Precision kaon phenomenology on the lattice

Lattice QCD meets experiment worshop 2007 FermiLab

Andreas Jüttner

Institut für Kernphysik

December 2007

Outline

precision kaon phenomenology:

$$\begin{cases}
f_{K}/f_{\pi} \\
f_{+}^{K\pi}(0)
\end{cases} |V_{us}|$$

- status and outlook (what will be in 5 years time?)
- discussion of systematic errors
- some questions

for discussion of technical details and status and pecularities of simulations of the various fermion formulations cf. Lattice 2006 and Lattice 2007 plenary talks

Matrix elements in lattice QCD

• Correlation functions in terms of **Euclidean** path integral

$$\langle O[\bar{\psi},\psi,A] \rangle = \frac{1}{Z} \int D\bar{\psi} D\psi DA O(\bar{\psi},\psi,A) e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$$

Ground state matrix elements for large Euclidean times

discretisation – space time lattice as regulator ~ π/a
 Statistical sampling of path int. with e.g. QCDOC-computer by UKQCD/RBC

- from first principles:
 - 2+1 flavor (lattice) QCD has only 3 parameters $m_u = m_d$, m_s , g(a) tuning to physical point using hadronic input
 - lattice spacing: $a^{-1} = \frac{m_{\rho}^{\text{exp}}}{am_{V}}$
 - quark masses: $\frac{am_H}{am_V} = \frac{m_H^{\rm exp}}{m_V^{\rm exp}} (H = \pi, K, D, ...)$

After S.Sharpe, Lattice QCD: Present and Future, Orsay, 2004 assume staggered or DWF

statistical error

O(100) measurements for 1% stat. precision but dependent on simulation and observable

discretisation errors

 $O^{\text{latt}} = O^{\text{cont}}(1 + (a\Lambda)^2 + (a\Lambda)^4 + \dots)$ two lattices with a_{\min} and $\sqrt{2}a_{\min}$ for target precision ϵ :

$$a_{\min} pprox (rac{\epsilon}{2})^{1/4} rac{1}{0.5 {
m GeV}}$$

finite volume errors (FVE)

- exponentially suppressed $\propto e^{m_{\pi}L}$
- correction by analytical calculations
- or scaling study:

for target precision ϵ

$$m_{\pi}L \approx -log(\epsilon)$$

ight dynamical quarks

- $-N_f = 2, 2 + 1, 2 + 1 + 1$
 - quark mass is a free parameter
- strange quark physical
- light u & d quarks are expensive: currently only $m_{u,d}/m_s \gtrsim 1/10$ physical $m_{u,d}/m_s \approx 1/24$
- extrapolate using χ PT
- naively

$$\mathsf{O}^{\mathsf{latt}} = \mathsf{O}^{\mathsf{phys}} \left(1 + c_1 \left(rac{m_\pi}{m_
ho}
ight)^2 + c_2 \left(rac{m_\pi}{m_
ho}
ight)^4 + \ldots
ight)$$
 -

for two lattices with

 $\left(m_{\pi}/m_{\rho}\right)_{\min}$ and $\sqrt{2}\left(m_{\pi}/m_{\rho}\right)_{\min}$ for target precision ϵ :

$$\left(\frac{m_{\pi}}{m_{
ho}}\right)_{\min} pprox \left(\frac{\epsilon}{2}\right)^{1/4}$$

enormalization

After S.Sharpe, Lattice QCD: Present and Future, Orsay, 2004 assume staggered or DWF

statistical error

O(100) measurements for 1% stat. precision but dependent on simulation and observable

discretisation errors

$$O^{\text{latt}} = O^{\text{cont}}(1 + (a\Lambda)^2 + (a\Lambda)^4 + \dots)$$
 two lattices with a_{\min} and $\sqrt{2}a_{\min}$ for target precision ϵ :

$$a_{\min} pprox (\frac{\epsilon}{2})^{1/4} \frac{1}{0.5 {
m GeV}}$$

finite volume errors (FVE)

