aula 2: OPERAÇÕES ARITMÉTICAS

disciplina: Organização e Arquitetura de

Computadores

professora: Sara Guimaraes

1

O QUE SÃO OS NÚMEROS?

O QUE SÃO OS NÚMEROS?

- Forma quantitativa de definir ou atribuir valor a algo;
- Conjuntos numéricos: inteiros, reais, francionários, irracionais...
- O que é base numérica?
- Como o computador interpreta os números?

2

BASES NUMÉRICA

BASES NUMÉRICAS

Decimal

0 1 2 3 4 5 6 7 8 9 10 11 ...

Binária

0 1 10 11 100 101 110 111...

BASES NUMÉRICAS

Octal

0 1 2 3 4 5 6 7 8 10 11 ...

Hexadecimal

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 ... 19 1A ...

Qual o motivo de existirem diversas bases numéricas?

Quando determinado número é definido em uma determinada base, esse número apenas pode ser representado por essa base?

3

CONVERSÃO ENTRE BASES

BINÁRIO

BINÁRIO PARA DECIMAL

100110112

$$128+0+0+16+8+0+2+1$$

$$= 155$$
wiki How

e.g.) 1.1₂

$$1 \cdot 1$$

$$2^{0} \cdot 2^{-1}$$

$$1 + 0.5 = 1.5_{10}$$
with the with the second support to the second sup

BINÁRIO PARA HEXADECIMAL

0000	1000 8
0001 1	1001 9
0010 2	1010 A
0011 3	1011 B
0100 4	1100 C
0101 5	1101 D
0110 6	1110 E
0111 7	1111 F wiki Ho

```
11101100101001
(11)(1011)(0010)(1001)
    11 \longrightarrow 0011 \rightarrow 3
    1011 \to 1011 \to B
    0010 \rightarrow 0010 \rightarrow 2
    1001 \to 1001 \to 9
(11)(1011)(0010)(1001) = 3829
```


11101100101001 (11)(1011)(0010)(1001)

```
(11)(1011)(0010)(1001)
             \rightarrow 0011 \rightarrow 3
     1011 \rightarrow 1011 \rightarrow B
     0010 \to 0010 \to 2
     1001 \to 1001 \to 9
(11)(1011)(0010)(1001) = 3829
```

DECIMAL

DECIMAL PARA BINÁRIO

$$(10011100)_2$$

= $2^7 + 2^4 + 2^3 + 2^2$
= $128 + 16 + 8 + 4$
= $(156)_{10}$

DECIMAL PARA HEXADECIMAL

example: 317547→HEX

Find remainder:

dividend – (quotient x divisor) = remainder

$$317547 - (19846x16) = 11$$
 $11_{10} = B_{16}$

Find remainder:

dividend – (quotient x divisor) = remainder

Find remainder:

Find remainder:

77-(4x16) = 13
$$13_{10} = D_{16}$$

$$4_{10} = 4_{16}$$

wiki

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

$$A_{10} = A_{16}$$
 $A_{10} = A_{16}$
 A_{10}

HEXADECIMAL

HEXADECIMAL PARA BINÁRIO

0000	1000	8
0001 1	1001	9
0010 2	1010	Α
0011 3	1011	В
0100 4	1100	Č
0101 5	1101	D
0110 6	1110	E
0111 7	1111	wikiHow

A231010 0001 0011 BEE 1011 1110 1110

HEXADECIMAL PARA DECIMAL

$$C921_{16}$$
 $1 \times 16^{\circ} = 1 \times 1$
 $+2 \times 16^{\circ} = 2 \times 16$
 $+9 \times 16^{\circ} = 9 \times 256$
 $+C \times 16^{\circ} = C \times 4096$

with How

$$C921_{16}$$
 1×1
 $+ 2 \times 16$
 $C_{16} = 12_{10}$
 $+ 9 \times 256$
 $+ C \times 4096$

$$C921_{16}$$
 $1 \times 1 = 1$
 $+ 2 \times 16 = 32$
 $+ 9 \times 256 = 2304$
 $+ 12 \times 4096 = 49152$
 $51,489_{10}$

