Théorie de Galois

Marc SAGE

Table des matières

1	Intr	roduction	2
	1.1	Prolongements d'isomorphismes aux corps de décomposition	2
	1.2	Groupe de Galois	4
	1.3	Morphisme de Frobenius	4
	1.4	Polynômes séparables	4
	1.5	Corps parfaits	6
	1.6	Corps finis	6
		1.6.1 Rappels	6
		1.6.2 Cyclicité de Gal $(\mathbb{F}_q/_{\mathbb{F}_p})$	7
		1.6.3 Extensions intermédiaires	7
	1.7	Clôture algébrique de \mathbb{F}_q	9
	1.8	Théorème de Lüroth	9
2			12
	2.1		12
			12
		•	13
			14
	2.2		15
	2.3		17
	2.4	1	18
	2.5		19
	2.6	Exemples	20
		2.6.1 Racines de l'unités – Extensions cyclotomiques	
		2.6.2 Polynômes symétriques – Discriminant	
		2.6.3 Extension cycliques	25
3	Dág	solubilité par radicaux	27
J	3.1	Extensions composées	
	$\frac{3.1}{3.2}$	Calcul de Gal $\binom{L_1L_2}{K}$ en fonction de Gal $\binom{L_1}{K}$ et Gal $\binom{L_2}{K}$	21
	$\frac{3.2}{3.3}$	Construction de la théorie des groupes : produit fibré	29
	5.5	Construction de la théorie des groupes : produit indre :	29
4	Calcul du groupe de Galois d'un polynôme $P \in \mathbb{Z}[X]$ via la réduction modulo p		32
	4.1	Lecture de $\operatorname{Gal}_{\mathbb{Q}} P$ dans la décomposition de P en facteurs irréductibles	32
	4.2	Réduction modulo p	
		4.2.1 Construction d'un corps de décomposition de P	
		4.2.2 Injection de $\operatorname{Gal}_{\mathbb{F}_p} \overline{P}$ dans $\operatorname{Gal}_{\mathbb{Q}} P$	
		4.2.3 Recherche de facteurs irréductibles	

1 Introduction

1.1 Prolongements d'isomorphismes aux corps de décomposition

Définition.

Soit K un corps, $P \in K[X]$.

Un corps de décomposition de P est une extension L de K telle que

$$\left\{ \begin{array}{c} P \ est \ scind\'e \ sur \ L \\ L \ engendr\'e \ par \ les \ racines \ de \ P \end{array} \right..$$

Proposition (rappel).

Un corps de décomposition existe toujours, et est unique à isomorphisme près.

Proposition (prolongement d'isomorphismes aux corps de décomposition).

Soit $\sigma: K_1 \longrightarrow K_2$ un isomorphisme de corps. Soit $P_1 \in K_1[X]$, et $P_2 \in K_2[X]$ le polynôme obtenu via σ , et $\begin{cases} L_1 \text{ le corps de décomposition de } P_1 \text{ sur } K_1 \\ L_2 \text{ le corps de décomposition de } P_2 \text{ sur } K_2 \end{cases}$. Alors il existe un isomorphisme $\widetilde{\sigma}: L_1 \longrightarrow L_2$ qui prolonge σ .

$$\begin{array}{ccc} K_1 & \hookrightarrow & L_1 \\ \downarrow \sigma & & \downarrow \widetilde{\sigma} \\ K_2 & \hookrightarrow & L_2 \end{array},$$

le nombre ν de tels isomorphismes vérifie

$$\nu \leq [L_1:K_1],$$

et si P₁ est scindé simple dans L₁, on a l'égalité

$$\nu = [L_1 : K_1].$$

Démonstration.

On fait alors une récurrence sur $d = [L_1 : K_1]$.

- Si d=1, i.e. si $K_1=L_1$, ce qui revient à dire que P_1 a toutes ses racines dans K_1 , alors $\begin{cases} L_1=K_1 \\ L_2=K_2 \end{cases}, \text{ et }$ vaut nécessairement σ . On a alors bien $\nu=1=[L_1,K_1].$
 - Soit d > 1, et supposons la proposition vraie pour tous les extensions (de décomposition) de degré < d. Si P_1 est scindé sur K_1 , alors $L_1 = K_1$ et d = 1, absurde. P_1 peut donc s'écrire dans $K_1[X]$ comme

$$P_1 = Q_1 \Omega_1$$

où Q_1 est un facteur irréductible de P_1 sur K_1 de degré $2 \le \deg Q_1 < \deg P_1$; notons Q_2 son image dans $K_2[X]$. Dans $L_1[X]$, on a alors

$$\left\{ \begin{array}{l} P_1 = \prod_{i=0}^r \left(X - \lambda_i \right) \\ Q_1 = \prod_{i=0}^s \left(X - \lambda_i \right) \end{array} \right., 1 \leq s \leq r,$$

et dans $L_2[X]$ on a

$$\left\{ \begin{array}{l} P_2 = \prod_{i=0}^r \left(X - \mu_i \right) \\ Q_2 = \prod_{i=0}^s \left(X - \mu_i \right) \end{array} \right., 1 \le s \le r.$$

Le point à remarquer est que tout prolongement $\tilde{\sigma}$ de σ à L_1 envoie les racines de Q_1 sur celles de Q_2 . En effet, on a

$$\Pi_{i=0}^{s}\left(X-\mu_{i}\right)=Q_{2}=\sigma\left(Q_{1}\right)=\widetilde{\sigma}\left(Q_{1}\right)=\widetilde{\sigma}\left(\Pi_{i=0}^{s}\left(X-\lambda_{i}\right)\right)=\Pi_{i=0}^{s}\widetilde{\sigma}\left(X-\lambda_{i}\right)=\Pi_{i=0}^{s}\left(X-\widetilde{\sigma}\left(\lambda_{i}\right)\right),$$

donc nécessairement $\widetilde{\sigma}(\lambda_0)$ est un μ_i où $0 \le i \le s$.

Soit donc

$$K_1' = K_1[\lambda_0] \hookrightarrow K_1[\lambda_0, ..., \lambda_r] = L_1,$$

avec $[K'_1:K_1]=\deg \lambda_0$; or Q_1 est un polynôme irréductible sur K_1 qui annule λ_0 , donc Q_1 est le polynôme minimal de λ_0 sur K_1 . On en déduit $\deg \lambda_0=\deg Q_1$, d'où

$$[K_1':K_1]=\deg Q_1>1.$$

Pour chaque racine distincte μ_i de Q_2 , on définit un morphisme

$$\sigma_{i}: \left\{ \begin{array}{ccc} K_{1}' = K_{1} \left[\lambda_{0} \right] & \longrightarrow & L_{2} \\ x \in K_{1} & \longmapsto & \sigma \left(x \right) \\ \lambda_{0} & \longmapsto & \mu_{i} \end{array} \right.$$

par

$$\sigma_i: \left\{ \begin{array}{ccc} K_1' & \longrightarrow & L_2 \\ \sum a_n \lambda_0^n & \longmapsto & \sum \sigma\left(a_n\right) \mu_i^n \end{array} \right.$$

(remarquer au passage que σ_i prolonge σ). Soit alors

$$K_2' = \sigma_i(K_1') = \sigma_i(K_1[\lambda_0]) = K_2[\sigma_i(\lambda_0)] = K_2(\mu_i) \hookrightarrow L_2.$$

Résumons la situation :

$$\begin{array}{cccc} K_1 & \hookrightarrow & K_1' = K_1 \left[\lambda_0 \right] & \hookrightarrow & L_1 = K_1 \left[\lambda_0, ..., \lambda_r \right] \\ \downarrow \sigma & & \downarrow \sigma_i \\ K_2 & \hookrightarrow & K_2' = K_2 \left[\mu_i \right] & \hookrightarrow & L_2 = K_2 \left[\mu_0, ..., \mu_r \right] \end{array}$$

On va appliquer l'hypothèse de récurrence au morphisme $\sigma_i: K'_1 \longrightarrow K'_2$ et au polynôme P_1 . Il convient de vérifier les hypothèses.

 P_1 est scindé sur L_1 , et l'engendré de ses racines sur K'_1 vaut

$$K_{1}^{\prime}\left[\lambda_{0},...,\lambda_{r}\right]=K_{1}\left[\lambda_{0}\right]\left[\lambda_{0},...,\lambda_{r}\right]=K_{1}\left[\lambda_{0},\lambda_{0},...,\lambda_{r}\right]=K_{1}\left[\lambda_{0},\lambda_{1},...,\lambda_{r}\right]=L_{1},$$

donc L_1 est bien un corps de décomposition de P_1 sur K'_1 . De même, P_2 est scindé sur L_2 et

$$K_{2}'\left[\mu_{0},...,\mu_{r}\right]=K_{2}\left[\mu_{i}\right]\left[\mu_{0},...,\mu_{r}\right]=K_{2}\left[\mu_{0},...,\mu_{r}\right]=L_{2},$$

donc L_2 est bien un corps de décomposition de P_2 sur K'_2 . D'autre part, le degré de l'extension L_1 sur K'_1 vaut

$$[L_1:K_1'] = \frac{[L_1:K_1]}{[K_1':K_1]} = \frac{[L_1:K_1]}{\deg Q_1} < [L_1:K_1].$$

On peut donc récurrer : il existe un morphisme $\widetilde{\sigma}_i: L_1 \longrightarrow L_2$ qui prolonge σ_i , donc qui prolonge σ :

et leur nombre ν_i est au plus égal $[L_1:K_1']$.

Pour l'inégalité : si $\widetilde{\sigma}: L_1 \longrightarrow L_2$ est un prolongement de σ , alors $\widetilde{\sigma}(\lambda_0)$ est nécessairement un μ_i , donc $\widetilde{\sigma}_{|K_i'}$ est nécessairement un σ_i . Par conséquent, en notant

$$N = \# \{\mu_1, ..., \mu_s\} \leq \deg Q_2,$$

i.e. le nombre de racines **distinctes** de Q_2 , on a N choix pour σ_i (qui correspondent bien à des morphismes distincts, car $\left\{ \begin{array}{l} \sigma_i\left(\lambda_0\right) = \mu_i \\ \sigma_j\left(\lambda_0\right) = \mu_j \end{array} \right.$ sont distincts pour $i \neq j$). Par ailleurs, l'hypothèse de récurrence nous fournit au plus $[L_1:K_1']$ choix pour $\widetilde{\sigma_i}$ à i fixé. On a finalement au plus

$$N \times [L_1 : K_1'] = N \frac{[L_1 : K_1]}{\deg Q_1} \le \frac{\deg Q_2}{\deg Q_1} [L_1 : K_1] = [L_1 : K_1]$$

choix pour $\tilde{\sigma}$.

Enfin, si P_1 est scindé simple dans L_1 , on a égalité partout. En effet, Q_1 est alors scindé simple, donc on a $N = \deg Q_1$ choix pour i; comme de plus P_1 est scindé simple sur K'_1 , on a par hypothèse de récurrence $[L_1:K'_1]$ choix pour. $\widetilde{\sigma_i}$.

1.2 Groupe de Galois

Définition.

Soit $K \subset L$ deux corps. On appelle K-automorphisme de L tout automorphisme de L qui fixe K. On appelle groupe de Galois de L sur K l'ensemble des K-automorphismes de L. On le note

$$\operatorname{Gal}(^{L}/_{K}) = \{ \sigma \in \operatorname{Aut} L ; \forall a \in K, \sigma(a) = a \}.$$

Propriété.

Si L est un corps de décomposition d'un polynome P de K[X], alors

$$\left|\operatorname{Gal}\left(^{L}/_{K}\right)\right| \leq \left[L:K\right],$$

et si P est scindé simple sur L, il y a égalité.

Démonstration.

Puisqu'un K-automorphisme de L est un prolongement à L de l'identité sur K, on applique la proposition précédente à $K_1 = K_2 = K$ et $\sigma = \mathrm{Id}$.

1.3 Morphisme de Frobenius

Définition.

Soit K un corps de caractéristique p. On appelle morphisme de Frobenius le morphisme de corps :

$$\operatorname{Fr}: \left\{ \begin{array}{ccc} K & \longrightarrow & K \\ x & \longmapsto & x^p \end{array} \right.$$

On note son image

$$K^p = \{x^p \ où \ x \ d\'{e}crit \ K\}$$
.

Fr est bien un morphisme additif, étant donné que pour $i \wedge p = n$,

$$\binom{p}{i} = \frac{p}{i} \binom{p-1}{i-1} = pi^{-1} \binom{p-1}{i-1} \equiv 0 \ [p]$$

et donc que

$$\operatorname{Fr}(x+y) = (x+y)^p = x^p + \underbrace{\sum_{i=1}^{p-1} \binom{p}{i} x^i y^{n-i}}_{=0} + y^p = x^p + y^p.$$

1.4 Polynômes séparables

Définition.

Un polynôme de K[X] est dit séparable si toutes ses racines sont simples dans toute extension de K. Si $K \subset L$ est une extension algébrique, un élément x de L est dit séparable si son polynôme minimum est séparable.

Proposition (critère de séparabilité sans sortir du corps de base).

Un polynôme $P \in K[X]$ est séparable ssi il est premier avec sa dérivée :

$$P \ s\'{e}parable \iff P \wedge P' = 1.$$

Démonstration.

Si P n'est pas séparable, P a une racine double dans une extension L de K, donc $P \wedge P' \neq 1$ dans L[X], a fortiori dans K[X] puisque le pgcd est inchangé par extension de corps.

Réciproquement, si $P \wedge P' \neq 1$, alors P a une racine double dans un de ses corps de décomposition, donc n'est pas séparable.

Proposition (critère de séparabilité pour les polynôme irréductibles).

Soit $P \in K[X]$ irréductible. Alors P est séparable ssi $P' \neq 0$.

Démonstration.

Si P est irréductible sur K[X] et n'est pas séparable, alors P et P' ont (dans une extension de K) un facteur en commun non constant, qui ne peut être que P vu que P est irréductible, d'où $P \mid P'$, ce qui implique P' = 0 en prenant les degrés.

Réciproquement, $P'=0 \implies P \mid P' \implies P \wedge P'=P \neq 1 \implies P$ non scindé simple dans une clôture algébrique de K.

Proposition (factorisation de $X^p - a$).

Soit K de caractéristique p > 0, et $a \in K$.

• $Si \ a \in K^p$, alors $X^p - a$ se scinde en

$$X^p - a = \left(X - \sqrt[p]{a}\right)^p.$$

• Si $a \notin K^p$, alors $X^p - a$ est irréductible.

Démonstration.

- Évident car on est en caractéristique p.
- ullet Montrons la contraposée. Si $P=X^p-a$ n'est pas irréductible, soit Q un facteur irreductible de P, de sorte que

$$X^p - a = QR$$

avec $1 \leq \deg Q < p$. Soit b une racine de Q dans une extension appropriée de K. Alors

$$0 = QR(b) = P(b) = b^p - a,$$

d'où

$$X^{p} - a = X^{p} - b^{p} = (X - b)^{p}$$
,

donc $Q \mid (X - b)^p$, i.e. $Q = (X - b)^r$ pour un $1 \le r < p$. Puisque $Q \in K[X]$, son terme constant b^r est dans K; or p est premier, donc Bezout donne ur + vp = 1, d'où

$$b = (b^r)^u (b^p)^v \in K \implies a = b^p \in K^p.$$

Corollaire.

Dans $K = \mathbb{F}_p(T)$, le polynôme $P = X^p - T \in K[X]$ n'est pas séparable.

Démonstration.

Montrons déjà que P est irréductible sur $K = \mathbb{F}_p(T)$. D'après la proposition précédente, il suffit pour cela de montrer que $T \in K$ n'est pas une puissance de p dans K. Si c'était le cas, on aurait $T = \left(\frac{A}{B}\right)^p$ avec

$$\begin{cases} A = \sum_{i} a_i T^i \neq 0 \\ B = \sum_{i} b_i T^i \end{cases},$$

d'où
$$\left\{ \begin{array}{l} A^p = \sum_i a_i^p T^{pi} \\ B^p = \sum_i b_i^p T^{pi} \end{array} \right. \text{ et}$$

$$\sum_i a_i^p T^{pi} = A^p = TB^p = T\sum_i b_i^p T^{pi} = \sum_i b_i^p T^{pi+1},$$

absurde car $p \geq 2$.

Il reste à voir que P'=0, donc, d'après la dernière proposition, P ne peut être séparable.

1.5 Corps parfaits

Définition.

Un corps K est dit parfait si tout polynôme irréductible de K[X] est séparable.

Proposition (critère de perfection).

- $Si \operatorname{car} K = 0$, $alors K \operatorname{est parfait}$.
- $Si \operatorname{car} K = p > 0$, alors K est parfait ssi $K^p = K$, i.e. ssi Fr est surjectif.

Demonstration.

- \bullet Si car K=0, alors tout polynôme irréductible y est de degré au moins égal à 1, donc de dérivée non nulle, donc séparable.
- Si $K^p \subsetneq K$, soit $a \in K \setminus K^p$. Le polynôme $X^p a$ est alors irréductible (car $a \notin K^p$) et de dérivée nulle, donc n'est pas séparable et K ne peut être parfait.

Si $K^p = K$, soit $P \in K[X]$ irréductible. Si P n'était pas séparable, sa dérivée serait nulle. En posant $P = \sum_{k>0} a_k X^k$, on aurait

$$0 = P' = \sum_{k=1}^{n} a_k k X^{k-1},$$

d'où $a_k k = 0$ pour tout k et $a_k = 0$ pour $k \wedge p = 1. On en déduirait$

$$P = \sum_{j \ge 0} a_{pj} X^{jp} = \sum_{j \ge 0} \sqrt[p]{a_{pj}} X^{jp} = \left(\sum_{j \ge 0} \sqrt[p]{a_{pj}} X^j \right)^p$$

où l'un des a_{pj} est non nul (sinon P=0), absurde car P irréductible.

1.6 Corps finis

1.6.1 Rappels

Soit K un corps fini. Le morphisme $\begin{cases} \mathbb{Z} & \longrightarrow & K \\ n & \longmapsto & n \cdot 1_K \end{cases}$ ne saurait être injectif, donc son noyau est du type $a\mathbb{Z}$ avec $a \neq 0$. Alors a est nécessairement premier, puisque pour toute décomposition a = bc on a

$$0 = a \cdot 1_K = bc \cdot 1_K = (b \cdot 1_K)(c \cdot 1_K)$$

d'où $b \cdot 1_K = 0$ (ou $c \cdot 1_K$) par intégrité de K, i.e. $b \in a\mathbb{Z}$, ou encore $a \mid b$.

