Introduction to Database Management System

Linda Wu

(CMPT 354 • 2004-2)

Topics

- What is DBMS
- o DBMS types
- o Files system vs. DBMS
- Advantages of DBMS
- Data model
- Levels of abstraction
- Transaction management
- o DBMS structure

Chapter 1 CMPT 354 • 2004-2

What Is a DBMS?

- Database
 - A very large, integrated collection of data
 - Models real-world enterprise
 - oEntities (e.g., students, courses)
 - Relationships (e.g., Madonna is taking cmpt354)
- Database Management System (DBMS)
 - A software package designed to store and manage databases

3

Chapter 1

CMPT 354 • 2004-2

DBMS Types

- Hierarchical DBMS
- Network DBMS
- o Relational DBMS
- o Object-Oriented DBMS
- XML DBMS

Chapter 1 CMPT 354 • 2004-2

Files vs. DBMS

- Application must stage large datasets between main memory and secondary storage
- o Special programs for different queries
- Must protect data from inconsistency due to multiple concurrent users
- Crash recovery
- Security and access control

Chapter 1

CMPT 354 • 2004-2

5

Advantages of DBMS

- o Data independence and efficient access
- Data integrity and security
- Uniform data administration
- Concurrent access, recovery from crashes
- Reduced application development time

Chapter 1

CMPT 354 • 2004-2

Why Study Databases?

- o Shift from computation to information
- Datasets increasing in diversity and volume
 - Digital libraries, interactive video, Human Genome project, EOS project
 - ... need for DBMS exploding
- o DBMS encompasses most of CS
 - OS, languages, theory, AI, multimedia, logic

Chapter 1

CMPT 354 • 2004-2

Data Model

- Data model
 - A collection of concepts for describing data
- Schema
 - A description of a particular collection of data, using the given data model and its data definition language
- o Relational model
 - The most widely used model today
 - Central concept: relation, or, a table with rows and columns
 - Every relation has a schema, which describes the columns or fields

Chapter 1

CMPT 354 • 2004-2

Data Model (Cont.)

Schema

Students (sid: string, name: string, login: string, age: integer, gpa: real)

An instance of the Students relationship

sid	name	login	age	gpa
00001	Jones	jones@cs	18	3.4
00002	Smith	smith@ee	19	3.2
00003	Smith	smith@math	18	3.8
00004	Mary	mary@music	14	1.8
00005	Gary	gary@biz	12	2.0

Chapter 1

Chapter 1

CMPT 354 • 2004-2

• External and conceptual schemas are defined using DDL

CMPT 354 • 2004-2

• Data is modified / queried using DML

9

Levels of Abstraction in DBMS

- o Single conceptual (logical) schema
 - Define logical structure (all relations stored in the relational DBMS)
- Single physical schema
 - Describes the files and indexes used, i.e., storage details
- Many external schemas
 - Describe how users see the data
 - Each external schema consists of views and relations from the conceptual schema

Chapter 1

Chapter 1

CMPT 354 • 2004-2

10

Levels of Abstraction (Cont.) View External External External Schema 1 Schema 2 Schema 3 conceptual schema Conceptual Schema Physical Schema Disk

11

Levels of Abstraction (Cont.)

- A view is conceptually a relation
- Views can be computed from the relations in the
- The records in a view are NOT stored in DBMS
- User can query the records in a view

Students (sid: string, name: string, login: string, gpa: real)

Faculty (fid: string, fname: string, sal: real)

Courses (cid: string, cname: string, credits: integer)

Enrolled (sid: string, cid: string, grade: string)

Teaches (fid: string, cid: string)

→ View: Courseinfo (cid: string, fname: string,

enrollment: integer)

Data Independence

- Applications are insulated from how data is structured and stored
- Logical data independence
 - Protection from changes in logical structure of data
- Physical data independence
 - Protection from changes in physical structure of data

13

Chapter 1 CMPT 354 • 2004-2

Concurrency Control

- Concurrent execution of user programs is essential for good DBMS performance
 - Disk accesses are frequent and relatively slow
 - It is important to keep CPU humming by working on several user programs concurrently
- Interleaving actions of different user programs can lead to inconsistency
 - A database is typically shared by a large number of users
 - DBMS ensures consistency: users can pretend they are using a single-user system

Chapter 1 CMPT 354 • 2004-2 14

Transaction

- An atomic sequence of database actions (reads/writes)
- Each transaction, executed completely, must leave the DB in a consistent state if DB is consistent when the transaction begins
 - Users can specify some simple integrity constraints on the data, and the DBMS will enforce these constraints
 - DBMS does not really understand the semantics of the data
 - Ensuring that a transaction (run alone) preserves consistency is user's responsibility!

Chapter 1 CMPT 354 • 2004-2 15

Scheduling Concurrent Transactions

- DBMS ensures that execution of {T1,
 ..., Tn} is equivalent to some serial execution T1' ... Tn'
 - Before reading/writing an object, a transaction requests a lock on the object, and waits till the DBMS gives it the lock
 - All locks are released at the end of the transaction

(Strict 2PL locking protocol)

Chapter 1 CMPT 354 • 2004-2

4

^{*} One of the most important benefits of using a DBMS!

Atomicity & Log

- DBMS ensures atomicity (all-or-nothing property) even if system crashes in the middle of a transaction
- Idea: keep a log (history) of all actions carried out by the DBMS while executing a set of transactions
 - Before a change is made to the database, the corresponding log entry is forced to a safe location. (Write-Ahead Log, or WAL protocol)
 - After a crash, the effects of partially executed transactions are undone using the log
- Actions recorded in the log
 - Ti writes an object: both old and new value
 - Ti commits/aborts: a log record indicating this action

Chapter 1 CMPT 354 • 2004-2

CMPT 354 • 2004-2

Database Users

- o End users and DBMS vendors
- DB application programmers
 - E.g. smart webmasters
- Database administrator (DBA)
 - Design of logical /physical schemas
 - Security and authorization
 - Data availability and crash recovery
 - Database tuning

Must understand how a DBMS works!

Chapter 1 CMPT 354 • 2004-2 18

Structure of a DBMS

- A typical DBMS has a layered architecture
- The figure does not show the concurrency control and recovery components
- This is one of several possible architectures; each system has its own variations

Chapter 1

Query Optimization
and Execution

Relational Operators

Files and Access
Methods

Buffer Management

Disk Space
Management

DB

DB

17

19

Summary

- o DBMS is used to maintain, query large datasets
- Benefits: recovery from system crashes, concurrent access, quick application development, data integrity and security
- Levels of abstraction give data independence
- A DBMS typically has a layered architecture
- DBAs hold responsible jobs and are well-paid!
- DBMS R&D is one of the broadest, most exciting areas in Computer Science

Chapter 1 CMPT 354 • 2004-2

F