Benefits and risks associated with children's and adolescents' interactions with electronic screens: An umbrella review 2 Taren Sanders¹, Michael Noetel², Philip Parker¹, Boria Del Pozo Cruz³, Stuart Biddle⁴, Rimante Ronto⁵, Ryan Hulteen⁶, Rhiannon Parker⁷, George Thomas⁸, Katrien De Cocker⁵, Jo Salmon⁹, Kylie Hesketh⁹, Nicole Weeks¹, Hugh Arnott¹, Emma Devine¹⁰, Roberta 5 Vasconcellos¹, & Chris Lonsdale¹ 6 ¹ Institute for Positive Psychology and Education, Australian Catholic University ² School of Health and Behavioural Sciences, Australian Catholic University Department of Sport Science and Clinical Biomechanics, University of Southern Denmark ⁴ School of Psychology and Counselling, University of Southern Queensland 10 ⁵ Department of Health Systems and Populations, Faculty of Medicine, Health and Human 11 Sciences, Macquarie University 12 ⁶ School of Kinesiology, Louisiana State University 13 ⁷ School of Medicine and Health, Sydney University 14 ⁸ Faculty of Health Sciences, Curtin University 15 ⁹ Institute for Physical Activity and Nutrition, Deakin University 16

¹⁰ The Matilda Centre for Research in Mental Health and Substance Use, University of

Sydney

17

18

Author Note

20 Add author notes here

- The authors made the following contributions. Taren Sanders: Conceptualization,
- Data curation, Writing Original Draft; Michael Noetel: Conceptualization, Writing -
- Original Draft; Philip Parker: Conceptualization, Writing Original Draft; Borja Del Pozo
- ²⁴ Cruz: Writing Review & Editing; Stuart Biddle: Writing Review & Editing; Rimante
- 25 Ronto: Writing Review & Editing; Ryan Hulteen: Writing Review & Editing; Rhiannon
- Parker: Writing Review & Editing; George Thomas: Writing Review & Editing; Katrien
- ²⁷ De Cocker: Writing Review & Editing; Jo Salmon: Writing Review & Editing; Kylie
- ²⁸ Hesketh: Writing Review & Editing; Nicole Weeks: Writing Review & Editing; Hugh
- ²⁹ Arnott: Writing Review & Editing; Emma Devine: Writing Review & Editing; Roberta
- Vasconcellos: Writing Review & Editing; Chris Lonsdale: Writing Original Draft, Project
- 31 Administration.
- 32 Correspondence concerning this article should be addressed to Taren Sanders, 33 Berry
- 33 St, North Sydney, NSW, Australia. E-mail: Taren.Sanders@acu.edu.au

34 Abstract

Add abstract here

36 Keywords: keywords

Word count: X

Benefits and risks associated with children's and adolescents' interactions with electronic screens: An umbrella review

40 Summary

Children's engagement in screen time is a complex issue. Parents, policymakers, and 41 educators needing to weigh the risks that sedentary use of screens present alongside the 42 potential benefits for learning and social connectedness. Hampering efforts to make an 43 informed decision is the lack of comprehensive evidence. As a Lancet editorial suggested. "Our understanding of the benefits, harms, and risks of our rapidly changing digital landscape is sorely lacking." In this study, we systematically harmonize data from existing meta-analyses of screen time on a range of outcomes, including health, education, and psychology, and identify the most statistically robust relationships. We show that some forms of screen time—such as social media—show consistent evidence of harm for children, with no clear evidence of a benefit. Other relationships are more complex. Video games, for example, are associated with poorer body composition and learning outcomes. However, video games for a specific educational purpose (such as numeracy) are associated with improvements in that subject area. Caregivers must therefore weigh the health risk against the educational benefit. The findings of this study provide parents and other caregivers with the information to make these informed decisions.

56

Background

In the 16th century, hysteria reigned around a new technology that threatened to be

"confusing and harmful" to the mind. The cause of such concern? The widespread

availability of books brought about by the invention of the printing press. In the early 19th

century, concerns about schooling "exhausting the children's brains" followed, with the

medical community accepting that excessive study could be a cause of madness. By the

20th century, the invention of the radio was accompanied by assertions that it would distract

children from their reading (which by this point was no longer considered confusing and

harmful) leading to impaired learning.

Today, the same arguments that were once leveled against reading, schooling, and radio are being made about screen use (e.g., television, mobile phones, and computers).⁵ Excessive screen time use is the number one concern parents have about their children's health and behaviour, ahead of nutrition, bullying, and physical inactivity.⁶ Yet, the evidence to support parents' concerns is inadequate. A Lancet editorial suggested that, "Our understanding of the benefits, harms, and risks of our rapidly changing digital landscape is sorely lacking."

While some forms of screen use (e.g., television viewing) may be detrimental to health and wellbeing, ^{7,8} evidence for other forms of screen exposure (e.g., video games or online communication, such as ZoomTM) remains less certain and, in some cases, may even be beneficial. ^{9,10} Thus, according to a Nature Human Behaviour editorial, research to determine the effect of screen exposure on youth is "a defining question of our age". ¹¹ With concerns over the impact of screen use including education, health, social development, and psychological well-being, a broad overview that identifies potential benefits and risks is needed.

Citing the negative effects of screens on health (e.g., increased risk of obesity) and
health-related behaviours (e.g., sleep), guidelines from the World Health Organisation¹² and

numerous government agencies^{13,14} and statements by expert groups¹⁵ have recommended that young people's time spent using electronic media devices for entertainment purposes should be limited. For example, the Australian Government guidelines regarding sedentary 83 behaviour recommend that young children (under the age of two) should not spend any time watching screens. They also recommend that children aged 2-5 years should spend a maximum of one hour engaged in recreational sedentary screen use per day, while children aged 5-12 and adolescents should spend no more than two hours. In contrast, some recent evidence suggests that exposure to electronic entertainment media that exceeds these guidelines (e.g., 3-4 hours per day) may not have meaningful adverse effects on children's behaviour or mental health, and might, in fact, benefit their well-being, as long as this exposure does not reach extreme levels (e.g., 7 hours per day)¹⁶. Some research also 91 indicates that content (e.g., video games vs television programs) plays an important role in determining the potential benefit or harm of youths' exposure to screen-based media.¹⁷ Indeed, educational screen time is positively related to educational outcomes. ¹⁸ This evidence has led some researchers to argue that a more nuanced approach to screen time guidelines is required. 19

In 2016, the American Academy of Pediatrics used a narrative review to examine the
benefits and risks of children and adolescents' electronic media²⁰ as a basis for updating their
guidelines about screen use.¹⁵ Since then, a large number of systematic reviews and
meta-analyses have provided evidence about the potential benefits and risks of screen use.
Yet, no review has synthesised the evidence available across a broad range of outcome
domains, such as physical health, education, physical and cognitive development, behaviour,
and well-being.

