# MAT-FIZ: Variációszemítás, Tenzor kalkulus, Differenciál geometria Szemináriumi jegyzet

# Szabó Zsombor

2025. augusztus 31.

# Tartalomjegyzék

| L.                             | Var  | Variációszámítás                                                                               |    |  |
|--------------------------------|------|------------------------------------------------------------------------------------------------|----|--|
|                                | 1.1. | Bevezetés                                                                                      | 3  |  |
|                                |      | Egydimenziós skalárfüggvények elsőrendű szükséges feltételei: az első variáció — $C^1$ elmélet | 3  |  |
|                                |      | 1.2.1. Az Euler–Lagrange-egyenlet — erős alak                                                  | 3  |  |
|                                |      | 1.2.2. Közjáték a tesztfüggvényekről és a lokális minimalitásról                               | 7  |  |
|                                |      | 1.2.3. A Du Bois-Reymond-egyenlet — erős alak                                                  | 9  |  |
|                                |      | 1.2.4. A minimalizálók létezéséről                                                             | 9  |  |
|                                |      | 1.2.5. Egy megmaradási törvény: Beltrami-azonosság                                             | 10 |  |
|                                |      | 1.2.6. Egy regularitási eredmény                                                               | 10 |  |
|                                | 1.3. | Egydimenziós skalárfüggvények elsőrendű szükséges feltételei: az első variáció — $C^1$ elmélet | 11 |  |
|                                |      | 1.3.1. Az Euler–Lagrange-egyenlet                                                              | 11 |  |
|                                |      | 1.3.2. A Du Bois-Reymond-egyenlet                                                              | 13 |  |
|                                |      | 1.3.3. Egy regularitási eredmény                                                               | 14 |  |
|                                | 1.4. | Problémák szabad végpontokkal                                                                  | 15 |  |
| 1.5. Izoperimetrikus problémák |      | Izoperimetrikus problémák                                                                      | 16 |  |
|                                |      | 1.5.1. A Lagrange-multiplikátor szabály variációs problémákra                                  | 16 |  |
|                                | 1.6. | Elsőrendű szükséges feltételek általános függvényekre                                          | 17 |  |
|                                |      | 1.6.1. Az Euler–Lagrange-egyenlet                                                              | 17 |  |
|                                |      | 1.6.2. Természetes peremfeltételek                                                             | 18 |  |
|                                |      | 163 Belső varjácjók és az energia-impulzus tenzor                                              | 18 |  |

|       | 1.6.4.  | Izoperimetrikus problémák                                            | 19 |
|-------|---------|----------------------------------------------------------------------|----|
|       | 1.6.5.  | Holonóm kényszerek                                                   | 19 |
| 1.7.  | Másod   | rendű szükséges feltételek                                           | 19 |
|       | 1.7.1.  | A második variáció nem-negativitása                                  | 19 |
|       | 1.7.2.  | A Legendre–Hadamard szükséges feltétel                               | 20 |
|       | 1.7.3.  | A Weierstrass-féle szükséges feltétel                                | 20 |
| 1.8.  | Null-L  | agrange függvények                                                   | 21 |
| 1.9.  | Elégség | ges feltételek                                                       | 21 |
|       | 1.9.1.  | A második variáció koercitivitása                                    | 22 |
|       | 1.9.2.  | Jacobi-féle konjugált pontok                                         | 22 |
|       | 1.9.3.  | Konjugált pontok és a gyenge lokális minimalitás szükséges feltétele | 23 |
|       | 1.9.4.  | Weierstrass-féle térelmélet (erős minimumhoz)                        | 23 |
| 1.10. | Fontos  | abb Példák                                                           | 24 |
|       | 1.10.1. | A legrövidebb út                                                     | 24 |
|       | 1.10.2. | Minimálfelületek                                                     | 26 |
|       | 1.10.3. | Forgási minimálfelület                                               | 26 |
|       | 1.10.4. | Fénysugár útja változó törésmutatójú közegben                        | 27 |
|       | 1.10.5. | Izoperimetrikus egyenlőtlenség                                       | 28 |
|       | 1.10.6. | Képhelyreállítás                                                     | 28 |
|       | 1.10.7. | Képszegmentáció                                                      | 29 |

# 1. Variációszámítás

#### 1.1. Bevezetés

A variációszámítás a matematika egy olyan területe, amely a funkcionálok (azaz olyan valós értékű függvények, amelyek bemenetei maguk is függvények) minimalizálásával (vagy maximalizálásával) foglalkozik. A variációszámítás széles körben alkalmazható a fizikában, a mérnöki tudományokban, az alkalmazott és elméleti matematikában, és szorosan kapcsolódik a parciális differenciálegyenletekhez (PDE-k). Például egy klasszikus probléma a variációszámításban a két pont közötti legrövidebb út megtalálása. A távolság fogalma nem feltétlenül euklideszi, vagy az út egy felületre korlátozódhat, ebben az esetben a legrövidebb utat geodetikus vonalnak nevezik. A fizikában a Hamilton-elv kimondja, hogy egy fizikai rendszer pályái a hatásfunkcionál kritikus pontjai. A kritikus pontok lehetnek a hatásfunkcionál minimumai, maximumai vagy nyeregpontjai. A gépi látásban egy kép értelmes régiókra való szegmentálásának problémáját gyakran egy funkcionál minimalizálási problémájaként fogalmazzák meg az összes lehetséges szegmentációra – ez egy természetes probléma a variációszámításban. Hasonlóképpen, a képfeldolgozásban a leromlott vagy zajos képek helyreállításának problémáját nagyon sikeresen fogalmazták meg a variációszámítás problémájaként. A PDE-k a funkcionálok minimalizálóira vonatkozó szükséges feltételekként kerülnek elő. Emlékezzünk vissza a többváltozós analízisből, hogy ha egy  $f: \mathbb{R}^d \to \mathbb{R}$  függvénynek  $\mathbf{x} \in \mathbb{R}^d$  pontban minimuma van, akkor  $\nabla f(\mathbf{x}) = 0$ . A  $\nabla f(\mathbf{x}) = 0$ szükséges feltétel felhasználható a lehetséges minimalizáló  $\mathbf{x}$  pontok megoldására. A variációszámításban, ha egy  $f: \mathbb{R}^d \to \mathbb{R}$  függvény egy I(f) funkcionál minimalizálója, akkor a  $\delta I(f) = 0$ szükséges feltétel egy PDE-nek bizonyul, amelyet Euler-Lagrange-egyenletnek neveznek. Az Euler-Lagrange-egyenlet tanulmányozása lehetővé teszi számunkra a minimalizálók explicit kiszámítását és tulajdonságaik vizsgálatát. Emiatt gazdag kölcsönhatás van a variációszámítás és a PDE-k elmélete között. Az ebben a fejezetben szereplő ötletek a Γ-konvergenciához kapcsolódnak, amely a funkcionálok konvergenciájának egy olyan fogalma, amely biztosítja, hogy a minimalizálók minimalizálókhoz konvergáljanak.

# 1.2. Egydimenziós skalárfüggvények elsőrendű szükséges feltételei: az első variáció — $C^1$ elmélet

Most a többváltozós analízisből jól ismert szélsőérték módszert a variációs integrálok esetére szeretnénk kiterjeszteni, azaz olyan  $I:C^1([a,b])\to\mathbb{R}$  funkcionálokra, melyek alakja:

$$I(f) := \int_a^b L(x, f(x), f'(x)) dx$$

azzal a céllal, hogy levezessünk néhány (elsőrendű) szükséges feltételt, melyet a minimalizálóknak ki kell elégíteniük.

#### 1.2.1. Az Euler–Lagrange-egyenlet — erős alak

Néhány jelölés rögzítésével kezdünk.

**1.1. Definíció.** Az  $L:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$  függvényt **Lagrange függvény**nek nevezzük.

Rögzítsünk tehát egy  $f \in C^1([a,b])$  függvényt és vegyünk egy  $\varphi \in C^1([a,b])$  irányt. Euler ötlete az volt, hogy tekintsük az I funkcionál  $f_0$ -nál vett iránymenti deriváltját a  $\varphi$  irány mentén, azaz tekintsük a  $\Phi : (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}$  függvényt, melynek definíciója:

$$\Phi(\varepsilon) := I(f + \varepsilon \varphi) \tag{1}$$

és deriváljuk azt. Ehhez szükségünk van a következő technikai eredményre.

**1.2. Lemma.** Legyen  $g:[a,b]\times[c,d]\to\mathbb{R}$  egy folytonos függvény, melynek létezik a második változó szerinti parciális deriváltja, és az folytonos. Definiáljuk a  $G:[c,d]\to\mathbb{R}$  függvényt az alábbiak szerint:

$$G(t) = \int_{a}^{b} g(x, t) dx$$

Ekkor G egy  $C^1$  osztályú függvény, és

$$G'(t) := \int_a^b \frac{\partial g}{\partial t}(x,t) dx$$

**Bizonyítás.** Rögzítsünk egy  $t \in [c, d]$  értéket, és elegendően kicsi h-ra tekintsük a differenciahányadost:

$$\frac{G(t+h) - G(t)}{h} = \int_a^b \frac{g(x,t+h) - g(x,t)}{h} dx = \int_a^b \frac{\partial g}{\partial t}(x,t+\theta_h) dx$$

ahol az utolsó lépésben a Lagrange-középértéktételt használtuk, és  $\theta_h \in (0,1)$  függ x,t és h értékétől. Mivel  $\frac{\partial g}{\partial t}$  folytonos, egyenletesen folytonos a [c,d] intervallumon. Így, rögzített  $\varepsilon > 0$ -hoz találhatunk olyan  $\delta > 0$  értéket, hogy ha  $|h| < \delta$ , akkor

$$\left| \frac{\partial g}{\partial t}(x, t + \theta_h) - \frac{\partial g}{\partial t}(x, t) \right| < \varepsilon$$

minden  $x \in [a, b]$ -re. Ekkor

$$\left| \frac{G(t+h) - G(t)}{h} - \int_{a}^{b} \frac{\partial g}{\partial t}(x,t) \, dx \right| = \left| \int_{a}^{b} \left( \frac{\partial g}{\partial t}(x,t+\theta_{h}) - \frac{\partial g}{\partial t}(x,t) \right) \, dx \right|$$

$$\leq \int_{a}^{b} \left| \frac{\partial g}{\partial t}(x,t+\theta_{h}) - \frac{\partial g}{\partial t}(x,t) \right| \, dx \leq \varepsilon(b-a)$$

Mivel  $\varepsilon$  tetszőleges, a bizonyítás kész.

Tegyük fel tehát, hogy a Lagrange függvény  $C^1$  osztályú. Valójában csak arra van szükségünk, hogy L-nek a p (sebesség) és  $\xi$  (érték) változók szerinti parciális deriváltjai folytonosak legyenek. A fenti eredmény azt mondja, hogy a  $\Phi$  függvény differenciálható  $\varepsilon=0$ -ban, és

$$\Phi'(0) = \int_a^b \left[ L_p(x, f(x), f'(x)) \varphi'(x) + L_{\xi}(x, f(x), f'(x)) \varphi(x) \right] dx$$

**1.3. Definíció.** Bevezetjük a  $\delta I: C^1([a,b]) \times C^1([a,b]) \to \mathbb{R}$  operátort a következőképpen:

$$\delta I(f;\varphi) := \Phi'(0)$$

ahol  $\Phi$  a (1) szerint definiált, feltéve, hogy a jobb oldal létezik. A  $\delta I(f;\varphi)$  mennyiséget az I funkcionál **első variációjának** nevezzük f-nál a  $\varphi$  irány mentén.

