PhysH308

Continued review of Newtonian Mechanics

Course logistics

- Exam 1:
 - I will post tomorrow or Saturday (I'll send an email)
 - Take-home, self-timed (still writing, but I'm aiming for 90 minutes or less)
 - Open notes
 - Due eight days from posting. No exceptions or extensions. (Recall, you'll have 6-7 more chances!)

• 3.5 - Billiards, elastic collision

• 3.10 - a tricky rocket problem.

• 3.22 - Finding the center of mass

• 3.22 - Asks you to explain $dV = r^2 \sin{(\phi)} dr d\theta d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin \left(\phi\right) dr \ d\theta \ d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin(\phi) dr d\theta d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin \left(\phi\right) dr \ d\theta \ d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin(\phi) dr d\theta d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin{\left(\phi\right)} \, dr \, d\theta \, d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin \left(\phi\right) dr \ d\theta \ d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin(\phi) dr d\theta d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin (\phi) dr d\theta d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin (\phi) dr d\theta d\phi$ in spherical coordinates

• 3.22 - Asks you to explain $dV = r^2 \sin(\phi) dr d\theta d\phi$ in spherical coordinates

Problems for the week

Tuesday:

- 3.5
- 3.10
- 3.22

Thursday

• 3.26 — lays the groundwork for orbital mechanics!

Be rigorous! You have everything you need to prove each part in a few lines!

• 3.30 — Moments of inertia refresher

Taylor's notation for cylindrical coordinates (ρ instead of r) is annoying - sorry!