Car Price Prediction Using Machine Learning

Project Overview

- Project Name: Vehicle Price Prediction System
- **Developer:** Agba Daniel
- Role: AI/ML Practitioner | Data Scientist
- Certifications:
 - Machine Learning Specialization (Coursera)
 - Deep Learning Specialization (Coursera)

Project Objective

To build a reliable and optimized machine learning model that **predicts car prices in AUD** based on technical and categorical features of vehicles, demonstrating:

- End-to-end ML pipeline development
- Feature selection and engineering
- Hyperparameter tuning via cross-validation
- Clear evaluation using regression metrics

X Technical Showcase

This project showcases my capability in:

- Advanced Data Preprocessing & Feature Engineering
- Ensemble Learning with XGBoost
- Cross-Validated Hyperparameter Tuning
- ✓ Robust Model Evaluation Techniques
- Deployment-ready ML Workflow

Skills Demonstrated

Technical: Python, Pandas, Scikit-learn, XGBoost, Matplotlib, Seaborn

Methodological: Grid Search CV, Feature Selection (SelectKBest), Model Interpretation **Analytical:** Error Analysis (MAE, RMSE, R²), Feature Impact Understanding, Business Insight

Alignment

Training Results

• R² Score: 0.7646 • MAE: \$7,965.49 • **RMSE:** \$13,876.96

Test Results

• R² Score: 0.6757 • **MAE:** \$8,313.15 • **RMSE:** \$17,091.64

> The model explains approximately 68% of the variance in vehicle prices, with an average deviation of **\$8.3K**, showing strong real-world applicability.

Professional Profile

Agba Daniel

AI/ML Specialist with experience in:

- Designing regression models with strong generalization
- Implementing scalable and reusable ML workflows
- Converting business requirements into machine learning solutions

Connect with me:

WhatsApp: +2347080157838

Email: agbadaniel13@gmail.com

```
In [119...
         # =========
         # 1. Data Loading
          # ===========
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
         # Load dataset
          data = pd.read_csv("Australian Vehicle Prices.csv")
          # Initial inspection
          print("Data Shape:", data.shape)
          print("\nFirst 5 Rows:")
          display(data.head())
```

Data Shape: (16734, 19)

First 5 Rows:

	Brand	Year	Model	Car/Suv	Title	UsedOrNew	Transmission	Engine	Dri
0	Ssangyong	2022.0	Rexton	Sutherland Isuzu Ute	2022 Ssangyong Rexton Ultimate (awd)	DEMO	Automatic	4 cyl, 2.2 L	
1	MG	2022.0	MG3	Hatchback	2022 MG MG3 Auto Excite (with Navigation)	USED	Automatic	4 cyl, 1.5 L	
2	BMW	2022.0	4301	Coupe	2022 BMW 430I M Sport	USED	Automatic	4 cyl, 2 L	
3	Mercedes- Benz	2011.0	E500	Coupe	2011 Mercedes- Benz E500 Elegance	USED	Automatic	8 cyl, 5.5 L	
4	Renault	2022.0	Arkana	SUV	2022 Renault Arkana Intens	USED	Automatic	4 cyl, 1.3 L	

```
In [95]: # ==========
         # 2. Exploratory Data Analysis (EDA)
         # ==========
         # 2.1 Basic Stats
         print("\n=== Dataset Info ===")
         data.info()
         print("\n=== Descriptive Statistics ===")
         display(data.describe(include='all'))
         print("\n=== Missing Values ===")
         print(data.isnull().sum())
         # 2.2 Target Variable Analysis
         plt.figure(figsize=(12, 5))
         plt.subplot(1, 2, 1)
         sns.histplot(data['Price'], kde=True)
         plt.title('Price Distribution')
         plt.subplot(1, 2, 2)
         sns.boxplot(y=data['Price'])
         plt.title('Price Boxplot')
         plt.tight_layout()
         plt.show()
         # 2.3 Categorical Features
```

```
cat_cols = data.select_dtypes(include=['object']).columns
 for col in cat cols:
     if data[col].nunique() < 15:</pre>
         plt.figure(figsize=(10, 4))
         sns.countplot(data=data, x=col, order=data[col].value_counts().index)
         plt.title(f'{col} Distribution')
         plt.xticks(rotation=45)
         plt.show()
 # 2.4 Numerical Features
 num_cols = data.select_dtypes(include=['int64', 'float64']).columns.difference(['Pr
 for col in num cols:
     plt.figure(figsize=(12, 4))
     sns.histplot(data[col], kde=True)
     plt.title(f'{col} Distribution')
     plt.show()
 # 2.5 Correlation Analysis
 if len(num_cols) > 1:
     plt.figure(figsize=(12, 8))
     sns.heatmap(data[num_cols].corr(), annot=True, cmap='coolwarm', center=0)
     plt.title('Numerical Features Correlation')
     plt.show()
=== Dataset Info ===
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16734 entries, 0 to 16733
Data columns (total 19 columns):
   Column
                      Non-Null Count Dtype
                      -----
--- -----
    Brand
                     16733 non-null object
0
 1
    Year
                     16733 non-null float64
 2
    Model
                     16733 non-null object
                    16706 non-null object
 3
   Car/Suv
   Title
                     16733 non-null object
 5
   UsedOrNew
                    16733 non-null object
   Transmission
                   16733 non-null object
 6
 7
    Engine
                     16733 non-null object
    DriveType
                    16733 non-null object
    FuelType
                     16733 non-null object
10 FuelConsumption 16733 non-null object
11 Kilometres
                    16733 non-null object
                  16733 non-null object
12 ColourExtInt
13 Location
                      16284 non-null object
 14 CylindersinEngine 16733 non-null object
                      16452 non-null object
15 BodyType
16 Doors
                      15130 non-null object
17 Seats
                     15029 non-null object
18 Price
                      16731 non-null object
dtypes: float64(1), object(18)
memory usage: 2.4+ MB
=== Descriptive Statistics ===
```

