MODELO 1

Modelo 2

Modelo 3

Modelo 4

VAR

Code **▼**

Hairo Ulises Miranda Belmonte 11 de Junio del 2019

Code

MODELO 1

Code

Code

Seleccion del LAG

```
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
##
        3
              2
                      2
##
## $criteria
##
                      1
                                    2
## AIC(n) -4.469808e+01 -4.506375e+01 -4.509536e+01 -4.502382e+01
## HQ(n) -4.455644e+01 -4.480881e+01 -4.472711e+01 -4.454225e+01
## SC(n) -4.434863e+01 -4.443474e+01 -4.418679e+01 -4.383569e+01
## FPE(n) 3.871628e-20
                        2.686562e-20 2.604615e-20
                                                    2.801063e-20
                                                  7
##
                                   6
## AIC(n) -4.501593e+01 -4.491821e+01 -4.476464e+01 -4.467046e+01
## HQ(n) -4.442106e+01 -4.421003e+01 -4.394315e+01 -4.373566e+01
## SC(n) -4.354825e+01 -4.317096e+01 -4.273783e+01 -4.236409e+01
## FPE(n) 2.828550e-20 3.127575e-20 3.660714e-20 4.042763e-20
##
                      9
                                   10
## AIC(n) -4.455927e+01 -4.441503e+01
## HQ(n) -4.351116e+01 -4.325361e+01
## SC(n) -4.197335e+01 -4.154954e+01
## FPE(n) 4.547849e-20 5.296714e-20
```

Code

1.2. Paso 2: EstimaciÓN del Modelo VAR

```
##
## VAR Estimation Results:
## ==========
## Endogenous variables: tasa, w1, w2, w3
## Deterministic variables: const
## Sample size: 191
## Log Likelihood: 3284.883
## Roots of the characteristic polynomial:
## 0.7748 0.7748 0.7236 0.6486 0.6486 0.5171 0.445 0.445 0.429 0.429 0.330
7 0.09172
## Call:
## VAR(y = diff(as.matrix(series)), p = 3, type = c("const"))
##
##
## Estimation results for equation tasa:
## tasa = tasa.11 + w1.11 + w2.11 + w3.11 + tasa.12 + w1.12 + w2.12 + w3.1
2 + tasa.13 + w1.13 + w2.13 + w3.13 + const
##
##
            Estimate Std. Error t value Pr(>|t|)
## tasa.l1 -0.9145392 0.0694872 -13.161 < 2e-16 ***
## w1.l1
           4.5606207 8.4067953
                                  0.542
                                           0.588
## w2.11
           4.1004098 4.8461699
                                  0.846
                                           0.399
## w3.11
           1.1423206 4.1904871
                                  0.273
                                           0.785
## tasa.12 -0.7216917 0.0813307 -8.874 7.41e-16 ***
## w1.12
                                  1.170
                                           0.244
         10.8953247 9.3117591
## w2.12
           2.2505103 5.2313109
                                  0.430
                                           0.668
## w3.12
           1.1261359 4.6690239
                                  0.241
                                           0.810
## tasa.l3 -0.3907166  0.0694534  -5.626  7.06e-08 ***
## w1.13
           3.8539042 8.2612271
                                  0.467
                                           0.641
## w2.13
                                  0.592
           2.8410369 4.7969373
                                           0.554
## w3.13
           2.7899242 4.1441167
                                  0.673
                                           0.502
## const
           0.0003641
                     0.0050822
                                  0.072
                                           0.943
## ---
## Signif. codes:
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.06952 on 178 degrees of freedom
## Multiple R-Squared: 0.5268, Adjusted R-squared: 0.4949
## F-statistic: 16.51 on 12 and 178 DF, p-value: < 2.2e-16
##
##
##
## Covariance matrix of residuals:
##
                          w1
             tasa
                                     w2
                                                w3
## tasa 4.833e-03 -3.375e-06 -3.045e-06 -2.787e-07
```

```
-3.375e-06 9.313e-07 -1.050e-06 -2.914e-07
        -3.045e-06 -1.050e-06 3.778e-06 -1.895e-06
        -2.787e-07 -2.914e-07 -1.895e-06 3.557e-06
## w3
##
## Correlation matrix of residuals:
##
                        w1
                                 w2
             tasa
                                           w3
## tasa 1.000000 -0.05031 -0.02253 -0.002125
## w1
        -0.050305
                  1.00000 -0.55995 -0.160076
## w2
        -0.022534 -0.55995 1.00000 -0.516988
        -0.002125 -0.16008 -0.51699
## w3
                                     1.000000
```

