STAT 231: Statistics

Charles Shen

Spring 2016, University of Waterloo Formulas and Notes.

Assume all \log are in base e unless specified.

I've tried to use ln for consistency, but there may be a few inconsistency.

Contents

1	Sta	tistical Models and Maximum Likelihood Estimation	•
	1.1	Likelihood Function for Binomial Distribution	,
	1.2	Likelihood Function for Poisson Distribution	,
	1.3	Likelihood Function for Exponential Distribution	;
	1.4	Likelihood Function for Gaussian Distribution	
	1.5	Invariance Property of Maximum Likelihood Estimates	;
2	Estimation		4
	2.1	Confidence Intervals and Pivotal Quantities	
	2.2	Chi-Squared Distribution $\sim X_k^2$	
	2.3	Student's t Distribution	,
	2.4	Likelihood-Based Confidence Intervals	,
	2.5	Confidence Intervals for Parameters in the $G(\mu, \sigma)$ Model	(

1 Statistical Models and Maximum Likelihood Estimation

Definition. The **relative likelihood function** is defined as

$$R(\theta) = \frac{L(\theta)}{L(\hat{\theta})}$$
 for $\theta \in \Omega$

Note that $0 \le R(\theta) \le 1$ for all $\theta \in \Omega$.

Definition. The log likelihood function is defined as

$$l(\theta) = \ln L(\theta)$$
 for $\theta \in \Omega$

1.1 Likelihood Function for Binomial Distribution

The maximum likelihood estimate of θ is $\bar{\theta} = y/n$.

1.2 Likelihood Function for Poisson Distribution

The value $\theta = \bar{y}$ maximizes $l(\theta)$ and so $\hat{\theta} = \bar{y}$ is the maximum likelihood estimate of θ .

1.3 Likelihood Function for Exponential Distribution

The value $\theta = \bar{y}$ maximizes $l(\theta)$ and so $\hat{\theta} = \bar{y}$ is the maximum likelihood estimate of θ for an Exponential Distribution $\sim Exp(\theta)$.

1.4 Likelihood Function for Gaussian Distribution

The maximum likelihood estimate of θ is $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$, where

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y} \text{ and } \hat{\sigma} = \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \right]^{1/2}$$

Note that $\hat{\sigma} \neq \sigma$ (sample variance).

1.5 Invariance Property of Maximum Likelihood Estimates

Theorem. If $\hat{\theta}$ is the maximum likelihood estimate of θ , then $g(\hat{\theta})$ is the maximum likelihood estimate of $g(\theta)$.

2 Estimation

2.1 Confidence Intervals and Pivotal Quantities

In general, construct a pivot using the estimator, use that to construct coverage interval, estimate it and find the confidence interval.

Theorem. Central Limit Theorem

If n is large, and if Y_1, \ldots, Y_n are drawn from a distribution with mean μ and variance σ^2 , then $\bar{Y} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$.

For a Binomial Distribution, the confidence interval is

$$\left[\hat{\pi} \pm z^* \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}} \right]$$

where $\hat{\pi} = \frac{y}{n}$, y is the observed data.

To determine the sample size

$$n \ge \left(\frac{z^*}{MoE}\right)^2 \hat{\pi} (1 - \hat{\pi})$$

where MoE is the margin of error.

To be conservative, we usually pick $\hat{\pi} = 0.5$ as it maximizes $\hat{\pi}(1 - \hat{\pi})$.

2.2 Chi-Squared Distribution $\sim X_k^2$

Properties of the Gamma Function:

- $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- $\Gamma(\alpha) = (\alpha 1)!$
- $\Gamma(1/2) = \sqrt{\pi}$

For $X \sim X_k^2$

- E(X) = k and Var(X) = 2k
- If k = 1, $W = Z^2$ and $Z \sim G(0, 1)$
- If k = 1, $W \sim Exp(2)$ $(\theta = 2)$
- If k is large, $W \stackrel{Appr.}{\sim} N(k, 2k)$
- Let X_{k_1}, X_{k_1} be independent random variables with $X_{k_i} \sim X_{k_i}^2$. Then $X_{k_1} + X_{k_2} = X_{k_1+k_2}^2$.

2.3 Student's t Distribution

Properties of T:

- i) Range of $T: (-\infty, \infty)$
- ii) T is symmetric around 0
- iii) As $k \uparrow$, $T \to Z$

Theorem. Suppose $Z \sim G(0,1)$ and $U \sim X_k^2$ independently. Let

$$T = \frac{Z}{\sqrt{U/k}}$$

$$\rightarrow \frac{\bar{Y} - M}{s / \sqrt{n}} \sim t_{n-1}$$

Then T has Student's t distribution with k degrees of freedom.

2.4 Likelihood-Based Confidence Intervals

Theorem. A 100p% likelihood interval is an approximate 100q% where $q = 2P(Z \le \sqrt{-2 \ln p}) - 1$ and $Z \sim N(0, 1)$.

Example 2.1. Show that a 1% likelihood interval is an approximate 99.8% confidence interval.

Note that p = 0.01

$$q = 2P(Z \le \sqrt{-2\ln(0.01)}) - 1$$

$$\approx 2P(Z \le 3.03) - 1$$

$$= 2(0.99878) - 1$$

$$= 0.998 = 99.8\%$$

Theorem. If a is a value such that

$$P = 2P(Z \le a) - 1 \ where \ Z \sim N(0, 1)$$

then the likelihood interval $\{\theta: R(\theta) \geq e^{-a^2/2}\}$ is an approximate 100p% confidence interval.

2.5 Confidence Intervals for Parameters in the $G(\mu, \sigma)$ Model

If Y_1, \ldots, Y_n are independent $N(\mu, \sigma^2)$, then

$$\frac{\bar{Y} - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim X_{n-1}^2$$

General Rule:

The Confidence Interval for μ if σ is unknown is

$$\left[\bar{y} \pm t^* \frac{s}{\sqrt{n}} \right]$$

When σ is unknown, we replace σ by its estimate s, and we use t-pivot. Confidence interval when σ is known is

$$\left[\bar{y} \pm z^* \frac{\sigma}{\sqrt{n}} \right]$$

When σ is known, we use z-pivot.

If n is really large, then the t^* value converges to the corresponding z^* value (by Central Limit Theorem).

Prediction Interval for a Future Observation

Suppose that $Y \sim G(\mu, \sigma)$, then

$$Y - \widetilde{\mu} = Y - \overline{Y} \sim N\left(0, \sigma^2\left(1 + \frac{1}{n}\right)\right)$$

Also

$$\frac{Y - \bar{Y}}{S\sqrt{1 + \frac{1}{n}}} \sim t_{n-1}$$

is a pivotal quantity which can be used to obtain an interval of values for Y. Let a be a value such that $P(-a \le T \le a) = p$ or $P(T \le a) = (1+p)/2$ which is obtained from tables. Thus

$$\left[\bar{y} \pm as\sqrt{1 + \frac{1}{n}} \right]$$