# PATENT ABSTRACTS OF JAPAN

(11) Publication number:

03-173471

(43) Date of publication of application: 26.07,1991

(51)Int.CI.

H01L 27/118 H05K 3/00

(21)Application number: 01-312541

(71)Applicant: NEC CORP

**HOKURIKU NIPPON DENKI** 

SOFTWARE KK

(22)Date of filing:

01.12.1989

(72)Inventor: TAWADA SHIGEYOSHI

**MIZUMAKI TOSHIHIRO** 

# (54) WIRING STRUCTURE OF MASTER SLICE SYSTEM LSI (57) Abstract:

PURPOSE: To comparatively easily adjust wiring length by arranging a first and a second wiring layer wherein a vertical and a horizontal wiring lattice are defined and a third wiring layer wherein a wiring lattice connecting diagonal lines of both lattices is defined.

CONSTITUTION: When both of the lattice intervals in the vertical and the horizontal directions are (d), the wiring length between the terminals t1 and t2 of a wiring network is shorter than or equal to 8d, in order to satisfy restrictions like the delay time of an LSI required for high speed operation. When wiring process is performed by using a first and a second wiring layer 2 in accordance with the order that the angle of the line connecting the terminals t1 and t2 is approximate to 0° or 90°, the wiring between the terminal t1 and t2 is detoured by wiring





routes 101 and 102, and a wiring route 201 of α length 12d is obtained, On the other hand, by constituting an oblique wiring between the terminals t1 and t2 by using the layer 3, a wiring route 221 of a length I=4.22/1d can be obtained as follows, the wiring routes 101 and 102 are not corrected. and through holes 231 and 232 between the first and the this wiring 1, 3 are arranged at the positions of the terminals t1 and t2.

#### **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

命日本国特許庁(JP)

⑪特許出願公開

#### ⑫ 公 開 特 許 公 報 (A) 平3-173471

@int.Cl. 3

識別記号

庁内整理番号

個公開 平成3年(1991)7月26

27/118 H 01 L H 05 K 3/00

6921-5E 8225-5F D

H 01 L 21/82

M

審査請求 未請求 請求項の数 1 (金4頁

60発明の名称

マスタスライス方式LSIの配線構造

類 平1-312541 创特

題 平1(1989)12月1日

多和日 賜 澄 ②発

茂芳

東京都港区芝 5 丁 [33番 ] 号 日本電気株式会社内

明 **@**#

俊

石川県石川郡磐来町安陵寺1番地 北陸日本電気ソフト

エア株式会社内

題 日本電気保式会社 OH: 人

北陸日本電気ソフトウ 少出 人

東京都港区芝5丁目7番1号 石川県石川都鶴来町安養寺 I 番地

エア株式会社

弁理士 河原 四代 理 人 純一

1,発明の名称

マスタスライス方式しSIの配線構造

2. 特許請求の範囲

型直方向および水平方向の配線格子が定義され た第1の配線階および第2の配線層と、

これら第1の配線感および第2の配線層に定義 された聖武方向および水平方向の配線格子の各格 予点の対角を結ぶ解めの配譲格子が定義された第 3の記録環点

を有することを特徴とするマスタスライス方式 L5!の配線排通.

3. 発明の詳細な説明

(産業上の利用分野)

本発明はマスクスライス方式し51の配線構造 に関し、外に配線工程駅前のマスクを共通とし配 線に関するマスクのみを品級ごとに設計製作して 1. S1を作成するマスタスライス方式LSIの駅

性点、この種のマスタスライス方式LSIの配 線構造では、すべての心線層の配線指子が脱離方 朔および水平方向に定義されていた(参考文献: 『論理波瀾のCAD』、情報処理学会、昭和56 年3月20日発行)。

いに、無2回に示すように、重直方向指子間隔 および水平方向磁子間隔をともに4としたとおに 世級ネットの猫子し1および端子 t 2 間の配線長 が高速動作を必要とするしらしの退延時間等の制 物を満足するために B d 以内であるという期限が ある場合を例にとって説明すると、端子しえおよ び端子:2回を結ぶ直紋の角度が0度さたは30 度に近いものから頃に第1の配材園!および第2 の配線路2を開いて配線する配線処理を行った精 果、第3関に示すように、配線機器101と配線 超路102とによって端子11および端子12間 の記録が運回させられ、配線長!2寸の配線経路 281が得られたときに、従来のマスタスライス

