第十一讲 系统决策概述

一. 决策的概念

在天气晴雨未卜的情况下出门是否带伞?

在来年的教育经费难以预测的情况下,某学校是否应当扩 建和扩大招生?

1. 决策问题的特点

- 由状态的不确定性引起的后果的不确定性
- 各种可能后果的价值因人而异
- 有多个选择

2. 决策的定义

1)《美国大百科全书》("Decision Theory"条目)

"所谓作**决策**,就是在若干个可能的备选方案中进行选择。 决策论则是为了对制订决策的过程进行描述并使之合理化而发 展起来的范围很广的概念和方法。"

2) 《苏联大百科全书》

"决策是自由意志行动的必要元素……和实现自由意志行动的手段。自由意志行动要求先有目的和行动的手段,在体力动作之前完成智力行动,要考虑完成或反对这次行动理由等等,

而这一智力行动以制订一项决策而告终"。显然

- (1) 决策是智力行动
- (2)决策是意志行动,因此,决策与人的意志、主观愿望、价值判断有关.

即:决策因人而异,不唯一。

3) 我们采用的定义

决策:从若干可能的方案中,按某种标准(准则)选择一个。 而这种标准可以是:最优,满意,合理等等。

决策分析:人们为了达到某个目标,从一些可能的方案(途径)中进行选择的分析过程,是在有风险或不确定性情况下制订决策的定量分析方法,是对影响决策的诸因素作逻辑判断与权衡。

4) 系统分析与决策的关系

系统分析与决策的关系

3. 决策问题的分类

1) 按重要性分

	战略决策	策略决策	执行决
决策权	集中	集中与分散结合	策 分散
所需信息	不全	较全	完全
问题结构	不良	一般	良好
涉及的风险	大	一般	小
决策的组织工作	复杂	一般	简单
决策程序	复杂	一般	简单
目标数量	多	中等	少
时限	长期	中期	短期

- 2) 按性质分
 - 程序化决策
 - 非程序化决策
 - ◆ 结构化决策
 - ◆ 半结构化决策
 - ◆ 非结构化决策

- 3) 个人事务决策与公务决策
- 西方国家的资本的私有制→决策论强调决策人的价值观:对决策人的判断、意见、感觉进行量化,由此进行合乎逻辑的分析、推理→作决策
- 我国的行政部门、企业领导的决策是公务决策,应 强调客观性和理性化 由群众、集体进行价值判断

4) 其他划分

- 单人决策,多人决策
- 单目标决策,多目标决策
- 单步决策, 多步(序贯)决策
- 确定性决策,风险型决策,不确定型决策,模糊决策

4. 决策问题的要素和描述

- 1) **行动集** 亦称方案集,记作 $A=\{$ a_1, \cdots, a_m $\}$ 。在 带伞问题中 $A=\{$ $a_1, a_2\}$,其中 a_1 表示带伞, a_2 表示不带伞。
- 2) **自然状态集** 或称状态空间、参数空间,用来表示所有可能的自然或客观状态,记作 $\Omega = \{\theta_1, \theta_2, ..., \theta_n\}$ 。在带伞问题中 $\Omega = \{\theta_1, \theta_2\}$ 其中 θ_1 表示下雨, θ_2 表示不下雨。
- 3)**后果集** 决策问题的各种可能的后果 c_{ij} =c(a_i , θ_j),($i=1,\cdots,m$ $j=1,\cdots,n$),例如,在带伞问题中 c_{11} 表示带伞下雨时的后果。
 - 4) 信息集 X 信息集亦称样本空间。

二、常用的决策模型

1. 理性模型 (假设决策人的行为合乎理性)

提出并阐明问题→搜集数据→列举方案→方案评价→选择→ 实施

2. 经济合理模型

尽可能在经济方面使用理性模型。如: OR C-B 分析

3. 逐步改变模型(现实世界大部分人采用)

慢慢来,循序渐进,保守。怀疑人类大幅度改造未来的能力,认为优化是空想,能满意就不错。

4. 序贯决策模型(模石头过河)

