Package 'tidypaleo'

January 18, 2023

Title Tidy Tools for Paleoenvironmental Archives

Version 0.1.3

Description Provides a set of functions with a common framework for age-depth model management, stratigraphic visualization, and common statistical transformations. The focus of the package is stratigraphic visualization, for which 'ggplot2' components are provided to reproduce the scales, geometries, facets, and theme elements commonly used in publication-quality stratigraphic diagrams. Helpers are also provided to reproduce the exploratory statistical summaries that are frequently included on stratigraphic diagrams. See Dunnington et al. (2021) <doi:10.18637/jss.v101.i07>.

```
Depends R (>= 3.4.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests testthat, knitr, rmarkdown, vegan, patchwork, forcats, vdiffr

URL https://paleolimbot.github.io/tidypaleo/,
    https://github.com/paleolimbot/tidypaleo

BugReports https://github.com/paleolimbot/tidypaleo/issues

Imports rlang, tidyselect, dplyr, vctrs, tibble, scales, ggplot2 (>= 3.0.0), styler, purrr, ggstance, stringr, withr, tidyr (>= 1.0.2), digest, rioja

VignetteBuilder knitr

NeedsCompilation no
```

(<https://orcid.org/0000-0002-9415-4582>)
Maintainer Dewey Dunnington <dewey@fishandwhistle.net>

Author Dewey Dunnington [aut, cre, cph]

R topics documented:

2

	age_depth_as_sec_axis	
	age_depth_interpolate	
	age_depth_model	
	alta_lake_210Pb_ages	5
	as_trans_factory	6
	facet_abundanceh	7
	geom_col_segsh	10
	geom_lineh	11
	geom_point_exaggerate	12
	geom_ribbonh	14
	halifax_lakes_plottable	15
	keji_lakes_plottable	16
	kellys_lake_cladocera	17
	label_geochem	17
	label_species	18
	layer_dendrogram	19
	layer_scores	21
	long_lake_14C_ages	22
	nested_analysis	23
	nested_data	24
	nested_hclust	25
	nested_prcomp	27
	plot.age_depth_model	28
	plot.nested_analysis	29
	predict.age_depth_model	30
	rotated_facet_labels	31
	scale_x_abundance	32
	scale_y_depth_age	33
	sequential_layer_facets	35
	stat_nested_hclust	35
	theme_paleo	37
Index		38

 $\verb"age_depth_as_sec_axis" \textit{ Use an age depth model as a second ggplot axis}$

Description

Use an age depth model as a second ggplot axis

```
age_depth_as_sec_axis(x, primary = c("depth", "age"), ...)
```

age_depth_interpolate 3

Arguments

```
x An age_depth_modelprimary Specify the primary axis as 'age' or 'depth'... Passed to sec_axis
```

Value

A ggplot2 sec_axis for use in scale_x_continuous, scale_y_continuous, or their reverse variants.

Examples

```
library(ggplot2)
alta_lake_adm <- age_depth_model(
    alta_lake_210Pb_ages,
    depth = depth_cm,
    age = age_year_ad
)

ggplot(alta_lake_210Pb_ages, aes(y = depth_cm, x = age_year_ad)) +
    geom_path() +
    geom_point() +
    scale_y_reverse(sec.axis = age_depth_as_sec_axis(alta_lake_adm))</pre>
```

age_depth_interpolate Age-depth model interpolators/extrapolators

Description

Age-depth model interpolators/extrapolators

Usage

```
age_depth_interpolate(x, y)
age_depth_extrapolate(x, y, x0 = last, y0 = last, slope = NULL)
age_depth_exact(x, y)
age_depth_na(x, y)
```

Arguments

X	A paired vector of x values
У	A paired vector of y values
x0	The x value to anchor the transform
y0	The y value to anchor the transform
slope	The slope (in units of y/x) to use for the transform

4 age_depth_model

Value

A list with component functions trans and inverse

Examples

```
age_depth_model(
  alta_lake_210Pb_ages,
  depth = depth_cm, age = age_year_ad,
  age_max = age_year_ad + age_error_yr,
  age_min = age_year_ad - age_error_yr,
  extrapolate_age_below = ~age_depth_extrapolate(
    tail(.x, 3), tail(.y, 3), x0 = dplyr::last, y0 = dplyr::last
  ),
  extrapolate_age_above = ~age_depth_extrapolate(
    head(.x, 3), head(.y, 3), x0 = dplyr::first, y0 = dplyr::first
  )
)
```

age_depth_model

Create age depth models

Description

Create age depth models

Usage

```
age_depth_model(
   .data = NULL,
   depth,
   age,
   age_min = NA_real_,
   age_max = NA_real_,
   interpolate_age = age_depth_interpolate,
   extrapolate_age_below = ~age_depth_extrapolate(.x, .y, x0 = last, y0 = last),
   extrapolate_age_above = ~age_depth_extrapolate(.x, .y, x0 = first, y0 = first),
   interpolate_age_limits = age_depth_exact,
   extrapolate_age_limits_below = age_depth_na,
   extrapolate_age_limits_above = age_depth_na
)
```

Arguments

```
.data A data frame depth, age, age_min, age_max
```

Expressions evaluated in .data that provide the known depths, known ages, and error information if available. These expressions are evaluated like they are within mutate if .data is present.

alta_lake_210Pb_ages

interpolate_age, extrapolate_age_below, extrapolate_age_above

These arguments provide the rules for interpolating and extrapolating and e

These arguments provide the rules for interpolating and extrapolating ages based on depths.

5

interpolate_age_limits, extrapolate_age_limits_below, extrapolate_age_limits_above

These arguments provide the rules for interpolating and extrapolating age min
and max values based on depths.

