Assignment

"PCA and Clustering"

Dated: 19th August 2019

Submitted By:

Name: Vikram mathur

Roll Number: DDS1910599

VikramMathur3012@gmail.com

Problem Statement & Overall Approach

Problem Statement

- ➤ Identifying at least 5 countries in direct need of aid for utilization of \$ 10 million funding available with HELP International NGO.
- ➤ Objective is to determine the overall development of the countries based on socio-economic and health factors to take this decision.

Overall Approach

Reading & Understandin g Data

Data
Preparation
and EDA

Principal Component Analysis

Clustering (Kmeans and Hierarchical)

Cluster Analysis

Overall Approach

- Reading & Understanding Data
- Cleaning the Data
 - Checking Missing Values
- Data Preparation & EDA
 - Handling Percentage Formats
 - Outlier Identification & Treatment
 - Correlation of Variables
- Principal Component Analysis
 - Scaling
 - Applying PCA and Plotting Principal Components
 - Scree Plot
 - Incremental PCA
 - Outlier Analysis on Principal Components
- Clustering
 - Hopkin Statistic
 - SSD and Silhouette Score
 - KMeans Clustering
 - Hierarchical Clustering
- Analysis of the Clusters
 - Analyzing Features in Clusters
 - Feature Means in Cluster
 - List of Countries in Dire-Need of Aid

- Reading & Understanding Data
- Cleaning the Data
- Data Preparation & EDA

Outlier Analysis & Treatment

- Values beyond 75th and 85th percentile but the data seems all valid and logical.
- Most of the outliers seems to be for developed countries having very high gdpp and income and hence treating the outliers will not remove the countries that are under-developed and require aid and will not impact the objective.
- Treating the outliers by removing data below 5th percentile and beyond 95th percentile

Outlier Treatment

- 4 rows removed from the dataset as a result of outlier treatment
- From the box plots it is visible that the outlier for highly developed countries was removed. Based on our business problem that does not impact any under-developed country being removed from the dataset

Correlation of Variables (Pair Plot)

Correlation of Variables (Heat Map)

 (exports and imports), (health and gdp), (income and gdpp), (child_mort and life_expec), (exports and gdpp), (imports and gdpp) and (child_mort and total_fer) have the highest correlation in the dataset Principal Component Analysis

Scaling, Variance & Visualization

- Scaling Scaled the dataset
- Variance Computed Explained Variance Ratio to determine the how many Principal Components best explain the dataset
- Visualizing 2 Principal Components
 - The first component is where the income, gdpp, life_expec, imports, exports and health is heavy. These 6 components have the highest loading.
 - The second component is where the child_mort, total_fer are heavy. These 2 components have the highest loading.

Scree Plot, Correlation & Outlier Analysis

- Around 80% variance is explained by 2 components
- Around 90% variance is explained by 3 components
- Around 94% variance is explained by 4 components

Choosing 3 principal components for our model

Cumulative Explained Variance Ratio
0.639689 (1 PC)
0.800416 (2 PC)
0.902788 (3 PC)
0.940345 (4 PC)
0.966142 (5 PC)
0.987509 (6 PC)
0.996912 (7 PC)
0.998783 (8 PC)
1.000000 (9 PC)

Correlation Matrix

- There is no correlation between these three components. They are orthogonal.
- We have effectively removed multicollinearity

Outlier Analysis on Principal Components

- Principal components do have outliers but the data does not seem to outlie significantly.
- Not removing any outliers on principal components.
- They were earlier treated in the main dataset.

Clustering

Clustering

- Hopman Statistics of 87% suggesting the dataset has a good tendency to form clusters
- Finding Optimal Number of Clusters

SSD (Elbow Curve Inference)

 Based on the elbow bend 2 or 3 clusters seem to suffice our need

Clusters	Average Silhouette
2	0.50978
3	0.45211
4	0.4046
5	0.4200
6	0.3784
7	0.3887
8	0.3920

Average silhouette Interpretation

 A Silhouette score of 0.51 is coming for 2 clusters and 0.45 for 3 clusters

Choosing 2 clusters for our model based on both SSD and Silhouette Score

Hierarchical Clustering

• Single Linkage Plot

• Complete Linkage Plot

Hierarchical Clustering

- Visually, Complete linkage dendrogram, shows 3 to 4 possible clusters
- From a four cluster business perspective we could possibly derive :
 - Developed (High)
 - Developing (Upper-Middle)
 - Developing (Lower-Middle)
 - Under-Developed (Low)

One of the Clusters will only have three data points, hence not useful.

- From a three cluster business perspective it could possibly derive to:
 - Developed Countries
 - Developing Countries
 - Under-Developed Countries
- Objective is to determine under-developed countries requiring direct aid there is not much benefit in dividing the cluster of developing countries into two separate clusters.

Hence, selecting 3 clusters

Cluster Analysis

Cluster Analysis and Visualizations

- Principal Components (PC1 and PC2)
 Cluster Visualization
- Clear separation for Developed, Developing and Under-Developed Countries

- gdpp and child_mort features -Cluster Visualization
- Clear separation for Developed,
 Developing and Under-Developed
 Countries

Analyzing Features in Clusters

- Higher gdpp and income in Cluster 2 suggests that Cluster 2 is for developed countries
- Moderate gdpp and income in Cluster 1 suggests that Cluster 1 is for developing countries
- Higher child_mort and low gdpp and income in Cluster 0 suggests that Cluster 0 is for under-developed countries

Feature Means in Clusters

Cluster	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp
0	89.60	855.34	111.58	809.36	3878.63	9.87	59.51	4.87	1870.41
1	20.96	2855.06	401.96	2968.42	12510.75	7.70	73.10	2.28	6415.42
2	5.27	19046.77	3748.69	16935.36	40538.24	2.51	79.85	1.77	39291.18

- child mort, inflation and total fer is highly loaded in Cluster 0.
 - Signifying this cluster is of under-developed countries.
- All variables are in the mid-range in Cluster 1.
 - Signifying this cluster is for developing countries.
- gdpp, income, exports, imports, health and life_expec is highly loaded in Cluster 2.
 - Signifying this cluster is of developed countries.

Inference: Cluster 0 is in dire-need of aid

Conclusion

Filtering Countries in Cluster 0

- Countries above means of child_mort, inflation and total_fer
- And countries below means of gdpp, income, health, exports, imports and life_expec

List of Countries in Dire-Need of Aid

- Burundi
- Congo, Dem. Rep.
- Sierra Leone
- Malawi
- Guinea