Supplementary Materials for Interactive Q-learning for Quantiles

Kristin A. Linn¹, Eric B. Laber², Leonard A. Stefanski²

¹Department of Biostatistics and Epidemiology

University of Pennsylvania, Philadelphia, PA 19104

²Department of Statistics

North Carolina State University, Raleigh, NC 27695

email: klinn@upenn.edu

December 22, 2015

1. PROOF OF THEOREM 2.1

The following conditions are restated from the main paper: (C1) consistency, so that $Y = Y^*(A_1, A_2)$; (C2) sequential ignorability (Robins, 2004), i.e., $A_t \perp W \mid \mathbf{H}_t$ for t = 1, 2; and (C3) positivity, so that there exists $\epsilon > 0$ for which $\epsilon < \operatorname{pr}(A_t = a_t | \mathbf{H}_t) < 1 - \epsilon$ with probability one for all a_t , t = 1, 2. Lemma 2.1 is useful in the proof of Theorem 2.1 below.

Lemma 2.1. Assume $pr\{Y^*(\boldsymbol{\pi}) \leq y\}$ is continuous for all fixed $\boldsymbol{\pi}$. Then, $pr\{Y^*(\boldsymbol{\pi}^y) \leq y\}$ is continuous in y in a neighborhood of y_{τ}^* .

Proof. Let $\epsilon > 0$ be fixed and arbitrary. Choose $\delta_1 > 0$, $\delta_2 > 0$, and $\delta_3 > 0$ such that

$$\begin{aligned}
&\left| \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*}+\delta_{1}}) \leq y_{\tau}^{*} + \delta_{1} \right\} - \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*}+\delta_{1}}) \leq y_{\tau}^{*} \right\} \right| &< \frac{\epsilon}{3} \\
&\left| \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*}-\delta_{2}}) \leq y_{\tau}^{*} \right\} - \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*}-\delta_{2}}) \leq y_{\tau}^{*} - \delta_{2} \right\} \right| &< \frac{\epsilon}{3} \\
&\left| \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*}}) \leq y_{\tau}^{*} + \delta_{3} \right\} - \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*}}) \leq y_{\tau}^{*} \right\} \right| &< \frac{\epsilon}{3},
\end{aligned}$$

and let $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Then,

$$\begin{aligned} \left| \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*} + \delta}) \leq y_{\tau}^{*} + \delta \right\} - \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*} - \delta}) \leq y_{\tau}^{*} - \delta \right\} \right| \\ &\leq \left| \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*} + \delta}) \leq y_{\tau}^{*} + \delta \right\} - \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*} + \delta}) \leq y_{\tau}^{*} \right\} \right| \\ &+ \left| \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*} - \delta}) \leq y_{\tau}^{*} \right\} - \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*} - \delta}) \leq y_{\tau}^{*} - \delta \right\} \right| \\ &+ \left| \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*}}) \leq y_{\tau}^{*} + \delta \right\} - \operatorname{pr} \left\{ Y^{*}(\boldsymbol{\pi}^{y_{\tau}^{*}}) \leq y_{\tau}^{*} \right\} \right| < \epsilon, \end{aligned}$$

where we have used the triangle inequality and the fact that

$$\begin{aligned} \left| \operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}^{y_{\tau}^* + \delta}) \leq y_{\tau}^* \right\} - \operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}^{y_{\tau}^* - \delta}) \leq y_{\tau}^* \right\} \right| \\ &\leq \left| \operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}^{y_{\tau}^*}) \leq y_{\tau}^* + \delta \right\} - \operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}^{y_{\tau}^*}) \leq y_{\tau}^* \right\} \right|. \end{aligned}$$

Theorem 2.1. Let $\epsilon > 0$ and $\tau \in (0,1)$ be arbitrary but fixed. Assume (C1)-(C3) and that the map $y \mapsto R(y; \boldsymbol{x}_1, a_1, \boldsymbol{x}_2, a_2)$ from \mathbb{R} into (0,1) is continuous and strictly increasing in a neighborhood of τ for all $\boldsymbol{x}_1, a_1, \boldsymbol{x}_2$, and a_2 . Then, $\inf\{y : pr\{Y^*(\boldsymbol{\pi}^{y^*_{\tau}}) \leq y\} \geq \tau\} = y^*_{\tau}$.

Proof. Define $\tilde{y} = \inf \operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}^{y^*_{\tau}}) \leq y \right\} \geq \tau$, and assume $\tilde{y} < y^*_{\tau}$. The assumption that $R(y; \boldsymbol{x}_1, a_1, \boldsymbol{x}_2, a_2)$ is continuous and strictly increasing for all $\boldsymbol{x}_1, a_1, \boldsymbol{x}_2$, and a_2 implies $\operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}) \leq y \right\}$ is continuous and strictly increasing for all fixed $\boldsymbol{\pi}$. Thus, $\operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}^{y^*_{\tau}}) \leq \tilde{y} \right\} = \tau$. By Lemma 2.1, $\operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}^{y^*_{\tau}}) \leq y^*_{\tau} \right\} = \tau$. However, this implies $\operatorname{pr} \left\{ Y^*(\boldsymbol{\pi}^{y^*_{\tau}}) \leq y \right\}$ is not strictly increasing, which is a contradiction. Thus, $\tilde{y} = y^*_{\tau}$ and $\boldsymbol{\pi}^{y^*_{\tau}}$ is an optimal regime.

2. THRESHOLD INTERACTIVE Q-LEARNING WITH SECOND-STAGE HETEROSKEDASTICITY

Here we assume

$$Y = m(\mathbf{H}_2) + A_2 c(\mathbf{H}_2) + \eta(\mathbf{H}_2, A_2)\epsilon, \tag{1}$$

where we define $\eta(\mathbf{H}_2, A_2) = \exp\{r(\mathbf{H}_2) + A_2 s(\mathbf{H}_2)\}$ for functions r and s. In addition, $E(\epsilon) = 0$, $\operatorname{var}(\epsilon) = 1$, and ϵ is independent of \mathbf{H}_2 and A_2 . Thus, the conditional variance of Y given \mathbf{H}_2 and A_2 is log-linear. Under model (1), the λ -optimal second-stage decision rule for a patient presenting with \mathbf{h}_2 is

$$\pi_{2,\lambda}^{\text{TIQ}}(\boldsymbol{h}_2) = \operatorname{sgn}\left[\frac{\lambda - m(\boldsymbol{h}_2) + c(\boldsymbol{h}_2)}{\exp\left\{r(\boldsymbol{h}_2) - s(\boldsymbol{h}_2)\right\}} - \frac{\lambda - m(\boldsymbol{h}_2) - c(\boldsymbol{h}_2)}{\exp\left\{r(\boldsymbol{h}_2) + s(\boldsymbol{h}_2)\right\}}\right].$$
 (2)

To see this, define

$$\operatorname{pr}^{\pi_{1}, \pi_{2}}(Y > \lambda) = E[E\{\operatorname{pr}^{\pi_{1}, \pi_{2}}(Y > \lambda \mid \boldsymbol{H}_{2}, a_{2}) \mid_{a_{2} = \pi_{2}(\boldsymbol{H}_{2})} \mid \boldsymbol{H}_{1}, a_{1}\} \mid_{a_{1} = \pi_{1}(\boldsymbol{H}_{1})}]$$

$$= E\left\{E\left(\operatorname{pr}\left[\epsilon > \frac{\lambda - m(\boldsymbol{H}_{2}) - \pi_{2}(\boldsymbol{H}_{2})c(\boldsymbol{H}_{2})}{\exp\{r(\boldsymbol{H}_{2}) + \pi_{2}(\boldsymbol{H}_{2})s(\boldsymbol{H}_{2})\}}\right] \mid \boldsymbol{H}_{1}, \pi_{1}(\boldsymbol{H}_{1})\right)\right\}.$$

To maximize the previous expression, choose $\pi_2(\mathbf{h}_2) \in \{-1, 1\}$ to minimize

$$\frac{\lambda - m(\boldsymbol{h}_2) - \pi_2(\boldsymbol{h}_2)c(\boldsymbol{h}_2)}{\exp\left\{r(\boldsymbol{h}_2) + \pi_2(\boldsymbol{h}_2)s(\boldsymbol{h}_2)\right\}},$$

leading to $\pi_{2,\lambda}^{\text{TIQ}}(\boldsymbol{h}_2)$ in (2). Define $G(\cdot,\cdot,\cdot,\cdot|\boldsymbol{h}_1,a_1)$ to be the joint conditional distribution of $\{m(\boldsymbol{h}_2),c(\boldsymbol{h}_2),r(\boldsymbol{h}_2),s(\boldsymbol{h}_2)\}$ given $\boldsymbol{H}_1=\boldsymbol{h}_1$ and $A_1=a_1$. Let $F_{\epsilon}(\cdot)$ denote the cumulative distribution function of ϵ . The first-stage λ -optimal decision rule is

$$\pi_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1) = \underset{a_1}{\operatorname{arg\,min}} \int F_{\epsilon} \left(\frac{\lambda - t - \operatorname{sgn}\{K(t, u, v, w)\}u}{\exp\left[v + \operatorname{sgn}\{K(t, u, v, w)\}w\right]} \right) G(t, u, v, w \mid \boldsymbol{h}_1, a_1) dt du dv dw,$$

where

$$K(t, u, v, w) = \frac{\lambda - t + u}{\exp(v - w)} - \frac{\lambda - t - u}{\exp(v + w)}.$$

Thus, estimation of $\pi_{1,\lambda}^{\text{TIQ}}$ involves specifying estimators for $F_{\epsilon}(\cdot)$ and the four-dimensional conditional density $G(\cdot,\cdot,\cdot,\cdot \mid \mathbf{h}_1,a_1)$. Alternatively, a suitable transformation of the response may be employed to obtain constant variance at the second stage, and then the methods described in Section 2 of the main paper may be applied.

