More Than Routing: Joint GPS and Route Modeling for Refine Trajectory Representation Learning

I介绍

轨迹表示学习的重要性

轨迹表示学习在支持多种下游任务方面发挥着关键作用。这些任务包括旅行时间估计、轨迹分类和Top-k相似轨迹查询等。

轨迹数据中蕴含着丰富的时空信息,这些信息可以应用于城市规划、城市应急管理、传染病防控和智能物流系统等领域。

模型挑战

- •**GPS轨迹的不确定性**: GPS轨迹中存在大量的冗余和噪声信号,它们会严重影响模型的计算效率和性能。
- •路径轨迹的时空相关性:路径具有复杂的时空相关性,物体经历路段换位时必须考虑路网的拓扑结构,而路段的行程时间与历史交通模式和当前行程状态有关。
- •信息融合的复杂性:虽然GPS轨迹和路径轨迹描述的是同一个概念,由于两个数据源的视角不同,这意味着两个领域,融合不同领域的信息是一个挑战。

Figure 1: Route Modeling v.s. Fusion Modeling.

路线轨迹中的路段只能通过前面和后面的路段进行建模; GPS轨迹中的路段提供了更丰富的采样信息, 允许对路段实体进行细粒度表示

主要贡献

- ·提出了一种基于多模态融合思想的轨迹表示学习框架JGRM:该框架由层次化的GPS编码器、路径编码器和模态交互器组成,其中层次化的GPS编码器用于描述道路实体的特征,路径编码器用于考虑轨迹的时空相关性,模态交互器用于信息融合。
- ·设计了两个可推广到后续研究工作的自监督任务用于模型训练: MLM用于重构轨迹本身的时空连续性,CMM用于融合不同视角的 机动性信息。
- ·在两个真实数据集成都、西安上的大量实验验证了JGRM在各种设置下都能获得最佳性能。

I介绍

早期研究方法:基于为特定下游任务设计的序列模型,并使用特定任务损失进行训练。这些表示缺乏泛化能力,难以应用于其他任务

seq2seq方法:为解决表示的泛化问题,通过重构损失进行训练,以生成更通用的表示

图神经网络方法:随着图神经网络的兴起,研究人员开始关注道路段之间的空间关系。一些两步方法先利用道路网络拓扑建模空间关系,然后使用序列模型进行时间建模。

轨迹简化方法:由于GPS轨迹中存在冗余和噪声,使用路径轨迹代,替原始GPS轨迹成为主流。这些方法引入了许多自然语言处理 (NLP)技术,如Word2Vec和BERT,因为路径轨迹与自然语言 句子具有相似性。

自监督学习方法:为了在无任务的情况下训练轨迹表示模型,设计了多种自监督训练方法。

Traj2vec: 将轨迹序列编码为隐藏表示,解码根据隐藏表示重建轨迹序列。适用于需要轨迹整体表示的任务,如轨迹聚类和分类

NeuTraj、T3S:原始GPS轨迹简化为路径轨迹来减少噪声和冗余。使用地图匹配算法将GPS点映射到道路网络上,形成路径轨迹。

TrajCL: 通过对比学习的方式,设计多种数据增强策略来生成正负样本对,从而学习到具有判别性的轨迹表示。适用于需要高判别性轨迹表示的任务,如轨迹分类和相似性搜索。

II-A GPS轨迹表示学习

- •时空点序列: GPS轨迹是 包含大量时间和空间信息 的时空点序列。
- •不同于一般序列建模:与 只考虑时间因素的一般序 列建模不同,GPS轨迹建 模需要同时考虑时间和空 间因素。
- •轨迹简化: 为了更好地对 GPS轨迹中的空间属性进行建模,简化轨迹可以分为两大类: 基于窗口的和基于道路网络的。经过道路网络简化的GPS轨迹称为路线轨迹。

轨迹简化方法

- ·基于窗口的方法: traj2vec: 使用自定义时间或空间窗口顺序扫描GPS轨迹。序列模型将每个窗口编码为序列中的一个标记。通过滑动窗口捕捉轨迹的局部特征; t2vec: 优化窗口扫描策略, 更加关注空间建模
- •基于道路网络的方法: TrajCL:利用离散化的光栅窗口对原始轨迹进行处理,通过轨迹拓扑结构的简化,捕捉轨迹的主要形状和路径; **图自编码器(**GAE): 利用图自编码器学习节点表示,能够捕捉到道路网络的拓扑结构信息。

