S/N 10/008,523

<u>523</u>
<u>IN THE UNITED STATES PATENT AND TRADEMARK OFFICE</u>

EP 2 3 2002 pplicant:

Jiri Snaidr

Examiner:

Serial No.:

10/008,523

Group Art Unit: 1645

Filed:

November 7, 2001

Docket: 235.017US1

Title:

METHOD OF DETECTING MICROORGANISMS IN A SAMPLE

COMMUNICATION REGARDING FILING OF PRIORITY RECEIVED DOCUMENT IN ACCORDANCE WITH 35 U.S.C. 119

SEP 2 5 2002

Commissioner for Patents Washington, D.C. 20231

TECH CENTER 1600/2900

Dear Sir:

In accordance with the requirements for claiming right of priority under 35 U.S.C. 119, enclosed for filing in connection with the above-identified application are certified copies of Applicant's prior applications, German Application No. 199 21 281.3, filed on May 7, 1999, and German Application No. 199 36 875.9, filed on August 5, 1999.

Respectfully submitted,

JIRI SNAIDR

By their Representatives,

SCHWEGMAN, LUNDBERG, WOESSNER & KLUTH, P.A.

P.O. Box 2938

Minneapolis, MN 55402

(612) 349-9587

Date 16 Sept 2002

Timothy B. Clise Reg. No. 40,957

Candis B. Buending

Signature

Name

RECEIVED

SEP 2 5 2002

TECH CENTER 1600/2900

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Jiri Snaidr

Title:

M .THOD OF DETECTING MICROORGANISMS IN A SAMPLE

Docket No.:

235.017US1

Filed:

Examiner:

November 7, 2001

Serial No.: 10/008,523 Due Date: N/A Group Art Unit: 1645

Commissioner for Patents Washington, D.C. 20231

We are transmitting herewith the following attached items (as indicated with an "X"):

<u>X</u> <u>X</u> A return pos card.

Communication Regarding Filing of Priority Document (1 Page).

Certified Copies of German Applications 199 21 281.3 and 199 36 875.9. Χ

Please consider this a PETITION FOR EXTENSION OF TIME for sufficient number of months to enter these papers and please charge any additional required fees or credit overpayment to Deposit Account No. 19-0743.

SCHWEGMAN, LUNDBERG, WOESSNER & KLUTH, P.A.

P.O. Box 2938, Minneapolis, MN 55402 (612-373-6900)

Atty: Timothy Belise Reg. No. 40-957

CERTIFICATE UNDER 37 CFR 1.8: The undersigned hereby certifies that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail, in an envelope addressed to: Commissioner for Patents, Washington,

Candis 8 Buending

Name

Signature

Customer Number 21186

SCHWEGMAN, LUNDBERG, WOESSNER & KLUTH, P.A.

P.O. Box 2938, Minneapolis, MN 55402 (612-373-6900)

(GENERAL)

BUNDESREPUBLIK DEUTSCHLAND

RECEIVED

SEP 2 5 2002

TECH CENTER 1600/2900

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

199 21 281.3

Anmeldetag:

07. Mai 1999

Anmelder/Inhaber:

Vermicon Engineering & Microbiology

Aktiengesellschaft, München/DE

Bezeichnung:

Verfahren zum Nachweisen von Mikroorga-

nismen in einer Probe

IPC:

C 12 Q, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 17 Januar 2002

Deutsches Patent und Markenamt

Der Präsident

Jm Auftrag

Verfahren zum Nachweisen von Mikroorganismen in einer Probe

Die Identifizierung von Mikroorganismen konnte viele Jahrzehnte nur nach vorhergehender Kultivierung der Mikroorganismen und damit einhergehender Amplifizierung erfolgen. Diese Kultivierung erfolgt z.B. für Viren auf ihrem jeweiligen Wirtsorganismus, für Bakterien, Pilze und einzellige Algen in Nährmedien. Für die Erfassung der Anzahl lebensfähiger Mikroorganismen in einer bestimmten Probe wurden Medien bzw. Bedingungen gewählt, welche ein selektive Erfassung bestimmter Gruppen weitgehend ausschließen sollten. So wurden z.B. von bakteriellen Einzelkolonien Reinkulturen angelegt und diese aufgrund phänotypischer Merkmale, z.B. ihrer Morphologie und Stoffwechselwege, identifiziert. Die Identifizierung von Mikroorganismen nach vorheriger Kultivierung ist jedoch mit zwei entscheidenden Nachteilen verbunden. Erstens belegen Untersuchungen an den verschiedensten Umweltproben, daß nur 0,1 bis 14 % aller Bakterien z.Z. kultivierbar sind. Zweitens konnte bewiesen werden, daß bei der Kultivierung starke Populationsverschiebungen auftreten können, d.h. bestimmte Bakteriengruppen im Labor bevorzugt bzw. andere diskriminiert werden.

Dies bedeutet nicht nur, daß ein Großteil der Bakterien in Umweltproben nicht erkannt werden kann, sondern auch, daß diejenigen Bakterien, welche identifiziert werden, meist ein verzerrtes Abbild der wahren Populationsstrukturen darstellen. Fehleinschätzungen der Populationsverhältnisse in bezug auf Identifizierung und Quantifizierung der Bakterien sind die Folge.

Anfang der neunziger Jahre wurde ein Verfahren zur <u>in situ</u>-Hybridisierung mit fluoreszenzmarkierten Oligonukleotidsonden entwickelt, das in vielen Umweltproben erfolgreich zum Einsatz kam (Amann et al., 1990). Dieses "FISH" genannte (Fluoreszierende <u>in situ</u>-Hybridisierung) Verfahren beruht auf der Tatsache, daß die in jeder Zelle vorhandenen ribosomalen RNAs (rRNAs) hochkonservierte, d.h. wenig spezifische, und weniger konservierte, d.h. gattungs- und artspezifische Sequenzen umfaßt. Schon Mitte der achtziger Jahre wurde gezeigt, daß die Sequenzen der 16S- und 23S-rRNA zur Identifizierung von Mikroorganismen genutzt werden können (Woese 1987; De Long et al., 1989). Bei dem FISH-Verfahren werden fluoreszenzmarkierte Gensonden, deren Se-

quenzen einer bestimmten Region auf der ribosomalen Zielsequenz komplementär sind, in die Zelle geschleust. Die Sondenmoleküle sind in der Regel 16 bis 20 Basen lange, einzelsträngige Desoxyribonukleinsäurestücke und sind einem Zielbereich komplementär, der für eine bestimmte Bakterienart oder eine bakterielle Gattung spezifisch ist. Findet die fluoreszenzmarkierte Gensonde in einer Bakterienzelle ihre Zielsequenz, so bindet sie daran und die Zellen können aufgrund ihrer Fluoreszenz im Fluoreszenzmikroskop detektiert werden.

Es konnte gezeigt werden, daß durch die <u>in situ</u>-Hybridisierung mit fluoreszenzmarkierten Sonden bis zu 90% einer Bakteriengesamtpopulation detektiert werden können. Das Verfahren stellt daher bereits eine wesentliche Verbesserung gegenüber dem Stand der Technik dar, der die Detektion von maximal 14% der Bakterienpopulation einer Umweltprobe möglich machte. Darüber hinaus erlaubt es das Verfahren der <u>in situ</u>-Hybridisierung mit fluoreszenzmarkierten Sonden, den aktiven Anteil einer Population zu bestimmen, indem das Verhältnis einer gegen alle Bakterien gerichteten Sonde und dem Trockengewicht bestimmt wird. Schließlich erlaubt das Verfahren, Bakterien direkt am Ort ihres Wirkens sichtbar zu machen, wodurch Wechselwirkungen zwischen verschiedenen Bakterienpopulation erkannt und analysiert werden können.

Innerhalb der letzten Jahre wurde die Technik der <u>in situ-Hybridisierung mit fluores-</u>
zenzmarkierten Sonden für die verschiedensten Umweltproben ausgetestet und erfolgreich angewandt. So konnten durch den Einsatz von Gensonden im Boden, in Protozoen, in Biofilmen, in der Luft, in Seen, in biologisch aktivierten Filtern und im Abwasser
von Kläranlagen die jeweiligen Bakterienpopulationen untersucht und neuartige Bakterien identifiziert werden. Der Schwerpunkt lag hierbei in der Analyse der Bakterienpopulationen bei der Abwasserreinigung. Tropfkörper-, Raumfiltrations- und Belebtschlammanlagen wurden ebenso untersucht wie die Nachklärbecken und entsprechenden Vorfluter
(Snaidr et al., 1997;). Durch die <u>in situ-Hybridisierungstechnik konnte gezeigt werden,</u>
daß es bei der Erfassung der Belebtschlammflora durch Kultivierung zu einem Kultivierungsshift kommt (Wagner et al., 1993a). Kultivierungsabhängige Verfahren liefern daher nur einen sehr verfälschten Einblick in die Zusammensetzung und Dynamik der mikrobiellen Biozönose. Durch diese Medium-abhängige Verzerrung der realen Verhält-

nisse innerhalb der Bakterienpopulation werden Bakterien, die im Belebtschlamm eine untergeordnete Rolle spielen, aber den eingesetzten Kultivierungsbedingungen gut angepaßt sind, in ihrer Bedeutung dramatisch überschätzt. So konnte gezeigt werden, daß aufgrund eines solchen Kultivierungsartifaktes die Bakteriengattung Acinetobacter bezüglich ihrer Rolle als biologischer Phosphatentferner in der Abwasserreinigung völlig falsch eingeschätzt wurde.

Obwohl die in situ-Hybridisierung mit den neu entwickelten fluoreszenzmarkierten Gensonden eine rasche und genaue Analyse von Bakterienpopulationen im Abwasser möglich macht, konnte sie sich in der Praxis noch nicht durchsetzen. Gründe hierfür sind der hohe Anschaffungspreis für die benötigten technischen Geräte wie Fluoreszenzmikroskope, der Bedarf an qualifizierten Kräften, welche für die Durchführung und Auswertung zur Verfügung stehen müssen, sowie die daraus resultierende geringe Anzahl möglicher Referenzmessungen. Weiterhin ist ein hoher Zeitaufwand für das Auszählen der detektierten Bakterienpopulationen (Quantifizierung) notwendig. Überdies erfordert das Auszählen hohe Erfahrungswerte, da zwischen echten (Sondenbindung hat tatsächlich stattgefunden) und falschen Signalen (Autofluoreszenz, keine Zellen) unterschieden werden muß.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Verfügung zu stellen, mit dem Mikroorganismen möglichst ohne vorherige Kultivierung nachgewiesen und gegebenenfalls quantifiziert werden können.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren zum Nachweis von Mikroorganismen in einer Probe mittels einer Nukleinsäuresonde gelöst, wobei das Verfahren die folgenden Schritte umfaßt:

- a) Fixieren der in der Probe enthaltenen Mikroorganismen;
- b) Inkubieren der fixierten Mikroorganismen mit nachweisbaren Nukleinsäuresondenmolekülen, um eine Hybridisierung herbeizuführen;

- Entfernen nicht hybridisierter Nukleinsäuresondenmoleküle;
- d) Ablösen der hybridisierten Nukleinsäuresondenmoleküle und
- e) Detektieren und gegebenenfalls Quantifizieren der abgelösten Nukleinsäuresondenmoleküle.

