SporeStrike

Aria Das, Avni Iyer, Abhay Shukla, Dominic Wang

The Team

Avni lyer

Abhay Shukla

Dominic Wang

Fungal Infections:

Destroy:

20% of all crops

Cost:

\$200 billion

Take food from:

4 billion people

Current Solutions

Sporestrike

- **X** Inefficient
- **X** Expensive
- **X** Inaccurate

- ✓ Targeted
- ✓ Efficient
- ✓ Data Driven

Introducing: SPORESTRIKE

SporeStrike System

Agricultural drone battery (LiPo)

Sensor 2: Fungal impedance analyzer

Sensor 1: hyperspectral imagery analysis

Fungicide dispensers (with gimbals)

Phase 1: Detection

Hyperspectral sensor scans 4ftx4ft area

FHE stores optical data & location

Drone returns to homebase & uplinks data

AI/ML determines infection

Phase 2

Powered by Li Ion Battery

99% Detection Accuracy

Phase 2: Extermination

Impedance analyzer collects current resistance data Drone collects spores via microfluidic chip resistance data to identify infection Drone releases infection specific fungicide

Powered by Li Ion Battery

- **♦ 97% Extermination Accuracy**
- **♦** 75% Faster than manual methods

Total ROI

Fa	rm	ers
_		

Humans

Investors

20% higher crop yield

63k dollars saved

Decrease fungicide waste and resistance

176 million people fed in the US

\$65 million profit

Business MODEL

Target Market

Farmers

Organizations

OEM

Competitive Analysis

	Sporestrike	Croptix	PCR Testing	Satellite Imaging	Manual spraying
Low Cost	\Diamond				
High accuracy in detection					
Targeted disease elimination					
Time efficient	\Diamond				
Simplicity of operation	\Leftrightarrow				

Manufacturing

Component	Manufacturing
Agricultural Drone	FREEFLY
FHE	N E X T F L E X
Hyperspectral Camera	SPECIM A Konica Minolta Company
Impedance Analyzer	KEYSIGHT
Microfluidic Chip	Vantiva Ne Pushing the edge

Key Partners

Prototyping

Funding, Research, Data

UCDAVIS BIOLOGICAL AND AGRICULTURAL ENGINEERING

Market knowledge, networking

Marketing Plan

Agricultural Conventions and Farmers Co-ops

Search & Social Media

Print & Almanacs

Cost Breakdown

TOTAL MATERIALS COST

\$5,437

Component: Drone hardware	Per Unit Cost
Hyperspectral Camera Attachment	\$4,600
Microfluidic Chip Attachment	\$800
9 V Battery for Impedance Analyzer	\$3.00
FHE	\$5.00
Processor	\$1.70
WiFi Antenna	\$5.00
Fungicide Dispenser	\$19.00
Near Field Communication Antenna	\$2.80

Financial Plan

Per Unit Economics				
Sale Price	\$13,048			
Cost of materials	\$ 5,437			
Total Item Cost	\$10,873			
Gross Profit	\$ 2,175			

Units:

5K

34K

Change the face of farming globally:

Works Cited

Yiting Xie a, et al. "Hyperspectral Imaging Detects Biological Stress of Wheat for Early Diagnosis of Crown Rot Disease." *Computers and Electronics in Agriculture*, Elsevier, 30 Dec. 2023, www.sciencedirect.com/science/article/pii/S0168169923009596.

Bove, Tristan. "A 'Last of Us'-Style Fungi Outbreak Could Obliterate Crops Worldwide." Fortune, Fortune, 4 May 2023, fortune.com/2023/05/04/last-of-us-fungi-outbreak-could-obliterate-crops/.

El-Baky, Nawal Abd, and Amro Abd Al Fattah Amara. "Recent Approaches towards Control of Fungal Diseases in Plants: An Updated Review." *Journal of Fungi (Basel, Switzerland)*, U.S. National Library of Medicine, 25 Oct. 2021, www.ncbi.nlm.nih.gov/pmc/articles/PMC8621679/.

Fang, Yi, and Ramaraja P Ramasamy. "Current and Prospective Methods for Plant Disease Detection." *Biosensors*, U.S. National Library of Medicine, 6 Aug. 2015, www.ncbi.nlm.nih.gov/pmc/articles/PMC4600171/.

Ivanov, Marija, et al. "Emerging Antifungal Targets and Strategies." International Journal of Molecular Sciences, U.S. National Library of Medicine, 2 Mar. 2022, www.ncbi.nlm.nih.gov/pmc/articles/PMC8911111/.

Kutawa, Abdulaziz Bashir, et al. "Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review." *Biology*, U.S. National Library of Medicine, 8 Sept. 2021, www.ncbi.nlm.nih.gov/pmc/articles/PMC8465907/.

"Prevent and Control Fungal Disease in Fruit and Vegetable Gardens." *GardenTech*, www.gardentech.com/blog/pest-id-and-prevention/prevent-and-control-fungal-disease-in-fruit-and-vegetable-gardens. Accessed 25 Apr. 2024.

Wilde, Matthew. "Farmers Willing to Spend Money on Crops If Yield Potential, Roi Are Promising." DTN Progressive Farmer, DTN Progressive Farmer, 5 July 2021.

"'devastating' Fungal Infections Wiping out Crops and Threatening Global Food Security, Experts Warn." *ScienceDaily*, ScienceDaily, 3 May 2023, www.sciencedaily.com/releases/2023/05/230503121323.htm.