

الجمهورية التونسية وزارة التعليم العالي والبحث العلمي جامعة تونس المدرسة الوطنية العليا للمهندسين يتونس

Master thesis

A Deep Learning System for Diabetic Retinopathy, Lesion Segmentation and Disease Grading

Mrs. Afef Kacem Echi (MC at ENSIT) Supervisor

Mrs. Takwa Ben Aïcha Gader (PhD) Co-Supervisor

Mr. Meher Boulaabi (M2 at ENSIT) Researcher

OUTLINE

Overview

Highlighting the main points and key elements of RD

Research Aim

Defines the purpose and direction of the research project

Dataset

The quality and relevance of the data significantly impact the outcomes and conclusions drawn from the research study

Semantic segmentation
Understand, analyze, and segment the image

O5 Grade classification
Understand, analyze, and
Classify the images

Conclusion

Summarizes the main points and findings discussed in the body of the work

642 million!

In 2017, around 425 million DR patients were recorded globally, with an estimated increase of up to 642 million by **2040**.[1]

DR is a dangerous illness that leads to blindness among the working-age population. It is also the most dreaded complication of diabetes, as it increases the risk of other diseases like kidney disorders, heart disease [2], and mortality [3].

Figure 1.1: (a) the eye structure of a non-DR patient, (b) the eye structure of a patient with DR.

Current Diagnosis Process

2 weeks

Proposal Diagnosis Process

Overview

01

Diabetic retinopathy (DR) is a condition that occurs in human eyes due to diabetes mellitus.

02

Risk factors can increase the likelihood of developing DR: Duration of diabetes, High blood pressure, Pregnancy and High cholesterol levels.

03

Motivation: Early Detection of DR

04

Deep learning is a powerful subset of artificial intelligence used to analyze DR in computer-aided applications

Research Aim

We tackled two significant challenges in medical image analysis:

- 1. DeepLabV3+ based system for lesion segmentation, demanding in-depth knowledge of deep learning techniques.
- 2. Swin Transformer-based system for diabetic retinopathy grading, striving to achieve superior results compared to recent advancements in the field. These endeavors pushed our technical boundaries, highlighting our commitment to innovative solutions in the realm of medical imaging.

Dataset

IDRiD (Indian Diabetic Retinopathy Image Dataset).

It includes standard DR lesions and carefully annotated normal retinal structures below a pixel level.

This comprehensive information makes IDRiD ideal for developing and evaluating image analysis algorithms for early detection of DR.

Dataset

Figure 2.1: Color fundus photograph showing various retinal lesions associated with diabetic retinopathy, including microaneurysms, soft exudates, hemorrhages, and hard exudates [34].

Dataset

HE image
HEMORRHAGES

This is the original of HE image

HE mask
HEMORRHAGES

This is the mask of the original HE image

EX mask
HARD EXUDATES

This is the mask of the original EX image

EX image HARD EXUDATES

This is the original EX image

IMAGES + MASKS

The same image can contain 1 or more pathological classes at the same time.

Semantic segmentation

Semantic segmentation

Plays a pivotal role in medical imaging, revolutionizing the way healthcare professionals analyze and interpret images

Enhances accuracy, efficiency, and effectiveness across various aspects of healthcare

Its algorithms can assist in the early detection of diseases it can identify early signs of DR, enabling timely interventions to prevent vision loss

Finally, it assigns a label to every pixel in an image to identify the object or area it belongs to

Objective

- > Develop specialized binary segmentation models for every class.
- ➤ Through the individual segmentation of each class, we intend to enhance the model's capacity to identify delicate nuances and complexities associated with DR.
- ➤ This focused method enables us to tackle any imbalances within the dataset and refine parameters that are unique to each class, leading to improved accuracy and a more reliable segmentation process.

The step-by-step approach

- ➤ we will create a distinct binary segmentation model for each class (MA, HE, EX, SE).
- > Parameter Tuning.
- > Data Augmentation.
- > Re-training and Evaluation.

