CS 471/571 (Fall 2023): Introduction to Artificial Intelligence

Lecture 14: Reinforcement Learning (Part 3)

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder

- •Written assignment 3: MDPs and Reinforcement Learning
 - Deadline: Nov 08th, 2023

Thanh H. Nguyen 10/27/23

Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

Big idea: Compute all averages over T using sample outcomes

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

- Update estimates each transition (s, a, r, s')
- Over time, updates will mimic Bellman updates

Q-Learning

• We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests

$$Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'} Q(s',a')\right]$$

Example

- Two states: A, B
- Two actions: Up, Down
- Discount factor: $\gamma = 0.5$
- Learning rate: $\alpha = 0.5$
- $\mathbf{Q}(A, Down) = ?$
- Q(B, Up) = ?

t	s_t	a_t	s_{t+1}	r_t
0	A	Down	В	2
1	В	Down	В	-4
2	В	Up	В	0
3	В	Up	A	3
4	A	Up	A	-1

$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma\right]$	$\max_{a'} Q(s', a')$
--	-----------------------

Thanh H. Nguyen 10/27/23

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - -- even if you're acting suboptimally!

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions
 (!)

Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
 - •Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate **u** and a visit count **n**, and returns an optimistic utility, e.g.

$$f(u,n) = u + k/n$$

Regular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

Note: this propagates the "bonus" back to states that lead to unknown states as well!

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions:

transition =
$$(s, a, r, s')$$

difference =
$$\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha$$
 [difference]

$$w_i \leftarrow w_i + \alpha$$
 [difference] $f_i(s, a)$

Approximate Q's

Exact Q's

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $f_{DOT}(s, NORTH) = 0.5$

 $f_{GST}(s, NORTH) = 1.0$

$$Q(s',\cdot)=0$$

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

$$difference = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

Q-learning with Linear Approximation

Algorithm 4: Q-learning with linear approximation.

```
Initialize q-value function Q with random weights w: Q(s,a;w) = \sum_m w_m f_m(s,a);

for episode = 1 \rightarrow M do

Get initial state s_0;

for t = 1 \rightarrow T do

With prob. \epsilon, select a random action a_t;

With prob. 1 - \epsilon, select a_t \in \operatorname{argmax}_a Q(s_t, a; w);

Execute selected action a_t and observe reward r_t and next state s_{t+1};

Set target y_t = \begin{cases} r_t & \text{if episode terminates at step } t+1 \\ r_t + \gamma \max_{a'} Q(s_{t+1}, a'; w) & \text{otherwise} \end{cases};

Perform a gradient descent step to update w: w_m \leftarrow w_m + \alpha \left[ y_t - Q(s_t, a_t; w) \right] f_m(s, a);
```

18

Thanh H. Nguyen