Lycée Buffon DS 6
MPSI Année 2020-2021

Devoir du 16/02/2021

Exercice 1 : Donner un équivalent des quantités suivantes :

$$a_n = \sqrt{n+1} - \sqrt{n};$$
 $b_n = \sqrt[3]{\ln(n+1)} - \sqrt[3]{\ln(n)}$ et $c_n = (\cos(1/n))^{n^2}$.

Exercice 2: On considère la suite u définie par $u_0 > 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n}$.

- 1. Montrer que la suite u est bien définie.
- 2. Prouver que, pour tout $n \in \mathbb{N}^*$, $u_n \geq \sqrt{2}$.
- 3. En déduire que la suite u converge et déterminer sa limite.

Exercice 3: Soit $f: x \mapsto (x(\ln x)^2)^{\frac{1}{\ln x}}$.

- 1. Déterminer l'ensemble de définition D de f.
- 2. Étudier la continuité de f sur D.
- 3. Déterminer la limite de f en $+\infty$
- 4. La fonction f est-elle prolongeable par continuité?
- 5. La prolongement par continuité est-il dérivable?

Exercice 4:

- 1. Montrer que si une suite w est convergente de limite ℓ , alors la suite de terme général $v_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ converge vers ℓ .
- 2. En déduire que si une suite w vérifie $w_{n+1} w_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}^*$, alors $w_n \sim n\ell$. On considère la suite u définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \sin(u_n)$.
- 3. Montrer que la suite u est monotone.
- 4. Prouver que la suite u converge. Donner sa limite.
- 5. (a) Énoncer le théorème de Taylor-Young.
 - (b) En déduire qu'il existe un réel C tel que $\sin x x \sim_0 Cx^3$.
- 6. Pour tout α non nul, donner un équivalent de $u_{n+1}^{\alpha} u_n^{\alpha}$.
- 7. Déterminer un équivalent de u_n .

Exercice 5: Soit $n \in \mathbb{N}$. On veut prouver que si $f \in \mathcal{C}^n([a,b],\mathbb{R}) \cap \mathcal{D}^{n+1}(]a,b[,\mathbb{R})$, alors:

$$(*): \exists c \in]a, b[: f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{(n+1)}$$

- 1. On peut démontrer ce résultat facilement sous des hypothèses plus faibles.
 - (a) Rappeler le théorème de Taylor reste intégral avec ses hypothèses.
 - (b) Inégalité de la moyenne : soit g continue sur [a, b]. Montrer que :

$$\exists c \in [a, b] : g(c) = \frac{1}{b - a} \int_a^b g(t) dt$$

- (c) On suppose ici que $f \in C^{n+1}([a,b],\mathbb{R})$. Montrer (*). On pourra s'inspirer de la démonstration de l'inégalité de la moyenne.
- 2. On suppose désormais que $f \in \mathcal{C}^n([a,b],\mathbb{R}) \cap \mathcal{D}^{n+1}([a,b],\mathbb{R})$
 - (a) Déterminer une expression simple de la dérivée de la fonction

$$g: x \mapsto \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b-x)^{k}.$$

(b) Prouver l'existence de constantes A et B telles que la fonction

$$h: x \mapsto g(x) + A + B \frac{(b-x)^{(n+1)}}{(n+1)!}$$

s'annule en a et b.

1

- (c) Conclure et expliquer en quoi ce résultat généralise le théorème des accroissements finis.
- 3. Utilisation : soit $f \in \mathcal{C}^2([a,b],\mathbb{R})$ telle que f(a) < 0 < f(b) et telle que f' > 0 sur [a,b].
 - (a) Prouver que f s'annule en un unique point $\alpha \in [a,b]$ et que le réel $K = \frac{\max\limits_{[a,b]} |f''|}{2\min\limits_{[a,b]} |f'|} \text{ est bien défini.}$
 - (b) Soit $x \in [a, b]$. On pose $y = x \frac{f(x)}{f'(x)}$. Donner une interprétation graphique de y et montrer que $|y \alpha| \le K|x \alpha|^2$.
 - (c) Prouver l'existence de $\varepsilon > 0$ tel que le suite définie par $u_0 \in [\alpha \varepsilon, \alpha + \varepsilon]$ et $\forall n \in \mathbb{N}^*, \ u_{n+1} = u_n \frac{f(u_n)}{f'(u_n)}$ est bien définie et converge vers α .

On pourra montrer que $\forall n \in \mathbb{N}, |u_n - \alpha| \leq \frac{(K\varepsilon)^{2^n}}{K}$.