

Report Number: F690501/RF-RTL006150-2

Page: 1

of

51

TEST REPORT

of

FCC Part 15 Subpart C §15.247

FCC ID: TQ8-AT240B1AN

Equipment Under Test

: DIGITAL CAR AVNT SYSTEM

Model Name

: AT240B1AN

Serial No.

: N/A

Applicant

: HYUNDAI MOBIS CO., LTD.

Manufacturer

: HYUNDAI MOBIS CO., LTD.

Date of Test(s)

: 2012.12.10 ~ 2013.01.11

Date of Issue

: 2013.03.08

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Logan Lee

Date

2013.03.08

Denny Ham

Report Number: F690501/RF-RTL006150-2 Page: 2 of 51

INDEX

Table of contents

1. General information	3
2. Transmitter radiated spurious emissions and conducted spurious emission	6
3. 6 dB bandwidth	34
4. Maximum peak output power	· 41
5. Power Spectral Density	44
6. Antenna Requirement	51

Report Number: F690501/RF-RTL006150-2 Page: 3 of 51

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

Wireless Div. 3FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

All SGS services are rendered in accordance with the applicable SGS conditions of service available on

request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.

Telephone : +82 31 428 5700 FAX : +82 31 427 2371

1.2. Details of Applicant

Applicant : HYUNDAI MOBIS CO., LTD.

Address : 80-9, Mabook-Dong, Giheung-Gu, Yongin-shi, Gyunggi-Do, 446-912, South Korea

Contact Person : Kim, Jong-Tae Phone No. : +82 31 260 0092

1.3. Description of EUT

Kind of Product	DIGITAL CAR AVNT SYSTEM
Model Name	AT240B1AN
Serial Number	N/A
Power Supply	DC 14.4 V (Vehicle Battery)
Frequency Range	2 412 Mb ~ 2 462 Mb (11b/g/n_HT20)
Modulation Technique	DSSS, OFDM
Number of Channels	11 channels (11b/g/n_HT20)
Antenna Type	Lead wire square type
Antenna Gain	2 412 Mb ~ 2 462 Mb: 3.08 dBi

1.4. Declaration by the manufacturer

- N/A

Report Number: F690501/RF-RTL006150-2 Page: 4 of 51

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal Date	Cal Interval	Cal Due.
Signal Generator	R&S	SMBV100A	255834	Jul. 02, 2012	Annual	Jul. 02, 2013
Signal Generator	R&S	SMR40	100272	Aug. 23, 2012	Annual	Aug. 23, 2013
Spectrum Analyzer	Agilent	N9030A	US51350132	Oct. 30, 2012	Annual	Oct. 30, 2013
High Pass Filter	Wainwright	WHK3.0/18G-6SS	4	Aug. 01, 2012	Annual	Aug. 01, 2013
Low Pass Filter	Mini circuits	NLP-1200+	V9500401023-1	Aug. 01, 2012	Annual	Aug. 01, 2013
Attenuator	AEROFLEX / INMET	26A – 10dB	1	Apr. 02, 2012	Annual	Apr. 02, 2013
Power Sensor	R&S	NRP-Z81	100669	Apr. 03. 2012	Annual	Apr. 03. 2013
DC Power Supply	Agilent	6553A	MY40000695	Jul. 02, 2012	Annual	Jul. 02, 2013
Preamplifier	H.P.	8447F	2944A03909	Jul. 03, 2012	Annual	Jul. 03, 2013
Preamplifier	R&S	SCU18	10070	Aug. 06, 2012	Annual	Aug. 06, 2013
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	Jul. 12, 2012	Annual	Jul, 12, 2013
Test Receiver	R&S	ESU26	100109	Feb. 21, 2012	Annual	Feb. 21, 2013
Bilog Antenna	SCHWARZBECK	VULB9163	396	May 12, 2011	Biennial	May 12, 2013
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170431	May 15, 2012	Biennial	May 15, 2014
Horn Antenna	R&S	HF 906	100326	Nov. 23, 2011	Biennial	Nov. 23, 2013
Antenna Master	INN-CO	MM4000	N/A	N/A	N/A	N.C.R.
Turn Table	INN-CO	DS 1200 S	N/A	N/A	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N/A	N/A	N.C.R.

