مستوى الدراسي: TCS - TCT

الترتيب هي مجموعة الأعداد المقيقية

الثانوية التأهيلية: وادي الذهب الأستاذ: رشيد بلمو

I. الترتيب و العمليات:

تعاریف: لیکن a و b عددین حقیقیین.

$$(b-a)\in\mathbb{R}^+$$
 اذا كان $a\leq b$ و نكتب $a\leq b$ و يساوي b و يساوي $a\leq b$ أصغر من أو يساوي .1

$$(a-b)\in\mathbb{R}^+$$
 اذا كان $a\geq b$ و نكتب $a\geq b$ و يساوي $a\geq b$ و يساوي .2

$$(b-a)\in\mathbb{R}_+^*$$
 اذا کان , $a\prec b$ و نکتب a , b من a أصغر قطعا من a .3

$$(a-b)\in\mathbb{R}_+^*$$
 اذا کان $a\succ b$, و نکتب ، b من قطعا من .4

ملحوظة: a و ط عددان حقيقيان.

a = b أو $a \prec b$ يكافئ $a \leq b$

 $a \leq b$ فان $a \prec b$ اذا کان

a=b , $a\succ b$, $a\prec b$. مقارنة a و a يعنى البحث عن التعبير الصحيح من بين التعابير التالية a

$$\pi > 2,14$$
 , $-7 < -\frac{1}{3}$, $\sqrt{5} < 3$ أمثلة:

مثال 1 : قارن بين
$$\frac{101}{102}$$
و $\frac{100}{101}$

$$b = 2\sqrt{3}$$
 و $a = 2 + \sqrt{3}$ و نضع $a = 2 + \sqrt{3}$ و مثال 2: قارن :

$$a \succ b$$
 :فان $(a-b) \in \mathbb{R}_+^*$ الدينا $(a-b) \in \mathbb{R}_+^*$ عدد حقيقي موجب قطعا أي. $a-b=2-\sqrt{3}$

$$a^2+1$$
 ک $2a$: قارن $a\in\mathbb{R}$

خاصیات: لتکن a و b و b أعدادا حقیقیة.

 $a \le c$ فان $b \le c$ و $a \le b$ فان $a \le b$

 $a \prec c$ فان $a \leq b$ و $a \leq b$ فان $a \leq b$

الخاصية (1) تعنى أنه لمقارنة a و c يكفى مقارنة و مع نقس العدد b الخاصية

$$\frac{30}{31} \prec \frac{114,01}{114}$$
 و منه فان: 1 $\sim \frac{30}{31}$ و منه فان: 1 $\sim \frac{30}{31}$ و منه فان: 1 $\sim \frac{30}{31}$

خاصية الترتيب و الجمع:

 $a + c \le b + c$ يكافئ $a \le b$

- $a+c \le b+d$ فان $a \le b$ و $a \le b$ فان $a \le b$
- $ab \ge 0$ و $a+b \ge 0$ فان $a \ge 0$ و $a \ge 0$.

خاصية الترتيب و الضرب:

- $ac \leq bc$ يكافئ $a \leq b$ فان: $a \leq b$ يكافئ $c \succ 0$
- $ac \geq bc$ فان: $a \leq b$ يكافئ $c \prec 0$
- $0 \le ac \le bd$ فان $0 \le c \le d$ و $0 \le a \le b$ فان
- $ab \geq 0$ و $a + b \leq 0$ فان $a \leq 0$ و $a \leq 0$ و $a \leq 0$

 $\frac{1}{b} \le \frac{1}{a}$ یکافئ $a \le b$ هو المقلوب: $a \le b$ عددان حقیقیان غیر منعدمین و لهما نفس اشارة $a \ge b$ یکافئ $a \le b$ یکافئ $a \le b$ هما نفس اشارة الترتیب و المقلوب:

. $a+c \prec b+d$ فان $a \leq b$ و $a \leq b$ فان $a \leq b$

خاصية الترتيب و المربع- الترتيب و الجذر المربع:

و b عددان حقیقیان موجبان.

