МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №3

з дисципліни «Дискретна математика»

Виконала:

студент групи КН-114

Ярка Ірина

Викладач:

Мельникова Н.І.

Львів -2019 р.

Побудова матриці бінарного відношення

Мета роботи: набуття практичних вмінь та навичок при побудові матриць бінарних відношень та визначені їх типів.

ТЕОРЕТИЧНІ ВІДОМОСТІ

Декартів добуток множин A і B (позначається $A \times B$) — це множина всіх упорядкованих пар

елементів (a,b), де $a \in A$, $b \in B$. При цьому вважається, що (a1,b1) = (a2,b2) тоді і тільки тоді, коли a1 = a2, b1 = b2.

Потужність декартового добутку дорівнює $|A \times B| = |A| \times |B|$

Бінарним відношенням R називається підмножина декартового добутку $A \times B$ (тобто $R \subset A \times B$).

Якщо пара (a,b) належить відношенню R , то пишуть $(a,b) \in R$, або aRb . Областю визначення бінарного відношення $R \subset X \times Y$ називається множина $\delta_R = \left\{ \!\! x \, \middle| \, \exists y \; (x,y) \in R \!\! \right\}$, а областю значень — множина $\rho_R = \left\{ \!\! y \, \middle| \, \exists x \; (x,y) \in R \!\! \right\}$ (\exists - існує). Для скінчених множин бінарне відношення $R \subset A \times B$ зручно задавати за допомогою матриці відношення $Rm \times n = (rij)$, де m = |A| , а n = |B| .

Елементами матриці є значення
$$r_{ij} = \begin{cases} 1, & \textit{якщо } (a_i, b_j) \in \mathbb{R}, \\ 0, & \textit{якщо } (a_i, b_j) \not \in \mathbb{R}. \end{cases}$$

Види бінарних відношень.

Нехай задано бінарне відношення R на множині $A^2: R \subseteq A \times A = \{(a, b) | a \in A, b \in A\}$.

- 1. Бінарне відношення R на множині A називається $pe\phi$ лексивним, якщо для будь якого $a \in A$ виконується aRa, тобто $(a,a) \in R$. Головна діагональ матриці рефлексивного відношення складається з одиниць. Граф рефлексивного відношення обов'язково має петлі у кожній вершині.
- 2. Бінарне відношення R на множині A називається антирефлексивним, якщо для будь якого a ∈ A не виконується aRa, тобто $(a,a) \notin R$. Головна діагональ матриці антирефлексивного відношення складається з нулів. Граф антирефлексивного відношення не має петель.
- 3. Бінарне відношення R на множині A називається *симетричним*, якщо для будь яких $a,b \in A$ з aRb слідує bRa, тобто якщо $(a,b) \in R$ то і $(b,a) \in R$. Матриця симетричного відношення симетрична відносно головної діагоналі. Граф симетричного відношення не є орієнтованим.
- 4. Бінарне відношення R на множині A називається антисиметричним, якщо для будь яких $a,b \in A$ з aRb та bRa слідує що a=b. Тобто якщо $(a,b) \in R$ і $(b,a) \in R$, то a=b. Матриця антисиметричного відношення не має жодної пари одиниць, які знаходяться на симетричних місцях по відношенню до головної діагоналі. У графа антисиметричного відношення вершини з'єднуються тільки однією напрямною дугою.

- 5. Бінарне відношення R на множині A називається mpaнзитивним, якщо для будь яких $a, b, c \in A$ з aRb та bRc слідує, що aRc. Тобто якщо $(a,b) \in R$ і $(b,c) \in R$, то $(a,c) \in R$. Матриця транзитивного відношення характеризується тим, що якщо елемент матриці $\sigma_{ij} = 1$ та $\sigma_{jm} = 1$, то обов'язково $\sigma_{im} = 1$. Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад, перша-друга та другатретя вершини, то обов'язково є дуга з першої в третю вершину.
- 6. Бінарне відношення R на множині A називається антитранзитивним, якщо для будь яких a, b, $c \in A$ з aRb та bRc слідує що не виконується aRc. Тобто якщо $(a, b) \in R$ і $(b, c) \in R$, то $(a, c) \notin R$. Матриця антитранзитивного відношення характеризується тим, що якщо елемент матриці $\sigma_{ij} = 1$ та $\sigma_{jm} = 1$, то обов'язково $\sigma_{im} = 0$. Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад, перша-друга та друга-третя вершини, то обов'язково немає дуги з першої в третю вершину.

