Theory of Automata & Formal Languages

(Theory of Computation)

RLs: Intersection, Union & Complement

RLs are closed Under Intersection

0/1

The construct gives:

$$Q = Q_1 \times Q_2$$

= {[p₀, q₀], [p₀, q₁], [p₀, q₂], [p₁, q₀], [p₁, q₁], [p₁, q₂]}

$$\Sigma = \{0, 1\}$$

$$F = \{[p_1, q_2]\}$$

start state =
$$[p_0, q_0]$$

δ – Some examples:
$$\delta([p_0, q_2], 0) = [\delta_1(p_0, 0), \delta_2(q_2, 0)] = [p_1, q_2]$$

 $\delta([p_1, q_2], 1) = [\delta_1(p_1, 1), \delta_2(q_2, 1)] = [p_1, q_2]$

Final Result:

A direct construction of a DFA M such that $L(M) = L_1 \cap L_2$

$$L(M) = L_1 \cap L_2$$

• Let:

$$M_1 = (Q_1, \Sigma, \delta_1, p_0, F_1)$$
, where $Q_1 = \{p_0, p_1, ...\}$
 $M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$, where $Q_2 = \{q_0, q_1, ...\}$
where $L(M_1) = L_1$ and $L(M_2) = L_2$.

Construct M where:

Q = Q₁ x Q₂
each
= {[p₀, q₀], [p₀, q₁], [p₀, q₂],...}
and M₂
$$\Sigma = \text{as with M}_1 \text{ and M}_2$$
$$F = F_1 x F_2$$
$$\text{start state} = [p_0, q_0]$$
$$\delta([p_i, q_j], a) = [\delta_1(p_i, a), \delta_2(q_j, a)]$$
and a in Σ

Note that M has a state for pair of states in M₁

for all [p_i, q_i] in Q

RLs are closed Under Intersection

Closure Under Intersection

DeMorgan's Law: L1∩L2 = L1 U L2

L1 and L2 are regular

So L1 and L2 are regular (Closure under complementation) So $\overline{L1}$ U $\overline{L2}$ is regular (Closure under union)

So L1 U L2 is regular. (Closure under comp.)

So L1 ∩ L2 is regular.

0/1

The construct gives:

$$Q = Q_1 \times Q_2$$

= {[p₀, q₀], [p₀, q₁], [p₀, q₂], [p₁, q₀], [p₁, q₁], [p₁, q₂]}

$$\Sigma = \{0, 1\}$$

$$F = \{[p_1, q_2], [p_1, q_0], [p_1, q_1], [p_0, q_2] \}$$

start state =
$$[p_0, q_0]$$

δ – Some examples:
$$\delta([p_0, q_2], 0) = [\delta_1(p_0, 0), \delta_2(q_2, 0)] = [p_1, q_2]$$

 $\delta([p_1, q_2], 1) = [\delta_1(p_1, 1), \delta_2(q_2, 1)] = [p_1, q_2]$

Final Result:

Is the above union operation Correct?

Above union operation is Correct

EXAMPLE -2

EXAMPLE -2

Closure Under Union

DeMorgan's Law: L1 U L2 = $\overline{L1} \cap \overline{L2}$

L1 and L2 are regular

So L1 and L2 are regular (Closure under complementation)

So L1 ∩ L2 is regular (Closure under intersection)

So L1 ∩ L2 is regular. (Closure under comp.)

So L1 U L2 is regular.