Técnicas de Clustering

Programa

- Introducción
- Métodos Divisivos
- Métodos Jerárquicos
- Algunos otros métodos
- Cuantos clusters? Gap y Estabilidad

Introducción

Introducción

Introducción

- Definiciones previas:
 - Cluster: Agrupamiento de objetos.
 - Idea de grupo: Objetos que son similares entre sí pero diferentes del resto.
 - Métrica: medida de similitud entre objetos

Idea intuitiva

- Dados
 - un conjunto de objetos (datos)
 - una medida de similitud entre ellos (métrica)
- Encontrar una partición de los mismos /
 - Mismo grupo → Similares
 - Distinto grupo → Distintos
 - Que tenga sentido, que sea interesante

Objetivos

- Descubrir información
 - Encontrar "grupos naturales" en un conjunto de datos del que no se conocen "clases".
 - Encontrar jerarquías de similaridad en los datos (taxonomías)
- Resumir los datos
 - Encontrar "prototipos" que sean representativos de un conjunto grande de ejemplos
- Dividir los datos + otros...

Clustering no es clasificación

- Clustering es aprendizaje no-supervizado
 - Se conocen los datos, no los grupos en que están organizados. El objetivo es encontrar la organización.

Ejemplo: Expresión de genes

Ejemplo: Segmentación de imágenes

Ejemplo: Identificación de estilos de escritura.

Ejemplo: Distancia genética entre animales

Dos clases de algoritmos

Jerárquicos

Dos clases de algoritmos

Divisivos

- "Clustering plano":
 Clustering como una
 partición del espacio.
- Queremos la partición "más significativa" en un número fijo de partes.

Jerárquico

 El objetivo es construir una anidación de particiones, de la que se puede extraer luego una cantidad dada de partes.

Desarrollo histórico

- Cluster analysis: En nombre aparece en el título de un artículo de análisis de datos antropológicos (JSTOR, 1954).
- Hierarchical Clustering: Sneath (1957), Sorensen (1957)
- K-Means: Descubierto independientemente por Steinhaus (1956), Lloyd (1957), Cox (1957), Ball & Hall (1967), McQueen (1967)
- Mixture models (Wolfe, 1970)
- Métodos de teoría de grafos (Zahn, 1971)
- K Nearest neighbors (Jarvis & Patrick, 1973)
- Fuzzy clustering (Bezdek, 1973)
- Self Organizing Map (Kohonen, 1982)
- Vector Quantization (Gersho and Gray, 1992)

Datos para clustering

- Datos vectoriales
 - Dos modos: filas y columnas

- Matriz de distancias
 - Un modo

R usa los dos

```
\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & 0 \end{bmatrix}
```

Métricas

- Para datos vectoriales:
 - Minkowski:

$$d(i,j) = \sqrt[p]{\sum |x_{id} - x_{jd}|^p}$$

p=1 Manhattan

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{iq} - x_{jq}|$$

• p=2 Euclidea

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{iq} - x_{jq}|^2)}$$

 $p = \infty$

Métricas (2)

- Para datos vectoriales (otras):
 - Información mutua
 - Correlación
 - Coseno
- Para datos binarios, ordinales o categóricos se definen medidas particulares
- Se pueden definir métricas para tipos especiales
 - Videos, imágenes, texto, etc...

Pesado de las variables

- 16 animales
- 13 booleanos
- Describen caracteristicas y comportamiento
- Al cambiar el peso de un grupo de variables a otro cambia totalmente el clustering

Algoritmo general

- Usar una métrica dada para calcular todas las distancias entre los datos
- Definir una medida de bondad del clustering
 - Por ejemplo, suma de las distancias entre los puntos
- Minimizar la medida de bondad (normalmente con alguna heurística)

Métodos divisivos

K-means

- Objetivo: Encontrar una partición de los datos en k grupos, tal que la distancia media dentro de los puntos de cada grupo sea mínima
 - Grupos apretados, clusters compactos
 - Al minimizar la distancia total dentro de los grupos estamos maximizando la distancia entre los grupos.

