Choose correct coefficients before summing

$$8f(x+h) - 8f(x-h) - f(x+2h) + f(x-2h) = 12h$$

$$f(x) + \varphi(k^3)$$

Numerical approximation of gradient to approximate $\nabla f(x)$ for $R^n \to R$ you need to approximate $\nabla f(x)$ for $R^n \to R$

And if $f: \mathbb{R}^n \to \mathbb{R}$?

$$\frac{\partial f}{\partial x_i}(x) = \lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h}$$

with e_i the canonical basis vector $(e_i)_j = \delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

Therefore
$$\frac{\partial f}{\partial x_i}(x) \approx \frac{f(x + he_i) - f(x)}{h}$$
 or

$$\frac{\partial f}{\partial x_i}(x) \approx \frac{f(x + he_i) - f(x - he_i)}{2h}$$
 for h small enough

Experiment numerically with notebook 1

Outline

Introduction to optimization

Reminders: Differential calculus and convexity Memory

help

Isovalues, contouring, level curves

Numerical approximation of derivatives and gradient

Unconstrained optimisation

Optimality conditions in the unconstrained case

Solving systems of non linear equations

Descent methods

Linear and non linear regression

Optimisation with constraints

Duality

Optimality conditions for equality constraints

Optimality conditions for inequality constraints

Algorithms for constrained optimization

Optimality conditions in the unconstrained case

Find extrema of a function defined on E.

Find

$$\inf_{x\in E}f(x),$$

with

$$f: E \longrightarrow \mathbb{R}$$

E normed finite dimension vector space

Necessary optimality conditions

if $f(x^{k}) = \min_{R} f(x)$ then f(x) = 0I open interval of R

Let x^* local minimum of a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$.

- 1. First order optimality condition : if f is differentiable on an open neighborhood V of x^* , then $\nabla f(x^*) = 0$
- 2. Second order optimality condition: moreover if f is twice differentiable on V, then $Hf(x^*)$ is positive semi definite and f is locally convex in x^* .

salu if fect f(xx) = 0 if xx, sa case fining then f'(x) > 0

Examples

$$f(x) = x^{\ell}$$
 $0 = \min f(x)$
 $f'(x) = 0$
 $f''(0) = 12x^2 = 0$

Counter example : $f(x) = x^4$.

Counter example : $f(x) = x^3$.

$$f(x) = x^3$$

$$f(6) = 0$$

$$f(6) = 6x^4 = 0$$

$$f(6) = 6x^4 = 0$$

Sufficient optimality conditions

If f is twice differentiable in x^* , and if $\nabla f(x^*) = 0$ and moreover

- ightharpoonup either $Hf(x^*)$ is positive definite
- ightharpoonup either f is twice differentiable in a neighborhood V of x^* $\int_{V}^{2} f(x) = x^{4}$ $\int_{V}^{2} f(x) = 0$ $\int_{V}^{2} f(x) = 12x^{2} > 0$ and Hf(x) is positive semi definite on V

then x^* is a strict (isolated) minimizer of f on V.

Optimality conditions in the unconstrained case

Uniqueness condition in the convex case

Proof by contraposée

- (i) If f is convex on a convex subset $C \in \mathbb{R}^n$, any local minimum of f on C is global.
- (ii) If f is strictly convex it has at most one global minimum.

Necessary and sufficient optimality condition in the convex case

If f is convex on \mathbb{R}^n and C^1 , $x^* \in \mathbb{R}^n$ realizes a global minimum of f if and only if $\nabla f(x^*) = 0$.

$$g(x) = \frac{1}{2} Ax \cdot x + b \cdot x + c$$

$$x \in \mathbb{R}^n \quad b \in \mathbb{R}^n \quad c \in \mathbb{R} \quad A \in S^n(\mathbb{R})$$

$$\nabla f(x) = Ax + b = \nabla f(x) = \frac{1}{2} (A + A^n)x + b$$

$$Hf(x) = A$$

$$Ax + b = O_{\mathbb{R}^n} \quad j \in A \in S^n(\mathbb{R}) \quad \text{then}$$

$$Ax + b = O_{\mathbb{R}^n} \quad j \in A \in S^n(\mathbb{R}) \quad \text{then}$$

$$2) \text{ if } A \notin S^n_+(\mathbb{R}) \quad x' = -A^nb$$

$$5 f(x) > -\infty$$

$$8a \text{ deave one } V_A \quad S''(x) = a$$

$$f(x) = \frac{1}{2} ax^2 + bx + c \quad S'(x) = ax + b$$

Optimality condition for quadratic problems
$$\begin{cases}
A \in S^{n}(R), & \lambda_{1} \leq -\cdots \leq \lambda_{n} & \text{eigenvolves in } R \\
\lambda_{1} ||A||^{2} \leq Axx \leq \lambda_{n} ||A||^{2}
\end{cases}$$

$$f(x) = \frac{1}{2}x^{t}Ax + b^{t}x + c = \frac{1}{2}(Ax) \cdot x + b \cdot x + c$$

with $A \in \mathcal{S}_n^{++}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$.

$$\inf_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})\tag{1}$$

- If A is not positive semi definite then the problem (1) has no solution : no x ∈ ℝⁿ realizes a local minimum.
 If A is positive definite then x* = -A⁻¹b is the only global minimum.

