Genel Kimya 101/4

Dr. Öğr. Üyesi Zeynep TUTUMLU

e-mail: zobali@etu.edu.tr

Ofis: z-70

TermoKimya (Thermochemistry) Kimyasal tepkimeler sonucu oluşan ısı değişimlerini inceleyen çalışma alanı

<u>ENERJİ</u> Kinetik enerji, Potansiyel enerji

- Enerji:İş yapabilme yada ısı üretme kapasitesidir.
- ❖ Kinetik enerji: Hareket eden cisimler tarafından üretilen enerjidir (K.E:1/2*mV²)
- Potansiyel enerji:Bir cismin konumundan kaynaklanan enerjidir.
- →Termal enerji, Kimyasal enerji, ve diğer enerji çeşitleri kinetik ve/veya potansiyel enerjinin bir türüdür denilebilir.

Termodinamiğin 1. Yasası: Enerjinin korunumu

Evrendeki enerjinin miktarı sabittir. Enerji sürekli biçim değiştirir. Enerji bir biçimden başka bir biçime dönüştüğü için, yaratılamaz yada yok edilemez.

Sıcaklık ve İsi

- Sıcaklık bir cismin içindeki molekül yada atomların hareketlerinin miktarını tarif eder. Eğer bu parçacıklar çok hızlı bir şekilde hareket ediyorsa cisim yüksek sıcaklığa sahiptir. Sıcaklık, enerji değildir!
- Isi ise bir cisimden başka bir cisme transfer olan enerji miktarıdır. Diğer bir deyişle, sıcaklık farkından ileri gelen enerji alışverişidir.

Çevre ve Sistem

- Sistem: bizim üzerindeki değişiklikleri izleyeceğimiz evrenin bir parçası.
- Sistemi tarif ettiğimiz noktada, sistem dışında kalan her şey Çevre dir

Farklı Sistemler

Su buhari

Açık Sistem

Kütle transferi var Isı transferi var

Kapalı Sistem

Isı transferi var Kütle transferi yok Yalıtılmış Sistem

Kütle ve ısı transferine izin verilmiyor

Ekzotermik ve Endotermik Süreçler

$$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(s)} + enerji$$
Sistemden Çevreye Enerji Transferi

Ekzotermik(-)

Ekzotermik ve Endotermik Süreçler

Bir sistemin ilk ve son durumu ve durum fonksiyonları

- Sistemin belirli bir hali için belli bir değeri olan özelliğe "durum fonksiyonu" denir.
- Bir sistem içindeki değişiklikler sistemin sıcaklığı, basıncı, hacmi, enerjisi, kompozisyonu ve bunun gibi değerlerle gözlemlenir. Bu değerlerdeki değişiklikler sistemin durumunu gösterir.
- Sistemin bir durumdan diğer duruma geçmesi önemlidir ama nasıl geçtiği durum fonksiyonlarına dahil edilmez. Durum fonksiyonları sadece ilk ve son durumu tanımlar. Ör:İç enerji, yoğunluk,entalpi

Enerji durum fonksiyonlarından biridir; Buradaki erişilen potansiyel enerji yoldan bağımsızdır.

<u>İlk durum</u>

İç Enerji (U) (Internal Energy)

- A Bir sistemin (potansiyel ve kinetik) enerjilerinin toplamıdır. Moleküllerin öteleme kinetik enerjilerini, dönme ve titreşim enerjilerini, bağlarda depo edilmiş kimyasal enerjiyi, moleküller arası etkileşim enerjilerini ve atomlardaki elektronlara bağlı enerjiyi kapsar.
- İç enerji (U) bir durum fonksiyonudur; İç enerjideki değişim, son durumdaki enerjiden ilk durumdaki enerjinin çıkarılması ile bulunur

