$$I(J^P) = \frac{1}{2}(0^-)$$

OMITTED FROM SUMMARY TABLE

Seen in partial-wave analysis of $K \phi$ system. Needs confirmation.

K(1830) MASS

VALUE (MeV)

DOCUMENT ID TECN CHG COMMENT

 $1874 \pm 43 + 59 \\ -115$ 4289

¹ AAIJ

17C LHCB

• • We do not use the following data for averages, fits, limits, etc. •

 ~ 1830

ARMSTRONG 83 OMEG -

 $18.5 \ K^- p \rightarrow 3K p$

¹ From an amplitude analysis of the decay $B^+ \to J/\psi \phi K^+$ with a significance of 3.5 σ .

K(1830) WIDTH

EVTS

DOCUME<u>NT ID TECN CHG COMMENT</u>

17C LHCB

• • • We do not use the following data for averages, fits, limits, etc. • •

² AAIJ

 ~ 250

ARMSTRONG 83 OMEG -

 $18.5 \ K^- p \rightarrow 3K p$

² From an amplitude analysis of the decay $B^+ \to J/\psi \phi K^+$ with a significance of 3.5 σ .

K(1830) DECAY MODES

Mode

 Γ_1 $K\phi$

K(1830) REFERENCES

Also ARMSTRONG 83

PRL 118 022003 PR D95 012002 NP B221 1

R. Aaij et al. R. Aaij et al. T.A. Armstrong et al.

(LHCb Collab.) (LHCb Collab.) (BARI, BÌRM, CERN+) JP

Created: 5/30/2017 17:21