Toxicology Research Laboratory

UIC The University of Illinois at Chicago

Department of Pharmacology (M/C 868) 1940 W. Taylor St. Chicago, Illinois 60612-7353

Contract No.: DAMD17-92-C2001

Task Order No.: UIC-5B UIC/TRL Study No.: 098

Title Page

CZ

Volume 3 of 3

Draft Report for Task Order No. UIC-5B
THIRTEEN WEEK ORAL TOXICITY STUDY
OF WR238605 WITH A THIRTEEN WEEK
RECOVERY PERIOD IN RATS

Spor

Sponsor: US Army Medical Materiel

Development Activity

Test Article: WR238605

Contract No.: DAMD17-92-C-2001

Study Director

Barry S. Levine, D.Sc., D.A.B.T.

In-Life Phase Completed On

June 18, 1993

Performing Laboratory

TOXICOLOGY RESEARCH LABORATORY (TRL)
University of Illinois at Chicago (UIC)
Department of Pharmacology
1940 W. Taylor St.
Chicago, IL 60612-7353

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

UNCLASS			* march		2 (2)		2 (7			
SECURITY CL	ASSIFICATION	OF THIS PAGE		•		///				
		REPORT	DOCUMENTATIO	N PAGE	טט ע	רין וי	Ш		n Approved 3 No. 1)704-0188	
1a. REPORT	SECURITY CLAS	SSIFICATION		1b. RESTRICTIVE MARKINGS						
Unclass	ified	ON AUTHORITY		3. DISTRIBUTI		ABILITY C	OF REPOR	T		
2b. DECLASS	IFICATION / DO	WNGRADING SCHEDL	Unlimited							
		TION REPORT NUMBI Study No. 098)	5. MONITORIN	G ORGANI	ZATION F	REPORT N	UMBER(S)		
Toxicol	logy Research	ORGANIZATION h Laboratory nois at Chicago	7a. NAME OF U.S. Army					Activity		
6c. ADDRESS Departm 1940 W.	(City, State, ar	nd ZIP Code) macology (M/C 868 eet)	Fort Det	RD-RMA-RO	3 D	Code)			
8a. NAME OF ORGANIZ	FUNDING/SP	ONSORING Army Medical	8b. OFFICE SYMBOL (If applicable) SCRD-UMP	9. PROCUREME DAMD17-92-		IMENT ID	ENTIFICA	TION NUI	MBER	
8c ADDRESS	(City, State, and	d ZIP Code)		10. SOURCE OF			The second secon			
Fort De	trick			PROGRAM ELEMENT NO.	PROJECT NO.	T	TASK NO.		WORK UNIT ACCESSION NO.	
Frederi	ck, MD 2170	02-5009		63807A	30463	807	œ		073	
THIRTEE			F WR 238605 WITH A T	HIRTEEN WEEK 1	RECOVERY	PERIOD	IN RATS			
12. PERSONAL	L AUTHOR(S) Levine, Ba	rry S.; Tomlin	son, Michael J.	(Pathology	Associ	ates,	Inc.)			
13a. TYPE OF	REPORT RAFT	13b. TIME CO FROM <u>9/1</u>		14. DATE OF REF	ORT (Year	, Month,	Day) 15	S. PAGE C	COUNT	
16. SUPPLEME	NTARY NOTA	NON								
17.	COSATI	CODES	18. SUBJECT TERMS (C	ontinue on reve	rse if nece:	sary and	didentify	by block	number)	
FIELD	GROUP	SUB-GROUP	WR 238605 Toxicology		molytic timalar		ia			
19. ABSTRACT	(Continue on	reverse if necessary	and identify by block nu	imber)						
week recor The primar and high d hemolytic gains, meth treatment of dose males stress and of at the two limited to	very period way toxic affect lose animals, anemia. Toxinemoglobin processation. Incompletes suggested management of highest dose mid and high	vas included for all ts were seen in the but was reversible. Icity again was limit roduction and mild a reases in serum AL hild hepatotoxicity, increased number of levels and was reve dose animals, a no-	groups. Dose levels s RBCs, lungs, and live Microscopic lesions in ed to the two highest danemia were observed T, AST, and/or LDH a however histopatholog f lymphocytes, mature ersible after cessation of adverse effect level of	tudied were 0 (r. Significant r n the spleen, ki ose levels. Decr at the mid and h nd decreased A ic lesions were neutrophils, and of treatment. Be f WR238605 w	vehicle conethemoglidney, and eased food high dose land for ratios in not seen. It is more than the ratio of	ontrol), (obin pro bone m d consum evels, b n high o Leuko cytes wa aforeme d to be	0.5, 6 and oduction arrow we apption, do not were relieved animologytosis passeen in entioned 0.5 mg b	d 18 mg was obsere secondecreased readily remais and possibly the treatoxic res	base/kg/day. served in mid adary to mild body weight eversible after possibly mid secondary to atment period sponses were	
UNCLASS	SIFIED/UNLIMIT			21. ABSTRACT S Unclassifi 22b. TELEPHONE	.ed			FICE SYN	ABOL	
Barry S.		INDIAIDOAL		(312) 996	-5543		. N/	'A		
O Farm 447	2 1111 96		Previous aditions are o	broleta	cc	CHRITY (CLASSIFIC.	ATION OF	F THIS PAGE	

Contract No.: DAMD17-92-C2001

Task Order No.: UIC-5B UIC/TRL Study No.: 098

VOLUME 3

APPENDICES (Contd.)

7	Individual Hematology Data	. 7-1
8	Ophthalmology Report	. 8-1
9	Individual Organ Weights	.9-1
10	Pathology Report	10-1
11	Pre-test Clinical Pathology Data	11-1
12	Protocol and Protocol Amendments	12-1
13	Study Deviations	13-1

DRAFT

APPENDIX 7

Individual Hematology Data

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Erythrocytes

ABBR: RBC ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day 7.98 8.57 8.56 8.42 9.04 8.08 8.47 8.48 8.49 8.68 -- -- -- -- --7.64 801 7.47 8.83 802 803 ----804 --805 806 7.89 8.90 807 7.34 8.32 808 - -7.56 809 8.23 810 6.68 7.22 811 7.04 8.22 --812 --813 8.27 814 7.43 815 6.77 7.83 816 7.16 7.68 817 ------818 819 --820 ----8.09 0.386 8.20 8.55 0.442 0.406 8.11 8.20 0.420 0.442 11 10 7.68 8.09 0.442 0.386 10 10 MEAN 7.30 8.55 8.19 0.507 SD 0.385 N 10 7.32 8.13 8.20 8.68 8.06 8.28

7.47 7.61 8.00 8.28 7.80 8.30

7.27 7.40 8.23 8.65 8.21 8.56

7.69 8.29 8.27 8.57 8.00 9.19

7.07 7.64 8.15 6.61 7.89 8.15

7.30 7.30 7.83 7.79 7.76 7.92

6.79 7.05 8.15 8.15 8.20 8.64 GROUP: 0.5:0.5 mg base/kg/day 841 -- --842 --843 844 8.55 845 846 847 848 849 850 8.64 851 8.15 7.92 852 8.35 853 854 855 --------856 857 7.71 8.20 8.51 8.09 8.83 7.54 8.50 8.21 8.09 8.05 6.68 7.55 7.84 7.85 7.93 7.21 8.42 858 859 7.28 7.98 7.93 7.79 860 6.71 7.54 8.11 0.473 0.262 10 10 8.13 8.00 8.39 0.619 0.162 0.415 10 10 10 7.21 8.27 0.293 SD 0.305 10 10 10 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Erythrocytes

ABBR: RBC ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 6.0:6.0 mg base/kg/day 881 -- ----882 ----------883 - -----7.36 7.92 8.61 8.23 884 8.78 7.21 7.68 ----885 --886 ------7.64 7.85 7.35 887 7.26 9.52 8.33 888 ----------8.01 7.97 9.11 9.09 6.97 7.40 7.59 889 7.78 8.68 7.26 --6.94 890 6.95 7.84 7.34 8.56 7.40 7.95 6.71 8.75 • • --891 892 --893 7.14 8.87 894 --------8.11 9.11 8.61 8.97 7.06 7.72 8.35 7.40 8.21 8.55 6.47 895 8.15 896 7.75 8.83 7.18 8.20 8.00 8.40 897 7.21 8.19 8.54 898 ----------

 7.82
 7.21
 7.66
 8.02
 8.57

 7.20
 8.04
 7.75
 8.82
 9.32

 8.29 899 900 6.94 8.39 7.78 7.22 7.30 8.00 8.07 MEAN 8.94 8.45 0.330 0.238 0.496 0.427 0.568 SD 0.383 0.349 10 10 9 10 10 10 GROUP: 18.0:18.0 mg base/kg/day --921 7.72 8.54 8.37 8.02 --8.85 8.71 922 7.50 7.20 923 6.23 8.98 8.43 924 --• • --925 ------------------926 8.29 7.23 8.49 7.82 8.96 927 7.35 8.20 928 8.25 7.94 8.33 8.07 6.25 7.41 8.04 9.36 9.16 7.20 929 8.18 8.51 930 5.92 7.87 931 --7.55 7.95 7.98 7.18 7.42 8.75 7.01 8.01 8.36 . . 8.50 932 7.15 7.12 7.16 9.90 933 6.32 7.99 9.33 7.18 7.45 7.56 --934 6.44 935 6.02 8.41 7.66 --936 . . 937 7.30 ----------938 - -8.04 7.00 939 6.26 7.95 7.26 7.11 7.92 7.15 7.54 7.73 7.63 8.65 8.30 940 6.51 7.16 7.76 0.500 0.390 10 10 7.86 7.95 8.79 MEAN 6.56 8.42 0.333 0.521 0.539 0.554 0.533 SD 10 10 10 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Hemoglobin

STUDY ID: 098

SEX: MALE
ABBR: THGB

UNITS: g/dL

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	:6.0 mg base						
	:o.u mg base	/kg/day				22	
881 882							••
883 884	14.9	14.7	15.0	16.2	15.5	15.8	14.5
	14.9	14.7	15.0	10.2	15.5	15.8	14.5
885							
886			15.5				
887	15.3	15.6	15.5		15.4	17.6	16.2
888	45.4	15.6					
889	15.1	15.2	14.9	15.3 14.5	15.2	16.6	15.9
890	14.8	15.2	15.2	14.5	14.9	16.2	15.6
891							
892		14.9					
893	15.4	14.9	14.6	15.4	14.2	16.1	16.3
894	14.2	14.5	14.8	15.3	14.8	16.1	14.8
895 804							
896 807	16.0	15.4	16.0	16.2	16.4	17.1	16.5
897	15.5	14.8	15.8	14.8	15.7	14.7	15.7
898			14.5	15.1		15.5	
899 900	17.0 15.5	16.4 16.0	16.0	14.8	15.6 16.8	16.6	16.0 16.0
900	13.3	10.0	16.0	14.0	10.0	10.0	16.0
MEAN	15.4	15.3	15.2	15.3	15.5	16.2	15.8
SD	0.75	0.61	0.56			0.82	0.64
N	10	10	10	9	10	10	10
:POID • 18 (0:18.0 mg bas	e/kg/dav					
921	_	,c, kg, dd,					
922				14.6	16.1	15.8	16.0
923	13.8	14.9	13.7	14.8	14.9	16.5	16.0
924	15.0			14.0			
925		••	••				
926							
927	14.9	14.2	15.2	13.8	15.4	15.9	15.1
928	1712		*-				
929	14.2	15.4	13.6	13.9	14.9	16.8	16.8
930	12.9	13.1	14.8	15.1	15.6	15.9	15.2
931							
932		14.1	15.4	15.4	15.2	16.0	16.0
933	12.5	13.8	13.9	13.1	14.6	16.2	16.0
934	14.3	15.3	15.4				
935	13.2	14.9	13.5	14.5	15.0	16.3	15.5
936			••				
937	14.5		••	••			
938							••
939	13.2	14.3	14.9	13.3	14.1	15.2	15.0
940	13.1	13.6	14.0	13.3	13.8	15.3	15.2
	47 7	14.4	14.4	14.2	15.0	16.0	15.7
MEAN	13.7				S 15		
MEAN SD N	0.79	0.75	0.77	0.81 10	0.68 10	0.50 10	0.57 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Hematocrit

STUDY ID: 098 ABBR: HCT ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day 45.5 44.4 801 45.2 42.5 42.4 44.9 41.0 42.9 47.6 43.6 46.2 44.9 43.7 802 44.2 41... 46.. --- -803 --------------804 --.. --47.3 44.6 42.5 45.4 45.8 45.1 47.7 48.1 47.1 47.0 48.0 46.8 - -805 806 46.6 807 46.0 808 --46.3 40.8 42.9 44.6 35.6 208 810 811 42.3 812 --813 47.4 46.6 814 815 43.6 41.9 39.6 43.8 816 817 ----- -------818 ----------819 820
 44.7
 45.8
 44.8
 43.0
 44.2
 45.1
 42.8

 1.99
 2.19
 2.61
 2.38
 2.40
 1.97
 3.45

 10
 10
 10
 11
 10
 10
 10
 MEAN SD GROUP: 0.5:0.5 mg base/kg/day --841 -- -- ---- --45.5 43.7 44.2 - -------842 ----843 47.0 44.2 844 44.5 44.5 46.0 46.0 45.2 -- -- --45.5 43.0 45.4 845 846 46.6 49.2 50.1 47.9 49.2 847 --49.1 848 47.2 849 --45.4 44.8 850 44.2 851 43.6 42.6 852 46.0 43.1 43.9 853 41.6 46.2 .. 854 - ---855 ----------856 --45.4 45.3 43.1 45.8 40.5 42.8 857 --45.2 43.0 43.6 43.6 42.5 43.1 46.4 43.1 43.5 43.1 858 859 43.0 860 42.2 42.6 41.2
 45.1
 45.6
 44.2
 43.9
 45.2
 44.0

 2.24
 1.65
 3.39
 1.53
 2.21
 2.15

 10
 10
 10
 10
 10
 10
 44.3 MEAN SD 1.82 N 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Hematocrit

STUDY ID: 098

ABBR: HCT

SEX: MALE
UNITS: %

ANIMAL IO	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
CPOLID: 6	0:6.0 mg base	/ka/day					
881	0.0.0 iiig base	, kg, dd,					
882						••	
883				••			
884	42.2	41.1	42.4	44.4	43.5	44.2	
	42.2	41.1	42.4		43.5	44.2	39.8
885							
886							
887	43.8	44.4	42.2		43.0	49.4	44.1
888				/1.0	/2.0		
889	42.2	43.4	41.7	41.9	42.9	46.5	45.0
890	42.6	43.1	43.0	38.8	41.7	45.4	43.0
891	••						
892							
893	44.3	42.7	42.0	42.9	36.6	44.6	44.8
894							
895	41.3	42.1	42.2	43.4	42.3	45.6	41.2
896	47.1	44.1	45.5	45.3	46.7	47.4	47.3
897	44.1	42.6	44.6	41.2	43.9	40.9	43.2
898		••					
899	49.6	47.5	43.0	41.1	44.6	43.8	44.6
900	44.0	44.5	44.8	41.8	47.4	48.0	43.5
MEAN	44.1	43.6	43.1	42.3	43.3	45.6	43.7
SD	2.51	1.75	1.34	1.95	2.97	2.42	2.08
N	10	10	10	9	10	10	10
GROUP: 18.	.0:18.0 mg bas	se/kg/day					
921			• •				
922				40.7	44.8	43.6	44.6
923	38.9	43.3	39.7	41.9	42.7	47.1	44.8
924	• •						
925							
926							
927	43.1	41.0	43.7	39.3	43.0	44.4	41.7
928		•-					
929	41.6	44.9	40.3	39.6	42.5	47.5	47.0
930	37.4	38.9	42.0	43.3	45.0	44.6	42.5
931							***
932		42.2	43.9	45.5	43.2	44.2	44.7
933	36.0	39.5	38.2	36.8	40.7	45.3	43.9
934	39.5	42.9	43.4				
935	38.2	43.2	39.6	40.1	43.4	45.0	42.9
936	50.2		37.0	40.1		43.0	72.7
937	42.6	••					
938	42.0						
939	38.0	41.2	42.5	39.0	38.7	41.5	41.3
939	36.8	40.7	40.0	38.4	39.8	42.4	42.2
74U	30.0	40.7	40.0	30.4	37.0	42.4	46.6
		41.8	41.3	40.5	42.4	44.6	43.6
MEAN	39.2						
	39.2 2.46 10	1.86	2.02	2.53	2.05	1.85 10	1.76 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Volume

STUDY ID: 098

ABBR: MCV

SEX: MALE
UNITS: fL

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27	
GROUP: 0:	0 mg base/kg/d							
801	58.1	57.0	52.7	49.6	50.4	49.7	48.8	
802	60.1	58.9	54.5	50.6	51.4	50.3	50.1	
803	•-		• •					
804								
805								
806	59.1	57.1	52.5	50.7	52.0	50.4	50.7	
807	62.7	61.5	58.1	56.5	57.7	57.6	56.3	
808								
809	61.2	59.6	55.9	53.8	54.9	53.7	54.2	
810	61.1	59.1	53.2	50.6	51.8	50.6	49.3	
811	60.9	59.3	54.8	52.8	53.4	52.0	51.5	
812				52.0				
813								
814	63.8	61.6	59.1	57.6	58.2	57.3	56.3	
815	64.4	62.9	57.6	55.6	55.6	54.7	53.5	
816	61.2	59.9	55.8	53.9	54.1	52.4	51.6	
817							••	
818	••							
819			••					
820								
MEAN	61.3	59.7			54.0	52.9		
SD	1.96	1.90	2.31		2.66	2.89	2.72	
N	10	10	10	11	10	10	10	
	:0.5 mg base/							
841	••					••	••	
842		••						
843								
844	8.06	57.8	53.9	52.4	54.2	53.4	52.0	
845								
846	61.6	60.4	56.5	55.0	55.1	54.7	53.7	
847								
848	64.9	63.0	59.8	57.9	58.3	57.5	56.8	
849								
850	59.0	57.9	55.4	52.7	53.9	52.1	51.9	
85 1	61.7	60.1	57.1	55.2	54.8	54.4	54.2	
852	63.0	61.6	57.2	55.7		54.2	53.8	
853	61.3	61.1	56.3	54.4	54.6	53.5	52.6	
854				• •				
855								
856								
857								
858	60.3	58.9	55.2	53.1	53.2	52.5	51.2	
859	59.1	57.2	53.9	53.1	53.9	53.5	52.6	
860	62.9	60.6	56.7	54.2	54.9	53.7	52.9	
	61.5	59.9	56.2	54.4	54.8	54.0	53.2	
MEAN					-7.0	-7.0	22.5	
MEAN SD				1.67	1.39	1.48	1.58	
MEAN SD N	1.82	1.87 10	1.74 10	1.67 10	1.39 10	1.48 10	1.58 10	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Volume

STUDY ID: 098 ABBR: MCV ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 6.0:6.0 mg base/kg/day --------882 55.8 53.5 -- --883 884 58.5 ----885 886 60.4 55.2 887 60.3 888 --58.6 59.4 --53.9 52.9 ----54.0 54.9 889 60.5 890 54.8 61.3 •• 891 ---892 54.5 51.0 61.5 56.8 62.0 893 50.5 59.6 894 •• ----52.2 50.1 54.2 52.8 52.3 49.9 54.7 52.0 895 63.8 50.6
 59.6
 55.4
 53.0
 54.2
 52.8

 59.3
 54.4
 51.5
 52.3
 49.9

 60.7
 59.6
 53.7
 55.6
 51.1

 61.8
 55.7
 53.9
 53.7
 51.5
 896 60.8 53.6 897 61.2 49.9 50.6 898 59.8 52.7 899 51.8 900 63.4 MEAN 61.2
 59.7
 55.5
 52.9
 53.6
 51.0
 51.7

 1.69
 1.68
 1.02
 1.18
 0.94
 1.16
 SD 1.60 10 10 9 10 10 10 10 GROUP: 18.0:18.0 mg base/kg/day 18.0:18.0 mg base/kg/uu, -- -- --62.4 60.1 921 52.7 52.5 50.1 50.1 53.2 52.4 --52.9 52.4 923 --------924 - ---925 --56.7 51.5 50.3 51.9 49.6 53.9 49.9 40 3 --926 50.9 58.6 927 928 51.5 56.7 50.7 52.4 53.9 49.9 49.3 62.2 56.7 52.9 929 57.8 51.3 930 63.2 54.0 52.9 45.8 931 58.2 46.5 56.8 46.1 58.1 60.2 52.6 932 48.1 55.2 57.0 933 47.1 57.4 60.3 934 54.4 61.3 53.8 53.5 60.3 55.2 935 63.5 56.0 .. ----936 ... --------937 58.4 ----- -938 53.7 49.7 54.4 51.6 52.2 49.0 58.9 60.7 53.5 939 52.1 56.9 53.1 940 56.5 50.8 58.5 53.3 51.5 53.5 50.8 2.66 3.01 3.02 3.44 2.30 10 10 10 10 10 59.9 51.8 MEAN 2.38 SD 2.60 10 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Hemoglobin

STUDY ID: 098 ABBR: TMCH UNITS: pg ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day
 21.4
 21.1
 20.1
 19.6
 19.7
 19.0
 19.1

 0.64
 0.79
 0.89
 1.06
 1.14
 0.92
 1.01

 10
 10
 10
 11
 10
 10
 10
 MEAN GROUP: 0.5:0.5 mg base/kg/day 841 842 843 844 845 19.6 846 847 848 849 850 851 852 19.7 18.7 853 854 855 - -856 857 858 859 860
 21.4
 21.0
 20.4
 18.9
 19.9
 19.3

 0.41
 0.65
 0.74
 2.54
 0.42
 0.50

 10
 10
 10
 10
 10
 10
 19.2 0.59 MEAN SD 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Hemoglobin

STUDY ID: 098 ABBR: TMCH ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 6.0:6.0 mg base/kg/day -- --882 883 884 18.9 885 886 887 19.4 888 889 18.3 890 18.2 891 892 893 18.4 894 895 18.2 896 18.7 897 21.5 18.4 898 20.5 21.0 20.1 19.7 19.5 18.1 22.3 22.2 19.9 19.1 19.0 17.8 18.9 899 900 19.1 21.3 21.0 19.6 19.1 19.2 18.2 0.59 0.60 0.43 0.55 0.82 0.42 10 10 10 9 10 10 MEAN 18.7 SD 0.41 10 9 10 10 10 10 GROUP: 18.0:18.0 mg base/kg/day 18.9 18.9 18.1 17.7 18.6 18.4 921 -- --922 -- --.. 20.7 18.1 922 18.3 20.7 923 22.2 19.0 --924 - -------925 20.3 19.6 17.9 17.6 18.6 17.7 926 927 928 18.5 21.0 --20.1 19.3 17.9 18.7 929 19 7 18.3 930 21.8 19.3 931 ----20.4 17.5 19.1 16.4 932 18.8 19.8 933 17.1 19.3 18.8 19.8 19.4 21.5 19.5 934 22.2 935 21.9 20.2 .. 936 --937 19.9 ------938 . . 20.4 18.7 18.3 19.8 18.9 19.0 18.6 17.2 18.1 17.7 21.1 18.9 939 940 20.1 20.9 20.1 18.6 18.1 18.9 18.2 MEAN 0.99 1.10 SD 1.05 0.96 1.08 0.99 0.87 0.82 10 10 10 10 10 N

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Hemo. Conc.

ID: 098 TMCHC							
					Week 16		
GROUP: 0:	0 mg base/kg/	day					
801	35.4	34.9	36.1	36.2	36.8	35.9	36.1
802	35.0	35.5	36.8	36.6	36.5	35.9	35.5
803							
804							
805							
806	35.4	35.7 35.6	36.3	37.2	36.1	36.9	35.5
807	35.4	35.6	36.3 36.6	37.2	36.1 37.2	35.8	36.5
808	33.4					33.0	50.5
809	35.2	35.4	38.1	36.3	37.0		36.5
810	35.0	35.5	36.0	36.4	36.2	35.5	40.7
811	35.4	35.4	36.3	37.4			37.1
812			••	40.3			
813			75 /		7/ 0		7/ 0
814	33.5		35.4	35.0			
815	35.3	36.1	35.8	37.0		36.3	36.0
816	34.5	36.3	35.9				
817							
818							
819							
820	••	• •					••
MEAN	35.0	35.4	36.3	36.9	36.5	35.9	36.6
SD	0.60	0.71	0.74	1.30	0.49	0.68	1.62
N	10	10	0.74	1.30	0.49	0.68	10
	:0.5 mg base	/kg/day 					
841	••						
842						• •	• •
843	**						
844	34.8	34.7	36.0	36.7	35.9		36.0
845							
846	34.8	35.0					36.5
847							
848	33.7	34.8			35.3	35.0	34.8
849							
850	35.9	35.0	36.2	36.1	36.2	35.7	36.4
851	34.9	35.7	35.9	21.4	36.3	36.3	37.1
852	34.3	35.1	36.8	36.4	36.2	36.6	36.6
853	33.9	34.6	35.7	35.7	35.7	35.5	35.5
854					••		••
855	•-						
856							
856 857		35.0	36.2	36.1	37.0	35.8	35.7
857	35 Q		36.0	36.9	36.0	36.0	36.2
857 858	35.9 35.5	35 5		30.7		35.9	37.1
857 858 859	35.5	35.5 35.3		74 0	4A /		
857 858	35.5 35.1	35.3	37.1	36.9	36.7	37.7	
857 858 859	35.5			36.9 34.8	36.2	35.7	36.2
857 858 859 860	35.5 35.1	35.3	37.1				

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Hemo. Conc.

ABBR: TMCHC ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 _____ GROUP: 6.0:6.0 mg base/kg/day --881 35.8 35.4 ------- -36.5 35.6 --- -883 35.3 884 35.7 35.1 36.7 --35.0 36.4 -- 35.8 •• ----885 886 - -887 34.9 35.6 35.9 35.7 36.5 35.4 35.7 35.3 37.4 35.7 35.7 222 --889 35.8 35.3 890 34.7 --891 ----892 34.9 34.8 35.9 38.8 893 34.8 36.1 36.4 894 - -- -34.4 35.1 34.9 35.2 34.7 35.4 35.3 35.0 35.3 35.9 895 34.4 35.8 35.1 896 34.0 36.1 34.9 35.8 897 35.1 35.9 35.9 36.3 35.0 35.4 35.4 34.6 34.5 33.7 36.7 36.0 35.7 35.4 898 899 34.3 35.9 900 35.2 34.6 36.8
 35.2
 35.3
 36.2
 35.8
 35.6

 0.58
 0.76
 0.67
 1.11
 0.44

 10
 10
 9
 10
 10
 34.9 MEAN 36.1 SD 0.53 0.60 10 GROUP: 18.0:18.0 mg base/kg/day 921 35.9 35.9 34.9 922 36.2 35.9 923 35.3 35.0 35.7 --924 - -----925 34.6 34.8 35.1 --926 35.8 927 34.6 35.8 36.2 928 - ---34.3 33.7 35.1 33.7 35.2 34.9 -- 33.4 35.1 33.8 34.9 36.4 35.6 35.1 34.7 929 34.1 35.4 35.7 35.7 930 34.5 --- -931 - -35.2 35.9 932 36.2 35.8 35.6 34.7 933 34.9 36.4 35.9 35.8 36.4 35.5 934 36.2 35.7 -------34.5 34.1 34.6 935 34.6 36.2 36.2 36.1 936 . . --------937 34.0 • • ----------------938 - ---34.7 35.1 36.4 939 34.7 34.1 36.6 36.3 35.6 33.4 35.0 34.6 34.7 36.1 34.4 34.9 0.71 0.75 10 10 35.3 0.63 34.9 35.1 35.9 MEAN 36.0 0.70 0.75 0.46 0.25 10 10 10 10 10

DRAFT

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Reticulocytes Count

STUDY ID: 098

ABBR: RETICS

SEX: MALE
UNITS: % RBCs

GROUP: 801 802 803 804 805 806	ID Week 2 0:0 mg base/kg/ 1.8	Week 4	Week 8	Week 13				
801 802 803 804 805 806								
802 803 804 805 806	1.8							
803 804 805 806		0.4	1.4	0.6	0.5	0.4	0.8	
804 805 806	0.8	0.0	0.8	0.5	1.2	0.8	0.6	
805 806								
806						••	• •	
007	1.5	1.4	0.1	0.9	1.1	0.6	0.7	
807	0.4	0.2	0.5	8.0	0.2	0.1	0.4	
808								
809	1.1	0.3	0.7	0.7	0.9	0.0	0.9	
810	1.8	0.2	1.0	0.6	1.6	0.3	0.9	
811	1.5	0.8	0.8	0.1		0.6	0.8	
812				0.7				
813								
814	0.1	0.2	0.7		0.7	0.3	1.0	
815	1.3	0.7	1.3	0.7	1.0	0.6	0.8	
816	1.7	0.4	0.2	0.5	1.5	0.8	0.6	
817								
818					• •			
819								
820								
MEAN	1.2	0.5	0.8	0.6	0.9	0.5	0.8	
SD	0.59	0.41	0.42		0.44	0.28	0.18	
N	10	10	10	11	10	10	10	
00010		the tale.						
841	0.5:0.5 mg base,	/kg/day 						
842								
843								
844	3.0	0.6	0.7	0.8	1.0	0.5	0.4	
845	3.0					0.5		
846	1.7	0.5	0.7	0.4	0.0	0.1	0.7	
847	1.7						0.7	
848	2.0	1.0	0.4	1.1	1.3	0.8	0.6	
849	2.0	1.0	0.4	1.1	1.3		0.0	
850	1.8	1.2	0.8	0.3	0.5	1.0	0.2	
851	0.9	1.3	2.7	0.1	0.1	0.0	0.5	
852	1.5	0.5	0.7	1.0	0.6	0.3	0.5	
853	1.9	0.9	0.5	1.0	0.5	0.3	1.2	
854	1.7							
855								
856	••					••		
857		••						
858	1.9	1.3	QNS	1.5	0.6	0.9	0.6	
859	2.4	1.5	0.7	0.4	0.9	0.1	0.7	
860	1.1	1.1	0.9	1.3	1.0	0.4	0.4	
MEAN	1.8	1.0	0.9	0.8	0.7	0.4	0.6	
SD	0.60	0.36	0.69	0.47	0.41	0.35	0.27	
N	10	10	9	10	10	10	10	

(--)-Data Unavailable

QNS-Quantity Not Sufficient

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Reticulocytes Count

STUDY ID: 098

ABBR: RETICS

SEX: MALE
UNITS: % RBCs

ABBR:	RETICS								UNITS:	
				Week 4						
	GROUP:	6.0:	6.0 mg base	/kg/day						
	881									
	882		••	• •	••					
	883									
	884		0.5	0.5	1.0	2.6	0.8	0.2	0.2	
	885									
	886									
	887		0.3	0.3	0.9		0.9	0.2	0.6	
	888								••	
	389		0.2	1.9	1.8	1.1	1.9	0.3	1.0	
	890		1.0	0.6	1.5	1.0	1.1	0.7	1.5	
	891									
	892									
	893		1.8	0.7	1.2	1.0	0.5	0.2	1.0	
	894		••							
	895		2.3	1.2	2.1	3.4	1.6	0.0	1.0	
	896		2.2	0.9	0.4	0.8	0.9	0.1	0.2	
	897		1.2	0.6	2.6	1.1	0.6	0.9	0.7	
	898									
	899		2.3	0.7	2.5		2.0	0.4	0.6	
	900		2.7	0.5	1.9	2.1	0.7	0.0	0.5	
	MEAN		1.5	0.8	1.6	1.5	1.1	0.3	0.7	
	SD		0.93	0.46						
	N		10	10	10	9	10	10	10	
					-					
		18.0	:18.0 mg ba							
	921									
	922		7 (1.5	3.3	1.9 2.3	0.3 1.2	0.2 0.3	1.3 0.4	
	923		3.6	1.5	3.3	2.3	1.4	0.5	0.4	
	924									
	925								••	
	926		5.3	2.6	1.2	0.6	0.4	0.0	0.8	
	927		J.J	2.6	1.4		0.4	0.0		
	928 929		5.7	0.5	2.4	1.1	1.4	0.4	0.6	
	930		5.3	1.0	1.6	1.2	0.9	0.3	0.6	
	930			1.0		**				
	932			4.4	2.8	2.1	1.0	0.3	0.6	
	933		4.7	1.9	2.6	1.6	1.2	0.4	0.5	
	934		1.8	3.2	4.1					
	935		2.8	0.3	3.4	1.7	0.8	0.6	0.0	
	936									
	937		3.0							
	938									
	939		4.5	2.2	1.5	2.9	1.0	0.0	0.6	
	940		3.5	1.1	1.3	2.2	1.4	0.2	1.0	
	MEAN		4.0	1.9	2.4	1.8	1.0	0.3	0.6	
	SD		1.28	1.28	1.00	0.67	0.38	0.18	0.35	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Nucleated Red Cells

ID: 098							SEX: UNITS:
ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	mg base/kg/d						
801	0	0	0	0	0	0	0
802	0	0	0	0	0	0	0
803							
804		• •					
805							
806	0	0	0	0	0	0	0
807	0	0	0	0	0	0	0
808							
809	0	0	0	0	0	0	0
810	0	0	0	0	0	0	0
811	0	0	0	0	0	0	0
812	••			0		••	
813				••			
814	0	0	0	0	0	0	0
815	0	0	0	0	Ō	0	0
816	0	0	0	0	0	0	0
817					••		
818							
819							
820							
020							
MEAN	0	0	0	0	0	0	0
SD	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N	10	10	10	11	10	10	10
	:0.5 mg base/	kg/day 	••	••			
841				••			
842							
843		0	0	0			
844	0	-	•	_	0	0	0
845		••					
		0	0	0	0	•	
846	0	0	0	0	0	0	0
846 847							
846 847 848	_		0		0	0	0
846 847 848 849	0	0	0	0	0	0	0
846 847 848 849 850	0	0	0	0	0	0	0
846 847 848 849 850 851	0 0	0 0	0	0	0	0	0
846 847 848 849 850 851 852	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
846 847 848 849 850 851 852 853	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
846 847 848 849 850 851 852 853 854	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
846 847 848 849 850 851 852 853 854 855	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0
846 847 848 849 850 851 852 853 854 855 856	0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
846 847 848 849 850 851 852 853 854 855 856 857	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
846 847 848 849 850 851 852 853 854 855 856 857	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
846 847 848 849 850 851 852 853 854 855 856 857 858	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
846 847 848 849 850 851 852 853 854 855 856 857	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860	0 0 0 0 0 0 0 0	 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	 0 0 0 0 0 0 0 0
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Nucleated Red Cells

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Heinz Bodies

STUDY ID: 098 ABBR: HB UNITS: % ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - -0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.1 0.0 0.31 0.00 0.0 0.00 0.00 0.0 0.0 MEAN SO 0.00 0.00 10 10 10 10 10 11 GROUP: 0.5:0.5 mg base/kg/day ---- --------842 --843 0.0 844 0.0 845 --0.0 846 847 --848 0.0 0.0 849 --0.0 0.0 850 851 0.0 0.0 852 0.0 0.0 0.0 0.0 853 854 - ---855 --856 ------857 0.1 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 858 859 0.0 0.0 0.0 0.0 860
 0.1
 0.1
 0.0
 0.0
 0.0

 0.22
 0.12
 0.00
 0.00
 0.00

 10
 10
 10
 10
 10
 0.0 0.0 MEAN 0.0 0.0 0.00 10 0.03 SD 10 10 N

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Heinz Bodies

STUDY ID: 098

ABBR: HB

SEX: MALE
UNITS: %

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	:6.0 mg base						
881							
882							
883				• •			
884	0.0	0.0	0.2	0.0	0.0	0.0	0.0
885							
886			••	••			
887	0.0	0.3	0.0		0.0	0.0	0.0
888					••		
889	0.0	1.8	0.0	0.5	0.0	0.0	0.0
890	0.1	0.5	0.0	0.3	0.0	0.0	0.0
891							
892						• •	
893		0.0	0.2	0.0	0.0	0.0	0.0
894							
895	0.1	1.4	0.0	0.3	0.0	0.0	0.0
896	0.0	1.6	0.1	0.2	0.0	0.0	0.0
897	0.0	0.1	0.1	0.4	0.0	0.0	0.0
898							
899	0.1		0.0	0.0	0.0	0.0	0.0
900	0.0	0.0	0.0	1.0	0.0	0.0	0.0
MEAN	0.0	0.6	0.1	0.3	0.0	0.0	0.0
SD	0.05	0.73	0.08 10	0.32 9	0.00	0.00	
N	10	0.73 10	10	9	0.00 10	10	10
):18.0 mg bas						
921							
922	7.5			0.4	0.0	0.0	0.0
923			0.2	0.7	0.0	0.3	0.0
924							
925							
926 927	2.0	0.7	0.3	1.0	0.0	0.0	
	2.0	0.7	0.3	1.0			0.0
928 929	2.8	0.2	0.4	0.8	0.1	0.0	0.0
930	1.4	0.8	0.4	1.2	0.0	0.0	0.0
931	1.4	0.8	0.3				0.0
932		0.7	0.0	1.2	0.0	0.0	0.0
933	0.7	1.2	0.4	0.3	0.1	0.0	0.0
934	3.1	0.0	0.0				
935	1.8	0.5	1.1	0.8	0.0	0.0	0.0
936	1.0	0.5		0.0			
937	3.3						
	3.5						
	2.3	0.0	0.0	0.4	0.0	0.0	0.0
938		0.7	0.4	0.7	0.0	0.0	0.0
	1.7						
938 939 940		0.6	0.3	0.8	0.0	0.0	0.0
938 939	2.3 0.91	0.6 0.38	0.3 0.32	0.8 0.32	0.0 0.04	0.0 0.09	0.0 0.00

· · · · · · · · · · · · · · · · · · ·	
The state of the s	
Y	
i i i i i i i i i i i i i i i i i i i	
1	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
į	
•	
}	
•	
i	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
•	
·	
	_
•	
•	
•	
	-
1	
	4
•	
ı	
3	
· · · · · · · · · · · · · · · · · · ·	
1	
·	
•	
	_
	8
•	
•	
· · · · · · · · · · · · · · · · · · ·	
	_
· · · · · · · · · · · · · · · · · · ·	
•	
i i i i i i i i i i i i i i i i i i i	

0.5

0.6

0.7 0.7 0.28 10

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: % Methemoglobin

STUDY ID: 098 ABBR: %METHGB UNITS: % ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day 801 0.4 802 0.1 803 804 805 806 0.2 807 808 809 0.5 810 0.7 811 0.4 812 813 814 815 0.0 816 0.0 817 818 819 820 0.7 0.71 0.4 0.43 0.4 0.5 0.3 0.36 0.34 0.35 10 10 10 MEAN 0.4 0.3 SD 0.39 0.30 10 10 10 10 10 10 GROUP: 0.5:0.5 mg base/kg/day •• --842 843 - -844 1.4 0.5 845 - -846 0.2 0.9 847 - -848 0.3 0.5 849 . . 850 0.7 0.8 851 0.4 0.3 852 0.3 0.3 853 0.4 1.0 --854 855 --

0.4 0.5 0.29 0.31 10 10

0.29

0.1 0.4 0.5 0.9 0.8 0.1 0.3 0.4 0.4 0.5 0.3 0.6 1.1 0.4 1.0

 0.5
 0.5
 0.3
 0.5

 0.31
 0.35
 0.33
 0.33

 10
 10
 10
 10

856

857

858

859

860

MEAN

SD

N

--• •

0.4 0.0

0.5

0.5

0.38 10

	1	
	4	
	į.	J
	•	
	•	
		b
	1	
	1	
	•	
	9	
		_
		_
	1	
	1	Ì
	•	
	i	1
	•	

- -

0.6

0.7

0.36

10

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: % Methemoglobin

ABBR: %METHGB ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 6.0:6.0 mg base/kg/day --881 4.5 7.6 7.0 --882 --------883 4.6 0.2 2.6 884 0.5 --885 --886 1.9 --2.3 0.5 887 1.3 888 889 0.5 890 0.2 0.5 891 892 893 1.0 894 1.4 2.2 1.3 895 1.8 896 0.9 897 0.6 898 --899 1.7 0.0 900 1.3 6.7 7.0 0.88 1.06 10 9 4.4 0.78 0.4 MEAN 2.0 0.6 0.9 0.74 0.36 1.15 0.56 SD 10 10 N 10 10 10 ______ GROUP: 18.0:18.0 mg base/kg/day 14.3 14.7 11.1 12.0 2.4 921 -- --1.8 2.4 0.5 1.6 922 0.4 923 14.3 0.6 --924 ----925 --926 . . 927 1.0 12.6 1.4 928 . . 0.4 929 17.3 0.8 0.0 930 8.6 1.3 12.6 0.6 13.3 1.8 --931 --- -0.5 0.8 932 933 10.5 0.0 0.4 934 11.6 935 0.4

1.48 1.17 10 10

12.0

1.3

1.17 0.88 10 10

0.5

10

0.51

9.5

9.7

2.54

∠.54 10

15.5

9.22

10

936

937 938 939

940

MEAN

SD

N

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Platelets

STUDY ID: 098

SEX: MALE
UNITS: 10^3/ccm

*********	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	mg base/kg/		10/5	010	007	(04	040
801	1018	1070	1045	810	897	681	810
802	1301	1193	1178	983	1065	1035	1136
803							
804	**				**		
805							
806	1280	1204	1248	1203	1074	1247	1164
807	1250	1225	1185	1193	1050	899	1076
808							
809	1199	1142	1173	1091	1155	1233	1210
810	1245	1250	1098	1094	1076	884	794
811	1216	1186	1068	797	1046	1061	1149
812	1210		**	982			
				702			
813							
814	1309	906	1198	1161	461	1152	1268
815	1008	1206	1180	1114	1180	1137	1160
816	1264	1076	1030	1031	1046	1047	1141
817	••						
818			••				
819							
820							
MEAN	1209	1146	1140	1042	1005	1038	1091
SD	108.8	103.3	74.0	139.4	205.3	175.0	160.2
N	10	10	10	11	10	10	10
GROUP: 0.5	:0.5 mg base/	'ka/dav					
841							
842							
843							
844	1563	1134	1251	1315	1240		
		1134	1251	1315	1240	1275	1290
845	44.00						
846	1172	1127	1093	790	1014	926	1071
847			4	4			1220
848	1250	1296	1293	1218	942	1112	1229
848 849						••	
848 849 850	1254	 1222			 1124	1243	1193
848 849						••	
848 849 850	1254	 1222	 1178	1224	 1124	1243	1193
848 849 850 851	1254 1308	1222 1303	1178 963	 1224 937	 1124 623	1243 711	1193 944
848 849 850 851 852 853	1254 1308 1371	1222 1303 1326	1178 963 1295	1224 937 1312	1124 623 1262	1243 711 1316	1193 944 1440
848 849 850 851 852 853 854	1254 1308 1371	1222 1303 1326	1178 963 1295	1224 937 1312	1124 623 1262	1243 711 1316	1193 944 1440
848 849 850 851 852 853 854 855	1254 1308 1371	1222 1303 1326	1178 963 1295	1224 937 1312	1124 623 1262	1243 711 1316	1193 944 1440
848 849 850 851 852 853 854 855 856	1254 1308 1371 1325 	1222 1303 1326 1211 	1178 963 1295 1229 	1224 937 1312 1311 	1124 623 1262 1126 	1243 711 1316 1086 	1193 944 1440 1123
848 849 850 851 852 853 854 855 856 857	1254 1308 1371 1325 	1222 1303 1326 1211 	1178 963 1295 1229 	1224 937 1312 1311 	1124 623 1262 1126 	1243 711 1316 1086 	1193 944 1440 1123
848 849 850 851 852 853 854 855 856 857	1254 1308 1371 1325 1248	1222 1303 1326 1211 1238	1178 963 1295 1229 1162	1224 937 1312 1311 1077	1124 623 1262 1126 906	1243 711 1316 1086 1037	1193 944 1440 1123 610
848 849 850 851 852 853 854 855 856 857 858 859	1254 1308 1371 1325 1248 1033	1222 1303 1326 1211 1238 1058	1178 963 1295 1229 1162 945	1224 937 1312 1311 1077 872	1124 623 1262 1126 906 882	1243 711 1316 1086 1037 857	1193 944 1440 1123 610 953
848 849 850 851 852 853 854 855 856 857	1254 1308 1371 1325 1248	1222 1303 1326 1211 1238	1178 963 1295 1229 1162	1224 937 1312 1311 1077	1124 623 1262 1126 906	1243 711 1316 1086 1037	1193 944 1440 1123 610
848 849 850 851 852 853 854 855 856 857 858 859 860	1254 1308 1371 1325 1248 1033 1159	1222 1303 1326 1211 1238 1058 813	1178 963 1295 1229 1162 945 1116	1224 937 1312 1311 1077 872 866	1124 623 1262 1126 906 882 1128	1243 711 1316 1086 1037 857 1174	1193 944 1440 1123 610 953 1113
848 849 850 851 852 853 854 855 856 857 858 859	1254 1308 1371 1325 1248 1033	1222 1303 1326 1211 1238 1058	1178 963 1295 1229 1162 945	1224 937 1312 1311 1077 872	1124 623 1262 1126 906 882	1243 711 1316 1086 1037 857	1193 944 1440 1123 610 953

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Platelets

STUDY ID: 098

		Week 4					Week 27
	:6.0 mg base	(kalda)					
	:o.u mg base	/kg/day 					
881							
882							
883							
884	1295	1011	977	910	1044	983	659
885							
886			1160				
887	1263	1318	1160		724	1276	1179
888 889	1133	1141	1018	988	1059	1089	1078
		1250	1192	1147			
890	1274	1250	1192	1147	869	1205	1177
891 892							
		1162	1080	1214	572	1128	
893 894	1131	1102	1080	1214		1120	1136
895	1156	954	962	935	832	944	947
	948	1203	1230	1121	1146	1053	1050
896 897	1084	1271	1138	1075	1170	1006	1107
898	1004	12/1	1130	1075	1170	1006	
899	1035	1146	1111	745	1095	1062	1107
900	877	1236	1199	987	1129	1164	1075
900	677	1230	1177	701	1129	1104	1075
MEAN	1120	1169	1107	1014	964	1091	1052
SD	138.9	114.2	95.0	143.0	203.6	103.7	153.3
N	10	10	10	9	10	10	10
GROUP: 18.0):18.0 mg bas	se/kg/dav					
921							
922				911	990	892	1011
923	1321	888	1179	656	909	872	941
924							
925							
926		• •	• •				
927	1493	1396	1332	1204	1178	1068	1169
928							
929	1072	990	1106	961	879	851	958
930	1162	1047	958	930	890	871	977
931							
932		763	1041	1072	876	1002	1057
933	1329	1144	939	916	899	943	992
934	1032	1117	1063				
935	1109	925	801	892	779	785	887
936							
937	461						
938	1123	1100	1063	959	1073	970	1036
938 939	1858	1321	1127	996	1142	1039	1029
938 939 940							
939 940		1060	1061	950	962	929	1006
939	1196 358.4	1069 192.4	1061 144.2	950 139.3	962 129.9	929 90.3	1006 76.3

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Act. Partial Thrombo. Time

STUDY ID: 098 SEX: MALE ABBR: APTT UNITS: sec ANIMAL ID Week 14 Week 27 GROUP: 0:0 mg base/kg/day --14.8 802 12.6 803 19.9 --804 17.1 --805 12.8 --806 15.6 --807 15.4 808 15.7 809 --15.4 --810 12.4 811 16.6 --812 18.3 813 13.6 18.3 814 --815 13.8 816 --15.7 14.7 817 --- -818 15.9 819 16.9 820 16.8 MEAN 16.2 15.1 2.13 1.78 10 10 N GROUP: 0.5:0.5 mg base/kg/day 16.9 841 842 13.1 843 15.2 --844 --15.7 845 16.8 - -846 15.3 --847 13.4 848 --15.0 849 12.0 --13.7 850 --851 --13.9 --852 12.7 853 12.9 854 17.5 855 12.8 - -- -856 18.0 857 17.2 858 --18.3 --859 16.1 860 11.5 MEAN 15.3 14.5 SD 2.26 1.98 N 10 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Act. Partial Thrombo. Time

JDY ID: 098 BR: APTT				SEX: M. UNITS:
		Week 14	Week 27	
		:6.0 mg base		
	881	14.8		
	882	15.5		
	883	13.7		
	884		16.4	
	885	9.4		
	886	11.9		
	887		16.3	
	888	16.2	••	
	889		12.6	
	890		15.5	
	891	13.6		
	892	13.5		
	893		13.8	
	894	14.0		
	895		16.0	
	896		12.7	
	897		19.4	
	898	15.1		
	899	15.1	13.8	
	900		17.5	
	900		17.5	
	MEAN	13.8	15.4	
	SD	1.96	2.18	
	N	10	10	
•	CDOUD. 19	0.19 0		
		0:18.0 mg ba		
	921			
	922		13.1	
	923	40.0	11.7	
	924	18.0	••	
	925	18.9		
	926		40.4	
	927		18.1	
	928	13.5		
	929		16.5	
	930		18.3	
	931	19.0		
	932		13.2	
	933	• •	13.2	
	934	• •	••	
	935		14.9	
	936			
	936 937			
	936 937 938		••	
	936 937		14.7	
	936 937 938	9.8	••	
	936 937 938 939 940	9.8 	14.7 14.7	
	936 937 938 939 940 MEAN	9.8 15.8	14.7 14.7 14.8	
	936 937 938 939 940	9.8 	14.7 14.7	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Leukocytes

	ID: 098							SEX: M UNITS: 10^3/	
BR:	WBC			tionb 8	Week 13	Meer IO	Week 21	Week 27	
	ANIMAL ID	Week 2	WEEK 4						
	GROUP: 0:	0 mg base/kg/d	ay		12.7	11.4	13.7	9.0	
	801	14.0	13.2	12.9	11.8	11.4	8.6	12.0	
	802	13.6	14.9	15.6					
	803								
	804								
	805					13.0	13.2	13.0	
	806	18.9	20.6	15.2	14.8	14.5	13.2	13.0	
	807	17.4	16.3	18.2	14.7	14.5			
	808					16.5	16.2	17.1	
	809	26.1	20.8	20.9	16.4	17.9	19.6	16.5	
		19.4	22.3	20.1	16.5	12.3	12.4	11.3	
	810	12.9	14.4	12.8	12.0	12.3			
	811	12.7			12.2				
	812						11.2	11.7	
	813	15.4	12.6	19.7	12.7	9.3	19.2	13.4	
	814		20.5	18.2	18.0	18.2	13.7	11.7	
	815	20.0	19.6	14.9	14.3	13.5	13.7		
	816	19.8				**			
	817								
	818								
	819								
	820							42.0	
			47 (16.9	14.2	13.8	14.1	12.9	
	MEAN	17.8	17.6	2.96	2.10	2.96	3.40	2.41	
	SD	3.99	3.57	10	11	10	10	10	
	N	10	10	,,					
	GROUP: (0.5:0.5 mg bas	e/kg/day					••	
	841						-		
	841 842								
	842						14.2	10.3	
	842 843		11.2	10.6	 15.3	8.6		10.3	
	842 843 844			10.6	15.3	8.6	14.2	10.3	
	842 843 844 845	23.0	11.2	10.6 19.9	15.3 17.5	8.6 14.7	14.2	10.3	
	842 843 844 845 846	23.0	11.2	10.6 19.9	15.3 17.5	8.6 14.7 	14.2 15.5	10.3 14.9	
	842 843 844 845 846 847	23.0 24.0	11.2 22.7	10.6 19.9 14.8	15.3 17.5 14.6	8.6 14.7 9.8	14.2 15.5 	10.3 14.9 	
	842 843 844 845 846 847 848	23.0 24.0	11.2 22.7	10.6 19.9 14.8	15.3 17.5 14.6	8.6 14.7 9.8	14.2 15.5 12.5	10.3 14.9 11.6	
	842 843 844 845 846 847 848 849	23.0 24.0 16.3	11.2 22.7 12.1	10.6 19.9 14.8 20.1	15.3 17.5 14.6 17.3	8.6 14.7 9.8 15.4	14.2 15.5 12.5 15.6	10.3 14.9 11.6	
	842 843 844 845 846 847 848 849	23.0 24.0 16.3 20.9	11.2 22.7 12.1	10.6 19.9 14.8 20.1 13.9	15.3 17.5 14.6 17.3 10.4	8.6 14.7 9.8 15.4 11.9	14.2 15.5 12.5 15.6 12.3	10.3 14.9 11.6 16.6	
	842 843 844 845 846 847 848 849 850 851	23.0 24.0 16.3 20.9 15.7	11.2 22.7 12.1 19.0 17.1	10.6 19.9 14.8 20.1 13.9 17.9	15.3 17.5 14.6 17.3 10.4 14.1	8.6 14.7 9.8 15.4 11.9	14.2 15.5 12.5 15.6 12.3 13.4	10.3 14.9 11.6 16.6 14.9	
	842 843 844 845 846 847 848 849 850 851 852	23.0 24.0 16.3 20.9 15.7 16.0	11.2 22.7 12.1 19.0 17.1 14.5	10.6 19.9 14.8 20.1 13.9 17.9	15.3 17.5 14.6 17.3 10.4 14.1	8.6 14.7 9.8 15.4 11.9 11.4	14.2 15.5 12.5 15.6 12.3	10.3 14.9 11.6 16.6 14.9	
	842 843 844 845 846 847 848 849 850 851 852 853	23.0 24.0 16.3 20.9 15.7 16.0 13.2	11.2 22.7 12.1 19.0 17.1	10.6 19.9 14.8 20.1 13.9 17.9	15.3 17.5 14.6 17.3 10.4 14.1	8.6 14.7 9.8 15.4 11.9 11.4	14.2 15.5 12.5 15.6 12.3 13.4 10.6	10.3 14.9 11.6 16.6 14.9 15.5	
	842 843 844 845 846 847 848 849 850 851 852 853 854	23.0 24.0 16.3 20.9 15.7 16.0 13.2	11.2 22.7 12.1 19.0 17.1 14.5 10.3	10.6 19.9 14.8 20.1 13.9 17.9	15.3 17.5 14.6 17.3 10.4 14.1 11.1	8.6 14.7 9.8 15.4 11.9 11.4 10.9	14.2 15.5 12.5 15.6 12.3 13.4 10.6	10.3 14.9 11.6 16.6 14.9 15.5	
	842 843 844 845 846 847 848 849 850 851 852 853 854	23.0 24.0 16.3 20.9 15.7 16.0 13.2	11.2 22.7 12.1 19.0 17.1 14.5 10.3	10.6 19.9 14.8 20.1 13.9 17.9 12.4	15.3 17.5 14.6 17.3 10.4 14.1 11.1	8.6 14.7 9.8 15.4 11.9 11.4 10.9 	14.2 15.5 12.5 15.6 12.3 13.4 10.6	10.3 14.9 11.6 16.6 14.9 15.5 10.0	
	842 843 844 845 846 847 848 849 850 851 852 853 854 855	23.0 24.0 16.3 20.9 15.7 16.0 13.2	11.2 22.7 12.1 19.0 17.1 14.5 10.3	10.6 19.9 14.8 20.1 13.9 17.9 12.4	15.3 17.5 14.6 17.3 10.4 14.1 11.1	8.6 14.7 9.8 15.4 11.9 11.4 10.9	14.2 15.5 12.5 15.6 12.3 13.4 10.6	10.3 14.9 11.6 16.6 14.9 15.5 10.0	
	842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857	23.0 24.0 16.3 20.9 15.7 16.0 13.2	11.2 22.7 12.1 19.0 17.1 14.5 10.3	10.6 19.9 14.8 20.1 13.9 17.9 12.4 20.8	15.3 17.5 14.6 17.3 10.4 14.1 11.1	8.6 14.7 9.8 15.4 11.9 11.4 10.9 12.6	14.2 15.5 12.5 15.6 12.3 13.4 10.6 13.9	10.3 14.9 11.6 16.6 14.9 15.5 10.0 13.0	
	842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858	23.0 24.0 16.3 20.9 15.7 16.0 13.2 20.2	11.2 22.7 12.1 19.0 17.1 14.5 10.3 20.0	10.6 19.9 14.8 20.1 13.9 17.9 12.4	15.3 17.5 14.6 17.3 10.4 14.1 11.1	8.6 14.7 9.8 15.4 11.9 11.4 10.9 12.6 12.3	14.2 15.5 12.5 15.6 12.3 13.4 10.6 13.9	10.3 14.9 11.6 16.6 14.9 15.5 10.0 13.0 9.9	
	842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858	23.0 24.0 16.3 20.9 15.7 16.0 13.2 20.2 14.5	11.2 22.7 12.1 19.0 17.1 14.5 10.3 20.0 13.5	10.6 19.9 14.8 20.1 13.9 17.9 12.4 20.8 13.0	15.3 17.5 14.6 17.3 10.4 14.1 11.1 16.1 11.0	8.6 14.7 9.8 15.4 11.9 11.4 10.9 12.6	14.2 15.5 12.5 15.6 12.3 13.4 10.6 13.9	10.3 14.9 11.6 16.6 14.9 15.5 10.0 13.0	
	842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858	23.0 24.0 16.3 20.9 15.7 16.0 13.2 20.2	11.2 22.7 12.1 19.0 17.1 14.5 10.3 20.0	10.6 19.9 14.8 20.1 13.9 17.9 12.4 20.8	15.3 17.5 14.6 17.3 10.4 14.1 11.1 16.1 11.0 19.2	8.6 14.7 9.8 15.4 11.9 11.4 10.9 12.6 12.3 18.4	14.2 15.5 12.5 15.6 12.3 13.4 10.6 13.9 10.7 19.9	10.3 14.9 11.6 16.6 14.9 15.5 10.0 13.0 9.9 24.6	
	842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860	23.0 24.0 16.3 20.9 15.7 16.0 13.2 20.2 14.5 27.1	11.2 22.7 12.1 19.0 17.1 14.5 10.3 20.0 13.5 17.8	10.6 19.9 14.8 20.1 13.9 17.9 12.4 20.8 13.0 22.7	15.3 17.5 14.6 17.3 10.4 14.1 11.1 16.1 11.0 19.2	8.6 14.7 9.8 15.4 11.9 11.4 10.9 12.6 12.3 18.4	14.2 15.5 12.5 15.6 12.3 13.4 10.6 13.9 10.7 19.9	10.3 14.9 11.6 16.6 14.9 15.5 10.0 13.0 9.9 24.6	
	842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860	23.0 24.0 16.3 20.9 15.7 16.0 13.2 20.2 14.5 27.1	11.2 22.7 12.1 19.0 17.1 14.5 10.3 20.0 13.5 17.8	10.6 19.9 14.8 20.1 13.9 17.9 12.4 20.8 13.0 22.7	15.3 17.5 14.6 17.3 10.4 14.1 11.1 16.1 11.0 19.2 14.7 3.03	8.6 14.7 9.8 15.4 11.9 11.4 10.9 12.6 12.3 18.4	14.2 15.5 12.5 15.6 12.3 13.4 10.6 13.9 10.7 19.9 13.9 2.74	10.3 14.9 11.6 16.6 14.9 15.5 10.0 13.0 9.9 24.6 14.1 4.42	
	842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860	23.0 24.0 16.3 20.9 15.7 16.0 13.2 20.2 14.5 27.1	11.2 22.7 12.1 19.0 17.1 14.5 10.3 20.0 13.5 17.8 15.8 4.13	10.6 19.9 14.8 20.1 13.9 17.9 12.4 20.8 13.0 22.7	15.3 17.5 14.6 17.3 10.4 14.1 11.1 16.1 11.0 19.2 14.7 3.03	8.6 14.7 9.8 15.4 11.9 11.4 10.9 12.6 12.3 18.4	14.2 15.5 12.5 15.6 12.3 13.4 10.6 13.9 10.7 19.9	10.3 14.9 11.6 16.6 14.9 15.5 10.0 13.0 9.9 24.6	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Leukocytes

