s-Arc-transitive solvable Cayley graphs

CAI HENG LI, JIANGMIN PAN, AND YINGNAN ZHANG

Speaker: Yuandong Li

Beijing Jiaotong University

September 11, 2023

- Preliminaries & Background
- 2 Main Result & Examples
- Proof of the Main result
 - Overview of the proof
 - Reduct to almost simple groups
 - As case

Preliminaries

Let Γ be a finite simple undirected graph. Let $G \leq \operatorname{Aut}\Gamma$.

Definition

- s-arc: (s+1)-tuple of vertices $\alpha_0, \alpha_1, \cdots, \alpha_s$ where α_i is adjacent to α_{i+1} and $\alpha_{i-1} \neq \alpha_{i+1}$ for $0 \leq i \leq s-1$ and $1 \leq j \leq s-1$.
- (G,s)-arc-transitive: G is transitive on the set of s-arcs of Γ .
- (G,s)-transitive: (G,s)-arc-transitive but not (G,s+1)-arc-transitive.

For short, **s-transitive** means $(Aut\Gamma, s)$ -transitive for graphs.

Lemma

- s-arc-transitive $(1 \le s) \Longrightarrow k$ -arc-transitive $(1 \le k \le s)$.
- the s-arc-transitivity of a graph is inherited by the normal quotients.

Preliminaries

Definition

- Cayley graph: Cay(G, S) with vertex set G and edges $yx^{-1} \in S$.
- solvable Cayley graph: G is solvable.

Lemma

 Γ is Cayley of $G \iff \exists G \lesssim \operatorname{Aut}\Gamma$ which is vertex-regular.

Background

- 1947, Tutte: No 6-arc-transitive trivalent graphs.
- 1981, Weiss: No s-arc-transitive graphs with $val \ge 3$ for s = 6 and $s \ge 8$.
- 2019, Li C.H. & Xia B.Z.: Connected **non-bipartite** 3-arc-transitive solvable Cayley graph with $val \geq 3$ is a normal cover of the Hoffman-Singleton graph or the Peterson graph.
- 2021, Zhou J.X.: No such normal covers, so $s \le 2$ sharply.

Problem

Studying connected **bipartite** s-arc-transitive solvable Cayley graphs, and determining the upper bound on s.

For convenience, one may assume $s \ge 3$ and $val \ge 3$.

Main Result

Theorem

Every connected s-arc-transitive solvable Cayley graph with $s \ge 3$ and $val \ge 3$ is a normal cover of one of the following graphs:

- **1** the complete bipartite graph $K_{n,n}$ with $n \geq 3$;
- 2 the geometry incidence graph $\mathcal{GI}(5,2,2)$;
- the standard double cover of the Hoffman-Singleton graph;
- **4** a graph Σ with valency $p^f + 1$ such that $\mathrm{PSL}_3(p^f).2 \leq \mathrm{Aut}\Sigma \leq \mathrm{Aut}(\mathrm{PSL}_3(p^f))$ and $\mathbb{Z}_p^{2f}: \mathrm{SL}_2(p^f) \triangleleft (\mathrm{Aut}\Sigma)_{\alpha}$, where $p^f \geq 3$ is a prime power and α is a vertex.

In particular, the sharp upper bound on s is 4.

These normal covers are being investigated in a sequel. (usually challenge)

Examples

- (1) $\mathbf{K}_{n,n}$ with $n \geq 3$
 - 3-transitive
 - $\mathbf{K}_{n,n} \cong \operatorname{Cay}(G, G \backslash H)$ where G is solvable and H < G of index 2
- (2) GI(5,2,2)
 - the incidence graph of $(\mathcal{P}, \mathcal{L})$ where $\mathcal{P}(\text{resp. } \mathcal{L})$ is the set of 2-subspace(resp. 3-subspace) of \mathbb{F}_2^5
 - $\operatorname{Aut}(\mathcal{GI}(5,2,2)) = \operatorname{GL}_5(2).\langle \sigma \rangle$ is vertex-transitive
 - $G_{\alpha} = 2^6 : (GL_2(2) \times GL_3(2)), \ G_{\alpha\beta} = 2^8 : (S_3 \times S_3), \ val = \frac{|G_{\alpha}|}{|G_{\alpha\beta}|} = 7$
 - 3-transitive^{1,Theorem 3.4}
 - $G = RG_{\alpha}$ with $R \cong 31:5:2$ vertex-regular^{2, Theorem 1.1}

¹Cai Heng Li, Zai Ping Lu, and Gaixia Wang. "Arc-transitive graphs of square-free order and small valency". In: *Discrete Mathematics* 339.12 (2016), pp. 2907–2918.

²Cai Heng Li and Binzhou Xia. *Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups.* Vol. 279. 1375. Mem. AMS, 2022.

Examples

- (3) $HS_{50}^{(2)}$
 - standard double cover: $\Gamma^{(2)} = (\tilde{V}, \tilde{E})$ of $\Gamma = (V, E)$, where $\tilde{V} = V \times \{1, 2\}$, $\tilde{E} = \{\{(v, 1), (w, 2)\} \mid \{v, w\} \in E\}$

Examples

- (4) $\mathcal{PH}(3,q)$
 - the incidence graph of $PG(2, q) = (\mathcal{P}, \mathcal{L})$, where $\mathcal{P}(\text{resp. } \mathcal{L})$ is the set of 1-subspace(resp. 2-subspace) of \mathbb{F}_q^3
 - $\operatorname{Aut}(\mathcal{PH}(3,q)) = \operatorname{P}\Gamma \operatorname{L}_3(q).\langle \sigma \rangle = \operatorname{Aut}(\operatorname{PSL}_3(q))$
 - $(\alpha_0, \dots, \alpha_4)$ with $\alpha_0 \in \mathcal{P}$ corresponds to a basis v_1, v_2, v_3 such that

$$\alpha_0 = \langle v_1 \rangle, \alpha_1 = \langle v_1, v_2 \rangle, \alpha_3 = \langle v_2 \rangle, \alpha_4 = \langle v_2, v_3 \rangle, \alpha_5 = \langle v_3 \rangle$$

all ordered bases are equiv. under linear transformation \implies 4-arc-transitive

• a Cayley graph of $D_{2(q^2+q+1)}$ ³

- Preliminaries & Background
- Main Result & Examples
- Proof of the Main result
 - Overview of the proof
 - Reduct to almost simple groups
 - As case

- Preliminaries & Background
- Main Result & Examples
- Proof of the Main result
 - Overview of the proof
 - Reduct to almost simple groups
 - As case

- Preliminaries & Background
- Main Result & Examples
- Proof of the Main result
 - Overview of the proof
 - Reduct to almost simple groups
 - As case

References

- Li, Cai Heng, Zai Ping Lu, and Gaixia Wang. "Arc-transitive graphs of square-free order and small valency". In: *Discrete Mathematics* 339.12 (2016), pp. 2907–2918.
- Li, Cai Heng and Binzhou Xia. Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups. Vol. 279. 1375. Mem. AMS, 2022.
- Marui, Dragan. "On 2-arc-transitivity of Cayley graphs". In: *Journal of Combinatorial Theory, Series B* 87.1 (2003), pp. 162–196.