Universidade do Minho 16 de janeiro de 2024

Exame de recurso de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h15min

Este exame é constituído por 5 perguntas. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(2, a, D)		
2	(1,b,D)		(3,b,E)
3	(3, a, E)	(3,b,E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- b) Identifique o domínio D da função g.
- c) Para cada elemento $u \in D$, determine a palavra q(u).

2. Considere o alfabeto $A = \{a, b\}$ e a linguagem

$$L = \{a^n b^{2n} a^n : n \in \mathbb{N}_0\}.$$

- a) Construa uma máquina de Turing que reconheça L e descreva informalmente a estratégia dessa máquina.
- b) Explique se o problema de decisão P(w): " $w \in L$ e $|w|_a$ é par" é ou não decidível.
- c) Sendo $K = \{a^n b^n : n \in \mathbb{N}_0\}$, mostre que $K \leq_p L$.
- **3**. Seja $h: \mathbb{N}_0^3 \to \mathbb{N}_0$ a função definida, para cada $(x, y, z) \in \mathbb{N}_0^3$, por h(x, y, z) = x + yz.
 - a) Defina recursivamente a função h. Ou seja, determine funções $f: \mathbb{N}_0^2 \to \mathbb{N}_0$ e $g: \mathbb{N}_0^4 \to \mathbb{N}_0$ tais que h = Rec(f, g).
 - b) Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_h de minimização de h.

4. Seja $A = \{a, b, c\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

- a) Justifique, indicando as computações realizadas, se a palavra abbabcha é aceite por \mathcal{T} .
- b) Identifique a linguagem L reconhecida por \mathcal{T} .
- c) Determine a função de complexidade temporal da máquina \mathcal{T} .
- d) Mostre que $L \in DTIME(n)$.
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) O seguinte problema é decidível: Dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} aceita uma única palavra?
 - b) Se L é uma linguagem recursiva, \mathcal{T} é uma máquina de Turing que aceita L e $w \in \overline{L}$, então \mathcal{T} rejeita w.
 - c) Existem máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 tais que $L(\mathcal{T}_1) = \emptyset$ e $L(\mathcal{T}_1 \longrightarrow \mathcal{T}_2) \neq \emptyset$. d) A função $f(n) = \frac{2n^4 + n^3 + 3n + 1}{n^2 + 2n + 3}$ é de ordem $\mathcal{O}(n^2)$.
 - d) A função $f(n) = \frac{2n^4 + n^3 + 3n + 1}{n^2 + 2n + 3}$ é de ordem $\mathcal{O}(n^2)$.

(FIM)

$$\text{Cotação:} \begin{cases} \textbf{1.} & 3.5 \text{ valores } (1+1.25+1.25) \\ \textbf{2.} & 4.5 \text{ valores } (2+1+1.5) \\ \textbf{3.} & 3.5 \text{ valores } (1.25+1+1.25) \\ \textbf{4.} & 4.5 \text{ valores } (1+1.25+1.25+1) \\ \textbf{5.} & 4 \text{ valores } (1+1+1+1) \end{cases}$$