KARMASTAT

Infectious Disease Modelling System

Table of Contents

1.1 Population Parameters 1.2 Disease Transmission Parameters 1.3 Time-Related Parameters 1.4 Intervention Parameters
SECTION 2: MATHEMATICAL FOUNDATIONS & CALCULATIONS
SECTION 3: IMPLEMENTATION EXAMPLES
SECTION 4: PRACTICAL APPLICATIONS
SECTION 5: BIBLIOGRAPHY14

Section 1: Core Parameters and Variables

1.1 Population Parameters

Total Population (N):

- Definition: The total number of individuals in the study population
- Units: Number of individuals
- Typical Range: 1,000 10,000,000
- Considerations:
 - o Must remain constant during simulation (closed population)
 - Should reflect the actual community size being modelled
 - o Affects computation of contact rates

Initial Cases (I₀):

- Definition: Number of infectious individuals at the start of simulation
- Units: Number of individuals
- Typical Range: 1 1000
- Considerations:
 - Should be < 1% of total population
 - Based on surveillance data when available
 - o Affects early epidemic dynamics

Susceptible Population (S):

- Definition: Number of individuals who can become infected
- Calculation: S(t) = N (E(t) + I(t) + R(t))
- Units: Number of individuals
- Properties:
 - o Initially: $S(0) = N I_0$
 - o Always non-negative
 - o Monotonically decreasing in absence of births

1.2 Disease Transmission Parameters

Basic Transmission Rate (β):

- Definition: Rate at which susceptible individuals become infected upon contact with infectious individuals
- Units: Contacts per person per day
- Typical Range: 0.1 2.0
- Calculation Components:
 - o Contact rate (c): Average number of contacts per person per day

- o Transmission probability (p): Probability of infection given contact
- $\circ \quad \beta = c * p$

Effective Transmission Rate ($\beta_e ff$):

- Definition: Actual transmission rate after considering interventions
- Calculation: $\beta_e ff = \beta * (1 \mu) * (1 \delta)$ where:
 - o $\mu = \text{mask effectiveness } (0-1)$
 - δ = social distancing effectiveness (0-1)
- Properties:
 - \circ Always less than or equal to β
 - o Time-dependent based on interventions
 - o Affected by environmental factors

1.3 Time-Related Parameters

Incubation Period $(1/\sigma)$:

- Definition: Time between exposure and becoming infectious
- Units: Days
- Typical Range: 1-14 days
- Properties:
 - o Varies by pathogen
 - o Follows probability distribution
 - o Affects epidemic timing
- Rate Parameter: $\sigma = 1/$ (incubation period)
 - o σ represents rate of progression from exposed to infectious
 - o Units: per day

Infectious Period $(1/\gamma)$:

- Definition: Duration during which an individual can transmit disease
- Units: Days
- Typical Range: 3-21 days
- Components:
 - o Pre-symptomatic period
 - o Symptomatic period
 - Recovery period
- Rate Parameter: $\gamma = 1/$ (infectious period)
 - \circ γ represents recovery rate

o Units: per day

Generation Time (Tg):

- Definition: Average time between primary case infection and secondary case infection
- Units: Days
- Calculation: $Tg = 1/\sigma + 1/(2\gamma)$
- Significance:
 - o Key for estimating epidemic growth rate
 - o Used in Ro calculations
 - o Affects intervention timing

1.4 Disease Progression Parameters

Recovery Rate (γ) :

- Definition: Rate at which infectious individuals recover
- Units: per day
- Calculation: $\gamma = 1/$ (infectious period)
- Properties:
 - Constant for given disease
 - o Affects duration of infectiousness
 - o Influences healthcare resource needs

Mortality Rate (μ):

- Definition: Proportion of infected individuals who die from the disease
- Units: Dimensionless (proportion)
- Typical Range: 0.001 0.20 (0.1% 20%)
- Considerations:
 - o Age-dependent
 - Healthcare capacity dependent
 - Affects total fatalities

Section 2: Mathematical Foundations & Calculations

2.1 Basic Disease Spread Equations

SEIR Model Differential Equations:

Susceptible Population Change: $dS/dt = -\beta SI/N$

- Represents rate of new infections
- Proportional to current susceptible and infectious populations
- Normalized by total population

Exposed Population Change: $dE/dt = \beta SI/N - \sigma E$

- First term: new exposures
- Second term: progression to infectious state
- Balance determines exposed population size

