Computing the *least-commitment* action model from state observations

Diego Aineto¹, Sergio Jiménez¹, Eva Onaindia¹ and , Blai Bonet²

¹Departamento de Sistemas Informáticos y Computación. Universitat Politècnica de València. Valencia, Spain ²Departamento de Computación. Universidad Simón Bolívar. Caracas, Venezuela

{dieaigar,serjice,onaindia}@dsic.upv.es, bonet@usb.ve

Abstract

1 Introduction

Given an input sequence of partially observed states, this paper formalizes the task of computing the *least-commitment* action model that is able to *explain* the given observation. This task is of interest because it allows the incremental learning of action models from arbitrary large sets of partial observations.

In addition, the paper introduces a new method to compute the *least-commitment* action model for an input sequence of partially observed states. The method assumes that action models are specified as STRIPS action schemata and it is built on top of off-the-shelf algorithms for *conformant planning*.

2 Background

This section formalizes the *planning models* we use in the paper as well as the kind of state *observations* that are given as input for computing the *least-commitment* action model.

2.1 Classical planning with conditional effects

Let F be the set of *fluents* or *state variables* (propositional variables) describing a state. A *literal* l is a valuation of a fluent $f \in F$; i.e. either l = f or $l = \neg f$. A set of literals L represents a partial assignment of values to fluents (without loss of generality, we will assume that L does not contain conflicting values). Given L, let $\neg L = \{\neg l : l \in L\}$ be its complement. We use $\mathcal{L}(F)$ to denote the set of all literal sets on F; i.e. all partial assignments of values to fluents. A *state* s is a full assignment of values to fluents; |s| = |F|.

A classical planning frame is a tuple $\Phi = \langle F, A \rangle$, where F is a set of fluents and A is a set of actions. Each classical planning action $a \in A$ has a precondition $\operatorname{pre}(a) \in \mathcal{L}(F)$ and a set of effects $\operatorname{eff}(a) \in \mathcal{L}(F)$. The semantics of actions $a \in A$ is specified with two functions: $\rho(s,a)$ denotes whether action a is applicable in a state s and $\theta(s,a)$ denotes the successor state that results of applying action a in a state s. Then, $\rho(s,a)$ holds iff $\operatorname{pre}(a) \subseteq s$, i.e. if its precondition holds in s. The result of executing an applicable action $a \in A$ in a state s is a new state $\theta(s,a) = (s \setminus \neg\operatorname{eff}(a)) \cup \operatorname{eff}(a)$. Subtracting the complement of $\operatorname{eff}(a)$ from s ensures that $\theta(s,a)$

remains a well-defined state. The subset of action effects that assign a positive value to a state fluent is called *positive effects* and denoted by $\operatorname{eff}^+(a) \in \operatorname{eff}(a)$ while $\operatorname{eff}^-(a) \in \operatorname{eff}(a)$ denotes the *negative effects* of an action $a \in A$.

A classical planning problem is a tuple $P = \langle F, A, I, G \rangle$, where I is the initial state and $G \in \mathcal{L}(F)$ is the set of goal conditions over the state variables. A plan π is an action sequence $\pi = \langle a_1, \ldots, a_n \rangle$, with $|\pi| = n$ denoting its plan length. The execution of π on the initial state I of P induces a trajectory $\tau(\pi, s_0) = \langle s_0, a_1, s_1, \ldots, a_n, s_n \rangle$ such that $s_0 = I$ and, for each $1 \leq i \leq n$, it holds $\rho(s_{i-1}, a_i)$ and $s_i = \theta(s_{i-1}, a_i)$. A plan π solves P iff the induced trajectory $\tau(\pi, s_0)$ reaches a final state $G \subseteq s_n$, where all goal conditions are met. A solution plan is optimal iff its length is minimal.