▶ Support equipment

Description	Manufacturer	Model	Serial Number	
N/A	-	-	-	

Report Number: F690501/RF-RTL006150-2 Page: 5 of 51

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIE	APPLIED STANDARD: FCC Part15 Subpart C § 15.247							
Standard section	Test Item(s)	Result						
15.205 15.209 15.247(d)	Transmitter Radiated Spurious Emissions Conducted Spurious Emission	Complied						
15.247(a)(2)	6 dB Bandwidth	Complied						
15.247(b)(3)	Maximum Peak Output Power	Complied						
15.247(e)	Power Spectral Density	Complied						

1.7. Test Procedure(s)

The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 kHz (ANSI C63.4-2003) and the guidance provided in KDB 558074 were used in the measurement of the DUT.

1.8. Sample calculation

Where relevant, the following sample calculation is provided:

1.8.1. Conducted test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.8.2. Radiation test

Field strength level ($dB\mu V/m$) = Measured level ($dB\mu V$) + Antenna factor (dB) + Cable loss (dB) - amplifier gain(dB)

1.9. Test report revision

Revision	Report number	Description
0	F690501/RF-RTL006150	Initial
1	F690501/RF-RTL006150-1	Added Details of EUT setup, the type of the antenna connector
2	F690501/RF-RTL006150-2	Separated Details of EUT setup from the report

Report Number: F690501/RF-RTL006150-2 Page: 6 of 51

2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mb to 1 Gb Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 \mbox{GHz} to the 10th harmonic of the highest fundamental frequency or 40 \mbox{GHz} , whichever is lower.

Report Number: F690501/RF-RTL006150-2 Page: 7 of 51

2.1.2. Conducted Spurious Emission

EUT	Attenuator	Spectrum Analyzer
		-

2.2. Limit

According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c))

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (쌘)	Distance (Meters)	Field Strength (dB <i>µ</i> V/m)	Field Strength (μ V/m)
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

Report Number: F690501/RF-RTL006150-2 Page: 8 of 51

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates in section 10.0 of KDB 558074

2.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 Glz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 Glz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

- 1. Unwanted Emissions into Non-Restricted Frequency Bands
- The Reference Level Measurement refer to section 9.1 & 10.1.1

Set analyzer center frequency, SPAN = 1.5 times the DTS channel bandwidth, the RBW = 3 kllz and VBW ≥ 3 x RBW,

Detector = Peak, Sweep time = Auto couple, Trace = Max hold (i.e., set = 100 kHz and VBW ≥ 300 kHz)

- Unwanted Emissions Level Measurement refer to section 9.1 & 10.1.2
- Set analyzer emission frequency, the RBW = 100 $\,\mathrm{kHz}$ and VBW $\,\geq\,\,300\,\,\mathrm{kHz}$, Detector = Peak, Sweep time = Auto couple, Trace = Max hold
- 2. Unwanted Emissions into Restricted Frequency Bands
- Peak Power measurement procedure refer to section 8.1.1 & 10.2.3.2

Set RBW = 1 MHz, VBW $\geq 3 \times \text{RBW}$, SPAN $\geq \text{RBW}$, Detector = Peak, Sweep time = Auto couple, Trace = Max hold Note that if the peak measured value complies with the average limit, it is not necessary to perform a separate average measurement. If this option is exercised, it should be so noted in the test report.

