AI1103-Assignment 4

Name: Avula Mohana Durga Dinesh Reddy, Roll Number: CS20BTECH11005

Download all Latex codes from

https://github.com/DineshAvulaMohanaDurga/ AI1103/blob/main/assignment 4/main.tex

1 Question

(CSIR-UGC-NET June 2015 Q 104)Let X and Y be random variables with joint cumulative distribution function $F_{XY}(x, y)$. Then which of the following cuditions are sufficient for $(x_0, y_0) \in R^2$ to be a point of continuity of F_{XY} ?

- 1) $p_{XY}(x = x_0, y = y_0) = 0$
- 2) Either $p_{XY}(x = x_0) = 0$ or $p_{XY}(y = y_0) = 0$.
- 3) $p_{XY}(x = x_0) = 0$ and $p_{XY}(y = y_0) = 0$.
- 4) $p_{XY}(x = x_0, y \le y_0) = 0$ and $p_{XY}(x \le x_0, y = y_0) = 0$.

2 Answer

Let $F_{XY}(x, y)$ be joint cumulative distribution function and $P_{XY}(x, y)$ be joint probability distribution function.

Lemma 2.1. $F_{XY}(x, y)$ is continuous at (x_0, y_0) iff all

- 1) $p_{X,Y}(x = x_0, y \le y_0)$
- 2) $p_{X,Y}(x \le x_0, y = y_0)$
- 3) $p_{X,Y}(x = x_0, y = y_0)$

exists and is finite.

Proof. One of the unique properties of cdf is that if cdf is continuous at a point then its differentiable at that point.i.e

continuity of cdf \Rightarrow differentiability of cdf. (2.0.1)

one of the properties of a function f(x) is that if its differentiable then its continuous.i.e

differentiability of $f(x) \Rightarrow \text{continuity of } f(x)$. (2.0.2)

:from equations 2.0.1 and 2.0.2 we can say that

continuity of cdf \Leftrightarrow differentiability of cdf. (2.0.3)

So the conditions of differentiability of cdf and the conditions of continuity of cdf are the same. Lets check the conditions for differentiability of cdf. For a function f(x, y) to be differentiable at (x_0, y_0)

1) $f_x(x, y)$ and $f_y(x, y)$ should exist and be finite.

 $\lim_{t \to 0} \frac{f(x_0 + u_1 t, y_0 + u_2 t) - f(x_0, y_0)}{t}$

should exist and be finite for all unit vector $\mathbf{u} = u_1 \hat{i} + u_2 \hat{j}$

So for cdf to be differentiable at (x_0, y_0)

1)

$$\lim_{h \to 0} \frac{F_{XY}(x_0 + h, y_0) - F_{XY}(x_0, y_0)}{h}$$
$$= p_{XY}(x = x_0, y \le y_0)$$

should exist and be finite. Similarly, (2.0.4)

$$\lim_{k \to 0} \frac{F_{XY}(x_0, y_0 + k) - F_{XY}(x_0, y_0)}{k}$$

$$= p_{XY}(x \le x_0, y = y_0)$$

should exist and be finite (2.0.5)

2)
$$\lim_{t \to 0} \frac{F_{X,Y}(x_0 + u_1t, y_0 + u_2t) - F_{X,Y}(x_0, y_0)}{t}$$

$$= p_{X,Y}(x = x_0, y = y_0)$$
should exist and be finite
$$(2.0.6)$$

From equations 2.0.4, 2.0.5, 2.0.6 we can prove that lemma 2.1 is true.

Now lets verify the options

1) Option 1 fails to satisfy the lemma 2.1 as it defines only 3 of lemma 2.1 but not 1,2. **Counter-example:**

Let's consider an example similar to dirac-delta function.

$$P_{XY}(x, y) = \infty$$
 $(x, y) = (x_0, y_1)$ where $y_1 < y_0$
= 0 otherwise (2.0.7)

Here $P_{XY}(x_0, y_0)$ is 0 still F_{XY} is not continuous at (x_0, y_0) parellel to X-axis

$$F_{XY}(x, y) = 1$$
 $x > x_0, y > y_1$
= 0 otherwise (2.0.8)

So option 1 is false

2) Option 2 also fails to satisfy lemma 2.1 as it defines only 3 and either 1 or 2 of lemma 2.1.

Counter-example:-

Lets consider another function similar to dirac delta function

$$P_{XY}(x, y) = \infty$$
 $(x, y) = (x_1, y_0)$ where $x_1 < x_0$
= 0 otherwise (2.0.9)

Here $p_{XY}(Y = y_0) = 0$ but F_{XY} is not continuous at (x_0, y_0) .

$$F_{XY}(x, y) = 1$$
 $x > x_1, y > y_0$
= 0 otherwise (2.0.10)

So option 2 is also false

3) Option 3 satisfies lemma 2.1.

So option 3 is true

4) Option 4 also satisfies lemma 2.1.

So option 4 is also true

Hence correct options are 3,4.