

复旦微电子

FMK50 系列 FPGA

电气特性手册

2019.06

本资料是为了让用户根据用途选择合适的上海复旦微电子集团股份有限公司(以下简称复旦微电子)的产品而提供的参考资料,不 转让属于复旦微电子或者第三者所有的知识产权以及其他权利的许可。

在使用本资料所记载的信息最终做出有关信息和产品是否适用的判断前,请您务必将所有信息作为一个整体系统来进行评价。 采购方对于选择与使用本文描述的复旦微电子的产品和服务全权负责,复旦微电子不承担采购方选择与使用本文描述的产品和服 务的责任。除非以书面形式明确地认可,复旦微电子的产品不推荐、不授权、不担保用于包括军事、航空、航天、救生及生命维 持系统在内的,由于失效或故障可能导致人身伤亡、严重的财产或环境损失的产品或系统中。

未经复旦微电子的许可,不得翻印或者复制全部或部分本资料的内容。

今后日常的产品更新会在适当的时候发布,恕不另行通知。 在购买本资料所记载的产品时,请预先向复旦微电子在当地的销售办 事处确认最新信息,并请您通过各种方式关注复旦微电子公布的信息,包括复旦微电子的网站(<u>http://www.fmsh.com/</u>)。 如果您需要了解有关本资料所记载的信息或产品的详情,请与上海复旦微电子集团股份有限公司在当地的销售办事处联系。

商标

上海复旦微电子集团股份有限公司的公司名称、徽标以及"复旦"徽标均为上海复旦微电子集团股份有限公司及其分公司在中国的商标

上海复旦微电子集团股份有限公司在中国发布, 版权所有。

上海复旦微电子集团股份有限公司

FMK50 系列 FPGA

版本 0.0

电气特性手册

2

章节列表

1	产品介绍	4
2	DC 特性	5
3	IO 电特性参数	<i>6</i>
	·复日微由子集闭股份有限公司销售及服备网占	16

1 产品介绍

FMK50 系列 FPGA 市场定位于中小规模 FPGA 市场,为客户提供了低功耗、小尺寸封装和高性能的 FPGA 解决方案。复旦微电子提供的 FMK50 系列 FPGA 开发工具 Procise™ 协助客户以更低的系统成本和更短的设计时间来达到设计目标。

● 器件特性

- ▶ FMK50 系列整合现有先进工艺和 IP, 使功耗、性能、成本达到最优组合
- ▶ 高速 Serdes 速率达到 6.25Gb/s, 实现 25Gb/s 的峰值带宽
- ➤ 支持 800Mb/s DDR3
- ➤ ADC 精度达到 10bit, 1M 采样率
- ➤ 采用高性能精细间距倒扣封装 FCFBGA484 尺寸 19x19 mm, 采用高性能精细间距倒扣封装 FCFBGA324 尺寸 15x15 mm

● 器件介绍

资源	FMK50	FMK50T4
逻辑单元,LU(Logic Unit)	52K	52K
计算单元,CU(Compute Unit)	120	120
高性能 RAM 模块,HRAM (High Performance RAM Blocks)	2700Kb	2700Kb
通用高速收发器,UHST(Universal High Speed Transceivers)	-	4
UHST Max Speed	-	6.25Gb/s
DDR3	800 Mb/s	800 Mb/s
PCIe Gen2	-	x4
差分 I/O 速率	1.25Gb/s	1.25Gb/s
User I/O	210	250
ADC	1	1
I/O Voltage	1.2V 1.5 1.8V	1.2V 1.5 1.8V
	2.5V 3.3V	2.5V 3.3V
安全	支持SM4国密算法加密	支持SM4国密算法加密
封装	FCFBGA 324	FCFBGA 484
尺寸	15x15 mm	19x19 mm

2 DC 特性

表 2.1 极限参数

信号	描述	最小值	最大值	单位
16万	=	取小阻	取入沮	半世
Idcin-float	接收端为悬空时,输入引脚直流电流	-	14	mA
I _{DCIN-UHSTVTT}	接收端电压为 V _{UHSTVTT} 时,输入引脚直流电流	-	12	mA
Idcin-gnd	接收端接地时,输入引脚直流电流	-	6.5	mA
I _{DCOUT-FLOAT}	接收端为悬空时,输出引脚直流电流	-	14	mA
IDCOUT-UHSTVTT	接收端电压为 V _{UHSTVTT} 时,输出引脚直流电流	-	12	mA
ADC				
V _{CCADC}	ADC 电压	-0.5	2.0	V
V _{REFP}	ADC 输入参考电压	-0.5	2.0	V
温度				
Tstg	存储温度	-65	150	$^{\circ}$ C
T _{SOL}	无铅元件的最高焊接温度	-	+245	$^{\circ}$ C
Tj	最大节温	-	+125	$^{\circ}$ C