Process for the final scenario

The process is repeated for each pathological classes

Data Preparation

Collect and organize data specific to the target class

Model Training

Fine-tune model parameters

Threshold Optimization

Determine the optimal threshold for binary classification using techniques like IoU, F1 score

Evaluation

Record these metrics in a table for analysis

Data Augmentation

Augment the dataset with techniques like to increase diversity and robustness

Testing New Images

Present the segmented images for each class, including original, **CLAHE enhanced**, and contrast-adjusted images

DeepLabv3+ Overview

EXUDATES (EX)

EXUDATES (EX)

EXUDATES (EX)

	Original Data	Augmented Data
Average IoU	0.989573393916542	0.993861649559938
Average Dice Coefficient	0.9947491577171835	0.9969186281786624
Average Accuracy	0.9895896911621094	0.9939063016106101
Average Precision	0.9898170653820584	0.9960621122489004
Average F1 Score	0.9947491577171834	0.9969186281786624
Average Sensitivity	0.9997506686761005	0.9977780981188805
Average Specificity	0.12632448499761864	0.48124558716655924

Table 2.4: Comparison of Evaluation Metrics of EX.

Figure 2.8: predicted images for each preprocessing.

	Original Data	Augmented Data
Average IoU	0.9921892901502299	0.9926495734642422
Average Dice Coefficient	0.9960743473373306	0.996302797500946
Average Accuracy	0.9922149181365967	0.9927182478063247
Average Precision	0.9933964086209579	0.9939732276465395
Average F1 Score	0.9960743473373306	0.996302797500946
Average Sensitivity	0.9987771511287098	0.9986566653700363
Average Specificity	0.2567417639272256	0.40978678267732205

Table 2.7: Comparison of Evaluation Metrics of HE.

MICROANEURYSMS (MA)

SOFT EXUDATES (SE)

SOFT EXUDATES (SE)

Figure 2.17: Predicted images for each preprocessing.

SOFT EXUDATES (SE)

	Original Data	Augmented Data	
Metric	Value	Value	
Average IoU	0.9977395919739727	0.9971015399135711	
Average Dice Coefficient	0.9988683739967876	0.9985485502504086	
Average Accuracy	0.9977397918701172	0.9971109628677368	
Average Precision	0.9978018852904015	0.9988466310742905	
Average F1 Score	0.9988683739967876	0.9985485502504087	
Average Sensitivity	0.9999373449167117	0.9982508628440736	
Average Specificity	0.02192429022082018	0.7077015439875504	

Table 2.13: Comparison of Evaluation Metrics of SE.

Comparison with Related Works

Table 2.14: Overview of reported techniques for DR lesion segmentation.

Ref#	Year	Methodology	Segmentation Techniques	Datasets	Results
[46]	2022	CNN U-Net, AlexNet, VG-	CNN U-Net	IDRiD	ACC = 98.68%
		GNet, Green Channel, Adam			
		Optimizer			
[42]	2022	Adaptive Active Contour,	Adaptive Active Contour,	IDRiD	ACC = 60%
		Otsu Thresholding, Morpho-	Watershed Transform, Otsu		
		logical Operation, Median	Thresholding		
		Filtering, Open-Close Water-			
		shed Transform, GLCM, ROI,			
		LTP			
[6]	2021	EAD-Net, U-Net, CAM, PAM	EAD-Net, U-Net	IDRiD	ACC = 78%
[19]	2020	U-Net, ResNet34, Initialized	U-Net	IDRiD	ACC = 99.88%
		to Convolution NN Resize			
		(ICNR)			
[20]	2020	Deep CNN, DeepLabV3,	DeepLabV3, Segnet	IDRID	ACC = 88%
		Segnet, Conditional Random			
		Field (CRF)			

Comparison with Related Works

Table 2.14 – Continued from previous page

Table 2.14 – Continued from pictious page					
Ref#	Year	Methodology	Segmentation Techniques	Datasets	Results
[30]	2019	U-Net, HEDNet, HED-	U-Net, HEDNet, HED-	IDRiD	Precision = 84.05%
		Net+cGAN, Conditional	Net+cGAN		
		Generative Adversarial			
		Network (cGAN), Patch-			
		GAN, VGG16 Weighted			
		Binary Cross-Entropy, Loss,			
		CLAHE, Bilateral Filter			
[21]	2019	Deep-CNN, Binary Cross En-	Deep-CNN	IDRiD	Jaccard Index (IOU) = 85.72%
		tropy, VGG16			
[49]	2018	Circular Hough Transform,	Circular Hough Transform	IDRiD	SF = 96.80%
		Morphological Operations,			
		Average Histogram, Contrast			
		Enhancement, CCA			
Our work	2023	Scenario 02: Data augmen-	Deeplabv3+	IDRiD	ACC = 99%
		tation, CLAHE, Adjust the			
		histogram			

Diabetic Retinopathy Grading

Stages of diabetic

DR Grade	Findings
No DR:	No visible sign of abnormalities
Mild DR	Presence of MAs only
Moderate DR	More than just MAs but less than severe NPDR
Severe DR	Any of the following: >20 intraretinal HEs Venous beading Intraretinal microvascular abnormalities no signs of PDR
Proliferative DR	Either or both of the following: Neovascularization Vitreous/pre-retinal HE

Grading Challenge

01

We will focus on fine-tuning the data preprocessing techniques to suit the input data for the model better.

