Therefore, φ is surjective.

Exercise ?? (cf. Problem 79)

Solution: The Smith normal form of $A:=\begin{pmatrix}2&1\\1&2\end{pmatrix}$ is $\begin{pmatrix}1&0\\0&3\end{pmatrix}$, which means A is a presentation matrix for a group isomorphic to $\boxed{\mathbb{Z}_3}$.

Exercise ?? (cf. Problem 80)

Solution: The Smith normal form of $\tilde{\Delta}$ from Problem \ref{Delta} was $\left(\begin{smallmatrix}1&0\\0&4\end{smallmatrix}\right)$. Thus $\mathcal{S}(\Gamma)\cong\left\lceil\mathbb{Z}_4\right\rceil$.

Exercise ?? (cf. Problem 81)

Solution:

- (a) $\begin{pmatrix} 5 & 0 & 0 \end{pmatrix}$ $\xrightarrow[]{\mathcal{L}}$ (5) gives a presentation for a group isomorphic to $\boxed{\mathbb{Z}_5}$.
- (b) $\begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix}$ has 5 as an invariant factor, and free rank of 2. Therefore its cokernel is isomorphic to $\boxed{\mathbb{Z}_5 \oplus \mathbb{Z} \oplus \mathbb{Z}}$.
- (c) Computing the Smith normal form

$$\begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix} \quad \xrightarrow{ \begin{matrix} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - R_1 \end{matrix} } \quad \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \xrightarrow{ \begin{matrix} C_2 \to C_2 - C_1 \\ C_3 \to C_3 - C_1 \end{matrix} } \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

shows the abelian group presented by the above matrix is isomorphic to $\mathbb{Z}_2\oplus\mathbb{Z}_2\oplus\mathbb{Z}_2$.

Exercise ?? (cf. Problem 82)

Solution: Via Sage, the Smith normal forms reveal the isomorphic abelian groups:

$$\begin{array}{ccc} \text{(a)} & \begin{pmatrix} [r]3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \text{ has cokernel } \boxed{\mathbb{Z}_4 \oplus \mathbb{Z}_4}.$$

(b)
$$\begin{pmatrix} [r]3 & -1 & 0 & -1 \\ -1 & 3 & -1 & 0 \\ 0 & -1 & 3 & -1 \\ -1 & 0 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix} \text{ has cokernel } \boxed{\mathbb{Z}_3 \oplus \mathbb{Z}_{15}}.$$

(c)
$$\begin{pmatrix} [r]_3 & -1 & 0 & 0 & -1 \\ -1 & 3 & -1 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 11 & 0 \\ 0 & 0 & 0 & 0 & 11 \end{pmatrix} \text{ has cokernel }$$

$$\boxed{\mathbb{Z}_{11} \oplus \mathbb{Z}_{11}}.$$

Exercise 2 (cf. Problem 83)

Solution: When n=1, the trivial group is presented. Suppose, for induction, the trivial group is presented by A_{n-1} . To clear the first column of A_n , subtract from each row R_i , for $i=2,\ldots,n$, the row R_{i-1} . For $n\geq 2$ every entry a_{ij} not in the first row or column can be written

$$a_{ij} = a_{i,j-1} + a_{i-1,j}$$
.

Thus upon clearing the first column, such an entry becomes $a_{ij} - a_{i-1,j} = a_{i,j-1}$.

Next, clear the first row by subtracting from each column C_j , for $j=2,\ldots,n$, the column C_{j-1} . For $i,j\geq 2$, the ith entry in the jth column was replaced in the row operations by $a_{i,j-1}$. Thus when we clear the first row the (i,j)th entry, for $i,j\geq 2$, will become

$$a_{i,j-1} - a_{i,j-2} = (a_{i-1,j-1} + a_{i,(j-1)-1}) - a_{i,j-2}$$

= $a_{i-1,i-1}$.

Having cleared the first row and the first column of A_n , the remaining $(n-1) \times (n-1)$ submatrix is a copy of A_{n-1} which, by the induction hypothesis, reduces to the identity matrix. It follows that A_n also reduces to the identity matrix, and therefore is a presentation for the trivial group.