Machine Learning for Data Science (CS4786) Lecture 12

Clustering + Linkage Clustering

CLUSTERING

- Grouping sets of data points s.t.
 - points in same group are similar
 - points in different groups are dissimilar

 A form of unsupervised classification where there are no predefined labels

SOME NOTATIONS

- *K*ary clustering is a partition of $x_1, ..., x_n$ into *K* groups
- For now assume the magical *K* is given to use
- Clustering given by C_1, \ldots, C_K , the partition of data points.
- Given a clustering, we shall use $c(\mathbf{x}_t)$ to denote the cluster identity of point \mathbf{x}_t according to the clustering.
- Let n_j denote $|C_j|$, clearly $\sum_{j=1}^K n_j = n$.

How do we formalize?

Say dissimilarity $(\mathbf{x}_t, \mathbf{x}_s)$ measures dissimilarity between $\mathbf{x}_t \ \& \ \mathbf{x}_s$

Given two clustering $\{C_1, \ldots, C_K\}$ (or c) and $\{C'_1, \ldots, C'_K\}$ (or c')

How do we decide which is better?

- points in same cluster are not dissimilar
- points in different clusters are dissimilar

Minimize total within-cluster dissimilarity

$$M_1 = \sum_{j=1}^K \sum_{s,t \in C_j} \text{dissimilarity}(x_t, x_s)$$

Maximize between-cluster dissimilarity

$$M_2 = \sum_{\mathbf{x}_s, \mathbf{x}_t : c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$$

Maximize smallest between-cluster dissimilarity

$$M_3 = \min_{\mathbf{x}_s, \mathbf{x}_t : c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$$

Minimize largest within-cluster dissimilarity

$$M_4 = \max_{j \in [K]} \max_{s,t \in C_j} \text{dissimilarity}(x_t, x_s)$$

• minimizing $M_1 \equiv \text{maximizing } M_2$

CLUSTERING

- Multiple clustering criteria all equally valid
- Different criteria lead to different algorithms/solutions
- Which notion of distances or costs we use matter

Lets Build an Algorithm

$$M_3 = \min_{\mathbf{x}_s, \mathbf{x}_t : c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$$

SINGLE LINK CLUSTERING

- Initialize n clusters with each point x_t to its own cluster
- Until there are only K clusters, do
 - Find closest two clusters and merge them into one cluster

dissimilarity
$$(C_i, C_j) = \min_{t \in C_i, s \in C_j} \text{dissimilarity}(\mathbf{x}_t, \mathbf{x}_s)$$

SINGLE LINK OBJECTIVE

Objective for single-link:

$$M_3 = \min_{\mathbf{x}_s, \mathbf{x}_t : c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$$

Single link clustering is optimal for above objective!

SINGLE LINK OBJECTIVE

Proof:

Say c is solution produced by single-link clustering

Key observation:

$$\min_{t,s:c(x_i)\neq c(x_j)} \operatorname{dissimilarity}(x_i,x_j) > \text{Distance of points merged}$$
 (on the tree)

Say $c' \neq c$ then,

$$\exists t, s \text{ s.t. } c'(x_t) \neq c'(x_s) \text{ but } c(x_t) = c(x_s)$$

c' boundary

Linkage Clustering

- Start with each point being its own cluster
- Merge the closest two clusters
 - Changing the meaning of what makes two cluster closest yield different linkage algorithms
- Single link is the only one provable optimal
- Linking based on average distance works best in practice

Minimize average dissimilarity within cluster

$$M_{6} = \sum_{j=1}^{K} \frac{1}{|C_{j}|} \sum_{s \in C_{j}} \text{dissimilarity} (\mathbf{x}_{s}, C_{j})$$

$$= \sum_{j=1}^{K} \frac{1}{|C_{j}|} \sum_{s \in C_{j}} \left(\sum_{t \in C_{j}, t \neq s} \text{dissimilarity} (\mathbf{x}_{s}, \mathbf{x}_{t}) \right)$$

$$= \sum_{j=1}^{K} \frac{1}{|C_{j}|} \sum_{s \in C_{j}} \left(\sum_{t \in C_{j}, t \neq s} \|\mathbf{x}_{s} - \mathbf{x}_{t}\|_{2}^{2} \right)$$

• Minimize within-cluster variance: $\mathbf{r}_j = \frac{1}{n_j} \sum_{\mathbf{x} \in C_j} \mathbf{x}$

$$M_5 = \sum_{j=1}^K \sum_{t \in C_j} \left\| \mathbf{x}_t - \mathbf{r}_j \right\|_2^2$$

• minimizing $M_5 \equiv \text{minimizing } M_6$