Moreover, the indicator $\mathbb{1}_{\{X_{(k-1)/n}<\rho_0\leq\rho_0+\theta< X_{k/n}\}}$ is larger, the smaller θ . Thus,

$$\log \left(\frac{P_3^{\rho_0+\theta}(X_{(k-1)/n},X_{k/n};1/n)}{P_3^{\rho_0}(X_{(k-1)/n},X_{k/n};1/n)} \right) \mathbbm{1}_{I_{3,k}^\theta} \leq \exp \left(-\frac{(X_{(k-1)/n}-\rho_0)^2}{2\alpha^2/n} \right) \mathbbm{1}_{I_{3,k}^{K\sqrt{n}}}$$

and

$$\begin{split} \sup_{\theta \in \Theta_1 \cup \Theta_2} \sum_{k=1}^n \log \left(\frac{P_3^{\rho_0 + \theta}(X_{(k-1)/n}, X_{k/n}; 1/n)}{P_3^{\rho_0}(X_{(k-1)/n}, X_{k/n}; 1/n)} \right) \mathbbm{1}_{I_{3,k}^{\theta}} \\ \leq \sum_{k=1}^n \exp \left(-\frac{(X_{(k-1)/n} - \rho_0)^2}{2\alpha^2/n} \right) \mathbbm{1}_{I_{3,k}^{K\sqrt{n}}} =: \Xi_n^{(3)}(K) \end{split}$$

Again, with Corollary B.2 we find $\sup_{K\geq 0} \mathbb{E}_{\rho_0}[|\Xi_n^{(3)}(K)|/\sqrt{n}] \leq C_{\alpha,\beta}$.

 $\mathcal{I}_4(\theta)$: Follows by the same reasoning as $\mathcal{I}_2(\theta)$ by interchanging the roles of α and β and gives an upper bound $\Xi_n^{(4)}$ with $\mathbb{E}_{\rho_0}[|\Xi_n^{(4)}|/\sqrt{n}] \leq C_{\alpha,\beta}$.

 $\mathcal{I}_5(\theta)$: First, we split

$$\begin{split} & \frac{P_1^{\rho_0+\theta}(X_{(k-1)/n},X_{k/n};1/n)}{P_2^{\rho_0}(X_{(k-1)/n},X_{k/n};1/n)} \\ & = \frac{\beta}{\alpha} \frac{\exp\left(-\frac{(X_{k/n}-X_{(k-1)/n})^2}{2\alpha^2/n}\right)}{\exp\left(-\frac{(X_{k/n}-X_{(k-1)/n})^2}{2\beta^2/n}\right)} \frac{1 - \frac{\alpha-\beta}{\alpha+\beta} \exp\left(-\frac{2}{\alpha^2/n}(X_{k/n}-\rho_0-\theta)(X_{(k-1)/n}-\rho_0-\theta)\right)}{1 + \frac{\alpha-\beta}{\alpha+\beta} \exp\left(-\frac{2}{\beta^2/n}(X_{k/n}-\rho_0)(X_{(k-1)/n}-\rho_0)\right)}. \end{split}$$

Taking the logarithm on both sides then yields

$$\log \left(\frac{P_1^{\rho_0 + \theta}(X_{(k-1)/n}, X_{k/n}; 1/n)}{P_2^{\rho_0}(X_{(k-1)/n}, X_{k/n}; 1/n)} \right) = \log \left(\frac{\beta}{\alpha} \right) - \frac{(X_{k/n} - X_{(k-1)/n})^2}{2/n} \left(\frac{1}{\alpha^2} - \frac{1}{\beta^2} \right) + R_{k, \theta}$$

with

$$R_{k,\theta} = \log \left(\frac{1 - \frac{\alpha - \beta}{\alpha + \beta} \exp\left(-\frac{2}{\alpha^2 / n} (X_{k/n} - \rho_0 - \theta) (X_{(k-1)/n} - \rho_0 - \theta)\right)}{1 + \frac{\alpha - \beta}{\alpha + \beta} \exp\left(-\frac{2}{\beta^2 / n} (X_{k/n} - \rho_0) (X_{(k-1)/n} - \rho_0)\right)} \right).$$

Denoting

$$g_k := \log\left(\frac{\beta}{\alpha}\right) - \frac{n}{2}\left(\frac{1}{\alpha^2} - \frac{1}{\beta^2}\right) (X_{k/n} - X_{(k-1)/n})^2$$

(which is independent of θ) and decomposing

$$\begin{split} \mathbb{1}_{I_{5,k}^{\theta}} &= \mathbb{1}_{\left\{\rho_{0} \leq X_{(k-1)/n} < \rho_{0} + \theta\right\}} \mathbb{1}_{I_{5,k}^{\theta}} \\ &= \mathbb{1}_{\left\{\rho_{0} + L/\sqrt{n} \leq X_{(k-1)/n} < \rho_{0} + \theta\right\}} - \mathbb{1}_{\left\{\rho_{0} + L/\sqrt{n} \leq X_{(k-1)/n} < \rho_{0} + \theta\right\}} \left(1 - \mathbb{1}_{\left\{\rho_{0} < X_{k/n} \leq \rho_{0} + \theta\right\}} \right) \\ &+ \mathbb{1}_{\left\{\rho_{0} \leq X_{(k-1)/n} < \rho_{0} + L/\sqrt{n}\right\}} \mathbb{1}_{\left\{\rho_{0} < X_{k/n} \leq \rho_{0} + \theta\right\}} \end{split}$$

then gives the decomposition

$$\text{(F.1)} \ \log \left(\frac{P_1^{\rho_0+\theta}(X_{(k-1)/n},X_{k/n};1/n)}{P_2^{\rho_0}(X_{(k-1)/n},X_{k/n};1/n)} \right) \mathbbm{1}_{I^{\theta}_{5,k}} = S_{1,\theta}(k) + S_{2,\theta}(k) + S_{3,\theta}(k) + S_{4,\theta}(k),$$