In order to synthesise the evidence and support further evidence-based guideline
development and refinement, we reviewed published meta-analyses examining the effects of
screen use on children and youth. This review synthesises evidence on any plausible outcome

of electronic media exposure. Adopting this broad approach allowed us to provide a holistic perspective on the influence of screens on children's lives. By synthesising across life domains (e.g., school and home), this review provides evidence to inform guidelines and advice for parents, teachers, pediatricians and other professionals in order to maximise human functioning.

112 Methods

113

114

115

116

117

133

Eligibility criteria. Population: To be eligible for inclusion, meta-analyses needed to include meta-analytic effect sizes for children or adolescents (age 0-18 years). We included meta-analyses containing studies that combined data from adults and youth if meta-analytic effect size estimates specific to participants aged 18 years or less could be extracted (i.e., the highest individual study from the meta-analysis had a mean age was < 18 years). We excluded meta-analyses that only contained evidence gathered from adults (age >18 years).

Exposure: We included meta-analyses examining all types of electronic screens 119 including (but not necessarily limited to) television, gaming consoles, computers, tablets, 120 and mobile phones. We also included analyses of all types of content on these devices, 121 including (but not necessarily limited to) recreational content (e.g., television programs, 122 movies, games), homework, and communication (e.g., video chat). In this review we adopted 123 a population-level perspective, meaning that we examined electronic media exposure that 124 occurs during typical daily living activities (e.g., home, school-based electronic media 125 exposure). Consistent with this population-level approach, we excluded technology-based 126 treatments for clinical conditions. However, we included studies examining the effect of 127 screen exposure on non-clinical outcomes (e.g., learning) for children and youth with a 128 clinical condition. For example, a meta-analysis of the effect of television watching on 129 learning among adolescents diagnosed with depression would be included. However, a 130 meta-analysis of interventions designed to treat clinical depression delivered by a mobile 131 phone app would be excluded.

Outcomes: We included all reported outcomes.

Publications: We included meta-analyses (or meta-regressions) of quantitative evidence.

To be included, meta-analyses needed to analyse data from studies identified in a systematic review. For our purposes, a systematic review was one in which the authors attempted to

acquire all the research evidence that pertained to their research question(s). We excluded 137 meta-analyses that did not attempt to summarise all the available evidence (e.g., a 138 meta-analysis of all studies from one laboratory). We included meta-analyses regardless of 139 the study designs included in the review (e.g., laboratory-based experimental studies, 140 randomised controlled trials, non-randomised controlled trials, longitudinal, cross-sectional, 141 case studies), as long as the studies in the review collected quantitative evidence. We 142 excluded systematic reviews of qualitative evidence. We did not formulate 143 inclusion/exclusion criteria related to the risk of bias of the review. We did, however, employ a risk of bias tool to help interpret the results. We included full-text, peer-reviewed 145 meta-analyses published or 'in-press' in English. We excluded conference abstracts and 146 meta-analyses that were unpublished.

Information sources. We searched records contained in the following databases:

Pubmed, MEDLINE, CINAHL, PsycINFO, SPORTDiscus, Education Source, Embase,

Cochrane Library, Scopus, Web of Science, ProQuest Social Science Premium Collection, and

ERIC. We conducted an initial search on August 17, 2018 and refreshed the search on May

13, 2020. We searched reference lists of included papers in order to identify additional

eligible meta-analyses. We also searched PROSPERO to identify relevant protocols and

contacted authors to determine if these reviews have been completed and published.

Search strategy. The search strategy associated with each of the 12 databases can
be found here. We hand searched reference lists from any relevant umbrella reviews to
identify systematic meta-analyses that our search may have missed.

Selection process. Using Covidence software (Veritas Health Innovation,
Melbourne, Australia), two researchers independently screened all titles and abstracts. Two
researchers then independently reviewed full-text articles. We resolved disagreements at each
stage of the process by consensus, with a third researcher employed, when needed.

Data collection process. From each included meta-analysis, two researchers independently extracted data into a custom-designed database.

177

Data items. From each meta-analysis we extracted the following items: First author, 164 year of publication, study design restrictions (e.g., cross-sectional, observational, 165 experimental), region restrictions (e.g., specific countries), earliest and latest study 166 publication dates, sample age (mean), lowest and highest mean age reported, outcomes 167 reported, and exposures reported. 168

Study risk of bias assessment. For each meta-analysis, two researchers 169 independently completed the National Health, Lung and Blood Institute's Quality 170 Assessment of Systematic Reviews and Meta-Analyses tool²¹ (see Table 1). We resolved 171 disagreements by consensus, with a third researcher employed when needed. We did not 172 assess risk of bias in the individual studies that were included in each meta-analysis. 173

Two researchers independently extracted all quantitative Effect measures. 174 meta-analytic effect sizes, including moderation results. Where possible, they also extracted 175 effect sizes from primary studies included in each meta-analysis. To facilitate comparisons, 176 we converted effect sizes to Pearson's r using established formulae. $^{22-24}$ We excluded relative risk ratios from this conversion because meta-analyses did not contain sufficient information 178 to meaningfully convert. Effect sizes on the original metric are provided in Supplementary 179 File 1. 180

Synthesis methods. After extracting data, we examined the combinations of 181 exposure and outcomes and removed any effects that appeared more than once, keeping the 182 effect with the largest total sample size. In instances where effect sizes from the same 183 combination of exposure and outcome were drawn from different populations (e.g., children 184 vs adolescents) we retained both estimates in our dataset. 185

We excluded effect size estimates when the authors did not provide a sample size. We 186 descriptively present the remaining meta-analytic effect sizes. To remove the differences in 187 approach to meta-analyses across the reviews, we reran the effect size estimate using a 188 random effects meta-analysis via the metafor package²⁵ in R²⁶ (version 4.1.3) when the 189 meta-analysis's authors provided primary study data associated with these effects. When 190

required, we imputed missing sample sizes using mean imputation from the other studies within that review. From our reanalysis we also extracted I^2 values. To test for publication bias, we conducted Egger's test²⁷ when the number of studies within the review was ten or more, and conducted a test of excess significance. We contacted authors who did not provide primary study data in their published article. Where authors did not provide data in a format that could be re-analysed, we used the published results of their original meta-analysis.

Evidence assessment criteria. Statistical Credibility. We employed a statistical classification approach to grade the credibility of the effect sizes in the literature. To be considered 'credible' an effect needed to be derived from a combined sample of >1,000³⁰ and have non-significant tests of publication bias (i.e., Egger's test and excess significance test). We performed these analyses, and therefore the review needed to provide usable study-level data in order to be included.

