

РАЗРУШИТЕЛИ СТАТИСТИЧЕСКИХ МИФОВ 2 CE3OH

МИФ №4:

КАТЕГОРИЧЕСКИ КАТЕГОРИЧНО, ИЛИ «ПРОСТО РАЗБЕЙ НА ГРУППЫ»

МИФ №5:

РАНДОМИЗАЦИЯ – СМЕШАТЬ И НЕ ВЗБАЛТЫВАТЬ

МИФ №6:

ВИЗУАЛИЗАЦИЯ – ЭТО ПРОСТО КРАСИВЫЕ ГРАФИКИ

РАЗРУШИТЕЛИ СТАТИСТИЧЕСКИХ МИФОВ 2 CE3OH

АЛЕКСЕЙ ГЛАЗКОВ | МИФ №4: КАТЕГОРИЧЕСКИ КАТЕГОРИЧНО, ИЛИ «ПРОСТО РАЗБЕЙ НА ГРУППЫ»

HTTPS://T.ME/CHAT_BIOSTAT_R

Осебе

Глазков Алексей

- Выпускник ФФМ МГУ, к. м. н., старший научный сотрудник
- 12 лет опыта
- 200+ статистических расчётов
- 95 рецензий на диссертационные работы
- 283 рецензии на научные статьи
- Преподаю в Институте биоинформатики:

«Специфика медицинских данных»,

«Количественное планирование исследований»,

«Корреляционный анализ»

Дисклеймер

- Мы сами много и увлеченно ошибались, чему, наверняка, в Интернете можно найти свидетельства :)
- В чем-то мы ошибаемся и сейчас (но пока этого не поняли).
- Какие-то ошибки нас ещё ждут.

Цель данного мероприятия – поделиться своим опытом и опытом коллег с сообществом, чтобы снизить количество ошибок в статистическом анализе данных.

Синхронизируемся

Типы переменных

Количественные

(шкалы, scale, quantitative)

Порядковые

(ordinal)

Качественные

(номинальные, nominal)

Дата/время

Что такое категоризация?

Преобразование непрерывной (количественной) переменной в категориальную путём разделения её значений на группы или интервалы.

Пример

ИМТ, кг / M^2 – индекс массы тела

 $27.2 \, кг/м^2$

< 18 кг/м 2 – недостаточный ИМТ

 \ge 18 и < 25 кг/м 2 − нормальный ИМТ

 $\ge 25 \, \text{и} < 30 \, \text{кг/м}^2 \, - \, \text{избыточный} \, \text{ИМТ}$

 \geq 30 и < 35 кг/м² – ожирение I степени

 \geq 35 и < 40 кг/м² – ожирение II степени

 \geq 40 кг/м² – ожирение III степени

 $< 30 \text{ kg/m}^2 \mid \ge 30 \text{ kg/m}^2$

Нет ожирения

Есть ожирение

Процедуры категоризации

1. Категоризация по клиническому опыту или эмпирическим допущениям

Пример: деление на группы «низкий/средний/высокий» по шкале тревожности, без нормативов.

2. Клинически обоснованные или нормативные пороги

Пример: категории ИМТ (нормальный, избыточный, ожирение), уровни АД по ESC/ESH.

3. Статистическое разбиение по выборке (квартили, тертили, медиана)

Пример: деление на 4 группы по квартилям уровня ферритина.

4. «Оптимальные» категории (data-driven пороги)

Пример: определение порога по максимальному индексу Юдена на ROC-кривой.

Проблемы категоризации

Проблемы категоризации

Несоответствие биологической реальности

- Категории вводят искусственные границы там, где процесс имеет непрерывный характер.
- Например, риск сердечно-сосудистых заболеваний обычно нарастает плавно с ростом давления или холестерина, а не скачком в одной точке.

Потеря информации

- При группировке значений стираются различия внутри категорий.
- Особенно при дихотомизации (деление на две группы).

Увеличение частоты ошибок I рода (ложноположительных)

— Множественные сравнения между группами (например, между квартилями) увеличивают вероятность случайного нахождения значимого результата.

Увеличение ошибок II рода (ложноотрицательных)

- Уменьшение чувствительности к истинным слабым связям из-за упрощённой структуры данных.
- Эффект может «размазаться» внутри широкой категории и стать незаметным.

