6.10 1) Puisque E est de dimension finie, il existe une base finie de E.

D'après l'exercice 6.8 1), l'image par h de cette base constitue une famille finie de générateurs de Im(h).

Vu le deuxième théorème de la page 4.4, on peut extraire de cette famille de générateurs une base $(f_1; \ldots; f_n)$ de Im(h).

2) (a) Soient $\alpha_1, \ldots, \alpha_n$ des scalaires tels que $\alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n = 0$.

En appliquant l'application linéaire h aux deux membres de cette égalité, on obtient :

$$h(\alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n) = h(0)$$

$$\alpha_1 \cdot h(e_1) + \ldots + \alpha_n \cdot h(e_n) = 0$$

$$\alpha_1 \cdot f_1 + \ldots + \alpha_n \cdot f_n = 0$$

Puisque les vecteurs f_1, \ldots, f_n sont linéairement indépendants, on doit avoir $\alpha_1 = \ldots = \alpha_n = 0$.

On a ainsi montré que la famille $(e_1; \ldots; e_n)$ est libre.

(b) On pose $I = \langle e_1; \dots; e_n \rangle$.

Soit $x \in E$. Il existe $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tels que $h(x) = \alpha_1 \cdot f_1 + \ldots + \alpha_n \cdot f_n$.

On pose $v = \alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n \in \langle e_1; \ldots; e_n \rangle = I$ et u = x - v.

i.
$$h(u) = h(x - v) = h(x) - h(v) = h(x) - h(\alpha_1 \cdot e_1 + \dots + \alpha_n \cdot e_n)$$

$$= (\alpha_1 \cdot f_1 + \dots + \alpha_n \cdot f_n) - (\alpha_1 \cdot \underbrace{h(e_1)}_{f_1} + \dots + \alpha_n \cdot \underbrace{h(e_n)}_{f_n}) = 0$$

Par conséquent $u \in \text{Ker}(h)$.

ii. x = u + v avec $u \in \text{Ker}(h)$ et $v \in I$, c'est-à-dire $x \in \text{Ker}(h) + I$.

(c) Soit $u \in \text{Ker}(h) \cap I$.

Puisque $u \in I$, il existe $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ tels que $u = \alpha_1 \cdot e_1 + \dots + \alpha_n \cdot e_n$.

Vu que $u \in \text{Ker}(h)$, on a :

$$0 = h(u) = h(\alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n) = \alpha_1 \cdot h(e_1) + \ldots + \alpha_n \cdot h(e_n)$$

= $\alpha_1 \cdot f_1 + \ldots + \alpha_n \cdot f_n$.

Attendu que la famille $(f_1; \ldots; f_n)$ est libre, cela implique $\alpha_1 = \ldots = \alpha_n = 0$.

Il en résulte que $u = 0 \cdot e_1 + \ldots + 0 \cdot e_n = 0$.

On a donc montré que $\operatorname{Ker}(h)\cap \mathcal{I}=\{0\}\,.$

On conclut grâce à la relation de Grassmann :

$$\dim(\mathbf{E}) = \dim\bigl(\mathrm{Ker}(h)\bigr) + \underbrace{\dim(\mathbf{I})}_{=\dim\bigl(\mathrm{Im}(h)\bigr)} - \underbrace{\dim\bigl(\mathrm{Ker}(h)\cap\mathbf{I}\bigr)}_{=0}.$$