since the solution of A is $[u_1, \dots, u_k]$. where u_i is eigen
-vectors. $\frac{n}{2}$ trace $(AA^T \widehat{\chi}_i \widehat{\chi}_i^T) = \sum_{i=1}^{n} \text{trace} (A^T \widehat{\chi}_i \widehat{\chi}_i^T A)$ $= \sum_{i=1}^{n} \text{trace} \left[\begin{bmatrix} u_i \\ \vdots \\ u_k \end{bmatrix} \widehat{\chi}_i \widehat{\chi}_i^T \begin{bmatrix} u_i \\ \vdots \\ u_k \end{bmatrix} \widehat{\chi}_i \widehat{\chi}_i^T \begin{bmatrix} u_i \\ \vdots \\ u_k \end{bmatrix} = n \cdot \text{trace} \left(\begin{bmatrix} u_i \\ u_k \end{bmatrix} \underbrace{\chi}_i \widehat{\chi}_i^T \begin{bmatrix} u_i \\ u_i \end{bmatrix} = n \cdot \text{trace} \left(\begin{bmatrix} u_i \\ u_k \end{bmatrix} \underbrace{u_i u_i} \underbrace{u_i u_i} \right)$ $= n \cdot \sum_{j=1}^{k} \lambda_j$ $= n \cdot \sum_{j=1}^{k} \lambda_j$ $= n \cdot \sum_{j=1}^{k} \lambda_j - n \cdot \sum_{j=k+1}^{k} \lambda_j = \min_{j=k+1}^{k} obj. fun$ $= n \cdot \sum_{j=k+1}^{k} \lambda_j = \min_{j=k+1}^{k} obj. fun$

a.
$$\overline{z} = (\overline{x}, \dots, \overline{x}_n) \quad y = (y_1, \dots, y_n)$$

$$L(\overline{o}; y | \overline{z}) = \log f(y | \overline{z}; \overline{o})$$

$$= \log \overline{x}_i f(y | \overline{x}_i; \overline{o})$$

$$= \int_{\overline{z}_i} \log f(y | \overline{x}_i; \overline{o})$$

$$= \int_{\overline{z}_i} \log f(y | \overline{x}_i; \overline{w}_i; \overline{w}_i x_i + b_k, \overline{v}_i^2)$$

Introduce a hielden variable $S=(S_1,\cdots,S_n)$ for each data $\widetilde{Z}=(\widetilde{X}_1,\cdots,\widetilde{X}_n)$ Then complete data is $\widetilde{Z}=(\widetilde{X},\underline{S})$ $S_1:$ describe the component responsible for generating \widetilde{X}_1

$$\begin{split} I(\vec{\theta}; y, \underline{S} | \hat{z}) &= log L(\theta; y, \underline{S} | \hat{z}) \\ &= log \prod_{i=1}^{n} P(y_i, S_i | \hat{x}_i; \hat{\theta}) \\ &= log \prod_{i=1}^{n} P(S_i = S_i; \hat{\theta}) \cdot f(y_i | \hat{x}_i, S_i = S_i; \hat{\theta}) \\ &= \frac{1}{2} log P(g_i = S_i; \hat{\theta}) \cdot f(y_i | \hat{x}_i, S_i = S_i; \hat{\theta}) \\ &= \frac{n}{1} log S_{S_i} \phi(y_i; \hat{w}_S^T \hat{x}_i + b_{S_i}, \sigma_{S_i}^2) \end{split}$$

$$Define \ \Delta_{ik} = \left\{ \begin{array}{c} S_i = k \\ O & \text{otherwise} \end{array} \right. \quad \text{Then} \\ l(\vec{\theta}; y | \vec{z}) = \frac{n}{1} log \left(\begin{array}{c} \sum_{k=1}^{n} \Delta_{ik} \cdot S_k \phi(y_i; \hat{w}_k \hat{x}_i + b_k, \sigma_k^2) \right) \\ &= \frac{n}{1} \sum_{i=1}^{n} log \left(S_{k} \phi(y_i; \hat{w}_k \hat{x}_i + b_k, \sigma_k^2) \right) \\ &= \frac{n}{1} \sum_{i=1}^{n} log \left(S_{k} \phi(y_i; \hat{w}_k \hat{x}_i + b_k, \sigma_k^2) \right) \end{split}$$

