4. オペアンプ (演算増幅器, Operational Amplifier)

- ●増幅やアナログ的に演算を行う素子
 - ■演算
 - ◆加算,減算 ☜
 - ◆積分, 微分
- 記号
 - ■旧型の方が普及しているので旧型を採用

端子

- ●基本的に5端子
 - ■入力 2端子, 出力1端子
 - ■電源 2端子
 - ◆+電源端子は電圧V_s
 - ◆ 電源端子は電圧-V_s
 - □参考: 電源端子をGNDに 接続する場合もある
- ●以降,3端子のみ表示
 - ■電源端子の電圧はV_s, -V_sとする
 - ◆V_sの典型的な値: 5V, 10Vなど

μA741 general-purpose operational amplifier

Adapted from Texas Instruments µA741 data sheet (www.ti.com)

入出力の関係

● *V*₊, *V*_がほぼ等しい場合のみ

$$V_o = A_V(V_+ - V_-)$$

- A_Vは電圧増幅率
 - **>** 100,000
- ●差が広がると飽和
- → *V*₊, *V*₋ がほぼ等しくなるように 制御することが必要

理想的なオペアンプ

- ・入力端子から電流を通さない
 - (入力インピーダンス $Z_{in} = \infty$)
- ●出力端子に回路を付加しても電圧が下がらない
 - (出力インピーダンス $Z_{out} = 0$)

反転增幅回路 (inverting amplifier)

- ●各点での電圧
 - $V_4 = A_V(V_3 V_2), V_3 = 0$ よって $V_4 = -A_V V_2$
- ●発生する負帰還 (negative feedback)
 - $V_2 > 0$
 - $\bullet V_4$ は負で大きな絶対値 $\to V_2$ は減少
 - $V_2 < 0$
 - V₄は正の大きな値 → V₂は増加
- $\rightarrow V_2 = V_3$ になるように V_4 が変化
 - ◆バーチャルショート (virtual short)
 - □入力電圧が仮想的に短絡 (short)

反転增幅回路 (inverting amplifier)

- バーチャルショートの結果 $V_2 = V_3 = 0$
- $\bullet V_1 V_2 = V_1 = IR_1$
 - $\blacksquare I = \frac{V_1}{R_1}$
- $V_2 V_4 = -V_4 = IR_2$
- $\bullet V_4 = -\frac{R_2}{R_1} V_1$
- 電圧増幅率 $\frac{V_4}{V_1} = -\frac{R_2}{R_1}$

非反転增幅回路 (non-inverting amplifier)

$$\bullet V_2 = \frac{R_1}{R_1 + R_2} V_3$$

・バーチャルショートにより $V_1 = V_2$

$$\bullet V_1 = \frac{R_1}{R_1 + R_2} V_3$$

•よって $V_3 = \frac{R_1 + R_2}{R_1} V_1$

バッファ (buffer)

・バーチャルショートにより $V_i = V_o$

●用途

- 互いに影響をあたえないように 回路を接続
- ■例.右の回路に,別の回路を接続

バッファ

入力される電圧は変わらない

加算回路

- ・バーチャルショートにより $V_i = 0$
- $\bullet I_1 = \frac{V_1}{R_1}, I_2 = \frac{V_2}{R_2}, I_3 = \frac{V_3}{R_3}$
- $\bullet V_o = -IR$
- $\bullet I = I_1 + I_2 + I_3$
- よって $V_o = -(\frac{R}{R_1}V_1 + \frac{R}{R_2}V_2 + \frac{R}{R_3}V_3)$

減算回路

• +入力:
$$V_3 = \frac{R_3}{R_3 + R_4} V_2$$

• 一入力:
$$I = \frac{V_1 - V_3}{R_1} = \frac{V_3 - V_0}{R_2}$$

$$V_o = -\frac{R_2}{R_1} V_1 + \frac{R_1 + R_2}{R_1} V_3$$

$$= -\frac{R_2}{R_1} V_1 + \frac{R_1 + R_2}{R_1} \frac{R_3}{R_3 + R_4} V_2$$

■ *V*₂から*V*₁を減算

•特に, $R_1 = R_3$, $R_2 = R_4$ のとき $V_0 = \frac{R_2}{R_1}(V_2 - V_1)$