 Φ ункцією з множини X на множину Y називається всюди визначена бінарна відповідність, при якому

кожен елемент множини Х зв'язаний з єдиним елементом множини Ү.

Види функціональних відношень

1. Функція називається ін'єктивною (ін'єкцією), якщо з умови $f(x_1) = f(x_2)$ слідує, що $x_1 = x_2$ для будь-яких $x_1, x_2 \in X$.

Функція ін'єктивна тоді і тільки тоді, коли для будь-яких $x_1, x_2 \in X$ якщо $x_1 \neq x_2$, то $f(x_1) \neq f(x_2)$, тобто для різних аргументів функція f приймає різні значення.

- 2. Функція називається сюр'єктивною (сюр'єкцією), якщо для кожного $y^* \in Y$ знайдеться такий $x^* \in X$, що $y^* = f(x^*)$.
- 3. Функція називається бієктивною (бієкцією), якщо вона ін'єктивна та сюр'єктивна одночасно. Таку функцію ще називають взаємно-однозначним відображенням.

Варіант 15

Завдання 1

Чи ϵ вірною рівність:

$$(A \times (B \cap C)) \cap ((A \cap B) \times C) = (A \times C) \cap (B \times B)$$
?
 $(A \times B) \cap (A \times C) \cap (A \times C) \cap (B \times C) =$
 $= (A \times B) \cap (B \times C) = (A \times C) \cap (B \times B)$, що і треба було довести.

Завдання 2

Знайти матрицю відношення $R \subset M \times 2^{M}$, де $M = \{1,2,3\}$:

$$R = \{(x, y) \ x \in M \& y \subset M \& y \le x\}.$$

$X \setminus Y$	Ø	{1}	{2}	{3}	{2, 1}	{3,1}	{3, 2}	$\{1, 2, 3\}$
1	0	1	0	0	1	1	0	1
2	0	0	1	0	1	0	1	1
3	0	0	0	1	0	1	1	1

Завдання 3

Зобразити відношення графічно:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& x + y^2 - 1 > 0 \}$$
, де \mathbb{R} - множина дійсних чисел.

Завдання 4

Навести приклад бінарного відношення $R \subset A \times A$, де $A = \{a, b, c, d, e\}$, яке ϵ антирефлексивне, несиметричне, транзитивне, та побудувати його матрицю.

$$R \subset \{\{a,b\}, \{a,e\}, \{b,c\}, \{b,e\}, \{c,a\}, \{c,e\}, \{d,a\}, \{d,b\}, \{d,c\}, \{e,d\}\}$$

a	b	С	d	e	_
0	1	0	0	1	a
0	0	1	0	1	b
1	0	0	0	1	С
1	1	1	0	0	d
0	0	0	1	0	е

Завдання 5

Визначити множину (якщо це можливо), на якій дане відношення ϵ : а) функціональним; б)бієктивним:

$$\alpha = \{(x, y) (x, y) \in \mathbb{R}^2 \& y = x + |x/\}$$
.

Відношення буде функціональним ЛИШЕ при x > 0, адже при x < = 0 y = 0 + 0 або y = x - x.

Бієктивне відношення ϵ ін'єктивним та сюр'єктивним водночас. Дане відношення не ϵ сюр'єктивним, оскільки у завжди додатні, отже відношення не бієктивне.

