Segmentação e Morfologia de Imagens

Prof. Vinícius de Oliveira

Segmentação de Imagens

• Em visão computacional, **segmentação** se refere ao processo de dividir uma **imagem** digital em múltiplas regiões (conjunto de pixels) ou objetos, com o objetivo de simplificar e/ou mudar a representação de uma **imagem** para facilitar a sua análise.

• É a classificação de pixels de acordo com a especificação de 1 ou mais limiares (thresholds).

- Local ou global;
- Multi-níveis;
- Dinâmica ou adaptativa;

$$T = T[x, y, p(x, y), f(x, y)]$$

$$g(x,y) = \begin{cases} 1 & \text{se } f(x,y) > T, \\ 0 & \text{se } f(x,y) \leq T. \end{cases}$$

a b c d e f

FIGURE 10.36 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard deviation of 10 intensity levels. (c) Image with additive Gaussian noise of mean 0 and standard deviation of 50 intensity levels. (d)–(f) Corresponding histograms.

a b c d e f

FIGURE 10.37 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (c) Product of (a) and (b). (d)–(f) Corresponding histograms.

Segmentação com Limiarização

- Algoritmo Iterativo:
 - 1. Escolha o valor de T inicial;
 - 2. Segmente a imagem utilizando T (nela G_1 consiste de pixels com níveis > T e G_2 consiste de pixels de níveis \leq T);
 - 3. Calcule a média dos níveis dos pixels em $G_1(m_1)$ e $G_2(m_2)$;
 - 4. Calcule o novo limiar $T = (m_1 + m_2)/2$;
 - 5. Repita os passos 2-4 até que a diferença de T entre sucessivas iterações seja menor que um parâmetro pré-determinado;

Efeito do Ruído

Efeito do Ruído

Morfologia de Imagens

Teoria dos Conjuntos

Elementos estruturantes:

Elementos estruturantes:

Elementos estruturantes:

- Elemento se encaixa (fits) na imagem em A;
- Elemento toca (hits) na imagem em B;
- Nem se encaixa, nem toca na imagem em C;
- É como se fosse uma convolução binária;

Structuring Element

Erosão:

$$A\ominus B=\big\{z\,|\,(B)_z\subseteq A\big\}.$$

Erosão:

```
import cv2
import numpy as np

img = cv2.imread('j.png',0)
kernel = np.ones((5,5),np.uint8)
erosion = cv2.erode(img,kernel,iterations = 1)
```


(a) Binary Image

(b) Erosion by 3 × 3 square structuring element

(c) Erosion by 5 × 5 square structuring element

Erosão para detecção de bordas:

- boundaries = image erosion(image, se);
- image → imagem original;
- se → elemento estruturante;

(a) Binary Image

(b) Erosion by 3 × 3 square structuring element

(c) Difference between the original and eroded image

Dilatação:

$$A \oplus B = \big\{ z \, | \big(\hat{B} \big)_z \cap A \neq \emptyset \big\}.$$

Dilatação:

dilation = cv2.dilate(img,kernel,iterations = 1)

(a) Binary Image

(b) Dilation by 3 × 3 square structuring element

(c) Dilation by 5 × 5 square structuring element

Abertura (Opening):

$$A \circ B = (A \ominus B) \oplus B$$
.

$$A \circ B = \bigcup \{(B)_z | (B)_z \subseteq A\}$$

Opening = erosão + dilatação

Abertura suaviza as bordas, elimando extremidades proeminentes

Fechamento (Closing):

$$A \cdot B = (A \oplus B) \ominus B$$
,

closing = dilatação + erosão

Fechamento suaviza as bordas, deixando extremidades ou áreas finas

Fim!

Referências

[1] GONZALEZ, Rafael C.; WOODS, Richard E. Image processing. Digital image processing, v. 2, p. 1, 2007.

[2] Al Bovik, Handbook of Image and Video Processing, Academic Press.