Methods of moving robots

Motion Control in FRC

BC Spear CP Robodogs 2171

Why automate motion?

- Repeatability
- Allow Driver to concentrate on other things
- For Points in Autonomous

Methods

- Dead Reckoning
- Bang-bang or Deadband Control
- PID
- Motion Profiles

Dead Reckoning

- Turn motor on for X seconds
- Slower speed is better
- Simple
- Works if accuracy and precision are not an issue.

Deadband Control

Same as Dead Reckoning except with

feedback

Drive if error > zero

```
while (true) {
  error = setpt - pv;
  if (error > 0)
    Forward(1.0);
  else if (error < 0)
    Reverse(1.0);
  else
    Stop();
}</pre>
```

Again, accuracy and precision are weak

PID Control

- Most common control algorithm
- Based on Error (Target Position)
- Output change is determined by time, error, and tuning constants

$$u(t) = K_p e(t) + K_i \int_0^t e(t) dt + K_d \frac{d}{dt} e(t)$$
Proportional Integral Derivative

PID Control - Proportional

PID Control - Integral

PID - Derivative

Feedforward/Feedback

- Feedforward is where you plan to be
- Feedback is correction of the error from where you are to where you should be
- Feedback requires sensors to determine position

Motion Profiles

- Start at zero velocity
- Accelerate to a maximum
- Travel required distance
- Accelerate to a stop

Motion Profile

Trapezoidal velocity profile

Motion Profile

Motion Profile

S-curve velocity profile

Setting up for Motion Profile

- Determine the start and end point.
- Determine the path

What about two dimensions?

Determining Path

- What is the sequence of movements or positions the robot will move through between start and end?
- The 1D case is usually easy
- The 2D case can be a little more challenging

Simple Path Planning

- Connect the dots lots of way to do it.
- Curve fitting
 - Cubic splines
 - Quintic splines
- Code for determining path:
 - Team 236 Autonomous Planner

2D Hermite Spline fitting

- Cubic and Quintic
- Team 254 Presentation
- Presentation Video
- Chief Delphi Forums

Setting up for Motion Profile

- Determine the start and end point.
- Determine the path
- Find the maximum velocities

Maximum Velocity

- How fast can (should) we go?
 - Get there as fast as possible
 - Good Control means obeying limits
- Find your maximum constant velocity
- Distance to get to top speed
- Distance to stop

Maximum Velocity

- Back to basics
- Kinematic equations to determine limits
- Conservative to start or use tuning factor (good for early build)
- Track information using sensors and logging

$$egin{array}{ll} v_f &= v_o + at \ x_f &= x_o + v_o \, t + rac{1}{2} a t^2 \ v_f^2 &= v_o^2 + 2 a \, (x_f - x_o) \ x_f &= x_o + rac{1}{2} (v_f + v_o) \, t \end{array}$$

Maximum Velocity

where,

 ω_{max} = the maximum velocity

 α_{max} = the maximum acceleration

 t_{acc} , t_{dec} = the acceleration and deceleration times

 t_{max} = the times at the maximum velocity

 $t_{total} = the total motion time$

Setting up for Motion Profile

- Determine the start and end point.
- Determine the path
- Find the maximum velocities
- Develop a Trajectory

Path vs Trajectory

- Path is just how we get there
- Trajectory includes time and velocity

Setting up for Motion Profile

- Determine the start and end point.
- Determine the path
- Find the maximum velocities
- Develop a Trajectory
- Follow the Trajectory

Following the Trajectory

- TalonSRX provides motion profile
 - Firmware version 2.0
- Excel spreadsheet to create profile
 - CTR Link
- Uses CAN bus to load profile points
 - Holds 128 trajectory points
 - Loads more while executing
- Recommend feedback signal

More Information

- Good white paper Team 900
 - http://teamgoo.org
 - Paper
- BC Spear
 - bc@engineer.com

