Minimax lower bound: Fano's method

Tri Nguyen

Reading group - Summer 2022 Oregon State University

August 10, 2022

Let's start with an example

- ▶ Given a family of Gaussian $\mathcal{N}_d = \{N(\theta, \sigma^2 I_d) | \theta \in \mathbb{R}^d\}.$
- ▶ God chooses a distribution $P \in \mathcal{N}_d$.
- ightharpoonup A set of n i.i.d samples are drawn from P.
- ▶ Task: estimate the mean θ from n samples.
- $lackbox{ Quality of estimator is measured by } \mathbb{E}\left[\left\| heta-\widehat{ heta}
 ight\|^2
 ight]$

What could be the best performance in the worse case scenario?

- ▶ If d = 1, we can use Cramer-Rao lower bound.
- \blacktriangleright Sample mean estimator have the error of $\frac{d\sigma^2}{n}$, let's see if this error can be improved.

Setting

- From a distribution family \mathcal{P} , God chooses a distribution $P \in \mathcal{P}$.
- ▶ A set of n i.i.d samples X_1^n are drawn from P.
- ▶ Task: estimating $\theta(P)$ from given samples.
- Question: What would be the best performance of an ideal estimator in the worse case?
- ▶ Quality of estimator is measured by $\Phi(\rho(\theta, \widehat{\theta}))$, where:
 - $ightharpoonup \phi := \phi(P)$ is some statistic of P
 - $ightharpoonup \widehat{\theta} := \widehat{\theta}(X_1^n)$ is some estimator
 - $lackbox{}{\Phi}(\cdot)$ is a non-decreasing function
 - $ightharpoonup
 ho(\cdot,\cdot)$ is a semimetric

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E} \left[\Phi(\rho(\theta, \widehat{\theta})) \right]$$

Finding exact $\mathcal{M}()$ is difficult, instead our attempt is to find a lower bound of it.

Sketch

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}\left[\Phi(\rho(\theta, \widehat{\theta}))\right]$$

1. Translate to probability

$$\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E} \left[\Phi(\rho(\theta, \widehat{\theta})) \right] \geq \Phi(\delta) \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta)$$

2. Reduce the whole space \mathcal{P} to a finite set $\{\theta_v|v\in\mathcal{V}\}$

$$\sup_{P \in \mathcal{P}} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \mathbb{P}(\rho(\theta_v, \widehat{\theta}) \ge \delta)$$

3. Reduce to a hypothesis testing error (required ${\cal V}$ to have some properties)

$$\mathbb{P}(\rho(\theta_v, \widehat{\theta}) \ge \delta) \ge \mathbb{P}(\Psi(X_1^n) \ne v)$$

4. Finding concrete bound based on specific problems.

Theorem

Assume that there exist $\{P_v \in \mathcal{P} | v \in \mathcal{V}\}$, $|\mathcal{V}| \leq \infty$ such that for $v \neq v'$, $\rho(\theta(P_v), \theta(P_{v'})) \geq 2\delta$. Define

- ▶ V to be a RV with uniform distribution over V, and given V=v we draw $\widetilde{X}_1^n \sim P_v$.
- For an estimator $\widehat{\theta}$, let $\Psi(X_1^n) := \arg\min_{v \in \mathcal{V}} \rho(\theta(P_v), \widehat{\theta}(X_1^n))$

Then,

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_1^n) \ne V)$$

Some remarks:

- ▶ The X_1^n in the RHS is different from the \widetilde{X}_1^n in the LHS. \widetilde{X}_1^n are never observed and only served for our analysis.
- ▶ There's a trade-off in choosing δ .
- In the following, $\theta_v := \theta(P_v)$, and dependence on \widetilde{X}_1^n might be omitted.

Proof

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) := \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E} \left[\Phi(\rho(\theta, \widehat{\theta})) \right]$$

1. Translate to probability

$$\begin{split} \sup_{P \in \mathcal{P}} \mathbb{E}[\Phi(\rho(\theta, \widehat{\theta}))] &\geq \sup_{P \in \mathcal{P}} \mathbb{E}[\Phi(\delta)I(\rho(\theta, \widehat{\theta}) \geq \delta)] \\ &= \Phi(\delta) \sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \geq \delta) \end{split}$$

2. Restrict to set of $\{P_v \in \mathcal{P} | v \in \mathcal{V}\}$ where \mathcal{V} is some index set

$$\sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta(P), \widehat{\theta}) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta_v, \widehat{\theta}) \ge \delta)$$