$$\Delta U = U_{\text{son}} - U_{\text{ilk}}$$

TOBB Ekonomi ve Teknoloji Üniversitesi

Isı ve İş

- Isı "q" ile gösterilir ve sistem ile çevre arasında iki yönde transfer olan enerjidir.
- Enerji transferinin diğer bütün biçimleri (mekanik, elektrik vb.) ise bir çeşit iş'e dahil olur. İş "w" ile gösterilir.
- Dolayısıyla enerji transferi ısıyla ve/veya iş ile yapılır.
- Bunlardan yola çıkarak, bir sistemin iç enerjisindeki değişiklik aşağıdaki gibi ifade edilebilir:

$$\Delta U = q + w$$

Sadece ısı ile enerji transferi yapılırsa:

Sistem enerjiyi ısı ile transfer eder ama iş yapmaz.

$$\Delta U = q + w \qquad w = 0$$

$$\Delta U = q + 0 = q$$

Sadece ısı ile enerji transferinde iki olasılık vardır:

1. Sistemden ısı atımı: Sistemin enerjisi ısı atımı ile azalır.

$$q < 0$$

$$\Delta U < 0$$

2. Sistemin ısı kazanması: Sistemin enerjisi artar.

$$q > 0$$

$$\Delta U > 0$$

Sadece ısı ile enerji transferi

Sadece iş ile enerji transferi yapılırsa:

Sistem enerjiyi iş ile transfer eder ama ısı transferi olmaz.

$$\Delta U = q + w \qquad q = 0$$
$$\Delta U = 0 + w = w$$

Sadece iş ile enerji transferinde iki olasılık vardır:

1. <u>Sistemin iş yapması</u>: Çinko metalinin hidroklorik asit ile tepkimesinden hidrojen gazı meydana gelir. Oluşan gaz eğer pistonlu bir sisteme bağlanırsa pistonu iter. Sistem enerjisini pistonun itimi ile transfer ettiği için;

$$w < 0$$

$$\Delta U < 0$$

Sadece iş ile enerji transferinde iki olasılık vardır:

2. <u>Sistem üzerinde iş yapılması</u>:Çinko metalinin hidroklorik asit ile tepkimesinden hidrojen gazı meydana gelir. Oluşan gaz eğer pistonlu bir sisteme bağlanırsa pistonu iter. Eğer biz piston itilmeden dışarıdan basınç uygularsak sistem enerji kazanır;

$$w > 0$$

$$\Delta U > 0$$

Gaz itimi ile pistonun yaptığı iş

Gaz itimi ile pistonun yaptığı iş:

$$w=-P\Delta V$$
 Sabit bir basınca karşı yapılan iş

$$PxV = \frac{F}{d^2}xd^3 = Fxd = w$$

Gaz genleştiğinde, ΔV pozitif, w negatiftir. Bu sistemin iş yaptığını gösterir. Gaz sıkıştırıldığında ise, ΔV negatif, w pozitiftir. Bu ise sistem üzerine iş yapıldığını gösterir. Yukarıdaki denkleme "-" İşareti konması bu sebeptendir.

TOBB Ekonomi ve Teknoloji Üniversitesi

Enerjinin Korunumu

Sistemin enerjisi ve çevrenin enerjisi toplamı sabittir

$$\Delta U_{\text{evren}} = \Delta U_{\text{sistem}} + \Delta U_{\text{gevre}} = 0$$

Termodinamiğin 1.yasası

Enerjinin Birimleri

$$F = mxa = kg \frac{m}{s^2}$$

$$w = Fxd = (kg\frac{m}{s^2})xm = kg\frac{m^2}{s^2} = J$$

$$1cal = 4,184J$$
 yada $1J = \frac{1}{4,184}cal = 0,2390cal$

Entalpi

$$\Delta U = q + w = q - P\Delta V$$
$$q = \Delta U + P\Delta V$$

Sabit hacimde sistemin enerji değişimi ısı transferi ile olur.

$$q_v = \Delta U$$
 sabit hacim $\Delta V = 0$

Bir çok kimyasal tepkime sabit basınçta gerçekleşir.

$$q_p = \Delta U + P\Delta V = \Delta H$$
 Sabit basınç

Entalpideki değişiklik sabit basınçtaki kazanılan yada kaybedilen ısıya eşittir.

