1	3.	The apparatus of claim 1, wherein the sensor module further comprises a global
2		positioning system receiver adapted to synchronize the operation of the sensors
3		for synchronizing the operation of a sensor to a common time.
1	4.	The apparatus of claim 1 further comprising:
2		a feedback control circuit adapted to provide force balanced feedback coupled to
3		the sensor and for providing insensitivity to tilt; and
4		a controller adapted to monitor the operation of the apparatus coupled
5		to the sensor.
1	5.	The apparatus of claim 1 further comprising:
2		a controller coupled to the sensor module for controlling the operation of the
3		apparatus;
4		wherein the sensor module comprises a 3-axis magnetometer for determining the
5		orientation of the sensor module.
1	6.	The apparatus of claim 1 further comprising:
2		a crystal assembly coupled to the sensor module for providing a force in order to
3		measure the ground coupling and vector fidelity of the sensor; and
.1		a controller coupled to the sensor module for controlling the operation of the
5		apparatus.
1	7.	The apparatus of claim 1, wherein the sensor module provides a digital output
2		signal.
1	8.	The apparatus of claim 1, wherein the one or more seismic recorders are radio
2		seismic recorders.
1	9.	The apparatus of claim 8, wherein the radio seismic recorders are integral to the
2		sensor modules.
1	10.	A method of acquiring seismic data comprising:
2		sensing seismic energy with one or more sensor modules, wherein the one or
3		more sensor modules comprise one or more accelerometers; and
4		recording seismic data indicative of the seismic energy using a seismic recorder.

1 2	11.	The method of claim 10 further comprising providing a forced feedback compensation to the sensor for providing insensitivity to tilt.
1	12.	The method of claim 11 further comprising determining the tilt angle of the sensor
2		module; and
3		measuring the steady-state gravity field over a predetermined time
4		period.
1	13.	The method of claim 11 further comprising:
2		calibrating the sensor module to determine tilt information;
3		storing the tilt information within the sensor module; and
4		measuring an effect of gravity on the sensor module.
1	14.	The method of claim 10, wherein the sensor module comprises a 3-axis sensor,
2		the method further comprising:
3		determining the orientation of the 3-axis sensor, comprising:
4		performing a 3-dimensional measurement of a gravity field;
5		determining a gravity vector;
6		performing a 3-dimensional measurement of a magnetic field;
7		determining a magnetic vector; and
8		determining the direction of magnetic north and gravity down.
1	15.	The method of claim 10 further comprising:
2		synchronizing the operation of the seismic sensor module;
3		wherein synchronizing the operation of a seismic sensor module
4		comprises using a global positioning system signal from a global
5		positioning system receiver within the sensor module.
1	16.	The method of claim 10 further comprising:
2		determining the position of the seismic sensor;
3		wherein determining the position of the seismic sensor comprises using
4		a global positioning system signal from a global positioning system
5		receiver within the sensor module.

1	17.	The method of claim 10 further comprising:
2		synchronizing the acquisition by receiving a signal containing time information;
3		and
4		controlling the operation of the one or more accelerometers and the one or more
5		seismic recorders using the signal.
1	18.	The method of claim 10 further comprising
2		determining the degree of coupling between the sensor module and the ground,
3		by generating a force;
4		recording a response of the sensor assembly to the force; and
5		analyzing the response.
1	19.	The method of claim 10 further comprising
2		determining the vector fidelity of the sensor module comprising:
3		generating a force;
4		recording a response of the sensor assembly to the force; and
5		analyzing the response.
1	20.	The method of claim 10 further comprising
2		determining the orientation of the sensor module, comprising:
3		generating a force at a plurality of source points;
4		recording a response of the sensor module to the force; and
5		analyzing the response.
1	21.	The method of claim 10 further comprising:
2		determining the state-of-health of the sensor module, comprising:
3		sending a bitstream to the sensor module;
4		decoding, capturing, and looping-back the bitstream to the seismic recorder; and
5		capturing and analyzing the bitstream by the seismic recorder,
6		wherein analyzing the bitstream comprises determining a malfunction
7		of the sensor module.
1	22.	The method of claim 21, wherein determining the state-of-health includes using
2		an ASIC coupled to a seismic recorder.