-Average Power measurements procedure refer to section 8.2.1 & 10.2.3.3

Set the analyzer span to a minimum of 1.5 times the EBW, RBW = 1 $\,$ Mb, VBW $\,\geq\,$ 3 $\,$ Mb,

Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW, Sweep time = auto peak,

Detector = power averaging (RMS) or sample detector when RMS not available,

Employ trace averaging in power averaging (RMS) mode over a minimum of 100 traces.

Note: If the analyzer does not have a band power function, sum the spectral levels (in linear power units) at 1 MHz intervals extending across the entire EBW.

3. To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes.

2.3.2. Test Procedures for Conducted Spurious Emissions

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

Per the guidance of KDB 558074, section 10.1.1 & 10.1.2, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 $\,\mathrm{klb}$. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 2.4.3. The limit for out of band spurious emission at the band edge is 30 $\,\mathrm{dB}$ below the fundamental emission level measured in a 100 $\,\mathrm{klb}$ bandwidth.

Report Number: F690501/RF-RTL006150-2 Page: 9 of 51

2.4. Test Results

Ambient temperature : (23 \pm 2) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

2.4.1. Radiated Spurious Emission (Worst case configuration_11b mode, 11 Mbps, middle channel)

The frequency spectrum from 30 Mb to 1 000 Mb was investigated. All reading values are peak values.

Radiated Emissions		Ant	Correctio	n Factors	Total	FCC L	mit	
Frequency (畑)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
93.24	28.74	Peak	V	12.31	-23.88	17.17	43.50	26.33
112.64	25.52	Peak	Н	11.47	-23.63	13.36	43.50	30.14
128.55	34.58	Peak	V	9.50	-23.47	20.61	43.50	22.89
138.25	32.08	Peak	Н	8.39	-23.40	17.07	43.50	26.43
215.08	26.71	Peak	V	10.94	-22.71	14.94	43.50	28.56
218.18	28.24	Peak	Н	11.02	-22.69	16.57	46.00	29.43
334.97	34.60	Peak	Н	13.76	-22.24	26.12	46.00	19.88
549.92	32.20	Peak	Н	17.51	-22.60	27.11	46.00	18.89
550.31	30.16	Peak	V	17.52	-22.60	25.08	46.00	20.92
747.41	29.34	Peak	V	19.89	-21.71	27.52	46.00	18.48
Above 800.00	Not detected	-	-	-	-	-	-	-

Remark:

^{1.} All spurious emission at channels are almost the same below 1 @, so that the middle channel was chosen at representative in final test.

^{2.} Actual = Reading + AF + AMP + CL

Report Number: F690501/RF-RTL006150-2 Page: 10 of 51

2.4.2. Spurious Radiated Emission

The frequency spectrum above 1 000 Mb was investigated.

DSSS: 802.11b(11 Mbps) Low Channel (2 412 Mb)

Radiated Emissions		Ant	Correction Factors		Total	FCC Limit		
Frequency (畑)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 390.00	25.38	Peak	V	28.05	7.18	60.61	74.00	13.39
*2 390.00	14.35	Average	V	28.05	7.18	49.58	54.00	4.42

Radiated Emissions		Ant	Correction Factors		Total	FCC Limit		
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 823.96	49.77	Peak	V	32.31	-32.66	49.42	74.00	24.58
*4 823.96	45.87	Average	V	32.31	-32.66	45.52	54.00	8.48
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL006150-2 Page: 11 of 51

Middle Channel (2 437 眦)

Radiated Emissions		Ant	Correction Factors		Total	FCC Limit		
Frequency (账)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*4 874.00	46.96	Peak	V	32.79	-32.60	47.15	74.00	26.85
*4 874.00	42.75	Average	V	32.79	-32.60	42.94	54.00	11.06
Above 4 900.00	Not detected	-	-	-	-	-	-	-

High Channel (2 462 Mb)

Radiated Emissions			Ant	Correctio	n Factors	Total	FCC Li	mit
Frequency (雕)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	29.24	Peak	V	28.31	7.37	64.92	74.00	9.08
*2 483.50	15.15	Average	V	28.31	7.37	50.83	54.00	3.17