Estabilidad en el modelo dado que son menores a uno En este ejemplo, estos estadisticos indican un ajuste sensiblemente pobre para ambas ecuaciones

1.3. Paso 3: EvaluaciÃ³n del Modelo

1.3.1. Prueba de Estacionariedad (Condicion de Estabilidad de los Estimadores) vamos a ver si cumple la condicion de estabilidad prueba de estacionariedad demultiple variables que mencionamos anteriormente

Recordemos que un proceso autorregresivo univariado es estacionario si todas las raices de $\ddot{\square}(z) = 0$ se encuentran fuera del circulo unitario.

```
## [1] 0.77478448 0.77478448 0.72361989 0.64855465 0.64855465 0.51710776
## [7] 0.44504095 0.44504095 0.42899514 0.42899514 0.33067136 0.09172097
```

La comprobación de la estabilidad no indica que nuestro modelo este mal.

Diagram of fit and residuals for tasa

Diagram of fit and residuals for w1

Diagram of fit and residuals for w2

Diagram of fit and residuals for w3

Code

Autocorrelación

Code

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object modelo
## Chi-squared = 92.352, df = 112, p-value = 0.912
```

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object modelo
## Chi-squared = 180.81, df = 208, p-value = 0.9136
```

Normalidad

Code

```
## $tasa
##
   JB-Test (univariate)
##
##
## data: Residual of tasa equation
## Chi-squared = 176.4, df = 2, p-value < 2.2e-16
##
##
## $w1
##
##
   JB-Test (univariate)
##
## data: Residual of w1 equation
## Chi-squared = 107.99, df = 2, p-value < 2.2e-16
##
##
## $w2
##
##
   JB-Test (univariate)
##
## data: Residual of w2 equation
## Chi-squared = 14.478, df = 2, p-value = 0.0007179
##
##
## $w3
##
##
   JB-Test (univariate)
##
## data: Residual of w3 equation
## Chi-squared = 80.886, df = 2, p-value < 2.2e-16
##
##
## $JB
##
    JB-Test (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 316.83, df = 8, p-value < 2.2e-16
##
##
## $Skewness
##
   Skewness only (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 36.137, df = 4, p-value = 2.712e-07
```

```
##
##
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object modelo
## Chi-squared = 280.69, df = 4, p-value < 2.2e-16</pre>
```

Code

Habiendo estimado estos modelos, ¿podemos inferir algo mas? Si el sistema se somete a un shock de los topicos, ¿cual es el efecto en la trayectoria dinamica de la tasa de interes?

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w1), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 187
## 2 189 -2 3.369 0.03653 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w2), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 187
## 2 189 -2 1.4126 0.2461
```

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w3), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 187
## 2 189 -2 0.2249 0.7988
```

Orthogonal Impulse Response from w1

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from w2

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from w3

95 % Bootstrap CI, 100 runs

Modelo 2

Pre-crisis

Seleccion del LAG

Code

```
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
##
        3
              2
                      2
##
## $criteria
##
                      1
                                    2
## AIC(n) -4.601622e+01 -4.679419e+01 -4.685218e+01 -4.672584e+01
## HQ(n) -4.576614e+01 -4.634405e+01 -4.620198e+01 -4.587557e+01
## SC(n) -4.538870e+01 -4.566465e+01 -4.522062e+01 -4.459226e+01
## FPE(n) 1.037008e-20 4.783333e-21 4.560619e-21
                                                     5.276505e-21
##
                                    6
## AIC(n) -4.670467e+01 -4.663572e+01 -4.672481e+01 -4.685188e+01
## HQ(n) -4.565434e+01 -4.538533e+01 -4.527436e+01 -4.520136e+01
## SC(n)
         -4.406908e+01 -4.349811e+01 -4.308518e+01 -4.271023e+01
## FPE(n) 5.564727e-21 6.258265e-21 6.138153e-21 5.954845e-21
##
                      9
                                   10
## AIC(n) -4.660283e+01 -4.645792e+01
## HQ(n) -4.475225e+01 -4.440728e+01
## SC(n) -4.195916e+01 -4.131223e+01
## FPE(n) 8.710308e-21 1.200187e-20
```

