CS & IT ENGING

Operating System

CPU Scheduling

Lecture - 01

Recap of Previous Lecture

Topics to be Covered

Topic

Process Scheduling

Topic

Process Scheduling Algorithms

Topic

FCFS Scheduling

Topic

SJF Scheduling

[MCQ]

#Q. Which of the following scheduler reduces the degree of multiprogramming?

▲ >Short-Term

B /Long-Term

Mid-Term

Long-Term and Mid-Term both

[NAT]

3

#Q. Consider a system with n processes and CPUs. Maximum and Minimum number of processes in each of the following states possible?

- 1. Ready state $\Rightarrow \eta$
- 2. Running State => 1
- 3. Blocked State ⇒ n ○
 max min

Topic: CPU Scheduling

Function:

Make a selection of a process to run next on CPU among all ready processes.

Goal

- Minimize Wait time and Turn-around time
- Maximize CPU utilization (Throughput)
- Fairness
- Interactivity

Topic: CPU Scheduling Types

Non-preemptine

once a process scheduled to run then it can not be forcefully taken out of CPU. preemptive

A running process can be taken out of CPU forcefully.

Topic: Scheduling Times

- · Arrival Time (AT): Time at which process arrives
- · Burst/Service Time (BT): Amount of time a process runs on CPU
 · Waiting Time (WT): Amount of time for which process waits in Ready state
- · Completion Time (CT): Time at which process completes
- · Turn-Around Time (TAT): Amount of time process spends from arrival to Completion.

Topic: Scheduling Times

Amount of time

Response Time (RT): ^

from arrival till first time execution

of process

Scheduling Length (L): $\max(CT_i)$ — $\min(AT_i)$

Throughput:

No. of processes executed per unit time

no. of processes executed

Throughput = no. of processes executed

scheduling length

Topic: Scheduling Algorithms

- 1. FCFS
- 2. SJF
- 3. SRTF
- 4. HRRN
- 5. Priority Based
- 6. Round Robin
- 7. Multilevel Queue Scheduling
- 8. Multilevel Feedback Queue Scheduling

Scheduling Criteria: whichever process has min arrival time

Type of Algorithm:

Non-preemptive

Tie breaker => Min. process id first

Process	Arrival Time	Burst Time
P1	0	27
P2	0	6
P3	0	6

Gantt chart: - It starts from 0 always

P1	f	2	P3
0	27	33	39

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	27	27	27	0
P2	0	6	33	33	27
P3	0	6	39	39	33

Avg.
$$TAT = \frac{27 + 33 + 39}{3} = 33$$
Avg. $\omega T = \frac{0 + 27 + 33}{3} = 20$

Scheduleng length =
$$39-0=39$$

Throughput = $\frac{3}{39}=\frac{1}{13}$

Process	Arrival Time	Burst Time	CT	TAT	WT	
P1	0	5	5	5	0	
P2	1	1	6	5	4	
P3	2	2	8	6	4	
P4	3	4	12	9	5 8	
P5	4	5	17	13	12	
P6	5	3	20	15		

P	1 P	2 P	'3 P	'4 F	25	P6
0	5	6	8	12	17	20

$$avg TAT = 53/6 = 8.83$$

 $avg \omega T = 33/6 = 5.5$

Process	Arrival Time	Burst Time	CT	TAT	ωT
P1	5	4	9	4	0
P2	8	2	21	13	11
P3	6	3	12	6	3
P4	3	1	4	1	0
P5	1	2	3	2	0
P6	7	7	19	12	5

ang
$$TAT = \frac{38}{6} = 6.33$$

ang $\omega T = \frac{19}{6} = 3.167$

Topic: Convoy Effect

If a heavy (big) process is scheduled first then it delays all other process execution significantly; hence performance of the system slows down

only FCFS suffers from convoy effect.

Topic: SJF (Shortest Job First)

Scheduling Criteria: Schedule process with smallest Burst time

Type of Algorithm:

The breaker => FCF.

Non-preemptive

Topic: SJF (Shortest Job First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	3 27	39	39	12
P2	0	6	6	6	0
P3	0	6	12	12	6

$$avg TAT = \frac{57}{3} = 19$$

$$ang \omega T = \frac{18}{3} = 6$$

Topic: SJF (Shortest Job First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	6			
P2		3			
P3	2	4			
P4	4	2			
P5	5	1			
P6	6	5			
P7	8	2			

PI		P5	PY	P7	P2	PJ	96
0	6	7	0) 1	ال	1 19	3 2

P1 scheduled at time 0 because it is the only process available for scheduling at 0. (all other processes will arrive leter).

2 mins Summary

Topic

Process Scheduling

Topic

Process Scheduling Algorithms

Topic

FCFS Scheduling

Topic

SJF Scheduling

Happy Learning

THANK - YOU