Classifieur de sons

IN104 2022

Contact et déroulement du projet

Contact : <u>Gwendal.PRISER@ensta-paris.fr</u> ou ENSTA : **R 2.20**

Repo GitHub contenant le projet : https://github.com/gpU2IS/IN104

Outils nécessaires :

- Linux (Ubuntu, ...)
- Compilateur GCC (compilation du programme C)
- Python 3 (entraînement d'un classifieur, outils de visualisation)
- Connexion internet

mardi 22/03	14:45 - 15:45	Cours magistral
mardi	16:00 - 18:00	TD info
mardi 29/03	14:45 - 18:00	TD info
mardi	16:00 - 18:00	TD info
mardi 05/04	14:45 - 16:45	cours magistral
mardi 12/04	14:45-16:45	TD info
mardi 19/04	14:45-16:45	TD info
mardi 3/05	14:45-16:45	TD info
mardi 10/05	14:45-16:45	TD info
mardi 24/05	14:45 - 18:00	Soutenance 2

Projet

Objectif: Création d'un programme C classifiant des sons en genre musicaux.

Etapes du projet :

(http://marsyas.info/downloads/datasets.html)

Extraction des descripteurs (1)

Short - Time - Fourier - Transform

(https://www.sciencedirect.com/topics/engineering/short-time-fourier-transform)

Extraction des descripteurs (2)

Apprentissage supervisé et classifieur


```
features.csv :
0; mu1; sigma1; ...; mu200; sigma200;
.
.
.
9; mu1; sigma1; ...; mu200; sigma200;
(100 x 10 lignes, 200 + 1 colonnes)
```


Prédiction

Présentation des résultats

- Quelles sont les données utilisées ?
- Matrice de confusion
- Temps d'entrainement
- Temps d'inférence

Predicted Class

Architecture du projet

```
/IN104 Groupe
  src/
     main.c
     include/ (modules du projet)
  docs/
  examples/
  Makefile
  README.md (Présentation du projet, instruction pour la compilation, comment
  exécuter le programme ?, résultats obtenus)
```

Utilisation de Git

git init
git add <files>
git commit -m "<message descriptif>"
git remote add origin
git@github.com:<user>/<reponame>.git
git push origin master.

Conseils

- Compiler son code et l'exécuter régulièrement.
- Valider les différents modules sur des exemples simples.
- Effectuer des commits réguliers.
- En groupe, effectuer une architecture logicielle en amont avec entrées / sorties des modules : respecter la convention de nommage. E.g. : maVar, MaStruct, mon_module, CONSTANTE.
- Utiliser un IDE (VSCode ...) pour pouvoir débugger avec GDB.
- Effectuer ses recherches internet en anglais car plus de réponses sont disponibles.

Suivi et évaluation du projet

Tableau d'avancement :

https://docs.google.com/spreadsheets/d/1iR_tJWAhS-ZisnpE-PrqFb7A_0W4x8w9xwW4t1x4 P6A/edit?usp=sharing

Soutenance

Date: Mardi 24 Mai de 14h45 à 18h

- Présentation des solutions techniques, des résultats ou pistes de recherche.
- Démonstration en direct : compilation du projet et inférence sur un exemple.

Durée maximale: 10 minutes