Cuantización

Fernando Martínez fernando.martinez@upc.edu

Departament de Matemàtica • Universitat Politècnica de Catalunya

21 de abril de 2020

Cuantización

Ejemplo

Imagen de grises 8 bits [0,256), codificamos con 2 bits:

Original

Uniforme: 2 bits por píxel

Cuantización escalar

Figura: Función de cuantización Q(x).

 $\{b_i\}_{i=0,\dots,M}$ límites de decisión, $\{y_i\}_{i=1,\dots,M}$ niveles de reconstrucción,

$$Q(x) = y_i \text{ si } b_{i-1} \le x < b_i$$

Cuantización escalar: Problema general (I)

Problema: Modelizamos nuestras entradas con una variable aleatoria X con densidad de probabilidad f(x).

Deseamos cuantizar una fuente dando los límites de decisión $\{b_i\}_{i=0,\dots,M}$ y los niveles de reconstrucción $\{y_i\}_{i=1,\dots,M}$ que determinan la función de cuantización $Q(x)=y_i$ si $b_{i-1}\leq x< b_i$.

Definimos¹:

$$\sigma^2 \equiv \int_{-\infty}^{\infty} \left[x - Q(x) \right]^2 f(x) dx = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} \left[x - Q(x) \right]^2 f(x) dx \quad (1)$$

 $\mathcal C$ código con M palabra de longitudes $\{l_1,...,l_M\}.$ Si $\tilde l=\sum_{i=1}^M l_i p(y_i),$ $p(y_i)=\int_{b_{i-1}}^{b_i} f(x) dx,$ entonces

$$\tilde{l} = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} l_i f(x) dx$$
 (2)

¹Hay otras distancias o errores, σ , que usan |x-Q(x)|, sup |x-Q(x)|...

Cuantización escalar: Problema general (II)

Problema A Dado $\epsilon > 0$, una cota al *error*, hallar los límites de decisión $\{b_i\}$, los niveles de reconstrucción $\{y_i\}$ y las longitudes de las palabras del código $\{l_i\}$ que minimizan (2) y satisfacen $\sigma < \epsilon$

Problema B Dado $\epsilon > 0$, una cota a la longitud media, hallar los límites de decisión $\{b_i\}$, los niveles de reconstrucción $\{y_i\}$ y las longitudes de las palabras del código $\{l_i\}$ que minimizan (1) y satisfacen $\tilde{l} < \epsilon$.

Cuantización escalar uniforme

Todos los intervalos son de la misma longitud, salvo tal vez los extremos:

$$x \in [-X_{\text{max}}, X_{\text{max}}], \quad b_i - b_{i-1} = \Delta, \quad \Delta = \frac{2X_{\text{max}}}{M}$$

Distribución uniforme $f(x) = \frac{1}{2X_{\text{max}}}$

Minimizar σ : $y_i = \frac{b_i + b_{i-1}}{2}$, $y_i - y_{i-1} = \Delta$ niveles de reconstrucción equiespaciados.

Al ser una distribución uniforme podemos utilizar un código de bloque de palabras de longitud n si $M=2^n$:

$$\sigma^2 = \sum_{i=1}^{M} \int_{(i-1)\Delta}^{i\Delta} \left[x - \frac{2i-1}{2} \Delta \right]^2 \frac{1}{2X_{\text{max}}} dx = \frac{\Delta^2}{12} = \frac{1}{3} \frac{X_{\text{max}}^2}{M^2}.$$

Duplicar el número de intervalos disminuye el error a la mitad. En códigos de bloques, aumentar en 1 bit el tamaño de las palabras reduce el error a la mitad.

Cuantización escalar uniforme adaptativa

Aunque $\Delta = b_i - b_{i-1}$ es constante, puede variar con el tiempo dependiendo de los valores que va tomando la variable aleatoria.

- FAQ Forward Adaptative Quantization: Se leen bloques de N datos y se realiza la cuantización en base a ellos.
- BAQ Backward Adaptative Quantization: Se actualiza Δ a medida que se van leyendo los datos.

Ejemplo

FAQ: De una imagen se leen bloques de 8×8 píxeles, se calcula su máximo y su mínimo y se cuantiza en dicho rango [mín, máx] (se han de guardar dichos valores al codificar).

Ejemplo

BAQ. Jayant Quantizer: se varía Δ según si los datos van cayendo en los niveles *internos* o *externos*; si es en los *internos* se disminuye Δ , si es en los *externos* se aumenta Δ .

Cuantización escalar no uniforme (I)

Volvamos al caso general consideremos los problemas:

(A) Fijamos $\{b_i\}$, minimizar σ^2 respecto $\{y_i\}$. Se ha de cumplir:

$$y_i = \frac{\int_{b_{i-1}}^{b_i} x f(x) dx}{\int_{b_{i-1}}^{b_i} f(x) dx}$$

 y_i centro de masas del intervalo.

