(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年12 月18 日 (18.12.2003)

PCT

(10) 国際公開番号 WO 03/103647 A1

(51) 国際特許分類⁷: A61K 31/055, 31/121, 31/15, 31/166, 31/167, 31/17, 31/18, 31/185, 31/192, 31/216, 31/222, 31/275, 31/357, 31/381, 31/402, 31/403, 31/4035, 31/404, 31/4164, 31/421, 31/426, 31/433, 31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496

(21) 国際出願番号:

PCT/JP03/07129

(22) 国際出願日:

2003 年6 月5 日 (05.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-164526 2002 年6 月5 日 (05.06.2002) .

(71) 出願人 (米国を除く全ての指定国について): 株式会社 医薬分子設計研究所 (INSTITUTE OF MEDICINAL MOLECULAR DESIGN. INC.) [JP/JP]; 〒113-0033 東 京都文京区本郷5丁目24番5号角川本郷ビル4F Tokyo (JP)

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 武藤 進 (MUTO,Susumu) [JP/JP]; 〒184-0003 東京都小金井市 緑町 1-6-7 メイブルコーポB202 Tokyo (JP) 板井昭子 (ITAI,Akiko) [JP/JP]; 〒113-0033 東京都文 京区本郷5丁目24番5号角川本郷ビル4F株式 会社医薬分子設計研究所内 Tokyo (JP).

- (74) 代理人: 特許業務法人特許事務所サイクス (SIKS & CO.); 〒104-0031 東京都 中央区 京橋一丁目 8 番 7 号 京橋日殖ビル 8 階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: INHIBITORS AGAINST THE ACTIVATION OF AP-1 AND NFAT

🛶 (54) 発明の名称: AP-1及びNFAT活性化阻害剤

(57) Abstract: Medicines for inhibiting the activation of AP-1, containing as the active ingredient substances selected from the group consisting of compounds represented by the general formula (I) and pharmacologically acceptable salts thereof, and hydrates and solvates of both: (I) wherein X is a connecting group whose main chain has 2 to 5 carbon atoms and which may have a substituent; A is hydrogen or acetyl; E is optionally substituted aryl or optionally substituted heteroaryl; and Z is arene which may have a substituent in addition to the groups represented by the general formulae: -O-A and -X-E, or heteroarene which may have a substituent in addition to the groups represented by the general formulae: -O-A and -X-E.

(57) 要約:

下記一般式(1):

(式中、

Xは、主鎖の原子数が2ないし5である連結基(該連結基は置換基を有していてもよい)を表し、

Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表し、

環 2 は、式 - O - A(式中、Aは上記定義と同義である)及び式 - X - E(式中、 X 及び E は上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン、又は式 - O - A(式中、Aは上記定義と同義である)及び式 - X - E(式中、X 及び E は上記定義と同義である)で表される基の他に更に置換基を有していてもよいへテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含み、A P - 1 の活性化を阻害する医薬。

明細書

AP-1及びNFAT活性化阻害剤

技術分野

本発明は、AP-1 (activator protein-1) 又はNFAT (nuclear factor of activated T-cells)の活性化を阻害する医薬に関する。

背景技術

 $N-フェニルサリチルアミド誘導体は、米国特許第4358443号明細書に植物成長阻害剤として記載されており、医薬としては、欧州特許第0221211号明細書、特開昭62-99329号公報及び米国特許第6117859号明細書に抗炎症剤として開示されている。また、国際公開第99/65499号パンフレット、国際公開第02/49632号パンフレット及び国際公開第02/076918号パンフレットにはNF-<math>\kappa$ B(nuclear factor- κ B)阻害剤として、国際公開第02/051397号パンフレットにはサイトカイン産生抑制剤として開示されている。しかしながら、従来、N-フェニルサリチルアミド誘導体がAP-1又はNFATの活性化を阻害することは知られていない。

発明の開示

炎症性疾患や免疫性疾患においてTNF(tumor necrosis factor) α 、IL (interleukin) -1、IL-2、IL-6、IL-8等の炎症性メディエーターが非常に重要な役割をしており、これらの過剰な産生が様々な炎症性疾患や免疫性疾患を惹起し、持続、増悪させることは現在では良く知られたメカニズムである。従って、炎症性メディエーターの産生または遊離を制御することは、これらの疾患の治療のための有力な手段となる可能性が高い(「カレント・メディシナル・ケミストリー(Current Medicinal Chemistry)」,(オランダ),2002年,

第9巻,第2号, p. 219-227)。これらの炎症性メディエーターはNF- κ B、AP-1、及びNFATなどの転写因子と呼ばれる蛋白質によってその産生がコントロールされていることから、転写因子の活性化の制御は炎症性メディエーターを制御することとなり、それらを制御する薬剤は炎症性疾患及び免疫性疾患の治療薬となり得る(「カレント・メディシナル・ケミストリー(Current Medicinal Chemistry)」,(オランダ),2002年,第9巻,第2号,p. 219-227)。従って、本発明の課題は、AP-1又はNFATの活性化の抑制する作用を有する医薬を提供することにある。

本発明者らは一般的に毒性の低いと言われているサリチルアミド誘導体の転写因子抑制作用について鋭意研究した結果、Nー置換サリチルアミド誘導体、取り分けN-アリールサリチルアミド誘導体が、AP-1及びNFATの活性化を抑制することを見出した。また、その類縁体であるヒドロキシアリール誘導体においても同様の知見を得て、本発明を完成するに至った。

なお、下記の一般式(I)で表される化合物の一部は国際公開第99/65499 号パンフレット、国際公開第02/49632号パンフレット及び国際公開第02/076918号パンフレットにおいてNF-κB阻害薬として開示されているが、上記国際公開第99/65499号パンフレット、国際公開第02/49632号パンフレット及び国際公開第02/076918号パンフレットにはAP-1及びNFATの活性化阻害作用については何も記述されていない。この3つの転写因子は、炎症性メディエーターの遊離産生を行っているという点では共通しており、一部共通に産生しているメディエーターはあるが、全体的には産生しているメディエーターの種類は異なる。さらに、生体反応の中での役割も異なっていることから、本発明の医薬は、既存の炎症性メディエーター阻害剤や抗炎症薬が無効であるか、あるいはあまり有効でない疾患に対しても高い有効性を発揮できる。

すなわち、本発明は、

(1) 下記一般式(I):

(式中、

Xは、主鎖の原子数が2ないし5である連結基(該連結基は置換基を有していてもよい)を表し、

Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表し、

環Zは、式-O-A (式中、Aは上記定義と同義である)及び式-X-E (式中、X及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン、又は式-O-A (式中、Aは上記定義と同義である)及び式-X-E (式中、X及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含み、AP-1の活性化を阻害する医薬を提供するものである。また、本発明により、上記一般式(I)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含み、NFATの活性化を阻害する医薬も提供される。本発明の好適な医薬としては、

(2) Xが、下記連結基群 αより選択される基(該基は置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

[連結基群α] 下記式:

(式中、左側の結合手が環 2 に結合し右側の結合手が E に結合する)

(3) Xが、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する) で表される 基 (該基は置換基を有していてもよい) である化合物及び薬理学的に許容される その塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効 成分として含む上記の医薬、

- (4) Aが、水素原子である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (5) 環Zが、 C_6 ~ C_{10} のアレーン(該アレーンは、式-O-A(式中、Aは -般式(I) における定義と同義である)及び式-X-E(式中、X及びEは一般式(I) における定義と同義である)で表される基の他に更に置換基を有していてもよい)、Xは5ないし13 員のへテロアレーン(該 、テロアレーンは、式-

O-A (式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(6) 環Ζが、下記環群β:

[環群β] ベンゼン環、ナフタレン環、チオフェン環、ピリジン環、インドール環、キノキサリン環、及びカルバゾール環

より選択される環(該環は、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

- (7) 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 X E (式中、X 及び E は一般式 (I) における定義と同義である) で表される基の他に更に置換基を有していてもよいベンゼン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (8) 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にハロゲン原子を更に有するベンゼン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (9) 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 X E (式中、X 及び E は一般式 (I) における定義と同義である) で表される基の他に置換基を更に有していてもよいナフタレン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群か

ら選ばれる物質を有効成分として含む上記の医薬、

- (10) Eが、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基、又は置換基を有していてもよい5ないし13員のヘテロアリール基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (11) Eが、置換基を有していてもよいフェニル基である化合物及び薬理学的 に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれ る物質を有効成分として含む上記の医薬、
- (12) Eが、3,5ービス(トリフルオロメチル)フェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (13) Eが、置換基を有していてもよい5員のヘテロアリール基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬を挙げることができる。別の観点からは、本発明により、上記の(1)~(13)の医薬の製造のための上記の各物質の使用、上記の各物質を含むAP-1の活性化阻害剤、及び上記の各物質を含むNFATの活性化阻害剤が提供される。

また、本発明により、ヒトを含む哺乳類動物において、AP-1又はNFATの活性化を阻害する方法であって、上記の各物質の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。

発明を実施するための最良の形態

本発明の理解のために「国際公開第02/49632号パンフレット」の開示を 参照することは有用である。上記「国際公開第02/49632号パンフレット」 の開示の全てを参照として本明細書の開示に含める。

本明細書において用いられる用語の意味は以下の通りである。

「ハロゲン原子」としては、特に言及する場合を除き、弗素原子、塩素原子、臭

素原子、又は沃素原子のいずれを用いてもよい。

「炭化水素基」としては、例えば、脂肪族炭化水素基、アリール基、アリーレン 基、アラルキル基、架橋環式炭化水素基、スピロ環式炭化水素基、及びテルペン 系炭化水素等が挙げられる。

「脂肪族炭化水素基」としては、例えば、アルキル基、アルケニル基、アルキニル基、アルキレン基、アルケニレン基、アルキリデン基等の直鎖状又は分枝鎖状の1価若しくは2価の非環式炭化水素基;シクロアルキル基、シクロアルケニル基、シクロアルカンジエニル基、シクロアルキルーアルキル基、シクロアルキレン基、シクロアルケニレン基等の飽和又は不飽和の1価若しくは2価の脂環式炭化水素基等が挙げられる。

「アルキル基」としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s e c -ブチル、t e r t -ブチル、n-ペンチル、1-メチルブチル、1-メチルブチル、1-メチルプロピル、1-メチルプロピル、1-メチルプロピル、1-メチルペンチル、1-メチルペンチル、1-メチルペンチル、1-メチルペンチル、1-メチルペンチル、1-メチルブチル、1-メチルブチル、1+2-ジメチルブチル、1+1・ジメチルブチル、1+2・ジメチルブチル、1+2・ジメチルブチル、1+2・ジメチルブチル、1+3・ジメチルブチル、1+3・ジメチルブチル、1+4・ブチル、1+4・ブチル、1+4・ブチル、1+5・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブチル、1+7・ブラナル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブラル、1+7・ブタデシル等の1+7・ブラル、1+7・ブタデシル、1+7・ブタデシル等の1+7・ブロ戦状況は分枝鎖状のアルキル基が挙げられる。

「アルケニル基」としては、例えば、ビニル、プロパー1-エン-1-イル、アリル、イソプロペニル、ブター1-エン-1-イル、ブター2-エン-1-イル、ブター3-エン-1-イル、2-メチルプロパー2-エン-1-イル、1-メチルプロパー2-エン-1-イル、ペンター1-エン-1-イル、ペンター2-エン-1-イル、ペンター3-エン-1-イル、ペンター4-エン-1-イル、3-メチルブター2-エン-1-イル、ヘ

WO 03/103647 PCT/JP03/07129 ---

キサー1ーエンー1ーイル、ヘキサー2ーエンー1ーイル、ヘキサー3ーエンー1ーイル、ヘキサー4ーエンー1ーイル、ヘキサー5ーエンー1ーイル、4ーメチルペンター3ーエンー1ーイル、ヘプター6ーエンー1ーイル、オクター1ーエンー1ーイル、スプター6ーエンー1ーイル、オクター1ーエンー1ーイル、プカー7ーエンー1ーイル、プカー1ーエンー1ーイル、プカー9ーエンー1ーイル、ウサー1ーエンー1ーイル、デカー1ーエンー1ーイル、ドデカー1ーエンー1ーイル、ドデカー1ーエンー1ーイル、ドデカー1ーエンー1ーイル、ドデカー1ーエンー1ーイル、トリデカー1 2ーエンー1ーイル、テトラデカー1 3ーエンー1ーイル、ペンタデカー1 4ーエンー1ーイル等の $C_2\sim C_{15}$ の直鎖状又は分枝鎖状のアルケニル基が挙げられる。

「アルキニル基」としては、例えば、エチニル、プロパー1ーインー1ーイル、プロパー2ーインー1ーイル、ブター3ーインー1ーイル、ブター3ーインー1ーイル、ブター3ーインー1ーイル、1ーメチルプロパー2ーインー1ーイル、ペンター1ーインー1ーイル、ペンター4ーインー1ーイル、ヘキサー1ーインー1ーイル、ヘキサー5ーインー1ーイル、ヘプター1ーインー1ーイル、オクター1ーインー1ーイル、オクター7ーインー1ーイル、ノナー1ーインー1ーイル、ブカー1ーインー1ーイル、デカー9ーインー1ーイル、ヴンデカー1ーインー1ーイル、デカー1ーインー1ーイル、ドデカー1ーインー1ーイル、トリデカー1ーインー1ーイル、トリデカー1ーインー1ーイル、トリデカー1ーインー1ーイル、テトラデカー1ーインー1ーイル、アトラデカー13ーインー1ーイル、ペンタデカー1インー1ーイル、ペンタデカー14ーインー1ーイル、ペンタデカー14ーインー1ーイル、ペンタデカー14ーインー1ーイル、キニル基が挙げられる。

「アルキレン基」としては、例えば、メチレン、エチレン、エタンー1, 1-ジ イル、プロパン-1, 3-ジイル、プロパン-1, 2-ジイル、プロパン-2,

2-ジイル、ブタン-1, 4-ジイル、ペンタン-1, 5-ジイル、ヘキサン-1, 6-ジイル、1, 1, 4, 4-テトラメチルブタン-1, 4-ジイル等のC $_1$ ~C $_8$ の直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルケニレン基」としては、例えば、エテンー1,2ージイル、プロペンー1,3ージイル、ブター1ーエンー1,4ージイル、ブター2ーエンー1,4ージイル、2ーメチルプロペンー1,3ージイル、ペンター2ーエンー1,5ージイル、ヘキサー3ーエンー1,6ージイル等の $C_1 \sim C_6$ の直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルキリデン基」としては、例えば、メチリデン、エチリデン、プロピリデン、 イソプロピリデン、ブチリデン、ペンチリデン、ヘキシリデン等の $C_1 \sim C_6$ の直 鎖状又は分枝鎖状のアルキリデン基が挙げられる。

「シクロアルキル基」としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の $C_3 \sim C_8$ のシクロアルキル基が挙げられる。

なお、上記「シクロアルキル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1-インダニル、2-インダニル、1, 2, 3, 4-テトラヒドロナフタレン-1-イル、1, 2, 3, 4-テトラヒドロナフタレン-2-イル等の基が挙げられる。

「シクロアルケニル基」としては、例えば、2-シクロプロペン-1-イル、2-シクロプテン-1-イル、2-シクロペンテン-1-イル、3-シクロペンテン-1-イル、3-シクロペンテン-1-イル、1-シクロプテン-1-イル、1-シクロプテン-1-イル、 $1-シクロペンテン-1-イル等の<math>C_3\sim C_6$ のシクロアルケニル基が挙げられる。

なお、上記「シクロアルケニル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1-4ンダニル、2-4ンダニル、1, 2, 3, 4-テトラヒドロナフタレン-1-4ル、1, 2, 3, 4-テトラヒドロナフタレン-2-4ル、1-4ンデニル、2-4ンデニル等の基が挙げられる。

「シクロアルカンジエニル基」としては、例えば、2, 4-シクロペンタンジエン-1-イル、<math>2, 4-シクロヘキサンジエン-1-イル、<math>2, $5-シクロヘキサンジエン-1-イル等の<math>C_5\sim C_6$ のシクロアルカンジエニル基が挙げられる。なお、上記「シクロアルカンジエニル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1-インデニル、2-インデニル等の基が挙げられる。

「シクロアルキルーアルキル基」としては、「アルキル基」の1つの水素原子が、「シクロアルキル基」で置換された基が挙げられ、例えば、シクロプロピルメチル、1 — シクロプロピルエチル、2 — シクロプロピルエチル、3 — シクロプロピルエチル、4 — シクロプロピルブチル、5 — シクロプロピルペンチル、6 — シクロプロピルヘキシル、シクロブチルメチル、シクロペンチルメチル、シクロブチルメチル、シクロペンチルメチル、シクロヘキシルプロピル、シクロヘキシルブチル、シクロヘキシルブチル、シクロヘキシルブチル、シクロヘキシルブチル、シクロヘキシルブチル、シクロヘナシルブチル、シクロオクチルメチル、6 — シクロオクチルヘキシル等の C_4 \sim C_{14} のシクロアルキルーアルキル基が挙げられる。

「シクロアルケニレン基」としては、例えば、2-シクロプロペン-1, 1-ジイル、2-シクロプテン-1, 1-ジイル、2-シクロペンテン-1, 1-ジイル、3-シクロペンテン-1, 1-ジイル、2-シクロペキセン-1, 1-ジイ

ル、2-シクロへキセンー1, 2-ジイル、2-シクロへキセンー1, 4-ジイル、3-シクロへキセンー1, 1-ジイル、1-シクロプテンー1, 2-ジイル、1-シクロペンテンー1, 2-ジイル、1-シクロへキセンー1, 2-ジイル等の $C_3 \sim C_6$ のシクロアルケニレン基が挙げられる。

「アリール基」としては、単環式又は縮合多環式芳香族炭化水素基が挙げられ、例えば、フェニル、1-ナフチル、2-ナフチル、アントリル、フェナントリル、アセナフチレニル等の $C_6\sim C_{14}$ のアリール基が挙げられる。

「アリーレン基」としては、例えば、1, 2-フェニレン、1, 3-フェニレン、1, 4-フェニレン、ナフタレン-1, 2-ジイル、ナフタレン-1, 3-ジイル、ナフタレン-1, 4-ジイル、ナフタレン-1, 5-ジイル、ナフタレン-1, 6-ジイル、ナフタレン-1, 7-ジイル、ナフタレン-1, 8-ジイル、ナフタレン-2, 3-ジイル、ナフタレン-2, 4-ジイル、ナフタレン-2, 5-ジイル、ナフタレン-2, 6-ジイル、ナフタレン-2, 7-ジイル、ナフタレン-2, 8-ジイル、アントラセン-1, 4-ジイル等の $C_6 \sim C_{14}$ のアリーレン基が挙げられる。

「アラルキル基」としては、「アルキル基」の1つの水素原子が、「アリール基」で置換された基が挙げられ、例えば、ベンジル、1ーナフチルメチル、2ーナフチルメチル、アントラセニルメチル、フェナントレニルメチル、アセナフチレニルメチル、ジフェニルメチル、1ーフェネチル、2ーフェネチル、1ー(1ーナ

フチル)エチル、1-(2-+)アチル)エチル、2-(1-+)アチル)エチル、2-(2-+)アナル)エチル、3-フェニルプロピル、3-(1-+)アカル)プロピル、3-(2-+)アナル)プロピル、4-フェニルブチル、4-(1-+)アナル)ブチル、4-(2-+)アチル)ブチル、5-フェニルペンチル、5-(1-+)アナル)ペンチル、5-(2-+)アチル)ペンチル、6-フェニルヘキシル、6-(1-+)アチル)ヘキシル、6-(2-+)アチル)ヘキシル、6-(2-+)アテルキル上が挙げられる。

「架橋環式炭化水素基」としては、例えば、ビシクロ〔2.1.0〕ペンチル、ビシクロ〔2.2.1〕ヘプチル、ビシクロ〔2.2.1〕オクチル、アダマンチル等の基が挙げられる。

「スピロ環式炭化水素基」、としては、例えば、スピロ〔3.4〕オクチル、スピロ〔4.5〕デカー1,6-ジエニル等の基が挙げられる。

「テルペン系炭化水素」としては、例えば、ゲラニル、ネリル、リナリル、フィチル、メンチル、ボルニル等の基が挙げられる。

「ハロゲン化アルキル基」としては、「アルキル基」の1つの水素原子が「ハロゲン原子」で置換された基が挙げられ、例えば、フルオロメチル、ジフルオロメチル、リフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、ヨードメチル、ジョードメチル、トリョードメチル、2, 2, 2ートリフルオロエチル、ペンタフルオロエチル、3, 3, 3ートリフルオロプロピル、ヘプタフルオロプロピル、ヘプタフルオロイソプロピル、ノナフルオロブチル、パーフルオロヘキシル等の1万至13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルキル基が挙げられる。

「ヘテロ環基」としては、例えば、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を少なくとも1個含む単環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ

原子1乃至3種を少なくとも1個含む単環式又は縮合多環式非芳香族へテロ環基 が挙げられる。

「単環式へテロアリール基」としては、例えば、2-フリル、3-フリル、2-チエニル、3ーチエニル、1ーピロリル、2ーピロリル、3ーピロリル、2ーオ キサゾリル、4-オキサゾリル、5-オキサゾリル、3-イソオキサゾリル、4 ーイソオキサブリル、5ーイソオキサブリル、2ーチアブリル、4ーチアブリル、 5-チアゾリル、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリ ル、1ーイミダゾリル、2ーイミダゾリル、4ーイミダゾリル、5ーイミダゾリ ル、1ーピラゾリル、3ーピラゾリル、4ーピラゾリル、5ーピラゾリル、(1, 2. 3- オキサジアゾール) - 4 - イル、(1, 2, 3 - オキサジアゾール) - 5ーイル、(1, 2, 4ーオキサジアゾール) -3ーイル、(1, 2, 4ーオキサジ rゾール) -5 -イル、(1, 2, 5 -オキサジアゾール) -3 -イル、(1, 2, 55-オキサジアゾール)-4-イル、(1,3,4-オキサジアゾール)-2-イ ル、(1, 3, 4ーオキサジアゾール) - 5ーイル、フラザニル、(1, 2, 3-チアジアゾール) -4-イル、(1,2,3-チアジアゾール) -5-イル、(1, 2, 4ーチアジアゾール) -3ーイル、(1, 2, 4ーチアジアゾール) -5ーイ ル、(1, 2, 5-fアジアゾール) -3-fル、(1, 2, 5-fアジアゾール)ー4ーイル、(1, 3, 4ーチアジアゾリル) -2-イル、(1, 3, 4ーチアジ -1, 2, 3-トリアゾール) -4-イル、(1H-1, 2, 3-トリアゾール) -5-イル、 $(2H-1,\ 2,\ 3-$ トリアゾール)-2-イル、 $(2H-1,\ 2,\ 3-$ 3-トリアゾール)-4-イル、(1H-1, 2, 4-トリアゾール)-1-イル、(1H-1, 2, 4-トリアゾール) -3-イル、(1H-1, 2, 4-トリアゾ $-\nu$) -5-イル、(4H-1, 2, 4-トリアゾール) -3-イル、(4H-1, 2, 4-トリアゾール) 2, 4ートリアゾール) -4-イル、(1H-テトラゾール) -1-イル、(1H ーテトラゾール) - 5 - イル、(2 H - テトラゾール) - 2 - イル、(2 H - テト ラゾール) -5-イル、2-ピリジル、3-ピリジル、4-ピリジル、3-ピリ

ダジニル、4-ピリダジニル、2-ピリミジニル、4-ピリミジニル、5-ピリミジニル、2-ピラジニル、(1, 2, 3-トリアジン)-4-イル、(1, 2, 3-トリアジン)-3-イル、(1, 2, 4-トリアジン)-3-イル、(1, 2, 4-トリアジン)-6-イル、(1, 3, 5-トリアジン)-5-イル、(1, 2, 4-トリアジン)-6-イル、(1, 3, 5-トリアジン)-2-イル、(1-Pten) 、(1-Pten) 、(1-Pten)

「縮合多環式へテロアリール基」としては、例えば、2-ベンプフラニル、3-ベンゾフラニル、4ーベンゾフラニル、5ーベンゾフラニル、6ーベンゾフラニ ・ル、 7 ーベンゾフラニル、 1 ーイソベンゾフラニル、 4 ーイソベンゾフラニル、 5-イソベンゾフラニル、2-ベンゾ [b] チエニル、3-ベンゾ [b] チエニ ル、4ーベング [b] チエニル、5ーベング [b] チエニル、6ーベング [b] チエニル、7 – ベンゾ [b] チエニル、1 – ベンゾ [c] チエニル、4 – ベンゾ [c] チエニル、5-ベンゾ[c] チエニル、1-インドリル、<math>1-インドリル、 2ーインドリル、3ーインドリル、4ーインドリル、5ーインドリル、6ーイン ドリル、7-インドリル、(2H-イソインドール) -1-イル、(2H-イソイ ンドール) -2-イル、(2H-イソインドール) -4-イル、(2H-イソイン ドール) -5-イル、(1H-インダゾール) -1-イル、(1H-インダゾール) -3-イル、(1H-インダゾール)-4-イル、(1H-インダゾール)-5-イル、(1H-インダゾール) -6-イル、(1H-インダゾール) -7-イル、 (2H-インダゾール) -1-イル、<math>(2H-インダゾール) -2-イル、 (2Hーインダゾール) -4-イル、(2H-インダゾール) -5-イル、2-ベンゾオ キサゾリル、2-ベンゾオキサゾリル、4-ベンゾオキサゾリル、5-ベンゾオ

キサゾリル、6-ベンゾオキサゾリル、7-ベンゾオキサゾリル、(1,2-ベン y'イソオキサゾール) -3 -イル、(1, 2 -ベンゾイソオキサゾール) -4 -イ ル、(1, 2-ベンゾイソオキサゾール)-5-イル、(1, 2-ベンゾイソオキ サゾール) -6 - イル、(1, 2 - ベンゾイソオキサゾール) -7 - イル、(2, 2)1-ベンゾイソオキサゾール)-3-イル、(2,1-ベンゾイソオキサゾール) -4-1ル、(2, 1-1)ベンゾイソオキサゾール(2, 1-1)2-ベンゾチアゾリル、4-ベンゾチアゾリル、5-ベンゾチアゾリル、6-ベ ンゾチアゾリル、7ーベンゾチアゾリル、(1,2-ベンゾイソチアゾール)-3 -イル、(1, 2 -ベンゾイソチアゾール) - 4 -イル、(1, 2 -ベンゾイソチ アゾール) -5 -4ル、(1, 2 -4ングイソチアゾール) -6 -4ル、(1, 2ーベンゾイソチアゾール) - 7 - イル、(2, 1 - ベンゾイソチアゾール) - 3 -イル、(2, 1-ベンゾイソチアゾール) -4-イル、(2, 1-ベンゾイソチア ゾール) -5-イル、(2, 1-ベンゾイソチアゾール) -6-イル、(2, 1-ベンソイソチアゾール) -7-イル、(1, 2, 3-ベンソオキサジアゾール) -4-イル、(1.2,3-ベンゾオキサジアゾール)-5-イル、(1,2,3-ベンゾオキサジアゾール) -6-イル、(1, 2, 3-ベンゾオキサジアゾール) -ベンゾオキサジアゾール) -5-イル、<math>(1, 2, 3-ベンゾチアジアゾール)ベンゾチアジアゾール) -6-イル、(1,2,3-ベンゾチアジアゾール) -7 -イル、(2, 1, 3-ベンゾチアジアゾール) -4-イル、(2, 1, 3-ベン ゾチアジアゾール) -5-イル、(1H-ベンゾトリアゾール) -1-イル、(1 Hーベンゾトリアゾール)-4-イル、(1H-ベンゾトリアゾール)-5-イル、 **(1H-ベンゾトリアゾール)-6-イル、(1H-ベンゾトリアゾール) -7-**イル、(2H-ベンゾトリアゾール)-2-イル、(2H-ベンゾトリアゾール) -4-イル、(2H-ベンゾトリアゾール)-5-イル、2-キノリル、3-キノ

リル、4ーキノリル、5ーキノリル、6ーキノリル、7ーキノリル、8ーキノリ ル、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリ ル、6-イソキノリル、7-イソキノリル、8-イソキノリル、3-シンノリニ ル、4-シンノリニル、5-シンノリニル、6-シンノリニル、7-シンノリニ ル、8-シンノリニル、2-キナゾリニル、4-キナゾリニル、5-キナゾリニ ル、6-キナゾリニル、7-キナゾリニル、8-キナゾリニル、2-キノキサリ ニル、5-キノキサリニル、6-キノキサリニル、1-フタラジニル、5-フタ ラジニル、6-フタラジニル、2-ナフチリジニル、3-ナフチリジニル、4-ナフチリジニル、2-プリニル、6-プリニル、7-プリニル、8-プリニル、 2-プテリジニル、4-プテリジニル、6-プテリジニル、7-プテリジニル、 1ーカルバゾリル、2ーカルバゾリル、3ーカルバゾリル、4ーカルバゾリル、 $9-カルバゾリル、<math>2-(\alpha-カルボリニル)$ 、 $3-(\alpha-カルボリニル)$ 、4- $(\alpha - \lambda \nu \pi \nu \pi \nu)$, $5 - (\alpha - \lambda \nu \pi \nu)$, $6 - (\alpha - \lambda \nu \pi \nu)$, $7 - (\alpha - \lambda \nu \pi \nu)$ -(α-)カルボリニル)、8-(α-)カルボリニル)、9-(α-)カルボリニル)、 1-(β-カルボニリル)、<math>3-(β-カルボニリル)、4-(β-カルボニリル)、5-(β-π カルボニリル)、<math>6-(β-π カルボニリル)、7-(β-π カルボニリル)、 $2 - (y - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 $4 - (y - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 $5 - (y - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 6-(γ-カルボリニル)、7-(γ-カルボリニル)、8-(γ-カルボリニル)、 9- (y-カルボリニル)、1-アクリジニル、2-アクリジニル、3-アクリジ ニル、4ーアクリジニル、9ーアクリジニル、1-フェノキサジニル、2-フェ ノキサジニル、3-フェノキサジニル、4-フェノキサジニル、10-フェノキ サジニル、1-フェノチアジニル、2-フェノチアジニル、3-フェノチアジニ ル、4ーフェノチアジニル、10ーフェノチアジニル、1ーフェナジニル、2ー フェナジニル、1ーフェナントリジニル、2ーフェナントリジニル、3ーフェナ ントリジニル、4-フェナントリジニル、6-フェナントリジニル、7-フェナ ントリジニル、8-フェナントリジニル、9-フェナントリジニル、10-フェ

ナントリジニル、2-フェナントロリニル、3-フェナントロリニル、4-フェナントロリニル、5-フェナントロリニル、6-フェナントロリニル、7-フェナントロリニル、8-フェナントロリニル、9-フェナントロリニル、10-フェナントロリニル、1-インドリジニル、1-チアントレニル、2-チアントレニル、1-インドリジニル、3-インドリジニル、5-インドリジニル、6-インドリジニル、7-インドリジニル、8-インドリジニル、1-フェノキサチイニル、2-フェノキサチイニル、3-フェノキサチイニル、4-フェノキサチイニル、チェノ [2, 3-b] フリル、ピロロ [1, 2-b] ピリダジニル、ピラゾロ[1, 5-a] ピリジル、イミダゾ [1, 2-a] ピリジル、イミダゾ [1, 2-a] ピリジル、イミダゾ [1, 2-a] ピリジル、イミダゾ [1, 2-a] ピリジル、1, 2, 4-トリアゾロ [4, 3-a] ピリジル、1, 2, 4-トリアゾロ [4, 3-a] ピリジル、カール基が挙げられる。

「単環式非芳香族へテロ環基」としては、例えば、1ーアジリジニル、1ーアゼチジニル、1ーピロリジニル、2ーピロリジニル、3ーピロリジニル、2ーテトラヒドロフリル、チオラニル、1ーイミダゾリジニル、2ーイミダゾリジニル、4ーイミダゾリジニル、1ーピラゾリジニル、3ーピラゾリジニル、4ーピラゾリジニル、1ー(2ーピロリニル)、1ー(2ーイミダゾリニル)、2ー(2ーイミダゾリニル)、1ー(2ーピラゾリニル)、3ー(2ーピラゾリニル)、プーペリジニル、1ーホモピペリジニル、2ーテトラヒドロピラニル、モルホリノ、(チオモルホリン) ー4ーイル、1ーピペラジニル、1ーホモピペラジニル等の3万至7員の飽和若しくは不飽和の単環式非芳香族へテロ環基が挙げられる。

「縮合多環式非芳香族へテロ環基」としては、例えば、2ーキヌクリジニル、2 ークロマニル、3ークロマニル、4ークロマニル、5ークロマニル、6ークロマ ニル、7ークロマニル、8ークロマニル、1ーイソクロマニル、3ーイソクロマ ニル、4ーイソクロマニル、5ーイソクロマニル、6ーイソクロマニル、7ーイ

ソクロマニル、8-イソクロマニル、2-チオクロマニル、3-チオクロマニル、 4-チオクロマニル、5-チオクロマニル、6-チオクロマニル、7-チオクロ マニル、8-チオクロマニル、1-イソチオクロマニル、3-イソチオクロマニ ル、4ーイソチオクロマニル、5ーイソチオクロマニル、6ーイソチオクロマニ ル、7-イソチオクロマニル、8-イソチオクロマニル、1-インドリニル、2 ーインドリニル、3ーインドリニル、4ーインドリニル、5ーインドリニル、6 ーインドリニル、7ーインドリニル、1ーイソインドリニル、2ーイソインドリ ニル、4-イソインドリニル、5-イソインドリニル、2-(4H-クロメニル)、 3-(4H-クロメニル)、4-(4H-クロメニル)、5-(4H-クロメニル)、 6-(4H-クロメニル)、7-(4H-クロメニル)、8-(4H-クロメニル)、 1ーイソクロメニル、3ーイソクロメニル、4ーイソクロメニル、5ーイソクロ メニル、6-イソクロメニル、7-イソクロメニル、8-イソクロメニル、1-(1H-ピロリジニル)、2- (1H-ピロリジニル)、3- (1H-ピロリジニ ル)、5-(1H-ピロリジニル)、<math>6-(1H-ピロリジニル)、7-(1H-ピロリジニル) 等の8乃至10員の飽和若しくは不飽和の縮合多環式非芳香族ヘテ ロ環基が挙げられる。

上記「ヘテロ環基」の中で、環系を構成する原子(環原子)として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を有していてもよい単環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子(環原子)として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を有していてもよい単環式又は縮合多環式非芳香族ヘテロ環基を「環状アミノ基」と称し、例えば、1ーピロリジニル、1ーイミダゾリジニル、1ーピラゾリジニル、1ーオキサゾリジニル、1ーチアゾリジニル、ピペリジノ、モルホリノ、1ーピペラジニル、チオモルホリンー4ーイル、1ーホモピペリジニル、1ーホモピペラジニル、チオモルホリンー4ーイル、1ーホモピペリジニル、2ーピロリンー1ーイル、2ーイミダゾリンー1ーイル、2ーピラゾリンー1ーイル、1ーインドリニル、2ーイソインドリニル、1, 2, 3, 4ー

テトラヒドロキノリン-1-イル、1, 2, 3, 4-テトラヒドロイソキノリン-2-イル、1-ピロリル、1-イミダゾリル、1-ピラゾリル、1-インドリル、1-インダゾリル、2-イソインドリル等の基が挙げられる。

上記「シクロアルキル基」、「シクロアルケニル基」、「シクロアルカンジェニル基」、「アリール基」、「シクロアルキレン基」、「シクロアルケニレン基」、「アリーレン基」、「アリーレン基」、「架橋環式炭化水素基」、「スピロ環式炭化水素基」、及び「ヘテロ環基」を総称して「環式基」と称する。また、該「環式基」の中で、特に「アリール基」、「アリーレン基」、「単環式ヘテロアリール基」、及び「縮合多環式ヘテロアリール基」を総称して「芳香環式基」と称する。

「炭化水素ーオキシ基」としては、「ヒドロキシ基」の水素原子が「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素ーオキシ基」としては、例えば、アルコキシ基(アルキルーオキシ基)、アルケニルーオキシ基、アルキニルーオキシ基、シクロアルキルーオキシ基、シクロアルキルーオキシ基、シクロアルキルーオキシ基;アリールーオキシ基;アラルキルーオキシ基;アルキレンージオキシ基等が挙げられる。

ートリデシルオキシ、nーテトラデシルオキシ、nーペンタデシルオキシ等の C_{15} の直鎖状又は分枝鎖状のアルコキシ基が挙げられる。

「アルケニルーオキシ基」としては、例えば、ビニルオキシ、(プロパー1ーエン -1-イル) オキシ、アリルオキシ、イソプロペニルオキシ、(ブター1-エンー 1ーイル) オキシ、(ブター2ーエンー1ーイル) オキシ、(ブター3ーエンー1 ーイル)オキシ、(2ーメチルプロパー2-エンー1-イル)オキシ、(1ーメチ ルプロパー2ーエンー1ーイル)オキシ、(ペンター1ーエンー1ーイル)オキシ、 (ペンター2-エンー1-イル)オキシ、(ペンター3-エンー1-イル)オキシ、 (ペンター4ーエンー1ーイル)オキシ、(3ーメチルプター2ーエンー1ーイル) オキシ、(3-メチルブター3-エン-1-イル)オキシ、(ヘキサー1-エンー 1-イル) オキシ、(ヘキサー2-エン-1-イル) オキシ、(ヘキサー3-エン -1-イル) オキシ、(ヘキサー4-エン-1-イル) オキシ、(ヘキサー5-エ ンー1ーイル)オキシ、(4ーメチルペンター3ーエンー1ーイル)オキシ、(4 ーメチルペンター3-エン-1-イル)オキシ、(ヘプター1-エンー1ーイル) オキシ、(ヘプター6ーエンー1ーイル) オキシ、(オクター1ーエンー1ーイル) オキシ、(オクター7ーエンー1ーイル) オキシ、(ノナー1ーエンー1ーイル) オキシ、(ノナー8-エン-1-イル) オキシ、(デカー1-エン-1-イル) オ キシ、(デカー9ーエンー1ーイル) オキシ、(ウンデカー1ーエンー1ーイル) オキシ、(ウンデカー10-エンー1-イル) オキシ、(ドデカー1-エンー1-イル) オキシ、(ドデカー11ーエンー1ーイル) オキシ、(トリデカー1ーエン -1-イル) オキシ、(トリデカ-12-エン-1-イル) オキシ、(テトラデカ -1-エン-1-イル)オキシ、(テトラデカ-13-エン-1-イル)オキシ、 (ペンタデカー1ーエンー1ーイル) オキシ、(ペンタデカー14ーエンー1ーイ ル) オキシ等のC₂~C₁₅の直鎖状又は分枝鎖状のアルケニルーオキシ基が挙げ られる。

「アルキニルーオキシ基」としては、例えば、エチニルオキシ、(プロパー1ーインー1ーイル)オキシ,(プロパー2ーインー1ーイル)オキシ,(ブター1ーイ

「シクロアルキルーオキシ基」としては、例えば、シクロプロポキシ、シクロブトキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロスナルオキシ等の $C_3 \sim C_8$ のシクロアルキルーオキシ基が挙げられる。「シクロアルキルーアルキルーオキシ基」としては、例えば、シクロプロピルメトキシ、1-シクロプロピルエトキシ、2-シクロプロピルエトキシ、3-シクロプロピルプロポキシ、4-シクロプロピルブトキシ、5-シクロプロピルペンチルオキシ、6-シクロプロピルへキシルオキシ、シクロプチルメトキシ、シクロブチルメトキシ、シクロペンチルメトキシ、シクロブチルメトキシ、シクロペンチルメトキシ、シクロペキシルエトキシ、3-シクロヘキシルプロポキシ、4-シクロヘキシルブトキシ、シクロヘプチルメトキシ、シクロオクチルメトキシ、アルキルーオキシ基が挙げられる。

「アリールーオキシ基」としては、例えば、フェノキシ、1ーナフチルオキシ、

2-ナフチルオキシ、アントリルオキシ、フェナントリルオキシ、アセナフチレニルオキシ等の $C_6 \sim C_{14}$ のアリールーオキシ基が挙げられる。

「アラルキルーオキシ基」としては、例えば、ベンジルオキシ、1-tフチルメトキシ、2-tフチルメトキシ、アントラセニルメトキシ、フェナントレニルメトキシ、アセナフチレニルメトキシ、ジフェニルメトキシ、1-tフェネチルオキシ、2-tフェネチルオキシ、1-t1ー(2-t7年ル)エトキシ、2-t2ーナフチル)エトキシ、1-t4ーフェニルプロポキシ、1-t4ーフェニルプロポキシ、1-t5ーフェニルプトキシ、1-t7ープロポキシを

「アルキレンジオキシ基」としては、例えば、メチレンジオキシ、エチレンジオキシ、1-メチルメチレンジオキシ、1, 1-ジメチルメチレンジオキシ等の基が挙げられる。

「ハロゲン化アルコキシ基(ハロゲン化アルキルーオキシ基)」としては、「ヒドロキシ基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、フルオロメトキシ、ジフルオロメトキシ、クロロメトキシ、プロモメトキシ、ヨードメトキシ、トリフルオロメトキシ、トリクロロメトキシ、2,2,2ートリフルオロエトキシ、ペンタフルオロエトキシ、3,3,3ートリフルオロプポキシ、ヘプタフルオロプポキシ、ヘプタフルオロプポキシ、ノナフルオロブトキシ、パーフルオロヘキシルオキシ等の1万至13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルコキシ基が挙げられる。

「ヘテロ環ーオキシ基」としては、「ヒドロキシ基」の水素原子が、「ヘテロ環基」 で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の

基が挙げられる。「ヘテロ環ーオキシ基」としては、例えば、単環式ヘテロアリールーオキシ基、縮合多環式ヘテロアリールーオキシ基、単環式非芳香族ヘテロ環ーオキシ基、縮合多環式非芳香族ヘテロ環ーオキシ基等が挙げられる。

「単環式へテロアリールーオキシ基」としては、例えば、3-チエニルオキシ、(イソキサゾール-3-イル)オキシ、(チアゾール-4-イル)オキシ、2-ピリジルオキシ、3-ピリジルオキシ、(ピリミジン-4-イル)オキシ等の基が挙げられる。

「縮合多環式へテロアリールーオキシ基」としては、5-インドリルオキシ、(ベンズイミダゾール-2-イル) オキシ、2-キノリルオキシ、3-キノリルオキシ、4-キノリルオキシ等の基が挙げられる。

「単環式非芳香族へテロ環ーオキシ基」としては、例えば、3-ピロリジニルオキシ、4-ピペリジニルオキシ等の基が挙げられる。

「縮合多環式非芳香族へテロ環ーオキシ基」としては、例えば、3-インドリニルオキシ、4-クロマニルオキシ等の基が挙げられる。

「炭化水素-スルファニル基」としては、「スルファニル基」の水素原子が、「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素-スルファニル基」としては、例えば、アルキル-スルファニル基、アルケニル-スルファニル基、アルキニル-スルファニル基、シクロアルキル-スルファニル基、シクロアルキル-スルファニル基、シクロアルキル-スルファニル基等の脂肪族炭化水素-スルファニル基;アリール-スルファニル基、アラルキル-スルファニル基等が挙げられる。

「アルキルースルファニル基」としては、例えば、メチルスルファニル、エチルスルファニル、n-プロピルスルファニル、イソプロピルスルファニル、n-プチルスルファニル、t と t で t

WO 03/103647 PCT/JP03/07129 T

エチルプロピル) スルファニル、n-ヘキシルスルファニル、(4-メチルペンチル) スルファニル、(3-メチルペンチル) スルファニル、(2-メチルペンチル) スルファニル、(1-メチルペンチル) スルファニル、(3,3-ジメチルブチル) スルファニル、(1-メチルブチル) スルファニル、(1,1-ジメチルブチルブチル) スルファニル、(1,2-ジメチルブチル) スルファニル、(1,3-ジメチルブチル) スルファニル、(1,3-ジメチルブチル) スルファニル、(2,3-ジメチルブチル) スルファニル、(2-エチルブチル) スルファニル、(1-エチルブチル) スルファニル、(1-エチルー1-メチルプロピル) スルファニル、(1-エチルファニル (1-エチルファニル、(1-エチルファニル (1-エチルファニル (1-エチルファル (1-エチルファル

「アルキニルースルファニル基」としては、例えば、エチニルスルファニル、(プ ロパー1ーインー1ーイル)スルファニル,(プロパー2ーイン-1ーイル)スル ファニル, (ブター1ーインー1ーイル) スルファニル、(ブター3ーインー1ー イル)スルファニル、(1ーメチルプロパー2ーインー1ーイル)スルファニル、 (ペンター1ーインー1ーイル) スルファニル、(ペンター4ーインー1ーイル) スルファニル、(ヘキサー1ーインー1ーイル)スルファニル、(ヘキサー5ーイ ン-1-イル)スルファニル、(ヘプタ-1-イン-1-イル、(ヘプター6-イ ンー1ーイル) スルファニル、(オクター1ーインー1ーイル) スルファニル、(オ クター 7 ーインー 1 ーイル) スルファニル、(ノナー1 ーインー1 ーイル) スルフ ァニル、(ノナー8ーイン-1-イル) スルファニル、(デカー1-イン-1-イ ル) スルファニル、(デカー9ーイン-1ーイル) スルファニル、(ウンデカー1 ーインー1ーイル) スルファニル、(ウンデカー10ーインー1ーイル) スルファ ニル、(ドデカー1ーインー1ーイル) スルファニル、(ドデカー11ーインー1 ーイル)スルファニル、(トリデカー1ーインー1ーイル)スルファニル、(トリ デカー12-イン-1-イル)スルファニル、(テトラデカ-1-イン-1-イル) スルファニル、(テトラデカー13-イン-1-イル) スルファニル、(ペンタデ

カー1ーインー1ーイル)スルファニル、(ペンタデカー14ーインー1ーイル)スルファニル等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のアルキニルースルファニル基が挙げられる。

「シクロアルキルースルファニル基」としては、例えば、シクロプロピルスルファニル、シクロブチルスルファニル、シクロペンチルスルファニル、シクロヘキシルスルファニル、シクロへプチルスルファニル、シクロオクチルスルファニル等の $C_3 \sim C_8$ のシクロアルキルースルファニル基が挙げられる。

「シクロアルキルーアルキルースルファニル基」としては、例えば、(シクロプロピルメチル)スルファニル、(1-シクロプロピルエチル)スルファニル、(2-シクロプロピルエチル)スルファニル、(3-シクロプロピルプロピル)スルファニル、(4-シクロプロピルブチル)スルファニル、(5-シクロプロピルペンチル)スルファニル、(6-シクロプロピルペンチル)スルファニル、(6-シクロプロピルペンチル)スルファニル、(0クロプロピルペンチルメチル)スルファニル、(0クロペンチルメチル)スルファニル、(0クロペンチルメチル)スルファニル、(0クロペンチルメチル)スルファニル、(0クロペンチルメチル)スルファニル、(00クロペンチルメチル)スルファニル、(0000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル、(000ペンチルメチル)スルファニル・(000ペンチルメチル)スルファニルキャーアルキルースルファニル基が挙げられる。

「アリールースルファニル基」としては、例えば、フェニルスルファニル、1ーナフチルスルファニル、2ーナフチルスルファニル、アントリルスルファニル、フェナントリルスルファニル、アセナフチレニルスルファニル等の $C_6 \sim C_{14}$ のアリールースルファニル基が挙げられる。

「アラルキルースルファニル基」としては、例えば、ベンジルスルファニル、(1 ーナフチルメチル) スルファニル、(2ーナフチルメチル) スルファニル、(アントラセニルメチル) スルファニル、(フェナントレニルメチル) スルファニル、(アセナフチレニルメチル) スルファニル、(1

ーフェネチル)スルファニル、(2-フェネチル)スルファニル、(1-(1-ナフチル)エチル)スルファニル、(1-(2-ナフチル)エチル)スルファニル、(2-(1-ナフチル)エチル)スルファニル、(2-(1-ナフチル)エチル)スルファニル、(3-(1-ナフチル)スルファニル、(3-(1-ナフチル)プロピル)スルファニル、(3-(1-ナフチル)プロピル)スルファニル、(3-(1-ナフチル)プロピル)スルファニル、(4-(1-ナフチル)プチル)スルファニル、(4-(1-ナフチル)プチル)スルファニル、(4-(1-ナフチル)プチル)スルファニル、(4-(1-ナフチル)プチル)スルファニル、(1- (

「ハロゲン化アルキルースルファニル基」としては、「スルファニル基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、(フルオロメチル)スルファニル、(クロロメチル)スルファニル、(プロモメチル)スルファニル、(ヨードメチル)スルファニル、(ジフルオロメチル)スルファニル、(トリクロロメチル)スルファニル、(トリクロロメチル)スルファニル、(ククロルオロエチル)スルファニル、(ククロルオロエチル)スルファニル、(ククロルオロエチル)スルファニル、(ククロルオロエチル)スルファニル、(ククロルオロエチル)スルファニル、(ククロルオロプロピル)スルファニル、(ククロルオロプロピル)スルファニル、(ククロルオロイソプロピル)スルファニル、(ノナフルオロブチル)スルファニル、(パーフルオロへキシル)スルファニル等の1万至13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルキルースルファニル基が挙げられる。

「ヘテロ環ースルファニル基」としては、「スルファニル基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。「ヘテロ環ースルファニル基」としては、例えば、単環式ヘテロアリールースルファニル基、縮合多環式ヘテロアリールースルファニル基、単環式非芳香族ヘテロ環ースルファニル基、縮合多環式非芳香族ヘテロ環ー

スルファニル基等が挙げられる。

「単環式へテロアリールースルファニル基」としては、例えば、(イミダゾールー2ーイル) スルファニル、(1,2,4ートリアゾールー2ーイル) スルファニル、(ピリジンー2ーイル) スルファニル、(ピリジンー4ーイル) スルファニル、(ピリジンー2ーイル) スルファニル、(ピリジンー2ーイル) スルファニル、(ピリジンー2ーイル) スルファニル等の基が挙げられる。

「縮合多環式へテロアリールースルファニル基」としては、(ベンズイミダゾール -2-イル) スルファニル、(キノリン-2-イル) スルファニル、(キノリン-4-イル) スルファニル等の基が挙げられる。

「単環式非芳香族へテロ環ースルファニル基」としては、例えば、(3-ピロリジニル)スルファニル、(4-ピペリジニル)スルファニル等の基が挙げられる。

「縮合多環式非芳香族へテロ環ースルファニル基」としては、例えば、(3ーインドリニル) スルファニル、(4ークロマニル) スルファニル等の基が挙げられる。「アシル基」としては、例えば、ホルミル基、グリオキシロイル基、チオホルミル基、カルバモイル基、チオカルバモイル基、スルファモイル基、スルフィナモイル基、カルボキシ基、スルホ基、ホスホノ基、及び下記式:

(式中、R^{a1}及びR^{b1}は、同一又は異なって、炭化水素基又はヘテロ環基を表すか、あるいはR^{a1}及びR^{b1}が一緒になって、それらが結合している窒素原子と共に環状アミノ基を表す)で表される基が挙げられる。

上記「アシル基」の定義において、

式 $(\omega-1$ A) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ーカルボニル基」(具体例: アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ラウロイル、ミリストイル、パルミトイル、アクリロイル、プロピオロイル、メタクリロイル、クロトノイル、イソクロトノイル、シクロヘキシルカルボニル、シクロヘキシルメチルカルボニル、ベンゾイル、1- ナフトイル、2- ナフトイル、フェニルアセチル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーカルボニル基」(具体例: 2- テノイル、3- フロイル、ニコチノイル、イソニコチノイル等の基)と称する。

式 $(\omega-2A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ーオキシーカルボニル基」(具体例:メトキシカルボニル、エトキシカルボニル、フェノキシカルボニル、ベンジルオキシカルボニル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニル基」(具体例:3-ピリジルオキシカルボニル等の基)と称する。

式 $(\omega - 3 A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 カルボニルーカルボニル基」 (具体例: ピルボイル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニル基」と称する。

式 $(\omega - 4A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニル基」(具体例:メトキサリル、エトキサリル等の基)、 R^{*1} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニル基」と称する。

式 $(\omega-5A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ースルファニルーカルボニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニル基」と称する。

式 $(\omega-6A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素ーチオカルボニル基」、 R^{*1} がヘテロ環基である基を「ヘテロ環ーチオカルボニル基」と称する。

式 $(\omega - 7A)$ で表される基の中で、 R^{1} が炭化水素基である基を「炭化水素ー

オキシーチオカルボニル基」、R*¹がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニル基」と称する。

式 (ω-8A) で表される基の中で、R^{*1}が炭化水素基である基を「炭化水素-スルファニルーチオカルボニル基」、R^{*1}がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニル基」と称する。

式 (ω-9A) で表される基の中で、R*1が炭化水素基である基を「N-炭化水素-カルバモイル基」(具体例: N-メチルカルバモイル等の基)、R*1がヘテロ環基である基を「N-ヘテロ環-カルバモイル基」と称する。

式 $(\omega-10\,A)$ で表される基の中で、 R^{*1} 及び R^{*1} が炭化水素基である基を「N, N-ジ(炭化水素)-カルバモイル基」(具体例:N, N-ジメチルカルバモイル等の基)、 R^{*1} 及び R^{*1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-カルバモイル基」、 R^{*1} が炭化水素基であり R^{*1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ー置換カルバモイル基」、 R^{*1} 及び R^{*1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニル基」(具体例:モルホリノカルボニル等の基)と称する。

式 $(\omega-1$ 1 A) で表される基の中で、 R^{*1} が炭化水素基である基を「N - 炭化水素 - チオカルバモイル基」、 R^{*1} がヘテロ環基である基を「N - ヘテロ環 - チオカルバモイル基」と称する。

式 $(\omega-12A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素)- チオカルバモイル基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)- チオカルバモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N- 炭化水素-N-ヘテロ環- チオカルバモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニル基」と称する。

式 $(\omega-13A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「N-炭化水素-スルファモイル基」、 R^{*1} がヘテロ環基である基を「N-ヘテロ環-スルファモイル基」と称する。

式 $(\omega-14A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素) -スルファモイル基」(具体例:N, N-ジメチルスルファモイル等の基)、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)スルファモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルファモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニル基」(具体例:1-ピロリルスルホニル等の基)と称する。

式 $(\omega-15A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「N-炭化水素-スルフィナモイル基」、 R^{*1} がヘテロ環基である基を「N-ヘテロ環ースルフィナモイル基」と称する。

式 $(\omega-17A)$ で表される基の中で、 $R^{\bullet 1}$ が炭化水素基である基を「炭化水素 - オキシースルホニル基」、 $R^{\bullet 1}$ がヘテロ環基である基を「ヘテロ環ーオキシースルホニル基」と称する。

式 $(\omega-18A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 - オキシースルフィニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環 - オキシースルフィニル基」と称する。

式 $(\omega-19A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「O,O'-ジ (炭化水素) -ホスホノ基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「O,O'-ジ (ヘテロ環) -ホスホノ基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「O-炭化水素-O'-ヘテロ環-ホスホノ基」と称する。式 $(\omega-20A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素

-スルホニル基」(具体例:メタンスルホニル、ベンゼンスルホニル等の基)、R *1がヘテロ環基である基を「ヘテロ環-スルホニル基」と称する。

式 $(\omega-21A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 -スルフィニル基」具体例:メチルスルフィニル、ベンゼンスルフィニル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ースルフィニル基」と称する。

上記式($\omega-1$ A)乃至($\omega-2$ 1 A)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ A)で表される「炭化水素- カルボニル基」としては、アルキルーカルボニル基、アルケニルーカルボニル基、アルキニルーカルボニル基、シクロアルキルーカルボニル基、シクロアルケニルーカルボニル基、シクロアルカンジエニルーカルボニル基、シクロアルキルーアルキルーカルボニル基等の脂肪族炭化水素ーカルボニル基;アリールーカルボニル基;アラルキルーカルボニル基;架橋環式炭化水素ーカルボニル基;スピロ環式炭化水素ーカルボニル基;テルペン系炭化水素ーカルボニル基が挙げられる。以下、式($\omega-2$ A)乃至($\omega-2$ 1 A)で表される基も同様である。

上記式($\omega-1$ A)乃至($\omega-2$ 1 A)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ A)で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式($\omega-2$ A)乃至($\omega-2$ 1 A)で表される基も同様である。

上記式 $(\omega-10A)$ 乃至 $(\omega-16A)$ で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

本明細書において、ある官能基について「置換基を有していてもよい」という場合には、特に言及する場合を除き、その官能基が、化学的に可能な位置に1個又は2個以上の「置換基」を有する場合があることを意味する。官能基に存在する置換基の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換

基が存在する場合には、それらは同一であっても異なっていてもよい。官能基に存在する「置換基」としては、例えば、ハロゲン原子、オキソ基、チオキソ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアナト基、チオシアナト基、イソシアナト基、イソチオシアナト基、ヒドロキシ基、スルファニル基、カルボキシ基、スルファニルカルボニル基、オキサロ基、メソオキサロ基、チオカルボキシ基、ジチオカルボキシ基、カルバモイル基、チオカルバモイル基、スルフェノ基、スルファモイル基、スルフィノ基、スルフィナモイル基、スルフェノ基、スルフェナモイル基、ホスホノ基、ヒドロキシホスホニル基、炭化水素基、ヘテロ環基、炭化水素ーオキシ基、ヘテロ環ーオキシ基、炭化水素ースルファニル基、ベテロ環ースルファニル基、アシル基、アミノ基、ヒドラジノ基、ヒドラゾノ基、ジアゼニル基、ウレイド基、チオウレイド基、グアニジノ基、カルバモイミドイル基(アミジノ基)、アジド基、イミノ基、ヒドロキシアミノ基、ヒドロキシイミノ基、アミノオキシ基、ジアゾ基、セミカルバジノ基、アロファニル基、ビダントイル基、ホスファノ基、ホスホロソ基、ホスホ基、ボリル基、シリル基、スタニル基、セラニル基、オキシド基等を挙げることができる。

上記「置換基を有していてもよい」の定義における「置換基」が2個以上存在する場合、該2個以上の置換基は、それらが結合している原子と一緒になって環式基を形成してもよい。このような環式基には、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種が1個以上含有されていてもよく、該環上には1個以上の置換基が存在していてもよい。該環は、単環式又は縮合多環式のいずれであってもよく、芳香族又は非芳香族のいずれであってもよい。

上記「置換基を有していてもよい」の定義における「置換基」は、該置換基上の 化学的に可能な位置で、上記「置換基」によって置換されていてもよい。置換基 の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換基で置 換される場合には、それらは同一であっても異なっていてもよい。そのような例 として、例えば、ハロゲン化アルキルーカルボニル基(具体例:トリフルオロア

セチル等の基)、ハロゲン化アルキルースルホニル基(具体例:トリフルオロメタンスルホニル等の基)、アシルーオキシ基、アシルースルファニル基、Nー炭化水素基-アミノ基、N,Nージ(炭化水素)-アミノ基、Nーヘテロ環-アミノ基、Nー炭化水素-Nーヘテロ環-アミノ基、アシル-アミノ基、ジ(アシル)-アミノ基等の基が挙げられる。また、上記「置換基」上での「置換」は複数次にわたって繰り返されてもよい。

「アシルーオキシ基」としては、「ヒドロキシ基」の水素原子が「アシル基」で置換された基が挙げられ、例えば、ホルミルオキシ基、グリオキシロイルオキシ基、チオホルミルオキシ基、カルバモイルオキシ基、チオカルバモイルオキシ基、スルファモイルオキシ基、スルフィナモイルオキシ基、カルボキシオキシ基、スルホオキシ基、ホスホノオキシ基、及び下記式:

(式中、R*2及びR*2は、同一又は異なって、炭化水素基、又はヘテロ環基を表すか、あるいはR*2及びR*2が一緒になって、それらが結合している窒素原子と 共に環状アミノ基を表す)で表される基が挙げられる。

上記「アシルーオキシ基」の定義において、

式 $(\omega-1$ B) で表される基の中で、R *2 が炭化水素基である基を「炭化水素 - カルボニルーオキシ基」(具体例: アセトキシ、ベンゾイルオキシ等の基)、R *2 がヘテロ環基である基を「ヘテロ環ーカルボニルーオキシ基」と称する。

式 $(\omega-2B)$ で表される基の中で、 R^{2} が炭化水素基である基を「炭化水素ーオキシーカルボニルーオキシ基」、 R^{2} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーオキシ基」と称する。

式 $(\omega - 3B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 カルボニルーカルボニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニルーオキシ基」と称する。

式 $(\omega - 4B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニルーオキシ基」と称する。

式 $(\omega - 5B)$ で表される基の中で、 R^{a2} が炭化水素基である基を「炭化水素 - スルファニルーカルボニルーオキシ基」、 R^{a2} がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルーオキシ基」と称する。

式 (ω-6B) で表される基の中で、R²が炭化水素基である基を「炭化水素ーチオカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環ーチオカルボニルーオキシ基」と称する。

式 (ω-7B) で表される基の中で、R²が炭化水素基である基を「炭化水素-オキシーチオカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルーオキシ基」と称する。

式 (ω-8B) で表される基の中で、R²が炭化水素基である基を「炭化水素-スルファニルーチオカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニルーオキシ基」と称する。

式 $(\omega - 9B)$ で表される基の中で、 R^2 が炭化水素基である基を「N – 炭化水素 – カルバモイルーオキシ基」、 R^2 がヘテロ環基である基を「N – ヘテロ環ーカルバモイルーオキシ基」と称する。

式 $(\omega-10B)$ で表される基の中で、 R^{a^2} 及び R^{b^2} が炭化水素基である基を「N, $N-\Im$ (炭化水素) -カルバモイルーオキシ基」、 R^{a^2} 及び R^{b^2} がヘテロ環基である基を「N, $N-\Im$ (ヘテロ環) -カルバモイルーオキシ基」、 R^{a^2} が炭化水素基であり R^{b^2} がヘテロ環基である基を「N-炭化水素 - N-ヘテロ環 - カルバモイルーオキシ基」、 R^{a^2} 及び R^{b^2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルーオキシ基」と称する。

式 $(\omega-11B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「N-炭化水素 - チオカルバモイル - オキシ基」、 R^{*2} がヘテロ環基である基を「N-ヘテロ環ーチオカルバモイル - オキシ基」と称する。

式 $(\omega-12B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「N, N-ジ(炭化水素)- チオカルバモイルーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「N, N-ジ(ヘテロ環)- チオカルバモイルーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「N-炭化水素- N-ヘテロ環ーチオカルバモイルーオキシ基」、 R^{*2} 及び R^{*2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルーオキシ基」と称する。

式 $(\omega-13B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「N-炭化水素ースルファモイルーオキシ基」、 R^{a^2} がヘテロ環基である基を「N-ヘテロ環ースルファモイルーオキシ基」と称する。

式 $(\omega-14B)$ で表される基の中で、 R^{a2} 及び R^{b2} が炭化水素基である基を「N, N-ジ(炭化水素)-スルファモイルーオキシ基」、 R^{a2} 及び R^{b2} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルファモイルーオキシ基」、 R^{a2} が炭化水素基であり R^{b2} がヘテロ環基である基を「Nー炭化水素-Nーヘテロ環-スルファモイルーオキシ基」、 R^{a2} 及び R^{b2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニルーオキシ基」と称する。

式 $(\omega-15B)$ で表される基の中で、 R^2 が炭化水素基である基を「N-炭化水素-スルフィナモイルーオキシ基」、 R^2 がヘテロ環基である基を「N-ヘテロ環-スルフィナモイルーオキシ基」と称する。

式 $(\omega-16B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイルーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイルーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ースルフィナモイルーオキシ基」、 R^{*2} 及び R^{*2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニルーオキシ基」と称する。

式 $(\omega-17B)$ で表される基の中で、 R^2 が炭化水素基である基を「炭化水素 - オキシースルホニルーオキシ基」、 R^2 がヘテロ環基である基を「ヘテロ環ーオキシースルホニルーオキシ基」と称する。

â

式 $(\omega-18B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 - オキシースルフィニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環 - オキシースルフィニルーオキシ基」と称する。

式 $(\omega-19B)$ で表される基の中で、 R^*2 及び R^*2 が炭化水素基である基を「O, O' -ジ(炭化水素) -ホスホノーオキシ基」、 R^*2 及び R^*2 がヘテロ環基である基を「O, O' -ジ(ヘテロ環) -ホスホノーオキシ基」、 R^*2 が炭化水素基であり R^*2 がヘテロ環基である基を「O一炭化水素置換-O' -ヘテロ環置換ホスホノーオキシ基」と称する。

式 $(\omega - 20B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 - スルホニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ースルホニルーオキシ基」と称する。

式 $(\omega-2\ 1\ B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 -スルフィニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環 -スルフィニルーオキシ基」と称する。

上記式($\omega-1$ B)乃至($\omega-2$ 1 B)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ B)で表される「炭化水素-カルボニルーオキシ基」としては、アルキルーカルボニルーオキシ基、アルケニルーカルボニルーオキシ基、アルキニルーカルボニルーオキシ基、シクロアルキルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルキルーアルキルーカルボニルーオキシ基等の脂肪族炭化水素ーカルボニルーオキシ基;アリールーカルボニルーオキシ基;アラルキルーカルボニルーオキシ基;架橋環式炭化水素ーカルボニルーオキシ基;スピロ環式炭化水素ーカルボニルーオキシ基;テルペン系炭化水素ーカルボニルーオキシ基が挙げられる。以下、式($\omega-2$ B)乃至($\omega-2$ 1 B)で表される基も同様である。

上記式 $(\omega-1\,B)$ 乃至 $(\omega-2\,1\,B)$ で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式 $(\omega-1\,B)$ で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式 $(\omega-2\,B)$ 乃至 $(\omega-2\,1\,B)$ で表される基も同様である。

上記式 $(\omega-10B)$ 乃至 $(\omega-16B)$ で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルーオキシ基」、「炭化水素-オキシ基」、及び「ヘテロ環-オキシ基」 を総称して、「置換オキシ基」と称する。また、これら「置換オキシ基」と「ヒドロキシ基」を総称して、「置換基を有していてもよいヒドロキシ基」と称する。

「アシルースルファニル基」としては、「スルファニル基」の水素原子が「アシル基」で置換された基が挙げられ、例えば、ホルミルスルファニル基、グリオキシロイルスルファニル基、チオホルミルスルファニル基、カルバモイルスルファニル基、チオカルバモイルスルファニル基、スルファモイルスルファニル基、スルフィナモイルスルファニル基、カルボキシスルファニル基、スルホスルファニル

基、ホスホノスルファニル基、及び下記式:

(式中、R^{a3}及びR^{b3}は、同一又は異なって、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR^{a3}及びR^{b3}が一緒になって、それらが結合している窒素原子と共に、置換基を有していて

もよい環状アミノ基を表す)で表される基が挙げられる。

上記「アシルースルファニル基」の定義において、

式 (ω-1 C) で表される基の中で、R * 3 が炭化水素基である基を「炭化水素-カルボニル-スルファニル基」、R * 3 がヘテロ環基である基を「ヘテロ環ーカルボニル-スルファニル基」と称する。

式 $(\omega-2C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素ーオキシーカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルースルファニル基」と称する。

式 (ω-3C) で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-カルボニル-カルボニル-スルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-カルボニル-カルボニル-スルファニル基」と称する。

式 $(\omega-4\ C)$ で表される基の中で、 R^{*3} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニルースルファニル基」、 R^{*3} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニルースルファニル基」と称する。

式 (ω-6 C) で表される基の中で、R * 3 が炭化水素基である基を「炭化水素ーチオカルボニルースルファニル基」、R * 3 がヘテロ環基である基を「ヘテロ環ーチオカルボニルースルファニル基」と称する。

式 $(\omega-7\,C)$ で表される基の中で、 $R^{a\,3}$ が炭化水素基である基を「炭化水素ーオキシーチオカルボニルースルファニル基」、 $R^{a\,3}$ がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルースルファニル基」と称する。

式 $(\omega - 8 C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - スルファニルーチオカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニルースルファニル基」と称する。

式 $(\omega - 9C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「Nー炭化水

素ーカルバモイルースルファニル基」、R * 3 がヘテロ環基である基を「Nーヘテロ環ーカルバモイルースルファニル基」と称する。

式 $(\omega-10C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素) -カルバモイルースルファニル基」、 R^{a3} 及び R^{b3} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -カルバモイルースルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「Nー炭化水素-Nーヘテロ環ーカルバモイルースルファニル基」、 R^{a3} 及び R^{b3} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルースルファモイル基」と称する。

式 $(\omega-11C)$ で表される基の中で、 $R^{\bullet3}$ が炭化水素基である基を「N 一炭化 水素 - チオカルバモイルースルファニル基」、 $R^{\bullet3}$ がヘテロ環基である基を「N - ヘテロ環 - チオカルバモイルースルファニル基」と称する。

式(ω-12C)で表される基の中で、R^{a3}及びR^{b3}が炭化水素基である基を「N, N-ジ(炭化水素)-チオカルバモイルースルファニル基」、R^{a3}及びR^{b3}がヘテロ環基である基を「N, N-ジ(ヘテロ環)-チオカルバモイルースルファニル基」、R^{a3}が炭化水素基でありR^{b3}がヘテロ環基である基を「N-炭化水素ーN-ヘテロ環ーチオカルバモイルースルファニル基」、R^{a3}及びR^{b3}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルースルファニル基」と称する。

式(ω-13C)で表される基の中で、R^{a3}が炭化水素基である基を「N-炭化水素-スルファモイル-スルファニル基」、R^{a3}がヘテロ環基である基を「N-ヘテロ環-スルファモイル-スルファニル基」と称する。

式 $(\omega-1.4\,\mathrm{C})$ で表される基の中で、 $\mathrm{R}^{\,a.3}$ 及び $\mathrm{R}^{\,b.3}$ が炭化水素基である基を「 N , $\mathrm{N}-$ ジ(炭化水素) -スルファモイルースルファニル基」、 $\mathrm{R}^{\,a.3}$ 及び $\mathrm{R}^{\,b.3}$ がヘテロ環基である基を「 N , $\mathrm{N}-$ ジ(ヘテロ環) -スルファモイルースルフィニル基」、 $\mathrm{R}^{\,a.3}$ が炭化水素基であり $\mathrm{R}^{\,b.3}$ がヘテロ環基である基を「 $\mathrm{N}-$ 炭化水素-Nーヘテロ環スルファモイルースルファニル基」、 $\mathrm{R}^{\,a.3}$ 及び $\mathrm{R}^{\,b.3}$ が一緒になって、それら

が結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニ ルースルファニル基」と称する。

式 $(\omega-15\,C)$ で表される基の中で、 $R^{a\,3}$ が炭化水素基である基を「N-炭化水素-スルフィナモイル-スルファニル基」、 $R^{a\,3}$ がヘテロ環基である基を「N-ヘテロ環-スルフィナモイル-スルファニル基」と称する。

式 $(\omega-16C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイル-スルファニル基」、 R^{a3} 及び R^{b3} がへテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイル-スルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル-スルファニル基」、 R^{a3} 及び R^{b3} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノスルファニルースルファニル基」と称する。

式 $(\omega-1.7\,C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - オキシースルホニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシースルホニルースルファニル基」と称する。

式 $(\omega-1~8~C)$ で表される基の中で、 $R^{a~3}$ が炭化水素基である基を「炭化水素 - オキシースルフィニルースルファニル基」、 $R^{a~3}$ がヘテロ環基である基を「ヘテロ環- オキシースルフィニルースルファニル基」と称する。

式 $(\omega-20C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - スルホニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ース ルホニルースルファニル基」と称する。

式 $(\omega-21C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素

ースルフィニルースルファニル基」、R * 3 がヘテロ環基である基を「ヘテロ環ースルフィニルースルファニル基」と称する。

上記式($\omega-1$ C)乃至($\omega-2$ 1 C)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ C)で表される「炭化水素-カルボニル-スルファニル基」としては、アルキル-カルボニル-スルファニル基、アルケニル-カルボニル-スルファニル基、アルケニル-カルボニル-スルファニル基、シクロアルキル-カルボニル-スルファニル基、シクロアルケニル-カルボニル-スルファニル基、シクロアルカンジエニル-カルボニル-スルファニル基、シクロアルキル-カルボニル-スルファニル基、シクロアルキル-カルボニル-スルファニル基;アリール-カルボニル-スルファニル基;アリール-カルボニル-スルファニル基;アラルキル-カルボニル-スルファニル基;架橋環式炭化水素-カルボニル-スルファニル基;スピロ環式炭化水素-カルボニル-スルファニル基;テルペン系炭化水素-カルボニル-スルファニル基が挙げられる。以下、式($\omega-2$ C)乃至($\omega-2$ 1 C)で表される基も同様である。

上記式($\omega-1$ C)乃至($\omega-2$ 1C)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ C)で表される「ヘテロ環ーカルボニルースルファニル基」としては、例えば、単環式ヘテロアリールーカルボニルースルファニル基、縮合多環式ヘテロアリールーカルボニルースルファニル基、単環式非芳香族ヘテロ環ーカルボニルースルファニル基が挙げられる。以下、式($\omega-2$ C)乃至($\omega-2$ 1C)で表される基も同様である。

上記式 $(\omega-10C)$ 乃至 $(\omega-16C)$ で表される基における「環状アミノ」 としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルースルファニル基」、「炭化水素ースルファニル基」、及び「ヘテロ環ースルファニル基」を総称して、「置換スルファニル基」と称する。また、これら「置換スルファニル基」と「スルファニル基」を総称して、「置換基を有していてもよいスルファニル基」と称する。

