Hand in your solutions electronically on Gradescope (except for coding problems, which should be submitted as indicated in the question). Your submission should be typeset (except for hand-drawn figures). Collaboration is encouraged while solving the problems, but:

- 1. list the NetID's of those in your group;
- 2. you may discuss ideas and approaches, but you should not write a detailed argument or code outline together;
- 3. notes of your discussions should be limited to drawings and a few keywords; you must write up the solutions and write code on your own.

Remember that when a problem asks you to design an algorithm, you must also prove the algorithm's correctness and analyze its running time, i.e., the running time must be bounded by a polynomial function of the input size.

(1) (10 points) Recall that in homework 5 Question 1(c), you are given a flow network G = (V, E), and each vertex $v \in V$ is assigned a score r_v . The goal was to find a minimum capacity cut (A, B) such that the total score in A, $\sum_{v \in A} r_u$, is maximized. In this coding question, we ask you to implement a program which solves HW5 Q1(c). For this coding version, you only need to output the maximum total score $\sum_{v \in A} r_u$ (instead of the cut (A, B)).

The input format (passed via stdin, terminated by a newline) is as follows:

- The first line contains two positive integers n, m (separated by a space), which represents the number of nodes and edges in G respectively. The nodes are labeled by numbers $1, \ldots, n$. In addition, 1 is the source, and n is the sink.
- The second line contains n integers r_1, r_2, \ldots, r_n , where each r_i is the score assigned to node i.
- The following m lines are the m edges in G. Each of the m lines contains three integers u_j, v_j, c_j (separated by spaces), which represents an edge from u_j to v_j with capacity c_j .

Your program should output, to stdout, one line:

- $\max_{A} (\sum_{u \in A} r_u)$ where the maximum is taken over all the minimum capacity cut (A, V A).
- Your output should be terminated by a newline.

The input is guaranteed to satisfy the following constraints:

- $3 \le n \le 2000$
- $m \le 10000$
- \bullet No edge enters the source 1, and no edge leaves the sink n
- $1 \le c_i \le 1000$
- The maximum flow value of G is at most 20000
- $-10 \le r_i \le 10$ for every $i \in [n]$
- In at least 20% of the test cases, $r_i = -1$ for every $i \in [n]$.

Sample Input:

43

-1 -1 -1 -1

 $1\ 2\ 2$

2 3 1

3 4 1

Sample Output:

-2

The sample input above corresponds to a path $1 \to 2 \to 3 \to 4$, where the edge $1 \to 2$ has capacity 2 and the edges $2 \to 3$ and $3 \to 4$ have capacity 1. There are two possible minimum cuts in this example, $(\{1,2\},\{3,4\})$ and $(\{1,2,3\},\{4\})$ (both of which have cut capacity 1). The first cut has score -2, and the second cut has score -3. Therefore your output should be the larger score, -2.

- (2) (1+9=10 points) Let ϕ be a 3CNF formula on n variables. An \neq -assignment $z \in \{0,1\}^n$ to the variables of ϕ is such that each clause contains two literals that evaluate to unequal truth values (under the assignment z).
 - 1. Show that the negation of any \neq -assignment to ϕ is also an \neq -assignment.
 - 2. Let \neq SAT be the collection of 3CNF formulas that have an \neq -assignment. Prove that \neq SAT is NP-complete.