

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

December 2010

NC7SV57 / NC7SV58 TinyLogic[®] ULP-A Universal Configurable Two-Input Logic Gates

Features

- 0.9V to 3.6V V_{CC} Supply Operation
- 3.6V Over-Voltage Tolerant I/Os at V_{CC} from 0.9V to 3.6V
- Extremely High Speed tpd
 - 2.5ns: Typical for 2.7V to 3.6V V_{CC}
 - 3.1ns: Typical for 2.3V to 2.7V V_{CC}
 - 4.0ns: Typical for 1.65V to 1.95V V_{CC}
 - 6.0ns: Typical for 1.4V to 1.6V V_{CC}
 - 8.0ns: Typical for 1.1V to 1.3V V_{CC}
 - 23.0ns: Typical for 0.9V V_{CC}
- Power-Off High-Impedance Inputs and Outputs
- High Static Drive (I_{OH}/I_{OL})
 - ±24mA at 3.00V V_{CC}
 - ±18mA at 2.30V V_{CC}
 - $\pm 6mA$ at 1.65V V_{CC}
 - $\pm 4mA$ at 1.4V V_{CC}
 - ± 2 mA at 1.1V V_{CC} - ± 0.1 mA at 0.9V V_{CC}
- Proprietary Quiet Series™ Noise/EMI Reduction
- Ultra-Small MicroPak™ Package
- Ultra-Low Dynamic Power

Description

The NC7SV57 and NC7SV58 are universal configurable two-input logic gates from Fairchild's Ultra-Low Power (ULP-A) series of TinyLogic $^{\tiny old N}$. ULP-A is ideal for applications that require extreme high-speed, high drive, and low power. This product is designed for a wide low-voltage operating range (0.9V to 3.6V V $_{\rm CC}$) and applications that require more drive and speed than the TinyLogic ULP series, but still offer best-in-class, low-power operation.

Each device is capable of being configured for 1 of 5 unique two-input logic functions. Any possible two-input combinatorial logic function can be implemented, as shown in the *Function Selection Table*. Device functionality is selected by how the device is wired at the board level. *Figures 1 through 10* illustrate how to connect the NC7SV57 and NC7SV58, respectively, for the desired logic function. All inputs have been implemented with hysteresis.

The NC7SV57 and NC7SV58 are uniquely designed for optimized power and speed and are fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Ordering Information

Part Number	Top Mark	Package	Packing Method	
NC7SV57P6X	V57	6-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3000 Units on Tape & Reel	
NC7SV57L6X	H3	H3 6-Lead Micropak™, 1.0mm Wide 5000 U		
NC7SV57FHX	H3	6-Lead, MicroPak2™, 1x1mm Body, .35mm Pitch	Tape & Reel	
NC7SV58P6X	V58	6-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3000 Units on Tape & Reel	
NC7SV58L6X	NC7SV58L6X H4 6-Lead Micropak™, 1.0mm Wide		5000 Units on	
NC7SV58FHX H4 6-		6-Lead, MicroPak2™, 1x1mm Body, .35mm Pitch	Tape & Reel	

Battery Life

Figure 1. Battery Life vs. V_{CC} Supply Voltage

Notes:

- 1. TinyLogic[®] ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly. Battery Life = (V_{battery}•I_{battery}•.9)/(P_{device})/24hrs/day where P_{device} = (I_{CC}• V_{CC}) + (C_{PD} + C_L) V_{CC}²• f.
- where $P_{device} = (I_{CC} \cdot V_{CC}) + (C_{PD} + C_L) \cdot V_{CC}^2 \cdot f$.

 2. Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with $C_L = 15pF$ load.

Pin Configurations

Figure 2. SC70 (Top View)

Figure 3. MicroPak™ (Top Through View)

Figure 4. Pin 1 Orientation

Notes:

- 3. AAA represents product code top mark (see Ordering Information).
- 4. Orientation of top mark determines pin one location.
- 5. Reading the top mark left to right, pin one is the lower left pin.

