

SWE 2029 - Agile Development Process

Module – 2 Agile Processes

Dr. Rajesh M School of Computer Science and Engineering Vellore Institute of Technology [VIT] Chennai, India.

Module	Topics	L Hrs
2	AGILE PROCESSES: Key Process Areas in CMM — Quality Improvement Six Sigma: Six Sigma Overview, DMAIC - Define, Measure, Analyze, Improve, Control; DMADV - Define, Measure, Analyze, Design, Verify; Lean: Lean Overview, Lean Principles, Lean Rules, Lean Implementation - The 8 Forms of Waste; Lean Tools - 5 Why's, Pareto	6

Process Improvements

- Need of continuous improvement in development and management of software products;
- Software Process Improvement (SPI) is one way; SPI Assumption:
- There exists a "Process";
- That describes,
 - ☐ How the software is developed?
 - How the development is managed?
- By improving the process, quality of software gets improved;

CMMI

- Many organization started using CMMI;
- Collection of best practices;
- Practices are arranged into "process areas";
- Each process area has defined goals that need to be satisfied;
- Set of practices that can be implemented to reach the goals.

CMMI Model: Representation

CMMI Model: Representation:

- Staged
- Continuous

<u>Staged:</u>

- Process improvement is implemented using 5 maturity levels;
- Each level (except level 1) has a set of process areas.
- Staged implies organisation is improved in steps from maturity level 1 to
 5.

CMMI Model: Representation

Continuous:

- An Organization can pick those process areas that would bring the biggest benefits, and implement the practices from those process areas to improve capabilities of the organization;
- Need to have basic insight information;

Why Agile Process Improvement?

Reason to become more agile when doing Process Improvement:

- From a business point of view it is important to be able to adopt process improvement programs to the changing business needs;
- Improve the collaboration;
- Focus on deployment;

Agile Process Improvements - Benefits

- Being able to deliver the right product with high quality, using frequent feedback;
- Understanding the strengths & weaknesses of our processes, and the business values;
- Alignment and streamlining of processes;
- Efficient ways for professionals to work together in a dispersed team;

CMMI & KPA

Level	Focus	Key Process Area	Result
50ptimizing 40uantitatively Managed	Continuous Process Improvement Quantitatively Managed	Organizational Innovation and Deployment Causal Analysis and Resolution Organizational Process Performance Quantitative Project Management	Highest Quality / Lowest Risk Higher Quality / Lower Risk
		Requirements Development Technical Solution Product Integration Verification Validation Organizational Process Focus	Medium Quality /
3Define d	Process Standardization Organizational Process Definition	Organizational Training Integrated Project Mgmt (with IPPD extras) Risk Management Decision Analysis and Resolution Integrated Teaming (IPPD only) Org. Environment for Integration (IPPD only)	Medium Risk
2Repeatable Ba	sic Project Management	Integrated Supplier Management (SS only) Requirements Management Project Planning Project Monitoring and Control Supplier Agreement Management Measurement	Low Quality / High Risk
llnitial	Process is informal and Adhoc	and Analysis Process and Product Quality Assurance Configuration Management SWE2029-Agile-Module-2.2-Dr. Rajesh M_SCOPE@VIT Chennai	Lowest Quality /

SIX SIGMA

Six Sigma

- Six Sigma is a methodology for pursuing <u>continuous improvement</u> in <u>customer satisfaction</u> and <u>profit</u>.
- Is a management philosophy attempting to <u>improve effectiveness</u> and efficiency.
- Is highly disciplined process that helps to focus on developing and delivering near-perfect products and services.

Six Sigma - Features

- Aim is to eliminate waste and inefficiency, thereby increasing customer satisfaction by delivering what the customer is expecting.
- Follows a structured methodology, and has defined roles for the participants.
- Six Sigma is a data driven methodology, requires accurate data collection for the processes being analyzed.

Six Sigma is a business-driven, multi-dimensional structured approach for:

- Improving Processes
- Lowering Defects
- Reducing process variability
- Reducing costs
- Increasing customer satisfaction
- Increased profits

<u>Sigma:</u>

 Is a statistical term that measures how far a given process deviates from perfection.

