practical homework - 1

```
#Imported all the necessary libraries
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.3
## Warning: package 'ggplot2' was built under R version 4.4.2
## Warning: package 'tibble' was built under R version 4.4.2
## Warning: package 'tidyr' was built under R version 4.4.2
## Warning: package 'purrr' was built under R version 4.4.2
## Warning: package 'dplyr' was built under R version 4.4.2
## Warning: package 'forcats' was built under R version 4.4.2
## Warning: package 'lubridate' was built under R version 4.4.2
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                       v readr
                                   2.1.5
## v forcats 1.0.0
                       v stringr 1.5.1
## v ggplot2 3.5.1
                                   3.2.1
                      v tibble
## v lubridate 1.9.3
                    v tidyr
                                   1.3.1
## v purrr
              1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ISLR2)
## Warning: package 'ISLR2' was built under R version 4.4.2
library(tree)
```

Warning: package 'tree' was built under R version 4.4.3

```
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.4.2
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
##
## The following object is masked from 'package:ggplot2':
##
      margin
library(gbm)
## Warning: package 'gbm' was built under R version 4.4.3
## Loaded gbm 2.2.2
## This version of gbm is no longer under development. Consider transitioning to gbm3, https://github.c
library(caret)
## Warning: package 'caret' was built under R version 4.4.2
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
      lift
##
# I've set the working directory and loaded 'youth_data.Rdata' into data
setwd("C:/Users/alekh/Downloads/")
data <- load("youth_data.Rdata")</pre>
youth_experience_cols
##
   [1] "SCHFELT" "TCHGJOB" "AVGGRADE" "STNDSCIG" "STNDSMJ" "STNDALC"
## [7] "STNDDNK" "PARCHKHW" "PARHLPHW" "PRCHORE2" "PRLMTTV2" "PARLMTSN"
## [13] "PRGDJOB2" "PRPROUD2" "ARGUPAR" "YOFIGHT2" "YOGRPFT2" "YOHGUN2"
## [19] "YOSELL2" "YOSTOLE2" "YOATTAK2" "PRPKCIG2" "PRMJEVR2" "PRMJMO"
## [25] "PRALDLY2" "YFLPKCG2" "YFLTMRJ2" "YFLMJM0" "YFLADLY2" "FRDPCIG2"
## [31] "FRDMEVR2" "FRDMJMON" "FRDADLY2" "TALKPROB" "PRTALK3" "PRBSOLV2"
## [37] "PREVIOL2" "PRVDRGO2" "GRPCNSL2" "PREGPGM2" "YTHACT2"
## [43] "ANYEDUC3" "RLGATTD" "RLGIMPT" "RLGDCSN" "RLGFRND"
```

```
substance_cols
   [1] "IRALCFY"
                       "IRMJFY"
                                     "IRCIGFM"
                                                    "IRSMKLSS30N" "IRALCFM"
## [6] "IRMJFM"
                       "IRCIGAGE"
                                     "IRSMKLSSTRY" "IRALCAGE"
                                                                   "IRMJAGE"
## [11] "MRJFLAG"
                                      "TOBFLAG"
                                                    "ALCYDAYS"
                       "ALCFLAG"
                                                                   "MRJYDAYS"
## [16] "ALCMDAYS"
                       "MRJMDAYS"
                                     "CIGMDAYS"
                                                    "SMKLSMDAYS"
demographic_cols
## [1] "IRSEX"
                                                              "EDUSCHGRD2"
                      "NEWRACE2"
                                   "HEALTH2"
