В. М. Тихомиров

Поперечники в трудах Р. С. Исмагилова

Определение поперечников, получивших название поперечников по Колмогорову, было предложено Андреем Николаевичем Колмогоровым в [1] и им же были инициированы исследования по связанным с с этими величинами. В творчестве Раиса Сальмановича Исмагилова работы по поперечникам, занимают весьма скромное место. В заглавиях большинства работ Раиса Сальмановича фигурирует одно из двух слов — либо «представление», либо «спектр», и насколько об этом можно судить, на эти работы (во всяком случае в начальный период его творчества) влияли Марк Аронович Наймарк и Анатолий Георгиевич Костюченко — два последователя нашего выдающегося современника, ученика Андрея Николаевича Колмогорова — Израиля Моисеевича Гельфанда.

О поперечниках, насколько я могу об этом судить, Р. С. Исмагилов узнал совершенно случайно. В середине шестидесятых годов прошлого столетия автор этих строк старался найти темы для диссертации своему доброму знакомому из Самарканда — Сады Бабаджановичу Бабаджанову. Так случилось, что тот оказался в затруднительном положении: его стажировка подходила к концу, а предложенные ему задачи как-то не шли. Я предложил Сады Бабаджановичу некие задачи о поперечниках, и мы начали с ним их помаленьку решать.

Раис Сальманович был в очень дружеских отношениях с Сады Бабаджановичем, и как-то спросил его о том, чем он занимается. Тот рассказал о поперечниках. Мы занимались с Сады Бабаджановичем поперечниками функций в равномерной метрике. Раис Сальманович спросил, а как обстоят дела в подобными задачами в гильбертовом пространстве. Сады не был готов к ответу на этот вопрос, и возможно, сказал, что эти задачи кажутся ему слишком трудными. На что, согласно передаче Сады Бабаджановича, ему были сказаны слова, которые я уже никогда не забуду. Раис Сальманович сказал, что он сомневается в том, что есть геометрические задачи в гильбертовом пространстве, которые он не смог бы решить.

И вскоре появилась статья [6] — его первая публикация по поперечникам.

Но прежде, чем рассказывать о том, что было сделано в этой статье и в других работах Исмагилова по поперечникам, кратко введу читателя в курс дела.

Первое определение величины, получившее у нас название поперечника, появилось в одной из работ П. С. Урысона. Эта величина была связана с понятием «лебеговой размерности» множества в метрическом пространстве.

Поперечник по Урысону $u_n(C)$ множества C, расположенного в метрическом пространстве есть нижняя грань тех ε , при котором существует покрытие C диаметра ε , кратности n+1.

В дальнейшем было предложено множество определений поперечников множеств, — величин, характеризующих размер уклонения множества «от n-мерности». Наибольшее число исследований было посвящено поперечнику по Колмогорову, определённому в статье [1]. Величина $d_n(C,X)$ n-поперечника по Колмогорову характеризует возможность наилучшего приближения множества C (для простоты центрально-симметричного и расположенного в нормированном пространстве X) подпространствами размерности

n. Формальное определение такого поперечника таково: $d_n(C,X) = \inf_{L_n \in Lin_n(X)} d(C,L_n,X)$, где нижняя грань берётся по всем подпространствам L_n пространства X, а $d(C,L_n,X) =$ $\sup \inf \|x - \xi\|_X - \text{есть } y$ клонение подмножества C от аппроксимирующего подпространства L_n в пространстве X. Подпространство \widehat{L}_n , для которого $d_n(C,X)=d(C,L_n,X)$ называют экстремальным подпространством.

Может показаться удивительным, что основные результаты Колмогорова по поперечникам и их развитие Исмагиловым могут быть проиллюстрированы на двух совершенно детских задачах об одномерных поперечниках эллипсоида и правильного октаэдра в трёхмерном евклидовом пространстве.

