Natural Language Processing (NLP) and Large Language Models (LLMs) Lecture 3-1: Machine learning

Chendi Wang (王晨笛) chendi.wang@xmu.edu.cn

WISE @ XMU

2025年3月11日

Recap

- We use functions like SoftMax and sigmoid (activation functions) in Word2Vec.
- This makes Word2Vec a (simple) neural network.
- Let's start with the simplest linear models.

- Section 1: Revisit linear regression
- Section 2: Neural Networks
- 3 Section 3: Stochastic gradient descent
- Section 4: Backpropagation
- 6 Section 5: Classification

Section 2: Neural Networks

Section 1: Revisit linear regression

0000000

Section 3: Stochastic gradient descent

Section 4: Backpropagation

Section 5: Classification

Recall: linear regression

- Consider a dataset , potentially drawn independently from some underlying distribution \mathbb{P} , $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$. Here , $\mathbf{x}_i \in \mathbb{R}^d$ is called features (or covariates) and $y_i \in \mathbb{R}$ is called labels (or targets).
- In the context of linear regression, we assume the relationship:

$$y_i = \mathbf{w}_*^T \mathbf{x}_i + b_* + \epsilon_i,$$

where $\mathbf{w}_* \in \mathbb{R}^d$ and $b_* \in \mathbb{R}$ are the "true parameters," and ϵ_i is a noise term.

The least-squares regression problem is formulated as:

$$(\widehat{\mathbf{w}}, \widehat{b}) = \operatorname{argmin}_{(\mathbf{w},b)} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i - b)^2 \right\}.$$

• For a new feature vector $\mathbf{x} \in \mathbb{R}^d$, the predicted label is:

$$\widehat{y}(\mathbf{x}) = \widehat{\mathbf{w}}^T \mathbf{x} + \widehat{b}.$$

• Without loss of generality, we assume no bias term b for simplicity. (Why? subsume it to \mathbf{w} or center the labels y_i)

Recall: closed-form representation of the OLS

- Denote $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^T \in \mathbb{R}^{n \times d}$ and $\mathbf{v} = [v_1, \dots, v_n]^T \in \mathbb{R}^n$.
- Then we can rewrite

$$\left\{\frac{1}{n}\sum_{i=1}^{n}(y_i - \mathbf{w}^{\mathsf{T}}\mathbf{x}_i)^2\right\} = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2.$$

• If we assume $\mathbf{X}^T\mathbf{X}$ is invertible, then it holds

$$\widehat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}.$$

Why?

Section 1: Revisit linear regression

00000000

$$\partial_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} = 0 \Rightarrow ?$$

Calculating the inverse of a matrix is time-consuming when d is large (remedy: using SGD).

00000000

Section 1: Revisit linear regression

- Recall $\ell_{(\mathbf{w},b)}(\mathbf{z}_i) := (y_i \mathbf{w}^T \mathbf{x}_i b)^2$ with $\mathbf{z}_i = (\mathbf{x}_i, y_i)$. Here, $\ell_{(\mathbf{w},b)}$ is the least squares loss function.
- A loss function ℓ_{θ} , parameterized by θ (e.g., $\theta = (\mathbf{w}, \mathbf{b})$ above), maps a data point $\mathbf{z} = (\mathbf{x}, \mathbf{y})$ and a model parameter θ to a real number, measuring how well predictions match the actual target.
- Why does least squares loss measure prediction quality? (it estimates the conditional mean)

Train and test

00000000

Section 1: Revisit linear regression

Train:

$$\widehat{\theta} = \operatorname{argmin}_{\theta} \qquad \frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}(\mathbf{z}_{i}).$$

Generalization error:

$$\mathbb{E}_{\mathbf{z} \sim \mathbb{P}} \ell_{\widehat{\theta}}(\mathbf{z}),$$

for $\mathbf{z}=(\mathbf{x},\mathbf{y})\sim\mathbb{P}$ where \mathbb{P} is the distribution of the training data (i.e., $\mathbf{z}_i\sim\mathbb{P}$).

