Probabilistic Functional Programming

Donnacha Oisín Kidney July 11, 2018

Modeling Probability

An Example

Unclear Semantics

Underpowered

Monadic Modeling

The Erwig And

Kollmansberger Approach

Other Interpreters

Theoretical Foundations

Stochastic Lambda

Calculus

Giry Monad

Other Applications

Differential Privacy

Conclusion

Modeling Probability

How do we model stochastic and probabilistic processes in programming languages?

The Boy-Girl Paradox

- 1. Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?
- 2. Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

The Boy-Girl Paradox

- 1. Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?
- 2. Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Is the answer to $2\frac{1}{3}$ or $\frac{1}{2}$?

The Boy-Girl Paradox

- 1. Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?
- 2. Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Is the answer to $2\frac{1}{3}$ or $\frac{1}{2}$?

Part of the difficulty in the question is that it's ambiguous: can we use programming languages to lend some precision?

An Ad-Hoc Solution i

Using normal features built in to the language.

```
from random import randrange, choice

class Child:
    def __init__(self):
        self.gender = choice(['boy', 'girl'])
        self.age = randrange(18)
```

An Ad-Hoc Solution ii

```
from operator import attrgetter
def mr_jones():
    child 1 = Child()
    child 2 = Child()
    eldest = max(child 1, child 2,
                key=attrgetter('age'))
    assert eldest.gender == 'girl'
    return [child 1, child 2]
```

An Ad-Hoc Solution iii

Unclear semantics

What contracts are guaranteed by probabilistic functions? What does it mean *exactly* for a function to be probabilistic? Why isn't the following¹ "random"?

¹Randall Munroe. *Xkcd*: *Random Number*. en. Title text: RFC 1149.5 specifies 4 as the standard IEEE-vetted random number. Feb. 2007. URL: https://xkcd.com/221/ (visited on 07/06/2018).

What about this?

```
children_1 = [Child(), Child()]
children_2 = [Child()] * 2
```

How can we describe the difference between **children_1** and **children_2**?

Underpowered

There are many more things we may want to do with probability distributions.

What about expectations?

```
def expect(predicate, process, iterations=100):
    success, tot = 0, 0
    for in range(iterations):
        try:
            success += predicate(process())
            tot += 1
        except AssertionError:
            pass
    return success / tot
```

The Ad-Hoc Solution

```
p 1 = expect(
    lambda children: all(child.gender == 'girl'
                              for child in children),
    mr jones)
p 2 = expect(
    lambda children: all(child.gender == 'boy'
                              for child in children),
    mr smith)
                         p_1 \approx \frac{1}{2}
p_2 \approx \frac{1}{3}
```

Monadic Modeling

What we're approaching is a DSL, albeit an unspecified one.

What we're approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

What we're approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

· Why should we implement it? What is it useful for?

What we're approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

- · Why should we implement it? What is it useful for?
- How should we implement it? How can it be made efficient?

What we're approaching is a DSL, albeit an unspecified one.

Three questions for this DSL:

- · Why should we implement it? What is it useful for?
- How should we implement it? How can it be made efficient?
- Can we glean any insights on the nature of probabilistic computations from the language? Are there any interesting symmetries?

The Erwig And Kollmansberger Approach

First approach²:

```
newtype Dist a = Dist \{runDist :: [(a, \mathbb{R})]\}
```

A distribution is a list of possible events, each tagged with a probability.

²Martin Erwig and Steve Kollmansberger. "Functional Pearls: Probabilistic Functional Programming in Haskell". In: *Journal of Functional Programming* 16.1 (2006), pp. 21–34. ISSN: 1469-7653, 0956-7968. DOI: 10.1017/S0956796805005721. URL: http://web.engr.oregonstate.edu/~erwig/papers/abstracts.html%5C#JFP06a (visited on 09/29/2016).

We could (for example) encode a die as:

die :: Dist Integer die = Dist
$$[(1, \frac{1}{6}), (2, \frac{1}{6}), (3, \frac{1}{6}), (4, \frac{1}{6}), (5, \frac{1}{6}), (6, \frac{1}{6})]$$

This lets us encode (in the types) the difference between:

```
children_1 :: [Dist Child]
children_2 :: Dist [Child]
```

```
def mr_smith():
    child_1 = Child()
    child_2 = Child()

    assert child_1.gender == 'boy' or \
        child_2.gender == 'boy'
    return [child_1, child_2]
1. = (assignment)
```

```
def mr smith():
    child 1 = Child()
    child 2 = Child()
    assert child 1.gender == 'boy' or \
           child 2.gender == 'boy'
    return [child 1, child 2]
 1. = (assignment)
 2. assert
```

```
def mr_smith():
    child_1 = Child()
    child_2 = Child()
    assert child_1.gender == 'boy' or \
        child_2.gender == 'boy'
    return [child_1, child_2]
```

