11/20

Saturday, November 18, 2023 18:56

1. For a matrix A that is diagonalizable, we can write $A=PDP^{-1}$. Is this decomposition unique?

- 2. Consider 6×6 matrix A with eigenvalues 0, 1,2. It is known that $E_{\{\lambda=1\}}$ is of dimension 3 and $E_{\{\lambda=0\}}$ is of dimension 2. Determine the characteristic polynomial of A. Is A diagonalizable?
- 3. Let $\lambda_1,\dots,\,\lambda_n$ be complex eigenvalues of matrix A, counting multiplicities. Show that

a.
$$det A = \prod_{i=i}^n \lambda_i$$

b.
$$trA = \sum_{i=1}^n \lambda_i$$

- 4. Square matrix A is said to be nilpotent if there exits $k \in \mathbb{N}$ such that $A^k = (0)$.
 - a. Show that if A is nilpotent, then its only eigenvalue is 0.
 - b. Give an example of a non-zero $\,3 \times 3\,$ matrix A such that $A^2 = (0)$.
- 5. Let A be a symmetric real valued matrix. Show that
 - a. All of A's eigenvalues are real.
 - b. Eigenspaces of A are orthogonal to each other.
- 6. Diagonalize the following matrices if possible

a.
$$\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

b.
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

We have covered that matrix A is diagonaliable iff

- 1. geomMulti of each eigenvalue sums to n
- 2. geomMulti = algeMult for each eigenvalue
- 3. There exists an eigenbasis for V

Please cover this since I will need this for spectral theoren

Please remind them that b is symmetric and its eigenspace orthogonal to each other as shown in 5b