

Machine Learning Neural Networks

Bachelor Medieninformatik Wintersemester 2019/20

Prof. Dr.-Ing. Kristian Hildebrand khildebrand@beuth-hochschule.de

Was sind Neuronale Netze?

Was sind Neuronale Netze?

Ein Neuron

Beliebig komplexes Netz

Hinweis: Hidden Layer (weil nicht sichtbar aka Blackbox)

Was sind Neuronale Netze?

Biologisches Neuron

Mathematisches Neuron

Fragen

- Was sind Trainings- bzw. Testdaten?
- Batchsize
 - Größe eines Trainingsbatches für einen Forward/Backward Pass
- Epoche
 - Ein Forward / Backward Pass für alle Trainingsdaten
- Genauigkeit / Fehlerrate / Lernrate

Fragen

- Warum brauchen wir mehrere Layer?
 - Hierarchische Repräsentation
- Was machen die Hidden Layer?
 - Merkmalsdetektor
- Wieviele Layer braucht man, mit wieviele Neuronen?
 - Frage der Hyperparametersuche (muss herausgefunden werden)
- Wie werden Gewichte W gesetzt?
 - Werden gelernt und zufällig initialisiert.

Fragen

- Welche Funktion(en) sollte man nutzen, um von den Inputdaten auf die Outputklassen zu mappen?
 - Komposition von einfachen Funktionen
- Warum macht es keinen Sinn das Mapping zwischen Layern linear zu machen?
 - Komposition von linearen Funktionen ist wieder eine lineare Funktion
- Was macht die ReLU Aktivierungsfunktior
 - Pise-wise linear tiling

Trainings- und Testzyklus

Aktivierungsfunktionen

Sigmoid-Aktivierungsfunktion:

- 1. Skaliert alle Werte zwischen [0,1]
- 2. Heute wenig genutzt, weil
 - 1. Gradienten verloren gehen
 - 2. Werte nicht um 0 zentriert sind

$$\sigma(x) = 1/(1 + e^{-x})$$

Tanh-Aktivierungsfunktion:

- 1. Skaliert alle Werte zwischen [-1,1]
- 2. Besser als Sigmoid, weil Werte um 0 zentriert

$$tanh = 2\sigma(2x) - 1$$

ReLU-Aktivierungsfunktion:

- 1. Rectified Linear Unit
- 2. Populär, weil schnell berechenbar und konvergiert schneller, weil Werte saturieren nicht gegen 1

$$\max(0, x)$$

