Suivi d'une transformation chimique

I-<u>Transformation chimique –réaction chimique :</u>

1) Transformation chimique:

Au cours d'une transformation chimique des substances disparaissent et d'autres nouvelles substances apparaissent. Une transformation chimique peut être modélisée par une réaction chimique :

- Les substances qui disparaissent sont appelées <u>les réactifs</u>.
- Les substances qui apparaissent sont appelées *les produits*.

On appelle système chimique l'ensemble des éléments chimiques existant dans le milieu réactionnel.

2) Etat initial et état final :

La transformation chimique représente le passage d'un système chimique d'un état initial à un état final.

On appelle état initial, l'état du système chimique avant la transformation.

On appelle état de transformation, l'état du système chimique à instant donné au cours de la transformation.

On appelle état final, l'état du système chimique après la transformation.

3) Modélisation des transformations chimiques:

On modélise une transformation chimique par un modèle simple qui peut décrire cette transformation qu'on appelle <u>réaction</u> <u>chimique</u> et qu'on représente par <u>une équation chimique</u> dans laquelle les réactifs et les produits sont représentés par leurs formules :

Les réactifs sont placés à gauches d'une flèche qui désigne le sens de la réaction et les produits à sa droite.

Réactifs Produits

Au cours d'une transformation chimique, il y a conservation des éléments chimiques et de la charge électrique, l'équation doit donc être équilibrée par des nombres appelés : coefficients <u>stæchiométriques</u>.

(par convention on n'écrit pas le coefficient stœchiométrique 1)

Généralisation : l'équation de la réaction peut être modélisée d'une manière générale de la façon suivante :

$$\alpha A + \beta B \rightarrow \gamma C + \delta D$$

A et B : les réactifs .

C et D: les produits de la réaction.

 α, β, γ et δ : les coefficients stæchiométriques

La flèche → indique le sens de la réaction.

II-Avancement de la réaction – Tableau d'avancement:

1) Avancement de la réaction :

Pour suivre l'évolution de la quantité de matière des espèces chimiques participant à la réaction chimique on utilise *l'avancement de la réaction* qu'on symbolise par x qui s'exprime en (mol) et qui représente la quantité de matière des réactifs disparus et quantités de matière des produits formés selon les coefficients stœchiométriques.

2) <u>Tableau d'avancement :</u>

Pour suivre l'évolution de la réaction on trace un tableau descriptif en utilisant l'avancement de la réaction qu'on appelle *tableau d'avancement de la réaction*.

Dans un tableau d'avancement donné on doit écrire l'équation de la réaction équilibrée puis on trace le tableau de la manière suivante :

Equation de la réaction		αA	+ βB →	yC + 6	SD
états	avancement	Quantité de matière (en mol)			
Etat initial	0	$n_o(A)$	$n_o(B)$	0	0
Etat de transformation	Х	$n_o(A) - \alpha.x$	$n_o(B) - \beta.x$	γ.x	$\delta .x$
Etat final	x_{max}	$n_o(A) - \alpha . x_{\text{max}}$	$n_o(B) - \beta . x_{\text{max}}$	$\gamma.x_{\rm max}$	$\delta x_{\rm max}$

3) Le réactif limitant:

Le réactif limitant est le réactif qui met fin à la réaction, c'est le premier réactif qui est totalement consommé.

4) <u>Avancement maximum</u>:

L'avancement maximum x_{max} est l'avancement de la réaction qui correspond à la disparition totale du réactif limitant.

5) Exercices d'application :

La combustion du fer Fe solide dans le dioxygène O₂ gazeux produit l'oxyde de fer magnétique Fe₃O₄.

- 1) Ecrire puis équilibrer l'équation de la réaction.
- 2) Tracer le tableau d'avancement de la réaction pour un mélange initial constitué de 3mol de fer et 4mol de O2.