Code

1.2. Paso 2: Estimacion del Modelo VAR

```
##
## VAR Estimation Results:
## ==========
## Endogenous variables: tasa, w1, w2, w3
## Deterministic variables: const
## Sample size: 80
## Log Likelihood: 1479.686
## Roots of the characteristic polynomial:
## 0.8105 0.8105 0.7972 0.7972 0.7589 0.7589 0.7215 0.7215 0.5425 0.5425
0.4591 0.06181
## Call:
## VAR(y = diff(as.matrix(series)), p = 3, type = c("const"))
##
##
## Estimation results for equation tasa:
## tasa = tasa.11 + w1.11 + w2.11 + w3.11 + tasa.12 + w1.12 + w2.12 + w3.1
2 + tasa.13 + w1.13 + w2.13 + w3.13 + const
##
##
            Estimate Std. Error t value Pr(>|t|)
## tasa.l1 -9.000e-01 1.177e-01 -7.645 1.05e-10 ***
## w1.l1
           3.998e+00 2.271e+01
                                 0.176 0.86080
## w2.11
                                 0.471
           8.999e+00 1.910e+01
                                       0.63914
## w3.11
          -2.638e+00 2.188e+01 -0.121 0.90441
## tasa.12 -7.279e-01 1.362e-01 -5.345 1.17e-06 ***
## w1.12
          7.115e+00 2.359e+01
                                 0.302 0.76393
## w2.12
           8.168e-01 1.980e+01
                                 0.041
                                       0.96722
## w3.12
          -1.545e+01 2.214e+01 -0.698 0.48756
## tasa.13 -3.740e-01 1.182e-01 -3.164
                                       0.00234 **
## w1.13
           7.517e+00 2.075e+01
                                 0.362 0.71831
## w2.13
           1.018e+01 1.862e+01
                                 0.546
                                       0.58656
## w3.13
           9.655e+00 1.970e+01
                                 0.490 0.62568
## const
          -7.537e-06 1.244e-02
                               -0.001
                                       0.99952
## ---
## Signif. codes:
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.1069 on 67 degrees of freedom
## Multiple R-Squared: 0.5524, Adjusted R-squared: 0.4723
## F-statistic: 6.892 on 12 and 67 DF, p-value: 6.285e-08
##
##
##
## Covariance matrix of residuals:
##
                         w1
             tasa
                                    w2
                                               w3
## tasa 1.142e-02 -1.728e-06 -1.847e-05 -4.029e-06
```

```
-1.728e-06
                     1.049e-06 -7.553e-07 -4.067e-07
        -1.847e-05 -7.553e-07
                                1.164e-06
                                            8.097e-08
        -4.029e-06 -4.067e-07
                                8.097e-08
                                            5.342e-07
  w3
##
## Correlation matrix of residuals:
                                w2
##
                        w1
            tasa
                                          w3
##
         1.00000 -0.01578 -0.1602 -0.05158
##
        -0.01578
                  1.00000 -0.6834 -0.54311
        -0.16020 -0.68337
## w2
                            1.0000
                                    0.10267
        -0.05158 -0.54311
                            0.1027
                                    1.00000
## w3
```

- 1.3. Paso 3: Evaluación del Modelo 1.3.1. Prueba de Estacionariedad (Condición de Estabilidad de los Estimadores)
- 1.3.2. Analisis de Autocorrelacion en los Residuales

