Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	е
1.1 Описание входных данных	7
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	11
3.1 Алгоритм конструктора класса cl1	11
3.2 Алгоритм метода get_count класса cl1	11
3.3 Алгоритм конструктора класса cl2	12
3.4 Алгоритм метода get_count класса cl2	12
3.5 Алгоритм конструктора класса cl3	13
3.6 Алгоритм метода get_count класса cl3	13
3.7 Алгоритм конструктора класса cl4	14
3.8 Алгоритм метода get_count класса cl4	14
3.9 Алгоритм функции Арр	15
3.10 Алгоритм функции main	16
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	18
5 КОД ПРОГРАММЫ	20
5.1 Файл Арр.срр	20
5.2 Файл App.h	21
5.3 Файл cl1.cpp	21
5.4 Файл cl1.h	22
5.5 Файл cl2.cpp	22
5.6 Файл cl2.h	22
5.7 Файл cl3.cpp	23
5.8 Файл cl3.h	23
5.9 Файл cl4.cpp	24

5.10 Файл cl4.h	24
5.11 Файл main.cpp	25
6 ТЕСТИРОВАНИЕ	26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	27

1 ПОСТАНОВКА ЗАДАЧИ

Полиморфизм в иерархии классов

Описать четыре класса которые последовательно наследуют друг друга, с номерами классов 1, 2, 3, 4. В каждом классе реализовать виртуальный метод с открытым доступом и одинаковым именем. Метод вычисляет значение многочлена степени номера класса и возвращает полученный результат. Коэффициенты и переменная многочлена целочисленные.

В основной функции реализовать алгоритм, в котором использовать один указатель на объект класса. Алгоритм:

- 1. Объявление указателя на объект класса.
- 2. Объявление четырех целочисленных переменных a1, a2, a3 a4, которые соответствуют коэффициентам многочлена (a1*x + a2*x*x + a3*x*x*x + a4*x*x*x*x).
- 3. Объявление целочисленной переменной x, которая соответствует <u>переменной</u> многочлена.
- 4. Ввод значения переменных а1, а2, а3 а4.
- 5. Создание объекта класса 4 посредством параметризированного конструктора, передав в качестве аргументов а1, а2, а3 а4. Обеспечить передачу необходимых коэффициентов объектам согласно наследственности классов.

6. Начало цикла

- 6.1. Реализовать ввод значения переменной х.
- 6.2. Если значение х равно нулю, то завершить цикл.
- 6.3. Иначе, реализовать ввод значения номера класса.
- 6.4. Согласно номеру класса вызвать метод вычисления многочлена

посредством объекта, который соответствует номеру класса и результат вывести.

7. Конец цикла.

1.1 Описание входных данных

Первая строка:

«целое число, значение a1» «целое число, значение a2» «целое число, значение a3» «целое число, значение a4»

Начиная со второй строки, построчно:

«целое число, значение х» «целое число, номер класса»

1.2 Описание выходных данных

Первая строка:

a1 = «целое число» a2 = «целое число» a3 = «целое число» a4 = «целое число»

Наименование коэффициента отделяется от предыдущего целого числа четырьмя пробелами.

Со второй строки и далее построчно:

Фрагменту «F(» предшествует 4 пробела

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект Object класса cl4 предназначен для ;
- функция main для Главная функция программы;
- функция Арр для реализация основного алгоритма работы программы;
- Объет потокового ввода/вывода cin/cout стандартной библиотеки iostream;
- Цикл while;
- Условная конструкция if else;
- Библиотека iostream;
- Пространство имён std.

Класс cl1:

- свойства/поля:
 - о поле Поле коэффициента многочлена а1:
 - наименование a1;
 - тип int;
 - модификатор доступа protected;
 - о поле Поле коэффициента многочлена а2:
 - наименование а2;
 - тип int;
 - модификатор доступа protected;
 - о поле Поле коэффициента многочлена а3:
 - наименование а3;
 - тип int;
 - модификатор доступа protected;
 - о поле Поле коэффициента многочлена а4:
 - наименование а4;

- тип int;
- модификатор доступа protected;

• функционал:

- о метод cl1 параметризированный конструктор, задающий значения полям a1, a2, a3 и a4 переданными ему значениями;
- о метод get_count вычисляет значение многочлена 1-ой степени (a1*x).