Im Rahmen der vorliegenden Erfindung soll unter "Fixieren" von Mikroorganismen eine Behandlung verstanden werden, mit der die den jeweiligen Mikroorganismus umgebenden Hüllen so durchlässig gemacht werden sollen, daß die Nukleinsäuresonde mit der gegebenenfalls kovalent verbundenen Markierung durch die Hülle penetrieren kann, um so die Zielsequenzen im Zellinneren erreichen zu können. Bei der Hülle kann es sich z.B. um die ein Virus umgebende Lipidhülle, um die Zellwand eines Bakteriums oder die Zellmembran eines einzelligen Tierchens handeln. Zur Fixierung wird üblicherweise eine geringprozentige Paraformaldehydlösung verwendet. Sollte mit einer Paraformaldehydlösung im Einzelfall die einen Mikroorganismus umgebende Schutzhülle nicht penetrierbar gemacht werden können, so sind dem Fachmann ausreichend weitere Maßnahmen bekannt, die zu demselben Ergebnis führen. Dazu zählen beispielsweise Ethanol, Methanol, Mischungen dieser Alkohole mit Paraformaldehyd, enzymatische Behandlungen, Ultraschallbehandlung etc..

Bei einer Nukleinsäuresonde im Sinne der Erfindung kann es sich um eine DNA- oder RNA-Sonde handeln, die in der Regel zwischen 12 und 1000 Nukleotide umfassen wird, bevorzugt zwischen 12 und 100 oder 15 und 50, besonders bevorzugt zwischen 17 und 25 Nukleotide. Die Nukleinsäuresonde ist so ausgewählt, daß es eine zu ihr komplementäre Sequenz im nachzuweisenden Mikroorganismus bzw. in der Gruppe nachzuweisender Mikroorganismen gibt. Komplementarität muß bei einer Sonde von nur ca. 15 Nukleotiden über 100 % der Sequenz gegeben sein, bei Oligonukleotiden mit mehr als 15 Nukleotiden sind ein bis mehrere Fehlpaarungsstellen erlaubt. Es muß jedoch gewährleistet sein, daß das Nukleinsäuresondenmolekül mit moderaten und/oder stringenten Hybridisierungsbedingungen tatsächlich mit der Zielsequenz hybridisiert. Moderate Bedingungen im Sinne der Erfindung sind z.B. 0 % Fromamid in einem Hybridisierungs-

puffer wie er in Beispiel 1 beschrieben ist. Stringente Bedingungen im Sinne der Erfindung sind beispielsweise 20 - 80 % Formamid in dem in Punkt 5.2 von Beispiel 1 beschriebenen Puffer. Die Auswahl der jeweiligen Nukleinsäuresonde erfolgt in Abhängigkeit vom nachzuweisenden Mikroorganismus: Sollen beispielsweise nur Mikroorganismen der Gattung Streptococcus salivarius nachgewiesen werden, nicht jedoch Mikroorganismen der Gattung Streptococcus thermophilus, so wird der Fachmann eine geeignete Sequenz auswählen, die in Streptococcus salivarius auftritt, in Streptococcus thermophilus dagegen nicht. Typischerweise werden diese Sequenzen aus der 16Soder 23S-rRNA ausgewählt. Ist dagegen erwünscht, alle Bakterien der Gattung Streptococcus zu erfassen, wird eine Sequenz ausgewählt werden, die Streptococcus salivarius und Streptococcus thermophilus sowie weiteren Spezies der Gattung Streptococcus gemeinsam ist. Für solche Sequenzen sind in der Literatur bereits viele Beispiele veröffentlicht, siehe z.B. Beimfohr et al., 1993. Die Nukleinsäuresonde kann dabei komplementär zu einer chromosomalen oder episomalen DNA sein, aber auch zu einer mRNA oder rRNA des nachzuweisenden Mikroorganismus. Dabei ist es bevorzugt, Nukleinsäuresonden zu wählen, die einem Bereich komplementär sind, der in einer Kopienzahl von mehr als 1 im jeweiligen nachzuweisenden Mikroorganismus vorliegt. Die nachzuweisende Sequenz liegt bevorzugt 500 - 100000 mal pro Zelle vor, besonders bevorzugt 1000 - 50000 mal. Dies ist ein weiterer Grund, warum die Nukleinsäuresonde besonders bevorzugt komplementär zu einer rRNA ist: die ribosomalen RNAs sind Bestandteile der Ribosomen, die, da sie die Proteinsynthesemoleküle darstellen, in jeder aktiven Zelle vieltausendfach vorhanden sind.

Erfindungsgemäß wird die Nukleinsäuresonde mit dem im obengenannten Sinne fixierten Mikroorganismus inkubiert, um so ein Eindringen der Nukleinsäuresondenmoleküle in den Mikroorganismus und die Hybridisierung von Nukleinsäuresondenmolekülen mit den Nukleinsäuren des Mikroorganismus zu erlauben. Daran anschließend werden nicht hybridisierte Nukleinsäuresondenmoleküle durch übliche Waschschritte entfernt. Im Gegensatz zum herkömmlichen FISH-Verfahren werden nunmehr jedoch nicht die hybridisierten Nukleinsäuresondenmoleküle in situ, also im jeweiligen Mikroorganismus, belassen, sondern von der nachzuweisenden Nukleinsäure wiederum abgelöst und von zellulären Bestandteilen getrennt, detektiert und gegebenenfalls quantifiziert. Voraussetzung

dafür ist, daß das erfindungsgemäß verwendete Nukleinsäuresondenmolekül nachweisbar ist. Diese Nachweisbarkeit kann z.B. durch kovalente Verbindung des Nukleinsäuresondenmoleküls mit einem detektierbaren Marker sichergestellt werden. Als detektierbare Marker werden üblicherweise fluoreszierende Gruppen, z.B. Cy-2, Cy-3 oder Cy-5, FITC, CT, TRITC oder Fluos-Prime verwendet, die dem Fachmann alle wohlbekannt sind; der Vollständigkeit halber sind einige Marker, ihre Eigenschaften und Bezugsquellen in der folgenden Tabelle 1 angegeben.

FLUOS: 5,(6)-Carboxyfluorescein-N-hydroxysuccinimedester (Boehringer Mann-

heim, Mannheim, FRG); $\varepsilon = 7.50 \times 104 \text{ mol}^{-1} \text{l}^{-1}$, Abs_{max} bei 494 nm; Em_{max}

bei 518 nm, MG = 473.

TRITC: Tetramethylrhodamin-5,6 isothiocyanat (Isomer G. Molecular Probes Inc.

Eugene, USA, Lambda, Graz, ΑΤ); ε=1,07 x 105 mol⁻¹l⁻¹; Abs_{max} bei 537

nm; Em_{max} bei 566 nm, MG = 479.

CT 5,(6)-Carboxytetramethylrhodamin-N-hydroxysuccinimidester (Molecular

Probes Inc., Eugene, USA); $\varepsilon = 0.87 \times 105 \text{ mol}^{-1} \text{l}^{-1}$; Abs_{max} bei 537 nm;

Em_{max} bei 566 nm.

CY3 NHS-Ester von Cy5.18 (Biological Detection Systems, Pittsburgh, USA);

(Amersham Life Sciences, Inc., Arlington Heights, USA); ϵ = 1,5 x 105

 $\text{mol}^{-1}\text{l}^{-1}$ Abs_{max} bei 532 nm; Em_{max} bei 565 nm. MG = 765,95.

NHS-Ester von Cy5.18 (Biological Detection Systems, Pittsburgh, USA);

(Amersham Life Sciences, Inc., Arlington Heights, USA); ϵ = > 2 x 105

 $mol^{-1}l^{-1}$ Abs_{max} bei 650 nm; Em_{max} bei 667 nm. MG = 791,99.

Bei Verwendung von gluoreszierenden Markem nennen die Erfinder das Verfahren "Fast-FISH" in Anlehnung an das oben erwähnte "FISH"-Verfahren.

Alternativ werden chemolumineszierende Gruppen oder radioaktive Markierungen, z.B. ³⁵S, ³²P, ¹²⁵I, verwendet. Nachweisbarkeit kann aber auch gegeben sein durch Kopplung des Nukleinsäuresondenmoleküls mit einem enzymatisch aktiven Molekul, beispielsweise alkalischer Phosphatase, saurer Phosphatase, Peroxidase, Meerrettichperoxidase,

β-D-Galaktosidase oder Glukoseoxidase. Für jedes dieser Enzyme ist eine Reihe von Chromogenen bekannt, die anstelle des natürlichen Substrats umgesetzt werden können, und entweder zu farbigen oder zu fluoreszierenden Produkten umgesetzt werden können. Beispiele für solche Chromogene sind in der nachfolgenden Tabelle 2 angegeben.

TABELLE 2

Enzyme	Chromogen	
1. Alkalische Phosphatase und	4-Methylumbelliferylphosphat (*),	
saure Phosphatase	Bis(4-Methylumbelliferylphosphat), (*) 3-O-	
	Methylfluoreszein, Flavon-3-	
	Diphosphattriammoniumsalz (*), p-	
	Nitrophenylphosphatdinatriumsalz.	
2. Peroxidase	Tyraminhydrochlorid (*), 3-(p-Hydroxyphenyl)-	
	Propionsäure (*), p-Hydroxyphenethylalkohol (*),	
	2,2'-Azino-di-3-ethylbenzthiazolinsulfonsäure	
	(ABTS), ortho-Phenylendiamindihydrochlorid, o-	
	Dianisidin, 5-Aminosalicylsäure, p-Ucresol (*), 3,3'-	
	dimethyloxybenzidin, 3-Methyl-2-benzothia-	
	zolinhydrazon, Tetramethylbenzidin	
8. Meerrettichperoxidase	H ₂ O ₂ + Diammoniumbenzidin	
	K₂O₂ + Tetramethylbenzidin	
4. β-D-Galaktosidase	o-Nitrophenyl-β-D-galaktopyranosid,	
	4-Methylumbelliferyl-β-D-galaktosid	
5. Glukoseoxidase	ABTS, Glukose und Thiazolylblau	

*Fluoreszenz

Schließlich ist es möglich, die Nukleinsäuresondenmoleküle so zu gestalten, daß an ihrem 5'- oder 3'-Ende eine weitere zur Hybridisierung geeignete Nukleinsäuresequenz vorhanden ist. Diese Nukleinsäuresequenz umfaßt wiederum ca. 15 bis 1000, bevorzugt

15 bis 50 Nukleotide. Dieser zweite Nukleinsäurebereich kann wiederum von Oligonukleotidsonden erkannt werden, die durch eines der obenerwähnten Mittel nachweisbar sind.

Eine weitere Möglichkeit besteht in der Kopplung der nachweisbaren Nukleinsäuresondenmoleküle mit einem Hapten. Nach Ablösung der Nukleinsäuresondenmoleküle von der Zielnukleinsäure können die nunmehr separat vorliegenden Nukleinsäuresondenmoleküle mit das Hapten erkennenden nachweisbaren Antikörpern in Kontakt gebracht werden. Ein bekanntes Beispiel für ein solches Hapten ist Digoxigenin oder seine Derivate. Dem Fachmann sind über die angegebenen Beispiele hinaus viele weitere Möglichkeiten bekannt, ein zur Hybridisierung verwendetes Oligonukleotid zu detektieren und zu quantifizieren.