Consistency of Effect within the Population. We also examined the consistency of the effect size using the I^2 measure. We considered $I^2 < 50\%$ to indicate effects that were relatively consistent across the population of interest. I^2 values of > 50% were taken to indicate an effect was potentially heterogeneous within the population.

Direction of Effect. Finally, we examined the extent to which significance testing suggested screen exposure was associated with benefit, harm, or no effect on outcomes. We used thresholds of P < .05 for weak evidence and $P < 10^{-3}$ for strong evidence. An effect that was neither significant at P < .05 or 10^{-3} that also passed the criteria for statistical credibility was taken to indicate no association of interest.

Deviations from protocol. We initially planned to include systematic reviews
without meta-analyses in a narrative summary alongside the main meta-analytic findings.
However, we determined that combining results from the meta-analyses allowed readers to
compare relative strength of associations more easily. Readers interested in the relevant

systematic reviews (i.e., without meta-analysis) can consult the list of references in
 Supplementary File 2.

We altered our evidence assessment plan when we identified that, as written, it could not classify precise evidence of null effects (i.e., from large reviews with low heterogeneity and low risk of publication bias) as 'credible' because a highly-significant *P*-value was a criteria. This would have significantly harmed knowledge gained from our review as it would have restricted our ability to show where the empirical evidence strongly indicated that there was no association between screen time and a given outcome.

225 Results

Search Results. The searches yielded 41,928 results, of which 24,023 were
duplicates. After screening titles and abstracts, we assessed 1,964 full-texts for inclusion. Of
those, 116 met the inclusion criteria and we extracted the data from all of these
meta-analyses. Figure 1 presents the full results of the selection process.

The most frequently reported exposures were general TV programs and movies (n =230 26), physically active video games (n = 15), screen-based lifestyle risk behaviour interventions (at school) (n = 14), and general screen use (n = 13). Supplementary File 3 232 provides a list of all exposures identified. The most frequently reported outcomes were body 233 composition (n = 34), general physical activity (n = 15), general literacy (n = 13), general 234 learning (n = 12), and sleep duration (n = 9). In most cases (121/197), there was only one 235 exposure/outcome combination for an age group, with 20 appearing twice, and 8 appearing 236 three or more times. Full characteristics of the included studies are provided in Table 1. 237 After removing reviews with duplicate exposure/outcome combinations, our process yielded 238 165 unique effect/outcome combinations contributed from 50 reviews. These effects represent 239 the findings of 2,171 primary studies comprised of 1,652,944 participants. 240

Figure 1. PRISMA Diagram

Review characteristics for studies providing unique effects

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Abrami	2015	Include: Experimental; Quasi- experimental	None specified	2009 - 2015	Barly childhood; School-age Children (Primary/Elementary)	Literacy: Listening comprehension Literacy: Phonics Literacy: Phonomic awareness Literacy: Reading comprehension Literacy: Reading fluency Literacy: Vocabulary knowledge	Intervention: Literacy (Abracadabra; in schools)
Adelantado-Renau	2019	Include: Cross-sectional studies	None specified	1982 - 2019	Children; Adolescents	Learning: General Literacy: General Numeracy: General	Screen use: General TV programs and movies: General Video games: General
Aghasi	2020	Include: Observational	None specified	2007 - 2016	All	Body composition	Internet use: General
Andrade	2019	Include:	None specified	2010 - 2017	Children; Adolescents	Healthy behavior: Self-efficacy Psychological health: Depression Psychological health: Enjoyment Self-perceptions: General Self-perceptions: Self-esteem	Video games: Physically active
Bartel	2015	None	None specified	2004 - 2014	Adolescents	Sleep: Bedtime Sleep: Duration Sleep: Time to fall asleep	Computer use: General Internet use: General Screen use: General (mobile phone) TV programs and movies: General Video games: General

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Blok 2	2002	None	None specified	1990 - 2000	All	Literacy: Reading fluency	Intervention: Literacy
Bossen	2020	Include: Randomised controlled trials	None specified	2011 - 2018	Children	Body composition Cardiometabolic health: Fitness Physical activity: General Physical health: Muscular fitness	Video games: Health promoting content
Boyland	2016	Include: Experimental	None specified	2004 - 2015	Children; Adolescents	Diet: Food intake	Advertising: Unhealthy food
Byun	2018	Include: All quantitative designs	None specified	2006 - 2014	School-age Children	Numeracy: General	Video games: Numeracy
Carter	2016	Include: All quantitative designs	None specified	2011 - 2015	Children; Adolescents	Sleep: Inadequate duration Sleep: Lethargy Sleep: Poor quality	Screen use: General (mobile phone at bed time)
Champion	2019	Include: Randomised controlled trials	None specified	2003 - 2017	School-age Children	Body composition Diet: Fat consumption Diet: Fruit and vegetable intake Diet: Sugary drinks and snacks Physical activity: General Physical activity: Moderate-to-vigorous intensity Risky behavior: Alcohol consumption Risky behavior: Smoking Screen time: General	Intervention: Lifestyle risk behaviour (at school)

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Chan	2014	Include: Experimental; Quasi- experimental	None specified	2002 - 2012	School-age Children	Numeracy: General	Intervention: Dynamic geometry software
Cheung	2012	Include: Randomised controlled trials	None specified	1982 - 2010	School-age Children	Literacy: Reading	Intervention: Reading (in schools)
Cheung	2013	Include: Experimental; Quasi- experimental	None specified	1980 - 2010	School-age Children	Numeracy: General	Intervention: Mathematics (in schools)
Coyne	2018	None	None specified	1975 - 2017	Children; Adolescents	Prosocial Behavior: General	Screen use: Prosocial content
Cushing	2010	Include: All quantitative designs; Experimental	None specified	1989 - 2009	Children; Adolescents	Healthy behavior: General	Intervention: Health behaviours
Darling	2017	Include: Intervention	None specified	2006 - 2016	Children; Adolescents	Body composition Diet: Healthy dietary behaviour Physical activity: General	Intervention: To promote health (via mobile phone)
de Oliveira	2016	Include: Observational	None specified	2010 - 2014	Adolescents	Cardiometabolic health: Metabolic Syndrome	Screen use: General
Fang	2019	Include: Cohort; Case-control; Cross-sectional	None specified	2006 - 2019	Children; Adolescents	Body composition	Computer use: General Screen use: General TV programs and movies: General

Review characteristics for studies providing unique effects (continued)

