Anomaly Detection

Hung-yi Lee 李宏毅

Problem Formulation

- Given a set of training data $\{x^1, x^2, \dots, x^N\}$
- We want to find a function detecting input x is similar to training data or not.

Different approaches use different ways to determine the similarity.

What is Anomaly?

寶可夢 (神奇寶貝)

Applications

- Fraud Detection
 - Training data: 正常刷卡行為, x: 盜刷?
 - Ref: https://www.kaggle.com/ntnu-testimon/paysim1/home
 - Ref: https://www.kaggle.com/mlg-ulb/creditcardfraud/home
- Network Intrusion Detection
 - Training data: 正常連線, x: 攻擊行為?
 - Ref: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
- Cancer Detection
 - Training data: 正常細胞, x: 癌細胞
 - Ref: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/home

Binary Classification?

- Given normal data $\{x^1, x^2, \dots, x^N\}$ Class 1
- Given anomaly $\{\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^N\}$ Class 2
- Then training a binary classifier

Binary Classification?

Binary Classification?

- Given normal data $\{x^1, x^2, \cdots, x^N\}$ Class 1
- Given anomaly $\{\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^N\}$ Class 2
- Then training a binary classifier

x (Pokémon)

anomaly的data太多了,根本沒辦法搜集

 \widetilde{x} (NOT Pokémon)

cannot be considered as a class

Even worse, in some cases, it is difficult to find anomaly example

Categories

Training data: $\{x^1, x^2, \dots, x^N\}$

With labels: $\{\hat{y}^1, \hat{y}^2, \cdots, \hat{y}^N\}$ Classifier

The classifier can output "unknown" (none of the training data is labelled "unknown")

Open-set Recognition

Clean: All the training data is normal.

Polluted: A little bit of training data is anomaly.

Case 1: With Classifier

Example Application

• From The Simpsons or not

Source of model: https://www.kaggle.com/alexattia/the-simpsons-characters-dataset/

How to use the Classifier

Anomaly Detection:

$$f(x) = \begin{cases} normal, & c(x) > \lambda \\ anomaly, & c(x) \le \lambda \end{cases}$$

How to estimate Confidence

Confidence: the maximum scores

or negative Entropy

乳重 0.12 (辛普森家庭 腳色)

小丑阿基 0.04 孔龍金 0.03

Confidence score distribution for *characters from Simpsons*

Confidence score distribution for *anime characters*

Outlook: Network for Confidence Estimation

 Learning a network that can directly output confidence

Terrance DeVries, Graham W. Taylor, Learning Confidence for Out-of-Distribution Detection in Neural Networks, arXiv, 2018

(not today)

Example Framework

Training Set: Images x of characters from Simpsons.

Each image x is labelled by its characters \hat{y} .

Train a classifier, and we can obtain confidence score c(x) from the classifier.

$$f(x) = \begin{cases} normal, & c(x) > \lambda \\ anomaly, & c(x) \le \lambda \end{cases}$$

Dev Set: Images x

Label each image x is from Simpsons or not.

We can compute the <u>performance</u> of f(x) Using dev set to determine λ and other hyperparameters.

Testing Set: Images $x \longrightarrow from Simpsons or not$

Accuracy is not a good measurement!

Evaluation

A system can have high accuracy, but do nothing.

	Anomaly	Normal		Anomaly	Normal
Detected	1	1	Detected	2	6
Not Det	4	99	Not Det	3	94

100 Simpsons, 5 anomalies

	Anomaly	Normal		Anomaly	Normal
Detected	1	1	Detected	2	6
Not Det	4	99	Not Det	3	94

$$Cost = 401$$

$$Cost = 603$$

Cost	Anomaly	Normal	Cost	Anomaly	Normal
Detected	0	100	Detected	0	1
Not Det	1	0	Not Det	100	0
Cost Table A			Cost Table B		

Some evaluation metrics consider the ranking For example, Area under ROC curve

如果單純使用classifier的confident來做anomaly detection 可能會遇到一種狀況:

e.g. 今天在做貓跟狗的classifier,但是老虎的特徵可能比貓更像貓,所以機器會給老虎很高的confidence或是狼比狗更像狗,因此僅用confidence來做classify可能無法偵測出這種的anomaly

Possible Issues

柯阿三 0.34

宅神 0.82

麗莎 1.00

柯阿三 0.63

麗莎 0.88

To Learn More

Learn a classifier giving low confidence score to anomaly

Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin, Training Confidencecalibrated Classifiers for Detecting Out-of-Distribution Samples, ICLR 2018

How can you obtain anomaly?

Generating by Generative Models?

Mark Kliger, Shachar Fleishman, Novelty Detection with GAN, arXiv, 2018

Case 2: Without Labels

Twitch Plays Pokémon

Problem Formulation

- Given a set of training data $\{x^1, x^2, \dots, x^N\}$
- We want to find a function detecting input x is similar to training data or not.

https://github.com/ahaque/twitch-troll-detection (Albert Haque)

Problem Formulation

Generated from P(x)

- Given a set of training data $\{x^1, x^2, \dots, x^N\}$
- We want to find a function detecting input x is similar to training data or not.

Maximum Likelihood

- Assuming the data points is sampled from a probability density function $f_{\theta}(x)$
 - θ determines the shape of $f_{\theta}(x)$
 - θ is unknown, to be found from data

$$L(\theta) = f_{\theta}(x^{1}) f_{\theta}(x^{2}) \cdots f_{\theta}(x^{N})$$
Likelihood

$$\theta^* = \arg\max_{\theta} L(\theta)$$

Gaussian Distribution

D is the dimension of x

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

Input: vector x, output: probability density of sampling x θ which determines the shape of the function are **mean** μ and **covariance matrix** Σ

$$L(\theta) = f_{\theta}(x^{1}) f_{\theta}(x^{2}) \cdots f_{\theta}(x^{N})$$

$$L(\mu, \Sigma) = f_{\mu, \Sigma}(x^{1}) f_{\mu, \Sigma}(x^{2}) \cdots f_{\mu, \Sigma}(x^{N})$$

$$\theta^{*} = arg \max_{\theta} L(\theta)$$

$$\mu^{*}, \Sigma^{*} = arg \max_{\mu, \Sigma} L(\mu, \Sigma)$$

How about $f_{\theta}(x)$ is from a network, and θ is network parameters? (out of the scope)

Gaussian Distribution

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

Input: vector x, output: probability of sampling x θ which determines the shape of the function are **mean** μ and covariance matrix **2**

$$L(\theta) = f_{\theta}(x^{1}) f_{\theta}(x^{2}) \cdots f_{\theta}(x^{N})$$

$$L(\mu, \Sigma) = f_{\mu, \Sigma}(x^{1}) f_{\mu, \Sigma}(x^{2}) \cdots f_{\mu, \Sigma}(x^{N})$$

$$\theta^{*} = arg \max_{\theta} L(\theta)$$

$$\mu^{*}, \Sigma^{*} = arg \max_{\mu, \Sigma} L(\mu, \Sigma)$$

$$u^* = \frac{1}{N} \sum_{n=1}^{N} x^n = \begin{bmatrix} 0.29 \\ 0.73 \end{bmatrix}$$

$$\mu^* = \frac{1}{N} \sum_{n=1}^{N} x^n = \begin{bmatrix} 0.29 \\ 0.73 \end{bmatrix} \qquad \Sigma^* = \frac{1}{N} \sum_{n=1}^{N} (x - \mu^*)(x - \mu^*)^T \\ = \begin{bmatrix} 0.04 & 0 \\ 0 & 0.03 \end{bmatrix}$$

$$f_{\mu^*,\Sigma^*}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^*|^{1/2}} exp\left\{-\frac{1}{2}(x - \mu^*)^T \Sigma^{*-1}(x - \mu^*)\right\}$$

$$\boldsymbol{\mu}^* = \begin{bmatrix} 0.29 \\ 0.73 \end{bmatrix} \quad \boldsymbol{\Sigma}^* = \begin{bmatrix} 0.04 & 0 \\ 0 & 0.03 \end{bmatrix}$$

$$f(x) = \begin{cases} normal, & f_{\mu^*, \Sigma^*}(x) > \lambda \\ anomaly, & f_{\mu^*, \Sigma^*}(x) \le \lambda \end{cases}$$

 λ is a contour line

The colors represents the value of $f_{\mu^*,\Sigma^*}(x)$

$$f(x) = \begin{cases} normal, f_{\mu^*, \Sigma^*}(x) > \lambda \\ anomaly, f_{\mu^*, \Sigma^*}(x) \le \lambda \end{cases}$$

More Features

 x_1 : Percent of messages that are spam (說垃圾話)

 x_2 : Percent of button inputs during anarchy mode (無政府狀態發言)

 x_3 : Percent of button inputs that are START (按 START))

 x_4 : Percent of button inputs that are in the top 1 group (跟大家一樣) x_5 : Percent of button inputs that

are in the bottom 1 group (唱反調)

Outlook: Auto-encoder

<u>Training</u>

Using training data to learn an *autoencoder*

Outlook: Auto-encoder

<u>Training</u>

Using training data to learn an *autoencoder*

More ...

Source of images: https://scikitlearn.org/stable/modules/outlier_detectio n.html#outlier-detection

One-class SVM

Ref: https://papers.nips.cc/paper/1723support-vector-method-for-noveltydetection.pdf

Isolated Forest

Ref: https://cs.nju.edu.cn/zhouzh/zhouzh.fil es/publication/icdm08b.pdf

https://www.youtube.com/watch?v=l_VsevrFHLc

Concluding Remarks

Training data: $\{x^1, x^2, \dots, x^N\}$

With labels: $\{\hat{y}^1, \hat{y}^2, \cdots, \hat{y}^N\}$ Classifier

The classifier can output "unknown" (none of the training data is labelled "unknown")

Open-set Recognition

Clean: All the training data is normal.

Polluted: A little bit of training data is anomaly.