Topics in Computational Economics

Lecture 8

John Stachurski

NYU 2016

Today's Lecture

- Metric space
- Banach space
- Fixed point theorems
- Some other stuff

Comments:

- Please pick up your homework after class
- Class projects are due June 3

Motivation

Here's a typical example of why we need functional analysis

The risk-neutral price of a random payoff G_{t+1} at t+1 is

$$p_t = \beta \mathbb{E} \left[G_{t+1} \, \middle| \, \mathscr{F}_t \right]$$

Here $\beta \in (0,1)$ is a discount factor

Now suppose we're pricing a claim to a dividend flow $\{D_t\}$

The same formula gives

$$p_t = \beta \mathbb{E} \left[D_{t+1} + p_{t+1} \, \middle| \, \mathscr{F}_t \right]$$

Assume $D_t = d(X_t)$ for some state process $\{X_t\}$

Let $q(x,\cdot)$ be the density of X_{t+1} given $X_t = x$

Guess that $p_t = p(X_t)$ for some unknown function p

If p exists, it must satisfy

$$p(X_t) = \beta \mathbb{E} \left[d(X_{t+1}) + p(X_{t+1}) \mid \mathscr{F}_t \right]$$

or

$$p(x) = \beta \int [d(y) + p(y)]q(x,y)dy \qquad (x \in \mathbb{R})$$

But does such a function always exist? Is it unique? How to compute it?

To answer these questions we use functional analysis

Metric Space

Let M be any nonempty set

A function $\rho \colon M \times M \to \mathbb{R}$ is called a **metric** on M if

- 1. $\rho(x,y) \geqslant 0$ and $\rho(x,y) = 0 \iff x = y$
- $2. \ \rho(x,y) = \rho(y,x)$
- 3. $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$

for any $x, y, z \in M$

Together, (M, ρ) is called a **metric space**

Example. \mathbb{R}^n with $\rho(x,y) = ||x-y||$ is a metric space

Example. Consider the **discrete metric** on \mathbb{R}^n given by

$$\rho(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Let's check it satisfies the triangle inequality

Pick any $x, y, z \in \mathbb{R}^n$

We claim that $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$

If x = y, the bound is trivial, so suppose not

We need to show that $1 \leqslant \rho(x,z) + \rho(z,y)$

If not, then $\rho(x,z) + \rho(z,y) = 0$, so x = z and y = z

Hence x = y — a contradiction

Standard defs:

• The ϵ -ball around $x \in M$ is the set

$$B_{\epsilon}(x) := \{ y \in M : \rho(x, y) < \epsilon \}$$

• $\{x_n\} \subset M$ converges to $x \in M$ if

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } n \geqslant N \implies x_n \in B_{\epsilon}(x)$$

• $x \in A \subset M$ is called **interior** to A if

$$\exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(x) \subset A$$

Standard defs:

- $G \subset M$ called **open** if every $x \in G$ is interior to G
- $F \subset M$ called **closed** if

$$\{x_n\} \subset F \text{ and } x_n \to x \in M \implies x \in F$$

 K ⊂ M called compact if every sequence in K has a subsequence converging to a point in K

Example. If $(M,\rho)=(\mathbb{R}^n,\|\cdot\|)$, then K is compact if and only if K is closed and bounded

A sequence $\{x_n\} \subset M$ is called **Cauchy** if

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } n, m \geqslant N \implies \rho(x_n, x_m) < \epsilon$$

Example. If $M = \mathbb{R}$, $\rho(x,y) = |x-y|$ and $x_n = 1/n$, then $\{x_n\}$ is Cauchy

A metric space (M,ρ) called **complete** if every Cauchy sequence in M converges to some point in M

Theorem Ordinary Euclidean space $(\mathbb{R}^n, \|\cdot\|)$ is complete

Ex. Show that if M=(0,1] and $\rho(x,y)=|x-y|$, then (M,ρ) is not complete

Essential Facts

Let (M, ρ) be any metric space

- 1. A set G is open in M if and only if G^c is closed in M
- 2. Every singleton set in M is closed
- 3. Arbitrary unions and finite intersections of open sets in ${\cal M}$ are open in ${\cal M}$
- 4. Arbitrary intersections and finite unions of closed sets in ${\cal M}$ are closed in ${\cal M}$
- 5. If (M, ρ) is complete and $C \subset M$ is closed, then (C, ρ) is itself a complete metric space

