Week 4 — Assignment Submission

Gianluca Scarpellini - 807541 - g.scarpellini
1[at]disco.unimib.it $20~{\rm dicembre}~2019$

Indice

1	Task	1
2	Implementazione e risultati	2
Bi	ibliografia	5

1 Task

Il task oggetto di questo assignment riguarda la classificazione di immagini appartenenti a un set di 10 classi. L'approccio impiegato fa uso della rete neurale convoluzionale denominatata **Alexnet** preaddestrata sul dataset Imagenet [KSH12]. In sezione 2 definisco le modifiche effettuata sulla CNN al fine di completare il task di classificazione in oggetto ed espongo i risultati ottenuti.

Exps	Cut	batch size	learning rate	optimizer	Accuracy %
exp1	-3	10	0.0001	sgd	94
exp2	-3	32	0.1	sgd	94
exp3	-3	32	0.001	sgd con momentum	94
exp4	-3	32	0.001	adam	94
exp5	-3	32	0.001	rmsprop	94
exp6	-2	32	0.001	rmsprop	89

Figura 1: Caption

2 Implementazione e risultati

L'implementazione prevede l'addestramento di una porzione della rete **Alexnet** che viene impiegata come coda di un algoritmo di classificazione. Un classificatore con 10 output è stato posto in testa alla rete. Sono stati quindi svolti alcuni esperimenti, riportati in tabella 1 al fine di valutare la bontà dell'approccio anche tenendo in conto dei risultati ottenuti nell'assignemnt 4 (in cui la miglior accuracy non superava il 72%). L'approccio con CNN dimostra la sua efficacia: nel task di classificazione, i risultati si attestano difatti ad accuracy 94%. In particolare notiamo che il cut al terzultimo layer è sensibilmente migliore rispetto allo stesso approccio con cut al penultimo layer. Inoltre, gli esperimenti con diversi classificatori, learning rate e batch size portano a risultati tra loro equivalenti.

Figura 2: Loss e accuracty degli esperimenti effettuati

Figura 3: Loss e accuracty degli esperimenti effettuati

Bibliografia

[KSH12] Alex Krizhevsky, Ilya Sutskever e Geoffrey E Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: (2012). A cura di F. Pereira et al., pp. 1097-1105. URL: http://papers. nips.cc/paper/4824-imagenet-classification-with-deepconvolutional-neural-networks.pdf.