
BIOMAGNETISM

CLINICAL ASPECTS

Editors:

**M. HOKE, S.N. ERNÉ,
Y.C. OKADA and G.L. ROMANI**

EXCERPTA MEDICA

International Congress Series 988

Biomagnetism: Clinical Aspects

Proceedings of the 8th International Conference on Biomagnetism,
Münster, 19–24 August 1991

Editors:

Manfried Hoke

Institut für Experimentelle Audiologie
Westfälische Wilhelms-Universität Münster
Münster, Germany

Sergio Nicola Erné

Zentralinstitut für Biomedizinische Technik
Universität Ulm
Ulm, Germany

Yoshio C. Okada

MEG Center, VA Medical Center
New Mexico University
Albuquerque, NM, USA

Gian Luca Romani

Instituto Tecnologie Avanzate Biomediche
Facoltá di Medicina e Chirurgia
Università degli Studi “G. d’Annunzio”
Chieti, Italy

EXCERPTA MEDICA, Amsterdam – London – New York – Tokyo

© 1992 Elsevier Science Publishers B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher, Elsevier Science Publishers B.V., Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, the Publisher recommends that independent verification of diagnoses and drug dosages should be made.

Special regulations for readers in the USA - This publication has been registered with the Copyright Clearance Center Inc. (CCC), 27 Congress Street, Salem, MA 01970, USA. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA. All other copyright questions, including photocopying outside the USA, should be referred to the copyright owner, Elsevier Science Publishers B.V., unless otherwise specified.

International Congress Series No. 988
ISBN 0-444-89268-0

This book is printed on acid-free paper.

Published by:
Elsevier Science Publishers B.V.
P.O. Box 211
1000 AE Amsterdam
The Netherlands

Sole distributors for the USA and Canada:
Elsevier Science Publishing Company Inc.
655 Avenue of the Americas
New York, NY 10010
USA

Printed in The Netherlands

Preface

This volume comprises papers presented at the 8th International Conference on Biomagnetism, held from 18 to 24th August 1991, at the University of Münster, Germany, and attended by approximately 400 participants from more than 30 countries. A total of 240 invited lectures and contributed papers (including posters) were presented, but only a selection of 142 manuscripts are included in this volume. This change in the publication policy of the proceedings became necessary because of a physical limit imposed by the size of the book (there were about 80 contributions in Vancouver, 170 in Tokyo, 185 in New York). This issue was exhaustively discussed at the preceding conference in New York, and the majority of participants agreed that future proceedings should be restricted to a selection preferably of those papers which were directly related to the main subject of the conference.

The New York Conference celebrated the 20th anniversary of the first application of a SQUID (Superconducting QUantum Interference Device) to biomagnetism. The year of the Münster Conference was also characterized by the coincidence of several anniversaries with some significance for biomagnetism. Two hundred years earlier, in 1791, the Italian scientist Luigi Galvani discovered what he believed to be "animal electricity" (only a few years after Franz Anton Mesmer postulated the existence of an "animal magnetism")¹. One-hundred-and-twenty years later, in 1911, the Dutch physicist Heike Kamerlingh Onnes discovered superconductivity, one of the essential prerequisites for measuring the extremely weak biomagnetic signals. Last, but not least, 15 years before the Münster conference, in 1976, the first meeting of this series took place in Boston, Massachusetts, then being more a forum for discussion rather than a formal conference.

Biomagnetic research had started well before this first conference. Its year of birth can be dated back to 1963 when Baule and McFee succeeded in measuring real "animal" magnetism, the magnetocardiogram. With the passing of almost three decades since then, the new emerging discipline of biomagnetism has undergone a remarkable development. Originally, biomagnetic research was confined to laboratories belonging to physical or engineering sciences, basically owing to the fact that the necessary equipment was not yet on the market. This situation changed drastically when SQUID systems for biomagnetic studies became commercially available. Biomagnetic research then began to spread out to biosciences. The proceedings of the two previous conferences with their increasing portion of papers related especially to neuromagnetism and to cardiomagnetism, and also to other aspects of biomagnetic applications e.g. biosusceptometry, bear eloquent witness of this de-

¹Interestingly enough, both were wrong with their ideas. Mesmer's magnetism existed only in his imagination, while Galvani's electricity was produced solely by his instrument acting as a local element.

velopment. Biomagnetic research in a clinical environment, however, could not flourish before another obstacle was overcome: Data collection as it was originally done with single-channel systems was not only too laborious, it was often unacceptable for the patient, and many phenomena – especially spontaneous activity – could not be adequately studied. The advent of multi-channel (24–37) systems, which became available just prior to the New York Conference, signifies a quantum jump for the biomagnetic research in clinical environments.