WBC							SEX UNITS: 10
		Week 4		Week 13		Week 21	Week 27
	:6.0 mg base						
881		••					
882					••		
883							
884	21.7	27.3	24.7	21.8	12.8	13.7	10.5
885			••				
886							••
887	21.2	21.8	21.4		11.2	9.2	13.0
888		••				••	
889	16.1	27.2	19.8	24.1	13.7	13.9	12.1
890	22.3	20.7	23.5	20.0	13.4	16.2	16.4
891							
892					••		
893	22.3	20.7	17.5	17.6	11.2	11.9	13.6
894		••					
895	25.1	25.7	25.8	29.9	17.8	15.3	15.1
896	20.1	19.8	22.2	25.3	12.8	9.6	10.3
897	18.2	26.3	28.5	27.3	15.7	14.6	13.7
898					*-	14.0	
899	21.7	24.3	21.5	22.6	12.6	13.6	13.0
900	17.3	26.5	24.2	22.3	14.7	12.0	11.0
,00	17.5	20.7	24.2	22.5	14.7	12.0	11.0
MEAN	20.6	24.0	22.9	23.4	13.6	13.0	12.9
SD	2.71	2.98	3.14	3.73	2.03	2.31	1.97
N	10	10	10	9	10	10	10
	,,,			,	10	10	10
):18.0 mg bas						
921							
922				39.7	22.2	13.7	14.7
922 923	29.0	24.5	18.0	19.5	22.2 28.4	13.7 17.3	14.7 18.9
922 923 924	29.0 	24.5	18.0	19.5	28.4	17.3	
922 923 924 925	29.0	24.5 	18.0 	19.5	28.4	17.3	18.9
922 923 924 925 926	29.0	24.5 	18.0 	19.5	28.4	17.3	18.9
922 923 924 925 926 927	29.0	24.5 28.5	18.0 	19.5 	28.4 	17.3	18.9
922 923 924 925 926 927 928	29.0	24.5 	18.0 	19.5 	28.4	17.3	18.9
922 923 924 925 926 927 928 929	29.0 37.5 28.4	24.5 28.5 27.0	18.0 26.7	19.5 34.7	28.4 19.6	17.3 16.3	18.9 14.5
922 923 924 925 926 927 928	29.0 37.5	24.5 28.5 	18.0 26.7	19.5 34.7	28.4 19.6	17.3	18.9 14.5
922 923 924 925 926 927 928 929	29.0 37.5 28.4	24.5 28.5 27.0 20.8	18.0 26.7 21.5	19.5 34.7 26.2	28.4 19.6 13.7	17.3 16.3 10.0	18.9 14.5 10.9
922 923 924 925 926 927 928 929 930	29.0 37.5 28.4 23.5	24.5 28.5 27.0 20.8	18.0 26.7 21.5 23.5	19.5 34.7 26.2 30.8	28.4 19.6 13.7 23.0	17.3 16.3 10.0 15.7	18.9 14.5 10.9 15.8
922 923 924 925 926 927 928 929 930 931	29.0 37.5 28.4 23.5	24.5 28.5 27.0 20.8	18.0 26.7 21.5 23.5	19.5 34.7 26.2 30.8	28.4 19.6 13.7 23.0	17.3 16.3 10.0 15.7	18.9 14.5 10.9 15.8
922 923 924 925 926 927 928 929 930 931	29.0 37.5 28.4 23.5	24.5 28.5 27.0 20.8 23.8	18.0 26.7 21.5 23.5 23.7	19.5 34.7 26.2 30.8 21.5	28.4 19.6 13.7 23.0 16.2	17.3 16.3 10.0 15.7 16.1	18.9 14.5 10.9 15.8
922 923 924 925 926 927 928 929 930 931 932 933 934	29.0 37.5 28.4 23.5 16.6	24.5 28.5 27.0 20.8 23.8 23.6	18.0 26.7 21.5 23.5 23.7 20.1	19.5 34.7 26.2 30.8 21.5 16.6	28.4 19.6 13.7 23.0 16.2 16.5	17.3 16.3 10.0 15.7 16.1 13.9	18.9 14.5 10.9 15.8 15.5 11.6
922 923 924 925 926 927 928 929 930 931 932 933 934 935	29.0 37.5 28.4 23.5 16.6 39.0	24.5 28.5 27.0 20.8 23.8 23.6 22.8	18.0 26.7 21.5 23.5 23.7 20.1 22.5	19.5 34.7 26.2 30.8 21.5 16.6	28.4 19.6 13.7 23.0 16.2 16.5	17.3 16.3 10.0 15.7 16.1 13.9	18.9 14.5 10.9 15.8 15.5 11.6
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936	29.0 37.5 28.4 23.5 16.6 39.0 21.9	24.5 28.5 27.0 20.8 23.8 23.6 22.8 23.5	18.0 26.7 21.5 23.5 23.7 20.1 22.5 19.2	19.5 34.7 26.2 30.8 21.5 16.6 34.6	28.4 19.6 13.7 23.0 16.2 16.5 17.9	17.3 16.3 10.0 15.7 16.1 13.9 16.9	18.9 14.5 10.9 15.8 15.5 11.6 11.8
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937	29.0 37.5 28.4 23.5 16.6 39.0 21.9 20.6	24.5 28.5 27.0 20.8 23.8 23.6 22.8 23.5	18.0 26.7 21.5 23.5 23.7 20.1 22.5 19.2	19.5 34.7 26.2 30.8 21.5 16.6 34.6	28.4 19.6 13.7 23.0 16.2 16.5 17.9	17.3 16.3 10.0 15.7 16.1 13.9 	18.9 14.5 10.9 15.8 15.5 11.6 11.8
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937	29.0 37.5 28.4 23.5 16.6 39.0 21.9 20.6	24.5 28.5 27.0 20.8 23.8 23.6 22.8 23.5 	18.0 26.7 21.5 23.5 23.7 20.1 22.5 19.2 	19.5 34.7 26.2 30.8 21.5 16.6 34.6	28.4 19.6 13.7 23.0 16.2 16.5 17.9	17.3 16.3 10.0 15.7 16.1 13.9 16.9	18.9 14.5 10.9 15.8 15.5 11.6 11.8
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939	29.0 37.5 28.4 23.5 16.6 39.0 21.9 20.6 30.3	24.5 28.5 27.0 20.8 23.8 23.6 22.8 23.5 24.2	18.0 26.7 21.5 23.5 23.7 20.1 22.5 19.2 21.5	19.5 34.7 26.2 30.8 21.5 16.6 34.6 25.9	28.4 19.6 13.7 23.0 16.2 16.5 17.9 10.7	17.3 16.3 10.0 15.7 16.1 13.9 16.9 12.1	18.9 14.5 10.9 15.8 15.5 11.6 11.8
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937	29.0 37.5 28.4 23.5 16.6 39.0 21.9 20.6	24.5 28.5 27.0 20.8 23.8 23.6 22.8 23.5 	18.0 26.7 21.5 23.5 23.7 20.1 22.5 19.2 	19.5 34.7 26.2 30.8 21.5 16.6 34.6	28.4 19.6 13.7 23.0 16.2 16.5 17.9	17.3 16.3 10.0 15.7 16.1 13.9 16.9	18.9 14.5 10.9 15.8 15.5 11.6 11.8
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939	29.0 37.5 28.4 23.5 16.6 39.0 21.9 20.6 30.3 33.5	24.5 28.5 27.0 20.8 23.8 23.6 22.8 23.5 24.2 26.5	18.0 26.7 21.5 23.5 23.7 20.1 22.5 19.2 21.5 28.5	19.5 34.7 26.2 30.8 21.5 16.6 34.6 25.9 26.5	28.4 19.6 13.7 23.0 16.2 16.5 17.9 10.7 17.7	17.3 16.3 10.0 15.7 16.1 13.9 16.9 12.1 11.9	18.9 14.5 10.9 15.8 15.5 11.6 11.8 11.8
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939	29.0 37.5 28.4 23.5 16.6 39.0 21.9 20.6 30.3	24.5 28.5 27.0 20.8 23.8 23.6 22.8 23.5 24.2	18.0 26.7 21.5 23.5 23.7 20.1 22.5 19.2 21.5	19.5 34.7 26.2 30.8 21.5 16.6 34.6 25.9	28.4 19.6 13.7 23.0 16.2 16.5 17.9 10.7	17.3 16.3 10.0 15.7 16.1 13.9 16.9 12.1	18.9 14.5 10.9 15.8 15.5 11.6 11.8

(--)-Data Unavailable

DRAFT

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: M. Neutrophils

STUDY ID: 098

SEX: MALE

ABBR: M. Neutrop

UNITS: 10^3/cmm

M. Neutr	ор						UNITS: 10	0^3/cmm
ANIMAL	ID Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27	
GROUP: (0:0 mg base/kg/	day						
801	1.1	1.1	2.2	1.5	1.4	1.5	1.0	
802	1.1	1.3	1.7	2.5	1.3	1.1	1.8	
803			• •					
804								
805								
806	2.6	1.4	2.1	3.1	1.3	1.5	1.0	
807	0.9	1.8	2.7	1.6	1.0	1.5	1.8	
808								
809	1.8	1.0	2.7	1.8	1.3	2.1	1.5	
810	2.9	2.0	0.8	1.8	1.8	1.8	3.3	
811	1.5	1.6	2.0	1.6	2.3	1.6	2.1	
812			**	1.0				
813		0.7		7.0				
814	1.1	0.3	6.9	3.0	1.0	0.6	0.9	
815	1.4	2.1	1.3	0.4	0.4	1.0	1.3	
816	1.6	1.2	1.5	1.9	1.4	1.1	1.9	
817	••			••				
818 819								
820								
520					•-			
MEAN	1.6	1.4	2.4	1.8	1.3	1.4	1.7	
SD	0.67	0.53	1.69	0.80	0.50	0.43	0.71	
N	10	10	10	11	10	10	10	
						•••••	•••••	
	.5:0.5 mg base/	'kg/day						
841 842								
843	••				••			
844	3.0	2.0	0.5	1.7	1.7	2.4	1.5	
845	3.0	2.0	0.5		1.7			
846	0.7	1.8	1.6	2.3	0.4	1.6	2.7	
847						1.0		
848	1.1	1.7	1.2	1.3	1.0	1.3	1.3	
849		**						
850	2.7	1.5	2.6	2.1	1.5	14.0	1.0	
851	2.0	2.2	1.3	2.1	0.8	1.8	1.8	
852	0.8	1.7	3.0	2.7	0.8	1.7	3.7	
853	2.8	0.4	1.6	1.8	1.9	1.3	1.7	
854								
855								
856	• •							
857								
858	2.0	2.4	2.3	2.4	1.0	1.0	2.0	
859	1.9	1.2	0.8	1.2	1.6	0.6	0.6	
860	1.6	1.1	1.8	2.7	1.5	2.0	6.4	
MEAN	1.9	1.6	1.7	2.0	1.2	2.8	2.3	
MEAN SD	1.9 0.82 10	1.6 0.58 10	1.7 0.78 10	2.0 0.53 10	1.2 0.48 10	2.8 3.98 10	2.3 1.69 10	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: M. Neutrophils

STUDY ID: 098 SEX: MALE
ABBR: M. Neutrop UNITS: 10^3/cmmi

	IO Week 2	Week 4					
	6.0:6.0 mg base						
881							
882							
883							
884	3.9	2.7	3.0	2.6	1.4	1.5	0.4
885							
886							
887	4.2	4.4	2.8		1.8	0.6	
	4.2			••	1.0		1.6
888							
889	1.3	2.4	2.4	2.4	1.5	1.0	1.8
890	2.5	3.7	4.5	2.6	2.5	1.8	2.1
891					•-		
892							
893	3.1	2.1	3.2	3.7	2.0	1.3	2.7
894							• •
895	1.5	4.6	2.3	4.5	3.2	1.4	2.0
896	3.0	4.8	3.1	3.3	2.2	0.6	1.0
897	1.8	2.4	3.1	3.3	1.3	1.5	2.6
898							
899	2.0	1.9	2.2	3.2	0.9	1.9	2.2
900	1.6	4.5	2.2	3.6	2.6	1.7	1.2
MEAN	2.5	3.4	2.9	3.2	1.9	1.3	1.8
SD	1.02	1.16	0.69	0.66	0.70	0.46	0.72
N	10	10	10	9	10	10	10
CDOUD		o (ka (dov					
GRUUP:	18.0:18.0 mg bas	SE/ KY/ Udy					
	18.0:18.0 mg bas						
921							
921 922				4.8	4.2	1.2	3.1
921 922 923	 6.1	3.4	2.2	4.8 5.5	4.2 2.3	1.2 1.9	3.1 2.8
921 922 923 924	6.1	3.4	2.2	4.8 5.5 	4.2 2.3	1.2 1.9	3.1 2.8
921 922 923 924 925	6.1 	3.4	2.2	4.8 5.5 	4.2 2.3 	1.2 1.9 	3.1 2.8
921 922 923 924 925 926	6.1	3.4	2.2	4.8 5.5 	4.2 2.3 	1.2 1.9 	3.1 2.8
921 922 923 924 925 926 927	6.1 5.3	3.4	2.2 2.4	4.8 5.5 5.6	4.2 2.3 2.5	1.2 1.9 1.1	3.1 2.8 2.5
921 922 923 924 925 926 927 928	6.1 5.3	3.4	2.2 2.4	4.8 5.5 5.6	4.2 2.3 2.5	1.2 1.9 1.1	3.1 2.8 2.5
921 922 923 924 925 926 927 928 929	6.1 5.3 3.1	3.4 2.9 2.7	2.2 2.4 1.5	4.8 5.5 5.6 3.4	4.2 2.3 2.5 1.0	1.2 1.9 1.1 0.3	3.1 2.8 2.5 0.7
921 922 923 924 925 926 927 928 929 930	6.1 5.3 3.1 3.5	3.4 2.9 2.7 1.7	2.2 2.4 1.5 4.2	4.8 5.5 5.6 3.4 5.9	4.2 2.3 2.5 1.0 18.6	1.2 1.9 1.1 0.3 1.9	3.1 2.8 2.5 0.7 2.2
921 922 923 924 925 926 927 928 929 930 931	6.1 5.3 3.1 3.5	3.4 2.9 2.7 1.7	2.2 2.4 1.5 4.2	4.8 5.5 5.6 3.4 5.9	4.2 2.3 2.5 1.0 18.6	1.2 1.9 1.1 0.3 1.9	3.1 2.8 2.5 0.7 2.2
921 922 923 924 925 926 927 928 929 930 931 932	6.1 5.3 3.1 3.5	3.4 2.9 2.7 1.7 2.9	2.2 2.4 1.5 4.2	4.8 5.5 5.6 3.4 5.9 4.5	4.2 2.3 2.5 1.0 18.6 3.4	1.2 1.9 1.1 0.3 1.9 3.1	3.1 2.8 2.5 0.7 2.2 2.5
921 922 923 924 925 926 927 928 929 930 931 932 933	6.1 5.3 3.1 3.5 2.3	3.4 2.9 2.7 1.7 2.9 3.1	2.2 2.4 1.5 4.2 4.7 6.2	4.8 5.5 5.6 3.4 5.9 4.5 3.7	4.2 2.3 2.5 1.0 18.6 3.4 2.3	1.2 1.9 1.1 0.3 1.9 3.1	3.1 2.8 2.5 0.7 2.2 2.5 1.9
921 922 923 924 925 926 927 928 929 930 931 932 933 934	6.1 5.3 3.1 3.5 2.3 5.1	3.4 2.9 2.7 1.7 2.9 3.1 2.5	2.2 2.4 1.5 4.2 4.7 6.2 2.7	4.8 5.5 5.6 3.4 5.9 4.5 3.7	4.2 2.3 2.5 1.0 18.6 3.4 2.3	1.2 1.9 1.1 0.3 1.9 3.1 1.9	3.1 2.8 2.5 0.7 2.2 2.5 1.9
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935	6.1 5.3 3.1 3.5 2.3 5.1 3.1	3.4 2.9 2.7 1.7 2.9 3.1	2.2 2.4 1.5 4.2 4.7 6.2 2.7 2.3	4.8 5.5 5.6 3.4 5.9 4.5 3.7	4.2 2.3 2.5 1.0 18.6 3.4 2.3	1.2 1.9 1.1 0.3 1.9 3.1	3.1 2.8 2.5 0.7 2.2 2.5 1.9
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936	6.1 5.3 3.1 3.5 2.3 5.1 3.1	3.4 2.9 2.7 1.7 2.9 3.1 2.5	2.2 2.4 1.5 4.2 4.7 6.2 2.7	4.8 5.5 5.6 3.4 5.9 4.5 3.7	4.2 2.3 2.5 1.0 18.6 3.4 2.3	1.2 1.9 1.1 0.3 1.9 3.1 1.9	3.1 2.8 2.5 0.7 2.2 2.5 1.9
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935	6.1 5.3 3.1 3.5 2.3 5.1 3.1	3.4 2.9 2.7 1.7 2.9 3.1 2.5 1.9	2.2 2.4 1.5 4.2 4.7 6.2 2.7 2.3	4.8 5.5 5.6 3.4 5.9 4.5 3.7 3.8	4.2 2.3 2.5 1.0 18.6 3.4 2.3 3.0	1.2 1.9 1.1 0.3 1.9 3.1 1.9 	3.1 2.8 2.5 0.7 2.2 2.5 1.9
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936	6.1 5.3 3.1 3.5 2.3 5.1 3.1	2.9 2.9 2.7 1.7 2.9 3.1 2.5 1.9	2.2 2.4 1.5 4.2 4.7 6.2 2.7 2.3	4.8 5.5 5.6 3.4 5.9 4.5 3.7 3.8	4.2 2.3 2.5 1.0 18.6 3.4 2.3 3.0	1.2 1.9 1.1 0.3 1.9 3.1 1.9 	3.1 2.8 2.5 0.7 2.2 2.5 1.9
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937	6.1 5.3 3.1 3.5 2.3 5.1 3.1	3.4 2.9 2.7 1.7 2.9 3.1 2.5 1.9	2.2 2.4 1.5 4.2 4.7 6.2 2.7 2.3	4.8 5.5 5.6 3.4 5.9 4.5 3.7 3.8 	4.2 2.3 2.5 1.0 18.6 3.4 2.3 3.0	1.2 1.9 1.1 0.3 1.9 3.1 1.9 1.4	3.1 2.8 2.5 0.7 2.2 2.5 1.9 1.2
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938	6.1 5.3 3.1 3.5 2.3 5.1 3.1	2.9 2.9 2.7 1.7 2.9 3.1 2.5 1.9	2.2 2.4 1.5 4.2 4.7 6.2 2.7 2.3	4.8 5.5 5.6 3.4 5.9 4.5 3.7 3.8 	4.2 2.3 2.5 1.0 18.6 3.4 2.3 3.0	1.2 1.9 1.1 0.3 1.9 3.1 1.9 1.4	3.1 2.8 2.5 0.7 2.2 2.5 1.9 1.2
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 935 936 937 938 939 940	6.1 5.3 3.1 3.5 2.3 5.1 3.1 11.5 5.2	3.4 2.9 2.7 1.7 2.9 3.1 2.5 1.9 1.7 0.8	2.2 2.4 1.5 4.2 4.7 6.2 2.7 2.3 3.0	4.8 5.5 5.6 3.4 5.9 4.5 3.7 3.8 3.9 4.5	4.2 2.3 2.5 1.0 18.6 3.4 2.3 3.0 2.1 1.9	1.2 1.9 1.1 0.3 1.9 3.1 1.9 1.4 2.8 1.0	3.1 2.8 2.5 0.7 2.2 2.5 1.9 1.2 0.3 0.9
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939	5.3 5.3 3.1 3.5 2.3 5.1 3.1 11.5	2.9 2.9 2.7 1.7 2.9 3.1 2.5 1.9 	2.2 2.4 1.5 4.2 4.7 6.2 2.7 2.3 3.0	4.8 5.5 5.6 3.4 5.9 4.5 3.7 3.8 3.9	4.2 2.3 2.5 1.0 18.6 3.4 2.3 3.0 2.1	1.2 1.9 1.1 0.3 1.9 3.1 1.9 1.4 2.8	3.1 2.8 2.5 0.7 2.2 2.5 1.9 1.2 0.3

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: I. Neutrophils

STUDY ID: 098

SEX: MALE
ABBR: I. Neutrop

UNITS: 10^3/cmm

/	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	:0 mg base/kg/d						
801	0.0	0.0	0.0	0.0	0.0	0.0	0.0
802	0.0	0.0	0.0	0.0	0.0	0.0	0.0
803		• •					
804							• •
805							
806	0.0	0.0	0.0	0.0	0.0	0.0	0.0
807	0.0	0.0	0.0	0.0	0.0	0.0	0.0
808							
809	0.0	0.0	0.0	0.0	0.0	0.0	0.0
810	0.0	0.0	0.0	0.0	0.0	0.0	0.0
811	0.0	0.0	0.0	0.0	0.0	0.0	0.0
312			••	0.0			
313			••				
814	0.0	0.0	0.0	0.0	0.0	0.0	0.0
815	0.0	0.0	0.0	0.0	0.0	0.0	0.0
816	0.0	0.0	0.0	0.0	0.0	0.0	0.0
317						••	• •
318			• •				
819							
320							
MEAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SD	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N	10	10	10	11	10	10	10
POLIP- 0	- 0 - L 1						
	5:0.5 mg base/						
841			••				
341 342							
341 342 343							
341 342 343 344	0.0	0.0	 0.0	0.0	0.0	0.0	 0.0
341 342 343 344 345	0.0	0.0	0.0	0.0	0.0	0.0	0.0
341 342 343 344 345 346	0.0	0.0 	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
341 342 343 344 345 346 347	0.0	0.0	0.0	0.0	0.0	0.0	0.0
341 342 343 344 345 346 347	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
341 342 343 344 345 346 347 348	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0
341 342 343 344 345 346 347 348 349	0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 0.0
341 342 343 344 345 346 347 348 349 350	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
341 342 343 344 345 346 347 348 349 350 351	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
341 342 343 344 345 346 347 348 349 350 351 352	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
341 342 343 344 345 346 347 348 349 350 351 352	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
341 342 343 344 345 346 347 348 349 350 351 352 353	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
341 342 343 344 345 346 347 348 349 350 351 352 353 354	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
341 342 343 344 345 346 347 348 350 351 352 353 354 355 356	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
841 842 843 844 845 846 847 848 849 850 851 852 853 853 855 855 856	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.1 0.1 	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
841 842 843 844 845 846 847 848 849 850 851 852 853 853 855 855 857 856 857	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1 0.1 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
841 842 843 844 845 846 847 848 849 850 851 852 853 853 855 855 856	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.1 0.1 	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
841 842 843 844 845 846 847 848 849 850 851 852 853 853 855 855 857 856 857	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1 0.1 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
841 842 843 844 845 846 847 848 849 850 851 852 853 855 855 855 857 858 8359 8360	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: I. Neutrophils

STUDY ID: 098

ABBR: I. Neutrop

UNITS: 10^3/cmm

	Week 2						Week 27
	0:6.0 mg base,						
881							
882							
883							
884	0.0	0.0	0.0	0.0	0.0	0.0	0.0
885		••	••				
886							
887 888	0.0	0.0	0.0		0.0	0.0	0.0
889	0.0	0.0	0.0	0.0	0.0	0.0	0.0
890	0.0	0.0	0.0	0.0	0.0	0.0	0.0
891							
892							
893	0.0	0.0	0.0	0.0	0.0	0.0	0.0
894				••			
895	0.0	0.0	0.0	0.0	0.0	0.0	0.0
896	0.0	0.0	0.0	0.0	0.0	0.0	0.0
897	0.0	0.0	0.0	0.0	0.0	0.0	0.0
898							
899	0.0	0.0	0.0	0.0	0.0	0.0	0.0
900	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MEAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SD		0.00	0.00	0.00	0.00		0.00
N	10	10	10	9	10	10	10
GROUP: 18	.0:18.0 mg bas	se/kg/day					
921							
922			• •	0.0	0.0	0.0	0.0
923	0.0	0.0	0.0	0.0	0.0	0.0	0.0
924					* *		
925							
926							
927	0.0	0.0	0.0	0.0	0.0	0.0	0.0
928			0.0		0.0	0.0	0.0
929 930	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0
931		0.0			0.0		
932		0.0	0.0	0.0	0.0	0.0	0.0
933	0.0	0.0	0.0	0.0	0.0	0.0	0.0
934	0.0	0.0	0.0				••
935	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					••		••
936	0.0				•-		
936 937	••						
937			0.0	0.0	0.0	0.0	0.0
936 937 938 939	0.0	0.0			0.0	0.0	0.0
937 938 939		0.0	0.0	0.0	0.0	0.0	0.0
937 938 939 940	0.0	0.0	0.0				
937 938 939	0.0			0.0 0.0	0.0 0.00	0.0	0.0

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Lymphocytes

ABBR: Lymphocyte ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day 7.5 802 10.0 803 804 805 ---806 11.3 807 10.8 808 809 14.5 810 12.5 811 8.1 812 813 --814 10.2 815 11.5 816 9.2 817 --• • 818 ----• • ----- -819 --820 ------
 15.8
 15.8
 13.4
 11.6
 11.9
 12.0

 3.83
 3.33
 3.07
 2.44
 2.92
 3.39

 10
 10
 10
 11
 10
 10
 12.0 3.39 MEAN 15.8 10.6 2.07 SD N 10 GROUP: 0.5:0.5 mg base/kg/day --841 --•• ----------842 - ------ -843 11.5 12.7 8.9 5.7 844 8.4 14.9 845 16.7 --846 13.7 13.0 11.0 9.8 12.6 13.0 8.6 10.8

-- 16.9 15.7 15.1 12.2 1.1
14.4 12.2 7.9 10.1 10.1
11.9 13.1 10.9 10.0 10.7
9.5 10.3 8.8 8.8 8.7 847 --8.6 10.8 14.2 848 9.9 17.6 16.9 15.7 12.9 14.4 12.2 14.2 11.9 13.1 10.2 9.5 10.3 849 850 12.5 851 10.7 10.5 852 853 8.7 854 ------• • • • ------855 --•• ------856 ------- -857 11.8 17.2 12.0 16.6 17.5 13.2 10.8 11.6 9.0 9.6 19.7 15.9 15.5 17.5 11.6 858 16.8 11.1 11.7 24.9 9.6 9.7 859 9.2

 16.3
 13.8
 13.8
 12.1
 10.5
 10.5

 4.71
 4.00
 3.43
 2.85
 2.77
 4.01

 10
 10
 10
 10
 10
 10

10

860

MEAN

SD

N

17.1

10.5 4.01 10

11.1

2.81

10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Lymphocytes

STUDY ID: 098

ABBR: Lymphocyte

SEX: MALE
UNITS: 10^3/cmm

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27	
cacup. 4	0.6.0 == bess	Clear Colors						
	0:6.0 mg base,	/kg/day 						
881	••			••			••	
882 883		••	••					
884	16.7	22.7	20.3	18.1	11.3	11.8	9.9	
885	10.7		20.5	10.1	11.3	11.0	7.7	
886			••		••			
887	15.7	17.0	18.2		8.4	8.2	9.9	
888								
889	14.3	22.6	16.4	21.2	11.8	12.8	9.8	
890	19.6	15.7	18.1	17.0	10.1	14.3	13.9	
891	**							
892	••							
893	19.0	17.0	14.0	12.7	8.2	9.9	9.4	
894	••							
895	22.6	18.8	20.6	22.7	14.2	12.9	11.8	
896	16.7	14.7	17.3	20.7	10.1	8.9	9.1	
897	15.1	20.8	23.7	22.1	13.7	11.8	10.7	
898				••				
899	19.3	21.9	17.8	18.8	11.1	11.0	10.0	
900	14.9	18.8	18.9		11.0	9.8	8.7	
MEAN	17.4	19.0	18.5	18.8	11.0	11.1	10.3	
SD	2.65	2.90	2.62	3.27	1.96	1.94	1.52	
N	10	10	10	9	10	10	10	
	.0:18.0 mg bas							
921		••						
922				31.0	16.9	12.2	11.3	
923	21.5	18.4	14.8	12.3	23.9	14.7	14.7	
924		• •	••	••				
925								
926								
927	31.5	23.7	21.6	25.3	16.3	14.5	11.6	
928								
929	23.0	16.5	17.6	21.5	11.1	8.9	9.9	
930	20.0	15.8	16.2	22.5	2.1	13.3	12.6	
931								
932		18.8	15.9	14.8	11.8	12.6	12.4	
933	12.1	18.9	12.5	10.6	13.4	11.7	8.8	
934	33.2	18.0	18.0					
935	16.9	21.4	15.4	28.0	14.3	14.5	10.1	
936	8.0							
937		45.7	45.5					
937 938		15.7	15.5	18.6	7.5	8.7	10.9	
937 938 939	21.8	40.0		1/2	15.4	10.7	13.0	
937 938	21.8 22.4	19.3	23.9	17.2				
937 938 939		19.3 18.7	23.9 17.1	20.2	13.3	12.2	11.5	
937 938 939 940	22.4					12.2 2.21 10	11.5 1.72 10	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Monocytes

STUDY ID: 098

ABBR: Monocytes

UNITS: 10^3/cmm

ANIMAL I		Week 4					Week 27
	0 mg base/kg/						
801	0.7	0.3	0.3	1.0	0.2	0.1	0.5
802	0.5	0.4	1.2	0.7	0.7	0.7	0.1
803							
804							
805							
806	0.6	0.2	1.4	0.4	0.4	0.0	0.4
807	0.0	0.3	1.1	0.4	0.4	0.5	0.3
808							0.5
		0.2	0.6				
809	0.3			0.2	0.7	1.0	0.5
810	0.2	0.0	0.8	0.3	1.1	0.2	0.5
811	0.4	0.1	1.5	0.2	0.4	0.9	1.0
812				0.7			
813		••	• •	• •			
814	0.2	0.3	0.8	1.0	0.1	1.0	0.4
815	0.2	1.0	0.5	1.4	0.9	0.2	0.4
816	0.4	0.0	0.1	0.1	0.1	0.8	0.4
817		••	••	••	••		••
818							
819							
820						••	
MEAN	0.4	0.3	0.8	0.6	0.5	0.5	0.5
SD	0.21	0.29	0.47	0.41	0.34	0.39	0.23
N	10	10	10	11	10	10	10
	5:0.5 mg base,						
841		••		• •	••	• •	• •
842							
843							
844	1.8	0.3	1.1	0.8	0.9	0.1	0.2
845		••		-+			
846	0.5	0.2	1.6	0.2	0.6	0.6	1.0
847							
848	0.2	0.6	0.7	0.1	0.1	0.4	0.3
849							
850	0.2	0.2	1.4	0.2	1.4	0.5	0.8
851	0.8	0.3	0.4	0.4	0.8	0.1	0.3
852	1.0	0.1	1.6	0.4	0.5	0.5	1.2
853	0.3	0.3	0.4	0.6	0.2	0.6	0.8
854	••						
855	••						
856							
			••	••			
	0.8	0.4	0.8	0.3	0.5	0.6	0.0
857	0.0	0.3	0.5	0.4	1.1	0.2	0.0
857 858	0.7	0.5			1.5	0.6	1.0
85 <i>7</i> 858 859	0.7 0.3	0.2	1.1	0.6	1.0		
857 858 859 860	0.3	0.2					
857 858 859 860 MEAN	0.3	0.2	1.0	0.4	0.8	0.4	0.6
857 858 859 860 MEAN SD N	0.3	0.2					

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Monocytes

STUDY ID: 098

ABBR: Monocytes

SEX: MALE
UNITS: 10^3/cmm

Monocyte								: 10^3/cmm
			Week 8					
 GROUP:	6.0:6.0 mg	base/kg/day						
881	-							
882	•				• •			
883	-			••				
884	0.	7 1.6	1.2	1.1	0.0	0.3	0.1	
885	-						• •	
886	-			**				
887	1.	3 0.2	0.4		0.8	0.4	1.3	
888	-							
889	0.	5 1.9	0.8	0.5	0.3	0.1	0.5	
890	0.	2 0.8	0.7	0.4	0.4	0.2	0.3	
891	-							
892	-				••			
893	0.	2 1.2	0.4	1.2	1.0	0.7	1.5	
894	-							
895	1.	0 2.1	2.8	2.7	0.4	1.1	1.2	
896	0.	4 0.4	1.6	1.3	0.3	0.1	0.1	
897	1.	1 2.9	1.4	1.9	0.6	1.3	0.4	
898	-							
899	0.	4 0.5	1.5	0.7	0.6	0.7	0.7	
900	0.	9 2.9	2.9	2.7	0.9	0.4	1.0	
MEAN	0.			1.4	0.5	0.5	0.7	
SD	0.3	9 0.99			0.31	0.41	0.51	•
N	1	0 10	10	9	10	10	10	
		g base/kg/day						
921	-							
922				4.0	0.9		0.1	
923	1.5			1.8	2.3	0.3	1.1	
924								
925	-							
926								
927	0.8			3.8	0.6	0.5	0.1	
928								
929	2.1			1.3	1.6	0.7	0.2	
930	0.0			2.5	2.3	0.5	0.6	
931								
932				2.2	0.8	0.2	0.6	
933	2.7			2.3	0.8	0.1	0.8	
934	0.8					4.0		
935	1.8			2.8	0.5	1.0	0.5	
936	1.0							
937	1.0							
938	7 .					0.5	0.7	
939	3.3			3.4	1.0	0.5	0.3	
940	0.0			4.8	0.2	0.2	0.6	
MEAN	1.3	3 3.4	2.2	2.9	1.1	0.4	0.5	
SD	1.03			1.09	0.73	0.29	0.32	
N	10	0 10	10	10	10	10	10	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Eosinophils

STUDY ID: 098 ABBR: Eosinophil UNITS: 10^3/cmm ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day 0.0 0.1 --0.1 0.1 0.1 0.0 -- ---- --0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.1 802 0.0 0.0 0.1 ------803 --------804 805 ------0.0 0.0 0.1 0.4 0.0 0.3 806 0.0 0.3 807 0.2 0.1 0.4 0.4 0.3 0.0 0.3 0.0 0.0 0.2 0.0 0.4 0.0 0.1 0.2 0.1 0.2 -- -- 0.0 -- ----------808 --0.5 0.2 809 0.0 810 0.2 811 0.0 812 ----------813 814 0.2 815 816 0.2 817 --------818 ------------• • 819 --820 0.1 0.1 0.14 0.09 0.1 0.10 0.1 0.13 10 0.2 MEAN 0.2 0.2 0.13 0.16 SD 0.14 10 10 10 11 10 10 10 GROUP: 0.5:0.5 mg base/kg/day .. .-------------------842 --843 - ------ ---0.1 0.1 -- --0.0 0.0 0.2 --0.2 0.3 0.1 844 0.2 0.1 0.0 845 - ---846 0.0 0.3 0.1 0.1 0.1 0.1 0.0 847 ----0.3 0.8 0.1 848 0.4 0.4 0.0 0.2 0.0 0.0 0.6 0.2 0.1 0.0 0.1 0.0 849 --0.0 0.3 0.0 0.1 0.1 0.1 0.0 0.0 0.4 0.0 0.2 850 851 0.0 0.2 0.3 0.0 0.0 0.4 852 0.0 0.0 853 --854 --------855 --------856 ------0.2 0.3 0.3 0.0 0.0 0.0 --------0.0 0.2 0.0 0.1 0.0 0.0 857 --0.6 0.6 0.0 858 859 0.1 0.1 0.2 0.3 860 0.1 0.1 0.1 0.1 0.21 0.13 0.11 0.13 10 10 10 10 0.2 MEAN 0.2 0.19 0.16 SD 0.28

(--)-Data Unavailable

10

10

WBC corrected for NRBC = or > 10

10

10

10

10

10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Eosinophils

STUDY IO: 098

SEX: MALE

INITS: 10^3/cmp

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	:6.0 mg base	/kg/day					
881	.o.o mg base,	, kg, day					
882		• •					
883							
384	0.4	0.3	0.2	0.0	0.1	0.1	0.1
385							
386 386							
387	0.0	0.2	0.0		0.2	0.0	0.3
388							
389	0.0	0.3	0.2	0.0	0.1	0.0	0.0
390	0.0	0.4	0.2	0.0	0.4	0.0	0.0
391							
392							
393	0.0	0.4	0.0	0.0	0.0	0.0	0.0
394							
395	0.0	0.3	0.0	0.0	0.0	0.0	0.2
396	0.0	0.0	0.2	0.0	0.3	0.0	0.1
397	0.2	0.3	0.3	0.0	0.2	0.0	0.0
98		•					
199	0.0	0.0	0.0	0.0	0.0	0.0	0.1
000	0.0	0.3	0.2	0.2	0.1	0.1	0.1
IEAN	0.1	0.3	0.1	0.0	0.1	0.0	0.1
SO SO	0.13	0.14	0.12	0.07	0.13	0.04	0.10
N	10	10	10	9	10	10	10
ROUP: 18.0):18.0 mg bas	se/kg/day					
21							
22				0.0	0.2	0.1	0.1
23	0.0	0.0	0.0	0.0	0.0	0.3	0.2
24			••				••
25							
26							
27	0.0	0.3	0.0	0.0	0.2	0.2	0.3
28							
29	0.3	0.0	0.0	0.0	0.0	0.1	0.1
30	0.0	0.0	0.5	0.0	0.0	0.0	0.3
31							
32		0.0	0.2	0.0	0.2	0.3	0.0
33	0.0	0.2	0.0	0.0	0.0	0.1	0.1
34	0.0	0.0	0.2				
35	0.2	0.0	0.0	0.0	0.0	0.0	0.0
36							
37	0.0	-					
38							
39	0.0	0.2	0.2	0.0	0.1	0.1	0.0
40	0.0	0.0	0.0	0.0	0.2	0.0	0.0
	0.1	0.1	0.1	0.0	0.1	0.1	0.1
1EAN							
SD SD	0.11	0.12	0.17	0.00	0.10	0.11	0.12

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Basophils

STUDY ID: 098 SEX: MALE ABBR: Basophils UNITS: 10^3/cmm

BBK: Basophits							ONTIS: IL	3/CIIII
ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27	
	0 mg base/kg/							
801	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
802	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
803								
804								
805								
806	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
807	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
808								
809	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
810	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
811	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
812				0.0				
813								
814	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
815	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
816	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
817								
818								
819						• •		
820	••							
MEAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
N	10	10	10	11	10	10	10	
GROUP: 0.9 841	5:0.5 mg base/	'kg/day 						
842								
843								
844	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
845								
846	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
847	•							
848	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
849								
850	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
851	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
852								
853	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
854								
855								
856					••			
857								
858	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
859	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
860	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MEAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
N	10	10	10	10	10	10	10	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Basophils

STUDY ID: 098

ABBR: Basophils

SEX: MALE
UNITS: 10^3/cmm

	Week 2							
	0:6.0 mg base		***************************************					
881			• •					
882						••		
883								
884	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
885		•••						
886							••	
887	0.0	0.0	0.0		0.0	0.0	0.0	
888								
889	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
890	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
891								
892								
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
893			0.0	0.0	0.0			
894			0.0					
895	0.0	0.0		0.0	0.0	0.0	0.0	
896	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
897	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
898								
899	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
900	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MEAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
N	10	0.00	0.00	0.00	0.00	10	10	
	.0:18.0 mg bas							
921								
922				0.0	0.0	0.0	0.0	
923	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
924	••	••	••			••	• •	
925								
926	• •							
927	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
928								
929	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
930	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
931		••	• •					
932		0.0	0.0	0.0	0.0	0.0	0.0	
933	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
,	0.0	0.0	0.0					
934		0.0	0.0	0.0	0.0	0.0	0.0	
934 935	0.0	0.0						
934	0.0							
934 935						••	••	
934 935 936 937								
934 935 936 937 938	0.0				,			
934 935 936 937 938 939	0.0							
934 935 936 937 938 939 940	0.0 0.0 0.0	 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
934 935 936 937 938 939 940	0.0 0.0 0.0	 0.0 0.0	 0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	
934 935 936 937 938 939 940	0.0 0.0 0.0	 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Erythrocytes

STUDY ID: 098

SEX: FEMALE
ABBR: RBC

UNITS: 10^6/cmm

ANTMAL T	D Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
						WCCK 21	WOCK 21
	:0 mg base/kg/d	•					
821	••						
822							
823	7.55	7.25	8.06	8.20	8.04	8.68	8.50
824	6.72	6.83	7.66	**	6.85	7.61	7.30
825							
826					••		••
827	7.45	7.49	7.68	7.97	7.54	8.14	7.22
828	• •						
829	••						
830	7.00	7.00	7.91	7.61	8.04	8.07	8.11
831	7.06	7.12	7.66	7.49	7.42	7.78	7.49
832			••				
833							
834	7.33	7.76	7.76	8.28	8.00	8.50	8.16
835	7.30	7.61	7.76	7.97	7.79	8.49	7.66
			7.89				
836	7.15	7.25		7.95	7.68	8.16	8.00
837	7.76	7.98	7.90	7.43	7.80	7.80	7.78
838							
839		7.54		7.07		7.00	
840	7.43	7.56	8.09	7.93	7.64	7.89	7.76
MEAN	7.28	7.39	7.86	7.87	7.68	8.11	7.80
SD	0.301	0.357	0.159		0.360	0.354	0.403
N	10	10	10	9	10	10	10
	5 0 5 b						
	.5:0.5 mg base/ 7.66	7.63	8.57	7.93	7.18	7.92	7.92
861		1.03	0.37	7.73	7.10	1.72	
0/0							
862	• •						
863	••	••		••	••		
863 864	 7.19	7.93	7.95	8.19	7.42	7.69	7.50
863 864 865	7.19	7.93 	7.95 	8.19	7.42 	7.69	7.50
863 864 865 866	7.19 	7.93	7.95 	8.19 	7.42 	7.69 	7.50
863 864 865 866 867	7.19 6.78	7.93 7.27	7.95 7.64	8.19 7.58	7.42 7.56	7.69 8.11	7.50 7.22
863 864 865 866 867 868	7.19 6.78 6.79	7.93 7.27 7.83	7.95 7.64 8.23	8.19 7.58 8.02	7.42 7.56	7.69 8.11 8.50	7.50 7.22 8.05
863 864 865 866 867 868 869	7.19 6.78 6.79	7.93 7.27 7.83	7.95 7.64 8.23	8.19 7.58 8.02	7.42 7.56 	7.69 8.11 8.50	7.50 7.22 8.05
863 864 865 866 867 868	7.19 6.78 6.79	7.93 7.27 7.83	7.95 7.64 8.23	8.19 7.58 8.02	7.42 7.56	7.69 8.11 8.50	7.50 7.22 8.05
863 864 865 866 867 868 869	7.19 6.78 6.79	7.93 7.27 7.83	7.95 7.64 8.23	8.19 7.58 8.02	7.42 7.56 	7.69 8.11 8.50	7.50 7.22 8.05
863 864 865 866 867 868 869 870	7.19 6.78 6.79 	7.93 7.27 7.83 	7.95 7.64 8.23 	8.19 7.58 8.02 	7.42 7.56 	7.69 8.11 8.50 	7.50 7.22 8.05
863 864 865 866 867 868 869 870 871	7.19 6.78 6.79 6.95 	7.93 7.27 7.83 6.77	7.95 7.64 8.23 7.64	8.19 7.58 8.02 6.97	7.42 7.56 6.80	7.69 8.11 8.50 7.36 7.89	7.50 7.22 8.05 7.73
863 864 865 866 867 868 869 870 871 872 873	7.19 6.78 6.79 6.95 	7.93 7.27 7.83 6.77 6.91	7.95 7.64 8.23 7.64 	8.19 7.58 8.02 6.97 7.33	7.42 7.56 6.80 7.07	7.69 8.11 8.50 7.36 7.89	7.50 7.22 8.05 7.73 6.87
863 864 865 866 867 868 869 870 871 872 873	7.19 6.78 6.79 6.95	7.93 7.27 7.83 6.77	7.95 7.64 8.23 7.64	8.19 7.58 8.02 6.97	7.42 7.56 6.80	7.69 8.11 8.50 7.36	7.50 7.22 8.05 7.73
863 864 865 866 867 868 869 870 871 872 873 874	7.19 6.78 6.79 6.95 6.82 6.42	7.93 7.27 7.83 6.77 6.91 7.56	7.95 7.64 8.23 7.64 7.64 7.56	8.19 7.58 8.02 6.97 7.33 7.09	7.42 7.56 6.80 7.07 7.47	7.69 8.11 8.50 7.36 7.89 7.85	7.50 7.22 8.05 7.73 6.87 7.23
863 864 865 866 867 868 869 870 871 872 873 874 875	7.19 6.78 6.79 6.95 6.82 6.42	7.93 7.27 7.83 6.77 6.91 7.56	7.95 7.64 8.23 7.64 7.64 7.56	8.19 7.58 8.02 6.97 7.33 7.09	7.42 7.56 6.80 7.07 7.47	7.69 8.11 8.50 7.36 7.89 7.85	7.50 7.22 8.05 7.73 6.87 7.23
863 864 865 866 867 868 869 870 871 872 873 874 875 876	7.19 6.78 6.79 6.95 6.82 6.42 7.29	7.93 7.27 7.83 6.77 6.91 7.56 	7.95 7.64 8.23 7.64 7.64 7.56 7.76	8.19 7.58 8.02 6.97 7.33 7.09 7.72	7.42 7.56 6.80 7.07 7.47 7.69	7.69 8.11 8.50 7.36 7.89 7.85 8.14	7.50 7.22 8.05 7.73 6.87 7.23 7.86
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	7.19 6.78 6.79 6.95 6.82 6.42 7.29	7.93 7.27 7.83 6.77 6.91 7.56 7.16	7.95 7.64 8.23 7.64 7.64 7.56 7.76	8.19 7.58 8.02 6.97 7.33 7.09 7.72	7.42 7.56 6.80 7.07 7.47 7.69	7.69 8.11 8.50 7.36 7.89 7.85 8.14	7.50 7.22 8.05 7.73 6.87 7.23 7.86
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	7.19 6.78 6.79 6.95 6.82 6.42 7.29 7.28	7.93 7.27 7.83 6.77 6.91 7.56 7.16	7.95 7.64 8.23 7.64 7.64 7.56 7.76	8.19 7.58 8.02 6.97 7.33 7.09 7.72 8.12	7.42 7.56 6.80 7.07 7.47 7.69 7.95	7.69 8.11 8.50 7.36 7.89 7.85 8.14 8.42	7.50 7.22 8.05 7.73 6.87 7.23 7.86 8.28
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	7.19 6.78 6.79 6.95 6.82 6.42 7.29	7.93 7.27 7.83 6.77 6.91 7.56 7.16	7.95 7.64 8.23 7.64 7.64 7.56 7.76	8.19 7.58 8.02 6.97 7.33 7.09 7.72	7.42 7.56 6.80 7.07 7.47 7.69	7.69 8.11 8.50 7.36 7.89 7.85 8.14	7.50 7.22 8.05 7.73 6.87 7.23 7.86
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	7.19 6.78 6.79 6.95 6.82 6.42 7.29 7.28	7.93 7.27 7.83 6.77 6.91 7.56 7.16	7.95 7.64 8.23 7.64 7.64 7.56 7.76	8.19 7.58 8.02 6.97 7.33 7.09 7.72 8.12	7.42 7.56 6.80 7.07 7.47 7.69 7.95 7.68	7.69 8.11 8.50 7.36 7.89 7.85 8.14 8.42	7.50 7.22 8.05 7.73 6.87 7.23 7.86 8.28 7.51
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880	7.19 6.78 6.79 6.95 6.82 6.42 7.29 7.28 7.19	7.93 7.27 7.83 6.77 6.91 7.56 7.16 7.39 6.91	7.95 7.64 8.23 7.64 7.56 7.76 7.83 6.79	8.19 7.58 8.02 6.97 7.33 7.09 7.72 8.12 7.84	7.42 7.56 6.80 7.07 7.47 7.69 7.95 7.68	7.69 8.11 8.50 7.36 7.89 7.85 8.14 8.42 7.84	7.50 7.22 8.05 7.73 6.87 7.23 7.86 8.28 7.51

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Erythrocytes

STUDY ID: 098

SEX: FEMALE

ABBR: RBC

UNITS: 10^6/cmm

ANIMAL	ID Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
CPOLIP •	6.0:6.0 mg bas	e/kg/day		• • • • • • • • • • • • • • • • • • • •			
901	6.88	6.54	7.34	7.04	7.27	8.00	7.80
902	7.16	7.37	7.06	7.34	7.28	7.58	7.61
903	7.10	7.57	7.00	7.54	7.20	7.50	7.01
	7.19	7.02	7.94	7.30	••	8.49	7.73
904		7.02	7.94	7.30			
905							
906	••						
907	••	••	••		••		
908	6.94	6.93	7.11	8.16	7.33	8.00	7.94
909	7.07	7.36	7.65	7.19	8.02	8.58	8.16
910				••	• •		
911		• •		••			
912	7.09	7.39	6.93		7.99	8.04	7.86
913					••		••
914		••	••				
915	6.94	6.80	7.50	6.98	7.32	7.65	7.48
916	7.37	6.71	7.05	6.93	7.56	7.79	7.37
917	••				••		
918	6.32	6.64	6.70	6.71	6.00	7.66	7.19
919	6.84	6.97	7.32	7.44	7.73	8.25	8.16
920							
MEAN	6.98	6.97	7.26	7.23	7.39	8.00	7.73
SD	0.282	0.313	0.367	0.416	0.599	0.349	0.322
N	10	10	10	9	9	10	10
CDCUD.	18.0:18.0 mg b						
941	10.0:10.0 mg b		7.94	6.56	7.07	8.27	7.51
		6.65		6.83			
942	6.01	6.43	7.01		6.94	8.59	7.70
943			7.54				0.54
944	6.19	6.83	7.56	6.92	7.75	8.33	8.54
945							
946							••
947	• •						**
948							
949	6.59	6.55	7.35	7.63	7.94	8.16	7.94
950					• •		
951	•-						
952			• •		••	• •	••
953	6.01	7.35	7.25	5.25	7.39	8.26	7.44
954	6.18	7.00	7.55	7.25	7.61	8.46	7.98
955							
956	6.69	6.87	8.14	5.92	7.79		••
957	5.79	7.13	8.04	7.56	7.99	8.56	7.83
			• •				••
958	6.07	6.36	7.12	6.98	7.32	7.84	7.13
958	6.70	7.43	7.48	7.57	7.71	8.15	7.86
958 959 960				/ 05			
958 959 960 MEAN	6.19	6.86	7.54	6.85	7.55	8.29	7.77
958 959 960	6.19 0.365 10	6.86 0.370 10	7.54 0.388 10	6.85 0.769 10	7.55 0.358 10	8.29 0.233 9	7.77 0.398 9

