ПРИЈЕМНИ ИСПИТ ЗА УПИС НА МАТЕМАТИЧКИ ФАКУЛТЕТ Београд, 30.06.2021.

Време за рад је 180 минута.

1. I	Зредност изр	раза $\sqrt{3-2\sqrt{2}}$ +	$\sqrt{11 - 6\sqrt{2}}$ je:								
A)				D) $4 - 2\sqrt{2}$	E) $4\sqrt{2}-4$	N) не знам					
2. I	Површина пр	аве правилне ше	стостране призм	ме запремине 9, чиј	а је дужина странице с	основе 1, износи:					
A)	$6\sqrt{3}$	B) $9\sqrt{3}$	C) $12\sqrt{3}$	$\mathbf{D)} 15\sqrt{3}$	E) $21\sqrt{3}$	N) не знам					
3. I	Комплексних	бројева z за кој	је важи $z z +\overline{z}$	+6=0 има:							
A)	0	(B) 1	C) 2	D) 3	E) више од 3	$\mathbf{N})$ не знам					
4. Ако је $n\geqslant 3$ природан број такав да је $2\binom{n+1}{4}+2=2n+\binom{n}{3},$ онда је $\binom{12}{n}$ једнако:											
A)	66	B) 220	(C) 495	D) 792	E) 924	N) не знам					
		$\frac{1}{x} = 2$, онда је $\frac{1}{4}$		o: D) √3	$\mathbf{E)} \frac{\sqrt{3}}{4}$	N) не знам					
6. Домен функције $f(x) = \frac{\sin(\pi x)}{(1 - \sqrt{(x-1)^2})\sqrt{1 - \cos(2\pi x)}} - \frac{\arcsin(1-x)}{\sqrt{12 - 5x - 2x^2}}$ је:											
(A)	$) (0,1) \cup (1,$	$\frac{3}{2}$) B) $(0,1) \cup (1$	(2) C) $(-4, \frac{3}{2})$	D) $(1,2)$ E) (-4)	$(-3,-2) \cup (-3,-2) \cup (-2,-3)$	$\frac{3}{2}$) N) не знам					
7. I	Максимална	вредност израза	$4^{\sin x} - 4 \cdot 2^{\sin x} -$	+5 за реалан број	x je:						
A)	1	B) 2	(C) 3,25	D) 5	E) 5,25	N) не знам					
				дних бројева са <i>f</i> ој решења једначи	f(1) = 1 и једнакостима не $f(n) = 32$ је:	a f(2n) = 2f(n),					
A)	5	B) 6	C) 7	(D)) 8	E) 9	$\mathbf{N})$ не знам					

10. За реалан параметар a неједначина a|x|+2>|x-1| важи за свако реално x ако и само ако је: (\mathbf{A}) $a\geqslant 1$ $\mathbf{B})$ $-2\leqslant a\leqslant 1$ $\mathbf{C})$ $a\in (-\infty,-1]\cup [1,\infty)$ $\mathbf{D})$ a=1 $\mathbf{E})$ $a\in \{-1,1\}$ $\mathbf{N})$ не знам

(D)) $\frac{1}{6}$ E) $\frac{1}{7}$

 \mathbf{N}) не знам

9. Ако је S_n збир првих n чланова аритметичке прогресије и важи $\frac{S_3}{S_5} = \frac{1}{2}$, онда је $\frac{S_7}{S_{21}}$ једнако:

B) $\frac{1}{4}$ C) $\frac{1}{5}$

A) $\frac{1}{3}$

12. Нека су m параметра m	x_1 и x_2 оба коре за које је $\frac{1}{x_1} + \frac{1}{x_2}$	на квадратне једна $rac{1}{x_2} > rac{1}{2}$ и $x_1^2 + x_2^2 < 5$	чине $x^2 - (m+3)x$ су:	+m+2=0. Све в	редности реалног				
	< 0 B) -4 <	< m < 0 C) m	< -4 D) $m > -6$	-2 E) $m > -4$	N) не знам				
13. Скуп реше	ења неједначине	$\frac{1 - \sqrt{1 - 9x^2}}{x} < 1$ je	:						
					$\frac{1}{3}$ N) не знам				
14. Број реше	ења система једн	ачина $\log_{10}(xy^2) = 1$	$(\log_{10} x)(\log_{10} y) =$	-3 je:					
A) 0	B) 1			2) већи од 3	N) не знам				
15. Ако два н њиховог пресе		ре на растојању 2	, а њихови полупре	ечници су $\sqrt{3}$ и 1 ,	онда је површина				
			D) $2\pi - \sqrt{3}$	\mathbf{E}) $\frac{\pi}{2}$	${f N})$ не знам				
16. Број решења једначине $\sin^2 x + 3 \sin x \cos x + 2 \cos^2 x = 0$ у интервалу $[0, 2\pi)$ је:									
A) 1	B) 2	C) 3	(D) 4 F	2) већи од 4	N) не знам				
17. Постоје да Апсолутна вре	ве вредности за <i>т</i> едност разлике т	> 0 такве да кругих вредности је:	$(x-2)^2 + (y-1)^2 = r^2$	2 додирује круг $(x+$	$(-2)^2 + (y+2)^2 = 49$				
A) 8	B) 10	C) 11	D) 12	E) 14	N) не знам				
18. Нека су a x , док при дея	,b,c,d реални бро љењу са x^2-d^2	ојеви. Ако полином даје остатак $-x$, он	$x^4 - x^3 + ax^2 + bx + ax^3$ нда је $\frac{a+b+c}{d^2}$ једн	c при дељењу са x^2 нако:	$+d^2$ даје остатав				
			a	$\mathbf{E)} \frac{1}{4}$	N) не знам				
19. Целих бро	ојева n , таквих д	да је и број $\frac{n^3+n}{n+1}$	цео, има:						
A) 0	B) 1	C) 2	D) 3	(E) 4	N) не знам				
20. Највећи б	рој међу бројеви	има $\frac{\sqrt{7}}{2}$, $\frac{5}{4}$, $\frac{\sqrt{10!}}{3 \cdot (6!)}$	$\frac{\log_2 30}{\log_3 85}, \frac{1+\sqrt{6}}{3}$ je	:					
$(\mathbf{A})) \frac{\sqrt{7}}{2}$	B) $\frac{5}{4}$	C) $\frac{\sqrt{10!}}{3 \cdot (6!)}$	D) $\frac{\log_2 30}{\log_3 85}$	$\mathbf{E)} \frac{1+\sqrt{6}}{3}$	N) не знам				

11. За реалан параметар a једначина $|x^2+6x-1|-a=0$ има тачно четири различита решења ако и само

 $\textbf{A)} \quad a > 2\sqrt{10} \quad \ \ \, \textbf{B)} \quad 0 < a < 10 \quad \ \ \, \textbf{C)} \quad a \in (-2\sqrt{10},0) \cup (0,2\sqrt{10}) \quad \ \ \, \textbf{D)} \quad a > 0 \quad \ \ \, \textbf{E)} \quad a = 2\sqrt{10} \quad \ \, \textbf{N)} \text{ не знам}$

