# Dictionary Learning for Massive Matrix Factorization

Arthur Mensch, Julien Mairal Gaël Varoquaux, Bertrand Thirion

Inria Parietal, Inria Thoth

October 6, 2016



#### Introduction

#### Why am I here?

- Inria Parietal: machine learning for neuro-imaging (fMRI data)
- Matrix factorization: major ingredient in fMRI analysis
- Very large datasets (2 TB): we designed faster algorithms
- These algorithms can be used in collaborative filtering



Work presented at ICML 2016

#### Déroulé

- Matrix factorization for recommender systems
  - Collaborative filtering
  - Matrix factorization formulation
  - Existing methods
- Subsampled online dictionary learning
  - Dictionary learning existing methods
  - Handling missing values efficiently
  - New algorithm
- Results
  - Setting
  - Benchmarks
  - Parameter setting

#### Déroulé

- Matrix factorization for recommender systems
  - Collaborative filtering
  - Matrix factorization formulation
  - Existing methods
- 2 Subsampled online dictionary learning
  - Dictionary learning existing methods
  - Handling missing values efficiently
  - New algorithm
- Results
  - Setting
  - Benchmarks
  - Parameter setting

# Collaborative filtering



- Collaborative platform
- n users rate a fraction of p items
- e.g movies, restaurants
- Estimate ratings for recommendation

Use the ratings of other users for recommendation

# How to predict ratings?



Credit: [Bell and Koren, 2007]

- Joe like We were soldiers, Black Hawk down.
- Bob and Alice like the same films, and also like Saving private Ryan.
- Joe should watch Saving private Ryan, because all of them indeed likes war films.

Need to uncover topics in items

### Predicting rate with scalar products

### Embeddings to model the existence of genre/category/topics

 Representative vectors for users and items:

$$(\alpha^j)_{1 \leq j \leq n}, (\mathbf{d}_i)_{1 \leq i \leq p} \in \mathbb{R}^k$$

- q-th coefficient of  $\mathbf{d}_i$ ,  $\alpha^j$
- = affinity with the "topic" q



# Predicting rate with scalar products

### Embeddings to model the existence of genre/category/topics

 Representative vectors for users and items:

$$(\alpha^j)_{1 \leq j \leq n}, (\mathbf{d}_i)_{1 \leq i \leq p} \in \mathbb{R}^k$$

- q-th coefficient of  $\mathbf{d}_i$ ,  $\alpha^j$
- = affinity with the "topic" q
- Ratings  $\mathbf{x}_{ij}$  (item i, user j):

$$\mathbf{x}_{ij} = \mathbf{d}_i^ op oldsymbol{lpha}^j \quad ( ext{ + biases})$$

= Common affinity for topics



 $\mathbf{x}_{ii}$ 

 $\mathbf{d}_{i}$ 

# Predicting rate with scalar products

### Embeddings to model the existence of genre/category/topics

 Representative vectors for users and items:

$$(\alpha^j)_{1 \leq j \leq n}, (\mathbf{d}_i)_{1 \leq i \leq p} \in \mathbb{R}^k$$

- ullet q-th coefficient of  ${f d}_i, \ lpha^j$
- = affinity with the "topic" q
- Ratings  $\mathbf{x}_{ij}$  (item i, user j):

$$\mathbf{x}_{ij} = \mathbf{d}_i^{ op} \alpha^j$$
 (  $+$  biases)

= Common affinity for topics





Learning problem: estimate **D** and **A** with known ratings

#### Matrix factorization



- $\mathbf{X} \in \mathbb{R}^{p \times n} \approx \mathbf{DA} \in \mathbb{R}^{p \times k} \times \mathbb{R}^{k \times n}$
- Constraints / penalty on factors D and A
- We only observe  $\mathbf{1}_{\Omega}\star\mathbf{X}-\Omega$  set of ratings provided by users

Recommender systems: millions of users, millions of items

How to scale matrix factorization to very large datasets?

