

AMENDMENTS TO THE CLAIMS

The present listing of claims replaces all previous listings of claims of the present application.

LISTING OF CLAIMS

1. (previously presented) A method of storing data comprising:

placing a plurality of nanometer beads filled with nanometer sized particles, the nanometer sized particles providing colors to the nanometer beads, using inkjet technology at each of a plurality of data pit locations on a rotating data storage medium disk to represent data by the presence and absence of said colors;

exciting said colors within said nanometer beads at each location by making them fluoresce;

measuring said fluorescence of said nanometer beads at each location to identify presence and absence of said colors.

2. (canceled)

3. (previously presented) The method of claim 1 wherein said nanometer sized particles are nanometer sized fluorescent particles.

4. (previously presented) The method of claim 3 wherein said nanometer sized particles comprise quantum dots.

5. (original) The method of claim 4 wherein said quantum dots are made up of red, blue and green color.

6. (original) The method of claim 4 wherein said quantum dots are made up of a plurality of shades of a color.

7. – 9. (canceled)

10. (previously presented) The method of claim 1 wherein a holographic multi-spectral filter HSMF is used for dispersing collimated fluorescent light on a spectrally sensitive component.

11. (previously presented) A method of storing data comprising:

placing a plurality of nanometer beads filled with nanometer sized particles, the nanometer sized particles providing colors to the nanometer beads, using laser-induced technology at each of a plurality of data pit locations on a rotating data storage medium disk to represent data by the presence and absence of said colors;

exciting said colors within said nanometer beads at each location by making them fluoresce;

measuring said fluorescence of said nanometer beads at each location to identify presence and absence of said colors.

12. (new) The method of claim 1, wherein placing a plurality of nanometer beads at each of a plurality of data pit locations comprises placing a plurality of said nanometer beads in each data pit location, the nanometer sized particles providing colors to each nanometer bead, wherein the beads placed in a same data pit location are different from one other.

13. (new) The method of claim 12, wherein the beads placed in the same data pit location are colored with different colors.

14. (new) The method of claim 12, wherein the beads placed in the same data pit location are colored with different shades of a color.

15. (new) The method of claim 11, wherein placing a plurality of nanometer beads at each of a plurality of data pit locations comprises placing a plurality of said nanometer beads in each data pit location, the nanometer sized particles providing colors to each nanometer bead, wherein the beads placed in a same data pit location are different from one other.

16. (new) The method of claim 15, wherein the beads placed in the same data pit location are colored with different colors.

17. (new) The method of claim 15, wherein the beads placed in one data pit location are colored with different shades of a color.

* * * * *