

Complexity of Answering Unions of Conjunctive Queries

Nofar Carmeli

Joint work with Christoph Berkholz, Benny Kimelfeld, Markus Kröll, Nicole Schweikardt, and Shai Zeevi

Recent Work on DB Enumeration Fine-Grained Complexity

- Query Evaluation incorporating updates
 - [Berkholz, Keppeler, Schweikardt ICDT18]
- Query Evaluation using integrity constraints
 - [C,Kröll ICDT18]
- Query Evaluation using sparsity
 - [Schweikardt, Segoufin, Vigny PODS18]
- Query Evaluation over graphs and strings
 - [Amarilli, Bourhis, Mengel, Niewerth PODS19]
- Query Evaluation over extractions from text
 - [Florenzano, Riveros, Ugarte, Vansummeren, Vrgoc PODS18]

Goal

CQs UCQs

Relational DBs and UCQs

researchers:

Name	Affiliation
Karl Bringmann	Max Planck Institute
Seth Pettie	University of Michigan
Barna Saha	UC Berkeley

attendance:

Person	Workshop
Daniel Soudry	Learning Theory
Karl Bringmann	Fine-grained Complexity
Vinod Vaikuntanathan	Cryptography

 $Q(y,z) \leftarrow \text{researchers}(x,y), \text{attendance}(x,z)$ $\{(y,z)|\exists z: (x,y) \in \text{researchers}, (x,z) \in \text{attendance}\}$

Institution	Workshop
Technion	Learning Theory
Max Planck Institute	Fine-grained Complexity
•••	

- CQs: Conjunctive Queries
- UCQs: Unions of CQs
 - Equivalent to positive relational algebra
- The lower bounds assume no self-joins

Complexity of Queries

researchers:

Name	Affiliation
Karl Bringmann	Max Planck Institute
Seth Pettie	University of Michigan
Barna Saha	UC Berkeley

attendance:

Person	Workshop
Daniel Soudry	Learning Theory
Karl Bringmann	Fine-grained Complexity
Vinod Vaikuntanathan	Cryptography

 $Q(x, z) \leftarrow researchers(x, y), attendance(x, z)$

Institution	Workshop
Technion	Learning Theory
Max Planck Institute	Fine-grained Complexity
•••	

- Treat every query as a problem
 - Input: DB instance
 - Query size: constant
- Using the RAM model

Goals

Enumeration

Random Permutation

Idea: Separate the Task

Find the number N of answers

8

Find a random permutation of 1,...,N

3 7 1 2 4 6 5 8

Random access to answers

Definitions

Random Access

- Given i, returns the ith answer or "out of bound".
- No constraints on the ordering used

Goals

Enumeration

Random Permutation

Random Access

Goal
CQS
UCQs

CQs Dichotomy

After linear preprocessing

Acyclic Free Connex

random access $O(\log n)$

enumeration O(1) delay

random permutation $O(\log n)$ delay

Also efficient counting, membership testing, etc.

Acyclic Not Free Connex

random access $O(\log n)$

enumeration O(1)-delay

random permutation $O(\log n)$ -delay

Assuming the hardness of Boolean matrix multiplication

Cyclic

random access $O(\log n)$

enumeration O(1)-delay

random permutation $O(\log n)$ -delay

Cannot find any answer in O(n) time Assuming the hardness of finding hypercliques

Definitions

An acyclic CQ has a graph with:

A free-connex CQ also requires:

1. a node for every atom possibly also subsets

2. tree

3. for every variable X: the nodes containing X form a subtree

4. a subtree with exactly the free variables

Free-Connex CQs

$$Q(x, y, z) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w)$$

Can be answered efficiently

- 1. Find a join tree
- 2. Remove dangling tuples [Yannakakis81]
- 3. Ignore existential variables
- 4. Join

Acyclic non-free-connex CQs [BaganDurandGrandjean CSL'2007]

