Two Way Anova

Divit Vasu

September 11, 2018

Two Way Anova

Definition:

The data shows the Production of Wheat per acre for varieties of seeds and fertilizers. We set up an analysis of variance table for the following two-way results:

```
df <- read.csv(file='Sample.csv')
head(df)</pre>
```

##		Production	Seed	Fertilizers
##	1	6	Α	W
##	2	7	Α	X
##	3	3	Α	Y
##	4	8	Α	Z
##	5	5	В	W
##	6	5	В	X

Shapiro Test

Performing a Shapiro test on the data yields

```
sh <- shapiro.test(df$Production)
sh

##
## Shapiro-Wilk normality test
##
## data: df$Production
## W = 0.91658, p-value = 0.2589</pre>
```

As the p-value (0.2588655) is greater than 0.05 we accept the **NULL Hypothesis** and we can say that the data for Production of wheat is normalized.

Bartlett Test

Performing a Bartlett test on the data yields

```
bartlett.test(Production~Seed, data=df)

##
## Bartlett test of homogeneity of variances
##
## data: Production by Seed
## Bartlett's K-squared = 2.16, df = 2, p-value = 0.3396
```

Results shows that p-value is greater than 0.05 so we fail to reject the **null hypothesis** and conclude that the variances are equal across these samples.

bartlett.test(Production~Fertilizers, data=df) ## ## Bartlett test of homogeneity of variances ## ## data: Production by Fertilizers

Results of bartlett test shows p-value greater than 0.05 for production vs. seed but for production vs. fertilizers, p-value is less than 0.05. Then also, we can perform the two way Anova Test.

2-Way Annova on the samples

Bartlett's K-squared = Inf, df = 3, p-value < 2.2e-16

```
Res.anova <- aov(Production~Seed+Fertilizers , data = df )
Res.anova
## Call:
##
      aov(formula = Production ~ Seed + Fertilizers, data = df)
##
## Terms:
##
                   Seed Fertilizers Residuals
## Sum of Squares
                      8
                                 18
## Deg. of Freedom
                                             6
## Residual standard error: 1
## Estimated effects may be unbalanced
```

Pair-wise Comparison

```
TK<- TukeyHSD(Res.anova, "Seed")
ΤK
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
## Fit: aov(formula = Production ~ Seed + Fertilizers, data = df)
##
## $Seed
##
       diff
                  lwr
                            upr
                                    p adj
## B-A
         -1 -3.169598 1.1695977 0.3922561
## C-A
         -2 -4.169598 0.1695977 0.0673680
## C-B
         -1 -3.169598 1.1695977 0.3922561
```

Plot

```
plot(TK)
```

95% family-wise confidence level

Differences in mean levels of Seed

Conclusion

From the above results, we find that there is no significant difference in Production of wheat in accordance with different seeds and different fertilizers.