Lab ORG

Processador ICMC

Eduardo Simões

João Victor Sene Araújo - nUSP: 11796382

Guilherme Lourenço de Toledo - nUSP: 11795811

Milena Corrêa da Silva - nUSP: 11795401

Conjunto de registradores do uP ICMC

Nome	Qtde	Finalidade
R _n	0-7	Registradores de propósito geral
FR	1	Flag Register
SP	1	Ponteiro da pilha
PC	1	Contador de programa
IR (interno)	1	Registrador de instruções
MAR (interno)	1	Registrador de endereço de memória

- Arquitetura RISC do tipo Load/Store
- Operações de Reg. para Reg.

- Manipulação de Dados
 - op = opcode
 - rx, ry, rz: registradores
 - c: uso do bit de carry

• Direto:

op rx

Endereço

· Imediato:

 Indireto por Registrador

6 bits	3 bits	7	bits
ор	rx		
Número			
6 bits	3 bits	3 bits	4 bits
ор	rx	ry	

Instruções de manipulação de dados

110001 | RX | xxx | xxx | x

LOAD RX, END	RX <- MEM(END)	END 110000 RX xxx xxx x END
Indireto por Registrac	dor	
STOREI RX, RY	MEM(RX) <- RY	111101 RX RY xxx x
LOADI RX, RY	RX <- MEM(RY)	111100 RX RY xxx x
Imediato		
LOADN RX, #NR	RX <- NR	111000 RX xxx xxx x
		NR
B.A. ' (~		

STORE END. RX MEM(END) <- RX

Movimentação

MOV RX, RY	RX <- RY	110011 RX RY xx x0
MOV RX, SP	RX <- SP	110011 RX xxx xx 01
MOV SP, RX	SP <- RX	110011 RX xxx xx 11

- Instruções Lógicas e Aritméticas
 - op = opcode
 - rx, ry, rz: registradores
 - c: uso do bit de carry

05/08/2021

6

Instruções aritméticas

ADD RX, RY, RZ	RX<-RY+RZ	100000 RX RY RZ 0
ADDC RX, RY, RZ	RX<-RY+RZ+C	100000 RX RY RZ 1
ADDN RX, #NR	RX<-RX+NR 101	1010 RX xxx xxx 1
		NR
SUB RX, RY, RZ	RX<-RY-RZ	100001 RX RY RZ 0
SUBC RX, RY, RZ	RX<-RY-RZ+C	100001 RX RY RZ 1
MULT RX, RY, RZ	RX<-RY*RZ	100010 RX RY RZ 0
MULTC RX, RY, RZ	RX<-RY*RZ+C	100010 RX RY RZ 1
DIV RX, RY, RZ	RX<-RY/RZ	100011 RX RY RZ 0
DIVC RX, RY, RZ	RX<-RY/RZ+C	100011 RX RY RZ 1
INC RX	RX++	100100 RX 0 xxx xxx
DEC RX	RX	100100 RX 1 xxx xxx
MOD RX, RY, RZ	RX<-RY MOD RZ	100101 RX RY RZ x

Instruções lógicas

AND RX, RY, RZ	RX<-RY AND RZ	010010 RX RY RZ x
OR RX, RY, RZ	RX<-RY OR RZ	010011 RX RY RZ x
XOR RX, RY, RZ	RX<-RY XOR RZ	010100 RX RY RZ x
NOT RX, RY	RX<-NOT(RY)	010101 RX RY xxx x
ROTL RX,n	ROTATE TO LEFT	010000 RX 10x nnn n
ROTR RX,n	ROTATE TO RIGHT	010000 RX 11x nnn n
SHIFTL0 RX,n	SHIFT TO LEFT (FILL 0)	010000 RX 000 nnn n
SHIFTL1 RX,n	SHIFT TO LEFT (FILL 1)	010000 RX 001 nnn n
,	,	, , , ,
SHIFTR0 RX,nSHI	FT TO RIGHT (FILL 0)	010000 RX 010 nnn n
,	FT TO RIGHT (FILL 1)	010000 RX 011 nnn n
=		

