

CURSO: Graduação em Matemática Aplicada - 1º semestre de 2021

DISCIPLINA: **Curvas e Superfícies** PROFESSOR(ES): Asla Medeiros e Sá

CARGA HORÁRIA: 60h

PRÉ-REQUISITO: Equações Diferenciais Ordinárias e Introdução à Computação HORÁRIO E SALA DE ATENDIMENTO: Segundas-feiras, de 15h às 17h.

SALA: Zoom (link a ser divulgado no primeiro dia de aula)

PLANO DE ENSINO

1. Ementa

Introdução à Topologia de Rn: conjuntos aberto e fechados, homeomorfismos, conjuntos conexos. Curvas no plano e no espaço: representações paramétricas e implícitas. Vetores tangentes e normais. Comprimento de arco, áreas, curvatura, torção. Superfícies: representações paramétricas e implícitas. Plano tangente e vetor normal. Curvaturas média e gaussiana. Visualização de curvas paramétricas e implícitas. Visualização de superfícies.

2. Objetivos da disciplina

Esta disciplina tem como objetivo geral introduzir aos alunos a teoria de curvas e superfícies do ponto de vista diferencial bem como desenvolver habilidade de desenho de curvas e superfícies em ambientes computacionais.

3. Procedimentos de ensino (metodologia)

Serão ministradas aulas teóricas e práticas (em ambiente computacional) acompanhadas de listas de exercícios que incluem exercícios computacionais além dos teóricos.

4. Conteúdo programático detalhado

Datas	Tópico	Realizado
08/02	Apresentação do curso, exemplos e definição informal de curvas.	

12/02	Mais exemplos e softwares gráficos	Lista 1
15/02 e 19/02	Carnaval	
22/02	Curvas regulares no plano	
26/02	Comprimento de Arco e reparametrização – Exemplos e exercícios	Lista 2
01/03	Curvatura – Função ângulo	
05/03	Invariância da curvatura por movimentos Rígidos	Lista 3
08/03	Diedro de Frenet – exercícios computacionais	
12/03	Teorema Fundamental da Teoria Local das curvas planas	
15/03	Centro de curvatura: involutas e evolutas - exercícios	Lista 4
19/03	Curvas regulares no R3	
22/03	Triedro de Frenet e Torsão	
26/03	Plano osculador	Lista 5
29/03	Teorema fundamental da teoria local das curvas espaciais	
02/04	Feriado – Semana Santa	
05 - 12	Semana de A1	
16/04	Superficies regulares	
19/04	Gráficos de funções diferenciáveis	Lista 6
23/04	Feriado – São Jorge	

		
26/04	Superficies de revolução; curva	
	em uma superficie de revolução	
30/04	Superficies regradas	Lista 7
03/05	Plano tangente e Normal	
07/05	Laboratório computacional:	
	Plano tangente e normal	
10/05	Projeção estereográfica	Lista 8
14/05	Primeira forma fundamental	
17/05	Comprimentos de curvas em superfícies	
21/05	Isometrias e mapas conformes	Lista 9
24/05	Superfícies orientáveis	
28/05	Atlas	
31/05	Segunda forma fundamental	Lista 10
04/06	Feriado	
07/06	Curvatura normal	
11/06	Curvaturas: gaussiana, principal e média	
14/06	Exercícios	
16/06 -	Semana de A2	1
22/06		
02/07- 07/07	Semana de AS	

5. Procedimentos de avaliação

As notas de A1 e A2 serão compostas por 40% de nota das listas e 60% da nota da prova a ser aplicada na semana de provas.

6. Bibliografia Obrigatória

- Jorge Picado. "Apontamentos de Geometria Diferencial", Dep. de Matemática, Universidade de Coimbra, 2006.
- Lima, Ronaldo Freire. "Introdução à Geometria Diferncial". IV Colóquio de Matemática da Região Norte. 2016.
- Pressley, Andrew N. Elementary differential geometry. Springer Science & Business Media, 2010.

7. Bibliografia Complementar

- Manfredo do Carmo. "Geometria Diferencial de Curvas e Superfícies", SBM; 2012
- BLOCH, Ethan D. A first course in geometric topology and differential geometry. Springer Science & Business Media, 1997.
- Tenenblat, K., 2008. Introdução à geometria diferencial. Editora Blucher.
- Elsa Abbena, Simon Salamon, Alfred Gray, "Modern Differential Geometry of Curves and Surfaces with Mathematica", Third Edition, CRC Press; 2017
- Vladmir Rovenski, "Modeling of Curves and Surfaces with MATLAB", Springer; 2010

8. Mini currículo do(s) Professor(s)

Professora (Adjunto IV) da Escola de Matemática Aplicada EMAp-FGV/RJ (http://emap.fgv.br). Pós Doutorado pelo Cultural Informatics Research Group da Universidade de Brighton na Inglaterra (2016 e 2012) financiado pela CAPES. Doutora em Ciências, com ênfase em Computação Gráfica, pelo IMPA- Instituto Nacional de Matemática Pura e Aplicada (2006). Mestre em Matemática Aplicada pela UFRJ (2001). Bacharel em Matemática pela UFRJ (1999). Áreas de Pesquisa: Computação Gráfica e Visualização de Informação em aplicações, com ênfase em herança cultural.

9. Link para o Currículo Lattes

http://lattes.cnpg.br/1427153134693867