FOREX meet A.I.*

Marco Fisichella^{1,*}, Filippo Garolla^b

 $^aL3S\ Research\ Center\ of\ Leibniz\ University\ of\ Hannover,\ Germany$ bAustria

Abstract

This template helps you to create a properly formatted LATEX manuscript.

Keywords: elsarticle.cls, LATEX, Elsevier, template

2010 MSC: 00-01, 99-00

1. Introduction

People are involved more and more in trading of currencies these days. Amongst those markets, of the biggest buying and selling platforms are cryptocurrency trading and the FOREX marketplace. Although cryptocurrency promises better returns than foreign exchange, FOREX gives solid, especially secured, and relatively regulated trading in comparison to cryptocurrency trading. As a result, in latest years, the foreign exchange (FOREX) market has attracted pretty a lot of interest from researchers all over the world. Different kinds of studies have been performed to accomplish the task of predicting future FOREX currency prices accurately.

Researchers have been involved primarily in neural networks models, pattern-based approaches, and optimization techniques. The emergence of artificial neural networks performed a massive function in foreign exchange rate prediction. During our evalutaion of related works, we discovered that many deep learning algorithms, such as gated recurrent unit (GRU) and long short term memory (LSTM), have been explored and exhibit massive potential in time sequence prediction.

The foreign exchange market, is the world's largest foreign money trade market with over 5.1 trillion of trade exchange per day. It is recognized to be very complicated and volatile. Currency trading occurs 24 h a day, however the buying and selling time is divided into 4 fundamental time zones. Each of these zones has its specific opening hours and closing hours. FOREX is divided into three specific categories: majors, cross-rates, and exotics. Majors are the most traded currencies which are priced in opposition to the USD and occupy the majority of the FOREX market. Our work is primarily based on Majors.

Email address: mfisichella@L3S.de (Marco Fisichella)

^{*}Fully documented templates are available in the elsarticle package on CTAN.

^{*}Corresponding author

Each forex pair has its opening price, highest price, lowest price, and closing price based on the trading session. For security reasons, it is now not possible for one person to at once go to, register with, and purchase from the FOREX market, but each individual needs to use third party like brokers, who are humans or corporations that have admission to the FOREX market and are capable to buy or sell currencies. In the FOREX market, solely two alternatives are available, either buying currencies or selling if they have brought any currencies previously.

Recent years have viewed a lot of researches in the FOREX market foreign money rate prediction. Predicting the FOREX market has been a key goal of investigators over the preceding couple of decades. There are two methods to forecast the market: undamental research and technical research. Fundamental research considers many factors, such as the financial system and political state of a country, the popularity of a company, all inner and exterior buying and selling news, etc. Technical research concentrates predicting the FOREX market based totally on historic data, in particular, the highest price, lowest price, opening price, and closing price of a currency and the volume traded on a particular day.

The remainder of the paper is arranged as follows.

2. Related Works

Numerous hybrid techniques have been examined in preceding years. Based totally at the papers we reviewed, according to the principle set of rules the studies prioritised, the papers can be cut up into going in conjunction with the following categories: regression strategies, optimization strategies, neural networks, and others. Those classes had been made in keeping with the popularity of the principle method of the forecasting system in the past years.

2.1. Regression Methods

Raimund et al. [1] proposed a hybrid model for foreign exchange prediction that makes use of wavelet models along with support vector regression (SVR). Before everything, they used a discrete wavelet transform (DWT) technique to interpret facts from their forex dataset. Then the data were used as the input of support vector regression (SVR) for predicting the foreign exchange prices. They analyzed the overall performance of their system with ARIMA and ARFIMA models. The effects confirmed that their system performs higher than ARIMA and ARFIMA models.

Taveeapiradeecharoen et al. [2] proposed a version for time series inspection and prediction; this is based on compressed vector autoregression. At the start, they used random compression method to decrease a big wide variety of foreign exchange data into a smaller form. After that, they used the Bayesian model averaging (BMA) approach to establish the load of each random compressed datum to attain the intersecting parameters. Their approach can provide out of sample forecasting till fourteen days previous to the real time. They reconcluded that their system was not suitable to predict all of the 30 forex currencies. Their proposed study outperformed the existing benchmark of Bayesian autoregression for specific 6 foreign money pairs.

A huge range of forecasting models have been proposed via the authors of the paper [3], by applying linear kernel SVR to hostorical data for EUR/USD, GBP/USD,

and USD/JPY currency pairs received from high-frequency trading. Previous successive timeframes are used as features to rpedict the movement of rates in future/next time frame. Upon building models, they found a easy rule that supplied high-quality results.

