НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

з лабораторної роботи №1

із дисципліни «Вступ до баз даних та інформаційних систем» на тему «Створення таблиць. Виконання простих запитів на мові SQL та за допомогою алгебри Кодда. Використання вбудованих функцій мови SQL»

Виконала: Керівник:

студентка групи КМ-91 ст. викладач Бай Ю.П.

Павловська К.І.

3MICT

ЗАВДАННЯ	3	
Завдання 1	4	
Завдання 2	7	
Завдання 3	8	
СПИСОК ЛІТЕРАТУРИ	12	

ЗАВДАННЯ

Варіант №8

Завдання 1. Згенерувати базу даних з книги Б. Форта (create.txt, populate.txt), та виконати запити:

- 1а) Як звуть постачальника, який продав найдешевший товар?
- 1b) Який PROD_ID товару з найдовшою назвою?
- 1c) Вивести імена постачальників у нижньому регістрі, назвавши це поле vendor name, які мають товар, але його ніхто не купляв.
- Завдання 2. Виконати запити 1a), 1b), використовуючи операції реляційної алгебри Кодда та агрегатні функції мови SQL.

Завдання 3. За допомогою команд мови SQL створити таблиці, згідно з умовою:

Студент має заліковку що містить записи про дисципліни.

Визначити поля та типи. Головні та зовнішні ключі створювати окремо від таблиць, використовуючи команду ALTER TABLE.

Завдання 1

Згенерувати базу даних з книги Б. Форта (create.txt, populate.txt), та виконати запити:

1а) Як звуть постачальника, який продав найдорожчий товар?

У запиті використана агрегатна функція МАХ() для підрахунку максимуму (визначення найдорожчого товару) і оператор DISTINCT для роботи з унікальними значеннями атрибуту.

Визначимо ціну найдорожчого проданого товару:

```
select min(item_price) as min_item_price
from orderitems;
```

Результат виконання:

Використаємо отримане значення у вкладеному запиті:

```
select distinct vendors.vend_name
from orderitems,
    products,
    vendors
where item_price = (select min(item_price) from orderitems)
    and products.prod_id = orderitems.prod_id
    and vendors.vend_id = products.vend_id
```

Результат виконання:

1b) Який PROD_ID товару з найдовшою назвою?

Окрім агрегатної функції MAX(), у цьому завданні використовується функція LENGTH(), яка повертає довжину рядка.

Виведемо prod іd кожного товару, його назву та довжину назви:

Результат виконання:

_	prod_id [PK] character (10)	prod_name character (255)	length_prod_name integer
1	BR01	8 inch teddy bear	17
2	BR02	12 inch teddy bear	18
3	BR03	18 inch teddy bear	18
4	BNBG01	Fish bean bag toy	17
5	BNBG02	Bird bean bag toy	17
6	BNBG03	Rabbit bean bag toy	19
7	RGAN01	Raggedy Ann	11
8	RYL01	King doll	9
9	RYL02	Queen doll	10

Визначимо максимальну довжину назви товару:

```
select max(length(prod_name)) as length_prod_name_max
from products
```

Результат виконання:

Використаємо одержану інформацію як вкладений запит:

```
select prod_id
from products
where length(prod_name) = (select max(length(prod_name)) from products)
```

Результат виконання:

1c) Вивести імена постачальників у нижньому регістрі, назвавши це поле vendor name, які мають товар, але його ніхто не купляв.

У запиті використаний оператор DISTINCT для роботи з унікальними значеннями атрибуту, функція LOWER() для перетворення записів у нижній регістр та операція EXCEPT для обчислення різниці між таблицями.

Визначимо prod_id товару, який ніхто не купляв, обчисливши різницю між таблицями products і orderitems:

```
select products.prod_id
from products except
select orderitems.prod_id
from orderitems
```

Результат виконання:

Використовуючи отриману інформацію, виведемо імена постачальників у нижньому регістрі, назвавши це поле vendor_name, які мають товар, але його ніхто не купляв:

```
select distinct lower(vendors.vend_name) as vendor_name
from vendors,
    products,
    orderitems
where products.prod_id in (select products.prod_id from products except
select orderitems.prod_id from orderitems)
    and vendors.vend id = products.vend id
```

Результат виконання:

Завдання 2

Виконати запити 1a), 1b), використовуючи операції реляційної алгебри Кодда та агрегатні функції мови SQL.

1a)

Введемо допоміжне позначення максимальної ціни проданого товару:

$$Mp = MIN(\pi_{item_price}(orderitems));$$

Визначимо, як звуть постачальника, що продав найдорожчий товар:

$$\pi_{vend_name}(\sigma_{item_price=Mp}(orderitems)).$$

1b)

Позначимо кількість літер у найдовшій назві товару як:

$$ML = MAX \left(\pi_{LENGTH(prod_name)}(products) \right);$$

Визначимо prod_id товару з найдовшою назвою:

$$\pi_{prod_id} \left(\sigma_{LENGTH(prod_name)=ML}(products) \right).$$

Завдання 3

За допомогою команд мови SQL створити таблиці, згідно з умовою:

Студент має заліковку що містить записи про дисципліни.

Визначити поля та типи. Головні та зовнішні ключі створювати окремо від таблиць, використовуючи команду ALTER TABLE.

ER-схема:

Реляційна модель:

Реляційна модель

Концепція : «Студент має залікову книжку, що містить записи про дисципліни»

Сутності:

- 1. Студент
- 2. Залікова книжка
- 3. Дисципліна

Таблиці

- 1. student таблиця з інформацією про студента
- 2. gradebook таблиця з інформацією про залікову книжку
- 3. subject таблиця з інформацією про дисципліни
- 4. relation_gradebook_subject таблиця зв'язків для gradebook та subject

Зв'язки

- 1. Між сутностями Студент та Залікова книжка встановлено зв'язок типу 1:1.
- 2. Між сутностями Залікова книжка та Дисципліна встановлено зв'язок M:N.

Для зв'язку «many to many» (пункт 2 «зв'язки») необхідно створити додаткову таблицю зв'язків, атрибутами якої ϵ зовнішні ключі, відповідні первинним ключам таблиць, що пов'язуються.

Назвемо таблицю зв'язків «relation_gradebook_subject», та створимо необхілні ключі.

Команди створення таблиць:

Команди налаштування первинних та зовнішніх ключів:

```
alter table student
    add constraint pk_student primary key (student_id);

alter table gradebook
    add constraint pk_gradebook primary key (gradebook_id);

alter table subject
    add constraint pk_subject primary key (subject_id);

alter table relation_gradebook_subject
    add constraint pk_relation_gradebook_subject primary key (relation_id);

alter table relation_gradebook_subject
    add constraint fk_relation_gradebook foreign key (subject_id)

references subject (subject_id);

alter table relation_gradebook_subject
    add constraint fk_relation_subject foreign key (gradebook_id)

references gradebook (gradebook_id);

alter table gradebook
    add constraint fk_gradebook_student foreign key (student_id) references
student (student_id);
```

Перевірка:

СПИСОК ЛІТЕРАТУРИ

- 1. Дейт К. Введение в системы баз данных. Пер. с англ. 8-е изд. К.: Изд. дом «Вильямс», 2006. 1326 с.
- 5. Форта Б. Освой самостоятельно SQL. 3-е изд.: Пер. с.англ. –М.: Изд. дом «Вильямс», 2006. 288 с