

FFT: UN ALGORITMO ALGO IMPORTANTE

Introducción a la Física Computacional – Instituto Balseiro

Outline

- 1. Transformada de Fourier
- 2. Representación
- 3. Representación de polinomios
- 4. Diseño de un algoritmo
- 5. FFT

Transformada de Fourier 1D

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi ux} dx$$

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{i2\pi ux} du$$

Unidades: [u] = 1/[x]

En el ámbito de la Física

$$F(k) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$
 $f(x) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k) e^{ikx} dk$

Transformada de Fourier 2D

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dxdy$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{i2\pi(ux+vy)} dudv$$

$$F_u = \sum_{\mathsf{x}=\mathsf{o}} f_\mathsf{x} \; e^{-i2\pi \mathsf{u} \mathsf{x}/n}$$
 $f_\mathsf{x} = rac{1}{n} \sum_{\mathsf{u}=\mathsf{o}}^{n-1} F_\mathsf{u} \; e^{i2\pi \mathsf{u} \mathsf{x}/n}$

$$F_{u} = \sum_{x=0}^{n} f_{x} e^{-i2\pi ux/n}$$
 $f_{x} = \frac{1}{n} \sum_{u=0}^{n-1} F_{u} e^{i2\pi ux/n}$

Premisa oculta:

$$F_{u} = \sum_{x=0}^{n-1} f_{x} e^{-i2\pi ux/n}$$
 $f_{x} = \frac{1}{n} \sum_{u=0}^{n-1} F_{u} e^{i2\pi ux/n}$

Premisa oculta: dominio periódico

$$F_u = \sum_{x=0}^{n-1} f_x e^{-i2\pi ux/n}$$
 $f_x = \frac{1}{n} \sum_{u=0}^{n-1} F_u e^{i2\pi ux/n}$

Premisa oculta: dominio periódico Consecuencia:

$$F_{u} = \sum_{x=0}^{n-1} f_{x} e^{-i2\pi ux/n}$$
 $f_{x} = \frac{1}{n} \sum_{u=0}^{n-1} F_{u} e^{i2\pi ux/n}$

Premisa oculta: dominio periódico Consecuencia: F_u y f_x periódicas

$$F_{u} = \sum_{x=0}^{n-1} f_{x} e^{-i2\pi ux/n}$$
 $f_{x} = \frac{1}{n} \sum_{u=0}^{n-1} F_{u} e^{i2\pi ux/n}$

Ya veremos de dónde sale ese 1/n. Primero, un ligero desvío...

La representación en Física

- ¿Qué significa representar?
- ¿Cuántas formas de representar algo hay?
- ¿Cuál es la verdadera?

• posición $(x) \longleftrightarrow \text{vector de onda } (k)$

• posición $(x) \longleftrightarrow \text{vector de onda } (k)$

• tiempo $(t) \longleftrightarrow$ frecuencia (ω)

- posición $(x) \longleftrightarrow$ vector de onda (k)
- ullet tiempo $(t)\longleftrightarrow$ frecuencia (ω)
- partícula \longleftrightarrow onda

- posición $(x) \longleftrightarrow$ vector de onda (k)
- ullet tiempo $(t)\longleftrightarrow$ frecuencia (ω)
- partícula \longleftrightarrow onda
- inercial \longleftrightarrow no inercial

¿Qué es el péndulo simple?

- ¿Un oscilador armónico?
- ¿Una masa colgada de un hilo?
- ¿El sistema masa hilo planeta?
- ¿Un gran conjunto de átomos interactuando?

¿Qué es el péndulo simple?

- ¿Un oscilador armónico?
- ¿Una masa colgada de un hilo?
- ¿El sistema masa hilo planeta?
- ¿Un gran conjunto de átomos interactuando?

Conceptos ← Representación

Representación de polinomios

Vector de coeficientes (n coeficientes):

$$A(x) = A_0 + A_1 x + A_2 x^2 + ... + A_{n-1}^{n-1}$$

$$\equiv \langle A_0, A_1, A_2, ..., A_{n-1} \rangle$$

Representación de polinomios

Vector de coeficientes (n coeficientes):

$$A(x) = A_0 + A_1 x + A_2 x^2 + ... + A_{n-1}^{n-1}$$

$$\equiv \langle A_0, A_1, A_2, ..., A_{n-1} \rangle$$

Raíces (n-1 puntos especiales + 1 coeficiente):