Пусть в трёхмерном евклидовом пространстве \mathbb{E}^3 векторов $x=(x_1,x_2,x_3)$ со скалярным произведением $\langle x,y\rangle=x_1y_1+x_2y_2+x_3y_3$ (и нормой $\|x\|=\sqrt{\langle x,x\rangle}=|x|$) задан эллипсоид

$$\mathcal{E}_a(\mathbb{E}^3) = \{x \in \mathbb{E}^3 \mid (\frac{x_1}{a_1})^2 + (\frac{x_2}{a_2})^2 + (\frac{x_3}{a_3})^2 \le 1\}$$

 $\mathcal{E}_a(\mathbb{E}^3) = \{x \in \mathbb{E}^3 \mid (\frac{x_1}{a_1})^2 + (\frac{x_2}{a_2})^2 + (\frac{x_3}{a_3})^2 \leq 1\}$ с осями $a_1 \geq a_2 \geq a_3 > 0$. Какая прямая приблизит его лучше всего? Ответ напрашивается: прямая, направленная вдоль большей оси эллипсоида. И действительно, легко понять, что наиболее удалённая от этой прямой точка эллипсоида — это точка с координатами $(0, a_2, 0)$, и это приводит к оценке поперечника сверху: $d_1(\mathcal{E}_a(\mathbb{E}^3), \mathbb{E}^3) \leq a_2$. А с другой стороны, эллипсоиду $\mathcal{E}_a(\mathbb{E}^3)$ принадлежит круг в плоскости, натянутой на первые две оси эллипсоида с центром в начале координат радиуса a_2 , и для любой прямой ℓ , проходящей через начало координат, в ортогональном дополнении к ней найдётся граничная точка этого круга, не приближаемая прямой ℓ лучше, чем на величину a_2 . Откуда следует оценка $d_1(\mathcal{E}_a(\mathbb{E}^3),\mathbb{E}^3) \geq a_2$ поперечника снизу, а значит, равенство $d_1(\mathcal{E}_a(\mathbb{R}^3), \mathbb{E}^3) = a_2.$

В работе [1] речь шла о бесконечномерном обобщении полученного только что результата (о нем рассказывается далее), но и по отношению к рассмотренному нами трёхмерному случаю А. Н. Колмогоров, а за ним и автор этой статьи, не сомневались в том, что построенная прямая, столь хорошо приближающая эллипсоид $\mathcal{E}_a(\mathbb{E}^3)$ с разными осями, единственна. А на вопрос о том, так ли это, ответ будет получен чуть позже.

А теперь обсудим вопрос об одномерном поперечнике правильного октаэдра $\mathcal{O}^3 =$ $\{x \in \mathbb{E}^3 \mid |x_1| + |x_2| + |x_3| \le 1\}$ в \mathbb{E}^3 .

Какие прямые приближают этот октаэдр дучше всего? И снова ответ напрашивается: такими прямыми будут четыре прямые, соединяющие начало координат с центрами равносторонних треугольников, образующими границу \mathcal{O}^3 . Они, как легко понять, равноудалены от всех вершин, а любая другая прямая будет находиться на большем расстоянии от какой-нибудь вершины. Это рассуждение приводит к результату: $d_1(\mathcal{O}^3, \mathbb{E}^3) = \frac{\sqrt{3}}{3}.$

... Как-то вскоре после Войны Андрей Николаевич Колмогоров, размышляя над одной работой Гаусса, столкнулся с геометрической задачей о подпространстве заданной размерности, наилучшим образом приближающей правильный октаэдр, расположенный в евклидовом пространстве. Я думаю, что Андрей Николаевич интуитивно ощущал, что такое подпространство должно одинаковым образом приближать все вершины октаэдра. Обосновать это он предложил двум молодым людям, начинавшим свой путь в жизни. Одним из этих молодых людей был Юра Смирнов, который перед самым концом Войны усилиями Павла Сергеевича Александровича Александрова и самого Андрея Николаевича был демобилизован из флота, где прослужил всю Войну. Другим был Алёша Петров, не попавший на Войну по состоянию здоровья. Его, помимо математики, интересовали многие гуманитарные проблемы — поэзия, история, общественная жизнь. Оба они в тот период, о котором идёт речь, исполняли роль помощников: Смирнов при Колмогорове, Петров при Александрове, причём Колмогоров хотел занять Смирнова анализом, а Александров Петрова — топологией. Работа про октаэдр сыграла важную роль в судьбе обоих.

Молодые люди справились с поставленной задачей только наполовину: они (вместе с Андреем Николаевичем) доказали оценку снизу.

Усилия, затраченные молодыми людьми при получении этого результата, привели к их профессиональной переориентации: Юрий Михайлович Смирнов понял, что анализ не для него, он ушёл в топологию и стал замечателным топологом, а Алексею Аркадьевичу Петрову анализ понравился, и он стал заниматься теорией вероятностей.

