OPCIÓ A

a la Universitat

- 1) Suposa que l'energia mecànica total d'un satèl·lit de 1485 kg en òrbita circular al voltant de la Terra és de $-7,28 \times 10^{10}$ J. La massa de la Terra és de $5,972 \times 10^{24}$ kg. Calcula:
 - a) L'energia potencial del satèl·lit. (0,5 punts)
 - **b**) La velocitat del satèl·lit en km/s. (0,5 punts)
 - c) El radi de l'òrbita en km. (0,75 punts)
- 2) **a)** Calcula el mòdul de la força sobre la càrrega negativa a causa de la interacció elèctrica amb les dues càrregues puntuals positives ubicades en un quadrat com representa la figura. (1,25 punts)

- **b**) El potencial elèctric al centre del quadrat a causa de les dues

 6 mm

 càrregues positives és de 29,7 kV. Calcula el mòdul del treball necessari per dur la càrrega negativa des de la posició mostrada a la figura fins al centre del quadrat. (1 punt)
- 3) **a)** Calcula quantes voltes completa un protó a 290 km/s durant 3 μ s dins un camp magnètic de 0,5 T perpendicular a la velocitat. Massa del protó = 1,673 \times 10⁻²⁷ kg. (0,75 punts)
 - **b**) Si durant un temps donat el protó completàs 10 voltes, quantes voltes completaria un altre protó en les mateixes condicions però amb una velocitat doble? (0,25 punts)
- 4) Escriu les equacions d'ones harmòniques amb les característiques següents, usant en ambdós casos la funció sinus amb una fase si fos necessària. $(2 \times 0.75 \text{ punts})$
 - **a**) Propagació cap a l'esquerra, nombre d'ona: 5,2 m⁻¹, freqüència angular: 1,9 rad/s, amplitud: 12 cm, i pertorbació nul·la a l'origen de coordenades a l'instant t = 0.
 - **b**) Velocitat de propagació: 5 m/s cap a la dreta, amplitud: 3 cm, velocitat màxima de vibració de les partícules de l'ona: 6 cm/s, i pertorbació màxima a l'origen de coordenades a t = 0.
- 5) Un vidre d'índex de refracció 1,52, gruixat, de cares planoparal·leles i horitzontal, separa dos líquids. El líquid de dalt té un índex de refracció $n_1 = 1,43$.

- **a)** Calcula l'angle del raig refractat dins el vidre si el raig arriba pel líquid de dalt a 31º de la vertical. (0,5 punts)
- **b**) Calcula l'índex de refracció n_2 del líquid sota el vidre si l'angle límit per a la refracció entre el vidre i aquest líquid és de 66° . (0,75 punts)
- **c**) El líquid de baix es canvia per un líquid d'índex de refracció $n_2 = 1,33$. Calcula l'angle d'incidència mínim θ_m (vegeu la figura) perquè un raig que arriba pel líquid superior es reflecteixi totalment a la cara inferior del vidre. (0,75 punts)
- 6) **a)** Quins noms es donen a les dues observacions que constitueixen el millor suport a la teoria del *big-bang*? (0,75 punts)
 - **b**) Descriu amb una frase què és l'efecte Doppler relativista. (0,75 punts)

OPCIÓ B

a la Universitat

- 1) Considera que una sonda sense propulsió es dirigís en línia recta cap a Mart i que s'hi acostàs a 8,30 km/s quan estigués a 25400 km del centre del planeta. Calcula la velocitat de la sonda quan la distància s'hagués reduït a la meitat. Massa de Mart = $6,4185 \times 10^{23}$ kg. (1,5 punts)
- 2) Als vèrtexs de la base d'un quadrat amb els costats de 50 cm hi ha dues càrregues puntuals com es mostra a la figura adjunta.
 - a) Dibuixa la direcció i el sentit del camp elèctric que crea cada càrrega en el punt P.
 - **b**) Calcula el vector camp elèctric en el punt P a causa de cada càrrega per separat.