On note alors a = p (comme premier). p est appelée caractéristique de K, et est notée

$$\operatorname{car} K = p.$$

D'autre part, K contient les p itérés de 1_K , i.e. le corps $\mathbb{F}_p = \{0, 1, ..., p-1\}$ vu dans K (on appelle cette copie de \mathbb{F}_p le sous-corps premier de K) Ainsi,

$$\operatorname{car} K = p > 0 \implies \mathbb{F}_p \hookrightarrow K.$$

On peut alors considérer K comme un \mathbb{F}_p -espace vectoriel de dimension finie n, d'où $|K| = p^n$.

Proposition (rappel).

Soit p premier. Pour tout $n \geq 1$, il existe (à isomorphisme près) un unique corps fini de cardinal $q = p^n$: c'est le corps de décomposition sur \mathbb{F}_p de $X^q - X$, et on le note \mathbb{F}_q . On a de plus $\mathbb{F}_p \hookrightarrow \mathbb{F}_q$.

Proposition (rappel).

 \mathbb{F}_q^* est cyclique.

1.6.2 Cyclicité de $Gal(\mathbb{F}_q/_{\mathbb{F}_p})$

Proposition.

 $\operatorname{Gal}\left(\mathbb{F}_{q}/\mathbb{F}_{p}\right)$ est cyclique et engendré par Fr :

$$\operatorname{Gal}\left(\mathbb{F}_{q}/_{\mathbb{F}_{p}}\right) = \langle \operatorname{Fr} \rangle$$
.

Démonstration.

Soit a engendrant \mathbb{F}_q^* , de sorte que $\mathbb{F}_q = \mathbb{F}_p[a]$. Les élément σ de $G = \operatorname{Gal}\left(\mathbb{F}_q/\mathbb{F}_p\right)$ sont entièrement déterminés par les $\sigma(a)$, donc

$$|G| \le \# \{ \sigma(a) \text{ où } \sigma \text{ décrit } G \}.$$

En considèrant le polynôme minimal P de a sur \mathbb{F}_p , avec deg $P = [\mathbb{F}_q : \mathbb{F}_p] = n$, on remarque que les $\sigma(a)$ sont des racines de P car $P \in \mathbb{F}_p$ et σ fixe \mathbb{F}_p :

$$P\left(\sigma\left(a\right)\right) = \sum_{k} \lambda_{k} \left(\sigma\left(a\right)\right)^{k} = \sum_{k} \sigma\left(\lambda_{k}\right) \sigma\left(a^{k}\right) = \sum_{k} \sigma\left(\lambda_{k} a^{k}\right) = \sigma\left(\sum_{k} \lambda_{k} a^{k}\right) = \sigma\left(P\left(a\right)\right) = \sigma\left(0\right) = 0.$$

Il y a donc au plus n possibilités pour $\sigma(a)$, d'où $|G| \leq n$.

Pour montrer que Fr engendre G, il suffit de montrer que son ordre ω dans G est $\geq n$. Pour cela, on remarque que $\forall x \in \mathbb{F}_q$, $x = \operatorname{Id}(x) = \operatorname{Fr}^{\omega}(x) = x^{p^{\omega}}$, donc le polynôme $X^{p^{\omega}} - X$ s'annule sur \mathbb{F}_q tout entier, donc est de degré $p^{\omega} \geq q = p^n$, d'où $\omega \geq n$, CQFD.

1.6.3 Extensions intermédiaires

Lemme 0.

Soient a et b des entiers ≥ 1 et p un entier ≥ 2 . Alors

$$\begin{cases} (p^a - 1) \wedge (p^b - 1) = p^{a \wedge b} - 1 \\ (X^a - 1) \wedge (X^b - 1) = X^{a \wedge b} - 1 \end{cases} .$$

Démonstration.

Clair si a = b. On suppose alors a > b. On effectue la division euclidienne de a par b : a = bq + r. On écrit alors

$$p^{a} - 1 = p^{bq}p^{r} - 1 = p^{bq}p^{r} - p^{r} + p^{r} - 1 = p^{r}(p^{bq} - 1) + (p^{r} - 1) = p^{r}A(p^{b} - 1) + (p^{r} - 1)$$

(où A est entier), ce qui montre que le reste de la division euclidienne de $p^a - 1$ par $p^b - 1$ est $p^r - 1$. Les termes successifs de l'algorithme d'Euclide "passent" donc à la puissance p, et en réitérant le procédé, on trouve que le dernier reste non nul est bien $p^{a \wedge b} - 1$.

La démonstration est identique pour les polynômes, vu que l'on dispose d'une division euclidienne polynomiale.

Lemme.

Les trois énoncés suivants sont équivalents :

$$X^{p^m} - X \mid X^{p^n} - X$$

$$p^m - 1 \mid p^n - 1$$

$$m \mid n.$$

Démonstration.

Par équivalences, et en utilisant le lemme 0, on a

$$X^{p^m} - X \mid X^{p^n} - X$$

$$\iff X^{p^m - 1} - 1 \mid X^{p^n - 1} - 1$$

$$\iff \left(X^{p^m - 1} - 1\right) \wedge \left(X^{p^n - 1} - 1\right) = X^{p^m - 1} - 1$$

$$\iff X^{p^{n \wedge m} - 1} - 1 = X^{p^m - 1} - 1$$

$$\iff n \wedge m = m$$

$$\iff m \mid n,$$

la même méthode marchant pour $p^m - 1 \mid p^n - 1$.

Proposition (extensions intermédiaires).

Les sous-corps de \mathbb{F}_{p^n} sont exactement les \mathbb{F}_{p^k} où $k \mid n$.

 \mathbb{F}_{p^k} peut être également vu comme le corps des racines de $X^{p^k} - X$ sur \mathbb{F}_p . On a alors les injections

$$\mathbb{F}_p \hookrightarrow \mathbb{F}_{p^k} \hookrightarrow \mathbb{F}_{p^n}$$
.

Démonstration.

- Soit E une extension intermédiaire : $\mathbb{F}_p \hookrightarrow E \hookrightarrow \mathbb{F}_q$. E est fini, donc est un $\mathbb{F}_{q'}$ avec $q' = (p')^k$ et $k \geq 1$; E étant par ailleurs un sous-groupe additif de \mathbb{F}_q son cardinal doit diviser le cardinal de \mathbb{F}_q , i.e. $(p')^k \mid p^n$, d'où p' = p et $q' = p^k$. D'autre part, \mathbb{F}_q peut être vu comme un $\mathbb{F}_{q'}$ -espace vectoriel de dimension finie r, d'où $|\mathbb{F}_q| = |\mathbb{F}_{q'}|^r$, i.e. $p^n = p^{kr}$, ou encore $k \mid n$.
 - Réciproquement, soit $k \mid n$ et considérons

$$E = \left\{ \text{racines de } X^{p^k} - X \text{ dans } \mathbb{F}_q \right\}.$$

 E^* est clairement un sous-groupe de \mathbb{F}_q^* , et est de plus stable par + : en effet, si x et y sont dans E, on a

$$(x+y)^{p^k} = \operatorname{Fr}^k(x+y) = \operatorname{Fr}^{k-1}(x^p+y^p) = \operatorname{Fr}^{k-2}(x^{p^2}+y^{p^2}) = \dots = x^{p^k}+y^{p^k} = 0.$$

E est donc un corps pour les lois induites, *i.e.* un sous-corps de \mathbb{F}_q . Comme de plus $k \mid n$, on a (par le lemme)

$$X^{p^k} - X \mid X^{p^n} - X = \prod_{a \in \mathbb{F}_q} (X - a)$$

scindé simple, donc $X^{p^k} - X$ a exactement p^k racines, d'où $|E| = p^k$. On a ainsi construit un sous-corps de \mathbb{F}_q de cardinal p^k , qui est donc isomorphe à \mathbb{F}_k , CFQD.

Corollaire (correspondance de Galois).

On a une correspondance bijective entre les sous-groupes de $G=\operatorname{Gal}\left(\mathbb{F}_q/_{\mathbb{F}_p}\right)$ et les extensions intermédiaires $\mathbb{F}_p\subset\mathbb{F}_{p^k}\subset\mathbb{F}_q$, qui à un sous-groupe H associe le sous-corps \mathbb{F}_q^H des éléments de \mathbb{F}_q stables par H.

Démonstration.

Le point central est de remarquer que si $k \mid n$, alors $\mathbb{F}_{p^k} = \mathbb{F}_q^{\langle \operatorname{Fr}^k \rangle}$. En effet, les racines du polynôme $X^{p^k} - X$ de $\mathbb{F}_q[X]$ sont exactement les éléments de \mathbb{F}_q stables par Fr^k , *i.e.* par $\langle \operatorname{Fr}^k \rangle$, donc $\mathbb{F}_q^{\langle \operatorname{Fr}^k \rangle}$ est l'ensemble \mathbb{F}_{p^k} de ces telles racines.

- Soit H un sous-groupe de G, et $E = \mathbb{F}_q^H$. Puisque G est engendré par Fr, H est de la forme $\left\langle \operatorname{Fr}^k \right\rangle$ où $k \mid n$ (pour $H = \{\operatorname{Id}\}$, prendre k = n). Donc $E = \mathbb{F}_q^{\left\langle \operatorname{Fr}^k \right\rangle} = \mathbb{F}_{p^k}$, qui est bien une extension intermédiaire d'après la proposition précédente.
 - La correspondance établie est injective : si $\begin{cases} H = \left\langle \operatorname{Fr}^k \right\rangle \\ H' = \left\langle \operatorname{Fr}^{k'} \right\rangle \end{cases}$ sont deux sous-groupes de G tels que $\mathbb{F}_q^H = \left\langle \operatorname{Fr}^k \right\rangle$

 $\mathbb{F}_q^{H'}$, alors les polynômes $X^{p^k}-X$ et $X^{p^{k'}}-X$ ont même ensemble de racines, *i.e.* $\mathbb{F}_{p^k}=\mathbb{F}_{p^{k'}}$, d'où k=k' et H=H'.

• Elle est en outre surjective : si E est une extension intermédiaire, E est un \mathbb{F}_{p^k} d'après la proposition précédente, donc un $\mathbb{F}_q^{\langle \operatorname{Fr}^k \rangle}$ où $\langle \operatorname{Fr}^k \rangle$ est un sous-groupe de G.

1.7 Clôture algébrique de \mathbb{F}_q

Définition.

Soit $(K_n)_{n\in\mathbb{N}}$ une suite croissante de corps, au sens où $\forall n\leq m$, il existe un morphisme $\iota_{n\to m}:K_n\hookrightarrow K_m$. On appelle limite inductive de la suite (K_n) le corps $K=\bigcup_{n\in\mathbb{N}}K_n$ formé de la réunion "croissante" des K_n , dont les lois * entre deux éléments sont définis par :

si
$$\begin{cases} a \in K_n \\ b \in K_{m \ge n} \end{cases}$$
, alors $a * b = \iota_{n \to m}(a) * b$.

Proposition.

Soit p premier, $q = p^k$ où $k \ge 1$. La limite inductive des $\mathbb{F}_{p^{n!}}$ est une clôture algébrique de \mathbb{F}_q .

Démonstration.

Posons $\Omega = \bigcup_{n \in \mathbb{N}} \mathbb{F}_{p^{n!}}$.

- Pour $x \in \Omega$, mettons $x \in \mathbb{F}_{p^{n!}}$, x est annulé par le polynôme $X^{p^{n!}} X$ de \mathbb{F}_q , donc est algébrique sur \mathbb{F}_q .
- Soit par ailleurs P un polynôme de $\Omega[X]$. Les coefficients de P sont en nombre fini, donc sont tous dans un même $\mathbb{F}_{p^{n!}}$.

On considère alors D un corps de décomposition de P sur $\mathbb{F}_{p^{n!}}$, mettons $D = \mathbb{F}_{p^{n!}} [\xi_1, .., \xi_r]$ où $\xi_1, .., \xi_r$ sont les racines de P dans D. Alors les éléments de D sont les polynômes en les $\xi_1, .., \xi_r$ dont le degré total est majoré par $(\deg P)^r$ (le degré de chaque puissance d'un ξ_i pouvant être majoré par $\deg P$), à coefficients dans un corps fini, donc sont en nombre fini. Par conséquent, D est un $\mathbb{F}_{(p')^{k'}}$, admettant $\mathbb{F}_{p^{n!}}$ comme sous-corps, donc D est un \mathbb{F}_{p^m} où $n! \mid m$. On a alors les extensions

$$\mathbb{F}_{p^n!} \subset \mathbb{F}_{p^m} \subset \mathbb{F}_{p^m!}$$

donc D est contenu dans $\mathbb{F}_{p^{m!}} \subset \Omega$. Par conséquent, P se scinde sur Ω .

1.8 Théorème de Lüroth

Soit K un corps. On s'intéresse à Gal $\binom{K(X)}{K}$ ainsi qu'aux extensions intermédiaires

$$K \subset E \subset K(X)$$
.

Lemme.

Soit $u \in K(X) \setminus K$, mettons $u = \frac{P}{Q}$ où $P \wedge Q = 1$. Alors:

- u est transcendant sur K;
- L'extension $K(u) \subset K(X)$ est algébrique finie, de degré $\delta(u) := \max(\deg P, \deg Q)$;
- Le polynôme minimal de X sur K(u) est le normalisé de $P(T) uQ(T) \in K(u)[T]$.

Démonstration.

Soit $R(T) = P(T) - uQ(T) \in K(X)[T]$. On a R(X) = 0, donc X est algébrique sur K(u) de degré $\leq \deg R \leq \delta(u)$, donc K(X) est une extension algébrique finie de K(u). Nécessairement, u ne peut être algébrique sur K, car alors X le serait (pas possible).

On peut considérer R(T) = P(T) - uQ(T) comme un polynôme en u de degré 1, irréductible car $P \wedge Q = 1$, donc irréductible dans K[u][T], a fortiori dans K(u)[T]

Donc R est le polynôme minimal de X.

Théorème.

Les K-automorphismes de K(X) sont donnés par les $\varphi: X \longmapsto \frac{aX+b}{cX+d}$ où $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K)$. On a de plus

$$\operatorname{Gal}\left(^{K(X)} / _{K} \right) \simeq PGL_{2}\left(K \right).$$

Démonstration.

Soit φ un K-automorphisme de K(X). Puisque X génère K(X), la donnée de $u = \varphi(X)$ détermine entièrement φ . De plus, φ est surjective, donc $K(u) = \operatorname{Im} \varphi = K(X)$; en particulier $u \notin K$, et le lemme s'applique :

$$\delta(u) = [K(X) : K(u)] = [K(X) : K(X)] = 1.$$

On en déduit la forme de u:

$$u = \frac{aX + b}{cX + d}$$

où a ou $c \neq 0$ et $ad - bc \neq 0$, i.e. $ad - bc \neq 0$, ou encore $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K)$. On considère ensuite le morphisme surjectif

$$\Phi: \left\{ \begin{array}{ccc} GL_2\left(K\right) & \longrightarrow & \operatorname{Gal}\left({}^{K(X)} \diagup_K\right) \\ \left(\begin{array}{ccc} a & b \\ c & d \end{array}\right) & \longmapsto & X \longmapsto \frac{aX+b}{cX+d} \end{array} \right.,$$

dont le noyau est $K \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$, d'où

$$\operatorname{Gal}\left({^{K(X)}/_{K}} \right) \simeq \ {^{GL_{2}(K)}}/_{\operatorname{Ker}\Phi} = PGL_{2}\left(K \right).$$

Théorème de Lüroth (sous-corps de K(X)).

Les sous-corps de K(X) sont monogènes, en cela que

$$K \subset E \subset K(X) \implies \exists u \in K(X) \ tel \ que \ E = K(u)$$
.

Démonstration.

Si E = K, u = 1 convient.

Si $K \subsetneq E$, soit $v \in E \setminus K$, d'où des extensions $K(v) \subset E \subset K(X)$. Le lemme nous dit alors que K(X) est une extension algébrique de K(v) de degré $\delta(v)$. A fortiori, X est algébrique sur E, et l'on dispose de son polynôme minimal sur E[T]

$$\mu = T^n + a_1 T^{n-1} + \dots + a_n$$

où chaque $a_i \in E$. Puisque X n'est pas algébrique sur K, un des a_i n'habite pas chez K, mettons $a_{i_0} = \frac{P}{Q} \in E \setminus K$ où $P \wedge Q = 1$, avec $d = \delta(a_{i_0})$. Nous allons montrer que $E = K(a_{i_0})$, ce qui concluera.

Le lemme nous donne des extension finies $K(a_{i_0}) \subset E \subset K(X)$ avec

$$[E:K(a_{i_0})] = \frac{[K(X):K(a_{i_0})]}{[K(X):E]} = \frac{\delta(a_{i_0})}{n} = \frac{d}{n}.$$

Montrons que d = n, ce qui donnera $[E : K(a_{i_0})] = 1$ et $E = K(a_{i_0})$ monogène comme voulu.

Le polynôme $P(T) - a_{i_0}Q(T)$ annule X et est à coefficients dans $K(a_{i_0}) \subset E$, donc est un multiple de μ , mettons

$$P(T) - a_{i_0}Q(T) = \mu(T)\nu(T)$$

dans K(X)[T], ce que l'on réécrit sous la forme

$$P(T)Q(X) - P(X)Q(T) = \mu(T)\nu(T)Q(X).$$

Par ailleurs, les $a_i \in E \subset K(X)$ s'écrivent $a_i = \frac{P_i(X)}{Q_i(X)}$, donc en multipliant μ par le ppcm des dénominateurs $\lambda = \bigvee_{i=1,...n} Q_i$, on retombe dans K[X] (plutôt que dans K(X)), mettons

$$\lambda(X) \mu(T) = A_0(X) T^n + A_1(X) T^{n-1} + ... + A_n(X)$$

et on a même les A_i premiers entre eux (on dit que le terme de droite est primitif en X).