First Author Ye	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Ferguson 20	2017	None	None specified	2005 - 2017	Children; Adolescents	Risky behavior: Sexual activity Risky behavior: Sexual activity (initiation of sex)	Screen use: Sexual content
Folkvord 20	2018	Include: Interventions	None specified	2007 - 2018	Children; Adolescents	Diet: Food intake (calories)	Advertising: Advergames
Gardella 20	2017	Include: Cross-sectional	Include: North America	2006 - 2014	Adolescents	Learning: Educational achievement problems Learning: School attendance problems	Internet use: Cyberbullying victimization
Ghobadi 20	2018	Include: Cohort; Case-control; Cross-sectional Exclude: Interventions	None specified	2009 - 2014	Children; Adolescents	Body composition	TV programs and movies: Mealtime
Graham 20	2015	Include: Experimental; Quasi- experimental	None specified	2004 - 2011	School-age Children (Primary/Elementary/Middle	Literacy: Writing	Intervention: Writing feedback
Hammersley 20	2016	Include: Randomised controlled trials	None specified	2003 - 2013	Children; Adolescents	Body composition	Intervention: To promote healthy weight (obesity prevention)
Hassan-Saleh 20	2019	Include: Experimental; Quasi- experimental	None specified	2008 - 2016	Children; Adolescents	Literacy: Pronunciation	Intervention: Pronunciation

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Hernandez-Jimenez	2019	Include: Experimental; Quasi- experimental	None specified	2009 - 2017	Children; Adolescents	Body composition	Video games: Physically active
Hurwitz	2018	None	Include: North America	1997 - 2018	Barly childhood/pre-school; School-age Children (Barly Primary/Elementary)	Literacy: General	Intervention: Literacy videos
Janssen	2020	Include: Experimental; Cross-sectional; Longitudial	None specified	2007 - 2019	Children	Sleep: Duration	Screen use: General
Kates	2018	None	None specified	2008 - 2016	School-age Children	Learning: General	Screen use: General (mobile phone)
Kroesbergen	2003	Include: Within subject design; between subject design	None specified	1985 - 1999	School-age Children (Primary/Elementary)	Numeracy: General	Intervention: Mathematics (via computer in classrooms)
Kucukalkan	2019	Include: Experimental	None specified	2007 - 2016	School-age Children (Primary/Elementary)	Numeracy: General	Intervention: Mathematics
Lanca	2020	Include: Cohort; Case-control; Cross-sectional; Intervention trials. Exclude: Case reports; Retrospective studies.	None specified	2007 - 2016	Children; Adolescents	Bye health: Myopia	Screen use: General

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design	Regions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
		restrictions	Nestrictions				
ធ	2010	Include: Experimental; Quasi-	None specified	1991 - 2005	School-age Children	Numeracy: General	Intervention: Mathematics
		experimental					
Liao	2008	Include: All quantitative designs	Include: Taiwan	1990 - 2003	School-age Children (Primary/Elementary)	Learning; General	Intervention: Education (via computer)
Liao	2014	Include: Randomised controlled trials	None specified	1999 - 2012	Children; Adolescents	Body composition	Intervention: Screentime reduction
Liu	2016	Include: Cross-sectional; Case-control; Longitudinal	None specified	2001 - 2014	АШ	Psychological health: Depression	Screen use: General
Liu	2019	Include: All quantitative designs	None specified	2007 - 2014	All	Psychological health: Anxiety Psychological health: Depression Psychological health: Satisfaction	Social Media: Instant messaging Video games: General

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Madigan	2020	Include: Observational Exclude: Qualitative	None specified	1973 - 2019	Ohildren	Literacy: General	(general) Screen use: General Screen use: General (coviewing) TV programs and movies: Coviewing TV programs and movies: Educational TV programs and movies: General TV programs and movies: General TV programs and movies:
Mares	2005	None	None specified	1969 - 1989	Children	Aggression: Towards peers Cognition: Reducing stereotypes Prosocial Behavior: Altruism Social interactions: General	TV programs and movies: General
Mares	2013	Exclude: Experimental	Exclude: North America	1973 - 2010	Ohildren	Cognition: Moral reasoning and perception of out-groups Learning: General Learning: Literacy and numeracy Learning: Physical and social environment	Intervention: Sesame Street
Marshall	2004	None	None specified	1985 - 2002	Children; Adolescents	Body composition Physical activity: General	TV programs and movies: General Video games: General

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Martins	2019	Include: All quantitative designs	None specified	2003 - 2018	All	Aggression: Towards peers	Screen use: General
McArthur	2012	Include: Randomised controlled trials and quasi-RCTs.	None specified	1994 - 2009	A11	Literacy: Phonics	Intervention: Literacy (phonics; via computer)
McArthur	2018	Include: Randomised controlled trials and quasi-RCTs.	Include: English speaking countries	1994 - 2015	Children; Adolescents	Literacy: General	Intervention: Literacy
Oldrati	2020	Include: Group-control experimental design	None specified	2006 - 2018	School-age Children	Cognition: Cognitive Functioning Cognition: Executive Functioning Cognition: Verbal skills Cognition: Visuospatial skills Numeracy: General Psychological health: Adjustment	Intervention: Cognitive training
Paik	1994	None	None specified	NA - NA	Children; Adolescents	Antisocial Behaviour: General	TV programs and movies: Violent content
Pearce	2016	Include: All quantitative designs	None specified	1986 - 2012	Children; Adolescents	Psychological health: Internalizing	TV programs and movies: Scary content

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Peng	2011	None	None specified	2001 - 2010	Children; Adolescents	Cardiometabolic health: Maximum oxygen consumption Physical activity: Energy expenditure Physical activity: Heart rate	Video games: Physically active
Poorolajal	2020	Include: Observational	None specified	1995 - 2018	Children; Adolescents	Body composition	TV programs and movies: General Video games: General
Prescott	2018	Include: Longitudinal	None specified	2008 - 2017	АШ	Aggression: Towards peers	Video games: Violent content
Rodriguez-Rocha	2019	Include: Experimental; Quasi- experimental	None specified	1999 - 2018	УΠ	Diet: Fruit and vegetable intake	Intervention: Fruit and vegetable
Sadeghirad	2016	Include: Randomised controlled trials	None specified	1978 - 2014	Children; Adolescents	Diet: Unhealthy food choice	Advertising: Unhealthy food
Schroeder	2013	Include: Experimental; Quasi- experimental	None specified	2001 - 2009	All	Learning: General	Intervention: With digital characters
Scionti	2019	Include: Interventions	None specifed	2009 - 2019	Children	Cognition: Executive functioning	Intervention: Cognitive training

