### **Advanced Machine Learning**

# Imbalanced Learning: Sampling Methods Part 1



#### Learning goals

- Know the idea of sampling methods for coping with imbalanced data
- Understand the different undersampling techniques



#### **SAMPLING METHODS: OVERVIEW**

- Balance training data distribution to perform better on minority classes.
- Independent of classifier → very flexible and general.
- Three groups:
  - Undersampling Removing instances of majority class(es).
  - Oversampling Adding/Creating new instances of minority class(es).
  - Oversampling is slower, but usually works better.
  - Hybrid Combining both sampling.





#### RANDOM UNDERSAMPLING/OVERSAMPLING

- Random oversampling (ROS):
  - Randomly replicate minority instances until a desired imbalance ratio.
  - Prone to overfitting due to multiple tied instances!
- Random undersampling (RUS):
  - Randomly eliminate majority instances until a desired imbalance ratio.
  - Might remove informative instances and destroy important concepts in data!
- Better: Introduce heuristics in removal process (RUS) and do not create exact copies (ROS).



#### **UNDERSAMPLING: TOMEK LINKS**

- Remove only noisy borderline examples of majority class(es).
- Noisy borderline examples:
  - From different classes.
  - "Very close" to each other.
- Let  $E^{(i)} = (\mathbf{x}^{(i)}, y^{(i)})$  and  $E^{(j)} = (\mathbf{x}^{(j)}, y^{(j)})$  be two data points in  $\mathcal{D}$  with  $y^{(i)} \neq y^{(j)}$ .
- A pair  $(E^{(i)}, E^{(j)})$  is called *Tomek link* iff there is no other data point  $E^{(k)} = (\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$  such that  $d(\mathbf{x}^{(i)}, \mathbf{x}^{(k)}) < d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$  or  $d(\mathbf{x}^{(i)}, \mathbf{x}^{(k)}) < d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$  holds,

where *d* is some distance on  $\mathcal{X}$ .





Franciso Herrera (2013), Imbalanced Classification: Common Approaches and Open Problems (<u>URL</u>).

#### **UNDERSAMPLING: TOMEK LINKS**

- A pair  $(E^{(i)}, E^{(j)})$  is called *Tomek link* iff there is no other data point  $E^{(k)} = (\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$  such that  $d(\mathbf{x}^{(i)}, \mathbf{x}^{(k)}) < d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$  or  $d(\mathbf{x}^{(j)}, \mathbf{x}^{(k)}) < d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$  holds.
- $E^{(i)}$  and  $E^{(j)}$  have different y's  $\rightsquigarrow$  a bordeline case.
- Remove majority instance in each data pair in a Tomek link.
- No sampling here, but it can be combined with RUS.



Franciso Herrera (2013), Imbalanced Classification: Common Approaches and Open Problems (URL).



### UNDERSAMPLING: CONDENSED NEAREST NEIGHBOR (CNN)

- Remove majority instances far away from decision boundary.
- $\bullet$  Constructing a consistent subset  $\tilde{\mathcal{D}}$  of  $\mathcal{D}$  in terms of the 1-NN classifier.
- A subset  $\tilde{\mathcal{D}}$  of  $\mathcal{D}$  is called consistent if using a 1-NN classifier on  $\tilde{\mathcal{D}}$  classifies each instance in  $\mathcal{D}$  correctly.



## UNDERSAMPLING: CONDENSED NEAREST NEIGHBOR (CNN)

- Creates a consistent subset:
  - Initialize  $\tilde{\mathcal{D}}$  by selecting **all minority** instances and randomly picking **one majority** instance.
  - ② Classify each instance in  $\mathcal D$  with the 1-NN classifier based on  $\tilde{\mathcal D}$ .
  - **3** Remove all misclassified instances from  $\mathcal{D}$ .



#### **UNDERSAMPLING: OTHER APPROACHES**

- Neighborhood cleaning rule (NCL):
  - Find 3 nearest neighbors for each  $(\mathbf{x}^{(i)}, y^{(i)})$  in  $\mathcal{D}$ .
  - If  $y^{(i)}$  is majority class and 3-NN classifies it as minority  $\rightsquigarrow$  Remove  $(\mathbf{x}^{(i)}, y^{(i)})$  from  $\mathcal{D}$ .
  - If  $y^{(i)}$  is minority class and 3-NN classifies it as majority  $\rightsquigarrow$  Remove 3 nearest neighbors from  $\mathcal{D}$ .
- One-sided selection (OSS): Tomek link + CNN
- CNN + Tomek link: to reduce computation of finding Tomek links
   → first use CNN and then remove the Tomek links.
- Clustering approaches: Class Purity Maximization (CPM) and Undersampling based on Clustering (SBC).



#### **OVERSAMPLING: SMOTE**

- The Synthetic Minority Oversampling Technique (SMOTE) operates by creating new synthetic examples of minority class.
- Interpolate between neighboring minority examples.
- Examples are created in  $\mathcal X$  rather than in  $\mathcal X \times \mathcal Y$ .
- Algorithm: For each minority instance:
  - Find *k* nearest minority neighbors.
  - Randomly select *j* of these neighbors.
  - Randomly generate new instances along the lines connecting the minority instance and its j neighbors.



