APLC Design Summary

 $\qquad \qquad \texttt{D5_USORT_N512_FPM350M0150_IWA0340_OWA01400_C10_BW20_Nlam5_LS_IDc_ID0_OD_OD0_ls_90_ovsamp16_fits}$

Solution File:

USORT
512 x 512 pixels
0.0837
0.0731
0.0
0.99
20.0%
5
3.5 \(\lambda \rangle D \)
150 pixels
3.4—14.0 \(\lambda/\text{D}\)
10 ⁻¹⁰
1 pixels

Mon Oct 30 03:22:22 2023

On – axis PSF in log irradiance, normalized to the peak irradiance value.

Radial intensity profile for the broadband APLC design at 11 simulated wavelengthscentered around λ_0/D and equally spatially sampled over the 20.0% bandpass. The black curve shows the average intensity across the 11 wavelength samples. The dashed red vertical lines delimitthe high-contrast dark zone (between 3.4 and 14.0 λ_0/D). The blue dotted line delimits the FPM radius, set to 3.5 λ_0/D .

Analysis Summary

Pupil core throughput:

Lyot stop core throughput:

Maximum core throughput w.r.t. pupil core throughput:

Maximum core throughput w.r.t. Lyot stop core throughput: Inner working angle: 0.6122241018617949 0.4413632850260376 0.044732121835640515 0.07306494745895918 0.10134989328122661 $3.7170250659671282 <math>\lambda_0/D$

Broadband normalized irradiance for four representative levels of residual pointing jitter.

Azimuthally averaged raw contrast for four representative levels of rms residual pointing jitter.