РЕШЕЊА ЗАДАТАКА

- 1. Како је $3-2\sqrt{2}=(\sqrt{2}-1)^2$ и $11-6\sqrt{2}=(3-\sqrt{2})^2$, то је вредност израза $|\sqrt{2}-1|+|3-\sqrt{2}|=2$.
- 2. Површина базе призме је $B=6\sqrt{3}/4=3\sqrt{3}/2$, док је њена запремина $3=B\cdot H$, где је H висина призме, одакле следи $H=3/B=2\sqrt{3}$, те је површина призме $P=2B+6\cdot 1\cdot H=3\sqrt{3}+12\sqrt{3}=15\sqrt{3}$.
- 3. Нека је z=a+ib за $a,b\in\mathbb{R}$. Једнакост имагинарних делова једначине даје $b\sqrt{a^2+b^2}=b$. Ако је b=0, онда је једначина a|a|+a+6=0, одакле мора бити a<0, те $-a^2+a+6=(3-a)(a+2)=0$ што даје јединствено решење a=-2, односно z=-2 (јер $a=3\geqslant 0$ није решење). За $b\neq 0$ је $\sqrt{a^2+b^2}=1$, те једнакост реалних делова једначине даје 2a+6=0, одакле је a=-3, али одговарајуће b не постоји. Једначина има тачно једно решење, z=-2.
- 4. Како је $\binom{n+1}{4} = \frac{n+1}{4} \binom{n}{3}$, то једначина постаје $\frac{n+1}{2} \binom{n}{3} + 2 = 2n + \binom{n}{3}$, односно $(n-1)\binom{n}{3} = 4(n-1)$, одакле је $\binom{n}{3} = 4$. Последња једначина је еквивалентна са n(n-1)(n-2) = 24, што уз услов $n \geqslant 3$ даје јединствено решење n=4. На пример, функција f(n)=n(n-1)(n-2) је строго растућа на интервалу $(2,\infty)$, док важи f(4)=24, или можемо расписати еквивалентну једначину $n^3-3n^2+2n-24=(n-4)(n^2+n+6)=0$ и приметити да је $n^2+n+6>0$. Коначно, $\binom{12}{n}=\binom{12}{4}=495$.
- 5. Функција $f(x) = \frac{1-\sin x}{\cos x}$ је непрекидна на интервалу $[-\pi/3,0]$ и важи $f(-\pi/3) = 2+\sqrt{3} > 2$, f(0) = 1 < 2, те постоји x такво да је f(x) = 2. Како је $\frac{1-\sin x}{\cos x} \cdot \frac{1+\sin x}{\cos x} = \frac{1-\sin^2 x}{\cos^2 x} = 1$, то је $\frac{1+\sin x}{\cos x} = \frac{1}{2}$.
 - Алтернативно, из услова задатка следи $1=\sin x+2\cos x=\sqrt{5}\sin(x+\varphi)$, где је $\varphi=\arctan(2)$, односно важи $\sin \varphi=2/\sqrt{5}$, $\cos \varphi=1/\sqrt{5}$. Сада је једначина $\sin(x+\varphi)=1/\sqrt{5}=\cos \varphi=\sin(\frac{\pi}{2}-\varphi)$, одакле следи $0=\sin(x+\varphi)-\sin(\frac{\pi}{2}-\varphi)=2\sin(\frac{x}{2}+\varphi-\frac{\pi}{4})\cos(\frac{x}{2}+\frac{\pi}{4})$. Међутим, имамо $\cos(\frac{x}{2}+\frac{\pi}{4})=\frac{1}{\sqrt{2}}(\cos\frac{x}{2}-\sin\frac{x}{2})\neq 