「Nー炭化水素-アミノ基」としては、「アミノ基」の1つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、Nーアルキルーアミノ基、Nーアルキルーアミノ基、Nーシクロアルキルーアミノ基、Nーシクロアルキルーアミノ基、Nーシクロアルキルーアミノ基、Nーアリールーアミノ基、Nーアリールーアミノ基、Nーアリールーアミノ基、Nーアラルキルーアミノ基等が挙げられる。

「N-Tルキルーアミノ基」としては、例えば、メチルアミノ、エチルアミノ、n-Jロピルアミノ、イソプロピルアミノ、n-Jチルアミノ、イソプチルアミノ、n-Jチルアミノ、イソプチルアミノ、n-Jチルアミノ、n-Jチルアミノ、n-Jチルアミノ、n-J かったり、n-J か

[N-アルケニルーアミノ基]としては、例えば、ビニルアミノ、(プロパー1ーエンー1ーイル)アミノ、アリルアミノ、イソプロペニルアミノ、(ブター1ーエンー1ーイル)アミノ、(ブター2ーエンー1ーイル)アミノ、(ブター3ーエンー1ーイル)アミノ、(2ーメチルプロパー2ーエンー1ーイル)アミノ、(1ーメチルプロパー2ーエンー1ーイル)アミノ、(ペンター1ーエンー1ーイル)アミノ、(ペンター2ーエンー1ーイル)アミノ、(ペンター3ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター3ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(3ーメチルブター2ーエンー

1ーイル) アミノ、(3ーメチルブター3ーエンー1ーイル) アミノ、(ヘキサー 1-エン-1-イル) アミノ、(ヘキサー2-エン-1-イル) アミノ、(ヘキサ -3-エン-1-イル) アミノ、(ヘキサ-4-エン-1-イル) アミノ、(ヘキ サー5ーエンー1ーイル) アミノ、(4ーメチルペンター3ーエンー1ーイル) ア ミノ、(4-メチルペンター3-エン-1-イル)アミノ、(ヘプター1-エンー 1ーイル) アミノ、(ヘプター6ーエンー1ーイル) アミノ、(オクター1ーエン -1-イル) アミノ、(オクター7ーエンー1ーイル) アミノ、(ノナー1ーエン -1-イル) アミノ、(ノナー8-エンー1-イル) アミノ、(デカー1-エンー 1-イル)アミノ、(デカー9-エン-1-イル)アミノ、(ウンデカー1-エン -1-イル) アミノ、(ウンデカー10ーエンー1ーイル) アミノ、(ドデカー1 ーエンー1ーイル) アミノ、(ドデカー11ーエンー1ーイル) アミノ、(トリデ カー1ーエンー1ーイル)アミノ、(トリデカー12-エンー1ーイル)アミノ、 (テトラデカー1ーエンー1ーイル) アミノ、(テトラデカー13ーエンー1ーイ ル) アミノ、(ペンタデカー1ーエンー1ーイル) アミノ、(ペンタデカー14ー エンー1-4ル)アミノ等の C_2 ~ C_{15} の直鎖状又は分枝鎖状のN-アルケニル -アミノ基が挙げられる。

「N- Tルキニルーアミノ基」としては、例えば、エチニルアミノ、(プロパー1 - 1

(ドデカー11-イン-1-イル) アミノ、(トリデカー1-イン-1-イル) アミノ、(トリデカー12-イン-1-イル) アミノ、(テトラデカー12-イン-1-イル) アミノ、(テトラデカー13-イン-1-イル) アミノ、(ペンタデカー1-イン-1-イル) アミノ、(ペンタデカー14-イン-1-イル) アミノ等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のN-アルキニルーアミノ基が挙げられる。

「N-シクロアルキルーアミノ基」としては、例えば、シクロプロピルアミノ、シクロブチルアミノ、シクロペンチルアミノ、シクロヘキシルアミノ、シクロヘプチルアミノ、シクロオクチルアミノ等の $C_3\sim C_8$ のN-シクロアルキルーアミノ基が挙げられる。

「N-シクロアルキルーアルキルーアミノ基」としては、例えば、(シクロプロピルメチル)アミノ、(1-シクロプロピルエチル)アミノ、(2-シクロプロピルエチル)アミノ、(3-シクロプロピルプロピル)アミノ、(4-シクロプロピルプロピル)アミノ、(4-シクロプロピルブチル)アミノ、(5-シクロプロピルペンチル)アミノ、(6-シクロプロピルペンチル)アミノ、(6-シクロプロピルペンチル)アミノ、(0クロブチルメチル)アミノ、(0クロベンチルメチル)アミノ、(0クロブチルメチル)アミノ、(0クロベンチルメチル)アミノ、(0クロベンチルメチル)アミノ、(0クロベンチルメチル)アミノ、(0クロベンチルメチル)アミノ、(00のロベンチルメチル)アミノ、(00のロベンチルメチル)アミノ、(00のロベンチルメチル)アミノ、(00のロベンチルメチル)アミノ、(00のロベンチルメチル)アミノ、(00のロボクチルメチル)アミノ、(00のロボクチルメチル)アミノ、(00のロボクチルメチル)アミノ等の00ののロアルキルーアルキルーアミノ基が挙げられる。

「N-アリールーアミノ基」としては、例えば、フェニルアミノ、1-ナフチルアミノ、2-ナフチルアミノ、アントリルアミノ、フェナントリルアミノ、アセナフチレニルアミノ等の $C_6\sim C_{14}$ のN-モノーアリールアミノ基が挙げられる。「N-アラルキルーアミノ基」としては、例えば、ベンジルアミノ、(1-ナフチルメチル)アミノ、(2-ナフチルメチル)アミノ、(7 エナントレニルメチル)アミノ、(7 エナントレニルメチル)アミノ、(7 エナントレニルメチル)アミノ、(7 エナントレニルメチル)アミノ、(7 エナントレニルメチル)アミノ、(7 エカテレニルメチル)アミノ、(7 エカトレニルメチル)アミノ、(7 エカトレニルメチル)アミハレニル

「N, N-ジ(炭化水素)-アミノ基」としては、「アミノ基」の2つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、N, N-ジメチルアミノ、N, N-ジェチルアミノ、NーエチルーN-メチルアミノ、N, N-ジーn-プロピルアミノ、N, N-ジイソプロピルアミノ、NーアリルーN-メチルアミノ、Nー(プロパー2-イン-1-イル)-N-メチルアミノ、N, N-ジシクロへキシルアミノ、N-シクロへキシルーN-メチルアミノ、Nーシクロへキシルメチルアミノ、N-シチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-ジブェニルアミノ、N-メチルーN-フェニルアミノ、N, N-ジベンジルアミノ、N-ベンジルーN-メチルアミノ等の基が挙げられる。

「Nーヘテロ環ーアミノ基」としては、「アミノ基」の1つ水素原子が、「ヘテロ環基」で置換された基が挙げられ、例えば、(3ーピロリジニル) アミノ、(4ーピペリジニル) アミノ、(2ーテトラヒドロピラニル) アミノ、(3ーインドリニル) アミノ、(4ークロマニル) アミノ、(3ーチエニル) アミノ、(3ーピリジル) アミノ、(3ーキノリル) アミノ、(5ーインドリル) アミノ等の基が挙げられる。「Nー炭化水素ーNーヘテロ環ーアミノ基」としては、「アミノ基」の2つの水素原子が、「炭化水素基」及び「ヘテロ環基」で1つずつ置換された基が挙げられ、例えば、NーメチルーNー(4ーピペリジニル) アミノ、Nー(4ークロマニル)ーNーメチルアミノ、NーメチルーNー(3ーチエニル) アミノ、Nーメチルー

N-(3-ピリジル) アミノ、N-メチル-N-(3-キノリル) アミノ等の基が挙げられる。

「アシルーアミノ基」としては、「アミノ基」の1つの水素原子が、「アシル基」で置換された基が挙げられ、例えば、ホルミルアミノ基、グリオキシロイルアミノ基、チオホルミルアミノ基、カルバモイルアミノ基、チオカルバモイルアミノ基、スルファモイルアミノ基、スルフィナモイルアミノ基、カルボキシアミノ基、スルホアミノ基、ホスホノアミノ基、及び下記式:

(式中、R^a 4 及びR^b 4 は、同一又は異なって、置換基を有していてもよい炭化水 素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR^a 4 及びR^b 4 が一緒になって、それらが結合している窒素原子と共に、置換基を有していて もよい環状アミノ基を表す)で表される基が挙げられる。 上記「アシルーアミノ基」の定義において、

式 (ω-1D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-カルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環-カルボニルーアミノ基」と称する。

式 $(\omega-2D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ーオキシーカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーアミノ基」と称する。

式 $(\omega - 3D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 カルボニルーカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニルーアミノ基」と称する。

式 (ω-4D) で表される基の中で、R⁴が炭化水素基である基を「炭化水素-オキシーカルボニルーカルボニルーアミノ基」、R⁴がヘテロ環基である基を「ヘ テロ環-オキシーカルボニルーカルボニルーアミノ基」と称する。

式 (ω-5D) で表される基の中で、R*4が炭化水素基である基を「炭化水素-スルファニルーカルボニルーアミノ基」、R*4がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルーアミノ基」と称する。

式 $(\omega-6D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ーチオカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーチオカルボニルーアミノ基」と称する。

式 $(\omega-7D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ーオキシーチオカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルーアミノ基」と称する。

式 (ω-8D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-スルファニルーチオカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニルーアミノ基」と称する。

イルーアミノ基」と称する。

式($\omega-1$ 0D)で表される基の中で、R 4 及びR 5 4が炭化水素基である基を「N, N $^-$ ジ(炭化水素) - カルバモイルーアミノ基」、R 4 及びR 5 4がヘテロ環基である基を「N, N $^-$ ジ(ヘテロ環) - カルバモイルーアミノ基」、R 4 4が炭化水素基であり R 5 4がヘテロ環基である基を「N $^-$ 炭化水素 $^-$ N $^-$ へテロ環ーカルバモイルーアミノ基」、R 4 及び R 5 4が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルーアミノ基」と称する。

式 $(\omega-1\ 1\ D)$ で表される基の中で、 R^4 が炭化水素基である基を「N-炭化水素 - チオカルバモイルーアミノ基」、 R^4 がヘテロ環基である基を「N-ヘテロ環ーチオカルバモイルーアミノ基」と称する。

式 $(\omega-1~3~D)$ で表される基の中で、 R^{44} が炭化水素基である基を「N-炭化水素-スルファモイル-アミノ基」、 R^{44} がヘテロ環基である基を「N-ヘテロ環ースルファモイル-アミノ基」と称する。

式 $(\omega-1.4D)$ で表される基の中で、 R^4 及び R^4 が炭化水素基である基を「ジ (炭化水素)スルファモイルーアミノ基」、 R^4 及び R^4 がヘテロ環基である基を [N, N-3] (ヘテロ環)スルファモイルーアミノ基」、 R^4 が炭化水素基で あり R^4 がヘテロ環基である基を [N-炭化水素-N-ヘテロ環ースルファモイルーアミノ基」、 R^4 及び R^4 が一緒になって、それらが結合している窒素原子 と共に環状アミノ基である基を [環状アミノースルホニルーアミノ基」と称する。

式(ω-15D)で表される基の中で、R^{a4}が炭化水素基である基を「N-炭化水素-スルフィナモイルーアミノ基」、R^{a4}がヘテロ環基である基を「N-ヘテロ環-スルフィナモイルーアミノ基」と称する。;式(ω-16D)で表される基の中で、R^{a4}及びR^{b4}が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイルーアミノ基」、R^{a4}及びR^{b4}がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイルーアミノ基」、R^{a4}が炭化水素基でありR^{b4}がヘテロ環基である基を「N-炭化水素ーN-ヘテロ環-スルフィナモイルーアミノ基」、R^{a4}が炭化水素基でありR^{b4}が、ヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイルーアミノ基」、R^{a4}及びR^{b4}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニルーアミノ基」と称する。

式 (ω-17D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素 -オキシースルホニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ー オキシースルホニルーアミノ基」と称する。

式($\omega-18D$)で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 $-オキシースルフィニルーアミノ基」、<math>R^4$ がヘテロ環基である基を「ヘテロ環 -オキシースルフィニルーアミノ基」と称する。

式($\omega-19D$)で表される基の中で、 R^4 及び R^4 が炭化水素基である基を「O, O'ージ(炭化水素) -ホスホノーアミノ基」、 R^4 及び R^4 がヘテロ環基である基を「O, O'ージ(ヘテロ環) -ホスホノーアミノ基」、 R^4 が炭化水素基であり R^4 がヘテロ環基である基を「O一炭化水素-0'ーヘテロ環ーホスホノーアミノ基」と称する。

式 (ω-20D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素 - スルホニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ースルホニルーアミノ基」と称する。

式 $(\omega-21D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 - スルフィニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ースルフィニルーアミノ基」と称する。

上記式 $(\omega-1D)$ 乃至 $(\omega-21D)$ で表される基における「炭化水素」とし

ては、上記「炭化水素基」と同様の基が挙げられる。例えば、式 (ω-1 D) で表される「炭化水素-カルボニルーアミノ基」としては、アルキルーカルボニルーアミノ基、アルケニルーカルボニルーアミノ基、アルキニルーカルボニルーアミノ基、シクロアルケニルーカルボニルーアミノ基、シクロアルケニルーカルボニルーアミノ基、シクロアルカンジエニルーカルボニルーアミノ基、シクロアルキルーカルボニルーアミノ基等の脂肪族炭化水素ーカルボニルーアミノ基;アリールーカルボニルーアミノ基;アラルキルーカルボニルーアミノ基;架橋環式炭化水素ーカルボニルーアミノ基;スピロ環式炭化水素ーカルボニルーアミノ基;テルペン系炭化水素ーカルボニルーアミノ基が挙げられる。以下、式 (ω-2 D) 乃至 (ω-2 1 D) で表される基も同様である。

A Comment of the second

上記式($\omega-1$ D)乃至($\omega-2$ 1 D)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ D)で表される「ヘテロ環ーカルボニルーアミノ基」としては、例えば、単環式ヘテロアリールーカルボニルーアミノ基、縮合多環式ヘテロアリールーカルボニルーアミノ基、単環式非芳香族ヘテロ環ーカルボニルーアミノ基、縮合多環式非芳香族ヘテロ環ーカルボニルーアミノ基が挙げられる。以下、式($\omega-2$ D)乃至($\omega-2$ 1 D)で表される基も同様である。

上記式 $(\omega-10D)$ 乃至 $(\omega-16D)$ で表される基における「環状アミノ」 としては、上記「環状アミノ基」と同様の基が挙げられる。

「ジ (アシル) ーアミノ基」としては、「アミノ基」の2つの水素原子が、上記「置換基を有していてもよい」の「置換基」の定義における「アシル基」で置換された基が挙げられ、例えば、ジ (ホルミル) ーアミノ基、ジ (グリオキシロイル) ーアミノ基、ジ (チオホルミル) ーアミノ基、ジ (カルバモイル) ーアミノ基、ジ (チオカルバモイル) ーアミノ基、ジ (スルファモイル) ーアミノ基、ジ (スルフィナモイル) ーアミノ基、ジ (カルボキシ) ーアミノ基、ジ (スルホ) ーアミノ基、ジ (ホスホノ) ーアミノ基、及び下記式:

$$\begin{array}{c} -N \begin{pmatrix} c - R^{a5} \\ \parallel & 0 \end{pmatrix}_{2} & (\omega - 1 \, E) \,, & -N \begin{pmatrix} c - O - R^{a5} \\ \parallel & \parallel & 0 \end{pmatrix}_{2} & (\omega - 2 \, E) \,, \\ -N \begin{pmatrix} c - C - C - R^{a5} \\ \parallel & \parallel & 0 \end{pmatrix}_{2} & (\omega - 3 \, E) \,, & -N \begin{pmatrix} c - C - C - O - R^{a5} \\ \parallel & \parallel & 0 \end{pmatrix}_{2} & (\omega - 4 \, E) \,, \\ -N \begin{pmatrix} c - S - R^{a5} \\ \parallel & 0 \end{pmatrix}_{2} & (\omega - 5 \, E) \,, & -N \begin{pmatrix} c - R^{a5} \\ \parallel & S \end{pmatrix}_{2} & (\omega - 6 \, E) \,, \\ -N \begin{pmatrix} c - O - R^{a5} \\ \parallel & 0 \end{pmatrix}_{2} & (\omega - 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 0 \end{pmatrix}_{2} & (\omega - 8 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 0 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 0 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 3 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{b5} \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 3 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{b5} \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{b5} \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{b5} \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{b5} \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{b5} \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{b5} \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{a5} \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & R^{a5} \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 8 \, E) \,, \\ -N \begin{pmatrix} c - N - R^{a5} \\ \parallel & 1 \end{pmatrix}_{2} & (\omega - 1 \, 7 \, E) \,, & -N \begin{pmatrix} c - N - R$$

(式中、R*5及びR*5は、同一又は異なって、水素原子、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR*5及びR*5が一緒になって、それらが結合している窒素原子と共に、置換基を有していてもよい環状アミノ基を表す)で表される基があげられる

式 ($\omega-1E$) で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素

上記「ジ (アシル) -アミノ基」の定義において、

ーカルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス (ヘテロ環ーカルボニル) -アミノ基」と称する。

式 $(\omega - 2E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(炭化水素 - オキシーカルボニル) - アミノ基」、 R^{*5} がヘテロ環基である基を「ビス(ヘテロ環- オキシーカルボニル)- アミノ基」と称する。

式 (ω-3E) で表される基で、R*5が炭化水素基である基を「ビス(炭化水素 -カルボニルーカルボニル)-アミノ基」、R*5がヘテロ環基である基を「ビス (ヘテロ環-カルボニルーカルボニル)-アミノ基」と称する。

式 (ω-4E) で表される基で、R*5が炭化水素基である基を「ビス (炭化水素 ーオキシーカルボニルーカルボニル) ーアミノ基」、R*5がヘテロ環基である基 を「ビス (ヘテロ環ーオキシーカルボニルーカルボニル) ーアミノ基」と称する。

式 $(\omega - 5E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(炭化水素 - スルファニルーカルボニル) - アミノ基」、 R^{*5} がヘテロ環基である基を「ビス (ヘテロ環- スルファニルーカルボニル) - アミノ基」と称する。

式 (ω-6E) で表される基で、R^{*5}が炭化水素基である基を「ビス(炭化水素 -チオカルボニル)-アミノ基」、R^{*5}がヘテロ環基である基を「ビス(ヘテロ 環-チオカルボニル)-アミノ基」と称する。

式 $(\omega - 7E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 - オキシーチオカルボニル) - アミノ基」、 R^{a5} がヘテロ環基である基を「ビス (ヘテロ環- オキシーチオカルボニル) - アミノ基」と称する。

式 (ω-8E) で表される基で、R^{*5}が炭化水素基である基を「ビス(炭化水素 -スルファニルーチオカルボニル)-アミノ基」、R^{*5}がヘテロ環基である基を 「ビス (ヘテロ環-スルファニルーチオカルボニル)-アミノ基」と称する。

式 (ω-9E) で表される基で、R * 5 が炭化水素基である基を「ビス(N-炭化水素 - カルバモイル)アミノ基」、R * 5 がヘテロ環基である基を「ビス(N-ヘテロ環-カルバモイル)-アミノ基」と称する。

式(ω-10E)で表される基で、R * 5 及びR b 5 が炭化水素基である基を「ビス

[N, N-ジ(炭化水素) -カルバモイル] -アミノ基」、R*5及びR*5がヘテロ環基である基を「ビス[N, N-ジ(ヘテロ環) -カルバモイル] -アミノ基」、R*5が炭化水素基でありR*5がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環ーカルバモイル) -アミノ基」、R*5及びR*5が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノーカルボニル) -アミノ基」と称する。

式 $(\omega-11E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(N-炭 化水素-チオカルバモイル)-アミノ基」、 R^{*5} がヘテロ環基である基を「ビス (N-ヘテロ環-チオカルバモイル)-アミノ基」と称する。

式($\omega-12E$)で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [N, N-ジ(炭化水素)-チオカルバモイル]-アミノ基」、 R^{a5} 及び R^{b5} が ヘテロ環基である基を「ビス [N, N-ジ(ヘテロ環)-チオカルバモイル]-アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環-チオカルバモイル)-アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノーチオカルボニル)-アミノ基」と称する。

式 $(\omega-13E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(N-炭化水素-スルファモイル)-アミノ基」、 R^{*5} がヘテロ環基である基を「ビス(N-0、-ヘテロ環-スルファモイル)-アミノ基」と称する。

式($\omega-14E$)で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [N, N-ジ(炭化水素)-スルファモイル] -アミノ基」、 R^{a5} 及び R^{b5} がへ テロ環基である基を「ビス [N, N-ジ(ヘテロ環)-スルファモイル] -アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環-スルファモイル)-アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノースルホニル)-アミノ基」と称する。

式 $(\omega-15E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス (N-炭)

化水素 - スルフィナモイル) - アミノ基」、R * 5 がヘテロ環基である基を「ビス (N - ヘテロ環 - スルフィナモイル) - アミノ基」と称する。

式 $(\omega-16E)$ で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [N, N-ジ(炭化水素) -スルフィナモイル] -アミノ基」、 R^{a5} 及び R^{b5} が ヘテロ環基である基を「ビス [N, N-ジ(ヘテロ環) -スルフィナモイル] -アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス (N-炭化水素-N-ヘテロ環-スルフィナモイル)-アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス (環状アミノースルフィニル) -アミノ基」と称する。

式 $(\omega-17E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(炭化水素ーオキシースルホニルー)アミノ基」、 R^{*5} がヘテロ環基である基を「ビス(ヘテロ環ーオキシースルホニル)-アミノ基」と称する。

式 $(\omega-18E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(炭化水素ーオキシースルフィニル) -アミノ基」、 R^{*5} がヘテロ環基である基を「ビス (ヘテロ環ーオキシースルフィニル) -アミノ基」と称する。

式 $(\omega-19E)$ で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [O, O'-i](炭化水素) -ホスホノ]-rミノ基」、 R^{a5} 及び R^{b5} がヘテロ 環基である基を「ビス [O, O'-i](ヘテロ環) -ホスホノ]-rミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス(O-炭化水素-0' -0、-0、-0、-1、-1、-2、-2、-3、-4、-4、-4、-5 がテロ環ーホスホノ) -7、-7、-1、-5 が -5 が

式 $(\omega - 20E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(炭化水素ースルホニル)ーアミノ基」、 R^{45} がヘテロ環基である基を「ビス(ヘテロ環ースルホニル)ーアミノ基」と称する。

式 $(\omega - 21E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素ースルフィニル) - アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環ースルフィニル) - アミノ基」と称する。

上記式($\omega-1E$)乃至($\omega-21E$)で表される基における「炭化水素」とし

ては、上記「炭化水素基」と同様の基が挙げられる。例えば、式 (ω-1 E) で表される「ビス (炭化水素-カルボニル) ーアミノ基」としては、ビス (アルキルーカルボニル) ーアミノ基、ビス (アルケニルーカルボニル) ーアミノ基、ビス (アルキニルーカルボニル) ーアミノ基、ビス (シクロアルキルーカルボニル) ーアミノ基、ビス (シクロアルキルーカルボニル) ーアミノ基、ビス (シクロアルケニルーカルボニル) ーアミノ基、ビス (シクロアルキルーアルキルーカルボニル) ーアミノ基等のビス (脂肪族炭化水素ーカルボニル) ーアミノ基;ビス (アリールーカルボニル) ーアミノ基;ビス (アラルキルーカルボニル) ーアミノ基;ビス (架橋環式炭化水素ーカルボニル) ーアミノ基;ビス (スピロ環式炭化水素ーカルボニル) ーアミノ基;ビス (スピロ環式炭化水素ーカルボニル) ーアミノ基が挙げられる。以下、式 (ω-2 E) 乃至 (ω-2 1 E) で表される基も同様である。

上記式($\omega-1$ E)乃至($\omega-2$ 1E)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ E)で表される「ビス(ヘテロ環ーカルボニル)-アミノ基」としては、例えば、ビス(単環式ヘテロアリールーカルボニル)-アミノ基、ビス(縮合多環式ヘテロアリールーカルボニル)-アミノ基、ビス(「単環式非芳香族ヘテロ環ーカルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環ーカルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環ーカルボニル)-アミノ基が挙げられる。以下、式($\omega-2$ E)乃至($\omega-2$ 1E)で表される基も同様である。上記式($\omega-1$ 0E)乃至($\omega-1$ 6E)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルーアミノ基」及び「ジ (アシル) ーアミノ基」を総称して、「アシル 置換アミノ基」と称する。また、上記「Nー炭化水素ーアミノ基」、「N, Nージ (炭化水素) ーアミノ基」、「Nーヘテロ環ーアミノ基」、「Nー炭化水素ーNーヘテロ環ーアミノ基」、「環状アミノ基」、「アシルーアミノ基」、及び「ジ (アシル) ーアミノ基」を総称して、「置換アミノ基」と称する。

以下、上記一般式(I)で表される化合物について具体的に説明する。

Xの定義における「主鎖の原子数が2ないし5である連結基」とは、環2とEの間に、主鎖の原子が2ないし5個連なっている連結基を意味する。上記「主鎖の原子数」は、ヘテロ原子の有無に関わらず、環2とEとの間に存在する原子の数が最小となるように数えるものとする。例えば、1,2ーシクロペンチレンの原子数を2個、1,3ーシクロペンチレンの原子数を3個、1,4ーフェニレンの原子数を4個、2,6ーピリジンジイルの原子数を3個として数える。

上記「主鎖の原子数が 2 ないし 5 である連結基」は、下記 2 価基群 ζ -1 より選択される基 1 個で形成されるか、或いは、下記 2 価基群 ζ -2 より選択される基 1 ないし 4 種が 2 ないし 4 個結合して形成される。

[2価基群な-1]下記式:

[2価基群な-2]下記式:

該 2 価基が 2 個以上結合する場合、各基は同一であっても異なっていてもよい。 上記「主鎖の原子数が 2 ないし5 である連結基」としては、好適には、下記連結 基群 α より選択される基である。

[連結基群 α] 下記式:

PCT/JP03/07129 ---

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する) 最も好適には、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)で表される基である。

「主鎖の原子数が 2 ないし 5 である連結基」の定義における「該連結基は置換基を有していてもよい」の置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられ、好適には、 $C_1 \sim C_6$ のアルキル基であり、さらに好適には、メチル基である。該置換基は、環 Z 又はE が有する置換基と一緒になって、それらが結合している原子と共に、置換基を有していてもよい環式基を形成してもよい。このような例としては、一般式(I)で表される化合物が、下記式:

$$\begin{array}{c} \mathsf{CF_3} \\ \mathsf{OH} & \mathsf{O} \\ \mathsf{Br} \\ \end{array}$$

である化合物が挙げられる。

上記一般式(I)において、Aとしては、水素原子又はアセチル基を挙げることができ、好適には水素原子である。

環Zの定義における「式-O-A (式中、Aは上記定義と同義である)及び式-X-E (式中、X及びEは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」の「アレーン」としては、単環式又は縮合多環式芳香族炭化水素が挙げられ、例えば、ベンゼン環、ナフタレン環、アンラセ

ン環、フェナントレン環、アセナフチレン環等が挙げられる。好適には、ベンゼン環、ナフタレン環等の $C_6 \sim C_{10}$ のアレーンであり、さらに好適には、ベンゼン環及びナフタレン環であり、最も好適には、ベンゼン環である。

上記環 Z の定義における「式 – O – A(式中、A は上記定義と同義である)及び式 – X – E(式中、X 及びE は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のアレーン上での置換位置は特に限定されない。また、該置換基が 2 個以上存在する場合、それらは同一であっても異なっていてもよい。

上記環 Z の定義における「式 – O – A(式中、Aは上記定義と同義である)及び式 – X – E(式中、X 及びE は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」が「式 – O – A(式中、Aは上記定義と同義である)及び式 – X – E(式中、X 及びE は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいベンゼン環」である場合、好適には、「式 – O – A(式中、A は上記定義と同義である)及び式 – X – E(式中、X 及びE は上記定義と同義である)で表される基の他に更に 1 ないし 3 個の置換基を有するベンゼン環」であり、更に好適には、「式 – O – A(式中、A は上記定義と同義である)及び式 – X – E(式中、X 及びE は上記定義と同義である)で表される基の他に更に 1 個の置換基を有するベンゼン環」であり、更に好適には、「式 – O – A(式中、A は上記定義と同義である)及び式 – X – E(式中、X 及びE は上記定義と同義である)で表される基の他に更に 1 個の置換基を有するベンゼン環」である。このとき、該置換基としては、好適には、下記「置換基群 γ – 1 z」から選択される基であり、更に好適には、ハロゲン原子及び t e r t – プチル基〔(1, 1 – ジメチル) エチル基〕であり、最も好適には、ハロゲン原子である。

[置換基群 $\gamma-1z$] ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、メトキシ基、メチル基、イソプロピル基、tert-ブチル基、1, 1, 3, 3-テトラメチルブチル基、<math>2-フェニルエテン-1-イル基、2, 2-ジシアノエテン-1-イル基、<math>2-シアノ-2-(メトキシカルボニル) エテンー1-イル基、2-カルボキシ-2-シアノエテン-1-イル基、エチニル基、フェニルエチニ

ル基、(トリメチルシリル) エチニル基、トリフルオロメチル基、ペンタフルオロ エチル基、フェニル基、4-(トリフルオロメチル)フェニル基、4-フルオロ フェニル基、2,4-ジフルオロフェニル基、2-フェネチル基、1-ヒドロキ シエチル基、1-(メトキシイミノ)エチル基、1-[(ベンジルオキシ)イミノ] エチル基、2-チエニル基 [チオフェンー2-イル基]、3-チエニル基 [チオフ ェンー3ーイル基]、1ーピロリル基[ピロールー1ーイル基]、2ーメチルチア ゾールー4ーイル基、イミダゾ [1, 2ーa] ピリジンー2ーイル基、2ーピリ ジル基 [ピリジン-2-イル基]、アセチル基、イソブチリル基、ピペリジノカル ボニル基、4-ベンジルピペリジノカルボニル基、(ピロール-1-イル) スルホ ニル基、カルボキシ基、メトキシカルボニル基、N-[3,5-ビス(トリフル オロメチル)フェニル]カルバモイル基、N, Nージメチルカルバモイル基、ス ルファモイル基、N-[3, 5-ビス(トリフルオロメチル)フェニル]スルフ ァモイル基、N、Nージメチルスルファモイル基、アミノ基、N、Nージメチル アミノ基、アセチルアミノ基、ベンゾイルアミノ基、メタンスルホニルアミノ基、 ベンゼンスルホニルアミノ基、3-フェニルウレイド基、(3-フェニル) チオウ レイド基、(4-ニトロフェニル) ジアゼニル基、{[4-(ピリジン-2-イル) スルファモイル]フェニル}ジアゼニル基

上記環Zの定義における「式-O-A(式中、Aは上記定義と同義である)及び式-X-E(式中、X及びEは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」が「式-O-A(式中、Aは上記定義と同義である)及び式-X-E(式中、X及びEは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいベンゼン環」である場合、該置換基が1個であり、-般式(I)における環Zを含む下記部分構造式(I2-1):

が下記式 (Iz-2):

$$(1z-2)$$

で表される場合のR'の位置に存在することが最も好ましい。このとき、該置換基をR'と定義することができる。R'としては、好適には、下記「置換基群 γ ー 2z」から選択される基であり、更に好適には、ハロゲン原子及びt e r t ーブチル基であり、最も好適には、ハロゲン原子である。

[置換基群 y - 2 z] ハロゲン原子、ニトロ基、シアノ基、メトキシ基、メチル 基、イソプロピル基、tertーブチル基、1,1,3,3ーテトラメチルブチ ル基、2-フェニルエテン-1-イル基、2,2-ジシアノエテン-1-イル基、 2-シアノ-2- (メトキシカルボニル) エテン-1-イル基、2-カルボキシ - 2 - シアノエテン- 1 - イル基、エチニル基、フェニルエチニル基、(トリメチ ルシリル) エチニル基、トリフルオロメチル基、ペンタフルオロエチル基、フェ ニル基、4-(トリフルオロメチル)フェニル基、4-フルオロフェニル基、2, 4-ジフルオロフェニル基、2-フェネチル基、1-ヒドロキシエチル基、1-(メトキシイミノ) エチル基、1-[(ベンジルオキシ) イミノ] エチル基、2-チエニル基、3ーチエニル基、1ーピロリル基、2ーメチルチアゾールー4ーイ ル基、イミダゾ [1, 2-a] ピリジン-2-イル基、2-ピリジル基、アセチ ル基、イソブチリル基、ピペリジノカルボニル基、4ーベンジルピペリジノカル ボニル基、(ピロール-1-イル) スルホニル基、カルボキシ基、メトキシカルボ ニル基、N-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル基、 N, N-ジメチルカルバモイル基、スルファモイル基、N-[3,5-ビス(ト リフルオロメチル)フェニル]スルファモイル基、N, Nージメチルスルファモ イル基、アミノ基、N、Nージメチルアミノ基、アセチルアミノ基、ベンゾイル アミノ基、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基、3ーフェ

ニルウレイド基、(3-フェニル) チオウレイド基、(4-ニトロフェニル) ジアゼニル基、{[4-(ピリジン-2-イル) スルファモイル] フェニル} ジアゼニル基

上記環 Z の定義における「式 – O – A(式中、Aは上記定義と同義である)及び式 – X – E(式中、X 及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン」が「式 – O – A(式中、Aは上記定義と同義である)及び式 – X – E(式中、X 及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいナフタレン環」である場合、好適には、ナフタレン環である。

環Zの定義における「式-O-A(式中、Aは上記定義と同義である)及び式-X-E (式中、X及びEは上記定義と同義である)で表される基の他にさらに置 換基を有していてもよいヘテロアレーン」の「ヘテロアレーン」としては、環系 を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択 されたヘテロ原子1ないし3種を少なくとも1個含む単環式又は縮合多環式芳香 族複素環が挙げられ、例えば、フラン環、チオフェン環、ピロール環、オキサゾ ール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール 環、ピラゾール環、1、2、3ーオキサジアゾール環、1、2、3ーチアジアゾ ール環、1,2,3ートリアゾール環、ピリジン環、ピリダジン環、ピリミジン 環、ピラジン環、1,2,3ートリアジン環、1,2,4ートリアジン環、1H -アゼピン環、1,4-オキセピン環、1,4-チアゼピン環、ベンゾフラン環、 イソベンゾフラン環、ベンゾ〔b〕チオフェン環、ベンゾ〔c〕チオフェン環、 インドール環、2H-イソインドール環、1H-インダゾール環、2H-インダ ゾール環、ベンゾオキサゾール環、1,2-ベンゾイソオキサゾール環、2,1 ーベンゾイソオキサゾール環、ベンゾチアゾール環、1,2-ベンゾイソチアゾ ール環、2,1-ベンゾイソチアゾール環、1,2,3-ベンゾオキサジアゾー ル環、2、1、3-ベンゾオキサジアゾール環、1,2,3-ベンゾチアジアゾ ール環、2.1、3-ベンゾチアジアゾール環、1H-ベンゾトリアゾール環、

2Hーベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、1H-1, 5-ベンゾジアゼピン環、カルバゾール環、 α -カルボリン環、 β -カルボリン環、 γ -カルボリン環、アクリジン環、フェノキサジン環、フェノチアジン環、フェナントリジン環、フェナントロリン環、チアントレン環、インドリジン環、フェノキサチイン環等の5ないし14員の単環式又は縮合多環式芳香族複素環が挙げられる。好適には、5ないし13員の単環式又は縮合多環式芳香族複素環であり、さらに好適には、チオフェン環、ピリジン環、インドール環、キノキサリン環、及びカルバゾール環である。

上記環 Z の定義における「式 – O – A(式中、A は上記定義と同義である)及び式 – X – E(式中、X 及びE は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいへテロアレーン」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のヘテロアレーン上での置換位置は特に限定されない。また、該置換基が 2 個以上存在する場合、それらは同一であっても異なっていてもよい。

上記環 Z の定義における「式 – O – A (式中、A は上記定義と同義である)及び式 – X – E (式中、X及びE は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいヘテロアレーン」の「置換基」としては、好適には、ハロゲン原子である。

Eの定義における「置換基を有していてもよいアリール基」の「アリール基」としては、上記「炭化水素基」の定義における「アリール基」と同様の基が挙げられ、好適には、フェニル基、1-ナフチル基、2-ナフチル基等の $C_6\sim C_{10}$ のアリール基であり、最も好適には、フェニル基である。

上記Eの定義における「置換基を有していてもよいアリール基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のアリール基上での置換位置は特に限定されず、該置換基が2個以上存在する場合、それらは同一であっても異なっていてもよい。

...

上記Eの定義における「置換基を有していてもよいアリール基」が「置換基を有していてもよいフェニル基」である場合、好適には、「モノ置換フェニル基」、「ジ 置換フェニル基」、及び「3個以上の置換基を有するフェニル基」であり、更に好 適には、「ジ置換フェニル基」である。

上記Eの定義における「置換基を有していてもよいアリール基」が「ジ置換フェニル基」である場合、好適な基の具体例としては、下記「置換基群 $\delta-1$ e」に示す基が挙げられる。

「置換基群δ-1e]3、5-ビス(トリフルオロメチル)フェニル基、3、4 ープロピレンジオキシフェニル基、3,5-ジクロロフェニル基、2,4-ジヒ ドロキシフェニル基、2,5-ジメトキシフェニル基、2-クロロー5-(トリ フルオロメチル) フェニル基、3、5-ビス [(1, 1-ジメチル) エチル] フェ ニル基、2,5ービス(トリフルオロメチル)フェニル基、4ークロロー2ー(ト リフルオロメチル)フェニル基、2-フルオロ-3-(トリフルオロメチル)フ ェニル基、4-フルオロ-3-(トリフルオロメチル)フェニル基、4-クロロ -3-(トリフルオロメチル)フェニル基、3-フルオロ-5-(トリフルオロ メチル)フェニル基、3-ブロモ-5-(トリフルオロメチル)フェニル基、2 -フルオロ-5-(トリフルオロメチル)フェニル基、4-ニトロ-3-(トリ フルオロメチル)フェニル基、2-ニトロー5-(トリフルオロメチル)フェニ ル基、4-シアノ-3-(トリフルオロメチル)フェニル基、2-メチル-3-(トリフルオロメチル)フェニル基、4-メチル-3-(トリフルオロメチル) フェニル基、2-メチル-5-(トリフルオロメチル)フェニル基、4-メトキ シー3- (トリフルオロメチル) フェニル基、3-メトキシー5- (トリフルオ ロメチル) フェニル基、2-メトキシ-5-(トリフルオロメチル) フェニル基、 2-メチルスルファニル-5-(トリフルオロメチル)フェニル基、2-(1-ピロリジニル) -5- (トリフルオロメチル) フェニル基、2ーモルホリノー5 - (トリフルオロメチル) フェニル基、2-クロロー4-(トリフルオロメチル) フェニル基、2,5-ジクロロフェニル基、3,4-ジクロロフェニル基、3,

5-ジフルオロフェニル基、3,5-ジニトロフェニル基、2,5-ビス[(1. 1-ジメチル) エチル] フェニル基、5-[(1, 1-ジメチル) エチル] -2-メトキシフェニル基、3,5-ジメチルフェニル基、4-メトキシビフェニルー 3-イル基、3,5-ジメトキシフェニル基、3,5-ビス(メトキシカルボニ ル)フェニル基、2-プロモー5-(トリフルオロメチル)フェニル基、3-メ トキシカルボニル-5-(トリフルオロメチル)フェニル基、3-カルボキシー 5-(トリフルオロメチル)フェニル基、2-(2-ナフチルオキシ)-5-(ト リフルオロメチル)フェニル基、2-(2,4-ジクロロフェノキシ)-5-(ト リフルオロメチル) フェニル基、2-[4-(トリフルオロメチル)ピペリジン -1-イル] -5-(トリフルオロメチル)フェニル基、2-(2,2,2-ト リフルオロエトキシ) -5- (トリフルオロメチル) フェニル基、2- (2-メ トキシフェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-クロ ロー3, 5-ジメチルフェノキシ)-5-(トリフルオロメチル)フェニル基、 2-ピペリジノ-5- (トリフルオロメチル)フェニル基、2- (4-メチルフ ェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-クロロフェノ キシ) -5- (トリフルオロメチル) フェニル基、3,5-ジカルボキシフェニ ル基、5-イソプロピル-2-メチルフェニル基、2,5-ジエトキシフェニル 基、2、5-ジメチルフェニル基、5-クロロ-2-シアノ基、5-ジエチルス ルファモイルー2-メトキシフェニル基、2-クロロー5-ニトロフェニル基、 2-メトキシ-5-(フェニルカルバモイル)フェニル基、5-アセチルアミノ -2-メトキシフェニル基、5-メトキシ-2-メチルフェニル基、2,5-ジ ブトキシフェニル基、2、5-ジイソペンチルオキシ基、5-カルバモイルー2 ーメトキシフェニル基、5ー[(1,1-ジメチル)プロピル]-2-フェノキシ フェニル基、2ーヘキシルオキシー5-メタンスルホニル基、5-(2,2-ジ メチルプロピオニル) -2-メチルフェニル基、5-メトキシー2-(1-ピロ リル)フェニル基、5-クロロ-2- (p-トルエンスルホニル)フェニル基、 2-クロロ-5- (p-トルエンスルホニル)フェニル基、2-フルオロ-5-

メタンスルホニル基、2-メトキシ-5-フェノキシ基、4-メチルビフェニル - 3 - イル基、2 - メトキシ-5 - (1 - メチル-1 - フェニルエチル)フェニ ル基、5ーモルホリノー2ーニトロフェニル基、5ーフルオロー2ー(1ーイミ ダゾリル)フェニル基、2-ブチル-5-ニトロフェニル基、5-[(1,1-ジ メチル)]プロピルー2-ヒドロキシフェニル基、2ーメトキシー5ーメチルフェ ニル基、2、5ージフルオロフェニル基、4ーイソプロピルー2ー(トリフルオ ロメチル)フェニル基、2-ニトロー4ー(トリフルオロメチル)フェニル基、 4-ブロモー3-(トリフルオロメチル)フェニル基、4-ブロモー2-(トリ フルオロメチル)フェニル基、2-プロモー4-(トリフルオロメチル)フェニ ル基、4-フルオロー2-(トリフルオロメチル)フェニル基、4-イソプロポ キシー2-(トリフルオロメチル)フェニル基、4-シアノ-2-(トリフルオ ロメチル)フェニル基、2,6-ジイソプロピルフェニル基、2,6-ジメチル フェニル基、3,4ージメチルフェニル基、2,4ージクロロフェニル基、2, 3-ジメチルフェニル基、インダン-5-イル基、2,4-ジメチルフェニル基、 2,6-ジクロロフェニル基、4-ブロモー2-(トリフルオロメトキシ)フェ ニル基、3,4-エチレンジオキシフェニル基、3-クロロー4-シアノフェニ ル基、3-クロロー4-(トリフルオロメトキシ)フェニル基、2-クロロー4 ーシアノフェニル基、2,3ージクロロフェニル基、4ーイソプロピルー3ーメ チルフェニル基、4 - [(1, 1 - ジメチル) プロピル] - 2 - ヒドロキシフェニ ル基、3-クロロー2-シアノフェニル基、2-シアノー4-メチルフェニル基、 2, 2-ジフルオロー1, 3-ベンゾジオキソールー4-イル基、2, 2, 3, 3-テトラフルオロー1, 4ーベンゾジオキセンー5ーイル基、3ークロロー4 - (トリフルオロメチルスルファニル)フェニル基、2-ニトロー4-(トリフ ルオロメトキシ) フェニル基、2, 2-ジフルオロー1, 3-ベングジオキソー ルー5ーイル基、2ーメチルー4ー(トリフルオロメトキシ)フェニル基、4ー ブロモー2-フルオロフェニル基、2,4-ビス(メタンスルホニル)フェニル 基、2,2,3,3-テトラフルオロー1,4-ベンゾジオキセンー6-イル基、

 $v_{i} \in$

2-ベンゾイルー4-クロロフェニル基、2-プロモー4-フルオロフェニル基、3, 4-ジメトキシフェニル基、3, 4-ジフルオロフェニル基、3-クロロー4-メトキシフェニル基、2-クロロー4-ニトロフェニル基、2, 4-ジフルオロフェニル基、2-プロモー4-(トリフルオロメトキシ)フェニル基、3, 4-ジヘキシルオキシフェニル基、2, 4-ビス(トリフルオロメチル)フェニル基、4-シアノー2-(トリフルオロメトキシ)フェニル基、4-シアノー2-(トリフルオロメトキシ)フェニル基、4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、4-3-2-1カー(トリフルオロメチル)フェニル基、4-4-3-1カー(トリフルオロメチル)フェニル基、4-4-3-4カー(トリフルオロメチル)フェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「ジ置換フェニル基」である場合、更に好適には、「2,5-ジ置換フェニル基」及び「3,5-ジ置換フェニル基」である。

上記Eの定義における「置換基を有していてもよいTリール基」が「2, 5 - ジ 置換Jェニル基」である場合、好適な基の具体例としては、下記「置換基群 δ - 2 e」に示す基が挙げられる。

[置換基群 δ - 2 e] 2, 5 - ジメトキシフェニル基、2 - クロロー5 - (トリフルオロメチル)フェニル基、2, 5 - ビス(トリフルオロメチル)フェニル基、2 - フルオロー5 - (トリフルオロメチル)フェニル基、2 - ニトロー5 - (トリフルオロメチル)フェニル基、2 - ニトロー5 - (トリフルオロメチル)フェニル基、2 - メトキシー5 - (トリフルオロメチル)フェニル基、2 - メトキシー5 - (トリフルオロメチル)フェニル基、2 - メチルスルファニルー5 - (トリフルオロメチル)フェニル基、2 - (1 - ピロリジニル)-5 - (トリフルオロメチル)フェニル基、2 - モルホリノー5 - (トリフルオロメチル)フェニル基、2, 5 - ビス[(1, 1 - ジメチル)エチル)フェニル基、5 - [(1, 1 - ジメチル)エチル]フェニル基、5 - [(1, 1 - ジメチル)エチル]フェニル基、5 - (トリフルオロメチル)フェニル基、4 - メトキシビフェニルー3 - イル基、2 - ブロモー5 - (トリフルオロメチル)フェニル基、2 - (2 - ナフチルオキシ) - 5 - (トリフルオロメチル)フェニル基、2 - (2, 4 - ジクロロフェノキシ) - 5 - (トリフルオロメチル)フェニル基、2 - (2, 4 - ジクロロフェノキシ) - 5 - (トリフ

ルオロメチル) フェニル基、2-[4-(トリフルオロメチル)ピペリジン-1 ーイル] -5- (トリフルオロメチル) フェニル基、2-(2, 2, 2-トリフ ルオロエトキシ) -5- (トリフルオロメチル) フェニル基、2- (2-メトキ シフェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-クロロー 3、5-ジメチルフェノキシ)-5-(トリフルオロメチル)フェニル基、2-ピペリジノー5- (トリフルオロメチル) フェニル基、2- (4-メチルフェノ キシ) -5-(トリフルオロメチル)フェニル基、2-(4-クロロフェノキシ) -5- (トリフルオロメチル)フェニル基、5-イソプロピル-2-メチルフェ ニル基、2、5-ジエトキシフェニル基、2、5-ジメチルフェニル基、5-ク ロロー2-シアノ基、5-ジエチルスルファモイルー2-メトキシフェニル基、 2-クロロー5-ニトロフェニル基、2-メトキシー5- (フェニルカルバモイ ル) フェニル基、5ーアセチルアミノー2ーメトキシフェニル基、5ーメトキシ -2-メチルフェニル基、2,5-ジブトキシフェニル基、2,5-ジイソペン チルオキシ基、5-カルバモイルー2ーメトキシフェニル基、5-[(1,1-ジ メチル)プロピル]-2-フェノキシフェニル基、2-ヘキシルオキシー5-メ タンスルホニル基、5-(2,2-ジメチルプロピオニル)-2-メチルフェニ ル基、5-メトキシー2-(1-ピロリル)フェニル基、5-クロロー2-(p ートルエンスルホニル)フェニル基、2-クロロ-5-(p-トルエンスルホニ ル) フェニル基、2-フルオロー5-メタンスルホニル基、2-メトキシー5-フェノキシ基、2-メトキシ-5- (1-メチル-1-フェニルエチル)フェニ ル基、5ーモルホリノー2ーニトロフェニル基、5ーフルオロー2ー(1ーイミ ダゾリル)フェニル基、2-ブチル-5-ニトロフェニル基、5-[(1,1-ジ メチル) プロピル] -2-ヒドロキシフェニル基、2-メトキシー5ーメチルフ ェニル基、2,5-ジフルオロフェニル基、2-ベンゾイル-5-メチルフェニ ル基、2-(4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、 2- (4-メトキシフェノキシ)-5- (トリフルオロメチル)フェニル基 上記Eの定義における「置換基を有していてもよいアリール基」が「2,5-ジ 置換フェニル基」である場合、更に好適には、「2,5 ージ置換フェニル基(但し、該置換基の少なくとも1個はトリフルオロメチル基である)」であり、特に更に好適には、下記「置換基群 δ ー 3 e」から選択される基であり、最も好適には、2,5 ービス(トリフルオロメチル)フェニル基である。

[置換基群 δ-3e] 2-クロロー5-(トリフルオロメチル) フェニル基、2, 5ービス (トリフルオロメチル) フェニル基、2ーフルオロー5ー (トリフルオ ロメチル)フェニル基、2-ニトロ-5-(トリフルオロメチル)フェニル基、 2-メチル-5-(トリフルオロメチル)フェニル基、2-メトキシ-5-(ト リフルオロメチル)フェニル基、2-メチルスルファニル-5-(トリフルオロ メチル)フェニル基、2-(1-ピロリジニル)-5-(トリフルオロメチル) フェニル基、2-モルホリノー5- (トリフルオロメチル)フェニル基、2-ブ ロモー5- (トリフルオロメチル)フェニル基、2-(2-ナフチルオキシ)-5- (トリフルオロメチル)フェニル基、2-(2,4-ジクロロフェノキシ) -5- (トリフルオロメチル) フェニル基、2- [4- (トリフルオロメチル) ピペリジン-1-イル]-5-(トリフルオロメチル)フェニル基、2-(2, 2, 2-トリフルオロエトキシ) -5- (トリフルオロメチル) フェニル基、2 - (2-メトキシフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-クロロ-3, 5-ジメチルフェノキシ) -5-(トリフルオロメチル)フ ェニル基、2-ピペリジノ-5-(トリフルオロメチル)フェニル基、2-(4 ーメチルフェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-ク ロロフェノキシ) -5-(トリフルオロメチル) フェニル基、2-(4-シアノ フェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-メトキシフ ェノキシ) -5- (トリフルオロメチル) フェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「3,5-ジ 置換フェニル基」である場合、好適な基の具体例としては、下記「置換基群 δ -4 e \mid に示す基が挙げられる。

[置換基群 δ – 4 e] 3, 5 – ビス (トリフルオロメチル) フェニル基、3, 5

ージクロロフェニル基、3,5ービス[(1,1ージメチル) エチル]フェニル基、3ーフルオロー5ー(トリフルオロメチル)フェニル基、3ープロモー5ー(トリフルオロメチル)フェニル基、3ーメトキシー5ー(トリフルオロメチル)フェニル基、3,5ージニトロフェニル基、3,5ージメチルフェニル基、3,5ージメトキシフェニル基、3,5ービス(メトキシカルボニル)フェニル基、3ーメトキシカルボニルー5ー(トリフルオロメチル)フェニル基、3ーカルボキシー5ー(トリフルオロメチル)フェニル基、3ーカルボキシー5ー(トリフルオロメチル)フェニル基、3ーガルボキシフェニル基、3、5ージカルボキシフェニル基、3、5ージカルボキシフェニル基

上記「置換基を有していてもよいアリール基」が「3,5 - ジ置換フェニル基」である場合、更に好適には、「3,5 - ジ置換フェニル基(但し、該置換基の少なくとも1個はトリフルオロメチル基である)」であり、特に更に好適には、下記「置換基群 δ - 5 e」から選択される基であり、最も好適には、3,5 - ビス(トリフルオロメチル)フェニル基である。

[置換基群 δ - 5 e] 3, 5 - ビス (トリフルオロメチル) フェニル基、3 - フルオロ-5 - (トリフルオロメチル) フェニル基、3 - ブロモー5 - (トリフルオロメチル) フェニル基、3 - メトキシー5 - (トリフルオロメチル) フェニル基、3 - メトキシカルボニルー5 - (トリフルオロメチル) フェニル基、3 - カルボキシー5 - (トリフルオロメチル) フェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「モノ置換フェニル基」である場合、好適な基の具体例としては、下記「置換基群 $\delta-6e$ 」に示す基が挙げられる。

[置換基群 δ - 6 e] 4 - メトキシフェニル基、4 - クロロフェニル基、2 - メトキシフェニル基、2 - (トリフルオロメチル)フェニル基、3 - (トリフルオロメチル)フェニル基、3 - クロロフェニル基、ゼフェニルー3 - イル基、3 - アセチルフェニル基、3 - (アセチルアミノ)フェニル基、3 - カルバモイルフェニル基、3 - メチルカルバモイルフェニル基、4 - メチルフェニル基、3 - (トリフルオロメトキシ)フェニル基、

2-ベンジルフェニル基、4-(トリフルオロメトキシ)フェニル基、4-[(1. 1-ジメチル) エチル] フェニル基、3-イソプロポキシフェニル基、4-イソ プロポキシフェニル基、4-ヘキシルフェニル基、3-メチルフェニル基、4-シクロヘキシルフェニル基、4ーベンジルフェニル基、2ークロロフェニル基、 2-メチルフェニル基、4-プチルフェニル基、4-ベンジルオキシフェニル基、 3-ベンジルフェニル基、4-ヘキシルオキシフェニル基、3-イソプロピルフ ェニル基、4ーシアノフェニル基、3ーシアノフェニル基、4ー(エトキシカル ボニルメチル)フェニル基、3-(トリフルオロメチルスルファニル)フェニル 基、4-(トリフルオロメチルスルファニル)フェニル基、4-(トリフルオロ メタンスルホニル)フェニル基、3-エチニルフェニル基、4-(1-メチルプ ロピル)フェニル基、3ーベンゾイルフェニル基、3ーメトキシフェニル基、4 - (アセチルアミノ) フェニル基、4 - スルファモイルフェニル基、4 - (ジフ ルオロメトキシ)フェニル基、3-メチルスルファニルフェニル基、4-メタン スルホニルフェニル基、3-(ブチルスルファモイル)フェニル基、3-ベンジ ルオキシフェニル基、4-(p-トルエンスルホニルアミノ)フェニル基、4-モルホリノフェニル基、3ー[(1,1ージメチル)エチル]フェニル基、3ー(5 ーメチルフランー2ーイル)フェニル基、3-スルファモイルフェニル基、3-(トリフルオロメタンスルホニル)フェニル基、3-ヘキシルオキシフェニル基、 4-アセチルフェニル基、ビフェニル-2-イル基、ビフェニル-4-イル基、 3- [5-フェニル-3-(トリフルオロメチル)ピラゾール-1-イル]フェ ニル基、3-{5-[(1,1-ジメチル)エチル]-3-(トリフルオロメチル) ピラゾールー1-イル}フェニル基、4-[3,5-ビス(トリフルオロメチル) ピラゾールー1ーイル] フェニル基、3ー[3,5ービス(トリフルオロメチル) ピラゾールー1ーイル]フェニル基、4-[5-フェニルー3-(トリフルオロ メチル) ピラゾールー1ーイル] フェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「3個以上の 置換基を有するフェニル基」である場合、好適な基の具体例としては、下記「置

換基群 $\delta - 7e$ 」に示す基が挙げられる。

【置換基群 δ − 7 e] 3, 5 − ビス(トリフルオロメチル) − 2 − プロモフェニル基、3, 4, 5 − トリクロロフェニル基、3, 5 − ジクロロー 4 − ヒドロキシフェニル基、ペンタフルオロフェニル基、3, 5, 5, 8, 8 −ペンタメチルー5, 6, 7, 8 − テトラヒドロナフタレン − 2 − イル基、3, 5 − ビス(トリフルオロメチル) − 2 − メチルフェニル基、2, 6 − ジクロロー 4 − (トリフルオロメチル)フェニル基、2, 4 − ジメトキシー 5 − (トリフルオロメチル)フェニル基、4 − クロロー2 − (4 − クロロベンゼンスルホニル) − 5 − (トリフルオロメチル)フェニル基、5 − クロロー2 − (トリフルオロメチル)フェニル基、2, 3 − ジフルオロー4 − (トリフルオロメチル)フェニル基、2, 3 − ジフルオロー4 − (トリフルオロメチル)フェニル基、2, 3 − ジフルオロー4 − (トリフルオロメチル)フェニル基、2, 3, 5, 6 − テトラフルオロー4 − (トリフルオロメチル)フェニル基、2, 4, 6 − トリメチルフェニル基、2 − シアノー4, 5 − ジメトキシフェニル基、2, 4 − ジクロロー5 − イソプロポキシフェニル基、2, 3, 5 − トリフルオロフェニル基、2, 4, 5 − トリクロロフェニル基、5 − エトキシー4 − フルオロー2 − ニトロフェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「置換基を有していてもよいナフチル基」である場合、好適な基の具体例としては、1ーナフチル基、4ーメトキシナフタレン-2ーイル基、及び4ーヒドロキシ-3ーメチルナフタレン-1ーイル基が挙げられる。

Eの定義における「置換基を有していてもよいへテロアリール基」の「ヘテロアリール基」としては、上記「ヘテロ環基」の定義における「単環式ヘテロアリール基」及び「縮合多環式ヘテロアリール基」と同様の基が挙げられる。好適には、5ないし13員のヘテロアリール基であり、このとき、好適な基の具体例としては、チエニル基、ピラゾリル基、オキサゾリル基、1,3,4ーチアジアゾリル基、ピリジル基、ピリミジニル基、インドリル基、キノリル基、カルバゾリル基、チアゾリル基、及びピラジニル基が挙げられる。

Eの定義における「置換基を有していてもよいへテロアリール基」の「ヘテロアリール基」としては、更に好適には、5員のヘテロアリール基であり、特に更に好適には、チエニル基、ピラゾリル基、オキサゾリル基、1,3,4ーチアジアゾリル基、及びチアゾリル基であり、最も好適には、チアゾリル基である。

上記Eの定義における「置換基を有していてもよいへテロアリール基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のヘテロアリール基上での置換位置は特に限定されず、該置換基が2個以上存在する場合、それらは同一であっても異なっていてもよい。

上記Eの定義における「置換基を有していてもよいヘテロアリール基」が「置換基を有していてもよいチアゾリル基」である場合、好適には、「置換基を有していてもよいチアゾールー2ーイル基」であり、更に好適には、「モノ置換チアゾールー2ーイル基」、及び「ジ置換チアゾールー2ーイル基」であり、特に更に好適には、「ジ置換チアゾールー2ーイル基」である。

上記 E の定義における「置換基を有していてもよいヘテロアリール基」が「ジ置換チアゾールー 2 ーイル基」である場合、好適には、下記「置換基群 δ - 8 e 」から選択される基であり、最も好適には、4 ー [(1, 1-ジメチル) エチル] ー 5 ー <math>[(2, 2-ジメチル) プロピオニル] チアゾールー <math>2 ーイル基である。

[置換基群 $\delta - 8$ e] 5 - 7ロモー $4 - [(1, 1 - 5) \times 7 - 1)$ $\times 7 \times 7 - 1$ $\times 1 - 1$ $\times 1$

4-ブチル-5-フェニルチアゾール-2-イル基、4-[(1, 1-ジメチル) エチル] -5- [(2, 2-ジメチル) プロピオニル] チアゾール-2-イル基、 4-[(1, 1-ジメチル) エチル] -5-(エトキシカルボニル) チアゾールー 2-イル基、4-[(1,1-ジメチル)エチル]-5-ピペリジノチアゾールー 2-イル基、4-[(1, 1-ジメチル) エチル] -5-モルホリノチアゾールー 2ーイル基、4ー[(1, 1ージメチル) エチル] ー 5 ー (4ーメチルピペラジン - 1 - イル) チアゾールー 2 - イル基、4 - [(1, 1 - ジメチル) エチル] - 5 - (4-フェニルピペラジン-1-イル)チアゾールー2ーイル基、5-カルボ キシメチルー4-フェニルチアゾールー2-イル基、4,5-ジフェニルチアゾ ールー2ーイル基、4ーベンジルー5ーフェニルチアゾールー2ーイル基、5ー フェニルー4-(トリフルオロメチル)チアゾールー2-イル基、5-アセチル -4-フェニルチアゾール-2-イル基、5-ベンゾイル-4-フェニルチアゾ ールー2ーイル基、5-エトキシカルボニルー4-フェニルチアゾールー2ーイ ル基、5-エトキシカルボニル-4- (ペンタフルオロフェニル) チアゾールー 2-イル基、5-メチルカルバモイルー4-フェニルチアゾールー2-イル基、 5-エチルカルバモイルー4-フェニルチアゾールー2-イル基、5-イソプロ ピルカルバモイルー4-フェニルチアゾールー2-イル基、5-(2-フェニル エチル) カルバモイルー4ーフェニルチアゾールー2ーイル基、5ーエトキシカ ルボニルー4ー (トリフルオロメチル) チアゾールー2ーイル基、5ーカルボキ シー4-[(1, 1-ジメチル) エチル] チアゾールー2-イル基、5-(エトキ シカルボニル) メチルー4ーフェニルチアゾールー2ーイル基、5ーカルボキシ - 4 - フェニルチアゾールー 2 - イル基、 5 - プロピルカルバモイルー 4 - フェ ニルチアゾールー2ーイル基

上記Eの定義における「置換基を有していてもよいヘテロアリール基」が「モノ 置換チアゾールー 2 ーイル基」である場合、好適な基の具体例としては、下記「置 換基群 δ - 9 e 」に示す基が挙げられる。

10 m 10 m 10 m 14 m 1 m 1

[置換基群 δ - 9 e] 4 - [(1, 1 - ジメチル) エチル] チアゾールー2 ーイル

基、4-7ェニルチアゾールー2ーイル基、4-[3,5-ビス(トリフルオロメチル)フェニル]チアゾールー2ーイル基、4-(2,4-ジクロロフェニル)チアゾールー2ーイル基、4-(3,4-ジクロロフェニル)チアゾールー2ーイル基、4-[4-(トリフルオロメチル)フェニル]チアゾールー2ーイル基、4-(2,5-ジフルオロフェニル)チアゾールー2ーイル基、4-(4-メトキシフェニル)チアゾールー2ーイル基、4-[3-(トリフルオロメチル)フェニル]チアゾールー2ーイル基、4-(ペンタフルオロフェニル)チアゾールー2ーイル基、4-(ペンタフルオロフェニル)チアゾールー2ーイル基

上記一般式(I)で表される化合物は塩を形成することができる。薬理学的に許容される塩としては、酸性基が存在する場合には、例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩等の金属塩、又はアンモニウム塩、メチルアンモニウム塩、ジメチルアンモニウム塩、トリメチルアンモニウム塩、ジシクロヘキシルアンモニウム塩等のアンモニウム塩をあげることができ、塩基性基が存在する場合には、例えば、塩酸塩、臭酸塩、硫酸塩、硝酸塩、リン酸塩等の鉱酸塩、あるいはメタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩、酢酸塩、プロピオン酸塩、酒石酸塩、フマール酸塩、マレイン酸塩、リンゴ酸塩、シュウ酸塩、コハク酸塩、クエン酸塩、安息香酸塩、マンデル酸塩、ケイ皮酸塩、乳酸塩等の有機酸塩をあげることができる。グリシンなどのアミノ酸と塩を形成する場合もある。本発明の医薬の有効成分としては、薬学的に許容される塩も好適に用いることができる。

上記一般式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もある。本発明の医薬の有効成分としては、上記のいずれの物質を用いてもよい。さらに一般式(I)で表される化合物は1以上の不斉炭素を有する場合があり、光学活性体やジアステレオマーなどの立体異性体として存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の立体異性体、光学対掌体又はジアステレオマーの任意の混合物、ラセミ体などを用いてもよい。

また、一般式(I)で表される化合物が例えば2-ヒドロキシピリジン構造を有

する場合、その互変異性体(tautomer)である2ーピリドン構造として 存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の互変異性 体又はそれらの混合物を用いてもよい。また、一般式(I)で表される化合物が オレフィン性の二重結合を有する場合には、その配置はZ配置又はE配置のいず れでもよく、本発明の医薬の有効成分としてはいずれかの配置の幾何異性体又は それらの混合物を用いてもよい。

本発明の医薬の有効成分として一般式 (I) に包含される化合物を以下に例示するが、本発明の医薬の有効成分は下記の化合物に限定されることはない。

なお、下記表において用いられる略語の意味は下記の通りである。

Me:メチル基、Et:エチル基。

化合物番号	A . 0 Z	X	E
1	OH Br	HZ CH	CF ₃
2	OH Br	o H Z	
3	OH Br	O N H	
4	МеООН		OMe
. 5	OH	OH OH	CI
6	MeO		MeO

		, 	
7	OH Me		
8	Me o o		
9	ĕō	$\stackrel{>}{\sim}$	CI
1 0	OH Br	O N H	CI
1 1	OH)=0	CF ₃
1 2	OH	H Z O	CI
1 3	OH	H N S O O	CI
1 4	OH Br	∕_N / H	CI
1 5	OH Br	O N H	ОН

1 6	OH CI	O N Me	CF ₃
1 7	OH Br	, o v	CF ₃

84

Γ	Γ'	
化合物番号	A O	E
1 8	OH OH	C
1 9	OH	GC
2 0	OH	OMe OMe
2 1	OH	CF ₃
2 2	OH	SO₂F

	·-·	
2 3	OH CI CI	SO ₂ F
2 4	OH N CI	CF ₃
2 5	OH N Ci	CF ₃
2 6	OH N C	Me Me Me Me Me
2 7	OH N	CF ₃
2 8	OH HN CI	CF ₃
2 9	OH N N	CF ₃

3 0	OH	CI
	HN	

化合物番号	A O	E
3 1	OH	
3 2	OH	
3 3	OH	OMe
3 4	O Me O CI	OMe

化合物番号	A . 0	E
3 5	ОН	EtO ₂ C
	CI OH	s'
3 6	Br	N-NH
3 7	OH Br	Et N Et
3 8	OH Br	N N N N N N N N N N N N N N N N N N N
3 9	OH Br	
4 0	ОН	N-N CF ₃

4.1	ОН	N
4 1		N-N CF ₃
	Br	
4 2	ОН	CI
		Ň
	CI	
4 3	OH	OMe
		N CI
4.4	ĊI O	H N
4 4	Me O	
	CI	
4 5	0	
	Me O	HN
		CO₂Et
	ОН	N A
4 6		
4 7	OH I	Et
		\ \tag{N}
	CI	

化合物番号	A O	E
4 8	OH	CF ₃
4 9	OH F	CF ₃
5 0	OH CI	CF ₃
5 1	OH Br	CF ₃
5 2	OH	CF ₃
5 3	OH NO ₂	CF ₃

5 4	ОН	ÇF ₃
	CN	CF ₃
5 5	OH Me	CF ₃
5 6	OH Me Me	CF ₃
5 7	OH HO	CF ₃
5 8	MeO N Me	CF ₃
5 9	OH O N Me	CF ₃
6 0	OH CN CN	CF ₃

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
6 1	OH CN CO₂H	CF ₃
6 2	OH CN CO₂Me	CF ₃
6 3	OH	CF ₃
6 4	OH H	CF ₃
6 5	OH	CF ₃ CF ₃

6 6	OH SiMe ₃	CF ₃
6 7	OH	CF ₃
6 8	OH	CF ₃
6 9	OH CF ₃	CF ₃
7 0	OH ↓ CF ₂ CF ₃	CF ₃
7 1	OH OH	CF ₃

7 2	OH N	CF ₃
7 3	OH S	CF ₃
7 4	OH N S	CF ₃
7 5	OH Z Z	CF ₃
7 6	OH N	CF ₃
7 7	OH OMe	CF ₃

7 8	OH O Me	CF ₃
7 9	OH Me Me	CF ₃
8 0	OH CO₂H	CF ₃
8 1	OH CO₂Me	CF ₃
8 2	OH CF3	CF ₃
8 3	OH ONMe ₂	CF ₃
8 4	OH OH	CF ₃

8 5	OH N	CF ₃
8 6	OH O=S=O NMe ₂	CF ₃
8 7	OH O=S=O N	CF ₃
8 8	OH NH ₂	CF ₃
8 9	OH NMe ₂	CF ₃
9 0	OH HN O	CF ₃
9 1	OH HN N	CF ₃

	OH	
9 2		CF ₃
9 3	OH NO ₂	CF ₃ CF ₃
9 4	H Z H Z H Z H Z H Z H Z H Z H Z H Z H Z	CF ₃ CF ₃
9 5	Me O	CF ₃
9 6	Me O CI	CF ₃

9 7	OH O N H CI	CF ₃
9 8	CI	CF ₃
9 9	2 + - - -	CF ₃ CF ₃
100	OH CI	CF ₃
1 0 1	OH Br	CF ₃
102	OH Me	CF ₃
103	O CI	CF ₃ CF ₃

, A 42 75 F		17:
化合物番号	A o	E
	(z)	
104	ÓН	F ₃ C
104		
	Ý	
	CI	
105	OH 	F ₃ C Cl
·		
·	CI	i
106	ÓН	or.
108		CF ₃
	Br	
107	ОН	CF ₃
		F
	CI	
108	ÓН	CE
108		CF₃ ↓ F
	Cl	
109	ОН	CF ₃
		CI
	Br	
L	<u>.l,</u>	

· ·	·	
110	OH	CF ₃
111	OH Br	CF ₃
112	OH	CF ₃
113	OH CI	CF ₃
114	OH Br	CF ₃
115	OH	CF ₃ NO ₂
116	OH CI	CF ₃
1 1 7	OH Br	CF ₃ CN
118	OH	CF ₃

1 1 9	OH	CF ₃
		Me
	ĊI	, ,
1 2 0	OH I	. CF ₃
	CI	Me
1 2 1	ОН	CF3
121		OMe
	ĊI	, ,
1 2 2	ОН	CF ₃
. •	Br	OMe
1 2 3	ÓН	CF ₃
	Br	OMe
1 2 4	OH	CF ₃
	CI	OMe
1 2 5	он	CF ₃
	Ċı	SMe
1 2 6	OH	CF ₃
	Br	
	, DI	\ \(\frac{n}{\chi}\)

102

PCT/JP03/07129

1 3 5	OH Me	CF ₃ Me
1 3 6	OH Me	CF ₃
1 3 7	OH Me	CF ₃ OMe
. 138	OH Me	CF ₃

	, — — — — — — — — — — — — — — — — — — —	<u> </u>
化合物番号	A o	E
1 3 9	OH	
	Br OH	
1 4 0	Br	CI
1 4 1	OH Br	CI
1 4 2	OH CI	<u>0</u>
1 4 3	OH Br	CI
144	OH Br	F

1 4 5	ОН	CI
146	OH F	CI
147	<u>9</u>	CI
148	OH Br	CI
1 4 9	OH	CI
150	OH Br Br	CI
151	CI	CI
152	OH NO ₂	CI
153	OH Me	CI

•		
154	OH OMe	CI
155	OH Br	CI
156	OH Br	CIOH
157	OH CI	F F F
158	OH Br	NO ₂
159	OH CI	Me Me Me Me Me Me
1 6 0	OH CI	Me Me OMe
161	OH Br	Me Me

162	OH CI	Me Me Me Me Me
163	OH Br	Me Me Me Me
164	OH	Me Me Me Me
165	OH	
166	OH CI	OMe
167	OH Br	OMe OMe
168	OH Br	OMe

169	2 E	Me
170	OH Br	CO ₂ Me
171	OH	H H N CI
172		CI
173	OH Me	Me Me Me Me Me
174	0 0 0	Me Me Me Me Me
175	OH NO ₂	Me Me Me Me

176	OH Me	Me Me Me Me
177	OH OMe	Me Me Me Me
178	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Me Me Me OMe
179	OH Me	Me Me Me OMe

化合物番号	A `o	E
	<u> </u>	
	$\left(z\right)$	
		·
	ОН	
180	J.	N
-		s
·	l Br	•
181	ОН	340
101		Me Me
		N Me
·		S Br
	Вr	
182	ОН	N CF3
		- 《 』
		S´ Br
	Ĭ.	
	Br OH	
183	OH 	Me J Me
·		N Me
		- (
	CI	S CN
1.0.4	ОН	
184		Me Me
		N Me
		ا الحا
	Br	S CN
185	OН	N.
100		
		S ⁻ Me
	Br	<u></u>

186	OH Br	Me Me Me
187	OH Br	N Me S Me
188	OH Br	N Me
189	OH Br	N Me
190	OH Br	N Me CF3
191	OH Br	Me Me Me S Et
192	OH Br	N Et
193	OH Br	Me N Me

2 0 1	OH Br	Me Me Me
202	OH Br	N S
203	OH Br	N CO ₂ H
204	OH Br	N S
2 0 5	OH Br	N S
206	OH Br	N CF3
207	OH Br	N Me

208	OH Br	-NOO
2 0 9	OH Br	N S CO ₂ Et
2 1 0	OH CI	N S CO ₂ Et
2 1 1	OH Br	F F S CO ₂ Et
2 1 2	OH Br	N H N Me
2 1 3	OH Br	S Et
2 1 4	OH Br	N H H N Me