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Shin	2019	Include: Interventions	None specified	2013 - 2018	Children; Adolescents	Body composition Diet: Sugary drinks Physical activity: General Screen time: General	Intervention: To promote health (via mobile phone app) Intervention: To promote health (via mobile phone) Intervention: To promote health (via text message)
Slavin	2014	Include: Randomised controlled trials; Quasi- experimental; Observational	None specified	2000 - 2011	School-age Children (Primary/Elementary)	Science: General	Intervention: Science (in schools)
Takacs	2014	Include: Experimental; Quasi- experimental	None specified	1980 - 2014	NA	Learning: General	e-Books: Narration
Takacs	2019	Include: Randomised controlled trials and quasi-RCTs.	None specified	2001 - 2016	Ohildren	Cognition: Executive Functioning (accuracy) Cognition: Executive Functioning (cognitive flexibility) Cognition: Executive Functioning (inhibition) Cognition: Executive Functioning (working memory)	Intervention: Education (via computer)
Tekedere	2016	None	None specified	2010 - 2015	All	Learning: General	Intervention: Augmented reality (in schools)

Review characteristics for studies providing unique effects (continued)

First Author	Year	Design Restrictions	Regions Restrictions	Study Range	Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
Vahedi	2018	Include: Interventions (pre-post or controlled). Exclude: Cross-sectional	None specified	2015 - 2016	School-age Children (Middle/High School)	Risky behavior: Media literacy Risky behavior: Risk taking (attitude)	Intervention: Media literacy (web-based)
Vannucci	2020	Exclude: Qualitative; Case studies	None specified	2011 - 2018	Adolescents	Risky behavior: Risk taking (general) Risky behavior: Risky sexual behaviour Risky behavior: Substance abuse	Social Media: General
Xie	2018	Include: Experimental; Quasi- experimental; Pre-test post-test	None specified	2010 - 2018	Children	Learning: General	Intervention: Education (via touch screen)
Zhang	2016	Include: Cohort; Case-control; Cross-sectional	None specified	2001 - 2014	Children	Body composition	TV programs and movies: General
Zhou	2020	Exclude: Non-empirical studies; Qualitative; Systematic reviews or meta-analyses	None specified	2009 - 2018	All	Healthy behavior: General Healthy behavior: Self-efficacy Psychological health: Enjoyment	Video games: Health promoting content

Review characteristics for studies providing unique effects (continued)

First Author	Year	Year Design	Regions	Study Range	Study Range Sample Age Restrictions	Outcomes Assessed	Exposures Assessed
		Restrictions	Restrictions				
Zucker	2009	Include:	None specified	1997 - 2006	School-age Children	Literacy: Decoding	e-Books: General
		Randomised			(Primary/Elementary)	Literacy: Reading	
		controlled trials;				comprehension	
		Quasi-					
		experimental;					
		Observational					
*							

The quality of the included meta-analyses was mixed (see Table 1). Most assessed 241 heterogeneity (n low risk = 59/66, 89% of meta-analyses), reported the characteristics of the 242 included studies (n low risk = 57/66, 86%), and used a comprehensive and systematic search 243 strategy (n low risk = 56/66, 85%). Most reviews did not clearly report if their eligibility 244 criteria were predefined (n unclear = 45/66, 68%). Many papers also did not complete dual 245 independent screening of abstracts and full text (n high risk = 16/66, 24%) or did not 246 clearly report the method of screening (n unclear = 21/66, 32%). A similar trend was 247 observed for dual independent quality assessment (n high risk = 31/66, 47%; n unclear = 19/66, 29%). Overall, only 5 meta-analyses were graded as low risk of bias on all criteria. 240

Education Outcomes. There were 46 unique effects associated with education 250 outcomes, including general learning outcomes, literacy, numeracy, and science. We removed 251 20 effects that did not provide individual study-level data, 7 effects with samples < 1,000, 252 and 8 effects with a significant Egger's test or insufficient studies to conduct the test. Effects 253 not meeting one or more of these standards are presented in Supplementary File 4. The 254 remaining 12 effects met our criteria for statistical credibility and are described in Figure 2. 255 These 12 effects came from 8 meta-analytic reviews analysing data from 226 empirical 256 studies with 186,631 individual participants. 257

Among the statistically credible effects, general screen use, television viewing, and video games were all negatively associated with learning. E-books that included narration, as well as touch screen education interventions, and augmented reality education interventions were positively associated with learning. General screen use was negatively associated with literacy outcomes. However, if the screen use involved co-viewing (e.g., watching with a parent), or the content of television programs was educational, the association with literacy was positive and significant at the 95% confidence level (weak evidence). Numeracy outcomes were positively associated with screen-based mathematics interventions and video games that contained numeracy content.

Outcome Age Group Lead Author, Date Specific Outcome r with 95% CI Exposure General e-Books: Narration Children Takacs, 2014 0.19 [0.14, 0.23] 20% 50 2.288 General Screen use: General Adelantado-Renau, 2019 -0.22 [-0.31, -0.13] 13,100 96% 18 Screen-based intervention General Tekedere, 2016 0.33 [0.25, 0.42] 1,474 Learning Screen-based intervention: Education (via touch screen) General 0.29 [0.24, 0.34] 5.810 TV programs and movies: Genera Adelantado-Renau, 2019 -0.12 [-0.16, -0.07] General 62.135 Video games: General Adelantado-Renau, 2019 -0.09 [-0.12, -0.06] General 4,276 О General Screen use: General Children Madigan, 2020 0.14 [-0.20, -0.09] 90% 18.318 Literacy General Screen use: General (coviewing) Children Madigan, 2020 0.15 [0.02, 0.28] 96% 6.083 TV programs and movies: Educational Children Madigan, 2020 0.13 [0.03, 0.23] 82% 1,955 Video games: Numeracy Byun, 2018 0.32 [0.21, 0.43] 88% 2,008 Numeracy Screen-based intervention: Mathematics All Li, 2010 0.30 [0.24, 0.35] 36,793

Associations Between Exposures and Education Outcomes

Figure 2. Education outcomes

As shown in Figure 2, most of the credible results (10 of 12 effects) showed statistically significant associations, with 99.9% confidence intervals not encompassing zero (strong 268 evidence). The remaining two associations were significant at the 95% confidence level (weak 269 evidence). All credible effects related to education outcomes were small-to-moderate. 270 Screen-based interventions designed to influence an outcome (e.g., a computer based 271 program designed to enhance learning)³¹ tended to have larger effect sizes than exposures 272 that were not specifically intended to influence any of the measured outcomes (e.g., the 273 association between television viewing and learning).³² The largest effect size observed was 274 for augmented reality-based education interventions on general learning 275 (r = 0.33, k = 15, N = 1,474). Most effects showed high levels of heterogeneity (10 of 12) 276 with $I^2 > 50\%$). 277

Health and Health-related Behaviours. We identified 119 unique outcome-exposure combinations associated with health or health-related behaviour outcomes.