Puisque $A_{i_0}(X) = \lambda(X) a_{i_0} = \lambda(X) \frac{P(X)}{Q(X)}$ avec $P \wedge Q = 1$, on a $\begin{cases} P \mid A_{i_0} \\ Q \mid \lambda \end{cases}$. On en déduit une réécriture

$$P(T) Q(X) - P(X) Q(T) = \lambda(X) \mu(T) \nu(T) \frac{Q(X)}{\lambda(X)}$$
$$= \nu(T) \frac{Q(X)}{\lambda(X)} \left[A_0(X) T^n + A_1(X) T^{n-1} + \dots + A_n(X) \right].$$

À gauche, le degré en X est $\leq \max \{ \deg Q, \deg P \} = d$, à droite le degré en X est $\geq \deg A_{i_0} \geq d$ car $P \mid A_{i_0}$, donc le degré en X est d partout et par conséquent le terme $\frac{Q(X)}{\lambda(X)}$ est une constante $\alpha \in K$. Réécrivons encore une fois :

$$P\left(T\right)Q\left(X\right)-P\left(X\right)Q\left(T\right)=\alpha\nu\left(T\right)\left[A_{0}\left(X\right)T^{n}+A_{1}\left(X\right)T^{n-1}+\ldots+A_{n}\left(X\right)\right].$$

Le terme de droite est primitif en X, donc le terme de gauche aussi, et ce dernier étant symétrique (en X et T) il est aussi primitif en T, donc le terme de droite est primitif en T, ce qui impose $\nu(T)$ constante, disons $\nu(T) = \beta \in K$. On a finalement

$$P\left(T\right)Q\left(X\right)-P\left(X\right)Q\left(T\right)=\alpha\beta\left[A_{0}\left(X\right)T^{n}+A_{1}\left(X\right)T^{n-1}+\ldots+A_{n}\left(X\right)\right].$$

En prenant le degré en T, on obtient d à gauche et n à droite, d'où d=n comme voulu.

2 Théorie de Galois

2.1 Étude préliminaires des K-morphismes

Soit K un corps, $K \subset L$ une extension **finie** (donc algébrique) et \overline{K} une clôture algébrique de K. On dispose d'une inclusion canonique $\iota: K \hookrightarrow \overline{K}$ que l'on cherche à prolonger à L. On recherche donc les morphismes de L dans \overline{K} qui fixent K, i.e. les K-morphismes de L dans \overline{K} , ensemble que l'on notera $\operatorname{Hom}_K(L, \overline{K})$.

Noter que \overline{K} n'a aucune raison de contenir L.

Le problème consiste donc à chercher les morphismes $\bar{\imath}$ faisant commuter le diagramme :

$$\begin{array}{ccc} K & \longrightarrow & L \\ & \iota \searrow & \downarrow \overline{\iota} \\ & \overline{K} \end{array}.$$

2.1.1 Théorème d'existence

Théorème (existence de prolongements).

Soit $\iota: K \hookrightarrow \overline{K}$ un morphisme de corps – par exemple l'inclusion canonique – et $K \subset L$ une extension finie. Le nombre N de prolongements de ι à L vérifie

$$1 \leq N \leq [L:K]$$
.

Démonstration.

On fait un récurrence sur d = [L : K].

- Si [L:K]=1, i.e. si L=K, alors ι est l'unique prolongement de ι .
- Si [L:K] > 1, on écrit

$$L = K[x_0, ..., x_r] = K[x_1, ..., x_r][x_0] = L'[x_0]$$

où $L' = K[x_1, ...x_r]$ et $r \ge 0$ est minimal, de sorte que $x_0 \notin L'$, donc $\deg_{L'} x_0 \ge 2$, d'où

$$[L':K] < [L:K]$$
.

Par récurrence, il existe un prolongement $\iota': L' \longrightarrow K$, que l'on prolonge à L en posant

$$\overline{\iota'}: \left\{ \begin{array}{ccc} L = L'\left[x_0\right] & \longrightarrow & \overline{K} \\ \sum \lambda_n x_0^n & \longmapsto & \sum \iota'\left(\lambda_n\right) x_0^n \end{array} \right.,$$

d'où l'existence d'un prolongement de ι à L.

Pour la majoration, on considére le diagramme

$$\begin{array}{cccc} K & \hookrightarrow & L' & & \hookrightarrow & L = L'[x_0] \\ & \searrow \sigma_{|L'} & & \downarrow \frac{\sigma}{K} \end{array}$$

afin de récurrer, ce qui amène naturellement l'application

$$\Phi: \left\{ \begin{array}{ccc} \{\text{prolongements à L}\} & \longrightarrow & \{\text{prolongements à L'}\} \\ \sigma & \longmapsto & \sigma_{|L'} \end{array} \right..$$

Le cardinal de l'image est inférieur au nombre de prolongements à L', lequel est (par hypothèse de récurrence) $\leq [L':K]$. On a par ailleurs au plus $\deg_{L'} x_0$ antécédents σ possibles à $\sigma_{|L'}$ fixé : en effet, deux antécédents d'un même prolongement σ' à L' ne peuvent être distingués que par l'image qu'ils ont de x_0 (puisqu'ils coïncident déjà sur L'), laquelle image doit être une racine du polynôme minimal P de x_0 sur L' (car $P(\sigma(x_0)) = \sigma(P(x_0)) = 0$).

Par conséquent, le nombre de prolongements à L vaut au plus

$$\deg_{L'} x_0 \times [L':K] = [L'[x_0]:L'] \times [L':K] = [L'[x_0]:K] = [L:K].$$

Corollaire (existence de K-morphismes).

Le nombre $N = |\operatorname{Hom}_K(L, \overline{K})|$ de K-morphismes de $L \longrightarrow \overline{K}$ vérifie

$$1 \leq N \leq [L:K]$$
.

Démonstration.

On applique le théorème à l'inclusion canonique $\iota: K \hookrightarrow \overline{K}$, en remarquant que les K-morphismes de $L \longrightarrow \overline{K}$ sont exactement les prolongements de ι .

On s'intéresse maintenant au cas d'égalité N = [L : K].

2.1.2 Extensions séparables

Définition.

Une extension finie $K \subset L$ est dite séparable si le nombre $N = \left| \operatorname{Hom}_K \left(L, \overline{K} \right) \right|$ de K-morphismes de $L \longrightarrow \overline{K}$ vaut exactement

$$N = [L:K]$$
.

Proposition.

Soit $K \subset L$ une extension **finie**. On a équivalence entre :

- $K \subset L$ est séparable.
- $\forall x \in L, x \text{ est séparable.}$
- L s'écrit $K[x_1,...,x_n]$ où les x_i sont séparables.

Démonstration.

On récurre sur d = [L : K].

- Pour d=1, N vaut 1, tous les éléments λ de L=K sont séparables car leurs polynômes minimaux $X-\lambda$ sont de degré 1 et on peut toujours écrire L=K=K [1] où 1 séparable. Donc l'équivalence $(i)\iff (ii)\iff (iii)$ est vérifiée, les trois propriétés étant vraies.
 - On suppose désormais d > 1.
- $(i) \implies (ii)$ Par contraposée. Supposons qu'il y a un x_0 dans L dont le polynôme minimal P sur K ne soit pas séparable, on écrit

$$L = K[x_0, ..., x_r] = L'[x_0]$$
 où $L' = K[x_1, ...x_r]$

et $r \geq 0$ est minimal, de sorte que $x_0 \in L \setminus L'$ est de degré ≥ 2 sur L'.

Puisque P n'est pas séparable, il admet au plus $\deg P-1$ racines dans \overline{K} . Or, l'image de x_0 par un K-morphisme $\sigma: L \longrightarrow \overline{K}$ est une racine de P dans \overline{K} , donc ne peut prendre qu'au plus $\deg P-1$ valeurs distinctes. En remarquant que $2 \leq \deg_{L'} x \leq \deg P = \deg_K x_0$, on en déduit au plus $\deg_{L'} x_0 - 1 \geq 1$ choix pour les antécédent par $\Phi: \left\{ \begin{array}{ccc} \operatorname{Hom}_K \left(L, \overline{K} \right) & \longrightarrow & \operatorname{Hom}_K \left(L', \overline{K} \right) \\ \sigma & \longmapsto & \sigma_{|L'} \end{array} \right.$ d'un $\Phi(\sigma)$ donné.

Ainsi, le nombre de K-morphismes de $L \longrightarrow \overline{K}$ vaut au plus

$$(\deg_{L'} x_0 - 1) \times [L' : K] < \deg_{L'} x_0 \times [L' : K] = [L' [x_0] : L'] \times [L' : K] = [L : K],$$

d'où N < [L:K].

 $(ii) \implies (iii)$ Trivial vu que L est finie sur K.

 $\begin{array}{ll} (iii) \implies (i) & \text{Supposons que } L = K\left[x_0,...,x_r\right] \text{ où chaque } x_i \text{ est séparable. On peu t toujours supposer} \\ r \geq 0 \text{ minimal, et donc écrire } L = L'\left[x_0\right] \text{ où } L' = K\left[x_1,...,x_r\right] \text{ vérifie } [L':K] < [L:K], \text{ donc l'hypothèse} \\ \text{de récurrence nous dit que le nombre de K-morphismes de } L' \longrightarrow \overline{K} \text{ vaut exactement } [L':K]. \text{ Puisque } x_0 \\ \text{est séparable, on a exactement } \deg_{L'} x_0 \text{ antécédents par } \Phi : \left\{ \begin{array}{ccc} \operatorname{Hom}_K\left(L,\overline{K}\right) & \longrightarrow & \operatorname{Hom}_K\left(L',\overline{K}\right) \\ \sigma & \longmapsto & \sigma_{|L'} \end{array} \right. \\ \text{donné, d'où exactement} \end{array} \right.$

$$[L':K] \times \deg_{L'} x_0 = [L:K]$$

K-morphismes de $L \longrightarrow \overline{K}$.

Corollaire.

Toute extension finie $K \subset L$ de caractéristique nulle est séparable.

Démonstration.

En effet, L étant alors parfait, tous les éléments de L ont leur polynôme minimal séparable, donc sont séparables.

2.1.3 Extensions normales

Proposition.

On a la majoration $|\operatorname{Gal}(^{L}/_{K})| \leq N$.

Démonstration.

Donnons-nous un K-morphisme $\sigma_0: L \longrightarrow \overline{K}$. Si $g \in \operatorname{Gal}(^L/_K)$, alors $\sigma_0 \circ g$ est encore un K-morphisme; puisque σ_0 est injectif, tous les $\sigma_0 \circ g$ sont distincts quand g décrit $\operatorname{Gal}(^L/_K)$. On a donc

$$\left\{\sigma_{0}\circ g\,;\,g\in\operatorname{Gal}\left({}^{L}\diagup_{K}\right)\right\}\subset\operatorname{Hom}_{K}\left(L,\overline{K}\right),$$

d'où $|\operatorname{Gal}(^L/_K)| \leq N$ en prenant les cardinaux.

On s'intéresse, de même que pour les extensions séparables, au cas d'égalité.

Définition.

Une extension finie $K \subset L$ est dite normale si le nombre $N = |\operatorname{Hom}_K(L, \overline{K})|$ de K-morphismes de $L \longrightarrow \overline{K}$ vaut exactement

$$\left|\operatorname{Gal}\left({}^{L}\diagup_{K}\right)\right|=N.$$

On dispose de caractérisations des extensions normales en termes de morphismes.

Proposition.

Soit $K \subset L$ une extension **finie** et \overline{L} une clôture algébrique de L. On a les équivalences :

- (i) $K \subset L$ est normale.
- (ii) Tous les K-morphismes de $L \longrightarrow \overline{K}$ ont même image.
- (iii) $\operatorname{Hom}_K\left(L,\overline{K}\right)$ est l'orbite d'un σ_0 quelconque de $\operatorname{Hom}_K\left(L,\overline{K}\right)$ pour l'action à droite de $\operatorname{Gal}\left({}^{L}\diagup_{K}\right)$, i.e.

$$\operatorname{Hom}_{K}\left(L,\overline{K}\right) = \left\{\sigma_{0} \circ g \; ; \; g \in \operatorname{Gal}\left({}^{L} \diagup_{K}\right)\right\} \; ;$$

- (iv) Tous les K-morphismes $\sigma: L \longrightarrow \overline{L}$ ont même image $\sigma(L) = L$.
- (v) A une injection canonique $L \hookrightarrow \overline{L}$, près, $\operatorname{Hom}_K(L,\overline{L}) = \operatorname{Gal}(L/K)$.

Démonstration.

On utilisera l'inclusion $\{\sigma_0 \circ g ; g \in \operatorname{Gal}(L/K)\} \subset \operatorname{Hom}_K(L, \overline{K})$ établie lors de la proposition précédente.

 $(i) \implies (ii)$ Si on a égalité des cardinaux, on a l'égalité ensembliste

$$\left\{\sigma_0 \circ g \, ; \, g \in \operatorname{Gal}\left({}^{L} \diagup_{K}\right)\right\} = \operatorname{Hom}_{K}\left(L, \overline{K}\right),$$

donc tous les K-morphismes de $L \longrightarrow \overline{K}$ sont de la forme $\sigma_0 \circ g$ où g est surjectif, donc ont même image $\operatorname{Im} \sigma_0$. $(ii) \Longrightarrow (iii)$ Supposons que tous les K-morphismes de $L \longrightarrow \overline{K}$ ont même image. Soit $\sigma: L \longrightarrow \overline{K}$ un tel K-morphisme. Puisque $\operatorname{Im} \sigma = \operatorname{Im} \sigma_0$, on peut écrire $\sigma = \sigma_0 \circ g$ où g est une application de $L \longrightarrow L$. Puisque σ est un K-morphisme de corps et σ_0 injectif, g est aussi un K-morphisme de corps, i.e. $g \in \operatorname{Gal} \binom{L}{K}$. On a donc $\operatorname{Hom}_K (L, \overline{K}) \subset \{\sigma_0 \circ g: g \in \operatorname{Gal} \binom{L}{K}\}$ et égalité.

 $(iii) \implies (i)$ Il suffit de prendre les cardinaux.

 $(i) \iff (iv) \iff (v)$ $K \subset L \subset \overline{L}$ est une clôture algébrique de K, donc on dispose de l'équivalence $(i) \iff (ii) \iff (iii)$ en prenant pour σ_0 l'injection canonique ι de L dans \overline{L} , qui vérifie $\sigma_0(L) = L$

On peut également caractériser les extensions normales en termes de polynômes.

Proposition

Soit $K \subset L$ une extension **finie**. On a les équivalences :

- (i) $K \subset L$ est normale.
- (ii) Pour tout poynôme $P \in K[X]$ irréductible, si P possède une racine sur L, alors P se scinde sur L.
- (iii) L est un corps de décomposition d'un polynôme de K[X].

Démonstration.

 $(i) \Longrightarrow (ii)$ Soit P irréductible dans K[X] et ξ une racine de P dans L. Soit \overline{L} une clôture algébrique de L (qui est une clôture algébrique de K). On a $K \subset K[\xi] \subset L \subset \overline{L}$. Dans $\overline{L}[X]$, P est scindé. Soit ζ une autre racine de P dans \overline{L} ; on veut $\zeta \in L$.

Puisque L est finie, on peut écrire $L=K\left[\xi,x_{1},...,x_{r}\right]$ où $r\geq0$ est minimal. Puisque $K\subset L$ est normale, le K-morphisme $\varphi:\left\{\begin{array}{ccc} L=K\left[\xi,x_{1},...,x_{r}\right] & \longrightarrow & \overline{L} \\ A\left(\xi,x_{1},...,x_{r}\right) & \longmapsto & A\left(\zeta,x_{1},...,x_{r}\right) \end{array}\right.$ (????? unicité de $A\left(\xi,x_{1},...,x_{r}\right)$?????) doit avoir pour image L, d'où $\zeta=\varphi\left(\xi\right)\in\operatorname{Im}\varphi=L$, CQFD.

 $(ii) \implies (iii)$ Supposons $L = K[x_1, ..., x_n]$ où chaque x_i est séparable. Soit μ_i le polynôme minimal de x_i et notons $P = \bigvee_{i=1}^n \mu_i$ leur ppcm. Notons $\xi_1, ..., \xi_k$ les racines des μ_i dans L. Puisque L est normale et que chaque μ_i a une racine x_i dans L, les μ_i se scindent dans L sous la forme $\mu_i = \prod_{j=1}^k (X - \xi_j)^{\alpha_i(j)}$ où $\alpha_i(j) \ge 0$, et donc $P = \prod_{j=1}^k (X - \xi_j)^{\max_i \alpha_i(j)}$ est scindé dans L. Puisqu'en outre

$$L = K[x_1, ..., x_n] \subset K[\xi_1, ..., \xi_k] \subset L,$$

on en déduit que L est un corps de décomposition de P.

 $(iii) \implies (i)$ Si L est un corps de décomposition de $P \in K[X]$, mettons $P = \prod_{i=1}^r (X - x_i)^{\alpha_i}$, alors $L = K[x_1, ..., x_r]$. Pour tout K-morphisme $\varphi : L \longrightarrow \overline{K}$, on a ainsi

$$\operatorname{Im}\varphi=\varphi\left(L\right)=\varphi\left(K\left[x_{1},...,x_{r}\right]\right)=K\left[\varphi\left(x_{1}\right),...,\varphi\left(x_{r}\right)\right].$$

Or $P^{(n)}(\varphi(x_i)) = \varphi(P^{(n)}(x_i))$ pour tout $n \ge 0$, donc $\varphi(x_i)$ est une racine de $P \in K[X]$ d'ordre α_i exactement, d'où $\prod_{i=1}^r (X - \varphi(x_i))^{\alpha_i} \mid P$ et on a égalité en comparant les degrés. Ainsi, φ permute les racines de P, d'où

$$\operatorname{Im} \varphi = K \left[\varphi \left(x_1 \right), ..., \varphi \left(x_r \right) \right] = K \left[x_1, ..., x_r \right]$$

qui ne dépend pas de φ , donc tous les K-morphismes de $L \longrightarrow \overline{K}$ ont même image, i.e. $K \subset L$ séparable

Remarque. Si $K \subset L$ est normale et séparable, alors tout polynôme irréductible de K[X] qui possède une racine dans L se scinde simplement dans L.

2.2 Extensions galoisiennes

Il ressort de l'étude précédente la conclusion suivante.

Conclusion.

Soit $K \subset L$ une extension **finie**. On a toujours

$$\left|\operatorname{Gal}\left(^{L}\diagup_{K}\right)\right|\leq\left[L:K\right]$$

avec égalité

$$\left|\operatorname{Gal}\left(^{L} \diagup_{K}\right)\right| = [L:K]$$

ssi $K \subset L$ est normale et séparable.

On s'intéresse maintenant au double cas d'égalité

$$\left|\operatorname{Gal}\left({}^{L}\diagup_{K}\right)\right|=N=\left[L:K\right].$$

Définition.

Une extension finie $K \subset L$ est dite galoisienne si

$$\left|\operatorname{Gal}\left(^{L}/_{K}\right)\right|=\left[L:K\right].$$

Par exemple, si L est un corps de décomposition d'un polynôme séparable, alors L est galoisienne (cf théorème de prolongements). On montre que la réciproque est vraie.