1.4. Megjegyzés. Anélkül, hogy feltételeznénk L  $C^1$  osztályú voltát, nem tudjuk, hogy  $\Phi$  deriváltja  $\varepsilon=0$ -ban létezik-e, és ha igen, hogyan írható fel.

Most azokra az  $f \in C^1([a,b])$  függvényekre összpontosítunk, amelyek az I minimumai valamely  $\mathcal{A} \subset C^1([a,b])$  megengedett függvényosztályon. Látni fogjuk, hogy a levont következtetések valóban függenek a megengedett osztály tulajdonságaitól.

A következőkben feltesszük, hogy a megengedett osztály:

$$A := \{ w \in C^1([a, b]) : w(a) = \alpha, w(b) = \beta \}$$

néhány rögzített  $\alpha, \beta \in \mathbb{R}$  értékre. Ebben az esetben a megengedett variációk azok, amelyek a peremértékeket rögzítve hagyják. Emiatt csak olyan  $\varphi$  függvényeket veszünk figyelembe, amelyekre:

$$C_0^1([a,b]) := \{ w \in C^1([a,b]) : w(a) = w(b) = 0 \}$$

Tudjuk, hogy ha az operátor jól definiált, akkor

$$\delta I(f;\varphi) = 0$$

kell, hogy teljesüljön minden  $\varphi \in C_0^1([a,b])$  esetén. A 3.2. Lemma alapján ez átfogalmazható:

$$\int_{a}^{b} \left[ L_{p}(x, f(x), f'(x)) \varphi'(x) + L_{\xi}(x, f(x), f'(x)) \varphi(x) \right] dx = 0$$
 (2)

minden  $\varphi \in C_0^1([a,b])$  esetén. Ezt az egyenletet az I gyenge Euler–Lagrange-egyenletének nevezzük.

**1.5.** Definíció. Egy  $f \in C^1([a,b])$  függvényt, amely kielégíti a (2) egyenletet minden  $\varphi \in C^1_0([a,b])$  esetén, az I gyenge extremálisának nevezzük.

A cél egy "szebb" egyenletet kapni, amelyet az I minimalizálóinak az  $\mathcal{A}$  halmazon ki kell elégíteniük. Emiatt feltesszük, hogy a Lagrange függvény L  $C^2$  osztályú, és a minimumhely f szintén  $C^2$  osztályú. Ezen hipotézisek mellett, parciális integrálással, a gyenge Euler–Lagrange-egyenletet a következőképpen írhatjuk:

$$0 = \int_a^b L_p(x, f, f') \varphi'(x) dx + \int_a^b L_\xi(x, f, f') \varphi(x) dx$$

$$= \left[ L_p(x, f, f') \varphi(x) \right]_a^b - \int_a^b \frac{d}{dx} L_p(x, f, f') \varphi(x) dx + \int_a^b L_\xi(x, f, f') \varphi(x) dx$$

$$= \int_a^b \left( L_\xi(x, f, f') - \frac{d}{dx} L_p(x, f, f') \right) \varphi(x) dx$$

ahol az utolsó lépésben felhasználtuk, hogy  $\varphi(a) = \varphi(b) = 0$ .

Szükségünk van egy további lépésre, hogy a fenti feltételből egy szép egyenletet kapjunk. A következő technikai eredmény megmutatja, hogyan.

**1.6. Lemma.** (A variációszámítás fundamentális lemmája) Tegyük fel, hogy van egy  $g \in C^0([a,b])$  függvényünk, amelyre

$$\int_{a}^{b} g(x)\varphi(x) \, dx = 0$$

teljesül minden  $\varphi \in C_0^1([a,b])$  esetén. Ekkor  $g \equiv 0$  az [a,b] intervallumon.

**Bizonyítás.** Tegyük fel indirekt, hogy létezik egy  $x_0 \in (a,b)$  pont, ahol  $g(x_0) \neq 0$ . Az általánosság megszorítása nélkül feltehetjük, hogy  $g(x_0) > 0$ . Mivel g folytonos, létezik egy  $\delta > 0$ , hogy  $g(x) > \frac{g(x_0)}{2} > 0$  minden  $x \in (x_0 - \delta, x_0 + \delta) \subset [a, b]$  esetén. Az ötlet az, hogy konstruálunk egy  $\varphi \in C_0^1([a, b])$  függvényt, amely pozitív az  $(x_0 - \delta, x_0 + \delta)$  intervallumon, és nulla máshol. Egy pillanatra tételezzük fel egy ilyen  $\varphi$  létezését. Akkor azt kapnánk, hogy

$$0 = \int_{a}^{b} g(x)\varphi(x) dx = \int_{x_0 - \delta}^{x_0 + \delta} g(x)\varphi(x) dx > \frac{g(x_0)}{2} \int_{x_0 - \delta}^{x_0 + \delta} \varphi(x) dx > 0$$

Mivel ez ellentmondás, arra következtetünk, hogy  $g \equiv 0$  az [a,b] intervallumon. Most konstruáljuk meg a megfelelő  $\varphi$  függvényt. Legyen:

$$\varphi(x) := \begin{cases} (x - (x_0 - \delta))^2 (x - (x_0 + \delta))^2 & \text{ha } x \in (x_0 - \delta, x_0 + \delta) \\ 0 & \text{egy\'ebk\'ent} \end{cases}$$

Könnyen belátható, hogy ez a függvény rendelkezik a kívánt tulajdonságokkal.

Így a következő eredményt kaptuk:

**1.7. Tétel.** (Euler–Lagrange-egyenlet — erős alak) Legyen  $L:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$  egy  $C^2$  osztályú függvény. Tegyük fel, hogy az  $I:C^1([a,b])\to\mathbb{R}$  funkcionál,

$$I(u) := \int_a^b L(x, f(x), f'(x)) dx$$

egy  $f \in C^2([a,b]) \cap \mathcal{A}$  minimummal rendelkezik. Ekkor a következő egyenlet teljesül:

$$L_{\xi}(x, f(x), f'(x)) = \frac{d}{dx} L_{p}(x, f(x), f'(x))$$
(3)

minden  $x \in [a, b]$  esetén.

- 1.8. Definíció. A (3) egyenletet az I (erős) Euler–Lagrange-egyenletének nevezzük. Egy  $f \in C^2([a,b])$  függvényt, amely kielégíti ezt az egyenletet, az I (erős) extremálisának nevezzük.
- 1.9. Megjegyzés. A fenti tétel nem állít semmiféle létezési eredményt. Ez csupán egy szükséges feltétel, amelyet az I minimalizálóinak az  $\mathcal{A}$  halmazon ki kell elégíteniük. Továbbá az a tény, hogy egy f minimum  $C^2$  osztályú, olyasmi, amit a priori feltételezünk, és általában nem garantált.

1.10. Megjegyzés. Megjegyezzük, hogy mivel L és f feltételezhetően  $C^2$  osztályúak, a (3) jobb oldalát a következőképpen írhatjuk:

$$L_{xp}(x, f, f') + L_{\xi p}(x, f, f')f'(x) + L_{pp}(x, f, f')f''(x)$$

# 1.2.2. Közjáték a tesztfüggvényekről és a lokális minimalitásról

Mielőtt folytatnánk, szeretnénk néhány szót ejteni két fontos kérdésről: a megengedett variációk terének megválasztásáról és a lokális minimalizálók fogalmáról.

Eddig a  $C_0^1([a,b])$  teret használtuk a megengedett variációk, vagyis a tesztfüggvények terének az  $\mathcal A$  osztályon való minimalizálók számára. Ezt a teret ad hoc választottuk ki az adott helyzetre. Tegyük fel, hogy egy hasonló szükséges feltételt szeretnénk levezetni az

$$I(f) := \int_{a}^{b} L(x, f(x), f'(x), f''(x)) dx$$

típusú  $F:C^2([a,b])\to\mathbb{R}$  funkcionálok minimalizálóira a  $\mathcal{B}:=\{w\in C^2([a,b]):w(a)=\alpha_0,w'(a)=\alpha_1,w(b)=\beta_0,w'(b)=\beta_1\}$  osztályon. Ebben az esetben a tesztfüggvények tere a  $C_0^2([a,b])$  lesz. Hasonlóképpen, ha a Lagrange függvény az f k-adik deriváltjától függ, akkor a tesztfüggvények tere  $C_0^k([a,b])$  lesz, és így tovább. Ezért szokás a tesztfüggvények standard terének a

$$C_c^{\infty}([a,b]) := \{ w \in C^{\infty}([a,b]) : (w) \in (a,b) \}$$

teret venni, azaz azon  $C^{\infty}$  függvények terét, amelyek tartója (azaz annak a halmaznak a lezártja, ahol a függvény nem nulla) kompaktan tartalmazott az (a,b) intervallumban. Ennek a térnek a választását indokolni kell. Először is, vegyük észre, hogy  $C_c^{\infty}([a,b]) \subset C_0^k([a,b])$  minden  $k \in$  esetén. Így ez a tér bármilyen rendű deriváltaktól függő Lagrange függvényekhez használható. Továbbá kiderül, hogy a variációszámítás fundamentális lemmája még ebben a kisebb tesztfüggvénytérben is érvényes. Vagyis fennáll a következő:

**1.11. Lemma.** (Fundamentális lemma — második változat) Tegyük fel, hogy van egy  $g \in C^0([a,b])$  függvényünk, amelyre

$$\int_{a}^{b} g(x)\varphi(x) \, dx = 0$$

minden  $\varphi \in C_c^\infty([a,b])$ esetén. Ekkor $g \equiv 0$  az [a,b] intervallumon.

1.12. Megjegyzés. Valójában egy általánosabb állítás is igaz: vehetjük, hogy  $g \in L^1(a,b)$ , és ugyanarra a következtetésre jutunk!

A bizonyítás ötlete ugyanaz, mint a 3.6. Lemmáé. Csak a megfelelő,  $C_c^{\infty}([a,b])$ -beli tesztfüggvényt kell megkonstruálni, ugyanazokkal a tulajdonságokkal, mint amit a 3.6. Lemmában konstruáltunk. Ez azt jelenti, hogy még ha csak azt tudjuk is, hogy az iránymenti derivált ezen kisebb tér irányaiban nulla, ez elegendő ahhoz, hogy megkapjuk a  $\delta I(f;\varphi) = 0$  szükséges feltétel differenciális alakját.

Most a lokális minimalizálók fogalmát tárgyaljuk. Mint tudjuk, végtelen dimenzióban nem minden norma ekvivalens. Ez azt jelenti, hogy a lokalitás fogalma attól a normától függ, amelyet

a terünkben választunk. Koncentráljunk most a  $C^1([a,b])$  térre. A hozzá tartozó természetes norma az úgynevezett  $C^1$ -norma,  $\|\cdot\|_{C^1}$ , amelyet a következőképpen adunk meg:

$$||f||_{C^1} := \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)| =: ||f||_{C^0} + ||f'||_{C^0}$$

De ezen a téren a  $C^0$ -normát is tekinthetjük (alapvetően nem törődünk a deriválttal!):

$$||f||_{C^0} := \max_{x \in [a,b]} |f(x)|$$

Nyilvánvalóan  $||f||_{C^0} \leq ||f||_{C^1}$ , de a két norma nem ekvivalens, amint azt az  $f_n(x) := \frac{1}{n}\sin(nx)$  függvénysorozat mutatja. Tehát a  $||\cdot||_{C^1}$  norma erősebb, mint a  $||\cdot||_{C^0}$  norma. Így a lokális minimalitásnak két fogalma van:

# **1.13.** Definíció. Egy $f \in \mathcal{A}$ függvényt, amelyre

$$I(f) \leq I(v)$$

teljesül minden  $v \in \mathcal{A}$  esetén, amelyre  $||f - v||_{C^1} < \varepsilon$  valamely  $\varepsilon > 0$ -ra, az I gyenge lokális minimalizálójának nevezzük. Ha az egyenlőség csak akkor áll fenn, ha v = f, akkor azt mondjuk, hogy f az I szigorú gyenge lokális minimalizálója.