3. THRESHOLD INTERACTIVE Q-LEARNING WITH PATIENT-SPECIFIC THRESHOLDS

Denote the optimal second-stage rule for patient-specific threshold $\lambda(\boldsymbol{h}_t)$ by $\pi_{2,\lambda(\boldsymbol{h}_t)}^{\text{TIQ}}(\boldsymbol{h}_2)$, where t=1 or t=2, depending on the scientific interest and trial design. Then, $\pi_{2,\lambda(\boldsymbol{h}_t)}^{\text{TIQ}}(\boldsymbol{h}_2)=\pi_2^*(\boldsymbol{h}_2)=\text{sgn}\{c(\boldsymbol{h}_2)\}$ whether t=1 or 2. To see this, note for fixed π_1 ,

$$\operatorname{pr}^{\pi_1, \, \pi_2} \{ Y > \lambda(\boldsymbol{H}_t) \} = E(E[\operatorname{pr}^{\pi_1, \, \pi_2} \{ Y > \lambda(\boldsymbol{H}_t) \mid \boldsymbol{H}_2, a_2 \} \mid_{a_2 = \pi_2(\boldsymbol{H}_2)} \mid \boldsymbol{H}_1, a_1] \mid_{a_1 = \pi_1(\boldsymbol{H}_1)}.$$

Because $\mathbf{H}_1 \subset \mathbf{H}_2$, conditioning on \mathbf{H}_2 reduces $\lambda(\mathbf{H}_t)$ to a constant whether t=1 or 2. Thus, using the set-up in Section 2 of the main paper, the derivation of the optimal second-stage rule in that section applies, giving the result that $\pi_{2,\lambda(\mathbf{h}_t)}^{\text{TIQ}}(\mathbf{h}_2) = \pi_2^*(\mathbf{h}_2) = \text{sgn}\{c(\mathbf{h}_2)\}.$

When the threshold depends on the first-stage history, $\lambda(\mathbf{h}_1)$ replaces λ in Step TIQ.4 of the TIQ-learning algorithm in Section 2.1 of the main paper, and no additional modeling is needed. When the threshold depends on the second-stage history, the joint conditional distribution of $\{\lambda(\mathbf{H}_2), m(\mathbf{H}_2), c(\mathbf{H}_2)\}$ given $\mathbf{H}_1 = \mathbf{h}_1$ and $A_1 = a_1$ must be estimated. Let $G(\cdot, \cdot, \cdot \mid \mathbf{h}_1, a_1)$ denote this trivariate distribution and $\widehat{G}(\cdot, \cdot, \cdot \mid \mathbf{h}_1, a_1)$ an estimator. In this case, the estimated optimal first-stage decision rule is

$$\widehat{\pi}_{1,\lambda(\boldsymbol{h}_2)}^{\text{TIQ}}(\boldsymbol{h}_1) = \operatorname*{arg\,min}_{a_1} \int \widehat{F}_{\epsilon} \left(t - u - |v| \right) \widehat{G}(t, u, v \mid \boldsymbol{h}_1, a_1) dt du dv.$$

Thus, the first-stage optimal treatment is based on the average of all possible future patient-specific thresholds, $\lambda(\mathbf{H}_2)$, given the observed first-stage history, \mathbf{h}_1 .

4. QUANTILE INTERACTIVE Q-LEARNING OPTIMAL SECOND-STAGE DECISION RULE

We show the τ -optimal QIQ-learning second-stage rule is $\pi_{2,\tau}^{\text{QIQ}}(\boldsymbol{h}_2) = \text{sgn}\{c(\boldsymbol{h}_2)\}$ under the assumption of constant variance at the second-stage. Define the set $S^{\pi_1, \pi_2} \triangleq \{y : \text{pr}^{\pi_1, \pi_2}(Y \leq y) \geq \tau\}$, so that $q^{\pi_1, \pi_2}(\tau) = \inf S^{\pi_1, \pi_2}$. In Section 2.1 of the main paper, we showed $\text{pr}^{\pi_1, \pi_2}(Y \leq y) \geq \text{pr}^{\pi_1, \pi_2}(Y \leq y)$ for arbitrary y, and hence for all fixed y, where we define $\pi_2^*(\boldsymbol{h}_2) = \text{sgn}\{c(\boldsymbol{h}_2)\}$. It follows that $S^{\pi_1, \pi_2}(T) \leq S^{\pi_1, \pi_2}(T)$. Hence, $\text{inf } S^{\pi_1, \pi_2}(T) \geq \text{pr}^{\pi_1, \pi_2}(T)$ equivalently, $q^{\pi_1, \pi_2}(T) \geq q^{\pi_1, \pi_2}(T)$. Thus, $\pi_{2,\tau}^{\text{QIQ}}(\boldsymbol{h}_2) = \pi_2^*(\boldsymbol{h}_2) = \text{sgn}\{c(\boldsymbol{h}_2)\}$ is optimal because this inequality holds for arbitrary π_1 and π_2 .

5. PROOF OF LEMMA 3.1 IN SECTION 3

Lemma 3.1 from Section 3 of the main paper is restated below.

- (A) $y < y_{\tau}^*$ implies $y < f(y) \le y_{\tau}^*$;
- (B) $f(y_{\tau}^{*-}) \triangleq \lim_{\delta \downarrow 0} f(y_{\tau}^{*} \delta) = y_{\tau}^{*};$
- (C) $f(y_{\tau}^*) \leq y_{\tau}^*$ with strict inequality if there exists $\delta > 0$ such that $\operatorname{pr}^{\Gamma(\cdot, y_{\tau}^*), \pi_2^*}(Y \leq y_{\tau}^* \delta) \geq \tau;$
- (D) If $F_{\epsilon}(\cdot)$ is continuous and strictly increasing, then $f(y_{\tau}^*) = y_{\tau}^*$.

Proof. We showed below expression (8) of Section 3 in the main paper that $f(y) \leq y_{\tau}^*$ for all y. We prove the remainder of (A) by contradiction. Assume there exists a $y_0 < y_{\tau}^*$ such that $y_0 \geq f(y_0)$. It follows that

$$\tau \le \operatorname{pr}^{\Gamma(\cdot, y_0), \pi_2^*} \{ Y \le f(y_0) \} \le \operatorname{pr}^{\Gamma(\cdot, y_0), \pi_2^*} (Y \le y_0)$$

because for the fixed regime $\pi = \{\Gamma(\cdot, y_0), \pi_2^*\}$, $\operatorname{pr}^{\Gamma(\cdot, y_0), \pi_2^*}\{Y \leq y\}$ is a distribution function and nondecreasing in y. However, we have a contradiction because by definition, y_{τ}^* is the smallest y satisfying $\operatorname{pr}^{\Gamma(\cdot, y), \pi_2^*}(Y \leq y) \geq \tau$.

Using (A) and the fact that for $\delta > 0$, $y_{\tau}^* - \delta < y_{\tau}^*$ implies $y_{\tau}^* - \delta < f(y_{\tau}^* - \delta)$, we see that $y_{\tau}^* - \delta < f(y_{\tau}^* - \delta) \le y_{\tau}^*$. Letting $\delta \to 0$ proves (B).

Given that $f(y) \leq y_{\tau}^*$ for all y, $f(y_{\tau}^*) \leq y_{\tau}^*$ and thus in light of (B) the inequality is strict when f(y) is not left continuous at y_{τ}^* . If there exists $\delta > 0$ such that $\operatorname{pr}^{\Gamma(\cdot, y_{\tau}^*), \pi_2^*}(Y \leq y_{\tau}^* - \delta) \geq \tau$, then because $f(y_{\tau}^*)$ is the smallest \tilde{y} for which $\operatorname{pr}^{\Gamma(\cdot, y_{\tau}^*), \pi_2^*}(Y \leq \tilde{y}) \geq \tau$ it must be that $f(y_{\tau}^*) \leq y_{\tau}^* - \delta < y_{\tau}^*$, proving (C).

When $F_{\epsilon}(\cdot)$ is continuous and strictly increasing, $\operatorname{pr}^{\Gamma(\cdot,y_{\tau}^*),\pi_2^*}(Y\leq y)$ is also continuous and strictly increasing because it is an expectation of a continuous, strictly increasing function of y. It can be shown that for any fixed regime $\pi = (\pi_1, \pi_2)$, $\operatorname{pr}^{\pi_1, \pi_2}(Y\leq y)$ continuous in y implies $\operatorname{pr}^{\Gamma(\cdot,y),\pi_2^*}(Y\leq y)$ is also continuous. Suppose toward a contradiction that $f(y_{\tau}^*) < y_{\tau}^*$. When $\operatorname{pr}^{\Gamma(\cdot,y_{\tau}^*),\pi_2^*}(Y\leq y)$ is continuous and strictly increasing, the Mean Value Theorem guarantees existence of exactly one point $\tilde{y} \in \mathbb{R}$ such that $\operatorname{pr}^{\Gamma(\cdot,y_{\tau}^*),\pi_2^*}\{Y\leq \tilde{y}\}=\tau$. By definition, $f(y_{\tau}^*)$ must be this point, and thus $\operatorname{pr}^{\Gamma(\cdot,y_{\tau}^*),\pi_2^*}\{Y\leq f(y_{\tau}^*)\}=\tau$. The assumption $f(y_{\tau}^*) < y_{\tau}^*$ implies $\operatorname{pr}^{\Gamma(\cdot,y_{\tau}^*),\pi_2^*}\{Y\leq y_{\tau}^*\} > \tau$. However, when $\operatorname{pr}^{\Gamma(\cdot,y),\pi_2^*}(Y\leq y)$ is continuous, $\operatorname{pr}^{\Gamma(\cdot,y_{\tau}^*),\pi_2^*}\{Y\leq y_{\tau}^*\}=\tau$ by the Mean Value Theorem and by the definition of y_{τ}^* . Thus, we have a contradiction and conclude that (D) holds.