Искажение оценки эффекта

— Границы между категориями создают иллюзию резких изменений, приводя к завышенным или заниженным оценкам эффекта.

Проблемы воспроизводимости результатов

— Категории, основанные на характеристиках конкретной выборки (например, медиана), не воспроизводимы в других исследованиях.

Проблемы категоризации

Сложности в мета-анализе

— Разные критерии категоризации в исследованиях делают невозможным объединение результатов.

Риск «подгонки» (p-hacking)

- Исследователь может неосознанно (или осознанно) выбрать ту границу категорий, которая даёт статистически значимый результат.
- Это увеличивает риск ложноположительных выводов.

Неполная корректировка смешивающих факторов

— При категоризации ковариат (например, возраста) может сохраняться остаточное смешение, особенно если внутри категорий остаётся большой разброс.

Скрытие нелинейных зависимостей

- Категоризация «затирает» U-образные, S-образные и другие формы реальных связей.
- Модель видит ступеньки вместо плавных изменений.

Ограничения при использовании гибких моделей

— Современные методы (регрессии с нелинейными членами, сплайны, машинное обучение) лучше работают с непрерывными переменными.

Интерпретационные искажения

— Врачи или читатели могут переоценивать значение искусственного порога, придавая ему клинический смысл, которого нет.

Пример «порога» в физическом процессе

При каком значении температуры вода в стакане переходит из состояния «не кипит» в состояние «кипит»?

Пример «порога» в физическом процессе

При каком значении температуры вода в стакане переходит из состояния «не кипит» в состояние «кипит»?

Но всё не так просто...

Температуры кипения водных растворов неорганических веществ - солей, кислот, основаниий в зависимости от концентрации при атмосферном давлении 101,3 кПа.															
Вещество	Температура кипения (°C) при массовой доле вещества в растворе (кг/кг)														
	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75
Al ₂ (SO ₄) ₃ -сульфат алюминия	100,2	100,4	100,7	101,1	101,6	102,2	-	-	-	-	-	-	-	-	-
BaCl ₂ - хлорид бария, хлористый барий	100,3	100,7	101,1	101,6	102,2	103,0	103,9	-	-	-	-	-	-	-	-
Ва(NO ₃) ₂ - нитрат бария, азотнокислый барий, бариевая селитра	100,2	100,4	100,7	101,0	101,3	-	-	-	-	-	-	-	-	-	-
СаСІ ₂ - хлорид кальция	100,9	101,9	103,2	105,0	107,4	110,5	114,4	119,0	124,1	129,7	135,9	143,0	152,0	162,6	175,7
Са(NO ₃) ₂ - кальция нитрат,кальциевая селитра, азотнокислый кальций	100,5	101,1	101,8	102,5	103,4	104,3	105,4	106,7	108,3	110,5	113,7	118,1	123,4	130,0	137,9
CuSO ₄ - сульфат меди(II), медный купорос	100,1	100,2	100,4	100,6	100,9	101,3	101,8	102,8	104,1	-	-	-	-	-	-
FeSO ₄ - сульфат железа(II), железо (II), железный купорос	100,1	100,3	100,5	100,7	101,0	101,6	-	-	-	-	-	-	-	-	-
K ₂ CO ₃ - карбонат калия, углекислый калий, поташ	100,4	101,0	101,6	102,3	103,2	104,4	105,9	108,0	110,6	114,2	118,8	124,4	-	-	-
КСІ - хлорид калия	100,5	101,3	102,1	103,2	104,6	106,1	107,9	-	-	-	-	-	-	-	-
КН ₂ РО ₄ - дигидрофосфат калия, монофосфат калия	100,2	100,4	100,7	101,0	101,4	101,9	102,4	102,9	103,4	104,0	104,6	-	-	-	-
KNO ₃ - нитрат калия, азотнокислый каоий, калиевая селитра, калийная селитра индийская селитра	100,4	100,7	101,2	101,6	102,1	102,7	103,4	104,1	105,0	106,0	107,1	108,4	109,9	111,7	113,8
КОН - гидроксид калия, kalium hydroxidum, potassium hydroxide, калиевый щёлок, едкое кали, каустический поташ	101,1	102,4	104,1	106,4	109,5	113,3	118,2	124,6	133,4	145,0	160,2	178,4	200,2	226,6	255,5
												1			

На самом деле даже такой «простой» процесс зависит от множества факторов и этот «порог» не жёстко зафиксирован.

