Machine learning

BREAST CANCER PREDICTION

BY:

- -GUNJAN KHATRI
- -BHAKTI KHOKAD
- -PRERNA KOTHARI
- -PRANJAL MOGDUL

PROBLEM STATEMENT

The objective of this project is investigating the probability of predicting the chances of breast cancer from the given characteristics of breast mass computed from the dataset.

INTRODUCTION

Breast cancer is the most common cancer amongst women in the world. It accounts for 25% of all cancer cases, and affected over 2.1 Million people in 2015 alone. It starts when cells in the breast begin to grow out of control. These cells usually form tumors that can be seen via X-ray or felt as lumps in the breast area.

The key challenge against it's detection is how to classify tumors into malignant (cancerous) or benign(non cancerous).

DATASET INFORMATION

https://www.kaggle.com/datasets/jainilcoder/breast-cancer-dataset

The Dataset contains 32 Columns and 570 rows consisting all the parameters used for detecting a Breast Cancer.

The Breast Cancer Wisconsin (Diagnostic) DataSet, obtained from Kaggle, contains features computed from a digitized image of a fine needle aspirate (FNA) of a breast mass and describe characteristics of the cell nuclei present in the image.

Attribute information

ID number

- Diagnosis (M = malignant, B = benign)
- Ten real-valued features are computed for each cell nucleus:
 - o radius (mean of distances from center to points on the perimeter)
 - texture (standard deviation of gray-scale values)
 - o perimeter
 - o area
 - smoothness (local variation in radius lengths)
 - o compactness (perimeter^2 / area 1.0)
 - o concavity (severity of concave portions of the contour)
 - o concave points (number of concave portions of the contour)
 - o symmetry
 - fractal dimension ("coastline approximation" 1)

Input Code:

```
# importing libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sklearn.datasets
from sklearn.model selection import train test split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy score
# reading data from the file
df=pd.read csv("data.csv")
df.head() #The head() method returns a specified number of rows,
string from the top
df.info() #info() function is used to get a concise summary of the
dataframe
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 569 entries, 0 to 568

Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64

20	symmetry_se	569	non-null	float64		
21	fractal_dimension_se	569	non-null	float64		
22	radius_worst	569	non-null	float64		
23	texture_worst	569	non-null	float64		
24	perimeter_worst	569	non-null	float64		
25	area_worst	569	non-null	float64		
26	smoothness_worst	569	non-null	float64		
27	compactness_worst	569	non-null	float64		
28	concavity_worst	569	non-null	float64		
29	concave points_worst	569	non-null	float64		
30	symmetry_worst	569	non-null	float64		
31	fractal_dimension_worst	569	non-null	float64		
32	Unnamed: 32	0 n	on-null	float64		
dtyp	es: float64(31), int64(1)	, ob	ject(1)			
memo	ry usage: 146.8+ KB					
# re	turn all the columns with	nul	l values cou	nt		
df.i	sna().sum()					
id			0			
diagnosis			0			
radius_mean			0			
texture_mean			0			
peri	meter_mean	0				
area_mean			0			

0

smoothness_mean

compactness_mean	0
concavity_mean	0
concave points_mean	0
symmetry_mean	0
fractal_dimension_mean	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
fractal_dimension_se	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area_worst	0
smoothness_worst	0
compactness_worst	0
concavity_worst	0
concave points_worst	0
symmetry_worst	0

```
fractal dimension worst
Unnamed: 32
                           569
dtype: int64
# remove the column
df=df.dropna(axis=1)
# return the size of dataset after dropping null value
df.shape
(569, 32)
# statistical measures about the data
df.describe()
# checking the distribution of Target Varibale
df['diagnosis'].value counts()
    357
     212
Μ
Name: diagnosis, dtype: int64
value counts = df['diagnosis'].value counts()
# Plot the counts using a bar plot
sns.barplot(x=value counts.index, y=value counts)
# Show the plot
plt.show()
```


standardized data = scaler.transform(X)