捕捉时空依赖性

•NeuTraj: 利用变分自编码器 (VAE) 和对抗训练,来捕捉轨迹数据中的非线性结构和复杂分布; T3S:对轨迹进行语义分割,将轨迹划分为多个语义段; 注意力机制捕捉语义段之间的长程依赖关系

自监督学习

- •TrajCL:引入对比学习并设计多个轨迹数据扩充策略来训练模型,通过随机采样、噪声添加等技术生成正负样本对,利用对比损失函数优化模型参数。
- •局限性:上述方法过于关注宏观转变而忽略了运动细节。最近的研究表明,使用原始轨迹有助于对细粒度运动模式进行建模,从而更好地捕捉移动性。
- •**改进方向**:提出一种分层的编码方法,捕获来自GPS轨迹的稀疏信息,并解决原始轨迹中的噪声和冗余问题

II-B 道路轨迹表示学习

•路径轨迹作为序列数据:

路径轨迹可以被视为序列 数据,其中每个元素代表 一个道路段的访问记录。

·语义与时空特征:路径轨迹不仅包含空间信息,还反映了用户的出行意图和偏好,因此需要同时捕捉其语义和时空特征。

序列模型

将路径轨迹视为序列数据,利用自然语言处理中的技术(如Word2vec和Node2vec)来学习路径轨迹的表示。通过捕捉道路段的上下文关系,有效地表示道路段的语义信息。

捕捉时空依赖性

•Trember:对轨迹进行时空特征提取,形成时空序列数据,再利用RNN对序列进行建模;START:方法细节:轨迹编码器对轨迹进行编码时考虑时间和语义信息,然后设计两个自监督任务,如预测轨迹中的下一个道路段或重建被掩盖的时间段等,通过这些任务训练模型,使模型能够学习到轨迹的表示。

自监督学习

•Toast:先预训练得到初始嵌入,随机掩盖部分道路段,训练模型预测被掩盖的道路段;同时通过轨迹判别任务区分真实轨迹和生成的虚假轨迹,优化模型参数;PIM:利用对比学习,以道路网络中最短路径作为正样本,通过交换正路径中的部分节点生成负样本;JCRLNT:图编码器用于获取道路段的表示,轨迹编码器用于获取轨迹的表示,然后通过对比学习的方式,设计三种对比任务(如道路段与轨迹的对比、不同轨迹的对比等)来训练模型,使模型能够学习到道路段和轨迹的有效表示。

III 研究方法

•JGRM框架:目标是通过联合建模GPS轨迹和路径轨迹,充分利用两者的优势,克服单一数据源的局限性,实现全面、准确的轨迹表示

GPS编码器(GPS Encoder):

- ① **分层设计**:采用分层的双向门控循环单元(BiGRU)来处理GPS轨迹
- ② **子轨迹处理**:将GPS轨迹分解为多个子轨迹,并对每个子轨迹进行独立建模
- ③ **道路段嵌入**:将每个子轨迹的特征嵌入 到道路段中,得到每个道路段的特征表示
- **序列建模**:通过道路段之间的序列关系 优化表示,捕获上下文信息

路径编码器(Route Encoder):

- ① **空间建模**:图注意力网络(GAT)来捕捉 道路段之间的空间关系
- ② **时间建模**:轻量级时间编码器 (TE) 捕捉道路段的访问时间模式
- ③ **自相关性建模**: Transformer对路径轨迹 进行自相关性建模。捕捉道路段序列中 的长程依赖关系
- ④ **特征融合**:将空间、时间和自相关性特征进行融合,得到每个道路段的综合特征表示

Figure 2: The Framework of JGRM.