Додаток 2

Написати програму, яка знаходить матрицю бінарного відношення $\rho \subset A \times B$, заданого на двох числових множинах. Реалізувати введення цих множин, та виведення на екран матриці

відношення. Перевірити програмно якого типу ϵ задане відношення. Навести різні варіанти тестових прикладів.

15.
$$\rho = \{(a, b) \ a \in A \& b \in B \& (a + b + 1) > 3\};$$

Код програми:

```
#include <stdio.h>
#include <stdlib.h>
int main() {
    int numa, *pa, numb, *pb;
printf("\nHow much elements will be in a A set? \n");
scanf("%d", &numa);
     int* mas1 = (int*)malloc(numa * sizeof(int));
     pa = mas1;
     printf("Enter them all, please:\n");
for (int i = 0; i < numa; i++, pa++) {</pre>
          printf("%d element: ", i + 1);
scanf("%d", pa);
     int tmp;
     for (int j = 0; j < numa - 1; j++) {</pre>
          for (int i = 0; i < numa - 1; i++) {
    if (mas1[i] > mas1[i + 1]) {
                    tmp = mas1[i];
                    mas1[i] = mas1[i + 1];
                    mas1[i + 1] = tmp;
    printf("%d ", mas1[i]);
printf("\n");
printf("\nHow much elements will be in a B set? \n");
scanf("%d", &numb);
     int* mas2 = (int*)malloc(numb * sizeof(int));
     printf("Enter them all, please:\n ");
     for (int i = 0; i < numb; i++, pb++) {
          printf("%d element: ", i + 1);
scanf("%d", pb);
     for (int j = 0; j < numb - 1; j++) {
          for (int i = 0; i < numb - 1; i++) {</pre>
               if (mas2[i] > mas2[i + 1]) {
                    tmp = mas2[i];
                    mas2[i] = mas2[i + 1];
                    mas2[i + 1] = tmp;
     for (int i = 0; i < numb; i++)</pre>
          printf("%d ", mas2[i]);
     printf("\n");
     int **mas3 = (int**)malloc(numa*sizeof(int));
          mas3[i] = (int*)malloc(numb*sizeof(int));
          for (int j = 0; j < numb; j++) {
    if ((mas1[i] + mas2[j]) > 2)
                    mas3[j][i] = 1;
                    \max 3[j][i] = 0;
     printf("Matrix: \n");
          for (int j = 0; j < numb; j++)</pre>
               printf("%3d", mas3[i][j]);
          printf("\n");
```

```
int countR = 0, countIR = 0, countS = 0, countAS = 0, countT = 0;
int r = (numa*numb)-numa;
    for (int j = 0; j < numb; j++)</pre>
        if (i == j && mas3[j][i] == 1)
            countR++;
        else if (i == j && mas3[j][i] == 0)
            countIR++;
        //symmetry
        if (mas3[i][j] == 1 && mas3[j][i] == 1 && i!=j)
            countS++
        else if(mas3[i][j]==0 && mas3[j][i]==0 && i!=j)
            countAS++;
            if (mas3[i][j] == mas3[j][k] == mas3[i][k])
                countT++;
else if (countIR == numa)
    printf("The matrix is irreflexive!\n");
printf("The matrix is symmetric!\n");
if (countAS == r)
    printf("The matrix is asymmetric!\n");
if (countT >= 1)
    printf("The matrix is transitive!\n");
    printf("The matrix is antitransitive!\n");
```

Результат виконання:

```
How much elements will be in a A set?

Enter them all, please:

1 element: 4

2 element: 5

3 element: 0

4 element: 3

-5 0 3 4

How much elements will be in a B set?

4

Enter them all, please:

1 element: 7

2 element: 5

3 element: 2

4 element: 1

-5 1 2 7

Matrix:

0 0 0 0

0 0 1 1

0 0 1 1

0 1 1 1

The matrix is asymmetric!

The matrix is transitive!
```

Висновок

Ми на практиці навчилися	будувати матриці	бінарних відн	ношень та	визначати їх
типи.				