

FCC TEST REPORT

For

Flint Rehabilitation Devices LLC

Cycli

Model No.: FF-CYC-A1

Prepared For : Flint Rehabilitation Devices LLC

Address : 18023 Sky Park Circle, Ste.H2, Irvine CA 92614

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180402004-01

Date of Test : Apr. 02~May 30, 2018

Date of Report : May 31, 2018

Contents

1. General Information			10010 A		5
1.1. Client Information	iten Ant		Hotek	Aupole,	Anu 5
1.2. Description of Device (EUT)	wotek	Nipote.	Aur Lok	"potek	Anbo
1.1. Client Information	Test	hotek	Anbo	Wotek.	5
1.4. Description of Test Modes	Anbo	w. Wotek	Aupote.	Anv	,x60 ^{teX}
1.4. Description of Test Modes	Anbore	An	od,,,,,,,,	iek Vupo	7
1.7. Test Equipment List	Chote	Anbo		note ^K An'	ote Ani 9
1.8. Measurement Uncertainty		otek An	pore Vi		
1.9. Description of Test Facility	An.		botek	Anbo	10
1.7. Test Equipment List	botek l	inpo	"otek	Vupo _{fe} ,	Anu
3. Conducted Emission Test	, tootek	Anboic	An.	abotek	Anboo
3.1. Test Standard and Limit	YII.	potek	Anbe	.y	12
3.1. Test Standard and Limit	Anbe	, , , , , , , , , , , , , , , , , , ,	sk Aupol	An	
3.3. Test Procedure	Anbols	Alli	No.	ooten Ant	12
3.4. Test Data	ek anb	oter An		,otek	12
4. Radiation Spurious Emission and Band Ed	dge	botek	Aupore	An	17
4.1. Test Standard and Limit	bor b	n.	anbotek	Anbo	17
4.2. Test Setup	Aupoter	Aupa	botek	Anbore	17
4.3. Test Procedure	botek	Anbor	ν	sk abote	18
4.4. Test Data	Ar.	anbotte.	Anba		otek Anboro
4.1. Test Standard and Limit	And		otek Anl	or Mr.	26
5.1. Test Standard and Limit	ek Anbe	V. V.	teV	Anboten A	26
5. Maximum Peak Output Power Test	otek A	pote,	YUD. FOR	botek	
5.3. Test Procedure	Lek .	botek	Aupor	Ar. otek	26
5.4. Test Data	Anbo.	k,	Anbote,	Anu	26
5.3. Test Procedure	Vupore.	Anu	k bote	k Aupor	29
6.1 Test Standard and Limit					29
6.2. Test Setup		iek Aup	ote. Yur	Ve/k	
6.3. Test Procedure	Anu	rek	abotek I	YUPO, K	
6.4. Test Data	otek Ar	100 K	, otek	Aupote.	29
7. Power Spectral Density Test	botek	Anbore.	Ann	abotek	Anbos
7.1. Test Standard and Limit	YII.	anbotek	Anbo	k hotek	
7.2. Test Setup	Anbe	, notel	Anbore	An	
7.3. Test Procedure	Anboic	An	do. 491	otek Anbo	32
7.4. Test Data	k anbot	'er Vup.		hotek A	
8. 100kHz Bandwidth of Frequency Band Ed	dge Requirer	nent	nboto A	'u.	35
8.1. Test Standard and Limit	0 1 M	otek.	anbotek	Anbo	35
8.2. Test Setup.	nbotek	Anbo	, botek	Anbore	
8.3. Test Procedure	,botek	Anbor	Air	s anbotek	35
8.4. Test Data	A. otek	Anbote	Ando	ok ho	ek Anbous
6.3. Test Procedure	Aug	, , , , , , , , , , , , , , , , , , ,	tek Anb	Dr. William	
9.1. Test Standard and Requirement	k Anbo		otek v	upoter Ar	39
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			AV.		1-0,

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2ALVF-FFCYCA1 Page 3 of 51 Report No.: SZAWW180402004-01

Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	- ok
9.2. Antenna Connected Construction	39
APPENDIX 1 TEST SETUP PHOTOGRAPH	40
APPENDIX II EXTERNAL PHOTOGRAPH	42
APPENDIX III INTERNAL PHOTOGRAPH	46.46
k Jotek Anbor All lek botel Anb Lek Abort	
nbote And tek nbotek Anbot K Notek Anboten Anbo	
Ar sotek Anbote And sek spotek Anbot An otek anbotek Ant	
Anbot K A Jotek Anbote Anbote Anbote Anbote Anbote Anbote Anbote Anbote Anbote	
And Lek botek Anbort All stek hotek Anbo k hotek	
Anbotek	
Anbo ak botek Anbote Anb stek spotek Anbo ak sotek Ar	
	nbotek
Ambotek Ambote	
or Ar. Botek Anboten Anb tek botek Anbote Anb tek anbotek	
Ambotek Ambote	

