Matemática 1

Crescimento de funções

(solução da tarefa)

Considere a função

$$f(x) = 3x^4 - 4x^3 - 36x^2 + 100.$$

O primeiro passo para estudar o sinal da sua derivada é encontrar os pontos x para os quais a derivada se anula. Calculando temos

$$f'(x) = 12x^3 - 12x^2 - 72x = 12x(x^2 - x - 6)$$

e portanto temos as seguintes raízes da derivada:

$$x_1 = -2, \ x_2 = 0, \ x_3 = 3.$$

Como precisamos analisar o sinal da derivada, vamos escrever a derivada acima de maneira fatorada. Para isso, vamos fatorar o polinômio de grau 2, utilizando suas duas raízes x_1 e x_3 , da seguinte forma:

$$f'(x) = 12x(x - x_1)(x - x_3).$$

Assim, para determinar o sinal de f', basta calcular o sinal de cada um dos monômios acima e fazer a regra dos sinais para a multiplicação.

Como temos três pontos críticos, teremos quatro intervalos para analisar, quais sejam: $(-\infty, x_1)$, (x_1, x_2) , (x_2, x_3) e $(x_3, +\infty)$. Lembrando que $x_1 < 0 < x_3$, a tabela para o sinal dos monômios pode ser feita como se segue:

	sinal de $12x$	(x+2)	(x-3)	sinal de f'	função f
$x \in (-\infty, -2)$	_	_	_	_	decrescente
$x \in (-2,0)$	_	+	_	+	crescente
$x \in (0,3)$	+	+	_	_	decrescente
$x \in (3, +\infty)$	+	+	+	+	crescente

Para melhor fazer o esboço do gráfico vamos usar a tabela acima para investigar o comportamento da função f nas vizinhanças do ponto $x=x_2=0$.

Observe que à esquerda deste ponto a derivada é positiva e à sua direta ela é negativa. Isto implica que antes de x=0 a função é crescente e depois é decrescente. Logo, o gráfico de f perto de x=0 se parece com um cume de montanha (veja figura ao lado).

Na vizinhança dos pontos $x=x_1=-2$ e $x=x_3=3$ ocorre exatamente o inverso, com a derivada passando de negativa para positiva. Assim, próximo a estes pontos, o gráfico da função se parece com um vale, conforme a figura ao lado.

Utilizando as informações acima podemos esboçar o gráfico da função f como abaixo

Observe que o menor valor da função f é atingido no ponto x=3 e vale f(3)=-89.