

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB101T Calculus and Linear Algebra

UNIT –III – Ordinary Differential Equations

		Equations	
Sl.No.		Tutorial Sheet -2	Answers
1	Solve $(x^2D^2 -$	-xD+1)y=0	$y = x(A\log x + B)$
2	Solve $(x^2D^2 -$	$-\frac{1}{4xD+2}y=0$	$y = \frac{A}{x} + \frac{B}{x^2}$
3	Solve $(x^2D^2 +$	+1) $y = 0$	$y = \sqrt{x} \left[A \cos\left(\frac{\sqrt{3}}{2}\log x\right) + B \sin\left(\frac{\sqrt{3}}{2}\log x\right) \right]$
4	Solve $(x+2)$	$(x^2D^2 + 4(x+2)D + 1)y = 0$	$y = (A\log(x+2) + B)(x+2)$
5	Solve $(2x+1)$	$\int_{0}^{2} D^{2} - 2(2x+1)D - 12 y = 6x + 5$	$y = A(2x+1)^{3} + \frac{B}{2x+1} - \frac{3(2x+1)}{16} - \frac{1}{6}$
6	Solve $(x^2D^2 +$	$+xD-9)y = \frac{5}{x^2}$	$y = Ax^3 + \frac{B}{x^3} - \frac{1}{x^2}$
7	Solve (x^2D^2)	$+xD+1)y = 4\sin(\log x)$	$y = (A\cos(\log x)x + B\sin(\log x))$ $-2\log x(\cos(\log x))$
8	Solve $(x^2D^2 -$	$-4xD+6)y = x^2 + \log x$	$y = (Ax^{2} + Bx^{3}) - x^{2} \log x$ $+ \frac{\log x}{6} + \frac{5}{36}$
9	Solve $(x^2D^2 -$	$-xD+1\big)y = \frac{\log x}{x}$	$y = x(A \log x + B) + \frac{1}{27x^2} \left[3(\log x)^2 + 4(\log x) + 2 \right]$