Kласс cl2:

• функционал:

- о метод cl2 параметризированный конструктор наследуемый от класса cl1;
- о метод get_count вычисляет значение многочлена 2-ой степени (a1 *x + a2 * x * x).

Kласс cl3:

• функционал:

- о метод cl3 параметризированный конструктор наследуемый от класса cl2;
- метод get_count вычисляет значение многочлена 3-ей степени (а1
 * x + a2 * x * x + a3 * x * x * x).

Kласс cl4:

• функционал:

- о метод cl4 параметризированный конструктор наследуемый от класса cl4;
- о метод get_count вычисляет значение многочлена 4-ой степени (a1 *x + a2 *x *x + a3 *x *x *x + a4 *x *x *x *x).

Таблица 1 – Иерархия наследования классов

No	Имя класса	Классы- наследники	Модификатор доступа при наследовании	Описание	Номер
1	cl1		,,		
		cl2	public		2
2	cl2				
		cl3	public		3
3	cl3				
		cl4	public		4
4	cl4				

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса cl1

Функционал: параметризированный конструктор, задающий значения полям a1, a2, a3 и a4 переданными ему значениями.

Параметры: a1, a2, a3, a4 - целочисленные коэффиценты многочлена.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl1

N₂	Предикат				Действия				N₂
									перехода
1		Присваивание	свойству	a1	значения	переданного	параметра	a1	2
		посредством ук	азателя thi	S					
2		Присваивание	свойству	a2	значения	переданного	параметра	a2	3
		посредством ук	азателя thi	S					
3		Присваивание	свойству	a3	значения	переданного	параметра	аЗ	4
		посредством ук	азателя thi	S					
4		Присваивание	свойству	a4	значения	переданного	параметра	a4	Ø
		посредством ук	азателя thi	S					

3.2 Алгоритм метода get_count класса cl1

Функционал: вычисляет значение многочлена 1-ой степени (а1 * x).

Параметры: x - целочисленная переменная, значение которой используется для вычисления многочлена.

Возвращаемое значение: целое, значение многочлена 1-ой степени (а1 * х).

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода get_count класса cl1

N₂	Предикат	Действия	No
			перехода
1		Переход на новую строку	2
2		Вывод: "cl1"	3
3		Возврат значения многочлена а1 * х	Ø

3.3 Алгоритм конструктора класса cl2

Функционал: параметризированный конструктор наследуемый от класса cl1.

Параметры: a1, a2, a3, a4 - целочисленные коэффиценты многочлена.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса cl2

N₂	Предикат	Действия	No
			перехода
1		Вызов конструктора cl1 класса cl1 со всеми параметрами (a1, a2, a3,	Ø
		a4)	

3.4 Алгоритм метода get_count класса cl2

Функционал: вычисляет значение многочлена 2-ой степени (a1 * x + a2 * x * x).

Параметры: x - целочисленная переменная, значение которой используется для вычисления многочлена.

Возвращаемое значение: целое, значение многочлена 2-ой степени (a1 * x + a2 * x * x).

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода get_count класса cl2

N₂	Предикат	Действия	No
			перехода
1		Переход на новую строку	2
2		Вывод: "cl2"	3
3		Возврат значения многочлена а1 * х + а2 * х * х	Ø

3.5 Алгоритм конструктора класса cl3

Функционал: параметризированный конструктор наследуемый от класса cl2.

Параметры: a1, a2, a3, a4 - целочисленные коэффиценты многочлена.

Алгоритм конструктора представлен в таблице 6.

Таблица 6 – Алгоритм конструктора класса cl3

No	Предикат	Действия		
			перехода	
1		Вызов конструктора cl1 класса cl2 со всеми параметрами (a1, a2, a3,	Ø	
		a4)		

3.6 Алгоритм метода get_count класса cl3

Функционал: вычисляет значение многочлена 3-ой степени (a1 * x + a2 * x * x + a3 * x * x * x).

Параметры: x - целочисленная переменная, значение которой используется для вычисления многочлена.

