Санкт-Петербургский национальный исследовательский институт информационных технологий, механики и оптики

Физический факультет

ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1.14 "Изучение колебаний струны"

Группа: Z3143 К работе допущен:

Студент: Мицай Станислав Работа выполнена:

Преподаватель: Лабунцов Виктор Отчет принят:

1 Цель работы

- Наблюдение поперечных стоячих волн на тонкой натянутой струне.
- Экспериментальное определение зависимости собственных частот поперечных колебаний от номера гармоники и силы натяжения струны.

2 Задачи, решаемые при выполнении работы

- Измерить значения резонансных частот колебаний струны в режиме формирования стоячих волн. Рассчитать значения скорости волны и погонной плотности струны при известной силе её натяжения.
- Провести прямое измерение массы и длины струны, непосредственно определить её погонную плотность. Сравнить полученные значения погонных плотностей ρ_l .

3 Объект исследования

• Колебания струны.

4 Метод экспериментального исследования

• Многократные косвенные измерения линейной плотности струны.

5 Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый	Погрешность	
		тип приоора	диапазон	прибора	
1	Рулетка	аналоговый	0 - 2 м	1 мм	
2	Весы лабораторные	аналоговый	0 - 10 г	0,05 г	

6 Схема экспериментальной установки

Рис. 1: Элементы лабораторной установки

На рис. 1 показан комплект оборудования, входящий в состав лабораторной установки:

- Механический вибратор
- Генератор гармонических сигналов
- Рулетка
- Эластичная (белая) и неэластичная (зелёная) струны

- Струбцины для крепления вибратора и опорного блока
- Опорный блок
- Стержень для крепления вибратора

7 Рабочие формулы

• Средняя угловая скорость:

Линейная (погонная) плотность струны ρ_l - отношение массы струны m к её длине l:

$$\rho_l = \frac{m}{l} \tag{1}$$

Скорость распространения поперечной бегущей волны и малой амплитуды зависит от линейной плотности струны ρ_l и силы натяжения \vec{T} :

$$u = \sqrt{\frac{T}{\rho_l}} \tag{2}$$

Резонансные частоты f_n для каждой гармоники

 п струны равны:

$$f_n = \frac{\omega_n}{2\pi} = \frac{k_n u}{2\pi} = \frac{un}{2l},\tag{3}$$

где k - любое натуральное число.

Уравнение для вертикального положения у струны в горизонтальном положении х при приближении частоты ω к резонансной:

$$y(x,t) = A\sin(\omega t)\sin(kx) = A\sin(\frac{\pi n}{l}x)\sin(\frac{u\pi n}{l}t)$$
(4)

Сила натяжения струны T при массе груза m, действующей на струну под действием ускорения свободного падения g.

$$T = mg (5)$$

Теоретически зависимость квадрата резонансной частоты f^2 струны от силы её натяжения Т является линейной, поэтому найти линейный коэффициент зависимости $\alpha = \frac{4}{l^2 \rho_l}$ можно по методу наименьших квадратов. Суть метода описывается следующими формулами:

■ Средние значения измеренных величин х и у найдём по формулам:

$$\overline{x} = \frac{1}{n} \sum x_i, \quad \overline{y} = \frac{1}{n} \sum y_i \tag{6}$$

■ Коэффициенты прямой а и b рассчитываем по формулам:

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}, \quad a = \overline{y} - b\overline{x}$$
 (7)

 \blacksquare Параметры D и d_i для расчёта погрешностей найдём следующим образом:

$$d_i = y_i - (a + bx_i), \quad D = \sum (x_i - \overline{x})^2$$
(8)

■ Наконец можно найти среднеквадратичное отклонение для коэффициентов а и b:

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2} \tag{9}$$

■ Погрешность измерения величины у можно найти по формуле:

$$\delta_y = \sqrt{(2S_a)^2 + (2S_b x)^2} \tag{10}$$

Линейная плотность струны рассчитывается по формуле:

$$\rho_l = \frac{4}{\alpha l^2} \tag{11}$$

8 Результаты измерений и их обработки (таблицы, примеры расчетов)

Часть 1: Определение линейной плотности струны

По формуле (5) рассчитаем силу натяжения струны Т для каждой массы груза и построим на основе полученных данных зависимость квадрата резонансной частоты струны от силы натяжения нити. Полученные графики представлены в разделе (9).

Таблица 1: Определение линейной плотности струны.