Central idea behind Six Sigma:

If you can measure how many "defects" you have in a process, you can systematically figure out how to eliminate them and get as close to "zero defects".

Six Sigma – Key Concepts

Six Sigma - Key Concepts:

- Critical to Quality: Attributes most important to the customer.
- <u>Defect</u>: Failing to deliver what the customer wants.
- Process Capability: What your process can deliver.

Six Sigma – Key Concepts

- Variation: What the customer sees and feels.
- Stable Operations: Ensuring consistent, predictable processes to improve what the customer sees and feels.
- Design for Six Sigma: Designing to meet customer needs and process capability.

Six Sigma - Myths

<u>Six Sigma – Myths:</u>

- Six Sigma is only concerned with reducing defects.
- Six Sigma is a process for production or engineering.
- Six Sigma cannot be applied to engineering activities.
- Six Sigma uses difficult-to-understand statistics.
- Six Sigma is just training.

Six Sigma - Key Elements

<u>Six Sigma - Key Elements:</u>

- Customers
- Processes
 - Define processes; as well metrics and measures;
 - Quality should look from customer's perspective;
- Employees
 - All should get involve;
 - ☐ All team members should have defined role;

Six Sigma – Roles & Responsibilities

Six Sigma – Roles & Responsibilities

Six Sigma - Roles & Responsibilities:

1. Leadership

- Defines the goals and objectives in the Six Sigma process;
- Six Sigma council sets the goals to be met by the team;

<u>Leadership – Responsibilities:</u>

- Defines the purpose of the Six Sigma program
- Explains how the result is going to benefit the customer
- Sets a schedule for work and interim deadlines
- Support team members

2. Sponsor

 Are high-level individuals who understand Six Sigma and are committed to its success.

□ ls a **problem solver**

Are the owners of processes and systems;

3. Implementation Leader

- Responsible for <u>supervising</u> the Six Sigma team effort;
- Ensuring that work is completed in the desired manner;
- Ensuring success of implementation plan and solving problems;
- Arrange for training as needed;

4. Coach

- Coach is Six Sigma expert or consultant
- Is one who sets a schedule, defines result of a project, and who mediates conflict;

5. Team Leader

An individual responsible for overseeing the work of the team;

Responsibilities:

- Communication with the sponsor in defining goals;
- Picking and assisting team members;
- Keep track of schedule & process steps;

6. Team Member

Who works on Six Sigma project;

Have specific duties within a project, and has associated deadlines.

7. Process Owner

 The individual who takes on responsibility for a process after a Six Sigma team has completed its work.

Six Sigma - Belts

Six Sigma - Belts

<u>Six Sigma – Belts:</u>

 Belt names are a tool for defining levels of expertise and experience.

<u>Black Belt:</u>

- Has achieved the highest skill level and expert in various techniques.
- Should have completed a thorough training program and has the experience working on several projects.
- Given the role of a team leader, responsible for execution and scheduling tasks.

Master Black Belt:

Deals with the team;

Equivalent to the role played by the coach;

Green Belt:

Belong to team leader or to a member of the team working directly with the team leader.

Is less experienced than a Black Belt;

Is Six Sigma Right for You?

Is the strategic goal clear for the company?
Is the business healthy enough to meet the expectations of analysts and investors?
Is there a strong theme or vision for the future of the organization that is well understood and consistently communicated?
If the organization good at responding effectively and efficiently to new circumstances?
Evaluating the overall business results.
Evaluating how effectively are we operating.
How effective are your current improvement and change management system is?
How well are your cross-functional processes managed?

The Cost of Six Sigma Implementation

- Direct Payroll for the full time individuals.
- Indirect Payroll for the time devoted by executives, team members, process owners and others, involved in activities like data gathering and measurement.
- Training and Consultation fee to teach Six Sigma Skills and getting advice on how to make efforts successful.

Improvement Implementation Cost.

Six Sigma Start-up

- Deploying Six Sigma within an organization is a big step;
- Some steps which are required for an organization at the time of starting Six Sigma implementation.
 - ☐ Plan your own route
 - Define your objective
 - ☐ Stick to what is feasible
 - □ Preparing Leaders
 - Training the organization
 - ☐ Piloting Six Sigma effort

Project Selection for Six Sigma

<u>Top-down:</u>

Generally tied to business strategy and is aligned with customer needs.

