1

AI1103: Assignment 5

Damaragidda Bharadwaja Rao - CS20BTECH11012

Download all latex-tikz codes from

https://github.com/Bharadwaja-rao-D/AI1103/blob/main/assignment5/assignment5.tex

PROBLEM UGC-MATH 2019 O 105:

Consider a simple symmetric random walk on integers, where from every state i you move to i-1 and i+1 with the probability half each. Then which of the following are true?

- 1) The random walk is aperiodic
- 2) The random walk is irreducible
- 3) The random walk is null recurrent
- 4) The random walk is positive recurrent

SOLUTION:

The simple symmetric random walk is a Markov chain with state space $S = \{i | i \in \mathbb{Z}\}$ and with transition matrix P where,

$$p_{ij} = \begin{cases} 0, & |i - j| > 1 \\ p = \frac{1}{2}, & j = i + 1 \\ q = 1 - p = \frac{1}{2}, & j = i - 1 \end{cases}$$
 (0.0.1)

and p_{ij} denotes the probability of being in state j, starting from state i after n steps or transitions.

1) For a Markov chain to be aperiodic there should exist an integer k such that

$$p_{ii}^n > 0 \quad \forall n \ge k \tag{0.0.2}$$

to return to same state after n steps, number of forward and backward steps should be same, that is number of steps should be even.

$$p_{jj}^n = 0 \quad \forall n \in Odd \tag{0.0.3}$$

- :. Equation (0.0.2) is not satisfied and Option (1) is **incorrect**.
- 2) For a Markov chain to be **irreducible** all pairs i,j should communicate with each other.Let us assume that the chain starts from state i and let us assume that it requires m forward and (n-m) backward steps to reach j .Let i < j wlog

$$j - i = m - (n - m) = 2m - n \tag{0.0.4}$$

$$m = \frac{(j-i)+n}{2} \tag{0.0.5}$$

$$p_{ij} = {}^{n}C_{m}p^{m}q^{n-m} (0.0.6)$$

$$p_{ij} = {}^{n}C_{\left(\frac{(j-i)+n}{2}\right)} p^{m} q^{n-m} > 0$$

$$n = (j-i) + 2k \ \forall k \in \mathbb{W} \quad (0.0.7)$$

Here i and j are general, hence all pairs i and j communicate with each other.

∴Option (2) is **correct**

3) In a Markov Chain for state i to be **recurrent** it should satisfy,

$$\lim_{t \to \infty} \sum_{n=1}^{t} p_{ii}^{n} = \infty \tag{0.0.8}$$

$$\lim_{t \to \infty} \sum_{n=1}^{t} p_{ii}^{n} = \lim_{t \to \infty} \left(\sum_{k=1}^{t} p_{ii}^{2k} + \sum_{k=1}^{t} p_{ii}^{(2k-1)} \right)$$
(0.0.9)

$$= \lim_{t \to \infty} \sum_{k=1}^{t} p_{ii}^{2k}$$
 (0.0.10)

$$p_{ii}^{2k} = {}^{2k}C_k p^k q^k = \frac{2k!}{k!k!} p^k q^k \quad (0.0.11)$$

By using Stirling approximation to the (0.0.11)

we get

$$p_{ii}^{2k} = \frac{\left((2k)^{2k+\frac{1}{2}}\right) \times \exp(-2k) \times (2\pi)^{\frac{1}{2}}}{\left(k^{k+\frac{1}{2}} \times \exp(-k)\right)^{2} \times 2\pi} p^{k} q^{k}$$
(0.0.12)

$$=\frac{(4pq)^{2k}}{(k\pi)^{\frac{1}{2}}} = \frac{1}{(k\pi)^{\frac{1}{2}}}$$
(0.0.13)

$$\lim_{t \to \infty} \sum_{k=1}^{t} p_{ii}^{2k} = \lim_{t \to \infty} \sum_{k=1}^{t} \frac{1}{(k\pi)^{\frac{1}{2}}}$$
 (0.0.14)

Since $\frac{1}{k^{\frac{1}{2}}}$ is divergent, Equation (0.0.8) is satisfied

.. The random walk is **recurrent** The first-passage time probability is

$$f_{i,j}(n) = \Pr(X_n = j, X_{n-1} \neq j, X_{n-2} \neq j, ...X_1 \neq j | X_0 = i)$$

$$(0.0.15)$$

The first-passage time $T_{i,j}$ from state i to j has the PMf $f_{i,j}(n)$ and the distribution function

$$F_{i,j}(n) = \sum_{k=0}^{n} f_{i,j}(k)$$
 (0.0.16)

For the Markov Chain to be null recurrent

$$\overline{T_{i,j}} = \infty \tag{0.0.17}$$

and for positive recurrent

$$\overline{T_{i,j}} < \infty \tag{0.0.18}$$

where $\overline{T_{j,j}}$ represents the mean time to enter j starting from j. We can calculate the mean by using the distribution function

$$\overline{T_{j,j}} = 1 + \sum_{k=0}^{n} (1 - F_{j,j}(k))$$
 (0.0.19)

From (0.0.16) we get (0.0.17) condition to be satisfied

- ∴ Option (3) is **correct**.
- 4) Since the Markov chain satisfies the (0.0.17) but not (0.0.18) .Hence it is not positive recurrent.
 - ∴ Option (4) is **incorrect Answer**: option2, option3