Théorème (caractérisation des extensions galoisiennes).

Soit $K \subset L$ une extension **finie** et \overline{L} une clôture algébrique de L. On a équivalences entre :

- (i) $K \subset L$ est galoisienne.
- (ii) $K \subset L$ est normale et séparable.
- $(iii) \qquad K \subset L \ \ \text{est s\'eparable et tous les K-morphismes $\sigma:L \longrightarrow \overline{L}$ ont m\'eme image $\sigma(L) = L$.}$
- (iv) L est un corps de décomposition d'un polynôme **séparable** de K[X].

Démonstration.

- $(i) \iff (ii) \iff (iii)$ Immédiat par définition.
- $(iv) \implies (i)$ Déjà vu.
- (i) \Longrightarrow (iv) Supposons $K \subset L$ galoisienne. Par séparabilité, $L = K[x_1, ..., x_n]$ où les polynômes minimaux μ_i des x_i sont séparables. Par normalité, les μ_i se scindent dans L puisqu'ils y ont déjà une racine x_i . Il en résulte que les μ_i sont scindés simples dans L. En notant $P = \bigvee_{i=1}^n \mu_i$ le ppcm des μ_i et $\xi_1, ..., \xi_k$ les racines des P_i dans L, chaque μ_i s'écrit alors sous la forme $\mu_i = \prod_{j=1}^k \left(X \xi_j\right)^{\varepsilon_i(j)}$ où $\varepsilon_i(j) = 0$ ou 1, donc $P = \prod_{j=1}^k \left(X \xi_j\right)$ est scindé simple L. Comme on a en outre

$$L = K[x_1, ..., x_n] \subset K[\xi_1, ..., \xi_k] \subset L,$$

L est bien un corps de décomposition de P, qui est séparable car scindé simple dans L.

On peut maintenant décrire plus précisement les éléments de $G = \operatorname{Gal}(^L/_G)$.

Corollaire.

Soit $K \subset L$ galoisienne et P un polynôme de décomposition de $K \subset L$ séparable de degré n. Alors

$$\operatorname{Gal}\left({}^{L}\diagup_{K}\right)\hookrightarrow\mathfrak{S}_{n}$$

par permutation des racines de P.

On a par ailleurs la majoration

$$[L:K] \leq n!$$
.

Démonstration.

Si $P = \prod_{i=1}^{n} (X - \xi_i)$, alors $\forall g \in \operatorname{Gal}(^{L}/_{K})$, $P(g(\xi_i)) = g(P(\xi_i)) = g(0) = 0$, d'où $g(\xi_i) = \xi_{\sigma_g(i)}$ avec $\sigma_g \in \mathfrak{S}_n$ par injectivité de g. On a donc un morphisme de groupes

$$\left\{ \begin{array}{ccc} \operatorname{Gal}\left({}^{L}/_{K}\right) & \longrightarrow & \mathfrak{S}_{n} \\ g & \longmapsto & \sigma_{g} \end{array} \right.$$

qui est injectif : si $\sigma_g = \text{Id}$, alors $g(\xi_i) = \xi_i$ pour tout i, et comme $L = K[\xi_1, ..., \xi_n]$, on en déduit g = Id puisque g stabilise K.

La majoration est immédiate : $[L:K] = |\operatorname{Gal}(^L/_K)| \le |\mathfrak{S}_n| = n!$.

Cette interprétation de l'action du groupe de Galois comme permutant les racines est importante. On en reparlera pour calculer explicitement le groupe de Galois d'un polynôme.

2.3 Lemme d'Artin

Si H est un sous-groupe de Aut L, on note L^H le sous-corps de L formé des éléments laissés fixes par H. Le lemme d'Artin donne un classe d'extensions galoisiennes.

Lemme (Artin).

Soit $K \subset L$ une extension finie, H un sous-groupe de $\operatorname{Gal}\left(^{L} \middle/_{K}\right)$. Alors l'extension $L^{H} \subset L$ est galoisienne de groupe de Galois

$$\operatorname{Gal}\left(^{L}/_{L^{H}}\right)=H.$$

Ainsi:

$$\left[L:L^{H}\right] = \left|\operatorname{Gal}\left(^{L}\diagup_{L^{H}}\right)\right| = \left|H\right|.$$

Démonstration.

On a déjà trivialement que $H \subset \operatorname{Gal}\left({}^{L}\diagup_{L^{H}}\right)$, donc $|H| \leq \left|\operatorname{Gal}\left({}^{L}\diagup_{L^{H}}\right)\right|$; comme de plus L est finie sur K, L est finie sur $L^{H} \supset K$, donc $\operatorname{Gal}\left({}^{L}\diagup_{L^{H}}\right) \leq \left[L:L^{H}\right]$. On a ainsi $|H| \leq \left|\operatorname{Gal}\left({}^{L}\diagup_{L^{H}}\right)\right| \leq \left[L:L^{H}\right]$. Il suffit donc de montrer que $\left[L:L^{H}\right] \leq |H|$. Notons $E = L^{H}$ (comme extension intermédiaire).

Soient $n = |H| \ge 1$, p > n et $x_1, ..., x_p$ dans L. Il suffit de montrer qu'ils sont liés sur E, i.e. qu'il exite $a_1, ..., a_p$ non tous nuls dans K tels que $\sum_{i=1}^p a_i x_i = 0$. Si de tels a_i existent, on aurait pour tout η de H $\sum_{i=1}^p a_i \eta(x_i) = 0$. En écrivant $H = \{ \mathrm{Id}, \eta_2, ..., \eta_n \}$, les p scalaires a_i devraient vérifier les n équations

$$\begin{cases} \sum_{i=1}^{p} a_{i} \eta_{1}(x_{i}) = 0 \\ \dots \\ \sum_{i=1}^{p} a_{i} \eta_{n}(x_{i}) = 0 \end{cases},$$

i.e.

$$\begin{pmatrix} \eta_1(x_1) & \cdots & \eta_1(x_p) \\ \vdots & & \vdots \\ \eta_n(x_1) & \cdots & \eta_n(x_p) \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_p \end{pmatrix} = 0.$$

Puisque n < p, on a toujours une solution $(a_1, ..., a_p)$ non nulle à ce système dans L^p . On en choisit une qui minimise le nombres de termes a_i non nuls. Quitte à normaliser par un terme a_i non nul, on peut supposer qu'un des a_i vaut 1, mettons $a_1 = 1$, d'où une solution

$$(a_1,...,a_p)=(1,a_2,...,a_p).$$

Alors cette dernière est dans E^p . En effet, il existerait sinon un $a_{i_0>1}$ qui n'habite pas chez $E=L^H$, i.e. on pourrait trouver un $\eta_{j_0>1}$ dans H tel que $\eta_{j_0}(a_{i_0}) \neq a_{i_0}$. On reprend alors le système

$$\begin{pmatrix} \eta_1(x_i)_{i=1,\dots,p} \\ \vdots \\ \eta_n(x_i)_{i=1,\dots,p} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_p \end{pmatrix} = 0,$$

on l'évalue en η_{i_0} , d'où

$$\begin{pmatrix} \eta_{j_0} \eta_1 (x_i)_{i=1,\dots,p} \\ \vdots \\ \eta_{j_0} \eta_n (x_i)_{i=1,\dots,p} \end{pmatrix} \begin{pmatrix} \eta_{j_0} (a_1) \\ \vdots \\ \eta_{j_0} (a_p) \end{pmatrix} = 0.$$

Or $H = \{\eta_{j_0} \eta_k \text{ où } k = 1, ..., n\}$, donc après une permutation adéquate des lignes, le système devient

$$\begin{pmatrix} \eta_1(x_i)_{i=1,\dots,p} \\ \vdots \\ \eta_n(x_i)_{i=1,\dots,p} \end{pmatrix} \begin{pmatrix} \eta_{j_0}(a_1) \\ \vdots \\ \eta_{j_0}(a_p) \end{pmatrix} = 0,$$

d'où une autre solution $(\eta_{j_0}(a_1) = 1, \eta_{j_0}(a_2), ..., \eta_{j_0}(a_p))$. Alors la différence $(1, \eta_{j_0}(a_2), ..., \eta_{j_0}(a_p)) - (1, a_2, ..., a_p)$ est encore solution, mais elle a un zéro de plus, donc elle est nulle par minimalité. On en déduit $\eta_{j_0}(a_{i_0}) = a_{i_0}$, absurde.

Corollaire (Artin faible).

Soit K un corps et G un sous-groupe de $\operatorname{Aut} K$. Alors l'extension $K^G \subset K$ est galoisienne de groupe de Galois

$$\operatorname{Gal}\left(^{K} /_{K^{G}}\right) = G.$$

Démonstration.

On applique ce qui précède à l'extension triviale $\{0\} \subset K$.

2.4 Correspondance de Galois

Généralisons la correspondance de Galois établie pour les corps finis, qui à un sous-groupe H du groupe de Galois associait l'extension stable par H.

On considère

$$\mathcal{G} = \{\text{sous-groupes de Gal}\left(^{L}/_{K}\right)\}$$
$$\mathcal{E} = \{\text{extensions intermédiaires}\}$$

On a des applications

$$\alpha: \left\{ \begin{array}{ccc} \mathcal{G} & \longrightarrow & \mathcal{E} \\ H & \longmapsto & L^H \end{array} \right. \text{ et } \beta: \left\{ \begin{array}{ccc} \mathcal{E} & \longrightarrow & \mathcal{G} \\ E & \longmapsto & \operatorname{Gal} \left(^L \diagup_E \right) \end{array} \right. .$$

Le théorème suivant montre que α et β sont réciproques l'une de l'autre. Ainsi, pour comprendre les extensions intermédiaires, problème de théorie des corps, on se ramène à étudier le groupe de Galois, problème de théorie des groupes.

Théorème (fondamental).

Soit $K \subset L$ galoisienne et H un sous-groupe de $Gal(^L/_K)$.

- Pour toute extension intermédiaire E, on a $L^{Gal(^L/_E)} = E$.
- L'extension $L^H \subset L$ est galoisienne avec $\operatorname{Gal}\left({}^L/_{L^H}\right) = H$.
- Pour $g \in G = \operatorname{Gal}(^{L}/_{K})$, on a $g(L^{H}) = L^{gHg^{-1}}$ et $\operatorname{Gal}(^{L^{H}}/_{K}) \simeq {}^{N_{G}(H)}/_{H}$.
- L'extension $K \subset L^H$ est galoisienne ssi $H \triangleleft \operatorname{Gal}(^L/_K)$, et alors

$$\operatorname{Gal}\left({}^{L^{H}}/_{K}\right) \simeq {}^{G}/_{H} = {}^{\operatorname{Gal}\left({}^{L}/_{K}\right)}/_{H}.$$

Démonstration.

• Soit $E \in \mathcal{E}$. Par définition, on a toujours $E \subset L^{\text{Gal}\binom{L}{/E}}$. Montrons l'égalité des dimensions sur K pour conclure à l'égalité.

Comme $K \subset L$ est galoisienne, L est un corps de décomposition d'un polynôme $P \in K[X]$ séparable. Alors $P \in E[X]$, et L est aussi corps de décomposition d'un polynôme séparable de E[X], i.e. $E \subset L$ est galoisienne, d'où $[L:E] = \left| \operatorname{Gal} \binom{L}{/E} \right|^{\operatorname{Artin}} \left[L: L^{\operatorname{Gal} \binom{L}{/E}} \right]$, CQFD.

- Déjà fait (Artin faible)
- Soit $H \in \mathcal{G}$, et $g \in \operatorname{Gal}\left({}^{L} \middle/_{K}\right)$. On veut $g\left(L^{H}\right) = L^{gHg^{-1}}$. D'une part, pour $x \in L^{H}$, on a $\forall h \in H$, $\left[ghg^{-1}\right]\left(g\left(x\right)\right) = gh\left(x\right) = g\left(x\right)$, d'où $g\left(x\right) \in L^{gHg^{-1}}$ et $g\left(L^{H}\right) \subset L^{gHg^{-1}}$. D'autre part, pour $y \in L^{gHg^{-1}}$, soit $x = g^{-1}\left(y\right)$; pour $h \in H$, $h\left(x\right) = hg^{-1}\left(y\right) = g^{-1}\left[ghg^{-1}\right]\left(y\right) = g^{-1}\left(y\right) = x$, d'où $x \in L^{H}$, $y = g\left(x\right) \in g\left(L^{H}\right)$, puis $L^{gHg^{-1}} \subset g\left(L^{H}\right)$.

Considérons maintenant le morphisme de groupe $\Phi: \left\{ \begin{array}{ccc} N_G(H) & \longrightarrow & \operatorname{Gal}\left({}^{L^H}\diagup_K\right) \\ g & \longmapsto & g_{|L^H} \end{array} \right.$. Φ est bien défini car

pour $g \in N_G(H)$, on a $g(L^H) = L^{gHg^{-1}} = L^H$, donc g_{L^H} est surjective; comme $g_{|L^H}$ est clairement injective et fixant K, $g_{|L^H}$ est bien un K-automorphisme de L^H .

Calculons le noyau $\operatorname{Ker} \Phi$:

$$g \in \operatorname{Ker} \Phi \iff g_{|L^H} = \operatorname{Id} \iff g \in \operatorname{Gal} \left({}^{L} \middle/ {}_{L^H} \right) \stackrel{\operatorname{Artin}}{=} H.$$

Montrons ensuite que Φ est surjectif. Soit $\sigma \in \operatorname{Gal}\left(L^H /_K\right)$. Puisque $K \subset L$ est normale, L est un corps de décomposition d'un polynôme $P \in K[X]$. Mais alors $L^H \subset L$ est aussi une extension de décomposition de

 $P \in L^H[X]$, donc on peut prolonger l'isomorphime $\sigma : L^H \longrightarrow L^H$ en un isomorphisme $\widetilde{\sigma} : L \longrightarrow L$. Puisque σ fixe K, $\widetilde{\sigma}$ aussi, donc $\widetilde{\sigma} \in \operatorname{Gal}(^L/_K) = G$, et comme $\widetilde{\sigma}$ prolonge σ , on a $\Phi(\sigma) = \widetilde{\sigma}_{|L^H} = \sigma$. Φ est donc bien surjectif.

On conclut en disant que Im $\Phi \simeq {}^{N_G(H)}/{}_{\operatorname{Ker}\Phi}$, ce qui donne $\operatorname{Gal}\left({}^{L^H}/{}_K\right) \simeq {}^{N_G(H)}/{}_H$.

 \bullet $K \subset L^H$ est une extension galoisienne ssi

$$\left| \operatorname{Gal} \left(L^{H} /_{K} \right) \right| = \left[L^{H} : K \right]$$

$$\iff \left| \frac{N_{G}(H)}{/_{H}} \right| = \frac{\left[L : K \right]}{\left[L : L^{H} \right]}$$

$$\iff \frac{\left| N_{G}(H) \right|}{\left| H \right|} = \frac{\left| \operatorname{Gal} \left(L /_{K} \right) \right|}{\left| \operatorname{Gal} \left(L /_{L^{H}} \right) \right|} = \frac{\left| G \right|}{\left| H \right|}$$

$$\iff N_{G}(H) = G$$

$$\iff H \triangleleft G,$$

et le troisième point donne alors $\operatorname{Gal}\left({}^{L^H}\diagup_K\right)\simeq {}^{N_G(H)}\diagup_H={}^G\diagup_H.$

2.5 Clôture galoisienne d'une extension séparable finie – Théorème de l'élément primitif

Proposition.

Soit $K \subset L$ une extension finie **séparable**, \overline{L} une clôture algébrique de L. Alors il existe une plus petite extension galoisienne $K \subset L^g$ dans \overline{L} , qui vérifie donc $K \subset L \subset L^g \subset \overline{L}$. On l'appelle la clôture galoisienne de L.

Démonstration.

Construction 1 : utilise le critère $K \subset L$ galoisienne ssi L décompose un polynôme séparable de K[X]).

 $K \subset L$ est séparable, donc $L = K[x_1, ..., x_n]$ où les x_i sont séparables. Notant μ_i leurs polynômes minimaux. Si L^g répond au problème, alors L^g est normale, donc les μ_i (qui ont une racine x_i sur K) se scindent sur L^g , donc L^g contient l'engendré des racines de tous les μ_i , ou plus précisément l'engendré des racines du ppcm $P = \bigvee \mu_i$.

Réciproquement, si l'on appelle D un corps de décomposition de P sur K, on a déjà vu que P est séparable puisque les x_i le sont, donc $K \subset D$ est galoisienne. Ainsi, l'extension D répond au problème et est la plus petite d'après l'analyse.

Construction 2 : utilise le critère $K \subset L$ normale ssi tous les K-morphismes $L \longrightarrow \overline{L}$ ont même image L. Supposons qu'une telle extension $K \subset L \subset L^g \subset \overline{L}$ existe. En remarquant que \overline{L} est une clôture algébrique de L^g , on doit avoir $\sigma(L^g) = L^g$ pour tout K-morphisme $\sigma: L^g \longrightarrow \overline{L}$. En particulier, si $\sigma_0: L \longrightarrow \overline{L}$ désigne un K-morphisme, on peut prolonger σ_0 à L^g (cf théorème de prolongements), et alors $\sigma_0(L) \subset \sigma_0(L^g) = L^g$. Ainsi, en appelant $\sigma_1, ..., \sigma_n$ les K-morphismes de $L \longrightarrow \overline{L}$, L^g doit donc contenir tous les $\sigma_i(L)$, donc doit contenir l'extension composée des $\sigma_i(L)$:

$$E := K \left(\sigma_1 \left(L \right), ..., \sigma_n \left(L \right) \right).$$

Montrons réciproquement que E convient – ce qui précède prouvant qu'elle sera la plus petite extension répondant au problème.