6. QUANTILE INTERACTIVE Q-LEARNING TOY EXAMPLE: $f(y_{\tau}^*) \neq y_{\tau}^*$ Suppose all subjects have the same first-stage covariates, i.e., $\boldsymbol{H}_1 = \boldsymbol{h}_1$ with probability one. Fix $\tau = 0.5$ and let $p(y \mid \boldsymbol{h}_1, a_1)$ denote the conditional density of Y given $\boldsymbol{H}_1 = \boldsymbol{h}_1$ and $A_1 = a_1$. Suppose

$$p(y \mid \mathbf{h}_1, 1) = \begin{cases} -2.5 \text{ with probability } 0.1 \\ -1.5 \text{ with probability } 0.2 \\ -0.5 \text{ with probability } 0.2 \\ 0.5 \text{ with probability } 0.2 \\ 1.5 \text{ with probability } 0.2 \\ 2.5 \text{ with probability } 0.1 \end{cases}$$

and

$$p(y \mid \mathbf{h}_1, -1) = \begin{cases} \text{Uniform}(-2, 0) \text{ with probability } 0.5\\ 0 \text{ with probability } 0.5. \end{cases}$$

Then, $f(y_{\tau}^*) < y_{\tau}^*$ because $y_{\tau}^* = 0$ and $f(y_{\tau}^*) = -1$. Recall $y_{\tau}^* = \inf\{y : \operatorname{pr}^{\Gamma(\cdot, y), \pi_2^*}(Y \leq y) \geq \tau\}$ by definition. Figure 1 provides plots of the cumulative distribution functions of Y when $A_1 = -1, 1$. In this example, $f(y_{\tau}^{*-}) = y_{\tau}^*$, where y_{τ}^{*-} denotes the left limit of y_{τ}^* .

7. PROOFS OF THEOREMS 3.2 AND 3.3

The following assumptions are used to establish consistency of the threshold exceedance probability and quantile that result from applying the estimated TIQ- and QIQ-learning optimal regimes, respectively.

A1. The method used to estimate $m(\cdot)$ and $c(\cdot)$ results in estimators $\widehat{m}(\mathbf{h}_2)$ and $\widehat{c}(\mathbf{h}_2)$ that converge in probability to $m(\mathbf{h}_2)$ and $c(\mathbf{h}_2)$, respectively, for each \mathbf{h}_2 .

A2. $F_{\epsilon}(\cdot)$ is continuous, $\widehat{F}_{\epsilon}(\cdot)$ is a cumulative distribution function, and $\widehat{F}_{\epsilon}(y)$ converges in probability to $F_{\epsilon}(y)$ uniformly in y.

A3. For each fixed h_1 and a_1 , $\int |d\widehat{G}(u,v \mid h_1,a_1) - dG(u,v \mid h_1,a_1)|$ converges to zero in

Figure 1: Cumulative distribution functions of Y given $\mathbf{H}_1 = \mathbf{h}_1$ and $A_1 = -1, 1$. The optimal $\tau = 0.5$ quantile is $y_{\tau}^* = 0$. However, if patients are treated with the treatment that minimizes $\operatorname{pr}(Y \leq y_{\tau}^* \mid \mathbf{h}_1, a_1)$, namely $a_1 = 1$, the resulting quantile, $f(y_{\tau}^*) = -0.5$, is suboptimal.

probability.

A4. For each fixed a_1 , $n^{-1} \sum_{i=1}^n \int |d\widehat{G}(u, v \mid \boldsymbol{H}_{1i}, a_1) - dG(u, v \mid \boldsymbol{H}_{1i}, a_1)|$ converges to zero in probability.

Theorem 3.2. (Consistency of TIQ-learning) Assume A1–A3 and fix $\lambda \in \mathbb{R}$. Then $pr^{\widehat{\boldsymbol{\pi}}_{\lambda}^{TIQ}}(Y > \lambda)$ converges in probability to $pr^{\boldsymbol{\pi}_{\lambda}^{TIQ}}(Y > \lambda)$, where $\widehat{\boldsymbol{\pi}}_{\lambda}^{TIQ} = (\widehat{\pi}_{1,\lambda}^{TIQ}, \widehat{\pi}_{2}^{*})$.

Theorem 3.3. (Consistency of QIQ-learning) Assume A1-A4. Then, $q^{\widehat{\boldsymbol{\pi}}_{\tau}^{QIQ}}(\tau)$ converges in proability to y_{τ}^* for any fixed τ , where $\widehat{\boldsymbol{\pi}}_{\tau}^{QIQ} = (\widehat{\Gamma}(\cdot, \widehat{y}_{\tau}^*), \widehat{\pi}_2^*)$.

Capital letters denote random variables and lower case letters denote observed realizations. Let $\mathcal{D} = \{X_{1i}^{\mathsf{T}}, A_{1i}, X_{2i}^{\mathsf{T}}, A_{2i}, Y_i\}_{i=1}^n$ denote the observed data, which are n independent and identically distributed realizations of the trajectory $(X_1^{\mathsf{T}}, A_1, X_2^{\mathsf{T}}, A_2, Y)^{\mathsf{T}}$. Let $(X_1^{\mathsf{T}}, A_1, X_2^{\mathsf{T}}, A_2, Y)^{\mathsf{T}}$ be a trajectory that is independent of \mathcal{D} but identically distributed. Let $H_1 = X_1$ and $H_2 = (X_1^{\mathsf{T}}, A_1, X_2^{\mathsf{T}})^{\mathsf{T}}$ denote the full patient histories available prior to treatment at stages one and two. When necessary, we use $H_2^{A_1}$ and $H_2^{\pi_1(H_1)}$ to emphasize dependence of H_2 on the first-stage treatment.

Using the set-up and assumptions described in Section 2, the optimal and estimated optimal second-stage rules for a patient presenting with \mathbf{h}_2 are $\pi_2^*(\mathbf{h}_2) = \operatorname{sgn}\{c(\mathbf{h}_2)\}$ and $\widehat{\pi}_2^*(\mathbf{h}_2) = \operatorname{sgn}\{\widehat{c}(\mathbf{h}_2)\}$. In addition, we use the following notation first introduced in Section 2.1:

$$d(\boldsymbol{h}_{1},y) = \int F_{\epsilon}(y-u-|v|)dG(u,v\mid\boldsymbol{h}_{1},-1) - \int F_{\epsilon}(y-u-|v|)dG(u,v\mid\boldsymbol{h}_{1},1),$$

$$\widehat{d}(\boldsymbol{h}_{1},y) = \int \widehat{F}_{\epsilon}(y-u-|v|)d\widehat{G}(u,v\mid\boldsymbol{h}_{1},-1) - \int \widehat{F}_{\epsilon}(y-u-|v|)d\widehat{G}(u,v\mid\boldsymbol{h}_{1},1).$$

With this notation, the optimal and estimated optimal first-stage rules for TIQ-learning are $\pi_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1) = \text{sgn}\{d(\boldsymbol{h}_1,\lambda)\}$ and $\widehat{\pi}_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1) = \text{sgn}\{\widehat{d}(\boldsymbol{h}_1,\lambda)\}$. We define sgn(0) = 1. The following Lemmas are useful for the proofs of Theorems 3.2 and 3.3. In some of the Lemmas, we use Δ with or without a subscript to denote a difference of two quantities; this notation is used locally, and thus, Δ appears in multiple Lemmas representing different expressions.

Lemma 7.1. If X_n converges to μ in probability, then $T_n = |sgn(X_n) - sgn(\mu)| \mathbb{1}_{|\mu|>0}$ converges to zero in probability, and $E(T_n)$ converges to zero as n converges to ∞ .

Proof. If $\mu = 0$, then $\operatorname{pr}(T_n = 0) = 1$ for all n. If $\mu > 0$, then $T_n = |\operatorname{sgn}(X_n) - 1|$ and $\operatorname{pr}(T_n > 0) = \operatorname{pr}(X_n < 0)$, which converges to zero. If $\mu < 0$, then $T_n = |\operatorname{sgn}(X_n) + 1|$ and $\operatorname{pr}(T_n > 0) = \operatorname{pr}(X_n > 0)$, which converges to zero. Because $0 \le T_n \le 2$ for all n, it follows that $E(T_n)$ converges to zero as n converges to ∞ .

Lemma 7.2. Assume A2 and A3. Then, for fixed \mathbf{h}_1 , $\sup_y |\widehat{d}(\mathbf{h}_1, y) - d(\mathbf{h}_1, y)|$ converges to zero.

Proof. By the triangle inequality,

$$\sup_{y} |\widehat{d}(\boldsymbol{h}_{1}, y) - d(\boldsymbol{h}_{1}, y)| \leq \sup_{y} |\Delta(y; \boldsymbol{h}_{1}, -1)| + \sup_{y} |\Delta(y; \boldsymbol{h}_{1}, 1)|,$$

where $\Delta(y; \boldsymbol{h}_1, a_1) = \int \widehat{F}_{\epsilon}(y-u-|v|) d\widehat{G}(u, v \mid \boldsymbol{h}_1, a_1) - \int F_{\epsilon}(y-u-|v|) dG(u, v \mid \boldsymbol{h}_1, a_1)$. Thus, we show $\sup_y |\Delta(y; \boldsymbol{h}_1, a_1)|$ converges in probability to zero for an arbitrary a_1 . Applying the triangle inequality leads to the upper bound

An upper bound on the right-hand side of (3) is

$$\int \left| d\widehat{G}(u, v \mid \mathbf{h}_{1}, a_{1}) - dG(u, v \mid \mathbf{h}_{1}, a_{1}) \right| + \sup_{w} \left| \widehat{F}_{\epsilon}(w) - F_{\epsilon}(w) \right| \int dG(u, v \mid \mathbf{h}_{1}, a_{1})$$

$$= \int \left| d\widehat{G}(u, v \mid \mathbf{h}_{1}, a_{1}) - dG(u, v \mid \mathbf{h}_{1}, a_{1}) \right| + \sup_{w} \left| \widehat{F}_{\epsilon}(w) - F_{\epsilon}(w) \right|, \quad (4)$$

where we have used the fact that $\sup_{w} \widehat{F}_{\epsilon}(w) = 1$ and $\int dG(u, v \mid \mathbf{h}_{1}, a_{1}) = 1$. The first and second terms in (4) are $o_{p}(1)$ by assumptions A3 and A2.