40

Die Vielzahl möglicher Markierungen ermöglicht auch den gleichzeitigen Nachweis von 2 oder mehr verschiedenen, sich überlappenden oder sich nicht überlappenden Populationen. So kann z.B. durch Verwendung von 2 verschiedenen Fluoreszenzmarkern Streptococcus salivarius neben Streptococcus thermophilus, oder Streptococcus salivarius neben der Streptococcen-Gesamtpopulation nachgewiesen werden.

Der mittels des erfindungsgemäßen Verfahrens nachzuweisende Mikroorganismus kann ein prokaryontischer oder eukaryontischer Mikroorganismus sein. In den meisten Fällen vird es erwünscht sein, einzellige Mikroorganismen nachzuweisen. Relevante Mikroornismen sind dabei vor allem Hefen, Bakterien, Algen oder Pilze.

In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei dem Mikroorganismus um einen Angehörigen der Gattung Salmonella.

Das erfindungsgemäße Verfahren kann vielfältig angewendet werden. So ist es z.B. geeignet, Umweltproben auf das Vorhandensein bestimmter Mikroorganismen zu untersuchen. Diese Umweltproben können aus dem Wasser, aus dem Boden oder aus der Luft entnommen sein. Für den Nachweis von bestimmten Bakterien in Umweltproben ist normalerweise keinerlei vorausgehende Kultivierung notwendig.

Ein weiteres wichtiges Anwendungsgebiet für das erfindungsgemäße Verfahren ist die Kontrolle von Lebensmittelproben. In bevorzugten Ausführungsformen werden die Lebensmittelproben aus Milch oder Milchprodukten (Joghurt, Quark, Käse, Butter, Buttermilch), Trinkwasser, Getränken (Säfte, Limonade, Bier), Backwaren oder Fleischwaren entnommen. Für den Nachweis von Mikroorganismen in Lebensmitteln kann u. U. eine vorherige Kultivierung erwünscht oder sogar vorgeschrieben sein. So ist es notwendig, z. B. für den Nachweis von 1 (einer) Salmonelle in 25 ml Milch, diese eine zeitlang zu kultivieren, um anschließend auch mit statistischer Zuverlässigkeit eine oder mehrere Salmonellen im Probenvolumen zu haben.

Das erfindungsgemäße Verfahren kann weiter zur Untersuchung medizinischer Proben eingesetzt werden. Dabei ist es sowohl für die Untersuchung von Gewebeproben, z.B. Biopsiematerial aus der Lunge, Tumor- oder entzündlichem Gewebe, aus Sekreten wie Schweiß, Speichel, Sperma und Ausfluß aus der Nase, Harnröhre oder Vagina sowie für Stuhl- und Urinuntersuchungen geeignet.

Ein weiteres Anwendungsgebiet für das vorliegende Verfahren ist die Untersuchung von Abwässern, z.B. Belebtschlamm, Faulschlamm oder anaeroben Schlamm. Darüber hinaus ist es geeignet, Biofilme in industriellen Anlagen zu analysieren, sowie auch sich natürlicherweise bildende Biofilme oder bei der Abwasserreinigung bildende Biofilme zu tersuchen. Schließlich ist es auch zur Untersuchung und Qualitätskontrolle pharmatischer und kosmetischer Produkte, z.B. von Salben, Cremes, Tinkturen, Säften etc.

Das Endungsgemäße Verfahren stellt eine Möglichkeit dar, die in situ-Hybridisierung zur Zellidentifizierung und gegebenenfalls Quantifizierung in der Praxis zu etablieren. Die erforderliche Ausstattung würde sich z.B. bei Verwendung Fluoreszenzmolekülsonden auf den Erwerb eines Fluorometers beschränken (max ca. DM 18000,--). Im Gegensatz dazu bewegt sich ein Epifluoreszenzmikroskop, das zur Durchführung des herkömmlichen FISH-Verfahrens geeignet ist, und mit welchem ausreichend gute in situ-Hybridisierungsergebnisse erzielt werden können, in der Preisklasse von ca. DM

100000,--. Hinzu kommt, daß bei Verwendung z. B. von Cy-5 markierten Sonden, die Epifluoreszenzmikroskope zusätzlich mit einer hochwertigen CCD-Kamera ausgestattet sein müssen (Preis zwischen DM 30000,-- und DM 50000,--). Aus diesem Grund stellt das erfindungsgemäße Verfahren eine wesentlich billigere Meßmethode dar, als die zeitaufwendige Quantifizierung am Epifluoreszenzmikroskop. Überdies sind die laufenden Kosten des erfindungsgemäßen Verfahrens mittels Fluorometer wesentlich geringer als die des herkömmlichen Verfahrens mittels Epifluoreszenzmikroskopie. Dies liegt vor allem daran, daß die Quecksilberhochdrucklampen (DM 450,-- pro Stück) der Epifluoreszenzmikroskope aus Qualitäts- und Sicherheitsgründen spätestens alle 100 Betriebsstunden erneuert werden müssen. Das enorm zeitaufwendige Zählen spezifisch markierter Zellen unter dem Mikroskop führt somit zu einem hohen Lampenverschleiß. Die Xenonbogenlampe eines Fluorometers (DM 3000,--) hat selbst bei intensiver Auslastung des Gerätes eine Haltbarkeit von 1 bis 3 Jahren. Einen zusätzlichen Kostenfaktor stellen auch die für die Messung benötigten Personalkosten dar. Während die quantitative Analyse einer Umweltprobe mittels des herkömmlichen Verfahrens vor allem beim Einsatz mehrerer Sonden mehrere Tage in Anspruch nimmt, sollte das erfindungsgemäße Verfahren diese Aufgabe innerhalb weniger Stunden erledigen. Für die Hybridisierung und Extraktion wird ein Zeitaufwand von 3 Stunden benötigt, die Quantifizierung im Fluorometer wird nur wenige Minuten in Anspruch nehmen. Die Quantifizierung könnte auch von ungeschulten Kräften vorgenommen werden, wohingegen bei dem herkömmlichen Verfahren die visuelle Quantifizierung die Fähigkeiten eines Speisten erfordert.

hl die Erfindung im wesentlichen mit Bezug auf fluoreszenzmarkierte Sondenmobeschrieben worden ist, versteht es sich von selbst, daß die genannten Vorteile bei Verwendung anderer Marker ebenfalls gegeben sind.

Erfindungsgemäß wird weiterhin ein Kit zur Durchführung des Verfahrens zum Nachweisen von Mikroorganismen in einer Probe bereitgestellt. Der Inhalt eines solchen Kits richtet sich im wesentlichen nach der Natur des nachzuweisenden Mikroorganismus. Er umfaßt als wichtigsten Bestandteil eine für den jeweils nachzuweisenden Mikroorganismus spezifische Nukleinsäuresonde sowie eine weitere Nukleinsäuresonde, mit der eine

Negativkontrolle durchgeführt werden kann. Darüber hinaus umfaßt er einen Hybridisierungspuffer und gegebenenfalls einen Lysepuffer. Die Wahl des Hybridisierungspuffers hängt in erster Linie von der Länge der verwendeten Nukleinsäuresonden ab. So müssen, wie dem Fachmann bekannt ist, für die Hybridisierung einer Nukleinsäuresonde von 15 Nukleotiden Länge weniger stringente Bedingung gewählt werden als für die Hybridisierung einer Sonde von 75 Nukleotiden Länge. Beispiele für Hybridisierungsbedindungen sind z. B. in Stahl & Amann, 1991, angegeben.

Die Zusammensetzung des Lysepuffers ist ebenfalls vom jeweiligen Mikroorganismus abhängig. So sind zur Lyse von Virushüllen, Zellwänden Gram-positiver oder Gramnegativer Bakterien, Zellmembranen von Hefe oder Algen jeweils leicht unterschiedliche Bedingungen erforderlich, die ohne weiteres in der Literatur festgestellt werden können.

In einer bevorzugten Ausführungsform enthält der erfindungsgemße Kit spezifische Sonden zum Nachweis von Bakterien der Gattung Salmonella. In einer besonders bevorzugten Ausführungsform handelt es sich bei dem Nukleinsäuresondenmolekül zum spezifischen Nachweis eines Mikroorganismus um die Nukleinsäuresequenz Salm63: 5'-TCGACTGACTTCAGCTCC-3' und bei der Negativkontrolle um die Sequenz NonSalm: 5'-GCTAACTACTTCTGGAGC-3' oder um Nukleinsäuresondenmoleküle, die sich von Salm63 und/oder NonSalm durch eine Deletion und/oder Addition unterscheiden, wobei die Fähigkeit dieser Sonden, mit Salmonella-spezifischer Nukleinsäure zu idisieren, erhalten bleibt, oder um Nukleinsäuresondenmoleküle, die mit den zuvor anten Nukleinsäuren hybridisieren können.

Igenden Abbildungen und das Beispiel erläutern die Erfindung, ohne sie einzusch änken

Abbildungen

Abbildung 1 veranschaulicht, wie das erfindungsgemäße Verfahren zur Detektion von Zellen eines Typs A eingesetzt werden kann, während gleichzeitig die Anwesenheit von Zellen eines Typs B ausgeschlossen wird. Dazu werden Nukleinsäuresonden, die für die

Zelltypen A und B spezifisch sind, bereitgestellt und mit der zu untersuchenden Probe hybridisiert. Während des Hybridisierungsvorganges dringen die verschiedenartig markierten Sonden A und B in die Zellen vom Typ A und C ein. Nur die Zelle vom Typ A enthält Zielnukleinsäure mit den Bindungsstellen für Sonden vom Typ A, nicht jedoch die Zelle C. Darüber hinaus besitzt keine der beiden Zellen Bindungsstellen für Sonden vom Typ B, der deshalb nicht gebunden wird. Nach dem anschließenden Waschschritt befinden sich nur noch gebundene Nukleinsäuresonden vom Typ A in den Zellen.

Die Mischung von Zellen, die zum Teil Nukleinsäuresondenmoleküle vom Typ A gebunden haben, wird einem Ablöseschritt unterworfen. Anschließend können die nun abgelösten Nukleinsäuresondenmoleküle vom Typ A quantifiziert werden.

Abbildung 2 zeigt das Ergebnis einer Hybridisierung von 10 in H-Milch inokulierten S. typhimurium LT2 Zellen nach 13stündiger Inkubation bei 37°C, 40 % im HP, HVL 400

Ansatz mit Salmonellen

Salm63-Cy3 erfaßt Salmonella spec., stellt spezifisches Signal dar non15-Cy3 Nonsense-Sonde, repräsentiert unspezifische Bindung und Hintergrund (Kontrolle 1)

ohne Salmonellen

Cy3 erfaßt Salmonella Spec, repräsentiert den Hintergrund mit der Salmonelle statischen Sonde, da in diesem Ansatz keine Salmonellen vorhanden waren (Kontrolle 2)

BEISPIEL 1

Nachweis von Bakterien der Gattung Salmonella in Milch

1. Allgemeine Beschreibung

Das nachfolgend beschriebene Verfahren, von den Anmeldern "SalmoQuick-Verfahren" genannt, dient zur qualitativen Analyse von Bakterien der Gattung Salmonella in Lebensmitteln auf der Grundlage des erfindungsgemäßen Verfahrens. Die Identifizierung von Salmonellen erfolgt in 24 Stunden; dadurch ergibt sich ein erheblicher Geschwindigkeitsvorteil gegenüber konventionellen Methoden, die für eine Identifizierung je nach taxonomischer Genauigkeit zwischen 5 und 14 Tagen benötigen.