Soit φ un K-morphisme de $E \longrightarrow \overline{L}$. Les σ_i étant d'image $\sigma_i(L) \subset K(\sigma_1(L), ..., \sigma_n(L)) = E$, on peut parler de la composée $\varphi \sigma_i$, laquelle est un K-morphisme de $L \longrightarrow \overline{L}$, *i.e.* est un $\sigma_{\sigma(i)}$, σ étant une permutation de \mathfrak{S}_n par injectivité de φ . On en déduit

$$\varphi(E) = \varphi(K(\sigma_1(L), ..., \sigma_n(L)))$$

$$= K(\varphi\sigma_1(L), ..., \varphi\sigma_n(L))$$

$$= K(\sigma_{\sigma(1)}(L), ..., \sigma_{\sigma(n)}(L))$$

$$= K(\sigma_1(L), ..., \sigma_n(L))$$

$$= E,$$

donc $K \subset E$ est normale. D'autre part, $K \subset L$ étant séparable, on peut écrire $L = K[x_1, ..., x_r]$ où les x_i sont séparables. On en déduit $\sigma_i(L) = \sigma_i(K[x_1, ..., x_r]) = K[\sigma_i(x_1), ..., \sigma_i(x_r)]$, et chaque $\sigma_i(x_j)$ est séparable car de même polynôme minimal que x_j (σ_i fixe K...). Ainsi, $E = K(\sigma_i(L)) = K(K[\sigma_i(x_j)]) = K(\sigma_i(x_j))$ est séparable. $K \subset E$ est par conséquent galoisienne, CQFD.

Conséquence. On peut décrire les extensions intermédiaires $K \subset E \subset L$ d'une extension séparable à l'aide de Gal $\binom{L^g}{K}$. En particulier, il n'y a qu'un nombre fini d'extensions intermédiaires.

On en déduit le théorème de l'élément primitif.

Théorème de l'élément primitif.

Soit $K \subset L$ extension finie **séparable**. Alors il exite un $a \in L$ tel que L = K[x].

Lemme

Soit E un K-espace vectoriel et $F_1, ..., F_n$ des sous-espaces vectoriels stricts de E. Si K est infini, alors $\bigcup_{i=1}^n F_i \subsetneq E$.

Démonstration.

Par récurrence sur n.

- n = 1 est trivial.
- Pour n > 1, supposons $\bigcup_{i=1}^n F_i = E$. Par hypothèse de récurrence, $\bigcup_{i=1}^{n-1} F_i \subsetneq E$, donc on peut trouver un u dans $E \setminus \bigcup_{i=1}^{n-1} F_i$; noter qu'un tel u est dans $F_n \setminus \bigcup_{i=1}^{n-1} F_i$. Puisque $F_n \subsetneq E$, on peut trouver un a dans $E \setminus F_n$. On pose alors D = a + Ku.

D'une part, on a $D \cap F_n = \emptyset$, sinon

$$a + \lambda u = f_n \implies a = f_n - \lambda u \in F_n$$

d'autre part, on a $\forall i \neq n, |D \cap F_i| \leq 1$ car

$$\begin{cases} a + \lambda u = x_i \\ a + \mu u = y_i \end{cases} \implies (\lambda - \mu) u = x_i - y_i \in F_i \cap Ku = \{0\} \implies x_i = y_i.$$

Ainsi, $|D| \leq n-1$, ce qui absurde car D et K ont même cardinal.

Démonstration de la proposition.

Si K est de cardinal fini, alors L est également fini, donc L est un \mathbb{F}_q qui est monogène (car \mathbb{F}_q^* cyclique). On peut donc supposer K infini.

On écrit alors $L = \bigcup_{x \in L} K[x]$ où $K \subset K[x] \subset L$ est un extension intermédiaire. Or ces dernières sont en nombres fini, donc on peut extraire un recouvrement fini $L = \bigcup_{i=1}^{n} K[x_i]$. Or L est un K-espace vectoriel de dimension finie avec K infini, donc le lemme s'applique, d'où un x_i tel que $L = K[x_i]$.

2.6 Exemples

2.6.1 Racines de l'unités – Extensions cyclotomiques

Soit K un corps de caractéristique p et $n \ge 1$. On note $\mu_n(K)$ l'ensemble des racines n-ièmes de l'unité, i.e.

$$\mu_n\left(K\right) = \left\{x \in K \; ; \; x^n = 1\right\}.$$

Proposition.

On suppose $p \nmid n$. Alors $\mu_n(K)$ est un groupe cyclique dont l'ordre ω vérifie

$$p \nmid \omega \mid n$$
.

Démonstration.

• $\mu_n(K)$ est un sous-groupe fini de K^* , donc est cyclique.

 X^n-1 est premier avec sa dérivée $nX^{n-1}\neq 0$, donc est séparable. Si L est un corps de décomposition de X^n-1 sur K, on en déduit que $|\mu_n\left(L\right)|=n$, donc l'ordre ω de $\mu_n\left(K\right)$ vu en tant que sous-groupe de $\mu_n\left(L\right)$ doit diviser l'ordre de $\mu_n\left(L\right)$, i.e. $\omega\mid n$.

• Soit $p = \operatorname{car} K$. Si p = 0, p ne peut diviser $\omega \neq 0$. Supposons donc p premier. On écrit $n = p^{\alpha}m$ où $p \wedge m = 1$ et $\alpha \geq 0$. En remarquant que $(-1)^{p^{\alpha}} = -1$ car

$$\begin{cases} \text{pour } \alpha = 0, \ (-1)^{p^{\alpha}} = (-1)^{1} = -1 \\ \text{pour } p = 2, \ (-1)^{p^{\alpha}} = (-1)^{2} = 1 = -1 \\ \text{pour } p \text{ impair, } (-1)^{p^{\alpha}} = (-1)^{p} = -1 \end{cases}$$

on obtient $X^n-1=X^{p^\alpha m}-1=\left(X^m-1\right)^{p^\alpha}$, d'où $\mu_n\left(K\right)=\mu_m\left(K\right)$. Puisque $p\nmid m$ (sinon $p\mid m\mid n$), on peut appliquer le premier point : $\omega=|\mu_m\left(K\right)|$ divise m, d'où $p\nmid\omega$ (sinon $p\mid\omega\mid m\mid n$, absurde).

Définition.

On appelle extension cyclotomique de niveau n de K un corps de décomposition L de $X^n - 1$.

Proposition.

Soit L une extension cyclotomique de niveau n sur K. Alors

- Il y a exactement n racines n-ièmes de l'unité dans L.
- $K \subset L$ est galoisienne de groupe de Galois $\operatorname{Gal}(^{L}/_{K}) \hookrightarrow (^{\mathbb{Z}}/_{n\mathbb{Z}})^{*}$.
- Le degré de l'extension cyclotomique vérifie $[L:K] \leq \varphi(n)$.

Démonstration.

- $X^n 1$ est séparable et scindé sur L, donc scindé simple sur L, d'où $|\mu_n(L)| = n$.
- ullet L est un corps de décomposition d'un polynôme séparable, donc l'extension $K\subset L$ est galoisienne.

Soit $G = \operatorname{Gal}\binom{L}{/K}$ et $g \in G$. g induit sur $\mu_n(L)$ un automorphisme de $\mu_n(L)$. En effet, si $\xi \in \mu_n(L)$, alors $g(\xi)^n = g(\xi^n) = g(1) = 1$, donc la restriction de g à $\mu_n(L)$ est un endomorphisme du groupe $\mu_n(L)$, injectif (car g injectif) donc bijectif (car $\mu_n(L)$ fini); c'est donc un automorphisme de $\mu_n(L)$. On a ainsi un morphisme de groupes $\begin{cases} G & \longrightarrow & \operatorname{Aut}(\mu_n(L)) \\ g & \longmapsto & g|_{\mu_n(L)} \end{cases}$. L'injectivité s'obtient en remarquant que, puisque L est engendré par $\mu_n(L)$, un K-morphisme g est entièrement déterminé par les valeurs qu'il prend sur $\mu_n(L)$. Comme $\mu_n(L)$ est cyclique d'ordre n, on a $\operatorname{Aut}(\mu_n(L)) \simeq \operatorname{Aut}\binom{\mathbb{Z}}{n\mathbb{Z}} \simeq \binom{\mathbb{Z}}{n\mathbb{Z}}^*$ et G s'injecte bien dans $\binom{\mathbb{Z}}{n\mathbb{Z}}^*$. En prenant les cardinax, on obtient la majoration voulue :

$$[L:K] = |G| \le \left| \left(\mathbb{Z} / \mathbb{Z} \right)^* \right| \le \varphi(n).$$

On regarde le cas particulier de $K = \mathbb{Q}$.

Proposition (extensions cyclotomiques de \mathbb{Q}).

Soit L une extension cyclotomique de niveau n de \mathbb{Q} . Alors $\operatorname{Gal}(^{L}/_{\mathbb{Q}}) \simeq (^{\mathbb{Z}}/_{n\mathbb{Z}})^{*}$.

Démonstration.

On peut écrire $L = \mathbb{Q}[\xi]$ où ξ est une racine primitive de l'unité. Son polynôme minimal est $\Phi_n \in \mathbb{Z}[X]$, avec deg $\Phi_n = \varphi(n)$, d'où

$$\varphi(n) = \deg \Phi_n = \deg_K \xi = [L:K] = |G| \le \varphi(n).$$

On obtient donc une égalité, et le morphisme injectif $G \hookrightarrow (\mathbb{Z}/_{n\mathbb{Z}})^*$ devient un isomorphisme.

2.6.2 Polynômes symétriques – Discriminant

Soit A un anneau commutatif. On considère les polynômes symétriques de $A[X_1,...,X_n]$. On dispose en particulier des polynômes symétriques élémentaires

$$\begin{cases} \sigma_{k} = \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} X_{i_{1}} \dots X_{i_{k}} \\ \sigma_{n} = X_{1} \dots X_{n} \end{cases}.$$

On précisera si besoin le nombre de variables des σ_k par un exposant :

$$\sigma_k^{(n)} := \sigma_k \left(X_1, ..., X_n \right).$$

Proposition.

Soit $P \in A[X_1,...,X_n]$ symétrique. Alors il existe un unique polynôme $S \in A[Y_1,...,Y_n]$ tel que

$$P(X_1,...,X_n) = S(\sigma_1,...,\sigma_n).$$

Démonstration.

• Pour l'existence, on fait une récurrence sur le nombre de variables plus le degré total.

Pour n = 1, $X = \sigma_1$, donc $P = P(X) = P(\sigma_1)$.

Pour deg P = 0, i.e. P = a constant, on a $P(X_1, ..., X_n) = a = a(\sigma_1, ..., \sigma_n)$.

Soit P à $n \ge 2$ variables et de degré ≥ 1 . On considère le polynôme à n-1 variables

$$P_n(X_1,...,X_{n-1}) = P(X_1,...,X_{n-1},0)$$

symétrique (car P l'est), donc on peut récurrer :

$$P_{n}(X_{1},...,X_{n-1}) = Q\left(\sigma_{1}^{(n-1)}(X_{1},...,X_{n-1}),...,\sigma_{n-1}^{(n-1)}(X_{1},...,X_{n-1})\right)$$
$$= Q\left(\sigma_{1}^{(n)}(X_{1},...,X_{n-1},0),...,\sigma_{n-1}^{(n)}(X_{1},...,X_{n-1},0)\right).$$

On en déduit que $P(X_1,...,X_n) - Q(\sigma_1^{(n)},...,\sigma_{n-1}^{(n)})$ s'annule en $X_n = 0$, donc en tous les X_i par symétrie, donc est divisible par $X_1...X_n = \sigma_n$, d'où

$$P(X_1, ..., X_n) - Q(\sigma_1^{(n)}, ..., \sigma_{n-1}^{(n)}) = \sigma_n P^*$$

où P^* est un polynôme à n variables symétrique de degré $< \deg P$, et on peut alors récurrer sur le degré de P^* .

 \bullet Pour l'unicité, on récurre sur n.

Pour n = 1, $S(\sigma_1) = S(X) = S$, d'où l'unicité.

Pour $n \ge 2$, supposons $S(\sigma_1, ..., \sigma_n) = T(\sigma_1, ..., \sigma_n)$. On fait $X_n = 0$, d'où

$$S\left(\sigma_{1}^{(n-1)},...,\sigma_{n-1}^{(n-1)},0\right)=T\left(\sigma_{1}^{(n-1)},...,\sigma_{n-1}^{(n-1)},0\right).$$

En posant $\left\{ \begin{array}{l} S_n\left(X_1,...,X_{n-1}\right) = S\left(X_1,...,X_{n-1},0\right) \\ T_n\left(X_1,...,X_{n-1}\right) = T\left(X_1,...,X_{n-1},0\right) \end{array} \right., \text{ on a alors}$

$$S_n\left(\sigma_1^{(n-1)},...,\sigma_{n-1}^{(n-1)}\right) = T_n\left(\sigma_1^{(n-1)},..,\sigma_{n-1}^{(n-1)}\right)$$

d'où $T_n = S_n$ par récurrence. ?????

Corollaire.

L'extension $K(\sigma_1,...,\sigma_n) \subset K(X_1,...,X_n)$ est galoisienne de groupe de Galois

$$\operatorname{Gal}\left({}^{K(X_1,\ldots,X_n)}/{}_{K(\sigma_1,\ldots,\sigma_n)}\right)\simeq\mathfrak{S}_n$$

qui permute les indéterminées.

Démonstration.

• Soit $P(T) = \prod_{i=1}^{n} (T - X_i)$ élément de $K(X_1, ..., X_n)[T]$. En développant, on trouve

$$P(T) = T^{n} - \sigma_{1}T^{n-1} + ... + (-1)^{n} \sigma_{n},$$

donc $P(T) \in K(\sigma_1, ..., \sigma_n)[T]$. P est de plus séparable (car scindé simple), et $K(X_1, ..., X_n)$ en est un corps de décomposition, donc $K(\sigma_1,...,\sigma_n) \subset K(X_1,...,X_n)$ est une extension galoisienne.

• Soit $G = \operatorname{Gal}(K(X_1,...,X_n))/K(\sigma_1,...,\sigma_n)$. On sait déjà que G s'injecte dans \mathfrak{S}_n par permutation des racines d'un polynômes de décomposition, en particulier P, donc G agit en permutant les indéterminées X_i . D'autre part, il est clair que toute permutation des X_i laisse stable $K(\sigma_1, ..., \sigma_n)$, d'où l'égalité.

Introduisons maintenant un outil issu des symétries de $K(X_1,...,X_n)$: le discriminant.

Le polynôme $\prod_{i < j} (X_i - X_j)^2 = (-1)^{\frac{n(n-1)}{2}} \prod_{i \neq j} (X_i - X_j)$ est invariant sous \mathfrak{S}_n , donc s'écrit comme un polynôme $S(\sigma_1,...,\sigma_n)$ à coefficients entiers en les σ_i .

Pour $P = X_1 - a_1 X^{n-1} + ... + (-1)^n a_n$ polynôme unitaire de degré $n \ge 1$, on pose

$$\operatorname{disc} P = S(a_1, ..., a_n) \in K$$

et on l'appelle le discriminant de P.

Si P n'est pas unitaire, P s'écrit λQ où Q est unitaire, et on pose

$$\operatorname{disc} P = \lambda^2 \operatorname{disc} Q$$

Par exemple, pour n=2, on a

$$\prod_{i < j} (X_i - X_j)^2 = (X - Y)^2 = (X + Y)^2 - 4XY = \sigma_1^2 - 4\sigma_2,$$

d'où

$$S(X,Y) = X^2 - 4Y$$
.

Aini, le discriminant d'un polynôme $P = aX^2 + bX + c$ vaut

$$\Delta = a^2 \left(\left(\frac{b}{a} \right)^2 - 4 \left(\frac{a}{c} \right) \right) = b^2 - 4ac$$

bien connu...

L'intérêt du discriminant (entre autres) est de donner un critère pratique de séparabilité.

En effet, soient $\alpha_1, ..., \alpha_n$ les racines d'un polynôme P dans un corps de décomposition : $P = \lambda \prod (X - \alpha_i)$. Alors

$$\operatorname{disc} P = \lambda^{2} S\left(\sigma_{1}\left(\alpha_{1},...,\alpha_{n}\right),...,\sigma_{n}\left(\alpha_{1},...,\alpha_{n}\right)\right) = \lambda^{2} \prod_{i < j} \left(\alpha_{i} - \alpha_{j}\right)^{2}.$$

Proposition (critère de séparabilité).

P est séparable ssi disc $P \neq 0$.

Proposition (calcul du discriminant).

Soit P unitaire de degré n et $\begin{cases} \alpha_1, ..., \alpha_n \text{ les racines de } P \\ \beta_1, ..., \beta_{n-1} \text{ les racines de } P' \end{cases}$ dans une extension de décomposition. On a alors

$$\operatorname{disc} P = \prod_{i < j} (\alpha_i - \alpha_j)^2 = (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^n P'(\alpha_i) = (-1)^{\frac{n(n-1)}{2}} n^n \prod_{i=1}^{n-1} P(\beta_i).$$

Démonstration.

On a $P' = \sum_{i=1}^{n} \prod_{j \neq i} (X - \alpha_j)$, donc $P'(\alpha_i) = \prod_{j \neq i} (\alpha_i - \alpha_j)$, d'où

$$\prod_{i=1}^{n} P'(\alpha_i) = \prod_{i=1}^{n} \prod_{j \neq i} (\alpha_i - \alpha_j) = \operatorname{disc} P.$$

D'autre part, P' s'écrit $n \prod_{j=1}^{n-1} (X - \beta_j)$, donc

$$\operatorname{disc} P = (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} P'(\alpha_i) = (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} n \prod_{j=1}^{n-1} (\alpha_i - \beta_j)$$
$$= (-1)^{\frac{n(n-1)}{2}} n^n \prod_{j=1}^{n-1} \prod_{i=1}^{n} (\alpha_i - \beta_j) = (-1)^{\frac{n(n-1)}{2}} n^n \prod_{j=1}^{n-1} P(\beta_j).$$

Par exemple, pour $P = X^n + aX + b$, on peut montrer que

$$\operatorname{disc}(X^{n} + aX + b) = (-1)^{\frac{n(n-1)}{2}} \left[(1-n)^{n-1} a^{n} + n^{n} b^{n-1} \right].$$

Pour un polynôme de degré 3 réduit, mettons $P = X^3 + pX + q$, on va montrer que

$$\operatorname{disc} P = -4p^3 - 27q^2$$

En effet, $\prod_{i < j} (X_i - X_j)^2 = (X - Y)^2 (Y - Z)^2 (Z - X)^2 = S(\sigma_1, \sigma_2, \sigma_3)$ est homogène de degré 6, et disc P = S(0, p, -q), donc seul les termes sans σ_1 nous intéressent. Il n'y en a que deux sortes : $\sigma_2 \sigma_2 \sigma_2$ et $\sigma_3 \sigma_3$. Ainsi,

$$S(\sigma_1, \sigma_2, \sigma_3) = A(\sigma_1) + \lambda \sigma_2^3 + \mu \sigma_3^2$$

Pour trouver les constantes λ et μ , on regarde des valeurs particulières. Pour $P = X(X-1)(X+1) = X^3 - X$, on a disc $P = (1-(-1))^2(1-0)^2(0-(-1))^2 = 4$, qui doit aussi valoir λ , d'où $\lambda = 4$

Pour $P = X^3 - 1$, la formule avec les racines de la dérivée $3X^2$ donne disc $P = -3^3 (0^3 - 1) (0^3 - 1) = -27$, qui doit aussi valoir μ , d'où $\mu = -27$.