Hence, at the 8th Conference on Biomagnetism, it was consistent to put the emphasis on clinical aspects. There are certainly more reasons for emphasizing clinical research, reasons which are, in part, closely interrelated. Powerful biomagnetic equipment is extremely expensive, and the price is actually higher than that of MRI and PET instruments. While, for those instruments, clear-cut clinical applications exist which are recognized and paid for by health insurance funds, no clear-cut clinical applications exist so far for biomagnetism. It was the aim of the Scientific Committee to take stock of the actual clinical research in biomagnetism in order to see whether clinical applications can be foreseen in the near future. Only if clinical applications of biomedical techniques can be developed which are superior to, and cannot be replaced by, other available techniques, then there are chances that development and improvement of biomagnetic systems will further continue and that a substantial price reduction can be achieved. Further development as well as a substantial price reduction of biomagnetic systems, on the other hand, are prerequisites for their widespread use.

This is, therefore, a decisive time for the future of biomagnetism. As already mentioned, further development and improvement of systems for biomagnetic research is necessary to achieve another quantum jump from a scientific instrument to a powerful and irreplaceable clinical tool. Many steps are needed to achieve this quantum jump, including the development of systems covering the whole head² or whole chest, and developments allowing the reduction of costs for purchase and maintenance of these systems. The development of low-noise High-Tc SQUIDs³ would be one possible step in this direction.

The majority of papers presented at this conference were devoted to neuromagnetism, cardiomagnetism and biosusceptometry. It is noteworthy that promising research has also begun in other medical disciplines, especially in gastroenterology. However, the conference also revealed that the big step forward has not yet been made. The time has not come yet for widespread clinical applications of biomagnetic techniques. More than developments in instrumentation are required for establishing clinical applications, and models for the interpretation of data play a crucial role. It is the greatest challenge for biomagnetic research to develop strategies which produce confident findings on which a diagnostic or therapeutic decision can be based.

²The first whole-head system became operative just prior to the appearance of this volume.

³Also the first reports about successful applications of High-Tc SQUIDs for neuromagnetic and cardiomagnetic measurements have just appeared.

These comments, however, do not at all imply that biomagnetism has no future. The superiority of biomagnetic (like bioelectric) techniques – as compared with imaging techniques like MRI and PET – lies in its unequalled temporal resolution, though the lead has become distinctly smaller. Information obtained from echo planar imaging (which requires no more than 25 ms for one slice) could be extremely helpful for the development of reliable source models for biomagnetic localization.

A conference of 400 participants can be successful only by virtue of dedicated collaboration of many individuals. A significant contribution to the success of the conference was made by the members of the Scientific Committee by reviewing the submitted abstracts. We also wish to thank all members of the Organizing Committee and the members of the Institute of Experimental Audiology of the University of Münster for their tireless efforts before and during the conference. Georg Kämmerer deserves special acknowledgement for editing the submitted manuscript files, of which many were unreadable. Finally, a conference like this could not be organized without the substantial support of sponsors and exhibitors, whose substantial contributions are gratefully acknowledged.

**Manfried Hoke
Sergio N. Erné
Yoshio Okada
Gian Luca Romani**

Conference organization

Chairman

Manfried Hoke
 Institute of Experimental Audiology
 University of Münster
 4400 Münster
 Germany

Organizing committee

Manfried Hoke
 Helga Janutta
 Georg Kämmerer
 Bernd Lütkenhöner

Scientific committee

Chairman
 Manfried Hoke
 Institute of Experimental Audiology
 University of Münster
 4400 Münster
 Germany

Sergio N. Erné
 Zentralinstitut für Biomedizinische
 Technik
 Universität Ulm
 7900 Ulm
 Germany

Hisashi Kado
 Superconducting Sensor Laboratory
 2-1200 Muzaigakuendai
 Inzai, Chiba 270-13
 Japan

Christo Pantev
 Ellen S. Proefrock
 Anette Sütfeld

Toivo Katila
 Department of Technical Physics
 Helsinki University of
 Technology
 SF-02150 Espoo 15
 Finland

Yutaka Nakaya
 2nd Department of Internal Medicine
 Tokushima University
 Tokushima
 Japan

Yoshio C. Okada
 MEG Center (101)
 Veterans Affairs Medical Center
 Albuquerque, NM 87108
 USA

Gian Luca Romani
 Istituto Tecnologie Avanzate
 Biomediche
 Facoltá di Medicina e Chirurgia
 Universita degli Studi
 "G. d'Annunzio"
 I-66100 Chieti
 Italy

Gerhard Stroink
 Department of Physics
 Dalhousie University
 Halifax, Nova Scotia B3H 3J5
 Canada

Advisory committee

Chairman
 S.J. Williamson
 Neuromagnetism Laboratory
 Department of Physics
 New York University
 New York, NY 10003
 USA