Optimality conditions in the unconstrained case

Solving systems of non linear equations

if
$$f(x^{2}) = min f(z) = 0$$

 $\chi V(x^{2})$

$$\nabla f(x) = 0$$

$$g(x) = 0$$

$$g: R^n \rightarrow R^n$$

set of n equations with n unknowns

Fixed point method

$$Id-\varphi=g$$

Definition

A fixed point $x \in \mathbb{R}^N$ of a function $\varphi : \mathbb{R}^N \to \mathbb{R}^N$ is a point such that $x = \varphi(x)$

Definition

A fixed point $x \in \mathbb{R}^N$ of a function $\varphi : \mathbb{R}^N \to \mathbb{R}^N$ is said to be attractive if there exists a neighborhood V of x such that for all x_0 in V, the sequence defined by $x_{n+1} = \varphi(x_n)$ converges to x. Otherwise, the point is said to be repulsive.

Picard's Theorem

Theorem (Picard's Theorem)

Let F be a closed φ of \mathbb{R}^N and let $\varphi : F \subset \mathbb{R}^N \to \mathbb{R}^N$ be a map such that $\varphi(F) \subset F$. We assume that φ is contracting, i.e. there exists $k \in]0,1[$ such that:

$$\forall x, y \in F, \qquad \|\varphi(x) - \varphi(y)\| \le k\|x - y\|. \tag{2}$$

Then there exists a unique $x^* \in F \subset \mathbb{R}^N$ such that $\varphi(x^*) = x^*$ and, for all $x_0 \in F$, the sequence defined by $x_{n+1} = \varphi(x_n)$ converges to x^* (i.e. x^* is an attractive fixed point). Furthermore, there exists a constant C (depending on the choice of x_0 and the function φ) such that

Fixed point algorithm

g(x)=0

def phi(x): return x-g(z)

N = N+C

droote x_0 , $x_1 = phi(x_0)$, ξ , n_{max} while $||x_1 - x_0|| \ge \epsilon$ and $n \le n_{max}$

g(x) = 0, scalar case

Newton nethod

Zeros of function $g:\mathbb{R}\longrightarrow\mathbb{R}$

$$g(x^*) = g(x) + g'(x)(x^* - x) + o(||x^* - x||).$$

Fixed point algorithm to solve a nonlinear equation

$$\psi(x) = x$$
, with $\psi(x) = x - g(x)/g'(x)$.

Approximation by a sequence x_n

$$\psi(x) = x - \frac{g(x)}{g'(x)}$$

$$\psi'(x) = 1 - \frac{g'(x)}{g'(x)} + \frac{g''(x)g(x)}{g'(x)^2}$$

$$= \frac{g''(x)g(x)}{g'(x)^2}$$
at the solution of $g(x^4) = 0$
by continuty $\psi'(x^4) = 0$
has continuty $\psi''(x) = 0$

990

Newton algorithm (scalar case)

Data: Function g(x) derivative g'(x), tolerance ε , max number of iterations k_{max}

Result: x^* such that $g(x^*) = 0$

Initialisation: k = 0, x_0 initial guess for $g(x_0) = 0$.

while
$$|g(x_k)| > \varepsilon$$
 and $k \le k_{\text{max}}$ do

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

$$k \leftarrow k+1$$

end

$$X^{\star} \leftarrow X_k$$

if xo is close enough toxt it converges very fast if not it many

Convergence of Newton algorithm

Let g in C^2 on $I = [x^* - r, x^* + r]$ with $g(x^*) = 0$ and $g' \neq 0$ on I. Let

$$M = \max_{x \in I} \left| \frac{g''(x)}{g'(x)} \right|$$
, and $h = \min \left(r, \frac{1}{M} \right)$.

Then for any $x_0 \in]x^* - h, x^* + h[$ we have

$$|e_{k}| = |x_{k} - x^{*}| \leq \frac{1}{M} (M|x_{0} - x^{*}|)^{2k},$$

from which we deduce $\lim_{k\to+\infty} |x_k-x^\star|=0$.

Convergence speed for any algorithm 2, (2h) h

Denote by $e_k = x^k - x^*$ the error at iteration k. We say that

- the algorithm converges if $\lim_{k\to\infty} \|e_k\| = 0$
- ightharpoonup the algorithm converges linearly if $c \in]0, 1[$ tel que $\|e_k\| \le c \|e_{k-1}\|$ for k > K(c)
- the algorithm converges supra-linearly if $(c_k)_{k\in\mathbb{N}}$ with $\lim_{k\to\infty} c_k = 0$ such that $\|e_k\| \le c_k \|e_{k-1}\|$
- \triangleright the algorithm converges geometrically if the sequence c_k is geometric
- ▶ the algorithm p = 0 if there exists $c \in]0,1[$ such that $||e_k|| \le c ||e_{k-1}||^p$ for k > K(c)

The convergence can be global or local

Newton method in dimension *n*

G(x) = 0 with $G: \mathbb{R}^n \longrightarrow \mathbb{R}^n$.

Let $JG(x) \in \mathbb{R}^{n \times n}$ the jacobian matrix of G in x,

$$JG_{i,j}(x) = \frac{\partial G_i(x)}{\partial x_j}.$$

$$G(x^*) = G(x) + JG(x)(x - x^*) + o(||x - x^*)||.$$

Fixed point algorithm to solve a nonlinear equation

$$\Psi(X) = X$$
, with $\Psi(X) = X - JG(X)^{-1}G(X)$.

