Introduction to Artificial Neural Networks with Keras

Birds inspired us to fly, burdock plants inspired Velcro, and nature has inspired countless more inventions. It seems only logical, then, to look at the brain's architecture for inspiration on how to build an intelligent machine. This is the logic that sparked *artificial neural networks* (ANNs): an ANN is a Machine Learning model inspired by the networks of biological neurons found in our brains. However, although planes were inspired by birds, they don't have to flap their wings. Similarly, ANNs have gradually become quite different from their biological cousins. Some researchers even argue that we should drop the biological analogy altogether (e.g., by saying "units" rather than "neurons"), lest we restrict our creativity to biologically plausible systems.¹

ANNs are at the very core of Deep Learning. They are versatile, powerful, and scalable, making them ideal to tackle large and highly complex Machine Learning tasks such as classifying billions of images (e.g., Google Images), powering speech recognition services (e.g., Apple's Siri), recommending the best videos to watch to hundreds of millions of users every day (e.g., YouTube), or learning to beat the world champion at the game of Go (DeepMind's AlphaGo).

The first part of this chapter introduces artificial neural networks, starting with a quick tour of the very first ANN architectures and leading up to *Multilayer Perceptrons* (MLPs), which are heavily used today (other architectures will be explored in the next chapters). In the second part, we will look at how to implement neural networks using the popular Keras API. This is a beautifully designed and simple high-

¹ You can get the best of both worlds by being open to biological inspirations without being afraid to create biologically unrealistic models, as long as they work well.

level API for building, training, evaluating, and running neural networks. But don't be fooled by its simplicity: it is expressive and flexible enough to let you build a wide variety of neural network architectures. In fact, it will probably be sufficient for most of your use cases. And should you ever need extra flexibility, you can always write custom Keras components using its lower-level API, as we will see in Chapter 12.

But first, let's go back in time to see how artificial neural networks came to be!

From Biological to Artificial Neurons

Surprisingly, ANNs have been around for quite a while: they were first introduced back in 1943 by the neurophysiologist Warren McCulloch and the mathematician Walter Pitts. In their landmark paper² "A Logical Calculus of Ideas Immanent in Nervous Activity," McCulloch and Pitts presented a simplified computational model of how biological neurons might work together in animal brains to perform complex computations using *propositional logic*. This was the first artificial neural network architecture. Since then many other architectures have been invented, as we will see.

The early successes of ANNs led to the widespread belief that we would soon be conversing with truly intelligent machines. When it became clear in the 1960s that this promise would go unfulfilled (at least for quite a while), funding flew elsewhere, and ANNs entered a long winter. In the early 1980s, new architectures were invented and better training techniques were developed, sparking a revival of interest in *connectionism* (the study of neural networks). But progress was slow, and by the 1990s other powerful Machine Learning techniques were invented, such as Support Vector Machines (see Chapter 5). These techniques seemed to offer better results and stronger theoretical foundations than ANNs, so once again the study of neural networks was put on hold.

We are now witnessing yet another wave of interest in ANNs. Will this wave die out like the previous ones did? Well, here are a few good reasons to believe that this time is different and that the renewed interest in ANNs will have a much more profound impact on our lives:

- There is now a huge quantity of data available to train neural networks, and ANNs frequently outperform other ML techniques on very large and complex problems.
- The tremendous increase in computing power since the 1990s now makes it possible to train large neural networks in a reasonable amount of time. This is in part due to Moore's law (the number of components in integrated circuits has

² Warren S. McCulloch and Walter Pitts, "A Logical Calculus of the Ideas Immanent in Nervous Activity," *The Bulletin of Mathematical Biology* 5, no. 4 (1943): 115–113.

- doubled about every 2 years over the last 50 years), but also thanks to the gaming industry, which has stimulated the production of powerful GPU cards by the millions. Moreover, cloud platforms have made this power accessible to everyone.
- The training algorithms have been improved. To be fair they are only slightly different from the ones used in the 1990s, but these relatively small tweaks have had a huge positive impact.
- Some theoretical limitations of ANNs have turned out to be benign in practice. For example, many people thought that ANN training algorithms were doomed because they were likely to get stuck in local optima, but it turns out that this is rather rare in practice (and when it is the case, they are usually fairly close to the global optimum).
- ANNs seem to have entered a virtuous circle of funding and progress. Amazing
 products based on ANNs regularly make the headline news, which pulls more
 and more attention and funding toward them, resulting in more and more progress and even more amazing products.

