Mecánica Celeste Teoría, algoritmos y problemas

Jorge I. Zuluaga Profesor titular de Física y Astronomía

Instituto de Física, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia

25 de febrero de 2020

Índice general

1.	Prefac	cio	7
	1.1.	¿Otro libro de mecánica celeste?	8
	1.2.	Mecánica celeste y mecánica analítica	9
	1.3.	Mecánica celeste en la era de la información	10
	1.4.	Mecánica celeste en Python	11
	1.5.	Mecánica celeste con SPICE	12
	1.6.	¿Qué hace distinto a este libro?: un decálogo	13
2.	Agrad	lecimientos	17
3.	Introd	lucción	19
	3.1.	¿Cómo se organiza este libro?	19
	3.2.	¿Cómo usar este libro?	24
	3.3.	Mecánica celeste en <i>libretas</i>	25
		3.3.1. Instalación de las libretas	26
	3.4.	Idioma y Notación	27
		3.4.1. Palabras extranjeras y guía de pronunciación	27
		3.4.2. Siglos y décadas	27
		3.4.3. Notación matemática	
	3.5.	Elementos no textuales	
		3.5.1. Cajas de texto	
		3.5.2. Algoritmos	
	3.6.	Figuras interactivas y animaciones	
Bibl	iografía		37

Índice general

Índice de figuras

1.1.	Imagen procesada de Arrokoth, el objeto transneptuniano sobre-		
	volado por la sonda New Horizons el 1 de enero 2019 (crédito:		
	NASA/Johns Hopkins University Applied Physics Laboratory/-		
		8	
1.2.	Figura correspondiente al código 1.1	12	
3.1.	Ilustración esquemática del teorema de Danelin	30	
3.2.	Retrato de Johanes Kepler, copia de un original de 1610 de pintor		
	desconocido y que se conserva en el monasterio Benedictino de		
	Kremsmünster (Alemania)	31	
3.3.	Figura correspondiente al código 3.3	35	
3.4.	Gráfico de las funciones trigonométricas básicas, en el intervalo		
	de interés (gráfico generado)	35	

6 Índice de figuras

Capítulo 1

Prefacio

En 2019 celebramos el centenario de la histórica observación de un eclipse total de Sol, liderada por *Sir Arthur Eddington* y que permitió la primera confirmación experimental de las predicciones de la teoría general de la relatividad. El primer día de ese mismo año, una nave espacial, la sonda **New Horizons**, sobrevoló el cuerpo astronómico más remoto fotografiado por nuestra especie, el objeto transneptuniano **(486958) Arrokoth**; la misma sonda, cinco años antes, había pasado "rozando" la superficie de Plutón, enviándonos imágenes inesperadas de un mundo sorprendente. Muy lejos de allí, y también en 2019, dos naves espaciales, una japonesa, la sonda **Hayabusa 2** y la otra estaudinense, **OSIRIS-REx**, transmitieron imágenes impactantes desde la superficie de dos pequeños asteroides cercanos a la Tierra, cuerpos que visitaron con el objeto de traer muestras a la Tierra. Lo que aprendamos de esas muestras podría ayudarnos a evitar un impacto catastrófico futuro.

Todas estas hazañas de exploración y conocimiento fueron posibles, entre otras, gracias a la **Mecánica Celeste**. Esta disciplina científica, combinación asombrosa de astronomía, física y matemáticas, comenzó con el trabajo teórico pionero de *Johanes Kepler* a principios de los 1600¹; se estableció con la obra cumbre de *Sir Isaac Newton*, los *Principios Matemáticos de la Filosofía Natural* [2], publicada a finales de los 1600; y alcanzó su apogeo entre los 1700 y los 1800 con los trabajos de matemáticos y astrónomos como *Edmund Halley*, *Leonhard Euler*, *Pierre-Simon Laplace*, *Joseph-Louis Lagrange*, *William Rowan Hamilton* y *Henri Poincaré* (entre muchos otros que mencionaremos en este libro).

Este libro presenta una visión panorámica de la **mecánica celeste** y en general de la **mecánica analítica** o **mecánica clásica**, que se desarrollo de forma paralela a la primera, inspirada, en muchos casos, por sus problemas. El texto esta dirigido especialmente a quiénes, por su formación o trabajo, están interesados en la aplicación de la mecánica celeste en astronomía o en ingeniería aeroespacial. Su extensión, énfasis y nivel de profundidad lo hace especialmente adecuado para **estudiantes de pregrado** (licenciatura o bachillerato, dependiendo del país) de

 $^{^1}$ En la Capítulo 3 haremos claridad sobre la nomenlatura usada en el libro para referirnos a los siglos y decenios.

8 Capítulo 1. Prefacio

Figura 1.1: Imagen procesada de Arrokoth, el objeto transneptuniano sobrevolado por la sonda New Horizons el 1 de enero 2019 (crédito: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko.)

cualquier programa científico o técnico, especialmente astronomía, física o ingeniería aeroespacial. Su enfoque computacional, lo podría hacer, además, útil como material de referencia para profesionales de estas disciplinas.

1.1. ¿Otro libro de mecánica celeste?

Al escribir este libro, no pretendo hacer un compendio exhaustivo de los problemas de la Mecánica Celeste, que, durante más de 400 años de historia se ha convertido en una disciplina científica basta y en constante desarrollo.

Muchos textos en la materia han sido escritos desde los tiempos de Newton, la mayoría en las últimas décadas. Algunos presentan detallados y rigurosos desarrollos matemáticos. Otros están orientados específicamente al Sistema Solar o al movimiento de satélites y vehículos espaciales. Muchos más son buenos libros de texto, la mayoría dirigidos a estudiantes de posgrado (la mecánica celeste es considerada una línea de profundización, tanto en física como en astronomía.) También se han escrito algunos libros divulgativos y al alcance de aficionados.

La bibliografía de este libro recoge apenas una muestra de referencias en la materia, que serán citados a lo largo de sus capítulos, y que, de antemano, invito a los lectores a explorar con curiosidad para no quedarse con la punta de el inmenso *iceberg* que apenas alcanzará a asomarse en estas páginas.

Siendo este el caso ¿para qué escribir un libro más de mecánica celeste? Existen dos razones fundamentales que me motivaron a emprender esta aventura.

La primera es que, como mencione antes, la mayoría de los libros de mecánica celeste están dirigidos a estudiantes con una formación media o avanzada en matemáticas, mecánica newtoniana y mecánica analítica. Como se acostumbra decir, tienen un nivel de posgrado. En contraste, el número de textos al "alcance" de estudiantes de los primeros años universitarios, no es muy grande. Escribo este libro para contribuir a enriquecer precisamente ese "nicho".

Podría argumentarse que la mecánica celeste, como aplicación específica de la mecánica, es un tema especializado y de allí que sus textos estén dirigidos a estudiantes más avanzados. Sin embargo, la importancia de esta disciplina en la historia de la astronomía y de la física, así como su potencial para describir fenómenos fascinantes, desde el movimiento de planetas y naves espaciales, hasta la colisión de agujeros negros, hace de la mecánica celeste un medio educativo excelente para introducir conceptos teóricos en física y astronomía, que, sin un contexto y motivación apropiado, son difíciles de digerir.

Un buen libro de mecánica celeste o mecánica analítica, sin importar su nivel, debería poder ser estudiado por cualquier estudiante, incluso de pregrado. Esa ha sido la premisa en muchos centros académicos. Pero la realidad es más compleja. Como cualquier profesor sensible sabe, para valorar realmente los logros intelectuales del pasado, entender las motivaciones que llevaron a los padres de una disciplina a introducir hipótesis o formular las leyes de la misma, se necesita experiencia académica. Experiencia que la mayoría de los estudiantes de pregrado no tienen. No es solo un problema de nivel matemático, es también un problema de falta de exposición a la ciencia.

Este libro, pretende ser un buen *primer* libro de mecánica celeste, pero también de mecánica analítica, como explicaremos más adelante. Un primer escalón para abordar, ya con experiencia, libros más avanzados.

1.2. Mecánica celeste y mecánica analítica

La segunda razón, y la original para mi como profesor del **pregrado de Astronomía en la Universidad de Antioquia**, fue la necesidad de escribir un texto de mecánica celeste que permitierá además una formación en los principios y métodos de la mecánica analítica (mecánica teórica o mecánica clásica). Esos principios y métodos son instrumentales en la formulación de la mecánica cuántica y lo son además en versiones modernas de otras áreas de la física clásica, como la relatividad, la electrodinámica e incluso la óptica. La mecánica analítica es indispensable entonces en la formación de cualquier estudiante de ciencias físicas.

