姓名: 学号: 同组人:

1. 实验目的(根据实验情况调整)

- 1) 熟悉电阻应变测量技术的基本原理和方法;
- 2) 测量纯弯曲梁矩形截面上的正应力;
- 3) 验证梁纯弯曲理论;
- 4) 熟悉平面图形的几何性质的分析方法,比较正应力分布规律。

2. 实验装置(根据实验情况调整)

- 1) 材料力学多功能实验台;
- 2) 静态应变测试仪;
- 3) 游标卡尺和钢尺等。

3. 实验原理与方法(根据实验情况调整,10分)

纯弯曲实验件材料为 45#钢调质处理,弹性模量 E=210GPa, 泊松比为 0.28。 其横截面为矩形,梁的侧面沿与轴线平行的不同高度上粘贴单向应变片,如图所示。通过材料力学多功能试验装置等量逐级加载,载荷大小由数字载荷显示仪显示。

纯弯曲梁正应力实验件示意图

截面的尺寸及应变片位置参考值

应变片至中性层距离(mm)		梁的尺寸和有关参数			
\mathbf{Y}_1	20	宽度 b	20mm		
Y_2	-20	高度 h	40mm		
Y_3	15	跨度L	620mm		
Y_4	10	载荷距离 a	150mm		
Y_5	0	弹性模量E	210GPa		
		泊松比 μ	0.28		
		惯性矩 Iz	bh ³ / 12		

(可以从实验3纯弯曲梁挠度验证实验报告中复制过来)

$$\sigma_e = E \cdot \varepsilon_e$$

实验最大加载设定为 4000N,以试验件屈服强度为限定条件,计算该情况下的安全系数 (5分):

4. 实验步骤(根据实验情况调整,20分)

1) 测量梁的截面尺寸、应变片位置参数及其它有关尺寸,见表?。预热应变仪 和载荷显示仪,计算中性轴位置及截面的惯性矩 I_z 。

 $I_z =$

表? 试件测量

应变片至中性层距离(mm)		梁的尺寸和有关参数			
Y_1		宽度 b			
Y_2		高度 h			
Y ₃		跨度L			
Y ₄		载荷距离 a			
Y ₅		弹性模量 E			
Y ₆		惯性矩 Iz			
Y ₇					
Y_8					

2) 检查各种仪器是否连接好,按顺序将各个应变片按 1/4 桥接法接入应变仪的 所选通道上,然后将应变仪的所选通道电桥调平衡,如图? 所示。

(应变片连接方式示意图,如果没有拍可以不加)

- 3) 摇动多功能试验装置的加载机构,采用等量逐级加载(可取 $\Delta P = 500N$),最大加载 4000N,每加一级载荷,分别读出各相应电阻应变片的应变值。加载应保持缓慢、均匀、平稳。(根据实际情况调整)
- 4) 记录实验数据记录,见表?。

表? 试件测量

P(?)				
$\varepsilon_e(?)$				
1-1				
2-2				
3-3				
4-4				
5-5				
6-6				
7-7				

5) 整理仪器,结束实验。

5. **实验数据处理**(数据处理图表整理、实验数据选取、参数计算等,30分)根据。。。。。,计算实验测量的不同工况下的理论值(见表?),与实验值吻合较好如图?所示,平均偏差?,最大偏差?。为验证纯弯曲梁理论模型,使用经典误差分析方法进一步处理实验数据,如图?所示。

表 (含偏差计算):

图(使用 MATLAB 绘图,理论曲线使用实线绘制,实验值使用"O"数据点表示):

图? 验证性实验经典误差分析方法数据处理流程

- 1) 检查是否有系统误差,设法消除。其中,梁中性轴处(y?))应变理论值为 0, 而由于零漂等系统误差,测量值一般是很小数值,应剔除该列数据;
- 2) 计算测量值 u_{ij} 对应的理论值 t_{ij} 和判据值 c_k ,以及算数平均值 \overline{c} ,剩余误差 V_k 和均方根误差 σ 等:

$$t_{ij} = \frac{M_i y_j}{EI_z} = \frac{a}{2EI_z} P_i y_j, \quad c_k = \frac{t_{ij}}{u_{ij}}$$

3) 使用 3S 准则发现异常数据,剔除后重复上一步,直到不存在可疑数据;

$$\overline{c} = \sigma = 0$$

4) 计算均方根误差 $\sigma_{\overline{c}}$,得到c的测量结果;

$$\sigma_{\overline{c}} = \frac{\sigma}{\sqrt{k}}, \quad c = \overline{c} \pm 3\sigma_{\overline{c}}$$

- 5) 是否满足 $1 \in (\overline{c} 3\sigma_{\overline{c}}, \overline{c} + 3\sigma_{\overline{c}})$,从而说明能否"梁纯弯曲理论"适用于实验模型;
- 6) 计算材料泊松比。
- 6. 误差分析(10分)
- 7. 实验结论(10分)
- 8. 思考题(10分)
- 1.梁弯曲正应力的大小是否受材料的弹性模量 E 的影响;
- 2.自重是否对本实验的影响;
- 3.设计特定尺寸材料的试件,在自重作用下,试件在悬臂梁条件下自身破坏;
- 4.对比拉伸载荷,说明试件在弯曲载荷下的关键尺寸;
- 9. 附件-原始数据记录表(10分)