TEST REPORT

Applicant : Flint Rehabilitation Devices LLC

Manufacturer : Shenzhen Tailhoo Technology Co LTD

Product Name : Cycli

Model No. : FF-CYC-A1

Trade Mark : N/A

Date of Test:

Rating(s) Input: AC 120V, 60Hz for adapter, 1A (via adapter input: AC 100~240V, 50/60Hz,

0.1A; output: 5V 1A; Battery DC 3.7V 1500mAh inside)

Test Standard(s) : FCC Part15 Subpart C 2017, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v04

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Apr. 02~May 30, 2018

WBOTES	Winkey Wang
Prepared by : Ambotick	Anbotek Anbotek Anbotek Anbotek Anbotek
FICE	(Tested Engineer / Winkey Wang)
hotek Anbotek Anbotek	Antoriek Antoriek Langey Mortek T. Antoriek Antoriek
Reviewer:	(Project Manager / Tangay, T)
	stek Anbot Ak Anbote
Approved & Authorized Signer:	abotek Anbotek Anbotek Anb
	(Manager / Tom Chen)

1. General Information

1.1. Client Information

Applicant	:	Flint Rehabilitation Devices LLC
Address	:	18023 Sky Park Circle, Ste.H2, Irvine CA 92614
Manufacturer	:	Shenzhen Tailhoo Technology Co LTD
Address	:	Floor1st&2nd,Buiding 5th,Tang East,Honggang industrial area,Bao'an,Shenzhen

1.2. Description of Device (EUT)

Product Name	:	Cycli	
Model No.	:	FF-CYC-A1	Anbotek Anbotek Anbotek
Trade Mark	:	N/A	Anbotek Anbotek Anbote Anbote
Test Power Supply	:	AC 120V, 60Hz for adapter / AC DC 3.7V Battery inside	C 240V, 60Hz for adapter
		Operation Frequency:	2402MHz~2480MHz
		Transfer Rate:	1 Mbits/s
Product		Number of Channel:	40 Channels
Description	;	Modulation Type:	GFSK
	A	Antenna Type:	Ceramic Antenna
		Antenna Gain(Peak):	se'0 dBi Ambotek Ambo

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

1, 2	3.6	- Oly	200	-00	Part .	-10	- NP
Adapter	:	Input: 100-240V~50/6	60Hz 0.1A	An	Anbotek	Anbo	ΙΧ.
		Output: DC 5V, 1A					De

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00
Mode 2	Anbotek Anbotek Anbotek Anbotek
Mode 3	CH39 Anbotek Anbotek Anbotek
Mode 4	Keeping TX+ Charging Mode

For Conducted Emission						
Final Test Mode Description						
Mode 4	Keeping TX+ Charging Mode					

For Radiated Emission								
Final Test Mode	Description							
Mode 1	Motek Anbote CH00 And tek opotek A							
Mode 2	bote And tek CH19 Ando K Motek							
Mode 3	CH39							
Mode 4	Keeping TX+ Charging Mode							

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
 - (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

Channel	Freq.								
	(MHz)								
00	2402	09	2420	18	2438	27	2456	36	2474
nbot 01	2404	10	2422	19	2440	28	2458	37	2476
02	2406	11	2424	20	2442	29	2460	38	2478
03	2408	12 An	2426	21	2444	30	2462	39	2480
04	2410	oote 13	2428	22	2446	31	2464		ATTO
05Ano	2412	14	2430	23	2448	32	2466		V Anb
06	2414	15 tek	2432	24	2450	33	2468		
07	2416	16	2434	ote 25	2452	34	2470		
08	2418	17nb00	2436	26	2454	35	2472		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

1.6. Description Of Test Setup

CE

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
itek 1. nbotek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2,00	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3. №	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year
5.	Spectrum Analysis	Agilent	N9038A	MY53227295	Nov. 17, 2017	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 17, 2017	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Nov. 17, 2017	1 Year
8.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year
9.×	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
10.	Loop Antenna	Schwarzbeck	HFH2-Z2	100047	Nov. 17, 2017	1 Year
11.,,,	Horn Antenna	Schewarzbeck	BBHA9170	9170-375	Nov. 17, 2017	1 Year
12.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
13.	EMI Test Software EZ-EMC	SHURPLE	N/A	Annote N/A	N/A	N/A
14.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 18, 2017	1 Year
15.nb	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 17, 2017	1 Year
16.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 17, 2017	1 Year
17.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
18.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 18, 2017	1 Year
19.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 18, 2017	1 Year
20.	DC Power Supply	LW	TPR-6410D	349315	Nov. 01, 2017	1 Year
21.	Constant Temperature Humidity Chamber	Sertep	ZJ-HWHS80 B	ZJ-17042804	Nov. 01, 2017	1 Year