Queremos encontrar una partición tal que:

$$\sum_{j=1}^{C} \frac{1}{|D_{j}|^{2}} \sum_{i \in D_{j}, l \in D_{j}} ||X_{i} - X_{l}||^{2}$$

Se puede ver que es igual a:

$$\begin{split} \sum_{j=1}^C \sum_{i \ \in D_j} & ||X_i - \mu_j||^2 \\ \mu_j &= \frac{1}{|D_j|} \sum_{l \ \in D_j} X_l \quad \text{es la media del cluster j} \end{split}$$

Queremos el mínimo del costo J:

$$J = \sum_{j=1}^{c} \sum_{\mathbf{x}_i \in \mathcal{D}_j} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2 = \sum_{j=1}^{c} \sum_{i=1}^{n} I(z_i = j) ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

Donde los z son las etiquetas de cluster de cada punto.

J es función de los z y los μ

Si los µ están fijos y varían los z, J es mínimo si:

$$z_i = rg \min_j ||\mathbf{x}_i - oldsymbol{\mu}_j|| \hspace{0.5cm} orall z_i$$

Si los μ varían, J es mínimo si:

$$\mathbf{1, J} \atop \frac{\partial}{\partial \boldsymbol{\mu}_j} J = 0 \quad \Rightarrow \quad \boldsymbol{\mu}_j = \frac{\sum_{i=1}^n I(z_i = j) \mathbf{x}_i}{\sum_{i=1}^n I(z_i = j)} = \frac{\mathbf{x}_i \in \mathcal{D}_j}{|\mathcal{D}_j|}$$

- Para minimizar J puedo iterar los dos procesos alternativamente.
- Se puede mostrar que J desciende siempre.
- Esto se llama minimización alternada
- Si desciende siempre, que garantía tengo???

- Para minimizar J puedo iterar los dos procesos alternativamente.
- Se puede mostrar que J desciende siempre.
- Esto se llama minimización alternada
- Si desciende siempre, que garantía tengo???

Voy a encontrar un mínimo LOCAL de J en tiempo finito

K-means: algoritmo base

- Empezar con k centros al azar
- Iterar:
 - Asignar cada punto al centro más cercano
 - Asignar cada centro como la media de sus puntos

Próximas slides: animación del método

Y

Assign
each point
to the closest
cluster
center

Move
each cluster
center
to the mean
of each cluster

Y

Move
each cluster
center
to the mean
of each cluster

Reassign
points
Closest to a
different new
cluster center

Q: Which points are reassigned?

K-means example, step 4

move cluster centers to cluster means

Fortalezas de k-means

- Eficiente: O(tkn), donde
 - n es # objetos
 - k es # clusters
 - t es # iteraciones
 - Normalmente, k, t << n
- Garantía de convergencia (a mínimo local)

Problemas de k-means

Cambiando la relación entre a y c puede ser tan mala como quiera

Solución

- Para aumentar la chance de encontrar el mínimo global se usan varias corridas desde distintos valores iniciales, y se compara el J final
 - Les suena de algún lado?

Problemas de k-means (2)

- K-means depende fuertemente de los outliers
 - Media de 1, 3, 5, 7, 9 es
 - Media de 1, 3, 5, 7, 1009 es
 - Mediana de 1, 3, 5, 7, 1009 es
 - Ventaja de la Mediana: no la afectan los valores extremos

K-means solo vale en espacios vectoriales

Solución (2)

- K-medoids
 - Representar cada cluster por su medoid (es el punto del cluster situado más centralmente)
 - Aplicar la misma iteración que en k-means
 - Soluciona los outliers y vale para espacios arbitrarios
 - PAM (Partitioning Around Medoids, 1987)
 - Mucho más caro computacionalmente O(k(n-k)²)

Práctica en R

 Ver archivo de códigos, tiene ejemplos en datos artificiales y reales