

Winning Space Race with Data Science

Snehar Singh Gujral 27/12/2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Objective:

Predict the successful landing of SpaceX Falcon 9's first stage using historical launch data.

Key Findings:

High accuracy models achieved over 90% accuracy.

ROC-AUC scores indicate excellent classification performance.

Tools and Techniques Used:

Python, Pandas, NumPy, Requests, SQL, Folium, Plotly Dash, Scikit-learn.

Introduction

Background

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch.

Problem Statement

Predicting the success of first-stage landings to optimize launch operations and reduce costs.

Goals:

Analyze historical launch data. Develop predictive models to forecast landing success. Create interactive visualizations for data-driven insights

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - · Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection – SpaceX API

 https://github.com/irhen-chan/-IBM-Data-Science-Professional-Certificate/blob/8ab8b2034da8f3e3a414c3b ab608b7fc0944fbd7/applied_data_sci_projec t/jupyter-labs-spacex-data-collectionapi.ipynb

```
import requests
import pandas as pd

spacex_url = "https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url)
launches_data = response.json()
df = pd.DataFrame(launches_data)
```

Data Wrangling

- Handling missing values.
- Encoding categorical variables using One-Hot Encoding.
- Feature engineering (e.g., extracting launch dates, booster versions)
- •https://github.com/irhen-chan/-IBM-Data-Science-Professional-Certificate/blob/8ab8b2034da8f3e3a414c3bab608b7fc0944fbd7/applied_data_sci_project/labs-jupyter-spacex-Data%20wrangling.ipynb.

EDA with Data Visualization

https://github.com/irhen-chan/-IBM-Data-Science-Professional-Certificate/blob/8ab8b20 34da8f3e3a414c3bab608 b7fc0944fbd7/applied_data_sci_project/edadataviz.ipynb

EDA with SQL

0	one.												
[57]:	Landing_Outcome	Outcome_Count				Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG	Orbit	Customer Missic
	No attempt	10	- Done			2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	(LEO	SpaceX
	Success (drone ship)	5	52]:	Mission_Outcome	Outcome_Count					Dragon demo flight			
	Failure (drone ship)	5		Failure (in flight)	1	2010- 12-08 15:43:00	F9 v1.0 B0004	CCAFS LC- 40	(LEO (ISS)	NASA (COTS)	
	Success (ground pad)	3		Success	98	12-00						(.55)	NRO
	Controlled (ocean)	3		Success	1	2012- 7:44:00		F9 v1.0 B0005	CCAFS LC-	Dragon demo flight	525	LEO	NASA
	Uncontrolled (ocean)	2	Suc	ccess (payload status unclear)	1	05-22			40	C2		(ISS)	(COTS)
	Failure (parachute)	2											
	Precluded (drone ship)	1											

https://github.com/irhen-chan/-IBM-Data-Science-Professional-Certificate/blob/8ab8b2034da8f3e3a414c3bab608b7fc0944fbd 7/applied_data_sci_project/jupyter-labs-eda-sqlcoursera_sqllite.ipynb

Build an Interactive Map with Folium

 https://github.com/irhen-chan/-IBM-Data-Science-Professional-Certificate/blob/8ab8b2034da8f3e 3a414c3bab608b7fc0944fbd7/appli ed_data_sci_project/lab_jupyter_la unch_site_location.ipynb

Build a Dashboard with Plotly Dash

 https://github.com/irhen-chan/-IBM-Data-Science-Professional-Certificate/blob/8ab8b2034da8f3e3a414c3bab6 08b7fc0944fbd7/applied_data_sci_project/space x_dash_app.py

SpaceX Launch Records Dashboard

ande (Kd):

Predictive Analysis (Classification)

 https://github.com/irhen-chan/-IBM-Data-Science-Professional-Certificate/blob/8ab8b2034da8f3e3a414c3bab608 b7fc0944fbd7/applied_data_sci_project/SpaceX_M achine%20Learning%20Prediction_Part_5.ipynb

Models Evaluated:

- Logistic Regression
- Support Vector Machines (SVM)
- Decision Trees
- K-Nearest Neighbors (KNN)

Results

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

CCAFS LC-40
VAFB SLC-4E

KSC LC-39A

All Launch Site Names

Launch Site Names Begin with 'CCA'

1:	%sql SELE	CT * FROM	SPACEXTABLE WHE	RE "Launch_Sit	e" LIKE 'CCA%' LIMIT 5;					
	* sqlite Done.	:///my_da	ta1.db							
1:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
	2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012-05- 22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012-10- 08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Task 3

Total Payload Mass

Total_Payload

48213

Average Payload Mass by F9 v1.1

```
[41]: %sql SELECT AVG("PAYLOAD_MASS__KG_") AS "Avg_Payload" FROM SPACEXTABLE WHERE "Booster_Version" like 'F9 v1.1%';

* sqlite://my_data1.db
Done.

Avg_Payload

2534.6666666666665
```

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%sql SELECT "Booster_Version"FROM SPACEXTABLE WHERE "Landing_Outcome" = 'Success (drone ship)' AND "PAYLOAD_MASS__KG_" BETWEEN 4000 AND 6000;

    * sqlite:///my_datal.db
Done.

### Booster_Version

### FFT B1022

### FFT B1021.2

### FFT B1031.2
```

Total Number of Successful and Failure Mission Outcomes

List the total number of successful and failure mission outcomes 1

```
# sqlite://my_data1.db
Done.
# sqlite://my_data1.db
Done.

* Mission Outcome Outcome Count
# Space Coun
```

Mission_Outcome	Outcome_Count
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

Boosters Carried Maximum Payload

6]:	Month	Landing_Outcome	"BoosterVersion"	Launch_Site
	01	Failure (drone ship)	BoosterVersion	CCAFS LC-40
	04	Failure (drone ship)	BoosterVersion	CCAFS LC-40

2015 Launch Records

Rank Landing
Outcomes Between
2010-06-04 and
2017-03-20

Outcome_Count	Landing_Outcome
10	No attempt
5	Success (drone ship)
5	Failure (drone ship)
3	Success (ground pad)
3	Controlled (ocean)
2	Uncontrolled (ocean)
2	Failure (parachute)
1	Drechided (drone ship)

<Folium Map Screensho t 1>

<Folium Map Screensho t 2>

<Folium Map Screensho t 3>

iii

KSC LC-39A CCAFS LC-40 VAFB SLC-4E CCAFS SLC-40

Total Success Launches by Site

<Dashboard Screenshot 1>

<Dashboard Screenshot 2>

Payload range (Kg):

Correlation between Payload and Success for all Sites

<Dashboard Screenshot 3>

Classification Accuracy

Confusion Matrix

Conclusions

• Summary of Findings:

- · Successful prediction of first-stage landing with high accuracy.
- Identification of key factors influencing landing success.

Implications:

- Enhancing operational efficiency for SpaceX.
- Reducing costs through better prediction models.

• Future Work:

- Incorporating real-time data for dynamic predictions.
- Exploring ensemble models for improved performance.
- Deploying the dashboard for broader accessibility.

