Versuch AP4 Inelastische Streuung -Das Franck-Hertz-Experiment

Frederik Strothmann, Henrik Jürgens 22. September 2014

Inhaltsverzeichnis

1	Einleitung	3
2	Verwendete Materialien	3
3	Franck-Hertz Versuch für Quecksilber	4
	3.1 Versuchsaufbau	5
	3.2 Versuchsdurchführung	5
	3.3 Verwendete Formeln	6
	3.4 Messergebnisse	6
	3.5 Auswertung	8
	3.6 Diskussion	9
4	Franck-Hertz Versuch für Neon	9
	4.1 Versuchsaufbau	9
	4.2 Versuchsdurchführung	10
	4.3 Verwendete Formeln	
	4.4 Messergebnisse	
	4.5 Auswertung	10
	4.6 Diskussion	
5	Fazit	10

1 Einleitung

Beim diesem Versuch wird ein Experiment von Franck und Hertz aus dem Jahre 1914 wiederholt. Wir werden untersuchen, dass Quecksilberatome bei inelastischen Stößen mit Elektronen Energie aufnehmen können, wenn diese dem Energieunterschied zweier Anregungsniveaus des Quecksilbers entspricht. Dieses Experiment hatte eine große historische Bedeutung, weil damit – neben der Emission diskreter Spektrallinien – gezeigt werden konnte, dass Atome nur diskrete Energiewerte annehmen können. Auch in der heutigen Physik spielen inelastische Streuexperimente, z.B. von Elektronen an Kernen, Protonen und Neutronen, eine wesentliche Rolle, da sie Aufschluß über die innere Struktur der Materie vermitteln. Neben der Anregung von Hg-Atomen wird in diesem Versuch ebenfalls die Anregung von Neonatomen beobachtet. (vgl. Zielsetzung http://www.atlas.uni-wuppertal.de/~kind/ap22ap4neu.pdf)

2 Verwendete Materialien

Abbildung 1: Abbildung des Franck-Hertz Betriebsgerätes¹

- 1. Digitalanzeige
- 2. Spannungsteller für U₁
- 3. Messgrößeneinstellung
- 4. Spannungsteller für U₃
- 5. 5-polige DIN-Buchse, zum Anschluss des Temperaturfühlers
- 6. Analogausgang für die gewählte Messgröße
- 7. Schaltskizze
- 8. Schalter für die Betriebsart

 $^{^1{\}rm Abbildung}$ entnommen von http://www.atlas.uni-wuppertal.de/k̃ind/franck-hertz-555880d.pdf Seite 1 am 20.09.2014

- 9. Analogausgang $\frac{U_2}{10}$
- 10. 7-poliger DIN-Buchse zum Anschluss des Hg- oder Ne-Franck-Hertz-Rohres.
- 11. Analogausgang von U_A
- 12. Spannungsteller für U_2

Abbildung 2: Schaltskizze der Franck-Hertz-Röhre

- $\bullet \ f, f_k$: Wechselspannung zum betrieb der Glühkathode
- \bullet g₁: Gitter zum absaugen der Elektronen
- U₁: Absaugspannung
- U₂: Beschleunigungsspannung
- g₂: Bremsgitter
- U₃: Bremsspannung
- I_A: Anodenstrom
- U_A: Anodenspannung

3 Franck-Hertz Versuch für Quecksilber

Ziel der Messung ist es die Franck-Hertz-Kurve für Quecksilber aufzunehmen und aus ihr die Energiedifferenz zwischen Grund- und angeregtem Zustand zu bestimmen, sowie die Kontaktpotentialdifferenz.