An action $a_c \in A$ with conditional effects is defined as a set of preconditions $\operatorname{pre}(a_c) \in \mathcal{L}(F)$ and a set of *conditional* effects $\operatorname{cond}(a_c)$. Each conditional effect $C \rhd E \in \operatorname{cond}(a_c)$ is composed of two sets of literals: $C \in \mathcal{L}(F)$, the *condition*, and $E \in \mathcal{L}(F)$, the effect. An action a_c is applicable in a state s if $\rho(s, a_c)$ is true, and the result of applying action a_c in state s is $\theta(s, a_c) = \{s \setminus \neg\operatorname{eff}_c(s, a) \cup \operatorname{eff}_c(s, a)\}$ where $\operatorname{eff}_c(s, a)$ are the triggered effects resulting from the action application (conditional effects whose conditions hold in s):

$$\operatorname{eff}_c(s,a) = \bigcup_{C\rhd E\in\operatorname{cond}(a_c), C\subseteq s} E,$$

2.2 The observation model

Given a classical planning problem $P = \langle F, A, I, G \rangle$, a plan π and a trajectory $\tau(\pi, s_0)$, we define the *observation* of the trajectory as a sequence of partial states that results from observing the execution of π on I. Formally, $\mathcal{O}(\tau) = \langle s_0^o, s_1^o, \dots, s_m^o \rangle$ where $s_0^o = I$.

A partial state s_i^o , 0 < i < m, is one in which $|s_i^o| < |F|$; i.e., a state in which at least a fluent of F is not observable. Note that this definition also comprises the case $|s_i^o| = 0$, when the state is fully unobservable. Whatever the sequence of observed states of $\mathcal{O}(\tau)$ is, it must be *consistent* with the sequence of states of $\tau(\pi,s_0)$, meaning that $\forall i,s_i^o \subseteq s_i$. In practice, the number of observed states m, ranges from 1 (the initial state, at least), to $|\pi|+1$, and the observed intermediate states will comprise a number of fluents between [1,|F|].

We are assuming then that there is a bijective monotone mapping between trajectories and observations [Ramírez and Geffner, 2009], thus also granting the inverse consistency relationship (the trajectory is a superset of the observation). Therefore, transiting between two consecutive observed states in $\mathcal{O}(\tau)$ may require the execution of more than a single action $(\theta(s_i^o, \langle a_1, \dots, a_k \rangle) = s_{i+1}^o$, where $k \geq 1$ is unknown but finite. In other words, having $\mathcal{O}(\tau)$ does not imply knowing the actual length of π .

Definition 1 (Explaning a $\mathcal{O}(\tau)$ **observation)** Given a classical planning problem P and a sequence of partial states $\mathcal{O}(\tau)$, a plan π explains $\mathcal{O}(\tau)$ (denoted $\pi \mapsto \mathcal{O}(\tau)$) iff π is a solution for P consistent with $\mathcal{O}(\tau)$.

If π is also optimal, we say that π is the *best explanation* for the input observation $\mathcal{O}(\tau)$.

Given a classical planning frame $\Phi = \langle F, A[\cdot] \rangle$ and a sequence of partial states $\mathcal{O}(\tau) = \langle s_0^o, s_1^o, \dots, s_m^o \rangle$, we can build the classical planning problem $P_{\mathcal{O}} = \langle F, A[\cdot], s_0^o, s_m^o \rangle$. We say that an action model \mathcal{M} is a definition of the $\langle \rho, \theta \rangle$ functions of every action in $A[\cdot]$. Further we say that a model \mathcal{M} explains a sequence of observations $\mathcal{O}(\tau)$ iff, when the $\langle \rho, \theta \rangle$ functions of the actions in $P_{\mathcal{O}}$ are given by \mathcal{M} , there exists a solution plan for $P_{\mathcal{O}}$ that explains $\mathcal{O}(\tau)$.

2.3 Conformant planning

Conformant planning is planning with incomplete information about the initial state, no sensing, and validating that goals are achieved with certainty (despite the uncertainty of the initial state) [Goldman and Boddy, 1996; Smith and Weld, 1998; Bonet and Geffner, 2000].

Syntactically, conformant planning problems are expressed in compact form through a set of state variables. A conformant planning problem can be defined as a tuple $P_c = \langle F, A, \Upsilon, G \rangle$ where F, A and G are the set of fluents, actions and goals (as previously defined for classical planning). Now Υ is a set of clauses over literals l = f or $l = \neg f$ (for $f \in F$) that define the set of possible initial states.