 $\begin{aligned} \mathcal{E}^{-\text{step}} &: \\ & \mathcal{Q}(\theta, \theta^{(j)}) = \mathbb{E}[\mathcal{L}(\vec{\theta}; \mathbf{y}|\vec{\mathbf{x}}, \mathbf{s}) \mid \mathbf{y}, \vec{\mathbf{x}}; \theta^{(j)}] \\ &= \mathbb{E}_{\mathbf{z}}[\frac{1}{2}, \sum_{i \in I} \Delta_{ik} \left(\log \mathcal{E}_{k} + \log \mathcal{G}(\mathbf{y}_{i}; \vec{w}_{k}^{T} \vec{\mathbf{x}}_{i}^{T} + bk, \sigma_{k}^{T}) \right)] \\ &= \frac{1}{2} \mathbb{E}_{\mathbf{z}} \left[\mathbb{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \log \mathcal{E}_{k} \mathcal{G}(\mathbf{y}_{i}; \vec{w}_{k}^{T} \vec{\mathbf{x}}_{i}^{T} + bk, \sigma_{k}^{T}) \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \log \mathcal{E}_{k} \mathcal{G}(\mathbf{y}_{i}; \vec{w}_{k}^{T} \vec{\mathbf{x}}_{i}^{T} + bk, \sigma_{k}^{T}) \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] + \mathbb{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \mathcal{G}(\mathbf{y}_{i}^{T}) \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] + \mathbb{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \mathcal{G}(\mathbf{y}_{i}^{T}) \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] + \mathbb{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \mathcal{G}(\mathbf{y}_{i}^{T}) \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] + \mathbb{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \mathcal{G}(\mathbf{y}_{i}^{T}) \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] + \mathbb{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] + \mathbb{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right] \mathcal{E}_{\mathbf{z}} \left[\Delta_{ik} \right]$

b. M-Step: $0^{(j+1)} = arg \max_{i} Q(0,0^{(j)})$

where $Q(0, 0^{(j)}) = \frac{1}{2} \frac{1}{k} \sum_{k=1}^{K} V_{ik}^{(j)} \left[\log \xi_k + \log \left((2\pi^{-\frac{d}{2}}) / \tau_k \cdot e^{-\frac{1}{2\sigma_k^2} ||y_i - \bar{w}_k x_i} - b_k ||^2 \right]$ $= \frac{1}{2} \sum_{k=1}^{K} V_{ik} \left[\log \xi_k - \frac{1}{2} \log (2\pi) - \frac{1}{2\sigma_k^2} ||y_i - \bar{w}_k x_i - b_k ||^2 \right]$ $= \frac{1}{2} \sum_{k=1}^{K} V_{ik} \left[\log \xi_k - \frac{1}{2} \log (2\pi) - \frac{1}{2\sigma_k^2} ||y_i - \bar{w}_k x_i - b_k ||^2 \right]$ $= \frac{1}{2} \sum_{k=1}^{K} V_{ik} \left[\log \xi_k - \frac{1}{2} \log (2\pi) - \frac{1}{2\sigma_k^2} ||y_i - \bar{w}_k x_i - b_k ||^2 \right]$

First optimize ξ_k : it has constraints $\sum_{k=1}^{|k|} \xi_k = 1$, by Lagrange multiplier theory: $L(\xi_1, \dots, \xi_k) = \sum_{j=1}^{n} \sum_{k=1}^{|k|} \gamma_{jk} \log \xi_k + \lambda (\sum_{k=1}^{|k|} \xi_k - 1)$

$$\Rightarrow 2k = -\frac{1}{2} \frac{y(y)}{y(k)}, \text{ since } \frac{k}{2} 2k = 1.$$

$$\Rightarrow \frac{\sum_{i=1}^{k} \frac{1}{2} y_{ik}(i)}{\lambda} = 1 \Rightarrow -\lambda = \sum_{i=1}^{n} 1 = n$$

Thus, $\mathcal{L}_{k}^{\star} = \frac{1}{n} \frac{1}{2} \gamma_{ik}^{(j)}$ i.e. $\mathcal{L}_{k}^{(j+1)} = \frac{1}{n} \frac{1}{2} \gamma_{ik}^{(j)}$

3.

Second optimize (WK, bK), Suppose of is fixed.

Then max Q(0,0(1)) (min \ \frac{1}{2} \frac{1}{2} \frac{1}{1} \frac{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{

It has the same form as weighted least squared regression.

