Exercício de Programa 1

Caio Vnícius Dadauto 7994808 02 de abril de 2013

Problema (a)

Análise

Tem-se que a função f(x) é dada por:

$$f(x) = x^3 - \cos(x^2) \tag{1}$$

Como $0 \le \cos(x^2) \le 1$ para $0 \le x \le 1.26$ e, ainda, sabendo que x^3 é crescente $\forall x \in \mathbb{R}$, pode-se inferir que,

$$0 < \xi < 1.26 \sim \sqrt{\pi/2}$$

onde ξ é a raiz de f(x).

Tendo em vista o método da bisseção para aproximar ξ , é possível (a partir da inferencia acima) assumir que os pontos iniciais x_1 e x_2 podem assumir o valor de 0 e 1.26, respectivamente. Uma vez, que $f(x_1)f(x_2) < 0$ o que satisfaz a hipótese inicial para o método da bisseção.

Estimado os valores iniciais de x_1 e x_2 , é possível implementar o seguinte código para aproximar ξ através do método da bisseção.

Programa 1: Implementação para o método da bisseção.

- 1 #include <stdio.h>
- 2 #include <math.h>
- з #**define** EPS 0.0001

4

```
void impime (FILE *saida, double a, double b, double x_m, int k);
   double erro_relativo (double a, double b);
   double funcao (double x);
   double erro_relativo (double a, double b) {
   \cdots if (a - b < 0)
11 · · · · · return (b - a) / ((a + b) / 2);
12 \cdots return (a - b) / ((a + b) / 2);
13
14
   double funcao (double x) {
15
   \cdots return x * x * x - \cos(x * x);
16
17
18
   void imprime (FILE *saida, double a, double b, double x_m, int k) {
20 ··· fprintf (saida, "%d & %.4f & %.4f & %.4f & %.4f & %.4f \\\\n",
   \cdotsk, a, b, x m, funcao (a), funcao (b), funcao(x m));
22 ··· fprintf (saida, "\\midrule\n");
23 }
24
25 int main () {
_{26} · · · int
_{27} \cdots \cdot \cdot k = 1;
_{28} \cdots FILE
   ·····*arquivo;
30 \cdots double
31 \cdots x m,
a_2 \cdots a = 0
33 \quad \cdots \cdots b = 1.26;
35 ··· arquivo = fopen ("bi.tex", "w");
36 \cdots while (erro\_absoluto(a, b) > EPS) {
37 \cdots x m = (a + b) / 2;
38 \cdots imprime (arquivo, a, b, x_m, k);
\mathbf{i} \mathbf{f} \cdots \mathbf{i} \mathbf{f} (funcao (x m) * funcao (a) > 0)
a_0 \cdots a = x m;
   \cdots\cdots \mathbf{else}
41
42 \cdots b = x m;
43 \cdots + k;
44 ...}
45 \cdots fprintf (arquivo, "\\multicolumn{7}{c}{\\n{Raiz}}\\\\n");
46 ··· fprintf (arquivo, "\\multicolumn\{7\}\{c\}\{\%.4f\}\\\\n", x_m);
47 ··· fclose (arquivo);
48 \cdots return 0;
49
   }
```

Resultados

Após ter executado o programa, obteve-se os resultados apresentados na tabela 1.

Interação (k)	x_1	x_2	x_m	$f(x_1)$	$f(x_2)$	$f(x_m)$		
1	0.0000	1.2600	0.6300	-1.0000	2.0172	-0.6722		
2	0.6300	1.2600	0.9450	-0.6722	2.0172	0.2169		
3	0.6300	0.9450	0.7875	-0.6722	0.2169	-0.3254		
4	0.7875	0.9450	0.8663	-0.3254	0.2169	-0.0814		
5	0.8663	0.9450	0.9056	-0.0814	0.2169	0.0606		
6	0.8663	0.9056	0.8859	-0.0814	0.0606	-0.0121		
7	0.8859	0.9056	0.8958	-0.0121	0.0606	0.0238		
8	0.8859	0.8958	0.8909	-0.0121	0.0238	0.0058		
9	0.8859	0.8909	0.8884	-0.0121	0.0058	-0.0032		
10	0.8884	0.8909	0.8896	-0.0032	0.0058	0.0013		
11	0.8884	0.8896	0.8890	-0.0032	0.0013	-0.0010		
12	0.8890	0.8896	0.8893	-0.0010	0.0013	0.0001		
13	0.8890	0.8893	0.8892	-0.0010	0.0001	-0.0004		
14	0.8892	0.8893	0.8892	-0.0004	0.0001	-0.0001		
$\mathbf{Raiz}(\xi)$								
0.8892								

