

Europäisches
Patentamt

Europea
Patent O

New U.S. Patent Application to F. Cetin et al.
Appln. No. not yet assigned; Filed 10-24-03
"METHOD FOR TRAFFIC ENGINEERING AND INGRESS ROUTER
ADAPTED TO PERFORM SUCH A METHOD"
Atty: D. Cushing, Tel. No. 202-293-7060; Ref. Q78088
1 of 1

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

02292681.0

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office
Le Président de l'Office européen des brevets
p.o.

R C van Dijk

Anmeldung Nr:
Application no.: 02292681.0
Demande no:

Anmeldetag:
Date of filing: 29.10.02
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

ALCATEL
54, rue La Boétie
75008 Paris
FRANCE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Method for traffic engineering and ingress router adapted to perform such a method

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

H04L29/00

Am Anmeldetag benannte Vertragsstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

**METHOD FOR TRAFFIC ENGINEERING AND INGRESS ROUTER
ADAPTED TO PERFORM SUCH A METHOD**

The present invention relates to a method for traffic engineering as is described in the non-characteristic part of claim 1, and to an ingress router as is 5 described in the preamble of claim 9.

Such a method is already known in the art, e.g. from RFC 3270 of the IETF working group, which can be publicly found on the Internet on the web-page <http://IETF.org/rfc.html> and which is titled " Multi-Protocol Label Switching (MPLS) Support of Differentiated Services".

10 Therein the basic principles for queuing packets according to their service class, in this document called a Behavior Aggregate and abbreviated with BA, within ingress routers of a packet network such as the Internet, is described. This is supplemented by what is described in another RFC at the same webpage , being RFC3290, in which a BA-classifier and the different queues are further 15 described, the BA-classifier being the device within the ingress source router which determines in which queue a packet will be temporarily stored. Furthermore RFC 3031 from the same webpage describes the concept of having dedicated tunnels to which traffic can flow.

State of the art Internet ingress routers are thus adapted to 20 discriminate incoming packets into those following the "normal" IP-route , and those intended to follow the tunnel, in the Internet case being mostly MPLS-tunnels. Moreover, these state of the art routers can further discriminate between the different service classes of the packets such that, per egress interface of such an ingress router, several queues are present. These queues can for instance 25 consist of Diffserv queues in the Internet, and being one per service class, in which all packets intended to be transported over that interface are classified in accordance to their service class. It is important to recognize that in this case no distinction is made between the "normal" IP-traffic, and the "tunnel" MPLS-traffic, in other words, both traffic type packets are stored in the same queue if these 30 have the same service category.

This state of the art method and ingress router however has the drawback that the MPLS tunnel can be easily overloaded with traffic, since the estimated bandwidth for this tunnel, which is initially communicated by the network administrator and which is reserved for the specific tunnel, is just a prediction which may prove not be very realistic, and which may give rise to congestion problems. In the present situation no traffic engineering solution is thus available for the traffic intended for the MPLS-tunnels.

An object of the present invention is thus to provide such a method for traffic engineering within a packet network, especially for that part of the traffic intended to a specific tunnel .

According to the invention, this object is achieved by the method which further includes the steps as described in the characterising portion of claim 1, and by an ingress router which is adapted to perform these steps as is further described in the characterising portion of claim 9.

In this way, by providing a dedicated tunnel queue per tunnel within the ingress router, and by further shaping the traffic by a dedicated shaper per tunnel queue or per tunnel, a simple method for traffic engineering the traffic intended for the tunnel is provided.

A further characteristic features of the present invention is mentioned in claim 2 and claim 10.

By providing, per tunnel, a set of queues, one per service class, differentiation between the service classes for one tunnel is provided. In this case, total tunnel traffic , is shaped, while a set of queues, one per service class is created for the tunnel. The advantage of this is that the total tunnel traffic is limited at a certain shaper rate while each different service class is still treated separately according to their service class, such as the diffServ characteristics, in the tunnel.

The distinction between the different service classes can be even more further elaborated by providing a separate shaper for each of these queues , as described in claims 3 and 11, such that a traffic engineering tunnel can be further used to engineer multiple service classes. In this case, having one queue

- 3 -

and associated shaper per service class of the tunnel allows monitoring and shaping each service class traffic separately.