                                                 "EDUSCHLGO"
## [6] "EDUSKPCOM"
                     "IMOTHER"
                                   "IFATHER"
                                                 "INCOME"
                                                              "GOVTPROG"
## [11] "POVERTY3"
                      "PDEN10"
                                   "COUTYP4"
# Named the dataframe 'df' as drug_use
drug_use <- na.omit(df)</pre>
# PART1: BINARY CLASSIFICATION: Predicting whether a youth has ever consumed alcohol or not
# The dataframe 'df_all' consists of the predictors and target variable
df_all <- drug_use[, c(demographic_cols, youth_experience_cols, "ALCFLAG")]</pre>
df_all <- na.omit(df_all)</pre>
df_all\frac{1}{alcohol_use} <- factor(df_all\frac{1}{alcohol_use} = c(0, 1), labels = c("No", "Yes"))
df_all$ALCFLAG <- NULL</pre>
# To readability, I'm renaming the predictors
colnames(df_all)[colnames(df_all) == "STNDALC"]
                                                      <- "Friend_Drinks_Daily"</pre>
colnames(df_all)[colnames(df_all) == "YFLMJMO"]
                                                      <- "Friend_Consumes_Marijuana_Monthly"</pre>
colnames(df_all)[colnames(df_all) == "YFLTMRJ2"]
                                                      <- "Friend_Offers_Marijuana"</pre>
colnames(df_all)[colnames(df_all) == "FRDMEVR2"]
                                                      <- "Friend_Ever_Smoked"</pre>
colnames(df_all)[colnames(df_all) == "STNDSMJ"]
                                                      <- "Friend_Smokes_Marijuana"</pre>
colnames(df_all)[colnames(df_all) == "EDUSCHGRD2"] <- "Grade_Level"</pre>
                                                      <- "Race"
colnames(df_all)[colnames(df_all) == "NEWRACE2"]
# For plot readability, recoding categorical variables.
df_all$Friend_Drinks_Daily <- factor(df_all$Friend_Drinks_Daily, levels = c(1, 2), labels = c("Yes", "N
df_all\friend_Consumes_Marijuana_Monthly <- factor(df_all\friend_Consumes_Marijuana_Monthly, levels = c
df_all$Friend_Offers_Marijuana <- factor(df_all$Friend_Offers_Marijuana, levels = c(1, 2), labels = c("
# Plotting the decision tree
tree_one <- tree(alcohol_use ~ ., data = df_all)</pre>
tree_one
## node), split, n, deviance, yval, (yprob)
##
         * denotes terminal node
##
## 1) root 8249 9250 No ( 0.7515 0.2485 )
##
     2) Friend_Drinks_Daily: Yes 2366 3279 No ( 0.5118 0.4882 )
       4) Friend_Consumes_Marijuana_Monthly: Yes 1435 1875 No ( 0.6404 0.3596 ) *
##
       5) Friend_Consumes_Marijuana_Monthly: No 931 1158 Yes ( 0.3136 0.6864 ) *
##
```

```
3) Friend_Drinks_Daily: No 5883 5017 No ( 0.8479 0.1521 )
##
       6) Friend_Offers_Marijuana: Yes 4885 3376 No ( 0.8905 0.1095 ) *
       7) Friend_Offers_Marijuana: No 998 1305 No ( 0.6393 0.3607 ) *
##
summary(tree_one)
##
## Classification tree:
## tree(formula = alcohol_use ~ ., data = df_all)
## Variables actually used in tree construction:
## [1] "Friend_Drinks_Daily"
                                           "Friend_Consumes_Marijuana_Monthly"
## [3] "Friend_Offers_Marijuana"
## Number of terminal nodes: 4
## Residual mean deviance: 0.9355 = 7713 / 8245
## Misclassification error rate: 0.2064 = 1703 / 8249
plot(tree_one)
text(tree_one, pretty = 0)
title("Decision Tree for binary classification: Predicting Youth Alcohol Consumption")
```