Pin Definitions

Pin # SC70	Pin # MicroPak™	Name	Description
1	1	I ₁	Data Input
2	2	GND	Ground
3	3	I ₀	Data Input
4	4	Υ	Output
5	5	V _{CC}	Supply Voltage
6	6	l ₂	Data Input

Function Table

	Inputs		NC7SV57	NC7SV58
l ₂	l ₁	I ₀	$Y = \overline{(I_0)} \bullet \overline{(I_2)} + (I_1) \bullet (I_2)$	$Y = (I_0) \bullet \overline{(I_2)} + \overline{(I_1)} \bullet (I_2)$
L	L	L	Н	L
L	L	Н	L	Н
L	Н	L	Н	L
L	Н	Н	L	Н
Н	L	L	L	Н
Н	L	Н	L	Н
Н	Н	L	Н	L
Н	Н	Н	Н	L

H = HIGH Logic Level L = LOW Logic Level

Function Selection Table

2-Input Logic Function	Device Selection	Connection Configuration
2-Input AND	NC7SV57	Figure 5
2-Input AND with Inverted Input	NC7SV58	Figure 11, Figure 12
2-Input AND with Both Inputs Inverted	NC7SV57	Figure 8
2-Input NAND	NC7SV58	Figure 10
2-Input NAND with Inverted Input	NC7SV57	Figure 6, Figure 7
2-Input NAND with Both Inputs Inverted	NC7SV58	Figure 13
2-Input OR	NC7SV58	Figure 13
2-Input OR with Inverted Input	NC7SV57	Figure 6, Figure 7
2-Input OR with Both Inputs Inverted	NC7SV58	Figure 10
2-Input NOR	NC7SV57	Figure 8
2-Input NOR with Inverted Input	NC7SV58	Figure 10, Figure 11
2-Input NOR with Both Inputs Inverted	NC7SV57	Figure 5
2-Input XOR	NC7SV58	Figure 14
2-Input XNOR	NC7SV57	Figure 9

NC7SV57 Logic Configurations

Figure 5 through Figure 9 show the logical functions that can be implemented using the NC7SV57. The diagrams show the DeMorgan's equivalent logic duals for a given two-input function. The logical

implementation is next to the board-level physical implementation of how the pins of the function should be connected.

Figure 5. 2-Input AND Gate

Figure 6. 2-Input NAND Gate with Inverted A Input

Figure 7. 2-Input NAND with Inverted B Input

Figure 8. 2-Input NOR Gate

Figure 9. 2-Input XNOR Gate

NC7SV58 Logic Configurations

Figure 10 through Figure 14 show the logical functions that can be implemented using the NC7SV58. The diagrams show the DeMorgan's equivalent logic duals for a given two-input function. The logical

implementation is next to the board-level physical implementation of how the pins of the function should be connected.

Figure 10. 2-Input NAND Gate

Figure 11. 2-Input AND Gate with Inverted A Input

Figure 12. 2-Input AND with Inverted B Input

Figure 13. 2-Input OR Gate

Figure 14. 2-Input XOR Gate

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	Parameter			Unit
V _{CC}	Supply Voltage		-0.5	4.6	V
V _{IN}	DC Input Voltage		-0.5	4.6	V
	DC Output Voltage	HIGH or LOW State ⁽⁶⁾	-0.5	V _{CC} + 0.5	V
V _{OUT}	DC Output Voltage	V _{CC} =0V	-0.5	4.6	V
I _{IK}	DC Input Diode Current	V _{IN} < 0V		±50	mA
	DC Output Diada Current	V _{OUT} < 0V		-50	m ^
I _{OK}	DC Output Diode Current	$V_{OUT} > V_{CC}$		+50	mA
I _{OH} / I _{OL}	DC Output Source / Sink Curre	ent		±50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per	Supply Pin		±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
		MicroPak™-6		130	
P_{D}	Power Dissipation at +85°C	SC70-6		150	mW
		MicroPak2™-6		120	
ESD	Human Body Model, JEDEC:JI	ESD22-A114		4000	V
ESD	Charged Device Model, JEDEO	C:JESD22-C101		2000	V