Biological Neurons

Before we discuss artificial neurons, let's take a quick look at a biological neuron (represented in Figure 10-1). It is an unusual-looking cell mostly found in animal brains. It's composed of a *cell body* containing the nucleus and most of the cell's complex components, many branching extensions called *dendrites*, plus one very long extension called the *axon*. The axon's length may be just a few times longer than the cell body, or up to tens of thousands of times longer. Near its extremity the axon splits off into many branches called *telodendria*, and at the tip of these branches are minuscule structures called *synaptic terminals* (or simply *synapses*), which are connected to the dendrites or cell bodies of other neurons.³ Biological neurons produce short electrical impulses called *action potentials* (APs, or just *signals*) which travel along the axons and make the synapses release chemical signals called *neurotransmitters*. When a neuron receives a sufficient amount of these neurotransmitters within a few milliseconds, it fires its own electrical impulses (actually, it depends on the neurotransmitters, as some of them inhibit the neuron from firing).

³ They are not actually attached, just so close that they can very quickly exchange chemical signals.

Figure 10-1. Biological neuron⁴

Thus, individual biological neurons seem to behave in a rather simple way, but they are organized in a vast network of billions, with each neuron typically connected to thousands of other neurons. Highly complex computations can be performed by a network of fairly simple neurons, much like a complex anthill can emerge from the combined efforts of simple ants. The architecture of biological neural networks (BNNs)⁵ is still the subject of active research, but some parts of the brain have been mapped, and it seems that neurons are often organized in consecutive layers, especially in the cerebral cortex (i.e., the outer layer of your brain), as shown in Figure 10-2.

⁴ Image by Bruce Blaus (Creative Commons 3.0). Reproduced from https://en.wikipedia.org/wiki/Neuron.

⁵ In the context of Machine Learning, the phrase "neural networks" generally refers to ANNs, not BNNs.

Figure 10-2. Multiple layers in a biological neural network (human cortex)⁶

Logical Computations with Neurons

McCulloch and Pitts proposed a very simple model of the biological neuron, which later became known as an *artificial neuron*: it has one or more binary (on/off) inputs and one binary output. The artificial neuron activates its output when more than a certain number of its inputs are active. In their paper, they showed that even with such a simplified model it is possible to build a network of artificial neurons that computes any logical proposition you want. To see how such a network works, let's build a few ANNs that perform various logical computations (see Figure 10-3), assuming that a neuron is activated when at least two of its inputs are active.

Figure 10-3. ANNs performing simple logical computations

⁶ Drawing of a cortical lamination by S. Ramon y Cajal (public domain). Reproduced from https://en.wikipedia.org/wiki/Cerebral_cortex.

Let's see what these networks do:

- The first network on the left is the identity function: if neuron A is activated, then neuron C gets activated as well (since it receives two input signals from neuron A); but if neuron A is off, then neuron C is off as well.
- The second network performs a logical AND: neuron C is activated only when both neurons A and B are activated (a single input signal is not enough to activate neuron C).
- The third network performs a logical OR: neuron C gets activated if either neuron A or neuron B is activated (or both).
- Finally, if we suppose that an input connection can inhibit the neuron's activity (which is the case with biological neurons), then the fourth network computes a slightly more complex logical proposition: neuron C is activated only if neuron A is active and neuron B is off. If neuron A is active all the time, then you get a logical NOT: neuron C is active when neuron B is off, and vice versa.

You can imagine how these networks can be combined to compute complex logical expressions (see the exercises at the end of the chapter for an example).

The Perceptron

The *Perceptron* is one of the simplest ANN architectures, invented in 1957 by Frank Rosenblatt. It is based on a slightly different artificial neuron (see Figure 10-4) called a *threshold logic unit* (TLU), or sometimes a *linear threshold unit* (LTU). The inputs and output are numbers (instead of binary on/off values), and each input connection is associated with a weight. The TLU computes a weighted sum of its inputs ($z = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n = \mathbf{x}^{\mathsf{T}} \mathbf{w}$), then applies a *step function* to that sum and outputs the result: $h_{\mathbf{w}}(\mathbf{x}) = \text{step}(z)$, where $z = \mathbf{x}^{\mathsf{T}} \mathbf{w}$.

