Closure of a Set of Attributes (II)

Algorithm for calculating A^+ is based on the repeated use of the transitivity rule and has a runtime complexity that is quadratic in the size of F

```
A^+ CalculateAttributeClosure(F, A)

// Input: A set F of FDs over a relation schema R and a set A \subseteq R of attributes

// Output: The closure A^+ of attributes for which A \to A^+ holds

A^+ = A; // due to reflexivity rule

repeat

OldA^+ = A^+

for each FD B \to C \in F do

if B \subseteq A^+ then A^+ := A^+ \cup C

until A^+ = OldA^+

return A^+
```

■ Basic idea: $B \subseteq A^+$ means that $A \to B$. Using $B \to C$ and applying the transitivity rule gives us $A \to C$. Therefore, $C \subseteq A^+$ must hold.

Closure of a Set of Attributes (III)

■ Example 1

- ❖ Let R(A, B, C, G, H, I) be a relation schema, and let $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CI \rightarrow G\}$ be a set of FDs
- ❖ Task: Compute AG⁺
- ❖ We use the algorithm CalculateAttributeClosure and set AG⁺ := AG
- ❖ In the loop we set Old_AG⁺ := AG and check all FDs whether they can contribute to AG⁺.
- First we take $A \to B$ and check whether $A \subseteq AG^+$ holds. This is the case. Therefore, we set $AG^+ := AG^+ \cup B = ABG$ (due to transitivity)
- Next, we take $A \rightarrow C$, and using the same argument as before, we obtain $AG^+ := AG^+ \cup C = ABCG$
- Next, we take $CG \rightarrow H$ and find that $CG \subseteq AG^+$ holds so that we get $AG^+ := AG^+ \cup H = ABCGH$
- Next we take $CI \rightarrow G$ and find that $CI \subset AG^+$ holds

Closure of a Set of Attributes (IV)

- ☐ Example 1 (*continued*)
 - Since $Old_AG^+ \neq AG^+$ holds, we perform a second loop and set Old_AG^+ to AG^+ , that is, $Old_AG^+ := ABCGH$
 - ❖ We see soon that no FD from F can increase AG⁺
 - ❖ Since Old_AG⁺ = AG⁺ holds, the algorithm terminates, and we get AG⁺ := ABCGH
- \square Easy method to check whether $A \subseteq R$ is a superkey
 - A is a superkey if $A \rightarrow R$
 - Therefore
 - Compute A⁺
 - Check whether A⁺ = R holds
 - If yes, then *A* is a superkey; otherwise, it is not
 - ❖ In the example above, AG is not a superkey since the attribute I cannot be reached

Closure of a Set of Attributes (V)

- ☐ Example 2
 - ❖ We look at an earlier example again: Given the schema R(A, B, C) and the set $F = \{A \rightarrow B, B \rightarrow C\}$ on R, determine the closure F^+
 - ❖ Determine the power set of ABC, i.e., the set of all sets that are subsets of ABC: {∅, A, B, C, AB, AC, BC, ABC}
 - ❖ Compute the attribute closures of all subsets except Ø
 - $A^{+} = ABC$ $\Rightarrow A \rightarrow A, A \rightarrow B, A \rightarrow C, A \rightarrow AB, A \rightarrow AC, A \rightarrow BC, A \rightarrow ABC [7 FDs]$
 - $B^+ = BC$ ⇒ B → B, B → C, B → BC [3 FDs]
 - $C^+ = C$ $\Rightarrow C \rightarrow C [1 \text{ FD}]$
 - AB^+ = ABC⇒ $AB \rightarrow A$, $AB \rightarrow B$, $AB \rightarrow C$, $AB \rightarrow AB$, $AB \rightarrow BC$, $AB \rightarrow AC$, $AB \rightarrow ABC$ [7 FDs]

Closure of a Set of Attributes (VI)

- ☐ Example 2 (continued)
 - AC^+ = ABC⇒ $AC \rightarrow A$, $AC \rightarrow B$, $AC \rightarrow C$, $AC \rightarrow AB$, $AC \rightarrow AC$, $AC \rightarrow BC$, $AC \rightarrow ABC$ [7 FDs]
 - ♦ $BC^+ = BC$ ⇒ $BC \to B$, $BC \to C$, $BC \to BC$ [3 FDs]
 - $ABC^+ = ABC$ ⇒ ABC → A, ABC → B, ABC → C, ABC → AB, ABC → AC, ABC → BC, ABC → ABC [7 FDs]
 - ❖ Algorithm finds the same 35 FDs of F⁺ as the exponential algorithm for computing F⁺ before
 - ❖ Comments: No valid FD is found more than once, 2^{|R|} 1 sets to explore; for each set, |F| subset tests are needed (cost of a subset test is not constant and implementation dependent); the decomposition of 2^{|R|} 1 attribute closures are needed; algorithm is expensive too but by far not as expensive as the previous one