表 2.2 推荐工作条件

₹ 2.2 16A 工作水目							
信号	描述	最小值	典型值	最大值	单位		
FPGA 逻辑	FPGA 逻辑						
VCCCORE	核电压	0.97	1.00	1.03	V		
V _{CCSUP}	辅助电压	1.71	1.80	1.89	V		
VCCHRAM	内部高速 RAM 电压	0.95	1.00	1.05	V		
VCCP	I/O Bank 电压	1.14	-	3.465	V		
V _{IN}	I/O 输入电压	-0.20	-	V _{CCP} +0.20	V		
	I/O 输入电压 V _{CCP} 为 3.3V, V _{REF} 和差分 I/O 标准为	-0.20	-	2.625	V		
	TMDS_33 时						
I _{IN}	当钳位二极管正向偏置时,通电或未通电 BANK 中任	-	-	10	mA		
	何引脚的最大电流。						
V _{CCBAT}	电池电压	1.0	-	1.89	V		
UHST							
V _{UHSTVCC}	UHST 发送器和接收器电路的模拟电源电压	0.97	1.0	1.03	V		
Vuhstvtt	UHST 发送器和接收器终端电路的模拟电源电压	1.17	1.2	1.23	V		
ADC	ADC						
V _{CCADC}	ADC 相对于 GNDADC 的电源电压	1.71	1.80	1.89	V		
V_{REFP}	外部参考电压	1.20	1.25	1.30	V		
工作温度							
$T_{\rm J}$	结温	-40	-	+100	$^{\circ}$		
	·						

3 IO 电特性参数

IOB 的输入/输出电平与输出驱动能力性能指标如下列表格所示,分别为单端接口标准的直流性能指标、差分接口标准的直流性能指标。

表 3-1 IOB 单端接口标准输入直流性能指标—输入低电平电压

		条件	极限值		
		(除非另有规定, VCCCORE=1.0V,VCCSUP =			
特性	符号	1.8V, VCCP 0=1.8V, 95%×典型电源电压			单
		≤VCCP≤105% ×典型电源电压, -40℃ ≤TA≤100℃ ,	最小	最大	位
		VREF= VCCP 典型电源电压/2)			
		HSTL_I,典型电源电压 1.5V	-0.3	VREF-0.10	V
		HSTL_I_12, 典型电源电压 1.2V	-0.3	VREF-0.08	V
		HSTL_I_18, 典型电源电压 1.8V	-0.3	VREF-0.10	V
		HSTL_II,典型电源电压 1.5V	-0.3	VREF-0.10	V
		HSTL_II_18,典型电源电压 1.8V	-0.3	VREF-0.10	V
		HSUL_12, 典型电源电压 1.2V	-0.3	VREF-0.13	V
		LVCMOS12, 典型电源电压 1.2V	-0.3	35% VCCP	V
		LVCMOS15, 典型电源电压 1.5V	-0.3	35% VCCP	V
		LVDCI_15,典型电源电压 1.5V	-0.3	35% VCCP	V
		LVCMOS18,典型电源电压 1.8V	-0.3	35% VCCP	V
输入低		LVDCI_18,典型电源电压 1.8V	-0.3	35% VCCP	V
电平电	VIL	LVCMOS25, 典型电源电压 2.5V	-0.3	0.7	V
压		LVCMOS33,典型电源电压 3.3V	-0.3	0.8	V
		LVTTL,典型电源电压 3.3V	-0.3	0.8	V
		MOBILE_DDR,典型电源电压 1.8V	-0.3	20% VCCP	
		PCI33_3, 典型电源电压 3.3V	-0.4	30% VCCP	V
		SSTL12, 典型电源电压 1.2V	-0.3	VREF-0.10	V
		SSTL135, 典型电源电压 1.35V	-0.3	VREF-0.09	V
		SSTL135_R, 典型电源电压 1.35V	-0.3	VREF-0.09	V
		SSTL15, 典型电源电压 1.5V	-0.3	VREF-0.10	V
		SSTL15_R, 典型电源电压 1.5V	-0.3	VREF-0.10	V
		SSTL18_I, 典型电源电压 1.8V	-0.3	VREF-0.125	V
	ļ	SSTL18_II,典型电源电压 1.8V	-0.3	VREF-0.125	V