模态交互器 (Modal Interactor)

- ① **模态嵌入**:对每个模态的输入进行模态嵌入和位置嵌入,保留模态身份信息。
- ② 共享Transformer: 捕捉不同模态之间的相 关性,确保信息的充分融合。
- ③ 表示对齐: 利用自监督任务如MLM和CMM 确保两种模态的表示空间对齐,从而实现 更有效的信息融合。

•自监督训练任务:

·MLM (Masked Language Modeling): 在轨迹输入编码器之前,随机掩盖一些道路段,然后利用模态交互器的输出重建这些被掩盖的道路段,通过重建误差作为监督信号来训练模型,以捕捉轨迹本身的时空连续性。

•CMM (Cross-Modal Matching) : 利用GPS轨迹和路径轨迹的配对关系,生成成对损失,引导两种模态在送入模态交互器之前对齐表示空间,从而实现视图间信息的有效融合。

IV-A GPS编码器

数据预处理与子轨迹划分:

使用地图匹配算法将原始GPS轨迹映射到道路网络上,创建分配矩阵 提取每个GPS点的特征,包括**经度、纬度、速度、加速度、角度变化、时间** 间隔和距离,形成特征矩阵

子轨迹特征提取:

•根据分配矩阵 , 将特征矩阵组织成子轨迹的特征矩阵。

层内BiGRU (Intra-Road BiGRU) :

将每个子轨迹的特征矩阵输入到层内BiGRU中进行编码。BiGRU分别从正向和 反向两个方向处理序列数据,得到每个子轨迹的隐藏表示

层间BiGRU (Inter-Road BiGRU) :

将层内BiGRU得到的隐藏表示作为输入,送入层间BiGRU中进行进一步处理。 层间BiGRU通过考虑子轨迹之间的顺序关系,对道路段表示进行精炼

道路段表示与轨迹表示的生成:

- •将层间BiGRU的前向和后向隐藏表示进行拼接,得到最终的道路段表示
- •对所有道路段的表示进行平均池化操作,得到轨迹在GPS视图下的表示

地图匹配算法

基于道路网络的拓扑结构和几何形状,将原始GPS点分配到最可能的道路段上。如GPS点与道路的距离、道路的方向、道路的连通性以及车辆的运动学特征(如速度和方向)等,以确定最佳匹配。

v_1	v_1	0	0	0	0
0	0	v_2	v_2	v_2	0
0	0	0	0	0	v_3

Figure 3: An example of an assignment matrix.

IV-B 路径编码器

特征嵌入:

- •路径轨迹的特征包括道路ID、时间间隔、分钟索引 (0-1439) 和星期索引 (0-6) , 形成特征矩阵
- •将道路ID嵌入为密集向量,时间特征(分钟索引和星期几索引)作为离散值嵌入,实际行驶时间作为连续值嵌入

图注意力网络(GAT):

•使用GAT更新道路段的嵌入表示,以捕捉道路网络的拓扑结构。GAT通过消息传递机制更新道路段的表示:

时间编码器(TE):

时间编码器用于捕捉时间特征,包括分钟索引和星期几索引。时间特征被嵌入为离散值,实际行驶时间被嵌入为连续值

Transformer建模自相关性:

Transformer通过多头自注意力机制和前馈神经网络对序列进行建模,确保每个道路段的表示能够反映其在整个轨迹中的上下文信息。

■ 实验设置

- Chengdu、Xian: 包含GPS轨迹、路线轨迹和道路网络
- GPS轨迹来自滴滴出行的公共数据集
- 道路网络: OSMnx: 从OpenStreetMap下载街道网络数据,包括步行、驾驶、骑行等多种类型的网络。此外,还可以获取城市设施、建筑物轮廓、公共交通站点等其他地理空间特征
- 数据预处理:
 - 使用地图匹配算法将GPS轨迹映射到道路网络上
 - 过滤掉未被轨迹覆盖的道路段
 - 去除轨迹长度过短的轨迹
- 时间跨度15天: 前13天训练集、第14天验证集、第15天测试集

■ 四个下游任务

- 实验设计了四个下游任务,包括两个道路段级别的任务(道路分类和道路速度推断)和两个轨迹级别的任务(旅行时间估计和Top-k相似轨迹查询)。
- 评估指标针对这些任务,分别采用了Micro-F1、Macro-F1、MAE、RMSE、MR、HR@10等评估指标来衡量模型的表现。