Equivalence of Sets of Functional Dependencies (I)

- □ Assuming that two students independently determine the sets F and G of FDs respectively for the same schema R
- Question: How can they find out that both sets have the same meaning and are thus equivalent?
- ☐ Answer:

- \Box Two sets F and G of FDs are equivalent if, and only if, $F^+ = G^+$ holds
- ☐ The definition of equivalence is convincing because the equality of the closures of *F* and *G* implies that the same FDs can be inferred from *F* and *G*

Equivalence of Sets of Functional Dependencies (II)

- Equivalence means that every FD in *F* can be inferred from *G*, and every FD in *G* can be inferred from *F*
- □ Example
 - ❖ Show that the two sets $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$ and $G = \{A \rightarrow CD, E \rightarrow AH\}$ are equivalent
 - We show first: Every FD in F can be inferred from G ("G covers F"), i.e., for each FD $X \to Y \in F$ we calculate X⁺ with respect to G and then check whether $Y \subseteq X$ ⁺ holds
 - F has the left-hand sides A, AC, and E
 - With respect to G we calculate A⁺, AC⁺, and E⁺ and obtain A⁺ = ACD, AC⁺ = ACD, and E⁺ = ACDEH
 - We check whether the right-hand sides of the FDs in F are in the respective attribute closures just computed for their left-hand sides:

 $A \rightarrow C$: $C \subseteq A^+$ holds $AC \rightarrow D$: $D \subseteq AC^+$ holds

 $E \rightarrow AD : AD \subset E^{+} \text{ holds}$ $E \rightarrow H : H \subset E^{+} \text{ holds}$

Equivalence of Sets of Functional Dependencies (III)

- ☐ Example (*continued*)
 - We show second: Every FD in G can be inferred from F ("F covers G"), i.e., for each FD $X \to Y \in G$ we calculate X^+ with respect to F and then check whether $Y \subseteq X^+$ holds
 - G has the left-hand sides A and E
 - With respect to F we calculate A⁺ and E⁺ and obtain A⁺ = ACD and E⁺ = ACDEH
 - We check whether the right-hand sides of the FDs in G are in the respective attribute closures just computed for their left-hand sides:

```
A \to CD: CD \subseteq A^+ holds E \to AH: AH \subseteq E^+ holds
```

- ❖ We obtain that *F* covers *G* and *G* covers *F*, i.e., *F* and *G* are equivalent
- □ Two sets F and G of FDs are equivalent if, and only if, F covers G and G covers F

Minimal Cover (I)

- Synonym: canonical cover
- Motivation
 - ❖ FDs in F are integrity constraints that a DBMS has to check with each insertion, update, or deletion for possible violations
 - ❖ Goal for performance reasons: Computation of a *minimal set* of FDs that are equivalent to F
 - Such a minimal set is called a minimal cover
- \square A minimal cover of a set F of FDs is a set F_c of FDs such that
 - \bullet F and F_c are equivalent
 - every FD in F_c has a single attribute on its right-hand side (standard form)
 - **•** it is not possible to replace any FD $X \to A$ in F_c by an FD $Y \to A$ with $Y \subset X$ and still have a set of FDs that is equivalent to F_c
 - ightharpoonup it is not possible to remove any FD from F_c and still have a set of FDs that is equivalent to F_c
- ☐ This representation of a minimal cover is the standard form or canonical form and without redundancies

Minimal Cover (II)

- The nonstandard form of a minimum cover makes use of the union rule and combines the FDs with the same left-hand side into a single FD
- Alternative, equivalent definition: F_c is called a minimal cover (nonstandard form) of a given set F of FDs if holds:
 - **⋄** $F_c = F$, i.e., $F_c^+ = F^+$
 - ❖ In F_c there are no FDs $A \rightarrow B$ where A or B contain extraneous attributes, i.e., they are reduced as much as possible.
 - We cannot omit any attribute on the *left* side of any FD; otherwise, we would change the semantics:

$$\forall \ a \in A : (F_c - \{A \to B\} \cup \{(A - \{a\}) \to B\})^+ \neq F_c^+$$