En la inmensa mayoría de los textos clásicos de mecánica celeste, los resultados se derivan usando, casi exclusivamente, los métodos de lo que llamaremos aquí el **formalismo vectorial o geométrico de la mecánica**. En este formalismo (originalmente introducido por Newton y desarrollado posteriormente por Euler) las fuerzas juegan el papel central en la descripción de la dinámica (*dime cuánto te halan y te diré cómo te mueves*.)

Desde los trabajos pioneros de matemáticos y "físicos" de los 1700 y 1800, tales como *Alambert, Lagrange, Hamilton y Jacobi*, se hizo evidente que algunos problemas complejos de mecánica celeste podían abordarse usando un **formalismo analítico o escalar de la mecánica**. En este formalismo, los sistemas se describen usando *funciones* tales como el *Lagrangiano* o el *Hamiltoniano*, que contienen toda la información relevante del sistema, sus restricciones y simetrías (*dime cuál es tu hamiltoniano y no solo te diré para dónde vas sino también cómo eres*.)

Un caso ilustrativo, muy popular y reciente, de como el formalismo analítico de la mecánica es aplicado hoy, de forma generalizada, en mecánica celeste, es la "predicción" de un nuevo planeta en el Sistema Solar, más allá del cinturón de Kuiper, cuya existencia, a la fecha, no se ha confirmado, ni rechazado [1]. Este

10 Capítulo 1. Prefacio

trabajo también es la punta de un inmenso "iceberg" de literatura científica en mecánica celeste en la que el formalismo analítico es protagonista.

Más allá entonces de la necesidad práctica de juntar a la mecánica celeste y a la mecánica analítica en un mismo texto, de modo que sirva a estudiantes de programas académicos como astronomía o ingeniería aeroespacial, este libro presenta este particular "matrimonio" entre dos disciplinas clásicas de la astronomía y la física como lo que es: una relación estrecha entre dos cuerpos de conocimiento inseparables.

1.3. Mecánica celeste en la era de la información

Un ingrediente adicional hace a este libro diferente. Me refiero al enfásis especial que daremos a los algoritmos de la mecánica celeste a través de todo el libro.

Es un hecho reconocido que la complejidad de muchos problemas de mecánica celeste, en particular aquellos con un interés práctico tales como el diseño de trayectorias de vehículos espaciales, la predicción de la posición precisa de asteroides
y cometas que pueden amenazar nuestro planeta o la predicción a largo plazo de
la posición de los cuerpos del sistema solar y otros sistema planetarios, ha exigido,
casi desde los tiempos de Kepler, el desarrollo y aplicación de métodos numéricos
y, más recientemente, su implementación en calculadores y computadores.

En este sentido, la relación de la mecánica celeste con *algoritmos* de toda clase, no es comparable con la relación, principalmente utilitaria, que tienen la mayoría de las área de la física con la computación. Podría decirse, que hoy, es casi impensable saber de mecánica celeste, sin estar familiarizado también con sus algoritmos.

Pensando en esto, todo el contenido del libro ha sido elaborado usando *libretas* o *notebooks* del Proyecto Jupyter². Estas libretas pueden ser obtenidas y usadas por el lector para interactuar con y modificar los algoritmos (el material electrónico esta disponible en el sitio en línea³ del libro). Estos medios tecnológicos permiten además aprovechar gráficos interactivos y animaciones para entender mejor conceptos que pueden ser difíciles.

En la versión impresa, los algoritmos se presentarán en cajas especiales de texto como esta:

E = 0.6886561865220447

¿Puede el lector adivinar qué hace este algoritmo?. Si no lo hace, espero que sepa en qué lenguaje de programación está escrito.

²https://jupyter.org

³http://seap-udea.org/MecanicaCeleste_Zuluaga

1.4. Mecánica celeste en Python

Es casi imposible escribir un libro con algoritmos sin comprometerse con un lenguaje de programación específico (especialmente si queremos que los algoritmos funcionen.) En el caso de esta edición del libro, el lenguaje elegido es Python.

Esta siempre será una apuesta arriesgada. Aunque la mecánica celeste y sus algoritmos no pasarán de "moda", los lenguajes de programación "van y vienen". Es un hecho (poco reconocido) que cientos de libros científicos acumulan polvo por haber comprometido su contenido con lenguajes de programación que hoy no son tan populares (BASIC o Pascal por ejemplo).

No sabemos si Python y este libro sufrirán a la larga la misma suerte. Pero hay tres hechos que *sugieren* que la popularidad de este lenguaje podría durar más de lo esperado (o al menos esa es mi esperanza).

El primero es que su sintaxis es muy similar a la del "lenguaje natural". Considere, por ejemplo, el algoritmo presentado antes (que ya lo sabe, esta escrito en Python) o el siguiente algoritmo, aún más simple:

```
from math import pi
for n in range(1,5):
    print("pi a la",n,"es",pi**n)

pi a la 1 es 3.141592653589793
pi a la 2 es 9.869604401089358
pi a la 3 es 31.006276680299816
pi a la 4 es 97.40909103400242
```

Es difícil que estos algoritmos se escriban de manera tan natural en casi cualquier otro lenguaje de programación popular en ciencia (C, FORTRAN o Java) como se pueden escribir en Python. Este hecho, no solo facilita el aprendizaje del lenguaje, sino también la legibilidad de los algoritmos.

El segundo hecho que demuestra el promisorio futuro de Python como lenguaje de la computación científica, es la creciente cantidad paquetes, en todas las disciplinas de la ciencia y la técnica, que se escriben permanentemente en este lenguaje y que están disponibles en repositorios públicos⁴. Además, herramientas informáticas muy conocidas (bibliotecas de rutinas, bases de datos, sistemas de información, etc.) escritas originalmente en otros lenguajes, han sido ahora traducidas a Python (pythonizadas si quieren) con el único propósito de que puedan ser usadas por la creciente comunidad de desarrolladores en este lenguaje.

Python se esta convirtiendo, y esta es una conjetura mía, en depositario de décadas de experiencia en ciencia computacional. ¿Cambiará esta tendencia pronto? Lo dudo (o al menos así lo espero, por el bien de este libro).

Una última razón, pero no por ello, menos importante, para elegir Python como el idioma oficial de los algoritmos en este libro es la existencia de una biblioteca gráfica, robusta y bien documentada, escrita para este lenguaje. Me refiero por supuesto a matplotlib⁵.

Con la excepción de paquetes científicos que incluyen avanzadas facilidades de graficación, tales como Mathematica, Matlab, o IDL (todos ellos sujetos a algún

⁴https://pypi.org/project/IPy

⁵https://matplotlib.org/

12 Capítulo 1. Prefacio

tipo de pago), la mayoría de los lenguajes de programación dependen, a veces, de complejas bibliotecas gráficas o programas de terceros para hacer, hasta los más sencillos gráficos.

En Python, hacer un gráfico elemental, es tan simple como escribir:

```
(Algoritmo 1.1)

from matplotlib.pyplot import plot
plot([1,2,3,4],[1,4,9,16]);

ver Figura 1.2
```


Figura 1.2: Figura correspondiente al código 1.1.

1.5. Mecánica celeste con SPICE

Con el temor de haberlos aburrido ya suficiente con este largo prefacio, no puedo dejar de mencionar aquí, una última herramienta que será protagonista en este libro. Se trata de SPICE, una aplicación desarrollado para la *NASA's Navigation and Ancillary Information Facility (NAIF)*⁶.

SPICE es un sistema de informacióm de uso libre, formado basicamente por una biblioteca de rutinas para realizar cálculos en mecánica celeste y de datos (*kernels*) que permiten, usando esas mismas rutinas, la determinación de la posición y orientación precisa (pasada y futura) de muchos cuerpos del Sistema Solar y de algunos vehículos espaciales lanzados por nuestra especie.

Esta herramienta ha cobrado, en años recientes, una popularidad significativa en la comunidad académica. Sus rutinas y *kernels* están detrás de algunas de los servicios en línea más populares de NASA, tales como el sistema *NASA Horizons*⁷,

⁶https://naif.jpl.nasa.gov/naif/

⁷https://ssd.jpl.nasa.gov/horizons.cgi

que permite, a través de distintas interfaces, calcular la posición pasada y futura de cuerpos del sistema solar y naves espaciales; o del simulador *NASA's Eyes*⁸ que ofrece vistas en tiempo real de la posición de los cuerpos del sistema solar y de misiones espaciales de la agencia espacial estadounidense.