### **1.14.** Definíció. Egy $f \in \mathcal{A}$ függvényt, amelyre

$$I(f) \le I(v)$$

teljesül minden  $v \in \mathcal{A}$  esetén, amelyre  $||f - v||_{C^0} < \varepsilon$  valamely  $\varepsilon > 0$ -ra, az I erős lokális minimalizálójának nevezzük. Ha az egyenlőség csak akkor áll fenn, ha v = f, akkor azt mondjuk, hogy f az I szigorú erős lokális minimalizálója.

Nyilvánvaló, hogy egy erős lokális minimalizáló egyben gyenge lokális minimalizáló is. Az ellenkezője nem igaz, amint azt a következő példa mutatja.

# 1.15. Példa. (Bolza) Tekintsük a funkcionált

$$I(f) := \int_0^1 \left( (f'(x))^2 - (f'(x))^4 \right) dx$$

a  $C_0^1([0,1])$  halmazon definiálva. Bizonyítsuk be, hogy  $f\equiv 0$  egy szigorú gyenge lokális minimalizáló, de nem erős. Az ötlet a következő: a  $g(p):=p^2(1-p^2)$  Lagrange függvénynek izolált lokális minimuma van p=0-ban. Ezért  $f\equiv 0$  az I szigorú gyenge lokális minimalizálója. Másrészt lehetséges olyan  $(f_n)_n$  függvénysorozatot konstruálni, hogy  $f_n\to 0$  egyenletesen a [0,1] intervallumon, és  $I(f_n)\to -\infty$ . Ehhez az ötlet az, hogy az  $f_n$ -ek deriváltját "felrobbantjuk". Ez bizonyítja, hogy  $f\equiv 0$  nem erős lokális minimalizálója az I-nek.

Tehát minden alkalommal, amikor lokális minimalizálókat vizsgálunk, meg kell határoznunk, hogy melyik metrikát (vagy topológiát) vesszük figyelembe.

1.16. Megjegyzés. Nyilvánvaló, hogy a 3.7. Tétel érvényes az I gyenge lokális minimalizálóira is, és így az I erős lokális minimalizálóira is.

# 1.2.3. A Du Bois-Reymond-egyenlet — erős alak

Most egy másik elsőrendű szükséges feltételt szeretnénk levezetni az I lokális minimalizálóira. Egyelőre az eredményt anélkül közöljük, hogy megmagyaráznánk a levezetés mögött rejlő ötletet.

**1.17. Tétel.** (A Du Bois-Reymond-egyenlet — erős alak) Tekintsünk egy  $L:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$   $C^2$  osztályú függvényt. Tegyük fel, hogy az  $I:C^1([a,b])\to\mathbb{R}$  funkcionál

$$I(f) := \int_a^b L(x, f(x), f'(x)) dx$$

egy  $f \in C^2([a,b]) \cap \mathcal{A}$  gyenge lokális minimummal rendelkezik. Ekkor a következő egyenlet teliesül:

$$\frac{d}{dx}\left(L(x,f,f') - f'(x)L_p(x,f,f')\right) = L_x(x,f,f') \tag{4}$$

minden  $x \in [a, b]$  esetén.

Bizonyítás. Közvetlen számítással kapjuk, hogy

$$\frac{d}{dx}(L - f'L_p) = L_x + L_\xi d' + L_p f'' - f''L_p - f'\frac{d}{dx}L_p$$
$$= L_x + f'\left(L_\xi - \frac{d}{dx}L_p\right)$$

Mivel f kielégíti az Euler–Lagrange-egyenletet, a zárójelben lévő kifejezés nulla, ami bizonyítja az állítást.

1.18. Megjegyzés. A (4) egyenletet az Euler–Lagrange-egyenlet második alakjának is nevezik.

#### 1.2.4. A minimalizálók létezéséről

Az összes eddigi szükséges feltételben adottnak vettük egy minimalizáló létezését. Itt meg akarjuk mutatni, hogy még egy nagyon egyszerű esetben is előfordulhat, hogy a minimalizálók létezése nem teljesül.

A bemutatandó példa az úgynevezett Euler-paradoxon. Tekintsük az  $L(p):=(1-p^2)^2$  függvényt. Definiáljuk a funkcionált:

$$I(f) := \int_0^1 L(f'(x)) dx$$

minden  $f \in C_0^1([0,1])$  esetén. Ekkor  $I(f) \ge 0$ , de nincs olyan függvény, amelyre I(f) = 0 lenne. Valóban, egy ilyen f függvénynek csak  $f' = \pm 1$  lehetne, és ki kellene elégítenie az f(0) = f(1) = 0 feltételt. De ez nem egyeztethető össze az  $f \in C^1$  követelménnyel. Ha a megengedett függvények osztályát kiterjesztjük a szakaszonként  $C^1$  függvényekre, akkor létezik minimalizáló.

# 1.2.5. Egy megmaradási törvény: Beltrami-azonosság

Tegyük fel, hogy a Lagrange függvény expliciten nem függ az x változótól, azaz  $L=L(\xi,p)$ . Ebben az esetben a Du Bois-Reymond-egyenlet (4) a következőre egyszerűsödik:

$$\frac{d}{dx}\left(L(f,f') - f'L_p(f,d')\right) = 0$$

ami azt jelenti, hogy létezik egy  $c \in \mathbb{R}$  konstans, amelyre

$$L(f(x), f'(x)) - f'(x)L_p(f(x), f'(x)) = c$$

minden  $x \in [a, b]$  esetén. Ezt az egyenletet **Beltrami-azonosságnak** vagy az energia-megmaradás törvényének nevezik.

#### 1.2.6. Egy regularitási eredmény

Most tegyük fel magunknak a következő kérdést: tegyük fel, hogy van egy (lokális)  $f \in C^1([a,b])$  minimalizálója az I-nek. Lehetséges-e a gyenge Euler–Lagrange-egyenletből, anélkül, hogy expliciten megoldanánk, arra következtetni, hogy f valójában simább? A következő eredmény választ ad erre.

**1.19. Tétel.** Legyen  $L:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$  egy  $C^2$  osztályú Lagrange függvény. Legyen  $f\in C^1([a,b])$  a gyenge Euler–Lagrange-egyenlet egy megoldása. Tegyük fel, hogy

$$L_{pp}(x, f(x), f'(x)) \neq 0$$

minden  $x \in [a, b]$  esetén. Ekkor  $f \in C^2([a, b])$ .

Bizonyítás. Tudjuk, hogy létezik  $c \in \mathbb{R}$  konstans, amelyre a következő egyenlet teljesül:

$$L_p(x, f(x), f'(x)) = g(x) := c + \int_a^x L_{\xi}(t, f(t), f'(t)) dt$$

minden  $x \in [a, b]$  esetén. A g függvény  $C^1$  osztályú. Definiáljuk a  $G(x, p) := L_p(x, f(x), p) - g(x)$  függvényt, amely  $C^1$  osztályú. Tudjuk, hogy G(x, f'(x)) = 0 minden  $x \in [a, b]$  esetén. Továbbá

$$\frac{\partial G}{\partial p}(x, f'(x)) = L_{pp}(x, f(x), f'(x)) \neq 0$$

minden  $x \in [a, b]$  esetén. Az implicitfüggvény-tétel alkalmazásával azt kapjuk, hogy f'(x) = h(x) valamely  $C^1$  osztályú h függvényre. Tehát  $f \in C^2([a, b])$ .

1.20. Megjegyzés. Lehetséges a fenti tételt a következőképpen kiterjeszteni: tegyük fel, hogy a Lagrange függvény L  $C^k$  osztályú és továbbra is kielégíti a nem-elfajulási feltételt. Ekkor a gyenge Euler–Lagrange-egyenlet bármely  $C^1$  megoldása valójában  $C^k$  osztályú.

A következő példa mutatja, hogy a nem-elfajulási feltétel valóban szükséges egy ilyen regularitási eredmény eléréséhez.

1.21. Példa. Legyen  $L \in C^2(\mathbb{R})$  egy konvex függvény, amelyre L(p) = |p| a [-1,1] intervallumon. Ekkor az  $\int_0^1 L(f'(x)) \, dx$  funkcionál minimalizálói az f(0) = 0, f(1) = 1 feltételek mellett szingularitásokat mutathatnak.

# 1.3. Egydimenziós skalárfüggvények elsőrendű szükséges feltételei: az első variáció — $C^1$ elmélet

Az előző fejezetben két fontos elsőrendű szükséges feltételt (az Euler–Lagrange-egyenletet és a Du Bois-Reymond-egyenletet) vezettünk le, feltételezve, hogy a minimalizáló  $C^2$  osztályú. A következő példa mutatja, hogy általában ez egy olyan feltételezés, amelyet nem tehetünk meg a priori.

1.22. Példa. Tekintsük a következő funkcionált:

$$I(f) := \int_{-1}^{1} (f'(x)^{2} (2x - f'(x))^{2}) dx$$

és vizsgáljuk a minimalizálás problémáját a  $v \in C^1([-1,1])$  függvények körében, amelyekre v(-1) = 0 és v(1) = 1. Könnyen belátható, hogy a funkcionált egyértelműen minimalizálja a következő függvény:

$$f(x) := \begin{cases} 0 & x \in [-1, 0] \\ x^2 & x \in [0, 1] \end{cases}$$

Ez a függvény  $C^1([-1,1])$ , de nem eleme a  $C^2([-1,1])$  térnek.

Tehát hasznos lenne olyan elsőrendű szükséges feltételeket találni, amelyek igazak a csak  $C^1([a,b])$  osztályba tartozó (lokális) minimalizálókra is.

#### 1.3.1. Az Euler-Lagrange-egyenlet

Visszatekintve arra, amit az Euler–Lagrange-egyenlet levezetése során tettünk, észrevesszük, hogy az alapvető lépés, ahol az f minimalizáló (és az L Lagrange függvény) további regularitása igazán számít, az a parciális integrálás. Valóban, csupán feltételezve, hogy L  $C^1$  osztályú és a minimalizáló f  $C^1$  osztályú, tudjuk, hogy:

$$\int_{a}^{b} \left[ L_p(x, f, f')\varphi'(x) + L_{\xi}(x, f, f')\varphi(x) \right] dx = 0$$
(5)

minden  $\varphi \in C_c^{\infty}((a,b))$  esetén. Ebből a feltételből szeretnénk egy differenciálegyenletet kapni.

Tehát, tegyük ezt lépésről lépésre: tegyük fel, hogy van két folytonos  $g,h:[a,b]\to\mathbb{R}$  függvényünk, amelyekre a következő igaz:

$$\int_{a}^{b} \left[ g(x)\varphi'(x) + h(x)\varphi(x) \right] dx = 0 \tag{6}$$

minden  $\varphi \in C_c^{\infty}((a,b))$  esetén. Szeretnénk valamilyen kapcsolatot levezetni g és h között. Mivel nem tudunk parciálisan integrálni, az első tagot kell kezelnünk. A technikai eredmény, ami segít nekünk, a következő:

**1.23. Lemma.** (Du Bois-Reymond-lemma) Legyen  $g:[a,b]\to\mathbb{R}$  egy folytonos függvény, amelyre

$$\int_{a}^{b} g(x)\psi'(x) \, dx = 0$$

minden  $\psi \in C_c^{\infty}((a,b))$  esetén. Ekkor létezik egy  $c \in \mathbb{R}$  konstans, úgy, hogy g(x) = c az [a,b] intervallumon.