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (脈)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*4 923.93	46.51	Peak	V	33.10	-32.43	47.18	74.00	26.82
*4 923.93	41.46	Average	V	33.10	-32.43	42.13	54.00	11.87
Above 5 000.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL006150-2 Page: 12 of 51

DSSS: 802.11g(6 Mbps) Low Channel (2 412 Mb)

Radiated Emissions			Ant	Correction Factors		Total	FCC Li	imit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 390.00	29.52	Peak	V	28.05	7.18	64.75	74.00	9.25
*2 390.00	15.45	Average	V	28.05	7.18	50.68	54.00	3.32

Radi	Radiated Emissions			Correction Factors		Total	FCC Limit	
Frequency (쌘)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*4 820.00	41.58	Peak	V	32.25	-32.67	41.16	74.00	32.84
*4 820.00	27.11	Average	V	32.25	-32.67	26.69	54.00	27.31
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 账)

Radiated Emissions			Ant	Correctio	n Factors	Total	FCC Limit	
Frequency (쌘)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dΒμV/m)	Limit (dΒμV/m)	Margin (dB)
*4 874.00	39.96	Peak	V	32.79	-32.60	40.15	74.00	33.85
*4 874.00	25.97	Average	V	32.79	-32.60	26.16	54.00	27.84
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL006150-2 Page: 13 of 51

High Channel (2 462 ₩z)

	Radiated Emissions			Ant	Correctio	n Factors	Total	FCC Li	imit
Freque	псу	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 483	50	30.05	Peak	V	28.31	7.37	65.73	74.00	8.27
*2 483	50	14.89	Average	V	28.31	7.37	50.57	54.00	3.43

Radiated Emissions			Ant	Correctio	n Factors	Total	FCC Limit	
Frequency (畑)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dB <i>µ</i> V/m)	Margin (dB)
*4 924.12	45.78	Peak	V	33.11	-32.44	46.45	74.00	27.55
*4 924.12	41.25	Average	V	33.11	-32.44	41.92	54.00	12.08
Above 5 000.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL006150-2 Page: 14 of 51

DSSS: 802.11n_HT20(MCS0)

Low Channel (2 412 Mb)

Radiated Emissions			Ant	Correctio	n Factors	Total	FCC Li	mit
Frequency (舢)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 390.00	27.36	Peak	V	28.05	7.18	62.59	74.00	11.41
*2 390.00	15.03	Average	٧	28.05	7.18	50.26	54.00	3.74

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dB <i>µ</i> V/m)	Margin (dB)
*4 824.32	43.39	Peak	V	32.31	-32.66	43.04	74.00	30.96
*4 824.32	25.66	Average	V	32.31	-32.66	25.31	54.00	28.69
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Middle Channel (2 437 账)

Radi	Radiated Emissions			Correctio	n Factors	Total	FCC Limit	
Frequency (飐)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*4 876.10	41.19	Peak	V	32.81	-32.58	41.42	74.00	32.58
*4 876.10	26.55	Average	V	32.81	-32.58	26.78	54.00	27.22
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL006150-2 Page: 15 of 51

High Channel (2 462 眦)

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	30.08	Peak	V	28.31	7.37	65.76	74.00	8.24
*2 483.50	15.12	Average	V	28.31	7.37	50.80	54.00	3.20

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 924.22	39.78	Peak	V	33.11	-32.44	40.45	74.00	33.55
*4 924.22	25.31	Average	V	33.11	-32.44	25.98	54.00	28.02
Above 5 000.00	Not detected	-	-	-	-	-	-	-

Remarks:

- 1. "*" means the restricted band.
- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Actual = Reading + AF + AMP + CL

Report Number: F690501/RF-RTL006150-2 Page: 16 of 51

2.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission

DSSS: 802.11b(11 Mbps)

