

Evaluating Graph Embeddings and Graph Similarity Measurements for Database Systems

Josephine Rehak

Profilprojekt Anwendungsforschung in der Informatik

Agenda

Agenda

Overview

Agenda

Overview

Fundamentals

Fundamentals I

Creating a directed graph from database

- Vertices: IDs + Table entries
 - Except: foreign keys, mn-tables

Fundamentals II

id	Name	Year	mid	gid	id	Genre
1	Star Wars	1977	1	1	 1	Science Fiction
2	Star Trek	1979	2	1		1 ICUOII

"Star Wars"

movie_1

movie_2

"Star Trek"

genre_1

Fundamentals III

Creating a directed graph from database

- Vertices: IDs + Table entries
 - Except: foreign keys, mn-tables
- Edges: Inner + Inter Table Relations
 - directed edges: id to table values
 - Bidirected edges: MN-Table-Relations + Foreign Keys

Fundamentals IV

id	Name	Year	mid	gid	id	Genre
1	Star Wars	1977	1	1	1	Science Fiction
2	Star Trek	1979	2	1		Tiction

Fundamentals V

id	Name	Year	d_id		id	Director
1	Star Wars	1977	1	M 1	1	George Lucas
2	Star Trek	1979	2		2	Robert Wise

Fundamentals VI

Similarity Measures in Verse

- Adjacency Similarity:
 - Similarity to neighbours only
 - Low complexity

$$sim_{G}^{ADJ}(u, v) = \begin{cases} 1/Out(u) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Fundamentals VII

Dresden Database Systems Group

Similarity Measures in Verse

- Personalized Page Rank:
 - Random walker with jump back probability (α)
 - Initial assignment, then recursive

$$\pi_s = \alpha s + (1 - \alpha)\pi_s A$$

Fundamentals IX

Similarity Measures in Verse

SimRank:

- Objects are similar when referenced by similar objects
- Initial assignment, then recursive
- importance of farther nodes: C
- complexity of O(n4)

$$sim_{G}^{SR}(u,v) = \frac{C}{|I(u)| |I(v)|} \sum_{i=1}^{|I(u)|} \sum_{j=1}^{|I(v)|} sim_{G}^{SR}(I_{i}(u), I_{j}(v))$$

Fundamentals X

Verse (VERtex Similarity Embeddings)

- Trains unsupervised 1-layer-NNs
- Exceeds previous embedding methods
- Scalable: Processes 10⁶ nodes in less than a day
- Versatile: supports any similarity measure between nodes

$$\sum_{v \in V} \text{KL}\left(\text{sim}_{G}(v, \cdot) \mid\mid \text{sim}_{E}(v, \cdot)\right)$$

Fundamentals XI

Verse Vertex Embeddings

- Mapping of graph vertex to vector space
 - Maintains: neighborhood, connections, graph topology
 - Efficiency for large graphs
 - individual dimensions have no meaning

Usecases:

- ML
- similarity measures
- NearestNeighbour
- ..

(0	3	1	O	2	3	8	1	1	3
	1	1	O	O	7	1	2			3
	1	2	2	O	0	6	7	1	2	2
	1	2	3	10	O	4	6	1	O	5
ا ا	3	2	2	1	4	3	2	1	6	O
4 _{ij} -	7	4	4	5	3	9	6	1	6	1
	7	1	1	5	2	8	9	1	3	6
	5	0	1	6	2	0	0	0	1	5
	1	6	3	3	4	6	2	O	1	1
(1	2	2	4	1	1	3	O	8	2

Fundamentals XII

Overview

Fundamentals XIII

Spearman coeficcient

Example,

Movie id	r 1	r 2	d_i	d_i^2
1	2	1	1	1
2	1	3	-2	4
3	3	2	1	1

- Values between -1 and 1
 - -1 inverted correspondence
 - 0 no correspondence
 - 1 strong correspondence

Experimental Setup

Experimental Setup I

Data Set

Used excerpt has: 45433 movies, 18001 directors, 20 genres

https://www.kaggle.com/rounakbanik/the-movies-dataset/home

Experimental Setup II

Overview

Experimental Setup III

Overview

Experimental Setup IV

Results

Results I

PPageRank Graph

	Movie Names
1	Star Wars
2	Star Wars Episode II: Attack of the Clones
3	American Grafitti
4	THX1138
5	Star Wars Episode III: Revenge of the Sith

AdjacencySimilarity Graph

	Movie Names
1	Star Wars
2	Hellboy
3	Get Carter
4	Der Totmacher
5	Begotten
6	Laws of Gravity

Results II

PPageRank Embeddings

	Movie Names
1	Star Wars
2	Star Wars: Episode III - Revenge of the Sith
3	THX 1138
4	Star Wars: Episode II Attack of the Clones
5	Star Wars: Episode I The Phantom Menace

SimRank Embeddings

	Movie Names
1	Star Wars
2	Star Wars: Episode II Attack of the Clones
3	Electronic Labyrinth THX 1138 4EB
4	THX 1138
5	Star Wars: Episode I The Phantom Menace

Results III

Spearman on Similarity Rankings

Results IV

Computation Time

	Adjacency Similarity	PPageRank	SimRank
Graph:	2.77s	12.82s	∞

0.32s 0.36s Embeddings: 0.21s

Excursus

Excursus I

id	Name	Year	d_id		id	Director
1	Star Wars	1977	1	M 1	1	George Lucas
2	Star Trek	1979	2		2	Robert Wise

Excursus II

id	Name	Year	d_id		id	Director
1	Star Wars	1977	1	M 1	1	George Lucas
2	Star Trek	1979	2		2	Robert Wise

Excursus III

Directed: SimRank

	Movie Names
1	Star Wars
2	Roswell
3	THE DARK SIDE OF DIMENSIONS
4	Perfect
5	Love and Distrust
6	National Lampoon's Last Resort

Bidirected: SimRank

	-
	Movie Names
1	Star Wars
2	Star Wars: Episode II Attack of the Clones
3	Electronic Labyrinth THX 1138 4EB
4	THX 1138
5	Star Wars: Episode I The Phatnom Menace

Conclusion

Conclusion I

Computation Time

Adjacency Similarity

PPageRank

SimRank

Graph:

slow

slow

 ∞

Embeddings:

bad ranking

efficient good ranking

efficient good ranking

Conclusion I

- Translates across tasks/databases
- Speeding up similarity calculation
 - Supports many similarity measures
 - ,Simple' solution for complex db problem

- Verse needs preparation time
 - Similarity measure and graph construction coupled
 - Needs parameter tuning

Fragen?

Extra Slides

Kullback-Leibler-Divergenz

- Also called "Information Gain"
- Measure for divergence of probability distributions

$$D(P\|Q) = KL(P,Q) = \sum_{x \in X} P(x) \cdot \log rac{P(x)}{Q(x)}$$

Verse Steps

- Sampling: NCE-based
- Dimensionality reduction: (linear)
- Normalisation: softmax
- Optimisation: KL + Stochastic gradient descent
- ML: 1-layer NN + input/output layer

complexity

Vertice Similarity Measures

closeness

Structure-based

- Random Walks
- PpageRank
- SimRank

indirect neighborhood

- Cosine similarity
- Euclidean distance
- Jaccard coeficient
- PPageRank
- SimRank

Direct neighborhood

 Adjacency Similarity