Kazuhiko Atsumi
 Faculty of Medicine
 University of Tokyo
 7-3-1 Hongo, Bunkyo-ku
 Tokyo 113
 Japan

Dr. David Cohen
 Francis Bitter National Magnet
 Laboratory
 M.I.T., NW14-2217
 Cambridge, MA 02139
 USA

J.P. Wikswo Jr.
 Department of Physics and
 Astronomy
 Vanderbilt University
 Nashville, TN 37235
 USA

S.J. Williamson
 Neuromagnetism Laboratory
 Department of Physics
 New York University
 New York, NY 10003
 USA

Sergio N. Erné
 Zentralinstitut für Biomedizinische
 Technik
 Universität Ulm
 7900 Ulm
 Germany

Manfried Hoke
 Institute of Experimental
 Audiology
 University of Münster
 4400 Münster
 Germany

Toivo Katila
 Department of Technical Physics
 Helsinki University of
 Technology
 SF-02150 Espoo 15
 Finland

Gian Luca Romani
 Istituto Tecnologie Avanzate
 Biomediche
 Facoltá di Medicina e Chirurgia
 Universita degli Studi
 "G. d'Annunzio"
 I-66100 Chieti
 Italy
 Shoogo Ueno
 Department of Electronics
 Faculty of Engineering
 Kyushu University
 Fukuoka 812
 Japan

Sponsors

Commission of the European Communities
 Asta
 Bayer
 Biomagnetic Technologies
 CTF Systems Inc.
 Deutsche Apotheker-und Ärztebank
 Farmitalia Carlo Erba
 IAC
 Kontron Elektronik
 Kötgen Hörakustik
 M. Lückertz
 Metropolis
 3M Medica
 Neuromag
 Neuroscan
 Philips
 Rhone-Poulenc Rorer
 Siemens
 Technoflex
 Vacuumschmelze
 Westra

Prof. Harold Weinberg
 Brain Behavior Laboratory
 Simon Fraser University
 Burnaby, BC V5A 1S6
 Canada
 J.P. Wikswo Jr.
 Department of Physics and
 Astronomy
 Vanderbilt University
 Nashville, TN 37235
 USA

Contents

NEUROMAGNETISM

Development of a new science of brain dynamics with guidance
 from the theory of nonlinear dynamics and chaos

W.J. Freeman

3

Mathematical aspects of biomagnetic and bioelectric modeling

J.C. de Munck and M.J. Peters

13

Spontaneous EEG-MEG

EEG/MEG and alpha activity: Current status of biomagnetic research

R.M. Chapman

25

Neuronal sources of parietooccipital alpha rhythm

Z.-L. Lü, J.-Z. Wang and S.J. Williamson

33

Separation of sources of alpha activity in multichannel MEG

P. Grummich, J. Vieth, H. Kober and T. Scholz

39

Epilepsy

Pathophysiology of epilepsies

*E.-J. Speckmann, U. Alstrup, H. Straub, D. Bingmann, J. Walden,
 A. Lücke, M. Pohl, H. Wassmann and D. Moskopp*

45

Facts in epileptology which are of possible relevance for biomagnetism

C.E. Elger

53

Current status of biomagnetic research in epileptology

S. Sato

61

Detection of epileptiform discharges by magnetoencephalography
 in comparison to invasive measurements

C. Baumgartner, D.S. Barth, M.F. Levesque and W.W. Sutherling

67

Contribution of different areas of epileptic foci to the generation
 of interictal epileptic discharges

O.W. Witte, T. Dorn and S. Uhlig

73

Localization and quantification of the human epileptic spike zone
 using MEG, EEG, MRI and evoked responses with validation by ECoG

*N. Nakasato, L. Muresan, L. Vinet, C. Baumgartner, D. Barth
 and W.W. Sutherling*

79

Simultaneous MEG and ECoG of spontaneous seizures and comparison
 with MEG and ECoG of auditory evoked response (AER)