1.24. Megjegyzés. Vegyük észre, hogy ha  $\psi \in C_c^{\infty}((a,b))$ , akkor  $\psi' \in C_c^{\infty}((a,b))$ . Így a fenti eredmény azt mondja, hogy ha  $\int_a^b g(x)v(x)dx = 0$  csak olyan függvényekre igaz, amelyek deriváltak, akkor arra következtethetek, hogy g konstans, de nem következtethetek arra, hogy a konstans g, ahogy azt a variációszámítás fundamentális lemmájában tehettük.

Bizonyítás. (A 3.20. Lemma bizonyítása) Először is szeretnénk megérteni (jellemezni) a  $C_c^{\infty}((a,b))$  azon részhalmazát, amely a  $C_c^{\infty}((a,b))$  függvényeinek deriváltjaiból áll. Legyen  $v \in C_c^{\infty}((a,b))$ ; ekkor  $v = \psi'$  valamely  $\psi \in C_c^{\infty}((a,b))$ -re, és

$$\int_{a}^{b} v(x) dx = \psi(b) - \psi(a) = 0 - 0 = 0$$

Azt állítjuk, hogy ez a tulajdonság jellemzi a deriváltakat. Pontosabban, ha van egy  $v \in C_c^{\infty}((a,b))$  függvényünk, amelyre

$$\int_{a}^{b} v(x) \, dx = 0,$$

akkor létezik  $\psi \in C_c^\infty((a,b))$  úgy, hogy  $v=\psi'$ . Valóban, a  $\psi(x):=\int_a^x v(t)\,dt$  definícióval  $\psi \in C_c^\infty((a,b))$  és  $\psi'=v$ .

Az ötlet most az, hogy a variációszámítás fundamentális lemmáját használjuk fel ennek az eredménynek a bizonyítására. Vegyünk egy  $\varphi \in C_c^\infty((a,b))$  függvényt. Annak érdekében, hogy ezt a függvényt a problémánkban tesztfüggvényként használhassuk, át kell alakítanunk egy deriválttá, azaz át kell alakítanunk egy olyan függvénnyé, amelynek az [a,b] feletti integrálja nulla. A legegyszerűbb módja ennek a következő függvény megfontolása:

$$\tilde{\varphi}(x) := \varphi(x) - \eta(x) \int_a^b \varphi(t) dt$$

ahol  $\eta \in C_0^\infty([a,b])$  egy olyan rögzített függvény, amelyre  $\int_a^b \eta(t)\,dt=1$ . Most ellenőrizzük, hogy jól jártunk-e el:  $\tilde{\varphi}\in C_c^\infty((a,b))$  és  $\int_a^b \tilde{\varphi}(x)\,dx=0$ . Tehát ezt a függvényt használhatjuk tesztfüggvényként a problémánkban. Ekkor

$$\begin{split} 0 &= \int_a^b g(x) \tilde{\varphi}(x) \, dx \\ &= \int_a^b g(x) \left( \varphi(x) - \eta(x) \int_a^b \varphi(t) \, dt \right) \, dx \\ &= \int_a^b g(x) \varphi(x) \, dx - \left( \int_a^b \varphi(t) \, dt \right) \left( \int_a^b g(x) \eta(x) \, dx \right) \\ &= \int_a^b \left( g(x) - \int_a^b g(t) \eta(t) \, dt \right) \varphi(x) \, dx \end{split}$$

Mivel ez minden  $\varphi \in C_c^{\infty}((a,b))$  esetén igaz, a variációszámítás fundamentális lemmáját használva arra következtetünk, hogy

$$g(x) - \int_a^b g(t)\eta(t) dt = 0.$$

Ez azt mondja, hogy g egy konstans.

Az előző eredmény segít nekünk a (6) kifejezés kezelésében.

**1.25.** Következmény. Legyenek  $g, h : [a, b] \to \mathbb{R}$  folytonos függvények. Tegyük fel, hogy

$$\int_{a}^{b} [g(x)\varphi'(x) + h(x)\varphi(x)] dx = 0$$

minden  $\varphi \in C_c^{\infty}((a,b))$  esetén. Ekkor a g függvény  $C^1([a,b])$  osztályú és g'(x) = h(x).

A fenti eredményt a mi esetünkre alkalmazva a következő szükséges feltételt kapjuk az f és u természetes feltételezései mellett.

**1.26.** Tétel. Legyen  $L:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$  egy  $C^1$  osztályú függvény. Tegyük fel, hogy az  $I:C^1([a,b])\to\mathbb{R}$  funkcionál

$$I(f) := \int_a^b L(x, f(x), f'(x)) dx$$

egy  $f \in C^1([a,b]) \cap \mathcal{A}$  minimummal rendelkezik. Ekkor a  $x \mapsto L_p(x, f(x), f'(x))$  függvény  $C^1$  osztályú, és létezik egy konstans, úgy, hogy a következő egyenlet teljesül:

$$L_p(x, f(x), f'(x)) = c + \int_a^x L_{\xi}(t, f(t), f'(t)) dt$$

minden  $x \in [a, b]$  esetén.

1.27. Megjegyzés. Általában a fenti egyenletet a következő formában írják:

$$\frac{d}{dx}L_p(x, f(x), f'(x)) = L_{\xi}(x, f(x), f'(x))$$

Mindazonáltal mi inkább az integrális formában írjuk, hogy emlékeztessük magunkat arra, hogy a bal oldalt (általában) nem lehet a láncszabállyal kifejteni, mivel csak azt tételezzük fel, hogy L és f  $C^1$  osztályúak.

#### 1.3.2. A Du Bois-Reymond-egyenlet

Mivel szerencsénk volt, és sikerült visszanyerni az Euler–Lagrange-egyenletet (gyengébb formában!) csupán az L és f természetes hipotéziseinek feltételezésével, most azt szeretnénk megérteni, hogy vajon a Du Bois-Reymond-egyenletet is visszanyerhetjük-e ugyanezen gyenge feltételezések mellett.

A tétel bizonyításának ötlete a következő: eddig egy f függvény olyan variációit vizsgáltuk,

amelyek külső variációknak tekinthetők. De mivel függvényekkel dolgozunk, kihasználhatjuk azt a tényt is, hogy a független változót is variálhatjuk.

(A szöveg itt egy komplex levezetést mutat be a független változó variálásával, diffeomorfizmusok segítségével, ami végül a következő tételhez vezet.)

**1.28.** Tétel. Legyen  $L:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$  egy  $C^1$  osztályú függvény. Tegyük fel, hogy az  $I:C^1([a,b])\to\mathbb{R}$  funkcionál

$$I(f) := \int_a^b L(x, f(x), f'(x)) dx$$

egy  $f \in C^1([a, b]) \cap \mathcal{A}$  minimummal rendelkezik. Ekkor létezik egy  $c \in \mathbb{R}$  konstans, úgy, hogy a következő egyenlet teljesül:

$$L(x, f, f') - f' L_p(x, f, f') = c + \int_a^x L_x(t, f(t), f'(t)) dt$$
 (7)

minden  $x \in [a, b]$  esetén.

 ${\bf 1.29.~Megjegyz}$ és. Vegyük észre, hogy az Euler–Lagrange-egyenlet és a Du Bois-Reymond-egyenlet általában különböző egyenletek, mivel az L különböző deriváltjai szerepelnek bennük.

#### 1.3.3. Egy regularitási eredmény

Most tegyük fel magunknak a következő kérdést: tegyük fel, hogy van egy (lokális)  $f \in C^1([a,b])$  minimalizálója I-nek. Lehetséges-e a gyenge Euler-Lagrange-egyenletből, anélkül, hogy expliciten megoldanánk, arra következtetni, hogy f valójában simább? A következő eredmény ad választ.

**1.30.** Tétel. Legyen  $L:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$  egy  $C^2$  osztályú Lagrange függvény. Legyen  $f\in C^1([a,b])$  a gyenge Euler–Lagrange-egyenlet egy megoldása. Tegyük fel, hogy

$$L_{pp}(x, f(x), f'(x)) \neq 0$$

minden  $x \in [a, b]$  esetén. Ekkor  $f \in C^2([a, b])$ .

Bizonyítás. Tudjuk, hogy létezik  $c \in \mathbb{R}$  úgy, hogy a következő egyenlet teljesül:

$$L_p(x, f(x), f'(x)) = g(x) := c + \int_a^x L_{\xi}(t, f(t), f'(t)) dt$$

minden  $x\in [a,b]$  esetén. A g függvény  $C^1$  osztályú. Definiáljuk a  $G(x,p):=L_p(x,f(x),p)-g(x)$  függvényt, amely  $C^1$  osztályú. Tudjuk, hogy G(x,u'(x))=0. Továbbá

$$\frac{\partial G}{\partial p}(x, f'(x)) = L_{pp}(x, f(x), f'(x)) \neq 0$$

minden  $x \in [a,b]$  esetén. Az implicitfüggvény-tétel alkalmazásával azt kapjuk, hogy f'(x) = h(x) valamely  $C^1$  osztályú h függvényre. Tehát  $f \in C^2([a,b])$ .

1.31. Megjegyzés. Lehetséges a fenti tételt a következőképpen kiterjeszteni: tegyük fel, hogy az L Lagrange függvény  $C^k$  osztályú, és továbbra is kielégíti a nem-elfajulási feltételt. Ekkor a gyenge Euler–Lagrange-egyenlet bármely  $C^1$  megoldása valójában  $C^k$  osztályú lesz.

A következő példa mutatja, hogy a nem-elfajulási feltétel valóban szükséges egy ilyen regularitási eredmény eléréséhez.

1.32. Példa. Legyen  $L \in C^2(\mathbb{R})$  egy konvex függvény, amelyre L(p) = |p| a [-1,1] intervallumon, és L injektív  $\mathbb{R} \setminus [-1,1]$ -en. Ekkor az  $\int_0^1 L(f'(x)) \, dx$  funkcionál minimalizálói az f(0) = 0, f(1) = 1 feltételekkel szingularitásokat mutathatnak.

1.33. Megjegyzés. A feltétel, amit az előző tételben megköveteltünk, a  $p \mapsto f(x, f(x), p)$  függvény konvexitásával kapcsolatos a p = f'(x) pontban.