ecision Tree for binary classification: Predicting Youth Alcohol Consun


```
# Pruning the above tree
# Finding optimal size, using cross validation
set.seed(1)
cv_one <- cv.tree(tree_one, FUN = prune.misclass)
plot(cv_one$size, cv_one$dev, type = "b", main = "Cross-Validation", xlab = "Tree Size", ylab = "Miscla")</pre>
```

Cross-Validation


```
opt_size <- cv_one$size[which.min(cv_one$dev)]
opt_size</pre>
```

[1] 4

```
# We got best size as 4
# But, 3 is the best optimal size from the graph
# So, we use 3 as the opt_size
prune_one <- prune.misclass(tree_one, best = 3)
plot(prune_one)
text(prune_one, pretty = 0)
title(paste("Pruned Decision Tree (Size =", 3, ")"))</pre>
```

Pruned Decision Tree (Size = 3)

DECISION TREE ENSEMBLE METHODS

```
# Getting the numeric version of alcohol_use(categorical)
df_all$alcohol_use_num <- ifelse(df_all$alcohol_use == "Yes", 1, 0)</pre>
# Splitting the data into train and test data.
set.seed(42)
train_data <- sample(1:nrow(df_all), 0.6 * nrow(df_all))</pre>
train_set <- df_all[train_data, ]</pre>
test_set <- df_all[-train_data, ]</pre>
# BAGGING
bag_one <- randomForest(alcohol_use ~ ., data = train_set[, -which(names(train_set) == "alcohol_use_num")</pre>
prediction_bag <- predict(bag_one, test_set)</pre>
cat("Bagging Accuracy:", mean(prediction_bag == test_set$alcohol_use), "\n")
## Bagging Accuracy: 0.7915152
# BOOSTING
set.seed(1)
boost_one <- gbm(alcohol_use_num ~ ., data = train_set[, -which(names(train_set) == "alcohol_use")], di
summary(boost_one)
```


##		var	
##	Friend_Drinks_Daily	Friend_Drinks_Daily	
##	Friend_Offers_Marijuana	Friend_Offers_Marijuana	
##	FRDMJMON	FRDMJMON	
##	Friend_Consumes_Marijuana_Monthly	Friend_Consumes_Marijuana_Monthly	
##	Grade_Level	${\tt Grade_Level}$	
##	YOSTOLE2	YOSTOLE2	
##	Race	Race	
##	Friend_Smokes_Marijuana	Friend_Smokes_Marijuana	
##	PRMJEVR2	PRMJEVR2	
##	PRALDLY2	PRALDLY2	
##	POVERTY3	POVERTY3	
##	FRDPCIG2	FRDPCIG2	
##	YOFIGHT2	YOFIGHT2	
##	INCOME	INCOME	
##	Friend_Ever_Smoked	Friend_Ever_Smoked	
##	YOHGUN2	YOHGUN2	
##	YTHACT2	YTHACT2	
##	ARGUPAR	ARGUPAR	
##	PARHLPHW	PARHLPHW	
##	PRLMTTV2	PRLMTTV2	
##	RLGDCSN	RLGDCSN	
##	HEALTH2	HEALTH2	
##	IRSEX	IRSEX	
##	EDUSKPCOM	EDUSKPCOM	
##	PRGDJ0B2	PRGDJ0B2	

