DBS Assignment IV

1. Write an algorithm that can perform dependency-preserving, lossless decomposition into *Third Normal Form*.

```
Let F_c be a canonical cover for F;
i := 0;
for each functional dependency \alpha \to \beta in F_c do
 if none of the schemas R_i, 1 \le i \le i contains \alpha \beta
        then begin
                i := i + 1:
                R_i := \alpha \beta
if none of the schemas R_i, 1 \le i \le i contains a candidate key for R
 then begin
           i := i + 1;
           R_i := any candidate key for R;
/* Optionally, remove redundant relations */
repeat
if any schema R_i is contained in another schema R_k
     then I^* delete R_i^*
        R_j = R;;
i=i-1;
return (R<sub>1</sub>, R<sub>2</sub>, ..., R<sub>i</sub>)
```

(Source)

2. Explain Multivalued Dependency and 4NF with an example.

The multivalued dependency $X \to Y$ holds in a relation R if whenever we have two tuples of R that agree in all the attributes of X, then we can swap their Y components and get two new tuples that are also in R.

For example:

Drinkers (name, addr, phones, beersLiked) with MVD name \longrightarrow phones. If Drinkers has the two tuples:

name	addr	phones	beersLiked
sue	a	p1	<i>b</i> 1
sue	a	p2	b2

it must also have the same tuples with phones components swapped:

name	addr	phones	beersLiked
sue	a	p1	<i>b</i> 2
sue	a	p2	b1

To eliminate the redundancy due to the multiplicative effect of MVDs, 4NF is formed, treating MVDs as FDs for decomposition but not for finding keys.

Formally: R is in Fourth Normal Form if whenever MVD $X \longrightarrow Y$ is nontrivial (Y is not a subset of X, and $X \cup Y$ is not all attributes), then X is a superkey.

lacktriangle Remember, $X \to Y$ implies $X \to Y$, so 4NF is more stringent than BCNF.

For example: (Source)

Drinkers(name, addr, phones, beersLiked)

- ullet FD: name o addr
- Nontrivial MVD's: name → phones and name → beersLiked.
- Only key: {name, phones, beersLiked}
- All three dependencies above violate 4NF.
- Successive decomposition yields 4NF relations:

D1(<u>name</u>, addr)
D2(<u>name</u>, p<u>hones</u>)
D3(name, beersLiked)

3. Decompose the following into BCNF (showing each step involved) for the given Relation and F.D below. Is your answer unique? Why?

RELATION R = (A, B, C, D)

$$FD = A \rightarrow B$$
, $C \rightarrow D$, $B \rightarrow C$

Logically, since B, C, and D are the only attributes that can be determined via other attributes, we can deduce that the keys will contain the other attributes, thus we perform a smaller attribute closure:

$$A \rightarrow ABCD$$
 $AB \rightarrow ABCD$
 $AC \rightarrow ABCD$
 $AD \rightarrow ABCD$
 $ABC \rightarrow ABCD$
 $ABD \rightarrow ABCD$
 $ACD \rightarrow ABCD$

Violations:

$$B \rightarrow C$$
, $C \rightarrow D$

Decomposing the relations into collections of relations that are in BCNF.

So we get R_1 (BC), R_2 (AB), R_3 (BD).

Note: $C \rightarrow D$ is not preserved by the BCNF decomposition. (Source)

4. Find the candidate keys for relation schema R = (A, B, C, D, E). Explain (in detail) your answer.

RELATION R = (A, B, C, D, E)
FD = A
$$\rightarrow$$
 BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A

```
A \rightarrow BC, B \rightarrow D so A \rightarrow D so A \rightarrow DC \rightarrow E therefore A \rightarrow ABCDE, so E \rightarrow ABCDE
```

 $CD \rightarrow E$, so $CD \rightarrow ABCDE$ $B \rightarrow D$, $BC \rightarrow CD$, so $BC \rightarrow ABCDE$

Attribute closure:

 $A \rightarrow ABCDE$

 $\mathsf{B} \quad \to \quad \mathsf{B} \, \mathsf{D}$

 $C \rightarrow C$

 $D \rightarrow D$

 $E \rightarrow ABCDE$

AB → ABCDE

AC → ABCDE

AD → ABCDE

AE → ABCDE

BC → ABCDE

 $BD \rightarrow BD$

BE → ABCDE

CD → ABCDE

CE → ABCDE

DE → ABCDE

ABC → ABCDE

ABD → ABCDE

ABE → ABCDE

ACD → ABCDE

ACE → ABCDE

ADE → ABCDE

 $BCD \rightarrow ABCDE$

 $BDE \rightarrow ABCDE$

CDE → ABCDE

ABCD → ABCDE

ABCE → ABCDE ABDE → ABCDE

ACDE - ABCDE

BCDE → ABCDE

The candidate keys are A, E, CD, and BC.

Any combination of attributes that includes those is a super key.

(Source)

5. Using Armstrong's axioms, prove:

i. Union Rule

TO prove:

If $\alpha \to \beta$ and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds.

$$\alpha \rightarrow \beta$$
 ———

Augmenting (2) with a, we get,

$$a \rightarrow ay \qquad --- (3)$$

Augmenting (1) with γ , we get,

$$\alpha \gamma \rightarrow \beta \gamma$$
 $---(4)$

From (3) and (4), by transitivity, we get

$$\alpha \rightarrow \beta \gamma$$

ii. Pseudo Transitivity Rule

TO prove:

if
$$\alpha \to \beta$$
 and $\gamma\beta \to \delta$ holds then $\alpha\gamma \to \delta$ holds

Given:

$$\alpha \rightarrow \beta$$
 $---(1)$

Augmenting (1) with γ , we get,

$$\alpha \gamma \rightarrow \beta \gamma$$
 $---(2)$

Also,

$$\gamma\beta \rightarrow \delta$$
 ——— (3)

$$\beta \gamma \rightarrow \delta$$
 $(\beta \gamma = \gamma \beta)$

From (2) and (3) from transitivity, we get

$$\alpha \gamma \rightarrow \delta$$