Возвращаемое значение: целое, значение многочлена 3-ой степени (a1 * x + a2 * x * x + a3 * x * x * x).

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода get_count класса cl3

N₂	Предикат	Действия	No
			перехода
1		Переход на новую строку	2
2		Вывод: "cl3"	3
3		Возврат значения многочлена a1 * x + a2 * x * x + a3 * x * x * x	Ø

3.7 Алгоритм конструктора класса cl4

Функционал: параметризированный конструктор наследуемый от класса cl4.

Параметры: a1, a2, a3, a4 - целочисленные коэффиценты многочлена.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса cl4

N₂	Предикат	Действия		
			перехода	
1		Вызов конструктора cl1 класса cl3 со всеми параметрами (a1, a2, a3,	Ø	
		a4)		

3.8 Алгоритм метода get_count класса cl4

Функционал: вычисляет значение многочлена 4-ой степени (a1 * x + a2 * x * x + a3 * x * x * x + a4 * x * x * x * x).

Параметры: x - целочисленная переменная, значение которой используется для вычисления многочлена.

Возвращаемое значение: целое, значение многочлена 4-ой степени (a1 * x + a2 * x * x + a3 * x * x * x + a4 * x * x

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода get_count класса cl4

N₂	Предикат	Действия	
			перехода
1		Переход на новую строку	2
2		Вывод: "cl4"	3
3		Возврат значения многочлена a1 * x + a2 * x * x + a3 * x * x * x + a4 *	Ø
		X * X * X * X	

3.9 Алгоритм функции Арр

Функционал: реализация основного алгоритма работы программы.

Параметры: нет.

Возвращаемое значение: Отсутствует.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции Арр

No	Π	редикат	Действия	No
				перехода
1			Объявление указателя Object на объект класса cl4	2
2			Объявление переменных целого типа а1, а2, а3, а4,	3
			x, num, result	
3			Ввод значений переменных а1, а2, а3, а4	4
4			Создание объекта Object класса cl4 с помощью	5
			параметризированного конструктора, с передачей	
			ему значений коэффициентов многочлена а1, а2,	
			а3 и а4, посредством оператора new	
5			Вывод: "а1 = ",<<значение переменной а1>>,"	6
			a2 = ",<<значение переменной a2>>," a3 =	
			",<<значение переменной а3>>," а4 =	
			",<<значение переменной а4>>	
6			Ввод значения x и номера класса num	7
7	Значение	переменной	X	Ø

No	Предикат	Действия	№ перехода
	равно 0		•
	Значение переменной х не		8
	равно 0		
8	Значение переменной num	Вызов метода get_count с передачей параметра х	12
	равно 4		
	Значение переменной пит не		9
	равно 4		
9	Значение переменной num	Вызов метода get_count с передачей параметра х	12
	равно 3		
	Значение переменной пит не		10
	равно 3		
10	Значение переменной num	Вызов метода get_count с передачей параметра х	12
	равно 2		
	Значение переменной num не		11
	равно 2		
11	Значение переменной num	Вызов метода get_count с передачей параметра х	12
	равно 1		
	Значение переменной num не		6
	равно 1		
12		Присвоение переменной result возвращённого	13
		значения метода get_count	
13		Вывод: " $F(", << $ значение переменной $x << , ") =$	Ø
		", <<значение переменной result>>	

3.10 Алгоритм функции main

Функционал: Главная функция программы.

Параметры: нет.

Возвращаемое значение: целое, индикация корректности работы программы.

Алгоритм функции представлен в таблице 11.

Таблица 11 – Алгоритм функции таіп

N₂	Предикат	Действия	
			перехода
1		Вызов фнукции Арр	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Арр.срр

Листинг 1 – Арр.срр

```
#include "cl4.h"
#include <iostream>
using namespace std;
void App()
  cl4* Object;
  int a1, a2, a3, a4, x, num, result;
  cin >> a1 >> a2 >> a3 >> a4;
  Object = new cl4(a1, a2, a3, a4);
cout << "a1 = " << a1 << " " " << "a2 = " << a2 << " " " << "a3 = " << a3 << " " << "a4 = " << a4;
  while(true)
     cin >> x >> num;
     if (x == 0)
        break;
     if (num == 4)
      {
        result = Object -> get_count(x);
     else if (num == 3)
        result = Object -> cl3::get_count(x);
     else if (num == 2)
        result = Object -> cl2::get_count(x);
     else if (num == 1)
        result = Object -> cl1::get_count(x);
      }
     else
      {
        continue;
```

```
cout << " F( " << x << " ) = " << result;
}
```