Value

An age depth model object.

Examples

```
age_depth_model(
  alta_lake_210Pb_ages,
  depth = depth_cm, age = age_year_ad,
  age_max = age_year_ad + age_error_yr,
  age_min = age_year_ad - age_error_yr
)
```

alta_lake_210Pb_ages Alta Lake Lead-210 and Carbon-14 Ages

Description

The alta_lake_210Pb_ages object contains raw depths and ages for Alta Lake (Whistler, British Columbia, Canada) core AL-GC2 (Dunnington et al. 2016; Dunnington 2015). For these values, ages were calculated from Lead-210 activities using the constant rate of supply (CRS) model (Appleby and Oldfield 1983). The alta_lake_14C_ages object contains one uncalibrated Carbon-14 measurement from the same core. The alta_lake_bacon_ages object contains the combined result of the Lead-210 and the Carbon-14 ages as modelled by the rbacon package (Blaauw and Christen 2011).

```
alta_lake_210Pb_ages
alta_lake_14C_ages
alta_lake_bacon_ages
alta_lake_geochem
```

6 as_trans_factory

Format

An object of class tbl_df (inherits from tbl, data.frame) with 9 rows and 5 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 1 rows and 5 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 58 rows and 5 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 192 rows and 9 columns.

References

Appleby, P. G., and F. Oldfield. "The Assessment of 210Pb Data from Sites with Varying Sediment Accumulation Rates." Hydrobiologia 103, no. 1 (July 1, 1983): 29–35. doi:10.1007/BF00028424.

Blaauw, Maarten, and J. Andrés Christen. "Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process." Bayesian Analysis 6, no. 3 (September 2011): 457–74. doi:10.1214/ba/1339616472.

Dunnington, Dewey W., Ian S. Spooner, Chris E. White, R. Jack Cornett, Dave Williamson, and Mike Nelson. "A Geochemical Perspective on the Impact of Development at Alta Lake, British Columbia, Canada." Journal of Paleolimnology 56, no. 4 (November 2016): 315–330. doi:10.1007/s109330169919x.

Dunnington, Dewey W. "A 500-Year Applied Paleolimnological Assessment of Environmental Change at Alta Lake, Whistler, British Columbia, Canada." M.Sc. Thesis, Acadia University, 2015. https://scholar.acadiau.ca/islandora/object/theses:411.

Examples

```
alta_lake_210Pb_ages
alta_lake_14C_ages
alta_lake_bacon_ages
```

as_trans_factory

Coerce and validate transforms and functions that produce them

Description

Coerce and validate transforms and functions that produce them

```
as_trans_factory(factory, env = parent.frame())
validate_trans_factory(factory, x = 1:3, y = 1:3)
validate_trans(trans, x = 1:3, y = 1:3)
```

facet_abundanceh 7

Arguments

factory	A function that produces a transform object
env	The calling environment, for transform factories that are calls or rlang lambda- style functions.
x	The test x data
у	The test y data
trans	A transform object

Value

The input, invisibly.

Examples

```
as_trans_factory(age_depth_interpolate)
```

facet_abundanceh

Facet for relative abundance data

Description

Provides a number of modifications to the plot that are necessary for relative abundance plots of a number of species. See scale_x_abundance, facet_grid, facet_grid, label_species, label_geochem, and rotated_facet_labels rotated_axis_labels for examples of how to customize the default behaviour.

```
facet_abundanceh(
  taxon,
  grouping = NULL,
  rotate_facet_labels = 45,
  labeller = label_species,
  scales = "free_x",
  space = "free_x",
  dont_italicize = c("\\(.*?\\)", "spp?\\.", "-complex", "[Oo]ther"),
  ...
)

facet_abundance(
  taxon,
  grouping = NULL,
  rotate_facet_labels = 0,
  labeller = label_species,
  scales = "free_y",
```

8 facet_abundanceh

```
space = "free_y",
 dont_italicize = c("\(.*?\)", "spp?\.", "-complex", "[Oo]ther"),
)
facet_geochem_wraph(
 param,
  grouping = NULL,
  rotate_axis_labels = 90,
  scales = "free_x",
 labeller = label_geochem,
  renamers = c(^d([0-9]+)([HCNOS]) = "paste(delta ^ \\1, \\2)", \^210Pb$ =
    "paste({}^210, Pb)", \^Pb210$\` = "paste({}^210, Pb)"),
 units = character(0),
 default_units = NA_character_,
)
facet_geochem_wrap(
  param,
 grouping = NULL,
  scales = "free_y",
 labeller = label_geochem,
  renamers = c(^d([0-9]+)([HCNOS]) = "paste(delta ^ \\1, \\2)", \^210Pb$ =
    "paste({}^210, Pb)", \^Pb210$\ = "paste({}^210, Pb)"),
 units = character(0),
  default_units = NA_character_,
)
facet_geochem_grid(
  param,
  grouping = NULL,
  rotate_axis_labels = 0,
  scales = "free_y",
  space = "fixed",
  labeller = label_geochem,
  renamers = c(^d([0-9]+)([HCNOS]) = "paste(delta ^ \\1, \\2)", \^210Pb$ =
    "paste({}^210, Pb)", \^Pb210\$ = "paste({}^210, Pb)"),
  units = character(0),
  default_units = NA_character_,
)
facet_geochem_gridh(
  param,
  grouping = NULL,
  rotate_axis_labels = 90,
```

facet_abundanceh 9

```
scales = "free_x",
space = "fixed",
labeller = label_geochem,
renamers = c(`^d([0-9]+)([HCNOS])$` = "paste(delta ^ \\1, \\2)", `^210Pb$` =
    "paste({}^210, Pb)", `^Pb210$` = "paste({}^210, Pb)"),
units = character(0),
default_units = NA_character_,
...
)
```