- exponentially suppressed $\propto e^{m_{\pi}L}$
- correction by analytical calculations
- or scaling study

for target precision ϵ

$$m_{\pi}L \approx -log(\epsilon)$$

ight dynamical quarks

- $-N_f = 2,2+1,2+1+1$
 - quark mass is a free parameter
- strange quark physical
- light u & d quarks are expensive: currently only $m_{u,d}/m_{\rm S} \gtrsim 1/10$ physical $m_{u,d}/m_{\rm S} \approx 1/24$
- extrapolate using χ PT
- naively

$$O^{ ext{latt}} = O^{ ext{phys}} \left(1 + c_1 \left(rac{m_\pi}{m_
ho}
ight)^2 + c_2 \left(rac{m_\pi}{m_
ho}
ight)^4 + \ldots
ight)$$

for two lattices with

 $(m_{\pi}/m_{\rho})_{\min}$ and $\sqrt{2}(m_{\pi}/m_{\rho})_{\min}$ for target precision ϵ :

$$\left(\frac{m_{\pi}}{m_{\rho}}\right)_{\min} \approx \left(\frac{\epsilon}{2}\right)^{1/4}$$

enormalization

After S.Sharpe, Lattice QCD: Present and Future, Orsay, 2004 assume staggered or DWF

statistical error

O(100) measurements for 1% stat. precision but dependent on simulation and observable

discretisation errors

$$O^{\text{latt}} = O^{\text{cont}}(1 + (a\Lambda)^2 + (a\Lambda)^4 + \dots)$$

two lattices with a_{\min} and $\sqrt{2}a_{\min}$
for target precision ϵ :

$$a_{\min} pprox (\frac{\epsilon}{2})^{1/4} \frac{1}{0.5 {
m GeV}}$$

finite volume errors (FVE)

- exponentially suppressed $\propto e^{m_{\pi}L}$,
- correction by analytical calculations
- or scaling study:
 for target precision ε:

$$m_{\pi}L \approx -log(\epsilon)$$

ight dynamical quarks

- $-N_f = 2, 2 + 1, 2 + 1 + 1$
- quark mass is a free parameter
- strange quark physical
- light u & d quarks are expensive: currently only $m_{u,d}/m_{\rm s} \gtrsim 1/10$ physical $m_{u,d}/m_{\rm s} \approx 1/24$
- extrapolate using χ PT
- naively

Olatt = Ophys
$$\left(1 + c_1 \left(\frac{m_{\pi}}{m_{\rho}}\right)^2 + c_2 \left(\frac{m_{\pi}}{m_{\rho}}\right)^4 + \dots\right)$$

for two lattices with

 $\left(m_{\pi}/m_{\rho}\right)_{\min}$ and $\sqrt{2}\left(m_{\pi}/m_{\rho}\right)_{\min}$ for target precision ϵ :

$$\left(\frac{m_{\pi}}{m_{\rho}}\right)_{\min} \approx \left(\frac{\epsilon}{2}\right)^{1/4}$$

enormalization

After S.Sharpe, Lattice QCD: Present and Future, Orsay, 2004 assume staggered or DWF

statistical error

O(100) measurements for 1% stat. precision but dependent on simulation and observable

discretisation errors

$$O^{\text{latt}} = O^{\text{cont}}(1 + (a\Lambda)^2 + (a\Lambda)^4 + \dots)$$
 two lattices with a_{\min} and $\sqrt{2}a_{\min}$ for target precision ϵ :

$$a_{\min} pprox \left(\frac{\epsilon}{2}\right)^{1/4} \frac{1}{0.5 \text{GeV}}$$

finite volume errors (FVE)

