Problem B. Arrays: Left Rotation

OS Linux

A *left rotation* operation on an array shifts each of the array's elements $\mathbf{1}$ unit to the left. For example, if $\mathbf{2}$ left rotations are performed on array $[\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}]$, then the array would become $[\mathbf{3},\mathbf{4},\mathbf{5},\mathbf{1},\mathbf{2}]$. Note that the lowest index item moves to the highest index in a rotation. This is called a *circular array*.

Given an array a of n integers and a number, d, perform d left rotations on the array. Return the updated array to be printed as a single line of space-separated integers.

Function Description

Complete the function *rotLeft* in the editor below.

rotLeft has the following parameter(s):

- *int a[n]:* the array to rotate
- *int d*: the number of rotations

Returns

• *int a'*[*n*]: the rotated array

Input Format

The first line contains two space-separated integers n and d, the size of a and the number of left rotations.

The second line contains n space-separated integers, each an a[i].

Constraints

- $1 < n < 10^5$
- 1 < d < n
- $1 \le a[i] \le 10^6$

Input	Output
5 4	5 1 2 3 4
1 2 3 4 5	

Explanation

When we perform d=4 left rotations, the array undergoes the following sequence of changes:

$$[1,2,3,4,5] \rightarrow [2,3,4,5,1] \rightarrow [3,4,5,1,2] \rightarrow [4,5,1,2,3] \rightarrow [5,1,2,3,4]$$