Nexyux 4, 27.09.23 Свойства определителя @AT = A D Пределитель линеен по столбуам (строкам) a) Pycon Anx = (A, A, ..., An) - nadop cronsyol det (A, A; +A; An) = det (A, A; An) + det (A, Ai, An) $\delta) \det(A_1, ..., \alpha A_i, ..., A_n) = \alpha \cdot \det(A_1, ..., A_i, ..., A_n)$

a) .	В м-4	2 A	есть	нупева	a. C	стр. (с	15.)	4		7. 9		10	130	1
8) 1	В м-че	A ec	n g	be og	икако	lue	csp.	(crd.)		E AS			1
0	a) No	onpeg	. 80	ce ca	ar.	= 0.		A STATE	100		150	44.5	- 3	
	5) Npu	James	ене	ogneu	uz	один	ak.	crpa	K H	999	ryp	det	Пом	enser
	знак	no d	choùa	by G	e) u	не	uzn	иени Т	cs =	e de	t=0		•	
Onp:	(N/K),	727	410	jæ	СТРОК	a 96	۸.	ЛИНЕЛ	йной	KOMO	Гиначи	nei 1	OCTANG	Инх
	(Λ/k)	e cau	NO ECT 28	AR	14	36	1	57	7	3 53		3-10		
ј. з	, A _j =		k Ak	$= \alpha_{i} A_{i}$	++	Xj-1 A	j-1 [‡]	Nju F	j+(**	X An	3+12	124	13 13	
100	rge d	'k - He	кото ри	1e 440	cna,	X _k E	R		V = 1					
Приме	p: 1 4 0 :	23	39ec	6 (3)	= -4)(1) +	(2)	4 (3)		79 34	3 3 3	W1 5 C	A P	
6	det A =	0, e	cau	Одна	uz .	ero c	трок	(cro	6 550	A CONTRACTOR	14 KO11	1 300		
0	det(A	1, Aj	_ An)) = de	t(A,	¿	= Xk	Ak	An	$=\int \Omega_{a}$	cho	i cr by	(Q)	=
=	Ex. o	let(A.	Ak	An) =	= {no (r.k. e	choices	by Curak.	D} = erd.(c	O + (2:+0	0=0		n	
6 0 n	ределит	enc u	e uj	рменит	ce, e	ecau	K	y a	poke	прио	авить	NK		
0	det(A det A	4 Aj	+ £ 1 k+j	Xk Ak	A)= 1	let(i	A. Aj	A _n)	+ det(A, Lest	X AL	An)	
(1) de	et En =	1 (1	E,1=	1), rg	e l	=n =(1.0) _n -	egunu	HAS M	-40 816	op ggue	n	
he	gerbue	:		1000					1	11.		REAL		+

Ν'n,

det (a... 0) = a... a... | E. | = a... a... a... Утв 1: Условия 3 (кососимметричность) и 48 (обнул. на перастановке сова. столбуов) эквивалентны □ 3 => 45 (офоновано в 45): det A = -det A => det A =0) (4) => 3 Пусть f(u,v) - линей нах ф-чих от столбуов и и v (остальние зафаксируем). Докажем, что сели f(z,z)=0 $\forall z \Rightarrow f$ -кососимм фричиля f(u+v, u+v) = f(u, u+v) + f(v, u+v) = f(u, u) + f(u, v) + f(v, u) + f(v, u) = f(u, v) + f(v, u) + f(v, u) = f(u, v) + f(v, u) + f(u, u= f(u,v) + f(v,u) = 0 => f(u,v) = -f(u,v)9tb 2: (Ikbub. onpegenenue gerepmunanta). У функция от столбуов матрицы, удова. св-вам (2,3) и д явл. детерминантом. Т.е. У полиминейная (линейная по кажд. арг.) кососимметрической и равная 1 на ед. м-че функция от столбуов (строк) кв. м-чи является определителем 1 (gok-lo yrb 2) gns n=2 $f\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{12} \end{bmatrix} = a_{11} \cdot f\left(\begin{bmatrix} 1 & a_{12} \\ 0 & a_{21} \end{bmatrix} + a_{21} \cdot f\left(\begin{bmatrix} 0 & a_{12} \\ 1 & a_{22} \end{bmatrix} \right) =$ an(1)+a21(0)

a12(0)+a21(0) $= a_{11} a_{12} \cdot f(\frac{1}{0}) + a_{11} a_{22} f(\frac{1}{0}) + a_{21} a_{21} f(\frac{1}{0}) + a_{21} a_{22} f(\frac{0}{0}) = (a_{11} a_{12} - a_{11} a_{12}) f(E_{2}) = \frac{a_{11} a_{12}}{a_{12}} f(E_{2}) + \frac{a_{11} a_{12}}{a_{12}} f(E_{2}) + \frac{a_{12} a_{12}}{$ = det A

Chegerbue: Dokazano gas n=2 gase Sonee osu. y+b; 400 & nonunumention roccemmm. p-you copor (cod.) => f(B) = det(B) f(En) Опр: В квадрачной пиче А порядка и вичеркием і-ы строку и за стопбец. Определитель, получившейся м-чи, каз. дополияющим минором зл-таду Osozy: Mij Опр: Алгебранческим дополнением Эл-та а; наз. число А; = (-1) М; 1 Розложение определителя по строке или столбу (теорема Лапласа) det $A = \sum_{j=1}^{n} a_{ij} \cdot A_{ij} = \sum_{i=1}^{n} a_{ij} \cdot A_{ij}$ (pagn. no j-my cronby $\forall j = \overline{1,n}$)

pagnoxenue no Bepno gna $\forall i = \overline{1,n}$ P.S. a) $f(\alpha x) = \alpha \cdot f(x)$ δ) f(x+y) = f(x) + f(y) $\angle = > f(xx + yy) = x \cdot f(x) + \beta f(y)$