- exponentially suppressed ∝ e^{m_πL},
- correction by analytical calculations
- or scaling study:
 for target precision ε:

$$m_{\pi}L \approx -log(\epsilon)$$

light dynamical quarks

- $-N_f = 2,2+1,2+1+1$
- quark mass is a free parameter
- strange quark physical
- light u & d quarks are expensive: currently only $m_{u,d}/m_{\rm s} \gtrsim 1/10$ physical $m_{u,d}/m_{\rm s} \approx 1/24$
- extrapolate using χPT
- naively

$${\sf O}^{\sf latt} = {\sf O}^{\sf phys} \left(1 + c_1 \left(rac{m_\pi}{m_
ho}
ight)^2 + c_2 \left(rac{m_\pi}{m_
ho}
ight)^4 + \ldots
ight)$$
 for two lattices with

 $\left(m_{\pi}/m_{\rho}\right)_{\min}$ and $\sqrt{2}\left(m_{\pi}/m_{\rho}\right)_{\min}$ for target precision ϵ :

$$\left(\frac{m_{\pi}}{m_{\rho}}\right)_{\min} \approx \left(\frac{\epsilon}{2}\right)^{1/4}$$

renormalization perturabtive or non-perturabtive

After S.Sharpe, Lattice QCD: Present and Future, Orsay, 2004 assume staggered or DWF

statistical error

O(100) measurements for 1% stat. precision but dependent on simulation and observable

discretisation errors

$$O^{\text{latt}} = O^{\text{cont}}(1 + (a\Lambda)^2 + (a\Lambda)^4 + ...)$$

two lattices with a_{\min} and $\sqrt{2}a_{\min}$
for target precision ϵ :

$$a_{\min} pprox \left(\frac{\epsilon}{2}\right)^{1/4} \frac{1}{0.5 \text{GeV}}$$

finite volume errors (FVE)

- exponentially suppressed ∝ e^{m_πL},
- correction by analytical calculations
- or scaling study:
 for target precision ε:

$$m_{\pi}L \approx -log(\epsilon)$$

light dynamical quarks

- $-N_f = 2,2+1,2+1+1$
- quark mass is a free parameter
- strange quark physical
- light u & d quarks are expensive: currently only $m_{u,d}/m_{\rm s} \gtrsim 1/10$ physical $m_{u,d}/m_{\rm s} \approx 1/24$
- extrapolate using χ PT
- naively

$$O^{\text{latt}} = O^{\text{phys}} \left(1 + c_1 \left(\frac{m_{\pi}}{m_{\rho}} \right)^2 + c_2 \left(\frac{m_{\pi}}{m_{\rho}} \right)^4 + \ldots \right)$$
 for two lattices with

 $\left(m_\pi/m_
ho\right)_{
m min}$ and $\sqrt{2}\left(m_\pi/m_
ho\right)_{
m min}$

 $(m_{\pi}/m_{\rho})_{\min}$ and $\sqrt{2}(m_{\pi}/m_{\rho})_{\min}$ for target precision ϵ :

$$\left(\frac{m_{\pi}}{m_{\rho}}\right)_{\min} \approx \left(\frac{\epsilon}{2}\right)^{1/4}$$

renormalization

Example

Current simulations: e.g. UKQCD+RBC domain wall fermions:

			ϵ
cut-off	а	0.11fm	1.4%
unphysical light quark mass	m_{π}	330MeV	2.7%
finite volume	L	2.7fm	1.0%

• In 2004 Marciano first used the lattice determination of f_K/f_π to determine $|V_{us}|$: (Marciano, hep-ph/0402299)

$$\frac{\Gamma(K \to \mu \bar{\nu}_{\mu}(\gamma))}{\Gamma(\pi \to \mu \bar{\nu}_{\mu}(\gamma))} = \frac{|V_{us}|^2}{|V_{ud}|^2} \left(\frac{f_K}{f_\pi}\right)^2 \frac{m_K (1 - m_{\mu}^2/m_K^2)}{m_\pi (1 - m_{\mu}^2/m_\pi^2)} \times 0.9930(35)$$

experimental values for decay rates from KLOE 2006

$$\Gamma(K \to \mu \bar{\nu}_{\mu}(\gamma)) = 2.528(2) \times 10^{-14} \text{MeV}$$