 $a^2 \geq 0$: \mathbb{R} و $a \leq b$ و $a \leq b$ و لكل $a \leq b$ و $a^2 \leq b^2$ يكافئ $a \leq b$ و لكل $a \leq b$ و $a \leq b$ ملحوظة: جميع الخاصيات السابقة تبقى صحيحة اذا عوضنا الرمز $a \leq b$ بأحد الرموز $a \leq b$ و $a \leq b$

 $a^2 \ge b^2$ يكافئ $a \le b$ و $b \le 0$ و $a \le 0$

[[. المجالات و التأطير:

المجالات المحدودة

المجالات : ليكن a و b عددين حقيقيين بحيث $a \prec b$. ندر ج في الجدولين التاليين جميع أنواع المجالات و تمثيلها على المستقيم العددي.

المجالات غير المحدودة:

المتفاوتة	لمجال
$x \succ b$	$]b,+\infty[$
$x \ge b$	$[b,+\infty[$
$x \le a$	$]-\infty,a]$
$x \prec a$]-∞, a[

المتفاوتة	المجال
$a \le x \le b$	[a,b]
$a \prec x \leq b$]a,b]
$a \le x \prec b$	[a,b[
$a \prec x \prec b$]a,b[

مصطلحات:

الرمزان ∞ + و ∞ - ليسا بعددين

- ∞ + rad أ: زائد اللانهاية ∞ rad ناقص اللانهاية.
- " b , a او " القطعة b , a " أو " القطعة $\left[a,b
 ight]$
 - " b , a يقرأ " المجال المفتوح a,b[
- " a من مقتوح من a " المجال a , زائد اللانهاية, مفتوح من a " a .

$$\mathbb{R}_-^*=\left]-\infty,0
ight[$$
 و $\mathbb{R}_+^*=\left]0,+\infty
ight[$ و $\mathbb{R}^-=\left]-\infty,0
ight]$ و $\mathbb{R}^+=\left[0,+\infty
ight[$

تأطير عدد حقيقي: تعريف: ليكن x عددا حقيقيا.

. $a\prec x\prec b$ أو $a\prec x\leq b$ أو $a\leq x\prec b$ أو $a\leq x\prec b$ أو $a\prec x\leq b$ أو $a\prec x\prec b$ أو $a\prec x\prec b$

العدد الحقيقي الموجب قطعا a-a يسمى سعة التأطير و العددان a و b هما محدات التأطير.

$$A = \frac{2x-1}{x+1}$$
 و $A = x^2 + y^2 + 2x - 3y$: هخال: نضع $x \in [1,2]$ و اعط تأطيرا للعددين التاليين وحدد سعتهما

اال القيمة المطلقة و خاصياتها:

القيمة المطلقة لعدد حقيقى:

تعریف :لیکن x عددا حقیقیا و M نقطة ذات الأفصول x من المستقیم العددی.

OM = |x| . و نكتب: OM = |x| القيمة المطلقة للعدد x هي المسافة

العلاقة بين إشارة x و القيمة المطلقة:

$$|x|=x$$
 فان $X\geq 0$ و منه فان: $x\geq 0$ و منه فان: 1

$$\left|x\right|=-x$$
 و منه فان: $0M=-x$ فان $x\leq 0$ و منه فان: .2

$$\left|3-\sqrt{5}\right|=3-\sqrt{5}$$
 و $\left|1-\sqrt{3}\right|=-\left(1-\sqrt{3}\right)=-1+\sqrt{3}$ و $\left|-\frac{3}{5}\right|=\frac{3}{5}$ و $\left|3\right|=3$

 $|x| \le x \le |x|$ و $|x| = |x|^2 = x^2$ و $|x| \ge 0$ ملحوظة: لكل x من x لدينا

 $\sqrt{x^2} = |x|$ و |x| = |-x| لدينا: \mathbb{R} من \mathbb{R} لدينا: لكل

 $|x+y| \le |x|+|y|$, |xy|=|x||y| لكل x و y من \mathbb{R} لدينا:

$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$$
 فان: $y \neq 0$ فان •

x=-a او x=a او x=a او x=a

x = -y او x = y او x = y

تطبيقات في القيمة المطلقة (حل المعادلات)

|2x+1|=|x-3| و |x+2|=-1 و |x-1|=5 : مثال على المعادلات التالية : |x-1|=5

IV. المسافة و القيمة المطلقة:

|x-y| عددين حقيقين و المسافة بين العددين x و y هي العدد الحقيقي العدد الحقيقي

 \mathbb{R}^*_{\perp} من \mathbb{R} و r من \mathbb{R} من x

 $x \leq -r$ و $x \geq r$ يكافئ $r \leq x \leq r$ و $-r \leq x \leq r$ و $x \leq r$

تطبيقات في القيمة المطلقة (حل المتراجحات)

 $\left|2x+1\right|<6$ و $\left|x+2\right|\geq3$ و $\left|x-1\right|\leq2$ المتراجحات التالية : $2\geq\left|x-1\right|$ و $\left|x-1\right|\leq2$

 $a \prec b$: استنتاج: لیکن a و b عنصرین من

المسافة بين العددين a و b أي b-a المسافة بين العددين a و b المجال المسافة بين العددين العددين المجال المسافة بين العددين المجال المسافة المحال المسافة المحال المسافة المحال المسافة المجال المسافة المحال المسافقة المحال المحا

. $\left[a,b\right]$ العدد $c=\frac{b-a}{2}$ يسمى مركز المجال $\left[a,b\right]$ و العدد $c=\frac{a+b}{2}$ يسمى مركز المجال المجال العدد

و منه $|x-c| \le x \le c + r$ يكافئ $|x-c| \le r$ يكافئ $x \in [a,b]$

هو شعاعه $r=\frac{12}{2}=6$ هو مركزه و العدد $c=\frac{10-2}{2}=4$ هو شعاعه $c=\frac{10-2}{2}=4$ هو شعاعه المجال $c=\frac{12}{2}=6$

 $|x-4| \le 6$ يكافئ $x \in [-2;10]$ إذن:

V. التقريبات والتقريبات العشرية:

التقریبات: تعاریف: لیکن a و x عنصرین من \mathbb{R} و r عددا حقیقیا موجبا قطعا.

ينا كان $a-r \leq x \leq a$ بافراط. يقول إن a قيمة مقربة للعدد x بالدقة a بافراط.

x انقول إن a قيمة مقربة (أو بالتقريب) للعدد x بالدقة a بالدقة a .

خاصية: إذا كان $a \le x \le b$ تأطيرا للعدد x فان:

. العدد a قيمة مقربة للعدد x بالدقة b-a بتفريط. و العدد b قيمة مقربة للعدد x بالدقة b-a بإفراط.

. $\frac{b-a}{2}$ العدد $\frac{a+b}{2}$ قيمة مقربة للعدد $\frac{a+b}{2}$

مثال1: من التأطير $2,646 \leq \sqrt{7} \leq 2,646$ نستنتج أن:

العدد 2,645 قيمة مقربة للعدد $\sqrt{7}$ بالدقة 10^{-3} بتغريط. و العدد 2,646 قيمة مقربة للعدد $\sqrt{7}$ بالدقة 10^{-3} بإفراط.

. العدد 2,6455 قيمة مقربة للعدد $\sqrt{7}$ بالدقة 2,6455 بتفريط.

مثال 2: لدينا π بالدقة 3,1415926 سؤال :حدد قيمة مقربة للعدد π بالدقة 3,1415926 بتفريط و بإفراط

التقريب العشري لعدد حقيقي:

الجزّء الصحيح لعدد حقيقي: الجزّء الصحيح لعدد حقيقي x بحيث: لكل عدد حقيقي x بحيث:

 $E\left(x\right)=p$ يسمى الجزء الصحيح للعدد x يسمى الجزء الصحيح p , $p\leq x\leq p+1$

$$E\left(\sqrt{2}\right)=1$$
 مثال :الدينا: $2\leq\sqrt{2}\leq1$ و منه فان

 $\left(1732\right)\cdot 10^{-3} \leq \sqrt{3} \prec \left(1732+1\right)\cdot 10^{-3}$ ائي $1,732 \leq \sqrt{3} \prec 1,733$ دلينا: 1733

إذن: 1,732 هو تقريب عشري للعدد $\sqrt{3}$ بالدقة $^{-1}$ بنفريط. و 1,733 هو تقريب عشري للعدد $\sqrt{3}$ بالدقة $^{-1}$ بافراط.