- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

6 giugno 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

ABCDE

 $\circ \circ \circ \circ \circ$ 1 0000 2 \circ 0 0 3 \circ \circ 4 \circ \circ 5 0000 6 \circ \circ 7 $\circ \circ \circ \circ$ 8 \bigcirc \bigcirc 9 00000 10

1. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) \le -1\}$$

valgono

 $\mathbf{A} \colon \{0,0,\pi,\pi\} \quad \mathbf{B} \colon \{-\infty,N.E.,+\infty,N.E.\} \quad \mathbf{C} \colon \mathbf{N}.\mathbf{A}. \quad \mathbf{D} \colon \{-\pi,-\pi,+\infty,N.E.\} \quad \mathbf{E} \colon \{-\infty,N.E.,2\pi,2\pi\}$

2. La funzione
$$f(x) = \begin{cases} \frac{\pi}{3,141} & \text{per } x \leq 0\\ \cos(x) & \text{per } x > 0 \end{cases}$$

A: è continua e derivabile. B: è continua, ma non derivabile. C: non è né continua né derivabile. D: è derivabile, ma non continua. E: N.A.

3. La funzione $f: \mathbb{R}\setminus\{1\} \to \mathbb{R}$ definita da $f(x) = \log(|x-1|)$ è A: monotona crescente B: concava C: iniettiva D: surgettiva E: N.A.

4. L'integrale

$$\int_0^1 |e^x - 2| \, dx$$

vale

A: 0 B:
$$\sqrt{2}$$
 C: $e-3$ D: $-5+e+\log[16]$ E: N.A.

5. Il limite

$$\lim_{x \to +\infty} \frac{\log\left(x^3 + \cos(x)\right)}{\log(x)}$$

vale

A: 0 B:
$$+\infty$$
 C: $1/3$ D: N.A. E: N.E.

6. La retta tangente al grafico di $y(x) = \arcsin(x)$ nel punto $x_0 = \sqrt{2}/2$ vale

A:
$$\frac{4\left(x-\frac{\pi}{4}\right)}{\sqrt{16-\pi^2}} + \arcsin\left(\frac{\pi}{4}\right)$$
 B: x C: N.A. D: $\sqrt{2}\left(x-\frac{1}{\sqrt{2}}\right) + \frac{\pi}{4}$ E: $1 + \arcsin(x)(x-\sqrt{2}/2)$

7. Data $f(x) = 4^{\log(3x)}$. Allora f'(1) è uguale a

A: 0 B:
$$4^3$$
 C: $\log(3)4^{\log(2)}$ D: $4^{\log(3)}\log(4)$ E: N.A.

8. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = \log(2t)$ sono

A:
$$\frac{2t}{\log(2t)} + c$$
 B: N.A. C: $2t\log(2t) + c$ D: N.E. E: $t\log(t) - t + c$

9. Il numero di soluzioni distinte dell'equazione complessa $e^z=1$ è

10. L'insieme di convergenza della serie

$$\sum_{n>\pi}^{\infty} \sin(n^{-\log(\alpha)})$$

è

A:
$$\pi < \alpha < \pi^2$$
 B: $\alpha > 1/e$ C: $\alpha \ge 1$ D: N.A. E: $\alpha > 1$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

6 giugno 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

ABCDE

 $\circ \circ \circ \circ \circ$ 1 0000 2 \circ 0 0 3 \bigcirc \bigcirc \circ 4 \circ \circ 5 0000 6 \circ \circ 7 $\circ \circ \circ \circ$ 8 \bigcirc 9 00000 10

1. L'integrale

$$\int_0^1 |e^x - 2| \, dx$$

vale

A: $-5 + e + \log[16]$ B: e - 3 C: $\sqrt{2}$ D: 0 E: N.A.

2. La funzione $f: \mathbb{R}\setminus\{1\} \to \mathbb{R}$ definita da $f(x) = \log(|x-1|)$ è

A: concava B: iniettiva C: monotona crescente D: surgettiva E: N.A.

