# 情報処理工学第5回

藤田 一寿

公立小松大学保健医療学部臨床工学科

# 論理演算

#### ■ 論理演算

- ・1(真)か0(偽)の2つの入力に対して行う演算
- ・コンピュータは論理演算に基づいて計算を行っている.
- コンピュータの処理をより理解するため論理演算を学ぶ。
- ・ 論理演算で用いる代数をブール代数と呼ぶ.

• 1かOかは、電気回路ではスイッチのオンオフ、電流が流れる流れない、電圧が高い低いなどに対応していると考えられる。

#### ■論理演算の種類

- 論理積,AND
  - かつ,掛け算
- 論理和,OR
  - または、足し算
- 否定,NOT
  - ・ではない
- NAND
- NOR
- 排他的論理和,XOR

- •掛け算に相当する計算
- ・集合においては積集合(かつ)に相当する
- 例
  - $0 \cdot 0 = 0$
  - $0 \cdot 1 = 0$
  - $1 \cdot 0 = 0$
  - 1 1 = 1
- 変数Aと変数Bの論理積の結果が変数Zとなる場合は
  - A B = Y
- ・と書ける。このように論理演算を代数式で表現したものを論理式と言う。

#### 論理積と真理値表

- •掛け算に相当する計算
- 例
  - $A \cdot B = Y$
  - $0 \cdot 0 = 0$
  - $0 \cdot 1 = 0$
  - $1 \cdot 0 = 0$
  - $1 \cdot 1 = 1$
- 上記の計算を表に直したもの を真理値表という.

## 真理值表

| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

#### 論理積とベン図

- ・論理積は集合においては積集合に相当する...
  - A・BはAかつBに相当(Aに含まれかつBにも含まれる)
- ・集合を表すときにベン図を用いる.
- ベン図は論理演算を視覚的に理解する手助けとなる事がある.
- A=1(真)とは集合Aに含まれることを意味する.



論理積が1の場合はAかつBが 真であることに相当 ベン図においてAかつBが真で ある部分はAとBが重なる部分

- ・足し算に相当する計算
- 集合においては和集合(または)に相当する
- 例
  - $\cdot 0+0=0$
  - 0+1=1
  - 1+0=1
  - 1+1=1

| 异垤胆孜 |   |   |
|------|---|---|
| Α    | В | Υ |

古珊陆主

| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

- 変数Aと変数Bの論理和の結果が変数Yとなる場合は
  - A + B = Y
- と論理式で表せる。

#### 論理和とベン図

- ・論理和は集合においては和集合に相当する...
  - A+BはAまたはBに相当
  - Aに含まれるか、または、Bに含まれるか



論理和が1の場合はAまたはB が真であることに相当 ベン図においてAまたはBが真 である部分はAとBすべての領 域

## 一 否定

- 1(真)の否定はO(偽),O(偽)の否定は1(真)
- •集合において、補集合に相当する. Aではない.
- ・変数Aの否定の結果が変数Yとなる場合は

$$\overline{A} = Y$$

・と書ける.

| 卣 | 理化   | <b>首表</b> |
|---|------|-----------|
| 7 | /王 I | ロン        |

| А | Υ |
|---|---|
| 0 | 1 |
| 1 | 0 |



否定が1の場合はAが偽であることに相当ベン図においてAが偽である部分はAの外の領域

#### NAND

- ANDの出力の否定したもの.
- $\overline{A \cdot B} = Y$  と表せる.



## 真理值表

| А | В | Υ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

#### NOR

- ORの出力の否定したもの.
- • $\overline{A+B}=Y$ と表せる.



## 真理值表

| А | В | Υ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

#### ■ 排他的論理和XOR

- 真理値表に示すような演算を排他的論理和(XOR, exclusive OR)と呼ぶ。
- ・入力が同じならO(偽)を出力し、入力が異なれば1(真)を出力する。
- ・論理式では $A \oplus B = Y$  と表せる.



| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

■ 論理式から真理値表を求める

$$A \cdot \overline{B} + \overline{A} \cdot B = Y$$

| Α | В | Υ |
|---|---|---|
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |

・次の論理式の真理値表をかけ.

$$Y = \overline{A} + B$$

$$Y = A \cdot B + \overline{A} \cdot \overline{B}$$

$$Y = A \cdot B \cdot C + A \cdot C$$

## ▮演習

・次の論理式をベン図で表わせ、ただし、論理式が真となる部分を塗りつぶせ。

$$A + \overline{A} \cdot B$$

$$A \cdot B + B \cdot C + C \cdot A$$

## ■ 演習

・次のベン図が表す論理式を示せ.



論理演算の公理・定理

論理演算の公理・定理 
$$A+0=A$$
 
$$A\cdot 1=A$$
 
$$A+B=B+A$$
 
$$A\cdot B=B\cdot A$$

 $A \cdot \overline{A} = 0$ 

$$A \cdot B = B \cdot A$$
$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

$$A \cdot (B+C) = A \cdot B + A \cdot C$$

$$\bar{A} = A \cdot B + A \cdot C$$
 $\bar{A} = 1$ 

$$\overline{\overline{A}} = 1$$

$$(B + C) = A \cdot B + A$$
  
 $A + \overline{A} = 1$ 

$$A \cdot 0 = 0$$

$$A \cdot (A + B) = A$$

$$A + (A \cdot B) = A$$
$$\overline{\overline{A}} = A$$

$$\frac{\overline{\overline{A}}}{\overline{A}} = A$$

$$R) \perp C = A$$

A + A = A

 $A \cdot A = A$ 

A + 1 = 1

 $A \cdot 0 = 0$ 

$$(A+B) + C = A + (B+C)$$
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
  
 $A + (\overline{A} \cdot B) = A + B$ 

$$A \cdot (\overline{A} + B) = A \cdot B$$

# ■ド・モルガンの定理

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

全体の否定が個別の否定に変わり、かつ和と積が入れ替わる.

■ド・モルガンの定理をベン図で確認

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$



## 演習

•  $\overline{A \cdot B} = \overline{A} + \overline{B}$  の計算をベン図で確認せよ.

#### ■論理式の簡単化

- ・ 論理式をより短い簡単な形にすることを簡単化という.
- ・次の論理式を簡単化してみる.

$$(A+B) \cdot (A+C) = A \cdot A + A \cdot C + A \cdot B + B \cdot C$$
$$= A \cdot (A+B) + A \cdot (A+C) + B \cdot C$$
$$= A + B \cdot C$$

## 演習

・次の論理式を簡単にせよ.

$$(A+B)\cdot (A+\overline{B})$$

$$\overline{A \cdot B} + \overline{A} \cdot B$$

$$(A+B)\cdot (A+C) + C\cdot (A+\overline{B})$$