Frequent Directions and its applicatoin in Efficient Anomaly Detection - a practice

謝幸娟 (Hsing-Chuan Hsieh) connie0915549431@hotmail.com

1. Introduction

Source paper:

Ghashami, M., Liberty, E., Phillips, J. M., & Woodruff, D. P. (2016). Frequent directions: Simple and deterministic matrix sketching. *SIAM Journal on Computing*, *45*(5), 1762-1792.

1. Introduction

Context

- \triangleright Streaming paradigm of large data set $A \in \mathbb{R}^{n \times d}$
 - Data items arriving in an arbitrary order, are processed, and then never seen again.
- ➤ Only a small amount of memory is available at any given time
- ➤In data mining tasks, Low rank approximations for A are used
 - ➤ E.g. of techs: PCA, SVD, k-means clustering, latent semantic indexing (LSI)

Computational challenge

ightharpoonup Computing full SVD takes $O(d^2)$ of memory/time. ightharpoonup unacceptable if

1. Introduction

Solutions of Approximating Streaming

- Make matrix rows become available over time
- 2. Only a single pass over the data is possible

Purpose

- To compute a <u>significantly smaller</u> sketch matrix B such that $A \approx B$ or $A^T A \approx B^T B$.
 - This lets future computations be performed on B rather than on A without losing much in precision.
- ➤ Here introduce a new matrix sketching technique: Frequent Directions

2. Frequent Directions

Source paper:

Ghashami, M., Liberty, E., Phillips, J. M., & Woodruff, D. P. (2016). Frequent directions: Simple and deterministic matrix sketching. *SIAM Journal on Computing*, *45*(5), 1762-1792.

2.1. Item frequency approximation

Frequent directions is an extension of a well-known algorithm for approximating item frequencies (aka FrequentItems) in streams.

```
\triangleright Goal: for A = [a_1; ...; a_n], a_i \in \mathbb{R}^d
```

- 1. To approximate for all j their frequency $f_i = |\{a_i \in A \mid a_i = a_i\}|$
 - f_i : the number of times a_i appears in the stream.
 - Suppose j = [d] $(i.e.j = \{1, 2, ..., d\})$ j<=d $\rightarrow O(d)$ of space for all exact f_j counters $\rightarrow O(d^2)$ of space for all a_i 's
- 2. Interested in using less space while producing approximate frequencies \hat{f}_i
 - i.e., only store the top ℓ (< d) a_i 's and \widehat{f}_i 's

• Suppose for $A=[a_1;\ldots;a_n]$, there's j<=10 distinct $a_{(j)}$ appearing in the stream, say, $a_{(1)},a_{(2)},\ldots,a_{(10)}$

 \triangleright i.e., for $a_i \in A \rightarrow a_i \in a_{(j)}$, $1 \le j \le 10$, for $\forall i$

• Initialization: set $\ell = 5 < d$

➤Only record 5 itmes (save space)

Items	Counters
$a_{(1)}$	0
$a_{(2)}$	0
$a_{(3)}$	0
$a_{(4)}$	0
$a_{(5)}$	0

At least one of the items is mapped to a counter of value zero.

- Start: read a row of a_i at a time (i=1,...,n)
- Case 1:
 - If a_1 belongs to an item on the table, say, $a_1 \in a_{(3)} \to \widehat{f_{(3)}} += 1$

 a_1

Items	Counters
$a_{(1)}$	0
$a_{(2)}$	0
$a_{(3)}$	1
$a_{(4)}$	0
$a_{(5)}$	0

Counter is incremented

- Start: read a row of a_i at a time (i=1,...,n)
- Case 2:
 - If a_2 doesn't belong to any item on the table, say, $a_1 \in a_{(8)} \to \widehat{f_{(8)}} += 1$

 a_2

Items	Counters
$a_{(1)}$	0
$a_{(2)}$	0
$a_{(3)}$	1
$a_{(4)}$	0
$a_{(8)}$	1

it replaces one of the items mapping to zero value with the new item

- The above process is continued until the invariant is violated
 - ie., all counters of $\ell = 5$ items ≥ 1 .
- Case 3:

At this point, all counts are decreased by the same amount until at least one item maps to a zero value.

Items	Counters	
$a_{(1)}$	4	-2
$a_{(5)}$	0	-2
$a_{(3)}$	1	-2
$a_{(10)}$	0	-2
$a_{(8)}$	2	-2

- The final values in the map give approximate frequencies \widehat{f}_i ; unmapped j implies $\widehat{f_i} = 0$
 - Error bound: $0 \le f_i \widehat{f}_i \le \frac{n}{\ell}$ for $\forall j \in [d]$

- Connection to matrix sketching- Frequent Directions
 - 1. Items $a_{(j)}$, $for j \in [\ell]$ Eigenvectors v_j

2.
$$\widehat{f_j}$$
 Eigenvalues σ_j^2 by defining $\widehat{f_j} = \left\|Bv_j\right\|^2 (=\sigma_j^2)$

2.3. Algorithm of FrequentDirections

Algorithm 1 FrequentDirections

```
\begin{array}{l} \textbf{Input:} \ \ell, A \in R^{n \times d} \\ B \leftarrow 0^{\ell \times d} \\ \textbf{for} \ i \in 1, \dots, n \ \textbf{do} \\ B_{\ell} \leftarrow a_{i} \\ [U, \Sigma, V] \leftarrow \mathsf{svd}(B) \\ \delta \leftarrow \sigma_{\ell}^{2} \\ B \leftarrow \sqrt{\Sigma^{2} - \delta I_{\ell}} \cdot V^{T} \\ \textbf{end for} \\ \textbf{return} \ B \end{array} \qquad \begin{array}{l} \# \ \text{ith row of } A \ \text{replaces (all-zeros)} \ \ell \text{th row of } B \\ \# \ \text{The last row of } B \ \text{is again zero} \\ \# \ \textbf{The last row of } B \ \text{is again zero} \\ \end{array}
```