#### **Formalism**

Finding representation in  $\mathbb{R}^k$  for items and users:

$$\begin{split} & \min_{\substack{\mathbf{D} \in \mathbb{R}^{p \times k} \\ \mathbf{A} \in \mathbb{R}^{k \times n}}} & \sum_{(i,j) \in \Omega} (\mathbf{x}_{ij} - \mathbf{d}_i^{\top} \boldsymbol{\alpha}^j)^2 + \lambda (\|\mathbf{D}\|_F^2 + \|\mathbf{A}\|_F^2) \\ & = \|\mathbf{1}_{\Omega} \star (\mathbf{X} - \mathbf{D}\mathbf{A})\|_2^2 + \lambda (\|\mathbf{D}\|_F^2 + \|\mathbf{A}\|_F^2) \quad \mathbf{1}_{\Omega} \text{ set of knownratings} \end{split}$$

 $\ell_2$  reconstruction loss —  $\ell_2$  penalty for generalization

#### Existing methods

- Alternated minimization
- Stochastic gradient descent

# Existing methods

#### Alternated minimization

• Minimize over A, D: alternate between

$$\mathbf{D} = \min_{\mathbf{D} \in \mathbb{R}^{p \times k}} \sum_{(i,j) \in \Omega} (\mathbf{x}_{ij} - \mathbf{d}_i^{\top} \boldsymbol{\alpha}^j)^2 + \lambda \|\mathbf{D}\|_F^2$$

$$\mathbf{A} = \min_{\mathbf{A} \in \mathbb{R}^{k \times n}} \sum_{(i,j) \in \Omega} (\mathbf{x}_{ij} - \mathbf{d}_i^{\top} \boldsymbol{\alpha}^j)^2 + \lambda \|\mathbf{A}\|_F^2$$

- No hyperparameters
- Slow and memory expensive: use all ratings at each iteration

a.k.a. coordinate descent (variation in parameter update order)

# Existing methods

#### Stochastic gradient descent

$$\min_{\mathbf{A},\mathbf{D}} \sum_{(i,j)\in\Omega} f_{ij}(\mathbf{A},\mathbf{B}) \stackrel{\text{def}}{=} (\mathbf{x}_{ij} - \mathbf{d}_i^{\top} \alpha^j)^2 + \frac{1}{c_i} \lambda \|\alpha^j\|_2^2 + \frac{1}{c_i} \lambda \|\mathbf{d}_i\|_2^2$$

Gradient step for each rating:

$$(\mathbf{A}_t, \mathbf{D}_t) \leftarrow (\mathbf{A}_{t-1}, \mathbf{D}_{t-1}) - \frac{1}{c_t} \nabla_{(\mathbf{A}, \mathbf{D})} f_{ij}(\mathbf{A}_{t-1}, \mathbf{D}_{t-1})$$



- Fast and memory efficient won the Netflix prize
- Very sensitive to step sizes  $(c_t)$  need to cross-validate

### Towards a new algorithm

#### Best of both worlds?

- Fast and memory efficient algorithm
- Little sensitive to hyperparameter setting

### Subsampled online dictionary learning

- Builds upon the online dictionary learning algorithm
  - popular in computer vision and interpretable learning (fMRI)
- Adapt it to handle missing values efficiently

### Déroulé

- Matrix factorization for recommender systems
  - Collaborative filtering
  - Matrix factorization formulation
  - Existing methods
- Subsampled online dictionary learning
  - Dictionary learning existing methods
  - Handling missing values efficiently
  - New algorithm
- - Setting
  - Benchmarks
  - Parameter setting

# Dictionary learning

#### Recall: recommender system formalism

• Non-masked matrix factorization with  $\ell_2$  penalty:

$$\min_{\substack{\mathbf{D} \in \mathbb{R}^{p imes k} \\ \mathbf{A} \in \mathbb{R}^{k imes n}}} \sum_{j=1}^{n} (\mathbf{x}^{j} - \mathbf{D}^{ op} \boldsymbol{lpha}^{j})^{2} + \lambda (\|\mathbf{D}\|_{F}^{2} + \|\mathbf{A}\|_{F}^{2})$$

Penalties can be richer, and made into constraints

#### Dictionary learning

• Learn the left side factor [Olshausen and Field, 1997]

$$\min_{\mathbf{D} \in \mathcal{C}} \sum_{j=1}^{n} \|\mathbf{x}^{j} - \mathbf{D}\alpha^{j}\|_{2}^{2} + \lambda\Omega(\alpha^{j}) \quad \alpha^{j} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{k}} \|\mathbf{x}^{i} - \mathbf{D}\alpha\|_{2}^{2} + \lambda\Omega(\alpha)$$

