Software components as monadic, weighted Mealy machines in typed linear algebra

J.N. Oliveira (joint work with L.S. Barbosa and D. Murta)

DCC/FCUP, PORTO, 19TH SEP., 2013

Grant PTDC/EIA-CCO/122240/2010

INESC TEC & University of Minho

Motivation

Safety and certification

Interested in the opportunities open for Formal Methods by RTCA DO 178C for certifying airborne software.

Challenged by

(...) the use of formal methods to be "at least as good as" a conventional approach that does not use formal methods.

(Joyce, 2011)

```
[ ... "at least as good as" ? ... ]
```

Qualitative vs quantitative

Quoting Jackson (2009):

A dependable system is one (..) in which you can place your reliance or trust. A rational person or organization only does this with evidence that the system's benefits outweigh its risks.

In formula

 $dependable \ system = benefit + risk$

one finds:

- **benefit** = qualitative
- risk = quantitative.

P(robabilistic)R(isk)A(nalysis)

NASA/SP-2011-3421 (Stamatelatos and Dezfuli, 2011):

1.2.2 A PRA characterizes risk in terms of three basic questions: (1) What can **go wrong**? (2) How **likely** is it? and (3) What are the **consequences**?

The PRA process

answers these questions by systematically (...) identifying, modeling, and quantifying scenarios that can lead to undesired consequences

Moreover,

1.2.3 (...) The total probability from the set of scenarios modeled may also be non-negligible even though the probability of each scenario is small.

Doesn't work in FMs — why?

Program semantics are usually **qualitative** — how does one **quantify** risk in standard denotational semantics?

PRA performed a **posteriori** — Hmmm... we've seen this mistake before, eg. in program correctness.

Need for a change:

Programming should incorporate **risk** as the rule rather than the exception (absence of risk = **ideal** case).

Need for **combinators** expressing risk of failure, eg. **probabilistic choice** (McIver and Morgan, 2005)

bad p⋄ good

between expected behaviour and misbehaviour.

In this talk

Interested in reasoning about the risk of **faults propagating** in **component**-based software (**CBS**) systems.

Traditional CBS **risk analysis** relies on *semantically weak* CBS models — eg. over component call-graphs as in (Cortellessa and Grassi, 2007).

Our starting point is the **coalgebraic** semantics of Barbosa (2001) for (safe) CBS systems, under the lemma:

"Components as coalgebras"

Main ideas

Component = (Monadic) Mealy machine (MMM), that is, an \mathfrak{F} -branching transition structure of type:

$$S \times I \rightarrow \mathfrak{F}(S \times O)$$

where \mathfrak{F} is a monad.

Component-oriented design = Algebra of MMM combinators

Semantics = Coalgebraic, calculational

To this framework we want to add calculation of

Risk = Probability of faulty (catastrophic) behaviour

Mealy machines in various guises

-branching transition structure:

$$S \times I \rightarrow \mathfrak{F}(S \times O)$$

Coalgebra:

$$S \to (\mathfrak{F}(S \times O))^I$$

State-monadic:

$$I \rightarrow (\mathfrak{F}(S \times O))^S$$

All versions useful in component algebra.

Example — stack

A **stack** at functional level

```
push = flip (:)

pop = tail

top = head

empty = (0=) \cdot length
```

is a collection of **partial** functions on the free monoid of finite sequences.

Each such partial function gives rise to a **method**, ie. an (elementary) Mealy machine.

The stack component will arise as the **sum** of its methods.

Individual Mealy (Maybe) machines

Example of a method

$$push' :: ([b], b) \rightarrow ([b], 1)$$
$$push' = \widehat{push} \triangle !$$

which resorts

(a) to the uncurry operator,

$$\widehat{f}(a,b) = f a b$$

(b) to the pairing operator,

$$(f \triangle g) x = (f x, g x)$$

(c) and to uniquely defined (total) function $!::b \to 1$ ('bang').

Partiality — rule rather than exception

Partiality, however, requires 'Maybe' (\mathfrak{M}) Mealy machines, one per totalized (partial) function, eg.:

$$pop' :: ([a], 1) \to \mathfrak{M} ([a], a)$$

 $pop' = (pop \triangle top) \Leftarrow (\neg \cdot empty) \cdot \pi_1$

where $\cdot \leftarrow \cdot$ totalizes a partial function by fusion with a **precondition**,

$$\cdot \Leftarrow :: (a \to b) \to (a \to \mathbb{B}) \to a \to \mathfrak{M} b
f \Leftarrow p = p \to (\eta \cdot f), \perp$$

where unit η (of \mathfrak{M}) means **success** and 'zero' element \bot means **failure**.