*N. Nakasato, L. Muresan, C. Baumgartner, D.S. Barth
 and W.W. Sutherling*

83

Ictal and interictal multichannel magnetic field recordings of epileptiform activity: Quantitative description of centers of focal epileptic activity <i>H. Stefan, P. Schüller, K. Abraham-Fuchs and S. Schneider</i>	87	Source estimation of late components of omitted tone evoked magnetic fields <i>A.C. Papanicolaou, S.B. Baumann and R.L. Rogers</i>	177
Magnetoencephalographic localization of epileptic dipole activity in patients with pharmacoresistant epilepsy: Foci and pathways <i>E. Hellstrand, K. Abraham-Fuchs, S. Schneider, E. Knutsson, C. Lindquist and L. Kihlström</i>	93	Spatiotemporal source localization of neuromagnetic fields evoked by pure tones <i>F. Takeuchi, M. Mukai, S. Kuriki, M. Hayashi and T. Imada</i>	181
MEG template analysis in focal and generalized epilepsy: Results in 27 cases <i>G.B. Ricci, C. Del Gratta, A. Pasquarelli, M. Peresson, V. Pizzella, G. Torrioli and G.L. Romani</i>	97	Auditory evoked fields in normals and patients: Preliminary findings <i>G. Paludetti, L. Corina, C. Del Gratta, J. Galli, A. Pasquarelli, R. Pellini, M. Peresson, V. Pizzella, M. Maurizi and G.L. Romani</i>	185
Evoked potentials and fields		Changes in cortical activity when subjects scan memory for tones <i>L. Kaufman, S. Curtis, J.-Z. Wang and S.J. Williamson</i>	189
Reflection of automatic change detection in the human brain: Event-related potentials and magnetic responses <i>V. Csépe and R. Näätänen</i>	103	Visual evoked fields and related phenomena	
Cognitive processes: Current status of neuromagnetic research <i>M. Sams</i>	111	Visual evoked magnetic fields with red-black and green-black pattern-reversal stimulation <i>K. Hatanaka, K. Seki, N. Nakasato and T. Yoshimoto</i>	197
Evoked potentials: Diagnostic uses and strategies <i>F. Mauguière</i>	121	Neuromagnetic evoked visual fields following infrequent stimulus omissions <i>R.L. Rogers, A. Papanicolaou, S. Baumann and H. Eisenberg</i>	203
Evoked potentials and fields in the somatosensory and visual systems: Current status of biomagnetic research <i>P.M. Rossini</i>	133	Neuromagnetic responses associated with temporal integration of visual stimuli <i>H. Weinberg, B. Johnson, D. Cheyne, G. Carrier and D. Crisp</i>	207
Auditory evoked fields and related phenomena		Magnetic brain responses in visual spatial attention <i>A.A. Wijers, Z. Dunajski, M. Peters and G. Mulder</i>	213
The exogenous components of the auditory evoked field: Current status <i>B. Lütkenhöner and C. Pantev</i>	143	Cortical alpha-frequency oscillations evoked by visual pattern stimuli <i>S.P. Ahlfors, R.J. Ilmoniemi and M.S. Hämäläinen</i>	217
Evidence of gamma-band oscillations in the transient human auditory evoked magnetic field <i>C. Pantev, S. Makeig, M. Hoke, R. Galambos, S. Hampson and C. Gallen</i>	153	Somatosensory evoked fields and related phenomena	
The spatial and temporal organization of the 40 Hz response in human brain: An MEG study <i>U. Ribary, R. Llinás, F. Lado, A. Mogilner, R. Jagow, M. Nomura and L. Lopez</i>	159	Oscillotopic organization of the human somatosensory cortex of lip using the neuromagnetic method <i>M. Nomura, U. Ribary, L. Lopez, A. Mogilner, F. Lado, R. Jagow and R. Llinás</i>	223
The auditory complex event-related field to omitted steady-state probes <i>S. Makeig, C. Pantev, B. Schwartz, M. Inlow, S. Hampson and C. Gallen</i>	165	Magnetic responses reveal somatotopic organization of the second somatosensory cortex <i>R. Hari, J. Karhu, M. Sams, M. Hämäläinen and J. Knuutila</i>	229
Reliability and validity of auditory neuromagnetic source localization using a large array biomagnetometer <i>C. Gallen, C. Pantev, S. Hampson, D.S. Buchanan and D. Sobel</i>	171	Comparison of EEG, ECoG, MRI, and seven versus 31 channels of MEG for noninvasive localization of the somatosensory evoked response <i>W.W. Sutherling, N. Nakasato, L. Muresan, L. Vinet, C. Baumgartner and D. Barth</i>	233
		Combined neuromagnetic and neuroelectric study of human cortical digit representation <i>C. Baumgartner, A. Doppelbauer, W.W. Sutherling, J. Zeithofer, G. Lindinger and L. Deecke</i>	237