-0.4 -0.2 0.0 0.2 r with **95**% and **99.9**%

We removed 31 effects that did not provide individual study-level data, 30 effects with samples < 1,000, and 43 effects with a significant Egger's test or insufficient studies to conduct the test. No remaining studies showed evidence of excessive significance. Effects not meeting one or more of these standards are presented in Supplementary File 5. The remaining 17 meta-analytic associations met our criteria for credible evidence and are described below (see also Figure 3). These 17 effects came from 12 meta-analytic reviews analysing data from 231 empirical studies with 676,331 individual participants.

Associations Between Exposures and Health-related Outcomes Outcome Specific Outcome Exposure Age Group Lead Author, Date r with 95% CI Poorolaial, 2020 0.12 [0.10, 0.15] 98% 56 343 999 Ω Body composition TV programs and movies: General 104,911 Zhang, 2016 0.12 [0.09, 0.15] 96% 24 Body composition TV programs and movies: General Children 0 Body composition Body composition TV programs and movies: General Adolescents Marshall, 2004 0.06 [0.03, 0.10] 0% 12 O Poorolajal, 2020 0.07 [0.02, 0.11] 98% Body composition Video games: General ΑII 11 151,910 О Body composition Screen use: General ΑII Fang, 2019 0.14 [0.11, 0.17] 86% 19 47.164 Advertising: Unhealthy food ΑII Boyland, 2016 0.25 [0.12, 0.38] 88% 1,756 Diet Food intake (calories) Advertising: Advergames Folkvord, 2018 0.18 [0.10, 0.25] 82% Screen-based intervention: Healthy behavior Cushing, 2010 0.15 [0.10, 0.20] 82% 9.525 Health behaviours Psychological health Liu, 2016 0.06 [0.04, 0.08] 92% Risk taking (general) Social Media: General Adolescents Vannucci, 2020 0.21 [0.16, 0.25] 98% 66.407 Risky sexual behaviour Social Media: General Adolescents Vannucci 2020 0.21 [0.14, 0.28] 96% 23 096 Risky behavior Sexual activity Screen use: Sexual content Ferguson, 2017 0.08 [0.05, 0.11] 76% 18.127 0 0.08 [0.04, 0.12] 84% 16 17.019 Sexual activity (initiation of sex) Screen use: Sexual content ΑII Ferguson, 2017 Substance abuse Social Media: General Adolescents Vannucci, 2020 0.19 [0.14, 0.24] 96% 36.228 Sleep TV programs and movies: General Adolescents Bartel, 2015 -0.06 [-0.10. -0.01] '8% 10

Figure 3. Health and health-related behaviour outcomes

Digital advertising of unhealthy foods—both traditional advertising and video games
developed by a brand for promotion—were associated with higher unhealthy food intake.

Social media use and sexual content were positively associated with risky behaviors (e.g.,
sexual activity, risk taking, and substance abuse). General screen use was positively
associated with depression. Television viewing was negatively correlated with sleep duration,
but only at the 95% confidence level (weak evidence). All forms of screen use (general,

television, and video games) were associated with body composition (e.g., higher BMI),
although the association was smaller for children than for adolescents or for combined
populations. Screen-based interventions which target health behaviours appeared effective.

Across the health outcomes, most (14 of 17) effects were statistically significant at the 99.9% confidence interval level, with the remaining three significant at 95% confidence. However, most of the credible effects exhibited high levels of heterogeneity, with all but one having $I^2 > 75\%$. Additionally, most effects were small, with the association between unhealthy food advertising and intake the largest at r = 0.25 (k = 13, N = 1,756). Most of the effect sizes (14/17) had an absolute value of r < 0.2.

302 Discussion

303

304

305

308

The primary goal of this review was to provide a holistic perspective on the influence of screens on children's lives across a broad range of outcomes. We found that when meta-analyses examined general screen use, and did not specify the content, context or device, there was strong evidence showing potentially harmful associations with general learning, literacy, body composition, and depression. However, when meta-analyses included a more nuanced examination of exposures, a more complex picture appeared.

As an example, consider children watching television programs—an often cited form of 309 screen time harm. We found robust evidence for a small association with poorer academic 310 performance and literacy skills.³² However, we also found evidence that if the content of the 311 program was educational, or the child was watching the program with a parent (i.e., co-viewing), this exposure was instead associated with better literacy.³³ Thus, parents may 313 play an important role in selecting content that is likely to benefit their children or, perhaps, 314 interact with their children in ways that may foster literacy (e.g., asking their children 315 questions about the program). Similar nuanced findings were observed for video games. The 316 credible evidence we identified showed that video game playing was associated with poorer 317

body composition and learning.^{32,34} However, when the video game were designed specifically to teach numeracy, playing these games showed learning benefits.³⁵ One might expect that video games designed to be physically active could confer health benefits, but none of the meta-analyses examining this hypothesis met our thresholds for statistical credibility (see Supplementary Files 4 & 5) therefore this hypothesis could not be addressed.

Social media was one type of exposure that showed consistent risks to health, with no indication of potential benefit. Social media showed strong evidence of harmful associations with risk taking in general, as well as unsafe sex and substance abuse. These results align with meta-analytic evidence from adults indicating that social media use is also associated with increased risk of depression. Recent evidence from social media companies themselves suggest there may also be negative effects of social media on the mental health of young people, especially teenage girls. 99

One category of exposure appeared to consistently confer benefits: screen-based interventions designed to promote learning or health behaviours. This finding indicates that interventions can be effectively delivered using electronic media platforms, but does not necessarily indicate that screens are more effective than other methods (e.g., face-to-face, printed material). Rather, it reinforces that the content of the screen time may be the most important aspect. The way that a young person interacts with digital screens may also be important. We found evidence that touch screens had strong evidence for benefits on learning, 31 as did augmented reality. 40

Largely owing to a small number of studies or missing individual study data, there
were few age-based conclusions that could be drawn from reviews which met our criteria for
statistical certainty. If we expand to include those reviews which did not meet this threshold,
there remained no clear pattern although there were some age-specific differences in
associations (data avilable in Supplementary Materials). For example, advertising of
unhealthy food was associated with unhealthy food choice for young children, but was not

statistically significant for other age groups. 41 Conversely, TV programs and movies were
more strongly associated with lower physical activity for adolescents than for younger age
groups. 42

Among studies that met our criteria for statistical certainty heterogeneity was high, with almost all effects having $I^2 > 50\%$. Much of this heterogeneity is likely explained by differences in measures across pooled studies, or in some cases, the generic nature of some of the exposures. For example, "TV programs and movies" covers a substantial range of content, which may explain the heterogeneous association with education outcomes.

