Московский государственный технический университет им. Н.Э. Баумана.

Факультет «Информатика и управление»

Кафедра ИУ5. Курс «Технологии машинного обучения»

Отчет по лабораторной работе №2: «Изучение библиотек обработки данных»

Выполнил: Проверил:

студент группы ИУ5-63 Курганова Александра

Подпись и дата:

Подпись и дата:

02.06.2019

Отчет по ЛР2: "Изучение библиотек обработки данных"

Exploratory data analysis with Pandas

Unique values of all features (for more information, please see the links above):

- · age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- · fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

lr2

- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex: Female, Male.
- capital-gain: continuous.
- · capital-loss: continuous.
- · hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

• salary: >50K,<=50K

```
In [12]: # Импорт библиотек
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)

# Картинки
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

# Warnings
import warnings
warnings.filterwarnings('ignore')
```

Out[13]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	per- week	native- country	salary
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	2174	0	40	United- States	<=50K
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0	40	United- States	<=50K
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

hours-

```
In [14]: data.dtypes
Out[14]: age
                             int.64
                            object
         workclass
         fnlwgt
                             int64
         education
                            object
                             int64
         education-num
                            object
         marital-status
         occupation
                            object
         relationship
                            object
                            object
         race
                            object
         sex
         capital-gain
                             int64
         capital-loss
                             int64
         hours-per-week
                             int64
         native-country
                            object
         salary
                            object
         dtype: object
```

1. Сколько мужчин и женщин (половая особенность) представлено в этом наборе данных?

2. Каков средний возраст (age feature) женщины?

```
In [27]: data.loc[data['sex'] == ' Female', 'age'].mean()
Out[27]: 36.85823043357163
```

3. Каков процент граждан Германии (native-country feature)?

```
In [26]: (float((data['native-country'] == ' Germany').sum())/data.shape[0])*100
Out[26]: 0.42074874850281013
```

4-5. Каково среднее значение и стандартное отклонение возраста тех, кто получает >50К в год (salary feature) и тех, кто получает <=50К в год?

6. Правда ли, что люди, которые зарабатывают >50K, имеют хотя бы среднее образование? (education – Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

```
In [83]: all_gt_50K = data.loc[data['salary'] == ' >50K'].shape[0]
   gt_50K_and_education = data.loc[(data['salary'] == ' >50K') & (data['education'].isin(['Bachelors', 'Prof-sch ool', 'Assoc-acdm', 'Assoc-voc', 'Masters', 'Doctorate']))].shape[0]
   print('yes, it\'s true' if all_gt_50K == gt_50K_and_education else 'no')
```

7. Показать возрастную статистику для каждой расы (race feature) и каждый пол (sex feature). Используйте groupby() и describe(). Найти максимальный возраст мужчин американо-индийско-эскимосской расы.

```
data.groupby(['race', 'sex'])['age'].describe()
In [311:
Out[31]:
                                       count
                                                 mean
                                                                 min 25%
                                                                            50%
                                                                                  75% max
                         race
                                 sex
            Amer-Indian-Eskimo Female
                                        119.0 37.117647 13.114991 17.0
                                                                      27.0
                                                                            36.0
                                                                                 46.00
                                                                                       80.0
                                Male
                                        192.0 37.208333 12.049563 17.0
                                                                      28.0
                                                                            35.0
                                                                                45.00 82.0
             Asian-Pac-Islander Female
                                        346.0 35.089595 12.300845
                                                                17.0
                                                                      25.0
                                                                            33.0
                                                                                 43.75 75.0
                                             39.073593 12.883944
                                                                      29.0
                                                                            37.0
                                                                                 46.00
                                                                                       90.0
                                Male
                                                                 18.0
                                       1555.0 37.854019 12.637197 17.0
                                                                                       90.0
                        Black Female
                                                                      28.0
                                                                            37.0
                                                                                 46.00
                                       1569.0 37.682600 12.882612 17.0
                                                                      27.0
                                                                            36.0
                                                                                 46.00
                                                                                       90.0
                                Male
                        Other Female
                                        109.0 31.678899 11.631599 17.0
                                                                      23.0
                                                                            29.0
                                                                                 39.00 74.0
                                Male
                                        162.0 34.654321 11.355531 17.0
                                                                      26.0
                                                                            32.0
                                                                                 42.00
                                                                                       77.0
                                       8642.0 36.811618 14.329093 17.0
                                                                                       90.0
                        White Female
                                                                      25.0
                                                                            35.0
                                     19174.0 39.652498 13.436029 17.0
                                                                                       90.0
                                Male
                                                                      29.0
                                                                            38.0
                                                                                 49.00
In [32]: data.groupby(['race', 'sex'])['age'].describe().loc[' Amer-Indian-Eskimo'].loc[' Male', 'max']
Out[32]: 82.0
```