Arguments

taxon, param A call to vars, defining the column that identifies the taxon (parameter).

grouping A call to vars, identifying additional grouping columns

rotate_facet_labels, rotate_axis_labels

Facet (axis) label rotation (degrees)

labeller Labeller to process facet names. Use label_species to italicize species names,

label_geochem to perform common formatting and units, or label_value to sup-

press.

space, scales Modify default scale freedom behaviour

dont_italicize Regular expressions that should not be italicized

... Passed to facet_grid (abundance) or facet_wrap (geochem).

renamers Search and replace operations to perform in the form search = replace. Replace

text can (should) contain backreferences, and will be parsed as an expression

(see plotmath). Use NULL to suppress renaming.

units A named list of values = unit default_units The default units to apply

Value

A subclass of ggplot2::facet_grid() or ggplot2::facet_wrap().

Examples

```
library(ggplot2)
ggplot(keji_lakes_plottable, aes(x = rel_abund, y = depth)) +
    geom_col_segsh() +
    scale_y_reverse() +
    facet_abundanceh(vars(taxon), grouping = vars(location)) +
    labs(y = "Depth (cm)")
ggplot(keji_lakes_plottable, aes(y = rel_abund, x = depth)) +
    geom_col_segs() +
    scale_x_reverse() +
    facet_abundance(vars(taxon), grouping = vars(location)) +
    labs(x = "Depth (cm)")
```

10 geom_col_segsh

```
ggplot(alta_lake_geochem, aes(x = value, y = depth)) +
  geom_lineh() +
  geom_point() +
  scale_y_reverse() +
  facet_geochem_wrap(vars(param), units = c(C = "%", Cu = "ppm", Ti = "ppm"), nrow = 1) +
  labs(x = NULL, y = "Depth (cm)")
ggplot(alta_lake_geochem, aes(x = value, y = depth)) +
  geom_lineh() +
  geom_point() +
  scale_y_reverse() +
  facet\_geochem\_gridh(vars(param), units = c(C = "%", Cu = "ppm", Ti = "ppm")) +
  labs(x = NULL, y = "Depth (cm)")
ggplot(alta_lake_geochem, aes(y = value, x = depth)) +
  geom_line() +
  geom_point() +
  scale_x_reverse() +
  facet\_geochem\_grid(vars(param), units = c(C = "%", Cu = "ppm", Ti = "ppm")) +
  labs(y = NULL, x = "Depth (cm)")
```

geom_col_segsh

Useful geometries for strat diagrams

Description

Useful geometries for strat diagrams

```
geom_col_segsh(
 mapping = NULL,
 data = NULL,
  stat = "identity",
 position = "identity",
  . . . ,
 xend = 0,
  arrow = NULL,
  arrow.fill = NULL,
  lineend = "butt",
  linejoin = "round",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
geom_col_segs(
 mapping = NULL,
```

geom_lineh 11

```
data = NULL,
  stat = "identity",
  position = "identity",
  ...,
  yend = 0,
  arrow = NULL,
  arrow.fill = NULL,
  lineend = "butt",
  linejoin = "round",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)

GeomColSegsh

GeomColSegs

GeomLineh
```

Arguments

```
mapping, data, stat, position, arrow, arrow.fill, lineend, linejoin, na.rm, show.legend, inherit.aes, ... See <a href="mailto:seegeom_segment">geom_segment</a>.
```

xend, yend

The end of the horizontal or vertical segment bars, respectively.

Format

An object of class ${\tt GeomColSegsh}$ (inherits from ${\tt GeomSegment},$ ${\tt Geom},$ ${\tt ggproto},$ ${\tt gg})$ of length 4.

An object of class GeomColSegs (inherits from GeomSegment, Geom, ggproto, gg) of length 4.

An object of class GeomLineh (inherits from GeomPath, Geom, ggproto, gg) of length 2.

Value

A ggplot2 layer

geom_lineh

Connect observations in the vertical direction

Description

Connect observations in the vertical direction

Usage

```
geom_lineh(
  mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)
```

Arguments

Value

A ggplot2 layer.

geom_point_exaggerate Exaggerated geometries that do not train scales

Description

Exaggerated geometries that do not train scales

```
geom_point_exaggerate(
   mapping = NULL,
   data = NULL,
   stat = "identity",
   position = "identity",
   ...,
   exaggerate_x = 1,
   exaggerate_y = 1,
   na.rm = FALSE,
   show.legend = NA,
   inherit.aes = TRUE
)

geom_line_exaggerate(
   mapping = NULL,
   data = NULL,
   stat = "identity",
```

```
position = "identity",
  exaggerate_x = 1,
  exaggerate_y = 1,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
geom_lineh_exaggerate(
 mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  exaggerate_x = 1,
  exaggerate_y = 1,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
geom_area_exaggerate(
 mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  exaggerate_x = 1,
  exaggerate_y = 1,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
geom_areah_exaggerate(
 mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  exaggerate_x = 1,
  exaggerate_y = 1,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

geom_ribbonh

Arguments

Value

A subclass of ggplot2::Geom.

Examples

```
library(ggplot2)
ggplot(keji_lakes_plottable, aes(x = rel_abund, y = depth)) +
  geom_lineh_exaggerate(exaggerate_x = 2, lty = 2) +
  geom_col_segsh() +
  scale_y_reverse() +
  facet_abundanceh(vars(taxon), grouping = vars(location)) +
  labs(y = "Depth (cm)")
```

geom_ribbonh

Vertical ribbons and area plots

Description

Vertical ribbons and area plots

```
geom_ribbonh(
  mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)

GeomRibbonh

geom_areah(
  mapping = NULL,
  data = NULL,
```

halifax_lakes_plottable

```
stat = "identity",
position = "stackv",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
)
```

Arguments

```
mapping, data, stat, position, na.rm, show.legend, inherit.aes, ...