• Test: for another set of data points $\{\mathbf{z}_i^{\text{test}}\}_{i=1}^m \sim \mathbb{P}$, the testing error is

$$\frac{1}{m}\sum_{i=1}^{m}\ell_{\widehat{\theta}}(\mathbf{z}_{i}^{\text{test}}).$$

Data splitting

00000000

- There should be no overlap between the training data set and the testing data set (double dipping).
- demonstration (linear_data_spliting.ipynb)

Why least squares loss?

Section 1: Revisit linear regression

00000000

- In linear least squares regression, assume the true parameter (\mathbf{w}_*, b_*) satisfies $\mathbb{E}[\mathbf{y}|\mathbf{x}] = \mathbf{w}_*^T \mathbf{x} + b_*$ for (x, y) drawn from some distribution \mathbb{P} .
- Then.

$$\mathbb{E}[y|\cdot] = \operatorname{argmin}_f \ \mathbb{E}_{(\mathbf{x},y)\sim\mathbb{P}}(y - f(\mathbf{x}))^2,$$

where the infimum is over all square-integrable functions.

- Least squares loss is minimized by the conditional mean.
- If a predictor \hat{y} leads to a smaller least squares loss, then it is closer to the conditional mean.

Section 1: Revisit linear regression

00000000

The linear model is based on the function class.

$$\mathcal{F} = \{ f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b; \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R} \}.$$

- A linear model may be too simple for complex tasks (e.g., understanding and generating human language).
- If we use a general function class \mathcal{F} , how do we parameterize a function $f \in \mathcal{F}$?
- Why parameterize? With parameters, we can update them—most languages handle parameter updates better than function updates.

- Section 1: Revisit linear regression
- Section 2: Neural Networks
- Section 3: Stochastic gradient descent
- Section 4: Backpropagation
- Section 5: Classification

Neural Networks (Biology)

Figure: An example of human neural networks

Figure is from https://d21.ai/chapter_linear-regression/linear-regression.html, the source is "Anatomy and Physiology" by the US National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) Program

• Each node is a **neuron**, inspired by biology.

• Neurons receive signals and pass them to the next layer.

Linear model as a neural network

- Input: $\mathbf{x} = [x_1, \dots, x_d]$ with $x_i \in \mathbb{R}$.
- Each neuron i has a weight $w_i \in \mathbb{R}$, so the signal received by the output layer is $w_i x_i$.
- Signals are aggregated as $\sum_{i=1}^{d} w_i x_i = \mathbf{w}^T \mathbf{x}$.

Figure: A linear model as a neural network.

- Input: $\mathbf{x} = [x_1, \dots, x_d]$ with $x_i \in \mathbb{R}$.
- Each neuron i has a weight $w_i \in \mathbb{R}$, so the signal received by the output layer is $w_i x_i$.
- Signals are aggregated as $\sum_{i=1}^{d} w_i x_i = \mathbf{w}^T \mathbf{x}$.

Figure: A linear model as a neural network.

• Before passing signals to the next layer, a neuron may apply an **activation function** to the received signals.

• The output neuron o_1 processes the received signal $\mathbf{x}^T \mathbf{w}$, adds a bias term, and applies an activation function $\sigma : \mathbb{R} \to \mathbb{R}$, producing the final output:

$$\sigma(\mathbf{x}^T\mathbf{w} + b).$$

Figure: Examples of activation functions

- A two-layer neural network.
- The 0th layer is the input layer with $d^{[0]}$ neurons.
- The 1st layer is the hidden layer with $d^{[1]}$ neurons.
- The 2nd layer is the output layer with d^[2] neurons.

Figure: Example of a two-layer neural network.

Outputs of the First Layer

• With a single data point (x, y), the pre-activation of the first neuron in the 1st layer is

$$z_1^{[1]} = \sum_{i=1}^{d^{[0]}} x_i w_{1i}^{[1]} + b_1^{[1]} = \mathbf{x}^T \mathbf{w}_1^{[1]} + b_1^{[1]},$$

where $\mathbf{w}_{1}^{[1]} = (w_{11}^{[1]}, \dots, w_{1d^{[0]}}^{[1]})$ is a weight vector.