A solution to a conformant planning problem is an action sequence that maps each possible initial state into a goal state. More precisely, an action sequence $\pi = \langle a_1, \dots, a_n \rangle$ is a conformant plan for P_c iff, for each possible trajectory $\tau(\pi,s_0) = \langle s_0,a_1,s_1,\dots,a_n,s_n \rangle$ s.t. s_0 is a valuation of the fluents in F that satisfies Υ , then $\tau(\pi,s_0)$ reaches a final state $G \subseteq s_n$.

3 Computing the *least-commitment* action model from state observations

First, this section formalizes the notion of the *least-commitment* action model that is able to *explain* a sequence of partially observed states. Next, the section describes our approach to compute such model via *conformant planning*.

3.1 The least-commitment action model

The task of computing the *least-commitment* action model from a sequence of state observations is defined as $\langle \Phi, \mathcal{O}(\tau) \rangle$:

• $\Phi = \langle F, A[\cdot] \rangle$ is a *classical planning frame* where the semantics of each action $a \in A[\cdot]$ is unknown; i.e. the corresponding $\langle \rho, \theta \rangle$ functions are undefined.

• $\mathcal{O}(\tau)$ is a sequence of partial states that results from the partial observation of a trajectory $\tau(\pi, s_0)$ defined within the *classical planning frame* Φ .

Before formalizing the solution to this task, i.e. the *least-commitment* action model, we introduce several necessary definitions.

Definition 2 (Model Space) Given a classical planning frame $\Phi = \langle F, A[\cdot] \rangle$ the model space M is the set of possible models for the actions in $A[\cdot]$ such that: (1), any model $\mathcal{M} \in M$ is a definition of the $\langle \rho, \theta \rangle$ functions of every action in $A[\cdot]$ and (2), for every $\mathcal{M} \in M$ the $\langle \rho, \theta \rangle$ functions are defined in the set of state variables F.

Now, we define a *partially specified action model* inspired by the notion of *incomplete* (*annotated*) *model* [Sreedharan *et al.*, 2018].

Definition 3 (Partially specified action model) A partially specified action model is a subset of models in a given model space M.

If the partially specified action model is a singleton, it represents a fully specified action model. On the other hand, if its size is |M| the partially specified action model represents the full model space.

Now we are ready to define the *least-commitment* action model for an observation $\mathcal{O}(\tau)$.

Definition 4 (The least-commitment action model) Given $a \langle \Phi, \mathcal{O}(\tau) \rangle$ task and the partially specified action model M that represents the full space of possible action models for the actions in $A[\cdot] \in \Phi$, then the least-commitment action model is another partially specified action model that represents the largest subset of models $M^* \subseteq M$ such that every model $M \in M^*$ explains the input observation.

3.2 The space of STRIPS action models

Despite previous definitions are general, this work focuses on the particular kind of action models that are specified as STRIPS action schemata.

A STRIPS action schema ξ is defined by four lists: A list of parameters $pars(\xi)$, and three list of predicates (namely $pre(\xi)$, $del(\xi)$ and $add(\xi)$) that shape the kind of fluents that can appear in the preconditions, negative effects and positive effects of the actions induced from that schema. Let be Ψ the set of *predicates* that shape the propositional state variables F, and a list of parameters $pars(\xi)$. The set of elements that can appear in $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of the STRIPS action schema ξ is given by FOL interpretations of Ψ over the parameters $pars(\xi)$. We denote this set of FOL interpretations as $\mathcal{I}_{\Psi,\xi}$. For instance, in the *blocksworld* the $\mathcal{I}_{\Psi,\xi}$ set contain eleven elements for the stack (v_1, v_2) schemata, $\mathcal{I}_{\Psi,stack}$ ={handempty, holding (v_1) , holding (v_2) , clear (v_1) , clear (v_2) , ontable (v_1) , ontable (v_2) , on (v_1,v_1) , on (v_1, v_2) , on (v_2, v_1) , on (v_2, v_2) }.