	YFLPKCG2		YFLPKCG2
	YOATTAK2		YOATTAK2
	YOGRPFT2		YOGRPFT2
	YOSELL2		YOSELL2
	COUTYP4		COUTYP4
	PARCHKHW		PARCHKHW
	PRPROUD2		PRPROUD2
	STNDSCIG		STNDSCIG
	YFLADLY2		YFLADLY2
	TCHGJOB		TCHGJOB
	IMOTHER		IMOTHER
	PARLMTSN		PARLMTSN
	EDUSCHLGO		EDUSCHLGO
	PRBSOLV2		PRBSOLV2
	PRTALK3		PRTALK3
	PRMJMO		PRMJMO
	PRPKCIG2		PRPKCIG2
	FRDADLY2		FRDADLY2
	STNDDNK		STNDDNK
	ANYEDUC3		ANYEDUC3
	RLGIMPT		RLGIMPT
	GOVTPROG		GOVTPROG
	RLGATTD		RLGATTD
	PDEN10		PDEN10
	IFATHER		IFATHER
	DRPRVME3		DRPRVME3
	PREVIOL2		PREVIOL2
	PRCHORE2		PRCHORE2
	TALKPROB		TALKPROB
	RLGFRND		RLGFRND
	SCHFELT		SCHFELT
	PREGPGM2		PREGPGM2
	AVGGRADE		AVGGRADE
	PRVDRG02		PRVDRG02
	GRPCNSL2		GRPCNSL2
##		rel.inf	
	Friend_Drinks_Daily	23.657686794	
	Friend_Offers_Marijuana	8.801175627	
	FRDMJMON	8.101931778	
	Friend_Consumes_Marijuana_Monthly		
	Grade_Level	7.981885230	
	YOSTOLE2	4.091588461	
	Race	4.021069005	
	Friend_Smokes_Marijuana	3.203816039	
	PRMJEVR2	2.562217942	
	PRALDLY2	2.472109375	
	POVERTY3 FRDPCIG2	1.926140517	
		1.892961009	
	YOFIGHT2	1.820244286	
	INCOME	1.561601333	
	Friend_Ever_Smoked	1.282025751	
	YOHGUN2	1.249758413	
	YTHACT2	1.215895993	
##	ARGUPAR	1.193683726	

```
## PARHLPHW
                                       1.083686698
## PRLMTTV2
                                       1.080762218
## RLGDCSN
                                       0.853272848
## HEALTH2
                                       0.798697620
## IRSEX
                                       0.733340070
## EDUSKPCOM
                                       0.724825601
## PRGDJOB2
                                       0.706366412
## YFLPKCG2
                                       0.646551711
## YOATTAK2
                                       0.611941392
## YOGRPFT2
                                       0.585497902
## YOSELL2
                                       0.514596973
## COUTYP4
                                       0.488768559
## PARCHKHW
                                       0.441477934
## PRPROUD2
                                       0.433268764
## STNDSCIG
                                       0.424011249
## YFLADLY2
                                       0.392808064
## TCHGJOB
                                       0.356282457
## IMOTHER
                                       0.353311754
## PARLMTSN
                                       0.332352492
## EDUSCHLGO
                                       0.279930255
                                       0.261190771
## PRBSOLV2
## PRTALK3
                                       0.257618502
## PRMJMO
                                       0.233986255
## PRPKCIG2
                                       0.228922485
## FRDADLY2
                                       0.214487655
## STNDDNK
                                       0.171029926
## ANYEDUC3
                                       0.168874024
## RLGIMPT
                                       0.164505715
## GOVTPROG
                                       0.162452863
## RLGATTD
                                       0.161975122
## PDEN10
                                       0.132673861
## IFATHER
                                       0.126337299
## DRPRVME3
                                       0.118827566
## PREVIOL2
                                       0.113939032
## PRCHORE2
                                       0.111964945
## TALKPROB
                                       0.104709265
## RLGFRND
                                       0.103424030
## SCHFELT
                                       0.070642171
## PREGPGM2
                                       0.061219728
## AVGGRADE
                                       0.056538813
## PRVDRGO2
                                       0.018595891
## GRPCNSL2
                                       0.008824084
probability_one <- predict(boost_one, test_set, n.trees = 1000, type = "response")</pre>
prediction_boost <- ifelse(probability_one > 0.5, "Yes", "No")
cat("Boosting Accuracy:", mean(prediction_boost == test_set$alcohol_use), "\n")
## Boosting Accuracy: 0.8069697
# RANDOM FOREST
rf_one <- randomForest(alcohol_use ~ ., data = train_set[, -which(names(train_set) == "alcohol_use_num"
# mtry = 5 since we took sqrt(p)
prediction_rf <- predict(rf_one, test_set)</pre>
confusionMatrix(prediction_rf, test_set$alcohol_use)
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
              No Yes
##
         No 2337 523
         Yes 139 301
##
##
##
                 Accuracy : 0.7994
##
                   95% CI: (0.7853, 0.8129)
##
       No Information Rate: 0.7503
       P-Value [Acc > NIR] : 1.471e-11
##
##
##
                     Kappa : 0.3661
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
              Sensitivity: 0.9439
##
              Specificity: 0.3653
##
            Pos Pred Value : 0.8171
##
            Neg Pred Value: 0.6841
##
##
               Prevalence: 0.7503
##
           Detection Rate: 0.7082
##
      Detection Prevalence: 0.8667
##
         Balanced Accuracy: 0.6546
##
##
          'Positive' Class : No
##
cat("Random Forest Accuracy:", mean(prediction_rf == test_set$alcohol_use), "\n")
## Random Forest Accuracy: 0.7993939
varImpPlot(rf_one, n.var = 5, sort = TRUE, main = "Top 5 Important Variables")
```