```
print(standardized data)
1.93701461]
[-0.23640344 \quad 1.82982061 \quad -0.35363241 \quad \dots \quad 1.0870843 \quad -0.24388967
 0.281189991
0.20139121]
[-0.23572747 \quad 0.70228425 \quad 2.0455738 \quad \dots \quad 0.41406869 \quad -1.10454895
 -0.31840916]
[-0.23572517 \quad 1.83834103 \quad 2.33645719 \quad \dots \quad 2.28998549 \quad 1.91908301
 2.21963528]
[-0.24240586 -1.80840125 \ 1.22179204 \dots -1.74506282 -0.04813821
 -0.7512066911
print(X)
      id radius mean texture mean perimeter mean area mean
   842302 17.99 10.38 122.80 1001.0
0
1 842517 20.57 17.77 132.90 1326.0
2 84300903 19.69
                       21.25 130.00 1203.0
3 84348301 11.42 20.38 77.58 386.1
4 84358402 20.29
                       14.34 135.10 1297.0
.. ...
                        ...
                                   ...
564 926424 21.56
                       22.39
                                 142.00 1479.0
565 926682 20.13 28.25 131.20 1261.0
```

858.1	108.30	28.08	16.60	926954	566
1265.0	140.10	29.33	20.60	927241	567
181.0	47.92	24.54	7.76	92751	568

<pre>smoothness_mean points_mean \</pre>		compactness_mean	concavity_mean	concave
0 0.14710	0.11840	0.27760	0.30010	
1 0.07017	0.08474	0.07864	0.08690	
2 0.12790	0.10960	0.15990	0.19740	
3 0.10520	0.14250	0.28390	0.24140	
4	0.10030	0.13280	0.19800	
564 0.13890	0.11100	0.11590	0.24390	
565 0.09791	0.09780	0.10340	0.14400	
566 0.05302	0.08455	0.10230	0.09251	
567 0.15200	0.11780	0.27700	0.35140	
568 0.00000	0.05263	0.04362	0.00000	

symme			radius_worst	texture_worst
0 184.60	0.2419		25.380	17.33
1 158.80	0.1812		24.990	23.41
2 152.50	0.2069	• • •	23.570	25.53
3 98.87	0.2597	• • •	14.910	26.50
4 152.20	0.1809	• • •	22.540	16.67
		• • •		
564 166.10	0.1726	• • •	25.450	26.40
565 155.00	0.1752	• • •	23.690	38.25
566 126.70	0.1590	• • •	18.980	34.12
567 184.60	0.2397	•••	25.740	39.42
568 59.16	0.1587		9.456	30.37
area_ concavity_		oothn	ess_worst com	pactness_worst

0 2019.0 0.16220 0.66560

0.7119

1	1956.0	0.12380	0.18660	
2	1709.0	0.14440	0.42450	
3	567.7	0.20980	0.86630	
4	1575.0	0.13740	0.20500	
		•••		
564 0.4107	2027.0	0.14100	0.21130	
565 0.3215	1731.0	0.11660	0.19220	
566 0.3403	1124.0	0.11390	0.30940	
567 0.9387	1821.0	0.16500	0.86810	
568	268.6	0.08996	0.06444	
con	cave points_wor:	st symmetry_wor	est fractal_dime	ension_worst
0	0.26	0.46	501	0.11890
1	0.18	0.27	750	0.08902
2	0.24	0.36	513	0.08758
2	0 05	7.5		0 17000

0.2575 0.6638 0.17300

0.07678

...

0.1625 0.2364

...

3

4

564	0.2216	0.2060	0.07115
565	0.1628	0.2572	0.06637
566	0.1418	0.2218	0.07820
567	0.2650	0.4087	0.12400
568	0.0000	0.2871	0.07039

```
[569 rows x 31 columns]
```

print(Y)

0 M

1 M

2 M

3 M

4 M

. .

564 M

565 M

566 M

567 M

568 B

Name: diagnosis, Length: 569, dtype: object
sns.pairplot(df.iloc[:,1:5],hue="diagnosis")

<seaborn.axisgrid.PairGrid at 0x7f80ff430040>


```
# get the correlation

df.iloc[:,1:32].corr()

# visualize the correlation

plt.figure(figsize=(10,10))

sns.heatmap(df.iloc[:,1:10].corr(),annot=True,fmt=".0%")
```

<ipython-input-18-a2668557c8b3>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

<Axes: >

spliting the data into trainning and test dateset
from sklearn.model_selection import train_test_split
X train, X test, Y train, Y test=train test split(X,Y,test size=0.20,ra

```
ndom state=0)
# feature scaling
from sklearn.preprocessing import StandardScaler
X train=StandardScaler().fit transform(X train)
X test=StandardScaler().fit transform(X test)
# LOGISTIC REGRESSION
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
# create logistic regression object
model = LogisticRegression()
# train the model using the training sets
model.fit(X train , Y train)
X train prediction = model.predict(X train)
training data accuracy = accuracy score(Y train, X train prediction)
print('Accuracy on training data = ', training data accuracy)
```