#### **转開平3~173471(2)**

設経路(11および112を得ることにより、制限を満たす庇禄長8dの配級経路211を得ていた。

#### (発明が解決しようとする課題)

上述した従来のマスタスライス方式しSIの配線構造では、高速動作を必要とするしSIの銀延時勤等の制的を選足するために設定された配線基に制限がある配線ネットの配線において配線処理後にその制限が満たされなかった場合に、制限を行たすようにするために他の配線を移動させて配線の修正を行う必要があったので、配線の修正に多大な工数を関するという欠点がある。

また、配縁の修正を行っても配線長の初限を納 たすことができなかった場合には、ブロックの配 匿総正等を行って配額処理をやり直す必要があり、 さらに処理時間が増大するという欠点がある。

本発明の目的は、上述の点に載み、第1の配線 簡および第2の配線層に定義された垂直方向およ び水平方向の配線標子の各緒子点の対角を結み額 めの配線格子が定義された第3個の配給層を利用 して、他の配額を移動したりブロックの配置位置 を変更したりすることなしに、比較的容易に配線 長の網盤を行うことができるマスタスライス方式 LSIの配額構造を提供することにある。

#### (課題を解決するための手段)

本発明のマスクスライス方式し3.1の配譲接边は、進度方向および水平方向の配線格子が定義された第1の配線器および第2の配線器と、これら第1の配線器および第2の配線器に定義された重度方向および水平方向の配線格子の多格子点の対角を結ぶ紛めの配線格子が定義された第3の配線

#### 【作用】

本発明のマスタスライス方式しら i の配線構造では、第1の配線層および第2の配線層に垂直方向および水平方向の配線格子が定義され、第3の配線層に第1の配線層および第2の配線層に芝森された室直方倒および水平方向の配線格子の各格子点の共角を絡み斜めの配線格子が定義される。

(実施例)

次に、本見明について図面を参照して詳細に説明する。

第1回は、本強羽の一変施例に扱るマスタスライス方式しち1の配線構造を示す図である。本実施術のマスタスライス方式しち1の配線構造は、 垂直方向および水平方向の配線構子が定義された 第1の配線層1 および第2の配線層2 と、第1の 配線图1 および第2の配線層2 と、第1の 配線图1 および第2の配線層2 に定義された頭値 方向および水平方向の配線層子の各稿子点の気角 を結ぶ斜めの配線循子が定義された類3の配線層 3とから構成されている。

次に、このようにけ成された本実施例のマスタ . スライス方式 L S I の配線構造における配線過程 について、第2図~第4図を参照しながら異称的 に説明する。

第2回に共すように、強密方病格予問題および 水平方向格予関階をともにdとしたときに配線ネットの続子に1 および論子に2 隣の配線長が高速 動作を必要とする15 1の辺延時間等の制約を構 足するために8 4 以内であるという制度がある場 会を例にとって説明すると、漢字・1 おおよび選子・2 間を結ぶ値線の角度かり渡または9 0 度に近いものから暇に第1 の配線層 1 および第2 の配級 第2 を用いて配線する配線処理を行った結果、第3 四に示すように、配線経路 1 0 2 とによって精子・1 および端子・2 間の配線 数4 1 2 4 の配線 3 2 3 1 が得られたと合に、第4 2 四に示すように、端子・1 および端子・2 の位置に第1 の配線層 1 および集3 の配線層 3 間のスルーケール 2 3 1 および集3 の配線層 5 を用いて斜めの配線を行うことにより、削険を設たす配線を

$$2 = \sqrt{(4 d)^2 + (4 d)^2}$$
=  $4\sqrt{2} d$ 

の配線経路221を得ることができる。

(整明の外集)

以上説明したように本発明は、高速動作を必要 とするLSIの遅延時間等の制約を満足するため

### 特開平3-173471 (3)

に設定された記録長の特限に対して第1の配線層および第2の配線層を吊いて配線処理を行った後に制限を冷たしていない配線を制限を満たすようにするために第3層の配線層を利用することにより、他の配類を移動したりブロックの配置位置を変更したりすることなしに、比較的容易に配線長の過繁を行うことができる効果がある。

#### 4. 図園の簡単な説明

第1回は本発明の一変遊戯に係るマスタスライス方式しSiの配線構造を示す図。

第2 関は配線ネットのボ子ペアの一例を示す図、 第3 図は第1 の配線層および第2 の配線層を用いた配線処理後の配線例を示す図、

系も回は第3の配線温を用いて入事修正を行っ た後の配線筋を示す値。

第5 関は第1 の配線層および第2 の配線層を用いて人手器圧を行った後の配線例を示す関である。 図において、

1・・・野1の転機圏、

2・・・第2の配線層、

3 · · · 奈3 の配納度、 i 0 l · l 0 2 · 2 2 l · 於料経路、 2 3 l · 2 3 2 · スルーホール、 L 1 · l 2 · 缩子である。