Lemma 7.3. Assume A1. Then, $\sup_{\pi_1,y} \left| pr^{\pi_1,\widehat{\pi}_2^*}(Y \leq y) - pr^{\pi_1,\pi_2^*}(Y \leq y) \right|$ converges to zero in probability.

Proof. Define $\widehat{\Delta}_{\epsilon}(y; \boldsymbol{h}_{2}^{a_{1}}) = F_{\epsilon}[y - m(\boldsymbol{h}_{2}^{a_{1}}) - \operatorname{sgn}\{\widehat{c}(\boldsymbol{h}_{2}^{a_{1}})\} c(\boldsymbol{h}_{2}^{a_{1}})] - F_{\epsilon}\{y - m(\boldsymbol{h}_{2}^{a_{1}}) - |c(\boldsymbol{h}_{2}^{a_{1}})|\}$ and $\widehat{\Delta}_{c}(\boldsymbol{h}_{2}^{a_{1}}) = |\operatorname{sgn}\{\widehat{c}(\boldsymbol{h}_{2}^{a_{1}})\} - \operatorname{sgn}\{c(\boldsymbol{h}_{2}^{a_{1}})\}| \mathbb{1}_{|c(\boldsymbol{h}_{2}^{a_{1}})|>0}$. Note that for each $\boldsymbol{h}_{2}^{a_{1}}$, $\left|\widehat{\Delta}_{\epsilon}(y; \boldsymbol{h}_{2}^{a_{1}})\right| \leq \widehat{\Delta}_{c}(\boldsymbol{h}_{2}^{a_{1}})$; thus, using definitions given in Section 3,

$$\sup_{\pi_{1},y} \left| \operatorname{pr}^{\pi_{1},\widehat{\pi}_{2}^{*}} (Y \leq y) - \operatorname{pr}^{\pi_{1},\pi_{2}^{*}} (Y \leq y) \right| \\
= \sup_{\pi_{1},y} \left| \int \int \widehat{\Delta}_{\epsilon} \{y; \boldsymbol{h}_{2}^{\pi_{1}(\boldsymbol{h}_{1})} \} dF_{\boldsymbol{H}_{2} \mid \boldsymbol{H}_{1},A_{1}} \{\boldsymbol{h}_{2} \mid \boldsymbol{h}_{1},\pi_{1}(\boldsymbol{h}_{1}) \} dF_{\boldsymbol{h}_{1}}(\boldsymbol{h}_{1}) \right| \\
\leq \sup_{\pi_{1},y} \int \int \left| \widehat{\Delta}_{\epsilon} \{y; \boldsymbol{h}_{2}^{\pi_{1}(\boldsymbol{h}_{1})} \} \right| dF_{\boldsymbol{H}_{2} \mid \boldsymbol{H}_{1},A_{1}} \{\boldsymbol{h}_{2} \mid \boldsymbol{h}_{1},\pi_{1}(\boldsymbol{h}_{1}) \} dF_{\boldsymbol{H}_{1}}(\boldsymbol{h}_{1}) \\
\leq \sup_{\pi_{1}} \int \int \widehat{\Delta}_{c} \{\boldsymbol{h}_{2}^{\pi_{1}(\boldsymbol{h}_{1})} \} dF_{\boldsymbol{H}_{2} \mid \boldsymbol{H}_{1},A_{1}} \{\boldsymbol{h}_{2} \mid \boldsymbol{h}_{1},\pi_{1}(\boldsymbol{h}_{1}) \} dF_{\boldsymbol{H}_{1}}(\boldsymbol{h}_{1}),$$

where we have used the fact that $\widehat{\Delta}_c\{\boldsymbol{h}_2^{\pi_1(\boldsymbol{h}_1)}\}$ does not depend on y. Because $\pi_1(\cdot)$ has range $\{-1,1\}$, an upper bound on the right-hand side above is

$$\int \int \sum_{a_{1} \in \{-1,1\}} \widehat{\Delta}_{c}(\boldsymbol{h}_{2}^{a_{1}}) dF_{\boldsymbol{H}_{2} \mid \boldsymbol{H}_{1}, A_{1}} \{\boldsymbol{h}_{2} \mid \boldsymbol{h}_{1}, a_{1}\} dF_{\boldsymbol{H}_{1}}(\boldsymbol{h}_{1})
= \sum_{a_{1} \in \{-1,1\}} \int \int \widehat{\Delta}_{c}(\boldsymbol{h}_{2}^{a_{1}}) dF_{\boldsymbol{H}_{2} \mid \boldsymbol{H}_{1}, A_{1}} \{\boldsymbol{h}_{2} \mid \boldsymbol{h}_{1}, a_{1}\} dF_{\boldsymbol{H}_{1}}(\boldsymbol{h}_{1})
= \sum_{a_{1} \in \{-1,1\}} E\left\{\widehat{\Delta}_{c}(\boldsymbol{H}_{2}^{A_{1}}) \mid A_{1} = a_{1}, \mathcal{D}\right\}, \quad (5)$$

which does not depend on π_1 . We claim the right-hand side of (5) is $o_p(1)$. To show this, note for each fixed a_1 ,

$$E\left\{\widehat{\Delta}_{c}(\boldsymbol{H}_{2}^{A_{1}}) \mid A_{1} = a_{1}\right\} = \int \int E\left\{\widehat{\Delta}_{c}(\boldsymbol{h}_{2}^{a_{1}})\right\} dF_{\boldsymbol{H}_{2} \mid \boldsymbol{H}_{1}, A_{1}}\{\boldsymbol{h}_{2} \mid \boldsymbol{h}_{1}, a_{1}\} dF_{\boldsymbol{H}_{1}}(\boldsymbol{h}_{1}),$$

where $E\{\widehat{\Delta}_c(\boldsymbol{h}_2^{a_1})\}$ converges to zero by Lemma 7.1 for each $\boldsymbol{h}_2^{a_1}$. Because $0 \leq E\{\widehat{\Delta}_c(\boldsymbol{h}_2^{a_1})\} \leq 2$, applying the Dominated Convergence Theorem gives the result that $E\{\widehat{\Delta}_c(\boldsymbol{H}_2^{A_1}) \mid A_1 = 1\}$

 a_1 } converges to zero, which implies $E\{\widehat{\Delta}_c(\boldsymbol{H}_2^{A_1}) \mid A_1 = a_1, \mathcal{D}\}$ is $o_p(1)$ for each fixed a_1 by Lemma 7.1. Thus, the right hand side of (5) is $o_p(1)$.

Lemma 7.4. Assume A2 and A3, and fix $\lambda \in \mathbb{R}$. Then, $\left| pr^{\widehat{\pi}_{1,\lambda}^{TIQ}, \pi_2^*}(Y \leq \lambda) - pr^{\pi_{1,\lambda}^{TIQ}, \pi_2^*}(Y \leq \lambda) \right|$ converges to zero in probability.

Proof. Define $\widehat{\Delta}_G(\boldsymbol{h}_1; u, v) = dG\{u, v \mid \boldsymbol{h}_1, \widehat{\pi}_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1)\} - dG\{u, v \mid \boldsymbol{h}_1, \pi_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1)\}$, and note that $\widehat{\Delta}_G(\boldsymbol{h}_1; u, v) = \{\pi_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1) - \widehat{\pi}_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1)\}\{dG(u, v \mid \boldsymbol{h}_1, -1) - dG(u, v \mid \boldsymbol{h}_1, 1)\}/2$. Using the definitions given in Section 2.1,

$$\left|\operatorname{pr}^{\widehat{\pi}_{1,\lambda}^{\operatorname{TIQ}}, \, \pi_{2}^{*}}(Y \leq \lambda) - \operatorname{pr}^{\pi_{1,\lambda}^{\operatorname{TIQ}}, \, \pi_{2}^{*}}(Y \leq \lambda)\right| = \left| \int \int F_{\epsilon}(\lambda - u - |v|) \widehat{\Delta}_{G}(\boldsymbol{h}_{1}; u, v) dF_{\boldsymbol{H}_{1}}(\boldsymbol{h}_{1}) \right|$$

$$\leq \int \left| d(\boldsymbol{h}_{1}, \lambda) \right| \left| \pi_{1,\lambda}^{\operatorname{TIQ}}(\boldsymbol{h}_{1}) - \widehat{\pi}_{1,\lambda}^{\operatorname{TIQ}}(\boldsymbol{h}_{1}) \right| dF_{\boldsymbol{H}_{1}}(\boldsymbol{h}_{1}). \quad (6)$$

