Лабораторная работа 3: Интерферометр Майкельсона

Никитин Илья* 27 мая 2021г.

В данной лабораторной изучены принципы работы интерферометра Майкельсона, найдены коэффициенты преломления нескольких пластинок из орг-стекла, найдена спектральная ширина лазера и сделаны оценки теплового коэффициента расширения стали.

СОДЕРЖАНИЕ

I.	Конструкция установки и теория	1
	А. Конструкция	1
	В. Теория	1
	1. Интерференционные максимумы и	
	минимумы	1
	2. Получение длины волны источника	2
	3. Интерферометр как спектральный	
	прибор	2
	4. Определение показателя преломления с	
	помощью интерферометра	2
	5. Коэффициент теплового расширения	2
II.	Ход работы	3
	А. Изменение длины плеча	3
	1. Результат эксперимента	3
	2. Размышление над результатами	3
	В. Поднесение спички к падающему лучу	3
	1. Результат эксперимента	3
	2. Размышление над результатами	3
	С. Наблюдение второй интерференционной	
	картины	3
	1. Результат эксперимента	3
	2. Размышление над результатами	3
	D. Измерение длины волны излучения	3
	1. Результат эксперимента	3
	2. Обработка данных	3
	Е. Измерение ширины спектра	3
	1. Результат эксперимента	4
	F. Измерение показателя преломления	
	стеклянной пластинки	4
	1. Результаты эксперимента	4
	2. Обработка данных	4
	G. Измерение коэффициента теплового	
	расширения	4
	1. Результат эксперимента	4
	2. Обработка данных	5
III.	Выводы	5
	Список литературы	5

І. КОНСТРУКЦИЯ УСТАНОВКИ И ТЕОРИЯ

В первой части мы рассмотрим базовую конструкцию интерферометра Майкельсона и проведем некоторые теоретические выкладки, которые послужат основой для проводимых экспериментов

А. Конструкция

Рис. 1. Схема установки. 1 – лазер; 2 – делительный куб; 3,4 – зеркала; 5 – экран

Луч лазера (1), попадая на делительный куб (2), делится на отраженный и прошедший лучи, далее отражаясь от зеркал (3) и (4) соответственно и снова попадая на делительный куб, откуда попадают на экран (5), образуя интерференционную картину.

В. Теория

1. Интерференционные максимумы и минимумы

Интенсивность света, полученная при интерференции от двух источников, излучающих плоские монохроматические волны с разностью фаз $\Delta \phi$:

$$I \sim \langle \mathbf{E}_1^2 \cos(\mathbf{kr} - \omega t)|^2 \rangle_t + \langle |\mathbf{E}_2^2 \cos(\mathbf{kr} - \omega t + \delta \phi)|^2 \rangle_t + \langle |\mathbf{E}_1 \mathbf{E}_2 \cos(\mathbf{kr} - \omega t) \cos(\mathbf{kr} - \omega t + \delta \phi)| \rangle_t$$

^{*} Факультет физики, НИУ ВШЭ; isnikitin 1@edu.hse.ru

Применяя формулу косинуса суммы и предполагая интенсивности источников равными, получим:

$$I = 2I_0(1 + \cos\delta\phi) \tag{1}$$

Исходя из полученного соотношения, зная, что $\delta\phi=\frac{2\pi}{\lambda}\Delta$, где Δ - разность хода, а λ - длина волны, получаем условие максимумов и минимумов интерференционной картины:

$$\Delta = \begin{cases} m\lambda - \text{условие максимума} & (2) \\ (m+1/2)\lambda - \text{условие минимума} & (3) \end{cases}$$

2. Получение длины волны источника

Нетрудно понять, что двигая одно из зеркал на длину δx , разность хода составит $2\delta x$, отсюда, с использованием уравнения 2, получим следующее соотношение:

$$2\delta x = N\lambda \tag{4}$$

где N — количество переходов максимум/минимум

3. Интерферометр как спектральный прибор

Получим аналог формулы 1 для случая, когда источники имеют разные длины волн.