Tabela 1: Resultados obtidos no método da bisseção.

Tem-se que a derivada de f(x) é:

$$f'(x) = 3x^2 + 2x\sin(x^2) \tag{2}$$

A partir da derivada, pode-se inferir que f'(x) > 0 para $x \ge -2/3$. Assim, pelo teorema do valor médio, tem-se que f(x) é crescente para $x \ge -2/3$. Como f(-2/3) < 0 e f(x) > 0 para algum x maior que -2/3, por exemplo x = 1, 6, f(x) possui somente uma raiz real para $x \ge -2/3$. Por outro lado, f(x) < 0 para x < -2/3, o que implica que f(x) não possui raiz real para x < -2/3. Logo f(x) possui somente uma raiz real.

Problema (b)

Análise

Para estimar a mesma raiz (ξ) de f(x) pelo método de Newton-Raphson é necessário que

$$\varphi'(c) < 1 \quad \text{para } x_k < c < \xi$$
 (3)

$$f'(x_k) \neq 0 \tag{4}$$

onde x_k é o valor da variavel livre de f(x) na k-ésima interação e $\varphi(x) = x - \frac{f(x)}{f'(x)}$. Derivando f'(x), obtem-se que:

$$f''(x) = 6x + 2\sin(x^2) + 4x^2\cos(x^2)$$
 (5)

Como $0 \le 2\sin(x^2) + 4x^2\cos(x^2) \le 2$ para $0 \le x \le \pi/2$ é possível inferir que f''(x) > 0 para $0 \le x \le \pi/2$. Logo, tem-se que, pelo teorema do valor médio, f'(x) é crescente para $0 \le x \le \pi/2$. Assim, para $0 \le x \le \pi/2$, f'(x) possui apenas a raiz trivial x = 0. Somente o intervalo $0 \le x \le \pi/2$ é considerado, pois sabe-se que $\xi \sim 0.89$.

Sendo $\varphi(x)$ dado por,

$$\varphi(x) = x - \frac{(x^3 - \cos(x^2))}{3x^2 + 2x\sin(x^2)} \tag{6}$$

tem-se que sua derivada é dada por,

$$\varphi'(x) = \frac{(6x + 2\sin(x^2) + 4x^2\cos(x^2))(x^3 - \cos(x^2))}{(3x^2 + 2x\sin(x^2))^2}$$
(7)

como, para o método de Newton-Raphson, $\varphi(c) < 1$, tem-se que,

$$\varphi'(x) = \frac{(6x + 2\sin(x^2) + 4x^2\cos(x^2))(x^3 - \cos(x^2))}{(3x^2 + 2x\sin(x^2))^2} < 1$$
 (8)

$$4x^{5}\cos(x^{2}) - (6x\cos(x^{2}) + 10x^{3}\sin(x^{2}) + \sin(2x^{2}) + 3x^{4} + 4x^{2}) < 0$$
 (9)

A partir da equação (9) é possível concluir que $\varphi'(x) < 1$ para $0 < x \le 1$. Pois, $4x^5 \cos(x^2) < 6x \cos(x^2)$ para $0 < x \le 1$.

Assim, é possível tomar como ponto inicial (x) para a execução do método de Newton-Raphson o valor de 1. O código para estimar ξ pelo método de Newton-Raphson é apresentado logo abaixo.

