

Polygon Rasterization

EVVHA, THE FUTURE VVE CREATE

What To Learn

Definition of a Polygon

Polygon Inside/Outside Test

- Odd/even rule
- Winding number

Polygon Rasterization

- Scanline algorithm
- Triangle rasterization

Polygon

- □ Specified by a set of three or more *vertices* connected by *edges*
- □ Convex VS non-convex
- ☐ Simple VS non-simple
- **□** Degenerate
 - Collinear or duplicated vertices

Convex Polygons

Non-convex Polygons

Simple

Non-simple

Inside-Outside Tests

□Odd-even rule

■Shoot a ray from the point and count edge crossings: inside if the count is an odd number

□Winding number

- Shoot a ray from the point and +1 when crossing a counter-clockwise encircling line and -1 otherwise
- Inside if winding number ≠ 0

Nonzero Winding-Number Rule

Odd-Even VS Winding

Implementation of Winding Rule

□Inputs

- **E**dge direction: $e = (e_x, e_y, 0)$
- Ray direction: $u = (u_x, u_y, 0)$

\square Using cross product (×)

- **CCW**: z component of $u \times e = u_x e_y u_y e_x > 0$
- **■** CW: otherwise

CW

General Polygon Rasterization: Scanline Algorithm

- 1. Soring the edges in y-coordinates
- 2. For each scan line
 - ① Get all edges intersected
 - 2 Get all intersected points and sort them
 - ③ Fill the intersected segments using a polygonI/O test

Special Case: Triangle Rasterization

- Draw v₁v₂ using Bresenham's algorithm until it proceeds by one pixel in y-direction
- 2. Do the same for v_1v_3
- 3. Fill the current line segments
- 4. Repeat 1-3 until arriving at v_2 or v_3

Special Case: Triangle Rasterization

