Bayesian Time Series Modeling

```
In [1]:
        % let N = 500;
        %let p = 4;
        %let sigma=2;
        %let constant = 0;
        data ar4(keep= t y);
          call streaminit(12345);
          array phi phi1 - phi&p (.8, -.64, .512, -.4096);
          array yLag yLag1 - yLag&p;
          do j = 1 to dim(yLag);
            yLag[j] = 0;
          end;
          constant=&constant;
          do t = -100 to &N;
            e = rand('normal',0,&sigma);
            y = e;
            do j = 1 to dim(phi);
              y = y + phi[j] * yLag[j];
            end;
            y=y+constant;
            if t > 0 then output;
            do j = dim(yLag) to 2 by -1;
              yLag[j] = yLag[j-1];
            end;
            yLag[1] = y;
          end;
        run;
        ods graphics on;
        proc sgplot data=ar4;
          series x=t y=y;
        run;
```


AR(4) Model

```
proc mcmc data=ar4 nmc=100000 seed=100 nthreads=8 propcov=quanew
In [2]:
                outpost=ar4example;
          parms phi_1 phi_2 phi_3 phi_4;
          parms sigma2 1;
          parms Y_0 Y_1 Y_2 Y_3;
          prior phi_:~normal(0,var=1000);
          prior sigma2 ~ igamma(shape = 3/10, scale = 10/3);
          prior Y_{:} \sim n(0, var=1000);
          mu=phi_1*y.l1 + phi_2*y.l2 + phi_3*y.l3 + phi_4*y.l4;
          model y~normal(mu, var=sigma2)
                 icond=(Y_3 Y_2 Y_1 Y_0);
         * preddist outpred=AR4outpred statistics=brief;
         * ods output PredSumInt=AR4PredSumInt;
        run;
         *data ar4forecast;
         * merge ar4 AR4PredSumInt;
        *run;
        proc sgplot data=ar4forecast(where=(t>400));
          series x=t y=y / lineattrs=(color=red);
          series x=t y=x / lineattrs=(color=red pattern=dot);
          series x=t y=mean / lineattrs=(color=blue pattern=dash);
          band x=t upper=hpdupper lower=hpdlower / transparency=.5;
        run;
         */
```

The SAS System

The MCMC Procedure

Number of Observations Read Number of Observations Used 500 500

Parameters				
Prior Distribution	Initial Value	Sampling Method	Parameter	Block
normal(0,var=1000)	0	N-Metropolis	phi_1	1
normal(0,var=1000)	0		phi_2	
normal(0,var=1000)	0		phi_3	
normal(0,var=1000)	0		phi_4	
igamma(shape = 3/10, scale = 10/3)	1.0000	N-Metropolis	sigma2	2
normal(0, var=1000)	0	N-Metropolis	Y_0	3
normal(0, var=1000)	0		Y_1	
normal(0, var=1000)	0		Y_2	
normal(0, var=1000)	0		Y_3	

The SAS System

	Posterior Summaries and Intervals						
Parameter	N	Mean	Standard Deviation	9:	5% HPD Interval		
phi_1	100000	0.8382	0.0411	0.7584	0.9184		
phi_2	100000	-0.5762	0.0518	-0.6749	-0.4729		

	Posterior Summaries and Intervals						
Parameter	N	Mean	Standard Deviation	9:	5% HPD Interval		
phi_3	100000	0.4835	0.0519	0.3815	0.5847		
phi_4	100000	-0.3951	0.0414	-0.4773	-0.3153		
sigma2	100000	4.1109	0.2641	3.6000	4.6336		
Y_0	100000	1.2669	5.0179	-8.7476	11.0021		
Y_1	100000	0.6614	7.9088	-15.0633	16.2767		
Y_2	100000	4.4767	7.9868	-11.0639	20.6039		
Y_3	100000	13.0851	8.4739	-3.3648	29.8601		

The SAS System

The MCMC Procedure

Effective Sample Siz						
Parameter	ESS	Autocorrelation Time	Efficiency			
phi_1	6244.6	16.0140	0.0624			
phi_2	6271.0	15.9465	0.0627			
phi_3	6002.0	16.6612	0.0600			
phi_4	5626.9	17.7716	0.0563			
sigma2	17163.8	5.8262	0.1716			
Y_0	5997.8	16.6728	0.0600			
Y_1	5272.0	18.9682	0.0527			
Y_2	6358.4	15.7273	0.0636			
Y_3	6677.8	14.9749	0.0668			

The SAS System

In [3]: proc contents data=ar4example;
run;

The SAS System

The CONTENTS Procedure

Data Set Name	WORK.AR4EXAMPLE	Observations	100000
Member Type	DATA	Variables	13
Engine	V9	Indexes	0
Created	06/03/2024 15:36:05	Observation Length	104
Last Modified	06/03/2024 15:36:05	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64, LINUX_POWER_64		
Encoding	utf-8 Unicode (UTF-8)		

	Engine/Host Dependent Information
Data Set Page Size	65536
Number of Data Set Pages	160
First Data Page	1
Max Obs per Page	629
Obs in First Data Page	595
Number of Data Set Repairs	0
Filename	/opt/sas/v4e043/config/var/tmp/workspaceserver/defau
Release Created	V.0305M0
Host Created	Linux
Inode Number	3889649357
Access Permission	rw-rr