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	nbotek A	inpose, Y work	nlo
		Ur = 3.8 dB (Vertical)	Anbotek	Anboto Anb Anb	-
		Anbotek And hotek	Anbotek	Anbort Am abotek	
Conduction Uncertainty	:	Uc = 3.4 dB	Anbote	Anbo. tek Anbotel	

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(3)	Conducted Peak Output Power	PASS
15.247(a)(2)	6dB Occupied Bandwidth	PASS
15.247(e)	Power Spectral Density	PASS
15.247(d)	Band Edge	PASS
Remark: "N/A" is an abbro	eviation for Not Applicable.	Anboten K Anbe

3. Conducted Emission Test

3.1. Test Standard and Limit

S	Test Standard	FCC Part15 Section 15.2	07 Anbott Amb	Anbotek Anbot Atek				
		Eraguanav	Maximum RF Line Voltage (dBuV)					
		Frequency	Quasi-peak Level	Average Level				
	Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
6		500kHz~5MHz	Anbotek 56 book sek	abotek A6 Andrew				
		5MHz~30MHz	Anbotek 60 Anbotek	abotek 50 hbotes Ans				

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.:25°C Hum.:50%

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.:25°C Hum.:50%

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.:25 °C Hum.:50%

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Tem.:25°C Hum.:50%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.2	209 and 15.205	Andhotek	Anbotek	Iupo tek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	obotek - Anbo	ro Aus	300 Noote
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek A	1000 Pur	botek 30 Anb
	1.705MHz-30MHz	30	Anbatek	Anbore -	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3.ek
	88MHz~216MHz	150	43.5	Quasi-peak	3 _{botek}
	216MHz~960MHz	200	100 And 46.0	Quasi-peak	tek 3 nbotek
	960MHz~1000MHz	500	54.0	Quasi-peak	nek 3
	Above 1000MHz	500	54.0	Average	3
	Above 1000MHZ	lpotek - Yupoca	74.0	Peak	Ano 3

Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying

aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Results (30~1000MHz)

Job No.: SZAWW180402004 Temp.(°C)/Hum.(%RH): 24.3 °C/55%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: Keeping TX+ Charging Mode Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW180402004 Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: Keeping TX+ Charging Mode Polarization: Vertical

Test Results (1GHz-25GHz)

Test Mode:	ΓX Mode			Test	channel: Lowe	st		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	38.34	34.04	6.58	34.09	44.87	74.00	-29.13	Viode
7206.00	32.51	37.11	7.73	34.50	42.85	74.00	-31.15	nbVel
9608.00	32.08	39.31	9.23 And	34.79	45.83	74.00	-28.17	V
12010.00	***************************************	stek C	abotek p	upor	An.	74.00	Aupo	V
14412.00	* Anb	nek /	nbotek	Anbotek	Ann	74.00	Aupor	vek V
4804.00	42.83	34.04	6.58	34.09	49.36	74.00	-24.64	Н
7206.00	34.36	37.11	7.73	34.50	44.70	74.00	-29.30	H
9608.00	31.60	39.31	9.23	34.79	45.35	74.00	-28.65	Aupore H
12010.00	* Anbote	Anbe	rek VIII	botek	Anbotek	74.00	Anbotek	PH
14412.00	kek * Anbo	Vek V	'por b	abotek	Anbotek	74.00	Anbotek	HA
			A	verage Valu	e		10.	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	26.96	34.04	6.58	34.09	33.49	54.00	-20.51	V
7206.00	21.08	37.11	7.73	34.50	31.42	54.00	-22.58	V
9608.00	20.10	39.31	9.23	34.79	33.85	54.00	-20.15	V
12010.00	ootek * Ar	loors rek	Anbotek	Anbotek	Anbe	54.00	Anbo	V
14412.00	Anbotek	Aupor	Annabotek	Anbott	Anbo	54.00	rek An	V
4804.00	31.30	34.04	6.58	34.09	37.83	54.00	-16.17	Anboter
7206.00	23.33	37.11	7.73	34.50	33.67	54.00	-20.33	ÞΉ
9608.00	19.91	39.31	9.23	34.79	33.66	54.00	-20.34	Han
12010.00	tek *	potek	Aupore.	Androk	Anbotek	54.00	All	Н
14412.00	*	botek	Anboten	Ano	k anbote	54.00	N. Pili	o ^{tek} H