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Hemoglobin

STUDY ID: 098

SEX: FEMALE

ABBR: THGB

UNITS: g/dL

ANIMAL I	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27	
CRUID. U	0 mg base/kg/d	dav						
821	o ing base/kg/							
822								
823	15.7	15.3	16.5	16.6	16.8	17.3	16.6	
824	15.3	15.1	16.3		15.3	16.1	15.8	
825								
826								
827	16.4	16.0	16.8	15.4	15.1	17.0	15.3	
828								
829	••		~ -					
830	15.9	15.7	16.5	16.0	17.4	16.8	16.8	
831	15.1	15.0	15.3	14.9	15.2	15.4	14.7	
832	••				••			
833								
834	15.5	15.9	15.4	16.5	16.1	16.8	16.0	
835	15.7	15.9	17.0	16.1	16.1	16.6	15.8	
836	15.8	15.8	16.3	16.8	16.4	16.8	16.1	
837	16.6	16.7	16.4	15.4	16.7	16.2	16.3	
838								
839								
840	15.6	16.0	17.0	16.3	15.8	15.9	16.0	
MEAN	15.8	15.7	16.4	16.0	16.1	16.5	15.9	
SD	0.46	15.7 0.50	0.59	0.64	0.76	0.58	0.61	
N	10	10	10	9	10	10	10	
GROUP: 0.	5:0.5 mg base/	kg/day						
861		15.8	17.0	16.0	15.0	15.8	15.5	
862		••						
863								
864	15.2	16.5	16.9	16.3	15.1	15.8	15.4	
865								
866								
867	15.0	15.8	16.4	16.1	16.6	17.2	15.1	
	15.5	17.2	17.9	16.8		16.8	17.0	
868	13.3							
868 869								
868 869 870							••	
868 869 870 871	 15.5	15.0	 16.5	14.9	 15.9	15.3	16.0	
868 869 870 871 872	15.5	15.0	 16.5 	14.9	 15.9	15.3 	16.0	
868 869 870 871 872 873	15.5 15.8	15.0 16.0	16.5 17.0	14.9 16.5	15.9 16.3	15.3 17.4	16.0 16.3	
868 869 870 871 872 873	15.5 15.8 13.8	15.0 16.0 15.8	16.5 17.0 15.7	14.9 16.5 14.7	15.9 16.3 15.5	15.3 17.4 15.7	16.0 16.3 14.7	
868 869 870 871 872 873 874	15.5 15.8 13.8	15.0 16.0 15.8	16.5 17.0 15.7	14.9 16.5 14.7	15.9 16.3 15.5	15.3 17.4 15.7	16.0 16.3 14.7	
868 869 870 871 872 873 874 875	15.5 15.8 13.8	15.0 16.0 15.8 	16.5 17.0 15.7 	14.9 16.5 14.7	15.9 16.3 15.5 	15.3 17.4 15.7 	16.0 16.3 14.7	
868 869 870 871 872 873 874 875 876	15.5 15.8 13.8 	15.0 16.0 15.8 15.7	16.5 17.0 15.7 16.3	14.9 16.5 14.7 15.8	15.9 16.3 15.5 16.6	15.3 17.4 15.7 16.8	16.0 16.3 14.7 	
868 869 870 871 872 873 874 875 876 877	15.5 15.8 13.8 16.1	15.0 16.0 15.8 15.7	16.5 17.0 15.7 16.3	14.9 16.5 14.7 15.8	15.9 16.3 15.5 16.6	15.3 17.4 15.7 16.8	16.0 16.3 14.7 15.6	
868 869 870 871 872 873 874 875 876 877 878	15.5 15.8 13.8 16.1	15.0 16.0 15.8 15.7	16.5 17.0 15.7 16.3 	14.9 16.5 14.7 15.8 	15.9 16.3 15.5 16.6 16.1	15.3 17.4 15.7 16.8 	16.0 16.3 14.7 15.6	
868 869 870 871 872 873 874 875 876 877	15.5 15.8 13.8 16.1	15.0 16.0 15.8 15.7	16.5 17.0 15.7 16.3	14.9 16.5 14.7 15.8	15.9 16.3 15.5 16.6	15.3 17.4 15.7 16.8	16.0 16.3 14.7 15.6	
868 869 870 871 872 873 874 875 876 877 878 879	15.5 15.8 13.8 16.1 15.0	15.0 16.0 15.8 15.7 15.2	16.5 17.0 15.7 16.3 15.8 15.0	14.9 16.5 14.7 15.8 15.9	15.9 16.3 15.5 16.6 16.1 15.8	15.3 17.4 15.7 16.8 16.3 15.8	16.0 16.3 14.7 15.6 16.1 15.2	
868 869 870 871 872 873 874 875 876 877 878	15.5 15.8 13.8 16.1	15.0 16.0 15.8 15.7	16.5 17.0 15.7 16.3 	14.9 16.5 14.7 15.8 	15.9 16.3 15.5 16.6 16.1	15.3 17.4 15.7 16.8 	16.0 16.3 14.7 15.6	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Hemoglobin

STUDY ID: 098 ABBR: THGB ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 6.0:6.0 mg base/kg/day 14.7 15.7 15.4 901 14.8 16.0 16.6 15.7 15.6 902 14.8 15.5 14.9 15.2 15.2 15.2 15.1 ----903 --- -904 15.6 16.4 15.5 --17.0 15.7 --.. •• 905 --• • - ---------906 - -907 ----15.0 15.4 18.1 16.2 16.2 15.9 15.6 15.2 16.8 16.3 15.7 14.6 908 909 14.9 15.9 910 -- 16.4 --- ---- -911 --16.1 15.0 15.6 15.7 912 15.3 ------913 914 --- -----15.6 16.2 15.5 16.3 15.4 15.9 15.3 17.0 15.1 16.2 915 15.6 916 16.1 16.1 15.4 - ------ -917 --14.3 14.4 15.2 15.8 14.5 15.6 12.6 16.8 918 14.4 16.0 919 15.0 16.2 16.1 920 15.5 16.0 1.02 1.34 15.3 15.6 0.55 0.59 15.1 16.2 MEAN 15.5 SD 0.49 0.48 0.42 10 10 10 9 9 10 GROUP: 18.0:18.0 mg base/kg/day 16.2 11.6 14.3 13.2 15.1 16.2 941 15.1 15.5 16.2 13.2 15.3 13.2 13.2 942 12.9 18.2 16.4 --- ------ ---943 13.3 13.0 15.1 13.6 15.8 16.0 944 15.8 ----------945 ------946 ----947 ----- -------948 14.1 14.5 14.6 16.0 14.3 15.8 949 15.5 950 - -- -------- -------951 952 --------15.4 14.0 15.7 953 13.5 15.3 11.0 16.5 14.3 13.6 15.2 954 13.1 16.0 15.7 --955 ----- -----13.6 15.5 14.0 15.3 13.5 ----956 13.7 15.5 16.2 15.9 16.3 957 12.0 14.6 16.2 958 - -13.4 15.7 --------14.4 13.4 15.3 15.6 959 13.2 14.5 960 13.9 15.7 14.7 16.1 16.1 15.9 14.1 0.85 15.2 13.5 15.6 16.3 13.1 15.6 MEAN SD 0.82 0.61 1.07 0.38 0.76 0.54 10 10 10 10 10 9 N

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Hematocrit

STUDY ID: 098

ABBR: HCT

SEX: FEMALE
UNITS: %

R: HCT							ı	UNITS: %
ANIMAL II	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27	
GROUP: 0	0 mg base/kg/d	day						
821					• •			
822								
823	44.1	42.7	44.6	45.4	45.0	48.1	45.8	
824	40.9	41.1	44.1		39.9	43.2	41.9	
825								
826			• •					
827	44.5	44.6	44.4	43.8	44.0	45.7	40.0	
828								
829								
830	42.5	43.5	45.3	43.1	45.9	46.4	46.2	
831	41.8	41.4	42.0	40.1	40.4	42.6	40.2	
832	**							
833		••						
834	41.9	42.8	41.2	43.5	43.0	46.0	42.8	
835	42.1	43.7	43.9	43.1	43.7	46.8	43.4	
836	43.6	43.3	44.3	44.4	44.4	45.9	44.5	
837	44.9	46.4	44.2	41.8			43.3	
838	••					••		
839					••			
840	41.8	43.1	44.7	43.0	42.6	42.8	42.5	
MEAN		43.3	43.9	43.1				
SD	1.36	1.51	1.27	1.51	1.92	1.88	2.08	
N	10	10	10	9	10	10	10	
GROUP: 0.	5:0.5 mg base/	'kg/day		• • • • • • • • • • • • • • • • • • • •	••••••			
861	44.1	43.3	46.8	42.9	40.1	43.2	42.8	
862						••	••	
863		••						
864	42.3	45.6						
865								
866		• •	••	4		••		
867	42.1	44.2	44.5	43.6		47.2	41.5	
868	41.5	47.4	48.6	46.1		49.3	46.4	
869								
870			45.0					
871	42.3	41.2		40.7		42.7	44.0	
872								
873	43.7	44.5	46.9	44.9	44.0	48.5	45.4	
874	37.6	44.2	43.3	39.3	41.6	43.6	40.2	
875								
876	/2.9	 /7 1		/2 8		76.3	 /7 2	•
877	42.8	43.1	44.5	42.8	44.1	46.2	43.2	
878			 /7 5		/7 9	 /E 4		
879	40.8	42.3	43.5	44.1	43.8	45.6	44.2	
880	42.7	40.5	39.4	42.6	43.0	43.4	41.0	
MEAN	42.0	43.6	44.8	43.3	42.8	45.4	43.1	
MEAN SD N	42.0 1.82 10	43.6 2.04 10	44.8 2.50 10	43.3 2.14 10	42.8 1.72 9	45.4 2.36 10	43.1 1.96 10	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Hematocrit

STUDY ID: 098 SEX: FEMALE ABBR: HCT UNITS: % ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 6.0:6.0 mg base/kg/day 39.3 43.7 --40.4 39.3 40.4 42.7 41.3 41.6 901 43 3 44.2 42.4 42.4 42.2 902 42.6 41.9 .. 903 --------44.9 42.0 --41.3 41.9 904 46.5 42.3 •• 905 - -47.7 43.8 44.3 41.1 45.5 46.1 906 ----907 41.2 41.2 47.7 43.1 43.4 41.1 ----. . 908 39.8 42.8 909 40.0 43.7 --910 --911 912 42.0 44.3 42.0 --913 --914 --- -915 41.3 43.1 42.1 916 44.5 45.6 42.7 917 --918 38.6 40.2 46.0 919 40.2 920 41.9 1.41 10 42.4 1.41 43.2 3.01 MEAN 41.1 42.1 44.6 42.6 1.69 2.37 SD 1.37 1.25 10 10 9 9 10 10 GROUP: 18.0:18.0 mg base/kg/day 45.0 37.3 39.5 40.3 33.6 37.3 41.9 40.3 42.3 40.7 941 38.5 44.4 41.1 942 35.2 47.9 43.5 943 - ---40.6 35.8 38.2 42.0 944 35.7 42.7 44.3 ----945 --- -------946 - -------- -947 948 --39.6 40.6 44.2 40.5 949 39.4 43.1 42.0 950 - ---------44.4 42.8 ------951 - -------952 --- -953 36.0 46.1 42.6 954 36.0 44.7 955 - -- -38.6 43.5 30.7 40.9 42.7 40.1 -- 37.5 39.2 37.6 44.7 42.2 41.1 38.6 43.1 - -956 44.5 --41.4 42.9 957 33.4 45.2 958 - -- -959 36.2 42.2 38.7 960 38.3 44.0 43.2 40.4 41.6 2.50 1.80 43.0 1.10 37.2 MEAN 36.2 44.5 42.4 3.85 2.01 SD 1.78 1.65 10 10 10 10 10 9 0

(--)-Data Unavailable

.....

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Volume

STUDY ID: 098 SEX: FEMALE ABBR: MCV ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day 58.4 58.9 55.3 60.9 60.2 57.6 821 55.4 ----56.0 55.4 58.2 56.8 -- ----822 823 53.9 824 •• --825 826 827 828 56.6 57.1 57.5 53.5 54.4 54.8 -- -- --52.5 53.8 54.1 54.1 56.1 55.1 55.8 57.8 56.3 56.3 56.8 56.3 62.1 57.3 58.1 54.8 -- -- --55.2 53.1 57.4 55.3 59.7 56.1 58.1 55.9 829 57.0 830 60.7 831 59.2 53.7 832 - -833 834 57.2 52.5 56.7 55.6 835 57.7 61.0 57.9 836 55.7 837 838 839 56.3 57.0 55.3 54.2 55.8 54.2 54.8 840 58.9 1.66 58.6 55.9 1.91 1.44 54.8 56.4 55.7 1.36 1.53 1.12 9 10 10 MEAN 55.3 SD 1.12 1.57 10 10 10 GROUP: 0.5:0.5 mg base/kg/day 861 57.6 56.7 862 --57.5 863 58.8 864 56.3 --865 866 62.1 61.1 57.5 867 868 869 --870 60.9 871 56.9 872 --873 64.1 66.1 874 58.6 55.6 --875 876 877 58.7 55.0 878 57.2 55.6 54.3 55.1 54.2 58.6 58.0 54.3 56.0 55.4 879 56.0 53.4 54.6 880 59.4 56.9 59.5 57.7 56.4 57.6 2.31 1.91 2.28 2.32 59.7 56.7 MEAN 2.18 2.31 3.60 SD 2.35

(--)-Data Unavailable

......

10

9

10

10

10

10

10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Volume

STUDY ID: 098

ABBR: MCV

SEX: FEMALE
UNITS: fl.

					Week 16		
	:6.0 mg base			••••••			
901	58.7	60.1	59.0	57.4	58.7	55.3	54.4
902	59.5	59.3	59.3				
903				50.5			
904	58.3	58.8	56.5	57.5		54.8	54.7
905						54.8	34.7
906	••						
907			••				
908	57.3	59.5	57.9	58.5		55.4	
			56.7	57.2			53.9
909	56.6	58.6	50.7		56.7	53.7	53.6
910	••						
911							
912	59.2	59.5	59.2		55.1	55.1	53.4
913							
914							
915	59.5	61.3	58.1	59.0	59.2	56.3	56.3
916	60.4	62.4	60.3	61.2	60.2	58.5	57.9
917							
918	61.1	61.4	60.0	58.7	60.3	57.2	55.9
919	58.8	59.8	57.8	57.9	59.8	55.8	55.3
920	••			••			
MEAN	58.9	60.1	58.5	58.2	58.5	55.8	55.1
SD	1.34	1.24	1.30	1.41	1.83	1.33	1.39
N	10	1.24 10	1.30 10	1.41 9	1.83 9	1.33 10	10
	0:18.0 mg bas						
941	59.5	61.2	56.7	56.9	59.3		
942	58.6	59.9	56.3		61.0	55.8	56.5
943							
944	57.7	55.9	53.7	51.7	54.2	51.3	51.9
945							
946		••					
947		••				**	
948				• •			
949	59.8	60.5	55.2	53.1	55.7	52.8	52.9
950							
951							
952							
953	59.9	60.5	57.7	58.1	60.1	55.8	57.3
954	58.3	58.1	54.4	52.0	56.2	52.8	53.9
955	••						
956	57.7	56.2	53.4	51.9	55.3		
957	57.7	57.4	53.1	53.0	55.7	52.8	55.0
958			••		••		. ••
959	59.6	59.0	55.1	53.9	56.6	53.8	54.3
960	57.2	60.2	56.4	54.3	55.6	54.0	55.0
	58.6	58.9	55.2	54.4	57.0	53.6	54.6
MFAN				~~~	21.0	23.0	27.0
MEAN SD	1.02	1.89	1.55	2.67	2.30	1.46	1.66

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Hemoglobin

STUDY ID: 098

ABBR: TMCH

SEX: FEMALE
UNITS: pg

			Week 4		Week 13	Week 16	Week 21	Week 27	
	: 0:0 mg ba								
821									
822								• •	
823	2	0.8	21.1	20.5	20.2	20.9	19.9	19.5	
824	2	2.8	22.1	21.3		22.3	21.2	21.6	
825									
826									
827		2.0	21.4	21.9	19.3	20.0	20.9	21.2	
828									
829			• •						
830	2	2.7	22.4	20.9	21.0	21.6			
831		1.4	21.1	20.0			20.8	20.7	
			21.1		19.9	20.5	19.8	19.6	
832									
833									
834		1.1	20.5	19.8	19.9	20.1	19.8	19.6	
835		1.5	20.9	21.4	20.2	20.7	19.6	20.6	
836	23	2.1	21.8	20.7	21.1	21.4	20.6	20.1	
837	2	1.4	20.9	20.8	20.7	21.4	20.8	21.0	
838									
839									
840	2	1.0	21.2	21.0	20.6	20.7	20.2	20.6	
MEAN	2	1.7	21.3	20.8	20.3	21.0	20.4	20.5	
SD	0.	.69	0.59	0.63	0.58	0.72	0.57	0.73	
N		10	10	10	9	10	10	10	
GROUP:	0.5:0.5 mg	g base/i	 cg/day						
GROUP: 861				19.8	20.2	20.9	19.9	19.6	
			-	19.8	20.2	20.9	19.9	19.6	
861	20	3.8	20.7						
861 862	20	3.8	20.7						
861 862 863	20	0.8 	20.7					••	
861 862 863 864	20	0.8 1.1	20.7	 21.3	 19.9	 20.4	20.5	20.5	
861 862 863 864 865 866	21	0.8 1.1	20.7	21.3 	19.9 	20.4	20.5	20.5	••••
861 862 863 864 865 866 867	20 21 22	1.1 2.1	20.7	21.3 21.5	19.9 21.2	20.4	20.5	20.5 20.9	
861 862 863 864 865 866 867 868	20 21 22 22	0.8 1.1 2.1 2.8	20.7 20.8 21.7 22.0	21.3 21.5 21.7	19.9 21.2 20.9	20.4 22.0	20.5	20.5 20.9 21.1	
861 862 863 864 865 866 867 868 869	20 21 22 22	0.8 1.1 2.1 2.8	20.7 20.8 21.7 22.0	21.3 21.5 21.7	19.9 21.2 20.9	20.4 22.0 	20.5 21.2 19.8	20.5 20.9 21.1	
861 862 863 864 865 866 867 868 869 870	20 21 22 22	0.8 1.1 2.1 2.8	20.7 20.8 21.7 22.0	21.3 21.5 21.7	19.9 21.2 20.9	20.4 22.0 	20.5 21.2 19.8	20.5 20.9 21.1 	
861 862 863 864 865 866 867 868 869 870 871	20 21 22 22	0.8 1.1 2.1 2.8 2.3	20.7 20.8 21.7 22.0 22.2	21.3 21.5 21.7 21.6	19.9 21.2 20.9 21.4	20.4 22.0 23.4	20.5 21.2 19.8 20.8	20.5 20.9 21.1 20.7	
861 862 863 864 865 866 867 868 869 870 871 872	20 21 22 22 22	0.8 1.1 2.1 2.8 2.3	20.7 20.8 21.7 22.0 22.2	21.3 21.5 21.7 21.6	19.9 21.2 20.9 21.4	20.4 22.0 23.4	20.5 21.2 19.8 20.8	20.5 20.9 21.1 20.7	
861 862 863 864 865 866 867 868 869 870 871 872 873	20 21 22 22 22 23		20.7 20.8 21.7 22.0 22.2 23.2	21.3 21.5 21.7 21.6 22.3	19.9 21.2 20.9 21.4 22.5	20.4 22.0 23.4 23.1	20.5 21.2 19.8 20.8 22.1	20.5 20.9 21.1 20.7 23.7	
861 862 863 864 865 866 867 868 869 870 871 872 873 874	20 21 22 22 22 23		20.7 20.8 21.7 22.0 22.2 23.2 20.9	21.3 21.5 21.7 21.6 22.3 20.8	19.9 21.2 20.9 21.4 22.5 20.7	20.4 22.0 23.4 23.1 20.7	20.5 21.2 19.8 20.8 22.1 20.0	20.5 20.9 21.1 20.7 23.7 20.3	
861 862 863 864 865 866 867 868 869 870 871 872 873 874	20 21 22 22 22 23	1.1 2.1 2.8 2.3 3.2	20.7 20.8 21.7 22.0 22.2 23.2 20.9	21.3 21.5 21.7 21.6 22.3 20.8	19.9 21.2 20.9 21.4 22.5 20.7	20.4 22.0 23.4 23.1 20.7	20.5 21.2 19.8 20.8 22.1 20.0	20.5 20.9 21.1 20.7 23.7 20.3	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875	20 21 22 22 22 23 21	1.1 2.1 2.8 2.3 3.2	20.7 20.8 21.7 22.0 22.2 23.2 20.9	21.3 21.5 21.7 21.6 22.3 20.8	19.9 21.2 20.9 21.4 22.5 20.7	20.4 22.0 23.4 23.1 20.7	20.5 21.2 19.8 20.8 22.1 20.0	20.5 20.9 21.1 20.7 23.7 20.3	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876	20 21 22 22 23 21	2.1 2.3 2.3 2.3 2.3 2.1 2.1	20.7 20.8 21.7 22.0 22.2 23.2 20.9 21.9	21.3 21.5 21.7 21.6 22.3 20.8 	19.9 21.2 20.9 21.4 22.5 20.7 20.5	20.4 22.0 23.4 23.1 20.7 21.6	20.5 21.2 19.8 20.8 22.1 20.0	20.5 20.9 21.1 20.7 23.7 20.3 	••••
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	20 21 22 22 23 21	2.1 2.3 2.3 2.3 2.1 2.1	20.7 20.8 21.7 22.0 22.2 23.2 20.9 21.9	21.3 21.5 21.7 21.6 22.3 20.8 	19.9 21.2 20.9 21.4 22.5 20.7 20.5	20.4 22.0 23.4 23.1 20.7 21.6	20.5 21.2 19.8 20.8 22.1 20.0 20.6	20.5 20.9 21.1 20.7 23.7 20.3 19.8	••••
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	20 21 22 22 23 21 22	2.1 2.3 2.3 2.3 2.1 2.1 2.1	20.7 20.8 21.7 22.0 22.2 23.2 20.9 21.9 20.6	21.3 21.5 21.7 21.6 22.3 20.8 	19.9 21.2 20.9 21.4 22.5 20.7 20.5 	20.4 22.0 23.4 23.1 20.7 21.6	20.5 21.2 19.8 20.8 22.1 20.0	20.5 20.9 21.1 20.7 23.7 20.3 	••••
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	20 21 22 22 23 21 22	2.1 2.3 2.3 2.3 2.1 2.1	20.7 20.8 21.7 22.0 22.2 23.2 20.9 21.9	21.3 21.5 21.7 21.6 22.3 20.8 	19.9 21.2 20.9 21.4 22.5 20.7 20.5	20.4 22.0 23.4 23.1 20.7 21.6	20.5 21.2 19.8 20.8 22.1 20.0 20.6	20.5 20.9 21.1 20.7 23.7 20.3 19.8	••••
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	20 21 22 22 23 21 22 20 21	2.1 2.3 2.3 2.3 2.1 2.1 2.1	20.7 20.8 21.7 22.0 22.2 23.2 20.9 21.9 20.6	21.3 21.5 21.7 21.6 22.3 20.8 21.0 20.2	19.9 21.2 20.9 21.4 22.5 20.7 20.5 	20.4 22.0 23.4 23.1 20.7 21.6 20.3	20.5 21.2 19.8 20.8 22.1 20.0 20.6 19.4	20.5 20.9 21.1 20.7 23.7 20.3 19.8	••••
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880	20 21 22 22 23 21 22 20 21	1.1	20.7 20.8 21.7 22.0 22.2 23.2 20.9 21.9 20.6 21.9	21.3 21.5 21.7 21.6 22.3 20.8 21.0 20.2 22.1	21.2 20.9 21.4 22.5 20.7 20.5 19.6 20.0	20.4 22.0 23.4 23.1 20.7 21.6 20.3 20.6	20.5 21.2 19.8 20.8 22.1 20.0 20.6 19.4 20.2	20.5 20.9 21.1 20.7 23.7 20.3 19.8 19.4 20.2	••••

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Hemoglobin

------STUDY ID: 098 ABBR: TMCH UNITS: pg ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 6.0:6.0 mg base/kg/day 21.5 22.5 21.2 21.2 21.4 21.9 21.1 20.2 901 21.3 22.0 20.8 20.1 20.1 902 20.0 903 --21.7 21.5 904 20.3 905 906 - -907 908 21.0 19.8 909 21.1 19.5 910 --- -911 912 21.2 19.5 --913 914 915 21.8 20.9 916 21.8 917 --22.8 21.5 21.6 21.0 20.9 21.9 21.8 21.6 21.0 21.7 19.6 918 20.3 919 --920 21.9 21.5 0.63 0.69 10 10 21.5 21.5 21.6 0.69 0.68 0.70 10 9 9 MEAN 21.6 20.2 20.1 SD 0.53 0.70 0.51 10 10 10 GROUP: 18.0:18.0 mg base/kg/day 21.5 20.4 20.1 21.4 19.6 20.5 21.8 19.3 22.3 21.2 941 20.5 21.5 20.2 942 21.5 21.3 943 - -19.5 ----20.0 19.7 20.4 944 21.0 19.2 18.5 --945 --19.1 20.2 19.4 ----------946 --947 ----948 949 21.7 19.5 950 - ---951 952 --22.5 953 20.6 954 21.2 19.7 955 956 20.5 --957 20.7 20.3 958 21.1 20.2 19.2 21.1 21.0 19.4 20.9 959 21.7 19.9 960 20.7 19.8 20.6 20.1 0.78 1.00 10 10 19.9 20.8 MEAN 21.2 19.7 20.1 0.74 1.20 SD 0.65 0.69 0.78 10 10 N 10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Hemo. Conc.

STUDY ID: 098

ABBR: TMCHC

UNITS: %

BR: TMCHC							U	NITS: %
ANIMAL ID	Week 2		Week 8	Week 13	Week 16	Week 21	Week 27	
GROUP: 0:	mg base/kg/d	day						
821								
822						••		
823	35.6	35.8	37.0	36.6	37.3	36.0	36.2	
824	37.4	36.7	37.0		38.3	37.3	37.7	
825								
826								
827	36.9	35.9	37.8	35.2	34.3	37.2	38.3	
828					• •			
829				••				
830	37.4	36.1	36.4	37.1	37.9	36.2	36.4	
831	36.1	36.2	36.4	37.2	37.6	36.2	36.6	
832					• •			
833		• •	• •		**			
834	37.0	37.1	37.4	37.9	37.4	36.5	37.4	
835	37.3	36.4	38.7	37.4	36.8	35.5	36.4	
836	36.2	36.5	36.8	37.8	36.9	36.6	36.2	
837	37.0	36.0	37.1	36.8	37.7	36.9	37.6	
838						••		
839								
840	37.3	37.1	38.0	37.9	37.1	37.1	37.6	
MEAN		36.4						
SD	0.63	0.47	0.73	0.85	1.09	0.58	0.76	
N	10	10	10	9	10	10	10	
CDOUR O S	:0.5 mg base/	'ka/day						• • • • • • • • • • • • • • • • • • • •
861	36.1	36.5	36.3	37.3	37.4	36.6	36.2	
862	30.1			57.5			30.2	
863	••					• •		
864	35.9	36.2	37.6	35.6	35.1	35.9	36.5	
865		30.2	37.10					
866								
867	35.6	35.7	36.9	36.9	37.0	36.4	36.4	
868	37.3	36.3	36.8	36.4		34.1	36.6	
869								
870								
871	36.6	36.4	36.7	36.6	39.5	35.8	36.4	
872						•••	••	
873	36.2	36.0	36.2	36.7	37.0	35.9	35.9	
874	36.7	35.7	36.3	37.4	37.3	36.0	36.6	
875								
876								
877	37.6	36.4	36.6	36.9	37.6	36.4	36.1	
878					**			
879	36.8	35.9	36.3	36.1	36.8	35.7	36.4	
880	36.8	37.3	38.1	36.9	36.7	36.4	37.1	
MEAN	36.6	36.2	36.8	36.7	37.2	35.9	36.4	
SD	0.62	0.47	0.62	0.54	1.14	0.71	0.33	
	0.00	0.41	0.02	0.34	9	0.71	0.33	

DRAFT

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Mean Corpuscular Hemo. Conc.

STUDY ID: 098

ABBR: TMCHC

UNITS: %

BR: TMCHC								UNITS: %
ANIMA			ek 4 Wee			16 Week		7
GROUP	: 6.0:6.0 mg	base/kg/day	/					
901	36	.6	37.4 3	6.3 38	3.1 37	'.5 3 7	7.6 37.0	0
902	35	.7 3			5.8 37	'.3 35	36.0	
903						_		
904	37	.2 3	36.6	6.5 36	5.9	36	37.	
905								-
906								-
907	11							
908	36	.7 3	6.4 3				36.7	
909	37						36.4	
910								
911								
912			6.6 3	8.0			36.4	
913					٥.			
914								
915	36.						.6 37.1	
916	_						.3 36.1	
917		. –			_			
918	37.	-	6.5 3				36.3 .2 35.7	
919	37.						.2 35. 7	
920						-		•
MEAN	36.			6.8 36			.2 36.5	5
SD	0.6		.73 0	.83 0. 10	81 0.	87 0.	92 0.48	
N	1	10	10	10	9	9	10 10)
	18.0:18.0 m	-						
941	34.			6.0 35			.5 37.0	
942	36.		4.3 3		.8 36	_	.0 37.7	
943								
		.4 3	4.8 3	7.2 38	.0 37	.6 37	75 7	,
944	36.							
945								•
945 946								
945					 	 		
945 946 947 948		 			 	 		- -
945 946 947 948 949		 .3 3	 5.6 3!	 5.7 36	 .0 36	 -2 36	.7 36.9	• • •
945 946 947 948 949 950	36.	 .3 3	 5.6 3!	 5.7 36	 .0 36	 .2 36	.7 36.9	- - - -
945 946 947 948 949	36.	 .3 3	 5.6 3!	 5.7 36	 .0 36	 .2 36	.7 36.9	- - - -
945 946 947 948 949 950	36.	 .3 3	 5.6 39	 5.7 36	 .0 36	 .2 36 	.7 36.9	- - - - -
945 946 947 948 949 950 951	36. 	 .3 3 	 5.6 3! 4.6 36	5.7 36 6.6 36	 .0 36 	 .2 36 	.7 36.9	- - - - - - -
945 946 947 948 949 950 951	36. 	 .3 3 	 5.6 3! 4.6 36	5.7 36 6.6 36	 .0 36 	 .2 36 	.7 36.9	- - - - - - -
945 946 947 948 949 950 951 952 953	36. 	 .3 3 .5 3	 5.6 3! 4.6 36	5.7 36 5.6 36 4.6 36	 .0 36 .1 35 .1 35	 .2 36 .4 35 .5 35	.7 36.9	- - - - - - - - -
945 946 947 948 949 950 951 952 953	36. 	 .3 3 .5 3	 5.6 3! 4.6 36 4.4 34	5.7 36 6.6 36 4.6 36	 .0 36 .1 35 .1 35	 .2 36 .4 35 .5 35	.7 36.9 	
945 946 947 948 949 950 951 952 953 954	36. 	 .3 3 .5 3 .4 3	 5.6 3! 4.6 36 4.4 34	5.7 36 5.6 36 4.6 36	 .0 36 .1 35 .1 35	 .2 36 .4 35 .5 35	.7 36.9	
945 946 947 948 949 950 951 952 953 954 955	36. 	 .3 3 .5 3 .4 3 .5 3	 5.6 3! 4.6 36 4.4 34 5.2 3! 4.2 3!	5.7 36 5.6 36 4.6 36 5.6 44 5.8 36	 .0 36 .1 35 .1 35 .0 36 .4 36	 .2 36 .4 35 .5 35 .0	.7 36.9 	
945 946 947 948 949 950 951 952 953 954 955 956	36. 	 .3 3 .5 3 .4 3 .5 3	 5.6 3! 4.6 36 4.4 34 5.2 3! 4.2 3!	5.7 36 5.6 36 4.6 36 5.6 44 5.8 36	 .0 36 .1 35 .1 35 .0 36 .4 36	 .2 36 .4 35 .5 35 .0	.7 36.9 	
945 946 947 948 949 950 951 952 953 954 955 956 957	36. 	 .3 3 .5 3 .4 3 .9 3			 .0 36 .1 35 .1 35 .0 36 .4 36	 .2 36 .4 35 .5 35 .0 .4 36 	.7 36.9 	
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959	36. 36. 37. 36. 35. 36.				 .0 36 .1 35 .1 35 .0 36 .4 36 .6 37 .8 37	 .2 36 .4 35 .5 35 .0 .4 36 .0 37	.7 36.9 36.9 .8 35.9 .8 36.5 	5 5 6 7 8 8 8
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960	36. 36. 37. 36. 35. 36. 36.						.7 36.9 .8 35.9 .8 36.5 .1 36.9 .0 37.5 .6 36.8	
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959	36. 37. 37. 36. 35. 36. 36.						.7 36.9 36.9 .8 35.9 .8 36.5 	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Reticulocytes Count

STUDY ID: 098

ABBR: RETICS

SEX: FEMALE
UNITS: % RBCS

								UNITS:	
ANIMAL	. ID	Week 2	Week 4	Week 8	Week 13		Week 21	Week 27	
		g base/kg/c							
821									
822									
823		0.3	1.3	0.7	0.7	0.4	0.0	0.5	
824		1.3	1.5	0.5		0.3	0.8	0.3	
825									
826		••	••		••	••			
827		0.9	1.4	0.3	1.3	0.7	0.3	0.3	
828									
829							••	••	
830		1.2	1.9	0.4	1.1	0.4	0.3	0.9	
831		1.3	1.2	0.4	0.7	0.7	0.5	1.1	
832									
833			••						
834		1.0	0.1	0.1	0.8	0.1	0.0	0.0	
835		1.4	0.5	0.1	0.6	1.1	0.5	0.8	
836		2.9	0.4	0.3	0.7	0.7	0.2	0.5	
837		0.4	0.7	0.7	0.4	1.0	0.3	0.9	
838									
839		• •						••	
840		1.5	0.7	0.6	1.1	0.5	0.4	0.3	
MEAN		1.2	1.0	0.4	0.8	0.6	0.3	0.6	
SD		0.72	0.57	0.22			0.24	0.35	
N		10	10	10	9	10	10	10	
	0.5:0.	5 mg base/	0.1	0.8	0.6	0.2	0.1	0.0	
861		2.1			0.0	0.2	0.1	0.0	
862 863		122.232.0							
					••			•-	
864		1.9	1.0	0.9	0.5	0.3	0.2	0.9	
864 865		1.9	1.0	0.9	0.5	0.3	0.2	0.9	
864 865 866		1.9	1.0	0.9	0.5	0.3	0.2	0.9	
864 865 866 867		1.9 2.0	1.0 0.8	0.9	0.5 0.4	0.3	0.2	0.9	
864 865 866 867 868		1.9 2.0 0.1	1.0 0.8 1.5	0.9 0.4 0.3	0.5 0.4 0.6	0.3	0.2 0.9 0.8	0.9 0.1 0.3	
864 865 866 867 868 869		1.9 2.0 0.1	1.0 0.8 1.5	0.9 0.4 0.3	0.5 0.4 0.6	0.3	0.2 0.9 0.8	0.9 0.1 0.3	
864 865 866 867 868 869 870		1.9	1.0 0.8 1.5	0.9 0.4 0.3	0.5 0.4 0.6	0.3	0.2 0.9 0.8 	0.9 0.1 0.3 	
864 865 866 867 868 869 870 871		1.9 2.0 0.1 0.7	1.0 0.8 1.5 	0.9 0.4 0.3 0.4	0.5 0.4 0.6 0.8	0.3	0.2 0.9 0.8 	0.9 0.1 0.3 	
864 865 866 867 868 869 870 871 872		1.9 2.0 0.1 0.7	1.0 0.8 1.5 0.6	0.9 0.4 0.3 0.4	0.5 0.4 0.6 0.8	0.3	0.2 0.9 0.8 0.8	0.9 0.1 0.3 	
864 865 866 867 868 869 870 871 872 873		1.9 2.0 0.1 0.7 	1.0 0.8 1.5 0.6	0.9 0.4 0.3 0.4 	0.5 0.4 0.6 0.8 	0.3 0.4 0.1 1.5	0.2 0.9 0.8 0.8 	0.9 0.1 0.3 0.8 	
864 865 866 867 868 869 870 871 872 873		1.9 2.0 0.1 0.7 0.7 1.2	1.0 0.8 1.5 0.6 	0.9 0.4 0.3 0.4 0.6 0.5	0.5 0.4 0.6 0.8 1.4	0.3 0.4 0.1 1.5 0.7	0.2 0.9 0.8 0.8 0.5	0.9 0.1 0.3 0.8 1.9 0.3	
864 865 866 867 868 869 870 871 872 873 874		1.9 2.0 0.1 0.7 0.7	1.0 0.8 1.5 0.6 	0.9 0.4 0.3 0.4 0.6 0.5	0.5 0.4 0.6 0.8 1.4 0.6	0.3 0.4 0.1 1.5 0.7	0.2 0.9 0.8 0.8 0.5 0.2	0.9 0.1 0.3 0.8 1.9 0.3	
864 865 866 867 868 869 870 871 872 873 874 875		1.9 2.0 0.1 0.7 0.7 1.2	1.0 0.8 1.5 0.6 	0.9 0.4 0.3 0.4 0.6 0.5	0.5 0.4 0.6 0.8 1.4 0.6	0.3 	0.2 0.9 0.8 0.8 0.5 0.2	0.9 0.1 0.3 0.8 1.9 0.3	
864 865 866 867 868 869 870 871 872 873 874 875 876 877		1.9 2.0 0.1 0.7 0.7 1.2 	1.0 0.8 1.5 0.6 0.6 1.1	0.9 0.4 0.3 0.4 0.6 0.5 	0.5 0.4 0.6 0.8 1.4 0.6 	0.3 0.4 0.1 1.5 0.7 0.5	0.2 0.9 0.8 0.8 0.5 0.2 	0.9 0.1 0.3 0.8 1.9 0.3 	
864 865 866 867 868 869 870 871 872 873 874 875 876 877		1.9 2.0 0.1 0.7 0.7 1.2 	1.0 0.8 1.5 0.6 1.1 1.8	0.9 0.4 0.3 0.4 0.6 0.5 0.8	0.5 0.4 0.6 0.8 1.4 0.6 	0.3 	0.2 0.9 0.8 0.8 0.5 0.2 	0.9 0.1 0.3 0.8 1.9 0.3 	
864 865 866 867 868 869 870 871 872 873 874 875 876 877		1.9 2.0 0.1 0.7 0.7 1.2 	1.0 0.8 1.5 0.6 0.6 1.1	0.9 0.4 0.3 0.4 0.6 0.5 	0.5 0.4 0.6 0.8 1.4 0.6 	0.3 0.4 0.1 1.5 0.7 0.5	0.2 0.9 0.8 0.8 0.5 0.2 	0.9 0.1 0.3 0.8 1.9 0.3 	
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880		1.9 2.0 0.1 0.7 1.2 0.6 1.1	1.0 0.8 1.5 0.6 1.1 1.8 1.0	0.9 0.4 0.3 0.4 0.6 0.5 0.8 	0.5 0.4 0.6 0.8 1.4 0.6 0.9 0.7	0.3 0.4 0.1 1.5 0.7 0.5 1.0 0.1	0.2 0.9 0.8 0.5 0.2 0.1 0.1	0.9 0.1 0.3 0.8 1.9 0.3 0.1	
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878		1.9 2.0 0.1 0.7 0.7 1.2 0.6 1.1	1.0 0.8 1.5 0.6 1.1 1.8	0.9 0.4 0.3 0.4 0.6 0.5 0.8 	0.5 0.4 0.6 0.8 1.4 0.6 0.9 	0.3 	0.2 0.9 0.8 0.8 0.5 0.2 0.1	0.9 0.1 0.3 0.8 1.9 0.3 0.1	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Reticulocytes Count

STUDY ID: 098

SEX: FEMALE

									• • • • • •
			Week 4				Week 21	Week 27	
GROUP	: 6.0:	6.0 mg base	/kg/day						
901		0.1	1.9	0.4	0.9	0.7	0.5	0.5	
902		0.0	2.2	1.7	1.7	0.8	0.3	0.0	
903				• •					
904		0.1	0.3	1.0	0.9		0.0	0.1	
905					••				
906									
907		••				••			
908		1.3	2.0	1.2	0.3	0.8	0.7	0.3	
909		1.5	1.2	1.2	1.1	0.0	0.3	0.3	
910		••							
911		• •							
912		0.1	0.1	0.8		0.8	0.2	0.2	
913									
914		••		• •		••			
915		0.3	1.7	0.5	0.9	1.3	0.4	0.7	
916		1.1	2.1	1.2	0.6	0.3	0.6	0.0	
917							••		
918		0.9	2.9	0.9	1.2	1.2	0.3	0.6	
919		1.1	0.2	1.3	0.2	0.1	0.2	0.6	
920						••			
MEAN		0.7	1.5	1.0		0.7	0.4	0.3	
SD		0.58	0.97	0.39	0.46	0.45	0.21	0.26	
N		10	10	10	9	9	10	10	
GROUP:	18.0	:18.0 mg bas	e/kg/day						
941		5.0	1.5	2.0	4.7	0.2	0.6	1.0	
942		2.8	5.0	1.1	CL	1.9	0.2	0.2	
943									
944		2.7	3.5	1.2	0.8	1.4	0.0	0.1	
945		• •		••		• •		••	
946						• •			
947									
948							••		
949		4.2	0.5	1.5	3.7	0.9	0.2	0.4	
950									
951									
952									
953		4.2	2.5	2.2	1.5	0.6	0.4	0.5	
954		3.6	2.1	1.2	2.8	0.9	0.2	0.4	
955									
956		3.9	1.4	2.0	3.0	0.9			
957		3.8	2.0	1.6	0.5	0.9	0.2	0.3	
958									
959		0.4	0.7	1.1	1.8	0.3	0.5	0.7	
960		4.1	3.0	2.1	4.6	0.5	0.3	1.2	
		3.5	2.2	1.6	2.6	0.9	0.3	0.5	
MEAN									
MEAN SD		1.27	1.36	0.44	1.55	0.51	0.18	0.37	

(--)-Data Unavailable

CL-Clotted

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Nucleated Red Cells

STUDY ID: 098

ABBR: NRBC

SEX: FEMALE
UNITS: COUNT

ANIMAL	. IO Week 2		Week 8	Week 13	Week 16	Week 21	Week 27	
	0:0 mg base/kg/							
821						••	• •	
822	••							
823	0	0	0	0	0	0	0	
824	0	0	0	• •	0	0	0	
825		**		• •				
826	••							
827	0	0	0	0	0	0	0	
828		••				• •	• •	
829		**						
830	0	0	0	0	0	0	0	
831	0	0	0	0	0	0	0	
832								
833							• •	
834	0	0	0	0	0	0	0	
835	0	0	0	0	0	0	0	
836	0	0	0	0	0	0	0	
837	0	0	0	0	0	0	0	
838	**	,		••				
839	• •							
840	0	0	0	0	0	0	0	
MEAN	0	0	0	0	0	0	0	
SO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
N	10	10	10	9	10	10	10	
	0.5.0.5		• • • • • • • • • • • • • • • • • • • •					
	0.5:0.5 mg base/		•	•			•	
861	0	0	0	0	0	0	0	
862 863							••	
80.3								
864	0	0	0	0	0	0	0	
864 865	0	0	0	0	0	0	0	
864 865 866	0 	0 	0	0 	0 	0 		
864 865 866 867	0 0	0 0	0 0	0 0	0 0	0 0	 0	
864 865 866 867 868	0 0 0	0 	0 0 0	0 	0 	0 		
864 865 866 867 868 869	0 0	0 0 0	0 0 0	0	0 0	0 0	 0	
864 865 866 867 868 869 870	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 	0 0 0	0 0	
864 865 866 867 868 869 870	0 0 0 	0 0 0 	0 0 0 	0 0 0 	0 0 0	0 0 0 	 0	
864 865 866 867 868 869 870 871	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	 0 0 0	
864 865 866 867 868 869 870 871 872 873	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	 0 0 0	
864 865 866 867 868 869 870 871 872 873	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	 0 0 0 0	
864 865 866 867 868 869 870 871 872 873 874	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0	0 0 0 0	 0 0 0 0	
864 865 866 867 868 869 870 871 872 873 874 875 876	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 0 0	0 0 0 0 0	
864 865 866 867 868 869 870 871 872 873 874 875 876	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	 0 0 0 0 0	
864 865 866 867 868 869 870 871 872 873 874 875 876 877	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	
864 865 866 867 868 869 870 871 872 873 874 875 876	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	 0 0 0 0 0	
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Nucleated Red Cells

ABBR: NRBC UNITS: COUNT ANIMAL IO Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 _____ GROUP: 6.0:6.0 mg base/kg/day 0 --0 0 0 0 0 0 0 1 0 0 -- -- 0 0 0 -- -- --0 0 . . - -- ---0 0 ----- ------ ---0 0 ------------------• • • • - -- -Ω ------------- -Ω MEAN 0.0 0.0 0.3 0.0 0.0 0.0 0.0 SO GROUP: 18.0:18.0 mg base/kg/day 0 --- 0 --- 0 --- 0 0 0 ------------- -• • - -- ---- -- -------------- -- -- ---- -- ------ ---------- -- ---MEAN 0.0 0.3 0.3 0.0 0.0 0.0 0.0 SO

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Heinz Bodies

STUDY IO: 098

SEX: FEMALE
UNITS: %

		Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	mg base/kg/d						
821	ing base/kg/t	uay 					
				••			
822	0.0	0.0	0.0	0.0	0.0	0.0	
823				0.0			0.0
824	0.0	0.0	0.0		0.0	0.0	0.0
825							
826							
827	0.0	0.0	0.0	0.0	0.0	0.0	0.0
828	••				• •		
829							••
830	0.0	0.0	0.0	0.0	0.0	0.0	0.0
831	0.0	0.0	0.3	0.0	0.0	0.0	0.0
832							
833		••	••				
834	0.0	0.5	0.4	0.0	0.0	0.0	0.0
835	0.0	0.0	0.0	0.0	0.0	0.0	0.0
836	0.0	0.0	0.5	0.0	0.0	0.0	0.0
837	0.0	0.0	0.2	0.0	0.0	0.0	0.0
838							
839	• •						
840	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3.0	•••	•••	0.0	0.0	0.0	0.0
MEAN	0.0	0.1	0.1	0.0	0.0	0.0	0.0
S0	0.00	0.16	0.20	0.00	0.00	0.00	0.00
N	10	10	10	9	10	10	10
	:0.5 mg base/		2.2	0.0			2.2
861	0.0	0.0	0.0	0.0	0.0	0.0	0.0
862							
863							
864	0.0	0.0	0.1	0.0	0.0	0.0	0.0
865							
866	• •			• •			
867	0.2	0.0	0.3	0.0	0.0	0.0	0.0
868	0.0	0.0	0.0	0.1		0.0	0.0
869							
870	••						
871	0.0	0.1	0.0	0.0	0.0	0.0	0.0
872	••						
873	0.0	0.4	0.0	0.0	0.0	0.0	0.2
	0.0	0.9	0.0	0.0	0.0	0.0	0.0
874						•-	••
875		0.3	0.2	0.0	0.0	0.0	0.0
875 876	0.0						
875 876 877	0.0						0.0
			0.4		0.0	n n	
875 876 877 878 879	0.0	0.0	0.4	0.0	0.0	0.0	
875 876 877 878					0.0	0.0	0.0
875 876 877 878 879	0.0	0.0	0.4	0.0			
875 876 877 878 879 880	0.0	0.0	0.4	0.0	0.0	0.0	0.0

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Heinz Bodies

STUDY 10: 098

SEX: FEMALE UNITS: %

ANIMAL	10 Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27	
	5.0:6.0 mg base	/kg/day						
901	0.0	0.0	0.0	0.7	0.0	0.0	0.0	
902	0.0	0.5	0.3	0.0	0.0	0.0	0.0	
903							• •	
904	0.2	0.1	0.0	0.1		0.0	0.0	
905								
906								
907					• •			
908	0.1	0.0	0.5	0.0	0.0	0.0	0.0	
909	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
910								
911	••				••			
912	0.0	1.1	0.0		0.0	0.0	0.0	
913								
914	• •				• •			
915	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
916	0.2	0.1	0.0	0.0	0.0	0.0	0.0	
917	• •					••	• •	
918	0.0	1.0	0.0	0.0	0.0	0.0	0.0	
919	0.4	0.0	0.0	0.0	0.0	0.0	0.0	
920		••						
MEAN	0.1	0.3	0.1	0.1	0.0	0.0	0.0	
SD	0.13	0.43	0.18	0.23	0.00	0.00	0.00	
N	10	10	10	9	9	10	10	
	8.0:18.0 mg bas							
941	0.9	0.0	0.0	0.0	0.0	0.0	0.0	
942	1.7	0.1	0.1	CL	0.0	0.0	0.0	
943								
944	0.8	1.3	0.2	0.1	0.0	0.0	0.0	
945				• •				
946								
947								
948								
949	1.4	0.2	0.2	0.7	0.0	0.0	0.0	
950								
951								
951 952								
951 952 953	1.9	0.4	0.0	0.4	0.0	0.0	0.0	
951 952 953 954	1.9 1.0	0.4 0.7	0.0	0.4 1.9	0.0 0.0	0.0	0.0	
951 952 953 954 955	1.9 1.0	0.4	0.0	0.4 1.9	0.0	0.0 0.0	0.0	
951 952 953 954 955 956	1.9 1.0 2.8	0.4 0.7 0.5	0.0 0.3 1.3	0.4 1.9 1.1	0.0 0.0 0.0	0.0 0.0 	0.0 0.0 	
951 952 953 954 955 956 957	1.9 1.0 2.8 1.9	0.4 0.7 0.5 0.3	0.0 0.3 1.3 0.1	0.4 1.9 1.1 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	
951 952 953 954 955 956 957 958	1.9 1.0 2.8 1.9	0.4 0.7 0.5 0.3	0.0 0.3 1.3 0.1	0.4 1.9 1.1 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	
951 952 953 954 955 956 957 958 959	1.9 1.0 2.8 1.9 	0.4 0.7 0.5 0.3 	0.0 0.3 1.3 0.1 0.0	0.4 1.9 1.1 1.0 1.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 	
951 952 953 954 955 956 957 958	1.9 1.0 2.8 1.9	0.4 0.7 0.5 0.3	0.0 0.3 1.3 0.1	0.4 1.9 1.1 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	
951 952 953 954 955 956 957 958 959 960	1.9 1.0 2.8 1.9 	0.4 0.7 0.5 0.3 	0.0 0.3 1.3 0.1 0.0	0.4 1.9 1.1 1.0 1.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 	
951 952 953 954 955 956 957 958 959	1.9 1.0 2.8 1.9 0.8 3.7	0.4 0.7 0.5 0.3 0.0 0.3	0.0 0.3 1.3 0.1 0.0 0.0	0.4 1.9 1.1 1.0 1.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	

(--)-Data Unavailable

CL-Clotted

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: % Methemoglobin

STUDY ID: 098

SEX: FEMALE
ARRY: 2METHOR
UNITS: %

ABBR:	%METHGE									UNITS: %
			Week 2	Week 4	Week 8	Week 13		Week 21	Week 27	
	GROUP:	0:0	mg base/kg/d							
	821						• •			
	822									
	823		0.5	0.7	0.6	0.0	0.4	0.5	0.9	
	824		0.4	0.2	1.0	••	0.0	0.5	0.3	
	825									
	826									
	827		0.7	0.6	0.9	0.1	0.5	0.6	0.8	
	828									
	829									
	830		0.7	0.2	0.6	0.1	0.5	0.8	0.7	
	831		0.2	0.3	0.7	1.2	0.0	0.1	0.5	
	832		••		• •	••	••		••	
	833									
	834		0.4	0.4	0.1	1.7	1.1	1.0	0.6	
	835		0.1	0.2	1.1	0.7	0.4	0.5	0.7	
	836		0.5	1.0	0.5	0.1	0.3	0.6	1.3	
	837		1.1	0.7	0.5	0.8	1.5	0.9	0.8	
	838								•••	
	839									
	840		0.1	0.4	0.7	1.0	0.2	0.6	0.8	
	040		0.1	0.4	0.1	1.0	0.2	0.0	0.0	
	MEAN		0.5	0.5	0.7	0.6	0.5	0.6	0.7	
	SD		0.31	0.27	0.29	0.60	0.47			
	N		10	10	10	9	10	10	10	
	GROUP:	0.5:0	0.5 mg base/	kg/day						
	861		1.1	0.4	1.2	0.6	0.0	0.8	1.0	
	862									
	863									
	864		0.4	0.6	0.0	0.8	0.2	0.8	0.5	
	865								• •	
	866									
	867		0.4	0.4	0.9	0.5	0.0	0.7	0.7	
	868		0.2	0.0	0.3	0.0	• -	0.8	1.0	
	869									
	870									
	871		0.7	0.2	0.5	0.6	0.2	0.3	0.8	
	872						•-			
	873		0.2	1.4	0.6	0.7	0.5	0.7	0.7	
	874		0.2	0.7	1.0	0.4	0.6	0.4	0.9	
	875		••							
	876									
	877		0.8	1.0	0.6	0.5	0.2	0.2	0.9	
	878									
	879		0.1	1.0	0.3	1.1	0.5	0.3	1.3	
	880		0.9	0.7	0.1	0.4	0.2	0.3	1.6	
	MEAN		0.5	0.6	0.6	0.6	0.3	0.5	0.9	
	SD		0.35	0.42	0.39	0.29	0.22	0.25	0.32	
	N		10	10	10	10	9	10	10	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: % Methemoglobin

STUDY ID: 098

ABBR: %METHGB

UNITS: %

ABBR:	%METHGB									JNITS: %
	ANIMAL	ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27	
				e/kg/day						
	901		0.5	2.1	4.2	4.7	0.1	1.4	0.6	
	902		0.7	2.9	5.0	6.4	0.3	0.3	1.1	
	903									
	904		1.3	3.7	6.1	6.5	••	0.5	0.4	
	905									
	906									
	907									
	908		0.8	3.5	4.7	5.5	0.0	0.2	0.4	
	909		0.4	3.1	3.3	3.6	0.0	0.1	0.9	
	910					••	••	• •		
	911									
	912		0.7	2.0	2.8		0.5	0.9	1.2	
	913		• •				••			
	914					••		••	• •	
	915		0.7	1.4	3.0	3.1	0.9	0.4	1.2	
	916		1.8	1.9	3.5	2.3	0.0	0.9	0.8	
	917									
	918		0.6	2.1	4.4	5.3	1.7	0.8	0.6	
	919		1.1	2.6	4.9	5.0	0.0	1.0	0.6	
	920									
	45411		0.0	2.5		. 7	0.7	0.7	0.0	
	MEAN		0.9	2.5 0.75	4.2	4.7	0.4	0.7 0.41	0.8 0.31	
	SD		0.42 10	10	104	9	9	10	10	
								2.7		
				se/kg/day						
	941		10.1	5.8	6.1	7.8	0.1	1.0	0.6	
	942		15.9	6.1	6.6	13.4	1.6	0.8	0.1	
	943									
	944		11.2	7.5	6.8	9.8	0.0	0.2	0.2	
	945						••		• •	
	946									
	947									
	948			••	••	• •	• •		•-	
	949		13.9	8.4	9.0	11.3	1.0	0.6	1.2	
	950									
	951									
	952								**	
	953		12.4	7.5	9.6	11.7	1.2	0.5	0.7	
	954		15.0	9.8	10.7	16.3	2.0	0.7	0.8	
	955									
	956		12.9	10.6	10.3	11.8	1.7		••	
	957		10.5	6.6	10.1	12.8	2.2	0.7	0.1	
	958								••	
	959		14.6	11.5	14.2	15.9	2.1	0.9	1.3	
	960		12.4	6.8	8.9	11.3	2.0	1.1	0.9	
	MEAN		12.9	8.1	9.2	12.2	1.4	0.7	0.7	
	SD		1.95	1.96	2.40	2.57	0.80	0.27	0.45	
	N		10	10	10	10	10	9	9	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Platelets

