- 1. Постройте обобщённую структурную схему следящей системы радиоавтоматики. Укажите допущения, при которых обобщённая структурная схема описывает работу системы, тип которой указан в графе 1 приведённой ниже таблицы.
- 2. Убедитесь в том, что рассматриваемая система при использовании фильтра, операторный коэффициент передачи которого приведён в графе 2, устойчива.
- 3. Полагая, что параметры системы удовлетворяют соотношению, приведённому в графе 3, получите выражение для изменения ошибки слежения x(t) при воздействии $\lambda(t) = \mathbf{1}(t)$ и нулевых начальных условиях.
- 4. Постройте график полученной зависимости x(t). Для заданий 2, 5, 10, 13 и 19 найти не процесс x(t), а процесс y(t).
- 5. Укажите, как меняется характер переходного процесса, если соотношение, указанное в графе 3, не выполняется.
- 6. При выполнении этого соотношения выясните, как влияет на длительность переходного процесса в системе значение параметра фильтра, приведённого в графе 4.
- 7. Определите, пользуясь графой 5 таблицы, является ли воздействие $\lambda(t)$ в вашем задании случайной или детерминированной функцией времени. В случае детерминированного воздействия найдите значение ошибки слежения $x_{\rm ycr}(t)$ в установившемся режиме, прияв, что $\lambda(t)$ описывается выражением, приведённым в графе 6. Если воздействие является случайной функцией времени, найдите дисперсию ошибки слежения в установившемся режиме, полагая, что спектральная плотность $S_{\lambda}(\omega)$ воздействия описывается выражением, приведённым в графе 7.
- 8. Найдите в установившемся режиме дисперсию ошибки слежения, вызванную действием на выходе дискриминатора белого шума $\xi(t)$ со спектральной плотностью $S_{\varepsilon}(0)$.
- 9. Используя результаты, полученные при выполнении пунктов 7 и 8 задания, определите средний квадрат ошибки слежения в установившемся режиме $\bar{x^2}$ с учётом действия процессов $\lambda(t)$ и $\xi(t)$. Проведите оптимизацию параметров фильтра, указанных в графе 8 таблицы, по критерию получения $\bar{x^2} = \min$. Поясните, можно ли остальные параметры фильтра (если они есть) оптимизировать по этому критерию. Учтите при этом влияние указанных параметров на другие характеристики системы: длительность переходного процесса, величину ошибки слежения в переходном режиме.
- 10. Выясните, сохраняется ли устойчивость рассматриваемой системы при включении в её состав дополнительного звена с коэффициентом передачи, приведённом в графе 9. Используйте при этом метод, указанный в графе 10 и значения параметров системы, помещённые в графе 11.

