Guideline for codes

Restricted mean survival time to estimate an intervention effect in a cluster randomized trial

Floriane Le Vilain-Abraham, Elsa Tavernier, Etienne Dantan, Solène Desmée, Agnès Caille

Contents

0	Introduction	1
1	Generation of the datasets and statistical analysis	1
2	Estimation of the performance measures	Ę

0 Introduction

The code is divided into two folders: one for the scenarios under proportional-hazards (PH) assumption and one under non-proportional-hazards (NPH) assumption. For both cases, there are 2 steps:

- 1. Generation of the datasets and statistical analysis
- 2. Estimation of the performance measures

The following sections describe how to used the R code for each step.

1 Generation of the datasets and statistical analysis

The main_DA_PH.R (for the PH assumption) and main_DA_NPH.R (for the NPH assumption) files are R codes to generate 1000 simulated datasets of a prefined scenario and analyse each dataset with the 5 methods (KM_{indep} , PV_{indep} , KM_{clust} , PV_{ECM} and PV_{ICM}). For the permutation test, see the subsection 1.

The necessary packages are: doParalell (line 14) and doRNG (line 15). The necessary R functions, saved in a R file with the same name, are loaded in the main script (main_DA_PH.R or main_DA_NPH.R):

- sim_PH or sim_NPH (line 20): simulates a dataset and estimates the difference in RMST, its variance and the 95% confidence interval with the 5 methods
- generate_data_PH or generate_data_NPH (line 21): generates one dataset
- generate_cluster_PH or generate_cluster_NPH (line 22): generates time-to-event data for one cluster
- RMST_pseudo (line 23): analyses one dataset with the pseudo-value regression-based methods (accounting and not accounting for clustering)
- RMST_KM (line 24): analyses one dataset with the Kaplan-Meier-based methods (accounting and not accounting for clustering)
- variance_bootstrap (line 25): resamples one dataset and estimates the difference in RMST with the Kaplan-Meier-based method (function to estimate the variance of the difference in RMST using bootstrap method)

The RMST_pseudo, RMST_KM and variance_bootstrap functions are identical for PH and NPH assumptions.

Before running, you have to specify in the main file (main_DA_PH.R or main_DA_NPH.R):

- The directory where you saved all the R files with the necessary R functions detailed previously (line 19).
- The parameters of the scenario (line 30 in the data frame table_parameter).
- The horizon time (line 41). Here, it is set at 365 days. All time are expressed in days.
- The directory where the 1000 simulated datasets and the estimations of the difference in RMST, the variance and 95% confidence interval will be saved (line 47). The 1000 datasets will be saved in a same automatically created folder. The estimations of the difference in RMST, variance and 95% confidence interval for the 5 methods and for the 1000 simulated datasets will be saved in one txt file. Table 1 and 2 described the content of one simulated dataset and of the txt file with all the estimations, respectively.
- The number of cores for the parallelisation (line 76).

Colnames	Variables
time	X_{lk} , the observed time of the individual l from the cluster k
arm	arm of the clusters $k (= 1 \text{ for the intervention group}, 0 \text{ for control group})$
cluster	cluster's identifiant k
$\mathtt{id}_\mathtt{patient}$	patient's identifiant l
status	δ_{lk} , the event indicator of the individual l from the cluster k (= 1 for death, 0 for censor)

Table 1: Content of one simulated dataset

Colnames	Variables
	Parameters used to simulate the dataset
d	dataset number
K	total number of clusters
m	mean cluster size
HR	true HR
$t_{ extsf{delay}}$	change point (only for NPH assumption)
tau	Kendall's tau
censoring	censoring rate
	Analysis
clustering	if the method accounts (="yes") or does not account (="no") for clustering
delta.rmst	estimation of the difference in RSMT
var	variance estimation
ci.low	lower bound of the 95% confidence interval
ci.up	upper bound of the 95% confidence interval
method	type of method used for the analysis
t_star	horizon time of the analysis

Table 2: Content of txt file with the estimations of the difference in RMST, variance and 95% confidence intervals for the 5 methods and for the 1000 simulated datasets

Permutation test for the pseudo-values regression-based method: Statistical analysis

The permutation tests for the pseudo-values regression-based method with a independent and exchangeable working correlation matrix are performed separately. All the needed functions are available in the $Permutation\ test$ forder (Proportional-hazards/1 - $Generation\ of\ the\ datasets\ and\ statistical\ analysis/$).

The main_permutation.R file is the R code to analyse each simulated dataset with the permutation test. The necessary packages are: doParalell (line 14) and doRNG (line 15).