STUDY ID: 098

ABBR: PLT

UNITS: 10^3/ccm

AN I MA!	ID Week 2		Week 8	Week 13			Week 27	
ANITAL	ID WEEK L							
GROUP:	0:0 mg base/kg/	•						
821								
822								
823	919	1099	1118	1069	990	964	1015	
824	1287	1140	1064		913	919	963	
825								
826	• •							
827	1190	1022	682	979	1002	959	1092	
828			• •					
829				• •				
830	1224	1240	818	1039	1145	998	1109	
831	1440	1271	1187	1156	1075	1105	985	
832								
833								
834	1280	1227	1127	867	1037	990	1034	
835	1263	1188	1104	910	957	1020	979	
836	1189	1143	1050	795	885	872	966	
837	1117	1034	949	959	640	519	722	
838		1034						
839								
840	1262	1335	1199	1077	1030	1032	944	
040	1202	1333	1177	1077	1030	1032	744	
MEAN	1217	1170	1030	983	967	938	981	
SD	134.6	101.6	166.7	114.0	137.7	160.3	106.3	
N	10	10	10	9	10	10	10	
GROUP:	0.5:0.5 mg base/						• • • • • • • • • • • • • • • • • • • •	
861	1118	1071	990	844	912	918	813	
862								
863								
864	1251	1184	1066	1032	1000	905	950	
865								
865 866								
866								
866 867	1345	1392	1112	 992		1112	1022	
866 867 868					993			
866 867 868 869	1345 1050	1392 1127	1112 905	 992 833	993	1112 400	1022 955	
866 867 868 869 870	1345 1050 	1392 1127 	1112 905 	992 833 	993	1112 400 	1022 955	
866 867 868 869 870 871	1345 1050	1392 1127	1112 905	992 833	993	1112 400	1022 955	
866 867 868 869 870 871 872	1345 1050 1325	1392 1127 1221	1112 905 1184	992 833 1301	993 1157	1112 400 1216	1022 955 1220	
866 867 868 869 870 871 872 873	1345 1050 1325 1280	1392 1127 1221 1229	1112 905 1184 1151	992 833 1301 1141	993 1157 1056	1112 400 1216 1061	1022 955 1220 1070	
866 867 868 869 870 871 872 873	1345 1050 1325 1280 1448	1392 1127 1221 1229 1375	1112 905 1184 1151 1227	992 833 1301 1141 1027	993 1157 1056 1118	1112 400 1216 1061 1045	1022 955 1220 1070 1089	
866 867 868 869 870 871 872 873 874	1345 1050 1325 1280 1448	1392 1127 1221 1229 1375	1112 905 1184 1151 1227	992 833 1301 1141 1027	993 1157 1056 1118	1112 400 1216 1061 1045	1022 955 1220 1070 1089	
866 867 868 869 870 871 872 873 874 875	1345 1050 1325 1280 1448 	1392 1127 1221 1229 1375 	1112 905 1184 1151 1227 	992 833 1301 1141 1027 	993 1157 1056 1118	1112 400 1216 1061 1045	1022 955 1220 1070 1089	
866 867 868 869 870 871 872 873 874 875 876	1345 1050 1325 1280 1448 	1392 1127 1221 1229 1375 787	1112 905 1184 1151 1227 1053	992 833 1301 1141 1027 967	993 1157 1056 1118 	1112 400 1216 1061 1045 974	1022 955 1220 1070 1089 982	
866 867 868 869 870 871 872 873 874 875 876 877	1345 1050 1325 1280 1448 1171	1392 1127 1221 1229 1375 787	1112 905 1184 1151 1227 1053	992 833 1301 1141 1027 967	993 1157 1056 1118 944	1112 400 1216 1061 1045 974	1022 955 1220 1070 1089 982	
866 867 868 869 870 871 872 873 874 875 876 877 878	1345 1050 1325 1280 1448 1171	1392 1127 1221 1229 1375 787 1496	1112 905 1184 1151 1227 1053 1250	992 833 1301 1141 1027 967 1246	993 1157 1056 1118 944 1340	1112 400 1216 1061 1045 974 1266	1022 955 1220 1070 1089 982 	
866 867 868 869 870 871 872 873 874 875 876 877	1345 1050 1325 1280 1448 1171	1392 1127 1221 1229 1375 787	1112 905 1184 1151 1227 1053	992 833 1301 1141 1027 967	993 1157 1056 1118 944	1112 400 1216 1061 1045 974	1022 955 1220 1070 1089 982	
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880	1345 1050 1325 1280 1448 1171	1392 1127 1221 1229 1375 787 1496	1112 905 1184 1151 1227 1053 1250	992 833 1301 1141 1027 967 1246	993 1157 1056 1118 944 1340	1112 400 1216 1061 1045 974 1266	1022 955 1220 1070 1089 982 	
866 867 868 869 870 871 872 873 874 875 876 877 878	1345 1050 1325 1280 1448 1171 1433 1632	1392 1127 1221 1229 1375 787 1496 1438	1112 905 1184 1151 1227 1053 1250 1222	992 833 1301 1141 1027 967 1246 1310	993 1157 1056 1118 944 1340 769	1112 400 1216 1061 1045 974 1266 1142	1022 955 1220 1070 1089 982 1165 1007	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Platelets

STUDY ID: 098

SEX: FEMALE
UNITS: 10^3/ccm

	IO Week 2						Week 27
	6.0:6.0 mg base						
			4000	000	40/0	4074	4447
901	1176	1128	1029	889	1062	1071	1113
902	1176	1208	1037	1040	1004	954	983
903			••				
904	1457	1393	1264	1271	• •	1218	1165
905							
906							
907					••		
908	1628	1294	1082	1303	1057	1048	1075
909	1205	1119	1004	840	1003	1011	997
910		••					••
911							••
912	1058	1258	990		928	736	1000
	1050	1250		• •	720	730	
913							
914							
915	1172	1201	1047	1153	1120	1092	940
916	1370	1245	1206	1170	815	1098	1046
917	••		• •				
918	1304	1250	1025	1035	727	998	982
919	997	1113	1039	997	1059	942	970
	771	1113				742	
920		••		••	••		••
MEAN	1254	1221	1072	1078	975	1017	1027
SO	189.4	87.5	90.2	159.8	129.1	127.1	71.1
N	10	10	10	9	9	10	10
00010	10 0.10 0 b-						
	18.0:18.0 mg ba		050	000	007	40//	075
941	1199	1228	950	920	887	1064	935
942	828	823	868	246	833	969	895
943		••				• •	
944	1535	1329	1253	1280	1208	1163	1123
945							
946	••						
947							
948							
949	1279	1209	1013	854	984	877	834
950							
951							
952					• •	••	* *
953	1482	1382	1140	805	1017	1012	909
954	1115	1063	735	722	859	819	795
955							
922							
	1315	1230	1093	804	1049		
956	1815	1243	1202	1070	1098	1010	1013
956 957							
956	• •		1225	1169	1210	1086	1051
956 957 958		1335	ILL			742	830
956 957	1279 954	1335 921	981	848	810	142	030
956 957 958 959 960	1279 954	921	981				
956 957 958 959	1279 954 1280	921 1176	981 1046	872	996	971	932
956 957 958 959 960	1279 954	921	981				

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Act. Partial Thrombo. Time

STUOY ID: 098 ABBR: APTT					SEX: FEMAL UNITS: se
	ANIMAL ID	Week 14	Week 27		
		mg base/kg/			
	821	14.5	/		
	822				
	823		15.6		
	824	••	11.8		
	825	15.2			
	826	17.3			
	827		12.8		
	828	16.5			
	829	11.7			
	830		10.0		
	831		12.8		
	832	15.7			
	833	13.5	• •		
	834		13.8		
	835		15.5		
	836		14.2		
	837		11.1		
	838	17.1			
	839	18.9			
	840		10.0		
	MEAN	15.5	12.8		
	SD	2.07	2.05		
	N	40	40		
	N	10	10		
				•••••	
	GROUP: 0.5	5:0.5 mg base	/kg/day	•••••	
	GROUP: 0.5 861	5:0.5 mg base	/kg/day 15.3	•••••	
	GROUP: 0.5 861 862	5:0.5 mg base, 16.3	/kg/day 15.3	••••••	
	GROUP: 0.5 861 862 863	5:0.5 mg base, 16.3 16.0	/kg/day 15.3 		
	GROUP: 0.5 861 862 863 864	5:0.5 mg base, 16.3 16.0	/kg/day 15.3 16.4		
	GROUP: 0.5 861 862 863 864 865	5:0.5 mg base, 16.3 16.0 17.5	/kg/day 15.3 16.4		
	GROUP: 0.5 861 862 863 864 865 866	16.3 16.0 17.5 14.2	/kg/day 15.3 16.4 		
	GROUP: 0.5 861 862 863 864 865 866 866	16.3 16.0 17.5 14.2	/kg/day 15.3 16.4 15.0	••••••	
	GROUP: 0.5 861 862 863 864 865 866 867 868	16.3 16.0 17.5 14.2	/kg/day 15.3 16.4 15.0 13.1	••••••	
	GROUP: 0.5 861 862 863 864 865 866 867 868	16.3 16.0 17.5 14.2 15.2	/kg/day 15.3 16.4 15.0 13.1	••••••	
	GROUP: 0.5 861 862 863 864 865 866 867 868 869	16.3 16.0 17.5 14.2 15.2 11.2	/kg/day 15.3 16.4 15.0 13.1		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871	16.3 16.0 17.5 14.2 15.2 11.2	/kg/day 15.3 16.4 15.0 13.1 10.4		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871	16.3 16.0 17.5 14.2 15.2 11.2	/kg/day 15.3 16.4 15.0 13.1 10.4		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 872	16.3 16.0 17.5 14.2 15.2 11.2	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 872 873	16.3 16.0 17.5 14.2 15.2 11.2	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 872 873 874	5:0.5 mg base, 	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 872 873 874	16.3 16.0 17.5 14.2 15.2 11.2 11.7 15.4 14.2	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 871 872 873 874 875	16.3 16.0 17.5 14.2 15.2 11.2 11.7 11.7	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2 15.1		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 871 872 873 874 875 876	16.3 16.0 17.5 14.2 15.2 11.2 11.7 15.4 14.2	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2 15.1		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	16.3 16.0 17.5 14.2 15.2 11.2 11.7 15.4 14.2	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2 15.1 12.3		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 871 872 873 874 875 876	16.3 16.0 17.5 14.2 15.2 11.2 11.7 11.7 15.4 14.2	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2 15.1		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	16.3 16.0 17.5 14.2 15.2 11.2 11.7 15.4 14.2	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2 15.1 12.3 16.1		
	GROUP: 0.5 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	16.3 16.0 17.5 14.2 15.2 11.2 11.7 15.4 14.2	/kg/day 15.3 16.4 15.0 13.1 10.4 12.8 8.2 15.1 12.3 16.1		

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Act. Partial Thrombo. Time

STUDY ID: 098 ABBR: APTT				SEX: FEMAL UNITS: se
	ANIMAL ID	Week 14	Week 27	
		0:6.0 mg base		
	901		18.0	
	902		11.9	
	903	13.5	••	
	904		12.5	
	905	16.2		
	906	13.0	••	
	907	9.0		
	908		13.9	
	909	••	14.1	
	910	12.4		
	911	10.7		
	912		8.5	
	913	15.7	••	
	914	15.1		
	915		13.1	
	916	••	16.9	
	917	15.7		
	918		14.9	
	919	••	13.2	
	920	14.7		
	MEAN	13.6	13.7	
	SD	2.37	2.64	
	N	10	10	
	COOLID - 19	0-10 0 mm had		
	GROUP: 18.			
••••	941		15.2	
	941 942		15.2 15.3	
	941 942 943	 13.1	15.2 15.3	
•	941 942 943 944	13.1	15.2 15.3 15.8	
	941 942 943 944 945	13.1 12.4	15.2 15.3 15.8 	
	941 942 943 944 945 946	13.1 12.4 11.3	15.2 15.3 15.8 	
	941 942 943 944 945 946 947	13.1 12.4 11.3 15.7	15.2 15.3 15.8 	
	941 942 943 944 945 946 947	13.1 12.4 11.3 15.7 8.5	15.2 15.3 15.8 	
	941 942 943 944 945 946 947 948	13.1 12.4 11.3 15.7 8.5	15.2 15.3 15.8 18.3	
	941 942 943 944 945 946 947 948 949	13.1 12.4 11.3 15.7 8.5 7.2	15.2 15.3 15.8 18.3	
	941 942 943 944 945 946 947 948 949 950	13.1 12.4 11.3 15.7 8.5 7.2 10.4	15.2 15.3 15.8 18.3	
	941 942 943 944 945 946 947 948 949 950 951	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2	15.2 15.3 15.8 18.3 	
	941 942 943 944 945 946 947 948 949 950 951 952	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2	15.2 15.3 15.8 18.3 14.6	
	941 942 943 944 945 946 947 948 949 950 951 952 953	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2	15.2 15.3 15.8 18.3 14.6 16.2	
	941 942 943 944 945 946 947 948 949 950 951 952 953 954	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2	15.2 15.3 15.8 18.3 14.6 16.2	
	941 942 943 944 945 946 947 948 949 950 951 952 953 954 955	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2 	15.2 15.3 15.8 18.3 14.6 16.2	
	941 942 943 944 945 946 947 948 949 950 951 952 953 954 955	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2 18.4	15.2 15.3 15.8 18.3 14.6 16.2 16.6	
	941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2 18.4	15.2 15.3 15.8 18.3 14.6 16.2 16.6	
	941 942 943 944 945 946 947 948 949 950 951 952 953 954 955	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2 18.4	15.2 15.3 15.8 18.3 14.6 16.2 16.6	
	941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 955 956 957 958 959	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2 18.4 	15.2 15.3 15.8 18.3 14.6 16.2 16.6 11.6	
	941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957	13.1 12.4 11.3 15.7 8.5 7.2 10.4 13.2 18.4 	15.2 15.3 15.8 18.3 14.6 16.2 16.6 11.6	

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Leukocytes

STUDY IO: 098

ABBR: WBC

SEX: FEMALE:
UNITS: 10^3/cmm

				Week 13		Week 21	
	mg base/kg/d					•••••	
821	ing base/kg/						
822							••
823	12.6	7.0	8.5	9.8	6.1	7.4	7.7
	12.9	10.4	6.5	7.0	5.7	5.5	
824	12.9	10.4			5.7		8.1
825		••					
826							
827	17.5			10.0		11.9	10.9
828	••						
829							
830	17.9		8.8	10.0	7.9		8.2
B 3 1	21.6	16.3	15.4	14.2	15.9	13.6	10.7
832				••			
833							
834	13.1	15.1	13.4	12.5		10.2	8.3
83 5	11.1	9.0	8.4	12.5 8.6	7.8	9.8	7.8
836	17.8	9.5	11.7	10.1	9.9	8.8	9.4
337	16.7	10.4	10.7	8.4	8.4	7.5	9.6
838							••
839							
340	15.4	12.6	11.4	12.3			10.8
MEAN	15.7	11.6 2.93	10.4 2.65	10.7	9.0 2.83	9.3	9.2
SO SO	3.23	2.93	2.65	10.7 1.93	2.83	9.3 2.31	1.30
N	10	10	10	9	10	10	10
	0.5 mg base/						
361	13.1	11.1	14.5	9.6	10.0	11.2	6.9
362	13.1		14.5	7.0	10.0		0.9
002							
2/7							
		21 /		13.0	11.0		44.7
364	18.9	21.4	20.0	12.8	11.0	11.6	11.7
364 365	18.9	21.4	20.0	12.8	11.0	11.6	11.7
364 365 366	18.9 	21.4	20.0	12.8	11.0	11.6 	11.7
364 365 366 367	18.9 19.4	21.4 14.1	20.0 10.3	12.8 10.2	11.0 10.5	11.6 9.1	11.7 9.5
364 365 366 367 368	18.9 19.4 16.6	21.4 14.1 18.5	20.0 10.3 14.8	12.8 10.2 9.4	11.0 10.5	11.6 9.1 6.9	11.7 9.5 8.9
364 365 366 367 368 369	18.9 19.4 16.6	21.4 14.1 18.5	20.0 10.3 14.8	12.8 10.2 9.4	11.0 10.5 	11.6 9.1 6.9	11.7 9.5 8.9
364 365 366 367 368 369 370	18.9 19.4 16.6 	21.4 14.1 18.5 	20.0 10.3 14.8 	12.8 10.2 9.4	11.0 10.5 	11.6 9.1 6.9 	11.7 9.5 8.9
364 365 366 367 368 369 370	18.9 19.4 16.6 19.7	21.4 14.1 18.5 11.4	20.0 10.3 14.8 14.7	12.8 10.2 9.4 12.1	11.0 10.5 12.0	11.6 9.1 6.9 	11.7 9.5 8.9 12.6
364 365 366 367 368 369 370 371	18.9 19.4 16.6 19.7	21.4 14.1 18.5 11.4	20.0 10.3 14.8 14.7	12.8 10.2 9.4 12.1	11.0 10.5 12.0	11.6 9.1 6.9 10.8	11.7 9.5 8.9 12.6
364 365 366 367 368 369 370 371 372	18.9 19.4 16.6 19.7 11.2	21.4 14.1 18.5 11.4 11.9	20.0 10.3 14.8 14.7 12.6	12.8 10.2 9.4 12.1 10.2	11.0 10.5 12.0 10.2	11.6 9.1 6.9 10.8 	11.7 9.5 8.9 12.6 10.3
364 365 366 367 368 369 370 371 372 373	18.9 19.4 16.6 19.7	21.4 14.1 18.5 11.4	20.0 10.3 14.8 14.7	12.8 10.2 9.4 12.1	11.0 10.5 12.0	11.6 9.1 6.9 10.8	11.7 9.5 8.9 12.6
364 365 366 367 368 370 371 372 373	18.9 19.4 16.6 19.7 11.2 14.0	21.4 14.1 18.5 11.4 11.9 17.0	20.0 10.3 14.8 14.7 12.6 12.9	12.8 10.2 9.4 12.1 10.2 12.0	11.0 10.5 12.0 10.2 9.3	11.6 9.1 6.9 10.8 11.0 8.9	11.7 9.5 8.9 12.6 10.3 6.8
364 365 366 367 368 370 371 372 373 374	18.9 19.4 16.6 19.7 11.2 14.0	21.4 14.1 18.5 11.4 11.9 17.0	20.0 10.3 14.8 14.7 12.6 12.9	12.8 10.2 9.4 12.1 10.2 12.0	11.0 10.5 12.0 10.2 9.3	11.6 9.1 6.9 -10.8 11.0 8.9	11.7 9.5 8.9 12.6 10.3 6.8
364 365 366 367 368 370 371 372 373 374 375	18.9 19.4 16.6 19.7 11.2 14.0	21.4 14.1 18.5 11.4 11.9 17.0	20.0 10.3 14.8 14.7 12.6 12.9	12.8 10.2 9.4 12.1 10.2 12.0	11.0 10.5 12.0 10.2 9.3	11.6 9.1 6.9 10.8 11.0 8.9	11.7 9.5 8.9 12.6 10.3 6.8
364 365 366 367 368 370 371 372 373 374 375 376	18.9 19.4 16.6 19.7 11.2 14.0	21.4 14.1 18.5 11.4 11.9 17.0	20.0 10.3 14.8 14.7 12.6 12.9	12.8 10.2 9.4 12.1 10.2 12.0	11.0 10.5 12.0 10.2 9.3	11.6 9.1 6.9 10.8 11.0 8.9	11.7 9.5 8.9 12.6 10.3 6.8
864 865 866 867 868 869 870 871 872 873 874 875 876 877	18.9 19.4 16.6 19.7 11.2 14.0 16.5	21.4 14.1 18.5 11.4 11.9 17.0 13.9	20.0 10.3 14.8 14.7 12.6 12.9 10.2	12.8 10.2 9.4 12.1 10.2 12.0 9.6	11.0 10.5 12.0 10.2 9.3 	11.6 9.1 6.9 10.8 11.0 8.9 	11.7 9.5 8.9 12.6 10.3 6.8 8.6
364 365 366 367 368 370 371 372 373 374 375 376 377	18.9 19.4 16.6 19.7 11.2 14.0 16.5 17.6	21.4 14.1 18.5 11.4 11.9 17.0 13.9 18.8	20.0 10.3 14.8 14.7 12.6 12.9 10.2 12.6	12.8 10.2 9.4 12.1 10.2 12.0 9.6 12.0	11.0 10.5 12.0 10.2 9.3 10.1 	11.6 9.1 6.9 10.8 11.0 8.9 10.2 9.2	11.7 9.5 8.9 12.6 10.3 6.8 8.6 9.6
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	18.9 19.4 16.6 19.7 11.2 14.0 16.5 17.6 29.0	21.4 14.1 18.5 11.4 11.9 17.0 13.9 18.8 16.4	20.0 10.3 14.8 14.7 12.6 12.9 10.2 12.6 13.2	12.8 10.2 9.4 12.1 10.2 12.0 12.0 14.0	11.0 10.5 12.0 10.2 9.3 10.1 11.8 12.4	11.6 9.1 6.9 10.8 11.0 8.9 10.2 9.2 12.1	11.7 9.5 8.9 12.6 10.3 6.8 8.6 9.6 10.9
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	18.9 19.4 16.6 19.7 11.2 14.0 16.5 17.6 29.0	21.4 14.1 18.5 11.4 11.9 17.0 13.9 18.8 16.4	20.0 10.3 14.8 14.7 12.6 12.9 10.2 12.6 13.2	12.8 10.2 9.4 12.1 10.2 12.0 12.0 14.0	11.0 10.5 12.0 10.2 9.3 10.1 11.8 12.4	11.6 9.1 6.9 10.8 11.0 8.9 10.2 9.2 12.1	11.7 9.5 8.9 12.6 10.3 6.8 8.6 10.9
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	18.9 19.4 16.6 19.7 11.2 14.0 16.5 17.6 29.0	21.4 14.1 18.5 11.4 11.9 17.0 13.9 18.8 16.4	20.0 10.3 14.8 14.7 12.6 12.9 10.2 12.6 13.2	12.8 10.2 9.4 12.1 10.2 12.0 12.0 14.0	11.0 10.5 12.0 10.2 9.3 10.1 11.8 12.4	11.6 9.1 6.9 10.8 11.0 8.9 10.2 9.2 12.1	11.7 9.5 8.9 12.6 10.3 6.8 8.6 9.6 10.9

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Leukocytes

STUDY ID: 098

SEX: FEMALE
UNITS: 10^3/cmm

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
):6.0 mg base						
			25.0	17.2	10.3	11.0	11.7
901	17.4	14.2 11.1				11.0 6.0	8.1
902	14.1		11.8	16.3			0.1
903	40.0		47.5	**	••	40.0	
904	18.9	19.4	17.5	14.1		10.0	7.3
905							
906					• •	••	• •
907		••	•-				
908	13.9	12.5	10.9	10.7	7.5	7.3	8.6
909	12.5	12.7	10.0	8.7	7.3	9.8	8.5
910							• •
911				• •			
912	18.8	29.9	21.8		14.4	9.5	11.4
913				••			
914							
915	22.7	16.6	17.8	14.4	10.8	10.0	11.0
916	16.9	12.3	12.7	11.1	9.6	11.2	9.8
917		••					• •
918	21.2	23.6	18.9	20.6	8.8	12.6	13.9
919	17.4	19.9	15.4	12.6	8.7	8.1	9.8
920							
MEAN	17.4	17.2	16.2	14.0	9.2	9.6	10.0
SD	3.23	6.03	4.93	14.0 3.68	2.49	1.95	2.01
N	10	10	10	9	9	10	10
	0:18.0 mg bas	17.1	23.0	14.1	10.9	9.6	9.6
941					9.0	11.4	7.5
942	20.8	19.1	14.6	19.8	9.0		7.5
943		45.7					
944	23.3	15.3	17.9	20.2	14.4	11.6	10.3
945							
946							
947							
948	70./		70.2	74.4	10 /		47.4
949	32.4	31.1	30.2	31.1	19.4	11.1	13.1
950			• •	• •			
951							••
952							
953	32.5	24.0	25.3	18.5	13.0	13.8	7.4
954	24.9	20.9	20.9	23.0	10.3	8.8	9.5
955							
956	17.9	17.6	24.5	29.4	10.1		
957	23.5	25.7	18.9	22.3	14.7	10.7	9.1
958	• •						••
959	19.1	17.4	21.3	24.3	13.9	10.2	8.5
960	34.9	27.2	27.0	27.7	13.4	9.6	7.5
MEAN	25.8	21.5	22.4	23.0	12.9	10.8	9.2
	F 00	5.21	4.62	5.25	3.03	1.47	1.81
SD	5.98	3.21	4.02	2.22	3.43		

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: M. Neutrophils

STUDY ID: 098

SEX: FEMALE

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	mg base/kg/					• • • • • • • • • • • • • • • • • • • •	
821							
822		••					
823	0.9	1.6	1.1	1.8	1.2	1.5	1.6
824	1.2	1.0	0.9	1.0	1.1	0.9	2.0
825	1.2	1.0	0.9		1.1	0.9	2.0
826		••	••				
	2.8	1.6	1.0	1.1	1.6	2.4	4.7
827 828	2.0	1.0	1.0	1.1			4.7
829				••			
830	2.7	1.0	1.6	2.0	1.2		
	_					2.1	1.3
831	2.4	1.6	2.3	3.7	3.0	1.5	1.2
832	••						••
833							
834	1.3	0.6	1.1	2.6	0.7	1.3	0.4
835	1.4	0.9	0.3	1.9	0.8	1.0	0.8
836	3.7	1.6	3.2	1.8	1.6	1.3	1.3
837	2.3	0.9	1.3	1.2	0.8	1.0	0.0
838		••		••	••		
839							
840	2.5	2.0	1.0	1.0	0.7	0.8	2.2
MEAN	2.1	1.3	1.4	1.9	1.3	1.4	1.6
SD	0.89	0.45	0.82	0.84	0.69	0.52	1.29
N	10	10	10	9	10	10	10
				•••••	• • • • • • • • • • • • • • • • • • • •		
	0.5 mg base/						
861	2.2	1.3	1.7	1.2	3.7	1.8	0.7
862			••	• • •	••		
863						- -	
864	3.8	2.8	1.2	0.9	2.2	1.6	4.0
865							
866							
867	1.6	1.0	1.9	0.6	0.7	1.0	0.6
868	0.7	1.3	2.2	0.7		0.6	1.1
869							
870							
871	3.2	0.7	1.6	1.5	2.5	1.0	2.4
872			••				
873	1.3	1.9	1.3	0.1	0.7	1.9	1.6
874	0.7	0.9	0.5	1.2	1.7	1.1	1.5
875							
876							
877	2.0	2.8	1.0	1.2	1.4	2.8	2.3
878		••		••	• •		••
879	1.1	2.3	0.3	1.8	2.0	0.9	1.6
880	3.8	0.5	2.4	1.1	1.7	0.6	2.0
000				1.00		4.7	4.0
	2.0	1.6	1.4	1.0	1.8	1.3	1.8
MEAN SD	2.0 1.19	1.6 0.85	1.4 0.69	1.0 0.48	1.8 0.93	0.69	0.99

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: M. Neutrophils

STUDY ID: 098

SEX: FEMALE

		Week 4					
	0:6.0 mg base						• • • • • • • • • • • • • • • • • • • •
	1.0	1.4	5.5	1.7	1.9	0.9	1.3
901							
902	3.4	1.3	2.1	2.8	0.6	1.1	2.6
903							
904	2.5	3.9	1.8	2.5		0.9	2.0
905			**				
906							
907							
908	2.1	2.4	2.8	3.3	1.8	1.8	2.8
909	1.5	3.2	4.7	4.3	1.3	1.4	1.3
910							
911							
912	0.4	7.8	5.2		3.7	1.3	1.5
913							
914	••	••					
915	4.8	2.5	5.2	3.3	2.6	2.3	2.3
916	1.9	2.2	1.1	2.8	1.8	0.2	1.5
917	• •						
918	2.3	3.3	3.6	2.5	3.0	0.9	1.1
919	2.8	3.0	2.8	3.0	0.9	1.1	1.3
920							
MEAN	2.3	3.1	3.5	2.9	2.0	1.2	1.8
SD	1.24	1.84	1.59			0.57	0.61
N	10	10	10	9	9	10	10
	0:18.0 mg bas	se/kg/day					
941	3.7	1.4	4.6	1.8	2.2	2.8	2.9
942	3.3	5.2	1.8		2.5	3.6	2.1
943							
944	4.9	2.1	2.1	2.6	3.5	1.7	0.9
945							
946							
947							
948			••				
949	6.5	4.0	2.7	4.7	4.1	1.2	1.7
950							
951							
952							
953	5.2	2.9	2.0	3.1	2.0	1.4	0.9
954	4.5	5.2	1.7	4.8	1.6	1.6	0.5
955							
956	3.4	3.0	2.7	2.9	1.4		
957	6.1	4.1	1.7	3.8	2.6	1.3	1.8
958				••			
959	4.6	2.8	3.0	4.9	2.6	2.0	2.0
960	5.2	1.6	2.2	1.9	2.5	1.9	1.0
MEAN	4.7	3.2	2.5	3.4	2.5	1.9	1.5
SD	1.08	1.36	0.88	1.22	0.81	0.78	0.76

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: I. Neutrophils

STUDY ID: 098 ABBR: I. Neutrop UNITS: 10³/cmm _____ ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day 0.0 0.0 0.0 0.0 --0.0 - ---822 --0.0 0.0 823 0.0 0.0 824 0.0 0.0 ------825 --0.0 0.0 -- -- --0.0 0.0 0.0 0.0 826 0.0 0.0 14.2 827 0.0 0.0 --828 0.0 0.0 0.0 0.0 --829 --___ 0.0 830 0.0 0.0 0.0 831 0.0 0.0 ----832 ----------833 834 0.0 835 836 0.0 837 2.2 838 839 --0.0 0.0 0.0 0.0 840 0.0 0.0 0.0 1.4 0.0 4.49 0.00 0.0 0.00 MEAN 0.0 0.0 0.0 0.2 0.00 0.00 0.00 SD 4.49 0.70 10 9 10 10 10 10 10 GROUP: 0.5:0.5 mg base/kg/day 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --862 ----- -0.0 0.0 -- -- --0.0 0.0 0.0 0.0 -- -- --0.1 0.0 ----863 ----0.0 864 0.0 0.0 0.0 0.0 ----865 - ---- -866 0.0 867 0.0 0.0 0.0 0.0 868 0.0 0.0 --0.0 --869 - ---0.0 870 - -----871 0.0 0.0 0.0 0.0 0.0 872 ------0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 873 0.0 0.0 874 0.0 0.0 --875 ----------876 ----0.0 0.0 0.0 0.0 877 0.0 0.0 0.0 878 ----------0.0 0.0 0.0 0.0 0.0 879 0.0 0.0 0.0 0.0 880 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.03 10 0.0 0.0 0.0 MEAN 0.0 0.00 SD 0.00 0.00 10 10 10 9 N 10 10 10

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: I. Neutrophils

STUDY ID: 098 UNITS: 10³/cmn ABBR: I. Neutrop ANIMAL IO Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 6.0:6.0 mg base/kg/day 0.0 902 0.0 903 0.0 0.0 0.0 0.0 904 --0.0 0.0 905 ------906 ----------907 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 908 0.0 909 0.0 0.0 910 911 912 0.0 913 914 915 0.0 916 917 0.0 0.0 0.0 0.0 18.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 918 919 0.0 0.0 920 ------1.8 0.0 0.0 5.76 0.00 0.00 0.0 0.00 0.0 0.0 0.00 0.00 MEAN 0.0 5.76 9 9 10 10 10 10 10 GROUP: 18.0:18.0 mg base/kg/day 0.0 0.0 0.0 0.0 -- -- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- 0.0 0.0 941 0.0 0.0 942 ----943 ----0.0 0.0 0.0 0.0 0.0 944 0.0 945 0.0 --946 - -----------------947 948 0.0 0.0 0.0 949 --950 951 --952 0.0 0.0 953 0.0 0.0 954 0.0 0.0 955 0.0 0.0 0.0 0.0 -- -- --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 956 0.0 --0.0 0.0 0.0 957 0.0 958 0.0 0.0 0.0 959 0.0 0.0 0.0 0.0 0.0 0.0 960 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 SD 10 9 10 10 10

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Lymphocytes

STUDY ID: 098

SEX: FEMALE
ABBR: Lymphocyte

UNITS: 10^3/cmm

Lymphocyt							UNITS: 10 ³ /cmm	
ANIMAL II	Week 2							
GROUP: 0	:0 mg base/kg/	day						
821	• •							
822					• •			
823	11.3	5.2	6.3	7.6	4.8	5.6	5.2	
824	9.8	8.5	5.1		4.3	4.3	5.9	
825		••						
826								
827	0.4	12.5	7.7	8.6	7.2	8.6	5.8	
828			••				••	
829								
830	15.2	9.7	6.5	7.8	6.3	6.1	6.2	
831	18.1	14.2	12.3	9.9	12.4	11.6	8.9	
832	10.1	17.6	12.3					
833		••	••		••		••	
					7.5			
834	11.8	12.7	11.9			8.6	7.9	
835	9.3	7.5	7.3	6.6	6.6	8.5	6.5	
836	13.4	7.2	8.1	7.9	8.1	7.0	7.5	
837	14.0	9.4	9.2	7.2	7.1	6.2	0.0	
838								
839								
840	12.9	10.0	9.6	10.5	9.0	8.5	8.5	
MEAN	11.6	9.7	8.4	8.4	7.3	7.5	6.2	
SD	4.71	2.79	2.36	1.35	2.27	2.08	2.51	
N	10	10	10	9	10	10	10	
								• • • • • • • •
	5:0.5 mg base,		44.0	0.4		0.7	F 0	
861	10.6	9.3	11.9	8.1	6.0	8.7	5.9	
862		••						
863								
864	14.6	17.1	17.8	11.8	7.9	9.4	6.9	
865		• •	• •					
866								
867	17.7	12.7	7.9	9.3	9.3	7.2	8.6	
868	15.4	16.3	12.1	8.3		6.1	7.6	
869								
870								
871	16.5	10.6	11.9	9.7	8.8	9.4	9.8	
872		• •	••					
873	9.6	9.6	10.7	9.9	9.1	8.5	8.0	
874	13.2	15.5	11.6	10.6	6.7	7.7	5.1	
875							• •	
876								
877	13.9	10.6	8.8	8.3	8.6	7.3	5.8	
878				••		••		
879	16.5	15.8	11.6	9.2	9.4	8.0	7.3	
880	25.2	15.3	10.7	12.6	10.3	11.3	8.4	
MEAN	15.3	13.3	11.5	9.8	8.5	8.4	7.3	
SD	4.32	3.04	2.62	1.51	1.37	1.46	1.45	
N	10	10	10	10	9	10	10	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Lymphocytes

STUDY ID: 098

ABBR: Lymphocyte

SEX: FEMALE
UNITS: 10^3/cnm

			Week 4					
	: 6.0:	:6.0 mg base						
901		15.3	12.4	18.8	14.3	8.0	9.5	9.8
902		10.6	9.1	9.3	12.4	4.8	4.6	5.3
903								
904		15.7	15.5	15.8	11.6		8.9	4.9
905								
906								
907								••
908		11.5	9.9	7.3	6.5	5.3	5.4	5.4
909		10.0	8.9	4.6	4.4	5.6	7.9	7.1
		10.0					7.9	7.1
910								
911							••	••
912		18.0	20.6	16.1		9.6	7.7	8.4
913								
914								
915		17.7	13.3	11.9	10.1	7.6	6.9	8.1
916		14.4	9.8	10.3	7.8	7.5	10.3	7.5
917				••				
918		0.6	19.4	14.6	17.5	5.8	11.6	12.5
919		14.4	16.5	11.4	9.2	7.2	6.9	8.3
920								
920								
MEAN		12.8	13.5	12.0	10.4	6.8	8.0	7.7
SD		5.10	4.30	4.37	4.04	1.55	2.16	2.30
N		10	10	10	9	9	10	10
	: 18.0	:18.0 mg bas						
941		23.2	13.5	16.1	11.6	8.1	6.3	6.1
942		15.0	11.3	11.0		6.1	7.0	4.7
943								••
944		16.3	12.4	14.0	14.5	10.7	9.5	8.7
945								
946								••
947								
948								
949		24.6	24.6	26.6	21.8	13.8	9.0	10.7
950		24.0	24.0	20.0	21.0	15.0	7.0	10.7
951								
				45.5				
952		25.7	18.7	15.2	13.0	10.7	11.7	6.1
953		18.4	13.4	16.9	14.5	8.5	7.0	8.5
953 954								•-
953 954 955		13.1	12.3	18.4	22.9	8.4		
953 954			16.7	14.9	17.6	11.3	9.3	6.9
953 954 955 956		15.5	10.7				••	
953 954 955 956 957			10.7	••				
953 954 955 956 957 958		15.5		••				5.9
953 954 955 956 957 958 959		15.5 13.6	12.9	15.5	15.8	11.0	7.7	5.9 6.5
953 954 955 956 957 958		15.5		••			7.7 7.0	5.9 6.5
953 954 955 956 957 958 959		15.5 13.6	12.9	15.5	15.8	11.0	7.7	
953 954 955 956 957 958 959 960		15.5 13.6 26.2	12.9 22.6	15.5 21.9	15.8 22.7	11.0 10.2	7.7 7.0	6.5

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Monocytes

STUDY ID: 098

SEX: FEMALE

ABBR: Monocytes

UNITS: 10^3/cpm

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	mg base/kg/			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
821							
822		••					
823	0.4	0.1	1.0	0.3	0.2	0.4	0.8
B24	1.8	0.7	0.5		0.2	0.1	0.2
	1.0		0.5		0.2		0.2
B25							
326							
327	0.2	0.1	0.7	0.2	0.2	0.7	0.3
328							
329							
330	0.0	0.3	0.6	0.1	0.2	0.5	0.6
331	0.6	0.5	0.6	0.6	0.5	0.4	0.5
332		• •					
333							
334	0.0	1.5	0.3	0.1	0.8	0.3	0.0
35	0.2	0.5	0.8	0.1	0.4	0.2	0.5
336	0.5	0.5	0.2	0.3	0.2	0.4	0.5
337	0.0	0.0	0.2	0.0	0.4	0.2	7.1
38							
39	••						
	0.0	0.5		0.6	0.0	0.2	0.1
40	0.0	0.5	0.0	0.0	0.0	0.2	0.1
EAN	0.4	0.5		0.3	0.3	0.3	1.1
SD	0.55		0.26 10	0.22 9	0.22 10	0.18 10	2.14
N	10	10	10	9	10	10	10
	:0.5 mg base/					0.1	
161		0.4					
362							
63							
64	0.4	1.5	1.0	0.1	8.0		
65							
66				• •		• •	••
67	0.0	0.4	0.5	0.1	0.2	0.5	0.4
68	0.5	0.6	0.4	0.5		0.2	0.0
69					••		
70							
71	0.0	0.0	0.7	1.0	0.5	0.4	0.4
72		• • •			•-		
73	0.2	0.4	0.6	0.2	0.2	0.6	0.6
		0.7		0.0	0.7	0.2	0.1
74	0.1		0.6		0.7	0.2	0.1
75		••					
76							
77	0.3	0.6	0.1	0.1	0.0	0.1	0.4
78	* *						
	0.0	0.2	0.3	0.5	0.2	0.1	0.6
	0.0	0.2	0.1	0.1	0.2	0.2	0.4
						0.7	0.4
379 380 1EAN	0.2	0.5	0.5	0.3	0.3	0.3	0.4
880	0.2 0.19	0.5 0.41	0.5 0.28	0.3 0.30	0.3 0.27	0.18	0.21

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Monocytes

STUDY ID: 098

ABBR: Monocytes

UNITS: 10^3/cmm

Monocytes								10^3/cnm
ANIMAL ID	Week 2		Week 8		Week 16	Week 21	Week 27	
GROUP: 6.	0:6.0 mg base,							
901	0.7	0.1	0.5	0.9	0.4	0.6	0.5	
902	0.1	0.6	0.1	0.8	0.2	0.2	0.0	
903								
904	0.4	0.0	0.0	0.0		0.1	0.2	
905								
906								
907			• -					
908	0.3	0.1	0.7	0.5	0.4	0.1	0.4	
909	0.9	0.5	0.5	0.0	0.2	0.3	0.2	
910	• •							
911				••	••			
912	0.2	1.5	0.2		0.9	0.2	1.1	
913								
914						••		
915	0.0	0.7	0.7	0.6	0.5	0.7	0.3	
916	0.5	0.1	1.3	0.4	0.2	0.7	0.6	
917	••							
918	0.0	0.5	0.6	0.6	0.0	0.1	0.3	
919	0.0	0.2	1.1	0.4	0.6	0.1	0.2	
920			••					
MEAN	0.3	0.4	0.6	0.5	0.4	0.3	0.4	
SD	0.31	0.45	0.41	0.31	0.27	0.26	0.30	
N	10	10	10	9	9	10	10	
	0:18.0 mg bas							
941	1.4	2.1	2.3	0.6	0.3	0.4	0.4	
942	2.5	2.7	1.8		0.4	0.2	0.7	
943								
944	1.9	0.8	1.6	3.0	0.0	0.1	0.5	
945								
946								
947								
948		••						
949	1.0	2.5	0.9	4.7	1.2	0.6	0.7	
950								
951							••	
952				••				
953	1.6	2.4	8.1	2.4	0.3	0.7	0.4	
954	2.0	2.1	2.1	3.7	0.1	0.1	0.3	
955								
956	1.1	2.1	3.2	3.5	0.3			
957	1.9	4.1	2.3	0.9	0.7	0.0	0.4	
958			••	••				
959	1.0	1.6	2.8	3.4	0.3	0.4	0.4	
960	3.1	3.0	3.0	3.0	0.7	0.5	0.1	
		2.3	2.8	2.8	0.4	0.3	0.4	
MEAN	1.8							
MEAN SD	1.8 0.68	0.87	1.98 10	1.32	0.35	0.24	0.19	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Eosinophils

STUDY IO: 098

ABBR: Eosinophil

UNITS: 10^3/cmm

ANIMAL IC	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
GROUP: 0:	0 mg base/kg/d				• • • • • • • • • • • • • • • • • • • •		
821	• ••						
822							••
823	0.0	0.1	0.1				0.1
824	0.1	0.1	0.0		0.1	0.2	0.0
	0.1						
825					••		
826		0.0					
827	0.0					0.2	0.1
828							
829							
830	0.0	0.1	0.1	0.1	0.2	0.2	0.1
831	0.4	0.0	0.2	0.0	0.0	0.1	0.1
832			• •			••	
833		••	••				• •
834	0.0	0.3	0.1	0.0	0.0	0.0	0.0
835	0.1	0.1	0.0	0.0	0.1	0.1	0.0
836	0.2	0.2	0.2	0.1	0.0	0.0	0.1
837	0.3	0.1	0.0	0.0	0.1	0.2	0.1
838							
839			• •	• •			
840	0.0	0.1			0.4	0.1	0.0
040	0.0	•••	0.2	•••	•.4	•••	•••
MEAN	0.1	0.1	0.1	0.1	0.1	0.1 0.09	0.1
SO	0.14	0.09	0.1 0.09	0.1 0.07	0.13	0.09	0.05
N	10			9	10	10	10
	5:0.5 mg base/						
861	0.0	0.0	0.3	0.0	0.1	0.2	0.1
862							
863							
864	0.2	0.0	0.0	0.0	0.1	0.1	0.2
865							
866							
		0.0	0.0	0.2	0.2		0.0
867	0.2	0.4	0.0	0.0	0.2	0.0	0.3
868	0.0	0.4	0.0	0.0		0.0	0.5
869							
870							
871	0.0	0.0	0.4	0.0	0.2	0.0	0.0
872		••					
873	0.0	0.0	0.0	0.0	0.2	0.1	0.0
874	0.0	0.0	0.1	0.2		0.0	0.1
875							
876							
877	0.3	0.0	0.3	0.1	0.1	0.0	0.0
878			• -		••		••
879	0.0	0.6	0.5	0.5	0.1	0.2	0.1
	0.0	0.5	0.0	0.1	0.1	0.0	0.1
880			0.2	0.1	0.1	0.1	0.1
	0.1					V. I	V. I
MEAN	0.1	0.2					
	0.1 0.12 10	0.25 10	0.20	0.16 10	0.05	0.16 10	0.10

(--)-Oata Unavailable '

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Eosinophils

STUDY ID: 098

ABBR: Eosinophil

UNITS: 10^3/cnm

ANIMAL ID		Week 4						• • • •
ANIMAL ID								
	:6.0 mg base							
901	0.3	0.3	0.3	0.3	0.0	0.1	0.1	
902	0.0	0.1	0.2	0.3	0.2	0.1	0.2	
903					••			
904	0.4	0.0	0.0	0.0		0.1	0.1	
905								
906		• •						
907								
908	0.0	0.1	0.1	0.3	0.0	0.0	0.0	
909	0.1	0.1	0.2	0.1	0.1	0.2	0.0	
910		• •						
911								
912	0.2	0.0	0.2		0.1	0.3	0.3	
913						••		
914	• •			••				
915	0.2	0.2	0.0	0.4	0.1	0.1	0.2	
916	0.2	0.1	0.0	0.1	0.1	0.0	0.2	
917								
918	0.0	0.5	0.2	0.0	0.0	0.0	0.0	
919	0.2	0.2	0.2	0.0	0.0	0.0	0.0	
920		••						
MEAN	- 0.2	0.2	0.1	0.2	0.1	0.1	0.1	
SD	0.13	0.15	0.11	0.16	0.07	0.10	0.11	
N	10	10	10	9	9	10	10	
	0:18.0 mg bas							
941	0.0	0.2	0.0	0.1	0.3	0.1	0.2	
942	0.0	0.0	0.1		0.0	0.6	0.0	
943								
944	0.2	0.0	0.2	0.0	0.3	0.2	0.2	
945								
946								
947								
948					••			
949	0.3	0.0	0.0	0.0	0.4	0.3	0.0	
950								
951								
952		0.0	0.0	0.0	0.1	0.0	0.0	
952 953	0.0	0.0	0.0			0.7	0.3	
	0.0	0.2	0.2	0.0	0.0	0.2	0.0	
953 954		0.2	0.2					
953 954 955	0.0	0.2	0.2					
953 954 955 956	0.0 0.4	0.2 0.2	0.2					
953 954 955 956 957	0.0	0.2	0.2 0.2	0.0	0.0			
953 954 955 956 957 958	0.0 0.4 0.0	0.2 0.2 0.8	0.2 0.2 0.0	0.0 0.0	0.0 0.0	0.1	0.0	
953 954 955 956 957	0.0 0.4 0.0	0.2 0.2 0.8	0.2 0.2 0.0	0.0 0.0	0.0	0.1	0.0	
953 954 955 956 957 958 959 960	0.0 0.4 0.0 0.0 0.3	0.2 0.2 0.8 0.2 0.0	0.2 0.2 0.0 0.0 0.0	0.0 0.0 0.2 0.0	0.0 0.0 0.0 0.0	0.1 0.1 0.2	0.0 0.3 0.0	
953 954 955 956 957 958 959	0.0 0.4 0.0 	0.2 0.2 0.8 	0.2 0.2 0.0 0.0	0.0 0.0 	0.0 0.0 	0.1 0.1	0.0	

(--)-Data Unavailable

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Basophils

STUDY ID: 098 ABBR: Basophils UNITS: 10^3/cmm ANIMAL ID Week 2 Week 4 Week 8 Week 13 Week 16 Week 21 Week 27 GROUP: 0:0 mg base/kg/day •• 0.0 0.0 0.0 -- 0.0 0.0 821 0.0 0.0 0.0 0.0 0.0 0.0 --822 --823 0.0 824 0.0 825 ---------826 - -----0.0 0.0 0.0 0.0 0.0 827 0.0 0.0 828 ------829 830 0.0 0.0 831 0.0 0.0 832 ------833 0.0 834 0.0 835 0.0 0.0 836 0.0 0.0 837 0.2 838 ----839 0.0 840 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 MEAN 0.0 0.0 0.0 0.00 0.00 0.06 SD 10 10 10 9 10 10 10 GROUP: 0.5:0.5 mg base/kg/day 0.0 0.0 -- --0.0 0.0 -- --0.0 0.0 0.0 861 0.0 0.0 ----862 --863 --___ --___ 0.0 0.0 0.0 864 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ----865 ----866 ----0.0 0.0 867 0.0 868 0.0 0.0 0.0 869 870 ------0.0 0.0 0.0 0.0 0.0 0.0 0.0 871 ----872 ----- -0.0 873 0.0 0.0 0.0 0.0 0.0 0.0 874 0.0 0.0 0.0 0.0 0.0 0.0 --875 ----------876 0.0 0.0 0.0 0.0 0.0 0.0 0.0 877 0.0 0.0 0.0 0.0 0.0 0.0 878 - ---0.0 0.0 879 0.0 880 0.0 0.0 0.0 0.0 0.0 0.00 0.00 10 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 10 10 10 10 MEAN 0.0

(--)-Data Unavailable

SD

WBC corrected for NRBC = or > 10

0.00

10

10

INDIVIDUAL ANIMAL HEMATOLOGY REPORT BY GROUP TEST: Basophils

STUDY ID: 098 SEX: FEMALE
ABBR: Basophils UNITS: 10^3/cmm

ANIMAL ID	Week 2	Week 4	Week 8	Week 13	Week 16	Week 21	Week 27
	0:6.0 mg base		0.0	0.0	0.0	0.0	
901	0.0	0.0	0.0	0.0	0.0	0.0	0.0
902	0.0	0.0	0.0	0.0	0.0	0.0	0.0
903							
904	0.0	0.0	0.0	0.0		0.0	0.0
905							••
906							
907							
908	0.0	0.0	0.0	0.0	0.0	0.0	0.0
909	0.0	0.0	0.0	0.0	0.0	0.0	0.0
910		••	•••				
911							
912	0.0	0.0	0.0		0.0	0.0	0.0
913							
914							
915	0.0	0.0	0.0	0.0	0.0	0.0	0.0
916	0.0	0.0	0.0	0.0	0.0	0.0	0.0
917							
918	0.0	0.0	0.0	0.0	0.0	0.0	0.0
919	0.0	0.0	0.0	0.0	0.0	0.0	0.0
920							
720							
MEAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N	10	10	10	9	0.00	10	10
	0:18.0 mg bas		1000		1900000		
941		0.0	0.0	0.0	0.0	0.0	0.0
942	0.0	0.0	0.0		0.0	0.0	0.0
943	••	••	••	••	••		
944	0.0	0.0	0.0	0.0	0.0	0.0	0.0
945							
946							
947						••	
948							
949	0.0	0.0	0.0	0.0	0.0	0.0	0.0
950	0.0	0.0					
		••					
951							
952							
953	0.0	0.0	0.0	0.0	0.0	0.0	0.0
954	0.0	0.0	0.0	0.0	0.0	0.0	0.0
955	••						••
	0.0	0.0	0.0	0.0	0.0		
956	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		• •					
956 957		0.0	0.0	0.0	0.0	0.0	0.0
956 957 958	0.0			0.0	0.0	0.0	0.0
956 957 958 959	0.0	0.0	n.n		V. V	0.0	5.0
956 957 958	0.0	0.0	0.0	0.0			
956 957 958 959		0.0	0.0	0.0	0.0	0.0	0.0
956 957 958 959 960	0.0				0.0 0.00	0.0	0.0 0.00

(--)-Data Unavailable

MORPHOLOGY OBSERVATIONS

13		
locytes,Sl	asia,Slight tes,Slight; sis,Slight	
	asia,Slight sis,Slight	
	asia,Slight lls,Slight; sis,Slight	
hromasia,S t Cells,Sl	asia,Slight .ls,Slight	
hromasia,S cytosis,Sl	asia,Slight sis,Slight	
-	asia,Slight .ls,Slight; sis,	
	sia,Slight lls,Slight; sis,Slight	
nromasia,S cytosis,Sl	sia,Slight sis,Slight	
	sia,Slight ls,Slight; sis,Slight	
	nsia,Slight lls,Slight; sis,	
t Cells,Sl cytosis,Sl hromasia,S t Cells,Sl hromasia,S t Cells,Sl cytosis, ate hromasia,S t Cells,Sl cytosis, ate hromasia,S t Cells,Sl cytosis,Sl	lls,Slisi	ight; ight light light light light light light; ight light; ight light light light light light

MORPHOLOGY OBSERVATIONS

STUDY ID: 098 SEX: MALE

GROUP: 0 : 0 mg base/kg/day

	ANIMAL ID	Week 2	Week 4	Week 8	Week 13
-	816	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Target Cells,Slight	Polychromasia,Slight Target Cells, Moderate; Anisocytosis,Slight
	817	••			
	818	••			
	819		••		••
	820	••			••

MORPHOLOGY OBSERVATIONS

STUDY ID: 098

GROUP: 0 : 0 mg base/kg/day

		GROUP: U	: U mg base/kg/day	
AN	NIMAL ID	Week 16	Week 21	Week 27
8	801	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Poikilocytes,Slight; Target Cells,Slight; Anisocytosis,Slight
8	302	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
8	303	••		
8	304			
8	305	••		,
8	306	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Target Cells,Slight; Anisocytosis,Slight
8	307	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
8	808			
8		Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
8		Anisocytosis,Slight; Target Cells,Slight	Polychromasia,Slight Poikilocytes,Slight; Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
8		Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Anisocytosis,Slight; Howell-Jolly Bodies, Slight
8	312	•-		
8	313			
8		Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight

MORPHOLOGY OBSERVATIONS

STUDY ID: 098

SEX: MALE

	0.001 10. 070		GROUP: 0	: 0 mg base/kg/day		
	ANIMAL	. ID	Week 16	Week 21	Week 27	
	815).1 (,1		Anisocytosis, Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight	
	816	1	Polychromasia,Slight		Polychromasia,Slight Anisocytosis,Slight	
•	817					
	818			••		
	819					
	820		••		v	

MORPHOLOGY OBSERVATIONS STUDY ID: 098 - SEX: MALE

STUDY ID: 098		GROUP: 0.5 : 0.5 mg &	nan (ka (day	- SEX: MALE
		akoor. 0.5 . 0.5 mg t	ase/kg/day	
ANIMAL ID	Week 2	Week 4	Week 8	Week 13
841				
842				
843				
844	Macrocytes, Moderate; Polychromasia, Moderate	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight
845				
846	Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Poikilocytes,Slight; Anisocytosis,Slight	Polychromasia,Slight
847	••			
848	Normal Red Blood Cells	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
849	••			
850	Polychromasia,Slight Macrocytes,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
851	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
852	Polychromasia, Moderate;Macrocytes, Slight	Polychromasia,Slight Anisocytosis,Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
853	Polychromasia,Slight	Anisocytosis,Slight	Target Cells,Slight	Poikilocytes,Slight; Anisocytosis,Slight
854	••			••
855	••			••
856	••			••
857	••			
858	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight

MORPHOLOGY OBSERVATIONS					
STUDY ID: 098	120	GROUP: 0.5 : 0.5 mg b	ase/kg/day	- SEX: MALE	
ANIMAL ID	Week 2	Week 4	Week 8	Week 13	
859	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	
860	Polychromasia, Moderate;Macrocytes, Moderate	Polychromasia,Slight Target Cells,Slight; Rouleaux Formation, Slight	Target Cells,Slight; Anisocytosis,Slight	Polychromasia, Moderate;Target Cells,Slight; Anisocytosis,Slight	

MORPHOLOGY OBSERVATIONS

 		,	
ANIMAL ID	Week 16	Week 21	Week 27
841			
842			
843			
844	Anisocytosis,Slight; Polychromasia,Slight	Normal Red Blood Cells	Polychromasia,Slight Poikilocytes,Slight; Anisocytosis,Slight
845			
846	Anisocytosis,Slight; Target Cells,Slight	Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight
847		••	
848	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Anisocytosis, Slight; Howell-Jolly Bodies, Slight
849			
850	Anisocytosis, Moderate; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
851	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Poikilocytes, Slight; Target Cells, Slight; Anisocytosis, Slight
852	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight; Howell-Jolly Bodies, Slight
853	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia, Slight Anisocytosis, Slight; Howell-Jolly Bodies, Slight	Polychromasia, Slight Poikilocytes, Slight; Target Cells, Slight; Anisocytosis, Slight
854			
855			
856			

MORPHOLOGY OBSERVATIONS SEX: MALE STUDY ID: 098 GROUP: 0.5 : 0.5 mg base/kg/day ANIMAL ID Week 16 Week 21 Week 27 857 Anisocytosis, Slight; Polychromasia, Slight Polychromasia, Slight 858 Anisocytosis, Slight Polychromasia, Slight Anisocytosis, Slight Anisocytosis, Slight; Polychromasia, Slight Polychromasia, Slight 859 Polychromasia, Slight Anisocytosis, Slight Anisocytosis, Slight; Howell-Jolly Bodies, Slight Polychromasia, Slight Anisocytosis, Slight; Polychromasia, Slight 860 Polychromasia, Slight Anisocytosis, Slight Target Cells, Moderate;

Anisocytosis, Slight

MORPHOLOGY OBSERVATIONS					
STUDY ID: 098		GROUP: 6.0 : 6.0 mg b		SEX: MALE	
ANIMAL ID	Week 2	Week 4	Week 8	Week 13	
881		••			
882					
883				••	
884	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Anisocytosis,Slight	Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight	
885		••		••	
886		••		••	
887	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate		
888					
889	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	
890	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Anisocytosis,Slight	
891					
892				••	
893	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells, Moderate; Anisocytosis,Slight; Howell-Jolly Bodies, Slight	Polychromasia;Slight Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight	Polychromasia, Moderate;Target Cells,Moderate; Anisocytosis, Moderate; Howell-Jolly Bodies, Slight	
894				••	
895	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight	

MORPHOLOGY OBSERVATIONS

STUDY ID: 098				SEX: MALE
		GROUP: 6.0 : 6.0 mg b	base/kg/day	
ANIMAL ID	Week 2	Week 4	Week 8	Week 13
896	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight
897	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells, Moderate; Anisocytosis, Moderate
898			••	••
899	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight; Howell-Jolly Bodies, Moderate	Polychromasia,Slight Target Cells, Moderate; Anisocytosis,Slight; Howell-Jolly Bodies, Moderate	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
900	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis:Slight

MORPHOLOGY OBSERVATIONS

	MORPHOL	OGI OBSERVATIO	MS
		•••••••••	APV. MALP
STUDY ID: 098	GROUP. A	0 : 6.0 mg base/kg/day	- SEX: MALE
	GROOF. O.	o.o my base/kg/day	
ANIMAL II	Week 16	Week 21	Week 27
881	•-		
882			
883			
884	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
885			
886	••	••	
887	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
888		••	
889	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
890	Anisocytosis, Moderate; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
891		••	
892		••	
893	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
894			
895	Anisocytosis,Slight; Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight

Anisocytosis, Slight;

Polychromasia, Slight Anisocytosis, Slight

896

Polychromasia,Slight

Normal Red Blood

Cells

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

MORPHOLOGY OBSERVATIONS

STUDY ID: 098	150	GROUP: 6.0): 6.0 mg base/kg/day	^ -	SEX: MALE
	ANIMAL ID	Week 16	Week 21	Week 27	
	897	Anisocytosis,Slight; Target Cells,Slight	Polychromasia,Slight Target Cells, Moderate;	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	

Anisocytosis, Slight; Howell-Jolly Bodies, Slight 898 899 Anisocytosis, Slight; Polychromasia, Slight Polychromasia, Slight Polychromasia, Slight Target Cells, Slight; Target Cells, Slight Anisocytosis, Slight 900 Anisocytosis, Slight; Polychromasia, Slight Polychromasia, Slight Polychromasia,Slight Target Cells, Slight; Anisocytosis, Slight Target Cells, Slight Anisocytosis, Slight

MORPHOLOGY OBSERVATIONS

STUDY ID: 098

GROUP: 18.0 : 18.0 mg base/kg/day

SEX: MALE

		GROUP: 10.0 : 10.0 IIIg	Dase/kg/day	
ANIMAL ID	Week 2	Week 4	Week 8	Week 13
921				••
922				Polychromasia,Slight Anisocytosis,Slight
923	Polychromasia, Moderate;Target Cells,Slight; Macrocytes,Moderate	Polychromasia, Moderate; Poikilocytes,Slight; Target Cells, Moderate Anisocytosis, Moderate	Polychromasia, Moderate; Poikilocytes,Slight; Target Cells,Slight; Anisocytosis, Moderate; Howell-Jolly Bodies, Slight	Polychromasia, Moderate;Target Cells,Slight; Anisocytosis,Slight
924	••			
925	••			••
926			••	••
927	Polychromasia,Slight Macrocytes,Moderate	Polychromasia,Slight Anisocytosis,Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight
928		••	••	••
929	Polychromasia, Slight Poikilocytes, Slight; Target Cells, Slight; Anisocytosis, Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Poikilocytes,Slight; Anisocytosis,Slight	Polychromasia, Moderate;Target Cells,Moderate; Anisocytosis,Slight; Howell-Jolly Bodies, Moderate	Polychromasia,Slight Anisocytosis,Slight
930	Polychromasia, Moderate; Anisocytosis,Slight	Polychromasia, Moderate;Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight; Howell-Jolly Bodies, Moderate
931				
932		Polychromasia, Moderate; Anisocytosis, Moderate; Howell-Jolly Bodies, Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia, Moderate;Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight

MORPHOLOGY OBSERVATIONS

DY ID: 098		GROUP: 18.0 : 18.0 mg	base/kg/day	- SEX: MA
ANIMAL ID	Week 2	Week 4	Week 8	Week 13
933	Polychromasia,Slight Anisocytosis,Slight; Large Platelets; Howell-Jolly Bodies, Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia, Moderate;Target Cells,Slight; Anisocytosis, Moderate	Target Cells, Moderate; Anisocytosis,Slight
934	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	
935	Polychromasia, Moderate;Target Cells,Slight; Macrocytes,Moderate; Howell-Jolly Bodies, Moderate	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Moderate	Polychromasia, Moderate;Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Moderate
936			••	
937	Polychromasia,Slight Target Cells,Slight; Macrocytes,Slight			
938	••			
939	Polychromasia,Slight Target Cells,Slight; Macrocytes,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate; Howell-Jolly Bodies, Slight	Polychromasia, Moderate;Target Cells,Moderate; Anisocytosis, Moderate; Howell-Jolly Bodies, Slight
940	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Moderate; Poikilocytes,Slight; Target Cells,Slight; Anisocytosis, Moderate	Polychromasia, Moderate; Poikilocytes,Slight; Target Cells, Moderate; Anisocytosis,Slight; Howell-Jolly Bodies, Moderate	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate; Howell-Jolly Bodies, Moderate

MORPHOLOGY OBSERVATIONS

SEX: MALE STUDY ID: 098 GROUP: 18.0 : 18.0 mg base/kg/day ANIMAL ID Week 16 Week 21 Week 27 921 922 Anisocytosis, Polychromasia, Slight Anisocytosis, Slight Moderate; Anisocytosis, Slight Polychromasia, Slight Target Cells, Slight 923 Anisocytosis, Polychromasia, Slight Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight Moderate; Polychromasia, Slight Anisocytosis, Slight Target Cells, Slight 924 925 926 927 Anisocytosis, Slight; Polychromasia, Slight Polychromasia, Slight Polychromasia, Slight Anisocytosis, Slight Target Cells, Slight; Target Cells, Slight Anisocytosis, Slight 928 929 Anisocytosis, Polychromasia, Slight Polychromasia, Slight Moderate; Anisocytosis, Slight Anisocytosis, Slight Polychromasia, Slight Target Cells, Slight 930 Anisocytosis, Slight; Polychromasia, Slight Polychromasia, Slight Target Cells, Slight; Polychromasia, Slight Target Cells, Slight Anisocytosis, Slight 931 932 Anisocytosis, Slight; Polychromasia, Slight Polychromasia, Slight Polychromasia, Slight Anisocytosis, Slight Anisocytosis, Slight Target Cells, Slight 933 Anisocytosis, Polychromasia, Slight Polychromasia, Slight Anisocytosis, Slight Anisocytosis, Slight Moderate; Polychromasia, Slight Target Cells, Slight 934 935 Anisocytosis, Slight; Polychromasia, Slight Polychromasia, Slight Target Cells, Slight; Target Cells, Slight Anisocytosis, Slight

.....