Engine/Host Dependent Informatio				
Owner Name	Danny.Modlin@sas.com			
File Size	10MB			
File Size (bytes)	10551296			

Alphabetic List of Variables and Attributes						
Label	Format	Len	Туре	Variable	#	
	8.	8	Num	Iteration	1	
Log-Likelihood Value	D8.	8	Num	LogLike	12	
Log Posterior Density	D8.	8	Num	LogPost	13	
Log Prior Density	D8.	8	Num	LogPrior	11	
	D8.	8	Num	Y_0	7	
	D8.	8	Num	Y_1	8	
	D8.	8	Num	Y_2	9	
	D8.	8	Num	Y_3	10	
	D8.	8	Num	phi_1	2	
	D8.	8	Num	phi_2	3	
	D8.	8	Num	phi_3	4	
	D8.	8	Num	phi_4	5	
	D8.	8	Num	sigma2	6	

UK Coal Example

```
In [4]:
        data UKcoal;
          input coal year quarter @@;
          t=_N_;
          C=log(coal/1000);
          datalines;
        303 1960 1 169 1960 2 152 1960 3 257 1960 4
        247 1961 1 189 1961 2 146 1961 3 220 1961 4
        248 1962 1 195 1962 2 141 1962 3 235 1962 4
        278 1963 1 167 1963 2 150 1963 3 261 1963 4
        244 1964 1 174 1964 2 104 1964 3 228 1964 4
        243 1965 1 170 1965 2 113 1965 3 219 1965 4
        237 1966 1 138 1966 2 114 1966 3 208 1966 4
        190 1967 1 157 1967 2 93 1967 3 182 1967 4
        183 1968 1 106 1968 2 86
                                1968 3 144 1968 4
        226 1969 1 128 1969 2 62 1969 3 130 1969 4
        169 1970 1 94 1970 2 91 1970 3 188 1970 4
        148 1971 1 114 1971 2 62
                                 1971 3 139 1971 4
        104 1972 1 99 1972 2 76
                                1972 3 122 1972 4
        107 1973 1 76
                      1973 2 51
                                 1973 3 111 1973 4
        95 1974 1 71 1974 2 63
                                 1974 3 107 1974 4
        65 1975 1 62 1975 2 39 1975 3 80
                                            1975 4
        86
           1976 1 57
                       1976 2 37
                                  1976 3 79
                                             1976 4
        83 1977 1 59 1977 2 42 1977 3 89
                                            1977 4
        84 1978 1 59
                       1978 2 43
                                 1978 3 73
                                             1978 4
        90 1979 1 56
                      1979 2 40
                                 1979 3 75
                                            1979 4
        80 1980 1 45
                      1980 2 32
                                 1980 3 73
                                            1980 4
        72 1981 1 46
                      1981 2 38
                                 1981 3 78
                                            1981 4
        77 1982 1 49
                      1982 2 41
                                 1982 3 77
                                            1982 4
        78 1983 1 49
                       1983 2 34
                                 1983 3 72
                                            1983 4
        68 1984 1 51 1984 2 23
                                 1984 3 42
                                            1984 4
        72 1985 1 49
                       1985 2 39
                                 1985 3 64
                                            1985 4
           1986 1 43 1986 2 45
                                 1986 3 56
                                            1986 4
        63
        ;
        proc sgplot data=UKcoal;
          title "Quarterly UK Coal Consumption (1960-1986)";
          series y=coal x=t;
          yaxis label="Coal consumption";
          xaxis label="time";
        run;
        title;
        proc sgplot data=UKcoal;
          title "Quarterly UK Coal Consumption (1960-1986)";
          series y=c x=t;
          yaxis label="Logarithm of (coal consumption/1000)";
          xaxis label="time";
        run;
        title;
        data UKcoal;
```

```
set UKcoal;
z=c;
if year>1984 then c=.;
run;
```


Dynamic Linear Model with Time-Varying Coefficients

```
In [5]:
        proc mcmc data=UKcoal nmc=100000 seed=123456 outpost=posterior propcov=quane
          parms alpha0;
          parms mu0;
          parms s0 s1 s2;
          parms theta1;
          parms theta2;
          parms theta3;
          parms theta4;
          parms theta_phi;
          parms phi;
          prior phi~normal(0,var=exp(theta_phi));
          prior alpha0~normal(0,var=theta2);
          prior mu0~normal(0,var=100);
          prior s:~normal(0,var=theta3);
          prior theta:~igamma(shape = 3/10, scale = 10/3);
          random alpha~normal(phi*alpha.l1,var=exp(theta2)) subject=t icond=(alpha
        0);
          random s~normal(-s.11-s.12-s.13, var=exp(theta3)) subject=quarter icond=(s2
        s1 s0);
          random mu~normal(mu.l1 + alpha.l1,var=exp(theta1)) subject=t icond=(mu0);
          x=mu + s;
          model c~normal(x,var=exp(theta4));
          preddist outpred=TVCoutpred statistics=brief;
          ods output PredSumInt=TVCPredSumInt;
        run;
        data forecast;
          merge UKcoal TVCPredSumInt;
        run;
        proc sgplot data=forecast;
          series x=t y=c / lineattrs=(color=red);
          series x=t y=z / lineattrs=(color=red pattern=dot);
          series x=t y=mean / lineattrs=(color=blue pattern=dash);
          band x=t upper=hpdupper lower=hpdlower / transparency=.5;
        run;
```