The necessary R functions, saved in a R file with the same name, are loaded in the main file (main_permutation.R):

- sim_permutation (line 20): to estimate the p-values for the pseudo-values regression-based methods
- permutation (line 21): to analyse of one dataset with the permutation test
- permutation_test (line 22): to estimate the test statistic for one permuted dataset

Before running, you have to specify in the main_permutation.R file:

- The directory where you saved all the R files with the necessary R functions detailed previously (line 19).
- The parameters of the scenario (line 27 in the data frame table_parameter).
- The horizon time (line 38). Here, it is set at 365 days. All time are expressed in days.
- The directory where the estimations of the p-values will be saved (line 45). The estimations of the p-values for the 1000 simulated datasets will be saved in one txt file. Table 3 describes this txt file.
- The number of cores for the parallelisation (line 69).

You also have to specify in the sim_permutation.R file, the directory where the simuled datasets have been saved (line 24).

Colnames	Variables	
	Parameters used to simulate the dataset	
d	dataset number	
K	total number of clusters	
m	mean cluster size	
HR	true HR	
tau	Kendall's tau	
censoring	censoring rate	
Analysis		
matrix	type of working correlation matrix used for the analysis	
	("ind" = independent, "exch" = exchangeable)	
var	estimated p-value	
t_star	horizon time of the analysis	

Table 3: Content of txt file with the estimations of p-value for pseudo-values regression for the 1000 simulated datasets

2 Estimation of the performance measures

The main_PM_PH.R (for the PH assumption) and main_PM_NPH.R (for the NPH assumption) files are R codes to estimate the performance measures for the 5 methods (KM_{indep} , PV_{indep} , KM_{clust} , PV_{ECM} and PV_{ICM}). For the permutation test, see the subsection 2.

No package is necessary. The necessary R functions, saved in a R file with the same name, are loaded in the main script (main_PM_PH.R or main_PM_NPH.R):

- pm_estimation_PH or pm_estimation_NPH (line 15): estimates the performance measures for the 5 methods
- performance_measures (line 16): estimates the performance measure for one methode
- true_rmst_difference_PH or true_rmst_difference_NPH (line 17): computes the true difference in RSMT
- survival_function_PH or surival_function_NPH (line 18): true survival function

Before running, you have to specify:

- The directory where you saved all the R files with the necessary R functions detailed previously (line 14).
- The directory and the name of the txt file where the estimations of the difference in RMST, variance and 95% confidence interval for the 5 methods and for the 1000 datasets have been saved in the step 1 (line 23).

When you run the main R script, the performance measures are summurized in a data frame. The content of this data frame is detailed in Table 4.

Colnames	Variables
method	method
tstar	horizon time for the analysis
K	total number of clusters
m	mean cluster size
HR	true HR
tau	Kendall's tau
censoring	censoring rate
RB	relative bias
RE	relative error
coverage	coverage rate
rejection.rate	type I error rate (for the null hypothesis, i.e. absence of intervention effect)
D	number of simulation iterations that converge

Table 4: Content of the data frame obtained when running the main scripts main_PM_PH.R (for the PH assumption) or main_PM_NPH.R (for the NPH assumption)

Permutation test for the pseudo-values regression-based method: Estimation of the type I error rate

The performance of the permutation test for the pseudo-values regression is computed separately. All the needed functions are available in the *Permutation test* forder (/*Proportional-hazards*/2 - *Estimation of the performance measures*/).

The main_PM_permutation.R file is R codes to estimate the type I error rate for the pseudo-values regression-based method. No package is necessary. The following necessary R function, saved in a R file with the same name, is loaded in the main script:

• pm_estimation_permuation (line 15): estimation of the type I error rate with the permutation test for the pseudo-values regression based-methods

Before running, you have to specify in the main_PM_permutation.R file:

- The directory where you saved all the R files with the necessary R function detailed previously (line 14).
- The directory and the name of the txt file where the estimations of the p-values for the the permutation test for the pseudo-values regression-based methods for the 1000 datasets have been saved in the step 1 (line 21).

When you run the main R script, the type I error rates are summurized in a data frame. The content of this data frame is detailed in Table 5

Colnames	Variables
tstar	horizon time for the analysis
K	total number of clusters
m	mean cluster size
HR	true HR
tau	Kendall's tau
censoring	censoring rate
matrix	type of working correlation matrix used for the analysis
tie	type I error rate

Table 5: Content of the data frame obtained when running the main script ${\tt main_PM_permutation.R}$