## END SEMESTER EXAMINATION, JULY-2023 INTRODUCTORY GRAPH THEORY (CSE 1004)

Programme: B.Tech Full Marks: 60 Semester:2nd Time: 3 Hours

| Subject/Course Learning Outcome                                                                                                                    | *Taxonomy<br>Level | Ques.<br>Nos. | Marks |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|-------|
| of graphs                                                                                                                                          | L3, L3,            | 1(a),1(b),    | 2,2,  |
| Able to understand the fundamental concepts of graphs and apply them to study graph isomorphisms, Eulerian graphs, graphic sequences and digraphs. | L3, L3,            | 1(c),2(a),    | 2,2,  |
|                                                                                                                                                    | L3, L3             | 2(b),2(c)     | 2,2   |
| the second of trace engine trees                                                                                                                   | L3, L3,            | 3(a),3(b),    | 2,2,  |
| Able to understand the concepts of trees, spanning trees and study its various concepts and apply the Kruskal's                                    | L3, L3,            | 3(c),4(a),    | 2,2,  |
| algorithm to find the minimum spanning tree and Dijkstra's algorithm to find the shortest path of connected weighted graphs                        | L3, L3             | 4(b), 4(c)    | 2,2   |
|                                                                                                                                                    | L3, L3,            | 5(a),5(b),    | 2,2,  |
| Able to understand matchings and factorization of graphs and its various applications.                                                             | L3                 | 5(c)          | 2     |
| Able to understand and analyze coloring of graphs, it's enumerative aspects and its applications.                                                  | L3, L3,            | 6(a),6(b),    | 2,2,  |
|                                                                                                                                                    | L3, L3,            | 6(c),7(a),    | 2,2,  |
|                                                                                                                                                    | L3, L3             | 7(b),7(c)     | 2,2   |
| Able to understand and analyze planar graphs and its various applications.                                                                         | 10.10              | 8(a),8(b),    | 2,2,  |
|                                                                                                                                                    | L3, L3,            | 8(c),9(a),    | 2,2,  |
|                                                                                                                                                    | L3, L3             | 9(b),9(c)     | 2,2   |
| f live graphs adge-                                                                                                                                |                    | 10(a),10(b),  | 2,2,  |
| Able to understand the concepts of line graphs, edge-<br>coloring and the various aspects of Hamiltonian cycles.                                   | L3                 | 10(c)         | 2     |

\*Bloom's taxonomy levels: Remembering (L1), Understanding (L2), Applying (L3), Analysing (L4), Evaluating (L5), Creating (L5)

## Answer all questions. Each question carries equal mark.

- (b) Prove that every u, v -walk contains a u, v -path.
   (b) Draw four simple nonisomorphic graphs of order 4.
  - (c) Prove or disprove: If u and v are the only vertices of odd degree in a graph G, then G contains a u, v-path.
- (a) Prove that if every vertex of a graph G has degree at least
   2, then G contains a cycle.

- (b) Prove or disprove: If D is an orientation of a simple graph 2 with 10 vertices, then the vertices of D cannot have distinct outdegrees.
- (c) Determine, whether the following is a graphic sequence. 2

  If yes, construct the graph

d:5, 5, 4, 4, 2, 2, 1,1

- 3. (a) Prove that every tree with at least two vertices has at 2 least two leaves.
  - Determine the diameter and radius of the cycle graph  $C_5$  by calculating the eccentricity of each vertex of the graph.
  - (c) Prove that G is a tree if and only if adding any edge with 2 endpoints in V(G) creates exactly one cycle.
- 4. (a) Let T be an *n*-vertex tree having one vertex of each 2 degree i with  $2 \le i \le k$ ; the rest n-k+1 vertices are leaves. Determine n in terms of k.
  - (b) Let G be a complete undirected graph with 4 vertices 2 and 6 edges having weights 1, 2, 3, 4, 5 and 6. Determine the maximum possible weight that a minimum weight spanning tree of G can have.
  - (c) Find the minimum spanning tree of the given graph by 2 using Kruskal's algorithm.



- 5. (a) How many perfect matchings does the graph  $K_{2,2}$  have? 2

  Draw all the perfect matchings of  $K_{2,2}$ .
  - (b) Let T be a tree with n vertices, and let k be the 2 maximum size of an independent set in T. Determine  $\alpha'(T)$  in terms of n and k.

(c) In the graph given below exhibit a k-factor for k=1 and 2 k=2.



6. (a) Determine the chromatic number of the given graph.



- (b) Prove that the chromatic number of a graph equals the 2 maximum of the chromatic numbers of its components.
- (c) Prove or disprove: If  $G = F \cup H$ , then  $2 \times \chi(G) \leq \chi(F) + \chi(H)$ .
- 7. (a) Draw  $P_3 \vee K_3$  and compute  $\chi(P_3 \vee K_3)$ .
  - (b) Compute the chromatic polynomial of the given graph.



- (c) Determine  $\chi(C_n \vee K_1; k)$  and hence find  $\chi(C_3 \vee K_1; 4)$ .
- 8. (9) Show that  $K_{i}$  is nonplanar.
  - Prove or disprove: Every subgraph of a planar graph is 2 planar.
  - Draw the dual graph of  $K_4$ .
- 9. (a) If G is a triangle-free simple planar graph with at least 3 2 vertices then prove that  $e(G) \le 2n(G) 4$ .

2

2

- (b) If in an undirected connected planar graph G, there are 2 eight vertices and five faces, then determine the number of edges in G.
- Let G be a simple undirected planar graph with 10 2 vertices and 15 edges. If G is connected, then determine the number of bounded faces in any embedding of G on the plane.
- 10 (a) For the given graph G, compute the edge-chromatic 2 number  $\chi'(G)$  and draw the line graph L(G).



(b) Determine the maximum edge multiplicity  $\mu(G)$  of the 2 graph G given below.



(c) Determine whether the given graph is Hamiltonian or 2 not. If yes, show the Hamiltonian cycle by suitably naming the vertices.



\*End of Questions\*