We cannot omit any attribute on the *right* side of any FD, otherwise we would change the semantics:

$$\forall b \in B : (F_c - \{A \to B\} \cup \{A \to (B - \{b\})\})^+ \neq F_c^+$$

Each left side of the FDs in F_c occurs only once, i.e.,

$$\forall f_1 = A \rightarrow B \in F_c \ \forall f_2 = C \rightarrow D \in F_c, f_1 \neq f_2 : A \neq C$$
 (nonstandard form)

Minimal Cover (III)

☐ Algorithm for computing a minimal cover

```
F<sub>c</sub> CalculateMinimalCover(F)
// Input: A set F of FDs
// Output: A minimal cover F<sub>c</sub>
// Step 1: Initialize F_c
F_c := F
// Step 2: Perform a left reduction of the FDs in F_c, i.e., identify and remove
            all attributes on the left-hand sides of FDs in F_c that are extraneous
for each A \rightarrow B \in F_c do
    for each a \in A do
        if A - \{a\} \neq \emptyset and B \subseteq CalculateAttributeClosure(F_c, A - \{a\}) then
             F_c := F_c - \{A \to B\} \cup \{(A - \{a\}) \to B\}
```

Minimal Cover (IV)

- ☐ Algorithm for computing a minimal cover (*continued*)
 - // Step 3: Perform a right reduction of the remaining FDs in F_c , i.e., identify and remove all attributes on the right-hand sides of FDs in F_c that are extraneous

for each $A \rightarrow B \in F_c$ do

for each $b \in B$ do

if
$$b \in CalculateAttributeClosure(F_c - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\}, A)$$
 then $F_c := F_c - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\}$

// Step 4: Remove all FDs of the form $A \to \emptyset$ from F_c , which have perhaps been produced in the previous step, since they are meaningless

for each
$$A \rightarrow B \in F_c$$
 do

if
$$B = \emptyset$$
 then $F_c := F_c - \{A \rightarrow \emptyset\}$

Minimal Cover (V)

☐ Algorithm for computing a minimal cover (*continued*)

// Step 5a: If the goal is to obtain a minimal cover in standard form, decompose the right-hand sides of all FDs in F_c such that each FD in F_c has a single attribute on its right-hand side

for each
$$A \to B \in F_c$$
 do
if $B = \{b_1, ..., b_n\}$ and $n > 1$ then

$$F_c := F_c - \{A \to B\} \cup \{A \to \{b_1\}, ..., A \to \{b_n\}\}$$

return F_c

Minimal Cover (VI)

☐ Algorithm for computing a minimal cover (*continued*)

// Step 5b: If the goal is to obtain a minimal cover in *nonstandard form*, apply the union rule to all FDs with equal left-hand sides

$$H := F_c$$

$$F_c := \emptyset$$

for each $A \rightarrow B \in H$ do

 $G := \emptyset$ // FDs that have been processed and that have to be deleted from // H at the end of each loop

 $X := \emptyset$ // Union of all right-hand sides of FDs with A on their left-hand side

for each
$$C \rightarrow D \in H$$
 do

if
$$A = C$$
 then

$$G := G \cup \{C \rightarrow D\}$$

$$X := X \cup D$$

$$H := H - G$$

$$F_c := F_c \cup \{A \rightarrow X\}$$

return F_c

Minimal Cover (VII)

- Example 1
 - ❖ Compute a minimum cover for the set $F = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$ of FDs on R(A, B, D)
 - ❖ Step 1
 - $F_c := \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$
 - ❖ Step 2
 - Only AB → D has more than one attribute on its left-hand side
 - To check whether B can be removed, we compute whether $D \subseteq CalculateAttributeClosure(F_c, A)$ holds
 - This is not the case since $A^+ = A$ and $D \not\subset A$ holds
 - To check whether A can be removed, we compute whether D ⊆ CalculateAttributeClosure(F_c, B) holds
 - This is the case since $B^+ = ABD$ and $D \subseteq ABD$
 - Hence, A can be removed, and we obtain $F_c := \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$

Minimal Cover (VIII)

