Andrew Davison
CSC 372: Survey of Artificial Intelligence
Dr. Thomas Allen
3/7/2023

A2: IDA* on the 2x2x2 Rubik's Cube

Approaching the Search Problem

Overview of IDA*

To approach the problem of solving a 2x2x2 Rubik's Cube, I used a version of IDA*, or Iterative-Deeping-A*, is a method of informed search that looks for a solution by generating possible moves to take from a scrambled cube and then selecting which action to take based off of a heuristic and path cost. This is done until all possible actions are examined up to a certain depth; if a solution is not found to that depth, the depth is increased or the program is terminated. The program is usually only terminated if the time elapsed in the search becomes increasingly long.

In my implementation, I implemented IDA* by starting with a scrambled cube. The first depth is set to the heuristic evaluation of that cube, and then iteratively deepened until a solution is found. The program takes the scrambled cube, applies all 12 possible moves to the cube excepting ones that would immediately reverse the action taken prior when the search gets deeper, and then evaluates all of the states according to their heuristic again. This is done recursively, according to Korf's recommendations, but also includes a small priority queue for each set of children generated when a node is explored. This way, of the 11 children to evaluate, the program first considers those with a heuristic best indicating the path to a solution.

Heuristic

In this discussion, it's important to address the heuristic used for this search. A heuristic is a way to evaluate a state to try and give a decent guess towards the number of steps that a given state is away from a solved state. This is incredibly useful in our search, as it would be better to select states that are closer to a solved state.

My heuristic used in this search is based distinctly around my model for the cube. I model the 2x2x2 cube with a vector of eight orientations, where a solved state is an instance of that vector where all of the orientations are the same. Since each position can have 24 different orientations, there are 24 different solution states. To account for this, my heuristic is similar to Hamming distance, but instead of comparing to a specific solution state, the current cube is considered by

the number of different orientations currently in the cube. The heuristic counts the number of different orientations in the eight different cubelets, and then divides that by 2, since each move can affect 4 cubelets, or half of the cube.

In my experimental data, there was never a case where the heuristic overestimated the number of steps to a solved state. It was often not exactly correct, but because it never overestimated, it is an admissible heuristic.

<u>Implementing the Code</u>

I implemented this code in C++ using packages from the STL library. Most of the data structures in the code were C++ vectors or sets, in a few cases. I used the chrono library to record real-time computation data for search performance. In addition to the utilities of the language, I wrote a few structs to be used for the search in a Node struct and SolveResult struct to hold the solution with some data surrounding that solution (number of explored nodes and time elapsed).

Although my code is functional, I think that it is far from optimized. Since I explore all 11-12 possible children, the branching factor of the search is very large, but there was not a noticeable speedup when the branching factor was reduced. This leads me to believe that the slowdown most likely comes from the intermediate priority queues, the function calls towards modifying the state of a cube, or simply the fact that my model of the cube makes it possible for there to be a large number of identical states that are visited many times, greatly increasing the search space.

For simplicity, my code randomized cubes to a certain depth and solved them 10 times for each depth, and then iterated the depth up to 14, which is the maximum number of quarter turns needed to solve a 2x2x2 cube. This meant that running the program overall took longer, but that the results were always ran on the same version of the code.

When the program is running, all of the output goes to a files names idastar_output.txt. This file has a block of text for each cube test run. First is the initial heuristic, then the sequence of randomized moves to scramble the cube, the solution found, the start state of the cube in orientation notation, and then the number of nodes explored and time elapsed in microseconds.

Results

Time Complexity in Microseconds (µs) According to Randomization Depth

	Depth						Trials						
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	Avg		
1	60	102	68	143	77	56	66	62	49	66	76		
2	79	77	78	79	84	150	85	148	76	76	93		
3	254	52	308	264	201	234	239	311	183	302	235		
4	179	90	1139	351	491	151	1713	443	208	67	483		
5	3696	167	3210	3101	2912	183	2266	5469	6816	55	2788		
6	49502	1850	14184	41118	22746	568	22379	28376	114343	102	29516		
7	222345	312	654245	572949	290701	3648	462661	120182	192062	79	251918		
8	3161601	983	3158157	17796	3576465	8898	8990115	32530	2328227	114	2127489		
9	387677	3187	376768	4435	58541432	511125	35758725	327385	50452770	94	14636360		
10	1000979	882	4067062	15106	62128778	3950588	258543971	5870872	11895892	4424513	35189864		
11	462582	3267	45617777	74813	108587970	671917	514096483	12115351	N/A	N/A	85203770		

Space Complexity in Nodes Explored According to Randomization Depth

	Depth					Trials					
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	Avg
1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	14	2	14	2	2	4.4
3	61	1	85	49	51	37	49	37	15	85	47
4	28	2	429	94	144	14	707	138	38	2	160
5	1547	37	1442	1221	1214	37	959	2424	2981	1	1186
6	21830	822	6283	18626	10374	194	9643	12306	52812	2	13289
7	99427	49	296551	254871	130667	1530	206609	55285	87704	1	113269
8	1428526	375	1425217	8466	1633164	4006	400078	14771	1070860	2	598546
9	176589	1325	167914	1689	26684497	233990	16115612	149768	23132347	1	6666373
10	455882	274	1825831	6954	28323993	1815423	116844343	2673488	5484167	2016321	15944668
11	211324	1156	20398744	33707	49143178	310563	230056789	5472658	N/A	N/A	38203515

For consideration, the system that this test was run on consists of an AMD Ryzen 7 5700G processor, 32 GB of RAM, and a NVIDIA GeForce GTX 1060 3GB GPU.

The trials, as expected, began to scale increasingly worse with depth. The trials at depth 11 stopped because of a one-hour time constraint. It is clear that the heuristic and search

implementation behaved as expected, though, since even deep into the randomization process the solver was able to find simple solutions to barely scrambled cubes down even to 9 random turns.

Lessons and Takeaways

In this assignment, I learned a lot about how intelligent design can make a significant impact on the ability to solve problems effectively and efficiently. However, even when intelligent design is implemented, there is always room for improvement. It is clear to me that even though I have an intelligent cube solver, there is much more optimization that could be done, or other approaches to be taken.

Acknowledgements and References

I found a significant part of research on this blog, which strongly inspired my data structure for this problem:

https://k-l-lambda.github.io/2020/12/14/rubik-cube-notation/

I read and used a modified version of Korf's method for IDA*: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.288&rep=rep1&type=pdf

I used cplusplus.com for language reference: https://cplusplus.com/

Additionally, I discussed my ideas for this structure with classmates Michael Liao and Christian Fronk.