Approximation by a fixed point sequence $X_{n+1} = \Psi(X_n)$

$$X_{n+1} = X_n - JG(X_n)^{-1}G(X_n)$$

Except that in practice for *n* large, one never computes the inverse of a matrix

Newton Ralphson algorithm

Eachers con to R Ynu = Xn - JG(xn)-1 G(xn)

Data: Function G(x), jacobian matrix JG(x), tolerance ε , max number of iterations k_{max}

Result: x^* such that $G(x^*) = 0$

Initialisation : $k = 0, x_0$

while $||G(x_k)|| > \varepsilon$ and $k \le k_{\text{max}}$ do

Solve $JG(x_k)d_k = -G(x_k)$ do not compute $JG(x_k)$

$$x_{k+1} = x_k + d_k$$

 $k \leftarrow k+1$

end

$$x^{\star} \leftarrow x_k$$

Convergence of Newton-Ralphson algorithm

Suppose:

ightharpoonup G of class C^2

 $ightharpoonup G(x^*) \not\equiv 0$

Jaobian mahix

Then x^* is a superattractive fixed point of

$$\Psi(x) = x - (JG(x))^{-1}G(x).$$

Cocal result.

Scalar case: the secant method

in the case where g'(x) is not accessible

Data: Function g(x), tolerance ε , max number of iterations k_{max}

Result: x^* such that $g(x^*) = 0$

Initialisation: k = 0, x_0 initial guess for g(x) = 0.

 a_0 initial guess for $g'(x_0)$ (default =1)

while $|g(x_k)| > \varepsilon$ and $k < k_{\text{max}}$ do

$$x_{k+1} = x_k - \frac{g(x_k)}{a_k}$$

$$a_{k+1} = \frac{g(x_k) - g(x_{k+1})}{x_k - x_{k+1}}$$

$$k \leftarrow k + 1$$

end

$$x^{\star} \leftarrow x_k$$

Vector case: the quasi-Newton method

Data: $G: \mathbb{R}^n \longrightarrow \mathbb{R}^n$

 $\varepsilon > 0$.

Result: x^* such that $g(x^*) = 0$

Initialisation: a first approximation of $x_0 \in \mathbb{R}^n$

$$A_0 \approx J(x_0) \text{ or } W_0 \approx J(x_0)^{-1}$$

$$X_1 = X_0 - W_0 \dot{G}(X_0)$$

$$d_0=x_1-x_0,$$

$$y_0 = G(x_1) - G(x_0),$$

$$k = 1$$

while $||G(x_k)|| > \varepsilon$ and $k < k_{\text{max}}$ do

Update : $W_k = W_{k-1} + B_{k-1}$

Compute d_k solution of $d_k = -W_k G(x_k)$

$$x_{k+1} = x_k + d_k$$

$$y_k = G(x_{k+1}) - G(x_k)$$

$$k \leftarrow k + 1$$

end

Comparison of Newton and quasi Newton methods

Minimum of the quadratic function $f(x) = ((x_1 - 2)^4 + (x_2 - 3)^4)/2$

Newton method: 12 iterations

quasi Newton (BFGS) method: 21 iterations

Update in the quasi Newton method

$W_{k} \sim JG(x_{k})^{-1}$ $-W_{k}G(x_{k}) \qquad W_{k} = J(W_{k-1})$

Update:

$$W_k = W_{k-1} + B_{k-1}$$

Compute d_k solution of $d_k = -W_k G(x_k)$

$$x_{k+1} = x_k + d_k$$

Conditions on the W_k matrix

- 1. W_k should remain symetric positive definite for all k.
- 2. The quasi-Newton equation $W_k y_k = d_k$ is satisfied for each k
- 3. The difference between two consecutive approximations $W_{k+1} W_k$ is minimum in some sense (for some norm), for example for the Frobenius norm $\|A\| = \sum_{k=1}^{\infty} |A|$

Examples of update rules satisfying the conditions

$$W_k = W_{k-1} + B_{k-1}$$

 $d_k = -W_k G(x_k)$
 $x_{k+1} = x_k + d_k$
 $y_k = G(x_{k+1}) - G(x_k)$

The Davidon-Fletcher-Powell method

$$(DFP) \quad W_{k+1} = W_k + \frac{d_k d_k^T}{y_k \cdot d_k} - \frac{W_k y_k y_k^T W_k}{(y_k \cdot W_k y_k)}.$$

The Broyden-Fletcher-Goldfarb-Shanno method

(BFGS)
$$W_{k+1} = W_k - \frac{\overrightarrow{d_k y_k^T W_k + W_k y_k d_k^T}}{y_k \cdot d_k} + \left(1 + \frac{y_k \cdot \overrightarrow{W_k y_k}}{y_k \cdot d_k}\right) \frac{d_k d_k^T}{y_k \cdot d_k}.$$

Experiment with notebook 2

Descent method build sequences (2n), man that $g(x_{n+1}) \leq g(x_n)$

Definition : We say that $d \in \mathbb{R}^n$ is a descent direction at x for the function f if there exists $\alpha_d > 0$ such that

If there exists
$$\alpha_d > 0$$
 such that
$$f(x + \alpha d) < f(x) \quad \forall 0 < \alpha > \alpha_d. \quad \text{level curve } f(x)$$

$$f: \mathbb{R}^n \to \mathbb{R} \text{ is differentiable} \quad d \in \mathbb{R}^n \text{ is a descent}$$

Property : If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, $d \in \mathbb{R}^n$ is a descent direction at x if and only if

$$\nabla f(x) \cdot d < 0.$$

$$f(x+xd) = f(x) + \alpha \nabla f(x) \cdot d + \|d\| o(|a|)$$

$$f(x+ad) - f(x) = ax \nabla f(x) \cdot d + o(|a|)/\alpha$$

$$= (a + o(|a|))/\alpha$$

$$= (a + o(|a|))/\alpha$$

Example $f(-2) = \frac{1}{2} A_{2.x} + b.x + c$ recersory condition to have a solution number $A \in S_n^+$: $((\nabla f(x) - \nabla f(y)) - ||A(x - y)||)$ sufficient: $A \in S_n^+$ $A \notin S_n^+$ et jen values: O < 2, = --- Edn 2/1/2/1° < Ax.x f is strongly come or 2,-elliptic the gradual method will conveye if we drowse $0 < \alpha < \frac{2 21}{2n^2}$

General descent algorithm

Data: function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

required precision $\varepsilon > 0$.