Despite any element of $\mathcal{I}_{\Psi,\xi}$ can *a priori* appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of schema ξ , the space of possible

STRIPS schemata is bounded by constraints of three kinds:

```
(:action stack
    :parameters (?v1 ?v2)
   :precondition (and (holding ?v1) (clear ?v2))
:effect (and (not (holding ?v1)) (not (clear ?v2))
                      (clear ?v1) (handempty) (on ?v1 ?v2)))
(pre_holding_v1_stack) (pre_clear_v2_stack)
(eff_holding_v1_stack) (eff_clear_v2_stack)
(eff_clear_v1_stack) (eff_handempty_stack) (eff_on_v1_v2_stack)
```

Figure 1: PDDL encoding of the stack (?v1, ?v2) schema and our propositional representation for this same schema.

- 1. Syntactic constraints. STRIPS constraints require $del(\xi) \subseteq pre(\xi), del(\xi) \cap add(\xi) = \emptyset \text{ and } pre(\hat{\xi}) \cap$ $add(\xi) = \emptyset$. Considering exclusively these syntactic constraints, the size of the space of possible STRIPS schemata is given by $2^{2\times |\mathcal{I}_{\Psi,\xi}|}$. With this regard, we implement a propositional encoding of the preconditions, negative, and positive effects of an action schema ξ using only fluents pre_e_ ξ and eff_e_ ξ (where $e \in$ $\mathcal{I}_{\Psi,\xi}$). This encoding exploits the syntactic constraints of STRIPS so, if pre_e_ ξ and eff_e_ ξ holds it means that $e \in \mathcal{I}_{\Psi,\xi}$ is a negative effect in ξ while if $pre_-e_-\xi$ does not hold but eff_e_ ξ holds, it means that $e \in \mathcal{I}_{\Psi,\xi}$ is a positive effect in ξ . Figure 1 shows the PDDL encoding of the stack (?v1, ?v2) schema and our propositional representation for this same schema.
- 2. Domain-specific constraints. One can introduce domain-specific knowledge to constrain further the space of possible schemata. For instance, in the blocksworld one can argue that on (v_1, v_1) and on (v_2, v_2) will not appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ lists of an action schema ξ because, in this specific domain, a block cannot be on top of itself. As a rule of thumb, typing constraints and state invariants belong to this second class of constraints [Fox and Long, 1998].
- 3. Observation constraints. A sequence of state observations $\mathcal{O}(\tau)$ depicts semantic knowledge that constraints further the space of possible action schemata. For instance, since we assume that the initial state s_0 is fully observed, we have that $\bigcup_{\xi} \neg pre_e_\xi \land eff_e_\xi$ if there is an instantiation of e that holds in s_i^o (0 < i) but not in s_0 .

3.3 Computing the *least-commitment* model via classical planning

Inspired by the classical planning compilation K_{s_0} for conformant planning [Palacios and Geffner, 2009], this section shows that we can build a classical planning problem P = $\langle F', A', I', G' \rangle$ whose solution induces the *least-commitment* action model for an observation $\mathcal{O}(\tau)$:

- \bullet The set of fluents F' extends F with two new sets of fluents:
 - $\{test_j\}_{1 \le j \le m}$, indicating the state observation $s_i \in \mathcal{O}(\bar{\tau})$ where the action model is validated
 - Fluents $K \text{pre}_e_\xi$, $K \neg \text{pre}_e_\xi$ and $K \text{eff}_e_\xi$ encoding the knowledge level representation of the space of possible STRIPS action models (note that fluents $K \neg \mathsf{eff}_e_{-\xi}$ are not necessary in our encoding).

- The set of actions A' contains now actions of three different kinds:
 - Actions for committing pre_e_\xi to a positive/negative value. Similar actions are also defined for *committing* eff_e_ξ but only to a positive value (recall that fluents $K \neg eff_{-}e_{-}\xi$ are not necessary in our encoding). The value of an effect eff_e_ξ can only be committed once the value of the corresponding precondition pre_e_ ξ is committed (i.e. once either Kpre_e_ ξ or K¬pre_e_ ξ hold in the current state).

```
pre(commit \top pre_e_{\xi}) = \{mode_{commit}, \}
                                                \neg \mathsf{Kpre\_e\_\xi}, \neg \mathsf{K} \neg \mathsf{pre\_e\_\xi} \},
cond(commit \top pre_e_{\xi}) = \{\emptyset\} \triangleright \{Kpre_e_{\xi}\}.
   pre(commit \perp pre_e_\xi) = \{mode_{commit}, \}
                                                \neg \mathsf{Kpre\_e\_\xi}, \neg \mathsf{K} \neg \mathsf{pre\_e\_\xi} \},
cond(commit \perp pre_e_{\xi}) = \{\emptyset\} \triangleright \{K \neg pre_e_{\xi}\}.
   pre(commit \top eff_e_{\xi}) = \{mode_{commit}, \}
                                                \neg \mathsf{Keff}\_\mathsf{e}\_\mathcal{E}.
                                                Kpre_e_{\xi} \vee K\neg pre_{e_{\xi}},
 cond(commit \top _eff_e_{\xi}) = \{\emptyset\} \rhd \{Keff_e_{\xi}\}.
```