$$A'(x) = A_{n-1}(x - x'_0)(x - x'_1)...(x - x'_{n-2})$$

$$\equiv A_{n-1} < x'_0, \ x'_1, \ x'_2, ..., \ x'_{n-2} >$$

Representación de polinomios

Vector de coeficientes (n coeficientes):

$$A(x) = A_0 + A_1 x + A_2 x^2 + ... + A_{n-1}^{n-1}$$

$$\equiv \langle A_0, A_1, A_2, ..., A_{n-1} \rangle$$

Raíces (n-1 puntos especiales + 1 coeficiente):

$$A'(x) = A_{n-1}(x - x'_{0})(x - x'_{1})...(x - x'_{n-2})$$

$$\equiv A_{n-1} < x'_{0}, x'_{1}, x'_{2}, ..., x'_{n-2} >$$

Representación por muestras (n puntos diferentes):

$$A(x_k) = A_k^*$$
 $A(x) \equiv A^*(x) = \langle (x_0, A_0^*), (x_1, A_1^*), ..., (x_{n-1}, A_{n-1}^*) \rangle$

Ventajas y desventajas

Rep.	Evaluación	Suma	Multiplicación
A(x)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$O(n^2)$
A'(x)	<i>O</i> (<i>n</i>)	$^{"}\infty$ "	<i>O</i> (<i>n</i>)
$A^*(x)$	$O(n^2)$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)

Rep.	A(x)	A'(x)	$A^*(x)$
A(x)	-	$"\infty"$	$O(n^2)$
A'(x)	$"\infty"$	-	$"\infty"$
$A^*(x)$	$O(n^{3-2})$	$"\infty"$	-

Matriz de Vandermonde

Cambio de representación

$$V \cdot A = A^*$$

Coeficientes
$$\longrightarrow$$
 Muestras: $V \cdot A = O(n^2)$

Muestras
$$\longrightarrow$$
 Coeficientes: $V^{-1} \cdot A^* = O(n^3) - O(n^2)$

Cambio de representación

$$V \cdot A = A^*$$

Coeficientes
$$\longrightarrow$$
 Muestras: $V \cdot A = O(n^2)$

Muestras
$$\longrightarrow$$
 Coeficientes: $V^{-1} \cdot A^* = O(n^3) - O(n^2)$

¿Qué podemos hacer para mejorar?

¿Qué libertades tenemos?

- Explotar simetrías del problema
- Imponer restricciones que simplifiquen el problema
- Elegir los x_k que más nos convengan

¿Qué vamos a hacer?

- Elegir una simetría conveniente
- Imponer las restricciones necesarias para poder explotarla con nuestro algoritmo
- Elegir los x_k en base a lo anterior

¿Cómo lo vamos a hacer?

- Simetría por excelencia en binario: paridad
- Regla N°1 de la programación: divide y conquista
- Conjunto de x_k: colapsable

¿Cómo lo vamos a hacer?

- Simetría por excelencia en binario: paridad
- Regla N°1 de la programación: divide y conquista
- Conjunto de x_k : colapsable

¿Qué significa todo esto?

Algoritmo recursivo

$$A(x) = \underbrace{A_p(x^2)}_{< A_0, A_2, ... >} + x \underbrace{A_i(x^2)}_{< A_1, A_3, ... >}$$

Es decir:

$$A_p(z) = \sum_{l=0}^{n/2-1} A_{2l} z^l$$

 $A_i(z) = \sum_{l=0}^{n/2-1} A_{2l+1} z^l$

Algoritmo recursivo

$$A(x) = \underbrace{A_p(x^2)}_{< A_0, A_2, ... >} + x \underbrace{A_i(x^2)}_{< A_1, A_3, ... >}$$

Es decir:

$$A_p(z) = \sum_{l=0}^{n/2-1} A_{2l} z^l$$

 $A_i(z) = \sum_{l=0}^{n/2-1} A_{2l+1} z^l$

Condición para que esto se cumpla:

Algoritmo recursivo

$$A(x) = \underbrace{A_p(x^2)}_{< A_0, A_2, ... >} + x \underbrace{A_i(x^2)}_{< A_1, A_3, ... >}$$

Es decir:

$$A_p(z) = \sum_{l=0}^{n/2-1} A_{2l} z^l$$

 $A_i(z) = \sum_{l=0}^{n/2-1} A_{2l+1} z^l$

Condición para que esto se cumpla: n potencia de 2

Conjunto X:

$$X_k \in X \iff X_k \neq X_{k'} \text{ si } k \neq k', k = 0, 1, 2, ..., n-1$$

Tamaño de $X \longrightarrow n$

Conjunto X:

$$X_k \in X \iff X_k \neq X_{k'} \text{ si } k \neq k', k = 0, 1, 2, ..., n-1$$

Tamaño de $X \longrightarrow n$

Conjunto X^2 :

$$x_h \in X^2 \iff x_h = x_k^2 \ , \ x_k \in X$$

¿Qué tamaño tendrá el conjunto X²?

