Индивидуальная практическая работа №1

Указания по выбору варианта

Рабочей программой дисциплины «Системный анализ и исследование операций» часть 1 предусмотрено выполнение двух индивидуальных практических работ (ИПР). ИПР предусматривают выполнение индивидуальных заданий в соответствии с вариантом.

Отчёты по ИПР должны быть оформлены в соответствии с общеустановленными нормами и правилами, предъявляемыми к выполнению ИПР и лабораторных работ, т.е. должен быть оформлен в соответствии со стандартом предприятия БГУИР (bsuir.by —> Образование —> Информационная база УМУ —> Нормативная база учебного отдела —> Стандарт предприятия. Дипломный проект).

При написании отчета по работам, необходимо четко и в полном объеме описать производимые расчеты.

Выбор вариантов задания по ИПР осуществляется студентом самостоятельно на основании двух последних цифр номера зачетной книжки из данных таблицы 2.

Методические указания по выполнению ИПР

АНАЛИЗ И ОПТИМИЗАЦИЯ РЕШЕНИЙ НА ОСНОВЕ МОДЕЛЕЙ МАССОВОГО ОБСЛУЖИВАНИЯ

Методические указания по выполнению работы приведены в учебном пособии "Оптимизация решений на основе методов и моделей математического программирования" (2003 года издания, авторы Смородинский С.С., Батин Н.В.).

Изучить понятие системы массового обслуживания (8.1).

Решить задачи согласно варианту задания.

Таблица 2 Варианты заданий по ИПР №1

последние цифры № зач.книжки 01 02 03 04 05 06 07 08	№ контр. задания 1 2 3 4 5 6 7 8 1
09	1
10	2
11	1
12	2
13	3
14	1 2 3 4 5 6 7
15	5
16	6
17	
18	8 9
19	9
20	1 3 2 3
21	3
22	2
23	3
24	4
25	5
26	6
26 27 28 29	5 6 7 8 1
28	8
	1
30	2

ВАРИАНТ 1

На участке выпускаются детали двух видов. Заготовки для выпуска деталей поступают на участок через каждые 6±2 минуты. Все заготовки обрабатываются на станке A; время обработки детали на станке распределено по экспоненциальному закону и составляет в среднем 5 минут.

10% деталей, выпущенных на станке A, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка A поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по экспоненциальному закону и составляет в среднем 12 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его заполнении все поступающие детали типа 1 направляются на станок C, на котором обработка занимает ровно 7 минут.

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	A	В	С
Работа	0,3	0,6	0,5
Простой	0,1	0,2	0,1

Прочие расходы, связанные с выпуском деталей типа 1 и 2, составляют 2 и 8 д.е. соответственно. Детали типа 1 продаются по цене 5 д.е., типа 2 - 22 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков В1-В2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка С (8.13, 8.4, 8.7). Поток деталей на станок С считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).
- 6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (через каждые 4±2 минуты), а станок А заменен на новый (А1); среднее время обработки одной детали на станке А1 3 минуты (экспоненциальная случайная величина). Для нового станка А1 затраты на одну минуту работы и простоя 0,4 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

ВАРИАНТ 2

На участке выпускаются детали двух видов. Заготовки для выпуска деталей поступают на участок в среднем через каждые 6 минут (пуассоновский поток). Все заготовки обрабатываются на станке A; время обработки детали на станке составляет от 2 до 5 минут.

10% деталей, выпущенных на станке A, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка A поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по

экспоненциальному закону и составляет в среднем 12 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его заполнении все поступающие детали типа 1 направляются на станок C, на котором обработка занимает ровно 7 минут.

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	A	В	C
Работа	0,3	0,6	0,5
Простой	0,1	0,2	0,1

Прочие расходы, связанные с выпуском деталей типа 1 и 2, составляют 2 и 8 д.е. соответственно. Детали типа 1 продаются по цене 5 д.е., типа 2 - 22 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков В1-В2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка С (8.13, 8.4, 8.7). Поток деталей на станок С считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).
- 6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (через каждые 4 минуты), а станок А заменен на новый (А1); среднее время обработки одной детали на станке А1 от 2 до 4 минут. Для нового станка А1 затраты на одну минуту работы и простоя 0,4 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

ВАРИАНТ 3

На участке выпускаются детали двух видов. Интервалы времени между моментами поступления заготовок для выпуска деталей составляют 5±2 минуты. Все заготовки обрабатываются на станке A; время обработки детали на станке примерно постоянное и составляет 4 минуты.