Number of Observations Read	108
Number of Observations Used	108

Missing Data Information Table						
ervation Sa Indices I	Observation Indices	Number of Missing Obs	Variable			
	101 102 103 104 105 106 107 108	8	С			

				Parameters
Block	Parameter	Sampling Method	Initial Value	Prior Distribution
1	alpha0	N-Metropolis	0	normal(0,var=theta2)
2	mu0	N-Metropolis	0	normal(0,var=100)
3	s0	N-Metropolis	0	normal(0,var=theta3)
	s1		0	normal(0,var=theta3)
	s2		0	normal(0,var=theta3)
4	theta1	N-Metropolis	2.5641	igamma(shape = 3/10, scale = 10/3)
5	theta2	N-Metropolis	2.5641	igamma(shape = 3/10, scale = 10/3)
6	theta3	N-Metropolis	2.5641	igamma(shape = 3/10, scale = 10/3)
7	theta4	N-Metropolis	2.5641	igamma(shape = 3/10, scale = 10/3)
8	theta_phi	N-Metropolis	2.5641	igamma(shape = 3/10, scale = 10/3)
9	phi	N-Metropolis	0	normal(0,var=exp(the

	Random Effect Parameters							
Parameter	Sampling Method	Subject	Number of Subjects	Subject Values	Prior Distribution			
alpha	N- Metropolis	t	108	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	normal(phi*alpha.l1,var=exp(
s	N- Metropolis	quarter	4	1234	normal(- s.l1-s.l2- s.l3,var=exp(theta3))			
mu	N- Metropolis	t	108	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	normal(mu.l1 + alpha.l1,var=exp(theta1))			

			Po	osterior Summari	es and Interval
N	Parameter	Mean	Standard Deviation	98	5% HPD Interva
100000	alpha0	-0.00581	0.6915	-1.3978	1.282
100000	mu0	-1.4880	1.8117	-5.0158	2.060
100000	s0	-0.0120	1.0895	-2.2098	2.153
100000	s1	-0.1060	1.0863	-2.2653	2.101
100000	s2	-0.0408	1.1643	-2.4439	2.171
100000	theta1	0.4718	0.1162	0.2675	0.706
100000	theta2	0.4914	0.1230	0.2606	0.726
100000	theta3	1.6167	0.7693	0.4636	3.173
100000	theta4	0.4243	0.1009	0.2440	0.623
100000	theta_phi	2.7639	1.7233	0.4815	6.189
100000	phi	-0.3213	0.1956	-0.6879	0.070

	Effective Sample Sizes						
Parameter	ESS	Autocorrelation Time	Efficiency				
alpha0	8936.5	11.1901	0.0894				
mu0	2378.3	42.0466	0.0238				
s0	1405.9	71.1282	0.0141				
s1	6154.3	16.2488	0.0615				
s2	6266.2	15.9585	0.0627				
theta1	9554.2	10.4666	0.0955				
theta2	5249.1	19.0510	0.0525				
theta3	992.0	100.8	0.0099				
theta4	10646.5	9.3928	0.1065				
theta_phi	10814.3	9.2470	0.1081				
phi	2109.5	47.4056	0.0211				

Posterior Summaries and Intervals for Prediction						
HPD Interva	95%	Standard Deviation	Mean	N	Parameter	
1.852	-4.4699	1.6215	-1.2291	100000	C_1	
1.451	-4.7703	1.5824	-1.6941	100000	C_2	
1.128	-5.0755	1.5804	-1.9489	100000	C_3	
1.758	-4.4367	1.5785	-1.3558	100000	C_4	
1.696	-4.4933	1.5772	-1.3477	100000	C_5	
1.387	-4.7693	1.5720	-1.6973	100000	C_6	
1.091	-5.0672	1.5736	-1.9843	100000	C_7	
1.684	-4.5189	1.5816	-1.4619	100000	C_8	
1.645	-4.5719	1.5843	-1.3842	100000	C_9	

