Dinamica dei Fliudi Lezione 13 – a.a. 2009-2010

Simone Zuccher

01 Giugno 2010

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

1 Sistemi iperbolici non lineari

1.1 Riassunto delle possibili soluzioni del problema di Riemann

Consideriamo il problema di Riemann per il sistema nonlineare iperbolico

$$\begin{cases} \mathbf{u}_t + [\mathbf{f}(\mathbf{u})]_x = 0 \\ \mathbf{u}(x,0) = \mathbf{u}_0(x) = \begin{cases} \mathbf{u}_l & \text{se } x < 0 \\ \mathbf{u}_r & \text{se } x > 0. \end{cases} \end{cases}$$
(1.1)

Nel caso lineare $\mathbf{f}(\mathbf{u}) = A\mathbf{u}$, gli autovalori λ_p sono costanti, ciascun campo caratteristico è linearmente degenere, e ciascuna soluzione elementare è una discontinuità che si propaga alla velocità $S_p = \lambda_p$.

Nel caso non lineare (1.1), le soluzioni elementari possono essere di tre tipi: onde d'urto, discontinuità di contatto (note anche come onde di contatto) e onde di rarefazione.

• Onde d'urto. Nel caso di onda d'urto il p-esimo campo caratteristico associato all'autovalore $\lambda_p(\mathbf{u})$ è genuinamente non lineare e i due stati costanti \mathbf{u}_l e \mathbf{u}_r sono connessi da una discontinuità per la quale valgono le seguenti relazioni

$$\mathbf{f}(\mathbf{u}_r) - \mathbf{f}(\mathbf{u}_l) = S_p(\mathbf{u}_r - \mathbf{u}_l)$$

$$\lambda_p(\mathbf{u}_l) > S_p > \lambda_p(\mathbf{u}_r),$$

ovvero valgono le relazioni di Rankine-Hugoniot e nel piano x-t le linee caratteristiche "entrano" sia da destra che da sinistra nell'onda d'urto.

• Discontinuità di contatto. Nel caso di discontinuità di contatto il p-esimo campo caratteristico associato all'autovalore $\lambda_p(\mathbf{u})$ è linearmente degenere e i due stati

costanti \mathbf{u}_l e \mathbf{u}_r sono connessi da una discontinuità per la quale valgono le seguenti relazioni

$$\mathbf{f}(\mathbf{u}_r) - \mathbf{f}(\mathbf{u}_l) = S_p(\mathbf{u}_r - \mathbf{u}_l)$$

$$\lambda_p(\mathbf{u}_l) = \lambda_p(\mathbf{u}_r) = S_p$$

$$\frac{\mathrm{d}u_1}{r_p^{(1)}} = \frac{\mathrm{d}u_2}{r_p^{(2)}} = \frac{\mathrm{d}u_3}{r_p^{(3)}} = \dots = \frac{\mathrm{d}u_m}{r_p^{(m)}},$$

dove $r_p^{(1)}$ è la prima componente dell'autovettore destro associato a λ_p , $r_p^{(2)}$ la seconda e così via, ovvero $\mathbf{r}_p = [r_p^{(1)}, r_p^{(2)}, r_p^{(3)}, \dots, r_p^{(m)}]^T$. La seconda relazione assicura che nel piano x-t le linee caratteristiche sono tutte parallele tra loro e parallele alla discontinuità di contatto, sia a destra che a sinistra di essa.

• Onde di rarefazione. Nel caso di onde di rarefazione il p-esimo campo caratteristico associato all'autovalore $\lambda_p(\mathbf{u})$ è genuinamente non lineare e i due stati costanti \mathbf{u}_l e \mathbf{u}_r sono connessi da una discontinuità per la quale valgono le seguenti relazioni

$$\frac{du_1}{r_p^{(1)}} = \frac{du_2}{r_p^{(2)}} = \frac{du_3}{r_p^{(3)}} = \dots = \frac{du_m}{r_p^{(m)}},$$

ovvero si osserva un ventaglio di linee caratteristiche spiccate dall'origine che divergono.