Итак, молодые люди при участии Колмогорова получили оценку искомой величины снизу. А для нужной оценки сверху достаточно было построить подпространство равноудалённое от вершин октаэдра. Но так как дело у юношей не шло, Андрей Николаевич попросил построить такое подпространство одного из самых замечательных алгебраистов того времени, своего ученика Анатолия Ивановича Мальцева. Тот, разумеется, справился с поставленной задачей, и в итоге в Известиях АН СССР появились две статьи: Колмогорова, Петрова и Смирнова и Мальцева. О том, что по ходу дела был вычислен поперечник правильного октаэдра в евклидовом пространстве, речь не шла (по-видимому, в тот момент Андрей Николаевич не вспомнил о своём определении). Вспомнил о поперечниках в связи с описанной нами «двойной» статьей Сергей Борисович Стечкин. Он впервые выписал явную формулу для n-поперечника правильного октаэдра \mathcal{O}^N , расположенного в \mathbb{E}^N : $d_n(\mathcal{O}^N, \mathbb{E}^N) = \sqrt{\frac{N-n}{N}}$, и получил первые после Колмогорова результаты по поперечникам функциональных классов.

В итоге, можно сказать, что была опубликована «тройная» статья: [2], [3] [4] (статья Колмогорова, Петрова, Смирнова, статья Стечкина и маленькая заметка Мальцева, что дало повод в шутку сокращённо обозначать эту тройную статью набором букв КПСС(м)).

Теперь пришло время рассказать о вкладе Р. С. Исмагилова в теорию поперечников.

1. Наблюдение о неединственности экстремального подпространства для эллипсоила

Начнём с обсуждения поставленного выше вопроса о единственности экстремальной прямой для трёхмерного эллипсоида $\mathcal{E}_a(\mathbb{E}^3)$ с разными длинами осей. Самый простодушный взгляд на эту ситуацию сразу показывает, что описанную экстремальную прямую можно поворачивать в плоскости, натянутой на первую и третью оси до тех пор, пока расстояние от точки $(0,0,a_3)$ до повёрнутой прямой не окажется равным a_2 (ведь вначале оно равнялось a_3 и следовательно, было меньше a_2). Для всех описанных повёрнутых прямых наиболее удалённой точкой эллипсоида будет точка $(0,a_2,0)$ и значит, они тоже будут экстремальными. Это простое, но важное наблюдение было впервые сделано Р. С. Исмагиловым в его работе [7].

2. Идея усреднения при оценках снизу в задачах, подобных поперечнику октаэдра

Получим сначала оценку снизу в задаче о поперечнике правильного октаэдра по Исмагилову. Пусть L_n — подпространство в \mathbb{E}^N , e_k , $1 \le k \le N$ — стандартный базис в \mathbb{E}^n , $f_i = (f_{i1}, \ldots, f_{iN})$, $1 \le i \le n$ — ортонормированный базис в L_n . Тогда квадрат расстояния $d^2(e_k, L_n, \mathbb{E}^N)$ от вершины e_k до L_n в \mathbb{E}^N равен $|e_k|^2 - \sum_{i=1}^n \langle e_k, f_i \rangle^2 = 1$ — $\sum_{i=1}^n f_{ik}^2$, откуда $\sum_{k=1}^N d^2(e_k, L_n, \mathbb{E}^N) = N - n$, ибо $\sum_{k=1}^N \sum_{i=1}^n f_{ik}^2 = \sum_{i=1}^n |f_i|^2 = n$. Воспользовавшись теперь тем, что уклонение октаэдра \mathcal{O}^N от L_n равно расстоянию от L_n до максимально удалённой от L_n вершины октаэдра, получаем оценку снизу Колмогорова—Петрова—Смирнова—Стечкина:

$$d(\mathcal{O}^{N}, L_{n}, \mathbb{E}^{N}) = \max_{1 \le k \le N} d(e_{k}, L_{n}, \mathbb{E}^{N}) \ge \frac{1}{N} \sum_{k=1}^{N} d^{2}(e_{k}, L_{n}, \mathbb{E}^{N}) = \frac{N-n}{N},$$

причём этим доказано также, что если существует подпространство \widehat{L}_n равноудалённое от вершин, то его уклонение от \mathcal{O}^N равно $\frac{N-n}{N}$, т. е. оно является экстремальным в задаче.

3. Идея доказательства существования подпространства равноудалённого от вершин правильного октаэдра, состоящая в построении инвариантного подпространства той же размерности

Для доказательства существования подпространства равноудалённого от вершин октаэдра Исмагилов идёт отличным от Мальцева путём.