	Brand	Year	Model	Car/Suv	Title	UsedOrNew	Transmission	Engine
count	16733	16733.000000	16733	16706	16733	16733	16733	16733
unique	76	NaN	781	618	8804	3	3	106
top	Toyota	NaN	Hilux	SUV	2019 Hyundai I30 Active	USED	Automatic	4 cyl, 2 L
freq	2784	NaN	430	5921	60	14994	14530	3950
mean	NaN	2016.229248	NaN	NaN	NaN	NaN	NaN	NaN
std	NaN	5.247705	NaN	NaN	NaN	NaN	NaN	NaN
min	NaN	1940.000000	NaN	NaN	NaN	NaN	NaN	NaN
25%	NaN	2013.000000	NaN	NaN	NaN	NaN	NaN	NaN
50%	NaN	2017.000000	NaN	NaN	NaN	NaN	NaN	NaN
75%	NaN	2020.000000	NaN	NaN	NaN	NaN	NaN	NaN
max	NaN	2023.000000	NaN	NaN	NaN	NaN	NaN	NaN

=== Missing Values === Brand 1 Year 1 Model 1 28 Car/Suv Title 1 UsedOrNew 1 Transmission 1 Engine 1 DriveType 1 FuelType 1 FuelConsumption 1 Kilometres 1 ColourExtInt 1 Location 450 CylindersinEngine 1 BodyType 282 Doors 1604 Seats 1705

Price

dtype: int64

3


```
In [97]: # ==========
         # 3. Data Cleaning
          # ==========
         # Drop rows with missing values
         data = data.dropna()
         # Clean text data
         for col in data.select_dtypes(include='object'):
             data[col] = data[col].str.strip()
In [99]: # ==========
         # 4. Feature Engineering
          # ==========
          from datetime import datetime
         # Create new feature
         current_year = datetime.now().year
          data['Car_Age'] = current_year - data['Year']
          data = data.drop(columns=['Year'])
In [103...
         # ==========
          # 2. Data Cleaning (Updated)
          # ==========
          import numpy as np
          # 2.1 Handle Price column
          print("Original Price values:", data['Price'].unique()[:10]) # Show first 10 uniqu
         # Convert 'POA' to NaN and remove rows with invalid prices
          data['Price'] = pd.to_numeric(data['Price'], errors='coerce')
          # 2.2 Drop rows with missing values (including the newly created NaNs from 'POA')
          print(f"\nRows before cleaning: {len(data)}")
          data = data.dropna()
          print(f"Rows after cleaning: {len(data)}")
          # 2.3 Verify conversion
```

