Decision support systems remade: (machine) learning advisors

Filip Wójcik Data Scientist Wroclaw University Lecturer

Agenda

- What are decision support and expert systems?
- Brief history of expert systems
- Drawbacks of traditional expert systems
- Machine learning modern decision support systems
- Association analysis
- Rule induction
- Decision trees
- Scalable solutions

What are expert systems? 1/4

Storing experts knowledge

Reasoning over certain facts

Quick reactions on user queries

Transparency of decisions

Explainability of decisions

What are expert systems? 2/4

What are expert systems? 3/4

What are expert systems? 4/4

Brief history of expert systems

What killed expert systems?

Inability to learn

Rules updating

Initial knowledge acquisition

Machine learning – a modern decision support systems

Machine learning – a modern decision suport systems 1/3

Ability to automatically learn from data

Usage of statistical procedures to validate knowledge

Variety of tasks

Explainability of decisions (sometimes)

Easy to validate/score

Machine learning – a modern decision suport systems 2/3

Machine learning – a modern decision suport systems 3/3

- Cannot be interpreter by humans
- Their internal structure is complicated and is hard to understand
- "Justifications" of predictions are purely mathematical

"Black box" methods

- Easily interpretable
- Can be translated to human-friendly form
- Not so sophisticated mathematically

"White box" methods

Association analysis systems

Association analysis systems 1/6

Association analysis systems 2/6

Transaction number		Products
1.	1. 2.	Soya milk Salad
2.	1. 2. 3. 4.	Salad Walnuts Wine Bread
3.	1. 2. 3. 4.	Soya milk Walnuts Wine Juice
4.	1. 2. 3. 4.	Salad Soya milk Walnuts Wine
5.	1. 2. 3. 4.	Salad Soya milk Walnuts Juice

Normalized vs denormalized form

Order Id	Product category	city	state
1006414	воок	BURMINGHAM	AL
1006541	ARTWORK	MADISON	СТ
1006542	OCCASION	OLD SAYBROOK	СТ
1010154	воок	EASTCHESTER	NY
1009110	ARTWORK	LINCON PARL	NJ
1009110	воок	LINCON PARL	NJ
1008491	ARTWORK	TARRYTOWN	NY
1008492	ARTWORK	CARMEL	NY
1010189	воок	WHITE PLAINS	NY
1008493	воок	WHITE PLAINS	NY

Association analysis systems 3/6

Transaction number		Products
1.	1. 2.	Soya milk Salad
2.	1. 2. 3. 4.	Salad Walnuts Wine Bread IF
3.	1. 2. 3. 4.	Soya milk Walnuts Anteced Wine Juice
4.	1. 2. 3. 4.	Salad Soya milk Walnuts Wine
5.	1. 2. 3. 4.	Salad Soya milk Walnuts Juice

Frequent items	Rel. support	
Soya, salad	0.6	
Soya, salad, walnuts	0.4	
Salad THEN	0.8	

Implications	confidence
Soya => walnuts	0.75
Soya => salad	0.75
Soya, Walnuts, Wine => juice	0.4

Key features:

- Finding items that co-occur together
- Finding items that are correlated
- Form assiciation rules, defining

relationships Consequent

 Calculate probabilities and confidence values

Association analysis systems 4/6

Transaction number		Products
1.	1. 2.	Soya milk Salad
2.	1. 2. 3. 4.	Salad Walnuts Wine Bread
3.	1. 2. 3. 4.	Soya milk Walnuts Wine Juice
4.	1. 2. 3. 4.	Salad Soya milk Walnuts Wine
5.	1. 2. 3. 4.	Salad Soya milk Walnuts Juice

Frequent items	Rel. support	
Soya, salad	0.6	
Soya, salad, walnuts	0.4	
Salad	0.8	

Implications	confidence
walnuts => soya	0.75
Soya => salad	0.75
Soya, Walnuts, Wine => juice	0.4