ΔU ve ΔH Arasındaki İlişki

1.Gaz olmayan tepkimeler:

$$2KOH(aq) + H2SO4(aq) \longrightarrow K2SO4(aq) + H2O(s)$$

Bu reaksiyonda gaz yok, sıvılar ve katılar ise çok küçük hacim değişikliği gösterirler.

$$\Delta V \approx 0$$
 $P\Delta V \approx 0$
 $\Delta H \approx \Delta U$

ΔU ve ΔH Arasındaki İlişki

2. Tepkime sonunda gaz miktarı değişmeyen tepkimeler :

$$N_2(g) + O_2(g) \longrightarrow 2NO(g)$$

$$\Delta V = 0$$

$$P\Delta V=0$$

$$\Delta H = \Delta U$$

ΔU ve ΔH Arasındaki İlişki

3. Tepkime sonunda gaz miktarı değişen tepkimeler :

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

$$\Delta V \neq 0$$

$$P\Delta V \neq 0$$

genelde;

$$q_p >> P\Delta V$$

 $\Delta H, \Delta U$ ya çok yakındır

3 durumda da entalpideki değişim ya iç enerjideki değişime eşittir yada bu iki değer birbirine çok yakındır.

TOBB Ekonomi ve Teknoloji Üniversitesi

Entalpide iç enerji gibi durum fonksiyonudur; dolayısıyla tepkimenin entalpileri aşağıdaki gibi ifade edilir:

$$\Delta H = H_{\ddot{u}\ddot{r}\ddot{u}nler} - H_{girenler}$$

- 1. Endotermik süreç (sistemin çevreden ısı alması); $\Delta H > 0$
- 2. Ekzotermik süreç (sistemin çevreye ısı vermesi); ΔH < 0

TOBB Ekonomi ve Teknoloji Üniversitesi

Tepkimelerin Entalpisi

$$H_2O(k) \longrightarrow H_2O(s) \Delta H = 6.01 \text{ kj/mol}$$

$$H_2O(s) \longrightarrow H_2O(k) \Delta H = -6.01 \text{ kg/mol}$$

$$2H_2O(s) \longrightarrow 2H_2O(k)$$
 $\Delta H = 2molx-6,01kj/mol = -12,02kj$

Kalorimetre (ısı değişikliklerinin ölçülmesi),Özgül İsı ve ısı Kapasitesi

- Isı kapasitesi (C) bir sistemin sıcaklığını 1°C arttırmak için gerekli ısı miktarıdır.
- A Bir cismin özgül ısısı (c) 1 gram maddenin sıcaklığını 1 derece (°C) arttırmak için gerekli ısı miktarına denir.

$$C = \frac{q}{\Delta T}$$

$$C = mc$$

$$q = mc\Delta T$$

$$C; \frac{J}{{}^{\circ}C}$$
 $c; \frac{J}{g {}^{\circ}C}$

Sabit Hacimli Kalorimetre

$$q_{sistem} = q_{kalorimetre} + q_{tepkime} = 0$$

$$q_{\mathit{tepkime}} = -q_{\mathit{kalorimetre}}$$

$$q_{\textit{kalorimetre}} = C_{\textit{kalorimetre}} \Delta T$$

$$C_{kalorimetre} = rac{q_{kalorimetre}}{\Delta T}$$

Şekil 9.1: Kalorimetre Bombası Düzeneği

Sabit Basınçlı Kalorimetre ("Kahve Fincanı" Kalorimetresi)

Sabit basınçlı kalorimetre sabit hacimli kalorimetreye göre daha basit bir tasarıma sahiptir. Çözelti ve seyrelme ısıları yada asit-baz nötrleşme tepkimelerinde basınç sabittir. Sabit hacimli kalorimetreler de ise sabit hacim kalorimetrenin hacminin değişmemesi anlamındadır. Bu kalorimetreler yanma tepkimeleri için dizayn edilmiştir ve 30 atm basınca kadara dayanıklıdır.