See geom_ribbon.
```

Format

An object of class GeomRibbonh (inherits from Geom, ggproto, gg) of length 6.

An object of class GeomAreah (inherits from GeomRibbonh, Geom, ggproto, gg) of length 4.

Examples

```
library(ggplot2)

# Generate data
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
h <- ggplot(huron, aes(y = year))

h + geom_ribbonh(aes(xmin=0, xmax=level))
h + geom_areah(aes(x = level))

# Add aesthetic mappings
h +
    geom_ribbonh(aes(xmin = level - 1, xmax = level + 1), fill = "grey70") +
    geom_lineh(aes(x = level))</pre>
```

halifax_lakes_plottable

Halifax lakes water chemistry and top/bottom diatom counts

Description

A subset of well-labeled, clean diatom count data for 44 Halifax-area (Nova Scotia) lakes, an analysis of which has been published by Ginn et al. (2015).

```
halifax_lakes_plottable
```

16 keji_lakes_plottable

Format

An object of class tbl_df (inherits from tbl, data.frame) with 114 rows and 5 columns.

Source

Neotoma paleoecology database (https://www.neotomadb.org)

References

Ginn, Brian K., Thiyake Rajaratnam, Brian F. Cumming, and John P. Smol. "Establishing Realistic Management Objectives for Urban Lakes Using Paleolimnological Techniques: An Example from Halifax Region (Nova Scotia, Canada)." Lake and Reservoir Management 31, no. 2 (April 3, 2015): 92-108. doi:10.1080/10402381.2015.1013648.

Examples

halifax_lakes_plottable

keji_lakes_plottable Keji lakes core diatom counts

Description

A subset of well-labeled, clean diatom count data for 3 Keji-area (Nova Scotia) lakes, which form part of the analysis in Ginn et al. (2007).

Usage

keji_lakes_plottable

Format

An object of class tbl_df (inherits from tbl, data.frame) with 202 rows and 5 columns.

Source

Neotoma paleoecology database (https://www.neotomadb.org)

References

Ginn, Brian K., Brian F. Cumming, and John P. Smol. "Long-Term Lake Acidification Trends in High- and Low-Sulphate Deposition Regions from Nova Scotia, Canada." Hydrobiologia 586, no. 1 (July 1, 2007): 261-75. doi:10.1007/s1075000706443.

Examples

keji_lakes_plottable

kellys_lake_cladocera 17

```
kellys_lake_cladocera Kellys Lake Data
```

Description

Geochemistry measurements and Cladocera counts from Kellys Lake, Cape Breton Island, Nova Scotia, Canada.

Usage

```
kellys_lake_cladocera
kellys_lake_geochem
kellys_lake_ages
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 300 rows and 5 columns. An object of class tbl_df (inherits from tbl, data.frame) with 305 rows and 9 columns. An object of class tbl_df (inherits from tbl, data.frame) with 14 rows and 5 columns.

References

Joshua Kurek, Ian Spooner, and Dewey Dunnington (unpublished data).

label_geochem

Geochem facet labelers

Description

Geochem facet labelers

```
label_geochem(
  labels,
  units = character(0),
  default_units = NA_character_,
  geochem_facet = 1,
  renamers = c(`^d([0-9]+)([HCNOS])$` = "paste(delta ^ \\1, \\2)", `^210Pb$` =
    "paste({}^210, Pb)", `^Pb210$` = "paste({}^210, Pb)"),
  multi_line = TRUE
)
```

label_species

Arguments

labels A data.frame of facet label values

units A named list of values = unit

default_units The default units to apply

geochem_facet Which facet to apply formatting

renamers Search and replace operations to perform in the form search = replace. Replace text can (should) contain backreferences, and will be parsed as an expression (see plotmath). Use NULL to suppress renaming.

multi_line See label_parsed

Value

```
A ggplot2::labeller()
```

Examples

```
library(ggplot2)
ggplot(alta_lake_geochem, aes(x = value, y = depth)) +
  geom_lineh() +
  geom_point() +
  scale_y_reverse() +
  facet_wrap(
    vars(param),
    labeller = purrr::partial(label_geochem, geochem_facet = "param"),
    nrow = 1,
    scales = "free_x"
  ) +
  labs(x = NULL, y = "Depth (cm)")
```

label_species

Species facet labellers

Description

Use these to label species with partial italic formatting. See label_parsed.

```
label_species(
  labels,
  dont_italicize = c("\\(.*?\\)", "spp?\\.", "-complex", "[0o]ther"),
  species_facet = 1,
  multi_line = TRUE
)
```

layer_dendrogram 19

Arguments

```
labels A data.frame of facet label values
dont_italicize Regular expressions that should not be italicized
species_facet Which facet(s) contain species values
multi_line See label_parsed
```

Value

```
A ggplot2::labeller()
```

Examples

```
library(ggplot2)
ggplot(keji_lakes_plottable, aes(x = rel_abund, y = depth)) +
  geom_col_segsh() +
  scale_y_reverse() +
  facet_grid(
    cols = vars(taxon),
    rows = vars(location),
    scales = "free_x",
    space = "free_x",
    labeller = purrr::partial(label_species, species_facet = "taxon")
) +
  labs(y = "Depth (cm)")
```

layer_dendrogram

Add a dendrogram as a layer or facet

Description

Add a dendrogram as a layer or facet

```
layer_dendrogram(
  object,
  mapping,
  ...,
  colour = "black",
  size = 0.5,
  linetype = 1,
  alpha = NA,
  sequential_facets = TRUE
)
```