Low Channel

Report Number: F690501/RF-RTL006150-2 Page: 17 of 51

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 387.60	-68.58	22.50	-46.08
2 400.00	-63.13	22.52	-40.61
5 001.20	Noise floor	=	-
25 613.40	Noise floor	=	-

Report Number: F690501/RF-RTL006150-2 Page: 18 of 51

Middle Channel

Report Number: F690501/RF-RTL006150-2 Page: 19 of 51

Note

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
3 702.10	Noise floor	=	-
26 482.40	Noise floor	-	-

Report Number: F690501/RF-RTL006150-2 Page: 20 of 51

High Channel

Report Number: F690501/RF-RTL006150-2 Page: 21 of 51

Note

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

 , , ,	, ,		The state of the s
Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 483.50	-67.51	22.58	-44.93
2 537.90	-59.40	22.62	-36.78
25 640.90	Noise floor	-	-

Report Number: F690501/RF-RTL006150-2 Page: 22 of 51

OFDM: 802.11g(6 Mbps)

Low Channel

Report Number: F690501/RF-RTL006150-2 Page: 23 of 51

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 390.00	-71.06	22.50	-48.56
2 400.00	-62.55	22.52	-40.03
3 841.30	Noise floor	=	-
25 915.30	Noise floor	=	-

Report Number: F690501/RF-RTL006150-2 Page: 24 of 51

Middle Channel

Report Number: F690501/RF-RTL006150-2 Page: 25 of 51

Note

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 511.30	-58.96	22.60	-36.36
26 097.40	Noise floor	=	=

Report Number: F690501/RF-RTL006150-2 Page: 26 of 51

High Channel

Report Number: F690501/RF-RTL006150-2 Page: 27 of 51

Note

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

· , ,	, ,		
Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 483.50	-70.16	22.58	-47.58
3 842.00	Noise floor	-	-
26 126.50	Noise floor	-	-

Report Number: F690501/RF-RTL006150-2 Page: 28 of 51

OFDM: 802.11n_HT20(MCS0)

Low Channel

Report Number: F690501/RF-RTL006150-2 Page: 29 of 51

Note:

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 390.00	-71.18	22.50	-48.68
2 400.00	-62.55	22.52	-40.03
2 486.40	-59.33	22.58	-36.75
26 401.50	Noise floor	-	-

Report Number: F690501/RF-RTL006150-2 Page: 30 of 51

Middle Channel

Report Number: F690501/RF-RTL006150-2 Page: 31 of 51

Note

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
3 822.40	Noise floor	=	-
25 699.20	Noise floor	=	-

Report Number: F690501/RF-RTL006150-2 Page: 32 of 51

High Channel

Report Number: F690501/RF-RTL006150-2 Page: 33 of 51

Note

Offset (dB) = Attenuator(dB) + Cable loss (dB)

Result (dB m) = Spurious offset (dB) + Reading values (dB m)

· , ,	, ,		
Frequency (Mb)	Reading values (dB m)	Spurious offset (dB)	Result (dB m)
2 483.50	-69.16	22.58	-46.58
3 732.60	Noise floor	-	-
26 255,20	Noise floor	-	-

Report Number: F690501/RF-RTL006150-2 Page: 34 of 51

3. 6 dB Bandwidth Measurement

3.1. Test Setup

EUT	Attenuator		Spectrum Analyzer
-----	------------	--	-------------------

3.2. **Limit**

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 \sim 928 Mb, 2 400 \sim 2 483.5 Mb, and 5 725 \sim 5 825 Mb bands. The minimum of 6 dB Bandwidth shall be at least 500 kb

3.3. Test Procedure

3.3.1. 6 dB Bandwidth

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

The test follows section 7.1 of FCC KDB Publication 558074

- 1. Set resolution bandwidth (RBW) = 1-5 % of DTS BW, not to exceed 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude point (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Report Number: F690501/RF-RTL006150-2 Page: 35 of 51

