An Investigation of Phonological Feature System Used in Detection-Based ASR

Author: I-Fan Chen

Hsin-Min Wang

Professor: 陳嘉平

Reporter: 許峰閤

大綱

介紹

• 語音特徵集

• 利用條件隨機域做後端處理

●實驗

介紹

• 在此系統中利用特徵偵測器為前端處理,條件隨機域(CRF)為後端處理

在前端處理中比較三種語音特徵集對語音 辨識系統準確率的影響

• 在此我們提出三種語音特徵集,分別爲:

- 1. Sound Pattern of English feature set
- 2. Multi-valued feature set
- 3. Government phonology feature set

• SPE 可將複雜的語音規則簡化成較簡單的 形式,整個語音集包含了13個二元的語音特 徵

• MV雖然語音特徵的分類較少,但是他對於每一個語音的分類,都可以有2~10個值

Table 1. The SPE feature set and the associated detection accuracy.

Feature	Frame Acc	Feature	Frame Acc
Anterior	90 %	Nasal	97 %
Back	88 %	Round	94 %
Consonantal	90 %	Silence	98 %
Continuant	93 %	Strident	97 %
Coronal	89 %	Tense	90 %
High	88 %	Vocalic	87 %
Low	93 %	Voice	92 %

Table 2. The MV feature set and the associated detection accuracy.

Feature	Frame Acc	Feature	Frame Acc	
Centrality	84 %	Phonation	91 %	
Front back	82 %	Place	71 %	
Manner	85 %	Roundness	91 %	

• GP feature set 是利用一些較小的單元去組合成phone, 母音是取A U I 這三個單元去組合其它的母音, 例如: (A,I)那會將A視爲operator, I 視爲head來組成[e], 相反的(I,A)會變成 [æ]

• 其他子音也是取一些基本單元利用上述方式拼出子音

Table 3. The GP feature set and the associated detection accuracy.

Feature	Frame Acc	Feature	Frame Acc
A	85 %	H	93 %
I	90 %	N	97 %
U	86 %	a	96 %
E	86 %	i	94 %
S	91 %	u	95 %
h	95 %		

• SPE 跟 GP 都是使用單一的類神經網路然 後有多個輸出

 MV是針對每個特徵都使用個別的類神經網 路然後也是多個輸出

• 類神經網路的輸入使用12維的MFCC加一個Energy

利用CRF做後端處理

$$p(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp \left(\sum_{i} \sum_{j} \lambda_{j} s_{j}(y_{i}, \mathbf{x}) + \sum_{k} \mu_{k} t_{k}(y_{i-1}, y_{i}, \mathbf{x}) \right)$$

x and y are the observation and output sequence

Z(x) is the normalization term

i is the index of the current position of the output sequence

 S_{j} is the state feature function

 $t_k()$ is the transition feature function

利用CRF做後端處理

$$s(y_i, \mathbf{x}) = \begin{cases} 1, & \text{if } y_i = /\text{ix/, } \text{voice}(x_i) = true, \text{ and } \text{vocal}(x_{i-1}) = false \\ 0, & \text{otherwise} \end{cases}.$$

在CRF中state feature function可針對整個 observation來做考慮,並不侷限於當下的狀態,在較長的observation中CRF的這個特性 是較HMM好的地方

利用CRF做後端處理

- 接著要將前端處理做出的frame-based的feature sequence利用CRF來對應到輸出的frame-based 的phone sequence,最後再將這些frame-based的 phone sequence合併成output
- 在此state feature function 為

$$s(y_i, x_{i-1}, x_i, x_{i+1})$$

• Transition feature function β bi-grams $t(y_{i-1}, y_i)$

• 利用TIMIT的語音資料庫

• 第一個實驗是假設所有的feature都可以被 偵測到,藉此來觀察哪一種feature對 detection-based的ASR有較好的潛力

Table 4. The oracle phone recognition results derived by using different phonological feature sets.

	Corr (%)	Acc (%)
SPE	93.28	93.20
MV	88.75	88.56
GP	98.39	98.36

• 在第二個實驗中使用HMM-based phone recognizer, 再用第一個實驗中經過人工作 phone lable的訓練資料來訓練CRF, 將這個模型稱爲OT

• 但是發現Correction rate 雖然高但是 Accuracy卻較低,這個問題可能出在前端處 理中的分類錯誤

• 欲解決此問題,我們可以使用前端處理中偵測出來的結果來訓練CRF,讓CRF可以學習到前端處理中的錯誤,來降低訓練跟測試之間的mismatch,稱此模型爲DT

Table 5. The real phone recognition results derived by different recognizers, where OT means using oracle-data trained CRFs and DT means using detected-data trained CRFs.

		Corr (%)	Acc (%)
HMM-based		69.02	63.45
OT	SPE	66.19	29.68
detection-	MV	59.24	30.33
based	GP	69.03	31.38
DT	SPE	56.56	55.27
detection-	MV	51.84	50.68
based	GP	55.74	54.53

• 接著可以從第一個實驗中發現,在每個 feature set中,都會有一些容易混淆的 phone,但是每個feature set中容易被混淆 的phone pair都不太一樣

• 接著可以用CRF來將這些不同的feature set 的output做合併

Table 6. Confusion pairs identified from the oracle phone recognition results by using different feature sets.

Feature	<i>#</i>	Top 5 most confused pairs and their
Set	#pair	frequency counts
SPE	38	(iy,dh):1809 (z,aw):1236 (p,ey):956 (m,en):939 (f,v):911
MV	59	(iy,ih):995 (s,sh):395 (er,ah):394 (ey,iy):371 (ae,ah):315
GP	14	(el,sil):163 (uh,ah):126 (w,uw):64 (y,ih):39 (ah,sil):6

Table 7. The real phone recognition results of the combined recognizers.

Method	#sys	Corr (%)	Acc (%)
Baseline HMM	1	69.02	63.45
OT: SPE+MV+GP	3	61.97	60.65
DT: SPE+MV+GP	3	52.90	52.06
OT+DT: SPE+MV+GP	6	60.81	59.20
OT: SPE+MV+GP plus HMM	4	65.53	64.31
DT: SPE+MV+GP plus HMM	4	59.57	58.64
OT+DT: SPE+MV+GP plus HMM	7	64.22	62.59