



# Parameterized Ozone Photochemistry in the NOGAPSALPHA GCM

J. McCormack

S. Eckermann, L. Coy, D. Allen

Naval Research Laboratory, Washington DC, USA



### **NOGAPS-ALPHA**





# Motivations for Prognostic Ozone in NOGAPS-ALPHA

- Improved satellite radiance assimilation
- Prognostic ozone feeds into model radiative heating calcs
   → Improved forecasts

#### **Model Configuation**

- Model top at 0.005 hPa (z~85 km)
- •T79 & T239 spectral truncation
- CLIRAD radiation scheme currently uses 2D 03
- New 3D prognostic ozone features
  - spectral transport





### inearized O3 Photochemistry Scheme for **NOGAPS-ALPHA**



$$\frac{df}{dt} = (P-L) [f,T,c_{03}],$$
 we can obtain a

If we assume assume the series expansion about a mean state  $(f_o, T_o, c_o)$  after Cariolle and Déqué [1986] ("CD86") and McLinden et

$$\frac{df}{dt} = (P-L)^{o} + \frac{\partial(P-L)}{\partial f}\bigg|_{o}(f-f^{o}) + \frac{\partial(P-L)}{\partial T}\bigg|_{o}(T-T^{o}) + \frac{\partial(P-L)}{\partial c_{O_{3}}}\bigg|_{o}(c-c_{O_{3}}^{o})$$

#### **NOGAPS** Fields

- 3. Column  $O_3$ , c

#### Photochemistry Parameters (y,z,t Lookup Tables)

- 1. Ozone Mixing Ratio, f 1. Mean/Equilibrium Production-Loss  $(P-L)_0$ 
  - 2. Photochemical Relaxation Timescale  $\tau = -[d(P L)/df]_0^{-1}$
  - 3. Temperature Perturbation Coefficient [d(P-L)/dT]

#### **Climatological Fields**

- 1. Ozone  $f_0(y,z,t)$
- 2. Temperature

**NOGAPS-ALPHA** prognostic O<sub>3</sub> can use photochemistry parameters of either CD86 (ECMWF), LINOZ, NRL CHEM2D, → inter-comparison of the or Goddard (NCEP) 4 different photochemistry schemes



# photochemistry schemes tester in NOGAPS-ALPHA

|                                             | 1. P-L<br>(ppmv/s<br>) | 2. d(P-<br>L)<br>df<br>(s-1) | 3. <u>d(P-L)</u><br>dT<br>(ppmv/K) | 4. d(P-<br>L)<br>dc <sub>03</sub><br>(ppmv/D<br>U) | 5. PSC effect s             |
|---------------------------------------------|------------------------|------------------------------|------------------------------------|----------------------------------------------------|-----------------------------|
| CD86<br>(Z <sub>top</sub> ~ 61 km)          | yes                    | yes                          | yes                                | yes                                                | yes<br>(CI<br>loading<br>)  |
| LINOZ<br>(z <sub>top</sub> ~ 58<br>km)      | yes                    | yes                          | yes                                | yes                                                | no                          |
| <b>CHEM2D V0</b> ( $z_{top} \sim 85$ $km$ ) | yes                    | yes                          | prelimina<br>ry (v1.0)             | future<br>work?                                    | testing<br>"cold<br>tracer" |
| GSFC/NCEP                                   | no                     | VAS                          | no                                 | no                                                 | no                          |



## Term 1: O<sub>3</sub> (P-L) in ppmv/month









LINOZ O3 (P-L) above 10 hPa yields *large* low ozone bias



# Term 2: O<sub>3</sub> Relaxation Time (Days)







# SAGE III Ozone Loss and Validation Experiment (SOLVE 2 Jan - Feb 2003)

























7



- SOLVE2 provided our first opportunity to test new NOGAPS-ALPHA 3-D O₃ initialization, transport & photochemistry.
- We compared results from 5-day hindcasts of interesting ozone events in Jan 2003 using CD86, LINOZ, and CHEM2D V0, initialized with GMAO or ECMWF IFS 3D assimilated ozone fields
- Overall the best results were obtained with the CHEM2D V0 scheme, despite the fact it has no temperature or column ozone terms
- For more details see McCormack et al., Atmos. Chem. Phys., 4, 2401-2423, 2004.





NOGAPS- $\alpha$  FCT TOTOZ : 2003011100 : t = 000096 h



NOGAPS- $\alpha$  FCT TOTOZ : 2003011100 : t = 000096 h







### TOTAL OZONE : 15 Jan OZ

photochemistry schemes yield similar results for total ozone. In the lower stratosphere, the very short CD86 O3 relaxation time ( $\tau = -[d(P-L)/df]_0^{-1}$ ) smooths out zonal structure



Including temperature dependence in CHEM2D

scheme: "V1.0"



d(P-L)/dT (ppmv s<sup>-1</sup> K<sup>-1</sup>)

d(P-L)/dT for March 30° N



# **Summary**



|                                          | 1. P-L                             | 2. d( <i>P-L</i> )<br>df | 3. d( <i>P-L</i> )<br>d <i>T</i> | 4. d(P-<br>L)<br>dc <sub>03</sub> |
|------------------------------------------|------------------------------------|--------------------------|----------------------------------|-----------------------------------|
| CD86                                     | ok                                 | X                        | ok                               | ok                                |
| (Z <sub>top</sub> ~ 61 km)               |                                    | (T too<br>short)         |                                  |                                   |
| LINOZ<br>(Z <sub>top</sub> ~ 58 km)      | (too much<br>loss above<br>10 hPa) | ok                       | (too large<br>above 1 hPa)       | ok                                |
| CHEM2D V0<br>(z <sub>top</sub> ~ 85 km)  | ok                                 | ok                       | preliminary (v1.0)               | ?                                 |
| GSFC/NCEP $(z_{top} \sim 60 \text{ km})$ | _                                  | ok                       | _                                | -14                               |