Sentiment Analysis on JumiaSmartphone Reviews Under 10K

This is an end to end project combining web scraping, SQL storage, NLP preprocessing, topic Modeling and Machine learning

OBJECTIVE

To extract and analyze customer reviews from the Jumia e-commerce platform, focusing on smartphones priced under KES 10,000. The goal was to uncover customer sentiment, identify product strengths and weaknesses, and evaluate both retailer and product performance.

Tools & Technologies Used

CATEGORY	TOOLS/ Technologies		
Web Scraping	Scrapy, Selenium		
Data storage	SQLite		
Data preprocessing	Pandas, Sqlite3, re		
NLP – Sentiment analysis	NLTK, Textblob, Varder, Roberta		
Topic Modeling	LDA (Latent Dirichlet Allocation)		
Feature Engineering	TF-IDF (Unigrams & Bigrams)		
Machine Learning	Scikit-learn (Naive Bayes, Logistic Regression, SVM)		
Visualization	Seaborn ,Matplotlib		
Environment	VSCode, Jupyter Notebook ,Python		

PROJECT WORKFLOW

1. Data Extraction

- Scraped reviews from multiple Jumia product pages.
- Used **Scrapy** to collect phone URLs, and **Selenium** to navigate dynamic review pages.

• Extracted: product metadata, overall rating, individual reviews, star ratings, and dates.

2. Data Storage

- Stored raw data in **SQLite**, using two linked tables:
 - o **Product Table**: phone ID, name, price, discount, brand, overall reviews.
 - Review Table: phone ID, review text, date, star rating.

3. Data Preprocessing

- Cleaned text: lowercased, removed special characters and stopwords.
- Applied tokenization and lemmatization for consistency.
- Even short and empty reviews were included to evaluate their impact on ML models.

Sentiment Labeling

- Applied **TextBlob**, **VADER**, and **RoBERTa** to generate sentiment labels.
- Compared results with star ratings (5-4 = Positive, 3 = Neutral, 2-1 = Negative).
- Found **12.5% mismatch** between sentiment scores and star ratings, often due to sarcasm, misused star ratings, or ambiguous language.

Topic Modeling

- Used **LDA** to uncover top 3 themes in reviews:
 - 1. Jumia Services
 - 2. Customer Satisfaction
 - 3. Phone Features

Feature Engineering

- Vectorized text using TF-IDF (unigrams + bigrams).
- Included features: sentiment scores, topic tags and star rating.

Modeling

Split the dataset into training and testing sets (80/20)

Trained and compared the following classifiers:

Naïve Bayes balanced classification SVM

SMOTE (Synthetic Minority Oversampling Technique) SVM

MODEL	Accuracy	Precision	Recall	F1- Score
Logistic regression	0.80			
Naive Bayes	0.82	0.75	0.82	0.78
Balanced SVM	0.68	0.78	0.68	0.71
SMOTE- biased SVM	0.74	0.74	0.75	0.74

Goal Focus: Achieving high **recall for negative reviews**. Although Naive Bayes performed well overall, Balanced SVM was better at catching negatives.

Key Insights

- 70% of reviews were Positive, 22% Negative, 8% Neutral.
- Battery, charging, camera, and price were the most mentioned features.
- RoBERTa showed the highest agreement with human star ratings among sentiment models (65.6% accuracy), followed by VADER.
- Nokia had the most polarized reviews (strongly positive and negative).
- Itel had the highest number of low-budget phones (<10K).
- Customer Satisfaction was the most frequent topic, with over 82% positive sentiment.
- Phone Features drew the highest negative feedback.
- Jumia Services received the least attention (18% of total reviews).

Challenges

- Class imbalance: Most reviews were positive, making it hard to train models on negative/neutral classes.
- Customers misused star ratings (e.g., 5-star reviews with complaints).

- Sarcasm and humor were common and difficult for sentiment tools to interpret.
- SMOTE overcompensated, making the model biased toward negative predictions.

Next Steps & Improvements

- Expand scraping to **other platforms** (e.g., Kilimall) for comparative insights.
- Add more categories (e.g., tablets, accessories) to widen the scope.
- Collect a larger dataset for better training and balanced sentiment distribution.
- Explore **transformer-based models** (like fine-tuned RoBERTa or BERT) for more context-aware sentiment classification.

PROJECT REPOSITORY

GitHub: https://github.com/Adieltheanalyst/jumia sentiment analyser

What I Learned

- Building robust web scraping pipelines with Scrapy + Selenium.
- Using SQL to structure and store scraped data.
- Applying and evaluating multiple sentiment analysis techniques.
- Using **LDA** for unsupervised topic discovery.
- Training and tuning ML models with an imbalanced dataset.
- Communicating technical insights in a clear and structured format.

By Adiel Maina