

Metis: Fast Automatic Distributed Training on Heterogeneous GPUs

*Taegeon Um§ , *Byungsoo Oh§ , *Minyoung Kang§ , Woo-Yeon Lee§ , Goeun Kim§ Dongseob Kim§, Youngtaek Kim§, Mohd Muzzammil§ and Myeongjae Jeon¶

* Equal contribution

§ Samsung Research ¶ UNIST

Samsung Research, Data Cloud Lab

Automatic Distributed Training of Large Model

Automatic Distributed Training of Large Model

Today's Practice: **Auto-parallelier** to find optimal parallelism plans on homogeneous GPUs (e.g., Alpa)

Pipeline Parallelism (PP) =

Samsuna Research

Heterogeneous GPUs in GPU Clusters

Heterogeneous GPUs in GPU Clusters

Our focus: Auto-parallelizer on heterogeneous GPUs

Existing Auto-Parallelizer on Heterogeneous GPUS Research

Existing Auto-Parallelizer on Heterogeneous GPUS Research

Abstract heterogeneous GPUs as homogeneous ones

▶ It simplifies design, but has limitations

1011301 | aralleli3111 (11) = 2

Limitations of Existing Work

1) Unexplored device groups

Limitations of Existing Work

2) Load balancing based on the number of GPUs

Limitations of Existing Work

3) Cluster shape constrained by 2-D grids

Breaks 2-D abstraction ⇒ Not supported

Metis: Overview

<u>Expands</u> the search space of plans by being aware of heterogeneous computing, memory, and number of GPUs

Metis: Overview

Samsuna Research

<u>Expands</u> the search space of plans by being aware of heterogeneous computing, memory, and number of GPUs

Challenge: profiling and search overheads that may take several days or weeks

^{*} Please see the paper for the details of profiler and cost model

- 1) Pruning inefficient/similar combinations of stage-device group pairs
- 2) Balancing layers across stages with capacity-aware allocation
- 3) Navigating efficient intra-stage plans based on DP/TP characteristics

- 1) Pruning inefficient/similar combinations of stage-device group pairs
- 2) Balancing layers across stages with capacity-aware allocation
- 3) Navigating efficient intra-stage plans based on DP/TP characteristics

1) Pruning inefficient combinations of stage-device group pairs

1) Pruning inefficient combinations of stage-device group pairs

1) Pruning similar combinations of stage-device group pairs

1) Pruning similar combinations of stage-device group pairs

Pruning pairs that have the same input/output patterns (shapes), same computations / loads

Samsuna Research

- 1) Pruning inefficient/similar combinations of stage-device group pairs
- 2) Balancing layers across stages with capacity-aware allocation
- 3) Navigating efficient intra-stage plans based on DP/TP characteristics

2) Balancing layers across stages with capacity-aware allocation

O(L) layer load balancing based on the relative load of layers and performance of device groups

Estimated execution time of a model: 10s

Samsung Research

execution time of a model: 5s

Assigned device groups

- 1) Pruning inefficient/similar combinations of stage-device group pairs
- 2) Balancing layers across stages with capacity-aware allocation
- 3) Navigating efficient intra-stage plans based on DP/TP characteristics

Samsung Research

- 3) Navigating efficient intra-stage plans based on DP/TP characteristics
 - DP => All-reduce for gradient after mini-batch

Efficient DFS search that prioritizes DP over TP with OOM detection

TP comm. overhead > DP comm. overhead

Evaluation: Training Speed

Samsung Research

Evaluation: Training Speed

Samsuna Research

Evaluation: Plan Comparison * GPT-3, 16 GPUs, T4+V100

Evaluation: Plan Comparison * MoE, 16 GPUs, T4+V100

Evaluation: Searching Overhead

143x (vs Alpa) and 29000x (vs Oracle) search speed-up while finding near-optimal plans (5% diff compared to Oracle)

Conclusion

- Show that the existing auto-parallelizer is not optimized for distributed training on heterogeneous GPUs
- Design Metis, a system that automatically finds good parallelism plans on heterogeneous GPUs by expanding the search space
- Develop a new hetero-aware search algorithm that prunes inefficient plans, balances layers based on capacity-awareness, and finds efficient intra-stage parallelism while prioritizing DP over TP
- Evaluate that Metis improves training speed by up to 8x with less search overheads compared to SoTA
- Believe that Metis can be adopted to improve training speed and GPU utilization and used for cost-efficient distributed training on heterogeneous GPU clusters

Thank you

taegeon.um@samsung.com https://taegeonum.github.io