352 Implications for Policy and Practice

Broadly, our findings align with the recommendations of others who suggest that 353 current guidelines may be too simplistic, mischaracterise the strength of the evidence, or do not acknowledge the important nuances of the issue. 43-45 Our findings suggest that screen 355 use is a complex issue, with associations based not just on duration and device type, but also 356 on the content and the environment in which the exposure occurs. Many current guidelines 357 simplify this complex relationship as something that should be minimised in all 358 instances. 12,13 We suggest that future guidelines need to embrace the complexity of the issue, 359 to give parents and clinicians specific information to weigh the pros and cons of interactions 360 with screens. 361

362 Implications for Future Research

Screen use research is extensive, varied, and rapidly growing. Reviews tended to be
general (e.g., all screen time) and even when more targeted (e.g., social media) nuances
related to specific content (e.g., Instagram vs Facebook) have not been meta-analysed or
have not produced credible evidence. Fewer than 20% of the effects identified met our
criteria for statistical credibility. Most studies which did not meet our critiera failed to
provide study-level data (or did not provide sufficent data, such as including effect estimates

but not sample sizes). Newer reviews were more likely to provide this information than older reviews, but it highlights the importance of data and code sharing as recommended in the PRISMA guidelines. When study level data was available, many effects were removed because the pooled sample size was small, or because there were fewer than ten studies on which to perform an Egger's test. It seems that much of the current screen time research is small in scale, and there is a need for larger, high-quality studies.

Screen time research has a well-established measurement problem, which impacts the 375 individual studies of this umbrella review. The vast majority of screen time research relies on 376 self-reported data, which not only lacks the nuance required for understanding the effects of 377 screen time, but may also be inaccurate. In one systematic review on screen time and sleep,⁷ 378 66 of the 67 included studies used self-reported data for both the exposure and outcome variable. It has been established that self-reported screen time data has questionnable validity. In a meta-analysis of 47 studies comparing self-reported media use with logged 381 measures. Parry et al⁴⁷ found that the measures were only moderately correlated (r = 0.38), 382 with self-reported problematic usage fairing worse (r = 0.25). Indeed, of 622 studies which measured the screen time of 0—6 year-olds, only 69 provided any sort of psychometric 384 properties for their measure, with only 19 studies reporting validity.⁴⁸ While some 385 researchers have started using newer methods of capturing screen behaviours—such as 386 wearable cameras⁴⁹ or device-based loggers—⁵⁰these are still not widely adopted. It may be 387 that the field of screen time research cannot be sufficiently advanced until accurate. 388 validated, and nuanced measures are more widely available and adopted. 380

390 Strengths and Limitations

Our primary goal for this umbrella review was to provide a high-level synthesis of screen time research, by examining a range of exposures and the associations with a broad scope of outcomes. Our results represent the findings from 2,171 primary studies comprised of 1,652,944 participants. To ensure findings could be compared on a common metric, we extracted and reanalysed individual study data where possible.

Our high-level approach limits the feasibility of examining fine-grained details of the 396 individual studies. For example, we did not examine moderators beyond age, nor did we rate the risk of bias for the individual studies. Thus, our assessment of evidence quality was restricted to statistical credibility, rather than a more complete assessment of quality (e.g., GRADE).⁵¹ As such, we made decisions regarding the credibility of evidence, where others may have used different thresholds or metrics. For this reason, we provide the complete 401 results in the supplementary material, along with the dataset for others to consider 402 alternative criteria. In addition, reviews provide only historical evidence which may not keep 403 up with the changing ways children can engage with screens. While our synthesis of the 404 existing evidence provides information about how screens might have influenced children in 405 the past, it is difficult to know if these findings will translate to new forms of technology in 406 the future. 407

408 Conclusions

Screen time is a topic of significant interest, as shown by the wide variety of academic 409 domains involved, parents' concerns, and the growing pervasiveness into society. Our 410 findings showed that the impact of screen time can be both positive (e.g., educational video 411 games were associated with improved literacy) and negative (e.g., general screen use was 412 associated with poorer body composition). The interplay of these findings show that parents, 413 teachers, and other caregivers need to carefully weigh the pros and cons of each specific 414 activity for potential harms and benefits. However, our findings also suggest that in order to 415 aid caregivers to make this judgement, researchers need to conduct more careful and nuanced 416 measurement and analysis of screen time, with less emphasis on measures that aggregate 417 screen time and instead focus on the content, context, and environment in which the 418 exposure occurs. 419

References 420 1. 421 The Lancet. Social media, screen time, and young people's mental health. The Lancet 422 **393**, 611 (2019). 2. 424 Blair, A. Reading Strategies for Coping With Information Overload ca.1550-1700. 425 Journal of the History of Ideas 64, 11–28 (2003). 3. 427 Bell, A. N. The sanitarian. vol. 11 (AN Bell, 1883). 428 429 4. 430 Dill, K. E. The Oxford handbook of media psychology. (Oxford University Press, 2013). 432 5. 433 Wartella, E. A. & Jennings, N. Children and computers: New technology. Old concerns. The future of children 31–43 (2000). 6. Rhodes, A. Top ten child health problems: What the public thinks. (2015). 437 438 7. 439 Hale, L. & Guan, S. Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Medicine Reviews 21, 50–58 (2015).

442 8.

- Sweetser, P., Johnson, D., Ozdowska, A. & Wyeth, P. Active versus passive screen time for young children. *Australasian Journal of Early Childhood* 37, 94–98 (2012).
- 445 9.
- Li, X. & Atkins, M. S. Early childhood computer experience and cognitive and motor development. *Pediatrics* **113**, 1715–1722 (2004).
- 448 10.
- Warburton, W. & Highfield, K. Children and technology in a smart device world. in

 Children, Families and Communities 195–221 (Oxford University Press, 2017).
- 451 11.
- Nature Human Behaviour. Screen time: How much is too much? *Nature* **565**, 265–266 (2019).
- 454 12.
- World Health Organization. Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age. 33 p. (World Health Organization, 2019).
- 457 13.
- Australian Government. Physical activity and exercise guidelines for all Australians.

 (2021).
- 460 14.
- Canadian Society for Exercise Physiology. Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. (2016).
- 463 15.