Standard stack methods

```
empty' :: ([a], 1) \rightarrow \mathfrak{M} ([a], \mathbb{B})
emptv' = \eta \cdot (id \triangle empty) \cdot \pi_1
top' :: ([a], 1) \rightarrow \mathfrak{M}([a], a)
top' = (id \triangle top \Leftarrow (\neg \cdot empty)) \cdot \pi_1
push' :: ([b], b) \rightarrow \mathfrak{M} ([b], 1)
push' = \eta \cdot (push \triangle !)
pop'::([a],1)\to\mathfrak{M}([a],a)
pop' = (pop \triangle top \Leftarrow (\neg \cdot empty)) \cdot \pi_1
```

$\mathsf{Component} = \sum \mathsf{methods}$

The stack component

$$stack :: ([p], (1+1)+p) \rightarrow \mathfrak{M}([p], (p+p)+1)$$

 $stack = pop' \oplus top' \oplus push'$

is built thanks to the MMM **sum** combinator

$$\cdot \oplus \cdot :: (Functor \ \mathfrak{F}) \Rightarrow$$
-- input machines
$$((s,i) \to \mathfrak{F}(s,o)) \to$$

$$((s,j) \to \mathfrak{F}(s,p)) \to$$
-- output machine
$$(s,i+j) \to \mathfrak{F}(s,o+p)$$
-- definition
$$m_1 \oplus m_2 = (\mathfrak{F} dr^\circ) \cdot \Delta \cdot (m_1 + m_2) \cdot dr$$

where (next slide)

$\mathsf{Component} = \sum \mathsf{methods}$

- $m_1 + m_2$ is categorial sum (coproduct);
- isomorphism

$$dr :: (a, c + b) \rightarrow (a, c) + (a, b)$$

 $dr (a, i_1 b) = i_1 (a, b)$
 $dr (a, i_2 c) = i_2 (a, c)$

(resp. dr°) distributes (resp. factorizes) the shared state across the sum of inputs (resp. outputs)

"Cozip" operator

$$\Delta :: (Functor \mathfrak{F}) \Rightarrow (\mathfrak{F} \ a) + (\mathfrak{F} \ b) \rightarrow \mathfrak{F} \ (a+b)$$

$$\Delta = [(\mathfrak{F} \ i_1), (\mathfrak{F} \ i_2)]$$

promotes coproducts through 3.

Combining components

Queue = two stacks:

out stack (left) interacting with in stack (right)

For the two stacks to interact we need to be able to **compose** two MMM,

```
 \begin{array}{l} \cdot \ ; \cdot :: (\mathit{Strong} \ \mathfrak{F}, \mathit{Monad} \ \mathfrak{F}) \Rightarrow \\ -\text{-- input machines} \\ ((s,i) \to \mathfrak{F} \ (s,j)) \to \\ ((r,j) \to \mathfrak{F} \ (r,k)) \to \\ -\text{-- output machine} \\ ((s,r),i) \to \mathfrak{F} \ ((s,r),k) \\ -\text{-- definition} \\ m_1 \ ; m_2 = ((\mathfrak{F} \ \mathsf{a}^\circ) \cdot \tau_l \cdot (\mathit{id} \times \mathit{m}_2) \cdot \mathsf{xl}) \bullet \tau_r \cdot (\mathit{m}_1 \times \mathit{id}) \cdot \mathsf{xr} \end{array}
```

which is the \mathfrak{F} -Kleisli composition (\bullet) of suitably wrapped, "paired" m_1 and m_2 .

(Explanatory diagrams in the following slide.)

Kleisli composition for monad 3

which is the composition in the corresponding **Kleisli category**, with η as identity:

$$f \bullet (g \bullet h) = (f \bullet g) \bullet h$$

 $f \bullet \eta = f = \eta \bullet f$

Conceptually, it is as if one (typewise) drops the $\mathfrak F$'s from f and g in the diagram above.

