MATHF-3001 — Théorie de la mesure Résolution des TPs

R. Petit

Année académique 2018 - 2019

1 Séance 1

Exercice 1.1. Soient (X, \mathfrak{F}) un espace mesurable et $Y \subset X$. Mq $\mathfrak{F}_Y := \mathfrak{F} \cap Y$ est une σ -algèbre sur Y.

Résolution.

- 1. $\emptyset \in \mathcal{F}$, donc $\emptyset \cap Y = \emptyset \in \mathcal{F}_Y$.
- 2. Soit $F\in \mathfrak{F}.$ $F\cap Y\in \mathfrak{F}_Y$ et donc :

$$Y \setminus (F \cap Y) = Y \setminus F \cup \emptyset = Y \cap F^{C} \in \mathcal{F}_{Y}$$

car $F^{C} \in \mathcal{F}$.

3. Soit $(F_n)_{n\geqslant 0}\in \mathcal{F}^{\mathbb{N}}$. On sait que $\bigcup_{n\geqslant 0}F_n\in \mathcal{F}$. De plus $(F_n\cap Y)_{n\geqslant 0}\in \mathcal{F}^{\mathbb{N}}$. Donc :

$$\bigcup_{n\geqslant 0}(F_n\cap Y)=\bigcup_{n\geqslant 0}F_n\cap Y\in \mathfrak{F}_Y.$$

Exercice 1.2.

1. Soit X un ensemble fini. Décrire la σ-algèbre engendrée par la classe des parties finies de X. Que peut-on dire si X est fini ?

2. Dans X = [0, n], on considère $A = \{0\}$ et $B = \{\{0\}, \{1, 2\}\}$. Décrire $\sigma(A)$ et $\sigma(B)$.

Résolution.

1. Soit $\mathcal{F} = \sigma(\{Y \in \mathcal{P}(X) \text{ s.t. } Y \text{ est fini } \})$. Alors :

$$\mathcal{F} = \{Y \in \mathcal{P}(X) \text{ s.t. } Y \text{ est au plus dénombrable ou } Y^{\complement} \text{ est au plus dénombrable} \}$$

car la famille doit être stable par complémentaire (d'où la définition symétrique par complémentarité) et par union dénombrable (d'où le fait que Y ou Y soit au plus dénombrable). Si X est fini, alors l'ensemble des parties finies de X est exactement $\mathcal{P}(X)$ qui est une σ -algèbre. Donc $\mathcal{F}=\sigma(\mathcal{P}(X))=\mathcal{P}(X)$.

2. $\sigma(\mathcal{A})$ est la σ -algèbre engendrée par un unique élément donc : $\sigma(\mathcal{A}) = \{\emptyset, \{0\}, \{0\}^\complement, [\![0,n]\!]\}$ où $\{0\}^\complement = [\![1,n]\!]$.

$$\sigma(\mathfrak{B}) = \{\emptyset, \{0\}, \{1,2\}, \{0,1,2\}, [\![3,n]\!]\,, [\![1,n]\!]\,, \{0\} \cup [\![3,n]\!]\,, [\![0,n]\!]\}.$$

Exercice 1.3. *Soient* X, Y *deux ensembles, et* $f: X \rightarrow Y$.

- 1. Si \mathcal{F} est une σ -algèbre sur Y, mg $f^{-1}(\mathcal{F})$ est une σ -algèbre sur X.
- 2. Soit A une σ -algèbre sur X.
 - (a) $Mq \mathcal{F} := \{B \in \mathcal{P}(Y) \text{ s.t. } f^{-1}(B) \in \mathcal{A}\} \text{ est une } \sigma\text{-algèbre sur } Y.$
 - (b) Que peut-on dire de f(A)?

Résolution.

1.

- $-\emptyset \in \mathcal{F} \operatorname{donc} \emptyset = f^{-1}(\emptyset) \in f^{-1}(\mathcal{F}).$
- Soit $A \in \mathcal{A}$. Il existe $F \in \mathcal{F}$ s.t. f(A) = B. $f(X \setminus A) = Y \setminus B \in \mathcal{F}$.
- $\text{ Soit } (A_n)_{n\geqslant 0} \in \mathcal{A}^{\mathbb{N}}. \text{ Il existe } (B_n)_{n\geqslant 0} \in \mathcal{F}^{\mathbb{N}} \text{ s.t. } \forall n\geqslant 0: A_n = f^{-1}(B_n). \bigcup_{n\geqslant 0} A_n = \bigcup_{n\geqslant 0} f^{-1}(B_n) = f^{-1}\left(\bigcup_{n\geqslant 0} B_n\right) \in f^{-1}(\mathcal{F}).$

2.