1) Equation de la réaction :

$$3 \underset{(s)}{Fe} + 2 \underset{(g)}{O_2} \rightarrow Fe_3 O_4$$

2) Tableau d'avancement de la réaction :

Equation de la réaction		3 Fe +	2 02	> Fe ₃ O ₄
états avancement		Quantité de matière (en mol)		
Etat initial	0	3	4	0
Etat de transformation	X	3-3.x	4 - 2.x	.X
Etat final	$x_{\rm max}$	$3-3.x_{\text{max}}$	$4-2.x_{\text{max}}$	$x_{\rm max}$
Composition finale du mélange	$x_{\text{max}} = 1 mol$	0mol	2mol	1mol

-supposons que Fe est le réactif limitant : $3-3.x_{max} = 0$

$$3 - 3.x_{\text{max}} = 0$$

$$\Rightarrow x_{\text{max}} = 1 mol$$

-supposons que O_2 est le réactif limitant : $4-2.x_{max}=0$

$$4 - 2.x_{max} = 0$$

$$\Rightarrow x_{\text{max}} = 2mol$$

On a: 1mol < 2mol

On sait que le réactif limitant est celui utilisé par défaut, donc $x_{max} = 1 mol$ et c'est Fe qui est limitant.

Explication graphique: On l'obtient en représentant l'évolution des quantités de matière en fonction de l'avancement.

On ne doit pas prolonger les segments de droite après x_{max} car c'est la valeur maximale de l'avancement (lorsque $x=x_{max}$, la composition du mélange devient constante).

2^{ème} Exercice :

Sachant que la combustion complète du pentane gazeux C₅H₁₂ dans le dioxygène O₂ entraine la production du dioxyde de carbone CO₂ et de l'eau.

- 1) Ecrire puis équilibrer l'équation de la réaction.
- 2) Tracer le tableau d'avancement de la réaction pour un mélange initial constitué de 10mol de pentane et 40mol de O2.
- 3) Tracer la représentation graphique représentant l'évolution_des quantités de matière en fonction de l'avancement.

1) Equation de la réaction :

$$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$$

2) Tableau d'avancement de la réaction :

Equation de la réaction		C ₅ H ₁₂ -	8O ₂	-> 5CC	$O_2 + 6H_2O$
états	avancement	Quantité de matière (en mol)			
Etat initial	0	10	40	0	0
Etat de transformation	X	10-x	40 - 8.x	5. <i>x</i>	6 <i>x</i>
Etat final	x_{max}	$10-x_{\text{max}}$	$40 - 8x_{\text{max}}$	$5.x_{\text{max}}$	$6.x_{\text{max}}$
Composition finale du mélange	$x_{\text{max}} = 5mol$	5mol	0mol	25mol	5mol

-supposons que C_5H_{12} est le réactif limitant : $10-x_{max}=0$ \Rightarrow $x_{max}=10mol$

-supposons que O₂ est le réactif limitant : $40-8x_{max}=0$ \Rightarrow $x_{max}=5mol$

On a: 5mol < 10mol

On sait que le réactif limitant est celui utilisé par défaut, donc $x_{max} = 5mol$ et c'est O_2 qui est limitant.

<u>Explication graphique</u>: On l'obtient en représentant l'évolution des quantités de matière en fonction de l'avancement.

3^{ème} Exercice :

Sachant que l'aluminium Al réagit avec le dichlore Cl₂ et le produit de cette réaction est le chlorure l'aluminium AlCl₃.

On donne le graphe représentant l'évolution_des quantités de matière en fonction de l'avancement.

- 1) Ecrire puis équilibrer l'équation de la réaction et tracer le tableau d'avancement correspondant.
- 2) Compléter le graphe en représentant la variation de la quantité de matière du chlorure d'aluminium en fonction de l'avancement et donner la composition finale du mélange.

1)						
	Equation de la réaction					
			2Al	+ 3 Cl ₂ -	\rightarrow 2 AlCl ₃	
	états	avancement	Quantité de matière (en mol)			
	Etat initial	0	0,5	0,6	0	
	Etat de	х	0.5 - 2.x	0.6 - 3.x	2 <i>x</i>	
	transformation		,	,		
	Etat final	$x_{\rm max}$	$0.5 - 2.x_{\text{max}}$	$0.6-3x_{\rm max}$	$2.x_{\rm max}$	
	Composition finale					
	du mélange	$x_{\rm max} = 0,2mol$	0,1mol	0mol	0,4mol	

On constate que Cl₂ est le réactif limitant (il est totalement consommé en mettant fin à la réaction). Donc $0.6 - 3x_{\text{max}} = 0$

$$\Rightarrow x_{\text{max}} = 0.2 mol$$
2)

Remarque: Si mélange est stœchiométriques chacun des réactifs est limitant.