Wrapping of m_1 :

$$\mathfrak{F}\left((s,o),r\right) \stackrel{\tau_r}{\longleftarrow} \left(\mathfrak{F}\left(s,o\right),r\right) \stackrel{m_1 \times id}{\longleftarrow} \left((s,i),r\right) \stackrel{\mathsf{xr}}{\longleftarrow} \left((s,r),i\right)$$

Wrapping of m_2 :

$$(s, \mathfrak{F}(r, k)) \stackrel{id \times m_2}{\leftarrow} (s, (r, o)) \stackrel{\times l}{\leftarrow} ((s, o), r)$$

$$\uparrow_{l} \downarrow$$

$$\mathfrak{F}((s, r), k) \stackrel{\mathfrak{F} a^{\circ}}{\leftarrow} \mathfrak{F}(s, (r, k))$$

Mind the **strength** operators:

$$\tau_r :: (\mathfrak{F} \ \mathsf{a}, \mathsf{b}) \to \mathfrak{F} \ (\mathsf{a}, \mathsf{b})$$
 $\tau_l :: (\mathsf{b}, \mathfrak{F} \ \mathsf{a}) \to \mathfrak{F} \ (\mathsf{b}, \mathsf{a})$

We will also need interface-wrapping

```
\cdot_{\{\cdot,\to\cdot\}}::(Functor\ \mathfrak{F})\Rightarrow
    -- input machine
((a,e) \rightarrow \mathfrak{F}(a,c)) \rightarrow
    -- input wrapper
(i \rightarrow e) \rightarrow
    -- output wrapper
(c \rightarrow d) \rightarrow
    -- output machine
(a,i) \rightarrow \mathfrak{F}(a,d)
    -- definition
m_{\{f \to g\}} = \mathfrak{F} (id \times g) \cdot m \cdot (id \times f)
```

for I / O "wiring" (analogy with hardware).

Queue component

We build a queue out of two stacks

queue ::
$$(([q],[q]),q+1) \rightarrow \mathfrak{M}$$
 $(([q],[q]),1+q)$ queue = enq \oplus deq

by providing two methods: enqueueing

```
enq = nop; stack_{\{pushIn \rightarrow pushOut\}}
```

which does nothing (nop) on the output stack and pushes onto the input stack (wrapping selects the *push* method), and **dequeueing**,

$$deq = (stack_{\{popln \rightarrow popOut\}}; nop) \bullet check$$

which pops from the output stack, preceded by flushing the input stack should the former be empty:

```
check = (empty'; nop) \rightarrow (write'; flush'), nop where m'; n = rev (n; m).
```


Wiring

Helper functions

```
popIn = first
topIn = second
pushIn = third
```

are convenient renamings of generic wiring functions

```
first = i_1 \cdot i_1

second = i_1 \cdot i_2

third = i_2
```

which route data into place through the parameter sums.

Enriched stacks

NB: our stack component had meanwhile to be enriched with two more methods,

$$stackpp :: ([p], (((1+1)+p)+1)+1) \rightarrow \mathfrak{M}([p], (((p+p)+1)+\mathbb{B})+[p])$$

 $stackpp = stack \oplus empty' \oplus flush'$

where empty' checks for stack emptiness and

flush' :: Monad
$$\mathfrak{F}\Rightarrow ([b],1) \rightarrow \mathfrak{F}([b],[b])$$
 flush' = mkMM nil \triangle reverse

flushes a stack contents to its output (reversed), where

$$mkMM :: Monad \mathfrak{F} \Rightarrow (a \rightarrow c \rightarrow b) \rightarrow (c, a) \rightarrow \mathfrak{F} b$$

 $mkMM f = \eta \cdot \hat{f} \cdot swap$

Conditionals

Also mind the need for a MMM-level McCarthy-styled **conditional** combinator,

```
\cdot \rightarrow \cdot, \cdot :: (Monad \mathfrak{F}, Functor \mathfrak{F}) \Rightarrow
    -- condition
    ((a,i) \to \mathfrak{F}(a,\mathbb{B})) \to
    -- 'then' branch
    ((a,1) \rightarrow \mathfrak{F}(a,o)) \rightarrow
    -- 'else' branch
    ((a,1) \rightarrow \mathfrak{F}(a,o)) \rightarrow
    -- output
    (a,i) \rightarrow \mathfrak{F}(a,o)
    -- definition
p \rightarrow m_1 \ , \ m_2 = [m_1, m_2] \bullet (\mathfrak{F} \operatorname{dr} \cdot (p_{\{id \rightarrow outB\}}))
```

where *outB* witnesses isomorphism $\mathbb{B} \cong 1 + 1$.

Changing effect of composition

Finally, term rev (flush'; write) involves

```
rev :: Functor \mathfrak{F} \Rightarrow
-- original MM
(((b,a),i) \to \mathfrak{F}((b,a),o)) \to
-- changed MM
((a,b),i) \to \mathfrak{F}((a,b),o)
rev m = \mathfrak{F}(swap \times id) \cdot m \cdot (swap \times id)
```

where

$$swap(b, a) = (a, b)$$

which changes which component is affected first in a composition.