1	23.	The method of claim 22 further comprising validating the contents of the ASIC.
1	24.	The method of claim 21 further comprising:
2		operating the accelerometer; and
3		monitoring the operation of the accelerometer;
4		wherein monitoring the operation of the accelerometer comprises
5		monitoring the accelerometer for instability to indicate a malfunction of the
6		accelerometer or an excessive external acceleration.
1	25.	The method of claim 10 further comprising:
2		determining the state-of-health for the sensor module comprising:
3		exciting the accelerometer with a bitstream; and
4		acquiring, analyzing and judging an output signal generated by the
5		accelerometer;
6		wherein judging an output signal comprises judging a magnitude of
7		the output signal to indicate a malfunction of the accelerometer.
1	26.	The method of claim 25, wherein judging an output signal comprises judging a
2		phase response of the output signal to indicate a malfunction of the
3		accelerometer.
1	27.	The method of claim 25, wherein judging an output signal comprises judging a
2		total harmonic distortion of the output signal to indicate a malfunction of the
3		accelerometer.
1	28.	The method of claim 10 further comprising:
2		determining the state-of-health for the sensor module comprising:
3		operating the accelerometer for a period of time; and
4		analyzing an output signal generated by the accelerometer;
5		wherein analyzing an output signal comprises detecting an excessive
6		root-mean-square amplitude response of the output signal to indicate a
7		malfunction of the accelerometer or a noisy environment.

1	29.	The method of claim 10 further comprising:
2		determining the state-of-health for the sensor module comprising:
3		operating the accelerometer; and
4		analyzing an output signal generated by the accelerometer;
5		wherein analyzing an output signal comprises analyzing an offset and a
6		gravity cancellation magnitude of the output signal to detect a change in
7		the inclination of the accelerometer.
1	30.	The method of claim 10 further comprising:
2		determining the state-of-health for the sensor module comprising:
3		operating the accelerometers; and
4		monitoring one or more output signals generated by the accelerometers; wherein
5		monitoring one or more output signals generated by the
6		accelerometers comprises monitoring a vector sum of the self-measured
7		coefficients of gravity of the output signals to detect a malfunction of the
8		sensor assembly.
1	31.	The method of claim 10 further comprising:
2		determining the state-of-health for the sensor module comprising:
3		operating the accelerometers;
4		driving two of the accelerometers at a reference frequency;
5		monitoring an output signal generated by the undriven accelerometer; and
6		rotating through all the accelerometers;
7		wherein monitoring an output signal comprises monitoring the
8		magnitude of the reference frequency in the output signal
9		of the undriven accelerometer to detect a malfunction of the sensor
10		assembly.
1	32.	The method of claim 10 further comprising:
2		determining the state-of-health for the sensor module comprising:
3		operating the accelerometers for a period of time;
4		removing DC offset from one or more output signals generated by the
5		accelerometer to produce one or more resulting signals;
6		transforming the resulting signals from the accelerometers from
7		Cartesian coordinates into polar coordinates; and

8		analyzing the polar coordinates;
9		wherein analyzing the polar coordinates comprises analyzing one or
10		more peak and root-mean-square amplitude results to indicate a
11		malfunction of the sensor assembly or a noisy acquisition environment.
1	33.	The method of claim 10 further comprising:
2		determining the state-of-health for the sensor module comprising:
3		(a) operating the accelerometers;
4		(b) monitoring one or more output signals generated by the
5		accelerometers;
6		(c) analyzing the output signals;
7		(d) changing the orientation of the sensor assembly; and
8		(e) repeating (b), (c) and (d) for a plurality of orientations;
9		wherein analyzing the output signals comprise calculating the sensor's
10 \		angles with respect to gravity from a vector sum of the self-measured
10 \		coefficients of gravity in any orientation; and
12		wherein analyzing the output signals further comprises analyzing
13		sensor's angles with respect to gravity to indicate a malfunction of the
14		sensor assembly.

Respectfully submitted,

Date: September 12, 2001

Todd A. Bynum Registration No. 39,488

MADAN, MOSSMAN, & SRIRAM P.C.

2603 Augusta, Suite 700

Houston, Texas 77057-5640

Telephone: Facsimile:

713/266-1130 713/266-8510