- SVD running time $\sim O(d\ell^2)$. (dominate running time of Algorithm 1)
- Total running time $\sim O(d\ell^2)$

2.3. Algorithm of FrequentDirections

Error bound analysis

THEOREM 3.1. Let $B \in \mathbb{R}^{\ell \times d}$ be the sketch of Frequent Directions on an input matrix $A \in \mathbb{R}^{n \times d}$. Then for any unit vector $x \in \mathbb{R}^d$ it holds that

$$0 \le ||Ax||^2 - ||Bx||^2 \le ||A - A_k||_F^2 / (\ell - k).$$

Or equivalently

$$||A^T A - B^T B||_2 \le ||A - A_k||_F^2 / (\ell - k)$$
 and $A^T A \succeq B^T B$.

This holds for all $k < \ell$ including k = 0 where we define A_0 as the $n \times d$ all-zeros matrix. Note that setting $\ell = \lceil 1/\varepsilon + k \rceil$ yields an error of $\varepsilon ||A - A_k||_F^2$ using $O(d\ell) = O(dk + d/\varepsilon)$ space.

• $A_k = U_k \Sigma_k V_k^T$, rank-k approximation of A

2.3. Algorithm of FrequentDirections

Algorithm 2 Fast-FrequentDirections

```
Input: \ell, A \in \mathbb{R}^{n \times d}
B \leftarrow \text{all-zeros matrix} \in R^{2\ell \times d}
for i \in 1, \ldots, n do
   Insert a_i into a zero valued row of B
   if B has no zero valued rows then
       [U, \Sigma, V] \leftarrow \operatorname{svd}(B)
      \delta \leftarrow \sigma_{\ell}^2
      B \leftarrow \sqrt{\max(\Sigma^2 - I_\ell \delta, 0)} \cdot V^T
                                                           # The last \ell + 1 rows of B are zero valued.
   end if
end for
return B
```

- SVD of B is computed only $n/(\ell + 1)$ times
- Total running time: $O(nd\ell^2) \to O\left((\frac{n}{\ell})d\ell^2\right) = O(nd\ell)$

3. A Practice

Practice writing algorithm of

- 1. Frequent Directions (Algorithm)
- 2. Rank-k Leverage scores
- 3. Rank-k Projection scores

3.1. Introduction

- Purpose
- ➤ Replicate the algorithm 1 from Sharan, V., et al (2018)

Algorithm 1: Algorithm to approximate anomaly scores using Frequent Directions

Input: Choice of k, sketch size ℓ for Frequent Directions [26]

First Pass:

Use Frequent Directions to compute a sketch $ilde{\mathbf{A}} \in \mathbb{R}^{\ell \times d}$

SVD:

Compute the top k right singular vectors of $\tilde{\mathbf{A}}^T \tilde{\mathbf{A}}$ or SVD of $\tilde{A} = UVD^T$

Second Pass: As each row $a_{(i)}$ streams in,

Use estimated right singular vectors to compute leverage scores and projection distances

- "Frequent Direction" use algorithm 1 from Ghashami, M., et al (2016)
- Evaluation
- \triangleright Compare estimated AD scores (L_k, T_k) derived from A and sketch $B(\tilde{A})$

3.2. Data

- Data source:
 - p53 mutants
 - Here I only use a subset of p53 mutants dataset

Data	Size (n × d)
p53 mutants	16772 × 5408
Subset used: A	5681 × 5408

- \succ We first have to decide parameters k and ℓ .
 - 1. k: # of eigenvevtors $v_i \in \mathbb{R}^d$
 - 2. ℓ : # of rows of B to sketch matrix A ($\ell \ll n$)

3.2. Data

Data exploration: SVD for deciding k (# of eigenvectors)

Origin: $A \in \mathbb{R}^{n \times d}$

Sketch: B $(\tilde{A}) \in R^{l \times d}$

3.4. Results

• Comparison of estimated AD scores (L_7, T_7) derived from A and sketch B given $\ell=100$

3.4. Results

- Comparison of first 100 eigenvectors derived from A and sketch B
- By similarity matrix $V_B^T V_A$

3.5. Conclusion

- Check if k and ℓ reasonable?
- Do they follow the theorem below:
- Our main results say that given $\mu > 0$ and a (k, Δ) -separated matrix $A \in R^{n \times d}$ with top singular value σ_1 , any sketch $\tilde{A} \in R^{l \times d}$ satisfying $\|A^TA \tilde{A}^T\tilde{A}\| \leq \mu \sigma_1^2$

or a sketch $\tilde{A} \in R^{n \times l}$ satisfying $\|AA^T - \tilde{A}\tilde{A}^T\| \le \mu \sigma_1^2$

can be used to approximate rank k leverage scores and the projection distance from the principal k-dimensional subspace.

老師回饋

- 下週任務:
 - 試著用osPCA分析Data(e.g., <u>p53 mutants</u>) 比較他們的ground truth (Sharan, V., Gopalan, P., & Wieder, U. (2018)) 與osPCA結果差異
- Paper至少一篇讀清楚
- 找paper的Github(Github上搜尋)
- osPCA未來研究
 - 1. osPCA error bound 證明(老師有想法但未證,未來可研究)
 - 擴充至>= 2 eigenvectors →計算 row data projection到k個軸(e.g.k=2)的 weights(e.g. w1, w2)=> AD scores for each eigenvector,算所有AD score加權整合,如果落到ball(正常範圍)外,則視為異常。