 $\Gamma(\pi \to \mu \bar{\nu}_{\mu}(\gamma)) = 3.372(9) \times 10^{-14} \text{MeV}$

yields

$$\frac{|V_{us}|^2}{|V_{ud}|^2}\frac{f_K^2}{I_{\pi}^2} = 0.07602(23)_{exp}(27)_{rad} \qquad \delta = 2 \times 0.23\%$$

use

$$|V_{ud}| = 0.97372(10)_{\text{exp}}(15)_{\text{nucl}}(19)_{\text{RC}}$$
 $\delta < 1\%$

from nuclear Beta decay (Marciano, Kaon 2007)

and f_K/f_{π} from the lattice

Recent (2006/2007) dynamical lattice computations of f_K/f_π

- many different groups (QCDSF+UKQCD, ETM, MILC, HPQCD+UKQCD, NPLQCD, RBC+UKQCD, PACS-CS)
- many different formulations (impr. Wilson, tmQCD, staggered, DWF, overlap)
- 2 or 2+1 flavour
- lattice spacing a = 0.06 0.13fm, sometimes scaling study otherwise crude estimate of cut-off effects
- lightest meson masses $m_{\pi}^{\text{min}} = 210 330 \text{MeV}$
- lattice volume $m_{\pi}L = 3 5$

Summary $f_K/f_\pi \rightarrow |V_{us}|$

Weighted average, error as for MILC-result:

$$f_{K}/f_{\pi} = 1.198(10) \qquad \delta = (0.3\%)^{\text{stat}} \underbrace{(0.8\%)^{\text{syst}}}_{\text{FVE, a, }\chi}$$

$$|V_{us}| = 0.2241 \quad \frac{(05)^{\Gamma}}{(0.2\%)^{\Gamma}} \quad \frac{(19)^{f_{K}/f_{\pi}}}{(0.8\%)^{f_{K}/f_{\pi}}} \quad \frac{(01)^{V_{ud}}}{(0.03\%)^{V_{ud}}}$$

- reliability of analytical finite volume corrections is crucial
- \(\chi\)PT is now being tested
 - up to which quark mass does it work and at which order?
 - is χPT improvable order by order?
 - compare $SU(2) \times SU(2)$ with $SU(3) \times SU(3)$
- most collaborations are still generating configurations and will reduce their errors in the near future

$$\Gamma(K\to\pi I\nu) = C_K^2 \frac{G_F^2 m_K^5}{192\pi^3} \frac{S_{EW} I [1 + 2\Delta_{SU(2)} + 2\Delta_{EM}] \times |V_{us} f_+^{K^0\pi^-}(0)|^2}{}$$

- S_{EW} short distance EW corrections
- I phase space integral (via FF shape from experiment)
- Δ_{SU(2)} iso-spin breaking corrections
- Δ_{EM} long distance EM corrections

Table by Moulson hep-ex/0703013 (KLOE, KTeV, ISTRA+, NA48)

			Approx contrib to % err			
Mode	$ V_{us}f_+^{K\pi}(0) $	% err	BR	τ	Δ	1
K _L e3	0.21639(55)	0.25	0.09	0.19	0.10	0.09
$K_L \mu 3$	0.21649(68)	0.31	0.10	0.18	0.15	0.17
K _S e3	0.21555(142)	0.66	0.65	0.03	0.10	0.09
K [±] e3	0.21844(101)	0.46	0.38	0.11	0.24	0.09
Κ ± μ3	0.21809(125)	0.57	0.31	0.10	0.45	0.17
average	0.21673(46)	0.21				