Note:

6. IO absolute maximum rating must be observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit
Vcc	Supply Voltage Operating		0.9	3.6	V
V _{IN}	Input Voltage		0	3.6	V
V	Output Voltage	V _{CC} =0V	0	3.6	V
V _{OUT}	Output Voltage	HIGH or LOW State	0	Vcc	7 V
		V _{CC} =3.0V to 3.6V		±24.0	
		V _{CC} =2.3V to 2.7V		±18.0	
1 /1	Output Current	V _{CC} =1.65V to 1.95V		±6.0	mA
I _{OH} /I _{OL}	Output Current	V _{CC} =1.4V to 1.6V		±4.0	
		V _{CC} =1.1V to 1.3V		±2.0	
		V _{CC} =0.9V		±0.1	μA
T _A	Operating Temperature, Free Air		-40	+85	°C
Δt/ΔV	Minimum Input Edge Rate	V _{IN} =0.8V to 2.0, V _{CC} =3.0V		10	ns/V
		SC70-6		425	
$\theta_{\sf JA}$	Thermal Resistance	MicroPak™-6		500	°C/W
		MicroPak2™-6		560	7

Note:

7. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Complete	Davamatar	V	Conditions	T _A =2	5°C	T _A =-40	to 85°C	l lmita
Symbol	Parameter	V _{CC}	Conditions	Min.	Max.	Min.	Max.	Units
		0.90		0.30	0.70	0.30	0.70	
		1.10		0.40	1.00	0.40	1.00	1
V_{P}	Positive Threshold	1.40		0.50	1.40	0.50	1.40	V
V P	Voltage	1.65		0.70	1.50	0.70	1.50	·
		2.30		1.00	1.80	1.00	1.80	
		2.70		1.30	2.20	1.30	2.20	
		0.90		0.10	0.60	0.10	0.60	
		1.10		0.15	0.70	0.15	0.70	
V_N	Negative Threshold	1.40		0.20	0.80	0.20	0.80	V
۷N	Voltage	1.65		0.25	0.90	0.25	0.90	v
		2.30		0.40	1.15	0.40	1.15	
		2.70		0.60	1.50	0.60	1.50	
		0.90		0.07	0.50	0.07	0.50	
		1.10		0.08	0.60	0.08	0.60	
V _H	Hysteresis Voltage	1.40		0.10	0.80	0.10	0.80	V
VН	Trysteresis voltage	1.65		0.15	1.00	0.15	1.00	v
		2.30		0.25	1.10	0.25	1.10	
		2.70		0.40	1.20	0.40	1.20	
		0.90		V _{CC} -0.1		V _{CC} -0.1		
		$1.10 \leq V_{CC} \leq 1.30$		V _{CC} -0.1		V _{CC} -0.1		
		$1.40 \leq V_{CC} \leq 1.60$	I = 100A	V _{CC} -0.2		V _{CC} -0.2		
		$1.65 \leq V_{C,C} \leq 1.95$	I _{OH} =-100μA	V _{CC} -0.2		V _{CC} -0.2		
		$2.30 \leq V_{CC} \leq 2.70$		V _{CC} -0.2		V _{CC} -0.2		
		$2.70 \leq V_{CC} \leq \ 3.60$	V	V _{CC} -0.2		V _{CC} -0.2		
		$1.10 \le V_{CC} \le 1.30$	I _{OH} =-2mA	.75 x V _{CC}		.75 x V _{CC}		
V_{OH}	HIGH Level Output Voltage	$1.40 \le V_{CC} \le 1.60$	I _{OH} =-4mA	.75 x V _{CC}		.75 x V _{CC}		V
	Voltage	$1.65 \leq V_{CC} \leq 1.95$		1.25		1.25		1
		$2.30 \le V_{CC} \le 2.70$	I _{OH} =-6mA	2.0	1	2.0		
		$2.30 \le V_{CC} \le 2.70$		1.8		1.8		
		$2.70 \le V_{CC} \le 3.60$	I _{OH} =-12mA	2.2		2.2		1
		$2.30 \le V_{CC} \le 2.70$		1.7		1.7		1
		2.70 ≤ V _{CC} ≤ 3.60	I _{OH} =-18mA	2.4		2.4		1
		$2.70 \le V_{CC} \le 3.60$	I _{OH} =-24mA	2.2		2.2		