# 1.4. Problémák szabad végpontokkal

Ebben a szakaszban azokat az eseteket vizsgáljuk, amikor a funkcionált a  $C^1([a,b])$  osztályon minimalizáljuk, azaz nincsenek peremfeltételek a végpontokra. Legyen  $f \in C^1([a,b])$  egy lokális minimalizáló. Vegyünk egy tetszőleges  $\varphi \in C^{\infty}([a,b])$  függvényt. Mivel  $f + \varepsilon \varphi$  is a megengedett halmazba tartozik, az első variációnak el kell tűnnie:

$$0 = \int_a^b \left[ L_p(x, f, f')\varphi' + L_{\xi}(x, f, f')\varphi \right] dx.$$

Tegyük fel egyelőre, hogy L és f  $C^2$  osztályúak, így parciálisan integrálhatunk:

$$0 = \int_a^b \left( L_{\xi} - \frac{d}{dx} L_p \right) \varphi(x) dx + \left[ L_p(x, f, f') \varphi(x) \right]_a^b.$$

Ez az egyenlőség minden  $\varphi \in C^{\infty}([a,b])$  esetén fennáll. Mivel a kompakt tartójú függvényekre  $(C_c^{\infty}((a,b)))$  is igaz, a korábbiakból tudjuk, hogy az integrál alatti kifejezésnek nullának kell lennie, tehát az Euler–Lagrange-egyenlet továbbra is érvényes:

$$L_{\xi}(x, f, f') = \frac{d}{dx} L_p(x, f, f').$$

Így a peremtagoknak is el kell tűnniük:

$$L_n(b, f(b), f'(b))\varphi(b) - L_n(a, f(a), f'(a))\varphi(a) = 0$$

minden  $\varphi \in C^{\infty}([a,b])$  esetén. Mivel  $\varphi(a)$  és  $\varphi(b)$  értékeit tetszőlegesen, egymástól függetlenül megválaszthatjuk, a következő lemma adja a következtétést.

**1.34. Lemma.** Ha  $g(b)\varphi(b)-g(a)\varphi(a)=0$  minden  $\varphi\in C^\infty([a,b])$  esetén, akkor g(a)=0 és g(b)=0.

**1.35.** Tétel. Legyen L egy  $C^2$  osztályú Lagrange függvény, és  $f \in C^2([a,b])$  a funkcionál lokális minimalizálója a  $C^1([a,b])$  osztályon. Ekkor f kielégíti az Euler–Lagrange-

egyenletet az [a, b] intervallumon, valamint a következő **természetes peremfeltételeket**:

$$L_p(a, f(a), f'(a)) = 0$$
 és  $L_p(b, f(b), f'(b)) = 0.$  (8)

1.36. Megjegyzés. Ha csak az egyik végpont szabad (pl.  $f(a) = \alpha$  rögzített, de f(b) szabad), akkor a természetes peremfeltétel csak a szabad végpontban, azaz b-ben érvényesül.

# 1.5. Izoperimetrikus problémák

Most olyan minimalizálási problémákat vizsgálunk, amelyek egy integrális kényszert is tartalmaznak: minimalizáljuk

$$I(f) := \int_a^b L(x, f, f') \, dx$$

funkcionált az

$$A := \{ f \in C^1([a,b]) : f(a) = \alpha, f(b) = \beta, \text{ és } G(f) = c \}$$

osztályon, ahol  $c \in \mathbb{R}$  és

$$G(f) := \int_a^b g(x, f, f') \, dx.$$

# 1.5.1. A Lagrange-multiplikátor szabály variációs problémákra

Az ötlet hasonló a véges dimenziós Lagrange-multiplikátoros módszerhez. Ott egy  $I(\mathbf{x})$  függvényt minimalizálunk a  $G(\mathbf{x}) = 0$  feltétel mellett, és a szükséges feltétel az, hogy  $\nabla I(\mathbf{x}) = \lambda \nabla G(\mathbf{x})$  valamely  $\lambda \in \mathbb{R}$  konstansra.

**1.37. Tétel.** (Lagrange-multiplikátor szabály) Legyenek L és g  $C^1$  osztályú függvények. Legyen  $f \in \mathcal{A}$  az I funkcionál lokális minimumhelye a G(f) = c kényszer mellett. Tegyük fel, hogy f nem "degenerált" pontja a kényszernek (azaz létezik  $\psi_0$ , amire  $\delta G(f)[\psi_0] \neq 0$ ). Ekkor létezik egy  $\lambda \in \mathbb{R}$  konstans (a Lagrange-multiplikátor), amelyre f kielégíti a

$$\delta I(f)[\varphi] + \lambda \, \delta G(f)[\varphi] = 0$$

egyenletet minden megengedett  $\varphi$  variációra. Ez ekvivalens azzal, hogy f kielégíti a  $H=I+\lambda G$  funkcionálhoz tartozó Euler–Lagrange-egyenletet, melynek a Lagrange függvénye  $h=L+\lambda g$ .

Bizonyítás. (A bizonyítás vázlata) Vegyünk egy  $\varphi$  variációt, amely általában nem tartja a G(f)=c kényszert. Az ötlet az, hogy ezt a variációt egy másik,  $\psi_0$  irányú (amelyre  $\delta G(f)[\psi_0]\neq 0$ ) kis perturbációval korrigáljuk úgy, hogy az új  $f+\varepsilon\varphi+s(\varepsilon)\psi_0$  függvény már eleget tegyen a kényszernek. Az implicitfüggvény-tétel garantálja egy ilyen  $s(\varepsilon)$  korrekciós függvény létezését. Mivel a korrigált függvényen az I funkcionálnak minimuma van  $\varepsilon=0$ -ban, a deriváltnak el kell tűnnie, ami a tétel állításához vezet.

1.38. Megjegyzés. A módszer a gyakorlatban úgy működik, hogy megoldjuk a  $h = L + \lambda g$  Lagrange függvényhez tartozó Euler-Lagrange-egyenletet. A megoldás,  $f(x; \lambda, c_1, c_2)$ , általában függ a  $\lambda$  multiplikátortól és két integrálási állandótól. Ezt a három konstanst a

# 1.6. Elsőrendű szükséges feltételek általános függvényekre

Ebben a fejezetben az elsőrendű szükséges feltételekhez vezető gondolatokat általánosítjuk  $u:\Omega\to\mathbb{R}^M$  függvények esetére, ahol  $\Omega\subset\mathbb{R}^N$  egy  $C^1$  osztályú peremmel rendelkező nyílt halmaz. Az ilyen függvényekhez

$$L: \Omega \times \mathbb{R}^M \times \mathbb{R}^{M \times N} \to \mathbb{R}$$

típusú Lagrange függvényeket kell tekintenünk. A változókat a következőképpen jelöljük:  $(x, \xi, p) = (x_1, \dots, x_N; \xi^1, \dots, \xi^M; p_1^1, \dots, p_N^M)$ . A deriváltakra a  $p_\alpha^i = \frac{\partial f^i}{\partial x_\alpha}$  jelölést használjuk. Az egyszerűség kedvéért az ismétlődő indexekre az Einstein-féle szummázási konvenciót alkalmazzuk (görög indexek 1-től N-ig, latin indexek 1-től M-ig futnak).

#### 1.6.1. Az Euler-Lagrange-egyenlet

Az egyváltozós esethez hasonlóan, egy f gyenge lokális minimalizálót egy  $\varphi \in C_c^{\infty}(\Omega; \mathbb{R}^M)$  tesztfüggvénnyel perturbálunk. Az  $I(f + \varepsilon \varphi)$  funkcionál  $\varepsilon = 0$  pontbeli első deriváltjának el kell tűnnie:

$$0 = \delta I(f)[\varphi] = \int_{\Omega} \left( \frac{\partial L}{\partial \xi^i} \varphi^i + \frac{\partial L}{\partial p^i_{\alpha}} \frac{\partial \varphi^i}{\partial x_{\alpha}} \right) dx.$$

A második tagra parciális integrálást (Gauss-Osztrogradszki tételt) alkalmazva, és kihasználva, hogy  $\varphi$  a peremen nulla, kapjuk:

$$0 = \int_{\Omega} \left( \frac{\partial L}{\partial \xi^{i}} - \frac{\partial}{\partial x_{\alpha}} \left( \frac{\partial L}{\partial p_{\alpha}^{i}} \right) \right) \varphi^{i}(x) dx.$$

Mivel ez minden  $\varphi^i$  tesztfüggvényre igaz, a variációszámítás (többdimenziós) fundamentális lemmája szerint az integrálandó kifejezésnek el kell tűnnie.

- **1.39.** Lemma. (A variációszámítás fundamentális lemmája) Legyen  $g \in C^0(\Omega)$  olyan, hogy  $\int_{\Omega} g(x) \varphi(x) \, dx = 0$  minden  $\varphi \in C^\infty_c(\Omega)$  esetén. Ekkor  $g \equiv 0$  az  $\Omega$ -n.
- 1.40. Definíció. Az L Lagrange függvényhez tartozó Euler-operátor  $(E_L)$ :

$$E_L(f)_i := \frac{\partial L}{\partial \xi^i} - \sum_{\alpha=1}^N \frac{\partial}{\partial x_\alpha} \left( \frac{\partial L}{\partial p_\alpha^i} \right) \quad (i = 1, \dots, M).$$

Ezt tömörebben is írhatjuk:  $E_L(f) = L_{\xi} - \operatorname{div}(L_p) = 0.$ 

- **1.41.** Tétel. Legyen  $\Omega \subset \mathbb{R}^N$  egy korlátos, nyílt halmaz  $C^1$  peremmel. Tegyük fel, hogy az L Lagrange függvény  $C^2$  osztályú. Ha  $f \in C^2(\Omega; \mathbb{R}^M)$  egy gyenge lokális minimalizálója az I funkcionálnak, akkor kielégíti az  $E_L(f) = 0$  Euler—Lagrange-egyenletrendszert  $\Omega$ -ban.
- 1.42. Példa. (Példák) Dirichlet-funkcionál:  $I(f) = \frac{1}{2} \int_{\Omega} |\nabla f|^2 dx$ . Az Euler–Lagrange-egyenlet a Laplace-egyenlet:  $\Delta f = 0$ . Mivel a Lagrange függvény szigorúan konvex, minden megoldás egyedi minimalizáló.

- Poisson-egyenlet: Ha a funkcionál  $I(f) = \int_{\Omega} (\frac{1}{2} |\nabla f|^2 + hf) dx$ , az egyenlet  $\Delta f = h$ .
- Minimálfelület-egyenlet: Az  $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$  függvény grafikonjának felszínét adó  $A(f) = \int_{\Omega} \sqrt{1 + |\nabla f|^2} dx$  funkcionál Euler-Lagrange-egyenlete:

$$\operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^2}}\right) = 0.$$

• Előírt közepes görbületű felület: Az  $I(f) = \int_{\Omega} (\sqrt{1+|\nabla f|^2} + Hu) \, dx$  funkcionál egyenlete:

$$\operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^2}}\right) = H.$$

# 1.6.2. Természetes peremfeltételek

Ha a minimalizálási feladatban a peremértékek nincsenek rögzítve (azaz a  $C^1(\overline{\Omega}; \mathbb{R}^M)$  téren minimalizálunk), a parciális integrálás egy peremintegrált is eredményez:

$$\int_{\Omega} (E_L(f)_i \varphi^i) \, dx + \int_{\partial \Omega} \left( \frac{\partial L}{\partial p_\alpha^i} \nu_\alpha \right) \varphi^i \, dS = 0.$$

Mivel az Euler–Lagrange-egyenlet az  $\Omega$  belsejében továbbra is érvényes, a peremintegrálnak el kell tűnnie minden  $\varphi$  variációra. A variációszámítás peremre vonatkozó fundamentális lemmája szerint ez csak akkor lehetséges, ha a  $\varphi^i$  együtthatója nulla.

1.43. Tétel. Egy lokális minimalizálónak nemcsak az  $E_L(f) = 0$  egyenletet kell kielégítenie  $\Omega$ -ban, hanem a peremen a következő természetes peremfeltételt is:

$$\sum_{\alpha=1}^N \frac{\partial L}{\partial p^i_\alpha} \nu_\alpha = 0 \quad \text{az } \partial \Omega\text{-n minden } i=1,\dots,M \text{ eset\'en},$$

ahol  $\nu$  a peremre állított külső normálvektor.

