Artificial Intelligence AI 2002 Lecture 11

Mahzaib Younas
Lecturer Department of Computer Science
FAST NUCES CFD

Al 2002

Knowledge

Humans know things ...

the knowledge helps them to do various tasks.

☐ The knowledge has been achieved

- not by purely reflex mechanisms
- but by the processes of reasoning

In AI, the example is **knowladge-based agent** which contains **set of sentences** referred as **knowledge-base**.

Knowledge-based Agent

For a generic knowledge-based agent:

A percept is given to the agent.

The agent adds the percept to its knowledge base.

Perform best action according to the knowledge base.

Tells the knowledge base that it has in fact taken that action.

Knowledge-based Agent

function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time Tell(KB, Make-Percept-Sentence(percept, t) $action \leftarrow Ask(KB, Make-Action-Query(t))$ Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t + 1$ constructs a **sentence** asserting that the agent return action perceived the given percept at time t constructs a sentence that asks what action **should be done** at time **t** constructs a sentence that the chosen action was executed at time t

The Wumpus World Example

The Wumpus World Example

4	\$5555		Breeze	PIT
3	Vii)	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	PIT	Breeze
2	SSTSTS SStanch S		Breeze	三
1	START	Breeze	Р ПТ	Breeze

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

The PEAS description for Wumpus

World: Performance measure:

- +1000 for climbing out of the cave with the gold,
- -1000 for falling into a pit or being eaten by the Wumpus,
- −1 for each action taken
- −10 for using up the arrow

Environment:

A 4×4 grid of rooms. The agent starts in the square labelled [1,1], facing to the right.

The game ends either when the agent dies or when the agent climbs out of the cave.

The PEAS description for Wumpus World:

Actuators:

The agent can move *Forward, TurnLeft by 90°, TurnRight by 90°*, grab, shoot

Sensors:

- The square adjacent directly (not diagonally) to the square containing Wumpus, the agent will perceive a Stench.
- The squares adjacent to a pit, the agent will perceive a Breeze.
- The square with gold, the agent will perceive a Glitter.
- An agent walks into a wall, it will perceive a Bump.
- When the Wumpus is killed, it emits a woeful Scream.

4 SSSSSS PIT Breeze

2 SSSSSSS PIT Breeze

1 2 SSSSSSS PIT Breeze

1 2 3 4

OK = Safe square

= Pit

= Stench

= Visited

= Wumpus

= Visited

= Wumpus

S = Stench

V = Visited

W = Wumpus

$$P = Pit$$

S = Stench V = Visited

W = Wumpus

= Visited

= Wumpus

S = Stench V = Visited

W = Wumpus

Breeze in (1,2) and (2,1) \Rightarrow no safe actions

Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31

Smell in (1,1) \Rightarrow cannot move
Can use a strategy of coercion:
shoot straight ahead
wumpus was there \Rightarrow dead \Rightarrow safe
wumpus wasn't there \Rightarrow safe

How to represent these sentances? The knowledge bases consist of sentences.

• Logic, a formal language, is the solution --- a way of manipulating expressions in the language.

- Logic has
 - Syntax
 - Semantics

Syntax:

What expressions are legal --- what are allowed to write down.

The notion of syntax is clear enough with the example: "x + y = 4" is a well-formed sentence, whereas "x4y+=" is not.

Semantics:

What legal expression means --- meaning of sentences

- I the sentence "x + y = 4" is **true** in a **world** where x is 2 and y is 2, but **false** in a **world** where x is 1 and y is 1.
- Syntax is a form and semantics is the content.

Al 2002 19

Semantics:

The semantics defines the <u>truth</u> of each sentence with respect to each **possible world**.

The term model can be used in place of "possible world."

If a sentence α is true in model m, we say that m satisfies α or sometimes m is a model of α .

The notation $M(\alpha)$ --- the set of all **model**s of α .

Logic --- Entailment

Entailment:

means that one thing follows from another:

$$\alpha \models \beta$$

if and only if, in every model in which α is true, β is also true. We can write

$$\alpha \models \beta$$
 if and only if $M(\alpha) \subseteq M(\beta)$

The notation \subseteq means that: if $\alpha \models \beta$, then α is a stronger assertion than β

Al 2002 21

Logic --- Entailment

We say m is a model of sentence α if α is true in m

 $M(\alpha)$ is the set of all models of α

Then
$$KB \models \alpha \text{ iff } M(KB) \subseteq M(\alpha)$$

Example:

The sentence x = 0 entails the sentence xy = 0

• In any model where x is zero, it is the case that xy is zero (regardless of the value of y)

Situation after detecting nothing in [1,1], moving right, breeze in [1,2]

Consider possible models for KB assuming only pits

3 Boolean choices ⇒ 8 possible models

3 Boolean choices \Rightarrow 8 possible models

regardless of wumpus-world rules

KB = wumpus-world rules + observations

KB = wumpus-world rules + observations α_1 = "[1,2] is safe", $KB \models \alpha_1$, proved by model checking

KB = wumpus-world rules + observations α_2 = "[2,2] is safe", $KB \neq \alpha_2$

Inference

If an inference algorithm i can derive α from KB, we write

$$KB \vdash_i \alpha$$

which is pronounced " α is derived from KB by i" or "i derives α from KB."

Soundness:

An inference algorithm that derives only entailed sentences is called sound or truth preserving.

Soundness is a highly desirable property.

Completeness:

An inference algorithm is complete if it can derive any sentence that is **entailed**.

We'll look at two kinds of logic:

Propositional Logic which is relatively simple.

First-order Logic

which is more complicated.

Reading Material

Artificial Intelligence, A Modern Approach
Stuart J. Russell and Peter Norvig
Chapter 7.

AI 2002

30