inued)

IS

an	qe		Distance									
T	Thickn	ess,	, A	1	K ₁	7	. 8	Work- able				
-	t _f		k _{des}	K _{det}	1.1	r	G	Gage				
+	in	14.	in.	in.	in.	in	1.1	in.				
+	0.640	5/8	1.24	11/2	15/			51/2				
	0.575	9/16	1.18	13/8	15/	16 91	/4	51/2				
	0.640	5/8	1.14	11/2	15		/4	51/2				
	0.575	9/16	1.08	13/8	15	/16		1				
	0.515	1/2	1.02	13/8	7/8	3	V					
	0.520	1/2	0.820	13/16	3/	4 10)1/8	$3^{1/2}$				
	0.440	7/16	0.740	11/8	3/	4						
	0.380	3/8	0.68	11/16	3/	4	V					
	0.425	7/16	0.72	5 15/	16 5	/8 11	03/8	2 ¹ /4 ^g				
	0.350		0.65		9	/16	1					
	0.330		0.56	.00	16 9	/16						
	0.203	144.57	0.52	0.000		/16	A	A				
٠.	1		1.75		16 1	10	71/2	51/2				
3/8	1.25	11/4	1.62									
3/8		11/8	1.02			15/16						
1/4		_	1.48			7/8		6				
1/2					-	3	3:1	1				
1/8						13/16						
)1/:	The second second			19-	5.21	13/16						
)	0.61	13.7		P	200	13/16	V	V				
)	0.56	0 9/	1.0	65		- SE						
	0.62	0 5/	1.1			13/16	71/2	51/2				
	0.53	30 1/	1.0		20 00	13/16	1	1				
	0.43	35 7/	16 0.9	35 11/	8	3/4	V					
3/4	0.5	10 1/	2 0.8	310 11	/8	11/16	81/4	23/4				
3/		100	16 0.7		/16	11/16	1					
3/	1 1 1 2 2 2 2 2	-		660	15/16	5/8	1					
1	0.3	95 3	/8 0.	695	15/16	5/8	83/8	21/				
1	1	_		-	7/8	9/16	11	1				
1	0.3		1000		13/16	9/16		The s				
4	1		0.00		3/4	9/16	1	1				
		17	6	190 m			1. 8	S				
	9	00 m	15 1 9	The P	363	- 0	-					
	1 6.3	6 . 35	1				-1					

ts should be compared with the geometry of the cross section Section G2.1(a) with $F_{\rm y}=50$ ksi.

Table 1-1 (continued) W-Shapes Properties

Nom- inal Wt.	Compact Section Criteria			Axis	х-х	. 3	Axis Y-Y				rts	ho	Torsional Properties	
	b _f	h	1.	S	r	Z	1	S	r	Z		0	J	Cw
lb/ft	2t _f	t _w	in. ⁴	in. ³	in.	in.3	in.4	in.3	in.	in. ³	in.	in.	in.4	in.6
58	1	27.0	475	78.0	5.28		107	21.4	2.51	32.5	2.81	11.6	2.10	3570
53	8.69	28.1	425	70.6	5.23	77.9	95.8	19.2	2.48	29.1	2.79	11.5	1.58	3160
50	6.31	26.8	391	64.2	5.18	71.9	56.3	13.9	1.96	21.3	2.25	11.6	1.71	1880
45	7.00	29.6	348	57.7	5.15	64.2	50.0	12.4	1.95	19.0	2.23	11.5	1.26	1650
40	7.77	33.6	307	51.5	5.13	57.0	44.1	11.0	1.94	16.8	2.21	11.4	0.906	1440
35	6.31	36.2	285	45.6	5.25	51.2	24.5	7.47	1.54	11.5	1.79	12.0	0.741	
30	7.41	41.8	238	38.6	5.21	43.1	20.3	6.24		9.56		11.9	0.741	879
26	8.54	47.2	204	33.4	5.17	37.2	17.3	5.34		8.17	1.75	11.8	0.300	720 607
22	4.74	41.8	156	25.4	4.91	29.3	4.66	2.31	0.848	3.66	1.04	11.9	0.293	
19	5.72	46.2	130	21.3	4.82	24.7	3.76	1.88		2.98	1.02	11.9	0.293	164 131
16	7.53	49.4	103	17.1	4.67	20.1	2.82	1.41		2.26	0.983	11.7	0.100	96.
14	8.82	54.3	88.6	14.9	4.62	17.4	2.36	1.19	a successive statement	1.90	0.961	11.7	0.103	80.4
112	4.17	10.4	716	126	4.66	147	236	45.3	2.68	69.2	3.08	10.2	15.1	
100	4.62		623	112	4.60	130	207	40.0	2.65	61.0	3.04	10.2	10.9	6020 5150
88	5.18	13.0	534	98.5	4.54	113	179	34.8	2.63	53.1	2.99	9.81	7.53	4330
77	5.86		455	85.9	4.49	97.6	154	30.1	2.60	45.9	2.95	9.73	5.11	3630
68	6.58		394	75.7	4.44	85.3	134	26.4	2.59	40.1	2.92	9.63	3.56	3100
60	7.41		341	66.7	4.39	74.6	116	23.0	2.57	35.0	2.88	9.52	2.48	2640
54	8.15		303	60.0	4.37	66.6	103	20.6	2.56	31.3	2.85	9.49	1.82	2320
49	8.93	23.1	272	54.6	4.35	60.4	93.4	18.7	2.54	28.3	2.84	9.44	1.39	2070
45	6.47		248	49.1	4.32	54.9	53.4	13.3	2.01	20.3	2.27	9.48	1.51	1200
39	7.53		209	42.1	4.27	46.8	45.0	11.3	1.98	17.2	2.24	9.39	0.976	992
33	9.15	27.1	171	35.0	4.19	38.8	36.6	9.20	1.94	14.0	2.20	9.30	0.583	791
30	5.70	CONT. (CS)	170	32.4	4.38	36.6	16.7	5.75	1.37	8.84	1.60	10.0	0.622	414
26	6.56		144	27.9	4.35	31.3	14.1	4.89	1.36	7.50	1.58	9.86	0.402	345
22	7.99	36.9	118	23.2	4.27	26.0	11.4	3.97	1.33	6.10	1.55	9.84	0.239	275
19	5.09		96.3	18.8	4.14	21.6	4.29	2.14	0.874	3.35	1.06	9.81	0.233	104
17	6.08		81.9	16.2	4.05	18.7	3.56	1.78	0.845		1.04	9.77	0.156	85.1
15	7.41 3		68.9	13.8	3.95	16.0	2.89	1.45	0.810	2.30	1.01	9.72	0.104	68.3
12	9.43	16.6	53.8	10.9	3.90	12.6	2.18	1.10	0.785	1.74	0.983	9.66	0.0547	50.9
				i								3.	1	

AMERICAN INSTITUTE OF STEEL CONSTRUCTION