Московский политехнический университет

Математические методы анализа данных

Лежнина Юлия Аркадьевна

Москва 2022

План лекции 1

- Основы теории вероятностей.
- Свойства вероятности.
- Условная вероятность.
- Случайные величины.
- Примеры.
- Характеристики случайных величин.
- Графический анализ.
- Эмпирическая функция.
- Гистограммы.
- Ящик с усами.
- Диаграмма рассеивания.

Основные понятия теории вероятностей

- Случайный эксперимент (случайное испытание, случайный опыт) математическая модель соответствующего реального эксперимента, результат которого невозможно точно предсказать.
- Пространство элементарных событий множество Ω всех различных исходов случайного эксперимента. Элемент этого множества называется элементарным событием или исходом.
- Случайное событие подмножество множества исходов случайного эксперимента.
- Случайной величиной называется функция, определенная на пространстве элементарных исходов, и принимающая свои значения на некотором множестве.

Вероятность

• Вероятностью случайного события A называется отношение числа n несовместимых равновероятных элементарных событий, составляющих событие A, к числу всех возможных элементарных событий N:

$$\Pr(A) = \frac{n}{N}$$

Жорж-Луи Лекле́рк, граф де Бюффо́н

N=4040

Орел — 2048 выпадений Решка — 1992 выпадения

Р(Орел)=0,507

Карл Пирсон

N = 24000

Орел – 12012 выпадений Решка – 11988 выпадения

Р(Орел)=0,5005

Статистическая вероятность

• Статистической вероятностью случайного события называется отношение m, числа испытаний, в которых это событие появилось, к общему числу n, проведённых испытаний, и обозначается:

$$W(A) = \frac{m}{n}$$

Свойства вероятности

$$\mathbf{P}\{\varnothing\}=0;$$

$$0 \leqslant \mathbf{P}\{A\} \leqslant 1;$$

$$\mathbf{P}\{A\} \leqslant \mathbf{P}\{B\};$$

$$\mathbf{P}\{A\} \leqslant \mathbf{P}\{B\};$$

$$\mathbf{P}\{\bar{A}\} = 1 - \mathbf{P}\{A\};$$

$$\mathbf{P}\{B \setminus A\} = \mathbf{P}\{B\} - \mathbf{P}\{A\};$$

$$\mathbf{P}{A + B} = \mathbf{P}{A} + \mathbf{P}{B} - \mathbf{P}{AB}.$$

Условная вероятность

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Формула полной вероятности

$$P(A) = \sum_{i=1}^{n} P(H_i) P(A | H_i)$$

Формула Бейеса

$$P(Hi|A) = \frac{P(H_i) \cdot P(A/H_i)}{\sum_{i=1}^{n} P(H_i)P(A/H_i)} = \frac{P(H_i) \cdot P(A/H_i)}{P(A)}$$

Законы распределения случайных величин

Случайные величины

дискретные

непрерывные

Функция распределения. Плотность

Функция распределения

Функцией распределения вероятностей F(x) случайной величины X в точке x называется вероятность того, что в результате опыта случайная величина примет значение, меньше, чем x, т.е. $F(x)=P\{X < x\}$.

Плотность и функция вероятности

дифференциальная функция распределения. Она представляет собой производную функции распределения.

для дискретной случайной величины рассматриваем функцию вероятности

Равномерное распределение

Говорят, что случайная величина имеет непрерывное равномерное распределение на отрезке [a,b], где а и b действительные числа, если её плотность fX(x) имеет вид:

$$f_X(x) = \left\{ egin{aligned} rac{1}{b-a}, & x \in [a,b] \ 0, & x
otin [a,b] \end{aligned}
ight..$$

Математическое	a+b
ожидание	2
Медиана	$\frac{a+b}{2}$
Мода	любое число из отрезка $[a,b]$
Дисперсия	$(b-a)^2$
	12

Нормальное распределение

Норма́льное распределе́ние, также называемое распределением Гаусса или Гаусса — Лапласа — распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса (здесь параметр μ — математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ — среднеквадратическое отклонение, σ ^{2} — дисперсия распределения :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Математическое	μ
ожидание	
Медиана	μ
Мода	μ
Дисперсия	σ^2

Распределение Бернулли

Случайная величина X имеет распределение Бернулли, если она принимает всего два значения: 1 и 0 с вероятностями р и q= 1-р соответственно. Таким образом:

$$\mathbb{P}(X=1) = p,$$

$$\mathbb{P}(X=0) = q.$$

Функция вероятности	q-k=0
	p = k = 1
Функция распределения	0 k < 0
	$q 0 \le k < 1$
	$1 \qquad k \geq 1$
Математическое ожидание	p
Мода	$\begin{cases} 0, & q > p \end{cases}$
	$\left\{ egin{array}{ll} 0, & q > p \ 0, 1, & q = p \ 1, & q$
	(1, q < p)
Дисперсия	pq

Биномиальное распределение

Пусть X_1,...,X_n — конечная последовательность независимых случайных величин, имеющих одинаковое распределение Бернулли с параметром p, то есть при каждом n величина X_i принимает значения 1 («успех») и 0 («неудача») с вероятностями p и q=1-р соответственно. Тогда случайная величина Y=X_1+...+X_n имеет биномиальное распределение с параметрами n и p.

