COMPLEMENTOS DE MATEMÁTICA I MATEMÁTICA DISCRETA

Depto de Matemática Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNR

FLUJO EN REDES

EJEMPLO

DEFINICIÓN

Una red de transporte es un grafo dirigido, con peso en los arcos, simple que satisface:

- Un vértice designado a, origen o fuente, que no tiene arcos entrantes:
- Un vértice designado z, destino o sumidero, que no tiene arcos salientes:
- **1** El peso c_{ij} del arco (i,j), la capacidad del arco y es no negativo.

DEFINICIÓN

Un flujo en la red G con fuente a y sumidero z, asigna a cada arco (i,j) un número no negativo F_{ij} tal que

- \bullet $F_{ij} \leq C_{ij}$
- ② Para cada $j \neq a, z$, vale conservación de flujo

$$\sum_{i} F_{ij} = \sum_{i} F_{ji}$$

F_{ij} flujo de la arista ij,

$$\sum_{i} F_{ij}$$

flujo que entra a j

$$\sum_{i} F_{ji}$$

flujo que sale de j. Si $(i,j) \notin A$ se toma $F_{ii} = 0$.

Ejemplo 10.1.4

TEOREMA

Dado un flujo en una red a-z G=(V,A), el flujo que sale de a es igual al flujo que entra a z.

PROOF.

Si V es el conjunto de vértices

$$\sum_{e \in A} = \sum_{j \in V} \sum_{i \in V} F_{ij} = \sum_{i \in V} \sum_{j \in V} F_{ji}.$$

Es decir,

$$0 = \sum_{j \in V} (\sum_{i \in V} F_{ij} - \sum_{i \in V} F_{ji})$$

$$= (\sum_{i \in V} F_{iz} - \sum_{i \in V} F_{zi}) + (\sum_{i \in V} F_{ia} - \sum_{i \in V} F_{ai}) +$$

$$\sum_{j \in V, j \neq a, z} (\sum_{i \in V} F_{ij} - \sum_{i \in V} F_{ji})$$

$$= (\sum_{i \in V} F_{iz} - \sum_{i \in V} F_{ai})$$

5/18

Esto permite definir el valor del flujo como

$$\sum_{i \in V} F_{ai} = \sum_{i \in V} F_{iz}$$

EJEMPLO

Valor del flujo del ejemplo anterior es 5.

Red de bombeo

La figura 10.1.3 representa una red de bombeo en la que se entrega agua para dos ciudades, A y B, desde tres pozos w_1 , $w_2 y w_3$. Las capacidades de los sistemas intermedios se muestran en las aristas. Los vértices b, c y d representan las estaciones de bombeo intermedias. Modele este sistema como una red de transporte.

Figura 10.1.3 Red de bombeo. El agua para las ciudades A y B se entrega desde los pozos w_1 , $w_2 y$ w_3 . Las capacidades se indican en las aristas.

EJEMPLO (CONT.)

Para obtener el origen y destino designados, se puede obtener una red de transporte equivalente uniendo los orígenes en un **superorigen** y los destinos en un **superdestino** (vea la figura 10.1.4). En ésta, ∞ representa una capacidad ilimitada.

Figura 10.1.4 Red de la figura 10.1.3 con origen y destino designados.

Una red de flujo de tráfico

Es posible ir de la ciudad A a la ciudad C directamente o pasando por la ciudad B. Durante el periodo de 6:00 PM a 7:00 PM, los tiempos de viaje promedio son

A a B 15 minutos

B a C 30 minutos

A a C 30 minutos.

Las capacidades máximas de la rutas son

A a B 3000 vehículos

B a C 2000 vehículos

A a C 4000 vehículos.

Represente el flujo de tráfico de A a C durante el periodo de 6:00 PM a 7:00 PM como una red.

Un vértice representará una ciudad en un tiempo específico (vea la figura 10.1.5). Una arista conecta X, t_1 con Y, t_2 si se puede salir de la ciudad X a las t_1 PM y llegar a la ciudad Y a las t_2 PM. La capacidad de una arista es la capacidad de la ruta. Las aristas de capacidad infinita conectan a A, t_1 con A, t_2 y B, t_1 con B, t_2 para indicar que cualquier número de autos puede esperar en las ciudades A o B. Por último, se introduce un superorigen y un superdestino.

EJEMPLO (CONT.)

Figura 10.1.5 Red que representa el flujo de tráfico de la ciudad *A* a la ciudad *C* durante el periodo de 6:00 PM a 7:00 PM.

ALGORITMO DE MÁXIMO FLUJO

Sea G una red a-z y pensemos sin dirección (grafo subyacente).

Sea $P = (v_0, \dots, v_n)$ un camino no dirigido con $v_0 = a$ y $v_n = z$. Decimos que $e \in P$ tal que $e = v_{i-1}v_i$

- tiene orientación apropiada con respecto a P si en G tiene el sentido v_{i-1} a v_i ,
- de lo contrario, tiene orientación inapropiada con respecto a P.

