Now, determine how the angle θ varies ψ time. Use $r^2\dot{\theta} = constant = \frac{\pi}{m}$ $0 = \frac{1}{mr^2} = \frac{1}{mc^2} =$ -> 04d0 = 5 dt $\Rightarrow 0^5 = 5t + const.$ $\Rightarrow 0 = \left(\frac{5Jt}{mc^2}\right)^{1/5}$ Attractive Inverse Squere Law Find the orbit of a particle w/ f(r) = -K (K=GMm for gravity) $S_{0}, f(r-1) = -ku^{2}$ And orbit egn 15: $\frac{d^2u + u = KR^2m = Km}{dO^2} = \frac{d^2u + u = 1}{dO^2} \quad \text{where } l = J^2$ Compare this w/ the egn. for the sho: $\frac{d^2x}{dt^2} + \frac{d^2x}{m} \times = 0$ -. Solution will be $u = A\cos(\theta - \theta_0) + 1$ or V = 1 where $A \cap O_0$ are determined $A \cos(0 - O_0) + 1$ from initial conditions

Oo sets the orientation with the axes, so set 0=0 for this discussion $A\cos O + 1 = A \cos O + 1$ App. B tells us that this is an equation for a conic section in polar form. $T = r(\theta) = r_0(1+e)$ where e, r_0 are real r_0 positive r_0 represent $(1+e\cos\theta)$ diff. Hypes of conic sections e^{-71} closed If e=0, a circle of radius r_0 closed If e=0, a circle of radius ro open If e>1, a hyperbola where ro is the distance of closest approach to the origin open If e=1, a parabola where ro...

o=0 If e<1, an ellipse where ro is the distance of closest approach to origin For orbits, e= eccentricity ; ro = distance of closest approach, $e = Al = AJ^{2} : l = r_{0}(1+e)$ (the value of ruhen 0=0) For elliptical orbits at 0=rr, r=ro(1+e) For orbits around the Sun, to iv, are called the perihelion i

aphelion distances. For orbits and the Earth, or in, are called the perigee ; aposee distances In general, trey are the pericenter i apocenter distances We will see that the energy of the object determines e ael trerefore its croit. The most general bourd orbit will be an ellipse. Therefore, planetary orbits should be elliptical (Kepler's 1st Law) Example: circular orbit, e=0 $\begin{aligned}
& \text{To} = \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right)^2 = \frac{1}{2} \left(\frac{1}{2}$ For Earth, GME can be re-written as mg = GMEM or GME=gRE For a satellite close to Earth's surface $V_c = \sqrt{gR_E} = 7.92 \text{ kms}^{-1}$