用于情况不明或意见不一的场合。首先同时用几种方法试 试,收集信息,了解情况后再说

5. 超(非)理性模型

根据直觉、灵感、预感、智慧、宗教、信仰、领袖的号召力、忠诚、意志......作决策,不管合理与否。

6. 急剧改变模型

...新旧系统的更替

7. 无为模型

不作任何决策,有意识地决定什么也不做。

三. 一般决策问题

1. 确定性决策问题

当决策问题只存在一种已知的自然状态时,称为确定性决策。例如,企业系统中确定状态下的资源管理,包括库存管理和设备管理,以及运输管理、生产计划安排、和工程项目进度表编制等。

常用的方法有线性规划、非线性规划、动态规划、计划评审技术(网络技术)或图论、排队论、库存论等。

2. 风险型决策问题

风险型决策问题,是指决策问题可能出现的状态已知,且各种状 $\theta_1,\theta_2,...,\theta_n$ 出现的概率已知的决策问题。

3. 严格不确定型决策问题

严格不确定型决策问题,是指决策问题可能出现的状态已知,但对各种自然状态发生的概率(可能性)的大小一无所知。 这类问题的常用决策准则为

1) 悲观准则

悲观准则亦称极小化极大准则。决策人选择行动 a_k 使最大的损失 $s_i = \max_{j=1}^n l(\theta_j, a_i)$ 尽可能小,

$$\sup s_k = \min_{i=1}^m \{s_i\} = \min_{i=1}^m \max_{j=1}^n \{l_{ji}\}$$

2) 乐观系数法

乐观主义准则亦称(使损失)极小化极小准则。决策人只考虑行动 a_i 各种可能的后果中最好的(即损失最小的)后果,即选择 a_k 使 $o_k = \min_{i=1}^m \{o_i\} = \min_{i=1}^m \min_{j=1}^n \{l_{ji}\}$

乐观系数法: 根据以上两种准则的加权平均值来排列行动的优劣次序,具体规则是: 选择 a_k 使

 $(1-\lambda)s_{k} + \lambda o_{k} = \min_{i=1}^{m} \{(1-\lambda)s_{i} + \lambda o_{i}\} = \min_{i=1}^{m} \{(1-\lambda)\max_{j=1}^{n} l_{ji} + \lambda \min_{j=1}^{n} l_{ji}\}$ 其中乐观系数 λ 可根据下表确定。

	a_1	a_2
$ heta_{\!\scriptscriptstyle 1}$	0	l
$ heta_{\scriptscriptstyle 2}$	1	1
\boldsymbol{S}_i	1	1
o_{i}	0	1
$(1-\lambda)s_k + \lambda o_k$	$(1-\lambda)$	1

3)后悔值极小化极大

一个后果的后悔值 r_{ji} 的定义是: 采取行动 a_i 在状态 θ_j 时的损失 l_{ji} 与状态为 θ_j 采用不同的行动的最佳结果(最小损失) $\min_{i=1}^m \{l_{ji}\}$ 之差,即 $r_{ji} = l_{ji} - \min_{i=1}^m \{l_{ji}\}$

因此可用由 r_{ji} 构成的后悔值表 $(r_{ji})_{n\times m}$ 取代由 l_{ji} 构成的决策表,再用悲观准则求解。决策时,每种行动的优劣用最大后悔值 $p_i = \max_{j=1}^n \{r_{ji}\}$ 作为指标来衡量。然后再选择使 p_i 极小化的方案或行动,也就是说,选择 a_k 使 $p_k = \min_{i=1}^m \{p_i\} = \min_{i=1}^m \{\max_{j=1}^n \{r_{ji}\}\}$

4)等概率准则

对真实的自然状态一无所知"等价于"所有自然状态具有相同的概率。因此不妨认为选择一种行动使损失的平均值极小 化是有正当理由的。于是决策人面临不确定结果的期望值:

$$\sum_{j=1}^{n} \frac{1}{n} l_{ji} \text{ 他应选择} a_{k} \notin \sum_{j=1}^{n} \frac{1}{n} l_{jk} = \min_{i=1}^{n} \{ \sum_{j=1}^{n} \frac{1}{n} l_{ji} \}$$

