

# **FCC RF TEST REPORT**

**APPLICANT** 

**Legacy Direct** 

PRODUCT NAME

Smart TV box

**MODEL NAME** 

BTV3, BTV, BTVi, BeTV, iBTV, LDTV, WTV, BTVi3

TRADE NAME

Legacy Direct

**BRAND NAME** 

BTV, BTVi, BeTV, iBTV, LDTV, WTV

FCC ID

2AIM5BTV3

STANDARD(S)

47 CFR Part 15 Subpart E

**ISSUE DATE** 

2016-07-13

SHENZHEN MORLAB COMM STECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.





## **DIRECTORY**

| TES <sup>*</sup> | REPORT DECLARATION            |                                         |          |          |          |       | 2              |
|------------------|-------------------------------|-----------------------------------------|----------|----------|----------|-------|----------------|
|                  |                               |                                         |          |          |          |       |                |
| <u>1.</u>        | GENERAL INFORMATION           |                                         |          |          |          |       | 5              |
|                  |                               |                                         |          |          |          |       |                |
| 1.1              | EUT DESCRIPTION ······        |                                         |          |          |          |       | 5              |
| 1.2              | TEST STANDARDS AND RESULTS    |                                         |          |          |          |       | е              |
| 1.3              | TEST ENVIRONMENT CONDITIONS   |                                         |          |          |          |       |                |
|                  |                               |                                         |          |          |          |       |                |
| 2.               | 47 CFR PART 15E REQUIREMENTS  |                                         |          |          |          |       | <del>.</del> 7 |
| 3                | at he north                   | AB .                                    | RLAR     | MORL     | W.       | S. C. | al.Ar          |
| 2.1              | ANTENNA REQUIREMENT ······    |                                         | <u> </u> | <u> </u> | <u> </u> | × (0  | <del>7</del>   |
| 2.1.             |                               |                                         |          |          |          |       |                |
|                  | 2 RESULT: COMPLIANT······     |                                         |          |          |          |       |                |
| 2.2              | EMISSION BANDWIDTH            |                                         |          |          |          |       |                |
| 2.2.             |                               |                                         |          |          |          |       |                |
| 2.2.             |                               |                                         |          |          |          |       |                |
| 2.2.             |                               |                                         |          |          |          |       |                |
| 2.3              | MAXIMUM CONDUCTED OUTPUT POWE |                                         |          |          |          |       |                |
| 2.3.             |                               |                                         |          |          |          |       |                |
| 2.3.             |                               |                                         |          |          |          |       |                |
| 2.3.             |                               |                                         |          |          |          |       |                |
| 2.4              |                               |                                         |          |          |          |       |                |
| 2.4.             |                               |                                         |          |          |          |       |                |
| 2.4.             |                               |                                         |          |          |          |       |                |
| 2.4.             |                               |                                         |          |          |          |       |                |
| 2.5              | RESTRICTED FREQUENCY BANDS    |                                         |          |          |          |       |                |
| 2.5.             |                               |                                         |          |          |          |       |                |
| 2.5.             |                               |                                         |          |          |          |       |                |
| 2.5.             |                               |                                         |          |          |          |       |                |
| 2.6              | FREQUENCY STABILITY           |                                         |          |          |          |       |                |
| 2.6.             |                               |                                         |          |          |          |       |                |
| 2.6.             | 2 Test Procedure ·····        | 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <u> </u> |          |          |       | 33             |
| 2.6.             |                               |                                         |          |          |          |       |                |
| 2.7              | CONDUCTED EMISSION ·····      |                                         |          |          |          |       |                |
| 2.7.             | 1 REQUIREMENT·····            |                                         |          |          |          |       | 35             |



| 2.7.2 | TEST DESCRIPTION ·····  | 35 |
|-------|-------------------------|----|
|       | Test Result             |    |
| 2.8   | RADIATED EMISSION       | 38 |
| 2.8.1 | REQUIREMENT             | 38 |
| 2.8.2 | TEST DESCRIPTION ·····  | 39 |
|       | Test Result             |    |
| 2.9   | RF EXPOSURE EVALUATION  | 58 |
|       | REQUIREMENT             |    |
| 2.9.2 | RESULT ·····            | 58 |
|       |                         |    |
| ANNE  | X A GENERAL INFORMATION | 59 |

|       | Change History                         |  |  |  |  |  |
|-------|----------------------------------------|--|--|--|--|--|
| Issue | Issue Date Reason for change           |  |  |  |  |  |
| 1.0   | 1.0 2016-07-13 First edition           |  |  |  |  |  |
| MORL  | TOPL HO, OF BINE TOPL HO, TE BINE TOPL |  |  |  |  |  |