Naive approach: alternated minimization

# Online dictionary learning [Mairal et al., 2010]

- At iteration t, select  $\mathbf{x}_t$  in  $\{\mathbf{x}^j\}_i$  (user ratings), improve **D**
- Single iteration complexity  $\propto$  sample dimension  $\mathcal{O}(p)$
- $(\mathbf{D}_t)_t$  converges in a few epochs (one for large n)



 Very efficient in computer vision / networks / fMRI / hyperspectral images

# Can we use it efficiently for recommender systems?

# In short: Handling missing values



Leverage streaming + partial access to samples

# In detail: online dictionary learning

Objective function involves latent codes (right side factor)

$$\min_{D \in \mathcal{C}} \frac{1}{t} \sum_{i=1}^{t} \|\mathbf{x}_i - \mathbf{D} \boldsymbol{\alpha}_i^*(\mathbf{D})\|_2^2, \quad \boldsymbol{\alpha}_i^*(\mathbf{D}) = \operatorname*{argmin}_{\boldsymbol{\alpha}} \frac{1}{2} \|\mathbf{x}_i - \mathbf{D} \boldsymbol{\alpha}\|_2^2 + \lambda \Omega(\boldsymbol{\alpha})$$

- Replace latent codes by codes computed with *old* dictionaries
- Build an upper-bounding surrogate function

$$\min \frac{1}{t} \sum_{i=1}^{t} \|\mathbf{x}_{i} - \mathbf{D}\boldsymbol{\alpha}_{i}\|_{2}^{2} \qquad \boldsymbol{\alpha}_{i} = \underset{\boldsymbol{\alpha}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{x}_{i} - \mathbf{D}_{i-1}\boldsymbol{\alpha}\|_{2}^{2} + \lambda \Omega(\boldsymbol{\alpha})$$

Minimize surrogate — updateable online at low cost

# In detail: online dictionary learning

#### Algorithm outline

Compute code

$$oldsymbol{lpha}_t = \mathop{\mathsf{argmin}}_{oldsymbol{lpha} \in \mathbb{R}^k} \| \mathbf{x}_t - \mathbf{D}_{t-1} oldsymbol{lpha} \|_2^2 + \lambda \Omega(oldsymbol{lpha}_t)$$

Update the surrogate function

$$\begin{split} g_t &= \frac{1}{t} \sum_{i=1}^t \|\mathbf{x}_i - \mathbf{D}\boldsymbol{\alpha}_i\|_2^2 = \mathsf{Tr}\,(\frac{1}{2}\mathbf{D}^{\top}\mathbf{D}\mathbf{A}_t - \mathbf{D}^{\top}\mathbf{B}_t) \\ \mathbf{A}_t &= (1 - \frac{1}{t})\mathbf{A}_{t-1} + \frac{1}{t}\boldsymbol{\alpha}_t\boldsymbol{\alpha}_t^{\top} \qquad \mathbf{B}_t = (1 - \frac{1}{t})\mathbf{B}_{t-1} + \frac{1}{t}\mathbf{x}_t\boldsymbol{\alpha}_t^{\top} \end{split}$$

Minimize surrogate

$$\mathbf{D}_t = \operatorname*{argmin}_{\mathbf{D} \in \mathcal{C}} g_t(\mathbf{D}) \qquad 
abla g_t = \mathbf{D} \mathbf{A}_t - \mathbf{B}_t$$

# In detail: online dictionary learning

#### Algorithm outline

**1** Compute code –  $\mathbf{x}_t \rightarrow \text{complexity depends on } p$ 

$$oldsymbol{lpha}_t = \mathop{\mathsf{argmin}}_{oldsymbol{lpha} \in \mathbb{R}^k} \| \mathbf{x}_t - \mathbf{D}_{t-1} oldsymbol{lpha} \|_2^2 + \lambda \Omega(oldsymbol{lpha}_t)$$