- Council On Communication and Media. Media Use in School-Aged Children and Adolescents. *Pediatrics* **138**, e20162592 (2016).
- 466 16.
- Ferguson, C. J. Everything in Moderation: Moderate Use of Screens Unassociated with Child Behavior Problems. *Psychiatric Quarterly* **88**, 797–805 (2017).
- 469 17.
- Przybylski, A. K. & Weinstein, N. A Large-Scale Test of the Goldilocks Hypothesis:
 Quantifying the Relations Between Digital-Screen Use and the Mental Well-Being of
 Adolescents. Psychological Science 28, 204–215 (2017).
- 472 18.
- Sanders, T., Parker, P. D., del Pozo-Cruz, B., Noetel, M. & Lonsdale, C. Type of screen time moderates effects on outcomes in 4013 children: Evidence from the Longitudinal Study of Australian Children. *International Journal of Behavioral Nutrition and Physical Activity* **16**, 1–10 (2019).
- 475 19.
- Kaye, L. K., Orben, A., Ellis, D. A., Hunter, S. C. & Houghton, S. The Conceptual and Methodological Mayhem of 'Screen Time'. International Journal of Environmental
 Research and Public Health 17, 3661 (2020).
- 478 20.
- Chassiakos, Y. L. R. et al. Children and Adolescents and Digital Media. Pediatrics
 138, e20162593 (2016).
- 481 21.

- National Health, Lung, and Blood Institute. Quality Assessment of Systematic Reviews and Meta-Analyses. (2014).
- 484 22.
- Bonett, D. G. Transforming odds ratios into correlations for meta-analytic research.
- American Psychologist **62**, 254–255 (2007).
- 487 23.
- Bowman, N. A. Effect Sizes and Statistical Methods for Meta-Analysis in Higher
- Education. Research in Higher Education 53, 375–382 (2012).
- 490 24.
- Jacobs, P. & Viechtbauer, W. Estimation of the biserial correlation and its sampling variance for use in meta-analysis: Biserial Correlation. Research Synthesis Methods 8, 161–180 (2017).
- 493 25.
- Viechtbauer, W. Metafor: Meta-analysis package for r. (2021).
- 496 26.

495

- R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2022).
- 499 27.
- Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* **315**, 629–634 (1997).
- 502 28.

- Page, M. J., Higgins, J. P. & Sterne, J. A. Chapter 13: Assessing risk of bias due to missing results in a synthesis. in *Cochrane Handbook for Systematic Reviews of Interventions* (eds. Higgins, J. P. et al.) (Cochrane, 2021).
- 505 29.
- Ioannidis, J. P. & Trikalinos, T. A. An exploratory test for an excess of significant findings. *Clinical Trials* **4**, 245–253 (2007).
- 508 30.
- Papadimitriou, N. et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. *Nature Communications* **12**, 4579 (2021).
- 511 31.
- Xie, H. et al. Can Touchscreen Devices be Used to Facilitate Young Children's Learning? A Meta-Analysis of Touchscreen Learning Effect. Frontiers in Psychology 9, 2580 (2018).
- 514 32.
- Adelantado-Renau, M. et al. Association Between Screen Media Use and Academic Performance Among Children and Adolescents: A Systematic Review and Meta-analysis. JAMA Pediatrics 173, 1058 (2019).
- 517 33.
- Madigan, S., McArthur, B. A., Anhorn, C., Eirich, R. & Christakis, D. A. Associations
 Between Screen Use and Child Language Skills: A Systematic Review and Meta analysis. JAMA Pediatrics 174, 665 (2020).
- ₅₂₀ 34.

- Poorolajal, J., Sahraei, F., Mohamdadi, Y., Doosti-Irani, A. & Moradi, L. Behavioral factors influencing childhood obesity: A systematic review and meta-analysis. *Obesity Research & Clinical Practice* **14**, 109–118 (2020).
- 523 35.
- Byun, J. & Joung, E. Digital game-based learning for K-12 mathematics education: A
 meta-analysis. School Science and Mathematics 118, 113–126 (2018).
- 526 36.
- Vannucci, A., Simpson, E. G., Gagnon, S. & Ohannessian, C. M. Social media use and risky behaviors in adolescents: A meta-analysis. *Journal of Adolescence* 79, 258–274 (2020).
- 529 37.
- Yoon, S., Kleinman, M., Mertz, J. & Brannick, M. Is social network site usage related to depression? A meta-analysis of Facebook-depression relations. *Journal of Affective Disorders* **248**, 65–72 (2019).
- 532 38.
- Vahedi, Z. & Zannella, L. The association between self-reported depressive symptoms and the use of social networking sites (SNS): A meta-analysis. Current Psychology 40, 2174–2189 (2021).
- 535 39.
- Seetharaman, G. W., Jeff Horwitz and Deepa. Facebook Knows Instagram Is Toxic for Teen Girls, Company Documents Show. *Wall Street Journal* (2021).
- 538 40.

- Tekedere, H. & Göke, H. Examining the Effectiveness of Augmented Reality Applications in Education: A Meta-Analysis. *International Journal of Environmental and Science Education* **11**, 9469–9481 (2016).
- 541 41.
- Sadeghirad, B., Duhaney, T., Motaghipisheh, S., Campbell, N. R. C. & Johnston, B.
 C. Influence of unhealthy food and beverage marketing on children's dietary intake and preference: A systematic review and meta-analysis of randomized trials. *Obesity Reviews* 17, 945–959 (2016).
- 544 42.
- Marshall, S. J., Biddle, S. J. H., Gorely, T., Cameron, N. & Murdey, I. Relationships between media use, body fatness and physical activity in children and youth: A
 meta-analysis. *International Journal of Obesity* 28, 1238–1246 (2004).
- 547 43.
- Elson, M. et al. Do policy statements on media rffects faithfully represent the science?

 Advances in Methods and Practices in Psychological Science 2, 12–25 (2019).
- 550 44.
- Ashton, J. J. & Beattie, R. M. Screen time in children and adolescents: Is there evidence to guide parents and policy? The Lancet Child & Adolescent Health 3, 292–294 (2019).
- ₅₅₃ 45.
- Royal College of Paediatrics and Child Health. The health impacts of screen time: A guide for clinicians and parents. (2019).
- ₅₅₆ 46.

- Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. (2020) doi:10.31222/osf.io/v7gm2.
- 559 47.
- Parry, D. A. et al. A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use. Nature Human Behaviour 5, 1535–1547 (2021).
- ₅₆₂ 48.
- Byrne, R., Terranova, C. O. & Trost, S. G. Measurement of screen time among young children aged 0–6 years: A systematic review. *Obesity Reviews* **22**, (2021).
- 565 49.
- Smith, C., Galland, B. C., de Bruin, W. E. & Taylor, R. W. Feasibility of automated cameras to measure screen use in adolescents. *American journal of preventive medicine*57, 417–424 (2019).
- 568 50.
- Ryding, F. C. & Kuss, D. J. Passive objective measures in the assessment of problematic smartphone use: A systematic review. *Addictive Behaviors Reports* **11**, 100257 (2020).
- 571 51.
- Guyatt, G. et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 64, 383–394 (2011).