Top 5 Important Variables

Ensemble models were compared using accuracy: Boosting: 80.7% Random Forest: 79.9% Bagging: 79.1% And from the variable plot, Friend Drinks Daily, Friend Offers Marijuana, and Grade Level are the most important predictors identified by the model

```
# PART 2
# MULTI-CLASS CLASSIFICATION: how often they used marijuana over the last year
# Converting MRJYDAYS to numeric and also performing some data cleaning by including data, like these:
drug_use$MRJYDAYS <- as.numeric(as.character(drug_use$MRJYDAYS))</pre>
# Imputation with mean for 900-level codes
invalid codes \leftarrow c(991, 993, 994, 997, 998)
valid_mean <- mean(drug_use$MRJYDAYS[!drug_use$MRJYDAYS %in% invalid_codes], na.rm = TRUE)</pre>
drug_use$MRJYDAYS[drug_use$MRJYDAYS %in% invalid_codes] <- valid_mean</pre>
# Now, binning the data into 6 categories
drug_use$marijuana_use_level <- cut(</pre>
  drug_use$MRJYDAYS,
  breaks = c(-1, 0, 5, 15, 30, 90, 365),
  labels = c("NEVER", "RARE", "OCCASIONAL", "REGULAR", "FREQUENT", "DAILY"),
  right = TRUE
# The dataframe 'df_multi' consists of the predictors and target variable for multi-classification
df_multi <- drug_use[, c(demographic_cols, youth_experience_cols, "marijuana_use_level")]</pre>
df_multi <- na.omit(df_multi)</pre>
```

```
# Renaming variables for clarity
colnames(df_multi) [colnames(df_multi) == "FRDMJMON"] <- "Friend_Uses_Marijuana_Monthly"</pre>
colnames(df_multi)[colnames(df_multi) == "STNDSMJ"] <- "Friend_Smokes_Marijuana"</pre>
colnames(df multi) [colnames(df multi) == "YFLMJMO"] <- "Friend Consumes Marijuana Monthly"</pre>
colnames(df_multi)[colnames(df_multi) == "FRDMEVR2"] <- "Friend_Ever_Tried_Marijuana"</pre>
colnames(df_multi)[colnames(df_multi) == "YOSELL2"]
                                                       <- "Youth Sold Drugs"
colnames(df_multi)[colnames(df_multi) == "EDUSCHGRD2"] <- "Grade_Level"</pre>
colnames(df multi)[colnames(df multi) == "YFLTMRJ2"]
                                                       <- "Friend Offered Marijuana"
                                                       <- "Race"
colnames(df_multi)[colnames(df_multi) == "NEWRACE2"]
# For plot readability, recoding categorical variables.
df_multi$Friend_Uses_Marijuana_Monthly <- factor(df_multi$Friend_Uses_Marijuana_Monthly, levels = c(1,
df_multi$Friend_Smokes_Marijuana <- factor(df_multi$Friend_Smokes_Marijuana, levels = c(1, 2), labels =
df_multi$Friend_Consumes_Marijuana_Monthly <- factor(df_multi$Friend_Consumes_Marijuana_Monthly, levels
df_multi$Friend_Ever_Tried_Marijuana <- factor(df_multi$Friend_Ever_Tried_Marijuana, levels = c(1, 2),
df_multi$Youth_Sold_Drugs <- factor(df_multi$Youth_Sold_Drugs, levels = c(1, 2), labels = c("Yes", "No"
df_multi$Grade_Level <- factor(df_multi$Grade_Level, levels = c(1:8, 9:11, 98, 99),
                               labels = c(
                                 rep("School", 8),
                                 rep("College", 3),
                                 "No Answer", "Skipped"
)
df_multi$Friend_Offered_Marijuana <- factor(df_multi$Friend_Offered_Marijuana, levels = c(1, 2), labels
# Plotting the decision tree
tree_two <- tree(marijuana_use_level ~ ., data = df_multi)</pre>
tree_two
## node), split, n, deviance, yval, (yprob)
         * denotes terminal node
##
##
##
  1) root 8249 6583.0 DCCASIONAL ( 0.00000 0.13674 0.86326 0.00000 0.00000 0.00000 )
      2) Friend_Uses_Marijuana_Monthly: Yes 6400 2738.0 OCCASIONAL ( 0.00000 0.05531 0.94469 0.00000 0.
##
        4) Friend_Smokes_Marijuana: Yes 1300 1192.0 OCCASIONAL ( 0.00000 0.17154 0.82846 0.00000 0.0000
##
        5) Friend_Smokes_Marijuana: No 5100 1218.0 OCCASIONAL ( 0.00000 0.02569 0.97431 0.00000 0.00000
##
##
         10) Friend_Offered_Marijuana: Yes 4681 833.9 OCCASIONAL ( 0.00000 0.01773 0.98227 0.00000 0.0
         11) Friend_Offered_Marijuana: No 419 298.3 OCCASIONAL ( 0.00000 0.11456 0.88544 0.00000 0.000
##
      3) Friend_Uses_Marijuana_Monthly: No 1849 2514.0 OCCASIONAL ( 0.00000 0.41860 0.58140 0.00000 0.0
##
        6) Friend_Smokes_Marijuana: Yes 1077 1484.0 RARE ( 0.00000 0.54596 0.45404 0.00000 0.00000 0.00
##
        7) Friend Smokes Marijuana: No 772 852.5 OCCASIONAL (0.00000 0.24093 0.75907 0.00000 0.00000
##
summary(tree_two)
## Classification tree:
```

```
## tree(formula = marijuana_use_level ~ ., data = df_multi)
## Variables actually used in tree construction:
## [1] "Friend_Uses_Marijuana_Monthly" "Friend_Smokes_Marijuana"
## [3] "Friend_Offered_Marijuana"
## Number of terminal nodes: 5
## Residual mean deviance: 0.5653 = 4660 / 8244
## Misclassification error rate: 0.1247 = 1029 / 8249

plot(tree_two)
text(tree_two, pretty = 0)
title("Decision Tree for model two is Marijuana Used by Youth into 6 Categories")
```