Figure 10-4. Threshold logic unit: an artificial neuron which computes a weighted sum of its inputs then applies a step function

The most common step function used in Perceptrons is the *Heaviside step function* (see Equation 10-1). Sometimes the sign function is used instead.

Equation 10-1. Common step functions used in Perceptrons (assuming threshold = 0)

heaviside
$$(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$
 $sgn(z) = \begin{cases} -1 & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ +1 & \text{if } z > 0 \end{cases}$

A single TLU can be used for simple linear binary classification. It computes a linear combination of the inputs, and if the result exceeds a threshold, it outputs the positive class. Otherwise it outputs the negative class (just like a Logistic Regression or linear SVM classifier). You could, for example, use a single TLU to classify iris flowers based on petal length and width (also adding an extra bias feature $x_0 = 1$, just like we did in previous chapters). Training a TLU in this case means finding the right values for w_0 , w_1 , and w_2 (the training algorithm is discussed shortly).

A Perceptron is simply composed of a single layer of TLUs,⁷ with each TLU connected to all the inputs. When all the neurons in a layer are connected to every neuron in the previous layer (i.e., its input neurons), the layer is called a *fully connected layer*, or a *dense layer*. The inputs of the Perceptron are fed to special passthrough neurons called *input neurons*: they output whatever input they are fed. All the input neurons form the *input layer*. Moreover, an extra bias feature is generally added ($x_0 = 1$): it is typically represented using a special type of neuron called a *bias neuron*, which outputs 1 all the time. A Perceptron with two inputs and three outputs is represented in Figure 10-5. This Perceptron can classify instances simultaneously into three different binary classes, which makes it a multioutput classifier.

⁷ The name *Perceptron* is sometimes used to mean a tiny network with a single TLU.

Figure 10-5. Architecture of a Perceptron with two input neurons, one bias neuron, and three output neurons

Thanks to the magic of linear algebra, Equation 10-2 makes it possible to efficiently compute the outputs of a layer of artificial neurons for several instances at once.

Equation 10-2. Computing the outputs of a fully connected layer

$$h_{\mathbf{W} \mathbf{b}}(\mathbf{X}) = \phi(\mathbf{X}\mathbf{W} + \mathbf{b})$$

In this equation:

- As always, **X** represents the matrix of input features. It has one row per instance and one column per feature.
- The weight matrix **W** contains all the connection weights except for the ones from the bias neuron. It has one row per input neuron and one column per artificial neuron in the layer.
- The bias vector **b** contains all the connection weights between the bias neuron and the artificial neurons. It has one bias term per artificial neuron.
- The function ϕ is called the *activation function*: when the artificial neurons are TLUs, it is a step function (but we will discuss other activation functions shortly).

So, how is a Perceptron trained? The Perceptron training algorithm proposed by Rosenblatt was largely inspired by *Hebb's rule*. In his 1949 book *The Organization of Behavior* (Wiley), Donald Hebb suggested that when a biological neuron triggers another neuron often, the connection between these two neurons grows stronger. Siegrid Löwel later summarized Hebb's idea in the catchy phrase, "Cells that fire together, wire together"; that is, the connection weight between two neurons tends to increase when they fire simultaneously. This rule later became known as Hebb's rule (or *Hebbian learning*). Perceptrons are trained using a variant of this rule that takes into account the error made by the network when it makes a prediction; the

Perceptron learning rule reinforces connections that help reduce the error. More specifically, the Perceptron is fed one training instance at a time, and for each instance it makes its predictions. For every output neuron that produced a wrong prediction, it reinforces the connection weights from the inputs that would have contributed to the correct prediction. The rule is shown in Equation 10-3.

Equation 10-3. Perceptron learning rule (weight update)

$$w_{i,j}^{\text{(next step)}} = w_{i,j} + \eta (y_j - \hat{y}_j) x_i$$

In this equation:

- $w_{i,j}$ is the connection weight between the i^{th} input neuron and the j^{th} output neuron.
- x_i is the ith input value of the current training instance.
- \hat{y}_i is the output of the j^{th} output neuron for the current training instance.
- y_i is the target output of the j^{th} output neuron for the current training instance.
- η is the learning rate.

