思考题 4——quicksort

孟妍廷 2015202009

2017年10月17日

证明:

由于 partition 只要成功 O(lgn) 次即可达到目的 通过阅读文献,证明方法如下: 首先假设指示器变量 Xi

$$X_i = \begin{cases} 1 & \text{第 i } \uparrow \uparrow \uparrow \uparrow \downarrow \end{cases}$$
 第 i 个元素参与了超过 32lnn 轮递归, 0 未超过.

则对于快排中进行比较的次数 T, 有

$$Pr[T > 32lnn] < \sum_{i=1}^{n} Pr[X_i] \qquad (*)$$

接下来求解 $Pr[X_i]$:

由教材可知:对于 partition, 只要是按常数比例对数组进行划分, 递归都在 O(lgn) 处终止 故认为若 partition 中一轮递归按常数比例划分数组,则这轮递归成功.对于数组中任一元素,假设

$$Y_j = \begin{cases} 1 & \text{第 j 轮递归成功,} \\ 0 & \text{不成功.} \end{cases}$$

其中 $Pr[Y_j=0]=Pr[Y_j=1]=\frac{1}{2}$,且 Y_j 相互独立 当递归成功时,数组中每个元素参与的次数 $\rho=log_cn<4lnn$

其中 c 为小于 2 的常数

由 Chernoff 不等式可知,递归成功的次数 $S \leq \frac{M}{4}$ 的概率 P 不超过 $e^{\frac{-M}{8}}$

田 Chernoff 不等式可知,递归成功的次数 $S \leq \frac{\pi}{4}$ 的概率 P 不超过 e^{-8} 取 $M = 32lnn > 8\rho$, 故 $P < e^{-\rho} \leq \frac{1}{n^2}$ 即递归成功的次数 $S \leq 8\rho$ 的概率小于 $\frac{1}{n^2}$ 由于当递归成功的次数 $S > 8\rho > lgn$ 时,任一元素参与递归的次数 $\rho < 4lnn < 32lnn$ 所以 $Pr[X_i] = Pr[S \leq 8\rho] \leq \frac{1}{n^2}$ 故 $(*) < n \times \frac{1}{n^2} = \frac{1}{n}$ 因此 $Pr[T < nlgn] = 1 - O(\frac{1}{n})$ 故以 $1 - O(\frac{1}{n})$ 的概率,也连排序的时间复杂度为 O(nlgn)

故以 $1 - O(\frac{1}{n})$ 的概率, 快速排序的时间复杂度为 O(nlgn)