EE 491 Power Systems

Midterm I 7.45 AM to 9.00 AM, 9/26/2019

- 1) Suppose a load is operating at its rated voltage of 22 kV-LL, and it is consuming 24 MW at 0.8 pf lagging.
 - a) How much is the load reactive power QL?

(5 points)

b) We want to improve the load power factor by shunt compensation. How much shunt compensation do we have to switch in to improve the net load power factor to 0.95 pf lagging? (15 points)

Assume 100 MVA power base.

a) Starting from the load base voltage at 6 kV, assign all per unit base voltages.

(5 points)

b) What are the load bus voltage and current phasors in per unit? (5 points)

c) Convert all impedances to their per unit values and draw the per unit circuit diagram. (10 points)

d) What is the generator voltage? What are the real and reactive power outputs of the generator? (10 points)

3) Consider the three-bus power system below.

a) Compute the network admittance matrix $Y_{\mbox{\footnotesize Bus}}$.

(15 points)

b) Find the DC power-flow solution.

(15 points)

4) Consider a 70-mile single circuit three-phase transmission line that is composed of *Cardinal* conductors with spacing as shown. Assume 20⁰ C wire temperature.

a) What are the series impedance and shunt admittance of the line? (15 points)

b) Draw the Π circuit for the line.

(5 points)

·				
	•			
-				

Bonus questions (one point each)

1.	Name one energy Secretary in President Obama administration.
2.	Name one of the hydro power plants in Spokane downtown riverfront.
3.	What is the rated capacity (within 10 MW) of the Palouse wind project on the way from Colfax to Spokane?
4.	What percentage of total load is required by renewable power generation sources in the state of Washington by 2020?
5.	Which country faced a severe power grid blackout in 2015 that was caused by a cyberattack?

TABLE A.3 Electrical characteristics of bare aluminum conductors steel-reinforced (ACSR)†

		-				secretainorced (ACSR)	SRUT				
		-	-		0			_	_		
					nesistance	&					
				-1				T-	Reactan 1-ft spac	Reactance per conducto	
						V	Ac, 60 Hz	,		-B, 00 112	
Code word	Aluminum area, cmil	Stranding AI/St	Layers of aluminum	Outside diameter, in	Dc, 20°C,	20°C,	50°C,	GMR	Inductive		
Waxwing	266,800	1971						31 16	Λα, Ω/mi	Mn·mi	
Partridge Ostrich	266,800	26/7	N N	0.609	0.0646	0.3488	0.3831	0 0100			
Merlin	300,000	26/7	1 63	0.680	0.0640	0.3452	0.3792	0.0217	0.476	0.1090	
Linnet	336,400	18/1	7	0.684	0.0519	0.3070	0.3372	0.0229	0.458	0.1074	
Oriole	336 400	2/97	7	0.721	0.0507	0.2707	0.3037	0.0222	0.462	0.1055	
Chickadee	397,500	18/1	81 6	0.741	0.0504	0.2719	0.3006	0.0243	0.451	0.1040	
Dot	397,500	26/7	N C	C. 743	0.0433	0.2342	0.2987	0.0255	0.445	0.1032	
Flicker	477,000		× ~	0.783	0.0430	0.2323	0.2551	0.0241	0.452	0.1031	
Howk	427,000		1 6	0.814	0.0361	0.1957	0.2148	0.0204	0.441	0.1015	
Hen	477,000		1 01	0.846	0.0359	0.1943	0.2134	0.0204	0.441	0.1004	
Ognrey	477,000		- 81	0.000	0.0357	0.1931	0.2120	0.0204	0.432	0.0992	
Parakeet	556,500	18/1		0.003	0.0355	0.1919	0.2107	0.0209	0.430	0.0988	
Dove	556,500	24/7	. 01	0.073	0.0309	0.1679	0.1843	0.0504	0.424	0.0980	
Rook	556,500	26/7		0.914	0.0308	0.1669	0.1832	0.0204	0.432	0.0981	
Grothenk	636,000	24/7		0.927	0.0307	0.1663	0.1826	0.0300	0.423	6960.0	
Drake	636,000	26/7		0000	0.0269	0.1461	0.1603	0.001	0.420	0.0965	
Tern	795,000			1 108	0.0268	0.1454	0.1596	0.0325	0.415	0.0950	
Rail				1.063	0.0215	0.1172	0.1284	0.0373	0.412	0.0946	
Cardinal				1.165	0.0217	0.1188	0.1302	0.0352	0.399	0.0912	
Ortolan			3	961.1	0.0160	0.0997	0.1092	0.0386	0.305	0.0925	
Bluejay	1,093,900			1.213	0.0100	0.0988	0.1082	0.0402	0.030	7680.0	
Finch		_		1.259	0.0167	0.0924	0.1011	0.0402	0.000	0.0890	
Bittern	_	_	3	.293	0.0155	0.0861	0.0941	0.0415	0.386	0.0885	
Pheasant					0.0100	0.0856	0.0937	0.0436	0.000	0.0874	
Bobolink					0.0136	0.0762	0.0832	0.0444	0.380	9980.0	
Plover		2/2			0.0199	0.0751	0.0821	0 0466	0.0.0	0.0855	
Lapwing		6	3	1.465	0.0121	0.0684	0.0746	0.0470	0.372	0.0847	
Falcon	_		-	503	0.0120	0.0673	0.0735	0.0494	0.011	0.0837	
Bluebird				5.5	0.0109	0.0623	8290.0	0.0498	0.365	0.0829	
	8 000'961'7	84/19			0.000	0.0612	0.0667	0.0523	0.358	0.0822	
					00000	0.0476	0.0515	0.0586	0.344	0.0514	
				_		_	_		***	0.0776	

[†]Most used multilayer sizes. [‡]Data, by permission, from Aluminum Association, Aluminum Electrical Conductor Handbook, 2nd ed., Washington, D.C., 1982.