20 layer_dendrogram

```
plot_layer_dendrogram(object, mapping, ..., panel_label = "CONISS")

layer_zone_boundaries(
  object,
  mapping,
    ...,
  linetype = 2,
  alpha = 0.7,
  colour = "black",
  size = 0.5
)
```

Arguments

Value

```
A ggplot2::layer()
```

Examples

```
library(ggplot2)
library(dplyr, warn.conflicts = FALSE)

alta_coniss <- nested_data(
    alta_lake_geochem,
    qualifiers = c(age, depth, zone),
    key = param,
    value = value,
    trans = scale
) %>%
    nested_chclust_coniss()

ggplot() +
    layer_dendrogram(alta_coniss, aes(y = depth)) +
    scale_y_reverse()
```

layer_scores 21

layer_scores

Add scores to a plot

Description

Add scores to a plot

Usage

```
layer_scores(
  object,
 mapping = NULL,
 which = "PC1",
 key = "param",
 value = "value",
  scores_geom = list(ggplot2::geom_path(), ggplot2::geom_point()),
  sequential_facets = TRUE
)
plot_layer_scores(
  object,
 mapping,
 which = "PC1",
 key = "param",
 value = "value",
)
```

Arguments

A nested_prcomp or similar object object mapping A mapping created with aes which Which principal components to plot The column name to use for the principal component names key value The column name to use for the principal component score values One or more geometries to which scores should be applied. scores_geom sequential_facets TRUE will result in the panel containing the dendrogram added to the right of the plot. Passed to layer_scores()

Value

```
A list() that can be addeed to a ggplot2::ggplot()
```

22 long_lake_14C_ages

Examples

```
library(ggplot2)
library(dplyr, warn.conflicts = FALSE)

alta_pca <- nested_data(
    alta_lake_geochem,
    qualifiers = c(age, depth, zone),
    key = param,
    value = value,
    trans = scale
) %>%
    nested_prcomp()

ggplot() +
    layer_scores(alta_pca, aes(value, depth), which = "PC1") +
    scale_y_reverse()

plot_layer_scores(alta_pca, aes(y = depth), which = c("PC1", "PC2")) +
    scale_y_reverse()
```

long_lake_14C_ages

Long Lake Carbon-14 Ages

Description

This object contains several uncalibrated Carbon-14 measurements from Long Lake (Nova Scotia-New Brunswick Border Region, Canada) core LL-PC2 (Dunnington et al. 2017; White 2012). The long_lake_bacon_ages object contains the result of the Carbon-14 ages as modelled by the rbacon package (Blaauw and Christen 2011).

Usage

```
long_lake_14C_ages
long_lake_bacon_ages
long_lake_plottable
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 5 rows and 5 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 86 rows and 5 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 51 rows and 10 columns.

nested_analysis 23

References

Blaauw, Maarten, and J. Andrés Christen. "Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process." Bayesian Analysis 6, no. 3 (September 2011): 457–74. doi:10.1214/ba/1339616472.

Dunnington, Dewey W., Hilary White, Ian S. Spooner, Mark L. Mallory, Chris White, Nelson J. O'Driscoll, and Nic R. McLellan. "A Paleolimnological Archive of Metal Sequestration and Release in the Cumberland Basin Marshes, Atlantic Canada." FACETS 2, no. 1 (May 23, 2017): 440–60. doi:10.1139/facets20170004.

White, Hilary E. "Paleolimnological Records of Post-Glacial Lake and Wetland Evolution from the Isthmus of Chignecto Region, Eastern Canada." M.Sc. Thesis, Acadia University, 2012. https://scholar.acadiau.ca/islandora/object/theses:247.

Examples

```
long_lake_14C_ages
long_lake_bacon_ages
long_lake_plottable
```

nested_analysis

Perform an analysis on a nested data matrix

Description

Perform an analysis on a nested data matrix

Usage

```
nested_analysis(
   .data,
   .fun,
   ...,
   .output_column = "model",
   .reserved_names = NULL,
   .env = parent.frame()
)
```

Arguments

. data A data frame with a list column of data frames, possibly created using nested_data.
. fun A model function

... Passed to fun

.output_column A column name in which the output of .fun should be stored.

.reserved_names

Names that should not be allowed as columns in any data frame within this

object

. env Passed to as_function

24 nested_data

Value

data with an additional list column of fun output

Examples

```
nd <- nested_data(</pre>
  alta_lake_geochem,
  qualifiers = c(age, depth, zone),
  key = param,
  value = value,
  trans = scale
)
na <- nested_analysis(nd, vegan::rda, X = data)</pre>
plot(na)
```

nested_data

Prepare a parameter-long data frame for statistical analysis

Description

Prepare a parameter-long data frame for statistical analysis

Usage

```
nested_data(
  .data,
  qualifiers = NULL,
  key = NULL,
  value,
  fill = NA,
  select_if = ~TRUE,
  filter_all = any_vars(TRUE),
  trans = identity,
  groups = NULL
)
unnested_data(.data, ...)
```

Arguments

key

.data Data in parameter-long form qualifiers

value The column name that contains the values

Columns that add context to observations (e.g., depth, zone, core)

The column name that contains the column names of the data matrix

nested_hclust 25

fill	If a key/value combination doesn't exist in the input, this value will be assigned in the data matrix. Generally, using NA for geochemical data and 0 for relative abundance data is advised.
select_if	Use ~TRUE to keep all columns; use ~all(is.finite(.)) to keep columns with all finite values. See select_if.
filter_all	Use any_vars(TRUE) to keep all observations; use all_vars(is.finite(.)) to keep only observations with finite (non-missing) values. See filter_all.
trans	A function that will be applied to all columns, column-wise. Use identity to perform no transformation, use scale to scale each column to a mean of zero and variance of 1. See mutate_all.
groups	Use group_by or this argument to group by one or more columns (e.g., core or lake)
	One or more columns to unnest.

Value

A nested data matrix, which is composed of a tibble::tibble() with tibble list-columns data, discarded_rows, discarded_columns, and qualifiers.

Examples

