extension fields

in signing, we want to keep working over \mathbb{F}_{p^2} for efficiency reasons

Idea: signing is slow anyway, what if we work over $\mathbb{F}_{p^{2k}}$ during signing, and push verification speeds to the absolute limits?

instead of (slow) translation of $I_{\rm resp}$ to $\varphi_{\rm resp}$ in 13 blocks....

slower translation using $\mathbb{F}_{p^{2k}}$ arithmetic but only 4 blocks!

extension fields

in signing, we want to keep working over \mathbb{F}_{p^2} for efficiency reasons

Idea: signing is slow anyway, what if we work over $\mathbb{F}_{p^{2k}}$ during signing, and push verification speeds to the absolute limits?

instead of (slow) translation of $I_{\rm resp}$ to $\varphi_{\rm resp}$ in 13 blocks....

slower translation using $\mathbb{F}_{p^{2k}}$ arithmetic but only 4 blocks!

signing is now even slower, using extension fields, takes literal seconds