Simulation (Haskell)

Enqueueing:

```
> coalg queue ("ab","cd") (i1 'z')
Just (("ab","zcd"),Left ())
```

Dequeueing:

```
> coalg queue ("ab","cd") (i2 ())
Just (("b","cd"),Right 'a')
> coalg queue ("","cd") (i2 ())
Just (("c",""),Right 'd')
```

NB: coalg m converts MMM m into the corresponding coalgebra (currying).

Faulty components

Risk of pop' behaving like top' with **probability** 1-p

$$pop'' :: \mathbb{P} \to ([a], 1) \to \mathfrak{D} (\mathfrak{M} ([a], a))$$

 $pop'' p = pop'_{p} \diamond top'$

and risk of push' not pushing anything, with probability 1-q

$$push'' :: \mathbb{P} \to ([a], a) \to \mathfrak{D} (\mathfrak{M} ([a], 1))$$

 $push'' q = push' {}_{a} \lozenge skip'$

where $\mathbb{P} = [0,1]$, \mathfrak{D} is the (finite) **distribution** monad and

$$\cdot . \diamond \cdot :: \mathbb{P} \to (t \to a) \to (t \to a) \to t \to \mathfrak{D} \ a$$

$$(f_p \diamond g) \ x = choose \ p \ (f \ x) \ (g \ x)$$

choses between f and g.

Simulation

Example (no faults) — popping from one stack and pushing onto another,

```
m_1 = pop'; push'
```

should produce the intended behaviour, eg.

```
> coalg m1 ([1],[2]) ()
Just (([],[1,2]),())
> coalg m1 ([],[2]) ()
Nothing
```

Example (faults) — now suppose the stacks are faulty,

```
m_2 = pop'' \ 0.95; push" 0.8
```

over the same (global) state ([1],[2]).

Simulation

Running the same simulation, now for machine m_2 ,

```
> coalg m2 ([1],[2]) ()
Just (([],[1,2]),()) 76.0%
Just (([],[2]),()) 19.0%
Just (([1],[1,2]),()) 4.0%
Just (([1],[2]),()) 1.0%
```

the risk of faulty behaviour is 24% (1-0.76), structured as: (a) 1% — both components misbehave; (b) 19% — left stack misbehaves; (c) 4% — right stack misbehaves.

As expected,

```
> coalg m2 ([],[2]) ()
Nothing 100.0%
```

is catastrophic (popping from an empty stack).

Faulty components

Simulation:

Using the **PFP library** written by Erwig and Kollmansberger (2006).

Important:

Our MMMs have become probabilistic, leading to coalgebras of general shape

$$S \to (\mathfrak{D}(\mathfrak{F}(S \times O)))^I$$

Challenge:

Need for probabilistic extension of the MMM combinators of Barbosa (2001), for instance (next slide):

Combining faulty components

Sequencing:

```
 \begin{array}{l} \cdot \text{;}_D \cdot :: \\ - \text{ input probabilistic MMM} \\ \left( (u,i) \to \mathfrak{D} \left( \mathfrak{M} \left( u,k \right) \right) \right) \to \\ - \text{ input probabilistic MMM} \\ \left( (v,k) \to \mathfrak{D} \left( \mathfrak{M} \left( v,o \right) \right) \right) \to \\ - \text{ output probabilistic MMM} \\ \left( (u,v),i \right) \to \mathfrak{D} \left( \mathfrak{M} \left( (u,v),o \right) \right) \\ m_1 \text{;}_D m_2 = \\ \left( (\mathfrak{D}\mathfrak{M} \text{ a}^\circ) \cdot \tau_l^D \cdot (id \times m_2) \cdot \mathsf{xl} \right) \bullet_D \left( \tau_r^D \cdot \left( m_1 \times id \right) \cdot \mathsf{xr} \right) \\ \end{array}
```

where

$$\tau_{l}^{D} :: Strong \mathfrak{F} \Rightarrow (b, \mathfrak{D} (\mathfrak{F} a)) \rightarrow \mathfrak{D} (\mathfrak{F} (b, a))$$

$$\tau_{r}^{D} :: Strong \mathfrak{F} \Rightarrow (\mathfrak{D} (\mathfrak{F} a), b) \rightarrow \mathfrak{D} (\mathfrak{F} (a, b))$$

are "D"-extended strengths and... (next slide)