<u></u>		
2 1 5	OH Br	
2 1 6	OH Br	N CF ₃ CO ₂ Et
217	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Me Me S Me Me Me Me Me Me Me Me
2 1 8	OH OH	N S CO ₂ Et
2 1 9	OH F	N CO ₂ Et
2 2 0	OH F	N CO ₂ Et

2 2 1	OH CF ₃	N CO ₂ Et
2 2 2	(C) Z ← (F) E	N CO ₂ Et
2 2 3	OH S	N CO ₂ Et

	T	T	
化合物番号	A O	X .	E
3 0 1	OH CI	~	
302	OH	O = T = O	CF ₃
303	OH	O = N H N H N H N H N H N H N H N H N H N	CF ₃
304	OH CI	O N N	CF ₃
3 0 5	OH CI	Me Me H N N H O	CF ₃
306	OH	N, N O	CF ₃

WO 03/103647 PCT/JP03/07129

3 0 7	OH	O N H	CF ₃
3 0 8	OH	0 N-	CF ₃
3 0 9	OH	O N H H	CF ₃
3 1 0	OH CI		CF ₃
3 1 1	OH	о Н н	
3 1 2	OH C	∕ N H	CF ₃
313	OHG	∕ N O Me	CF ₃
314	ōH JG	EZ EZ O=Z O=Z	CF ₃
3 1 5	OH CI	H N H	CF ₃

3 1 6	OH CI	0	CF ₃
3 1 7	OH	O H N H	CF ₃
3 1 8	OH	S NH	CF ₃
3 1 9	OH	0 N S 0	CF ₃
3 2 0	OH O		CF ₃
3 2 1	OH CI	, N , N ,	CF ₃

化合物番号	A O Z	E
3 2 2	P P	CF ₃
3 2 3	Me OH	CF ₃
3 2 4	HO Br	CF ₃
3 2 5	но	CF ₃
3 2 6	CI	CF ₃
3 2 7	но	CF ₃

3 2 8	OH Me	CF ₃
3 2 9	OH MeO	CF ₃
3 3 0	OH Me Me Me Me	CF ₃
3 3 1	G C C	CF ₃
3 3 2	Me OH Me Me Me	CF ₃
3 3 3	OH F	CF ₃
3 3 4	CI	CF ₃
3 3 5	MeO OH	CF ₃

3 3 6	OH OMe	CF ₃
3 3 7	OH NHSO₂Me	CF ₃
3 3 8	OF HOO OF O	CF ₃
3 3 9	OH HN Me	CF ₃
3 4 0	OH SO₂NH₂	CF ₃
3 4 1	OH	CF ₃
3 4 2	OH	CF ₃
3 4 3	OH Br S	CF ₃

3 5 2	OH	CF ₃
3 5 3	OH	CF ₃
3 5 4	OH CI	CF ₃
3 5 5	OH C	CF ₃ OCH ₂ CF ₃
3 5 6	2 ← ₹	CF ₃
3 5 7	<u>2</u>	CF ₃ Me CI Me

3 5 8	OH CI	CF ₃
3 5 9	OH CI	CF ₃
3 6 0	OH	CF ₃
3 6 1	OH Br	CO₂H CO₂H
3 6 2	OH CI	Me Me
363	OH CI	OEt OEt
3 6 4	OH CI	Me Me
365	OH CI	CI

	<u> </u>	I
366	OH	SO ₂ NEt ₂
3 6 7	OH CI	NO ₂
3 6 8	OH CI	O H N O Me
3 6 9	OH	OMe OMe
3 7 0	OH CI	HN Me OMe
3 7 1	OH CI	OMe Me
3 7 2	OH CI	O Me

3 7 3	OH CI	Me Me Me Me
3 7 4	OH CI	CONH ₂
375	OH CI	Me Me
3 7 6	OH	SO ₂ Me
3 7 7	OH CI	Me Me Me
3 7 8	OH CI	OMe N

3 7 9	OH H	CI O=S—Me
380	OH	O = S — Me
3 8 1	OH	SO₂Me F
3 8 2	OH CI	OMe
3 8 3	OH CI	Me
3 8 4	OH CI	Me Me OMe
3 8 5	CI	O N NO ₂

386	OH CI	F Z Z
3 8 7	OH CI	NO ₂
3 8 8	OH	Me Me Me
3 8 9	OH CI	Me OMe
390	OH	F
391	OH CI	F F
3 9 2	OH Br	Me Me S CO ₂ H
393	OH Br	N CO ₂ Et

3 9 4	OH Br	N CO ₂ H
3 9 5	ОН	CF ₃
3 9 6	OH CI	
397	OH CI	N Br
3 9 8	OH	, n
3 9 9	OH Br	N Br
400	OH Br	N H N Me
4 0 1	OH CI	CF ₃ CF ₃
402	OH CI	CI CF ₃

403	Ω ← ₽	Me Me CF ₃
404	OH CI	CF ₃
405	OH CI	CF ₃
406	OH	CI CF ₃
407	OH	CF ₃
408	OH CI	CF ₃
409	OH	CF ₃
410	OH CI	CF ₃
411	OH	CF ₃

4 1 2	OH	O Me Me
413	OH	OMe OMe
414	OH CI	CF ₃ F
415	OH	CF ₃
416	OH	CF ₃ CI O=S CI O
417	OH CI	CI CF ₃
418	OH CI	CF ₃
419	OH CI	F ₃ C H O OH

<u></u>		
4 2 0	OH CI	F CF ₃
4 2 1	OH CI	N Me
4 2 2	OH CI	CONH₂
4 2 3	OH CI	CONHMe
4 2 4	OH CI	Me Me Me
4 2 5	OH CI	Me
4 2 6	OH	Me Me
427	OH	Me Me
4 2 8	OH CI	Me Me Me

4 2 9	OH	OCF ₃
430	OH	
4 3 1	OH CI	OCF ₃
432	OH CI	CI
434	OH	Me Me Me
434	OH	Me Me
4 3 5	OH CI	
436	OH CI	Me Me

	T	
437	OH CI	Me O Me
438	OH CI	CI CI
4 3 9	OH	O Me Me
440	OH	OCF ₃
441	OH CI	Me
442	OH CI	Me
443	OH	
444	OH	
445	OH	OMe OMe CN

		,
446	OH	
447	OH CI	Me Me CI
448	OH CI	CN
449	OH CI	OCF ₃
4 5 0	OH CI	CN
451	OH CI	CI
452	OH	CI
453	OH CI	Me Me Me

454	OH	Me Me Me OH
4 5 5	OH CI	Me
456	OH CI	Me
457	OH CI	CN
458	OH CI	Me CN
4 5 9	OH CI	
460	OH CI	O F F
461	OH CI	O F F F
462	OH CI	SCF ₃

463	OH	OCF ₃
464	OH	↓ O F F
465	OH CI	
466	OH CI	OCF ₃
467	OH E	F F
468	OH C	
. 469	OH CI	Br
470	CI	SO ₂ Me

	T	T
471	OH CI	Me O OH F ₃ C CF ₃ H CI
472	OH CI	0 F F F
473	OH CI	o CI
474	OH CI	F Br
475	OH	O Me
476	OH C	F ₃ C CF ₃ H CI
477	ÖH CG	CI
478	OH CI	Me Me

	· · · · · · · · · · · · · · · · · · ·	
4 7 9	OH GI	CN
480	OH CI	CN
481	OH GI	OMe
482	OH CI	CO ₂ Et
483	OH CI	SCF ₃
484	<u>2</u> → ±	SCF ₃
4 8 5	OH C	SO ₂ CF ₃
486	OH CI	↓ F
487	OH OH	н

488	OH	Me
489	OH	OMe
490	OH	
491	OH	OMe
492	OH CI	H Me
4 9 3	OH C	SO ₂ NH ₂
494	OH CI	CI CF ₃ CF ₃
495	OH CI	NO ₂
496	OH CI	F

497	OH	F F
498	OH	OH CF ₃ CF ₃
499	OH CI	SMe
5 0 0	OH CI	SO₂Me
5 0 1	OH	Me
502.	OH	S'N Me
503	OH	
504	OH CI	H O Me

		
5 0 5	OH CI	O N O
5.06	OH CI	- Me Me Me
507	OH CI	O Me
508	OH CI	Me
5 0 9	OH CI	SO₂NH₂
510	OH CI	SO ₂ CF ₃
511	OH Ci	OCF ₃
5 1 2	OH CI	O Me Me
513	OH CI	CI

514	CI	O Me
5 1 5	OH CI	OEt F NO ₂
516	OH	Me OH
517	OH	Me
518	OH	F
5 1 9	OH NO ₂	F
5 2 0	ОН	Me
5 2 1	OH	O Me

5 2 2	OH CF ₃	
5 2 3	OH CF ₃	
5 2 4	OH	
5 2 5	OH O=S-NH O F ₃ C	CF ₃
5 2 6	OH	CF ₃
5 2 7	OH	CF ₃
5 2 8	OH F	CF ₃
5 2 9	OH CI	Me Me NH ₂

5 3 0	OH	OCF ₃
5.31	E C	CF ₃
5 3 2	OH CI	CF ₃
5 3 3	OH	CF ₃
5 3 4	OH	N CI
5 3 5	Me OH	CF ₃
5 3 6	Me OH Me Br	CF ₃
5 3 7	OH Me Br	CF ₃

5 3 8	OH CI	CF ₃
539	OH	CF ₃
540	OH Br	CF ₃
541	OH	N CI CI
5 4 2	OH OH	N CF3
5 4 3	OH	CF ₃
544	OH CI	CF ₃

5 4 5	OH OH	CF ₃
5 4 6	OH	F S
5 4 7	CI	CF ₃
5 4 8	OH	CF ₃
5 4 9	OH	OMe
5 5 0	OH CI	CF ₃
5 5 1	OH CI	F F S F
5 5 2	OH Br Br	CF ₃

化合物番号	A O Z	X	E
5 5 3	но		CF ₃
5 5 4	OH	∕~ _N ∕	Me Me
5 5 5	OH CI	N H	Me Me Me

一般式 (I) で表される化合物は、例えば、以下に示した方法によって製造する ことができる。

<方法1>

一般式 (I) において、Xが-CONH-(窒素上の水素原子は置換されていて もよい)で表される化合物は、例えば、反応工程式1に示す方法によって製造す ることができる。

反応工程式1

(式中、A、環 Z 及びE は、一般式(I)における定義と同意義であり、 A^{101} は水素原子又はヒドロキシ基の保護基(好ましくは、メチル基等のアルキル基;ベンジル基等のアラルキル基;アセチル基;メトキシメチル基等のアルコキシアルキル基;トリメチルシリル基等の置換シリル基)を表し、R 及び R^{101} は水素原子、 $C_1 \sim C_6$ のアルキル基等を表し、 E^{101} は、一般式(I)の定義におけるE 又はEの前駆体を表し、G はヒドロキシ基、ハロゲン原子(好ましくは、塩素原子)、炭化水素ーオキシ基(好ましくは、ハロゲン原子で置換されていてもよいアリールーオキシ基)、アシルーオキシ基、イミドーオキシ基等を表す)

(第1工程)

カルボン酸誘導体(1)とアミン(2)とを脱水縮合させることにより、アミド (3) 製造することができる。この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、無溶媒又は非プロトン性溶媒中0 $^{\circ}$ ~180 $^{\circ}$ 0 の反応温度で行われる。

この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、 無溶媒又は非プロトン性溶媒中0℃~180℃の反応温度で行われる。

酸ハロゲン化剤としては、例えば、塩化チオニル、臭化チオニル、塩化スルフリ

WO 03/103647 PCT/JP03/07129 ~

ル、オキシ塩化リン、三塩化リン、五塩化リンなどを挙げることができ、A¹⁰¹が水素原子の場合には三塩化リンが、A¹⁰¹がアセチル基等の場合にはオキシ塩化リンが好ましい。脱水縮合剤としては、例えば、N, N'ージシクロヘキシルカルボジイミド、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩、ジフェニルホスホリルアジドなどを挙げることができる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N, Nージエチルアニリン等の有機塩基が挙げられる。非プロトン性溶媒としてはジクロロメタン、ジクロロエタン、クロロホルム、テトラヒドロフラン、1,4ージオキサン、ベンゼン、トルエン、モノクロロベンゼン、ロージクロロベンゼン、N, Nージメチルホルムアミド、Nーメチルピロリドンなどを挙げることができ、酸ハロゲン化剤の存在下に反応を行う場合には、特に、トルエン、モノクロロベンゼン、ロージクロロベンゼンが好ましい。

また、例えば、「ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry)」,(米国),1998年,第41卷,第16号,p.2939-2945に記載の方法及びこれらに準じた方法により、予めカルボン酸から酸塩化物を製造、単離し、次いで E^{101} を有するアミンと反応させることにより目的とするアミドを製造することもできる。

Gがヒドロキシ基である場合の好適な反応条件として、例えば、「アーキブ・デア・ファルマツィー (Archiv der Pharmazie)」、(ドイツ)、1998年、第331巻、第1号、p.3-6. に記載された反応条件を用いることができる。

カルボン酸誘導体(1)及びアミン(2)の種類は特に限定されず、文献公知の 製造方法を適宜参照しつつ新規に合成するか、あるいは市販の試薬を入手して上 記反応に用いることができる。

(第2工程)

アミド(3)が保護基を有する場合及び/又は官能基修飾に有利な置換基(例えば、アミノ基及びその保護体若しくは前駆体;カルボキシ基及びその保護体若し

くは前駆体;ヒドロキシ基及びその保護体若しくは前駆体など)を有する場合、 この工程で脱保護反応及び/又は官能基修飾反応を行うことにより最終目的物で ある化合物(4)を製造することができる。該反応は、種々の公知の方法を用い ることができ、脱保護反応及び官能基修飾反応としては、例えば、セオドラ・W.・ グリーン (Theodora W. Green), ピーター・G.・M.・ブッツ (Peter G. M. Wuts) 編「プロテクティブ・グループス・イン・オーガニック・シンセシズ (Protective Groups in Organic Syntheses)」、(米国)、第3版、ジョン・ウィリー・アンド・ サンズ・インク (John Wiley & Sons, Inc.), 1999年4月;「ハンドブック・ オブ・リエージェンツ・フォー・オーガニック・シンセシス (Handbook of Reagents for Organic Synthesis)」, (米国), 全4巻, ジョン・ウィリー・アンド・サンズ・ インク (John Wiley & Sons, Inc.), 1999年6月, 等に記載の方法を;官能 基修飾反応としては、例えばリチャード・F.・ヘック (Richard F. Heck) 著「パ ラジウム・リエージェンツ・イン・オーガニック・シンセシス (Palladium Reagents in Organic Syntheses)」, (米国), アカデミック・プレス (Academic Press), 1 985年; 辻二郎 (J. Tsuji) 著「パラジウム・リエージェンツ・アンド・カタリ スツ:イノベーションズ・イン・オーガニック・シンセシス (Palladium Reagents and Catalysts: Innovations in Organic Synthesis)」, (米国), ジョン・ウィリ ー・アンド・サンズ・インク (John Wiley & Sons, Inc.), 1999年, 等に記 載の方法を用いることができる。

上記方法は、Xが他の連結基(例えば、 $-SO_2NH-$ 、-NHCO-、 $-NHSO_2-$ 、 $-CONHCH_2-$ 、 $-CONHCH_2CH_2-$ 、 $-CONHCH_2CONH -CONHNHCH_2 -CONHNHCH_2-$ -COO- $-CONHNHCH_2-$ -COO- -CONHNH- ; 該連結基上の水素原子は置換されていてもよい)である場合においても、原料を適切に組み合わせることによって適用可能である。

一般式(I)において、Xが式: $-CONHCH_2-$ (該基上の水素原子は置換されていてもよい)である場合、アミン(2)のかわりに式: $H_2N-CH_2-E^{101}$ (式中、 E^{101} は上記定義と同義である)で表されるアミンを用いることに

より、目的とする化合物を製造することができる。

- 一般式(I)において、Xが式: $-CONHCH_2CH_2-$ (該基上の水素原子は置換されていてもよい)である場合、Tミン(2)のかわりに式: H_2N-CH_2 CH $_2-E^{101}$ (式中、 $-E^{101}$ は上記定義と同義である)で表されるTミンを用いることにより、目的とする化合物を製造することができる。
- 一般式(I)において、Xが式: $-SO_2NH$ である場合、カルボン酸誘導体 (1)のかわりに式: A^{101} O (環Z) $-SO_2CI$ (式中、 A^{101} 及び環Z は上記定義と同義である)で表されるスルホン酸クロリドを用いることにより、 目的とする化合物を製造することができる。
- 一般式(I)において、Xが式: -NHCO-である場合、式: $A^{101}-O$ -(環 Z) $-NH_2$ (式中、 A^{101} 及び環Zは上記定義と同義である)で表されるアミンと、式: E^{101} -COOH(式中、 $-E^{101}$ は上記定義と同義である)で表されるカルボン酸若しくは式: E^{101} -COCl(式中、 $-E^{101}$ は上記定義と同義である)で表されるカルボン酸クロリドを用いることにより、目的とする化合物を製造することができる。
- 一般式(I)において、Xが式: $-NHSO_2-$ (該連結基は置換基を有していてもよい)である場合、式: HO-(環Z) $-NH_2$ (式中、環Zは上記定義と同義である)で表されるアミンと式: $E^{101}-SO_2CI$ (式中、 E^{101} は上記定義と同義である)で表されるスルホン酸クロリドを用いることにより、目的とする化合物を製造することができる。
- 一般式(I)において、Xが式:-CONHNHCO-である場合、式:HO-(環Z) $-CONHNH<math>_2$ (式中、環Zは上記定義と同義である)で表されるヒドラジドと式: $E^{101}-COCl$ (式中、 $-E^{101}$ は上記定義と同義である)で表されるカルボン酸クロリドを用いることにより、目的とする化合物を製造することができる。
- 一般式(I) において、Xが式:-COO-である場合、アミン(2) のかわりに式: $HO-E^{101}$ (式中、 E^{101} は上記定義と同義である)で表されるフェノー

ル誘導体を用いることにより、目的とする化合物を製造することができる。

一般式(I)において、Xが式:-CONHNH-である場合、Tミン(2)のかわりに式: $H_2N-NH-E^{101}$ (式中、 E^{101} は上記定義と同義である)で表されるヒドラジンを用いることにより、目的とする化合物を製造することができる。一般式(I)において、Xが式: $-CONHCH_2CONH-$ (該連結基は置換基を有していてもよい)である場合、Tミン(2)のかわりに式: $H_2N-CH_2CONH-E^{101}$ (式中、 E^{101} は上記定義と同義である)で表されるTミンを用いることにより、目的とする化合物を製造することができる。

一般式(I)において、Xが下記式:

(該連結基は置換基を有していてもよい) である場合、下記式:

(式中、環 Z は上記定義と同義である)

で表されるアミン式と、式: E^{101} -COOH(式中、 E^{101} は上記定義と同義である)で表されるカルボン酸若しくは式: E^{101} -COCl(式中、 E^{101} は上記定義と同義である)で表されるカルボン酸クロリドを用いることにより、目的とする化合物を製造することができる。

ここで、下記式:

$$\begin{array}{c|c}
OH & S \\
\hline
N & NH_2
\end{array}$$

で表されるアミンは、例えば、反応工程式1-2に示す方法によって製造することができる。

反応工程式1-2

(式中、環 Z は上記定義と同義である)

アセトフェノン (19) をブロモ化することにより、ブロモアセトフェノン (20) を製造することができる。

この反応は、プロモ化剤の存在下、溶媒中、0℃ないし100℃の反応温度で行われる。

ブロモ化剤としては、例えば、フェニルトリメチルアンモニウムトリブロミドを 好適に用いることができる。

反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えば、テトラヒドロフラン等のエーテル系溶媒を用いることができる。

次いでブロモアセトフェノン (20) とチオウレアを反応することによりアミン (21) を製造することができる。

この反応は、溶媒中、0℃ないし120℃の反応温度で行われる。

反応容媒としては、反応を阻害しない容媒であればいかなるものでもよく、例えばエタノール等のアルコール系溶媒を用いることができる。

<方法2>

一般式(I)において、Xが-CH₂NH-で表される化合物は、例えば、反応 工程式2に示す方法によって製造することができる。

反応工程式2

(式中、A、環Z及びEは、一般式(I)における定義と同意義である)

まず、アルデヒド(5)とアミン(6)とを脱水縮合させることにより、式(7)のイミン誘導体を製造することができる。この反応は、脱水剤の存在下又は非存在下において、溶媒中で0℃~100℃の反応温度で行われる。脱水剤としては無水硫酸マグネシウム、モレキュラーシーブなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノール等が好ましい。

上記方法は、Xが他の連結基(例えば、-CONHN=CH-、-CH=NNH CO-、-CHNNH-;該連結基上の水素原子は置換されていてもよい)である場合においても、原料を適切に組み合わせることによって適用可能である。

一般式(I)において、Xが式:-CONHN=CH-である場合、式:HO-(環Z) $-CONHNH_2$ (式中、環Zは上記定義と同義である)で表されるヒドラジドと式:E-CHO(式中、Eは上記定義と同義である)で表されるアルデヒドを用いることにより、目的とする化合物を製造することができる。

一般式(I)において、Xが式:-CH=NNHCO-である場合、式:HO-(環 Z)-CHO(式中、環 Z は上記定義と同義である)で表されるアルデヒド と式:E-CONHNH₂(式中、Eは上記定義と同義である)で表されるヒド ラジドを用いることにより、目的とする化合物を製造することができる。

一般式(I)において、Xが式:-CH=NNH-である場合、式:HO-(環Z)-CHO(式中、環Zは上記定義と同義である)で表されるアルデヒドと式: E-NHNH2(式中、Eは上記定義と同義である)で表されるヒドラジンを用いることにより、目的とする化合物を製造することができる。

<方法3>

一般式(I)において、Xが-CH=CH-(該連結基上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式3-1、又は反応工程式3-2に示す方法によって製造することができる。

反応工程式3-1

(式中、環 Z 及び E は、一般式(I)における定義と同意義であり、 W^{301} は、O, O' ージー炭化水素 - ホスホノ基又はトリアリールホスホニウム基を表す)アルデヒド(9-1)とリン化合物(10-1)とを脱水縮合させることにより、目的化合物である(11)を製造することができる。この反応は、塩基存在下、溶媒中で 0 \mathbb{C} \sim 溶媒沸点の反応温度で行われる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N, N - ジェチルアニリン等の有機塩基が挙げられる。溶媒としては、非反応性の溶媒が挙げられるが、テトラヒドロフラン、1, 4 - ジオキサン、メタ

ノール、エタノール、水等が好ましい。 ・ 反応工程式3-2

(式中、環 Z 及びE は、一般式 (I) における定義と同意義であり、W³⁰²は、 ハロゲン原子 (好ましくは沃素原子、臭素原子)、(トリフルオロメタンスルホニ ル) オキシ基などを表す)

ハロゲン化物(9-2)とスチレン誘導体(10-2)とを遷移金属錯体触媒の存在下、カップリング反応させることにより、目的化合物である(11)を製造することができる。この反応は、遷移金属錯体触媒の存在下、配位子及び/又は塩基の存在又は非存在下、溶媒中で0℃~溶媒沸点の反応温度で行われる。遷移金属錯体触媒としては、例えば、酢酸パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等のパラジウム系触媒が挙げられる。配位子としては、例えば、トリフェニルホスフィン等のホスフィン系配位子が挙げられる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N,Nージエチルアニリン等の有機塩基が挙げられる。溶媒としては、非反応性の溶媒が挙げられるが、N,Nージメチルホルムアミド、テトラヒドロフラン、1,4ージオキサン等が好ましい。

<方法4>

一般式(I)において、Xが-COCH=CH-及び-COCH2CH2CH2-(該連結基上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式4に示す方法によって製造することができる。

反応工程式4

(式中、環Z及びEは、一般式(I)における定義と同意義である)

まず、ケトン(12)とアルデヒド(13)とを脱水縮合させることにより、目的化合物であるエノン(14)を製造することができる。この反応は、塩基の存在下、溶媒中で0 $^{\circ}$ ~溶媒沸点の反応温度で行われる。塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N, N $^{\circ}$ ・ジェチルアニリン等の有機塩基が挙げられる。非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4 $^{\circ}$ ジオキサン、メタノール、エタノール、水等が好ましい。

次いで、エノン(14)を還元することにより目的化合物である(15)を製造することができる。この反応は、還元剤の存在下に溶媒中で0℃~100℃の反応温度で行われる。還元剤としては水素化ホウ素ナトリウム、水素化ホウ素リチウムなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール等が好ましい。またこの反応は、接触水素添加法によっても行われる。触媒としてはパラジウム炭素、白金炭素、水酸化パラジウム、パラジウムブラックなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール、水等が好ましい。反応は0℃~200℃の反応温度、水素圧は常圧又は加圧下で行われる。

<方法5>

一般式(I)において、Xが-NHCONH-(該連結基上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式5に示す方法によって製造することができる。

反応工程式5

(式中、環Z及びEは、一般式(I)における定義と同意義である)

まず、アミン(16)とイソシアネート(17)とを反応させることにより、目的化合物であるウレア(18)を製造することができる。この反応は、塩基の存在又は非存在下、溶媒中で0℃~溶媒沸点の反応温度で行われる。塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N, Nージエチルアニリン等の有機塩基が挙げられる。非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール、水等が好ましい。</

一般式(I)において、Xが式:-CONHNHCH₂-(該連結基は置換基を 有していてもよい)で表される化合物は、例えば、反応工程式6に示す方法によ って製造することができる。

反応工程式6

(式中、環Z及びEは上記定義と同義であり、Vはハロゲン原子等の脱離基を表す)

ヒドラジド (22) とベンジル誘導体 (23) を反応させることにより、目的と するヒドラジド (24) を製造することができる。

この反応は、塩基の存在又は非存在下、溶媒中、0℃ないし180℃の反応温度で行われる。

塩基としては、例えば、ピリジン、トリエチルアミン等の有機塩基を好適に用い

ることができる。

反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えば、ジクロロメタン等のハロゲン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン等の炭化水素系溶媒を用いることができる。

<方法7>

一般式(I)において、Xが式:

で表される化合物は、例えば、反応工程式7に示す方法によって製造することができる。

反応工程式7

(式中、環 2 及び E は上記定義と同義である)

アルデヒド (9-1) と3-ベンジルチアゾリジン-2, 4-ジオン誘導体 (25) を反応させることにより、目的とする5-(ベンジリデン)-3-ベンジルチアゾリジン-2, 4-ジオン誘導体 (26) を製造することができる。この反応は、触媒の存在下、溶媒中、0℃ないし180℃の反応温度で行われる。触媒としては、例えば、ピペリジン/酢酸の混合物を好適に用いることができる。反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えば、トルエン等の炭化水素系溶媒を用いることができる。ここで、下記式:

(式中、Eは上記定義と同義である)

で表される3-ベンジルチアゾリジン-2, 4-ジオン誘導体は、例えば、反応 工程式7-1に示す方法によって製造することができる。

反応工程式7-1

(式中、E及びVは上記定義と同義である)

チアゾリジン-2, 4-ジオン(30)とベンジル誘導体(23)を反応させることにより、目的とする3-ベンジルチアゾリジン-2, 4-ジオン誘導体(28)を製造することができる。

この反応は、塩基の存在下、溶媒中、0℃ないし180℃の反応温度で行われる。 塩基としては、例えば、水酸化ナトリウム、炭酸カリウム等の無機塩基;ピリジン、トリエチルアミン等の有機塩基を好適に用いることができる。

反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えば、水;エタノール等のアルコール系溶媒;ジクロロメタン等のハロゲン系溶媒;テトラヒドロフラン等のエーテル系溶媒;N,Nージメチルホルムアミド等のアミド系溶媒を用いることができる。

以上のような方法で製造された一般式(I)で表される化合物は、当業者に周知の方法、例えば、抽出、沈殿、分画クロマトグラフィー、分別結晶化、懸濁洗浄、 再結晶などにより、単離、精製することができる。また、本発明化合物の薬理学 的に許容される塩、並びにそれらの水和物及び溶媒和物も、それぞれ当業者に周 知の方法で製造することができる。

本明細書の実施例には、一般式(I)に包含される代表的化合物の製造方法が具体的に説明されている。従って、当業者は、上記の一般的な製造方法の説明及び実施例の具体的製造方法の説明を参照しつつ、適宜の反応原料、反応試薬、反応条件を選択し、必要に応じてこれらの方法に適宜の修飾ないし改変を加えることによって、一般式(I)に包含される化合物をいずれも製造可能である。

一般式(I)で示される化合物はAP-1及びNFATの活性化を阻害する作用を有しており、その作用に基づいて、炎症性サイトカイン産生遊離抑制作用を発揮できる。従って、本発明の医薬は、AP-1及びNFATの活性化を阻害する作用に基づいて、腫瘍壊死因子(TNF)、インターロイキンー1、インターロイキンー2、インターロイキンー6、インターロイキンー8、顆粒球コロニー刺激因子、インターフェロンβ、細胞接着因子であるICAM-1やVCAM-1及びELAM-1、ニトリックオキシド合成酵素、主要組織適合抗原系クラスI、主要組織適合抗原系クラスII、β2-マイクログロブリン、免疫グロブリン軽鎖、血清アミロイドA、アンジオテンシノーゲン、補体B、補体C4、c-myc、HIVの遺伝子由来の転写産物、HTLV-1の遺伝子由来の転写産物、シミアンウイルス40の遺伝子由来の転写産物、サイトメガロウイルスの遺伝子由来の転写産物、及びアデノウイルスの遺伝子由来の転写産物からなる群より選ばれる1又は2以上の物質の遺伝子の発現を抑制できる。また、上記の医薬は、AP-1及びNFAT活性化に起因する疾患の予防及び/又は治療のための医薬として有用である。

より具体的には、本発明の医薬は、次に示すようなAP-1及び/又はNFAT の活性化、及びそれに起因する炎症性サイトカイン遊離が関与していると考えられる疾患、例えば慢性関節リウマチ、変形性関節症、全身性エリテマトーデス、全身性強皮症、多発性筋炎、シェーグレン症候群、血管炎症候群、抗リン脂質抗体症候群、スティル病、ベーチェット病、結節性動脈周囲炎、潰瘍性大腸炎、クローン病、活動性慢性肝炎、糸球体腎炎などの自己免疫疾患、慢性腎炎、慢性膵

炎、痛風、アテローム硬化症、多発性硬化症、動脈硬化、血管内膜肥厚、乾癬、 乾癬性関節炎、接触性皮膚炎、アトピー性皮膚炎、掻痒、花粉症等のアレルギー 疾患、喘息、気管支炎、間質性肺炎、肉芽腫を伴う肺疾患、慢性閉塞性肺疾患、 慢性肺血栓塞栓症、炎症性大腸炎、インスリン抵抗性、肥満症、糖尿病とそれに 伴う合併症(腎症、網膜症、神経症、高インスリン血症、動脈硬化、高血圧、末 梢血管閉塞等)、高脂血症、網膜症等の異常血管増殖を伴った疾患、肺炎、アル ツハイマー症、脳脊髄炎、てんかん、急性肝炎、慢性肝炎、薬物中毒性肝障害、 アルコール性肝炎、ウイルス性肝炎、黄疸、肝硬変、肝不全、心房粘液腫、キャ ッスルマン症候群、メサンギウム増殖性腎炎、腎臓癌、肺癌、肝癌、乳癌、子宮 癌、膵癌、その他の固形癌、肉腫、骨肉腫、癌の転移浸潤、炎症性病巣の癌化、 癌性悪液質、癌の転移、急性骨髄芽球性白血病等の白血病、多発性骨髄腫、レン ネルトリンパ腫、悪性リンパ腫、癌の抗癌剤耐性化、ウイルス性肝炎および肝硬 変等の病巣の癌化、大腸ポリープからの癌化、脳腫瘍、神経腫瘍、サルコイドー シス、エンドトキシンショック、敗血症、サイトメガロウイルス性肺炎、サイト メガロウイルス性網膜症、アデノウイルス性感冒、アデノウイルス性プール熱、 アデノウイルス性眼炎、結膜炎、エイズ、ぶどう膜炎、歯周病、その他バクテリ ア・ウイルス・真菌等感染によって惹起される疾患または合併症、全身炎症症候 群等の外科手術後の合併症、経皮的経管的冠状動脈形成術後の再狭窄、虚血再灌 流障害等の血管閉塞開通後の再灌流障害、心臓または肝臓または腎臓等の臓器移 植後拒絶反応及び再灌流障害、掻痒、脱毛症、食欲不振、倦怠感、慢性疲労症候 群などの疾患の予防及び/又は治療に有用である。また、炎症性サイトカインが 破骨細胞の分化と活性化に関与していることから、本発明の医薬は、骨粗鬆症、 骨癌性疼痛等の代謝性骨疾患などの予防及び/又は治療にも有用である。移植前 臓器保存時の臓器の劣化を防ぐ用途にも利用可能である。

本発明の医薬の有効成分としては、一般式(I)で表される化合物及び薬理学的 に許容されるそれらの塩、並びにそれらの水和物及びそれらの溶媒和物からなる 群から選ばれる物質の1種又は2種以上を用いることができる。本発明の医薬と しては上記の物質自体を用いてもよいが、好適には、本発明の医薬は有効成分である上記の物質と1又は2以上の薬学的に許容される製剤用添加物とを含む医薬組成物の形態で提供される。上記医薬組成物において、製剤用添加物に対する有効成分の割合は、1重量%から90重量%程度である。

本発明の医薬は、例えば、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、 シロップ剤、乳剤、懸濁剤、又は液剤などの経口投与用の医薬組成物として投与 してもよいし、静脈内投与、筋肉内投与、若しくは皮下投与用の注射剤、点滴剤、 坐剤、経皮吸収剤、経粘膜吸収剤、点鼻剤、点耳剤、点眼剤、吸入剤などの非経 口投与用の医薬組成物として投与することもできる。粉末の形態の医薬組成物と して調製された製剤を用時に溶解して注射剤又は点滴剤として使用してもよい。 医薬用組成物の製造には、固体又は液体の製剤用添加物を用いることができる。 製剤用添加物は有機又は無機のいずれであってもよい。すなわち、経口用固形製 剤を製造する場合は、主薬に賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢 剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、被覆錠剤、顆粒剤、 散剤、カプセル剤などの形態の製剤を調製することができる。用いられる賦形剤 としては、例えば、乳糖、蔗糖、白糖、ブドウ糖、コーンスターチ、デンプン、 タルク、ソルビット、結晶セルロース、デキストリン、カオリン、炭酸カルシウ ム、二酸化ケイ素などを挙げることができる。結合剤としては、例えば、ポリビ ニルアルコール、ポリビニルエーテル、エチルセルロース、メチルセルロース、 アラビアゴム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルセルロ ース、ヒドロキシプロピルメチルセルロース、クエン酸カルシウム、デキストリ ン、ペクチンなどを挙げることができる。滑沢剤としては、例えば、ステアリン 酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化直物油などを 挙げることができる。着色剤としては、通常医薬品に添加することが許可されて いるものであればいずれも使用することができる。矯味矯臭剤としては、ココア 末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末などを使用することができる。 これらの錠剤、顆粒剤には、糖衣、ゼラチン衣、その他必要により適宜コーティ

ングを付することができる。また、必要に応じて、防腐剤、抗酸化剤等を添加することができる。

経口投与のための液体製剤、例えば、乳剤、シロップ剤、懸濁剤、液剤の製造には、一般的に用いられる不活性な希釈剤、例えば水又は植物油を用いることができる。この製剤には、不活性な希釈剤以外に、補助剤、例えば湿潤剤、懸濁補助剤、甘味剤、芳香剤、着色剤又は保存剤を配合することができる。液体製剤を調製した後、ゼラチンのような吸収されうる物質のカプセル中に充填してもよい。非経口投与用の製剤、例えば注射剤又は坐剤等の製造に用いられる溶剤又は懸濁剤としては、例えば、水、プロピレングリコール、ポリエチレングリコール、ベンジルアルコール、オレイン酸エチル、レシチンを挙げることができる。坐剤の製造に用いられる基剤としては、例えば、カカオ脂、乳化カカオ脂、ラウリン脂、ウィテップゾールを挙げることができる。製剤の調製方法は特に限定されず、当業界で汎用されている方法はいずれも利用可能である。

注射剤の形態にする場合には、担体として、例えば、水、エチルアルコール、マクロゴール、プロピレングリコール、クエン酸、酢酸、リン酸、乳酸、乳酸ナトリウム、硫酸及び水酸化ナトリウム等の希釈剤;クエン酸ナトリウム、酢酸ナトリウム及びリン酸ナトリウム等のpH 調整剤及び緩衝剤;ピロ亜硫酸ナトリウム、エチレンジアミン四酢酸、チオグリコール酸及びチオ乳酸等の安定化剤等が使用できる。なお、この場合、等張性の溶液を調製するために十分な量の食塩、ブドウ糖、マンニトール又はグリセリンを製剤中に配合してもよく、通常の溶解補助剤、無痛化剤又は局所麻酔剤等を使用することもできる。

軟膏剤、例えば、ペースト、クリーム及びゲルの形態にする場合には、通常使用される基剤、安定剤、湿潤剤及び保存剤等を必要に応じて配合することができ、常法により成分を混合して製剤化することができる。基剤としては、例えば、白色ワセリン、ポリエチレン、パラフィン、グリセリン、セルロース誘導体、ポリエチレングリコール、シリコン及びベントナイト等を使用することができる。保存剤としては、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安

息香酸プロピル等を使用することができる。貼付剤の形態にする場合には、通常の支持体に上記軟膏、クリーム、ゲル又はペースト等を常法により塗布することができる。支持体としては、綿、スフ及び化学繊維からなる織布又は不織布;軟質塩化ビニル、ポリエチレン及びポリウレタン等のフィルム又は発泡体シートを好適に使用できる。

本発明の医薬の投与量は特に限定されないが、経口投与の場合には、成人一日あたり有効成分である上記物質の重量として通常0.01~5,000mgである。この投与量を患者の年令、病態、症状に応じて適宜増減することが好ましい。前記一日量は一日に一回、又は適当な間隔をおいて一日に2~3回に分けて投与してもよいし、数日おきに間歇投与してもよい。注射剤として用いる場合には、成人一日あたり有効成分である上記物質の重量として0.001~100mg程度である。

実施例

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の 実施例に限定されることはない。実施例中、化合物番号は上記の表において示し た化合物の番号と対応させてある。また、本実施例中には、市販の試薬を購入し そのまま試験に供した化合物が含まれる。そのような化合物については、試薬の 販売元及びカタログに記載されているコード番号を示す。

例1:化合物番号1の化合物の製造

アルゴン雰囲気下、5ーブロモサリチル酸(217mg, 1mmol)、3, 5ービス (トリフルオロメチル)ベンジルアミン(243mg, 1mmol)、4ージメチルアミノピリジン(12mg, 0.1mmol)、テトラヒドロフラン(10ml)の混合物に1ー(3ージメチルアミノプロピル)ー3ーエチルカルボジイミド塩酸塩(以下、WSC・HClと略す;192mg, 1mmol)を加え、室温で1時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去

して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色固体(244.8mg, 55.4%)を得た。

¹H-NMR (DMSO-d₆): δ 4. 69 (2H, d, J=5.7Hz), 6. 93 (1H, d, J=8.7Hz), 7. 56 (1H, dd, J=8.7, 2.4 Hz), 8. 02 (1H, d, J=2.4Hz), 8. 06 (3H, s), 9. 41 (1H, t, J=5.7Hz), 12. 13 (1H, s).

例2:化合物番号2の化合物の製造

(1) 2-アセトキシーN-(2-フェネチル) ベンズアミド

Oーアセチルサリチル酸クロリド (0.20g, 1.00mmol) をベンゼン (8 mL) に溶かし、フェネチルアミン (0.12g, 1.00mmol)、ピリジン (0.3 mL) を加え、室温で2時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (n ーヘキサン:酢酸エチル= $2:1\rightarrow1:1$) で精製して標題化合物の白色結晶 (1 55.5 mg, 54.9%) を得た。

¹H-NMR (CDCl₃): δ 2. 09 (3H, s), 2. 92 (2H, t, J = 6.8Hz), 3. 71 (2H, q, J=6.8Hz), 6. 32 (1H, br s), 7. 07 (1H, dd, J=8.4, 1.2Hz), 7. 23-7. 35 (6H, m), 7. 44 (1H, ddd, J=8.0, 7.6, 1.6Hz), 7. 7 3 (1H, dd, J=7.6, 1.6Hz).

以下の実施例において例 2(1)の製造法が引用されている場合、塩基としては、 ピリジン、トリエチルアミン等の有機塩基を用いた。また、反応溶媒としては、 ジクロロメタン、テトラヒドロフラン、ベンゼン等の溶媒を単独若しくは混合し て用いた。

(2) 2-Eドロキシ-N-(2-7ェネチル) ベンズアミド 2-7セトキシ-N-(2-7ェネチル) ベンズアミド (155.5 mg) にメ

タノール (5 m L)、2 規定水酸化ナトリウム (0.1 m L) を加え、室温で30分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣を結晶化 (ジクロロメタン/ヘキサン) して標題化合物の白色固体 (106.9 mg,80.7%) を得た。

¹H-NMR (DMSO-d₆): δ 2. 86 (2H, t, J=7.6Hz), 3. 52 (1H, q, J=7.6Hz), 6. 84-6. 88 (2H, m), 7. 18 -7. 31 (5H, m), 7. 37 (1H, ddd, J=8.4, 7.2, 1.6 Hz), 7. 80 (1H, dd, J=8.4, 1.6Hz), 8. 84 (1H, s), 12. 51 (1H, s).

以下の実施例において例2(2)の方法が引用されている場合、塩基としては、 水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒として は、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは 混合して用いた。

(3) 5 - プロモー 2 - ヒドロキシー N - (2 - フェネチル) ベンズアミド (化 合物番号 2)

2-ヒドロキシ-N-(2-フェネチル)ベンズアミド(79.6mg, 0.3mmol)に四塩化炭素(5mL)、鉄粉(0.03g)、臭素(25μ 1, 0.48mmol)を加え、室温で1時間攪拌した。反応混合物を亜硫酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して標題化合物の白色粉末(62mg, 58.7%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 85 (2H, t, J=7.6Hz), 3. 52 (1H, q, J=7.6Hz), 6. 87 (1H, d, J=8.8Hz), 7. 18-7. 31 (5H, m), 7. 52 (1H, dd, J=8.8, 2.4Hz), 8. 01 (1H, d, J=2.4Hz), 8. 90 (1H, s), 12. 51 (1

H, s).

例3:化合物番号3の化合物の製造

5ーブロモサリチル酸 (109mg, 0.5mmol)、2ーアミノー5ー(モルホリノ)カルボニルインダン (141mg, 0.5mmol)、トリエチルアミン (70μL, 0.5mmol) のジクロロメタン (5mL) 溶液に、WSC・H C1(96mg, 0.5mmol) を添加し、40℃で1.5時間加熱攪拌した。 冷却後、酢酸エチルで希釈し、2規定塩酸、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=19:1) で精製し、標題化合物の白色結晶 (26mg, 11.9%) を得た。

¹H-NMR (CDCl₃): δ 2. 66 (1H, dd, J=16. 2, 7. 2 Hz), 2. 82 (1H, dd, J=16. 2, 7. 2Hz), 3. 16-3. 2 5 (2H, m), 3. 43-3. 86 (8H, m), 4. 79-4. 92 (1H, m), 6. 88 (1H, d, J=8. 7Hz), 7. 14-7. 15 (3H, m), 7. 46 (1H, dd, J=8. 7, 2. 4Hz), 7. 74 (1H, d, J=7. 8Hz), 7. 84 (1H, d, J=2. 4Hz).

[2-アミノー5-(モルホリノ)カルボニルインダン:「ケミカル・アンド・ファーマシューティカル・ビュレティン (Chemical and Pharmaceutical Bulletin)」, 2000年,第48巻, p. 131参照]

例4:化合物番号4の化合物

本化合物は、市販化合物である。

販売元:Apin Chemicals社

カタログコード番号: N 0100D

例5:化合物番号5の化合物

本化合物は、市販化合物である。

販売元:Specs社

カタログコード番号:AI-233/31581024

例6:化合物番号6の化合物

本化合物は、市販化合物である。

販売元:Maybridge社

カタログコード番号: RJC 00106

例7:化合物番号7の化合物

本化合物は、市販化合物である。

販売元: Maybridge社

カタログコード番号: BTB 13230

例8:化合物番号8の化合物

本化合物は、市販化合物である。

販売元:Maybridge社

カタログコード番号: BTB 114482

例9:化合物番号9の化合物の製造

5ークロロサリチルアルデヒド (313mg, 2mmol)、4ークロロベンジルトリフェニルフォスフォニウムクロリド (847mg, 2mmol)をN, Nージメチルホルムアミド (20mL)に溶解し、炭酸カリウム (1.382g, 10mol)を水 (10mL)に溶かして加え、5時間加熱還流した。冷却後、反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (nーヘキサン:酢酸エチル=3:1)で精製して標題化合物の灰白色固体 (44.6mg, 8.4%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 5. 04 (1H, s), 6. 74 (1H, d, J = 9. 0Hz), 7. 05 (1H, d, J=16. 5Hz), 7. 10 (1H, d d, J=8. 4, 2. 4Hz), 7. 26 (1H, d, J=16. 5Hz), 7. 33 (2H, d, J=8. 4Hz), 7. 45 (2H, d, J=8. 4Hz), 7. 49 (1H, d, J=2. 4Hz).

例10:化合物番号10の化合物の製造

(1) 5-プロモーN- (3, 5-ジクロロフェニル) -2-メトキシベンゼン スルホンアミド

5ーブロモー2ーメトキシベンゼンスルホニルクロリド(857mg, 3mmo 1)をジクロルメタン(6mL)に溶解し、氷冷、アルゴン雰囲気下に3, 5ージクロロアニリン(510mg, 3.15mmol)、ピリジン(261mg, 3.3mmol)のジクロルメタン(2mL)を滴下、次いで室温で6時間攪拌した。反応混合物をジクロルメタンで希釈し2規定塩酸,水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をnーヘキサンー酢酸エチル晶析して、標題化合物の白色結晶(900mg, 73.0%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 03 (3H, s), 6. 92 (1H, d, J=9. 0Hz), 7. 01 (2H, d, J=1. 8Hz), 7. 07-7. 08 (1H, m), 7. 24 (1H, brs), 7. 63 (1H, dd, J=8. 7, 2. 4Hz), 7. 99 (1H, d, J=2. 4Hz).

(2) 5-ブロモーN-(3, 5-ジクロロフェニル)-2-ヒドロキシベンゼンスルホンアミド(化合物番号10)

5ーブロモーNー(3,5ージクロロフェニル)ー2ーメトキシベンゼンスルホンアミドの白色結晶(206mg,0.5mmol)、沃化リチウム(134mg,1mmol)、2,4,6ーコリジン(5mL)の混合物をアルゴン雰囲気下に30分間加熱還流した。反応混合物を室温まで冷却した後、2規定塩酸にあけて酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し,無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をnーへキサンー酢酸エチルで晶析して標題化合物の白色結晶(90mg,45.3%)を得た。

mp 158-159°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 6. 92 (1H, d, J=8.7Hz), 7. 11 (2H, d, J=2.1Hz), 7. 21-7. 22 (1H, m), 7. 62

(1 H, d d, J = 8.7, 2.7 Hz), 7.80 (1 H, d, J = 2.4 Hz),10.70 (1 H, b r), 11.37 (1 H, b r).

例11:化合物番号11の化合物の製造

2ーアミノフェノール(120mg, 1.1mmol)をジクロロメタン(5mL)に溶解し、氷冷、アルゴン雰囲気下に3,5ービス(トリフルオロメチル)ベンゾイルクロリド(300mg, 1.1mmol)のジクロルメタン(3mL)溶液、ピリジン(0.5mL)を滴下し、次いで室温で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をエタノール(5mL)に溶解し、2規定水酸化ナトリウム(0.1mL, 0.2mmol)を滴下し、次いで室温で30分攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(nーへキサン:酢酸エチル=4:1)で精製し、標題化合物の淡桃色結晶(288mg,73.6%)を得た。

mp 183℃ (dec.).

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 83 (1H, td, J=8. 0, 1. 2Hz), 6. 93 (1H, dd, J=8. 0, 1. 2Hz), 7. 08 (1H, td, J=8. 0, 1. 6Hz), 7. 50 (1H, d, J=8. 0Hz), 8. 35 (2H, s), 9. 61 (1H, s), 10. 15 (1H, s).

例12:化合物番号12の化合物の製造

2ーアミノー4ークロロフェノール(316mg, 2.2mmol)、トリエチルアミン(243mg, 2.4mmol)をジクロルメタン(8mL)に溶解し、 氷冷、アルゴン雰囲気下に3,5ージクロロベンゾイルクロリド(419mg, 2mmol)のジクロルメタン(2mL)溶液を滴下し、次いで室温で15時間 攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄し、無 水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカ

mp 251-252°C.

¹H-NMR (DMSO-d₆): δ 6. 93 (1H, d, J=9.0Hz), 7. 11 (1H, dd, J=8.7, 2.7Hz), 7. 67 (2H, d, J=2.7 Hz), 7. 86-7. 87 (1H, m), 7. 97 (1H, d, J=1.8Hz), 9. 85 (1H, s), 10. 03 (1H, s).

例13:化合物番号13の化合物の製造

 $2-アミノ-4-クロロフェノール (287 mg, 2 mm o 1)、3, 5-ジクロロベンゼンスルホニルクロリド (540 mg, 2.2 mm o 1)をジクロルメタン (4 mL)に溶解し、氷冷、アルゴン雰囲気下にピリジン (1 mL)を滴下し、次いで室温で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー <math>(n- \wedge + + + \nu)$ ・酢酸エチル= $3:1 \rightarrow 1:1$)で精製し、赤褐色固体を得た。これを $n- \wedge + + \nu$ 一酢酸エチル晶析して標題化合物の微褐色結晶 (445 mg, 63.1%)を得た。

mp 190-191°C.

¹H-NMR (DMSO-d₆): δ 6. 68 (1H, d, J=9. 0Hz), 7. 08 (1H, dd, J=8. 7, 2. 7Hz), 7. 17 (1H, d, J=2. 4Hz), 7. 70 (2H, d, J=1. 8Hz), 7. 95-7. 96 (1H, m), 10. 00 (1H, s), 10. 06 (1H, s).

例14:化合物番号14の化合物の製造

(1) 4ープロモー 2ー [(3, 5ージクロロフェニルイミノ) メチル] フェノール

5ーブロモサリチルアルデヒド (1.01g, 5mmol), 3, 5ージクロロア

ニリン(810mg, 5mmol)、エタノール(25mL)の混合物をアルゴン雰囲気下に1時間加熱還流した。反応混合物を室温まで冷却後、析出した結晶を濾取して、標題化合物の橙色結晶(1.52g, 88.2%)を得た。

mp 161-163℃.

¹H-NMR (CDCl₃): δ 6. 94 (1H, d, J=9.0Hz), 7. 16 (2H, d, J=1.8Hz), 7. 30-7. 31 (1H, m), 7. 47-7. 53 (2H, m), 8. 51 (1H, s).

(2) N- [(5-ブロモ-2-ヒドロキシフェニル) メチル] - 3, 5-ジクロロアニリン (化合物番号14)

4ーブロモー2ー[(3,5ージクロロフェニルイミノ)メチル]フェノール(1.04g,3mmol)をテトラヒドロフラン(12mL)及びエタノール(6mL)に溶解し、氷冷、アルゴン雰囲気下に水素化ホウ素ナトリウム(113mg,3mmol)を添加し、次いで室温で12時間攪拌した。反応混合物にアセトン(10mL)を添加し、減圧下に濃縮して得られた残渣に水を加えてジクロルメタンで抽出した。ジクロルメタン層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=4:1)で精製し、淡黄色粘稠性物質を得た。これをnーヘキサンで結晶化して標題化合物の白色結晶(971mg,93.3%)を得た。

mp 125-126°C.

¹H-NMR (CDCl₃): δ 4. 31 (2H, s), 6. 64 (2H, d, J=1.8Hz), 6. 74-6. 77 (1H, m), 6. 84-6. 85 (1H, m), 7. 30-7. 34 (2H, m).

例15:化合物番号15の化合物

本化合物は、市販化合物である。

販売元:SigmaーAldrich社

カタログコード番号:S3203-5

例16:化合物番号16の化合物の製造

5-クロロサリチル酸(173 mg, 1 mmo1)、3, 5-ビス(トリフルオロメチル)-N-メチルアニリン(243 mg, 1 mmo1)、三塩化リン($44 \mu 1$, 0.5 mmo1)、モノクロロベンゼン(5 mL)の混合物をアルゴン雰囲気下に3時間加熱還流した。反応混合物を室温まで冷却した後、n-ヘキサン(50 mL)を添加し、析出した粗結晶を濾取して酢酸エチル(50 mL)に溶解した。酢酸エチル溶液を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製し、標題化合物の白色結晶(75 mg, 18.9%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 3. 57 (3H, s), 6. 59 (1H, d, J = 2. 4Hz), 6. 94 (1H, d, J=9. 0Hz), 7. 21 (1H, dd, J=9. 0, 2. 7Hz), 7. 58 (2H, s), 7. 80 (1H, s), 10. 00 (1H, brs).

以下の実施例において例16の方法が引用されている場合、酸ハロゲン化剤としては、三塩化リンを用いた。また、反応溶媒としては、モノクロロベンゼン、トルエン等の溶媒を用いた。

例17:化合物番号17の化合物の製造

原料として、5 ーブロモサリチル酸、及び7 ートリフルオロメチルー1,2,3,4 ーテトラヒドロキノリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:42.0%

¹H-NMR (CDCl₃): δ 2. 08 (2H, m), 2. 92 (2H, t, J = 6. 6Hz), 3. 95 (2H, t, J=6. 6Hz), 6. 91-6. 94 (2H, m), 7. 14 (1H, s), 7. 32-7. 35 (2H, m), 7. 40 (1H, dd, J=8. 7, 2. 4Hz), 10. 06 (1H, s).

例18:化合物番号18の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:51.2%

mp 246-248°C.

¹H-NMR (DMSO-d₆): δ 7. 26 (1H, d, J=9.3Hz), 7. 31-7. 37 (2H, m), 7. 44-7. 50 (1H, m), 7. 65-7. 68 (1H, m), 7. 85-7. 90 (4H, m), 10. 23 (1H, s), 10. 74 (1H, s).

例19:化合物番号19の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.3%

mp 254-255°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 34-7. 39 (3H, m), 7. 49 -7. 54 (1H, m), 7. 76-7. 79 (1H, m), 7. 89 (2H, d, J=1. 8Hz), 7. 92 (1H, m), 8. 39 (1H, s), 10. 75 (1H, s), 11. 01 (1H, s).

例20:化合物番号20の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S01361-8

例21:化合物番号21の化合物の製造

原料として、1-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.5%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7.51 (1H, d, J=9.0Hz), 7.

60 (1H, td, J=7. 8, 0. 9Hz), 7. 70 (1H, td, J=7. 8, 0. 9Hz), 7. 89 (1H, s), 7. 93 (1H, d, J=8. 4Hz), 8. 09 (1H, d, J=9. 0Hz), 8. 33 (1H, d, J=8. 7Hz), 8. 51 (2H, s), 10. 92 (1H, s), 13. 36 (1H, s).

例22:化合物番号22の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S58026-0

例23:化合物番号23の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S63263-5

例24:化合物番号24の化合物の製造

5-クロロ-2-ヒドロキシニコチン酸(174mg, 1mmol)、3, 5-ビス(トリフルオロメチル)アニリン(275mg, 1.2mmol),ピリジン(316mg, 4mmol)をテトラヒドロフラン(20mL)及びジクロルメタン(10mL)に溶解し,オキシ塩化リン(0.112ml, 1.2mmol)を添加し,次いで室温で2時間攪拌した。反応混合物を酢酸エチル(100mL)を添加し,次いで室温で2時間攪拌した。反応混合物を酢酸エチル(100mL)及び0.2規定塩酸(100mL)にあけ,30分間攪拌したあとにセライトろ過紙、濾液の水層を酢酸エチルで抽出した。合わせた酢酸エチル層を水、飽和食塩水で順次洗浄し,無水硫酸マグネシウムで乾燥した後溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(<math>n-ヘキサン:酢酸エチル=2:1 \rightarrow 1:1)で精製し、淡黄色固体を得た。これをエタノールで加熱還流下に懸濁洗浄して標題化合物の白色結晶(183mg, 47.6%)を得た。

融点:>270℃

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 83 (1H, s), 8. 15 (1H, d, J=3. 3Hz), 8. 36 (1H, d, J=3. 0Hz), 8. 40 (2H, s),

12. 43 (1H, s).

以下の実施例において例24の製造法が引用されている場合、酸ハロゲン化剤としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例25:化合物番号25の化合物の製造

原料として、5-クロロ-2-ヒドロキシニコチン酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例24と同様の操作を行い、標題化合物を得た。

収率:42.9%

¹H-NMR (DMSO-d₆): δ 7. 52 (1H, dd, J=8. 4, 2. 1Hz), 7. 81 (1H, d, J=8. 4Hz), 8. 16 (1H, s), 8. 3 9 (1H, d, J=2. 7Hz), 8. 96 (1H, d, J=2. 1Hz), 12. 76 (1H, s), 13. 23 (1H, s).

例26:化合物番号26の化合物の製造

原料として、5-クロロ-2-ヒドロキシニコチン酸、及び3, 5-ビス [(1, 1-ジメチル) エチル] アニリンを用いて例 24 と同様の操作を行い、標題化合物を得た。

収率:59.1%

¹H-NMR (DMSO-d₆): δ 1. 29 (18H, s), 7. 18 (1H, t, J=1.8Hz), 7. 52 (2H. d, J=1.8Hz), 8. 07 (1H, d, J=2.4Hz), 8. 35 (1H, d, J=3.3Hz), 11. 92 (1H, s), 13. 10 (1H, s).

例27:化合物番号27の化合物の製造

原料として、3-ヒドロキシピリジン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例24と同様にして、標題化合物を得た。 収率:45.0%

¹H-NMR (CDCl₃): δ 7. 40 (1H, dd, J=8. 4, 1. 8H z), 7. 46 (1H, dd, J=8. 4, 4. 2Hz), 7. 68 (1H, s), 8. 16 (1H, dd, J=4. 2, 1. 2Hz), 8. 25 (2H, s), 10. 24 (1H, s), 11. 42 (1H, s).

例28:化合物番号28の化合物の製造

アルゴン雰囲気下、3,5-ビス(トリフルオロメチル)フェニルイソシアネート(255mg,1.0mmol)をテトラヒドロフラン(5mL)に溶解し、6-クロローオキシインドール(184mg,1.1mmol)のテトラヒドロフラン(5ml)溶液、トリエチルアミン(0.3mL)を加え、室温で4時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して標題化合物の桃色固体(172.2mg,40.7%)を得た。

¹H-NMR (DMSO-d₆): δ 3. 97 (2H, s), 7. 29 (1H, d d, J=8. 1, 2. 1Hz), 7. 41 (1H, d, J=8. 1Hz), 7. 8 (1H, s), 8. 04 (1H, d, J=2. 1Hz), 8. 38 (2H, s), 10. 93 (1H, s).

例29:化合物番号29の化合物の製造

原料として、3ーヒドロキシキノキサリン-2-カルボン酸、及び3,5-ビス (トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 2. 7%

¹H-NMR (DMSO- d_6): δ 7. 40-7. 45 (2H, m), 7. 69 (1H, td, J=8. 4, 1. 5Hz), 7. 90-7. 93 (2H, m), 8. 41 (2H, s), 11. 64 (1H, s), 13. 02 (1H, s).

例30:化合物番号30の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S83846-2

例31:化合物番号31の化合物

本化合物は、市販化合物である。

販売元: Maybridge社

カタログコード番号: RDR 01818

例32:化合物番号32の化合物の製造

原料として、5-クロロサリチル酸、及び1-ナフチルアミンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:65.0%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=8.7Hz), 7. 51-7. 61 (4H, m), 7. 85 (1H, d, J=8.4Hz), 7. 96 (1H, d, J=7.5Hz), 7. 99-8. 05 (2H, m), 8. 13 (1H, d, J=2.7Hz), 10. 88 (1H, s), 12. 31 (1H, s).

例33:化合物番号33の化合物の製造

原料として、5-クロロサリチル酸、及び4-メトキシー2-ナフチルアミンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:84.3%

¹H-NMR (DMSO-d₆): δ 3. 99 (3H, s), 7. 05 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=1. 5Hz), 7. 39-7. 45 (1H, m), 7. 48-7. 54 (2H, m), 7. 83 (1H, d, J=7. 8Hz), 8. 00 (1H, s), 8. 02 (1H, d, J=2. 4Hz), 8. 0 (1H, d, J=7. 8Hz), 10. 54 (1H, s), 11. 88 (1H, s).

例34:化合物番号34の化合物の製造

(1) 2-アセトキシ-5-クロロ安息香酸

5-クロロサリチル酸 (13.35g,77mmol)、無水酢酸 (20mL) の

混合物に濃硫酸(0.08mL)をゆっくり滴下した。反応混合物が固化した後、 氷水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をnーヘキサンで懸 濁洗浄して、標題化合物の白色結晶(15.44g,93.0%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 25 (3H, s), 7. 27 (1H, d, J=8. 7Hz), 7. 72 (1H, dd, J=8. 7, 2. 7Hz), 7. 89 (1H, d, J=2. 7Hz), 13. 47 (1H, s).

(2) 2-アセトキシー5-クロローN-(1-メトキシナフタレン-3-イル) ベンズアミド (化合物番号34)

原料として、2-アセトキシ-5-クロロ安息香酸、及び4-メトキシ-2-ナ フチルアミンを用いて例24と同様の操作を行い、標題化合物を得た。

収率:39.9% 赤色固体

¹H-NMR (DMSO-d₆): δ 2. 23 (3H, s), 3. 96 (3H, s), 7. 23 (1H, d, J=1. 2Hz), 7. 34 (1H, d, J=8. 7Hz), 7. 40 (1H, dt, J=8. 1, 1. 2Hz), 7. 50 (1H, dt, J=8. 1, 1. 5Hz), 7. 67 (1H, dd, J=8. 7, 2. 7Hz), 7. 81 (1H, d, J=8. 7Hz), 7. 82 (1H, d, J=3. 0Hz), 8. 02 (1H, s), 8. 08 (1H, d, J=8. 7Hz), 10. 58 (1H, s).

例35:化合物番号35の化合物の製造

原料として、5 ークロロサリチル酸、及び2 ーアミノー4, 5, 6, 7 ーテトラヒドロベング [b] チオフェンー3 ーカルボン酸 エチルエステルを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:49.6%

¹H-NMR (DMSO-d₆): δ 1. 32 (3H, t, J=7. 2Hz), 1. 74 (4H, br), 2. 63 (2H, br), 2. 75 (2H, br), 4. 30 (2H, q, J=7. 2Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 5 0 (1H, dd, J=8.7, 3.0Hz), 7.92 (1H, d, J=3.0Hz), 12.23 (1H, s), 13.07 (1H, s).

例36:化合物番号36の化合物の製造

原料として、5-ブロモサリチル酸、及び3-アミノ-5-フェニルピラゾール を用いて例16と同様の操作を行い、標題化合物を得た。

収率: 9.2%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.8Hz), 7. 01 (1H, s), 7. 35 (1H, t, J=7.6Hz), 7. 46 (2H, t, J=7.6Hz), 7. 58 (1H, dd, J=8.8, 2.8Hz), 7. 74 -7. 76 (2H, m), 8. 19 (1H, s), 10.86 (1H, s), 12. 09 (1H, s), 13.00 (1H, brs).

例37:化合物番号37の化合物の製造

(1) 2-アミノー4, 5-ジエチルオキサゾール

プロピオイン (1.03g, 8.87mmol) をエタノール (15mL) に溶かし、シアナミド (0.75g, 17.7mmol) ナトリウムエトキシド (1.21g, 17.7mmol) を加え、室温で3.5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (ジクロロメタン:メタノール=9:1) で精製して標題化合物の黄色アモルファス (369.2mg, 29.7%) を得た。

¹H-NMR (DMSO-d₆): δ 1.04 (3H, t, J=7.5Hz), 1.06 (3H, t, J=7.5Hz), 2.20 (2H, q, J=7.5Hz), 2.43 (2H, q, J=7.5Hz), 6.15 (2H, s).

(2) 2ーアセトキシー5ープロモーN−(4, 5ージエチルオキサゾール−2ーイル) ベンズアミド

原料として、2ーアセトキシー5ーブロモ安息香酸、及び2ーアミノー4,5ージェチルオキサゾールを用いて例24と同様の操作を行い、標題化合物を得た。

収率:22.0%

 $^{1}H-NMR$ (CDCl₃): δ 1. 22 (3H, t, J=7.5Hz), 1. 2 3 (3H, t, J=7.5Hz), 2. 38 (3H, s), 2. 48 (2H, q, J=7.5Hz), 2. 57 (2H, q, J=7.5Hz), 6. 96 (1H, d, J=8.7Hz), 7. 58 (1H, dd, J=8.7, 2.7Hz), 8. 32 (1H, s), 11. 40 (1H, br).

[2-アセトキシー5-ブロモ安息香酸: 「ヨーロピアン・ジャーナル・オブ・メディシナルケミストリー (Europian Journal of Medicinal Chemistry)」, 1996年,第31巻, p. 861-874を参照し、原料として、5-ブロモサリチル酸、及び無水酢酸例を用いて34(1)と同様の操作を行って得た。]

(3) 5ーブロモーNー(4, 5ージエチルオキサゾールー2ーイル)ー2ーヒ ドロキシベンズアミド(化合物番号37)

原料として、2-アセトキシー5-プロモーN-(4, 5-ジエチルオキサゾール-2-イル)ベンズアミドを用いて例 2 (2) と同様の操作を行い、標題化合物を得た。

収率:70.2%

¹H-NMR (CDCl₃) δ : 1. 25 (3H, t, J=7.5Hz), 1. 26 (3H, t, J=7.5Hz), 2. 52 (2H, q, J=7.5Hz), 2. 60 (2H, q, J=7.5Hz), 6. 84 (1H, d, J=8.7Hz), 7. 43 (1H, dd, J=8.7, 3.0Hz), 8. 17 (1H, d, J=3.0 Hz), 11. 35 (1H, br), 12. 83 (1H, br).

例38:化合物番号38の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4,5-ジフェニルオキ サゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:32.6%

融点:188-189℃

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98 (1H, d, J=8.7Hz), 7.

40-7. 49 (6H, m), 7. 53-7. 56 (2H, m), 7. 59-7. 63 (3H, m), 8. 01 (1H, d, J=2. 4Hz), 11. 80 (2H, brs).

[2-アミノー4, 5-ジフェニルオキサゾール:「ツォーナル・オルガニッシェスコイ・キミー:ロシアン・ジャーナル・オブ・オーガニック・ケミストリー (Zhournal Organicheskoi Khimii: Russian Journal of Organic Chemistry)」, (ロシア), 1980年, 第16巻, p. 2185参照]

例39:化合物番号39の化合物の製造

(1) 2-アミノー4,5-ビス(フラン-2-イル)オキサゾールフロイン(0.50g,2.60mmol)をエタノール(15ml)に溶かし、シアナミド(218.8mg,5.20mmol)、ナトリウムエトキシド(530.8mg,7.80mmol)を加え、室温で2時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=1:1→1:2)で精製して標題化合物の黒褐色結晶(175.0mg,31.1%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 59 (1H, dd, J=3. 3, 2. 1Hz), 6. 62 (1H, dd, J=3. 3, 2. 1Hz), 6. 73 (1H, dd, J=3. 3, 0. 6Hz), 6. 80 (1H, dd, J=3. 3, 0. 9Hz), 7. 05 (2H, s), 7. 75-7. 76 (2H, m).

(2) 5 - ブロモーN - [4, 5 - ビス (フラン - 2 - イル) オキサゾール - 2-イル] - 2 - ヒドロキシベンズアミド (化合物番号39)

原料として、5ーブロモサリチル酸、及び2ーアミノー4,5ービス(フランー2ーイル)オキサゾールを用いて例16と同様の操作を行い、標題化合物を得た。 収率:12.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 65 (1H, dd, J=3. 6, 1. 8Hz), 6. 68 (1H, dd, J=3. 6, 1. 8Hz), 6. 75 (1H,

d, J=8, 7Hz), 6. 92 (1H, dd, J=3. 6, 0. 9Hz), 6. 93 (1H, d, J=3. 3Hz), 7. 37 (1H, dd, J=8. 7, 2. 7 Hz), 7. 80 (1H, dd, J=1. 8, 0. 9Hz), 7. 84 (1H, dd, J=1. 8, 0. 9Hz), 7. 92 (1H, d, J=3. 0Hz), 14. 88 (2H, br).

例40:化合物番号40の化合物の製造

(1) 2-rセトキシーN-(5-hリフルオロメチルー1, 3, 4-チアジア ゾールー2-イル) ベンズアミド

原料として、O-アセチルサリチル酸クロリド、及び<math>2-アミノ-5-(トリフルオロメチル)-1, 3, 4-チアジアゾールを用いて例2(1)と同様の操作を行い、標題化合物を得た。

収率:51.1%

¹H-NMR (DMSO-d₆): δ 2. 23 (3H, s), 7. 32 (1H, d d, J=8. 0, 1. 2Hz), 7. 45 (1H, t d, J=7. 6, 1. 2Hz), 7. 69 (1H, t d, J=8. 0, 2. 0Hz), 7. 87 (1H, d d, J=8. 0, 2. 0Hz), 13. 75 (1H, brs).

(2) 2-ヒドロキシーN-(5-トリフルオロメチル-1, 3, 4-チアジア ゾール-2-イル) ベンズアミド (化合物番号40)

原料として、2-アセトキシ-N-(5-トリフルオロメチル-1、3、4-チアジアゾール-2-イル)ベンズアミドを用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率:92.9%

¹H-NMR (DMSO-d₆): δ 7. 00 (1H, td, J=8. 0, 0. 8Hz), 7. 06 (1H, d, J=8. 4Hz), 7. 51 (1H, ddd, J=8. 4, 7. 6, 2. 0Hz), 7. 92 (1H, dd, J=8. 0, 1. 6Hz), 12. 16 (1H, br).

例41:化合物番号41の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノ-5-トリフルオロメチル-1, 3, 4-チアジアゾールを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:80.2%

¹H-NMR (DMSO-d₆): δ 7. 01 (1H, d, J=9.0Hz), 7. 63 (1H, dd, J=8.7, 2.7Hz), 7. 97 (1H, d, J=2.4Hz).

例42:化合物番号42の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノ-2-クロロピリジンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.2%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=9.0, 3.0Hz), 7. 54 (1H, d, J=8.4 Hz), 7. 88 (1H, d, J=2.7Hz), 8. 21 (1H, dd, J=8.7, 2.7Hz), 8. 74 (1H, d, J=2.7Hz), 10. 62 (1H, s), 11. 57 (1H, s).

例43:化合物番号43の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-クロロ-4-メトキシピリミジンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 2. 2%、白色固体

¹H-NMR (DMSO-d₆): δ 3. 86 (3H, s), 6. 85 (1H, s), 7. 01 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 81 (1H, d, J=3. 0Hz), 11. 08 (1H, s), 11. 65 (1H, s).

例44:化合物番号44の化合物の製造

原料として、2-アセトキシ-5-クロロ安息香酸、及び5-アミノインドール を用いて例24と同様の操作を行い、標題化合物を得た。 収率:13.3%

¹H-NMR (DMSO-d₆): δ 2. 20 (3H, s), 6. 41 (1H, t, J=2. 1Hz), 7. 27-7. 36 (4H, m), 7. 63 (1H, dd, J=8. 7, 2. 7Hz), 7. 74 (1H, d, J=2. 7Hz), 7. 93 (1H, s), 10. 21 (1H, s), 11. 04 (1H, s).

例45:化合物番号45の化合物

本化合物は、市販化合物である。

販売元: Peakdale社

カタログコード番号: PFC-0448

例46:化合物番号46の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノキノリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率: 4.3%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 51 (1H, dd, J=9.0, 3.0Hz), 7. 61 (1H, dt, J=7.8, 1.2Hz), 7. 70 (1H, dt, J=7.8, 1.5Hz), 7. 98 (2H, d, J=3.0Hz), 8. 01 (1H, s), 8. 82 (1H, d, J=2.4Hz), 10. 80 (1H, s), 11. 74 (1H, s).

例47:化合物番号47の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-9-エチルカルバゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.6%

¹H-NMR (DMSO-d₆): δ 1. 33 (3H, t, J=7.0Hz), 4. 46 (2H, q, J=7.0Hz), 7. 04 (1H, d, J=9.0Hz), 7. 21 (1H, t, J=7.3Hz), 7. 45-7. 52 (2H, m), 7. 64 -7. 65 (2H, m), 7. 70 (1H, d, J=8.4, 1.9Hz), 8. 11-8. 15 (2H, m), 8. 49 (1H, d, J=1.9Hz), 10. 5

5 (1H, s), 12. 22 (1H, s).

例48:化合物番号95の化合物の製造

原料として、Oーアセチルサリチル酸クロリド、及び3,5ービス(トリフルオロメチル)アニリンを用いて例2(1)と同様の操作を行い、標題化合物を得た。収率:84.2%

¹H-NMR (DMSO-d₆): δ 2. 36 (3H, s), 7. 19 (1H, d d, J=8.0, 1.2Hz), 7. 39 (1H, td, J=7.6, 1.2Hz), 7. 57 (1H, ddd, J=8.0, 7.6, 1.6Hz), 7. 65 (1H, s), 7. 83 (1H, dd, J=8.0, 1.6Hz), 8. 11 (2H, s), 8. 31 (1H, s).