«Пороговые значения» очень редко встречаются в биологической реальности

И тут, и тут температура окружающей среды равна 100°С, но есть нюанс...

На какой вопрос мы чаще всего хотим ответить, проводя статистическое тестирование гипотез?

Чаще всего мы хотим установить наличие ассоциации между какой-либо «независимой» и «зависимой» переменной

«Независимая» (Зависимая»

р < 0.05 – «связь есть»

«Независимая» «Зависимая»

p > 0.05 – не можем сделать вывод о наличии связи

«Независимая»

? «Зависимая»

Количественные (шкалы, scale, quantitative)

Порядковые (ordinal)

Качественные (номинальные, nominal)

Количественные (шкалы, scale, quantitative)

Порядковые (ordinal)

Kачественные (номинальные, nominal)

Дальше мы рассмотрим эффекты, которые возникают в разных ситуациях при категоризации как «независимых», так и «зависимых» переменных.

Увеличение частоты ошибок І рода

Смоделируем исследование

Изучение ассоциации между уровнем С-реактивного белка (мг/л) и длительностью нетрудоспособности у пациентов с ОРВИ.

Набрали выборку пациентов

В исследование включили 80 пациентов, у них зарегистрировали уровень СРБ в день открытия листка нетрудоспособности и длительность больничного.

4 уровня СРБ:

- низкий
- средний
- высокий
- очень высокий

	Α	В
1	Disability_duration	CRP
2	8	3,2
3	13	3,5
4	7	6,6
5	12	5,9
6	16	6,9
7	20	5,8
8	9	6
9	21	7,6
10	18	4,6
11	21	3,6
12	9	5,2
13	21	6,1
14	16	0,8
15	8	6,4
16	17	5,8
17	11	3,6
18	10	3,6
19	12	7,8
20	16	5,7
21	15	6,6
22	14	5,4
23	11	7,7
24	16	4,9
25	10	7,7
26	10	7,7
27	20	3,9
20	10	2.7

Уровень СРБ ассоциирован с длительностью нетрудоспособности

Пациенты были разбиты на 4 группы в зависимости от уровня С-реактивного белка.

Сравнение групп было проведено с помощью критерия Манна-Уитни.

Обнаружены статистически значимые различия в длительности нетрудоспособности между группами 2 и 4 (р = 0.026).

Между группами 1 и 2 имелась тенденция к значимости (р < 0.1).

Уровень СРБ ассоциирован с длительностью нетрудоспособности

Пациенты были разбиты на 4 группы в зависимости от уровня C-реактивного белка.

Сравнение групп было проведено с помощью критерия Манна-Уитни.

Обнаружены статистически значимые различия в длительности нетрудоспособности между группами 2 и 4 (р = 0.026).

Между группами 1 и 2 имелась тенденция к значимости (р < 0.1).

Что тут не так?

Уровень СРБ ассоциирован с длительностью нетрудоспособности

Пациенты были разбиты на 4 группы в зависимости от уровня С-реактивного

Сравнение групп было проведено с помощью критерия Манна-Уитни.

поправка на множественные сравнения?

Обнаружены статистически значимые различия в длительности нетрудоспособности между группами 2 и 4

Между группами 1 и 2 имелась тенденция к

Построим диаграмму рассеяния и проведём корреляционный анализ

Статистически значимой корреляции между уровнем СРБ и длительностью периода нетрудоспособности не выявлено.

Выборка была сгенерирована


```
N < -80
tibble_1 <- tibble(</pre>
    Disability_duration = runif(N, 7, 22) %>% floor(), # Длительность нетрудоспособности и уровень СРБ сгенерированы независимыми
    CRP = rnorm(N, 5.5, 1.5) \% > \% round(1)
head(tibble_1)
#> # A tibble: 6 × 2
    Disability_duration
                           CRP
                   <dbl> <dbl>
#>
                           5.4
#> 1
#> 2
                      11 3.7
#> 3
                      11 7.1
#> 4
                      13 4.5
#> 5
                      12 6.4
#> 6
```

Этот эксперимент моделирует «верные» H₀ для тестов Манна-Уитни и Спирмена – ассоциация между переменными отсутствует.

Что произошло?