**2** Update the surrogate function – Complexity in  $\mathcal{O}(p)$ 

$$g_t = \frac{1}{t} \sum_{i=1}^t \|\mathbf{x}_i - \mathbf{D}\boldsymbol{\alpha}_i\|_2^2 = \operatorname{Tr}\left(\frac{1}{2}\mathbf{D}^{\top}\mathbf{D}\mathbf{A}_t - \mathbf{D}^{\top}\mathbf{B}_t\right)$$

$$\mathbf{A}_t = (1 - \frac{1}{t})\mathbf{A}_{t-1} + \frac{1}{t}\alpha_t\alpha_t^\top \qquad \mathbf{B}_t = (1 - \frac{1}{t})\mathbf{B}_{t-1} + \frac{1}{t}\mathbf{x}_t\alpha_t^\top$$

**Minimize** surrogate – Complexity in  $\mathcal{O}(p)$ 

$$\mathbf{D}_t = \operatorname*{argmin}_{\mathbf{D} \in \mathcal{C}} g_t(\mathbf{D}) \qquad 
abla g_t = \mathbf{D} \mathbf{A}_t - \mathbf{B}_t$$

# Specification for a new algorithm



- Constrained : use only known ratings from  $\Omega$
- **Efficient**: single iteration in  $\mathcal{O}(s)$ , # of ratings provided by user t
- Principled: follows the online matrix factorization algorithm as much as possible

# Missing values in practice

- Data stream:  $(\mathbf{x}_t)_t \to \mathsf{masked} (\mathbf{M}_t \mathbf{x}_t)_t$
- = ratings from user t
- **Dimension**: p (all items)  $\rightarrow s$  (rated items)
  - Use only  $M_t x_t$  in algorithm computation
    - $\rightarrow$  complexity in  $\mathcal{O}(s)$



# Missing values in practice

- Data stream:  $(\mathbf{x}_t)_t \to \mathsf{masked} (\mathbf{M}_t \mathbf{x}_t)_t$
- = ratings from user t
- **Dimension**: p (all items)  $\rightarrow s$  (rated items)
  - Use only  $\mathbf{M}_t \mathbf{x}_t$  in algorithm computation
    - $\rightarrow$  complexity in  $\mathcal{O}(s)$



#### Adaptation to make

- Modify all parts of the algorithm to obtain  $\mathcal{O}(s)$  complexity
- Code computation
- Surrogate update

Surrogate minimization

# Subsampled online dictionary learning

#### Check out paper!

#### Original online MF

Code computation

$$egin{aligned} lpha_t &= rgmin_{lpha \in \mathbb{R}^k} \| \mathtt{x}_t - \mathsf{D}_{t-1} lpha \|_2^2 \ &+ \lambda \Omega(lpha_t) \end{aligned}$$

Surrogate aggregation

$$\begin{aligned} \mathbf{A}_t &= \frac{1}{t} \sum_{i=1}^t \boldsymbol{\alpha}_i \boldsymbol{\alpha}_i^\top \\ \mathbf{B}_t &= \mathbf{B}_{t-1} + \frac{1}{t} (\mathbf{x}_t \boldsymbol{\alpha}_t^\top - \mathbf{B}_{t-1}) \end{aligned}$$

Surrogate minimization

$$\mathbf{D}^{j} \leftarrow p_{\mathcal{C}_{j}^{f}}^{\perp}(\mathbf{D}^{j} \!-\! \frac{1}{(\mathbf{A}_{t})_{i,i}}(\mathbf{D}\mathbf{A}_{t}^{j} \!-\! \mathbf{B}_{t}^{j}))$$

#### Our algorithm

Code computation: masked loss

$$egin{aligned} oldsymbol{lpha}_t &= \mathop{\mathsf{argmin}}_{oldsymbol{lpha} \in \mathbb{R}^k} \| oldsymbol{\mathsf{M}}_t (oldsymbol{\mathsf{x}}_t - oldsymbol{\mathsf{D}}_{t-1} oldsymbol{lpha}) \|_2^2 \ &+ \lambda rac{\operatorname{rk} oldsymbol{\mathsf{M}}_t}{
ho} \Omega(oldsymbol{lpha}_t) \end{aligned}$$