Bottom-up:

In this approach, Black Belts choose the projects that are well-suited for the capabilities of teams.

Six Sigma Methodology

Six Sigma Methodology

Six Sigma has two key methodologies:

- <u>DMAIC</u>: It refers to a data-driven quality strategy for improving processes. This methodology is used to improve an existing business process.
- <u>DMADV</u>: It refers to a data-driven quality strategy for designing products & processes. This methodology is used to create new product designs or process designs.

DFSS - Design For Six Sigma.

DFSS is a data-driven quality strategy for designing or redesigning a product or service.

DMAIC Methodology

DMAIC Methodology:

Define --> Measure --> Analyze --> Improve --> Control

- Define: Define the problem or project goal that needs to be addressed.
- Measure: Measure the problem and process from which it was produced.
- Analyze: Analyze data and process to determine root causes of defects.

- Improve: Improve the process by finding solutions to fix, diminish, and prevent future problems.
- <u>Control</u>: Implement, control, and sustain the improvements solutions to keep the process on the new course.

DMADV Methodology

DMADV Methodology

This methodology consists of five steps:

Define --> Measure --> Analyze --> Design --> Verify

- <u>Define</u>: Define the Problem or Project Goal that needs to be addressed.
- Measure: Measure and determine customers needs and specifications.
- Analyze: Analyze the process to meet the customer needs.

- Design: Design a process that will meet customers needs.
- Verify: Verify the design performance and ability to meet customer needs.

DFSS Methodology

DFSS Methodology

This methodology can have the following five steps.

Define --> Identify --> Design --> Optimize --> Verify

- Define: Define what the customers want, or what they do not want.
- Identify: Identify the customer.
- Design: Design a process that meets customers needs.

Optimize: Determine process capability and optimize the design.

Verify: Test, verify, and validate the design.

Six Sigma - DMAIC's Different Phases

Six Sigma - Define Phase

Six Sigma - Define Phase:

- Project team formation
- Document Customers Business Processes
- Develop a Project Charter
- Develop the SIPOC process map

Conclusion:

 ${\scriptscriptstyle
ightarrow}$ We know who the customer / end-user is and their requirements.

Six Sigma – Measure Phase

<u>Six Sigma - Measure Phase:</u>

Overall business process performance is measured;

Key set of activities involved are:

- Data Collection Plan and Data Collection
- Data Evaluation
- Failure Mode and Effects Analysis FMEA
 - Preventing defects before it occurs

Six Sigma - Analyze Phase

- Aim is to define the cause of defects, measure those defects, and analyze them so that they can be reduced.
- Source Analysis
- Process Analysis
- Data Analysis
- □ Resource Analysis
- □ Communication Analysis

Six Sigma - Improve Phase

Six Sigma - Improve Phase:

- Identify improvement break-through,
- Identify other alternatives,
- Select preferred approach,
- Design the future state,
- Determine the new Sigma level,
- Perform cost/benefit analysis and
- Create a preliminary implementation plan.

Six Sigma - Control Phase

- Quality Control
- Standardization
- Responding when defects cccurs

References

K.S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile Process Addison-Wesley, 2012.
M. Cohn, Succeeding with Agile: Software Development Using Scrum, Addison-Wesley 2009
S.W. Ambler, M. Lines, Disciplined Agile Delivery: A Practitioner's Guide to Agil Software Delivery in the Enterprise, IBM Press, 2012.
Chetankumar Patel, Muthu Ramachandran, Story Card Maturity Model (SMM): A Proces Improvement Framework for Agile Requirements Engineering Practices, Journal of Software, Academy Publishers, Vol 4, No 5 (2009), 422-435, Jul 2009.
Kevin C. Desouza, Agile information systems: conceptualization, construction, an management, Butterworth-Heinemann, 2007
K. Beck, C. Andres, Extreme Programming Explained: Embrace Change, 2nd Edition Addison-Wesley, 2004.

Thank You!