3. La funzione $f(x) = \begin{cases} \frac{\pi}{3,141} & \text{per } x \leq 0\\ \cos(x) & \text{per } x > 0 \end{cases}$

A: è derivabile, ma non continua. B: N.A. C: non è né continua né derivabile. D: è continua, ma non derivabile. E: è continua e derivabile.

4. Il numero di soluzioni distinte dell'equazione complessa $e^z=1$ è

A: 2 B: N.A. C: 3 D: 1 E: 4

5. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = \log(2t)$ sono

A: N.A. B: $t \log(t) - t + c$ C: N.E. D: $2t \log(2t) + c$ E: $\frac{2t}{\log(2t)} + c$

6. Data $f(x) = 4^{\log(3x)}$. Allora f'(1) è uguale a

A: 0 B: $\log(3)4^{\log(2)}$ C: 4^3 D: N.A. E: $4^{\log(3)}\log(4)$

7. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{\log(x)}$$

vale

A: 1/3 B: 0 C: $+\infty$ D: N.E. E: N.A.

8. La retta tangente al grafico di $y(x) = \arcsin(x)$ nel punto $x_0 = \sqrt{2}/2$ vale

A:
$$\sqrt{2}\left(x - \frac{1}{\sqrt{2}}\right) + \frac{\pi}{4}$$
 B: N.A. C: $\frac{4\left(x - \frac{\pi}{4}\right)}{\sqrt{16 - \pi^2}} + \arcsin\left(\frac{\pi}{4}\right)$ D: x E: $1 + \arcsin(x)(x - \sqrt{2}/2)$

9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) \le -1\}$$

valgono

A: $\{0,0,\pi,\pi\}$ B: $\{-\infty,N.E.,+\infty,N.E.\}$ C: $\{-\pi,-\pi,+\infty,N.E.\}$ D: $\{-\infty,N.E.,2\pi,2\pi\}$ E: N.A.

10. L'insieme di convergenza della serie

$$\sum_{n>\pi}^{\infty} \sin(n^{-\log(\alpha)})$$

è

A: $\alpha \ge 1$ B: $\alpha > 1$ C: $\pi < \alpha < \pi^2$ D: $\alpha > 1/e$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

6 giugno 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

ABCDE

 $\circ \circ \circ \circ \circ$ 1 0000 2 \circ 0 0 3 \circ \circ 4 \circ \circ 5 0000 6 \circ \circ 7 $\circ \circ \circ \circ$ 8 \bigcirc 9 00000 10

- 1. La funzione $f: \mathbb{R}\setminus\{1\} \to \mathbb{R}$ definita da $f(x) = \log(|x-1|)$ è A: surgettiva B: N.A. C: concava D: monotona crescente E: iniettiva
- 2. Data $f(x) = 4^{\log(3x)}$. Allora f'(1) è uguale a A: N.A. B: $4^{\log(3)} \log(4)$ C: $\log(3) 4^{\log(2)}$ D: 0 E: 4^3
- 3. L'insieme di convergenza della serie

$$\sum_{n>\pi}^{\infty} \sin(n^{-\log(\alpha)})$$

è

A: $\alpha \ge 1$ B: $\alpha > 1$ C: $\pi < \alpha < \pi^2$ D: $\alpha > 1/e$ E: N.A.

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) \le -1\}$$

valgono

$$\mathbf{A} \colon \{-\infty, N.E., 2\pi, 2\pi\} \quad \mathbf{B} \colon \{0, 0, \pi, \pi\} \quad \mathbf{C} \colon \{-\infty, N.E., +\infty, N.E.\} \quad \mathbf{D} \colon \mathbf{N.A.} \quad \mathbf{E} \colon \{-\pi, -\pi, +\infty, N.E.\}$$

5. Il numero di soluzioni distinte dell'equazione complessa $e^z = 1$ è

A: 3 B: 4 C: N.A. D: 2 E: 1

6. La funzione $f(x) = \begin{cases} \frac{\pi}{3, 141} & \text{per } x \leq 0\\ \cos(x) & \text{per } x > 0 \end{cases}$

A: è continua, ma non derivabile. B: N.A. C: è continua e derivabile. D: non è né continua né derivabile. E: è derivabile, ma non continua.

