Analisi Teoremi e Dimostrazioni Esame

Andrea Bellu

2023/2024

Contents

1	\mathbf{Ass}	iomi dei numeri reali
	1.1	Assiomi relativi alle operazioni
	1.2	Assiomi relativi all'ordinamento
		1.2.1 Assioma di completezza
	1.3	Denso
		1.3.1 $\sqrt{2}$
2		mplementi ai numeri reali Massimo, Minimo, Estremo Superiore, Estremo Inferiore
	2.1	2.1.1 Il massimo e il minimo sono unici
		2.1.2 Osservazione
	2.2	Maggiorante e Minorante
	2.3	Teorema dell'esistenza dell'estremo superiore
		2.3.1 Estremo superiore
		2.3.2 Estremo inferiore

1 Assiomi dei numeri reali

- Assiomi relativi alle operazioni
- Assiomi relativi all'ordinamento
- Assioma di completezza

1.1 Assiomi relativi alle operazioni

Sono definite le operazioni di addizione e moltiplicazione tra coppie di numeri reali e valgono le proprietà:

- Proprietà associativa
- Proprietà commutativa
- Proprietà distributiva
- Esistenza degli elementi neutri
- Esisstenza degli opposti
- Esistenza degli inversi

1.2 Assiomi relativi all'ordinamento

E' definita la relazione di Minore o Uguale \leq .

- Dicotomia
- Proprietà Assimetrica
- Assioma di completezza

1.2.1 Assioma di completezza

 $\forall a \in A, \forall b \in A, a \leq b \implies \exists c \in A : a \leq c \leq b$

Esempi:

Figure 1: Esempio 1

Esistono infiniti c.

Figure 2: Esempio 2

$$A = \{x \in \mathbb{R} : x \ge 1\} \quad B = \{x \in \mathbb{R} : x \ge 1\} \implies c = 1$$

Osservazione: Non tutti gli insiemi hanno il più grande o il più piccolo elemento. Ad esempio:

$$A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\} = \{\frac{1}{n} : n \in \mathbb{N}\}$$

Figure 3: Esempio 3

Non ha un elemento più piccolo. (Invece c'è il più grande che è 1).

1.3 Denso

Si dimostra che \mathbb{Q} è denso sulla retta reale (nel senso che fra due numeri razionali è sempre possibile trovare un terzo, anzi infiniti).

$$a = \frac{m_1}{n_1} \quad b = \frac{m_2}{n_2}$$

faccio la media $\frac{a+b}{2}=\frac{\frac{m_1}{n_1}+\frac{m_2}{n_2}}{\frac{m_1}{n_2}}=\frac{m_1n_2+m_2n_1}{2n_1n_2}\implies$ \in $\mathbb Q$

1.3.1 $\sqrt{2}$

 $\sqrt{2}$ non si può rappresentare come numero razionale.

Dimostrazione: Ragioniamo per assurdo, supponiamo che $\sqrt{2}$ sia un numero razionale, cioè $\sqrt{2} = \frac{m}{n}$ con $m, n \in \mathbb{Z}$ posso supporre che m.n siano primi tra loro e che al più uno tra loro sia pari. Allora $2 = \frac{m^2}{n^2} \implies 2n^2 = m^2(\star) \implies m^2$ deve essere pari e quindi m è pari.

Posso esprimere m nella forma: m = 2k con k intero.

Ricavo che $\implies 2n^2 = m^2 = 4k^2$ semplifico per 2 e ottengo $n^2 = 2k^2$

Ripeto il ragionamento precedente $\implies n^2$ pari e quindi anche n pari. Ma allora sia m che n risultano pari, ASSURDO! Avevo supposto che fossero primi ed (al più) uno dei due pari. \clubsuit

Per capire meglio guarda esempi della Francy nella prima lezione.

2 Complementi ai numeri reali

2.1 Massimo, Minimo, Estremo Superiore, Estremo Inferiore

Def: M è il massimo di A
$$\begin{cases} M \in A & (1) \\ M \geq a & \forall a \in A & (2) \end{cases}$$

Il massimo di un insieme di numeri reali A quindi, se esiste, è un numero M dell'insieme A, che è maggiore o uguale ad ogni altro elemento dell'insieme A.

Def: m è il minimo di A
$$\begin{cases} m \in A & (1) \\ m \le a & \forall a \in A & (2) \end{cases}$$

Il minimo di A analogamente, se esiste, è un numero m di A, che è minore o uguale ad ogni altro elemento di A.