10% деталей, выпущенных на станке A, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка A поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по экспоненциальному закону и составляет в среднем 15 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его заполнении все поступающие детали типа 1 направляются на станок C, на котором обработка занимает в среднем 10 минут (экспоненциальная случайная величина).

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	A	В	С
Работа	0,2	0,5	0,7
Простой	0,1	0,1	0,1

Прочие расходы, связанные с выпуском деталей типа 1 и 2, составляют 3 и 10 д.е. соответственно. Детали типа 1 продаются по цене 8 д.е., типа 2 - 35 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков В1-В2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка С (8.13, 8.4, 8.7). Поток деталей на станок С считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).
- 6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (через каждые 4 ± 1 минуту), а станок A заменен на новый (A1); время обработки одной детали на станке A1 ровно 3 минуты. Для нового станка A1 затраты на одну минуту работы и простоя 0,4 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

ВАРИАНТ 4

На участке выпускаются детали двух видов. Интервалы времени между моментами поступления заготовок для выпуска деталей примерно постоянные и составляют 5 минут. Все заготовки обрабатываются на станке A; время обработки на станке составляет от 2 до 4 минут.

10% деталей, выпущенных на станке A, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка A поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по экспоненциальному закону и составляет в среднем 15 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его заполнении все поступающие детали типа 1 направляются на станок C, на котором обработка занимает в среднем 10 минут (экспоненциальная случайная величина).

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	A	В	С
Работа	0,2	0,5	0,7
Простой	0,1	0,1	0,1

Прочие расходы, связанные с выпуском деталей типа 1 и 2, составляют 3 и 10 д.е. соответственно. Детали типа 1 продаются по цене 8 д.е., типа 2 - 35 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков В1-В2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка С (8.13, 8.4, 8.7). Поток деталей на станок С считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).

6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (через каждые 4 минуты), а станок А заменен на новый (А1); время обработки одной детали на станке А1 - от 1 до 3 минут. Для нового станка А1 затраты на одну минуту работы и простоя - 0,4 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

ВАРИАНТ 5

На участке выпускаются детали двух видов. Интервалы времени между моментами поступления заготовок для выпуска деталей составляют в среднем 6 минут (пуассоновский поток). Все заготовки обрабатываются на станке A; время обработки детали на станке составляет 5±2 минуты.

15% деталей, выпущенных на станке A, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка A поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по экспоненциальному закону и составляет в среднем 20 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его заполнении все поступающие детали типа 1 направляются на станок C, на котором обработка занимает в среднем 8 минут (экспоненциальная случайная величина).

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	A	В	С
Работа	0,4	0,5	0,8
Простой	0,1	0,2	0,1

Прочие расходы, связанные с выпуском деталей типа 1 и 2, составляют 5 и 15 д.е. соответственно. Детали типа 1 продаются по цене 10 д.е., типа 2 - 50 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков В1-В2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка С (8.13, 8.4, 8.7). Поток деталей на станок С считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).
- 6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (в среднем через каждые 4 минуты, поток заготовок пуассоновский), а станок А заменен на новый (А1); время обработки одной детали на станке А1 3±1 минута. Для нового станка А1 затраты на одну минуту работы и простоя 0,6 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

ВАРИАНТ 6

На участке выпускаются детали двух видов. Интервалы времени между моментами поступления заготовок для выпуска деталей составляют от 4 до 6

минут. Все заготовки обрабатываются на станке A; время обработки на станке представляет собой гауссовскую случайную величину со средним значением 3 мин и стандартным отклонением 0,5 мин.

15% деталей, выпущенных на станке A, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка A поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по экспоненциальному закону и составляет в среднем 20 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его заполнении все поступающие детали типа 1 направляются на станок C, на котором обработка занимает в среднем 8 минут (экспоненциальная случайная величина).