$$I \sim \langle \mathbf{E}_{1}^{2} \cos(\mathbf{k}_{1}\mathbf{r} - \omega t)|^{2} \rangle_{t} + \langle |\mathbf{E}_{2}^{2} \cos(\mathbf{k}_{2}\mathbf{r} - \omega t + \delta \phi)|^{2} \rangle_{t} + \langle |\mathbf{E}_{1}\mathbf{E}_{2} \cos(\mathbf{k}_{1}\mathbf{r} - \omega t) \cos(\mathbf{k}_{2}\mathbf{r} - \omega t + \delta \phi)| \rangle_{t}$$

Перепишем полученную формулу в более удобном виде:

$$I \sim (1 + 1 + \cos[k_1 \Delta] + \cos[k_2 \Delta]) = (2 + \cos[(k_1 + k_2)\Delta/2])(\cos[(k_1 - k_2)\Delta/2])$$

Откуда получается условие минимума контрастности:

$$\left(\frac{\pi}{\lambda_1} - \frac{\pi}{\lambda_2}\right)\Delta = \pi(m + 1/2)$$

Предполагая длины волн достаточно близкими, можно переписать это выражение следующим образом:

$$\Delta = (m+1/2)\frac{\lambda_0^2}{2\Delta\lambda} \tag{5}$$

4. Определение показателя преломления с помощью интерферометра

Если перед зеркалом поставить пластинку из орг стекла, то с помощью описанной установки можно определить показатель преломления. Пусть D_1 и D_2 —

Рис. 2. Схематичное изображение пластинки в двух различных положениях

оптические пути для пластинки, соответственно, перпендикулярной падающему свету и находящейся под углом α к лучу.

$$\begin{cases} D_1 = L1 + L2 + nt \\ D_2 = L1 + L2 + nw - \Delta L1 + \Delta L2 \end{cases}$$

Отсюда получаем разность хода

$$\Delta = n(w - t) - \Delta L + \Delta L = N\lambda \tag{6}$$

Выразим все неизвестные величины через ширину пластинки t и углы:

$$\begin{cases} \Delta L1 = t \tan \beta \sin \alpha \\ \Delta L2 = t(1 + \cos \alpha (\frac{\tan \beta}{\tan \alpha} - 1)) \\ w = \frac{t}{\cos \beta} \end{cases}$$
 (7)

Воспользуемся законом Снелла:

$$\sin \alpha = n \sin \beta \Rightarrow \cos \beta = \sqrt{1 - \frac{\sin^2 \alpha}{n^2}}$$
 (8)

Наконец, пользуясь соотношениями 6, 7, 8, получим:

$$N\lambda = 2t(\sqrt{n^2 - \sin^2 \alpha} + 1 - \cos \alpha - n) \tag{9}$$

Перепишем соотношение в удобном для нас виде, выразив коэффициент преломления:

$$n = \frac{\left(\frac{N\lambda}{2t} + \cos\alpha - 1\right)^2 + \sin^2\alpha}{2\left(-\frac{N\lambda}{2t} - \cos\alpha + 1\right)} \tag{10}$$

5. Коэффициент теплового расширения

Воспользуемся основным законом теплового приближения:

$$L = L_0 \exp[\alpha \Delta T]$$

В той постановке эксперимента, которая будет описана в дальшейшем можно использовать линейное приближение данного закона:

$$\Delta L = L_0 \alpha \Delta T$$

Воспользуемся уравнением 4 и заключим:

$$N = \frac{\alpha \Delta T L_0}{\lambda} \tag{11}$$

II. ХОД РАБОТЫ

А. Изменение длины плеча

1. Результат эксперимента

В результате эксперимента наблюдалось изменение интерференционной картины в зависимости от длины плеча. С изменением расстояния до зеркала, максимумы сменяли минимумы и наоборот.

2. Размышление над результатами

Согласно уравнению 1, интенсивность зависит от разности фаз, которая линейно зависит от разности хода. Таким образом, меняя длину плеча, можно наблюдать на экране изменение интерференционной картины.

В. Поднесение спички к падающему лучу

1. Результат эксперимента

В результате эксперимента наблюдалось изменение интерференционной картины при поднесении спички. Максимумы сменяли минимумы и наоборот.

2. Размышление над результатами

Рассуждения аналогичны предыдущим, отличие заключается в причине изменения разности хода. Там менялось плечо, здесь же меняется коэффициент преломления из-за изменения температуры воздуха.