- 1.44. Példa. A Dirichlet-funkcionál esetében ez a homogén Neumann-peremfeltételt adja:  $\frac{\partial f}{\partial \nu}=0.$ 
  - A minimálfelület-funkcionálnál a természetes peremfeltétel geometriai jelentése az, hogy a felület merőlegesen metszi a peremet.

#### 1.6.3. Belső variációk és az energia-impulzus tenzor

A független x változó variálásával ("belső variációk") a Du Bois–Reymond-egyenlet általánosítását kapjuk. Az ötlet az, hogy az  $\Omega$  tartományt egy  $\eta$  vektormező mentén "deformáljuk", és a funkcionál stacionaritását vizsgáljuk. A levezetés az **energia-impulzus tenzor** fogalmához vezet.

1.45. Definíció. Az energia-impulzus tenzor egy  $T_{\alpha\beta}$  mátrix, melynek elemei:

$$T_{\alpha\beta} := \frac{\partial L}{\partial p_{\alpha}^{i}} \frac{\partial f^{i}}{\partial x_{\beta}} - L\delta_{\alpha\beta}.$$

**1.46. Tétel.** Ha f egy lokális minimalizáló, akkor teljesül rá a  $\operatorname{div}(T) + L_x = 0$  egyenlet, ami egy megmaradási törvényt fejez ki. (Itt  $L_x$  az L explicit x-függéséből származó parciális derivált.)

# 1.6.4. Izoperimetrikus problémák

Egy G(f) = c integrális kényszer esetén a megoldás egy  $\lambda$  Lagrange-multiplikátor konstanssal módosított Euler-Lagrange egyenletet elégít ki, amely a  $H = L + \lambda G_{lagrangian}$  funkcionálhoz tartozik.

# 1.6.5. Holonóm kényszerek

Ha a kényszer egy  $G(\mathbf{x}, f(\mathbf{x})) = 0$  egyenlettel adott (azaz a megoldásnak egy sokaságon kell lennie), a szükséges feltétel az, hogy az Euler-operátor merőleges legyen a kényszersokaság érintősíkjára. Ez  $\lambda_j(\mathbf{x})$  függvény értékű Lagrange-multiplikátorok megjelenéséhez vezet:

$$E_L(f)_i = \sum_{j=1}^k \lambda_j(\mathbf{x}) \frac{\partial G_j}{\partial \xi^i}.$$

#### 1.7. Másodrendű szükséges feltételek

Eddig csak az első variáció eltűnésével kapcsolatos szükséges feltételeket vizsgáltuk. Most magasabb rendű szükséges feltételeket vizsgáltuk. Három ilyet fogunk látni: a második variáció nemnegativitását, a Legendre–Hadamard-feltételt gyenge lokális minimalizálókra, és a Weierstrassfeltételt erős lokális minimalizálókra. Az elsőt teljes általánosságban bizonyítjuk, míg a másik kettő esetében a görbék, azaz  $f:[a,b]\to\mathbb{R}^M$  függvények esetére szakosodunk. Ennek oka, hogy ebben az esetben a számítások egyszerűbbek, így jobban megragadható a fő gondolat. Minden bizonyítás, technikai részletektől eltekintve, adaptálható az általánosabb esetre.

# 1.7.1. A második variáció nem-negativitása

Ez az első feltétel nem meglepő. A véges dimenziós esetben egy lokális minimumhely egyben kritikus és stabil pont is, azaz  $\nabla g(\mathbf{x}) = 0$  és  $D^2 g(\mathbf{x}) \geq 0$ . Azt állítjuk, hogy ugyanez igaz a variációs integrálokra is.

**1.47. Tétel.** Legyen L egy  $C^2$  osztályú Lagrange függvény, és tegyük fel, hogy  $f\in C^1(\Omega;\mathbb{R}^M)$  egy gyenge lokális minimalizáló. Ekkor

$$\delta^2 I(f)[\varphi] \ge 0$$

minden  $\varphi \in C_c^{\infty}(\Omega; \mathbb{R}^M)$  esetén, ahol

$$\begin{split} \delta^2 I(f)[\varphi] := \int_{\Omega} \left( \varphi^T L_{\xi\xi}(x,f,Df) \varphi + \\ 2 \varphi^T L_{\xi p}(x,f,Df) D \varphi + \\ (D\varphi)^T L_{pp}(x,f,Df) D \varphi \right) dx. \end{split}$$

**Bizonyítás.** Vegyünk egy  $\varphi \in C_c^{\infty}(\Omega; \mathbb{R}^M)$  függvényt, és tekintsük a  $\Phi(\varepsilon) := I(f + \varepsilon \varphi)$  függvényt. Tudjuk, hogy  $\Phi'(0) = 0$  és  $\Phi''(0) \geq 0$ . Az állítás az utóbbi feltételből következik.

# 1.7.2. A Legendre-Hadamard szükséges feltétel

Az előző integrális feltételből szeretnénk egy pontonkénti feltételt levezetni. Kiderül, hogy a második variációban szereplő három tag közül a legfontosabb az  $L_{pp}$ -t tartalmazó.

**1.48. Tétel.** (Legendre–Hadamard-feltétel) Legyen L egy  $C^2$  Lagrange függvény és tegyük fel, hogy u egy gyenge lokális minimalizáló. Ekkor az  $M \times M$ -es  $L_{pp}(x, f(x), Df(x))$  mátrix pozitív szemidefinit, azaz

$$\eta^T L_{pp}(x, f(x), Df(x)) \eta \ge 0$$

minden  $x \in [a, b]$  és  $\eta \in \mathbb{R}^M$  esetén.

**Bizonyítás.** (A bizonyítás vázlata) A bizonyítás egy speciális, "tüskés" tesztfüggvénysorozat konstruálásán alapul. Ezek a függvények egy  $x_0$  pont körül egyre keskenyebb és meredekebb tartományon vesznek fel nem nulla értéket. Behelyettesítve őket a  $\delta^2 I(f)[\varphi_k] \geq 0$  feltételbe és elvégezve a  $k \to \infty$  határátmenetet, a deriváltakat tartalmazó tagok dominálnak, és megkapjuk a pontonkénti feltételt.

#### 1.7.3. A Weierstrass-féle szükséges feltétel

Ha feltesszük, hogy f egy **erős** lokális minimalizáló, egy globálisabb jellegű szükséges feltételt kaphatunk.

1.49. Definíció. (Weierstrass-féle többlet függvény) Az  $\mathcal{E}$  többlet függvény a következőképpen definiált:

$$\mathcal{E}(x,\xi,p,q) := L(x,\xi,q) - L(x,\xi,p) - (q-p)^T L_p(x,\xi,p).$$

Geometriailag az  $\mathcal{E}$  függvény azt méri, hogy a  $p \mapsto L(x, \xi, p)$  függvény mennyivel van a  $p_0$  pontbeli érintője felett. A konvex függvényekre  $\mathcal{E} \geq 0$ .

**1.50. Tétel.** (Weierstrass-feltétel) Ha f egy erős lokális minimalizáló, akkor

$$\mathcal{E}(x, f(x), Df(x), q) \ge 0$$

minden  $x \in [a, b]$  és minden  $q \in \mathbb{R}^{M \times N}$  esetén.

Bizonyítás. (A bizonyítás vázlata) A bizonyítás egy "fűrészfog" alakú variáció konstruálásán alapul. Egy kis intervallumon eltérítjük a megoldást egy lineáris függvénnyel, majd visszavezetjük az eredeti görbéhez. Mivel erős minimumról van szó, a deriváltak tetszőlegesen nagyok lehetnek, így ez a variáció megengedett. A funkcionál változásának nulladrendűnek kell lennie, amiből a határátmenet után az  $\mathcal{E} \geq 0$  feltétel adódik.

# 1.8. Null-Lagrange függvények

Ebben a részben olyan Lagrange függvényeket vizsgálunk, amelyekre  $E_L(f) = 0$  minden f függvényre. Ezek azért érdekesek, mert az Euler–Lagrange-egyenlet nem ad semmilyen információt a minimumhelyekről.

1.51. Definíció. Egy L Lagrange függvény null-lagrange függvénynek nevezünk, ha  $L_L(f) = 0$  minden sima f függvényre.

- 1.52. Állítás. A következő állítások ekvivalensek:
  - (i) L egy null-lagrange függvény.
  - (ii) Az I(f) funkcionál értéke csak a peremértékektől függ.
- (iii) L egy teljes divergencia, azaz létezik egy  $\Phi$  vektormező, amelyre  $L = \operatorname{div}(\Phi)$ .

**Bizonyítás.** (A bizonyítás vázlata) (i)  $\Leftrightarrow$  (ii) az Euler-operátor definíciójából és egy útvonal-integrálos trükkből következik. (iii)  $\Rightarrow$  (i) a Stokes-tétel direkt következménye, mivel egy teljes divergencia integrálja a peremen kiértékelt potenciállal egyenlő.

Az egydimenziós skalár esetben (N=M=1) a null-lagrange függvény szerkezete különösen egyszerű:

1.53. Állítás. Egy  $L(x, \xi, p)$  Lagrange függvény pontosan akkor null-lagrange függvény, ha létezik egy  $S(x, \xi)$  függvény, amelyre

$$L(x,\xi,p) = \frac{\partial S}{\partial x}(x,\xi) + p\frac{\partial S}{\partial \xi}(x,\xi) = \frac{d}{dx}S(x,f(x)).$$

Ez azt jelenti, hogy az I(f) funkcionál egyszerűen  $I(f) = \int_a^b \frac{d}{dx} S(x, f(x)) dx = S(b, f(b)) - S(a, f(a))$ , ami nyilvánvalóan csak a peremértékektől függ.

# 1.9. Elégséges feltételek

Ebben a fejezetben a következő kérdésre keressük a választ: milyen feltételeket kell hozzáadnunk az előző fejezetekben levezetett első- és másodrendű szükséges feltételekhez annak érdekében, hogy gyenge vagy erős lokális minimalitást biztosítsunk?

<sup>&</sup>lt;sup>1</sup>Vegyük észre, hogy az összes bemutatott feltétel nem globális minimalitási tulajdonságokkal foglalkozik, hanem csak lokálisakkal. A globális minimalitási eredmények eléréséhez bonyolultabb érvelések szükségesek.

#### 1.9.1. A második variáció koercitivitása

Az I második variációjának vizsgálatával kezdünk. Tudjuk, hogy a véges dimenziós esetben, ha van egy  $g \in C^2(\mathbb{R}^N)$  függvényünk és egy  $x_0 \in \mathbb{R}^N$  pontunk, amelyre

$$\nabla g(x_0) = 0$$
 és  $D^2 g(x_0) > 0$ ,

akkor  $x_0$  a g függvény izolált lokális minimalizálója. Így feltételezhetnénk, hogy ugyanez igaz a variációszámítás funkcionáljaira is. A válasz azonban nemleges, amint azt a következő, Bolza által bemutatott példa mutatja. A probléma az, hogy egy végtelen dimenziós térben vagyunk. A véges dimenziós esetben, ha egy folytonos függvény pozitív az egységgömbön, akkor az infimuma is pozitív a kompaktság miatt. Végtelen dimenzióban az egységgömb nem kompakt, így ez az érvelés megbukik. Előfordulhat, hogy létezik egy olyan függvénysorozat, amelyen a második variáció nullához tart, anélkül, hogy a sorozat normában konvergálna. A helyes feltétel a **koercitivitás**.