III-Détermination de la pression d'un gaz résultant d'une réaction chimique:

1) Expérience :

On introduit une masse m=32,7mg de zinc en poudre dans un flacon à la température $\theta = 20^{\circ} C$ et sous la pression atmosphérique $P_{atm} = 1013.hPa$ puis on verse dans le flacon de volume 500mL un volume V=10mL d'une solution d'acide chlorhydrique de concentration c=0,5mol/L.

On donne l'équation de la réaction qui se produit dans le flacon. :

$$Zn_{(s)} + 2H^{+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + H_{2(g)}$$

2) Prévoir l'état final:

On peut prévoir la pression finale du gaz dihydrogène qui se produit à la fin de cette réaction par l'une des deux méthodes suivantes: -Soit en utilisant un appareil de mesure de la pression.

-ou bien théoriquement en utilisant le tableau d'avancement de la réaction.

*1\frac{\delta re}{2} méthode: On détermine la valeur de la pression final P_f à la fin de la réaction à l'aide d'un capteur de pression,

on trouve: $P_f=1038hPa$

*2 méthode:

La quantité de matière de zinc initiale :

$$n_o(Zn) = \frac{m}{M} = \frac{32,7.10^{-3}}{65,4} = 0,5 \text{m.mol}$$

La quantité de matière de H⁺ initiale :
$$n_a(H^+) = c.V = 0.5 \times 10.10^{-3} = 5 \text{m.mol}$$

Tableau d'avancement:

Equation de la	réaction				
-		Zn	+ 2H ⁺	$\rightarrow Zn^2$	2+ + H ₂
états	avancement	Quantité de matière (en m. mol)			
Etat initial	0	0,5	5	0	0
Etat de transformation	X	0,5-x	5-2.x	х	х
Etat final	x_{max}	$0.5 - x_{\text{max}}$	$5-2x_{\text{max}}$	$x_{\rm max}$	x_{max}
Composition finale du mélange	0,5 <i>m.mol</i>	0m.mol	4m.mol	0,5m.mol	0,5 <i>m.mol</i>

-supposons que **Zn** est le réactif limitant : $0.5 - x_{\text{max}} = 0$ \Rightarrow $x_{\text{max}} = 0.5$.m.mol

 $\Rightarrow x_{\text{max}} = 2,5 \text{m.mol}$ -supposons que \mathbf{H}^+ est le réactif limitant : $5-2x_{\text{max}}=0$

0,5m.mol est inférieure à : 2,5m.mol On a:

On sait que le réactif limitant est celui utilisé par défaut, donc $x_{max} = 0.5 m.mol$ et c'est **Zn** qui est limitant.

A partir du tableau d'avancement on a : $n_f(H_2)=x_{max}=0.5$ m.mol

En appliquant la relation des gaz parfaits au gaz dihydrogène qui occupe le volume restant du flacon :V_(H2)=500-10=490mL

$$P_{(H_2)} \cdot V_{(H_2)} = n_{(H_2)} \cdot R \cdot T \qquad \Rightarrow \qquad P_{(H_2)} \cdot = \frac{n_{(H_2)} \cdot R \cdot T}{V_{(H_2)}} = \frac{0.5 \times 10^{-3} \times 8.314 \times 293}{490 \times 10^{-6}} = 2485.7 Pa \approx 25 hPa$$

La pression finale du dihydrogène H_2 dans le flacon : $P_f = P_{(H_2)} + P_{atm} = 25 + 1013 = 1038 \ hPa$ qui correspond à la valeur trouvée expérimentalement.

SBIRO Abdelkrim mail: sbiabdou@yahoo.fr ou bien sbiabddou@gmail.com Pour toute observation contactez moi.