"Kahve Fincanı" Kalorimetresi

Tepkime ısıları nereden kaynaklanıyor?

$$H_2(g) + F_2(g) \longrightarrow 2HF(g) + 564 \text{ kJ}$$

Gaz miktarı tepkime sonucu değişmiyor. Dolayısıyla; ΔH= ΔU, peki oluşan bu ısının kaynağı nedir?

İç enerjinin bileşenleri; Kinetik enerji ve Potansiyel enerji

İç enerjinin bileşenleri; Kinetik enerji ve Potansiyel enerji; HF molekülü için her bir enerjiye olan katkıları inceleyelim:

Kinetik enerjiye katkı edenler

Molekülün yer değiştirmesi

Bunlar sıcaklıkla doğru orantılıdır. Sıcaklık sabit olduğu için bunların değişmediği düşünülür.

Elektronları hareketi

Elektronların hareketleri de tepkime sonucu değişmez

İç enerjinin bileşenleri; Kinetik enerji ve Potansiyel enerji; HF molekülü için her bir enerjiye olan katkıları inceleyelim:

Çok küçük değişiklik çünkü bağlanan atomlar değişir.

- Potansiyel enerjiye katkı edenler
 - Titreşen atomların arasındaki kuvvetler

Atom ve çekirdek değişmeyeceği için bunlar da değişmez

- Çekirdek ve elektron, elektron-elektron arasındaki kuvvetler
- Proton ve nötron arasındaki kuvvetler

Bağ enerjisinin potansiyel enerjiye çok büyük katkısı vardır

Çekirdek ve bağlardaki elektron çiftleri arasındaki kuvvetler (E_{bağ})

TOBB Ekonomi ve Teknoloji Üniversitesi

Bağların kırılması yada oluşması

Bir tepkimeyi, girenlerdeki bağlar kırıldığında enerji soğuran(+), ürünlerdeki bağ oluşumlarında da enerji açığa çıkaran(-) bir süreç olarak düşünebiliriz.

1 mol H-H bağı ve 1mol F-F bağı enerjiyi soğurup kırılırlar. 2 mol H-F bağı oluşurken ise enerji açığa çıkartırlar.

TOBB Ekonomi ve Teknoloji Üniversitesi

Entalpinin mutlak değerlerini bilemeyiz ancak bir referans karşılığında göreceli olarak hesaplayabiliriz

$$\Delta H = H_{son} - H_{ilk}$$

Bu değerlere direkt ulaşamıyoruz.

❖ Bu durumda bir " sıfır noktası" belirlememiz yararlı olur. Buna göre elementlerin entalpilerini keyfi olarak "sıfır" kabul eder ve bu sıfır noktasına göre bileşiklerin oluşum entalpilerini belirtiriz.

TOBB Ekonomi ve Teknoloji Üniversitesi

Entalpi hesaplamaları için referans; STANDART OLUŞUM ENTALPİSİ

➤ 1 mol bileşiğin elementlerinden 1 atm basınçta oluşması sırasında oluşan ısı değişimidir. Buradaki standart 1 atm dir. Bu tanımda sıcaklık belirtilmemesine rağmen 25 °C dir.