Nº	1	2	3	4	5	6	7	8	9	10	11
1	ФАП	Α	$\sqrt{S_{_{\rm I}}K}T_{_{\rm I}}=2$	K	дет	βt		T_1	$1/(1+pT_2)$	част	$S_{_{\mathrm{II}}}=1\mathrm{B}/pa\partial$; $K=25pa\partial/B\cdot c^2$; $T_{_{1}}=0.4c$; $T_{_{2}}=0.1c$
2	ФАП	Б	$1 + S_{\pi}KT_{1} = 2\sqrt{S_{\pi}KT}$	Т	дет	βt		T_1	$1/(1+pT_2)(1+pT_3)$	алгебр	$S_{_{A}} = 2 \text{ B}/pa\partial$; $K = 125 pa\partial/B \cdot c$; $T_{_{1}} = 0.036c$; $T = 0.1c$; $T_{_{2}} = 0.01c$; $T_{_{3}} = 0.15c$
3	ФАП	В	$S_{_{\pi}}KT=0.25$	Т	дет	βt		K	$1/(1+pT_2)$	алгебр	$S_{\text{A}} = 1.5 \text{B/pad}$; $K = 5 \text{pad/B} \cdot c$; $T = 0.033c$; $T_2 = 0.05c$
4	ФАП	Α	$\sqrt{S_{_{\mathcal{I}}}K}T_{_{1}}=2$	K	дет	βt		K,T_1	$1/(1+pT_2)(1+pT_3)$	алгебр	$S_{\text{A}} = 0.5 \text{B/pad}; K = 32 \text{pad/B} \cdot c^2; T_1 = 0.5c;$ $T_2 = 0.05c; T_3 = 0.2c$
5	ВС	Б	$1 + S_{_{\mathcal{I}}}KT_{_{1}} = 2\sqrt{S_{_{\mathcal{I}}}KT}$	K	дет	βt		T_1	$1/(1+pT_2)$	алгебр	$S_{_{\mathrm{I\!I}}}=0.4\mathrm{B/mkc}$; $K=200\mathrm{mkc/B}\cdot c$; $T_{_{1}}=0.5c$; $T_{_{2}}=0.09c$; $T=0.1c$
6	вс	В	$S_{_{\pi}}KT=0.25$	K	сл		b^2/ω^2	K,T	$1/(1+pT_2)$	част	$S_{_{\mathrm{I\!I}}}=1\mathrm{B/mkc}$; $K=5\mathrm{m\kappa c/B\cdot c}$; $T_{2}=0.01c$; $T=0.05c$
7	ВС	Α	$\sqrt{S_{_{\Lambda}}K}T_{_{1}}=2$	K	сл		c^2/ω^4	K,T	$1/(1+pT_2)$	алгебр	$S_{_{\mathrm{I\!I}}}=10\mathrm{B/mkc}$; $K=10\mathrm{mkc/B\cdot c^2}$; $T_{_{1}}=0.2c$; $T_{_{2}}=0.3c$
8	вс	Γ		K	сл		b^2/ω^2	K	$1/(1+pT_2)(1+pT_3)$	част	$S_{_{\mathrm{I\!I}}}=0.8\mathrm{B/mkc}$; $K=25\mathrm{mkc/B\cdot c}$; $T_{_{2}}=T_{_{3}}=0.5c$
9	ВС	Α	$\sqrt{S_{_{A}}K}T_{_{1}}=2$	K	дет	βt		T_1	$1/(1+pT_2)(1+pT_3)$	алгебр	$S_{_{\mathrm{I\!I}}}=2\mathrm{B/mkc}$; $K=200\mathrm{mkc/B\cdot c^2}$; $T_{_{\mathrm{I\!I}}}=0.1c$; $T_{_{\mathrm{I\!I}}}=0.15c$; $T_{_{\mathrm{I\!I}}}=0.05c$
10	ВС	Б	$1 + S_{\scriptscriptstyle A}KT_1 = 2\sqrt{S_{\scriptscriptstyle A}KT}$	Т	дет	βt		T_1	$1/(1+pT_2)$	алгебр	$S_{_{\mathrm{I\!I}}}=0.5\mathrm{B/mkc}$; $K=50\mathrm{mkc/B\cdot c^2}$; $T_{\mathrm{I}}=0.16c$; $T_{\mathrm{2}}=0.1c$; $T=0.25c$
11	ВС	В	$S_{_{\mathcal{I}}}KT=0.25$	Т	дет	βt		K	$1/(1+pT_2)$	алгебр	$S_{_{\mathrm{I\!I}}}=0.5\mathrm{B/mkc}$; $K=20\mathrm{mkc/B\cdot c}$; $T_{2}=0.01c$; $T=0.025c$
12	ВС	Α	$\sqrt{S_{_{\rm I}}K}T_{_{\rm I}}=2$	K	дет	μ^2		K,T_1	$1/(1+pT_2)$	част	$S_{_{\mathrm{I\!I}}}=0.5\mathrm{B/mkc}$; $K=50\mathrm{m\kappa c/B\cdot c^2}$; $T_{_{\mathrm{I\!I}}}=0.4c$; $T_{_{\mathrm{I\!I}}}=0.2c$
