Implementation of Linear Regression using scikit-learn

P. Usha sree

RA1911042020051

AIM: To program the implementation of Implementation of Linear Regression using scikit-learn

1) Importing the libraries

In [3]: import pandas as pd import numpy as np import matplotlib.pyplot as plt

2)Importing the dataset

In [4]: df =pd.read_csv(r"C:\data sets\stroke.csv", encoding='ANSI')
df

Out[4]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5105	18234	Female	80.0	1	0	Yes	Private	Urban	83.75	NaN	never smoked	0
5106	44873	Female	81.0	0	0	Yes	Self-employed	Urban	125.20	40.0	never smoked	0
5107	19723	Female	35.0	0	0	Yes	Self-employed	Rural	82.99	30.6	never smoked	0
5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.6	formerly smoked	0
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban	85.28	26.2	Unknown	0

5110 rows × 12 columns

3) Handle the missing data

```
In [6]: from sklearn.impute import SimpleImputer
```

In [7]: df.describe()

Out[7]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000	5110.000000
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237	0.048728
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067	0.215320
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000	0.000000
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000	0.000000
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000	0.000000
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000	0.000000
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000	1.000000

```
In [8]: df["bmi"]=df["bmi"].replace(np.NaN,df["bmi"].mean())
print(df["bmi"])
```

```
0
       36.600000
       28.893237
1
       32.500000
2
       34.400000
4
       24.000000
5105
       28.893237
5106
       40.000000
       30.600000
5107
5108
       25.600000
5109
       26.200000
```

Name: bmi, Length: 5110, dtype: float64

4)Handling Categorical data

```
In [9]: cat_cols =['gender','ever_married','work_type','Residence_type','smoking_status']
    from sklearn.preprocessing import LabelEncoder
    for each_col in cat_cols:
        Le=LabelEncoder()
        df[each_col]=Le.fit_transform (df[each_col])
```

In [10]: df

Out[10]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	1	67.0	0	1	1	2	1	228.69	36.600000	1	1
1	51676	0	61.0	0	0	1	3	0	202.21	28.893237	2	1
2	31112	1	80.0	0	1	1	2	0	105.92	32.500000	2	1
3	60182	0	49.0	0	0	1	2	1	171.23	34.400000	3	1
4	1665	0	79.0	1	0	1	3	0	174.12	24.000000	2	1
5105	18234	0	80.0	1	0	1	2	1	83.75	28.893237	2	0
5106	44873	0	81.0	0	0	1	3	1	125.20	40.000000	2	0
5107	19723	0	35.0	0	0	1	3	0	82.99	30.600000	2	0
5108	37544	1	51.0	0	0	1	2	0	166.29	25.600000	1	0
5109	44679	0	44.0	0	0	1	0	1	85.28	26.200000	0	0

5110 rows × 12 columns

5)Splitting the data set into training and testing

```
In [12]: x_{\text{train.shape}}, x_{\text{test.shape}}, y_{\text{train.shape}}, y_{\text{test.shape}}
```

Out[12]: ((4088, 11), (1022, 11), (4088, 1), (1022, 1))

2. Now we have to implement Linear regression model and predict the values based on our data set.

6) Linear Regression using Scikit-learn

```
In [13]: from sklearn.linear_model import LinearRegression
In [24]: lr =LinearRegression()
        lr.fit(x,y)
print("Our model has been Trained!!")
         Our model has been Trained!!
In [28]: y_pred =lr.predict(x_test)
         y_pred
[-0.02809805],
                 0.22041728],
                 0.01090751
                [-0.02017515]])
In [30]: from sklearn.metrics import mean_squared_error, mean_absolute_error
         mean_squared_error(y_test,y_pred)
Out[30]: 0.03776576024885075
In [31]: mean_absolute_error(y_test,y_pred)
Out[31]: 0.08805156187116507
 In [ ]: |
```

RESULT: Implementation of Linear Regression using scikit-learn has been implemented on a data set.