En este libro usaremos las rutinas y *kernels* de SPICE (a través de la biblioteca spiceypy⁹, desarrollada en Python) para ilustrar conceptos, desarrollar ejemplos y resolver problemas que, de otro modo, implicarían un gran esfuerzo algorítmico (el objetivo será no *reinventar la rueda redonda*.)

Al hacerlo, además, el lector, sin importar su nivel, se familiarizará con una herramienta que usan astrónomos e ingenieros aeroespaciales para resolver problemas reales de mecánica celeste. ¡De la teoría a la acción!

De la misma manera como nos preguntamos en el caso de Python, nos formulamos la siguienete pregunta: ¿podría SPICE desaparecer o, mejor, ser reemplazada por un sistema diferente en los próximos años? No podemos asegurarlo, pero la cantidad de herramientas que hoy dependen de este sistema de información, hace dificil suponer que podría cambiar radicalmente en el futuro inmediato.

Un último aspecto hace de SPICE una opción muy estable para los propósitos de un libro de texto. La biblioteca de rutinas asociada con el sistema esta disponible para un amplio conjunto de lenguajes de programación diferentes a Python. Familiarizarse con las rutinas y *kernels* de SPICE aquí, será suficiente para que pueda usarlo con lenguajes como C/C++, FORTRAN e IDL.

A continuación, y a modo de ilustración, presento un algoritmo, escrito con SPICE, para calcular la distancia de la Tierra al Sol durante el eclipse total de Sol del 29 de maryo de 1919 en el que se obtuvieron las primeras evidencias empíricas de la relatividad general y con el que abrimos este prefacio. Naturalmente, este algoritmo es mucho más complejo (y menos natural) que los que escribí antes, pero ilustra el poder de esta herramienta para obtener resultados interesantes con muy poco esfuerzo computacional.

```
import spiceypy as spy
spy.furnsh('pymcel/data/naif0012.tls')
spy.furnsh('pymcel/data/de430.bsp')
et=spy.str2et("05/29/1919 09:08:00 UTC-3")
sol,tluz=spy.spkgeo(10,et,"J2000",0)
tierra,tluz=spy.spkgeo(399,et,"J2000",0)
distancia=spy.vnorm(tierra-sol)
```

Distancia Tierra-Sol durante el eclipse de 1919: 151649284 km

1.6. ¿Qué hace distinto a este libro?: un decálogo

Para resumir, enumero a continuación las 10 cosas que hacen de este un libro distinto de los muchos que se han escrito en casi 400 años de historia de la mecánica celeste. Este decálogo, como la mayor parte de este prefacio, es, además de una descripción abreviada de las características únicas del libro, una lista de razones que justifican la existencia de un libro más en el "basto océano" de literatura en la

⁸https://eyes.nasa.gov/

 $^{^9}$ https://spiceypy.readthedocs.io/en/master

14 Capítulo 1. Prefacio

materia.

1. ¿Ya les mencione que es un libro para estudiantes de pregrado? Para entender su contenido no es necesario haber visto previamente un curso de mecánica analítica o matemáticas especiales. Solo se necesita una fundamentación mínima en geometría, cálculo y física.

- 2. El libro ha sido escrito, en la medida de las posibilidades, para ser autocontenido. Todo lo que un lector necesita saber de los fundamentos matemáticos (geometría, cálculo vectorial, ecuaciones diferenciales), los fundamentos físicos (mecánica newtoniana), astronómicos o de computación, ha sido incluído en los capítulos o en apéndices. Esto hace del libro, un texto que puede ser leído o estudiado por personas ajenas a la disciplina, incluso por aficionados.
- 3. El libro utiliza, como la mayoría de los textos en el área, el *formalismo geométrico y vectorial* de la mecánica para presentar y desarrollar los problemas centrales de la mecánica celeste. Pero también introduce el *formalismo analítico* (mecánica analítica o mecánica clásica) y lo aplica a la mecánica celeste. Es por tanto un libro de mecánica celeste y al mismo tiempo uno de mecánica analítica.
- 4. El libro no profundiza en todos los temas de la mecánica celeste o la mecánica analítica como lo hacen textos más avanzados. Pero, para un estudiante de pregrado, esta podría ser su primera lectura antes de abordar esos textos.
- 5. El texto hace un enfasis especial en los algoritmos de la mecánica celeste, que implementa usando códigos en Python, gráficas en matplotlib y, en ocasiones, usando algunas de las rutinas y datos del sistema SPICE de NASA.
- 6. Todo el libro esta disponible como *notebooks* de Jupyter que pueden ser modificados por el lector o ejecutados durante una clase (¡es un libro para enseñar!) Los *notebooks* contienen gráficos interactivos y animaciones que ilustran conceptos que pueden resultar difíciles.
- 7. El libro no requiere conocimientos previos de programación en Python (aunque tenerlos puede ser muy útil.) En realidad, el libro podría utilizarse como una manera de aprender el lenguaje en contexto, algo que es difícil de conseguir en libros dedicados específicamente a la enseñanza de la programación.
- 8. Los temas no se desarrollan en el orden en el que aparecieron en la historia: problema de los dos cuerpos → teoría de perturbaciones → problema de los tres cuerpos → mecánica celeste relativistica, etc. He preferido presentarlos como me hubiera gustado conocerlos desde el principio, siguiendo un orden más lógico y un poco atemporal. Esta es la manera en la que, creo, un viajero en el tiempo, que retrocediera a 1700, se lo explicaría a un sorprendido Newton.
- 9. A pesar de lo anterior, la historia es importante en el libro. A través de los capítulos y en recuadros especiales he incluído anédotas y biografías que permitirán hacerse a una idea del contexto en el que surgieron las principales ideas de la mecánica celeste y la mecánica analítica y de los personajes, hombres y mujeres, que las concibieron.

10. Por muchas de las razones descritas arriba podría decirse que este es un libro "moderno" de mecánica celeste. uno que en lugar de ocuparse de llenar cientos de páginas con sesudos y rigurosos desarrollos matemáticos, le apunta directamente a dar vida a esas ideas y a ofrecer las herramientas prácticas para su aplicación.

Jorge I. Zuluaga *Febrero 19 de 2020*

16 Capítulo 1. Prefacio

Capítulo 2

Agradecimientos

Así como no hay *vacas esféricas en el vacío*, tampoco existen los *autores cilíndricos que escriben aislados*. La elaboración de este libro ha sido determinada y afectada por una multitud de factores y personas a los que no puedo dejar de mencionar.

En primer lugar, quiero agradecer a todos los estudiantes del pregrado de astronomía que tomaron el curso de Mecánica Celeste durante los años en los que elaboré las notas que sirvieron de base para este libro. Agradezco su paciencia y sus preguntas en clase que me ayudaron a enriquecer el texto, concentrarme en puntos difíciles y escoger mejor los temas más interesantes. También fue de gran valor los errores que me ayudaron a detectar en las primeras versiones de las *libretas* de Jupyter que son la base del texto. Entre ellos, quiero resaltar a **Andrés Gómez**, quien fue mas lejos aún al revisar críticamente el contenido de algunas *libretas* como lo haría un colega o un editor. Adicionalmente, sus impecables soluciones de los problemas inspiraron una parte del material que he incluido en esta edición del libro.

Una buena parte de la primera versión de las notas del curso fue transcrita a LaTeX por el hoy Astrónomo Bayron Portilla (en ese entonces mi tallerista del curso). En un momento dado, nos propusimos, incluso, escribir juntos el libro. Sin embargo, nuestras ocupaciones fueron dilatando el proyecto hasta que decidí emprender este proyecto en solitario y partiendo de las *libreta* de Jupyter que elabore posteriormente. Aún así, reconozco y agradezco el esfuerzo que hizo Bayron en esas primeras notas, en las que además exploramos las mejores maneras de organizar los temas del curso. Tal vez en el futuro retome con él algunas de esas notas iniciales con miras a un texto avanzado en la materia donde podamos, por ejemplo, abordar los tópicos que se quedaron por fuera de este libro. En el mismo sentido debo también agradecer al Doctor **Andrés Pérez**, ahora un exitoso astrónomo, quién en sus años como estudiante se ofreció también a transcribir en limpio muchas de mis notas de tablero. El documento resultante que nunca logramos editar apropiadamente todavía lo uso como material de consulta en mis clases. Gracias Andrés por tu dedicación durante esos meses a poner en limpio el sucio de mis tableros.