			T COLOTTON CUITINI	va	Is for Prediction
Parameter	N	Mean	Standard Deviation	9:	5% HPD Interval
C_10	100000	-1.6820	1.5862	-4.7899	1.4204
C_11	100000	-1.9705	1.5765	-5.0579	1.1144
C_12	100000	-1.3868	1.5760	-4.4231	1.7621
C_13	100000	-1.3079	1.5693	-4.4105	1.7442
C_14	100000	-1.7230	1.5888	-4.8025	1.4231
C_15	100000	-1.9569	1.5792	-5.0779	1.1129
C_16	100000	-1.3415	1.5881	-4.4013	1.8403
C_17	100000	-1.3967	1.5817	-4.4688	1.7268
C_18	100000	-1.7622	1.5866	-4.8004	1.4121
C_19	100000	-2.2067	1.5834	-5.3124	0.9061
C_20	100000	-1.4955	1.5826	-4.6214	1.5820
C_21	100000	-1.4469	1.5838	-4.5370	1.6781
C_22	100000	-1.8322	1.5751	-4.9068	1.2786
C_23	100000	-2.1733	1.5713	-5.2492	0.8708
C_24	100000	-1.4979	1.5810	-4.5888	1.6017
C_25	100000	-1.4763	1.5805	-4.5893	1.5827
C_26	100000	-1.9303	1.5738	-5.0284	1.1540
C_27	100000	-2.2149	1.5737	-5.3541	0.8181
C_28	100000	-1.6029	1.5854	-4.7141	1.4829
C_29	100000	-1.6219	1.5771	-4.7461	1.4397
C_30	100000	-1.9092	1.5784	-4.9622	1.2238
C_31	100000	-2.3390	1.5810	-5.4626	0.7160
C_32	100000	-1.6981	1.5757	-4.7738	1.3949
C_33	100000	-1.7273	1.5785	-4.8368	1.3607
C_34	100000	-2.1692	1.5784	-5.2698	0.8973
C_35	100000	-2.4542	1.5792	-5.5386	0.6426

