

Dynamik und Regelung Thermischer Systeme

Perspektiven und Anwendungen

Julius Martensen, 19. Juni 2017

Inhalt

- Vorwort
- Regelungstechnik
- Masterarbeit
- Fazit

Motivation

Systemwissen

- Optimale Betriebspunkte
- Optimale Betriebsstrategien
- Robustheit
- Dynamik

Aufgabenbereiche

Technisches System

Reglerauslegung

- Modell
- Auslegungsmethoden
- Reglerstruktur

Informationsgewinn

- Messung
- Modell
- Dynamik

Informationsgewinn

Vorraussetzungen

- Messbarkeit
- Parameterdaten
- Messdaten
- Physikalisches Modell

Vorteile

- Komplexere Regler
- Data-Fusion
- Präzisere Beschreibung

Beispiele

- Lüenberger Beobachter
- Kalman-Filter
- Sliding-Mode Beobachter

Reglerauslegung

Ziele

- Stabilität
- (Statische) Sollwertfolge
- Performance
- Robustheit

Probleme

Information ist begrenzt **Priorisierung** notwendig

Informationsverlust

Aufgabe

Autotuning von adaptiven, dezentralen Regelstrukturen.

Randbedingungen

- Modell variiert stark
- Modell hoch parametriert
- Reglerstruktur starr
- Reglerstruktur niedrig parametriert

Masterarbeit

Hier das System

Physikalische Kopplung

PI Regler

Anhand von Ersatzmodellen können PI(D) Regler für das System ausgelegt werden.

Kopplung

Kopplung sind bekannt und können minimiert werden.

Trade-Off

Verlust der nominellen Performance der Hauptkopplungen.

Fazit

Fazit

Reglerauslegung ist bereits bei einem stark vereinfachten Modell für industrieübliche Regler möglich.

Ersatzmodelle sind hierbei meist eine ausreichende Näherung der Strecke.

Optimale Regler erhält man jedoch nur durch hohen Mess- oder Modellierungsaufwand.

Systemdiagnose ist ausschließlich durch einen hohen Modellierungsaufwand möglich.

Aufwändige Modellierung erhöht den Informationsgehalt und erhält die physikalische Information der Daten.