Result: x^* such that $f(x^*) = \min_x f(x)$

Initialisation : k = 0,

Initial guess for the solution $x_0 \in \mathbb{R}^n$

while $\|\nabla f(x_k)\| > \varepsilon$ and $k < k_{\text{max}}$ do

Choose descent direction d_k (such that $\nabla f(x_k) \cdot d_k < 0$) Choose step α_k in direction d_k , such that

$$f(x_k + \alpha_k d_k) \leq f(x_k)$$

$$x_{k+1} = x_k + \alpha_k d_k$$

$$k \leftarrow k + 1$$

end

$$x^{\star} \leftarrow x_k$$

Convergence of a descent algorithm Sylliams

Let f a function C^1 from \mathbb{R}^n into \mathbb{R} and x^* minimizer of f. If the

$$f(\alpha)$$
 elliptic

$$(\nabla f(x) - \nabla f(y)/(x - g)$$

$$\langle \mathbf{a} \leq \alpha_{\mathbf{k}} \leq \mathbf{b} \langle \frac{2\alpha}{1^2}, \quad \forall \mathbf{k} \in \mathbb{N} \rangle$$

The gradient method

$$\int x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

$$d_k = -\nabla f(x_k)$$
 $d_k \cdot \nabla f(x_k) = \frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{2} \int_{\mathbb{R$

converges geometrically for all initial guess, i.e.

$$\exists \beta \in]0,1[,\|x_k-x^*\| \leq \beta^k\|x_0-x^*\|$$

ern = Xxx with Pf(xx)=0 (12kH-xx)= 11xk-xk\f(xk)-xx11 = //xx - xx - xx (xx) - 7f(xx)) //2 = \(\ar x - x * \(\) - 2 \ar k \(\ar x - x^2 \) - \(\bar{7} \left(\ar x +) - \bar{7} \left(\ar x +) \) + 2 1/ Pf(xx)- Df(x*)/ > 1/2/22 *//2 < 12/12/2 - 21/1 18/1/2 1/2/2×1/(1-2 de x + L2 dz) L2 x2 - 2 dkd de (Lax -2d)CO if xx < 2 x

Examples of possible choices for the descent direction

Gradient Algorithm (steepest descent)

$$d_k = -\nabla f(x_k).$$

Newton algorithm based on direction

$$d_k = -Hf(x_k)^{-1} \nabla f(x_k).$$

 $\propto_{k} = 1$

Quasi-Newton with

$$d_k = -W_k \nabla f(x_k),$$

where
$$W_k \approx Hf(x_k)$$
 where $W_k \approx Hf(x_k)$ where $W_k \approx Hf(x_k)$ where $V_k \approx Hf(x_k)$ where $V_k \approx Hf(x_k)$ and $V_k \approx Hf(x_k)$ where $V_k \approx Hf(x_k)$ and $V_k \approx Hf(x_k)$ are for $V_k \approx Hf(x_k)$ and $V_k \approx Hf(x_k)$ are for $V_k \approx Hf(x_k)$ and $V_k \approx Hf(x_k)$ are for $V_k \approx Hf(x_k)$ and $V_k \approx Hf(x_k)$ are for $V_k \approx Hf(x_k)$.

$$\mathcal{X}_{k+1} = \mathcal{X}_{k} + \mathcal{A}_{k} d_{k}$$

$$d_{k} = \begin{cases} -\nabla f(x_{1}) & \text{for } k = 1 \\ -\nabla f(x_{k}) + \beta_{k} d_{k-1} & \text{for } k > 1. \end{cases}$$

Choice of the step in a given direction

$$h_k: \alpha \mapsto h_k(\alpha) = f_k(x_k + \alpha d_k)$$

Cauchy's rule

$$h'_{k}(x) = d_{k} \cdot \nabla f(a_{k} + \alpha d_{k}) = 0$$
...

 $\alpha_{k} = \underset{\alpha>0}{\operatorname{argmin}} h_{k}(\alpha)$ difficult.

Curry's rule

$$\alpha_k = \inf \{ \alpha > 0; h'_k(\alpha) = 0, h_k(\alpha) < h_k(0) \}$$

Convergence of optimal step gradient

Suppose $\nabla f(x)$ L-Lipschitz on $\{x, f(x) \leq f(x^0)\}$. Then the gradient algorithm with:

- $ightharpoonup d_k = -\nabla f(x^k)$
- $ightharpoonup \alpha_k$ fixed by Curry's rule

satisfies

- ightharpoonup either $f(x^k)$ non-bounded below
- ▶ either $\nabla f(x^k) \to 0$ when $k \to \infty$.