The decision boundary of each output neuron is linear, so Perceptrons are incapable of learning complex patterns (just like Logistic Regression classifiers). However, if the training instances are linearly separable, Rosenblatt demonstrated that this algorithm would converge to a solution.⁸ This is called the *Perceptron convergence theorem*.

Scikit-Learn provides a Perceptron class that implements a single-TLU network. It can be used pretty much as you would expect—for example, on the iris dataset (introduced in Chapter 4):

```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron

iris = load_iris()
X = iris.data[:, (2, 3)] # petal length, petal width
y = (iris.target == 0).astype(np.int) # Iris setosa?

per_clf = Perceptron()
per_clf.fit(X, y)
y_pred = per_clf.predict([[2, 0.5]])
```

⁸ Note that this solution is not unique: when data points are linearly separable, there is an infinity of hyperplanes that can separate them.

You may have noticed that the Perceptron learning algorithm strongly resembles Stochastic Gradient Descent. In fact, Scikit-Learn's Perceptron class is equivalent to using an SGDClassifier with the following hyperparameters: loss="perceptron", learning_rate="constant", eta0=1 (the learning rate), and penalty=None (no regularization).

Note that contrary to Logistic Regression classifiers, Perceptrons do not output a class probability; rather, they make predictions based on a hard threshold. This is one reason to prefer Logistic Regression over Perceptrons.

In their 1969 monograph *Perceptrons*, Marvin Minsky and Seymour Papert highlighted a number of serious weaknesses of Perceptrons—in particular, the fact that they are incapable of solving some trivial problems (e.g., the *Exclusive OR* (XOR) classification problem; see the left side of Figure 10-6). This is true of any other linear classification model (such as Logistic Regression classifiers), but researchers had expected much more from Perceptrons, and some were so disappointed that they dropped neural networks altogether in favor of higher-level problems such as logic, problem solving, and search.

It turns out that some of the limitations of Perceptrons can be eliminated by stacking multiple Perceptrons. The resulting ANN is called a *Multilayer Perceptron* (MLP). An MLP can solve the XOR problem, as you can verify by computing the output of the MLP represented on the right side of Figure 10-6: with inputs (0,0) or (1,1), the network outputs 0, and with inputs (0,1) or (1,0) it outputs 1. All connections have a weight equal to 1, except the four connections where the weight is shown. Try verifying that this network indeed solves the XOR problem!

Figure 10-6. XOR classification problem and an MLP that solves it

The Multilayer Perceptron and Backpropagation

An MLP is composed of one (passthrough) *input layer*, one or more layers of TLUs, called *hidden layers*, and one final layer of TLUs called the *output layer* (see Figure 10-7). The layers close to the input layer are usually called the *lower layers*, and the ones close to the outputs are usually called the *upper layers*. Every layer except the output layer includes a bias neuron and is fully connected to the next layer.

Figure 10-7. Architecture of a Multilayer Perceptron with two inputs, one hidden layer of four neurons, and three output neurons (the bias neurons are shown here, but usually they are implicit)

The signal flows only in one direction (from the inputs to the outputs), so this architecture is an example of a *feedforward neural network* (FNN).

When an ANN contains a deep stack of hidden layers, it is called a *deep neural network* (DNN). The field of Deep Learning studies DNNs, and more generally models containing deep stacks of computations. Even so, many people talk about Deep Learning whenever neural networks are involved (even shallow ones).

For many years researchers struggled to find a way to train MLPs, without success. But in 1986, David Rumelhart, Geoffrey Hinton, and Ronald Williams published a

⁹ In the 1990s, an ANN with more than two hidden layers was considered deep. Nowadays, it is common to see ANNs with dozens of layers, or even hundreds, so the definition of "deep" is quite fuzzy.

groundbreaking paper¹⁰ that introduced the *backpropagation* training algorithm, which is still used today. In short, it is Gradient Descent (introduced in Chapter 4) using an efficient technique for computing the gradients automatically:¹¹ in just two passes through the network (one forward, one backward), the backpropagation algorithm is able to compute the gradient of the network's error with regard to every single model parameter. In other words, it can find out how each connection weight and each bias term should be tweaked in order to reduce the error. Once it has these gradients, it just performs a regular Gradient Descent step, and the whole process is repeated until the network converges to the solution.