Howell-Jolly Bodies,

Slight

MORPHOLOGY OBSERVATIONS

STUDY ID: 098	GROUP: 18.	0 : 18.0 mg base/kg/day	SEX: MALE
ANIMAL ID	Week 16	Week 21	Week 27
936	••		••
937	••		
938		••	
939	Anisocytosis, Slight; Polychromasia, Slight Target Cells, Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Poikilocytes, Slight; Anisocytosis, Slight; Howell-Jolly Bodies, Slight
940	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia;Slight	Target Cells,Slight; Anisocytosis,Slight

(--)-Data Unavailable

MORPHOLOGY OBSERVATIONS

UDY ID: 098	-	GROUP: 0 : 0 mg bas	se/kg/day	- SEX: FEMALE
ANIMAL ID	Week 2	Week 4	Week 8	Week 13
821				
822				••
823	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Anisocytosis,Slight	Target Cells,Slight; Anisocytosis,Slight
824	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	
825			••	••
826	••			
827	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight; Howell-Jolly Bodies, Slight	Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
828	••			
829	• •			
830	Polychromasia,Slight Macrocytes,Moderate	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
831	Polychromasia,Slight Macrocytes,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
832				
833				••
834	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
835	Polychromasia,Slight Macrocytes,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate
836	Polychromasia,Slight Macrocytes,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight	Polychromasia;Slight Target Cells;Slight; Anisocytosis;Slight

MORPHOLOGY OBSERVATIONS

TUDY ID: 098		GROUP: 0 : 0 mg bas	se/kg/day	- SEX: FEMALE
ANIMAL ID	Week 2	Week 4	Week 8	Week 13
837	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
838	••			
839				
840	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight

(--)-Data Unavailable

MORPHOLOGY OBSERVATIONS

STUDY ID: 098		GROUP:	0 : 0 mg base/kg/day	- SEX: FEMALE
•	ANIMAL ID	Week 16	Week 21	Week 27
	821	••		••
,	822			
	823	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight
	824	Anisocytosis, Moderate; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate
	825	••		
	826			
	827	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Poikilocytes, Slight; Target Cells, Slight; Anisocytosis, Moderate; Crenation, Slight
	828			
	829			
	830	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
	831	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight
	832			
	833	••	••	
	834	Anisocytosis,Slight; Polychromasia,Slight	Target Cells,Slight; Anisocytosis,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight
	835	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight

MORPHOLOGY OBSERVATIONS

STUDY ID: 098	}	GROUP:	0 : 0 mg base/kg/day		SEX: FEMALE
	ANIMAL ID	Week 16	Week 21	Week 27	
	836	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	
	837	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia, Slight Anisocytosis, Slight; Howell-Jolly Bodies, Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight; Howell-Jolly Bodies, Slight	
	838	••	••		
	839				
	840	Anisocytosis, Slight;	Polychromasia, Slight	Polychromasia, Slight	

Polychromasia, Slight Anisocytosis, Slight Anisocytosis, Slight

Target Cells, Slight

MORPHOLOGY OBSERVATIONS

STU	DY ID: 098		GROUP: 0.5 : 0.5 mg b	ase/kg/day	- SEX: FEMALE
	ANIMAL ID	Week 2	Week 4	Week 8	Week 13
	861	Polychromasia,Slight Macrocytes,Moderate	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
	862				••
	863				
	864	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
	865	•-	••		
	866	••			
	867	Target Cells,Slight; Macrocytes,Moderate; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
	868	Polychromasia,Slight Macrocytes,Slight	Polychromasia, Slight Anisocytosis, Slight; Howell-Jolly Bodies, Slight	Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
	869		••	••	
	870		••		
	871	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
	872				••
	873	Polychromasia,Slight Poikilocytes,Slight; Macrocytes,Moderate	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight	Target Cells,Slight
	874	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Target Cells,Slight
	875				
	27/				

(--)-Data Uravailable

876

MORPHOLOGY OBSERVATIONS

STUDY ID: 098		SEX: FEMALE GROUP: 0.5 : 0.5 mg base/kg/day			
ANIMAL ID	Week 2	Week 4	Week 8	Week 13	
877	Polychromasia, Moderate;Macrocytes, Moderate	Polychromasia,Slight Anisocytosis,Slight	Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight	
878			••	••	
879	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	
880	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia, Moderate;Target Cells,Slight; Anisocytosis,Slight	

MORPHOLOGY OBSERVATIONS

STUDY ID: 093 - SEX: FEMALE

GROUP: 0.5 : 0.5 mg base/kg/day

ANIMAL ID	Week 16	Week 21	Week 27
861	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight
862	••		
863			
864	Anisocytosis,Slight; Target Cells,Slight	Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight
865			
866		••	
867	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
868		Polychromasia,Slight	Anisocytosis,Slight
869			
870	••		
871	Anisocytosis, Moderate; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
872			
873	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight
874	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
875	•-		
876			
877	Anisocytosis,Slight; Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
878		••	
879	Anisocytosis,Slight; Polychromasia,Slight	Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight

(--)-Data Unavailable

MORPHOLOGY OBSERVATIONS STUDY ID: 098 GROUP: 0.5 : 0.5 mg base/kg/day ANIMAL ID Week 16 Week 21 Week 27 880 Anisocytosis,Slight; Polychromasia,Slight Polychromasia,Slight Polychromasia,Slight Anisocytosis,Slight Anisocytosis,Slight

MORPHOLOGY OBSERVATIONS

STUDY ID: 098		GROUP: 6.0 : 6.0 mg b	SEX: FEMALE	
ANIMAL ID	Week 2	Week 4	Week 8	Week 13
901	Polychromasia,Slight Macrocytes,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight; Howell-Jolly Bodies, Slight
902	Polychromasia,Slight Macrocytes,Slight	Polychromasia,Slight Anisocytosis, Moderate	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
903				
904	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight
905	••			••
906				••
907	••			••
908	Polychromasia,Slight Macrocytes,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Moderate;Target Cells,Moderate; Anisocytosis, Moderate
909	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight	Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
910		••		••
911	••			
912	Polychromasia,Slight Target Cells,Slight; Macrocytes,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate	
913		••	••	••
914				
915	Polychromasia,Slight Anisocytosis	Polychromasia,Slight Target Cells,Slight; Anisocytosis, Moderate	Polychromasia,Slight Anisocytosis, Moderate	Polychromasia,Slight Anisocytosis,Slight

Slight

Polychromasia, Slight

Target Cells, Slight; Anisocytosis, Slight

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

MORPHOLOGY OBSERVATIONS

STUDY ID: 098 SEX: FEMALE GROUP: 6.0: 6.0 mg base/kg/day _____ Week 8 Week 2 Week 4 Week 13 ANIMAL ID 916 Polychromasia, Polychromasia, Polychromasia, Slight Target Cells, Slight; Moderate; Macrocytes, Moderate; Target Target Cells, Slight; Anisocytosis, Slight Cells,Slight; Anisocytosis, Slight Slight Anisocytosis, Slight 917 918 Polychromasia, Slight Polychromasia, Slight Polychromasia, Slight Polychromasia, Slight Macrocytes, Slight Target Cells, Slight; Poikilocytes, Slight; Target Cells, Slight; Anisocytosis, Slight Anisocytosis, Slight Anisocytosis, Moderate; Howell-Jolly Bodies,

Polychromasia, Slight Anisocytosis, Slight

Anisocytosis, Slight

(--)-Data Unavailable

919

920

Polychromasia, Slight

.....

MORPHOLOGY OBSERVATIONS

STUDY ID: 098

GROUP: 6.0 : 6.0 mg base/kg/day											
	ANIMAL ID	Week 16	Week 21	Week 27							
	901	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight							
	902	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight							
	903	••									
	904		Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight							
	905	••									
	906	••									
	907		••								
	908	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight							
	909	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight							
	910	↔ :									
	911	∞ =									
	912	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight							
	913										
	914										
	915	Anisocytosis, Slight; Polychromasia, Slight Target Cells, Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight							
	916	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight							
	917		••								

MORPHOLOGY OBSERVATIONS

STUDY ID: 098 SEX: FEMALE

GROUP: 6.0: 6.0 mg base/kg/day

and to to to the my base, as any												
ANIMAL ID	ANIMAL ID Week 16		Week 27									
918		, , ,	Polychromasia,Slight Anisocytosis,Slight									
919	Anisocytosis,Slight; Polychromasia,Slight	Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight									
920		••										

MORPHOLOGY OBSERVATIONS STUDY ID: 093 SEX: FEMALE GROUP: 18.0 : 18.0 mg base/kg/day Heek 2 Week 4 Week 8 Week 13 ANIMAL ID 941 Polychromasia, Slight Polychromasia, Slight Polychromasia, Slight Polychromasia, Poikilocytes, Slight; Target Cells, Slight; Anisocytosis, Slight Moderate; Target Anisocytosis, Anisocytosis, Cells, Slight; Moderate Anisocytosis, Moderate Moderate Polychromasia, 942 Polychromasia, Polychromasia, Slight Clotted Sample Target Cells, Slight; Moderate; Macrocytes, Moderate: Target Cells, Moderate; Anisocytosis, Moderate Anisocytosis, Moderate Moderate 943 Polychromasia, Slight 944 Anisocytosis, Polychromasia, Slight Polychromasia, Slight Target Cells, Slight; Target Cells, Slight; Anisocytosis, Slight Moderate; Polychromasia, Slight Anisocytosis, Anisocytosis, Slight Poikilocytes, Slight; Moderate; Howell-Jolly Bodies, Target Cells, Slight; Howell-Jolly Bodies, Slight Slight 945 946 947 948 949 Polychromasia, Slight Polychromasia, Slight Polychromasia, Slight Polychromasia, Slight Poikilocytes, Slight; Poikilocytes, Slight; Target Cells, Slight; Target Cells, Slight; Anisocytosis, Anisocytosis, Slight Anisocytosis, Slight Anisocytosis, Slight Moderate 950 951 952 953 Polychromasia, Slight Polychromasia, Polychromasia, Slight Polychromasia, Slight Target Cells, Slight; Moderate; Target Anisocytosis, Slight Target Cells, Slight; Anisocytosis, Slight; Cells, Slight; Anisocytosis, Moderate; Anisocytosis, Slight Howell-Jolly Bodies, Howell-Jolly Bodies, Moderate

(--)-Data Unavailable

Slight

MORPHOLOGY OBSERVATIONS

STUDY ID: 098 SEX: FEMALE GROUP: 18.0 : 18.0 mg base/kg/day Week 2 Week 4 Week 8 ANIMAL ID Week 13 954 Polychromasia, Polychromasia, Slight Polychromasia, Slight Polychromasia, Target Cells, Slight; Moderate; Target Target Cells, Slight; Moderate; Target Anisocytosis, Anisocytosis,Slight; Cells, Slight; Cells, Moderate; Macrocytes, Moderate; Moderate; Howell-Jolly Bodies, Anisocytosis, Howell-Jolly Bodies, Howell-Jolly Bodies, Slight Moderate: Slight Howell-Jolly Bodies, Slight Slight 955 Polychromasia,Slight 956 Polychromasia, Polychromasia, Slight Polychromasia, Anisocytosis, Moderate: Macrocytes, Moderate; Target Target Cells, Slight; Moderate Moderate; Cells, Moderate; Anisocytosis, Slight Howell-Jolly Bodies, Anisocytosis, Slight Moderate: Howell-Jolly Bodies. Slight Polychromasia, Slight Polychromasia, Mod. Polychromasia, Slight Polychromasia, 957 Moderate: Target Poikilocytes, to Marked: Target Target Cells, Slight: Moderate: Target Cells, Slight; Anisocytosis, Slight Cells, Slight; Anisocytosis, Slight Anisocytosis, Slight; Cells, Slight; Howell-Jolly Bodies, Anisocytosis, Slight Slight 958 959 Polychromasia, Polychromasia, Slight Polychromasia, Polychromasia, Moderate; Macrocytes, Target Cells, Slight; Moderate; Target Moderate; Target Anisocytosis, Cells, Moderate; Moderate Cells, Slight; Moderate: Anisocytosis, Anisocytosis, Howell-Jolly Bodies, Moderate Moderate Slight 960 Polychromasia, Slight Polychromasia, Polychromasia, Slight Polychromasia, Moderate; Target Target Cells, Slight; Moderate; Target Poikilocytes, Slight; Target Cells, Slight; Cells, Slight; Anisocytosis, Slight Cells, Slight; Anisocytosis, Mod. to Anisocytosis, Slight; Anisocytosis, Slight Howell-Jolly Bodies, Marked Moderate

MORPHOLOGY OBSERVATIONS

STUDY ID: 098

SEX: FEMALE

GROUP: 18.0 : 18.0 mg base/kg/day

			,
ANIMAL ID	Week 16	Week 21	Week 27
941	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Target Cells, Moderate; Anisocytosis,Slight
942	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
943	••		
944	Anisocytosis,Slight; Polychromasia,Slight Howell-Jolly Bodies, Slight	Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
945			
946			
947			
948		••	
949	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia, Slight Anisocytosis, Slight
950	••		
951			
952			
953	Anisocytosis, Slight; Polychromasia, Moderate; Target Cells, Slight; Howell-Jolly Bodies, Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight
954	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Anisocytosis,Slight	Target Cells,Slight; Anisocytosis,Slight
955	••		
956	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight		

MORPHOLOGY OBSERVATIONS

STUDY ID: 098

GROUP: 18.0 : 18.0 mg base/kg/day										
ANIMAL ID	Week 16	Week 21	Week 27							
957	Anisocytosis, Slight; Polychromasia, Slight Target Cells, Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight; Howell-Jolly Bodies, Slight							
958										
959	Anisocytosis, Moderate; Polychromasia,Slight Target Cells,Slight	Polychromasia,Slight Target Cells,Slight; Anisocytosis,Slight	Polychromasia,Slight Anisocytosis,Slight							
960	Anisocytosis,Slight; Polychromasia,Slight	Polychromasia,Slight Anisocytosis,Slight	Polychromasia, Slight Target Cells, Slight; Anisocytosis, Slight; Howell-Jolly Bodies, Slight							

(--)-Data Unavailable

APPENDIX 8

Ophthalmology Report

ANIMAL EYE ASSOCIATES

2845 SOUTH HARLEM ● BERWYN, ILLINOIS 60402 ● (708)749-4200 372 SOUTH MILWAUKEE AVE. ● WHEELING, ILLINOIS 60090 ● (708) 215-3933 DRAFT

SAMUEL J. VAINISI, DVM Diplomate American College of Veterinary Ophthalmologists GRETCHEN M. SCHMIDT, DVM Diplomate American College of Veterinary Ophthalmologists

OPHTHALMIC REPORT

UIC/TRL Study No. 098

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

On December 9, 1992, (Week -1), a sufficient number of Sprague Dawley rats were given ophthalmic examinations by indirect ophthalmoscopy to result in eighty males and eighty females suitable for the study.

On March 10, 1993 (Week 12), I re-examined the remaining 155 rats. One mid dose male was diagnosed with corneal neovascularization and a cataract, and one low dose female demonstrated a cataract. In both cases, the fundus was not visible. Both lesions were of traumatic origin and were not treatment-related. In addition, ocular lesions were not seen in high dose animals. All other rats appeared similar (no lesions) to the previous pretest examinations done on December 9, 1992.

On June 9, 1993 (Week 26), I re-examined the remaining 79 rats. All observed lesions were considered incidental as they were not seen in Week 12 and a dose-related pattern was not apparent. At this time, one low dose male was diagnosed with corneal keratitis and corneal neovascularization; a second low dose male demonstrated a cortical opacity of the lens. Retinal degeneration and optic nerve degeneration were diagnosed in one mid dose male and a cataract (fundus not visible) was seen in a mid dose male and a mid dose female. In two low dose females, corneal neovascularization and lens endophthalmitis were seen, with one of these two diagnosed rats also displaying a cataract. The fundus was not visible in either rat. One high dose female was diagnosed with retinal degeneration, optic nerve degeneration and a mild cataract. In all cases, lesions were of traumatic origin and were not treatment-related. All remaining rats appeared similar (no lesions) to previous examinations.

Sincerely

Samuel J. Wainisi, D.V

Professor of Comparative

Ophthalmology - U. of IL. at Chicago

Diplomate, American College of Veterinary Ophthalmologists

7/21/93

Ophthalmic Examinations Males

Dose	Animal	Week -1	Week 12	Week 26
(mg/kg/day)	Number	R.E. L.E.	R.E. L.E.	R.E. L.E.
0	801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818	WNL	WNL	WNL
0.5	820 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860	WNL	WNL	WNL

Dose = mg base/kg/day
R.E. = Right Eye
L.E. = Left Eye
 * = Animal Previously Died
 - = Animal Previously Sacrificed
WNL = Within Normal Limits
CKT = Corneal Keratitis
CN = Corneal Keratitis
CN = Corneal Neovascularization
LC = Lens Cataract
LE = Lens Endophthalmitis
FNV = Fundus Not Visible
MC = Mild Cataract
COL = Cortical Opacity of Lens
RD = Retinal Degeneration
OND = Optic Nerve Degeneration (Gliosis)

Ophthalmic Examinations Males

Dose (mg/kg/day)	Animal Number	Week -1 R.E. L.E.	Week 12 R.E. L.E.	Week 26 R.E. L.E.
(IIIg Rg day)	114111001		14.2. 2.2.	TOD: D.D.
İ	881	WNL WNL	WNL WNL	
	882	WNL WNL	WNL WNL	
	883	WNL WNL	WNL WNL	
	884	WNL WNL	WNL WNL	WNL WNL
	885	WNL WNL	WNL WNL	
	886	WNL WNL	WNL WNL	
	887	WNL WNL	WNL WNL	WNL WNL
	888	WNL WNL	WNL WNL	
	889	WNL WNL	WNL WNL	WNL WNL
6	890	WNL WNL	WNL WNL	WNL WNL
	891	WNL WNL	WNL WNL	
	892	WNL WNL	WNL WNL	
	893	WNL WNL	WNL WNL	RD/OND WNL
	894	WNL WNL	WNL WNL	
	895	WNL WNL	WNL WNL	WNL WNL
	896	WNL WNL	WNL WNL	WNL WNL
	897	WNL WNL	WNL WNL	WNL WNL
	898	WNL WNL	WNL WNL	
	899	WNL WNL	LC/CN/FNV WNL	LC/FNV WNL
	900	WNL WNL	WNL WNL	WNL WNL
	021	11011 11011		
	921	WNL WNL		
	922	WNL WNL	WNL WNL	WNL WNL
	923	WNL WNL	WNL WNL	WNL WNL
	924	WNL WNL	WNL WNL	
).	925	WNL WNL	WNL WNL	
	926	WNL WNL		
	927	WNL WNL	WNL WNL	WNL WNL
1	928 929	WNL WNL	WNL WNL	
1		WNL WNL	WNL WNL	WNL WNL
18	930 931		WNL WNL	WNL WNL
			WNL WNL	,
	932	WNL WNL	WNL WNL	WNL WNL
	933	WNL WNL	WNL WNL	WNL WNL
1	934	WNL WNL		
	935	WNL WNL	WNL WNL	WNL WNL
	936	WNL WNL		
	937	WNL WNL		* *
	938	WNL WNL	WNL WNL	
- 1	939	WNL WNL	WNL WNL	WNL WNL
	940	WNL WNL	WNL WNL	WNL WNL

Ophthalmic Examinations Females

Dose	Animal	Week -1	Week 12	Week 26
(mg/kg/day)	Number	R.E. L.E.	R.E. L.E.	R.E. L.E.
	821 822 823	WNL WNL WNL WNL WNL WNL	WNL WNL WNL WNL WNL WNL	 WNL WNL
ll i	823 824	WNL WNL		
		WNL WNL	WNL WNL WNL WNL	WNL WNL
1	825 826	WNL WNL	WNL WNL	
	826 827	WNL WNL		WNL WNL
				WNL WNL
1 1	828		WNL WNL	
0	829 830	WNL WNL WNL WNL	WNL WNL	
0			WNL WNL	WNL WNL
	831	WNL WNL	WNL WNL	WNL WNL
1	832	WNL WNL WNL WNL	WNL WNL	
	833		WNL WNL	
	834	WNL WNL	WNL WNL	WNL WNL
li l	835	WNL WNL	WNL WNL	WNL WNL
	836	WNL WNL	WNL WNL	WNL WNL
	837	WNL WNL	WNL WNL	WNL WNL
	838	WNL WNL	WNL WNL	
1	839	WNL WNL	WNL WNL	
	840	WNL WNL	WNL WNL	WNL WNL
	861	WNL WNL	WNL WNL	WNL WNL
1 !	862	WNL WNL	WNL WNL	
l i	863	WNL WNL	WNL WNL	
1	864	WNL WNL	WNL WNL	WNL WNL
0.5	865	WNL WNL	WNL WNL	
	866	WNL WNL	WNL WNL	
1 1	867	WNL WNL	WNL WNL	WNL WNL
	868	WNL WNL	WNL WNL	LC/CN/LE/FNV WNL
	869	WNL WNL	WNL WNL	
	870	WNL WNL	WNL WNL	
	871	WNL WNL	WNL WNL	WNL WNL
l I	872	WNL WNL	WNL WNL	
	873	WNL WNL	WNL WNL	WNL WNL
	874	WNL WNL	WNL WNL	WNL WNL
	875	WNL WNL	WNL WNL	
	876	WNL WNL	WNL WNL	
	877	WNL WNL	WNL WNL	WNL WNL
	878	WNL WNL	WNL WNL	
	879	WNL WNL	WNL WNL	WNL WNL
	880	WNL WNL	LC/FNV WNL	CN/LE/FNV WNL

DRAFT

Ophthalmic Examinations Females

Dose	Animal	Week -1	Week 12	Week 26
(mg/kg/day)	Number	R.E. L.E.	R.E. L.E.	R.E. L.E.
(mg ng suj)			110. 2.0.	
l	901	WNL WNL	WNL WNL	WNL WNL
	902	WNL WNL	WNL WNL	WNL WNL
	903	WNL WNL	WNL WNL	
	904	WNL WNL	WNL WNL	WNL WNL
ii .	905	WNL WNL	WNL WNL	
	906	WNL WNL	WNL WNL	
	907	WNL WNL	WNL WNL	
1	908	WNL WNL	WNL WNL	WNL WNL
6	909	WNL WNL	WNL WNL	WNL WNL
	910	WNL WNL	WNL WNL	
	911	WNL WNL	WNL WNL	
1	912	WNL WNL	WNL WNL	WNL WNL
	913	WNL WNL	WNL WNL	
	914	WNL WNL	WNL WNL	
	915	WNL WNL	WNL WNL	WNL WNL
	916	WNL WNL	WNL WNL	WNL WNL
	917	WNL WNL	WNL WNL	
	918	WNL WNL	WNL WNL	LC/FNV WNL
	919	WNL WNL	WNL WNL	WNL WNL
	920	WNL WNL	WNL WNL	
	941	WNL WNL	WNL WNL	WNL WNL
	942	WNL WNL	WNL WNL	RD/OND/MC WNL
	943	WNL WNL	WNL WNL	
	944	WNL WNL	WNL WNL	WNL WNL
	945	WNL WNL	WNL WNL	
	946	WNL WNL	WNL WNL	
	947	WNL WNL	WNL WNL	
i	948	WNL WNL	WNL WNL	
	949	WNL WNL	WNL WNL	WNL WNL
18	950	WNL WNL	WNL WNL	
	951	WNL WNL	WNL WNL	
	952	WNL WNL	WNL WNL	
	953	WNL WNL	WNL WNL	WNL WNL
	954	WNL WNL	WNL WNL	WNL WNL
	955	WNL WNL	WNL WNL	
	956	WNL WNL	WNL WNL	
	957	WNL WNL	WNL WNL	WNL WNL
1	958	WNL WNL	WNL WNL	
	959	WNL WNL	WNL WNL	WNL WNL
	960	WNL WNL	WNL WNL	WNL WNL

APPENDIX 9

Individual Organ Weights

		INDIV	IDUAL	ORGAN	WEIGHT	S			
STUDY: 098 SEX: MALE		GROU ALL FATES	JP: 1M - 0 ALL D	mg base/k	g/day L BALANCES	-			
ANIMAL ID: BALANCE NO.:	801	802	803	804	805	806	807	808	809
BODY WEIGHT (G)	627.6	561.7	497.7	497.6	560.5	555.8	502.4	564.8	622.4
Adrenals (pr) (G)	0.050	0.050	0.083	0.061	0.079	0.080	0.070	0.075	0.090
% BODY WEIGHT	0.008	0.009	0.017	0.012	0.014	0.014	0.014	0.013	0.014
Brain (G)	2.190	2.120	2.147	2.152	2.111	2.160	2.190	2.329	2.180
% BODY WEIGHT	0.349		0.431	0.432	0.377	0.389	0.436	0.412	0.350
Heart (G)	1.880	1.630	1.625	1.494	1.583	1.710	1.410	1.760	2.040
% BODY WEIGHT	0.300	0.290	0.327	0.300	0.282	0.308	0.281	0.312	0.328
Kidneys (pr) (G)	4.400	4.270	3.723	3.670	3.731	4.550	3.470	4.085	4.420
% BODY WEIGHT	0.701	0.760	0.748	0.738	0.666	0.819	0.691	0.723	0.710
Liver (G)	19.880	19.940	17.653	15.586	17.219	18.520	14.800	15.689	18.760
% BODY WEIGHT	3.168	3.550	3.547	3.132	3.072	3.332	2.946	2.778	3.014
Spleen (G)	0.750	0.730	0.632	0.737	0.771	0.780	0.680	0.793	0.940
% BODY WEIGHT	0.120	0.130	0.127	0.148	0.138	0.140	0.135	0.140	0.151
Testes w/Epidid. (pr) (G) % BODY WEIGHT	5.700	5.370	5.282	5.045	5.463	5.110	5.260	5.505	6.110
	0.908	0.956	1.061	1.014	0.975	0.919	1.047	0.975	0.982

INDIVIDUAL ORGAN WEIGHTS										
STUDY: 098	GROUP: 1M - 0 mg base/kg/day									
SEX: MALE	ALL FATES ALL DAYS ALL BALANCES									
ANIMAL ID: BALANCE NO.:	810	811	812	813	814	815	816	817	818	
BODY WEIGHT (G)	546.4	609.8	473.6	436.0	602.0	709.8	707.9	501.2	525.8	
Adrenats (pr) (G)	0.070	0.090	0.059	0.055	0.080	0.090	0.090	0.059	0.055	
% BODY WEIGHT	0.013	0.015	0.012	0.013	0.013	0.013	0.013	0.012	0.010	
Brain (G)	2.110	2.010	2.206	2.091	2.200	2.250	2.310	2.132	2.153	
% BODY WEIGHT	0.386	0.330	0.466	0.480	0.365	0.317	0.326	0.425	0.409	
Heart (G)	1.580	1.710	1.536	1.464	1.790	2.200	2.210	1.449	1.626	
% BODY WEIGHT	0.289	0.280	0.324	0.336	0.297	0.310	0.312	0.289	0.309	
Kidneys (pr) (G)	3.780	4.780	4.221	3.443	4.020	4.880	4.980	4.002	3.916	
% BODY WEIGHT	0.692	0.784	0.891	0.790	0.668	0.688	0.703	0.798	0.745	
Liver (G)	16.980	18.720	14.103	13.903	18.120	24.760	26.660	14.234	16.077	
% BODY WEIGHT	3.108	3.070	2.978	3.189	3.010	3.488	3.766	2.840	3.058	
Spleen (G)	0.800	0.970	0.784	0.667	0.740	1.020	1.070	0.788	0.921	
% BODY WEIGHT	0.146	0.159	0.166	0.153	0.123	0.144	0.151	0.157	0.175	
Testes w/Epidid. (pr) (G)	5.800	4.940	5.718	4.408	5.290	4.970	5.790	5.143	5.129	
% BODY WEIGHT	1.061	0.810	1.207	1.011	0.879	0.700	0.818	1.026	0.975	

	INDIVIDUAL OR	SAN WEI	SHTS							
STUDY: 098 SEX: MALE	GROUP: 1M - 0 mg base/kg/day ALL FATES ALL DAYS ALL BALANCES									
	ANIMAL ID: BALANCE NO.:	819	820							
	BODY WEIGHT (G)	505.0	565.9							
	Adrenals (pr) (G) % BODY WEIGHT	0.071 0.014	0.061 0.011							
	Brain (G) % BODY WEIGHT	1.974 0.391	1.990 0.352							
	Heart (G) % BODY WEIGHT	1.606 0.318	1.568 0.277							
	Kidneys (pr) (G) % BODY WEIGHT	3.939 0.780	4.057 0.717							
	Liver (G) % BODY WEIGHT	15.583 3.086	20.395 3.604	•						
	Spleen (G) % BODY WEIGHT	0.939 0.186	0.819 0.145							
	Testes w/Epidid. (pr) (G) % BODY WEIGHT	5.624 1.114	5.248 0.927							

INDIVIDUAL ORGAN WEIGHTS									
STUDY: 098 SEX: MALE	GROUP: 2M - 0.5 mg base/kg/day ALL FATES ALL DAYS ALL BALANCES								
ANIMAL ID: BALANCE NO.:	841	842	843	844	845	846	847	848	849
BODY WEIGHT (G)	462.8	486.3	495.1	518.4	562.1	511.5	508.3	591.2	550.7
Adrenals (pr) (G)	0.052	0.059	0.054	0.060	0.067	0.090	0.071	0.070	0.062
% BODY WEIGHT	0.011	0.012	0.011	0.012	0.012	0.018	0.014	0.012	0.011
Brain (G)	2.137	2.161	2.066	2.180	2.136	2.110	2.195	1.980	2.277
% BOOY WEIGHT	0.462	0.444	0.417	0.421	0.380	0.413	0.432	0.335	0.413
Heart (G)	1.534	1.816	1.944	1.510	1.691	1.440	1.763	1.980	1.669
% BOOY WEIGHT	0.331	0.373	0.393	0.291	0.301	0.282	0.347	0.335	0.303
Kidneys (pr) (G)	3.900	3.878	4.266	3.610	4.059	3.450	4.002	3.920	3.911
% BODY WEIGHT	0.843	0.797	0.862	0.696	0.722	0.674	0.787	0.663	0.710
Liver (G)	16.079	17.733	18.379	13.150	20.133	12.930	16.575	15.620	16.714
% BODY WEIGHT	3.474	3.647	3.712	2.537	3.582	2.528	3.261	2.642	3.035
Spleen (G)	0.934	0.891	0.699	0.880	0.836	0.700	0.822	0.740	1.032
% BODY WEIGHT	0.202	0.183	0.141	0.170	0.149	0.137	0.162	0.125	0.187
Testes w/Epidid. (pr) (G)	4.945	4.996	5.311	5.400	5.583	5.220	4.888	5.260	4.609
% BODY WEIGHT	1.068	1.027	1.073	1.042	0.993	1.021	0.962	0.890	0.837

.....

INDIVIDUAL ORGAN WEIGHTS											
STUDY: 098 SEX: MALE											
ANIMAL ID: BALANCE NO.:	850	851	852	853	854	855	856	857	858		
BODY WEIGHT (G)	549.0	572.9	617.4	614.0	523.9	585.5	553.0	422.2	623.5		
Adrenals (pr) (G)	0.040	0.080	0.070	0.050	0.058	0.070	0.044	0.054	0.080		
% BODY WEIGHT	0.007	0.014	0.011	0.0 0 8	0.011	0.012	0.008	0.013	0.013		
Brain (G)	2.160	2.260	2.290	2.060	2.072	2.216	2.222	1.999	2.040		
% BODY WEIGHT	0.393	0.394	0.371	0.336	0.395	0.378	0.402	0.473	0.327		
Heart (G)	1.530	1.770	1.920	1.730	1.757	1.687	1.778	1.365	1.870		
% BODY WEIGHT	0.279	0.309	0.311	0.282	0.335	0.288	0.322	0.323	0.300		
Kidneys (pr) (G)	4.020	4.850	4.300	3.800	4.142	4.216	4.429	3.896	4.560		
% BODY WEIGHT	0.732	0.847	0.696	0.619	0.791	0.720	0.801	0.923	0.731		
Liver (G)	15.780	19.710	20.610	17.490	17.281	18.802	19.823	12.017	20.100		
% BODY WEIGHT	2.874	3.440	3.338	2.849	3.299	3.211	3.585	2.846	3.224		
Spleen (G)	0.730	0.850	0.950	0.810	0.994	1.050	0.923	0.634	0.950		
% BODY WEIGHT	0.133	0.148	0.154	0.132	0.190	0.179	0.167	0.150	0.152		
Testes w/Epidid. (pr) (G)	5.020	5.560	6.010	6.030	4.894	5.630	5.985	4.501	5.640		
% BODY WEIGHT	0.914	0.971	0.973	0.982	0.934	0.962	1.082	1.066	0.905		

	THIRTEEN WEEK ORAL TOXI WITH A THIRTEEN WEEK	CITY STUDY RECOVERY PI	OF WR 2	38605 RATS								
	INDIVIDUAL	ORGAN WEIGH	ITS									
STUDY: 098 SEX: MALE	GROUP: 2M - 0.5 mg base/kg/day ALL FATES ALL DAYS ALL BALANCES											
	ANIMAL ID: BALANCE NO.:	859	860									
	BODY WEIGHT (G)	653.2	649.0									
	Adrenals (pr) (G) % BODY WEIGHT	0.070 0.011	0.050 0.008									
	Brain (G) % BODY WEIGHT	2.170 0.332	2.260 0.348									
	Heart (G) % BODY WEIGHT	1.820 0.279	1.740 0.268									
	Kidneys (pr) (G) % BODY WEIGHT	4.630 0.709	5.250 0.809									
	Liver (G) % BODY WEIGHT		22.530 3.471									
	Spleen (G) % BODY WEIGHT	0.780 0.119	1.060 0.163									
	Testes w/Epidid. (pr) (% BODY WEIGHT	G) 5.970 0.914	5.730 0.883									

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605

INDIVIDUAL ORGAN WEIGHTS											
STUDY: 098 SEX: MALE		GROUP:		mg base/ks		-			• • • • • • • • • •		
ANIMAL ID: BALANCE NO.:	881	882	883	884	885	886	887	888	889		
BODY WEIGHT (G)	403.7	476.6	392.9	515.8	418.0	371.7	565.5	472.8	678.0		
Adrenals (pr) (G)	0.041	0.097	0.084	0.100	0.052	0.048	0.050	0.059	0.080		
% BODY WEIGHT	0.010	0.020	0.021	0.019	0.012	0.013	0.009	0.012	0.012		
Brain (G)	2.189	2.268	2.029	1.950	2.060	2.039	1.990	2.067	2.220		
% BODY WEIGHT	0.542	0.476	0.516	0.378	0.493	0.549	0.352	0.437	0.327		
Heart (G)	1.211	1.960	1.542	1.540	1.785	1.373	1.620	1.707	1.940		
% BODY WEIGHT	0.300	0.411	0.392	0.299	0.427	0.369	0.286	0.361	0.286		
Kidneys (pr) (G)	3.689	4.433	4.126	4.270	3.590	3.821	3.780	4.859	4.220		
% BODY WEIGHT	0.914	0.930	1.050	0.828	0.859	1.028	0.668	1.028	0.622		
Liver (G)	12.294	17.454	15.026	16.000	17.269	13.869	16.430	21.403	20.390		
% BODY WEIGHT	3.045	3.662	3.824	3.102	4.131	3.731	2.905	4.527	3.007		
Spleen (G)	1.076	1.281	1.062	0.820	1.563	1.247	0.780	1.747	0.960		
% BODY WEIGHT	0.267	0.269	0.270	0.159	0.374	0.335	0.138	0.370	0.142		
Testes w/Epidid. (pr) (G) % BODY WEIGHT	5.340	5.178	5.056	5.710	4.955	5.155	4.880	4.912	6.280		
	1.323	1.086	1.287	1.107	1.185	1.387	0.863	1.039	0.926		

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 INDIVIDUAL ORGAN PERIOD IN RATS

			INDIV	IDUAL	ORGAN	WEIGHT	S			
	STUDY: 098 SEX: MALE	•••••	GROUP:		mg base/kg AYS ALI	g/day L BALANCES	-			
	ANIMAL ID: BALANCE NO.:	890	891	892	893	894	895	896	897	898
•••	BODY WEIGHT (G)	579.4	404.7	431.8	674.9	465.9	672.3	540.0	622.2	420.8
	Adrenals (pr) (G)	0.040	0.072	0.059	0.050	0.048	0.080	0.070	0.080	0.063
	% BODY WEIGHT	0.007	0.018	0.014	0.007	0.010	0.012	0.013	0.013	0.015
	Brain (G)	2.220	1.993	2.141	1.870	2.213	2.220	2.290	1.980	2.105
	% BODY WEIGHT	0.383	0.492	0.496	0.277	0.475	0.330	0.424	0.318	0.500
	Heart (G)	1.780	1.316	1.474	1.720	1.464	1.760	1.650	1.740	1.829
	% BODY WEIGHT	0.307	0.325	0.341	0.255	0.314	0.262	0.306	0.280	0.435
	Kidneys (pr) (G)	4.750	3.394	3.507	4.100	4.693	4.670	3.940	4.650	4.049
	% BODY WEIGHT	0.820	0.839	0.812	0.607	1.007	0.695	0.730	0.747	0.962
	Liver (G)	21.600	13.535	16.183	18.200	18.796	26.760	16.160	22.640	16.780
	% BODY WEIGHT	3.728	3.344	3.748	2.697	4.034	3.980	2.993	3.639	3.988
	Spleen (G)	1.110	1.341	1.284	0.980	1.104	1.000	0.660	0.990	1.672
	% BODY WEIGHT	0.192	0.331	0.297	0.145	0.237	0.149	0.122	0.159	0.397
	Testes w/Epidid. (pr) (G) % BODY WEIGHT	5.670 0.979	2.616	5.136 1.189	5.070 0.751	4.921 1.056	4.930 0.733	4.550 0.843	5.780 0.929	4.689 1.114

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 D A F

INDIVIDUAL ORGAN WEIGHTS

STUDY: 098 SEX: MALE	GROUP: 3M - 6.0 mg b ALL FATES ALL DAYS		NCES	
	ANIMAL ID: BALANCE NO.:	899	900	·
	BODY WEIGHT (G)	500.7	596.6	
	Adrenals (pr) (G) % BODY WEIGHT	0.090 0.018	0.090 0.015	
	Brain (G) % BODY WEIGHT	1.990 0.397	2.110 0.354	
	Heart (G) % BODY WEIGHT	1.550 0.310	1.670 0.280	
	Kidneys (pr) (G) % BODY WEIGHT	4.400 0.879	4.450 0.746	
	Liver (G) % BODY WEIGHT	16.510 3.297	21.050 3.528	
	Spleen (G) % BODY WEIGHT	0.680 0.136	0.700 0.117	
	Testes w/Epidid. (pr) (G) % BODY WEIGHT	4.970 0.993	4.890 0.820	

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 INDIVIDUAL OPERAL PERIOD IN RATS

		INDIV	IDUAL	ORGAN	WEIGHT	S					
STUDY: 098 SEX: MALE	GROUP: 4M - 18.0 mg base/kg/day ALL FATES ALL DAYS ALL BALANCES										
 ANIMAL ID: BALANCE NO.:	922	923	924	925	927	928	929	930	931		
 BODY WEIGHT (G)	479.0	564.5	381.8	368.3	580.3	447.3	569.2	618.0	347.5		
Adrenals (pr) (G)	0.080	0.050	0.057	0.053	0.070	0.085	0.090	0.080	0.031		
% BODY WEIGHT	0.017	0.009	0.015	0.014	0.012	0.019	0.016	0.013	0.009		
Brain (G)	2.110	2.070	2.061	2.102	2.310	2.154	2.180	2.020	1.826		
% BODY WEIGHT	0.441	0.367	0.540	0.571	0.398	0.482	0.383	0.327	0.525		
Heart (G)	1.920	1.610	1.521	1.652	1.890	1.875	1.850	1.950	1.415		
% BODY WEIGHT	0.401	0.285	0.398	0.449	0.326	0.419	0.325	0.316	0.407		
Kidneys (pr) (G)	4.290	3.850	4.814	3.957	4.440	4.046	4.880	4.020	4.020		
% BODY WEIGHT	0.896	0.682	1.261	1.074	0.765	0.905	0.857	0.650	1.157		
Liver (G)	17.780	15.420	18.141	17.124	17.010	18.354	21.800	20.950	14.496		
% BODY WEIGHT	3.712	2.732	4.751	4.649	2.931	4.103	3.830	3.390	4.172		
Spleen (G)	1.230	1.370	1.686	2.532	0.990	2.812	1.270	1.290	1.950		
% BODY WEIGHT	0.257	0.243	0.442	0.687	0.171	0.629	0.223	0.209	0.561		
Testes w/Epidid. (pr) (G) % BODY WEIGHT	5.680 1.186	5.320 0.942	5.127 1.343	4.819 1.308	5.160 0.889	6.167 1.379	5.930 1.042	4.890 0.791			

INDIVIDUAL ORGAN WEIGHTS STUDY: 098 SEX: MALE GROUP: 4M - 18.0 mg base/kg/day ALL FATES ALL DAYS ALL BALANCES 932 935 ANIMAL ID: 933 938 939 940 BALANCE NO .: BODY WEIGHT (G) 521.2 565.8 512.8 376.7 523.0 589.4 Adrenals (pr) (G) % BODY WEIGHT 0.040 0.080 0.050 0.071 0.070 0.070 0.010 0.019 0.008 0.014 0.013 0.012 2.200 1.970 2.130 2.160 2.193 2.000 Brain (G) % BODY WEIGHT 0.409 0.389 0.421 0.582 0.377 0.339 Heart (G) 1.710 1.730 1.490 1.947 1.520 1.850 % BODY WEIGHT 0.328 0.306 0.291 0.517 0.291 0.314 Kidneys (pr) (G) . % BODY WEIGHT 4.080 3.880 5,690 3.500 3.204 4.050 0.774 0.783 0.686 0.683 0.851 0.965 15.880 17.220 Liver (G) % BODY WEIGHT 20.590 12.540 14.626 19.120 3.043 3.950 2.445 3.883 3.036 3.244

1.530

0.270

5.560

0.983

0.880

0.172

5.340

1.041

2.309

0.613

5.340

1.418

1.310

0.250

5.030

0.962

1.300

0.221

5.650

0.959

1.300

0.249

5.580

1.071

Spleen (G)

% BODY WEIGHT

% BODY WEIGHT

Testes w/Epidid. (pr) (G)

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 INDIVIDUAL COCCEPT PERIOD IN RATS

INDIVIDUAL ORGAN WEIGHTS											
STUDY: 098 SEX: FEMALE	A	GROUP: LL FATES	: 1F - 0 mg	g base/kg/c ALL I		-					
 ANIMAL ID: BALANCE NO.:	821	822	823	824	825	826	827	828	829		
 BODY WEIGHT (G)	269.3	258.0	315.5	293.1	258.6	294.4	278.0	293.1	240.9		
Adrenals (pr) (G)	0.072	0.070	0.090	0.070	0.088	0.096	0.110	0.072	0.053		
% BODY WEIGHT	0.027	0.027	0.029	0.024	0.034	0.033	0.040	0.025	0.022		
Brain (G)	2.030	1.947	2.170	2.050	2.038	2.048	2.110	1.907	1.969		
% BODY WEIGHT	0.754	0.755	0.688	0.699	0.788	0.696	0.759	0.651	0.817		
Heart (G)	0.864	0.855	1.130	0.960	0.919	0.964	1.010	0.949	0.917		
% BODY WEIGHT	0.321	0.331	0.358	0.328	0.355	0.327	0.363	0.324	0.381		
Kidneys (pr) (G)	2.158	1.933	2.080	2.230	2.237	2.316	2.220	2.190	2.187		
% BODY WEIGHT	0.801	0.749	0.659	0.761	0.865	0.787	0.799	0.747	0.908		
Liver (G)	9.884	7.411	9.470	7.720	8.736	9.769	8.860	8.885	7.549		
% BODY WEIGHT	3.670	2.872	3.002	2.634	3.378	3.318	3.187	3.031	3.134		
Ovaries (G)	0.111	0.126	0.090	0.080	0.121	0.170	0.120	0.143	0.104		
% BODY WEIGHT	0.041	0.049	0.029	0.027	0.047	0.058	0.043	0.049	0.043		
Spleen (G)	0.582	0.394	0.480	0.450	0.729	0.525	0.590	0.543	0.459		
% BODY WEIGHT	0.216	0.153	0.152	0.154	0.282	0.178	0.212	0.185	0.191		

9-13

STUDY: 098 SEX: FEMALE		GROUI ALL FATES		mg base/kg YS ALL		-			
ANIMAL ID: BALANCE NO.:	830	831	832	833	834	835	836	837	838
BODY WEIGHT (G)	324.5	284.9	250.9	289.4	328.5	366.0	337.3	328.8	278.1
Adrenals (pr) (G)	0.110	0.050	0.067	0.070	0.080	0.070	0.070	0.070	0.076
% BODY WEIGHT	0.034	0.018	0.027	0.024	0.024	0.019	0.021	0.021	0.027
Brain (G)	1.990	1.860	2.010	1.916	1.960	2.000	2.110	1.860	2.139
% BODY WEIGHT	0.613	0.653	0.801	0.662	0.597	0.546	0.626	0.566	0.769
Heart (G)	1.370	1.070	1.132	0.960	1.120	1.090	1.120	1.060	1.060
% BODY WEIGHT	0.422	0.376	0.451	0.332	0.341	0.298	0.332	0.322	0.381
Kidneys (pr) (G)	2.220	2.110	1.896	1.920	2.190	2.170	2.280	2.570	2.233
% BODY WEIGHT	0.684	0.741	0.756	0.663	0.667	0.593	0.676	0.782	0.803
Liver (G)	9.880	8.240	8.267	7.607	8.710	10.000	9.840	9.190	10.232
% BODY WEIGHT	3.045	2.892	3.295	2.629	2.651	2.732	2.917	2.795	3.679
Ovaries (G)	0.110	0.090	0.120	0.117	0.100	0.130	0.130	0.130	0.112
% BODY WEIGHT	0.034	0.032	0.048	0.040	0.030	0.036	0.039	0.040	0.040
Spleen (G)	0.500	0.450	0.491	0.467	0.450	0.570	0.620	0.530	0.500
% BODY WEIGHT	0.154	0.158	0.196	0.161	0.137	0.156	0.184	0.161	0.180

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 2386050 G

INDIVIDUAL	ORGAN	WEIGHTS

STUDY: 098 SEX: FEMALE	GROUP: 1F - 0 mg bas ALL FATES ALL DAYS	e/kg/day ALL BALAN	CES	-
	ANIMAL ID: BALANCE NO.:	839		
	BODY WEIGHT (G)		281.7	
	Adrenals (pr) (G) % BODY WEIGHT	0.052 0.017	0.100 0.035	
	Brain (G) % BODY WEIGHT	1.991 0.654	2.010 0.714	
	Heart (G) % BODY WEIGHT	1.049 0.345	1.190 0.422	
	Kidneys (pr) (G) % BODY WEIGHT	2.249	2.340 0.831	
	Liver (G) % BODY WEIGHT	9.243 3.037	8.760 3.110	
	Ovaries (G) % BODY WEIGHT	0.088 0.029	0.110 0.039	
	Spleen (G) % BODY WEIGHT	0.590 0.194	0.460 0.163	

INDIVIDUAL ORGAN WEIGHTS STUDY: 098 GROUP: 2F - 0.5 mg base/kg/day SEX: FEMALE ALL DAYS ALL BALANCES ALL FATES ANIMAL ID: 861 862 863 864 865 866 867 868 869 BALANCE NO .: BODY WEIGHT (G) 348.6 258.8 248.3 287.8 272.6 343.6 281.6 246.6 298.4 0.090 0.080 Adrenals (pr) (G) % 800Y WEIGHT 0.090 0.061 0.089 0.110 0.060 0.062 0.064 0.026 0.024 0.036 0.038 0.024 0.023 0.026 0.028 0.021 Brain (G) 2.200 1.739 2.079 1.970 2.105 1.861 1.810 1.910 2.020 % BODY WEIGHT 0.631 0.672 0.837 0.685 0.854 0.683 0.527 0.678 0.677 1.210 0.897 0.789 1.170 1.012 0.972 1.110 1.150 0.919 Heart (G) % BODY WEIGHT 0.347 0.347 0.318 0.407 0.357 0.323 0.410 0.408 0.308 Kidneys (pr) (G) 2.800 1.963 1.976 2.200 2.157 2.174 2.190 2.328 % BODY WEIGHT 0.803 0.759 0.796 0.764 0.875 0.798 0.736 0.778 0.780 Liver (G) 10.740 7.425 8.043 10.130 8.102 9.193 9.290 8.090 9.377 % BODY WEIGHT 2.869 3.239 3.081 3.520 3.285 3.372 2.704 2.873 3.142 Ovaries (G) % BODY WEIGHT 0.090 0.128 0.128 0.110 0.187 0.129 0.120 0.070 0.157 0.049 0.038 0.026 0.052 0.076 0.047 0.035 0.025 0.053 0.440 0.390 0.589 0.449 0.520 0.477 0.865 0.556 0.620 Spleen (G) % BODY WEIGHT 0.126 0.228 0.181 0.181 0.193 0.204 0.180 0.138 0.290

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 INDIVIDUAL COCCURY PERIOD IN RATS

INDIVIDUAL ORGAN WEIGHTS											
STUDY: 098	GROUP: 2F - 0.5 mg base/kg/day										
SEX: FEMALE	ALL FATES ALL DAYS ALL BALANCES										
ANIMAL ID: BALANCE NO.:	870	871	872	873	874	875	876	877	878		
BODY WEIGHT (G)	255.3	254.8	287.9	297.2	326.3	273.0	271.0	319.8	296.9		
Adrenals (pr) (G)	0.072	0.090	0.086	0.060	0.100	0.097	0.101	0.080	0.049		
% BODY WEIGHT	0.028	0.035	0.030	0.020	0.031	0.036	0.037	0.025	0.017		
Brain (G)	2.103	1.950	1.934	2.060	1.890	1.992	2.040	1.960	1.913		
% BODY WEIGHT	0.824	0.765	0.672	0.693	0.579	0.730	0.753	0.613	0.644		
Heart (G)	0.831	0.850	0.890	1.040	1.120	1.074	0.952	1.160	0.993		
% BODY WEIGHT	0.326	0.334	0.309	0.350	0.343	0.393	0.351	0.363	0.334		
Kidneys (pr) (G)	2.078	1.840	1.873	2.050	2.180	2.252	2.373	2.080	1.941		
% BODY WEIGHT	0.814	0.722	0.651	0.690	0.668	0.825	0.876	0.650	0.654		
Liver (G)	8.108	7.770	7.919	7.660	8.650	9.211	9.427	9.310	8.221		
% BODY WEIGHT	3.176	3.049	2.751	2.577	2.651	3.374	3.479	2.911	2.769		
Ovaries (G)	0.102	0.090	0.153	0.100	0.170	0.120	0.128	0.090	0.090		
% BODY WEIGHT	0.040	0.035	0.053	0.034	0.052	0.044	0.047	0.028	0.030		
Spleen (G) % BODY WEIGHT	0.456 0.179	0.580 0.228	0.513 0.178	0.460	0.520 0.159	0.443	0.576 0.213	0.450 0.141	0.594		

.....