4

OPERAÇÃO DE ADIÇÃO

ADIÇÃO

ADIÇÃO

5

OPERAÇÃO DE SUBTRAÇÃO

SUBTRAÇÃO

SUBTRAÇÃO

$$\frac{110}{-101}$$

$$\frac{-101}{001}$$

$$110-101=\boxed{1}$$
wild How

SUBTRAÇÃO

6

OPERAÇÃO DE DIVISÃO

DIVISÃO

QUESTÕES AVALIATIVAS

15% da avaliação da primeira unidade

- 1. Converta o número do seu CPF (base decimal) para a base binária, hexadecimal. Depois realize a conversão inversa, ou seja, após converter para binário, converta agora para decimal novamente.
- 2. Converta o número da sua matrícula (base decimal) para a base binária, hexadecimal.
- 3. Some o número do seu CPF, o número da sua matrícula e 110111₂, todos na base binária.
- 4. Subtraia o número do seu CPF com o número da sua matrícula, ambos na base binária.
- 5. Divida o número do seu CPF (base binária) por 11₂.

sara.negreiros@ufersa.edu.br

8

PONTO FLUTUANTE

Princípios

- Permite representar uma faixa centrada em 0 de números inteiros positivos e negativos;
- Permite também a representação de números fracionários;
- Limitações:
 - Não permite a representação de números muito grandes ou muito pequenos;
 - Divisão de números com parte fracionária pode sofrer truncamento.
- Para base decimal essa limitação é superada com notação científica.

Representação

- Sinal, Mantissa e Expoente.
- Formato típico de 32 bits.
- Número normalizado: +- 0,1bbb...b * 2 +-E
- 1(implícito)bbb...b(mantissa)

Representação

Representação polarizada:

$$\geq$$
 28 - 1 = 255 => E entre -127 e +128

Palavra de 31 bits: 2³¹ inteiros distintos

Mantissa entre: (1-10⁻²⁴) e 0,5 (Implicação número normalizado)

- Distribuição não igualitária.
- Com o aumento da faixa de expoentes e diminuição da mantissa a precisão diminui.
- Palavras de 64 bits.

9

ARITMÉTICA DE PONTO FLUTUANTE

Operações

Números de ponto flutuante	Operações aritméticas
$X = X_S \times B^{X_E}$	$X + Y = (X_S \times B^{X_E - Y_E} + Y_S) \times B^{Y_E}$
$Y = Y_S \times B^{Y_E}$	$ X + Y = (X_S \times B^{X_E - Y_E} + Y_S) \times B^{Y_E} $ $ X - Y = (X_S \times B^{X_E - Y_E} - Y_S) \times B^{Y_E} $ $ X_E \le Y_E $
	$X \times Y = (X_S \times Y_S) \times B^{X_E + Y_E}$
	$\frac{X}{Y} = \left(\frac{X_S}{Y_S}\right) \times B^{X_E - Y_E}$
	$Y = (Y_S)^{NS}$

Exemplos:

$$X = 0.3 \times 10^{2} = 30$$

$$Y = 0.2 \times 10^{3} = 200$$

$$X + Y = (0.3 \times 10^{2-3} + 0.2) \times 10^{3} = 0.23 \times 10^{3} = 230$$

$$X - Y = (0.3 \times 10^{2-3} - 0.2) \times 10^{3} = (-0.17) \times 10^{3} = -170$$

$$X \times Y = (0.3 \times 0.2) \times 10^{2+3} = 0.06 \times 10^5 = 6000$$

$$X \div Y = (0.3 \div 0.2) \times 10^{2-3} = 1.5 \times 10^{-1} = 0.15$$

Multiplicação

Divisão

EXERCÍCIOS

1.

sara.negreiros@ufersa.edu.br