Tarea 1

Seminario de Álgebra B

Ejercicio 1 Sean **A** y **B** dos categorías y $F: \mathbf{A} \to \mathbf{B}$ y $G: \mathbf{B} \to \mathbf{A}$ dos funtores. Si $F \dashv G$, entonces demuestra que la counidad $\varepsilon: FG \to \mathrm{Id}_{\mathbf{B}}$ es una transformación natural y que para cada $B \in \mathbf{B}$ la componente $\varepsilon_B: FGB \to B$ es una flecha universal de F en B, es decir, que el siguiente diagrama commuta

Ejercicio 2 Dado un orden parcial (P, \leq) podemos formar una categoría **P** cuyos objetos son los elementos de P y hay una flecha $p \to q$ si y sólo si $p \leq q$. Ahora considera dos órdenes parciales vistos como categorías, **P** y **Q**.

- a) ¿Qué es funtor $F: \mathbf{P} \to \mathbf{Q}$?
- b) Si $F,G\colon \mathbf{P}\to \mathbf{Q}$ son funtores, entonces ¿que se debe satisfacer para que haya una transformación natural $\tau\colon F\to G$?
- c) Si $F \colon \mathbf{P} \to \mathbf{Q}$ y $G \colon \mathbf{Q} \to \mathbf{P}$ son funtores, entonces ¿que condición se debe satisfacer para que $F \dashv G$? Sugerencia: en este caso lo más fácil es describir la biyección de flechas.

Ejercicio 3 Sean $F: \mathbf{P} \to \mathbf{Q}$ y $G: \mathbf{Q} \to \mathbf{P}$ tales que $F \dashv G$. Demuestra que GF es una operación de cerradura en \mathbf{P} , es decir,

- a) $p \leq GF(p)$,
- b) GF(GF(p)) = GF(p),
- c) $p \le p' \implies GF(p) \le GF(p')$.

De manera dual, demuestra que FG es una operación de interior en ${\bf Q},$ esto es,

d) $FG(q) \leq q$,

- e) FG(FG(q)) = FG(q),
- f) $q \le q' \implies FG(q) \le FG(q')$.

Ejercicio 4 Continuando con el ejercicio 3, diremos que un objeto $p \in \mathbf{P}$ es cerrado si p = GF(p) y un objeto $q \in \mathbf{Q}$ es abierto si q = FG(q). Denotamos con \mathbf{P}_0 a la subcategoría plena de objetos cerrados en \mathbf{P} y con \mathbf{Q}_0 a la subcategoría plena de objetos abiertos en \mathbf{Q} . Demuestra que \mathbf{P}_0 es equivalente a \mathbf{Q}_0 .

 $\bf Ejercicio~5~$ Ahora toma $\bf P$ y $\bf Q$ como la categoría generada por los enteros no negativos con el orden usual. Considera

- F(a) = el a-esimo número primo, si a > 0 y F(0) = 0,
- $G(a) = \text{el número de primos} \leq \text{b}.$

Usa los ejercicios anteriores para demostrar qua hay una cantidad infinita de primos.