EGMO Solutions

Kempu33334

July 2025

Contents

1	Fun	dementals of Number Theory
	1.1	Divisibility
	1.2	Divisibility Properties
		Euclid's Division Lemma
	1.4	Primes
	1.5	Looking at Numbers as Multisets
	1.6	GCD and LCM
	1.7	Euclid's Division Algorithm
	1.8	Bézout's Theorem
	1.9	Base Systems
	1.10	Extra Results as Problems
	1.11	Example Problems
	1.12	Practice Problems

1 Fundamentals of Number Theory

1.1 Divisibility

No problems.

1.2 Divisibility Properties

Problem 1.2.1

Show that if n > 1 is an integer, $n \nmid 2n^2 + 3n + 1$.

Assume there exists such an n. Then, subtracting n(2n+3) from the RHS of the condition, we find that $n \nmid 1$, so n = 1 or -1, which is a contradiction. \square

Problem 1.2.2

Let a > b be natural numbers. Show that $a \nmid 2a + b$.

Assume for the sake of contradiction there exists a > b where $a \mid 2a + b$. Then, $a \mid b$, implying that $a \leq b$, which is a contradiction. \square

Problem 1.2.3

For 2 fixed integers x, y, prove that

$$x - y \mid x^n - y^n$$

for any non-negative integer n.

Clearly, the statement is equivalent to $x^n - y^n \pmod{x - y} \equiv 0$. However, we can write that

$$x^n - y^n \equiv (x - (x - y))^n - y^n \equiv 0 \pmod{x - y}$$

as required. \square

1.3 Euclid's Division Lemma

No problems.

1.4 Primes

Problem 1.4.1

Find all positive integers n for which 3n-4, 4n-5, and 5n-3 are all prime numbers.

In order for 5n-3 to be prime, we must have n even or n=1. Hence, make the transformation n=2n'. Then, $3n-4\mapsto 6n'-4$, which can never be prime other than when n=2. Trying both n=1 and n=2, we find that only $n=\boxed{2}$ works. \square

Problem 1.4.2

If p < q are two consecutive odd prime numbers, show that p + q has at least 3 prime factors (not necessarily distinct).

Clearly, it cannot have zero or one prime factor. If it has two prime factors, then we can express

$$p + q = rs$$

for some primes r and s. However, we know that one of these has to be 2, hence WLOG assume it is r. Then,

$$\frac{p+q}{2} = s$$

which implies that there exists a prime between p and q, which contradicts the fact that they are consecutive, as required. \square

1.5 Looking at Numbers as Multisets

No problems.

1.6 GCD and LCM

Problem 1.6.1

Prove that gcd(a, b) = a if and only if $a \mid b$.

We start with the if direction. Clearly, if $a = 2^{a_1}3^{a_2}\dots$ and $b = 2^{b_1}3^{b_2}\dots$, then the divisibility condition implies $a_i \leq b_i$ for all $i \geq 1$. Hence,

$$\min(a_i, b - i) = a_i$$

which proves the claim.

For the only if direction, we know that $\min(a_i, b_i) = a_i$ for any $i \geq 1$, implying that $a_i \leq b_i$, which proves the desired result. \square

Problem 1.6.2

If p is a prime, prove that $gcd(a, p) \in \{1, p\}$.

Clearly, the only divisors of p are 1 and p. \square

Problem 1.6.3

Let a, b be relatively prime. Show that if $a \mid c, b \mid c$, then $ab \mid c$.

This is clear since $ab = \gcd(a, b) \operatorname{lcm}(a, b) = \operatorname{lcm}(a, b) \mid c$. \square

Problem 1.6.4

Prove that if p is a prime with $p \mid ab$, then $p \mid a$ or $p \mid b$.

Clearly, if $p \nmid a$ and $p \nmid b$, then $p \nmid ab$, which is a contradiction. \square

1.7 Euclid's Division Algorithm

Problem 1.7.1

Find gcd(120, 500) using the algorithm.

We have that

$$\gcd(120, 500) = \gcd(120, 20) = \boxed{20}.$$

Problem 1.7.2

Show that $gcd(4n + 3, 2n) \in \{1, 3\}.$

We note that

$$\gcd(4n+3,2n) = \gcd(3,2n)$$

which implies the conclusion. \square

Problem 1.7.3

Let a, b be integers. We can write a = bq + r for integers q, r where $0 \le r < b$. Then our lemma states that

$$gcd(a, b) = gcd(r, b).$$

However, is lcm(a, b) = lcm(r, b)?

No. If so, then multiplying the two, we have that

$$ab = rb \implies a = r$$

which cannot be true. \square

1.8 Bézout's Theorem

No problems.

1.9 Base Systems

Problem 1.9.1

Find 37 in base 5. Find 69 in base 2.

The former is 122_5 , and the latter is 1000101_2 . \square

Problem 1.9.2

Show that any power of 2 is of the form $100 \dots 0_2$.

This is clear, since 2^n will be expressed as $1\underbrace{00...0}_{n \text{ times}}$.

Problem 1.9.3

Prove in general that if $n = a_0 \times \ell^0 + \dots + a_k \times \ell^k$, then k is such that $\ell^k \leq n < \ell^{k+1}$ and a_k is such that $a_k \ell^k \leq n < (a_k + 1)\ell^k$.

Clearly, since $a_k \geq 1$, we have that $\ell^k \leq n$. In addition, since $a_{k+1} = 0$, we have the other bound. Now, for the latter statement, the lower bound is obvious. The upper bound can be shown by considering that $a_i < \ell$ for all i and using the geometric series formula.

Problem 1.9.4

Let $k = \lfloor \log_{\ell}(n) \rfloor$. Show that n has exactly k + 1 digits in base ℓ .

