# 电商平台评论数据情感分析

报告人:汤琼



- 问题背景和概要
- 研究目标和创新点
- 数据获取与预处理
- 数据探索及可视化
- 模型建立及对比
- 总结与展望



## 问题背景

随着电子商务的快速发展,网上购物对人们消费模式产生巨大影响。 选购商品时,用户的评论信息具有很高的参考价值,应用**自然语言 处理和文本挖掘**的方法对产品评论进行自动挖掘,在很大程度上可 以改善和提升用户体验,**评论情感分析**(sentiment analysis,SA)也因此 成为越来越多的研究者和工业界的兴趣焦点。



## 概要





## 研究目标

- 分析 iPhone 用户情感倾向
- 从评论文本中挖掘出 iPhone 的优点和不足
- 建立三种模型进行文本情感分析并进行对比

## 创新点

- 非结构化数据
- 无监督的LDA主题模型,有监督的SVM机器学习模型和 深度学习的LSTM模型
- 随机分割和 K-fold Cross Validation K折交叉验证



## 数据获取

通过调用京东API接口采集到约一万条原始评论数据,数据集大小及评论数据样例内容如下:

print(len(data))#数据集大小

9980

|   | 会员    | 级别         | 评价<br>星级 | 评价内容                                              | 时间          | 点赞数 | 评<br>论<br>数 | 商品属性                  | 页面网址                                       | 页面标题                                                     | 采集时间        |
|---|-------|------------|----------|---------------------------------------------------|-------------|-----|-------------|-----------------------|--------------------------------------------|----------------------------------------------------------|-------------|
| 0 | 1***p | NaN        | star5    | 京东的快递很快! 收到后急忙上手,外观特别漂亮、大气! 屏幕音效很好! 拍照技术更是无与伦比,效果 | 43812.67778 | 10  | 17          | 暗夜绿<br>色<br>256GB<br> | https://item.jd.com/100004770237.html#none | [AppleiPhone<br>11 Pro Max]<br>Apple iPhone<br>11 Pro Ma | 0.002025463 |
| 1 | 瓶子    | PLUS<br>会员 | star5    | 外形外观:这次的背面细磨砂质感非常特别,不容易留下指纹也不怕手汗,颜色主要的一大亮点就是暗夜    | 43817.07986 | 9   | 0           | 暗夜绿<br>色<br>256GB<br> | https://item.jd.com/100004770237.html#none | [AppleiPhone<br>11 Pro Max]<br>Apple iPhone<br>11 Pro Ma | 0.00202662  |

## 数据预处理





#### iphone产品用户评价得分分布





我们根据类标标注的评论得分绘制饼状图,由图可知,用户评论得分集中在6~10分,得分为-5~-1的评论数最少。



正向, 负向语言词数分布情况



正向语言词数分布情况



负向语言词数分布情况



正负向语料条数分布情况

由柱状图可知,正向评论数远多于负向评论数,正向评论数约9000条而负向评论数约500条。



正负向预料长度中位数分布

由柱状图可知情感倾向正负向语料长度中位数分布情况,看起来评价正面的话比较多。



正向语料词云

速度 拍照 屏幕 外观



负向语料词云

瑕疵 担心 发烫 发热 不好



## 基于 LDA 主题模型的情感分析

- LDA定义两个分布: **主题与词汇分 布,文章与主题分布**。
- 经过 LDA 主题分析之后,评论文本被聚为3个主题,每个主题下面生成若干最有可能出现的词语以及相应频率。



## 基于 LDA 主题模型的情感分析

#### 下表展示了正面评价文本中的潜在主题

| 主题1 | 主题2  | 主题3 |
|-----|------|-----|
| 效果  | 手机   | 手机  |
| 运行  | 618  | 苹果  |
| 拍照  | 苹果   | 买   |
| 速度  | 兔    | 不错  |
| 屏幕  | 年    | 喜欢  |
| 时间  | 妈    | 速度  |
| 待机  | 键    | 京东  |
| 外观  | 128g | 流畅  |
| 机时  | 32G  | 屏幕  |