Code

Diagram of fit and residuals for tasa

Diagram of fit and residuals for w1

Diagram of fit and residuals for w2

Diagram of fit and residuals for w3

Code

Code

Prueba Portmanteau Multivariada

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object modelo
## Chi-squared = 117.36, df = 112, p-value = 0.3458
```

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object modelo
## Chi-squared = 193.06, df = 208, p-value = 0.7635
```

Code

1.3.3. Prueba de Normalidad de los Residuales

```
## $tasa
##
   JB-Test (univariate)
##
##
## data: Residual of tasa equation
## Chi-squared = 2.1386, df = 2, p-value = 0.3432
##
##
## $w1
##
##
   JB-Test (univariate)
##
## data: Residual of w1 equation
## Chi-squared = 10.37, df = 2, p-value = 0.005601
##
##
## $w2
##
##
   JB-Test (univariate)
##
## data: Residual of w2 equation
## Chi-squared = 2.1075, df = 2, p-value = 0.3486
##
##
## $w3
##
##
   JB-Test (univariate)
##
## data: Residual of w3 equation
## Chi-squared = 617.62, df = 2, p-value < 2.2e-16
##
##
## $JB
##
    JB-Test (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 45.317, df = 8, p-value = 3.204e-07
##
##
## $Skewness
##
    Skewness only (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 11.202, df = 4, p-value = 0.02438
```

```
##
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object modelo
## Chi-squared = 34.115, df = 4, p-value = 7.058e-07
```

2. Resumiendo Relaciones Temporales en un VAR 2.1. Prueba de Causalidad Granger

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w1), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 76
## 2 78 -2 2.5407 0.08549 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w2), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 76
## 2 78 -2 1.4584 0.239
```

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w3), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 76
## 2 78 -2 1.6982 0.1899
```

Las funciones de impulso respuesta muestran los efectos de los shock en la trayectoria de ajuste de las variables.

Orthogonal Impulse Response from w1

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from w2

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from w3

95 % Bootstrap CI, 100 runs

Modelo 3

SelecciÃ³n del LAG

Code

```
## Warning in log(sigma.det): Se han producido NaNs
## Warning in log(sigma.det): Se han producido NaNs
## Warning in log(sigma.det): Se han producido NaNs
```

```
## $selection
## AIC(n)
         HQ(n) SC(n) FPE(n)
##
               9
                            10
                      1
##
## $criteria
##
                      1
                                    2
## AIC(n) -4.712582e+01 -4.707803e+01 -4.683902e+01 -4.684164e+01
## HQ(n) -4.682506e+01 -4.653667e+01 -4.605705e+01 -4.581907e+01
## SC(n) -4.631482e+01 -4.561824e+01 -4.473043e+01 -4.408426e+01
## FPE(n) 3.429493e-21
                        3.668094e-21 4.893399e-21
                                                     5.375660e-21
##
                                    6
## AIC(n) -4.683396e+01 -4.673109e+01 -4.730869e+01 -4.781997e+01
## HQ(n) -4.557079e+01 -4.522731e+01 -4.556430e+01 -4.583498e+01
## SC(n)
         -4.342778e+01 -4.267611e+01 -4.260491e+01 -4.246740e+01
## FPE(n) 6.409062e-21 9.359704e-21 8.186690e-21 1.015495e-20
##
                      9
                                   10
## AIC(n) -4.905304e+01
                                  NaN
## HQ(n) -4.682744e+01
                                  NaN
## SC(n) -4.305167e+01
                                  NaN
## FPE(n) 1.067743e-20 -8.381684e-36
```