Test Results (1GHz-25GHz)

Test Mode:	ΓX Mode			Test	Test channel: Middle					
				Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
4880.00	37.14	34.38	6.69	34.09	44.12	74.00	-29.88	Viode		
7320.00	31.72	37.22	7.78	34.53	42.19	74.00	-31.81	nbVel		
9760.00	31.37	39.46	9.35 And	34.80	45.38	74.00	-28.62	V		
12200.00	***************************************	stek C	abotek p	upor	An.	74.00	Aupo	V		
14640.00	* Anb	nek /	nbotek	Anbotek	Ann	74.00	Anbos	vek V		
4880.00	41.40	34.38	6.69	34.09	48.38	74.00	-25.62	Н		
7320.00	33.46	37.22	7.78	34.53	43.93	74.00	-30.07	H		
9760.00	30.78	39.46	9.35	34.80	44.79	74.00	-29.21	Auport H		
12200.00	* Anbore	Anbo	rek br.	botek	Anbotek	74.00	Anbotek	PĤ		
14640.00	kek * Anbo	Vek V	'por b	abotek	Anbotek	74.00	Anbotek	HA		
			A	verage Valu	e					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
4880.00	26.00	34.38	6.69	34.09	32.98	54.00	-21.02	V		
7320.00	20.44	37.22	7.78	34.53	30.91	54.00	-23.09	V		
9760.00	19.52	39.46	9.35	34.80	33.53	54.00	-20.47	V		
12200.00	ootek * Ar	loors rek	Anbotek	Anbotek	Anbe	54.00	Anbo	V		
14640.00	Anbotek	Aupor	Annabotek	Anbott	Anbo	54.00	tek An	V		
4880.00	30.21	34.38	6.69	34.09	37.19	54.00	-16.81	Anboter		
7320.00	22.60	37.22	7.78	34.53	33.07	54.00	-20.93	ÞΉ		
9760.00	19.24	39.46	9.35	34.80	33.25	54.00	-20.75	H		
12200.00	tek *	potek	Aupore.	Androk	Anbotek	54.00	All	Н		
14640.00	*	botek	Anboten	Ano	k anbote	54.00	W. W.	o ^{tek} H		

Test Results (1GHz-25GHz)

Test Mode:	ΓX Mode			Test	channel: Highe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	36.52	34.72	6.79	34.09	43.94	74.00	-30.06	vote.
7440.00	31.31	37.34	7.82	34.57	41.90	74.00	-32.10	Vek
9920.00	31.01	39.62	9.46	34.81	45.28	74.00	-28.72	V
12400.00	***************************************	tek	upotek h	upote	Andhotek	74.00	Aupo	V
14880.00	* And	ciek	nbotek	Aupotsk	Aur	74.00	Aupo	ek V
4960.00	40.65	34.72	6.79	34.09	48.07	74.00	-25.93	Н
7440.00	33.00	37.34	7.82	34.57	43.59	74.00	-30.41	H
9920.00	30.35	39.62	9.46	34.81	44.62	74.00	-29.38	Aupor
12400.00	* Anbote	Anbo	rek by	obotek	Anbotek	74.00	Anbotek	H
14880.00	lek * Anb	Jek bi	loo. b	- abotek	Anbotek	74.00	Anbotek	HAT
200			A	verage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	25.55	34.72	6.79	34.09	32.97	54.00	-21.03	V
7440.00	20.13	37.34	7.82	34.57	30.72	54.00	-23.28	V
9920.00	19.25	39.62	9.46	34.81	33.52	54.00	-20.48	V V
12400.00	potek * A	100s	An abotek	Anbotek	Aupr	54.00	Anbo	V
14880.00	Anbotek	Aupore	An	Anbote	Amb	54.00	rek An	V
4960.00	29.70	34.72	6.79	34.09	37.12	54.00	-16.88	Anboten H
7440.00	22.25	37.34	7.82	34.57	32.84	54.00	-21.16	ρĤ
9920.00	18.92	39.62	9.46	34.81	33.19	54.00	-20.81	H _i n ^l
12400.00	stek *	potek	Aupote.	And	Anbotek	54.00	A short	Н
14880.00	*	botek	Anbote.	Anv	k anbote	54.00	ok h.	ote ^K H