Table 3: Details of the Datasets

Datasets	Chengdu	Xi'an	
Region Sizes (km ²)	68.26	65.62	
# Nodes	6450	4996	
# Edges	16398	11864	
# Trajectories	2140129	1289037	
Avg. Trajectory Length (m)	2857.81	2976.52	
Avg. Road Travel Speed (m/s)	11.35	9.65	
Avg. Trajectory Travel Time (s)	436.12	516.24	
Time span	2018/11/01 -	2018/11/15	

■ 性能比较

■ **随机初始化**:直接为每个道路段生成随机的向量作为其表示,不利用任何轨迹数据或道路网络结构信息。

■ 基于图的轨迹表示学习:

- 1. Word2vec
- 2. Node2vec
- 3. GAE (Graph Auto-Encoder)

■ 基于GPS的轨迹表示学习:

1. Traj2vec

■ 基于道路路径的轨迹表示学习:

- 1. Toast
- 2. PIM
- 3. Trember
- 4. START
- 5. JCRLNT

■ 道路段级别任务

■ 轨迹级别任务

Table 1: Model comparison on four downstream tasks in Chengdu.

	Road Classification		Road Speed Inference		Travel Time Estimation		Top-k Similar Trajectory Query		
	Mi-F1	Ma-F1	MAE	RMSE	MAE	RMSE	MR	HR@10	No Hit
Embedding	0.3853	0.2757	3.561	4.6437	102.592	132.4559	9.4693	0.85	0
Word2vec	0.5514	0.5137	3.5004	4.5424	87.1612 [‡]	115.6605 [‡]	12.4355	0.7998	0
Node2vec	0.408	0.364	3.5761	4.6623	88.1243	117.3834	4.103 [†]	0.9127^{9}	0
GAE	0.4373	0.3805	3.287 [‡]	4.2134 [‡]	90.2352	122.9764	4.4584	0.9067#	0
Traj2vec	0.4828	0.399	2.856 [†]	3.81	99.0706	128,4441	67.5899	0.55	839.2
Toast	0.6276	0.6195 [†]	3.3201	4.3777	86.0053 [†]	114.2109 [†]	5.9169	0.8696	0
PIM	0.4618	0.4457	3.4841	4.5737	87.6526	116.533	5.109	0.8902	0
Trember	0.611	0.6059 [‡]	3,3955	4.447	90.9035	119.0926	17.9627	0.7427	0.1
START	0.409	0.3366	3.5269	4.6084	89.7182	117.9891	6.9448	0.909	30.7
JCRLNT	0.5169	0.466	3.441	4.5016	100.1113	129.591	20.0152	0.7323	0.6
JGRM	0.7198	0.7228	2.5783	3.5452	83.3306	110.7224	2.2111	0.9492	0
JGRM*	0.8067*	0.8111*	2.3162*	3.2953*	80.4002"	108.0134*	1.1363*	0.9735"	0
improvement	14.69%	16.67%	10.77%	7.47%	3.21%	3.15%	85.56%	4%	1
improvement*	28.54%	30.93%	23.31%	15.62%	6.97%	5.74%	261.08%	6.66%	1

Table 4: Model comparison on four downstream tasks in Xi'an.

	Road Classification		Road Speed Inference		Travel Tim	e Estimation	Top-k Sir	milar Trajec	tory Que
	Mi-F1	Ma-F1	MAE	RMSE	MAE	RMSE	MR	HR@10	No Hi
Embedding	0.4382	0.3003	3.2619	4.1949	104.5929	137.0655	4.0946	0.9031	0
Word2vec	0.5962	0.5559	3.2242	4.1103	92.9827	129.9678	5.795	0.8617	0
Node2vec	0.4283	0.3827	3.2945	4.236	89.6014 [†]	122.2406 [†]	3.1167‡	0.923‡	0
GAE	0.462	0.436	3.2496	4.1794	90.2352‡	122.9764	3.5626	0.9141	0
Traj2vec	0.5658	0.4195	2.7798	3.6768 [†]	107.8969	144.248	51.6097	0.6221	361.5
Toast	0.7055 [†]	0.6606	3.1145	4.0025	92,9093	129.3365	5.0072	0.869	0
PIM	0.512	0.4671	3.2367	4.1845	91.0666	123.6043	4.243	0.8947	0
Trember	0.6627	0.6212‡	3.2052	4.1269	98.8188	134.7582	9.5947	0.8084	0
START	0.4557	0.3298	3.2211	4.1331	105.8333	138.6432	2.5158	0.9283 [†]	6.7
JCRLNT	0.609	0.5179	3.1651‡	4.0864 [‡]	100.8771	133.8522	13.4306	0.7659	0
JGRM	0.7823	0.7703	2.6494	3.5818	87.166	119.2541	2.7714	0.9294	0
JGRM*	0.8758*	0.8698*	2.2029*	3.1765*	86.2855*	118.9211*	1.2983*	0.9682*	0
improvement	10.89%	16.61%	4.92%	2.65%	2.79%	2.5%	1	0.12%	- 1
improvement*	24.14%	31.67%	26.19%	15.75%	3.84%	2.79%	93.78%	4.3%	1

