JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, September/October - 2021 MATHEMATICS-I

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE, MIE, PTM, MSNT)
Time: 3 Hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

- - -

1.a) Solve
$$\left(y\left(1+\frac{1}{x}\right)+\cos y\right)dx+\left(x+\log x-x\sin y\right)dy=0$$

b) Solve
$$y'' - 2y' + 2y = x + e^x \cos x$$

[8+7]

- 2.a) Solve by the method of variation of parameters $y'' 6y' + 9y = \frac{e^{3x}}{x^2}$.
 - b) Uranium disintegrates at a rate proportional to the amount then present at any instant. If M_1 and M_2 grams of uranium are present at times T_1 and T_2 respectively, find the half-life of uranium.

 [8+7]
- 3.a) Find the value of K such that the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & K & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2.
 - b) Show that the only real and value of λ for which the following equations have non-trivial solution is 6 and solve them when $\lambda = 6$

$$x + 2y + 3z = \lambda x, 3x + y + 2z = \lambda y, 2x + 3y + z = \lambda z$$
 [7+8]

- 4.a) Reduce the matrix A to its normal form where $A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$ and find its rank.
 - b) Solve the following system of equations by Gauss elimination method: $2x_1 + x_2 + 4x_3 = 12$, $8x_1 3x_2 + 2x_3 = 20$, $4x_1 + 11x_2 x_3 = 33$.

[7+8]

5.a) Find the Eigen values and the corresponding Eigen vectors of the matrix

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

b) Find the nature of the quadratic form, index and signature of $10x^2 + 2y^2 + 5z^2 - 4xy + 6yz - 10xz$ by reducing to the canonical form. [7+8]

- 6.a) Determine the Eigen values of the matrix A^{-1} where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 3 & 3 \end{bmatrix}$. Also, find the
 - Corresponding Eigen vectors of A.

 Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. Find A^{-1} . [8+7]
- 7.a) If x+y+z=u, y+z=uv, z=uvw. Then evaluate $\frac{\partial(x,y,z)}{\partial(u,v,w)}$
 - b) Find the shortest distance from origin to the surface $xyz^2 = 2$. [7+8]
- 8.a) Form the partial differential equation from $z = ax^3 + by^3$ by eliminating a and b.
 - b) Find the general solution of $y^2zp + x^2zq = y^2x$. [7+8]

---00000---