^{8.} Среди кого больше доля тех, кто много зарабатывает (> 50 тыс.): замужние или одинокие мужчины (marital-status feature)? Считается, что в браке находятся те, кто имеет семейное положение, начиная с женатых (женатых гражданских супругов, женатых супругов нет или женатых супругов), остальные считаются холостяками.

02.06.2019

lr2

9. Какое максимальное количество часов человек работает в неделю (hours-per-week feature)? Сколько человек работает такое количество часов, и каков процент тех, кто зарабатывает много (>50K) Среди них?

```
In [69]: max_value = data['hours-per-week'].max()
    print(max_value)
    people_with_max_hpw = data[data['hours-per-week'] == max_value]
    print(people_with_max_hpw.shape[0])
    print(people_with_max_hpw[data['salary'] == ' >50K'].shape[0])

99
85
25
```

10. Посчитайте среднее время работы (hours-per-week) для тех, кто зарабатывает мало и много (salary) для каждой страны (native-country). Что это будет для Японии?

In [75]: (data.groupby(['native-country', 'salary'])['hours-per-week']).mean()

Out[75]: native-country	salary	
?	<=50K	40.164760
	>50K	
Cambodia	<=50K	41.416667
	>50K	40.000000
Canada	<=50K	37.914634
	>50K	45.641026
China	<=50K	37.381818
	>50K	38.900000
Columbia	<=50K	38.684211
	>50K	50.000000
Cuba	<=50K	37.985714
	>50K	42.440000
Dominican-Republic	<=50K	42.338235
-	>50K	47.000000
Ecuador	<=50K	38.041667
	>50K	48.750000
El-Salvador	<=50K	36.030928
	>50K	45.000000
England	<=50K	40.483333
	>50K	44.533333
France	<=50K	41.058824
	>50K	50.750000
Germany	<=50K	39.139785
	>50K	44.977273
Greece	<=50K	41.809524
	>50K	50.625000
Guatemala	<=50K	39.360656
	>50K	36.666667
Haiti	<=50K	36.325000
	>50K	42.750000
		•••
Mexico	>50K	46.575758
Nicaragua	<=50K	36.093750
	>50K	37.500000
Outlying-US(Guam-USVI-etc	•	41.857143
Peru	<=50K	35.068966
-1.11.	>50K	40.000000
Philippines	<=50K	38.065693
Dalam d	>50K	43.032787
Poland	<=50K	38.166667

```
>50K
                                        39.000000
 Portugal
                               <=50K
                                        41.939394
                               >50K
                                        41.500000
 Puerto-Rico
                               <=50K
                                        38.470588
                               >50K
                                        39.416667
 Scotland
                               <=50K
                                        39.444444
                               >50K
                                        46.666667
 South
                               <=50K
                                        40.156250
                               >50K
                                        51.437500
 Taiwan
                               <=50K
                                        33.774194
                               >50K
                                        46.800000
 Thailand
                               <=50K
                                        42.866667
                               >50K
                                        58.333333
 Trinadad&Tobago
                                        37.058824
                               <=50K
                               >50K
                                        40.000000
 United-States
                               <=50K
                                        38.799127
                               >50K
                                        45.505369
 Vietnam
                               <=50K
                                        37.193548
                               >50K
                                        39.200000
 Yugoslavia
                               <=50K
                                        41.600000
                               >50K
                                        49.500000
Name: hours-per-week, Length: 82, dtype: float64
(data.groupby(['native-country', 'salary'])['hours-per-week']).mean().loc[' Japan']
```

Out[77]: salary

<=50K 41.000000 >50K 47.958333

In [77]:

Name: hours-per-week, dtype: float64

```
In [29]: import numpy as np
         import pandas as pd
         pd.set option('display.max.columns', 100)
         import pandasql as pds
         # to draw pictures in jupyter notebook
         %matplotlib inline
         import matplotlib.pyplot as plt
         import seaborn as sns
         # we don't like warnings
         # you can comment the following 2 lines if you'd like to
         import warnings
         warnings.filterwarnings('ignore')
         user usage = pd.read csv("user usage.csv")
In [30]:
         user device = pd.read csv("user device.csv")
         android devices = pd.read csv("android devices.csv")
In [31]: user usage.head()
Out[31]:
```