Combining faulty components

Combinator (\bullet_D) implements \mathfrak{M} -Kleisli composition "wrapped by" $\mathfrak{D}(\text{istributions})$

where

$$\mathfrak{M}_{F}::(\mathit{Functor}\ \mathfrak{F},\mathit{Monad}\ \mathfrak{F})\Rightarrow (b
ightarrow\mathfrak{F}\ \mathsf{a})
ightarrow\mathfrak{M}\ b
ightarrow\mathfrak{F}\ (\mathfrak{M}\ \mathsf{a})$$

runs $\mathfrak{M} f$ "inside" \mathfrak{F} .

Back to research question

Recall coalgebraic type

$$S \to (\mathfrak{D}(\mathfrak{F}(S \times O)))^I$$

How tractable (mathematically) is this doubly-monadic framework? Can \mathfrak{F} be any monad?

Relatives of this have been studied elsewhere, eg.

- reactive probabilistic automata $S \rightarrow (\mathfrak{M} (\mathfrak{D} S))^{I}$
- generative prob. automata $S \to \mathfrak{M} \ (\mathfrak{D} \ (O \times S))$
- bundle systems $S \rightarrow \mathfrak{D} (\mathfrak{P} (O \times S))$

Cf. (Sokolova, 2011)

Back to research question

Related (and inspirational) work:

Bonchi et al. (2012) study coalgebras of functor

$$S \to \mathbb{K} \times (\mathbb{K}_{\omega}^S)^I$$

for \mathbb{K} a field in their coalgebraic approach to weighted automata.

These coalgebras rely on the so-called **field valuation** (exponential) functor \mathbb{K}_{ω}^- calling for **vector spaces**.

Inspired by this approach, a similar framework was studied directly in suitable categories of matrices (Oliveira, 2012).

We will do the same in this talk concerning probabilistic MMMs.

Our strategy

Instead of working in Set,

$$\mathfrak{D}\left(\mathfrak{F}\;B\right) \stackrel{g}{\longleftarrow} A$$

$$\mathfrak{D}\left(\mathfrak{F}\;C\right) \stackrel{f}{\longleftarrow} B$$

we seek to work **directly** on the Kleisli category of \mathfrak{D} , that is

thus "abstracting from" monad \mathfrak{D} . But — how tractable is such a category?

Our strategy

It turns out to be the (monoidal) category of left (column) stochastic **matrices**,

$$A \rightarrow_{Set} \mathfrak{D} B \cong A \rightarrow_{CS} B$$

cf. the adjunction

$$\begin{array}{cccc}
A & \mathfrak{D} & A & \stackrel{\eta}{<} & A \\
M & & \mathfrak{L} & M & & & \\
B & \mathfrak{D} & B & & & & & \\
\end{array}$$

where \mathfrak{L} M corresponds to the **linear transformation** captured by matrix M:

$$(\mathfrak{L} M) \vee b = \langle \sum a \in A :: M(b,a) \times (v a) \rangle$$

Our strategy

Another way to put it is

$$M = \lceil f \rceil \iff \langle \forall b, a :: M(b, a) = (f a) b \rangle$$

where $\lceil f \rceil$ is the isomorphism converting probabilistic function f into the corresponding CS-matrix.

For instance, the probabilistic negation function

$$f = id_{0.1} \diamond (\neg)$$

corresponds to matrix

$$\lceil f \rceil = \mathbf{True} \quad \begin{pmatrix} \mathbf{True} & \mathbf{False} \\ 0.1 & 0.9 \\ \mathbf{False} \end{pmatrix}$$

Our strategy

Probabilistic choice is immediate on the matrix side,

$$\lceil f p \diamond g \rceil = p \lceil f \rceil + (1-p) \lceil g \rceil$$

where (+) denotes addition of matrices of the same **type**.

TYPED LINEAR ALGEBRA: homset $A \rightarrow_{CS} B$ contains all matrices indexed by input (**column**) type A and indexed by output (**row**) type B, whose cardinality is bound to ensuring that matrix composition (**multiplication**),

$$(M \cdot N)(r,c) = \langle \sum x :: M(r,x) \times N(x,c) \rangle$$

is well-defined.

Matrix transform

As we wanted, ${\mathfrak D}$ -Kleisli composition becomes matrix multiplication,

$$\lceil f \bullet g \rceil = \lceil f \rceil \cdot \lceil g \rceil$$

and the unit of $\mathfrak D$ (Dirac function) becomes the identity matrix, $\lceil \eta \rceil = id$.