Substituting $\pi_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1) = \text{sgn}\{d(\boldsymbol{h}_1,\lambda)\}, \ \widehat{\pi}_{1,\lambda}^{\text{TIQ}}(\boldsymbol{h}_1) = \text{sgn}\{\widehat{d}(\boldsymbol{h}_1,\lambda)\}, \ \text{and noting}\}$

$$|d(\boldsymbol{h}_1,\lambda)| \left| \operatorname{sgn}\{\widehat{d}(\boldsymbol{h}_1,\lambda)\} - \operatorname{sgn}\{d(\boldsymbol{h}_1,\lambda)\} \right| \leq \mathbb{1}_{|d(\boldsymbol{h}_1,\lambda)|>0} \left| \operatorname{sgn}\{\widehat{d}(\boldsymbol{h}_1,\lambda)\} - \operatorname{sgn}\{d(\boldsymbol{h}_1,\lambda)\} \right|,$$

an upper bound on the right-hand side of (6) is

$$\int \mathbb{1}_{|d(\boldsymbol{h}_1,\lambda)|>0} \left| \operatorname{sgn}\{\widehat{d}(\boldsymbol{h}_1,\lambda)\} - \operatorname{sgn}\{d(\boldsymbol{h}_1,\lambda)\} \right| dF_{\boldsymbol{H}_1}(\boldsymbol{h}_1)$$

$$= E \left[\mathbb{1}_{|d(\boldsymbol{H}_1,\lambda)|>0} \left| \operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_1,\lambda)\} - \operatorname{sgn}\{d(\boldsymbol{H}_1,\lambda)\} \right| \mid \mathcal{D} \right].$$

We show the right-hand side is $o_p(1)$ by showing its expectation with respect to \mathcal{D} converges to zero. Thus,

$$\begin{split} E\left[\mathbbm{1}_{|d(\boldsymbol{h}_1,\lambda)|>0}\left|\operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_1,\lambda)\} - \operatorname{sgn}\{d(\boldsymbol{H}_1,\lambda)\}\right|\right] \\ &= \int E\left[\mathbbm{1}_{|d(\boldsymbol{h}_1,\lambda)|>0}\left|\operatorname{sgn}\{\widehat{d}(\boldsymbol{h}_1,\lambda)\} - \operatorname{sgn}\{d(\boldsymbol{h}_1,\lambda)\}\right|\right] dF_{\boldsymbol{H}_1}(\boldsymbol{h}_1). \end{split}$$

The inside expectation converges to zero by Lemmas 7.1 and 7.2, and applying the Dominated

Convergence Theorem gives the result that the right-hand side above converges to zero. Thus, appealing to Lemma 7.1, we have shown $\left|\operatorname{pr}^{\widehat{\pi}_{1,\lambda}^{\operatorname{TIQ}}, \pi_2^*}(Y \leq \lambda) - \operatorname{pr}^{\pi_{1,\lambda}^{\operatorname{TIQ}}, \pi_2^*}(Y \leq \lambda)\right|$ is bounded above by $E[\mathbb{1}_{|d(\boldsymbol{H}_1,\lambda)|>0}|\operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_1,\lambda)\} - \operatorname{sgn}\{d(\boldsymbol{H}_1,\lambda)\}| |\mathcal{D}]$ which is $o_p(1)$.

Proof of Theorem 2.3. Fix $\lambda \in \mathbb{R}$. Define $\Delta(\lambda) = \operatorname{pr}^{\widehat{\pi}_{1,\lambda}^{\mathrm{TIQ}}, \widehat{\pi}_{2}^{*}}(Y \leq \lambda) - \operatorname{pr}^{\pi_{1,\lambda}^{\mathrm{TIQ}}, \pi_{2}^{*}}(Y \leq \lambda)$. Then, by the triangle inequality,

$$|\Delta(\lambda)| \leq \left| \operatorname{pr}^{\widehat{\pi}_{1,\lambda}^{\operatorname{TIQ}}, \widehat{\pi}_{2}^{*}} (Y \leq \lambda) - \operatorname{pr}^{\widehat{\pi}_{1,\lambda}^{\operatorname{TIQ}}, \pi_{2}^{*}} (Y \leq \lambda) \right| + \left| \operatorname{pr}^{\widehat{\pi}_{1,\lambda}^{\operatorname{TIQ}}, \pi_{2}^{*}} (Y \leq \lambda) - \operatorname{pr}^{\pi_{1,\lambda}^{\operatorname{TIQ}}, \pi_{2}^{*}} (Y \leq \lambda) \right|.$$
 (7)

The first term on the right-hand side of (7) is $o_p(1)$ by Lemma 7.3, and the second term on the right-hand side of (7) is $o_p(1)$ by Lemma 7.4.

Lemma 7.5. Assume A2 and A4. Then, $\sup_y n^{-1} \sum_{i=1}^n |\widehat{d}(\boldsymbol{H}_{1i}, y) - d(\boldsymbol{H}_{1i}, y)|$ converges to zero in probability.

Proof. An upper bound on $\sup_y \frac{1}{n} \sum_{i=1}^n |\widehat{d}(\boldsymbol{H}_{1i}, y) - d(\boldsymbol{H}_{1i}, y)|$ is

$$\sum_{a_1=1,-1} \sup_{y} \frac{1}{n} \sum_{i=1}^{n} \left| \int \widehat{F}_{\epsilon}(y-u-|v|) d\widehat{G}(u,v \mid \boldsymbol{H}_{1i},a_1) - \int F_{\epsilon}(y-u-|v|) dG(u,v \mid \boldsymbol{H}_{1i},a_1) \right|.$$

By the triangle inequality, the previous expression is bounded above by

$$\sum_{a_{1}=1,-1} \sup_{y} \frac{1}{n} \sum_{i=1}^{n} \int \left| \widehat{F}_{\epsilon}(y-u-|v|) - F_{\epsilon}(y-u-|v|) \right| d\widehat{G}(u,v \mid \mathbf{H}_{1i}, a_{1})$$

$$+ \sum_{a_{1}=1,-1} \sup_{y} \frac{1}{n} \sum_{i=1}^{n} \int F_{\epsilon}(y-u-|v|) \left| d\widehat{G}(u,v \mid \mathbf{H}_{1i}, a_{1}) - dG(u,v \mid \mathbf{H}_{1i}, a_{1}) \right|$$

$$\leq 2 \sup_{w} \left| \widehat{F}_{\epsilon}(w) - F_{\epsilon}(w) \right| + \sum_{a_{1}=1,-1} \frac{1}{n} \sum_{i=1}^{n} \int \left| d\widehat{G}(u,v \mid \mathbf{H}_{1i}, a_{1}) - dG(u,v \mid \mathbf{H}_{1i}, a_{1}) \right|.$$

The term $\sup_{w} |\widehat{F}_{\epsilon}(w) - F_{\epsilon}(w)|$ is $o_p(1)$ by assumption A2, and for each a_1 , $n^{-1} \sum_{i=1}^{n} \int |d\widehat{G}(u, v \mid \boldsymbol{H}_{1i}, a_1) - dG(u, v \mid \boldsymbol{H}_{1i}, a_1)|$ is $o_p(1)$ by assumption A4.

Lemma 7.6. Assume A2 and A4. Then, $\sup_{y} |\Delta(y)|$ converges in probability to zero, where

$$\Delta(y) = \frac{1}{n} \sum_{i=1}^{n} \int \widehat{F}_{\epsilon}(y - u - |v|) d\widehat{G}[u, v \mid \boldsymbol{H}_{1i}, sgn\{\widehat{d}(\boldsymbol{H}_{1i}, y)\}]$$
$$-\frac{1}{n} \sum_{i=1}^{n} \int F_{\epsilon}(y - u - |v|) dG[u, v \mid \boldsymbol{H}_{1i}, sgn\{d(\boldsymbol{H}_{1i}, y)\}]. \quad (8)$$

Proof. Writing $dG[u, v \mid \boldsymbol{H}_{1i}, \operatorname{sgn}\{d(\boldsymbol{H}_{1i}, t)\}]$ as

$$\frac{1}{2} \left\{ dG(u, v \mid \boldsymbol{H}_{1i}, 1) + dG(u, v \mid \boldsymbol{H}_{1i}, -1) \right\} \\
- \frac{\operatorname{sgn} \left\{ d(\boldsymbol{H}_{1i}, y) \right\}}{2} \left\{ dG(u, v \mid \boldsymbol{H}_{1i}, -1) - dG(u, v \mid \boldsymbol{H}_{1i}, 1) \right\}$$

and $d\widehat{G}[u, v \mid \boldsymbol{H}_{1i}, \operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_{1i}, y)\}]$ as

$$\begin{split} \frac{1}{2} \left\{ d\widehat{G}(u, v \mid \boldsymbol{H}_{1i}, 1) + d\widehat{G}(u, v \mid \boldsymbol{H}_{1i}, -1) \right\} \\ - \frac{\operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_{1i}, y)\}}{2} \left\{ d\widehat{G}(u, v \mid \boldsymbol{H}_{1i}, -1) - d\widehat{G}(u, v \mid \boldsymbol{H}_{1i}, 1) \right\}, \end{split}$$

 $|\Delta(y)|$ is bounded above by

$$\sup_{y} \frac{1}{n} \sum_{i=1}^{n} |\Delta_{i}(y)| + \sup_{y} \frac{1}{n} \sum_{i=1}^{n} ||\widehat{d}(\boldsymbol{H}_{1i}, y)| - |d(\boldsymbol{H}_{1i}, y)||,$$
 (9)

where

$$\begin{split} \Delta_i(y) &= \int \widehat{F}_{\epsilon}(y-u-|v|) \left\{ d\widehat{G}(u,v\mid \boldsymbol{H}_{1i},1) + d\widehat{G}(u,v\mid \boldsymbol{H}_{1i},-1) \right\} \\ &- \int F_{\epsilon}(y-u-|v|) \left\{ dG(u,v\mid \boldsymbol{H}_{1i},1) + dG(u,v\mid \boldsymbol{H}_{1i},-1) \right\}. \end{split}$$

The term $\sup_{y} n^{-1} \sum_{i=1}^{n} \left| |\widehat{d}(\boldsymbol{H}_{1i}, y)| - |d(\boldsymbol{H}_{1i}, y)| \right|$ in (9) is bounded above by $\sup_{y} n^{-1} \sum_{i=1}^{n} \left| \widehat{d}(\boldsymbol{H}_{1i}, y) - d(\boldsymbol{H}_{1i}, y) \right|$, which is $o_p(1)$ by Lemma 7.5. It can be shown the

first term in (9) is bounded above by

$$2\sup_{w} \left| \widehat{F}_{\epsilon}(w) - F_{\epsilon}(w) \right| + \frac{1}{n} \sum_{i=1}^{n} \int \left| d\widehat{G}(u, v \mid \boldsymbol{H}_{1i}, 1) - dG(u, v \mid \boldsymbol{H}_{1i}, 1) \right|$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \int \left| d\widehat{G}(u, v \mid \boldsymbol{H}_{1i}, -1) - dG(u, v \mid \boldsymbol{H}_{1i}, -1) \right|,$$

which is $o_p(1)$ by assumptions A2 and A4.