In detail,

$$\sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta(P), \widehat{\theta}(X_1^n)) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\theta(P_v), \widehat{\theta}(\widetilde{X}_1^n)) \ge \delta)$$

where

- lacksquare X_1^n are observed data which are drawn from unknown P
- lacksquare X_1^n are imaginary data drawn from P_v , given that V=v where $V\sim \mathsf{Uniform}(\mathcal{V}).$

3. Now we turn to a hypothesis testing by requiring set $\{\theta_v|v\in\mathcal{V}\}$ to be a 2δ -packing set, i.e,

$$\rho(\theta_v, \theta_{v'}) \ge 2\delta \quad \forall v \ne v'$$

Figure: From Dr.John Duchi's notes

$$\begin{split} \operatorname{Recall} \ & \Psi(X_1^n) := \arg \min_{v \in \mathcal{V}} \rho(\theta_v, \widehat{\theta}(X_1^n)). \\ \operatorname{Since} \ & \Psi(\widetilde{X}_1^n) \neq v \Rightarrow \rho(\theta_v, \widehat{\theta}) \geq \delta, \\ & \Rightarrow \quad \mathbb{P}(\rho(\theta_v, \widehat{\theta}) > \delta) > \mathbb{P}(\Psi(\widetilde{X}_1^n) \neq v) \end{split}$$

$$\sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \ge \delta) \ge \frac{1}{|\mathcal{V}|} \sum_{v} \mathbb{P}(\rho(\theta_{v}, \widehat{\theta}) \ge \delta)$$

$$\ge \frac{1}{|\mathcal{V}|} \sum_{v} \mathbb{P}(\Psi(\widetilde{X}_{1}^{n}) \ne v)$$

$$= \mathbb{P}(\Psi(\widetilde{X}_{1}^{n}) \ne V)$$

$$\Rightarrow \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{P}(\rho(\theta, \widehat{\theta}) \ge \delta) \ge \inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_{1}^{n}) \ne V)$$

$$\Rightarrow \mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_{1}^{n}) \ne V)$$

Local Fano

Lemma (Derived from Fano inequality)

$$\inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_{1}^{n}) \neq V) \ge 1 - \frac{I(V; \widetilde{X}_{1}^{n}) + \log 2}{\log |\mathcal{V}|}$$

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \phi(\delta) \left(1 - \frac{I(V; \widetilde{X}_1^n) + \log 2}{\log |\mathcal{V}|} \right)$$

Mutual Information to KL

For $X_1^n \sim P_v, v \sim \mathsf{Uni}(\mathcal{V})$. Define

$$\overline{P} = \frac{1}{|\mathcal{V}|} \sum P_v$$

then

$$\begin{split} I(V;X_1^n) &= D_{\mathrm{kl}}\left(\mathbb{P}_{(V,X_1^n)}||\mathbb{P}_V\mathbb{P}_{X_1^n}\right) = \sum_v \sum_{X_1^n} \mathbb{P}(v,x_1^n) \log \frac{\mathbb{P}(v,x_1^n)}{\mathbb{P}(v)\mathbb{P}(x_1^n)} \\ &= \sum_v \mathbb{P}(v) \sum_{X_1^n} \mathbb{P}(x_1^n|v) \log \frac{\mathbb{P}(x_1^n|v)}{\mathbb{P}(x_1^n)} \\ &= \sum_v \mathbb{P}(v) D_{\mathrm{kl}}\left(P_v||\overline{P}\right) \\ &= \frac{1}{|\mathcal{V}|} \sum_v D_{\mathrm{kl}}(P_v||\overline{P}) \\ &\leq \frac{1}{|\mathcal{V}|^2} \sum_{v,v'} D_{\mathrm{kl}}(P_v||P_{v'}) \text{(concavity of log)} \end{split}$$

How to use: A Recipe

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \phi(\delta) \left(1 - \frac{I(V; \widetilde{X}_1^n) + \log 2}{\log |\mathcal{V}|} \right)$$
 (1)

$$I(V; \widetilde{\mathcal{X}}_1^n) \le \frac{1}{|\mathcal{V}|^2} \sum_{v, v' \in \mathcal{V}} D_{kl}(P_v||D_{v'}) \tag{2}$$

- lacktriangle Construct a packing set $\{ heta_v|v\in\mathcal{V}\}$ and then apply inequality (1)
 - ▶ It needs to satisfy $D_{kl}(P_v||P_{v'}) \leq f(\delta)$ for some f
 - ▶ And $|\mathcal{V}|$ need to be large.
- ▶ Compute the bound $I(V; \widetilde{X}_1^n)$ as a function of δ using (2)
- ightharpoonup Choose an optimal δ

How to use: Example

Example. Given the family $\mathcal{N}_d = \left\{N(\theta; \sigma^2 I_d) \mid \theta \in \mathbb{R}^d\right\}$. The task is to estimate the mean $\theta(P)$ for some $P \in \mathcal{N}_n$ given X_1^n samples drawn i.i.d from P. We wish to find out the lower bound of minimax error in term of mean-squared error.

