

Projects on Assembly Line

Projects

iRVision 2D and 3D camera kit-bin inspection

SG4 Assembly Line

Layout and Stages

Robot 1:

- Pick from
 Conveyor and load
 to buffer
- Pick from Rack and load to Inspection
- From Inspection and load to Conveyor
- Pick from Conveyor and load to Rack
- Repeat

Vision Robot - Picking and placing of kit-bin basic function

Picking from Conveyor - Taking to the IS - Loading to the BS

Picking from the BS - Taking to the rack - Loading the rack

Picking from the Rack-Taking to the Home - Loading the IS

From the IS - Loading the Conveyor

Practical problems and solutions that can improve the system

Use of CAD Data for Efficient picking

Al Monitoring of Data

Loading of the Kit-bins

FANUC has developed the 3D Model Detection Function, which easily captures the characteristics of a part from its 3D CAD data and uses vision to detect the part. It can be applied to a system in which a robot picks up one of many parts placed randomly in a returnable container, by using a 3D vision sensor.

- The part detection processing is performed by <u>PANEL iH Pro</u>.
 - a. Improved the detection capability
 - b. Reduced the detection time
 - c. Made it easier for FANUC to provide lifetime maintenance.
- Our Aim:
 - a. To enable autonomous loading of part into kit-bins
 - b. For proper picking of part from kit-bin even if its misaligned
 - c. To autonomously correct disorders in rejection kit-bins

https://www.fanuc.co.jp/en/product/new_product/2021/202107_irvision3dmodel.html July 2021

Industry 4.0 Solutions – What other companies are doing

Important Question to ask

Do we really need – A kit-bin rack?

Do we really need - A robot to load kit-

bins in the rack? can't each robot pick their parts from a bin

with parts in random orientation? Can't we make it fully autonomous?

Fanuc AI to prevent failure

Problems that can occur:

 Mechanical breakdown caused by sudden malfunction of the spindle axes or feed axes of a machine tool

Solution:

- Train a model using torque data from motors as input while the machine is operating normally.
- The trained model has extracted features of the torque data and can represent its normal state.
- During the machine's actual operation, AI Servo Monitor takes the torque data as input and compares it with the normal state to calculate and display the anomaly score.

https://www.fanuc.co.jp/en/profile/pr/newsrelease/2018/notice20180529.html April 2018

https://www.fanuc.co.jp/en/profile/pr/newsrelease/2019/notice20190411.html April 2019

Autonomous Ground Vehicle a.k.a. AMR

Simultaneous Localization and Mapping (SLAM) is a technology that allows autonomous vehicles to:

- Create a map and
- Locate themselves on that map simultaneously

Figure 1. The essential SLAM problem. A simultaneous estimate of both robot and landmark locations is required. The true locations are never known or measured directly. Observations are made between true robot and landmark locations.

AMR - Rack loading/unloading and SLAM

- Problems faced during AMR operation.
- Reflector location issues
- Environment change issues

Solution:

- Introduction of 3D SLAM to avoid use of Reflectors.
- First finalize the Environment and then start AMR mapping process.

3D SLAM

Utilizing Depth camera already installed in the AMR for 3D SLAM purposes

AMR - Rack loading/unloading and SLAM

- Problems faced during AMR operation.
- QR vulnerability
- No option for path planning (Dumb AMR)

Solution:

Make QR code on steel plates – laser etched

Path planning requires a

Solution:

Utilysing LMR's Dynamic Obstacle By-passing capability!!

- But it's not possible currently in Bajaj KTM engine line as the other paths are very close to each other.
- Exploring the possibility.

AMR - Rack loading/unloading and SLAM

FAVOURITE INDIAN

- Problems faced during AMR operation.
- Rack wheel issue
- Proximity issue

Solution:

- Will go away once the full line is running in Auto cycle
- Have to insure the clamps be present permanently

15

Solution:

- Increase the Proximity sensor sensing limit
- Design
 proper
 fixtures for
 the sensor

3D Point cloud data

Points received at various heights

Problems in the 3D system

My learnings and goals

Learnings

Already implemented

Goals

- Fanuc Robot Programming
 - Teaching
 - Force control
 - Handshaking
 - I/0 Working
- Vision system 2D and 3D
- PLC
 - 2 Day Mitsubishi training completed
- Autonomous mobile robot
 - Path and Map making
 - SLAM
- Working of PLC + MES + Fanuc all together

- SG4 Vision Robot 1
 - Calibration
 - Snapping
 - Loading and unloading
 - Rack
 - Conveyor
 - Buffer
 - Full cycle program
 - Cycle time (36s start)
- AMR Integration
 - SG1
 - SG2

- Introduce **Industry 4.0** solutions for Bajaj Auto
- Utilise current available resources and incorporating AI as much as possible
- Plan complete automation No human interference for SG4 - Chain insertion SG4 *

Extra learning to implement at Bajaj

- Al courses *
- Industry 4.0 certification *

Thank You!

* in progress