$$f(x) = \frac{1}{2} A x. \propto + b^{-} x + C \qquad A \in S^{++}$$

$$h(\alpha) = f(x + \alpha d)$$

$$h'(\alpha) = d \cdot \nabla f(x + \alpha d)$$

$$= d \cdot (A(x + \alpha d) + b)$$

$$= d \cdot (A + a + b) + \alpha d \cdot A d$$

$$= d \cdot (A + b) + \alpha d \cdot A d$$

$$h'(\alpha) = 0 \qquad \alpha = \frac{d \cdot \nabla f(\alpha)}{d \cdot A d} \text{ belter}$$

$$0 \text{ optimal step in the quadratic case}$$

$$0 \text{ optimal step in the quadratic case}$$

$$0 \text{ optimal step in the quadratic case}$$

Optimal step in the quadratic case

$$f(x) = \frac{1}{2}Ax \cdot x + b \cdot x$$

with $A \in S^n$ and $b \in \mathbb{R}^n$,

$$h(\alpha) = f(x + \alpha d) = f(x) + \frac{\alpha^2}{2} Ad \cdot d + \alpha (Ax + b) \cdot d$$

 $\alpha^{\star} = \operatorname{argmin} h(\alpha)$

$$\alpha^{\star} = -\frac{g \cdot d}{(Ad) \cdot d}$$

with $g = \nabla f(x) = Ax + b$.

Optimal step gradient method in the quadratic case

Data: A, b, ε **Result:** x^* s.t. $f(x^*) = \min_X f(x)$ Initialisation : $k = 0, x_0 \in \mathbb{R}^n$ $g_0 = Ax_0 + b$ while $\|g_k\| > \varepsilon$ and $k < k_{\text{max}}$ do $d_k = -g_k$ $v_k = Ad_k$ $\alpha_k = \frac{d_k \cdot d_k}{v_k \cdot d_k}$ $x_{k+1} = x_k + \alpha_k d_k$ $g_{k+1} = g_k + \alpha_k V_k$ $k \leftarrow k + 1$ end $X^{\star} \leftarrow X_k$

Conjugate gradient method: motivation

A-conjugate directions

if
$$f(x) = \frac{1}{2}Ax.x + bx$$

Definition : Let $A \in S_{++}^n$.

- Definition: Let $A \in S_{++}^n$.

 Ax. x is a Scalar problem of the sector of the sec $Av \cdot w = 0$.
- ▶ A family of non zero vectors $(v_i)_{i=1,...m}$, is called A—conjugate iff $Av_i \cdot v_i = 0$ for all i = 1, ..., m, $j=1,\ldots,m,\,i\neq j$.

Property: A—conjugate vectors are linearly independent. If m=n a A-conjugate family is a basis of \mathbb{R}^n .

Definition: a conjugate descent method is a method where the successive descent directions form a A—conjugate family

Expression of the minimum of f in a A—conjugate basis

$$f(x) = \frac{1}{2}Ax \cdot x + b \cdot x$$

Suppose we have a basis $(d_i)_{i=1,...n}$, such that $Ad_i \cdot d_i = 0$ for $j \neq i$

$$x^* = \sum_{i=1}^n \alpha_i d_i$$
, and $Ax^* + b = 0$,

therefore
$$Ax^* = -b = \sum_{i=1}^n \alpha_i Ad_i$$
, then for any $j = 1, \dots, n$

$$-b \cdot d_j = \sum_{i=1}^n \alpha_i A d_i \cdot d_j = \alpha_j A d_j \cdot d_j$$

$$\alpha_j = \frac{-b \cdot d_j}{Ad_j \cdot d_j}$$
Numerical methods for optimisation 113

Construction of the *A*—conjugate basis

```
Let g_k = \nabla f(x_k) = Ax_k + b be the gradient at step k
Choose d_0 = -g_0 (The first step is a standard gradient descent
step) /
Then d_k = -g_{k-1} + \beta_{k-1}d_{k-1} satisfying:

(CG1) Ad_k \cdot d_j = 0 for j = 0, \dots, k-1 and
(CG2) g_k \cdot d_i = 0 \text{ for } j = 0, \dots, k-1
Update at step k. x_{k+1} = x_k + \alpha_k d_k
Next gradient g_{k+1} = Ax_{k+1} + b = g_k + \alpha_k Ad_k
Property : For all initial guess x_0 there exists (\alpha_k)_k and (\beta_k)_k
such that (CG1) and (CG2) are satisfied.
Property : (CG1) and (CG2) \Rightarrow g_k \cdot g_i = 0 for j \neq k
```

Convergence of a conjugate method

Property: A conjugate descent method using directions satisfying conditions (CG1) and (CG2) converges in at most *n* steps.

Property:
$$\beta_k = -\frac{Ad_{k-1} \cdot g_k}{Ad_{k-1} \cdot d_{k-1}} = \frac{\|g_k\|^2}{\|g_{k-1}\|^2}$$
. The direction Property: $\alpha_k = -\frac{g^k \cdot d^k}{Ad^k \cdot d^k}$ The direction Step as before $A_k = -V(k_k) + B_k d_k$