7. Per t>0 le soluzioni dell'equazione differenziale $x'(t)=\log(2t)$ sono

A: $2t \log(2t) + c$ B: N.E. C: $\frac{2t}{\log(2t)} + c$ D: N.A. E: $t \log(t) - t + c$

8. La retta tangente al grafico di $y(x) = \arcsin(x)$ nel punto $x_0 = \sqrt{2}/2$ vale

A:
$$\sqrt{2}\left(x-\frac{1}{\sqrt{2}}\right)+\frac{\pi}{4}$$
 B: x C: $\frac{4\left(x-\frac{\pi}{4}\right)}{\sqrt{16-\pi^2}}+\arcsin\left(\frac{\pi}{4}\right)$ D: N.A. E: $1+\arcsin(x)(x-\sqrt{2}/2)$

9. Il limite

$$\lim_{x \to +\infty} \frac{\log\left(x^3 + \cos(x)\right)}{\log(x)}$$

vale

A: 0 B: 1/3 C: N.E. D: $+\infty$ E: N.A.

10. L'integrale

$$\int_0^1 |\mathbf{e}^x - 2| \, dx$$

vale

A: N.A. B:
$$e - 3$$
 C: 0 D: $-5 + e + \log[16]$ E: $\sqrt{2}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, manuali, solo il foglio A4 di appunti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

6 giugno 2023

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

ABCDE

 $\circ \circ \circ \circ \circ$ 1 0000 2 \circ 0 0 3 \circ \circ 4 \circ \circ 5 0000 6 \circ \circ 7 $\circ \circ \circ \circ$ 8 \bigcirc \bigcirc 9 00000 10

1. La retta tangente al grafico di $y(x) = \arcsin(x)$ nel punto $x_0 = \sqrt{2}/2$ vale

A:
$$\sqrt{2}\left(x - \frac{1}{\sqrt{2}}\right) + \frac{\pi}{4}$$
 B: $1 + \arcsin(x)(x - \sqrt{2}/2)$ C: x D: $\frac{4\left(x - \frac{\pi}{4}\right)}{\sqrt{16 - \pi^2}} + \arcsin\left(\frac{\pi}{4}\right)$ E: N.A.

2. Il numero di soluzioni distinte dell'equazione complessa $e^z=1$ è

3. Per t>0 le soluzioni dell'equazione differenziale $x'(t)=\log(2t)$ sono

A: N.A. B:
$$\frac{2t}{\log(2t)} + c$$
 C: N.E. D: $2t \log(2t) + c$ E: $t \log(t) - t + c$

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x^2) \le -1\}$$

valgono

$$\text{A: N.A.} \quad \text{B: } \{-\infty, N.E., +\infty, N.E.\} \quad \text{C: } \{-\infty, N.E., 2\pi, 2\pi\} \quad \text{D: } \{0, 0, \pi, \pi\} \quad \text{E: } \{-\pi, -\pi, +\infty, N.E.\}$$

5. La funzione
$$f(x) = \begin{cases} \frac{\pi}{3,141} & \text{per } x \leq 0\\ \cos(x) & \text{per } x > 0 \end{cases}$$

A: è derivabile, ma non continua. B: è continua, ma non derivabile. C: non è né continua né derivabile. D: N.A. E: è continua e derivabile.

6. Il limite

$$\lim_{x \to +\infty} \frac{\log \left(x^3 + \cos(x)\right)}{\log(x)}$$

vale

A: N.E. B:
$$1/3$$
 C: N.A. D: $+\infty$ E: 0

7. La funzione $f: \mathbb{R}\setminus\{1\} \to \mathbb{R}$ definita da $f(x) = \log(|x-1|)$ è

A: surgettiva B: iniettiva C: monotona crescente D: N.A. E: concava

8. L'integrale

$$\int_0^1 |\mathbf{e}^x - 2| \, dx$$

vale

A:
$$e - 3$$
 B: 0 C: $\sqrt{2}$ D: $-5 + e + \log[16]$ E: N.A.