- (a)
- $-\emptyset \in A \text{ donc } \emptyset \in \mathfrak{F}$
 - Soient $B \in \mathcal{F}$, $A \coloneqq f^{-1}(B)$. $f^{-1}(B^{\complement}) = f^{-1}(Y) \setminus f^{-1}(B) = f^{-1}(B)^{\complement} \in \mathcal{A}$.
 - Soit $(B_n)_{n\geqslant 0} \in \mathcal{F}^{\mathbb{N}}$. On pose $B := \bigcup_{n\geqslant 0} B_n$.

$$f^{-1}(B)=\bigcup_{n\geqslant 0}f^{-1}(B_n)=\bigcup_{n\geqslant 0}A_n\in\mathcal{A}$$

où $\forall n\geqslant 0$: $A_n=f^{-1}(B_n)\in \mathcal{A}.$ Donc $B\in \mathfrak{F}.$

(b) f(A) n'est pas nécessairement une σ -algèbre : l'égalité $f(A^\complement) = f(A)^{\complement}$ n'est pas vraie en général. Par exemple pour $f: [\pm \epsilon] \to [0, \epsilon^2] : x \mapsto x^2$, on a :

$$[0,\epsilon^2] = f([-\epsilon,0]) = f([\pm\epsilon] \setminus [0,+\epsilon]) \neq f([\pm\epsilon]) \setminus f([0,\epsilon]) = [0,\epsilon^2] \setminus [0,\epsilon^2] = \emptyset.$$

Donc rien ne garantit que f(A) est stable par passage au complémentaire.

Exercice 1.4. Soient $(X,\mathcal{A}),(Y,\mathcal{B})$ espaces mesurables. Soit $\mathcal{F}\subset\mathcal{P}(Y)$. Si $\mathcal{B}=\sigma(\mathcal{F})$, mq $f:X\to Y$ est mesurable ssi $f^{-1}(\mathcal{B})\subseteq\mathcal{A}$.

 $\underline{\Leftarrow}$: on pose $\mathcal{B}' \coloneqq \{B \in \mathcal{B} \text{ s.t. } f^{-1}(B) \in \mathcal{A}\}$. Par le point précédent, \mathcal{B}' est une σ -algèbre. Par hypothèse : $\mathcal{F} \subset \mathcal{B}'$, et donc $\sigma(\mathcal{F}) \subset \sigma(\mathcal{B}') = \mathcal{B}'$. Or $\mathcal{B} = \sigma(\mathcal{F})$. De plus, puisque $\mathcal{B}' \subset \mathcal{B}$, on a $\mathcal{B} \subset \mathcal{B}' \subset \mathcal{B}$, ce qui implique $\mathcal{B} = \mathcal{B}'$, i.e. :

$$\forall B\in \mathfrak{B}: f^{-1}(B)\in \mathcal{A}.$$

Exercice 1.5.

- 1. Mq toute intersection (non-vide) de classes de Dynkin est une classe de Dynkin.
- 2. Mg pour tout $\mathfrak{F} \subset \mathfrak{P}(X)$ il existe une plus petite classe de Dynkin au sens de l'inclusion (notée $\lambda(\mathfrak{F})$).
- 3. Mg si $\mathbb D$ est une classe de Dynkin stable par intersections finies, alors $\mathbb D$ est une σ -algèbre.
- 4. Mq si $\mathfrak{F} \subset \mathfrak{P}(X)$ est stable par intersections finies, alors $\lambda(\mathfrak{F}) = \sigma(\mathfrak{F})$.

Résolution.

- 1. [Exactement même raisonement que pour les σ -algèbres] Soit $(\mathcal{D}_i)_{i\in I}$ une famille non-vide de classes de Dynkin et soit $\mathcal{D} \coloneqq \bigcap_{i\in I} \mathcal{D}_i$.
 - \forall i ∈ I : \emptyset ∈ \mathcal{D}_i donc \emptyset ∈ \mathcal{D} .
 - Soit $D \in \mathcal{D}$. Puisque $\forall i \in I : D \in \mathcal{D}_i$ et que les \mathcal{D}_i sont des classes de Dynkin, on a $\forall i \in I : D^{\complement} \in \mathcal{D}_i$ et donc $D^{\complement} \in \mathcal{D}$.
 - Soit $(D_n)_{n\geqslant 0}\in \mathcal{D}^{\mathbb{N}}$. On sait que $\forall i\in I: \bigsqcup_{n\geqslant 0}D_n\in \mathcal{D}_i$ et donc $\bigsqcup_{n\geqslant 0}D_n\in \mathcal{D}$.
- 2. Comme pour les σ -algèbres, on peut définir :

$$\lambda(\mathcal{F})\coloneqq\bigcap_{\substack{\mathcal{D}\ \mathrm{Dynkin}\ \mathcal{F}\subset\mathcal{D}}}\mathcal{D}.$$