表 3-2 IOB 单端接口标准输入直流性能指标—输入高电平电压

		1 11 11 11 11 11 11 11 11 11 11 11 11 1			
		条件 (除北見有押字 VCCCOPE 1 OV VCCCUP	极限值		
特性	符号	(除非另有规定, VCCCORE=1.0V, VCCSUP = 1.8V, VCCP 0=1.8V, 95%×典型电源电压 ≤VCCP≤105%× 典型电源电压, -40℃≤TA≤100℃, VREF= VCCP 典型电源电压/2)	最小	最大	单位
输 入	VIH	HSTL_I,典型电源电压 1.5V	VREF+0.10	VCCP+0.3	V

上海复旦微电子集团股份有限公司

Shanghai Fudan Microelectronics Group Company Limited

6

高	电	HSTL_I_12, 典型电源电压 1.2V	VREF+0.08	VCCP+0.3	V
平	电	HSTL_I_18, 典型电源电压 1.8V	VREF+0.13	VCCP+0.3	V
压		HSTL_II,典型电源电压 1.5V	VREF+0.10	VCCP+0.3	V
		HSTL_II_18, 典型电源电压 1.8V	VREF+0.13	VCCP+0.3	V
		HSUL_12, 典型电源电压 1.2V	VREF+0.13	VCCP+0.3	V
		LVCMOS12, 典型电源电压 1.2V	65% VCCP	VCCP+0.3	V
		LVCMOS15, 典型电源电压 1.5V	65% VCCP	VCCP+0.3	V
		LVDCI_15, 典型电源电压 1.5V	65% VCCP	VCCP+0.3	V
		LVCMOS18, 典型电源电压 1.8V	65% VCCP	VCCP+0.3	V
		LVDCI_18,典型电源电压 1.8V	65% VCCP	VCCP+0.3	V
		LVCMOS25, 典型电源电压 2.5V	1.7	VCCP+0.3	V
		LVCMOS33, 典型电源电压 3.3V	2	3.45	V
		LVTTL,典型电源电压 3.3V	2	3.45	V
		MOBILE_DDR,典型电源电压 1.8V	80% VCCP	VCCP+0.3	V
		PCI33_3, 典型电源电压 3.3V	50% VCCP	VCCP+0.5	V
		SSTL12, 典型电源电压 1.2V	VREF+0.10	VCCP+0.3	V
		SSTL135, 典型电源电压 1.35V	VREF+0.125	VCCP+0.3	V
		SSTL135_R, 典型电源电压 1.35V	VREF+0.09	VCCP+0.3	V
		SSTL15, 典型电源电压 1.5V	VREF+0.10	VCCP+0.3	V
		SSTL15_R, 典型电源电压 1.5V	VREF+0.10	VCCP+0.3	V
		SSTL18_I, 典型电源电压 1.8V	VREF+0.125	VCCP+0.3	V
		SSTL18_II,典型电源电压 1.8V	VREF+0.125	VCCP+0.3	V

表 3-3 IOB 单端接口标准输出直流性能指标——输出低电平电压

		条件	极限值		
特性	符号	(除非另有规定, VCCCORE=1.0V, VCCSUP=1.8V, VCCP 0=1.8V, VCCP=95%×典型电源电压,-40°C≤TA≤100°C, VREF= VCCP 典型电源电压/2)	最小	最大	单 位
		HSTL_I,典型电源电压 1.5V,IOL = 8mA		0.4	V
		HSTL_I_12, 典型电源电压 1.2V, IOL = 6.3mA		25% VCCP	V
		HSTL_I_18,典型电源电压 1.8V,IOL = 8mA		0.4	V
		HSTL_II, 典型电源电压 1.5V, IOL = 16mA		0.4	V
		HSTL_II_18, 典型电源电压 1.8V, IOL = 16mA		0.4	V
输出低		HSUL_12, 典型电源电压 1.2V, IOL = 0.1mAa		20% VCCP	V
电平电	VOL	LVCMOS12, 典型电源电压 1.2V, IOL = 注 1		0.4	V
压		LVCMOS15, 典型电源电压 1.5V, IOL =注 2		25% VCCP	V
		LVDCI_15, 典型电源电压 1.5V, IOL = 注 2		25% VCCP	V
		LVCMOS18, 典型电源电压 1.8V, IOL = 注 3		0.45	V
		LVDCI_18, 典型电源电压 1.8V, IOL = 注 3		0.45	V
		LVCMOS25, 典型电源电压 2.5V, IOL = 注 4	-	0.4	V
		LVCMOS33, 典型电源电压 3.3V, IOL = 注 4		0.4	V