Estoy también en deuda con Miguel Vásquez, el mejor de los talleristas que he

tenido en mi carrera como profesor (ahora es un Astrónomo). Miguel realizó una juiciosa tarea de búsqueda de problemas, transcripción de los mismos al formato de Jupyter y, más importante, preparación en el mismo formato de su solución. Todo, mientras mantenía una estrecha relación con los estudiantes (mucho mejor que la mía como profesor, debo admitir) que le permitió entender sus necesidades, evaluar y ajustar el grado de dificultad de los problemas y recoger correcciones y sugerencias a las notas. **Muchos problemas** incluídos en este libro se basan en el trabajo original de Miguel al que debo hacer un sentido reconocimiento aquí.

Agradezco también a los maestros que me motivaron a estudiar física teórica durante el pregrado y el posgrado, muy a pesar de mi monocromática pasión por la astronomía. Esto me permitió entender, apreciar y abordar mejor los aspectos teóricos de la mecánica celeste. En particular, mis agradecimientos van para los profesores Lorenzo de la Torre, Alonso Sepúlveda, Jorge Mahecha, William Ponce y Boris Rodríguez. A través de sus propios manuscritos, conocí (y espero haber aprendido con el ejemplo) el "arte" de escribir libros de texto. El estilo, profundidad y cuidado de sus notas de clase, libros publicados e inéditos, han sido imitados sistemáticamente en este libro.

Agradezco a la **Universidad de Antioquia** y en particular a las autoridades del **Instituto de Física** y la **Facultad de Ciencias Exactas y Naturales**, por otorgarme el beneficio de un año sabático, durante el cuál pude, entre otras cosas maravillosas, escribir la primera versión completa de este libro. Mi reconocimiento y agradecimiento además para los **profesores del pregrado de Astronomía**, en especial a mi *parcero* Pablo Cuartas, que recibió mi carga académica y de investigación durante ese año en el que estuve escribiendo.

Finalmente, pero no menos importante, quiero agradecer a mi familia, **Olga y Sofía**. A ellas les toco la peor parte; es decir, soportarme un año entero en la casa, escribiendo en piyamas (o mejor hablando solo, por yo no escribo sino que hablo con el computador) y prestándoles, a veces, menos atención de la que les presto incluso en situaciones normales. Este libro esta dedicado a ellas.

Capítulo 3

Introducción

3.1. ¿Cómo se organiza este libro?

Como mencionamos en la Sección 1.6, una de las cosas hace a este libro diferente de otros textos de mecánica celeste, es la manera y el orden particular en el que se desarrollan los temas. El libro esta dividido en tres grandes partes:

- Los fundamentos matemáticos y físicos.
- Mecánica celeste usando vectores y geometría (formalismo vectorial de la mecánica).
- Mecánica analítica (formalismo lagrangiano y hamiltoniano) y su aplicación en mecánica celeste.

En los siguiente párrafos encontrarán una síntesis *narrada* del libro; algo así como una *tabla de contenido comentada* que le permitirá al lector, no solo orientarse en el texto, sino también entender la manera como se encadenan cada una de sus partes.

Y es que todo libro debería contar una *historia*. En los textos académicos, lamentablemente, esa "vocación" narrativa parece perderse en medio de figuras, teoremas y algoritmos. Esta sección puede ser entonces entendida, como un esfuerzo para esbozar la *historia* que se hila a través de sus capítulos.

- Parte 1: Fundamentos matemáticos y físicos. Antes de comenzar, respasaremos algunos temas de matemáticas y de física necesarios para estudiar mecánica celeste. Si bien el lector debería estar familiarizado con la mayoría de estos temas, he decidido incluir este capítulo no solo para hacer al texto autocontenido, sino también con el propósito de compilar resultados útiles, definiciones y algorítmos, en el formato y notación del texto, que se usarán en capítulos posteriores.
 - ??. Algunos consideran a la mecánica celeste un área de las matemáticas aplicadas. En ella confluyen técnicas matemáticas de todos los orígenes. Por esta misma razón para comprender incluso los aspectos más básicos de la teoría es necesario contar con una sólida fundamentación

matemática. Por razones de espacio no podemos cubrir todos los temás relevantes en esta sección, pero nos hemos concentrado en dos de particular importancia en todo el texto:

- ??: El cálculo infinitesimal fue *descubierto* por Isaac Newton a finales de los 1600 (y más tarde descubierto independientemente también por Gottfried Leibniz), inspirado, en parte en problemas mecánicos. Estos métodos matemáticos permitieron a Newton, sus contemporáneos y suscesores resolver los complicados problemas de la mecánica celeste que inauguraron la disciplina. Por la misma razón es indispensable que el lector repase las cantidades y resultados centrales de este método analítico, que es justamente el tema de esta sección. Al hacerlo aprovecharemos además para recoger algunas definiciones y resultados importantes de la geometría y el cálculo de vectores, los elementos básicos de la teoría de ecuaciones diferenciales y del más exótico cálculo de variaciones. Ninguno de los apartes de este capítulo cumple funciones decorativas o es completamente prescindible. A pesar de parecer una sección ajeno al libro, un material que debería dejarse solo a los autores expertos en el tema, en realidad todos los resultados expuestos aquí serán usados en el resto de capítulos.
- ??: En esta sección nos concentraremos en repasar (o presentar) las propiedades de las figuras cónicas, su definición y descripción geométrica más general, así como su descripción algebraica. Las cónicas juegan un papel central en la mecánica celeste y estar familiarizado con ellas, permitirá resolver más fácilmente problemas físicos relativamente complejos. Estudiaremos esta familia particular de curvas, tanto en el plano, como en el espacio de tres dimensiones. Con este propósito, introduciremos aquí el tema de las rotaciones en dos y tres dimensiones (ángulos de Euler) que son usados con frecuencia en la mecánica celeste pero también en la mecánica analítica.
- ??. Es casi imposible presentar la mecánica celeste y menos aún la mecánica analítica, sin repasar primero las definiciones, postulados y proposiciones de la mecánica básica, o mecánica newtoniana, como se la llama comunmente. Este capítulo esta justamente dedicado a presentar el que llamaremos formalismo vectorial o geométrico de la mecánica, desarrollado a partir de las ideas mismas de Newton pero enriquecidas significativamente por sus sucesores en los siguientes dos siglos. Si bien, de nuevo, este podría parecer un tema elemental para tratar en otro libro, la manera en la que se presenta aquí es particularmente única. He tratado de formular las ideas de siempre en un orden más moderno y en algunos casos poco ortodoxo. No pretendo con ello producir ninguna revolución, pero al hacerlo, la presentación de los tema centrales del libro se hace más natural. El capítulo se concentra en la mecánica de partículas y sistemas de partículas, sin ocuparse de otros temas interesantes de la mecánica, la dinámica de cuerpos rígidos o de fluídos, que no serán aplicados en el resto del texto.

- Parte 2: El formalismo vectorial de la mecánica celeste. Como veremos a lo largo del libro, la mecánica puede ser presentada usandos dos enfoques matemáticas o formalismos diferentes. En esta parte del curso nos concentraremos en la formulación geométrica o vectorial de la mecánica celeste, la más popular y la que uso originalmente Newton en sus Principia y que fue desarrollada posteiormente por sus sucesores.
 - ??. A diferencia de la mayoría de los textos en mecánica celeste, en este libro comenzamos por abordar y estudiar con algún detalle, el más general de los problemas de esta disciplina: el problema de los N cuerpos. En este problema, el reto consiste en predecir la posición y velocidad de muchos cuerpos que interactúan gravitacionalmente. Si bien el problema de los N cuerpos fue posiblemente el último de los grandes problemas de mecánica celeste en ser formulado y abordado rigurosamente en la historia, su presentación temprana en este libro, permitirá introducir resultados y métodos que serán de utilidad para el resto del texto. De particular interés será la introducción en este capítulo de los algoritmos para resolver numéricamente el problema. Estos algoritmos y algunas herramientas computacionales relacionadas, serán muy importante en el resto del texto, para comparar y validar resultados de modelos analíticos. Se presentará también aquí el concepto de integrales de movimiento o cuadraturas, uno de los métodos usados clásicamente para extraer información sobre un sistema dinámico sin resolverlo completamente. Este método será usado regularmente en los demás capítulos.
 - ??. Una de las idealizaciones más conocidas de la mecánica celeste es aquella que consiste en suponer que cuando dos cuerpos astronómicos interactúan gravitacionalmente, el efecto del resto del Universo es completamente despreciable. Naturalmente, no existe ningún sistema astronómico real que cumpla cabalmente estas condición. Todos los sistemas del universo, en sentido estricto, son sistemas de N cuerpos. En este capítulo mostraremos, a través de experimentos numéricos y ejemplos astronómicos reales, que la mayoría de los sistemas astronómicos se pueden analizar dinámicamente como sistemas de N cuerpos jerárquicos, es decir, sistemas en los que las partículas se agrupan por pares (pares de partículas, pares de pares, etc.) que se perturban mutuamente. El problema de los dos cuerpos no es, sin embargo, el destino final de la mecánica celeste, sino su punto de partida. Es un resultado útil para estudiar sistemas mucho más complejos. Resolveremos en este capítulo el problema de los dos cuerpos usando el método de las cuadraturas (primeras integrales de movimiento) introducido en el capítulo anterior. Demostraremos que el movimiento relativo de dos cuerpos se realiza sobre una cónica y desarrollaremos en detalle las relaciones entre las propiedades geométricas de esa cónica y las propiedades dinámicas del sistema. Resolveremos también, usando métodos geométricos primero y después métodos del cálculo, el denominado problema de los dos cuerpos en el tiempo, que conducirá a la famosa ecuación de Kepler.
 - ??. A pesar del poder que la teoría desarrollada en el capítulo anterior

