Quantum Computing Fundamentals

Martin Beisel
Juan M. Murillo

Jose Garcia-Alonso Benjamin Weder

Introduction to Quantum Computing

Introduction to Quantum Computing

1900s

- Einstein
- Planck
- Bohr
- Feynman
- Schrödinger
- **-**

rigetti

Fundamental Principles

Computational complexity theory

Bounded-error Quantum Polynomial time (BQP) is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances

Qubit

Basic unit of quantum information

Qubit collapse

Qubit superposition

The observation changes the quantum state of 'dead AND alive' to a classical state of 'dead' OR 'alive'. Without observation, the cat restores its superposition of states.

Fundamental Principles

Qubit entanglement

Types of programming

Quantum annealing (which also includes adiabatic quantum computation) is a quantum computing method used to find the optimal solution of problems involving many solutions

Classical path
Tunnel effect
Solution
Quantum Tunnelling
Adiabatic evolution

Universal quantum gate model is based on creating quantum structures using stable qubits and solving today's problems with **quantum circuits**

Quantum circuits

Quantum gates

Quantum Service Providers

Quantum Computing Fundamentals

Jose Garcia-Alonso
Juan M.Murillo

jgaralo@unex.es

juanmamu@unex.es

Institute of Architecture of Application Systems

