VIT-AP	Final Assessment Test – Long Summer (2023-24) - July 2024		
VIT-AP UNIVERSITY	Maximum Marks: 100	Duration: 3 Hours	
Course Code: ECE2002	Course Title: Computer Organization & Ar	chitecture	
Set No: 2	Exam Type: Closed Book	School: SENSE	
Date: 20-07-2024	Slot: C	Session: AN	

Keeping mobile phone/smart watch, even in 'off' position is treated as exam malpractice General Instructions if any:

1. "fx series" - non Programmable calculator are permitted: NO

2. Reference tables permitted: NO

Answer any TEN Questions, Each Question Carries 10 Marks (10×10=100 Marks)

- 1. What are basic functions of a computer? Discuss with some real-life example. (10 M)
- 2. Discuss Moor's Law and its significance. (10 M)
- 3. Depict the restoring division Algorithm flowchart and perform binary operation (10 M) to perform 9/3.
- 4. Discuss IEEE 32-bit Floating point representation and present 123.55 in this (10 M) format.
- 5. Develop an 8086 Assembly Language Program (ALP) to find a number in an (10 M) array of 50 numbers located at 3000H: 7000H. An optimum ALP is expected.
- 6. Draw and discuss the flag register of 8086 microprocessor. (10 M)
- 7. What is pipelining in microprocessors and what are its hazards? (10 M)
- 8. $c_s = 100$ (10 M)

For the IAS computer instructions, LOAD 350; SUB 300; derive the hardwire control unit using state table method. Use the above diagram to identify the control signals.

9. Draw the microprogrammed control unit.

- (10 M)
- 10. Discuss the memory hierarchy in computer. What is the need for this hierarchy?
- (10 M)
- 11. Perform the memory mapping between the Cache memory of 64 kB to the main memory of 8 GB using 4 way set associative method where the block or page or frame size is of 8 KB.
- 12. A computer has the following memory capacity:Ram: 4 GB

(10 M)

Cache: 8 kB

Block size: 32 Bytes

Perform the One-way Set Associative Mapping and discuss the searching process with suitable diagrams.

VIT-AP	Final Assessment Test – Short Summer-II	(2023-24) - July 2024		
UNIVERSITY	Maximum Marks: 100	Duration: 3 Hours		
Course Code: ECE2002	Course Title: Computer Organization and Architecture			
Set No: 2	Exam Type: Close Book	School: SENSE		
Date: 20 - 0 7 - 2014	Slot: C	Session: FN		
Keeping mobile phon General Instructions if an	e/smart watch, even in 'off' position is treated by:	l as exam malpractice		
 "fx series" - non P Reference tables p 	rogrammable calculator are permitted: NO ermitted: NO (if Yes, Please specify: NA)			

PART - A: Answer any <u>TEN</u> Questions, Each Question Carries 10 Marks (10×10=100 Marks)

- Q1. Explain how to represent the number -41.125 using the IEEE 32-bit floating-point format? (10M)
- Q2. Perform -9 by 6 using Booth's Algorithm step by step? (10M)
- Q3. Describe the different instruction sets used in the 8086 processor with examples for each to illustrate how they work? (10M)
- Q4. Explain microprogrammed control unit. What are the limitations of microprogrammed control unit? (10M)
- **Q5.** Describe the levels of memory hierarchy in terms of speed, size, and cost. Explain the role of primary memory in this context? **(10M)**
- **Q6.** Define pipelining in computer architecture. Discuss its hazards with examples and outline its drawbacks and limitations? (10M)
- Q7. Show how to represent the numbers -8 and +21 using 8-bit 2's Complement notation? (10M)
- Q8. Perform the division of -7 by -2 using the restoring division algorithm with clear steps. (10M)
- Q9. Discuss the various flags used in 8086 microprocessors, provide the examples to illustrate how each flag is set or cleared during program execution? (10M)
- Q10. Describe IAS memory machine. (10M)
- Q11. What do you mean by Interrupt Vector Table (IVT) in an 8086 microprocessor, What is vectored interrupt and non-vectored interrupt? (10M)
- Q12. What is the key difference between 2nd and 3rd generations of computer, Describe Von-Neumann Computer architecture? (10M)

OP MAPPING

Q. No.	E/A/T	Module Number	Marks	BL	CO Mapped	PO Mapped	PEO Mapped	PSO Mapped
Q1	Е	1	10	2	1	1,2,3	1,2	1
Q2	Α	2	10	3	2	1,2,3	1,2	i
Q3	T	3	10	3	3	1,2,3	1,2	1
Q4	Е	4	10	2	4	1,2,3	1,2	1
Q5	A	5	10	2	5	1,2,3	1,2	1
Q6	Т	6	10	3	6	1,2,3	1,2	1
Q7	Е	1	10	3	1	1,2,3	1,2	1
Q8	A	2	10	2	2	1,2,3	1,2	1
Q9	T	3	10	2	3	1,2,3	1,2	1
Q10	Е	1	10	3	1	1,2,3	1,2	- i -
Q11	A	5	10	3	5	1,2,3	1,2	1
Q12	T	11	10	2	1	1,2,3	1,2	1

VIT-AP	Final Assessment Test – Long Summer (2023-24) - July 2024		
UNIVERSITY	Maximum Marks: 100	Duration: 3 Hours	
Course Code: ECE2002	Course Title: Computer Organization & Architectu	ire	
Set No: 2	Exam Type: Closed Book	School: SENSE	
Date: 20-07-2024	Slot: C	Session: AN	
/.1	- 4 (000		

Keeping mobile phone/smart watch, even in 'off' position is treated as exam malpractice General Instructions if any:

1. "fx series" - non Programmable calculator are permitted: NO

2. Reference tables permitted: NO

Answer any TEN Questions, Each Question Carries 10 Marks (10×10=100 Marks)

- 1. What are basic functions of a computer? Discuss with some real-life example. (10 M)
- 2. Discuss Moor's Law and its significance. (10 M)
- 3. Depict the restoring division Algorithm flowchart and perform binary operation (10 M) to perform 9/3.
- 4. Discuss IEEE 32-bit Floating point representation and present 123.55 in this (10 M) format.
- 5. Develop an 8086 Assembly Language Program (ALP) to find a number in an (10 M) array of 50 numbers located at 3000H: 7000H. An optimum ALP is expected.
- 6. Draw and discuss the flag register of 8086 microprocessor. (10 M)
- 7. What is pipelining in microprocessors and what are its hazards? (10 M)

8. (10 M)

For the IAS computer instructions, LOAD 350; SUB 300; derive the hardwire control unit using state table method. Use the above diagram to identify the control signals.

- 9. Draw the microprogrammed control unit. (10 M)
- 10. Discuss the memory hierarchy in computer. What is the need for this hierarchy? (10 M)
- 11. Perform the memory mapping between the Cache memory of 64 kB to the main memory of 8 GB using 4 way set associative method where the block or page or frame size is of 8 KB.
- 12. A computer has the following memory capacity: Ram: 4 GB (10 M)

Cache: 8 kB

Block size: 32 Bytes

Perform the One-way Set Associative Mapping and discuss the searching process with suitable diagrams.