After reviewing recent papers, it's evident that support vector regression turned into the most used approach included in our reviewed papers. Compressed vector autoregression, the CRT regression tree, and partial least squares regression had been additionally utilized by researchers. However, there are different algorithms which include lasso regression, logistic regression, and multivariate regression which have been abandoned in later years. The reviewed literature shows that the system primarily based on a regression model performed higher than ARIMA and ARFIMA models [1], and the model performance may additionally growth [4] when a regression model is combined with other techniques. However, when operating with a huge number of foreign money pairs, it is able to become hard with regression techniques, as most of the currency pairs return a higher MSE [2].

2.2. Optimization Techniques

Chandrinos et al. [5] proposed a technical system for FOREX that was stimulated by using the Donchian channel method. the primary reason in their method become to create profitable portfolios for FOREX buying and selling strategy. They first constructed the modified Renko bars (MRBs) via combining their trading guidelines. Their changed MRBs proved to be more correctly responsive than the normal candlesticks used in FOREX. They created an optimization level used by eight currency pairs. To acquire their optimization stage, they used three search-derivative-free global optimization strategies. These algorithms were the swarm optimization algorithm, also referred to as dividing a hyperrectangle (DIRECT), along side multilevel coordinate search (MCS), and pity beetle (PBA). They examined their optimization method and primarily based on the total return they built two kinds of portfolios: an equally weighted portfolio and a Kelly criterion-based portfolio. They evaluated the performance in their approach primarily based at the geometric return, arithmetic mean, and Sharpe ratio. They found out that the proposed version isn't always suitable for three currency pairs, whilst for the others they attain from 29% until over 200% general return.

Pradeepkumar et al. [6] advised a model for foreign exchange prediction that became primarily based on a quantile regression neural network (QRNN) and particle swarm optimization. They used PSO to train the QRNN and named the version PSO-QRNN. They used 8 pairs currencies. They used seven unique algorithms for the overall performance evaluation of their model: group method of data handling (GMDH), multilayer perceptron (MLP), random forest (RF), a quantile regression neural network (QRNN), generalized autoregressive conditional heteroskedasticity (GARCH), quantile regression random forest (QRRF), and a general regression neural network (GRNN). Once they executed the Diebold–Mariano (DM) evaluation check on all of the test results, they found that their proposed PSO-QRNN version completed higher than all models on datasets. For the rest of the datasets, QRRF and QRNN carried out better than other approaches.

Das et a. [7] proposed a hybrid approach that turned into build the use of extreme learning machine's on-line sequential version and krill herd (KH). The krill herd (KH) was devoted to features reduction. They compared their proposed system with a recurrent backpropagation neural network (RBPNN) and extreme learning machine (ELM). They considered 3 elements: (i) without features reduction (ii) with statistical features

reduction, and (iii) with optimized features reduction strategies. For optimized features reduction strategies, they used bacteria foraging optimization (BFO), krill herd, and particle swarm optimization techniques. They used four foreign currency pairs. For RMSE their approach performed first-class. However, in MAE overall performance, their proposed model didn't provide the satisfactory effects.

For foreign exchange buying and selling approach optimization, a genetic set of rules become employed by the authors of the paper [8] to evolve a various set of profitable buying and selling rules based totally on weighted moving average approach. They used a time series with 4147 observations inside a range of sixteen years from 2000 to 2015 and they used the close prices of four foreign money pairs. Developed approach yields acceptably high returns on out-of-sample data. The rules acquired using their genetic algorithm result in appreciably better returns than the ones produced by exhaustive search.

In conclusion, these techniques are not appropriate for all currency pairs and may provide better effects for only a few randomly selected ones, as we can see inside the proposed papers.

- 2.3. Neural Network
- 2.4. Rest of the Methods

3. Preliminaries

- 3.1. Trading System: Meta Trader 5
- 3.2. Technical indicators

In our trading system, XX technical indicators are used as the basis of trading rules. These technical indicators are: Adaptive Moving Average, Average Directional Moving Index, Bollinger Bands, Double Exponential Moving Average, Envelope Moving Avarage, Parabolic SAR, Fractal Adaptive Moving Avarage, Standard Deviation, Triple Exponential Moving Average, Avarage True Range, Bears Power, Bulls Power, MACD (Moving Average Convergence Divergence), Stochastic oscillator, William' Percentage Range, Momentum, RSI (Relative Strength Index), and Heiken Ashi Candles.