LVTTL, 典型电源电压 3.3V, IOL = 注 5	0.4	V
MOBILE_DDR,典型电源电压 1.8V, IOL = 0.1mA	10% VCCP	V
PCI33_3, 典型电源电压 3.3V, IOL = 1.5mA	10% VCCP	V
SSTL12, 典型电源电压 1.2V, IOL = 14.25mA	VCCP/2-0.15	V
SSTL135, 典型电源电压 1.35V, IOL = 13mA	VCCP/2-0.15	V
SSTL135_R, 典型电源电压 1.35V, IOL = 8.9mA	VCCP/2-0.15	V
SSTL15, 典型电源电压 1.5V, IOL = 13mA	VCCP/2-0.175	V
SSTL15_R, 典型电源电压 1.5V, IOL = 8.9mA	VCCP/2-0.175	V
SSTL18_I,典型电源电压 1.8V,IOL = 8mA	VCCP/2-0.47	V
SSTL18_II,典型电源电压 1.8V,IOL = 13.4mA	VCCP/2-0.5	V

注:

- I/O 支持的驱动能力为 4,8,12mA。
- I/O 支持的驱动能力为 4,8,12,16mA。
- I/O 支持的驱动能力为 4,8,12,16,24mA。
- I/O 支持的驱动能力为 4,8,12,16mA。
- I/O 支持的驱动能力为 4,8,12,16,24mA。

表 3-4 IOB 单端接口标准输出直流性能指标——输出高电平电压

	符号	条件	极限值		
特性		(除非另有规定,VCCCORE=1.0V, VCCSUP = 1.8V, VCCP 0=1.8V, VCCP=95%×典型电源 电压, -40℃≤TA≤100℃, VREF= VCCP 典型电源电压/2)	最小	最大	单位
		HSTL_I, 典型电源电压 1.5V, IOH = 8mA	VCCP-0.4		V
		HSTL_I_12, 典型电源电压 1.2V, IOH = 6.3mA	75% VCCP		V
		HSTL_I_18, 典型电源电压 1.8V, IOH = 8mA	VCCP-0.4		V
		HSTL_II, 典型电源电压 1.5V, IOH = 16mA	VCCP-0.5		V
		HSTL_II_18,典型电源电压 1.8V, IOH = 16mA	VCCP-0.4		V
		HSUL_12, 典型电源电压 1.2V, IOH = 0.1mAa	80% VCCP		V
		LVCMOS12, 典型电源电压 1.2V, IOH = 注 1	VCCP-0.4		V
		LVCMOS15, 典型电源电压 1.5V, IOH =注 2	70% VCCP		V
输出高		LVDCI_15, 典型电源电压 1.5V, IOH = 注 2	70% VCCP		V
电平电	VOH	LVCMOS18, 典型电源电压 1.8V, IOH = 注 3	VCCP-0.50		V
压		LVDCI_18, 典型电源电压 1.8V, IOH = 注 3	VCCP-0.50		V
		LVCMOS25, 典型电源电压 2.5V, IOH = 注 4	VCCP-0.4		V
		LVCMOS33, 典型电源电压 3.3V, IOH = 注 4	VCCP-0.4		V
		LVTTL, 典型电源电压 3.3V, IOH = 注 5	2.4		V
		MOBILE_DDR,典型电源电压 1.8V, IOH = 0.1mA	90% VCCP		V
		PCI33_3, 典型电源电压 3.3V, IOH = 0.5mA	90% VCCP		V
		SSTL12, 典型电源电压 1.2V, IOH = 14.25mA	VCCP/2+0.15		V
		SSTL135, 典型电源电压 1.35V, IOH = 13mA	VCCP/2+0.15		V

SSTL135_R, 典型电源电压 1.35V, IOH =	VCCP/2+0.15	V
8.9mA		V
SSTL15, 典型电源电压 1.5V, IOH = 13mA	VCCP/2+0.175	V
SSTL15_R, 典型电源电压 1.5V, IOH = 8.9mA	VCCP/2+0.175	V
SSTL18_I,典型电源电压 1.8V,IOH = 8mA	VCCP/2+0.47	V
SSTL18_II, 典型电源电压 1.8V, IOH = 13.4mA	VCCP/2+0.45	V

