CLAIMS

What is Claimed is:

1	1.	A method of reducing the quantization error in a plurality of beacon beams	
2	wherein each	beacon beam is digitally formed using a plurality of channels, comprising	
3	the steps of:		
4	(a)	computing quantized channel weights \widetilde{W}_c from channel weights W_c for at	
5	least some of the channels;		
6	(b)	estimating the quantization error ΔB_a for each of the beacon beams from a	
7	difference be	tween the channel weights W_c and the computed quantized channel weights	
8	\widetilde{W}_c ; and		
9	(c)	adding the estimated quantization error ΔB_a to the beacon beams.	
1	2.	The method of claim 1, wherein the beacon beam comprises a	
2	communication	on beam.	
1	3.	The method of claim 1, wherein steps (a)-(c) are performed in a terrestrial	
2	processor.		
!	4.	The method of claim 1, whorein stone (a) (a) are not formation (b)	
2	processor.	The method of claim 1, wherein steps (a)-(c) are performed in a satellite	
ł	5.	The method of claim 1. further comprising the star of	
2	1, talket comprising the step of.		
}	computing an azimuth bias angle az_{bias} and an elevation bias angle el_{bias} from the plurality of quantized beacon beams.		
	~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	outon ocanis.	

- 1 6. The method of claim 5, wherein the azimuth bias angle and elevation bias
- 2 angle are computed according to $az_{bias} \approx K_{az} \frac{2(\widetilde{E} \Delta E) 2(\widetilde{W} \Delta W)}{(\widetilde{E})^2 + (\widetilde{W})^2}$,
- 3 $el_{bias} \approx K_{el} \frac{2(\widetilde{N} + \Delta N) 2(\widetilde{S} + \Delta S)}{(\widetilde{N})^2 + (\widetilde{S})^2}$
- wherein, \widetilde{N} , \widetilde{S} , \widetilde{E} , \widetilde{W} are predicted beam magnitudes for a North, South, East,
- and West beacon beams, respectively, and ΔN , ΔS , ΔE , ΔW are estimated quantization
- 6 errors ΔB_a for the North, South, East, and West beacon beams, respectively.
- The method of claim 5, wherein the azimuth and elevation bias angles
- 2 az_{bias} and el_{bias} are used to correct beacon measured angles for compensating the
- 3 estimated quantization errors ΔB_a .
- 1 8. The method of claim 1, wherein the step of adding the estimated
- quantization error ΔB_a to each of the beacon beams comprises the steps of:
- estimating a channel response X_a for at least some of the channels; and
- computing the quantization error ΔB_a from the channel response.
- 1 9. The method of claim 8, wherein the quantization error ΔB_a is computed
- 2 from the channel response according to $\Delta B_a \approx (W_c \widetilde{W}_c)^T X_a$.
- 1 10. The method of claim 8, wherein the channel response X_a is estimated
- 2 according to $X_a = X_0 (az, el)_{t_c} k_c|_{t_c}$, wherein $X_0 (az, el)_{t_c}$ is a nominal response of each
- 3 channel at a calibration time t_c and $k_c|_{t_c}$ is a thermal gain factor k_c evaluated at a
- 4 calibration time t_c .

- 1 11. The method of claim 10, further comprising the step of computing the
- 2 thermal gain factor k_c .
- 1 12. The method of claim 11, wherein the step of computing the thermal gain
- 2 factor k_c comprises the steps of:
- 3 computing $k_c = Diag(X_0(az_c, el_c))^{-1}X_c(az_c, el_c, k_c)$, wherein $(X_0(az_c, el_c))$ is the
- 4 nominal value of the channel to a calibration probe placed at a location (az_c, el_c) and
- 5 $X_c(az_c, el_c, k_c)$ is the response of each channel to a calibration probe placed at the
- 6 location (az_c, el_c) .
- 1 13. The method of claim 1, further comprising the step of computing the
- 2 channel weights W_c according to:
- $W_c = Diag(X_c(az, el, k_c))^{-1} Diag(X_0(az, el)) W = Diag(K_c)^{-1} W$, wherein W represents
- 4 nominal channel weights.