Мы можем повторить эксперимент 1000 раз...

Из-за отсутствия поправки на множественные сравнения, ошибка первого рода была совершена в 193 исследованиях из 1000. Сильно выше 0.05.

При применении поправки, тест Манна-Уитни контролирует ошибку первого рода на уровне «меньше 0.05», но становится слишком консервативным.

Падение мощности исследования

Смоделируем исследование № 2

Изучение ассоциации между уровнем С-реактивного белка (мг/л) и длительностью гипертермии у пациентов с ОРВИ.

Набрали выборку пациентов

В исследование включили 80 пациентов, у них зарегистрировали уровень СРБ в день открытия листка нетрудоспособности и длительность больничного, а также записали количество дней, в которые пациенты отмечали температуру выше 37°С

4 уровня СРБ:

- низкий
- средний
- высокий
- очень высокий

	Α	В	С
1	Disability_duration	CRP	Temp_duration
2	8	8,2	8
3	12	6,6	12
4	16	3,2	6
5	11	5	11
6	8	7,5	8
7	11	4,4	10
8	21	3,2	2
9	21	6,9	14
10	8	9	8
11	10	4,3	10
12	11	7,2	8
13	8	5,4	8
14	7	7,7	7
15	8	5,8	8
16	21	6,3	14
17	9	4,8	9
18	14	4,1	9
19	18	4	12
20	12	5,1	11
21	15	7	8
22	21	8,4	13
23	18	6,6	9
24	19	7,8	16
25	19	3,8	7
26	9	5,9	6
27	17	6,6	7

Не выявлено ассоциаций между уровнем С-РБ и длительностью гипертермии

Пациенты были разбиты на 4 группы в зависимости от уровня C-реактивного белка.

Сравнение групп было проведено с помощью дисперсионного анализа.

Статистически значимых различий длительности высокой температуры в зависимости от группы пациентов выявлено не было (p = 0.134).

Построим диаграмму рассеяния и проведём корреляционный анализ


```
## Spearman's rank correlation rho
##
## data: Temp_duration and CRP
## S = 65457, p-value = 0.03769
## alternative hypothesis: true rho is not
equal to 0
## sample estimates:
## rho
## 0.2328091
```

Выявлена статистически значимая ассоциация между длительностью гипертермии и значениями СРБ на старте болезни.

Выборка была сгенерирована


```
N < -80
tibble_2 <- tibble(</pre>
   Disability_duration = runif(N, 7, 22) %>% floor(),
   CRP = rnorm(N, 5.5, 1.5) \% > \% round(1),
   Temp_duration = (1.2 * CRP + rnorm(N, 4, 3.2)) \% \% floor())
                                                                  # Моделируется линейная зависимость между CRP и Temp_duration
head(tibble_2)
#> # A tibble: 6 × 3
    Disability_duration
                         CRP Temp_duration
                                    <dbl>
#>
                 <dbl> <dbl>
#> 1
                         3.1
#> 2
                         3.9
                                                 Этот эксперимент моделирует ситуацию с наличием ассоциации
#> 3
                        7.2
#> 4
                    15 8.1
                                       12
                                                  между уровнем СРБ и длительностью гиперемии (верная На).
#> 5
                                       12
#> 6
                                       13
```

Что произошло?

Мы можем повторить эксперимент 1000 раз...

Мы отвергли Но

- в 965 случаях из тысячи
 для коэффициента корреляции Спирмена,
- в 866 случаях из 1000 для дисперсионного анализа с тестом Тьюки
- в 771 случае из 1000 для критерия Манна-Уитни

Что мы категоризировали?

«Независимая» 🔗 «Зависимая»

С-РБ, мг / л

4 уровня СРБ:

- низкий
- средний
- высокий
- очень высокий

Количество дней нетрудоспособности, Длительность гипертермии

Что мы получили?

При верной На

Возможность роста ошибки І рода

Рост ошибки II рода (снижение мощности)

Проблемы с воспроизводимостью

Мы делили апельсин...

4 уровня СРБ:

- низкий
- средний
- высокий
- очень высокий

Медианы различаются на 0.5 мг/л

Значения СРБ, мг/л

Непрерывное равномерное распределение

Какие квантили у этого распределения?

Min Q25 Me Q75 Max

Непрерывное равномерное распределение

Какие квантили у этого распределения?