## **TEST REPORT DECLARATION**

| Applicant            | Legacy Direct                                                                                      |
|----------------------|----------------------------------------------------------------------------------------------------|
| Applicant Address    | 1221 E. Dyer Rd., Santa Ana CA 92705, USA                                                          |
| Manufacturer         | Wiatec International Ltd.                                                                          |
| Manufacturer Address | Unit 601-605, TaoJinDi Electronic Commercial Plaza B, TengLong Rd, LongHua, Shenzhen, China 518131 |
| Product Name         | Smart TV box                                                                                       |
| Model Name           | BTV3, BTV, BTVi, BeTV, iBTV, LDTV, WTV, BTVi3                                                      |
| Brand Name           | BTV, BTVi, BeTV, iBTV, LDTV, WTV                                                                   |
| HW Version           | WIL-BTV3                                                                                           |
| SW Version           | Android 5.1.1                                                                                      |
| Test Standards       | 47 CFR Part 15 Subpart E                                                                           |
| Test Date            | 2016-06-18 to 2016-07-01                                                                           |
| Test Result          | PASS                                                                                               |

| Tested by | Yuanling  |  |
|-----------|-----------|--|
| 7         | Yuan Ling |  |

Reviewed by

Qiy Xiaojun

Approved by

Peng Huarui



## 1. GENERAL INFORMATION

## 1.1 EUT Description

| EUT Type:        | Smart TV box                                                   |
|------------------|----------------------------------------------------------------|
| Serial No:       | (n.a, marked #1 by test site)                                  |
| Hardware Version | WIL-BTV3                                                       |
| Software Version | Android 5.1.1                                                  |
| Applicant        | Legacy Direct                                                  |
| T INC AB . CRLA  | 1221 E. Dyer Rd., Santa Ana CA 92705, USA                      |
| Manufacturer     | Wiatec International Ltd.                                      |
| AB TRUAD MO      | Unit 601-605, TaoJinDi Electronic Commercial Plaza B, TengLong |
| MORIL MO. AE     | Rd, LongHua, Shenzhen, China 518131                            |
| Frequency Range  | 802.11b/g/n: 2.400GHz - 2.4835GHz                              |
| MO. DE IT GLAS   | 802.11a/n: 5.150GHz- 5.250GHz                                  |
| TLAS NORLY MON   | 5.725GHz- 5.850GHz                                             |
| Channel Number:  | Refer Ntote(2)                                                 |
| Modulation Type  | DSSS, OFDM                                                     |
| Antenna Type     | FPCB Antenna                                                   |
| Antenna Gain:    | 2dBi                                                           |

#### Note:

- 1. The U-NII band is applicable to this report, another bands of operation (2.4GHz) is documented in a separate report.
- The following tables are the channel number and frequency of the EUT, the black bold channels were selected for test.

#### 20MHz Bandwidth:

| Frequency Range | 5150~5250MHz |      |      | quency Range 5150~5250MHz 5725~5850MHz |      |      | DEL  |      |      |
|-----------------|--------------|------|------|----------------------------------------|------|------|------|------|------|
| Channel Number  | 36           | 40   | 44   | 48                                     | 149  | 153  | 157  | 161  | 165  |
| Frequency (MHz) | 5180         | 5200 | 5220 | 5240                                   | 5745 | 5765 | 5785 | 5805 | 5825 |

- 3. During test, the duty cycle of the EUT was setting to 100%.
- 4. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.
- 5. The antenna connector of EUT is designed with permanent attachment and no consideration of replacement.



#### 1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart E (UNII band) for the EUT FCC ID Certification:

| No. | Identity         | Document Title                  |
|-----|------------------|---------------------------------|
| 1   | 47 CFR Part 15   | Radio Frequency Devices         |
|     | (5-1-14 Edition) | OFFE HILL AE GREAT MORE HILL AF |

Test detailed items/section required by FCC rules and results are as below:

| No. | Section       | Description                    | Result |
|-----|---------------|--------------------------------|--------|
| 1   | 15.203        | Antenna Requirement            | PASS   |
| 2   | 15.407(a) (e) | Emission Bandwidth             | PASS   |
| 3   | 15.407(a)     | Maximum conducted output Power | PASS   |
| 4   | 15.407(a)     | Peak Power spectral density    | PASS   |
| 5   | 15.407(b)     | Restricted Frequency Bands     | PASS   |
| 6   | 15.407(g)     | Frequency Stability            | PASS   |
| 7 💸 | 15.207        | Conducted Emission             | PASS   |
| 8   | 15.407(b)     | Radiated Emission              | PASS   |
| 9   | 15.407(f)     | RF exposure evaluation         | PASS   |

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10 2013.

These RF tests were performed according to the method of measurements prescribed in KDB789033 D02 v01r02 (08/04/2016) and KDB905462 D07 v01r01 (08/04/2016).

## 1.3 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

| Temperature (°C):           | 15 - 35 |
|-----------------------------|---------|
| Relative Humidity (%):      | 30 -60  |
| Atmospheric Pressure (kPa): | 86-106  |



## 2. 47 CFR PART 15E REQUIREMENTS

## 2.1 Antenna requirement

#### 2.1.1 Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

#### 2.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

## 2.2 Emission Bandwidth

## 2.2.1 Requirement

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement. Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

## 2.2.2 Test Description

#### A. Test Set:



The EUT which is powered by the battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

#### **B.** Test Procedure

- 1. KDB 789033 Section C) 1) Emission Bandwidth was used in order to prove compliance
- 1) Set RBW = approximately 1% of the emission bandwidth.
- 2) Set the VBW > RBW.



- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 2. KDB 789033 Section C) 2) minimum emission bandwidth for the band 5.725-5.85GHz was used in order to prove compliance.

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 x RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.



#### 2.2.3 Test Result

The lowest, middle and highest channels are selected to perform testing to record the 26 dB bandwidth of the Module.

#### 2.2.3.1 802.11n-20MHz Test mode

#### A. Test Verdict:

| Channel | Frequency (MHz)    | 26 dB Bandwidth |
|---------|--------------------|-----------------|
| Chame   | Frequency (MHZ)    | (MHz)           |
| 36      | 5180               | 19.08           |
| 44      | 5220               | 18.88           |
| 48      | 5240               | 18.95           |
| Channal | Fragues av (MIII-) | 6dB Bandwidth   |
| Channel | Frequency (MHz)    | (MHz)           |
| 149     | 5745               | 13.84           |
| 157     | 5785               | 17.01           |
| 165     | 5825               | 14.10           |
|         |                    |                 |

## B. Test Plots



(Channel 36: 5180MHz @ 802.11n-20MHz)







(Channel 44: 5220 MHz @ 802.11n-20MHz)



(Channel 48: 5240MHz @ 802.11n-20MHz)









(Channel 149: 5745MHz @ 802.11n-20MHz)



(Channel 157: 5785MHz @802.11n-20MHz)









(Channel 165: 5825MHz @ 802.11n-20MHz)

#### 2.2.3.2 802.11a Test mode

#### A. Test Verdict:

| Channel | Frequency (MHz) | 26 dB Bandwidth<br>(MHz) |
|---------|-----------------|--------------------------|
| 36      | 5180            | 18.36                    |
| 44      | 5220            | 18.75                    |
| 48      | 5240            | 18.38                    |
| Channel | Frequency (MHz) | 6dB Bandwidth<br>(MHz)   |
| 149     | 5745            | 15.11                    |
| 157     | 5785            | 15.09                    |
| 165     | 5825            | 13.62                    |

## B. Test Plots







(Channel 36: 5180MHz @ 802.11a)



(Channel 44: 5220 MHz @802.11a)









(Channel 48: 5240MHz @802.11a)



(Channel 149: 5745MHz @ 802.11a)









(Channel 157: 5785MHz @ 802.11a)



(Channel 165: 5825MHz @ 802.11a)





## 2.3 Maximum conducted output Power

## 2.3.1 Requirement

- (1) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.
- (2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250mW or 11dBm + 10log B, where B is the 26 dB emission bandwidth in megahertz.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

## 2.3.2 Test Description

Section E) 3) of KDB 789033 defines a methodology using an RF average power meter.

#### A. Test Setup:



The EUT (Equipment under the test) which is powered by the Battery is coupled to the Power Meter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

#### 2.3.3 Test Result



#### 2.3.3.1 802.11n-20MHz Test mode

|          |           | AV AV                     |       |         |
|----------|-----------|---------------------------|-------|---------|
| Channel  | Frequency | Frequency Measured Output |       | Verdict |
| Chamilei | (MHz)     | Power(dBm)                | (dBm) | verdict |
| 36       | 5180      | 17.36                     | ORL   | 17      |
| 44       | 5220      | 17.12                     | 24    | LAB     |
| 48       | 5240      | 16.51                     | A. W  | PASS    |
| 149      | 5745      | 18.65                     | AB    | PASS    |
| 157      | 5785      | 17.85                     | 30    | S INC   |
| 165      | 5825      | 18.42                     | ORL   | 47      |

#### 2.3.3.2 802.11a Test mode

| Frequency | Measured Output                              | Limit                                                             | Verdict                                                                       |
|-----------|----------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|
| (MHz)     | Power(dBm)                                   | (dBm)                                                             | verdict                                                                       |
| 5180      | 18.28                                        | Mo                                                                | QB.                                                                           |
| 5220      | 17.55                                        | 24                                                                | ORL                                                                           |
| 5240      | 17.92                                        | OB.                                                               | PASS                                                                          |
| 5745      | 19.35                                        | ORL                                                               | PASS                                                                          |
| 5785      | 19.43                                        | 30                                                                | .e                                                                            |
| 5825      | 18.68                                        | Mor                                                               | OB W                                                                          |
|           | 5180<br>5180<br>5220<br>5240<br>5745<br>5785 | Power(dBm) 5180 18.28 5220 17.55 5240 17.92 5745 19.35 5785 19.43 | Power(dBm) (dBm) 5180 18.28 5220 17.55 24 5240 17.92 5745 19.35 5785 19.43 30 |