***************************************	INDIVIDUAL OR	GAN WEIG	HTS		••••
STUDY: 098 SEX: FEMALE	GROUP: 2F - 0.5 mg ALL FATES ALL DAYS		ICES	-	
	ANIMAL ID: BALANCE NO.:	879	880		
	BODY WEIGHT (G)	266.9	368.2		
	Adrenals (pr) (G) % BODY WEIGHT	0.050 0.019	0.070 0.019		
	Brain (G) % BODY WEIGHT	1.950 0.731	2.030 0.551		
	Heart (G) % BODY WEIGHT	0.980 0.367	1.140 0.310		
	Kidneys (pr) (G) % BODY WEIGHT	1.990 0.746	2.510 0.682		
	Liver (G) % BODY WEIGHT	6.980 2.615	10.710 2.909		
	Ovaries (G) % BODY WEIGHT	0.090	0.110		

0.540 0.202 0.610 0.166

Spleen (G) % BODY WEIGHT

INDIVIDUAL ORGAN WEIGHTS STUDY: 098 GROUP: 3F - 6.0 mg base/kg/day FATES ALL DAYS ALL BALANCES SEX: FEMALE ALL FATES 906 907 908 ANIMAL ID: 901 902 903 904 905 909 BALANCE NO.: BODY WEIGHT (G) 327.0 295.1 273.8 255.7 255.7 223.8 246.7 297.0 317.4 0.090 0.070 0.084 0.090 0.119 0.079 0.084 0.100 0.070 Adrenals (pr) (G) 0.033 % BODY WEIGHT 0.030 0.026 0.028 0.047 0.035 0.034 0.034 0.022 2.010 2.010 1.986 2.090 1.969 1.865 1.940 2.130 2.030 Brain (G) % BODY WEIGHT 0.681 0.734 0.777 0.639 0.770 0.833 0.786 0.717 0.640 1.062 0.874 1.010 0.970 0.810 0.942 1,180 Heart (G) 1.110 1,040 % BODY WEIGHT 0.339 0.382 0.342 0.354 0.415 0.342 0.397 0.328 0.362 2.450 2.010 2.250 2.316 Kidneys (pr) (G) 2.451 2.330 2.140 2.660 2.360 % BODY WEIGHT 0.830 0.734 0.959 0.713 0.880 0.956 0.939 0.896 0.744 8.590 7.990 9.119 9.840 9.594 7.899 11.000 10.120 Liver (G) % BODY WEIGHT 2.911 2.918 3.009 3.704 3.566 3.752 3.529 3.432 3.188 0.090 0.090 0.140 0.198 0.120 0.173 0.132 0.142 0.140 Ovaries (G) % BODY WEIGHT 0.030 0.051 0.077 0.037 0.068 0.059 0.058 0.030 0.044 0.640 0.500 0.560 0.884 1.106 0.530 Spleen (G) 0.570 0.844 0.589

% BODY WEIGHT

0.217

0.205

0.346

0.174

0.330

0.263

0.448

0.178

0.158

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 INDIVIDUAL OPEN WEEK RECOVERY PERIOD IN RATS

		INDIV	IDUAL (DRGAN I	WEIGHTS				
STUDY: 098 SEX: FEMALE		GROUP: ALL FATES	3F - 6.0 ALL DA		/day BALANCES	* ~			
ANIMAL ID: BALANCE NO.:	910	911	912	913	914	915	916	917	918
BODY WEIGHT (G)	255.5	256.4	320.9	268.4	243.2	276.4	305.5	237.6	283.8
Adrenals (pr) (G)	0.097	0.087	0.110	0.072	0.095	0.080	0.100	0.054	0.070
% BODY WEIGHT	0.038	0.034	0.034	0.027	0.039	0.029	0.033	0.023	0.025
Brain (G)	1.919	1.987	1.900	1.950	1.998	1.970	2.060	1.920	1.980
% BODY WEIGHT	0.751	0.775	0.592	0.727	0.822	0.713	0.674	0.808	0.698
Heart (G)	0.922	0.981	0.990	0.962	0.829	0.980	1.180	0.842	0.980
% BODY WEIGHT	0.361	0.383	0.309	0.358	0.341	0.355	0.386	0.354	0.345
Kidneys (pr) (G)	2.617	2.208	2.650	2.359	2.173	1.930	2.130	2.261	2.010
% BODY WEIGHT	1.024	0.861	0.826	0.879	0.894	0.698	0.697	0.952	0.708
Liver (G)	8.905	9.326	11.940	9.917	9.155	8.090	9.420	8.373	8.200
% BODY WEIGHT	3.485	3.637	3.721	3.695	3.764	2.927	3.083	3.524	2.889
Ovaries (G)	0.139	0.176	0.120	0.158	0.140	0.080	0.120	0.107	0.060
% BODY WEIGHT	0.054	0.069	0.037	0.059	0.058	0.029	0.039	0.045	0.021
Spleen (G)	0.721	0.942	0.550	0.889	0.647	0.540	0.550	0.752	0.520
% BODY WEIGHT	0.282	0.367	0.171	0.331	0.266	0.195	0.180	0.316	0.183

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 [] [] []

	INDIVIDUAL ORGA	N WEIG	HTS	
STUDY: 098 SEX: FEMALE	GROUP: 3F - 6.0 mg bas ALL FATES ALL DAYS		ices	
	ANIMAL ID: BALANCE NO.:	919	920	
	BODY WEIGHT (G)	308.8	254.5	
	Adrenals (pr) (G) % BODY WEIGHT	0.060 0.019	0.071 0.028	
	Brain (G) % BODY WEIGHT	2.150 0.696	1.937 0.761	
	Heart (G) % BODY WEIGHT	1.030 0.334	1.019 0.400	
	Kidneys (pr) (G) % BODY WEIGHT	2.370 0.767	2.234 0.878	
	Liver (G) % BODY WEIGHT	9.070 2.937	9.178 3.606	
	Ovaries (G) % BODY WEIGHT	0.150 0.049	0.108 0.042	

Spleen (G) % BODY WEIGHT

0.560 0.181 0.669

		TNDTV	DIIAT.	ORGAN I	VET CHTC	2			
STUDY: 098 SEX: FEMALE			4F - 18.0) mg base/k	g/day	/ -			• • • • • • • • • • • • • • • • • • • •
ANIMAL ID: BALANCE NO.:	941	942	943	944	945	946	947	948	949
BODY WEIGHT (G)	278.3	272.1	247.3	305.3	227.7	262.8	227.5	242.9	268.8
Adrenals (pr) (G)	0.080	0.050	0.106	0.070	0.088	0.087	0.107	0.079	0.040
% BODY WEIGHT	0.029	0.018	0.043	0.023	0.039	0.033	0.047	0.033	0.015
Brain (G)	1.830	1.920	2.009	2.170	1.811	2.076	1.934	1.943	1.910
% BODY WEIGHT	0.658	0.706	0.812	0.711	0.795	0.790	0.850	0.800	0.711
Heart (G)	1.050	1.090	0.836	1.090	0.926	1.062	0.931	1.289	0.950
% BODY WEIGHT	0.377	0.401	0.338	0.357	0.407	0.404	0.409	0.531	0.353
Kidneys (pr) (G)	2.480	2.180	2.021	2.660	2.165	2.505	2.061	2.198	1.920
% BODY WEIGHT	0.891	0.801	0.817	0.871	0.951	0.953	0.906	0.905	0.714
Liver (G)	9.500	7.690	9.116	10.210	8.668	10.296	9.318	10.550	8.030
% BODY WEIGHT	3.414	2.826	3.686	3.344	3.807	3.918	4.096	4.343	2.987
Ovaries (G)	0.040	0.110	0.207	0.110	0.118	0.209	0.163	0.113	0.090
% BODY WEIGHT	0.014	0.040	0.084	0.036	0.052	0.080	0.072	0.047	0.033
Spleen (G)	0.940	0.700	1.089	0.930	1.332	1.645	1.339	1.946	0.880
% BODY WEIGHT	0.338	0.257	0.440	0.305	0.585	0.626	0.589	0.801	0.327

.....

		INDIV	IDUAL (ORGAN I	WEIGHT	S			
STUDY: 098 SEX: FEMALE		GROUP: ALL FATES	4F - 18.0 ALL DA	mg base/k	g/day BALANCES	-			
ANIMAL ID: BALANCE NO.:	950	951	952	953	954	955	957	958	959
BODY WEIGHT (G)	242.8	225.1	2 22.1	306.3	297.1	247.0	305.1	217.8	310.0
Adrenals (pr) (G)	0.086	0.087	0.082	0.100	0.090	0.098	0.080	0.064	0.090
% BODY WEIGHT	0.035	0.039	0.037	0.033	0.030	0.040	0.026	0.029	0.029
Brain (G)	1.895	1.908	1.810	2.020	2.060	1.903	2.020	1.943	1.990
% BODY WEIGHT	0.780	0.848	0.815	0.659	0.693	0.770	0.662	0.892	0.642
Heart (G)	0.952	0.930	0.871	1.060	1.100	1.061	1.240	0.784	1.070
% BODY WEIGHT	0.392	0.413	0.392	0.346	0.370	0.430	0.406	0.360	0.345
Kidneys (pr) (G)	2.324	2.751	2.074	2.500	2.800	2.707	2.700	1.954	2.980
% BODY WEIGHT	0.957	1.222	0.934	0.816	0.942	1.096	0.885	0.897	0.961
Liver (G)	10.524	10.060	9.099	9.340	9.330	10.414	8.240	7.894	10.770
% BODY WEIGHT	4.334	4.469	4.097	3.049	3.140	4.216	2.701	3.624	3.474
Ovaries (G)	0.131	0.169	0.177	0.150	0.110	0.162	0.130	0.104	0.100
% BODY WEIGHT	0.054	0.075	0.080	0.049	0.037	0.066	0.043	0.048	0.032
Spleen (G)	1.406	1.228	1.333	0.700	0.910	1.545	0.720	1.160	0.700
% BODY WEIGHT	0.579	0.546		0.229	0.306	0.626	0.236	0.533	0.226

THIRTEEN WITH A	WEEK ORAL TOXICITY THIRTEEN WEEK RECO	STUDY OF WR 238 VERY PERIOD IN I	8605 RATS				T		
INDIVIDUAL ORGAN WEIGHTS									
STUDY: 098 SEX: FEMALE	GROUP: 4F - 18.0 mg bas ALL FATES ALL DAYS								
	ANIMAL ID: BALANCE NO.:	960				_			
	BODY WEIGHT (G)	256.8							
	Adrenals (pr) (G) % BODY WEIGHT	0.110 0.043							
	Brain (G) % BODY WEIGHT	1.970 0.767							
	Heart (G) % BODY WEIGHT	1.200 0.467							
	Kidneys (pr) (G) % BODY WEIGHT	2.310 0.900							
	Liver (G) % BODY WEIGHT	7.670 2.987							
	Ovaries (G) % BODY WEIGHT	0.080 0.031							
	Spleen (G) % BODY WEIGHT	0.610 0.238							

DRAFT

APPENDIX 10

Pathology Report

DRAFT PATHOLOGY REPORT FOR TRL STUDY NUMBER 098 THIRTEEN WEEK ORAL TOXICITY STUDY OF WR238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

PREPARED
BY
PATHOLOGY ASSOCIATES, INC.
10 WEST 35TH STREET
CHICAGO, IL 60616

FOR
TOXICOLOGY RESEARCH LABORATORY
UNIVERSITY OF ILLINOIS AT CHICAGO (UIC)
DEPARTMENT OF PHARMACOLOGY
P.O. BOX 6998
CHICAGO, IL 60680

SEPTEMBER 28, 1993

TABLE OF CONTENTS

SECT	ION TITLE I	PAGE
I	Pathology Narrative Summary of Experimental Design (Table I) Protocol-Required Tissues (Table II) Tissue Accountability Record (Table III) Report Codes Table Abbreviation List	10 10 11
II	Project Summary Table Males Females	15
Ш	Severity Summary Table Males Females	25
IV	Tabulated Animal Data Males Females	34
V	Correlation of Gross and Microscopic (Micro) Findings Males Females	69
VI	Quality Assurance Statement	122
VII	Appendix 1: Bone Marrow Report	124

Draft Pathology Report Toxicology Research Laboratory Study Number 098

SECTION I PATHOLOGY NARRATIVE

DRAFT PATHOLOGY REPORT

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

INTRODUCTION

This pathology report, submitted by Pathology Associates, Inc. (PAI) to Toxicology Research Laboratory (TRL), represents the pathology findings for the study designated as "Thirteen Week Oral Toxicity Study of WR238605 with a Thirteen Week Recovery Period in Rats," TRL Study Number 098.

EXPERIMENTAL DESIGN AND METHODS

Three groups, each composed of male and female CD® (Virus Antibody Free) rats, were given the test article (WR238605) once daily by gavage for at least 13 weeks, starting with Day 0. Dose levels administered are shown in the Summary of Experimental Design (Table I). A control group of male and female rats was included, and received test article vehicle (aqueous 1% methylcellulose/0.4% Tween 80) by gavage for at least 13 weeks, starting with Day 0. Animals designated for sacrifice at the end of the 13 week dosing period were dosed up to and including the day prior to their scheduled sacrifice and necropsy on Days 91 and 92 (study week 14). Designated recovery animals were dosed for 91 days and then held for a 13 week recovery period before being sacrificed and necropsied at the beginning of study week 27. Scheduled necropsies were performed according to TRL Standard Operating Procedures under the supervision of Ralph M. Bunte, DVM.

Tissues required by the protocol, except as noted in the Tissue Accountability Record (Table III), were processed in accordance with PAI Standard Operating Procedures. Protocol-required tissues from control and high dose animals sacrificed at the end of dosing were evaluated by light microscopy. Results of this evaluation were summarized, and pituitary gland, thyroid gland, liver, spleen, lung, kidney, and bone marrow were identified as potential target organs. These tissues from low and middle dose groups sacrificed at the end of dosing, and from control and high dose recovery groups, were then processed. The potential target organs from these animals were evaluated/ re-evaluated by light microscopy. When necessary, in order to resolve discrepancies in evaluation, slides were randomized and examined without knowledge of treatment group or sex. Following these evaluations, lung, kidney, bone marrow, and spleen were identified as target organs. Lungs from low and middle dose recovery groups were then processed and examined microscopically in order to evaluate test article-related effects seen in the lungs of high dose recovery group animals.

Most tissues that were not accounted for were from animals that died during the study. No test articlerelated changes occurred in mammary gland, parathyroid gland, pituitary gland, diaphragm, or costochondral junction. For this reason, the unaccountability of the few tissues missing from terminal sacrifice animals is believed not to have affected the outcome of the study.

Microscopic findings for terminal sacrifice animals from all groups are summarized in the Project Summary Tables (Section II). The mean group severity scores for these animals are found in the Severity Summary Tables (Section III). The mean group severity scores were determined by dividing the sum of all severity scores for a finding by the number of tissues examined. Microscopic findings in the protocol-required tissues for individual animals are presented in the Tabulated Animal Data Tables (Section IV). The correlation of the necropsy findings and histopathology findings are reported in the Correlation of Gross and Microscopic (Micro) Findings (Section V). The codes used as entries in these tables are explained in the Report Codes Table. Abbreviations used in these tables are explained in the Abbreviation List.

RESULTS AND DISCUSSION

The Results and Discussion section is divided into four parts: Unscheduled Deaths, Gross Lesions, Diagnostic Terms, and Histopathology Findings. The Diagnostic Terms portion lists and clarifies diagnostic terminology that may be unclear. Terms listed in the Diagnostic Terms portion of this section were not necessarily considered to be test article-related. The Histopathology Findings portion of this section reports the results and provides discussion of the histopathologic evaluation of the tissues.

Unscheduled Deaths

Five high dose group males died prior to the end of dosing, during weeks 2 (#0921, #0926, #0936, and #0937) and 8 (#0934). The cause of death for each of the four animals that died during week 2 could not be determined. Each of these animals had inflammation in the structures of the thoracic cavity or multifocal inflammation consistent with septicemia when tissues from these animals were evaluated microscopically. However, no injuries, such as esophagial lacerations, that would explain the inflammation were found during review of tissues from these animals. Also, microscopic changes that were found to be test article-related in animals sacrificed at the end of dosing were not present in these animals. Microscopic evaluation of tissues from animal #0934 revealed alveolar proteinosis in the lung, hemoglobin nephrosis, and renal hemosiderosis. These were found to be test article-related changes in animals sacrificed at the end of dosing. For these reasons, the death of animal #0934 was attributed to the test article. One high dose group female (#0956) died following CO₂ anesthesia for blood collection (per Study Director) during the recovery period (week 16).

Gross Lesions

Potentially treatment-related gross lesions were identified in the lungs of middle and high dose rats sacrificed at the end of dosing and after the recovery period. The lesions were morphologically consistent in all animals in which they occurred. They were descibed as multiple, irregular, white lesions on the pleura, which varied from focal to linear.

Diagnostic Terms

The morphologic characteristics of observations and lesions which require comment are presented in subsequent paragraphs to aid in the interpretation of the data.

Lung

Alveolar proteinosis consisted of two distinct components. First, there was pale, eosinophilic, amorphous to fibrillar material within alveoli. The second feature was discrete, large, round to oval cells which had abundant vacuolated cytoplasm. These cells were free in the lumina of alveoli and terminal bronchioles but did not appear to line alveolar septa. Occasionally, a few neutrophils were also present.

Chronic inflammation was seen in animals sacrificed after the recovery period. It was usually focal and subpleural. It consisted of interstitial fibrosis, mononuclear cell infiltration, and sometimes hyperplasia of alveolar and bronchiolar epithelium. Cholesterol clefts were also present in many of these foci.

In recovery animals, there were clusters of macrophages filling randomly scattered alveoli. These cells contained variable cytoplasmic granules that were positive for iron by Perl's stain and were non-acid-fast. These granules were identified as hemosiderin. Hemosiderin can be distinguished

from lipofuscin by iron and acid-fast stains. Hemosiderin is iron (Perl's stain) positive and acid-fast negative, while lipofuscin is iron negative and acid-fast positive.

Kidney

Hemoglobin nephrosis was characterized by proteinic droplets in the lumen of renal tubules and by degenerative changes in the tubular epithelium. The degenerative changes in tubular epithelium consisted of irregularly scalloped luminal cell borders, proteinic cytoplasmic droplets, cytoplasmic vacuolation, and necrosis.

Hemosiderin was deposited as variably-sized golden-brown granules in the cytoplasm of tubular epithelial cells.

Spleen

Hyperplasia of the spleen consisted of an increase in normal cellular components in the spleen. This resulted in sections of spleen that appeared histologically normal except for an increased cross-sectional size.

Bone Marrow

Hemosiderin deposition in the bone marrow consisted of golden-brown granules in macrophages in the histologic sections of bone marrow.

The remainder of the diagnoses used in this study were considered to be self-explanatory and were not discussed in this section.

Histopathology Findings

Lung

Among animals sacrificed at the end of dosing, alveolar proteinosis was diagnosed in 0 out of 10, 0 out of 10, 10 out of 10, and 5 out of 5 males, and in 0 out of 10, 0 out of 10, 10 out of 10, and 10 out of 10 females in the control, low, middle, and high dose groups, respectively. Mean group severity scores for this change were 0.00, 0.00, 1.70, and 2.80 in males, and 0.00, 0.00, 1.60, and 2.20 in females in the control, low, middle, and high dose groups, respectively. Alveolar proteinosis did not occur in males or in females sacrificed after the recovery period. The incidence and mean group severity scores for alveolar proteinosis in animals sacrificed at the end of dosing were interpreted as consistent with a dose-related response. This observation, in conjunction with resolution of this change in animals sacrificed after the recovery period, indicates alveolar proteinosis to be a test article-related change. This lesion corresponded to the gross lesions described in the lungs of middle and high dose animals sacrificed at the end of dosing.

Chronic inflammation in the lung was observed only in animals sacrificed after the recovery period. In recovery males, this change occurred in 0 out of 10, 0 out of 10, 5 out of 10, and 1 out of 10 animals in the control, low, middle, and high dose groups, with mean group severity scores of 0.00, 0.00, 0.50, and 0.20, respectively. In recovery females, this change occurred in 0 out of 10, 0 out of 10, 7 out of 10, and 5 out of 9 animals in the control, low, middle, and high dose groups, with mean group severity scores of 0.00, 0.00, 1.10, and 0.67, respectively. Chronic inflammation was focal or multifocal, randomly distributed, usually subpleural, and not always associated with gross lesions (see Gross Lesions). For these reasons, the observation of chronic inflammation in a single 5-6 micron thick section of lung was fortuitous. These observations account for the lack of a dose-related incidence and the low mean group severity scores for this change. A possible relationship between chronic inflammation and alveolar proteinosis in the lung is speculative, as these changes occurred at different points in time. Such a relationship seems likely, however, as alveolar proteinosis had resolved by the end of the recovery period, and no other change that would have resulted in chronic inflammation of the lung was noted in animals

sacrificed at the end of dosing. For these reasons, chronic inflammation in the lungs of recovery animals was interpreted as part of the resolution of alveolar proteinosis and was, thus, secondary to a direct test article-related effect.

Deposition of hemosiderin pigment occurred in 1 out of 10 control males sacrificed at the end of dosing, with a mean group severity score of 0.20. This hemosiderin was associated with an area of previous hemorrhage in alveoli. Among animals sacrificed after the recovery period, hemosiderin deposition in the lung occurred in 1 out of 10, 7 out of 10, and 8 out of 10 males, and in 0 out of 10, 8 out of 10, and 9 out of 9 females in the low, middle, and high dose groups, respectively. Mean group severity scores for this change in these animals were 0.10, 0.80, and 0.80 in males, and 0.00, 1.20, and 1.11 in females in the low, middle, and high dose groups, respectively. This change did not occur in the lungs of control males or females sacrificed after the recovery period. The hemosiderin in the lung of the low dose male sacrificed after the recovery period was in the interstitium rather than the alveoli. For this reason, the hemosiderin in this animal was considered unrelated to the hemosiderin which occurred in alveoli of middle and high dose group recovery animals. The hemosiderin in alveoli of the lungs of middle and high dose group recovery animals was initially thought to be lipofuscin. Staining selected lungs with Perl's stain and an acid-fast stain confirmed the pigment to be hemosiderin rather than lipofuscin. In view of changes in the kidneys (discussed below), this hemosiderin most likely resulted from the presence of hemoglobin in the proteinic material seen in alveolar proteinosis. Alveolar macrophages, as part of the resolution of alveolar proteinosis, phagocytized this hemoglobin and processed it to hemosiderin. These clusters of hemosiderin-laden macrophages had not yet been able to clear out of the lung at the time of the recovery sacrifice. For these reasons, hemosiderin in alveolar macrophages was also interpreted as secondary to a direct test article-related effect.

The changes described as alveolar proteinosis in the lungs of these rats are similar to those described as alveolar proteinosis in the Fischer 344 rat. The causes for alveolar proteinosis in the rat are not known, but altered vascular permeability and abnormal surfactant production and degradation have been suggested. These changes are also similar to changes related to chronic pulmonary edema in domestic animals. Altered vascular permeability as the mechanism for alveolar proteinosis is also suggested by hemosiderin in alveolar macrophages in recovery rats. Fragments of cell membrane from lysed erythrocytes could also have passed into alveoli and contributed to the cholesterol clefts in the chronic inflammation. This would further support increased vascular permeability as the cause of alveolar proteinosis. For these reasons, and due to incidence and mean group severity scores at the end of dosing and after the recovery period, alveolar proteinosis, chronic inflammation, and hemosiderin in alveolar macrophages were considered pathophysiologically-related processes. Alveolar proteinosis was interpreted as a direct test article-related effect, while chronic inflammation and hemosiderin deposits were secondary test article-related effects representing resolution of the alveolar proteinosis.

Kidney

Hemoglobin nephrosis occurred in middle and high dose animals sacrificed at the end of dosing. This change did not occur in control or low dose animals sacrificed at the end of dosing or in control and high dose recovery animals. Among animals sacrificed at the end of dosing, hemoglobin nephrosis occurred in 5 out of 10 and 5 out of 5 males, and in 4 out of 10 and 10 out of 10 females in the middle and high dose groups, respectively. Mean group severity scores for

¹ G.A. Boorman and S.L. Eustis, "Lung," <u>Pathology of the Fischer Rat. Reference and Atlas</u>, eds. G.A. Boorman, S.L. Eustis, M.R. Elwell, C.A.Montgomery, Jr., and W.F. MacKenzie, (San Diego: Academic Press, Inc., 1990), pp. 345-346.

² D.L. Dungworth, "Respiratory System," <u>Pathology of Domestic Animals</u>, eds. K.V.F. Jubb, P.C. Kennedy, and N. Palmer, (San Diego: Academic Press, Inc., 1985), pp. 407-448.

this change were 0.50 and 2.20 in males, and 0.40 and 1.50 in females in the middle and high dose groups, respectively.

Hemosiderin deposition did not occur in the tubular epithelium of control and low dose males and females sacrificed at the end of dosing. This change did occur in 1 out of 10 and 5 out of 5 males, and in 2 out of 10 and 10 out of 10 females in the middle and high dose groups, respectively, sacrificed at this time. Mean group severity scores were 0.10 and 2.20 in males, and 0.20 and 2.20 in females in the middle and high dose groups, respectively. Among animals sacrificed at the end of the recovery period, this change occurred in 0 out of 10 and 2 out of 10 males, and in 0 out of 10 and 1 out of 9 females in the control and high dose groups, respectively. Mean group severity scores for this change were 0.00 and 0.20 in males, and 0.00 and 0.11 in females in the control and high dose groups, respectively.

Hemoglobin that is removed or released from erythrocytes is normally cleared from the blood by combining with heme-binding proteins which are then removed from the circulation. When heme-binding proteins are overloaded, such as in hemolytic anemia, some unbound hemoglobin will form dimers which can pass through the glomerular filtration system and appear as eosinophilic (i.e. proteinic) droplets in the proximal convoluted tubule. Tubular epithelial cells will resorb and metabolize the hemoglobin dimers, but can be damaged if stromal elements of lysed erythrocytes also pass into the glomerular filtrate.³ The hemosiderin deposited in tubular epithelium is additional evidence of hemoglobin passing into the glomerular filtrate. Changes in the lungs suggested that pulmonary vascular permeability was increased. It is less clear whether these renal changes were associated with normal or increased vascular permeability in the glomerulus. For these reasons, and due to incidence and mean group severity scores at the end of dosing and after the recovery period, hemoglobin nephrosis and hemosiderin deposition in tubular epithelium were interpreted as secondary to increased erythrocyte destruction rather than as direct test article-related effects.

Bone Marrow

Evaluation of sections of bone marrow revealed deposition of hemosiderin in 2 out of 5 males and in 5 out of 10 females in the high dose group sacrificed at the end of dosing. Mean group severity scores for this change were 0.40 in high dose males and 0.50 in high dose females. This change did not occur in control, low, or middle dose animals sacrificed at the end of dosing, or in control and high dose animals sacrificed after the recovery period. Evaluation of femoral bone marrow smears of male and female treated animals sacrificed at the end of dosing revealed no treatment-related effect in the M:E ratio (Appendix 1). Hemosiderin deposition in the bone marrow and kidney suggests increased erythrocyte destruction. Increased erythrocyte destruction must have been mild, however, as evidenced by the absence of a decrease in the M:E ratio at the end of dosing. For these reasons, hemosiderin deposition in the bone marrow was interpreted as secondary to mildly increased erythrocyte destruction

Spleen

Among animals sacrificed at the end of dosing, splenic hyperplasia was diagnosed in 0 out of 10, 4 out of 10, and 5 out of 5 males, and in 0 out of 10, 0 out of 10, and 8 out of 10 females in the low, middle, and high dose groups, respectively. Mean group severity scores for this finding in these animals were 0.00, 0.60, and 2.20 in males, and 0.00, 0.00, and 1.50 in females in the low, middle, and high dose groups, respectively. This change did not occur in control animal sacrificed at the end of dosing or in control and high dose animals sacrificed after the recovery period. The mechanism by which splenic hyperplasia occurred is not clear. Antigenic stimulation of splenic lymphocytes, generalized stimulation of sinusoidal phagocytes, or both seem most likely, as this change was not associated with increased hemosiderin deposits or extramedullary hematopoiesis.

³ N.F. Cheville, Cell Pathology, (Ames: The Iowa State University Press, 1983), p. 578.

Draft Pathology Report Toxicology Research Laboratory Study Number 098

Based on dosed-related incidence and mean group severity scores in animals sacrificed at the end of dosing, and on resolution of this change in recovery animals, splenic hyperplasia was interpreted as a direct test article-related effect.

Other Lesions

All other lesions seen were interpreted to be incidental changes and not related to the test article.

In summary, the principal pathology findings in this study were those in the lungs, kidney, bone marrow and spleen. Alveolar proteinosis in the lung was a direct test article-related change in middle and high dose groups. While this change was morphologically distinct, the mechanism of its development was less clear. The two most likely mechanisms would be alteration of the vascular permeability, causing persistent alveolar edema, or alteration of surfactant production and degradation. Chronic inflammation and hemosiderin deposition in alveolar macrophages were considered secondary effects of the test article, representing resolution of alveolar proteinosis. Changes in the kidney and bone marrow were considered secondary to increased erythrocyte destruction. These changes had resolved or were resolving at the end of the recovery period. Splenic hyperplasia was associated with proportional increases in the size of lymphoid and sinusoidal elements rather than with extramedullary hematopoiesis or hemosiderin deposition. Based on incidence and mean group severity scores, splenic hyperplasia was interpreted as a direct test article-related effect in middle and high dose groups at the end of dosing, but the mechanism of its occurrence was not clear.

CONCLUSIONS

Under the conditions of this study, oral administration of WR238605 to rats for thirteen weeks was associated with changes in the lungs, kidneys, bone marrow, and spleen. Alveolar proteinosis was a direct test article-related change in the lungs of middle and high dose animals sacrificed at the end of dosing. Chronic inflammation and hemosiderin deposition in alveolar macrophages occurred in lungs of middle and high dose animals sacrificed after the recovery period. These changes were interpreted as part of the resolution of alveolar proteinosis and were, thus, considered to be secondarily related to the test article.

Hemoglobin nephrosis and hemosiderin deposition occurred in the kidneys of middle and high dose animals at the end of dosing, but were resolving or had resolved by the end of the recovery period. Hemosiderin deposition also occurred in the bone marrow of high dose animals sacrificed at the end of dosing, but had resolved after the recovery period. These changes in kidney and bone marrow were interpreted as secondary to mildly increased erythrocyte destruction, and were considered secondary test article-related effects. This was consistent with the results of bone marrow smear evaluations.

Splenic hyperplasia in the middle and high dose groups was interpreted as a direct test article-related effect, but no mechanism for its occurrence was identified.

The no-effect level was clearly the low dose level (0.5 mg base/kg/day) for direct and secondary test article-related effects. All of the changes observed at the higher doses had resolved or were resolving by the end of the recovery period.

Michael J. Tomlinson, DVM, Ph.D.	Date
Diplomate ACVP	

TABLE I SUMMARY OF EXPERIMENTAL DESIGN

Treatment Group	Dose Level (mg base/kg/day)	Number of Males	Number of Females
1	0	10+10*	10+10*
2	0.5	10+10*	10+10*
3	6.0	10+10*	10+10*
4	18.0	10+10*	10+10*

^{*}Recovery Animals

TABLE II PROTOCOL-REQUIRED TISSUES

Adrenal glands	Pituitary
Brain	Prostate
Cecum	Rib with costochondral junction
Colon	Salivary gland (submaxillary)
Diaphragm	Sciatic nerve
Duodenum	Skeletal muscle
Esophagus	Skin with mammary gland
Eyes with harderian glands	Spinal cord (thoracic)
Femoral marrow smear	Spleen
Heart	Sternum with marrow
Gross lesions	Stomach
Ileum	Testes with epididymides
Jejunum	Thymus
Kidneys	Thyroid gland with parathyroids
Liver	Tongue
Lungs/Bronchi	Trachea
Lymph node (mesenteric)	Urinary bladder
Ovaries	Uterus
Pancreas	

TABLE III TISSUE ACCOUNTABILITY RECORD

TREATMENT	ANIMAL			REASON TISSUE
GROUP	NUMBER	FATE	TISSUE	NOT PRESENT
1	0803	TS	Mammary gland	U
1	0817	TS	Parathyroid gland	U
11	0821	TS	Mammary gland	U
1-R	0835	TS	Pituitary gland	E
1	0839	TS	Parathyroid gland	U
2	0849	TS	Pituitary gland	E
4	0924	TS	Diaphragm	M
4	0925	TS	Costochondral junction	U
4	0926	ND	Duodenum	A
4	0926	ND	Eyes	A
4	0926	ND	Mammary gland	U
4	0934	ND	Salivary gland	M
4	0934	ND	Parathyroid gland	U
4	0934	ND	Mesenteric lymph node	M
4	0936	ND	Pituitary gland	M
4	0936	ND	Trachea	Α
4	0936	ND	Thyroid gland	Α
4	0936	ND	Colon	Α
4	0936	ND	Ileum	A
4	0936	ND	Cecum	Α
4	0936	ND	Mesenteric lymph node	M
4	0936	ND	Eyes	A
4	0937	ND	Thymus	U
4	0937	ND	Parathyroid gland	Ü
4	0938	TS	Parathyroid gland	U
4-R	0956	ND	Parathyroid gland	U
4-R	0956	ND	Mammary gland	U
4-R	0956	ND	Sciatic nerve	Ü

TS: Terminal Sacrifice

ND: Natural Death

U: Unavailable/Unsuitable for microscopic evaluation

M: Not present in wet tissue at trimming
E: Not present in cassette at embedding
A: Autolysis precludes evaluation

Report Codes Table

DRAFT

A. Codes applying to organs

- N Tissues within normal histological limits
- A Autolysis precluding adequate evaluation
- P Paired organ missing
- U Tissues unsuitable for complete evaluation
- S Tissues not applicable to animal
- * Tissues not required by protocol

B. Codes applying to microscopic diagnoses

- 1 minimal
- 2 mild
- 3 moderate
- 4 marked
-) focal
- locally extensive
- > multifocal
- P Present
- B Neoplasm, benign
- M Neoplasm, malignant without metastasis
- C Neoplasm, malignant with metastasis
- X Metastatic site (+)
- No data entered

HISTOPATHOLOGY TABLES

ABBREVIATION LIST

Cytopl - Cytoplasm

Epith - Epithelium

Granulomat - Granulomatous

Hyperpl - Hyperplasia

Infiltr - Infiltrate

Inflam - Inflammation

Perivasc - Perivascular

R - Recovery

Regenerat - Regeneration

Seminif - Seminiferous

Tubulr - Tubular

Vacuo - Vacuolation

Draft Pathology Report Toxicology Research Laboratory Study Number 098

SECTION II
PROJECT SUMMARY TABLE

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

PROJECT ID. NO: TRL098 MEEKS: 14-27			FATES:		nat Secr	ifice	•						3	7	PA	Œ 15	
WEEKS. 14 27										ت	uu	ΓΛ	u	u			
GROUP:			1		2		3		4	1	- R	2	- R	3	- R	4	- R
NUMBER OF ANIMALS:			10		10		10		5		10	1	10	1	0		10
					_					1000	- 1 - 20						
		#	*	#	*	#	*	#	*	#	*	#	*	#	*	#	8
BRAIN	# Ex	10		0		0		5		0		0		0		0	
PITUITARY GLAND	# Ex	10		9		10		5		10		0		0		10	
Pars distalis, cyst		1	(10)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		0	(0)
Pars distalis, hyperplasia		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		1	(10)
Pars distalis, vacuo, cyto	pl	9	(90)		(100)		(100)		(100)		(100)	0		0		9	(90)
Pars intermedia, cyst		0	(0)	0	(0)	0	(0)	0	(0)	1	. ,	0		0		0	(0)
Rathke's cleft, tubulr hyp	erpl	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		1	(10)
SPINAL CORD, THORACIC	# Ex	10		0		0		5		0		0		0		0	
THYMUS	# Ex	10		0		0		5		0		0		0		0	
Congestion		2	(20)	0		0		0	(0)	0		0		0		0	
SALIVARY GLAND	# Ex	10		0		0		5		0		0		0		0	
PANOREAS	# Ex	10		0		0		5		0		0		0		0	
Inflammation, chronic		1	(10)	0		0		0	(0)	0		0		0		0	
Lobute, degeneration		0	(0)	0		0		1	(20)	0		0		0		0	
ADRENAL GLAND	# Ex	10		0		0		5		0		0		0		0	
Cortex, vacuolation, cytop	tasm	6	(60)	0		0		2	(40)	0		0		0		0	
TRACHEA	# Ex	10		0		0		5		0		0		0		0	
TRACTICA	# LA			J		J				ŭ		Ü		Ü		J	
THYROID GLAND	# Ex	10		10		10		5		10		0		0		10	
PARATHYROID GLAND	# Ex	9		0		0		4		0		0		0		0	
ESOPHAGUS	# Ex	10		0		0		5		0		0		0		0	

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

			-														
PROJECT ID. NO: TRL098 WEEKS: 14-27			ATES:		al Sec	rifice					59		ß	T	P#.	GE 16	
GROUP:			1		2		3		4	1	- R		2 – R		- R	4	- R
NUMBER OF ANIMALS:			10		10		10		5		10		10	•	10		10
										-							
HEART #	Ex	#	*	#	*	#	*	# 5	*	#	*	#	*	#	*	#	*
Cardiomyopathy	EX	4	(40)	0		0		1	(20)	0		0		0		0	
car a ramy opportry			(,						(,							•	
DUODENUM (Ex	10		0		0		5		0		0		0		0	
COLON	Ex	10		0		0		5		0		0		0		0	
STOMACH I	Ex	10		0		0		5		0		0		0		0	
LIVER I	Ex	10		10		10		5		10		0		0		10	
Hepatocyte, vacuo, cytoplasm		1	(10)	3	(30)	0	(0)	0	(0)	0	(0)	0		0		1	(10
Inflammation, subacute		2	(20)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		0	(0
Lobular hyperplasia		0	(0)	0	(0)	0	(0)	0	(0)	1	(10)	0		0		0	(0
Periportal, infiltr, cellular	•	0	(0)	0	(0)	0	(0)	0	(0)	1	(10)	0		0		0	(0
Pigment, hemosiderin		0	(0)	0	(0)	0	(0)	1	(20)	0	(0)	0		0		0	(0)
SPLEEN I	Ex	10		10		10		5		10		0		0		10	
Hyperplasia		0	(0)	0	(0)	4	(40)	5	(100)	0	(0)	0		0		0	(0)
Pigment, hemosiderin		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		1	(10)
JEJUNUM #	Ex	10		0		0		5		0		0		0		0	
LUNG i	Ex	10		10		10		5		10		10		10		10	
Alveolar epithelium, hyperpl		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	1	(10)
Alveolar hystiocytosis		1	(10)	0	(0)		(0)	0		0	(0)	0	(0)	0	(0)	3	(30
Alveolar proteinosis		0	(0)	0	(0)	10	(100)	5	(100)	0	(0)	0	(0)	0	(0)	0	(0
Hemorrhage		2	(20)	0	(0)	0	(0)	0	(0)	2	(20)	4	(40)	2	(20)	0	(0
Inflammation, chronic		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	5	(50)	1	(10
Inflammation, perivasc, acute		1	(10)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0
Inflammation, subacute		4	(40)	0	(0)	3	(30)	0	(0)	2	(20)	3		3	(30)		(20)
Pigment, hemosiderin		1	(10)	0	(0)	0	(0)	0	(0)	0	(0)	1	(10)	7	(70)	8	(80

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

PROJECT ID. NO: TRL098 WEEKS: 14-27			TATES: 1		at Secr	ifice							9	PA(Œ 17		
GROUP: NUMBER OF ANIMALS:			1 10		2 10		3 10		5		– R 10	2	– R O	_	- R	4	– R 10
KIDNEY	# Ex	# 10	*	#	*	# 10	*	# 5	*	# 10	*	# 0	*	# 0	*	# 10	*
Contex, cyst	# =x	0	(0)	0	(0)	0	(0)	0	(0)	1	(10)	0		0		0	(0)
Infiltrate, cellular		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		1	(10)
Nephropathy		4	(40)	0	(0)	0	(0)	0	(0)	2	(20)	0		0		1	(10)
Nephrosis, hemoglobin		0	(0)	0	(0)	5	(50)	5	(100)	0	(0)	0		0		0	(0)
Pigment, hemosiderin		0	(0)	0	(0)	1	(10)	5	(100)	0	(0)	0		0		2	(20)
Renal tubule, dilatation		1	(10)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		0	(0)
Renal tubule, epith, reg	enerat	0	(0)	0	(0)	1	(10)	0	(0)	1	(10)	0		0		0	(0)
URINARY BLADDER	# Ex	10		0		0		5		0		0		0		0	
Calculus		3	(30)	0		0		1	(20)	0		0		0		0	
Epithelium, ulcer		1	(10)	0		0		0	(0)	0		0		0		0	
PROSTATE	# Ex	10		0		0		5		0		0		0		0	
Inflammation, subacute		1	(10)	0		0		0	(0)	0		0		0		0	
SKIN	# Ex	10		0		0		5		0		0		0		0	
MAMMARY GLAND	# Ex	9		0		0		5		0		0		0		0	
ILEUM	# Ех	10		0		0		5		0		0		0		0	
CECUM	# Ex	10		0		0		5		0		0		0		0	
LYMPH NODE, MESENTERIC	# Ex	10		0		0		5		0		0		0		0	
SKELETAL MUSCLE	# Ex	10		0		0		5		0		0		0		0	
SCIATIC NERVE	# Ex	10		0		0		5		0		0		0		0	

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

	_								· · · · ·								
PROJECT ID. NO: TRL098		FATES: Terminal Secrifice SEX: MALE								0	Λ	R	77	PAG	E 18		
WEEKS: 14-27		S	EX: MAI	LE.							\square	[4]	۲	Ш			
GROUP:			1		2		3		4	1	- R	2	– R	3	- R	4	- R
NUMBER OF ANIMALS:			10		10		10		5	1	10	1	0	1	0	1	0
		#	*	*	*		*		*		*		*		*		*
TESTES	# Ex	10		0		0		5		0		0		0		0	
Seminif tubules, giant c	ells	0	(0)	0		0		1	(20)	0		0		0		0	
EPIDIDYMIS	# Ex	10		0		0		5		0		0		0		0	
TONGUE	# Ex	10		0		0		5		0		0		0		0	
7011002														•			
						_				_		_		_		_	
DIAPHRAGM	# Ex	10		0		0		4		0		0		0		0	
RIB	# Ex	10		0		0		5		0		0		0		0	
COSTOCHONDRAL JUNCTION	# Ex	10		0		0		4		0		0		0		0	
STERNUM	# Ex	10		0		0		5		0		0		0		0	
BONE MARROW	# Ex	10		10		10		5		10		0		0		10	
Pigment, hemosiderin	#	0	(0)	0	(0)	0	(0)		(40)	0	(0)	0		0		0	(0)
- Grants France rate 111		-	(-,	-	\- <i>\</i>	-		_	,	-	\-/			_		-	(-)
	# 5	10		0		0		5		0		0		0		0	
EYE	# Ex	10		U		U		>		U		U		U		0	
HARDERIAN GLAND	# Ex	10		0		0		5		0		0		0		0	

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

PROJECT ID. NO: TRL098 WEEKS: 14-27			FATES: 1		al Secr	ifice					AF	PA	GE 19
GROUP:			1		2		3		4	1 - R	2 - R	3 - R	4 - R
NUMBER OF ANIMALS:			10		10		10		10	10	10	10	9
			*		*		*		*	# %	# %	# %	
BRAIN	# Ex		~	o	~	ō	~	10	~	0	0	0	0
PITUITARY GLAND	# Ex	10		10		10		10		9	0	0	9
Pars distalis, adenoma		0	(0)	0	(0)	0	(0)	0	(0)	2 (22)	0	0	0 (0)
Pars distalis, cyst		1	(10)	0	(0)	0	(0)	1	(10)	0 (0)	0	0	0 (0)
Pars distalis, vacuo, cytop	ol	0	(0)	0	(0)	0	(0)	0	(0)	2 (22)	0	0	0 (0)
Pars intermedia, cyst		0	(0)	0	(0)	0	(0)	0	(0)	1 (11)	0	0	0 (0)
SPINAL CORD, THORACIC	# Ex	10		0		0		10		0	0	0	0
THYMUS	# Ex	10		0		0		10		0	0	0	0
SALIVARY GLAND	# Ex	10		0		0		10		0	0	0	0
PANCREAS	# Ex	10		0		0		10		0	0	0	0
ADRENAL GLAND	# Ex	10		0		0		10		0	0	0	0
Contex, cystic degeneration		1	(10)	0		0		0	(0)	0	0	0	0
Cortex, pigment, Lipofuscir		0	(0)	0		0		2	(20)	0	0	0	0
TRACHEA	# Ex	10		0		0		10		0	0	0	0
THYROID GLAND	# Ex	10		10		10		10		10	0	0	9
PARATHYROID GLAND	# Ex	9		0		0		10		0	0	0	0
Fibrosis			(11)	0		0		0	(0)	0	0	0	0
ESOPHAGUS	# Ex	10		0		0		10		0	0	0	0

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

PROJECT ID. NO: TRL098		F	ATES: 1	Germin	al Secr	rific	•							57	PA	GE 20	
WEEKS: 14-27		S	EX: FE	1ALE							lñ	/4\					
					•		-				– R	u u	u	u ,	_		
GROUP: NUMBER OF ANIMALS:			1		10		3 10		10		-к 10		! – R 10	_	– R 10	4	9
NUMBER OF ANIMALS.			10		10		10		10				10		10		,
			*	*	*	#	*		*		*		*		*		
HEART	# Ex	10	•	0	•	0	•	10	•	0	•	0	*	0	•	0	
Cardiomyopathy		0	(0)	0		0		2	(20)	0		0		0		0	
Hemorrhage		1	(10)	0		0		0	(0)	0		0		0		0	
DUODENUM	# Ex	10		0		0		10		0		0		0		0	
	# =													Ū		Ū	
COLON	# Ex	10		0		0		10		0		0		0		0	
STOMACH	# Ex	10		0		0		10		0		0		0		0	
Non-glandular, inflammatio		1	(10)	0		0		0	(0)	0		0		0		0	
LIVER	# Ex	10		10		10		10		10		0		0		9	
Basophilic focus		0	(0)	1	(10)	0	(0)	0	(0)	0	(0)	0		0		0	(
Bile duct, hyperplasia		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		4	(4
Hepatocyte, vacuo, cytopla	SM	0	(0)	0	(0)	0	(0)	0	(0)	1	(10)	0		0		0	(
Infiltrate, cellular		0	(0)	0	(0)	3	(30)	0	(0)	0	(0)	0		0		0	(
Inflammation, subacute		3	(30)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		0	(
Periportal, infiltr, cellu	lar	0	(0)	1	(10)	0	(0)	0	(0)	0	(0)	0		0		1	(1
Pigment, hemosiderin		0	(0)	0	(0)	2	(20)	0	(0)	0	(0)	0		0		0	(
Portal, fibrosis		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		1	(1
SPLEEN	# Ex	10		10		10		10		10		0		0		9	
Hyperplasia	-	0	(0)	0	(0)	0	(0)	8	(80)	0	(0)	0		0		0	(
Pigment, hemosiderin		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		1	
JEJUNUM	# Ех	10		0		0		10		0		0		0		0	
LUNG	# Ex	10		10		10		10		10		10		10		9	
Alveolar hystiocytosis		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	3	(3
Alveolar proteinosis		0	(0)	0	(0)		(100)		(100)	0	(0)	0	(0)	0	(0)	0	(
Hemorrhage		1	(10)	0	(0)	0	(0)	0	(0)	0	(0)	1	(10)	0	(0)	0	Ò
Inflammation, acute		0	(0)	0	(0)	0	(0)	2	(20)	0	(0)	0	(0)	0	(0)	0	(
Inflammation, chronic		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	7	(70)	5	(5
Inflammation, subacute		2	(20)	0	(0)	5	(50)	1	(10)	0	(0)	0	(0)	1	(10)	0	(

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

PROJECT ID. NO: TRL098 WEEKS: 14-27			ATES: 1		nal Secr	ifice	•						B	T	PA	GE 21	
GROUP:			1		2		3		4		- R	2	- R	3	- R	4	6 – R
NUMBER OF ANIMALS:			10		10		10		10		10		10	_	10		9
		*	*	#	*		*		*		*		*		*		*
LUNG	# Ex	-	•	10	•	10	•	10	•	10	•	10	•	10	•	9	•
Pigment, hemosiderin		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	8	(80)	9	(100)
KIDNEY	# Ex	10		10		10		10		10		0		0		9	
Cortex, cyst		0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0		0		1	, ,
Nephrocalcinosis		7	(70)	6	(60)	5	(50)	4	(40)	6	(60)	0		0		7	(78)
Nephropathy Nephrosis, hemoglobin		0	(0) (0)	0	(0) (0)	0	(0) (40)	10	(0) (100)	0	(0) (0)	0		0		1	(11) (0)
Pigment, hemosiderin		0	(0)	0	(0)	2	(20)		(100)	0	(0)	0		0		1	(11)
Renal tubule, casts, prof	teinic	0	(0)	0	(0)	0	(0)	0	(0)	1		0		0		0	(0)
URINARY BLADDER	# Ex	10		0		0		10		0		0		0		0	
SKIN	# Ex	10		0		0		10		0		0		0		0	
MAMMARY GLAND	# Ex	9		0		0		10		0		0		0		0	
ILEUM	# Ex	10		0		0		10		0		0		0		0	
CECUM	# Ex	10		0		0		10		0		0		0 .		0	
LYMPH NODE, MESENTERIC	# Ex	10		0		0		10		0		0		0		0	
SKELETAL MUSCLE	# Ex	10		0		0		10		0		0		0		0	
SCIATIC NERVE	# Ex	10		0		0		10		0		0		0		0	
OVARY	# Ex	10		0		0		10		0		0		0		0	

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

·				-													
PROJECT ID. NO: TRL098 WEEKS: 14-27			FATES: 1		al Seci	ifice						$\sqrt{\Lambda}$	ß	T	PAG	E 22	
WLERS: 14 27		•	.	- LL						U			Ц	Ц			
GROUP:			1		2		3		4	1	- R	2	- R	3 -	- R	4	- R
NUMBER OF ANIMALS:			10		10	•	10		10		10	1	0	1	0		9
			*		*		*		*		*	-	*		*	*	*
UTERUS	# Ex	10	•	0	•	0	•	10	•	0	•	0	•	0	•	0	•
Deciduoma		1	(10)	0		0		0	(0)	0		0		0		0	
Dilatation		3	(30)	0		0		3	(30)	0		0		0		0	
Hemorrhage		1	(10)	0		0		0	(0)	0		0		0		0	
Inflammation, acute		1	(10)	0		0		0	(0)	0		0		0		0	
TONGUE	# Ex	10		0		0		10		0		0		0		0	
DIAPHRAGM	# Ex	10		0		0		10		0		0		0		0	
RIB	# Ex	10		0		0		10		0		0		0		0	
COSTOCHONDRAL JUNCTION	# Ex	10		0		0		10		0		0		0		0	
STERNUM	# Ex	10		0		0		10		0		0		0		0	
BONE MARROW	# Ex	10		10		10		10		10		0		0		9	
Pigment, hemosiderin		0	(0)	0	(0)	0	(0)	5	(50)	0	(0)	0		0		0	(0)
EYE	# Ex	10		0		0		10		0		0		0		0	
HARDERIAN GLAND	# Ex	10		0		0		10		0		0		0		0	
Infiltrate, cellular		0	(0)	0		0		1	(10)	0		0		0		0	
Inflammation, subacute		1		0		0		0	(0)	0		0		0		0	

Project Summary Table

SUMMARY: Incidence of NEOPLASTIC and NON-NEOPLASTIC Microscopic Findings

PROJECT ID. NO: TRL098 WEEKS: 14-27		ATES: T		at Secr	ifice							3	T	PAG	Æ 23	
GROUP: NUMBER OF ANIMALS:		1		2 10		3 10		10		- R 10	_	– R 10	_	- R 10	4	- R 9
OTHER TISSUES AND LESIONS:	*	*	#	*	#	8	#	*	#	8	#	*	*	*	#	*
SKIN, EAR - Inflam, granulomat SKIN - Granuloma, foreign body SKIN, HEAD - Inflam, chronic	0 0 1	(0) (0) (10)	0 0 0	(0) (0) (0)	0 0 0	(0) (0) (0)		(10) (10) (0)	0 0 0	(0) (0) (0)	0 0 0	(0) (0) (0)	0 0 0	(0) (0) (0)	0	(0) (0) (0)

Draft Pathology Report Toxicology Research Laboratory Study Number 098

SECTION III SEVERITY SUMMARY TABLE

Severity Summary Table

PROJECT ID. NO: TRL098 WEEKS: 14-27		F	FATES: SEX:		nal Secr	ifice					<u> </u>		ß	T	PAI	GE 25	i
GROUP: NUMBER OF ANIMALS:		10	1	10	2	10	3	5	4	1	- R		- R	3 10	- R	4	– R
BRAIN	# Ex	# 10	SEV	#	SEV	#	SEV	5	SEV	# 0	SEV	# 0	SEV	# 0	SEV	#	SEV
PITUITARY GLAND Pars distalis, hyperplasia Pars distalis, vacuo, cyto Rathke's cleft, tubulr hype	pl	0	0.90	9 0 9 0	1.11	10 0 10 0	1.50	5 0 5 0	1.40	10 0 10 0	1.30	0 0 0		0 0 0		9	0.10 1.00 0.10
SPINAL CORD, THORACIC	# Ех	10		0		0		5		0		0		0		0	
THYMUS Congestion	# Ек		0.30	0		0		5 0		0 0		0		0		0	
SALIVARY GLAND	# Ex	10		0		0		5		0		0		0		0	
PANCREAS Inflammation, chronic Lobule, degeneration	# Ex	10 1 0	0.10	0 0 0		0 0 0		5 0 1	0.20	0 0 0		0 0 0		0 0 0		0 0 0	
ADRENAL GLAND Cortex, vacuolation, cytop	#Ex		0.70	0		0		5	0.40	0		0		0		0 0	
TRACHEA	# Ex	10		0		0		5		0		0		0		0	
THYROID GLAND	# Ex	10		10		10		5		10		0		0		10	
PARATHYROID GLAND	# Ex	9		0		0		4		0		0		0		0	
ESOPHAGUS	# Ex	10		0		0		5		0		0		0		0	

09~Sep-1993

PROJECT ID. NO: TRL098 WEEKS: 14-27		F	ATES:		nal Secr	rifice	•						ß	Ţ	PA	GE 26	
GROUP: NUMBER OF ANIMALS:	2,467,000,000	10	1	10	2	10	3	5	4	1 10	- R	2	– R	3 10	- R	10	- R
HEART (Ex	# 10 4	SEV 0.40	# 0 0	SEV	# 0 0	SEV	# 5	SEV 0.20	# 0 0	SEV	# 0 0	SEV	0	SEV	0	SEV
DUODENUM	Ex	10		0		0		5		0		0		0		0	
COLON	Ex	10		0		0		5		0		0		0		0	
STOMACH	Ex	10		0		0		5		0		0		0		0	
LIVER Hepatocyte, vacuo, cytoplasm Inflammation, subacute Lobular hyperplasia Periportal, infiltr, cellular Pigment, hemosiderin	Ex	10 1 2 0 0	0.10 0.20	10 3 0 0 0	0.40	10 0 0 0 0		5 0 0 0 0	0.20	10 0 0 1 1	0.20	0 0 0 0 0		0 0 0 0 0		10 1 0 0 0	0.10
SPLEEN Hyperplasia Pigment, hemosiderin	Εx	10 0 0		10 0 0		10 4 0	0.60	5 5 0	2.20	10 0 0		0 0 0		0 0 0		10 0 1	0.10
JEJUNUM #	Ex	10		0		0		5		0		0		0		0	
LUNG Alveolar epithelium, hyperpl Alveolar hysticcytosis Alveolar proteinosis Hemorrhage Inflammation, chronic Inflammation, perivasc, acute	Ex	10 0 1 0 2 0	0.10 0.30 0.10	10 0 0 0 0 0		10 0 0 10 0 0	1.70	5 0 5 0 0	2.80	10 0 0 0 2 0	0.20	10 0 0 0 4 0	0.40	10 0 0 0 2 5	0.20	10 1 3 0 0 1	0.10 0.30
Inflammation, subacute Pigment, hemosiderin		1	0.60	0		0	0.30	0		0	0.20		0.30	3 7	0.30	2 8	0.20 0.80

PROJECT ID. NO: TRL098 WEEKS: 14-27		FATES: SEX:	Terminal Secr	rifice			AF	PAG	E 27
GROUP: NUMBER OF ANIMALS:		1	10	3 10	5	1 - R 10	2 - R 10	3 - R 10	4 - R 10
KIDNEY Infiltrate, cellular Nephropathy Nephrosis, hemoglobin Pigment, hemosiderin Renal tubule, dilatation Renal tubule, epith, regeneral	Ex '	# SEV 0 0 4 0.40 0 0 1 0.10	# SEV 10 0 0 0 0	# SEV 10 0 0 5 0.50 1 0.10 0	# SEV 5 0 0 5 2.20 5 2.20 0 0	# SEV 10 0 2 0.20 0 0 0	# SEV 0 0 0 0 0	# SEV 0 0 0 0 0	# SEV 10 1 0.10 1 0.10 0 2 0.20 0
URINARY BLADDER # Epithelium, ulcer	Ex 1	0 1 0.10	0 0	0	5 0	0	0	0 0	0
PROSTATE # Inflammation, subacute	Ex 1	0 1 0.10	0	0	5 0	0	0	0	0
SKIN #	Ex 1	0	0	0	5	0	0	0	0
MAMMARY GLAND #	Ex	9	0	0	5	0	0	0	0
ILEUM #	Ex 1	0	0	0	5	0	0	0	0
CECUM #	Ex 1	0	0	0	5	0	0	0	0
LYMPH NODE, MESENTERIC #	Ex 1	0	0	0	5	0	0	0	0
SKELETAL MUSCLE #	Ex 1	0	0	0	5	0	0	0	0
SCIATIC NERVE #	Ex 1	0	0	0	5	0	0	0	0
TESTES # Seminif tubules, giant cells	Ex 1		0 0	0	5 1 0.20	0	0	0	0 0

Severity Summary Table

PROJECT ID. NO: TRL098 WEEKS: 14-27		FATES: Termin SEX: MALE	mal Secrifice	•			o both	D PAGE	28
GROUP: NUMBER OF ANIMALS:	1	1 0 10	2	3					4 - R 10
EPIDIDYMIS	# Ex 10	SEV #	SEV #	SEV #			# SEV 0		# SEV 0
TONGUE	# Ex 10	0	0	5	C	0	0	0	0
DIAPHRAGM	# Ex 10	0	0	4	C		0	0	0
RIB	# Ex 10	0	0	5	C	ם פ	0	0	0
COSTOCHONDRAL JUNCTION	# Ex 10	0	0	4	C		0	0	0
STERNUM	# Ex 10	0	0	5	C	0	0	0	0
BONE MARROW	# Ex 10	10	10	5	10	,	0	0 1	0
Pigment, hemosiderin	0	0	0		0.40 (0
EYE	# Ex 10	0	0	5	C		0	0	0
HARDERIAN GLAND	# Ex 10	0	0	5	()	0	0.	0

 $[\]star$ Severity calculated by the number of tissues examined.

