FAI HW3

1 Find gradeint direction for E_{in}

$$egin{aligned} E_{in}(w) &= rac{1}{N} \sum_{n=1}^{N} (max(1-y_n w^T x_n, 0))^2 \
abla E_{in}(w) &= rac{\partial E_{in}(w)}{\partial w} \ &= rac{\partial max(1-y_n w^T x_n, 0)^2}{\partial f(x^n)} rac{\partial f(x^n)}{\partial w_i} x_i^n \ &igg\{ 0, ext{ if } 1-y_n w^T x_n < 0 \ -2(1-y_n), ext{ otherwise} \
abla E_{in}(w) &= rac{1}{N} \sum_{n=1}^{N} -2max((1-y_n) w^T, 0) x_n \end{aligned}$$

2 Prove $w_{lin} = V \Gamma U^T y$

The linear regression solution $w_{lin}=(X^TX)^{-1}X^Ty$, and need to prove the general solution $w_{lin}=V\Gamma U^Ty$ is the same as showing $V\Gamma U^T$ regardless of whether X^TX is invertible.

$$A = U \sum V^T \ A^\dagger = V \sum^\dagger U^T$$

proof by verifying the fout conditions

$$AA^\dagger A = U\sum V^T*V\sum^\dagger U^T*U\sum V^T = A$$

$$A^\dagger AA^\dagger = V\sum^\dagger U^T*U\sum V^T*V\sum^\dagger U^T = A^\dagger$$

$$AA^\dagger = U\sum V^T*V\sum^\dagger U^T = U\sum \sum^\dagger U^T \text{ symmetric } A^\dagger A = V\sum^\dagger U^T*U\sum V^T = V\sum^\dagger V^T \text{ symmetric another approach}$$

$$egin{aligned} w_{lin} &= (X^T X)^{-1} X^T y \ &= [(V \sum^T U^T) (U \sum V^T)]^{-1} (V \sum^T U^T) y \ &= V \sum^{-2} V^T V \sum^T U^T y \ &= V \sum^{-1} U^T y \end{aligned}$$

$$= V\Gamma U^T y$$

since $\Gamma[i,j]=rac{1}{\sum[j,i]}if\sum[j,i]>0$ and $\Gamma[i,j]=0$ otherwise so the general solution is $w_{lin}=V\Gamma U^Ty$

Reference:

https://people.missouristate.edu/songfengzheng/Teac hing/MTH541/Lecture notes/MLE.pdf

(https://people.missouristate.edu/songfengzheng/Teaching/MTH541/Lecture%20notes/MLE.pdf),

B09902029

let

$$egin{aligned} L(u,\sum) &= ln\Pi_{n=1}p_u(x_n) \ &= ln\Pi_{n=1}^N - rac{1}{2}ln(2\pi) - rac{1}{2}ln(|I|) - rac{1}{2}(X_n - u)^TI^{-1}(X_n - u) \ &rac{\partial L(u,\sum)}{\partial u} = 0
ightarrow \sum_{n=1}^N (x_n - u) = 0
ightarrow u* = argmax \pi_{n=1}^N L(u,\sum) = rac{1}{N}\sum_{n=1}^N x_n \end{aligned}$$

4

$$\begin{array}{ccc} \mathbf{z} = \Phi_2(\mathbf{x}) & y \\ \hline \mathbf{z}_1 = \Phi_2(\mathbf{x}_1) & y_1 = -1 \\ \mathbf{z}_2 = \Phi_2(\mathbf{x}_2) & y_2 = +1 \\ \mathbf{z}_3 = \Phi_2(\mathbf{x}_3) & y_3 = -1 \\ \mathbf{z}_4 = \Phi_2(\mathbf{x}_4) & y_4 = +1 \end{array}$$

$z=\Phi_2(x)$	у
$z_1 = \Phi_2([+1,+1])$	$y_1=-1$
$z_2 = \Phi_2([-1,+1])$	$y_2=+1$
$z_3 = \Phi_2([-1,-1])$	$y_3=-1$
$z_4 = \Phi_2([+1,-1])$	$y_4=+1$

$$y_n = sign(\hat{w}^T x_n) for ext{n} = 1, 2, 3, 4$$
 say $w = x_1 x_2$ plot $\hat{w}^T \Phi_2(x) = 0$

Programming report

用f1 score 作為好壞的原因是因為我們想要找出 spam 的 email,所以如果spam被找出來(tp)才有意義

8

acc, f1

	Logistic Regression	Decision Tree	Random Forest
1	0.78125,	0.78125,	0.78125,
	0.46153846	0.36363636	0.2222222
2	0.875, 0.75	0.71875, 0.30769230	0.71875, 0.181818182
3	0.84375, 0.73684210	0.6875, 0.5	0.65625, 0.0
4	0.9375,	0.78125,	0.6875,
	0.88888888	0.58823529	0.28571428
5	0.90625,	0.5,	0.65625,
	0.84210526	0.27272727	0.266666666
best	0.9375,	0.78125,	0.6875,
	0.8888888	0.58823529	0.28571428

5	11	17
0.2222222	0.166666666	0.2
0.181818181	0.2	0.2
0.0	0.16666666	0.166666666
0.28571428	0.461538461	0.461538461
0.26666666	0.25	0.235294117

11 棵樹的效果最好