2. Grundprinzip

Salmonellen in Milch werden durch gegen rRNA-gerichtete fluoreszenzmarkierte Oligonukleotidsonden spezifisch erfaßt. Nach entsprechend stringenten Waschschritten werden die gebundenen Sonden wieder von ihren Zielstellen in den Bakterien abgelöst und in einem Fluorometer quantifiziert. Durch die Höhe des erhaltenen Signals im Fluorometer kann eine Aussage darüber getroffen werden, ob in der Milch Salmonellen anwesend sind oder nicht.

3. Kuirzbeschreibung

Die Milichprobe, die auf die Anwesenheit von Salmonellen untersucht werden soll, wird mehrere Stunden inkubiert. Auf diese Weise wird sichergestellt, daß durch die Vermehrungder eventuell in der Milch vorhandenen Salmonellen erstens genügend Zielstellen für die Detektion mit Sonden vorhanden sind und zweitens nur lebende Salmonellen identifiziert werden. Ein Populationsshift durch die mehrstündige Inkubation ist unschädlich, da es nur um die Gegenwart oder Abwesenheit von Salmonellen, nicht jedoch um den Nachweis aller Bakterien geht. Nach der Zentrifugation und der Fixierung der Zellen, während der die Zellen für die Sonden zugänglich gemacht werden, können durch einen Lyseschritt die die anschließende Hybridisierung störenden Proteine ausreichend gut entfernt werden. Während der anschließenden Hybridisierung binden unter ausrei-

chend stringenten Bedingungen die fluoreszenzmarkierten Oligonukleotidsonden spezifisch an die rRNA oder Bakterien der Gattung *Salmonella*. Der anschließende Waschschritt sorgt für eine Entfernung der nicht gebundenen Sonden. Während einer weiteren Behandlungsprozedur werden die spezifisch gebundenen Sonden aus den Zellen extrahiert. Die Fluoreszenzfarbstoffe dieser Sonden können dann in einem Fluorometer quantifiziert werden. Die Höhe des erhaltenen Signals gibt Auskunft darüber, ob Salmonellen in der Milchprobe vorhanden waren oder nicht.

4. Technische Ausstattung

4.1 Vorbereitung der Probe

Zur Probenvorbereitung werden benötigt:

- Probengefäß (Greiner, Nürtingen)
- Rundschüttler
- Greiner Zentrifuge (8000 Umdrehungen / Minute)
- Tischzentrifuge (14000 Umdrehungen / Minute)

4.2 In situ-Hybridisierung

Für die in situ-Hybridisierung werden benötigt:

- Tischzentrifuge (14000 Umdrehungen / Minute)
- 1 Heizblock und 1 Wasserbad oder 2 Heizblöcke

Hybridisierungsofen

4.3 Quantifizierungsgerät

Fluorometer, Chemiluminometer oder Szintillator

5. Materialien

5.1 Vorbereitung der Probe

Folgende Materialien wurden zur Verarbeitung der Probe einschließlich der Zellfixierung verwendet:

9 ml Saline-Röhrchen

0.9 % NaCl in H₂O_{dest.}

Tryptic Soy Medium (TS-Medium)

Casein Pepton 15,0 g
Soja Pepton 5,0 g
NaCl 5,0 g

 $H_2O_{dest.}$ pH 7,3

Lyse-Puffer:

 Na_2HPO_4 100 mM NaCl 150 mM EDTA 10 mM NaOH 40 mM $H_2O_{dest.}$ ad 50ml

PBS-Stammlösung (Na_xPO₄)

200 mM NaH₂PO₄

200 mM Na₂HPO₄ pH 7,2 - 7,4

• 3 x PBS-Lösung

390 mM NaCl

30 mM Na_xPO₄ (PBS-Stammlösung) pH 7,2 - 7,4

1 x PBS-Lösung

130 mM NaCl

10 mM Na_xPO₄ (PBS-Stammlösung) pH 7,2 - 7,4

4% Paraformaldehydlösung : Herstellbar durch

Zugabe von 3 g Paraformaldehyd zu 30 ml auf 60°C erhitztem H₂O_{bidest}; tropfenweise Zugabe von 1 M NaOH bis zum vollständigen Lösen des Paraformaldehyds; anschließend Hinzufügen von 16,6 ml 3 x PBS, Abkühlung der Lösung auf ca. 20°C. Einstellen des pH-Wertes mit 1 M HCl auf 7,2 - 7,4; Sterilfiltration der fertigen PFA-Lösung über einen 0,2μm Filter (MILLIPORE, Eschborn). Die Lösung kann bei 4°C für ca. eine Woche aufbewahrt werden; Einfrieren über mehrere Monate ist ebenfalls möglich.

5.2 In situ-Hybridisierung

- Formamid (Merk, Darmstadt)
- Sonden-Arbeitslösungen zu je 50 ng/µl (spezifische und unspezifische Sonde)

Ablösepuffer (2 ml):

0,01 M Tris/HCI

pH 9,0

Hybridisierungspuffer (2 ml mit x% Formamidgehalt):

5 M NaCl		360 µl
1 M Tris/	pH 8,0	40 µl
Formamid		у µі
10° (w/v) SD	S	2 µl
ed H₂O bide	st	2 m

Waschpuffer (2 ml):

5 M NaCl		18,4 µl
1 M Tris/HCl	pH 8,0	40 µl
0,5 M EDTA	pH 8,0	20 µl
10° (w/v) SDS		2 µl
àd H₂O bidest		2 ml

Sonden:

Salm63:

5'-TCGACTGACTTCAGCTCC-3'

NonSalm:

5'-GCTAACTACTTCTGGAGC-3'

verwendeter Fluoreszenzfarbstoff: Cy3

6. Durchführung

6.1 Vorbereitung der Milch

- 1. Milchproben und TS-Medium ca. 20 min auf 37°C vorwärmen.
- 2. Zugabe von 25 ml vorgewärmtem TS-Medium zu 25 ml vorgewärmter Milch in einem 50 ml fassenden Probengefäß.

- 3. Inkubation bei 30° über Nacht (13 Stunden) auf dem Rundschüttler.
- 4. Zentrifugation der 50 ml Probengefäße zur Zellernte bei 8000 Umdrehungen/min für 8 min.
- 5. Resuspension des Pellets mit 25 ml Lysepuffer zur Trennung von Proteinen und Fetten der Milch von den Zellen und anschließenden Inkubation für 10 min bei RT (Raumtemperatur).
- 6. Zentrifugation für 8 min bei 8000 Umdrehungen/min.

- 7. Wiederholung der Resuspension und Inkubation mit Lysepuffer (siehe 4.)
- 8. Zentrifugation für 8 min bei 8000 Umdrehungen/min.
- 9. Resuspension der pelletierten Zellen in 600 µl 1 x PBS und Überführung in ein Eppendorf-Reaktionsgefäß. Spülen des 50 ml Probengefäßes mit 600 µl 1 x PBS.
- 10. Zentrifugation der Eppendorf-Reaktionsgefäße bei 1400 Umdrehungen/min für 6 min.
- 11. Verwerfen des Überstandes und Resuspension der Zellen in 1 ml 1 x PBS.

- 12. Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6 min.
- 13. Verwerfen des Überstandes und vollständige Resuspension des Pellets in 200 µl 1 x PBS.
- 14. Zugabe von 600 µl einer frisch hergestellten 4%igen Paraformaldehydlösung.
- 15. Inkubation für 1 Stunde bei 4°C.
- 16. Zentrifugation bei 14000 Umdrehungen/min für 6 min.
- 17. Verwerfen des Überstandes und vollständige Resuspension des Pellets in 1 ml 1 x PBS.
- 18. Zentrifugation bei 14000 Umdrehungen/min für 6 min.
- 19. Verwerfen des Überstandes (Pellet verbleibt im Cap).

6.2 In situ-Hybridisierung

- 1. Vorwärmen des Hybridisierungspuffers auf 48°C im Wasserbad oder im Heizblock für ca. 20 min.
- 2. Überführung der Eppendorf-Reaktionsgefäße (mit dem zurückgebliebenen Zellpellet) auf den Heizblock (auf 80°C vorgeheizt) und Inkubation für 5 min bei 80°C.
- 3. Nach der 5 minütigen Inkubation bei 80°C Zugabe von 80 µl des vorgewärmten Hybridisierungspuffers in jedes Eppendorf-Reaktionsgefäß.

- 4. Zugabe von je 2,5 μl der frisch aufgetauten Sonden-Arbeitslösung "Salm63-Cy3" zu zwei der vier Milchproben-Ansätze.
- 5. Zugabe von je 2,5 µl der frisch aufgetauten Sonden-Arbeitslösung "nonSalm63-Cy3" zu den beiden verbleibenden Milchproben-Ansätzen.
- 6. Heftig Durchmischen der Eppendorf-Reaktionsgefäße für 10 Sekunden und kurzes (2 Sekunden) Abzentrifugieren mittels einer kleinen Tischzentrifuge.
- 7. Inkubation der Eppendorf-Reaktionsgefäße für 2 Stunden bei 46°C im Hybridisierungsofen oder im Wasserbad bzw. Heizblock (Hybridisierung der Sonde mit der Zielsequenz unter stringenten Bedingungen).
- 8. Vorwärmen des Waschpuffers auf 48°C im Wasserbad oder im Heizblock.
- Nach der Inkubation für 2 Stunden bei 46°C Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6 min.
- 10. Vollständiges Abnehmen und Verwerfen des Überstandes mit einer 200 µl Pipette ohne das Pellet zu berühren.
- 11. Zugabe von 100 µl vorgewärmtem Waschpuffer, heftiges Durchmischen der Eppendorf-Reaktionsgefäße für 5 Sekunden und Überführung ins Wasserbad bei 48°C für 20 Minuten (Entfernen der nicht gebundenen Sondenmoleküle unter stringenten Bedingungen).
- 12. Vorwärmen des Ablösepuffers auf 80°C im Heizblock.
- 13. Nach 20 minütiger Inkubation bei 48°C Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6 min.

- 14. Vollständiges Abnehmen und Verwerfen des Überstandes mit einer 200 μl Pipette ohne das Pellet zu berühren.
- 15. Zugabe von 110 µl vorgewärmtem Ablösepuffer, heftiges Durchmischen der Eppendorf-Reaktionsgefäße für 5 Sekunden und Überführung auf den Heizblock auf 80°C für 15 min (Ablösung der Sonde von der Zielsequenz).
- 16. Nach 15 minütiger Inkubation bei 80°C Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6 min.