5) 举例

	a_1	a_2	a_3	a_4	$\min_{i} l_{ji}$
$ heta_1$	2	3	4	3	2
θ_2	2	3	0	1	0
θ_3	4	3	4	4	3
$ heta_4$	3	3	4	4	3
s_{i}	4	3	4	4	
<i>o</i> _i	2	3	0	1	
$(1-\lambda)s_i + \lambda o_i$	4-2	3	4-4 λ	4-3 λ	
	λ				
$\sum_{j} (1/n) \cdot l_{ji}$	2. 75	3	3	3	

	a_1	a_2	a_3	a_4
θ_1	0	1	2	1
θ_2	2	3	0	1
θ_3	1	0	1	1
θ_4	О	0	1	1
p_{i}	2	3	2	1

- 悲观准则: a₂
- 乐观系数法: $\lambda \le 0.25$ 时a₂; $\lambda \ge 0.25$ 时a₃
- 等概率准则: a₁
- 后悔值极小化极大准则: a₄

四. 风险型决策

风险型决策问题特点:

- 决策人面临选择,可以采取的行动(即备选方案)不唯一;
- 自然状态存在不确定性,由于自然状态的不确定性导致后果不确定;
- 后果的价值待定。

1. 决策树与抽奖

决策树: (决策点,决策枝)、(机会点,机会枝)

抽奖: 机会点和由这个机会点出发的所有机会技构成的图形

- 2. 偏好和效用
- 1)、关于价值的说明
 - A. 元素的分类

事实元素: 可以(或经过变换后可以)用科学手段,

如仪器仪表,加以检测;

价值元素: 因人而异,无法用科学手段加以检测。

- B. 自然科学与社会科学的区别
- 自然科学研究<u>客观</u>世界,**事实**元素,<u>定量</u>为主;
- 社会科学研究<u>人际</u>关系,**价值**元素,定性为主。

决策科学涉及价值判断,要用定量方法研究价值元素,这是决策科学既不同于一般的自然科学,又不同于社会科学之处。

C. 价值的度量--效用

决策问题的特点:自然状态不确定: 以概率表示;

后果价值待定:以效用度量。

无形后果,非数字量(如信誉、威信)需以数值度量;

即使是数值量(例如货币)表示的后果,其实际价值仍有待确定,后果的价值因人而异。

例一: 同是 100 元钱,对穷人和百万富翁的价值绝然不同;

例二:

上图作为商业、经营中实际问题的数学模型有普遍意义,有人认为打赌不如礼品,即

- *由上面两个例子可知:在进行决策分析时,存在如何描述(表达)后果的实际价值,以便反映决策人<u>偏好次序(preference order)</u>的问题
- *偏好次序是决策人的个性与价值观的反映,与决策人所处的社会、经济地位,文化素养,心理和生理(身体)状态有关。 *除风险偏好之外,还有时间偏好。i,折扣率; ii,其他

而<mark>效用(Utility)</mark>就是偏好的量化,实数(实值函数)。

2) 偏好

A. 风险偏好:风险厌恶:甲>乙

风险中立: 甲公乙

风险追求: 甲〈乙

B. 时间偏好: 时间折扣

100 元∽一年后 108 元。

100 元 一年后 106, 基于银行的 6%年息

100 元 5 一年后 110,基于银行发放贷款的 10%年税率

3)效用

效用(用 u 表示)是决策后果对决策人的实际价值的量化。

- ◆ 有些决策问题的后果不是数字量
- ◆ 即使后果是一个数字量,也并不能如实反映它在决策人 心目中的实际价值

理性行为公理:

- (1) 备选方案的成对可比性
- (2) 优于和无差异关系满足传递性
- (3) 如果一个抽奖的某一后果是另一抽奖,那么它可以通过概率运算分解成基本后果。

例如,一个抽奖是:

- (4)如果两种抽奖无差异,那么在复合抽奖中它们可以互相替代;
- (5) 两种抽奖都有相同的两种后果 O_1 和 O_2 ,如果决策人认为 O_1 优于 O_2 ,则决策人将选择 O_1 出现的概率较大的抽奖。
- (6) 如果 O_1 优于 O_2 , O_2 优于 O_3 , 那么总存在一个由 O_1 和 O_3 组成的抽奖与 O_2 无差异。

<u>效用的设定过程比较复杂,有兴趣的读者可以参阅有</u> 关文献。

3. 主观概率

概率是表示某个事件(或状态)的不确定性度量的一种方法。

客观概率:被研究对象固有的物理属性,与使用者的个性无关。

主观概率:一种信念,是人们相信某种不确定性事件出现的可能性大小的度量,由决策人给出的一种主观估计

- 4. 决策规则
- 1) 最大可能值准则
- 2) 贝叶斯准则

选择行动 a_k 使期望收益(或期望效用)极大,即 $E_k = \max_{i=1}^m \{v_i\} = \max_{i=1}^m \{E_i(c_{ji})\} = \max_{i=1}^m \{\sum_{j=1}^n c_{ji} \cdot \pi(\theta_j)\}$ 或者选择行动 a_k 使期望损失极小,即

$$E_k = \min_{i=1}^m \{v_i\} = \min_{i=1}^m \{E_i(l_{ji})\} = \min_{i=1}^m \{\sum_{j=1}^n l_{ji} \cdot \pi(\theta_j)\}$$

- 3) 贝努利准则
- 4) E-V 准则
- 5) 不完全信息情况下的决策准则

四. 多目标决策

目标决策问题具有如下特点:

- 决策问题的目标多于一个
- 目标间的不可公度
- 各目标间的矛盾性

1. 多目标决策问题的要素

1) 决策单元和决策人

决策人、分析人员、人机系统构成决策单元.

决策单元的作用: 提供价值判断, 据以排列方案的优先序

功能:接受输入信息,产生内部信息,形成系统知识,作决定

2)目标集及其递阶结构

目标是决策人希望到达的状态,可以表示成层次结构:

3) 属性集和代用属性

属性是对基本目标达到程度的直接度量;当目标无法用属性值直接度量时,用以衡量目标达到程度的间接量叫代用属性。例如:

i生态保护:用野生动植物品种数量的增减、鱼类的品种

数量, 洄游鱼类的通过量

ii 合格的教师队伍: 用教师的学历结构、职称结构、专业结构、科研能力(论文、成果数量)等来衡量

- 对属性的要求:
 - ①可理解: 属性要能充分说明目标满足的程度
 - ②可测:给定方案的属性在实际上可以用数值(以一定单位)来表示
- 对属性集的要求:
 - ①完全的: 反映了决策问题的所有重要方面
 - ②可运算的:能有效地用于进一步的分析
 - ③可分解的:属性集可以分成几部分,使评价简化
 - ④非冗余的:问题没有那个方面被重复考虑
 - ⑤最小的:对同一问题,找不到另一个完全的属性集,

它有更少数目的元素

4)决策形势

决策形势指决策问题的结构和环境,它的范围宽窄不等。

5)决策规则

- 最优规则
- 满意规则

2. 非劣解和最佳调和解

非劣解:不存在各个目标值都不劣于方案 A 的相应目标值的另一个方案(记作 B),其中 B 至少有一个目标值比 A 优。如右图所示中的 A、B 点(f 、f 表示目标)。

最佳调和解:在所有非劣解中找出一个按照某种原则(即决策规则)来说是最好的方案。

3. 有限方案多目标决策

1) 决策矩阵

设一个多属性决策问题可供选择的方案集为 $X = \{x_1, \dots, x_m\}$ 用向量 $y_i = (y_{i1}, \dots, y_{in})$ 表示方案 $\mathbf{X_i}$ 的 n 个属性值,其中 y_{ij} 是第 i 个方案的第 j 个属性的值;当目标函数为 f_i 时,

$$y_{ij} = f_j(x_i)$$
 $i = 1, \dots, m$ $j = 1, \dots, n$

各方案的属性值可列成决策矩阵 (或称为属性值表),如下表

决策矩阵								
	y_1	•••	${\cal Y}_j$	•••	\mathcal{Y}_n			
x_1	y_{11}	•••	y_{1j}	•••	\mathcal{Y}_{1n}			
• • •	•••	•••	•••	•••	•••			
x_{i}	y_{i1}	•••	${\cal Y}_{ij}$	•••	${\cal Y}_{\it in}$			
• • •	•••	•••	•••	•••	•••			
x_m	\mathcal{Y}_{m1}	•••	${\cal Y}_{mj}$	•••	${\cal Y}_{mn}$			

