线性代数

王丹阳

2020/7/22

目录

第一章	线性方程组	2
1.1	一些概念	2
1.2	线性方程组的解的情形及判别准则	3
第二章	向量空间	4
2.1	预备知识-域	4

第一章 线性方程组

线性方程组是高等代数研究问题的起点

1.1 一些概念

由对 n 元线性方程组的高斯消元法求解引入矩阵及其相关基本概念

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{s1}x_1 + \dots + a_{sn}x_n = b_s \end{cases}$$

求解过程中不难发现方程组的解只与系数和常数项有关。为此我们从中抽象出一个数学模型,把它叫矩阵。

定义 1.1.1 由 $s \cdot n$ 个数排成 s 行,n 列的一张数表称为一个 $s \times n$ 矩阵,矩阵常用大写字母 A, B, C 表示. 若令 $A = (a_{ij})_{s \times n}$,则其第 i 行,第 j 列个元素可表示为 A(i;j) 或 a_{ij}

定义 1.1.2 线性方程组系数所组成的矩阵称为系数矩阵,带上常数项后称为增广矩阵

易知,高斯消元法中所用到的变换不改变方程组的解,因此引入矩阵初等行变换的概念 **定义 1.1.3** 称以下三种变换为矩阵的初等行变换:

- 用一个非零数乘以一行
- 交换两行
- 用一行的倍数加到另一行

由最后的求解又引入了行阶梯型矩阵和行最简型矩阵、主元。主元反映到线性方程组中又产生了主变量和自由变量的概念。

定义 1.1.4 (行阶梯形矩阵) 一个矩阵是行阶梯型矩阵, 当且仅当它满足:

• 若有零行,零行在最下方

第一章 线性方程组 3

• 对于非零行,从左到右第一个非零元称为主元,主元的列指标随着行指标的增大严格增大

定义 1.1.5 (行最简型矩阵) 一个矩阵是行最简型矩阵, 当且仅当它满足:

- 是行阶梯型矩阵
- 主元都是 1
- 主元所在列的其它元素都是 0

定义 1.1.6 (主变量) 以主元为系数的便量称为主变量, 其它变量称为自由变量

1.2 线性方程组的解的情形及判别准则

根据一些例子不难猜想出线性方程组的解有三种情形:

- 1. 当方程出现不相容时, 无解
- 2. 有唯一解
- 3. 有无穷多解

现予以说明: 首先将对应的增广矩阵化为行阶梯型,设变量有n个,此时有r个非零行。

- 若某行出现" $0 = d(d \neq 0)$ " 时,显然无解
- 由主元的定义知有 r 个主元, 故 r < n
 - 当 r=n 时,继续将行阶梯型化为行最简型,可直接得到此时有唯一解
 - 当 r < n 时,存在自由变量,此时有无穷多解

定理 1.2.1 (线性方程组解的情况及判定准则) n 元线性方程组的解的情形只有三种:

- \mathcal{L} \mathcal{L}
- 有唯一解 \iff 增广矩阵化行阶梯型非零行行数 r=n
- 有无穷多解 ⇐⇒ 增广矩阵化行阶梯型非零行行数 r < n

推论 1.2.1 n 元齐次线性方程组的解的情形有两种:

- 有唯一零解 \iff 系数矩阵化行阶梯型非零行行数 r=n
- 有无穷多解 ← 系数矩阵化行阶梯型非零行行数 r < n

第二章 向量空间

2.1 预备知识-域

运算说白了就由运算对象按照一定的运算法则生成运算结果。这样就很容易用映射来给出运算的数学定义

定义 2.1.1 对于非空集合 X,Y, 我们称映射 $\varphi: X \to Y$ 为从 X 到 Y 的一元运算, 当 X = Y 时, 称 φ 是定义在 X 上的一元 (代数)运算

定义 2.1.2 对于非空集合 X,Y,Z, 我们称映射 $\varphi: X\times Y\to Z$ 为从 $X\times Y$ 到 Z 的二元运算,当 X=Y=Z 时,称 φ 是定义在 X 上的二元(代数)运算

