Discrete Event Simulation of Customer Flow Using SimPy at PETRONAS UTP Petrol Station

Group Members & Roles

Daniel Timms 21002220

Dzulfan Bin Mohd Noor 21001006

Mahadhir Zamir 21002213

Suhayl Musa 22000063

Gas station

Background

Location

PETRONAS UTP, Sri Iskandar

Customers

Students, Staff, and Local Sri Iskandar Residents

Services

Fueling, Air Pumps, Shop, Toilets, and Surau

Simulation

DES to model customer flow and resource usage.

Our aim with this project is to identify bottlenecks and support planning with data-driven insights

Objectives

To model the daily operations of PETRONAS UTP.

To identify optimisation opportunities.

Scope and Limitations

Scope

Covers three vehicle types (Car, Motorcycle, Trailer) and six core services.

Uses SimPy to model a 12-hour period from 7AM to 7PM.

Incorporates pump reduction scenarios to test system resilience.

Limitations

Relied on manual observation.

Excludes staffing shifts, fuel pricing, and external traffic congestion.

Observations limited to daytime hours.

Our Approach

Site Selection

Data Collection

PETRONAS UTP petrol station was chosen due to its strategic location and high traffic.

Manual observation over 12 hours. Recorded vehicle types, arrival patterns, and service usage.

Data Preparation

Processed data to calculate interarrival rates, average service durations, service usage probabilities.

Model Dev

Simulated vehicle flow and resource contention using SimPy.

Testing & Analysis

Ran simulations with varying fuel pump capacities to measure impact on fueling success vs. rejection.

Literature Review

Petrol Station Simulation with Arena Hawari et al. (2022)

- DES effective for testing operations without disrupting real station
- Inspired our use of simulation to test customer flow and operational changes at PETRONAS UTP.

SimPy for DES Modelling Zinoviev (2020)

- Demonstrated SimPy's use for customer service systems and queuing
- Helped us implement SimPy to model services like fueling, queueing, and fallback logic.

Observation-Based Data Collection Walidacja (2019)

- Highlighted that manual observation is effective when live data is unavailable.
- Justified our shift to manual observation when official data was unavailable.

Data Collection

Vehicle Type

Arrival Time

Service Usage

Stop Duration

7:00 AM - 11:00 AM Mahadhir

11:00 AM - 3:00 PM Dzulfan

3:00 PM - 7:00 PM Suhayl

Simulation Design

Initialize Simulation
Environment

- Simulated a 12hour day using
- Defined key resources

SimPy

Generate Vehicle Arrivals

- Vehicles arrive based on interarrival rates
- Each vehicle has a chance of using specific services

Handle Vehicle Process

- Vehicles queue for resources and are served based on availability
- Motorcycles have fallback logic

Track & Output Results

- Tracked how many vehicles arrived, used services, or were rejected
- Measured impact of pump availability across scenarios

Station Setup

- 12 shared fuel pumps for cars.
- 2 motorcycle only fuel pumps.
- 1 trailer-dedicated fuel pump.

- 2 air pumps.
- 2 shop counters.
- 1 toilet & surau.

• 20 parking spaces.

Results and Insights

Total Vehicles

Service Usage by Vehicle Type

Results and Insights

12 Car Pumps

100% Cars Fueled 0% Cars Leaving

4 Car Pumps

100% Cars Fueled 0% Cars Leaving

3 Car Pumps

82% Cars Fueled 18% Cars Leaving

2 Car Pumps

56% Cars Fueled 44% Cars Leaving

The minimum number of pumps required to prevent car rejection is 4. Below that, significant bottlenecks occur.

Challenges and Experience

Challenges

Data Collection Difficulties

Modelling Constraints

Accuracy vs. Realism

Experience

Adaptability

Teamwork

Conclusion

The simulation successfully modelled PETRONAS UTP operations and revealed how fuel pump capacity directly impacts service efficiency and customer satisfaction.

Data Enhancement

Request official station logs from owner to improve accuracy and extend data beyond 12 hours.

Extended Observation Period

Collect multi-day data across varied times to capture off-peak and weekend/weekday patterns.

External Factors

Include external factors like weather, traffic, or promotions that impact station usage.

Advanced Simulation Logic

Enhance realism with queue limits, multiple access points, or dynamic arrival rates.

More Scenarios

Test "what-if" cases like staff shortages, promos, or demand spikes.

Thank You