Continuous Functions

Let (M,σ) and (Y,τ) be two metric spaces and let $f\colon M\to Y$ We call f continuous at $x\in M$ if

$$x_n \to x \text{ in } (M, \sigma) \implies f(x_n) \to f(x) \text{ in } (Y, \tau)$$

We call f continuous on M if f is continuous at all $x \in M$

Theorem. $f: M \to Y$ is continuous on M if and only if

$$G$$
 open in (Y,τ) \implies $f^{-1}(G)$ open in (M,σ)

Theorem. If f is continuous on M and $K\subset M$ is compact, then the image set f(K) is compact on Y

Let S be any set and let $\mathbb{R}^S :=$ the set of all functions $f : S \to \mathbb{R}$

Example. If $b\mathbb{R}^S := \mathsf{all}$ bounded $f \in \mathbb{R}^S$ and

$$d_{\infty}(f,g) := \sup_{x \in S} |f(x) - g(x)|$$

then $(b\mathbb{R}^S,d_\infty)$ is a metric space

Ex. Prove it

Fact. $(b\mathbb{R}^S, d_{\infty})$ is complete

Fact. $cb\mathbb{R}^S:=$ all continuous $f\in b\mathbb{R}^S$ is closed in $(b\mathbb{R}^S,d_\infty)$

Hence $(cb\mathbb{R}^S, d_{\infty})$ is complete

Example.

Let $\mathscr{C} := \mathsf{all}$ continuously differentiable $f \colon [-1,1] \to \mathbb{R}$

As before let

$$d_{\infty}(f,g) := \sup_{x \in S} |f(x) - g(x)|$$

The set $\mathscr C$ is **not** a closed subset of $(b\mathbb R^S,d_\infty)$

Ex.

• Show that $d_{\infty}(f_n, f) \to 0$ as $n \to \infty$ when

$$f_n(x) := (x^2 + 1/n)^{1/2}$$
 and $f(x) := |x|$

• Conclude that $(\mathscr{C}, d_{\infty})$ is not closed

Example. Let S be any countable set, let $p \ge 1$ and let

$$\ell_p(S) := \left\{ \text{ all } f \in \mathbb{R}^S \text{ with } \sum_{x \in S} |f(x)|^p < \infty \right\}$$

Let

$$d_p(f,g) := \|f - g\|_p := \left\{ \sum_{x \in S} |f(x) - g(x)|^p \right\}^{1/p}$$

Theorem.

- 1. d_p is a metric on $\ell_p(S)$
- 2. $(\ell_p(S), d_p)$ is complete

Proof: See Cheney, section 8.7

Note that $(\ell_p(S), d_p)$ is an extension of ordinary Euclidean space

Indeed, suppose $S = \{1, ..., n\}$ and let p = 2

For $f, g \in \ell_2(S)$, we have

$$d_2(f,g) = \left\{ \sum_{i \in S} |f(i) - g(i)|^2 \right\}^{1/2}$$

$$= \left\{ \sum_{i=1}^n |f_i - g_i|^2 \right\}^{1/2} \qquad (f_i := f(i), g_i := g(i))$$

This is the Euclidean distance between vectors (f_i) and (g_i)

Closed subset of $\ell_p(S)$ include

- 1. the positive cone $\{f \in \ell_p(S) : f \geqslant 0\}$
- 2. the sphere $\{f \in \ell_p(S) : ||f||_p \le 1\}$
 - Remark: $f \geqslant 0$ means $f(s) \geqslant 0$, for all $s \in S$

Ex. (Proof of 1) Show that for any $\{f_n\} \subset \ell_p(S)$, we have

$$d_p(f_n, f) \to 0 \implies f_n(s) \to f(s) \text{ in } \mathbb{R}, \forall s \in S$$

Show that $\{x_n\}\subset\mathbb{R}$, $x_n\to x$ and $x_n\geqslant 0$ for all n implies $x\geqslant 0$

Conclude that 1 holds

Equivalence

Two metrics ρ and ρ' on M are called **equivalent** if there exist constants K, L such that, for all $x,y\in M$

$$\rho'(x,y) \leqslant K\rho(x,y)$$
 and $\rho(x,y) \leqslant L\rho'(x,y)$

Fact. If (M, ρ) and (M, ρ') are equivalent, then they share the same

- convergent sequences
- Cauchy sequences
- open sets
- closed sets
- · compact sets, etc.