0$ због $\cos^2\frac{x}{2}-\sin^2\frac{x}{2}=\cos x\neq 0$, те остаје $\sin(\frac{x}{2}+\varphi-\frac{\pi}{4})=0$, одакле добијамо $x=\frac{\pi}{2}-2\varphi+2k\pi$ за цео број k. Сада је $\sin x=\cos 2\varphi=\cos^2\varphi-\sin^2\varphi=-\frac{3}{5}$ и $\cos x=\sin 2\varphi=2\sin\varphi\cos\varphi=\frac{4}{5}$, те $\frac{1+\sin x}{\cos x}=\frac{1}{2}$.
- 6. Израз $\sin(\pi x)$ је дефинисан за свако $x \in \mathbb{R}$, док је израз $\arcsin(1-x)$ дефинисан за $-1 \leqslant 1-x \leqslant 1$, што даје $x \in [0,2]$. Изрази који се јављају у имениоцима разломака, осим што морају бити дефинисани, морају бити и различити од нуле. Израз $1-\sqrt{(x-1)^2}=1-|x-1|$ је увек дефинисан, а једнак нули само за $x \in \{0,2\}$. Израз $\sqrt{1-\cos(2\pi x)}$ је увек дефинисан, а једнак нули само за $x \in \mathbb{Z}$. Како је $12-5x-2x^2=(x+4)(3-2x)$, израз $\sqrt{12-5x-2x^2}$ је дефинисан и различит од нуле за $x \in (-4,3/2)$. Ако објединимо резултате добијамо домен функције $(0,1)\cup(1,\frac{3}{2})$.
- 7. Ако је $t = 2^{\sin x}$, то тражимо максимум од $t^2 4t + 5$ на интервалу $t \in [1/2, 2]$, а како је ту функција опадајућа, максимум је за t = 1/2 и износи 3,25.
- 8. Како је $f(n)/f(\lfloor n/2 \rfloor)$ или 2^1 (за парно n) или 2^2 (за непарно n), то тражимо број начина на који се број $32=2^5$ може приказати као производ фактора 2 и 4, при чему је битан редослед. То је даље једнако броју начина на који се број 5 раставља као збир сабирака 1 и 2, при чему је битан редослед. Имамо 3 растављања која укључују две двојке (2+2+1,2+1+2,1+2+2), њих 4 са једном двојком (2+1+1+1,1+2+1+1,1+1+2+1,1+1+1+1+1), што укупно даје 8 растављања.
- 9. Ако је облик аритметичке прогресије $a_n=a+(n-1)d$, онда је $S_n=an+dn(n-1)/2$. Из $2S_3=S_5$ следи 6a+6d=5a+10d, одакле је a=4d и $d\neq 0$, док је $S_{21}=21a+210d=294d=6(7a+21d)=6S_7$, те је $S_7/S_{21}=1/6$.
- 10. За $x\leqslant 0$ неједначина постаје -ax+2>1-x, те се своди на (a-1)x<1, што важи за свако $x\leqslant 0$ ако и само ако је $a\geqslant 1$, те је то потребан услов. Међутим, за $a\geqslant 1$ је $a|x|+2\geqslant |x|+2>|x|+1\geqslant |x-1|$, тако да је овај услов и довољан.