C_37 100000 -1.6205 1.5773 -4.7668 1.4220 C_38 100000 -2.1247 1.5770 -5.1560 1.0158 C_39 100000 -2.6603 1.5745 -5.7751 0.3938 C_40 100000 -1.9888 1.5802 -5.0751 1.1031 C_41 100000 -1.8396 1.5804 -4.9311 1.2624 C_42 100000 -2.2770 1.5802 -5.3337 0.8426 C_43 100000 -2.4642 1.5727 -5.5415 0.6386 C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1856 C_46 100000 -2.2171 1.5833 -5.2722 0.9328 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.1409 1.5707 -5.1179 1.0558 C_49 100000 -2.3557				Posterior Summ	aries and Interva	ls for Prediction
C_37 100000 -1.6205 1.5773 -4.7668 1.4226 C_38 100000 -2.1247 1.5770 -5.1660 1.0158 C_39 100000 -2.6603 1.5745 -5.7751 0.3938 C_40 100000 -1.9888 1.5802 -5.0751 1.1031 C_41 100000 -1.8396 1.5804 -4.9311 1.2624 C_42 100000 -2.2770 1.5802 -5.3337 0.8426 C_43 100000 -2.4642 1.5727 -5.5415 0.6386 C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1856 C_46 100000 -2.2171 1.5833 -5.2722 0.9328 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.1409 1.5707 -5.1179 1.0558 C_50 100000 -2.3557	Parameter	N	Mean		9:	5% HPD Interval
C_38 100000 -2.1247 1.5770 -5.1560 1.0158 C_39 100000 -2.6603 1.5745 -5.7751 0.3938 C_40 100000 -1.9888 1.5802 -5.0751 1.1031 C_41 100000 -1.8396 1.5804 -4.9311 1.2624 C_42 100000 -2.2770 1.5802 -5.3337 0.8426 C_43 100000 -2.4642 1.5727 -5.5415 0.6386 C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1859 C_46 100000 -2.2171 1.5833 -5.2722 0.9328 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.1409 1.5777 -5.1179 1.0568 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.6482	C_36	100000	-1.8458	1.5791	-4.9387	1.2446
C_39 100000 -2.6603 1.5745 -5.7751 0.3938 C_40 100000 -1.9888 1.5802 -5.0751 1.1031 C_41 100000 -1.8396 1.5804 -4.9311 1.2624 C_42 100000 -2.2770 1.5802 -5.3337 0.8428 C_43 100000 -2.4642 1.5727 -5.5415 0.6386 C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1858 C_46 100000 -2.2171 1.5833 -5.2722 0.9328 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.0129 1.5707 -5.1179 1.0556 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482	C_37	100000	-1.6205	1.5773	-4.7668	1.4220
C_40 100000 -1.9888 1.5802 -5.0751 1.1031 C_41 100000 -1.8396 1.5804 -4.9311 1.2624 C_42 100000 -2.2770 1.5802 -5.3337 0.8426 C_43 100000 -2.4642 1.5727 -5.5415 0.6386 C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1856 C_46 100000 -2.2171 1.5833 -5.2722 0.9326 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.0129 1.5707 -5.1179 1.0556 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1771	C_38	100000	-2.1247	1.5770	-5.1560	1.0158
C_41 100000 -1.8396 1.5804 -4.9311 1.2624 C_42 100000 -2.2770 1.5802 -5.3337 0.8428 C_43 100000 -2.4642 1.5727 -5.5415 0.6386 C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1856 C_46 100000 -2.2171 1.5833 -5.2722 0.9326 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.1429 1.5707 -5.1179 1.0558 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.5715	C_39	100000	-2.6603	1.5745	-5.7751	0.3939
C_42 100000 -2.2770 1.5802 -5.3337 0.8425 C_43 100000 -2.4642 1.5727 -5.5415 0.6386 C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1858 C_46 100000 -2.2171 1.5833 -5.2722 0.9326 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.0129 1.5707 -5.1179 1.0556 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.6757 0.5244 C_54 100000 -2.5715	C_40	100000	-1.9888	1.5802	-5.0751	1.1031
C_43 100000 -2.4642 1.5727 -5.5415 0.6386 C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1856 C_46 100000 -2.2171 1.5833 -5.2722 0.9328 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.0129 1.5707 -5.1179 1.0558 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_52 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.2165	C_41	100000	-1.8396	1.5804	-4.9311	1.2624
C_44 100000 -1.7385 1.5777 -4.8424 1.3252 C_45 100000 -1.8669 1.5797 -5.0309 1.1858 C_46 100000 -2.2171 1.5833 -5.2722 0.9328 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.0129 1.5707 -5.1179 1.0558 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.2165 1.5751 -5.3627 0.8326 C_56 100000 -2.3000	C_42	100000	-2.2770	1.5802	-5.3337	0.8429
C_45 100000 -1.8669 1.5797 -5.0309 1.1858 C_46 100000 -2.2171 1.5833 -5.2722 0.9328 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.0129 1.5707 -5.1179 1.0558 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.2678 1.5777 -6.0788 0.1257 C_56 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962	C_43	100000	-2.4642	1.5727	-5.5415	0.6386
C_46 100000 -2.2171 1.5833 -5.2722 0.9328 C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.0129 1.5707 -5.1179 1.0558 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.3000 1.5732 -5.3743 0.7924 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476	C_44	100000	-1.7385	1.5777	-4.8424	1.3252
C_47 100000 -2.7211 1.5788 -5.8394 0.3412 C_48 100000 -2.0129 1.5707 -5.1179 1.0558 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8328 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991	C_45	100000	-1.8669	1.5797	-5.0309	1.1859
C_48 100000 -2.0129 1.5707 -5.1179 1.0558 C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5843 -5.3775 0.8544	C_46	100000	-2.2171	1.5833	-5.2722	0.9328
C_49 100000 -2.1409 1.5774 -5.1994 1.0057 C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5843 -5.3775 0.8544	C_47	100000	-2.7211	1.5788	-5.8394	0.3412
C_50 100000 -2.3557 1.5767 -5.4323 0.7481 C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7924 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5843 -5.3775 0.8544 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_48	100000	-2.0129	1.5707	-5.1179	1.0558
C_51 100000 -2.6482 1.5836 -5.7010 0.4966 C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_49	100000	-2.1409	1.5774	-5.1994	1.0057
C_52 100000 -2.1027 1.5870 -5.2273 0.9966 C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_50	100000	-2.3557	1.5767	-5.4323	0.7481
C_53 100000 -2.1771 1.5817 -5.2589 0.9444 C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_51	100000	-2.6482	1.5836	-5.7010	0.4966
C_54 100000 -2.5715 1.5794 -5.6757 0.5244 C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_52	100000	-2.1027	1.5870	-5.2273	0.9966
C_55 100000 -2.9678 1.5777 -6.0788 0.1257 C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_53	100000	-2.1771	1.5817	-5.2589	0.9444
C_56 100000 -2.2165 1.5751 -5.3627 0.8329 C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_54	100000	-2.5715	1.5794	-5.6757	0.5244
C_57 100000 -2.3000 1.5732 -5.3743 0.7921 C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_55	100000	-2.9678	1.5777	-6.0788	0.1257
C_58 100000 -2.5962 1.5800 -5.7031 0.4803 C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_56	100000	-2.2165	1.5751	-5.3627	0.8329
C_59 100000 -2.8476 1.5810 -5.9667 0.2438 C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_57	100000	-2.3000	1.5732	-5.3743	0.7921
C_60 100000 -2.2991 1.5843 -5.3775 0.8544	C_58	100000	-2.5962	1.5800	-5.7031	0.4803
	C_59	100000	-2.8476	1.5810	-5.9667	0.2438
C_61 100000 -2.5519 1.5767 -5.6182 0.5862	C_60	100000	-2.2991	1.5843	-5.3775	0.8544
	C_61	100000	-2.5519	1.5767	-5.6182	0.5862

			Posterior Summ	aries and Interva	ls for Prediction
Parameter	N	Mean	Standard Deviation	9:	5% HPD Interval
C_62	100000	-2.8140	1.5801	-5.8923	0.2991
C_63	100000	-3.1964	1.5662	-6.3075	-0.1753
C_64	100000	-2.5229	1.5826	-5.6307	0.5853
C_65	100000	-2.4744	1.5692	-5.5495	0.5983
C_66	100000	-2.8636	1.5688	-5.9654	0.1785
C_67	100000	-3.2446	1.5737	-6.3420	-0.1572
C_68	100000	-2.5369	1.5694	-5.5766	0.5837
C_69	100000	-2.4880	1.5699	-5.6394	0.5290
C_70	100000	-2.8160	1.5775	-5.8449	0.3456
C_71	100000	-3.1492	1.5770	-6.2578	-0.0644
C_72	100000	-2.4600	1.5783	-5.5478	0.6514
C_73	100000	-2.4789	1.5828	-5.5331	0.6650
C_74	100000	-2.8418	1.5880	-6.0362	0.1929
C_75	100000	-3.1452	1.5699	-6.2660	-0.0901
C_76	100000	-2.5620	1.5944	-5.6573	0.6148
C_77	100000	-2.4734	1.5786	-5.5971	0.5844
C_78	100000	-2.8746	1.5732	-5.9304	0.2417
C_79	100000	-3.2231	1.5761	-6.2723	-0.0921
C_80	100000	-2.6151	1.5736	-5.6970	0.4759
C_81	100000	-2.5746	1.5785	-5.6810	0.5147
C_82	100000	-3.0702	1.5736	-6.1050	0.0459
C_83	100000	-3.4023	1.5827	-6.5187	-0.3108
C_84	100000	-2.6768	1.5748	-5.6862	0.4860
C_85	100000	-2.6499	1.5727	-5.7397	0.4215
C_86	100000	-3.0224	1.5835	-6.1387	0.0733
C_87	100000	-3.2810	1.5772	-6.3675	-0.1925