· 道路段级别任务

1 轨迹级别任务

Table 1: Model comparison on four downstream tasks in Chengdu.

JGRM道路段级任务上的表 现要好得多 有效的道路段建模可以显着 提高轨迹表示学习的性能。

处理轨迹序列的模型: Toast、PIM、Trember在 轨迹级任务中往往表现得更 好

轨迹中建模时空相关性是必要的。

基于GPS的表示学习方法 traj2vec表现不佳 GPS轨迹中的噪声和冗余造成的

基于路径表示的学习方法在 序列级任务上发挥更好 这表明道路段之间的拓扑结 构对于轨迹表示是重要的

	Road Classification Road		Road Spee	oad Speed Inference		Travel Time Estimation		Top-k Similar Trajectory Quer		
	Mi-F1	Ma-F1	MAE	RMSE	MAE	RMSE	MR	HR@10	No Hit	
Embedding	0.3853	0.2757	3.561	4.6437	102.592	132.4559	9.4693	0.85	0	
Word2vec	0.5514	0.5137	3.5004	4.5424	87.1612 [‡]	115.6605 [‡]	12.4355	0.7998	0	
Node2vec	0.408	0.364	3.5761	4.6623	88.1243	117.3834	4.103°	0.9127°	0	
GAE	0.4373	0.3805	3.287	4.2134‡	90.2352	122.9764	4.4584	0.9067‡	0	
Traj2vec	0.4828	0.399	2.856 [†]	3.81	99.0706	128,4441	67.5899	0.55	839.2	
Toast	0.6276	0.6195 [†]	3.3201	4.3777	86,0053 [†]	114.2109 [†]	5.9169	0.8696	0	
PIM	0.4618	0.4457	3.4841	4.5737	87,6526	116.533	5.109	0.8902	0	
Trember	0.611	0.6059 [‡]	3.3955	4.447	90.9035	119.0926	17.9627	0.7427	0.1	
START	0.409	0.3366	3.5269	4.6084	89.7182	117.9891	6.9448	0.909	30.7	
JCRLNT	0.5169	0.466	3.441	4.5016	100.1113	129.591	20.0152	0.7323	0.6	
JGRM	0.7198	0.7228	2.5783	3.5452	83.3306	110.7224	2.2111	0.9492	0	
JGRM*	0.8067*	0.8111*	2.3162*	3.2953*	80.4002"	108.0134*	1.1363*	0.9735"	0	
improvement	14.69%	16.67%	10.77%	7.47%	3.21%	3.15%	85.56%	4%	1	
mprovement*	28.54%	30.93%	23.31%	15.62%	6.97%	5.74%	261.08%	6.66%	1	

Table 4: Model comparison on four downstream tasks in Xi'an.

