SEMESTRAL SAN MARCOS

1.- Simplifique:

$$A = \frac{sen4^{\circ}.tg8^{\circ} - \cos 82^{\circ}}{\sec 8^{\circ}.\cos 51^{\circ}}$$

- A) 2sen8°.tg4° B) sen2°.cos8°
- C) $-2sen8^{\circ}.sen47^{\circ}$ D) $-2sen4^{\circ}.tg8^{\circ}$
- E) cos 4°.cos 8°

2.- Resolver:

 $\cos 2x - \cos^2 x + 2\cos x + 2 = 0$ e indique el número de soluciones en el intervalo $\left\langle -\frac{3\pi}{2}; -\frac{\pi}{2} \right\rangle$.

- A) 1 B) 2 C) 3 D) 4 E) 0
- 3.- Calcular $A = tg\theta . tg\alpha$

4.- Resolver la ecuación siguiente:

$$\arccos 2x - \arccos x = \frac{\pi}{3}$$

A) -1 / 4 B) -1 / 2 C) 0 D) 1 / 4
E) 1

5.- Dada la siguiente función:

$$f(x) = sen3x.ctgx - 2\cos x$$

Hallar el rango de
A) [0, 1] B) [-1,0] C) < -1, 1/2]
D) < -1,1 > E) [-1,1]

6.- Hallar el máxima valor de E

E =
$$(2 + sen^2 \alpha)(2 + cos^2 \alpha) - 2(sen\alpha + cos \alpha)^2$$

A) $\frac{5}{4}$ B) $\frac{15}{4}$ C) $\frac{25}{4}$ D) $\frac{35}{4}$ E) $\frac{45}{4}$

SEMESTRAL UNI

1.- Simplique:

$$A = \frac{tg4x}{tg2x} + \frac{tg2x - 1}{2 - \sec^2 2x} - \frac{1}{1 - tg2x}$$
A) 0 B) 2 C) 1 D) tgx E) tg2x

2.- Si x_1 , x_2 , x_3 son soluciones de la ecuación.

ecuacion.

$$2\cos 2x + \cos 3x + \cos x + 3 = 0$$

halle $M = \frac{\cos x_1 + \cos x_2 + \cos x_3}{\cos x_1 \cdot \cos x_2 \cdot \cos x_3}$
A) 4 B) 1/4 C) -1/4 D) 2 E) 1

3.- Si un árbol es cortado a una altura "h" del suelo, este al caer determina un ángulo agudo " α " con el suelo; pero si es cortado un metro mas arriba el ángulo formado es " θ ". Calcula "h".

A)
$$\frac{\csc \alpha + 1}{\csc \theta + \csc \alpha}$$
 B) $\frac{\csc \alpha - 1}{\csc \theta - \csc \alpha}$ C) $\frac{\csc \theta + 1}{\csc \theta - \csc \alpha}$ D) $\frac{\csc \theta + 1}{\csc \alpha - \csc \theta}$ E) $\frac{\csc \alpha + 1}{\cot \alpha}$

4.- En la figura, si CM = MB, AC = 4u, AB = 6u, hallar $sen\beta$.

A)
$$\frac{3\sqrt{13}}{13}$$
 B) $\frac{\sqrt{13}}{3}$ C) $\frac{2\sqrt{13}}{3}$ D) $\frac{3\sqrt{13}}{13}$ E) 3/5

5.- En la figura mostrada, $tg\alpha = 2/3$,

determinar: $E = \sec^2 \theta - tg\theta$

6.- Del gráfico mostrado "C" es centro. Obtener el valor de: $tg\theta - \sec\theta$

A)
$$2 + \sqrt{5}$$
 B) $2 - \sqrt{5}$

B)
$$2 - \sqrt{5}$$

C)
$$\sqrt{5} - 2$$

D)
$$\frac{\sqrt{5}-1}{2}$$
 E) $\frac{\sqrt{5}+1}{2}$

E)
$$\frac{\sqrt{5} + 1}{2}$$

7.- Hallar el área del triángulo OMN

A)
$$\frac{1}{2} (tg\theta + \sec\theta)$$
 B) $\frac{1}{2} (tg\theta - \sec\theta)$

C)
$$\frac{1}{2} (\sec \theta - tg\theta)$$
 D) $\frac{1}{2} (\sec \theta + ctg\theta)$

E)
$$\frac{1}{2}(\cos\theta - tg\theta)$$

8.- Determinar el valor de:

$$\cos\left(\arcsin\frac{1}{9} + \arccos\left(-\frac{2}{5}\right)\right)$$

A)
$$\frac{4\sqrt{5} - \sqrt{21}}{45}$$
 B) - $(\frac{4\sqrt{5} + \sqrt{21}}{45})$

C) -
$$(\frac{8\sqrt{5} + \sqrt{21}}{45})$$
 D) $\frac{6\sqrt{5} + \sqrt{21}}{45}$

E)
$$\frac{8\sqrt{5} - \sqrt{21}}{45}$$