Trabalho Prático 1 - Cálculo Numérico (Questão 1)

Função: $f(\theta) = (100^2 / 9.8) * (\sin \theta + 0.5 \sin 2\theta) - 1000$ Domínio: $0 \le \theta \le \pi/2$ Critérios: $|f(\theta)| < 10^{-5}$ ou máx. 100 iterações

Métodos: Bissecção, Falsa Posição, Newton e Secante

Resultados Finais:

Bissecção: $\theta = 0.5590371042$, $|f(\theta)| = 3.55e\text{-}06$, iterações = 26 Falsa Posição: $\theta = 0.5590371021$, $|f(\theta)| = 7.82e\text{-}07$, iterações = 8 Newton: $\theta = 0.5590370969$, $|f(\theta)| = 6.06e\text{-}06$, iterações = 5 Secante: $\theta = 0.5590371084$, $|f(\theta)| = 8.97e\text{-}06$, iterações = 7

Conclusão:

Todos os métodos convergiram para o mesmo valor de θ dentro do critério estabelecido.

Métodos de Newton e Secante foram mais rápidos (menos iterações), enquanto Bissecção e Falsa Posição mostraram convergência mais lenta, porém estável.