**1.54. Tétel.** Legyen L egy  $C^2$  osztályú Lagrange függvény, és legyen  $f \in C^2((a,b))$  egy kritikus pont, amelyre

$$\inf_{\|\varphi\|_{H^1}=1} \delta^2 I(f)[\varphi] = c > 0,$$

azaz létezik c > 0 konstans, hogy

$$\delta^2 I(f)[\varphi] \ge c \int_a^b ((\varphi'(x))^2 + (\varphi(x))^2) dx = c \|\varphi\|_{H^1}^2$$

minden  $\varphi \in C_c^{\infty}((a,b))$  tesztfüggvényre. Ekkor f egy gyenge lokális minimalizáló. Pontosabban, f egy izolált gyenge lokális minimalizáló.

1.55. Megjegyzés. A fenti érvelés nem alkalmazható erős lokális minimalitás elérésére, mivel valóban szükségünk van a függvény deriváltjának kontrolljára az L másodrendű deriváltjainak becsléséhez.

#### 1.9.2. Jacobi-féle konjugált pontok

Most azt vizsgáljuk, mikor lehetséges a második variáció alulról történő becslése, ahogy azt a tétel hipotézise megköveteli. Ebben a szakaszban csak  $f \in C^2((x_1, x_2))$  függvényekkel foglalkozunk. Rögzítsünk egy f kritikus pontot és definiáljuk:

$$a(x) := L_{pp}(x, f, f'), \quad b(x) := L_{p\xi}(x, f, f'), \quad c(x) := L_{\xi\xi}(x, f, f').$$

A Legendre–Hadamard-feltételből tudjuk, hogy  $a(x) \geq 0$ . Tegyük fel az erős Legendre-feltételt, azaz a(x) > 0. Jacobi és Legendre ötlete az volt, hogy a járulékos Lagrange függvényt (a második variáció integranduszát) teljes négyzetté egészítsék ki egy null-lagrange függvény hozzáadásával. Ez egy w segédfüggvény bevezetéséhez és egy Riccati-típusú egyenlethez vezet. Egy okos helyettesítéssel  $(w = -a\frac{v'}{v} - b)$  ez az egyenlet egy másodrendű lineáris differenciálegyenletre redukálható:

Ez azonban nem meglepő, hiszen, ahogy a véges dimenziós esetben is, ezek a technikák a 'második deriváltak' tulajdonságain alapulnak, amelyek definíciójuk szerint lokális természetűek.

$$(a(x)v'(x))' + (c(x) - b'(x))v(x) = 0. (9)$$

Ezt az egyenletet **Jacobi-egyenletnek** nevezzük. Egy pozitív megoldását **Jacobi-mezőnek**. Ha létezik Jacobi-mező (azaz egy v > 0 megoldás) az  $[x_1, x_2]$  intervallumon, akkor a második variáció alulról becsülhető, és a kritikus pont egy gyenge lokális minimalizáló.

**1.56. Tétel.** Legyen L egy  $C^2$  osztályú Lagrange függvény és  $f \in C^2((x_1, x_2))$  egy kritikus pont. Tegyük fel, hogy létezik egy Jacobi-mező (amely f-hoz tartozik) az  $[x_1, x_2]$  intervallumon. Ekkor f egy szigorú gyenge lokális minimalizáló.

#### 1.9.3. Konjugált pontok és a gyenge lokális minimalitás szükséges feltétele

A Jacobi-egyenlet megoldásainak zérushelyei központi szerepet játszanak.

1.57. Definíció. Egy  $x_0$  ponthoz konjugált pontoknak nevezzük a Jacobi-egyenlet azon megoldásának izolált zérushelyeit, amely  $v(x_0) = 0$  és  $v'(x_0) \neq 0$  feltételekkel indul.

A Sturm-féle oszcillációs tétel segítségével megmutatható, hogy egy lineárisan független megoldáspár zérushelyei "váltogatják" egymást. Ez a konjugált pontok elméletének alapja.

**1.58. Tétel.** Legyen f egy kritikus pont, és tegyük fel, hogy az erős Legendre-feltétel (a(x) > 0) teljesül. Ekkor:

- (i) ha az  $(x_1, x_2]$  intervallumban nincsenek  $x_1$ -hez konjugált pontok, akkor f egy izolált gyenge lokális minimalizáló.
- (ii) ha létezik az  $(x_1, x_2)$  nyílt intervallumban  $x_1$ -hez konjugált pont, akkor f nem gyenge lokális minimalizáló.
- (iii) ha az első konjugált pont éppen  $x_2$ , akkor a helyzet határeset, bármi előfordulhat.

#### 1.9.4. Weierstrass-féle térelmélet (erős minimumhoz)

Eddig a gyenge lokális minimalitáshoz adtunk elégséges feltételeket. Ebben a szakaszban az erős lokális minimalitást biztosító feltételeket vizsgáljuk.

**1.59.** Definíció. Egy extremálisokból álló  $f(x, \alpha)$  sereg egy extremálisok mezejét alkotja, ha a görbesereg egyszeresen fedi le a sík egy tartományát.

Az elmélet lényege, hogy egy  $f_0$  extremálist beágyazunk egy ilyen mezőbe. Ez lehetővé teszi a Hilbert-féle invariáns integrál és a Weierstrass-féle többlet (excess) függvény definiálását.

$$\mathcal{E}(x,\xi,p,q) = L(x,\xi,q) - L(x,\xi,p) - (q-p)L_p(x,\xi,p)$$

A Weierstrass-féle szükséges feltétel szerint egy erős lokális minimumnál  $\mathcal{E} > 0$  kell, hogy legyen.

1.60. Tétel. (Elégséges feltétel erős minimumra) Legyen  $f \in C^2([a,b])$  egy extremális. Tegyük fel, hogy:

- 1. f beágyazható egy extremálisok mezejébe.
- 2. Az erős Legendre-feltétel,  $L_{pp}>0$ , teljesül. 3. A Weierstrass-féle feltétel,  $\mathcal{E}>0$ , teljesül a vizsgált pontok környezetében.

Ekkor f egy izolált erős lokális minimalizáló.

Megmutatható, hogy az extremálisok mezejébe való beágyazhatóság feltétele szorosan kapcsolódik a konjugált pontok hiányához. Így a konjugált pontok hiánya a gyenge minimum, míg az (erősített) Weierstrass-feltétellel kiegészítve az erős minimum elégséges feltételét adja.

# 1.10. Fontosabb Példák

Folytatjuk a példák sorát az Euler-Lagrange-egyenletek kiszámításával és megoldásával az 1.1. szakaszból származó példákra.

#### 1.10.1. A legrövidebb út

Emlékezzünk vissza, hogy a legrövidebb út problémájánál a következő funkcionált szeretnénk minimalizálni:

$$I(f) = \int_0^a g(x, f(x)) \sqrt{1 + f'(x)^2} \, dx,$$

az f(0) = 0 és f(a) = b feltételek mellett. Itt d = 1 és a Lagrange függvény:

$$L(x, z, p) = g(x, z)\sqrt{1 + p^2}.$$

Ezért  $L_z(x,z,p) = g_z(x,z)\sqrt{1+p^2}$  és  $L_p(x,z,p) = g(x,z)(1+p^2)^{-\frac{1}{2}}p$ . Az Euler-Lagrangeegvenlet:

$$g_z(x, f(x))\sqrt{1 + f'(x)^2} - \frac{d}{dx}\left(g(x, f(x))(1 + f'(x)^2)^{-\frac{1}{2}}f'(x)\right) = 0.$$

Ezt általában nehéz megoldani. Abban a speciális esetben, ha g(x,z)=1, akkor  $g_z=0$ , és az egyenlet a következőre egyszerűsödik:

$$\frac{d}{dx}\left(\frac{f'(x)}{\sqrt{1+f'(x)^2}}\right) = 0.$$

A deriváltat elvégezve f''(x) = 0 adódik, tehát a megoldás egy egyenes! Ez megerősíti azt az intuíciónkat, hogy két pont között a legrövidebb út az egyenes.

subsubsection A brachisztochron-probléma A brachisztochron-problémánál a legrövidebb lecsúszási időt keressük, ami a következő funkcionállal írható le:

$$T[y(x)] = \int_{A}^{B} dt = \int_{A}^{B} \frac{ds}{v}.$$

Homogén gravitációs térben, ha a test az origóból indul (y(0) = 0), az energiamegmaradás törvénye szerint  $v = \sqrt{-2gy}$  (a lefelé mutató y tengely miatt). Az  $ds = \sqrt{1 + y'^2} dx$  ívhosszelemmel a funkcionál:

$$T[y] = \frac{1}{\sqrt{2g}} \int_0^a \sqrt{\frac{1 + y'(x)^2}{-y(x)}} dx,$$

az y(0) = 0 és y(a) = b (b < 0) feltételek mellett. Itt a Lagrange függvény

$$L(x, y, y') = \sqrt{\frac{1 + y'^2}{-y}}.$$

Vegyük észre, hogy L nem függ expliciten x-től. Ezért használhatjuk az Euler–Lagrange-egyenlet alternatív, energiamegmaradást kifejező alakját (Beltrami-azonosság:  $y'\frac{\partial L}{\partial y'}-L=$  konstans), amely a következőhöz vezet:

$$y(x)(1+y'(x)^2) = -C_0, (10)$$

ahol  $C_0$  egy pozitív konstans. Ebből több kvalitatív tulajdonság is levezethető:

- A pálya függőlegesen indul,  $\lim_{x\to 0^+} y'(x) = -\infty$ .
- A függvény konvex (y''(x) > 0).
- A pálya szimmetrikus a legmélyebb pontjára.

Az (10) egyenlet egy elsőrendű, szétválasztható differenciálegyenlet y'-re:

$$\frac{dy}{dx} = -\sqrt{\frac{-C_0 - y}{y}}.$$

Az integrál elvégzéséhez célszerű egy új  $\theta$  paramétert bevezetni a következő helyettesítéssel:

$$y(\theta) = -\frac{C_0}{2}(1 - \cos \theta).$$

Ezt visszahelyettesítve és integrálva x-re, a következő paraméteres alakot kapjuk:

$$x(\theta) = \frac{C_0}{2}(\theta - \sin \theta)$$
$$y(\theta) = -\frac{C_0}{2}(1 - \cos \theta)$$

A  $C_0$  konstanst úgy kell megválasztani, hogy a görbe áthaladjon a (a, b) végponton.

A megoldás egy **ciklois** görbe, amelyet egy egyenesen legördülő kerék peremének egy pontja ír le.



1. ábra. Brachisztochron-görbék családja. A megoldás egy lefelé fordított ciklois ív.

Érdekesség, hogy a ciklois egyben **tautochron** görbe is: a súrlódásmentesen lecsúszó testnek ugyanannyi időbe telik elérni a legalsó pontot, bárhonnan is indítjuk a pályán.

#### 1.10.2. Minimálfelületek

A minimálfelület-probléma célja az

$$I(f) = \int_{U} \sqrt{1 + |\nabla f|^2} \, dx$$

funkcionál minimalizálása, az u=g peremfeltétel mellett a  $\partial U$  peremen. Itt  $L_z=0$ , így az Euler–Lagrange-egyenlet a következő:

$$\operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^2}}\right) = 0 \quad U\text{-ban.} \tag{11}$$

Ezt **minimálfelület-egyenletnek** nevezik. Kifejtve egy bonyolult, nemlineáris másodrendű parciális differenciálegyenletet kapunk:

$$(1 + |\nabla f|^2)\Delta f - \sum_{i,j=1}^d f_{x_i x_j} f_{x_i} f_{x_j} = 0.$$

**1.61.** Példafeladat. Mutassuk meg, hogy az  $f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} + b$  sík megoldja a minimálfelület-egyenletet.