Ex. Prove it

Banach Space

Most metric spaces of interest in econ arise as either

- a Banach space
- some subset of a Banach space
- some transformation of a Banach space

Relative to metric spaces, Banach spaces have

- an additional algebraic structure
- some nice additional properties

Let V be a nonempty set with a notion of

- addition (a map + from $V \times V$ to V)
- scalar multiplication (a map \cdot from $\mathbb{R} imes V$ to V)

Called a **vector space** if, $\forall u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$,

- 1. u + (v + w) = (u + v) + w
- 2. u + v = v + u
- 3. exists an element $0 \in V$ s.t. u + 0 = u for all $u \in V$
- 4. $\forall u \in V$, $\exists v \in V$ s.t. u + v = 0
- 5. $\alpha(\beta u) = (\alpha \beta)u$
- 6. 1u = u
- 7. $\alpha(u+v) = \alpha u + \alpha v$
- 8. $(\alpha + \beta)u = \alpha u + \beta u$

Example. \mathbb{R}^n with usual notions of addition and scalar multiplication

• the zero element is the origin

Example. The set of $n \times n$ real matrices with usual notions of addition and scalar multiplication

the zero element is the matrix of zeros

Example. The set \mathbb{R}^S of all functions $f \colon S \to \mathbb{R}$ with

$$(f+g)(x) = f(x) + g(x)$$
 and $(\alpha f)(x) = \alpha f(x)$

• the zero element is the function identically zero

If V is a vector space and $U \subset V$ satisfies

$$\alpha, \beta \in \mathbb{R} \text{ and } u, v \in U \implies \alpha u + \beta v \in U$$

then U is called a **linear subspace of** V

Example. If S is any set, then $b\mathbb{R}^S$ is a linear subspace of \mathbb{R}^S

Example. If S is a metric space, then $c\mathbb{R}^S$ is a linear subspace of \mathbb{R}^S

Fact. If V is a vector space and U is a linear subspace of V, then U itself is a vector space

Let V be a vector space

A map $\|\cdot\| \colon V \to \mathbb{R}$ is called a **norm** on V if, for all $u,v \in V$ and $\alpha \in \mathbb{R}$,

- 1. $||u|| \geqslant 0$ and ||u|| = 0 if and only if u = 0
- $2. \|\alpha u\| = |\alpha| \|u\|$
- 3. $||u+v|| \le ||u|| + ||v||$

Example. The Euclidean norm on \mathbb{R}^n is a norm in this sense

Ex. Show: $\rho(u,v) = \|u-v\|$ is a metric on V (induced metric)

The pair $(V, \|\cdot\|)$ is called a **normed linear space**

If complete under the induced metric then called a Banach space

Example. \mathbb{R}^n with the Euclidean norm is a Banach space

Example. The set $b\mathbb{R}^S$ is a Banach space under the norm

$$||f||_{\infty} := \sup_{x \in S} |f(x)|$$

Example. The set $cb\mathbb{R}^S$ of continuous functions in $b\mathbb{R}^S$ is a Banach space under the same norm

Example. The space $\ell_p(S)$ is a Banach space under the norm

$$||f||_p := \left[\sum_{x \in S} |f(x)|^p\right]^{1/p}$$

Equivalence

Norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on V are called **equivalent** if $\exists K, L \geqslant 0$ such that

$$||v||_1 \leqslant K||v||_2$$
 and $||v||_2 \leqslant L||v||_1$ for all $v \in V$

Ex. Show that if two norms on V are equivalent then so are the induced metrics

Thm. Any two norms on finite dimensional space are equivalent

Hence, if two metrics on \mathbb{R}^n are both induced by a norm, then they share

- open sets, closed sets,
- compact sets, etc.

Fixed Point Theorems

Let (M, ρ) be a metric space and let $T: M \to M$

A fixed point of T is a point $x^* \in M$ such that $Tx^* = x^*$

Example. If $f(x) = x^2$ on \mathbb{R} , then 0 and 1 are fixed points

Example. If f(x) = x + 1 on \mathbb{R} , then f has no fixed points on \mathbb{R}

The map T is called a **uniform contraction** on (M, ρ) if

$$\exists \alpha < 1$$
 such that $\rho(Tx, Ty) \leqslant \alpha \rho(x, y), \forall x, y \in M$