- ☐ Example 1 (continued)
 - ❖ Step 3
 - To check whether A can be removed from $B \to A$, we check whether $A \subseteq CalculateAttributeClosure({B \to \emptyset, D \to A, B \to D}, B)$ holds
 - This is the case since $B^+ = ABD$ and $A \subseteq ABD$
 - Hence, A can be removed, and we obtain $F_c := \{B \to \emptyset, D \to A, B \to D\}$
 - To check whether A can be removed from $D \to A$, we check whether $A \subseteq CalculateAttributeClosure(\{B \to \emptyset, D \to \emptyset, B \to D\}, D)$ holds
 - This is not the case since $D^+ = D$ and $A \subset D$ holds
 - To check whether D can be removed from $B \to D$, we check whether $D \subseteq CalculateAttributeClosure(\{B \to \emptyset, D \to A, B \to \emptyset\}, B)$ holds
 - This is not the case since $B^+ = B$ and $D \not\subset B$ holds
 - After this step we have: $F_c := \{B \to \emptyset, D \to A, B \to D\}$
 - **\$** Step 4: We obtain $F_c := \{D \rightarrow A, B \rightarrow D\}$
 - **\$** Step 5a/5b: $F_c := \{D \rightarrow A, B \rightarrow D\}$ is in both forms

Minimal Cover (IX)

- ☐ Example 2
 - ❖ Compute a minimum cover for the set $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$ of FDs on R(A, B, C)
 - ❖ Step 1
 - $F_c := \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
 - ❖ Step 2
 - Only AB → C has more than one attribute on its left-hand side
 - To check whether A can be removed, we compute whether $C \subseteq CalculateAttributeClosure(F_c, B)$ holds
 - This is the case since $B^+ = BC$ and $C \subseteq BC$
 - Hence, A can be removed, and we obtain $F_c := \{A \rightarrow BC, B \rightarrow C, A \rightarrow B\}$
 - This also means that the number of FDs in F_c has been reduced by 1

Minimal Cover (X)

- ☐ Example 2 (continued)
 - We have so far: $F_c := \{A \rightarrow BC, B \rightarrow C, A \rightarrow B\}$
 - ❖ Step 3
 - To check whether C can be removed from $A \to BC$, we check whether $C \subseteq CalculateAttributeClosure({A \to B, B \to C}, A)$ holds
 - This is the case since $A^+ = ABC$ and $C \subseteq ABC$
 - Hence, C can be removed, and we obtain $F_c := \{A \rightarrow B, B \rightarrow C\}$
 - To check whether B can be removed from $A \to B$, we check whether $B \subseteq CalculateAttributeClosure({A \to \emptyset, B \to C}, A)$ holds
 - This is not the case since $A^+ = A$ and $B \not\subset A$ holds
 - To check whether C can be removed from $B \to C$, we check whether $C \subseteq CalculateAttributeClosure({A \to B, B \to \emptyset}, B)$ holds
 - This is not the case since $B^+ = B$ and $C \not\subset B$ holds
 - After this step we have: $F_c := \{A \rightarrow B, B \rightarrow C\}$
 - ❖ Step 4: Nothing to do since there is no FD with an Ø on its right-hand side
 - **\$\leftrightarrow\$** Step 5a/5b: $F_c := \{A \rightarrow B, B \rightarrow C\}$ is in both forms

Minimal Cover (XI)

■ Example 3

- ❖ This example shows that more than one minimal cover can exist for the same set F of FDs
 - The minimal covers computed for the same F of FDs depend on the order in which the FDs are processed
 - Different orders can lead to different minimal covers
 - However, the algorithm computes exactly one of them; they are all equivalent
- ❖ Compute a minimum cover for the set $F = \{A \rightarrow BC, C \rightarrow AB, B \rightarrow AC\}$ of FDs on R(A, B, C, D)
- Step 1
 - $F_c := \{A \rightarrow BC, C \rightarrow AB, B \rightarrow AC\}$
- ❖ Step 2
 - There is no FD that has more than one attribute on its left-hand side
 - Therefore, nothing has to be done

Minimal Cover (XII)

- ☐ Example 3 (continued)
 - We have so far: $F_c := \{A \rightarrow BC, C \rightarrow AB, B \rightarrow AC\}$
 - ❖ Step 3
 - In A → BC both B and C are extraneous under F_c
 - C can be removed since $C \subseteq CalculateAttributeClosure(\{A \rightarrow B, C \rightarrow AB, B \rightarrow AC\}, A)$ holds: $A^+ = ABC$ and $C \subseteq ABC$
 - B can be removed since $B \subseteq CalculateAttributeClosure({A \rightarrow C, C \rightarrow AB, B \rightarrow AC}, A)$ holds: $A^+ = ABC$ and $B \subseteq ABC$
 - We are not allowed to remove B and C at the same time since the algorithm picks one of the two and deletes it
 - Case 1: C is removed; we get $F_c^1 = \{A \rightarrow B, C \rightarrow AB, B \rightarrow AC\}$
 - *B* is now not extraneous in $A \to B$ since $A^+ = A$ under $\{A \to \emptyset, C \to AB, B \to AC\}$ holds and $B \not\subset A$ holds
 - Continuing the algorithm, we find that A and B are extraneous in the right-hand side of $C \rightarrow AB$ under F_c^{-1}
 - B can be removed since $B \subseteq CalculateAttributeClosure({A \rightarrow B, C \rightarrow A, B \rightarrow AC}, C)$ holds: $C^+ = ABC$ and $B \subseteq ABC$