Conjugate gradient algorithm

Data: Matrix A, vector b, tolerance ε

Result: x^* such that $f(x^*) = \min_x f(x)$

Initialisation : k = 0,

Initial guess for solution $x^0 \in \mathbb{R}^n$

$$g^0 = Ax^0 + b$$
$$g^0 = -g^0$$

while $\|g^k\| > \varepsilon$ do

Compute directionnal minimum:

$$v^{k} = Ad^{k}$$

$$\alpha_{k} = -\frac{g^{k} \cdot d^{k}}{v^{k} \cdot d^{k}}$$

$$x^{k+1} = x^{k} + \alpha_{k}d^{k}$$

Update gradient :

$$g^{k+1} = g^k + \alpha_k v^k$$

Compute new direction : `

$$eta_{k+1} = rac{g^{k+1} \cdot g^{k+1}}{g^k \cdot g^k}$$
 $d^{k+1} = -g^{k+1} + eta_{k+1} d^k$
 $k \leftarrow k+1$

end

$$x^* \leftarrow x^k$$

ophmal Step Godient Nethor

$$V^{k} = Adk dk$$

$$Q^{k} = -\frac{g^{k} \cdot d^{k}}{V^{k} \cdot d^{k}}$$

$$Q^{k+1} = \chi^{k} + \chi_{k} d^{k}$$

$$Q^{k+1} = g^{k} + \chi_{k} V^{k}$$

Monotonicity of the conjugate gradient algorithm

Property: If $d_k \neq 0$ and $\alpha_{k+1} \neq 0$ then $f(x_{k+1}) < f(x_k)$. If $\alpha_{k+1} = 0$, x_k is the minimizer of f and $Ax_k + b = 0$

Polak-Ribière method

for f non quadratic

Data: Function f, gradient ∇f , tolerance ε

Result: x^* such that $f(x^*) = \min_x f(x)$

Initialisation: k = 0, Initial guess for $x^0 \in \mathbb{R}^n$

$$g^0 = \nabla f(x^0)$$
$$g^0 = -g^0$$

while $\|g^k\| > \varepsilon$ and $k < k_{\sf max}$ do

Compute the step in direction d_k :

$$f(x^k + \alpha_k d^k) \le f(x^k + \alpha d^k) < f(x^k)$$
 for all $0 < \alpha \le \alpha_k$

Compute new position:

$$x^{k+1} = x^k + \alpha_k d^k$$

Compute new direction :

$$g^{k+1} = \nabla f(x^{k+1})$$
 $c_{k+1} = \frac{(g^{k+1} - g^k) \cdot g^{k+1}}{g^k \cdot g^k}$
 $d^{k+1} = -g^{k+1} + c_{k+1} d^k$

$$k \leftarrow k + 1$$

end

$$x^{\star} \leftarrow x^k$$

converge
in a finte
number of
teletion

2) no explicit formula for d'optimal

Comparaison of conjugate Gradient (green, 4 steps) and Polak-Ribière (red, 8 steps) methods.

f quadratic function in \mathbb{R}^5 . Projection on $(0, x_1, x_2)$.

Choice of the step in the general case

```
Data: Function f: \mathbb{R}^n \longrightarrow \mathbb{R}
Required precision \varepsilon > 0.
Result: x^* s.t. f(x^*) = \min_X f(x)
Initialisation : k = 0,
Intial guess x_0 \in \mathbb{R}^n
while \|\nabla f(x_k)\| > \varepsilon and k < k_{\text{max}} do
     Choose d_k, s.t. \nabla f(x_k) \cdot d_k < 0
     Choose step \alpha_k in direction d_k, s.t. f(x_k + \alpha_k d_k) \leq f(x_k)
    x_{k+1} = x_k + \alpha_k d_k
    k \leftarrow k + 1
end
X^{\star} \leftarrow X_k
```

Directional minimisation -Line search

ectional minimisation -Line search

Armijo's rule linearization of the constraint on α_k line search g = Tf(x)

$$f(\mathbf{x}^k + lpha_k \mathbf{d}^k) < f(\mathbf{x}^k) + \omega lpha_k \mathbf{g}^k \cdot \mathbf{d}^k$$

Armijo's rule $\mathcal{G} \subseteq \mathcal{S}$

this comerges un condition nally for any d. $Pf(\alpha) < 0$

Data: Function *f*, current position *x*, descent direction *d*, coefficients $\tau \in]0,1[$ and $\omega_{\triangleright} \in]0,1[$

Result: α s.t. $f(x + \alpha d) < f(x)$

Initialisation: k = 0, initial guess α_0

while $f(x + \alpha_k d) > f(x) + \omega \alpha_k d \cdot \nabla f(x)$ do red line in the persons slide

Choose $\alpha_{k+1} = \tau \alpha_k$

$$k \leftarrow k + 1$$

$$\alpha = \alpha_{\mathbf{k}}$$

Choice of the first value α_k^1

Assume a quadratic model for $\varphi(\alpha) = f(x^k + \alpha d^k)$

$$h(\alpha) = a_0 + a_1 \alpha + a_2 \alpha^2 / 2$$

with

$$\begin{cases} a_0 = f(x^k) \\ a_1 = d^k \cdot \nabla f(x^k) \end{cases}$$

 a_2 is fixed by setting Δ , the maximal decrease of φ

$$\Delta = \varphi(0) - \varphi_{\min} = a_1^2/(2a_2).$$

Fletcher's rule

 α_k^1 is chosen to minimize the quadratic model

$$\alpha_k^1 = \frac{2\Delta}{d^k \cdot \nabla f(x^k)}$$

Convergence of gradient + Armijo methods

If $f: \mathbb{R}^n \to \mathbb{R}$ is C^1 and $\nabla f(x)$ is γ -lipschitz then Armijo's rule is satisfied for all

$$\alpha \in [0, \omega], \quad \text{with } \omega = \frac{(\omega_1 - 1)\nabla f(x) \cdot d}{\gamma \|d\|^2}.$$

Drawback of Armijo strategy: $\alpha_k^{i+1} < \alpha_k^i$, slow convergence.

Wolfe's method

$$(A) \quad f(x^k + \alpha_k d^k) < f(x^k) + \omega_1 \alpha_k g^k \cdot d^k$$

$$(W) \quad \nabla f((x^k + \alpha_k d^k) \cdot d^k) > \omega_2 g^k \cdot d^k, \text{ with } 0 < \omega_1 < \omega_2 < 1.$$

Wolfe algorithm

```
Data: Function f, gradient \nabla f, current point x^k, descente direction d^k, coefficients
         0 < \omega_1 < \omega_2 < 1
Result: \alpha_k s.t. (A) and (W) are satisfied
Initialisation: Fix \alpha_D = -1 and \alpha_G = 0.
p = 0, Fix initial guess \alpha_k^p (Fletcher's rule)
while f(x^k + \alpha_k^p d^k) > f(x^k) + \omega_1 \alpha_k^p d^k \cdot \nabla f(x^k) or
  \nabla f((x^k + \alpha_{\nu}^p d^k) \cdot d^k < \omega_2 g^k \cdot d^k  do
      if f(x^k + \alpha_k^p d^k) > f(x^k) + \omega_1 g^k \cdot d^k \alpha_k^p then
       \alpha_D = \alpha_k^p
      end
      else
       \alpha_{\mathsf{G}} = \alpha_{\mathsf{k}}^{\mathsf{p}}
      end
      if \alpha_D < 0 (not yet updated) then
       \alpha_{k}^{p+1} = 2\alpha_{G}
      end
      else
       \alpha_k^{p+1} = (\alpha_G + \alpha_D)/2
      end
      p \leftarrow p + 1
end
```

Wolfe example

Convergence of Wolfe method

Let $f: \mathbb{R}^n \to \mathbb{R}$, bounded below, C^1 différentiable on

$$\mathcal{N} = \{ f(x) \le f(x_0) \}$$

and gradient $\nabla f(x)$ *L*-lipschitz. Then, if coefficients $(\alpha_k)_k$ satisfy conditions (A) and (W)

$$\sum_{k} \cos \theta_k^2 \|\nabla f(x^k)\|^2 < \infty, \quad \text{with } \cos \theta_k = \frac{-d^k \cdot \nabla f(x^k)}{\|d^k\|, \|\nabla f(x^k)\|}.$$

Experiment with notebook 5

$$E(\theta) = \frac{1}{m} || \times \theta - y ||^{2}$$

= $\frac{1}{m} (| \times \theta - y |). (| \times \theta - y |)$

$$\chi = \begin{pmatrix} z_{i}^{T} \\ \vdots \\ z_{m}^{T} \end{pmatrix}$$

$$\chi^{T}(\chi \theta^{*} - y) = 0$$

$$X^TX O^* = X^Ty$$

$$\Theta^* = (\chi^T \chi)^{-1} \chi^T \gamma$$

Linear regression

Find θ defining a linear model

$$\theta = \begin{pmatrix} \Theta_{\lambda} \\ \vdots \\ \Theta_{n} \end{pmatrix}$$

$$\hat{y} = h_{\theta}(x) = \theta^{*}.x$$

Let m measurements (x_i, y_i) , i = 1, ..., m, where explaining variables are in \mathbb{R}^n $(x_i = (x_i^j)_{i=1,...,n}$. θ is found by minimizing the least squared error

$$E(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\theta^{*} . x_{i} - y_{i} \right)^{2} = \frac{1}{m} \left(X \theta - y \right)^{2}$$
The normal equation gives the best solution

$$\hat{\theta} = (X^T.X)^{-1}.X^T.y \quad \boldsymbol{\epsilon}$$

complexity in $O(n^3)$ and O(m).

Nonlinear least squares

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^P & \to & \mathbb{R}^Q \\ x = (x_1, \dots, x_P)^t & \mapsto & (f_1(x), \dots, f_Q(x))^t \end{array} \right.$$

for Q > P we seek a solution to the problem f(x) = 0.

Examples

Find a line that passes through Q points with Q > 2

Examples

Find the parameters N_0 and λ of a radioactive material whose emissions are monitored over time $N(t) = N_0 e^{-\lambda t}$

$$\tilde{N}_{A} = N(t_{A})$$
 measurements \tilde{N}_{A} at t_{A}
 \tilde{N}_{A}
 \tilde{N}_{A}
 \tilde{N}_{A}
 \tilde{N}_{A}
 \tilde{N}_{A}

Toy example (N_0, λ)

 $f: \mathbb{R}^2 \to R^Q$ with Q large $(N_i)_{i=1,...,Q}$ radioactivity measurements at times $(t_i)_{i=1,...,Q}$

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_Q(x) \end{pmatrix} = \begin{pmatrix} x_1 e^{-x_2 t_1} - N_1 \\ x_1 e^{-x_2 t_2} - N_2 \\ \vdots \\ x_1 e^{-x_2 t_Q} - N_Q \end{pmatrix} = \bigcirc P$$

Calculate the Jacobian matrix Jf(x)

Toy example

 $f: \mathbb{R}^2 \to R^Q$ with Q large $(N_i)_{i=1,...,Q}$ radioactivity measurements at times $(t_i)_{i=1,...,Q}$

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_Q(x) \end{pmatrix} = \begin{pmatrix} x_1 e^{-x_2 t_1} - N_1 \\ x_1 e^{-x_2 t_2} - N_2 \\ \vdots \\ x_1 e^{-x_2 t_Q} - N_Q \end{pmatrix}.$$

Calculate the Jacobian matrix Jf(x)

$$Jf(x) = \begin{pmatrix} e^{-x_2t_1} & -x_1t_1e^{-x_2t_1} \\ e^{-x_2t_2} & -x_1t_2e^{-x_2t_2} \\ \vdots & & \\ e^{-x_2t_Q} & -x_1t_Qe^{-x_2t_Q} \end{pmatrix}.$$

Reminders: linear least squares

Ax = b for $b \in \mathbb{R}^Q$ and $A \in \mathcal{M}_{Q,P}(\mathbb{R})$ with Q > P and rg(A) = P.

The problem: find $x \in \mathbb{R}^P$ such that

$$||Ax - b||^2 = \min_{y \in \mathbb{R}^P} ||Ay - b||^2$$

admits a unique solution given by the normal equation

$$A^tAx = A^tb$$
.

Nonlinear case

$$\begin{cases} \text{Find } x^* \in \mathbb{R}^P \text{ such that} \\ \|f(x^*)\|^2 = \min_{x \in \mathbb{R}^P} \|f(x)\|^2 & \left(\|f(x)\|^2 = \sum_{k=1}^Q (f_k(x))^2\right), \end{cases}$$

We suppose that:

$$\forall x \in \mathbb{R}^P$$
, $J_f(x) \in \mathcal{M}_{Q,P}(\mathbb{R})$ has rank P .

In particular, we will have $(J_f(x))^t J_f(x)$ symmetric defined positive.

Nonlinear case (continued)

We note

$$g:\left\{egin{array}{cccc} \mathbb{R}^P &
ightarrow & \mathbb{R} \ x & \mapsto & \|f(x)\|^2 \end{array}
ight.$$

If g is strictly convex and coercive then the problem $g(x^*) = \min_x g(x)$ admits a unique solution x^*

$$\nabla g(x^*) = 0.$$

Calculating the gradient of g

$$g = ||f(x)||^2 = Nof$$
, composition of $N : \mathbb{R}^Q \to \mathbb{R}$, $N(y) = ||y||^2$ and $f : \mathbb{R}^P \to \mathbb{R}^Q$.

The rule for differentiating a composite function gives

$$Dg(x) = DN(f(x))Df(x)$$

For $y, \delta \in \mathbb{R}^Q$, $DN(y)\delta = 2y \cdot \delta$
For $x, h \in \mathbb{R}^P$, $Df(x)h = Jf(x)h \in \mathbb{R}^Q$

$$h, x \in \mathbb{R}^P$$
, $Dg(x)h = 2f(x) \cdot Jf(x)h = 2Jf(x)^T f(x) \cdot h$

$$\nabla g(x) = 2Jf(x)^T f(x).$$

Pay attention to the dimensions of the different terms. The order of the operations is important

Find the zeros of ∇g or the zeros of f(x)

► Zeroing $\nabla g(x) = 2Jf(x)^T f(x)$ with Newton method requires Hf(x)

requires Hf(x) $\nabla g(x) \in \mathbb{R}^{p}$ (toy published P=2)

Find the zeros of ∇g or the zeros of f(x)

- ► Zeroing $\nabla g(x) = 2Jf(x)^T f(x)$ with Newton method requires Hf(x)
- ▶ If f(x) is a function of \mathbb{R}^P in \mathbb{R}^P we find the zeros by Newton's algorithm

$$x_{k+1} = x_k + d_k$$
 with $Jf(x_k)d_k = -f(x_k)$. Here it is not persible become

Find the zeros of ∇g or the zeros of f(x)

- ► Zeroing $\nabla g(x) = 2Jf(x)^T f(x)$ with Newton method requires Hf(x)
- ▶ If f(x) is a function of \mathbb{R}^P in \mathbb{R}^P we find the zeros by Newton's algorithm

$$x_{k+1} = x_k + d_k$$
 with $Jf(x_k)d_k = -f(x_k)$.

Here f(x) is a function of \mathbb{R}^P in \mathbb{R}^Q so the system $Jf(x_k)d_k = -f(x_k)$ of size $Q \times P$ is solved in the least squares sense

$$\int Jf(x_k)^T Jf(x_k) d_k = -\int Jf(x_k)^T f(x_k)$$

$$\Leftrightarrow d_k = -(Jf(x_k)^T Jf(x_k))^{-1} Jf(x_k)^T f(x_k).$$

Gauss Newton method

$$|A_k| \leq |A_k| \leq |A_k| > \varepsilon$$
Initialize $x_0 \in \mathbb{R}^P$ | $A_k| > \varepsilon$
While $|f(x_k)| > \varepsilon$ and $k < k_{\text{max}}$

- - Solve $(Jf(x_k)^T Jf(x_k))d_k = -Jf(x_k)^T f(x_k)$
 - ightharpoonup Update $x_{k+1} = x_k + d_k$
 - ▶ Update $k \rightarrow k + 1$

Same pros and cons as Newton method

equations in the linear

Convergence of the Gauss Newton method

We recall that Jf(x) of rank P and g(x) is strictly convex coercive

Let $x_k \in \mathbb{R}^P$, then the direction $d_k = -(Jf(x_k)^T Jf(x_k))^{-1} Jf(x_k)^T f(x_k)$ satisfies

$$\nabla g(x_k) \cdot d_k \leq 0.$$

If $x_k \neq x^*$ then

$$\nabla g(x_k) \cdot d_k < 0.$$

So d_k is a descent direction for g at x_k .

▶ If the sequence $(x_k)_k$ converges, then its limit is x^* .

Linear and non linear regression

Experiment with notebook 4

tog potelun with radioactive materials