Another characteristic feature of the present invention is described in claim 4 and claim 12.

5 Thereby one set of queues, each queue of the set pertaining to a different service class, is provided for the traffic for a plurality of tunnels, all tunnels of this plurality pertaining to the same egress interface of this ingress router.

A monitoring device is provided, specifically to control the load or
10 traffic via this dedicated tunnel or the plurality of tunnels, as is described in claims 5, 6 and 13 . This may be performed by periodically measuring the number of packets and their size sent out from the queues, or the number of octets sent out from the queues. On the basis of this monitoring, a comparison can be made with the predetermined reserved bandwidth for the tunnel. This may
15 for instance be performed by comparing the monitored traffic with a predetermined threshold related to this predetermined reserved bandwidth. If this threshold is exceeded, a notification message to the network administrator is generated. The latter can then, based on such a message, increase the reserved bandwidth for the tunnel or the plurality of tunnels, which may in its turn result in
20 calculating a new path for the tunnel or tunnels with this new bandwidth as described in claim 7. Furthermore, this can also result in providing new shaping parameters by the network administrator to the dedicated tunnel shapers .

In addition to the aforementioned features, the present method is enabled by the network administrator through the sending of a predetermined
25 message to the ingress router , as is further described in claims 8 and 14.

The above and other objects and features of the invention will become more apparent and the invention itself will be best understood by referring to the following description of an embodiment taken in conjunction with the accompanying drawing wherein the figure schematically shows details of an
30 ingress router according to the present invention.

The present invention is used in the field of packet networks, for instance the Internet, wherein, apart from the conventional IP forwarding or next-hop calculation per router, based on the header of each incoming IP packet, also predetermined label switched paths or tunnels are present. In the drawing an ingress router I is depicted to which IP packets may arrive at a number of ingress blades IB1 to IBk. In the drawing an IP packet is depicted which arrives at ingress blade IB1. The determination of whether an incoming IP packet will be forwarded using the conventional IP routing, or will be transferred via the MPLS tunnel, from this ingress router I to an (not shown) egress router , is decided upon within the ingress router, within the FIB-look-up device, denoted FIB. This FIB-look-up device is further adapted to determine which egress blade, and which egress interface of this egress blade of the ingress router I, will be used for sending the packet to. In the figure a situation is depicted whereby egress blade EB1 is selected, and egress interface ITF-1 thereof. In the embodiment depicted in the figure, the ingress router includes n of such egress blades which are coupled, via an internal switch S, to ingress blades IB1 to IBk. Moreover, another function of this FIB-device is the determination of the tunnel reference, also called LSP-reference, which will be described as well as its use, within a further paragraph of this document.

In addition to the destination information, each incoming IP packet is attributed a predetermined service class, via for instance the DSCP which is the abbreviation of Differentiated Services Code Point marker in the header of each packet. For appropriately and adequately coping with the different bandwidth reserved for these separate classes, separate queues per class are foreseen per ingress blade , and which are denoted AF1 to AFn, EF, BE and CT. These are respectively the abbreviation of Assured Forwarding, Expedited Forwarding, Best Effort and Control Traffic as standardized by the DiffServ working group at IETF . Traffic pertaining to these different classes will be scheduled and shaped differently, according to initialized or updated bandwidth and other constraints such as weight, priority (real-time or non-real-time) constraints. Therefore the incoming packets will first be temporarily stored in separate queues, per service

class in the ingress blade. The determination of the appropriate queue wherein each incoming packet is to be stored, is performed in the device BA-IP Classifier, denoted with BA, which determines, based on information within the incoming packet such as the DSCP marker of the incoming packet, the appropriate service 5 class.

The information extracted within the BA and FIB-devices, in the figure denoted with the arrows in dotted lines, is then used within an ingress selector, denoted SELi, in order to determine an internal switch port such as for instance switch port 1 in the figure, of the ingress blade, and to determine a specific 10 queue associated to this internal switch port, towards which the packet will be sent for temporary storage on the ingress blade.