## 2.4 Peak Power spectral density

## 2.4.1 Requirement

- (1) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
- (2) For the 5.25–5.35 GHz and 5.47–5.725GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
- (3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500KHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

## 2.4.2 Test Description

#### A. Test Set:



The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

## B. Test Procedure

KDB 789033 Section F) Maximum Power Spectral Density (PSD) Method SA-1 was used in order to prove compliance

- 1) Set span to encompass the entire 26-dB emission bandwidth
- 2) Set RBW = 1 MHz. Set VBW ≥ 3 MHz.
- 3) Number of points in sweep ≥ 2 Span / RBW. Sweep time = auto.
- 4) Detector = RMS (i.e., power averaging)
- 5) Trace average at least 100 traces in power averaging (i.e., RMS) mode
- 6) Record the max value

#### 2.4.3 Test Result





#### 2.4.3.1 802.11n-20MHz Test mode

#### A. Test Verdict:

| 40        | A. 7.0                                        |                                                                                                                     | *(O)*                                                                                                                                       |
|-----------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency | Measured PPSD                                 | Limit                                                                                                               | Verdict                                                                                                                                     |
| (MHz)     | (dBm)                                         | (dBm)                                                                                                               | verdict                                                                                                                                     |
| 5180      | 6.72                                          | e III.                                                                                                              | LAB                                                                                                                                         |
| 5220      | 6.31                                          | 11                                                                                                                  | OR                                                                                                                                          |
| 5240      | 4.93                                          | AB                                                                                                                  | PASS                                                                                                                                        |
| 5745      | 6.14                                          | Ole                                                                                                                 | PASS                                                                                                                                        |
| 5785      | 5.36                                          | 30                                                                                                                  | - M                                                                                                                                         |
| 5825      | 4.86                                          | Z MC                                                                                                                | AB .                                                                                                                                        |
|           | (MHz)<br>5180<br>5220<br>5240<br>5745<br>5785 | (MHz)     (dBm)       5180     6.72       5220     6.31       5240     4.93       5745     6.14       5785     5.36 | (MHz)     (dBm)     (dBm)       5180     6.72       5220     6.31     11       5240     4.93       5745     6.14       5785     5.36     30 |

#### **B.** Test Plots



(Channel 36: 5180MHz @ 802.11n-20MHz)







(Channel 44: 5220 MHz @ 802.11n-20MHz)



(Channel 48: 5240MHz @ 802.11n-20MHz)







(Channel 149: 5745MHz @ 802.11n-20MHz)



(Channel 157: 5785MHz @802.11n-20MHz)







(Channel 165: 5825MHz @ 802.11n-20MHz)

## 2.4.3.2 802.11a Test mode

#### A. Test Verdict:

| Channel | Frequency Measured PPSD |       | Limit | Verdict |  |
|---------|-------------------------|-------|-------|---------|--|
| Chamer  | (MHz)                   | (dBm) | (dBm) | verdict |  |
| 36      | 5180                    | 8.40  | ORL   | Wo.     |  |
| 44      | 5220                    | 7.58  | 11    | , S     |  |
| 48      | 5240                    | 6.81  | Mor   | PASS    |  |
| 149     | 5745                    | 8.60  | A.D   | PASS    |  |
| 157     | 5785                    | 7.82  | 30    | ZLA.    |  |
| 165     | 5825                    | 7.61  | ORLIN | More    |  |

#### C. Test Plots







(Channel 36: 5180MHz @ 802.11a)



(Channel 44: 5220 MHz @802.11a)









(Channel 48: 5240MHz @802.11a)



(Channel 149: 5745MHz @ 802.11a)









(Channel 157: 5785MHz @ 802.11a)



(Channel 165: 5825MHz @ 802.11a)



## 2.5 Restricted Frequency Bands

## 2.5.1 Requirement

According to FCC section 15.407(b)(7), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

## 2.5.2 Test Description

#### A. Test Setup



The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

KDB 789033 Section H) 3)5)6(d)) was used in order to prove compliance

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.



#### 2.5.3 Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ 

A<sub>T</sub>: Total correction Factor except Antenna

U<sub>R</sub>: Receiver Reading G<sub>preamp</sub>: Preamplifier Gain A<sub>Factor</sub>: Antenna Factor at 3m

**Note:** Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

#### 2.5.3.1 802.11n-20MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

#### A. Test Verdict:

| Channal | Frequency | Detector | Receiver<br>Reading      | A <sub>T</sub> | A <sub>Factor</sub> | Max.<br>Emission | Limit    | Vordict |
|---------|-----------|----------|--------------------------|----------------|---------------------|------------------|----------|---------|
| Channel | (MHz)     | PK/ AV   | U <sub>R</sub><br>(dBuV) | (dB)           | (dB@3m)             | E<br>(dBµV/m)    | (dBµV/m) | Verdict |
| 36      | 5112.41   | PK       | 46.72                    | -50.65         | 32.11               | 28.18            | 74       | Pass    |
| 36      | 5120.00   | AV       | 34.18                    | -50.65         | 32.11               | 15.64            | 54       | Pass    |
| 48      | 5367.04   | PK       | 43.80                    | -50.65         | 32.11               | 25.26            | 74       | Pass    |
| 48      | 5355.60   | AV       | 32.72                    | -50.65         | 32.11               | 14.18            | 54       | Pass    |