(B) Fijamos $\{y_i\}$, minimizar σ^2 respecto $\{b_i\}$. Se ha de cumplir:

$$b_i = \frac{y_i + y_{i+1}}{2}$$

Los límites de decisión son el punto medio de los niveles de reconstrucción.

Cuantización escalar no uniforme (I)

El problema general es hallar $\{b_i\}$ e $\{y_i\}$.

- Fijemos los valores iniciales de $\{y_i\}$. Por (B) podemos calcular la primera aproximación de los valores $\{b_i\}$. Ahora usamos (A) para actualizar los valores $\{y_i\}$ y así sucesivamente.
- ② Supongamos que deseamos hallar $b_0 = 0, b_1, b_2,..., y_1, y_2,...$ Demos un valor tentativo a y_1^2 , resolvemos numéricamente (A) $y_1 = \frac{\int_{b_0}^{b_1} x f(x) dx}{\int_{b_0}^{b_1} f(x) dx}$ siendo y_1 la incógnita. Usando (B) obtenemos b_1 , ahora podemos calcular y_2 resolviendo numéricamente (A)...

²El resultado dependerá del valor tomado

Cuantización vectorial (I)

Tener un diccionario compuesto por vectores $\{\overrightarrow{y_i}\}$ y codificar nuestros vectores según indica el diccionario.

Ejemplo

Códigos correctores de errores:

- $(0\ 0\ 0\ 0\ 0\ 0\ 0)\ 0000$
- $(0\ 0\ 0\ 0\ 1\ 0) \longrightarrow (0\ 0\ 0\ 0\ 0\ 0)\ 0000$
- $(1\ 0\ 0\ 0\ 1\ 0) \longrightarrow (0\ 0\ 0\ 0\ 0\ 0)\ 0000$
- $(0\ 0\ 0\ 0\ 0\ 1\ 1) \longrightarrow (1\ 0\ 0\ 0\ 1\ 1)\ 1001$
- $(0\ 0\ 0\ 0\ 1\ 0\ 1) \longrightarrow (0\ 1\ 0\ 0\ 1\ 0\ 1)\ 0101$
- $(0\ 0\ 0\ 0\ 1\ 0\ 1) \longrightarrow (0\ 1\ 0\ 1\ 0\ 1)\ 0101$
- $(0\ 0\ 0\ 0\ 1\ 1\ 0) \longrightarrow (0\ 0\ 1\ 0\ 1\ 1\ 0)\ 0010$
- $(0\ 0\ 0\ 1\ 0\ 1\ 1) \longrightarrow (0\ 0\ 0\ 1\ 1\ 1\ 1)\ 0001$
- $(0\ 0\ 0\ 1\ 1\ 0\ 0) \longrightarrow (1\ 0\ 0\ 1\ 1\ 0\ 0)\ 1000$
- $(0\ 1\ 0\ 0\ 1\ 0\ 1)\ 0101$
- $(1\ 0\ 1\ 1\ 0\ 1\ 0)\ 1010$

Cuantización vectorial (II)

K-means - Linde-Buzo-Gray (LGB)

- 1.) Inicializamos un conjunto de vectores de reconstrucción $\{\overrightarrow{y_i}^{(1)}\}$, $k=1,\,D^{(0)}=0,\,\epsilon$ lindar.
- 2.) Hallamos las regiones de cuantización

$$V_i^{(k)} = \left\{ \overrightarrow{x}, \ d(\overrightarrow{x}, \overrightarrow{y_i}^{(k)}) < d(\overrightarrow{x}, \overrightarrow{y_j}^{(k)}) \ \forall j \neq i \right\}$$

3.) Calculamos la distorsión

$$D^{(k)} = \sum_{i=1}^{M} \int_{V_i^{(k)}} \|\overrightarrow{x} - \overrightarrow{y_i}^{(k)}\| f(\overrightarrow{x}) d\overrightarrow{x}$$

- 4.) Si $\frac{D^{(k)} D^{(k-1)}}{D^{(k)}} < \epsilon$ entonces stop.
- 5.) K = k + 1, calculamos los nuevos valores de $\{\overrightarrow{y_i}^{(k)}\}$, que son los centroides de $\{V_i^{(k)}\}$ y volvemos a 2.

Cuantización vectorial (III)

Observaciones:

- I) Cuando se usa para clasificar objetos se utiliza un conjunto para entrenar y otro de test.
- II) No siempre converge a la solución óptima
- III) Depende de la elección inicial de $\{\overline{y_i}^{(1)}\}\$. Una forma de elegirlos es empezar con un vector que sea el centroide. A continuación se perturba para obtener dos vectores, se aplica el algoritmo, los nuevos centroides se vuelven a "dividirz así hasta obtener el número de vectores deseado.
- IV) Depende de las definiciones de $d(\overrightarrow{x}, \overrightarrow{y})$ y $\|\overrightarrow{x}\|$ y de cómo se actualiza.

