

Hoare style program verification

Abhik Roychoudhury National University of Singapore

IISc Summer Course 2007 by Abhik Roychoudhury

Remarks

- SW Model Checking
 - Automated
 - Reason about transition systems.
 - Abstractions can make the reasoning imprecise albeit conservative.
- Theorem Proving
 - User-guided
 - Reason about programs.
 - Exact reasoning.

IISc Summer Course 2007 by Abhik Roychoudhury

Remarks

- SW Model Checking
 - Abstractions designed for a given program and/or property.
 - Path-sensitive.
 - False alarms, but because abstraction was coarse
 - Property required.
- Static Analysis
 - Abstract domain fixed for all programs in a PL, depending on the analysis performed.
 - Usually analysis results of diff paths are merged.
 - Hence false alarms
 - Abst. domain all imp.

IISc Summer Course 2007 by Abhik Roychoudhury

Remarks

- The approach of developing proof rules for reasoning about language constructs is radically different from model checking
 - Reason about programs (not transition systems)
 - Non-mechanized.
 - Notion of distinguished control locations ingrained
 Reason about pre- and post-conditions holding before and after execution of a block of code.
- · Consider sequential programs in this lecture
 - Can extend to develop proof rules for multithreaded programs.

IISc Summer Course 2007 by Abhik Roychoudhury

Hoare triple

- {Pre} P {Post}
 - If P is run from a state where Pre holds and P terminates, then Post holds in the end-state [Partial correctness]
 - If P is run from a state where Pre holds, then P terminates and Post holds in the end-state [Total correctness]
 - A Hoare triple involving program P is a specification about P.

IISc Summer Course 2007 by Abhik Roychoudhury

Trivial example

- Say P is while true do x = 0 endwhile
- P is partially correct w.r.t. any specification of the form {Pre} P {Post}
- P is not totally correct w.r.t. any specification of the form {Pre} P {Post}
- We will develop a proof system for reasoning about partial correctness
 - First step to reasoning about total correctness

Notations

- |-par {Pre} P {Post}
 - The Hoare triple can be shown to be partially correct in our proof system
- |= |= | Pre Post
 - The Hoare triple is partially correct.
- |-tot {Pre} P {Post}, |=tot {Pre} P {Post}
 - Similar
 - Standard notions of soundness/completeness

IISc Summer Course 2007 by Abhik Roychoudhury

Factorial program

- $\{x \geq 0\}$
- $\{x \ge 0\}$
- /* x is input */
- /* x is input */
- y = 1; z = 0;
- y = 1;
- while (z != x) do
- while (x != 0) do
- z = z + 1;y = y *z;
- y = y *x;
- y y
- x = x 1;
- endwhile
- endwhile
- { y = x! }
- { ??? }

IISc Summer Course 2007 by Abhik Roychoudhury

The problem

- x was destructively updated in Program2
 - In the end-state, we cannot say y = x!
 - To state correctness conditions, not enough to use program variables
 - Need to remember the original value of x
 - {x =x0/\ x≥0} Program2 {y = x0!}
 - x0 is a universally quantified logical variable.

IISc Summer Course 2007 by Abhik Roychoudhury

Logical variables

- {x =x0 ∧ x≥0} Program2 {y = x0!}
 - For all x0, if x = x0 and x ≥ 0 and we run Program2 such that it terminates, we will have y = x0! in the end state.
 - These variables appear only in the logical formulae of pre- and post-conditions.
 - Never appear in the program being verified.
- We now present the proof rules of our proof system.

IISc Summer Course 2007 by Abhik Roychoudhury

Proof Rules

Conclusion

Both premises and conclusion are Hoare triples.

If premises specify properties about programs C1, C2, ..., Cn

-- the conclusion specifies a property about a bigger program C typically containing C1,C2,...,Cn

IISc Summer Course 2007 by Abhik Roychoudhury

Rule for Assignment

 $\{\psi\,[\,x\to E]\,\}\ x=E\ \{\psi\,\}$

No premises in this rule.

To prove ψ after the assignment, ψ [$x\to E]$ should hold before the assignment.

Why not forwards?

- {φ} x = E {ψ}
 - \blacksquare How to define ψ in terms of ϕ ?
 - Cannot be achieved mechanically in general
 - The backwards formulation of the rule allows deducing Hoare triple by mechanically substituting
 - Instead define φ in terms of ψ

IISc Summer Course 2007 by Abhik Roychoudhury

Sequential Composition

{φ}C1 {ψ1} {ψ1} C2 {ψ}

 $\{\phi\}$ C1; C2 $\{\psi\}$

Need assertion for end-state of C1 and begin-state of C2.

IISc Summer Course 2007 by Abhik Roychoudhury

If-statement

{φ∧b}C1{ψ}

 $\{\phi \land \neg b\} \ C2 \, \{\, \psi \, \}$

{φ} if b then C1 else C2 {ψ}

Involves a case-split.