In the ingress router I depicted in the figure, the incoming packets per ingress blade will be further forwarded towards an appropriate egress interface on an appropriate egress blade. To each of these egress interfaces, and for each 15 egress blade, a similar set of service class queues is foreseen for temporarily storing the incoming packets. In the figure egress blade EB1 is depicted as having three egress interfaces, respectively denoted ITF-1, ITF-2, and ITF-3, and indicated by means of the gray ellipse. One of these egress interfaces, being ITF- 30 3 is only pertaining to classical IP-traffic and has the traditional set of service-class queues, again denoted AF1 to Afn, EF, BE and CT. ITF-1 and ITF-2 are, apart from the conventional IP-traffic, also adapted to carry tunnel traffic such as MPLS traffic. Two respective tunnels, LSP1 and LSP2, are therefore originating from respectively ITF-1 and ITF-2. For LSP1, L1 is the outgoing MPLS label, for LSP2, L2 is the outgoing label. These are not shown as such in the figure but are 25 important for the further routing of the packet.

In the drawing, the links carrying the IP-traffic are indicated with IP, whereas the tunnels are indicated by means of their tunnel reference.

To this purpose, both interfaces are not only coupled to the classical 30 set of queues as described before, but, as an important feature of the present invention, also to at least one dedicated queue per tunnel. This is clear from the figure, where interface ITF-1 is not only coupled to a set of queues similar to the

one of for instance interface ITF-3, but is also coupled to a dedicated tunnel queue denoted QLSP1. Similarly, to ITF-2 is coupled a dedicated tunnel queue QSLP2, apart from the conventional set of queues.

The determination of the queue on the egress blade, where each packet will be temporarily stored, is performed in several steps. Firstly a LSP-ref-check device, denoted LSP-r on the figure, is adapted to check whether the incoming packet on the egress blade EB-1 has to follow the classical IP forwarding, or an MPLS-tunnel. If classical IP, an egress selector, denoted SELe, having similar functionality as the ingress selector SELi on the ingress blade, 5 determines the appropriate egress interface and queue thereof, on the basis of the service class and egress-interface reference . This information is for instance derived within the SELe device itself from a special packet header which was added in front of the IP-packet, within an encapsulating device (not shown on the 10 figure) ingress blade . This special header contains internal parameters like service class, egress-blade reference, egress-interface reference, LSP reference etc. , which were earlier determined within the ingress blade of the ingress router, 15 within devices such as BA and FIB.

In case the LSP-r device finds out that the packet is to be sent via an MPLS-tunnel, an out-segment table, denoted OST in the figure, is used to 20 determine the appropriate storage queue on the basis of the tunnel reference or tunnel label , extractable from the special packet header.

In another embodiment (not shown on the figure) even a set of queues, one for each service class, for one or more tunnels pertaining to the same egress interface, is present. This allows to further differentiate the MPLS 25 traffic across the different service classes within the same tunnel, in case a set of queues exists for one tunnel, or within a group of tunnels , in case a set queues exists for a group of tunnels pertaining to the same egress interface.

In the shown embodiment, whereby for each MPLS tunnel, one queue was foreseen , also one associated shaper is present in the egress blade. These 30 are respectively denoted SLSPI and SLSP2, and will then adapt the traffic for the

respective MPLS tunnel LSP1 and LSP2, in accordance with the reserved bandwidth such as the Peak Information Rate configured for the queue.

It can be further remarked that such shapers may also be present, although not shown in the figure, for each IP queue.

- 5 For the tunnel or MPLS shapers, embodiments whereby the Peak Information Rate of the separate shapers is set to the reserved bandwidth of the tunnel, are possible. However other shaper devices may be provided, where other traffic parameters ,determined initially by the network administrator, are used . Since these shapers are well known to a person skilled in the art, such
10 shapers will not be further discussed into detail.

- To determine in which queue an MPLS packet will be stored, the OST is extended with the queue-reference. In another embodiment, in case of several tunnel queues per tunnel, according to their service class, an OST-table with also only one queue reference added can be envisaged, whereby this extra reference
15 will then be a reference to a tunnel-queue-block. At the entry of the queue-block it can then be further determined which actual queue will be taken for the storage of the packet. However, the out-segment table could as well be updated with the actual queue reference.