#### B. Test Plots:







(Channel = 36 PEAK @ 802.11n 20MHz)



(Channel = 36 AVG @ 802.11n 20MHz)









(Channel = 48 PEAK @ 802.11n 20MHz)



(Channel = 48 AVG @ 802.11n 20MHz)



## 2.5.3.2 802.11a Test mode

The lowest and highest channels are tested to verify the band edge emissions.

## A. Test Verdict:

| Channel | Frequency<br>(MHz) | Detector<br>PK/ AV | Receiver<br>Reading<br>U <sub>R</sub> | A <sub>T</sub> (dB) | A <sub>Factor</sub><br>(dB@3m) | Max.<br>Emission<br>E | Limit<br>(dBµV/m) | Verdict |
|---------|--------------------|--------------------|---------------------------------------|---------------------|--------------------------------|-----------------------|-------------------|---------|
| 36      | 5144.85            | PK                 | (dBuV)<br>45.38                       | -50.65              | 32.11                          | (dBµV/m)<br>26.84     | 74                | Pass    |
| 36      | 5136.57            | AV                 | 34.07                                 | -50.65              | 32.11                          | 15.53                 | 54                | Pass    |
| 48      | 5368.56            | PK                 | 44.91                                 | -50.65              | 32.11                          | 26.37                 | 74                | Pass    |
| 48      | 5364.60            | AV                 | 32.59                                 | -50.65              | 32.11                          | 14.05                 | 54                | Pass    |

## B. Test Plots:



(Channel = 36 PEAK @ 802.11n 20MHz)







(Channel = 36 AVG @ 802.11n 20MHz)



(Channel = 48 PEAK @ 802.11n 20MHz)







(Channel = 48 AVG @ 802.11n 20MHz)



## 2.6 Frequency Stability

## 2.6.1 Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

#### 2.6.2 Test Procedure

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

**2.6.3 Test Result**Frequency Stability Measurements for UNII Band 1 (Ch. 36)

| VOLTACE           | DOWED     | TEMP     | - CDEOLIENOV  | From Dov  | Doviction   |
|-------------------|-----------|----------|---------------|-----------|-------------|
| VOLTAGE           | POWER     | TEMP     | FREQUENCY     | Freq Dev. | Deviation   |
| (%)               | (VDC)     | (°C)     | (Hz)          | (Hz)      | (%)         |
| 100%              | ORLAN     | +20(Ref) | 5,179,999,995 | et5       | -0.0000010  |
| 100%              | a We      | -30      | 5,180,000,001 | 1,6       | 0.00000002  |
| 100%              | MOK       | -20      | 5,180,000,004 | 4         | 0.00000008  |
| 100%              | AB        | -10      | 5,179,999,999 | -1 RLA    | -0.00000002 |
| 100%              | ORY 5 0 0 | 0        | 5,179,999,987 | -13       | -0.00000025 |
| 100%              | 5.0       | +10      | 5,180,000,003 | 3         | 0.00000006  |
| 100%              | "MO.      | +20      | 5,180,000,002 | 2         | 0.00000004  |
| 100%              | AP MORI   | +30      | 5,180,000,011 | 11        | 0.00000021  |
| 100%              | AB .      | +40      | 5,180,000,015 | 15        | 0.00000029  |
| 100%              | ORL       | +50      | 5,179,999,988 | -12       | -0.00000023 |
| 114%              | 4.75      | +20      | 5,180,000,011 | 11 0      | 0.00000021  |
| BATT.END<br>POINT | 5.25      | +20      | 5,179,999,982 | -18       | -0.00000035 |



Frequency Stability Measurements for UNII Band 4 (Ch. 149)

|                   |        |          |               | The state of the s |             |
|-------------------|--------|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| VOLTAGE           | POWER  | TEMP     | FREQUENCY     | Freq Dev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deviation   |
| (%)               | (VDC)  | (°C)     | (Hz)          | (Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)         |
| 100%              | ORLA   | +20(Ref) | 5,744,999,995 | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00000009 |
| 100%              | B      | -30      | 5,744,999,987 | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.00000023 |
| 100%              | RLA" M | -20      | 5,745,000,011 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00000019  |
| 100%              | AB     | -10      | 5,744,999,987 | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.00000023 |
| 100%              | MOR.   | 0        | 5,745,000,001 | 1, 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00000002  |
| 100%              | 5.0    | +10      | 5,745,000,016 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00000028  |
| 100%              | S Me   | +20      | 5,745,000,017 | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00000030  |
| 100%              | RLAL   | +30      | 5,745,000,001 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00000002  |
| 100%              | AB     | +40      | 5,744,999,996 | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00000007 |
| 100%              | MORL   | +50      | 5,745,000,012 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00000021  |
| 114%              | 4.75   | +20      | 5,745,000,010 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00000017  |
| BATT.ENDP<br>OINT | 5.25   | +20      | 5,744,999,988 | -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.00000021 |