• The output of the first neuron after activation:

$$\mathbf{a}_{1}^{[1]}=\sigma(\mathbf{z}_{1}^{[1]}).$$

The first layer outputs a vector:

$$\mathbf{a}^{[1]} = (\pmb{s}_1^{[1]}, \dots, \pmb{s}_{d^{[1]}}^{[1]}).$$

In matrix form:

$$\mathbf{a}^{[1]} = \sigma\left(\mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}\right),$$

where $\mathbf{W}^{[1]} = [\mathbf{w}_1^{[1]}, \dots, \mathbf{w}_{d^{[1]}}^{[1]}] \in \mathbb{R}^{d^{[1]} \times d^{[0]}}$ and $\mathbf{b}^{[1]} = [b_1^{[1]}, \dots, b_{d^{[1]}}]$. (Here, σ is applied element-wise.)

Outputs of the Final Layer

• Using matrix notation, with weight matrix $\mathbf{W}^{[2]} \in \mathbb{R}^{d^{[2]} \times d^{[1]}}$ and bias vector $\mathbf{b}^{[2]}$, the output of the final layer is

$$\mathbf{a}^{[2]} = \sigma \left(\mathbf{W}^{[2]} \mathbf{a}^{[1]} + \mathbf{b}^{[2]} \right).$$

• Define the function:

$$f_{\mathbf{W}^{[1]},\mathbf{b}^{[1]},\mathbf{W}^{[2]},\mathbf{b}^{[2]}}(\mathbf{x}) = \mathbf{a}^{[2]}.$$

• For each data point $\mathbf{z}_i = (\mathbf{x}_i, y_i)$, define the loss:

$$\ell_{\mathbf{W}^{[1]},\mathbf{b}^{[1]},\mathbf{W}^{[2]},\mathbf{b}^{[2]}}(\mathbf{z}_i) = (y_i - f_{\mathbf{W}^{[1]},\mathbf{b}^{[1]},\mathbf{W}^{[2]},\mathbf{b}^{[2]}}(\mathbf{x}_i))^2.$$

• Let θ represent all parameters:

$$\theta = [\operatorname{Vec}(\mathbf{W}^{[1]}), \mathbf{b}^{[1]}, \operatorname{Vec}(\mathbf{W}^{[2]}), \mathbf{b}^{[2]}].$$

Rewrite the loss function as

$$\ell_{\theta}(\mathbf{z}_i) = (y_i - f_{\theta}(\mathbf{x}_i))^2.$$

The final objective function is

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}(\mathbf{z}_{i}).$$

Deep Neural Networks: Mathematics

• A DNN with depth L (i.e., L layers) is represented as

$$f_{\theta}(\mathbf{x}) = \mathbf{W}^{[L]} \sigma(\mathbf{W}^{[L-1]} \sigma(\cdots \sigma(\mathbf{W}^{[1]} \mathbf{x} + \mathbf{b}^{[1]})) + \mathbf{b}^{[L-1]})) + \mathbf{b}^{[L]}.$$

• Here, θ is a vector containing all parameters:

$$\boldsymbol{\theta} = \{\mathbf{W}^{[i]}, \mathbf{b}^{[i]}\}_{i=1}^L.$$

- The final layer is typically fully connected to one neuron or may use a special activation function such as SoftMax.
- Given θ , computing the final output is known as forward propagation.

- A Rectified Linear Units (ReLU) activation function has the form $\sigma(t) = \max\{0,t\}$.
- Motivation: eliminate the negative signal.

Building a Deep Fully Connected Neural Network in PyTorch

Demonstration: Constructing a 3-layer fully connected neural network using pytorch (3-layer_FCNN.ipynb).