- 1. = (assignment)
- 2. assert
- 3. return

Assignment i

Assignment expressions can be translated into lambda expressions:

$$let x = e_1 in e_2$$

$$\equiv (\lambda x. e_2) e_1$$

In the context of a probabilistic language, e_1 and e_1 are distributions. So what we need to define is application: this is encapsulated by the "monadic bind":

$$(\gg)$$
 :: Dist $a \to (a \to \text{Dist } b) \to \text{Dist } b$

Assignment ii

For a distribution, what's happening inside the λ is e_1 given x. Therefore, the resulting probability is the product of the outer and inner probabilities.

```
xs \gg f = Dist [(y, xp \times yp) | (x, xp) \leftarrow runDist xs , (y, yp) \leftarrow runDist (f x)]
```

Assertion

Assertion is a kind of conditioning: given a statement about an event, it either occurs or it doesn't.

```
guard :: Bool \rightarrow Dist ()
guard True = Dist [((),1)]
guard False = Dist []
```

Return

Return is the "unit" value for a distribution; the certain event, the unconditional distribution.

```
return :: a \rightarrow Dist a
return x = Dist [(x, 1)]
```

Putting it all Together

```
mrSmith :: Dist [Child]
mrSmith = do
   child1 \leftarrow child
   child2 \leftarrow child
   quard (gender child1 \equiv Boy \lor gender child2 \equiv Boy)
   return [child1, child2]
expect :: (a \to \mathbb{R}) \to \text{Dist } a \to \mathbb{R}
expect p \times s = \frac{sum [p \times xxp|(x,xp) \leftarrow runDist \times s]}{sum [xp|(-xp) \leftarrow runDist \times s]}
probOf :: (a \rightarrow Bool) \rightarrow Dist \ a \rightarrow \mathbb{R}
probOf p = expect (\lambda x \rightarrow if p x then 1 else 0)
```

```
probOf (all ((\equiv) Girl \circ gender)) mrJones \equiv \frac{1}{2} probOf (all ((\equiv) Boy \circ gender)) mrSmith \equiv \frac{1}{3}
```

Alternative Interpreters

Once the semantics are described, different interpreters are easy to swap in.

Monty Hall i

```
data Decision = Decision { stick :: Bool
                               , switch :: Bool }
montyHall :: Dist Decision
montyHall = do
  car \leftarrow uniform [1...3]
  choice<sub>1</sub> \leftarrow uniform [1..3]
  let left = [door \mid door \leftarrow [1..3], door \not\equiv choice_1]
  let open = head [door | door \leftarrow left, door \not\equiv car]
  let choice_2 = head [door | door \leftarrow left, door \not\equiv open]
  return (Decision { stick = car \equiv choice_1
                       switch = car \equiv choice_2
```

Monty Hall ii

While we can interpret it in the normal way to solve the problem:

```
probOf stick montyHall \equiv \frac{1}{3}
probOf switch montyHall \equiv \frac{2}{3}
```

Monty Hall iii

We could alternatively draw a diagram of the process.

Figure 1: AST from Monty Hall problem. **1** is a win, **0** is a loss. The first column is what happens on a stick, the second is what happens on a loss.

Theoretical Foundations

Stochastic Lambda Calculus

It is possible³ to give measure-theoretic meanings to the operations described above.

$$\mathcal{M} \llbracket return \, x \rrbracket \, (A) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{otherwise} \end{cases} \tag{1}$$

$$\mathcal{M} \llbracket d \gg k \rrbracket (A) = \int_{X} \mathcal{M} \llbracket k(x) \rrbracket (A) d\mathcal{M} \llbracket d \rrbracket (x)$$
 (2)

³Norman Ramsey and Avi Pfeffer. "Stochastic Lambda Calculus and Monads of Probability Distributions". In: 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Vol. 37. ACM, 2002, pp. 154–165. URL: http://www.cs.tufts.edu/~nr/cs257/archive/norman-ramsey/pmonad.pdf (visited on 09/29/2016).

The Giry Monad

Giry⁴ gave a categorical interpretation of probability theory.

⁴Michèle Giry. "A Categorical Approach to Probability Theory". In: Categorical Aspects of Topology and Analysis. Ed. by A. Dold, B. Eckmann, and B. Banaschewski. Vol. 915. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 68–85. ISBN: 978-3-540-11211-2 978-3-540-39041-1. DOI: 10.1007/BFb0092872. URL: http://link.springer.com/10.1007/BFb0092872 (visited on 03/03/2017).