9. Data $f(x) = 4^{\log(3x)}$. Allora f'(1) è uguale a

A:
$$4^{\log(3)} \log(4)$$
 B: $\log(3) 4^{\log(2)}$ C: 4^3 D: 0 E: N.A.

10. L'insieme di convergenza della serie

$$\sum_{n>\pi}^{\infty} \sin(n^{-\log(\alpha)})$$

è

A:
$$\alpha \ge 1$$
 B: $\alpha > 1$ C: N.A. D: $\pi < \alpha < \pi^2$ E: $\alpha > 1/e$

6 giugno 2023

(Cognome)	(Nome)	(Numero di matricola)

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc		\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	•	\bigcirc	
4	0	•	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	•	\bigcirc	
6	0	\bigcirc	\bigcirc	•	\bigcirc	_
7	0	\bigcirc	\bigcirc	•	\bigcirc	
8	0	0	\bigcirc	0	•	
9	0	\bigcirc		\bigcirc	\bigcirc	
10		\bigcirc	\bigcirc			

6 giugno 2023

(Cognome)	(Nome)	(Numero di matricola)

•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	•	\bigcirc	
0	\bigcirc	•	0	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	•	
0	\bigcirc	\bigcirc	\bigcirc	•	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	•	\bigcirc	0	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc		

6 giugno 2023

(Cognome)	(Nome)	(Numero di matricola)

1	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	•	\bigcirc	\bigcirc	\bigcirc
3	0	0	0	0	•
4	0	\bigcirc	•	\bigcirc	\bigcirc
5	0	\bigcirc	•	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	•	\bigcirc
7	0	0	0	•	\bigcirc
8	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	0	\bigcirc	\bigcirc	\bigcirc	•
10	0	\bigcirc	\bigcirc	•	\bigcirc

6 giugno 2023

(Cognome)	(Nome)	(Numero di matricola)

1		0	0	\bigcirc	\bigcirc	
2	0	•	0	\bigcirc	0	
3		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	•	\bigcirc	\bigcirc	\bigcirc	
5	0	0	•	\bigcirc	\bigcirc	
6	0	\bigcirc	•	\bigcirc	\bigcirc	
7		0	0	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc		\bigcirc	
9		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

6 giugno 2023

1 Studiare, al variare del parametro $\lambda \neq 0$ la funzione

$$f(x) = e^{\frac{x}{1+\lambda x}},$$

Soluzione. La funzione risulta definita per $x \neq -1/\lambda$ e nel suo dominio è regolare in quanto composizione di funzioni regolari. Agli estremi del dominio si ha il seguente comportamento (indipendentemente dal valore di λ)

$$\lim_{x \to \pm \infty} f(x) = e^{1/\lambda} \quad \lim_{x \to (-1/\lambda)^{-}} f(x) = +\infty \quad \lim_{x \to -(1/\lambda)^{+}} f(x) = 0$$

Calcolando la derivata prima si ha che

$$f'(x) = \frac{e^{\frac{x}{\lambda x + 1}}}{(\lambda x + 1)^2} > 0$$

pertanto la funzione risulta strettamente crescente per $x<-1/\lambda$ e per $x>-1/\lambda$, ma non è crescente su tutto il dominio.

La derivata seconda vale

$$f''(x) = \frac{e^{\frac{x}{\lambda x + 1}} \left(-2\lambda - 2\lambda^2 x + 1\right)}{(\lambda x + 1)^4}$$

che risulta positiva se $-2\lambda - 2\lambda^2 x + 1 > 0$, cioè se

$$x < \frac{1 - 2\lambda}{2\lambda^2},$$

e quindi la funzione risulta convessa in] $-\infty$, $-1/\lambda[\cup] - 1/\lambda$, $\frac{1-2\lambda}{2\lambda^2}[$.