Par le point ci-dessus, $\lambda(\mathfrak{F})$ est une classe de Dynkin et toute classe de Dynkin $\mathfrak{D}'\supset \mathfrak{F}$ contient $\lambda(\mathfrak{F})$ par définition.

- 3. Soit \mathcal{D} une classe de Dynkin stable par intersections finies et soit $(D_n)_{n\geqslant 0}\in \mathcal{D}^\mathbb{N}$. Montrons donc que $\bigcup_{n\geqslant 0}D_n\in \mathcal{D}$. On pose $B_0:=D_0$ et pour n>0, on pose $B_n:=A_n\cap (\bigcap_{j=1}^{n-1}B_j)$. Par récurrence, on observe que les B_n sont dans \mathcal{D} par stabilité sous intersections finies. De plus les B_n sont disjoints deux à deux et leur union est égale à l'union des D_n . Donc $\bigcup_{n\geqslant 0}D_n\in \mathcal{D}$.
- 4. Soit $D \in \lambda(\mathcal{F})$. On pose $\mathcal{D}_D \coloneqq \{Q \in \lambda(\mathcal{F}) \text{ s.t. } Q \cap D \in \lambda(\mathcal{F})\} \subset \lambda(\mathcal{F})$. Montrons que \mathcal{D}_D est une classe de Dynkin.
 - $\emptyset \in \mathcal{D}_D$ puisque $\lambda(\mathfrak{F}) \ni \emptyset = \emptyset \cap D$.
 - Soit $Q \in \mathcal{D}_D$. $Q^{\complement} \cap D = (D^{\complement} \cup Q)^{\complement} = (D^{\complement} \cup (Q \cap D))^{\complement} \in \lambda(\mathcal{F})$ par stabilité par passage au

complément, stabilité par union disjointe.

— Soit $(Q_n)_{n\geqslant 0}\in \mathcal{D}_D^{\mathbb{N}}$ deux à deux disjoints. On a :

$$\bigsqcup_{n\geqslant 0}Q_n\cap D=\bigsqcup_{n\geqslant 0}(\underbrace{Q_n\cap D}_{\in\lambda(\mathcal{F})})\in\lambda(\mathcal{F}).$$

On remarque également que si $D \in \mathcal{F} : \mathcal{F} \subset \mathcal{D}_D \subset \lambda(\mathcal{F})$, ce qui implique $\lambda(\mathcal{F}) = \mathcal{D}_D$.

Or par symétrie de l'intersection, pour D, $Q \in \lambda(\mathcal{F})$ on $a: Q \in \mathcal{D}_D \iff D \in \mathcal{D}_Q$. Dès lors on a une équivalence entre les deux assertions suivantes :

- $\forall (D,Q) \in \mathcal{F} \times \lambda(\mathcal{F}) : Q \in \mathcal{D}_D$ (autrement dit $\forall D \in \mathcal{F} : \lambda(\mathcal{F}) = \mathcal{D}_D$);
- ∀(D, Q) ∈ 𝓕 × λ(𝓕) : D ∈ 𝔻_O (autrement dit ∀Q ∈ λ(𝓕) : 𝓕 ⊂ 𝔻_O).

On peut alors en déduire que $\forall Q \in \lambda(\mathcal{F}): \lambda(\mathcal{F}) = \mathcal{D}_Q$. Dès lors, montrer que $\lambda(\mathcal{F})$ est stable par instersections finies revient à montrer que $\forall D, Q \in \lambda(\mathcal{F}): D \cap Q \in \lambda(\mathcal{F})$, i.e. $D \in \mathcal{D}_Q = \lambda(\mathcal{F})$. On a donc bien la stabilité de $\lambda(\mathcal{F})$ sous intersections finies, on peut donc déduire que $\lambda(\mathcal{F})$ est une σ -algèbre qui contient \mathcal{F} , donc $\sigma(\mathcal{F}) \subset \lambda(\mathcal{F})$. Or toute σ -algèbre est une classe de Dynkin, donc $\lambda(\mathcal{F}) \subset \sigma(\mathcal{F})$, ce qui permet de conclure.