Example. $f(x) = \alpha x + b$ on metric space $(\mathbb{R}, |\cdot|)$ with $|\alpha| < 1$, since

$$|f(x) - f(y)| = |\alpha x - \alpha y| = |\alpha||x - y|$$

Fact. Every uniform contraction T is continuous on M

Proof: If $x_n \to x$ in (M, ρ) , then

$$\rho(Tx_n, Tx) \leqslant \alpha \rho(x_n, x) \to 0$$

Fact. If T is a uniform contraction on (M, ρ) and $x \in M$, then the trajectory $\{T^k x\}$ is Cauchy

Sketch of proof: Along the trajectory $\{T^kx\}$ from x, we have

$$\rho(T^{k+1}x, T^kx) \leqslant \alpha \rho(T^kx, T^{k-1}x)$$

$$\leqslant \alpha^2 \rho(T^{k-1}x, T^{k-2}x)$$

$$\vdots$$

$$\leqslant \alpha^k \rho(Tx, x)$$

Banach's Fixed Point Theorem

Theorem. If (M, ρ) is complete and T is a uniform contraction, then T has a unique fixed point x^* in M and

$$\rho(T^k x, x^*) \leqslant \alpha^k \rho(x, x^*), \quad \forall k \in \mathbb{N}, \forall x \in M$$

Proof sketch: Pick any $x \in M$

The sequence $\{T^kx\}$ is Cauchy and hence converges to some x^*

The point x^* is a fixed point, since

$$Tx^* = T(\lim_k T^k x) = \lim_k T(T^k x) = \lim_k T^{k+1} x = x^*$$

The fixed point is unique (proof in weaker setting below)

Higher Order Contractions

Theorem. If (M, ρ) is complete and T^n is a uniform contraction for some $n \in \mathbb{N}$, then

- 1. T has a unique fixed point x^* in M
- 2. $T^k x \to x^*$ as $k \to \infty$ for all $x \in M$ (i.e., globally stable f.p.)

Partial proof: By Banach fixed point theorem, T^n has a fixed point x^* in M

In fact x^* is also a fixed point of T, since

$$\rho(Tx^*, x^*) = \rho(TT^n x^*, T^n x^*) = \rho(T^n Tx^*, T^n x^*) \leqslant \alpha \rho(Tx^*, x^*)$$

$$\rho(Tx^*, x^*) = 0$$

Dropping Uniformity

T is called **contracting** on (M, ρ) if

$$\rho(Tx, Ty) < \rho(x, y), \quad \forall x \neq y$$

Clearly weaker than

$$\exists \alpha < 1 \text{ s.t. } \rho(Tx, Ty) \leqslant \alpha \rho(x, y), \quad \forall x, y \in M$$
 (1)

Note: Contracting does not imply existence of a fixed point Example.

- $M = [0, \infty)$ with $\rho(x, y) = |x y|$
- $Tx = x + e^{-x}$

Let T be contracting on (M, ρ)

Theorem. If M is compact, then T has a unique, globally stable fixed point $x^* \in M$

Proof of uniqueness: Suppose that

- x, y are both fixed points
- x and y are distinct

Then

$$\rho(Tx, Ty) = \rho(x, y)$$
 and $\rho(Tx, Ty) < \rho(x, y)$

Contradiction

Proof of existence:

Define $r: M \to \mathbb{R}$ by $r(x) = \rho(Tx, x)$

Ex. Show that r is continuous

• Hint: First show $|\rho(x,y)-\rho(x',y')|\leqslant \rho(x,x')+\rho(y,y')$

Since M is compact, r has a minimizer x^* in M

We claim that $Tx^* = x^*$

Must be true, because if not then

$$r(Tx^*) = \rho(T^2x^*, Tx^*) < \rho(Tx^*, x^*) = r(x^*)$$

Contradiction

Lagrange Stability and Contractions

What if M is not compact?

A map $T: M \to M$ is called **Lagrange stable** if the trajectory of x is precompact for every $x \in M$.

ullet $B\subset M$ called **precompact** if it is contained in a compact set

Example.

• Lagrange stability of Tx = ax depends on $|a| \leqslant 1$ or > 1

Theorem. If T is Lagrange stable and contracting on (M,ρ) , then T has a unique and globally stable fixed point in M

Sketch of proof:

Pick $x \in M$

Let $\Gamma(x)$ be the closure of the trajectory of x

By Lagrange stability, $\Gamma(x)$ is compact

Ex: Show that T maps $\Gamma(x)$ into itself

Note that T is contracting on $\Gamma(x)$

Hence a fixed point exists in $\Gamma(x)$

The fixed point is unique because T is contracting on all of M

