Chapitre 6 Intégrales Généralisées

Integrale généralisée à l'oo

Soit $4: \mathbb{C}_{2}, +\infty\mathbb{C} \to \mathbb{R}$ continue our \mathbb{C}_{2} and \mathbb{C}_{3} and \mathbb{C}_{4} exists at each finite. Quand elle exists, on each \mathbb{C}_{4}

Intégrable généralisée en une borne Girie

4:]2,b] - R continue. On dit que job (1) dt existe si lim job (1) dt ext exic

Il est possible que $\int_{a}^{\infty} ... ou \int_{a}^{b} ... pervent exister sans que lim <math>f = 0$ ou lim soit time, contrairement existes numériques.

La 4.40 mais son inhégrale généralisée existe

* On cherche 4e C°(30,13) tel que lim f(2)= +00 mais lim ['4(4) dt existe.

 $\lim_{x \to 0} \int_{x}^{4} (4) dt = xiste.$ - Regardons $f(4) = \frac{1}{17} ; f_{3}(4) = h(4)$ $\int_{x}^{4} \frac{d}{x} \frac{dt}{dt} = 2[IT]_{x}^{4} = 2(1-IZ)$

$$\lim_{x\to\infty} \int_{x}^{1} \frac{dt}{4t} = \ell ; \int_{x}^{1} |h(x)dx| = \left[\frac{|h(x)|}{2} - 3 \right]_{x}^{1} = -1 - 2 |h(x)| + 2 = -1$$
Alors $\lim_{x\to\infty} (-1 - 2 |h(x)| + 2 = -1$

Convergence : Semi "/ Absolve

On dit que t est intégrable sur Ja, bl (a, b pouvant être ± 00) si l'intégrale généralisée de l'11 est CV. Dans ce cas, l'intégrale de t est abadument CV.

• Ei jalf existe au sens généralisé, alors jat existe

• Ei jaf existe mais pas jalf, on parle d'intégrale

• EMI-CU

Relation de Chasles

Soient $a=\infty, < \dots < \infty, =b$. On suppose 4 est com sur $J \times_i$, $\times_{i=1}^{i}$. On dit que l'intégrale généralisée sur $J \times_i$, $\times_{i=1}^{i}$ existe si elle existe sur chacun des $J \times_i$, $\times_{i=1}^{i}$ et alors $J_{a}^{a}(t)dt = \prod_{i=1}^{n} J_{\infty_{i}}^{a}(t)dt$

S: $\int_{a}^{\infty} f(t)dt$ est ou et $b \in Ca$, $+\infty C$, alors $\int_{a}^{\infty} f(t)dt$ a) subset of $\int_{a}^{\infty} f(t)dt = \int_{a}^{\infty} f(t)dt + \int_{a}^{\infty} f(t)dt$

Si Jafithat DV, alors Infithat aussi.

On ne peut pas taire de IAP à l'or $\frac{1}{2}$ sin(x) dx car on peut auxir: $\frac{1}{2}$ order = $\frac{1}{2}$ out dx lim $\frac{1}{2}$ \frac

$$\int_{1}^{A} \left| \frac{\cos(3\varepsilon)}{2\varepsilon^{2}} \right| d\omega \leq \int_{1}^{A} \frac{dz}{2\varepsilon^{2}} = \left(\frac{-1}{2\varepsilon} \right)_{1}^{A} = 1 - \frac{1}{A} \leq 1$$

On a donc mg $\int_{0}^{\infty} \left| \frac{\cos(\omega)}{\infty} \right| d\omega$ exist as sens generalise donc $\int_{0}^{\infty} \frac{\cos(\omega)}{\infty} d\omega$ as $\int_{0}^{\infty} \frac{\sin(\omega)}{\infty} d\omega = \frac{\pi}{2}$

Soit $f,g:[a,+\infty[\rightarrow IR]$ des fonctions continues. Si les intégrales $\int_{a}^{\infty}f(x)dx$ et $\int_{a}^{\infty}g(x)dx$ convergent et si λ et μ sont deux no réels, alors l'intégrale $\int_{a}^{\infty}(\lambda f(x)+\mu g(x))dx$ converge et vast: $\lambda\int_{a}^{\infty}f(x)dx+\mu\int_{a}^{\infty}g(x)dx$.

Reste d'un integrale cu

Si $\int_{a}^{+} f(t) dt$ CV, alors R(T) = $\int_{T}^{+} f(t) dt$ est bien distinct V = V (par Chasles)

Acposition

R(T) -> 0

Convergence absolue

On dit que 1 titlet ou abs is 1 to 11 of ON

Acposition

Si $\int_{a}^{+\infty} f(t)dt$ converge absoluement, abors elle CV. Soit $F(T) = \int_{a}^{T} f(t)dt$ et $G(T) = \int_{a}^{+\infty} f(t)dt$.

