Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
	Beschleunigung –	Weg		Beschleunigung –	Kraft		Haftreibung			Gleitreibung	
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
На	aftreibung – Schiefe	e Ebene		Leistung			Wirkungsgrad	d		Radialbeschleuni	gung
DI -:	// 0	M	DI di	// 10	M	DI '	" 11	N. A. I	DI VI	W 10	M) :1
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	Arbeit			potentielle Ene	rgie		kinteische Ener	gie		Kreisfrequen	Z
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
m Kre	isfrequenz Hook'sc	che Feder	ł	narmonische Schwi Beschleunigui	ingung: ng		harmonische Schwir Geschwindigke			harmonische Schwi Auslenkung	

$egin{array}{l} egin{array}{l} egin{array}$	$F_{Gl} = \mu_{Gl} \cdot F_N$ Gleitreibung Gleitreibungskonstante Normalkraft	$egin{array}{l} oldsymbol{\mathrm{F}}_{H} : \ oldsymbol{\mathrm{F}}_{N} : \end{array}$	$F_H = \mu_H \cdot F_N$ Haftreibung Haftreibungskonstante Normalkraft		$x = \frac{1}{2} \cdot a \cdot t^2$ $[m = \frac{m}{s^2} \cdot s^2]$		$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
# 8	Antwort	<u>#</u> 7	Antwort	# 6	Antwort	# 5	Antwort
	$a = \frac{v^2}{r}$ $\left[\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}\right]$		$\eta = \frac{P_{out}}{P_{in}}$		$P = F \cdot v$ $\left[W = N \cdot \frac{m}{s} \right]$ $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3} $		$\mu_H = an lpha$
# 12	Antwort	# 11	Antwort	# 10	Antwort	# 9	Antwort
T: Kreisfre	$\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{\text{rad}}{s}\right]$ equenz (Umlaufzeit)		$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$ $\left[J = kg \cdot \frac{m^2}{s^2} \right]$		$E_{pot} = m \cdot g \cdot h$ $\left[J = kg \cdot \frac{m}{s^2} \cdot m \right]$ $= kg \frac{m^2}{s^2}$		$W = F \cdot s$ $\left[J = N \cdot m \right]$ $= kg \frac{m}{s^2} \cdot m$ $= kg \frac{m^2}{s^2}$
# 16	Antwort	# 15	Antwort	# 14	Antwort	# 13	Antwort
	$y(t) = y_0 \cdot \sin \omega t$		$v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m} \right]$		$= -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $= s^{-2} \cdot m$	D: Federko	$\omega = \sqrt{\frac{D}{m}}$ $\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}} \right]$ enstante

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik	Physik	# 20	Mechanik
	potentielle Energie Hook'sche Feder		Kraft Hook'sche Feder			Inelastischer Stoß			Elastischer Stoß		
Physik	# 21	Mechanik	Physik	# 22	Mechanik	Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Drehimpuls		Kinetisc	che Energie Dre	ehbewegung		Impuls		K	Kreisfrequenz Fader	npendel
Physik	# 25	Mechanik	Physik	# 26	Mechanik	Physik	# 27	Mechanik	Physik	# 28	Mechanik
	Trägheitsmoment Stab um Schwerpunkt				Trägh	Trägheitsmoment Hohlzylinder			Transformation Geschwindigkeit – Winkelgeschwindigkeit		
Physik	# 29	Mechanik	Physik	# 30	Mechanik	Physik	# 31	Mechanik	Physik	# 32	Mechanik
	Trägheitsmoment I	Kugel	Träg	gheitsmoment S Stabende	Stab um		Leistung Transla	tion		Drehmoment	;

# 20	Antwort	<u># 19</u>	Antwort	<u># 18</u>	Antwort	# 17	Antwort	
	$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$ $v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$		$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$		$F = D \cdot x$ $\left[N = \frac{N}{m} \cdot m \right]$		$W = \frac{1}{2} \cdot D \cdot x^2 = E_{pot}$ $\left[J = \frac{N}{m} m^2 \right]$ $= \frac{kg \frac{m}{s^2}}{m} \cdot m^2$ $= kg \frac{m^2}{s^2}$	
# 24	Antwort	<u># 23</u>	Antwort	<u># 22</u>	Antwort	<u># 21</u>	S ²] Antwort	
	$\omega = \sqrt{rac{g}{l}}$		$p = m \cdot v$		$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^2$		$L=\vartheta\cdot\omega$	
Nur bei α	< 5°							
# 28	Antwort	<u># 27</u>	Antwort	# 26	Antwort	# 25	Antwort	
	$v=r\cdot\omega$		$\vartheta = m \cdot r^2$		$\vartheta = \frac{1}{2} \cdot m \cdot r^2$		$\vartheta = \frac{1}{12} \cdot m \cdot L^2$	
<u># 32</u>	Antwort	<u># 31</u>	Antwort	<u># 30</u>	Antwort	<u># 29</u>	Antwort	
	$M = F \cdot r$		$P = F \cdot v = M \cdot \omega$		$\vartheta = \frac{1}{3} \cdot m \cdot L^2$		$\vartheta = \frac{2}{5} \cdot m \cdot r^2$	

Physik	# 33	Mechanik	Physik	# 34	Mechanik	Physik	# 35	Mechanik	Physik	# 36	Mechanik
Kreisfrequenz Drehschwingung		Rückstellmoment Drehschwingung			Präzessionsfrequenz			Satz von Steiner			
Physik	# 37	Mechanik	Physik	# 38	Mechanik	Physik	# 39	Mechanik	Physik	# 40	Mechanik
1 Hysik	# 51	Wedianik	1 Hysik	# 90	Wechanik	1 Hysik	# 39	Wechank	1 Hysik	# 40	Wednamk
(Gravitationspote	ential	po	t. Energie Gravi	itation		Gravitationfelds	tärke		Gravitationskr	aft
Physik	# 41	Mechanik	Physik	# 42	Mechanik	Physik	# 43	Mechanik	Physik	# 44	Mechanik
Erhal	tungssätze der k Physik	llassischen		Corioliskraft			Keplersche Ges	etze		Planeten	
Physik	# 45	Mechanik	Physik	# 46	Mechanik	Physik	# 47	Mechanik	Nutzungshinwe	eis # 48	Lizenz
									Hinw	eise zur Nutzur Karteilernkart	ng dieser en

<u>-</u>
$w=\sqrt{rac{D}{artheta}}$
'
'
'
7 Antwort
$\gamma - \gamma \cdot m$
$arphi = -rac{\gamma \cdot m}{r}$
'
,
,
1 Antwort
=
, ,
5 Antwort
=
1