Minimal Cover (XIII)

- ☐ Example 3 (continued)
 - Step 3 (continued)
 - A can be removed since $B \subseteq CalculateAttributeClosure(\{A \rightarrow B, C \rightarrow B, B \rightarrow AC\}, C)$ holds: $C^+ = ABC$ and $A \subseteq ABC$
 - Case 1.1: B is removed; we get $F_c^2 = \{A \rightarrow B, C \rightarrow A, B \rightarrow AC\}$
 - o A is now not extraneous in $C \to A$ since $C^+ = C$ under $\{A \to B, C \to \emptyset, B \to AC\}$ holds and $A \not\subset C$ holds
 - o C is not extraneous in $B \to AC$ since $B^+ = AB$ under $\{A \to B, C \to A, B \to A\}$ holds and $C \not\subset AB$ holds
 - o A is extraneous in $B \to AC$ since $B^+ = ABC$ under $\{A \to B, C \to A, B \to C\}$ holds and $A \subseteq ABC$ holds
 - We get $F_c^3 = \{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$
 - C is not extraneous in $B \rightarrow C$ since $B^+ = B$ under $\{A \rightarrow B, C \rightarrow A, B \rightarrow \emptyset\}$ holds and $C \not\subset B$ holds
 - The algorithm terminates, and we obtain the first minimal cover $F_{c1} = \{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$

Minimal Cover (XIV)

- ☐ Example 3 (continued)
 - Step 3 (continued)
 - Case 1.2: A is removed; we get $F_c^4 = \{A \rightarrow B, C \rightarrow B, B \rightarrow AC\}$
 - o B is now not extraneous in $C \to B$ since $C^+ = C$ under $\{A \to B, C \to \emptyset, B \to AC\}$ holds and $B \not\subset C$ holds
 - C is not extraneous in $B \rightarrow AC$ since $B^+ = AB$ under $\{A \rightarrow B, C \rightarrow B, B \rightarrow A\}$ holds and $C \not\subset AB$ holds
 - o A is not extraneous in $B \to AC$ since $B^+ = BC$ under $\{A \to B, C \to B, B \to C\}$ holds and $A \not\subset BC$ holds
 - o The algorithm terminates, and we obtain the second minimal cover $F_{c2} = \{A \rightarrow B, C \rightarrow B, B \rightarrow AC\}$
 - Case 2: *B* is removed; we get $F_c^5 = \{A \rightarrow C, C \rightarrow AB, B \rightarrow AC\}$
 - Similarly to case 1, we obtain two further minimal covers:

$$\circ F_{c3} = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$$

$$\circ F_{c4} = \{A \rightarrow C, C \rightarrow AB, B \rightarrow C\}$$

Minimal Cover (XV)

- ☐ Example 3 (continued)
 - Step 3 (continued)
 - For $F = \{A \rightarrow BC, C \rightarrow AB, B \rightarrow AC\}$ we have detected the following four minimal covers:

•
$$F_{c1} = \{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$$

•
$$F_{c2} = \{A \rightarrow B, C \rightarrow B, B \rightarrow AC\}$$

•
$$F_{c3} = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$$

•
$$F_{C4} = \{A \rightarrow C, C \rightarrow AB, B \rightarrow C\}$$

- Note that more minimal covers can be found for F
- ❖ Step 4
 - There is no FD with an Ø on its right-hand side
- Step 5a
 - We have to modify F_{c2} and F_{c4} and obtain

$$F_{c2}$$
' = { $A \rightarrow B, C \rightarrow B, B \rightarrow A, B \rightarrow C$ }

$$F_{c4}$$
' = { $A \rightarrow C, C \rightarrow A, C \rightarrow B, B \rightarrow C$ }

❖ Step 5b: F_{c1} , F_{c2} , F_{c3} , and F_{c4} are already in nonstandard form