Si es posible encontrar un camino en el grafo subyacente a una red a-z en la que todas las aristas tengan orientación apropiada y flujo menor que la capacidad en cada una de ellas, es posible aumentar el flujo por ese camino a-z.

Travectoria P COMPLEMENTOS DE MATEMÁTICA I MATEMÁTI

11/18

Figura 10.2.2 Una trayectoria cuyas aristas tienen la orientación apropiada.

Figura 10.2.3 Después de aumentar en 1 el flujo de la figura 10.2.2.

También puede aumentarse el flujo aunque haya aristas con orientaciones apropiadas e inapropiadas. Hay cuatro posibilidades para la orientación de las aristas e_1 y e_2 incidentes en x:

Para modificar un flujo en valor δ y mantener factibilidad en un flujo, qué debemos hacer? Cómo debería ser el flujo original?

Considere la trayectoria de a a z en la figura 10.2.5. Las aristas (a, b), (c, d) y (d, z) tienen la orientación apropiada y la arista (c, b) tiene la orientación inapropiada. Se disminuye en 1 el flujo de la arista con orientación inapropiada (c, b) y se aumenta en 1 el flujo de las aristas orientadas apropiadamente (a, b), (c, d) y (d, z) (vea la figura 10.2.6). El valor del nuevo flujo es 1 unidad mayor que el original.

Figura 10.2.5 Una trayectoria con una arista orientada inapropiadamente: (c, b).

Figura 10.2.6 Después de aumentar en 1 unidad el flujo de la figura 10.2.5.

TEOREMA

Sea F un flujo en una red a - z y P un camino a - z en la red que satisface:

- Para cada arco (i,j) con orientación apropiada en P, $F_{ij} < C_{ij}$.
- ② Para cada arco (i,j) con orientación inapropiada en P, $0 < F_{ij}$.

Sea $\Delta = \min X$ donde

$$X = \{C_{ij} - F_{ij} : (i.j) \text{ apropiada en } P\} \cup \{F_{ij} : (i.j) \text{ inapropiada en } P\}.$$

Si F* es tal que

$$F_{ij}^* = \left\{ egin{array}{ll} F_{ij} & (i,j)
otin P \ F_{ij} + \Delta & (i,j) \ apropiada \ en P \ F_{ij} - \Delta & (i,j) \ inapropiada \ en P \end{array}
ight.$$

entonces $val(F^*) = val(F) + \Delta$.

PROOF. Apunte

Algoritmo de Ford-Fulkerson

Idea. Iniciar con un flujo factible (por ejemplo, flujo f(e)=0 para toda arista e). Buscamos un camino f-aumentante y aumentamos el flujo Δ unidades (donde Δ es la tolerancia del camino). Repetimos hasta que no haya caminos f-aumentantes, en ese momento el flujo es máximo.

A lo largo de la ejecución del algoritmo iremos etiquetando cada vértice u con etiquetas de la forma (x, α) , donde diremos que x es predecesor de u y $\alpha = \varepsilon(u)$.

Entrada. G red con fuente a, sumidero z, capacidades c(e) para $e \in E(G)$.

Salida. Un flujo máximo para G.

Inicialización. Consideramos un flujo factible f de G (puede ser flujo cero).

Iteración.

Paso 1. Etiquetar $a \operatorname{con}(-, \infty)$. $U = \{a\}$.

Paso 2. Mientras z no fue etiquetado

Si $U = \emptyset$, entonces el algoritmo termina. Si no, elijo $v \in U$.

Para todo vértice x no etiquetado aún tal que $vx \in E(G)$, si f(vx) < c(vx), entonces agrego x a U y lo etiqueto con

$$(v, \min\{\varepsilon(v), c(vx) - f(vx)\})$$

Para todo vértice x no etiquetado aún tal que $xv \in E(G)$, si f(vx) > 0, entonces agrego x a U y lo etiqueto con

$$(v,\min\{\varepsilon(v),f(vx)\})$$

A continuación, borramos a v de U.

Paso 3. Si z está etiquetado, sea $\Delta = \varepsilon(z)$. Construyo un a,z-camino P "de atrás hacia adelante", de la siguiente manera: $w_0 = z$, y para i > 0, w_i es el predecesor de w_{i-1} , hasta llegar a $w_k = a$. De esta manera, $P: w_k, w_{k-1}, \ldots, w_0$ es un a,z-camino. Para cada arista $e = w_i w_{i-1}$ de P, actualizamos el flujo f. Si e es una arista propia, $f(e) \leftarrow f(e) + \Delta$, y si e es una arista impropia, $f(e) \leftarrow f(e) - \Delta$.

A continuación, borramos todas las etiquetas y volvemos al Paso 1.

Apunte