- 1 An apparatus for reducing the quantization error in a plurality of beacon
- 2 beams wherein each beacon beam is digitally formed using a plurality of channels,
- 3 comprising:
- 4 means for computing quantized channel weights \widetilde{W}_c from channel weights W_c for
- 5 at least some of the channels;
- 6 means for estimating the quantization error ΔB_a for each of the beacon beams
- 7 from a difference between the channel weights W_c and the computed quantized channel
- 8 weights \widetilde{W}_c ; and
- means for adding the estimated quantization error ΔB_a to the beacon beams.
- 1 15. The apparatus of claim 14, wherein the beacon beam comprises a communication beam.
- 1 16. The apparatus of claim 14, wherein the means for computing quantized
- 2 channel weights \widetilde{W}_c from channel weights W_c for at least some of the channels, means for
- 3 estimating the quantization error ΔB_a for each of the beacon beams from a difference
- between the channel weights W_c and the computed quantized channel weights \widetilde{W}_c ; and
- 5 means for adding the estimated quantization error ΔB_a to the beacon beams comprises a
- 6 terrestrial processor.
- 1 17. The apparatus of claim 14, wherein the means for computing quantized
- 2 channel weights \widetilde{W}_c from channel weights W_c for at least some of the channels, means for
- 3 estimating the quantization error ΔB_a for each of the beacon beams from a difference
- between the channel weights W_c and the computed quantized channel weights \widetilde{W}_c ; and
- 5 means for adding the estimated quantization error ΔB_a to the beacon beams comprises a
- 6 satellite processor.

- 1 18. The apparatus of claim 14, further comprising:
- 2 means for computing an azimuth bias angle az_{bias} and an elevation bias angle el_{bias}
- 3 from the plurality of quantized beacon beams.
- 1 19. The apparatus of claim 18, wherein the azimuth bias angle and elevation
- bias angle are computed according to $az_{bias} \approx K_{az} \frac{2(\widetilde{E} + \Delta E) 2(\widetilde{W} + \Delta W)}{(\widetilde{E})^2 + (\widetilde{W})^2}$,

3
$$el_{bias} \approx K_{el} \frac{2(\widetilde{N} - \Delta N) - 2(\widetilde{S} - \Delta S)}{(\widetilde{N})^2 + (\widetilde{S})^2}$$

- wherein, \widetilde{N} , \widetilde{S} , \widetilde{E} , \widetilde{W} are predicted beam magnitudes for a North, South, East,
- and West beacon beams, respectively, and ΔN , ΔS , ΔE , ΔW are estimated quantization
- 6 errors ΔB_a for the North, South, East, and West beacon beams, respectively.
- 1 20. The apparatus of claim 18, wherein the azimuth and elevation bias angles
- 2 azbias and elbias are used to correct beacon measured angles for compensating the
- 3 estimated quantization errors ΔB_a .
- 1 21. The apparatus of claim 14, wherein the means for adding the estimated
- 2 quantization error ΔB_a to each of the beacon beams comprises:
- means for estimating a channel response X_a for at least some of the channels; and
- 4 means for computing the quantization error ΔB_a from the channel response.
- 1 22. The apparatus of claim 21, wherein the quantization error ΔB_a is
- 2 computed from the channel response according to $\Delta B_a \approx (W_c \widetilde{W}_c)^T X_a$.

- 1 23. The apparatus of claim 21, wherein the channel response X_a is estimated
- 2 according to $X_a = X_0 (az, el)_{t_c} k_c|_{t_c}$, wherein $X_0 (az, el)_{t_c}$ is a nominal response of each
- 3 channel at a calibration time t_c and $k_c|_{t_c}$ is a thermal gain factor k_c evaluated at a
- 4 calibration time t_c .
- 1 24. The apparatus of claim 23, further comprising means for computing the
- 2 thermal gain factor k_c .
- 1 25. The apparatus of claim 24, wherein the means for computing the thermal
- 2 gain factor k_c comprises:
- means for computing $k_c = Diag(X_0(az_c, el_c))^{-1}X_c(az_c, el_c, k_c)$, wherein
- 4 $(X_0(az_c,el_c))$ is the nominal value of the channel to a calibration probe placed at a
- location (az_c, el_c) and $X_c(az_c, el_c, k_c)$ is the response of each channel to a calibration
- 6 probe placed at the location (az_c, el_c) .
- 1 26. The apparatus of claim 25, further comprising means for computing the
- 2 channel weights W_c according to:
- 3 $W_c = Diag(X_c(az, el, k_c))^{-1} Diag(X_0(az, el)) W = Diag(K_c)^{-1} W$, wherein W represents

ě

4 nominal channel weights.