**Note:** Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.



#### 2.7 Conducted Emission

## 2.7.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a  $50\mu\text{H}/50\Omega$  line impedance stabilization network (LISN).

| Fraguency range (MUz) | Conducted Limit (dBµV) |          |
|-----------------------|------------------------|----------|
| Frequency range (MHz) | Quai-peak              | Average  |
| 0.15 - 0.50           | 66 to 56               | 56 to 46 |
| 0.50 - 5              | 56                     | 46       |
| 5 - 30                | 60                     | 50       |

#### NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz

## 2.7.2 Test Description

#### A. Test Setup:



The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

The EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz



AC mains supply. The factors of the site are calibrated to correct the reading. During the measurement, the EUT is activated and controlled by the Wi-Fi Service Supplier (SS) via a Common Antenna.

#### 2.7.3 Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Note: All test modes are performed, only the worst case is recorded in this report.

#### A. Test setup:

The EUT configuration of the emission tests is  $\underline{\text{EUT} + \text{Link}}$ .

## B. Test Plots:



(Plot A: L Phase)





(Plot B: N Phase)



### 2.8 Radiated Emission

## 2.8.1 Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of −27 dBm/MHz.

The following formula is used to convert the equipment isotropic radiated power(eirp) to field strength (dBµV/m);

$$E = 1000000 \times \sqrt{30 P} / 3_{\mu V/m}$$
 where P is the EIRP in Watts 
$$Therefore: -27 \ dBm/MHz = 68.23 \ dBuV/m$$

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field Strength (μV/m) | Measurement Distance (m) |
|-----------------|-----------------------|--------------------------|
| 0.009 - 0.490   | 2400/F(kHz)           | 300                      |
| 0.490 - 1.705   | 24000/F(kHz)          | 30                       |
| 1.705 - 30.0    | 30                    | 30                       |
| 30 - 88         | 100                   | 3 1000                   |
| 88 - 216        | 150                   | 3                        |
| 216 - 960       | 200                   | 3 110                    |
| Above 960       | 500                   | 3 LAD 10RL 110           |



#### Note:

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

## 2.8.2 Test Description

#### A. Test Setup:

For radiated emissions from 9kHz to 30MHz



For radiated emissions from 30MHz to1GHz





3) For radiated emissions above 1GHz



The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.4 (2014). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.4.



The EUT of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the EUT is activated and controlled by the Wireless Router via a Common Antenna, and is set to operate under hopping-on test mode.

#### For the Test Antenna:

- (a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 2GHz) and Horn Test Antenna (above 2GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

#### 2.8.3 Test Result

According to ANSI C63.4 selection 4.2.2, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ 

A<sub>T</sub>: Total correction Factor except Antenna

U<sub>R</sub>: Receiver Reading G<sub>preamp</sub>: Preamplifier Gain A<sub>Factor</sub>: Antenna Factor at 3m

During the test, the total correction Factor  $A_T$  and  $A_{Factor}$  were built in test software.

**Note:** All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

For the frequency, which started from 25G to 40G, was pre-scanned and the result which was 10dB lower than the limit.



#### 2.8.3.1 802.11n-20MHz Test mode

#### A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 36



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)



| Channel | Frequency<br>(MHz) | Antenna<br>Horiz./<br>Vert. | Receiver<br>Reading<br>U <sub>R</sub> (dBuV) | A <sub>T</sub> (dB) | A <sub>Factor</sub><br>(dB@3m) | Max. Emission E (dBµV/m) | Limit<br>(dBµV/m) | Verdict |
|---------|--------------------|-----------------------------|----------------------------------------------|---------------------|--------------------------------|--------------------------|-------------------|---------|
| 149     | 5722.10            | Horizontal                  | 45.10                                        | -50.65              | 32.11                          | 26.56                    | 78.2              | Pass    |
| 149     | 5723.64            | Vertical                    | 34.50                                        | -50.65              | 32.11                          | 15.96                    | 78.2              | Pass    |



(Channel = 149 Horizontal @ 802.11n)



(Channel = 149 Vertical @ 802.11n)







(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)



| Channel | Frequency<br>(MHz) | Antenna Horiz./ Vert. | Receiver<br>Reading<br>U <sub>R</sub> (dBuV) | A <sub>T</sub> (dB) | A <sub>Factor</sub><br>(dB@3m) | Max.<br>Emission<br>E (dBµV/m) | Limit<br>(dBµV/m) | Verdict |
|---------|--------------------|-----------------------|----------------------------------------------|---------------------|--------------------------------|--------------------------------|-------------------|---------|
| 165     | 5867.88            | Horizontal            | 45.55                                        | -50.65              | 32.11                          | 27.01                          | 78.2              | Pass    |
| 165     | 5853.33            | Vertical              | 33.75                                        | -50.65              | 32.11                          | 15.21                          | 78.2              | Pass    |



