Model of Communications System

Example Communications System

Data Transmission

- Data transmission occurs between the Transmitter and the Receiver.
- The data is encoded onto a transmission signal and the signal is transmitted across a transmission system.
- Encoding involves changing a characteristic of the signal to represent the data:
 - The more changes that can be made to a signal increases the amount of data that can be transmitted.

Transmission Signal

- The Transmission Signal is either some form of electro-magnetic wave (EM) or an electrical signal:
 - Examples of e-m waves used for data transmission include radio waves, light waves, microwaves.
 - Examples of electrical signals include Alternating-Current (A/C), Voltage pulses etc.
 - The simplest form of a signal is a Sine Wave.

Transmission System

- In its simplest form a Transmission System is some type of transmission medium which maybe either:
 - Guided e.g. Electric Cable, Fibre Optic Cable
 - Unguided Electromagnetic Waves in Space

Successful Data Transmission

- The successful transmission of data depends upon two factors:
 - The quality of the transmission signal
 - The characteristics of the *transmission* system/medium

Signal Characteristics

Continuous

- No breaks or discontinuities within signal
- Example is a speech signal

Discrete

- Contains a finite number of discrete values
- Example is computer or binary data

Periodic

- Repeats itself after some fixed time
- Aperiodic
 - No repetition of signal pattern

Continuous and Discrete Signals

Periodic Signals

Sine Wave Characteristics

The general equation applies:

$$s(t) = A\sin(2\pi . ft + \phi)$$

- Where:
 - Amplitude (A) is the peak value of the waveform
 - Frequency (f) is the number of repetitions per sec.
 Measured in Hertz (Hz.). Inverse of the period
 - Phase (Ø) is a measure of the relative position within a cycle of a signal. Measured in degrees or radians
- All three characteristics can be varied to give different waveforms

Varying Sine Wave Characteristics

Addition of Frequency Components

 $s(t) = \sin(2\pi f_1 t) + \frac{1}{3} \sin(2\pi (3f_1)t)$

Time Domain and Frequency Domain

Frequency Domain (Hertz)

Fourier Analysis

- By Fourier Analysis any signal can be expressed as the <u>sum</u> of a series of sinusoidal components of different frequencies
- This is of fundamental importance:
 - The <u>effects</u> of transmission media on a signal can be analysed by examining the effects on these component sinusoids

Signalling Concepts

Spectrum

- The range of frequencies contained in a signal.
 - For the above sample signal the spectrum ranges from f₁ to 3f₁
- Absolute Bandwidth = width of spectrum
 - For the above sample signal the bandwidth is $2f_1$ (i.e. $3f_1 f_1$)
- Effective Bandwidth
 - Signals with sharp rising and falling edges in the time domain have very wide Absolute Bandwidth
 - Most energy is contained in relatively narrow band called the Effective Bandwidth
- DC Component
 - Signals with a component at zero frequency

Fourier Analysis

- By Fourier Analysis any signal can be expressed as the sum of a series of sinusoidal components of various frequencies
- This is of fundamental importance since effects of transmission media on a signal can be analysed by analysing the effects on component sinusoids

Full Representation of Square Wave

$$s(t) = A \sum_{\substack{K=1 \\ \square \dots odd}}^{\infty} \frac{1}{K} SIN(2\pi.kft)$$

Transmission System Characteristics

- All Transmission Systems (Tx Systems) are limited (restricted) in the range of signal frequencies that they can carry.
- This restriction is known as The System
 Bandwidth and results from:
 - The physical properties of the components that comprise the system
 - The physical properties of matter and energy

Relationship between Data Rate & Bandwidth

- The bandwidth of a transmission system can be described as:
- "The fastest continuously oscillating signal that can be sent (transmitted) across the transmission system. It is represented in Hertz (Hz)."
- The effects of System Bandwidth is to limit the speed of transmission of data (Data Rate).

Relationship between Data Rate & Bandwidth

Explanation of previous slide

- The Source transmits a digital signal with the bit pattern shown (010000100).
- The first Tx System imposes a significant BW restriction on the signal such that only one component (harmonic) passes through.
- The last Tx System allows more components (harmonics) to pass through which results in a more 'readable' signal

Relationship between Data Rate & Bandwidth

- This limitation has a direct effect on the maximum data rate achieveable across a transmission system
- Consider a transmission system that has a bandwidth of 15MHz.....

