

Lista 2 (Atividade Avaliativa) - Teoria da Computação e Autômatos

Professora: Elvira Padua Lovatte

Curso: Ciência da Computação

Valor: 1,4 pontos

Nome dos alunos (até 4 alunos):

Erick Cypreste de Almeida Luciano Pedesol Rodrigues

Paulo Henrique Schulz Monteiro

- 1) Usando a ideia de autômato faça o que é pedido a seguir:
- a) construa um AFD para representar uma locadora de carros usando os estados : Reservado, Alugado, Disponível e Atrasado. Utilize ainda, no mínimo, as ações (alfabeto) : reservar (reserva), desistir (desistência), alugar, desistir, devolver (devolução), devolver com multa.

- b) Apresente em uma tabela (forma tabular) a função controladora (função delta).
 - δ(Disponível, reservar) = Reservado
 - δ(Reservado, desistir) = Disponível
 - δ(Reservado, alugar) = Alugado
 - **δ(Alugado**, **devolver**) = Disponível
 - **δ(Alugado, atrasar devolução) =** Atrasado
 - **δ(Atrasado, devolver com multa) =** Disponível

δ	reservar	desistir	alugar	devolver	atrasar	devolver com multa
Disponível	Reservado					
Reservado		Disponível	Alugado			
Alugado				Disponível	Atrasado	
Atrasado						Disponível

2) O autômato seguinte foi construído no software JFLAPcom.

Este autômato reconhece cadeias que possuem um número par de zeros (esta quantidade precisa ser diferente de zero) . A cadeia 110001 foi testada neste autômato e foi rejeitada. No software quando uma cadeia é rejeitada, ela fica destacada em um retângulo rosa (veja figura).

Refaça este desenho no JFLAP e teste a cadeia 110001. Escreva a sequência de estados percorridos na análise desta cadeia.

3) Seja o seguinte autômato:

Faça o que é pedido a seguir:

a) Escreva a cadeia de menor tamanho que é reconhecida por este autômato.
010

b) Desenhe este autômato no JFLAP e verifique simultaneamente as cadeias: 11010111, 1111001, 010000. Copie o resultado obtido (faça print) diretamente do software e cole aqui (veja exemplo com outras cadeias na figura a seguir).

Input	Result
111001100	Reject
11001	Reject
1111	Reject
010	Accept

Input	Result
11010111	Accept
1111001	Reject
010000	Accept

c) Determine a linguagem que é reconhecida por este autômato.

 $L = \{w/w \text{ \'e da forma x010y para algumas cadeias x e y que consistem somente de 0's e 1's}$

4) Construa, no JFLAP, AFDs para as seguintes Expressões Regulares:

a) ab(bb)*cc*

b) cc*b*+ab*cc*

c) bcc*(b+a)*

5) Determine a linguagem em $\Sigma = \{a,b\}$ gerada pelo seguinte autômato

 $L = \{w \in \{a,b\} / a \text{ soma das quantidades de símbolos a's e b's é par} \}$

- 6) Construir um autômato que reconheças as palavras de cada conjunto dado a seguir:
- a) O conjunto de cadeias sobre {0,1} que termine com três 1's consecutivos.

OBS: esta ER (0+1)*111 gera a linguagem

b)O conjunto de cadeias sobre {0,1} que tenha ao menos um 1.

OBS: esta ER (0+1)*1(0+1)* gera a linguagem

c) O conjunto de cadeias sobre {0,1} que tenha no máximo um 1.

OBS : esta ER $0*(1+\lambda)0*$ gera a linguagem

7) Seja o AFN a seguir:

Construa a árvore que represente os caminhos de busca para avaliar as seguintes cadeias:

- a) 1110
- b) 100
- 8) Desenvolva um autômato finito determinístico sobre o alfabeto $\Sigma = \{i, j, k\}$ que reconheça a linguagem $L = \{w \mid w \text{ possui kik como sufixo}\}$.

- 9) Construir um AFND para cada situação a seguir:
- a) que aceita cadeias \in {1,2}* tal que o último símbolo na cadeia tenha aparecido anteriormente

b) que aceita cadeias $\in \{1,2,3\}^*$ tal que o último símbolo na cadeia tenha aparecido anteriormente. Por exemplo, 121 é aceita; 31312 não é aceita.

10) Para o autômato não determinístico M dado a seguir:

- a) Faça a tabela de transição deste AFN
- b) Construa a tabela de transição do AFD equivalente
- c) Desenhe o AFD equivalente a M.

11) Converta os AFNs abaixo para AFDs