Рассмотрим следующее ортогональное преобразование A пространства \mathbb{E}^N в себя: $Ae_k=e_{k+1},\ 1\leq k\leq N-1,\ Ae_N=e_1.\ У$ него есть заведомо одно одномерное инвариантное подпространство $L_1=\mathrm{span}(e_1+\ldots+e_N),$ и некоторое число двумерных. Легко понять, что из них возможно набрать инвариантное подпространство \widehat{L}_n размерности n< N. Обозначим теперь через P оператор ортогонального проектирования на \widehat{L}_n , а через η_i — вектор $A^{-1}Pe_i$. Тогда: $d(e_i,\widehat{L}_n,\mathbb{E}^N)\stackrel{\mathrm{def}}{=}|e_i-Pe_i|\stackrel{\mathrm{def}}{=}|Ae_{i-1}-A(A^{-1})Pe_i|=|e_{i-1}-\eta_i|\geq \inf_{\eta\in\widehat{L}_n}|e_{i-1}-\eta|\stackrel{\mathrm{def}}{=}d(e_{i-1},\widehat{L}_n,\mathbb{E}^N)$. Продолжая это рассуждение дальше, прихо-

дим к тому, что пространство \widehat{L}_n равноудалено от всех вершин октаэдра, что и приводит к формуле Стечкина.

4. Вычисление поперечников классов $W_1^r(\mathbb{T})$ в $L_2(\mathbb{T})$

Через $W_p^r(\mathbb{T}), r \in \mathbb{N}, p \geq 1$, где \mathbb{T} — это одномерный тор, который реализуется как отрезок $[-\pi,\pi]$, у которого точки $\pm \pi$ идентифицированы, обозначают соболевский класс 2π -периодических функций $x(\cdot)$, у которых (r-1)-ая производная абсолютнонепрерывна, а r-ая производная удовлетворяет неравенству $\int\limits_{\mathbb{T}} |x^{(r)}(t)|^p dt \leq 1$. Функции $x(\cdot)$ из класса $W_p^r(\mathbb{T})$ представимы в виде свёртки: $x(t) = c + B_r * h(\cdot)$, где $B_r(\cdot)$ — ядро Бернулли, которое имеет следующий ряд Фурье: $B_r(t) = \sum\limits_{k \in \mathbb{N}} k^r \cos(kt - \frac{\pi r}{2})$, а $\|h(\cdot)\|_{L_p(\mathbb{T})} \leq 1$.

В первой работе А. Н. Колмогорова [1] были вычислены поперечники класса $W_2^r(\mathbb{T})$

в пространстве $L_2(\mathbb{T})$. Если перейти к рядам Фурье, то оказывается, что класс $W_2^r(\mathbb{T})$ изометрически вкладывается в пространство l_2 , как ортогональная сумма $\mathbb{R} \oplus \mathcal{E}_r(l_2)$, где $\mathcal{E}_r(l_2) = \{x \in l_2 \mid \sum_{k \in \mathbb{N}} k^{2r} (x_{2k-1}^2 + x_{2k}^2) \leq 1\}$. Мы видим, что это бесконечномерное обобщение эллипсоида $\mathcal{E}_a(\mathbb{E}^3)$. Нетрудно доказывается, что среди экстремальных подпространств для колмогоровских поперечников этого эллипсоида имеются пространства, натянутые на первые n его осей: $d_0(W_2^r(\mathbb{T}), L_2(\mathbb{T})) = \infty, \ d_{2n-1}(W_2^r(\mathbb{T}), L_2(\mathbb{T})) = d_{2n}(W_2^r(\mathbb{T}), L_2(\mathbb{T})) = n^{-r}$.