	Posterior Summaries and Intervals for Prediction					
Parameter	N	Mean	Standard Deviation	9:	5% HPD Interval	
C_88	100000	-2.5801	1.5774	-5.6556	0.5214	
C_89	100000	-2.5879	1.5805	-5.7417	0.4600	
C_90	100000	-3.0037	1.5747	-6.1079	0.0643	
C_91	100000	-3.2282	1.5729	-6.3123	-0.1296	
C_92	100000	-2.5867	1.5729	-5.6998	0.4762	
C_93	100000	-2.5815	1.5809	-5.6893	0.4957	
C_94	100000	-3.0002	1.5794	-6.1064	0.0915	
C_95	100000	-3.3576	1.5784	-6.3625	-0.1840	
C_96	100000	-2.6683	1.5802	-5.7388	0.4413	
C_97	100000	-2.7068	1.5780	-5.8197	0.3686	
C_98	100000	-3.0760	1.5737	-6.2158	-0.0390	
C_99	100000	-3.6861	1.5930	-6.8302	-0.5873	
C_100	100000	-3.1157	1.6403	-6.2934	0.1245	
C_101	100000	-3.1130	2.4696	-7.9950	1.6276	
C_102	100000	-3.4260	2.8991	-9.2436	2.0972	
C_103	100000	-3.7443	3.2551	-10.2415	2.4024	
C_104	100000	-3.1529	3.5388	-10.1918	3.6677	
C_105	100000	-3.0946	3.9177	-10.9139	4.5433	
C_106	100000	-3.4304	4.2191	-11.8424	4.6655	
C_107	100000	-3.7470	4.5164	-12.6463	5.0729	
C_108	100000	-3.0906	4.7834	-12.4284	6.3380	

In [6]: proc contents data=posterior;
run;

The CONTENTS Procedure

The state of the s			
Data Set Name	WORK.POSTERIOR	Observations	100000
Member Type	DATA	Variables	245
Engine	V9	Indexes	0
Created	06/03/2024 15:36:35	Observation Length	1960
Last Modified	06/03/2024 15:36:35	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64, LINUX_POWER_64		
Encoding	utf-8 Unicode (UTF-8)		

	Engine/Host Dependent Information
Data Set Page Size	131072
Number of Data Set Pages	1516
First Data Page	1
Max Obs per Page	66
Obs in First Data Page	50
Number of Data Set Repairs	0
Filename	/opt/sas/v4e043/config/var/tmp/workspaceserver/defau
Release Created	V.0305M0
Host Created	Linux
Inode Number	3889817666
Access Permission	rw-rr
Owner Name	Danny.Modlin@sas.com

Engine/Host Dependent Informatio			
190MB	File Size		
198836224	File Size (bytes)		

Alphabetic List of Variables and Attributes						
Label	Format	Len	Туре	Variable	#	
	D8.	8	Num	C_101	233	
	D8.	8	Num	C_102	234	
	D8.	8	Num	C_103	235	
	D8.	8	Num	C_104	236	
	D8.	8	Num	C_105	237	
	D8.	8	Num	C_106	238	
	D8.	8	Num	C_107	239	
	D8.	8	Num	C_108	240	
	8.	8	Num	Iteration	1	
Log-Likelihood Value	D8.	8	Num	LogLike	244	
Log Density for Missing Values	D8.	8	Num	LogMiss	243	
Log Posterior Density	D8.	8	Num	LogPost	245	
Log Prior Density	D8.	8	Num	LogPrior	241	
Log Random- Effects Prior Density	D8.	8	Num	LogReff	242	
	D8.	8	Num	alpha0	2	
	D8.	8	Num	alpha_1	13	
	D8.	8	Num	alpha_2	14	
	D8.	8	Num	alpha_3	15	

Alphabetic List of Variables					
#	Variable	Туре	Len	Format	Label
16	alpha_4	Num	8	D8.	
17	alpha_5	Num	8	D8.	
18	alpha_6	Num	8	D8.	
19	alpha_7	Num	8	D8.	
20	alpha_8	Num	8	D8.	
21	alpha_9	Num	8	D8.	
22	alpha_10	Num	8	D8.	
23	alpha_11	Num	8	D8.	
24	alpha_12	Num	8	D8.	
25	alpha_13	Num	8	D8.	
26	alpha_14	Num	8	D8.	
27	alpha_15	Num	8	D8.	
28	alpha_16	Num	8	D8.	
29	alpha_17	Num	8	D8.	
30	alpha_18	Num	8	D8.	
31	alpha_19	Num	8	D8.	
32	alpha_20	Num	8	D8.	
33	alpha_21	Num	8	D8.	
34	alpha_22	Num	8	D8.	
35	alpha_23	Num	8	D8.	
36	alpha_24	Num	8	D8.	
37	alpha_25	Num	8	D8.	
38	alpha_26	Num	8	D8.	
39	alpha_27	Num	8	D8.	
40	alpha_28	Num	8	D8.	
41	alpha_29	Num	8	D8.	