3.4. Test Results

Ambient temperature : (23 \pm 2) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Operation Mode	Data Rate (Mbps)	Channel	Channel Frequency (쌘)	6 dB Bandwidth (贮)
		Low	2 412	11.60
DSSS (802.11b)	11	Middle	2 437	11.55
		High	2 462	11.35
	6	Low	2 412	16.55
OFDM (802.11g)		Middle	2 437	16.55
(331119)		High	2 462	16.50
		Low	2 412	17.65
OFDM (802.11n_HT20)	MCS0	Middle	2 437	17.65
		High	2 462	17.65

Report Number: F690501/RF-RTL006150-2 Page: 36 of 51

6 dB Bandwidth

DSSS: 802.11b

Low Channel

Middle Channel

Report Number: F690501/RF-RTL006150-2 Page: 37 of 51

High Channel

OFDM: 802.11g

Low Channel

Report Number: F690501/RF-RTL006150-2 Page: 38 of 51

Middle Channel

High Channel

Report Number: F690501/RF-RTL006150-2 Page: 39 of 51

OFDM: 802.11n_HT20

Low Channel

Middle Channel

Report Number: F690501/RF-RTL006150-2 Page: 40 of 51

High Channel

Report Number: F690501/RF-RTL006150-2 Page: 41 of 51

4. Maximum Peak Output Power Measurement

4.1. Test Setup

4.2. Limit

According to §15.247(b)(3), for systems using digital modulation in the 902 \sim 928 Mz, 2 400 \sim 2 483.5 Mz, and 5 725 \sim 5 850 Mz band: 1 Watt. As an alternative to a peak power measurement, compliance with the one watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antenna elements. The average must not include any intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), the conducted output power limit specified in paragraph(b) of this section is based on the use of antenna with directional gains that do not exceed 6 dBi. Except as shown in paragraph(c) of this section, if transmitting antenna of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.3. Test Procedure

- Peak and average power meter method.

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

The test follows section 8.1.3 & 8.2.3 of FCC KDB Publication 558074

- -The maximum peak conducted output power can be measured using a broad band peak RF power meter. The power meter must have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast, average-responding diode type sensor.
- -This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector if the EUT can be configured to transmit continuously or if the power meter can be triggered/signal-gated such that the power is measured only when the EUT is transmitting at its maximum power control level.
- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor. (S/W name : R&S Power Viewer, Version : 3.2.0)
- 3. Measure peak & average power each channel.

Report Number: F690501/RF-RTL006150-2 Page: 42 of 51

4.4. Test Results

Ambient temperature : (23 ± 2) °C Relative humidity : 47 % R.H.

Mode	Channel	Channel Frequency (쌘)	Data Rate (Mbps)	Attenuator + Cable offset (dB)	Average power Result (dB m)	Peak Power Result (dB m)
DSSS (802.11b)			1	21.68	13.69	16.57
	Low	2.412	2		13.94	16.83
	Low	2 412	5.5		13.65	16.56
			11		13.96	16.88
	Middle	0.407	1	21.78	14.25	16.89
			2		14.27	16.76
		2 437	5.5		14.31	16.96
			11		14.46	16.97
	High	0.400	1	24.00	14.89	17.17
			2		14.88	17.52
		2 462	5.5	21.86	15.14	17.87
			11		15.15	17.96
			6		9.62	19.60
			9		9.60	19.38
	Low		12	21.68	9.58	19.42
		0.440	18		9.59	19.44
		2 412	24		9.61	19.58
			36		9.60	19.46
			48		9.61	19.55
			54		9.47	19.49
	Middle	2 437	6	21.78	10.15	20.23
			9		10.14	19.75
			12		10.08	20.02
OFDM (802.11g)			18		10.06	20.17
			24		10.11	20.20
			36		10.13	20.19
			48		10.14	20.20
			54		10.03	20.11
	High	2 462	6	21.86	10.10	20.14
			9		9.98	20.06
			12		10.01	20.10
			18		10.05	20.04
			24		10.08	20.12
			36		9.75	19.95
			48		9.94	20.01
			54		10.03	20.12

