Inferencia Estadística: Tarea 3

Estimación puntual

Fecha de entrega: 20 de octubre

- 1. (1 punto) Sea X_1, \ldots, X_n una muestra aleatoria con densidad $f(x; \theta)$. Encuentre el estimador de momentos del parámetro θ de las siguientes funciones de densidad.
 - (a) $f(x;\theta) = \theta x^{\theta-1}, \ 0 < x < 1, \ 0 < \theta < \infty.$
 - (b) $f(x;\theta) = \frac{1}{2\theta}, -\theta < x < \theta, 0 < \theta < \infty.$
 - (c) $f(x;\theta) = \theta x^{-2}$, $0 < \theta < x < \infty$.

Es importante notar que el estimador puede no existir.

- 2. (1.5 puntos) Considera la base de datos *precioCasas.txt*, la cual detalla el precio de venta (en miles de dólares) de un conjunto de casas con ciertas características. Considerando la variable precio realiza lo siguiente.
 - (a) Suponiendo que los precios de venta siguen una distribución normal. Encuentre los estimadores máximo verosímiles de μ y σ^2 .
 - (b) Suponiendo ahora que los precios de venta siguen una distribución log-normal. Encuentre los estimadores máximo verosímiles de los parámetros del modelo.
 - (c) En una misma gráfica muestre el histograma de los datos y grafique las funciones de densidad estimadas bajo ambos modelos. ¿Qué distribución es más apropiada?
- 3. (1.5 puntos) Considera los datos tiempos Operacion.txt, los cuales son registros de 120 tiempos de operación en una empresa de manufactura de gimnasios y realiza lo siguiente.
 - (a) Ajusta a los datos una distribución exponencial de parámetro (desconocido) λ , el cual debes encontrar mediante el método de máxima verosimilitud. Una vez que se tenga $\hat{\lambda}$ dibuja el histograma y añade en la misma gráfica la curva de la densidad exponencial con parámetro $\hat{\lambda}$. ¿Se ajusta bien a los datos?

- (b) Ahora considera una distribución gamma de parámetros α , β donde α se asume que es igual a 2 y β es desconocida. Encuentra el estimador máximo verosímil de β y realiza el mismo análisis que en el inciso (a).
- (c) Finalmente, considera una distribución gamma con parámetros α y β desconocidos. Encuentra de forma analítica (o numérica en caso de ser necesario) los estimadores máximo verosímiles y realiza el mismo análisis que en el inciso (a).
- (d) ¿Qué distribución se ajusta mejor a los datos?
- 4. (1 punto) Considera que la colección de variables aleatorias X_1, \ldots, X_n son condicionalmente independientes dado un parámetro λ de tal forma que

$$f(x_1,\ldots,x_n\mid \lambda) = \prod_{i=1}^n f(x_i\mid \lambda).$$

Suponiendo que $\lambda \sim Ga(\alpha, \beta)$ y $X_i \mid \lambda \sim Exp(\lambda)$.

- (a) Obtén la distribución posterior de λ . ¿Qué puedes decir sobre la elección de este modelo y de esta distribución inicial?
- (b) Obtén la esperanza posterior y demuestra que se puede ver como un promedio ponderado de la media inicial y el estimador máximo verosímil de λ .
- 5. (1 punto) Sean $\widehat{\theta}_1$ y $\widehat{\theta}_2$ dos estimadores insesgados de θ , con $Var(\widehat{\theta}_1) = \sigma_1^2$ y $Var(\widehat{\theta}_2) = \sigma_2^2$. Considere un tercer estimador dado por,

$$\widehat{\theta}_3 = \alpha \widehat{\theta}_1 + (1 - \alpha)\widehat{\theta}_2, \quad 0 < \alpha < 1.$$

- (a) ¿Es $\widehat{\theta}_3$ un estimador insesgado de θ ?
- (b) Si $\widehat{\theta}_1$ y $\widehat{\theta}_2$ son independientes. ¿Para qué valor de α se minimiza la varianza de $\widehat{\theta}_3$?
- (c) Si $\widehat{\theta}_1$ y $\widehat{\theta}_2$ no son independientes y $\operatorname{cov}(\widehat{\theta}_1,\widehat{\theta}_2)=c$. ¿Para qué valor de α se minimiza la varianza de $\widehat{\theta}_3$?
- 6. (1 punto) Sean X_1, \ldots, X_n los tiempos de supervivencia de una muestra aleatoria de n individuos a los que se les administró un tratamiento médico. Asumiendo que siguen una distribución exponencial de media θ .
 - (a) Demuestre que $\hat{\theta} = \bar{X}$ es un estimador insesgado de θ y obtén su varianza.
 - (b) ¿El estimador $\widehat{\theta}$ alcanza la cota inferior de Cramér Rao?
 - (c) Sea $Y=\min\{X_1,\ldots,X_n\}$. Encuentre $\mathbb{P}(Y>y)$ y deduzca la función de densidad de Y. Obtén además su media y varianza.

- (d) Proponga un estimador insesgado de θ basado en Y. De los estimadores obtenidos ¿Cuál es eficiente? ¿Cuál es consistente?
- 7. (1 puntos) Sea X_1, \ldots, X_n una muestra aleatoria de una distribución Bernoulli(p). En este problema, el interés es estimar $\nu = p(1-p)$.
 - (a) Encuentra el estimador máximo verosímil de ν .
 - (b) Muestre que el estimador $\tilde{\nu} = X_1(1 X_2)$ es insesgado para ν .
 - (c) Utilizando los resultados vistos en clase, obtén un mejor estimador de $\hat{\nu}$ para ν .
 - (d) ¿Son el estimador máximo verosímil de ν y el obtenido en el inciso anterior similares?
- 8. (1 punto) Sea X_1, \ldots, X_n una muestra aleatoria con distribución uniforme en el intervalo $(0, \theta)$.
 - (a) Encuentre la cota inferior de Cramér Rao de la varianza de un estimador insesgado de θ .
 - (b) Ahora considere $\hat{\theta} = X_{(n)}$ el estimador máximo verosímil de θ , encuentre una constante c tal que $\tilde{\theta} = c\hat{\theta}$ es un estimador insesgado de θ .
 - (c) Calcule la varianza de $\tilde{\theta}$. ¿Por qué la varianza de este estimador es menor que la cota inferior de Cramér Rao?
- 9. (1 punto) Sea X_1, \ldots, X_n una muestra aleatoria de una distribución Poisson de parámetro θ . Considerando el estimador para θ dado por:

$$T = \frac{1}{2}(X_1 + X_2),$$

realice lo siguiente.

- (a) Obtén la $\mathbb{E}(T)$. ¿Qué puedes decir del estimador?
- (b) Calcula la varianza de T.
- (c) Encuentra una estadística S que sea suficiente y completa para θ . Con ella mejora el estimador T y obtén su varianza. ¿Qué puedes concluir?

Actividades de DataCamp

- 1. Intermediate R
- 2. Introduction to Writing Functions in R
- 3. Exploratory Data Analysis in R