FR<-COND

05/08/2021

CMP RX, RY

010110 | RX | RY | xxx | x

Instruções de entrada e saída

- Input

Output

Instruções de entrada e saída

INCHAR RX

RX<-"00000000"&key 110101 | RX | xxx | xxx | x

OUTCHAR RX, RY VIDEO(RY)<-CHAR(RX)

110010| RX | RY | xxx | x

Controle de desvio 4

op cond Endereço

Instruções de salto (todas com END)

Salto se condição verdadeira para o END

PC<-END	unconditional	000010 0000 x xxxxx
	END	
PC<-END	EQual	000010 0001 x xxxxx
PC<- END	NotEqual	000010 0010 x xxxxx
PC<- END	Zero	000010 0011 x xxxxx
<- END Not	Zero 000	010 0100 x xxxxx
PC<- END	Carry	000010 0101 x xxxxx
PC<- END	NotCarry	000010 0110 x xxxxx
PC<- END	GReater	000010 0111 x xxxxx
PC<- END	LEsser 000	010 1000 x xxxxx
PC<- END	EqualorGreater	000010 1001 x xxxxx
PC<- END	EqualorLesser	000010 1010 x xxxxx
PC<- END	Overflow (ULA)	000010 1011 x xxxxx
PC<- END	NotOverflow	000010 1100 x xxxxx
PC<-END	Negative (ULA)	000010 1101 x xxxxx
PC<-END	DivbyZero	000010 1110 x xxxxx
	PC<-END PC<- END Not PC<- END	END PC<-END EQual PC<- END NotEqual PC<- END Zero <- END NotZero 000 PC<- END Carry PC<- END NotCarry PC<- END GReater PC<- END LEsser 000 PC<- END EqualorGreater PC<- END EqualorLesser PC<- END Overflow (ULA) PC<- END NotOverflow PC<- END Negative (ULA)

Instruções de chamada (todas com END)

Chama procedimento se condição verdadeira

CALL END	MEM(SP)<-P(PC<-END	C Unconditiona	I 000011 0000 x xxxxx END
	SP		LIND
CEQ END	idem	EQual	000011 0001 x xxxxx
CNE END	idem	NotEqual	000011 0010 x xxxxx
CZ END	idem	Zero	000011 0011 x xxxxx
CNZ END	idem	NotZero	000011 0100 x xxxxx
CC END	idem	Carry	000011 0101 x xxxxx
CNC END	idem	NotCarry	000011 0110 x xxxxx
CGR END	idem	GReater	000011 0111 x xxxxx
CLE END	idem	LEsser	000011 1000 x xxxxx
CEG END	idem	EqualorGreater	000011 1001 x xxxxx
CEL END	idem	EqualorLesser 000	0011 1010 x xxxxx
COV END	idem	Overflow (ULA)	000011 1011 x xxxxx
CNOV END	idem	NotOverflow	000011 1100 x xxxxx
CN END	idem	Negative (ULA)	000011 1101 x xxxxx
CDZ ENDider	n Div	byZero 000	0011 1110 x xxxxx

Instrução de retorno

PC<=MEM(SP)

PC++

Obs.: - Não esquecer de incrementar o PC pois foi guardado na pilha ainda apontando para o END no CALL.

Pilha

Instruções de pilha

PUSH	RX	MEM(SP) <- RX SP	000101 RX 0 xxxxxx
PUSH	FR	MEM(SP) <- FR SP	000101 xxx 1 xxxxxx
POP RX		SP++ MEM(SP) -> RX	000110 RX 0 xxxxxx
POP FR		SP++ MEM(SP) -> FR	000110 xxx 1 xxxxxx

Controle

Instruções de controle

CLEARC	C<-0	001000 0 xxxxxxxxx
SETC	C<-1	001000 1 xxxxxxxxx
HALT	STOP EXECUTION	001111 x xxxxxxxxx
NOOP	NO OPERATION	000000 x xxxxxxxxx
BREAKP	Insert Break Point	001110 x xxxxxxxxx