Code

1.2. Paso 2: EstimaciÃ³n del Modelo VAR

```
##
## VAR Estimation Results:
## ==========
## Endogenous variables: tasa, w1, w2, w3
## Deterministic variables: const
## Sample size: 52
## Log Likelihood: 965.211
## Roots of the characteristic polynomial:
## 0.6827 0.6827 0.629 0.629 0.3618 0.3618 0.3196 0.3196
## Call:
## VAR(y = diff(as.matrix(series)), p = 2, type = c("const"))
##
##
## Estimation results for equation tasa:
## tasa = tasa.11 + w1.11 + w2.11 + w3.11 + tasa.12 + w1.12 + w2.12 + w3.1
2 + const
##
           Estimate Std. Error t value Pr(>|t|)
##
## tasa.l1 -0.736812
                      0.136775 -5.387 2.83e-06 ***
## w1.l1
           2.441808
                      6.751227
                                0.362
                                        0.7194
## w2.11
           5.273322
                      3.122797
                                1.689
                                        0.0985 .
## w3.11
           0.500641
                      4.048455
                                0.124
                                        0.9022
## tasa.12 -0.273428
                      0.129835 -2.106 0.0411 *
## w1.12
         -2.458961
                      6.626578 -0.371
                                        0.7124
## w2.12
         -0.485887
                      3.141562 -0.155
                                        0.8778
## w3.12
           4.830316
                      4.491280
                               1.075
                                        0.2882
                                        0.6338
## const
          -0.002243
                      0.004674 -0.480
## ---
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.03061 on 43 degrees of freedom
## Multiple R-Squared: 0.4805, Adjusted R-squared: 0.3838
## F-statistic: 4.971 on 8 and 43 DF, p-value: 0.0002131
##
##
##
## Covariance matrix of residuals:
##
             tasa
                          w1
                                    w2
                                               w3
## tasa 9.371e-04 -1.008e-05 1.848e-05 4.006e-06
## w1
       -1.008e-05 8.295e-07 -1.268e-06 -1.178e-07
        1.848e-05 -1.268e-06 4.393e-06 -1.004e-06
## w2
        4.006e-06 -1.178e-07 -1.004e-06 1.757e-06
## w3
##
## Correlation matrix of residuals:
```

```
##
            tasa
                        w1
                                w2
                                          w3
         1.00000 -0.36148
                            0.2880
                                     0.09874
        -0.36148
                   1.00000 -0.6643 -0.09763
## w1
         0.28805 -0.66430
                            1.0000 -0.36147
## w2
         0.09874 -0.09763 -0.3615
                                     1.00000
## w3
```

A continuacion solicitaremos un resumen de cada ecuaciÃ³n por separado:

1.3. Paso 3: Evaluación del Modelo 1.3.1. Prueba de Estacionariedad (Condición de Estabilidad de los Estimadores)

```
## [1] 0.6826996 0.6826996 0.6289609 0.6289609 0.3617651 0.3617651 0.31955
35
## [8] 0.3195535

Code

Code
```

Diagram of fit and residuals for tasa

Code

Diagram of fit and residuals for w1

Diagram of fit and residuals for w2

Diagram of fit and residuals for w3

##
Portmanteau Test (asymptotic)
##
data: Residuals of VAR object modelo
Chi-squared = 101.41, df = 128, p-value = 0.96

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object modelo
## Chi-squared = 161.96, df = 224, p-value = 0.9994
```

Code

Code

```
## $tasa
##
   JB-Test (univariate)
##
##
## data: Residual of tasa equation
## Chi-squared = 31.701, df = 2, p-value = 1.307e-07
##
##
## $w1
##
##
   JB-Test (univariate)
##
## data: Residual of w1 equation
## Chi-squared = 0.089976, df = 2, p-value = 0.956
##
##
## $w2
##
##
   JB-Test (univariate)
##
## data: Residual of w2 equation
## Chi-squared = 0.99149, df = 2, p-value = 0.6091
##
##
## $w3
##
##
   JB-Test (univariate)
##
## data: Residual of w3 equation
## Chi-squared = 50.849, df = 2, p-value = 9.086e-12
##
##
## $JB
##
    JB-Test (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 53.902, df = 8, p-value = 7.211e-09
##
##
## $Skewness
##
    Skewness only (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 13.148, df = 4, p-value = 0.01057
```