例49:化合物番号48の化合物の製造

原料として、2-アセトキシーN-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド(化合物番号95)を用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率: 45.1%

¹H-NMR (DMSO-d₆): δ 6. 96-7. 02 (2H, m), 7. 45 (1H, ddd, J=8. 0, 7. 2, 1. 6Hz), 7. 81 (1H, s), 7. 87 (1H, dd, J=8. 0, 1. 6Hz), 8. 46 (2H, s), 10. 8 0 (1H, s), 11. 26 (1H, s).

例50:化合物番号49の化合物の製造

原料として、5-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:58.7%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, ddd, J=9. 0, 4. 5, 1. 2Hz), 7. 30-7. 37 (1H, m), 7. 66 (1H, ddd, J=9. 0, 3. 3, 1. 2Hz), 7. 84 (1H, s), 8. 46 (2H, s), 10. 85 (1H, s), 11. 21 (1H, brs).

例51:化合物番号50の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:85.5%

¹H-NMR (DMSO-d₆): δ 7. 05 (1H, d, J=8.7Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 85 (1H, s), 7. 87 (1H, d, J=2.7Hz), 8. 45 (2H, s), 10. 85 (1H, s), 11. 39 (1H, s).

例52:化合物番号51の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:88.5%

 1 H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.8Hz), 7. 59 (1H, dd, J=8.8, 2.8Hz), 7. 83 (1H, s), 7. 98 (1H, d, J=2.8Hz), 8. 43 (2H, s), 10. 82 (1H, s), 11. 37 (1H, s).

この化合物は、下記製造法によっても得ることができた。

2-reh+v-N-[3,5-red] (化合物番号95;100mg,0.25mmol)の四塩化炭素(8mL)溶液に、鉄粉(30mg,0.54mmol)、臭素(0.02mL,0.39mmol)を添加し、次いで50℃で4時間攪拌した。反応混合物を室温まで冷却後、NaHSO4水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+v)・酢酸エチル=4:1)で精製して、標題化合物の白色固体(600mg,54.9%)を得た。

例53:化合物番号52の化合物の製造

原料として、5-ヨードサリチル酸、及び3,5-ビス(トリフルオロメチル)

アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:62.2%

¹H-NMR (DMSO-d₆): δ 6. 86 (1H, d, J=8. 4Hz), 7. 74 (1H, dd, J=8. 7, 2. 4Hz), 7. 84 (1H, s), 8. 13 (1H, d, J=2. 1Hz), 8. 84 (2H, s), 10. 82 (1H, s), 11. 41 (1H, s).

例54:化合物番号53の化合物の製造

原料として、5-ニトロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:57.2%

¹H-NMR (DMSO-d₆): δ 7.18 (1H, d, J=9.0Hz), 7.86 (1H, s), 8.31 (1H, dd, J=9.0, 3.0Hz), 8.45 (2H, s), 8.70 (1H, d, J=3.0Hz), 11.12 (1H, s). 例55: 化合物番号54の化合物の製造

(1) 2ーベンジルオキシー5ーホルミル安息香酸ベンジルエステル 5ーホルミルサリチル酸 (4.98g,30mmol)、ベンジルブロミド (15.39g,90mmol)、炭酸カリウム (16.59g,120mmol)、メチルエチルケトン (350mL) の混合物を8時間加熱還流した。冷却後、溶媒を減圧留去し、残渣に2規定塩酸を加え、酢酸エチルで抽出した。水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (nーヘキサン:酢酸エチル=3:1) で精製、イソプロピルエーテルで加熱還流下懸濁洗浄して、標題化合物の白色固体 (5.98g,57.5%) を得た。

¹H-NMR (CDCl₃): δ 5. 27 (2H, s), 5. 37 (2H, s), 7. 15 (1H, d, J=9. 0Hz), 7. 26-7. 46 (10H, m), 7. 99 (1H, dd, J=9. 0, 2. 4Hz), 8. 36 (1H, d, J=2. 4Hz), 9. 91 (1H, s).

(2) 2 ーベンジルオキシー5 ーシアノ安息香酸ベンジルエステル

2-ベンジルオキシー5-ホルミル安息香酸ベンジルエステル(693 mg, 2 mmol)、塩酸ヒドロキシルアミン(167 mg, 2.4 mmol)、N-メチルピロリドン(3 mL)の混合物を115 $\mathbb C$ で 4 時間攪拌した。反応混合物を冷却後、2 規定塩酸(5 mL)、水(30 mL)を加え、酢酸エチルで抽出した。有機層を2 規定水酸化ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をイソプロピルエーテルで加熱還流下懸濁洗浄して、標題化合物の白色固体(527 mg, 76.7%)を得た。

¹H-NMR (CDC1₃): δ 5. 23 (2H, s), 5. 35 (2H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 33-7, 43 (10H, m), 7. 70 (1H, dd, J=8. 7, 2. 4Hz), 8. 13 (1H, d, J=2. 4Hz).

(3) 5ーシアノサリチル酸

2-ベンジルオキシ-5-シアノ安息香酸ベンジルエステル(446 mg, 1.3 mm o l), 5 %パラジウムー炭素(45 mg)にエタノール(10 mL)、テトラヒドロフラン(10 mL)を加え、室温で2時間水素添加した。不溶物を濾別後、溶媒を減圧留去して、標題化合物の白色固体(212 mg, 100.0%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1H, d, J=8.7Hz), 7. 82 (1H, dd, J=8.7, 2.4Hz), 8.12 (1H, d, J=2.1Hz).

(4) N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-シアノ-2-ヒドロキシベンズアミド (化合物番号54)

原料として、5-シアノサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.6%

¹H-NMR (DMSO-d₆): δ 7. 15 (1H, d, J=8.7Hz), 7. 85 (1H, s), 7. 86 (1H, dd, J=8.7, 2.1Hz), 8. 22 (1H, d, J=2.4Hz), 8. 43 (2H, s), 10. 93 (1H, s), 12. 00 (1H, brs).

例56:化合物番号55の化合物の製造

原料として、5-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:54.9%

¹H-NMR (DMSO-d₆): δ 6. 92 (1H, d, J=8. 7Hz), 7. 28 (1H, dd, J=8. 7, 1. 8Hz), 7. 71 (1H, d, J=1. 8Hz), 7. 82 (1H, s), 8. 47 (2H, s), 10. 80 (1H, s), 11. 14 (1H, s).

例57:化合物番号56の化合物の製造

(1) 5- [(1, 1-ジメチル) エチル] サリチル酸

5-[(1,1-ジメチル) エチル] -2-ヒドロキシベンズアルデヒド(2.15g,12.1mmol)の1,4-ジオキサン(100mL)、水(40mL)溶液に、スルファミン酸(1.76g,18.1mmol)、リン酸ーナトリウム(7.33g,47mmol)を加えた。この混合物に、氷冷下、亜塩素酸ナトリウム(1.76g,15.5mmol)の水溶液(10mL)を滴下し、1時間攪拌した。次いでこの混合物に、亜硫酸ナトリウム(1.80g,14.3mmol)を加え、30分間攪拌した。反応混合物に濃塩酸を加えpHを1とした。1,4-ジオキサンを減圧留去して得られた残渣を酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣を木の白色粉末(1.81g,77.4%)を得た。

 $^{1}H-NMR$ (DMSO- d_{6}): δ 1. 26 (9H, s), 6. 90 (1H, d, J=9. 0Hz), 7. 58 (1H, dd, J=8. 7, 2. 4Hz), 7. 75

(1 H, d, J = 2. 4 Hz), 11. 07 (1 H, brs).

(2) Nー [3, 5-ビス (トリフルオロメチル) フェニル] -5- [(1, 1-ジメチル) エチル] -2-ヒドロキシベンズアミド (化合物番号 <math>56) 原料として、5-[(1, 1-ジメチル) エチル] サリチル酸、及び<math>3, 5-ビス (トリフルオロメチル) アニリンを用いて例 <math>16 と同様の操作を行い、標題化合物を得た。

収率:53.8%

¹H-NMR (DMSO-d₆): δ 1. 30 (9H, s), 6. 96 (1H, d, J=8. 7Hz), 7. 50 (1H, dd, J=8. 7, 2. 4Hz), 7. 82 (1H, d, J=2. 4Hz), 7. 83 (1H, s), 8. 46 (2H, s), 10. 80 (1H, s) 11. 12 (1H, s).

例58:化合物番号78の化合物の製造

(1) 5-アセチルー2ーベンジルオキシ安息香酸 メチルエステル 5-アセチルサリチル酸 メチルエステル (13.59g,70mmol)、ベンジルブロミド (17.96g,105mmol)、炭酸カリウム (19.35g,140mmol)、メチルエチルケトン (350mL) の混合物を8時間加熱還流した。冷却後、溶媒を減圧留去し、残渣に2規定塩酸を加え、酢酸エチルで抽出した。水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をイソプロピルエーテルから再結晶して、標題化合物の白色固体 (14.20g,71.4%) を得た。

¹H-NMR (CDCl₃): δ 2. 58 (3H, s), 3. 93 (3H, s), 5. 27 (2H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 26-7. 43 (3H, m), 7. 47-7. 50 (2H, m), 8. 07 (1H, dd, J=8. 7, 2. 4Hz), 8. 44 (1H, d, J=2. 4Hz).

(2) 5-アセチル-2-ベンジルオキシ安息香酸

5-アセチルー2-ベンジルオキシ安息香酸 メチルエステル (5.69g,20mmo1) をメタノール (20mL)、テトラヒドロフラン (20mL) の混合

溶媒に溶解し、2規定水酸化ナトリウム(11mL)を滴下し、8時間撹拌した。 溶媒を減圧留去し、残渣に2規定塩酸を加え、ジクロロメタンで抽出した。水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をイソプロピルエーテルで洗浄して、標題化合物の白色固体(4.92g,91.0%)を得た。 ^1H-NMR ($DMSO-d_6$): δ 2.55(3H,s),5.32(2H,s),7.30-7.43(4H,m),7.49-7.52(2H,m),8.09(1H,dd,J=9.0,2.7Hz),8.22(1H,d,J=2.4Hz).(3)5-アセチル-2-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド

原料として、5-アセチル-2-ベンジルオキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例24と同様の操作を行い、標題化合物を得た。

収率:63.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 57 (3H, s), 7. 11 (1H, d, J=8. 7Hz), 7. 86 (1H, s), 8. 05 (1H, dd, J=8. 4, 2. 1Hz), 8. 44 (1H, d, J=2. 1Hz), 8. 47 (2H, s), 10. 96 (1H, s), 11. 97 (1H, brs).

(4) 5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号78)

5-アセチルー2ーベンジルオキシーNー[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド(602mg,1.25mmol)、5%パラジウム炭素(60mg)にエタノール(6mL)、テトラヒドロフラン(72mL)を加え、室温で30分間水素添加した。不溶物を濾別後、溶媒を減圧留去し、残渣をnーヘキサンー酢酸エチルから再結晶して、標題化合物の白色固体(230mg,47.0%)を得た。

 $^{1}H-NMR$ (DMSO- d_{6}): δ 2. 59 (3H, s), 5. 35 (2H, s), 7. 32-7. 36 (3H, m), 7. 43 (1H, d, J=8. 7Hz), 7.

52-7.55 (2H, m), 7.82 (1H, s), 8.16 (1H, dd, J=8.7, 2.4Hz), 8.25 (1H, d, J=2.4Hz), 8.31 (2H, s), 10.89 (1H, s).

例59:化合物番号57の化合物の製造

5-アセチル-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号78;50.5 mg,0.13 mmo1)をエタノール(2 mL) に懸濁し、水素化ホウ素ナトリウム(2 3.6 mg,0.62 mmo1)を加え、室温で12時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をイソプロピルエーテル<math>/nーへキサンで懸濁洗浄して標題化合物の白色粉末(39.7 mg,78.3%)を得た。 $^1H-NMR(DMSO-d_6):\delta$ 1.34(3 H,d,J=6.3 Hz),4.71(1 H,q,J=6.3 Hz),5.18(1 H,brs),6.97(1 H,d,J=8.4 Hz),7.44(1 H,dd,J=8.4,2.1 Hz),7.84(1 H,s),7.86(1 H,d,J=2.1 Hz),8.48(2 H,s),10.85(1 H,s),11.32(1 H,s).

例60:化合物番号58の化合物の製造

5-アセチル-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号 <math>78;100.0mg,0.26mmol)をエタノール(3mL)に溶かし、ピリジン($45\mul,0.56mmol$)、O-メチルヒドロキシルアミン塩酸塩(25.8mg,0.31mmol)を加え、1時間加熱還流した。冷却後、反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色結晶(102.1mg,95.3%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 19 (3H, s), 3. 91 (3H, s),

7. 05 (1H, d, J=8. 7Hz), 7. 77 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 8. 09 (1H, d, J=2. 4Hz), 8. 4 7 (2H, s), 10. 87 (1H, s), 11. 48 (1H, s).

例61:化合物番号59の化合物の製造

原料として、5-アセチル-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号78)、及びO-ベンジルヒドロキシルアミン塩酸塩を用いて例60と同様の操作を行い、標題化合物を得た。収率:79.9%

¹H-NMR (DMSO-d₆): δ 2. 24 (3H, s), 5. 20 (2H, s), 7. 04 (1H, d, J=8. 7Hz), 7. 29-7. 47 (5H, m), 7. 76 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 8. 07 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 87 (1H, s), 11. 47 (1H, s).

例62:化合物番号60の化合物の製造

(1) 5-(2, 2-ジシアノエテン-1-イル) -2-ヒドロキシ安息香酸マロノニトリル (132mg, 2mmol) をエタノール (6mL) に溶解し、5-ホルミルサリチル酸 (332mg, 2mmol) を加え、氷浴で冷却した後、ベンジルアミン (0.1mL) を加え、室温で2時間攪拌した。析出した黄色結晶をろ取し、再結晶 (エタノール) して標題化合物の淡黄色固体 (139.9mg, 32.7%) を得た。

¹H-NMR (DMSO-d₆): δ 7. 12 (1H, d, J=8. 7Hz), 8. 09 (1H, dd, J=8. 7, 2. 4Hz), 8. 41 (1H, s), 8. 50 (1H, d, J=2. 4Hz).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(2, 2-ジシアノエテン-1-イル)-2-ヒドロキシベンズアミド(化合物番号60)原料として、5-(2, 2-ジシアノエテン-1-イル)-2-ヒドロキシ安息香酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例16と同様

の操作を行い、標題化合物を得た。

収率:9.1%

¹H-NMR (DMSO-d₆): δ 7. 13 (1H, d, J=9.0Hz), 7. 83 (1H, s), 8. 04 (1H, dd, J=9.0, 2.4Hz), 8. 36 (1H, s), 8. 38 (1H, d, J=2.4Hz), 8. 43 (2H, s), 1 1. 43 (1H, s).

例63:化合物番号62の化合物の製造

(1) 5 - [(2-シアノ-2-メトキシカルボニル) エテン-1-イル] - 2 - ヒドロキシ安息香酸

5 - ホルミルサリチル酸(332mg, 2mmo1)、シアノ酢酸メチルエステル(198mg, 2mmo1)、酢酸(6mL)の混合物にトリエチルアミン(0.2ml)を加え、5時間加熱還流した。冷却後、反応混合物を水にあけ、析出した結晶をろ取し、再結晶(n-ヘキサン)して標題化合物の淡黄色固体(327.7mg, 66.3%)を得た。

¹H-NMR (DMSO-d₆): δ 3. 85 (3H, s), 7. 15 (1H, d, J=8. 7Hz), 8. 20 (1H, dd, J=8. 7, 2. 4Hz), 8. 37 (1H, s), 8. 66 (1H, d, J=2. 4Hz).

(2) $3-({N-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル}-4-ヒドロキシフェニル)-2-シアノアクリル酸 メチルエステル(化合物番号62)$

原料として、5-[(2-シアノ-2-メトキシカルボニル) エテン-1-イル] -2-ヒドロキシ安息香酸、及び3,5-ビス(トリフルオロメチル) アニリン を用いて例16と同様の操作を行い、標題化合物を得た。

収率 66.3%

¹H-NMR (DMSO-d₆): δ 3. 85 (3H, s), 7. 19 (1H, d, J=9. 0Hz), 7. 85 (1H, s), 8. 20 (1H, dd, J=8. 7, 2. 1Hz), 8. 33 (1H, s), 8. 45 (2H, s), 8. 50 (1H, d,

J = 2. 1 Hz), 11. 00 (1H, s), 11. 03 (1H, s).

例64:化合物番号61の化合物の製造

 $3-(\{N-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル\}-4-ヒドロキシフェニル)-2-シアノアクリル酸 メチルエステル(化合物番号62;50mg,0.11mmol)をエタノール(5mL)に溶解し、2規定水酸化ナトリウム(0.11ml,0.22mmol)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣を再結晶(酢酸エチル)して標題化合物の淡黄色固体(13.5mg,30.4%)を得た。$

¹H-NMR (DMSO-d₆): δ 7. 12 (1H, d, J=8.4Hz), 7. 84 (1H, s), 7. 94 (1H, dd, J=8.4, 2.1Hz), 8. 38 (1H, d, J=2.1Hz), 8. 45 (2H, s), 9. 87 (1H, s), 1 1. 41 (1H, s).

例65:化合物番号63の化合物の製造

7. 86 (1H, s), 8. 07 (1H, d, J=2. 1Hz), 8. 49 (2H, s), 10. 89 (1H, s), 11. 33 (1H, brs).

例66:化合物番号66の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号52;950mg,2mmol)、トリメチルシリルアセチレン(246mg,2.5mmol)をトリエチルアミン(2mL)及びN,Nージメチルホルムアミド(4mL)に溶解し、アルゴン雰囲気下にテトラキス(トリフェニルホスフィン)パラジウム(23mg,0.02mmol)、沃化第一銅(4mg,0.02mmol)を添加し、次いで40℃で2時間攪拌した。反応混合物を室温まで冷却後、酢酸エチル(100mL)及び1規定クエン酸(100mL)にあけて攪拌し、次いでセライト濾過した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+1):酢酸エチル=19:1)で精製して淡橙色固体を得た。これをn-n+1)で結晶化して標題化合物の白色結晶(286mg,32.1%)を得た。

¹H-NMR (DMSO-d₆): δ 0. 23 (9H, s), 7. 00 (1H, d, J=8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 7. 98 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 86 (1H, s), 11. 69 (1H, s).

例67:化合物番号64の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-[(トリメチルシリル)エチニル]ベンズアミド(化合物番号66;233mg.0.5mmol)をメタノール(1mL)に溶解し2規定水酸化ナトリウム(1mL)を添加し、次いで室温で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた残渣をエタノール-水で晶析して標題化合物の灰白色結晶(67mg,35.9%)を得た。

 $^{1}H-NMR$ (DMSO- d_{6}): δ 4. 11 (1H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 55 (1H, dd, J=8. 4, 2. 1Hz), 7. 85 (1H, s), 7. 98 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 8. 46 (2H, s), 10. 86 (1H, s), 11. 62 (1H, s).

例68:化合物番号65の化合物の製造

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号52)、及びフェニルアセチレンを用いて<math>M66と同様の操作を行い、標題化合物を得た。

収率:40.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 06 (1H, d, J=8.4Hz), 7. 42-7. 46 (3H, m), 7. 53-7. 57 (2H, m), 7. 64 (1H, dd, J=8.7, 2.1Hz), 7. 86 (1H, s), 8. 06 (1H, d, J=2.1Hz), 8. 48 (2H, s), 10. 94 (1H, s), 11. 64 (1H, brs).

例69:化合物番号67の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-ヨードベンズアミド(化合物番号52;200mg,0.42mmol)、を1,2-ジメトキシエタン(3mL)に溶解し、アルゴン雰囲気下にテトラキス(トリフェニルホスフィン)パラジウム(16mg,0.0014mmol)を添加し、室温で5分間攪拌した。次いでジヒドロキシフェニルボラン(57mg,0.47mmol)及び1M炭酸ナトリウム(1.3mL)を添加し、次いで2時間加熱還流した。反応混合物を室温まで冷却後 希塩酸にあけて酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(nーへキサン:酢酸エチル=6:1→3:1)で精製して標題化合物の白色結晶(109mg,61.1%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 12 (1H, d, J=8.7Hz), 7.

33-7. 38 (1H, m), 7. 48 (2H, t, J=7. 5Hz), 7. 67
-7. 70 (2H, m), 7. 79 (1H, dd, J=8. 4, 2. 4Hz), 7.
87 (1H, s), 8. 17 (1H, d, J=2. 4Hz), 8. 49 (2H, s),
10. 92 (1H, s), 11. 41 (1H, s).

例70:化合物番号68の化合物の製造

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(フェニルエチニル)ベンズアミド(化合物番号65)を用いて例 <math>58(4)と同様の操作を行い、標題化合物を得た。

収率:86.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 88 (4H, s), 6. 93 (1H, d, J=8. 1Hz), 7. 15-7. 34 (6H, m), 7. 76 (1H, d, J=2. 4Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 79 (1H, s), 11. 15 (1H, s).

例71:化合物番号69の化合物の製造

原料として、2-ヒドロキシー5-(トリフルオロメチル)安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.7%

 $^{1}H-NMR$ (CDCl₃): δ 7. 17 (1H, d, J=9.0Hz) 7. 7 2-7. 75 (2H, m), 7. 86 (1H, s), 8. 17 (2H, s), 8. 3 5 (1H, s) 11. 88 (1H, s).

[2-ヒドロキシ-5-(トリフルオロメチル) 安息香酸: 「ケミカル・アンド・ファーマシューティカル・ビュレティン (Chemical and Pharmaceutical Bulletin)」, 1996年, 第44巻, p. 734参照]

例72:化合物番号70の化合物の製造

原料として、2-ヒドロキシ-5-(ペンタフルオロエチル)安息香酸、及び3, 5-ビス (トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、 標題化合物を得た。

¹H-NMR (CDCl₃): δ 7. 19 (1H, d, J=9.0Hz) 7. 7 0 (1H, dd, J=8.7, 2.1Hz), 7. 81 (1H, d, J=2.1 Hz), 8. 17 (2H, s), 8. 37 (1H, s), 11. 92 (1H, s). [2-ヒドロキシー5-(ペンタフルオロメチル) 安息香酸: 「ケミカル・アンド・ファーマシューティカル・ビュレティン (Chemical and Pharmaceutical Bulletin)」, 1996年、第44巻、p. 734参照]

例73:化合物番号71の化合物の製造

原料として、2-ヒドロキシ-5-(ピロール-1-イル)安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、 標題化合物を得た。

収率:57.8%

¹H-NMR (DMSO-d₆): δ 6. 27 (2H, dd, J=2. 4, 1. 8Hz), 7. 10 (1H, d, J=9. 0Hz), 7. 29 (2H, dd, J=2. 4, 1. 8Hz), 7. 66 (1H, dd, J=9. 0, 2. 7Hz), 7. 86 (1H, s), 7. 98 (1H, d, J=2. 4Hz), 8. 47 (2H, s), 10. 89 (1H, s), 11. 24 (1H, s).

例74:化合物番号72の化合物の製造

原料として、N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号52)、及び2-チオフェンボロン酸を用いて例69と同様の操作を行い、標題化合物を得た。

収率: 44.4%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8. 4Hz), 7. 14 (1H, dd, J=5. 4, 3. 6Hz), 7. 45 (1H, dd, J=3. 6, 1. 2Hz), 7. 51 (1H, dd, J=5. 1, 0. 9Hz), 7. 75 (1H, dd, J=8. 4, 2. 4Hz), 7. 59 (1H, s), 8. 08 (1 H, d, J=2. 4Hz), 8. 48 (2H, s), 10. 91 (1H, s), 11. 38 (1H, s).

例75:化合物番号73の化合物の製造

原料として、N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号52)、及び3-チオフェンボロン酸を用いて例69と同様の操作を行い、標題化合物を得た。

収率:38.7%

¹H-NMR (DMSO-d₆): δ 7. 06 (1H, d, J=8. 7Hz), 7. 57 (1H, dd, J=4. 8, 1. 5Hz), 7. 66 (1H, dd, J=4. 8, 3. 0Hz), 7. 81-7. 84 (2H, m), 7. 86 (1H, s), 8. 18 (1H, d, J=2. 1Hz), 8. 49 (2H, s), 10. 90 (1H, s), 11. 33 (1H, s).

例76:化合物番号74の化合物の製造

(1) 2-ベンジルオキシー5- (2-プロモアセチル) - N- [3, 5-ビス (トリフルオロメチル) フェニル] ベンズアミド

5ーアセチルー2ーベンジルオキシーNー[3,5ービス(トリフルオロメチル)フェニル]ベンズアミド(例58(3)の化合物;4.81g,10mmol)をテトラヒドロフラン(30ml)に溶解し、フェニルトリメチルアンモニウムトリブロミド(3.75g,10mmol)を加え、室温で12時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を亜硫酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=4:1)で精製し、再結晶(酢酸エチル/nーヘキサン)して標題化合物の白色固体(2.39g,42.7%)を得た。

¹H-NMR (DMSO-d₆): δ 4. 91 (2H, s), 5. 36 (2H, s), 7. 32-7. 35 (3H, m), 7. 47 (1H, d, J=9. 0Hz), 7. 52-7. 56 (2H, m), 7. 82 (1H, s), 8. 21 (1H, dd, J=8. 7, 2. 4Hz), 8. 29 (1H, d, J=2. 4Hz), 8. 31 (2

H, s), 10. 91 (1H, s).

(2) 2-ベンジルオキシーN- [3, 5-ビス(トリフルオロメチル)フェニル] -5-(2-メチルチアゾール-4-イル)ベンズアミド

2 ーベンジルオキシー5 ー (2 ープロモアセチル) ーNー [3, 5 ービス (トリフルオロメチル) フェニル] ベンズアミド (280mg, 0.5mmol)、チオアセタミド (41mg, 0.55mmol)、炭酸水素ナトリウム (50mg, 0.60mmol)、エタノール (15 ート) の温み作力 また思しています。

 $60\,\mathrm{mmo\,1}$)、エタノール($15\,\mathrm{m\,L}$)の混合物を1時間加熱還流した。反応混合物を水にあけ、炭酸水素ナトリウムで中和し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー((キサン:酢酸エチル=4:1)で精製して標題化合物の白色固体($181\,\mathrm{m\,g}$,67.5%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 72 (3H, s), 5. 29 (2H, s), 7. 33-7. 36 (3H, m), 7. 40 (1H, d, J=9. 0Hz), 7. 54-7. 57 (2H, m), 7. 81 (1H, s), 7. 94 (1H, s), 8. 12 (1H, dd, J=8. 7, 2. 1Hz), 8. 27 (1H, d, J=2. 1Hz), 8. 31 (2H, s), 10. 86 (1H, s).

(3) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-(2-メチルチアゾール-4-イル) ベンズアミド (化合物番号74) 2-ベンジルオキシーN-[3, 5-ビス (トリフルオロメチル) フェニル] -5-(2-メチルチアゾール-4-イル) ベンズアミド (160mg, 0.3mmol)、10%Pd-C (240mg) をエタノール (10ml) に溶かし、水素雰囲気下3.5時間攪拌した。反応混合物をろ過し、ろ液を減圧留去して標題化合物の白色固体 (103.4mg, 79.2%) を得た。

 1 H-NMR (DMSO-d₆): δ 2. 72 (3H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 83 (1H, s), 7. 85 (1H, s), 8. 01 (1H, dd, J=8. 7, 2. 4Hz), 8. 42 (1H, d, J=2. 1Hz), 8. 50 (2H, s), 10. 96 (1H, s), 11. 40 (1H, s).

例77:化合物番号75の化合物の製造

2ーベンジルオキシー5ー (2ーブロモアセチル) -Nー [3, 5ービス(トリフルオロメチル) フェニル] ベンズアミド (例58(3)の化合物;280mg,0.5mmol)、2ーアミノピリジン(51.8mg,0.55mmol)、炭酸水素ナトリウム(50mg,0.6mmol)、エタノール(10mL)の混合物を2時間加熱還流した。冷却後、反応混合物を炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=1:2)で精製して白色固体(130.3mg)を得た。次いでこの固体(108mg,0.19mmol)、10%Pd-C(11mg)、エタノール(8mL)、酢酸エチル(8mL)の混合物を水素雰囲気下、7時間攪拌した。反応混合物をろ過し、ろ液を減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=1:3)で精製して標類化合物の白色固体(18.3mg,20.2%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 90 (1H, dt, J=6. 6, 0. 9Hz), 7. 10 (1H, d, J=8. 7Hz), 7. 25 (1H, m), 7. 5 7 (1H, d, J=9. 0Hz), 7. 86 (1H, s), 8. 04 (1H, dd, J=8. 7, 2. 1Hz), 8. 35 (1H, s), 8. 48-8. 56 (4H, m), 11. 00 (1H, s), 11. 41 (1H, s).

例78:化合物番号76の化合物の製造

(1) N- $[3, 5-\forall x ($ トリフルオロメチル) フェニル] -5-ョード-2 -メトキシメトキシベンズアミド

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号52;4.75g,10mmol)、クロロメチルメチルエーテル(1.14ml,15mmol)、炭酸カリウム(2.76g,20mmol)、アセトン(50mL)の混合物を8時間加熱還流した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、

無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=3:1)で精製し、再結晶(nーヘキサン/酢酸エチル)して標題化合物の白色固体(3.96g,76.3%)を得た。

¹H-NMR (DMSO-d₆): δ 3. 38 (3H, s), 5. 28 (2H, s), 7. 12 (1H, d, J=9. 0Hz), 7. 81 (1H, s), 7. 82 (1H, dd, J=8. 7, 2. 4Hz), 7. 88 (1H, d, J=2. 4Hz), 8. 40 (2H, s), 10. 87 (1H, s).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシメトキシ-5-(ピリジン-2-イル)ベンズアミド

N-[3,5-ビス(トリフルオロメチル)フェニル]-5-ヨード-2-メトキシメトキシベンズアミド(0.20g,0.39mmol)をN,N-ジメチルホルムアミド(8ml)に溶かし、トリーn-ブチル(2-ピリジル)スズ(0.

13 m l, 0.4 1 m m o l)、ジクロロビス (トリフェニルフォスフィン) パラジウム (32.1 m g、0.05 m m o l)を加え、100 $\mathbb C$ で1.5 時間攪拌した。冷却後、反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (n-(n+1)):酢酸エチル=2:1 \rightarrow 1:

- 1) で精製して標題化合物の白色粉末(37.9mg,20.8%)を得た。
- $^{1}H-NMR$ (CDCl₃): δ 3. 64 (3H, s), 5. 53 (2H, s),
- 7. 23-7. 28 (1H, m), 7. 36 (1H, d, J=8. 7Hz), 7.
- 65 (1H, s), 7. 77-7. 84 (2H, m), 8. 20 (2H, s), 8.
- 31 (1H, dd, J=8.7, 2.4Hz), 8.68-8.70 (1H, m),
- 8. 83 (1H, d, J=2. 4Hz), 10. 12 (1H, s).
- (3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ピリジン-2-イル)ベンズアミド(化合物番号76)
- N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシメトキシ

¹H-NMR (DMSO-d₆): δ 7. 13 (1H, d, J=8. 4Hz), 7. 33 (1H, d d d, J=7. 5, 6. 3, 1. 2Hz), 7. 86-7. 91 (2 H, m), 7. 97 (1H, d, J=7. 8Hz), 8. 20 (1H, d d, J=8. 7, 2. 1Hz), 8. 50 (2H, s), 8. 59 (1H, d, J=2. 4 Hz), 8. 64-8. 66 (1H, m), 10. 97 (1H, s), 11. 53 (1 H, s).

例79:化合物番号77の化合物の製造

原料として、5-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:56.8%

¹H-NMR (DMSO-d₆): δ 3. 77 (3H, s), 6. 97 (1H, d, J=9. 0Hz), 7. 10 (1H, dd, J=9. 0, 3. 0Hz), 7. 43 (1H, d, J=3. 0Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 84 (1H, s), 10. 91 (1H, s).

例80:化合物番号79の化合物の製造

(1) 5-アセチルー2-メトキシ安息香酸 メチルエステル

5-アセチルサリチル酸 メチルエステル (5.00g, 25.7 mm o l)、炭酸カリウム (7.10g, 51.4 mm o l)、N, Nージメチルホルムアミド (25 mL) の混合物を氷浴で冷却した後、沃化メチル (2.5 mL、40.1 mm o l) を加え、室温で 3 時間攪拌した。反応混合物を水にあけ、塩酸で中和し、

酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣を懸濁洗浄(イソプロピルエーテル/n-ヘキサン)して標題化合物の白色結晶(5. 17g, 96. 5%)を得た。 ^1H-NMR (CDCl₃): δ 2. 59 (3H, s), 3. 92 (3H, s), 3. 99 (3H, s), 7. 04 (1H, d, J=8. 7Hz), 8. 12 (1H, d d, J=8. 7, 2. 4Hz), 8. 41 (1H, d, J=2. 4Hz).

(2) 5-イソブチリルー2-メトキシ安息香酸 メチルエステル

¹H-NMR (CDCl₃): δ 1. 22 (6H, d, J=6. 9Hz), 3. 5 2 (1H, m), 3. 92 (3H, s), 3. 98 (3H, s), 7. 05 (1H, d, J=8. 7Hz), 8. 13 (1H, dd, J=8. 7, 2. 4Hz), 8. 42 (1H, d, J=2. 4Hz).

(3) 5-イソブチリルー2-メトキシ安息香酸

5-イソブチリルー2-メトキシ安息香酸 メチルエステル(143.1mg, 0.60mmol)をメタノール(5mL)に溶かし、2規定水酸化ナトリウム溶液(1ml)を加え、1時間加熱還流した。冷却後、反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して標題化合物の白色結晶(134mg,収率:定量的)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 22 (6H, d, J=6. 9Hz), 3. 5

9 (1H, m), 4. 15 (3H, s), 7. 16 (1H, d, J=8. 7Hz), 8. 24 (1H, dd, J=8. 7, 2. 4Hz), 8. 73 (1H, d, J=2. 1Hz).

原料として、5ーイソブチリルー2ーメトキシ安息香酸、及び3,5ービス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:61.4%

 $^{1}H-NMR$ (CDCl₃): δ 1. 23 (6H, d, J=6. 9Hz), 3. 6 4 (1H, m), 4. 20 (3H, s), 7. 18 (1H, d, J=8. 7Hz), 7. 65 (1H, s), 8. 19 (2H, s), 8. 22 (1H, dd, J=8. 7, 2. 1Hz), 8. 88 (1H, d, J=2. 1Hz), 9. 98 (1H, s).

(5) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ -5-イソブチリルベンズアミド(化合物番号79)

5- (1) = 1 -

¹H-NMR (DMSO-d₆): δ 1. 12 (6H, d, J=6.9Hz), 3. 66 (1H, m), 7. 12 (1H, d, J=8.4Hz), 7. 85 (1H, s), 8. 07 (1H, dd, J=8.4, 2.4Hz), 8. 45 (1H, d, J=2. 4Hz), 8. 47 (2H, s), 10. 93 (1H, s), 11. 95 (1H, b) r s).

例81:化合物番号81の化合物の製造

原料として、4ーヒドロキシイソフタル酸-1ーメチルエステル、及び3,5ービス (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:91.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 85 (3H, s), 7. 12 (1H, d, J=8. 4Hz), 7. 86 (1H, s), 8. 02 (1H, dd, J=8. 7, 2. 4Hz), 8. 46-8. 47 (3H, m), 10. 96 (1H, s), 12. 03 (1H, brs).

[4-ビドロキシイソフタル酸-1-メチルエステル: 「ジャーナル・オブ・ザ・ケミカル・ソサイエティー(Journal of the Chemical Society)」,(英国),1956年,p.3099-3107参照

例82:化合物番号80の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキシイソフタラミン酸 メチルエステル(化合物番号81;2.85g,7mmol)をメタノール(14mL)、テトラヒドロフラン(14mL)の混合溶媒に懸濁し、2規定水酸化ナトリウム水溶液(14mL)を滴下、次いで2時間加熱還流した。冷却後、2規定塩酸(20ml)を添加し、析出した固体を濾取、水洗、乾燥して標題化合物の白色結晶(2.68g,97.4%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 10 (1H, d, J=8.7Hz), 7. 82 (1H, s), 7. 86 (1H, s), 8. 01 (1H, dd, J=8.7, 2. 4Hz), 8. 47 (2H, s), 8. 48 (1H, d, J=2.4Hz), 10. 97 (1H, s), 11. 98 (1H, brs).

以下の実施例において例82の方法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは混合

して用いた。

例83:化合物番号82の化合物の製造

4-ヒドロキシイソフタル酸(182 mg, 1 mmo1)、3, 5-ビス(トリフルオロメチル)アニリン(687 mg, 3 mmo1)、三塩化リン($87 \mu 1$; 1 mmo1)、トルエン(10 mL)を用いて例16と同様の操作を行い、標題化合物の白色結晶(151 mg, 25.0%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 18 (1H, d, J=8. 7Hz), 7. 82 (1H, s), 7. 86 (1H, s), 8. 11 (1H, dd, J=8. 7, 2. 4Hz), 8. 50 (2H, s), 8. 54 (2H, s), 8. 56 (1H, d, J=2. 4Hz), 10. 79 (1H, s), 10. 99 (1H, s), 11. 84 (1H, brs).

例84:化合物番号83の化合物の製造

(1) 4ーベンジルオキシーNー[3,5ービス(トリフルオロメチル)フェニル]イソフタラミン酸 メチルエステル

水素化ナトリウム(60%;1.04g,26mmol)をnーへキサンで洗浄してN,Nージメチルホルムアミド(100mL)に懸濁し、氷浴で冷却しながらNー[3,5ービス(トリフルオロメチル)フェニル]ー4ーヒドロキシイソフタラミン酸 メチルエステル(化合物番号81;8.15g,20mmol)のN,Nージメチルホルムアミド(100mL)溶液を滴下した。滴下終了後、室温で1時間攪拌した後、ベンジルブロミド(4.45g,26mmol)のN,Nージメチルホルムアミド(10mL)溶液を加え、60℃で3時間攪拌した。冷却後、反応混合物を氷水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣を再結晶(酢酸エチル/nーへキサン)して標題化合物の白色固体(5.38g,54.1%)を得た。

¹H-NMR (DMSO-d₆): δ 3.87 (3H, s), 5.33 (2H, s), 7.33-7.36 (3H, m), 7.46 (1H, d, J=8.7Hz), 7.

53-7. 56 (2H, m), 7. 82 (1H, s), 8. 15 (1H, dd, J = 8. 7, 2. 1Hz), 8. 25 (1H, d, J=2. 1Hz) 8. 28 (2H, s), 10. 87 (1H, s).

(2) 4-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル] イソフタラミン酸

原料として、4-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル] イソフタラミン酸 メチルエステルを用いて例82と同様の操作を行い、標題化合物を得た。

収率:79.7%

¹H-NMR (DMSO-d₆): δ 5. 32 (2H, s), 7. 32-7. 34 (3H, m), 7. 43 (1H, d, J=8. 7Hz), 7. 52-7. 56 (2H, m), 7. 81 (1H, s), 8. 12 (1H, dd, J=8. 7, 2. 1Hz), 8. 22 (1H, d, J=2. 1Hz), 8. 28 (2H, s), 10. 85 (1H, s), 13. 81 (1H, brs).

(3) $4-ベンジルオキシ-N^3-[3,5-ビス(トリフルオロメチル)フェニル]-N^1, <math>N^1$ -ジメチルイソフタルアミド

4ーベンジルオキシーNー[3, 5ービス(トリフルオロメチル)フェニル]イソフタラミン酸(242mg, 0.50mmol)、ジメチルアミン塩酸塩(41mg, 0.50mmol)、トリエチルアミン(51mg, 0.50mmol)のテトラヒドロフラン(5mL)溶液に、氷冷下WSC・HCl(95mg, 0.50mmol)を加え、その後室温で3時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を希塩酸、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去して得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=1:4)で精製して標題化合物の白色固体(165mg, 64.9%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 99 (6H, s) 5. 29 (2H, s), 7. 32-7. 38 (4H, m), 7. 52-7. 56 (2H, m), 7. 64 (1

H, dd, J=8.7, 2.1Hz), 7.73 (1H, d, J=2.1Hz), 7.80 (1H, s), 8.28 (2H, s), 10.83 (1H, s). 以下の実施例において例84(3)の方法が引用されている場合、塩基としては、ピリジン、トリエチルアミン等の有機塩基を用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。 (4) $N^3-[3,5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキシ-<math>N^1$, $N^1-ジメチルイソフタルアミド(化合物番号83)$

4-ベンジルオキシ-N $^3-$ [3,5-ビス(トリフルオロメチル)フェニル]-N 1 ,N $^1-$ ジメチルイソフタルアミド(141mg,0.28mmo1)、5%Pd-C(14mg)のエタノール(5m1)、酢酸エチル(5m1)混合溶液を、水素雰囲気下、室温で1時間攪拌した。反応混合物をろ過し、ろ液を減圧留去して標題化合物の白色固体(106mg,91.2%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 98 (6H, s), 7. 02 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 1Hz), 7. 84 (1H, s), 7. 95 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 1 1. 10 (1H, brs), 11. 63 (1H, brs).

例85:化合物番号84の化合物の製造

(1) 2-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-(ピペリジン-1-カルボニル)ベンズアミド原料として、<math>4-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸(例84(2)の化合物)、及びピペリジンを用いて例84(3)と同様の操作を行い、標題化合物を得た。

収率:56.4%

¹H-NMR (CDCl₃): δ 1. 53-1. 70 (6H, m), 3. 44 (2H, brs), 3. 70 (2H, brs), 5. 26 (2H, s), 7. 24 (1H, d, J=8. 7Hz), 7. 26 (1H, s), 7. 52-7. 58 (5H, m), 7. 66 (2H, s), 7. 74 (1H, dd, J=8. 7, 2. 4Hz), 8.

37 (1 H, d, J=2.1 Hz), 10.27 (1 H, s).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-(ピペリジン-1-カルボニル)ベンズアミド(化合物番号84)原料として、2-ベンジルオキシーN-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(ピペリジン-1-カルボニル)ベンズアミドを用いて例84(4)と同様の操作を行い、標題化合物を得た。

収率: 96.3% 白色固体

¹H-NMR (DMSO-d₆): δ 1. 51 (4H, brs), 1. 60-1. 65 (2H, m), 3. 47 (4H, brs), 7. 04 (1H, d, J=8. 4 Hz), 7. 48 (1H, dd, J=8. 4, 2. 1Hz), 7. 85 (1H, s), 7. 92 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 99 (1H, s), 11. 64 (1H, brs).

例86:化合物番号85の化合物の製造

(1) 2 ーベンジルオキシー5 ー (4 ーベンジルピペリジンー1 ーカルボニル) ーNー[3,5ービス(トリフルオロメチル)フェニル]ベンズアミド 原料として、4 ーベンジルオキシーNー[3,5ービス(トリフルオロメチル)フェニル]イソフタラミン酸(例84(2)の化合物)、及び4 ーベンジルピペリジンを用いて例84(3)と同様の操作を行い、標題化合物を得た。

収率:76.7%

¹H-NMR (CD₃OD): δ 1. 18-1. 38 (2H, m), 1. 67 (1H, brs), 1. 74 (1H, brs), 1. 84-1. 93 (1H, m), 2. 60 (2H, d, J=7. 2Hz), 2. 83 (1H, brs), 3. 10 (1H, brs), 3. 78 (1H, brs), 4. 59 (1H, brs), 5. 34 (2H, s), 7. 15-7. 18 (3H, m), 7. 24-7. 28 (2H, m), 7. 40-7. 46 (4H, m), 7. 57-7. 63 (3H, m), 7. 65 (1H, dd, J=8. 7, 2. 4Hz), 7. 96 (2H, s), 8. 05 (1H, d, J=2. 1Hz).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(4-ベンジルピペリジン-1-カルボニル)ベンズアミド(化合物番号85)

原料として、2-ベンジルオキシ-5-(4-ベンジルピペリジン-1-カルボニル)-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミドを用いて例84(4)と同様の操作を行い、標題化合物を得た。

収率 54.3% 白色固体

¹H-NMR (DMSO-d₆): δ 1. 08-1. 22 (2H, m), 1. 59 -1. 62 (2H, m), 1. 77-1. 80 (1H, m), 2. 50-2. 55 (2H, m), 2. 87 (2H, brs), 3. 75 (1H, br), 4. 39 (1H, br), 7. 06 (1H, d, J=8. 4Hz), 7. 17-7. 20 (3H, m), 7. 28 (2H, t, J=7. 2Hz), 7. 49 (1H, dd, J=8. 4, 2. 1Hz), 7. 84 (1H, s), 7. 93 (1H, d, J=2. 1Hz), 8. 47 (2H, s), 10. 89 (1H, s), 11. 65 (1H, s).

例87:化合物番号86の化合物の製造

(1) 2-メトキシー5-スルファモイル安息香酸

メチル 2-メトキシ-5-スルファモイルベンゾエート(4.91g,20m mo1)をメタノール(30mL)に溶解し、2規定水酸化ナトリウム溶液(30mL,60mmo1)を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、析出した固体を5取して、標題化合物の白色固体(4.55g,98.3%)を得た。

¹H-NMR (DMSO-d₆): δ 3.89 (3H, s), 7.30 (1H, d, J=8.7Hz), 7.32 (2H, s), 7.92 (1H, dd, J=8.7, 2.7Hz), 8.09 (1H, d, J=2.7Hz), 13.03 (1H, br). (2) N-[3,5-ビス (トリフルオロメチル) フェニル] -2-メトキシー5-スルファモイルベンズアミド

原料として、2-メトキシー5-スルファモイル安息香酸、及び3,5-ビス(ト

リフルオロメチル) アニリンを用いて例24と同様の操作を行い、標題化合物を 得た。

収率:24.2%

¹H-NMR (DMSO-d₆): δ 3. 97 (3H, s), 7. 38 (2H, s), 7. 39 (1H, d, J=8. 7Hz), 7. 85 (1H, s), 7. 96 (1H, dd, J=8. 7, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 8. 43 (2H, s), 10. 87 (1H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-メトキシベンズアミド

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシー5-スルファモイルベンズアミド(442mg,1.0mmol)、沃化メチル(710mg,5.0mmol)、炭酸カリウム(415mg,3.0mmol)のアセトニトリル(10mL)懸濁液を3時間加熱還流した。反応混合液を室温まで冷却後水にあけ、酢酸エチルにて抽出した。有機層を水、飽和食塩水にて洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去して得られた残渣を<math>n-キサン、酢酸エチル(2:1)の混合溶媒より再結晶して標題化合物の白色固体(207mg,44.1%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 62 (6H, s), 3. 99 (3H, s), 7. 45 (1H, d, J=9. 0Hz), 7. 85 (1H, s), 7. 91 (1H, dd, J=8. 7, 2. 4Hz), 7. 95 (1H, d, J=2. 4Hz) 8. 4 3 (2H, s), 10. 90 (1H, s).

(4) N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-ジメチルス ルファモイル-2-ヒドロキシベンズアミド (化合物番号86)

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-メトキシベンズアミドを用いて例80(5)と同様の操作を行い、標題化合物を得た。

収率:45.5%

¹H-NMR (DMSO-d₆): δ 2. 61 (6H, s), 7. 20 (1H, d, J=8. 7Hz), 7. 77 (1H, dd, J=8. 7, 2. 1Hz), 7. 86 (1H, s), 8. 14 (1H, d, J=2. 1Hz) 8. 45 (2H, s), 1 1. 16 (1H, s), 12. 15 (1H, br).

例88:化合物番号87の化合物の製造

(1) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシー5-(ピロール-1-スルホニル)ベンズアミド

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-スルファモイルベンズアミド(例87(2)の化合物;442mg,1mmol)、2,5-ジメトキシテトラヒドロフラン(159mg,1.2mmol)、酢酸(5 mL)の混合物を2時間加熱還流した。冷却後、反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=3:2)で精製して標題化合物の白色固体(436.5mg,88.6%)を得た。

¹H-NMR (DMSO-d₆): δ 3. 96 (3H, s), 6. 36 (2H, d d, J=2. 4, 2. 1Hz), 7. 37 (2H, d d, J=2. 4, 2. 1Hz), 7. 42 (1H, d, J=9. 0Hz), 7. 85 (1H, s), 8. 80 (1H, d d, J=9. 0, 2. 4Hz) 8. 18 (1H, d, J=2. 7Hz), 8. 38 (2H, s), 10. 92 (1H, s).

(2) N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ピロール-1-スルホニル)ベンズアミド(化合物番号87)

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-(ピロール-1-スルホニル)ベンズアミドを用いて例80(5)と同様の操作を行い、標題化合物を得た。

収率:79.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 6.36 (2H, dd, J=2.4, 2.

1Hz), 7. 18 (1H, d, J=9. 0Hz), 7. 34 (2H, dd, J=2. 4, 2. 1Hz), 7. 86 (1H, s), 7. 99 (1H, dd, J=9. 0, 2. 7Hz) 8. 31 (1H, d, J=2. 7Hz), 8. 42 (2H, s), 10. 98 (1H, s).

例89:化合物番号88の化合物の製造

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ニトロベンズアミド(化合物番号53)を用いて例84(4)と同様の操作を行い、標題化合物を得た。

収率:98.0%

¹H-NMR (DMSO-d₆): δ 4. 79 (2H, brs), 6. 76 (1H, d, J=2. 1Hz), 6. 76 (1H, s), 7. 09 (1H, dd, J=2. 1, 1. 2Hz), 7. 80 (1H, s), 8. 45 (2H, s), 10. 30 (1H, br), 10. 84 (1H, s).

例90:化合物番号89の化合物の製造

原料として、5-ジメチルアミノサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:28.8%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 2. 85 (6H, s), 6. 92 (1H, d, J=9. 0Hz), 7. 01 (1H, dd, J=8. 7, 3. 0Hz), 7. 22 (1H, d, J=3. 0Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 62 (1H, s), 10. 83 (1H, s).

例91:化合物番号90の化合物の製造

アルゴン雰囲気下、5-アミノ-N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシベンズアミド (化合物番号 <math>88;364mg,1mmol)、ピリジン (95mg,1.2mmol)、テトラヒドロフラン (10mL) の混合物を氷冷し、ベンゾイルクロリド (155mg,1.1mmol) を加え、1時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、

飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色固体(121mg, 25.7%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 51-7. 62 (3H, m), 7. 81 (1H, dd, J=8.7, 2.4Hz), 7. 83 (1H, s), 7. 98 (2H, d, J=7.2Hz), 8. 22 (1H, d, J=2.4Hz), 8. 49 (2H, s), 10. 27 (1H, s), 10. 8 9 (1H, s), 11. 07 (1H, s).

例92:化合物番号91の化合物の製造

 $5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号88;100.2 mg,0.28 mm o 1)をアセトニトリル(4 m 1) 溶かし、<math>4-ジメチルアミノピリジン(3 m g),フェニルイソシアネート(30 <math>\mu$ 1,0.28 mm o 1)を加え、60%で5分間攪拌した。反応混合物を濃縮し、残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1)で精製して標題化合物の薄褐色固体(54.8 mg,41.2%)を得た。

¹H-NMR (DMSO-d₆): δ 6. 93-6. 98 (1H, m), 6. 97 (1H, d, J=9. 3Hz), 7. 27 (2H, t, J=7. 8Hz), 7. 3 4-7. 46 (2H, m), 7. 50 (1H, dd, J=9. 0, 2. 4Hz), 7. 83 (1H, s), 7. 88 (1H, s), 8. 47 (2H, s), 8. 56 (1H, s), 8. 63 (1H, s), 10. 87 (1H, s), 10. 89 (1H, s). 例93: 化合物番号92の化合物の製造

原料として、5-アミノーN-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号88)、及びフェニルイソチオシアネートを用いて例92と同様の操作を行い、標題化合物を得た。

収率:66.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.00 (1H, d, J=8.4Hz), 7.

13 (1H, t t, J=7. 5, 1. 2Hz), 7. 34 (2H, t, J=7. 8 Hz), 7. 45-7. 51 (3H, m), 7. 84 (1H, s), 7. 87 (1H, d, J=2. 7Hz), 8. 47 (2H, s), 9. 65 (1H, s), 9. 74 (1 H, s), 10. 84 (1H, s), 11. 32 (1H, s).

例94:化合物番号93の化合物の製造

原料として、5 - [(4-ニトロフェニル)ジアゼニル] サリチル酸、及び3,5 - ビス (トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:11.3%

¹H-NMR (DMSO-d₆): δ 7. 23 (1H, d, J=9.0Hz), 7. 87 (1H, s), 8. 06 (2H, d, J=9.0Hz), 8. 10 (1H, d d, J=9.0, 2.4Hz), 8. 44 (2H, d, J=9.0Hz), 8. 5 0 (2H, s), 8. 53 (1H, d, J=2.4Hz), 11. 13 (1H, s), 12. 14 (1H, br).

例95:化合物番号94の化合物の製造

例96:化合物番号96の化合物の製造

原料として、5 - ({[(4-ピリジン-2-イル) スルファモイル] フェニル} ジ アゼニル) サリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率: 7. 9%

¹H-NMR (DMSO-d₆): δ 6. 87 (1H, t, J=6.0Hz), 7. 22 (1H, d, J=8.7Hz), 7. 21-7. 23 (1H, m), 7. 77 (1H, t, J=8.4Hz), 7. 87 (1H, s), 7. 95-7. 98 (3 H, m), 8. 03-8. 07 (4H, m), 8. 47 (1H, d, J=2.4Hz), 8. 49 (2H, s), 11. 14 (1H, s), 12. 03 (1H, br).

N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-クロロ-2-ヒドロキシベンズアミド (化合物番号 <math>50; 1.51g, 3mmol)、ピリジン (2)

85mg, 3.6mmol)をテトラヒドロフラン(6mL)に溶解し、氷冷下、アセチルクロリド(234mg, 3.3mmol)を滴下し、室温で1時間撹拌した。溶媒を減圧留去し、残渣に2規定塩酸を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をnーヘキサン/酢酸エチルから再結晶して、標題化合物の白色固体(1.06g,83.0%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 22 (3H, s), 7. 35 (1H, d, J=9. 0Hz), 7. 71 (1H, dd, J=8. 7, 2. 7Hz), 7. 85 (1H, s), 7. 88 (1H, d, J=2. 7Hz), 8. 37 (2H, s), 1 1. 05 (1H, brs).

以下の実施例において例96の方法が引用されている場合、塩基としては、ピリジン、トリエチルアミン等の有機塩基を用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン、ベンゼン等の溶媒を用いた。

例97:化合物番号97の化合物の製造

(1) 4ーアセチルアミノー5ークロロー2ーメトキシ安息香酸 原料として、4ーアセチルアミノー5ークロロー2ーメトキシ安息香酸 メチル エステルを用いて例82と同様な操作を行い、標題化合物を得た。

収率:88.0%

¹H-NMR (DMSO-d₆): δ 2. 16 (3H, s), 3. 78 (3H, s), 7. 72 (1H, s), 7. 77 (1H, s), 9. 57 (1H, s), 12. 74 (1H, s).

(2) 4-アセチルアミノ-N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-クロロ-2-メトキシベンズアミド

原料として、4-アセチルアミノ-5-クロロ-2-メトキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例24と同様な操作を行い、 標題化合物を得た。

収率:23.8%

¹H-NMR (DMSO-d₆): δ 2. 17 (3H, s), 3. 89 (3H, s), 7. 77-7. 82 (3H, m), 8. 45-8. 49 (2H, m), 9. 66 (1H, s), 10. 68 (1H, s).

(3) 4ーアセチルアミノーNー[3,5ービス (トリフルオロメチル)フェニル]ー5ークロロー2ーヒドロキシベンズアミド (化合物番号97)原料として、4ーアセチルアミノーNー[3,5ービス (トリフルオロメチル)フェニル]ー5ークロロー2ーメトキシベンズアミドを用いて例80(5)と同様の操作を行い、標題化合物を得た。

収率:72.8%

¹H-NMR (DMSO-d₆): δ 2. 17 (3H, s), 7. 75 (1H, s), 7. 82 (1H, s), 7. 95 (1H, s), 8. 44 (2H, s), 9. 45 (1H, s), 11. 16 (1H, brs), 11. 63 (1H, brs).

例98:化合物番号98の化合物の製造

原料として、4-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:55.8%

¹H-NMR (DMSO-d₆): δ 7. 05-7. 08 (2H, m), 7. 84 -7. 87 (2H, m), 8. 45 (2H, s), 10. 84 (1H, s) 11. 64 (1H, brs).

例99:化合物番号99の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) -2-ブロモアニリンを用いて例16と同様な操作を行い、標題化合物を得た。 収率:14.5%

¹H-NMR (DMSO-d₆): δ 7. 11 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=9.0, 2.7Hz), 7. 91 (1H, d, J=1.8 Hz), 7. 98 (1H, d, J=2.7Hz), 9.03 (1H, d, J=1.8 Hz), 11.26 (1H, brs).

例100:化合物番号100の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:3.6%

¹H-NMR (CDCl₃): δ 7. 03 (1H, d, J=8. 7Hz), 7. 4 3-7. 48 (2H, m), 6. 61 (1H, d, J=8. 1Hz), 7. 85 (1 H, d, J=8. 4Hz), 8. 36 (1H, br s), 8. 60 (1H, s), 11. 31 (1H, s).

例101:化合物番号101の化合物の製造

原料として、5-ブロモサリチル酸、及び2,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:24.0%

¹H-NMR (DMSO-d₆): δ 7.03 (1H, d, J=8.7Hz), 7.65 (1H, dd, J=8.7, 2.7Hz), 7.76 (1H, d, J=8.4 Hz), 8.03 (1H, d, J=8.1Hz) 8.11 (1H, d, J=2.7 Hz), 8.74 (1H, s), 11.02 (1H, s), 12.34 (1H, s). 例102:化合物番号102の化合物の製造

原料として、5-メチルサリチル酸、及び2,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:1.5%

¹H-NMR (CDCl₃): δ 2. 36 (3H, s), 6. 97 (1H, d, J=8. 4Hz), 7. 23 (1H, s), 7. 32 (1H, dd, J=8. 4, 1. 5Hz), 7. 57 (1H, d, J=8. 4Hz), 7. 83 (1H, d, J=8. 4Hz), 8. 46 (1H, s), 8. 69 (1H, s), 11. 19 (1H, s). 例103: 化合物番号103の化合物の製造

原料として、N-[2,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド(化合物番号<math>100)、及びアセチルクロリドを

用いて例96と同様の操作を行い、標題化合物を得た。

収率: 6.6%

 $^{1}H-NMR$ (CDCl₃): δ 2. 35 (3H, s), 7. 17 (1H, d, J = 8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 4Hz), 7. 55 (1H, d, J=8. 1Hz), 7. 80 (1H, d, J=8. 1Hz), 7. 95 (1H, d, J=2. 4Hz), 8. 60 (1H, s), 8. 73 (1H, s).

例104:化合物番号104の化合物の製造

原料として、5-クロロサリチル酸、及び2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:58.0%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 42 (1H, t, J=7.5Hz), 7. 52 (1H, dd, J=8.7, 2.7 Hz), 7. 74 (1H, t, J=8.1Hz), 7. 77 (1H, t, J=8. 1Hz), 7. 99 (1H, d, J=2.7Hz), 8. 18 (1H, d, J=8. 1Hz), 10. 76 (1H, s), 12. 22 (1H, s).

例105:化合物番号105の化合物の製造

原料として、5-クロロサリチル酸、及び4-クロロ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 80-7. 85 (2H, m), 7. 97 (1H, d, J=2.7Hz), 8. 26 (1H, d, J=8.4Hz), 10. 80 (1H, s), 12. 26 (1H, s).

例106:化合物番号106の化合物の製造

原料として、5-ブロモサリチル酸、及び3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:50,3%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8. 7Hz), 7. 48-7. 52 (1H, m), 7. 59 (1H, dd, J=8. 7, 2. 7Hz), 7. 62 (1H, t, J=8. 1Hz), 7. 92-7. 96 (1H, m), 8. 02 (1H, d, J=2. 4Hz), 8. 20 (1H, s), 10. 64 (1H, s), 11. 60 (1H, s).

例107:化合物番号107の化合物の製造

原料として、5-クロロサリチル酸、及び2-フルオロ-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率 71.7% 白色固体

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=9.0Hz), 7. 46 (1H, t, J=7.8Hz), 7. 52 (1H, dd, J=9.0, 2.7 Hz), 7. 58 (1H, t, J=7.2Hz), 7. 96 (1H, d, J=2. 7Hz), 8. 49 (1H, t, J=7.2Hz), 10. 82 (1H, s), 12. 13 (1H, brs).

例108:化合物番号108の化合物の製造

原料として、5-クロロサリチル酸、及び4-フルオロ-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率 72.1% 白色固体

¹H-NMR (DMSO-d₆): 7. 03 (1H, d, J=9. 0Hz), 7. 4 8 (1H, dd, J=8. 7, 2. 7Hz), 7. 56 (1H, d, J=9. 9H z), 7. 90 (1H, d, J=2. 7Hz), 7. 99-8. 03 (1H, m), 8. 21 (1H, dd, J=6. 6, 2. 4Hz), 10. 63 (1H, s), 1 1. 58 (1H, s).

例109:化合物番号109の化合物の製造

原料として、5-プロモサリチル酸、及び4-クロロ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:37.4%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.7Hz), 7. 59 (1H, dd, J=8.7, 2.4Hz), 7. 73 (1H, d, J=8.7 Hz), 7. 98 (1H, d, J=2.4Hz), 8. 00 (1H, dd, J=8.7, 2.4Hz), 8. 31 (1H, d, J=2.4Hz), 10. 68 (1H, s), 11. 52 (1H, brs).

例110:化合物番号110の化合物の製造

原料として、5-クロロサリチル酸、及び3-フルオロ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:62.0%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 42 (1H, d, J=8.4Hz), 7. 48 (1H, dd, J=9.0, 3.0 Hz), 7. 85 (1H, d, J=2.4Hz), 7. 94 (1H, dd, J=1 1.4, 2.1Hz), 7. 99 (1H, s), 10. 73 (1H, s), 11. 46 (1H, s).

例111:化合物番号111の化合物の製造

原料として、5-プロモサリチル酸、及び3-プロモ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

¹H-NMR (DMSO-d₆): δ 6. 99 (1H, d, J=9. 0Hz), 7. 60 (1H, dd, J=9. 0, 2. 4Hz), 7. 72 (1H, s), 7. 97 (1H, d, J=2. 7Hz), 8. 16 (1H, s), 8. 28 (1H, s), 10. 69 (1H, s), 11. 45 (1H, s).

例112:化合物番号112の化合物の製造。

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.9%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7.07 (1H, d, J=9.0Hz), 7.

52 (1H, dd, J=9. 0, 2. 7Hz), 7. 58-7. 61 (2H, m), 7. 95 (1H, d, J=2. 7Hz), 8. 71 (1H, d, J=7. 5Hz), 10. 90 (1H, s), 12. 23 (1H, s).

例113:化合物番号113の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5- (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

· 収率: 49.1%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=9.0, 3.0Hz), 7. 55 (1H, dd, J=8.4, 2.7Hz), 7. 83 (1H, d, J=8.4Hz), 7. 98 (1H, d, J=3.0Hz), 8. 88 (1H, d, J=2.7Hz), 11. 14 (1H, s), 12. 39 (1H, s).

例114:化合物番号114の化合物の製造

原料として、5-ブロモサリチル酸、及び2-クロロ-5- (トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:34.2%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 56 (1H, ddd, J=8.1, 2.4, 1.2Hz), 7. 64 (1H, dd, J=8.7, 2.7Hz), 7. 83 (1H, dd, J=8.1, 1.2Hz), 8. 11 (1H, d, J=2.7Hz), 8. 87 (1H, d, J=2.4Hz), 11. 12 (1H, s), 12. 42 (1H, s).

例115:化合物番号115の化合物の製造

原料として、5-クロロサリチル酸、及び4-ニトロ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.8%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=9.0, 2.7Hz), 7.81 (1H, d, J=2.7

Hz), 8. 23-8. 24 (2H, m), 8. 43 (1H, d, J=1. 2Hz), 11. 02 (1H, s), 11. 30 (1H, br).

例116:化合物番号116の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.1%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, dd, J=8.4, 1.8Hz), 7. 95 (1H, d, J=3.0Hz), 8. 36 (1H, d, J=8.7Hz), 9. 01 (1H, d, J=1.8Hz), 12. 04 (1H, s), 12. 20 (1H, s).

例117:化合物番号117の化合物の製造

原料として、5-ブロモサリチル酸、及び4-シアノ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:49.7%

¹H-NMR (DMSO-d₆): δ 6. 99 (1H, d, J=8. 7Hz), 7. 60 (1H, dd, J=8. 7, 2. 4Hz), 7. 92 (1H, d, J=2. 7Hz), 8. 16 (2H, s), 8. 42 (1H, s), 10. 93 (1H, s), 11. 36 (1H, s).

例118:化合物番号118の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:14.5%

¹H-NMR (DMSO-d₆): δ 2. 36 (3H, d, J=1. 2Hz), 7. 05 (1H, d, J=8. 7Hz), 7. 46 (1H, t, J=8. 1Hz), 7. 50 (1H, dd, J=8. 7, 2. 7Hz), 7. 60 (1H, d, J=7. 2 Hz), 7. 99 (1H, d, J=7. 2Hz), 8. 00 (1H, d, J=2.

4Hz), 10. 43 (1H, s), 12. 08 (1H, s).

例119:化合物番号119の化合物の製造

原料として、5-クロロサリチル酸、及び4-メチル-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:80.2%

¹H-NMR (DMSO-d₆): δ 7. 01 (1H, d, J=8.7Hz), 7. 44 (1H, d, J=8.4Hz), 7. 47 (1H, dd, J=9.0, 2.7 Hz), 7. 84 (1H, dd, J=8.4, 2.1Hz), 7. 92 (1H, d, J=2.7Hz), 8. 13 (1H, d, J=2.1Hz), 10. 65 (1H, s), 11. 68 (1H, br).

例120:化合物番号120の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 39 (3H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 44-7. 54 (3H, m), 7. 99 (1H, d, J=3. 0Hz), 8. 43 (1H, s), 10. 52 (1H, s), 12. 17 (1H, brs).

例121:化合物番号121の化合物の製造

原料として、5-クロロサリチル酸、及び4-メトキシ-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:79.1%

¹H-NMR (DMSO-d₆): δ 3. 89 (3H, s), 7. 02 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=9. 0Hz), 7. 48 (1H, d d, J=9. 0, 3. 0Hz), 7. 92 (1H, d d, J=9. 0, 2. 4Hz), 7. 96 (1H, d, J=2. 7Hz), 8. 04 (1H, d, J=2. 4Hz), 10. 47 (1H, s), 11. 78 (1H, s).

例122:化合物番号122の化合物の製造

原料として、5-ブロモサリチル酸、及び3-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:58.8%

¹H-NMR (DMSO-d₆): δ 3. 85 (3H, s), 6. 98 (1H, d, J=8. 7Hz), 7. 03 (1H, s), 7. 57-7. 61 (2H, m), 7. 77 (1H, s), 8. 00 (1H, d, J=2. 4Hz), 10. 57 (1H, s), 11. 56 (1H, s).

例123:化合物番号123の化合物の製造

原料として、5-ブロモサリチル酸、及び2-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:71.3%

¹H-NMR (DMSO-d₆): δ 3. 99 (3H, s), 7. 03 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=8. 7Hz), 7. 47-7. 51 (1H, m), 7. 61 (1H, dd, J=9. 0, 2. 4Hz), 8. 10 (1H, d, J=2. 4Hz), 8. 82 (1H, d, J=2. 1Hz) 11. 03 (1H, s), 12. 19 (1H, s).

例124:化合物番号124の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:83.4%

¹H-NMR (DMSO-d₆): δ 4. 00 (3H, s), 7. 08 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=8. 7Hz), 7. 47-7. 52 (2H, m), 7. 97 (1H, d, J=2. 7Hz), 8. 83 (1H, d, J=2. 4Hz), 11. 05 (1H, s), 12. 17 (1H, s).

例125:化合物番号125の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチルスルファニル-5-(トリ

フルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:79.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 57 (3H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 4Hz), 7. 55 (1H, dd, J=8. 4, 1. 5Hz), 7. 63 (1H, d, J=8. 1Hz), 8. 00 (1H, d, J=2. 4Hz), 8. 48 (1H, d, J=1. 5Hz), 10. 79 (1H, s), 12. 26 (1H, s).

例126:化合物番号126の化合物の製造

原料として、5-ブロモサリチル酸、及び2-(1-ピロリジニル)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.5%

¹H-NMR (DMSO-d₆): δ 1. 86-1. 91 (4H, m), 3. 20 -3. 26 (4H, m), 6. 99 (1H, d, J=8. 7Hz), 7. 07 (1 H, d, J=8. 7Hz), 7. 43 (1H, dd, J=8. 7, 2. 1Hz), 7. 62 (1H, dd, J=8. 7, 2. 4Hz), 7. 94 (1H, d, J=2. 1Hz), 8. 17 (1H, d, J=2. 4Hz), 10. 54 (1H, s), 12. 21 (1H, s).

例127:化合物番号127の化合物の製造

原料として、5-ブロモサリチル酸、及び2-モルホリノ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 90 (4H, dd, J=4. 5, 4. 2Hz), 3. 84 (4H, dd, J=4. 8, 4. 2Hz), 7. 09 (1H, d, J=8. 4Hz), 7. 48 (2H, s), 7. 61 (1H, dd, J=8. 4, 2. 7Hz), 8. 13 (1H, d, J=2. 7Hz), 8. 90 (1H, s),

-11. 21 (1H, s), 12. 04 (1H, s).

例128:化合物番号128の化合物の製造

原料として、5-クロロサリチル酸、及び4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.0%、白色固体

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 74 (2H, d, J=8.7 Hz), 7. 90 (1H, d, J=2.7Hz), 7. 95 (2H, d, J=9.0Hz), 10. 65 (1H, s), 11. 59 (1H, s).

例129:化合物番号129の化合物の製造

原料として、5-ブロモサリチル酸、及び2-クロロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:34.9%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8. 7Hz), 7. 64 (1H, dd, J=8. 7, 2. 7Hz), 7. 79 (1H, dd, J=9. 0, 2. 1Hz), 7. 99 (1H, d, J=2. 1Hz), 8. 11 (1H, d, J=2. 4Hz), 8. 73 (1H, d, J=9. 0Hz), 11. 15 (1H, s), 12. 42 (1H, s).

例130:化合物番号130の化合物の製造

原料として、5-クロローN-[2-クロロー5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号113)、及びアセチルクロリドを用いて例96と同様の操作を行い、標題化合物を得た。

収率:34.0%

¹H-NMR (CDCl₃): δ 2. 39 (3H, s), 7. 16 (1H, d, J = 8. 7Hz), 7. 37 (1H, ddd, J=8. 7, 2. 4, 0. 6Hz), 7. 51-7. 56 (2H, m), 7. 97 (1H, d, J=3. 0Hz), 8. 85 (1H, s), 8. 94 (1H, d, J=1. 8Hz).

例131:化合物番号131の化合物の製造

原料として、5-ニトロサリチル酸、及び2-クロロ-5- (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:31.1%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=9. 3Hz), 7. 52 (1H, dd, J=8. 4, 2. 1Hz), 7. 81 (1H, d, J=8. 4 Hz), 8. 21 (1H, dd, J=9. 0, 3. 3Hz), 8. 82 (1H, d, J=3. 0Hz), 8. 93 (1H, d, J=2. 4Hz), 12. 18 (1H, s).

例132:化合物番号132の化合物の製造

原料として、5-メチルサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:15.8%

¹H-NMR (CDCl₃): δ 2. 36 (3H, s), 6. 95 (1H, d, J = 8. 1Hz), 7. 26-7. 31 (2H, m), 7. 37 (1H, dd, J = 8. 4, 1. 8Hz), 7. 56 (1H, d, J = 8. 4Hz), 8. 65 (1H, br s), 8. 80 (1H, d, J = 1. 8Hz), 11. 33 (1H, br s). 例133: 化合物番号133の化合物の製造

原料として、5-メトキシサリチル酸、及び2-クロロ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:56.4%

¹H-NMR (DMSO-d₆): δ 3. 77 (3H, s), 6. 91 (1H, d, J=9. 0Hz), 7. 07 (1H, dd, J=8. 7, 3. 0Hz), 7. 20 (1H, t, J=1. 8Hz), 7. 52-7. 54 (3H, m), 10. 33 (1H, s), 11. 44 (1H, s).

例134:化合物番号134の化合物の製造

原料として、5-メチルサリチル酸、及び4-クロロ-3- (トリフルオロメチ

ル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:70.4%

¹H-NMR (DMSO-d₆): δ 2. 29 (3H, s), 6. 91 (1H, d, J=8. 3Hz), 7. 27 (1H, ddd, J=8. 3, 2. 2, 0. 6Hz), 7. 71 (1H, d, J=2. 2Hz), 7. 72 (1H, d, J=8. 5Hz), 8. 02 (1H, dd, J=8. 5, 2. 5Hz), 8. 33 (1H, d, J=2. 5Hz), 10. 64 (1H, s), 11. 25 (1H, s).

例135:化合物番号135の化合物の製造

原料として、5-メチルサリチル酸、及び4-メチル-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:63.7%

¹H-NMR (DMSO-d₆): δ 2. 29 (3H, s), 2. 42 (3H, s), 6. 89 (1H, d, J=8. 4Hz), 7. 26 (1H, ddd, J=8. 4, 2. 1, 0. 6Hz), 7. 44 (1H, d, J=8. 1Hz), 7. 75 (1H, d, J=2. 1Hz), 7. 86 (1H, dd, J=8. 4, 1. 8Hz), 8. 13 (1H. d, J=2. 1Hz), 10. 50 (1H, s), 11. 42 (1H, s).