Report Number: F690501/RF-RTL006150-2 Page: 43 of 51

Mode	Channel	Channel Frequency (쌘)	Data rate (Mbps)	Attenuator + Cable offset (dB)	Average power Result (dB m)	Peak Power Result (dB m)
	Low	2 412	MCS0	21.68	9.56	19.63
			MCS1		9.49	19.49
			MCS2		9.42	19.52
			MCS3		9.40	19.48
			MCS4		9.39	19.62
			MCS5		9.36	19.60
			MCS6		9.36	19.55
			MCS7		9.48	19.54
	Middle	2 437	MCS0	21.78	9.87	20.31
			MCS1		9.86	20.19
			MCS2		9.85	20.22
OFDM			MCS3		9.86	20.26
(802.11n_HT20)			MCS4		9.77	20.25
			MCS5		9.80	20.21
			MCS6		9.75	20.24
			MCS7		9.79	20.25
	High	2 462	MCS0	21.86	10.67	20.98
			MCS1		10.65	20.95
			MCS2		10.66	20.89
			MCS3		10.58	20.75
			MCS4		10.60	20.90
			MCS5		10.62	20.76
			MCS6		10.65	20.69
			MCS7		10.57	20.68

Report Number: F690501/RF-RTL006150-2 Page: 44 of 51

5. Power Spectral Density Measurement

5.1. Test Setup

EUT	Attenuator	Spectrum /	Analyzer
-----	------------	------------	----------

5.2. Limit

 $\S15.247(e)$ For digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dB m in any 3 klb band any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

The measurements are recorded using the AVGPSD measurement procedure in section 9.2 of KDB 558074.

- Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 2. Set the analyzer span to at least 1.5 times the DTS channel bandwidth.
- 3. Set the RBW \geq 3 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = power average (RMS) or sample detector (when RMS not available).
- 6. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level.

Report Number: F690501/RF-RTL006150-2 Page: 45 of 51

5.4. Test Results

Ambient temperature : (23 \pm 2) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Operation Mode	Data Rate (Mbps)	Channel	Frequency	Measured PSD (dB m)	Maximum Limit (dB m)
DSSS (802.11b)	11	Low	2 412 Mb	-23.45	8
		Middle	2 437 Mb	-22.67	8
		High	2 462 Mb	-20.23	8
OFDM (802.11g)	6	Low	2 412 Mb	-32.65	8
		Middle	2 437 Mb	-30.31	8
		High	2 462 Mb	-31.94	8
OFDM (802.11n_HT20)	MCS0	Low	2 412 Mb	-33.61	8
		Middle	2 437 Mb	-32.47	8
		High	2 462 MHz	-33.90	8

Report Number: F690501/RF-RTL006150-2 Page: 46 of 51

DSSS: 802.11b Low Channel

Middle Channel

Report Number: F690501/RF-RTL006150-2 Page: 47 of 51

High Channel

OFDM: 802.11g Low Channel

Report Number: F690501/RF-RTL006150-2 Page: 48 of 51

Middle Channel

High Channel

Report Number: F690501/RF-RTL006150-2 Page: 49 of 51

OFDM: 802.11n_HT20

Low Channel

Middle Channel

Report Number: F690501/RF-RTL006150-2 Page: 50 of 51

High Channel

Report Number: F690501/RF-RTL006150-2 Page: 51 of 51

6. Antenna Requirement

6.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

6.2. Antenna Connected Construction

Antenna used in this product is lead wire square type with gain of 3.08 $\,\mathrm{dB}$ i. WIFI antenna is mounted on a vehicle with DH H/U in pairs, and it does not use the other kind of antennas. The type of the antenna connector is FAKRA(59S20X-40ML5_A)