		Alphabeti	Alphabetic List of Variables and Attribute		
#	Variable	Туре	Len	Format	Label
42	alpha_30	Num	8	D8.	
43	alpha_31	Num	8	D8.	
44	alpha_32	Num	8	D8.	
45	alpha_33	Num	8	D8.	
46	alpha_34	Num	8	D8.	
47	alpha_35	Num	8	D8.	
48	alpha_36	Num	8	D8.	
49	alpha_37	Num	8	D8.	
50	alpha_38	Num	8	D8.	
51	alpha_39	Num	8	D8.	
52	alpha_40	Num	8	D8.	
53	alpha_41	Num	8	D8.	
54	alpha_42	Num	8	D8.	
55	alpha_43	Num	8	D8.	
56	alpha_44	Num	8	D8.	
57	alpha_45	Num	8	D8.	
58	alpha_46	Num	8	D8.	
59	alpha_47	Num	8	D8.	
60	alpha_48	Num	8	D8.	
61	alpha_49	Num	8	D8.	
62	alpha_50	Num	8	D8.	
63	alpha_51	Num	8	D8.	
64	alpha_52	Num	8	D8.	
65	alpha_53	Num	8	D8.	
66	alpha_54	Num	8	D8.	
67	alpha_55	Num	8	D8.	

		c List of Variables and Attributes			
#	Variable	Туре	Len	Format	Label
68	alpha_56	Num	8	D8.	
69	alpha_57	Num	8	D8.	
70	alpha_58	Num	8	D8.	
71	alpha_59	Num	8	D8.	
72	alpha_60	Num	8	D8.	
73	alpha_61	Num	8	D8.	
74	alpha_62	Num	8	D8.	
75	alpha_63	Num	8	D8.	
76	alpha_64	Num	8	D8.	
77	alpha_65	Num	8	D8.	
78	alpha_66	Num	8	D8.	
79	alpha_67	Num	8	D8.	
80	alpha_68	Num	8	D8.	
81	alpha_69	Num	8	D8.	
82	alpha_70	Num	8	D8.	
83	alpha_71	Num	8	D8.	
84	alpha_72	Num	8	D8.	
85	alpha_73	Num	8	D8.	
86	alpha_74	Num	8	D8.	
87	alpha_75	Num	8	D8.	
88	alpha_76	Num	8	D8.	
89	alpha_77	Num	8	D8.	
90	alpha_78	Num	8	D8.	
91	alpha_79	Num	8	D8.	
92	alpha_80	Num	8	D8.	
93	alpha_81	Num	8	D8.	

	Alphabetic Lis				s and Attributes
#	Variable	Туре	Len	Format	Label
94	alpha_82	Num	8	D8.	
95	alpha_83	Num	8	D8.	
96	alpha_84	Num	8	D8.	
97	alpha_85	Num	8	D8.	
98	alpha_86	Num	8	D8.	
99	alpha_87	Num	8	D8.	
100	alpha_88	Num	8	D8.	
101	alpha_89	Num	8	D8.	
102	alpha_90	Num	8	D8.	
103	alpha_91	Num	8	D8.	
104	alpha_92	Num	8	D8.	
105	alpha_93	Num	8	D8.	
106	alpha_94	Num	8	D8.	
107	alpha_95	Num	8	D8.	
108	alpha_96	Num	8	D8.	
109	alpha_97	Num	8	D8.	
110	alpha_98	Num	8	D8.	
111	alpha_99	Num	8	D8.	
112	alpha_100	Num	8	D8.	
113	alpha_101	Num	8	D8.	
114	alpha_102	Num	8	D8.	
115	alpha_103	Num	8	D8.	
116	alpha_104	Num	8	D8.	
117	alpha_105	Num	8	D8.	
118	alpha_106	Num	8	D8.	
119	alpha_107	Num	8	D8.	

