47.6 The Primal-Dual Algorithm

Let (P2) be a linear program in standard form

maximize
$$cx$$

subject to $Ax = b$ and $x > 0$,

where A is an $m \times n$ matrix of rank m, and (D) be its dual given by

minimize
$$yb$$

subject to $yA \ge c$,

where $y \in (\mathbb{R}^m)^*$.

First we may assume that $b \ge 0$ by changing every equation $\sum_{j=1}^n a_{ij}x_j = b_i$ with $b_i < 0$ to $\sum_{j=1}^n -a_{ij}x_j = -b_i$. If we happen to have some feasible solution y of the dual program (D), we know from Theorem 47.13 that a feasible solution x of (P2) is an optimal solution iff the equations in $(*_P)$ hold. If we denote by J the subset of $\{1, \ldots, n\}$ for which the equalities

$$yA^j = c_j$$

hold, then by Theorem 47.13 a feasible solution x of (P2) is an optimal solution iff

$$x_j = 0$$
 for all $j \notin J$.

Let |J| = p and $N = \{1, \ldots, n\} - J$. The above suggests looking for $x \in \mathbb{R}^n$ such that

$$\sum_{j \in J} x_j A^j = b$$

$$x_j \ge 0 \quad \text{for all } j \in J$$

$$x_j = 0 \quad \text{for all } j \notin J,$$

or equivalently

$$A_J x_J = b, \quad x_J \ge 0, \tag{*_1}$$

and

$$x_N = 0_{n-p}.$$

To search for such an x, we just need to look for a feasible x_J , and for this we can use the *Restricted Primal* linear program (RP) defined as follows:

maximize
$$-(\xi_1 + \dots + \xi_m)$$

subject to $(A_J \ I_m) \begin{pmatrix} x_J \\ \xi \end{pmatrix} = b$ and $x, \xi \ge 0$.