System wspomagania obsługi błędów systemów IT w Dziale IT.

Adrian Chlebosz Tomasz Indeka Mateusz Kordowski Filip Przybysz

<u>Wstęp</u>

Cechy systemu

Moduł analityczno - raportowy

Architektura rozwiązania

Aktorzy

Założenia modelu logicznego

Bezpieczeństwo

Model danych

Indeksy

Typowe zapytania bazodanowe

Use case

Diagram use case

Tabela czynności

Analiza częstotliwości wybranych funkcji

Scenariusze przypadków użycia

Standardowa procedura rozwiązywania błędów

Przeglądanie konta przez klienta

Przeglądanie konta przez pracowników

Serwisant rozwiązuje zgłoszony problem

Konsultant przyjmuje zlecenie

Zarządzanie i kontrola pracy działu

Nadawanie pracownikom praw

Aplikacja webowa

1. Wstęp

Celem projektu jest stworzenie systemu wspomagającego pracowników działu IT w obsłudze problemów zgłaszanych za pośrednictwem helpdesku. Do helpdeska wprowadzane są zgłoszenia od klientów związane z problemami z obsługiwanym przez nas oprogramowaniem. Klienci będą zgłaszać swoje problemy pracownikom działu obsługi klienta, którzy kolejno będą umieszczać zgłoszenia klientów w systemie helpdesk.

System pozwalał będzie pracownikom obsługi klienta wprowadzać do systemu przyjęte zgłoszenia i w razie konieczności oddelegowywać je do odpowiednich zespołów, specjalizujących się w rozwiązywaniu poszczególnych problemów.

Każde zgłoszenie zawierać będzie: unikatowy numer, datę zgłoszenia, aktualny status zgłoszenia, kategorię, priorytet, informacje o zgłaszającym kliencie, informacje o przyjmującym zgłoszenie pracowniku, szczegółowy opis problemu, identyfikator programu, którego dotyczy zgłoszenie, specyfikację środowiska klienta, podmiot odpowiedzialny za naprawę oraz listę wypróbowanych rozwiązań.

Możliwy będzie podgląd i edycja części informacji o każdym zgłoszeniu, wraz z zachowaniem historii wprowadzonych zmian. Pozwoli to prześledzić postęp prac nad każdym zgłoszeniem i podejmowane każdorazowo kroki.

Za utrzymywanie dodatkowej tabeli zgłoszeń archiwalnych odpowiedzialny będzie mechanizm wyzwalaczy, który zachowa w niej kolejne stany każdego zgłoszenia po każdej jego modyfikacji.

Powstanie moduł analityczno-raportowy pozwalający na czytelną prezentację i filtrację danych statystycznych dotyczących przetwarzanych zgłoszeń.

Cechy systemu

2.1. Moduł analityczno - raportowy

Zadaniem modułu analityczno-raportowego jest generowanie dokumentów w formacie PDF, które obejmować mogą wybrane przez tworzącą je osobę informacje z systemu. Możliwymi do wygenerowania raportami będą raporty zawierające:

- informacje o programach, co do których zostało zgłoszone najwięcej błędów, razem ze zgłaszającym i środowiskiem uruchomieniowym
- informacje o klientach najczęściej zgłaszających problemy, razem z reklamowanym programem oraz informację o środowisku uruchomieniowym
- informacje o aktualnie rozwiązywanych problemach: ich ilość, krótki opis, kto zgłasza, którego programu dotyczy problem
- informacje o wydajności pracowników ile zgłoszonych do nich problemów zostało rozwiązanych w danych przedziałach czasowych oraz ile nadal jest rozwiązywane
- informacje o średnim czasie, który zajęło rozwiązanie problemów o danych priorytetach

2.2. Architektura rozwiązania

- Do utworzenia koncepcyjnego modelu bazy danych wykorzystany zostanie program Oracle SQL Developer Data Modeler. Korzystać będziemy z zaprezentowanej na wykładzie notacji Barkera.
- Model fizyczny także zostanie opracowany za pomocą wcześniej wspomnianego programu.
- Łączyć się będziemy ze specjalnie utworzoną dla naszego projektu bazą danych Oracle.
- Aplikacja dostępowa dla bazy danych zostanie napisana w języku Java. W
 celu przyspieszenia procesu programowania użyjemy Java Persistence API w
 połączeniu z frameworkiem Hibernate, co pozwoli nam szybko i w prosty
 sposób połączyć się bazą danych.