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	A	В	C
Работа	0,4	0,5	0,8
Простой	0,1	0,2	0,1

Прочие расходы, связанные с выпуском деталей типа 1 и 2, составляют 5 и 15 д.е. соответственно. Детали типа 1 продаются по цене 10 д.е., типа 2 - 50 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков В1-В2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка С (8.13, 8.4, 8.7). Поток деталей на станок С считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).
- 6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (с интервалом от 3 до 5 мин), а станок А заменен на новый (А1); время обработки одной детали на станке А1 гауссовская случайная величина со средним значением 2,5 мин и стандартным отклонением 0,5 мин. Для нового станка А1 затраты на одну минуту работы и простоя 0,6 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

ВАРИАНТ 7

На участке выпускаются детали двух видов. Интервалы времени между моментами поступления заготовок для выпуска деталей примерно постоянные и составляют 5 минут. Все заготовки обрабатываются на станке A; время обработки на станке составляет 4 ± 2 минуты.

10% деталей, выпущенных на станке A, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка A поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по экспоненциальному закону и составляет в среднем 20 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его

заполнении все поступающие детали типа 1 направляются на станок С, на котором обработка занимает в среднем 6 минут (экспоненциальная случайная величина).

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	A	В	С
Работа	0,2	0,3	0,8
Простой	0,1	0,1	0,1

Прочие расходы, связанные с выпуском деталей, следующие: деталь типа 1 - 4 д.е., деталь типа 2 - 10 д.е. (включая расходы на выпуск детали типа 1). Детали типа 1 продаются по цене 8 д.е., типа 2 - 45 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков В1-В2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка С (8.13, 8.4, 8.7). Поток деталей на станок С считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).
- 6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (в среднем через каждые 4 минуты) а станок А заменен на новый (А1); время обработки одной детали на станке А1 3±1 минута. Для нового станка А1 затраты на одну минуту работы и простоя 0,4 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.

ВАРИАНТ 8

На участке выпускаются детали двух видов. Интервалы времени между моментами поступления заготовок для выпуска деталей составляют от 4 до 7 минут. Все заготовки обрабатываются на станке A; время обработки детали на станке примерно постоянное и составляет 5 минут.

10% деталей, выпущенных на станке A, продаются как готовые изделия (детали типа 1). Остальные проходят дальнейшую обработку (из них выпускаются детали типа 2). Детали типа 1 со станка A поступают на два одинаковых станка (В1 и В2); время обработки одной детали на этих станках распределено по экспоненциальному закону и составляет в среднем 20 минут. Перед станками В1 и В2 установлен общий накопитель, вмещающий пять деталей; при его заполнении все поступающие детали типа 1 направляются на станок C, на котором обработка занимает в среднем 6 минут (экспоненциальная случайная величина).

Затраты (в денежных единицах), связанные с работой и простоями каждого станка (в минуту), приведены в таблице.

	A	В	C
Работа	0,2	0,3	0,8
Простой	0,1	0,1	0,1

Прочие расходы, связанные с выпуском деталей, следующие: деталь типа 1 - 4 д.е., деталь типа 2 - 10 д.е. (включая расходы на выпуск детали типа 1). Детали типа 1 продаются по цене 8 д.е., типа 2 - 45 д.е.

- 1. Найти характеристики работы станка А (8.4, 8.7).
- 2. Найти характеристики работы группы станков В1-В2 (8.13, 8.4, 8.9). Поток деталей на эту группу станков считать пуассоновским.
- 3. Рассчитать характеристики работы станка С (8.13, 8.4, 8.7). Поток деталей на станок С считать пуассоновскими.
 - 4. Найти прибыль от работы участка за 8 часов (8.6, 8.7, 8.9).
- 5. Найти вероятность того, что деталь, поступившая на станки В1-В2, сразу же начнет обрабатываться (не будет ждать в очереди) (8.5, 8.9, пример из 8.8).
- 6. Найти характеристики работы всех станков и прибыль от работы участка (за 8 часов) при следующих изменениях: заготовки поступают на обработку чаще (с интервалом от 3 до 6 минут), а станок А заменен на новый (А1); время обработки одной детали на станке А1 4 минуты. Для нового станка А1 затраты на одну минуту работы и простоя 0,4 и 0,2 д.е. соответственно. Определить, являются ли предлагаемые изменения целесообразными.