Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3 i \sqrt{2} k}{(3+2 k^2)^2 t_3}$	0	$\frac{6 k^2}{(3+2 k^2)^2 t_3}$			
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	$f_{1^-}^{\#2} \alpha$	0	0
$\sigma_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	$\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	$f_{1^-}^{\#1} \alpha$	0	U
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$ - $\frac{(3+2k^2)^2t_3}{(3+2k^2)^2t_3}$	$\frac{3\sqrt{2}}{(3+2k^2)^2t_3} = \frac{1}{(3+2k^2)^2}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$	$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0
β	$\frac{2}{k^3 r_3}$	$\frac{4t_2)}{r_3t_2}$	4 <i>t</i> 2 <i>r</i> 3 <i>t</i> 2	10			(3)	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	Û
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	$\frac{9k^2r_3+4t_2}{3(1+k^2)^2r_3t_2}$	0	0	0	0	$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	ūkt2
$\sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{9k^2r_3+4t_2}{3(k+k^3)^2r_3t_2}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	0	0	0	0	$\omega_{1}^{\#2}$	$\begin{array}{c c} \sqrt{2} \ t_2 \\ 3 \end{array} \begin{array}{c c} \frac{1}{3} \ j \end{array}$	<u>t</u> 2
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2}{3k^2r_3}$	$\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3} = \frac{9}{3r^3}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3} - \frac{i}{3i}$	0	0	0	0	$\omega_1^{\#1}_{+}\alpha_\beta$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$	$\sqrt{2} t_2$
	$_{1}^{#1}+^{\alpha\beta}$	$_{1}^{#2} + ^{\alpha\beta}$	$^{"#1}_{1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} + \alpha$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_1^{\#1} + ^{lpha}$	$\tau_{1}^{\#2} + \alpha$		$_{1}^{\#1}+\alpha\beta$	$^{+2}_{\mu} + \alpha\beta$

		$\omega_1^+ \alpha \beta$	$\int_{1}^{+} \frac{1}{\alpha \beta}$	$\omega_{1}^{"-}{}_{\alpha}$	$\omega_{1}^{"z}$	$f_{1}^{"}$	$f_{1}^{"}$	_
$\omega_1^{\#1} +^{\alpha\beta}$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$		$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0	
$\omega_1^{#2} + \alpha^{\beta}$	$\frac{\sqrt{2}t_2}{3}$	1 2 3	<u>i kt2</u> 3	0	0	0	0	
$f_1^{#1} + \alpha \beta$	$-\frac{1}{3}$ i $\sqrt{2}$ kt_2	$\left -\frac{1}{3} \tilde{l} k t_2 \right $	$\frac{k^2 t_2}{3}$	0	0	0	0	
$\omega_1^{\#1} +^\alpha$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	$-\frac{2}{3}$ ikt ₃	
$\omega_1^{\#2} +^{lpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	13 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	
$f_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0	
$f_1^{\#2} + \alpha$	0	0	0	2 <i>ikt</i> 3 3	$-\frac{1}{3}i\sqrt{2}k$	kt_3 0	$\frac{2k^2t_3}{3}$	
Source	Source constraints/gauge generators	anap apii	rators		$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2} \sigma_0^{\#1}$	
SO(3) i	irreps	Multiplicities		$\sigma_{0}^{\#1} + \frac{1}{(1-)}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	
$\tau_{0}^{\#2} == 0$		1				2 k ²	C	
$\tau_{0+}^{\#1} - 2 i k$	$\sigma_{0}^{\#1} == 0$	1		_) ² t ₃	$(1+2k^2)^2t_3$	D	
$\tau_{1}^{#2\alpha}$ - ik	$\sigma_{1}^{\#1}{}^{\alpha} == 0$	3		τ ₀ ^{#2} †	0	0	0	
		m		$\sigma_{0}^{\#1}$ †	0	0	$0 \frac{1}{k^2 r_2 + t_2}$	+t2
$\sigma_{1}^{\#1}{}^{\alpha}$ +	$+2 \sigma_{1}^{\#2} \alpha == 0$	С		•		$\tau_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{3}^{\#1}$	$\alphaeta\chi$	
$\tau_1^{\#1}\alpha\beta$	$+ik \sigma_{1+}^{\#2\alpha\beta} == 0$	3		$\sigma_2^{\#1} + \alpha \beta$	$-\frac{2}{3k^2r_3}$	0 0		
$\sigma_{2}^{\#1}\alpha\beta\chi$	0 ==	5		$\tau_2^{\#1} + ^{\alpha\beta}$	0	0 0		
$\tau_2^{\#1}\alpha\beta$ =	0 ==	5	ρ	$\sigma_{2^-}^{\#1} +^{\alpha eta \chi}$	0	0 0		
Total c	Total constraints:	24		_			1	
	$\omega_{0}^{\#1}$ $f_{0}^{\#1}$	$f_{0}^{\#2}$	$\omega_{0}^{\#1}$)	$\omega_{2}^{\#1}$ $\beta_{2}^{\#1}$ $\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$	lphaeta $\omega_2^{\#1}$	χ	
	i-	3 0		$\omega_2^{#1} + \alpha \beta$	$\frac{3k^2r_3}{2}$ 0	0		
Ū	kt3 21	0 0		$f_2^{#1} + \alpha \beta$	0 0	0		
Γ ₀ + Τ ,,,#1+		0 0	3	$\omega_{2}^{#1} +^{\alpha eta \chi}$	0	0		
$\omega_{0^{-}}$		×	$r_2 + t_2$				1	

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$