Finalement:

$$disc (X^3 + pX + q) = -4p^3 - 27q^2$$

Proposition (un critère pour que $\operatorname{Gal}(^{L}/_{K})\subset\mathfrak{A}_{n}$).

Soit $K \subset L$ galoisienne, P un polynôme de décomposition de degré n et $\xi_1, ..., \xi_n$, les racines de P dans L. Soit disc $P = \prod_{i < j} (\xi_j - \xi_i)^2$ et posons $\delta = \prod_{i < j} (\xi_j - \xi_i) \in L$. On dispose d'une signature ε sur $G = \sum_{i < j} (\xi_i - \xi_i)$ $\operatorname{Gal}(^{L}/_{K}) \hookrightarrow \mathfrak{S}_{n}$ (qui dépend de l'indexation des racines choisie).

Alors les deux conditions suivantes sont équivalentes :

- disc P est un carré dans K, i.e. $\delta \in K$;
- ε est trivial sur G, i.e. $G \hookrightarrow \mathfrak{A}_n$.

Démonstration.

 $\forall \sigma \in G$, on a

$$\varepsilon\left(\sigma\right) = \frac{\prod_{i < j} \left(\xi_{\sigma(j)} - \xi_{\sigma(i)}\right)}{\prod_{i < i} \left(\xi_{i} - \xi_{i}\right)} = \frac{\prod_{i < j} \left(\sigma\left(\xi_{j}\right) - \sigma\left(\xi_{i}\right)\right)}{\delta} = \frac{\sigma\left(\prod_{i < j} \left(\xi_{j} - \xi_{i}\right)\right)}{\delta} = \frac{\sigma\left(\delta\right)}{\delta}.$$

Ainsi, si $\delta \in K$, alors G fixe δ , d'où $\varepsilon(G) = \{1\}$.

Réciproquement, si $G \subset \mathfrak{A}_n$, alors G fixe δ , donc $\delta \in L^G = K$.

Bien que la proposition $G \hookrightarrow \mathfrak{A}_n$ dépende de l'indexation des racines choisie, la condition Remarque. $\operatorname{disc} P \in K^2$, elle, n'en dépend pas.

2.6.3 Extension cycliques

Définition.

Une extension est dite cyclique si elle est galoisienne de groupe de Galois cyclique.

Lemme de Dedekind.

Soit $n \geq 2$, G un monoïde et $\sigma_1, ..., \sigma_n : G \longrightarrow K^*$ des morphismes multiplicatifs deux à deux distincts. Alors les σ_i (vus dans le K-espace vectoriel K^G) sont linéairement K-indépendants.

Démonstration.

Par l'absurde. On suppose $\sum_i \lambda_i \sigma_i = 0$ où le support des λ_i est non vide et minimal. Alors, pour tous x, y dans G, on a

$$0 = \left[\sum_{i} \lambda_{i} \sigma_{i}\right](xy) = \left[\sum_{i} \lambda_{i} \sigma_{i}(x) \sigma_{i}\right](y),$$

d'où pour tout j:

$$\sum_{i} \lambda_{i} \left(\sigma_{i} \left(x \right) - \sigma_{j} \left(x \right) \right) \sigma_{i} = \sum_{i} \lambda_{i} \sigma_{i} \left(x \right) \sigma_{i} - \sigma_{j} \left(x \right) \sum_{i} \lambda_{i} \sigma_{i} = 0 - 0 = 0,$$

donc par minimalité du cardinal des (λ_i) on a λ_i $(\sigma_i(x) - \sigma_j(x)) = 0$ pour tous i, j, en particulier pour un i_0 tel que $\lambda_{i_0} \neq 0$ et pour $j \neq i_0$ (possible car $n \geq 2$), d'où $\sigma_{i_0}(x) - \sigma_j(x) = 0$, et ce pour tout x de G, i.e. $\sigma_{i_0} = \sigma_j$, absurde car les σ_i sont deux à deux distintes.

Remarque. On aura besoin par la suite de l'hypothèse

"K contient déjà toutes les racines n-ièmes de l'unité",

ce qu'on peut reformuler de manière équivalente en :

- $\bullet |\mu_n(K)| = n;$
- $X^n 1$ est scindé simple sur K;
- $X^n 1$ scindé sur K (par séparabilité);
- \bullet K est une extension cyclotomique de niveau n de lui-même;
- K contient une racine n-ième de l'unité non triviale (par cyclicité de $\mu_n(K)$);

Proposition.

Supposons $|\mu_n(K)| = n$, et soit a qui n'est pas une puissance (non triviale) de K divisant n, i.e.

$$\left\{ \begin{array}{ll} a \in K^d \\ d \mid n \end{array} \right. \implies d = 1.$$

Alors

- $X^n a$ est irréductible sur K;
- Toute extension L de décompostion de X^n a est cyclique; plus précisément

$$\operatorname{Gal}\left(^{L}\diagup_{K}\right)\hookrightarrow\mu_{n}\left(K\right).$$

Démonstration.

Soit L un corps de rupture de $X^n - a$ sur K, et $x \in L$ tel que $x^n = a$. Soit ξ une racine n-ième de l'unité dans K. Alors les $x\xi^k$ pour $0 \le k < n$ sont les racines de $X^n - a$ dans L, d'où $X^n - a = \prod_{k=0}^{n-1} \left(X - x\xi^k\right)$ (ce qui montre au passage que $X^n - a$ est séparable).

Soit maintenant une décomposition $X^n - a = QR$ dans K[X] où Q non constant. Dans L[X], on a $Q = \prod_{k \in A} (X - x\xi^k)$ pour une certaine partie $A \subset \{0, ..., n-1\}$ de cardinal ≥ 1 , mettons q (comme Q).

Le terme constant de Q est $(-1)^q x^q \xi^? \in K$, donc $x^q \in K$; en outre, $x^n = a \in K$. Soit $\delta = n \wedge q$. Bezout donne $\delta = \alpha n + \beta q$, d'où $x^\delta = (x^n)^\alpha (x^q)^\beta \in K$, donc

$$a = x^n = (x^\delta)^{\frac{n}{\delta}} \in K^{\frac{n}{\delta}},$$

d'où par hypothèse sur a

$$\frac{n}{\delta} = 1 \iff n = \delta \iff q = n \iff Q = X^n - a.$$

Par conséquent, $X^n - a$ est irréductible.

Ainsi, si L est un corps de décomposition de X^n-a sur K, alors X^n-a est irréductible séparable, donc $K \subset L$ est galoisienne. Or, $L=K\left[x,x\xi,...,x\xi^{n-1}\right]=K\left[x\right]$, donc un $\sigma \in \operatorname{Gal}\left({}^{L}\diagup_{K}\right)$ est déterminé par $\sigma\left(x\right)$, qui vaut une certaine racine $\sigma\left(x\right)=x\xi^{k}$ de P puisque

$$P(\sigma(x)) = \sigma(x)^{n} - a = \sigma(x^{n}) - a = \sigma(a) - a = a - a = 0.$$

On a donc un morphisme de groupe injectif $\left\{ \begin{array}{ccc} \operatorname{Gal} \binom{L}{\diagup K} & \longrightarrow & \mu_n\left(K\right) \\ \sigma & \longmapsto & \frac{\sigma(x)}{x} \end{array} \right.$, d'où Gal $\binom{L}{\diagup K}$ cyclique.

Proposition (réciproque).

Soit $K \subset L$ cyclique, n = [L : K], et supposons que $|\mu_n(K)| = n$. Alors on peut trouver un a dans K tel que L soit un corps de décomposition de $X^n - a$.

Démonstration.

Soit σ un générateur de Gal $\binom{L}{/K}$. D'après la démonstration qui précède, il est judicieux de chercher un $x \in L$ tel que $\frac{\sigma(x)}{x}$ soit une racine primitive n-ième de l'unité.

Soit ξ une racine primitive n-ième de l'unité (qui est dans K par hypothèse). On veut un $x \in L$ tel que

$$\frac{\sigma(x)}{x} = \xi \iff \xi^{-1}\sigma(x) = x \iff \sigma(\xi^{-1}x) = x \iff x \in \text{Fix}(\xi^{-1}\sigma).$$

Un bon candidat serait $x = \sum_{g \in \langle \xi^{-1} \sigma \rangle} g$, à condition de lui donner du sens. Or, $\langle \xi^{-1} \sigma \rangle$ est fini car

$$(\xi^{-1}\sigma)^n = \xi^{-n}\sigma^n = \mathrm{Id}\,,$$

donc on peut regarder l'application K-linéaire

$$\varphi: \left\{ \begin{array}{ccc} L & \longrightarrow & L \\ x & \longmapsto & \sum_{g \in \langle \xi^{-1} \sigma \rangle} g(x) = \\ x + \xi^{-1} \sigma(x) + \dots + \xi^{-(n-1)} \sigma^{n-1}(x) \end{array} \right..$$

Tout point de l'image de φ est fixe par $\xi^{-1}\sigma$ par construction, et φ est non identiquement nulle, sinon $\mathrm{Id}, \sigma, ..., \sigma^{n-1}$ seraint K-liés, absurde par Dedekind. D'où l'existence d'un $x_0 \neq 0$ dans L tel que $\sigma(x_0) = \xi x_0$. Il reste à remonter la démonstration précédente, en posant $a = x_0^n$. Tout d'abord, $a \in K$ puisque

$$\sigma(a) = \sigma(x_0^n) = \sigma(x_0)^n = (\xi x_0)^n = x_0^n = a \implies a \in L^{\text{Gal}(L_{/K})} = K$$

 $(K \subset L \text{ est galoisienne})$. Par ailleurs, $X^n - a$ se scinde en $\prod_{k=1}^n (X - \xi^k x_0)$, et pour conclure que L est un corps de décomposition de $X^n - a$, il suffit de montrer que L est engendré par les racines de $X^n - a$. Comme on sait déjà que

$$K \subset K[x_0] \subset K[x_0, x_0\xi, x_0\xi^2, ..., x_0\xi^{n-1}] \subset L$$

avec [L:K]=n, il suffit de montrer que x_0 est de degré n sur K, ce qui forcera l'égalité $K\left[x_0,x_0\xi,x_0\xi^2,...,x_0\xi^{n-1}\right]=L$ comme souhaité.

Soit donc $\mu = \sum_{i=0}^{d} \lambda_i X^i$ polynôme minimal de x_0 sur K avec $\lambda_d \neq 0$. On a $d = [K[x_0] : K] \leq [L : K] = n$, et on veut d = n. En appliquant σ à l'égalité $\sum_{i=0}^{d} \lambda_i x_0^i = 0$, on obtient $0 = \sum \lambda_i \sigma\left(x_0^i\right) = \sum \lambda_i \sigma\left(x_0^i\right)^i = \sum \lambda_i \xi^i x_0^i$, d'où $0 = \sum_{i=1}^{d} \lambda_i \left(1 - \xi^i\right) x_0^i$ et $0 = \sum_{i=0}^{d-1} \lambda_{i+1} \left(1 - \xi^{i+1}\right) x_0^i$, ce qui impose par minimalité $\lambda_d \left(1 - \xi^d\right) = 0$ (coefficient dominant), d'où $\xi^d = 1$, $n \mid d$, $n \leq d$, et n = d comme voulu.

3 Résolubilité par radicaux

Soit K un corps, $P \in K[X]$, $K \subset L$ une extension de décomposition d'un polynôme P. On aimerait pouvoir expliciter les racines de P à l'aide d'opérations algébriques rationnelles et de racines n-ièmes.

Définition.

Une extension $K \subset L$ est dite radicale élémentaire si $\begin{cases} \exists x \in L \\ \exists n \geq 1 \end{cases}$ tel que $\begin{cases} x^n \in K \\ L = K[x] \end{cases}$ (on rajoute une racine n-ième).

Une extension $K \subset L$ est dite radicale si il y a une tour

$$K = K_0 \subset K_1 \subset ... \subset K_n = L$$

où $K_i \subset K_{i+1}$ est radicale élémentaire. Ainsi $L = K[x_1, ..., x_n]$ où x_i est une racine n_i -ième d'un élément de $K[x_1, ..., x_{i-1}]$.

Une extension $K \subset L$ est dite résoluble (par radicaux) si L est contenue dans une extension radicale de K finie sur L.

On dit que $P \in K[X]$ est résoluble par radicaux si le corps de décomposition de P est une extension résoluble de K.

Remarques.

- Si $K \subset L$ est radicale et $K \subset L' \subset L$, alors $K \subset L'$ est radicale. Ainsi, pour montrer qu'une extension est radicale, il suffit de l'inclure dans un extension radicale.
 - Si $K \subset L$ est résoluble et $K \subset L' \subset L$, alors $K \subset L'$ et $L' \subset L$ sont résolubles;
- Si $K \subset L$ est radicale (resp. résoluble) et $K \subset L_1$ K-isomorphe à L, alors $K \subset L_1$ est radicale (resp. résoluble).

3.1 Extensions composées

Définition.

Soient $\begin{cases} K \subset L_1 \\ K \subset L_2 \end{cases}$ deux extensions contenues dans un même sur-corps L de K.

On appelle extension composée de L_1 et L_2 le sous-corps de L engendré par L_1 et L_2 :

$$L_1L_2 = K(L_1 \cup L_2) = L_1(L_2) = L_2(L_1)$$
.

On suppose désormais que L est une clôture algébrique \overline{K} de K.

Lemme

Soit A une K-algèbre intègre de dimension finie. Alors A est un corps.

Démonstration.

Soit $a \neq 0$ dans A; alors la multiplication par a est un endomorphisme injectif donc surjectif, ainsi 1 est atteint.

Proposition.

Soit $K \subset L_1$ finie. Alors $L_2 \subset L_1L_2$ est finie et

$$[L_1L_2:L_2] \leq [L_1:K]$$
.

De plus, si on a égalité $[L_1L_2:L_2]=[L_1:K]$, alors $L_1\cap L_2=K$.

Démonstration.

 $L_2[L_1]$ est une L_2 -algèbre intègre de dimension finie sur L_2 , donc un corps. Une partie génératrice de $L_2[L_1]$ vu comme L_2 -espace vectoriel est une base de L_1 comme K-espace vectoriel, d'où $[L_1L_2:L_2] \leq [L_1:K]$.

D'autre part, on peut faire la même chose en prenant comme sous-corps commun $L_1 \cap L_2 : [L_1L_2:L_2] \le [L_1:L_1\cap L_2] \le [L_1:K]$. Donc si on a égalité, $[L_1L_2:L_2] = [L_1:K]$, alors on a égalité partout et $K = L_1\cap L_2$.

Corollaire.

 $Si L_1$ et L_2 sont des extensions finies, alors

$$[L_1L_2:K] \leq [L_1:K][L_2:K].$$

De plus, si on a égalité, alors $K = L_1 \cap L_2$.

Proposition.

- Si $K \subset L_1$ est galoisienne, alors $L_2 \subset L_1L_2$ est galosienne.
- Si $\begin{cases} K \subset L_1 \\ K \subset L_2 \end{cases}$ sont galoisiennes, alors $\begin{cases} K \subset L_1L_2 \\ K \subset L_1 \cap L_2 \end{cases}$ sont galosiennes.

Démonstration.

- L_1 est un corps de décomposition d'un P séparable de K[X], donc P séparable dans $L_2[X]$, et alors L_1L_2 est un corps de décomposition de P sur L_2 .
- $L_1L_2 = K(L_1 \cup L_2)$; L_i est un corps de décomposition d'un P_i séparable de K[X], donc $P = P_1 \vee P_2$ séparable dans $L_1L_2[X]$, et alors L_1L_2 est un corps de décomposition de P sur K. De plus, $L_1 \cap L_2$ est séparable car L_1 ou L_2 l'est, et \overline{K} est une clôture algèbrique de $L_1 \cap L_2$. Soit alors $\eta: L_1 \cap L_2 \longrightarrow \overline{K}$; a-t-on $\eta(L_1 \cap L_2) = L_1 \cap L_2$? On écrit $K \subset L_1 \cap L_2 \subset L_1L_2$, on peut prolonger η en $\widetilde{\eta}$ à L_1L_2 ; alors $\widetilde{\eta}(L_1) \subset L_1$ car $K \subset L_1$ est galoisienne, d'où $\eta(L_1 \cap L_2) = \widetilde{\eta}(L_1 \cap L_2) \subset \widetilde{\eta}(L_1) \cap \widetilde{\eta}(L_2) \subset \widetilde{\eta}(L_1 \cap L_2)$.

3.2 Calcul de $Gal(L_1L_2/K)$ en fonction de $Gal(L_1/K)$ et $Gal(L_2/K)$

Proposition.

Si $K \subset L_1$ est galoisienne, alors $L_2 \subset L_1L_2$ est galosienne, et

$$\operatorname{Gal}\left({}^{L_{1}L_{2}}/_{K}\right)\simeq\operatorname{Gal}\left({}^{L_{1}}/_{L_{1}\cap L_{2}}\right).$$

Démonstration.

On construit un morphisme injectif $\operatorname{Gal}\left({}^{L_1L_2}/{}_K\right) \longrightarrow \operatorname{Gal}\left({}^{L_1}/{}_K\right)$, puis on identifiera les images. On a clairement un morphisme $\operatorname{Gal}\left({}^{L_1L_2}/{}_L\right) \longrightarrow \operatorname{Gal}\left({}^{L_1L_2}/{}_K\right)$, et comme $\underbrace{K \subset L_1}_{} \subset L_1L_2$, tout σ de $\operatorname{Gal}\left({}^{L_1L_2}/{}_K\right)$

stabilise L_1 (car L_1 normale). On a donc un morphisme $\operatorname{Gal}\left({}^{L_1L_2}/{}_K\right) \longrightarrow \operatorname{Gal}\left({}^{L_1}/{}_K\right)$, d'où par composition un morphisme $\varphi: \operatorname{Gal}\left({}^{L_1L_2}/{}_L\right) \longrightarrow \operatorname{Gal}\left({}^{L_1}/{}_K\right)$.

 φ est injectif, car si $\sigma \in \operatorname{Gal}\left({}^{L_1L_2}\diagup_{L_2}\right)$ s'envoie sur l'indentité, alors $\sigma_{|L_1}=\operatorname{Id}$, et comme $\sigma_{|L_2}=\operatorname{Id}$, $\sigma_{|L_1L_2}=\operatorname{Id}$.