- 17. Vorsichtige Überführung des Überstandes mit einer 200 µl Pipette ohne das Pellet zu berühren in neue 1,5 ml Reaktionsgefäße und anschließend Lagerung auf Eis im Dunkeln bis zur Vermessung.
- 18. Fluorometer anschalten und die Wellenlängen auf 550 nm zur Anregung (Excitation wavelength") und auf 570 nm ("Emission wavelenght") zur Messung der Emission des Cy3-Farbstoffes einstellen.
- 19. High Voltage Level auf die gewünschte Empfindlichkeit einstellen (400 bis 800 HVL).

- 20. 107 µl Ablösepuffer in eine Präzisionsglaskuevette für die Fluorometrie füllen.
- 21. Fluorometer auf Null stellen ("Autozero").
- 22. Eppendorf-Reaktionsgefäße kurz vor der Vermessung 5 Sekunden in der Hand auf Raumtemperatur vorwärmen.
- 23. Einfüllen des die abgelöste Sonde enthaltenden Ablösepuffers in die Präzisionsglaskuevette für die Fluorometrie und Vermessung des Signals.

- 24. Ablesen des Signals nach 10 Sekunden, da nach dem Öffnen der Abdeckung des Lichtkanals das Signal nach 5 bis 8 Sekunden stabil ist.
- 25. Fluoreszenzwert der untersuchten Milchprobe = Fluoreszenzwert der mit "Salm63-Cy3" hybridisierten Milchprobe abzüglich dem Fluoreszenzwert der mit "nonSalm-Cy3" hybridisierten Milchprobe.

7. Ergebnis

Das Ergebnis des oben beschriebenen Versuches ist in Abb. 2 gezeigt. Es ist eindeutig zu sehen, daß das Salmonellen-spezifische Signal um ein Vielfaches höher ist als eine ebenfalls geprüfte unspezifische Bindung. Auch der Sondenhintergrund war kaum nachweisbar.

Literaturliste

Amann et al., J. Bact. 172, 762 (1990)

Beimfohr et al., System Appl. Microbiol. 16, 450 (1993)

De Long et al., Science 243, 1360 (1989)

Snaidr et al., Appl. Environ. Microbiol. 63, 2884 (1997)

Stahl u. Amann, in Stackebrandt u. Goodfellow (Hrsg), Nucleic Acid Techniques in Bacterial Systematics; John Wiley & Sons Ltd., Chichester, UK

Wagner et al., Appl. Environ. Microbial 59, 1520, (1993)

Woese, Microbiol Reviews 51, 221 (1987)

PATENTANSPRÜCHE

- 1. Verfahren zum Nachweisen von Mikroorganismen in einer Probe mittels einer Nukleinsäuresonde, umfassend die folgenden Schritte:
 - a) Fixieren der in der Probe enthaltenen Mikroorganismen;
 - b) Inkubieren der fixierten Mikroorganismen mit nachweisbaren Nukleinsäuresondenmolekülen;
 - c) Entfernen nicht hybridisierter Nukleinsäuresondenmoleküle;
 - d) Ablösen der hybridisierten Nukleinsäuresondenmoleküle und
 - e) Detektieren und gegebenenfalls Quantifizieren der abgelösten Nukleinsäuresondenmoleküle.
- 2. Verfahren nach Anspruch 1, wobei die Nukleinsäurensonde komplementär zu einer chromosomalen oder episomalen DNA, einer mRNA oder rRNA ist als nachweisenden Mikroorganismus ist.
- 3. Verfahren nach einem der Ansprüche 1 bis 2, wobei die Nukleinsäuresonde kovalent mit einem detektierbaren Marker verbunden ist.
- 4. Verfahren nach Anspruch 3, wobei der detektierbare Marker ausgewählt ist aus der Gruppe der folgenden Marker:
 - a) Fluoreszenzmarkierung;
 - b) Chemolumineszenzmarkierung:
 - c) radioaktive Markierung;

- d) enzymatisch aktive Gruppe;
- e) Hapten;
- f) einer durch Hybridisierung nachweisbaren Nukleinsäure.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der Mikroorganismus ein einzelliger Mikroorganismus ist.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei der Mikroorganismus eine Hefe, ein Bakterium, eine Alge oder ein Pilz ist.
- 7. Verfahren nach Anspruch 6, wobei der Mikroorganismus der Gattung Salmonella angehört.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Probe eine Umweltprobe ist und aus Wasser, Boden oder Luft entnommen ist.
- 9. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Probe eine Lebensmittelprobe ist.
- 10. Verfahren nach Anspruch 9, wobei die Probe aus Milch oder Milchprodukten, Trinkwasser, Getränken, Backwaren oder Fleischwaren entnommen ist.
- 11. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Probe eine medizinische Probe ist.
- 12. Verfahren nach Anspruch 11, wobei die Probe aus Gewebe, Sekreten oder Stuhl gewonnen ist.

- 13. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Probe aus Abwasser gewonnen ist.
- 14. Verfahren nach Anspruch 13, wobei die Probe aus Belebtschlamm, Faulschlamm oder anaeroben Schlamm gewonnen ist.
- 15. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Probe aus einem Biofilm gewonnen wird.
- 16. Verfahren nach Anspruch 15, wobei der Biofilm aus einer industriellen Anlage gewonnen wird, bei der Abwasserreinigung gebildet wurde oder ein natürlicher Biofilm ist.
- 17. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Probe einem pharmazeutischen oder kosmetischen Produkt entnommen ist.
- 18. Kit zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 17, enthaltend
- a) einen Hybridisierungspuffer;
 - b) Nukleinsäuresonden
 - b1) zum spezifischen Nachweis eines Mikroorganismus
 - b2) zum Durchführen einer Negativkontrolle.
 - 19. Kit nach Anspruch 18, enthaltend spezifische Sonden zum Nachweis von Bakterien der Gattung Salmonella.

20. Kit nach Anspruch 19, enthaltend die Nukleinsäuresonden

Salm63:

5'-TCGACTGACTTCAGCTCC-3'

und

NonSalm:

5'-GCTAACTACTTCTGGAGC-3'

oder eine Nukleinsäuresonde, die sich von Salm63 und/oder NonSalm durch eine Deletion und/oder Addition unterscheidet, wobei die Fähigkeit dieser Sonde, mit Salmonella-spezifischer Nukleinsäure zu hybridisieren, erhalten bleibt, oder eine Nukleinsäure, die mit den zuvor genannten Nukleinsäuren hybridisieren kann.

Zusammenfassung

Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Nachweis von Mikroorganismen in einer Probe mittels einer Nukleinsäuresonde. Herkömmliche Verfahren sind z. B. die <u>in situ-Hybridisierung</u> von Mikroorganismen mit floureszenzmarkierten Oligonukleotidsonden (Fluoreszierende <u>in situ-Hybridisierung</u>). Nachteil dieser Methode ist die Notwendigkeit, die Auswertung am Epifluoreszenzmikroskop vorzunehmen. Erfindungsgemäß werden die Nachteile des <u>in situ-Hybridisierungsverfahrens überwunden</u>, indem die nachzuweisenden Mikroorganismen in einer Probe mit einer spezifischen Nukleinsäuresonde hybridisiert werden, nicht hybridisierte Nukleinsäuresondenmoleküle entfernt werden und die hybridisierten Nukleinsäuresondenmoleküle abgelöst und anschließend detektiert und gegebenfalls quantifiziert werden.

Abb. 1

Abb. 2

eine Entfernung der nicht gebundenen Sonden. Während einer weiteren Behandlungsprozedur werden die spezifisch gebundenen Sonden aus den Zellen extrahiert. Die Fluoreszenzfarbstoffe dieser Sonden können dann in einem Fluorometer quantifiziert werden. Die Höhe des erhaltenen Signals gibt Auskunft darüber, ob Salmonellen in der Milchprobe vorhanden waren oder nicht.

4. Technische Ausstattung:

4.1 Vorbereitung der Probe

Zur Probenvorbereitung werden benötigt:

- Probengefäß (Greiner, Nürtingen)
- Rundschüttler
- Greiner-Zentrifuge (8000 Umdrehungen / Minute)
- Tischzentrifuge (14000 Umdrehungen / Minute)

4.2 In situ-Hybridisierung

Für die in situ-Hybridisierung werden benötigt:

- Tischzentrifuge (14000 Umdrehungen / Minute)
- Heizblock und Wasserbad oder zwei Heizblöcke
- Hybridisierungsofen

4.3 Quantifizierungsgerät

• Fluorometer, Chemiluminometer oder Szintillator

5. Materialien

5.1 Vorbereitung der Probe

Folgende Materialien wurden zur Verarbeitung der Probe einschließlich der Zellfixierung verwendet:

• 9 ml Saline-Röhrchen

0,9 % NaCl in H₂O_{dest.}

• Tryptic Soy Medium (TS-Medium)

Casein Pepton	15,0 g	
Soja Pepton	5,0 g	
NaCl	5,0 g	
$H_2O_{dest.}$	ad 1 l	pH 7,3

Lyse-Puffer:

Na ₂ HPO ₄	100 mM
NaCl	150 mM
EDTA	10 mM
NaOH	40 mM

• PBS-Stammlösung (Na_xPO₄)

200 mM NaH₂PO₄

200 mM Na₂HPO₄ pH 7,2 - 7,4

• 3 x PBS-Lösung

390 mM NaCl

30 mM Na_xPO₄ (PBS-Stammlösung) pH 7,2 - 7,4

• 1 x PBS-Lösung

130 mM NaCl

10 mM Na_xPO₄ (PBS-Stammlösung) pH 7,2 - 7,4

4% Paraformaldehydlösung (PFA):

Herstellbar durch Zugabe von 3 g Paraformaldehyd zu 30 ml auf 60°C erhitztem H₂O_{bidest.}; tropfenweise Zugabe von 1 M NaOH bis zum vollständigen Lösen des Paraformaldehyds; anschließend Hinzufügen von 16,6 ml 3 x PBS, Abkühlung der Lösung auf ca. 20°C; Einstellen des pH-Wertes mit 1 M HCl auf 7,2 - 7,4; Sterilfiltration der fertigen PFA-Lösung über einen

0,2µm-Filter (MILLIPORE, Eschborn). Die Lösung kann bei 4°C für ca. eine Woche aufbewahrt werden; Einfrieren über mehrere Monate ist ebenfalls möglich.

5.2 In situ-Hybridisierung

- Formamid (Merk, Darmstadt)
- Sonden-Arbeitslösungen zu je 50 ng/µl (spezifische und unspezifische Sonde)

Ablösepuffer (2 ml):

0,01 M Tris/HCl

pH 9,0

Hybridisierungspuffer (HP, 2 ml mit x% Formamidgehalt):

5 M NaCl		360 µl
1 M Tris/HCl	pH 8,0	40 µl
Formamid		yμl
10% (w/v) SDS		2 μl
ad H ₂ O _{biden}		2 ml

Waschpuffer (2 ml):

5 M NaCl		18,4 µl
1 M Tris/HCI	pH 8,0	40 µl
0,5 M EDTA	pH 8,0	20 μl
10% (w/v) SDS		2 μl
ad H ₂ O ₁₁₁₁		2 ml

Sonden:

Salm63: 5'-TCGACTGACTTCAGCTCC-3'

NonSalm: 5'-GCTAACTACTTCTGGAGC-3'

verwendeter Fluoreszenzfarbstoff: Cy3

6. Durchführung

- 6.1 Vorbereitung der Milch
- 1. Milchproben und TS-Medium ca. 20 min auf 37°C vorwärmen.
- 2. Zugabe von 25 ml vorgewärmtem TS-Medium zu 25 ml vorgewärmter Milch in einem 50 ml fassenden Probengefäß.