例:

研究生院试评估的部分数据

j	人均专著(本/	生师比	科研经费(万元/	逾期毕业率
1	人) y ₁	\mathcal{Y}_2	年) y ₃	(%) <i>y</i> ₄
1	0.1	5	5000	4.7
2	0.2	7	4000	2.2
3	0.6	10	1260	3.0
4	0.3	4	3000	3.9
5	2.8	2	284	1.2

2) 数据预处理

数据的预处理主要有如下三个作用:

- 类型统一
- 非量纲化
- 数据归一化

原始的决策矩阵为 $Y=\{y_{ij}\}$,变换后的决策矩阵记为 $Z=\{z_{ij}\}$, $i=1,\cdots,m$, $j=1,\cdots,n$ 。设 y_{j}^{max} 是决策矩阵第j 列中的最大值, y_{j}^{min} 是决策矩阵第j 列中的最小值。

(1) 线性变换

若j为效益型属性, $Z_{ij}=y_{ij}/y_j^{max}$ 若j为成本型属性, $Z_{ij}=1-y_{ij}/y_j^{max}$

(2) 标准 0-1 变换

对效益型属性
$$j$$
, $z_{ij} = \frac{y_{ij} - y_j^{\text{min}}}{y_j^{\text{max}} - y_j^{\text{min}}}$

$$j$$
为成本型属性时, $z_{ij} = \frac{y_j^{\text{max}} - y_{ij}}{y_j^{\text{max}} - y_j^{\text{min}}}$

(3) 最优值为给定区间时的变换 设给定的最优属性区间为 $[y_i^0, y_i^*]$, y_j^0 为无法容忍上限,则

$$z_{ij} = \begin{cases} 1 - (y_{ij}^{0} - y_{ij})/(y_{j}^{0} - y_{j}') & \ddot{x} y_{j}' < y_{ij} < y_{ij}^{0} \\ 1 & \ddot{x} y_{j}^{0} \leq y_{ij} \leq y_{j}' \\ 1 - (y_{ij} - y_{j}^{*})/(y_{j}'' - y_{j}^{*}) & \ddot{x} y_{j}'' > y_{ij} > y_{j}^{*} \\ 0 & \ddot{x} \end{pmatrix}$$

例如,设研究生院的生师比最佳区间为[5,6], $y'_{i}=2$, $y''_{i}=12$ 则函数图像如图 9.7 所示。

最优属性为区间时的数据处理

(4) 向量规范化

$$z_{ij} = y_{ij} / \sqrt{\sum_{i=1}^{m} y_{ij}^2}$$

(5) 原始数据的统计处理

$$z_{ij} = \frac{y_{ij} - \overline{y}_j}{y_j^{\text{max}} - \overline{y}_j} (1.00 - M) + M,$$

$$= \frac{1}{m} \sum_{i=1}^m y_{ij}$$

(6) 专家打分数据的预处理

$$z_{ij} = M^{0} + (M^{*} - M^{0}) \frac{y_{ij} - y_{j}^{\min}}{y_{j}^{\max} - y_{j}^{\min}}$$

若M⁰=0, M*=1, 上式就与效益型属性的标准0-1 变换相同。

4. 确定权的常用方法

权包含并反映下列几种因素:

- ① 决策人对目标的重视程度
- ② 各目标属性值的差异程度
- ③ 各目标属性值的可靠程度

通过权可以将多目标决策问题转化为单目标问题求解。

1) 最小二乘法

首先由决策人把目标的重要性作成对比较,设有n个目标,则需比较 $n(n \circ 1)/2$ 次。把第i个目标对第j个目标的相对重要性记为 $a_{i,j}$ 并认为,这就是属性i的权 w_i 和属性j的权 w_j 之比的近似值, $a_{i,j} \approx w_i/w_i$,n个目标成对比较的结果为矩阵A。