Surrogate aggregation

$$egin{aligned} \mathbf{A}_t &= rac{1}{t} \sum_{i=1}^t oldsymbol{lpha}_i oldsymbol{lpha}_i^ op \ \mathbf{B}_t &= \mathbf{B}_{t-1} + rac{1}{\sum_{i=1}^t \mathbf{M}_i} (\mathbf{M}_t \mathbf{x}_t oldsymbol{lpha}_t^ op - \mathbf{M}_t \mathbf{B}_{t-1}) \end{aligned}$$

Surrogate minimization

$$\mathsf{M}_t \mathsf{D}^j \leftarrow \rho_{\mathcal{C}_j}^{\perp} (\mathsf{M}_t \mathsf{D}^j - \frac{1}{(\mathsf{A}_t)_i} \mathsf{M}_t (\mathsf{D} (\mathsf{A}_t^j - (\mathsf{B}_t^j))$$

### Déroulé

- Matrix factorization for recommender systems
  - Collaborative filtering
  - Matrix factorization formulation
  - Existing methods
- - Dictionary learning existing methods
  - Handling missing values efficiently
  - New algorithm
- Results
  - Setting
  - Benchmarks
  - Parameter setting

### **Experiments**

**Validation**: Test RMSE (rating prediction) vs CPU time

**Baseline**: Coordinate descent solver [Yu et al., 2012] for

$$\min_{\substack{\mathbf{D} \in \mathbb{R}^{p \times k} \\ \mathbf{A} \in \mathbb{R}^{k \times n}}} \sum_{(i,j) \in \Omega} (\mathbf{x}_{ij} - \mathbf{d}_i^\top \alpha^j)^2 + \lambda (\|\mathbf{D}\|_F^2 + \|\mathbf{A}\|_F^2)$$

- Fastest solver available apart from SGD hyperparameters
- ↑ Our method has a learning rate with little influence

**Datasets**: Movielens, Netflix

- Publicly available
- Larger one in the industry...

### Results



Scalable algorithm: speed-up improves with size

#### Performance

| Dataset   | Test RMSE |       | Convergence time |              | Speed        |
|-----------|-----------|-------|------------------|--------------|--------------|
|           | CD        | SODL  | CD               | SODL         | -up          |
| ML 1M     | 0.872     | 0.866 | 6 s              | 8 <i>s</i>   | ×0.75        |
| ML 10M    | 0.802     | 0.799 | 223 <i>s</i>     | 60 s         | $\times 3.7$ |
| NF (140M) | 0.938     | 0.934 | 1714 s           | <b>256</b> s | $\times 6.8$ |

- Outperform coordinate descent beyond 10M ratings
- Same prediction performance
- Speed-up 6.8× on Netflix
- Simple model: RMSE is not state-of-the-art

# Robustness to learning rate

- Learning rate in algorithm to be set in [0.75, 1] ( $\leftarrow$  theory)
- In practice: Just set it in [0.8, 1]



#### Conclusion

#### Take-home message

Online matrix factorization can be adapted to handle missing value efficiently, with very good performance in reccommender system



Algorithm usable in any rich model involving matrix factorization

- Python package http://github.com/arthurmensch/modl
- Article/slides at http://amensch.fr/publications

#### Conclusion

#### Take-home message

Online matrix factorization can be adapted to handle missing value efficiently, with very good performance in reccommender system



Algorithm usable in any rich model involving matrix factorization

- Python package http://github.com/arthurmensch/modl
- Article/slides at http://amensch.fr/publications

### **Questions?**

# Appendix: Resting-state fMRI



Qualitatively, usable maps are obtained  $10 \times$  faster

### Bibliography I

```
[Bell and Koren, 2007] Bell, R. M. and Koren, Y. (2007).
  Lessons from the Netflix prize challenge.
```

ACM SIGKDD Explorations Newsletter, 9(2):75-79.

[Mairal et al., 2010] Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010).

Online learning for matrix factorization and sparse coding.

The Journal of Machine Learning Research, 11:19–60.

[Olshausen and Field, 1997] Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1?

Vision Research, 37(23):3311-3325.

[Yu et al., 2012] Yu, H.-F., Hsieh, C.-J., and Dhillon, I. (2012).

Scalable coordinate descent approaches to parallel matrix factorization for recommender systems.

In Proceedings of the International Conference on Data Mining, pages 765-774 IFFF