Programa 2: Implementação para o método da Newton-Raphson.

```
#include <stdio.h>
   \#include < math.h>
3
   #define EPS 0.0001
   void imprime (FILE *saida, double a, int k);
   double erro relativo (double a, double b);
   double derivada (double x);
   double funcao (double x);
   double phi (double x);
10
11
   double erro_relativo (double a, double b) {
   \cdots if (a - b < 0)
   \cdots \cdot \mathbf{return} (b - a) / b;
   \cdots return (a - b) / b;
15
   }
16
17
   double phi (double x) {
18
19
   \cdots return x - (x * x * x - \cos (x * x)) /
   \cdots (3 *x * x + 2 *x * \sin (x * x));
20
   }
21
22
   double derivada (double x) {
23
   \cdots return 3 *x * x + 2 *x * sin (x * x);
24
   }
25
26
   double funcao (double x) {
27
   \cdots return x * x * x - \cos(x * x);
28
29
30
   void imprime (FILE *saida, double a, int k) {
   \cdots fprintf (saida, "%d & %.4f & %.4f & %.4f\\\n",
33 \cdots k, a, funcao (a), derivada (a));
34 ··· fprintf (saida, "\\midrule\n");
35
   }
```

```
36
   int main () {
зв ···FILE
39 ·····* arquivo;
   \cdots int
40
41 \quad \cdots \quad k = 1;
42 \cdots double
43 \quad \cdots \quad x = 1,
44 \cdots x 1;
46 · · · arquivo = fopen ("new.tex", "w");
47 \cdots x_1 = phi(x);
48 \cdots while (erro_relativo(x_1, x) > EPS) {
49 ·····imprime (arquivo, x_1, k);
50 \quad \cdots \quad x = x_1;
_{1} \cdots x_{1} = phi(x);
52 \cdots + k;
53 \cdots 
54 ··· fprintf (arquivo, "\\multicolumn{4}{c}{\\n{Raiz}}\\\\n");
{\tt 55} \hspace{0.2in} \cdots fprintf \hspace{0.1in} (\hspace{0.1in} arquivo\hspace{0.1in}, \hspace{0.1in} \verb"\toprule[0.11em]\n"\hspace{0.1in});
   \cdots fprintf (arquivo, "\\multicolumn{4}{c}{\%.4f}\\\\n", x_1);
57 ··· fclose (arquivo);
58 \cdots \mathbf{return} \ 0;
    }
59
```

Resultados

Após ter executado o programa, obteve-se os resultados apresentados na tabela 2.

Interação (k)	x_k	$f(x_k)$	$f'(x_k)$			
1	0.9018	0.0464	3.7504			
2	0.8895	0.0007	3.6386			
3	0.8893	0.0000	3.6369			
Raiz (ξ)						
0.8893						

Tabela 2: Resultados obtidos no método da Newton-Raphson.

Problema (c)

Análise

Assume-se que o potêncial de interação em função da distância (r) entre os íons de uma molécula diatômica é dado por:

$$V(r) = -\frac{e^2}{4\pi\epsilon_0 r} + V_0 \exp(-r/r_0)$$
 (10)

onde ϵ_0 é a permissividade do vácuo, e é a caraga do elétron e V_0 e r_0 são parâmetros de ação efetiva.

Usando os parâmetros cristalinos ($V_0 = 1.38 \cdot 10^3 \text{eV}$ e $r_0 = 0.328\text{Å}$) e assumindo que $\frac{e^2}{4\pi\epsilon_0} = 14.4\text{VÅ}$, é possível plotar o gráfico da função (10). O qual é apresentado na figura 1.

Figura 1: Gráfico da V(r) por r.

Sabendo que a força que atua entre os átomos é dada por:

$$F(r) = -\frac{\mathrm{d}V(r)}{\mathrm{d}r} = -\frac{e^2}{4\pi\epsilon_0 r^2} + \frac{V_0}{r_0} \exp(-r/r_0)$$
 (11)

Plotando o gráfico dado pela função (11), obtem-se o seguinte conjunto de pontos.