```
X test prediction = model.predict(X test)
# comparing actual response values (y test) with predicted response
values (X_test_prediction)
test data accuracy = accuracy score(Y test, X test prediction)
print('Accuracy on test data = ', test data accuracy)
Accuracy on training data = 0.989010989010989
Accuracy on test data = 0.956140350877193
# models/ Algorithms
def models(X train, Y train):
        #Random Forest
        from sklearn.ensemble import RandomForestClassifier
forest=RandomForestClassifier(random state=0, criterion="entropy", n e
stimators=10)
        forest.fit(X train, Y train)
        #Decision Tree
        from sklearn.tree import DecisionTreeClassifier
```

accuracy on test data

```
tree=DecisionTreeClassifier(random state=0,criterion="entropy")
        tree.fit(X train, Y train)
        print('[0]Random forest
accuracy:', forest.score(X train, Y train))
        print('[1]Decision tree
accuracy:',tree.score(X train,Y train))
        return forest, tree
model=models(X train, Y train)
[0]Random forest accuracy: 0.9978021978021978
[1] Decision tree accuracy: 1.0
# testing the models/result
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
for i in range(len(model)):
    print("Model",i)
    print(classification report(Y test, model[i].predict(X test)))
    print('Accuracy :
```

',accuracy_score(Y_test,model[i].predict(X_test)))

Model 0

	precision	recall	f1-score	support
В	0.96	1.00	0.98	67
М	1.00	0.94	0.97	47
accuracy			0.97	114
macro avg	0.98	0.97	0.97	114
weighted avg	0.97	0.97	0.97	114

Accuracy: 0.9736842105263158

Model 1

		precision	recall	f1-score	support
	В	0.91	0.94	0.93	67
	М	0.91	0.87	0.89	47
accu	racy			0.91	114
macro	avg	0.91	0.91	0.91	114
weighted	avg	0.91	0.91	0.91	114

Accuracy: 0.9122807017543859

from sklearn import svm

```
classifier = svm.SVC(kernel='linear')
#training the support vector Machine Classifier
classifier.fit(X train, Y train)
# accuracy score on the training data
X train prediction = classifier.predict(X train)
training data accuracy = accuracy score(X train prediction, Y train)
print('Accuracy score of the training data : ',
training data accuracy)
# accuracy score on the test data
X test prediction = classifier.predict(X test)
test data accuracy = accuracy score(X test prediction, Y test)
print('Accuracy score of the test data : ', test data accuracy)
Accuracy score of the training data: 0.989010989010989
Accuracy score of the test data: 0.9649122807017544
from sklearn.preprocessing import StandardScaler
#input data =
(20.55, 20.86, 137.8, 1308, 0.1046, 0.1739, 0.2085, 0.1322, 0.2127, 0.06251, 0
.6986,0.9901,4.706,87.78,0.004578,0.02616,0.04005,0.01421,0.01948,0.
002689,24.3,25.48,160.2,1809,0.1268,0.3135,0.4433,0.2148,0.3077,0.45
```

```
, 0.07569)
input data = (13.54, 14.36, 87.46, 566.3, 0.09779, 0.08129, 0.06664, 0.14)
,0.04781,0.1885,0.05766,0.2699,0.7886,2.058,23.56,0.008462,0.0146,0.
02387, 0.01315, 0.0198, 0.0023, 15.11, 19.26, 99.7, 711.2, 0.144, 0.1773, 0.23
9,0.1288,0.2977,0.07259)
# changing the input data to numpy array
input data as numpy_array = np.asarray(input_data)
# reshape the array as we are predicting for one instance
input data reshaped = input data as numpy array.reshape(1,-1)
# standardize the input data
std data = scaler.transform(input data reshaped)
prediction = classifier.predict(std data)
print (prediction)
if (prediction[0] == 'M'):
  print('The Breast cancer is Malignant') #Cancerous cells
else:
  print('The Breast Cancer is Benign')#non-cancerous cells
```

```
sns.lmplot(x='area_mean',y='area_worst',data=dataset,hue='diagnosis'
,palette='Set1',fit_reg=True, scatter_kws={"s":50})
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but StandardScaler was fitted with feature names

warnings.warn(

['M']

The Breast cancer is Malignant

<seaborn.axisgrid.FacetGrid at 0x7f80f7ac76a0>

CONCLUSION

Breast cancer can be detected in the early stages. It can be treated effectively. Breast cancer when it is most treatable, does not produce any symptoms, therefore be diligent with breast health. Combining multiple risk factors in modeling for breast cancer prediction could help the early diagnosis of the disease with necessary care plans. Collection, storage, and management of different data and intelligent systems based on multiple factors for predicting breast cancer are effective in disease management.

REFERENCES

An official website of the United States government: United States National Library of Medicine, a branch of the National Institutes of Health. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175124/