Tutorial: https://www.bilibili.com/video/BV1wuRPYdEPD/?spm_id_from=333.1387.homepage.video card.click

- Section 1: Revisit linear regression
- 3 Section 3: Stochastic gradient descent

Recall: Gradient and derative

• For a multivariate function $f(\mathbf{x})$ with $\mathbf{x} = [x_1, \cdots, x_d]^T \in \mathbb{R}^d$ (column vector), the gradient of f is a column vector defined as

$$abla f(\mathbf{x}) = egin{bmatrix} rac{\partial f}{\partial x_1}(\mathbf{x}) \ dots \ rac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \in \mathbb{R}^d.$$

Its derivative (a row vector in this case) is given by

$$\mathbf{D}f = \nabla^T f = \left[\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_d} \right].$$

Recall: Jacobian Matrix of cector-valued Functions

• For a vector-valued multivariate function $\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), \dots, f_n(\mathbf{x})]^T \in \mathbb{R}^n$, where $\mathbf{x} = [x_1, \dots, x_d]^T \in \mathbb{R}^d$ is a column vector, the Jacobian matrix of \mathbf{f} is defined as:

$$\mathbf{Df}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_d}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_n}{\partial x_d}(\mathbf{x}) \end{bmatrix} \in \mathbb{R}^{n \times d}.$$

• When n = 1, the Jacobian reduces to the derivative vector.

Recall: Chain rules (calculus)

For two univariate function g, h, the chain rule says

$$(g \circ h)'(x) = g'(h(x)) \cdot h'(x)$$

For two vector-valued multivariate functions, g, h, it holds

$$D(g\circ h)((x))=Dg(h(x))\ D(h(x)))$$

• Exercise: $f(\mathbf{w}) = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$

Gradient Descent for Least Squares

• Recall the linear regression loss:

$$\ell_{\mathbf{w},b}(\mathbf{z}_i) = (\mathbf{y}_i - \mathbf{w}^T \mathbf{x}_i - \mathbf{b})^2.$$

Its gradients are

$$\frac{\partial \ell_{\mathbf{w},b}(\mathbf{z}_i)}{\partial \mathbf{w}} = 2(\mathbf{w}^T \mathbf{x}_i + b - y_i) \mathbf{x}_i, \frac{\partial \ell_{\mathbf{w},b}(\mathbf{z}_i)}{\partial b} = 2(\mathbf{w}^T \mathbf{x}_i + b - y_i).$$

• At each iteration, with step size η , update:

$$\mathbf{w}^{\mathsf{new}} = \mathbf{w}^{\mathsf{old}} - \frac{2\eta}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w}^{\mathsf{old}} + b^{\mathsf{old}} - y_{i}) \mathbf{x}_{i}, \tag{1}$$

$$b^{\text{new}} = b^{\text{old}} - \frac{2\eta}{n} \sum_{i=1}^{n} (\mathbf{x}_i^{\mathsf{T}} \mathbf{w}^{\text{old}} + b^{\text{old}} - y_i).$$
 (2)

Stochastic gradient descent

- At each iteration, choose one data point uniformly at random from $\{\mathbf{z}_i\}_{i=1}^n$.
- At the k-th iteration, select i_k such that $\text{Prob}[i_k = j] = 1/n$ for any $j = 1, \dots, n$.
- The stochastic gradient descent is defined iterative as

$$\theta_{k+1} = \theta_k - \nabla_{\theta} \ell_{\theta_k}(\mathbf{z}_{i_k}),$$

with some random initialization θ_0 .

Minibatch Stochastic gradient descent

- At each iteration, sample b (b < n) indices uniformly at random from $\{1, \dots, n\}$ and let \mathcal{B} be collection of all chosen indices ($|\mathcal{B}| = b$).
- With step size η , update:

$$\mathbf{w}^{\mathsf{new}} = \mathbf{w}^{\mathsf{old}} - \frac{2\eta}{b} \sum_{i \in \mathcal{B}} (\mathbf{x}_i^\mathsf{T} \mathbf{w}^{\mathsf{old}} + b^{\mathsf{old}} - y_i) \mathbf{x}_i,$$

$$b^{\mathsf{new}} = b^{\mathsf{old}} - \frac{2\eta}{b} \sum_{i \in \mathcal{B}} (\mathbf{x}_i^\mathsf{T} \mathbf{w}^{\mathsf{old}} + b^{\mathsf{old}} - y_i).$$

Computational complexity

- OLS: $O(nd^2 + d^3)$
- Let K be the total number of iterations.
- GD: *O*(*K* ⋅ *n* ⋅ *d*)
- Mini-batch SGD: K · b · d
- SGD: *O(Kd)*

Train a model in python using SGD (Demonstration)

Linear regression SGD.ipynb

Train a model using pytorch (Demonstration)

linear_regression_as_nn.ipynb linear_data_spliting.ipynb

- Recall ReLU activation function $\sigma(t) = \max\{0, t\}$.
- ReLU is not differentiable at t = 0.
- But it has a sub-derivative (for convex functions) at t = 0, which is a set [0, 1].
- In practice, we may just take $\sigma'(0) = 0$.