13	ЧАП	Б	$1 + S_{\scriptscriptstyle A}KT_1 = 2\sqrt{S_{\scriptscriptstyle A}KT}$	K	дет	$\alpha l(t)$		T_1	$1/(1+pT_2)$	част	$S_{_{\rm A}} = 1 \mathrm{B/\kappa \Gamma u}$; $K = 10 \kappa \Gamma u/B \cdot c$; $T_1 = 0.5c$; $T_2 = 1c$; $T = 0.9c$

	1	2	3	4	5	6	7	8	9	10	11
14	УС	В	$S_{_{\mathcal{I}}}KT=0.25$	Т	сл		b^2/ω^2	K,T	$1/(1+pT_2)(1+pT_3)$	част	$S_{_{\mathrm{I\!I}}}=0.25\mathrm{B/град}$; $K=4\emph{град/B}\cdot c$; $T=0.25c$; $T_{_{2}}=0.1c$; $T_{_{3}}=0.2c$
15	ЧАП	Α	$\sqrt{S_{_{\mathcal{I}}}K}T_{_{1}}=2$	K	сл		c^2/ω^4	K,T_1	$1/(1+pT_2)$	алгебр	$S_{_{\Pi}} = 2 \mathrm{B/k}$ Γιι; $K = 12.5 \kappa \Gamma u/B \cdot c^2$; $T_1 = 0.4c$; $T_2 = 1c$
16	УС	Γ		K	сл		b^2/ω^2	K	$1/(1+pT_2)(1+pT_3)$	алгебр	$S_{_{\mathrm{I\!I}}}=1\mathrm{B/rpa}$ д; $K=10\varepsilon pao/B\cdot c$; $T_{_{2}}=0.1c$; $T_{_{3}}=0.05c$
17	УС	Α	$\sqrt{S_{_{\mathcal{I}}}K}T_{_{1}}=2$	K	дет	βt		T_1	$1/(1+pT_2)$	алгебр	$S_{_{\mathrm{I\!I}}}=1\mathrm{B/rpa}$ д; $K=16\mathrm{cpa}\partial/B\cdot c^2$; $T_{_{1}}=0.5c$; $T_{_{2}}=0.1c$
18	УС	В	$S_{_{\mathcal{I}}}KT = 0.25$	T	дет	βt		K	$1/(1+pT_2)$	част	$S_{_{\mathrm{I\!I}}}=0.5\mathrm{B/град}$; $K=5\emph{град}/B\cdot c$; $T_{_{1}}=0.1c$; $T_{_{2}}=0.05c$
19	УС	Б	$1 + S_{\pi}KT_1 = 2\sqrt{S_{\pi}KT}$	K	дет	βt		T_1	$1/(1+pT_2)$	алгебр	$S_{_{\mathrm{I\!I}}}=0.5\mathrm{B/град}$; $K=40\emph{град/B}\cdot\emph{c}$; $T_{_{1}}=0.25\emph{c}$; $T_{_{2}}=0.5\emph{c}$; $T_{_{3}}=0.45\emph{c}$
20	УС	В	$S_{\pi}KT = 0.25$	K	сл		b^2/ω^2	K,T	$1/(1+pT_2)$	алгебр	$S_{_{\rm I\!I}}=0.5{\rm B/град}$; $K=1{\it гpad/B}\cdot c$; $T=0.5c$; $T_{2}=1c$
21	ФАП	Α	$\sqrt{S_{_{\mathcal{I}}}K}T_{_{1}}=2$	K	сл		c^2/ω^4	K,T_1	$1/(1+pT_2)$	алгебр	$S_{\text{A}} = 2 \text{ B}/pa\partial$; $K = 800 pao/B \cdot c^2$; $T_1 = 0.05c$; $T_2 = 0.02c$
22	ФАП	Γ		K	сл		b^2/ω^2	K	$1/(1+pT_2)(1+pT_3)$	част	$S_{_{\rm II}} = 0.8 \mathrm{B}/pa\partial$; $K = 12.5 pa\partial/B \cdot c$; $T_2 = 0.1c$; $T_3 = 0.5c$
23	ФАП	В	$S_{_{\mathcal{I}}}KT=0.25$	Т	дет	βt		K	$1/(1+pT_2)(1+pT_3)$	алгебр	$S_{_{\rm II}} = 0.5 \mathrm{B}/pa\partial$; $K = 10 pa\partial/B \cdot c$; $T = 0.05c$; $T_{_{2}} = 0.01c$; $T_{_{3}} = 0.02c$
24	ФАП	А	$\sqrt{S_{_{\mathcal{I}}}K}T_{_{1}}=2$	K	дет	βt		T_1	$1/(1+pT_2)(1+pT_3)$	част	$S_{\rm m} = 1 \mathrm{B}/pa\partial$; $K = 100 pa\partial/B \cdot c^2$; $T_{\rm l} = 0.1c$; $T_{\rm l} = 0.05c$; $T_{\rm l} = 0.2c$
25	ЧАП	В	$S_{_{\pi}}KT=0.25$	Т	сл		b^2/ω^2	K,T	$1/(1+pT_2)$	част	$S_{_{\Pi}}=1\mathrm{B/k}$ Γιι; $K=0.5\mathrm{k}$ Γιμ/ $B\cdot c$; $T_{2}=1c$; $T=0.5c$

Типы фильтров: $A - K(p) = \frac{K(1+pT_1)}{p^2}$; $B - K(p) = \frac{K(1+pT_1)}{p(1+pT)}$; $B - K(p) = \frac{K}{p(1+pT)}$; $C - K(p) = \frac{K}{p(1+pT)}$