Automatically computing gradients is called *automatic differentiation*, or *autodiff*. There are various autodiff techniques, with different pros and cons. The one used by backpropagation is called *reverse-mode autodiff*. It is fast and precise, and is well suited when the function to differentiate has many variables (e.g., connection weights) and few outputs (e.g., one loss). If you want to learn more about autodiff, check out Appendix D.

Let's run through this algorithm in a bit more detail:

- It handles one mini-batch at a time (for example, containing 32 instances each), and it goes through the full training set multiple times. Each pass is called an *epoch*.
- Each mini-batch is passed to the network's input layer, which sends it to the first hidden layer. The algorithm then computes the output of all the neurons in this layer (for every instance in the mini-batch). The result is passed on to the next layer, its output is computed and passed to the next layer, and so on until we get the output of the last layer, the output layer. This is the *forward pass*: it is exactly like making predictions, except all intermediate results are preserved since they are needed for the backward pass.
- Next, the algorithm measures the network's output error (i.e., it uses a loss function that compares the desired output and the actual output of the network, and returns some measure of the error).
- Then it computes how much each output connection contributed to the error. This is done analytically by applying the *chain rule* (perhaps the most fundamental rule in calculus), which makes this step fast and precise.

¹⁰ David Rumelhart et al. "Learning Internal Representations by Error Propagation," (Defense Technical Information Center technical report, September 1985).

¹¹ This technique was actually independently invented several times by various researchers in different fields, starting with Paul Werbos in 1974.

- The algorithm then measures how much of these error contributions came from each connection in the layer below, again using the chain rule, working backward until the algorithm reaches the input layer. As explained earlier, this reverse pass efficiently measures the error gradient across all the connection weights in the network by propagating the error gradient backward through the network (hence the name of the algorithm).
- Finally, the algorithm performs a Gradient Descent step to tweak all the connection weights in the network, using the error gradients it just computed.

This algorithm is so important that it's worth summarizing it again: for each training instance, the backpropagation algorithm first makes a prediction (forward pass) and measures the error, then goes through each layer in reverse to measure the error contribution from each connection (reverse pass), and finally tweaks the connection weights to reduce the error (Gradient Descent step).

It is important to initialize all the hidden layers' connection weights randomly, or else training will fail. For example, if you initialize all weights and biases to zero, then all neurons in a given layer will be perfectly identical, and thus backpropagation will affect them in exactly the same way, so they will remain identical. In other words, despite having hundreds of neurons per layer, your model will act as if it had only one neuron per layer: it won't be too smart. If instead you randomly initialize the weights, you *break the symmetry* and allow backpropagation to train a diverse team of neurons.

In order for this algorithm to work properly, its authors made a key change to the MLP's architecture: they replaced the step function with the logistic (sigmoid) function, $\sigma(z) = 1 / (1 + \exp(-z))$. This was essential because the step function contains only flat segments, so there is no gradient to work with (Gradient Descent cannot move on a flat surface), while the logistic function has a well-defined nonzero derivative everywhere, allowing Gradient Descent to make some progress at every step. In fact, the backpropagation algorithm works well with many other activation functions, not just the logistic function. Here are two other popular choices:

The hyperbolic tangent function: $tanh(z) = 2\sigma(2z) - 1$

Just like the logistic function, this activation function is S-shaped, continuous, and differentiable, but its output value ranges from -1 to 1 (instead of 0 to 1 in the case of the logistic function). That range tends to make each layer's output more or less centered around 0 at the beginning of training, which often helps speed up convergence.

The Rectified Linear Unit function: ReLU(z) = max(0, z)

The ReLU function is continuous but unfortunately not differentiable at z=0 (the slope changes abruptly, which can make Gradient Descent bounce around), and its derivative is 0 for z<0. In practice, however, it works very well and has the advantage of being fast to compute, so it has become the default.¹² Most importantly, the fact that it does not have a maximum output value helps reduce some issues during Gradient Descent (we will come back to this in Chapter 11).