			Alphabetic List of Variables and Attribute				
#	Variable	Туре	Len	Format	Label		
120	alpha_108	Num	8	D8.			
3	mu0	Num	8	D8.			
125	mu_1	Num	8	D8.			
126	mu_2	Num	8	D8.			
127	mu_3	Num	8	D8.			
128	mu_4	Num	8	D8.			
129	mu_5	Num	8	D8.			
130	mu_6	Num	8	D8.			
131	mu_7	Num	8	D8.			
132	mu_8	Num	8	D8.			
133	mu_9	Num	8	D8.			
134	mu_10	Num	8	D8.			
135	mu_11	Num	8	D8.			
136	mu_12	Num	8	D8.			
137	mu_13	Num	8	D8.			
138	mu_14	Num	8	D8.			
139	mu_15	Num	8	D8.			
140	mu_16	Num	8	D8.			
141	mu_17	Num	8	D8.			
142	mu_18	Num	8	D8.			
143	mu_19	Num	8	D8.			
144	mu_20	Num	8	D8.			
145	mu_21	Num	8	D8.			
146	mu_22	Num	8	D8.			
147	mu_23	Num	8	D8.			
148	mu_24	Num	8	D8.			

d Attributes	Alphabetic List of Variables and Attrib					
Label	Format	Len	Туре	Variable	#	
	D8.	8	Num	mu_25	149	
	D8.	8	Num	mu_26	150	
	D8.	8	Num	mu_27	151	
	D8.	8	Num	mu_28	152	
	D8.	8	Num	mu_29	153	
	D8.	8	Num	mu_30	154	
	D8.	8	Num	mu_31	155	
	D8.	8	Num	mu_32	156	
	D8.	8	Num	mu_33	157	
	D8.	8	Num	mu_34	158	
	D8.	8	Num	mu_35	159	
	D8.	8	Num	mu_36	160	
	D8.	8	Num	mu_37	161	
	D8.	8	Num	mu_38	162	
	D8.	8	Num	mu_39	163	
	D8.	8	Num	mu_40	164	
	D8.	8	Num	mu_41	165	
	D8.	8	Num	mu_42	166	
	D8.	8	Num	mu_43	167	
	D8.	8	Num	mu_44	168	
	D8.	8	Num	mu_45	169	
	D8.	8	Num	mu_46	170	
	D8.	8	Num	mu_47	171	
	D8.	8	Num	mu_48	172	
	D8.	8	Num	mu_49	173	
	D8.	8	Num	mu_50	174	

Alphabetic List of Variables					s and Attributes
#	Variable	Туре	Len	Format	Label
175	mu_51	Num	8	D8.	
176	mu_52	Num	8	D8.	
177	mu_53	Num	8	D8.	
178	mu_54	Num	8	D8.	
179	mu_55	Num	8	D8.	
180	mu_56	Num	8	D8.	
181	mu_57	Num	8	D8.	
182	mu_58	Num	8	D8.	
183	mu_59	Num	8	D8.	
184	mu_60	Num	8	D8.	
185	mu_61	Num	8	D8.	
186	mu_62	Num	8	D8.	
187	mu_63	Num	8	D8.	
188	mu_64	Num	8	D8.	
189	mu_65	Num	8	D8.	
190	mu_66	Num	8	D8.	
191	mu_67	Num	8	D8.	
192	mu_68	Num	8	D8.	
193	mu_69	Num	8	D8.	
194	mu_70	Num	8	D8.	
195	mu_71	Num	8	D8.	
196	mu_72	Num	8	D8.	
197	mu_73	Num	8	D8.	
198	mu_74	Num	8	D8.	
199	mu_75	Num	8	D8.	
200	mu_76	Num	8	D8.	

			Alphabetic List of Variables and Attributes				
#	Variable	Туре	Len	Format	Label		
201	mu_77	Num	8	D8.			
202	mu_78	Num	8	D8.			
203	mu_79	Num	8	D8.			
204	mu_80	Num	8	D8.			
205	mu_81	Num	8	D8.			
206	mu_82	Num	8	D8.			
207	mu_83	Num	8	D8.			
208	mu_84	Num	8	D8.			
209	mu_85	Num	8	D8.			
210	mu_86	Num	8	D8.			
211	mu_87	Num	8	D8.			
212	mu_88	Num	8	D8.			
213	mu_89	Num	8	D8.			
214	mu_90	Num	8	D8.			
215	mu_91	Num	8	D8.			
216	mu_92	Num	8	D8.			
217	mu_93	Num	8	D8.			
218	mu_94	Num	8	D8.			
219	mu_95	Num	8	D8.			
220	mu_96	Num	8	D8.			
221	mu_97	Num	8	D8.			
222	mu_98	Num	8	D8.			
223	mu_99	Num	8	D8.			
224	mu_100	Num	8	D8.			
225	mu_101	Num	8	D8.			
226	mu_102	Num	8	D8.			

d Attributes	List of Variables an	Alphabetic			
Label	Format	Len	Туре	Variable	#
	D8.	8	Num	mu_103	227
	D8.	8	Num	mu_104	228
	D8.	8	Num	mu_105	229
	D8.	8	Num	mu_106	230
	D8.	8	Num	mu_107	231
	D8.	8	Num	mu_108	232
	D8.	8	Num	phi	12
	D8.	8	Num	s0	4
	D8.	8	Num	s1	5
	D8.	8	Num	s2	6
	D8.	8	Num	s_1	121
	D8.	8	Num	s_2	122
	D8.	8	Num	s_3	123
	D8.	8	Num	s_4	124
	D8.	8	Num	theta1	7
	D8.	8	Num	theta2	8
	D8.	8	Num	theta3	9
	D8.	8	Num	theta4	10
	D8.	8	Num	theta_phi	11

		_ [
In [l :	
	-	1.	