Вариант 4-08

Для случайной цены Y известно: $\mathbb{P}(Y=7)=0,6; \mathbb{P}(Y=13)=0,4.$ При условии Y=y, распределение выручки X является равномерным на отрезке [0,6y]. Найдите:

- 1. математическое ожидание $\mathbb{E}(XY)$;
- 2. ковариацию Cov(X, y)

Решение:

$$\mathbb{E}(XY|Y=y) = \mathbb{E}(X|Y=y) \cdot y$$

$$\mathbb{E}(X|Y=y) = \tfrac{0+6y}{2} = 3y$$

$$\mathbb{E}(XY|Y=y) = 3y^2; \mathbb{E}(XY) = \mathbb{E}(\mathbb{E}(XY|Y=y)) = \mathbb{E}(3y^2) = 3 \cdot (49 \cdot 0, 6 + 13 \cdot 0, 4) = 291$$

$$\mathbb{E}(XY) = \mathbb{E}(X) \cdot \mathbb{E}(Y) - \mathrm{Cov}(X,Y); \mathrm{Cov}(X,Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y) - \mathbb{E}(XY)$$

$$\mathbb{E}(X) = 0, 6 \cdot 6 \cdot \frac{7}{2} + 0, 4 \cdot 6 \cdot \frac{13}{2} = 28, 2$$

$$\mathbb{E}(Y) = 7 \cdot 0, 6 + 13 \cdot 0, 4 = 9, 4$$

$$Cov(X, Y) = 28, 2 \cdot 9, 4 - 291 = -20, 28$$

Omsem:
$$\mathbb{E}(XY) = 291$$
; $Cov(X, Y) = -20, 28$

Найдите распределение случайной величины $Z = \min(2, X - Y)$ и $\mathbb{E}(Z)$, если известно распределение дискретного случайного вектора (X,Y):

	Y = 1	Y = 2	Y = 3
X = 1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{27}$
X = 2	$\frac{1}{27}$	$\frac{1}{9}$	$\frac{1}{27}$
X = 3	$\frac{1}{27}$	$\frac{1}{27}$	$\frac{1}{27}$

Построим распределение U = X - Y:

	U = -2	U = -1	U = 0	U = 1	U=2
$\mathbb{P}(U)$	$\frac{1}{27}$	$\frac{10}{27}$	$\frac{13}{27}$	$\frac{2}{27}$	$\frac{1}{27}$

Построим распределение Z:

	Z = -2	Z = -1	Z = 0	Z=1	Z=2
$\mathbb{P}(U)$	$\frac{1}{27}$	$\frac{10}{27}$	$\frac{13}{27}$	$\frac{2}{27}$	$\frac{1}{27}$