Note that since

$$\ell^k = \ell^{\lfloor \log_{\ell}(n) \rfloor} < n$$

we know that n has at least k+1 digits in base ℓ . In addition,

$$\ell^{k+1} = \ell^{\lfloor \log_{\ell}(\ell n) \rfloor} > \ell^{\log_{\ell}(\ell n) - 1} = n$$

which shows that there are at most k+1 digits, as required. \square

1.10 Extra Results as Problems

Problem 1.10.1

Prove that if ab = cd, then a + b + c + d is not a prime number.

Substitute a = pq, b = rs, c = pr, and d = qs. Then,

$$a + b + c + d = pq + pr + qs + rs = (q + r)(p + s)$$

so we are done. \square

1.11 Example Problems

No problems.

1.12 Practice Problems

Problem 1.12.1

Show that any composite number n has a prime factor $\leq \sqrt{n}$.

Assume not. Then, since n has at least two prime factors, consider any two of them, say p and q. Since $pq \leq n$, we know that p and q cannot both be greater than \sqrt{n} , so at least one of them is $\leq \sqrt{n}$, contradiction. \square

Problem 1.12.2 (IMO 1959/1)

Prove that for any natural number n, the fraction

$$\frac{21n+4}{14n+3}$$

is irreducible.

We have that

$$\gcd(21n+4,14n+3) = \gcd(7n+1,14n+3) = \gcd(7n+1,1) = 1$$

so they are relatively prime, as required. \square

Problem 1.12.3

Let x, y, a, b, c be integers.

- 1. Prove that 2x + 3y is divisible by 17 if and only if 9x + 5y is divisible by 17.
- 2. If 4a + 5b 3c is divisible by 19, prove that 6a 2b + 5c is also divisible by 19.

We start with the first statement and the if direction. We have that $9x + 5y \pmod{17} \equiv 0$. Multiplying by 4, we have that $36x + 20y \pmod{17} \equiv 2x + 3y \equiv 0$ as required. For the only if direction, we can multiply $2x + 3y \pmod{17} \equiv 0$ by 13.

For the second part, we have that $4a + 5b - 3c \pmod{19} \equiv 0$, and multiplying by 11 gives the desired result. \square

Problem 1.12.4

Define the nth Fermat number F_n by $F_n = 2^{2^n} + 1$. Show that $gcd(F_m, F_n) = 1$ for any $m \neq n$.

Assume for the sake of contradiction there exist $m \neq n$ such that $gcd(F_m, F_n) \neq 1$. Then, let p be some prime dividing F_m . Then,

$$2^{2^m}+1\equiv 0\pmod p\implies 2^{2^{m+1}}\equiv 1\pmod p.$$

Hence the order of 2 (mod p) is 2^{m+1} . Similarly, if p divides F_n , then we find that the order of 2 (mod p) is 2^{n+1} . However, these two quantities can only be equal if m = n, which is a contradiction of the original statement. \square

Problem 1.12.5

Prove that for each positive integer n, there is a positive integer m such that each term of the infinite sequence m+1, m^m+1 , m^m+1 , ... is divisible by n.

If n is even, then take m = n - 1. This clearly works since

$$(n-1)^{(n-1)^{(n-1)\cdots}} \equiv (-1)^{(n-1)^{(n-1)\cdots}} \equiv -1 \pmod{n}.$$

If n is odd, then take m = 2n - 1. Then, we have that

$$(2n-1)^{(2n-1)^{(2n-1)\cdots}} \equiv (-1)^{(2n-1)^{(2n-1)\cdots}} \equiv -1 \pmod{n}$$

as required. \square

Problem 1.12.6 (Romanian Mathematical Olympiad)

Let a, b be positive integers such that there exists a prime p with the property lcm(a, a + p) = lcm(b, b + p). Prove that a = b.

We have that

$$\frac{a^2+ap}{\gcd(a,p)} = \frac{b^2+bp}{\gcd(b,p)} \implies \frac{\gcd(b,p)}{\gcd(a,p)} = \frac{b^2+bp}{a^2+ap}.$$

We now case on the v_p of the two variables.

If $v_p(a) = v_p(b) = 0$ or $v_p(a), v_p(b) \ge 1$, then we have that

$$a^{2} + ap = b^{2} + bp \implies (a - b)(a + b + p) = 0.$$

Hence, either a = b, or one of a or b is negative, which we cannot have. Hence, this case is done. Now, if $v_p(a) = 0$ and $v_p(b) \ge 1$, then we have that

$$p(a^2 + ap) = b^2 + bp \implies a^2p + ap^2 - b^2 - bp = 0$$

however this means that $p \mid b$, so substituting b = kp, we have that

$$a^2 + ap - k^2p - kp = 0$$

which implies the same thing as the case above, so a=k implying that b=ap. However, this means that

$$p = \frac{b^2 + bp}{a^2 + ap} = \frac{a^2p^2 + ap^2}{a^2 + ap} \implies a^2 + ap = a^2p + ap$$

so p = 1, which doesn't work.

The case where $v_p(a) \ge 1$ and $v_p(b) = 0$ is similar.

Hence, exhausted all cases, we are done. \square

Problem 1.12.7 (St. Petersburg 1996)

Find all positive integers n such that

$$3^{n-1} + 5^{n-1} \mid 3^n + 5^n$$
.

We have that

$$3^{n-1} + 5^{n-1} \mid 3 \cdot 3^{n-1} + 5 \cdot 5^{n-1} \implies 5^{n-1} - 3^{n-1} \pmod{5^{n-1} + 3^{n-1}} \equiv 0.$$

Hence, we must have that $5^{n-1} = 3^{n-1}$ so $n = \boxed{1}$