```
##
##
## $Kurtosis
##
   Kurtosis only (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 40.754, df = 4, p-value = 3.022e-08
                                                                        Code
## [1] "tasa" "w1"
                     "w2"
                            "w3"
                                                                        Code
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w1), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
     Res.Df Df
                    F Pr(>F)
##
## 1
        47
## 2
        49 -2 1.0014 0.3751
                                                                        Code
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w2), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
     Res.Df Df
##
                    F Pr(>F)
## 1
        47
## 2
        49 -2 2.4611 0.09627 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                                                                        Code
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w3), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
##
     Res.Df Df
                    F Pr(>F)
## 1
        47
        49 -2 0.4557 0.6368
## 2
```

file:///C:/Users/h air/Desktop/Maestría Cómputo Estadístico/04-Segundo Semestre - Ciencia de Datos/Proyecto/VAR Time Series Borrador.html

Orthogonal Impulse Response from w1

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from w2

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from w3

95 % Bootstrap CI, 100 runs

Modelo 4

post-crisis

SelecciÃ³n del LAG

Code

Code

Warning in log(sigma.det): Se han producido NaNs
Warning in log(sigma.det): Se han producido NaNs

Warning in log(sigma.det): Se han producido NaNs

```
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
##
              1
                      1
                            10
##
## $criteria
##
                      1
                                    2
## AIC(n) -4.837919e+01 -4.830903e+01 -4.778719e+01 -4.783906e+01
## HQ(n) -4.807589e+01 -4.776310e+01 -4.699862e+01 -4.680785e+01
## SC(n) -4.755173e+01 -4.681960e+01 -4.563579e+01 -4.502569e+01
## FPE(n) 9.798431e-22 1.074916e-21 1.917563e-21
                                                    2.037618e-21
##
                                    6
## AIC(n) -4.737709e+01 -4.751909e+01 -4.819758e+01 -4.838586e+01
## HQ(n) -4.610324e+01 -4.600260e+01 -4.643845e+01 -4.638410e+01
## SC(n)
         -4.390175e+01 -4.338178e+01 -4.339830e+01 -4.292461e+01
## FPE(n) 3.941837e-21 4.755082e-21 4.152956e-21 8.703848e-21
##
                      9
                                10
## AIC(n) -5.023909e+01
                               NaN
## HQ(n) -4.799469e+01
                               NaN
## SC(n) -4.411587e+01
                               NaN
## FPE(n) 8.228622e-21 -7.579e-67
```


1.2. Paso 2: Estimación del Modelo VAR

```
##
## VAR Estimation Results:
## ==========
##
## Estimated coefficients for equation tasa:
## Call:
## tasa = tasa.11 + w1.11 + w2.11 + w3.11 + const
##
##
       tasa.l1
                     w1.11
                                 w2.11
                                             w3.l1
                                                         const
## -5.546496e-01 -2.034381e+00 -1.309496e-01 -3.560342e-01 2.960478e-05
##
##
## Estimated coefficients for equation w1:
## Call:
## w1 = tasa.l1 + w1.l1 + w2.l1 + w3.l1 + const
##
       tasa.l1
                     w1.11
                                 w2.l1
##
                                             w3.l1
                                                         const
##
   2.063699e-03 -4.899761e-01 2.666233e-02 -1.441551e-02 1.994429e-05
##
##
## Estimated coefficients for equation w2:
## Call:
## w2 = tasa.l1 + w1.l1 + w2.l1 + w3.l1 + const
##
                     w1.11
##
       tasa.l1
                                 w2.11
                                             w3.11
                                                         const
   8.062044e-04 -7.174511e-01 -4.437227e-01 -3.708154e-02 9.297143e-05
##
##
##
## Estimated coefficients for equation w3:
## Call:
## w3 = tasa.l1 + w1.l1 + w2.l1 + w3.l1 + const
##
                     w1.11
##
       tasa.l1
                                 w2.11
                                             w3.11
                                                         const
## -0.0042983481 0.5073311903 -0.2329743068 -0.5078518229 -0.0001865885
```