Струна №1				Струна №2			
т, г	f, Гц	f^2 , Γ ц 2	Т, Н	т, г	f, Гц	f^2 , Γ ц 2	Т, Н
50	22.9	524	0.49	50	36.9	1361	0.49
100	31.3	979	0.98	100	51.8	2683	0.98
150	38.1	1451	1.47	150	62.7	3931	1.47
200	44.3	1962	1.96	200	72.0	5184	1.96
250	50.9	2590	2.46	250	80.0	6400	2.46
$\rho_l \pm \Delta \rho_l = (3, 8 \pm 0, 6) \frac{\Gamma}{M}$			$\rho_l \pm \Delta \rho_l = (1, 6 \pm 0, 1) \frac{\Gamma}{M}$				

Часть 2: Определение скорости волны

Найдём резонансные частоты для каждой гармоники для каждой струны:

Таблица 2: определение скорости волны эластичной струны

	$m_1 = 120$ г	$m_2 = 150 \ \Gamma$	$m_3 = 180 \; \Gamma$	$m_4 = 210 \ \Gamma$	$m_5 = 240 \ \Gamma$	$m_6 = 270 \ \Gamma$
n	$T_1 = 1.18 \text{ H}$	$T_2 = 1.47 \text{ H}$	$T_3 = 1.77 \text{ H}$	$T_4 = 2.06 \text{ H}$	$T_5 = 2.36 \text{ H}$	$T_6 = 2.65 \text{ H}$
1	8.8	10.0	10.8	11.3	12.1	13.1
2	18.5	19.1	20.8	22.5	23.8	25.7
3	27.7	29.8	33.7	36.3	38.6	41.1
4	35.3	38.9	43.7	47.2	49.6	53.8
5	44.1	48.6	52.9	58.8	62.7	66.7
	$u_1 = 8.74 \frac{\text{M}}{\text{c}}$	$u_1 = 9.7 \frac{M}{C}$	$u_1 = 10.71 \frac{\text{M}}{\text{c}}$	$u_1 = 11.97 \frac{\text{M}}{\text{c}}$	$u_1 = 12.7 \frac{\text{M}}{\text{c}}$	$u_1 = 13.53 \frac{\text{M}}{\text{c}}$

Таблица 3: определение скорости волны неэластичной струны

	$m_1 = 120 \; \Gamma$	$m_1 = 150 \; \Gamma$	$m_1 = 180 \; \Gamma$	$m_1 = 210 \; \Gamma$	$m_1 = 240$ г	$m_1 = 270 \; \Gamma$
n	$T_1 = 1.18 \text{ H}$	$T_1 = 1.47 \text{ H}$	$T_1 = 1.77 \text{ H}$	$T_1 = 2.06 \text{ H}$	$T_1 = 2.36 \text{ H}$	$T_1 = 2.65 \text{ H}$
1	13.8	15.3	16.8	18.0	19.3	20.4
2	27.7	31.0	34.2	37.5	40.1	42.4
3	42.2	46.7	51.3	56.6	59.1	62.7
4	56.3	62.4	68.4	73.9	78.7	83.6
5	70.6	78.5	85.6	92.4	98.6	104.4
	$u_1 = 14.22 \frac{M}{c}$	$u_1 = 15.78 \frac{M}{c}$	$u_1 = 17.18 \frac{M}{c}$	$u_1 = 18.52 \frac{M}{c}$	$u_1 = 19.72 \frac{M}{c}$	$u_1 = 20.92 \frac{M}{c}$

9 Примеры расчетов, обработки данных

Часть 1: Определение линейной плотности струны

По формуле (1) рассчитаем линейную плотность обеих струн:

$$ho_l = rac{m}{l} = rac{8,3\Gamma}{2_{
m M}} = 4,15 \; rac{\Gamma}{{
m M}}$$
 для эластичной струны

$$ho_l=rac{m}{l}=rac{2,2\Gamma}{1,42{ ext{M}}}=1,57\;rac{\Gamma}{ ext{M}}$$
 для неэластичной струны

С помощью метода наименьших квадратов и формул (6)-(10) найдём линейный коэффициент зависимости квадрата резонансной частоты от силы натяжения струны и его погрешность:

$$\alpha = (10, 4 \pm 1, 7) \; \text{м}^{-1} \cdot \Gamma^{-1} \;\;\;$$
 для эластичной струны

$$\alpha = (25, 6 \pm 1, 2) \text{ м}^{-1} \cdot \text{г}^{-1}$$
 для неэластичной струны

С помощью формулы (11) найдём экспериментальные значения линейной плотности струн, исходя из полученных значений параметра α :

$$\rho_l = \frac{m}{l} = (3, 8 \pm 0, 4) \frac{\Gamma}{M}$$
 для эластичной струны

$$ho_l = rac{m}{l} = (1, 56 \pm 0, 05) \; rac{\Gamma}{_{
m M}} \;\;$$
для неэластичной струны

Часть 2: Определение скорости волны

Построим графики зависимости резонансной частоты от номера гармоники при разных силах натяжения струны. Полученные графики представлены в разделе 10. Линейные коэффициенты зависимости при этом будут равны скоростям волны при разных величинах Т.

