10/18/2024

Induction

- Recursion is a common strategy for Problems in CS

 - Take a problem instance split it into smaller subproblems
 - Once the subproblems are small enough that they tractable, you

Binamy Search

- Given a sorted among, we to tind an element

- anz ... A = [91,92.--

Mathematical induction is a proof technique
te la sur lagger to recurson.
(This is only used to protect) dealing with natural numbers)
$= \forall n \in \mathbb{N} : 0 + 1 + 2 + 3 + \dots + n = \frac{n \cdot (n+1)}{2}$
i=0
In induction, we do something like this
stepl! We prove this claim for the
stepl! We prove this claim for the smallest possible case. (we prove for n=0)
Step 2! We assume that this claim holds for $n \ge 1$ and we show that the claim is true for $n + 1$
Let p be a predicate concerning integer queater than 0.
P: IN -> ETrue, False?, define P(n) as
follows. $p(n)$ says $\underset{i=0}{\overset{n}{\leq}} i = \frac{n \cdot (n+1)}{2}$
Tthem 'pin)

I assume that I have already prone 2 things. 1. The base case (smallest case possible) 2. Inductive case! $\forall n > 1! p(n-1) \Rightarrow p(n)$ Let's see why these two steps helps as to prove [them! Pcn)] Mhy? reason Statement we showed that the base case is true. P(0) using inductive case $P(0) \Rightarrow P(1)$ and plugging that n=1 "Modus ponens" PCI) is true Since we already know p(0)=) p(1), therefore it PCO) is true, P(1) has to be true. Il thes way that affirms by affirming 11 If P(0) => P(1) 1 P(0), then p(1) has to be true (this is the only case to consider if [POI=>POI) is true]