Thus, the solution:

$$\begin{bmatrix} b_{k}^{(j+1)} \\ \vec{w}_{k}^{(j+1)} \end{bmatrix} = (X^{T} C_{k}^{(j)} X)^{-1} X^{T} C_{k}^{(j)} \vec{y}$$
Where $X = \begin{pmatrix} 1 & \vec{x}_{1}^{T} \\ \vdots & \vdots \\ 1 & \vec{x}_{n}^{T} \end{pmatrix}$, $C_{k}^{(j)} = \begin{bmatrix} y_{1k}^{(j)} & 0 \\ 0 & y_{nk}^{(j)} \end{bmatrix}$

Lost optimize ox2, plug în results above. use Lagarange multiplyer theory

$$L(\sigma_{1}^{2},...,\sigma_{k}^{2}) = \sum_{i=1}^{n} \sum_{k=1}^{k} \gamma_{ik}^{(j)} \left(-\frac{1}{2} \log \sigma_{k}^{2} - \frac{1}{2} ||y_{i} - \overline{w}_{k}^{T} x_{i}^{2} - b_{k}||^{2} / \sigma_{k}^{2} \right)$$

$$\frac{\partial L}{\partial \sigma_{k}^{2}} = \sum_{i=1}^{n} \gamma_{ik}^{(j)} \left(-\frac{1}{2} \frac{1}{2} ||y_{i} - \overline{w}_{k}^{T} - \overline{x}_{i} - b_{k}||^{2} \right) \stackrel{!}{=} 0$$

(here we treat ox as a variable)

>
$$\sigma_{k}^{(J+)^{2}} = \frac{\sum_{i=1}^{n} Y_{ik}^{(j)} || y_{i} - w_{k}^{(J+)} || x_{i} - b_{k}^{(J+)} ||^{2}}{\sum_{i=1}^{n} Y_{ik}^{(j)}}$$

4) Newt and Normalized Spectral Clustering

Next and Normalized spectrus (miterary)
$$|K=2. \text{ Next } (A, \overline{A}) = \frac{1}{2} \left(\frac{C(A, \overline{A})}{Vol(A)} + \frac{C(A, \overline{A})}{Vol(A)} \right) = \frac{1}{2} C(A, \overline{A}) \left(\frac{1}{Vol(A)} + \frac{1}{Vol(A)} \right)$$

where wol(A)= I I WIJ

Given $A \subseteq \{1, 2, ..., n\}$ define $\hat{f}_A = (f_{A_1}, -..., f_{A_n})^T \in \mathbb{R}^n$ by

$$f_{Ai} = \begin{cases} + \sqrt{vol(A)} & \text{if } I \in A \\ -\sqrt{vol(A)} & \text{if } I \notin A \end{cases}$$

Comprete:
$$\hat{f}_{A}^{T} \downarrow \hat{f}_{A} = \frac{1}{5} \frac{2}{13^{-1}} W_{ij} (f_{A_{i}} - f_{A_{j}})^{2}$$

$$= \frac{1}{2} \sum_{i \in A_{i}, j \in A} W_{ij} (\sqrt{\frac{W_{i}(A)}{W_{i}(A)}} + \sqrt{\frac{W_{i}(A)}{W_{i}(A)}})^{2}$$

$$+ \frac{1}{2} \sum_{i \in A_{i}, j \in A} W_{ij} (\sqrt{\frac{W_{i}(A)}{W_{i}(A)}} + \sqrt{\frac{W_{i}(A)}{W_{i}(A)}})^{2}$$

$$= \frac{1}{16A_{i}, j \in A} W_{ij} (\sqrt{\frac{W_{i}(A)}{W_{i}(A)}} + \sqrt{\frac{W_{i}(A)}{W_{i}(A)}})^{2}$$

$$= \frac{1}{16A_{i}, j \in A} W_{ij} (\frac{W_{i}(A)}{W_{i}(A)} + \frac{W_{i}(A)}{W_{i}(A)})^{2}$$

$$= (V_{i}(A) + V_{i}(A)) (\frac{C(A_{i}, A)}{W_{i}(A)} + \frac{C(A_{i}, A)}{W_{i}(A)})$$

$$= (V_{i}(A) + V_{i}(A)) (\frac{C(A_{i}, A)}{W_{i}(A)} + \frac{C(A_{i}, A)}{W_{i}(A)})$$