例136:化合物番号136の化合物の製造

原料として、5-メチルサリチル酸、及び2-メチル-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:14.2%、白色固体

¹H-NMR (DMSO-d₆): δ 2. 29 (3H, s), 2. 38 (3H, s), 6. 94 (1H, d, J=8. 4Hz), 7. 27 (1H, ddd, J=8. 4, 2. 4, 0. 6Hz), 7. 44 (1H, dd, J=8. 1, 1. 5Hz), 7. 52 (1H, d, J=7. 8Hz), 7. 84 (1H, d, J=2. 4Hz), 8. 46 (1H, d, J=1. 5Hz), 10. 55 (1H, s), 11. 72 (1H, s).

例137:化合物番号137の化合物の製造

原料として、5-メチルサリチル酸、及び4-メトキシ-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.1%、微黄色固体

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 35 (3H, s), 3. 89 (3H, s), 6. 88 (1H, d, J=8. 4Hz), 7. 26 (1H, dd, J=8. 1, 1. 8Hz), 7. 30 (1H, d, J=8. 4Hz), 7. 77 (1H, d, J=2. 1Hz), 7. 92 (1H, dd, J=9. 0, 2. 7Hz), 8. 04 (1H, d, J=2. 7Hz), 10. 42 (1H, s), 11. 54 (1H, s).

原料として、5-メチルサリチル酸、及び2-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.9%

¹H-NMR (CDCl₃): δ 2. 35 (3H, s), 4. 02 (3H, s), 6. 93 (1H, d, J=9. 0Hz), 6. 98 (1H, d, J=8. 4Hz), 7. 25-7. 28 (2H, m), 7. 36 (1H, ddd, J=8. 4, 2. 1, 0. 9Hz), 8. 65 (1H, br s), 8. 73 (1H, d, J=2. 1Hz), 11. 69 (1H, s).

例139:化合物番号139の化合物の製造

例138:化合物番号138の化合物の製造

原料として、5 ーブロモサリチル酸、及びアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.8%

m p $2^{1}29-230$ °C.

¹H-NMR (DMSO-d₆): δ 6. 96 (1H, d, J=9.0Hz), 7. 12-7. 18 (1H, m), 7. 35-7. 41 (2H, m), 7. 58 (1H, dd, J=8. 7, 2.7Hz), 7. 67-7. 71 (2H, m), 8. 08 (1H, d, J=2.7Hz), 10. 43 (1H, s), 11. 87 (1H, s).

例140:化合物番号140の化合物の製造)

原料として、5-プロモサリチル酸、及び3-クロロアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:63.1%

mp 231-232°C.

¹H-NMR (DMSO-d₆): δ 6. 97 (1H, d, J=8.7Hz), 7. 19-7. 22 (1H, m), 7. 38-7. 43 (1H, m), 7. 57-7. 63 (2H, m), 7. 91-7. 92 (1H, m), 8. 01 (1H, d, J=2.7Hz), 10. 49 (1H, s), 11. 64 (1H, s).

例141:化合物番号141の化合物

本化合物は、市販化合物である。

販売元:東京化成社

カタログコード番号:B0897

例142:化合物番号142の化合物の製造

原料として、5-クロロサリチル酸、及び2, 5-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:10.8%

¹H-NMR (DMSO- d_6): δ 7. 08 (1H, d, J=9.0Hz), 7. 24-7. 28 (1H, m), 7. 50-7. 54 (1H, m), 7. 61 (1H, dd, J=9.0, 3.0Hz), 7. 97 (1H, d, J=2.7Hz), 8. 58 (1H, d, J=2.4Hz), 11. 02 (1H, s), 12. 35 (1H, br s).

例143:化合物番号143の化合物の製造

原料として、5-プロモサリチル酸、及び3,4-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:58.2%

mp 249-251°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 97 (1H, d, J=8.7Hz), 7. 57-7. 70 (3H, m), 7. 98 (1H, d, J=2.7Hz), 8. 10 (1H, d, J=2.4Hz), 10. 54 (1H, s), 11. 55 (1H, s).

例144:化合物番号144の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:36.3%

mp 259-261°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 96-7. 04 (2H, m), 7. 45 -7. 54 (2H, m), 7. 58 (1H, dd, J=8. 7, 2. 7Hz), 7. 94 (1H, d, J=2. 7Hz), 10. 60 (1H, s) 11. 48 (1H, s).

例145:化合物番号172の化合物の製造

原料として、O-アセチルサリチル酸クロリド、及び3,5-ジクロロアニリンを用いて例2(1)と同様の操作を行い、標題化合物を得た。

収率:73.5%

mp 167-168°C.

 $^{1}H-NMR$ (CDC1₃): δ 2. 35 (3H, s), 7. 14-7. 18 (2H, m), 7. 35-7. 40 (1H, m), 7. 52-7. 57 (3H, m), 7. 81 (1H, dd, J=7. 8, 1. 8Hz), 8. 05 (1H, brs).

例146:化合物番号145の化合物の製造

原料として、2-アセトキシ-N-(3, 5-ジクロロフェニル)ベンズアミド (化合物番号172)を用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率:60.3%

mp 218-219°C.

 $^{1}H-NMR$ (DMSO- d_{6}): δ 6. 95-7. 02 (2H, m), 7. 35

WO₂03/103647 PCT/JP03/07129 ...

-7. 36 (1H, m), 7. 42-7. 47 (1H, m), 7. 83-7. 87 (3H, m), 10. 54 (1H, s), 11. 35 (1H, s).

例147:化合物番号146の化合物の製造

原料として、5-フルオロサリチル酸、及び3,5-ジクロロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:33.3%

mp 258-260°C.

¹H-NMR (DMSO-d₆): δ 7. 00-7. 05 (1H, m), 7. 28 -7. 37 (2H, m), 7. 63 (1H, dd, J=9. 3, 3. 3Hz), 7. 84 (2H, d, J=2. 1Hz), 10. 56 (1H, s), 11. 23 (1H, s).

例148:化合物番号147の化合物の製造

原料として、5 ークロロサリチル酸、及び3,5 ージクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:41.2%

¹H-NMR (DMSO- d_6): δ 7. 03 (1H, d, J=9.0Hz), 7. 36-7. 37 (1H, m), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 83-7. 84 (3H, m), 10. 56 (1H, s), 11. 44 (1H, s).

例149:化合物番号148の化合物の製造

原料として、5 ーブロモサリチル酸、及び3,5 ージクロロアニリンを用いて例 16 と同様の操作を行い、標題化合物を得た。

収率:61.6%

mp $243-244^{\circ}$ C.

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8. 7Hz), 7. 36-7. 37 (1H, m), 7. 59 (1H, dd, J=9. 0, 2. 4Hz), 7. 83 (2H, d, J=1. 8Hz), 7. 95 (1H, d, J=2. 4Hz),

10. 56 (1H, s), 11. 46 (1H, s).

例150:化合物番号149の化合物の製造

原料として、5-ヨードサリチル酸、及び3,5-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:65.4%

mp 244-245°C.

¹H-NMR (DMSO-d₆): δ 6. 84 (1H, d, J=9.0Hz), 7. 35-7. 37 (1H, m), 7. 72 (1H, dd, J=9.0, 2.1 Hz), 7. 83 (2H, d, J=1.8Hz), 8. 09 (1H, d, J=2. 1Hz), 10. 55 (1H, s), 11. 45 (1H, s).

例151:化合物番号150の化合物の製造

原料として、3,5-ジブロモサリチル酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.2%

mp 181-182°C.

¹H-NMR (DMSO-d₆): δ 7. 42-7. 43 (1H, m), 7. 80 (2H, d, J=1. 8Hz), 8. 03 (1H, d, J=2. 1Hz), 8. 1 7 (1H, d, J=2. 1Hz), 10. 82 (1H, s).

例152:化合物番号151の化合物の製造

原料として、4-クロロサリチル酸、及び3,5-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:57.2%

mp 255-256°C.

¹H-NMR (DMSO-d₆): δ 7. 03-7. 06 (2H, m), 7. 34 -7. 36 (1H, m), 7. 82-7. 85 (3H, m), 10. 51 (1H, s), 11. 70 (1H, brs).

例153:化合物番号152の化合物の製造

原料として、5-ニトロサリチル酸、及び3,5-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:83.1%

mp 232-233℃.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 16 (1H, d, J=9.6Hz), 7. 37-7. 39 (1H, m), 7. 84 (1H, d, J=2.1Hz), 8. 29 (1H, dd, J=9.0, 3.0Hz), 8. 65 (1H, d, J=3.0Hz), 10. 83 (1H, s).

例154:化合物番号153の化合物の製造

原料として、5-メチルサリチル酸、及び3,5-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:71.0%

mp 216-217°C.

¹H-NMR (DMSO-d₆): δ 2. 28 (3H, s), 6. 90 (1H, d, J=8. 4Hz), 7. 26 (1H, dd, J=8. 7, 1. 8Hz), 7. 34-7. 36 (1H, m), 7. 67 (1H, d, J=1. 5Hz), 7. 85 (2H, d, J=1. 8Hz), 10. 52 (1H, s), 11. 15 (1H, s). 例155: 化合物番号154の化合物の製造

原料として、5-メトキシサリチル酸、及び3,5-ジクロロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:29.8%

mp 230-232°C.

¹H-NMR (DMSO-d₆): δ 3.76 (3H, s), 6.95 (1H, d, J=8.7Hz), 7.08 (1H, dd, J=9.0, 3.0Hz), 7.35-7.36 (1H, m), 7.40 (1H, d, J=3.0Hz), 7.85 (2H, d, J=1.5Hz), 10.55 (1H, s), 10.95 (1H, s). 例156:化合物番号155の化合物の製造

原料として、5-ブロモサリチル酸、及び3,4,5-トリクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:78.6%

mp 297-299°C.

¹H-NMR (DMSO-d₆): δ 6.98 (1H, d, J=9.0Hz), 7.58 (1H, dd, J=8.4, 2.4Hz), 7.95 (1H, d, J=2.4Hz), 8.03 (1H, s), 10.58 (1H, s), 11.49 (1H, s). 例157:化合物番号156の化合物の製造

原料として、5-プロモサリチル酸、及び3,5-ジクロロ-4-ヒドロキシア ニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 22.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 96 (1H, d, J=8.7Hz), 7. 58 (1H, dd, J=8.7, 2.4Hz), 7. 76 (2H, s), 8. 01 (1H, d, J=2.4Hz), 10. 03 (1H, s), 10. 36 (1H, s), 11. 67 (1H, brs).

例158:化合物番号157の化合物の製造

原料として、5-クロロサリチル酸、及び2,3,4,5,6-ペンタフルオロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:58.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 91 (1H, d, J=2.7Hz), 10.38 (1H, brs), 11.74 (1H, brs).

例159:化合物番号158の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ジニトロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:32.2%

mp 258-260°C.

¹H-NMR (DMSO-d₆): δ 6. 98-7. 02 (1H, m), 7. 59 -7. 63 (1H, m), 7. 96-7. 97 (1H, m), 8. 56-8. 58 (1H, m), 9. 03-9. 05 (2H, m), 11. 04 (1H, s), 11. 39 (1H, brs).

例160:化合物番号159の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ビス[(1,1-ジメチル)エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.7%

¹H-NMR (DMSO-d₆): δ 1. 27 (9H, s), 1. 33 (9H, s), 7. 04 (1H, d, J=9. 0Hz), 7. 26 (1H, dd, J=8. 4, 2. 1Hz), 7. 35-7. 38 (2H, m), 7. 49 (1H, dd, J=8. 7, 2. 7Hz), 8. 07 (1H, d, J=2. 4Hz), 10. 22 (1H, s), 12. 38 (1H, br s).

例161:化合物番号160の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1,1-ジメチル) エチル] - 2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:89.5%

¹H-NMR (DMSO-d₆): δ 1. 28 (9H, s), 3. 33 (3H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 11 (1H, dd, J=8. 7, 2. 4Hz), 7. 47 (1H, dd, J= 9. 0, 3. 0Hz), 7. 99 (1H, d, J=3. 0Hz), 8. 49 (1H, d, J=2. 4Hz), 10. 78 (1H, s), 12. 03 (1H, s).

例162:化合物番号161の化合物の製造

原料として、5 ープロモサリチル酸、及び3,5 ージメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:58.1%

mp 188-190°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 28 (6H, s), 6. 80 (1H, s), 6. 96 (1H, d, J=8. 7Hz), 7. 33 (2H, s), 7. 58 (1H, dd, J=9. 0, 2. 4Hz), 8. 10 (1H, d, J=2. 4Hz), 10. 29 (1H, s), 11. 93 (1H, brs).

例163:化合物番号162の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス[(1,1-ジメチル)エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:34.1%

¹H-NMR (CDCl₃): δ 1. 26 (18H, s), 6. 99 (1H, d, J=8. 7Hz), 7. 29 (1H, t, J=1. 8Hz), 7. 39 (1、dd、J=9. 0, 2. 4Hz), 7. 41 (2H, d, J=1. 5Hz), 7. 51 (1H, d, J=2. 1Hz), 7. 81 (1H, br s), 12. 01 (1H, s). 例164:化合物番号163の化合物の製造

原料として、5-プロモサリチル酸、及び3, 5-ビス [(1, 1-ジメチル) エチル] アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 45. 2%

¹H-NMR (DMSO-d₆): δ 1. 30 (18H, s), 6. 95 (1H, d, J=8. 7Hz), 7. 20 (1H, t, J=1. 5Hz), 7. 56 (2H, d, J=1. 5Hz), 7. 58 (1H, dd, J=8. 7, 2. 4Hz), 8. 12 (1H, d, J=2. 7Hz), 10. 39 (1H, s), 11. 98 (1H, s).

例165:化合物番号164の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-3, 5, 5, 8, 8-ペンタメチル-5, 6, 7, 8-テトラヒドロナフタレンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 23 (6H, s), 1. 24 (6H, s),

1. 64 (4H, s), 2. 19 (3H, s), 7. 13 (1H, d, J=9. 0 Hz), 7. 20 (1H, s), 7. 49 (1H, dd, J=8. 7, 2. 7Hz), 7. 67 (1H, s), 8. 04 (1H, d, J=2. 7Hz), 10. 23 (1H, s), 12. 26 (1H, s).

例166:化合物番号165の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノビフェニルを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:75.6%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 35-7. 44 (1H, m), 7. 45-7. 54 (5H, m), 7. 65-7. 68 (2H, m), 7. 72 (1H, dt, J=7. 2, 2.1Hz). 7. 99 (1H, d, J=3.0Hz), 8. 03 (1H, m), 10. 50 (1H, s), 11. 83 (1H, brs).

例167:化合物番号166の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-メトキシビフェニル を用いて例16と同様の操作を行い、標題化合物を得た。

収率:37.0%

¹H-NMR (DMSO-d₆): δ 3. 95 (3H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 20 (1H, d, J=8. 4Hz), 7. 34 (1H, t, J=7. 2Hz), 7. 40-7. 50 (4H, m), 7. 62 (1H, d, J=8. 7Hz), 8. 00 (1H, d, J=3. 0Hz), 8. 77 (1H, d, J=2. 1Hz), 10. 92 (1H, s), 12. 09 (1H, s).

例168:化合物番号167の化合物の製造

原料として、5 ープロモサリチル酸、及び2, 5 ージメトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:39.7%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 72 (3H, s), 3. 84 (3H, s),

6. 66 (1H, ddd, J=9. 0, 3. 0, 0. 6Hz), 6. 99-7. 0 3 (2H, m), 7. 58 (1H, ddd, J=9. 0, 2. 7, 0. 6Hz), 8. 10 (1H, dd, J=2. 4, 0. 6Hz), 8. 12 (1H, d, J=3. 0Hz), 10. 87 (1H, s), 12. 08 (1H, s).

例169:化合物番号168の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ジメトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率: 40.3%

mp 207-209°C.

¹H-NMR (DMSO-d₆): δ 3. 75 (6H, s), 6. 30-6. 32 (1H, m), 6. 94-6. 97 (3H, m), 7. 57 (1H, dd, J=8. 7, 2. 4Hz), 8. 04 (1H, d, J=2. 4Hz), 10. 32 (1H, s), 11. 78 (1H, s).

例170:化合物番号169の化合物の製造

原料として、5-クロロサリチル酸、及び3-アセチルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:80.0%

¹H-NMR (DMSO-d₆): δ 2. 60 (3H, s), 7. 03 (1H, d, J=9. 0Hz), 7. 49 (1H, dd, J=9. 0, 3. 0Hz), 7. 54 (1H, t, J=8. 1Hz), 7. 76 (1H, dq, J=7. 8, 0. 9Hz), 7. 96-8. 00 (2H, m), 8. 30 (1H, t, J=1. 8Hz), 10. 56 (1H, s), 11. 75 (1H, s).

例171:化合物番号170の化合物の製造

原料として、5-ブロモサリチル酸、及び5-アミノイソフタル酸 ジメチルエステルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:74.1%

mp 254-256°C.

¹H-NMR (DMSO-d₆): δ 3. 92 (6H, s), 6. 97 (1H, d, J=9. 0Hz), 7. 60 (1H, dd, J=9. 0, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 8. 24-8. 25 (1H, m), 8. 62 (2H, m), 10. 71 (1H, s), 11. 57 (1H, s).

例172:化合物番号171の化合物

本化合物は、市販化合物である。

販売元:Maybridge社

カタログ番号: RDR 01434

例173:化合物番号173の化合物の製造

原料として、5-メチルサリチル酸、及び2,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:61.1%

 $^{1}H-NMR (DMSO-d_{5}): \delta$ 1. 27 (9H, s), 1. 33 (9H, s),

2. 28 (3H, s), 6. 89 (1H, d, J=8.1Hz), 7. 24 (1H,

d, J = 2, 1 H z), 7, 2 7 (1 H, d, <math>J = 2, 1 H z), 7, 3 2 (1 H, d)

d, J = 2.4 Hz), 7. 37 (1H, d, J = 8.4 Hz), 7. 88 (1H,

d, J=1.5Hz), 10. 15 (1H, s), 11. 98 (1H, br s).

例174:化合物番号174の化合物の製造

原料として、 $N-\{3,5-ビス[(1,1-ジメチル) エチル] フェニル\}-5$ -クロロ-2-ヒドロキシベンズアミド (化合物番号<math>162)、及びアセチルクロリドを用いて例96と同様の操作を行い、標題化合物を得た。

収率:66.1%

¹H-NMR (CDCl₃): δ 1. 34 (18H, s), 2. 36 (3H, s), 7. 12 (1H, d, J=8. 4Hz), 7. 25 (1H, d, J=1. 5Hz), 7. 44 (2H, d, J=1. 2Hz), 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 7. 87 (1H, d, J=2. 4Hz), 7. 98 (1H, s).

例175:化合物番号175の化合物の製造

原料として、5-ニトロサリチル酸、及び3,5-ビス[(1,1-ジメチル)エーチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 46.7%

¹H-NMR (CDCl₃): δ 1. 37 (18H, s), 7. 13 (1H, d, J=9. 3Hz), 7. 32 (1H, t, J=1. 8Hz), 7. 46 (2H, d, J=1. 8Hz), 8. 07 (1H, s), 8. 33 (1H, dd, J=9. 3, 2. 1Hz), 8. 59 (1H, d, J=2. 4Hz), 13. 14 (1H, s). 例176: 化合物番号176の化合物の製造

原料として、5-メチルサリチル酸、及び3,5-ビス[(1,1-ジメチル)エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.3%

¹H-NMR (CDCl₃): δ 1. 35 (18H, s), 2. 35 (3H, s), 6. 94 (1H, d, H=8. 4Hz), 7. 23-7. 28 (2H, m), 7. 31 (1H, s), 7. 42 (1H, d, J=1. 8Hz), 7. 88 (1H, s), 11. 86 (1H, s).

例177:化合物番号177の化合物の製造

原料として、5-メトキシサリチル酸、及び3,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.7%

¹H-NMR (DMSO- d_6): δ 1. 30 (18H, s), 3. 77 (3H, s), 6. 91 (1H, d, J=9. 0Hz), 7. 07 (1H, dd, J=8. 7, 3. 0Hz), 7. 19-7. 20 (1H, m), 7. 52-7. 54 (3H, m), 10. 33 (1H, s), 11. 44 (1H, s).

例178:化合物番号178の化合物の製造

原料として、 $5-\rho$ ロローNー $\{5-[(1, 1-ジメチル)$ エチル]ー2ーメトキシフェニル $\}$ ー2ーヒドロキシベンズアミド (化合物番号160)、及びアセチルクロリドを用いて例96と同様の操作を行い、標題化合物を得た。

収率:87.5%

 $^{1}H-NMR$ (CDCl₃): δ 1. 35 (9H, s), 2. 37 (3H, s), 3. 91 (3H, s), 6. 86 (1H, d, J=8. 7Hz), 7. 12 (1H, dd, J=8. 7, 2. 4Hz), 7. 13 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 2. 4Hz), 8. 02 (1H, d, J=2. 7Hz), 8. 66 (1H, d, J=2. 4Hz), 8. 93 (1H, s).

例179:化合物番号179の化合物の製造

原料として、5-メチルサリチル酸、及び5-[(1,1-ジメチル) エチル] - 2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:84.7%

¹H-NMR (CDCl₃): δ 1. 35 (9H, s), 2. 34 (3H, s), 3. 93 (3H, s), 6. 86 (1H, d, J=8. 7Hz), 6. 93 (1H, d, J=8. 4Hz), 7. 12 (1H, dd, J=8. 7, 2. 4Hz), 7. 2 4 (1H, dd, J=8. 4, 1. 8Hz), 7. 27 (1H, br s), 8. 48 (1H, d, J=2. 4Hz), 8. 61 (1H, br s), 11. 95 (1H, s).

例180:化合物番号180の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノチアゾールを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:12.0%

mp 212℃ (dec.).

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 6. 94 (1H, brd, J=8.0Hz), 7. 25 (1H, brd, J=3.2Hz), 7. 56 (2H, m), 8. 05 (1H, d, J=2.8Hz).

例181:化合物番号186の化合物の製造

(1) 2-アミノー4ー [(1, 1-ジメチル) エチル] チアゾール1-ブロモー3, 3-ジメチルー2-ブタノン(5.03g, 28.1mmol)、

チオウレア (2.35g,30.9mmol)、エタノール (30mL) の混合物を1.5時間加熱還流した。冷却後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー $(n-\alpha+y)$:酢酸エチル= $2:1\rightarrow1:1$)で精製して標題化合物の黄白色粉末 (3.99g,90.9%) を得た。

¹H-NMR (CDCl₃): δ 1. 26 (9H, s), 4. 96 (2H, brs), 6. 09 (1H, s).

以下の実施例において例181(1)の方法が引用されている場合、反応溶媒と しては、エタノール等の溶媒を用いた。

(2) $2-アセトキシー5-ブロモーN-{4-[(1, 1-ジメチル) エチル] チアゾールー<math>2-イル$ ベンズアミド

原料として、2-アセトキシ-5-ブロモ安息香酸、及び2-アミノ-4-[(1, 1-ジメチル) エチル] チアゾールを用いて例24と同様の操作を行い、標題化合物を得た。

収率:59.4%

¹H-NMR (CDCl₃): δ 1. 31 (9H, s), 2. 44 (3H, s), 6. 60 (1H, s), 7. 13 (1H, d, J=8. 4Hz), 7. 68 (1H, dd, J=8. 7, 2. 4Hz), 8. 17 (1H, d, J=2. 4Hz), 9. 72 (1H, brs).

(3) 5 - ブロモーN - {4 - [(1, 1 - ジメチル) エチル] チアゾールー2 ーイル} - 2 - ヒドロキシベンズアミド(化合物番号186)

2ーアセトキシー5ープロモーNー {4ー [(1, 1ージメチル) エチル] チアゾールー2ーイル} ベンズアミド (100.1mg, 0.25mmol) をテトラヒドロフラン (3mL) に溶かし、2規定水酸化ナトリウム (0.2ml) を加え、室温で20分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去

して得られた残渣を結晶化(イソプロピルエーテル/n -へキサン)して標題化合物の白色粉末(70.1mg, 78.9%)を得た。

¹H-NMR (DMSO-d₆): δ 1.30 (9H, s), 6.80 (1H, b r s), 6.95 (1H, b r s), 7.57 (1H, b r s), 8.06 (1H, d, J=2.4Hz), 11.82 (1H, b r s), 13.27 (1H, b r s). 例182:化合物番号181の化合物の製造

(1) $2-アセトキシ-5-ブロモ-N-\{5-ブロモ-4-[(1, 1-ジメチル) エチル] チアゾールー<math>2-イル$ ベンズアミド

 $2-アセトキシ-5-プロモ-N-{4-[(1,1-ジメチル) エチル] チアゾールー2ーイル} ベンズアミド (例181 (2) の化合物; 0.20g, 0.5 0 mm o l) をアセトニトリル (10 m L) に溶かし、<math>N-$ プロモスクシンイミド (97.9 m g, 0.55 m m o l) を加え、室温で1時間攪拌した。反応混合物を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー (n-ヘキサン:酢酸エチル=3:1) で精製して標題化合物を粗生成物として得た。

(2) $5-プロモ-N-\{5-プロモ-4-[(1,1-ジメチル) エチル] チア ゾール-2-イル\} -2-ヒドロキシベンズアミド(化合物番号<math>181$) 原料として、 $2-アセトキシ-5-プロモ-N-\{5-プロモ-4-[(1,1-ジメチル) エチル] チアゾール-2-イル\} ベンズアミドを用いて例<math>2(2)$ と同様の操作を行い、標題化合物を得た。

収率:90.9%(2工程)

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 42 (9H, s), 6. 99 (1H, d, J=8. 7Hz), 7. 61 (1H, dd, J=8. 7, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 79 (1H, brs), 12. 00 (1H, brs).

例183:化合物番号182の化合物の製造

原料として、5 ーブロモサリチル酸、及び2 ーアミノー5 ーブロモー4 ー (トリフルオロメチル) チアゾールを用いて例16と同様の操作を行い、標題化合物を

得た。

収率: 22.4%

mp 215℃ (dec.).

¹H-NMR (DMSO-d₆): δ 7. 00 (1H, d, J=8.8Hz), 7. 61 (1H, dd, J=8.8, 2.8Hz), 7. 97 (1H, d, J=2.4Hz).

[2-アミノ-5-ブロモー4-(トリフルオロメチル) チアゾール:「ジャーナル・オブ・ヘテロサイクリック・ケミストリー (Journal of Heterocyclic Chemistry)」, (米国), 1991年, 第28巻, p. 1017参照]

例184:化合物番号183の化合物の製造

(1) αープロモーピバロイルアセトニトリル

ピバロイルアセトニトリル(1.00g, 7.99mmol)を四塩化炭素(15mL)に溶かし、N-プロモスクシンイミド(1.42g, 7.99mmol)を加え、15分間加熱還流した。冷却後、不溶物をろ過して除去し、ろ液を減圧留去して得られた残渣をシリカゲルクロマトグラフィー(<math>n-ヘキサン:酢酸エチル=4:1)で精製して標題化合物の黄褐色オイル(1.43g,87.9%)を得た。

 1 H-NMR(CDCl $_3$): δ 1.33 (9 H, \dot{s}), 5.10 (1 H, \dot{s}). 以下の実施例において例184 (1) の方法が引用されている場合、ブロモ化剤 としては、N-プロモスクシンイミドを用いた。また、反応溶媒としては、四塩 化炭素等の溶媒を用いた。

(2) 2-Tミノー5-シアノー4-[(1, 1-ジメチル) エチル] チアゾール 原料として、 $\alpha-$ ブロモーピバロイルアセトニトリル、及びチオウレアを用いて 例 1 8 1 (1) と同様の操作を行い、標題化合物を得た。

収率:66.3%

 $^{1}H-NMR$ (CDC1₃): δ 1. 41 (9H, s), 5. 32 (2H, s).

(3) $5-クロロ-N-\{5-シアノ-4-[(1, 1-ジメチル) エチル] チア$

ゾールー2ーイル}ー2ーヒドロキシベンズアミド(化合物番号183)

原料として、5-クロロサリチル酸、及び2-アミノー5-シアノー4- [(1, 1-ジメチル) エチル] チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:63.4%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 43 (9H, s), 7. 06 (1H, d, J=8. 7Hz), 7. 51 (1H, dd, J=8. 7, 3. 0Hz), 7. 85 (1H, d, J=2. 7Hz), 12. 31 (2H, br).

例185:化合物番号184の化合物の製造

原料として、5 ーブロモサリチル酸、及び2 ーアミノー5 ーシアノー4 ー [(1, 1 ージメチル) エチル] チアゾール(例1 8 4 (2) の化合物)を用いて例1 6 と同様の操作を行い、標題化合物を得た。

収率:61.3%

¹H-NMR (DMSO-d₆): δ 1. 43 (9H, s), 7. 00 (1H, d, J=8. 7Hz), 7. 62 (1H, dd, J=8. 7, 2. 7Hz), 7. 97 (1H, d, J=2. 7Hz), 11. 75 (1H, br), 12. 43 (1H, br).

例186:化合物番号185の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-メチルチアゾールを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.9%

¹H-NMR (DMSO-d₆): δ 2. 33 (3H, s), 6. 91 (1H, d, J=7. 6Hz), 7. 26 (1H, s), 7. 54 (1H, d, J=9. 6Hz), 8. 03 (1H, d, J=2. 8Hz).

例187:化合物番号187の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノー4,5-ジメチルチアゾ ールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:14.4%

¹H-NMR (DMSO-d₆): δ 2. 18 (3H, s), 2. 22 (3H, s), 6. 89 (1H, d, J=8. 8Hz), 7. 51 (1H, d, J=6. 8Hz),

8. 02 (1H, d, J=2.8Hz), 13. 23 (1H, brs).

例188:化合物番号188の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-メチル-4-フェニルチアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:27.7%

m p 2 4 3 - 2 4 4 ℃.

¹H-NMR (CD₃OD): δ 2. 47 (3H, s), 6. 92 (1H, d, J = 8. 7Hz), 7. 36-7. 41 (1H, m), 7. 44-7. 50 (2H, m), 7. 53 (1H, dd, J=9. 0, 2. 7Hz), 7. 57-7. 61 (2H, m), 8. 16 (1H, d, J=2. 7Hz).

[2-アミノー5-メチルー4-フェニルチアゾール:「薬学雑誌:ジャーナル・オブ・ザ・ファーマシューティカル・ソサエティ・オブ・ジャパン(Yakugaku Zasshi: Journal of The Pharmaceutical Society of Japan)」, 1961年, 第81巻, p. 1456参照]

例189:化合物番号189の化合物の製造

原料として、(4-フルオロフェニル) アセトンを用いて例 $184(1) \sim (3)$ と同様の操作を行い、標題化合物を得た。

収率:28.8%(3工程)

(1) $\alpha - \vec{J} \Box \tau = (4 - \vec{J} \cup \vec{J} \Box \tau)$ $\vec{J} = \vec{J} \cup \vec{J} \cup$

¹H-NMR (CDCl₃): δ 2. 33 (3H, s), 5. 41 (1H, s), 7. 07 (2H, t, J=8. 7Hz), 7. 43 (2H, dd, J=8. 7, 5. 1Hz).

7. 07 (2H, t, J=8.7Hz), 7. 32 (2H, dd, J=8.7, 5. 4Hz).

(3) $5-プロモーN-[4-メチルー5-(4-フルオロフェニル) チアゾールー2ーイル] ー2ーヒドロキシベンズアミド (化合物番号189) <math>^{1}$ HーNMR (DMSO-d₆): δ 2. 36 (3H, s), 6. 95 (1H, d, J=8. 4Hz), 7. 33 (2H, t, J=8. 7Hz), 7. 52-7. 59 (3H, m), 8. 06 (1H, d, J=3. 0Hz), 12. 01-13. 65 (2H, br).

例190:化合物番号190の化合物の製造

原料として、3-(トリフルオロメチル)フェニルアセトンを用いて例<math>184(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:39.8%(3工程)

- (1) α-ブロモー3-(トリフルオロメチル) フェニルアセトン
 ¹H-NMR (CDCl₃): δ 2. 38 (3H, s), 5. 43 (1H, s),
 7. 52 (1H, t, J=7. 8Hz), 7. 61-7. 66 (2H, m), 7. 69-7. 70 (1H, m).
- (2) 2ーアミノー4ーメチルー5ー [3ー(トリフルオロメチル)フェニル] チアゾール

¹H-NMR (CDCl₃): δ 2. 32 (3H, s), 4. 95 (2H, s), 7. 46-7. 56 (3H, m), 7. 59-7. 61 (1H, m).

(3) 5ープロモーNー {4ーメチルー5ー [3ー(トリフルオロメチル) フェニル] チアゾールー2ーイル} -2ーヒドロキシベンズアミド(化合物番号190)

¹H-NMR (DMSO-d₆): δ 2. 40 (3H, s), 6. 97 (1H, d, J=8. 7Hz), 7. 59 (1H, dd, J=8. 7, 2. 4Hz), 7. 71 -7. 84 (4H, m), (2H, m), 8. 06 (1H, d, J=2. 4Hz), 12. 09 (1H, br), 12. 91-13. 63 (1H, br).

例191:化合物番号191の化合物の製造

収率:17.0%(3工程)

- (2) $2-T \ge J-4-[(1, 1-i) \ne J+n) + J-5-x \ne N \ne T \ne N]$ $^{1}H-NMR (CDCl_{3}): \delta \quad 1. \quad 21 \quad (3H, t, J=7. 5Hz), 1. \quad 3$ $2 \quad (9H, s), \quad 2. \quad 79 \quad (2H, q, J=7. 5Hz), \quad 4. \quad 63 \quad (2H, brs).$

例192:化合物番号192の化合物の製造

原料として、5 ープロモサリチル酸、及び2 ーアミノー4 ーエチルー5 ーフェニルチアゾールを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:17.4%

mp 224-225°C.

¹H-NMR (DMSO-d₆): δ 1. 24 (3H, t, J=7.6Hz), 2. 70 (2H, q, J=7.6Hz), 6. 95 (1H, brd, J=7.6 Hz), 7. 39-7. 42 (1H, m), 7. 45-7. 51 (4H, m), 7. 56 (1H, brd, J=8.0Hz), 8. 06 (1H, d, J=2.8Hz), 11. 98 (1H, brs).

例193:化合物番号193の化合物の製造

原料として、ベンジルイソプロピルケトンを用いて例 $184(1) \sim (3)$ と同様の操作を行い、標題化合物を得た。

収率: 4. 4%(3工程)

(2) 2ーアミノー4ーイソプロピルー5ーフェニルチアゾール

¹H-NMR (CDCl₃): δ 1. 23 (6H, d, J=6.6Hz), 3. 0 5 (1H, m), 4. 94 (2H, s), 7. 28-7. 41 (5H, m).

(3) 5ープロモーNー(4ーイソプロピルー5ーフェニルチアゾールー2ーイル) -2-ヒドロキシベンズアミド(化合物番号193)

¹H-NMR (DMSO- d_6): δ 1. 26 (6H, d, J=6.0Hz), 3. 15 (1H, m), 6. 98 (1H, brs), 7. 43-7. 53 (5H, m), 7. 59 (1H, brs), 8. 08 (1H, d, J=2.7Hz), 11. 90 (1H, brd), 13. 33 (1H, brd).

例194:化合物番号194の化合物の製造

原料として、1-フェニル-2-ヘキサノンを用いて例184(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:52.6%(3工程)

(1) α - ブロモー 1 - フェニルー 2 - ヘキサノン

¹H-NMR (CDCl₃): δ 0. 85 (3H, t, J=7. 2Hz), 1. 1 9-1. 32 (2H, m), 1, 50-1. 60 (2H, m), 2. 59 (2H, td, J=7. 5, 3. 9Hz), 5. 44 (1H, s), 7. 34-7. 45 (5H, m).

(2) 2-アミノー4-ブチルー5-フェニルチアゾール

¹H-NMR (CDCl₃): δ 0. 89 (3H, t, J=7. 5Hz), 1. 2 8-1. 41 (2H, m), 1. 61-1. 71 (2H, m), 2. 56-2. 6 1 (2H, m), 4. 87 (2H, s), 7. 25+7. 40 (5H, m).

(3) 5ーブロモーNー (4ーブチルー5ーフェニルチアゾールー2ーイル) ー 2ーヒドロキシベンズアミド (化合物番号194)

¹H-NMR (DMSO-d₆): δ 0. 85 (3H, t, J=7.2Hz), 1. 23-1. 35 (2H, m), 1. 59-1. 69 (2H, m), 2. 70 (2H,

t, J=7. 2Hz), 6. 96 (1H, d, J=6. 9Hz), 7. 39-7. 59 (6H, m), 8. 07 (1H, d, J=2. 4Hz), 11. 93 (1H, br), 13. 18-13. 59 (1H, br).

例195:化合物番号195の化合物の製造

- (1) 4-プロモー 2, 2, 6, 6-テトラメチルー 3, 5-ヘプタンジオン [α
- 2, 2, 6, 6ーテトラメチルー3, 5ーヘプタンジオン(ジピバロイルメタン; 1. 00g, 5. 42mmol)を四塩化炭素(10mL)に溶かし、Nーブロモスクシンイミド(965.8mg, 5. 42mmol)を加え、2時間加熱還流した。冷却後、不溶物をろ過して除去し、ろ液を減圧留去して、標題化合物の白色結晶(1. 42g, 定量的)を得た。

 1 H-NMR(CDCl $_3$): δ 1.27(18H, s), 5.67(1H, s). 以下の実施例において例195(1)の方法が引用されている場合、ブロモ化剤 としては、N-プロモスクシンイミドを用いた。また、反応溶媒としては、四塩 化炭素等の溶媒を用いた。

(2) 2-アミノー4- [(1, 1-ジメチル) エチル] -5- [(2, 2-ジメチル) プロピオニル] チアゾール

4-プロモー2, 2, 6, 6-Fトラメチルー3, $5-\alpha プタンジオン$ ($\alpha-$ プロモージピバロイルメタン; 1. 42g, 5. 40 mmol)、チオウレア (45 l 1. 8 mg, 5. 94 mmol)、エタノール (15 mL) の混合物を 2 時間加熱 還流した。冷却後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣を結晶化(ジクロロメタン/ヘキサン)して 標題化合物の白色結晶 (1.23g, 94.5%) を得た。

¹H-NMR (CDCl₃): δ 1. 26 (9H, s), 1. 29 (9H, s), 5. 03 (2H, s).

(3) 5-クロローN- {4- [(1, 1-ジメチル) エチル] -5- [(2, 2

ージメチル) プロピオニル] チアゾールー2ーイル} ー2ーヒドロキシベンズアミド(化合物番号195)

5-クロロサリチル酸(143.6mg, 0.83mmol)、<math>2-アミノー4- [(1, 1-ジメチル) エチル] -5- [(2, 2-ジメチル) プロピオニル] チアゾール(200.0mg, 0.83mmol)、三塩化リン(40μ 1、0.46mmol)、クロロベンゼン(4mL) の混合物を3時間加熱還流した。反応混合物を減圧濃縮して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して標題化合物の白色粉末(159.1mg, 48.4%)を得た。

 1 H-NMR(CDCl₃): δ 1. 33(9H, s), 1. 35(9H, s), 6. 99(1H, d, J=8.7Hz), 7. 43(1H, dd, J=9.0, 2.7Hz), 7. 70(1H, d, J=2.7Hz), 10. 52(2H, br). 以下の実施例において例195(3)の方法が引用されている場合、酸ハロゲン化剤としては、三塩化リンを用いた。また、反応溶媒としては、モノクロロベンゼン、トルエン等の溶媒を用いた。

例196:化合物番号196の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノー4-[(1, 1-ジメチル) エチル] -5-[(2, 2-ジメチル) プロピオニル] チアゾール(例195(2) の化合物)を用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:23.8%

¹H-NMR (CDCl₃): δ 1. 33 (9H, s), 1. 35 (9H, s), 6. 94 (1H, d, J=8, 7Hz), 7. 55 (1H, dd, J=8. 7, 2. 1Hz), 7. 85 (1H, d, J=2. 1Hz), 10. 51 (2H, br). 例197:化合物番号197の化合物の製造

原料として、ピバロイル酢酸 エチルエステルを用いて例195(1)~(3) と同様の操作を行い、標題化合物を得た。

収率: 45. 7% (3工程)

(1) α - ブロモーピバロイル酢酸 エチルエステル

 $^{1}H-NMR$ (CDCl₃): δ 1. 28 (9H, s), 1. 29 (3H, t, J = 7. 2Hz), 4. 26 (2H, q, J=7. 2Hz), 5. 24 (1H, s).

- (2) 2-アミノー4-[(1, 1-ジメチル) エチル] チアゾールー5ーカルボン酸 エチルエステル
- $^{1}H-NMR$ (CDCl₃): δ 1. 32 (3H, t, J=7. 2Hz), 1. 4 3 (9H, s), 4. 24 (2H, q, J=7. 2Hz), 5. 18 (2H, s).
- (3) 2-(5-プロモー2-ヒドロキシベンゾイル) アミノー4-[(1, 1- ジメチル) エチル] チアゾールー5-カルボン酸 エチルエステル (化合物番号 197)

¹H-NMR (DMSO-d₆): δ 1. 30 (3H, t, J=7. 2Hz), 1. 44 (9H, s), 4. 27 (2H, q, J=6. 9Hz), 7. 00 (1H, d, J=8. 7Hz), 7. 63 (1H, dd, J=8. 7, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 80 (1H, br), 12. 12 (1H, br).

例198:化合物番号198の化合物の製造

- (1) 2-rミノ-5-プロモ-4-[(1, 1-ジメチル) エチル] チアゾール 2-アミノ-4-[(1, 1-ジメチル) エチル] チアゾール (例181(1)の 化合物; 0.87g, 5.6 mmol) を四塩化炭素 (9 mL) に溶かし、N-プロモスクシンイミド (1.00g, 5.6 mmol) を加え、室温で1時間攪拌した。反応混合物にヘキサンを加え、不溶物をろ過して除去し、ろ液を減圧留去して得られた残渣をシリカゲルクロマトグラフィー (ヘキサン:酢酸エチル=2:
- 1) で精製して標題化合物の黄灰色粉末(1.23g,93.7%)を得た。 1 H-NMR (CDCl₃): δ 1.39 (9H,s),4.81 (2H,brs).
- (2) 2-アミノー4- [(1, 1-ジメチル) エチル] -5-ピペリジノチアゾ ール
- 2-アミノ-5-プロモ-4-[(1, 1-ジメチル) エチル] チアゾール(0.

10g, 0.42mmol)、ピペリジン(0.1mL)、炭酸カリウム(0.20g)、アセトニトリル(4mL)の混合物を3時間加熱還流した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-0+サン:酢酸エチル=2:1)で精製して標題化合物の黄色結晶(80.7mg,79.3%)を得た。

¹H-NMR (CDCl₃): δ 1. 32 (9H, s), 1. 64 (4H, t, J = 5. 7Hz), 1. 71-1. 77 (2H, m), 2. 35 (2H, brs), 2. 99 (2H, brs), 4. 68 (2H, s).

以下の実施例において例198 (2) の製造法が引用されている場合、塩基としては、炭酸ナトリウム等の塩基を用いた。また、反応溶媒としては、アセトニトリル等の溶媒を用いた。

(3) 2-アセトキシー5-ブロモーN-{4-[(1, 1-ジメチル) エチル]-5-ピペリジノチアゾールー2-イル} ベンズアミド

アルゴン雰囲気下、 $2-アセトキシ-5-ブロモ安息香酸(90.3 mg,0.35 mmol)、<math>2-アミノ-4-[(1,1-ジメチル)エチル]-5-ピペリジノチアゾール(80.7 mg,0.34 mmol)、ピリジン(0.1 mL)、テトラヒドロフラン(3 mL)の混合物にオキシ塩化リン(46 <math>\mu$ 1,0.50 mmol)を加え、室温で2時間攪拌した。反応混合物を2 N塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-キサン:酢酸エチル=3:1)で精製して標題化合物の粗生成物(84.3 mg)を得た。

以下の実施例において例198(3)の製造法が引用されている場合、酸ハロゲン化剤としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。 また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を用いた。

(4) 5ーブロモーNー {4ー [(1, 1ージメチル) エチル] ー5ーピペリジノチアゾールー2ーイル} ー2ーヒドロキシベンズアミド(化合物番号198) 2ーアセトキシー5ーブロモーNー {4ー [(1, 1ージメチル) エチル] ー5ーピペリジノチアゾールー2ーイル} ベンズアミド(粗生成物, 84. 3 mg) をエタノール(3 mL) に溶かし、2 規定水酸化ナトリウム溶液(0. 1 mL) を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色粉末(54.1 mg, 36.3%; 2工程)を得た。

¹H-NMR (CDCl₃): δ 1. 41 (9H, s), 1. 56 (2H, brs), 1. 67-1. 74 (4H, m), 2. 79 (4H, brs), 6. 85 (1H, d, J=9. 0Hz), 7. 45 (1H, dd, J=9. 0, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 11. 70 (2H, br).

以下の実施例において例198(4)の製造法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例199:化合物番号199の化合物の製造

原料として、 $2-アミノ-5-ブロモ-4-[(1,1-ジメチル) エチル] チア ゾール (例198(1)の化合物)、及びモルホリンを用いて例198(2)<math>\sim$ (4)と同様の操作を行い、標題化合物を得た。

収率:17.1%

(2) 2-アミノー4-[(1, 1-ジメチル) エチル] -5-モルホリノチアゾ ール

 1 H-NMR (CDCl₃): δ 1. 33 (9H, s), 2. 76 (4H, brs), 3. 79 (4H, brs), 4. 66 (2H, s).

(3) $2-アセトキシー5-ブロモーN-{4-[(1, 1-ジメチル) エチル] -5-モルホリノチアゾールー<math>2-イル$ ベンズアミド 知生成物のまま次反応に用いた。

例200:化合物番号200の化合物の製造

原料として、2-アミノ-5-ブロモー4-[(1,1-ジメチル) エチル] チアゾール (例<math>198(1) の化合物)、及び4-メチルピペラジンを用いて例198

(2)~(4)と同様の操作を行い、標題化合物を得た。

収率: 6. 9%

(2) 2-アミノー4-[(1, 1-ジメチル) エチル] -5-(4-メチルピペラジン-1-イル) チアゾール

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 25 (9H, s), 2. 12 (2H, b r s), 2. 19 (3H, s), 2. 57 (2H, br s), 2. 72 (4H, b r s), 6. 51 (2H, s).

- (3) $2-アセトキシ-N-\{4-[(1, 1-ジメチル) エチル]-5-(4- メチルピペラジン-1-イル) チアゾール-<math>2-$ イル $\}$ ベンズアミド 粗生成物のまま次反応に用いた。
- (4) 5-プロモ-N- $\{4-$ [(1, 1-ジメチル) エチル] -5-(4-メチルピペラジン-1-イル) チアゾール-2-イル $\}$ -2-ヒドロキシベンズアミド(化合物番号200)

¹H-NMR (CD₃OD): δ 1. 41 (9H, s), 2. 55 (3H, s), 2. 87 (4H, brs), 3. 03 (4H, brs), 6. 88 (1H, d, J

=8. 7 Hz), 7. 49 (1H, dd, J=8. 7, 2. 7 Hz), 8. 11 (1 H, d, J=2. 7 Hz).

例201:化合物番号201の化合物の製造

原料として、 $2-アミノ-5-プロモー4-[(1,1-ジメチル) エチル] チア ゾール (例198(1)の化合物)、及び<math>4-フェニルピペラジンを用いて例198(2) \sim (4) と同様の操作を行い、標題化合物を得た。$

収率: 6. 9%

(2) 2-アミノー4-[(1, 1-ジメチル) エチル] -5-(4-フェニルピペラジン-1-イル) チアゾール

¹H-NMR (CDCl₃): δ 1. 34 (9H, s), 2. 80 (2H, brs), 3. 03 (4H, brs), 3. 55 (2H, brs), 4. 69 (2H, s), 6. 88 (1H, tt, J=7. 2, 1. 2Hz), 6. 95 (2H, dd, J=9. 0, 1. 2Hz), 7. 28 (2H, dd, J=8. 7, 7. 2Hz).

(3) 2-rセトキシー5-rロモー $N-\{4-[(1, 1-v)$ メチル) エチル] -5-(4-r)エニルピペラジンー1-rル) チアゾールー2-rル $\}$ ベンズアミド

粗生成物のまま次反応に用いた。

(4) 5-プロモ-N- $\{4-$ [(1, 1-ジメチル) エチル] -5- (4-フェニルピペラジン-1-イル) チアゾール-2-イル $\}$ -2-ヒドロキシベンズアミド (化合物番号201)

¹H-NMR (DMSO-d₆): δ 1. 39 (9H, s), 2. 97 (4H, s), 3. 30 (4H, s), 6. 82 (1H, t, J=7. 5Hz), 6. 97 (2H, brs), 6. 99 (2H, t, J=7. 5Hz), 7. 58 (1H, brs), 8. 05 (1H, d, J=2. 4Hz), 11. 69 (1H, brs), 11. 82 (1H, brs).

例202:化合物番号202の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-フェニルチアゾール

を用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:16.0%

mp 239℃ (dec.).

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 02 (1H, d, J=8. 4Hz),

7. 34 (1H, t, J=7.6Hz), 7. 44 (2H, t, J=7.6Hz),

7. 62 (1H, dd, J=8.4, 2.8Hz), 7. 67 (1H, s), 7.

92 (2H, d, J=7. 2Hz), 8. 08 (1H, d, J=2. 8Hz), 1

1. 88 (1H, brs), 12. 05 (1H, brs).

例203:化合物番号203の化合物の製造

(1) {2-[(5-ブロモー2-ヒドロキシベンゾイル)アミノ]ー4ーフェニルチアゾールー5ーイル}酢酸メチルエステル

原料として、5-ブロモサリチル酸、及び2-アミノ-4-フェニルチアゾール -5-酢酸 メチルエステルを用いて例195(3)と同様の操作を行い、標題 化合物を得た。

収率:32.1%

mp 288. 5-229. 5°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 66 (3H, s), 3. 95 (2H, s),

6. 99 (1H, d, J=8.0Hz), 7. 42 (1H, d, J=6.0Hz),

7. 48 (2H, brt, J=7. 6Hz), 7. 56-7. 61 (3H, m),

8. 07 (1H, d, J=2.4Hz), 11.85 (1H, brs), 11.9 8 (1H, brs).

(2) {2- [(5-プロモー2-ヒドロキシベンゾイル) アミノ] -4-フェニルチアゾール-5-イル} 酢酸(化合物番号203)

 $\{2-[(5-プロモー2-ヒドロキシベンゾイル) アミノ]-4-フェニルチアゾールー5-イル}酢酸 メチルエステル(<math>75\,\mathrm{mg}$, $0.17\,\mathrm{mmol}$)をメタノール($5\,\mathrm{mL}$)に溶解し、 $2\,\mathrm{規定水酸化ナトリウム}$ ($0.5\,\mathrm{mL}$, $1\,\mathrm{mmol}$)を添加し、次いで室温で12時間攪拌した。反応混合物を $2\,\mathrm{規定塩酸にあけて酢}$

酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣をn-ヘキサン-酢酸エチルで加熱還流下に懸濁洗浄して標題化合物の淡黄白色結晶(56mg,77.3%)を得た。

mp 284-286°C.

¹H-NMR (DMSO-d₆): δ 3. 84 (2H, s), 6. 98 (1H, d, J=8. 8Hz), 7. 42 (1H, d, J=6. 8Hz), 7. 49 (2H, t, J=7. 6Hz), 7. 58-7. 61 (3H, m), 8. 07 (1H, d, J=2. 8Hz), 12. 25 (H, brs).

例204:化合物番号204の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4,5-ジフェニルチア ゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:25.9%

mp 262-263°C.

¹H-NMR (DMSO-d₆): δ 7. 02 (1H, d, J=8. 1Hz), 7. 34-7. 47 (10H, m), 7. 63 (1H, d, J=6. 9Hz), 8. 08 (1H, d, J=2. 4Hz), 11. 88 (1H, brs), 12. 08 (1H, brs).

[2-アミノー4, 5-ジフェニルチアゾール:「日本化学雑誌 (Nihon Kagaku Zasshi)」, 1962年, 第83巻, p. 209参照]

例205:化合物番号205の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-ベンジル-5-フェ ニルチアゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:28.1%

mp 198-200°C.

¹H-NMR (DMSO-d₆): δ 4. 08 (2H, s), 6. 95 (1H, d, J=8. 8Hz), 7. 15-7. 22 (3H, m), 7. 30 (2H, t,

J=7.6Hz), 7. 38-7.43 (1H, m), 7. 47 (4H, d, J=4.4Hz), 7. 57 (1H, brd, J=8.8Hz), 8. 05 (1H, d, J=2.4Hz), 11. 98 (1H, brs).

[2-アミノー4-ベンジルー5-フェニルチアゾール:「ケミカル・アンド・ファーマシューティカル・ビュレティン (Chemical and Pharmaceutical Bulletin)」, 1962年, 第10巻, p. 376参照]

例206:化合物番号206の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-フェニル-4-(トリフルオロメチル)チアゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率: 33.2%

mp 250°C (dec.). 1 H-NMR (DMSO- d_{6}): δ 7. 02 (1 H, d, J=8.8Hz), 7.51 (5H, s), 7.63 (1H, dd, J=8.8, 2.4Hz), 8.02 (1H, d, J=2.8Hz), 12.38 (1 H, brs).

例207:化合物番号207の化合物の製造

原料として、1-7ェニルー1, 3-7タンジオンを用いて例 $195(1)\sim(3)$ と同様の操作を行い、標題化合物を得た。

収率: 8.9% (3工程)

(1) α - ブロモ-1 - フェニル-1 , 3 - ブタンジオン

¹H-NMR (CDCl₃): δ 2. 46 (3H, s), 5. 62 (1H, s), 7. 48-7. 54 (2H, m), 7. 64 (1H, tt, J=7. 5, 2. 1Hz), 7. 97-8. 01 (2H, m).

(2) 2-アミノー5-アセチルー4-フェニルチアゾール

¹H-NMR (DMSO-d₆): δ 2. 18 (3H, s), 7. 50-7. 55 (2H, m), 7. 59-7. 68 (3H, m), 8. 69 (2H, brs).

(3) 5-プロモーN-(5-アセチルー4-フェニルチアゾールー2-イル)

-2-ヒドロキシベンズアミド(化合物番号207)

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 44 (3H, s), 6. 99 (1H, d, J=9. 0Hz), 7. 55-7. 71 (4H, m), 7. 76-7. 80 (2H, m), 8. 01 (1H, d, J=2. 4Hz), 12. 36 (2H, br).

例208:化合物番号208の化合物の製造

原料として、1, 3-ジフェニルー1, 3-プロパンジオンを用いて例195(1) ~ (3) と同様の操作を行い、標題化合物を得た。

収率:49.7%

- (1) α -プロモー1, 3-ジフェニルー1, 3-プロパンジオン 1 H-NMR (CDCl₃): δ 6. 55 (1H, s), 7. 45-7. 50 (4H, m), 7. 61 (2H, tt, J=7. 2, 2. 1Hz), 7. 98-8. 0 1 (4H, m).
- (2) 2-アミノー5-ベンゾイルー4-フェニルチアゾール

¹H-NMR (DMSO-d₆): δ 7. 04-7. 18 (5H, m), 7. 22 -7. 32 (3H, m), 7. 35-7. 38 (2H, m), 8. 02 (2H, s).

(3) 5 - ブロモーN-(5 - ベンゾイル-4-フェニルチアゾール-2-イル) -2-ヒドロキシベンズアミド(化合物番号208)

¹H-NMR (DMSO-d₆): δ 7. 0 3 (1 H, d, J=8. 7 Hz), 7. 17-7. 30 (5 H, m), 7. 39-7. 47 (3 H, m), 7. 57-7. 60 (2 H, m), 7. 64 (1 H, dd, J=8. 7, 2. 7 Hz), 8. 05 (1 H, d, J=2. 4 Hz), 11. 82 (1 H, brs), 12. 35 (1 H, brs).

例209:化合物番号210の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4-フェニルチアゾール -5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、 標題化合物を得た。

収率:69.4%

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7.5Hz), 4. 21 (2H, q, J=7.5Hz), 7. 07 (1H, d, J=8.7Hz), 7. 43-7. 47 (3H, m), 7. 53 (1H, dd, J=8.7, 2.4Hz), 7. 70-7. 74 (2H, m), 7. 92 (1H, d, J=3.0Hz), 11. 88 (1H, br), 12. 29 (1H, brs).

例210:化合物番号209の化合物の製造

原料として、5 ーブロモサリチル酸、及び2 ーアミノー4 ーフェニルチアゾールー 5 ーカルボン酸 エチルエステルを用いて例 1 9 5 (3)と同様の操作を行い、標題化合物を得た。

収率:28.6%

mp 197-199°C.

¹H-NMR (DMSO-d₆): δ 1. 21 (3H, t, J=6.8Hz), 4. 20 (2H, q, J=6.8Hz), 7. 01 (1H, d, J=8.8Hz), 7. 43-7. 48 (3H, m), 7. 63 (1H, dd, J=8.8, 2.4 Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 33 (1H, brs).

例211:化合物番号211の化合物の製造

原料として、ペンタフルオロベンゾイル酢酸エチルエステルを用いて例195

(1)~(3)と同様の操作を行い、標題化合物を得た。

収率:40.0%(3工程)

- (1) α ブロモーペンタフルオロベンゾイル酢酸 エチルエステル 粗成生物のまま次反応に用いた。
- (2) 2-アミノ-4-(ペンタフルオロフェニル)チアゾール-5-カルボン酸 エチルエステル
- ¹H-NMR (CDCl₃): δ 1. 23 (3H, t, J=7. 2Hz), 4. 2 1 (2H, q, J=7. 2Hz), 5. 41 (2H, s).
- (3) 2- (5-プロモー2-ヒドロキシベンゾイル) アミノー4- (ペンタフ

ルオロフェニル)チアゾールー5ーカルボン酸 エチル(化合物番号211) ^1H-NMR (DMSO-d₆): δ 1.20 (3H, t, J=7.2Hz), 2.51 (2H, q, J=7.2Hz), 7.02 (1H, d, J=8.7Hz), 7.64 (1H, dd, J=8.7, 2.7Hz), 7.90 (1H, d, J=3.0Hz), 11.92 (1H, br), 12.58 (1H, br).

例212:化合物番号212の化合物の製造

(1) 2-(5-ブロモ-2-ヒドロキシベンゾイル) アミノー4-フェニルチ アゾール-5-カルボン酸

2-(5-) ロモー 2- ヒドロキシベンゾイル)アミノー 4- フェニルチアゾールー 5- カルボン酸エチルエステル(化合物番号 209)を用いて例 82 と同様の操作を行い、標題化合物を得た。

収率:67.0%

¹H-NMR (DMSO-d₆): δ 7. 00 (1H, d, J=8.8Hz), 7. 42-7. 44 (3H, m), 7. 62 (1H, dd, J=8.8, 2.4Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 31 (1H, brs), 12. 99 (1H, brs).

(2) [2-(5-ブロモー2-ヒドロキシベンゾイル) アミノー4ーフェニルチアゾールー5ーイル] -Nーメチルカルボキサミド (化合物番号212) 2-(5-ブロモー2-ヒドロキシベンゾイル) アミノー4ーフェニルチアゾールー5ーカルボン酸 (0.20g,0.48mmol)、メチルアミン 40%メタノール溶液 (0.2ml)、1ーヒドロキシベンゾトリアゾール 水和物(96.7mg、0.72mmol)、WSC・HCl (137.2mg,0.72mmol)、テトラヒドロフラン (15mL) の混合物を室温で18時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (nーヘキサン:酢酸エチル=1:2) で精製し、結晶化 (ジクロロメタン/nーヘキサン) して標題化合物の白色粉末 (87.9mg,

42.6%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 70 (3H, d, J=4.5Hz), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=9.0, 2.4Hz), 7. 68-7. 71 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 16 (1H, t, J=4.5Hz), 1 1. 88 (1H, br), 12. 15 (1H, brs).

以下の実施例において例212(2)の方法が引用されている場合、脱水縮合剤 としては、WSC・HC1、及び1-ヒドロキシベンゾトリアゾール水和物を用 いた。また、反応溶媒としては、テトラヒドロフラン等の溶媒を用いた。

例213:化合物番号213の化合物の製造

原料として、2-(5-プロモー2-ヒドロキシベンゾイル) アミノー4-フェ ニルチアゾールー5-カルボン酸(例212(1) の化合物)、及びエチルアミンの70%水溶液を用いて例212(2) と同様の操作を行い、標題化合物を得た。

収率:62.5%

¹H-NMR (DMSO-d₆): δ 1. 05 (3H, t, J=6.9Hz), 3. 15-3. 24 (2H, m), 7. 02 (1H, d, J=8.7Hz), 7. 40 -7. 47 (3H, m), 7. 63 (1H, dd, J=8.7, 3.0Hz), 7. 69-7. 72 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 20 (1H, t, J=5.4Hz), 11. 84 (1H, br), 12. 14 (1H, brs).

例214:化合物番号214の化合物の製造

原料として、2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-フェ ニルチアゾールー5-カルボン酸(例 2 1 2 (1)の化合物)、及びイソプロピル アミンを用いて例 2 1 2 (2)と同様の操作を行い、標題化合物を得た。

収率:23.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 07 (6H, d, J=6.3Hz), 4. 02 (1H, m), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 52

(3H, m), 7. 64 (1H, dd, J=8.7, 2.7Hz), 7. 69-7. 73 (2H, m), 8. 06 (1H, d, J=2.7Hz), 11. 89 (1H, br), 12. 14 (1H, brs).

例215:化合物番号215の化合物の製造

原料として、2-(5-ブロモー2-ヒドロキシベンゾイル)アミノー4-フェニルチアゾールー5-カルボン酸(例212(1)の化合物)、及び2-フェネチルアミンを用いて例212(2)と同様の操作を行い、標題化合物を得た。

収率:62.2%

¹H-NMR (DMSO-d₆): δ 2. 78 (2H, t, J=7.5Hz), 3. 43 (2H, q, J=7.5Hz), 7. 02 (1H, d, J=9.0Hz), 7. 19-7. 24 (3H, m), 7. 27-7. 33 (2H, m), 7. 39-7. 41 (3H, m), 7. 61-7. 65 (3H, m), 8. 06 (1H, d, J=2.4Hz), 8. 25 (1H, t, J=6.0Hz), 11. 85 (1H, brs), 12. 15 (1H, brs).

例216:化合物番号216の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-(トリフルオロメチル)チアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:88.7%

¹H-NMR (DMSO-d₆): δ 1. 32 (3H, t, J=7. 2Hz), 4. 33 (2H, q, J=7. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 63 (1H, dd, J=8. 7, 2. 7Hz), 7. 98 (1H, d, J=2. 4Hz), 12. 64 (1H, br).

例217:化合物番号217の化合物の製造

原料として、5-クロロ-N- $\{4-[(1,1-$ ジメチル) エチル]-5-[(2,2-ジメチル) プロピオニル] チアゾール-2-イル $\}$ -2-ヒドロキシベンズアミド (化合物番号195)、及びアセチルクロリドを用いて例96と同様の操作

を行い、標題化合物を得た。

収率:65.3%

¹H-NMR (CDCl₃): δ 1. 32 (9H, s), 1. 33 (9H, s), 2. 46 (3H, s), 7. 22 (1H, d, J=8. 4Hz), 7. 56 (1H, d d, J=8. 7, 2. 4Hz), 8. 05 (1H, d, J=2. 7Hz), 9. 8 2 (1H, brs).

例218:化合物番号218の化合物の製造

原料として、4ーヒドロキシビフェニルー3ーカルボン酸及び2ーアミノー4ーフェニルチアゾールー5ーカルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:61.7%

mp 207-208°C.

¹H-NMR (DMSO-d₆): δ 1. 23 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7. 2Hz), 7. 16 (1H, d, J=8. 7Hz), 7. 36 (1H, t, J=7. 5Hz), 7. 45-7. 50 (5H, m), 7. 69 -7. 76 (4H, m), 7. 85 (1H, dd, J=8. 7, 2. 4Hz), 8. 31 (1H, d, J=2. 4Hz), 11. 73 (1H, brs), 12. 60 (1H, brs).

[4-ヒドロキシビフェニル-3-カルボン酸:「テトラヘドロン(Tetrahedron)」, 1997年, 第53巻, p. 11437参照]

例219:化合物番号219の化合物の製造

原料として、(4'-フルオロー4-ヒドロキシビフェニル) -3-カルボン酸及 び2-アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:62.7%

mp 237-238°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 22 (3H, t, J=7. 2Hz),

4. 21 (2H, q, J=7. 2Hz), 7. 13 (1H, d, J=8. 4Hz),
7. 28 (2H, t, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7.
71-7. 75 (4H, m), 7. 81 (1H, dd, J=8. 8, 2. 4Hz),
8. 27 (1H, d, J=2. 4Hz), 11. 67 (1H, brs), 12. 5
8 (1H, brs).

[(4'-フルオロー4-ヒドロキシビフェニル) -3-カルボン酸:「テトラヘドロン (Tetrahedron)」, 1997年, 第53巻, p. 11437参照]

例220:化合物番号220の化合物の製造

原料として、(2', 4' -ジフルオロー4-ヒドロキシビフェニル) -3-カルボン酸及び2-アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率: 45.6%

mp 206-207°C.

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7, 2Hz), 7. 17 (1H, d, J=9. 0Hz), 7. 21 (1H, td, J=8. 7, 2. 4Hz), 7. 38 (1H, ddd, J=11. 7, 9. 3, 2. 4Hz), 7. 44-7. 46 (3H, m), 7. 6 0-7. 75 (4H, m), 8. 13-8. 14 (1H, m), 11. 86 (1H, brs), 12. 46 (1H, brs).

例221:化合物番号221の化合物の製造

(1) [4-ヒドロキシー4'-(トリフルオロメチル) ビフェニル] -3-カル ボン酸

5-ブロモサリチル酸 (500 mg, 2.30 mmol)、ジヒドロキシー4-(トリフルオロメチル)フェニルボラン (488mg, 2.57mmol)、酢酸パラジウム (10mg, 0.040mmol) 及び1M 炭酸ナトリウム (7mL) の混合物を80℃で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウム

で乾燥した後、溶媒を減圧留去した。得られた残渣を、定法に従いトリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー($n-\alpha$ キサン:酢酸エチル=5:1)で精製して無色液体(563 mg)を得た。これをメタノール(10 mL)に溶解し、2規定水酸化ナトリウム(3 mL)を添加し、次いで60 $\mathbb C$ で1時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣を $n-\alpha$ キサンージクロルメタンで加熱還流下に懸濁洗浄して標題化合物の白色結晶(458 mg,70.4%)を得た。

mp 185℃ (dec.).

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=8.8Hz), 7. 77 (2H, d, J=8.0Hz), 7. 85 (2H, d, J=8.0Hz), 7. 90 (1H, dd, J=8.8, 2.0Hz), 8. 10 (1H, d, J=2.4Hz), 11.80 (1H, brs).

(2) $2 - \{[4 - \text{ヒドロキシ} - 4' - (\text{トリフルオロメチル}) ビフェニル] - 3 - カルボニル \} アミノー <math>4 - \text{フェニルチアゾール} - 5 -$ カルボン酸 エチルエステル (化合物番号 $2 \ 2 \ 1$)

原料として、[4-ヒドロキシ-4'-(トリフルオロメチル) ピフェニル]-3ーカルボン酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。収率:41.7%

mp 236-237°C.

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 21 (2H, q, J=7. 2Hz), 7. 18 (1H, d, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7. 72-7. 74 (2H, m), 7. 81 (2H, d, J=8. 4Hz), 7. 91 (1H, dd, J=8. 8, 2. 4Hz), 7. 93 (2H, d, J=8.4Hz), 8. 36 (1H, d, J=2. 4Hz), 11.

78 (1H, brs), 12.62 (1H, brs).

例222:化合物番号222の化合物の製造

原料として、2-ヒドロキシ-5-(1-ピロリル)安息香酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195 (3)と同様の操作を行い、標題化合物を得た。

収率:55.0%

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7.2Hz), 4. 22 (2H, q, J=7.2Hz), 6. 26 (2H, t, J=2.1Hz), 7. 13 (1H, d, J=8.7Hz), 7. 32 (2H, t, J=2.1Hz), 7. 43-7. 47 (3H, m), 7. 70-7. 75 (3H, m), 8. 09 (1H, d, J=2.7Hz), 11. 58 (1H, brs), 12. 55 (1H, brs). 例223: 化合物番号223の化合物の製造

(1) 2-ヒドロキシー5-(2-チエニル) 安息香酸

5ープロモサリチル酸(500mg, 2.30mmo1)、を1,2ージメトキシエタン(5mL)に溶解し、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(80mg,0.07mmo1)を添加、室温で10分間攪拌した。次いでジヒドロキシー2ーチエニルボラン(324mg,2.53mmo1)及び1M炭酸ナトリウム(7mL)を添加し2時間加熱還流した。反応混合物を室温まで冷却後2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を定法に従いトリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=5:1)で精製して黄色液体(277mg)を得た。これをメタノール(5mL)に溶解し、2規定水酸化ナトリウム(1.5mL)を添加し、次いで60℃で1時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をnーヘキサンージクロルメ

タンで晶析して標題化合物の白色結晶(58mg, 11.5%)を得た。

¹H-NMR (DMSO-d₆): δ 6. 95(1H, d, J=8. 8Hz), 7. 0 9(1H, dd, J=4. 8, 3. 6Hz), 7. 37(1H, dd, J=4. 0, 1. 2Hz), 7. 45(1H, dd, J=5. 2, 1. 2Hz), 7. 74(1H, dd, J=8. 8, 2. 8Hz), 7. 96(1H, d, J=2. 8Hz).

- (2) 2- [2-ヒドロキシ-5-(2-チエニル) ベンゾイル] アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号223) 原料として、2-ヒドロキシ-5-(2-チエニル) 安息香酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195
- (3) と同様の操作を行い、標題化合物を得た。

収率:58.2%

mp 213-214°C.

 $^{1}H-NMR(DMSO-d_{6}):\delta$ 1. 22(3H, t, J=7. 2Hz), 4. 2 1(2H, q, J=7. 2Hz), 7. 10(1H, d, J=9. 2Hz), 7. 12(1 H, dd, J=4. 8, 3. 6Hz), 7. 44-7. 46(4H, m), 7. 50 (1H, dd, J=4. 8, 1. 2Hz), 7. 71-7. 74(2H, m), 7. 7 9(1H, dd, J=8. 8, 2. 4Hz), 8. 21(1H, d, J=2. 4Hz), 11. 78(1H, brs), 12. 44(1H, brs).

例301:化合物番号301の化合物の製造

(1) 5-クロロー2-メトキシーβ-フェニルスチレン

2-プロモー4-クロロアニソール ($300\,\mathrm{mg}$, $1.4\,\mathrm{mmol}$)、スチレン ($21\,\mathrm{mg}$, $2\,\mathrm{mmol}$)、トリエチルアミン ($13\,\mu\,\mathrm{L}$, $0.1\,\mathrm{mmol}$)、トリフェニルフォスフィン ($50\,\mathrm{mg}$, $1.9\,\mathrm{mmol}$) のアセトニトリル ($6\,\mathrm{mL}$) 溶液に酢酸パラジウム ($21\,\mathrm{mg}$, $7\,\mathrm{mol}$ %) を加え、アルゴン雰囲気下、8時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧濃縮し、得られた残渣を酢酸エチル ($15\,\mathrm{mL}$) で希釈し、 $2\,\mathrm{規定塩酸}$ 、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲ

ルカラムクロマトグラフィー $(n-\alpha+y)$: 酢酸エチル=10:1) で精製して、標題化合物の白色粉末 (118mg, 35.6%) を得た。

¹H-NMR (CDC1₃): δ 3. 85 (3H, s), 6. 80 (1H, d, J = 8. 8Hz), 7. 08 (1H, d, J=16. 8Hz), 7. 17 (1H, d d, J=8. 8, 2. 5Hz), 7. 20-7. 42 (4H, m), 7. 51-7. 55 (3H, m).

(2) 4ークロロー2ースチリルフェノール (化合物番号301)

5-クロロー2ーメトキシーβーフェニルスチレン (80mg, 0.3mmol) のジクロロメタン (2mL) 溶液に、アルゴン雰囲気下、1mol/Lボロントリブロミド/ジクロロメタン溶液 (0.5mL, 0.5mmol) を室温で加え、12時間攪拌した。反応混合物を酢酸エチル (15mL) で希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (nーヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末 (34.2mg, 45.4%)を得た。
¹HーNMR (CDCl₃):δ 4.95 (1H, brs), 6.74 (1H, d, J=8.7Hz), 7.09 (1H, dd, =8.7, 2.4Hz), 7.10 (1H, d, J=16.2Hz), 7.28-7.39 (4H, m), 7.49-7.54 (3H, m).