Continued on following page....

DC Electrical Characteristics (Continued)

		.,	0 1111	T _A =	:25°C	T _A =-40	to 85°C	
Symbol	Symbol Parameter	Parameter V _{CC}	Conditions	Min.	Max.	Min.	Max.	Units
		0.90			0.1		0.1	
		$1.10 \leq V_{CC} \leq 1.30$			0.1		0.1	
		$1.40 \le V_{CC} \le 1.60$	100.4		0.2		0.2	
		$1.65 \le V_{CC} \le 1.95$	Ι _{ΟL} =100μΑ		0.2		0.2	
		$2.30 \leq V_{CC} \leq 2.70$			0.2		0.2	
		$2.70 \leq V_{CC} \leq 3.60$			0.2		0.2	
.,	LOW Level Output	$1.10 \le V_{CC} \le 1.30$	I _{OL} =2mA		.25 x V _{CC}		.25 x V _{CC}	.,
V _{OL}	Voltage	$1.40 \le V_{CC} \le 1.60$	I _{OL} =4mA		.25 x V _{CC}		.25 x V _{CC}	V
		$1.65 \leq V_{CC} \leq 1.95$	I _{OL} =6mA		0.3		0.3	
		$2.30 \leq V_{CC} \leq 2.70$	L =40m A		0.4		0.4	
		$2.70 \leq V_{CC} \leq 3.60$	I _{OL} =12mA		0.4		0.4	
		$2.30 \leq V_{CC} \leq 2.70$	L =40m A		0.6		0.6	
		$2.70 \leq V_{CC} \leq 3.60$	I _{OL} =18mA		0.4		0.4	
	9	$2.70 \leq V_{CC} \leq 3.60$	I _{OL} =24mA		0.55		0.55	
I _{IN}	Input Leakage Current	0.90 to 3.60	$0 \leq V_{IN} \leq 3.6V$		±0.1		±0.5	μA
I _{OFF}	Power Off Leakage Current	0	$0 \leq (V_{IN}, V_O) \leq 3.60$		0.5		0.5	μA
	Quiescent Supply	0.00 to 2.60	V _{IN} =V _{CC} or GND		0.9		0.9	
Icc	Current	0.90 to 3.60	$V_{CC} \leq V_{IN} \leq 3.6 V$				±0.9	μA

AC Electrical Characteristics

Complete	Downwater	W	Conditions		T _A =25°(C	T _A =-40	to 85°C		Fi
Symbol	Parameter	V _{CC}	Conditions	Min.	Тур.	Min.	Тур.	Min.	Units	Figure
		0.90	C_L =15pF, R_L =1M Ω		15.0					
		$1.10 \leq V_{CC} \leq 1.30$	C =15nF D =2KO	4.0	8.0	16.5	3.3	31.0		7
t _{PHL} , t _{PLH}	Propagation Delay	$1.40 \le V_{CC} \le 1.60$	$C_L=15pF, R_L=2K\Omega$	2.0	6.0	10.0	2.0	12.0	ns	Figure 15 Figure 16
	Delay	$1.65 \leq V_{CC} \leq 1.95$	C_L =30pF, R_I =500 Ω	2.0	4.0	9.1	1.9	10.0		
		$2.30 \leq V_{CC} \leq 2.70$		1.5	3.1	6.2	1.4	6.7		
		$2.70 \leq V_{CC} \leq 3.60$	1.00011	1.2	2.5	5.4	1.2	6.1		
C _{IN}	Input Capacitance	0			8				pF	
Соит	Output Capacitance	0			12				pF	K)
C _{PD}	Power Dissipation Capacitance	0.90 to 3.60	V _I =0V or V _{CC} , f=10MHz		10				pF	