注:

- I/O 支持的驱动能力为 4,8,12mA。
- I/O 支持的驱动能力为 4,8,12,16mA。
- I/O 支持的驱动能力为 4,8,12,16,24mA。
- I/O 支持的驱动能力为 4,8,12,16mA。
- I/O 支持的驱动能力为 4,8,12,16,24mA。

表 3-5 IOB 差分接口标准的直流性能指标

		条件 (除非另有规定, VCCCORE=1.0V,	极限值			
特性	符号	VCCSUP = 1.8V, $VCCP 0=1.8V$,			单	
1/1 1工	11 7	95%×典型电源电压 <vccp<105%×典< td=""><td>最小</td><td>最大</td><td>位</td></vccp<105%×典<>	最小	最大	位	
		型电源电压, -40°C≤TA≤100°C)				
MINI LVDS 25		至七冰七点, CSIMS100 C)				
输出差模电压	VOD	RT=100Ω, 跨接于 Q 和 QB 端口	0.247	0.6	V	
输出共模电压	VOCM	RT=100Ω, 跨接于 Q 和 QB 端口	0.7	1.6	V	
输入差模电压	VID	_	0.2	0.6	V	
输入共模电压	VICM		0.3	VCCSUP	V	
PPDS_25	1				ı	
输出差模电压	VOD	RT=100Ω,跨接于 Q 和 QB 端口	0.1	0.4	V	
输出共模电压	VOCM	RT=100Ω, 跨接于 Q 和 QB 端口	0.4	1.4	V	
输入差模电压	VID	_	0.1	0.4	V	
输入共模电压	VICM		0.2	VCCSUP	V	
RSDS_25	_					
输出差模电压	VOD	RT=100Ω, 跨接于 Q 和 QB 端口	0.1	0.5	V	
输出共模电压	VOCM	RT=100Ω,跨接于Q和QB端口	0.7	1.6	V	
输入差模电压	VID	_	0.1	0.6	V	
输入共模电压	VICM	_	0.3	1.5	V	
TMDS33						
输出差模电压	VOD	输出端上拉 50ohm 到 VCCP	0.4	0.8	V	
输出共模电压	VOCM	输出端上拉 50ohm 到 VCCP	VCCP-0.405	VCCP-0.19	V	
输入差模电压	VID		0.15	1.2	V	
输入共模电压	VICM		2.7	3.23	V	
LVDS						
输出高电平电压	VOH	RT=100Ω,跨接于 Q 和 QB 端口		1.675	V	
输出低电平电压	VOL	RT=100Ω, 跨接于 Q 和 QB 端口	0.825		V	
输出差模电压	VODIFF	RT=100Ω, 跨接于 Q 和 QB 端口	247	600	mV	

上海复旦微电子集团股份有限公司

输出共模电压	VOCM	RT=100Ω,跨接于 Q 和 QB 端口	1	1.5	V
输入差模电压	VIDIFF	输入共模电压为 1.25V	100	600	mV
输入共模电压	VICM	输入差模电压为+/-350mV	0.3	1.425	V
LVDS_25					
输出高电平电压	VOH	RT=100Ω,跨接于Q和QB端口	_	1.675	V
输出低电平电压	VOL	RT=100Ω,跨接于Q和QB端口	0.55		V
输出差模电压	VODIFF	RT=100Ω,跨接于 Q 和 QB 端口	247	600	mV
输出共模电压	VOCM	RT=100Ω,跨接于 Q 和 QB 端口	0.7	1.625	V
输入差模电压	VIDIFF	输入共模电压为 1.25V	100	600	mV
输入共模电压	VICM	输入差模电压为+/-350mV	0.3	1.5	V

表 3-6 IOB 差分接口标准输入直流性能指标—互补差分输入共模电压

		农 3-0 10D 左刀 按口你性侧八旦抓住肥泪你── 五们 左	77 1007 171 175	<u> </u>	
特性 符号		条件	极限值		
		(除非另有规定, VCCCORE=1.0V, VCCSUP = 1.8V, VCCP 0=1.8V, 95%×典型电源电压 ≤VCCP≤105%×典型电源电压, -40℃≤TA≤100℃)		最大	单位
		DIFF_HSTL_I,典型电源电压 1.5V	0.3	1.125	V
		DIFF_HSTL_I_18,典型电源电压 1.8V	0.3	1.425	V
		DIFF_HSTL_II,典型电源电压 1.5V	0.3	1.125	V
	DIFF_HSTL_II_18,典型电源电压 1.8V	0.3	1.425	V	
	DIFF_HSUL_12,典型电源电压 1.2V	0.3	0.85	V	
输入		DIFF_MOBILE_DDR,典型电源电压 1.8V	0.3	1.425	V
共 模	VICM	DIFF_SSTL12,典型电源电压 1.2V	0.3	0.85	V
电压		DIFF_SSTL135,典型电源电压 1.35V	0.3	1	V
		DIFF_SSTL135_R,典型电源电压 1.35V	0.3	1	V
	DIFF_SSTL15,典型电源电压 1.5V	0.3	1.125	V	
	DIFF_SSTL15_R,典型电源电压 1.5V	0.3	1.125	V	
		DIFF_SSTL18_I,典型电源电压 1.8V	0.3	1.425	V
		DIFF_SSTL18_II,典型电源电压 1.8V	0.3	1.425	V

表 3-7 IOB 差分接口标准输入直流性能指标—互补差分输入差模电压

		条件 (RA III 日本III)	极限值	34	
特性符号	(除非另有规定, VCCCORE=1.0V, VCCSUP = 1.8V, VCCP 0=1.8V, 95%×典型电源电压 ≤VCCP≤105%×典型电源电压, -40℃≤TA≤100℃)		最大	单 位	
		DIFF_HSTL_I,典型电源电压 1.5V	0.1	-	V
		DIFF_HSTL_I_18,典型电源电压 1.8V	0.1	-	V
输入差		DIFF_HSTL_II,典型电源电压 1.5V	0.1	-	V
模电压	VID	DIFF_HSTL_II_18, 典型电源电压 1.8V	0.1	-	V
快电压		DIFF_HSUL_12, 典型电源电压 1.2V	0.1	-	V
		DIFF_MOBILE_DDR,典型电源电压 1.8V	0.1	-	V
		DIFF_SSTL12, 典型电源电压 1.2V	0.1	-	V

DIFF_SSTL135, 典型电源电压 1.35V	0.1	-	V
DIFF_SSTL135_R, 典型电源电压 1.35V	0.1	-	V
DIFF_SSTL15, 典型电源电压 1.5V	0.1	-	V
DIFF_SSTL15_R, 典型电源电压 1.5V	0.1	-	V
DIFF_SSTL18_I, 典型电源电压 1.8V	0.1	-	V
DIFF_SSTL18_II,典型电源电压 1.8V	0.1	-	V

表 3-8 IOB 差分接口标准输入直流性能指标—输出低电压

表 3-8 IOB 差分接口外准制八旦派性能指外—制出版电压							
		条件 Wasser Wasser Low Wasser	极限值	.			
特性符号		(除非另有规定, VCCCORE=1.0V, VCCSUP = 1.8V, VCCP 0=1.8V, VCCP=95%×典型电源电压, -40℃≤TA≤100℃)		最大	单位		
		DIFF_HSTL_I,典型电源电压 1.5V,IOL=8mA		0.4	V		
		DIFF_HSTL_I_18, 典型电源电压 1.8V, IOL=8mA	_	0.4	V		
		DIFF_HSTL_II,典型电源电压 1.5V,IOL=16mA	_	0.4	V		
		DIFF_HSTL_II_18 , 典型电源电压 1.8V , IOL=16mA		0.4	V		
		DIFF_HSUL_12, 典型电源电压 1.2V, IOL=0.1mA	_	20% VCCP	V		
输出低		DIFF_MOBILE_DDR, 典型电源电压 1.8V, IOL=0.1mA		10% VCCP	V		
电平电	VOL	DIFF_SSTL12, 典型电源电压 1.2V, IOL=14.25mA	_	VCCP/2-0.15	V		
压		DIFF_SSTL135, 典型电源电压 1.35V, IOL=13mA		VCCP/2-0.15	V		
		DIFF_SSTL135_R , 典 型 电 源 电 压 1.35V ,IOL=8.9mA		VCCP/2-0.15	V		
		DIFF_SSTL15,典型电源电压 1.5V,IOL=13mA		VCCP/2-0.175	V		
		DIFF_SSTL15_R,典型电源电压 1.5V, IOL=8.9mA		VCCP/2-0.175	V		
		DIFF_SSTL18_I,典型电源电压 1.8V,IOL=8mA		VCCP/2-0.47	V		
		DIFF_SSTL18_II , 典 型 电 源 电 压 1.8V ,IOL=13.4mA		VCCP/2-0.5	V		