Relationship between Data Rate & Bandwidth

- Examples given in class used simplistic sine waves and composite waveforms to demonstrate the effect of Tx Sys BW on the received signal:
 - Observation: To preserve the shape of the received signal requires the speed of transmission of the signal (frequency) to be reduced.
 - The same effects can be shown for more complicated signals such as a pulse train (see next slides)

Varying the Data Rate

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Varying the Data Rate

Varying the Data Rate

Previous Slide Explained

- The previous slide shows a pulse train representing a binary sequence.
- The table shows how many harmonics are received by the Receiver at various data rates.
- The faster the pulse train is transmitted (higher data rate) the less harmonics are received at the Receiver:
 - This reduces the intelligibility of the signal.

Relationship between Data Rate & Bandwidth

- For a Transmission <u>System</u> the greater the bandwidth of the <u>system</u> the higher the data rate that can be achieved
- For a Transmission <u>Signal</u> the greater the speed (frequency) of the <u>signal</u>:
 - The greater the bandwidth of the signal
 - The more data can be transmitted

Conclusions

- In <u>digital</u> transmission the square wave is usually used to encode data.
- From previous discussions:
 - A digital waveform has an <u>infinite</u> number of harmonics (frequency components),
 - All Tx Systems have a limited bandwidth.
 - The more limited the bandwidth of the Tx System the greater the distortion i.e. not all components will get through

Conclusions

- In general for a <u>digital signal</u> carrying data at a rate of *W bps*, very good representation can be achieved with a Tx System bandwidth of *W/2 Hz*.
 - For example: If the data rate of a signal is fixed at 2Mbps the Tx System Bandwidth required to facilitate this data rate would be approximately 1MHz.
 - Beware that this approximation is simply a guide and not an absolute value.
- Hence, there is a relationship between data rate and Tx System Bandwidth
- The next slides show the effects of increasing the data rate across a Tx System of fixed bandwidth.

Data and Signals - Concepts

- Consider the following entities:
 - Data
 - Entities that convey meaning
 - Signal
 - Electromagnetic wave with encoded data
 - Transmission System
 - The entity over which the signal is transmitted
- Each entity can be considered in terms of Analogue or Digital as follows.

Data and Signals - Concepts

- Analogue Data
 - Take on continuous values on some interval e.g. voice, temperature, pressure etc.
- Digital Data
 - Take on discrete values e.g. integers, text

Signals - Defined

Analogue Signal

 Continuously varying electromagnetic wave (representing data) that may be propagated over a transmission medium

Digital Signal

 Sequence of discrete, discontinuous voltage pulses (representing data) that may be propagated over a transmission medium

Data Transmission - Defined

- Data Transmission is the communication of data by the propagation and processing of signals:
 - Analogue data can be conveyed by an analogue signal e.g. ordinary telephone
 - Digital data can also be conveyed by an analogue signal when a MODEM is used.
 - Analogue data can be conveyed by a digital signal when a CODEC is used
 - Digital data can be conveyed by a digital signal e.g. digital transmitter
- Refer to the diagram in class.

Analogue Transmission - Defined

- Analogue Transmission is the propagation of analogue signals only:
 - i.e. some physical quantity (e.g. voltage) that changes continuously as a function of time
- There is <u>no</u> regard to the <u>content</u> (the encoded data) of the signal.
- As the transmitted analogue signal becomes attenuated with distance an amplifier can extend the range:
 - However, this also boosts noise so the signal eventually becomes distorted

Digital Transmission - Defined

- Digital transmission is the propagation of:
 - Analogue signals (with encoded digital data) OR,
 Digital signals
 - Digital transmission systems have regard to the encoded data.
- As the transmitted digital signal becomes attenuated with distance a repeater can extend the range:
 - A repeater receives the attenuated signal, recovers the digital data and re-transmits a new signal with no noise added.

Analogue V Digital Transmission

- Digital is Superior
 - Low cost of digital electronics
 - Data integrity signal can be maintained free of noise
 - Capacity Utilisation different digital signals can be 'Multiplexed' and 'De-multiplexed' more easily and thus share a signal channel
 - Security Encryption can be more easily applied to digital data
 - Integration Digitised analogue data can be mixed with digital and share the same facilities as other digital data