3.1 Versuchsaufbau

3.2 Versuchsdurchführung

Zuerst muss die Franck-Hertz Röhre (Quecksilber) vorgeheizt werden (die Betriebstemperatur von 175° konnte an unserem Gerät nicht verstellt werden), $\frac{U_2}{10}$ (Kanal 1 des Oszilloskops := X-Achse) und U_A (Kanal 2 des Oszilloskops := Y-Achse) an das Oszilloskop angeschlossen werden und die Franck-Hertz Kurve mit der Sägezahnspannung konfiguriert werden. Dazu können die Saugspannung U_1 und die Bremsspannung U_3 am Franck-Hertz Betriebsgerät verdreht, sowie am Oszilloskop die Auflösung in X- und Y-Richtung und die Verschiebung der Kurve auf der X- und Y-Achse eingestellt werden. Sobald die Franck-Hertz Kurve am Oszilloskop gut zu erkennen ist, kann das Franck-Hertz Betriebsgerät auf den manuellen Modus umgestellt werden. Nun kann die Kurve von Hand durch verändern der Beschleunigungsspannung U_2 durchgefahren und einige Messerte aufgenommen werden. Danach werden zusätzlich die genauen Maxima ausgemessen um später die Anregungsspannung bzw. Anregungsenergie aus dem Mittelwert der Differenzspannungen U_{Δ} (zwischen zwei nebeneinander liegenden Maxima) zu bestimmen. Zum Schluss wollen wir die Kontaktpotentialdifferenz zwischen Anode und Kathode bestimmen. Die Beschleunigungsspannung bis zum ersten Maximum ist dafür gleichzusetzen mit der Anregungsspannung der Quecksilberatome und der Kontaktpotentialdifferenz zwischen Anode und Kathode.

3.3 Verwendete Formeln

Die Differenzspannung U_{Δ} wird aus der Potential differenz zweier nebeneinander liegender Maxima bestimmt:

$$U_{\Delta} = U_{max1} - U_{max2} \tag{1}$$

Mit dem Fehler:

$$\Delta_{U_{\Delta}} = \sqrt{\Delta_{U_{max1}}^2 + \Delta_{U_{max2}}^2} \tag{2}$$

Um daraus die Anregungsspannung U_A zu bestimmen werden die Spannungen U_{Δ} gemittelt:

$$U_A = \frac{U_{\Delta_1} + \ldots + U_{\Delta_n}}{n} \tag{3}$$

Mit dem Fehler:

$$\Delta_{U_A} = \sqrt{\left(\frac{\Delta_{U_{\Delta_1}}}{n}\right)^2 + \ldots + \left(\frac{\Delta_{U_{\Delta_n}}}{n}\right)^2} \tag{4}$$

Die Kontaktpotentialdifferenz U_{kp} wird nach folgender Formel berechnet:

$$U_{kp} = U_{max1} + U_1 - U_A (5)$$

 U_1 ist dabei die Spannung zwischen erstem Gitter und der Kathode (U_1 trägt genauso wie U_{max1} zur Beschleunigung der Elektronen bei) und U_{max1} die Spannung zwischen dem ersten Gitter und dem ersten Maximum. Der Fehler ergibt sich nach:

$$\Delta_{U_{kp}} = \sqrt{(\Delta_{U_{max1}})^2 + (\Delta_{U_1})^2 + (\Delta_{U_A})^2}$$
 (6)

3.4 Messergebnisse

In der folgenden Tabelle sind die Saugspannung, die Bremsspannung und die Temperatur eingetragen. Die Fehler wurden alle über die Ableseungenauigkeit bestimmt.

Tabelle 1: Materialeigenschaften des Versuchsaufbaus

U_1/V	Fehler/V
5,04	0,01
U_3/V	Fehler/V
2,01	0,01
$T/^{\circ}C$	Fehler/° C
175	1

In der folgende Tabelle sind die Messdaten der Frank-Hertz-Kurve, die Fehler wurden nach der Ableseungenauigkeit gewählt und bei Schwankungen der Anzeige wurde die Hälfte des Schwankungsintervalls dazu addiert.

Tabelle 2: Messung des Anodenstroms in Abhängigkeit der Beschleunigungsspannung im Bereich von 0 bis 29 Volt

U_2/V	Fehler/V	I_A/nA	Fehler/nA
0	0,1	-0,04	0,01
1	0,1	0,02	0,01
2	0,1	0,28	0,01
3	0,1	0,38	0,01
4	0,1	0,3	0,01
5	0,1	0,86	0,01
6	0,1	1,95	0,01
7	0,1	1,12	0,01
8	0,1	0,62	0,01
9	0,1	0,98	0,01
10	0,1	2,59	0,01
11	0,1	4	0,01
12	0,1	1,84	0,01
13	0,1	0,91	0,01
14	0,1	1,7	0,01
15	0,1	4,25	0,01
16	0,1	5,72	0,01
17	0,1	2,59	0,06
18	0,1	1,37	0,01
19	0,1	2,49	0,01
20	0,1	5,83	0,01
21	0,1	7,3	0,08
22	0,1	3,52	0,08
23	0,1	1,95	0,08
24	0,1	3,41	0,08
25	0,1	7,53	0,08
26	0,1	9,1	0,2
27	0,1	5,27	0,1
28	0,1	3,03	0,1
29	0,1	4,7	0,1

In der Tabelle sind die Daten der gemessenen Maxima der Frank-Hertz-Kurve. Die Fehler wurden über die Ableseungenauigkeit bestimmt und bei Schwankungen der Anzeige wurde die Hälfte des Schwankungsintervalls dazu addiert.