Chain Rule for element-wise activation functions

- Consider $f_{\mathbf{W},b}(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b}) =: \sigma \circ \mathbf{h}(\mathbf{W},\mathbf{b})$. Here $\mathbf{h}(\mathbf{W},\mathbf{b}) = \mathbf{W}\mathbf{x} + \mathbf{b} \in \mathbb{R}^{d^{[1]}}$ is a linear vector-valued function.
- $\mathbf{D}\sigma(\mathbf{h}) = \mathrm{Diag}[\sigma'(h_1), \cdots, \sigma'(h_{d[1]})] :=$

$$\begin{bmatrix} \sigma'(h_1), & 0 & \cdots & 0 \\ 0 & \sigma'(h_2), & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma'(h_{d^{[1]}}) \end{bmatrix}$$

• $\mathbf{Df}(\mathbf{W}_1, \mathbf{b}) = \mathbf{D}\sigma(\mathbf{h})$ $\mathbf{Dh}(\mathbf{W}, \mathbf{b}) =$

$$\begin{bmatrix} \sigma'(h_1), & 0 & \cdots & 0 \\ 0 & \sigma'(h_2), & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma'(h_{\sigma^{[1]}}) \end{bmatrix} \begin{bmatrix} \mathbf{x}, 1 \\ \mathbf{x}, 1 \\ \vdots \\ \mathbf{x}, 1 \end{bmatrix}$$

Takeaways

- What if the model is more complex than a linear model?
- Train a Word2Vec model using SGD.
- Other variants of SGD (using momentum): Adam, Adam-W, Nesterov acceleration etc.
- What's next? (Backpropagation (autograd), classification problems)

Section 4: Backpropagation

•0000

- Section 3: Stochastic gradient descent
- Section 4: Backpropagation

Section 4: Backpropagation

00000

• In general, it is not easy to find a close-form representation of the gradient.

Update weights using back propagation

- Forward propagation: $\mathbf{x}_i \Rightarrow \text{hidden layers outputs} \Rightarrow f_{\theta}(\mathbf{x}_i) \Rightarrow \ell_{\theta}(\mathbf{z}_i)$
- Back propagation: $\ell_{\theta}(\mathbf{z}_i) \Rightarrow \text{layer-wise gradient} \Rightarrow \theta^{\text{new}}$

Example

- What is the computational complexity of forward propagation and backpropagation?
- Which one is faster? How much faster?

- Section 1: Revisit linear regression
- Section 2: Neural Networks
- Section 3: Stochastic gradient descent
- Section 4: Backpropagation
- **6** Section 5: Classification

Binary classification

- $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with $y_i \in \{0, 1\}$
- Objective: given a new feature x, predict its label ($\mathbb{P}[y=1 \text{ or } 0|x]$).

Logistic loss

• For a function (a.k.a., a classifier for classification problems) $f_{\theta}(\mathbf{x}) \in [0,1]$ parameterized by θ , the logistic loss at a data point $\mathbf{z} = (\mathbf{x}, \mathbf{y})$ is defined as

$$\ell_{\theta}(\mathbf{z}) = -y \log f_{\theta}(\mathbf{x}) - (1 - y) \log(1 - f_{\theta}(\mathbf{x})).$$

- Empirical loss: $L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}(\mathbf{z}_{i})$.
- Rewrite $\mathbf{y} = (y^{(1)}, y^{(2)}) = (y, 1 y)$ and $\mathbf{f}_{\theta}(\mathbf{x}) = (f_{\theta}^{(1)}(\mathbf{x}), f_{\theta}^{(2)}(\mathbf{x})) = (f_{\theta}(\mathbf{x}), 1 f_{\theta}(\mathbf{x})).$
- Then, the loss function becomes

$$\ell_{\theta}(\mathbf{z}) = \sum_{j=1}^{2} y^{(j)} \log f_{\theta}^{(j)}(\mathbf{x})$$

• $\widetilde{\mathbf{y}}$ is called the one-hot encoding of y: $\widetilde{\mathbf{y}} = [1,0]$ if y = 1.

