Computational Microelectronics L2

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

Binary adder

Addition of binary numbers

- We can recognize that
 - Addition of two 1-bit binary numbers is the core operation.
 - -There are only *four* possible cases.

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$
Carry

Inclusion of carry-bit

We introduce a separate bit for representing the carry.

Truth tables

• Relation between x, y, and the output

- Sum-bit
x XOR y

\boldsymbol{x}	y	sum
0	0	0
0	1	1
1	0	1
1	1	0

– Carry-bit x AND y

x	y	carry
0	0	0
0	1	0
1	0	0
1	1	1

Compact MOSFET model

MOSFET

- Basic unit of microelectronics
 - Controlled by the gate voltage
 - NMOSFET and PMOSFET

Level 1 model (NMOSFET)

- A simple model (Shichman-Hodges)
 - Its basic current model is:
 - -Cutoff region, $V_{gs} < V_t$

$$I_d = 0$$

-Linear region, $V_{ds} < V_{gs} - V_t$

$$I_{d} = \frac{KP}{L_{eff}} \frac{W_{eff}}{L_{eff}} (1 + \frac{LAMBDA}{L_{eff}} \times V_{ds}) \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds}$$

-Saturation region,
$$V_{ds} > V_{gs} - V_t$$

$$I_d = \frac{KP}{2} \frac{W_{eff}}{L_{eff}} (1 + LAMBDA \times V_{ds}) (V_{gs} - V_t)^2$$

- (Red-colored quantities are the SPICE model parameters.)

Level 1 model (NMOSFET)

- A simple model (Shichman-Hodges)
 - Threshold voltage:
 - For nonnegative V_{sb} ,

$$V_t = VTO + GAMMA \left(\sqrt{PHI} + V_{Sb} - \sqrt{PHI} \right)$$

- -VTO is the "zero-bias" threshold voltage.
- GAMMA is the body effect coefficient.
- -PHI is the surface potential.

NMOSFET example

Consider the following parameters:

KP=155e-6 LAMBDA=0.2 VTO=0.4 PHI=0.93 GAMMA=0.6

$$-W_{eff}/L_{eff}=2$$

PMOSFET example

Consider the following parameters:

KP=80e-6 LAMBDA=0.2 VTO=-0.4 PHI=0.93 GAMMA=0.6

CMOS inverter

The simplest logic gate

- When $V_{in} = 0$,
 - -NMOS OFF
 - -PMOS ON
 - $-V_{out}$ is "pulled up."
 - $-V_{out} = V_{DD}$
- When $V_{in} = V_{DD}$,
 - -NMOS ON
 - PMOS OFF
 - $-V_{out}$ is "pulled down."
 - $-V_{out} = 0$

Assume that V_{in} is given.

- The goal is to calculate V_{out} .
 - $-V_{out}(V_{in})$ is called the voltage transfer curve.

- What is the condition for a point on the VTC? $I_{Dn}+I_{Dv}=0$
- -Assume that V_{DD} = 1.2 V.
- For example, at V_{in} = 0.5 V and V_{out} = 0.7 V, we have I_{Dn} = 1.77 μA and I_{Dp} = -7.92 μA. Certainly, it is not on the VTC.

One possible way (Trial-and-error)

- In order to increase I_{Dn} , we can try a higher V_{out} , for example 0.8 V.
 - -Still, the currents are much different.
 - -0.9 V. No.
 - -1.0 V. No.
 - -1.1 V. No.
 - -1.2 V. Well, now, I_{Dn} = 1.92 μ A and I_{Dp} = 0 A. We must increase $\left|I_{Dp}\right|$.
 - -1.15 V. I_{Dn} = 1.91 μ A and I_{Dp} = -2.22 μ A. We must increase I_{Dn} .
 - -1.175 V. I_{Dn} = 1.91 μA and I_{Dp} = -1.16 μA. We must increase $|I_{Dp}|$.
 - -1.1625 V. I_{Dn} = 1.91 μ A and I_{Dp} = -1.70 μ A. We are getting closer...

Number of iterations

- When we have a voltage change smaller than 1 μ V, the calculation stops.
 - -Start at $\frac{V_{DD}}{2}$.
 - -Initial step is 0.1 V.
 - When the sign of difference changes,
 the step is reduced with a factor of 0.5.
 Otherwise, keep the step.
 - -31 iterations at V_{in} = 0.5 V

Homework#2

- Due: AM08:00, September 19 (Two weeks later)
- Problem#1
 - Draw the voltage transfer curve.

Thank you for your attention!