Min	Q25	Me	Q75	Max
0	0.25	0.5	0.75	1


```
tibble(Quantiles = c("Min", "Q25", "Me", "Q75", "Max"), функция генерирует выборку из 100 Values = quantile(runif(100))) наблюдений и считает на ней квартили
```


Если это было 100 разных исследований и по этому принципу происходило деление на группы, то как мы, например, сможем провести по ним мета-анализ?

А если мы категоризируем зависимую переменную?

У исследователя стоит задача сравнить значение ИМТ после лечения в зависимости от группы лечения (группа А и группа Б). Исследование было слепым и рандомизированным.

«Независимая» 🔗 «Зависимая»

Категоризируем ИМТ

 $27.2 \ кг/м^2$

 $< 18 \ кг/м^2 -$ недостаточный ИМТ $\ge 18 \ u < 25 \ кг/м^2 -$ нормальный ИМТ $\ge 25 \ u < 30 \ кг/м^2 -$ избыточный ИМТ $\ge 30 \ u < 35 \ кг/м^2 -$ ожирение I степени $\ge 35 \ u < 40 \ кг/м^2 -$ ожирение II степени $\ge 40 \ кг/м^2 -$ ожирение III степени

< 30 кг/м² | ≥ 30 кг/м²

Нет Есть

ожирения ожирение

Перейдём к симуляциям

Моделируем при верной На

Мы задали
$$M_A = 29$$
, $M_B = 31$, $SD_A = SD_B = 4$, $n = 64$

Мощность максимальна, когда мы анализируем данные в количественном виде, а не в порядковом или качественном!

А теперь попробуем вот такое исследование...

Изучение ассоциации между уровнем С-реактивного белка (мг/л) и наличием бактериальных осложнений у пациентов с ОРВИ.

«Независимая» 🔗 «Зависимая»

Набрали выборку пациентов

В исследование включили 80 пациентов, у них зарегистрировали уровень СРБ в день открытия листка нетрудоспособности, а также отметили развились (1) или нет (0) у них осложнения за период больничного.

Исследователь хочет построить табличку:

Зависимая переменная	Независимая переменная		
Есть осложнения	%	%	%
Нет осложнений	%	%	%

	,,		
\	Complications	CRP	
	0	7,9	
	1	8,2	
	0	6,1	
	0	4,5	
	0	4,3	
	0	5,2	
	0	6,5	
	1	5,5	
)	0	8,4	
L	1	7,8	
2	1	6,4	
3	1	3,3	
ļ	0	5,5	
5	0	6	
ō	0	5,3	
7	0	4	
3	1	8,3	
)	1	6,6	
)	1	8,1	
L	0	6,3	
2	1	3,1	

Определили «оптимальную» точку отсечения

Был проведён ROC-анализ и выбрана «оптимальная» точка отсечения по максимальному индексу Юдена.

		
	СРБ > 6.15 мг / л	СРБ < 6.15 мг / л
Нет осложнений	14 (51,9%)	41 (77,4%)
Есть осложнения	13 (48,1%)	12 (22,6%)

Значение р, критерий Хи-квадрат = 0,02

Вывод: уровень СРБ выше 6.15 мг / л ассоциирован с развитием бактериальных осложнений на фоне ОРВИ

Определили «оптимальную» точку отсечения

	СРБ > 6.15 мг / л	CPБ < 6.15 мг / л
Нет осложнений	14 (51,9%)	41 (77,4%)
Есть осложнения	13 (48,1%)	12 (22,6%)

Значение р, критерий Хи-квадрат = 0,02

А если посчитать логистическую регрессию для СРБ в количественном виде, получим ОШ (95% ДИ), равное 1.12 (0.83; 1.54) и значение р = 0.460

ован с ≥ ОРВИ

Выборка была сгенерирована


```
N < -80
tibble_3 <- tibble(
    Complications = rbinom(N, 1, 0.3) %>% as.factor(), # Осложнения не зависят от уровня СРБ
    CRP = rnorm(N, 5.5, 1.5) \% > \% round(1))
head(tibble_3)
#> # A tibble: 6 × 2
   Complications
                    CRP
   <fct>
                  <dbl>
                    5.8
                                       Этот эксперимент моделирует ситуацию с отсутствием ассоциации
                    5.5
#> 2 1
                                       между уровнем СРБ и осложнениями (верная H_0).
                    4.1
                    7.3
#> 5 0
                    8.2
                    8.2
#> 6 0
```

Что произошло?