特許出限人 日 木 電 気 株 武 会 社 北陸日本電気ソフトウェア株式会社 北 理 人 会 弾 ナ 恒 間 終・一

第 1 図



・ 第1の仮線層かよび第2の配線層的 定義された配線器子

※ 2. 数3の配線所に知殺された配線格子

第2図



## 特開平3-173471 (4)

第 4 図

12 232 231 221 101 102 2 位制標路 221 配線経路 1 第1の配線道をよび花 3 の配線道師のメルーホール

→ :第3の配数箱の配換パチーン





### (19) Japanese Patent Office (JP)

# (12) UNEXAMINED PATENT APPLICATION GAZETTE (A)

# (11) Unexamined Patent Application Publication [KOKAI] No. H3-173471 [1991]

(43) KOKAI Date: July 26, 1991

(51) Int. Cl.<sup>5</sup>

I.D. Symbol

Intern. Ref. No.

H 01 L 27/118

D

6921-5E

H 05 K 3/00

8225-5F

H 01 L 21/82

M

Examination Request Status: Not yet requested

Number of Claims: 1

(Total 4 pages [in orig.])

(54) Title of Invention

Master Slice LSI Wiring Structure

(21) Patent Application No.

H1-312541 [1989]

(22) Filing Date:

December 1, 1989

(72) Inventor

Shigeyoshi Tawada

c/o NEC Corporation

5-33-1 Shiba, Minato-ku, Tokyo

(72) Inventor

Toshihiro Mizumaki

c/o Hokuriku NEC Software, Ltd.

1 Anyoji, Tsurugi-cho, Ishikawa-gun, Ishikawa

(71) Applicant

**NEC Corporation** 

5-7-1 Shiba, Minato-ku, Tokyo

(71) Applicant

Hokuriku NEC Software, Ltd.

1 Anyoji, Tsurugi-cho, Ishikawa-gun, Ishikawa

(74) Agent Junichi Kawahara, patent attorney

### Specification

#### 1. Title of Invention

#### Master Slice LSI Wiring Structure

#### 2. Claims

A master slice LSI wiring structure comprising:

a first wiring layer and a second wiring layer for which vertical-direction and horizontal-direction wiring lattice members are defined; and

a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in said first wiring layer and second wiring layer.

### 3. Detailed Description of Invention

#### [Field of the Invention]

This invention concerns a master slice LSI wiring structure, and more particularly concerns a master slice LSI wiring structure for producing LSIs, wherewith, using common masks prior to the wiring step, only masks pertaining to the wiring are designed and fabricated individually for each product type.

#### [Prior Art]

Conventionally, in this type of master slice LSI wiring structure, all of the wiring lattice members in the wiring layers are defined in the vertical direction and horizontal direction (cf. "Ronri Sochi no CAD [Logic Device CADs]", Joho Shori Gakkai (Japan Society for Information Processing), March 20, 1981).

A case is now described wherein, as diagrammed in Fig. 2, when both the vertical direction lattice member interval and the horizontal direction lattice member interval are made d, and the wiring length between the terminals t1 and t2 in the wiring network is limited to 8d or less in order to satisfy restrictions such as the LSI delay time required for high-speed operation, as a result of implementing a wiring process that does the wiring using the first wiring layer 1 and the second wiring layer 2 sequentially from an angle of the straight line connecting the terminals t1 and t2 that is near either 0 or 90 degrees, the wiring between the terminals t1 and t2 is made circuitous by wiring paths 101 and 102, as diagrammed in Fig. 3, yielding the wiring path 201 having a wiring length of 12d, whereupon, with the conventional master slice LSI wiring structure, as diagrammed in Fig. 5, the wiring paths 101 and 102 are altered manually to yield wiring paths 111 and 112, whereby the wiring path 211 having a wiring length of 8d which

satisfies the restriction is obtained.

# [Problems Which the Present Invention Attempts to Solve]

With the conventional master slice LSI wiring structure described in the foregoing, if, after the wiring process in wiring a wiring net wherein a limitation is placed on the wiring length in order to satisfy a restriction such as the LSI delay time required for high-speed operation, that limitation has not been met, it is necessary to alter the wiring, moving other wiring, in order to satisfy the limitation. Many steps are required for such alteration, which constitutes a shortcoming.

Furthermore, in cases where the wiring length limitation cannot be met even after the wiring has been altered, it is necessary to redo the wiring process, performing block placement alterations, etc., resulting in a further increase in processing time, which is a shortcoming.