$$X \xrightarrow{f} Y$$

$$\downarrow g \circ f \qquad \downarrow g$$

$$Z$$

Objects
$$Ob(C) = \{X, Y, Z\}$$

Objects
$$Ob(C) = \{X, Y, Z\}$$

Arrows $hom_C(X, Y) = X \rightarrow Y$

Objects
$$Ob(C) = \{X, Y, Z\}$$

Arrows $hom_C(X, Y) = X \rightarrow Y$
Composition \circ

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y & \text{Objects Ob(C)} = \{X, Y, Z\} \\
\downarrow g & & \text{Arrows hom}_{C}(X, Y) = X \to Y \\
Z & & \text{Composition } \circ
\end{array}$$

Arrows form a monoid under composition

$$W \xrightarrow{f} X$$

$$g \circ f \xrightarrow{h} Z$$

$$(h \circ g) \circ f = h \circ (g \circ f) \qquad (3)$$

$$A \rightleftharpoons id_A \qquad \forall A.A \in \mathsf{Ob}(\mathsf{C}) \exists id_A : \mathsf{hom}_{\mathsf{C}}(A,A)$$
(4)

$$X \xrightarrow{f} Y$$

$$\downarrow g$$

$$Z$$

Objects
$$Ob(C) = \{X, Y, Z\}$$

Arrows $hom_C(X, Y) = X \rightarrow Y$
Composition \circ

Arrows form a monoid under composition

$$W \xrightarrow{f} X$$

$$g \circ f \xrightarrow{g} f \circ g$$

$$Y \xrightarrow{h} Z$$

$$(h \circ g) \circ f = h \circ (g \circ f)$$

$$A \supset id_A \qquad \forall A.A \in \mathsf{Ob}(\mathsf{C}) \ \exists \ id_A : \mathsf{hom}_{\mathsf{C}}(A,A)$$
(4)

Example

Set is the category of sets, where objects are sets, and arrows are functions.

Functors

The category of (small) categories, **Cat**, has morphisms called Functors.

Functors

The category of (small) categories, **Cat**, has morphisms called Functors.

These can be thought of as ways to "embed" one category into another.

Functors

The category of (small) categories, **Cat**, has morphisms called Functors.

These can be thought of as ways to "embed" one category into another.

Functors which embed categories into themselves are called Endofunctors.

Monads

In the category of Endofunctors, **Endo**, a Monad is a triple of:

- 1. An Endofunctor m,
- 2. A natural transformation:

$$\eta: A \to m(A) \tag{5}$$

This is an operation which embeds an object.

3. Another natural transformation:

$$\mu: m^2(A) \to m(A) \tag{6}$$

This collapses two layers of the functor.

Meas is the category of measurable spaces.

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

The objects are measurable spaces.

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

The objects are measurable spaces.

We can construct a functor (P), which, for any given measurable space \mathcal{M} , is the space of all possible measures on it.

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

The objects are measurable spaces.

We can construct a functor (P), which, for any given measurable space \mathcal{M} , is the space of all possible measures on it.

 $\mathcal{P}(\mathcal{M})$ is itself a measurable space: measuring is integrating over some variable a in \mathcal{M} .

Meas is the category of measurable spaces.

The arrows (hom_{Meas}) are measurable maps.

The objects are measurable spaces.

We can construct a functor (P), which, for any given measurable space \mathcal{M} , is the space of all possible measures on it.

 $\mathcal{P}(\mathcal{M})$ is itself a measurable space: measuring is integrating over some variable a in \mathcal{M} .

In code (we restrict to measurable functions):

newtype Measure $a = Measure ((a \rightarrow \mathbb{R}) \rightarrow \mathbb{R})$

We now get η and μ :

```
integrate :: Measure a \to (a \to \mathbb{R}) \to \mathbb{R}

integrate (Measure m) f = m f

return :: a \to Measure \ a

return x = Measure \ (\lambda measure \to measure \ x)

(\gg) :: Measure a \to (a \to Measure \ b) \to Measure \ b

xs \gg f = Measure \ (\lambda measure \to integrate \ xs

(\lambda x \to integrate \ (f \ x)

(\lambda y \to measure \ y)))
```

Other Applications

Differential Privacy

It has been shown⁵ that the semantics of the probability monad suitable encapsulate *differential privacy*.

http://dl.acm.org/citation.cfm?id=1863568 (visited on 03/01/2017).

⁵Jason Reed and Benjamin C. Pierce. "Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy". In: *ACM Sigplan Notices*. Vol. 45. ACM, 2010, pp. 157–168. URL:

PINQ

LINQ⁶ is an API which provides a monadic syntax for performing queries (sql, etc.)

PINQ⁷ extends this to provide differentially private queries.

⁶Don Box and Anders Hejlsberg. *LINQ: .NET Language Integrated Query.* en. Feb. 2007. URL:

https://msdn.microsoft.com/en-us/library/bb308959.aspx (visited on 07/09/2018).

⁷Frank McSherry. "Privacy Integrated Queries". In: Communications of the ACM (Sept. 2010). URL: https://www.microsoft.com/en-us/research/publication/privacy-integrated-queries-2/.

Conclusion