Tabelle 3: Messung der Maxima des Anodenstroms in Abhängigkeit der Beschleunigungspannung

Ordnung	U_2/V	Fehler/V	I_A/nA	Fehler/nA
1	2,4	0,1	0,23	0,02
2	7,2	0,1	2,22	0,02
3	11,8	0,1	4,32	0,02
4	16,6	0,1	5,92	0,02
5	21,6	0,1	7,97	0,02
6	26,7	0,1	10,11	0,1

3.5 Auswertung

Aus den Messdaten soll die Anregungsspannung und die Kontaktpotentialdifferenz bestimmt werden.

Aus den Bestimmten Maxima wurden die die Differenzen (Gleichung 1) zweier aufeinander folgender Maxima bestimmt, der Fehler wurde nach Gleichung 2 angenommen, dabei ergeben sich die folgenden Werte.

Tabelle 4: Differenz der Maxima. Berechnet mit den Werten aus Tabelle 3

Differenz/V	Fehler/V
4,8	0,1
4,6	0,1
4,8	0,1
5	0,1
5,1	0,1

Aus den Werten wurde dann der Mittelwert nach Gleichung 3 und der Fehler nach Gleichung 4 bestimmt, dabei ergibt sich ein Wert von $4.86\pm0.3\,\mathrm{eV}$ für die Anregungsspannung.

Trägt man die Messwerte graphisch auf, so ergibt sich der folgende Graph.

Abbildung 3: Graphische Darstellung des Anodenstroms in Abhängigkeit der Beschleunigungsspannung

Die Messdaten wurden mit esplines versehen, was kein physikalisches Modell darstellt sondern zur besseren Darstellung dient. Für den Plot wurden die Daten aus Tabelle 2 und Tabelle 3 verwendet.

Die Kontaktpotential differenz wurde nach Gleichung 5 und der Fehler nach Gleichung 6 bestimmt. Dabei ergab sich ein Wert von $2.58\pm0.33\,\mathrm{V}$.

3.6 Diskussion

Für die Anregungsspannung wurde ein Wert von 4,9 eV erwartet,², unser experimentell bestimmter Wert liegt bei 4,86 \pm 0,3 eV, dies entspricht einer Abweichung von 0,81% was ein sehr guter Wert ist. Der Fehler ist in Relation zur prozentualen Abweichung groß, was an der Fehlerfortpflanzung der Mittelwertbildung liegt.

4 Franck-Hertz Versuch für Neon

Ziel der Messung ist es die Franck-Hertz-Kurve für Neon aufzunehmen und aus ihr die Energiedifferenz zwischen Grund- und angeregtem Zustand zu bestimmen, sowie die Kontaktpotentialdifferenz.

²Quelle: http://de.wikipedia.org/wiki/Franck-Hertz-Versuch aufgerufen am 22.09.2014 um 16:37 Uhr

4.1 Versuchsaufbau

Der Versuchsaufbau besteht aus einer Frank-Hertz-Röhre, die mit Neon gefüllt ist, einem Frank-Hertz Betriebsgerät und einem Oszilloskop.