(Channel = 165 Horizontal @ 802.11n)



(Channel = 165 Vertical @ 802.11n)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)



#### 2.8.3.2 802.11a-20MHz Test mode

#### A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 36



(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)



| Channel | Frequency<br>(MHz) | Antenna Horiz./ Vert. | Receiver<br>Reading<br>U <sub>R</sub> (dBuV) | A <sub>T</sub> (dB) | A <sub>Factor</sub> (dB@3m) | Max. Emission E (dBµV/m) | Limit<br>(dBµV/m) | Verdict |
|---------|--------------------|-----------------------|----------------------------------------------|---------------------|-----------------------------|--------------------------|-------------------|---------|
| 149     | 5722.10            | Horizontal            | 45.10                                        | -50.65              | 32.11                       | 26.56                    | 78.2              | Pass    |
| 149     | 5723.64            | Vertical              | 34.50                                        | -50.65              | 32.11                       | 15.96                    | 78.2              | Pass    |



(Channel = 149 Horizontal @ 802.11a)



(Channel = 149 Vertical @ 802.11a)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)



| Channel | Frequency<br>(MHz) | Antenna Horiz./ Vert. | Receiver Reading U <sub>R</sub> (dBuV) | A <sub>T</sub> (dB) | A <sub>Factor</sub><br>(dB@3m) | Max.<br>Emission<br>E (dBµV/m) | Limit<br>(dBµV/m) | Verdict |
|---------|--------------------|-----------------------|----------------------------------------|---------------------|--------------------------------|--------------------------------|-------------------|---------|
| 165     | 5850.00            | Horizontal            | 54.17                                  | -50.65              | 32.11                          | 35.63                          | 78.2              | Pass    |
| 165     | 5850.00            | Vertical              | 41.82                                  | -50.65              | 32.11                          | 23.28                          | 78.2              | Pass    |



(Channel = 165 Horizontal @ 802.11a)



(Channel = 165 Vertical @ 802.11a)





(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)



## 2.9 RF exposure evaluation

## 2.9.1 Requirement

According to § 1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy lever in excess of Commission's guideline.

#### 2.9.2 Result

Please refer to SAR report.



## ANNEX A GENERAL INFORMATION

## 1.1 Identification of the Responsible Testing Laboratory

| Company Name:                 | Shenzhen Morlab Communications Technology Co., Ltd.                                                                              |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Department:                   | Morlab Laboratory                                                                                                                |
| Address:                      | FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China |
| Responsible Test Lab Manager: | Mr. Su Feng                                                                                                                      |
| Telephone:                    | +86 755 36698555                                                                                                                 |
| Facsimile:                    | +86 755 36698525                                                                                                                 |

## 1.2 Identification of the Responsible Testing Location

| Name:              | Shenzhen Morlab Communications Technology Co., Ltd.    |  |  |
|--------------------|--------------------------------------------------------|--|--|
| RLAD MORE S ME LAB | Morlab Laboratory                                      |  |  |
| Address:           | FL.3, Building A, FeiYang Science Park, No.8 LongChang |  |  |
| MORE MIC AB        | Road, Block 67, BaoAn District, ShenZhen, GuangDong    |  |  |
| TRIAL MORL MO      | Province, P. R. China                                  |  |  |

#### 1.3 Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10 2013, ANSI C63.4 2014 and CISPR Publication 22; the FCC registration number is 695796.



# 1.4 Test Equipments Utilized

# 1.4.1 Conducted Test Equipments

| Cond | ducted Test Equipn           | nent        | LAE OF                | RILLE            | S ME       | ORLA       |
|------|------------------------------|-------------|-----------------------|------------------|------------|------------|
| No.  | Equipment<br>Name            | Serial No.  | Туре                  | Manufacturer     | Cal. Date  | Cal. Due   |
| 1 "  | Spectrum<br>Analyzer         | MY45101810  | E4407B                | Agilent          | 2016.03.02 | 2017.03.01 |
| 2    | Router                       | FGL1858X9S5 | AIR-CAP27<br>02E-A-K9 | Cisco            | N/A        | N/A        |
| 3    | Power Splitter               | NW521       | 1506A                 | Weinschel        | 2016.03.02 | 2017.03.01 |
| 4    | Attenuator 1                 | (n.a.)      | 10dB                  | Resnet           | 2016.03.02 | 2017.03.01 |
| 5    | Attenuator 2                 | (n.a.)      | 3dB                   | Resnet           | 2016.03.02 | 2017.03.01 |
| 6    | USB Wideband<br>Power Sensor | MY52280010  | U2021XA               | Agilent          | 2016.03.02 | 2017.03.01 |
| 7    | EXA Signal<br>Analzyer       | MY51440152  | N9010A                | Agilent          | 2016.03.02 | 2017.03.01 |
| 8    | RF cable                     | CB01        | RF01                  | Morlab           | N/A        | N/A        |
| 9    | Coaxial cable                | CB02        | RF02                  | Morlab           | N/A        | N/A        |
| 9    | SMA connector                | CN01        | RF03                  | HUBER-SUHNE<br>R | N/A        | N/A        |