Figura 2: Gráfico da F(r) por r.

Para que os átomos estejam em equilíbrio e ainda interagindo entra si é necessario que estes estejam espaçados de uma distância (r_{eq}) que equivale ao ponto de mínimo da função V(r), o que implica que F(r) = 0.

Tendo como objetivo estimar a distância (r_{eq}) através do método das secantes e analisando o gráfico da figura 2 é possível adotar os valores de 2 e 3 para os pontos iniciais x_1 e x_2 , respectivamente. Pois é facilmente perceptivel que a raiz de F(r) está no intervalo 2 < r < 3 de forma a minimizar V(r).

Novamente analizando o gráfico da figura 2 é possível inferir que a derivada de F(r) não é zero dentro do intervalo 2 < r < 3. Pois, a reta tangente ao gráfico da figura 2 não é paralela a abscissa dentro do intervalo 2 < r < 3.

Assim, implementou-se o código para estimar r_{eq} através do método das

secantes. Código que segue logo abaixo.

Programa 3: Implementação para o método das secantes.

```
1 #include <stdio.h>
  #include <math.h>
   \#define EPS 0.0001
    void impime (FILE *saida, double a, double b, double x m, int k);
    double erro relativo (double a, double b);
    double funcao (double x);
    double erro_relativo (double a, double b) {
  \cdots if (a - b < 0)
11 \cdots \mathbf{return} (b - a) / a;
   \cdots return (a - b) / a;
12
13
14
    \mathbf{double} \hspace{0.2cm} \mathtt{phi} \hspace{0.2cm} (\mathbf{double} \hspace{0.2cm} \mathtt{x}\_1, \hspace{0.2cm} \mathbf{double} \hspace{0.2cm} \mathtt{x}\_2) \hspace{0.2cm} \{
15
   \cdots return x_2 - ((funcao (x_2) * (x_2 - x_1)) /
   \cdots (funcao (x_2) - funcao (x_1));
18
    }
19
20
    double funcao (double x) {
   \cdots return -14.4 / (x * x) + (1.38E3 / 0.328) * exp ((-1 * x) / 0.328);
^{21}
22
23
   void imprime (FILE *saida, double a, int k) {
  ... fprintf (saida, "%d & %.4f & %.4f\\\\n",
26 \cdots k, a, funcao (a));
27 ··· fprintf (saida, "\\midrule\n");
28
29
30 int main () {
_{31} ···· int
_{32} \cdots \cdot \cdot k = 1;
33 \cdots FILE
34 ·····* arquivo;
35 \cdots double
36 \cdots x = 2
37 \cdots x 2 = 3,
38 ····· x;
40 \cdots arquivo = fopen ("sec.tex", "w");
41 ··· while (erro_relativo (x_1, x_2) > EPS) {
42 \cdots x = phi (x 1, x 2);
43 \cdots x_2 = x_1;
44 \cdots x = 1 = x;
```

```
45 ·····imprime (arquivo, x, k);

46 ·····+k;

47 ···}

48 

49 ···fprintf (arquivo, "\\multicolumn{3}{c}{\\n{Raiz (r_{eq})}}\\\\n");

50 ···fprintf (arquivo, "\\multicolumn{3}{c}{\%.4f}\\\\n", x);

51 ····fclose (arquivo);

52 ···return 0;

53 }
```

Resultados

Após ter executado o programa, obteve-se os resultados apresentados na tabela 3.

Interação (k)	x_k	$F(x_k)$			
1	2.8358	-1.0506			
2	2.7087	-0.8724			
3	2.0866	3.9568			
4	2.5963	-0.6005			
5	2.5291	-0.3665			
6	2.4240	0.1465			
7	2.4540	-0.0212			
8	2.4502	-0.0010			
9	2.4500	0.0000			
$\mathbf{Raiz} (\mathbf{r}_{eq})$					
2.4500					

Tabela 3: Resultados obtidos no método das secantes.