Assumption: Boolean matrices cannot be multiplied in time $O(m^{1+o(1)})$ m = number of ones in the input and output

Acyclic non-free-connex: $Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$

O(m) preprocessing + $O(\log(m))$ delay = $O(m \log(m))$ total \implies not possible

[Brault-Baron 2013]

Cyclic CQs

Assumption: k-Hypercliques cannot be found in time O(m)m = number of edges of size k-1

Cyclic: $Q(x, y, z) \leftarrow R_1(x, y), R_2(y, z), R_3(x, z)$

CQs Dichotomy

After linear preprocessing

Acyclic Free Connex

random access $O(\log n)$

enumeration O(1) delay

random permutation $O(\log n)$ delay

Also efficient counting, membership testing, etc.

Acyclic Not Free Connex

random access $O(\log n)$

enumeration O(1)-delay

random permutation $O(\log n)$ delay

Assuming the hardness of Boolean matrix multiplication

Cyclic

random access $O(\log n)$

enumeration O(1)-delay

random permutation $O(\log n)$ -delay

Cannot find any answer in O(n) time Assuming the hardness of finding hypercliques

Goal CQs UCQs

Enumeration: Easy U Easy = Easy

[DurandStrozecki CSL'2011]

```
while A.has_next():

a = A.next()

if a in B:

print B.next()

else:

prints A\B 

print a

while B.has_next():

print B.next()
```

A\B and B are a partition of AUB

Access: Easy U Easy = Sometimes Hard

Proof (Example):

- $Q_1(x, y, z) \leftarrow R(x, y), S(y, z)$ free-connex
- $Q_2(x, y, z) \leftarrow S(y, z), T(x, z)$ free-connex
- $Q_1 \cap Q_2(x, y, z) \leftarrow R(x, y), S(y, z), T(x, z)$ cyclic
 - Cannot determine whether $|Q_1 \cap Q_2| > 0$ in linear time assumption: cannot find a triangle in a graph in linear time.
- Assume by contradiction $Q_1 \cup Q_2 \in \mathsf{RandomAccess}$
 - Ask for answer number $|Q_1| + |Q_2|$
 - This checks if $|Q_1 \cup Q_2| < |Q_1| + |Q_2|$ in linear time
 - This determines whether $|Q_1 \cap Q_2| = |Q_1| + |Q_2| |Q_1 \cup Q_2| > 0$

Open Problem!

- How hard is random permutation?
- First Step:
 Can this example be solved in log delay?

Example:

$$Q_1(x, y, z) \leftarrow R(x, y), S(y, z)$$

$$Q_2(x, y, z) \leftarrow S(y, z), T(x, z)$$
Answer $Q_1 \cup Q_2$

Unions with Hard CQs

$$Q_1(x,y) \leftarrow R_1(x,y), R_2(y,z), R_3(z,x)$$
 $Q_2(x,y) \leftarrow R_1(x,y), R_2(y,z)$
 $Q_2(x,y) \leftarrow Q_1(x,y), R_2(y,z)$
 $Q_1 \subseteq Q_2 \implies Q_1 \cup Q_2 = Q_2$

- Previous claim:
 - Non-redundant unions with a hard CQ are always hard
- We show:
 - They are sometimes easy
 - Even if they contain only hard CQs
- Example: $Q_1(x, z, w, u), Q_2(u, z, y, x) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w), R_4(w, u)$

Open Problem!

- What characterizes easy to enumerate UCQs?
- First Step:

What is the complexity for the examples?

[Carmeli, Kröll: On the Enumeration Complexity of Unions of Conjunctive Queries. PODS 2019]

$$Q_{1}(x, y, w) \leftarrow R_{1}(x, z), R_{2}(z, y), R_{3}(y, w)$$

$$Q_{2}(x, y, w) \leftarrow R_{1}(x, t_{1}), R_{2}(t_{2}, y), R_{3}(w, t_{3})$$

 w, t_3

Goal CQs UCQs Thank You.