04 Big Data Intro

Big Data Introduction

1. Definition of Big Data

Big Data refers to collections of datasets that possess one or more of the following characteristics:

- Huge volume of data
- High velocity of data flow
- Diverse variety of data types
- Any combination of the above

These datasets exceed the capacity of traditional storage systems (RDBMS), computing resources, and algorithms to store, process, analyze, and understand data in a cost-effective manner.

Contextual Understanding of "Big"

The concept of "big" in big data is relative and depends on the processing capabilities of the system:

Examples:

- A 15GB 4K video file:
 - Big Data for a mobile device (limited storage/processing)
 - Not Big Data for a high-end laptop
- 100GB 3D graphics rendering:
 - Big Data for laptop/desktop machines
 - Not Big Data for high-end servers

Formula: Big Data = Huge Volume + High Velocity + Wide Variety

2. Why Store and Process Big Data?

Historical Context

- Data storage became viable as storage devices became cheaper
- · Organizations began collecting and storing more data for future analysis

Business Rationale

- Historical data enables learning from past patterns
- Decision-making becomes more informed and data-driven
- Adaptability to market changes and trends
- Swift reactions to future opportunities and challenges

3. Applications of Big Data

WHY SHOULD WE STORE AND PROCESS BIG DATA?

Ans. We started storing data as storage devices became cheaper.

- We need historical data to learn, understand, and make decisions for adapting to changes and reacting swiftly in the future.
- **Applications**
- 1. _Social Network Analysis (SNA):_ Social network data is rich in content and relationships that are quite valuable to many third-party business entities. They use such data for different purposes. For instance,
 - Understanding and targeting customers for marketing.

- Detecting online communities, predicting market trends, etc.
- 2. _E-commerce:_ recommender system (people who like this product may also like another product in online shopping, friend suggestions
- on Facebook), sentiment analysis, marketing, etc.
- 3. _Banking and Finance:_ stock market analysis, risk/fraud management ,etc.
- 4. _Transportation:_ logistic optimization, real-time traffic flow optimization, etc.
- 5. _Healthcare:_ medical record analysis, genome analysis, patient monitoring, etc.
- 6. _Telecommunication:_ threat detection, violence prediction, etc.
- 7. Entertainment: animation, 3D video rendering, etc.
- 8. Forecasting events like disease spread, natural disaster and take proactive measures.
- 9. Optimizing system (hardware/software) performance.
- 10. Improving performance in sports.

3.1 Social Network Analysis (SNA)

- Customer targeting for marketing campaigns
- Online community detection
- Market trend prediction
- Leveraging rich content and relationship data

3.2 E-commerce

- Recommender systems ("Customers who bought this also bought...")
- Friend suggestions on social platforms
- Sentiment analysis for product reviews
- Targeted marketing strategies

3.3 Banking and Finance

- Stock market analysis and prediction
- Risk management and assessment
- Fraud detection and prevention
- Credit scoring and loan approvals

3.4 Transportation and Logistics

- Route optimization for delivery services
- Real-time traffic flow management
- Supply chain optimization
- Fleet management systems

3.5 Healthcare

- Medical record analysis for treatment insights
- Genome analysis for personalized medicine
- Patient monitoring and predictive healthcare
- Drug discovery and development

3.6 Telecommunications

- Threat detection and cybersecurity
- Network optimization
- Customer behavior analysis
- Service quality monitoring

3.7 Entertainment and Media

• 3D animation and rendering

- Video processing and streaming optimization
- Content recommendation systems
- Audience analytics

3.8 Predictive Analytics

- Disease spread forecasting
- Natural disaster prediction
- Proactive risk management
- System performance optimization

3.9 Sports Analytics

- Performance optimization for athletes
- Game strategy development
- Injury prevention analysis
- Fan engagement insights

4. Data Size Reference

Scale Reference: 1 Exabyte can store approximately 11 million 4K resolution movies

Data Size Units (Ascending Order)

In bytes	Unit	Binary	In bytes	Unit	Binary
1 Bit	0 or 1	-	1024 Kryat byte	1 Amos byte	2150 bytes
1 Byte	8 bits	2º bytes	1024 Amos byte	1 Pectrol byte	2160 bytes
1024 Bytes	1 Kilo byte	210 bytes	1024 Pectrol byte	1 Bolger byte	2^{170} bytes
1024 Kilo byte	1 Mega byte	220 bytes	1024 Bolger byte	1 Sambo byte	2^{180} bytes
1024 Mega byte	1 Giga byte	230 bytes	1024 Sambo byte	1 Quesa byte	2190 bytes
1024 Giga byte	1 Tera byte	240 bytes	1024 Quesa byte	1 Kinsa byte	2200 bytes
1024 Tera byte	1 Peta byte	250 bytes	1024 Kinsa byte	1 Ruther byte	2210 bytes
1024 Peta byte	1 Exa byte	260 bytes	1024 Ruther byte	1 Dubni byte	2220 bytes
1024 Exa byte	1 Zetta byte	270 bytes	1024 Dubni byte	1 Seaborg byte	2230 bytes
1024 Zetta byte	1 Yotta byte	280 bytes	1024 Seaborg byte	1 Bohr byte	2240 bytes
1024 Yotta byte	1 Bronto byte	290 bytes	1024 Bohr byte	1 Hassiu byte	2250 bytes
1024 Bronto byte	1 GeoP byte	2100 bytes	1024 Hassiu byte	1 Meitner byte	2260 bytes
1024 GeoP byte	1 Sagan byte	2110 bytes	1024 Meitner byte	1 Darmstad byte	2 ²⁷⁰ bytes
1024 Sagan byte	1 Pija byte	2120 bytes	1024 Darmstad byte	1 Roent byte	2 ²⁸⁰ bytes
1024 Pija byte	1 Alpha byte	2130 bytes	1024 Roent byte	1 Coper byte	2290 bytes
1024 Alpha byte	1 Kryat byte	2140 bytes			