Decision Tree for model two is Marijuana Used by Youth into 6 Catego


```
# Pruning the above tree
# Finding optimal tree size, we use cross validation
set.seed(1)
cv_two <- cv.tree(tree_two, FUN = prune.misclass)
plot(cv_two$size, cv_two$dev, type = "b", main = "CV: Marijuana Use Tree", xlab = "Tree Size", ylab = "...")</pre>
```

CV: Marijuana Use Tree


```
opt_size <- cv_two$size[which.min(cv_two$dev)]
opt_size</pre>
```

[1] 5

```
# 3 is the best optimal size from the graph
# So, we use 3 as the opt_size
prune_two <- prune.misclass(tree_two, best = 3)
plot(prune_two)
text(prune_two, pretty = 0)
title(paste("The Pruned Tree of Multi-classification model is of (Size =", 3, ")"))</pre>
```

The Pruned Tree of Multi-classification model is of (Size = 3)


```
# DECISION TREE ENSEMBLE METHODS
# Splitting the data into train and test data.
set.seed(123)
train_data <- createDataPartition(df_multi$marijuana_use_level, p = 0.8, list = FALSE)
## Warning in createDataPartition(df_multi$marijuana_use_level, p = 0.8, list =
## FALSE): Some classes have no records ( NEVER, REGULAR, FREQUENT, DAILY ) and
## these will be ignored
train_set <- df_multi[train_data, ]</pre>
test_set <- df_multi[-train_data, ]</pre>
# Plotting the tree
tree_two <- predict(prune_two, test_set, type = "class")</pre>
mean(tree_two == test_set$marijuana_use_level)
## [1] 0.8659794
# RANDOM FOREST
# Dropping unused factor levels
train_set$marijuana_use_level <- droplevels(train_set$marijuana_use_level)</pre>
test_set$marijuana_use_level <- droplevels(test_set$marijuana_use_level)</pre>
set.seed(42)
```

```
# mtry is set to 5, as we took sqrt(p)
rf_two <- randomForest(marijuana_use_level ~ ., data = train_set, mtry = 5, importance = TRUE, ntree =
prediction_two <- predict(rf_two, test_set, type = "class")</pre>
prediction_two <- factor(prediction_two, levels = levels(test_set$marijuana_use_level))</pre>
cat("Random Forest Accuracy:", mean(prediction_two == test_set$marijuana_use_level), "\n")
## Random Forest Accuracy: 0.8932686
confusionMatrix(prediction_two, test_set$marijuana_use_level)
## Confusion Matrix and Statistics
##
##
               Reference
## Prediction RARE OCCASIONAL
##
    RARE
                 78
                             29
     OCCASIONAL 147
                           1395
##
##
##
                  Accuracy : 0.8933
##
                    95% CI: (0.8774, 0.9078)
##
       No Information Rate: 0.8636
##
       P-Value [Acc > NIR] : 0.0001673
##
##
                     Kappa: 0.4188
##
  Mcnemar's Test P-Value : < 2.2e-16
##
##
##
               Sensitivity: 0.34667
##
               Specificity: 0.97963
##
           Pos Pred Value: 0.72897
##
            Neg Pred Value: 0.90467
##
                Prevalence: 0.13645
            Detection Rate: 0.04730
##
##
     Detection Prevalence: 0.06489
##
         Balanced Accuracy: 0.66315
##
##
          'Positive' Class : RARE
##
```

Top 5 Important Variables - Random Forest

In the multi-class classification, the initial decision tree misclassified 12.5 percent of cases, and pruning increased accuracy to 86.6 percent

Random Forest achieved 89.3 percent accuracy with a balanced accuracy of 66.3 percent

Friends consuming marijuana emerged as the most powerful predictor of usage frequency.