- c) Calcula l'angle entre la direcció x positiva i el camp elèctric total en el punt P.
- **d**) Calcula el mòdul del treball que s'ha de fer per moure una partícula carregada amb $1,4~\mu\text{C}$ des del punt A, on el potencial és de 51,82~V, fins al punt P. $(4\times0,5~\text{punts})$
- 3) a) Calcula la força magnètica per unitat de longitud entre dos fils conductors, rectes i de longitud infinita, amb els corrents i la separació indicats a la figura. Estableix si la força és atractiva o repulsiva. (0,5 punts)

- **b**) S'afegeix un fil en paral·lel a x = 4,5 mm del fil esquerre. Calcula, suposant que porta un corrent de 3 A cap a dalt, la força per unitat de longitud sobre aquest fil a causa dels altres dos. Indica la direcció i el sentit de la força. (0,5 punts)
- c) Determina la distància x i el sentit del corrent de 3 A en el fil central perquè la força magnètica total a causa dels altres dos fils sigui nul·la. (0,5 punts)
- 4) Considera l'ona $y(x, t) = 18 \cos(2\pi x/12 + 4\pi t)$, on y s'ha d'expressar en centímetres, x en metres y t en segons. (4 × 0,4 punts)
 - a) Indica un temps positiu quan la pertorbació sigui nul·la a l'origen de coordenades.
 - **b**) Què val la longitud d'ona?
 - **c**) Determina què val la pertorbació a x = 45 m i t = 0.
 - **d**) En un instant donat, la pertorbació és nul·la a x = 47 m. Determina els valors de x dels llocs més propers a cada banda d'aquesta posició on la pertorbació també és nul·la.
- 5) Una espelma a 80 cm d'una lent prima s'enfoca sobre una pantalla a 120 cm de la lent.
 - **a**) Calcula l'altura de la imatge de la flama de l'espelma quan la flama tingui 2,1 cm d'altura. La imatge està dreta o invertida? (0,75 punts)
 - **b**) Quina és la distància focal de la lent usada? (1,25 punts)
- 6) Si la semivida de l'element radioactiu d'una mostra fos de 5 ms, calcula el temps que hauria de passar perquè l'activitat de la mostra fos la part del valor inicial igual a:
 - a) la meitat (0,4 punts); b) la vuitena part (0,5 punts); c) la tercera part (0,5 punts).

Proves d'accés a la Universitat

Solucions

Opció A

1	а	0,5	$E_p = -7,28 \ 10^{10} \ J$
	b	0,5	v = 7,00 km/s
	С	0,75	R = 8130 km
2	a	1,25	F = 37,6 N
	b	1	$ W = 0,164 \mathrm{J}$
3	a	0,75	Completa 22 voltes.
	b	0,25	També completa 10 voltes perquè el període no depèn de la velocitat.
4	a	0,75	$y(x, t) = 12 \sin(5, 2x + 1, 9t)$ cm
	b	0,75	$y(x, t) = 3 \sin(0.4 x - 2.0 t + \pi/2) \text{ cm}$
5	a	0,5	$\theta_k = 29,0^{\circ}$
	b	0,75	n = 1,39
	С	0,75	$\theta_{i} = 68,4^{\circ}$
6	а	0,75	La radiació de fons de microones i l'efecte Doppler relativista.
	b	0,75	Canvi observat en la freqüència de la llum procedent d'una font en moviment
			relatiu respecte a l'observador.

Física

Opció B

1		1,5	v = 8,50 km/s
2	a	0,5	\mathbf{E}_1 (a causa de la càrrega de 5 nC) \mathbf{N} $\mathbf{E}_2 \downarrow$
	b	0,5	$\mathbf{E}_1 = (63,64,63,64) \text{ N/C}, \mathbf{E}_2 = (0,-108) \text{ N/C}$
	С	0,5	$\alpha = -34,9^{\circ}$
	d	0,5	$ W = 59.0 \mu$
3	a	0,5	F/L = 0.8 mN/m. Atractiva, perquè els dos corrents tenen el mateix sentit.
	b	0,5	$F/L = 0.206 \text{ mN/m} \rightarrow$
	С	0,5	x = 3,85 mm
4	a	0,4	t = 0,125 s
	b	0,4	$\lambda = 12 \text{ m}$
	С	0,4	y(45 m, 0) = 0
	d	0,4	41 m i 53 m. Corresponen a $x = 47$ m $\pm \lambda/2$.
5	a	0,75	y' = -3,15 cm
	b	1,25	f = +48 cm
6	а	0,4	5 ms
	b	0,5	15 ms
	С	0,5	7,92 ms

Convocatòria 2019