- The OST-table, as depicted in the figure, uses the tunnel reference as
20 index to this table, and includes entries such as the outgoing label of the tunnel (L1 or L2), the egress interface (ITF-1 or ITF-2) and the queue reference (QLSP1 or QLSP2).

- In the figure each egress blade further includes a monitoring device.
However other embodiments may include monitoring devices per queue, or per
25 egress interface. The function of such a monitoring device is to monitor the traffic via the tunnels. This may be performed by monitoring the queues attached to any of the egress interfaces of an egress blade. To this purpose, this device is adapted to monitor the amount of the traffic sent from the queue, for instance by checking the occupation of each queue, and to compare this with a predetermined threshold related to an initial reserved bandwidth for this tunnel . Furthermore such a monitoring device is further adapted to generate a message
30

to the network administrator in case of overflow conditions. Thus the occupancy of the respective tunnel queues will be monitored, and in case of overflow, a message will be generated to the network administrator, indicative of traffic problems such as congestion. The network administrator (not shown on the drawing) can then adapt the tunnel, this generally implying determining a new "tunnel path", possibly including the selection of a new egress blade, and a new egress interface. This means that this information again has to be provided to the FIB classifier. Also the shaping device attributed to the tunnel has to be informed since traffic will now have to be differently shaped.

An additional feature of the method of the present invention is that the network administrator can enable this method, thus can enable the feature of having the separate queue per tunnel. To this purpose a message is sent (not shown in the drawing) from the network administrator, for instance by means of the Simple Network Management Protocol, abbreviated by SNMP-protocol, wherein a new tunnel configuration object indicates or orders the ingress router to enable such a dedicated queue for a tunnel. This is usually performed by means of an additional management object of a so-called MIB, being the abbreviation of Management Information Base . However, other means of communication are possible , for instance by using the CLI Command Line Interface. The ingress router is then also adapted to receive such a message, and to extract from its contents the indication whether or not to enable such a separate tunnel queue per tunnel, and to enable the queue in the requested case. In another embodiment, where several queues per tunnel, pertaining to different service classes, are possible, this message from the network administrator to the ingress router may as well contain details about the enabling of the plurality of queues per tunnel. Similarly, in these embodiments the ingress router is then further adapted to extract from the contents of this message whether to enable the queues or not, and accordingly perform so.

While the principles of the invention have been described above in connection with specific apparatus, it is to be clearly understood that this

description is made only by way of example and not as a limitation on the scope of the invention, as defined in the appended claims.

CLAIMS

1. Method for engineering traffic between an ingress router and an egr ss router of a packet network, said traffic being scheduled within said ingress router in queues pertaining to different service classes, said method further including a
5 step of determining a part of the traffic which will follow a dedicated tunnel between said ingress and said egress router
characterized in that
said method includes the provisioning of a tunnel queue dedicated to said part of the traffic intended to flow via said dedicated tunnel, for separately and
10 temporarily storing said part of the traffic towards said dedicated tunnel
said method further includes a step of shaping said part of the traffic towards said dedicated tunnel before entering in said traffic tunnel.
2. Method according to claim 1
15 characterised in that
said method includes the provisioning of a set of tunnel queu s, associated to said dedicated traffic tunnel, each tunnel queue within said s t pertaining to a different service class .
- 20 3. Method according to claim 2
characterised in that
to each tunnel queue of said set a separate shaper is provided for shaping the traffic from said each tunnel queue of said set.
- 25 4. Method according to claim 2 or 3
characterised in that
said set of tunnel queues is associated to a plurality of dedicated traffic tunnels, pertaining to the same egress interface of said ingress router.
- 30 5. Method according to claim 1, 2 or 3
characterised in that

said method includes a step of monitoring the traffic via said dedicated tunnel, a step of comparing the result of said monitoring with a reserved bandwidth for said dedicated tunnel, and, depending upon the result of said comparison, a step of informing a network administrator by sending a message
5 to said network administrator.

