Credit Card Fraud Detection

Nirbhaya Shaji, Lúcia Moreira

Introduction to Data Science Project

December 17, 2019

Kaggle: IEEE-CIS Fraud Detection

- Predicting the probability that an online transaction is fraudulent
- Vesta Corporation e-commerce payment solutions
- Data is broken into two files: identity and transaction.
- Categorical and Numerical features
- train_transaction, identity.csv the training set
- test_transaction, identity.csv the test set

Missing Data

- Transaction and Identity merged over TransactionID
- Test and Train Data Combined

Percentage of Missing data in test+train

Sparsity

- Random Sparsity
- 15 percent of the data has NA values (17514759/114169860)
- Columns with blank values present

• Columns with more than 50 percentage NA removed for further EDA

Percentage of Missing data in test+train

Columns marked in desceding order Plotted on data after identity and transaction merged

ProductCD

OS type

Email Domain

Pretty much same as P-emaildomain with an exception of scranton.edu

Transaction Amount Box-plot

CardType 4: Visa/Master/Other and CardType 6: Credit/Debit/Other

Strategy I – decrease dataset size

- Very high sparse initial dataset files:
 - Transactions (590540, 394): 41 % (670 MB)
 - Identity (144233, 41): 36 % (26 MB)
- Merge by identification ID (144233, 434): 27 %
 - Combine information relevant in both files
 - Also allows decreasing dataset size
- Drop columns with more than 50% NaNs (144233, 303): 11%
 - Drop 131 columns allowed further decrease in dataset size (180 MB yet)
- Umbalanced feature was kept:
 - 8 % fraud
 - 92% not fraud

Strategy II – Decrease number of numerical variables

Comply with the 3 common criteria

We still have **270 numerical variables** in the new dataset

PCA analysis:

Mean was input in the remaining NaNs

Component	eigenvalue	% of variance	cumulative % of variance
1	34,9	13,2	13,2
2	22,2	8,4	21,6
3	20,5	7,8	29,4
4	15,7	6,0	35,4
5	14,9	5,6	41,0
6	13,6	5,1	46,1
7	11,1	4,2	50,3
8	10,4	4,0	54,3
9	9,7	3,7	58,0
10	9,0	3,4	61,4
11	8,1	3,1	64,4
12	7,4	2,8	67,2
13	6,6	2,5	69,7
14	5,8	2,2	71,9
15	4,8	1,8	73,7
16	4,3	1,6	75,4
17	3,6	1,4	76,7
18	2,9	1,1	77,8
19	2,7	1,0	78,9
20	2,4	0,9	79,8
21	2,2	0,8	80,6

Strategy III – Identify relevance of the categorical variables

- Data set has 33 categorical variables
- Random Forest handles NaNs
- Ensemble with 500 trees
- CPU Memory intensive
- Categorical variables with more than 53 factos: removed!
 - 15 variables removed

Strategy III – Random Forest

- Relevant algorithm for umbalanced data sets
- 20 numerical dimensions from PCA
- 18 categorical significant variables with up to 53 factors
- Time domain consideration:
 - 50% past for training
 - 50% future for testing
- Hyperparameters:
 - Holdout method with 30% future for validation based on accuracy:
 - Shrinkage (regularization),
 - nr. trees
 - depth

- Random splitting
 - 65 % for training
 - 35 % for testing
- Hyperparameters:
 - 10-fold CV based on accuracy:
 - shrinkage (regularization)
 - nr. trees
 - depth

- Time domain consideration
- Logistic Regression (Bernoulli distribution):
 - Accuracy train: 96.2 %

		0	1
	prediction		
/	0	68588	2526
	1	253	1133

Accuracy test: 89.8 %

	0	1
prediction		
0	63696	6945
1	377	714

AdaBoost (exponential loss for 0-1 outcomes):

Accuracy train: 96.0 %

prediction	0	1
0	68595	2626
1	246	1033

Accuracy test: 89.7 %

prediction	0	1
0	63903	7250
1	170	409

- Random splitting
- Logistic Regression:
 - Accuracy train: 93.9 %

		0	1
	prediction		
/	0	85771	5072
	1	643	2265

Accuracy test: 93.4%

prediction	0	1
0	46142	2969
1	359	1012

- Hyperparameters:
 - 10-fold Cross-validation
- nr trees: 800
- depth= 2
- shrinkage =0.01

In a binary setting:

		Predicted	
		Р	N
Condition	Р	TP	FN
Condition	Ν	FP	TN

- Recall=TP/TP+FN=46142/46142+359= 46142/46501= **99.2** %
- Precision=TP/TP+FP=46142/46142+2969=46142/491 11= 93.9 %
- True negative rate: TN/TN+FP = 1012/1012+2969 = 1012/3981= **25.4** %
- Balanced accuracy= Recall + TNR/2 = 62 %
- Still better than random guess!

Conclusions

- We had a quite high sparse data set
- Data reduction analysis:
 - PCA analysis
 - 270 numerical values allowed reduction to 20 variables that explain 80 % of the variance,
 - Average was input in the empty instances
 - Random Forests
 - Allowed discriminate the most relevant categorical variables for this classification problem
 - Variables with more than 53 factors were removed
 - Most of the remaining categorical variables were relevant except one
- Gradient Boosting Machine with the selected 38 variables:
 - Apparently not a time series problem ("reported chargeback on the card as fraud transaction")
 - 93.4 % accuracy
 - In future use the balanced accuracy for optimizing the hyperparameters