2.3. Aktorzy

 Konsultant - obsługuje system na poziomie przyjmowania zgłoszeń od klientów oraz odpowiedniego rozdysponowywania ich do podmiotów rozwiązujących zaistniałe problemy

- Serwisant obsługuje system na poziomie rozwiązywania zgłoszeń skierowanych przez konsultantów
- Szef działu helpdesk ma dostęp do generowania raportów z działania systemu
- Klient zgłasza błędy związane z obsługiwanym przez firmę oprogramowaniem za pośrednictwem internetowego formularza
 - Główny użytkownik ma podstawowe uprawnienia zgłaszania i komunikacji
 - Szef klienta rozszerza uprawnienia głównego użytkownika np. o dodatkowe poziomy priorytetu zgłoszenia

2.4. Założenia modelu logicznego

- Dodawanie i edycja statusów z Active_Status przebiegać będzie poprzez dostarczone procedury gwarantujące odpowiednie zmiany w Archived_Status
- Tabele Active Ticket Status oraz Archived Ticket Status będą różniły się jedynie tym, iż w Archived Ticket Status będą dodatkowe typy statusu, takie jak solved, abandoned itp.
- ID w encji Archived_Ticket jest sztucznym kluczem głównym. Prawdziwą identyfikację zgłoszenia realizuje Ticket_Number. To pozwala na utrzymywanie historii modyfikacji pojedynczej krotki z Tabeli Active_Ticket w tabeli Archived_Ticket.

2.5. Bezpieczeństwo

- każdy aktor ma możliwość przeprowadzenia za pośrednictwem aplikacji dostępowej jedynie z góry określonych operacji,
- każdy użytkownik będzie łączył się z bazą danych logując się na konto ze ściśle określonym zbiorem uprawnień (nierealizowalne, serwery Politechniki nie dają uprawnień do tworzenia użytkowników).

2.6. Model danych

- Relacje w bazie danych są w 2 postaci normalnej
 - Część atrybutów niekluczowych tabeli Archived_Ticket jest funkcyjnie zależna od niekluczowego w niej atrybutu Ticket_Number. Osiągnięcie 3NF wymagałoby rozdziału tabeli na dwie mniejsze a to wprowadziłoby narzut na często wykonywaną operację złączenia.

- Tabela "raw" służy do trzymania surowych danych tz. takich, którym jeszcze nie przydzielono poszczególnych danych (niepełne zgłoszenia).
- Tabela "Message" służy do śledzenia wiadomości pomiędzy dwoma osobami odnośnie danej sprawy. Wiadomości mogą układać się w ciąg, dzięki czemu będzie można prześledzić przebieg konwersacji.
 - Dodatkowo każda wiadomość ma możliwość przechowywania plików.
 W zamyśle są to screeny problemu, dump files itp.
- Klienci są rozpoznawalni poprzez swoje konta założone na naszej platformie.
 Z każdym klientem identyfikujemy umowę SLA.

2.7. Indeksy

- Tabela "Active_Tickets" oraz "Archived_Tickets"
 - o b-drzewo na Due date często dodawane i odczytywane
 - o b-drzewo na Submission date często dodawane i odczytywane
 - o b-drzewo na Modification date często dodawane i odczytywane
 - b-drzewo na Ticket Number często odczytywane
 - bitmapa na Status
 - bitmapa na Priority
 - bitmapa na Software
 - bitmapa na Issue Type
 - bitmapa na Environment
 - o b-drzewo na Employee ID
 - o b-drzewo na Client ID
- Tabela "Raw Ticket"
 - o b-drzewo na Ticket Number często odczytywane
 - o b-drzewo na Submission date często dodawane i odczytywane
 - o b-drzewo na Due date często dodawane i odczytywane
 - bitmapa na Priority
 - bitmapa na Software
 - bitmapa na Issue Type
 - bitmapa na Environment
 - b-drzewo na Client ID
- Tabela "Employee"
 - o b-drzewo na email często odczytywane, rzadko dodawane lub zmieniane
 - bitmapa na Position
 - o bitmapa na Team
- Tabela "Message"
 - o b-drzewo na date przyśpieszy szukanie w dużym zbiorze danych.
 - b-drzewo na Previous Message
 - o b-drzewo na Ticket Number
- Tabela "Clients"
 - o b-drzewo na email często odczytywane i dodawane, rzadko zmieniane
 - b-drzewo na last name często odczytywane.