# 1.4.2 Conducted Emission Test Equipments

| Conc      |                         |            |                |              |            |            |
|-----------|-------------------------|------------|----------------|--------------|------------|------------|
| No.       | Equipment Name          | Serial No. | Туре           | Manufacturer | Cal. Date  | Cal. Due   |
| 1         | Receiver                | US44210471 | E7405A         | Agilent      | 2016.03.02 | 2017.03.01 |
| 2         | LISN                    | 812744     | NSLK 8127      | Schwarzbeck  | 2016.03.02 | 2017.03.01 |
| 3         | Service Supplier        | 100448     | CMU200         | R&S          | 2016.03.02 | 2017.03.01 |
| 4<br>RLAS | Pulse Limiter<br>(20dB) | 9391       | VTSD<br>9561-D | Schwarzbeck  | 2016.03.02 | 2017.03.01 |
| 5         | Coaxial cable(BNC)      | CB01       | EMC01          | Morlab       | N/A        | N/A        |



# 1.4.3 Radiated Test Equipments

| Radia | ted Test Equipments       | SLAE ORL   | MOJO       | E NAB         | ORLA       | WOL W.          |
|-------|---------------------------|------------|------------|---------------|------------|-----------------|
| No.   | Equipment Name            | Serial No. | Туре       | Manufacturer  | Cal. Date  | Cal.Due<br>Date |
| 1     | System Simulator          | 100448     | CMU200     | R&S           | 2016.03.02 | 2017.03.01      |
| 2     | Receiver                  | US44210471 | E7405A     | Agilent       | 2016.03.02 | 2017.03.01      |
| 3     | Test Antenna -<br>Bi-Log  | 9163-274   | 9m*6m*6m   | Albatross     | 2016.03.02 | 2017.03.01      |
| 4     | Test Antenna -<br>Horn    | 9120D-963  | VULB 9163  | Schwarzbeck   | 2016.03.02 | 2017.03.01      |
| 5     | Test Antenna -<br>Horn    | 71688      | BBHA 9120D | Schwarzbeck   | 2016.03.02 | 2017.03.01      |
| 6     | Test Antenna -<br>Loop    | 1519-022   | HL050S7    | R&S           | 2016.03.02 | 2017.03.01      |
| 7     | Reject Filter             | (n.a.)     | BRM50702   | Micro-Tronics | 2016.03.02 | 2017.03.01      |
| 8     | Coaxial cable<br>(N male) | CB02       | EMC02      | Morlab        | N/A        | N/A             |
| 9     | Coaxial cable<br>(N male) | CB03       | EMC03      | Morlab        | N/A        | N/A             |

## 1.4.4 Climate Chamber

| Clima | te Chamber            | 3 Min      | ORL     | MOF          | E MI       | ORLAN        |
|-------|-----------------------|------------|---------|--------------|------------|--------------|
| No.   | <b>Equipment Name</b> | Serial No. | Туре    | Manufacturer | Cal.Date   | Cal.Due Date |
| 01    | Climate Chamber       | 2004012    | HL4003T | Yinhe        | 2016.03.02 | 2017.03.01   |
| 2     | Climate Chamber       | 2004012    | HL4003T | Yinhe        | 2016.03.02 | 2017.03.01   |

## 1.4.5 Vibration Table

| Vibra | ation Table     | MORE       | S W               | AE ORLAN     | MORE       | AB AB        |
|-------|-----------------|------------|-------------------|--------------|------------|--------------|
| No.   | Equipment Name  | Serial No. | Туре              | Manufacturer | Cal.Date   | Cal.Due Date |
| 1,00  | Vibration Table | N/A        | ACT2000-<br>S015L | CMI-COM      | 2016.03.02 | 2017.03.01   |
| 2     | Vibration Table | N/A        | ACT2000-<br>S015L | CMI-COM      | 2016.03.02 | 2017.03.01   |



#### 1.4.6 Anechoic Chamber

| 1.4.6 Anechoic Chamber  Anechoic Chamber |                  |            |          |              |            |              |
|------------------------------------------|------------------|------------|----------|--------------|------------|--------------|
| No.                                      | Equipment Name   | Serial No. | Туре     | Manufacturer | Cal.Date   | Cal.Due Date |
| 1                                        | Anechoic Chamber | N/A        | 9m*6m*6m | Albatross    | 2016.03.02 | 2017.03.01   |
| 2                                        | Anechoic Chamber | N/A        | 9m*6m*6m | Albatross    | 2016.03.02 | 2017.03.01   |

**END OF REPORT \*\*\*\*\*** 