- 3. Inkubation bei 30° über Nacht (13 Stunden) auf dem Rundschüttler.
- 4. Zentrifugation der 50 ml Probengefäße zur Zellernte bei 8000 Umdrehungen/min für 8 min.
- Resuspension des Pellets mit 25 ml Lysepuffer zur Trennung von Proteinen und Fetten der Milch von den Zellen und anschließende Inkubation für 10 min bei RT (Raumtemperatur).
- 6. Zentrifugation für 8 min bei 8000 Umdrehungen/min.
- 7. Wiederholung der Resuspension und Inkubation mit Lysepuffer (siehe 5.)

- 8. Zentrifugation für 8 min bei 8000 Umdrehungen/min.
- 9. Resuspension der pelletierten Zellen in 600 μl 1 x PBS und Überführung in ein Eppendorf-Reaktionsgefäß. Spülen des 50 ml Probengefäßes mit 600 μl 1 x PBS.
- 10. Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6 min.
- 11. Verwerfen des Überstandes und Resuspension der Zellen in 1 ml 1 x PBS.
- 12. Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6 min.

- 13. Verwerfen des Überstandes und vollständige Resuspension des Pellets in 200 μ l 1 x PBS.
- 14. Zugabe von 600 μ l einer frisch hergestellten 4%
igen Paraformaldehydlösung.
- 15. Inkubation für 1 Stunde bei 4°C.
- 16. Zentrifugation bei 14000 Umdrehungen/min für 6 min.

- 17. Verwerfen des Überstandes und vollständige Resuspension des Pellets in 1 ml 1 x PBS.
- 18. Zentrifugation bei 14000 Umdrehungen/min für 6 min.
- 19. Verwerfen des Überstandes (Pellet verbleibt im Cap).
- 6.2 In situ-Hybridisierung
- 1. Vorwärmen des Hybridisierungspuffers auf 48°C im Wasserbad oder im Heizblock für ca. 20 min.

- 2. Überführung der Eppendorf-Reaktionsgefäße (mit dem zurückgebliebenen Zellpellet) auf den Heizblock (auf 80°C vorgeheizt) und Inkubation für 5 min bei 80°C.
- 3. Nach der 5 minütigen Inkubation bei 80°C Zugabe von 80 µl des vorgewärmten Hybridisierungspuffers in jedes Eppendorf-Reaktionsgefäß.
- 4. Zugabe von je 2,5 μl der frisch aufgetauten Sonden-Arbeitslösung "Salm63-Cy3" zu zwei der vier Milchproben-Ansätze.
- 5. Zugabe von je 2,5 µl der frisch aufgetauten Sonden-Arbeitslösung "nonSalm63-Cy3" zu den beiden verbleibenden Milchproben-Ansätzen.

- 6. Heftig Durchmischen der Eppendorf-Reaktionsgefäße für 10 Sekunden und kurzes (2 Sekunden) Abzentrifugieren mittels einer kleinen Tischzentrifuge.
- 7. Inkubation der Eppendorf-Reaktionsgefäße für 2 Stunden bei 46°C im Hybridisierungsofen oder im Wasserbad bzw. Heizblock (Hybridisierung der Sonde mit der Zielsequenz unter stringenten Bedingungen).
- 8. Vorwärmen des Waschpuffers auf 48°C im Wasserbad oder im Heizblock.

- 9. Nach Inkubation für 2 Stunden bei 46°C Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6 min.
 - 10.Vollständiges Abnehmen und Verwerfen des Überstandes mit einer $200~\mu l$ -Pipette ohne das Pellet zu berühren.
 - 11.Zugabe von 100 µl vorgewärmtem Waschpuffer, heftiges Durchmischen der Eppendorf-Reaktionsgefäße für 5 Sekunden und Überführung ins Wasserbad bei 48°C für 20 Minuten (Entfernen der nicht gebundenen Sondenmoleküle unter stringenten Bedingungen).

- 12. Vorwärmen des Ablösepuffers auf 80°C im Heizblock.
- 13.Nach 20 minütiger Inkubation bei 48°C Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min. für 6 min.
- 14. Vollständiges Abnehmen und Verwerfen des Überstandes mit einer 200 µl-Pipette ohne das Pellet zu berühren.
- 15. Zugabe von 110 µl vorgewärmtem Ablösepuffer, heftiges Durchmischen der Eppendorf-Reaktionsgefäße für 5 Sekunden und Überführung auf den Heizblock auf 80°C für 15 min (Ablösung der Sonde von der Zielsequenz).

- 16.Nach 15 minütiger Inkubation bei 80°C Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6 min.
- 17. Vorsichtige Überführung des Überstandes mit einer 200 μl-Pipette ohne das Pellet zu berühren in neue 1,5 ml Reaktionsgefäße und anschließend Lagerung auf Eis im Dunkeln bis zur Vermessung.

- 18.Fluorometer anschalten und die Wellenlängen auf 550 nm zur Anregung ("Excitation wavelength") und auf 570 nm ("Emission wavelength") zur Messung der Emission des Cy3-Farbstoffes einstellen.
- 19. High Voltage Level auf die gewünschte Empfindlichkeit einstellen (400 bis 800 HVL).
- 20.107 µl Ablösepuffer in eine Präzisionsglasküvette für die Fluorometrie füllen.
- 21.Fluorometer auf Null stellen ("Autozero").

- 22. Eppendorf-Reaktionsgefäße kurz vor der Vermessung 5 Sekunden in der Hand auf Raumtemperatur vorwärmen.
- 23. Einfüllen des die abgelöste Sonde enthaltenden Ablösepuffers in die Präzisionsglasküvette für die Fluorometrie und Vermessung des Signals.
- 24. Ablesen des Signals nach 10 Sekunden, da nach dem Öffnen der Abdeckung des Lichtkanals das Signal nach 5 bis 8 Sekunden stabil ist.
- 25.Fluoreszenzwert der untersuchten Milchprobe = Fluoreszenzwert der mit "Salm63-Cy3" hybridisierten Milchprobe abzüglich dem Fluoreszenzwert der mit "nonSalm-Cy3" hybridisierten Milchprobe.

7. Ergebnis

Das Ergebnis des oben beschriebenen Versuches ist in Abb. 2 gezeigt. Es ist eindeutig zu sehen, daß das Salmonellen-spezifische Signal um ein Vielfaches höher ist als eine ebenfalls geprüfte unspezifische Bindung. Auch der Sondenhintergrund war kaum nachweisbar.

BEISPIEL 2

Nachweis von Bakterien der Gattung Salmonella in 25 ml Milch bzw. 25 g Milchpulver

Ansatz von zwei Milchproben von je 25 ml bzw. 25 g zur Hybridisierung mit den Sonden "Salm63-Cy3" (Cy3-5'-TCGACTGACTTCAGCTCC-3') und "nonSalm-Cy3" (Cy3-5'-GCTAACTACTTCTGGAGC-3').

A. Zellfixierung:

Laborausstattung:

- Rundschüttler
- Probengefäß (Greiner, Nürtingen)
- Greiner Zentrifuge (8000 Umdrehungen / Minute)
- Tischzentrifuge (14000 Umdrehungen / Minute)

Materialien:

- 9 ml Saline-Röhrchen 0,9 % NaCl in H₂O_{dest}
- gepuffertes Peptonwasser (nach §35 LMBG) mit Malachitgrünzusatz

Fleisch Pepton 10,0 gNaCl 5,0 gDinatriumhydrogenphosphat (*12 H₂O) 9,0 g

Kaliumdihydrogenphosphat 1,5 g Malachitgrün (Oxalat) 0,1 g $H_2O_{dest} \qquad \qquad \text{ad 1 l} \qquad \text{pH 7,2 +/- 0,2}$

225 ml-Portionen in 1 l-Erlenmeyerkolben und 30 ml-Portionen in 100 ml-Erlenmeyerkolben abfüllen und 15 min bei 121°C autoklavieren.

• Lyse-Puffer:

 Na_2HPO_4 100 mM NaCl 150 mM EDTA 10 mM NaOH 40 mM

Zur PFA-Zellfixierung verwendete Lösungen:

• PBS-Stammlösung (Na_xPO₄)

200 mM NaH₂PO₄

200 mM Na₂HPO₄ pH 7,2 - 7,4

• 3 x PBS-Lösung

390 mM NaCl

30 mM Na_xPO₄ (PBS-Stammlösung) pH 7,2 - 7,4

• 1 x PBS-Lösung

130 mM NaCl

10 mM Na_xPO₄ (PBS-Stammlösung) pH 7,2 - 7,4

• 4% Paraformaldehydlösung (PFA):

Herstellbar durch Zugabe von 3 g Paraformaldehyd zu 30 ml auf 60°C erhitztem H₂O_{bidest.}; tropfenweise Zugabe von 1 M NaOH bis zum vollständigen Lösen des Paraformaldehyds; anschließend Hinzufügen von 16,6 ml 3 x PBS, Abkühlung der Lösung auf ca. 20°C; Einstellen des pH-Wertes mit 1 M HCl auf 7,2 - 7,4; Sterilfiltration der fertigen PFA-Lösung über einen

0,2μm-Filter (MILLIPORE, Eschborn). Die Lösung kann bei 4°C für ca. eine Woche aufbewahrt werden; Einfrieren über mehrere Monate ist ebenfalls möglich.

- 1. 225 ml gepuffertes Peptonwasser mit Malachitgrünzusatz auf 37 °C ca. 1 Stunde vorwärmen.
- 2. Zugabe von 25 ml Milch bzw. 25 g Milchpulver zu 225ml vorgewärmtem gepufferten Peptonwasser mit Malachitgrünzusatz und gründlich mischen.

- 3. Inkubation für 7,5 Stunden bei 37°C auf dem Rundschüttler.
- 4. Sterile Entnahme von 1 ml aus inkubiertem Ansatz und Überführung in 30 ml gepuffertes Peptonwasser mit Malachitgrünzusatz.
- 5. Inkubation über Nacht (mind. 14 Stunden) bei 37°C auf dem Rundschüttler.
- 6. Überführung der inkubierten 30 ml-Ansätze in 50 ml-Probengefäße zur Zellernte.
- 7. Zentrifugation der Probengefäße bei 8000 Umdrehungen/min für 8 min.

- Resuspension des Pellets mit 20 ml Lysepuffer zur Trennung von Proteinen und Fetten der Milch von den Zellen und anschließende Inkubation für 10 min bei RT.
- 9. Zentrifugation für 8 min bei 8000 Umdrehungen/min.
- 10. Resuspension der pelletierten Zellen in 600 μl 1 x PBS und Überführung in ein 2 ml-Reaktionsgefäß. Spülen des 50 ml Probengefäßes mit 600 μl 1 x PBS.
- 11. Zentrifugation der Reaktionsgefäße bei 14000 Umdrehungen/min für 6min.

