GENE613 - Exam 2

Daniel Osorio - dcosorioh@tamu.edu
Department of Veterinary Integrative Biosciences
Texas A&M University

- 1. Two syntenic loci each with 2 alleles. In generation 0 D=0.24 and in generation 3 D=0.12
 - a) What is the recombination rate r?

$$\begin{split} D_{AB}^t &= (1-r)^t D_{AB}^0 \\ \frac{D_{AB}^t}{D_{AB}^0} &= (1-r)^t \\ \sqrt[t]{\frac{D_{AB}^t}{D_{AB}^0}} &= (1-r) \\ 1 - \sqrt[t]{\frac{D_{AB}^t}{D_{AB}^0}} &= r \\ 1 - \sqrt[3]{\frac{0,12}{0,24}} &= r \\ 0,206 &= r \end{split}$$

b) What does this parameter mean?

The recombination rate r is the probability of an odd number of crossovers between two loci. It also represents the proportion of time alleles from two different grand-partents occur in the same gamete. It increases (at a variable rate depending upon genomic location) with physical (bp) distance.

c) Is this value large or small?

The recombination rate r parameter space is between 0 and 0.5. Given a value of r = 0.206 that represents the 41% of the maximum possible recombination rate.

2. For two syntenic loci with alleles A, a and B, b, give an example showing why the parameter space of D_{AB} must be: $max(-p_Ap_B, -p_ap_b) \leq D_{AB} \leq min(p_Ap_b, p_ap_B)$. As D_{AB} is a portion of additional or missing expected genotype frequency, and the sum of all the genotypes in a population must be 1 with each genotype frequency in a range between 0 and 1.

	A	a	
В	$p_B p_A + D_{AB}$	$p_B p_a - D_{AB}$	p_B
b	$p_b p_A - D_{AB}$	$p_b p_a + D_{AB}$	p_b
	p_A	p_a	1

If we consider as an as example that: $p_A = 0.7$, $p_B = 0.6$, $p_a = 0.3$ and $p_b = 0.4$, then the expected values will be:

	A	a	
В	$0.42 + D_{AB}$	$0.18 - D_{AB}$	p_B
b	$0.28 - D_{AB}$	$0.12 + D_{AB}$	p_b
	p_A	p_a	1

And the parameter space for D_{AB} will be: $max(-0.42, -0.12) \le D_{AB} \le min(0.28, 0.18)$ otherwise the values of D will lead generate negative values of the genotype frequencies, out of the range of the expected values (which is not possible).

- 3. If 3 loci influence a trait
 - (I) $A \times A \times A$
 - (II) $A \times A \times D$
 - (III) $A \times D \times A$
 - (IV) $A \times D \times D$
 - (v) $D \times A \times A$
 - (VI) $D \times A \times D$
 - (VII) $D \times D \times A$
 - (VIII) $D \times D \times D$
 - a) How many epistatic interactions are possible that involve dominance genetic action? Seven events could be possible involving dominance genetic action (II, III, IV, V, VI, VII, VIII)
 - b) How many epistatic interactions are possible that involve additive genetic action? Seven events could be possible involving additive genetic action (I, II, III, IV, V, VI, VII)
- 4. Genetic parameters (h^2 on diagonal elements and r_a on off-diagonal elements) and variances for wool traits and progeny birth weight of Rambouillet ewes (Bromley et al., J. Anim Sci., 2000; 78:846-858)

	Staple length	Flence Weight	Fleece Grade	Birth wt
Staple length	0.37	0.56	-0.54	-0.01
Flence Weigh		0.52	-0.46	-0.06
Fleece Grade			0.26	-0.12
Birth wt				0.2
σ_p^2	0.9	0.6	5	1

In a selection program to increase Fleece Grade the best 11% of rams (males) and 35% of ewes (females) are selected each generation.

a) Calculate the response to selection per generation.

$$R_{k} = \frac{h^{2}S_{sires_{k-1}} + h^{2}S_{dams_{k-1}}}{2}$$

$$R_{k} = \frac{h^{2}\sigma_{p}i_{sires_{k-1}} + h^{2}\sigma_{p}i_{dams_{k-1}}}{2}$$

$$R_{k} = \frac{0.26 \times (1.71 \times \sqrt{5}) + 0.26 \times (1.06 \times \sqrt{5})}{2}$$

$$R_{k} = \frac{1.61}{2}$$

$$R_{k} = 0.805$$

5. Using the selection program and parameters in #4, estimate the correlated response to selection for Fleece Grade per generation in each of the other traits.

$$CR_{Y} = ih_{X}h_{Y}r_{a}\sigma_{p_{Y}}$$

$$CR_{SL} = \left(\frac{1,17+1,06}{2}\right) \times \sqrt{0,26} \times \sqrt{0,37} \times -0.54 \times \sqrt{0,9} = -0.177$$

$$CR_{FW} = \left(\frac{1,17+1,06}{2}\right) \times \sqrt{0,26} \times \sqrt{0,52} \times -0.46 \times \sqrt{0,6} = -0.146$$

$$CR_{BW} = \left(\frac{1,17+1,06}{2}\right) \times \sqrt{0,26} \times \sqrt{0,20} \times -0.12 \times \sqrt{1} = -0.031$$

6. With the following pedigree from *Potentilla argentea* (hoary cinquefoil)

Individual	Male Parent	Female Parent
1		
2		
3	1	2
4	3	3
5	1	4
6	4	2
7	5	6

a) What is the average inbreeding coefficient of the plants in this pedigree?

[1] 0.187

b) What is the average additive relationship of pair of plants, excluding relationship of plants with themselves?

[1] 0.6548095

c) Give the average Wrigth's relationship coefficient for plant 2 with each of the other plants

[1] 0.3733333

d) What does Wrigts's relationship coefficient do matematically to aditive relatedness values? Divide the additive relationship by the square root of the multiplication between the 1+F of the two individuals, modifying the parameter space to be between 0 and 1

- 7. Rank the following information with regards to how well a phenotype of each would predict breeding values of individual G
 - a) G's father $\frac{\sqrt{h^2}}{2}$
 - b) G's uncle (full-sibling of G's father) $\frac{\sqrt{h^2}}{4}$
 - c) G's single progeny from unrelated mother $\frac{\sqrt{h^2}}{2}$
 - d) G's clone $\sqrt{h^2}$
 - e) G's half-sibling brothers (3 of them) $\sqrt{\frac{\frac{3h^2}{4}}{4+2h^2}}$
 - f) G's single progeny that is also grandprogeny (from mother who was also G's progeny) $\frac{3\sqrt{h^2}}{4}$

The ranking in order of how well a phenotype of a related individual would predict breeding values of individual G is d > f > c > a > e > b.