$$= 2(V_{i}(A) + V_{i}(A)) N_{i}(A_{i}(A_{i}) + \frac{C(A_{i}, A)}{W_{i}(A_{i})})$$

$$= 2(V_{i}(A) + V_{i}(A)) N_{i}(A_{i}(A_{i}) + \frac{C(A_{i}, A)}{W_{i}(A_{i})})$$

$$= V_{i}(A) \sqrt{\frac{W_{i}(A)}{V_{i}(A)}} - V_{i}(A_{i}) \sqrt{\frac{W_{i}(A)}{V_{i}(A)}} = 0.$$

$$\hat{f}_{A} D\hat{f}_{A} = \frac{2}{12} dif_{A_{i}} = \frac{2}{16A} \frac{di}{V_{i}(A)} + \frac{2}{16A} \frac{di}{V_{i}(A)} + \frac{2}{16A} \frac{di}{V_{i}(A)}$$

$$= V_{i}(A) + V_{i}(A)$$
Then we chaim.
$$\hat{f}_{A} J\hat{f}_{A} = 2\hat{f}_{A} D\hat{f}_{A} \cdot N_{i}(A, A)$$
There, N_{i} which is the following optimation problem:
$$\hat{f}_{A} J\hat{f}_{A} = 0$$

Suppose
$$g = D^{\frac{1}{2}}f$$
, Then
$$\hat{f}_{A}^{T}D\hat{f}_{A} = (D^{\frac{1}{2}}f)^{T}CD^{\frac{1}{2}}f) = g^{T}g.$$

The optimazodion problem is:

min
$$gTD^{-\frac{1}{2}}LD^{-\frac{1}{2}}g$$
 S.t. $D^{\frac{1}{2}}g=0$, $g^{T}g=vol(V)$

Actine:
$$L_g = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = D^{-\frac{1}{2}}CD - w)D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}wD^{-\frac{1}{2}}$$
also, $\hat{L} = D^{-1}L = I - D^{-1}w$

The optimazouron problem is:

Notice Lg is symmetric $n \times n$ matrix, $D^{\frac{1}{2}} 1$ is the first eigenvector Vol(V) is constant, Apply Royleigh - Ritz Theorem.

The solution of opt problem is the second eigenvector of Lg. re-substitute $f=D^{-\frac{1}{2}}g$.

Suppose
$$U_2$$
 is eigenvector for Lg . Then $Lg U_2 = \lambda_2 U_2$
 $U_2' := D^{-\frac{1}{2}}U_2$. Then $Lu_2' = D^{-\frac{1}{2}}Lu_2' = D^{-\frac{1}{2}}Lu_2 = D^{-\frac{1}{2}}Lg U_2$
 $= D^{-\frac{1}{2}}\Omega_2 U_2 = \lambda_2 U_2'$

Thus, u_2' is eigenvector of I u_2' corresponds to u_2 Since $f = D^{-\frac{1}{2}}g$, it shows that finding second eigenvector for Ig is equivalent to finding second eigenvector for Ig. And the second eigenvector of Ig is colution for f

b. The condition: $\vec{\chi}_i \in \mathbb{R}^d$ $\vec{\theta}_i \in \mathbb{R}^d$. Then $A^k \neq a^{k+1}$ is the condition.

i.e. $A_i \supset A_i \supset \dots \supset A^k > \lambda^{k+1} \supset \lambda^{k+2} \cdots \supset \lambda^d$ Here A_i is eigenvalues for sample covariance matrix: $S = \frac{1}{n} \sum_{i=1}^{n} (\chi_i - \mu) (\chi_i - \mu)^T$. And spectral decomposition of S_i is $S = U A U^T$, where $A = diag(\lambda_1, \dots, \lambda_d) = U = [\vec{u}_i, \dots, \vec{u}_d]$, λ_i is eigenvalue, \vec{u}_i is eigenvector.