	Road Classification		Road Spec	ed Inference	Travel Time Estimation		Top-k Sir	nilar Trajec	tory Query
	Mi-F1	Ma-F1	MAE	RMSE	MAE	RMSE	MR	HR@10	No Hit
Embedding	0.4382	0.3003	3.2619	4.1949	104.5929	137.0655	4.0946	0.9031	0
Word2vec	0.5962	0.5559	3.2242	4.1103	92.9827	129.9678	5.795	0.8617	0
Node2vec	0.4283	0.3827	3.2945	4.236	89.6014 [†]	122.2406 [†]	3.1167‡	0.9232	0
GAE	0.462	0.436	3.2496	4.1794	90.2352‡	122.9764 [‡]	3.5626	0.9141	0
Traj2vec	0.5658	0.4195	2.7798	3.6768 [†]	107.8969	144.248	51.6097	0.6221	361.5
Toast	0.7055	0.6606	3.1145	4.0025	92.9093	129.3365	5.0072	0.869	0
PIM	0.512	0.4671	3.2367	4.1845	91.0666	123.6043	4.243	0.8947	0
Trember	0.6627	0.6212‡	3.2052	4.1269	98.8188	134.7582	9.5947	0.8084	0
START	0.4557	0.3298	3.2211	4.1331	105.8333	138.6432	2.5158	0.9283 [†]	6.7
JCRLNT	0.609	0.5179	3.1651‡	4.0864	100.8771	133.8522	13.4306	0.7659	0
JGRM	0.7823	0.7703	2.6494	3.5818	87.166	119.2541	2.7714	0.9294	0
JGRM*	0.8758*	0.8698*	2.2029*	3.1765*	86.2855*	118.9211*	1.2983*	0.9682*	0
improvement	10.89%	16.61%	4.92%	2.65%	2.79%	2.5%	1	0.12%	- 1
improvement*	24.14%	31.67%	26.19%	15.75%	3.84%	2.79%	93.78%	4.3%	1

■ 消融实验

Table 2: Ablation experiment on four downstream tasks in Chengdu.

	Road Cla	Road Classification		Road Speed Inference		Travel Time Estimation		Top-k Similar Trajectory Que		
	Mi-F1	Ma-F1	MAE	RMSE	MAE	RMSE	MR	HR@10	No Hit	
JGRM	0.7198	0.7228	2.5783	3.5452	83.3306	110.7224	2.2111	0.9492	0	
w/o MLM Loss	0.5233	0.4804	3.4752	4.5521	122.7088	152.9668	26.4418	0.0085	4725.8	
w/o Match Loss	0.7178	0.7232 ↑	2.6075	3.5947	82.5453 ↑	110.2262 ↑	2.3396	0.9441	0	
w/o GPS Branch	0.6245	0.6206	3.2008	4.2258	83.6647	111.4075	1.6037 ↑	0.963 ↑	0	
w/o Route Branch	0.6122	0.5929	2.8302	3.7668	95.2015	124.4988	9.2601	0.8381	0	
w/o Time Info	0.7331 ↑	0.7361 ↑	2.6225	3.5866	84.1749	111.6983	5.6927	0.8745	0	
w/o Mode Interactor	0.6043	0.5859	2.7381	3.7303	82.9407 ↑	110.4866 ↑	1.4601 ↑	0.965 ↑	0	
w/o GAT	0.7173	0.7225	2.706	3.654	82.2657 ↑	110.038 †	1.1554 ↑	0.9732 ↑	0	
w/o Mode Emb	0.7161	0.7222	2.7439	3.6944	83.8222	111.5119	2.535	0.9417	0	

Table 5: Ablation experiment on four downstream tasks in Xi'an.

	Road Classification		Road Speed Inference		Travel Time Estimation		Top-k Similar Trajectory Query		
-1	Mi-F1	Ma-F1	MAE	RMSE	MAE	RMSE	MR	HR@10	No Hit
JGRM	0.7823	0.7703	2.6494	3.5818	87.166	119.2541	2.7714	0.9294	0
w/o MLM Loss	0.5327	0.4128	3.2402	4.1623	115.9861	148.8677	75.0366	0.0768	3855.2
w/o Match Loss	0.7793	0.7666	2.5667 †	3.5338 †	87.3213	119,262	2.7729	0.9319	0
w/o GPS Branch	0.7003	0.6869	2.7983	3.7388	87.1901	119.3732	2.2322 ↑	0.9441 ↑	0
w/o Route Branch	0.6248	0.5717	2.7472	3,5753	98.0748	131.2151	5.7801	0.8663	.0
w/o Time Info	0.7745	0.7601	2.5816 ↑	3.5254 ↑	87.5762	119.8214	5.65	0.8655	0
w/o Mode Interactor	0.6268	0.5757	2.8074	3.7472	87.2887	119.3806	2.0412	0.9492 ↑	0
w/o GAT	0.7987 ↑	0.7846 ↑	2.6676	3.5982	87.2087	118.8381 †	1.7644 †	0.956 ↑	0
w/o Mode Emb	0.7802	0.7691	2.4292 †	3.3746 †	87.0462 ↑	118.757 †	3.1417	0.9245	0