These popular activation functions and their derivatives are represented in Figure 10-8. But wait! Why do we need activation functions in the first place? Well, if you chain several linear transformations, all you get is a linear transformation. For example, if f(x) = 2x + 3 and g(x) = 5x - 1, then chaining these two linear functions gives you another linear function: f(g(x)) = 2(5x - 1) + 3 = 10x + 1. So if you don't have some nonlinearity between layers, then even a deep stack of layers is equivalent to a single layer, and you can't solve very complex problems with that. Conversely, a large enough DNN with nonlinear activations can theoretically approximate any continuous function.

Figure 10-8. Activation functions and their derivatives

OK! You know where neural nets came from, what their architecture is, and how to compute their outputs. You've also learned about the backpropagation algorithm. But what exactly can you do with them?

Regression MLPs

First, MLPs can be used for regression tasks. If you want to predict a single value (e.g., the price of a house, given many of its features), then you just need a single output neuron: its output is the predicted value. For multivariate regression (i.e., to predict

¹² Biological neurons seem to implement a roughly sigmoid (S-shaped) activation function, so researchers stuck to sigmoid functions for a very long time. But it turns out that ReLU generally works better in ANNs. This is one of the cases where the biological analogy was misleading.

multiple values at once), you need one output neuron per output dimension. For example, to locate the center of an object in an image, you need to predict 2D coordinates, so you need two output neurons. If you also want to place a bounding box around the object, then you need two more numbers: the width and the height of the object. So, you end up with four output neurons.

In general, when building an MLP for regression, you do not want to use any activation function for the output neurons, so they are free to output any range of values. If you want to guarantee that the output will always be positive, then you can use the ReLU activation function in the output layer. Alternatively, you can use the *softplus* activation function, which is a smooth variant of ReLU: softplus(z) = log(1 + exp(z)). It is close to 0 when z is negative, and close to z when z is positive. Finally, if you want to guarantee that the predictions will fall within a given range of values, then you can use the logistic function or the hyperbolic tangent, and then scale the labels to the appropriate range: 0 to 1 for the logistic function and -1 to 1 for the hyperbolic tangent.

The loss function to use during training is typically the mean squared error, but if you have a lot of outliers in the training set, you may prefer to use the mean absolute error instead. Alternatively, you can use the Huber loss, which is a combination of both.

The Huber loss is quadratic when the error is smaller than a threshold δ (typically 1) but linear when the error is larger than δ . The linear part makes it less sensitive to outliers than the mean squared error, and the quadratic part allows it to converge faster and be more precise than the mean absolute error.

Table 10-1 summarizes the typical architecture of a regression MLP.

Table 10-1. Typical regression MLP architecture

Hyperparameter	Typical value		
# input neurons	One per input feature (e.g., $28 \times 28 = 784$ for MNIST)		
# hidden layers	Depends on the problem, but typically 1 to 5		
# neurons per hidden layer	Depends on the problem, but typically 10 to 100		
# output neurons	1 per prediction dimension		
Hidden activation	ReLU (or SELU, see Chapter 11)		
Output activation	None, or ReLU/softplus (if positive outputs) or logistic/tanh (if bounded outputs)		
Loss function	MSE or MAE/Huber (if outliers)		

Classification MLPs

MLPs can also be used for classification tasks. For a binary classification problem, you just need a single output neuron using the logistic activation function: the output will be a number between 0 and 1, which you can interpret as the estimated probability of the positive class. The estimated probability of the negative class is equal to one minus that number.

MLPs can also easily handle multilabel binary classification tasks (see Chapter 3). For example, you could have an email classification system that predicts whether each incoming email is ham or spam, and simultaneously predicts whether it is an urgent or nonurgent email. In this case, you would need two output neurons, both using the logistic activation function: the first would output the probability that the email is spam, and the second would output the probability that it is urgent. More generally, you would dedicate one output neuron for each positive class. Note that the output probabilities do not necessarily add up to 1. This lets the model output any combination of labels: you can have nonurgent ham, urgent ham, nonurgent spam, and perhaps even urgent spam (although that would probably be an error).

If each instance can belong only to a single class, out of three or more possible classes (e.g., classes 0 through 9 for digit image classification), then you need to have one output neuron per class, and you should use the softmax activation function for the whole output layer (see Figure 10-9). The softmax function (introduced in Chapter 4) will ensure that all the estimated probabilities are between 0 and 1 and that they add up to 1 (which is required if the classes are exclusive). This is called multiclass classification.