**1.62. Példafeladat.** Mutassuk meg, hogy n=2 esetén a Scherk-felület,  $f(x_1,x_2) = \log\left(\frac{\cos(x_1)}{\cos(x_2)}\right)$ , megoldja a minimálfelület-egyenletet a  $(-\pi/2,\pi/2)$ x $(-\pi/2,\pi/2)$  négyzeten.

# 1.10.3. Forgási minimálfelület

Mi a minimális felület alakja két, egymástól 2L távolságra lévő, r sugarú gyűrű között? A szimmetria miatt feltételezhetjük, hogy a felület egy  $f:[-L,L]\to\mathbb{R}$  függvény x-tengely körüli

megforgatásával jön létre. A felszín:

$$I(f) = 2\pi \int_{-L}^{L} f(x) \sqrt{1 + f'(x)^2} \, dx.$$

A Lagrange függvény nem függ expliciten x-től, így a Beltrami-azonosságot használva a következő egyenlethez jutunk:

$$cf(x) = \sqrt{1 + f'(x)^2}.$$

Az egyenlet megoldása egy láncgörbe (katenáris):

$$f(x) = \frac{1}{c}\cosh(cx).$$

Az ebből származó forgásfelület a **katenoid**. Érdekes, hogy nem mindig létezik megoldás: ha a gyűrűk túl messze vannak egymástól a sugarukhoz képest (r/L) arány túl kicsi), a szappanbuborék elpattan, és nem jön létre stabil minimálfelület. Ha létezik megoldás, akkor általában kettő is van; ezek közül a "kevésbé domború" adja a valódi minimumot.

#### 1.10.4. Fénysugár útja változó törésmutatójú közegben

Milyen pályán halad a fénysugár, ha a törésmutató  $n(y) = n_0 \frac{d}{y}$ ? A Fermat-elv szerint a fénysugár azt az utat követi, amelyen az optikai úthossz minimális:

$$S = \int n(\mathbf{r}) ds.$$

Az  $ds = \sqrt{1 + y'^2} dx$  ívhosszelemmel a minimalizálandó funkcionál:

$$S[y] = \int_{x_0}^{x_1} n_0 \frac{d}{y} \sqrt{1 + y'(x)^2} \, dx.$$

A Lagrange függvény  $L(y,y')=n_0\frac{d}{y}\sqrt{1+y'^2}$  nem függ expliciten x-től, így ismét a Beltrami-azonosságot használhatjuk:

$$y'\frac{\partial L}{\partial y'} - L = E$$
 (konstans).

Behelyettesítés és egyszerűsítés után a következőhöz jutunk:

$$-\frac{n_0 d}{y\sqrt{1+y'^2}} = E.$$

Átrendezve y'-re:

$$y'(x) = \frac{dy}{dx} = \pm \sqrt{\frac{n_0^2 d^2}{E^2 y^2} - 1}.$$

Ez egy szétválasztható differenciálegyenlet. A változókat szétválasztva és integrálva:

$$\int dx = \pm \int \frac{y}{\sqrt{\frac{n_0^2 d^2}{E^2} - y^2}} \, dy.$$

Az integrál elvégzése után kapjuk:

$$x + c = \mp \sqrt{\frac{n_0^2 d^2}{E^2} - y^2}.$$

Mindkét oldalt négyzetre emelve és átrendezve az eredmény:

$$(x+c)^2 + y^2 = \frac{n_0^2 d^2}{E^2}.$$

Tehát a fénysugár pályája egy olyan körív, amelynek a középpontja az x-tengelyen helyezkedik el.

#### 1.10.5. Izoperimetrikus egyenlőtlenség

Melyik az a síkbeli zárt görbe, amely adott  $\ell$  kerület mellett a lehető legnagyobb A területet zárja körbe? A sejtés (és a helyes válasz) a kör. Ezt az állítást az **izoperimetrikus egyenlőtlenség** fogalmazza meg:

$$4\pi A < \ell^2$$
,

ahol egyenlőség pontosan akkor áll fenn, ha a görbe egy kör. A bizonyításhoz a Lagrange-multiplikátoros módszert alkalmazzuk funkcionálokra. Maximalizáljuk az A(x,y) területfunkcionált az  $\ell(x,y)=\ell_0$  kerület-kényszer mellett. Az Euler-Lagrange-egyenletek megoldása valóban egy kört ad.

#### 1.10.6. Képhelyreállítás

A zajos képek "megtisztítására" szolgáló egyik sikeres módszer a **teljes variáció (Total Variation, TV)** regularizált minimalizálás. A feladat az

$$I(u) = \int_{U} \left( \frac{1}{2} (f - u)^{2} + \lambda |\nabla u| \right) dx$$

funkcionál minimalizálása az összes  $u:U\to\mathbb{R}$  függvényre, ahol  $U=(0,1)^2$  a képtartomány. Az f függvény az eredeti zajos kép, a minimalizáló u pedig a zajtalanított kép. A Lagrange függvény itt:

$$L(x, z, p) = \frac{1}{2}(f(x) - z)^{2} + \lambda |p|.$$

Ez a Lagrange függvény a  $|p| = |\nabla u|$  tag miatt nem differenciálható p = 0-ban. Ez kisebb problémákat okoz a numerikus szimulációk során, ezért gyakori, hogy a TV funkcionál egy differenciálható approximációját használják. Egy népszerű választás:

$$I_{\varepsilon}(u) = \int_{U} \left( \frac{1}{2} (f - u)^2 + \lambda \sqrt{|\nabla u|^2 + \varepsilon^2} \right) dx,$$

ahol  $\varepsilon > 0$  egy kicsi paraméter. Ha  $\varepsilon = 0$ , visszakapjuk az eredeti teljes variáció funkcionált. Ebben az esetben a Lagrange függvény:

$$L_{\varepsilon}(x,z,p) = \frac{1}{2}(f(x)-z)^2 + \lambda\sqrt{|p|^2 + \varepsilon^2},$$

amely már z-ben és p-ben is differenciálható. Bizonyítható, hogy az  $I_{\varepsilon}$  minimalizálói konvergálnak az I minimalizálóihoz, amint  $\varepsilon \to 0$ , de a bizonyítás nagyon technikai. Az ötlet tehát az, hogy rögzítünk egy kis  $\varepsilon > 0$  értéket, és minimalizáljuk az  $I_{\varepsilon}$  funkcionált. Az Euler–Lagrange-egyenlet kiszámításához vegyük észre, hogy:

$$L_{\varepsilon,z}(x,z,p) = z - f(x)$$
 és  $\nabla_p L_{\varepsilon}(x,z,p) = \frac{\lambda p}{\sqrt{|p|^2 + \varepsilon^2}}$ .

Ezért az Euler–Lagrange-egyenlet a következő:

$$u - \lambda \operatorname{div}\left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + \varepsilon^2}}\right) = f \quad U\text{-ban},$$

homogén Neumann-peremfeltételekkel:  $\frac{\partial u}{\partial \nu} = 0$  a  $\partial U$  peremen. Ezt az egyenletet szinte soha nem lehet analitikusan megoldani, így numerikus approximációkat kell alkalmaznunk.

#### 1.10.7. Képszegmentáció

A képszegmentáció célja egy kép felosztása értelmes régiókra, például egy objektum elválasztása a háttértől. A Chan-Vese modell ezt a feladatot a következő funkcionál minimalizálásaként fogalmazza meg:

$$I(u, a, b) = \int_{U} (H(u)(f - a)^{2} + (1 - H(u))(f - b)^{2} + \lambda \delta(u)|\nabla u|) dx,$$

ahol a minimalizálás az  $u: U \to \mathbb{R}$  "szintfüggvényre" és az a, b valós számokra történik. Itt f a szegmentálandó kép, a és b a két régió (pl. objektum és háttér) átlagos intenzitása, u pedig egy olyan függvény, amelynek nulla-szinthalmaza (u(x) = 0) adja a régiók közötti határt. A H(u) a Heaviside-függvény, a  $\delta(u)$  pedig a Dirac-delta függvény, amely a határvonal hosszát "méri".

A Lagrange függvény:

$$L(x, z, p) = H(z)(f(x) - a)^{2} + (1 - H(z))(f(x) - b)^{2} + \lambda \delta(z)|p|$$

a Heaviside- és delta-függvények miatt nem folytonos, ami numerikus problémákat okoz. A gyakorlatban ezért sima approximációkat használunk. Egy  $\varepsilon>0$  paraméterrel definiáljuk a sima Heaviside-függvényt:

$$H_{\varepsilon}(x) = \frac{1}{2} \left( 1 + \frac{2}{\pi} \arctan\left(\frac{x}{\varepsilon}\right) \right).$$

Ennek deriváltja a sima delta-függvény approximációja:

$$\delta_{\varepsilon}(x) := H'_{\varepsilon}(x) = \frac{1}{\pi} \frac{\varepsilon}{\varepsilon^2 + x^2}.$$

Ezzel a simított funkcionál:

$$I_{\varepsilon}(u) = \int_{U} \left( H_{\varepsilon}(u)(f-a)^{2} + (1 - H_{\varepsilon}(u))(f-b)^{2} + \lambda \delta_{\varepsilon}(u) |\nabla u| \right) dx.$$

Ennek a Lagrange függvénynek már levezethetjük az Euler–Lagrange-egyenletét u-ra (rögzített a, b mellett). A számítások elvégzése után a következő PDE-t kapjuk:

$$\delta_{\varepsilon}(u) \left[ (f-a)^2 - (f-b)^2 \right] - \lambda \operatorname{div} \left( \frac{\nabla u}{|\nabla u|} \right) = 0$$
 U-ban,

homogén Neumann-peremfeltételek mellett  $(\frac{\partial u}{\partial \nu} = 0)$ .

Mivel a minimalizálás u, a és b szerint történik, egy **alternáló minimalizálási algoritmust** alkalmazunk.

1. a és b frissítése: Rögzített u mellett az  $I_{\varepsilon}$  funkcionál minimuma a-ra és b-re analitikusan számolható. Az optimális értékek a két régió súlyozott átlagai:

$$a = \frac{\int_U H_{\varepsilon}(u) f \, dx}{\int_U H_{\varepsilon}(u) \, dx}, \quad b = \frac{\int_U (1 - H_{\varepsilon}(u)) f \, dx}{\int_U (1 - H_{\varepsilon}(u)) \, dx}.$$

2. u frissítése: Rögzített a és b mellett végzünk egy kis lépést az  $I_{\varepsilon}$  funkcionál gradiensének ellentétes irányába. Ez a **gradiens ereszkedés** egy parciális differenciálegyenlet megoldását jelenti:

$$\frac{\partial u}{\partial t} + \delta_{\varepsilon}(u) \left[ (f - a)^2 - (f - b)^2 \right] - \lambda \operatorname{div} \left( \frac{\nabla u}{\sqrt{|\nabla u|^2 + \varepsilon^2}} \right) = 0.$$

(Itt a  $|\nabla u|$  tagot is simítjuk a nevezőben, hogy elkerüljük a nullával való osztást.)

Ezt a két lépést iteratívan ismételjük, amíg a folyamat konvergál. Az algoritmus eredményeként az u függvény nulla-szinthalmaza kirajzolja a szegmentált kép határait.

# Hivatkozások

- [1] Riccardo Cristoferi (2016) Calculus of Variations Lecture Notes.
- [2] Jeff Calder (2024) The Calculus of Variations, University of Minnesota School of Mathematics