tiene para describir el movimiento de muchos sistemas astronómicos, existen situaciones que escapan a una descripción kepleriana del movimiento orbital (incluso, una que incluye perturbaciones). El caso de la Luna, el de algunos cometas perturbados por Júpiter y el de vehículos espaciales modernos, son especialmente significativos. En este capítulo abordaremos, inicialmente, el problema general de los tres cuerpos, es decir, aquel en el que la dinámica no es jerarquica. A diferencia del problema de los dos cuerpos, no se conoce una solución general en términos de funciones analíticas al problema de los tres cuerpos. Una versión restringida de este problema, a saber el problema circular restringido de tres cuerpos (CRTBP por su sigla en inglés), tiene propiedades teóricas que han resultado de interés en la descripción de sistemas astronómicos reales. Estudiaremos aquí en detalle el CRTBP, su descripción dinámica y cinemática, tanto en sistemas inerciales como no inerciales. Introduciremos algoritmos para la solución numérica del problema en el sistema rotante. Encontraremos su constante de movimiento, la constante de Jacobi y una aproximación astronómica en términos de elementos orbitales, el parámetro de Tisserand. Deduciremos las propiedades y visualizaremos las denominadas regiones de exclusión y curvas de cero velocidad (conceptos interesantes que permiten, si no predecir dónde estarán los cuerpos, al menos, donde no estarán). Finalmente se deducirán las propiedades de los puntos de equilibrio de Lagrange y algunas aplicaciones astronómicas y en mecánica orbital del problema.

- Parte 3: El formalismo analítico de la mecánica. En esta parte del libro, introduciremos el formalismo analítico de la mecánica y su aplicación en la solución de problemas de mecánica celeste. El formalismo analítico tiene una importancia central en la física que trasciende a la mecánica celeste (se usa por ejemplo para estudiar la dinámica de cuerpos rígidos y sistemas oscilantes, el caos en sistemas dinámicos, la mecánica relativista, el electromagnetismo, la teoría de campos clásica y la mecánica cuántica). Si bien pocas aplicaciones del formalismo, distintas a la mecánica celeste, se desarrollara en este texto (como si sucede en algunos textos avanzados de mecánica clásica) los fundamentos teóricos presentados en esta parte le permitiran al lector abordar el estudio de esas otras disciplinas en textos específicos de mecánica analítico o en textos más avanzados.
 - ??. En este capítulo se introducen los principios y teoremas centrales del formalismo analítico de la mecánica, en particular los principios de Alambert-Lagrange y de Hamilton. Haremos aquí, un especial énfasis en las motivaciones teóricas que llevaron a matemáticos y físicos de los 1700 a introducir este formalismo (un tema en el que los textos más avanzados de mecánica clásica, apenas si consideran.) Se introducirá aquí la función lagrangiana, las ecuaciones de Lagrange y, a través de la aplicación del cálculo variacional, se deduciran las ecuaciones generales de Euler-Lagrange (que tienen una aplicación amplia en muchas áreas de la física). Como un elemento novedoso se presentarán en este capítulo algunos algoritmos aplicados al formalismo lagrangiano, y en

particular a la comprensión mejor del principio de Hamilton y los métodos del cálculo variacional. Con los elementos básicos del formalismo lagrangiano a la mano, procedermos a aplicarlo en la solución de problemas concretos en mecánica celeste. Para ello presentaremos, primero, resultados importantes sobre la relación entre las simetrías de la función lagrangiana y las cantidades conservadas en el movimiento (teorema de Noether). A partir de allí, procederemos de forma similar a como lo hicimos con el formalismo vectorial, a resolver el problema general de los N cuerpos y el de los dos cuerpos. Deduciremos el lagrangiano de los N cuerpos y de sus simetrías obtendremos las cantidades conservadas en el sistema. Pero ¿de qué sirve deducir los mismos resultados que ya habíamos visto en el capítulo correspondiente de la segunda parte?. Usaremos lo que sabemos de mecánica celeste para ilustrar el poder del formalismo lagrangiano frente al formalismo vectorial. Posteriormente, abordaremos el problema de los dos cuerpos usando el formalismo lagrangiano. En este caso, a diferencia del problema de los N cuerpos, tendremos una novedad. En lugar de restringirnos al caso de la gravitación Newtoniano, estudiaremos aquí el problema más general de sistemas de dos cuerpos sometidos a fuerzas centrales con un potencial generalizado. Los resultados obtenidos aquí, tendrán un rango más amplio de aplicación. Podrán por ejemplo usarse para estudiar la física de sólidos, moléculas y átomos, pero también la mecánica celeste postnewtoniana. Estudiaremos, en este contexto, el problema de fuerzas centrales reducido a una dimensión, el potencial efectivo (y las correspondientes zonas de exclusión). Para el caso del potencial newtoniano deduciremos la denominada ecuación de la forma orbital y resolveremos el problema de los dos cuerpos a partir de ella. Para el caso de un potencial general, pero no muy distinto del potencial Newtoniano, estudiaremos el denominado avance del perihelio uno de los resultados teóricos de la mecánicaceleste que a la larga serían de la mayor importancia histórica al ofrecer las primeras evidencias de la validez de la teoría general de la relatividad.

 ??. En este capítulo abordamos el más general (y poderoso) formalismo analítico de la mecánica: el formalismo Hamiltoniano. Después de discutir las motivación para la introducción de este formalismo (motivaciones de naturaleza principalmente geométrica), deduciremos de forma heurística las ecuaciones canónicas (de primer orden) de Hamilton; introduciremos la función Hamiltoniana y demostraremos su equivalencia con las ecuaciones (de segundo orden) de Euler-Lagrange. Ilustraremos el poder del formalismo y la descripción de los sistemas en el denominado espacio de fase; para ello nos valdremos inicialmente de sistemas dinámicos simples (péndulos y bloques), como hicimos en el primer capítulo de esta parte. Posteriormente abordaremos (sin el detalle en el que lo hicimos en el caso del formalismo Lagrangiano y por las obvias analogías entre los dos formalismos) el tema de las simetrías y las cantidades conservadas, e introduciremos los útiles corchetes de Poisson, como herramienta matemática para estudiar dichas simetrías. Escribiremos los hamiltonianos del problema general de los N cuerpos, el del

problema de los dos cuerpos y el del problema circular restringido de los tres cuerpos, y redescubriremos, usando los elementos de este nuevo formalismo, las propiedades ya conocidas de estos sistemas. Una de las aplicaciones más poderosas del formalismo Hamiltoniano, se consigue al aprovechar las simetrías de los sistemas gravitacionales, para, a través de transformaciones de coordenadas en el espacio de fase, escribir formas simplificadas de los Hamiltonianos. Estas formas simplificadas, además, permiten aplicar de forma más directa la teoría de perturbaciones y así estudiar sistemas muy complejos (un tema que no esta incluído en este libro.) En este capítulo introduciremos, primero, el tema de las transformaciones canónicas, que son transformaciones de coordenadas en el espacio de fase que mantienen la estructura hamiltoniana de los sistemas (es decir, que hacen que los sistemas sigan siendo descritos con las ecuaciones canónicas). Nos concentraremos, especialmente en el formalismo de la función generatriz de las transformaciones canónicas. A continuación, aplicando la teoría de transformaciones canónicas presentaremos el método de Hamilton-Jacobi que permite, entre otras cosas, encontrar sistemas de coordenadas que simplifican significativamente la descripción de ciertos sistemas físicos. En particular utilizaremos este formalismo para deducir, en el problema de los dos cuerpos, el Hamiltoniano del sistema en términos de elementos orbitales; en particular, en términos de funciones específicas de esos elementos orbitales, que hacen lo más simple posible el hamiltoniano del sistema. El resultado más importante de este capítulo será la deducción de las denominadas variables de Dalaunay que son de gran utilidad y poder en la mecánica celeste moderna y posiblemente el punto de partida de algunos textos de mecánica celeste avanzados.