类似地可定义 n 元代数运算强调几个点:

- φ 只是一个抽象的运算符号,可以是任何东西,但数学中常用 $+,\cdot,*$ 等表示二元运算符
- 运算符的位置有前缀、中缀、后缀三种。常用的是中缀,例如将 $\circ(x,y)$ 写成 $\circ xy, x\circ y, xy\circ$
- 对于定义在非空集合 X 上的一个运算 *, 其封闭性显然已蕴含在定义中

在集合之上定义了运算之后,这种运算就赋予了集合元素之间一种代数结构,例如在 N之上定义了加法之后,就有 1+3=4,这就在这三个元素之间形成了结构

定义 2.1.3 设 * 是定义在非空集合 S 上的一个运算,则称二元组 (S,*) 为一个 (f) 有一个代数运算的)代数系

类似的,可以定义含更多个运算的代数系 对于含一个二元代数运算的代数系,我们关注该运算的交换律和结合律

定义 2.1.4 (交换律、结合律) 设 (X,*) 是一个代数系, * 是二元运算

- 若 $\forall a,b \in X$, 恒有 a*b=b*a, 则称 * 满足结合律
- 若 $\forall a, b, c \in X$, 恒有 (a*b)*c = a*(b*c),则称 * 满足结合律 同样的,二元代数运算的单位元素,以及由此引入的逆元素的概念同样很重要

第二章 向量空间 5

定义 2.1.5 (单位元素、逆元素) 设 (S,*) 是一个代数系,* 是二元运算

• $\exists e \in S$, 使得 $\forall a \in S$, 恒成立 e*a = a*e = a, 则称 e 为 * 的单位元素(也叫幺元,其中幺有数目中的一的含义)。类似地可以定义左单位元素和右单位元素的概念。

• 若 $\forall a \in S \exists b \in S$, 使得 a * b = b * a = e 则称 $b \neq a$ 在运算 e 下的逆元。

当一个代数系有两个二元代数运算时,这两个运算的交互能否满足分配律是我们关注的

定义 2.1.6 设 (S,*,+) 是一个代数系,*,+ 是二元运算,若 $\forall a,b,c \in S$,恒有 a*(b+c) = a*b+a*c,则称 * 对 + 满足左分配律,类似地可以定义右分配律,左右分配律都满足则称 * 对 + 满足分配律

有了上面的准备,我们可以着手定义域

定义 2.1.7 设 $(S,+,\cdot)$ 是一个代数系统, $+,\cdot$ 是二元运算(不妨分别称之为加法和乘法),则 $(S,+,\cdot)$ 是一个域当且仅当满足以下五个条件:

- 1. +,· 满足交换律
- 2. +,·满足结合律
- 3. + . · 有单位元(不妨分别记作 0, 1)
- 4. $\forall x \in S$. 存在加法逆元; $x \neq 0$ 时, 存在乘法逆元
- 5. · 对 + 有分配律

进一步地,不妨将 a 的加法逆元记为 -a, 乘法逆元记为 a^{-1} ,将减法 - 和除法 ÷ 分别 定义为

$$a - b = a + (-b); a \div b = a \cdot b^{-1}$$

定理 2.1.1 由 a 是 -a 的加法逆元, 是 a^{-1} 的乘法逆元立即可得

- a = -(-a)
- $a = (a^{-1})^{-1}$

定理 2.1.2 (消去律) $(F, +, \cdot)$ 是一个域, $\forall a, b \in F$, 有

- <math><math> $a \cdot b = a \cdot c$ 且 $a \neq 0$, 则 b = c

推论 2.1.1 域中的单位元、逆元都唯一

定理 2.1.3 $(F, +, \cdot)$ 是一个域, $\forall a, b \in F$, 有

第二章 向量空间 6

- $a \cdot 0 = 0$
- $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$
- $(-a) \cdot (-b) = a \cdot b$

推论 2.1.2 域中的加法单位元没有乘法逆元