表 3-9 IOB 差分接口标准输入直流性能指标—输出高电压

		条件 (PA-1)-日	极限值	37.	
特性符号	符号	(除非另有规定, VCCCORE=1.0V, VCCSUP = 1.8V, VCCP 0=1.8V, VCCP=95%×典型电源电压, -40℃≤TA≤100℃)	最小	最大	单位
		DIFF_HSTL_I,典型电源电压 1.5V,IOH=8mA	VCCP -0.4		V
输出高		DIFF_HSTL_I_18 , 典型电源电压 1.8V,IOH=8mA	VCCP -0.4	_	V
电平电	VOH	DIFF_HSTL_II, 典型电源电压 1.5V, IOH=16mA	VCCP -0.5		V
压	VOII	DIFF_HSTL_II_18, 典型电源电压 1.8V, IOH=16mA	VCCP -0.4	_	V
		DIFF_HSUL_12, 典型电源电压 1.2V,IOH=0.1mAa	80% VCCP		V

DIFF_MOBILE_DDR, 典型电源电压 1.8V,	90% VCCP	 V
IOH=0.1mA	7 7 7 7 7 7 7	
DIFF_SSTL12 , 典型电源电压 1.2V ,	VCCP/2+0.15	 v
IOH=14.25mA	VCC1/210.13	•
DIFF_SSTL135 , 典型电源电压 1.35V ,	VCCP/2+0.15	 V
IOH=13mA	70017210.15	•
DIFF_SSTL135_R, 典型电源电压 1.35V,	VCCP/2+0.15	 v
IOH=8.9mA	70017210.15	•
DIFF_SSTL15, 典型电源电压 1.5V, IOH=13mA	VCCP/2+0.175	 V
DIFF_SSTL15_R , 典型电源电压 1.5V ,	VCCP/2+0.175	V
IOH=8.9mA	VCC1/210.173	'
DIFF_SSTL18_I,典型电源电压 1.8V, IOH=8mA	VCCP/2+0.47	 V
DIFF_SSTL18_II , 典 型 电 源 电 压 1.8V ,	VCCP/2+0.45	V
IOH=13.4mA	, 551, 210.15	,

表 3-10 UHST 收发器 DC 特性

次 5-10 ells 1 次次船 be 刊 E						
		条件 (除非另有规定,	极限值			
特性	符号	VCCCORE=1.0V , VCCSUP = 1.8V ,			单位	
		VCCUHSTVCC=1.0V, VCCUHSTVTT =1.2V;	最小值	最大值		
		-40°C≤TA≤100°C)				
差分峰峰输出	DVPPOUT	TX 输出幅度设为最大	900		mV	
差分输出共模电 平	VCMOUTDC	基于公式	V UHSTVTT – DVPPOUT /4		mV	
差分输出电阻	ROUT	_	80	120	Ω	
输出端 TXP 和	TOSKEW			12	ps	
TXN 的时延	TODILLY			12	Po	
差分峰峰输入	DVPPIN	<= 6.6Gbps	300	2000	mV	
差分输入电阻	RIN	_	80	120	Ω	
推荐 AC 耦合电容	CEXT	_	100		nF	

表 3-11 UHST 时钟 DC 特性

		条件 (除非另有规定, VCCCORE=1.0V,	极限值		
特性	符号	VCCSUP = 1.8V, VCCUHSTVCC=1.0V, VCCUHSTVTT =1.2V; -40°C≤TA≤100°C)	最小值	最大值	单位
差分峰峰电压 输入	VIDIFF	_	250	2000	mV
差分输入电阻	RIN	_	100		Ω

上海复旦微电子集团股份有限公司 Shanghai Fudan Microelectronics Group Company Limited

d+ bd.	<i>///</i> □	条件 (除非另有规定, VCCCORE=1.0V,	极限值		
特性 	符号	VCCSUP = 1.8V, VCCUHSTVCC=1.0V, VCCUHSTVTT =1.2V; -40°C≤TA≤100°C)	最小值	最大值	単位
推荐 AC 耦合 电容	CEXT	_	100		пF

