

· Background

- · Issue & Difficulty
- · Main idea
- · Work flow
 - -Target I/O
 - -Real-word application
 - -Describe
 - -Model

- Increasing complexity of DBMS and data-driven application.
- The advancements of the storage and computational hardware allows self-driving DBMS to be promising.
- The tech of Deep Learning.

Workload

In database, we analyze the number of queries executed by the database in a given period of time.

Issue & Difficulty

Optimization

Determining the Optimization by target application workload is very necessary

Time

The workload trends change over time. How to deal with the different arrival rate queries?

Past Data

If DBMS only consider the behavior of the application in the past, it may cause resource contention.

Previous Work

Previous works are unable to generate an adequate method for an autonomous system.

Ex resource, workload shift

Main idea

Predicting one general model under the different arrival rate.

Reducing the complexity of workload, and not lose the accuracy.

Dealing with the combinational types of queries and changeful queries.

Real-word Database applications

Cycleth Bull Entitles All O O Ons

If only I could predict workload, DBMS could dynamic select the optimization.....

The prediction of workload.

	Admissions	BusTracker	моос
DBMS Type	MySQL	PostgreSQL	MySQL
Num of Tables	216	95	454
Trace Length (Days)	507	58	85
Avg. Queries Per Day	5M	19.9M	1.1M
Num of SELECT Queries	2541M [99.8%]	19.5M [98%]	0.97M [88%]
Num of INSERT Queries	1.8M [0.07%]	15K [0.8%]	14K [1.3%]
Num of UPDATE Queries	2.6M [0.1%]	22K [1%]	66K [6%]
Num of DELETE Queries	0.4M [0.02%]	3K [0.2%]	51K [4.7%]

Table 1: Sample Workloads – Summarization of the workload traces collected from the database applications described in Section 2.1.

How To Describe The Data?

Classify

V.S.

Clustering

What kinds of model is better?

Kernel

Regression?

RNN?

Linear

Regression?

Can we exploit them all?

Sude to the strong less in the interest of the strong less in the stro

Reference

https://zhuanlan.zhihu.com/p/37182849

https://github.com/malin1993ml/QueryBot5000