This is a special case of the embedding:

Any normal ("sharp") function f in Set is representable by CS matrix $[\eta \cdot f]$, as expected.

For instance, the embedding of Set isomorphisms leads to **permutation** matrices, that is, CS matrices with exactly one 1 per column and per row.

Column stochasticity

Any CS (column) vector $A \stackrel{\vee}{\longleftarrow} 1$ represents a **distribution**.

CS (row) vector $1 \leftarrow A$ — wholly filled with 1s — is known as the "**bang** vector" — a constant function.

Clearly, ! and id coincide on (scalar) type $1 \rightarrow 1$:

$$1 \stackrel{id}{\longleftarrow} 1 = 1 \stackrel{!}{\longleftarrow} 1$$

Bang is very useful, cf:

Definition: A matrix M is CS iff

$$! \cdot M = !$$

Column stochasticity

Not every matrix combinator preserves column stochasticity; composition (of course) does,

and thus *CS* is a subcategory of Mat_R , but eg. sum does not — $\lceil f \rceil + \lceil g \rceil > !$.

Weighted sum (choice) preserves column stochasticity, $! \cdot (\lceil f \rceil_p \diamond \lceil g \rceil) = !$ as several other useful combinators do (see below).

Column stochasticity

CS has coproducts,

$$(A+B) \rightarrow_{CS} C \cong (A \rightarrow_{CS} C) \times (B \rightarrow_{CS} C)$$

(where A + B is disjoint union) as does Mat_R , offering universal property

$$X = [M|N] \Leftrightarrow X.i_1 = M \wedge X.i_2 = N$$

where $[i_1|i_2] = id$.

[M|N] is one of the basic matrix **block** combinators — it puts M and N side by side ("'junc").

Its dual, $X = \left\lceil \frac{P}{Q} \right\rceil$, puts P on top of Q ("'split").

Back to the main problem

Rewritten in CS, composition of probabilistic MMM reduces to the non-probabilistic case,

$$\lceil m_1;_D m_2 \rceil = \lceil m_1 \rceil; \lceil m_2 \rceil$$

provided one unfolds the definition of $\lceil m_1 \rceil$; $\lceil m_2 \rceil$ in CS rather than in Set.

Our strategy:

Instead of staying in the original category and adapting the definition to the probabilistic case

we

keep the original definition by changing category (CS replaces Set)

Back to the main problem

The advantage is that all *probabilistic accounting* is smoothly carried out by composition in CS, and we don't need to be concerned with that.

However, there is a price to pay, since the definition of $\lceil m_1 \rceil$; $\lceil m_2 \rceil$ is **strongly** monadic:

Which **strong** monads in Set are still strong monads in CS?

Recall the types of the two strengths:

$$\tau_I: (B \times \mathfrak{F} A) \to \mathfrak{F} (B \times A)$$

$$\tau_I: (\mathfrak{F} A \times B) \to \mathfrak{F} (A \times B)$$

What do we know about products (pairing) in CS?

Pairing the outputs of probabilistic f and g is captured by their **Khatri-Rao** matrix product (dropping the $\lceil \cdot \rceil$'s for notation economy):

However — this is a **weak** categorial product:

$$k = f \triangle g \implies \begin{cases} fst \cdot k = f \\ snd \cdot k = g \end{cases}$$
 (1)

cf. the \Rightarrow in (1). Unlike pairing in Set, Khatri-Rao is injective but not surjective.

Weak product (1) still grants the cancellation rule,

$$fst \cdot (f \triangle g) = f \wedge snd \cdot (f \triangle g) = g$$
 (2)

... but **fusion** becomes side-conditioned

$$(f \triangle g) \cdot h = (f \cdot h) \triangle (g \cdot h) \in h \text{ is "sharp" } (100\%)$$
 (3)

and reconstruction doesn't hold in general

$$k = (fst \cdot k) \triangle (snd \cdot k)$$

cf. eg.

$$k : 2 \to 2 \times 3$$

$$k = \begin{bmatrix} 0 & 0.4 \\ 0.2 & 0 \\ 0.2 & 0.1 \\ 0.6 & 0.4 \\ 0 & 0 \\ 0 & 0.1 \end{bmatrix} \qquad (fst \cdot k) \triangle (snd \cdot k) = \begin{bmatrix} 0.24 & 0.4 \\ 0.08 & 0 \\ 0.08 & 0.1 \\ 0.36 & 0.4 \\ 0.12 & 0 \\ 0.12 & 0.1 \end{bmatrix}$$

(k is not recoverable from its projections — Khatri-Rao not surjective).

