Esame finale di CR3 - Mercoledì 20 Maggio 2009

NB. Si consegna entro lunedì 25 Maggio alle 9:00AM

- a. Sia E una curva ellittica definita su un campo con p elementi e tale che $E(\mathbf{F}_p) = C_{27} \times C_{81}$. Determinare tutti i possibili valori di p e per ciascun valore determinare una curva ellitticha con tale proprietà. Giustificare tutti i passi.
- b. Sia $E: y^2 = x^3 + x + 1$. Simulare l'algoritmo di Schoof per calcolare $E(\mathbf{F}_{31})$.
- c. Calcolare $\#E(\mathbf{F}_{3^{100}})$ dove $E: y^2 = x^3 + 2x + 1$. Giustificare la risposta.
- d. Calcolare l'ordine del punto $(0,0) \in E(\mathbf{F}_{16})$ dove $E: y^2 + y = x^3 + x$ utilizzando l'algoritmo Baby Step Giant Step. Dedurne l'ordine di $E(\mathbf{F}_{16})$.
- f. Sia E una curva definita su un campo finito \mathbf{F}_q e sia E' il suo twist. Dimostrare che $E(\mathbf{F}_q) \times E'(\mathbf{F}_q) \cong E(\mathbf{F}_{q^2})$.
- g. Sia $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ un equazione di Weierstrass su un campo e sia α la trasformazione affine definita da $(x,y) \mapsto (u^2x + r, u^3y + su^2x + t)$. Dimostrare che α trasforma l'equazione di Weierstrass in un'altra equazione di Weierstrass. Inoltre se due equazioni di Weierstrass si ottengono l'una dall'altra attraverso una trasformazione affine, allora questa deve avere la forma di α .
- h. Sia \mathbf{F}_q un campo finito di caratteristica dispari e siano $a, b \in \mathbf{F}_q$ $a \neq \pm 2b$ e $b \neq 0$ si consideri la curva ellittica di equazione $y^2 = x^3 + ax^2 + b^2x$.
 - (1) Dimostrare che i punti $(b, b\sqrt{a+2b})$ e $(-b, -b\sqrt{a-2b})$ hanno ordine 4.
 - (2) Dimostrare che almeno uno tra a+2b, a-2b e a^2-4b^2 è un quadrato un \mathbf{F}_q .
 - (3) Dimostrare che se a^2-4b^2 è un quadrato in \mathbf{F}_q , allora $E[2]\subseteq E(\mathbf{F}_q)$.
 - (4) Mostrare che $\#E(\mathbf{F}_q)$ è un multiplo di 4.
 - (5) Sia E' la curva ellitticha definita da $y^2 = x^3 2ax^2 + (a^2 4b^2)x$.

Mostrare che $E'[2] \subseteq E'(\mathbf{F}_q)$ e dedurre che anche $\#E'(\mathbf{F}_q)$ è un multiplo di 4.

- i. Produrre vari esempi di interi $m, n \in \mathbb{N}$ tali che non esiste alcun campo finito \mathbf{F}_q per il quale esiste una curva ellittica E/\mathbf{F}_q tale che $E(\mathbf{F}_q) \cong C_m \times C_{mn}$.
- j. Si consideri l'equazione proiettiva della curva ellittica E: $F(x,y,z)=y^2z-x^3-Axz^2-Bz^3=0$. Dimostrare che un punto P su E appartiene a E[3] se e solo se

$$\det \begin{pmatrix} F_{xx} & F_{xy} & F_{xz} \\ F_{yx} & F_{yy} & F_{yz} \\ F_{zx} & F_{zy} & F_{zz} \end{pmatrix} = 0$$

nel punto P, where F_{ab} denota la derivata parziale seconda rispetto a a e b. Il determinante si chiama Hessiano. I punti della curva che annullano l'Hessiano si chiamano flessi.