Famous Problems in Computer Science

Assoc.Prof.Dr.Tolga Ovatman 27.10.2021

web.itu.edu.tr/ovatman

Tolga Ovatman, PhD

Associate Professor
Department of Computer
Engineering Faculty of
Computer and Informatics
Informatics Istanbul Technical
University (İ.T.Ü.) 34469,
Maslak, Istanbul

- Location
- ☑ Twitter
- Google Scholar
- ORCID

About Tolga Ovatman

Contact Information

• E-mail: ovatman itu edu tr

Room no: BBF 2214

• Landline: +90(212)2857546

My ITU Akademik website.

Research Interests

- Software modeling and analysis. Member of SMART.
- Software performance and cloud computing.
- · Formal methods and model checking.
- Software project management and agile methodologies.

Searching

Challenge

Problems of practical importance usually contains too many possibilities.

15	7	3	25	20	18	13	11	6	17

Can we provide a strategy for guess the number game? [1-N]

- 1. Guess 1
- 2. Increase until the right guess

- 1. Make a random guess
- 2. Get feedback
- 3. Make another random guess

- 1. Guess N/2
- 2. Get feedback
 - 1. If lower, guess [0 N/2]
 - 2. If higher, guess [N/2 N]

Algorithm Performance

How many steps do I need to take for input of size N

3 6 7 11 13 15 17	18 20 25	5
-------------------	----------	---

Sorting

Why important?

It makes lookup or search efficient
It makes merging of sequences efficient.
It enables processing of data in a defined order.

- It is a multi-dimensional problem
- For an n elements it takes around n logn steps.

Sorting

BOGO SORT

```
while not is_sorted(list):
    shuffle(list)
```

STALIN SORT

```
for a in list:
    if out_of_order(list, a):
        list.remove(a)
```

SLEEP SORT

```
parallel for a in list:
    sleep(a)
    print(a)
```

Algorithm Performance

Exponential Growth – Story of chessman

How much?

- Approx. 2x10 wheat grains weigh a gram.
- $\sum_{i=0}^{63} 2^i \cong 2^{64} \cong 2 \times 10^{19}$ grains almost 10^{12} tons
- Earth produced much less than 10⁹ tons a year for the last 20 years.
- Chess is less than $2x10^3$ years old.

Prime Decomposition

$$35 = 7 \times 5$$

$$437 = 19 \times 23$$

Why important?

It is the fundamental technique that lies behind modern cryptography

Primality Test?

- Thought to be as hard as Prime decomposition
- In 2002 AKS test has been developed which does the job in log(n)¹² for an n bit number.

Prime Decomposition

145906768007583323230186939349070635292 401872375357164399581871019873438799005 358938369571402670149802121818086292467 422828157022922076746906543401224889672 472407926969987100581290103199317858753 663710862357656510507883714297115637342 788911463535102712032765166518411726859 837988672111837205085526346618740053

=

1213107243921127189732367153161244042847242763370 1410925634549312301964373042085619324197365322416 8665410170573613652141717117137979742993348710628 29803541

χ

 $1202752425547874888595622079373451212873338780368 \\ 2075433653899983955179850988797899869146900809131 \\ 6111533468170508320960221601463663463918124709871 \\ 05415233$

Challenge

Not all numbers composed of multiplication of small primes

- No known efficient solutions exists
- The most effecient general solution is $e^{f(n)}$ steps for an n bit number.
- An n³ algorithm exists (Shur's) for quantum computers.

Byzantine Generals

Idea?

N generals in a siege communicate unreliably to reach a decision.

How many trusted generals at least may exists to still reach a correct decision?

Why important?

In a distributed system there always exist faulty peers, etiher willingly or unwillingly.

Consensus protocols designed to overcome this problem.

Byzantine Generals

Challenge

Not always possible to know how many peers fail...

- For N faulty peers at least 3N+1 peers needed
- PBFT, Paxos, Raft ...

Knapsack Problem

Why important?

In real world optimization problems, you search for the most valuable combinations

How hard?

 0-1 knapsack problem with integer wieghts for n items requires 2ⁿ steps

That is for 60 items

**8 years !!!

..... for 90 items

**8 billion years !!!

Knapsack Problem

Challenge

It takes very long to try all combinations...

- Can a value of at least V be achieved without exceeding the weight W?
 - No known efficient solutions
- What is the maximum value V?
 - Harder than the decision.

Graph primers

I DITTIES NSFNET T1 Network 1991

Hamiltonian Path

Idea?

Can we stop by all the attractions without visiting an attraction twice?

Why important?

We want to convey information to a network of peers without repetition

Hamiltonian Path

Challenge

Real World graphs are too complicated to try all possible variations...

- No known efficient solutions exists
- The most effecient general solution is 1.657ⁿ steps for *n* cities
- Efficient solutions exist under special conditions

Traveling Salesman

WASHINGTON MONTANA NORTH DAKOTA MINNE ON OCHANGE MONTEGAL MONTEGAL MINNE ON OCHANGE MICHIGAN TOTORIO VI MAINE NO OCHANGE MAIN

Why important?

Frequently confronted in geooptimization problems.

How hard?

• A special case of Ham-Path where we try to obtain the **shortest** path where we end up at the point we start.

$$(n-1)!/2$$

- For 16 cities ~2⁴⁰ tours to check
- There are $\sim 2^{265}$ atoms in the universe.
- There are $\sim 2^{90}$ nanosec. since the big bang.
- There are ~2³⁵⁵ tours to check for **~75** cities

P vs NP

Class P: Easy to solve

- Search for a number in a non-sorted list
- Search for a number in a sorted list

Class NP: Easy to check

- Hamiltonian Path
- Traveling salesman

Boolean Satisfiablity Problem

Idea?

Can we find values that makes a boolean formula TRUE?

Why important?

It is the foundation of computer inference...

- NP problem
- Most NP problems can be transformed to SAT

The Halting Problem

I AVOID DRINKING FOUNTAINS OUTSIDE BATHROOMS BECAUSE I'M AFRAID OF GETTING TRAPPED IN A LOOP.

Idea?

Can we write a program that understands if a program would stop computing with a certain input, or not?

Why important?

It shows that it is impossible to solve some problems, in theory

Thank you very much...