- 11. Свакако је $a\geqslant 0$, док случај a=0 може дати највише два решења. Потребно је да обе једначине облика $x^2+6x-1=\pm a$ имају тачно по два решења (која су онда сва међусобно различита), што значи да су дискриминанте $36-4(-1\mp a)$ позитивне, односно $10\pm a>0$, одакле следи 0< a<10.
- 12. Вијетове формуле дају $x_1+x_2=m+3$ и $x_1x_2=m+2$. Из $\frac{1}{2}<\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{m+3}{m+2}$ имамо $m\in (-\infty,-4)\cup (-2,\infty)$, а из $5>x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=(m+3)^2-2(m+2)=m^2+4m+5$ имамо $m\in (-4,0)$, те у пресеку добијамо $m\in (-2,0)$.
- 13. Због домена, неопходно је $x \neq 0$ и $|x| \leqslant 1/3$. За x > 0 неједначина постаје $1 x < \sqrt{1 9x^2}$, одакле је $10x^2 2x < 0$, односно 0 < x < 1/5. За x < 0 неједначина је $1 x > \sqrt{1 9x^2}$, одакле је $10x^2 2x > 0$, те x < 0. Ако објединимо случајеве имамо $x \in [-1/3, 0) \cup (0, 1/5)$.
- 14. Ако је $a=\log_{10}x$ и $b=\log_{10}y$, онда су једначине a+2b=1 и ab=-3, одакле је (1-2b)b=-3, односно $2b^2-b-3=(2b-3)(b+1)=0$. Одавде постоје 2 решења b=3/2, a=-2 и b=-1, a=3, односно $x=1/100, y=\sqrt{1000}$ и x=1000, y=1/10.
- 15. Ако су O_1 и O_2 центри кругова, а пресечне тачке кругова A и B, онда је троугао AO_1O_2 половина једнакостраничног троугла странице 2. Тражена површина се добија тако што се од збира површина исечака, првог круга са централним углом од 60° , а другог круга са централним углом од 120° , одузме површина четвороугла O_1AO_2B , што је $(\sqrt{3})^2\pi/6 + 1^2\pi/3 2 \cdot \sqrt{3} \cdot 1/2 = 5\pi/6 \sqrt{3}$.
- 16. Једначина се лако трансформише у $\frac{3}{2} + \frac{3}{2}\sin 2x + \frac{1}{2}\cos 2x = 0$, те је $3 + \sqrt{10}\sin(2x + \arctan\frac{1}{3}) = 0$, односно $\sin(2x + \arctan\frac{1}{3}) = \frac{-3}{\sqrt{10}}$, што има 2 решења за $2x \in [0, 2\pi)$, односно 4 решења на интервалу $[0, 2\pi)$. Алтернативно, једначина се може трансформисати и у облик $(\sin x + \cos x)(\sin x + 2\cos x) = 0$, те како за $\cos x = 0$ нема решења (тада је $\sin^2 x = 1$), једначина постаје $(\operatorname{tg} x + 1)(\operatorname{tg} x + 2) = 0$. Како једначине $\operatorname{tg} x = -1$ и $\operatorname{tg} x = -2$ имају по два решења на интервалу $[0, 2\pi)$, наведена једначина има 4 решења на $[0, 2\pi)$.
- 17. Центар првог круга $C_1(2,1)$ је на растојању $\sqrt{(2-(-2))^2+(1-(-2))^2}=5$ од центра другог круга $C_2(-2,-2)$. Додирне тачке кругова налазе се у пресеку праве C_1C_2 и другог круга, чији је полупречник 7. Зато је један полупречник $r_1=|7-5|=2$, а други $r_2=|7+5|=12$, одакле је $|r_1-r_2|=10$.
- 18. Из $x^4-x^3+ax^2+bx+c=(x^2+d^2)(x^2-x+(a-d^2))+(b+d^2)x+c-d^2(a-d^2)$ следи $b+d^2=1$ и $c-ad^2+d^4=0$, док из $x^4-x^3+ax^2+bx+c=(x^2-d^2)(x^2-x+(a+d^2))+(b-d^2)x+c+d^2(a+d^2)$ следи $b-d^2=-1$ и $c+ad^2+d^4=0$. Решавањем система се лако добија b=0, $d^2=1$, a=0 и c=-1, те је $\frac{a+b+c}{d^2}=-1$.
- 19. Како је $n^3+n=(n+1)(n^2-n+2)-2$, а n^2-n+2 цео, то је $\frac{n^3+n}{n+1}$ цео ако и само ако је то $\frac{2}{n+1}$, што се дешава за $n+1\in\{-2,-1,1,2\}$, односно за $n\in\{-3,-2,0,1\}$, те их има 4.
- 20. Из $\frac{\sqrt{10!}}{3\cdot(6!)}=\frac{\sqrt{7}}{3}<\frac{\sqrt{7}}{2}$, те $\frac{\log_2 30}{\log_3 85}<\frac{\log_2 32}{\log_3 81}=\frac{5}{4}=\frac{\sqrt{25}}{4}<\frac{\sqrt{28}}{4}=\frac{\sqrt{7}}{2}$ и $\frac{1+\sqrt{6}}{3}<\frac{1+\sqrt{7}}{3}=\frac{2+2\sqrt{7}}{6}<\frac{3\sqrt{7}}{6}=\frac{\sqrt{7}}{2}$ следи да је $\frac{\sqrt{7}}{2}$ највећи од понуђених бројева.