Neuromagnetic mapping under mixed median nerve stimulation: Influence of stimulus intensity on sources parameters	
<i>M. Peresson, S. Casciardi, C. Del Gratta, S. Di Luzio, M.A. Macri, V. Pizzella, G.L. Romani and P.M. Rossini</i>	241
Hemispheric asymmetries of somatosensory evoked fields to median nerve stimulation: Normative data in healthy volunteers and preliminary clinical applications	
<i>P.M. Rossini, C. Del Gratta, V. Foglietti, C. Iani, L. Pacifici, A. Pasquarelli, F. Passarelli, M. Peresson, V. Pizzella, G. Torrioli, and G.L. Romani</i>	247
Reliability of somatosensory neuromagnetic source localization using a multisensor biomagnetometer	
<i>B. Schwartz, C. Gallen, S. Hampson, E. Hirschkoff, D. Sobel and K. Rieke</i>	253
Early somatosensory evoked magnetic fields studied with a multichannel first-order gradiometer system	
<i>R. Laudahn, I.M. Tarkka, W.H. Kullmann, M. Fuchs, O. Dössel and B. Bromm</i>	259
Pain evoked fields	
Late magnetic field components evoked by auditory and pain-inducing stimuli	
<i>B. Bromm, R. Laudahn and I.M. Tarkka</i>	265
Whole-head studies of pain-related evoked magnetic fields	
<i>R.T. Wakai, E.W. Howland, S.J. Swerdlow, J. Balog, D. Bensinger and C.S. Cleeland</i>	269
Motor system	
Bilateral organization of unilateral voluntary movements	
<i>R. Kristeva, D. Cheyne and L. Deecke</i>	275
SMA activity in voluntary movements as localized by MEG	
<i>W. Lang, D. Cheyne, R. Kristeva, R. Beisteiner, G. Lindinger and L. Deecke</i>	279
A comparison of magnetic fields and electric potentials preceding voluntary eye, eyelid and finger movements	
<i>W. Becker, B. Grözinger, C. Kornhuber, V. Diekmann and R. Jürgens</i>	283
Magnetic fields of the human brain preceding voluntary finger extension	
<i>I. Hashimoto, K. Odaka, T. Mashiko, T. Imada, T. Gatayama and S. Yokoyama</i>	287
Neuromagnetic H-reflex responses in man	
<i>B.-E. Will and H. Prehn</i>	293
MEG and brain pathologies	
Detection and localization of delta frequency activity in human strokes	
<i>C. Gallen, B. Schwartz, C. Pantev, S. Hampson, D. Sobel, E. Hirschkoff, K. Rieke, S. Otis and F. Bloom</i>	301
Somatosensory evoked magnetic fields in multiple sclerosis	
<i>J. Karhu, R. Hari, J.P. Mäkelä, J. Huttunen and J. Knuutila</i>	307
Auditory steady-state responses in subjects with early Alzheimer's disease	
<i>S.B. Baumann, A.C. Papanicolaou, H.S. Levin, L.A. Bertolino, R.L. Rogers and B.E. Masel</i>	313
Auditory evoked field (M100/M200) measurements in tinnitus and normal groups	
<i>G.P. Jacobson, B.K. Ahmad, J. Moran, C.W. Newman, J. Wharton and N. Tepley</i>	317
The efficacy of the discrete and the quantified continuous dipole density plot (DDP) in multichannel MEG	
<i>J. Vieth, H. Kober, G. Sack, P. Grummich, S. Friedrich, A. Möger, E. Weise, A. Daun and H. Pongratz</i>	321
Spreading depression and related DC phenomena	
Spreading depression and related DC phenomena	
<i>N. Tepley</i>	329
The measurement of tonic brain activity by means of magnetoencephalography	
<i>T. Elbert, C. Braun, B. Rockstroh and S. Schneider</i>	337
Peripheral nerves	
Electric current flow in peripheral nerves	
<i>H. Meves</i>	343
Peripheral nerves: Current status of clinical diagnosis	
<i>R. Dengler and M. Kempkes</i>	349
Modeling of the magnetic field produced by peripheral nerves	
<i>J.M. van Egeraat, R.S. Wijesinghe and J.P. Wikswo Jr.</i>	357
Peripheral nerve and early spinal cord activity in man: Current status of biomagnetic research	
<i>G. Curio</i>	365
Animal studies in neurophysiology	
A high-resolution system for magnetophysiology and its applications	
<i>Y.C. Okada, S. Kyuhou, A. Lähteenmäki and C. Xu</i>	375