```
nested_data(
   alta_lake_geochem,
   qualifiers = c(age, depth, zone),
   key = param,
   value = value,
   trans = scale
)
```

nested_hclust

Nested (Constrained) hierarchical clustering

Description

Powered by chclust and hclust; broken stick using bstick.

```
nested_hclust(
   .data,
   data_column = "data",
   qualifiers_column = "qualifiers",
   distance_fun = stats::dist,
   n_groups = NULL,
   ...,
```

26 nested_hclust

```
.fun = stats::hclust,
  .reserved_names = character(0)
)
nested_chclust_conslink(
  .data,
  data_column = "data",
  qualifiers_column = "qualifiers",
  distance_fun = stats::dist,
 n_groups = NULL,
)
nested_chclust_coniss(
  .data,
  data_column = "data",
  qualifiers_column = "qualifiers",
  distance_fun = stats::dist,
  n_{groups} = NULL,
)
```

Arguments

. data A data frame with a list column of data frames, possibly created using nested_data.

data_column An expression that evalulates to the data object within each row of .data

qualifiers_column

The column that contains the qualifiers

distance_fun A distance function like dist or vegdist.

n_groups The number of groups to use (can be a vector or expression using vars in .data)

... Passed to chelust or helust.

. fun Function powering the clustering. Must return an helust object of some kind.

.reserved_names

Names that should not be allowed as columns in any data frame within this object

Value

. data with additional columns

References

Bennett, K. (1996) Determination of the number of zones in a biostratigraphic sequence. New Phytologist, 132, 155-170. doi:10.1111/j.14698137.1996.tb04521.x (Broken stick)

Grimm, E.C. (1987) CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences, 13, 13-35. doi:10.1016/00983004(87)900227

nested_prcomp 27

```
Juggins, S. (2017) rioja: Analysis of Quaternary Science Data, R package version (0.9-15.1). (https://cran.r-project.org/package=rioja).
```

See hclust for hierarchical clustering references

Examples

```
library(tidyr)
library(dplyr, warn.conflicts = FALSE)
nested_coniss <- keji_lakes_plottable %>%
  group_by(location) %>%
  nested_data(depth, taxon, rel_abund, fill = 0) %>%
  nested_chclust_coniss()
# plot the dendrograms using base graphics
plot(nested_coniss, main = location, ncol = 1)
# plot broken stick dispersion to verify number of plausible groups
library(ggplot2)
nested_coniss %>%
  select(location, broken_stick) %>%
  unnest(broken_stick) %>%
  tidyr::gather(type, value, broken_stick_dispersion, dispersion) %>%
  ggplot(aes(x = n\_groups, y = value, col = type)) +
  geom_line() +
  geom_point() +
  facet_wrap(vars(location))
```

nested_prcomp

Nested Principal Components Analysis (PCA)

Description

Powered by prcomp. When creating the nested_data, the data should be scaled (i.e, trans = scale) if all variables are not in the same unit.

Usage

```
nested_prcomp(.data, data_column = .data$data, ...)
```

Arguments

.data A data frame with a list column of data frames, possibly created using nested_data.data_column An expression that evalulates to the data object within each row of .dataPassed to prcomp.

Value

.data with additional columns 'model', 'loadings', 'variance' and 'scores'

Examples

```
library(dplyr, warn.conflicts = FALSE)

nested_pca <- alta_lake_geochem %>%
    nested_data(
        qualifiers = c(depth, zone),
        key = param,
        value = value,
        trans = scale
    ) %>%
    nested_prcomp()

# get variance info
nested_pca %>% unnested_data(variance)

# get loadings info
nested_pca %>% unnested_data(loadings)

# scores, requalified
nested_pca %>% unnested_data(c(qualifiers, scores))
```

Description

Plot an age depth model using base graphics

```
## S3 method for class 'age_depth_model'
plot(
    x,
    xlab = "depth",
    ylab = "age",
    xlim = NULL,
    ylim = NULL,
    add = FALSE,
    ...
)
```

plot.nested_analysis 29

Arguments

```
    x An age_depth_model
    xlab, ylab Axis labels
    xlim, ylim Axis limits
    add Pass TRUE to skip creating a new plot
    ... Passed to points to customize points display
```

Value

The input, invisibly

Examples

```
adm <- age_depth_model(
   alta_lake_210Pb_ages,
   depth = depth_cm, age = age_year_ad,
   age_max = age_year_ad + age_error_yr,
   age_min = age_year_ad - age_error_yr
)

plot(adm)</pre>
```

Description

Calls plot or another (base) plotting function on all models, arranging the output in subplots.