Figure 10-9. A modern MLP (including ReLU and softmax) for classification

Regarding the loss function, since we are predicting probability distributions, the cross-entropy loss (also called the log loss, see Chapter 4) is generally a good choice.

Table 10-2 summarizes the typical architecture of a classification MLP.

Table 10-2. Typical classification MLP architecture

Hyperparameter	Binary classification	Multilabel binary classification	Multiclass classification
Input and hidden layers	Same as regression	Same as regression	Same as regression
# output neurons	1	1 per label	1 per class
Output layer activation	Logistic	Logistic	Softmax
Loss function	Cross entropy	Cross entropy	Cross entropy

Before we go on, I recommend you go through exercise 1 at the end of this chapter. You will play with various neural network architectures and visualize their outputs using the *TensorFlow Playground*. This will be very useful to better understand MLPs, including the effects of all the hyperparameters (number of layers and neurons, activation functions, and more).

Now you have all the concepts you need to start implementing MLPs with Keras!

Implementing MLPs with Keras

Keras is a high-level Deep Learning API that allows you to easily build, train, evaluate, and execute all sorts of neural networks. Its documentation (or specification) is available at https://keras.io/. The reference implementation, also called Keras, was developed by François Chollet as part of a research project¹³ and was released as an open source project in March 2015. It quickly gained popularity, owing to its ease of use, flexibility, and beautiful design. To perform the heavy computations required by neural networks, this reference implementation relies on a computation backend. At present, you can choose from three popular open source Deep Learning libraries: TensorFlow, Microsoft Cognitive Toolkit (CNTK), and Theano. Therefore, to avoid any confusion, we will refer to this reference implementation as multibackend Keras.

Since late 2016, other implementations have been released. You can now run Keras on Apache MXNet, Apple's Core ML, JavaScript or TypeScript (to run Keras code in a web browser), and PlaidML (which can run on all sorts of GPU devices, not just Nvidia). Moreover, TensorFlow itself now comes bundled with its own Keras implementation, tf.keras. It only supports TensorFlow as the backend, but it has the advantage of offering some very useful extra features (see Figure 10-10): for example, it supports

¹³ Project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System).

TensorFlow's Data API, which makes it easy to load and preprocess data efficiently. For this reason, we will use tf.keras in this book. However, in this chapter we will not use any of the TensorFlow-specific features, so the code should run fine on other Keras implementations as well (at least in Python), with only minor modifications, such as changing the imports.

Figure 10-10. Two implementations of the Keras API: multibackend Keras (left) and tf.keras (right)

The most popular Deep Learning library, after Keras and TensorFlow, is Facebook's PyTorch library. The good news is that its API is quite similar to Keras's (in part because both APIs were inspired by Scikit-Learn and Chainer), so once you know Keras, it is not difficult to switch to PyTorch, if you ever want to. PyTorch's popularity grew exponentially in 2018, largely thanks to its simplicity and excellent documentation, which were not TensorFlow 1.x's main strengths. However, TensorFlow 2 is arguably just as simple as PyTorch, as it has adopted Keras as its official high-level API and its developers have greatly simplified and cleaned up the rest of the API. The documentation has also been completely reorganized, and it is much easier to find what you need now. Similarly, PyTorch's main weaknesses (e.g., limited portability and no computation graph analysis) have been largely addressed in PyTorch 1.0. Healthy competition is beneficial to everyone.

All right, it's time to code! As tf.keras is bundled with TensorFlow, let's start by installing TensorFlow.

Installing TensorFlow 2

Assuming you installed Jupyter and Scikit-Learn by following the installation instructions in Chapter 2, use pip to install TensorFlow. If you created an isolated environment using virtualeny, you first need to activate it:

Next, install TensorFlow 2 (if you are not using a virtualeny, you will need administrator rights, or to add the --user option):

```
$ python3 -m pip install -U tensorflow
```


For GPU support, at the time of this writing you need to install tensorflow-gpu instead of tensorflow, but the TensorFlow team is working on having a single library that will support both CPU-only and GPU-equipped systems. You will still need to install extra libraries for GPU support (see https://tensorflow.org/install for more details). We will look at GPUs in more depth in Chapter 19.