表 3-12 网络应用接口性能参数

特性	符号	条件 (除非另有规定, 0.97V≤VCCCORE≤1.03V, 1.71V≤VCCSUP≤1.89V, VCCP =典型电压, -40℃≤TA≤100℃)	最大工作频率	单位
SDR LVDS 发送器 (using OSERDES;DATA_WIDTH		IO	710	Mb/s
SDR LVDS 发送器 (using OSERDES;DATA_WIDTH = 4 to 8)		Ю	710	Mb/s
DDR LVDS 发送器 (using OSERDES;DATA_WIDTH = 4 to 14)		IO	800	Mb/s

表 3-13 存储接口 PHV 最大运行谏率

太 3-13	仔陌按□PHY	取八色11 	
特性	符号	最大工作频率	单位
DDR3 HRIO		800	Mb/s
DDR3L HRIO		800	Mb/s
DDR2 HRIO		800	Mb/s
RLDRAM III HRIO			
DDR3 HRIO		800	Mb/s
DDR3L HRIO		800	Mb/s
DDR2 HRIO		800	Mb/s
QDR II+ HRIO		500	MHz
RLDRAM II HRIO		450	MHz
LPDDR2 HRIO		667	Mb/s

表 3-14 ADC 开关特性参数

特性	符号	条件 (除非另有规定,	极限值	单位
----	----	-------------	-----	----

上海复旦微电子集团股份有限公司 Shanghai Fudan Microelectronics Group Company Limited

电气特性手册

		T	ı	1	1
		VCCCORE=1.0V , VCCSUP=1.8V , 1.71V≤VCCADC≤1.89V, VCCP = 典型电压 , -40°C≤TA≤100°C)	最小值	最大值	
分辨率	_	TA = -40°C到 100°C, VREFP = 1.25V; VREFN = 0V; ADCCLK = 26 MHz	10	_	Bits
积分非线性	INL	TA = -40°C到 100°C		±1	LSBs(10bits)
差分非线性	DNL	TA = -40℃到 100℃, 无失 码	_	±1	LSBs(10bits)
ADC 输入范围	_	单极模式	0	1	V
		双极模式	-0.5	0.5	V
		单极模式共模范围	0	0.5	V
		双极模式共模范围	0.5	0.6	V
最大外部通道 输入范围	_	相邻通道测量范围没有相 互影响情况下	-0.1	VCCADC	V
辅助通道全分 辨率下带宽	FRBW	_	250	_	KHz
温度传感误差	_	TA = -40°C到 100°C		±10	°C
电压传感误差	_	TA = -40°C到 100°C	_	±2	%
转换时间-连续	tCONV	ADC 时钟的周期数	26	32	周期数
转换时间-事件	tCONV	时钟的周期数		21	周期数
DRP 时钟	DCLK	DRP 时钟频率	8	250	MHz
ADC 时钟	ADCCLK	DCLK 上分频得到	1	26	MHz
DCLK 的占空 比	_	_	40	60	%
外部基准	VREF	VREP 管脚连接到外部基准电压	1.2	1.3	V
内部基准	_	VREP管脚连接到模拟地; Tj = -40°C 到 100°C	1.2375	1.2625	V

版本信息

版本号	发布日期	页数	章节或图表	更改说明
1.0	2019.06	16		初稿

上海复旦微电子集团股份有限公司销售及服务网点

上海复旦微电子集团股份有限公司

地址:上海市国泰路 127 号 4 号楼

邮编: 200433

电话: (86-021)65655050 传真: (86-021)65659115

上海复旦微电子(香港)股份有限公司

地址: 香港九龙尖沙咀东嘉连威老道 98 号东海商业中心 5 楼 506 室

电话: (852)21163288 21163338

传真: (852) 2116 0882

北京办事处

地址: 北京市东城区东直门北小街青龙胡同 1 号歌华大厦 B 座 423 室

邮编: 100007

电话: (86-10) 8418 6608 传真: (86-10) 8418 6211

深圳办事处

地址: 深圳市华强北路 4002 号圣廷苑酒店世纪楼 1301 室

邮编: 518028

电话: (86-0755)8335 0911 8335 1011 8335 2011 8335 0611

传真: (86-0755)8335 9011

台湾办事处

地址: 台北市 114 内湖区内湖路一段 252 号 12 楼 1225 室

电话: (886-2)77211889 传真: (886-2)77223888

新加坡办事处

地址: 237, Alexandra Road, #07-01, The Alexcier, Singapore 159929

电话: (65)64723688 传真: (65)64723669

北美办事处

地址: 2490 W. Ray Road Suite#2 Chandler, AZ 85224 USA

电话: (480)857-6500ext18

公司网址: http://www.fmsh.com/