Класс $W_1^r(\mathbb{T})$, как нетрудно понять, можно чуть расширить так, что он будет всюду плотно лежать в расширенном классе. Этим расширенным классом является класс $W_1^r(\mathbb{T})$, состоящий из функций $x(\cdot) = c + B_r * h(\cdot)$, где $h(\cdot)$ — функция ограниченной вариации, вариация которой не превосходит единицы. При этом оказывается, что вновь построенный класс является обобщением октаэдра \mathcal{O}^3 : роль единичного вектора e_1 в \mathbb{E}^3 играет в $L_2(\mathbb{T})$ функция $B_r(\cdot)$, а роль преобразования $Ae_k=e_{k+1},\,1\leq$ $k \leq N-1, Ae_N = e_1$ исполняет сдвиг: $\tau \mapsto B_r(\cdot - \tau)$. И для вычисления бесконечномерного аналога октаэдра \mathcal{O}^3 возможно применить те же идеи усреднения и инвариантности, которые привели к вычислению поперечников этого октаэдра. Инвариантные пространства здесь напрашиваются: это пространства тригонометрических полиномов $\mathcal{T}_m = \mathrm{span}\{\cos k\cdot, \sin k\cdot, 0 \le k \le m\}$. Приближение функции $x(\cdot)$ из класса $W_1^r(\mathbb{T})$ тригонометрическими полиномами степени n-1 осуществляется с помощью тригонометрического полинома $y_{n-1}(\cdot,x(\cdot))$, определяемого с помощью свёртки $dx^{r-1}(\cdot)$ тригонометри теского польнеть g_n туру с $B_{rn-1}(t) = \sum_{k=1}^{n-1} k^r \cos(kt - \frac{\pi r}{2})$. Расстояние от $x(\cdot)$ до $y_{n-1}(\cdot, x(\cdot))$ легко подсчитывается, и оказывается равным $d_{nr} = (\sum_{k \geq n} k^{-2r})^{1/2}$, откуда приходим к оценке сверху: $d_{2n-1}(W_1^r(\mathbb{T}), L_2(\mathbb{T})) \leq d_{nr}$. Оценка снизу получается методом усреднения аналогично тому, как это было проделано с октаэдром \mathcal{O}^3 . В итоге приходим к следующим формулам: $d_{2n-1}(W_1^r(\mathbb{T}), L_2(\mathbb{T})) = d_{2n}(W_1^r(\mathbb{T}), L_2(\mathbb{T})) = (\sum_{k \geq n} k^{-2r})^{1/2}$. Этот результат был фактически доказан в [6], где получены ещё некоторые важные результаты, в частности, получена слабая асимптотика для величин $d_n(W_p^r(\mathbb{T}), L_2(\mathbb{T})$ для $1 \leq p \leq 2$. Оказалось, что в этих случаях $d_n(W_p^r(\mathbb{T}), L_2(\mathbb{T}) \asymp n^{-(r-(1/p-1/2))}$, причём нужную оценку сверху дают тригонометрические полиномы.

Основной работой Р. С. Исмагилова, среди посвящённых поперечникам, является работа [7]. Выделим несколько идей и результатов, получивших освещение в этой работе и оказавших большое воздействие на развитие всей тематики.

5. Введение и изучение абсолютных поперечников

В обозначении $d_n(C,X)$ поперечника по Колмогорову множества C, расположенного в нормированном пространстве X, присутствуют оба аргумента: и C и X, поскольку, как было замечено в [5], поперечник по Колмогорову может уменьшаться при изометрическом вложении множества C в объемлющее X нормированное пространство \widetilde{X} (в отличие от поперечника по Урысону, который определяется лишь метрикой самого множества C). Р. С. Исмагилов в статье [7] ввёл понятие абсолютного поперечника. Абсолютным поперечником по Колмогорову $D_n(C)$ он назвал нижнюю грань всех попереч-

ников $d_n(iC,\widetilde{X})$ образов iC множества C, взятую по всем изометрическим расширениям (\widetilde{X},i) пространства X.

Введя некое универсальное расширение \hat{i} в определённое им универсальное пространство \hat{X} , Исмагилов получил формулу $D_n(C) = d_n(\hat{i}C,\hat{X})$ и ещё ряд аналогичных формул для других поперечников. Причём по отношению к одному из поперечников (а именно — линейному поперечнику) применение теории двойственности в выпуклом анализе позволили доказать, что абсолютный линейный поперечник оказался равным другому известному поперечнику, а именно, гельфандовскому поперечнику.

Между урысоновским и колмогоровским поперечниками был введён П. С. Александровым поперечник $a_n(C,X)$, получивший название александровского поперечника. Он определяется для компакта C, расположенного в метрическом пространстве X сходно с колмогоровским, как нижняя грань по всем n-мерным компактам супремумов по точкам из C расстояний от точки из C до её образа в n-мерном компакте. После введения Исмагловым понятия абсолютного поперечника автору этой статьи стало любопытно, чему равен абсолютный поперечник для александровского. Он оказался равным половине урысоновского!

6. Радикальный сдвиг в проблематике асимптотики соболевских классов $W^r_p(\mathbb{T})$ в $L_q(\mathbb{T})$ при $p \leq q, \ q \leq 2$.