TABLE A.4 Inductive reactance spacing factor X_d at 60 Hz \dagger (ohms per mile per conductor)

	Inches			-				-				
Feet	0	7	2	8	₹.	5	9	7	8	6	10	11
0-		-0.3015	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.1682	-0.1333	-0.1062	-0.084Ĭ	-0.0654	-0.0492	-0.0349	-0.0221	-0.0106

[†]Most used multilayer sizes. [†]Data, by permission, from Aluminum Association, sluminum Electrical Conductor Handbook, 2nd ed., Washington, D.C., 1982.

	11	1	0.1299 0.1657 0.1933 0.2347 0.2347							
	. 10	-0.0221	0.1264 0.1631 0.1912 0.2140 0.2332 0.2498			Ź		;		
	6	-0.0349	0.06/9 0.1227 0.1891 0.2123 0.2317 0.2485	•						
	00	-0.0492	0.0620 0.1190 0.1577 0.1869 0.2105 0.2302					· .		
	-	0 0654	0.0558 0.1152 0.1549 0.1847 0.2087 0.2287 0.2458			, ,				
-	-	9	0.0841 0.0492 0.1112 0.1520 0.1825 0.2069 0.2271 0.2445	At 60 Hz, in Ω/mi per conductor $X_d = 0.2794$ log d $d = 8eparation$, if $d = 8eparation$, if For three-phase lines $d = Deq$						
Separation		22	-0.1062 0.0423 0.1071 0.1491 0.2050 0.2256 0.2431			0 Hz, in Ω/mi pe $X_d=0.2794$ log $X_d=0.2794$ log $d=\mathrm{separation}$ three-phase lines $d=Deq$,			
		4	-0.1333 0.0349 0.1028 0.1461 0.1779 0.2031 0.2240			At 60 7 For t				
		3	-0.1682 0.0271 0.0984 0.1430 0.2012 0.2224 0.2404							
Learnan Co.		2	-0.2174 0.0187 0.0938 0.1339 0.1732 0.2207 0.2390							
live rear		1	-0.3015 0.0097 0.0891 0.1366 0.1707 0.11973 0.2191				2440	66248824	45 76 06 64	992 519 572 597
Inductive	Inches	0	0.0841 0.1333 0.1682 0.1953 0.1953	0.2523 0.2666 0.2794 0.2910	0.3112 0.3202 0.3286	17 0 3438 18 0 3507 19 0 3507 20 0 3635 21 0 3635 22 0 3805 23 0 3805 24 0 3805 25 0 3805	0.399(0.408) 0.412 0.415 0.416	0.424 0.427 0.431 0.434 0.434	0.44 0.45 0.45 0.45	0.45 0.45 0.46 0.46

ion's state ector al nis his

was he ırth Э

าต

TABLE A.5 Shunt capacitance-reactance spacing factor X_d at 10 Hz (megaohm-miles per conductor)

			11	-0.0026 0.0193 0.0318 0.0405 0.0473 0.0527		
			10	-0.0054 0.0180 0.0309 0.0399 0.0467 0.0523 0.0523		
			6	-0.0085 0.0166 0.0300 0.0392 0.0462 0.0463 0.0519		
			80	-0.0120 0.0152 0.0291 0.0385 0.0457 0.0515 0.0563		
				-0.0160 0.0136 0.0282 0.0379 0.0452 0.0510 0.0559	tor.	
Separation	Inches		6	-0.0206 0.0120 0.0272 0.0372 0.0446 0.0506 0.0555	At 60 Hz, in M3-mi per conductor $X_d' = 0.06831 \log d$ For three-phase lines $d = Deq$	
	II		5	-0.0260 0.0103 0.0263 0.0365 0.0441 0.0501 0.0552	At 60 Hz, in MΩ·mi per Xd' = 0.06831 log d d = separation, ft For three-phase lines d = Deq	
		4	4.	-0.0326 0.0085 0.0251 0.0357 0.0435 0.0497 0.0591	At 60 H	
		6	9	-0.0411 0.0066 0.0241 0.0350 0.0429 0.0429 0.0544 0.0588		
		2		-0.0532 0.026 0.0229 0.0342 0.0487 0.0487 0.0540		
		1	0.00	0.0024 0.0024 0.0334 0.0334 0.0417 0.0482 0.0536 0.0538		
		0		0.0206 0.0326 0.0326 0.0411 0.0478 0.0532 0.0577 0.0657	0.0533 0.0731 0.0751 0.0751 0.0783 0.0823 0.0828 0.0828 0.0828 0.0828 0.0937 0.0943 0.0943 0.0943 0.0943 0.0943 0.0943 0.0943 0.0943 0.0955 0.0955 0.0955 0.0955 0.0965 0.0978	
	Feet				45 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

From Electrical Transmission and Distribution Reference Book, by permission of the ABB Power T & D Company, Inc. Sh Un

TABLE A
ABCD (

. £