Multiclass classification

- What if we have K classes and the label $y \in \{1, \dots, K\}$?
- One hot encoding $\mathbf{y} = (0, \dots, 0, 1, 0 \dots, 0)$. (Only the k-th element is 1 and the rest are 0s if y = k.)
- Classifier: $\mathbf{f}_{\theta}(\mathbf{x}) = (f_{\theta}^{(1)}(\mathbf{x}), f_{\theta}^{(2)}(\mathbf{x}), \cdots, f_{\theta}^{(K)}(\mathbf{x})) \in [0, 1]^K$.

• Recall the logistic loss when K = 2:

$$\ell_{\theta}(\mathbf{z}) = \sum_{j=1}^{2} y^{(j)} \log f_{\theta}^{(j)}(\mathbf{x}).$$

For K-class classification problems, we extend the logistic loss to the cross entropy loss:

$$\ell_{ heta}^{ ext{CE}}(\mathbf{z}) = \sum_{j=1}^{K} y^{(j)} \log f_{ heta}^{(j)}(\mathbf{x}).$$

For classification problems, the final layer should contain *K* neurons.

Figure: A neural network for a classification problem with 3-classes.

Neural networks for classification. II

- Remember that we require $f_a^{(i)} \in [0,1]$.
- Use SoftMax function as an activation function of the last layer and we got

$$\mathbf{f}_{\theta}(\mathbf{x}) = \underbrace{\mathbf{SoftMax}} \left(\mathbf{W}^{[L]} \sigma(\mathbf{W}^{[L-1]} \sigma(\cdots \sigma(\mathbf{W}^{[1]} \mathbf{x} + \mathbf{b}^{[1]})) + \mathbf{b}^{[L-1]}) \right).$$

- So the final output is a probability (a K-dimensional vector).
- $f_{\alpha}^{(k)}(\mathbf{x}) \approx \mathbb{P}[y = k|\mathbf{x}]$. (How to test)?

• The training procedure is to solve

$$\widehat{\theta} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell_{\theta}^{CE}(\mathbf{z}_{i}) \right\}.$$

Use backpropagation

Mis-classification error and test

- For a probability $\mathbf{p} = (p_1, \dots, p_K)$, let $\mathrm{OneHot}(\mathbf{p}) = [0, \dots, 0, 1, 0, \dots, 0]$ where k-th element is 1 if p_k is the largest among $\{p_1, \dots, p_K\}$ (the rest are zeros).
- The mis-classification error is defined as

$$\operatorname{Prob}_{(\mathbf{x},y)\sim\mathbb{P}}[\mathbf{y}\neq\operatorname{OneHot}(\mathbf{f}_{\theta}(\mathbf{x}))].$$

• With test data $\{(\mathbf{x}_i^{\text{test}}, \mathbf{y}_i^{\text{test}})\}_{i=1}^m$, the testing error is

$$\frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{[\mathbf{y}_{i}^{\text{test}} \neq \text{OneHot}(\mathbf{f}_{\theta}(\mathbf{x}_{i}^{\text{test}}))]},$$

here 1 is an indicator function $(1_A = 1 \text{ if } A \text{ happens, otherwise } 1_A = 0)$.

- Why do we use different loss functions in training and testing procedures? (because the indicator function is non-covex)
- Why do we use the logistic loss (or CE loss)? (Hint: Just like the least squares loss, consider the minimizer of $\mathbb{E}_{\mathbf{z}}[\ell_f(\mathbf{z})]$ and relate it to $\operatorname{Prob}[y=1|\mathbf{x}]$).

Section 5: Classification

Something advanced

- Other loss functions: e.g., Hinge loss, least squares loss for classification.
- Benchmarking datasets: MNIST, CIFAR-10, CIFAR-100, ImageNet

Section 5: Classification

More advanced

- Train a classification model using pytorch yourself on the benchmarking datasets.
- Prevent overfitting?