Pre-condition typically does not say anything about b Needs to augmented with truth/falsehood of b.

IISc Summer Course 2007 by Abhik Roychoudhury

While statement

 $\{\,\psi \wedge b\}\,C\,\,\{\psi\,\}$

 $\{\psi\}$ while b do c $\{\psi \land \neg b\}$

 ψ is the loop invariant.

Rule for partial correctness (number of times the loop executes/ termination is not known/ not guaranteed).

IISc Summer Course 2007 by Abhik Roychoudhury

Implications

 $\phi' \Rightarrow \phi \quad \{\phi\} C \{\psi\}$

 $\psi \Rightarrow \psi'$

 $\{\phi'\} \ C \ \{\psi'\}$

- 1. Strengthening the pre-condition
- 2. Weakening the post-condition

Why do we need this rule?

IISc Summer Course 2007 by Abhik Roychoudhury

Example 1

- $\{y < 2\}$ y = y + 1 $\{y < 5\}$
- Proof:
- {y < 2}
- {y +1 < 5} *implication rule*
- y = y+1
- {y < 5} assignment rule


```
Factorial program

• {true}
• y = 1; z = 0; Guess the loop invariant
• {y = z!} y = z!
• while (z!= x) do
• z = z + 1; y = y *z
• endwhile
• {y = x!}

IISc Summer Course 2007 by
Abhik Roychoudhury
```

```
Checking the post-loop states

\{\text{true}\} \qquad y = z! \land \neg (z \neq x)
y = 1; z = 0; \qquad = y = z! \land z = x
\{y = 0!\} \qquad = y = x!
while (z \mid = x) do
z = z + 1; y = y^*z;
endwhile
\{y = z! \land \neg (z \neq x)\} \qquad \textit{Implication}
\{y = x!\}
IISc Summer Course 2007 by
Abbik Roychoudhury
```

```
Verifying the invariant

{rue}
y=1; z=0;
\{y=0!\}
while \{z!=x\} do
\{y=z! \land z=x+1;
y=y^2z;
\{y=z!\}
endwhile

IISc Summer Course 2007 by
Abhik Roychoudhury
```


Proof structure

Step 4: base case of the proofThe loop invariant itself is the ind. Hypothesis, no

IISc Summer Course 2007 by Abhik Roychoudhury

strengthening involved in this proof.

- The loop invariant must be strong enough to be "proved" an invariant.
 - The while rule is essentially accomplishing induction on # of loop iterations.
 - Often guided by the choice of the post-condition after the loop
 - Our post-condition was y = x!
 - Since z = x at loop exit and z is modified at every loop iteration, choose y = z! as invariant.

Proving total correctness

- Our proof system only shows partial correctness of triples $\{\phi\}$ P $\{\psi\}$
- To prove total correctness
 - Need to prove termination
 - Only the proof rule for while statement needs to change.
 - To prove termination
 - Find a non-negative integer quantity which decreases in every iteration (call it variant)

IISc Summer Course 2007 by Abhik Roychoudhury

Finding variant

- a = x; y = 1;
- while (a > 0) do
- y = y*a; a = a-1;
- endwhile
- Trivial to find the variant
 - a in this case

IISc Summer Course 2007 by Abhik Roychoudhury

Finding variant

- y= 1; z = 0;
- while (z != x) do
- z = z + 1; y = y*z
- endwhile
- Variant is x z (lifted from loop guard here)
- In general, finding variant cannot be automated even if the loop is guaranteed to terminate.

IISc Summer Course 2007 by Abhik Roychoudhury

New Proof Rule

 $\{\eta \wedge b \wedge (E = E0 \ge 0)\} \quad C \quad \{\eta \wedge (E0 > E \ge 0)\}$

 $\{ \eta \land E \ge 0 \}$ while b do c $\{ \eta \land \neg b \}$

E is the variant.

If it is E0 before the loop, it strictly decreases but remains non-

Of course E should be non-negative before the loop starts. IISc Summer Course 2007 by Abhik Roychoudhury

Factorial program

- $\{ x \ge 0 \}$
- y = 1; z = 0;

Use the variant x - z to prove termination

while (z != x) do

Use the loop invariant y =z! as before z = z + 1;for proving partial correctness

y = y*z;

- endwhile
- $\{ y = x! \}$

IISc Summer Course 2007 by Abhik Roychoudhury

 $\{y = x!\}$

Reasoning about the loop

 $\{y = z! \land x - z \ge 0\}$ while (x! = z) do z = z + 1; y = y * z; endwhile; $\{ y = z! \land x = z \} \leftarrow$

From the conclusion of the while rule (total correctness)

-- How to show the premise ?