```
## S3 method for class 'nested_analysis'
plot(x, ..., main = "", nrow = NULL, ncol = NULL)

plot_nested_analysis(
    .x,
    .fun,
    ...,
    nrow = NULL,
    ncol = NULL,
    .model_column = .data$model,
    .output_column = NULL
)

## S3 method for class 'nested_prcomp'
biplot(x, ..., nrow = NULL, ncol = NULL)
```

Arguments

x, .x
 A nested_analysis object (or subclass)
 ... Passed to the plot function. Tidy evaluation is supported, and arguments are evaluated within a transposed version of x for each row.
 main The plot title
 nrow, ncol Force a number of rows or columns in the output
 .fun A function that produces graphical output
 .model_column The column containing the model
 .output_column The column in which the output of the plot function should be placed

Value

the input, invisibly

Examples

```
nd <- nested_data(
   alta_lake_geochem,
   qualifiers = c(age, depth, zone),
   key = param,
   value = value,
   trans = scale
)
na <- nested_analysis(nd, vegan::rda, X = data)
plot(na)</pre>
```

```
predict.age_depth_model
```

Predict age and depth values

Description

Predict age and depth values

```
## S3 method for class 'age_depth_model'
predict(object, .data = NULL, depth = NULL, age = NULL, ...)
predict_depth(object, age)
predict_age(object, depth)
```

rotated_facet_labels 31

Arguments

```
object An age_depth_model object
.data Optional input data frame
depth, age Specify exactly one of these to predict the other.
... Unused
```

Value

A data frame with the same number of observations as the input age or depth vector.

Examples

```
adm <- age_depth_model(
   alta_lake_210Pb_ages,
   depth = depth_cm, age = age_year_ad,
   age_max = age_year_ad + age_error_yr,
   age_min = age_year_ad - age_error_yr
)

predict(adm, depth = 1:5)</pre>
```

Description

Common plot modifications for stratigraphic plots

Usage

```
rotated_facet_labels(
  angle = 45,
  direction = "x",
  remove_label_background = TRUE
)
rotated_axis_labels(angle = 90, direction = "x")
```

Arguments

angle The angle at which labels should be rotated direction The axes along which the operations should be performed remove_label_background

Whether or not label backgrounds should be removed along rotated label axes

32 scale_x_abundance

Value

An object or list of objects that can be added to a ggplot

Examples

```
library(ggplot2)
ggplot(mpg, aes(cty, hwy)) +
  geom_point() +
  facet_wrap(vars(class)) +
  rotated_facet_labels(45, "x")
```

scale_x_abundance

Scales for relative abundance values

Description

Continuous scales that (1) always start at 0, (2) always have the same breaks, and (3) expand using a constant rather than a percentage. These scales assume that data are in percentages (i.e., range 0 to 100 rather than 0 to 1).

Usage

Arguments

... Passed to scale_y_continuous or scale_x_continuous
limits Limits for the scale
breaks Where to place labels on the scale

minor_breaks Where to place minor breaks
expand A vector of expantion constants

scale_y_depth_age 33

Value

A scale_y_continuous or scale_x_continuous

Examples

```
library(dplyr, warn.conflicts = FALSE)
library(ggplot2)

keji_lakes_plottable %>%
   filter(taxon == "Other", location == "Beaverskin Lake") %>%
   ggplot(aes(rel_abund, depth)) +
   geom_col_segsh() +
   scale_x_abundance() +
   scale_y_reverse()
```

scale_y_depth_age

Age-depth scales

Description

Age-depth scales

```
scale_y_depth_age(
 model = NULL,
 age_name = "age",
  age_breaks = waiver(),
 age_labels = waiver(),
)
scale_y_age_depth(
 model = NULL,
 reversed = FALSE,
 depth_name = "depth",
 depth_breaks = waiver(),
  depth_labels = waiver(),
)
scale_x_depth_age(
 model = NULL,
  age_name = "age",
  age_breaks = waiver(),
  age_labels = waiver(),
```

34 scale_y_depth_age

```
scale_x_age_depth(
model = NULL,
reversed = FALSE,
depth_name = "depth",
depth_breaks = waiver(),
depth_labels = waiver(),
...
)
```

Arguments

Value

A scale_y_continuous or scale_x_continuous

Examples

```
library(ggplot2)
library(dplyr, warn.conflicts = FALSE)
adm <- age_depth_model(
    alta_lake_210Pb_ages,
    depth = depth_cm, age = age_year_ad
)
alta_lake_geochem %>%
    filter(param == "Cu") %>%
    ggplot(aes(value, depth)) +
    geom_point() +
    scale_y_depth_age(adm)
```

```
sequential_layer_facets
```

Change facet ordering behaviour

Description

Normally, facets are ordered using as.factor on all values that occur within layer data, which means that when adding additional layers, any ordering is not preserved unless the factor levels are identical on all factors. This function changes this behaviour such that facet levels are combined in layer order. This is useful when adding standalone layers to a plot without disturbing the existing order.

Usage

```
sequential_layer_facets(reverse = FALSE)
```

Arguments

reverse

Use TRUE to process layers in reverse order

Value

An object that can be added to a ggplot2::ggplot()

Examples

```
library(ggplot2)

p <- ggplot(mapping = aes(x, y)) +
   geom_point(data = data.frame(x = 1:5, y = 1:5, facet = "b")) +
   geom_point(data = data.frame(x = 1:5, y = 1:5, facet = "a")) +
   facet_wrap(vars(facet))

p
p + sequential_layer_facets()</pre>
```

stat_nested_hclust

Display a dendrogram as a ggplot2 layer

Description

Display a dendrogram as a ggplot2 layer

36 stat_nested_hclust

Usage

```
stat_nested_hclust(
  mapping = NULL,
  data = NULL,
  geom = "segment",
  position = "identity",
  ...,
  inherit.aes = TRUE,
  show.legend = NA
)
StatNestedHclust
```

Arguments

mapping A mapping created using aes. Must map x OR y to a qualifier.

data A nested_hclust object

geom Any geom that takes x, xend, y, and yend. Probably geom_segment is the only

one that makes sense.

position Position adjustment

... Passed to the stat/geom (see geom_segment)

show.legend Show mapped aesthetics in the legend?

Format

An object of class StatNestedHclust (inherits from Stat, ggproto, gg) of length 4.

Value

