A CASE FOR REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAID)

D. A. Patterson, G. A. Gibson, R. H. Katz University of California, Berkeley

Highlights

- The six RAID organizations
- Why RAID 1, 3, 5 and 6 are the most interesting
- The small write problem occurring with RAID 5 and 6

WARNING: Skip the reliability and availability analyses: they are **not correct**

Original Motivation

- Replacing large and expensive mainframe hard drives (IBM 3310) by several cheaper Winchester disk drives
- Will work but introduce a data reliability problem:
 - Assume MTTF of a disk drive is 30,000 hours
 - MTTF for a set of n drives is 30,000/n
 - n = 10 means MTTF of 3,000 hours

Today's Motivation

- "Cheap" SCSI hard drives are now big enough for most applications
- We use RAID today for
 - Increasing disk throughput by allowing parallel access
 - Eliminating the need to make disk backups
 - Disks are too big to be backed up in an efficient fashion

RAID LEVEL 0

- No replication
- Advantages:
 - Simple to implement
 - No overhead
- Disadvantage:
 - If array has n disks failure rate is n times the failure rate of a single disk

RAID levels 0 and 1

RAID LEVEL 1

- Mirroring
 - Two copies of each disk block
- Advantages:
 - Simple to implement
 - Fault-tolerant
- Disadvantage:
 - Requires twice the disk capacity of normal file systems

RAID LEVEL 2

- Instead of duplicating the data blocks we use an error correction code
- Very bad idea because disk drives either work correctly or do not work at all
 - Only possible errors are omission errors
 - We need an omission correction code
 - A parity bit is enough to correct a single omission

RAID levels 2 and 3

RAID level 2

Check disks

RAID level 3

Parity disk

RAID LEVEL 3

- Requires N+1 disk drives
 - N drives contain data (1/N of each data block)
 - Block b[k] now partitioned into N fragments b[k,1], b[k,2], ... b[k,N]
 - Parity drive contains exclusive or of these N fragments

$$p[k] = b[k,1] \oplus b[k,2] \oplus ... \oplus b[k,N]$$

How parity works?

Truth table for XOR (same as parity)

Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Recovering from a disk failure

 Small RAID level 3 array with data disks D0 and D1 and parity disk P can tolerate failure of either D0 or D1

D0	D1	Р
0	0	0
0	1	1
1	0	1
1	1	0

D1⊕P=D0	D0⊕P=D1
0	0
0	1
1	0
1	1

How RAID level 3 works (I)

- Assume we have N + 1 disks
- Each block is partitioned into N equal chunks

N = 4 in example

How RAID level 3 works (II)

XOR data chunks to compute the parity chunk

Each chunk is written into a separate disk

How RAID level 3 works (III)

- Each read/write involves all disks in RAID array
 - Cannot do two or more reads/writes in parallel
 - Performance of array not better than that of a single disk

RAID LEVEL 4 (I)

- Requires N+1 disk drives
 - N drives contain data
 - Individual blocks, not chunks
 - Blocks with same disk address form a stripe

RAID LEVEL 4 (II)

 Parity drive contains exclusive or of the *N* blocks in stripe

$$p[k] = b[k] \oplus b[k+1] \oplus ... \oplus b[k+N-1]$$

- Parity block now reflects contents of several blocks!
- Can now do parallel reads/writes

RAID levels 4 and 5

RAID LEVEL 5

- Single parity drive of RAID level 4 is involved in every write
 - Will limit parallelism
- RAID-5 distribute the parity blocks among the N+1 drives
 - Much better

The small write problem

- Specific to RAID 5
- Happens when we want to update a single block
 - Block belongs to a stripe
 - How can we compute the new value of the parity block

b[k] b[k+1] b[k+2] ...

First solution

- Read values of N-1 other blocks in stripe
- Recompute

$$p[k] = b[k] \oplus b[k+1] \oplus ... \oplus b[k+N-1]$$

- Solution requires
 - N-1 reads
 - 2 writes (new block and new parity block)

Second solution

- Assume we want to update block b[m]
- Read old values of b[m] and parity block p[k]
- Compute

```
p[k] = new b[m] \oplus old b[m] \oplus old p[k]
```

- Solution requires
 - 2 reads (old values of block and parity block)
 - 2 writes (new block and new parity block)

Other RAID organizations (I)

• **RAID 6**:

- Two check disks
- Tolerates two disk failures
- More complex updates

Other RAID organizations (II)

RAID 10:

- Also known as RAID 1 + 0
- Data are striped (as in RAID 0 or RAID 5) over pairs of mirrored disks (RAID 1)

RAID 0

What about flash drives?

- Having no moving parts should mean fewer failures?
 - Failures still happen
 - Flash drives age as they are written to
 - Irrecoverable red errors occur (at least as frequently as in magnetic disks?)
- Pure Storage uses a proprietary 3D-RAID organization for their SSD stores

CONCLUSION (I)

- RAID original purpose was to take advantage of Winchester drives that were smaller and cheaper than conventional disk drives
 - Replace a single drive by an array of smaller drives
- Current purpose is to build fault-tolerant file systems that do not need backups

CONCLUSION (II)

- Low cost of disk drives made RAID level 1 attractive for small installations
- Otherwise pick
 - RAID level 6 for higher protection
 - Can tolerate one disk failure and irrecoverable read errors

A review question

- Consider an array consisting of four 750 GB disks
- What is the storage capacity of the array if we organize it
 - As a RAID level 0 array?
 - As a RAID level 1 array?
 - As a RAID level 5 array?

The answers

- Consider an array consisting of four 750 GB disks
- What is the storage capacity of the array if we organize it
 - As a RAID level 0 array?3 TB
 - As a RAID level 1 array?1.5 TB
 - As a RAID level 5 array?2.25 TB