Мы можем повторить эксперимент 1000 раз...

Из-за того, что порог определяется на той же выборке, мы по сути занимаемся p-hacking'ом, сильно увеличивая вероятность ошибки первого рода.

И ещё один пример...

Задача – оценить ассоциацию между уровнем PSA и наличием рака предстательной железы. Предложить оптимальный вариант принятия дальнейших решений о тактике ведения пациента.

Наберём выборку

Проведём масштабное исследование, наберём 10000 пациентов группы риска (мужчины старше 60 лет). Распространённость рака ПЖ в этой категории пациентов ~ 5%.

«Независимая» 🔗 «Зависимая»

Наличие рака ПЖ

Категоризируем PSA по уровням

4 уровня PSA (нг/мл)

- Q1 низкий
- Q2 средний
- Q3 высокий
- Q4 очень высокий

Так как у нас выборка в 10000 наблюдений, будем считать наше деление по квартилям «золотым стандартом»

Как выглядит наше деление по квартилям на гистограмме распределения

Параметр		Квартиль PSA			
		≤ 1.4	> 1.4; ≤ 2.5	> 2.5; ≤ 3.84	> 3.84
Cancer	0, n (%)	2531 (100%)	2450 (99.5%)	2488 (99%)	2031 (81.5%)
	1, n (%)	0 (0%)	13 (0.5%)	26 (1%)	461 (18.5%)

Вывод: Уровень PSA > 3.84 из 4 квартиля ассоциирован с высоким риском наличия рака предстательной железы!

Но эта оценка риска не идеальна...

У некоторых пациентов из Q4 мы риск переоценили, а у некоторых мы риск сильно недооценили!

ROC-анализ

Площадь под ROC-кривой (95% ДИ): **0.951 (0.94; 0.961)**

Оптимальный порог (индекс Юдена): **5.87**

Чувствительность: **80%**

Специфичность: **97%**

ROC-анализ

Нет!

Альтернатива ROC-кривой

Прогностическая ценность

Выводы

- Категоризация непрерывных переменных это упрощение, которое почти всегда сопровождается потерей информации.
 - Использование категорий может снижать статистическую мощность, искажать результаты и создавать иллюзию пороговых эффектов.
- Разделение по медиане, квартилям и другим «выборкозависимым» критериям технически удобно, но методологически уязвимо.
 - Такие пороги плохо воспроизводимы, не имеют клинического смысла и затрудняют сопоставимость исследований.
- Категоризация может увеличивать риск ошибок.
 Особенно опасна практика подбора «оптимального» cut-off, приводящая к росту ошибок первого рода.
- Существуют обоснованные случаи для использования категорий когда они основаны на клинических рекомендациях, диагностических порогах или заранее заданной структуре исследования. Но даже в этих случаях желательно сохранять переменную в непрерывном виде на этапе моделирования и использовать категории только для интерпретации.

Источники

- Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006 May 6;332(7549):1080. doi: 10.1136/bmj.332.7549.1080
- Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006 Jan 15;25(1):127-41. doi: 10.1002/sim.2331.
- Bennette, C., Vickers, A. Against quantiles: categorization of continuous variables in epidemiologic research, and its discontents. *BMC Med Res Methodol* **12**, 21 (2012). https://doi.org/10.1186/1471-2288-12-21

https://bioinf.me/education/workshops/stat

Public Health Hackathon'2025

Kazakhstan, Almaty 8 – 10 August 2025

bioinf.institute/hack2025

ОТКРЫТ НАБОР НА ИНТЕНСИВ

СТАТИСТИКА ДЛЯ БИОЛОГОВ И МЕДИКОВ

Институт биоинформатики в социальных сетях

Разрушители статистических мифов: bioinf.me/stat_myths

Чат по биостатистике и R: https://t.me/chat_biostat_R

По всем вопросам: biostat@bioinf.me

Сайт Института: bioinf.me

Институт в VK: vk.com/bioinf

Телеграм-канал Института: t.me/bioinforussia

Чат про образование и карьеру: t.me/bioinf_career

YouTube-канал: www.youtube.com/bioinforussia