- 12. Verwerfen des Überstandes und Resuspension der Zellen in 1 ml 1 x PBS.
- 13. Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/min für 6min.
- 14. Verwerfen des Überstandes und vollständige Resuspension des Pellets in 450 µl 1 x PBS.
- 15. Zugabe von 1350 µl einer frisch aufgetauten Paraformaldehydlösung.
- 16. Inkubation für 1 Stunde bei 4°C.
- 17. Überführung von je 800 μl in zwei 1,5 ml-Eppendorf-Reaktionsgefäße für die anschließende Hybridisierung mit "Salm63-Cy3" und "nonSalm-Cy3".
- 18. Zentrifugation bei 14000 Umdrehungen/ min für 6min.
- 19. Abnehmen und Verwerfen des Überstandes und vollständige Resuspension des Pellets in 1 ml 1 x PBS.
- 20. Zentrifugation bei 14000 Umdrehungen/ min für 6min.

- 21. Abnehmen und Verwerfen des Überstandes (Pellet verbleibt im Cap).
- B. Hybridisierung

Laborausstattung:

- Tischzentrifuge (14000 Umdrehungen / Minute)
- Fluorometer (Kontron Instruments SFM 25)
- Heizblock und Wasserbad oder zwei Heizblöcke (48°C und 80°C)
- Hybridisierungsofen (46°C)

Materialien

- Formamid (Merck, Darmstadt)
- Sonden-Arbeitslösungen zu je 50 ng/μl: 25 μl "Salm63-Cy3", 25 μl "nonSalm-Cy3"

Ablösepuffer (2 ml):

0,01 M Tris/HCl

pH 9,0

Hybridisierungspuffer (2 ml mit 40% Formamidgehalt):

5 M NaCl	360 µl
1 M Tris/HCl pH8,0	40 µl
Formamid	800 µl
10 % (w/v) SDS	2 µl
H ₂ O _{bidest}	ad 2 ml

Waschpuffer (2ml):

5 M NaCl	18,4 μl
1 M Tris/HCl pH 8,0	40 μl
0,5 M EDTA pH 8,0	20 μΙ
10% (w/v) SDS	2 μl
H2O	ad 2 ml

- 1. Vorwärmen des Hybridisierungspuffers auf 48 °C im Wasserbad oder im Heizblock für ca. 20 min.
- 2. Überführung der Eppendorf-Reaktionsgefäße (mit dem zurückgebliebenen Zellpellet) auf den Heizblock (auf 80°C vorgeheizt) und Inkubation für 5 min bei 80°C.
- 3. Nach der Inkubation bei 80 °C für 5 min Zugabe von 160 µl des vorgewärmten Hybridisierungspuffers in jedes Eppendorf-Reaktionsgefäß.

- 4. Zugabe von je 3,0 μl der frisch aufgetauten Sonden-Arbeitslösung "Salm63-Cy3" zu den zwei Parallelansätzen.
- 5. Zugabe von je 3,0 μl der frisch aufgetauten Sonden-Arbeitslösung "nonSalm-Cy3" zu den beiden verbleibenden Parallelansätzen.
- 6. Wirlen (Vortexen) der Eppendorf-Reaktionsgefäße für 10 Sekunden und kurzes (2 Sekunden) Abzentrifugieren mittels einer kleinen Tischzentrifuge.
- 7. Inkubation der Eppendorf-Reaktionsgefäße für 2 Stunden bei 46 °C im Hybridisierungsofen oder im Wasserbad bzw. Heizblock (Hybridisierung der Sonde mit der Zielsequenz unter stringenten Bedingungen).
- 8. Vorwärmen des Waschpuffers auf 48 °C im Wasserbad oder im Heizblock.
- 9. Nach der Inkubation für 2 Stunden bei 46 °C Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/ min für 6min.

- 10. Vollständiges Abnehmen und Verwerfen des Überstandes mit einer 200 μl-Pipette ohne das Pellet zu berühren.
- 11. Zugabe von 180 μl vorgewärmtem Waschpuffer, Wirlen der Eppendorf-Reaktionsgefäße für 5 Sekunden und Überführung ins Wasserbad bei 48 °C für 20 Minuten (Entfernen der nicht gebundenen Sondenmoleküle unter stringenten Bedingungen.
- 12. Vorwärmen von ca. 1,4 ml Ablösepuffer auf 80 °C im Heizblock.
- 13. Nach Inkubation bei 48 °C für 20 min Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/ min für 6min.

- 14. Vollständiges Abnehmen und Verwerfen des Überstandes mit einer 200 μl-Pipette ohne das Pellet zu berühren.
- 15. Zugabe von 130 μl vorgewärmtem Ablösepuffer, Wirlen der Eppendorf-Reaktionsgefäße für
 5 Sekunden und Überführung auf den Heizblock auf 80 °C für 15 Minuten (Ablösung der Sonde von der Zielsequenz).
- 16. Nach Inkubation bei 80°C für 15 min Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/ min für 6min.
- 17. Vorsichtige Überführung des Überstandes mit einer 200 µl-Pipette ohne das Pellet zu berühren in neue 1,5 ml-Reaktionsgefäße und anschließend Lagerung auf Eis im Dunkeln bis zur Vermessung.
- 18.Fluorometer anschalten und die Wellenlängen auf 550 nm zur Anregung ("Excitation wavelength") und auf 570 nm ("Emission wavelenght") zur Messung der Emission des Cy3-Farbstoffes einstellen.
- 19. High Voltage Level auf die gewünschte Empfindlichkeit einstellen (400 bis 800 HVL).
- 20. 108 µl Ablösepuffer in eine Präzisionsglaskuevette für die Fluorometrie füllen.
- 21. Fluorometer auf Null stellen ("Autozero").
- 22. Eppendorf-Reaktionsgefäße kurz vor der Vermessung 5 Sekunden in der Hand auf Raumtemperatur vorwärmen.
- 23. Einfüllen des die abgelöste Sonde enthaltenden Ablösepuffers in die Präzisionsglaskuevette für die Fluorometrie und Vermessung des Signals.

- 24. Ablesen des Signals nach 10 Sekunden, da nach dem Öffnen der Abdeckung des Lichtkanals das Signal nach 5 bis 8 Sekunden stabil ist.
- 25. Fluoreszenzwert der untersuchten Milchprobe = Fluoreszenzwert der mit "Salm63-Cy3" hybridisierten Milchprobe abzüglich dem Fluoreszenzwert der mit "nonSalm-Cy3" hybridisierten Milchprobe.

BEISPIEL 3

Anwendung der Fast-FISH-Technik zur relativen Quantifizierung von Bakterienpopulationen in Belebtschlamm (am Beispiel PPx3)

A. Zellfixierung:

Laborausstattung:

- 2 ml-Reaktionsgefäße
- Tischzentrifuge (14000 Umdrehungen / Minute)

Zur PFA-Zellfixierung verwendete Lösungen:

• PBS-Stammlösung (Na_xPO₄)

200 mM NaH₂PO₄

200 mM Na₂HPO₄

pH 7,2 - 7,4

• 3 x PBS-Lösung

390 mM NaCl

30 mM Na₂PO₄ (PBS-Stammlösung)

pH 7,2 - 7,4

• 1 x PBS-Lösung

130 mM NaCl

10 mM Na_xPO₄ (PBS-Stammlösung)

pH 7,2 - 7,4

• 4% Paraformaldehydlösung (PFA):

Herstellbar durch Zugabe von 3 g Paraformaldehyd zu 30 ml auf 60°C erhitztem H₂O_{bidest}; tropfenweise Zugabe von 1 M NaOH bis zum vollständigen Lösen des Paraformaldehyds; anschließend Hinzufügen von 16,6 ml 3 x PBS, Abkühlung der Lösung auf ca. 20°C; Einstellen des pH-Wertes mit 1 M HCl auf 7,2 - 7,4; Sterilfiltration der fertigen PFA-Lösung über einen 0,2μm-Filter (MILLIPORE, Eschborn). Die Lösung kann bei 4°C für ca. eine Woche aufbewahrt werden; Einfrieren über mehrere Monate ist ebenfalls möglich.

- Zugabe von drei Teilen 4 %iger Paraformaldehydlösung zu einem Teil frisch gezogenerBelebtschlammprobe (z.B. 30 ml 4 %ige Paraformaldehydlösung zu 10 ml Belebtschlamm).
- 2. Inkubation für 3 Stunden bei 4°C.
- 3. Zentrifugation bei 8000 Umdrehungen/ min für 6min.
- 4. Verwerfen des Überstandes und vollständige Resuspension des Pellets in 1 ml 1 x PBS.
- 5. Zentrifugation bei 8000 Umdrehungen/ min für 6min.
- 6. Verwerfen des Überstandes (Pellet verbleibt im Cap).
- 7. Resuspension des Pellets mit 250 µl 1 x PBS.
- 8. Zugabe von 250 µl -18 °C-kaltem Ethanol.

- 9. Gründlich wirlen und gegebenenfalls bei -18 °C lagern (fixierte Belebtschlammprobe).
- B. Hybridisierung

Laborausstattung:

- Tischzentrifuge (14000 Umdrehungen / Minute)
- Fluorometer
- 1 Heizblock und 1 Wasserbad, oder 2 Heizblöcke
- Hybridisierungsofen

Materialien:

- Eppendorf 1,5 ml Reaktionsgefäße
- Formamid (Merck, Darmstadt)
- Sonden-Arbeitslösungen zu je 50 ng / μl:

III 5'- GCT GCC ACC CGT AGG TGT - 3'

Ablösepuffer (2 ml):

0,01 M Tris/HC1 pH 9,0

Hybridisierungspuffer: (2 ml mit 20% Formamidgehalt):

5 M NaCl 360 μ l 1 M Tris/HCl pH8,0 40 μ l Formamid 400 μ l 10 % (w/v) SDS 2 μ l H₂O_{bidest} ad 2 ml

Waschpuffer (2ml):

5 M NaCl $86 \text{ }\mu\text{l}$ 1 M Tris/HCl pH 8,0 $40 \text{ }\mu\text{l}$ 0,5 M EDTA pH 8,0 $20 \text{ }\mu\text{l}$ 10% (w/v) SDS $2 \text{ }\mu\text{l}$ $H2O_{\text{bidest}}$ ad 2 ml

Ansatz (genaues Vorgehen: siehe "Durchführung"):

- 1. 2x definiertes Volumen fixierte Belebtschlammprobe (10 bis 100 μl) + 3xEub-Cy3
- 2. 2x definiertes Volumen fixierte Belebtschlammprobe + 3xEub-Cy5
- 3. 2x definiertes Volumen fixierte Belebtschlammprobe + Non15-Cy3
- 4. 2x definiertes Volumen fixierte Belebtschlammprobe + Non15-Cy5
- 5. 2x definiertes Volumen fixierte Belebtschlammprobe + 3xEub-Cy5 + PPx3 655-Cy3 oderPPx3 1428-Cy3

- 1. Vorwärmen des Hybridisierungspuffers auf 48 °C im Wasserbad oder im Heizblock für ca. 20 min.
- 2. Überführung eines definiertes Volumens PFA-fixierter Belebtschlammprobe (10 bis 100 μl) in Eppendorf-Reaktionsgefäße
- 3. Zentrifugation bei 14000 Umdrehungen/min für 6 min.