Todos los capítulos hasta aquí contarán con un conjunto completo de preguntas, ejercicios y problemas, que permitiran al lector poner a prueba los conocimientos adquiridos y las habilidades desarrolladas, pero también, descubrir como estas ideas, métodos y herramientas, se aplican en otras situaciones específicas.

3.2. ¿Cómo usar este libro?

Este libro puede ser utilizado de tres formas diferentes:

- 1. Como un texto para el *autoaprendizaje* de la mecánica celeste y la mecánica analítica. Estudiantes y profesionales de muchas disciplinas, se pueden valer de él para tener su primer acercarmiento a estas disciplinas.
- Como el texto guía de un primer curso de mecánica celeste y de mecánica analítica. El texto es una fuente de lecciones y problemas útiles para organizar un curso de pregrado.
- 3. Como material de referencia para estudaintes y profesionales. Muchas fórmulas, algoritmos, e incluso anécdotas e historias interesantes, podrían resultar útiles para quiénes ya tienen una formación en el área.

Como texto para el autoaprendizaje, recomiendo leer el texto en su totalidad incluyendo la primera parte de Fundamentación matemática y física, en la que se encuentran algunos elementos teóricos requeridos para el resto del libro.

Para quiénes tengan una formación avanzada en física, astronomía o ingeniería, es posible que una buena fracción de los temas de esa primera parte resulten sencillos y puedan obviarse. Sin embargo, aunque los tópicos tratados allí parezcan conocidos (al menos nominalmente), su tratamiento puede resultar novedoso. Si este es su caso, no deje de echarle una mirada a esos primeros capítulos. En particular recomiendo revisar, como mínimo, las secciones dedicadas a la solución numérica de ecuaciones diferenciales, incluyendo las ecuaciones de movimiento en mecánica newtoniana, los rudimentos de cálculo variacional y la dinámica en sistemas rotantes, donde podrían encontrarse las diferencias más significativas respecto a los textos canónicos de matemáticas y física, y donde además se introducen herramientas algorítmicas que serán de uso muy corriente en el resto del libro.

El uso ideal de este libro es como **texto guía** de un primer curso de mecánica celeste y mecánica analítica. El libro fue escrito a partir de la experiencia de más de 5 años ofreciendo el curso en el pregrado de astronomía de la Universidad de Antioquia (en Medellín, Colombia). Por la misma razón, la extensión y organización particular del texto, se adapta de forma *precisa* a las condiciones propias de un curso universitario de un semestre de duración (cuatro meses efectivos de lecciones.) El curso se ha ofrecido exitosamente a estudiantes que han aprobado los cursos básicos de física (hasta el tema de oscilaciones y ondas) y de cálculo (incluyendo cálculo vectorial y ecuaciones diferenciales.)

Todos los capítulos del libro libro han sido dictados dentro del plazo del curso. Sin embargo, dependiendo del nivel académico de los estudiantes y de su independencia intelectual, el curso puede dictarse sin incluir todos los temas de la primera parte.

Por mi experiencia dictando el curso, el repaso de los fundamentos puede resultar extenso (como mínimo toma un mes que es justamente el período en el que los estudiantes tienen una motivación y disposición mayor, además de menos distracciones de otros cursos.) Sugeriría, entonces, que de sacrificarse algunos temas de esa parte, se asigne la lectura independiente a los estudiantes de los temas mejor conocidos y se evalúe a través de la lista de problemas incluídos al final de los capítulos de esa parte.

Como mencioné en la Sección 1.3, y se detallará abajo, el libro fue escrito usando *libretas de Jupyter*, una por cada clase (a lo sumo se pueden dictar dos clases con cada libreta). Es decir, el número de *libretas* y su organización puede ofrecer una idea del programa detallado de actividades del curso o del plan de lecturas.

3.3. Mecánica celeste en libretas

El libro ha sido concebido, escrito y compilado enteramente usando *libretas* de Jupyter. Las libretas, que están disponibles en la versión electrónica del texto, son archivos en un formato especial (no son programa de Python, ni páginas web) que pueden ser visualizadas y ejecutadas usando un navegador de Internet.

El uso de las libretas no es indispensable para entender el contenido del libro, pero puede ofrecer una experiencia interactiva muy enriquecedora y a veces acelerar el proceso de aprendizaje. El uso de las libretas en clase puede, además, hacer

más dinámica y amena la interacción entre el profesor y los estudiantes.

Para hacer uso de las libretas se debe contar con un **computador de escritorio** que use cualquier sistema operativo (Windows, Linux o MacOS). Por la misma razón, en caso de usarla, recomiendo que el curso se desarrolle en una sala de computo. Para ejecutar las libretas es necesario instalar primero el interprete y la biblioteca base del lenguaje Python, un conjunto específico de paquetes y el sistema Jupyter, además de varias de sus extensiones (los detalles se presentan en la siguiente sección.)

La versión en línea¹⁰ de este libro (páginas web), puede ser también una alternativa a las libretas de Jupyter. Este formato tiene la ventaja que solo requiere un dispositivo con conexión a Internet (de escritorio o móvil) y puede manipularse en cualquier contexto. Aunque la versión web carece de casi todas las características interactivas de las libretas de Jupyter, en ella encontraran, además de todos los algoritmos y gráficos, animaciones y otros elementos de *hipertexto*.

3.3.1. Instalación de las libretas

Para aquellos que deseen aprovechar las libretas de Jupyter como medio didáctico, se ofrece a continuación una guía básica de cómo preparar un computador para ejecutarlas. Instrucciones adicionales pueden encontrarse en la versión en línea del libro.

- 1. Instalación del lenguaje Python y las bibliotecas básicas del lenguaje. El primer requisito para utilizar las libretas es instalar el interprete y las bibliotecas del sistema del lenguaje Python. Existen diversas maneras para hacerlo en cada sistema operativo y abundantes instrucciones en Internet. Mi recomendación es utilizar el sistema Anaconda¹¹ que ofrece, en una plataforma integrada, los archivos del lenguaje Python, una amplia diversidad de paquetes científicos, el sistema Jupyter y todas las herramientas necesarias para la instalación de otros paquetes.
- 2. **Descargar las libretas.** Una vez haya instalado Python y Jupyter, puede descargar las libretas del libro los archivos adicionales requeridos por ellas del sitio web del libro. Para ello siga las instrucciones provistas allí.
- 3. Ejecución de pruebas. Para verificar si las libretas funcionan correctamente, una vez descargadas, busque y abra la libreta Pruebas.ipynb. Una vez abierta ejecute todas sus celdas (Cell / Run all). Si la ejecución se realiza completa, en la última celda aparecera un reporte completo con los resultados de la prueba. Si alguna de las prueba individuales falla, es posible que sea necesario instalar paquetes, datos adicionales y otras dependencias.
- 4. **Instalación de dependencias.** Para instalar todas las dependencias del libro abra la libreta Instalacion. ipynb y siga las instrucciones descritas allí.

¹⁰http://seap-udea.org/MecanicaCeleste_Zuluaga

¹¹https://www.anaconda.com

3.4. Idioma y Notación

3.4.1. Palabras extranjeras y guía de pronunciación

El libro está escrito en español. Sin embargo, y como sucede con todas las ciencias, habrán muchos apartes en los que es necesario introducir términos técnicos y acrónimos procedentes de la lengua inglesa. En estos casos las palabras y acrónimos se presentarán en itálica. Así por ejemplo, al referirnos al problema matemático de resolver la ecuación de movimiento de una partícula hablaremos del *initial value problem* o su acrónimo *IVP*, en contraposición al *boundary condition problem*. Por otro lado en el ?? estudiaremos el *CRTBP* o *circular restricted three body problem*.

Muchos de los científicos (hombres y mujeres) que han contribuído con el desarrollo de la mecánica celeste en sus cuatro siglos de historia, tienen nombres y apellidos no hispanos. Su correcta pronunciación, especialmente en el caso de autores franceses o de origen germano, es difícil para quienes no hablamos las lenguas de esos pueblos.