- Actions for validating that committed models explain the s_i observed states, $0 \le j < m$.

$$\begin{split} \operatorname{pre}(\operatorname{validate_j}) = & s_j \cup \{test_{j-1}\}, \\ \operatorname{cond}(\operatorname{validate_j}) = & \{\emptyset\} \rhd \{\neg test_{j-1}, test_j\}, \\ & \{mode_{commit}\} \rhd \{\neg mode_{commit}, mode_{val}\}. \end{split}$$

- Editable actions whose semantics is given by the value of fluents $K \text{pre}_e_\xi$, $K \neg \text{pre}_e_\xi$ and $K \text{eff}_e_\xi$ at the current state. Figure 2 shows the PDDL encoding of an editable stack (?v1, ?v2) schema. This editable schema behaves exactly as the original PDDL schema defined in Figure 1 when the set of fluents (Kpre_holding_v1_stack) (Kpre_clear_v2_stack) (Keff_holding_v1_stack) (Keff_clear_v2_stack)

(Keff_clear_v1_stack) (Keff_handempty_stack) (Keff_on_v1_v2_stack) hold at the current state.

Formally, given an operator schema $\xi \in \mathcal{M}$ its editable version is:

$$\begin{split} \operatorname{pre}(\operatorname{editable}_{\xi}) = & \{K\operatorname{pre}_e_\xi \implies e\}_{\forall e \in \mathcal{I}_{\Psi,\xi}} \\ \operatorname{cond}(\operatorname{editable}_{\xi}) = & \{K\operatorname{pre}_e_\xi, K\operatorname{eff}_e_\xi\} \rhd \{\neg e\}_{\forall e \in \mathcal{I}_{\Psi,\xi}}, \\ & \{K\neg\operatorname{pre}_e_\xi, K\operatorname{eff}_e_\xi\} \rhd \{e\}_{\forall e \in \mathcal{I}_{\Psi,\xi}}. \end{split}$$

• The new initial state $I' = I \cup \{mode_{commit}\}$ while the new goals are $G' = s_m \cup \{test_m\}$.

