(19)日本国特新庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平6-153739

(43)公開日 平成6年(1994)6月3日

(51)Int.CL.5

識別記号

庁内整理番号

FΙ

技術表示箇所

A 0 1 K 61/02

8602-2B

審査請求 未請求 請求項の数3(全 3 頁)

(21)出願番号

特願平4-308637

(22)出願日

平成4年(1992)11月18日

(71)出願人 000111085

ニッタ株式会社

大阪府大阪市中央区本町1丁目8番12号

(72)発明者 広瀬 功次

奈良県大和郡山市池沢町172 ニッタ株式

会社奈良工場内

(74)代理人 弁理士 辻本 一義

(54)【発明の名称】 配餌装置

(57)【要約】

【目的】 餌の浮遊時間が長く且つ風の影響を受けにく い配餌装置を提供すること。

【構成】 魚槽1の下部に設けられた空気吹出孔20を 有するエアーチャンバー2と、前記エアーチャンバー2 に圧縮空気を導く管路4と、前記管路4中に魚餌をほぼ 定量供給する供給機6とから成り、前記空気吹出孔20 の大きさが一塊の魚餌のそれよりも大きく設定されてい る.

BEST AVAILABLE COPY

【特許請求の範囲】

1

【請求項1】 魚槽の下部に設けられた空気吹出孔を有 するエアーチャンバーと、前記エアーチャンバーに圧縮 空気を導く管路と、前記管路中に魚餌をほぼ定量供給す る供給機とから成り、前記空気吹出孔の大きさが一塊の 魚餌のそれよりも大きく設定されていることを特徴とす る配餌装置。

【請求項2】 生赞の底に設けられた空気吹出孔を有す るエアーチャンバーと、前記エアーチャンバーに圧縮空 気を導く管路と、前記管路中に魚餌をほぼ定量供給する 10 供給機とから成り、前記空気吹出孔の大きさが一塊の魚 餌のそれよりも大きく設定されていることを特徴とする 配餌装置。

【請求項3】 エアーチャンバーが、リング状の管状体 により構成されていることを特徴とする請求項1又は2 記載の配餌装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、魚槽や生質で飼育さ 装置という)に関するものである。

[0002]

【従来の技術】従来、魚槽や生質で飼育している魚に配 餌する場合には、水上から人力により手撒きをしたり、 又は機械によって撒くようにしていた。しかしながら、 上記の場合、風の影響によって所望の位置に配餌できな いという問題がある。

【0003】又、魚は浮遊している(底に沈んでいな い) 餌しか食べないことから、できるだけ餌の浮遊時間 を長くしたいという希望もある。

[0004]

【発明が解決しようとする課題】そこで、この発明で は、餌の浮遊時間が長く且つ風の影響を受けにくい配餌・ 装置を提供することを課題とする。

[0005]

【課題を解決するための手段】この請求項1記載の発明 の配餌装置は、魚槽の下部に設けられた空気吹出孔を有 するエアーチャンバーと、前記エアーチャンバーに圧縮 空気を導く管路と、前記管路中に魚餌をほぼ定量供給す る供給機とから成り、前記空気吹出孔の大きさが一塊の 40 魚餌のそれよりも大きく設定されている。

【0006】この請求項2記載の発明の配餌装置は、生 質の底に設けられた空気吹出孔を有するエアーチャンバ ーと、前記エアーチャンバーに圧縮空気を導く管路と、 前記管路中に魚餌をほぼ定量供給する供給機とから成 り、前記空気吹出孔の大きさが一塊の魚餌のそれよりも 大きく設定されている。

[0007]

【作用】この発明は次の作用を有する。この配餌装置で は、供給機からほぼ定量供給された魚餌は、管路→エア 50

ーチャンバー→空気吹出孔の経路で魚槽 (請求項2の発 明では生質)の底から圧縮空気と共に噴出される。した がって、配餌に際して、従来のように大気中に撒く態様 ではないから風の影響を受けることはほとんどなくな り、他方、魚餌は一端、魚槽(請求項2の発明では生 資) の底から水面へと上昇し、その後、水面から底へと 下降していくこととなるから、餌の浮遊時間は長いもの となる。

2

[0008]

【実施例】以下、この発明の構成を実施例として示した 図面に従って説明する。この実施例の配餌装置は、図1 に示すように、魚槽1と、前記魚槽1内の底部に設けら れたリング状のエアーチャンバー2と、前記魚槽1から 離れた位置に設けられた空気供給機3と、前記エアーチ ャンバー2と空気供給機3とを繋ぐ管路4と、前記空気 供給機3の近傍に設けられた魚餌タンク5と、この魚餌 タンク5の魚餌を管路4中に定量供給する供給機6とか ら構成されている。

【0009】上記魚槽1は、同図に示すように、上方開 れている魚に配餌する装置(この明細書では、単に配餌 20 放の円筒状(この形状に限定されるものではない)に形 成されており、容積の九割り程度の水を充填してある。 エアーチャンバー2は、図1に示すように、配管をリン グ状に形成したもので、図2に示す如く、上部に一塊の 魚餌よりも大きい多数の空気吹出孔20を形成してあ る。

> 【0010】空気供給機3はとしては、比較的高圧のコ ンプレッサーが採用されている。管路4は、通常のSU S管 (合成樹脂管でもよい) により形成されており、圧 損が小さくなるような配管経路としてある。魚餌タンク 30 5は、図1に示すように、下部をコーン形状とした胴部 が円筒形状に形成されており、魚餌の排出を円滑にする ためにタンクのコーン形状面にバイブレータ(図示せ ず) を具備させてある。

【0011】供給機6としては、図1に示すように、所 謂ロータリーフィーダーを採用してあり、上記した魚餌 タンク5の下部に直付けしてある。この実施例の配餌装 置は上記の構成としてあるから、作用・効果の欄に記載 してある内容以外にエアーレーション機能である無酸素 状態の防止、酸素の補給という作用・効果が得られる。

【0012】尚、上記実施例は魚槽1にこの発明の配餌 装置を施したものとしたが、これに限定されることな く、海や湖につくられた生管にこの発明の配餌装置を施 すこともできる。海に作られた生質の場合、エアレーシ ョンによって生じる対流発生により海底栄養塩が上昇す ることとなる。また、圧縮空気源と餌混入との位置関係 は上記実施例に限定されるものではなく、要するに管路 4に供給された魚餌が円滑にエアーチャンバー2に圧送 されるものであればよい。

[0013]

【発明の効果】この発明は、上述の如くの構成を有する

3

ものであるから、次の効果を有する。作用の欄に記載した内容から、餌の浮遊時間が長く且つ風の影響を受けに くい配餌装置を提供できた。

【図面の簡単な説明】

【図1】この発明の実施例における配餌装置。

【図2】前記配餌装置のエアーチャンバーの断面図。

【符号の説明】

1 魚槽

2 エアーチャンバー

3 空気供給機

4 管路

5 魚餌タンク

6 供給機

【図1】