Image de φ ? C'est un sous-groupe H de $\operatorname{Gal}\left({}^{L_1}\diagup_K\right)$, déterminé par son sous-corps des points fixe L_1^H . On a déjà que $L_1 \cap L_2 \subset L_1^H$. D'autre part, si $x \in L_1^H$, $\forall \sigma \in \operatorname{Gal}\left({}^{L_1L_2}\diagup_{L_2}\right)$, $\sigma\left(x\right) = x$, i.e. $x \in L_1 \cap L_2$.

Corollaire.

 $Si \ K \subset L_1 \ galoisienne, \ alors$

$$[L_1L_2:K] = [L_1L_2:K][L_2:K] = [L_1:L_1\cap L_2][L_2:K].$$

Démonstration.

la première égalité est triviale, la seconde vient de ce que $L_1 \cap L_2 \subset L_1$ est galoisienne.

Construction de la théorie des groupes : produit fibré 3.3

Soit G_1, G_2, H des groupes, $\varphi_i : G_i \longrightarrow H$ des morphismes. Le produit fibré $G_1 \times_H G_2$ est le sous-groupe de $G_1 \times G_2$ des (x, y) tels que $\varphi_1(x) = \varphi_2(y)$, *i.e.* tel que

$$\begin{array}{ccc} G_1 \times_H G_2 & \xrightarrow{pr_1} & G_1 \\ \downarrow pr_2 & & \downarrow \varphi_1 \\ G_2 & \xrightarrow{\varphi_2} & H \end{array}$$

commute.

Soit n_1, n_2 des entiers, $\begin{cases} \delta = n_1 \wedge n_2 \\ \mu = n_1 \vee n_2 \end{cases}$. Alors

$$\mathbb{Z}/n_1\mathbb{Z} \times_{\mathbb{Z}/\delta\mathbb{Z}} \mathbb{Z}/n_1\mathbb{Z} \simeq \mathbb{Z}/\mu\mathbb{Z}.$$

en effet, cela revient à dire que le système de congrunces $\begin{cases} x \equiv x_1 [n_1] \\ x \equiv x_2 [n_2] \end{cases}$ possède une solution ssi $x_1 \equiv x_2 [\delta]$.

Théorème. Soient $\begin{cases} K \subset L_1 \\ K \subset L_2 \end{cases}$ galoisiennes. Alors $\begin{cases} K \subset L_1L_2 \\ K \subset L_1 \cap L_2 \end{cases}$ sont galoisiennes, et

$$\operatorname{Gal}\left(^{L_{1}L_{2}}/_{K}\right)\simeq\operatorname{Gal}\left(^{L_{1}}/_{K}\right)\times_{\operatorname{Gal}\left(^{L_{1}\cap L_{2}}/_{K}\right)}\operatorname{Gal}\left(^{L_{2}}/_{K}\right).$$

Démonstration.

 $K \subset L_1 \subset L_1L_2$. Soit $j_k : \operatorname{Gal}(L_1L_2/K) \longrightarrow \operatorname{Gal}(L_k/K)$ obtenu par restriction. Alors

$$(j_1, j_2) : \operatorname{Gal}(^{L_1L_2}/_K) \longrightarrow \operatorname{Gal}(^{L_1}/_K) \times \operatorname{Gal}(^{L_2}/_K)$$

est un morphisme de groupe injectif.

Or, en composant j_k avec la restriction r_k : Gal $\binom{L_k}{/K} \longrightarrow \text{Gal}\binom{L_1 \cap L_2}{/K}$, on obtient le même morphisme $\operatorname{Gal}\left({}^{L_{1}L_{2}}/_{K}\right) \longrightarrow \operatorname{Gal}\left({}^{L_{1}\cap L_{2}}/_{K}\right)$. Donc l'image est contenue dans le produit fibré $\operatorname{Gal}\left({}^{L_{1}}/_{K}\right) \times_{\operatorname{Gal}\left({}^{L_{1}\cap L_{2}}/_{K}\right)}$ $\operatorname{Gal}(L_2/K)$. Montrons qu'ils ont même cardinal. On considère

$$(r_1,r_2):\operatorname{Gal}\left(^{L_1}\diagup_K\right)\times\operatorname{Gal}\left(^{L_2}\diagup_K\right)\longrightarrow\operatorname{Gal}\left(^{L_1\cap L_2}\diagup_K\right)\times\operatorname{Gal}\left(^{L_1\cap L_2}\diagup_K\right)$$

dont l'image contient le sous-groupe diagonal. L'image réciproque de ce sous-groupe diagonal, modulo le noyau, est isomorphe à ce sous-groupe diagonal. Donc

|image réciproque| =
$$|\operatorname{Gal}(^{L_1 \cap L_2}/_K)| |\operatorname{Ker}(r_1, r_2)|$$

= $|\operatorname{Gal}(^{L_1 \cap L_2}/_K)| |\operatorname{Ker} r_1| |\operatorname{Ker} r_2|$
= $|\operatorname{Gal}(^{L_1 \cap L_2}/_K)| |\operatorname{Gal}(^{L_1}/_{L_1 \cap L_2})| |\operatorname{Gal}(^{L_2}/_{L_1 \cap L_2})|$
= $[L_1 \cap L_2 : K] [L_1 : L_1 \cap L_2] [L_2 : L_1 \cap L_2]$
= $[L_1 : K] [L_2 : L_1 \cap L_2]$
= $[L_1 L_2 : K]$
= $|\operatorname{Gal}(^{L_1 L_2}/_K)|$.

- Soient $\begin{cases} K \subset L_1 \\ K \subset L_2 \end{cases} \subset \overline{K}$. Si elles sont radicales (resp. résolubles), alors $K \subset L_1L_2$ l'est aussi.
- Soit $K \subset L$ extension finie séparable. Si elle est radicale (resp. résoluble), alors la clôture galoisienne $K \subset L^g$ l'est aussi.

Démonstration.

• (extensions radicales) Soient $K \subset E_1 \subset E_2 ... \subset E_n = L_1 \\ K \subset F_1 \subset F_2 ... \subset F_m = L_2$ des tours d'extensions élémentaires. Alors

$$L_1 = L_1 K \subset L_1 F_1 \subset L_1 F_2 \subset ... L_1 F_m = L_1 L_2,$$

avec $F_{j+1} = F_j[y_{j+1}]$ où y_{j+1} est une racine n_{j+1} -ième de F_j , d'où $L_1F_{j+1} = L_1F_j[y_{j+1}]$.

(extensions résolubles) On est $K \subset L_i \subset F_i \subset \overline{K}$ où $K \subset F_j$ radicale. Quitte à remplacer F_1 et F_2 par des extensions isomorphes, on peut supposer qu'ils sont dans une même clôture algébrique de K.

• Le second point résulte du premier, car L^g est construite comme extension composée de tous les $\eta(L)$ où $\eta:L\longrightarrow \overline{K}$ morphisme dans une clôture algébrique de L.

Théorème.

Soit $K \subset L$ galoisienne, où car K = 0. Alors $K \subset L$ est résoluble ssi $\operatorname{Gal}\left({}^{L} \middle/_{K}\right)$ est résoluble.

Rappel. Un groupe G est dit $r\acute{e}soluble$ si on peut trouver une tour finie de sous-groupes

$$\{0\} = G_0 \subset G_1 \subset \ldots \subset G_n = G$$

avec $G_i \triangleleft G_{i+1}$ et $G_{i+1} \not \subseteq G_i$ abélien. Il revient au même de dire que la suite des sous-groupes dérivés stationne à $\{e\}$.

Proposition. Si G est résoluble, alors tout sous-groupe et tout quotient de G est résoluble.

Proposition. Soit G un groupe, $H \triangleleft G$. Si H et G / H sont résolubles, alors G est résoluble.

Proposition. Si G est un groupe fini, alors G est résoluble ssi il exite une tour

$$\{0\} = G_0 \subset G_1 \subset \ldots \subset G_n = G$$

avec $G_i \triangleleft G_{i+1}$ et G_{i+1} / G_i cyclique.

Proposition.

Si K contient toutes les racines n-ième de l'unité, si $K \subset L$ est radicale élémentaire de niveau n (i.e. $L = K[\alpha]$ avec $\alpha^n \in K$), alors elle est galoisienne de groupe de Galois cyclique. Et inversement.

Démonstration du théorème.

• On suppose que $K \subset L$ est radicale et que $[L:K] = n = |\mu_n(K)|$. Alors $\operatorname{Gal}\left({}^L\diagup_K\right)$ est résoluble. On dispose d'une tour

$$K \subset E_1 \subset ... \subset E_k \subset L$$
.

On a déjà vu le cas k=1 (extension cyclique), donc on peur supposer $k\geq 2$. On fait alors une récurrence sur le degré n de l'extension. On sait que $E_1\subset L$ est radicale galoisienne, $[L:E_1]\mid [L:K]=n$ et E_1 contient toutes les racines $[L:E_1]$ -ième de l'unité. Par récurrence, $\operatorname{Gal}\binom{L}{E_1}$ est résoluble. $K\subset E_1$ est rédicale élémentaire, $[E_1:K]\mid n$ et $n=|\mu_n(K)|$, donc on toutes les racines n-ièmes de l'unité. Donc l'extension est galoisienne, de groupe de Galois cyclique. $K\subset E_1$ galoisienne implique $\operatorname{Gal}\binom{L}{E_1} \triangleleft \operatorname{Gal}\binom{L}{E_1} / \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} / \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} / \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} / \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} / \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} / \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} + \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} + \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} + \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} + \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal}\binom{L}{E_1} + \operatorname{Gal}\binom{L}{E_1} = \operatorname{Gal$

 \bullet Cas général, $K\subset L$ galoisienne, résoluble. Soit $K\subset L\subset F$ avec $K\subset F$ radicale. On prend une clôture galoisienne E

$$\underbrace{K \subset L}_{\text{galoisienne}} \subset E$$

radicale galoisienne. Gal $\binom{L}{/K}$ est un quotient de Gal $\binom{E}{/K}$. Soit n = [E:K], et $K \subset L'$ une extension de décomposition de $X^n - 1$ contenue dans Ω une clôture algébrique de E. $K \subset L$ est galoisienne radicale élémentaire. On considère ensuite $K \subset EL'$ radicale galoisienne. $L' \subset EL'$ est galoisienne $(K \subset E \text{ l'est})$ radicale. De plus, $[EL':L'] \mid [E:K]$ donc on a les racines de l'unités qu'on veut. On applique le premier point à $L' \mid EL'$, d'où Gal $\binom{EL'}{/L'}$ résoluble. D'autre part, Gal $\binom{EL'}{/L'} \simeq \text{Gal} \binom{E}{/E \cap L'} \subset \text{Gal} \binom{E}{/K}$.

$$\underbrace{K \subset E \cap L' \subset E}_{\text{galoisienne}}$$

donc $\operatorname{Gal}\left(^{E} /_{E \cap L'}\right) \lhd \operatorname{Gal}\left(^{E} /_{K}\right)$ est résoluble.

$$\underbrace{K \subset E \cap L' \subset E}_{\text{galoisienne}}$$

donc le quotient $\operatorname{Gal}\left({}^{E\cap L'}\diagup_K\right)$ est cyclique, donc $\operatorname{Gal}\left({}^{E}\diagup_K\right)$ résoluble, donc $\operatorname{Gal}\left({}^{L}\diagup_K\right)$ est résoluble.

Réciproque!!!!

• On suppose $\operatorname{Gal}\left(^{L}\diagup_{K}\right)$ résoluble, $[L:K]=n=|\mu_{n}\left(K\right)|$. Alors $K\subset L$ est radicale. On a un groupe fini résoluble, donc on a un sous-groupe $H \triangleleft \operatorname{Gal}(^L/_K)$ à quotient cyclique.

$$\underbrace{K \subset L^H}_{\text{galoisienne cyclique avec toutes les racines de 1}} \subset L$$

donc radicale élémentaire. Par récurrence sur le degré de l'extension, on montre que $L^H \subset L$ est radicale.

 $\operatorname{Gal}\left({}^{L}\diagup_{L^{H}}\right)$ résoluble comme sous-groupe cyclique de $\operatorname{Gal}\left({}^{L}\diagup_{H}\right)$ résoluble, $\left[L:L^{H}\right]\mid n,K\subset L^{H}$ et donc toutes les racines n-ièmes qu'on veut. $L^{H}\subset L$ galoisienne car $K\subset L$ l'est, cqfd.

• Cas général. $K \subset L$, [L:K] = n, $K \subset L'$ corps de décomposition de $X^n - 1$ dans Ω , est galoisienne. Alors $K \subset LL'$ est galoisienne car L et L' le sont. $L' \subset LL'$ galoisienne, on a toutes les racines [LL':L']-ièmes de l'unité de L', $\operatorname{Gal} \left({^LL'} \middle/_{L'} \right) \simeq \operatorname{Gal} \left({^L} \middle/_{L \cap L'} \right) \subset \operatorname{Gal} \left({^L} \middle/_K \right)$ résoluble, donc $\operatorname{Gal} \left({^LL'} \middle/_{L'} \right)$ résoluble. $L' \subset LL'$ radicale, $K \subset L'$ radicale émélentaire, $\operatorname{donc} K \subset LL'$ radicale $(K \subset L \subset LL')$ implique L résoluble).

4 Calcul du groupe de Galois d'un polynôme $P \in \mathbb{Z}[X]$ via la réduction modulo p

Définition.

Soit $P \in \mathbb{Z}[X]$ unitaire séparable de degré n. On dispose d'un extension $\mathbb{Q} \subset L$ de décomposition de P (qui est galoisienne). On appelle groupe de Galois de P sur \mathbb{Q}

$$\operatorname{Gal}_{\mathbb{Q}} P = \operatorname{Gal}\left(^{L} /_{\mathbb{Q}}\right).$$

On rappelle que $\operatorname{Gal}_{\mathbb{Q}} P$ agit par permutation sur les racines de P, d'où $\operatorname{Gal}_{\mathbb{Q}} P \hookrightarrow \mathfrak{S}_n$.

4.1 Lecture de $Gal_{\mathbb{Q}} P$ dans la décomposition de P en facteurs irréductibles

Proposition (calcul du polynôme minimal par action du groupe de Galois).

Soit $K \subset L$ galoisienne de groupe de Galois G. Le polynôme minimal d'un $\alpha \in L$ sur K est donné par

$$\mu_{\alpha} = \prod_{\sigma \in G} \left(X - \sigma \left(\alpha \right) \right).$$

Démonstration.

 $\prod_{\sigma \in G} (X - \sigma(\alpha)) \text{ est à coefficients dans } L^G = K. \text{ De plus, tous les } \sigma(\alpha) \text{ sont des racines de } \mu_\alpha, \text{ donc } \prod_{\sigma \in G} (X - \sigma(\alpha)) \mid \mu_\alpha. \text{ Comme } \mu_\alpha \text{ est irréductible, on a égalité.}$

Proposition.

Soit $K \subset L$ galoisienne et $P \in K[X]$ unitaire scindé simple dans L. Soit Ω l'ensemble des racines de P. On partitionne Ω en orbites sous l'action de $G = \operatorname{Gal}(^L/_K)$, mettons $\Omega = \coprod_{i=1}^k \Omega_i$, et on pose $F_i = \prod_{\alpha \in \Omega_i} (x - \alpha)$. Alors $F_i \in K[X]$, est irréductible, et $P = \prod_{i=1}^k F_i$.

Démonstration.

Pour $\alpha \in \Omega_i$, on a $G(\alpha) = \Omega_i$, donc les coefficients de F_i sont stables par G et sont donc dans K. D'après la proposition précédente, F_i est le polynôme minimal de l'un quelconque des $\alpha \in \Omega_i$, a fortiori est irréductible.

Intérêt.

Si G est cyclique engendré par g_0 , on peut décrire les orbites Ω_i en regardant la décomposition de g_0 (vu dans \mathfrak{S}_n) en cycles à support disjoints. Les longueurs des cycles sont données par les degrés des facteurs irréductibles de P. Ainsi, si ces degrés sont $n_1, ..., n_k$, G est engendré par un élément conjugué à

$$(1,...,n_1)(n_1+1,...,n_1+n_2)...(n_1+...+n_{k-1},...,n).$$

On connait déjà une classe de groupes de Galois cycliques, les Gal $(\mathbb{F}_q/\mathbb{F}_p)$, qui sont engendrés par Fr. On va donc ramener l'étude du groupe de Galois du polynôme P aux Gal $(\mathbb{F}_q/\mathbb{F}_p)$ en réduisant modulo p (où p premier à choisir opportunément...).

En notant \overline{P} le réduit de P modulo p et L un corps de décomposition de \overline{P} sur \mathbb{F}_p , un bon candidat pour $\operatorname{Gal}\left(\mathbb{F}_q \middle/_{\mathbb{F}_p}\right)$ est $\operatorname{Gal}_{\mathbb{F}_p} \overline{P} = \operatorname{Gal}\left({}^L \middle/_{\mathbb{F}_p}\right)$, d'où l'attention particulière qu'on lui porte.

4.2 Réduction modulo p

Soit $P \in \mathbb{Z}[X]$ unitaire. Pour p premier, on note $\overline{P} \in \mathbb{F}_p[X]$ obtenu en réduisant P modulo p. On pose alors

$$\left\{ \begin{array}{l} \mathbb{Q} \subset E \text{ un corps de décomposition de } P \\ \mathbb{F}_p \subset L \text{ un corps de décomposition de } \overline{P} \end{array} \right.$$

On veut "comparer" l'étude de E et $\operatorname{Gal}_{\mathbb{Q}} P$ à celle de L et $\operatorname{Gal}_{\mathbb{F}_n} \overline{P}$.

4.2.1 Construction d'un corps de décomposition de P

Soient $\xi_1, ..., \xi_n$ les racines de P dans E. On a donc

$$E = \mathbb{Q}\left[\xi_1, ..., \xi_n\right] \simeq \mathbb{Z}\left[\xi_1, ..., \xi_n\right] \otimes \mathbb{Q} = A \otimes \mathbb{Q}$$

en posant $A = \mathbb{Z}[\xi_1, ..., \xi_n].$

Proposition.

A est un \mathbb{Z} -module libre de type fini de rang $[E:\mathbb{Q}]$ (on dit que c'est est un réseau dans E).

Démonstration.