Measurement of nonuniform propagation in the squid nervous system with a room temperature magnetic current probe <i>J.M. van Egeraat and J.P. Wikswo Jr.</i>	385	Magnetic field and body surface potential mapping of patients with ventricular tachycardia <i>G. Stroink, J. Lant, P. Elliott, R. Lamothe and M. Gardner</i>	471
Observation of magnetic field changes associated with KCl induced spreading depression in anesthetized rats <i>Y. Takanashi, Q. Chen, M. Chopp, S.R. Levine, J.E. Moran, N. Tepley and K.M.A. Welch</i>	389	Magnetocardiographic localization of premature ventricular contraction in a patient with ventricular tachycardia <i>T. Kokubun, N. Awano, K. Kido, Y. Maruyama, R. Horiuchi, S. Kiryu and N. Kasai</i>	477
DC neuromagnetic field changes during reversible anoxia in anesthetized rats <i>Y. Takanashi, M. Chopp, Q. Chen, G.L. Barkley, S.R. Levine, J. Kim, J.E. Moran and N. Tepley</i>	393	High-resolution magnetocardiography can identify ventricular tachycardia patients after myocardial infarction <i>M. Mäkiäärvi, J. Montonen, L. Toivonen, M. Leiniö, P. Siltanen and T. Katila</i>	483
CARDIOMAGNETISM		Magnetocardiogram in anteroseptal and inferior infarctions <i>O.S. Oja, J. Nousiainen, J. Malmivuo and A. Uusitalo</i>	487
Cardiomagnetism: A historical perspective <i>G. Stroink</i>	399	MCG localization of accessory pathways using a realistic torso <i>M. Mäkiäärvi, J. Nenonen, K. Forsman, L. Toivonen, P. Keto, P. Hekali, P. Siltanen, J. Montonen, M. Leiniö and T. Katila</i>	491
Torso modeling in electrocardiography <i>A. van Oosterom and G.J. Huiskamp</i>	405	Comparative analysis of the spatial sensitivities of VMCG and VECG <i>J. Nousiainen, O.S. Oja and J. Malmivuo</i>	497
Torso and heart models in magnetocardiography <i>J. Nenonen, B.M. Horacek and T. Katila</i>	417	Dynamic magnetocardiography <i>K. Brockmeier, S. Casciardi, S. Comani, C. Del Gratta, L. Di Donato, S. Di Luzio, S.N. Erné, A. Pasquarelli, M. Peresson and G.L. Romani</i>	503
Cardiac arrhythmias and localization		Application of dynamic magnetocardiography in a trained athlete with repolarization disturbances: A case report <i>K. Brockmeier, S. Comani, C. Del Gratta, L. Di Donato, S. Di Luzio, A. Pasquarelli, V. Pizzella and G.L. Romani</i>	509
Electrophysiologic mechanisms of ventricular arrhythmias <i>N. El-Sherif</i>	429	ECG/MCG and risk analysis	
Application of multichannel systems in magnetocardiography <i>W. Moshage, S. Achenbach, S. Schneider, K. Göhl, K. Abraham-Fuchs, R. Graumann and K. Bachmann</i>	439	The value of signal-averaged electrocardiography and programmed electrical stimulation in the assessment of risk for sudden death <i>A.J. Camm</i>	515
Magnetocardiography in combination with MRI: Verification of localization accuracy with a nonmagnetic pacing catheter <i>W. Moshage, S. Achenbach, K. Göhl, W. Härrer, S. Schneider and K. Bachmann</i>	447	Magnetocardiography and risk analysis <i>M. Mäkiäärvi</i>	523
Magnetocardiographic investigation of the origin and propagation of cardiac arrhythmias <i>S. Achenbach, W. Moshage, K. Göhl, K. Abraham-Fuchs, S. Schneider and K. Bachmann</i>	453	Magnetocardiography in healthy subjects: Validation of "risk analysis" <i>S. Comani, K. Brockmeier, C. Del Gratta, S. Di Luzio, S.N. Erné, A. Mezzetti, V. Pizzella, A. Scarinci and G.L. Romani</i>	531
Magnetocardiographic localization of single ventricular premature beats with a multichannel system in patients with ventricular tachycardia <i>P. Weismüller, K. Abraham-Fuchs, S. Schneider, P. Richter, W. Härrer, M. Kochs, J. Edrich and V. Hombach</i>	459	Heart transplantation and graft rejection	
Magnetocardiographic localization of ventricular tachycardias with a multichannel system <i>P. Weismüller, K. Abraham-Fuchs, S. Schneider, P. Richter, W. Härrer, M. Kochs, J. Edrich and V. Hombach</i>	465	Rejection diagnosis after heart transplantation: New aspects and methods <i>J. Müller, H. Warnecke and R. Hetzer</i>	537