Нетрудно доказывается, что уклонение $d(W_p^r(\mathbb{T}), \mathcal{T}_n, L_q(\mathbb{T}))$ класса Соболева от пространств тригонометрических полиномов слабо (по n) эквивалентно $n^{-(r-(1/p-1/q)_+)}$. Довольно быстро было доказано, что приближение пространствами тригонометрических полиномов даёт правильный порядок убывания колмогоровского поперечника при q <p. Как было указано выше, и в случае, когда $1 \le p \le 2$, а q = 2 тригонометрические полиномы снова дают правильный порядок убывания. Многие были уверены, что так будет всегда, пусть только кто-то сосредоточится и докажет, что $d_n(W^r_p(\mathbb{T}), L_q(\mathbb{T})) \simeq$ $n^{-(r-(1/p-1/q)_+)}$. И через некоторое время ожиданий стало известно, что такая формула доказана, и никто не торопился её проверять. Но Р. С. Исмагилов не поверил в правильность такой формулы. Он доказал, что эта формула действительно верна при $p \le q \le 2$, но встречаются случаи, когда это не так. Это был прорыв в хорошо построенной крепостной стене. В этой стене образовалась брешь, и этой задачей стали заниматься многие замечательные исследователи. Для достижения цели Исмагилов применил совершенно неожиданные для всех, кто занимался этими задачами методы из совершенно других областей. При этом оказалось, в частности, что линейная оболочка n тригонометрических мономов, расположенных не подряд, дают лучшее приближение, чем пространство \mathcal{T}_n тригонометрических полиномов степени n. Это привело к новому понятию тригонометрического поперечника, сыгравшего большую роль в дальнейшем. Полностью задача о поперечниках соболевских классах не решена и поныне, но её решение при $1 < q \le p < \infty$, принадлежащее Б. С. Кашину, составляет одну из ключевых работ этого замечательного математика. Дальнейшее развитие работ Р. С. Исмагилова и Б. С. Кашина связано с именами Белинского, Галеева, Глускина, Куланина, Майорова, Темлякова и других.

7. Заключительные замечания. После работы [7] тематике поперечников Р. С. Исмагилов посвятил ещё несколько работ. В центральной печати это три работы [8]-[10]. Две из них написаны совместно с учениками, и в них методы, разработанные в

[6] применяются к сходным интересным задачам, третья, как мне кажется, ещё ждёт своего осмысления.

Работы Р. С. Исмагилова по попречникам, бывшие лишь эпизодом в его многогранном творчестве, свидетельствуют о нём, как выдающемся исследователе, преданном науке и способном преодолевать большие трудности, обогащать математику новыми идеями и методами.

Список литературы

- [1] Колмогоров А. Н. О наилучшем приближении функций заданного функционального класса (перевод статьи из Ann.Math., 1936, vol. 37, р. 107–110). Колмогоров А. Н. Избранные труды. Математика и механика. М. Наука, 1985, стр. 186–189
- [2] Колмогоров А. Н., Петров А. А., Смирнов Ю. М. Одна формула Гаусса по теории метода наименьших квадратов. Изв. АН СССР, сер. мат., 1947, т. 11, с. 561–566
- [3] Стечкин С. Б. О наилучшем приближении заданных клас сов любыми полиномами. УМН, 1954, т. 9, вып. 1, с. 133–134
- [4] Мальцев А. И. Замечаие к работе А. Н. Колмогорова , А. А. Петрова, Ю. М. Смирнова «Одна формула Гаусса по теории метода наименьших квадратов». Изв. АН СССР, сер. мат., 1947, т. 11, с. 587–588
- [5] Тихомиров В. М. Поперечники множеств в функционально м пространстве итеория наилучших приближений. УМН, 15, № 3, 1960, 81–120
- [6] Р. С. Исмагилов. Об п-мерных поперечниках компактов в гильбертовом пространстве. Функц. анализ и его прил., 2:2 (1968), 32–39
- [7] Р. С. Исмагилов. Поперечники множеств в линейных нормированных пространствах и приближение функций тригонометрическими многочленами. УМН, 29:3(177) (1974), 161–178
- [8] Р. С. Исмагилов, Х. Насырова. О поперечниках класса гладких функций в пространстве L_2 . Матем. заметки, 22:5 (1977), 671–678
- [9] Р. С. Исмагилов. Минимальные поперечники метрических пространств. Функц. анализ и его прил., 33:4 (1999), 38–49
- [10] Р. С. Исмагилов, К. В. Усков. Об асимптотике n-поперечников спирали Винера в комплексном гильбертовом пространстве. Матем. заметки, 89:5 (2011), 686–693