5. The Seven V's of Big Data

5.1 Volume

Definition: The amount of data generated and stored

Characteristics:

- More data leads to more accurate decisions
- Processing challenges increase with volume
- I/O bottlenecks become critical limiting factors

Example Challenge: A 1TB dataset on HDD with 32 CPU cores results in most cores remaining idle due to slow HDD I/O rates, actually increasing processing time.

5.2 Velocity

Definition: The speed at which data is generated and processed **Characteristics:**

- Streaming data requires real-time processing
- Data must be processed before persistent storage
- "The faster, the more revenue" time-sensitive opportunities

Limitations of Traditional Systems:

- RDBMS requires indexing before data access
- Not suitable for real-time processing requirements

Use Cases:

- Fraud detection in banking
- Threat detection in telecommunications
- Real-time recommender systems
- Live social media analytics

5.3 Variety

Definition: Different types and formats of data

Evolution of Data Types:

- Traditional: Documents, logs, transaction files
- Modern: Audio, video, images, 3D models, spatial data, temporal data

Data Categories:

Structured Data

- Format: Fixed schema, organized in tables
- Examples: Banking records, financial transactions
- Storage: RDBMS (Relational Database Management Systems)
- Growth Pattern: Linear growth

Semi-Structured Data

- Format: Partially organized, self-describing
- Examples: JSON, XML, YAML, HTML, log files, emails
- Characteristics: Has some organizational structure but not rigid schema

Unstructured Data

- Format: No predefined structure
- Examples: Audio files, video files, text documents, images
- Growth Pattern: Exponential growth due to Internet and IoT applications

5.4 Value

Definition: The potential insight and business value extractable from data

Key Principle: "Big data beats better algorithms"

Challenges:

- Extracting relevant information from massive datasets
- Information extracted may be proportionally small
- Requires sophisticated analytics algorithms
- · Questions the cost-benefit ratio of data processing

Requirement: Advanced analytics to improve decision-making processes

5.5 Veracity

Definition: The accuracy, authenticity, and trustworthiness of data

Challenges:

- Public sources (social networks) may contain inaccurate information
- User authenticity is not guaranteed on the Internet
- Data quality varies significantly across sources
- Verification processes are complex and resource-intensive

Impact: Affects reliability of analysis and decision-making

5.6 Variability

Definition: The dynamic and evolving behavior of data generation sources

Characteristics:

- Data patterns change over time
- Sources may modify their data generation behavior
- Requires adaptive processing systems
- Seasonal variations in data patterns

5.7 Volatility

Definition: The lifespan and relevance period of data

Key Questions:

- How long is data valid for analysis?
- When does data become irrelevant?
- How long should data be stored?
- What is the data retention policy?

Challenge: Determining the point where data loses relevance to current analysis

5.8 Complexity (Bonus V)

Definition: The interconnectedness and relationships between data variables

Characteristics:

- Unstable number of variables
- Complex relationships between data points
- Multi-dimensional data analysis requirements
- Network effects and data dependencies

6. Practical Example: Insurance Agency Case Study

Scenario

An insurance agency uses big data to decide whether to display insurance advertisements to users booking travel tickets.

Data Sources

- Social media activity and profiles
- Bank transactions and financial history
- Web browsing patterns and behavior
- Competitor pricing information

Big Data Characteristics in Action

Volume

- Historical customer data accumulated over years
- Transaction records from multiple sources
- Large-scale data storage requirements

Variety

- Social media data (posts, likes, shares, comments)
- Financial data (structured transaction records)
- Behavioral data (web browsing patterns)
- Market data (competitor pricing)

Velocity

- Real-time click streaming data
- · Current user activity monitoring
- Immediate decision-making for ad display
- Live competitor price tracking

Business Outcome

- Competitive pricing strategies
- Targeted advertising based on user profiles
- Real-time personalization of insurance offers
- Improved customer acquisition rates

7. Key Takeaways

- 1. Big Data is contextual what's "big" depends on processing capabilities
- 2. Multiple characteristics rarely just one "V" but combinations
- 3. Business value focus on extracting actionable insights
- 4. Technology evolution traditional systems (RDBMS) have limitations
- 5. Real-time processing increasingly critical for competitive advantage
- 6. Data quality matters veracity affects decision reliability
- 7. Storage strategies volatility determines retention policies
- 8. Diverse applications spans across all industries and sectors