Magnetocardiographic diagnosis of graft rejection after heart transplantation <i>L. Schmitz, H. Koch, K. Brockmeier, J. Müller, S. Schüler, H. Warnecke, R. Hetzer and S.N. Erné</i>	555	A biomagnetic technique for orocaecal transit time measurement <i>R.B. Oliveira, J.R.A. Miranda, O. Baffa, C.R. Cambrea and L.E.A. Troncon</i>	631
Miscellaneous		Susceptometric measurement of gastric emptying <i>J.R.A. Miranda, R.B. Oliveira, N.M. Matsuda and O. Baffa</i>	635
Volume current effects on the fetal magnetocardiogram <i>Z. Dunajski and M. Peters</i>	565	Extracorporeal direct magnetic measurement of gastric activity <i>S. Comani, M. Basile, S. Casciardi, C. Del Gratta, S. Di Luzio, S.N. Erné, M. Neri, M. Peresson and G.L. Romani</i>	639
BIOSUSCEPTOMETRY		Miscellaneous	
Biosusceptometry – current status of clinical diagnostics and biomagnetic research <i>R. Fischer and H.C. Heinrich</i>	573	Biomagnetic measurements utilizing ferrofluids <i>M. Chopp, Q. Chen, J.E. Moran and N. Tepley</i>	645
Liver susceptometry		Use of a magnetic tracer in hemodynamics: A model study <i>C. Del Gratta, M. Basile, S. Comani, S. Di Luzio, S.N. Erné, M.A. Macrì, A. Pasquarelli and G.L. Romani</i>	651
Liver iron quantification in the diagnosis and therapy control of iron overload patients <i>R. Fischer, R. Engelhardt, P. Nielsen, E.E. Gabbe, H.C. Heinrich, W.H. Schmiegel and D. Wurbs</i>	585	In vivo measurement of hydrodynamic properties and activity of alveolar macrophages <i>W. Möller and W. Stahlhofen</i>	655
Liver susceptometry for the follow up of transfusional iron overload <i>W. Hartmann, L. Schneider, A. Wirth, M. Dördelmann, D. Zinser, H. Elias, W. Languth, W. Ludwig and E. Kleihauer</i>	589	Magnetopneumography with spherical monodisperse ferrimagnetic particles <i>W. Stahlhofen and W. Möller</i>	661
Magnetic tracers in gastroenterology		RELATED TECHNIQUES	
Physiology and pathophysiology of intestinal motility <i>J. Christensen</i>	597	PET as competitor to MEG? <i>P. Bartenstein and O. Schober</i>	669
Clinical diagnosis of intestinal motility disorders: Current techniques and future perspectives <i>M. Neri, A. Mezzetti, E. Porreca and F. Cuccurullo</i>	605	Electrical impedance tomography and biomagnetism <i>J.G. Webster</i>	675
The biomagnetic approach to the study of gastrointestinal activity <i>M. Basile</i>	613	MODELING, THEORY AND DATA PROCESSING	
The biomagnetic method for the study of gastrointestinal transit <i>M.A. Macrì, M. Basile, S. Casciardi, S. Comani, C. Del Gratta, L. Di Donato, S. Di Luzio, M. Neri, A. Pasquarelli, V. Pizzella and G.L. Romani</i>	621	On the biomagnetic inverse procedure's capability of separating two current dipoles with a priori known locations <i>B. Lütkenhöner</i>	687
Gastrointestinal motility displayed by magnetic marker dislocations monitored by multichannel systems <i>L. Trahms, R. Model, R. Stehr, J. Wedemeier and W. Weitschies</i>	625	Multiple dipole estimation by parameter search method <i>O. Oshiro, M. Mukai, F. Takeuchi and S. Kuriki</i>	693
		Reducible integral equation for a dipole in a quasispherical conductor <i>C.W. Crowley and J. Budiman</i>	699
		Estimation of the ratio of the number of firing nerve fibers in contralateral and ipsilateral auditory pathways based on a MEG source model <i>K. Iramina, S. Iwaki and S. Ueno</i>	705