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \approx \begin{bmatrix} w_1/w_1 & w_1/w_2 & \cdots & w_1/w_n \\ w_2/w_1 & w_2/w_2 & \cdots & w_2/w_n \\ \vdots & \vdots & & \vdots \\ w_n/w_1 & w_n/w_2 & \cdots & w_n/w_n \end{bmatrix}$$

若决策人能够准确估计 a_{ij} ,则应有: $a_{ij} = 1/a_{ii}$,

$$a_{ij} = a_{ik} \cdot a_{kj}$$
 和 $a_{ii} = 1$ 且 $\sum_{i=1}^{n} a_{ij} = \frac{\sum_{i=1}^{n} w_{i}}{w_{j}}$ 因此当 $\sum_{i=1}^{n} w_{i} = 1$ 时, $w_{j} = \frac{1}{\sum_{i=1}^{n} a_{ij}}$

若决策人对aii的估计不准确,则上列各式中的等号应 为近似号。这时可用最小二乘法求 w, 即解:

$$\min\{\sum_{i=1}^{n}\sum_{j=1}^{n}(a_{ij}w_{j}-w_{i})^{2}\}$$

受约束于
$$\sum_{i=1}^{n} w_i = 1 \qquad w_i > 0 \qquad (i=1,2,...,n)$$

拉格朗日函数为 $L = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij} w_j - w_i)^2 + 2\lambda (\sum_{i=1}^{n} w_i - 1)$

L对 w_i 求偏导,并令其为 0 得 n 个代数方程:

$$\sum_{i=1}^{n} (a_{il}w_l - w_i)a_{il} - \sum_{j=1}^{n} (a_{lj}w_j - w_l) + \lambda = 0 \quad , \quad l=1,2,...,n$$

由上式及 $\sum_{i=1}^{n} w_i = 1$ 构成n+1 个方程,其中有 w_1, w_2, \dots, w_n

及λ共 n+1个变量,因此可以求得 $W=[W_1,W_2,W_3,...,W_n]^T$

2)本征向量法(略)

- 5. 加权和法
- 1) 一般加权和法
 - 一般加权和法的求解步骤很简单:
 - 属性值规范化,得z_{ii},*i*=1, ···,*m*; *j*=1, ···, *n*
 - 确定各指标的权系数w_i, ½1,…, n
 - $\bullet \quad \Leftrightarrow \quad C_i = \sum_{j=1}^n w_j z_{ij}$

最后,根据指标c的大小排出方案 i ($i=1,\cdots,m$)的优劣。例 如,

i	z_1 (y_1)	z_2	z_3 (y_3)	z_4 (y_4)	C_{i}		
j	0.2	0.3	0. 4	0. 1	1 1 1 1 1 1 1 1 1 1 1		
1	0.0357	1.000	1.0000	0.0000	0.707		
		0			4		
2	0.0714	0.833	0.8000	0.5319	0.637		
		3			5		
3	0.2143	0.333	0.2520	0.3617	0.287		
		3			1		
4	0.1071	0.666	0.6000	0.1702	0.478		
		6			4		
5	1.0000	0.000	0.0568	0.7447	0.297		
		0			2		
$x_1 \succ x_2 \succ x_4 \succ x_5 \succ x_3$							

- 2) 字典序法
- \bullet $\mathbf{w}_1\gg\mathbf{w}_2\gg\mathbf{w}_3\gg\cdots\gg\mathbf{w}_n$
- 単目标决策
- 3) 层次分析法(AHP)

(略)

五. 群决策

- 企业的新产品开发
- 政治生活中的代表制度
- 企业和行政部门的咨询机构

无论代表大会,领导班子,还是咨询机构,在决策理论中都称为群(Group),群所作的决策称为群决策(Group decision making),或称多人决策。群决策研究的是决策的科学化与民主化。