##

```
# PART3: REGRESSION: number of days per year a person has consumed alcohol
# Performing some data cleaning on IRALCFM, and ignoring 91 values, which is "did not drink", so we set
drug_use$alcohol_days_past_month <- ifelse(</pre>
  drug_use$IRALCFM %in% 1:30,
  drug_use$IRALCFM,
  ifelse(drug use$IRALCFM %in% 91,0,NA)
# The dataframe 'df_reg' consists of the predictors and outcome variables for the regression model and
df_reg <- drug_use[, c(demographic_cols, youth_experience_cols, "alcohol_days_past_month")]</pre>
df_reg <- na.omit(df_reg)</pre>
print(table(df_reg$alcohol_days_past_month))
##
                      3
                                 5
                                      6
                                           7
                                                          10
                                                                          14
                                                                               15
                                                                                     16
           1
                 2
                                                                11
                                                                     12
##
  6199
         247
              143
                     89
                          43
                               42
                                      9
                                          14
                                                          14
                                                                1
                                                                                      2
                     28
##
     17
          20
                21
                          30
```

```
# For readability and clarity of predictor variable names
# Rename variables in df_reg for better readability
colnames(df_reg)[colnames(df_reg) == "FRDMJMON"] <- "Friend_Uses_Marijuana_Monthly"</pre>
colnames(df_reg) [colnames(df_reg) == "STNDSMJ"] <- "Friend_Smokes_Marijuana"</pre>
colnames(df_reg)[colnames(df_reg) == "RLGFRND"] <- "Religious_Friend"</pre>
colnames(df_reg)[colnames(df_reg) == "YFLTMRJ2"] <- "Friend_Influence_Marijuana"</pre>
colnames(df_reg)[colnames(df_reg) == "FRDMEVR2"] <- "Friend_Ever_Used_Marijuana"</pre>
colnames(df_reg)[colnames(df_reg) == "HEALTH2"] <- "Self_Reported_Health"</pre>
colnames(df_reg)[colnames(df_reg) == "YOSELL2"] <- "Youth_Sold_Drugs"</pre>
colnames(df_reg) [colnames(df_reg) == "STNDALC"] <- "Friend_Drinks_Daily"</pre>
colnames(df_reg)[colnames(df_reg) == "EDUSCHGRD2"] <- "Grade_Level"</pre>
colnames(df_reg) [colnames(df_reg) == "NEWRACE2"] <- "Race_Category"</pre>
colnames(df_reg) [colnames(df_reg) == "ARGUPAR"] <- "Argued_With_Parents"</pre>
# For plot readability, recoding categorical variables.
df_reg$Friend_Drinks_Daily <- factor(df_reg$Friend_Drinks_Daily, levels = c(1, 2), labels = c("Yes", "N
df_reg$Youth_Sold_Drugs <- factor(df_reg$Youth_Sold_Drugs, levels = c(1, 2), labels = c("Yes", "No"))</pre>
df_reg$Argued_With_Parents <- factor(df_reg$Argued_With_Parents, levels = c(1, 2), labels = c("Yes", "N
# Splitting the data into train and test data, 70% train data and 30% test data
set.seed(42)
train_index <- sample(1:nrow(df_reg), 0.7 * nrow(df_reg))</pre>
train_set <- na.omit(df_reg[train_index, ])</pre>
test_set <- na.omit(df_reg[-train_index, ])</pre>
# DECISION TREE
tree_three <- tree(alcohol_days_past_month ~ ., data = train_set)</pre>
tree_three
## node), split, n, deviance, yval
##
         * denotes terminal node
##
   1) root 4780 10100.00 0.28580
##
      2) Friend_Drinks_Daily: Yes 1162 7186.00 0.87440
##
##
        4) Youth_Sold_Drugs: Yes 37 1278.00 4.70300
##
          8) Argued_With_Parents: Yes 25
                                            129.80 2.64000 *
##
          9) Argued_With_Parents: No 12
                                          820.00 9.00000
##
           18) INCOME: 1,2,3 7
                                   87.43 5.28600 *
##
           19) INCOME: 4 5 500.80 14.20000 *
##
        5) Youth_Sold_Drugs: No 1125 5348.00 0.74840
##
         10) YFLMJMO: 1 749 1977.00 0.38580 *
##
         11) YFLMJMO: 2 376 3076.00 1.47100
##
           22) PARHLPHW: 1 249
                                  888.70 1.03600 *
           23) PARHLPHW: 2 127 2048.00 2.32300
##
##
             46) COUTYP4: 1,2 109
                                    689.60 1.79800 *
##
             47) COUTYP4: 3 18 1146.00 5.50000
               94) RLGIMPT: 1 7
                                   815.40 10.29000 *
##
                                     68.73 2.45500 *
##
               95) RLGIMPT: 2 11
##
      3) Friend_Drinks_Daily: No 3618 2378.00 0.09674 *
```

```
summary(tree_three)
##
## Regression tree:
## tree(formula = alcohol_days_past_month ~ ., data = train_set)
## Variables actually used in tree construction:
## [1] "Friend_Drinks_Daily" "Youth_Sold_Drugs"
                                                   "Argued_With_Parents"
## [4] "INCOME"
                                                   "PARHLPHW"
                            "YFLMJMO"
## [7] "COUTYP4"
                             "RLGIMPT"
## Number of terminal nodes: 9
## Residual mean deviance: 1.58 = 7536 / 4771
## Distribution of residuals:
       Min.
             1st Qu.
                        Median
                                     Mean
                                            3rd Qu.
                                                         Max.
## -14.20000 -0.09674 -0.09674 0.00000 -0.09674 29.61000
plot(tree_three)
text(tree_three, pretty = 0)
title("Regression Tree: Past-Month Alcohol Consumption by Youth")
```