2.1.1 Il massimo e il minimo sono unici

Il massimo e il minimo, se esistono, sono unici.

Dimostrazione: Siano M_1 e M_2 due massimi di A.

Ma allora per definizione di massimo,

$$(1) M_1 \ge a \quad (2) M_2 \ge a \quad \forall a \in A$$

Sempre per definizione, M_1, M_2 sono elementi di A.

Quindi da (1) se $a = M_2$, ottengo $M_1 \ge M_2$

Da (2) se $a = M_1$, ottengo $M_2 \ge M_1$

Segue che $M_1 = M_2 \clubsuit$.

2.1.2 Osservazione

Un insieme finito ammette sempre massimo e minimo, ma consideriamo i seguenti insiemi:

- $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, il più grande elemento di A è 1, che è il massimo, il più piccolo non c'è.
- $B = \{1 \frac{1}{n} : n \in \mathbb{N}\} = \{\frac{n-1}{n} : n \in \mathbb{N}\}$, il più piccolo elemento di B è 0, che è il minimo, il più grande non c'è.

2.2 Maggiorante e Minorante

L si dice **maggiorante** per un insieme A se

$$L \ge a \quad \forall a \in A$$

l si dice **minorante** per un insieme A se

$$l \le a \quad \forall a \in A$$

Non sempre un insieme A ammette maggioranti e minoranti.

L'insieme A si dice **limitato superiormente** se ammette un maggiorante.

L'insieme A si dice **limitato inferiormente** se ammette un minorante.

L'insieme A si dice **limitato** se è limitato superiormente ed inferiormente, in simboli:

$$l < a < L \quad \forall a \in A \implies \exists M : |a| < M \quad \forall a \in A$$

2.3 Teorema dell'esistenza dell'estremo superiore

Sia A un insieme non vuoto di numeri reali e limitato superiormente. Allora esiste il minimo dell'insieme dei maggioranti di A.

$$A = \{a \in A\}$$
 $B = \{b \text{ maggiorante di } A\}$

Applichiamo l'assioma di completezza di due insiemi A e B, quindi esiste c numero reale tale che:

$$a \leq c \leq b \quad \forall a \in A \quad \forall b \in B$$

Dato che $c \ge a$ $\forall a \in A, c$ è un maggiorante di A, cioè $c \in B$.

Ma c è anche tale che $c \leq b$ (minore o uguale a tutti gli elementi di B). $\Longrightarrow c$ è un minimo. \clubsuit

Allora possiamo dare la seguente definizione:

2.3.1 Estremo superiore

Def: Sia A un insieme non vuoto di numeri reali e limitato superiormente. Diremo che $M \in \mathbb{R}$ è l'estremo superiore di A se M è il minimo dei maggioranti di A. In simboli:

$$M \text{ estremo superiore di } A \iff \begin{cases} M \geq a & \forall a \in A \ \ (\mathbf{1}) \ \ (\text{M \`e maggiorante}) \\ \forall \varepsilon > 0 & \exists a \in A : M - \varepsilon < a \ \ (\mathbf{2}) \ \ (\text{M \`e il minimo dei maggioranti}) \end{cases}$$

Analogamente:

2.3.2 Estremo inferiore

Def: Sia A un insieme non vuoto di numeri reali e limitato inferiormente. Diremo che m è l'estremo inferiore di A se m è il massimo dei minoranti di A. In simboli:

$$m$$
 estremo inferiore di $A \iff \begin{cases} m \leq a & \forall a \in A \ (1) \ (\text{m è minorante}) \\ \forall \varepsilon > 0 & \exists a \in A : m + \varepsilon > a \ (2) \ (\text{m è il massimo dei minoranti}) \end{cases}$

⇒ Quindi se un insieme è limitato superiormente allora esiste l'estremo superiore ed è un numero reale. Se un insieme è limitato inferiormente, allora esiste l'estremo inferiore ed è un numero reale. Altrimenti:

- $\bullet\,$ L'estremo superiore è $+\infty$ se A non è limitato superiormente
- L'estremo inferiore è $-\infty$ se A non è limitato inferiormente

$$\begin{cases} \sup A = +\infty \iff \forall M \in \mathbb{R} & \exists a \in A : M < a \\ \inf A = -\infty \iff \forall m \in \mathbb{R} & \exists a \in A : m > a \end{cases}$$