1	27.	A method for reducing the asymmetry error in a beacon, wherein the	
2	beacon comprises of multiple beams, and each beam is formed from a multiplicity of feed		
3	channels, comprising the step of:		
4	(a)	computing asymmetry angles; and	
5	(b)	using the asymmetry angles to correct the beacon sensor measurements.	
1	28.	The method of claim 27, wherein the step of using the asymmetry angles	
2	to correct the beacon sensor measurements includes the step of using the asymmetry		
3	angles as beacon bias angles.		
1	29.	The method of claim 27, wherein the step of using the asymmetry angles	
2	to correct the beacon sensor measurements includes the step of using the asymmetry		
3		e-varying beacon bias angles.	
1	30.	The method of claim 27, wherein steps (a)-(b) are performed in a	
2	terrestrially-based processor.		
1	31.	The method of claim 27, wherein steps (a)-(b) are performed by a satellite	
2	processor.	, while (a) the personal of a canonico	
1	32.	The method of claim 29, wherein the step of computing the asymmetry	
2		·	
	angles comprises the step of:		
3	computing a difference between known azimuth/elevation angles, (az el), and their		
4	corresponding predicted beam-formed azimuth/elevation angles, (az _c el _c):(az-az _c el-el _c).		

- 1 33. The method of claim 32, wherein the corresponding beam-formed
- 2 azimuth/elevation angles are computed according to $az_c = K_{az} \frac{E^2 W^2}{E^2 + W^2}$, and
- 3 $el_c = K_{el} \frac{N^2 S^2}{N^2 + S^2}$ where K_{az} and K_{el} are optimal beacon slopes, and E, W, N, and S are
- 4 East, West, North, and South beam magnitudes of the beacon beams.
- 1 34. The method of claim 33, wherein the E, W, N, and S beam magnitudes of
- 2 the beacon are computed according to:
- $E(az,el) = W_E^T X ;$
- $4 W(az,el) = W_{W}^{T}X;$
- $N(az,el) = W_N^T X;$
- 6 $S(az, el) = W_s^T X$; and
- 7 wherein the W_E , W_W , W_N , and W_S are the channel weights of East, West, North,
- 8 and South beacon beams, and X is a response of a plurality of feed chains at look angle
- 9 (az el).
- 1 35. An apparatus for reducing the asymmetry error in a beacon, wherein the
- 2 beacon comprises of multiple beams, and each beam is formed from a multiplicity of feed
- 3 channels, comprising the step of:
- 4 means for computing asymmetry angles; and
- 5 means for using the asymmetry angles to correct the beacon sensor measurements.
- 1 36. The apparatus of claim 35, wherein the means for using the asymmetry
- 2 angles to correct the beacon sensor measurements includes means for using the
- 3 asymmetry angles as beacon bias angles.

- 1 37. The apparatus of claim 35, wherein the means for using the asymmetry
- 2 angles to correct the beacon sensor measurements includes means for using the
- 3 asymmetry angles as time-varying beacon bias angles.
- 1 38. The apparatus of claim 35, wherein the means for computing asymmetry
- 2 angles and the means for using the asymmetry angles to correct the beacon sensor
- 3 measurements comprise a terrestrially-based processor.
- 1 39. The apparatus of claim 35, wherein the means for computing asymmetry
- 2 angles and the means for using the asymmetry angles to correct the beacon sensor
- 3 measurements comprise a satellite-based processor.
- 1 40. The apparatus of claim 35, wherein the means for computing the
- 2 asymmetry angles comprises:
- means for computing a difference between known azimuth/elevation angles, (az
- 4 el), and their corresponding predicted beam-formed azimuth/elevation angles, (azc
- 5 el_c):(az-az_c $el-el_c$).
- 1 41. The apparatus of claim 40, wherein the corresponding beam-formed
- 2 azimuth/elevation angles are computed according to $az_c = K_{az} \frac{E^2 W^2}{E^2 + W^2}$, and
- 3 $el_c = K_{el} \frac{N^2 S^2}{N^2 + S^2}$ where K_{az} and K_{el} are optimal beacon slopes, and E, W, N, and S are
- 4 East, West, North, and South beam magnitudes of the beacon beams.

- 1 42. The apparatus of claim 41, wherein the E, W, N, and S beam magnitudes
- 2 of the beacon are computed according to:
- $E(az,el) = W_E^T X;$
- $4 W(az, el) = W_{W}^{T} X;$
- $N(az,el) = W_N^T X;$
- 6 $S(az, el) = W_s^T X$; and
- 7 wherein the W_E , W_W , W_N , and W_S are the channel weights of East, West, North,
- 8 and South beacon beams, and X is a response of a plurality of feed chains at look angle
- 9 (az el).