High Level Applications for RL

- Currently Proficient: Video Game Al's and basic reward tasks
- In Progress:
 - · Self driving cars
 - Autonomous robots (manufacturing)
 - Finance
 - · Various other autonomy tasks

Markov Decision Process

- Markov Decision Process (MDP). We assume that reward function and transition probabilities are known and available to the robot. More specifically, we are provided with
 - a set of states S
 - a set of actions A
 - a transition probability function T(s, a, s') = p(s'|a, s)
 - a reward function R(s, a, s') (or just R(s'))
- Reinforcement Learning The reward function and transition probabilities are unknown (except for their form), and the robot only knows
 - a set of states S
 - a set of actions A

3 states, S1, S2, S3 (overheat)

$$A = \{A_{safe, A_{risk}}\}$$

$$S = \{S_{cold}, S_{warm}, S_{hot}\}$$

Transition probabilities: always half and half

Reward Function

S, a S'	S_cold	S_warm	S_hot
S_cold, A_safe	+1		
S_cold, A_risk	+3	+3	
S_warm, A_safe	+1	+1	
S_warm, A_risk		+3	-10

- If T is deterministic, this is just a graph problem
- Present each of the varaibles in the context of a simple example, maybe a grid
- Various formulations of MDPs

Utility Function/Discounted Utility/Policy

- Method of aggregating rewards in order to quantify success
- "What we want to optimize"
- "Why discounted utility necessary?"
 - To make an infinite sum finite

$$U([s_0, s_1, s_2 \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$
$$= \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \sum_{t=0}^{\infty} \gamma^t R_{max} = \frac{R_{max}}{1 - \gamma}$$

Value Iteration Algorithm

- $V^*(s)$ The value of state s, i.e., the expected utility of starting in state s and acting optimally thereafter.
- $Q^*(s, a)$ The Q value of state s and action s. It is the expected utility of starting in state s, taking action a and acting optimally thereafter.
- $\pi^*(s)$ –The optimal policy. $\pi^*(s)$ specifies the action we should take in state s. Following policy π^* would, in expectation, result in the highest expected utility (see Figure 44).

The equations:

$$V^*(s) = \max_{a} Q^*(s, a) = Q^*(s, \pi^*(s))$$
(313)

$$Q^*(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma V^*(s')]$$
(314)

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$
(315)

$$= \sum_{s'} T(s, \pi^*(s), s') [R(s, \pi^*(s), s') + \gamma V^*(s')]$$
(316)

The algorithm:

- Start with V₀^{*}(s) = 0, for all s ∈ S
- Given $V_i^\star,$ calculate the values for all states $s \in S$ (depth i+1):

$$V_{i+1}^{\star}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{i}^{\star}(s')]$$

Value Iteration Example:

0 (P1)	End (+100)	
0 (P2)	Lava (-10)	
0 (P3)	Start (0)	

Each square is V_i(s)

Discount factor = 1 (no discount)

Iteration (i)	Start	P1	P2	P3	Lava
0	0	0	0	0	0
1	0	+100	0	0	+100
2	+90 (to Lava)	+100	+100	0	+100
3	+90 (to Lava)	+100	+100	+100	+100
4	+100 (to P3)	+100	+100	+100	+100

Discount factor 0.5:

Iteration (i)	Start	P1	P2	P3	Lava
0	0	0	0	0	0
1	0	+100	0	0	+100
2	+40 (to Lava) [+50 - 10]	+100	+50	0	+100
3	+40	+100	+50	+25	+100
4	+40 (Lava)	+100	+50	+25	+100

- Q₄*(Start, West) would be 12.5 so we go through lava
- · Q-value iteration, same concept

The Q-Value Iteration Algorithm

- Start with $Q_0^*(s, a) = 0$ for all $s \in S$, $a \in A$.
- Given $Q_i^*(s, a)$, calculate the q-values for all states (depth i+1) and for all actions a:

$$Q_{i+1}^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma \max_{a'} Q_i^*(s',a')]$$

Reinforcement Learning

- Don't know R or T (or impossible to evaluate V* immediately)
- Model-based vs model-free, learning T/R vs not
- · Sample empirically for model-based

$$T(s, a, s') = \frac{count(s, a, s')}{\sum_{s'} count(s, a, s')}$$
$$R(s, a, s') = \frac{\sum_{t} R_t(s, a, s')}{count(s, a, s')}$$

Model-Free Stuff

- Sample-based estimation suffers from low sample sizes
- Solution: maintaining exponential running average

$$\bar{x}_n = \frac{x_n + (1 - \alpha) * x_{n-1} + (1 - \alpha)^2 * x_{n-2}}{1 + (1 - \alpha) + (1 - \alpha^2) + \dots}$$

$$\bar{x}_n = \alpha * x_n + (1 - \alpha) * \bar{x}_{n-1}$$

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha[sample]$$

$$sample = R(s, a, s') + \gamma \max_{a'} Q_i(s', a')$$

• Overall Q-learning algorithm and relationship to gradient descent (convergence requirements)

Exploration/Exploitation

- ε randomization, ε probability of taking random action, (1-ε) probability following our Q
- ε high to account for noisy estimates at the beginning, decrease over time

Deep Learning

- Playing Breakout, pixel representation (need 2 frames for directional velocity comp.)
- Can't represent in table, too many states

Useful Links:

Atari Paper

Helpful Deep Learning Introduction

Videos:

https://youtu.be/xOCurBYI_gY?t=15m10s "Tetris AI gets philosophical" https://www.youtube.com/watch?v=V1eYniJ0Rnk "Google AI is *smart*" https://www.youtube.com/watch?v=6QuMyq85 A "Go to the pink dot"