Suppose $\lambda k = \lambda_{k+1}$. The corresponding eigenvectors don't have to be the same $\hat{U}_{k} \neq \hat{U}_{k+1}$. Then, if we choose A to be a $d \times k$ mothix. We can see that $A = [u_1, -..., u_k]$ and $A = [u_1, -..., u_{k+1}, u_{k+1}]$ are both solutions for min $\frac{1}{2} ||\hat{\chi}_{k} - \mu - A\hat{\theta}_{k}||^{2}$, however, the subspace (A) are different (not unique). Vice versa. If A is not unique, only \hat{U}_{k} is possible to be replaced. It corresponds that $\lambda_{k} = \lambda_{k+1}$. Thus, our condition is necessary and sufficient

1) PCA

1.

a.
$$obj.fun = \sum_{i=1}^{n} ||\vec{x}_i - \vec{\mu} - A\vec{G}i||^2 = : J$$

Since it's a convex function of $\vec{\theta}$; ϵIP^k .

we compute
$$\frac{\partial J}{\partial \hat{\theta}_i} = -2A(\hat{x}_i - \hat{\mu} - A\hat{\theta}_i) \stackrel{!}{=} 0$$
.

$$\Rightarrow \vec{\theta}i = A^{T}(\vec{x}i - \vec{\mu}). \quad (\forall A^{T}A = I_{KK}) \text{ is optimal } \vec{\theta}i$$

for
$$\underline{minJ}$$

$$\Rightarrow J = \sum_{i=1}^{n} || \hat{x}_i - \hat{\mu} - AA^T (\hat{x}_i - \hat{\mu})||^2, \quad also, \quad J \text{ is a convex function}$$
of $\hat{\mu} \in \mathbb{R}^d$

$$\frac{\partial J}{\partial \mu} = -\frac{2}{\pi} \partial (\vec{\lambda} - \vec{\mu} - A\vec{G}_i) \stackrel{!}{=} 0. \Rightarrow \frac{2}{\pi} (I - AA^T)(\vec{\lambda} - \vec{\mu}) \stackrel{!}{=} 0.$$

$$\Rightarrow \vec{\mu} = \vec{h} = \vec{\lambda} \vec{\lambda} = \vec{\lambda} \vec{\lambda}$$
 is optimal $\vec{\mu}$.

Suppose
$$\widehat{x}_i = \widehat{\lambda}_i - \widehat{\lambda}_i$$
, then

pose
$$\widehat{x}_{i} = \widehat{x}_{i} - \widehat{x}_{i}$$
, then
$$T = \int_{1}^{\infty} ||\widehat{x}_{i} - AA^{T}\widehat{x}_{i}||^{2} = \sum_{i=1}^{n} \operatorname{trace} [(\widehat{x}_{i} - AA^{T}\widehat{x}_{i})(\widehat{x}_{i} - AA^{T}\widehat{x}_{i})^{T}]$$

$$T = \int_{1}^{\infty} ||\widehat{x}_{i} - AA^{T}\widehat{x}_{i}||^{2} = \sum_{i=1}^{n} \operatorname{trace} [(\widehat{x}_{i} - AA^{T}\widehat{x}_{i})(\widehat{x}_{i} - AA^{T}\widehat{x}_{i})^{T}]$$

$$T = \int_{1}^{\infty} ||\widehat{x}_{i} - AA^{T}\widehat{x}_{i}\widehat{x}_{i}||^{2} + AA^{T}\widehat{x}_{i}\widehat{x}_{i}^{T} + AA^{T}\widehat{x}_{i}\widehat{$$

Checause of the property of trace:
$$tr(A) = tr(A^{T})$$
.

$$tr(ABC) = tr(CAB)$$
.

Checause of the product trade (AAT
$$\hat{x}_{i}\hat{x}_{i}^{T}$$
)

$$\Rightarrow J = \sum_{i=1}^{n} trace (\hat{x}_{i}\hat{x}_{i}^{T}) - \sum_{i=1}^{n} trace (AAT \hat{x}_{i}\hat{x}_{i}^{T})$$

Since
$$S = h^{\frac{1}{2}}(x_i - \overline{x})(x_i - \overline{x})^T = h^{\frac{1}{2}}\widetilde{x}\widetilde{x}^T$$
.

$$S = \frac{1}{h} \sum_{i=1}^{h} (x_i - \overline{x})(x_i - \overline{x})$$

$$\Rightarrow trace(\widehat{x}_i \widehat{x}_i^T) = \int_{i=1}^{d} \lambda_i^T$$

$$\Rightarrow trace(\widehat{x}_i \widehat{x}_i^T) = \int_{i=1}^{d} \lambda_i^T$$

$$\Rightarrow J^* = n \frac{d}{2} \lambda_{\bar{j}} - R \frac{1}{2} \text{ trace } (AA^T \hat{\chi}_i \hat{\chi}_i^T)$$