

IMPLEMENTATION OF LOGIC EXPRESSION WITH ARDUINO

L. Kiran Kumar Reddy levaku.fwc1@iiitb.ac.in

COMETFWC027 IITB Future Wireless Communication (FWC)

ASSIGNMENT

July 06, 2025

Abstract

Q.36 If X = 1 in the logic equation

$$\left[x + Z\left(\overline{Y} + (\overline{Z} + X\overline{Y})\right)\right] \left(\overline{X} + \overline{Z}(X + Y)\right) = 1,$$

then:

- (A) Y = Z
- (B) $Y = \overline{Z}$
- (C) Z = 1
- (D) Z = 0

Components

Component	Value	Quantity
Arduino Board	_	1
Jumper Wires	M-F	10
Push Buttons	_	2
Breadboard	_	1
USB Cable	_	1
LED	_	1
Resistors	220 Ω , 10k Ω	1,2

Truth Table for $f = \overline{Z}(1 + Y)$

Y	Z	\overline{Z}	1+Y	$f = \overline{Z}(1+Y)$
0	0	1	1	1
0	1	0	1	0
1	0	1	1	1
1	1	0	1	0

Setup

- 1. Connect push button for Y to D2 with a $10k\Omega$ pull-down resistor to GND.
- 2. Connect push button for Z to D3 with a $10 \mathrm{k}\Omega$ pull-down resistor to GND.
- 3. Connect LED anode to D13 through a 220Ω resistor, and cathode to GND.
- 4. Upload the Arduino code that reads Y and Z, sets X = 1, evaluates logic, and controls the LED.
- 5. Power the Arduino using a USB cable or external 5V source to run the circuit.

Implementation

- 1. Set X = 1 directly in the Arduino code.
- 2. Read Y from digital pin D2 and Z from D3 using digitalRead().
- 3. Compute notZ = !Z to evaluate the simplified logic expression.
- 4. Use the result (notZ) to control the LED with digitalWrite(13, result).
- 5. Continuously run the logic in the loop() function to respond to input changes.