Problems: Del Notation; Flux

1. Verify the divergence theorem if $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and S is the surface of the unit cube with opposite vertices (0,0,0) and (1,1,1).

Answer: To confirm that $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_D \operatorname{div} \mathbf{F} \, dV$ we calculate each integral separately. The surface integral is calculated in six parts – one for each face of the cube.

Flux through top: $\mathbf{n} = \mathbf{k} \Rightarrow \mathbf{F} \cdot \mathbf{n} \, dS = z \, dx \, dy = dx \, dy$ $\Rightarrow \iint_{\text{top}} \mathbf{F} \cdot \mathbf{n} \, dS = \int_{0}^{1} \int_{0}^{1} dx \, dy = 1.$ bottom: $\mathbf{n} = -\mathbf{k} \Rightarrow \mathbf{F} \cdot \mathbf{n} \, dS = -z \, dx \, dy = 0 \, dx \, dy \Rightarrow \iint_{\text{bottom}} \mathbf{F} \cdot \mathbf{n} \, dS = 0.$ right: $\mathbf{n} = \mathbf{j} \Rightarrow \mathbf{F} \cdot \mathbf{n} \, dS = y \, dx \, dz = dx \, dz$ $\Rightarrow \iint_{\text{right}} \mathbf{F} \cdot \mathbf{n} \, dS = \int_{0}^{1} \int_{0}^{1} dx \, dz = 1.$ left: $\mathbf{n} = -\mathbf{j} \Rightarrow \mathbf{F} \cdot \mathbf{n} \, dS = -y \, dx \, dz = 0 \, dx \, dz \Rightarrow \iint_{\text{left}} \mathbf{F} \cdot \mathbf{n} \, dS = 0.$ front: $\mathbf{n} = \mathbf{i} \Rightarrow \mathbf{F} \cdot \mathbf{n} \, dS = x \, dy \, dz = dy \, dz$ $\Rightarrow \iint_{\text{front}} \mathbf{F} \cdot \mathbf{n} \, dS = \int_{0}^{1} \int_{0}^{1} dy \, dz = 1.$ back: $\mathbf{n} = -\mathbf{i} \Rightarrow \mathbf{F} \cdot \mathbf{n} \, dS = -x \, dy \, dz = 0 \, dy \, dz \Rightarrow \iint_{\text{back}} \mathbf{F} \cdot \mathbf{n} \, dS = 0.$

The total flux through the surface of the cube is 3. (We could have used geometric reasoning to see that the flux through the back, left and bottom sides is 0; the vectors of F are parallel to the surface along those sides.)

To calculate the divergence we start by noting $div \mathbf{F} = 1 + 1 + 1 = 3$. Then

$$\iiint_D \operatorname{div} \mathbf{F} \, dV = \iiint_D 3 \, dV = 3 \cdot (\text{Volume}) = 3.$$

We have verified that $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_D \operatorname{div} \mathbf{F} \, dV$ in this example.

2. Prove that $\frac{1}{2}\nabla(\mathbf{F}\cdot\mathbf{F}) = \mathbf{F}\times(\nabla\times\mathbf{F}) + (\mathbf{F}\cdot\nabla)\mathbf{F}$, where $\langle P,Q,R\rangle\cdot\nabla$ is the differential operator $P\frac{\partial}{\partial x} + Q\frac{\partial}{\partial y} + R\frac{\partial}{\partial z}$.

Answer: We expand the left hand side, then the right hand side, then note that the expansions are equal. As usual, we assume $\mathbf{F} = \langle P, Q, R \rangle$.

LHS:

$$\begin{split} \frac{1}{2} \boldsymbol{\nabla} \left(\mathbf{F} \cdot \mathbf{F} \right) &= \frac{1}{2} \boldsymbol{\nabla} (P^2 + Q^2 + R^2) \\ &= \left(P \frac{\partial P}{\partial x} + Q \frac{\partial Q}{\partial x} + R \frac{\partial R}{\partial x} \right) \mathbf{i} + \left(P \frac{\partial P}{\partial y} + Q \frac{\partial Q}{\partial y} + R \frac{\partial R}{\partial y} \right) \mathbf{j} \\ &+ \left(P \frac{\partial P}{\partial z} + Q \frac{\partial Q}{\partial z} + R \frac{\partial R}{\partial z} \right) \mathbf{k}. \end{split}$$

RHS (in two parts):

$$\begin{split} \mathbf{F} \times (\mathbf{\nabla} \times \mathbf{F}) &= \mathbf{F} \times \left[\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathbf{k} \right] \\ &= \left(Q \frac{\partial Q}{\partial x} - Q \frac{\partial P}{\partial y} - R \frac{\partial P}{\partial z} + R \frac{\partial R}{\partial x} \right) \mathbf{i} \\ &+ \left(R \frac{\partial R}{\partial y} - R \frac{\partial Q}{\partial z} - P \frac{\partial Q}{\partial x} + P \frac{\partial P}{\partial y} \right) \mathbf{j} \\ &+ \left(P \frac{\partial P}{\partial z} - P \frac{\partial R}{\partial x} - Q \frac{\partial R}{\partial y} + Q \frac{\partial Q}{\partial z} \right) \mathbf{k} \\ &= \left(Q \frac{\partial Q}{\partial x} + R \frac{\partial R}{\partial x} \right) \mathbf{i} + \left(R \frac{\partial R}{\partial y} + P \frac{\partial P}{\partial y} \right) \mathbf{j} + \left(P \frac{\partial P}{\partial z} + Q \frac{\partial Q}{\partial z} \right) \mathbf{k} \\ &- \left(Q \frac{\partial P}{\partial y} + R \frac{\partial P}{\partial z} \right) \mathbf{i} - \left(R \frac{\partial Q}{\partial z} - P \frac{\partial Q}{\partial x} \right) \mathbf{j} - \left(P \frac{\partial R}{\partial x} + Q \frac{\partial R}{\partial y} \right) \mathbf{k}. \end{split}$$

$$\begin{split} (\mathbf{F} \cdot \boldsymbol{\nabla}) \mathbf{F} &= \left(P \frac{\partial}{\partial x} + Q \frac{\partial}{\partial y} + R \frac{\partial}{\partial z} \right) \mathbf{F} \\ &= \left(P \frac{\partial P}{\partial x} + Q \frac{\partial P}{\partial y} + R \frac{\partial P}{\partial z} \right) \mathbf{i} + \left(P \frac{\partial Q}{\partial x} + Q \frac{\partial R}{\partial y} + R \frac{\partial Q}{\partial z} \right) \mathbf{j} \\ &+ \left(P \frac{\partial R}{\partial x} + Q \frac{\partial Q}{\partial y} + R \frac{\partial R}{\partial z} \right) \mathbf{k}. \end{split}$$

Note that the negative terms in $\mathbf{F} \times (\nabla \times \mathbf{F})$ are cancelled by positive terms in $(\mathbf{F} \cdot \nabla)\mathbf{F}$, leading to the desired result.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.