A strategy for the solution of the inverse problem using simultaneous EEG and MEG measurements <i>S.L. Gonzalez-Andino, R.D. Pascual-Marqui, R. Grave de Peralta, B. Lütkenhöner, E. Menninghaus and M. Hoke</i>	711	Synthetic magnetometer channels for standard representation of data <i>R.J. Ilmoniemi and J.K. Numminen</i>	793
Spatiotemporal source modelling of sensorimotor cortex activation accompanying human voluntary movement <i>D. Cheyne, R. Kristeva, L. Deecke and H. Weinberg</i>	717	Accurate and efficient formulas for averaging the magnetic field over a circular coil <i>B.J. Roth and S. Sato</i>	797
Simulation of activity of visual cortex <i>J.-Z. Wang, L. Kaufman and J.H. Kaufman</i>	723	Finite difference field mapping <i>J.E. Moran, G.P. Jacobson and N. Tepley</i>	801
A hierarchical minimum norm estimation method for reconstructing current densities in the brain from remotely measured magnetic fields <i>Y. Okada, J. Huang and C. Xu</i>	729	Influence of sampling rate and filtering on the correlation dimension of the human alpha EEG and MEG <i>K. Lehnertz</i>	807
Exploiting lead field analysis to obtain current source reconstructions and a figure of merit <i>C. Tesche</i>	735	Is there a need for individualized torso models in magnetic inverse solutions? <i>G. Stroink, L.S. Greek, P. Elliott, J. Nenonen and J.H. MacGregor</i>	813
Brain electromagnetic tomography: A comparative study of the source resolution of electric and magnetic measurements <i>R.D. Pascual-Marqui and R. Biscay-Lirio</i>	741	Biomagnetic inverse solution with a realistic torso model <i>K. Forsman, J. Nenonen, C. Purcell and G. Stroink</i>	819
A high-resolution distributed source model for time-varying spontaneous brain electromagnetic activity <i>R.D. Pascual-Marqui, S.L. Gonzalez-Andino, S. Hampson and B. Lütkenhöner</i>	747	Simple geometrical shapes as volume conductor models in magnetocardiography: Application to clinical and experimental data <i>S. Achenbach, W. Moshage, K. Abraham-Fuchs, R. Graumann, K. Göhl, M. Friedrich and K. Bachmann</i>	825
Reconstruction of current densities with anatomical constraints <i>R. Graumann, K. Abraham-Fuchs, W. Moshage and S. Schneider</i>	753	A finite element model to study the magnetic detection of flutter waves <i>C. Hall Barbosa, P. Costa Ribeiro, E. Costa Monteiro, A.C. Bruno, E. Parente Ribeiro and A. Fonseca Costa</i>	831
Magnetic source imaging by current element distribution <i>M. Shimogawara, H. Kado, H. Kohno and M. Higuchi</i>	757	INSTRUMENTATION	
Current source image estimation by spatially filtered MEG <i>S.E. Robinson and D.F. Rose</i>	761	A multichannel SQUID system for current density imaging <i>O. Dössel, B. David, M. Fuchs, W.H. Kullmann, K.-M. Lüdeke and J. Krüger</i>	837
Extraction of dynamic patterns from distributed current solutions of brain activity <i>K.D. Singh, A.A. Ioannides, R. Hasson, U. Ribary, F. Lado and R. Llinás</i>	767	Twenty-eight channel hybrid neuromagnetometer <i>G. Torrioli, S. Casciardi, C. Del Gratta, V. Foglietti, W.J. Gallagher, M.B. Ketchen, A.W. Kleinsasser, A. Pasquarelli, V. Pizzella, G.L. Romani and R.L. Sandstrom</i>	843
Fourier methods in biomagnetic imaging <i>W.J. Dallas, H.A. Schlitt, S.A. Cameron and W.H. Kullmann</i>	773	A 19-channel DC-SQUID based neuromagnetometer <i>H.J.M. ter Brake, J. Flokstra, W. Jaszcuk, E.P. Houwman, D. Veldhuis, R. Stammis, G.K. van Ancum, A. Martinez and H. Rogalla</i>	847
Correlation coefficient scanning to identify localised activity <i>R. Hasson and S.J. Switzenby</i>	779	Development of a magnetoencephalographic imaging system connected to NMR-CT images of the human head <i>Y. Uchikawa, T. Shiota, M. Kotani, K. Shibata, S. Kajihara, H. Okuyama and H. Wani</i>	853
Localization of averaged and unaveraged interictal spike activity in temporal lobe epilepsy with a multichannel MEG <i>P. Schüller, H. Stefan, S. Schneider, K. Abraham-Fuchs and W. Zwerenz</i>	783	SQUID-based active shield for biomagnetic measurements <i>K. Matsumoto, Y. Yamagishi, A. Wakusawa, T. Noda, K. Fujioka and Y. Kuraoka</i>	857
Improvement of neuromagnetic localization by MCG-artifact correction in MEG recordings <i>K. Abraham-Fuchs, P. Strobach, W. Häger and S. Schneider</i>	787		

Superconducting shield for biomagnetic measurements coupled with ferromagnetic	
<i>H. Matsuba, D. Irisawa and A. Yahara</i>	863
On-line head position determination for MEG measurements	
<i>M. Fuchs and O. Dössel</i>	869
Fast positioning system for a multichannel biomagnetic detector	
<i>F. Incardona, S.N. Erné, I. Modena and L. Narici</i>	875
Rotatory scanning for improved discrimination of very low frequency components of the magnetoencephalogram	
<i>A.R. Gardner-Medwin</i>	881
Fiber optic movement detector for long-duration DC-magnetoencephalography	
<i>G.L. Barkley, S. Eggeraat, J.E. Moran and N. Tepley</i>	887
A new sensory stimulator for the MEG environment: The Piezo undulative multifrequency apparatus (PUMA)	
<i>R. Jagow, U. Ribary, F. Lado and R. Llinàs</i>	891
A low-cost biomagnetic current probe system for the measurement of action currents in biological fibers	
<i>J.M. van Egeraat and J.P. Wikswo Jr.</i>	895
Index of authors	901