In view of these shortcomings, an object of the present invention is to provide a master slice LSI wiring structure wherewith, using a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined by the first wiring layer and the second wiring layer, wiring lengths can be adjusted with comparative ease, without moving the other wiring or changing block placement positions.

# [Means Used to Solve the Abovementioned Problems]

The master slice LSI wiring structure of the present invention comprises: a first wiring layer and a second wiring layer for which vertical-direction and horizontal-direction wiring lattice members are defined; and a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in the first wiring layer and second wiring layer.

# [Operation]

In the master slice LSI wiring structure of the present invention, vertical direction and horizontal direction wiring lattice members are defined in the first wiring layer and the second wiring layer, and diagonal wiring lattice members are defined in the third wiring layer, which diagonal wiring lattice members join the diagonals of the lattice points of the horizontal direction and vertical direction wiring lattice members defined in the first wiring layer and the second wiring layer.

### [Embodiments]

The present invention is now described in detail, making reference to the drawings.

Fig. 1 is a diagram of a master slice LSI wiring structure in one embodiment of the present invention. The master slice LSI wiring structure in this embodiment comprises: a first wiring layer and a second wiring layer 2 for which vertical-direction and horizontal-direction

wiring lattice members are defined; and a third wiring layer 3 for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in the first wiring layer 1 and second wiring layer 2.

The process of implementing the wiring in the master slice LSI wiring structure in this embodiment, configured as stated, is now described specifically, with reference to Fig. 2 to 4.

The case is [again] described wherein, as diagrammed in Fig. 2, when both the vertical direction lattice member interval and the horizontal direction lattice member interval are made d, and the wiring length between the terminals t1 and t2 in the wiring network is limited to 8d or less in order to satisfy restrictions such as the LSI delay time required for high-speed operation, as a result of implementing a wiring process that does the wiring using the first wiring layer 1 and the second wiring layer 2 sequentially from an angle of the straight line connecting the terminals t1 and t2 that is near either 0 or 90 degrees, the wiring between the terminals t1 and t2 is made circuitous by wiring paths 101 and 102, as diagrammed in Fig. 3, yielding the wiring path 201 having a wiring length of 12d, whereupon, as diagrammed in Fig. 4, without altering the wiring paths 101 and 102, through holes 231 and 232 are opened between the first wiring layer 1 and the third wiring layer 3 at the positions of the terminals t1 and t2, [respectively,] and diagonal wiring is implemented between terminal t1 and terminal t2 using the third wiring layer 3, thereby obtaining a wiring path 221 having a wiring length equal to

$$a = \sqrt{(44)^2 + (44)^2}$$
 $= 4\sqrt{2}$ 

which meets the limitation.

#### [Benefits of Invention]

After wiring processing has been performed using a first wiring layer and a second wiring layer, and there exists wiring that does not meet a wiring length limitation established to satisfy a restriction such as an LSI delay time required for high-speed operation, the present invention, as described in the foregoing, employs a third wiring layer to make that wiring meet that limitation, thereby making it possible to adjust wiring lengths with comparative ease without moving the other wiring or altering block placement positions.

### 4. Brief Description of Drawings

Fig. 1 is a diagram of a master slice LSI wiring structure in one embodiment of the present invention;

Fig. 2 is a diagram of one example of a pair of terminals in a wiring network;

Fig. 3 is a diagram of an example of wiring after the implementation of a wiring process using a first wiring layer and a second wiring layer;

Fig. 4 is a diagram of an example of wiring after a manual alteration using a third wiring

## layer; and

Fig. 5 is a diagram of an example of wiring after performing a manual alteration using a first wiring layer and a second wiring layer.

The following reference characters are used in the drawings.

- 1 First wiring layer
- 2 Second wiring layer
- 3 Third wiring layer

101, 102, 221

Wiring paths

231, 232

Through holes

tl, t2 Terminals

Patent Applicants

NEC Corporation

Hokuriku NEC Software, Ltd.

Agent

Junichi Kawahara, patent attorney

Figure 1



- : Wiring lattice defined in first wiring layer

: Wiring lattice defined in third wiring layer

Figure 2





Figure 5



# [Translator's Notes]

- 1. The original term koushi, usually translated "lattice" (and sometimes "grating" or "grid") is herein translated "lattice member" because the English word "lattice" refers to the entire lattice and never to its constituent elements or "members" as is apparently intended here.
- 2. The term haisen, as used in microchip technology, may also be translated "interconnect," but is translated by the more common "wiring" herein to avoid confusion.
- 3. The original language [A] ni teigi sareta [B], which occurs frequently in the text, is ambiguous. I have translated it "B defined in A," but it could also mean "B defined by A.