3.4 Compilation properties

- **Evaluation**
- **Conclusions**

Related work [Stern and Juba, 2017].

```
(:action stack
:parameters (?o1 - object ?o2 - object)
:precondition
   (and (or (not (Kpre_on_v1_v1_stack)) (on ?o1 ?o1))
        (or (not (Kpre_on_v1_v2_stack)) (on ?o1 ?o2))
        (or (not (Kpre on v2 v1 stack)) (on ?o2 ?o1))
        (or (not (Kpre_on_v2_v2_stack)) (on ?o2 ?o2))
        (or (not (Kpre_ontable_v1_stack)) (ontable ?o1))
        (or (not (Kpre ontable v2 stack)) (ontable ?o2))
        (or (not (Kpre_clear_v1_stack)) (clear ?o1))
        (or (not (Kpre_clear_v2_stack)) (clear ?o2))
        (or (not (Kpre holding v1 stack)) (holding ?o1))
        (or (not (Kpre_holding_v2_stack)) (holding ?o2))
        (or (not (Kpre_handempty_stack)) (handempty)))
:effect (and
   (when (and (Kpre_on_v1_v2_stack) (Keff_on_v1_v2_stack)) (not (on ?o1 ?o2))
             (Kpre on v2 v1 stack) (Keff on v2 v1 stack)) (not (on ?o2 ?o1)))
   (when (and
              (Kpre_on_v2_v2_stack) (Keff_on_v2_v2_stack)) (not (on ?o2 ?o2))
   (when
   (when (and (Kpre_ontable_v1_stack) (Keff_ontable_v1_stack)) (not (ontable ?o1))
              (Kpre_ontable_v2_stack) (Keff_ontable_v2_stack)) (not (ontable ?o2)))
   (when (and
             (Kpre_clear_v1_stack)(Keff_clear_v1_stack)) (not (clear ?o1)))
   (when
   (when (and
             (Kpre clear v2 stack) (Keff clear v2 stack)) (not (clear ?o2)))
              (Kpre_holding_v1_stack) (Keff_holding_v1_stack)) (not (holding ?o1)))
   (when (and (Kpre_holding_v2_stack)(Keff_holding_v2_stack)) (not (holding ?o2)))
   (when
        (and
             (Kpre handempty stack) (Keff handempty stack)) (not (handempty)))
              (Knot_pre_on_v1_v1_stack) (Keff_on_v1_v1_stack)) (on ?o1 ?o1))
   (when (and (Knot_pre_on_v1_v2_stack) (Keff_on_v1_v2_stack)) (on ?o1 ?o2)) (when (and (Knot_pre_on_v2_v1_stack) (Keff_on_v2_v1_stack)) (on ?o2 ?o1))
              (Knot_pre_on_v2_v2_stack)(Keff_on_v2_v2_stack)) (on ?o2 ?o2))
   (when (and (Knot_pre_ontable_v1_stack)(Keff_ontable_v1_stack)) (ontable ?o1))
             (Knot_pre_ontable_v2_stack) (Keff_ontable_v2_stack)) (ontable ?o2))
   (when (and
              (Knot_pre_clear_v1_stack) (Keff_clear_v1_stack)) (clear ?o1))
   (when (and (Knot_pre_clear_v2_stack) (Keff_clear_v2_stack)) (clear ?o2))
             (Knot_pre_holding_v1_stack) (Keff_holding_v1_stack)) (holding ?o1))
   (when
        (and
             (Knot_pre_holding_v2_stack)(Keff_holding_v2_stack)) (holding ?o2))
   (when (and (Knot_pre_handempty_stack) (Keff_handempty_stack)) (handempty))))
```

Figure 2: PDDL encoding of the editable version of the stack(?v1,?v2) schema.

References

- [Bonet and Geffner, 2000] Blai Bonet and Hector Geffner. Planning with incomplete information as heuristic search in belief space. In *Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems*, pages 52–61. AAAI Press, 2000.
- [Fox and Long, 1998] Maria Fox and Derek Long. The automatic inference of state invariants in tim. *Journal of Artificial Intelligence Research*, 9:367–421, 1998.
- [Goldman and Boddy, 1996] Robert P Goldman and Mark S Boddy. Expressive planning and explicit knowledge. In *AIPS*, volume 96, pages 110–117, 1996.
- [Palacios and Geffner, 2009] Héctor Palacios and Héctor Geffner. Compiling uncertainty away in conformant planning problems with bounded width. *Journal of Artificial Intelligence Research*, 35:623–675, 2009.
- [Ramírez and Geffner, 2009] Miquel Ramírez and Hector Geffner. Plan recognition as planning. In *International Joint conference on Artifical Intelligence*, (*IJCAI-09*), pages 1778–1783. AAAI Press, 2009.
- [Smith and Weld, 1998] David E Smith and Daniel S Weld. Conformant graphplan. In *AAAI/IAAI*, pages 889–896, 1998.
- [Sreedharan et al., 2018] Sarath Sreedharan, Tathagata
 Chakraborti, and Subbarao Kambhampati. Handling
 model uncertainty and multiplicity in explanations via
 model reconciliation. In International Conference on

- Automated Planning and Scheduling, (ICAPS-18), pages 518–526, 2018.
- [Stern and Juba, 2017] Roni Stern and Brendan Juba. Efficient, safe, and probably approximately complete learning of action models. In *International Joint Conference on Artificial Intelligence*, (*IJCAI-17*), pages 4405–4411, 2017.