02

We'll also use advanced data augmentation methods to increase the diversity and quantity of our training data.

03

At the same time, we'll be going through an extensive hyperpara meter tuning process to optimize the model's configuration even further.

04

By combining these efforts, we hope to significantly improve the model's performance and achieve our desired outcomes

Swin Transformer Overview

Evaluation

92.21% ACC

The provided model evaluati on metrics indicate a strong performance across both the training and test datasets

These results highlight the rob ustness and generalizability of the model, making it an asset for real-world applications

Training and Test Metrics for the Model

■ Training and Test Metrics for the Model

Confusion Matrix

Explanation

In this case, although there were a few misclassifications, the model's performance improved significantly compared to the previous evaluation

EvaluatePerformance

Precision, recall, and F1-score for each class

These metrics offer valuable insights into the model's performance, particularly in a multi-class classification scenario where the importance of each class's accuracy can vary significantly

Comparison with Related Works

Table 3.5: Reported deep feature extraction methods and classifiers used in various studies.

Ref#	Year	Methodology	Deep Feature Extraction Method	Classifiers	Datasets	Results
[5]	2022	CNN, EyeNet, DenseNet E-DenseNet, Average Pooling (GAP)	E-DenseNet	Softmax	IDRiD	ACC = 93%
[33]	2021	Inception-V3, ResNet101, VGG- 19, Naïve Bayes, KNN, SVM	Inception-V3, ResNet101, Vgg19	SVM	IDRiD	SP = 99.30%
[32]	2021	CNN, SqueezeNet, ResNet-50, Inception- V3, DFTSA-Net, CLAHE	DFTSA-Net	Softmax	IDRiD	SP = 95.50%
Our work	2023	Scenario 02 : Fine- tuning data augmen- tation parameters	SwinTransformer		IDRiD	ACC = 92.21%

A Remarkable Revelation!

Evaluation

97.4% ACC

To further enhance our model's robustness, we introduced a novel cropping technique.

This strategic crop not only improved training efficiency but also mitigated the challenges posed by pixel similarities

Confusion Matrix

Explanation

In this case, the model's performance improved significantly compared to the previous evaluation

EvaluatePerformance

Precision, recall, and F1-score for each class

These metrics offer valuable insights into the model's performance, particularly in a multi-class classification scenario where the importance of each class's accuracy can vary significantly

Comparison with Related Works

Table 3.5 – Continued from previous page

Ref #	Year	Methodology	Deep Feature Extraction Method	Classifiers	Datasets	Results
New update	2023	Scenario 02: Fine- tuning data augmen- tation parameters + Crop IMAGE (improving the im- age by removing unnecessary parts.	SwinTra	nsformer	IDRiD	ACC = 97.45%, SP = 100%

Future work

- In our upcoming work, we're crafting a cutting-edge application designed to segment and classify DR images. Each distinct pathological class will be color-coded, simplifying interpretation for medical professionals.
- Our goal is to not only enhance accuracy in diagnoses but also streamline decision-making.
- The application will extend its utility by suggesting appropriate interventions, such as laser treatment for affected eyes.

Conclusion

Dataset

Dataset is ideal for developing and evaluating image analysis algorithms for early detection of diabetic retinopathy.

Segmentation

Our Segmentation

Our Scenario showcased the remarkable potential of class-specific binary segmentation, focusing on tailored preprocessing steps.

DR Grading

The backbone of our success lies in carefully handling the Swin Transformer and the preprocessing steps which proved instrumental in extracting complex patterns from our dataset.

Reference

- [1] International Diabetes Federation. "IDF diabetes atlas 8th edition". In: International diabetes federation (2017), pp. 905–911
- [2] Tien Y Wong et al. "Retinopathy and risk of congestive heart failure". In: Jama 293.1 (2005), pp. 63–69
- [3] Xiao-Hong Xu et al. "Diabetic retinopathy predicts cardiovascular mortality in diabetes: a meta-analysis". In: BMC Cardiovascular Disorders 20.1 (2020), pp. 1–8.

[4]

[5] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021

Thank you!

Designed by Meher