例302:化合物番号302の化合物の製造

(1)(S) -2-rミノ-3-7ェニル-N-[3, 5-ビス (トリフルオロメ チル) フェニル]プロピオンアミド

3,5-ビス (トリフルオロメチル) アニリン (0.20g,0.87mmol)、N- (tert-ブトキシカルボニル) -L-フェニルアラニン (254.8mg,0.96mmol)、三塩化リン (40 μ L,0.46mmol)、トルエン (4mL) の混合物を、アルゴン雰囲気下、80 $\mathbb C$ で1.5時間攪拌した。反応混合物を室温まで冷却した後、炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、

溶媒を減圧留去して得られた残渣をイソプロピルエーテル/ n - n + サンで結晶 化して、標題化合物の黄白色粉末(3 3 3. 7 m g, 9 2. 9%)を得た。 1 H $^-$ NMR(DMSO $^-$ d $_6$): δ 3. 1 3 (1 H, d d, J $^-$ 1 3. 8, 8. 1 H z), 3. 2 9 (1 H, d d, J $^-$ 1 3. 8, 6. 0 H z), 4. 3 7 (1 H, s), 7. 2 5 $^-$ 7. 3 8 (5 H, m), 7. 8 6 (1 H, s), 8. 3 0 (2 H,

以下の実施例において例302(1)の方法が引用されている場合、酸ハロゲン 化剤としては、三塩化リンを用いた。また、反応溶媒としては、トルエン、モノ クロロベンゼン等の溶媒を用いた。

s), 8. 48 (3H, s), 11. 95 (1H, s).

(2) (S) -2-rセトキシ-5-クロロ-N-(2-フェニル-1-{[3,5-ビス (トリフルオロメチル) フェニル] カルバモイル} エチル) ベンズアミド

2-rセトキシー $5-\rho$ ロロ安息香酸(104mg, 0.48mmol)、(S) -2-rミノー3-rニルーN-[3,5-rビス(トリフルオロメチル)フェニル]プロピオンアミド(0.20g, 0.48mmol)、1-rにはロキシベングトリアゾール(71.4mg, 0.53mmol)のN, N-rジメチルホルムアミド(4mL)溶液に、WSC・HCl(184mg, 0.96mmol)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-nキサン:酢酸エチル= $3:1\rightarrow 2:1$)で精製して、標題化合物の白色結晶(141.4mg, 51.4%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 05 (3H, s), 3. 04 (1H, d d, J=13. 8, 9. 9Hz), 3. 19 (1H, d d, J=13. 8, 4. 8 Hz), 4. 73-4. 81 (1H, m), 7. 22-7. 35 (6H, m), 7. 54 (1H, d, J=2. 4Hz), 7. 60 (1H, d d, J=8. 7, 2. 4 Hz), 7. 81 (1H, s), 8. 27 (2H, s), 8. 91 (1H, d, J=

7. 8Hz), 10. 81 (1H, s).

以下の実施例において例302(2)の方法が引用されている場合、脱水縮合剤 としては、WSC・HC1、及び1ーヒドロキシベンゾトリアゾールを用いた。 また、反応溶媒としては、N, Nージメチルホルムアミド等の溶媒を用いた。

- (3)(S)-5-クロロ-2-ヒドロキシ-N-(2-フェニル-1-{[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル}エチル)ベンズアミド(化合物番号302)
- (S) -2-アセトキシ-5-クロロ-N-(2-フェニル-1-{[3, 5-ビス (トリフルオロメチル) フェニル] カルバモイル} エチル) ベンズアミド (141.4 mg, 0.25 mmol) のメタノール/テトラヒドロフラン (2 mL + 2 mL) 混合溶液に5規定水酸化ナトリウム水溶液 (0.2 mL) を加え、室温で20分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を酢酸エチル/イソプロピルエーテル/ n-0キサンで結晶化して、標題化合物の白色粉末(74.4 mg, 56.8%)を得た。 1 H-NMR(DMSO-d $_6$): δ 3.13(1 H, dd, J=13.8,9.0 Hz),3.26(1 H, dd, J=14.1,4.8 Hz),4.85-4.92(1 H, m),6.95(1 H, d, J=8.7 Hz),7.19-7.23(1 H, m),7.26-7.31(4 H, m),7.45(1 H, dd, J=8.7,2.4 Hz),8.26(2 H, s),9.12(1 H, d, J=7.2 Hz),10.89(1 H, s),12.01(1 H, s).

以下の実施例において例302(3)の方法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例303:化合物番号303の化合物の製造

- (1) [1-({[3, 5-ビス(トリフルオロメチル)フェニル]アミノ}カルボニル)メチル]カルバミン酸 1,1-ジメチルエチルエステル
- 3, 5-ビス (トリフルオロメチル) アニリン (0.20g, 0.87mmol) のテトラヒドロフラン (4mL) 溶液に、アルゴン雰囲気下、N-(tert-ブトキシカルボニル) グリシン (183.5mg, 1.05mmol)、トリエチルアミン (0.25mL, 1.79mmol) を加え、氷浴で冷却後、オキシ塩化リン (96 μ L, 1.05mmol) を加え、室温で5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=2:1→3:2)で精製して、標題化合物の白色結晶(101.9mg, 30.3%)を得た。 1 H-NMR (CDCl3): δ 1.49 (9H, s), 3.99 (2H, d, J=6.0Hz), 5.37 (1H, t, J=6.0Hz), 7.57 (1H, s), 8.00 (2H, s), 9.06 (1H, brs).
- (2) 2-アミノーN-[3, 5-ビス (トリフルオロメチル) フェニル]アセトアミド塩酸塩
- [1-({[3,5-ビス(トリフルオロメチル)フェニル] アミノ} カルボニル)メチル]カルバミン酸 1,1-ジメチルエチルエステル(101.9 mg,0.26 mmol)に4規定塩酸・酢酸エチル溶液(1 mL)を加え、室温で1時間攪拌した。反応混合物にn-ヘキサン(15 mL)を加え、析出した白色固体を濾取して、標題化合物の白色粉末(80.8 mg,96.4%)を得た。 1 H-NMR(CD₃OD): δ 3.89(2 H,s),7.71(1 H,s),8.22(2 H,s).
- (3) 2-アセトキシ-5-クロローN-({[3, 5-ビス(トリフルオロメチル)フェニル] カルバモイル} メチル) ベンズアミド 2-アセトキシ-5-クロロ安息香酸(59.1mg, 0.28mmol)、2-アミノ-N-[3, 5-ビス(トリフルオロメチル) フェニル]アセトアミド塩酸

塩(80.8 mg, 0.25 mmol)、1-Eドロキシベンゾトリアゾール(37.2 mg, 0.28 mmol)のN, Nジメチルホルムアミド(3 mL)溶液にWSC・HCl(95.9 mg, 0.5 mmol)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-N+サン:酢酸エチル=3:2 \rightarrow 1:1)で精製して、標題化合物の白色結晶(83.7 mg, 69.3%)を得た。

¹H-NMR (CDC1₃): δ 2. 40 (3H, s), 4. 40 (2H, d, J = 5. 4Hz), 7. 17 (1H, d. J=8. 4Hz), 7. 40 (1H, t, J=5. 4Hz), 7. 53 (1H, dd, J=8. 4, 2. 4Hz), 7. 62 (1H, s), 7. 82 (1H, d, J=2. 4Hz), 8. 19 (2H, s), 9. 20 (1H, s).

(4) 5-クロロー2ーヒドロキシーN- ({[3, 5-ビス (トリフルオロメチル) フェニル] カルバモイル} メチル) ベンズアミド (化合物番号303) 2-アセトキシー5-クロローN- ({[3, 5-ビス (トリフルオロメチル) フェニル] カルバモイル} メチル) ベンズアミド (83.7 mg, 0.17 mm o 1) のメタノール/テトラヒドロフラン (2 mL+1 mL) 溶液に、5 規定水酸 化ナトリウム水溶液 (0.1 mL) を加え、室温で20分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (nーヘキサン:酢酸エチル=2:1) で精製、nーヘキサンで懸濁洗浄して、標題化合物の白色結晶 (47.7 mg, 63.7%) を得た。

¹H-NMR (DMSO-d₆): δ 4. 18 (2H, d, J=5. 4Hz), 7. 00 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 2. 7 Hz), 7. 80 (1H, s), 7. 96 (1H, d, J=2. 7Hz), 8. 27

(2H, s), 9. 25 (1H, t, J=5.4Hz), 10. 78 (1H, s), 12. 14 (1H, s).

例304:化合物番号304の化合物の製造

(1) 5-クロロサリチルヒドラジド

5-クロロー2-ヒドロキシ安息香酸 メチルエステル (0.50g, 2.7m mol)、ヒドラジン一水和物 (0.3mL, 6.2mmol)、エタノール (5 mL) の混合物を6時間加熱還流した。反応混合物を室温まで冷却後、n-ヘキサンを加え、析出した結晶を濾取して、標題化合物の白色結晶 (395.9mg, 79.2%) を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 90 (1H, d, J=8.7Hz), 7. 38 (1H, dd, J=8.7, 2.7Hz), 7. 85 (1H, d, J=8.7Hz), 10. 23 (brs).

(2) 5-クロロサリチル酸 [3, 5-ビス (トリフルオロメチル) ベンジリデン] ヒドラジド (化合物番号304)

 $5-\rho$ ロロサリチルヒドラジド(213.9mg, 1.2mmo1)、3,5-ビス(トリフルオロメチル)ベンズアルデヒド(190μ L, 1.2mmo1)、濃硫酸(3滴)、エタノール(5mL)の混合物を、30分間加熱還流した。3,5ービス(トリフルオロメチル)ベンズアルデヒド(100μ L, 0.61mmo1)を追加し、さらに1時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサンで懸濁洗浄して、標題化合物の白色粉末(362.6mg, 76.8%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 03 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=9.0, 2.7Hz), 7. 86 (1H, d, J=3.0 Hz), 8. 20 (1H, s), 8. 40 (2H, s), 8. 59 (1H, s), 1

1. 65 (1H, s), 12. 14 (1H, s).

例305:化合物番号305の化合物の製造

(1)(S)-2-アミノ-4-メチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]ペンタンアミド

原料として、N- (tert-ブトキシカルボニル) -L-ロイシン、及び3, 5-ビス (トリフルオロメチル) アニリンを用いて例302 (1) と同様の操作を行い、標題化合物を得た。

収率:25.2%

¹H-NMR (CDCl₃): δ 0. 98 (3H, d, J=6. 3Hz), 1. 0 1 (3H, d, J=6. 3Hz), 1. 39-1. 48 (1H, m), 1. 74-1. 89 (2H, m), 3. 55 (1H, dd, J=9. 9, 3. 6Hz), 7. 58 (1H, s), 8. 12 (2H, s), 10. 01 (1H, s).

(2)(S) -5-クロロ-2-ヒドロキシ-N-(3-メチル-1-{[3, 5-ビス(トリフルオロメチル)フェニル]カルバモイル}ブチル)ベンズアミド(化合物番号305)

原料として、2-アセトキシ-5-クロロ安息香酸、及び(S)-2-アミノー4-メチル-N-[3,5-ビス(トリフルオロメチル)フェニル]ペンタンアミドを用いて例302(2)~(3)と同様の操作を行い、標題化合物を得た。

収率:24.8%(2工程)

¹H-NMR (DMSO-d₆): δ 0. 95 (3H, d, J=5.7Hz), 0. 97 (3H, d, J=6.0Hz), 1. 65-1. 84 (3H, m), 4. 65-4. 72 (1H, m), 6. 98 (1H, d, J=9.0Hz), 7. 47 (1H, dd, J=8.7, 2. 4Hz), 7. 79 (1H, s), 8. 06 (1H, d, J=2.7Hz), 8. 32 (2H, s), 9. 03 (1H, d, J=8.1Hz), 10. 85 (1H, s), 12. 20 (1H, s).

例306:化合物番号306の化合物の製造

原料として、5-クロロサリチルアルデヒド、及び3,5-ビス(トリフルオロ

メチル) ベンズヒドラジドを用いて例304(2) と同様の操作を行い、標題化 合物を得た。

収率:24.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 97 (1H, d, J=8.7Hz), 7. 34 (1H, dd, J=9.0, 2.7Hz), 7. 73 (1H, d, J=2.4 Hz), 8. 41 (1H, s), 8. 59 (2H, s), 8. 67 (1H, s), 1 1. 07 (1H, s), 12. 45 (1H, s).

「例307:化合物番号307の化合物の製造

原料として、5 ークロロサリチル酸、及び3,5 ービス(トリフルオロメチル)フェネチルアミンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:30.2%

 $^{1}H-NMR$ (CDCl₃): δ 3. 10 (2H, t, J=6. 9Hz), 3. 7 1-3. 77 (2H, m), 6. 34 (1H, brs), 6. 95 (1H, d, J=8. 7Hz), 7. 23 (1H, d, J=2. 7Hz), 7. 36 (1H, dd, J=8. 7, 2. 4Hz), 7. 70 (2H, s), 7. 80 (1H, s), 12. 06 (1H, s).

例308:化合物番号308の化合物の製造

3-ヒドロキシ無水フタル酸(100mg, 0.6mmol)、3,5-ビス(トリフルオロメチル)アニリン(168mg, 0.7mmol)、酢酸(5mL)の混合物を、アルゴン雰囲気下、6時間加熱還流した。反応混合物を室温まで冷却後、酢酸を減圧下留去し、得られた残渣を酢酸エチル(15mL)で希釈、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末(100mg,43.7%)を得た。
¹H-NMR(DMSO-d₆):δ 7.31(1H,d,J=8.1Hz),7.42(1H,d,J=7.5Hz),

例309:化合物番号309の化合物の製造

 $2-アミノ-4-クロロフェノール (143.6 mg, 1 mmo 1) のテトラヒドロフラン/トルエン (0.5 mL+4.5 mL) 混合溶液に、3,5-ビス (トプリフルオロメチル) フェニルイソシアネート (180 <math>\mu$ L, 1.04 mmo 1) を加え、100 Cで1時間攪拌した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-へキサン:酢酸エチル=1:1) で精製、イソプロピルエーテル/n-へキサンで結晶化して、標題化合物の薄黄褐色粉末(288.5 mg,72.4%)を得た。 1 H-NMR (DMSO- d_6): δ 6.84-6.91 (2H, m),7.67 (1H,s),8.06 (2H,s),8.14 (1H,d,J=2.1Hz),8.45 (1H,s),10.10 (1H,s),10.44 (1H,s).例310:化合物番号310の化合物の製造

2-アミノ-4-クロロアニソール(131mg, 0.8mmol)の48%テトラフルオロホウ酸(0.3mL)溶液に、氷冷、アルゴン雰囲気下、亜硝酸ナトリウム(57mg, 0.8mmol)の水(1mL)溶液を加えた。0℃で1時間攪拌した後、3,5-ビス(トリフルオロメチル)スチレン(100mg, 0.4mmol)のメタノール(3mL)溶液を加え、50℃で1時間攪拌した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣を酢酸エチル(15mL)で希釈し、2規定塩酸、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色粉末(52.8mg, 33.3%)を得た。

¹H-NMR (CDCl₃): δ 3. 85 (3H, s), 6. 80 (1H, d, J = 8. 8Hz), 7. 08 (1H, d, J=16. 8Hz), 7. 17 (1H, d d, J=8. 8, 2. 5Hz), 7. 20-7. 42 (4H, m), 7. 51-7.

55 (3H, m).

(2) 4-クロロー2-[3, 5-ビス(トリフルオロメチル)スチリル]フェノール(化合物番号310)

原料として、5-クロロー2-メトキシーβ-[3,5-ビス(トリフルオロメチル)フェニル]スチレンを用いて例<math>301(2)と同様の操作を行い、標題化合物を得た。

収率:18.1%

¹H-NMR (CDCl₃): δ 5. 16 (1H, brs), 6. 76 (1H, d, J=8. 4Hz), 7. 15 (1H, dd, J=8. 4, 2. 7Hz), 7. 19 (1H, d, J=16. 5Hz), 7. 45 (1H, d, J=15. 5Hz), 7. 53 (1H, d, J=2. 4Hz), 7. 76 (1H, s), 7. 93 (2H, s).

例311:化合物番号311の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノインダンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率: 45.3%

¹H-NMR (DMSO-d₆): δ 2. 98 (2H, dd, J=16. 2, 5. 7Hz), 3. 29 (2H, dd, J=16. 2, 7. 5Hz), 4. 69-4. 79 (1H, m), 6. 93 (1H, d, J=8. 7Hz), 7. 16-7. 20 (2H, m), 7. 23-7. 28 (2H, m), 7. 43 (1H, dd, J=8. 7, 2. 4Hz), 8. 02 (1H, d, J=2. 4Hz), 9. 03 (1H, d, J=6. 9Hz), 12. 66 (1H, s).

例312:化合物番号312の化合物の製造

(1) 4-クロロー2-({[3, 5-ビス(トリフルオロメチル)フェニル] イミノ}メチル)フェノール

原料として、5-クロロサリチルアルデヒド、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例14(1)と同様の操作を行い、標題化合物を得た。 収率:76.6%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=9. 0Hz), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 7. 80 (1H, d, J=2. 7Hz), 8. 01 (1H, s), 8. 12 (2H, s), 9. 03 (1H, s), 12. 09 (1H, brs).

(2) N-[(5-クロロー2-ヒドロキシフェニル) メチル] -3,5-ビス(トリフルオロメチル) アニリン (化合物番号312)

原料として、4-クロロー2-({[3, 5-ビス(トリフルオロメチル)フェニル] イミノ} メチル)フェノールを用いて例14(2)と同様の操作を行い、標題化合物を得た。

収率:78.1%

¹H-NMR (CDCl₃): δ 4. 40 (3H, s), 6. 27 (1H, s), 6. 80 (1H, d, J=8. 4Hz), 7. 11 (2H, s), 7. 17-7. 20 (2H, m), 7. 30 (1H, s).

例313:化合物番号313の化合物の製造

N-[(5-クロロー2-ヒドロキシフェニル) メチル] -3,5-ビス (トリフルオロメチル) アニリン (化合物番号312;88.8mg,0.24mmol)、酢酸 (43mg,0.7mmol) のジクロルメタン (2mL) 溶液に、アルゴン雰囲気下、WSC・HCl (138mg,0.7mmol) を加え、室温で12時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=3:1) で精製して、標題化合物の白色粉末 (69mg,70.4%) を得た。

¹H-NMR (CDCl₃): δ 1. 92 (3H, s), 4. 73 (2H, s), 6. 54 (1H, d, J=2. 4Hz), 6. 95 (1H, d, J=8. 4Hz), 7. 22 (1H, dd, J=8. 7, 2. 4Hz), 7. 53 (2H, s), 7. 99 (1H, s), 9. 21 (1H, s).

例314:化合物番号314の化合物の製造

WO 03/103647 PCT/JP03/07129 --

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 51 (1H, dd, J=8.7, 2.4Hz), 7. 92 (1H, d, J=2.4Hz), 8.43 (1H, s), 8.57 (2H, s), 10.79 (1H, s), 11.37 (1H, s), 11.81 (1H, s).

例315:化合物番号315の化合物の製造

¹H-NMR (CDCl₃): δ 4. 22 (2H, d, J=4.8Hz), 5. 1 3 (1H, q, J=4.8Hz), 6. 96 (1H, d, J=8.7Hz), 7. 23 (1H, d, J=2.4Hz), 7. 37 (1H, dd, J=9.0, 2.4 Hz), 7. 69 (1H, d, J=4.8Hz), 7. 85 (1H, s), 7. 88 (2H, s), 11. 54 (1H, s).

例316:化合物番号316の化合物の製造

¹H-NMR (CDCl₃): δ 7.04 (1H, d, J=9.0Hz), 7.5 4 (1H, dd, J=9.0, 2.7Hz), 7.75 (2H, s), 7.86 (1 H, s), 8.02 (1H, d, J=2.7Hz), 10.09 (1H, s). 例317:化合物番号317の化合物の製造

5ークロロサリチル酸(35mg, 0.2mmol)、3,5ービス(トリフルオロメチル)フェニルヒドラジン(50mg, 0.2mmol)、のジクロロメタン(2mL)溶液に、アルゴン雰囲気下、WSC・HCl(30.9mg, 0.2mmol)を加え、室温で1時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末(56.3mg,69.6%)を得た。

¹H-NMR (CDCI₃): δ 6. 61 (1H, d, J=2. 7Hz), 6. 9 9 (1H, d, J=8. 7Hz), 7. 28 (2H, s), 7. 41-7. 45 (2 H, m), 7. 62 (1H, d, J=2. 4Hz), 8. 53 (1H, brs), 1 1. 11 (1H, s).

例318:化合物番号318の化合物の製造

(1) 2-ブロモー1-(5-クロロー2-ヒドロキシフェニル) エタノン 5'-クロロー2'-ヒドロキシアセトフェノン (0. 20g, 1. 17mmo 1)のテトラヒドロフラン(6 mL)溶液に、フェニルトリメチルアンモニウムトリブロミド(0.44g,1.17 mm o 1)を加え、室温で8時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の黄色オイル(220.7 mg,75.6%)を得た。

¹H-NMR (CDC1₃): δ 4. 41 (2H, s), 7. 00 (1H, d, J = 9. 3Hz), 7. 47 (1H, dd, J=8. 7, 2. 4Hz), 7. 71 (1H, d, J=2. 7Hz), 11. 63 (1H, s).

(2) 2-(2-アミノチアゾール-4-イル) -4-クロロフェノール 2-ブロモー1-(5-クロロー2-ヒドロキシフェニル) エタノン(156.9mg, 0.63mmol)、チオ尿素(47.9mg, 0.63mmol)、エタノール(3mL)の混合物を2時間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の薄黄白色粉末(98.6mg,64.5%)を得た。

¹H-NMR (DMSO-d₆): δ 6.85 (1H, d, J=8.7Hz), 7. 14 (1H, dd, J=8.7, 3.0Hz), 7.25 (1H, s), 7.48 (2H, s), 7.79 (1H, d, J=3.0Hz), 11.95 (1H, s). (3) N- [4-(5-クロロ-2-ヒドロキシフェニル) チアゾールー2ーイル] - [3,5-ビス (トリフルオロメチル) フェニル] ベンズアミド (化合物番号318)

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98 (1H, d, J=8. 4Hz), 7. 21 (1H, dd, J=8. 7, 2. 7Hz), 7. 95 (1H, s), 8. 08 (1H, d, J=2. 7Hz), 8. 45 (1H, s), 8. 77 (2H, s), 10. 90 (1H, s), 13. 15 (1H, s).

例319:化合物番号319の化合物の製造

(1) 3-[3,5-ビス(トリフルオロメチル)ベンジル] チアゾリジンー <math>2,4 -ジオン

2, 4-4アゾリジンジオン(198.7mg, 1.69mmol)、3, 5-ビス(トリフルオロメチル)ベンジルブロミド(0.50g, 1.63mmol)、エタノール(5mL)の混合物に5規定水酸化ナトリウム水溶液(0, 5mL)を加え、4時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $3:1\rightarrow 2:1$)で精製して、標題化合物の白色結晶(405.6mg, 72.5%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 4. 01 (2H, s), 4. 87 (2H, s), 7. 84 (1H, s), 7. 86 (2H, s).

(2) 5- (5-クロロ-2-ヒドロキシベンジリデン) -3- [3, 5-ビス (トリフルオロメチル) ベンジル] チアゾリジン-2, 4-ジオン(化合物番号 319)

3-[3,5-ビス(トリフルオロメチル)ベンジル]チアゾリジン-2,4-

ジオン (0.20g, 0.58 mm o 1)、ピペリジン (3滴)、酢酸 (3滴)トルエン (5 m L) の混合物を、室温で10分間攪拌し、5 -0 ロロサリチルアルデヒド (92.3 mg, 0.59 mm o 1)を加え、1時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、で抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-0+サン:酢酸エチル=2:1→3:2)で精製して、標題化合物の薄黄色粉末(173.2 mg, 62.0%)を得た。 1 H-NMR (DMSO- $_6$): δ 5.03 (2 H, s), 7.00 (1 H, d, J=9.0 Hz), 7.33 (1 H, d, J=2.4 Hz), 7.38 (1 H, d d, J=8.7, 2.7 Hz), 8.03 (1 H, s), 8.05 (2 H, s), 8.07 (1 H, s), 10.95 (1 H, s).

例320:化合物番号320の化合物の製造

3-ヒドロキシ無水フタル酸(33.5mg, 0.2mmol)、3,5-ビストリフルオロメチルベンジルアミン(62mg, 0.2mmol)、クロロベンゼン(5mL)の混合物を、アルゴン雰囲気下、3時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧下留去し、得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色結晶(68.5mg,85.2%)を得た。
¹H-NMR(CDCl₃):δ 4.90(2H,s),7.19(1H,dd,J=8.4,0.6Hz),7.41(1H,dd,J=7.2,0.6Hz),7.61(1H,dd,J=8.4,7.2Hz),7.75(1H,brs),7.82(1H,brs),7.86(2H,s).

例321:化合物番号321の化合物の製造

5ークロロサリチルアルデヒド (150mg, 1mmol)、3, 5ービス (トリフルオロメチル) フェニルヒドラジン (200mg, 0.9mmol)、メタノール (5mL) の混合物を,アルゴン雰囲気下、1時間加熱還流した。反応混合物を室温まで冷却後、メタノールを減圧下留去し、得られた残渣をnーヘキサン/酢酸エチルで晶析して、標題化合物の白色粉末 (224mg, 66.6%) を得

た。

¹H-NMR (CDCl₃): δ 6. 97(1H, d, J=8. 7Hz), 7. 1 7(1H, d, J=2. 4Hz), 7. 24(1H, dd, J=9. 0, 2. 7Hz), 7. 35(2H, s), 7. 41(1H, s), 7. 82(1H, s), 7. 87(1H, s), 10. 29(1H, s).

例322:化合物番号322の化合物の製造

原料として、6-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:86.9%

¹H-NMR (DMSO-d₆): δ 6. 36 (2H, d, J=8. 4Hz), 7. 13 (1H, t, J=8. 4Hz), 7. 79 (1H, s), 8. 38 (2H, s), 11. 40 (2H, brs), 11. 96 (1H, brs).

例323:化合物番号323の化合物の製造

原料として、4-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率: 42. 9%

¹H-NMR (DMSO-d₆): δ 2. 32 (3H, s) 6. 82 (1H, d, J=6. 6Hz) 6. 84 (1H, s) 7. 83 (1H, s) 7. 84 (1H, d, J=8. 5Hz) 8. 47 (2H, s) 10. 76 (1H, s) 11. 44 (1H, s).

例324:化合物番号324の化合物の製造

原料として、5 ーブロモー4 ーヒドロキシサリチル酸、及び3, 5 ービス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:82.4%

¹H-NMR (CDC1₃): δ 5. 89 (1H, s) 6. 70 (1H, s) 7. 69 (2H, s) 7. 95 (1H, s) 8. 12 (2H, s) 11. 62 (1H,

s).

例325:化合物番号325の化合物の製造

原料として、4-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:29.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 37 (1H, d, J=2.5Hz), 6. 42 (1H, dd, J=8.8, 2.5Hz), 7. 81 (1H, s), 7. 86 (1H, d, J=8.5Hz), 8. 44 (2H, s), 10. 31 (1H, s), 10. 60 (1H, s), 11. 77 (1H, s).

例326:化合物番号326の化合物の製造

原料として、3,5-ジクロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:44.8%

¹H-NMR (DMSO-d₆): δ 7. 85 (1H, d, J=2.5Hz), 7. 91 (1H, s), 8. 01 (1H, d, J=2.5Hz), 8. 42 (2H, s), 11. 10 (1H, s).

例327:化合物番号327の化合物の製造

原料として、3-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:22.7%

¹H-NMR (DMSO-d₆): δ 6. 81 (1H, t, J=8. 0Hz), 7. 01 (1H, dd, J=8. 0, 1. 5Hz), 7. 35 (1H, dd, J=8. 0, 1. 5Hz), 7. 84 (1H, s), 8. 46 (2H, s), 9. 56 (1H, s), 10. 79 (1H, s), 10. 90 (1H, brs).

例328:化合物番号328の化合物の製造

原料として、3-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:54.9%

¹H-NMR (DMSO-d₆): δ 2. 22 (3H, s), 6. 94 (1H, t, J=7. 4Hz), 7. 42 (1H, d, J=7. 4Hz), 7. 84-7. 85 (2H, m), 8. 47 (2H, s), 10. 87 (1H, s), 11. 87 (1H, s).

例329:化合物番号329の化合物の製造

原料として、3-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:34.6%

¹H-NMR (DMSO-d₆): δ 3. 85 (3H, s), 6. 94 (1H, t, J=8. 0Hz), 7. 20 (1H, dd, J=8. 0, 1. 4Hz), 7. 44 (1H, dd, J=8. 0, 1. 4Hz), 7. 84 (1H, s), 8. 45 (2H, s), 10. 82 (1H, s), 10. 94 (1H, brs).

例330:化合物番号330の化合物の製造

原料として、5-[(1,1,3,3-テトラメチル)ブチル] サリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:64.2%

¹H-NMR (DMSO-d₆): δ 0. 70 (9H, s), 1. 35 (6H, s), 1. 72 (2H, s), 6. 95 (1H, d, J=8. 4Hz), 7. 50 (1H, dd, J=8. 0, 2. 1Hz), 7. 83 (1H, s), 7. 84 (1H, d, J=2. 1Hz), 8. 46 (1H, s), 10. 77 (1H, s), 11. 20 (1H, s).

例331:化合物番号331の化合物の製造

原料として、3,5,6ートリクロロサリチル酸、及び3,5ービス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率: 26. 2%

¹H-NMR (DMSO-d₆): δ 7.88 (1H, s), 7.93 (1H, s), 8.33 (2H, s), 10.88 (1H, s), 11.36 (1H, s).

例332:化合物番号332の化合物の製造

原料として、3,5-ビス[(1,1-ジメチル) エチル] サリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:65.0%

¹H-NMR (DMSO-d₆): δ 1. 34 (9H, s), 1. 40 (9H, s), 7. 49 (1H, d, J=2. 2Hz), 7. 82 (1H, d, J=2. 2Hz), 7. 91 (1H, s), 8. 40 (2H, s), 10. 82 (1H, s), 12. 44 (1H, s).

例333:化合物番号333の化合物の製造

原料として、6-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:35.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 73-6. 82 (2H, m), 7. 32 (1H, ddd, J=1. 4, 8. 5, 15. 3Hz), 7. 83 (1H, s), 8. 39 (2H, s), 10. 50 (1H, d, J=1. 4Hz), 11. 11 (1H, s).

例334:化合物番号334の化合物の製造

原料として、3-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:61.3%

¹H-NMR (DMSO-d₅): δ 7. 05 (1H, dd, J=7. 6, 8. 0Hz), 7. 69 (1H, dd, J=1. 4, 13. 3Hz), 7. 90 (1H, s), 7. 93 (1H, dd, J=1. 4, 8. 0Hz), 8. 44 (2H, s), 11. 01 (1H, s), 11. 92 (1H, br. s).

例335:化合物番号335の化合物の製造

原料として、4-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:14.2%

¹H-NMR (DMSO- d_6): δ 3. 81 (3H, s), 6. 54 (1H, d, J=2. 5Hz), 6. 61 (1H, dd, J=2. 5, 8. 8Hz), 7. 83 (1H, s), 7. 95 (1H, d, J=8. 8Hz), 8. 45 (2H, s), 10. 69 (1H, s), 11. 89 (1H, s).

例336:化合物番号336の化合物の製造

原料として、6-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:63.1%

¹H-NMR (DMSO-d₆): δ 3. 24 (3H, s), 6. 03 (1H, d, J=8. 0Hz), 6. 05 (1H, d, J=8. 5Hz), 6. 71 (1H, d d, J=8. 2, 8. 5Hz), 7. 25 (1H, s), 7. 88 (2H, s), 9. 67 (1H, s), 10. 31 (1H, s)

例337:化合物番号337の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号88)、及びメタンスルホニルクロリドを用いて例91と同様な操作を行い、標題化合物を得た。

収率: 22.6%

¹H-NMR (DMSO-d₆): δ 2. 93 (3H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 31 (1H, dd, J=8. 4, 2. 7Hz), 7. 68 (1H, d, J=2. 7Hz), 7. 83 (1H, s), 8. 46 (2H, s), 9. 48 (1H, s), 10. 85 (1H, s), 11. 15 (1H, s).

例338:化合物番号338の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]

-2-ヒドロキシベンズアミド(化合物番号88)、及びベンゼンスルホニルクロリドを用いて例91と同様な操作を行い、標題化合物を得た。

収率:45.3%

¹H-NMR (DMSO-d₆): δ 6.89 (1H, d, J=8.7Hz), 7.10 (1H, dd, J=8.7, 2.7Hz), 7.51-7.64 (4H, m), 7.68-7.71 (2H, m), 7.81 (1H, s), 8.42 (2H, s), 10.03 (1H, s), 10.87 (1H, s), 11.13 (1H, brs). 例339:化合物番号339の化合物の製造

原料として、5-アミノーN-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号88)、及びアセチルクロリドを用いて例91と同様な操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 02 (3H, s), 6. 97 (1H, d, J=8. 7Hz), 7. 61 (1H, dd, J=8. 7, 2. 7Hz), 7. 82 (1H, s), 7. 99 (1H, d, J=2. 7Hz), 8. 46 (2H, s), 9. 90 (1H, s), 10. 85 (1H, s), 10. 94 (1H, s).

例340:化合物番号340の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシー5-スルファモイルベンズアミド(例87(2)の化合物)を用いて例80(5)と同様な操作を行い、標題化合物を得た。

収率:59.9%

¹H-NMR (DMSO-d₆): δ 7. 17 (1H, d, J=8.7Hz), 7. 31 (2H, s), 7. 85 (1H, s), 7. 86 (1H, dd, J=8.4, 2.4Hz), 8. 26 (1H, d, J=2.7Hz), 8. 47 (2H, s), 1 0. 95 (1H, s), 11. 90 (1H, s).

例341:化合物番号341の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ビス(ト

リフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を 得た。

収率: 46.9%

¹H-NMR (DMSO- d_6): δ 7. 36-7. 41 (2H, m), 7. 50 -7. 55 (1H, m), 7. 79 (1H, d, J=8. 2Hz), 7. 85 (1H, d, J=0.6Hz), 7. 96 (1H, d, J=8.0Hz), 8. 51 (2H, s), 10. 98 (1H, s), 11. 05 (1H, s).

例342:化合物番号342の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:30.2%

¹H-NMR (DMSO-d₆): δ 7. 27 (1H, d, J=8.8Hz), 7. 32-7. 38 (1H, m), 7. 45-7. 50 (1H, m), 7. 72 (1H, d, J=8.5Hz), 7. 82-7. 93 (3H, m), 8. 50 (1H, s), 10. 28 (1H, s), 11. 07 (1H, brs).

例343:化合物番号343の化合物の製造

(1) 4ープロモー3ーヒドロキシチオフェン-2ーカルボン酸

4ープロモー3ーヒドロキシチオフェンー2ーカルボン酸 メチルエステル (500mg, 2.1mmol)、水酸化ナトリウム (261mg, 6.3mmol)のメタノール/水 (2.5mL+2.5mL)混合溶液を2時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸を加えpHを1とした後、酢酸エチル (50mL)で希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して、標題化合物の赤褐色粉末 (326mg, 69.4%)を得た。

¹H-NMR (CDCl₃): δ 4.05 (1H, brs), 7.40 (1H, s). (2) 4-プロモー3-ヒドロキシ-N-[3, 5-ビス (トリフルオロメチル) フェニル] チオフェンー2ーカルボキサミド(化合物番号343)

原料として、4 ーブロモー3 ーヒドロキシチオフェンー2 ーカルボン酸、及び3,5 ービス (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:82.4%

¹H-NMR (CDCl₃): δ 7.42 (1H, s), 7.67 (1H, brs), 7.78 (1H, brs), 8.11 (2H, s), 9.91 (1H, brs). 例344:化合物番号344の化合物の製造

原料として、3,5-ビス(トリフルオロメチル)フェニルイソシアネート、及びオキシインドールを用いて例28と同様の操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 98 (2H, s), 7. 22 (1H, t d, J=7. 8, 1. 2Hz), 7. 33-7. 40 (2H, m), 7. 87 (1H, s), 8. 02 (1H, d, J=7. 8Hz), 8. 38 (2H, s), 11. 00 (1H, s).

例345:化合物番号345の化合物の製造

原料として、3,5-ビス(トリフルオロメチル)フェニルイソシアネート、及び5-クロロオキシインドールを用いて例28と同様の操作を行い、標題化合物を得た。

収率:31.1%

¹H-NMR (DMSO-d₆): δ 3. 99 (2H, s), 7. 41 (1H, d d, J=8. 7, 2. 4Hz), 7. 47 (1H, d, J=2. 1Hz), 7. 8 7 (1H, s), 8. 01 (1H, d, J=8. 4Hz), 8. 38 (2H, s), 10. 93 (1H, s).

例346:化合物番号346の化合物の製造

原料として、5-クロロサリチル酸、及び3-ブロモ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:37.1%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=9.3Hz), 7. 48 (1H, dd, J=8.7, 2.4Hz), 7. 72 (1H, s), 7. 84 (1H, d, J=2.7Hz), 8. 16 (1H, s), 8. 28 (1H, s), 1 0. 69 (1H, s), 11. 42 (1H, s).

例347:化合物番号347の化合物の製造

原料として、5-クロロサリチル酸、及び3-メトキシ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.0%

¹H-NMR (DMSO-d₆): δ 3. 85 (3H, s), 7. 02 (1H, s), 7. 03 (1H, d, J=8. 7Hz), 7. 48 (1H, dd, J=8. 7, 2. 7Hz), 7. 61 (1H, s), 7. 77 (1H, s), 7. 88 (1H, d, J=2. 7Hz), 10. 57 (1H, s), 11. 53 (1H, s).

例348:化合物番号348の化合物の製造

原料として、5-クロロサリチル酸、及び2-モルホリノー5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.8%

¹H-NMR (DMSO-d₆): δ 2. 90 (4H, m), 3. 84 (4H, m), 7. 15 (1H, d, J=9. 0Hz), 7. 48 (2H, s), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 8. 00 (1H, d, J=2. 7Hz), 8. 91 (1H, s), 11. 24 (1H, s), 12. 05 (1H, s).

例349:化合物番号349の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 10 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.4, 2.1Hz), 7. 53 (1H, dd, J=8.

7, 3. 0 Hz), 7. 97-7. 99 (2H, m), 8. 81 (1H, d, J= 2. 1 Hz), 11. 03 (1H, s), 12. 38 (1H, s).

例350:化合物番号350の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-5-トリフルオロメチル 安息香酸メチルエステルを用いて例16と同様の操作を行い、標題化合物を得た。 収率:67.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 91 (3H, s), 7. 02 (1H, d, J=9. 3Hz), 7. 43 (1H, dd, J=9. 0, 2. 4Hz), 7. 57 (1H, d, J=2. 4Hz), 8. 13 (1H, s), 8. 23 (1H, s), 8. 29 (1H, s), 8. 36 (1H, s), 11. 52 (1H, s).

例351:化合物番号351の化合物の製造

5- 2000 - 2000

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 91 (1H, d, J=2.7 Hz), 7. 93 (1H, s), 8. 43 (1H, s), 8. 59 (1H, s), 1 0. 78 (1H, s), 11. 48 (1H, s).

例352:化合物番号352の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-ナフチルオキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:89.6%

¹H-NMR (CDCl₃): δ 6. 94 (1H, d, J=9.6Hz), 6. 9 8 (1H, d, J=9.2Hz), 7. 25-7. 41 (4H, m), 7. 48-7. 57 (3H, m), 7. 81 (1H, d, J=6.9Hz), 7. 88 (1H, d, J=6.9Hz), 7. 95 (1H, d, J=8.9Hz), 8. 72 (1H, s), 8. 83 (1H, d, J=2.0Hz), 11. 70 (1H, s).

例353:化合物番号353の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2,4-ジクロロフェノキシ) -5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標 題化合物を得た。

収率: 4. 7%

¹H-NMR (CDCl₃): δ 6. 78 (1H, d, J=8. 9Hz), 7. 0 2 (1H, d, J=8. 6Hz), 7. 16 (1H, d, J=8. 6Hz), 7. 33-7. 38 (3H, m), 7. 42 (1H, dd, J=8. 6, 2. 6Hz), 7. 49 (1H, d, J=2. 6Hz) 7. 58 (1H, d, J=2. 3Hz), 8. 66 (1H, brs,), 8. 82 (1H, d, J=2. 0Hz), 11. 65 (1H, s).

例354:化合物番号354の化合物の製造

原料として、5-クロロサリチル酸、及び2-[(4-トリフルオロメチル) ピペリジノ] -5-(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:60.5%

¹H-NMR (CDCl₃): δ 1. 85-2. 05 (2H, m), 2. 15 (2 H, d, J=10. 9Hz), 2. 28 (1H, m), 2. 82 (2H, t, J=11. 0Hz), 3. 16 (2H, d, J=12. 2Hz), 7. 02 (1H, d, J=8. 9Hz), 7. 31 (1H, d, J=8. 3Hz), 7. 42 (2H, m), 7. 50 (1H, d, J=2. 6Hz), 8. 75 (1H, s), 9. 60 (1H,

s), 11. 94 (1H, s)

例355:化合物番号355の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2,2,2-トリフルオロエトキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:94.5%

 $^{1}H-NMR$ (CDCl₃): δ 4. 58 (2H, q, J=7. 9Hz), 6. 9 9-7. 05 (2H, m), 7. 41-7. 50 (3H, m), 8. 63 (1H, brs), 8. 79 (1H, d, J=2. 0Hz), 11. 59 (1H, s).

例356:化合物番号356の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-メトキシフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:80.6%

¹H-NMR (DMSO-d₆): δ 3. 74 (3H, s), 6. 70 (1H, d, J=8. 4Hz), 7. 02 (1H, d, J=8. 7Hz), 7. 07 (1H, d d, J=1. 5, 7. 8Hz), 7. 24-7. 39 (4H, m), 7. 49 (1H, d d, J=3. 0, 8. 7Hz), 8. 00 (1H, d, J=3. 0Hz), 8. 92 (1H, d, J=2. 1Hz), 11. 36 (1H, s), 12. 18 (1H, s).

例357:化合物番号357の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロ-3, 5-ジメチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:91.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 34 (6H, s), 7. 03 (1H, d, J=8.8Hz), 7. 05 (1H, d, J=8.1Hz), 7. 11 (2H, s),

7. 43-7. 47 (1H, m), 7. 48 (1H, dd, J=2. 9, 8. 8H z), 7. 97 (1H, d, J=2. 6Hz), 8. 94 (1H, d, J=2. 2Hz), 11. 25 (1H, s), 12. 12 (1H, s).

例358:化合物番号358の化合物の製造

原料として、5-クロロサリチル酸、及び2-ピペリジノ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.7%

¹H-NMR (CDC1₃): δ 1. 68-1. 72 (2H, m), 1. 80-1. 88 (4H, m), 2. 89 (4H, t, J=5. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 31 (1H, d, J=8. 4Hz), 7. 39-7. 43 (2H, m), 7. 55 (1H, d, J=2. 4Hz), 8. 73 (1H, d, J=1. 8Hz), 9. 71 (1H, s), 12. 05 (1H, s)

例359:化合物番号359の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-メチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.3%

¹H-NMR (DMSO-d₆): δ 2. 33 (3H, s), 6. 93 (1H, d, J=8. 8Hz), 7. 03 (1H, dd, J=0. 5, 8. 8Hz), 7. 12 (2H, d, J=8. 2Hz), 7. 29 (2H, d, J=8. 5Hz), 7. 4 3 (1H, dd, J=2. 0, 8. 6Hz), 7. 48 (1H, ddd, J=0. 8, 2. 7, 8. 8Hz), 7. 98 (1H, dd, J=0. 8, 2. 7Hz), 8. 94 (1H, d, J=2. 2Hz), 11. 29 (1H, s), 12. 15 (1H, s).

例360:化合物番号360の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合

物を得た。

収率:74.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 01 (1H, d, J=8.8Hz), 7. 06 (1H, d, J=8.5Hz), 7. 22 (1H, d, J=8.5Hz), 7. 43-7. 48 (2H, m), 7. 50 (2H, d, J=8.2Hz), 7. 94 (1H, dd, J=0.5, 2.7Hz), 8. 92 (1H, d, J=2.2Hz), 11. 20 (1H, s), 12. 10 (1H, s).

例361:化合物番号361の化合物の製造

原料として、5-プロモー2-ヒドロキシ-N-[3,5-ビス(メトキシカルボニル)フェニル] ベンズアミド(化合物番号170)を用いて例351と同様の操作を行い、標題化合物を得た。

収率:89.0%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.7Hz), 7. 60 (1H, dd, J=8.7, 2.4Hz), 7. 24 (1H, dd, J=8.7, 2.7Hz), 8. 08 (1H, d, J=2.7Hz), 8. 24 (1H, t, J=1.5Hz), 8. 57 (2H, d, J=1.2Hz), 10. 67 (1H, s), 11. 64 (1H, s).

例362:化合物番号362の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-5- [(1-メチル) エチル] アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:19.1%

¹H-NMR (CDC1₃): δ 1. 26 (6H, d, J=6. 9Hz), 2. 3 0 (3H, s), 2. 87-2. 96 (1H, m), 7. 00 (1H, d, J=8. 7Hz), 7. 08 (1H, dd, J=7. 8, 1. 8Hz), 7. 20 (1H, d, J=7. 8Hz), 7. 40 (1H, dd, J=8. 7, 2. 4Hz), 7. 49 (1H, d, J=2. 7Hz), 7. 50 (1H, s), 7. 71 (1H, s), 11. 99 (1H, s).

例363:化合物番号363の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジエトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:59.2%

¹H-NMR (DMSO- d_6): δ 1. 32 (3H, t, J=6.9Hz), 1. 41 (3H, t, J=6.9Hz), 3. 97 (2H, q, J=6.9Hz), 4. 06 (2H, q, J=6.9Hz), 6. 61 (1H, dd, J=9.0, 3.0 Hz), 6. 98 (1H, d, J=8.7Hz), 7. 10 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 97 (1H, d, J=2.7Hz), 8. 16 (1H, d, J=3.0Hz), 10. 96 (1H, s), 11. 91 (1H, s).

例364:化合物番号364の化合物の製造

原料として、5 - クロロサリチル酸、及び2, 5 - ジメチルアニリンを用いて例 1 6 と同様の操作を行い、標題化合物を得た。

収率:90.5%

¹H-NMR (CDCl₃): δ 2. 28 (3H, s), 2. 35 (3H, s), 6. 99 (1H, d, J=8. 8Hz), 7. 02 (1H, brs), 7. 15 (1 H, d, J=7. 7Hz), 7. 40 (1H, dd, J=8. 8, 2. 5Hz), 7. 45 (1H, brs), 7. 49 (1H, d, J=2. 5Hz) 7. 70 (1 H, br), 11. 96 (1H, brs).

例365:化合物番号365の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-シアノアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:90.0%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 82 (1H, dd, J=8. 7, 2.4Hz), 7. 95 (1H, d, J=3.0Hz), 8. 07 (1H, d,

J=2.4Hz), 8. 36 (1H, d, J=9.0Hz), 11. 11 (1H, s), 12. 36 (1H, s).

例366:化合物番号366の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N, N-ジェチルスルファモイル)-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.8%

¹H-NMR (CDCl₃): δ 1. 17 (6H, t, J=7. 3Hz), 3. 2 9 (4H, q, J=7. 3Hz), 4. 05 (3H, s), 7. 00 (2H, dd, J=2. 3, 8. 9Hz), 7. 41 (1H, dd, J=2. 3, 8. 9Hz), 7. 48 (1H, d, J=2. 6Hz), 7. 65 (1H, dd, J=2. 3, 8. 6Hz), 8. 56 (1H, br. s), 8. 84 (1H, d, J=2. 3Hz), 11. 82 (1H, s).

例367:化合物番号367の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

¹H-NMR (CD₃OD): δ 6. 98 (1H, d, J=8.6Hz), 7. 4 3 (1H, dd, J=2.6, 8.6Hz), 7. 74 (1H, d, J=8.9Hz), 7. 99 (1H, dd, J=3.0, 8.9Hz), 8.08 (1H, d, J=2.6Hz), 9.51 (1H, d, J=2.6Hz)

例368:化合物番号368の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N-フェニルカルバモイル)-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:40.3%

¹H-NMR (DMSO-d₆): δ 3. 99 (3H, s), 7. 09 (2H, d d, J=6. 6, 6. 9Hz), 7. 24 (1H, d, J=8. 6Hz), 7. 3

5 (2H, dd, 6. 9, 7. 3Hz), 7. 49 (1H, d, J=2. 3, 8. 9Hz), 7. 77 (3H, d, J=8. 6Hz), 8. 00 (1H, s), 8. 9 7 (1H, s), 10. 17 (1H, s), 10. 91 (1H, s), 12. 11 (1H, s).

例369:化合物番号369の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジメトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.9%

¹H-NMR (CDCl₃): δ 3.82 (3H, s), 3.93 (3H, s), 6.66 (1H, dd, J=3.0, 8.9Hz), 6.86 (1H, d, J=8.9Hz), 6.98 (1H, d, J=8.9Hz), 7.39 (1H, dd, J=2.6, 8.9Hz), 7.47 (1H, d, J=2.6Hz), 8.08 (1H, d, J=3.0Hz), 8.60 (1H, br.s), 12.03 (1H, s). 例 370: 化合物番号 370 の化合物の製造

原料として、5-クロロサリチル酸、及び5-アセチルアミノ-2-メトキシア ニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.9%

¹H-NMR (DMSO-d₆): δ 2. 01 (3H, s), 3. 85 (3H, s), 7. 03 (2H, t, J=9.6Hz), 7. 49 (2H, dd, J=8.9, 9.2Hz), 7. 96 (1H, s), 8. 51 (1H, s), 9. 87 (1H, s), 10. 82 (1H, s), 12. 03 (1H, d, J=4.0Hz).

例371:化合物番号371の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシー2-メチルアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:100%

¹H-NMR (CDCl₃): δ 2. 29 (3H, s), 3. 82 (3H, s), 6. 75 (1H, dd, J=2. 6, 8. 2Hz), 7. 00 (1H, d, J=8.

9 H z), 7. 16 (1 H, d, J = 8. 6 H z), 7. 38 (1 H, d, 2. 3 H z), 7. 41 (1 H, d d, J = 2. 3, 8. 9 H z), 7. 48 (1 H, d, J = 2. 3 H z), 7. 70 (1 H, b r. s), 11. 92 (1 H, s).

例372:化合物番号372の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジプトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.9%

¹H-NMR (CDCl₃): δ 0. 98 (3H, t, J=7. 2Hz), 1. 0 5 (3H, t, J=7. 2Hz), 1. 44-1. 65 (4H, m), 1. 72-1. 79 (2H, m), 1. 81-1. 91 (2H, m), 3. 97 (2H, t, J=6. 3Hz), 4. 07 (2H, t, J=6. 3Hz), 6. 64 (1H, dd, J=9. 0, 3. 0Hz), 6. 85 (1H, d, J=9. 3Hz), 6. 9 (1H, d, J=9. 0Hz), 7. 39 (1H, dd, J=8. 7, 2. 4Hz), 7. 44 (1H, d, J=2. 7Hz), 8. 08 (1H, d, J=3. 0Hz), 8. 76 (1H, s), 12. 08 (1H, s).

例373:化合物番号373の化合物の製造

原料として、5 ークロロサリチル酸、及び2, 5 ージイソペンチルオキシシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.7%

¹H-NMR (CDCl₃): δ 0. 97 (6H, d, J=6.6Hz), 1. 0 3 (6H, d, 6.6Hz), 1. 64-1. 98 (6H, m), 3. 99 (2H, t, J=6.6Hz), 4. 09 (2H, t, J=6.3Hz), 6. 63 (1H, dd, J=8.7, 3. 0Hz), 6. 85 (1H, d, J=8.7Hz), 6. 98 (1H, d, J=8.7Hz), 7. 38 (1H, dd, J=9.0, 2. 4Hz), 7. 43 (1H, d, J=2.7Hz), 8. 09 (1H, d, J=3.0Hz), 8. 75 (1H, s), 12. 08 (1H, s).

例374:化合物番号374の化合物の製造

原料として、5-クロロサリチル酸、及び5-カルバモイル-2-メトキシアニ リンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 31. 2%

¹H-NMR (CD₃OD): δ 4.86 (3H, s), 6.93 (1H, d, J=7.6Hz), 7.18 (1H, d, J=8.6Hz), 7.35 (1H, dd, J=3.0, 7.6Hz), 7.47 (1H, dd, J=2.0, 8.6Hz), 8.00 (1H, d, J=3.0Hz), 8.80 (1H, d, J=2.0Hz). 例375:化合物番号375の化合物の製造

原料として、5-クロロサリチル酸、及び5- [(1, 1-ジメチル) プロピル] -2-フェノキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.2%

¹H-NMR (CDCl₃): δ 0. 69 (3H, t, J=7. 6Hz), 1. 2 9 (6H, s), 1. 64 (2H, q, J=7. 6Hz), 6. 91 (1H, dd, J=1. 7, 7. 6Hz), 6. 96 (1H, d, J=8. 9Hz), 7. 03 (2 H, d, J=8. 9Hz), 7. 10 (1H, dt, J=1. 7, 7. 6Hz), 7. 16 (1H, dt, J=1. 7, 7. 6Hz), 7. 16 (1H, dt, J=1. 7, 7. 6Hz), 7. 40-7. 31 (4H, m), 8. 42 (1H, dd, J=2. 0, 7. 9Hz), 8. 53 (1H, br. s) 11. 94 (1H, s).

例376:化合物番号376の化合物の製造

原料として、5-クロロサリチル酸、及び2-ヘキシルオキシ-5-(メチルスルホニル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:33.0%

¹H-NMR (CDCl₃): δ 0. 92 (3H, t, J=6. 9Hz), 1. 4 0-1. 59 (6H, m), 1. 90-2. 01 (2H, m), 3. 09 (3H, s), 4. 22 (2H, t, J=6. 3Hz), 7. 01 (1H, d, J=8. 9Hz), 7. 06 (1H, d, J=8. 6Hz), 7. 40-7. 43 (2H, m),

7. 73 (1H, dd, J=8. 6, 2. 3Hz), 8. 74 (1H, brs), 8. 99 (1H, d, J=2. 3Hz), 11. 76 (1H, s).

例377:化合物番号377の化合物の製造

原料として、5-クロロサリチル酸、及び3'-アミノ-2, 2, 4'-トリメチルプロピオフェノンを用いて例16と同様の操作を行い、標題化合物を得た。 収率: 44. 8%

¹H-NMR (CDCl₃): δ 1. 38 (9H, s), 2. 38 (3H, s), 7. 01 (1H, d, J=8. 9Hz), 7. 31 (1H, d, J=7. 9Hz), 7. 42 (1H, dd, J=8. 9, 2. 6Hz), 7. 53 (1H, d, J=2. 6Hz), 7. 57 (1H, dd, J=7. 9, 2. 0Hz), 7. 83 (1H, brs), 8. 11 (1H, d, J=2. 0Hz), 11. 82 (1H, s).

例378:化合物番号378の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2-(1-ピロリル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:53.4%

¹H-NMR (CDCl₃): δ 2. 46 (3H, s), 6. 51-6. 52 (2 H, m), 6. 82-6. 85 (3H, m), 6. 93 (1H, d, J=8. 9Hz), 7. 06 (1H, d, J=7. 9Hz), 7. 30 (1H, d, J=7. 9Hz), 7. 32 (1H, dd, J=2. 3, 8. 9Hz), 7. 61 (1H, s), 8. 29 (1H, s), 11. 86 (1H, br. s).

例379:化合物番号379の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-トシルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.0%

¹H-NMR (CDCl₃): δ 2. 38 (3H, s), 7. 02 (1H, d, J=8. 9Hz), 7. 25-7. 31 (3H, m), 7. 46 (1H, dd, J=2. 6, 8. 9Hz), 7. 68 (2H, d, J=8. 6Hz), 7. 74 (1H, d,

J=2.3Hz), 7. 96 (1H, d, J=8.6Hz), 8. 56 (1H, d, J=2.0Hz), 10. 75 (1H, s), 11. 70 (1H, s).

例380:化合物番号380の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-トシルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:43.5%

¹H-NMR (CDCl₃): δ 2. 38 (3H, s), 7. 02 (1H, d, J=8. 9Hz), 7. 27 (1H, d, J=7. 9Hz), 7. 29 (1H, dd, J=2. 0, 6. 6Hz), 7. 46 (1H, dd, J=2. 3, 8. 9Hz), 7. 68 (2H, d, J=8. 6Hz), 7. 73 (2H, d, J=2. 3Hz), 7. 97 (1H, d, J=8. 6Hz), 8. 56 (1H, d, J=2. 0Hz), 10. 73 (1H, s), 11. 71 (1H, s).

例381:化合物番号381の化合物の製造

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(メチルスルホニル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:28.8%

¹H-NMR (CDCl₃): δ 3. 12 (3H, s), 7. 03 (1H, d, J=8. 9Hz), 7. 38 (1H, dd, J=8. 6, 10. 2Hz), 7. 45 (1H, dd, J=2. 3, 8. 9Hz), 7. 53 (1H, d, J=2. 3Hz), 7. 80 (1H, ddd, J=2. 3, 4. 6, 8. 6Hz), 8. 25 (1H, s), 8. 98 (1H, dd, J=2. 3, 7. 7Hz), 11. 33 (1H, br. s).

例382:化合物番号382の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-フェノキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.0%

 $^{1}H-NMR$ (CDCl₃): δ 3. 98 (3H, s), 6. 80 (1H, d, J

=8.8 Hz), 6.90 (1H, d, J=8.8 Hz), 6.95-7.00 (3 H, m), 7.04-7.09 (1H, m), 7.29-7.35 (2H, m), 7.38 (1H, dd, J=8.8, 2.6 Hz), 7.47 (1H, d, J=2.6 Hz), 8.19 (1H, d, J=2.9 Hz), 8.61 (1H, brs), 11.92 (1H, s).

例383:化合物番号383の化合物の製造

原料として、5 ークロロサリチル酸、及び3 ーアミノー4 ーメチルビフェニルを 用いて例16と同様の操作を行い、標題化合物を得た。

収率: 47. 7%

¹H-NMR (DMSO-d₆): δ 2. 33 (3H, s), 7. 06 (1H, d, J=8. 7Hz), 7. 43-7. 52 (4H, m), 7. 64-7. 67 (2H, m), 8. 04 (1H, d, J=2. 7Hz), 8. 19 (1H, d, J=1. 5Hz), 10. 40 (1H, s), 12. 22 (1H, s).

例384:化合物番号384の化合物の製造

原料として、5-クロロサリチル酸、及び5-(α , $\alpha-$ ジメチルベンジル)-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率: 89.0%

¹H-NMR (CDCl₃): δ 1. 72 (6H, s), 3. 93 (3H, s), 6. 83 (1H, d, J=8. 8Hz), 6. 93 (1H, dd, J=2. 6, 8. 8Hz), 6. 96 (1H, d, J=9. 2Hz), 7. 15-7. 20 (1H, m), 7. 25-7. 28 (4H, m), 7. 36 (1H, dd, J=2. 6, 8. 8Hz), 7. 46 (1H, d, J=2. 6Hz), 8. 35 (1H, d, J=2. 6Hz), 8. 51 (1H, s), 12. 04 (1H, s).

例385:化合物番号385の化合物の製造

原料として、5 ークロロサリチル酸、及び5 ーモルホリノー2 ーニトロアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率: 4. 1%

¹H-NMR (DMSO-d₆): δ 3. 46-3. 52 (4H, m), 3. 85-3. 94 (4H, m), 7. 03 (1H, d, J=8. 8Hz), 7. 47 (1H, dd, J=2. 9, 8. 8Hz), 7. 80 (1H, dd, J=2. 6, 8. 8Hz), 7. 82 (1H, d, J=2. 6Hz), 7. 88 (1H, d, J=8. 8Hz), 8. 20 (1H, d, J=2. 2Hz), 10. 70 (1H, s), 11. 43 (1H, s)

例386:化合物番号386の化合物の製造

原料として、5-クロロサリチル酸、及び5-フルオロ-2-(1-イミダゾリル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:33.8%

¹H-NMR (DMSO-d₆): δ 6. 99 (1H, d, J=8.8Hz), 7. 12-7. 19 (2H, m), 7. 42-7. 51 (3H, m), 7. 89 (1H, d, J=2.8Hz), 7. 93 (1H, d, J=1.1Hz), 8. 34 (1H, dd, J=11.4, 2.8Hz), 10. 39 (1H, s), 11. 76 (1H, brs).

例387:化合物番号387の化合物の製造

原料として、5 ークロロサリチル酸、及び2 ーブチルー5 ーニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:15.3%

¹H-NMR (CDC1₃): δ 0. 99 (3H, t, J=7. 3Hz), 1. 3 9-1. 51 (2H, m), 1. 59-1. 73 (2H, m), 2. 71-2. 79 (2 H, m), 7. 03 (1H, d, J=8. 9Hz), 7. 41-7. 49 (3H, m), 7. 92 (1H, s), 8. 07 (1H, dd, J=2. 3, 8. 4Hz), 8. 75 (1H, d, J=2. 4Hz), 11. 51 (1H, s).

例388:化合物番号388の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1, 1-ジメチル) プロピル] -2-ヒドロキシアニリンを用いて例16と同様の操作を行い、標題化合物を得 た。

収率:36.0%

¹H-NMR (CDCl₃): δ 0. 70 (3H, t, J=7. 4Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7. 4Hz), 6. 97 (1H, d, J=6. 3Hz), 7. 00 (1H, d, J=6. 6Hz), 7. 08 (1H, s), 7. 14 (1H, dd, J=2. 5, 8. 6Hz), 7. 36 (1H, d, J=2. 2Hz), 7. 42 (1H, dd, J=2. 5, 8. 8Hz), 7. 57 (1H, d, J=2. 5Hz), 8. 28 (1H, s), 11. 44 (1H, s).

例389:化合物番号389の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-メチルアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:74.2%

¹H-NMR (DMSO-d₆): δ 2. 27 (3H, s), 3. 85 (3H, s), 6. 90 (1H, dd, J=9. 0, 2. 4Hz), 6. 98 (1H, d, J=9. 0Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=3. 0Hz), 8. 24 (1H, d, J=2. 4Hz), 10. 79 (1H, s), 12. 03 (1H, s).

例390:化合物番号390の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:81.5%

¹H-NMR (DMSO-d₆): δ 6. 98-7. 07 (1H, m), 7. 07 (1H, d, J=9. 0Hz), 7. 37-7. 49 (1H, m), 7. 52 (1H, dd, J=8. 7, 3. 0Hz), 7. 95 (1H, d, J=2. 7Hz), 8. 15-8. 22 (1H, m), 10. 83 (1H, s), 12. 25 (1H, s).

例391:化合物番号391の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ジフルオロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:82.0%

¹H-NMR (DMSO-d₆): δ 7. 00 (1H, tt, J=9. 3, 2. 1), 7. 03 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=7. 5, 2. 7Hz), 7. 49 (1H, d, J=2. 7Hz), 7. 51 (1H, d, J=2. 1Hz), 7. 82 (1H, d, J=3. 0Hz), 10. 63 (1H, s), 11. 43 (1H, brs).

例392:化合物番号392の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル) アミノー4-[(1, 1-ジメチル) エチル」チアゾールー5-カルボン酸 エチルエステル (化合物番号197) を用いて例82と同様の操作を行い、標題化合物を得た。

収率:85.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 44 (9H, s), 7. 00 (1H, d, J=9. 0Hz), 7. 62 (1H, dd, J=9. 0, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 83 (1H, brs), 12. 04 (1H, brs), 12. 98 (1H, brs).

例393:化合物番号393の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノー4-フェニルチアゾール -5- 酢酸 メチルエステルを用いて例 195(3) と同様の操作を行い、標題 化合物を得た。(本化合物は、例 203(1) の化合物である。) \cdot

収率: 32.1%

mp 288. 5-229. 5°C.

¹H-NMR (DMSO-d₆): δ 3. 66 (3H, s), 3. 95 (2H, s), 6. 99 (1H, d, J=8. 0Hz), 7. 42 (1H, d, J=6. 0Hz), 7. 48 (2H, brt, J=7. 6Hz), 7. 56-7. 61 (3H, m), 8. 07 (1H, d, J=2. 4Hz), 11. 85 (1H, brs), 11. 9

8 (1H, brs).

例394:化合物番号394の化合物の製造

2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステル(化合物番号209)を用いて例82と同様の操作を行い、標題化合物を得た。(本化合物は、例212(1)の化合物である。)

収率:67.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.00 (1H, d, J=8.8Hz), 7. 42-7.44 (3H, m), 7.62 (1H, dd, J=8.8, 2.4Hz), 7.70-7.72 (2H, m), 8.04 (1H, d, J=2.4Hz), 12. 31 (1H, brs), 12.99 (1H, brs).

例395:化合物番号395の化合物の製造

(1) 2-アミノー4-[3, 5-ビス(トリフルオロメチル)フェニル]チアゾ ール

3' , 5' ービス (トリフルオロメチル) アセトフェノン (0. 51g , 2.0 mmol) のテトラヒドロフラン (5mL) 溶液に、フェニルトリメチルアンモニウムトリブロミド (753mg , 2mmol) を加え、室温で5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣にエタノール (5mL)、チオウレア (152mg , 2mmol) を加え、30分間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=2:1) で精製、n-ヘキサンで懸濁洗浄して、標題化合物の薄黄白色結晶(520.1mg , 83.3%)を得た。 1 H-NMR ($CDC1_3$): δ 5.03 (2H, s), 6.93 (1H, s), 7.77 (1H, s), 8.23 (2H, s).

(2) $5-\rho$ ロロー 2-ヒドロキシーNー $\{4-[3,5-$ ビス(トリフルオロメチル)フェニル]チアゾールー 2-イル $\}$ ベンズアミド(化合物番号 395) 5-クロロサリチル酸(172.6mg,1mm o1)、2-アミノー 4-[3,5-ビス(トリフルオロメチル)フェニル]チアゾール(312.2mg,1mm o1)、三塩化リン(44μ L,0.5mm o1)、モノクロロベンゼン(5mL)の混合物を 4 時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $3:1\rightarrow 2:1$)で精製して、標題化合物の淡黄白色粉末(109.8mg,23.5%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=9.0, 3.0Hz), 7. 94 (1H, d, J=3.0 Hz), 8. 07 (1H, s), 8. 29 (1H, s), 8. 60 (2H, s), 1. 77 (1H, s), 12. 23 (1H, s).

例396:化合物番号396の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノピリジンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:23.2%

¹H-NMR (DMSO-d₆): δ 7. 02 (1H, d, J=9.3Hz), 7. 42 (1H, ddd, J=9.0, 4.8, 0.6Hz), 7.47 (1H, dd, J=8.7, 5.7Hz), 7.92 (1H, d, J=2.7Hz), 8.15 (1H, ddd, J=8.4, 2.4, 1.5Hz), 8.35 (1H, dd, J=7.8, 1.5Hz), 8.86 (1H, d, J=2.4Hz), 10.70 (1H, s).

例397:化合物番号397の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-ブロモピリジンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.3%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 42 (1H, d, J=7.8Hz), 7. 51 (1H, dd, J=8.7, 2.7 Hz), 7. 82 (1H, t, J=7.5Hz), 7. 94 (1H, d, J=3. 0Hz), 8. 24 (1H, d, J=7.8Hz), 10. 95 (1H, s), 11. 97 (1H, s).

例398:化合物番号398の化合物の製造

(1) 2ーアセトキシー5ークロローN-(ピリダジンー2ーイル)ベンズアミド

原料として、2-アセトキシー5-クロロ安息香酸、及び2-アミノピリダジンを用いて例198(3)と同様の操作を行い、標題化合物を得た。

収率:19.7%

¹H-NMR (CDCl₃): δ 2. 42 (3H, s), 7. 19 (1H, d, J=8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 7Hz), 8. 01 (1H, d, J=2. 4Hz), 8. 28 (1H, dd, J=2. 4, 1. 8Hz), 8. 42 (1H, d, J=2. 4Hz), 9. 09 (1H, s), 9. 66 (1H, d, J=1. 8Hz).

(2) 5-クロロー2-ヒドロキシ-N-(ピリダジン-2-イル)ベンズアミド(化合物番号398)

原料として、2-アセトキシ-5-クロロ-N-(ピリダジン-2-イル)ベンズアミドを用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率:72.6%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 96 (1H, d, J=2.7 Hz), 8. 44-8. 47 (2H, m), 9. 49 (1H, s), 10. 99 (1H, s), 12. 04 (1H, s).

例399:化合物番号399の化合物の製造。

原料として、5 ープロモサリチル酸、及び2 ーアミノー5 ープロモピリミジンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:10.3%

¹H-NMR (DMSO-d₆): δ 6.98 (1H, d, J=8.8Hz), 7.59 (1H, dd, J=8.8, 2.4Hz), 8.00 (1H, d, J=2.8Hz), 8.86 (2H, s), 11.09 (1H, s), 11.79 (1H, s). 例400: 化合物番号400の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸(化合物番号394)、及びプロピルアミンを用いて例212(2)と同様の操作を行い、標題化合物を得た。

収率: 23, 1%

¹H-NMR (DMSO-d₆): δ 0. 82 (3H, t, J=7.5Hz), 1. 39-1. 51 (2H, m), 3. 13 (2H, q, J=6.6Hz), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=8.7, 2.7Hz), 7. 68-7. 72 (2H, m), 8. 06 (1H, d, J=2.7Hz), 8. 18 (1H, t, J=5.7Hz), 11. 87 (1H, brs), 12. 14 (1H, brs).

例401:化合物番号401の化合物の製造

原料として、5 ークロロサリチル酸、及び2 ーメチルー3,5 ービス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。収率:15.0%

¹H-NMR (DMSO-d₆): δ 2. 49 (3H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 8Hz), 7. 84 (1H, s), 7. 97 (1H, d, J=2. 8Hz), 8. 60 (1H, s), 10. 69 (1H, brs), 12. 07 (1H, brs).

例402:化合物番号402の化合物の製造

原料として、5-クロロサリチル酸、及び4-クロロ-3-(トリフルオロメチ

ル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:66.5%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, d, J=8.7 Hz), 7. 86 (1H, d, J=2.4Hz), 8. 00 (1H, dd, J=8.7, 2.4Hz), 8. 32 (1H, d, J=2.4Hz), 10. 69 (1H, s), 11. 49 (1H, s).

例403:化合物番号403の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピル-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:33.4%

¹H-NMR (DMSO-d₆): δ 1. 24 (6H, d, J=6.6Hz), 2. 97-3.06 (1H, m), 7.06 (1H, d, J=8.7Hz), 7.51 (1H, dd, J=8.7, 2.7Hz), 7.61 (1H, s), 7.62 (1H, d, J=7.5Hz), 7.98 (1H, d, J=2.7Hz), 8.03 (1H, d, J=8.1Hz), 10.67 (1H, s), 12.21 (1H, s). 例404:化合物番号404の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.5%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.6Hz), 7. 46-7. 51 (2H, m), 7. 62 (1H, t, J=7.9Hz), 7. 90 (1H, d, J=3.0Hz), 7. 94 (1H, d, J=9.2Hz), 8. 2 1 (1H, s), 10. 64 (1H, s), 11. 58 (1H, brs).

例405:化合物番号405の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-4- (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:18.7%

¹H-NMR (DMSO- d_6): δ 7. 08 (1H, d, J=9.0Hz), 7. 54 (1H, dd, J=8.7, 2.7Hz), 7. 94 (1H, d, J=2.7Hz), 8. 17 (1H, dd, J=9.0, 2.4Hz), 8. 46 (1H, d, J=1.8Hz), 8. 88 (1H, d, J=9.0Hz), 12. 19 (1H, s), 12. 25 (1H, s).

例406:化合物番号406の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジクロロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:22.1%

¹H-NMR (DMSO-d₆): δ 7.07 (1H, d, J=8.7Hz), 7.55 (1H, dd, J=8.7, 2.7Hz), 7.99 (1H, d, J=2.4Hz), 8.10 (2H, s), 10.62 (1H, s), 11.88 (1H, s). 例407:化合物番号407の化合物の製造

原料として、5-クロロサリチル酸、及び4-シアノ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:55.8%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 80 (1H, d, J=2.7 Hz), 8. 17 (2H, s), 8. 43 (1H, s), 10. 94 (1H, s), 11. 34 (1H, s).

例408:化合物番号408の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:81.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.03 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=9.0, 2.7Hz), 7.85-7.94 (3H, m),

8. 31 (1H, d, J=1. 8Hz), 10. 67 (1H, s), 11. 48 (1 H, s).

例409:化合物番号409の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:41.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 52 (1H, dd, J=9.0, 2.7Hz), 7. 93-7. 97 (3H, m), 8. 21 (1H, d, J=9.3Hz), 10. 81 (1H, s), 12. 28 (1H, s).

例410:化合物番号410の化合物の製造

原料として、5-クロロサリチル酸、及び2-プロモ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:17.6%

¹H-NMR (DMSO-d₆): δ 7. 10 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 82 (1H, dd, J=9.0, 1.8Hz), 7. 98 (1H, d, J=3.0Hz), 8. 11 (1H, d, J=1.5Hz), 8. 67 (1H, d, J=8.7Hz), 11. 05 (1H, s), 12. 40 (1H, s).

例411:化合物番号411の化合物の製造

原料として、5-クロロサリチル酸、及び4-フルオロ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:36.0%

¹H-NMR (DMSO-d₆): δ 7.06 (1H, d, J=9.0Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7.63 (1H, td, J=8. 7, 3.3Hz), 7.71 (1H, dd, J=8.7, 3.0Hz), 7.97 (1H, d, J=2.7Hz), 8.11 (1H, dd, J=8.7, 5.1Hz),

10.67 (1H, s), 12.20 (1H, s).

例412:化合物番号412の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピルオキシ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:39.2%

¹H-NMR (DMSO-d₆): δ 1. 29 (6H, d, J=5.7Hz), 4. 67-4. 79 (1H, m), 7. 04 (1H, d, J=9.0Hz), 7. 22 (1H, d, J=2.7Hz), 7. 30 (1H, dd, J=8.7, 2.7Hz), 7. 51 (1H, dd, J=8.7, 2.4Hz), 7. 86 (1H, d, J=9.0Hz), 7. 99 (1H, d, J=3.0Hz), 10. 50 (1H, s), 12. 18 (1H, s).