Remark:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Radiated Band Edge:

Test Mode: 0	GFSK			Test	channel: Lowe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	45.71	29.15	3.41	34.01	44.26	74.00	-29.74	H'ode
2400.00	62.91	29.16	3.43	34.01	61.49	74.00	-12.51	Hek
2390.00	46.53	29.15	3.41 And	34.01	45.08	74.00	-28.92	V
2400.00	65.25	29.16	3.43	34.01	63.83	74.00	-10.17	V
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	35.62	29.15	3.41	34.01	34.17	54.00	-19.83	Anboto
2400.00	47.03	29.16	3.43	34.01	45.61	54.00	-8.39	pH ^{oo}
2390.00	35.77	29.15	3.41	34.01	34.32	54.00	-19.68	V
2400.00	43.95	29.16	3.43	34.01	42.53	54.00	-11.47	e ^K V

- NP	Transfer de la constant de la consta	-010	011		104	DO. Pr.	4.7	26.
Test Mode: 0	GFSK			Test	channel: High	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	48.15	29.28	3.53	34.03	46.93	74.00	-27.07	o ^{teK} H
2500.00	46.79	29.30	3.56	34.03	45.62	74.00	-28.38	whoth k
2483.50	49.47	29.28	3.53 Anbo	34.03	48.25	74.00	-25.75	Votel
2500.00	48.05	29.30	3.56 N	34.03	46.88	74.00	-27.12	V
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	38.48	29.28	3.53	34.03	37.26	54.00	-16.74	Aupole H
2500.00	36.08	29.30	3.56	34.03	34.91	54.00	-19.09	MHOLON
2483.50	39.93	29.28	3.53	34.03	38.71	54.00	-15.29	Valoo
2500.00	36.24	29.30	3.56	34.03	35.07	54.00	-18.93	V N

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	47 (b)(3)	Andhotek	Anbotek	Anbo	Α.
Test Limit	30dBm	Anbotek	Anborook	An	Anbotek	Anbo	f- 1

5.2. Test Setup

5.3. Test Procedure

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW ≥DTS bandwidth.
- 2. Set the VBW≥3*RBW.
- 3. Set the span \geq 3*RBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode	:	CH Low ~ CH High
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature	:	24℃
Test Result	:	PASS	Humidity	:	55%RH

Chan	nel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results
No.	2402	-4.985	30	PASS
Aupor	2440	-4.817	30 Model	PASS
Anbore	2480	-5.750	hotek 30 Anbote	PASS

CH: Low

CH: Middle

CH: High

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	47 (a)(2)	Andhotek	Anbotek	Anbotatek	Po.
Test Limit	>500kHz	Anbotek	Anbore	An	Anbotek	Anboate	4

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, VBW \geqslant 3*RBW = 300kHz,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH Low ~ CH High

Test Voltage : AC 120V, 60Hz for adapter Temperature : 24°C
Test Result : PASS Humidity : 55%RH

Channel	Frequency(MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	701.2	K And	PASS
Middle	2440	713.7	>500	PASS
High	2480	720.7	Aupoten Aupo	PASS

CH: Low

CH: Middle

CH: High

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	47 (e)	Andhotek	Anbotek	Anbo	Α,
Test Limit	8dBm	Anbotek	Anboro	Anhotek	Anbotek	Anboate	Y- Y

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item	:	Power Spectral Density	Test Mode	:	CH Low ~ CH High
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature	:	24℃
Test Result	:	PASS	Humidity	:	55%RH

Cl. 1	Frequency	PPSD	Limit	Results	
Channel	(MHz)	(dBm/3KHz)	(dBm/3KHz)		
Low	2402	-20.392	8.00	PASS	
Middle	2440	-20.227	8.00	PASS	
High	2480	-21.011	8.00	PASS	

CH: Low

CH: Middle

CH: High

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Band edge : CH Low ~ CH High

Test Voltage : AC 120V, 60Hz for adapter Temperature : 24° C Test Result : PASS Humidity : 55° RH

Frequency Band (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Results
2400	68.348	>20	PASS
2483.5	61.942	>20	PASS

CH: Low

CH: High

Conducted Emission Method

CH: Low

CH: Middle

CH: High

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to answer that no entenne other than that formished
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but
	the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

9.2. Antenna Connected Construction

The bluetooth antenna is a Ceramic Antenna which permanently attached, and the best case gain of the antenna is 0 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Conducted Emission Test

Photo of Radiation Emission Test

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2ALVF-FFCYCA1 Page 41 of 51 Report No.: SZAWW180402004-01

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

End of report