Optical Properties Suite Workflow and Resulting Successes and Failures

Panayotis Manganaris¹ Kat Nykiel²

Purdue Materials Science and Engineering

1 Mannodi Group

2 Strachan Group

March 9, 2022

Outline

Input/Output

2 Results

3 Logistics

Inputs

Structure Selection

- mpID, POSCARS, ciffs, etc. made into pymatgen structure
- pmg struct is encoded as dictionary and sent to tool
- Dictionaries can be easily checked for identity

Input Declaration

```
{'@module': 'pymatgen.core.structure',
 '@class': 'Structure'.
'charge': None.
 'lattice': {'matrix': [[1.5920500003918698, -2.7575114888687695, 0.0],
  [1.5920500003918698, 2.7575114888687695, 0.0],
   [0.0, 0.0, 5.1551]].
  'a': 3.1841000007837397.
  'b': 3.1841000007837397.
  'c': 5.1551.
  'alpha': 90.0,
  'beta': 90.0,
  'gamma': 120.0000000000001,
  'volume': 45.26276950032406},
'sites': [{'species': [{'element': 'Zn', 'occu': 1}],
   'abc': [0.666666666666666, 0.3333333333333333, 0.5],
   'xyz': [1.5920500003918696, -0.9191704962895898, 2.57755],
   'label': 'Zn',
   'properties': {}},
  {'species': [{'element': 'Zn', 'occu': 1}],
   'abc': [0.3333333333333333, 0.666666666666666, 0.0],
   'xyz': [1.5920500003918696, 0.9191704962895898, 0.0],
   'label': 'Zn',
   'properties': {}},
  {'species': [{'element': '0', 'occu': 1}],
   'abc': [0.666666666666666, 0.33333333333333, 0.880309999999999],
   'xyz': [1.5920500003918696, -0.9191704962895898, 4.538086080999999],
   'label': '0',
   'properties': {}},
  {'species': [{'element': '0', 'occu': 1}].
   'abc': [0.3333333333333333 0.6666666666666 0.380309999999999],
   'xyz': [1.5920500003918696, 0.9191704962895898, 1.9605360809999997],
   'label': '0'.
   'properties': {}}]}
```

Outputs I

structures/chemistries returned for future query

Outputs can be queried by key and filtered by conditional matching on values

- Formula
- mpID
- spacegroup

Electronic properties returned for analysis

- scalers
 - bandgap
 - ☐ fermi energy☐ charge densities
 - Charge densities
 - ☐ raman/IR cutoff
 - □ UV cutoff
- ⊟ spectra
 - ☑ raman/IR
 - \square eDoS + Band-structure
 - phonon dispersion
 - ☐ SLME (these might be relegated to post processing)
 - ☐ PV FOM

Kat's Troubleshooting in ZnO (mpid = 2133) I

Detailed breakdown of simulation shortcomings

- Testing workflow for ZnO (mpid = 2133)
- outputs are extremely sensitive to input choices
- trying other structures would be useful as well

ecutwfc = 40 Ry, 4 nodes

KPOINTS	output
3	Υ
6	N (vc-relax fails)
9	N (vc-relax fails)

ecutwfc = 40 Ry, 8 nodes

KPOINTS	output
3	Υ
6	N (vc-relax fails)
9	N (vc-relax fails)

Kat's Troubleshooting in ZnO (mpid = 2133) II

```
ecutwfc = 50 Ry, 1 node

KPOINTS output

3 Y

6 N (smearing is needed)

9 N (walltime reached)

12 N (walltime reached)

15 N (walltime reached)
```

ecutwfc = 50 Ry, 4 nodes KPOINTS output 3 Y 6 N (vc-relax fails) 9 Y 12 N (walltime reached) 15 N (walltime reached)

Kat's Troubleshooting in ZnO (mpid = 2133) III

ecutwfc = 60 Ry, 4 nodes

Is this too high? ~800 eV, but 'recommended'...

KPOINTS	output
3	N (vc-relax fails)
6	N (vc-relax fails)
9	N (vc-relax fails)

Kat's Troubleshooting in SiC (mpid = 1002206) I

ecutwfc = 40 Ry, 4 nodes KPOINTS output 3 Y 6 N (vc-relax fails) 9 N (vc-relax fails)

Convergence Plots I

Convergence Plots II

9 Kpoints fails to make any ionic iteration in vcrelax

Figure: unfortunately blank at ecutwfc = 40 Ry

Discussion

- each (successful) simulation takes up 1-2 GB in storage?
- why are they failing to converge?
 - vcrelax final scf calculation fails to converge, even after 1000 electronic steps
 only one ionic step
 - "The maximum number of steps has been reached."
- cell shape changes drastically (due to no symmetry?)
 - we've not yet attempted replacing vc relax with atomic relax in the pipeline

Run DB

Run Storage and Parallelization Technical Points

- Currently very limited by storage space in nanoHUB
- Each (successful) simulation takes up 1-2 GB in storage?
- it may be desirable to reimplement the simtool via a pegasus workflow
 - may enable improved job parallelization
 - enables more detailed data management