

Analysis meeting: tracking comparison

Electron selection

SD = comes out from GEANT 4 = SIMULATED PTD = after trackfit (& cat) applied = RECONSTRUCTED

Electron selection

SD = comes out from GEANT 4 = SIMULATED

Conditions:

- e- (tag from GEANT4)
- 2 vertices
 - 1 on OM (material change)
 - o 1 on source foil

PTD = after trackfit (& cat) applied = RECONSTRUCTED

Conditions:

- Charged particle that hit an OM
- 2 vertices
 - 1 on OM -> square of 200*200 mm^2
 - 1 on source foil -> ellipse of 2.5*3 cm^2

SD = comes out from GEANT 4
= SIMULATED We have 3 cases:

PTD = after trackfit (& cat) applied = RECONSTRUCTED

- Number electron PTD > SD
- Number electron PTD < SD
- Number electron PTD = SD

More reconstructed tracks than simulated

Number of e-: PTD > SD

More reconstructed tracks than

Occurs when tracks are linea simulated

Granjon Mathis

5

Number of e-: PTD > SD

More reconstructed tracks than simulated

Occurs when tracks are linea

Number of e-: PTD > SD

Problem can be solved after with physics

SD = comes out from GEANT 4

= SIMULATED We have 3 cases:

PTD = after trackfit (& cat) applied = RECONSTRUCTED

- Number electron PTD > SD
- Number electron PTD < SD
- Number electron PTD = SD

More reconstructed tracks than

Som are constructed tracks are

missing

8

Number of e-: PTD < SD

Some reconstructed tracks are

3 cases Kinked

: tracks

Some example of kinked tracks

Number of e-: PTD < SD

Some reconstructed tracks are

3 cases

.

Kinked

tracks

Unassociate

d calorimeter

Unassociated calorimeters -> to be

Unassociated = white

2 reasons:

- Kinked tracks
- Scattering on calorimeter

Number of e-: PTD < SD

Some reconstructed tracks are

3 cases

.

Kinked

tracks

Unassociate 2 SD tracks are too

d calorimeter close

2 closes simulated tracks

Trackfit choose one on them or fit between the two

14


```
SD = comes out from
                                   PTD = after trackfit (& cat)
GEANT 4
                                   applied
= SIMbbootevents
                                   ₹ R 7333 events detected
     simulated

    Number electron PTD > SD

                                      11.8 %

    Number electron PTD < SD</li>

      Kinked tracks
                                 ~ 40 %

    ○ Unassociated calorimeter ~ 40 %

      2 SD tracks too close
```

cnrs

76.6 %

SD = comes out from GEANT 4
= SIMULATED We have 3 cases:

PTD = after trackfit (& cat) applied = RECONSTRUCTED

Number electron PTD > SD

More reconstructed tracks than

Number electron PTD < SD

Some reconstructed tracks are

Number electron PTD = SD

Wissiag compare distribution

Vertex distribution on calorimeter

Delta z vertex on calorimeter between

Delta y vertex on calorimeter between SD

Vertex distribution on calorimeter

Delta z vertex on calorimeter between

Delta y vertex on calorimeter between SD

Vertex on X_wall have the same y!

Vertex distribution on source foil

Calibration source

Vertex distribution on source foil

Delta z vertex on source foil between SD and PTD

Delta y vertex on source foil between SD and PTD