5.2 Файл Арр.h

Листинг 2 – App.h

```
#ifndef __APP__H
#define __APP__H
void App();
#endif
```

5.3 Файл cl1.cpp

Листинг 3 – cl1.cpp

```
#include "cl1.h"
#include <iostream>
using namespace std;

cl1::cl1(int a1, int a2, int a3, int a4)
{
    this -> a1 = a1;
    this -> a2 = a2;
    this -> a3 = a3;
    this -> a4 = a4;
}
int cl1::get_count(int x)
{
    cout << "\nClass 1";
    return a1 * x;
}</pre>
```

5.4 Файл cl1.h

Листинг 4 – cl1.h

```
#ifndef __CL1__H
#define __CL1__H

#include <iostream>

class cl1
{
    public:
        cl1(int a1, int a2, int a3, int a4);
        virtual int get_count(int x);
        protected:
        int a1;
        int a2;
        int a3;
        int a4;
};
#endif
```

5.5 Файл cl2.cpp

Листинг 5 - cl2.cpp

```
#include "cl1.h"
#include "cl2.h"
#include <iostream>
using namespace std;

cl2 :: cl2(int a1, int a2, int a3, int a4): cl1(a1, a2, a3, a4){}
int cl2::get_count(int x)
{
    cout << "\nClass 2";
    return a1 * x + a2 * x * x;
}</pre>
```

5.6 Файл cl2.h

Листинг 6 – cl2.h

```
#ifndef __CL2__H
```

```
#define __CL2__H

#include <iostream>
#include "cl1.h"

class cl2 : public cl1
{
    public:
        cl2(int a1, int a2, int a3, int a4);
        virtual int get_count(int x);
};

#endif
```

5.7 Файл cl3.cpp

Листинг 7 – cl3.cpp

```
#include "cl2.h"
#include "cl3.h"
#include <iostream>
using namespace std;

cl3 :: cl3(int a1, int a2, int a3, int a4): cl2(a1, a2, a3, a4){}
int cl3::get_count(int x)
{
    cout << "\nClass 3";
    return a1 * x + a2 * x * x + a3 * x * x * x;
}</pre>
```

5.8 Файл cl3.h

Листинг 8 – cl3.h

```
#ifndef __CL3__H
#define __CL3__H

#include <iostream>
#include "cl2.h"

class cl3: public cl2
{
    public:
    cl3(int a1, int a2, int a3, int a4);
```

```
virtual int get_count(int x);
};
#endif
```

5.9 Файл cl4.cpp

Листинг 9 – cl4.cpp

```
#include "cl3.h"
#include "cl4.h"
#include <iostream>
using namespace std;

cl4 :: cl4(int a1, int a2, int a3, int a4): cl3(a1, a2, a3, a4){}
int cl4::get_count(int x)
{
    cout << "\nClass 4";
    return a1 * x + a2 * x * x + a3 * x * x * x + a4 * x * x * x * x;
}</pre>
```

5.10 Файл cl4.h

Листинг 10 – cl4.h

```
#ifndef __CL4__H
#define __CL4__H

#include <iostream>
#include "cl3.h"
#include "cl4.h"

class cl4: public cl3
{
    public:
        cl4(int a1, int a2, int a3, int a4);
        virtual int get_count(int x);
};

#endif
```

5.11 Файл таіп.срр

Листинг 11 – main.cpp

```
#include <iostream>
#include "App.h"

int main()
{
    // program here
    App();
    return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 12.

Таблица 12 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
1 1 1 1 5 1 3 2 6 1 8 3 8 5 3 2 0 5 1 3 2 6 1 8 3	a1 = 1	1
1 1 1 1 2 1 2 2 2 3 2 4 2 5 2 6 0	a1 = 1	1

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).