- 4. Abnehmen und Verwerfen des Überstandes mit einer 200 μl-Pipette ohne das Pellet zu berühren.
- 5. Überführung der Eppendorf-Reaktionsgefäße (mit dem zurückgebliebenen Zellpellet) auf den Heizblock (auf 80 °C vorgeheizt) und Inkubation für 5 min bei 80 °C.
- 6. Nach der Inkubation bei 80 °C für 5 min Zugabe von 80 μl des vorgewärmten Hybridisierungspuffers in jedes Eppendorf-Reaktionsgefäß.
- 7. Zugabe von je 2,5 µl der entsprechenden frisch aufgetauten Sonden-Arbeitslösung zu den Belebtschlamm-Ansätzen (siehe unter "Ansatz").
- 8. Wirlen der Eppendorf-Reaktionsgefäße für 10 Sekunden und kurzes (2 Sekunden) Abzentrifugieren mittels einer kleinen Tischzentrifuge.
- 9. Inkubation der Eppendorf-Reaktionsgefäße für 2 Stunden bei 46 °C im Hybridisierungsofen oder im Wasserbad bzw. Heizblock (Hybridisierung der Sonde mit der Zielsequenz unter stringenten Bedingungen).

- 10. Vorwärmen des Waschpuffers auf 48 °C im Wasserbad oder im Heizblock.
- 11. Nach der Inkubation für 2 Stunden bei 46 °C Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/ min für 6min.
- 12. Vollständiges Abnehmen und Verwerfen des Überstandes mit einer 200 µl-Pipette ohne das Pellet zu berühren.
- 13. Zugabe von 100 μl vorgewärmtem Waschpuffer, Wirlen der Eppendorf-Reaktionsgefäße für 5 Sekunden und Überführung ins Wasserbad bei 48 °C für 20 Minuten (Entfernen der nicht gebundenen Sondenmoleküle unter stringenten Bedingungen).

- 14. Vorwärmen des Ablösepuffers auf 80 °C im Heizblock.
- 15. Nach Inkubation bei 48 °C für 20 min Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/ min für 6min.
- 16. Vollständiges Abnehmen und Verwerfen des Überstandes mit einer 200 μl-Pipette ohne das Pellet zu berühren.

- 17. Zugabe von 110 μl vorgewärmtem Ablösepuffer, Wirlen der Eppendorf-Reaktionsgefäße für
 5 Sekunden und Überführung auf den Heizblock auf 80 °C für 15 Minuten (Ablösung der Sonde von der Zielsequenz).
- 18. Nach Inkubation bei 80°C für 15 min Zentrifugation der Eppendorf-Reaktionsgefäße bei 14000 Umdrehungen/ min für 6min.
- 19. Vorsichtige Überführung des Überstandes mit einer 200 μl-Pipette ohne das Pellet zu berühren in neue 1,5 ml-Reaktionsgefäße und anschließend Lagerung auf Eis im Dunkeln bis zur Vermessung.

- 20. Fluorometer anschalten.
- 21. Für die Vermessung der Cy3-markierten Sonden Wellenlänge zur Anregung auf 550 nm ("Excitation wavelength") und zur Messung der Emission auf 570 nm ("Emission wavelength") einstellen.
- 22. Für die Vermessung der Cy5-markierten Sonden Wellenlänge zur Anregung auf 644 nm ("Excitation wavelength") und zur Messung der Emission auf 659 nm ("Emission wavelength") einstellen.

- 23. Bei Ansätzen mit beiden Farbstoffen (PPx3-Cy3 und 3xEub-Cy5) wird stets zuerst der Cy5-Wert und danach der Cy3-Wert bestimmt (wegen Ausbleicheffekten).
- 24. High Voltage Level auf die gewünschte Empfindlichkeit einstelllen (400 bis 800 HVL).
- 25. 108 µl Ablösepuffer in eine Präzisionsglaskuevette für die Fluorometrie füllen.
- 26. Fluorometer auf Null stellen ("Autozero").

- 27. Eppendorf-Reaktionsgefäße kurz vor der Vermessung 5 Sekunden in der Hand auf Raumtemperatur vorwärmen.
- 28. Einfüllen des die abgelöste Sonde enthaltenden Ablösepuffers in die Präzisionsglaskuevette für die Fluorometrie und Vermessung des Signals.
- 29. Ablesen des Signals nach 10 Sekunden, da nach dem Öffnen der Abdeckung des Lichtkanals das Signal nach 5 bis 8 Sekunden stabil ist.

Berechnung des relativen Anteils der PPx3-Zellen im untersuchten Belebtschlamm:

<u>Durchschnittlicher Meßwert der Belebtschlammprobe (BP) mit 3xEub-Cy</u> = Korrekturfaktor Durchschnittlicher Meßwert der BP mit 3xEub-Cy5

Relativer Anteil der PPx3 Zellen in Prozent =

(Meßwert BP mit PPX3-Cy3 - durchschnittl. Meßwert BP mit Non15-Cy3) x 100
(Meßwert BP mit 3xEub-Cy5 - durchschnittl. Meßwert BP mit Non15-Cy5) x Korrekturfaktor

PATENTANSPRÜCHE

- 1. Verfahren zum Nachweisen von Mikroorganismen in einer Probe mittels einer Nukleinsäuresonde, umfassend die folgenden Schritte:
- a) Fixieren der in der Probe enthaltenen Mikroorganismen;
- b) Inkubieren der fixierten Mikroorganismen mit nachweisbaren Nukleinsäuresondenmolekülen;
- c) Entfernen nicht hybridisierter Nukleinsäuresondenmoleküle,
- d) Ablösen der hybridisierten Nukleinsäuresondenmoleküle und
- e) Detektieren und gegebenenfalls Quantifizieren der abgelösten Nukleinsäuresondenmoleküle.
- 2. Verfahren nach Anspruch 1, worin in Schritt d) kein Formamid eingesetzt wird.
- 3. Verfahren nach Anspruch 1 oder 2, worin die in Schritt d) verwendete Ablöselösung ausgewählt ist aus der Gruppe bestehend aus Wasser, gepuffertem Wasser, DMSO und SSC.
- 4. Verfahren nach Anspruch 3, worin es sich bei der Ablöselösung um 0,001-1,0 M Tris/HCl, pH 9,0 +/- 2,0 handelt.
- 5. Verfahren nach Anspruch 3 oder 4, worin es sich bei der Ablöselösung um 0,01 M Tris/HCl, pH 9,0 +/- 2,0 handelt.
- 6. Verfahren nach einem der vorangehenden Ansprüche, worin Schritt d) bei einer Temperatur von 50-100°C erfolgt.

- 7. Verfahren nach einem der vorangehenden Ansprüche, worin Schritt d) bei einer Temperatur von unter 100° erfolgt.
- 8. Verfahren nach einem der vorangehenden Ansprüche, worin Schritt d) bei einer Temperatur von ungefähr 80°C durchgeführt wird.
- Verfahren nach einem der vorangehenden Ansprüche, worin die Nukleinsäuresonde komplementär zu einer chromosomalen oder episomalen DNA, einer mRNA oder rRNA eines nachzuweisenden Mikroorganismus ist.

- 11. Verfahren nach Anspruch 10, worin der detektierbare Marker ausgewählt ist aus der Gruppe der folgenden Marker:
- a) Fluoreszenzmarker,
- b) Chemolumineszenzmarker,
- c) radioaktiver Marker,
- d) enzymatisch aktive Gruppe,
- e) Hapten,
 - f) durch Hybridisierung nachweisbare Nukleinsäure.
 - 12. Verfahren nach einem der vorangehenden Ansprüche, worin der Mikroorganismus ein einzelliger Mikroorganismus ist.
 - 13. Verfahren nach einem der vorangehenden Ansprüche, worin der Mikroorganismus eine Hefe, ein Bakterium, eine Alge oder ein Pilz ist.
 - 14. Verfahren nach Anspruch 13, wobei der Mikroorganismus der Gattung Salmonella angehört.

- 15. Verfahren nach einem der vorangehenden Ansprüche, wobei die Probe eine Umweltprobe und aus Wasser, Boden oder Lust entnommen ist.
- 16. Verfahren nach einem der Ansprüche 1 bis 14, wobei die Probe eine Lebensmittelprobe ist.
- 17. Verfahren nach Anspruch 16, wobei die Probe aus Milch oder Milchprodukten, Trinkwasser, Getränken, Backwaren oder Fleischwaren entnommen ist.
- 18. Verfahren nach einem der Ansprüche 1 bis 14, wobei die Probe eine medizinische Probe ist.
- 19. Verfahren nach Anspruch 18, wobei die Probe aus Gewebe, Sekreten oder Stuhl gewonnen ist.
- 20. Verfahren nach einem der Ansprüche 1 bis 14, wobei die Probe aus Abwasser gewonnen ist.
- 21. Verfahren nach Anspruch 20, wobei die Probe aus Belebtschlamm, Faulschlamm oder anserobem Schlamm gewonnen ist.
- 22. Verfahren nach einem der Ansprüche 1 bis 14, wobei die Probe aus einem Biofilm gewonnen wird.
- 23. Verfahren nach Anspruch 22, wobei der Biofilm aus einer industriellen Anlage gewonnen wird, bei der Abwasserreinigung gebildet wurde oder ein natürlicher Biofilm ist.
- 24. Verfahren nach einem der Ansprüche 1 bis 14, wobei die Probe einem pharmazeutischen oder kosmetischen Produkt entnommen ist.
- 25. Kit zur Durchführung des Verfahrens nach einem der vorangehenden Ansprüche, enthaltend a) mindestens einen Hybridisierungspuffer,
- b) mindestens eine Nukleinsäuresonde,

26. Kit nach Anspruch 25, enthaltend mindestens eine spezifische Sonde zum Nachweis von Bakterien der Gattung Salmonella.

27. Kit nach Anspruch 26, enthaltend die Nukleinsäuresonden

Salm63: 5'-TCGACTGACTTCAGCTCC-3'

pun

NonSalm: 5'-GCTAACTTCTGGAGC-3' oder eine Nukleinsäuresonde, die sich von Salm63 und/oder MonSalm durch eine Deletion undvoder Addition unterscheidet, wobei die Fähigkeit dieser Sonde, mit Salmonellaspezifischer Nukleinsäure zu hybridisieren, erhalten bleibt, oder eine Nukleinsäure, die mit den zuvor genannten Nukleinsäuren hybridisieren kann.

Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zum Nachweis von Mikroorganismen in einer Probe mittels einer Nukleinsäuresonde. Herkömmliche Verfahren sind z. B. die .in situ-Hybridisierung von Mikroorganismen mit fluoreszenzmarkierten Oligonukleotidsonden (fluoreszierende in situ-Hybridisierung). Nachteil dieser Methode ist die Notwendigkeit, die Auswertung am Epifluoreszenzmikroskop vorzunehmen. Erfindungsgemäß werden die Nachteile des in situ-Hybridisierungsverfahrens überwunden, indem die nachzuweisenden micht hybridisierten probe mit einer spezifischen Nukleinsäuresonde hybridisiert werden nicht hybridisierte Nukleinsäuresondennoleküle abgelöst und anschließend detektiert und gegebenenfalls Nukleinsäuresondenmoleküle abgelöst und anschließend detektiert und gegebenenfalls quantifiziert werden.

I .ddA

S.ddA