Par passage à la limite.

Par Chasles.

Donc $|F(U_n)-F(U_n)| \in \mathcal{E}$ $\forall n \ge n \ge N$ where $(F(U_n)_{n\ge 0})$ est donc due Cauchy, donc elle

CV. Ceci est wai $\forall (U_n)$, $U_n \to +\infty$, donc d'après le

lemme, F(T) CV qd $T \to +\infty$ et donc $\int_{-1}^{4\pi} f(t) dt$ est CV.

Soit F: [3,+or[-> R, F(T) cu qd T -> +or <=> F(Un) CV qd N -> +or t(UN), Un -> +or

Seni · Convergence

Si $\int_{a}^{+} f(t)dt$ est CV sans être alos. CV. On dit qu'elle est semi-convergente.

Convergence sor 13,6]

Soit f_b continue to define sor 1a,b], on dit $\int_a^b f(t)dt$ CU si $\int_a^b f(t)dt$ existe and $C \rightarrow O^c$.

Dans ce cas, on note $\int_a^b f(t)dt := \lim_{E \rightarrow O^c} \int_{a+E}^b f(t)dt$ Sinon on dit are $\int_a^b f(t)dt$ est DU

Acposition

Supposons 4 distince et continue sur Ja,b] et admet un prolongement par continuité en a.

Soit $\hat{f}: [a,b]$ le prolongement.

Alors $\int_a^b f(t)dt$ est Cu et $\int_a^b f(t)dt = \int_a^b f(t)dt$

=> clair: caract. sig. de la lim.

= Soit (Uh), (Vh) Uh = +00 et Uh = +00

Par lupp, 31 et l'EIR, F(Uh)=1 et F(Vh)=1'

Soit Wh détini par Wh = Uh; What = Vh

Wh = +00 car Wh et What = +00

Donc F(Wh) CV en n = +00: F(Wh) = 1

F(What) = 1'

Donc aper, the ty Uh = +00, F(Uh) = 1

Par caracterisation sog. de la limite, F(T) CN

qd T = +00.

Soit F primitive de f sur [a,b], F'(t) = f(t) 4te[a,b] = 4(t) 4te]2,b]

F décivable et continue. $\int_{a}^{b} f(t)dt = F(b) - F(a + E) \xrightarrow{-} F(b) - F(a)$ $= \int_{a}^{b} \hat{f}(t)dt$

Acposition

S; f(+)>0, Y+E[a,+oc, alors:

- Soit $\int_{a}^{\infty} f(t)dt$, $T \in [a, +\infty[] ext majorée, et alors <math>\int_{a}^{\infty} f(t)dt$ est CV.
- Soit $\int_{a}^{\infty} f(t)dt$, $T \in [a, +\infty]$ $n'est pas majoré, et alors <math>\int_{a}^{\infty} f(t)dt = +\infty$

Théorème de comparaison

S: 0 < f(+) < g(+) sur [a, + &[, alors

- · S; j gHdt CU, alors j thidt CU
- · S: Jafthat DV, alors Jagthat DV

Intégrale de Riemann

Soit
$$\alpha \in \mathbb{R}$$

$$\int_{1}^{+\infty} \frac{1}{4} dt = \begin{cases} +\infty & 6: \alpha < 1 \\ \frac{1}{\alpha - 1} & 6: \alpha > 1 \end{cases}$$

Intégrale exponentielle

Soit Le R.
$$\int_{0}^{+\infty} e^{-\Lambda t} dt = \begin{cases} +\infty & \text{si } \Lambda \leq 0 \\ \frac{1}{\Lambda} & \text{si } \Lambda > 0 \end{cases}$$

$$\int_{1}^{T} \frac{dt}{dt} = \left[\frac{t^{1-\alpha}}{1-\alpha}\right]_{1}^{T} = \frac{T^{1-\alpha}-1}{1-\alpha}$$

$$= \left[h(t)\right]_{1}^{T} = h(T) \xrightarrow{T} + \omega$$

$$= \int_{1}^{\infty} \frac{dt}{dt} = \left[h(t)\right]_{1}^{T} = h(T) \xrightarrow{T} + \omega$$

$$\int_{0}^{T-\Lambda t} dt = \int_{0}^{T-\Lambda t} \left[\frac{e^{-\Lambda t}}{-\Lambda} \right]^{T} \left(\frac{1}{2} + \frac{$$