To test your installation, open a Python shell or a Jupyter notebook, then import TensorFlow and tf.keras and print their versions:

```
>>> import tensorflow as tf
>>> from tensorflow import keras
>>> tf.__version__
'2.0.0'
>>> keras.__version__
'2.2.4-tf'
```

The second version is the version of the Keras API implemented by tf.keras. Note that it ends with -tf, highlighting the fact that tf.keras implements the Keras API, plus some extra TensorFlow-specific features.

Now let's use tf.keras! We'll start by building a simple image classifier.

Building an Image Classifier Using the Sequential API

First, we need to load a dataset. In this chapter we will tackle Fashion MNIST, which is a drop-in replacement of MNIST (introduced in Chapter 3). It has the exact same format as MNIST (70,000 grayscale images of 28×28 pixels each, with 10 classes), but the images represent fashion items rather than handwritten digits, so each class is more diverse, and the problem turns out to be significantly more challenging than MNIST. For example, a simple linear model reaches about 92% accuracy on MNIST, but only about 83% on Fashion MNIST.

Using Keras to load the dataset

Keras provides some utility functions to fetch and load common datasets, including MNIST, Fashion MNIST, and the California housing dataset we used in Chapter 2. Let's load Fashion MNIST:

```
fashion_mnist = keras.datasets.fashion_mnist
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
```

When loading MNIST or Fashion MNIST using Keras rather than Scikit-Learn, one important difference is that every image is represented as a 28×28 array rather than a 1D array of size 784. Moreover, the pixel intensities are represented as integers (from 0 to 255) rather than floats (from 0.0 to 255.0). Let's take a look at the shape and data type of the training set:

```
>>> X_train_full.shape
(60000, 28, 28)
>>> X_train_full.dtype
dtype('uint8')
```

Note that the dataset is already split into a training set and a test set, but there is no validation set, so we'll create one now. Additionally, since we are going to train the neural network using Gradient Descent, we must scale the input features. For simplicity, we'll scale the pixel intensities down to the 0–1 range by dividing them by 255.0 (this also converts them to floats):

```
X_valid, X_train = X_train_full[:5000] / 255.0, X_train_full[5000:] / 255.0
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
```

With MNIST, when the label is equal to 5, it means that the image represents the handwritten digit 5. Easy. For Fashion MNIST, however, we need the list of class names to know what we are dealing with:

For example, the first image in the training set represents a coat:

```
>>> class_names[y_train[0]]
'Coat'
```

Figure 10-11 shows some samples from the Fashion MNIST dataset.

Figure 10-11. Samples from Fashion MNIST

Creating the model using the Sequential API

Now let's build the neural network! Here is a classification MLP with two hidden layers:

```
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28]))
model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))
```

Let's go through this code line by line:

- The first line creates a Sequential model. This is the simplest kind of Keras model for neural networks that are just composed of a single stack of layers connected sequentially. This is called the Sequential API.
- Next, we build the first layer and add it to the model. It is a Flatten layer whose role is to convert each input image into a 1D array: if it receives input data X, it computes X.reshape(-1, 1). This layer does not have any parameters; it is just there to do some simple preprocessing. Since it is the first layer in the model, you should specify the input_shape, which doesn't include the batch size, only the shape of the instances. Alternatively, you could add a keras.layers.InputLayer as the first layer, setting input_shape=[28,28].
- Next we add a Dense hidden layer with 300 neurons. It will use the ReLU activation function. Each Dense layer manages its own weight matrix, containing all the connection weights between the neurons and their inputs. It also manages a vector of bias terms (one per neuron). When it receives some input data, it computes Equation 10-2.
- Then we add a second Dense hidden layer with 100 neurons, also using the ReLU activation function.
- Finally, we add a Dense output layer with 10 neurons (one per class), using the softmax activation function (because the classes are exclusive).

Specifying activation="relu" is equivalent to specifying activation=keras.activations.relu. Other activation functions are available in the keras.activations package, we will use many of them in this book. See https://keras.io/activations/ for the full list.

Instead of adding the layers one by one as we just did, you can pass a list of layers when creating the Sequential model: