Deep Learning

Artificial Intelligence

School of Computer Science The University of Adelaide

Learning the mapping function.

$$f(\mathbf{X}) \to \mathbf{Y}$$

For example, Image to category, video to action

This image by Nikta is loonsed under OC-BY 2.0 (assume given set of discrete labels) {dog, cat, truck, plane, ...}

→ cat

Learning the mapping function.

$$f(\mathbf{X}) \to \mathbf{Y}$$

Why is it difficult?

This image by Nikta is licensed under OC-BY 2.0 (assume given set of discrete labels) {dog, cat, truck, plane, ...}

→ cat

Learning the mapping function.

$$f(\mathbf{X}) \to \mathbf{Y}$$

Why is it difficult?

Learning the mapping function.

$$f(\mathbf{X}) \to \mathbf{Y}$$

Why is it difficult?

Traditional Learning

Decompose the problem into two parts:

Hand crafting features and learning a classifier.

Example of Hand-Crafted Feature (HOG)

- Engineering features with desired invariances is difficult.
- You can easily lose important information.

Example of Linear Classifier

$$f(x,W) = Wx + b$$

Array of 32x32x3 numbers (3072 numbers total)

- Classification = learning parameters W and b.
- What shape is the classification boundary?
- How to optimize?

Deep Network

Decompose the problem into multiple parts:

$$\mathbf{Z}_1 = f_1(\mathbf{X})$$
 $\mathbf{Z}_2 = f_2(\mathbf{Z}_1)$
 \cdots
 $\mathbf{Z}_t = f_t(\mathbf{Z}_{t-1})$
 $\mathbf{Y} = f_V(\mathbf{Z}_t)$
Input image put Hidden Layers Output

Both features and classifier are learned

Deep Network

Decompose the problem into multiple parts:

$$\mathbf{Z}_1 = f_1(\mathbf{X})$$
 $\mathbf{Z}_2 = f_2(\mathbf{Z}_1)$
 \dots
 $\mathbf{Z}_t = f_t(\mathbf{Z}_{t-1})$
 $\mathbf{Y} = f_V(\mathbf{Z}_t)$
Input image put Hidden Layers Output

- Both features and classifier are learned
- Researchers have hypothesized that the number of layers in an MLP correlates well with high-level information.

MLP Based Deep Learning

- Unmanageable number of parameters
 - Example, let's take MNIST problem with 28x28=784 input images
 - 1 hidden layer with 1000 nodes and an output layer with 10 nodes: # weights = 784*1000 + 1000*10 = 794000 weights
 - 2 hidden layers with 1000 nodes and an output layer with 10 nodes: # weights
 = 784*1000 + 1000*1000 + 1000*10 = 1794000 weights
 - Prone to overfitting
- Gradient descent didn't work beyond a couple of hidden layers
 - Magnitude kept reducing as the gradient flowed back to the input layer (vanishing gradient problem [Hochreiter91])
 - Convergence issues
- Machines (at the time 80s and 90s) couldn't cope with datasets bigger than a few thousand samples and models with more than a few thousand weights

Learning Neural Networks

Optimizing a loss function to learn parameters

$$L(W) = rac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$
 Fitting to data

Too many Parameters

Overfitting!!!

Regularization

Optimizing a loss function to learn parameters

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$
 Fitting to data Choose the simplest model

Overfitting

Remember Occam's Razor !!!

Usually L2 or L1 sum of the network's weights are minimized to select simplest hypothesis.

Learning of Neural Network

Optimizing a loss function to learn parameters

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$
 Fitting to data Choose the simplest model

Overfitting

Remember Occam's Razor !!!

Regularizing decision boundaries in this manner help avoiding overfitting.

Non-Linear Activations

Non Linearities are Important

Non-linearity based on sigmoid.

$$g_{sig}(in) = \frac{1}{1 + e^{-in}}$$

Non-linearity based on sigmoid.

 After several multiplications over the layers, the grad mag will become insignificant.

Small gradient magnitude, particularly at the tails

- Note that we could try to fix the problem by using non-linear activations that have gradients of larger magnitude
 - But if the magnitude gets larger than 1, then we have the problem of exploding gradients

Rectified Linear Units (RELU)

Nair & Hinton (2010)

- Maximum gradient magnitude is 1
- Large region where this magnitude is 1
- Still non-linear
- Gradient shape?

Some Prevalent Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Biggest Influence in Visual Perception Change in NN Architecture Deep Convolutional Neural Networks