AC Loadings and Waveforms

Figure 15. AC Test Circuit

Figure 16. AC Waveforms

Symbol	V _{cc}						
Symbol	3.3V ± 0.3V	2.5V ± 0.2V	1.8V ± 0.15V	1.5V ± 0.10V	1.2V ± 0.10V	Ve.0	
V _{mi}	1.5V	V _{CC} /2					
V_{mo}	1.5V	V _{CC} /2					

Physical Dimensions

Figure 17. 6-Lead, SC70, EIAJ SC-88a, 1.25mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/products/analog/pdf/sc70-6 tr.pdf

Package Designator	Designator Tape Section		Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994
- 4. FILENAME AND REVISION: MAC06AREV4
- 5 PIN ONE IDENTIFIER IS 2X LENGTH OF ANY

OTHER LINE IN THE MARK CODE LAYOUT.

Figure 18. 6-Lead, MicroPak™, 1.0mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions 0.89 ○ 0.05 C 0.35 1.00 2X 5X 0.40 PIN 1 0.66 MIN 250uM 1.00 1X 0.45 6X 0.19 ○ 0.05 C **TOP VIEW** RECOMMENDED LAND PATTERN 2X FOR SPACE CONSTRAINED PCB 0.90 // 0.05 C 0.35 0.55MAX С 5X 0 52 SIDE VIEW 0.73 1X 0.57 (0.08) 4X 0.09 6X 2 **DETAIL A** 0.19 - 0.20 6X

- ALTERNATIVE LAND PATTERN FOR UNIVERSAL APPLICATION 5X 0.35 0.25 0.60 0.10M C B A 0.35 \oplus (80.0).05 C 4X **BOTTOM VIEW** A. COMPLIES TO JEDEC MO-252 STANDARD
 - 0.40 0.30 0.075X45° **DETAIL A CHAMFER** PIN 1 LEAD SCALE: 2X

(0.05)6X

- B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- D. LANDPATTERN RECOMMENDATION IS BASED ON FSC
- E. DRAWING FILENAME AND REVISION: MGF06AREV3

Figure 19. 6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/packaging/MicroPAK2 6L tr.pdf

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
FHX	Leader (Start End)	125 (Typical)	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT**

CTLTM Current Transfer Logic™ DEUXPEED⁶ Dual Cool™ EcoSPARK® EfficientMax™ ESBC** Fairchild®

Fairchild Semiconductor⁶ FACT Quiet Series™ FACT® FastvCore™ EETBench™

FlashVVriter®* **FPSTM**

F-PESTM FRFFT

Global Power Resources Green FPS™

Green FPS™ e-Series™ GmaxTM

GTOM IntelliMAX** ISOPLANAR™ MegaBuck™ MICROCOUPLER"

MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET OSTM. Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™ SPM® STEALTH** SuperFET⁶ SuperSOT™3 SuperSOT™6 SuperSOT™8 SupreMOS⁶

SyncFET™ Sync-Lock™ SYSTEM SERVICE The Power Franchise®

The Right Technology for Your Success™

Wer franchise

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPVVM™ TinyWire™ TriFault Detect™ TRUECURRENT'M' μSerDes™

Ultra ERFET™ UniFET** VCXTM VisualMax™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HERBIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Data sheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 151

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative