ADA 442 HomeWork

Homework 3: Ridge vs LASSO Regression

Furkan

11/23/2021

Contents

1	Introduction	1
2	Methodology	1
3	Data Set	2
4	Explaratory Data analysis	2
5	Model Fit	3
	5.1 Applying Linear Regression	4
	5.2 Applying Rigde Regression	5
	5.3 Applying Lasso Regression	6
6	Conclusions	7
7	References	7

1 Introduction

• The ultimate purpose of this research is to compare which Regression Model is better for prediction on 'College' Data set.

2 Methodology

Skeleton Formula that has been used for Simple Linear Regression: $Y \sim B0 + B1x + epsilon$

Loss function Formula that has been used for Ridge Regression : OLS + alpha * summation (squared coefficient values)

Loss function Formula that has been used for LASSO Regression : OLS + alpha * summation (absolute values of the magnitude of the coefficients)

 \bullet RMSE and R^2 comparison has been performed over different Regression Models by using formulas given above.

3 Data Set

```
library(ISLR2)
set.seed(73745) # for reproducible results
data(College)
```

- I have used U.S. News and World Report's College Data which contains 777 observations from 'ISLR2' library.
- College data frame has consisted of 18 variables.

4 Explaratory Data analysis

Brief information about the data set can be seen below

```
head(College)
```

summary(College)

##		Private	Apps	Accept	Enroll	Top10	perc	Top25pe	erc
	Abilene Christian University		1660	-			23	- op - op	52
	Adelphi University		2186				16		29
	Adrian College	Yes	1428	1097	336		22		50
	Agnes Scott College	Yes	417	349	137		60		89
	Alaska Pacific University	Yes	193	146	55		16		44
	Albertson College	Yes	587	479	158		38		62
##	G	F.Underg	grad l	P.Under	grad Ou	tstate	Room	.Board	Books
##	Abilene Christian University	2	2885	`	537	7440		3300	450
##	Adelphi University	2	2683		1227	12280		6450	750
##	Adrian College	1036			99	11250		3750	400
##	Agnes Scott College	510			63	12960		5450	450
##	Alaska Pacific University	249			869	7560		4120	800
##	Albertson College	678			41	13500		3335	500
##		Personal	PhD	Termina	al S.F.	Ratio	perc.	${\tt alumni}$	Expend
##	Abilene Christian University	2200	70	•	78	18.1		12	7041
##	Adelphi University	1500	29	;	30	12.2		16	10527
##	Adrian College	1165 53		(66	12.9		30	8735
##	Agnes Scott College	875	92	9	97	7.7		37	19016
##	Alaska Pacific University	1500	76	•	72	11.9		2	10922
##	Albertson College	675	67	•	73	9.4		11	9727
##		Grad.Rate							
##	Abilene Christian University	6	30						
##	Adelphi University	5	6						
##	Adrian College	5	54						
##	Agnes Scott College	5	59						
##	Alaska Pacific University		.5						
##	Albertson College	5	55						

Private Apps Accept Enroll Top10perc

```
No :212
                           81
                                            72
                                                         : 35
##
               Min.
                                Min.
                                                 Min.
                                                                 Min.
                                                                         : 1.00
    Yes:565
                                                 1st Qu.: 242
##
               1st Qu.:
                         776
                                1st Qu.:
                                          604
                                                                  1st Qu.:15.00
               Median: 1558
##
                                Median: 1110
                                                 Median: 434
                                                                 Median :23.00
                      : 3002
                                        : 2019
                                                         : 780
##
               Mean
                                Mean
                                                 Mean
                                                                 Mean
                                                                         :27.56
##
               3rd Qu.: 3624
                                3rd Qu.: 2424
                                                 3rd Qu.: 902
                                                                  3rd Qu.:35.00
                                                         :6392
##
               Max.
                      :48094
                                        :26330
                                                                         :96.00
                                Max.
                                                 Max.
                                                                 Max.
                                       P.Undergrad
##
      Top25perc
                      F. Undergrad
                                                             Outstate
##
           : 9.0
                     Min.
                                139
                                      Min.
                                                   1.0
                                                          Min.
                                                                  : 2340
##
    1st Qu.: 41.0
                     1st Qu.:
                               992
                                       1st Qu.:
                                                  95.0
                                                          1st Qu.: 7320
##
    Median: 54.0
                     Median: 1707
                                      Median :
                                                 353.0
                                                          Median: 9990
##
    Mean
           : 55.8
                            : 3700
                                              :
                                                 855.3
                                                                  :10441
                     Mean
                                      Mean
                                                          Mean
    3rd Qu.: 69.0
##
                     3rd Qu.: 4005
                                       3rd Qu.:
                                                 967.0
                                                          3rd Qu.:12925
                             :31643
            :100.0
                                              :21836.0
##
    Max.
                                                                  :21700
                     Max.
                                      Max.
                                                          Max.
                        Books
##
      Room.Board
                                          Personal
                                                            PhD
##
    Min.
            :1780
                    Min.
                            : 96.0
                                      Min.
                                              : 250
                                                       Min.
                                                              : 8.00
##
    1st Qu.:3597
                    1st Qu.: 470.0
                                       1st Qu.: 850
                                                       1st Qu.: 62.00
##
    Median:4200
                    Median : 500.0
                                      Median:1200
                                                       Median: 75.00
    Mean
##
            :4358
                            : 549.4
                                              :1341
                                                              : 72.66
                    Mean
                                      Mean
                                                       Mean
##
    3rd Qu.:5050
                    3rd Qu.: 600.0
                                       3rd Qu.:1700
                                                       3rd Qu.: 85.00
##
    Max.
            :8124
                    Max.
                            :2340.0
                                      Max.
                                              :6800
                                                       Max.
                                                              :103.00
##
       Terminal
                       S.F.Ratio
                                        perc.alumni
                                                            Expend
##
    Min.
            : 24.0
                     Min.
                             : 2.50
                                      Min.
                                              : 0.00
                                                        Min.
                                                               : 3186
    1st Qu.: 71.0
##
                     1st Qu.:11.50
                                       1st Qu.:13.00
                                                        1st Qu.: 6751
##
    Median: 82.0
                     Median :13.60
                                      Median :21.00
                                                        Median: 8377
##
    Mean
           : 79.7
                     Mean
                             :14.09
                                      Mean
                                              :22.74
                                                        Mean
                                                                : 9660
##
    3rd Qu.: 92.0
                     3rd Qu.:16.50
                                       3rd Qu.:31.00
                                                        3rd Qu.:10830
##
            :100.0
                             :39.80
                                              :64.00
    Max.
                     Max.
                                      Max.
                                                        Max.
                                                               :56233
##
      Grad.Rate
##
    Min.
           : 10.00
    1st Qu.: 53.00
##
    Median: 65.00
##
    Mean
           : 65.46
##
    3rd Qu.: 78.00
##
            :118.00
    Max.
```

5 Model Fit

- Data set has been divided into two part as 80% and 20%.

```
index = sample(1:nrow(College), 0.8*nrow(College)) # %80 for training, %20 for testing
train = College[index,] # Create the training data
test = College[-index,] # Create the test data
dim(train)

## [1] 621 18
dim(test)
```

[1] 156 18

• Superficial inference and relation between 'Accept' and 'Apps' can be seen as correlation matrix. Correlation Matrix:

5.1 Applying Linear Regression

```
lm.fit = lm(Accept ~ Apps + Enroll + Outstate, data = train)
summary(lm.fit)
##
## Call:
## lm(formula = Accept ~ Apps + Enroll + Outstate, data = train)
##
## Residuals:
##
      Min
                               ЗQ
               1Q Median
                                      Max
## -4966.8
           -80.6
                     20.7
                            151.3 3993.7
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -18.306447 80.653932 -0.227
                                               0.821
                                     29.770
                                              <2e-16 ***
## Apps
                0.383635
                           0.012887
## Enroll
                1.081982
                           0.055274 19.575
                                              <2e-16 ***
## Outstate
                0.005047
                           0.006845
                                               0.461
                                      0.737
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 636.6 on 617 degrees of freedom
## Multiple R-squared: 0.9388, Adjusted R-squared: 0.9386
## F-statistic: 3158 on 3 and 617 DF, p-value: < 2.2e-16
```

• Since, if the predictors are meaningful, p-values of them must be smaller than 0.05. 'Apps' variable can be predictor.

Regression Linear Equation: Accept = 199.19774 + 0.61091*Apps For every increase in Accept, the model predicts a increase of 0.61091 in Apps.

• The most significant values to identify if a model well-explained are R^2 and adjusted R^2 values. R^2 values should be near 1.

5.1.1 Evaluate Linear Regression Model Performance

```
predictedAccept <- predict(lm.fit, test)
par(mfrow = c(1,2))

actuals_preds <- data.frame(cbind(actuals=test$Accept, predicteds=predictedAccept)) # make actuals_predictedIccept) # make actuals_predictedIccept)
head(actuals_preds)</pre>
```

```
##
                                 actuals predicteds
## Alaska Pacific University
                                          153.4011
                                     146
## Albright College
                                     839
                                           704.2278
## Allegheny College
                                    1900 1608.9789
## American International College
                                    1093
                                          808.4018
## Appalachian State University
                                    4664 4888.1524
## Assumption College
                                    1700 1392.5738
```

5.2 Applying Rigde Regression

```
library(glmnet)

## Loading required package: Matrix

## Loaded glmnet 4.1-3

x = train
y_train = train$Accept

x_test = data.matrix(test)
y_test = test$Accept

lambdas <- 10^seq(2, -3, by = -.1)
ridge_reg = glmnet(x, y_train, nlambda = 25, alpha = 0, family = 'gaussian', lambda = lambdas)
summary(ridge_reg)</pre>
```

```
##
             Length Class
                              Mode
## a0
             51
                    -none-
                              numeric
## beta
             918
                    dgCMatrix S4
## df
             51
                    -none-
                              numeric
## dim
               2
                    -none-
                              numeric
## lambda
              51
                    -none-
                              numeric
## dev.ratio 51
                    -none-
                              numeric
## nulldev
             1
                    -none-
                              numeric
## npasses
               1
                    -none-
                              numeric
## jerr
               1
                    -none-
                              numeric
## offset
               1
                   -none-
                              logical
## call
                    -none-
                              call
## nobs
               1
                    -none-
                              numeric
```

- Ridge Regression model been run several times for different values of lambda.
- When alpha=0, Ridge Model is fit and if alpha=1, a lasso model is fit.

```
x_mtrx = data.matrix(train)
cv_ridge <- cv.glmnet(x_mtrx, y_train, alpha = 0, lambda = lambdas)
optimal_lambda <- cv_ridge$lambda.min
optimal_lambda</pre>
```

```
## [1] 0.001
```

5.2.1 Evaluate Ridge Model Performance

```
eval_results <- function(true, predicted, df) {</pre>
  # Sum of Squared Error
 SSE <- sum((predicted - true)^2)</pre>
  # Sum of Squared Total
  SST <- sum((true - mean(true))^2)</pre>
  R_square <- 1 - SSE / SST
  RMSE = sqrt(SSE/nrow(df))
  # Model performance metrics
data.frame(
 RMSE = RMSE.
 Rsquare = R_square
}
# Prediction and evaluation on train data
predictions_train <- predict(ridge_reg, s = optimal_lambda, newx = x_mtrx)</pre>
# Prediction and evaluation on test data
predictions_test <- predict(ridge_reg, s = optimal_lambda, newx = x_test)</pre>
eval_results(y_train, predictions_train, train)
          RMSE Rsquare
## 1 0.3927581
eval_results(y_test, predictions_test, test)
##
         RMSE Rsquare
## 1 0.347633
```

• There is an improvement in the performance compared with linear regression model.

5.3 Applying Lasso Regression

- Loss function = OLS + alpha * summation (absolute values of the magnitude of the coefficients)
- When alpha=0, Ridge Model is fit and if alpha=1, a lasso model is fit.

```
lambdas <- 10^seq(2, -3, by = -.1)

# Setting alpha = 1 implements lasso regression
lasso_reg <- cv.glmnet(x_mtrx, y_train, alpha = 1, lambda = lambdas, standardize = TRUE, nfolds = 5)

# Best
lambda_best <- lasso_reg$lambda.min
lambda_best</pre>
```

[1] 0.001

5.3.1 Evaluate LASSO Model Performance

```
lasso_model <- glmnet(x_mtrx, y_train, alpha = 1, lambda = lambda_best, standardize = TRUE)
predictions_train <- predict(lasso_model, s = lambda_best, newx = x_mtrx)
eval_results(y_train, predictions_train, train)

## RMSE Rsquare
## 1 3.289273 0.9999984

predictions_test <- predict(lasso_model, s = lambda_best, newx = x_test)
eval_results(y_test, predictions_test, test)

## RMSE Rsquare
## 1 2.917397 0.9999976</pre>
```

6 Conclusions

- Ridge regression shrinks the regression coefficients, so that variables, with minor contribution to the outcome, have their coefficients close to zero.
- Lasso stands for Least Absolute Shrinkage and Selection Operator. It shrinks the regression coefficients toward zero by penalizing the regression model with a penalty term called L1-norm, which is the sum of the absolute coefficients.
- We know that the most ideal result would be an RMSE value of zero and R-squared value of 1.
- To conclude that, R² of Linear Regression Model: 0.9315
 RMSE of Ridge Model: 0.3763321 R² of Ridge Model: 1
 RMSE of LASSO Model: 4.091901 R² of LASSO Model: 0.9999981

So, The first salient value is R² of Linear Regression Model because it is lowest and worst value in respect to accuracy. Also, R² value of Ridge Model which is 1 has the best prediction accuracy.

7 References

- Lecture Slides
- $\bullet \ \ https://towards datascience.com/understanding-confusion-matrix-a 9 ad 42 dc fd 62$
- https://www.pluralsight.com/guides/linear-lasso-and-ridge-regression-with-r
- http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/153-penalized-regression-essentials-ridge-lasso-elastic-net/