Cuantización de métodos predictivos (I)

Ejemplo

Original	0	1,2	2,4	4,9	7,1	6,3	4,8	3,4	0,9	-0,9	-2,4	-4,1
Diferencias		1,2	1,2	2,5	2,2	-0,8	-1,5	-1,4	-2,5	-1,8	-1,5	-1,7
Cuantizado		1,5	1,5	2,5	2,5	-0,5	-1,5	-1,5	-2,5	-1,5	-1,5	-1,5
Recuperado		1,5	3	5,5	8	7,5	6	4,5	2	0,5	-1	-2,5
Error		0,3	0,6	0,6	0,9	1,2	1,2	1,1	1,1	1,4	1,4	1,6

Límites: ...-3,-2,-1,0,1,2,3...

Niveles -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5...

El error va creciendo poco a poco.

Cuantización de métodos predictivos (II)

```
\{x_n\} la secuencia original
\{d_n\} la secuencia de diferencias, d_n = x_n - x_{n-1}
\{d_n\} la secuencia de diferencias cuantizadas, \hat{d}_n = Q(d_n) = d_n + e_n
\{\hat{x}_n\} la secuencia reconstruida
Calculemos \hat{x}_n = \hat{x}_{n-1} + \hat{d}_n, tomando \hat{x}_0 = x_0:
          \hat{x}_1 = \hat{x}_0 + \hat{d}_1 = x_0 + d_1 + e_1 = x_0 + (x_1 - x_0) + e_1 = x_1 + e_1
          \hat{x}_2 = \hat{x}_1 + \hat{d}_2 = (x_1 + e_1) + (d_2 + e_2) =
              = x_1 + (x_2 - x_1) + e_1 + e_2 = x_2 + e_1 + e_2
          \hat{x}_k = x_k + \sum_{i=1}^k e_i
```

Como la media del e_i será 0, se puede pensar que el error se cancelará a medida que recuperamos más elementos de la secuencia pero en la práctica no acostumbra a ser así (paseo aleatorio o del borracho).

Cuantización de métodos predictivos (III)

Para evitar este problema la secuencia de diferencias se construye

$$d_n = x_n - \hat{x}_{n-1}$$

Ejemplo

Original	0	1,2	2,4	4,9	7,1	6,3	4,8	3,4	0,9	-0,9	-2,4	-4,1
Diferencias		1,2	0,9	2,9	2,6	-0,7	-1,7	-1,6	-2,6	-1.9	-1,9	-2,1
Cuantizado		1,5	0,5	2,5	2,5	-0,5	-1,5	-1,5	-2,5	-1,5	-1,5	-2,5
Recuperado		1,5	2	4,5	7	6,5	5	3,5	1	-0.5	-2	-4,5
Error		0,3	-0,4	-0,4	-0,1	0,2	0,2	0,1	0,1	0,4	0.4	-0.4

Límites: ...-3,-2,-1,0,1,2,3...

Niveles -3,5, -2,5, -1,5, -0,5, 0,5, 1,5, 2,5, 3,5...

El error es el error producido en la cuantización.

Cuantización de métodos predictivos (IV)

 $\{x_n\}$ la secuencia original $\{d_n\}$ la secuencia de diferencias, $d_n = x_n - \hat{\mathbf{x}}_{n-1}$ $\{\hat{d}_n\}$ la secuencia de diferencias cuantizadas, $\hat{d}_n = Q(d_n) = d_n + e_n$ $\{\hat{x}_n\}$ la secuencia reconstruida

$$\hat{x}_0 = x_0$$

$$\hat{x}_1 = \hat{x}_0 + \hat{d}_1 = \hat{x}_0 + d_1 + e_1 = \hat{x}_0 + (x_1 - \hat{x}_0) + e_1 = x_1 + e_1$$

$$\hat{x}_2 = \hat{x}_1 + \hat{d}_2 = \hat{x}_1 + (d_2 + e_2) = \hat{x}_1 + (x_2 - \hat{x}_1) + e_2 = x_2 + e_2$$
...
$$\hat{x}_k = x_k + e_k$$

Cuantización de métodos predictivos (V)

En este proceso estamos asumiendo que el siguiente valor es igual al anterior y codificamos la diferencia:

$$p_n = f(\hat{x}_{n-1}) = \hat{x}_{n-1}, \quad d_n = x_n - p_n, \quad \hat{d}_n = Q(d_n) \quad \hat{x}_n = p_n + \hat{d}_n$$

En general podemos suponer:

$$p_n = f(\hat{x}_{n-1}, \hat{x}_{n-2}, ..., \hat{x}_{n-N})$$

f depende de \hat{x}_i (no de x_i) porque el decodificador sólo tiene acceso a \hat{x}_i

Ejemplo

El valor de un píxel Θ se puede predecir a partir de los valores A, B,

C,... ya leídos,
$$\begin{bmatrix} B & C & D \\ A & \Theta \end{bmatrix}$$

- filtro lineal (media ponderada de los píxeles),
- filtro no lineal (mediana, moda, máximo, mínimo...)