Lemma 7.7. For every fixed h_1 ,

$$\lim_{y \to \infty} \int F_{\epsilon}(y - u - |v|) dG[u, v \mid \mathbf{h}_{1}, a_{1} = sgn\{d(\mathbf{h}_{1}, y)\}] = 1,$$

$$\lim_{y \to -\infty} \int F_{\epsilon}(y - u - |v|) dG[u, v \mid \mathbf{h}_{1}, a_{1} = sgn\{d(\mathbf{h}_{1}, y)\}] = 0.$$

Proof. For each fixed h_1 and a_1 ,

$$\lim_{y \to \infty} \int F_{\epsilon}(y - u - |v|) dG(u, v \mid \boldsymbol{h}_1, a_1) = 1, \qquad \lim_{y \to -\infty} \int F_{\epsilon}(y - u - |v|) dG(u, v \mid \boldsymbol{h}_1, a_1) = 0,$$

because $\int F_{\epsilon}(y-u-|v|)dG(u,v\mid \mathbf{h}_{1},a_{1})$ is the conditional expectation of a distribution function in y, therefore permitting an exchange of the limit and integration by the dominated convergence theorem. Thus, even if the policy $\operatorname{sgn}\{d(\mathbf{h}_{1},y)\}$ does not converge as $y\to\infty$ $(-\infty)$, $\lim_{y\to\infty(-\infty)}\int F_{\epsilon}(y-u-|v|)dG[u,v\mid \mathbf{h}_{1},a_{1}=\operatorname{sgn}\{d(h_{1},y)\}]$ must converge to 1 (0).

Lemma 7.8. For every h_1 in the domain of H_1 , $\int F_{\epsilon}(y-u-|v|)dG[u,v\mid h_1, sgn\{d(h_1,y)\}]$ is non-decreasing in y.

Proof. We show for arbitrary $s, t \in \mathbb{R}$ such that s > t,

$$\int F_{\epsilon}(s - u - |v|) dG[u, v \mid \mathbf{h}_{1}, \operatorname{sgn}\{d(\mathbf{h}_{1}, s)\}] - \int F_{\epsilon}(t - u - |v|) dG[u, v \mid \mathbf{h}_{1}, \operatorname{sgn}\{d(\mathbf{h}_{1}, t)\}] \quad (10)$$

is non-negative. Because $\int F_{\epsilon}(s-u-|v|)dG[u,v\mid \mathbf{h}_{1},\operatorname{sgn}\{d(\mathbf{h}_{1},s)\}]$ can be written as

$$\frac{1}{2} \left\{ \int F_{\epsilon}(s-u-|v|) dG(u,v \mid \mathbf{h}_{1},-1) + \int F_{\epsilon}(s-u-|v|) dG(u,v \mid \mathbf{h}_{1},1) - |d(\mathbf{h}_{1},s)| \right\},$$

(10) simplifies to

$$\frac{1}{2} \left[\int \left\{ F_{\epsilon}(s - u - |v|) - F_{\epsilon}(t - u - |v|) \right\} dG(u, v \mid \mathbf{h}_{1}, -1) \right] \\
+ \frac{1}{2} \left[\int \left\{ F_{\epsilon}(s - u - |v|) - F_{\epsilon}(t - u - |v|) \right\} dG(u, v \mid \mathbf{h}_{1}, 1) \right] \\
- \frac{1}{2} \left\{ |d(\mathbf{h}_{1}, s)| - |d(\mathbf{h}_{1}, t)| \right\}.$$

The expression above is greater than or equal to zero. To see this, note that

$$|d(\mathbf{h}_{1},s)| - |d(\mathbf{h}_{1},t)| \leq ||d(\mathbf{h}_{1},s)| - |d(\mathbf{h}_{1},t)|| \leq |d(\mathbf{h}_{1},s) - d(\mathbf{h}_{1},t)|$$

$$\leq \int \{F_{\epsilon}(s-u-|v|) - F_{\epsilon}(t-u-|v|)\} dG(u,v \mid \mathbf{h}_{1},-1)$$

$$+ \int \{F_{\epsilon}(s-u-|v|) - F_{\epsilon}(t-u-|v|)\} dG(u,v \mid \mathbf{h}_{1},1).$$

Lemma 7.9. Assume $F_{\epsilon}(\cdot)$ is continuous. For any fixed \mathbf{h}_1 in the domain of \mathbf{H}_1 , $\int F_{\epsilon}(y - u - |v|) dG[u, v \mid \mathbf{h}_1, sgn\{d(\mathbf{h}_1, y)\}]$ is continuous in y.

Proof. This follows immediately by writing $\int F_{\epsilon}(y-u-|v|)dG[u,v\mid \mathbf{h}_{1},\operatorname{sgn}\{d(\mathbf{h}_{1},y)\}]$ as

$$\frac{1}{2}\left\{\int F_{\epsilon}(y-u-|v|)dG(u,v\mid\boldsymbol{h}_{1},-1)+\int F_{\epsilon}(y-u-|v|)dG(u,v\mid\boldsymbol{h}_{1},1)-|d(\boldsymbol{h}_{1},y)|\right\},$$

a linear combination of continuous functions.

Lemma 7.10. Assume A2 and A4. Then, $\sup_{y} |L_n(y) - L(y)|$ converges in probability to

zero, where

$$L_n(y) = \frac{1}{n} \sum_{i=1}^n \int F_{\epsilon}(y - u - |v|) dG[u, v \mid \boldsymbol{H}_{1i}, sgn\{d(\boldsymbol{H}_{1i}, y)\}],$$

$$L(y) = E\left(\int F_{\epsilon}(y - u - |v|) dG[u, v \mid \boldsymbol{H}_{1}, sgn\{d(\boldsymbol{H}_{1i}, y)\}]\right).$$

Proof. The proof is similar to the proof of the Glivenko-Cantelli Theorem given in van der Vaart (2000). Let $\delta > 0$ be arbitrary. By the law of large numbers, $|L_n(y) - L(y)|$ converges to zero in probability for each fixed $y \in \mathbb{R}$. Using Lemmas 7.7, 7.8, and 7.9, it can be shown that $L_n(y)$ and L(y) are both continuous distribution functions in y. Thus, there exists a partition, $-\infty = y_0 < y_1 < \cdots < y_k = \infty$ such that $L(y_i) - L(y_{i-1}) \le \delta$. For $y_{i-1} \le y < y_i$,

$$L_n(y_{i-1}) - L(y_{i-1}) - \delta \le L_n(y) - L(y) \le L_n(y_i) - L(y_i) + \delta.$$

Convergence of $L_n(y)$ to L(y) is uniform on the finite set $y \in \{y_1, \ldots, y_{k-1}\}$, and thus, $\limsup_y |L_n(y) - L(y)| < \delta$ almost surely. Because δ is arbitrary, the result holds for each δ , which implies the limit superior is zero.

Lemma 7.11. Assume A2 and A4. Then, \hat{y}_{τ}^{*} converges in probability to y_{τ}^{*} .

Proof. Define

$$\Delta(y) = \frac{1}{n} \sum_{i=1}^{n} \int \widehat{F}_{\epsilon}(y - u - |v|) d\widehat{G}[u, v \mid \boldsymbol{H}_{1i}, \operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_{1i}, y)\}] - E\left(\int F_{\epsilon}(y - u - |v|) dG[u, v \mid \boldsymbol{H}_{1}, \operatorname{sgn}\{d(\boldsymbol{H}_{1}, y)\}]\right).$$

By the triangle inequality, $\sup_y |\Delta(y)| \le \sup_y |\Delta_1(y)| + \sup_y |\Delta_2(y)|$, where

$$\Delta_{1}(y) = \frac{1}{n} \sum_{i=1}^{n} \int \widehat{F}_{\epsilon}(y - u - |v|) d\widehat{G}[u, v \mid \boldsymbol{H}_{1i}, \operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_{1i}, y)\}]$$
$$- \frac{1}{n} \sum_{i=1}^{n} \int F_{\epsilon}(y - u - |v|) dG[u, v \mid \boldsymbol{H}_{1i}, \operatorname{sgn}\{d(\boldsymbol{H}_{1i}, y)\}],$$

$$\Delta_{2}(y) = \frac{1}{n} \sum_{i=1}^{n} \int F_{\epsilon}(y - u - |v|) dG[u, v \mid \mathbf{H}_{1i}, A_{1} = \operatorname{sgn}\{d(\mathbf{H}_{1i}, y)\}] - E\left(\int F_{\epsilon}(y - u - |v|) dG[u, v \mid \mathbf{H}_{1}, A_{1} = \operatorname{sgn}\{d(\mathbf{H}_{1}, y)\}]\right).$$

The terms $\sup_y |\Delta_1(y)|$ and $\sup_y |\Delta_2(y)|$ converge to zero in probability by Lemmas 7.6 and 7.10, respectively. Thus, $\frac{1}{n} \sum_{i=1}^n \int \widehat{F}_{\epsilon}(y-u-|v|) d\widehat{G}[u,v\mid \boldsymbol{H}_{1i}, \operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_{1i},y)\}]$ converges uniformly to $E\left(\int F_{\epsilon}(y-u-|v|) dG[u,v\mid \boldsymbol{H}_1, \operatorname{sgn}\{d(\boldsymbol{H}_1,y)\}]\right)$, which implies the infimums converge. That is, $\widehat{y}_{\tau}^* = \inf\left(y: \frac{1}{n} \sum_{i=1}^n \int \widehat{F}_{\epsilon}(y-u-|v|) d\widehat{G}[u,v\mid \boldsymbol{H}_{1i}, \operatorname{sgn}\{\widehat{d}(\boldsymbol{H}_{1i},y)\}] \geq \tau\right)$ converges in probability to $y_{\tau}^* = \inf\left\{y: E\left(\int F_{\epsilon}(y-u-|v|) dG[u,v\mid \boldsymbol{H}_1, \operatorname{sgn}\{d(\boldsymbol{H}_1,y)\}]\right) \geq \tau\right\}$.