A est de type fini car engendré par les $\xi_1^{\alpha_1}...\xi_k^{\alpha_k}$ où $\alpha_i < n$, et est sans torsion car E est sans torsion. Puisque \mathbb{Z} est principal, A est libre, mettons $A = \mathbb{Z}u_1 + ... + \mathbb{Z}u_r$ où $(u_1, ..., u_r)$ est un \mathbb{Z} -base de A. Montrons que c'est une \mathbb{Q} -base de E, ce qui nous donnera $F = [E : \mathbb{Q}]$.

En effet, $(u_1, ..., u_r)$ est \mathbb{Z} -libre, donc \mathbb{Q} -libre (en tuant les dénominateurs d'une relation de liaison), et génère \mathbb{Q} -linéairement E puisque

$$x \in E = \mathbb{Q}[r_1, ..., r_n]$$

$$\Rightarrow \exists k \in \mathbb{N} \text{ tel que } kx \in \mathbb{Z}[r_1, ..., r_n] = A$$

$$\Rightarrow \exists k \in \mathbb{N} \text{ tel que } kx = \sum_{i=1}^r \lambda_i u_i \text{ où } \lambda_i \in \mathbb{Z}$$

$$\Rightarrow x = \sum_{i=1}^r \left(\frac{\lambda_i}{k}\right) u_i \text{ où } \frac{\lambda_i}{k} \in \mathbb{Q}.$$

Contruisons à présent une extension de décompositon L de \overline{P} sur \mathbb{F}_p à l'aide de A.

Proposition.

Soit \mathfrak{M} un idéal maximal de A contenant pA. Alors $L = {}^{A}/\mathfrak{M}$ est un corps de décomposition de \overline{P} sur \mathbb{F}_{p} .

Démonstration.

Un bon candidat pour un $(\mathbb{Z}/_{p\mathbb{Z}})$ -espace vectoriel de dimension finie est l'anneau quotient $^{A}/_{pA}$, mais il peut très bien ne pas être un corps. D'où l'idée de considérer $pA \subset \mathfrak{M} \subset A$.

Notons $\pi:A\longrightarrow L$ la projection canonique modulo \mathfrak{M} . On munit $L=\pi(A)$ de la loi externe issue de la multiplication $\overline{\lambda}\cdot\pi(a)=\pi(\lambda a)$, ce qui transforme en quelque sorte π en un morphisme d'algèbres de la \mathbb{Z} -algèbre A dans la \mathbb{F}_p -algèbre L.

L est alors une extension finie de \mathbb{F}_p . En effet, L est clairement un corps, et si $(u_1, ..., u_r)$ est une \mathbb{Z} -base de A, alors $(\pi(u_1), ..., \pi(u_r))$ est une famille \mathbb{F}_p -génératrice de $\pi(A) = L$, donc L est finiment généré (linéairement), donc de dimension finie sur \mathbb{F}_p .

Enfin, en remarquant que π envoie les scalaires de \mathbb{Z} sur ceux de \mathbb{F}_p , on peut dire que L est un corps de décomposition de \overline{P} puisque

$$\overline{P} = \pi \left(P\right) = \pi \left(\prod_{i=1}^{n} \left(X - \xi_{i}\right)\right) = \prod_{i=1}^{n} \left(X - \pi \left(\xi_{i}\right)\right)$$

est scindé sur L et que

$$L=\pi\left(A\right)=\pi\left(\mathbb{Z}\left[\xi_{1},...,\xi_{n}\right]\right)=\mathbb{F}_{p}\left[\pi\left(\xi_{1}\right),...,\pi\left(\xi_{n}\right)\right]$$

est algébriquement engendré par les $\pi\left(\xi_{i}\right)$.

La construction effectuée est naturelle, au sens suivant :

Proposition.

Soit $\mathbb{F}_p \subset K$ une extension finie. On équivalence entre :

- K est un corps de décomposition de \overline{P} ;
- Il existe un morphisme d'anneaux surjectif $\mathbb{Z}[\xi_1,...,\xi_n] \longrightarrow K$.

Démonstration.

- $(i) \implies (ii)$ On a déjà construit un corps de décomposition L. Par unicité à isomorphisme φ près, $\varphi \circ \pi$ est un morphisme d'anneaux surjectif.
- $(ii) \implies (i)$ Soit $\theta: A \longrightarrow K$ un morphisme d'anneaux surjectif. Comme pour la projection π , on a $\theta(\mathbb{Z}) = \mathbb{F}_p$, donc K est algébriquement \mathbb{F}_p -engendré par les $\theta(\xi_i)$, et $\overline{P} = \theta(P) = \prod (X \theta(r_i))$ est scindé sur K.

Ainsi, si K est un corps de décomposition de \overline{P} , il existe un morphisme d'anneaux de A dans K qui envoie surjectivement les racines de P sur celles de \overline{P} . De plus, la démonstration qui précède montre que c'est le cas de tous les morphismes d'anneaux de A dans K.

Remarque. Tout morphisme d'anneaux φ de A dans L est nécessairement surjectif. En effet,

$$\operatorname{Im} \varphi = \varphi(A) = \varphi(\mathbb{Z}[\xi_1, ..., \xi_n]) = \mathbb{F}_p[\varphi(\xi_1), ..., \varphi(\xi_n)] = L$$

4.2.2 Injection de $\operatorname{Gal}_{\mathbb{F}_n} \overline{P}$ dans $\operatorname{Gal}_{\mathbb{Q}} P$

Propriété.

Soit $P \in \mathbb{Z}[X]$ unitaire, p premier, $\overline{P} \in \mathbb{F}_p[X]$ son réduit modulo p. Alors

$$\overline{P}$$
 séparable $\implies P$ séparable.

Démonstration.

 $\operatorname{disc} \overline{P} \in \mathbb{F}_p$ est la réduction modulo p de $\operatorname{disc} P \in \mathbb{Z}$.

Lemme.

Si P est séparable, l'action à droite de $\operatorname{Gal}_{\mathbb{Q}} P$ sur $\operatorname{Hom}(A, L)$ définie par $\sigma \cdot \varphi = \varphi \circ \sigma$ est libre et transitive.

Démonstration.

• Liberté.

Si $\sigma \cdot \varphi = \varphi$, *i.e.* $\varphi \circ \sigma = \varphi$, on se restreint à Ω (ensemble des racines de P) : $\varphi \circ \sigma_{|\Omega} = \varphi_{|\Omega}$; comme σ stabilise Ω , on a même $\varphi_{|\Omega} \circ \sigma_{|\Omega} = \varphi_{|\Omega}$. Or, on sait que φ envoie surjectivement les racines de P sur celles de P', donc $\varphi_{|\Omega} : \Omega \longrightarrow \overline{\Omega}$ est surjectif, et P étant séparable, on a $|\Omega| = |\overline{\Omega}| = \deg P$, d'où $\varphi_{|\Omega}$ injective. On en déduit $\sigma_{|\Omega} = \operatorname{Id}$, d'où $\sigma = \operatorname{Id}$ (car Ω engendre E).

• Transitivité.

Fixons φ dans $\operatorname{Hom}(A, L)$. Posons $N = |\operatorname{Gal}_{\mathbb{Q}} P|$, et soit $\{\varphi_1, ..., \varphi_N\} = \{\varphi \circ \sigma : \sigma \in \operatorname{Gal}_{\mathbb{Q}} P\}$ l'orbite de φ sous l'action de $\operatorname{Gal}_{\mathbb{Q}} P$. Puisque l'action est libre, l'orbite est de cardinal N exactement.

Soit ensuite $\psi \in \text{Hom}(A, L)$. S'il n'est pas parmi les φ_i , on aurait N+1 morphismes d'anneaux deux à deux distincts, donc linéairement indépendants d'après Dedekind (dans le monoïde multiplicatif A). Il suffit donc de montrer qu'ils sont liés pour conclure.

Cherchons $\lambda_i \in L$ tel que $\sum_{i=1}^{N+1} \lambda_i \varphi_i = 0$ (on a posé $\varphi_{N+1} = \psi$). Puisque $N = |\operatorname{Gal}_{\mathbb{Q}} P| = [E : \mathbb{Q}] = \operatorname{rg} A$, on dispose d'une base $(u_1, ..., u_N)$ de A de cardinal N, donc nécessairement $(\lambda_1, ..., \lambda_{N+1})$ est solution du système

$$\begin{cases} \sum_{i=1}^{N+1} \lambda_i \varphi_i \left(u_1 \right) = 0 \\ \dots \\ \sum_{i=1}^{N+1} \lambda_i \varphi_i \left(u_N \right) = 0 \end{cases}$$

qui a N équations et N+1 inconnues, donc qui a au moins une solution $(\mu_1, ..., \mu_{N+1})$ non nulle dans L^{N+1} . Montrons réciproquement qu'une telle solution convient.

Soit $a \in A$, que l'on décompose en $a = \sum_{j=1}^{N} a_j u_j$. Alors

$$\sum_{i=1}^{N+1} \mu_i \varphi_i\left(a\right) = \sum_{i=1}^{N+1} \mu_i \varphi_i\left(\sum_{j=1}^{N} a_j u_j\right) = \sum_{i=1}^{N+1} \mu_i \sum_{j=1}^{N} \overline{a_j} \varphi_i\left(u_j\right) = \sum_{j=1}^{N} \overline{a_j} \underbrace{\sum_{i=1}^{N+1} \mu_i \varphi_i\left(u_j\right)}_{=0} = 0,$$

d'où
$$\sum_{i=1}^{N+1} \mu_i \varphi_i = 0$$
, $CQFD$.

Remarque. Soit G agissant librement et transitivement sur un ensemble E. Alors G est en bijection avec E via n'importe quelle application $\left\{ \begin{array}{ccc} G & \longrightarrow & E \\ g & \longmapsto & ge \end{array} \right. \text{ où } e \in E.$

Théorème.

Théorème.Soit $P \in \mathbb{Z}[X]$ unitaire, p premier, $\left\{ \begin{array}{l} \mathbb{Q} \subset E \text{ un corps de décomposition de } P \\ \mathbb{F}_p \subset L \text{ un corps de décomposition de } \overline{P} \end{array} \right\}$. On suppose que \overline{P} est séparable. On dispose alors d'un morphisme de groupes injectif $g: \left\{ \begin{array}{l} \operatorname{Gal}_{\mathbb{F}_p} \overline{P} & \longrightarrow & \operatorname{Gal}_{\mathbb{Q}} P \\ \sigma & \longmapsto & g\left(\sigma\right) \end{array} \right\}$ vérifiant

$$\rho \circ g(\sigma) = \sigma \circ \rho.$$

 $où\ \rho\in \mathrm{Hom}\,(A,L)\ et\ h=\rho_{|\Omega}^{-1}\ est\ une\ bijection\ de\ \overline{\Omega}\longrightarrow \Omega.$

En particulier, l'action de $\operatorname{Gal}_{\mathbb{F}_p}\overline{P}$ sur Ω se ramène à l'action de $\operatorname{Gal}_{\mathbb{Q}}P$ sur Ω modulo la conjugaison

$$g\left(\sigma\right) = h \circ \sigma \circ h^{-1}$$

ou le diagramme commutatif

$$\begin{array}{ccc} \overline{\Omega} & \xrightarrow{h} & \Omega \\ \sigma \downarrow & & \downarrow g(\sigma) \\ \overline{\Omega} & \xrightarrow{h} & \Omega \end{array}$$

Démonstration.

Donnons-nous un $\psi \in \operatorname{Hom}(A, L)$. Alors $\forall \sigma \in \operatorname{Gal}_{\mathbb{F}_p} \overline{P}, \ \sigma \circ \psi \in \operatorname{Hom}(A, L)$, donc par transitivité/liberté de l'action à droite de $\operatorname{Gal}_{\mathbb{Q}} P$ sur $\operatorname{Hom}(A, L)$ (cf lemme),

$$\exists ! \tau \in \operatorname{Gal} P \text{ tel que } \sigma \circ \psi = \psi \circ \tau.$$

Ceci détermine une application $g: \left\{ \begin{array}{ccc} \operatorname{Gal}_{\mathbb{F}_p} \overline{P} & \longrightarrow & \operatorname{Gal}_{\mathbb{Q}} P \\ \sigma & \longmapsto & \tau \end{array} \right.$ vérifiant $\sigma \circ \psi = \psi \circ g\left(\sigma\right)$ et qui est un morphisme de groupes injectif. En effet, d'une part on a

$$\psi \circ g (\sigma_1 \sigma_2) = (\sigma_1 \sigma_2) \circ \psi = \sigma_1 \circ (\sigma_2 \circ \psi)$$

$$= \sigma_1 \circ (\psi \circ g (\sigma_2)) = (\sigma_1 \circ \psi) \circ g (\sigma_2)$$

$$= \psi \circ g (\sigma_1) \circ g (\sigma_2) = \psi \circ (g (\sigma_1) g (\sigma_2))$$

et ψ est par ailleurs injective????; d'autre part,

$$g(\sigma) = \operatorname{Id} \implies \sigma \circ \psi = \psi \implies \sigma = \operatorname{Id}$$

par liberté de l'action à droite (cf lemme), d'où l'injectivité de g.

De plus, ψ induit une bijection $\Omega \longrightarrow \overline{\Omega}$; on prend alors $h = \psi_{|\Omega}^{-1}$, et toutes les vérification tombent.

Le principal résultat est l'injection de $\operatorname{Gal}_{\mathbb{F}_p} \overline{P}$ dans $\operatorname{Gal}_{\mathbb{Q}} P$, injection qui est une conjugaison quand on ne regarde que l'action sur les racines (la plus facile à lire).

Ainsi, en réduisant \overline{P} modulo différents p et en factorisant \overline{P} selon ses facteurs irréductibles, on obtient des éléments de $\operatorname{Gal}_{\mathbb{F}_p} \overline{P}$ (des produits de cycles dont les longueurs sont les degrés des facteurs irréductibles de \overline{P}) qui s'injectent par conjugaison dans $\operatorname{Gal}_{\mathbb{Q}} P \hookrightarrow \mathfrak{S}_{\Omega}$. Si on obtient ainsi des générateurs de \mathfrak{S}_{Ω} à travers différents p, on aura directement $\operatorname{Gal}_{\mathbb{Q}} P \simeq \mathfrak{S}_{\Omega}$.

On est donc amené à chercher les degrés des facteurs irréductibles d'un polynôme unitaire $\overline{P} \in \mathbb{F}_p[X]$.

4.2.3 Recherche de facteurs irréductibles

Soit Q un polynôme de $\mathbb{F}_p[X]$. La proposition suivante montre que la recherche des facteurs irréductibles de degré d de Q doit passer par le calcul du pgcd $Q \wedge \left(X^{p^d} - X\right)$.

Proposition.

Si Q admet un facteur irréductible de degré d, ce facteur divise nécessairement $Q \wedge \left(X^{p^d} - X\right)$.

Démonstration.

Soit A un facteur irréductible de Q de degré d. Considérons un corps K de décomposition de A sur \mathbb{F}_p , par exemple $K = \mathbb{F}_p[X]/(A)$. K est de cardinal $p^{\deg A} = p^d$, donc $K \simeq \mathbb{F}_{p^d}$. Ainsi, tous les éléments de K sont racines de $X^{p^d} - X$, et en regardant le degré on peut écrire $X^{p^d} - X = \prod_{\lambda \in K} (X - \lambda)$, de sorte que A divise $X^{p^d} - X$ dans K[X]. Or, A et $X^{p^d} - X$ sont déjà dans $\mathbb{F}_p[X]$, donc le quotient $\frac{X^{p^d} - X}{A}$ est en fait dans $\mathbb{F}_p[X]$, CQFD.

Proposition.

Si Q admet une racine dans \mathbb{F}_{p^d} qui n'est dans aucun des $\mathbb{F}_{p^{d'}}$ pour d' divisant strictement d, alors Q admet un facteur irréductible de degré d.

Démonstration.

Soit ξ une racine de Q dans \mathbb{F}_{p^d} comme dans l'énoncé et μ le polynôme minimal de ξ sur \mathbb{F}_p . Un corps de rupture de μ est un sous-corps de \mathbb{F}_{p^d} , donc un certain $\mathbb{F}_{p^{d'}}$ où d' divise d. Comme de plus un tel corps est de degré deg μ sur \mathbb{F}_p , on en déduit que deg μ divise d. Or, deg μ ne peut diviser strictement d, sinon ξ serait racine de Q dans $\mathbb{F}_{p^{\deg \mu}}$, ce qui est exclu par hypothèse. Finalement, μ est irréductible et de degré d, d'où la conclusion.

Corollaire.

Q admet un facteur irréductible de degré d ssi $Q \wedge \left(X^{p^d} - X\right)$ a une racine dans \mathbb{F}_{p^d} qui n'est dans aucun des $\mathbb{F}_{p^{d'}}$ pour d' divisant strictement d.

Démonstration.

Le sens direct fait l'objet de la première proposition, l'autre sens découle de la seconde.

Exemple : calcul du groupe de Galois de $P = X^5 - X - 1$.

Modulo 2, $\overline{P} = X^5 + X + 1$. On cherche les degrés des facteurs irréductibles de \overline{P} . Aucun ne peut être de degré 1, car \overline{P} n'a pas de racines dans \mathbb{F}_2 . Pour les facteurs de degré deux, on calcule $(X^5 + X + 1) \wedge (X^4 - X) = X^2 + X + 1$, qui a une racine dans \mathbb{F}_4 (rappelons incidemment que $\mathbb{F}_4 \simeq \mathbb{F}_2[X]/X^2 + X + 1$...) et aucune dans \mathbb{F}_2 , donc P admet un facteur irréductible d'ordre deux. P se factorise par conséquent sous la forme (deg 2) (deg 3); il y a donc dans Gal vu comme sous-groupe des permutations des racines un élément σ qui se factorise en un produit d'une transposition et d'un cycle de longueur 3. En particulier, Gal contient σ^3 qui est une transposition.

Modulo 3, $\overline{P} = X^5 - X - 1$. Même topo : on cherche les degrés des facteurs irréductibles de \overline{P} . Aucun de degré 1 car pas de racines dans \mathbb{F}_3 . On regarde alors $\left(X^5 + X + 1\right) \wedge \left(X^9 - X\right) = 1$, d'où pas de facteur de degré 3. Donc P est irréductible sur \mathbb{F}_3 et Gal contient un 5-cycle.

Gal contient une transposition et un 5-cycle, donc vaut \mathfrak{S}_5 tout entier.

Ainsi $P = X^5 - X - 1$ n'est pas résoluble par radicaux, car la suite des dérivés de \mathfrak{S}_5 stationne à \mathfrak{A}_5 , donc \mathfrak{S}_5 n'est pas résoluble.