Patrik Loff Peres, Rubem José Nobre Bezerra Junior, Luiz Gabriel Gonzaga Departamento de Engenharia Elétrica e Eletrônica Centro Tecnológico

Referências de Tensão

Certos tipos de sistemas eletrônicos exigem fontes de tensão com baixa variabilidade, como:

- Conversores D/A e A/D;
- Circuitos analógicos cuja figura de mérito tem dependência forte com a polarização;
- Conversores de potência.

Em circuitos integrados, a principal causa de variabilidade dinâmica é a temperatura.

Variação Térmica

Em transistores bipolares ligados como diodo, a variação da tensão térmica e da corrente de saturação implica em uma variação linear de VBE com a temperatura, para corrente constante.

Um valor típico para correntes na ordem do uA é de -2 mV/K.

Fonte: Material da disciplina.

Referência de Tensão Bandgap

$$\Delta V_{BE} = V_{BE1} - V_{BE2} = V_{TH} \cdot \ln \frac{J_{C1}}{J_{C2}} = V_{TH} \cdot \ln \left(\frac{I_{C1} \cdot I_{S2}}{I_{S1} \cdot I_{C2}} \right) = V_{TH} \cdot \ln(n)$$

Figure 2.2: Generation of V_{TH} using two BJT's with different areas

Fonte: Colombo, 2009.

Utiliza-se a variação linear da tensão do transistor bipolar conectado como diodo, e a variação do coeficiente com as dimensões do dispositivo.

A diferença entre duas funções lineares com coeficientes negativos diferentes pode ter coeficiente positivo.

Circuitos bandgap consistem em somar tensões com coeficientes opostos de forma a obter menores variações.

Referência de Tensão Bandgap

Figure 3.9: BGR2 using error-amplifier-base current mirror

Fonte: Colombo, 2009.

Este circuito de malha fechada controla a corrente de polarização de forma que \underline{Va} e \underline{Vb} são aproximadamente iguais. Isto impõe que a tensão ΔVbe (coeficiente positivo) se aplica diretamente sobre R1, obtendo I = $\Delta Vbe/R1$.

A corrente I é espelhada em R2, e a soma das tensões Vbe2 e I*R2 é uma soma entre sinais com coeficientes opostos.

$$V_{REF} = V_{BE2} + \left(\frac{R_2}{R_1}\right) \cdot \ln(n) \cdot V_T$$

$$\alpha 1 = \left(\frac{R2}{R1}\right) \cdot \ln(n)$$

Estabilidade

Figure 3.9: BGR2 using error-amplifier-base current mirror

Fonte: Colombo, 2009.

O circuito tem dois pontos de operação: todos Vc = Vdd e Va=Vb=0.

Porém, a malha de controle tende a aumentar a corrente com qualquer aumento na tensão Vb, o que ocorre devido a correntes parasíticas em M2.

Mas esta relação é fraca quando Vdd-Vc < Vth, então o circuito sai lentamente da condição desligada para a condição ligada.

Variação do Coeficiente de VBE

$$V_{BE} = V_{G0} + V_{TH} \cdot \ln\left(\frac{D}{C}\right) - \left[\left(4 - N\right) - x\right] \cdot V_{TH} \cdot \ln T$$
 (2.12)

$$V_{BE} = a_0 + a_1 T + a_2 T^2 + \dots + a_n T^n$$
 (2.13)

Fonte: Colombo, 2009.

Em grandes variações de temperatura, os termos de ordem maior da expansão em série de Taylor devem ser considerados. Os termos C, N e x não dependem da temperatura, e D depende da corrente.

D impõe uma segunda derivada (a2) negativa, já que a corrente tem dependência positiva com a temperatura no circuito em questão.

Esquemático

Leiaute

Dispositivo	Dimensão (W/I)	Multi	Unidade	
M2,M3	2/1	2	μm	
M6-M7, M10-M11	1/2	4-2	μm	
M1,M0	2/2	2	μm	
R1	3.3	-	kΩ	
R2	29.5	-	kΩ	
R3	29.5	-	kΩ	
Q1	A10	1	-	
Q0	A10	8		
Total	6307	-	μm²	

UFSC UNIVERSIDADE FEDERA
DE SANTA CATARINA

Simulações - ampop - ganho

Simulações - ampop - offset

Simulações - bandgap

Simulações - bandgap

Simulações - bandgap - Vref @27°C

Simulações - bandgap - \Delta Vref

Simulações - bandgap - transiente

- step 1µ

Simulações - bandgap - transiente

- step 1n

Simulações - bandgap - transiente

- step 1n

Resultados

Parâmetros		Nosso	Artigo
VDD	-	2,5 V	1,8 V
V_ref @27°C	nominal	1,220 V	1,166 V
	média	1,221 V	1,169 V
	desvio padrão	39,16 mV	11,25 mV
ΔV_ref	nominal	2,43 mV (11,06 ppm/°C)	3,12 mV (24 ppm/°C)
	média	2,968 mV	4,842 mV
	desvio padrão	1,519 mV	2,575 mV
I_supply	-	40,94 µA	262 μΑ
Área	-	6307 μm²	9450 μm² *

UFSC UNIVERSIDADE FEDERAL
DE SANTA CATARINA