PROJECT ID. NO: TRL098 WEEKS: 14-27		F		Terminal FEMALE	Secrifice				AF_	PAGE	29
GROUP: NUMBER OF ANIMALS:		10	1	10	10	3 10	4	1 - R 10	2 - R 10	3 - R 10	4 - R 9
BRAIN	# Ex	# 10	SEV	# SE	EV #	SEV #	SEV	# SEV 0	# SEV 0	# SEV 0	# SEV
PITUITARY GLAND Pars distalis, vacuo, cytop	#Ex l	10 0		10 0	10 0	10 0		9 2 0.22	0	0	9
SPINAL CORD, THORACIC	# Ex	10		0	0	10		0	0	0	0
THYMUS	# Ex	10		0	0	10		0	0	0	0
SALIVARY GLAND	# Ex	10		0	0	10		0	0	0	0
PANCREAS	# Ex	10		0	0	10		0	0	0	0
ADRENAL GLAND Cortex, cystic degeneration Cortex, pigment, lipofuscin			0.10	0 0 0	0 0 0	10 0 2	0.20	0 0 0	0 0 0	0 0 0	0 0 0
TRACHEA	# Ех	10		0	0	10		0	0	0	0
THYROID GLAND	# Ex	10		10	10	10		10	0	0	9
PARATHYROID GLAND Fibrosis	# Ех	9	0.22	0 0	0	10 0		0	0	0	0
ESOPHAGUS	# Ex	10		0	0	10		0	0	0	0
HEART Cardiomyopathy Hemorrhage	# Ex	0	0.10	0 0 0	0 0 0	10 2 0	0.20	0 0 0 9-Sep-1993	0 0 0	0 0 0	0 0 0

PROJECT ID. NO: TRL098 MEEKS: 14-27		F	_	Termin FEMALE	al Secr	rifice	,						F	T	PAGE	30	
WEEKS: 14-27			SEA.	FERMLE							uu			u			
GROUP:			1		2		3		4	1 -	R	2	- R	3	- R	4	- R
NUMBER OF ANIMALS:		10		10		10		10		10	••	10		10		9	•••
																-	
									•								
		#	SEV		SEV	#	SEV	#	SEV	#	SEV	#	SEV	*	SEV	#	SEV
DUODENUM #	Ex	10		0		0		10		0		0		0		0	
COLON #	Ex	10		0		0		10		0		0		0		0	
STOMACH #	Ex	10		0		0		10		0		0		0		0	
Non-glandular, inflammation		1	0.10	0		0		0		0		0		0		0	
,																-	
LIVER #	Ex	10		10		10		10		10		0		0		9	
Basophilic focus		0		1	0.10	0		0		0		0		0		0	
Bile duct, hyperplasia		0		0		0		0		0		0		0		4	0.6
Hepatocyte, vacuo, cytoplasm		0		0		0		0			0.10	0		0		0	
Infiltrate, cellular		0		0		3	0.30	0		0		0		0		0	
Inflammation, subacute		3	0.30	0		0		0		0		0		0		0	
Periportal, infiltr, cellular		0		1	0.10	0	0.20	0		0		0		0		1	0.11
Pigment, hemosiderin		0		0		2	0.20	0		0		0		0		0	0.1
Portal, fibrosis		U		U		U		U		U		U		0		1	0.11
SPLEEN #	Ex	10		10		10		10		10		0		0		9	
Hyperplasia		0		0		0		8	1.50	0		0		0		0	
Pigment, hemosiderin		0		0		0		0		0		0		0		1	0.11
JEJUNUM #	Ex	10		0		0		10		0		0		0		0	
LUNG #	Ex	10		10		10		10		10		10		10		9	
Alveolar hystiocytosis		0		0		0		0		0		0		0		3	0.33
Alveolar proteinosis		0		0		10	1.60		2.20	0		0		0		0	
Hemorrhage		1	0.10	0		0		0		0		1	0.10	0		0	
Inflammation, acute		0		0		0		2	0.20	0		0		0		0	
Inflammation, chronic		0		0		0	2	0	_	0		0			1.10	5	0.67
Inflammation, subacute		2	0.20	0		5	0.50	1	0.10	0		0		1	0.10	0	
Pigment, hemosiderin		0		0		0		0		0		0		8	1.20	_	1.11

PROJECT ID. NO: TRL098 WEEKS: 14-27	ilē s	F		Termin FEMALE	at Secr	ifice						AF	DV4	E 31
GROUP: NUMBER OF ANIMALS:		10	1	10	2	10	3	10	4	1 10	- R	2 - R 10	3 - R 10	4 - R 9
KIDNEY Nephrocalcinosis Nephropathy Nephrosis, hemoglobin Pigment, hemosiderin Renal tubule, casts, protein	# Ex	# 10 7 0 0 0	SEV 0.90	# 10 6 0 0	SEV 0.60	10 5 0 4	SEV 0.50 0.40 0.20	# 10 4 0 10 10	SEV 0.40 1.50 2.20	# 10 6 0 0 0	SEV 0.60 0.10	# SEV 0 0 0 0	# SEV 0 0 0 0 0	# SEV 9 7 0.89 1 0.11 0 1 0.11
URINARY BLADDER	# Ex	10		0		0		10		0		0	0	0
SKIN	# Ex	10		0		0		10		0		0	0	0
MAMMARY GLAND	# Ex	9		0		0		10		0		0	0	0
ILEUM	# Ex	10		0		0		10		0		0	0	0
CECUM	# Ex	10		0		0		10		0		0	0	0
LYMPH NODE, MESENTERIC	# Ex	10		0		0		10		0		0	0	0
SKELETAL MUSCLE	# Ex	10		0		0		10		0		0	0	0
SCIATIC NERVE	# Ex	10		0		0		10		0		0	0	0
OVARY	# Ex	10		0		0		10		0		0	0	0
UTERUS Deciduoma Dilatation Hemorrhage Inflammation, acute	# Ex	1 3 1		0 0 0 0		0 0 0 0		10 0 3 0	0.60	0 0 0 0		0 0 0 0	0 0 0 0	0 0 0 0

Severity Summary Table

PROJECT ID. NO: TRL098 WEEKS: 14-27		f	FATES: Te		al Secri	ifice				AFT	PAGE	32
GROUP: NUMBER OF ANIMALS:		10	1	10	2	10	10	4	1 - R 10	2 - R 10	3 - R 10	4 - R 9
TONGUE	# Ex	# 10	SEV	# 0	SEV	# SEV 0	# 10	SEV	# SEV 0	# SEV 0	# SEV 0	# SEV
DIAPHRAGM	# Ex	10		0		0	10		0	0	0	0
RIB	# Ex	10		0		0	10		0	0	0	0
COSTOCHONDRAL JUNCTION	# Ex	10		0		0	10		0	0	0	0
STERNUM	# Ex	10		0		0	10		0	0	0	0
BONE MARROW Pigment, hemosiderin	# Ex	10 0		10		10 0	10 5	0.50	10 0	0	0	9
EYE	# Ex	10		0		0	10		0	0	0	0
HARDERIAN GLAND Infiltrate, cellular Inflammation, subacute	# Ex	0	0.10	0 0 0		0 0 0	10 1 0	0.10	0 0 0	0 0 0	0 0 0	0 0 0

^{*} Severity calculated by the number of tissues examined.

Draft Pathology Report Toxicology Research Laboratory Study Number 098

SECTION IV TABULATED ANIMAL DATA

Tabulated Animal Data

DRAFT

PAGE 34

PROJECT ID: TRL098

WEEKS: 2-27

GROUP: 1

SEX: MALE

FATES: T	erminal	Secrifice,	Natural	Death
----------	---------	------------	---------	-------

			Months Almin				Attended to				
ANIMAL ID:	0803	0804	0805	8080	0812	0813	0817	0818	0819	0820	
BRAIN	N	N	N	N	N	N	N	N	N	N	
PITUITARY GLAND		N									
Pars distalis, cyst	-	_	-	-	-	-	-	-	-	P	
Pars distalis, vacuo, cytopl	1	-	1	1	1	1	1	1	1	1	
SPINAL CORD, THORACIC	N	N	N	N	N	N	N	N	N	N	
THYMUS			N	N	N	N	N	N	N	N	
Congestion	2	1	-	-	-	-	-	-	-	-	
SALIVARY GLAND	N	N	N	N	N	N	N	N	N	N	
PANCREAS	N		N	N	N	N	N	N	N	N	
Inflammation, chronic	-	1	-	-	-	-	-	-	-	-	
4555111 51 415	41										
ADRENAL GLAND Cortex, vacuolation, cytoplasm	N -	1	1	1	N -	1	N -	2	1	N -	
cortex, vacaotation, cytoptassi		•	•	•		·		-	•		
TRACHEA	N	N	N	N	N	N	N	N	N	N	
THYROID GLAND	N	N	, N	N	N	N	N	N	N	N	
PARATHYROIO GLAND	N	N	N	N	N	N	U	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 1	erminat	SEX: Secrif	: MALE ice,Natu	urat Dea	C)	AL	5	PAGE	35
ANIMAL ID:	0803	0804	0805	0808	0812	0813	0817	0818	0819	0820	
ESOPHAGUS	N	N	N	N	N	N	N	N	N	N	
HEART Cardiomyopathy	N -	1	N -	N -	N -	1	N -	1	N -	1	
DUODENUM	N	N	N	N	N	N	N	N	N	N	
COLON	N	N	N	N	N	N	N	N	N	N	
STOMACH	N	N	N	N	N	N	N	N	N	N	
LIVER	N	N	N	N	N -	N	N	1	_	N	
Hepatocyte, vacuo, cytoplasm Inflammation, subacute	-	-	-	-	-	-	-	1	1	-	
SPLEEN	N	N	N	N	N	N	N	N	N	N	
JEJUNUM	N	N	N	N	N	N	N	N	N	N	
LUNG						N	N	N			
Atveolar hystiocytosis	_	1	_	-	-	_	_	_	-	_	
Hemorrhage	2	_		_	1 _	_	_	_	_	_	
Inflammation, perivase, acute	1	_	1 -	2	_	_	_	_	1	2	
Inflammation, subacute Pigment, hemosiderin	2	_	_	_	_	_	_	_	_	_	

Tabulated Animal Data

 PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 1 ATES: Te	erminal	SEX: Secrif	: MALE	ural Dea	D)		3	PAGE	36
ANIMAL ID:	0803	0804	0805	8080	0812	0813	0817	0818	0819	0820	
KIDNEY		N		N				N	N	N	
Nephropathy	1	-	-	-	1	1	1	-	-	-	
Renal tubule, dilatation	-	-	1	-	-	-	-	-	-	-	
URINARY BLADDER		N	N		N	N			N	N	
Calculus	Р	-	-	P	~	-	P	-	-	-	
Epithelium, ulcer	-	-	-	-	-	-	-	1	-	-	
PROSTATE	N	N	N	N		N	N	N	N	N	
Inflammation, subacute	-	-	-	-	1	-	-	-	-	-	
SKIN	N	N	N	N	N	N	N	N	N	N	
MAMMARY GLAND	U	N	N	N	N	N	N	N	N	N	
ILEUM	N	N	N	N	N	N	N	N	N	N	
ŒŒ	N	N	N	N	N	N	N	N	N	N	
LYMPH NODE, MESENTERIC	N	N	N	N	N	N	N	N	N	N	
SKELETAL MUSCLE	N	N	N	N	N	N	N	N	N	N	
SCIATIC NERVE	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRI WEEKS: 2-27		ROUP: 1	rminal	SEX: Secrifi	MALE ce,Nati	ural Dea	D)		5	PAGE	37
ANIMAL ID:	0803	0804	0805	0808	0812	0813	0817	0818	0819	0820	
TESTES	N	N	N	N	N	N	N	N	N	N	
EPIDIDYMIS	N	N	N	N	N	N	N	N	N	N	
TONGUE	N	N	N	N	N	N	N	N	N	N	
DIAPHRAGM	N	N	N	N	N	N	N	N	N	N	
RIB	N	N	N	N	N	N	N	N	N	N	
COSTOCHONDRAL JUNCTION	N	N	N	N	N	N	N	N	N	N	
STERNUM	N	N	N	N	N	N	N	N	N	N	
BONE MARROW	N	N	N	N	N	N	N	N	N	N	
EYE	N	N	N	N	N	N	N	N	N	N	
HARDERIAN GLAND	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 2 ATES: Te	erminal		: MALE ice,Natu	ural Dea) D	[2]	B	PAGE	38
ANIMAL ID:	0841	0842	0843	0845	0847	0849	0854	0855	0856	0857	
PITUITARY GLAND Pars distalis, vacuo, cytopl	2	1	1	1	1	U -	1	1	1	1	
THYROID GLAND	N	N	N	N	N	N	N	N	N	N	
LIVER Hepatocyte, vacuo, cytoplasm	N -	N -	2	N -	N -	1	1	N -	N -	N -	
SPLEEN	N	N	N	N	N	N	N	N	N	N	
LUNG	N	N	N	N	N	N	N	N	N	N	
KIDNEY	N	N	N	N	N	N	N	N	N	N	
BONE MARROW	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27	_	ROUP: 3	erminat	_	: MALE	ural Dea	D D D D D D D D D D D D D D D D D D D	A	5	FAGE	39
ANIMAL ID:	0881	0882	0883	0885	0886	0888	0891	0892	0894	0898	
PITUITARY GLAND Pars distalis, vacuo, cytopl	1	1	1	2	2	2	2	1	1	2	
THYROID GLAND	N	N	N	N	N	N	N	N	N	N	
LIVER	N	N	N	N	N	N	N	N	N	N	
SPLEEN Hyperplasia	1	1	N -	N -	N -	2	2	N -	N -	N -	
LUNG											
Alveolar proteinosis	2	2	2	2	1	2	1	1	2	2	
Inflammation, subacute	-	-	1	1	-	1	-	-	-	-	
KIDNEY				N	N			N	N		
Nephrosis, hemoglobin	1	1	1	-	_	1	-	-	-	1	
Pigment, hemosiderin	-	-	-	-	-	-	-	-	-	1	
Renal tubule, epith, regenerat	-	-	-	-	-	-	1	-	-	-	
BONE MARROW	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098		ROUP: 4 ATES: To	erminal	_	: MALE	ural De	at D			PAGE	40
ANIMAL ID:	0921	0924	0925	0926	0928	0931	0934	0936	0937	0938	
BRAIN		N	N	N	N	N	N		N	N	
Cerebrum, hemorrhage	1	-	-	-	-	~	-	1	-	-	
Medulla, hemorrhage	1	-	-	-	-	-	-	-	-	-	
PITUITARY GLAND				N				U	N		
Inflammation, acute	1	-	-	-	-	-	-	-	_	-	
Pars distalis, vacuo, cytopl	-	2	1	-	2	1	1	-	-	1	
SPINAL CORD, THORACIC	N	N	N	N	N	N	N	N	N	N	
THYMUS		N	N	. N	N	N	N	N	U	N	
Depletion, lymphocyte	4	-	-	-	-	-	-	-	-	-	
SALIVARY GLAND	N	N	N	N	N	N	υ	N	N	N	
PANCREAS	N	N	N	N	N		N	N	N	N	
Lobule, degeneration	-	-	-	-	-	1	-	-	-	-	
ADRENAL GLAND			N	N	N			N	N	N	
Cortex, congestion	-	-	-	-	-	-	1	_	_	-	
Cortex, vacuolation, cytoplasm	1	1	-	-	-	1	-	-	-	-	
TRACHEA	N	N	N	N	N	N	N	A	N	N	
THYROID GLAND	N	N	N	N	N	N	N	A	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 4 ATES: Te	erminal		: MALE	ural Dea	ath		F	PAGE	41
ANIMAL ID:	0921	0924	0925	0926	0928	0931	0934	0936	0937	0938	
PARATHYROID GLAND	N	N	N	N	N	N	U	N	U	U	
ESOPHAGUS	N	N	N	N	N	N	N	N	N	N	
HEART Cardiomyopathy	_	1	N -	_	N -	N -	N -	N -	_	N -	
Epicardium, inflam, subacute Inflammation, acute	3 -	-	-	1	-	-	-	-	4 -	-	
DUODENUM	N	N	N	A	N	N	N	N	N	N	
COLON	N	N	N	N	N	N	N	A	N	N	
STOMACH	N	N	N	N	N	N	N	N	N	N	
LIVER Pigment, hemosiderin	N -	N -	N -	1	N -	1	N -	N -	N -	N -	
SPLEEN Hyperplasia	N -	2	3	N -	2	2	N -	N -	N 	2	
JEJUNUM	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 4 ATES: Te	erminal		: MALE ice,Natu	ural Dea	o th	A	[F]	PAGE	42
ANIMAL ID:	0921	0924	0925	0926	0928	0931	0934	0936	0937	0938	
LUNG				N				N			
Alveolar proteinosis	-	3	2	<u>-</u>	3	3	3	-	_	3	
Congestion	3	-	-	-	-	-	-	-	_	-	
Hemorrhage	2	_	-	-	_	_	-	-	-	-	
Inflammation, acute	2	-	-	-	-	-	-	-	-	-	
Microthombosis	3	-	-	-	-	-	-	-	_	-	
Pleura, inflammation, subacute	3	-	-	-	-	-	-	-	4	-	
KIDNEY	N			N				N	N		
Nephrosis, hemoglobin	-	3	2	-	1	3	2	-	-	2	
Pigment, hemosiderin	-	2	3	-	2	2	1	-	-	2	
URINARY BLADDER	N	N	N	N	N				N	N	
Calculus	-	-	-	-	-	Р	Р	Р	-	-	
PROSTATE	N	N	N	N	N	N	N	N	N	N	
SKIN	N	N	N	N	N	N	N	N	N	N	
MANMARY GLAND	N	N	N	U	N	N	N	N	N	N	
ILEUM	N	N	N	N	N	N	N	A	Ν .	N	
ŒŒ	N	N	N	N	N	N	N	A	N	N	
LYMPH NODE, MESENTERIC	N	N	N	N	N	N	U	U	N	N	

Tabulated Animal Data

DRAFT PAGE 43

PROJECT ID: TRL098

WEEKS: 2-27

GROUP: 4 SEX: MALE

FATES: Terminal Secrifice, Natural Death

WEEKS. 2-2/	rates: Terminal Secrifice, Natural Death													
ANIMAL ID:	0921	0924	0925	0926	0928	0931	0934	0936	0937	0938				
SKELETAL MUSCLE	N	N	N	N	N	N	N	N	N	N				
SCIATIC NERVE	N	N	N	N.	N	N	N	N	N	N				
TESTES Germinal epith, degeneration Seminif tubules, giant cells	N - -	N 	_ 1	N - -	N - -	N - -	N - -	N - -	3 -	N - -				
EPIDIDYMIS Hypospermia	N -	N -	N -	N -	N -	N -	N -	N -	3	N -				
TONGUE	N	N	N	N	N	N	N	N	N	N				
DIAPHRAGM Inflammation, acute Inflammation, subacute	- 3	U - -	N - -	1 -	N - -	N - -	N - -	2 -	- 3	N - -				
RIB	N	N	N	N	N	N	N	N	N	N				
COSTOCHONDRAL JUNCTION	N	N	U	N	N	N	N	N	N	N				
STERNUM	N	N	N	N	N	N	N	N	N	N				
BONE MARROW Pigment, hemosiderin	N -	N -	1	N -	1	N -	N -	N -	N -	N . –				

Tabulated Animal Data

										_				
			PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 4 ATES: Te	erminal		: MALE		ט טנ			PAGE	44
		ANIMAL ID:		0921	0924	0925	0926	0928	0931	0934	0936	0937	0933	
EY	E			N	N	. И	A	N	N	N	A	N	N	
HAI	RDERIAN	GLAND		N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 1 ATES: To		SEX Secrif	: MALE					PAGE	45
ANIMAL ID:	0801	0802	0806	0807	0809	0810	0811	0814	0815	0816	
PITUITARY GLAND											
Pars distalis, vacuo, cytopl	1	1	2	1	1	1	1	2	1	2	
Pars intermedia, cyst	-	-	-	-	-	-	P	-	-	-	
THYROID GLAND	N	N	N	N	N	N	N	N	N	N	
LIVER		N	N	N	N	N		N	N	N	
Lobutar hyperptasia	2	_	_	_	_	_	_	_	_	_	
Periportal, infiltr, cellular	_	_	_	_	_	_	1	_	_	_	
remportat, militi, cettutar							•	_	_	_	
SPLEEN	N	N	N	N	N	N	N	N	N	N	
			2000								
LUNG	N	N	N		N	N	N		N		
Hemorrhage	-	_	-	1	-	-	-	_	-	1	
Inflammation, subscute	-	-	-	-	-	-	-	1	-	1	
				227							
KIDNEY	N	N		N	N		N	N			
Contex, cyst	-	-	-	-	-	-	-	-	-	P	
Nephropathy	-	-	1	-	-	-	-	-	1	_	
Renal tubule, epith, regenerat	-	-	-	-	-	1	-	-	-	-	
BONE MARROW	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27	_	ROUP: 2 ATES: Te			: MALE	ural De	o) oth			FAGE 46
ANIMAL ID:	0844	0846	0848	0850	0851	0852	0853	0858	0859	086.0
LUNG		N		N	N					
Hemorrhage	-	-	-	***	-	1	1	-	1	1
Inflammation, subscute	1	_	1	-		-	-	1	-	-
Pigment, hemosiderin	-	-	_	_	_	-	-	-	-	1

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27

GROUP: 3 - R

SEX: MALE

FATES: Terminal Secrifice, Natural Death

PAGE 47

ANIMAL ID:	0884	0887	0889	0890	0893	0895	0896	0897	0899	0900	
LUNG					N						
Hemorrhage	-	-	1	-	-		_	_	-	1	
Inflammation, chronic	_	1	-	1	-	1	1	-	1	-	
Inflammation, subacute	-	-	1	1	-	_	-	1	_	-	
Pigment, hemosiderin	1	1	-	2	-	1	1	1	1	-	

Tabulated Animal Data

FAGE 48 SEX: MALE PROJECT ID: TRL098 GROUP: 4 - R WEEKS: 2-27 FATES: Terminal Secrifice, Natural Death 0929 0930 ANIMAL ID: 0922 0923 0927 0932 0933 0935 0939 0940 PITUITARY GLAND Pars distalis, hyperplasia 1 Pars distalis, vacuo, cytopl 1 1 2 Rathke's cleft, tubulr hyperpl THYROID GLAND LIVER Hepatocyte, vacuo, cytoplasm SPLEEN Pigment, hemosiderin LUNG Alveolar epithelium, hyperpl 1 Alveolar hystiocytosis Inflammation, chronic 2 Inflammation, subacute Pigment, hemosiderin KIDNEY Infiltrate, cellular Nephropathy Pigment, hemosiderin BONE MARROW

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 1 ATES: Te	erminal	SEX: Secrifi	: FEMALE			A [] {	PAGE 49
ANIMAL ID:	0821	0822	0825	0826	0828	0829	0832	0833	0838	0839
BRAIN	N	N	N	N	N	N	N	N	N	N
PITUITARY GLAND Pars distalis, cyst	N -	N -	N -	N -	N -	Р	N -	N -	N -	N -
SPINAL CORD, THORACIC	N	N	N	N	N	N	N	N	N	N
THYMUS	N	N	N	N	N	N	N	N	N	N
SALIVARY GLAND	N	N	N	N	N	N	N	N	N	N
PANCREAS	N	N	N	N	N	N	N	N	N	N
ADRENAL GLAND Cortex, cystic degeneration	N -	N -	N -	N -	N -	N -	N -	1	N -	N -
TRACHEA	N	N	N	N	N	N	N	N	N	N
THYROID GLAND	N	N	N	N	N	N	N	N	N .	N
PARATHYROID GLAND Fibrosis	N -	N -	N -	N -	N -	N -	N -	N -	2	U -
ESOPHAGUS	N	N	N	N	N	N	N	N	N	N

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 1 ATES: Te	erminal	SEX: Secrif	: FEMALI		D)	A	F	PAGE 50	
ANIMAL ID:	0821	0822	0825	0826	0828	0829	0832	0833	0838	0839	
HEART Hemorrhage	N -	N -	N -	N -	1	N -	N -	N -	N -	N -	
DUODENUM	N	N	N	N	N	N	N	N	N	N	
COLON	N	N	N	N	N	N	N	N	N	N	
STOMACH Non-glandular, inflammation	N -	N 	N -	1	N 	N -	N -	N 	N -	N -	
LIVER Inflammation, subacute	N -	N -	N -	N -	N -	1	N -	1	1	N -	
SPLEEN	N	N	N	N	N	N	N	N	N	N	
JEJUNUM	N	N	N	N	N	N	N	N	N	N	
LUNG Hemorrhage Inflammation, subacute	- 1	1 -	N - -	1	N - -	N - -	N - -	N - -	N 	N - -	
KIDNEY Nephrocalcinosis	N -	1	1	N -	N -	2	1	1	1	2	
URINARY BLADDER	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 1 ATES: Te	erminal	_	: FEMALE				3	PAGE 51
ANIMAL ID:	0821	0822	0825	0826	0828	0829	0832	0833	0838	0839
SKIN	N	N	N	N	N	N	N	N	N	N
MAMMARY GLAND	U	N	N	N	N	N	N	N	N	N
ILEUM	N	N	N	N	N	N	N	N	N	N
CECUM	N	N	N	N	N	N	N	N	N	N
LYMPH NODE, MESENTERIC	N	N	N	N	N	N	N	N	N	N
SKELETAL MUSCLE	N	N	N	N	N	N	N	N	N	N
SCIATIC NERVE	N	N	N	N	N	N	N	N	N	N
OVARY	N	N	N	N	N	N	N	N	N	N
UTERUS		N	N			N				N
Deciduoma	2	-	-	-	_	_	-	-	-	-
Dilatation	-	-	-	2	-	-	-	2	1	-
Hemorrhage Inflammation, acute	-	-	-	-	1 -	-	1	-	-	-
TONGUE	N	N	N	N	N	N	N	N	N	N

Tabulated Animal Data

PROJECT ID: TRL09 WEEKS: 2-27		ROUP: 1			: FEMALI) D	A	B	PAGE	52
ANIMAL ID:	0821	0822	0825	0826	0828	0829	0832	0833	0838	0839	
DIAPHRAGM	N	N	N	N	N	N	N	N	N	N	
RIB	N	N	N	N	N	N	N	N	N	N	
COSTOCHONDRAL JUNCTION	N	N	N	N	N	N	N	N	N	N	
STERNUM	N	N	N	N	N	N	N	N	N	N	
BONE MARROW	N	N	N	N	N	N	N	N	N	N	
EYE	N	N	N	N	N	N	N	N	N	N	
HARDERIAN GLAND Inflammation, subacute	N -	N -	N -	N -	1	N -	N -	N -	N -	N -	

Tabulated Animal Data

PROJECT ID: TRL098

GROUP: 1

SEX: FEMALE

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

0821 0822 0825 0826 0828 0829 0832 0833 0838 0839

ANIMAL ID:

SKIN, HEAD - Inflam, chronic

OTHER TISSUES AND LESIONS:

Tabulated Animal Data

PROJECT 1D: TRL098 WEEKS: 2-27		ROUP: 2 ATES: Te	erminal	SEX: Secrifi	: FEMALE		o)		5	PAGE	54
ANIMAL ID:	0862	0863	0865	0866	0869	0870	0872	0875	0876	0878	
PITUITARY GLAND	N	N	N	N	N	N	N	N	N	N	
THYROID GLAND	N	N	N	N	N	N	N	N	N	N	
LIVER Basophilic focus Periportal, infiltr, cellular	1	N - -	N - -	N - -	N - -	N - -	N - -	N - -	N - -	N - -	
SPLEEN	N	N	N	N	N	N	N	N	N	N	
LUNG	N	N	N	N	N	N	N	N	N	N	
KIDNEY Nephrocalcinosis	N -	1	1	N -	1	N -	N -	1	1	1	
BONE MARROW	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27	_	ROUP: 3 ATES: Te	erminal	SEX: Secrif	: FEMALI		D (PAGE 55	
ANIMAL ID:	0903	0905	0906	0907	0910	0911	0913	0914	0917	0920	
PITUITARY GLAND	N	N	N	N	N	N	N	N	N	N	
THYROID GLAND	N	N	N	N	N	N	N	N	N	N	
LIVER Infiltrate, cellular	N -	N -	N -	N -	1	1	1	N -	N -	N -	
Pigment, hemosiderin	-	-	-	-	1	1	-	-	-	-	
SPLEEN	N	N	N	N	N	N	N	N	N	N	
LUNG											
Alveolar proteinosis Inflammation, subacute	2	2 -	1	1	1	1	1 -	1 -	1	1	
KIDNEY			N					N	N		
Nephrocalcinosis	1	1	-	1	1	-	1	-	-	-	
Nephrosis, hemoglobin Pigment, hemosiderin	-	-	-	1	1	1	1	-	-	-	
BONE MARROW	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PAGE 56 PROJECT ID: TRL098 GROUP: 4 SEX: FEMALE WEEKS: 2-27 FATES: Terminal Secrifice, Natural Death ANIMAL ID: 0943 0945 0946 0947 0948 0950 0951 0952 0955 0958 BRAIN PITUITARY GLAND Pars distalis, cyst SPINAL CORD, THORACIC THYMUS SALIVARY GLAND PANCREAS N N N ADRENAL GLAND Cortex, pigment, lipofuscin TRACHEA N THYROID GLAND N N PARATHYROID GLAND **ESOPHAGUS**

Tabulated Animal Data

D A F T IPAGE 57

PROJECT ID: TRL098

WEEKS: 2-27

GROUP: 4

SEX: FEMALE

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:	0943	0945	0946	0947	0948	0950	0951	0952	0955	0958	
HEART	N	N	N	N	N		N		N	N	
Cardiomyopathy	_	_	_	_	_	1	_	1	_	-	
DUODENUM	N	N	N	N	N	N	N	N	N	N	
COLON	N	N	N	N	N	N	N	N	N	N	
STOMACH	N	N	N	N	N	N	N	N	N	N	
LIVER	N	N	N	N	N	N	N	N	N	N	
	-		-							-	
SPLEEN				N				N			
Hyperplasia	2	2	2	-	2	2	2	_	2	1	
JEJUNUM	N	N	N	N	N	N	N	N	N	N	
LUNG	_	_	_			_					
Alveolar proteinosis	3	2	3	3	1	3	2	2	2	1 _	
Inflammation, acute Inflammation, subacute	_	_	_	_	_	1	_	_	_	_	
ATTE COMMENT OF STREET											
KIDNEY											
Nephrocatcinosis	-	_	_	-	1	1	1	-	1	-	
Nephrosis, hemoglobin	1	2	2	1 2	2	1 2	2	1 2	2	1 2	
Pigment, hemosiderin	2	3	2	2	2	2	3	2	2	2	

Tabulated Animal Data

DRAFT

PAGE 58

PROJECT ID: TRL098 WEEKS: 2-27 GROUP: 4 SEX: FEMALE

FATES: Terminal Secrifice, Natural Death

WEEKS: 2-2/	F/	(IES: 16	erminat	Secriff	ice, natt	Jrat Dea	tn				
ANIMAL ID:	0943	0945	0946	0947	0948	0950	0951	0952	0955	0958	
URINARY BLADDER	N	N	N	N	N	N	N	N	N	N	
SKIN	N	N	N	N	N	N	N	N	N	N	
MAMMARY GLAND	N	N	N	N	N	N	N	N	N	N	
ILEUM	N	N	N	N	N	N	N	N	N	N	
CECUM	N	N	N	N	N	N	N	N	N	N	
LYMPH NODE, MESENTERIC	N	N	N	N	N	N	N	N	N	N	
SKELETAL MUSCLE	N	N	N	N	N	N	N	N	N	N	
SCIATIC NERVE	N	N	N	N	N	N	N	N	N	N	
OVARY	N	N	N	N	N	N	N	N	N	N	
UTERUS Dilatation	2	2	N -	N -	N -	N -	N -	2	N -	N -	
TONGUE	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

PROJECT ID: TRL098

WEEKS: 2-27

GROUP: 4

SEX: FEMALE FATES: Terminal Secrifice, Natural Death

ANIMAL ID:	0943 N	0945 N	0946 N	0947 N	0948 N	0950 N	0951 N	0952 N	0955 N	0958 N	
RIB	N	N	N	N	N	N	N	N	N	N	
COSTOCHONDRAL JUNCTION	N	N	N	N	N	N	N	N	N	N	
STERNUM	N	N	N	N	N	N	N	N	N	N	
BONE MARROW Pigment, hemosiderin	N -	1	1	N -	N -	1	1	1	N -	N -	
EYE	N	N	N	N	N	N	N	N	N	N	
HARDERIAN GLAND Infiltrate, cellular	1	N -									
arrange of the contraction of th	•										

Tabulated Animal Data

DRAFT

PROJECT ID: TRL098

WEEKS: 2-27

GROUP: 4

SEX: FEMALE

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0943 0945 0946 0947 0948 0950 0951 0952 0955 0958

OTHER TISSUES AND LESIONS:

SKIN, EAR - Inflam, granulomat - - - - 4 - - - - - SKIN - Granuloma, foreign body - - - - - - 3 - - -

Tabulated Animal Data

PAGE 61

PROJECT ID: TRL098

3

GROUP: 1 - R SEX: FEMALE

WEEKS: 2-27 FATES: Terminal Secrifice, Natural Death

	56-741										_
ANIMAL ID:	0823	0824	0827	0830	0831	0834	0835	0836	0837	0840	
PITUITARY GLAND		N	N	N	N	N	U				
Pars distalis, adenoma	P	-	-	-	-	-	-	-	P	-	
Pars distalis, vacuo, cytopl	-	-	-	_	-	-	-	1	-	1	
Pars intermedia, cyst	P	-	-	-	-	-	-	-	-	-	
THYROID GLAND	N	N	N	N	N	N	N	N	N	N	
LIVER Hepatocyte, vacuo, cytoplasm	N -	1	N -								
SPLEEN	N	N	N	N	N	N	N	N	N	N	
LUNG	N	N	N	N	N	N	N	N	N	N	
KIDNEY	N				N			N			
Nephrocalcinosis	_	1	1	1	_	1	_	_	1	1	
Renal tubule, casts, proteinic	-	-	-	-	-	-	1	-	-	-	
BONE MARROW	N	N	N	N	N	N	N	N	N	N	

Tabulated Animal Data

URAFT

PAGE 62

PROJECT ID: TRL098

WEEKS: 2-27

GROUP: 2 - R

SEX: FEMALE

FATES: Terminal Secrifice, Natural Death

Tabulated Animal Data

DRAFT

PAGE 63

PROJECT ID: TRL098

WEEKS: 2-27

5

GROUP: 3 - R

SEX: FEMALE

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:	0901	0902	0904	0908	0909	0912	0915	0916	0918	0919
LUNG			N							
Inflammation, chronic	1	2	-	1	_	-	2	2	2	1
Inflammation, subacute	-	-	-	1	-	-	-	-	-	-
Pigment, hemosiderin	1	2	-	-	1	2	2	1	1	2

Tabulated Animal Data

ESOPHAGUS

DRAFT

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 4 ATES: Te		SEX: Secrif	: FEMALE	Ξ		7 L		PAGE	64
ANIMAL ID:	0941	0942	0944	0949	0953	0954	0956	0957	0959	0960	
BRAIN	*	*	*	*	*	*	N	*	*	*	
PITUITARY GLAND	N	N	N	N	N	N	N	N	N	N	
SPINAL CORD, THORACIC	*	*	*	*	*	*	N	*	*	*	
THYMUS Congestion	* -	* -	* -	* -	* -	* -	1	* -	* -	* -	
SALIVARY GLAND	*	*	*	*	*	*	N	*	*	*	
PANCREAS	*	*	*	*	*	*	N	*	*	*	
ADRENAL GLAND	*	*	*	*	*	*	N	*	*	*	
TRACHEA	*	*	*	*	*	*	N	*	*	*	
THYROID GLAND	N	N	N	N	N	N	N	N	N	N	
PARATHYROID GLAND	*	*	*	*	*	*	U	*	*	*	

Tabulated Animal Data

						-		(1)			
									15]	PAGE	
PROJECT ID: TRL0	00 C	ROUP: 4	_ P	SEY	: FEMALI		טט י		П	PAGE	65
WEEKS: 2-27				Secrif			ath				
WEEKS. E EI	• •	A1CJ. 11	er mirries C	3eci 11	ice,naci	DI 8(DE	0.111				
ANIMAL ID:	0941	0942	0944	0949	0953	0954	0956	0957	0959	0960	
HEART	*	*	*	*	*	*	N	*	*	*	
DUODENUM	*	*	*	*	*	*	N	*	*	*	
COLON	*	*	*	*	*	*	N	*	*	*	
STOMACH	*	*	*	*	*	*	N	*	*	*	
LIVER		N			N	N	N	N		N	
Bile duct, hyperplasia	2	-	1	2	-	-	-	-	1	-	
Periportal, infiltr, cellular	-	-	1	-	-	-	-	-	-	-	
Portal, fibrosis	1	-	-	-	-	-	-	-	-	-	
		.,	.,	.,	.,					.,	
SPLEEN Rignant hamasidania	N -	N -	N	N	N	N	_	N -	1	N -	
Pigment, hemosiderin	_	_	_	_	_	_	2	_	-	_	
Serosa, inflammation, chronic	_	_	_	_	_	_	2	_	_	_	
JEJUNUM	*	*	*	*	*	*	N	*	*	*	
LUNG											
Alveolar hystiocytosis	1	-	-	-	-	1	-	1	-	-	
Alveolar proteinosis	-	-	-	-	-	-	3	-	-	-	
Inflammation, chronic	1	-	-	-	1	1	-	2	-	1	
Inflammation, subacute	-	-	-	-	-	-	1	-	-	-	
Pigment, hemosiderin	2	1	1	1	7	1	-	1	1	1	

Tabulated Animal Data

SEX: FEMALE PROJECT ID: TRL098 GROUP: 4 - R WEEKS: 2-27 FATES: Terminal Secrifice, Natural Death ANIMAL ID: 0941 0942 0944 0949 0953 0954 0956 0957 0959 0960 KIDNEY Cortex, cyst Nephrocalcinosis 1 1 1 2 1 1 Nephropathy 1 Pigment, hemosiderin URINARY BLADDER SKIN MAMMARY GLAND ILEUM CECUM LYMPH NODE, MESENTERIC SKELETAL MUSCLE SCIATIC NERVE OVARY

Tabulated Animal Data

PROJECT ID: TRL098 WEEKS: 2-27		ROUP: 4 ATES: Te			: FEMALI		IN SECTION	A	FT	PAGE 67
ANIMAL ID:	0941	0942	0944	0949	0953	0954	0956	0957	0959	0960
UTERUS	*	*	*	*	*	*	N	*	*	*
TONGLE	*	*	*	*	*	*	N	*	*	*
DIAPHRAGM	*	*	*	*	*	*	N	*	*	*
RIB	*	*	*	*	*	*	N	*	*	*
COSTOCHONDRAL JUNCTION	*	*	*	*	*	*	N	*	*	*
STERNUM	*	*	*	*	*	*	N	*	*	*
BONE MARROW	N	N	N	N	N	N	N	N	N	N
EYE	*	*	*	*	*	*	N	*	*	*
HARDERIAN GLAND	*	*	*	*	*	*	N	*	*	*

Draft Pathology Report Toxicology Research Laboratory Study Number 098

SECTION V

CORRELATION OF GROSS AND MICROSCOPIC (MICRO) FINDINGS

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 1

SEX: MALE

PAGE 69

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0803

PATHOLOGY ID. NO: TI098-0803 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0804

PATHOLOGY ID. NO: TI098-0804 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0805 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

8080

PATHOLOGY ID. NO: TI098-0808 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 1

SEX: MALE

PAGE 70

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0812

PATHOLOGY ID. NO: TI098-0812 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

PATHOLOGY ID. NO: TI098-0813 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0817

PATHOLOGY ID. NO: TI098-0817 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0818

PATHOLOGY ID. NO: TI098-0818 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 1

SEX: MALE

PAGE 71

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0819

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0819 PATHOLOGIST: MJT

ANIMAL ID: 0820 PATHOLOGY ID. NO: TI098-0820 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 2

SEX: MALE

PAGE 72

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0841

PATHOLOGY ID. NO: TI098-0841 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0842

PATHOLOGY ID. NO: TI098-0842 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0843

PATHOLOGY ID. NO: TI098-0843 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>SPLEEN - SMALL, 28X8 MM

No corresponding lesion

ANIMAL ID: 0845

PATHOLOGY ID. NO: TI098-0845 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 2

SEX: MALE

PAGE 73

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0847

PATHOLOGY ID. NO: TI098-0847 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0849 PATHOLOGY ID. NO: TI098-0849 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0854

PATHOLOGY ID. NO: TI098-0854 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0855

PATHOLOGY ID. NO: TI098-0855 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 2

SEX: MALE

PAGE 74

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0856

REFERENCE TO NECROPSY RECORD:

PATHOLOGY ID. NO: TI098-0856 PATHOLOGIST: MJT

WEEKS ON TEST: 14

ANIMAL FATE: Terminal Secrifice

RELATED HISTOPATHOLOGY:

>LIVER, PARENCHYMA - LESION, MOTTLED No corresponding lesion

>ADRENAL GLAND, BILATERAL - SMALL, Not required by protocol

1.5X2.0 MM

ANIMAL ID:

0857

PATHOLOGY ID. NO: TI098-0857 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

D

PROJECT ID: TRL098

GROUP: 3

SEX: MALE

PAGE 75

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0881

PATHOLOGY ID. NO: TI098-0881 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

ANIMAL ID:

PATHOLOGY ID. NO: TI098-0882 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis IRREGULAR, WHITE, FIRM

0883

PATHOLOGY ID. NO: TI098-0883 PATHOLOGIST: MJT

ANIMAL ID:

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3

SEX: MALE

PAGE 76

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0885

PATHOLOGY ID. NO: TI098-0885 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

ANIMAL ID: 0886 PATHOLOGY ID. NO: TI098-0886 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE

ANIMAL ID: 8880 PATHOLOGY ID. NO: TI098-0888 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

Correlation of Gross & Micro Findings

DRAFT

PROJECT ID: TRL098

GROUP: 3

SEX: MALE

PAGE 77

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0891 PATHOLOGY ID. NO: TI098-0891 PATHOLOGIST: MJT ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>SKIN, THORACIC, LEFT, SUBCUTANEOUS TISSUE - MASS, SINGLE, PLAQUE,

...

Not required by protocol

16X12X9 MM

ANIMAL ID:

>TESTES, BILATERAL - SMALL

Not required by protocol

>EPIDIDYMIS, BILATERAL - SMALL

Not required by protocol

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

ridebound, wires

PATHOLOGY ID. NO: TI098-0892 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LYMPH NODE, MANDIBULAR - ENLARGED, 2, TAN, 8X5X5 MM

Not required by protocol

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3

SEX: MALE

PAGE 78

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0894

PATHOLOGY ID. NO: TI098-0894 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

>ADRENAL GLAND, UNILATERAL - SMALL, Not required by protocol 1.5X2.0 MM

ANIMAL ID:

0898

PATHOLOGY ID. NO: TI098-0898 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 4

SEX: MALE

PAGE 79

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0921

PATHOLOGY ID. NO: TI098-0921 PATHOLOGIST: MJT

ANIMAL FATE: Natural Death

WEEKS ON TEST:2

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>HEART, EPICARDIUM - LESION, DIFFUSE, WHITE

HEART- Epicardium, inflam,

subacute

>LUNG, LEFT - DIFFUSE, BLACK

LUNG- Pleura, inflammation,

subacute

ANIMAL ID: 0924 PATHOLOGY ID. NO: TI098-0924 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0925 PATHOLOGIST: MJT ANIMAL ID:

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>SPLEEN - ENLARGED

SPLEEN- Hyperplasia

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 4

SEX: MALE

PAGE 80

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0926

PATHOLOGY ID. NO: TI098-0926 PATHOLOGIST: MJT

ANIMAL FATE: Natural Death

WEEKS ON TEST: 2

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID: 0928 PATHOLOGY ID. NO: TI098-0928 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE

ANIMAL ID: 0931 PATHOLOGY ID. NO: TI098-0931 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE

Correlation of Gross & Micro Findings

101

PROJECT ID: TRL098

GROUP: 4

SEX: MALE

PAGE 81

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0934

PATHOLOGY ID. NO: TI098-0934 PATHOLOGIST: MJT

ANIMAL FATE: Natural Death

WEEKS ON TEST:8

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID: 0936

PATHOLOGY ID. NO: TI098-0936 PATHOLOGIST: MJT

ANIMAL FATE: Natural Death

WEEKS ON TEST: 2

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0937

PATHOLOGY ID. NO: TI098-0937 PATHOLOGIST: MJT

ANIMAL FATE: Natural Death

WEEKS ON TEST: 2

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>HEART, EPICARDIUM - LESION,

DIFFUSE, WHITE

HEART- Epicardium, inflam,

subacute

>LUNG, PLEURA - LESION, DIFFUSE,

WHITE

LUNG- Pleura, inflammation,

subacute

>TESTES, CAPSULE - FOCUS, RED

No corresponding lesion

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 4

SEX: MALE

PAGE 82

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

0938

ANIMAL ID: ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0938 PATHOLOGIST: MJT

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 1 - R

SEX: MALE

PAGE 83

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0801

PATHOLOGY ID. NO: TI098-0801 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>LIVER, MEDIAN LOBE - MASS, 25X18X15 LIVER- Lobular hyperplasia

ANIMAL ID: 0802

PATHOLOGY ID. NO: TI098-0802 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0806

PATHOLOGY ID. NO: TI098-0806 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0807

PATHOLOGY ID. NO: TI098-0807 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 1 - R

SEX: MALE

PAGE 84

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0809

PATHOLOGY ID. NO: TI098-0809 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

0810

PATHOLOGY ID. NO: TI098-0810 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0811

PATHOLOGY ID. NO: TI098-0811 PATHOLOGIST: MJT

WEEKS ON TEST: 27

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>KIDNEY, BILATERAL - LESION, MULTIPLE, IRREGULAR, MOTTLED No corresponding lesion

ANIMAL ID:

0814

PATHOLOGY ID. NO: TI098-0814 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, DIAPHRAGMATIC LOBE - LESION, No corresponding lesion

DIFFUSE, PALE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 1 - R

SEX: MALE

PAGE 85

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0815

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0815 PATHOLOGIST: MJT

ANIMAL ID: 0816

PATHOLOGY ID. NO: TI098-0816 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 2 - R

SEX: MALE

PAGE 86

WEEKS: 2-27

ANIMAL ID:

FATES: Terminal Secrifice, Natural Death

PATHOLOGY ID. NO: TI098-0844 PATHOLOGIST: MJT

0844 ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0846 PATHOLOGIST: MJT ANIMAL ID: 0846

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0848 PATHOLOGIST: MJT ANIMAL ID: 0848

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: PATHOLOGY ID. NO: TI098-0850 PATHOLOGIST: MJT 0850

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 2 - R SEX: MALE
WEEKS: 2-27 FATES: Terminal Secrifice, Natural Death

PAGE 87

ANIMAL ID:

0851

PATHOLOGY ID. NO: TI098-0851 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0852

PATHOLOGY ID. NO: TI098-0852 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0853

PATHOLOGY ID. NO: TI098-0853 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0858

PATHOLOGY ID. NO: TI098-0858 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 2 - R

SEX: MALE

PAGE 88

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0859

PATHOLOGY ID. NO: TI098-0859 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID: 0860 PATHOLOGY ID. NO: TI098-0860 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>KIDNEY, BILATERAL - LESION, MOTTLED Not required by protocol

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 3 - R SEX: MALE

PAGE 89

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0884

PATHOLOGY ID. NO: TI098-0884 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID: 0887

PATHOLOGY ID. NO: TI098-0887 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0889

PATHOLOGY ID. NO: TI098-0889 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0890

PATHOLOGY ID. NO: TI098-0890 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3 - R

SEX: MALE

PAGE 90

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0893 PATHOLOGY ID. NO: TI098-0893 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID:

0895

PATHOLOGY ID. NO: TI098-0895 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Inflammation, chronic

IRREGULAR, WHITE

ANIMAL ID: 0896

PATHOLOGY ID. NO: TI098-0896 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID:

0897

PATHOLOGY ID. NO: TI098-0897 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>KIDNEY, BILATERAL - LESION, MULTIPLE, IRREGULAR, MOTTLED Not required by protocol

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3 - R

SEX: MALE

PAGE 91

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

PATHOLOGY ID. NO: TI098-0899 PATHOLOGIST: MJT ANIMAL ID: 0899

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>EYE, RIGHT - LESION, OPAQUE

Not required by protocol

PATHOLOGY ID. NO: TI098-0900 PATHOLOGIST: MJT ANIMAL ID: 0900

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 4 - R

SEX: MALE

PAGE 92

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0922

PATHOLOGY ID. NO: TI098-0922 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0923

PATHOLOGY ID. NO: TI098-0923 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

PATHOLOGY ID. NO: TI098-0927 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0929

PATHOLOGY ID. NO: TI098-0929 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 4 - R

SEX: MALE

PAGE 93

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0930

PATHOLOGY ID. NO: TI098-0930 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0932

PATHOLOGY ID. NO: TI098-0932 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0933

PATHOLOGY ID. NO: TI098-0933 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0935

PATHOLOGY ID. NO: TI098-0935 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 4 - R

SEX: MALE

PAGE 94

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

PATHOLOGY ID. NO: TI098-0939 PATHOLOGIST: MJT

ANIMAL ID: 0939

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID: 0940

PATHOLOGY ID. NO: TI098-0940 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>MESENTERY, FAT - LESION, SINGLE, Not required by protocol

OVAL, RED, 8X6X2 MM

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 1

SEX: FEMALE

PAGE 95

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

PATHOLOGY ID. NO: TI098-0821 PATHOLOGIST: MJT

ANIMAL ID: 0821

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>UTERUS, BILATERAL - DIVERTICULUM,

UTERUS- Deciduoma

MULTIPLE, OVAL

ANIMAL ID: 0822

PATHOLOGY ID. NO: TI098-0822 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0825

PATHOLOGY ID. NO: TI098-0825 PATHOLOGIST: MJT

WEEKS ON TEST: 14

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0826

PATHOLOGY ID. NO: TI098-0826 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 1

SEX: FEMALE

PAGE 96

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0828

PATHOLOGY ID. NO: TI098-0828 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0829

PATHOLOGY ID. NO: TI098-0829 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0832

PATHOLOGY ID. NO: TI098-0832 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>SKIN, HEAD - SCAR, 20X15 MM

SKIN, HEAD - Inflam, chronic

ANIMAL ID:

0833

PATHOLOGY ID. NO: TI098-0833 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>UTERUS, BILATERAL - DILATATION UTERUS- Dilatation

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 1

SEX: FEMALE

PAGE 97

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0838

PATHOLOGY ID. NO: TI098-0838 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

0839 ANIMAL ID:

PATHOLOGY ID. NO: TI098-0839 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 2

SEX: FEMALE

PAGE 98

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0862

PATHOLOGY ID. NO: TI098-0862 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0863

PATHOLOGY ID. NO: TI098-0863 PATHOLOGIST: MJT

WEEKS ON TEST: 14

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0865

PATHOLOGY ID. NO: TI098-0865 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0866

PATHOLOGY ID. NO: TI098-0866 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 2

SEX: FEMALE

PAGE 99

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0869

PATHOLOGY ID. NO: TI098-0869 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0870

ANIMAL FATE: Terminal Secrifice

PATHOLOGY ID. NO: TI098-0870 PATHOLOGIST: MJT

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0872

PATHOLOGY ID. NO: TI098-0872 PATHOLOGIST: MJT

WEEKS ON TEST: 14

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0875

PATHOLOGY ID. NO: TI098-0875 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>UTERUS, BILATERAL - DILATATION Not required by protocol

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 2

SEX: FEMALE

PAGE 100

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0876

PATHOLOGY ID. NO: TI098-0876 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID: 0878 PATHOLOGY ID. NO: TI098-0878 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3

SEX: FEMALE

PAGE 101

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0903

PATHOLOGY ID. NO: TI098-0903 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID: 0905

PATHOLOGY ID. NO: TI098-0905 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE

ANIMAL ID: 0906 PATHOLOGY ID. NO: TI098-0906 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3

SEX: FEMALE

PAGE 102

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0907

PATHOLOGY ID. NO: TI098-0907 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Alveolar proteinosis

IRREGULAR, WHITE

PATHOLOGY ID. NO: TI098-0910 PATHOLOGIST: MJT ANIMAL ID: 0910

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE

PATHOLOGY ID. NO: TI098-0911 PATHOLOGIST: MJT ANIMAL ID:

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, IRREGULAR, WHITE, FIRM

LUNG- Alveolar proteinosis

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3

SEX: FEMALE

PAGE 103

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0913

PATHOLOGY ID. NO: TI098-0913 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE

ANIMAL ID: 0914

PATHOLOGY ID. NO: TI098-0914 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0917

PATHOLOGY ID. NO: TI098-0917 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 4

SEX: FEMALE

PAGE 107

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0951

PATHOLOGY ID. NO: TI098-0951 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>SKIN, SUBCUTANEOUS TISSUE - MASS, SKIN - Granuloma, foreign body

SINGLE, PLAQUE, TAN, 3X4 MM

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE, FIRM

ANIMAL ID:

0952

PATHOLOGY ID. NO: TI098-0952 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis

IRREGULAR, WHITE, FIRM

ANIMAL ID:

0955

PATHOLOGY ID. NO: TI098-0955 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 4

SEX: FEMALE

PAGE 108

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0958

PATHOLOGY ID. NO: TI098-0958 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 14

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Alveolar proteinosis IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 1 - R

SEX: FEMALE

PAGE 109

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0823

PATHOLOGY ID. NO: TI098-0823 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

PATHOLOGY ID. NO: TI098-0824 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

PATHOLOGY ID. NO: TI098-0827 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0830

PATHOLOGY ID. NO: TI098-0830 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 1 - R

SEX: FEMALE

PAGE 110

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0831

PATHOLOGY ID. NO: TI098-0831 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

0834 ANIMAL ID:

PATHOLOGY ID. NO: TI098-0834 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0835

PATHOLOGY ID. NO: TI098-0835 PATHOLOGIST: MJT

WEEKS ON TEST: 27

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0836

PATHOLOGY ID. NO: TI098-0836 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 1 - R

SEX: FEMALE

PAGE 111

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0837

PATHOLOGY ID. NO: TI098-0837 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>PITUITARY GLAND - ENLARGED, 5X4 MM

PITUITARY GLAND- Pars distalis.

adenoma

ANIMAL ID: 0840

PATHOLOGY ID. NO: TI098-0840 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 2 - R

SEX: FEMALE

PAGE 112

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0861

PATHOLOGY ID. NO: TI098-0861 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0864

PATHOLOGY ID. NO: TI098-0864 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0867 PATHOLOGIST: MJT

WEEKS ON TEST: 27

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0868

PATHOLOGY ID. NO: TI098-0868 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>EYE, RIGHT - LESION, OPAQUE

Not required by protocol

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 2 - R

SEX: FEMALE

PAGE 113

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0871

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0871 PATHOLOGIST: MJT

>EAR, BILATERAL - LESION

Not required by protocol

ANIMAL ID: 0873

PATHOLOGY ID. NO: TI098-0873 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0874

PATHOLOGY ID. NO: TI098-0874 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0877

ANIMAL FATE: Terminal Secrifice

PATHOLOGY ID. NO: TI098-0877 PATHOLOGIST: MJT

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 2 - R

SEX: FEMALE

PAGE 114

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0879 PATHOLOGY ID. NO: TI098-0879 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

ANIMAL ID: 0880 PATHOLOGY ID. NO: TI098-0880 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LIVER, CAPSULE - MASS, SINGLE, Not required by protocol OVAL, WHITE, 1X2 MM

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3 - R

SEX: FEMALE

PAGE 115

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0901

PATHOLOGY ID. NO: TI098-0901 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Inflammation, chronic

IRREGULAR, WHITE

ANIMAL ID: 0902

PATHOLOGY ID. NO: TI098-0902 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Inflammation, chronic

IRREGULAR, WHITE

ANIMAL ID:

0904

PATHOLOGY ID. NO: TI098-0904 PATHOLOGIST: MJT

WEEKS ON TEST: 27

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3 - R

SEX: FEMALE

PAGE 116

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0908 PATHOLOGY ID. NO: TI098-0908 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>UTERUS, BILATERAL - DILATATION

Not required by protocol

ANIMAL ID: 0909 PATHOLOGY ID. NO: TI098-0909 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0912

PATHOLOGY ID. NO: TI098-0912 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>PITUITARY GLAND -- ENLARGED

Not required by protocol

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3 - R

SEX: FEMALE

PAGE 117

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

PATHOLOGY ID. NO: TI098-0915 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST:27

REFERENCE TO NECROPSY RECORD:

0915

RELATED HISTOPATHOLOGY:

PLEURA - LESION, MULTIPLE,

LUNG- Inflammation, chronic

IRREGULAR, WHITE

ANIMAL ID: 0916 PATHOLOGY ID. NO: TI098-0916 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Inflammation, chronic

IRREGULAR, WHITE

0918 ANIMAL ID:

PATHOLOGY ID. NO: TI098-0918 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>EYE, LEFT - LESION, 1, OPAQUE

Not required by protocol

>LUNG, PLEURA - LESION, MULTIPLE,

LUNG- Inflammation, chronic

IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 3 - R

SEX: FEMALE

PAGE 118

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0919 PATHOLOGY ID. NO: TI098-0919 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Inflammation, chronic IRREGULAR, WHITE

Correlation of Gross & Micro Findings

PROJECT ID: TRL098 GROUP: 4 - R SEX: FEMALE

PAGE 119

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0941

PATHOLOGY ID. NO: TI098-0941 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0942

PATHOLOGY ID. NO: TI098-0942 PATHOLOGIST: MJT

WEEKS ON TEST: 27

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0944

PATHOLOGY ID. NO: TI098-0944 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID: 0949

PATHOLOGY ID. NO: TI098-0949 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 4 - R

SEX: FEMALE

PAGE 120

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID:

0953

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

PATHOLOGY ID. NO: TI098-0953 PATHOLOGIST: MJT

ANIMAL ID:

0954

PATHOLOGY ID. NO: TI098-0954 PATHOLOGIST: MJT

WEEKS ON TEST: 27

ANIMAL FATE: Terminal Secrifice

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Inflammation, chronic IRREGULAR, WHITE

ANIMAL ID: 0956

PATHOLOGY ID. NO: TI098-0956 PATHOLOGIST: MJT

ANIMAL FATE: Natural Death

WEEKS ON TEST: 16

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, WHITE

LUNG- Alveolar proteinosis

Correlation of Gross & Micro Findings

PROJECT ID: TRL098

GROUP: 4 - R

SEX: FEMALE

PAGE 121

WEEKS: 2-27

FATES: Terminal Secrifice, Natural Death

ANIMAL ID: 0957

PATHOLOGY ID. NO: TI098-0957 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>LUNG, PLEURA - LESION, MULTIPLE, LUNG- Inflammation, chronic

IRREGULAR, WHITE

ANIMAL ID:

0959

PATHOLOGY ID. NO: TI098-0959 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD: RELATED HISTOPATHOLOGY:

ANIMAL ID:

0960

PATHOLOGY ID. NO: TI098-0960 PATHOLOGIST: MJT

ANIMAL FATE: Terminal Secrifice

WEEKS ON TEST: 27

REFERENCE TO NECROPSY RECORD:

RELATED HISTOPATHOLOGY:

>SPLEEN, CAPSULE - CYST, SINGLE, LOBULATED, CLEAR, WATERY

No corresponding lesion

Draft Pathology Report Toxicology Research Laboratory Study Number 098

SECTION VI QUALITY ASSURANCE STATEMENT

QUALITY ASSURANCE STATEMENT

DRAFT

This histopathology project was inspected and audited by the PAI Quality Assurance Unit (QAU) as required by the Good Laboratory Practice (GLP) regulations promulgated by the U.S. Food and Drug Administration. Results of these activities indicate that the portions of the study performed by PAI conformed with GLP regulations and applicable Standard Operating Procedures. The pathology narrative report is an accurate reflection of the recorded data. The following table is a record of the inspections/audits performed and reported by the QAU:

Date of Inspection		Phase Inspected	Date Findings Reported to Management and Study Pathologist
*	04/22/93	Tissue Trimming	04/22/93
*	06/08/93	Processing/Embedding	06/08/93
**	04/15/93	Microtomy	04/15/93
*	07/14/93	Staining	07/19/93
*	07/14/93	Coverslipping	07/19/93
*	04/15/93	Labeling	04/15/93
*	06/09/93	Quality Control/Checkout	06/09/93
**	09/10/93	Individual Animal Data	09/10/93
**	09/10/93	Data Entry	09/10/93
**	09/10/93	Computer-Generated Tables	09/10/93
**	09/10/93	Draft Pathology Report	09/10/93
**	09/28/93	Second Draft Pathology Report	09/28/93

^{*}General quarterly phase inspection

In accordance with the PAI Quality Assurance Division's Standard Operating Procedures, all critical phase inspections are conducted on a random basis quarterly or more frequently. Those general phase inspections listed are the most recent conducted during the period each task associated with this project was performed.

Quality Assurance Unit PAI Illinois Division 09/28/93

Date

Thirteen Week Oral Toxicity Study of WR238605 with a Thirteen Week Recovery Period in Rats, TRL Study Number 098.

^{**}Inspection specific for Study Number

Pathology Associates, Inc.

Suite I 15 Worman's Mill Court Frederick, MD 21701 (301) 663-1644 (301) 663-8994 FAX

BONE MARROW EVALUATION REPORT

DRAFT

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

STUDY NUMBER 098

PREPARED FOR
TOXICOLOGY RESEARCH LABORATORY
CHICAGO, ILLINOIS

TABLE OF CONTENTS

DRAFT,

Bone Marrow Evaluation Narrative

M:E Ratio Group Summary Tables

II
Individual Animal M:E Ratio Data

III
Individual Animal Data Sheets

IV
Quality Assurance Statement

V

DRAFT

I. Bone Marrow Evaluation Narrative

BONE MARROW EVALUATION REPORT

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

INTRODUCTION

This report prepared by Pathology Associates, Inc. (PAI) for Toxicology Research Laboratory (TRL), University of Illinois at Chicago, Department of Pharmacology, P. O. Box 6998, Chicago, IL, 60680, presents the results of bone marrow evaluation from rats given WR 238605 orally by gavage once daily for at least thirteen weeks.

EXPERIMENTAL DESIGN AND METHODS

Eighty male and eighty female rats were randomized into one of four groups as described below.

Treatment Group	Dose Level (mg base/kg/day)	Number of Males	Number of Females
1	0	10 + 10*	10 + 10*
2	0.5	10 + 10*	10 + 10*
3	6.0	10 + 10*	10 + 10*
4	18.0	10 + 10*	10 + 10*

^{*}Recovery Animals.

Surviving animals designated for the Day 91 and 92 necropsies were necropsied in random order on Days 91 and 92. The remainder of the animals were held for a thirteen week recovery period at which time they were necropsied.

Bone marrow smears were prepared (and fixed in methanol) from the femur of each animal at all necropsies. The bone marrow smears from animals in the high dose (Group 4) and control (Group 1) groups were stained with a Modified Giemsa stain and evaluated microscopically to determine the Myeloid:Erythroid (M:E) Ratio. The M:E Ratio was determined on a cell count of 500 cells. Five high dose male animals (#0921, #0926, #0934, #0936 and #0937) died prior to the Day 91/92 necropsies and bone marrow smears were not prepared for these animals.

Statistical analysis of the data was performed by TRL and provided to PAI for inclusion in this report.

RESULTS

M:E Ratio Group Summary tables are presented in Section II (generated by TRL from PAI data sheets). Individual animal M:E Ratio data are presented by sex and dose group in Section III (generated by TRL from PAI data sheets). PAI-generated individual animal data sheets are presented by dose group and sex in Section IV.

The M:E Ratios from bone marrow smears collected from male and female high dose and control animals on Days 91 and 92 in this study were within normal limits.

CONCLUSION

Under the conditions of this study, WR 238605 did not result in a treatment-related effect in the M:E Ratio of the femoral bone marrow of male and female treated rats at Days 91 and 92.

Lynda L. Pippin, DVM June 14, 1993

DRAFT

II. M:E Ratio Group Summary Tables

SUMMARY REPORT TEST: M:E RATIO

STUDY: 098 STUDY NO: 098BM

ANALYSIS OF VARIANCE FOLLOWED BY DUNNETT'S PROCEDURE

PERIOD(s): Week 14

Group: 1F: 0 mg base/kg/day MEAN 1.59 SD 0.062 N

DBAFT 10

Group: 2F: 0.5 mg base/kg/day MEAN NA

SD NA N

Group: 3F: 6.0 mg base/kg/day

MEAN SD N 0

Group: 4F: 18.0 mg base/kg/day

MEAN 1.59 0.074 SD 10 N

SUMMARY REPORT TEST: M:E RATIO

STUDY: 098 STUDY NO: 098BM

ANALYSIS OF VARIANCE FOLLOWED BY DUNNETT'S PROCEDURE

PERIOD(s): Week 14

Group: 1M : 0 mg base/kg/day 1.55 MEAN SD 0.066 N 10

Group: 2M : 0.5 mg base/kg/day

MEAN NA SD N

Group: 3M : 6.0 mg base/kg/day MEAN NA

SD

Group: 4M : 18.0 mg base/kg/day

MEAN 1.55 SD 0.066 N

OBAFT.

III. Individual Animal M:E Ratio Data

INDIVIDUAL ANIMAL REPORT BY GROUP TEST: M:E RATIO

STUDY ID: 098 STUDY NO: 098BM ABBR: M:E RATIO UNITS: -ANIMAL ID Week 14 -----GROUP: 1M:0 mg base/kg/day 801 --802 ---803 1.59 804 1.48 805 1.66 806 --807 808 1.50 809 810 811 --812 1.55 813 1.46 814 - -815 816 - -1.60 817 818 1.51 819 1.63 820 1.54 MEAN 1.55 SD 0.066 10 GROUP: 2M:0.5 mg base/kg/day --841 842 843 844 --845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 MEAN NA SD NA N 0

(--)-Data Unavailable

INDIVIDUAL ANIMAL REPORT BY GROUP

TUDY ID: 098 TUDY NO: 098BM BBR: M:E RATIO			-		SEX: MU	
	ANIMAL IC					
		l:6.0 mg base/kg/day	<i>y</i>			
	881			0)		5
	882 883					
	884	••				
	885					
	886	••				
	887 888	••				
	889					
	890					
	891 892					
	893					
	894					
	895					
	896 897					
	898	••				
	899					
	900	••				
	MEAN	NA				
	SD N	NA O				
	GROUP: 4M	:18.0 mg base/kg/day				
	921	1:18.0 mg base/kg/day 				
	921 922 923					
	921 922 923 924	 1.65				
	921 922 923 924 925	1.65 1.49				
	921 922 923 924 925 926 927	1.65 1.49				
	921 922 923 924 925 926 927 928	1.65 1.49 1.53				
	921 922 923 924 925 926 927 928 929	1.65 1.49 1.53				
	921 922 923 924 925 926 927 928 929 930 931	1.65 1.49 1.53				
	921 922 923 924 925 926 927 928 929 930 931 932	1.65 1.49 1.53 1.50				
	921 922 923 924 925 926 927 928 929 930 931 932 933	1.65 1.49 1.53 1.50				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934	1.65 1.49 1.53 1.50				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935	1.65 1.49 1.53 1.50				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936	1.65 1.49 				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938	1.65 1.49 1.53 1.50				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937	1.65 1.49 1.53 1.50				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938	1.65 1.49 1.53 1.50 1.58 1.58				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940	1.65 1.49 1.53 1.50 1.58 1.58 1.55 0.066				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940	1.65 1.49 1.53 1.50 1.58 1.58				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940	1.65 1.49 1.53 1.50 1.58 1.58 1.55 0.066				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940	1.65 1.49 1.53 1.50 1.58 1.58 1.55 0.066				
	921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940	1.65 1.49 1.53 1.50 1.58 1.58 1.55 0.066				

(--)-Data Unavailable

INDIVIDUAL ANIMAL REPORT BY GROUP TEST: M:E RATIO

UDY ID: 098 UDY NO: 098BM			-	SEX: FEMAL
BR: M:E RATIO				UNITS:
		Week 14		
	GROUP: 1F 821	:0 mg base/kg/day 1.63		
	822	1.53		A B
	823			
	824 825	 1.58		
	826	1.67		
	827 828	1.55		
	829	1.49		
	830			
	831 832	1.65		
	833	1.54		
	834	••		
	835 836	••		
	837			
	838 839	1.56 1.66		
	840			
	MEAN	1.59		
	SD N	0.062		
		:0.5 mg base/kg/day		
	861 862	••		
	863			
	864 865			
	866			
	867	••		
	868 869	••		
	870	••		
	871 872	••		
	873			
	874			
	875 876	••		
	877			
	878 879			
	880	••		
	MEAN	NA		
	SD	NA		
	N	0		
				34

(--)-Data Unavailable

INDIVIDUAL ANIMAL REPORT BY GROUP TEST: M:E RATIO

SEX: FEMALE STUDY ID: 098 STUDY NO: 0988M ASBR: M:E RATIO ANIMAL ID Week 14 GROUP: 3F:6.0 mg base/kg/day --901 902 903 904 --905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 MEAN NA SD NA GROUP: 4F:18.0 mg base/kg/day --941 942 943 1.63 944 --945 1.51 946 1.66 947 1.56 948 1.46 949 950 1.67 951 1.56 952 1.62 953 - -954 955 1.53 956 --957 958 1.67 959

(--)-Data Unavailable ,

NA-Not Applicable

1.59

0.074

MEAN SD

SUMMARY REPORT TEST: M:E RATIO

STUDY: 098 STUDY NO: 0988M SEX: MALE

ANALYSIS OF VARIANCE FOLLOWED BY DUNNETT'S PROCEDURE

	Week	14												
Group	N	Total	Mean	Std. Dev.	DUNNETT'S 't'	LO	DU: -95%-	_	RANGES LO -99%-	HI	Source	Degree Fdm	Sum of Squares	Mean Square
1M 2M	10 NA NA	15.52 0.00 0.00	1.55 0.00 0.00	0.066 NA NA							TREATMENTS ERROR		0.0000 0.0572	0.0000 0.0044
3M 4M	5	7.75	1.55	0.066							TOTAL	. 16	0.0572	
	F Ratio = Var. % =			table va nett's 'T	lues ' table value	s		01 = 01 =	9.07 3.01	F.05 P.05		67 2.16		

SUMMARY REPORT TEST: M:E RATIO

STUDY: 098

SEX: FEMALE
STUDY NO: 098BM

ANALYSIS OF VARIANCE FOLLOWED BY DUNNETT'S PROCEDURE

	Week	14													
Group	N	Total	Mean	Std. Dev.	DUNNETT'S 't'	LO	DUN -95%-		RANGES LO -99%-	ні	Sourc		egree Fdm	Sum of Squares	Mean Square
1F 2F 3F	10 NA NA	15.86 0.00 0.00	1.59 0.00 0.00	0.062 NA NA							TREATME ER	NTS ROR	3 18	0.0000 0.0839	0.0000 0.0047
4F	10	15.87	1.59	0.074							TO	TAL	21	0.0839	
	F Ratio = Var. % =		-	table va nett's 'T	lues 'table val	ues	F.0 P.0	•	8.28 2.88	F.05		4. 2.			

DBAFT

IV. Individual Animal Data Sheets

INDIVIDUAL BONE MARROW M:E RATIO DATA

Group 1

Vehicle Control: 0 mg base/kg/day

ANIMAL NO.	0821	0822	0825	0826	0828	0829	0832	0833	0838	0839
	310:190	302:198	306:194	313:187	304:196	299:201	311:189	303:197	305:195	312:188
RATIO	1.63:1.00	1.53:1.00	1.58:1.00	1.67:1.00	1.55:1.00	1.49:1.00	1.65:1.00	1.54:1.00	1.56:1.00	1.66:1.00

Group 4

High-Dose: 18.0 mg base/kg/day

ANIMAL NO.	0943	0945	0946	0947	0948	0950	0951	0952	0955	0958
	310:190	301:199	312:188	305:195	297:203	313:187	305:195	309:191	302:198	313:187
RATIO	1.63:1.00	1.51:1.00	1.66:1.00	1.56:1.00	1,46:1.00	1.67:1.00	1.56:1.00	1.62:1.00	1.53:1.00	1.67:1.00

INDIVIDUAL BONE MARROW M:E RATIO DATA

Group 1

Vehicle Control: 0 mg base/kg/day

ANIMAL NO.	0803	0804	0805	0808	0812	0813	0817	0818	0819	0820
	307:193	298:202	312:188	300:200	304:196	297:203	308:192	301:199	310:190	303:197
RATIO	1.59:1.00	1.48:1.00	1.66:1.00	1.50:1.00	1.55:1.00	1.46:1.00	1.60:1.00	1.51:1.00	1.63:1.00	1.54:1.00

Group 4

High-Dose: 18.0 mg base/kg/day

ANIMAL NO.	0921	0924	0925	0926	0928	0931	0934	0936	0937	0938
	ED	311:189	299:201	ED	302:198	300:200	ED	ED	ED	306:194
RATIO		1.65:1.00	1.49:1.00		1.53:1.00	1.50:1.00				1.58:1.00

TRAFT.

3

V. Quality Assurance Statement

Pathology Associates, Inc.

15 Worman's Mill Court Suite I Frederick, MD 21701 (301) 663-1644 (301) 663-8994 FAX

QUALITY ASSURANCE STATEMENT

This histopathology project with the exception of statistical analysis tables (Sections II and III) provided by the testing facility, Toxicology Research Laboratory (TRL), has been inspected and audited by the PAI Quality Assurance Unit (QAU) as required by the Good Laboratory Practice (GLP) regulations promulgated by the U.S. Food and Drug Administration. Results of these activities indicate that the portions of the study performed by PAI conformed with GLP regulations and applicable Standard Operating Procedures. The pathology narrative report is an accurate reflection of the recorded data. The following table is a record of the inspections/audits performed and reported by the QAU.

Date of Inspection	Phase Inspected	to Management/ Study Pathologist
06/14/93	Individual Animal Data Sheets	06/14/93
06/14/93	Individual M:E Ratio Tables	06/14/93
06/14/93	Draft Bone Marrow Evaluation Report	06/14/93

Quality Assurance Specialist

Date

TRL Study No. 098
Thirteen Week Oral Toxicity Study of WR 238605 With a Thirteen Week Recovery Period in Rats

Appendix 11

Pre-test Clinical Pathology Data

PRETEST ANIMAL CLINICAL CHEMISTRY REPORT PERIOD: PRETEST

									,
STUDY ID: (098P							SEX: MALE	_
ANIMAL ID	ALT U/L	AST U/L	TP g/dL	ALB g/dL	TBA mg/dL	ALKP U/L	LDH U/L	CK U/L	
GROUP: PRET	EST								
18	67	104	6.1	3.5	89.0	276	291	183	
45	72	122	7.0	3.9	99.2	388	88	261	
48	87	122	6.8	3.7	41.1	291	96	241	
56	74	115	6.8	3.9	146.9	266	270	284	
75	95	QNS	7.4	4.0	237.7	304	98	202	
MEAN	79	116	6.8	3.8	122.8	305	169	234	
SD	11.6	8.5	0.47	0.20	74.43	48.6	102.5	41.5	
N	5	4	5	5	5	5	5	5	

nl = 25-200

QNS-Quantity Not Sufficient

DRAFT

PRETEST ANIMAL CLINICAL CHEMISTRY REPORT PERIOD: PRETEST

_	STUDY ID: 098P								SEX: MALE	
	ANIMAL ID	BUN mg/dL	CREA mg/dL	NA mmol/L	K mmol/L	CL mEq/L	CA mg/dL	IP mg/dL	GLU mg/dL	
•	GROUP: PR	GROUP: PRETEST								
	18	12.5	0.41	139	6.24	113	10.7	10.4	127	
	45	10.6	0.37	147	6.38	110	11.2	12.3	132	
	48	8.0	0.43	139	6.52	110	11.0	11.9	125	
	56	12.7	0.36	140	6.78	112	11.6	12.9	161	
	75	10.9	0.45	143	6.87	111	12.0	12.3	192	
	MEAN	10.9	0.40	142	6.56	111	11.3	12.0	147	
	SD	1.89	0.038	3.4	0.265	1.3	0.51	0.94	28.8	
	N	5	5	5	5	5	5	5	5	

PRETEST ANIMAL CLINICAL CHEMISTRY REPORT PERIOD: PRETEST

STUDY ID:	098P							SEX: FEMALE	Ε
ANIMAL ID	ALT U/L	AST U/L	TP g/dL	ALB g/dL	TBA mg/dL	ALKP U/L	LDH U/L	CK U/L	
GROUP: PRE	TEST								
117	63	131	7.1	3.8	112.8	258	167	544	
143	58	112	7.1	4.0	123.8	261	118	344	
152	61	99	7.7	4.4	72.3	233	54	88	
184	50	120	7.9	4.4	21.7	200	212	181	
197	75	148	6.7	4.0	301.1	257	367	524	
MEAN	61	122	7.3	4.1	126.3	242	184	336	
SD	9.1	18.6	0.49	0.27	105.59	25.9	118.1	202.6	
N	5	5	5	5	5	5	5	5	

- 25-200

PRETEST ANIMAL CLINICAL CHEMISTRY REPORT PERIOD: PRETEST

STUDY ID:	098P							SEX: FEMALE
ANIMAL ID	BUN mg/dL	CREA rng/dL	NA mmol/L	K mmol/L	CL mEq/L	CA mg/dL	IP mg/dL	GLU mg/dL
GROUP: PR	ETEST							
117	10.0	0.49	143	6.92	111	11.9	11.5	175
143	8.9	0.42	143	6.99	111	12.4	10.7	150
152	13.6	0.40	143	6.12	110	11.8	10.3	138
184	16.9	0.45	145	6.14	117	12.3	10.5	129
197	10.9	0.45	137	6.63	108	11.3	10.3	133
MEAN	12.1	0.44	142	6.56	111	11.9	10.7	145
SD	3.22	0.034	3.0	0.415	3.4	0.44	0.50	18.5
N	5	5	5	5	5	5	5	5

DRAFT

PRETEST ANIMAL HEMATOLOGY REPORT PERIOD: PRETEST

STUDY ID	: 098P							SEX: MALE
ANIMAL ID	RBC 10^6/cmm	HGB g/dL	нст %	MCV fL	MCH Pg	MCHC g/dL	RETICS %RBCs	НВ %
GROUP: PR	RETEST							
18	6.36	14.0	41.3	64.9	22.0	33.9	3.4	0.0
45	6.38	13.7	40.8	63.9	21.5	33.6	1.9	0.0
48	6.68	14.5	42.1	63.0	21.7	34.4	3.4	0.0
56	6.50	16.4	42.6	65.5	25.2	38.5	2.7	0.0
75	6.82	.15.5	44.1	64.7	22.7	35.1	2.6	0.0
MEAN	6.55	14.8	42.2	64.4	22.6	35.1	2.8	0.0
SD	0.198	1.12	1.28	0.97	1.51	1.98	0.63	0.00
N	5	5	5	5	5	5	5	5

PRETEST ANIMAL HEMATOLOGY REPORT PERIOD: PRETEST

STUDY ID: 098P				SEX: MALE
	ANIMAL ID	PLT 10^3/ccm	WBC 10^3/cmm	
	GROUP: PR	ETEST		
	18	1141	22.0	
	45	1075	11.4	
	48	1136	13.1	
	56	1309	16.1	
	75	1396	21.6	
	MEAN	1211	16.8	
	SD	135.0	4.83	
	N	5	5	

WBC corrected for NRBC = or > 10

PRETEST ANIMAL HEMATOLOGY REPORT PERIOD: PRETEST

STUDY ID: 098P				SEX: MALE
	ANIMAL ID	%METHGB %	APTT sec	
	GROUP: PRI	ETEST		
	2	0.5	11.5	
	32	1.0	10.4	
	58	0.4	8.9	
	85	0.3	10.3	
	95	0.7	16.1	
	MEAN	0.6	11.4	
	SD	0.28	2.76	
	N	5	5	

WHITE DIFFERENTIAL DATA

STUDY ID: 098P

GROUP: PRETEST

SEX: MALE

ANIMAL ID		PRET	EST
		REL	ABS
18	Nucleated Red Cells	0	
	M. Neutrophils	5	1.1
	I. Neutrophils	0	0.0
	Lymphocytes	92	20.2
	Monocytes	3	0.7
	Eosinophils	0	0.0
	Basophils	0	0.0
	WBC		22.0
45	Nucleated Red Cells	0	
	M. Neutrophils	6	0.7
	I. Neutrophils	0	0.0
	Lymphocytes	88	10.0
	Monocytes	6	0.7
	Eosinophils	0	0.0
	Basophils	0	0.0
	WBC		11.4
48	Nucleated Red Cells	0	
40	M. Neutrophils	12	1.6
	I. Neutrophils	0	0.0
	Lymphocytes	81	10.6
	Monocytes	5	0.7
	Eosinophils	2	0.3
	Basophils	0	0.0
	WBC	•	13.1
	WDC		13.1
56	Nucleated Red Cells	0	
	M. Neutrophils	14	2.3
	I. Neutrophils	0	0.0
	Lymphocytes	77	12.4
	Monocytes	8	1.3
	Eosinophils	1	0.2
	Basophils	0	0.0
	WBC		16.1

.....

NRBC Corrected After-10

WHITE DIFFERENTIAL DATA

STUDY ID: 098P

GROUP: PRETEST

SEX: MALE

ANIMAL ID	PR REL	ETEST ABS	
	KEL	ADS	
75 Nucleated Red	Cells 0		
M. Neutrophils	8	1.7	
I. Neutrophils	0	0.0	
Lymphocytes	87	18.8	
Monocytes	4	0.9	
Eosinophils	1	0.2	
Basophils	0	0.0	
WBC		21.6	

NRBC Corrected After-10

	MORPHOLO	OGY OBSERVATIONS	
STUDY ID: 098P	GR	OUP: PRETEST	SEX: MALE
	ANIMAL ID	PRETEST	
	18	Anisocytosis,Slight; Polychromasia, Moderate;Target Cells,Slight	
	45	Polychromasia,Slight Target Cells,Slight; Macrocytes,Slight	
1	48	Anisocytosis,Slight; Polychromasia,Slight	
" 1	56	Polychromasia,Slight Macrocytes,Slight	
	75	Anisocytosis,Slight; Polychromasia,Slight Target Cells,Slight	

PRETEST ANIMAL HEMATOLOGY REPORT PERIOD: PRETEST

STUDY ID	: 098P							SEX: FEMALE
ANIMAL II	D RBC 10^6/cmm	HGB g/dL	нст %	MCV fL	MCH Pg	MCHC g/dL	RETICS %RBCs	HB %
GROUP: PI	RETEST							
117	7.21	15.0	43.9	60.9	20.8	34.2	2.3	0.0
143	6.21	13.3	38.9	62.6	21.4	34.2	0.8	0.0
152	6.93	14.5	41.6	60.0	20.9	34.9	1.4	0.0
184	6.85	14.4	41.2	60.1	21.0	35.0	2.0	0.0
197	6.77	14.8	42.6	62.9	21.9	34.7	2.9	0.0
MEAN	6.79	14.4	41.6	61.3	21.2	34.6	1.9	0.0
SD	0.366	0.66	1.85	1.37	0.45	0.38	0.81	0.00
N	5	5	5	5	5	5	5	5

DRAFT

PRETEST ANIMAL HEMATOLOGY REPORT PERIOD: PRETEST

STUDY ID: 098P				SEX: FEMALE
	ANIMAL II	PLT 10^3/ccm	WBC 10^3/cmm	
	GROUP: PF	RETEST		
	117	768	12.1	
	143	1097	12.3	
	152	1049	21.5	
	184	1012	15.5	
	197	1195	12.7	
(2)	MEAN	1024	14.8	
	SD	158.8	3.98	
	N	5	5	

WBC corrected for NRBC = or > 10

PRETEST ANIMAL HEMATOLOGY REPORT PERIOD: PRETEST

STUDY ID: 098P				SEX: FEMALE
	ANIMAL ID	%METHGB %	APTT sec	
	GROUP: PRE	ETEST		
	105	0.7	9.5	
	107	0.3	8.1	
	166	0.7	10.3	
	174	0.4	8.6	
	188	1.1	10.1	
	MEAN	0.6	9.3	
	SD	0.31	0.95	
		-	-	

WHITE DIFFERENTIAL DATA

STUDY ID: 098P		GROUP: PRETEST			SEX: FEMALE
	ANUMAL ID			TEST	
			REL	ABS	
	117	Nucleated Red Cells	0		
		M. Neutrophils	7	0.8	
		I. Neutrophils	0	0.0	
		Lymphocytes	81	9.8	
		Monocytes	12	1.5	
		Eosinophils	0	0.0	
		Basophils	0	0.0	
		WBC		12.1	
	143	Nucleated Red Cells	0		
		M. Neutrophils	8	1.0	
		 Neutrophils 	0	0.0	
		Lymphocytes	89	10.9	
		Monocytes	3	0.4	
		Eosinophils	0	0.0	
		Basophils	0	0.0	
		WBC		12.3	
	152	Nucleated Red Cells	0		
		M. Neutrophils	6	1.3	
		 Neutrophils 	0	0.0	
		Lymphocytes	92	19.8	
		Monocytes	1	0.2	
		Eosinophils	1	0.2	
		Basophils	0	0.0	
		WBC		21.5	

Nucleated Red Cells

M. Neutrophils

Neutrophils

Lymphocytes Monocytes

Eosinophils Basophils

WBC

0

16

0

79

0

2.5

0.0

12.2

0.6

0.0

15.5

NRBC Corrected After-10

184

WHITE DIFFERENTIAL DATA STUDY ID: 098P GROUP: PRETEST SEX: FEMALE PRETEST ANIMAL ID REL ABS 197 Nucleated Red Cells 0 M. Neutrophils 16 2.0 I. Neutrophils 0 0.0 0 0.0 80 10.2 I. Neutrophils Lymphocytes 4 0 0 0.5 0.0 0.0 Monocytes Eosinophils Basophils

12.7

WBC

NRBC Corrected After-10

	MORPHOL	OGY OBSERVATIONS	
STUDY ID: 098P SEX: FEM			
	ANIMAL ID	PRETEST	
	117	Anisocytosis,Slight; Polychromasia,Slight Large Platelets, Slight	
	143	Polychromasia, Moderate;Macrocytes, Moderate	
	152	Anisocytosis,Slight; Polychromasia,Slight	
	184	Anisocytosis, Moderate; Polychromasia,Slight	
	197	Anisocytosis,Slight; Polychromasia,Slight	

DRAFT

Appendix 12

Protocol and Protocol Amendments

Contract No.: DAMD17-92-C-2001

Task Order No.: UIC-5B Study No.: 098

THIRTEEN WEEK ORAL TOXICITY STUDY OF WR 238605 WITH A THIRTEEN WEEK RECOVERY PERIOD IN RATS

1.0 PURPOSE OF THE STUDY:

The purpose of this study is to determine specific target organ toxicity, dose-response relationships, and a no adverse effect level of WR 238605 in CD® rats following thirteen weeks of daily administration by gavage. In addition, the reversibility of these toxic effects over a 90-day recovery period will be assessed. This study will be conducted in accordance with the specifications of the Sponsor as described in Task Order UIC-5. The protocol for this study was approved by the UIC Animal Care Committee.

2.0 SPONSOR:

2.1 Name: U.S. Army Medical Research and Development Command

2.2 <u>Address:</u> Fort Detrick Frederick, MD 21702-5009

2.3 Representative: George Schieferstein, Ph.D.

3.0 TESTING FACILITY:

3.1 Name: Toxicology Research Laboratory (TRL)

3.2 <u>Address:</u> University of Illinois at Chicago (UIC)
Department of Pharmacology

P. O. Box 6998 Chicago, IL 60680

3.3 <u>Study Director:</u> Barry S. Levine, D.Sc., D.A.B.T.

4.0 DATES:

4.1 Study Initiation Date (see 11.0; Protocol Approval): 9/1/92

4.2 <u>Proposed Initiation of Dosing:</u> 12/17/92

4.3 <u>Proposed Necropsy Dates:</u> 3/18,19/93; 6/17,18/93

4.4 <u>Proposed Study Completion Date</u>
(Draft Study Report): 9/17/93

STUDY NO: COR INITIAL: BY DATE: 12/21/92

Contract No.: DAMD17-92-C-2001

Task Order No.: UIC-5B Study No.: 098

5.0 TEST ARTICLE

DRAFT

- 5.1 Name or Code No: WR238605 succinate
- 5.2 TRL Chemical No: 0720614
- 5.3 Physical Description: Pale yellow powder.
- 5.4 Stability and Handling of Test Article:
 - 5.4.1 Storage Conditions to Maintain Stability:
 - 5.4.1.1 <u>Temperature</u>: 0 4°C
 - 5.4.1.2 <u>Humidity:</u> Ambient conditions.
 - 5.4.1.3 <u>Light:</u> Protect from light: amber bottle or silver foil covering.
 - 5.4.1.4 Special Requirements: None.
 - 5.4.2 <u>Special Handling Procedures:</u> Standard safety precautions including gloves, eye protection, mask, and lab coats.
 - 5.4.3 Log of Test Article: The amount, date, identity of person(s) removing aliquots and the purpose for which each aliquot of the test article was removed from the batch will be documented. At termination of the study, all unused test article will be returned to the Sponsor if requested.

6.0 PERSONNEL:

Study Director
Toxicologist
Pathologist
Analytical Chemist
Clinical Veterinarian
Veterinarian Support
Ophthalmologist
Tox. Lab Supervisor
Lead Technician
Clinical Pathology
Chemistry Specialist
Ouality Assurance

Barry S. Levine, D.Sc., D.A.B.T.
E. Marianna Furedi-Machacek, D.V.M.
Michael J. Tomlinson, D.V.M., Ph.D., D.A.C.V.P.
Ian R. Tebbett, Ph.D.
James E. Artwohl, D.V.M., Ph.D., D.A.C.L.A.M.
Documented in raw data
Samuel J. Vainisi, D.V.M., D.A.C.V.O.
Soudabeh Soura, B.S.
Nancy Dinger, B.S.
Maria Lang, A.H.T., C.V.T.
Thomas Tolhurst, B.S.
Ronald C. Schoenbeck

7.0 TEST SYSTEM:

7.1 Species:

Rat

7.2 Strain:

CD® (Virus Antibody Free)

7.3 Number and Sex:

80 Males and 80 Females

STUDY NO: 048 INITIAL:

DATE: 515/43

DRAFT

Contract No.: DAMD17-92-C-2001

Task Order No.: UIC-5B Study No.: 098

7.4 Age of Animals: Approximately 7 weeks old at dosing initiation.

7.5 <u>Weight of Animals:</u> Approximately 200 - 250 g (males) and approximately 150 - 200 g (females) at dosing initiation.

7.6 <u>Source of Animals:</u> Charles River Breeding Laboratories. The specific breeding facility will be documented in the raw data.

- 7.7 <u>Justification for Selection of Test System:</u> The rat is a standard and accepted rodent species for toxicology studies, and is specified by the Sponsor.
- Procedure for Unique Identification of Test System: Upon arrival, each animal will be given a study-unique quarantine/pretest number. During the animal selection process, each animal will be assigned an animal number unique to it within the population making up the study. This number will appear as an ear tag and will also appear on a cage card visible on the front of each cage. The cage card will additionally contain the study number, test article identification, treatment group number and dose level. Cage cards will be color-coded as a function of treatment group. Raw data records and specimens will also be identified by the unique test animal number.
- 7.9 <u>Housing:</u> The animals will be housed in an AAALAC-accredited facility. Animals will be singly housed in polycarbonate cages with Anderson-bed-a-cob bedding (Heinold, Kankakee, Illinois) in a temperature (65-78°F) and humidity (approx. 40-70%) controlled room with a 14 hour light/10 hour dark cycle. The cage size, 840 cm area and 20 cm height, is adequate to house rats at the upper weight range as described in the Guide for the Care and Use of Laboratory Animals, DHEW (NIH) No. 86.23. All animals will be routinely transferred to clean cages with fresh bedding once weekly.
- <u>Quarantine Procedure:</u> Animals will be quarantined for approximately one week. During that time, the animals will be observed daily for signs of illness or death, and all unusual observations will be reported to the Study Director, Toxicologist or Clinical Veterinarian. Animals will be examined during quarantine and approved for use by the Clinical Veterinarian prior to being placed on test. Any sickly animals will be eliminated prior to the test animal selection process. If a selected animal appears sickly prior to initiation of treatment, it will be replaced by a healthy animal prior to initiation of treatment under the direction of the Study Director or Toxicologist. In addition, during the quarantine/pretest, hematology and clinical chemistry parameters (see Section 8.7.6) will be measured for five rats/sex to determine the suitability of the rat shipment for use in this study. These rats, however, will not be used in the dosing portion of the study. Quarantine release will be documented on the Clinical Veterinarian Log by the veterinarian prior to study initiation.

PRTL098 Page 3

Contract No.: DAMD17-92-C-2001 Task Order No.: UIC-5B Study No.: 098

7.11 Food: Purina Certified Rodent Chow No. 5002 (Ralston Purina Company, St. Louis, MO) will be provided ad libitum from arrival until termination, except during an approximate 16-20 hour fast prior to blood collection for clinical pathology and/or necropsy.

- 7.12 Water: Tap water from an automatic watering system in which the room distribution lines are flushed daily will be provided ad libitum from arrival until termination. The water is untreated with additional chlorine or HCl.
- There are no known contaminants in the feed or water which are expected to influence the study. A copy of the feed certification will be kept with the study records. The results of bimonthly comprehensive chemical analyses of Chicago water are documented in files maintained by Quality Assurance.

8.0 EXPERIMENTAL DESIGN:

8.1 Treatment Groups:

Treatment <u>Group</u>	Dose Level (mg_base/kg/day)	Number of Males	Number of Females
1	0	10 + 10*	10 + 10*
2	0.5	10 + 10*	10 + 10*
3	6.0	10 + 10*	10 + 10*
4	18.0	10 + 10*	10 + 10*

^{*}Recovery Animals

Dose levels were supplied by the Sponsor based on the results of a 28-day gavage rat study, and are extrapolations from that shorterterm toxicology study.

Ten animals/sex/group will be necropsied after the thirteen week treatment period. The remaining animals indicated above will be held for a thirteen week recovery period, at which time they will be necropsied.

8.2 <u>Frequency and Route of Administration of the Test Article:</u> The test article will be administered by gavage once daily starting with Day O for at least thirteen weeks. Control animals will receive the test article vehicle (aqueous 1% methylcellulose/0.4% Tween 80). The animals to be sacrificed after the 13 week treatment period will be dosed up to and including the day prior to their scheduled necropsy on Days 91 and 92. The recovery animals will be dosed for 91 days. Dosing volume will be 5 ml/kg, adjusted on the basis of each animal's most recent body weight. The actual volume (ml) administered will be documented in the raw data.

PRTL098 Page 4

DRAFT

Contract No.: DAMD17-92-C-2001

Task Order No.: UIC-5B Study No.: 098

8.3 <u>Justification of Route(s):</u> Oral treatment is the intended clinical route of administration and is specified by the Sponsor.

- 8.4 Procedure to Control Bias during the Assignment of Animals to Treatment Groups: During the quarantine/pretest period, the animals will be randomized by sex into the four groups shown in Section 8.1 using a computer-generated randomization procedure on the basis of body weight.
- 8.5 <u>Test Article Vehicle:</u> Aqueous 1% methylcellulose/0.4% Tween 80. Both chemicals will be obtained from Sigma. If another source is used, it will be identified in the raw data.
- 8.6 Test Article Dosage Form Preparation and Analyses: The test article dosing suspensions will be prepared every two weeks based on stability data from a previously conducted dog toxicity study by gastric intubation (UIC/TRL Study No. 047). WR 238605 dosage formulations were previously shown to be homogeneous in that study. The test article will be suspended in the vehicle to result in concentrations necessary to administer the dosage formulations at a volume of 5 ml/kg. The specific volume (ml) administered will be calculated on the basis of each animal's most recent body weight. Samples of all dosage formulations used in Weeks 1 & 2, 7 & 8, and 13 will be analyzed for test article concentration prior to their use. Only samples within 10% of their target concentration will be used.
- 8.7 Type and Frequency of Observations, Tests, Analyses and Measurements:
 - 8.7.1 Clinical Signs: All animals will be observed once daily for clinical signs of toxicity approximately 1 2 hours after dosing. Additionally, all animals will be observed for moribundity/mortality in the afternoon and immediately prior to dosing in the morning. During the recovery period, clinical signs will be recorded in the morning.
 - 8.7.2 <u>Clinical Observations:</u> All animals will be subjected to a physical examination including examination of eyes and all orifices in Week -1, on Day 0, and weekly thereafter.
 - 8.7.3 <u>Body Weight:</u> Body weights of all animals will be recorded at randomization in Week -1, on Day 0, weekly thereafter, and at scheduled necropsy.
 - 8.7.4 <u>Food Consumption:</u> Food consumption for all animals will be measured weekly commencing in Week -1.
 - 8.7.5 Ophthalmologic Examinations: All rats will be examined by indirect ophthalmoscopy prior to study initiation and during Week 13, and in Week 26 for the recovery animals.

PRTL098

Contract No.: DAMD17-92-C-2001

Task Order No.: UIC-5B Study No.: 098

8.7.6 Clinical Pathology: Hematology and clinical chemistry parameters will be measured for 10 animals/sex/group during Weeks 2, 4, 8 and 13, and in Weeks 16, 21 and 27 (at necropsy) for the recovery groups. The recovery animals will be routinely used throughout the study for these measurements. The overnight fasted animals will be anesthetized by carbon dioxide inhalation, and approximately 1.5 - 2.0 ml of blood will be collected from the orbital sinus to measure the following parameters. The samples will be processed in the same random order as collected.

Hematology

^aErythrocyte count and morphology Hematocrit Hemoglobin Leukocyte count,total and differential Reticulocyte counts

Mean cell volume(MCV)
Mean cell hemoglobin (MCH)
Mean cell hemoglobin
concentration (MCHC)
Heinz Bodies
Platelet count
Methemoglobin

Clinical Chemistry

Albumin
Albumin/Globulin Ratio
(calculated)
Alkaline phosphatase
Alanine aminotransferase
(ALT/SGPT)
Aspartate aminotransferase
(AST/SGOT)
Calcium
Creatinine

Creatine kinase
Chloride
Glucose
Globulin (calculated)
Inorganic phosphorus
Lactate dehydrogenase
Potassium
Sodium
Total bile acids
Total protein
Urea nitrogen (BUN)

Activated partial thromboplastin time will be measured for all rats from blood samples collected from the vena cava at their scheduled necropsy in Weeks 14 and 27. Clincal chemistry and hematology tests and activated partial thromboplastin time will be measured for 5 rats/sex during the quarantine/pretest period.

8.7.7 Plasma Drug Levels: Blood samples will be obtained at scheduled necropsy from the vena cava to provide approximately 1 ml of plasma for drug level measurements. The samples will be collected after blood is obtained for activated partial thromboplastin time. The plasma samples will subsequently be shipped to Dr. Emil Lin for analysis as specified by the Sponsor. The results will not be included in the Study Report.

REVISED PAGE
STUDY NO: 098 INITIAL:
DATE: 12/21/42

^a Includes nucleated RBCs.

To be measured with a Co-oximeter (Instrumentation Laboratory Model No. 282). The assay will be performed within one hour of sample collection. The specimens will be kept on wet ice prior to analysis.

DRAFT

Contract No.: DAMD17-92-C-2001

Task Order No.: UIC-5B Study No.: 098

Pathology: All animals which die on test or are sacrificed if moribund will be necropsied on that day. For surviving animals, 10 animals/sex/group will be sacrificed and necropsied in random order over two consecutive days (Days 91 and 92). The remaining animals will be held for a 13 week recovery period. They will be sacrificed and necropsied at the onset of Week 27.

Euthanasia will be accomplished by carbon dioxide asphyxiation, and an extensive necropsy will be performed under the direction and supervision of the pathologist. Terminal body weights will be collected prior to routine sacrifice.

The necropsy procedure will be a thorough and systematic examination and dissection of the animal viscera and carcass, and collection and fixation of the following tissues/organs in 10% neutral buffered formalin.

*Adrenal glands Animal identification *Brain Cecum Colon Diaphragm Duodenum Esophagus Eyes with harderian Femoral marrow smear *Heart Gross lesions Ileum Jejunum *Kidneys *Liver Lungs/Bronchi Lymph node (mesenteric)

*Ovaries Pancreas Pituitary Prostate Rib with costochondral junction Salivary gland (submaxillary) Sciatic nerve Skeletal muscle Skin with mammary gland Spinal cord (thoracic) *Spleen Sternum with marrow Stomach *Testes with epididymides Thyroid gland/Parathyroids Tonque Trachea Urinary bladder Uterus

*Weighed at scheduled necropsy. Paired organs will be weighed as a unit.

All tissues and organs collected at necropsy will be examined microscopically for all high dose and control animals sacrificed after 13 weeks of treatment. In addition, animals found dead or subjected to a moribund sacrifice will also be processed for microscopic examination. If treatment-related lesions are observed at the high dose, those tissues/organs will be examined microscopically for mid and low dose animals sacrificed in Week 14, and for control and high dose (and mid and low dose if necessary) recovery animals.

REVISED PAGE
STUDY NO: 098 INITIAL: B12
DATE: 12/21/97

Contract No.: DAMD17-92-C-2001

Task Order No.: UIC-5B Study No.: 098

DRAFT

Femoral bone marrow smears will be prepared for all animals at scheduled necropsy and for moribund sacrificed animals. The myeloid:erythroid (M:E) ratio will be determined for control and high dose animals at the Week 14 necropsy. If treatment-related changes are seen, M:E ratios will be determined from mid and low dose animals at Week 14, and from control and high dose (and mid and low dose as necessary) recovery animals.

8.7.9 Statistical Analyses: For each sex, Analysis of Variance tests will be conducted on body weight, food consumption, hematology, clinical chemistry and organ weight data. Organ weight analysis will consider absolute weights and weights relative to body weight. If a significant F ratio is obtained ($p \le 0.05$), Dunnett's t test will be used for pair-wise comparisons to the control group. Frequency data such as incidence of mortality, gross necropsy observations and tissues morphology observations will be compared by Fishers Exact Test or Chi-square analyses as necessary.

Quantitative data will be tabulated and presented in the report. In addition to the written report, summary data tables of parameters and variability will be transmitted to the Sponsor on magnetic media (computer diskette) in "ASCII" form. The transcribed data on disk will no longer be considered GLP compliant.

9.0 RECORDS TO BE MAINTAINED:

All data generated during the conduct study, except those that are generated as direct computer input, shall be recorded directly, promptly, and accurately in ink in bound books with prenumbered pages or on worksheets that shall be bound during or at the conclusion of the nonclinical laboratory study. All appropriate computer and machine output shall be bound during or at the conclusion of the study. All data entries shall be dated on the day of entry and signed or initialed by the person entering the data. Any changes in entries for whatever reason (e.g., to correct an error or transposition) shall be made so as not to obscure the original entry, shall indicate the reason for such change, and shall be dated and signed or identified at the time of data input. In computer driven collection systems, the operator responsible for direct input shall be identified at the time of data input. Any changes in computer entries for whatever reason (e.g, to correct an error or transposition) shall be made in such manner so as not to obscure the original entry, if possible, shall indicate the reason for such change, and shall be dated and the responsible individual shall be identified.

All recorded data shall be reviewed, signed, and dated by a knowledgeable person, other than the person making the entry, to assure adherence to procedures and to verify observations.

Upon completion of the study and submission of the final report, all raw data, documentation, specimens, test article reserves and other materials necessary to reconstruct the study will be stored in the TRL archives

STUDY NO: 098 INITIAL: 1912

Contract No.: DAMD17
Task Order No.: UIC-5B

Contract No.: DAMD17-92-C-2001

Study No.: 098

maintained by Quality Assurance, unless specified by the Sponsor.

All changes or revisions, and reasons therefore, to this protocol once it is approved shall be documented, signed by the Study Director and Sponsor, dated and maintained with the protocol.

10.0 REGULATORY REQUIREMENTS:

This study will be performed in compliance with the UIC/TRL Quality Assurance Program designed to conform with FDA Good Laboratory Practice Regulations and EPA Good Laboratory Practice Standards.

Will this study be submitted to a regulatory agency? Yes If so, to which agency(ies)? Food and Drug Administration

Does the Sponsor request that test article samples be returned? Yes Does the Sponsor request that samples of the test article/carrier mixture(s) be returned? No

PRTL098

DRAFT

Contract No.: DAMD17-92-C-2001

Task Order No.: UIC-5B Study No.: 098

11.0 PROTOCCL APPROVAL:

STUDY DIRECTOR:

Barry S. Levine, D.Sc.,

9/1/92 Date

QUALITY ASSURANCE:

Ronald Schoenbeck

9/1/92

SPONSOR APPROVAL:

George Schieferstein, Ph.D.

Date

Contracting Officer's Representative (COR)

COMMEN'S FROM THE COR:

PROTOCOL AMENDMENT

DRAFT

Study No.: 098

Title: Thirteen Week Oral Toxicity Study of WR238605 with a Thirteen Week

Recovery Period in Rats

1. Page 1 Section 4.0

Change the study dates as follows:

4.2 Proposed Initiation of Dosing: 12/17/92

4.3 Proposed Necropsy Date: 3/18,19/93; 6/17,18/93

4.4 <u>Proposed Study Completion Date</u>
(Draft Study Report): 9/17/93

Reason: Delay in study start.

2. Page 2 Section 6.0

Change "Technician Teresa O'Neill, B.S." to "Lead Technician Nancy Dinger, B.S."

Reason: Mistake in protocol.

3. Page 6 Section 8.7.6

A. Change the blood collection weekly timepoints for clinical pathology measurements from "3, 5, 9, 13, 16, 18, 22 and 27" to "2, 4, 8, 13, 16, 21 and 27."

Reason: Sponsor request.

B. Add total bile acids (TBA) to the clinical chemistry list.

Reason: Inadvertently omitted from protocol.

C. Change "abdominal aorta" to "vena cava" in the last sentence which describes the collection of blood for activated partial thromboplastin time.

Reason: Mistake in protocol.

D. Add the following sentence at the end of the section:

"Clinical chemistry and hematology tests and activated partial thromboplastin time will be measured for 5 rats/sex during the quarantine/pretest period."

PROTOCOL AMENDMENT

Study No.: 098

Title:

Thirteen Week Oral Toxicity Study of WR238605 with a Thirteen Week

Recovery Period in Rats

Reason: Clarification of procedures.

4. Page 6 Section 8.7.7

Change "abdominal aorta" to "vena cava" as the source of blood collection in the first sentence.

Reason: Mistake in protocol.

5. Page 7 Section 8.7.8

Add "sternum with marrow" to the tissue list.

Reason: Inadvertently omitted from the protocol.

6. Page 8 Section 8.7.8

Change the first sentence as follows:

"Femoral bone marrow smears will be prepared for all animals at scheduled necropsy and for moribund sacrificed animals."

Reason:

Clarification of protocol.

APPROVALS:

STUDY DIRECTOR:

Barry S. Levine, D.Sc., D.A.B.T. Date

SPONSOR APPROVAL:

George Schiefferstein, Ph.D.

Contracting Officer's Representative (COR)

12/23/92

Date

PROTOCOL AMENDMENT

Study No.: 098

Title:

Thirteen Week Oral Toxicity Study of WR238605 with a Thirteen Week

Recovery Period in Rats

7. Page 2 Section 5.3

Change "White powder" to "Pale yellow powder"

Reason:

Mistake in the protocol

APPROVALS:

STUDY DIRECTOR:

Barry S. Levine, D.Sc., D.A.B.T.

3/5/93

SPONSOR APPROVAL:

George Schieferstein, Ph.D.

Contracting Officer's Representative (COR)

Appendix 13

Study Deviations

Study Deviations'

Deviation Type	Specific Deviation	Effect on Study		
Protocol	On several occasions the temperature deviated outside the specified range in the animal room(s.) The temperature deviations ranged from -0 to +3°F, outside the specified ranges.	None. These minimal sporadic occurrences were not considered to have had an impact on the outcome of the study.		
Protocol	In an attempt to identify unknown pigment (hemosiderin or lipofuscin) present in the alveolar macrophages in the lungs of recovery rats, Perl's and acid-fast staining of lung sections were performed.	These stains allowed the identification of pigment as hemosiderin.		
*The detailed "Deviation Reports" are contained in the raw data which are archive at the University of Illinois at Chicago, Department of Pharmacology, Chicago, Illinois.				
The above deviations did not affect the integrity of the study.				
		Barry S. Levine, D.Sc., D.A.B.T.		
		Date		