3.3. Genetic Algorithm

The unstable and chaotic structure of excharges in FX market complicates forecast analysis. This leads to the utilization of optimisation methods. There are many heuristic methods, such as genetic algorithm (GA), simulated annealing (SA), etc. to resolve optimisation problems. GA is one of the most popular heuristic optimisation approach that generates options which evolve in time. GA is based totally on evolution and genetics. Heuristic strategies yield nearly but not necessarily optimal solution with reasonable computational effort and time.

Genetic algorithm refers to the heuristic algorithm, which offers an acceptable answer to the hassle in the majority of virtually practically significant cases, however the correctness of the decisions has no longer been tested mathematically, and is used most frequently for problems, the analytical solution of which is very hard or even impossible.

Heuristic algorithms are extensively used for fsolving problems of high computational complexity, alternatively of going via all of the options, which takes up a considerable quantity of time.

https://www.mql5.com/en/articles/55

4. Trading Strategies

5. Filippo Experiments

Dataset. If the document class elsarticle is not available on your computer, you can download and install the system package texlive-publishers (Linux) or install the LATEX package elsarticle using the package manager of your TEX installation, which is typically TEX Live or MikTEX.

Algorithm descriptio. Once the package is properly installed, you can use the document class elsarticle to create a manuscript. Please make sure that your manuscript follows the guidelines in the Guide for Authors of the relevant journal. It is not necessary to typeset your manuscript in exactly the same way as an article, unless you are submitting to a camera-ready copy (CRC) journal.

Experiments. The Elsevier article class is based on the standard article class and supports almost all of the functionality of that class. In addition, it features commands and options to format the

- document style
- baselineskip
- front matter
- keywords and MSC codes
- theorems, definitions and proofs
- lables of enumerations
- citation style and labeling.

6. Front matter

The author names and affiliations could be formatted in two ways:

- (1) Group the authors per affiliation.
 - (2) Use footnotes to indicate the affiliations.

See the front matter of this document for examples. You are recommended to conform your choice to the journal you are submitting to.

References

190

- [1] M. S. Raimundo, J. Okamoto, Svr-wavelet adaptive model for forecasting financial time series, in: 2018 International Conference on Information and Computer Technologies (ICICT), 2018, pp. 111– 114. doi:10.1109/INFOCT.2018.8356851.
 - [2] P. Taveeapiradeecharoen, K. Chamnongthai, N. Aunsri, Bayesian compressed vector autoregression for financial time-series analysis and forecasting, IEEE Access 7 (2019) 16777–16786. doi:10.1109/ ACCESS.2019.2895022.

- [3] C. Serjam, A. Sakurai, Analyzing predictive performance of linear models on high-frequency currency exchange rates, Vietnam Journal of Computer Science 5 (2) (2018) 123–132. doi:10.1007/s40595-018-0108-x. URL https://doi.org/10.1007/s40595-018-0108-x
- [4] S. Achchab, O. Bencharef, A. Ouaarab, A combination of regression techniques and cuckoo search algorithm for forex speculation, in: Á. Rocha, A. M. Correia, H. Adeli, L. P. Reis, S. Costanzo (Eds.), Recent Advances in Information Systems and Technologies, Springer International Publishing, Cham, 2017, pp. 226–235.
- [5] S. K. Chandrinos, N. D. Lagaros, Construction of currency portfolios by means of an optimized investment strategy, Operations Research Perspectives 5 (2018) 32-44. doi:https://doi.org/10.1016/j.orp.2018.01.001.
 URL https://www.sciencedirect.com/science/article/pii/S2214716017301148
- [6] D. Pradeepkumar, V. Ravi, Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network, Applied Soft Computing 58 (2017) 35-52. doi:https://doi.org/10.1016/j.asoc.2017.04.014.
 URL https://www.sciencedirect.com/science/article/pii/S1568494617301862
- [7] S. R. Das, Kuhoo, D. Mishra, M. Rout, An optimized feature reduction based currency forecasting model exploring the online sequential extreme learning machine and krill herd strategies, Physica A: Statistical Mechanics and its Applications 513 (2019) 339-370. doi:https://doi.org/10.1016/j. physa.2018.09.021.
- URL https://www.sciencedirect.com/science/article/pii/S0378437118311476

205

210

[8] S. Galeshchuk, S. Mukherjee, Forex trading strategy optimization, in: E. Bucciarelli, S.-H. Chen, J. M. Corchado (Eds.), Decision Economics: In the Tradition of Herbert A. Simon's Heritage, Springer International Publishing, Cham, 2018, pp. 69–76.