Regression Tree: Past-Month Alcohol Consumption by Youth


```
prediction_three <- predict(tree_three, test_set)
mean((prediction_three - test_set$alcohol_days_past_month)^2)</pre>
```

[1] 1.460152

```
# PRUNING THE TREE
set.seed(123)
cv_three <- cv.tree(tree_three)
plot(cv_three$size, cv_three$dev, type = "b", xlab = "Tree Size", ylab = "Deviance", main = "CV for Reg</pre>
```

CV for Regression Tree


```
opt_size <- cv_three$size[which.min(cv_three$dev)]</pre>
cat("Optimal Tree Size:", opt_size, "\n")
## Optimal Tree Size: 4
# so we take 4 from the graph
prune_three <- prune.tree(tree_three, best = 4)</pre>
summary(prune_three)
##
## Regression tree:
## snip.tree(tree = tree_three, nodes = c(9L, 5L))
## Variables actually used in tree construction:
## [1] "Friend_Drinks_Daily" "Youth_Sold_Drugs"
                                                    "Argued_With_Parents"
## Number of terminal nodes: 4
## Residual mean deviance: 1.817 = 8676 / 4776
## Distribution of residuals:
       Min. 1st Qu. Median
                                  Mean 3rd Qu.
## -9.00000 -0.09674 -0.09674 0.00000 -0.09674 29.25000
```

```
plot(prune_three)
text(prune_three, pretty = 0)
title("Pruned Regression Tree")
```

Pruned Regression Tree


```
prediction_three <- predict(prune_three, test_set)
mean((prediction_three - test_set$alcohol_days_past_month)^2)

## [1] 1.428887

mse <- mean((prediction_three - test_set$alcohol_days_past_month)^2)
rss <- sum((prediction_three - test_set$alcohol_days_past_month)^2)
tss <- sum((test_set$alcohol_days_past_month - mean(test_set$alcohol_days_past_month))^2)
r_squared <- 1 - rss/tss

cat("MSE is:", mse, "\n")

## MSE is: 1.428887

cat("R squared is:", r_squared, "\n")</pre>
```

```
# Note: The outcome is in days

# BAGGING
# Using all predictors for bagging
bag_three <- randomForest(alcohol_days_past_month ~ ., data = train_set, mtry = ncol(train_set) - 1, imprediction_bg <- predict(bag_three, test_set, type = "class")

mean((prediction_bg - test_set$alcohol_days_past_month)^2)

## [1] 1.283587

varImpPlot(bag_three, n.var = 5, sort = TRUE, main = "Top 5 Important Variables (Regression)")</pre>
```

Top 5 Important Variables (Regression)