- Tabela "Contracts"
 - o b-drzewo na end date często odczytywane i dodawane, rzadko zmieniane.
 - o bitmapa na SLA
 - o b-drzewo na Client ID
 - o b-drzewo na Software
- Tabela "Attachments"
 - o b-drzewo na Message ID

2.8. Typowe zapytania bazodanowe

Zapytania dnia codziennego

- wybranie naglących aktywnych zgłoszeń
 - o Active_Tickets
 - Due date
 - Modification_date
 - Submission_date
- przydział sprawy
 - o Raw_Tickets
 - Submission date
 - Due date
 - o Active_ticket operacja insert
- kontakt z klientem
 - Employee
 - ID
 - o Active Tickets
 - Ticket number
 - Client ID
 - Message- operacja insert
 - Attachment możliwy insert
 - o Clients (chyba niepotrzebne, bo od razu można wziąć z active tickets)
 - ID
 - Contracts
 - Client ID
 - SLA
 - End_Date
 - o SLA
 - Name
 - Response Time
- przesłanie starej wersji do archiwum
 - o Active_Tickets
 - modification date
 - modyfikacja dowolnego innego pola
 - Archived_Tickets operacja insert

Zapytania tworzące zestawienia danych (Głównie tabela archived)

- sprawdzenie jakie problemy były najczęściej uaktualniane
 - Archived_Tickets
 - Modification_Date

3. Use case

3.1. Diagram use case

3.2. Tabela czynności

	Raw Ticket	Active Ticket	Archived Ticket	Messag es	Attachm ent	Clients	Contracts	Employ ees
Zgłoszenie problemu	I							
Podjęcie problemu	D	I						
Kontakt		М	I	I	I			
Przekazanie problemu do rozwiązania		M	I					
Uaktualnienie informacji o postępach w rozwiązywaniu problemów		M	I					
Zakończenie rozwiązywania problemu		D	I					
Generacja raportów		R	R			R	R	R
Wgląd w stan systemu		R	R				R	R

4. Analiza częstotliwości wybranych funkcji

- RawTicket prognozowane wykorzystanie: średnio 12/h, w piku 60/h, jedynie operacje insert i delete
- ActiveTicket prognozowane wykorzystanie: średnio 84/h, w piku 160/h, wszystkie dostępne typy operacji, najwięcej modify
- ArchivedTicket prognozowane wykorzystanie: średnio 84/h, w piku 160/h, podczas każdej modyfikacje ActiveTicket kopia jest wrzucana do archiwum, operacje insert i read
- Messages prognozowane wykorzystanie: średnio 12/h, w piku 30/h, odbieranie wiadomości w cyklu życia zgłoszenia, tylko insert
- Attachment prognozowane wykorzystanie: średnio 6/h, w piku 24/h, dodawanie załączników w cyklu życiu zgłoszenia, tylko insert
- Clients prognozowane wykorzystanie: średnio 1/h, w piku 30/h, tylko read
- Contracts prognozowane wykorzystanie: średnio 1/h, w piku 30/h, tylko read
- Employees prognozowane wykorzystanie: średnio 1/h, w piku 30/h, tylko read