In general, Khatri-Rao gives rise to the well-known **Kronecker** (tensor) product

$$M \otimes N = (M \cdot fst) \triangle (N \cdot snd)$$

(which is a bifunctor) and absorption holds:

$$(M \otimes N) \cdot (P \triangle Q) = (M.P) \triangle (N.Q)$$

Therefore:

$$M \triangle N = (M \otimes N) \cdot \underbrace{(id \triangle id)}_{\delta}$$

However, δ is not a "uniform copying operation" in the sense of Coecke (2011), for it lacks **naturality** (next slide).

For probabilistic f

evaluate $\delta \cdot f$

delta * f

Then evaluate $(f \otimes f) \cdot \delta$

				delta	а	b
				(a,a)	1	0
				(a,b)	0	0
				(b,a)	0	0
(f x f)	(a,a)	(a,b)	(b,a)	(b,b)	0	1
(F,F)	0.09	0.3	0.3	1	0.09	1
(F,T)	0.21	0	0.7	0	0.21	0
(T,F)	0.21	0.7	0	0	0.21	0
(T,T)	0.49	0	0	0	0.49	0

(f x f) * delta

where
$$\delta : \{a, b\} \rightarrow \{a, b\} \times \{a, b\}$$

where $\delta: \mathbb{B} \to \mathbb{B} \times \mathbb{B}$

Back to probabilistic MMMs

To extend the **bicategorial** construction of (Barbosa, 2001) to the **probabilistic** case we need to prove that h; $k = h \otimes k$ (Kronecker product) is a (sharp) **morphism** between compound Mealy machines m; n and m'; n',

$$m'$$
; $n' \stackrel{h;k}{\lessdot} m$; n (4)

that is,

$$\mathfrak{F}\left((U \times V) \times O\right) \longleftarrow (U \times V) \times I$$

$$\mathfrak{F}\left((h \otimes k) \otimes id\right) \downarrow \qquad \qquad \downarrow (h \otimes k) \otimes id$$

$$\mathfrak{F}\left((U' \times V') \times O'\right) \longleftarrow (U' \times V') \times I'$$

wherever $m' \stackrel{h}{\longleftarrow} m$ and $n' \stackrel{k}{\longleftarrow} n$.

MMM morphisms in CS

The proof of (4) will be (in CS) **exactly the same** as that given by Barbosa (2001) (in Set) for "sharp" Mealy machines.

However, such a proof requires:

- ullet au_I and au_r natural
- ullet μ natural

Which \mathfrak{F} ensure these properties? Probably many but not all — studying this at the moment.

Below we check the 'maybe' functor $\mathfrak{M} A = 1 + A$ in this respect.

This functor is relevant because it captures the **abrupt termination** catastrophic scenario so important in **PRA**.

In general

$$\tau_I: B \times \mathfrak{F} A \to \mathfrak{F} (B \times A)$$

Maybe instance:

$$\tau_I: 1 + B \times A \leftarrow B \times (1 + A)$$

 $\tau_I = (! \oplus id) \cdot dr$

Naturality of τ_l easy to derive from the naturality of dr and that of $! \oplus id$.

The former is an isomorphism, therefore natural in the whole Mat_R . Below we check the naturality of $1 + B \stackrel{! \oplus id}{\longleftarrow} A + B$:

Checking:

$$(id \oplus N) \cdot (! \oplus id) = (! \oplus id) \cdot (M \oplus N)$$

$$\Leftrightarrow \qquad \{ \text{ bifunctor } \cdot \oplus \cdot \}$$

$$! \oplus N = (! \cdot M) \oplus N$$

$$\Leftrightarrow \qquad \{ \text{ assumption: } M \text{ is CS } \}$$

$$! \oplus N = ! \oplus N$$

Thus, in Mat_R the property is constrained by one matrix being CS (represented by f below):

$$(id \oplus N) \cdot (! \oplus id) = (! \oplus id) \cdot (f \oplus N) \tag{5}$$

In CS, (5) always holds.