$$support(X) = count(X)$$

$$relative\ support(X\&Y) = \frac{support(X\&Y)}{N} = P(AB)$$

$$confidence(X \to Y) = \frac{support(X \& Y)}{support(X)} = P(A|B)$$

$$relative support(soya \&salad) = \frac{3}{5} = 0.6$$

$$confidence(soya \rightarrow salad) = \frac{3}{4} = 0.75$$

Association analysis systems 5/6

#	Measure	Formula
1	ϕ -coefficient	P(A,B)-P(A)P(B)
1	φ-coemcient	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j}\max_{k}P(A_{j},B_{k})+\sum_{k}\max_{j}P(A_{j},B_{k})-\max_{j}P(A_{j})-\max_{k}P(B_{k})}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})} \\ \sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}$
7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{i}{P(A_{i})P(B_{j})}}{\min(-\sum_{i}P(A_{i})\log P(A_{i}),-\sum_{j}P(B_{j})\log P(B_{j}))}$
8	J-Measure (J)	$\max \left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(B)})\right),$
9	Gini index (G)	$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$ $\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2]$ $-P(B)^2 - P(\overline{B})^2,$ $P(B)[P(A B)^2 + P(\overline{A} B)^2] + P(\overline{B})[P(A \overline{B})^2 + P(\overline{A} \overline{B})^2]$ $-P(A)^2 - P(\overline{A})^2)$
10	S	$P(A,B) = P(A)^2 - P(A)^2$
10	Support (s) Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	Piatetsky-Shapiro's (PS)	$\dot{P}(A,B) - P(A)P(B)$
17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$

Association analysis systems 6/6

Apriori principle:

- Given user-defined frequency threshold T
- Given infrequent item Itm (suport(Itm) < T)
- No itemset containing Itm can be frequent

Result:

- Less combinatorial effort
- No need to check infrequent combinations

Rule induction systems

Rule induction systems 1/5

Rule induction systems 2/5

client	hotel	addons	money_spent	offer
business	Hilton	trip	40,000	deluxe
business	Hilton	full board	38,000	deluxe
business	Hilton	trip	40,000	deluxe
middle class	Meta	none	800	basic
middle class	Meta	trip	900	basic
manager	Meta	trip	1,500	premium

Value	Count	%
Deluxe	3	0.5
Basic	2	0.333
Premium	1	0.16666

Rule induction systems 3/5

client	hotel	addons	money_spent	offer	
business	Hilton	trip	40,000	deluxe	IF hotel == "M
business	Hilton	full board	38,000	deluxe	
business	Hilton	trip	40,000	deluxe	
middle class	Meta	none	800	basic	
middle class	Meta	trip	900	basic	IF addons == "
manager	Meta	trip	1,500	premium	

erc.

Value	Count	Perc.
deluxe	2	50
basic	1	25
premium	1	25

Rule induction systems 4/5

client	hotel	addons	money_spent	offer
business	Hilton	trip	40,000	deluxe
business	Hilton	full board	38,000	deluxe
business	Hilton	trip	40,000	deluxe
middle class	Meta	none	800	basic
middle class	Meta	trip	900	basic
manager	Meta	trip	1,500	premium

Rule induction systems 5/5

Key features:

- Incremental building of decision boundary separating classes
- Adding conditions to rule antecedent to find a best separation between classes
- Several statistical measures:
 - Shannon entropy

$$Entropy = \sum_{i} -p_{i} \ln p_{i}$$

Gini impurity

Gini impiruty =
$$1 - \sum_{i=1}^{3} 0.5$$

Rule accuracy

$$coverage = \frac{|records| meeting| antecedent| \& consequent|}{|records| meeting| antecedent|}$$

Decision trees

Decision trees 1/5

Decision trees 2/5

Decision trees 3/5

client	hotel	addons	money_spent	offer
business	Hilton	trip	40,000	deluxe
business	Hilton	full board	38,000	deluxe
business	Hilton	trip	40,000	deluxe
middle class	Meta	none	800	basic
middle class	Meta	meal	900	basic
manager	Meta	spa	1,500	premium

Client == business? True False money_spent offer hotel addons money_spent offer hotel addons 40,000 deluxe Hilton Meta 800 basic trip none full board 38,000 deluxe Hilton 900 basic Meta meal 40,000 deluxe 1,500 premium Hilton trip Meta spa

Decision trees 4/5

Decision trees 5/5

Recursive

- At each level performs the same operation
- Top down approach
- Divide & conquer in construction
- Log(N) in traversal

Greedy

- Tries to reduce "chaos" at each split
- $Entropy = \sum_{i} p_i \ln p_i$
- Trying to impose ORDER on data

Two forms

- Binary
 - Yes/no splits
 - Single attribute value
- Multi-way
 - Split on every value
 - Multi-value splits

Scalable solutions

Scalable solutions 1/2

Complexity

Data storage

- ML algorithms are very complex
- Traversing datasets multiple Times
- Combinations/Correlations/etc.
- ML algorithms require access to full datasets
- Big volumes of data don't fit into memory

Extensibility

- Adjusting algorithm configuration for a specific needs
- Customization of processing methods

Scalable solutions 2/2

Thank you for attention!