print("\nPrice after cleaning:")
print(data['Price'].describe())

```
Original Price values: ['51990' '19990' '108988' '32990' '34990' '62280' '2995' '248
        88' '17900'
         '41999']
        Rows before cleaning: 14586
        Rows after cleaning: 14551
        Price after cleaning:
        count
                 14551.000000
                  34980.246306
        mean
        std
                  29031.113506
        min
                     88.000000
                18990.000000
        25%
        50%
                28990.000000
        75%
                 42755.000000
                 649880.000000
        max
        Name: Price, dtype: float64
In [105...
         # =========
         # 6. Encoding
          # ============
          # One-hot encoding (preserving train-test separation)
          X_train_encoded = pd.get_dummies(X_train)
          X_test_encoded = pd.get_dummies(X_test)
          # Align columns
          X_test_encoded = X_test_encoded.reindex(columns=X_train_encoded.columns, fill_value
In [107...
         # =========
          # 7. Feature Selection
          # ==========
          from sklearn.feature_selection import SelectKBest, f_regression
          selector = SelectKBest(f_regression, k=20)
          X_train_selected = selector.fit_transform(X_train_encoded, y train)
          X_test_selected = selector.transform(X_test_encoded)
          selected_features = X_train_encoded.columns[selector.get_support()]
          print("Selected Features:")
          print(selected_features.tolist())
        Selected Features:
        ['Car_Age', 'Brand_Ferrari', 'Brand_Lamborghini', 'Brand_Porsche', 'Model_Aventado
        r', 'Model_GTC4', 'Car/Suv_Hatchback', 'Title_2012 Lamborghini Aventador', 'Title_20
        19 Ferrari GTC4 Lusso (awd)', 'UsedOrNew_USED', 'Engine_12 cyl, 6.3 L', 'Engine_12 c
        yl, 6.5 L', 'Engine_8 cyl, 4 L', 'DriveType_AWD', 'DriveType_Front', 'FuelType_Unlea
        ded', 'Kilometres_11480', 'CylindersinEngine_12 cyl', 'CylindersinEngine_4 cyl', 'Cy
        lindersinEngine_8 cyl']
In [113...
         # =========
          # 8. Model Training
          # ===============
          from xgboost import XGBRegressor
          from sklearn.model_selection import GridSearchCV
          param_grid = {
```

```
'n_estimators': [100, 200],
    'learning_rate': [0.05, 0.1],
    'max_depth': [3, 5],
    'subsample': [0.8, 0.9],
    'colsample_bytree': [0.8, 0.9],
    'reg_alpha': [0, 0.1, 1], # L1 regularization
    'reg_lambda': [0, 0.1, 1], # L2 regularization
    'gamma': [0, 0.1]
                          # Min loss reduction for splits
grid_search = GridSearchCV(
   XGBRegressor(random_state=42),
   param_grid,
   scoring='r2',
   cv=5,
   verbose=2,
   n_{jobs=-1}
grid_search.fit(X_train_selected, y_train)
best_model = grid_search.best_estimator_
print("\nBest Parameters:", grid_search.best_params_)
```

Fitting 5 folds for each of 576 candidates, totalling 2880 fits

Best Parameters: {'colsample_bytree': 0.8, 'gamma': 0, 'learning_rate': 0.1, 'max_de pth': 3, 'n_estimators': 200, 'reg_alpha': 0, 'reg_lambda': 1, 'subsample': 0.9}

```
In [115... # ===========
          # 9. Evaluation
          # ==========
          from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
          def evaluate(y_true, y_pred, label):
              print(f"\n{label} Performance:")
              print(f"R2: {r2_score(y_true, y_pred):.4f}")
              print(f"MAE: ${mean_absolute_error(y_true, y_pred):,.2f}")
              print(f"RMSE: ${np.sqrt(mean_squared_error(y_true, y_pred)):,.2f}")
          # Training evaluation
          y_train_pred = best_model.predict(X_train_selected)
          evaluate(y_train, y_train_pred, "Training")
          # Test evaluation
          y_test_pred = best_model.predict(X_test_selected)
          evaluate(y_test, y_test_pred, "Test")
          # 9.1 Visualization
          plt.figure(figsize=(10, 6))
          pd.Series(best_model.feature_importances_, index=selected_features)\
           .sort_values()\
            .plot(kind='barh', title='Feature Importance')
          plt.show()
          plt.figure(figsize=(8, 8))
```

```
plt.scatter(y_test, y_test_pred, alpha=0.3)
plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--')
plt.xlabel('Actual Price')
plt.ylabel('Predicted Price')
plt.title('Actual vs Predicted Prices')
plt.show()
```

Training Performance:

R²: 0.7646 MAE: \$7,965.49 RMSE: \$13,876.96

Test Performance:

R²: 0.6757 MAE: \$8,313.15 RMSE: \$17,091.64