С. Наблюдение второй интерференционной картины

Очевидно, что используемая система часть света пропускает в сторону лазера. Если поставить делительную пластину между кубом и лазером, то выйдет пронаблюдать две картины на одном экране.

1. Результат эксперимента

В результате эксперимента получилось следующее изображение на экране:

2. Размышление над результатами

Примечательно, что на одной части экрана наблюдается деструктивное изображение, а на другой кон-

Рис. 3. Интерференционные картины, полученные на экране

структивное. Такое наблюдение можно объяснить законом сохранения энергии.

D. Измерение длины волны излучения

С помощью интерферометра можно получить длину волны лазера. Используем для этого формулу 4. Меняя смещение плеча интерферометра, будем считать количество переходов максимум/минимум, а затем расчитаем длину волны.

1. Результат эксперимента

В ходе эксперимента получились следующие результаты:

Сдвиг зеркала, мкм	Количество переходов
12	43
17	60
22	79
14	50
13	46

2. Обработка данных

По полученым данным построим график: В результате подгонки прямой, получили некоторое значение коэффициента ее наклона, который с легкостью можно пересчитать в длину волны: $\lambda=554\pm38$ нм

Е. Измерение ширины спектра

Интерферометр можно использовать как спектральный прибор. Для этого необходимо найти такое положение зеркала, при котором будет наблюдаться минимальный контраст. Исходя из результатов, полученных в соотношении 5, расстояние между положениями минимального контраста выражается через ширину спектра.

Рис. 4. График зависимости количества переходов от сдвига зеркала

1. Результат эксперимента

После того, как был найден минимальный контраст, нами был произведен поиск следующего положения минимального контраста. Это положение находилось на расстоянии $\approx 975\,$ мкм, что соответствует ширине спектра $\Delta\lambda\approx 0.15\,$ нм.

F. Измерение показателя преломления стеклянной пластинки

С помощью интерферометра можно определить показатель преломления стеклянной пластинки. Воспользуемся результатом теоретических выкладок, а конкретно формулой 10. Согласно формуле, для определения коэффициента преломления, достаточно знать толщину пластинки, угол ее отклонения и число переходов между максимумами и минимумами интерференционной картины.

1. Результаты эксперимента

В ходе эксперимента получились следующие результаты:

2. Обработка данных

По полученым данным вычислим коэффициенты преломления:

$$\begin{cases} n_{\text{тонкая}} = 1.59 \pm 0.03 \\ n_{\text{толстая}} = 1.43 \pm 0.05 \end{cases}$$
 (12)

Таблица I. Измерения с тонкой пластинкой

Количество переходов	Угол, минут	
5	95	
10	145	
15	185	
20	215	
25	240	
30	265	
40	300	

Таблица II. Измерения с толстой пластинкой

Количество переходов	Угол, минут	
10	120	
25	215	
30	225	
35	230	
40	265	
50	300	
60	330	

G. Измерение коэффициента теплового расширения

Прикрепим на зеркало стальной прутик, по которому будем пускать ток. Прутик начнет нагреваться, удлинняться и двигать зеркало, которое в свою очередь будет изменять интерференционную картину по закону, описанному формулой 11. Температуру будем измерять обычной термопарой на мультиметре, а переходы интерференционной картины, вместе с показаниями мультиметра будем записывать на видео.

1. Результат эксперимента

Температура, C°	Количество переходов	
23	0	
24	3	
25	8	
26	17	
27	25	
28	33	
29	40	
30	47	
31	54	
32	61	
33	68	
34	76	
39	98	

Рис. 5. График зависимости количества переходов от температуры стержня

2. Обработка данных

После подгонки прямой, получаем значение коэффициента теплового расширения $\alpha=18.6\pm1~MK^-1$

III. ВЫВОДЫ

• Изучены принципы работы интерферометра Майкельсона

- Найдены коэффициенты преломления нескольких пластинок из орг-стекла: $n_{\text{тонкая}}=1.59\pm0.03, n_{\text{толстая}}=1.43\pm0.05$
- Найдена спектральная ширина лазера $\Delta \lambda \approx 0.15$ нм
- Найден коэффициент теплового коэффициента расширения стали $\alpha = 18.6 \pm 1 \ MK^-1$

^{[1] . .} Сивухин, Общий курс физики. IV. Оптика (2005) pp. 205, 212, 242.