例413:化合物番号413の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジメトキシ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。収率:19.0%

¹H-NMR (CDC l_3): δ 3. 93 (3H, s), 4. 03 (3H, s), 6. 70 (1H, s), 6. 98 (1H, d, J=8. 9Hz), 7. 39 (1H, d d, J=8. 9, 2. 6Hz), 7. 45 (1H, d, J=2. 6Hz), 8. 2 9 (1H, brs,), 8. 54 (1H, s), 11. 92 (1H, s).

例414:化合物番号414の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジフルオロ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:66.0%

¹H-NMR (DMSO-d₆): δ 7. 06 (1H, d, J=8.8Hz), 7. 51 (1H, dd, J=8.8, 2.8Hz), 7. 82 (1H, t, J=10.7Hz), 7. 94 (1H, d, J=2.8Hz), 8. 64 (1H, d, J=8.

0Hz), 10. 78 (1H, s), 12. 37 (1H, brs).

例415:化合物番号415の化合物の製造

原料として、5 - クロロサリチル酸、及び4 - シアノ-2- (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:24.8%

¹H-NMR (DMSO-d₆): δ 7. 0 6 (1H, d, J=8.8Hz), 7. 5 2 (1H, dd, J=2.8, 8.8Hz), 7. 9 4 (1H, d, J=2.8Hz), 8. 17 (1H, dd, J=1.8, 8.9Hz), 8. 31 (1H, d, J=2.1Hz), 8. 6 3 (1H, d, J=8.9Hz), 11. 16 (1H, s), 12. 45 (1H, br. s).

例416:化合物番号416の化合物の製造

原料として、5-クロロサリチル酸、及び4-クロロ-2-(4-クロロベンゼンスルホニル)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.5%

¹H-NMR (CDCl₃): δ 6. 98 (1H, d, J=8. 9Hz), 7. 1 3 (1H, d, J=2. 6Hz), 7. 22 (2H, d, J=8. 6Hz), 7. 34 (2H, d, J=8. 6Hz), 7. 40 (1H, dd, J=2. 3, 8. 9 Hz), 7. 66 (1H, s), 8. 71 (1H, s), 8. 80 (1H, s), 1 1. 42 (1H, s).

例417:化合物番号417の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-ニトロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:22.8%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8.8Hz), 7. 55 (1H, dd, J=8.8, 2.8Hz), 7. 93 (1H, d, J=2.8

H_z), 8. 52 (1H, s), 9. 13 (1H, s), 12. 38 (1H, brs), 12. 45 (1H, s).

例418:化合物番号418の化合物の製造

原料として、5-クロロサリチル酸、及び2,3-ジフルオロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 07 (1H, d, J=8.8Hz), 7. 53 (1H, dd, J=2.9, 8.8Hz), 7.66 (1H, dt, J=1.8, 7.7Hz), 7.93 (1H, d, J=2.6Hz), 8.35 (1H, t, J=7.7Hz), 11.02 (1H, d, J=1.5Hz), 12.32 (1H, s).

例419:化合物番号419の化合物の製造

原料として、5-クロロサリチル酸、及び4,4'-ジアミノ-2,2'-ビス (トリフルオロメチル)ビフェニルを用いて例16と同様の操作を行い、標題化 合物を得た。

収率:35.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 05 (2H, d, J=8.8Hz), 7. 39 (2H, d, J=8.5Hz), 7. 49-7.51 (2H, m), 7. 91 (2H, d, J=2.5Hz), 7. 99 (2H, dd, J=2.0, 8.5Hz), 8. 31 (2H, d, J=1.9Hz), 10. 71 (2H, s), 11. 54 (2H, s).

例420:化合物番号420の化合物の製造

原料として、5-クロロサリチル酸、及び2,3,5,6-テトラフルオロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 42.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.08 (1H, d, J=8.8Hz), 7.

53 (1H, dd, J=2. 9, 8. 8Hz), 7. 89 (1H, d, J=2. 6 Hz), 10. 65 (1H, br. s), 11. 76 (1H, br. s).

例421:化合物番号421の化合物の製造

原料として、5 ークロロサリチル酸、及び3'ーアミノアセトアニリドを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:22.4%

¹H-NMR (DMSO-d₆): δ 2. 05 (3H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 24-7. 39 (3H, m), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=3. 0Hz), 8. 03 (1H, s), 10. 01 (1H, s), 10. 41 (1H, s), 11. 87 (1H, s).

例422:化合物番号422の化合物の製造

(1) 2-アセトキシ-5-クロロ-N-(3-カルバモイルフェニル) ベンズ アミド

原料として、2-アセトキシ-5-クロロ安息香酸、及び3-アミノベンズアミドを用いて例24と同様の操作を行い、標題化合物を得た。

収率:15.8%

¹H-NMR (CDCl₃): δ 2. 33 (3H, s), 5. 89 (1H, brs), 6. 31 (1H, brs), 7. 14 (1H, d, J=9. 0Hz), 7. 42-7. 49 (2H, m), 7. 55-7. 58 (1H, m), 7. 80 (1H, d, J=2. 7Hz), 7. 93 (1H, d, J=8. 1Hz), 8. 07 (1H, s), 8. 71 (1H, s).

(2) 5-クロロー2-ヒドロキシーN-(3-カルバモイルフェニル) ベンズ アミド (化合物番号422)

原料として、2-アセトキシ-5-クロロ-N-(3-カルバモイルフェニル) ベンズアミドを用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率:76.0%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8. 7Hz), 7. 40 (1H, brs), 7. 45 (1H, t, J=7. 5Hz), 7. 48 (1H, dd, J=8. 7, 2. 4Hz), 7. 62-7. 65 (1H, m), 7. 86-7. 89 (1H, m), 7. 98-7. 99 (2H, m), 8. 15 (1H, t, J=1. 8Hz), 10. 51 (1H, s), 11. 85 (1H, s).

例423:化合物番号423の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-N-メチルベンズアミド を用いて例16と同様の操作を行い、標題化合物を得た。

収率:19.3%

¹H-NMR (DMSO-d₆): δ 2. 79 (3H, d, J=4. 5Hz), 7. 03 (1H, d, J=9. 0Hz), 7. 43-7. 51 (2H, m), 7. 59 (1H, dt, J=8. 1, 1. 5Hz), 7. 87 (1H, ddd, J=8. 1, 2. 1, 0. 9Hz), 7. 99 (1H, d, J=2. 4Hz), 8. 15 (1H, t, J=1. 8Hz), 8. 46 (1H, d, J=4. 2Hz), 10. 52 (1H, s), 11. 84 (1H, s).

例424:化合物番号424の化合物の製造

原料として、5 ークロロサリチル酸、及び2,6 ージイソプロピルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.5%

¹H-NMR (DMSO-d₆): δ 1. 14 (12H, s), 2. 96-3. 1 3 (2H, m), 7. 16 (1H, d, J=8. 7Hz), 7. 23 (1H, d, J=7. 5Hz), 7. 33 (1H, dd, J=8. 4, 6. 6Hz), 7. 52 (1H, dd, J=8. 7, 2. 4Hz), 8. 11 (1H, d, J=2. 4Hz), 10. 09 (1H, s), 12. 40 (1H, s).

例425:化合物番号425の化合物の製造

原料として、5-クロロサリチル酸、及び4-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:58.6%

 1 H-NMR (DMSO-d₆): δ 2. 29 (3H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 18 (1H, d, J=8. 1Hz), 7. 47 (1H, d d, J=8. 7, 2. 7Hz), 7. 58 (1H, d, J=8. 4Hz), 7. 9 8 (1H, d, J=2. 7Hz), 10. 35 (1H, s), 11. 94 (1H, s).

例426:化合物番号426の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:59.6%

¹H-NMR (DMSO-d₆): δ 2. 19 (6H, s), 7. 01 (1H, d, J=9. 0Hz), 7. 15-7. 16 (2H, m), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 8. 07 (1H, d, J=2. 7Hz), 10. 03 (1H, s), 10. 10 (1H, s), 12. 29 (1H, s).

例427:化合物番号427の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:68.3%

¹H-NMR (DMSO-d₆): δ 2. 20 (3H, s), 2. 23 (3H, s), 7. 01 (1H, d, J=9.0Hz), 7. 13 (1H, d, J=8.4Hz), 7. 40-7. 47 (2H, m), 7. 47 (1H, dd, J=9.0, 2.7Hz), 7. 99 (1H, d, J=2.7Hz), 10. 29 (1H, s), 11. 97 (1H, brs).

例428:化合物番号428の化合物の製造

原料として、5-クロロサリチル酸、及び2,4,6-トリメチルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:61.0%

 1 H-NMR (DMSO-d₆): δ 2. 14 (6H, s), 2. 26 (3H, s), 6. 95 (2H, s), 7. 00 (1H, d, J=9. 3Hz), 7. 48 (1H, dd, J=8. 7, 2. 7Hz), 8. 09 (1H, d, J=2. 4Hz), 10. 03 (1H, s), 12. 37 (1H, s).

例429:化合物番号429の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:41.4%

¹H-NMR (CDCl₃): δ 7. 00 (1H, d, J=9.0Hz), 7. 0 9 (1H, d, J=7.5Hz), 7. 40-7. 48 (3H, m), 7. 51 (1 H, d, J=2.4Hz), 7. 64 (1H, s), 7. 94 (1H, s), 11. 66 (1H, s).

例430:化合物番号430の化合物の製造

原料として、5-クロロサリチル酸、及び2-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:93.3%

¹H-NMR (CDCl₃): δ 4. 08 (2H, s), 6. 56 (1H, d, J = 2. 5Hz), 6. 92 (1H, d, J=8. 8Hz), 7. 20-7. 46 (9 H, m), 7. 53 (1H, brs), 7. 85 (1H, d, J=8. 0Hz), 1 2. 01 (1H, brs).

例431:化合物番号431の化合物の製造

原料として、5-クロロサリチル酸、及び4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:20.4%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=9. 3Hz), 7. 39 (2H, d, J=9. 0Hz), 7. 48 (1H, dd, J=9. 0, 2. 7Hz), 7. 83 (2H, d, J=9. 3Hz), 7. 92 (1H, d, J=2.

WO 03/103647 PCT/JP03/07129 "

7Hz), 10. 54 (1H, s), 11. 78 (1H, s).

例432:化合物番号432の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:60.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 48-7. 54 (2H, m), 7. 75 (1H, d, J=2.1Hz), 7. 98 (1H, d, J=2.7Hz), 8. 44 (1H, d, J=8.7Hz), 10. 93 (1H, s), 12. 31 (1H, s).

例433:化合物番号433の化合物の製造

原料として、5-クロロサリチル酸、及び4-(tert-ブチル)アニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:69.0%

¹H-NMR (DMSO-d₆): δ 1. 29 (9H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 39 (2H, d, J=8. 4Hz), 7. 47 (1H, d d, J=8. 7, 2. 7Hz), 7. 61 (2H, d, J=8. 4Hz), 7. 9 (1H, d, J=2. 4Hz), 10. 37 (1H, s), 11. 96 (1H, s).

例434:化合物番号434の化合物の製造

原料として、5-クロロサリチル酸、及び2,3-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:79.5%

¹H-NMR (DMSO-d₆): δ 2. 14 (3H, s), 2. 29 (3H, s), 7. 03 (1H, d, J=9. 0Hz), 7. 06-7. 15 (2H, m), 7. 46-7. 51 (2H, m), 8. 05 (1H, d, J=3. 0Hz), 10. 3 2 (1H, s), 12. 28 (1H, s).

例435:化合物番号435の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノインダンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:80.7%

¹H-NMR (DMSO-d₆): δ 1. 98-2. 08 (2H, m), 2. 81 -2. 89 (4H, m), 7. 01 (1H, d, J=8. 8Hz), 7. 21 (1 H, d, J=8. 0, Hz), 7. 42 (1H, dd, J=8. 0, 1. 9Hz), 7. 48 (1H, dd, J=8. 8, 2. 8Hz), 7. 60 (1H, s), 7. 99 (1H, d, J=2. 8, Hz), 10. 34 (1H, s), 12. 00 (1 H, brs).

例436:化合物番号436の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:37.1%

¹H-NMR (DMSO-d₆): δ 2. 23 (3H, s), 2. 28 (3H, s), 7. 03 (2H, d, J=8. 7Hz), 7. 10 (1H, s), 7. 49 (1H, dd, J=9. 0, 2. 7Hz), 7. 63 (1H, d, J=8. 1Hz), 8. 03 (1H, d, J=2. 4Hz), 10. 24 (1H, s), 12. 25 (1H, s).

例437:化合物番号437の化合物の製造

原料として、5-クロロサリチル酸、及び3-イソプロピルオキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.5%

¹H-NMR (CDCl₃): δ 1. 36 (6H, d, J=6.0Hz), 4. 5 2-4.64 (1H, m), 6. 75 (1H, ddd, J=8.4, 2.4, 0. 9Hz), 6. 99 (1H, d, J=8.7Hz), 7. 03 (1H, ddd, J=8.1, 2.1, 0.9Hz), 7. 25-7. 31 (3H, m), 7. 39 (1H, dd, J=8.7, 2.4Hz), 7. 49 (1H, d, J=2.4Hz),

7.81 (1H, s).

例438:化合物番号438の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:10.3%

¹H-NMR (DMSO-d₆): δ 7. 05 (1H, d, J=8. 7Hz), 7. 43 (1H, dd, J=8. 7, 7. 8Hz), 7. 54 (1H, dd, J=9. 0, 2. 7Hz), 7. 62 (1H, d, J=8. 1Hz), 8. 05 (1H, d, J=2. 4Hz), 10. 52 (1H, s), 12. 01 (1H, s).

例439:化合物番号439の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピルオキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.8%

¹H-NMR (DMSO-d₆): δ 1. 26 (6H, d, J=6. 3Hz), 4. 52-4. 64 (1H, m), 6. 93 (2H, dt, J=9. 0, 2. 1Hz), 7. 46 (1H, dd, J=9. 0, 2. 7Hz), 7. 58 (2H, dt, J=9. 0, 2. 1Hz), 7. 99 (1H, d, J=3. 0Hz), 10. 36 (1H, s), 11. 83 (IH, brs).

例440:化合物番号440の化合物の製造

原料として、5-クロロサリチル酸、及び4-プロモー2-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.2%

¹H-NMR (CDCl₃): δ 7. 01 (1H, d, J=9. 3Hz), 7. 4 2-7. 52 (4H, m), 8. 23 (1H, s), 8. 31 (1H, d, J=9. 3Hz), 11. 35 (1H, s).

例441:化合物番号441の化合物の製造

原料として、5-クロロサリチル酸、及び4-プチルアニリンを用いて例16と

同様の操作を行い、標題化合物を得た。

収率:77.6%

¹H-NMR (CDC1₃): δ 0.89 (3H, t, J=6.9Hz), 1.2 7-1.36 (6H, m), 1.56-1.64 (2H, m), 2.61 (2H, t, J=7.8Hz), 6.99 (1H, d, J=9.0Hz), 7.21 (2H, d, J=8.7Hz), 7.39 (1H, dd, J=9.0, 2.7Hz), 7.44-7.49 (3H, m), 7.80 (1H, s), 11.96 (1H, s). 例442: 化合物番号442の化合物の製造

原料として、5-クロロサリチル酸、及び3-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:88.3%

¹H-NMR (CDCl₃): δ 2. 38 (3H, s), 6. 98 (1H, d, J = 8. 8Hz), 7. 03 (1H, d, J=7. 4Hz), 7. 25-7. 40 (4H, m), 7. 48 (1H, d, J=2. 2Hz), 7. 83 (1H, brs), 1 1. 92 (1H, brs).

例443:化合物番号443の化合物の製造

原料として、5-クロロサリチル酸、及び4-シクロヘキシルアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:90.6%

THE PROPERTY OF STREET SHOPS AND A STREET

¹H-NMR (CDCl₃): δ 1. 15-1. 47 (5H, m), 1. 56-1. 87 (5H, m), 2. 40-2. 53 (2H, m), 7. 01 (1H, d, J= 8. 8Hz), 7. 21 (2H, d, J=8. 5Hz), 7. 47 (1H, dd, J=8. 8, 2. 7Hz), 7. 60 (2H, d, J=8. 5H), 8. 00 (1H, d, J=2. 7Hz), 10. 36 (1H, s), 11. 98 (1H, brs). 例444: 化合物番号444の化合物の製造

原料として、5-クロロサリチル酸、及び4-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:90.3%

¹H-NMR (DMSO-d₆): δ 3. 93 (2H, s), 7. 01 (1H, d, J=9. 0Hz), 7. 16-7. 32 (7H, m), 7. 57 (1H, dd, J=9. 0, 2. 7Hz), 7. 61 (2H, d, J=8. 4Hz), 7. 96 (1H, d, J=2. 4Hz), 10. 37 (1H, s).

例445:化合物番号445の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4, 5-ジメトキシベン ゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.8%

¹H-NMR (DMSO-d₆): δ 3. 81 (3H, s), 3. 86 (3H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 40 (1H, s), 7. 52 (1H, dd, J=8. 7, 2. 7Hz), 7. 89 (1H, s), 7. 99 (1H, d, J=3. 0Hz), 10. 93 (1H, s), 12. 31 (1H, s).

例446:化合物番号446の化合物の製造

原料として、5 ークロロサリチル酸、及び6 ーアミノー1, 4 ーベングジオキサンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:79.7%

¹H-NMR (DMSO-d₆): δ 4. 25 (4H, s), 6. 86 (1H, d, J=8. 8Hz), 7. 00 (1H, d, J=8. 8Hz), 7. 12 (1H, d d, J=8. 8, 2. 5Hz), 7. 33 (1H, d, J=2. 5Hz), 7. 4 6 (1H, dd, J=8. 8, 2. 5Hz), 7. 97 (1H, d, J=2. 5Hz), 10. 27 (1H, s), 11. 96 (1H, s).

例447:化合物番号447の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4-ジクロロ-5-(イソプロピルオキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 35 (6H, d, J=6. 0Hz), 4.

58-4. 66 (1H, m), 7. 07 (1H, d, J=9. 0Hz), 7. 51 (1H, dd, J=8. 7, 3. 0Hz), 7. 68 (1H, s), 7. 98 (1H, d, J=3. 0Hz), 8. 35 (1H, s), 10. 94 (1H, s), 12. 34 (1H, s).

例448:化合物番号448の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-2-クロロベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:57.9%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 78 (1H, d, J=2.7Hz), 7. 82 (1H, dd, J=9.0, 2.1Hz), 7. 97 (1H, d, J=8.7Hz), 8. 19 (1H, d, J=2.1Hz), 10. 79 (1H, s), 11. 38 (1H, s).

例449:化合物番号449の化合物の製造

原料として、5-クロロサリチル酸、及び3-クロロ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:50.6%

¹H-NMR (DMSO-d₆): δ 7. 0 3 (1 H, d, J=8. 7 Hz), 7. 48 (1 H, d d, J=8. 7, 2. 7 Hz), 7. 6 0 (1 H, d d, J=9. 0, 1. 5 Hz), 7. 7 6 (1 H, d d, J=9. 0, 2. 4 Hz), 7. 8 5 (1 H, d, J=3. 0 Hz), 8. 1 3 (1 H, d, J=2. 4 Hz), 10. 61 (1 H, s), 11. 5 1 (1 H, s).

例450:化合物番号450の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-3-メチルベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:80.6%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 36 (3H, s), 7. 06 (1H, d,

J=8. 7Hz), 7. 49 (1H, dd, J=8. 7, 2. 4Hz), 7. 71 (1H, dd, J=8. 4, 1. 8Hz), 7. 77 (1H, s), 7. 95 (1H, d, J=3. 0Hz), 8. 40 (1H, d, J=8. 4Hz), 10. 76 (1H, s), 12. 31 (1H, brs).

例451:化合物番号451の化合物の製造

原料として、5-クロロサリチル酸、及び2,3-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:37.1%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=9.0Hz), 7. 40-7. 48 (2H, m), 7. 52 (1H, dd, J=9.0, 2.7Hz), 7. 98 (1H, d, J=2.7Hz), 8. 40 (1H, dd, J=7.2, 2.4Hz), 11. 00 (1H, s), 12. 32 (1H, s).

例452:化合物番号452の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:67.3%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8. 7Hz), 7. 20 (1H, td, J=8. 1, 1. 8Hz), 7. 40 (1H, td, J=8. 4, 1. 8Hz), 7. 52 (1H, dd, J=8. 7, 2. 7Hz), 7. 57 (1H, dd, J=8. 4, 1. 8Hz), 8. 00 (1H, d, J=2. 7Hz), 8. 40 (1H, dd, J=8. 4, 1. 8Hz), 10. 89 (1H, s), 1 2. 27 (1H, s).

例453:化合物番号453の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピル-3-メチルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.6%

 $^{1}H-NMR$ (CDCl₃): δ 1. 23 (6H, d, J=6. 9Hz), 2. 3

6 (3H, s), 3. 12 (1H, m), 6. 89 (1H, d, J=9.0Hz), 7. 15-7. 40 (5H, m), 7. 48 (1H, d, J=2.1Hz), 7. 83 (1H, brs).

例454:化合物番号454の化合物の製造

原料として、5 - クロロサリチル酸、及び2-アミノ-5-[(1,1-ジメチル) プロピル]フェノールを用いて例16と同様の操作を行い、標題化合物を得た。 収率:24.9%

¹H-NMR (CDCl₃): δ 0. 69 (3H, t, J=7. 5Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7. 5Hz), 6. 98 (1H, d, J=8. 7Hz), 7. 01 (1H, d, J=9. 0Hz), 7. 06 (1H, s), 7. 15 (1H, dd, =8. 4, 2. 4Hz), 7. 35 (1H, d, J=2. 1Hz), 7. 42 (IH, dd, J=8. 7, 2. 4Hz), 7. 56 (1H, d, J=2. 4Hz), 8. 26 (1H, s), 11. 44 (1H, s).

例455:化合物番号455の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:64.7%

¹H-NMR (DMSO-d₆): δ 2. 28 (3H, s), 7. 05 (1H, d, J=8. 7Hz), 7. 13 (1H, td, J=7. 5, 1. 5Hz), 7. 22 -7. 30 (2H, m), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 7. 83 (1H, d, J=7. 8Hz), 8. 03 (1H, d, J=3. 0Hz), 1 0. 32 (1H, s), 12. 22 (1H, s).

例456:化合物番号456の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:82.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 0. 90 (3H, t, J=7. 2Hz), 1.

24-1.36 (2H, m), 1.50-1.60 (2H, m), 2.56 (2H, t, J=7.2Hz), 7.01 (1H, d, J=8.7Hz), 7.19 (2H, d, J=8.7Hz), 7.47 (1H, dd, J=8.7, 2.4Hz), 7.59 (2H, d, J=8.4Hz), 7.98 (1H, d, J=2.7Hz), 10.36 (1H, s), 11.94 (1H, s).

例457:化合物番号457の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-クロロベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.7%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=8.7Hz), 7. 52 (1H, d, J=8.1Hz), 7. 53 (1H, dd, J=9.0, 3.0 Hz), 7. 76 (1H, t, J=8.7Hz), 7. 95 (1H, d, J=3.0Hz), 8. 34 (1H, d, J=8.4Hz), 11. 17 (1H, s), 12. 39 (1H, s).

例458:化合物番号458の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-5-メチルベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:9.0%

¹H-NMR (CDCl₃): δ 2. 48 (3H, s), 7. 01 (1H, d, J = 9. 0Hz), 7. 10 (1H, dd, J=8. 0, 0. 9Hz), 7. 44 (1 H, d, J=9. 0, 2. 4Hz), 7. 56 (1H, d, J=8. 1Hz), 7. 62 (1H, d, J=2. 4Hz), 8. 22 (1H, s), 8. 54 (1H, b r s), 11. 25 (1H, b r s).

例459:化合物番号459の化合物の製造

原料として、5-クロロサリチル酸、及び4-ベンジルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:26.8%

¹H-NMR (DMSO-d₆): δ 5. 11 (2H, s), 6. 99-7. 05 (3H, m), 7. 33-7. 49 (6H, m), 7. 60 (2H, d, J=9. 0Hz), 7. 99 (1H, d, J=2. 7Hz), 10. 33 (1H, s), 12. 02 (1H, s).

例460:化合物番号460の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノー2, 2-ジフルオロベンゾ [1, 3] ジオキソールを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:66.9%

¹H-NMR (DMSO- d_6): δ 7. 05 (1H, d, J=8.8Hz), 7. 31-7.32 (2H, m), 7. 51 (1H, dd, J=8.8, 2.8Hz), 7. 70 (1H, dd, J=5.6, 3.8Hz), 7. 96 (1H, d, J=2.8Hz), 10.59 (1H, s), 12.05 (1H, brs).

例461:化合物番号461の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノー2, 2, 3, 3-テトラフルオロー2, 3-ジヒドロベンゾ [1, 4] ジオキシンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.9%

¹H-NMR (CDCl₃): δ 6.99-7.03 (2H, m), 7.21-7.27 (2H, m), 7.45 (1H, dd, J=8.9, 2.5Hz), 7.52 (1H, d, J=2.5Hz), 8.13 (1H, s), 11.44 (1H, s). 例462:化合物番号462の化合物の製造

原料として、5-クロロサリチル酸、及び3-クロロ-4-(トリフルオロメチル) スルファニルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.3%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7.03 (1H, d, J=8.8Hz), 7.

47 (1H, dd, J=2. 9, 8.8Hz), 7.80 (1H, dd, J=2.6, 8.8Hz), 7.82 (1H, d, J=2.6Hz), 7.88 (1H, d, J=8.8Hz), 8.20 (1H, d, J=2.2Hz), 10.70 (1H, s), 11.43 (1H, s).

例463:化合物番号463の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.4%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=8.8Hz), 7. 52 (1H, dd, J=2.6, 8.8Hz), 7.85-7.89 (1H, m), 7.93 (1H, d, J=2.6Hz), 8.17 (1H, d, J=2.9Hz), 8.67 (1H, d, J=9.5Hz), 11.92 (1H, s), 12.14 (1H, s).

例464:化合物番号464の化合物の製造

原料として、5 ークロロサリチル酸、及び5 ーアミノー2, 2 ージフルオロベン ゾ [1, 3] ジオキソールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.8%

¹H-NMR (DMSO- d_6): δ 7. 02 (1H, d, J=8.8Hz), 7. 42-7. 43 (2H, m), 7. 48 (1H, dd, J=8.8, 2.5Hz), 7. 90 (1H, d, J=2.5Hz), 10. 54 (1H, s), 11. 69 (1H, s).

例465:化合物番号465の化合物の製造

原料として、5-クロロサリチル酸、及び3-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:66.4%

 $^{1}H-NMR$ (CDCl₃): δ 3. 99 (2H, s), 6. 97 (1H, d, J

=9. 1Hz), 7. 06 (1H, d, J=7. 4Hz), 7. 18-7. 48 (8H, m), 7. 37 (1H, dd, J=9. 1, 2. 5Hz), 7. 45 (1H, d, J=2. 5Hz), 7. 80 (1H, brs), 11. 88 (1H, s). 例466:化合物番号466の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロー4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:40.9%

¹H-NMR (DMSO-d₆): δ 2. 33 (3H, s), 7. 05 (1H, d, J=8. 8Hz), 7. 25 (1H, dd, J=1. 8, 8. 8Hz), 7. 33 (1H, d, J=1. 8Hz), 7. 49 (1H, dd, J=2. 9, 8. 8Hz), 7. 97-8. 00 (2H, m), 10. 37 (1H, s), 12. 15 (1H, s). 例467:化合物番号467の化合物の製造

原料として、5-クロロサリチル酸、及び2,3,5-トリフルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:54.2%

¹H-NMR (DMSO-d₆): δ 7. 06 (1H, d, J=8.8Hz), 7. 28-7. 37 (1H, m), 7. 51 (1H, dd, J=2.6, 8.8Hz), 7. 92 (1H, d, J=2.6Hz), 7. 98-8. 04 (1H, m), 10. 93 (1H, s), 12. 27 (1H, br. s)

例468:化合物番号468の化合物の製造

原料として、5-クロロサリチル酸、及び4'-アミノベンゾー15-クラウン-5を用いて例16と同様の操作を行い、標題化合物を得た。

収率: 45.1%

¹H-NMR (CDCl₃): δ 3. 74-3. 77 (8H, m), 3. 90-3. 92 (4H, m), 4. 10-4. 15 (4H, m), 6. 83 (1H, d, J=8. 5Hz), 6. 96-6. 99 (2H, m), 7. 24 (1H, d, J=2. 5Hz), 7. 36 (1H, dd, J=2. 5, 8. 8Hz), 7. 53 (1H, s), 8.

06 (1H, br. s), 11. 92 (1H, s).

例469:化合物番号469の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-2-フルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:45.1%

¹H-NMR (DMSO-d₆): δ 7. 05 (1H, d, J=8.8Hz), 7. 43-7.53 (2H, m), 7. 64-7.71 (1H, m), 7. 94 (1H, d, J=1.5Hz), 8. 20 (1H, dd, J=8.4, 8.8Hz), 10. 70 (1H, s), 12. 16 (1H, s).

例470:化合物番号470の化合物の製造

例471:化合物番号471の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4-ビス (メタンスルホニル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 7.2%

¹H-NMR (CDCl₃): δ 3. 13 (3H, s), 3. 21 (3H, s), 7. 04 (1H, d, J=8. 9Hz), 7. 48 (1H, dd, J=2. 2, 8. 9Hz), 7. 62 (1H, d, J=2. 2Hz), 8. 24 (1H, dd, J=2. 4, 9. 0Hz), 8. 56 (1H, d, J=2. 4Hz), 8. 91 (1H, d, J=8. 9Hz), 10. 96 (1H, s), 11. 57 (1H, s).

 $5-\rho$ ロロサリチル酸(87mg, 0.5mmol)、2,2-ビス(3-アミノー4ーメチルフェニル)ー1,1,1,3,3,3-ヘキサフルオロプロパン(363mg,1mmol)、三塩化リン(44 μ L,0.5mmol)、トルエン(4mL)の混合物を4時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色(16mg,4.9%)を得た。(後述する例529、化合物番号529の化合物を副生成物として得た。)

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 34 (6H, s), 7. 04 (4H, d,

J=8.8Hz), 7. 39 (2H, d, J=8.4Hz), 7. 48 (2H, d d, J=2.9, 8. 8Hz), 7. 96 (2H, d, J=2.9Hz), 8. 1 9 (2H, s), 10. 44 (2H, s), 12. 17 (2H, s).

例472:化合物番号472の化合物の製造

原料として、5-クロロサリチル酸、及び6-アミノー2, 2, 3, 3-テトラフルオロー2, 3-ジヒドロベンゾ [1, 4] ジオキシンを用いて例16と同様の操作を行い、標題化合物を得た。

収率;10.1%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.8Hz), 7. 48 (1H, dd, J=9.0, 2.7Hz), 7. 50 (1H, d, J=9.0 Hz), 7. 59 (1H, dd, J=8.8, 2.2Hz), 7. 86 (1H, d, J=2.7Hz), 7. 92 (1H, d, J=2.2Hz), 10. 59 (1H, s), 11. 55 (1H, s).

例473:化合物番号473の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-5-クロロベンゾフェノンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:27.6%

¹H-NMR (DMSO-d₆): δ 6. 96 (1H, d, J=8.7Hz), 7. 43 (1H, dd, J=8.7, 3.0Hz), 7. 49-7. 56 (3H, m), 7. 64-7. 75 (5H, m), 8. 21 (1H, d, J=9.3Hz), 11. 21 (1H, s), 11. 83 (1H, s).

例474:化合物番号474の化合物の製造

原料として、5-クロロサリチル酸、及び2-プロモー4-フルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 07 (1H, d, J=9.0Hz), 7. 31-7. 38 (1H, m), 7. 51 (1H, dd, J=9.0, 3.0Hz),

7. 72 (1 H, d, J=8. 1, 3. 0 Hz), 8. 00 (1 H, d, J=3. 0 Hz), 8. 23 (1 H, dd, J=9. 3, 5. 4 Hz), 10. 70 (1 H, s), 12. 24 (1 H, s).

例475:化合物番号475の化合物の製造

原料として、5-クロロサリチル酸、及び4-ヘキシルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:74.8%

¹H-NMR (DMSO- d_6): δ 0. 88 (3H, t, J=6.6Hz), 1. 28-1. 46 (6H, m), 2. 49-2. 52 (2H, m), 3. 95 (2H, t, J=6.6Hz), 6. 91-6. 96 (2H, m), 7. 00 (1H, d, J=8.8Hz), 7. 46 (1H, dd, J=8.8, 2.9Hz), 7. 55 -7. 61 (2H, m), 8. 00 (1H, d, J=2.9Hz), 10. 31 (1H, s), 12. 03 (1H, s).

例476:化合物番号476の化合物の製造

原料として、5-クロロサリチル酸、及び2, 2-ビス(3-アミノフェニル)-1, 1, 1, 3, 3, 3-ヘキサフルオロプロパンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.5%

¹H-NMR (DMSO-d₆): δ 6. 99 (2H, d, J=8.8Hz), 7. 11 (2H, d, J=8.0Hz), 7. 45 (2H, dd, J=8.8, 2.6 Hz), 7. 50 (2H, t, J=8.4Hz), 7. 86 (2H, d, J=2, 6Hz), 7. 88-7. 91 (4H, m), 10.53 (2H, s), 11.56 (2H, s).

例477:化合物番号477の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4, 5-トリクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:38.9%

¹H-NMR (CDCl₃): δ 7.02 (1H, d, J=8.6Hz), 7.4 6 (1H, d, J=8.6Hz), 7.49 (1H, s), 7.57 (1H, s), 8.41 (1H, br. s), 8.63 (1H, s), 11.42 (1H, s). 例478:化合物番号478の化合物の製造

原料として、5-クロロサリチル酸、及び3-イソプロピルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:55.3%

¹H-NMR (DMSO-d₆): δ 1. 22 (6H, d, 6.9Hz), 2. 7 6-2. 94 (1H, m), 7. 01 (1H, d, J=8.6Hz), 7. 04 (1 H, d, J=7.9Hz), 7. 29 (1H, t, J=7.9Hz), 7. 47 (1 H, dd, J=8.6, 2.6Hz), 7. 54 (1H, d, J=7.9Hz), 7. 57 (1H, s), 7. 98 (1H, d, J=2.6Hz), 10. 37 (1 H, s), 11. 90 (1H, brs).

例479:化合物番号479の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノベンソニトリルを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:45.6%

¹H-NMR (DMSO-d₆): δ 7. 0 3 (1H, d, J=8.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7. 83 (1H, d, J=2.6Hz), 7. 84 (2H, d, J=8.9Hz), 7. 92 (2H, d, J=8.9Hz), 10. 71 (1H, s), 11. 59 (1H, brs).

例480:化合物番号480の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノベンゾニトリルを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:97.1%

¹H-NMR (DMSO-d₆): δ 7.03 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=9.0, 2.7Hz), 7.56-7.63 (2H, m),

7. 88 (1H, d, J=2. 7Hz), 7. 95-8. 02 (1H, m), 8. 20-8. 21 (1H, m), 10. 62 (1H, s), 11. 57 (1H, s). 例481:化合物番号481の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジメトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

¹H-NMR (DMSO-d₆): δ 3. 75 (3H, s), 3. 76 (3H, s), 6. 95 (1H, d, J=8. 7Hz), 7. 01 (1H, d, J=9. 0Hz), 7. 24 (1H, dd, J=8. 7, 2. 7Hz), 7. 38 (1H, d, J=2. 1Hz), 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 8. 00 (1H, d, J=2. 4Hz), 10. 30 (1H, s), 12. 01 (1H, s). 例482: 化合物番号482の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノフェニル酢酸 エチルエス

テルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:66.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 19 (3H, t, J=7.5Hz), 3. 64 (2H, s), 4. 08 (2H, q, J=7.2Hz), 7. 01 (1H, d, J=8.7Hz), 7. 26 (2H, d, J=8.7Hz), 7. 47 (1H, d d, J=8.7, 3.0Hz), 7. 64 (1H, d, J=8.4Hz), 7. 9 6 (1H, d, J=2.4Hz), 10. 40 (1H, s), 11. 87 (1H, s).

例483:化合物番号483の化合物の製造

原料として、5-クロロサリチル酸、及び3-[(トリフルオロメチル) スルファ ニル] アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.1%

 $^{1}H-NMR$ (CDCl₃): δ 7. 01 (1H, d, J=8. 9Hz), 7. 4 2 (1H, dd, J=8. 9, 2. 3Hz), 7. 47-7. 53 (2H, m),

7. 51 (1H, d, J=2.3Hz), 7. 76 (1H, dt, J=7.6Hz, 2.0Hz), 7. 88 (1H, brs), 7. 92 (1H, s), 11. 64 (1H, s).

例484:化合物番号484の化合物の製造

例485:化合物番号485の化合物の製造

原料として、5-クロロサリチル酸、及び4-[(トリフルオロメチル) スルファニル] アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:63.2%

 $^{1}H-NMR$ (CDCl₃): δ 7. 01 (1H, d, J=8. 9Hz), 7. 4 3 (1H, dd, J=8. 9, 2. 3Hz), 7. 50 (1H, d, J=2. 3Hz), 7. 70 (4H, s), 7. 90 (1H, brs), 11. 60 (1H, s).

原料として、5-クロロサリチル酸、及び4-(トリフルオロメタンスルホニル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:38.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=8.6Hz), 7. 49 (1H, dd, J=8.6, 2.6Hz), 7. 80 (1H, d, J=2.6Hz), 8. 12 (2H, d, J=9.4Hz), 8. 17 (2H, d, J=9.4Hz), 8. 16 (1H, s), 10. 95 (1H, s), 11. 37 (1H, brs).

例486:化合物番号486の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:75.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1H, d, J=8. 9Hz), 7. 39-7. 51 (3H, m), 7. 85-7. 93 (2H, m), 10. 51, (1H, s), 11. 60 (1H, s).

例487:化合物番号487の化合物の製造

原料として、5-クロロサリチル酸、及び3-エチニルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:35.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 22 (1H, s), 7. 02 (1H, d, J=8. 6Hz), 7. 25 (1H, d, J=7. 6Hz), 7. 39 (1H, t, J=7. 6Hz), 7. 47 (1H, dd, J=8. 6, 2. 6Hz), 7. 70 (1H, d, J=7. 6Hz), 7. 89 (1H, s), 7. 91 (1H, d, J=2. 6Hz), 10. 46 (1H, s), 11. 69 (1H, brs).

例488:化合物番号488の化合物の製造

原料として、5-クロロサリチル酸、及び4-(sec-ブチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:40.1%

¹H-NMR (DMSO-d₆): δ 0. 77 (3H, t, 7. 4Hz), 1. 1 9 (3H, d, 6. 9Hz), 1. 50-1. 61 (2H, m), 2. 52-2. 62 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 20 (2H, d, J=8. 6Hz), 7. 47 (1H, dd, J=8. 9, 2. 6Hz), 7. 60 (2H, d, J=8. 6Hz), 7. 98 (1H, d, J=2. 6Hz), 10. 36 (1H, s), 11. 94 (1H, brs).

例489:化合物番号489の化合物の製造

原料として、5-クロロサリチル酸、及び3-クロロ-4-メトキシアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.7%

¹H-NMR (CDCl₃): δ 6.98 (2H, t, J=9.2Hz), 7.3 8-7.44 (2H, m), 7.47 (1H, d, J=2.6Hz), 7.66 (1 H, d, J=2.6Hz), 7.73 (1H, br.s), 11.81 (1H, s). 例490:化合物番号490の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノベンゾフェノンを用いて例

16と同様の操作を行い、標題化合物を得た。

収率:34.3%

¹H-NMR (DMSO-d₆): δ 7. 02 (1H, d, J=8.6Hz), 7. 48 (1H, dd, J=9.1, 2.6Hz), 7. 52-7. 62 (4H, m), 7. 68-7. 79 (3H, m), 7. 93 (1H, d, J=2.6Hz), 8. 02 (1H, d, J=7.9Hz), 8. 16 (1H, s), 10. 60 (1H, s), 11. 68 (1H, brs).

例491:化合物番号491の化合物の製造

原料として、5 ークロロサリチル酸、及び3 ーメトキシアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:23.5%

¹H-NMR (DMSO-d₆): δ 3. 76 (3H, s), 6. 69-6. 75 (1H, m), 7. 01 (1H, d, J=8. 6Hz), 7. 25-7. 28 (2H, m), 7. 39 (1H, s), 7. 47 (1H, dd, J=8. 6, 2. 6Hz), 7. 94 (1H, d, J=2. 6Hz), 10. 39 (1H, s), 11. 8 1 (1H, brs).

例492:化合物番号492の化合物の製造

原料として、5 - クロロサリチル酸、及び4'-アミノアセトアニリドを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:36.2%

¹H-NMR (DMSO-d₆): δ 2. 50 (3H, s), 7. 01 (1H, d, J=8. 6Hz), 7. 47 (1H, dd, J=8. 6, 2. 6Hz), 7. 57 (2H, d, J=9. 1Hz), 7. 61 (2H, d, J=9. 1Hz), 7. 9 8 (1H, d, J=2. 6Hz), 9. 95 (1H, s), 10. 38 (1H, s), 11. 99 (1H, brs).

例493:化合物番号493の化合物の製造

原料として、5-クロロサリチル酸、及びスルファニルアミドを用いて例16と

同様の操作を行い、標題化合物を得た。

収率:25.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.03 (1H, d, J=8.9Hz), 7.31 (2H, s), 7.47 (1H, dd, J=8.9, 2.3Hz), 7.81 (2H, d, J=8.9Hz), 7.89 (2H, d, J=8.9Hz), 7.89 (1H, d, J=2.3Hz), 10.70 (1H, s), 11.55 (1H, brs).

例494:化合物番号494の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-アミノフェニル)-1,1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールを用いて例16と同様の操作を行い、標題化合物を得た。(後述する例498、化合物番号498の化合物との混合物を分離して得た。)

収率:11.7%

¹H-NMR (DMSO-d₆): δ 7. 02 (1H, d, J=8.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7.68 (2H, d, J=8.7 Hz), 7.85 (2H, d, J=8.7Hz), 7.91 (1H, d, J=2.6Hz), 8.69 (1H, s), 10.62 (1H, s).

例495:化合物番号495の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロー4-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:39.6%

¹H-NMR (CDC1₃): δ 7. 04 (1H, d, J=8. 9Hz), 7. 4 7 (1H, dd, J=2. 3, 8. 9Hz), 7. 54 (1H, d, J=2. 3Hz), 8. 25 (1H, dd, J=2. 6, 8. 9Hz), 8. 39 (1H, d, J=2. 3Hz), 8. 73 (1H, d, J=9. 2Hz), 8. 76 (1H, br. s), 11. 22 (1H, s).

例496:化合物番号496の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:67.8%

¹H-NMR (DMSO-d₆): δ 7.05 (1H, dd, J=1.7, 8.9 Hz), 7.15 (1H, dt, J=1.7, 9.2Hz), 7.41 (1H, dd, J=2.3, 8.9, 9.2Hz), 7.51 (1H, dt, J=2.3, 8.9Hz), 7.98 (1H, d, J=2.3Hz), 8.11 (1H, dd, J=8.9, 15.1Hz), 10.59 (1H, s), 12.13 (1H, s). 例497:化合物番号497の化合物の製造

原料として、5-クロロサリチル酸、及び4-(ジフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:85.9%

¹H-NMR (DMSO- d_6): δ 7. 01 (1H, d, J=8.6Hz), 7. 19 (1H, t, J=74.2Hz), 7. 20 (2H, d, J=8.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7. 74 (2H, d, J=8. 9Hz), 7. 94 (1H, d, J=2.6Hz), 10. 47 (1H, s), 11. 80 (1H, brs).

例498:化合物番号498の化合物の製造

前述した例494において、化合物番号494の化合物との混合物を分離して 得た。

収率:11.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 2 (1H, d, J=8.6Hz), 7. 46 (1H, dd, J=8.6, 2.3Hz), 7. 83 (2H, d, J=8.1 Hz), 7. 88 (1H, d, J=2.3Hz), 7. 95 (2H, d, J=8.1 Hz), 10.71 (1H, s).

例499:化合物番号499の化合物の製造

原料として、5-クロロサリチル酸、及び3-(メチルスルファニル)アニリン

を用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.2%

¹H-NMR (DMSO-d₆): δ 2. 49 (3H, s), 7. 00-7. 05 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 31 (1H, t, J=7. 9Hz), 7. 46 (1H, dd, J=8. 9, 2. 6Hz), 7. 44-7. 49 (1H, m), 7. 68 (1H, d, J=1. 7Hz), 7. 93 (1H, d, J=2. 6Hz), 10. 47 (1H, s).

例500:化合物番号500の化合物の製造

原料として、5-クロロサリチル酸、及び4-メタンスルホニルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:28.6%

¹H-NMR (DMSO-d₆): δ 3. 20 (3H, s), 7. 03 (1H, d, J=8. 3Hz), 7. 48 (1H, dd, J=8. 3, 2. 6Hz), 7. 87 (1H, d, J=2. 6Hz), 7. 92 (2H, d, J=8. 9Hz), 7. 98 (2H, d, J=8. 9Hz), 10. 75 (1H, s), 11. 45 (1H, brs).

例501:化合物番号501の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノー4-メチルベンゾフェノンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.7%

¹H-NMR (CDCl₃): δ 2. 50 (3H, s), 6. 98 (1H, d, J = 8. 3Hz), 6. 99 (1H, d, J=7. 3Hz), 7. 39 (1H, dd, J=2. 0, 8. 6Hz), 7. 48-7. 64 (4H, m), 7. 72 (2H, d, J=7. 6Hz), 7. 83 (1H, d, J=2. 3Hz), 8. 57 (1H, s), 12. 18 (1H, s), 12. 34 (1H, br. s).

例502:化合物番号502の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-N-ブチルベンゼンスル

ホンアミドを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 46. 7%

¹H-NMR (DMSO-d₆): δ 0. 80 (3H, t, J=7. 3Hz), 1. 17-1. 41 (4H, m), 2. 73-2. 80 (2H, m), 7. 03 (1H, d, J=8. 9Hz), 7. 48 (1H, dd, J=8. 9, 2. 0Hz), 7. 53-7. 64 (2H, m), 7. 87-7. 92 (1H, m), 7. 92 (1H, d, J=2. 0Hz), 8. 27 (1H, s), 10. 62 (1H, s), 11. 63 (1H, s).

例503:化合物番号503の化合物の製造

原料として、5-クロロサリチル酸、及び3-(ベンジルオキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.5%

¹H-NMR (DMSO-d₆): δ 5. 11 (2H, s), 6. 79-6. 83 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 27-7. 49 (9 H, m), 7. 93 (1H, d, J=3. 0Hz), 10. 40 (1H, s), 11. 79 (1H, brs).

例504:化合物番号504の化合物の製造

原料として、5 ークロロサリチル酸、及びN ー (4 ーアミノフェニル) ー 4 ーメ チルベンゼンスルホンアミドを用いて例 1 6 と同様の操作を行い、標題化合物を 得た。

収率:40.6%

¹H-NMR (DMSO- d_6): δ 2. 33 (3H, s), 6. 99 (1H, d, J=8. 6Hz), 7. 07 (2H, d, J=8. 6Hz), 7. 34 (2H, d, J=8. 3Hz), 7. 45 (1H, dd, J=8. 6, 2. 1Hz), 7. 53 (2H, d, J=8. 6Hz), 7. 63 (2H, d, J=8. 3Hz), 7. 9 0 (1H, d, J=2. 1Hz), 10. 14 (1H, s), 10. 33 (1H, s), 11. 81 (1H, brs).

例505:化合物番号505の化合物の製造

原料として、5-クロロサリチル酸、及び4-(モルホリノ)アニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:29.8%

¹H-NMR (DMSO-d₆): δ 3. 09 (4H, t, J=4.6Hz), 3. 74 (4H, t, J=4.6Hz), 6. 94-7. 01 (3H, m), 7. 46 (1H, dd, J=8.9, 2.6Hz), 7. 55 (2H, d, J=8.9Hz), 8. 01 (1H, d, J=2.6Hz), 10. 29 (1H, s), 12. 10 (1H, brs).

例506:化合物番号506の化合物の製造

原料として、5-クロロサリチル酸、及び3-(tert-ブチル)アニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.1%

¹H-NMR (CDCl₃): δ 1. 35 (9H, s), 6. 99 (1H, d, J = 8. 9Hz), 7. 24-7. 28 (1H, m), 7. 32-7. 35 (1H, m), 7. 40 (1H, dd, J=8. 9, 2. 3Hz), 7. 46-7. 50 (2H, m), 7. 51 (1H, d, J=2. 3Hz), 7. 81 (1H, brs), 11. 94 (1H, s).

例507:化合物番号507の化合物の製造

原料として、5-クロロサリチル酸、及び3-(5-メチルフラン-2-イル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:61.1%

¹H-NMR (DMSO-d₆): δ 2. 36 (3H, s), 6. 22-6. 23 (1H, m), 6. 81 (1H, d, J=3. 0Hz), 7. 02 (1H, d, J=8. 9Hz), 7. 36-7. 51 (3H, m), 7. 58-7. 61 (1H, m), 7. 99-8. 01 (2H, m), 10. 49 (1H, s), 11. 85 (1H, brs).

例508:化合物番号508の化合物の製造

原料として、5-クロロサリチル酸、及び3-(1-ヒドロキシエチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 37.6%

¹H-NMR (DMSO- d_6): δ 1. 80 (3H, d, J=6.6Hz), 5. 33 (1H, q, J=6.6Hz), 7. 01 (1H, d, J=8.9Hz), 7. 25 (1H, d, J=7.9Hz), 7. 38 (1H, t, J=7.9Hz), 7. 47 (1H, dd, J=8.9, 2. 3Hz), 7. 65 (1H, d, J=7.9Hz), 7. 85 (1H, s), 7. 96 (1H, d, J=2.3Hz), 10. 48 (1H, s), 11. 80 (1H, brs).

例509:化合物番号509の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノベンゼンスルホンアミドを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:18.7%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.9Hz), 7. 41 (2H, s), 7. 48 (1H, dd, J=8.9, 2.6Hz), 7. 54 -7. 62 (2H, m), 7. 84-7. 88 (1H, m), 7. 93 (1H, d, J=2.6Hz), 8. 30 (1H, s), 10. 64 (1H, s), 11. 68 (1 H, brs).

例510:化合物番号510の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメタンスルホニル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:62.6%

The second

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.6Hz), 7. 48 (1H, dd, J=8.6, 2.6Hz), 7. 82-7. 88 (3H, m), 8. 23-8. 26 (1H, m), 8. 67 (1H, s), 10. 88 (1H, s), 11. 45 (1H, brs).

例511:化合物番号511の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:17.1%

¹H-NMR (CDCl₃): δ 7. 02 (1H, d, J=8. 9Hz), 7. 2 6-7. 31 (1H, m), 7. 44 (1H, dd, J=8. 9, 2. 6Hz), 7. 53 (2H, d, J=2. 6Hz), 8. 41 (1H, brs,), 8. 42 (1H, d, J=8. 9Hz), 11. 57 (1H, s).

例512:化合物番号512の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-(ジヘキシルオキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:60.5%

¹H-NMR (CDCl₃): δ 0. 91 (6H, t, J=6. 3Hz), 1. 3 4-1. 61 (12H, m), 1. 76-1. 89 (4H, m), 3. 97-4. 04 (4H, m), 6. 88 (1H, d, J=8. 9Hz), 6. 97-7. 00 (2H, m), 7. 22 (1H, d, J=2. 6Hz), 7. 38 (1H, dd, J=8. 9, 2. 6Hz), 7. 47 (1H, d, J=2. 6Hz), 7. 73 (1H, s), 11. 97 (1H, s).

例513:化合物番号513の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:16.4%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8. 7Hz), 7 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 7. 61-7. 70 (2H, m), 7. 86 (1H, d, J=2. 7Hz), 8. 11 (1H, d, J=2. 1Hz), 10. 56 (1H, s), 11. 53 (1H, s).

例514:化合物番号514の化合物の製造

原料として、5-クロロサリチル酸、及び3-ヘキシルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:88.2%

¹H-NMR (DMSO-d₆): δ 0.89 (3H, t, J=7.0Hz), 1. 28-1.47 (6H, m), 1.67-1.76 (2H, m), 3.95 (2H, t, J=6.6Hz), 6.69-6.73 (1H, m), 7.01 (1H, d, J=8.8Hz), 7.21-7.28 (2H, m), 7.39-7.40 (1H, m), 7.67 (1H, dd, J=8.8, 2.6Hz), 7.94 (1H, d, J=2.6Hz), 10.34 (1H, s), 11.80 (1H, s).

例515:化合物番号515の化合物の製造

原料として、5-クロロサリチル酸、及び5-エトキシー4-フルオロー2-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:20.2%

¹H-NMR (DMSO-d₆): δ 1. 43 (3H, t, J=7.0Hz), 4. 27 (2H, q, J=7.0Hz), 7. 07 (1H, d, J=8.8Hz), 7. 52 (1H, dd, J=8.8, 2.9Hz), 7. 95 (1H, d, J=2.9 Hz), 8. 15 (1H, d, J=11.4Hz), 8. 57 (1H, d, J=8. 4Hz), 12. 16 (1H, s), 12. 26 (1H, s).

例516:化合物番号516の化合物の製造

原料として、5-クロロサリチル酸、及び4-ヒドロキシ-3-メチル-1-ナフチルアミンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:5.9%

¹H-NMR (DMSO-d₆): δ 2. 38 (3H, s), 7. 03 (1H, d, J=9. 3Hz), 7. 43 (2H, s), 7. 46 (1H, d, J=2. 4Hz), 7. 50-7. 54 (2H, m), 7. 67 (1H, d, J=2. 1Hz), 7. 78 (1H, dd, J=6. 0, 2. 7Hz), 8. 03 (1H, brs), 8. 18 (1H, dd, J=6. 0, 3. 6Hz), 11. 98 (1H, brs).

例517:化合物番号517の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例518:化合物番号518の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例519:化合物番号519の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例520:化合物番号520の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例521:化合物番号521の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例522:化合物番号522の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例523:化合物番号523の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例524:化合物番号524の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノビフェニルを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:52.4%

¹H-NMR (DMSO-d₆): δ 7.03 (1H, d, J=8.7Hz), 7. 33-7.38 (1H, m), 7.44-7.51 (3H, m), 7.67-7.

72 (4H, m), 7. 82 (2H, d, J=8.7Hz), 7. 98 (1H, d, J=2.4Hz), 10. 49 (1H, s), 11. 84 (1H, s).

例525:化合物番号525の化合物の製造

 $5-スルフォサリチル酸(218mg, 1mmo1)、3, 5-ビス(トリフルオロメチル)アニリン(229mg, 1mmo1)、三塩化リン(88<math>\mu$ L, 1mmo1)、オルトーキシレン(5mL)の混合物を3時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色固体(29mg, 9.2%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 15 (1H, d, J=8.8Hz), 7. 65 (2H, s), 7. 73 (1H, s), 7. 81 (1H, s), 7. 82 (1H, dd, J=8.7, 2.5Hz), 8. 23 (1H, d, J=2.5Hz), 8. 38 (2H, s), 10. 87 (1H, s), 11. 15 (1H, brs).

例526:化合物番号526の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 6.9%

¹H-NMR (CDCl₃): δ 7. 03 (1H, dd, J=8. 7, 0. 6H z), 7. 43-7. 48 (2H, m), 7. 91 (1H, d, J=9. 0Hz), 7. 96 (1H, s), 8. 42 (1H, s), 8. 49 (1H, d, J=8. 7 Hz), 11. 26 (1H, s).

例527:化合物番号527の化合物の製造

原料として、3-フェニルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 12 (1H, t, J=8.1Hz), 7. 37 (1H, t, J=7.5, 1.5Hz), 7. 43-7. 48 (2H, m),

7. 56-7. 60(3H, m), 7. 91(1H, s), 8. 07, (1H, dd, J=8.1, 1.5Hz), 8. 48(2H, s), 11. 00(1H, s), 12. 16 (1H, s).

例528:化合物番号528の化合物の製造

原料として、4-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.7%

¹H-NMR (DMSO-d₆): δ 6.81-6.90 (2H, m), 7.84 (1H, s,), 7.93-7.98 (1H, m,), 8.45 (2H, s,), 10.78 (1H, s), 11.81 (1H, s,).

例529:化合物番号529の化合物の製造

前述した例471において、化合物番号471の化合物との混合物を分離して得た。

収率:9.4%

¹H-NMR (CD₃OD): δ 2. 16 (3H, s), 2. 34 (3H, s), 6. 69 (1H, d, J=8. 2Hz), 6. 76 (1H, brs) 6. 95 (1H, d, J=8. 8Hz), 7. 02 (1H, d, J=8. 0Hz), 7. 15 (1H, d, J=8. 2Hz), 7. 29 (1H, d, J=8. 2Hz), 7. 37 (1H, dd, J=8. 8, 2. 6Hz), 7. 97 (1H, d, J=2. 6Hz), 7. 98 (1H, s).

例530:化合物番号530の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-3- (トリフルオロメトキシ) ベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。 収率:75、2%

¹H-NMR (DMSO-d₆): δ 7. 13 (1H, d, J=8.8Hz), 7. 54 (1H, dd, J=8.8, 2.6Hz), 7. 94 (1H, dd, J=8. 4, 1.6Hz), 7. 95 (1H, d, J=2.6Hz), 8. 15 (1H, t,

J=1.5Hz), 8. 75 (1H, d, J=8.8Hz), 11. 25 (1H, s), 12. 45 (1H, s).

例531:化合物番号531の化合物の製造

原料として、5-クロロサリチル酸、及び4-[2-アミノ-4-(トリフルオロメチル)フェノキシ]ベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:11.6%

¹H-NMR (CD₃OD): δ 6. 88 (1H, d, J=8. 6Hz), 7. 1 9 (2H, d, J=8. 9Hz), 7. 24 (1H, d, J=8. 6Hz), 7. 33 (1H, dd, J=8. 8, 2. 8Hz), 7. 46 (1H, dd, J=8. 9, 1. 9Hz), 7. 76 (2H, d, J=8. 9Hz), 7. 98 (1H, d, J=2. 7Hz), 8. 96 (1H, s).

例532:化合物番号532の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-(4-メトキシフェノキシ)ベンゾトリフルオライドを用いて例16と同様の操作を行い、標題化合物を得た。

収率:88.1%

¹H-NMR (CDCl₃): δ 3. 85 (3H, s) 6. 81 (1H, d, J = 8. 5Hz), 6. 97-7. 02 (3H, m), 7. 08 (2H, d, J=8. 8Hz), 7. 30 (1H, m), 7. 40 (1H, dd, J=8. 8, 1. 9Hz), 7. 45 (1H, d, J=2. 2Hz), 8. 70 (1H, s), 8. 78 (1H, d, J=1. 6Hz), 11. 76 (1H, s).

例533:化合物番号533の化合物の製造

原料として、サリチル酸、及び2,5-ビス(トリフルオロメチル)アニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率: 47.8%

¹H-NMR (CD₃OD): δ 7. 00-7. 06 (2H, m), 7. 48 (1

H, dt, J=1.5, 7.5 Hz), 7.74 (1H, d, J=8.4Hz), 8.01-8.08 (2H, m), 8.79 (1H, s), 11.09 (1H, s), 12.03 (1H, s).

例534:化合物番号534の化合物の製造

(1) 2-アミノー4-(2, 4-ジクロロフェニル) チアゾール

原料として、2', 4' -ジクロロアセトフェノン、及びチオウレアを用いて例 395(1) と同様の操作を行い、標題化合物を得た。

収率:97.1%

¹H-NMR (CDCl₃): δ 5. 01 (2H, s), 7. 09 (1H, s), 7. 28 (1H, dd, J=8. 4, 2. 1Hz), 7. 45 (1H, d, J=2. 1Hz), 7. 82 (1H, d, J=8. 4Hz).

(2) 5-クロロー 2-ヒドロキシーN-[4-(2, 4-ジクロロフェニル) チアゾールー 2-イル] ベンズアミド (化合物番号 5.3.4)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(2,4-ジクロロフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。 収率:8.0%

¹H-NMR (DMSO-d₆): δ 7.08 (1H, d, J=8.7Hz), 7. 50-7.55 (2H, m), 7.72-7.76 (2H, m), 7.91 (1H, d, J=8.4Hz), 7.95 (1H, d, J=2.4Hz), 11.87 (1H, brs), 12.09 (1H, brs).

例535:化合物番号535の化合物の製造

原料として、3-イソプロピルサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:99.2%

¹H-NMR (CDCl₃): δ 1. 26 (6H, d, J=6. 9Hz), 3. 4 4 (1H, Hept, J=6. 9Hz), 6. 92 (1H, t, J=7. 8Hz), 7. 38 (1H, dd, J=8. 1, 1. 2Hz), 7. 44 (1H, d, J=7.

5 H z), 7. 6 9 (1 H, s), 8. 1 3 (3 H, s), 1 1. 8 8 (1 H, s). 例 5 3 6 : 化合物番号 5 3 6 の化合物の製造

¹H-NMR (CDCl₃): δ 1. 25 (6H, d, J=6. 9Hz), 3. 3 9 (1H, Hept, J=6. 9Hz), 7. 49-7. 51 (2H, m), 7. 71 (1H, brs), 8. 11-8. 14 (3H, m), 11. 81 (1H, brs).

例537:化合物番号537の化合物の製造

N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-3-メチルベンズアミド (化合物番号328;150mg,0.41mmol)のメタノール/水(3:1)混合溶液(5mL)に、N-ブロモコハク酸イミド(88.2mg,0.50mmol)を加え、室温で10分間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を10%チオ硫酸ナトリウム水溶液、水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+++ン:酢酸エチル=5:1)で精製して、標題化合物の白色粉末(167mg,91.5%)を得た。 1 H-NMR(CDCl₃): δ 2.28(3H,s),7.47(1H,s),7.50(1H,d,J=2.4Hz),7.71(1H,s),8.08(1H,brs),8.13(2H,s),11.71(1H,s).

例538:化合物番号538の化合物の製造

4, 4, 4-トリフルオロ-1-フェニルー1, 3-ブタンジオン(4 3 2. 3 mg, 2mmo 1)、3-ニトロフェニルヒドラジン塩酸塩(3 7 9. 2 mg, 2 mmo 1)、濃塩酸(0. 2 mL)、エタノール(8 mL)の混合物を2 時間加熱環流した。反応混合物を冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=4: $1 \rightarrow 3$: 1)で精製して、標題化合物の薄黄白色粉末(6 3 1. 5 mg, 9 4. 7%)を得た。

¹H-NMR (CDCl₃): δ 6. 80 (1H, s), 7. 23-7. 26 (2 H, m), 7. 35-7. 45 (3H, m), 7. 54 (1H, t, J=8. 4H z), 7. 63 (1H, ddd, J=8. 1, 1. 8, 1. 2Hz), 8. 19-8. 25 (2H, m).

(2) 1 - (3 - アミノフェニル) - 5 - フェニル - 3 - (トリフルオロメチル) ピラゾール

¹H-NMR (CDCl₃): δ 3. 78 (2H, s), 6. 54 (1H, ddd, J=7. 8, 1. 8, 0. 6Hz), 6. 65 (1H, ddd, J=8. 4, 2. 4, 0. 9Hz), 6. 73-6. 75 (2H, m), 7. 07 (1H, t, J=8. 1Hz), 7. 24-7. 36 (5H, m).

(3) 5-クロロー2-ヒドロキシ-N-{3-[5-フェニル-3-(トリフ

ルオロメチル) ピラゾールー1ーイル] フェニル} ベンズアミド (化合物番号 5 3 8)

原料として、5-クロロサリチル酸、及び<math>1-(3-アミノフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾールを用いて例<math>16と同様の操作を行い、標題化合物を得た。

収率:74.4%

¹H-NMR (CDCl₃): δ 6. 77 (1H, s), 6. 97-7. 03 (2 H, m), 7. 27-7. 45 (8H, m), 7. 65 (1H, ddd, J=8. 4, 2. 1, 0. 9Hz), 7. 74 (1H, t, J=2. 1Hz), 7. 93 (1 H, s), 11. 63 (1H, s).

例539:化合物番号539の化合物の製造

(1) 5 - (t e r t - \mathcal{I} \mathcal{I} \mathcal{I}) - 1 - (4 - - 1

原料として、1, 1, 1ートリフルオロー5, 5ージメチルー2, 4ーヘキサンジオン、及び4ーニトロフェニルヒドラジン塩酸塩を用いて例538(1)と同様の操作を行い、標題化合物を得た。

収率:94.7%

¹H-NMR (CDCl₃): δ 1. 23 (9H, s), 6. 51 (1H, s), 7. 62 (2H, d, J=9. 0Hz), 8. 37 (2H, d, J=9. 0Hz).

(2) 1-(4-アミノフェニル) -5-(tert-ブチル) -3-(トリフルオロメチル) ピラゾール

原料として、5-(tert-ブチル)-1-(4-ニトロフェニル)-3-(トリフルオロメチル) ピラゾールを用いて例 538(2) と同様の操作を行い、標題化合物を得た。

収率:98.9%

¹H-NMR (CDCl₃): δ 1. 20 (9H, s), 4. 00 (2H, br), 6. 40 (1H, s), 6. 69 (2H, d, J=8. 7Hz), 7. 14 (2H, d, J = 9.0 Hz).

(3) N- $\{4-[5-(tert-ブチル)-3-(トリフルオロメチル)$ ピラゾール-1-イル]フェニル $\}$ -5-クロロ-2-ヒドロキシベンズアミド(化合物番号539)

原料として、5-クロロサリチル酸、及び1-(5-アミノフェニル)-5-(tert-ブチル)-3-(トリフルオロメチル)ピラゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:57.6%

¹H-NMR (CDCl₃): δ 1. 23 (9H, s), 6. 47 (1H, s), 7. 00 (1H, d, J=9. 0Hz), 7. 40-7. 44 (3H, m), 7. 57 (1H, d, J=2. 4Hz), 7. 72 (2H, d, J=8. 7Hz), 8. 15 (1H, s), 11. 58 (1H, s).

例540:化合物番号540の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-フェニルベンズアミド(化合物番号527)を用いて例537と同様の操作を行い、標題化合物を得た。

収率:67.5%

¹H-NMR (DMSO-d₆): δ 7. 36-7. 50 (3H, m), 7. 55 -7. 59 (2H, m), 7. 71 (1H, d, J=2. 1Hz), 7. 93 (1 H, brs), 8. 28 (1H, d, J=2. 1Hz), 8. 45 (2H, s), 1 1. 06 (1H, brs), 12. 16 (1H, brs).

例541:化合物番号541の化合物の製造

(1) 2-アミノー4-(3, 4-ジクロロフェニル) チアゾール 原料として、3', 4'-ジクロロアセトフェノン、及びチオウレアを用いて例 395(1) と同様の操作を行い、標題化合物を得た。

収率:77.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 17 (2H, s), 7. 24 (1H, s),

7. 62 (1H, d, J=8.4Hz), 7. 78 (1H, dd, J=8.7, 2. 7Hz), 8. 22 (1H, d, J=2.4Hz).

(2) 5-クロロー2-ヒドロキシーN-[4-(3, 4-ジクロロフェニル)チアゾールー2-イル] ベンズアミド(化合物番号541)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(3,4-ジクロロフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。収率:15.1%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 71 (1H, d, J=8.4 Hz), 7. 91 (1H, d, J=1.8Hz), 7. 94 (1H, s), 8. 18 (1H, d, J=1.5Hz), 12. 09 (2H, bs).

例542:化合物番号542の化合物の製造

(1) 2-アミノー4-[4-(トリフルオロメチル)フェニル]チアゾール 原料として、4'-(トリフルオロメチル)アセトフェノン、及びチオウレアを 用いて例395(1)と同様の操作を行い、標題化合物を得た。

収率:77.5%

¹H-NMR (DMSO-d₆): δ 7. 18 (2H, s), 7. 26 (1H, s), 7. 72 (2H, d, J=8. 4Hz), 8. 00 (2H, d, J=8. 1Hz).

(2) 5-クロロー2-ヒドロキシーN- {4- [4- (トリフルオロメチル) フェニル] チアゾールー2-イル} ベンズアミド (化合物番号542) 原料として、5-クロロサリチル酸、及び2-アミノー4- [4- (トリフルオロメチル) フェニル] チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.0%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 81 (2H, d, J=8.4 Hz), 7. 96 (1H, d, J=2.4Hz), 7. 98 (1H, s), 8. 16

(2H, d, J=8.1Hz), 11. 91 (1H, bs), 12. 13 (1H, bs).

例543:化合物番号543の化合物の製造

(1) $2-アセトキシ-N-\{4-[3,5-ビス(トリフルオロメチル)ピラ ゾール-1-イル]フェニル<math>\}-5-クロロベンズアミド$

原料として、2-アセトキシ-5-クロロ安息香酸、及び<math>1-(4-アミノフェ ニル) -3, 5-ビス(トリフルオロメチル) ピラゾールを用いて例 <math>24 と同様の操作を行い、標題化合物を得た。

収率:77.8%

¹H-NMR (CDCl₃): δ 2. 36 (3H, s), 7. 78 (1H, s), 7. 14 (1H, d, J=8. 7Hz), 7. 48-7. 51 (3H, m), 7. 77 (2H, d, J=9. 0Hz), 7. 83 (1H, d, J=2. 7Hz), 8. 25 (1H, s).

[1-(4-r)]フェニル) -3, 5-r (トリフルオロメチル) ピラゾール:「ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry)」,2000年,第43巻,第16号,p. 2975-2981参照](2)N- $\{4-[3,5-r]$ (トリフルオロメチル) ピラゾール-1-イル]フェニル $\}$ -5-ク ロロー2ーヒドロキシベンズアミド(化合物番号543)原料として、2-r セトキシーN- $\{4-[3,5-r]$ (トリフルオロメチル)ピラゾール-1-イル]フェニル $\}$ -5-ク ロロベンズアミドを用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率:73.1%

¹H-NMR (DMSO-d₆): δ 7.04 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=8.7, 2.7Hz), 7.63 (2H, d, J=8.7 Hz), 7.84 (1H, s), 7.89 (1H, d, J=3.0Hz), 7.94 (2H, d, J=9.0Hz), 10.65 (1H, s), 11.58 (1H, s). 例544: 化合物番号544の化合物の製造

(1) 3, 5ービス (トリフルオロメチル) -1- (3-ニトロフェニル) ピラ ゾール

原料として、ヘキサフルオロアセチルアセトン、及び3-ニトロフェニルヒドラジン塩酸塩を用いて例538(1)と同様の操作を行い、標題化合物を得た。 収率:94.0%

¹H-NMR (CDCl₃): δ 7. 16 (1H, s), 7. 77 (1H, dd, J=8. 7, 8. 1Hz), 7. 88-7. 91 (1H, m), 8. 42-8. 4. 5 (2H, m).

(2) $1-(3-r \le 1/2 \le 1/$

原料として、3,5-ビス(トリフルオロメチル)-1-(3-ニトロフェニル)ピラゾールを用いて例538(2)と同様の操作を行い、標題化合物を得た。収率:73.1%

¹H-NMR (CDCl₃): δ 3. 89 (2H, s), 6. 77-6. 87 (3 H, m), 7. 04 (1H, s), 7. 26 (1H, t, J=8. 7Hz).

(3) $2-アセトキシ-N-\{3-[3,5-ビス(トリフルオロメチル)ピラ ゾールー<math>1-イル$] フェニル $\}-5-クロロベンズアミド$

原料として、2-アセトキシ-5-クロロ安息香酸、及び<math>1-(3-アミノフェニル)-3, 5-ビス(トリフルオロメチル)ピラゾールを用いて例24と同様の操作を行い、標題化合物を得た。

収率:84.4%

¹H-NMR (CDCl₃): δ 2. 33 (3H, s), 7. 09 (1H, s), 7. 11 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=7. 8Hz), 7. 45-7. 52 (2H, m), 7. 67 (1H, d, J=8. 4Hz), 7. 78 (1H, d, J=2. 4Hz), 7. 95 (1H, s), 8. 29 (1H, s). (4) N-{3-[3, 5-ビス (トリフルオロメチル) ピラゾールー1ーイル] フェニル} -5-クロロー2ーヒドロキシベンズアミド (化合物番号544)

原料として、 $2-アセトキシ-N-\{3-[3,5-ビス(トリフルオロメチル)$ ピラゾール-1-イル]フェニル $\}-5-クロロベンズアミドを用いて例2(2)$ と同様の操作を行い、標題化合物を得た。

収率:69.9%

¹H-NMR (CDCl₃): δ 7. 01 (1H, d, J=8. 7Hz), 7. 1 0 (1H, s), 7. 34-7. 37 (1H, m), 7. 42 (1H, dd, J=8. 7, 2. 4Hz), 7. 50 (1H, d, J=2. 4Hz), 7. 56 (1H, t, J=8. 1Hz), 7. 69-7. 73 (1H, m), 7. 95-7. 98 (2H, m), 11. 57 (1H, s).