2 Problema di Riemann per le equazioni di Eulero 1D

Un problema fondamentale della gas dinamica è il cosiddetto shock-tube problem e consiste nel mettere due gas separati da un diaframma all'interno di un tubo. A sinistra del diaframma ci sono una certa densità $\rho_l \neq 0$, una velocità $u_l = 0$ (nulla perché il gas è in quiete) e una certa pressione $p_l \neq 0$, quindi $\mathbf{u}_l = [\rho_l, u_l, p_l]^T$. A destra lo stato del sistema è caratterizzato da una certa densità $\rho_r \neq 0$, una velocità $u_r = 0$ (nulla perché il gas è in quiete) e una certa pressione $p_r \neq 0$, ovvero $\mathbf{u}_r = [\rho_r, u_r, p_r]^T$. Il diaframma viene rotto di schianto (idealmente viene tolto) e i due gas entrano in contatto: cosa succede? Per descrivere la dinamica di questo problema si può pensare che tutte le grandezze fisiche in gioco siano costanti su una sezione del tubo che si trova ad una certa distanza x dal punto in cui si trovava inizialmente il diaframma e quindi si possono utilizzare le equazioni di Eulero non stazionarie e monodimensionali

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u(E+p) \end{pmatrix} = 0 \qquad \Rightarrow \qquad \mathbf{u} = \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix}, \mathbf{F}(\mathbf{u}) = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u(E+p) \end{pmatrix},$$

dove $E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho u^2$, che implica $u(E + p) = u\left(\frac{\gamma}{\gamma - 1}p + \frac{1}{2}\rho u^2\right)$. Si osservi che per le equazioni così scritte lo stato del sistema non è descritto dalle variabili primitive ρ , u

e p. Per riscrivere il sistema in termini di variabili primitive conviene utilizzare la forma quasi lineare (lo studente diligente lo dimostri)

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ u \\ p \end{pmatrix} + \begin{bmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \rho a^2 & u \end{bmatrix} \frac{\partial}{\partial x} \begin{pmatrix} \rho \\ u \\ p \end{pmatrix} = 0 \quad \Leftrightarrow \quad \mathbf{u}_t + [\mathbf{A}(\mathbf{u})]\mathbf{u}_x = 0,$$

essendo $a=\sqrt{\frac{\gamma p}{\rho}}$ la velocità del suono. Risolvendo il problema agli autovalori per la matrice linearizzata

$$\mathbf{A}(\mathbf{u}) = \begin{bmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \rho a^2 & u \end{bmatrix},$$

si ottengono gli autovalori

$$\lambda_1(\mathbf{u}) = u - a, \quad \lambda_2(\mathbf{u}) = u, \quad \lambda_3(\mathbf{u}) = u + a,$$

e i corrispondenti autovettori destri

$$\mathbf{r}_1(\mathbf{u}) = \begin{bmatrix} 1 \\ -a/\rho \\ a^2 \end{bmatrix}, \quad \mathbf{r}_2(\mathbf{u}) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{r}_3(\mathbf{u}) = \begin{bmatrix} 1 \\ a/\rho \\ a^2 \end{bmatrix}.$$

Si osserva immediatamente che il campo di caratteristiche associate al secondo autovalore è linearmente degenere in quanto

$$\nabla \lambda_2(\mathbf{u}) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \Rightarrow \quad \nabla \lambda_2(\mathbf{u}) \cdot \mathbf{r}_2(\mathbf{u}) = 0,$$

mentre i campi di caratteristiche associati al primo ed al terzo autovalore sono genuinamente non lineari.