Un caso notable, por ejemplo, es el nombre de la matemática alemana *Emmy Noether*. En castellano la mayoría pronunciaríamos "emi noeter" o "emmi neder" (siguiendo la tradición inglesa con la que estamos más familiarizados.) Como una primera guía para la correcta pronunciación de estos nombres, a lo largo del libro presentaremos "transliteraciones" al castellano, indicando, entre comillas las letras y palabras más cercanas que un hispanohablante podría usar. Así por ejemplo "niuton" será la trasliteración fonética de Newton y la pronunciación "correcta" (en alemán) del nombre de Emmy Noether, será "emmi noutar".

Para hacernos a una idea fonética más precisa nos apoyaremos a lo largo del libro de la increíble colección compilada en este sitio web¹² que ofrece pronunciaciones en línea, en decenas de idiomas, de miles de nombres, palabras y frases. Allí encontrará por ejemplo la pronunciación correcta, en su idioma original del nombre Emmy Noether¹³.

¿Es todo esto indispensable para entender la mecánica celeste o la mecánica analítica?. Ciertamente no. Pero no solo de teoría vivimos los humanos. La comunicación y socialización es central al proyecto científico y es bueno entender y hacerse entender especialmente en contextos internacionales.

3.4.2. Siglos y décadas

La historia de la mecánica celeste y análitica, así como la historia de las áreas de la física y las matemáticas con las que se relaciona, es fascinante. En el libro, como detallamaos en la próxima sección, incluiremos abundantes referencias históricas sobre los personajes y los momentos claves en el desarrollo de las ideas de la mecánica celeste.

Para referirnos a los siglos, sin embargo, nos desviaremos de las reglas convencionales del español. Según esas reglas al período comprendido, por ejemplo, entre 1701 y 1800, se lo llama el siglo XVIII. Para este autor, la notación usando números romanos, si bien ampliamente aceptada, es confusa y exige realizar operaciones mentales innecesarias (número romano \rightarrow número indoarabigo \rightarrow restar uno \rightarrow

¹²http://forvo.com

¹³https://es.forvo.com/search/Emmy%20Noether/de/

multiplicar por 100).

En los sucesivo para referirnos al período comprendido entre 1700 y 1799 (comenzando en el año cero y no en el año uno como dicta la regla) hablaremos de **los** 1700. Así mismo el siglo XX será **los 1900** y así sucesivamente.

Dado que en las reglas establecidas del español, los 1900 hacen referencia en realidad a la década entre 1901 y 1910, cuando queramos refereirnos a un período de diez años siempre usaremos explícitamente la palábra **década**: década de 1680, decada de 1960, etc.

No pretendó, con este acto de rebeldía *idiomática*, cambiar el castellano. Pero sí, al menos en lo que respecta a este libro, faciltar la lectura de los períodos históricos.

3.4.3. Notación matemática

Todos los libros de ciencias físicas o matemáticas se "casan" con una notación específica. La elección de la notación, no es sin embargo una tarea sencilla, en tanto son muy comunes los casos de textos que en virtud de su notación se hacen practicamente ilegibles aunque traten los mismos temas o problemas de otros que usan notaciones más comunes.

Pensando justamente en esto, he tomado la decisión de utilizar, en la medida de las posibilidades, la misma notación de algunos textos clásicos de mecánica celeste, que se diferencia, a veces significativamente, de la que utilizan libros de matemáticas e incluso de física, con los que el lector puede estar familiarizado.

El lector encontrará los detalles específicos de la notación usada en el libro en la ??.

3.5. Elementos no textuales

Para facilitar la lectura del libro y hacer de la experiencia de leerlo algo más agradable e incluso excitante, el texto contiene una serie de elementos gráficos con los que debemos familiarizarnos.

3.5.1. Cajas de texto

Mucha información importante texto se presenta en *cajas* independientes al texto principal y cuyas características gráficas resaltan del resto del documento. En particular existen 5 tipos de cajas:

- Resumen del capítulo. Esta caja aparece normalmente al principio de cada capítulo y contiene una breve síntesis del mismo. No deje de leer este resumen para identificar los temas centrales de cada parte del libro. El profesor podría usar la información contenida allí para definir los objetivos específicos de la evaluación.
- Notas. A veces es necesario desviarse un momento del hilo del texto para aclarar o ampliar asuntos relacionados con la notación, los paquetes y algorítmos utilizados, o simplemente llamar la atención sobre un asunto importante. A continuación se muestra un ejemplo de una caja de nota.

Nota

El lenguaje *Markdown*. La mayor parte del contenido textual de este libro, ha sido escrito en las celdas de libretas de Jupyter en un lenguaje de descripción de documentos conocido como *Markdown*. Puede explorar la sintaxis del lenguaje, o bien desplegando el contenido de las *celdas* de las libretas, o bien consultando la abundante documentación en línea^a.

ahttps://markdown.es/

■ **Definiciones**. Muchas cantidades físicas y algunos conceptos claves requieren una definición rigurosa. Este es el rol justamente que juegan las *cajas de definición*. A diferencia de las cajas de Resumen y Notas, las cajas de *Definición* están numeradas (como las figuras o las ecuaciones), de modo que sea más fácil referirse a ellas.

Definición 3.1

Mecánica celeste. Llamamos *Mecánica Celeste* a la disciplina científica que aplica las leyes de la mecánica para estudiar el movimiento de cuerpos bajo la acción dominante de la gravedad. Dado que solo en lugares lejanos a la superficie terrestre (normalmente fuera de su atmósfera), la gravedad es la fuerza dominante, la mecánica celeste normalmente describe el movimiento de cuerpos astronómicos (desde partículas pequeñas, hielo o polvo interestelar, hasta planetas y estrellas) y de vehículos espaciales. En este último caso se habla normalmente de *Mecánica orbital*.

 Teoremas, postulados y leyes. Como las definiciones, en muchas ocasiones será indispensable separarnos un momento de una explicación para formular más rigurosamente un resultado, normalmente obtenido por razonamiento deductivo en el marco de una teoría (teoremas, lemas, colorarios) o por razonamiento inductivo a partir de la experiencia (leyes y postulados). Para hacerlo usaremos cajas de texto con una numeración independiente de aquella usada para las definiciones. Sin embargo, es importante aclarar que en el caso de los denominados teoremas me he abstenido de usar sistemáticamente esta palabra en el encabezado de los respectivos recuadros. En su lugar he decidido imitar a algunos autores clásicos (en particular a Euclides) que usaban sistemáticamente la palabra proposición en lugar de teorema para referirse a afirmaciones demostrables. Es decir, en este libro, una proposición será un resultado importante que puede estar o no demostrado en el texto. Al hacerlo quiero evitar posar aquí de matemático, una profesión a la que respeto profundamente¹⁴. Aún así, cuando una proposición dada corresponda a un teorema bien conocido, usaré la palabra teorema en el título interno

¹⁴Decía el matemático húngaro Paul Eördos ("pol érdos") que un *matemático es una máquina para convertir café en teoremas*, una frase que aunque parece simplificar la naturaleza de los matemáticos, en realidad demuestra la importancia que tienen los teoremas para esta milenaria profesión.

Figura 3.1: Ilustración esquemática del teorema de Danelin.

de la caja. Las dos *proposiciones* mostradas en las cajas a continuación ilustran estos conceptos.

Proposición 3.1

Sistemas de referencia inerciales. Si un sistema de referencia O' se mueve con velocidad constante con respecto a un sistema de referencia inercial O, entonces O' es también un sistema de referencia inercial.

Proposición 3.2

Teorema de Danelin. Dada una esfera tangente a un cono y un plano que corta el cono en un determinado ángulo, el punto de tangencia de la esfera con el plano es uno de los focos de la cónica correspondiente.

• Un poco de historia. Finalmente, pero no menos importante, están las anécdotas e historias que contaremos a lo largo de todo el libro. Como se menciono en el prefacio, la mecánica celeste tiene ya más de 400 años (aproximadamente 100 años más que la mecánica analítica) y cientos de libros y miles de artículos se han escrito en el tema. Es casi imposible hablar de mecánica celeste y analítica, sin mencionar de vez en cuando las historias que rodearon la invención de una técnica, la biografía de alguno de los grandes hombres y mujeres que concibieron las ideas contenidas en el libro o simplemente una anécdota curiosa relacionada con algún tema de interes.

3.5.2. Algoritmos

Como he insistido hasta aquí, una de las novedades más importantes de este libro es el énfasis que he querido dar a los *algoritmos*. Por algoritmo entenderemos

Un poco de historia

¿Kepler o Newton?. En el Prefacio daba a entender que la mecánica celeste posiblemente había comenzado con los trabajos pioneros de Johannes Kepler (ver Figura 3.2). Otros autores van más lejos y apuntan a los astrónomos de la antigüedad y la edad media, especialmente indios, chinos, arabes y griegos, que desarrollaron modelos complejos para la descripción del movimiento de los cuerpos celestes. Los más conservadores apuntan a Sir Isaac Newton, quien después de la publicación de su obra cumbre, los *Principia*, sentó las bases físicas, no solo para la mecánica celeste, sino también, en general, para toda la mecánica.