Infectious Population Change: $dI/dt = \sigma E - \gamma I$

- First term: new infectious cases
- Second term: recoveries
- Determines active case load

Recovered Population Change: $dR/dt = \gamma I$

- Represents cumulative recoveries
- Monotonically increasing
- Includes immune individuals

2.2 Reproduction Numbers

Basic Reproduction Number (R₀):

- Definition: Average number of secondary cases from one case in fully susceptible population
- Calculation: $R_0 = \beta/\gamma$
- Properties:
 - o R₀ > 1: Epidemic growth
 - o $R_0 = 1$: Endemic equilibrium
 - R₀ < 1: Epidemic decline

Effective Reproduction Number (Rt):

- Definition: Actual reproduction number at time t
- Calculation: $Rt = R_0 * (S(t)/N) * (1 intervention_effectiveness)$
- Components:
 - \circ Susceptible fraction (S(t)/N)
 - Intervention effects
 - Current transmission rate

2.3 Healthcare Capacity Metrics

Healthcare System Load:

- Definition: Proportion of healthcare capacity currently utilized
- Calculation: H(t) = I(t)/Hmax where:
 - o H(t) is healthcare utilization at time t
 - o I(t) is number of infectious cases
 - o Hmax is maximum healthcare capacity
- Critical Thresholds:
 - o H(t) < 0.7: Normal operation
 - $0.7 \le H(t) < 0.9$: Stressed system
 - $H(t) \ge 0.9$: Critical overload

Peak Case Load:

- Definition: Maximum number of simultaneous active cases
- Calculation: Imax = max(I(t))
- Significance:
 - o Determines required healthcare capacity
 - o Guides intervention timing
 - o Indicates system stress points

Healthcare Resource Allocation:

- Definition: Distribution of available healthcare resources
- Components:
 - o Basic care resources
 - Critical care capacity
 - o Medical staff availability
- Utilization Rate: U(t) = (Active Cases)/ (Available Resources)

2.4 Intervention Effect Calculations

Non-Pharmaceutical Interventions (NPIs):

Social Distancing Effect:

- Definition: Reduction in contact rate due to physical distancing
- Calculation: β eff = β (1 δ) where:
 - \circ δ is social distancing effectiveness (0-1)
 - βeff is effective transmission rate
- Implementation Levels:
 - \circ Mild: $\delta = 0.2-0.4$

- \circ Moderate: $\delta = 0.4-0.6$
- o Strict: $\delta = 0.6-0.8$

Mask Usage Effect:

- Definition: Reduction in transmission probability due to mask wearing
- Calculation: β eff = β (1 μ m) where:
 - \circ μ is mask effectiveness (0-0.5)
 - o m is mask compliance rate (0-1)
- Effectiveness Factors:
 - Mask type efficiency
 - o Population compliance
 - o Proper usage

Combined Intervention Effects:

- Definition: Total impact of multiple interventions
- Calculation: β eff = $\beta \prod (1 \epsilon i)$ where:
 - ο εi represents effectiveness of intervention i
- Interaction Considerations:
 - Multiplicative effects
 - o Diminishing returns
 - o Implementation feasibility

Section 3: Implementation Examples

3.1 Basic Disease Scenarios

Example 1: Respiratory Disease Outbreak Initial Conditions:

- Population: 100,000
- Initial Cases: 100
- Ro: 2.5
- Incubation Period: 5 days
- Infectious Period: 7 days

Calculations:

1. Basic Parameters:

$$\beta = R_0 \gamma = 2.5 * (1/7) = 0.357$$

$$\sigma = 1/5 = 0.2$$

$$\circ$$
 $\gamma = 1/7 = 0.143$

2. Early Growth Phase: Day 1:

$$\circ$$
 S (1) = 99,900

$$\circ$$
 E(1) = 100

$$\circ$$
 I(1) = 0

$$\circ$$
 R (1) = 0

Day 2:

$$\circ$$
 New Exposed = $(0.357 * 99,900 * 0) / 100,000 = 0$

$$\circ$$
 New Infectious = 0.2 * 100 = 20

- \circ New Recovered = 0
- 3. Peak Estimation:
 - Expected Peak Time: $\sim ln(N/I_0)/r$ where $r = \beta \gamma$
 - \circ Healthcare Load = I(t)/Hmax

Example 2: Intervention Timing Scenario:

- Base Ro: 2.5
- Social Distancing: 50% effective
- Mask Usage: 70% compliance, 50% effectiveness

Calculations:

1. Without Interventions:

$$\circ$$
 $\beta = 0.357$

○ Peak Cases
$$\approx 0.3$$
N

2. With Interventions:

- o $\beta eff = 0.357 * (1-0.5) * (1-0.35) = 0.116$
- \circ New R₀ = 0.116/0.143 = 0.81
- Expected Peak Reduction $\approx 65\%$

3.2 Advanced Implementation Scenarios

Example 3: Seasonal Variation Effects Scenario Parameters:

- Base Transmission Rate (β₀): 0.3
- Seasonal Amplitude (α): 0.2
- Annual Period: 365 days

Seasonal Transmission Calculation: $\beta(t) = \beta_0 [1 + \alpha \sin(2\pi t/365)]$

Sample Calculations: Summer (t = 182 days): β (182) = 0.3[1 + 0.2 $\sin(2\pi*182/365)]$ = 0.3[1 - 0.2] = 0.24

Winter (t = 365 days): β (365) = 0.3[1 + 0.2 sin(2 π *365/365)] = 0.3[1 + 0] = 0.3

Example 4: Healthcare System Analysis Initial Conditions:

- Population: 500,000
- Healthcare Capacity: 1,000 beds
- Average Hospital Stay: 10 days
- Critical Care Requirement: 15% of cases

Healthcare Load Calculations:

- 1. Daily New Hospitalizations: H(t) = I(t) * hospitalization rate
- 2. Bed Occupancy: $B(t) = \Sigma(H(t-n) \text{ for } n = 0 \text{ to } 10)$
- 3. Critical Threshold Analysis: Alert Level 1: B(t) > 0.7 * capacity Alert Level 2: B(t) > 0.85 * capacity Alert Level 3: B(t) > capacity

Section 4: Practical Applications

4.1 Real-World Case Studies

Case Study 1: Urban Epidemic Control Setting:

- Metropolitan area
- Population: 2 million
- High population density
- Multiple intervention points

Analysis Steps:

- 1. Basic Reproduction Number Estimation
 - o Contact tracing data analysis
 - o Early growth rate calculation
 - \circ R₀ = $r/\gamma + r/\sigma + 1$ where r is exponential growth rate
- 2. Intervention Timing Optimization
 - o Critical threshold: Ic = Healthcare Capacity * 0.8
 - Time to threshold: $tc = ln (Ic/I_0)/r$
 - o Recommended intervention start: t = tc 14 days
- 3. Resource Allocation
 - o Daily resource need: R(t) = I(t) * resource per case
 - Peak resource calculation: Rmax = max(R(t)) * buffer factor where buffer factor = 1.2

Case Study 2: School Reopening Analysis Parameters:

- Student population: 10,000
- Staff population: 1,000
- Contact patterns:
 - Student-Student: 15 contacts/day
 - Student-Staff: 4 contacts/day
 - o Staff-Staff: 8 contacts/day

Risk Assessment:

- 1. Contact Matrix Construction: [15 4] [4 8]
- 2. Group-Specific R₀ Calculation: R₀, ss = β ss * Cs * D where:
 - βss is student-student transmission
 - o Cs is average student contacts
 - o D is infectious duration
- 3. Mitigation Strategy Evaluation:
 - o Classroom size reduction: Contact reduction by 40%

- o Hybrid scheduling: Population present reduced by 50%
- o Ventilation improvements: Transmission reduction by 30%

4.2 Parameter Estimation from Data

Method 1: Growth Rate Analysis

- 1. Early Epidemic Growth: $N(t) = N_0ert$ where:
 - \circ N(t) is cumulative cases
 - o r is growth rate
 - o t is time in days
- 2. Ro Estimation: Ro = 1 + rTc where:
 - o Tc is generation time
 - o r is exponential growth rate

Method 2: Maximum Likelihood Estimation

- 1. Likelihood Function: L $(\beta, \gamma | data) = \Pi P (data | \beta, \gamma)$
- 2. Parameter Optimization: $\{\beta^*, \gamma^*\} = \operatorname{argmax} L(\beta, \gamma | \operatorname{data})$

4.3 Results Interpretation

Key Metric Analysis:

- 1. Epidemic Peak Characteristics
 - Height: Maximum daily cases
 - Timing: Days to peak
 - Duration: Width at half-maximum
- 2. Intervention Impact Assessment
 - Relative reduction in peak height
 - Delay in peak timing
 - o Change in total case count
- 3. Healthcare System Impact
 - Duration of capacity exceedance
 - o Maximum capacity utilization
 - Resource consumption patterns

4.4 Model Limitations and Considerations

Model Assumptions:

- 1. Population Mixing Patterns
 - o Homogeneous mixing assumed
 - No spatial clustering effects
 - Uniform susceptibility within groups

2. Parameter Stability

- Constant transmission rates
- Fixed incubation periods
- O Uniform recovery rates

3. Population Characteristics

- Closed population (no births/deaths)
- o No age structure considered
- o No immigration/emigration

Practical Limitations:

- 1. Data Requirements
 - Quality of surveillance data
 - Reporting delays
 - Case definition changes

2. Parameter Uncertainty

- Transmission rate variability
- Intervention effectiveness
- Healthcare capacity fluctuations

4.5 Best Practices for Model Application

Data Collection:

- 1. Essential Data Elements
 - o Daily case counts
 - Testing numbers
 - Healthcare utilization
 - Intervention timing

2. Data Quality Assurance

- Consistency checks
- Missing data handling
- o Outlier identification

Model Validation:

- 1. Historical Data Comparison
 - Pattern matching
 - Peak timing accuracy
 - o Magnitude alignment
- 2. Sensitivity Analysis

- o Parameter range testing
- Scenario comparison
- Uncertainty quantification

Section 5: Bibliography

- 5.1 Core Epidemiological Theory
 - 1. Anderson, R.M., & May, R.M. (1991). "Infectious Diseases of Humans: Dynamics and Control." Oxford University Press.
 - o Fundamental principles of disease transmission
 - o Basic reproduction number theory
 - Population dynamics in epidemics
 - 2. Diekmann, O., & Heesterbeek, J.A.P. (2000). "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation." Wiley.
 - o Mathematical foundations
 - Model construction principles
 - Analysis techniques
 - 3. Keeling, M.J., & Rohani, P. (2008). "Modeling Infectious Diseases in Humans and Animals." Princeton University Press.
 - Advanced modeling concepts
 - Multi-host dynamics
 - Environmental effects

5.2 SEIR Model Development

- 4. Hethcote, H.W. (2000). "The Mathematics of Infectious Diseases." SIAM Review, 42(4), 599-653.
 - SEIR model foundations
 - o Stability analysis

- o Threshold phenomena
- 5. van den Driessche, P., & Watmough, J. (2002). "Reproduction Numbers and Sub-threshold Endemic Equilibria for Compartmental Models of Disease Transmission." Mathematical Biosciences, 180, 29-48.
 - o Reproduction number calculation
 - Equilibrium analysis
 - Model stability

5.3 Healthcare System Modeling

- 6. Grassly, N.C., & Fraser, C. (2008). "Mathematical Models of Infectious Disease Transmission." Nature Reviews Microbiology, 6(6), 477-487.
 - Healthcare capacity modeling
 - Resource allocation
 - System stress analysis
- 7. Vynnycky, E., & White, R.G. (2010). "An Introduction to Infectious Disease Modelling." Oxford University Press.
 - o Practical modeling approaches
 - o Healthcare system integration
 - Resource planning

5.4 Intervention Studies

- 8. Ferguson, N.M., et al. (2020). "Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand." Imperial College COVID-19 Response Team.
 - Intervention modeling
 - Healthcare impact assessment
 - Policy implications
- 9. Howard, J., et al. (2021). "An Evidence Review of Face Masks Against COVID-19." Proceedings of the National Academy of Sciences, 118(4).
 - Mask effectiveness analysis
 - o Intervention quantification
 - Population compliance effects

5.5 Computational Methods

- 10. Press, W.H., et al. (2007). "Numerical Recipes: The Art of Scientific Computing." Cambridge University Press.
- Numerical integration methods
- Error handling
- Algorithm optimization
- 11. Wilke, C.O. (2019). "Fundamentals of Data Visualization." O'Reilly Media.

- Epidemiological data visualization
- Result presentation
- Interactive visualization

Notes for Users:

- 1. Regular updates to this guide will be provided as new research emerges
- 2. Additional case studies will be added based on real-world applications
- 3. Parameter updates will reflect latest epidemiological findings
- 4. New features will be documented as they are implemented

♣ Made with dedication by Karmayogi Last Updated: January 2025