Siccome il secondo campo di caratteristiche è linearmente degenere, in esso non ci possono essere né onde d'urto né ventagli di rarefazione. Al contrario, vi saranno delle discontinuità di contatto che si propagano alla velocità λ_2 da ciascuno dei lati della discontinuità. Inoltre, siccome λ_2 è costante sulla curva integrale per $\mathbf{r}_2(\mathbf{u})$ che è a sua volta costante, le linee caratteristiche associate al secondo autovalore sono delle rette. Infine, per il campo associato a queste caratteristiche valgono le relazioni di Rankine-Hugoniot tra gli stati \mathbf{u} e $\hat{\mathbf{u}}$, che è facile scrivere per le equazioni in forma conservativa:

$$\rho u - \hat{\rho} \hat{u} = \lambda_2 (\rho - \hat{\rho})
(\rho u^2 + p) - (\hat{\rho} \hat{u}^2 + \hat{p}) = \lambda_2 (\rho u - \hat{\rho} \hat{u})
u(E + p) - \hat{u}(\hat{E} + \hat{p}) = \lambda_2 (E - \hat{E}).$$

È immediato osservare che esse sono soddisfatte per $u = \hat{u}$ e $p = \hat{p}$, indipendentemente dai valori di ρ e $\hat{\rho}$, ovvero la discontinuità di contatto è tale per cui attraverso di essa sia la pressione che la velocità si mantengono costanti, ma la densità è discontinua come lo sono le variabili che dipendono da essa (energia interna, temperatura, velocità

del suono, entropia, etc.) Inoltre, la velocità di propagazione di questa discontinuità della sola densità è la velocità del fluido essendo $\lambda_2 = u$, pertanto le particelle di fluido si muovono parallelamente alla discontinuità di contatto e non la attraversano. Questo implica che due gas inizialmente in contatto a pari velocità e pressione rimarranno distinti tra loro non mescolandosi e continueranno a rimanere in contatto esclusivamente lungo la discontinuità di contatto.

2.1 Soluzione generale del problema di Riemann

Dato il problema di Riemann (1.1) in cui il sistema di equazioni è quello di Eulero, se le condizioni iniziali sono

$$\mathbf{u}_l = [\rho_l, u_l, p_l]^T$$
 e $\mathbf{u}_r = [\rho_r, u_r, p_r]^T$,

nella soluzione generale appariranno altri due stati costanti

$$\mathbf{u}_l^* = [\rho_l^*, u^*, p^*]^T \qquad \text{e} \qquad \mathbf{u}_r^* = [\rho_r^*, u^*, p^*]^T$$

a cavallo della discontinuità di contatto associata al secondo autovalore e caratterizzata da una discontinuità della densità ($\rho_l^* \neq \rho_r^*$), mentre i valori di velocità e pressione a sinistra e a destra di essa si mantengono costanti e pari rispettivamente a u^* e p^* .

Figura 1: Shock tube: soluzione analitica (linea continua) e numerica (pallini vuoti). Velocità u, pressione p, densità ρ ed energia interna E. Soluzione del Problema di Riemann con $(\rho, P, v)_1 = (1, 1, 0)$ e $(\rho, P, v)_r = (1/8, 1/10, 0)$. Si notino un'onda di rarefazione che viaggia verso sinistra, una discontinuità di contatto che viaggia a bassa velocità verso destra ed un'onda d'urto che viaggia velocemente verso destra.

Una volta noto il fatto che il secondo autovalore è sempre associato ad una discontinuità di contatto (onda intermedia), la soluzione generale può essere uno solo dei seguenti 4 casi:

1. ventaglio di rarefazione a sinistra, discontinuità di contatto al centro, onda d'urto a destra;

- 2. onda d'urto a sinistra, discontinuità di contatto al centro, ventaglio di rarefazione a destra;
- 3. ventaglio di rarefazione a sinistra, discontinuità di contatto al centro, ventaglio di rarefazione a destra;
- 4. onda d'urto a sinistra, discontinuità di contatto al centro, onda d'urto a destra.

Procedendo analiticamente è possibile determinare la soluzione generale del problema di Riemann per le equazioni di Eulero nelle diverse regioni.

Esercizio 2.2 [Difficile] Risolvere numericamente il problema di Riemann per le equazioni di Eulero 1D utilizzando come dati iniziali quelli della figura 1 e confrontando la soluzione numerica così trovata con quella riportata in figura.