Entalpideki değişimin bir tepkime için bulunması

$$aA + bB \rightarrow cC + dD$$

$$\Delta \mathbf{H}_{\text{tepkime}}^{0} = \left(c \Delta \mathbf{H}_{\text{ol}}^{0}(C) + d \Delta \mathbf{H}_{\text{ol}}^{0}(D) \right) - \left(a \Delta \mathbf{H}_{\text{ol}}^{0}(A) + b \Delta \mathbf{H}_{\text{ol}}^{0}(B) \right)$$

$$\Delta \mathbf{H}_{\text{tepkime}}^{0} = \sum n \Delta \mathbf{H}_{\text{ol}}^{0} (\ddot{u}r\ddot{u}nler) - \sum m \Delta \mathbf{H}_{\text{ol}}^{0} (girenler)$$

Bunları bilmemiz gerekiyor

Oluşma Entalpilerinin Bulunması

Direkt Yol: Oluşma entalpisini bilmek istediğimiz bileşiği elementlerinden sentezleyip tepkime entalpisini ölçebiliriz.

$$\begin{split} & \text{C(grafit)} + \text{O}_2\left(\text{g}\right) \longrightarrow \text{CO}_2(\text{g}) \quad \Delta \text{H}^\circ_{\text{tepkime}} = -393,5 \text{kJ/mol} \\ & \Delta \text{H}^0_{\text{tepkime}} = \Delta \text{H}^0_{\text{ol}}(CO_2,g) - \left(\Delta \text{H}^0_{\text{ol}}(C,grafit) + \Delta \text{H}^0_{\text{ol}}(O_2,g)\right) \\ & \Delta \text{H}^0_{\text{tepkime}} = -393,5 \frac{kj}{mol} \\ & \Delta \text{H}^0_{\text{tepkime}} = \Delta \text{H}^0_{\text{ol}}(CO_2,g) = -393,5 \frac{kj}{mol} \end{split}$$
 Referans noktaları

Oluşma Entalpilerinin Bulunması, HESS Yasası

- Dolaylı Yol: Bir çok bileşiği elementlerinden direkt olarak sentezlemek mümkün olmadığından böyle durumlarda Hess yasası kullanılır; Bir işlem basamaklar/kademeler şeklinde yürüyorsa, toplam(net) işlemin entalpi değişimi, tek tek basamakların/kademelerin entalpi değişimleri toplamına eşittir.
- Hess yasası, entalpinin bir durum fonksiyonu olmasının sonucudur.İlk halden son hale gidişte yola bağlı olmaksızın ΔH aynı değere sahiptir.

Oluşma Entalpilerinin Bulunması, Hess Yasası

$$C(grafit) + 2H_2(g) \longrightarrow CH_4(g)$$

C(grafit) + O₂ (g)
$$\longrightarrow$$
 CO₂(g) $\Delta H^{\circ}_{tepkime}$ =-393,5 kJ/mol
2H₂ + O₂ (g) \longrightarrow 2H₂O (s) $\Delta H^{\circ}_{tepkime}$ =-571,6 kJ/mol

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(s) \Delta H^{\circ}_{tepkime} = -890,4 \text{ kJ/mol}$$

Oluşma Entalpilerinin Bulunması, Hess Yasası

$$C(grafit) + 2H_2(g) \longrightarrow CH_4(g)$$

C(grafit) +
$$O_2(g)$$
 \longrightarrow $CO_2(g)$ $\Delta H^{\circ}_{tepkime}$ = -393,5 kJ/mol

$$2H_2 + O_2(g) \longrightarrow 2H_2O(s)$$
 $\Delta H^{\circ}_{tepkime} = -571,6 \text{ kJ/mol}$

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(s) \Delta H^{\circ}_{tepkime} = -890,4 \text{ kJ/mol}$$

$$CO_{2}(g) + 2H_{2}O(s) \longrightarrow CH_{4}(g) + 2O_{2}(g) \Delta H^{\circ}_{tepkime} = +890,4 \text{ kJ/mo}$$

Sadece mavileri topla $\Delta H^{\circ}_{tepkime} = -74,7 \text{ kJ/mol}$

C(grafit) +
$$2H_2(g) \longrightarrow CH_4(g)$$

TOBB Ekonomi ve Teknoloji Üniversitesi