 \rightarrow sub-1%-precision for $f_{+}^{K\pi}(0)$ required

$|V_{us}|$ from $K_{/3}$: Simulations

Recent computations of $f_{+}^{K\pi}(0)$

Ref.		$f_{+}(0)$	% err	m_{π} [GeV]	a [fm] N _f
Leutwyler & Roos	Z.Phys.C25:91,1984	0.961(8)	0.8		
Bijnens & Talvera	hep-ph/0303103	0.978(10)	1.0		
Cirigliano et al.	hep-ph/0503108	0.984(12)	1.2		
Jamin et al.	hep-ph/0401080	0.974(11)	1.1		
Becirevic et al.	hep-ph/0403217	0.960(5)(7)	0.9	≳ 0.5	0.07 0
HPQCD,MILC	hep-lat/0412044	0.962(6)(9)	1.1	‡	‡ 2 + 1
JLQCD	hep-lat/0510068	0.967(6)	0.6	$\gtrsim 0.55$	0.09 2
RBC	hep-ph/0607162	0.968(9)(6)	1.1	≥ 0.49	0.12 2
RBC+UKQCD	arXiv:0710.5136	0.964(5)	0.5	$\gtrsim 0.33$	0.114 2+1
UKQCD/QCDSF	arXiv:0710.2100	0.965(?)		$\gtrsim 0.5$	0.08 2
ETM ???			hopeful	ly soon	
MILC ???			hopeful	ly soon	

$|V_{us}|$ from $K_{/3}$: Simulations

Recent computations of $f_{+}^{K\pi}(0)$

Ref.		$f_{+}(0)$	% err	m_{π} [GeV]	a [fm] N _f
Leutwyler & Roos	s Z.Phys.C25:91,1984	0.961(8)	0.8		
Bijnens & Talvera	hep-ph/0303103	0.978(10)	1.0		
Cirigliano et al.	hep-ph/0503108	0.984(12)	1.2		
Jamin et al.	hep-ph/0401080	0.974(11)	1.1		
Becirevic et al.	hep-ph/0403217	0.960(5)(7)	0.9	≥ 0.5	0.07 0
		0.962(6)(9)	1.1	‡	‡ 2+1
		0.967(6)	0.6	$\gtrsim 0.55$	0.09 2
			1.1	≥ 0.49	0.12 2
RBC+UKQCD	arXiv:0710.5136	0.964(5)	0.5	$\gtrsim 0.33$	0.114 2+1
		0.965(?)		$\gtrsim 0.5$	0.08 2
ETM ??? MILC ???		hopefully soon hopefully soon			

$K_{/3}$ -decay - 4 steps on the lattice

$$\langle \pi(p_{\pi})|V_{\mu}(0)|K(p_{K})\rangle = f_{+}^{K\pi}(q^{2})(p_{K}+p_{\pi})_{\mu} + f_{-}^{K\pi}(q^{2})(p_{K}-p_{\pi})_{\mu}, \quad q_{\mu} = (p_{K}-p_{\pi})_{\mu}$$

Becirevic et al.:

- 1) compute $f_0^{K\pi}(q_{\max}^2)$ very precise
- 2) compute $f_0^{K\pi}(q^2)$ for Kaon and pion with lattice Fourier momenta
- 3) interpolate $f_0^{K\pi}(q^2)$ to $q^2=0$
- 4) extrapolate in the quark mass to the physical point

$$f_+^{K\pi}(0) = 1 + f_2 + f_4 + \dots$$
 we compute Gasser&Leutwyler, 1984

$$\Delta f = f_+^K(0, m_\pi, m_K) - (1 + f_2(m_\pi, m_K))$$

 \longrightarrow need < 20% precision for Δf

$|V_{us}|$ from K_{l3} decay - uncertainties and improvements

Uncertainties (e.g. *RBC+UKQCD hep-lat/0702026*)
$$f_{+}^{K\pi}(0) = 0.9644(33)^{\text{stat}}(34)^{q^2,\chi}(14)^a$$