Lemma 7.12. Assume A2-A4. Let \mathbf{h}_1 be fixed and arbitrary. Then, $\left| \widehat{d}(\mathbf{h}_1, \widehat{y}_{\tau}^*) - d(\mathbf{h}_1, y_{\tau}^*) \right|$ converges to zero in probability.

Proof. By the triangle inequality,

$$\begin{aligned} \left| \widehat{d}(\boldsymbol{h}_{1}, \widehat{y}_{\tau}^{*}) - d(\boldsymbol{h}_{1}, y_{\tau}^{*}) \right| &\leq \left| \widehat{d}(\boldsymbol{h}_{1}, \widehat{y}_{\tau}^{*}) - d(\boldsymbol{h}_{1}, \widehat{y}_{\tau}^{*}) \right| + \left| d(\boldsymbol{h}_{1}, \widehat{y}_{\tau}^{*}) - d(\boldsymbol{h}_{1}, y_{\tau}^{*}) \right| \\ &\leq \sup_{y} \left| \widehat{d}(\boldsymbol{h}_{1}, y) - d(\boldsymbol{h}_{1}, y) \right| + \left| d(\boldsymbol{h}_{1}, \widehat{y}_{\tau}^{*}) - d(\boldsymbol{h}_{1}, y_{\tau}^{*}) \right|. \end{aligned}$$

The right-hand side of the previous expression is $o_p(1)$ because $\sup_y |\widehat{d}(\boldsymbol{h}_1, y) - d(\boldsymbol{h}_1, y)|$ is $o_p(1)$ by Lemma 7.2. Note that continuity of $d(\boldsymbol{h}_1, y)$ is implied by assumption A2, and thus, $|d(\boldsymbol{h}_1, \widehat{y}_{\tau}^*) - d(\boldsymbol{h}_1, y_{\tau}^*)|$ is $o_p(1)$ by Lemma 7.11 and the continuous mapping theorem.

Proof of Theorem 2.4. Let $\epsilon > 0$ be arbitrary. Then, because $\sup_{h_1} |d(h_1, y) - d(h_1, y_{\tau}^*)|$ is continuous in y, there exists a $\delta > 0$ such that

$$\sup_{\mathbf{h}_{1}, y \in [y_{\tau}^{*} - \delta, y_{\tau}^{*} + \delta]} |d(\mathbf{h}_{1}, y) - d(\mathbf{h}_{1}, y_{\tau}^{*})| < \epsilon.$$
(11)

We begin by showing $\sup_{y \in [y_{\tau}^* - \delta, y_{\tau}^* + \delta]} |\Delta(y)|$ converges to zero in probability, where $\Delta(y) = \operatorname{pr}^{\operatorname{sgn}\{\widehat{d}(\cdot, \widehat{y}_{\tau}^*)\}, \widehat{\pi}_2^*}(Y \leq y) - \operatorname{pr}^{\operatorname{sgn}\{d(\cdot, y_{\tau}^*)\}, \pi_2^*}(Y \leq y)$. That is, $\Delta(y)$ is the difference in the

distribution function at y when treatments are assigned according to the estimated optimal regime versus the true optimal regime. By the triangle inequality,

$$\sup_{y \in [y_{\tau}^* - \delta, y_{\tau}^* + \delta]} |\Delta(y)| \le \sup_{y \in [y_{\tau}^* - \delta, y_{\tau}^* + \delta]} |\Delta_1(y)| + \sup_{y \in [y_{\tau}^* - \delta, y_{\tau}^* + \delta]} |\Delta_2(y)|, \tag{12}$$

where we define the terms $\Delta_1(y) = \operatorname{pr}^{\operatorname{sgn}\{\widehat{d}(\cdot,\widehat{y}_{\tau}^*)\},\widehat{\pi}_2^*}(Y \leq y) - \operatorname{pr}^{\operatorname{sgn}\{\widehat{d}(\cdot,\widehat{y}_{\tau}^*)\},\pi_2^*}(Y \leq y)$ and $\Delta_2(y) = \operatorname{pr}^{\operatorname{sgn}\{\widehat{d}(\cdot,\widehat{y}_{\tau}^*)\},\pi_2^*}(Y \leq y) - \operatorname{pr}^{\operatorname{sgn}\{d(\cdot,y_{\tau}^*)\},\pi_2^*}(Y \leq y)$. Note that $\sup_{y \in [y_{\tau}^* - \delta, y_{\tau}^* + \delta]} |\Delta_1(y)| \leq \sup_{\pi_1,y} |\operatorname{pr}^{\pi_1,\widehat{\pi}_2^*}(Y \leq y) - \operatorname{pr}^{\pi_1,\pi_2^*}(Y \leq y)|$, where the right-hand side is $o_p(1)$ by Lemma 7.3. It can be shown that

$$\sup_{y \in [y_{\tau}^* - \delta, y_{\tau}^* + \delta]} |\Delta_2(y)| \leq E\left(\left|\operatorname{sgn}\left\{\widehat{d}(\boldsymbol{H}_1, \widehat{y}_{\tau}^*)\right\} - \operatorname{sgn}\left\{d(\boldsymbol{H}_1, y_{\tau}^*)\right\}\right| |d(\boldsymbol{H}_1, y_{\tau}^*)| \mid \mathcal{D}\right) \\
+ \sup_{y \in [y_{\tau}^* - \delta, y_{\tau}^* + \delta]} E\left(\frac{1}{2}\left|\operatorname{sgn}\left\{\widehat{d}(\boldsymbol{H}_1, \widehat{y}_{\tau}^*)\right\} - \operatorname{sgn}\left\{d(\boldsymbol{H}_1, y_{\tau}^*)\right\}\right| |d(\boldsymbol{H}_1, y) - d(\boldsymbol{H}_1, y_{\tau}^*)| \mid \mathcal{D}\right) \\
\leq o_p(1) + \sup_{\boldsymbol{h}_1, y \in [y_{\tau}^* - \delta, y_{\tau}^* + \delta]} |d(\boldsymbol{h}_1, y) - d(\boldsymbol{h}_1, y_{\tau}^*)|,$$

where the $o_p(1)$ term is based on Lemmas 7.1 and 7.12. We have already established that the second term on the right hand side is bounded by ϵ . Since ϵ was arbitrary, we have shown that $\sup_{y\in[y^*_{\tau}-\delta,y^*_{\tau}+\delta]}|\Delta_2(y)|$ is $o_p(1)$. Thus, for y in a neighborhood of y^*_{τ} , $\Delta(y)$ converges uniformly in probability to zero. Noting that $y^*_{\tau}=\inf\left\{y:\operatorname{pr}^{\pi^{\mathrm{QIQ}}_{1,\tau},\pi^*_2}(Y\leq y)\geq\tau\right\}$ and $\operatorname{pr}^{\pi^{\mathrm{QIQ}}_{1,\tau},\pi^*_2}(Y\leq y^*_{\tau})=\tau$, conclude that the infimums converge in a neighborhood of y^*_{τ} . That is, $\inf_{y\in[y^*_{\tau}-\delta,y^*_{\tau}+\delta]}\left\{\operatorname{pr}^{\widehat{\pi}^{\mathrm{QIQ}}_{1,\tau},\widehat{\pi}^*_2}(Y\leq y)\geq\tau\right\}$ converges in probability to $q^{\pi^{\mathrm{QIQ}}_{1,\tau},\pi^*_2}(\tau)=\inf_{y\in[y^*_{\tau}-\delta,y^*_{\tau}+\delta]}\left\{\operatorname{pr}^{\pi^{\mathrm{QIQ}}_{1,\tau},\pi^*_2}(Y\leq y)\geq\tau\right\}=\inf\left\{y:\operatorname{pr}^{\pi^{\mathrm{QIQ}}_{1,\tau},\pi^*_2}(Y\leq y)\geq\tau\right\}.$

