### Quorum

Quorum

### Motivation

Use cases

Ethereum as a starting point

### Interbank Information Network Credit Default Swap



| Distributed Database                | Public Blockchain               |
|-------------------------------------|---------------------------------|
| closed, single operator             | open, multiple operators        |
| trust among nodes                   | trustless, censorship resistant |
| fast, capable of strong consistency | slow, eventual consistency      |
| store of mutable state              | log of state transitions        |

| Distributed Database                |                                  | Public Blockchain               |
|-------------------------------------|----------------------------------|---------------------------------|
| closed, single operator             | multiple known operators         | open, multiple operators        |
| trust among nodes                   | accountability                   | trustless, censorship resistant |
| fast, capable of strong consistency | strong, not eventual consistency | slow, eventual consistency      |
| store of mutable state              | log of state transitions         | log of state transitions        |

Also—

Confidential transactions

Real-world governance (tech and law)

Enterprise deployment & support

### Two separate state trees

Public State

Private State

### Ethereum network



### One node



### With a private enclave



### Quorum network

Peer-to-peer encrypted message exchange





```
var simple = checkingAccountContract.new(42, {
  from: web3.eth.accounts[0],
  data: bytecode,
  gas: 300000,
});
```

```
Creating a Private Contract
Simple Privacy
```

```
var simple = checkingAccountContract.new(42, {
  from: web3.eth.accounts[0],
  data: bytecode,
  gas: 300000,
  privateFor: ["ROAZBWtSacxXQrOe3FGAqJDyJjFePR5ce4TSIzmJ0Bc="]
                                public key
               <-
});
```



### **IMAGE**



### Who has this payload?



```
From: Alice
Type: create

From: Bob
Type: call

From: Alice
Type: call

From: Alice
Type: call

From: Alice
Type: call

From: Alice
Type: call

Vote("roger")

e70dd187342f83a4c447a950dfbdb0f1ca32ef35
```

Private contracts can call other private contracts Private contracts can also call public contracts

But...

### DEMO

### Consensus

### Everyone is anonymous Mutual lack of trust Mining power as proxy for:

- Investment in the network
- How much of the vote you get

One Bitcoin Transaction Now Uses as Much Energy as Your House in a Week

Everyone is anonymous known Mutual lack of trust Mining is not necessary

Enterprise

### Consensus

### What does a consensus mechanism do?

| 1 | a = 1   |
|---|---------|
| 2 | b = 2   |
| 3 | a = 100 |
| 4 | c = 5   |

"Raft is a consensus algorithm that is designed to be easy to understand. It's equivalent to Paxos in fault-tolerance and performance."

### Consensus

Raft

Formally verified protocol

We use the etcd implementation, which is written in Go and not verified, but mature

Censorship
Cluster size
Throughput / latency
No forking

Cluster Size

Strenghts, Weaknesses, Limitations

Raft

### Consensus

### Cluster Size

| Servers | Quorum Size (majority) | Failure Tolerance |
|---------|------------------------|-------------------|
| 1       | 1                      | 0                 |
| 2       | 2                      | 0                 |
| 3       | 2                      | 1*                |
| 4       | 3                      |                   |
| 5       | 3                      | 2*                |
| •••     | •••                    | •••               |
|         |                        |                   |

Throughput

Strenghts, Weaknesses, Limitations

Up to 1100 tx/s (ideal conditions) 0 - 50 ms latency

Raft

| Ethereum     | Raft     |
|--------------|----------|
| miner minter | leader   |
| verifier     | follower |

Ethereum + Raft

"Speculative Minting"

### Mint every 50 ms Raft can take arbitrarily long to confirm blocks

Istanbul BFT/PBFT

Based on PBFT (Castro-Liskov 99) Up to F of N fault nodes (N = 3F + 1) Doesn't scale to as many nodes Censorship resistant



# **Consensus** New Work

### The Honey Badger of BFT Protocols

• Miller, Xia, Croman, Shi, Song Thunderella: Blockchains with Optimistic

• Pass, Shi

**Instant Confirmation** 

### ZSL

Quorum

36

assert(presentationEnded);