Abbildung 4: Abbildung des Versuchsaufbaus für Neon

- 1. Franck-Hertz-Röhre
- 2. Franck-Hertz Betriebsgerät
- 3. Oszilloskop

4.2 Versuchsdurchführung

Zuerst muss die Franck-Hertz Röhre (Neon) $\frac{U_2}{10}$ (Kanal 1 des Oszilloskops := X-Achse) und U_A (Kanal 2 des Oszilloskops := Y-Achse) an das Oszilloskop angeschlossen werden und die Franck-Hertz Kurve mit der Sägezahnspannung konfiguriert werden. Dazu können die Saugspannung U_1 und die Bremsspannung U_3 am Franck-Hertz Betriebsgerät verdreht, sowie am Oszilloskop die Auflösung in X- und Y-Richtung und die Verschiebung der Kurve auf der X- und Y-Achse eingestellt werden. Sobald die Franck-Hertz Kurve am Oszilloskop gut zu erkennen ist, kann das Franck-Hertz Betriebsgerät auf den manuellen Modus umgestellt werden. Nun kann die Kurve von Hand durch verändern der Beschleunigungsspannung U_2 durchgefahren und einige Messerte aufgenommen werden. Danach werden zusätzlich die genauen Maxima ausgemessen um später die Anregungsspannung bzw. Anregungsenergie aus dem Mittelwert der Differenzspannungen U_{Δ} (zwischen zwei nebeneinander liegenden Maxima) zu bestimmen. Zum Schluss wollen wir die Kontaktpotentialdifferenz zwischen Anode und Kathode bestimmen. Die Beschleunigungsspannung bis zum ersten Maximum ist dafür gleichzusetzen mit der Anregungsspannung der Quecksilberatome und der Kontaktpotentialdifferenz zwischen Anode und Kathode.

4.3 Verwendete Formeln

Es wurden für den Franck-Hertz Versuch mit Neon die gleichen Formeln verwendet wie für Quecksilberdampf. (vgl. Franck-Hertz Versuch für Quecksilber 3.3)

4.4 Messergebnisse

In der folgende Tabelle sind die Messdaten der Frank-Hertz-Kurve, die Fehler wurden nach der Ableseungenauigkeit gewählt und bei Schwankungen der Anzeige wurde die Hälfte des Schwankungsintervalls dazu addiert.

Tabelle 5: Messdaten der Franck-Hertz Kurve für Neon

U_2/V	Fehler/V	I_A/nA	Fehler/nA
0	0.2	0.01	0.01
2	0.2	0.01	0.01
4	0.2	0.01	0.01
6	0.2	1.81	0.01
8	0.2	2.63	0.01
10	0.2	3.33	0.01
12	0.2	3.76	0.01
14	0.2	4.11	0.01
16	0.2	4.44	0.01
18	0.2	0.98	0.01
20	0.2	-0.04	0.01
22	0.2	0.78	0.01
24	0.2	2.57	0.01
26	0.2	4.46	0.01
28	0.2	5.93	0.01
30	0.2	6.87	0.01
32	0.2	7.6	0.01
34	0.2	6.66	0.01
36	0.2	3.66	0.01
38	0.2	1.38	0.01
40	0.2	1.69	0.01
42	0.2	2.9	0.01
44	0.2	4.62	0.01
46	0.2	6.54	0.01
48	0.2	8.57	0.01
50	0.2	10.28	0.01
52	0.2	9.84	0.01
15.8	0.1	4.9	0.02
32.6	0.1	8.4	0.02
50.6	0.1	11.01	0.02
19.7	0.1	-0.04	0.02
38.2	0.1	1.57	0.02
57	0.1	7.4	0.02

4.5 Auswertung

Die Spannungsdifferenz U_{Δ} sollte nach Gleichung 1 und der Fehler nach Gleichung 2 berechnet werden. Da unser erstes Maximum sehr schlecht zu erkennen ist, haben wir bei den Maxima für U_A das zweite U_{Δ} angenommen. Bei den Minima wurden die gleichen Formeln verwendet,

wobei U_max durch U_min zu ersetzen ist. Für die Berechnung von U_A aus den Minima wurde Gleichung 3 und für den Fehler Gleichung 4 verwendet. (U_min durch U_max ersetzen)

Tabelle 6: Anregespannungen für Neon (Messdaten aus Tabelle ??)

Maxima	
U_Δ	Fehler
16.8	0.1
18.0	0.1
U_A	Fehler
18.0	0.1
Minima	
U_Δ	Fehler
18.5	0.1
18.8	0.1
U_A	Fehler
18.65	0.2

Graphisch ergab sich der folgende Plot. Die Messdaten wurden mit Geraden verbunden.

Abbildung 5: Graphische Darstellung des Anodenstroms in Abhängigkeit der Beschleunigungsspannung

Die Kontaktspannung berechnen wir aus dem ersten Maximum (siehe Tabelle ?? unten, oder 1. blaues Maximum im Plot Abb. ??), sowie aus der für die Maxima berechnete Anregespannung nach Gleichung 5 und den Fehler nach Gleichung 6. Daraus ergibt sich eine Kontaktspannung von 0.86 ± 0.17 V.

4.6 Diskussion

5 Fazit