8. TIQ-LEARNING UNDER A MORE GENERAL REGRESSION MODEL

Suppose that $Y = \zeta(\mathbf{H}_2, A_2, \epsilon)$ where ϵ is independent of \mathbf{H}_2 , A_2 , and \mathbf{H}_2 contains first-stage information, X_1 and A_1 . For any \mathbf{h}_2 and a_2 write $\zeta_{\mathbf{h}_2,a_2}(u)$ as real-valued function on the domain of ϵ so that $\zeta_{\mathbf{h}_2,a_2}(u) = \zeta(\mathbf{h}_2,a_2,u)$. We assume that for almost all \mathbf{h}_2 , a_2 the function $\zeta_{\mathbf{h}_2,a_2}(\cdot)$ is invertible. Special cases include: (i) the additive error model

considered in the main body, $\zeta(\mathbf{h}_2, a_2, \epsilon) = m(\mathbf{h}_2) + a_2 c(\mathbf{h}_2) + \epsilon$; and (ii) a multiplicative error model, $\zeta(\mathbf{h}_2, a_2, \epsilon) = \epsilon [m(\mathbf{h}_2) + a_2 c(\mathbf{h}_2)]$ provided $\epsilon > 0$ with probability one and pr $\{m(\mathbf{H}_2) + A_2 c(\mathbf{H}_2) = 0\} = 0$. Let $\boldsymbol{\pi} = (\pi_1, \pi_2)$ denote an arbitrary dynamic treatment regime of interest. Applying the same arguments as the main body, it can be shown that

$$\operatorname{pr}^{\pi_{1}, \pi_{2}}(Y \leq y) = \int \int F_{\epsilon} \left\{ \zeta_{\boldsymbol{h}_{2}, \pi_{2}(\boldsymbol{h}_{2})}^{-1}(y) \right\} dF_{\boldsymbol{H}_{2}|\boldsymbol{H}_{1}, A_{1}} \left\{ \boldsymbol{h}_{2}|\boldsymbol{h}_{1}, \pi_{1}(\boldsymbol{h}_{1}) \right\} dF_{\boldsymbol{H}_{1}}(\boldsymbol{h}_{1}).$$

For a patient presenting with history h_2 , the optimal decision rule at the second stage is thus $\pi_2^*(h_2) = \arg \max_{a_2} \zeta_{h_2,a_2}^{-1}(y)$. Let $G\left\{\cdot,\cdot\middle|h_1,a_1\right\}$ denote joint distribution of $\left\{\zeta_{H_2,1}^{-1}(y),\zeta_{H_2,-1}^{-1}(y)\right\}$. Then,

$$\operatorname{pr}^{\pi_1, \, \pi_2^*} (Y \le y) = \int \int F_{\epsilon} \left\{ (u+v)/2 + |u-v|/2 \right\} dG \left\{ u, v \middle| \boldsymbol{h}_1, \pi_1(\boldsymbol{h}_1) \right\} dF_{\boldsymbol{H}_1}(\boldsymbol{h}_1).$$

Therefore, the optimal first stage decision rule is

$$\pi_1^*(\mathbf{h}_1) = \arg\max_{a_1} \int F_{\epsilon} \left\{ (u+v)/2 + |u-v|/2 \right\} dG \left\{ u, v \middle| \mathbf{h}_1, \pi_1(\mathbf{h}_1) \right\}.$$

Estimation of the optimal dynamic treatment regime using TIQ-learning therefore consists on the following steps: (i) choose the form of the regression model $Y = \zeta(\boldsymbol{H}_2, A_2, \epsilon)$; (ii) construct an estimator $\widehat{\zeta}(\boldsymbol{h}_2, a_2, u)$ of $\zeta(\boldsymbol{h}_2, a_2, u)$ and estimator $\widehat{F}_{\epsilon}(u)$ of $F_{\epsilon}(u)$; (iii) use pairs $\left\{(\boldsymbol{H}_{1,i}, A_{1,i}, \widehat{\zeta}_{\boldsymbol{H}_{2,i},1}^{-1}(y), \widehat{\zeta}_{\boldsymbol{H}_{2,i},1}^{-1}(y))\right\}_{i=1}^{n}$ to construct an estimator of $\widehat{G}(\cdot, \cdot | \boldsymbol{h}_1, a_1)$ of $G(\cdot, \cdot | \boldsymbol{h}_1, a_1)$; and (iv) define the estimated optimal regime using TIQ to be $\widehat{\pi}_2^*(\boldsymbol{h}_2) = \arg\max_{a_2} \widehat{\zeta}_{\boldsymbol{h}_2, a_2}^{-1}(y)$ and $\widehat{\pi}_1(\boldsymbol{h}_1) = \arg\max_{a_1} \int \widehat{F}_{\epsilon} \left\{(u+v)/2 + |u-v|/2\right\} d\widehat{G}\left\{u, v | \boldsymbol{h}_1, \pi_1(\boldsymbol{h}_1)\right\}$.

Analogous derivations can be used to construct an estimator that optimizes a quantile of the outcome distribution under a general regression model for Y.

Figure 2: Left to Right: $\lambda = -2, 2, 4$. Solid black, true optimal threshold probabilities; dotted black, probabilites under randomization; dashed with circles/squares/triangles, probabilities under TIQ-, Q-, and Interactive Q-learning, respectively. Training set size of n = 100.

9. TIQ-LEARNING WITH BIVARIATE KERNEL DENSITY ESTIMATOR

As in the main paper, the data are generated using the model

$$\begin{split} \boldsymbol{X}_1 &\sim \operatorname{Norm}(\boldsymbol{1}_2, \boldsymbol{\Sigma}), & A_1, A_2 &\sim \operatorname{Unif}\{-1, 1\}^2, & \boldsymbol{H}_1 = (1, \boldsymbol{X}_1^\intercal)^\intercal, \\ \eta_{\boldsymbol{H}_1, A_1} &= \exp\{\frac{C}{2}(\boldsymbol{H}_1^\intercal \boldsymbol{\gamma}_0 + A_1 \boldsymbol{H}_1^\intercal \boldsymbol{\gamma}_1)\}, & \boldsymbol{\xi} &\sim \operatorname{Norm}(\boldsymbol{0}_2, \boldsymbol{I}_2), & \boldsymbol{X}_2 &= \boldsymbol{B}_{A_1} \boldsymbol{X}_1 + \eta_{\boldsymbol{H}_1, A_1} \boldsymbol{\xi}, \\ \boldsymbol{H}_2 &= (1, \boldsymbol{X}_2^\intercal)^\intercal, & \epsilon &\sim \operatorname{Norm}(0, 1), & \boldsymbol{Y} &= \boldsymbol{H}_2^\intercal \boldsymbol{\beta}_{2,0} + A_2 \boldsymbol{H}_2^\intercal \boldsymbol{\beta}_{2,1} + \epsilon, \end{split}$$

where $\mathbf{1}_p$ is a $p \times 1$ vector of 1s, \mathbf{I}_q is the $q \times q$ identify matrix, and $C \in [0, 1]$ is a constant. The matrix Σ is a correlation matrix with off-diagonal $\rho = 0.5$. The 2×2 matrix \mathbf{B}_{A_1} equals

$$\boldsymbol{B}_{A_1=1} = \begin{pmatrix} -0.1 & -0.1 \\ 0.1 & 0.1 \end{pmatrix}, \quad \boldsymbol{B}_{A_1=-1} = \begin{pmatrix} 0.5, & -0.1 \\ -0.1 & 0.5 \end{pmatrix}.$$

The remaining parameters are $\gamma_0 = (1, 0.5, 0)^{\intercal}$, $\gamma_1 = (-1, -0.5, 0)^{\intercal}$, $\beta_{2,0} = (0.25, -1, 0.5)^{\intercal}$, and $\beta_{2,1} = (1, -0.5, -0.25)^{\intercal}$, which were chosen to ensure that the mean-optimal treatment produced a more variable response for some patients.

Results are based on J=1,000 generated data sets; for each, we estimate the TIQ-, IQ-, and Q-learning policies and compare the results using a test set of size N=10,000. We compare training sample sizes of n=100 and n=250. The normal scale model is used to estimate $F_{\epsilon}(\cdot)$, which is correctly specified for the generative model above. A bivariate

Figure 3: Left to Right: $\lambda = -2, 2, 4$. Solid black, true optimal threshold probabilities; dotted black, probabilites under randomization; dashed with circles/squares/triangles, probabilities under TIQ-, Q-, and Interactive Q-learning, respectively. Training set size of n = 250.

kernel density estimator is used to estimate $G(\cdot, \cdot \mid \mathbf{h}_1, a_1)$.

To study the performance of the TIQ-learning algorithm, we compare values of the cumulative distribution function of the final response when treatment is assigned according to the estimated TIQ-learning, IQ-learning, and Q-learning regimes. Define $\operatorname{pr}^{\widehat{\pi}_j}(Y>\lambda)$ to be the true probability that Y exceeds λ given treatments are assigned according to $\widehat{\pi}_j=(\widehat{\pi}_{1j},\widehat{\pi}_{2j})$, the regime estimated from the j^{th} generated data set. For threshold values $\lambda=-2,2,4$, we estimate $\operatorname{pr}^{\widehat{\pi}}(Y>\lambda)$ using $\sum_{j=1}^J \widehat{\operatorname{pr}}^{\widehat{\pi}_j}(Y>\lambda)/J$, where $\widehat{\operatorname{pr}}^{\widehat{\pi}_j}(Y>\lambda)$ is an estimate of $\operatorname{pr}^{\widehat{\pi}_j}(Y>\lambda)$ obtained by calculating the proportion of test patients consistent with regime $\widehat{\pi}_j$ whose observed Y values are greater than λ . Thus, our estimate is an average over training data sets and test set observations. In terms of the proportion of distribution mass above λ , results for $\lambda=-2$ and 4 in Figures 2 and 3 show a clear advantage of TIQ-learning for higher values of C, the degree of heteroskedasticity in the second-stage covariates X_2 . As anticipated by Remark 1 in Section 2.1 of the main paper, the methods perform similarly when $\lambda=2$. Results appear similar for the sample sizes n=100 and n=250 considered here, suggesting good performance of the nonparametric bivariate kernel estimator for reasonable sample sizes.

REFERENCES

Robins, J. M. (2004). Optimal Structural Nested Models for Optimal Sequential Decisions. In *Proceedings of the Second Seattle Symposium in Biostatistics*, pages 189–326. Springer New York.

van der Vaart, A. (2000). Asymptotic Statistics. Cambridge University Press.