Исходя из полученных данных и формулы (2) можем получить значения линейной плотности обеих струн:

$$\rho_l = \frac{m}{l} = (3, 4 \pm 0, 6) \frac{\Gamma}{M}$$
 для эластичной струны

$$ho_l = rac{m}{l} = (1,57 \pm 0,03) \; rac{\Gamma}{ ext{M}} \;\;$$
для неэластичной струны

10 Графики

Рис. 2: график зависимости квадрата резонансной частоты от силы натяжения нити для эластичной струны

Рис. 3: график зависимости квадрата резонансной частоты от силы натяжения нити для неэластичной струны

Рис. 4: график зависимости резонансной частоты струны от номера гармоники при разной силе натяжения эластичной струны

Рис. 5: график зависимости резонансной частоты струны от номера гармоники при разной силе натяжения неэластичной струны

Рис. 6: график зависимости квадрата скорости распространения волны от силы натяжения эластичной струны

Рис. 7: график зависимости квадрата скорости распространения волны от силы натяжения неэластичной струны

11 Результаты

В ходе работы были получены следующие величины:

- Теоретические значения линейной плотности эластичной и неэластичной струн, равные соответственно: $4,15\frac{\Gamma}{M}$ и $1,57\frac{\Gamma}{M}$.
- Экспериментальные значения линейной плотности, полученные с помощью нахождения резонансных частот одной гармоники при разной силе натяжения нити, равные $(3, 8 \pm 0, 4) \frac{\Gamma}{M}$ и $(1, 56 \pm 0, 05) \frac{\Gamma}{M}$.
- Экспериментальные значения линейной плотности, полученные с помощью нахождения скорости волны в струнах при разной силе натяжения нити, равные: $(3,4\pm0,6)$ $\frac{\Gamma}{M}$ и $(1,57\pm0,03)$ $\frac{\Gamma}{M}$.

Были построены графики зависимости квадрата резонансной частоты от силы натяжения струны для разных гармоник и графики зависимости квадрата скорости волны в струне от силы её натяжения.

12 Вывод

В ходе данной работы были изучены поперечные стоячие волны на тонкой натянутой струне. Были получены экспериментальные зависимости собственных частот поперечных колебаний от номера гармоники и силы натяжения струны.

Были теоретически рассчитаны значения линейной плотности эластичной и неэластичной струн, равные соответственно: $4,15\frac{\Gamma}{M}$ и $1,57\frac{\Gamma}{M}$

Были измерены резонансные частоты поперечных колебаний струны для разных гармоник и сил натяжения струн. Полученные результаты представлены в таблице 1. С помощью метода наименьших квадратов и формулы (11) были получены значения линейной плотности для эластичной и неэластичной струны и доверительные интервалы, равные соответственно: $(3,8\pm0,4)\frac{r}{M}$ и $(1,56\pm0,05)\frac{r}{M}$. Построены графики зависимости квадрата резонансной частоты от силы натяжения струны, представленные на рис. 2 и 3.

Также с помощью метода наименьших квадратов были получены значения скорости волны при разной силе натяжения струны. Полученные данные представлены в таблицах 2 и 3, зависимости показаны на графиках 4 и 5. С помощью этих данных была построена зависимость квадрата скорости волны от силы натяжения струны, показанная на графиках 6 и 7. По полученному коэффициенту линейной зависимости и формуле (2) были вычислены значения линейной плотности эластичной и неэластичной струн, равные соответственно: $(3,4\pm0,6)^{\frac{\Gamma}{M}}$ и $(1,57\pm0,03)^{\frac{\Gamma}{M}}$

Теоретические значения линейной плотности струн лежат в полученных двумя способами доверительных интервалах или относительно близко к их границам. Лишь один результат, полученный вторым способом для эластичной струны, лежит вне пределов доверительного интервала. Такое расхождение теоретических результатов с экспериментальными могло произойти из-за того, что при снятии показаний для эластичной нити трудно с большой точностью определить резонансную частоту, так как при приближении к резонансной частоте амплитуда колебаний струны начинает меняться достаточно слабо, чтобы человеческий глаз это точно зафиксировал.