2 Calcolare per n=2,3 l'integrale definito

$$\mathcal{I}_n = \int_0^1 \frac{x^n}{1+x} \, dx.$$

Soluzione. Nel caso n=2 possiamo calcolare l'integrale osservando che

$$\frac{x^2}{1+x} = \frac{x^2 - 1 + 1}{1+x} = \frac{(x-1)(x+1) + 1}{1+x} = x - 1 + \frac{1}{1+x}$$

e quindi

$$\int_0^1 \frac{x^n}{1+x} \, dx = \int_0^1 x - 1 + \frac{1}{1+x} \, dx = \frac{x^2}{2} - x + \log|1+x| \bigg|_0^1 = -\frac{1}{2} + \log(2).$$

Figura 1: Grafico indicativo per $\lambda>0$ e per $\lambda<0$

Nel caso n=3 svolgendo la divisione con resto si ottiene

$$\frac{x^3}{1+x} = x^2 - x + 1 - \frac{1}{x+1}$$

e quindi

$$\int_0^1 \frac{x^3}{1+x} \, dx = \int_0^1 x^2 - x + 1 - \frac{1}{x+1} = \frac{x^3}{3} - \frac{x^2}{2} + x + \log|1+x| \Big|_0^1 = \frac{5}{6} - \log(2).$$

3 Trovare tutte le soluzioni del problema di Cauchy

$$\begin{cases} 2y'(x)y(x) = 1, \\ y(0) = 0, \end{cases}$$

Soluzione. Si tratta di problema di Cauchy relativo ad una equazione a variabili separabili che possiamo riscrivere, anche se in maniera imprecisa¹, come $\int_{y_0}^y 2y dy = \int_0^x dx$ e quindi, dato che y(0) = 0

$$y^2(x) = x$$

che ha come soluzione per x > 0 sia $y(x) = \sqrt{x}$ che $y(x) = -\sqrt{x}$.

4 Sia $f: [0, +\infty[\to \mathbb{R}$ una funzione di classe $C^1([0, +\infty[)$. La funzione ϕ definita con prolungamento pari (riflessione del grafico rispetto alla retta $\{x=0\}$) risulta continua su tutto \mathbb{R} . Determinare quando risulta anche derivabile.

Sia quindi definita la funzione $F: \mathbb{R} \to \mathbb{R}$ come segue

$$F(x) := \begin{cases} f(x) & \text{per } x \ge 0, \\ \alpha_1 f(-x) + \alpha_2 f(-x/2) & \text{per } x < 0. \end{cases}$$

Determinare se esistono $\alpha_1, \alpha_2 \in \mathbb{R}$ in maniera tale che $F \in C^1(\mathbb{R})$

Soluzione La funzione $\phi(x)$ risulta continua e derivabile per $x \neq 0$. Per x = 0 osserviamo che $\lim_{x\to 0^+} \phi'(x) = \lim_{x\to 0^+} f'(x)$, mentre dato che per x < 0 si ha $\phi(x) = f(-x)$, otteniamo che $\lim_{x\to 0^-} \phi'(x) = \lim_{x\to 0^-} -f'(-x) = \lim_{x\to 0^+} -f'(x) = -f'(0)$ e pertanto se $f'(0) \neq 0$ la funzione ϕ non risulta derivabile per x = 0.

Considerando la funzione F osserviamo che risulta continua se

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} \alpha_1 f(-x) + \alpha_2 f(-x/2),$$

e quindi $f(0) = \alpha_1 f(0) + \alpha_2 f(0)$ che implica la condizione

$$1 = \alpha_1 + \alpha_2. \tag{1}$$

Passando alla derivata prima si ha

$$F'(x) := \begin{cases} f'(x) & \text{per } x > 0, \\ -\alpha_1 f'(-x) - \frac{\alpha_2}{2} f'(-x/2) & \text{per } x < 0. \end{cases}$$

e quindi la derivabilità richiede la condizione

$$1 = -\alpha_1 - \frac{\alpha_2}{2},\tag{2}$$

e risolvendo il sistema di due equazioni e due incognite (1)-(2) si ha $\alpha_1 = -3$ e $\alpha_2 = 4$.

 $^{^{1}\}mathrm{dovremmo}$ usare differenti variabili mute di integrazione