Imbalance data and how to handle it

Data science, Machine learning & AI knowledge sharing #1

Speaker: Peerapat.t, Data analyst at Kasikorn asset management (KAsset)

Level: Advance

Agenda

- 1. What is imbalance data
- 2. Example scenario
- 3. Problems of imbalance data
- 4. How to handle imbalance data***
- 5. Show case

- 6. Further reading
- 7. Appendix

What is Imbalance data

 Imbalanced data refers to a situation in a dataset where the classes are not represented equally.

Characteristics

- Majority Class: The class with the most instances.
- Minority Class: The class with fewer instances.

Example Scenario

- Fraud Detection in Credit Card Transactions
- Spam Detection in Emails
- Detection of Rare Diseases
- Churn prediction model
- Propensity-to-buy model

Problems of imbalance data

- Poor Model Performance
- Bias in Performance Metrics

Example Scenario:

Fraud Detection Consider a dataset for credit card transactions with the following distribution: Legitimate transactions (Majority class): 98,000 instances Fraudulent transactions (Minority class): 2,000 instances Total transactions: 100,000 instances

If model predict only majority class: model's accuracy = 98%

- Resampling technique* (prepare)
- Evaluation metrics adjustment* (evaluate)
- Algorithm-level method (train)
- Hybrid methods**

1. Resampling technique

- Under sampling
 - Random under sampling
- Over sampling
 - SMOTE
 - Borderline-SMOTE
 - ANASYN

Undersampling

Oversampling

Random under sampling

SMOTE (Synthetic Minority Over-sampling Technique)

Borderline-SMOTE

ADASYN

- 2. Algorithm-level method
 - Cost-sensitive learning (adjust class weight)
- 3. Evaluation metrics adjustment
 - Accuracy
 - Precision and Recall
 - F-beta
 - ROC-AUC
 - PR-AUC

Precision and recall

How many relevant items are selected?

 $Precision = rac{TP}{TP + FP}$

$$Recall = rac{TP}{TP + FN}$$

F-beta

$$F_{eta} = rac{1 + eta^2}{rac{eta^2}{Recall} + rac{1}{Precision}}$$

ROC-AUC and **PR-AUC**

- 3. Hybrid method
 - Combining several techniques
 - No free lunch theorem**

Show case

- 1. Telco churn prediction
- 2. Bitcoin false signal trading system detection

Further reading

- 1. Multi-class imbalance data
- 2. Performance metrics
- 3. Imbalance in regression
- 4. Over under sampling

© 2019 MachineLearningMastery.com All Rights Reserved

Appendix

The 5 Most Useful Techniques to Handle Imbalanced Datasets – Kdnuggets

Resampling strategies for imbalanced datasets (kaggle.com)

Four Oversampling and Under-Sampling Methods for Imbalanced Classification Using Python | by Amy @GrabNGoInfo | GrabNGoInfo | Medium

SMOTE: Synthetic Data Augmentation for Tabular Data | by Fernando López | Towards Data Science

<u>Tour of Evaluation Metrics for Imbalanced Classification - MachineLearningMastery.com</u>

<u>Is F1 the appropriate criterion to use? What about F2, F3,..., F beta? | by Dr Barak Or | Towards Data Science</u>

How to Deal With Imbalanced Classification and Regression Data (neptune.ai)