Problem-42

Problem Statement

Fractions $\frac{a}{b}$ and $\frac{c}{d}$ are called neighbor fractions if their difference $\frac{ad-bc}{bd}$ has numerator ± 1 , that is, $ad-bc=\pm 1$. Prove that

- a. in this case neither fraction can be simplified (that is, neither has any common factors in numerator and denominator);
- b. if $\frac{a}{b}$ and $\frac{c}{d}$ are neighbor fractions, then $\frac{a+c}{b+d}$ is between them and is a neighbor fraction for both $\frac{a}{b}$ and $\frac{c}{d}$; moreover,
- c. no fraction $\frac{e}{f}$ with positive integer e and f such that f < b + d is between $\frac{a}{b}$ and $\frac{c}{d}$.

(In part b. of the statement the book says $\frac{a+b}{c+d}$ instead of $\frac{a+c}{b+d}$ and looks like that is a typo. For, neighbor fractions $\frac{1}{3}$ and $\frac{1}{2}$ the composite fraction $\frac{1+3}{1+2}$ is not in-between.)

Solution to Part a.

I shall assume that a < b, c < d and if a common factor exists, it is greater than 1. In other words, if the only common factor between say a and b is 1, I consider them not having a common factor at all.

We shall use **proof by contradiction**, therefore we shall assume that two neighbor fractions share a common factor and that assumption will lead to a false conclusion, completing the proof.

Say a < b, a and b share a common factor f, and f is greater than 1. Since the common factor is greater than 1, a > 1. So, we have $b = f \cdot a$.

From the definition of neighbor fraction given in the problem statement, we have:

$$ad - bc = \pm 1$$

$$ad - (f \cdot a)c = \pm 1$$

$$a(d - fc) = \pm 1$$

$$d - fc = \pm \frac{1}{a}$$

Since we started with integers on both sides of the equation and ended up with an integer on the left and a proper fraction on the right, we have a contradiction. Similar idea works if we assumed a > b or if we assumed c and d also share a common factor.

Solution to Part b.

Say $\frac{a}{b} > \frac{c}{d}$. Let's now interpret the neighbor fractions $\frac{a}{b}$ and $\frac{c}{d}$ as follows:

We have two teams of people. The first team has b people in it and they have a apples in total, therefore equally sharing, each person in the first team gets $\frac{a}{b}$ apples. The second team has d people in it and they have c apples in total, therefore equally sharing, each person in the second team gets $\frac{c}{d}$ apples. If the two teams come together and share their apples between them, then each person in this bigger, combined team gets $\frac{a+c}{b+d}$ apples. It then makes sense that each person in this bigger, combined team would get no less than the smaller of the two ratios $\frac{c}{d}$ and would get no more than the larger of the two ratios $\frac{a}{b}$. Hence, $\frac{a+c}{b+d}$ should be in-between $\frac{c}{d}$ and $\frac{a}{b}$. More interesting is the claim that $\frac{a+c}{b+d}$ is neighbor fraction for each of the two original neighbor fractions.

Proof for $\frac{a+c}{b+d}$ is between $\frac{c}{d}$ and $\frac{a}{b}$

Again, let's assume $\frac{c}{d} < \frac{a}{b}$, therefore from the statement of the problem we have ad-bc=1. The argument that follows can easily be modified so it would hold even if the inequality is reversed. We shall make two comparisons: first between $\frac{a+c}{b+d}$ and $\frac{c}{d}$; and then between $\frac{a+c}{b+d}$ and $\frac{a}{b}$. The result of these two comparisons will give us the order among the three fractions showing that $\frac{a+c}{b+d}$ is between $\frac{c}{d}$ and $\frac{a}{b}$.

Let's compare $\frac{c}{d}$ and $\frac{a+c}{b+d}$:

$$\frac{c}{d} ? \frac{a+c}{b+d}$$

$$c(b+d) ? d(a+c)$$

$$bc+cd ? ad+cd$$

$$bc ? ad$$

Since ad-bc=1, we know bc < ad, therefore $\frac{c}{d} < \frac{a+c}{b+d}$. Let's now compare $\frac{a+c}{b+d}$ and $\frac{a}{b}$:

$$\frac{a+c}{b+d} ? \frac{a}{b}$$

$$b(a+c) ? a(b+d)$$

$$ab+bc ? ab+ad$$

$$bc ? ad$$

Since ad - bc = 1, we know bc < ad, therefore $\frac{a+c}{b+d} < \frac{a}{b}$. Results of the two comparisons combined:

$$\frac{c}{d} < \frac{a+c}{b+d} < \frac{a}{b}$$

Proof for $\frac{a+c}{b+d}$ is a neighbor fraction both for $\frac{a}{b}$ and $\frac{c}{d}$

Let's assume $\frac{c}{d} < \frac{a}{b}$, thus ad - bc = 1. From the previous result, we then know $\frac{c}{d} < \frac{a+c}{b+d} < \frac{a}{b}$. If we can show that the numerator is 1 for both of the differences, $\frac{a+c}{b+d} - \frac{c}{d}$ and $\frac{a}{b} - \frac{a+c}{b+d}$, we are done.

For the first difference, the numerator is:

$$(a+c) \cdot d - c \cdot (b+d) = ad + cd - bc - cd$$
$$= ad - bc$$
$$= 1$$

For the second difference, the numerator is:

$$a \cdot (b+d) - b \cdot (a+c) = ab + ad - ab - bc$$

= $ad - bc$
= $1 \blacksquare$

Solution to Part c.

Once again we assume that $\frac{c}{d} < \frac{a}{b}$, thus ad - bc = 1. Say $\frac{e}{f}$ is a fraction that lies between $\frac{c}{d}$ and $\frac{a}{b}$, therefore $\frac{c}{d} < \frac{e}{f} < \frac{a}{b}$. We thus have two inequalities: af > be and de > cf. Since a,b,c,d,e,f are all positive integers, we could rewrite the two inequalities as: $af - be \ge 1$ and $de - cf \ge 1$.

$$\frac{a}{b} - \frac{c}{d} = \left(\frac{a}{b} - \frac{e}{f}\right) + \left(\frac{e}{f} - \frac{c}{d}\right)$$

$$\frac{ad - bc}{bd} = \frac{af - be}{bf} + \frac{de - cf}{df}$$

$$\frac{1}{bd} \ge \frac{1}{bf} + \frac{1}{df}$$

$$\frac{1}{bd} \ge \frac{b + d}{bdf}$$

$$f \ge b + d$$

So, for any fraction $\frac{e}{f}$ that lies between the pair of neighbor fractions $\frac{c}{d}$ and $\frac{a}{b}$, f cannot be less than b+d.

In some sense b+d is a hard limit on how low the denominator of such a fraction can get, signifying the closeness between the neighbor fractions themselves. In fact if we use the lowest value of f therefore f=b+d in the above inequality and go backwards we get af-be=1 and de-cf=1. We can then solve for e as follows:

$$af - be = de - cf$$
$$(b+d) \cdot e = (a+c) \cdot f$$
$$e = a+c$$

Seems like $\frac{a+c}{b+d}$ is the unique in-between fraction having the lowest possible denominator.