La razón en este libro para escoger a Kepler, como el *padre* de la disciplina (y en general de la astronomía física) fueron sus contribuciones decisivas y bastante bien conocidas para esclarecer definitivamente la *cinemática* del movimiento planetario. En particular, el descubrimiento (o el enunciado matemático) de sus conocidas *leyes del movimiento planetario* representaron un cambio cualitativo en el desarrollo de la teoría del movimiento planetario e inspiraron en últimas el trabajo de Newton y sus contemporáneos.

Adicionalmente, y esto es aún más importante, Kepler fue uno de los primeros astrónomos modernos (renacentistas europeos) en hacer consideraciones teóricas sobre la causa del movimiento planetario, más allá de ocuparse de su descripción, como lo hicieron la mayoría de los astrónomos de la antigüedad y la edad media. Esto pone a Kepler, entre esos astrónomos, como el primer *astrofísico* de la historia.

Figura 3.2: Retrato de Johanes Kepler, copia de un original de 1610 de pintor desconocido y que se conserva en el monasterio Benedictino de Kremsmünster (Alemania).

aquí pequeños (o no tan pequeños) fragmentos de código (*code snippet* en inglés) que realizan tareas numéricas específicas o son parte de un algoritmo mayor.

He evitado hablar de *programas* o *códigos* para resaltar el hecho de que lo importante en ellos es la lógica de las operaciones y no el lenguaje específico en el que están escritos. A pesar de este esfuerzo por mantener el tema lo más general posible, es virtualmente imposible escribir algoritmos que se puedan ejecutar realmente en las libretas, sin recurrir a ciertas particularidades del lenguaje en el que están descritos, Python.

Existen en general tres tipos de *algoritmos* que encontraremos a lo largo del texto. En primer lugar están los algoritmos más sencillos, aquellos que ejecutan tareas básicas de preparación de datos para algoritmos más complejos. Este es un caso de ellos:

```
a=1
b=-1
c=2
disc=b**2-4*a*c
```

Discriminante = -7.0

Muchos de estos algoritmos simples vienen seguidos del resultado más importante de las operaciones que codifican. En el caso anterior se muestra por ejemplo el valor del discriminante (el valor de la variable disc). El algoritmo (o código) para producir ese resultado:

```
print(f"Discriminante = {disc:.1f}")
```

Pero este algoritmo (y la celda correspondiente) no se muestra en el libro impreso para evitar la proliferación de código irrelevante.

Los algoritmos más complejos pueden, como las ecuaciones, estar numerados:

(Algoritmo 3.1)

```
def calcula_discriminante(a,b,c):
    disc=b**2-4*a*c
    return disc
```

En este caso, el algoritmo contiene una rutina o función, que podría ser usada más adelante, incluso en un capítulo posterior. Todas las rutinas como estas, hacen parte de un paquete incluído con las libretas llamado pymcel. Para usar la rutina en el Alg. (3.1) en otra parte del libro se usa:

```
from pymcel.export import calcula_discriminante
d=calcula_discriminante(1,2,3)
```

Cualquier lenguaje de programación moderno depende de numerosas bibliotecas en las que están codificados procedimientos de uso regular o muy especializados. En todos los algoritmos presentados en el libro, siempre que se use una rutina de una biblioteca externa, se presentará el código que hace referencia a la biblioteca de forma explícita. Consider por ejemplo este algoritmo:

(Algoritmo 3.2)

```
#Coeficientes de un polinomio de segundo grado
a=1
b=3
c=-2

#Calcula discriminante
from pymcel.export import calcula_discriminante
d=calcula_discriminante(a,b,c)

#Calcula raices
if d>=0:
    from numpy import sqrt
    x1=(-b+sqrt(d))/(2*a)
    x2=(-b-sqrt(d))/(2*a)
else:
    print("El polinomio no tiene raices reales")
```

En él hemos usado la rutina sqrt (raíz cuadrada) de la biblioteca NumPy para calcular, en este caso, las raices de un polinomio de segundo grado. Para ello, antes de la línea que usa la raíz cuadrada hemos incluido la instrucción:

```
from numpy import sqrt
```

Aunque en los programas regurales, estas instrucciones se ponen al principio, he decidido colocarlas lo más cerca posible al lugar donde se usan de modo que los fragmentos de código funcionen fuera del contexto del libro. El lector poco familiarizado con el lenguaje Python puede hacer caso omiso a estas instrucciones, que nada le agregan a la lógica de los algoritmos.

Note

Nota

c = -2

las instrucciones import y la velocidad de los programas. Es importante advertir que en algunos algoritmos, usar muchas instrucciones del timpo import entre las líneas de código puede disminuir la velocidad del código. La recomendación general es la de poner este tipo de instrucciones al principio del programa. Así el Alg. (3.2) debería escribirse así:

from pymcel.export import calcula_discriminante
from numpy import sqrt

#Coeficientes de un polinomio de segundo grado
a=1
b=3

#Calcula discriminante

```
Nota (Cont.)

d=calcula_discriminante(a,b,c)

#Calcula raices

if d>=0:
    x1=(-b+sqrt(d))/(2*a)
    x2=(-b-sqrt(d))/(2*a)

else:
    print("El polinomio no tiene raices reales")
```

Otro tipo de algoritmos frecuentes son aquellos que dan como resultado figuras o gráficos. Estos están entre los más interesantes y útiles, aunque pueden ser complicados y causar algo de estupor para los menos familiarizados con el lenguaje de programación. Les recomiendo a todos poner especial atención en estos algoritmos, tratar de entenderlos e imitarlos. Una buena parte de la ciencia que hacemos hoy día depende de producir bonitos productos gráficos que ilustren de forma compacta conceptos o resultados difíciles de describir de otra manera.

Todos los códigos que producen figuras están numerados. Así mismo los gráficos que producen aparecen en el texto, incluso en el impreso, como figuras independientes y numeradas. Por razones de eficiencia en el uso del espacio, algunas de esos gráficos pueden estar en lugares lejanos de la posición del código. Es por esto que en todos los algoritmos que producen gráficos encontraran (en la parte inferior) una referencia a la figura correspondiente.

```
(Algoritmo 3.3)
from numpy import linspace, sin, pi
t=linspace(0,2*pi)
x=sin(t)

import matplotlib.pyplot as plt
plt.figure()
plt.plot(t,x,'k-');

plt.xlabel("t");
plt.ylabel("t");
ver Figura 3.3
```

La mayoría de las figuras del libro han sido elaboradas usando software de diseño independientes. Sin embargo, algunas figuras, especialmente gráficos de datos o resultados de simulaciones, son generadas por las libretas con las que fue escrito el libro. Si bien los algoritmos con los que son creados esas figuras (que llamaremos *gráficos generados*) no aparecen en la versión impresa o en la versión web porque pueden ser muy elaborados e irrelevantes para los fines del texto, si pueden aparecer en las libretas de clase.

Figura 3.3: *Figura correspondiente al código 3.3.*

Figura 3.4: Gráfico de las funciones trigonométricas básicas, en el intervalo de interés (gráfico generado).

3.6. Figuras interactivas y animaciones

Uno de las cosas que hace poderosas a las libretas de Jupyter como medios para compartir información o estudiar un tema, es la posibilidad de interactuar directamente con esa información. Esto se consigue modificando el contenido de las celdas de las libretas (código) y ejecutándolas independientemente.

Pero hay otra posibilidad. En muchos apartes del libro se han creado gráficos interactivos y animaciones que permitiran al lector o al estudiante, modificar de forma gráfica (sin ir directamente al código) los parámetros de un algoritmo (gráfi-

 \cos interactivos) o ver en movimiento figuras que normalmente están estáticas en los libros.

Busque las figuras interactivas en la versión en línea¹⁵ del libro.

¹⁵http://seap-udea.org/MecanicaCeleste_Zuluaga

Bibliografía

- [1] K. Batygin and M. E. Brown, *Evidence for a distant giant planet in the solar system*, The Astronomical Journal, 151 (2016), p. 22.
- [2] I. NEWTON AND E. HALLEY, *Philosophiae naturalis principia mathematica*, vol. 62, Jussu Societatis Regiae ac typis Josephi Streater, prostant venales apud Sam ..., 1780.