- stat.: all-to-all propagators, larger stats.
- q² interpol.: due to Fourier momenta on the lattice → twisted boundary conditions (Boyle et al. hep-lat/0703005)
- χ extrapol.: simulate at lighter quark masses and new results in χPT -Bijnens has NNLO-expressions but tedious to evaluate
- cut-off: scaling study

V_{us} from K_{l3} decay - comparison

Best value currently RBC+UKQCD:

$$f_{+}^{K\pi}(0) = 0.9644(33)^{\text{stat}}(34)^{q^{2},\chi}(14)^{a}$$

$$|V_{us}^{K_{I3}}| = 0.2247 \frac{(5)^{\Gamma}}{(0.2\%)^{\Gamma}} \frac{(8)^{\text{stat}}}{(0.3\%)^{\text{stat}}} \frac{(8)^{q^{2},\chi}}{(0.4\%)^{q^{2},\chi}} \frac{(3)^{a}}{(0.1)^{a\%}}$$

Summary $|V_{us}|$

- nice agreement between two independent lattice methods
- in many cases Leutwyler & Roos (1984!) is still used to determine |V_{us}| (cf. PDG) this will hopefully change as more independent lattice result build up confidence

First row unitarity

slight tension with unitarity with Marciano's |V_{ud}| hep-ph/0510099

Plot inspired by FlaviaNet Kaon working group (cf. Moulson hep-ex/0703013)

First row unitarity

less tension with Unitarity with Towner and Hardy's |V_{ud}| arXiv:0710.3181

Plot inspired by FlaviaNet Kaon working group (cf. Moulson hep-ex/0703013)

CP-violation in kaon decays: neutral kaon mixing ($\Delta S = 2$)

B_K - $\Delta S = 2$ neutral Kaon mixing

$$rac{\langle \overline{K^0} | Q^{\Delta S=2}(\mu) | K^0
angle}{rac{8}{3} |\langle 0 | A_4 | K^0
angle|^2}; \qquad O^{\Delta S=2} = O_{VV+AA} - O_{VA+AV}$$

• currently precision for $\hat{B}_K \leftrightarrow$ lattice chiral symmetry (domain wall, overlap fermions)

$$\mathsf{O}^{\Delta S=2} = Z_{\mathsf{VV}+\mathsf{AA}}(g_0, a\mu) O_{\mathsf{VV}+\mathsf{AA}}(g_0)$$

otherwise operator mixing, e.g. for Wilson fermions

$$\mathsf{O}^{\Delta \mathsf{S}=2} = Z_{\mathsf{VV}+\mathsf{AA}}(g_0,a\mu) igg(\mathsf{O}_{\mathsf{VV}+\mathsf{AA}}(g_0) + \sum\limits_{i=1}^4 \Delta_i(g_0) \, \mathsf{O}_i(g_0) igg)$$

and similarly for staggered fermions which blows up error

- improvement through non-perturbative renormalization
- new development mixed action: valence and sea with domain wall and staggered fermions, respectively (Aubin, Laiho, van der Water) analysis under way

B_K - $\Delta S = 2$ neutral Kaon mixing

- recent activities by (HPQCD+UKQCD, Bae-Kim-Lee-Sharpe, RBC+UKQCD JLQCD, Aubin-Laiho-van de Water)
- staggered, DWF and overlap or Domain Wall on staggered sea with 2+1 or 2 dynamical quark flavors
- a ≈ 0.1fm help from guenched studies
- perturbative or non-perturbative matching (preferred)
- NLO χ PT ($SU(2) \times SU(2)$ or $SU(3) \times SU(3)$)