例545:化合物番号545の化合物の製造

(1) 2 - メトキシー4 - フェニル安息香酸メチル

4-クロロ-2-メトキシ安息香酸メチル (904mg, 4.5mmol)、フェニルボロン酸 (500mg, 4.1mmol)、炭酸セシウム (2.7g, 8.2 mmol) のN, Nージメチルホルムアミド (15mL) 溶液に、アルゴン雰囲気下、ジクロロビス (トリフェニルホスフィン) パラジウム (29mg, 0.0 4mmol)を加え、120℃で8時間攪拌した。反応混合物を室温まで冷却後、酢酸エチルで希釈した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (nーペキサン:酢酸エチル=10:1) で精製して、標題化合物の無色油状物 (410mg, 41.2%) を得た。

¹H-NMR (CDCl₃): δ 3. 91 (3H, s), 3. 98 (3H, s), 7. 17 (1H, d, J=1. 5Hz), 7. 20 (1H, dd, J=8. 1, 1. 5Hz), 7. 31-7. 50 (3H, m), 7. 59-7. 63 (2H, m), 7. 89 (1H, d, J=8. 1Hz).

(2) 2-メトキシー4-フェニル安息香酸

2- メトキシー4- フェニル安息香酸メチル($410 \,\mathrm{mg}$, 1. $69 \,\mathrm{mmol}$)のメタノール($5 \,\mathrm{mL}$)溶液に $2 \,\mathrm{規定水酸化ナトリウム水溶液}$ ($5 \,\mathrm{mL}$)を加え、

1時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧留去した。得られた残渣に2規定塩酸を加え、析出した結晶を濾取して、標題化合物の粗生成物(371mg, 96.0%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 93 (3H, s), 7. 29 (1H, d d, J=8. 1, 1. 5Hz), 7. 34 (1H, d, J=1. 5Hz), 7. 4 0-7. 53 (3H, m), 7. 73-7. 77 (3H, m), 12. 60 (1H, s).

(3) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-メトキシー 4-フェニルベンズアミド

原料として、2-メトキシー4-フェニル安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。収率:97.5%

¹H-NMR (CDCl₃): δ 4. 19 (3H, s), 7. 25 (1H, m), 7. 38-7. 53 (4H, m), 7. 62-7. 65 (3H, m), 8. 12 (2H, s), 8. 35 (1H, d, J=8. 1Hz), 10. 15 (1H, brs). (4) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシー4-フェニルベンズアミド (化合物番号545)

N-[3,5-ビス(トリフルオロメチル)フェニル] -2-メトキシ-4-フェニルベンズアミド(100mg,0.24mmol)のジクロロメタン(5mL)溶液に1M三臭化ホウ素ージクロロメタン溶液(0.71mL,0.71mmol)を加え、室温で1時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-n+1)で精製して、標題化合物の白色粉末(69.3mg,71.6%)を得た。

 $^{1}H-NMR$ (DMSO- d_{6}): δ 7. 20 (1H, dd, J=8. 4. 1. 8Hz), 7. 30 (1H, d, J=1. 8Hz), 7. 39-7. 51 (3H,

m), 7. 60-7. 64 (3H, m), 7. 70 (1H, brs), 8. 15 (2 H, s), 8. 19 (1H, brs), 11. 59 (1H, s).

例546:化合物番号546の化合物の製造

(1) 2-アミノー4-(2, 5-ジフルオロフェニル) チアゾール 原料として、2', 5'-ジフルオロアセトフェノン、及びチオウレアを用いて

例395(1)と同様の操作を行い、標題化合物を得た。

収率:77.8%

¹H-NMR (DMSO-d₆): δ 7. 45 (1H, d, J=2.7Hz), 7. 11-7. 17 (1H, m), 7. 19 (2H, s), 7. 28-7. 36 (1H, m), 7. 65-7. 71 (1H, m).

(2) 5-クロロー2-ヒドロキシ-N-[4-(2, 5-ジフルオロフェニル) チアゾール-2-イル] ベンズアミド (化合物番号546)

原料として、5-クロロサリチル酸、及び2-アミノー4-(2, 5-ジフルオロフェニル)チアゾールを用いて例 1 6 と同様の操作を行い、標題化合物を得た。

収率:36.5%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=8.7Hz), 7. 22-7. 30 (1H, m), 7. 37 (1H, m), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 72 (1H, d, J=2.4Hz), 7. 77-7. 84 (1H, m), 7. 94 (1H, d, J=3.0Hz), 11. 89 (1H, bs), 12. 12 (1H, bs).

例547:化合物番号547の化合物の製造

(1) 2-アセトキシー4-クロロ安息香酸

原料として、4 - クロロサリチル酸、濃硫酸、及び無水酢酸を用いて例34(1) と同様の操作を行い、標題化合物を得た。

収率:88.1%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 2. 25 (3H, s), 7. 42 (1H, d, J=1.8Hz), 7. 48 (1H, dd, J=8.4, 2.4Hz), 7. 94

(1 H, d, J=8.1 Hz), 13.31 (1 H, s).

(2) $2-reh+v-N-\{4-[3,5-r/x(h)]v+r/y(h)\}$ ピラ v-y-1-r/y(h) フェニルv-y-r/y(h)

原料として、2-アセトキシ-4-クロロ安息香酸、及び<math>1-(4-アミノフェニル)-3, 5-ビス(トリフルオロメチル)ピラゾールを用いて例24と同様の操作を行い、標題化合物を得た。

収率:74.0%

¹H-NMR (CDCl₃): δ 2. 37 (3H, s), 7. 08 (1H, s), 7. 23 (1H, d, J=1.8Hz), 7. 37 (1H, dd, J=8.1, 2.1Hz), 7. 50 (2H, d, J=8.7Hz), 7. 77 (2H, d, J=8.7Hz), 7. 82 (1H, d, J=8.1Hz), 8. 23 (1H, s).

(3) $N-\{4-[3,5-ビス(トリフルオロメチル)ピラゾール-1-イル]$ フェニル $\}-4-$ クロロ-2-ヒドロキシベンズアミド(化合物番号 5 4 7) 原料として、2-アセトキシー $N-\{4-[3,5-ビス(トリフルオロメチル)ピラゾール-1-イル]フェニル<math>\}-4-$ クロロベンズアミドを用いて例 2 (2) と同様の操作を行い、標題化合物を得た。

収率:56.6%

¹H-NMR (DMSO-d₆): δ 7. 03-7. 06 (2H, m), 7. 61 (2H, d, J=8. 7Hz), 7. 81 (1H, s), 7. 89-7. 95 (3H, m), 10. 62 (1H, s), 11. 82 (1H, s).

例548:化合物番号548の化合物の製造

(1) 1 - (4 - ニトロフェニル) - 5 - フェニル - 3 - (トリフルオロメチル) ピラゾール

原料として、4,4,4ートリフルオロー1ーフェニルー1,3ーブタンジオン、 及び4ーニトロフェニルヒドラジン塩酸塩を用いて例538(1)と同様の操作 を行い、標題化合物を得た。

収率:95.2%

¹H-NMR (CDCl₃): δ 6. 80 (1H, s), 7. 22-7. 26 (2 H, m), 7. 37-7. 45 (3H, m), 7. 51 (2H, d, J=9. 3H z), 8. 22 (2H, d, J=9. 0Hz).

(2) 1- (4-アミノフェニル) - 5-フェニル-3- (トリフルオロメチル) ピラゾール

収率:73.0%

¹H-NMR (CDCl₃): δ 3. 80 (2H, s), 6. 62 (2H, d, J = 8. 7Hz), 6. 72 (1H, s), 7. 08 (2H, d, J=8. 7Hz), 7. 22-7. 26 (2H, m), 7. 30-7. 33 (3H, m).

(3) 5-クロロー2-ヒドロキシーN- {4- [5-フェニル-3- (トリフルオロメチル) ピラゾールー1-イル] フェニル} ベンズアミド (化合物番号 548)

原料として、5-クロロサリチル酸、及び1-(4-アミノフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾールを用いて例<math>16と同様の操作を行い、標題化合物を得た。

収率:73.2%

¹H-NMR (CDCl₃): δ 7. 02 (1H, d, J=8. 7Hz), 7. 2 1 (1H, s), 7. 30-7. 42 (7H, m), 7. 47 (1H, dd, J= 8. 7, 2. 7Hz), 7. 79 (2H, d, J=8. 7Hz), 7. 89 (1H, d, J=2. 7Hz), 10. 56 (1H, s), 11. 61 (1H, s).

例549:化合物番号549の化合物の製造

(1) 2-アミノー4-(4-メトキシフェニル)チアゾール原料として、4'-メトキシアセトフェノン、及びチオウレアを用いて例395(1) と同様の操作を行い、標題化合物を得た。

収率:85.2%

¹H-NMR (DMSO-d₆): δ 3. 76 (3H, s), 6. 82 (1H, s), 6. 92 (2H, d, J=9. 0Hz), 7. 01 (2H, s), 7. 72 (2H, d, J=8. 7Hz).

(2) 5-クロロー2-ヒドロキシ-N-[4-(4-メトキシフェニル) チア ゾール-2-イル] ベンズアミド (化合物番号549)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(4-メトキシフェ ニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.4%

¹H-NMR (DMSO-d₆): δ 3. 80 (3H, s), 7. 01 (2H, d, J=9. 0Hz), 7. 07 (1H, d, J=8. 7Hz), 7. 50-7. 55 (2H, m), 7. 86 (2H, d, J=9. 0Hz), 7. 96 (1H, d, J=2. 7Hz), 11. 90 (1H, bs), 12. 04 (1H, bs).

例550:化合物番号550の化合物の製造

(1) 2-アミノー4-[3-(トリフルオロメチル)フェニル]チアゾール 原料として、3'-(トリフルオロメチル)アセトフェノン、及びチオウレアを 用いて例395(1)と同様の操作を行い、標題化合物を得た。

収率:94.1%

¹H-NMR (DMSO-d₆): δ 7. 19 (2H, s), 7. 27 (1H, s), 7. 61 (2H, dd, J=3. 9, 1. 5Hz), 8. 07-8. 13 (2H, m).

(2) 5-クロロー2-ヒドロキシ-N- {4-[3-(トリフルオロメチル) フェニル] チアゾールー2-イル} ベンズアミド (化合物番号550) 原料として、5-クロロサリチル酸、及び2-アミノ-4-[3-(トリフルオロメチル) フェニル] チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:31.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 13 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=9.0, 2.7Hz), 7. 70 (1H, d, J=2.4 Hz), 7. 71 (1H, d, J=1.2Hz), 7. 95 (1H, d, J=2.7Hz), 8. 00 (1H, s), 8. 24-8. 27 (2H, m), 12.16 (2H, bs).

例551:化合物番号551の化合物の製造

(1) 2-アミノー4-(2, 3, 4, 5, 6-ペンタフルオロフェニル) チア ゾール

原料として、2', 3', 4', 5', 6' -ペンタフルオロアセトフェノン、及びチオウレアを用いて例 3 9 5 (1) と同様の操作を行い、標題化合物を得た。収率:8 6 . 7%

 1 H-NMR(CDCl₃): δ 5. 19(2H, s), 6. 83(1H, s). (2)5-クロロー2ーヒドロキシーN- [4-(2, 3, 4, 5, 6-ペンタフルオロフェニル)チアゾールー2ーイル]ベンズアミド(化合物番号551)原料として、5-クロロサリチル酸、及び2ーアミノー4-(2, 3, 4, 5, 6-ペンタフルオロフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:23.8%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, s), 7. 93 (1H, d, J=2.7Hz), 11. 85 (1H, bs), 12. 15 (1H, bs).

例552:化合物番号552の化合物の製造

2-ヒドロキシ-N-[2, 5-ビス (トリフルオロメチル) フェニル] ベンズ アミド (化合物番号 5 3 3; 1 7 5 m g, 0.5 m m o l) の四塩化炭素 (5 m L) 溶液に、鉄 (3 m g, 0.05 m m o l)、臭素 (1 2 9 μ l, 2.5 m m o l) を加え、50℃で12時間攪拌した。反応混合物を室温まで冷却後、飽和重

曹永、水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の白色結晶(184.2mg, 72.7%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 92-7. 98 (1H, m), 8. 06 (1H, d, J=2. 1Hz), 8. 09 (1H, d, J=8. 4Hz), 8. 2 (1H, d, J=2. 1Hz), 8. 27-8. 32 (1H, m), 11. 31 (1H, s).

例553:化合物番号553の化合物の製造

原料として、2,3-ジヒドロキシベンズアルデヒド、及び3-[3,5-ビス (トリフルオロメチル) ベンジル] チアゾリジン-2,4-ジオン (例319(1) の化合物)を用いて例319(2)と同様の操作を行い、標題化合物を得た。 収率:88.5%

¹H-NMR (DMSO-d₆): δ 5. 02 (2H, s), 6. 88 (1H, d, J=7. 8Hz), 7. 00-7. 04 (2H, m), 7. 79 (1H, s), 8. 03 (2H, s), 8. 07 (1H, s), 9. 49 (1H, s), 9. 91 (1H, s).

例554:化合物番号554の化合物の製造

5-クロロサリチルアルデヒド (157mg, 1mmo1)、2-アミノー4-tertーアミルフェニル フェニル エーテル (255mg, 1mmo1)、エタノール (2mL) の混合物を室温で18時間撹拌した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=100:1)で精製して、標題化合物の白色固体 (57mg, 14.4%) を得た。

¹H-NMR (CDCl₃): δ 0. 66 (3H, t, J=7. 5Hz), 1. 2 6 (6H, s), 1. 61 (2H, q, J=7. 5Hz), 6. 88-6. 94 (3 H, m), 7. 04 (1H, dd, J=8. 0, 1. 6Hz), 7. 15-7. 3 2 (7H, m), 8. 61 (1H, s), 13. 20 (1H, s).

例555:化合物番号555の化合物の製造

4-0ロロー2ー($\{[2-7x/+v-5-(tert-r)]/(tert)\}$ フェニル] イミノ $\}$ メチル)フェノール(化合物番号554;13mg,0.03mmol)、水素化ホウ素ナトリウム(1.2mg,0.03mmol)、メタノール(1mL)の混合物を室温で5分間撹拌した。溶媒を減圧留去して得られた残渣を薄層シリカゲルクロマトグラフィー(n-n+y):酢酸エチル=5:1)で精製して、標題化合物の無色油状物(13mg,100%)を得た。

¹H-NMR (CDCl₃): δ 0. 69 (3H, t, J=7.6Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7.6Hz), 4. 41 (2H, s), 6. 78 (1H, m), 6. 93-6. 83 (5H, m), 7. 03 (1H, m), 7. 15 (2H, m), 7. 28 (3H, m).

試験例1:ΤΝΓα刺激によるΑΡ-1活性化阻害測定

AP-1 結合配列(TGACTAA)を 7 個連結(タンデムに)したオリゴヌクレオチドをホタルルシフェラーゼ遺伝子(Luc)の上流に組み込んだプラスミド(pAP-1-Luc Reporter Plasmid: STRATAGENE 社製)をトランスフェクション試薬(Effectene、QIAGEN 社製)を用いてヒト子宮ガン由来細胞株 HeLac QIAGEN 社のプロトコールに従いトランスフェクトして、 $6\sim24$ 時間培養した。その後、被験化合物の存在下又は非存在下で、 $TNF-\alpha$ (40 ng/m1)を加えて4時間培養した後、細胞内のルシフェラーゼ活性をピッカジーンLT(東洋インキ社製)及び化学発光測定装置、(SPECTRAFLUORPLUS、TECAN 社製)を用いて測定した。被験化合物非存在下におけるルシフェラーゼ活性値に対しての比率で阻害率を求めた。被験化合物 $10\mu g/m1$ 及び $1\mu g/m1$ 存在下における AP-1 活性阻害率を下記の表に示す。

化合物番号	AP-1活性化阻害率 (%)		
	薬物濃度10μg/mL	薬物濃度1μg/mL	
24	56.7	33. 3	
50	89. 1	42. 4	
51	91.2	48. 4	
52	82. 4	25. 4	
63	33. 9	NT	
65	44. 1	NT	
67	60. 9	18. 1	
73	51. 5	NT	
146	67.7	NT	
147	74.8	22. 7	
148	83. 8	39. 3	
149	75.4	NT	
182	49. 9	NT	
192	7.0	NT	
204	29.7	NT .	
209	55.3	21. 7	
218	33. 5	NT	
223	7.0	NT	

NT: not tested

試験例2:NFAT活性化阻害測定 (1)

NFAT の結合配列をβ一ガラクトシザーゼ遺伝子 (LacZ) の上流に組み込んだレポータープラスミド (NFAT-LacZ) を「プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユナイテッド・ステイツ・オブ・

アメリカ (Proceedings of The National Academy of Sciences of The United States of America)」,(米国),1991年,第88巻,第9号,p. 3972-3976 に記載の方法に従いトランスフェクトした Jurkat cell をカルシウムイオのフォアである A23187と PMA(Phorbol 12-myristate 13-acetate)及び被験化合物の存在または非存在下で、Modified RPMI1640培地中4時間培養した。その後、細胞内の β -ガラクトシダーゼ活性を「プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユナイテッド・ステイツ・オブ・アメリカ(Proceedings of The National Academy of Sciences of The United States of America)」,(米国),1991年,第88巻,第9号,p. 3972-3976に記載の方法で測定した。阻害率は、被験化合物非存在下における β -ガラクトシダーゼ活性値に対しての比率で求めた。被験化合物 10μ M及び 1μ M存在下におけるNFAT活性阻害率を下記の表に示す。

	-4. =·4) 0		
化合物番号	NFAT活性化阻害率 (%)		
	薬物濃度10μΜ	薬物濃度1μΜ	
5 0	100	7 0	

試験例3:MEKK-1強制発現によるAP-1活性化阻害測定

		·	
化合物番号	AP-1活性化阻害率(%)		
	薬物濃度1μg/mL	薬物濃度1μΜ	
51	>99. 9	N. T.	
50	99. 4	90. 7	
67	94. 8	N. T.	
73	98. 7	N. T.	
63	94. 9	N. T.	
114	97. 1	N. T.	
163	90. 4	N. T.	
71	98. 0	N. T.	
56	96. 3	82. 6	
98	>99. 9	N. T.	
196	99.8	N. T.	
122	92. 8	N. T.	
195	95. 5	91. 2	
199	70. 6	N. T.	
201	79. 1	N. T.	
532	83.8	N. T.	
552	76. 3	N. T.	
101	N. T.	85. 3	

N. T. : 試験せず

試験例4:NFAT活性化阻害測定(2)

NFAT の結合配列をホタルルシフェラーゼ遺伝子 (Luc) の上流に組み込んだプラスミド (NFAT Luc)をトランスフェクション試薬 (Effectene、QIAGEN 社製) を用いてヒト肝臓ガン由来細胞株HepG2に QIAGEN 社のプロトコールに従いトランスフェクションして、 $20\sim24$ 時間培養した。

その後、被験化合物の存在または非存在下で 4 時間培養した後、TPA(200nM) ionomycin $(2 \mu M)$ を加えて $20\sim24$ 時間培養した。

その後、細胞内のルシフェラーゼ活性をピッカジーンLT(東洋インキ社製)および、化学発光測定装置(GENios: TECAN 社製)を用いて測定した。

阻害率は、被験化合物非存在下におけるルシフェラーゼ活性値に対しての比率で求めた。被験化合物 1μ g/ml 及び/または 1μ M 存在下におけるNFAT活性阻害率を下記の表に示す。

化合物番号	NFAT活性化阻害率 (%)		
·	薬物濃度1μg/mL	薬物濃度1μΜ	
51	>99. 9	N. T.	
50	99. 5	94.8	
67	>99. 9	N. T.	
73	97. 8	N. T.	
63	92.7	N. T.	
114	77.9	N. T.	
163	84. 4	N. T.	
71	>99. 9	N. T.	
56	99.7	88. 9	
98	94. 2	N. T.	
196	90.0	N. T.	
122	88. 0	N. T.	
195	86. 7	96. 8	
199	>99. 9	N. T.	
201	>99. 9	N. T.	
532	97. 1	N. T.	
552	78. 3	N. T.	

101	N. T.	96.0
		

N. T. : 試験せず

産業上の利用可能性

本発明の医薬はAP-1及びNFATの活性化を抑制する作用を有しており、その作用に基づいて、炎症性サイトカインの遊離抑制作用、抗炎症作用、免疫抑制作用、及び抗アレルギー作用を発揮できる。

請求の範囲

1. 下記一般式 (I):

(式中、

Xは、主鎖の原子数が2ないし5である連結基(該連結基は置換基を有していて もよい)を表し、

Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表し、

環 Z は、式 - O - A (式中、Aは上記定義と同義である)及び式 - X - E (式中、X及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン、又は式 - O - A (式中、Aは上記定義と同義である)及び式 - X - E (式中、X及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいへテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含み、A P - 1 の活性化を阻害する医薬。

- 2. 請求の範囲第1項に記載の一般式(I)で表される化合物及び薬理学的に 許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる 物質を有効成分として含み、NFATの活性化を阻害する医薬。
- 3. Xが、下記連結基群αより選択される基(該基は置換基を有していてもよい)である請求の範囲第1項又は第2項に記載の医薬。

[連結基群α] 下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)

4. Xが、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する) で表される 基 (該基は置換基を有していてもよい) である請求の範囲第3項に記載の医薬。

- 5. Aが、水素原子である請求の範囲第1項ないし第4項のいずれか1項に記載の医薬。
- 6. 環Zが、 $C_6 \sim C_{10}$ のアレーン(該アレーンは、式-O-A(式中、Aは -般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)、又は5ないし13員の $^{\circ}$ クーアレーン(該 $^{\circ}$ 7つアレーンは、式 $^{\circ}$ 0 の $^{\circ}$ 7 (式中、 $^{\circ}$ 8 は一般式($^{\circ}$ 9 における定義と同義である)及び式 $^{\circ}$ 9 不) 及び $^{\circ}$ 8 で表される基の他に更に置換基を有していてもよい)である請求の範囲第1項ないし第5項のいずれか

1項に記載の医薬。

環 2 が、下記環群 β:

[環群β] ベンゼン環、ナフタレン環、チオフェン環、ピリジン環、インドール環、キノキサリン環、及びカルバゾール環

より選択される環(該環は、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である請求の範囲第6項に記載の医薬。

- 8. 環 Z が、式 O A (式中、A は 般式 (I) における定義と同義である) 及び式 X E (式中、X 及び E は 般式 (I) における定義と同義である) で表される基の他に更に置換基を有していてもよいベンゼン環である請求の範囲第7項に記載の医薬。
- 9. 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にハロゲン原子を更に有するベンゼン環である請求の範囲第8項に記載の医薬。
- 10. 環Zが、式-O-A (式中、Aは一般式 (I) における定義と同義である)及び式-X-E (式中、X及びEは一般式 (I) における定義と同義である)で表される基の他に置換基を更に有していてもよいナフタレン環である請求の範囲第7項に記載の医薬。
- 11. Eが、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基、又は置換基を有していてもよい5ないし13員のヘテロアリール基である請求の範囲第1項ないし第10項のいずれか1項に記載の医薬。
- 12. Eが、置換基を有していてもよいフェニル基である請求の範囲第11項 に記載の医薬。
- 13. Eが、3, 5-ビス (トリフルオロメチル) フェニル基である請求の範囲第12項に記載の医薬。

14. Eが、置換基を有していてもよい5員のヘテロアリール基である請求の 範囲第11項に記載の医薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07129

A. CLAS	SSIFICATION OF SUBJECT MATTER		
Int	.Cl ⁷ A61K31/055, 31/121, 31/1	15, 31/166, 31/167, 31/19	7 21/10
1/		31/2/5 31/357 21/301	21 / 402
31/	403, 31/4035, 31/404, 31/4164	. 31/421 31/426 31/422	. 31/437.
According	to International Patent Classification (IPC) or to bot	h national classification and IPC	, , , , , , , , , , , , , , , , , , , ,
	OS SEARCHED		
Minimum	documentation searched (classification system follow	ved by classification symbols)	
Inc	-CI A61K31/055, 31/121, 31/1	.5. 31/166. 31/167. 31/15	7. 31/18.
1 27/	103, 31/194, 31/216, 31/222,	31/275 31/357 31/301	21 /402
31/	403, 31/4035, 31/404, 31/4164	, 31/421, 31/426, 31/433	, 31/437,
,			
	tion searched other than minimum documentation to	the extent that such documents are included	d in the fields searched
			,
Flectronic	data haga annu bhadad air air	·	
CA (S	data base consulted during the international search (nSTN), REGISTRY (STN), WPIDS (ST	ame of data base and, where practicable, se	arch terms used)
Crit	ord), AEGISTRI (SIN), WPIDS (SI	N) .	
<u> </u>			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where	opposite of the selection of the selecti	
		7 -	Relevant to claim No.
X	WO 02/28819 A (THE RESEARCH	H FOUNDATION OF STATE	1-14
. ·	UNIVERSITY OF NEW YORK),		
,	11 April, 2002 (11.04.02), Full text		•
	& AU 2002011842 A		
	a 40 2002011042 A		
Х	JP 62-81359 A (Warner-Lambe	art Co \	. ~.
	14 April, 1987 (14.04.87),	sie co.,,	1-14
	Full text		
	& EP 221346 A		
·X	JP 2002-506072 A (Novo Nord	lisk A/S),	1-14
1	26 February, 2002 (26.02.02)	· ,	-
. [Full text		
ļ	& EP 1080095 A		
× Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	
	categories of cited documents:		
A" docume	nt defining the general state of the art which is not	"I" later document published after the inte	mational filing date or
consider	ed to be of particular relevance	priority date and not in conflict with the understand the principle or theory under	criving the invention
date	ocument but published on or after the international filing	"X" document of particular relevance; the o	laimed invention cannot be
L" docume	nt which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider step when the document is taken alone	ed to involve an inventive
cited to	establish the publication date of another citation or other eason (as specified)	"Y" document of particular relevance; the c	laimed invention cannot be
O" docume	at referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	when the document is
means		combination being obvious to a person	skilled in the art
	nt published prior to the international filing date but later priority date claimed	"&" document member of the same patent for	amily
	tual completion of the international search	Date of mailing of the international searce	
18 Ju	ly, 2003 (18.07.03)	05 August, 2003 (05	US US)
	·		.00.03)
ame and m-	iling address of the ISA/		
anı ona one. Danan	ese Patent Office	Authorized officer	
-~5011			
csimile No.	•	Telephone No.	· · · · · · · · · · · · · · · · · · ·
ישו פרדוני	SA 7710 (none of 1 1 1) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·
our t CT/IS	SA/210 (second sheet) (July 1998)		

PCT/JP03/07129

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00/03991 A (ACTIVE BIOTECH AB.), 27 January, 2000 (27.01.00), Full text	1-14
x	& JP 2002-520395 A	1 14
	WO 00/35442 A (SMITHKLINE BEECHAM CORP.), 22 June, 2000 (22.06.00), Full text	1-14
	& JP 2002-532419 A	
X	JP 11-217361 A (Fuji Photo Film Co., Ltd.), 10 August, 1999 (10.08.99), Full text (Family: none)	1-14
x	JP 11-512399 A (Signal Pharmaceuticals, Inc.), 26 October, 1999 (26.10.99), Full text	1-14
	& WO 97/09315 A	
x	JP 8-175990 A (Mitsubishi Chemical Corp.), 09 July, 1996 (09.07.96), Full text	1-14
	(Family: none) -	
Х	JP 6-9476 A (Hoechst AG.), 18 January, 1994 (18.01.94), Full text & EP 551849 A	1-14
х	JP 4-217981 A (Kyowa Hakko Kogyo Co., Ltd.), 07 August, 1992 (07.08.92), Full text	1-14
x	& EP 551849 A JP 2-138260 A (Hoechst-Roussel Pharmaceuticals,	1-14
	Inc.), 28 May, 1990 (28.05.90), Full text & EP 317991 A	1-14
x	JP 62-81359 A (Warner-Lambert Co.), 14 April, 1987 (14.04.87), Full text	1-14
	& EP 221346 A	
X	JP 58-109452 A (Merck & Co., Inc.), 29 June, 1983 (29.06.83), Full text & EP 81782 A	1-14
P,X	WO 02/49632 A (Institute of Medicinal Molecular Design Inc.),	1-14
	27 June, 2002 (27.06.02), Full text & AU 2002022683 A	
	SA/210 (continuation of second sheet) (July 1998)	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07129

Box I Observations	s where certain claims we	re found unsearchabl	e (Continuation of	item 2 of first sheet)	1
This international sear	rch report has not been esta	blished in respect of ce	rtain claims under A	Article 17(2)(a) for th	e following reasons:
1. Claims Nos.		•			
ا ا	 y relate to subject matter no	at required to be search	ad hu thia Authoritu	· '====1	
-	retate to subject matter no	t tedutten to be search	a by this Authority	, namely:	
	•				
		·		:	
2. X Claims Nos.	: 1-14			·	
إنا.	relate to parts of the intern	national application tha	t do not comply wit	h the prescribed requi	rements to such an
extent that n	o meaningful international	search can be carried o	ut, specifically:	ii the preserved requi	irements to such an
			•		•
(355 6	extra sheet)				
		,	•		
3. Claims Nos.:					
because they	are dependent claims and a	are not drafted in accor	dance with the seco	nd and third sentence	s of Rule 6.4(a).
		•			
Box II Observations	s where unity of invention	is lacking (Continua	tion of item 3 of fir	st sheet)	
	ching Authority found mul	•			· · · · · · · · · · · · · · · · · · ·
	•	•			• • •
•	•		•		
•	·				•
	· ·				
1. As all require	d additional search fees we	re timely paid by the a	pplicant, this interna	itional search report of	overs all searchable
claims.					
2	او اوران الماليات العالم				
	ible claims could be searche	d without effort justify	ing an additional fe	e, this Authority did	not invite payment
of any additio	nai lee.				•
3. As only some	of the required additional s	search fees were timely	paid by the applica	nt, this international	search report covers
only those cla	ims for which fees were pai	id, specifically claims	Nos.:		
	· · · · · · · · · · · · · · · · · · ·		•		
		` :	•		•
•					
			√ :		
No required ac	dditional search fees were ti	imely paid by the appli	cant. Consequently,	this international sea	arch report is
restricted to th	e invention first mentioned	in the claims; it is cov	ered by claims Nos.		
:		•		•	
Damanda an Buakask - C				•	
Remark on Protest	The additional searc	th fees were accompani	ed by the applicant	s protest.	
.[No protest accompan	nied the payment of ad	ditional search fees.		
		•		. ,	
				•	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07129

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496, A61K31/498, 31/506, 31/5375, 31/5377, 31/695, A61P1/04, 1/16, 3/10, 9/00, 9/10, 9/12, 17/00, 19/02, 25/28, 29/00, 31/04, 31/12, 31/18, 35/00, 37/00, 37/08, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched(International Patent Classification (IPC))

Int.Cl⁷ 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496, A61K31/498, 31/506, 31/5375, 31/5377, 31/695

Minimum documentation searched (classification system followed by classification symbols)

Continuation of Box No.I-2 of continuation of first sheet(1)

Since the active ingredients of pharmaceutical compositions of claims 1-14 include extremely various compounds, it is difficult to make complete search on all of the active ingredients. Further, only a few of the active ingredients are supported by the description within the meaning of PCT Article 6 and disclosed in the description within the meaning of PCT Article 5.

Thus, claims 1-14 and the description do not comply with the prescribed requirements to such an extent that a meaningful search can not be carried out.

In this international search report, therefore, prior art search on the inventions of claims 1-14 has been made within a reasonable effort on the basis of compounds concretely disclosed in the description.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ A61K31/055, 31/121, 31/15, 31/166, 31/167, 31/17, 31/18, 31/185, 31/192, 31/216, 31/222, 31/275, 31/357, 31/381, 31/402, 31/403, 31/4035, 31/404, 31/4164, 31/421, 31/426, 31/433, 31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/445, 31/47, 31/496

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ A61K31/055, 31/121, 31/15, 31/166, 31/167, 31/17, 31/18, 31/185, 31/192, 31/216, 31/222, 31/275, 31/357, 31/381, 31/402, 31/403, 31/403, 31/404, 31/4164, 31/421, 31/426, 31/433, 31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/445, 31/47, 31/496

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN), WPIDS (STN)

C. 関連すると認められる文献

1									
	引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号						
	X	WO 02/28819 A (THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK) 2002.04.11, 文献全体 & AU 2002011842 A	1-14						
	Х	JP 62-81359 A (ワーナー-ランバート・コンパニー)1987.04.14, 文献全体 & EP 221346 A	1-14						
	X	JP 2002-506072 A (ノボ ノルディスク アクティーゼルスカブ)2002.02.26,文献全体 & EP 1	1-14						

図 C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 18.07.03 国際調査報告の発送日 05.08.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4P 8615 内藤 伸一 単便番号100-8915 東京都千代田区額が関三丁目4番3号 電話番号 03-3581-1101 内線 3492

[C (続き).	関連すると認められる文献	·
	引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する
		080095 A	請求の範囲の番号
	. 77		
	X	WO 00/03991 A (ACTIVE BIOTECH AB) 2000.0 1.27, 文献全体 & JP 2002-520395 A	1-14
		1. 21, XMER & J1 2002-320393 A	
	X	WO 00/35442 A (SMITHKLINE BEECHAM CORPORATION)	1-14
		2000.06.22, 文献全体 & JP 2002-5324 19 A	
		I D	
	X	JP 11-217361 A (富士写真フイルム株式会社)19 99.08.10, 文献全体 (ファミリーなし)	$1 - 1 \ 4$
Ì			
	X .	JP 11-512399 A (シグナル ファーマシューティカ ルズ, インコーポレイテッド)1999.10.26, 文献全体	1-14 '
	٠.	& WO 97/09315 A	٠. ,
1	X		
	· · · ·	JP 8-175990 A (三菱化学株式会社)1996.0 7.09, 文献全体 (ファミリーなし)	1-14
	X	JP 6-9476 A (ヘキスト・アクチェングゼルシャフト)	1-14
		1994.01.18, 文献全体 & EP 551849 A	1-14
	x	ID 4-917091 A (175-1771) - 1000	
	Λ	JP 4-217981 A (協和醗酵工業株式会社)1992. 08.07, 文献全体 & EP 551849 A	1-14
	77		
	X	JP 2-138260 A (ヘキスト-ルセル・フアーマシュウ テイカルズ・インコーポレイテツド)1990.05.28, 文献	1-14
		全体 & EP 317991 A	
	x	JP 62-81359 A (ワーナー-ランバート・コンパニ	1 - 1 4
		ー) 1987. 04. 14, 文献全体 & EP 221346	1-1,4
		A	
	Х	JP 58-109452 A (メルク・エンド・カムパニー・イ	1-14
		ンコーポレーテッド)1983.06.29, 文献全体 & EP	
		81782 A	٠.
	P, X	WO 02/49632 A (株式会社医薬分子設計研究所)20	1-14
		02.06.27, 文献全体 & AU 2002022683 A	
		A.	
L			

第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)	
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の成しなかった。	範囲の一部について作
	•
1. 請求の範囲は、この国際調査機関が調査をすることを要しない対象 つまり、	象に係るものである。
	,
2. X 請求の範囲 1-14 は、有意義な国際調査をすることができる程度まで所足ない国際出願の部分に係るものである。つまり、	Eの要件を満たしてい
別紙参照	
N TO SERVICE STATE OF THE SERVICE STATE STATE OF TH	
3. 請求の範囲 は、従属語求の範囲であってPCT担側を 4(4)の第2寸	b T a rect of the late to
3. [] 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2式 従って記載されていない。	(及び第3文の規定に
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)	
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。	
A CONTRACTOR OF THE PROPERTY O	
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すの範囲について作成した。	べての調査可能な請求
2. ② 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査するこ	- 1.45
加調査手数料の納付を求めなかった。	ことかできたので、追
3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調理付のあった次の請求の範囲のみについて作成した。	上報告は、手数料の納
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求 されている発明に係る次の請求の範囲について作成した。	えの範囲の最初に記載
追加調査手数料の異議の申立てに関する注意	
追加調査手数料の納付と共に出願人から異議申立てがあった。	
追加調査手数料の納付と共に出願人から異議申立てがなかった。	

様式PCT/ISA/210 (第1ページの続葉 (1)) (1998年7月)

- A. 発明の属する分野の分類(国際特許分類(IPC))の続き Int.Cl⁷ A61K31/498, 31/506, 31/5375, 31/5377, 31/695, A61P1/04, 1/16, 3/10, 9/00, 9/10, 9/12, 17/00, 19/02, 25/28, 29/00, 31/04, 31/12, 31/18, 35/00, 37/00, 37/08, 43/00
- B. 調査を行った分野 Int.Cl' A61K31/498, 31/506, 31/5375, 31/5377, 31/695

第1欄の2. について

請求の範囲1-14の発明の医薬組成物の有効成分は、極めて広範囲かつ多彩な化合物を包含し、そのすべてについて、完全な調査を行うことは困難である。一方、特許協力条約第6条の意味において明細書に裏付けられ、また、特許協力条約第5条の意味において明細書に開示されているものは、請求の範囲1-14の発明の医薬組成物の有効成分の中のごく僅かな部分に過ぎない。

したがって、請求の範囲1-14及び明細書は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない。

そこで、この国際調査報告では、請求の範囲1-14の発明については、明細書に具体的 に記載された化合物に基づいて、合理的な負担の範囲内で、先行技術文献調査を行った。 PCT

国際調査報告

(法8条、法施行規則第40、41条) [PCT18条、PCT規則43、44]

出願人又は代理人 の書類記号 A31328M								
国際出願番号 PCT/JP03/07129	国際出願日 (日、月、年) 05.06	. 03	優先日 (日.月.年)	05.06.	0 2			
出願人(氏名又は名称) 株式会社医	薬分子設計研究所				• •			
国際調査機関が作成したこの国際調査この写しは国際事務局にも送付される		PCT18条	・) の規定に従い	出願人に送付	する.			
この国際調査報告は、全部で 5) \ Z			<u> </u>			
1. 国際調査報告の基礎 a. 言語は、下記に示す場合を除く この国際調査機関に提出さ	ほか、この国際出願がされ	たものに基づ	き国際調査を行と行った。	った。				
b. この国際出願は、ヌクレオチド この国際出願に含まれる書面 この国際出願と共に提出され	又はアミノ酸配列を含んで 面による配列表	おり、次の配		際調査を行った	د ه			
□ 出願後に、この国際調査機関 □ 出願後に、この国際調査機関 □ 出願後に提出した書面による書の提出があった。 □ 書面による配列表に記載した書の提出があった。	間に提出された磁気ディスク 5配列表が出願時における国	による配列表 際出願の開示	その範囲を超える		•			
2. 図 請求の範囲の一部の調査が	できない(第1欄参照)。							
3.	る(第Ⅱ欄参照)。							
4. 発明の名称は 🔀 出願	人が提出したものを承認する	3.						
□次に	示すように国際調査機関が作	作成した。		+ .				
5. 要約は 🗓 出願	人が提出したものを承認する	5.		· .				
第四年	関に示されているように、8 関査機関が作成した。出願ノ 祭調査機関に意見を提出する	と施行規則第4 人は、この国際	祭調査報告の発	則38.2(b)) の 送の日から1カ	規定により 7月以内にこ			
6. 要約書とともに公表される図は、 第図とする。	人が示したとおりである。		区 なし					
	人は図を示さなかった。	,	رخص حص					
□ 本図(は発明の特徴を一層よく表し	ている。						

第 I 描 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)	
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の成しなかった。	一部について作
μω σ'εμ-5/ς	~~ (/F
1. [] 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るのまり、	5ものである。
	.
2. X 請求の範囲 1-14 は、有意義な国際調査をすることができる程度まで所定の要件 ない国際出願の部分に係るものである。つまり、	-を満たしてい
別紙参照	
別の大学に	
3. 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第	3文の母字に
従って記載されていない。	3 X V MEER
	<i>3</i> 3
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)	
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。	
	1
	ł
	}
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調の範囲について作成した	本可能な誘金
の範囲について作成した。	旦「肥な明水
2. □ 追加調査手数料を要求するまでもなく。オペエの調本可能が建立って無い	
加調査手数料の納付を求めなかった。 	きたので、追
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、付のあった次の請求の範囲のみについて作品となった。	工艺学の仕
付のあった次の請求の範囲のみについて作成した。	、手致科の剤
	1.
	,
4.	の最初に記載
	. 1
追加調査手数料の異議の申立てに関する注意	
追加調査手数料の納付と共に出願人から異議申立てがあった。	
追加調査手数料の納付と共に出願人から異議申立てがなかった。	

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' A61K31/055, 31/121, 31/15, 31/166, 31/167, 31/17, 31/18, 31/185, 31/192, 31/216, 31/222, 31/275, 31/357, 31/381, 31/402, 31/403, 31/4035, 31/404, 31/4164, 31/421, 31/426, 31/433, 31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' A61K31/055, 31/121, 31/15, 31/166, 31/167, 31/17, 31/18, 31/185, 31/192, 31/216, 31/222, 31/275, 31/357, 31/381, 31/402, 31/403, 31/4035, 31/404, 31/4164, 31/421, 31/426, 31/433, 31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN), WPIDS (STN)

		· '' '
C. 関連する	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 02/28819 A (THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK) 2002.04.11, 文献全体 & AU 2002011842 A	1-14
X	JP 62-81359 A (ワーナー-ランバート・コンパニー)1987.04.14, 文献全体 & EP 221346 A	1-14
X	JP 2002-506072 A (ノボ ノルディスク アクティーゼルスカブ) 2002.02.26,文献全体 & EP 1	1-14

X C欄の続きにも文献が列拳されている。

| | パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

電話番号 03-3581-1101

国際調査を完了した日 国際調査報告の発送日 **0**5.08.0**3** 18.07.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 8615 日本国特許庁(ISA/JP) 内藤 伸一 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号

	四族山族留为 1 C 1 / J 1 O					
	ン(続き) 関連すると認められる文献 18 文献の 18					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号				
	080095 A					
X	WO 00/03991 A (ACTIVE BIOTECH AB) 2000. 0 1. 27, 文献全体 & JP 2002-520395 A	1-14				
X	WO 00/35442 A (SMITHKLINE BEECHAM CORPORATION) 2000.06.22, 文献全体 & JP 2002-5324 19 A	1-14				
Х	JP 11-217361 A (富士写真フイルム株式会社)19 99.08.10, 文献全体 (ファミリーなし)	1-14				
x	JP 11-512399 A (シグナル ファーマシューティカルズ, インコーポレイテッド)1999.10.26, 文献全体 & WO 97/09315 A	1-14				
X	JP 8-175990 A (三菱化学株式会社)1996.07.09, 文献全体(ファミリーなし)	1-14				
X	JP 6-9476 A (ヘキスト・アクチェンゲゼルシャフト) 1994.01.18,文献全体 & EP 551849 A	1-14				
X	JP 4-217981 A (協和醗酵工業株式会社)1992. 08.07, 文献全体 & EP 551849 A	1-14				
X	JP 2-138260 A (ヘキスト-ルセル・フアーマシュウ テイカルズ・インコーポレイテツド)1990.05.28,文献 全体 & EP 317991 A	1-14				
X	JP 62-81359 A (ワーナー-ランバート・コンパニー) 1987 04 14, 文献全体 & EP 221346 A	1-14				
X	JP 58-109452 A (メルク・エンド・カムパニー・インコーポレーテッド)1983.06.29, 文献全体 & EP 81782 A	1-14				
P, X	WO 02/49632 A (株式会社医薬分子設計研究所)20 02.06.27,文献全体 & AU 2002022683 A	1-14				

- A. 発明の属する分野の分類(国際特許分類(IPC))の続き Int.Cl⁷ A61K31/498, 31/506, 31/5375, 31/5377, 31/695, A61P1/04, 1/16, 3/10, 9/00, 9/10, 9/12, 17/00, 19/02, 25/28, 29/00, 31/04, 31/12, 31/18, 35/00, 37/00, 37/08,43/00
- B. 調査を行った分野 Int.Cl' A61K31/498, 31/506, 31/5375, 31/5377, 31/695

第 I 欄の 2. について

請求の範囲1-14の発明の医薬組成物の有効成分は、極めて広範囲かつ多彩な化合物を包含し、そのすべてについて、完全な調査を行うことは困難である。一方、特許協力条約第6条の意味において明細書に裏付けられ、また、特許協力条約第5条の意味において明細書に開示されているものは、請求の範囲1-14の発明の医薬組成物の有効成分の中のごく僅かな部分に過ぎない。

したがって、請求の範囲1-14及び明細書は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない。

そこで、この国際調査報告では、請求の範囲1-14の発明については、明細書に具体的に記載された化合物に基づいて、合理的な負担の範囲内で、先行技術文献調査を行った。

特許協力条約

発信人 日本国特許庁 (国際予備審查機関)

出願人代理人				
特許業務法人特許事務所サイ	(177			
あて名	殿			· · · · .
7 104-0031			PCT見解書	
東京都中央区京橋一丁目8番7号 京橋日殖ビル8階	2 7		(法第13条) [PCT規則66]	
が 間 日 / B C / P G PB		発送日 (日.月.年)	05.08.	03
出願人又は代理人 の書類記号 A31328M	1	応答期間	上記発送日から 2	! 月≠3以内
	国際出願日 (日.月.年) 05.	06.03	優先日 (日.月.年) 05.	06.02
国際特許分類 (IPC) Int.Cl' A61K 16, 31/222, 31/275, 31/357, 31/381,	.31/055, 31/121, 31/15 31/402, 31/403, 31/4		· ·	
出願人 (氏名又は名称) 株式会社医薬分子	設計研究所		·	
1. これは、この国際予備審査機関が	作成した 1 回	目の見解書である。		
2. この見解書は、次の内容を含む。	•	· · · · · · · · · · · · · · · · · · ·		
I 【X】見解の基礎 Ⅱ 優先権		·	· · · · ·	
Ⅲ X 新規性、進歩性又は産業	美上の利用可能性につい	ての見解の不作成	*	
IV 開発明の単一性の欠如				
V X 法第13条 (PCT規則 、それを裏付けるための		ける新規性、進歩性	E又は産業上の利用可能	性についての見解
VI X ある種の引用文献			•	
VII 国際出願の不備	•		· · · · · · · · · · · · · · · · · · ·	•
VIII 国際出願に対する意見				
66.2(d)) に規定すると	ことが求められる。 ること。この応答期間に おり、その期間の経過i かられるのは合理的な理	かに国際子備審査機	と関に期間延長を請求す	ることができる。
どのように? 法第13条 (PCT規則 様式及び言語について)				
なお 補正審を提出する追加の 補正審及び/又は答弁報	の機会については、法院 書の審査官による考慮に	ig行規則第61条の igついては、PCT	2(PCT規則66.4)を	参照すること。
の非公式の連絡について 応答がないときは、国際予備審査報告に	ては、PCT規則66.6を	を参照すること。	•	•
4. 国際予備審査報告作成の最終期限に	は、PCT規則69.2の規	【定により	05.10.04	である 。
	· ·			
名称及びあて先 日本国特許庁(IPEA/IP)		許庁審査官(権限 内藤 (4P 8615

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号

電話番号 03-3581-1101 内線 3492

I. 見解の基礎			
1. この見解書は下記の出願書類に基づいて作めに提出された差替え用紙は、この見解書に	成された。 (法 おいて「出願時	5第6条(PCT14条)の規定に基づく命令に応答する 引とする。)	5た
X 出願時の国際出願書類		-	
明細書 第 明細書 第	ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの	,
明細書 第	ベージ、 ベージ、	一 付の書簡と共に提出されたも	₂ の
□ 請求の範囲 第 請求の範囲 第	項、 項、	出願時に提出されたもの PCT19条の規定に基づき補正されたもの	
請求の範囲 第 請求の範囲 第	項、 項、	国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたも	بەر
図面 第	ページ/図、		
図面 第 図面 第 	ページ/図、 ページ/図、		ゅの
明細書の配列表の部分 第 明細書の配列表の部分 第	ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの	
明細書の配列表の部分 第 2. 上記の出願書類の言語は 下記に示す場合	ページ、	付の書簡と共に提出されたも	,の
2. 上記の出願書類の言語は、下記に示す場合 上記の書類は、下記の言語である	を除くはか、この語である		
国際調査のために提出されたPCT規	 - ·		
□ PCT規則48.3(b)にいう国際公開の□ 国際予備審査のために提出されたPC	言語		
		おり、次の配列表に基づき見解書を作成した。	
□ この国際出願に含まれる書面による配			;
□ この国際出願と共に提出された磁気デ □ 出願後に、この国際予備審査(または			
□ 出願後に、この国際予備審査(または	:調査)機関に提	是出された磁気ディスクによる配列表	
書の提出があった		国際出願の開示の範囲を超える事項を含まない旨の陳達る配列表に記録した配列が同一である旨の陳述本の担告	Ľ
があった。	スティベクによ	. つ配列支に記録した配列か问一である音の陳述者の従近	5
4. 補正により、下記の書類が削除された。 明細書 第	ベージ		
□ 請求の範囲 第	 項		
□ 図面 図面の第	ペーシ	ジ ノ 図	
5. この見解書は、補充欄に示したように、 この補正がされなかったものとして作成し	前正が出願時にお った。(PCT規)	おける開示の範囲を越えてされたものと認められるので l則70. 2(c))	•
			•
	."		·

Ⅲ. 新規性、進歩性又は産業上の利用可能性についての見解の	
1. 次に関して、当該請求の範囲に記載されている発明の新規性 審査しない。	:、進歩性又は産業上の利用可能性につき、次の理由により
国際出願全体	
X 請求の範囲 1-14	
理由:	
この国際出願又は請求の範囲	は、国際予備審査をすることを要しない
次の事項を内容としている (具体的に記載すること)。	
·	
·	
な化合物を包含し、そのすべてについて、 一方、特許協力条約第6条の意味において 条約第5条の意味において明細書に開示さ の発明の医薬組成物の有効成分の中のごく したがって、請求の範囲1-14及び明 ができる程度まで所定の要件を満たしてい そこで、先の国際調査報告では、請求の 書に具体的に記載された化合物に基づいて 文献調査を行ったので、この調査の範囲で	ご明細書に裏付けられ、また、特許協力 されているものは、請求の範囲1-14 一僅かな部分に過ぎない。 引細書は、有意義な国際調査をすること いない。 D範囲1-14の発明については、明細 一合理的な負担の範囲内で、先行技術
裏付けを欠くため、見解を示すことができない。	
請求の範囲	について、国際調査報告が作成されていない。 (基配列又はアミノ酸配列を含む明細客等の作成のための
■ 審面による配列表が提出されていない又は所定の基準を満	
□ 磁気ディスクによる配列表が提出されていない又は所定の	

様式PCT/IPEA/408 (第皿欄) (1998年7月)

6) JP

7) IP

11) JP

12) J P

見解						
新規性 (N)		請求の範囲				有
		請求の範囲		1-14		
•						
進歩性(IS)		請求の範囲	•			
		請求の範囲		1-14	· · · · · · · · · · · · · · · · · · ·	有
		-				
産業上の利用可能性 (IA)	٠.	27 - h - n - m			•	
		請求の範囲 請求の範囲		1-14		有
		11 3/4 4/1		· · · · · ·	 	無
	•				•	
文献及び説明		,				
•						
文献 1) WO	02/2	28819	Α			
2) JP		31359	A			-
,		2 - 5060				
31 I P						
3) J P 4) WO		3 9 9 1	A	•		•

11-217361 A

11-512399 A

2 - 138260

62 - 81359

8) JP 8-175990 9) JP 6-9476 A 10) JP 4-217981

13) JP 58-109452

請求の範囲1-14の発明は、国際調査報告で引用された文献1-13により、新規性及び進歩性を有さない。文献1-13には、本願発明医薬の有効成分に該当する化合物が炎症性疾患や免疫性疾患の治療薬として用いられる旨記載されている。ここで、本願発明医薬の医薬用途は、AP-1やNFATの活性化を阻害することであるが、実際に本願発明医薬が治療対象とする疾患は、炎症性疾患や免疫性疾患である。そうすると、本願発明医薬の医薬用途と文献1-13記載の医薬用途は、区別し得るものではないので、本願発明は、文献1-13記載のものと同一であるか、又は、文献1-13記載の化合物と化学構造上類似する化合物を炎症性疾患や免疫性疾患の治療薬として用いたものであるから、文献1-13の記載に基づいて当業者が容易に発明をすることができたものである。

VI. ある種の引用文献

1. ある種の公表された文書(PCT規則70.10)

	出願番号 一件許番号	·	公知日 (日. 月. 年)	出願日 (日.月.年)	優先日	(有効な優先権の主張) <u>(日.月.年)</u>
WO	02/49632 [PX]	A	27. 06. 02	18. 12. 01	. •	18. 12. 00

2. 書面による開示以外の開示(PCT規則70.9)

書面による開示以外の開示の種類	書面による開示以外の開示の日付	書面による開示以外の開示に言及している
	(日. 月. 年)	書面の日付(日. 月. 年)

補充欄(いずれかの欄の大きさが足りない場合に使用すること)

第 欄の続き

国際特許分類の続き

31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496, 31/498, 31/506, 31/5375, 31/5377, 31/695, A61P1/04, 1/16, 3/10, 9/00, 9/10, 9/12, 17/00, 19/02, 25/28, 29/00, 31/04, 31/12, 31/18, 35/00, 37/00, 37/08, 43/00

符 許 協 力 条 約

PCT

国際予備審査報告

(法第12条、法施行規則第56条) [PCT36条及びPCT規則70]

出願人又は代理人 の書類記号 A31328M	今後の手続きについては、	国際予備審査報告の IPEA/416)		CT/
国際出願番号 PCT/JP03/07129	国際出願日 (日.月.年) 05.06	優先 (日.)	^日 月.年) 05.	06.02
国際特許分類 (IPC) Int.Cl' A61K3 16, 31/222, 31/275, 31/357, 31/381, 3			the state of the s	
出願人 (氏名又は名称) 株式会社医薬分	子設計研究所			
1. 国際子備審査機関が作成したこの国際子備審査報告は、この表制 この国際子備審査報告には、所 この国際子備審査報告には、所 この国際子の場合には、所 この国際子の場合には、所 この国際子の場合には、所 この国際子の場合には、所 この国際子の場合には、所 この国際子の場合には、所 この国際子の場合には、所 この国際子の場合には、所 この国際子の関係を対している。	を含めて全部で6	ページから/ 、この報告の基礎と	なる。 された及び/又は	· · · · · · · · · · · · · · · · · · ·
査機関に対してした訂正を含む (PCT規則70.16及びPCT この附属書類は、全部で		又は図面も添付されて	たいる。 	· .
3. この国際予備審査報告は、次の内容	を含む。			
I X 国際予備審査報告の基礎				
Ⅱ ☑ 優先権 Ⅲ 区 新規性、進歩性又は産業	しの利用可能性に こいての5	見吹て供きまわたって	د الله معال	
IV 発明の単一性の欠如	上の利用可能性についての [国际丁偏番登報告の个	ff <i>h</i> x.	
V X PCT35条(2)に規定す の文献及び説明	る新規性、進歩性又は産業	上の利用可能性につい	いての見解、それ	を裏付けるため
VI 区 ある種の引用文献 VI 国際出願の不備				
VIII 国際出願に対する意見				
国際予備率本の銭や象な思理した日	T			
」は1955で偏光な//138で寒を巻神!た日		(严) 宏水和 (生) 人。 (生) 1 人		

1	国際予備審査	発告の基礎				
1.	この国際予備 応答するため PCT規則70	審査報告は下記の出願書 に提出された差し替え用:) 16,70.17)	類に基づいて作成さ 紙は、この報告書に	れた。(法第6条(PC おいて「出願時」とし、	T 1 4条) の規定に基 本報告書には添付しな	づく命令に い。
X	出願時の国	際出願書類	*,			•
_	7				•	1
L	明細書	第	ページ、	出願時に提出されたも	o ·	
	明細書	第	べージ、	国際予備審査の請求書	と共に提出されたもの	
	明細書	第	ページ、	·	_ 付の書簡と共に提出	されたもの
] ,	請求の範囲	· 第	項、	出願時に提出されたも	· ·	. •
_	請求の範囲			•	の 基づき補正されたもの	
	請求の範囲			•	を共に提出されたもの と共に提出されたもの	
	請求の範囲			巴际「佛母軍の謂不督		
j.					- 付の書簡と共に提出。	されたもの
1. [図面	第	ページノ図	出願時に提出されたも	m	
-	図面	第	ーーページ/図、			
	図面	第	ページ/図、		_ 付の書簡と共に提出。	+ h + + m
				·· ············	一门小里间了光红斑凹。	=100.00
'[]	明細書の配	列表の部分 第	ページ、	出願時に提出されたも	σ ···	
_	明細書の配	列表の部分 第	ページ	国際予備審査の請求審	·	
		列表の部分 第	ページ、	四次 1 加里耳 1 2 明 4 月	で 付の書簡と共に提出さ	+ + + + ~
					一口小面间已外位处田(2.4 U/C (3 V)
3.	この国際出願に この国際 出願後に	審査のために提出された 主、ヌクレオチド又はアミ 出願に含まれる書面による 出願と共に提出された磁 、この国際予備審査 (ま)、この国際予備審査 (ま)	ノ酸配列を含んでお る配列表 気ディスクによる配 には調査)機関に提	るり、次の配列表に基づる 列表 出された書面による配列	き国際予備審査報告を行 表	ずった。
٠ [出願後に	提出した書面による配列表	長が出願時における	国際出願の開示の範囲を	招える事項を含まない	旨の陣球
	_ 書の提出	があった			ALCO TIRE DAIN	
. (」 書面によ があった	る配列表に記載した配列 &	ヒ磁気ディスクによ	る配列表に記録した配列	が同一である旨の陳述	書の提出
4.		「記の書類が削除された。				
Ţ	明細書	第	ページ			
. U	請求の範囲	第	項			
	図面	図面の第	~-»	/図		
5. []	れるので、そ	事を報告は、補充欄に示の補正がされなかったも の補正がされなかったも る判断の際に考慮しなけ	のとして作成した。	(PCT規則70.2(c) こ	延囲を越えてされたもの の補正を含む差し替え	と認めら用紙は上
						•
					. ~ .	
				,	•	

Ⅲ. 新規性、進歩性又は産業上の利用可能性についての国際予備署	予査報告の不作成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1. 次に関して、当該請求の範囲に記載されている発明の新規性、追 審査しない。	非歩性又は産業上の利用可能性につき、次の理由により
国際出願全体	
] 理由:	
□ この国際出願又は請求の範囲	は、国際予備審査をすることを要しない
次の事項を内容としている (具体的に記載すること)。	
	: .
区 明細書、請求の範囲若しくは図面(次に示す部分)又は請求の範 記載が、不明確でもまると、目録はこれます。	囲の
記載が、不明確であるため、見解を示すことができない(具体的 請求の範囲 1 - 1 4 の発明の医療知己を	に記載すること)。
請求の範囲1-14の発明の医薬組成物の な化合物を包含し、そのネーでについて、完	1月別以方は、 使めし仏転囲かつ多彩 全か調査を行うことは凩難である
一一刀、行計協力条約第6条の意味において明	細葉に軍付けられ また 性致物力
- 条利男も条の意味において明細書に閩示され	ているものは きせの笠田1-14
の発明の医薬組成物の有効成分の中のごく僅したがって、請求の範囲1-14及び明細	かな部分に過さない。 津け「有音差な国際調本をナストル
かくさ 9 住及よじ所足の要件を満たしていた	٧١ <u>-</u>
そこで、先の国際調査報告では、請求の籤	開1-14の発明については 明細
書に具体的に記載された化合物に基づいて、 文献調査を行ったので、この調査の範囲で、	合理的な負担の範囲内で、先行技術
	国际「個番鱼を1」フェととする。
全部の請求の範囲又は請求の範囲	が、明細書による十分な
裏付けを欠くため、見解を示すことができない。	
請求の範囲	
	- について、国際調査報告が作成されていない。
2. ヌクレオチド又はアミノ酸の配列表が実施細則の附属者C(塩基面 ガイドライン)に定める基準を満たしていないので、有効な国際引	己列又はアミノ酸配列を含む明細審等の作成のための ・備審査をすることができない。
・書面による配列表が提出されていない又は所定の基準を満たし	ていない。
□ 磁気ディスクによる配列表が提出されていない又は所定の基準	皇を満たしていない。

	· · · · · · · · · · · · · · · · · · ·						•
v.	新規性、進歩性又は産業上の利用可能性につ 文献及び説明	いての法第12名	₹ (PCT3	5条(2))	に定める見解、	それを裏	付ける
1.	見解						
*	所規性 (N)	請求の範囲					有
-		請求の範囲		1-14			_ 無
ij	基歩性(IS)	請求の範囲 請求の範囲	· · · · · · · · · · · · · · · · · · ·		<u> </u>		_有
٠.		□日 ペンク単位位1 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		1-14	<u></u>		_無
Æ	産業上の利用可能性 (IA)	請求の範囲	•	1 – 1 4	. *	٠.	

請求の範囲

2. 文献及び説明 (PCT規則70.7).

```
文献 1) WO
             02/28819
    2)
             62-81359
       JP
    3)
             2002
                     -506072
             0 0 / 0 3 9 9 1
0 0 / 3 5 4 4 2
1 1 - 2 1 7 3 6 1
       WO
                              Α
       WO
    7)
       \cdot 1 P
             11-512399
             \bar{8} - 17\bar{5}990
    8)
        JΡ
    9)
       ĴΡ
             6 - 9476
   10)
       JP
             4 - 2 1 7 9 8 1
   11)
       JP
             2 - 138260
                              Α
   12)
       J.P
             62 - 81359
   13)
       JP
             58-109452
```

請求の範囲1-14の発明は、国際調査報告で引用された文献1-13により、新規性及び進歩性を有さない。文献1-13には、本願発明医薬の有効成分に該当する化合物が炎症性疾患や免疫性疾患の治療薬として用いられる旨記載されている。ここで、本願発明医薬の医薬用途は、AP-1やNFATの活性化を阻害することである、実際に本願発明医薬が治療対象とする疾患は、炎症性疾患や免疫性疾患である。そうすると、本願発明医薬の医薬用途と文献1-13記載の医薬用途は、区別し得るものではないので、本願発明は、文献1-13記載のものと同一であるか、又は、対域、大量のではないので、本願発明は、文献1-13記載のものと同一であるか、以は、対域、大量が表現である。

VI. める他	10万円又紙	····			
1. ある種	iの公表された文書(PCT規則	70. 10)			
	出願番号 特許番号	公知日 (日.月.年)	出願日 (日.月.年)	優先日	(有効な優先権の主張) (日.月.年)
wo d)2/49632 A [EX]	27. 06. 02	18. 12. 01		18. 12. 00

2. 書面による開示以外の開示 (PCT規則70.9)

書面による開示以外の開示の種類	書面による開示以外の開示の日付	書面による開示以外の開示に言及している
	P miles P brigg Styl (2 Polyl (2 Pil)	事画によるM小外/でがかいに言及している
	(日、月、年)	書面の日付(日,月,年)

補充欄(いずれかの欄の大きさが足りない場合に使用すること)

第 欄の続き

国際特許分類の続き

31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496, 31/498, 31/506, 31/5375, 31/5377, 31/695, A61P1/04, 1/16, 3/10, 9/00, 9/10, 9/12, 17/00, 19/02, 25/28, 29/00, 31/04, 31/12, 31/18, 35/00, 37/00, 37/08, 43/00

PATENT COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF TRANSMITTAL
OF COPIES OF TRANSLATION
OF THE INTERNATIONAL PRELIMINARY
EXAMINATION REPORT

(PCT Rule 72.2)

To:

SIKS & CO.

8th Floor, Kyobashi-Nisshoku Bldg., 8-7, Kyobashi

1-chome

Chuo-ku, Tokyo 104-0031

JAPON

Date of mailing (day/month/year)
02 December 2004 (02.12.2004)

Applicant's or agent's file reference

A31328M

International application No. PCT/JP2003/007129

IMPORTANT NOTIFICATION

International filing date (day/month/year) 05 June 2003 (05.06.2003)

Applicant

INSTITUTE OF MEDICINAL MOLECULAR DESIGN. INC. et al

1. Transmittal of the translation to the applicant.

The International Bureau transmits herewith a copy of the English translation made by the International Bureau of the international preliminary examination report established by the International Preliminary Examining Authority.

2. Transmittal of the copy of the translation to the elected Offices.

The International Bureau notifies the applicant that copies of that translation have been transmitted to the following elected Offices requiring such translation:

AZ, CA, CH, CN, CO, EP, GH, KG, KR, MK, MZ, RO, RU, TM

The following elected Offices, having waived the requirement for such a transmittal at this time, will receive copies of that translation from the International Bureau only upon their request:

AE, AG, AL, AM, AP, AT, AU, BA, BB, BG, BR, BY, BZ, CR, CU, CZ, DE, DK, DM, DZ, EA, EC, EE, ES, FI, GB, GD, GE, GM, HR, HU, ID, IL, IN, IS, JP, KE, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MN, MW, MX, NI, NO, NZ, OA, OM, PH, PL, PT, SC, SD, SE, SG, SK, SL, TJ, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

3. Reminder regarding translation into (one of) the official language(s) of the elected Office(s).

The applicant is reminded that, where a translation of the international application must be furnished to an elected Office, that translation must contain a translation of any annexes to the international preliminary examination report.

It is the applicant's responsibility to prepare and furnish such translation directly to each elected Office concerned (Rule 74.1). See Volume II of the PCT Applicant's Guide for further details.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

Yoshiko Kuwahara

Facsimile No.+41 22 740 14 35

Facsimile No.+41 22 338 90 90

Form PCT/IB/338 (July 1996)

Translation

PATENT COOPERATION TREATY

PCT/JP2003/007129

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference	- · · · · · · · · · · · · · · · · · · ·			
A31328M	FOR FURTHER ACTION	N SeeNotification	tionofTransmittalofInternati n Report (Form PCT/IPEA/4	ional Preliminary 416)
International application No.	International filing date (day		Priority date (day/month/)	vear)
PCT/JP2003/007129	05 June 2003 (05.0	6.2003)	05 June 2002 (05	
International Patent Classification (IPC) or na A61K 31/055, 31/121, 31/15, 31/ 31/381, 31/402, 31/403, 31/4035,	166 31/167 21/17 21/10	31/185, 31/19 31/426, 31/43	2, 31/216, 31/222, 31/27 3	5, 31/357,
Applicant INSTITUTE (OF MEDICINAL MOLI	ECULAR DE	SIGN. INC.	· · · · · · · · · · · · · · · · · · ·
This international preliminary examinated and is transmitted to the applicant accounts. This REPORT consists of a total of the second se				ng Authority
This REPORT consists of a total of This report is also accompanied amended and are the basis for the 70.16 and Section 607 of the Action	by ANNEXES, i.e., sheets o	f the description		hich have been ority (see Rule
These annexes consist of a total				
3. This report contains indications relating	to the following its		· ·	·
I Basis of the report	to the following items:			
		•	,	
II Priority				- '
III Non-establishment of o	pinion with regard to novelty,	inventive sten	and industrial applicabilist	
IV Lack of unity of inventi-	on		and measural applications	
V Reasoned statement und citations and explanation	er Article 35(2) with regard to supporting such statement	o novelty, inven	tive step or industrial applic	cability;
VI Certain documents cited	•	•	•	
VII Certain defects in the int	ernational application		.÷	
·	the international application	<i>:</i>	•	
ate of submission of the demand	I Dec. 6			
		ompletion of thi	s report	
05 June 2003 (05.06.2003))	27 Octo	ber 2003 (27.10.2003)	
ame and mailing address of the IPEA/JP	Authorize	d officer	·	
csimile No.	Telephone	· · No.		

International application No.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

PCT/JP2003/007129

I. Basis	is of the report .	
1. With	th regard to the elements of the international application:*	
\boxtimes	the international application as originally filed	
	the description:	•
	pages	, as originally filed
	pages	, filed with the demand
	pages, filed with the letter of	
П	the claims:	
		, as originally filed
	pages, as amended (together with any	
		, filed with the demand
	pages, filed with the letter of	
	the drawings:	
ш.	nager	, as originally filed
		, as originally fried
	pages, filed with the letter of	
	, med with the tetter of	
Ш,	the sequence listing part of the description:	
	pages	
	pages, filed with the letter of	, filed with the demand
These	th regard to the language, all the elements marked above were available or furnished to this Author international application was filed, unless otherwise indicated under this item. se elements were available or furnished to this Authority in the following language the language of a translation furnished for the purposes of international search (under Rule 23.1(b) the language of publication of the international application (under Rule 48.3(b)). the language of the translation furnished for the purposes of international preliminary examina or 55.3).	which is: b)). ation (under Rule 55.2 and/
prelin	iminary examination was carried out on the basis of the sequence listing:	plication, the international
H	contained in the international application in written form.	
H	filed together with the international application in computer readable form.	•
H	furnished subsequently to this Authority in written form.	•
	furnished subsequently to this Authority in computer readable form. The statement that the subsequently furnished written sequence listing does not go beyon.	ond the disclosure in the
	international application as filed has been furnished. The statement that the information recorded in computer readable form is identical to the w	
	been furnished.	
4.	The amendments have resulted in the cancellation of:	
	the description, pages	y (
	the claims, Nos.	
٠	the drawings, sheets/fig	
5.	This report has been established as if (some of) the amendments had not been made, since they beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**	have been considered to go
in thi	lacement sheets which have been furnished to the receiving Office in response to an invitation unde his report as "originally filed" and are not annexed to this report since they do not contain	er Article 14 are referred to n amendments (Rule 70.16
	70.17). replacement sheet containing such amandments west he reformed to under item 1 and annual to this	to company

International application No.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

PCT/JP03/07129

III. Non-	establishment of opinion with regard to novelty, inventive step and industrial applicability
1. The quant	juestions whether the claimed invention appears to be novel, to involve an inventive step (to be non obvious), or to be rially applicable have not been examined in respect of:
	the entire international application.
\boxtimes	claims Nos. 1-14
becaus	se:
	the said international application, or the said claims Nos. relate to the following subject matter which does not require an international preliminary examination (specify):
\boxtimes	the description, claims or drawings (indicate particular elements below) or said claims Nos. 1-14 are so unclear that no meaningful opinion could be formed (specify):
	ne active ingredients of the pharmaceutical compositions of claims 1-14 include extremely
wide-rai	nged and various types of compounds; thus it is difficult to conduct a complete investigation them.
M	eanwhile, the active ingredients of the pharmaceutical compositions that are fully supported by
the spec	ification in the meaning of PCT Article 6 and disclosed in the meaning of PCT Article 5 is mall portion of the active ingredients of the pharmaceutical compositions described in the
inventio	ns of claims 1-14.
	his being the case, the descriptions of claims 1-14 and the specification do not comply with the
	ed requirements to an extent allowing for a meaningful international search to be carried out. nerefore, because in the ISR the search of prior art documents was conducted with respect
to the in	ventions of claims 1-14 within the scope of what is considered rational based on the
	nds specifically described in the specification, the international preliminary examination vill be conducted within this scope.
101 1110 1	
	the claims, or said claims Nos are so inadequately supported by the description that no meaningful opinion could be formed.
	no international search report has been established for said claims Nos.
2. A mear sequen	ningful international preliminary examination cannot be carried out due to the failure of the nucleotide and/or amino acid ce listing to comply with the standard provided for in Annex C of the Administrative Instructions:
	the written form has not been furnished or does not comply with the standard.
	the computer readable form has not been furnished or does not comply with the standard.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.
PCT/JP03/07129

atement	•		
Novelty (N)	Claims		. YE
	Claims	1-14	NO
Inventive step (IS)	Claims	. , .	YE
	Claims	1-14	NO
Industrial applicability (IA)	Claims	1-14	YE
	Claims		NO NO

2. Citations and explanations

Document 1: WO, 02/28819, A

2: JP, 62-81359, A

3: JP, 2002-506072, A

4: WO, 00/03991, A

5: WO, 00/35442, A

6: JP, 11-217361, A

7: JP, 11-512399, A

8: JP, 8-175990, A

9: JP, 6-9476, A

10: JP, 4-217981, A

11: JP, 2-138260, A

12: JP, 62-81359, A

13: JP, 58-109452, A

The inventions described in claims 1-14 do not appear to be novel or to involve an inventive step based on documents 1-13 cited in the ISR. Documents 1-13 state that the compounds corresponding to the active ingredients of the drugs of the inventions of this application are used as remedies for inflammatory disorders and immunity disorders. The pharmaceutical use of the drugs of the inventions of this application is to inhibit the activation of AP-1 and NFAT; however, disorders that the drugs of the inventions of this application actually cover as remedies are inflammatory disorders and immunity disorders. The pharmaceutical use of the drugs of the inventions of this application and the pharmaceutical use described in documents 1-13 cannot be distinguished; thus the inventions of this application are identical to those described in documents 1-13, or are matters that a party skilled in the art can easily invent based on the descriptions of documents 1-13, because the compounds described in documents 1-13 and the compounds that have chemical structures similar thereto are used as remedies for inflammatory disorders and immunity disorders.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP03/07129

VI.	Certain	documents	cited

1. Certain published documents (Rule 70.10)

Application No. Patent No.

Publication date (day/month/year)

Filing date (day/month/year)

Priority date (valid claim) (day/month/year)

WO 02/49632 A

27.06.02

18.12.01

18.12.00

[EX]

2. Non-written disclosures (Rule 70.9)

Kind of non-written disclosure

Date of non-written disclosure (day/month/year)

Date of written disclosure referring to non-written disclosure (day/month/year)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP03/07129

Supplemental Box

(To be used when the space in any of the preceding boxes is not sufficient)

Continuation of Box:

Continuation of International Patent Classification

31/437, 31/44, 31/4402, 31/4406, 31/4418, 31/445, 31/4453, 31/47, 31/496, 31/498, 31/506, 31/5375, 31/5377, 31/695, A61P1/04, 1/16, 3/10, 9/00, 9/10, 9/12, 17/00, 19/02, 25/28, 29/00, 31/04, 31/12, 31/18, 35/00, 37/00, 37/08, 43/00

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.