```
##
## VAR Estimation Results:
## ==========
## Endogenous variables: tasa, w1, w2, w3
## Deterministic variables: const
## Sample size: 51
## Log Likelihood: 958.693
## Roots of the characteristic polynomial:
## 0.5721 0.5721 0.4576 0.4576
## Call:
## VAR(y = diff(as.matrix(series)), p = 1, type = c("const"))
##
##
## Estimation results for equation tasa:
## tasa = tasa.11 + w1.11 + w2.11 + w3.11 + const
##
            Estimate Std. Error t value Pr(>|t|)
##
                     0.1212691 -4.574 3.62e-05 ***
## tasa.l1 -0.5546496
## w1.l1
         -2.0343814 3.6128131 -0.563
                                          0.576
## w2.11
          -0.1309496 1.5475189 -0.085
                                          0.933
## w3.11
         -0.3560342 1.1130276 -0.320
                                          0.751
                                          0.988
## const
           0.0000296 0.0019684
                                 0.015
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.01403 on 46 degrees of freedom
## Multiple R-Squared: 0.3238, Adjusted R-squared: 0.265
## F-statistic: 5.507 on 4 and 46 DF, p-value: 0.001043
##
##
##
## Covariance matrix of residuals:
##
             tasa
                         w1
                                    w2
## tasa 1.969e-04 -2.870e-07 2.325e-06 2.416e-07
## w1
       -2.870e-07 4.053e-07 -5.337e-07 -2.285e-07
        2.325e-06 -5.337e-07 5.197e-06 -5.060e-06
## w2
        2.416e-07 -2.285e-07 -5.060e-06 8.894e-06
## w3
##
## Correlation matrix of residuals:
##
            tasa
                       w1
## tasa 1.000000 -0.03213 0.07268
                                  0.005773
## w1
       -0.032128 1.00000 -0.36775 -0.120333
        0.072678 -0.36775
                          1.00000 -0.744301
## w2
        0.005773 -0.12033 -0.74430 1.000000
## w3
```

1.3. Paso 3: Evaluaci \tilde{A}^3 n del Modelo 1.3.1. Prueba de Estacionariedad (Condici \tilde{A}^3 n de Estabilidad de los Estimadores)

1.3.2. Analisis de Autocorrelacion en los Residuales

Code

Diagram of fit and residuals for tasa

Diagram of fit and residuals for w1

Diagram of fit and residuals for w2

Diagram of fit and residuals for w3


```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object modelo
## Chi-squared = 115.52, df = 144, p-value = 0.9611
```

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object modelo
## Chi-squared = 190.45, df = 240, p-value = 0.992
```

Code

```
## $tasa
##
   JB-Test (univariate)
##
##
## data: Residual of tasa equation
## Chi-squared = 4.6678, df = 2, p-value = 0.09692
##
##
## $w1
##
##
   JB-Test (univariate)
##
## data: Residual of w1 equation
## Chi-squared = 1.5972, df = 2, p-value = 0.45
##
##
## $w2
##
##
   JB-Test (univariate)
##
## data: Residual of w2 equation
## Chi-squared = 0.71371, df = 2, p-value = 0.6999
##
##
## $w3
##
##
   JB-Test (univariate)
##
## data: Residual of w3 equation
## Chi-squared = 1.0874, df = 2, p-value = 0.5806
##
##
## $JB
##
    JB-Test (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 7.2301, df = 8, p-value = 0.512
##
##
## $Skewness
##
    Skewness only (multivariate)
##
##
## data: Residuals of VAR object modelo
## Chi-squared = 4.1424, df = 4, p-value = 0.3871
```

```
##
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object modelo
## Chi-squared = 3.0877, df = 4, p-value = 0.5433
```

2. Resumiendo Relaciones Temporales en un VAR 2.1. Prueba de Causalidad Granger

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w1), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 45
## 2 47 -2 0.1376 0.8718
```

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w2), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 45
## 2 47 -2 0.14 0.8698
```

Code

```
## Granger causality test
##
## Model 1: diff(tasa) ~ Lags(diff(tasa), 1:2) + Lags(diff(w3), 1:2)
## Model 2: diff(tasa) ~ Lags(diff(tasa), 1:2)
## Res.Df Df F Pr(>F)
## 1 45
## 2 47 -2 0.0936 0.9108
```

Orthogonal Impulse Response from w1

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from w2

95 % Bootstrap CI, 100 runs

Orthogonal Impulse Response from w3

95 % Bootstrap CI, 100 runs