- 主题1的高频特征词反映: iPhone 拍照效果好, 待机时间长, 外观好看。
- 主题2的高频特征词,关注点是: 兔年,妈妈,128G,32G,反映 iPhone 可以作为新年礼物,iPhone 的内存空间也经常被关注。
- 主题3的高频特征词,关注点是:流畅,速度,屏幕,反映 iPhone 使用流畅,速度快等。

## 基于 LDA 主题模型的情感分析

#### 下表展示了负面评价文本中的潜在主题

| 主题1 | 主题2 | 主题3 |
|-----|-----|-----|
| 手机  | 手机  | 手机  |
| 买   | 买   | 买   |
| 京东  | 京东  | 京东  |
| 激活  | 激活  | 喜欢  |
| 喜欢  | 说   | 感觉  |
| 感觉  | 苹果  | 激活  |
| 真的  | 不错  | 说   |
| 说   | 感觉  | 苹果  |
| 快递  | 屏幕  | 真的  |

• 高频特征词除了买,喜欢,不错,感觉,真的等情感词,提到了激活,快递等,主要反映:激活流程复杂,快递速度慢等问题。

## 基于有监督学习的情感分析

### 抽取特征

TF-IDF是一种用于信息检索与数据挖掘的常用加权技术,常用于挖掘文章中的**关键词。** 

# 词频 逆文档频率



Î

Û

TF-IDF=词频(TF)×逆文档频率(IDF)



## 基于有监督学习的情感分析

● k折-交叉验证分类结果 精确率(Precision)

[0.93426916 0.78141392 0.72652455 0.72849755 0.78667665] [0.5541747 0.55249026 0.56537435 0.60273112 0.62888809]

● 随机分割分类结果 <sup>准确率</sup> (Accuracy)

0.9410201912858661

TF-IDF的优点是简单快速,而且容易理解。

缺点这种计算无法体现位置信息,无法体现词在上下文的重要性。

可以使用word2vec算法进行改进。



## 基于 LSTM 深度学习的情感分析

利用 gensim 中 Word2vec 工具,完成词向量转换工作,将处理好的数据导入 LSTM 模型中迭代100次,观察 LOSS 变化情况,并预测其情感倾向分类。



语义空间上最接近词语的 network charts



## 基于 LSTM 深度学习的情感分析

 将词语完成词向量转化后,找到语义空间上与 iphone 最接近的十个词: iPhone7,7P,6p,是因为,匹配,老人家,不太,6P,SE,要换。并接着 找分别与十个词在语义空间上最接近的十个词,画出 network charts 网络 图,展现语义空间上不同词之间的关系。





与 iphone 语义最接近词语的 network charts

与 iPhone7 语义最接近词语的 network charts



## 基于 LSTM 深度学习的情感分析



准确率结果是:

0.9495217853347503

采用基于 RNN 的优化算法——LSTM 长短期记忆网络。LSTM 长短期记忆网络采用一套灵活的 长短期记忆网络采用一套灵活的 逻辑——"只保留长序列数据中的**重要信息**,忽略不重要信息"。



## 模型对比



经过三种模型的 对比验证,我们得到 采用**LSTM 长短期记 忆网络**进行文本挖掘, 情感分析的**准确度最 高**。



## 结论

- iPhone 产品的用户情感偏向大多为正向,其优势在于:使用流畅,速度快,拍照效果好,外观好看等。劣势在于:激活流程复杂,发热等问题。
- 我们所建立的三种情感分析模型:无监督的LDA主题模型,有监督的SVM机器学习模型和深度学习的LSTM模型,通过检验发现: LSTM 长短期记忆网络模型准确率最高。

## 改进

- 1. 爬取的**数据量**不够多,增大数据量可以使模型更加完善,准 确率也会提高。
- 2. 对评论进行类标标注的时候,**人工标注**的准确率会高于机器标注,但会大大提高人工成本。
- 3. 如果想进一步提高准确率,**停用词词表**需要进一步补充整理; 建立 word2vec 的时候,语句长度,输出维度**参数**等可以进一 步调参试试。