Solution. Let's construct the local packing set $\{\theta_v|v\in\mathcal{V}\}$:

- Let \mathcal{V} be a 1/2-packing of unit ℓ_2 -ball where $|\mathcal{V}| \geq 2^d$. It is guaranteed that such \mathcal{V} exists.
- ▶ Then our $\delta/2$ -packing set is $\left\{\delta v \in \mathbb{R}^d | v \in \mathcal{V}\right\}$, since

$$\|\theta_v - \theta_{v'}\|_2 = \delta \, \|v - v'\|_2 \geq \frac{\delta}{2} \quad \text{(since \mathcal{V} is a $1/2$-packing set)}$$

Apply our bound,

$$\mathcal{M}_{n}(\theta(\mathcal{N}_{d}), \|\cdot\|^{2}) \geq \Psi(\delta) \left(1 - \frac{I(V; X_{1}^{n}) + \log 2}{\log |\mathcal{V}|}\right)$$
$$\geq \left(\frac{1}{2} \frac{\delta}{2}\right)^{2} \left(1 - \frac{I(V; X_{1}^{n}) + \log 2}{\log |\mathcal{V}|}\right)$$
$$= \frac{\delta^{2}}{16} \left(1 - \frac{I(V; X_{1}^{n}) + \log 2}{\log |\mathcal{V}|}\right)$$

And,

$$\begin{split} I(V; X_1^n) &\leq \frac{1}{|\mathcal{V}|^2} \sum_{v,v'} D_{\mathrm{kl}}(P_v^n || P_{v'}^n) \\ &= \frac{1}{|\mathcal{V}|^2} \sum_{v,v'} n D_{\mathrm{kl}} \left(N(\delta v, \sigma^2 I_d), N(\delta v', \sigma^2 I_d) \right) \\ &= n D_{\mathrm{kl}} \left(N(\delta v, \sigma^2 I_d), N(\delta v', \sigma^2 I_d) \right) \\ &= n \frac{\delta^2}{2\sigma^2} \left\| v - v' \right\|^2 \leq \frac{n\delta^2}{2\sigma^2} \end{split}$$

Let's combine these 2 inequalities above,

$$\mathcal{M}_n(\theta(\mathcal{N}_d), \|\cdot\|^2) \ge \frac{\delta^2}{16} \left(1 - \frac{\frac{n\delta^2}{2\sigma^2} + \log 2}{d \log 2}\right)$$

That bound's optimal value is achieved at $\delta^2=\frac{(d-1)\sigma^2\log 2}{n}$, and the optimal value is

$$\frac{(d-1)^2\sigma^2\log 2}{32dn} \Rightarrow O\left(\frac{d\sigma^2}{n}\right)$$

Proof of the claim on packing number

Claim: There exists a 1/2-packing set of unit ℓ_2 -ball with cardinality at least 2^d .

Proof:

- ▶ A δ -packing of the set Θ with respect to ρ is a set $\{\theta_1, \dots, \theta_M\}, \theta_i \in \Theta, i = 1, \dots, N$ such that $\rho(\theta_v, \theta_{v'}) \geq \delta \ \forall v \neq v'$.
- \triangleright Then δ -packing number is

$$M(\delta,\Theta,\rho)=\sup\left\{M\in\mathbb{N}: \text{there exists a }\delta\text{-packing }\{\theta_1,\dots,\theta_M\} \text{ of }\Theta \right.\}$$

We have

$$\begin{cases} M(\delta, \Theta, \rho) \ge N(\delta, \Theta, \rho) \\ N(\delta, \mathbb{B}, ||\cdot||) \ge (1/\delta)^d \end{cases} \Rightarrow M(1/2, \mathbb{B}, ||\cdot||) \ge 2^d$$