```
A ggplot2::Stat
```

Examples

```
library(ggplot2)
library(dplyr, warn.conflicts = FALSE)

alta_coniss <- nested_data(
    alta_lake_geochem,
    qualifiers = c(age, depth, zone),
    key = param,
    value = value,
    trans = scale
) %>%
    nested_chclust_coniss()

ggplot(alta_coniss) +
    stat_nested_hclust(aes(model = model, y = depth)) +
```

theme_paleo 37

```
scale_y_reverse()
```

theme_paleo

A Paleo-friendly ggplot2 theme

Description

```
Essentially, this is ggplot2::theme_bw() with a few modifications
```

Usage

```
theme\_paleo(...)
```

Arguments

```
... Passed to ggplot2::theme_bw()
```

Value

```
A complete ggplot2::theme()
```

Examples

```
library(ggplot2)
ggplot(mpg, aes(cty, hwy)) +
  geom_point() +
  theme_paleo()
```

Index

<pre>facet_geochem_gridh(facet_abundanceh),</pre>
7
<pre>facet_geochem_wrap (facet_abundanceh), 7</pre>
<pre>facet_geochem_wraph (facet_abundanceh),</pre>
7
facet_grid, 7, 9
facet_wrap, 9
filter_all, 25
geom_area_exaggerate
(geom_point_exaggerate), 12
geom_areah(geom_ribbonh), 14
geom_areah_exaggerate
(geom_point_exaggerate), 12
<pre>geom_col_segs (geom_col_segsh), 10</pre>
geom_col_segsh, 10
geom_line, <i>12</i>
<pre>geom_line_exaggerate</pre>
(geom_point_exaggerate), 12
geom_lineh, 11
<pre>geom_lineh_exaggerate</pre>
(geom_point_exaggerate), 12
<pre>geom_point_exaggerate, 12</pre>
geom_ribbon, 15
geom_ribbonh, 14
geom_segment, <i>11</i> , <i>36</i>
GeomAreah (geom_ribbonh), 14
<pre>GeomColSegs (geom_col_segsh), 10</pre>
<pre>GeomColSegsh (geom_col_segsh), 10</pre>
<pre>GeomLineh (geom_col_segsh), 10</pre>
GeomRibbonh (geom_ribbonh), 14
ggplot, 32
<pre>ggplot2::facet_grid(), 9</pre>
$ggplot2::facet_wrap(), 9$
ggplot2::Geom, <i>14</i>
ggplot2::ggplot(), 21, 35
ggplot2::labeller(), <i>18</i> , <i>19</i>
ggplot2::layer(), 20
ggplot2::Stat, 36
ggplot2::theme(), 37

INDEX 39

ggplot2::theme_bw(), 37	points, 29
group_by, 25	prcomp, 27
	predict.age_depth_model, 30
halifax_lakes_plottable, 15	<pre>predict_age (predict.age_depth_model);</pre>
hclust, 25–27	30
	predict_depth
identity, 25	(predict.age_depth_model), 30
	(p. cancerage_acpen_mean_// ca
keji_lakes_plottable, 16	<pre>rotated_axis_labels, 7</pre>
kellys_lake_ages	rotated_axis_labels
(kellys_lake_cladocera), 17	<pre>(rotated_facet_labels), 31</pre>
kellys_lake_cladocera, 17	rotated_facet_labels, 7, 31
kellys_lake_geochem	
(kellys_lake_cladocera), 17	scale, <u>25</u>
	scale_x_abundance, 7, 32
label_geochem, 7, 9, 17	scale_x_age_depth(scale_y_depth_age),
label_parsed, 18, 19	33
label_species, 7, 9, 18	scale_x_continuous, 3, 32-34
label_value, 9	scale_x_depth_age (scale_y_depth_age)
layer_dendrogram, 19	33
layer_scores, 21	scale_y_abundance (scale_x_abundance).
layer_zone_boundaries	32
(layer_dendrogram), 19	scale_y_age_depth(scale_y_depth_age)
long_lake_14C_ages, 22	33
long_lake_bacon_ages	scale_y_continuous, 3, 32-34
(long_lake_14C_ages), 22	
long_lake_plottable	scale_y_depth_age, 33
(long_lake_14C_ages), 22	sec_axis, 3
(3 3 3 3 3 3 4 7 7	select_if, 25
mutate, 4	sequential_layer_facets, 35
mutate_all, 25	stat_nested_hclust, 35
_ ,	StatNestedHclust(stat_nested_hclust)
nested_analysis, 23, 30	35
<pre>nested_chclust_coniss(nested_hclust),</pre>	thama malaa 27
25	theme_paleo, 37
nested_chclust_conslink	tibble::tibble(),25
(nested_hclust), 25	unnested_data (nested_data), 24
nested_data, 23, 24, 26, 27	uninested_data (nested_data), 24
nested_hclust, 20, 25, 36	<pre>validate_trans (as_trans_factory), 6</pre>
nested_prcomp, 21, 27	validate_trans_factory
, , , , , , , , , , , , , , , , , , ,	(as_trans_factory), 6
plot, 29	vars, 9
plot.age_depth_model, 28	vegdist, 26
plot.nested_analysis, 29	veguist, 20
plot_layer_dendrogram	
(layer_dendrogram), 19	
plot_layer_scores (layer_scores), 21	
plot_nested_analysis	
(plot.nested_analysis), 29	
plotmath, 9, 18	
r · · · - · · · · · · · · · · · · · · · 	