5. Scenariusze przypadków użycia

5.1. Standardowa procedura rozwiązywania błędów

Aktorzy: klient, konsultant

- Klient wchodzi na stronę do zgłaszania problemów
- Klient loguje się na stronie na swoje konto
- Klient zgłasza problem za pośrednictwem formularza
- Formularz jest zapisywany w systemie obsługi zgłoszeń i zostaje przydzielony do konsultanta
- Konsultant w razie potrzeby kontaktuje się z klientem w celu uzupełnienia potrzebnych informacji
- Zgłoszenie jest przetwarzane i rozwiązywane przez serwis
- Klient jest informowany o znalezionym rozwiązaniu za pośrednictwem maila

5.2. Przeglądanie konta przez klienta

Aktor: klient

- Klient wchodzi na stronę do zgłaszania problemów
- Klient loguje się na stronie na swoje konto
- Klient ma możliwość przejrzeć zgłoszone problemy, klient na stanowisku szefa ma możliwość przejrzenia problemów zgłoszonych przez jego pracowników, każdy zgłoszony problem może być edytowany.

5.3. Przeglądanie konta przez pracowników

Aktor: pracownik (zarówno konsultant jak i serwisant)

- Pracownik loguje się do systemu obsługi zgłoszeń na swoje konto
- System wyświetla stan konta, listę wszystkich otwartych zgłoszeń i ich czas terminowego zakończenia przypisane do pracownika
- Pracownik może przeglądać zakończone zgłoszenia jak również przystąpić do pracy z otwartymi zgłoszeniami

5.4. Serwisant rozwiązuje zgłoszony problem

Aktor: serwisant

- Serwisant loguje się do systemu obsługi zgłoszeń na swoje konto
- Serwisant odbiera oczekujące zgłoszenie przekazane mu przez konsultanta
- Serwisant rozwiązuje problem każdorazowo uzupełniając informację o podjętych działaniach w zgłoszeniu
- Serwisant po znalezieniu rozwiązania oznacza zgłoszenie jako rozwiązane

5.5. Konsultant przyjmuje zlecenie

Aktor: konsultant

- Konsultant loguje się do systemu obsługi zgłoszeń na swoje konto
- Konsultant odbiera zgłoszenie, czekające w systemie na obsługe
- Konsultant sprawdza poprawność zgłoszenia i w razie potrzeby kontaktuje się z klientem, proponuje proste metody rozwiązania
- Konsultant uzupełnia w zgłoszeniu informacje otrzymane w wywiadzie z klientem i przekazuje zgłoszenie odpowiedniemu zespołowi serwisowemu

5.6. Zarządzanie i kontrola pracy działu

Aktor: szef działu Obsługi Klienta

- Szef działu chce skontrolować wydajność działu i wszystkich pracowników
- Szef działu loguje się na swoje konto w systemie obsługi zgłoszeń
- Szef ma możliwość wygenerowania raportów o wykonanych zgłoszeniach i stanie działu

5.7. Nadawanie pracownikom praw

Aktor: szef działu Obsługi Klienta

- Szef działu loguje się na swoje konto w systemie obsługi zgłoszeń
- Szef ma możliwość nadawać i odbierać pracownikom prawa dostępu, dodawać i usuwać pracowników, a także modyfikować ich dane

6. Aplikacja webowa

- 1. Technologia:
 - **a.** Warstwa serwerowa: Java (z wykorzystaniem frameworku Spring)
 - b. Warstwa interfejsu użytkownika: Angular z wykorzystaniem Angular Material UI
- 2. Funkcjonalności:
 - a. Logowanie
 - b. Przeglądanie zgłoszeń w formie tabelarycznej z dodaną paginacją dla komfortu przeglądania:
 - i. tylko swoich dla zwykłych pracowników
 - ii. zarówno swoich jak i podwładnych dla szefów
 - c. Możliwość wyboru ilości zgłoszeń na pojedynczej stronie
 - d. Możliwość rozwinięcia danego zgłoszenia w celu zobaczenia opisu
 - e. Dodanie nowego zgłoszenia
 - f. Edycja istniejącego zgłoszenia
 - g. Walidacja polegająca na sprawdzeniu, czy wszystkie pola zostały wypełnione przez zgłaszającego lub edytującego
 - h. Wylogowanie
- 3. Bezpieczeństwo:
 - a. W aplikacji serwerowej została włączona obsługa przeciwdziałania atakom typu CSRF