6. Method according to claim 4

characterised in that

said method includes a step of monitoring the traffic via said plurality of
10 dedicated tunnels at said egress interface, a step of comparing the result of said monitoring with a reserved bandwidth for said plurality of dedicated tunnels, and, depending upon the result of said comparison, a step of informing a network administrator by sending a message to said network administrator.

15 7. Method according to claims 5 or 6

characterised in that

upon receipt of a message indicating that the traffic through said
dedicated tunnel , respectively said plurality of dedicated tunnels, exceeds a
predetermined value, said network administrator increases the reserved
20 bandwidth, whereas a new path or paths are calculated for said dedicated
tunnel, respectively said plurality of dedicated tunnels, between said ingress
router and said egress router.

8. Method according to any of the previous claims

25 characterised in that

said provisioning of said tunnel queue or of said set of tunnel queues is
dependent upon the sending, by said network administrator, of a message
enabling said method.

30 9. Ingress router (I) of a packet network, said ingress router being adapted
to route packets within said packet network to an egress router of said packet

- network via at least one dedicated tunnel (LSP1, LSP2) to said egress router, said ingress router (I) including at least one plurality of queues (AF1,...,Afn, EF, BE, CT) pertaining to different service classes , said ingress router being adapted to temporarily store incoming packets within one of these queues, on the basis of
5 their service class and on the basis of their destination
characterised in that
said ingress router(I) further includes at least one tunnel queue (QLSP1, QLSP2) dedicated and associated to said at least one dedicated tunnel (LSP1, LSP2),
10 said ingress router (I) is further adapted to temporarily store part of th incoming packets within said at least one tunnel queue (QLSP1, QLSP2) within said ingress router,
whereby said ingress router further includes at least one tunnel shaper (SLSP1, SLSP2) associated to said at least one dedicated tunnel (LSP1, LSP2), and
15 adapted to shape the traffic of said at least one dedicated tunnel (LSP1, LSP2).
10. Ingress router (I) according to claim 9
characterised in that
said ingress router further includes at least one set of tunnel queues,
20 pertaining to different service classes, and associated to said at least one dedicated tunnel.
11. Ingress router (I) according to claim 10
characterised in that
25 said ingress router further includes at least one set of tunnel shapers associated to said at least one dedicated tunnel .
12. Ingress router (I) according to claim 10 or 11
characterised in that

said at least one set of tunnel queues pertaining to different service classes, is associated to a plurality of dedicated tunnels pertaining to the same egress interface of said ingress router.

- 5 13. Ingress router (I) according to claims 9, 10, 11 or 12
characterised in that

 said ingress router (I) includes a monitoring device (M1) adapted to monitor the traffic of said at least one dedicated tunnel or of said plurality of dedicated tunnels, to compare said traffic with a predetermined threshold
10 related to a reserved bandwidth for said at least one dedicated tunnel or said plurality of dedicated tunnels, and to generate a message to a network administrator depending on the result of said comparison.

- 15 14. Ingress router (I) according to any of the previous claims 9 to 13
characterised in that

 said ingress router is further adapted to receive a predetermined message from said network administrator related to the enabling of said at least one tunnel queue or said set of tunnel queues, and to determine therefrom whether or not to enable said at least one tunnel queue for receiving packets intended to
20 said at least one dedicated tunnel.

ABSTRACT

**METHOD FOR TRAFFIC ENGINEERING AND INGRESS ROUTER
ADAPTED TO PERFORM SUCH A METHOD**

- 5 A method for engineering traffic between an ingress router and an egress router of a packet network , whereby said traffic is scheduled within said ingress router in queues pertaining to different service classes, and whereby part of the traffic follows a dedicated tunnel between said ingress and said egress router, includes the step of provisioning of a tunnel queue dedicated to said part of the traffic
- 10 intended to flow via said dedicated tunnel, for separately and temporarily storing said part of the traffic towards said dedicated tunnel, and a further step of shaping said part of the traffic towards said dedicated tunnel before entering in said traffic tunnel. Further embodiments comprise the provisioning of a set of queues, pertaining to the different service classes, to one or more of these
- 15 dedicated traffic tunnels, as well as the provisioning of associated shapers.