Impact on the naturality of τ_l (f is CS):

```
\tau_l \cdot (f \otimes (id \oplus M))
        { definition of \tau_l }
(! \oplus id) \cdot dr \cdot (f \otimes (id \oplus M))
        { isomorphism dr is natural }
(! \oplus id) \cdot ((f \otimes id) \oplus (f \otimes M)) \cdot dr
        { naturality of ! \oplus id (5) }
(id \oplus (f \otimes M)) \cdot (! \oplus id) \cdot dr
        { definition of \tau_l }
(id \oplus (f \otimes M)) \cdot \tau_I
```

Naturality of

$$\mu: 1 + (1 + A) \to 1 + A$$

 $\mu = [i_1|id]$

is granted since any category of matrices has coproducts, upon which μ is defined. This is a special case of

$$\mu: \mathfrak{F}_{\mathfrak{B}} \ (\mathfrak{F}_{\mathfrak{B}} \ A) \to \mathfrak{F}_{\mathfrak{B}} \ A$$
 $\mu = ([id|(\mathbf{in} \cdot i_2)])$

where
$$\mathfrak{F}_{\mathfrak{B}}$$
 A \cong $A + \mathfrak{B}$ $(\mathfrak{F}_{\mathfrak{B}} A)$ is the free monad on

polynomial \mathfrak{B} . This works because catamorphisms (vulg. folds) have solutions in CS for such functors.

Weak tupling has opened new perspectives, namely in relation to **Rel** and to **categorial quantum physics**, under the umbrella of **monoidal** categories.

In fact, these also include **FdHilb**, the category of finite dimensional Hilbert spaces. Thus the remarks by Coecke and Paquette, in their *Categories for the Practising Physicist* (Coecke, 2011):

Rel [the category of relations] possesses more 'quantum features' than the category Set of sets and functions [...] The categories FdHilb and Rel moreover admit a categorical matrix calculus.

I agree: Set is too perfect to "belong to reality" ...

Back to main issue:

How does one **compare** CBS architectures with respect to fault propagation?

Relationally, the worst (= most unsafe, **most risky**) system of its type corresponds to the topmost relation (\top) — anything can happen (**chaos**).

For a given type in CS, this corresponds to the probabilistic function which yields **normal distributions** (of outputs) for **every input** (cf. 'completely mixed states').

This tallies with the *partial order on classical and quantum states* discussed in the homonym chapter of (Coecke, 2011), whose maximal elements are the sharp functions.

Summary:

- Risky software systems captured by probabilistic, monadic Mealy machines
- Kleisli categories reduce monadic complexity
- LAoP exploiting the Kleisli category of the (countable support) distribution monad.

Current work:

- Predict which machines are less likely to embark on catastrophic behaviour
- Final (behavioural) semantics of pMMM calls for infinite support distributions
- Measure theory Kerstan and König (2012) provide an excellent starting point
- Are there "better" (less risky) software architectures?

All in all...

On the right hand-side: what I think one should read before attempting doing PRA (probabilistic risk analysis) of software systems.

Enjoy your reading!

- L.S. Barbosa. *Components as Coalgebras*. University of Minho, December 2001. Ph. D. thesis.
- F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, and A. Silva. A coalgebraic perspective on linear weighted automata. *Inf. & Comp.*, 211:77–105, 2012.
- B. Coecke, editor. *New Structures for Physics*. Number 831 in Lecture Notes in Physics. Springer, 2011. doi: 10.1007/978-3-642-12821-9.
- V. Cortellessa and V. Grassi. A modeling approach to analyze the impact of error propagation on reliability of component-based systems. In *Component-Based Software Engineering*, volume 4608 of *LNCS*, pages 140–156. 2007.
- M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic functional programming in Haskell. *J. Funct. Program.*, 16: 21–34, January 2006.
- D. Jackson. A direct path to dependable software. *Commun. ACM*, 52(4):78–88, 2009.

- J. Joyce. Proposed Formal Methods Supplement for RTCA DO 178C, 2011. High Confidence Software and Systems, 11th Annual Conference, 3-6 May 2011, Annapolis.
- H. Kerstan and B. König. Coalgebraic trace semantics for probabilistic transition systems based on measure theory. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012, LNCS, pages 410–424. Springer, 2012.
- A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer-Verlag, 2005. ISBN 0387401156.
- J.N. Oliveira. Typed linear algebra for weighted (probabilistic) automata. In $\it CIAA'12$, volume 7381 of $\it LNCS$, pages 52–65, 2012. doi: 10.1007/978-3-642-31606-7_5.
- Ana Sokolova. Probabilistic systems coalgebraically: A survey. *Theor. Comput. Sci.*, 412(38):5095–5110, 2011.
- M. Stamatelatos and H. Dezfuli. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners, 2011. NASA/SP-2011-3421, 2nd edition, December 2011.