AXI Stream Interconnect v1.0

IP User Guide (Beta Release)

February 2, 2023

Contents

IP Summary	2
Overview	3
AXI Stream Interconnect	
Licensing	4
IP Support Details	5
Resource Utilization	5
Port List	
Parameters	7
Design Flow	8
IP Customization and Generation	8
Test Bench	10
Release	11
Revision History	11

IP Summary

Introduction

AXI Stream Interconnect IP is a digital logic block that facilitates communication between various IP blocks in a System-on-Chip (SoC) design, specifically for streaming data. It acts as a bridge between the different IP blocks, allowing them to transfer streaming data and information in a fast and efficient manner. The AXI Stream Interconnect IP implements the AXI Stream protocol, which is a specialized version of the AXI (Advanced eXtensible Interface) protocol. This protocol is optimized for the transfer of continuous data streams and is commonly used in high-speed video and audio processing applications. The IP block can support multiple AXI Stream ports and allows for configurable routing of data streams between different IP blocks, making it flexible and scalable for various SoC designs. AXI Stream Interconnect IP is commonly used in FPGA and ASIC designs to simplify the on-chip communication infrastructure for streaming data.

Features

- Supports parameterized AXI Stream Interface.
- Supports multiple masters and multiple slaves.
- Support separate select signals for each master.

Overview

AXI Stream Interconnect

AXI Stream Interconnect is an IP Core which used for the communication of various IP blocks in a System-on-Chip (SoC) design. This IP Core supports multiple ports, allowing for the routing of data streams between IP blocks in a flexible and scalable manner. The figure 1 shows the block diagram of AXIS Interconnect.

Figure 1. AXIS Interconnect Block Diagram

Licensing

Copyright (c) 2022 RapidSilicon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

IP Support Details

The Table 1 gives the support details for AXIS Interconnect.

Co	mpliance	IP Resources			e IP Resources Tool Flow			
Device	Interface	Source Files	Constraint File	Testbench	Simulation Model	Analyze and Elaboration	Simulation	Synthesis
GEMIN	AXI-Stream	Verilog	SDC	Verilog	-	Raptor	Raptor	Raptor

Table 1. Support Details

Resource Utilization

The parameters for computing the maximum and the minimum resource utilization are given in Table 2, remaining parameters have been kept at their default values.

Tool	Raptor Design Suite					
FPGA Device	GEMINI					
	Configuration	Resource Utilization				
Minimum Resource	Options	Configuration	Resources	Utilized		
	S_COUNT	2	LUTS	48		
	M_COUNT	1	REGISTERS	144		
	DATA_WIDTH	32	CELLS	192		
	ID_WIDTH	8	-	-		
	Options	Configuration	Resources	Utilized		
Manimum	S_COUNT	16	LUTS	5772		
Maximum Resource	M_COUNT	16	REGISTERS	2368		
	DATA_WIDTH	32	CELLS	8140		
	ID_WIDTH	32	-	-		

Table 2. Resource Utilization

Ports

Table 3 lists the top interface ports of the AXI Stream Interconnect.

Signal Name	I/O	Description	
AXI Clock and Reset			
clk	I	AXI4-Stream Clock	
rst	I	AXI4-Stream RESET	
AXI Slave Interface			
s_axis_tdata	I	AXI4-Stream data	
s_axis_tkeep	I	AXI4-Stream keep data qualifier	
s_axis_tvalid	I	AXI4-Stream valid transfer	
s_axis_tlast	I	AXI4-Stream boundary of transfer packet	
s_axis_tid	I	AXI4-Stream data stream identifier	
s_axis_tdest	I	AXI4-Stream data routing information	
s_axis_tuser	I	AXI4-Stream user defined sideband information	
AXI Master Interface			
m_axis_tdata	О	AXI4-Stream data	
m_axis_tkeep	О	AXI4-Stream keep data qualifier	
m_axis_tvalid	О	AXI4-Stream valid transfer	
m_axis_tlast	О	AXI4-Stream boundary of transfer packet	
m_axis_tid	О	AXI4-Stream data stream identifier	
m_axis_tdest	О	AXI4-Stream data routing information	
m_axis_tuser	О	AXI4-Stream user defined sideband information	
Other Signals			
select	I	Select line for master selection	

 Table 3. AXI Stream Interface

Parameters

Table 4 lists the parameters of the AXIS Interconnect.

Parameter	Values	Default Value	Description
S_COUNT	2-16	4	Number of Slave Interfaces
M_COUNT	1-16	4	Number of Master Interfaces
DATA_WIDTH	1-4096	8	Data Width of Stream Interface
ID_WIDTH	1-32	8	Width of Transaction ID fields
DEST_WIDTH	1-32	8	Width of DEST fields
USER_WIDTH	1-4096	1	Width of USER fields
LAST_EN	True/False	True	Last enable
ID_EN	True/False	True	ID enable
DEST_EN	True/False	True	DEST enable
USER_EN	True/False	True	USER enable

Table 4. Parameters

Design Flow

IP Customization and Generation

AXI Stream Interconnect IP core is a part of the Raptor Design Suite Software. A customized memory can be generated from the Raptor's IP configurator window as shown in figure 2.

Figure 2. IP list

Parameters Customization: From the IP configuration window, the parameters of the can be configured and it's features can be enabled for generating a customized IP core that suits the user application requirements. All parameters are shown in figure 3.

Figure 3. IP Configuration

Test Bench

The testbench included with AXI Stream Interconnect is myhdl based testbench in which multiple masters performs multiple transcations to multiple slaves. It contains four masters and four slaves connected to AXI Stream Interconnect. Multiple masters sends data frames to multiple slaves through AXI Stream Interconnect. In this way, functionality of this IP core is tested.

Revision History

Date	Version	Revisions
February 2, 2023	0.01	Initial version AXI Stream Interconnect User Guide Document