■ 模型容量与性能关系

- 模型容量的影响:随着训练数据量的增加,JGRM的性能持续提升。这表明JGRM具有较大的模型容量,能够随着训练数据的增加不断提升性能。
- 模型潜力: JGRM展现出作为交通基础设施大型模型的潜力。其在大规模数据上的性能提升表明,模型能够有效利用更多的数据来学习更复杂的模式和特征。

■ 预训练模型效果研究

- 数据需求减少:在训练数据较少时能够显著减少训练所需的数据量,展现 出丰富的先验
- I 防止过拟合:随着训练数据的增加,模型性能持续提升。在西安数据集上,随着训练数据的增加,预训练模型的MAE逐渐降低,而未预训练模型的MAE在数据量较大时出现波动。

Figure 4: Effect of pre-training in travel time estimation.

Figure 5: Model Capacity.

■ 参数敏感性

Figure 6: Different # of Embedding Sizes.

Figure 7: Different # of Route Layers.

Figure 8: Different # of Mode Interact Layers.

Figure 9: Different # of Mask Settings

·嵌入大小 (Embedding Size) :

- 较大的嵌入大小能提升模型性能,最信性能在嵌入大小为1024时取得
- 这表明轨迹数据存在复杂模式,需要高维空间表示。

•路径编码器层数 (Route Encoder Layers) :

- 参数在不同城市的实验结果有差异,但 总体在层数为2时取得最佳结果
- 这可能与不同城市轨迹的复杂程度不同 有关。

•模态交互器层数(Mode Interactor Layers):

 2层的模态交互器性能最佳,能有效融合 GPS和路径信息

•掩码长度和概率 (Mask Length and Probability) :

- · 当掩码长度约为轨迹的40%时,模型性能 最佳
- 且在掩码数量相同的情况下,较长的掩码长度能提升模型在轨迹级别任务上的性能。

■ 模态交互器对道路段和轨迹表示的影响

轨迹表示:

- 从成都数据集中随机选取五个互不相似的轨迹作为查询轨迹,分别使用JGRM和Node2vec方法获取轨迹表示,并找出每个查询轨迹的前20个相似轨迹
- JGRM的两个编码器能有效编码轨迹,模态交互器有助于 对齐轨迹的表示空间,使轨 迹表示更加准确和鲁棒。

Figure 10: Road Segment Representation Space.

道路段表示:

通过可视化不同模态(随机初始化、GPS视图、路径视图、融合视图)下的道路段表示,发现GPS视图和路径视图均能有效建模道路段特征,而模态交互器进一步融合两种模态的信息,提升了道路段表示的质量。

■ 模型迁移能力研究

- 零样本适应 (Zero-shot Adaptation) : 将模型在源城市训练得到的参数直接应用于目标城市,不进行任何调整。
 - 在路段级别任务上能够达到在目标城市直接训练模型性能的约90%;在轨迹级别任务上,零样本适应的性能较差。
- 少样本微调(Few-shot Fine-tuning):使用目标城市的少量数据对在源城市训练的模型进行微调。
 - 少样本微调能够显著提升模型在轨迹级别任务上的性能。
 - 路段级别任务的性能变化:少样本微调虽然提升了轨迹级别任务的性能,但在某些情况下可能会导致路段级别任务的性能略有下降。这可能是因为微调过程中,模型过于关注目标城市中更新的路段表示,而忽略了一些未被充分覆盖的路段。

Table 6: Model transferability across two citys.

		0.7823	0.7703	87.166	119.2541
	-	Road Classification		Travel Tim	ne Estimation
		Mi-F1	Ma-F1	MAE	RMSE
Zero Shot	C→X	0.7252	0.6873	109.206	141.6533
Adaptation	X→C	0.7295	0.6916	106.5079	139.2584
Few Shot	C→X	0.6712	0.6662	105.2994	134.9308
Finetune	X→C	0.6802	0.6779	99.1057	128.7578

C and X in the table are abbreviations for Chengdu and Xi'an.

谢谢!