$$p_Y(k) \equiv \mathbb{P}(Y=k) = inom{n}{k} p^k q^{n-k}, \;\; k=0,\ldots,n,$$

$$egin{array}{ll} & \Phi_{
m yhklus} & I_{1-p}(n-\lfloor k \rfloor,1+\lfloor k \rfloor) \ & {
m pacпpeделения} \ & {
m Matematuчeckoe} & np \ & {
m oжиданиe} \ & {
m Meдианa} & {
m oднo}\ & {
m us} \ & \{\lfloor np \rfloor -1,\lfloor np \rfloor,\lfloor np \rfloor +1\} \ & {
m Moda} & \lfloor (n+1)\,p \rfloor \ & {
m Qucnepcus} & npq \ & {
m pacnpedeness} \ & {
m npq} \ & {
m pacnpedeness} \ & {
m pacnpedeness} \ & {
m loss} \ & {
m loss}$$

Распределение Пуассона

Распределе́ние Пуассо́на — распределение дискретного типа случайной величины, представляющей собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

$$p(k) \equiv \mathbb{P}(Y = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

 $\begin{array}{ll} \text{Математическое} & \lambda \\ \text{ожиданиe} & \\ \text{Медиана} & \approx \lfloor \lambda + 1/3 - 0.02/\lambda \rfloor \\ \text{Мода} & \lfloor \lambda \rfloor & \\ \text{Дисперсия} & \lambda & \\ \end{array}$

Карта связей распределений

Центральная предельная теорема (Ляпунова)

• Сумма большого числа как угодно распределенных независимых случайных величин распределена асимптотически нормально, если только слагаемые вносят равномерно малый вклад в сумму.

«Сглаживание» распределения суммированием. Показана функция плотности вероятности одной случайной величины, а также распределения суммы двух, трёх и четырёх случайных величин с такой же функцией распределения.

Характеристики случайных величин

Математическое ожидание

Дискретная

Непрерывная

$$\mathbb{P}(X=x_i)=p_i$$
 , $\sum_{i=1}^{\infty}p_i=1$,

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} x_i \, p_i.$$

$$\mathbb{E}[X] = \int\limits_{-\infty}^{\infty} x f_X(x) \, dx.$$

 $f_X(x)$,

Квантили, мода, медиана

Квантили, мода, медиана

пример

• N=25

Кол-во человек	1	1	2	1	3	4	1	12
Зарплата	45000	15000	1000	5700	5500	3700	3000	2000
примечание				матожида ние			медиана	мода

Оптимистич ный вариант

Пессимист ичный вариант

Вариативность случайной величины

$$D[X] = \sum_{i=1}^n p_i (x_i - \mathbb{E}[X])^2, \qquad \qquad D[X] = \int_{-\infty}^{+\infty} (x - \mathbb{E}[X])^2 f(x) dx \ D[X] = rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n p_i p_j (x_i - x_j)^2 = \sum_{i=1}^n \sum_{j=i+1}^n p_i p_j (x_i - x_j)^2, \qquad D[X] = rac{1}{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x_2 - x_1)^2 f(x_1) f(x_2) dx_1 dx_2.$$

Квартили, правило двух σ

a=900 σ^2=400

Сколько кликов ожидать с вероятностью 95%?

Квартет Энскомба

	I	ı	I	III		IV	
X	у	х	у	X	у	Х	y
10,0	8,04	10,0	9,14	10,0	7,46	8,0	6,58
8,0	6,95	8,0	8,14	8,0	6,77	8,0	5,76
13,0	7,58	13,0	8,74	13,0	12,74	8,0	7,71
9,0	8,81	9,0	8,77	9,0	7,11	8,0	8,84
11,0	8,33	11,0	9,26	11,0	7,81	8,0	8,47
14,0	9,96	14,0	8,10	14,0	8,84	8,0	7,04
6,0	7,24	6,0	6,13	6,0	6,08	8,0	5,25
4,0	4,26	4,0	3,10	4,0	5,39	19,0	12,50
12,0	10,84	12,0	9,13	12,0	8,15	8,0	5,56
7,0	4,82	7,0	7,26	7,0	6,42	8,0	7,91
5,0	5,68	5,0	4,74	5,0	5,73	8,0	6,89

Характеристика	Значение
Среднее значение переменной $oldsymbol{x}$	9.0
Дисперсия переменной $oldsymbol{x}$	10,0
Среднее значение переменной y	7,5
Дисперсия переменной y	3,75
Корреляция между переменными x и y	0,816
Прямая линейной регрессии	y = 3 + 0.5x
Коэффициент детерминации линейной регрессии	0,67

Эмпирическая функция

Гистограммы

Гистограммы

Формулы для определения количества интервалов

метод Стёрджеса

$$n = 1 + \lfloor \log_2 N \rfloor$$

$$k = \left[\sqrt{n}\right]$$

Формулы для определения ширины интервалов

метод Скотта

$$n = 3.5 \cdot \hat{\sigma} \cdot N^{-1/3}$$

метод Фридмана- Диакониса

$$n = 2 \cdot IQR \cdot N^{-1/3}$$

Гистограммы для квартета Энскомба

Смеси распределений времени отклика

Ящик с усами

Ящики с усами

Для квартета Энскомба

Для времени отклика

Диаграмма рассеивания