Conjunto X:

$$X_k \in X \iff X_k \neq X_{k'} \text{ si } k \neq k', k = 0, 1, 2, ..., n-1$$

Tamaño de $X \longrightarrow n$

Conjunto X²:

$$X_h \in X^2 \iff X_h = X_k^2 , X_k \in X$$

¿Qué tamaño tendrá el conjunto X²?

Depende del conjunto X elegido

Raíces n-ésimas de la unidad

Si elegimos como muestras los $x_k / x_k^n = 1$ \implies Conjunto X es colapsable.

i.e. \longrightarrow Tamaño $X^2 = (\text{Tamaño } X)/2$

Raíces n-ésimas de la unidad

Si elegimos como muestras los x_k / $\overline{x_k^n} = 1$ \Longrightarrow Conjunto X es colapsable.

i.e.
$$\longrightarrow$$
 Tamaño $X^2 = (Tamaño X)/2$

$$\Longrightarrow$$

$$x_k = e^{i\theta}$$

$$\theta = 0, -\frac{2\pi}{n}, -\frac{4\pi}{n}, ..., -\frac{2\pi(n-1)}{n}$$

Repasemos el algoritmo

- Limitar n = potencia de 2
- Elegir x_k las n-ésimas raíces de 1
- Evaluar recursivamente la función
- Listo!

¿Y si queremos pasar de A* a A?

Mismo algoritmo, distintos coeficientes:

$$A = V^{-1} \cdot A^*$$

¿Y si queremos pasar de A* a A?

Mismo algoritmo, distintos coeficientes:

$$A = V^{-1} \cdot A^*$$

Pero invertir una matriz es costoso, ¿no?

¿Y si queremos pasar de A* a A?

Mismo algoritmo, distintos coeficientes:

$$A = V^{-1} \cdot A^*$$

Pero invertir una matriz es costoso, ¿no?

No si usamos las n-ésimas raíces de 1:

$$\mathsf{V}^{-1} = rac{1}{\mathsf{n}} ar{\mathsf{V}} \qquad , \qquad ar{\mathsf{V}}_{kj} = e^{\mathsf{i} \mathsf{2} \pi k \mathsf{j} / \mathsf{n}}$$

$$V_{kj}=x_k^{j}=e^{-i2\pi kj/n}$$

$$V \cdot A = A^*$$

Función (A) \longrightarrow Transformada (A*):

$$V \cdot A \qquad O(nlog_2n)$$

Transformada (A^*) \longrightarrow Función (A):

$$V^{-1} \cdot A^* \qquad O(nlog_2n)$$

$$A_k^* = V_{kj} \cdot A_j = \sum_{j=0}^{n-1} A_j e^{-i2\pi kj/n}$$
 $A_j = \frac{1}{n} \bar{V}_{kj} \cdot A_k^* = \frac{1}{n} \sum_{k=0}^{n-1} A_k^* e^{i2\pi kj/n}$

¿Les resulta familiar?

$$F_u = \sum_{x=0}^{n-1} f_x e^{-i2\pi ux/n}$$
 $A_k^* = \sum_{j=0}^{n-1} A_j e^{-i2\pi kj/n}$ $f_x = \frac{1}{n} \sum_{u=0}^{n-1} F_u e^{i2\pi ux/n}$ $A_j = \frac{1}{n} \sum_{k=0}^{n-1} A_k^* e^{i2\pi kj/n}$

$$F_u = \sum_{x=0}^{n-1} f_x e^{-i2\pi ux/n}$$
 $A_k^* = \sum_{j=0}^{n-1} A_j e^{-i2\pi kj/n}$ $f_x = \frac{1}{n} \sum_{u=0}^{n-1} F_u e^{i2\pi ux/n}$ $A_j = \frac{1}{n} \sum_{k=0}^{n-1} A_k^* e^{i2\pi kj/n}$

El algoritmo diseñado es la versión clásica de la FFT

Ejemplos de aplicar la FFT en 2D

Figuras y gifs