B_K - $\Delta S = 2$ neutral Kaon mixing

Current best estimate by RBC+UKQCD:

$$\hat{B}_{K} = 0.720(13)$$
 (37) (37) (1%)FVE(4%) $^{a}(2\%)^{x,PT}$

Conclusion

Hand-wavy, crude, hopefully conservative estimate for simulation in five years time: E.g. domain wall fermions assuming 100-1000TFlop/s computer:

			ϵ
cut-off	а	0.06fm	0.1%
unphysical light quark mass	m_{π}	200MeV	1.0%
finite volume	L	5fm	0.7%

- f_K/f_π closer to the chiral limit
 - detailed study of finite volume effects
 - currently dominated by staggered fermions which is already very far
 - precision now 0.8%; then $\lesssim 0.5\%$
- $f_{+}^{K\pi}(0)$ precision can easily be increased by larger statistics/smarter methods (which are available)
 - systematic due to q^2 interpolation can be removed
 - χPT at NNLO is lacking
 - precision now 0.5%; then $\lesssim 0.2\%$
 - \hat{B}_K NPR mandatory
 - precision now 5.4% then ≤ 3.5%

Not the only one...

V. Lubicz at SuperB IV, November 2006

Estimates of error for 2015

Hadronic matrix element	Current lattice error	6 TFlop Year	60 TFlop Year	1-10 PFlop Year
$f_{_+}^{\mathrm{K}\pi}(0)$	0.9% (22% on 1-f ₊)	0.7% (17% on 1-f ₊)	0.4% (10% on 1-f ₊)	< 0.1% (2.4% on 1-f ₊)
$\hat{\mathtt{B}}_{\mathtt{K}}$	11%	5%	3%	1%

Outlook

• status: predictions for $N_f = 2, 2 + 1$ QCD for

	quantity		
$f_{+}^{K\pi}(0)$	=	0.964(5)	0.5%
$f_{\mathcal{K}}/f_{\pi}$	=	1.198(10)	0.8%
Êκ	=	0.720(39)	5.4%

- What will improve these results in the next five years?:
 - 100-1000TFlop/s computer
 - larger volume
 - smaller lattice spacing
 - lighter dynamical quarks $\rightarrow m_{\pi} \lesssim 200 \text{MeV}$
 - tests of chiral perturbation theory
- other:
 - ε'/ε
 - Matrix elements for $K \to \pi I^+ I^-$ and $K \to \pi \nu \bar{\nu}$?
 - lepton universality $K \rightarrow \mu \nu_{\mu}$ vs. $K \rightarrow e \nu_{e}$?

BACKUP

$$\Delta S = 1 \ (K \rightarrow \pi \pi|_{I=0,2})$$

The Holy Grail

$\Delta S = 1$

$$\langle \pi \pi(I)| - i\mathcal{H}|K^0\rangle = A_I e^{i\delta_I}$$

$$u, d, c, s \quad \mathcal{H}_c^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{\sigma=\pm} \left\{ k_1^{\sigma}(\mu) O_1^{\sigma}(\mu) + k_2^{\sigma}(\mu) O_2^{\sigma}(\mu) \right\}$$

$$u, d, s \qquad \mathcal{H}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

- O_{+}^{σ} , $O_{1,2}$ current-current
 - O_{3.4.5.6} QCD penguins
 - $O_{7,8,9,10}$ **EW Penguins**
- no penguins in $\mathcal{H}_{c}^{\Delta S=1}$
- challenge is to compute $\langle \pi \pi(I) | i \mathcal{H} | K^0 \rangle = A_I e^{i\delta_I}$ (Maiani, Testa Phys.Lett.B245:585-590.1990)
- both Hamiltonians are being investigated on the lattice:
 - influence of charm quark on $\Delta I = \frac{1}{2} \rightarrow \text{study } \mathcal{H}_c^{\Delta S=1}$

(Giusti et al. hep-lat/0407007) Hernandez plenary Lattice 2006) and talk Lattice 2007)

- phenomenological calculations \rightarrow study $\mathcal{H}^{\Delta S=1}$