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	21.97	4.82	1557.33	22787
1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

```
In [32]: user_device.head()
```

Out[32]:

	use_id	user_id	platform	platform_version	device	use_type_id
0	22782	26980	ios	10.2	iPhone7,2	2
1	22783	29628	android	6.0	Nexus 5	3
2	22784	28473	android	5.1	SM-G903F	1
3	22785	15200	ios	10.2	iPhone7,2	3
4	22786	28239	android	6.0	ONE E1003	1

Out[33]:

Model	device	Marketing Name	Retail Branding	
Smartfren Andromax AD681H	AD681H	NaN	NaN	0
FJL21	FJL21	NaN	NaN	1
Panasonic T31	T31	NaN	NaN	2
MediaPad 7 Youth 2	hws7721g	NaN	NaN	3
OC1020A	OC1020A	OC1020A	3Q	4

Merge using pandas

```
In [34]: user_usage_and_user_device = pd.merge(user_usage, user_device[['use_id', 'device']], on='use_id')
user_usage_and_user_device.head()
```

Out[34]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	device
0	21.97	4.82	1557.33	22787	GT-19505
1	1710.08	136.88	7267.55	22788	SM-G930F
2	1710.08	136.88	7267.55	22789	SM-G930F
3	94.46	35.17	519.12	22790	D2303
4	71.59	79.26	1557.33	22792	SM-G361F

Out[35]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	device	Model	Retail Branding
0	21.97	4.82	1557.33	22787	GT-19505	GT-19505	Samsung
1	69.80	14.70	25955.55	22801	GT-I9505	GT-19505	Samsung
2	249.26	253.22	1557.33	22875	GT-19505	GT-19505	Samsung
3	249.26	253.22	1557.33	22876	GT-19505	GT-19505	Samsung
4	83.46	114.06	3114.67	22880	GT-19505	GT-19505	Samsung

```
In [36]: user_usage_and_user_device_and_android_devices.groupby('Retail Branding').agg({
          "outgoing_mins_per_month": "mean",
          "outgoing_sms_per_month": "mean",
          "monthly_mb": "mean",
          "use_id": "count"
})
```

Out[36]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
Retail Branding				
нтс	289.315789	97.678421	7080.200000	19
Huawei	81.526667	9.500000	1561.226667	3
LGE	111.530000	12.760000	1557.330000	2
Lava	60.650000	261.900000	12458.670000	2
Lenovo	215.920000	12.930000	1557.330000	1
Motorola	96.780000	68.844000	4195.424000	5
OnePlus	308.740000	51.772500	8824.890000	۷
Samsung	196.975556	93.815354	3725.970707	99
Sony	143.703846	39.114615	2715.352308	13
Vodafone	42.750000	46.830000	5191.120000	1
ZTE	42.750000	46.830000	5191.120000	1

Merge using pandasql

Out[37]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	device
0	21.97	4.82	1557.33	22787	GT-19505
1	1710.08	136.88	7267.55	22788	SM-G930F
2	1710.08	136.88	7267.55	22789	SM-G930F
3	94.46	35.17	519.12	22790	D2303
4	71.59	79.26	1557.33	22792	SM-G361F

Out[38]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	device	Retail Branding
0	21.97	4.82	1557.33	22787	GT-19505	Samsung
1	1710.08	136.88	7267.55	22788	SM-G930F	Samsung
2	1710.08	136.88	7267.55	22789	SM-G930F	Samsung
3	94.46	35.17	519.12	22790	D2303	Sony
4	71.59	79.26	1557.33	22792	SM-G361F	Samsung

Out[39]:

	Retail Branding	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	HTC	289.315789	97.678421	7080.200000	19
1	Huawei	81.526667	9.500000	1561.226667	3
2	LGE	111.530000	12.760000	1557.330000	2
3	Lava	60.650000	261.900000	12458.670000	2
4	Lenovo	215.920000	12.930000	1557.330000	1
5	Motorola	96.780000	68.844000	4195.424000	5
6	OnePlus	308.740000	51.772500	8824.890000	4
7	Samsung	196.975556	93.815354	3725.970707	99
8	Sony	143.703846	39.114615	2715.352308	13
9	Vodafone	42.750000	46.830000	5191.120000	1
10	ZTE	42.750000	46.830000	5191.120000	1