- For the first inequality, denote $\widehat{\Theta}$ be a δ -packing of Θ with size of $M(\delta,\Theta,\rho)$. Since there is no $\theta\in\Theta$ we can add to $\widehat{\Theta}$ such that $\rho(\theta,\widehat{\theta})\geq\delta$, $\widehat{\Theta}$ is also a δ -covering of Θ .
- **>** For the second inequality, let $\{v_1, \ldots, v_N\}$ as a δ-covering of \mathbb{B} , then

$$\mathsf{Vol}(\mathbb{B}(\mathbf{0},1)) \leq \sum_{i=1}^{N} \mathsf{Vol}(\mathbb{B}(v_i,\delta)) = N \mathsf{Vol}(\mathbb{B}(v_1,\delta)) = N \delta^d \mathsf{Vol}(\mathbb{B}(\mathbf{0},1))$$

Proof of the bound on mutual information

Proposition (Fano inequality)

For any Markov chain $V \to X \to \widehat{V}$, we have

$$h_2(\mathbb{P}(\widehat{V} \neq V)) + \mathbb{P}(\widehat{V} \neq V) \log(|\mathcal{V}| - 1) \ge H(V|\widehat{V})$$

where $h_2(p) = -p \log(p) - (1-p) \log(1-p)$ is entropy of a Bernoulli RV with parameter p.

Apply this proposition for V being a uniform RV over \mathcal{V} ,

$$H(V|\widehat{V}) = H(V) - I(V;\widehat{V}) = \log|\mathcal{V}| - I(V;\widehat{V}) \ge \log|\mathcal{V}| - I(V;X)$$

$$\log 2 + \mathbb{P}(V \neq \widehat{V}) \log(|\mathcal{V}|) > \log h_2(\mathbb{P}(V \neq \widehat{V})) + \mathbb{P}(V \neq \widehat{V}) \log(|\mathcal{V}| - 1)$$

$$\geq H(V|\widehat{V})$$

$$\geq \log |\mathcal{V}| - I(V; X)$$

$$\Rightarrow \mathbb{P}(V \neq \widehat{V}) \ge 1 - \frac{I(V; X) + \log 2}{\log |\mathcal{V}|}$$

Proof of Fano Inequality

Let E=1 be the event $V \neq \widehat{V}$, E=0 otherwise. We have

$$\begin{split} H(V,E|\widehat{V}) &= H(V|E,\widehat{V}) + H(E|\widehat{V}) \quad \text{(chain rule)} \\ &= \mathbb{P}(E=1)H(V|E=1,\widehat{V}) + \mathbb{P}(E=0)H(V|E=0,\widehat{V}) + H(E|\widehat{V}) \\ &= \mathbb{P}(E=1)H(V|E=1,\widehat{V}) + H(E|\widehat{V}) \end{split}$$

We also have

$$\begin{split} H(V,E|\widehat{V}) &= H(E|V,\widehat{V}) + H(V|\widehat{V}) \\ &= H(V|\widehat{V}) \end{split}$$

$$H(V|\widehat{V}) = \mathbb{P}(E=1)H(V|E=1,\widehat{V}) + H(E|\widehat{V})$$

$$\leq \mathbb{P}(E=1)\log|\mathcal{V}-1| + H(E)$$

$$= \mathbb{P}(V \neq \widehat{V})\log(|\mathcal{V}|-1) + h_2(\mathbb{P}(V \neq \widehat{V}))$$

A variant: Distance-based Fano method

The previous derivation requires a construction of a packing set to translate to a hypothesis testing error.

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(\widetilde{X}_1^n) \ne V)$$

The main reason is (derived) Fano's inequality:

$$\mathbb{P}(\widehat{V} \neq V) \ge 1 - \frac{I(V; X_1^n) + \log 2}{\log |\mathcal{V}|}$$

We can bound minimax without explicitly constructing packing set.

$$\mathbb{P}(\rho_{\mathcal{V}}(\widehat{V}, V) > t) \ge 1 - \frac{I(V; X_1^n) + \log 2}{\log(|\mathcal{V}| / N_{\ell}^{\max})}$$

Then,

$$\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi\left(\frac{\delta(t)}{2}\right) \left[1 - \frac{I(X; V) + \log 2}{\log \frac{|\mathcal{V}|}{N^{\max}}}\right]$$

where

$$\delta(t) := \sup \left\{ \delta | \rho(\theta_v, \theta_{v'}) \ge \delta \quad \text{for all } v, v' \in \mathcal{V} \text{ such that } \rho_{\mathcal{V}}(v, v') > t \right\}$$