1 Bayesian Regression	where $z_{w,b}(x) = \sqrt{2}cos(w^Tx + b)$. I can MC	Detailed Blanced Equation:	
$w \sim N(0, \sigma_p^2 I), \ \epsilon \sim N(0, \sigma_n^2 I), \ y = Xw + \epsilon$	extract features z. If # features is \ll n then this	P(x x') is the transition model of a MC:	Dropouts Regularization: Random ignore no-
$y w \sim N(Xw, \sigma_n^2 I)$	is faster $(X^T X \text{ vs } XX^T)$	if $R(x)P(x' x) = R(x')P(x x')$ then R is the limit	des in SGD iteration: Equavalent to VI with
$w y \sim N((X^TX + \lambda I)^{-1}X^Ty, (X^TX + \lambda I)^{-1}\sigma_n^2)$	Inducing points: We a vector of inducing	distribution of the MC	$Q = \left\{ q(\cdot \lambda) = \prod_{j} q_{j}(\theta_{j} \lambda), \ \lambda \in \mathbb{R}^{d} \right\}$
2 Kalman Filter	variables <i>u</i>	Metropolis Hastings Algo: Sample from a MC	where $q_j(\theta_j \lambda) = p\delta_0(\theta_j) + (1-p)\delta_{\lambda_j}(\theta_j)$
$\begin{cases} X_{t+1} = FX_t + \epsilon_t & \epsilon_t \sim N(0, \Sigma_x) \\ Y_t = HX_t + \eta_t & \eta_t \sim N(0, \Sigma_y) \end{cases} X_1 \sim N(\mu_p, \Sigma_p)$	$f_A _{u} \sim N(K_{Au}K_{u}u^{-1}u, K_{AA} - K_{Au}K_{u}u^{-1}K_{uA})$	which has $P(x) = \frac{Q(x)}{Z}$ as limit dist.	This allows to do Dropouts also in prediction
	$f_* _{u} \sim N(K_{*u}K_{u}u^{-1}u, K_{**} - K_{*u}K_{u}u^{-1}K_{u*})$	Result: $\{X_i\}_{i\in\mathbb{N}}$ sampled from the MC	6.2 MCMC: MCMC but cannot store all the $\theta^{(i)}$:
Then if X_0 is Gaussian then $X_t Y_{1:t} \sim N(\mu_t, \sigma_t)$:	Subset of Regressors (SoR): $\blacksquare \rightarrow 0$	init: $R(x x')$	1) Subsampling: Only store a subset of the $\theta^{(i)}$
$\mu_{t+1} = F \mu_t + K_{t+1} (y_{t+1} - HF \mu_t)$	FITC: ■ → its diagonal	/* Good R choice \rightarrow fast convergence */ init: $X_0 = x_0$	2) Gaussian Aproximation: We only keep:
$\Sigma_{t+1} = (I - K_{t+1}H)(F\Sigma_t F^T + \Sigma_x)$ $K_{t+1} = (F\Sigma_t F^T + \Sigma_t)(F\Sigma_t F$	4 Review of useful concepts and Introduction	for $t \leftarrow 1, 2, \dots$ do	$\mu_i = \frac{1}{T} \sum_{j=1}^T \theta_i^{(j)}$ and $\sigma_i = \frac{1}{T} \sum_{j=1}^T (\theta_i^{(j)} - \mu_i)^2$
$K_{t+1} = (F\Sigma_t F^T + \Sigma_x)H^T (H(F\Sigma_t F^T + \Sigma_x)H^T + \Sigma_y)^{-1}$ 3 Gaussian Processes	4.1 Multivariate Gaussian $f(x) = \frac{1}{2} (x-\mu)^T \Sigma^{-1}(x-\mu)$	$x' \sim R(\cdot, x_{t-1})$	And updete them online.
$f \sim GP(\mu, k) \Rightarrow \forall \{x_1, \dots, x_n\} \ \forall n < \infty$	$f(x) = \frac{1}{2\pi\sqrt{ \Sigma }} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	$\alpha = \min\left\{1; \frac{Q(x')R(x_{t-1} x')}{Q(x_{t-1})R(x' x_{t-1})}\right\}$	Predictive Esnable NNs:
$[f(x_1)f(x_n)] \sim N([\mu(x_1)\mu(x_n)], K)$	Suppose we have a Gaussian random vector $X_V \sim N(\mu_V, \Sigma_{VV})$.	with probability α do	Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1:n}$ be our dataset.
where $K_{ij} = k(x_i, x_j)$	Suppose we take two disjoint subsets of V:	$X_t = x';$	Train θ_i^{MAP} on \mathcal{D}_i with $i = 1,, m$ \mathcal{D}_i is a Bootstrap of \mathcal{D} of same size
3.1 Gaussian Process Regression	$A = \hat{i}_1,, i_k$ and $B = j_1,, j_m$.	otherwise $X_t = x_{t-1}$;	and $p(y^* x^*, \mathcal{D}) \simeq \frac{1}{m} \sum_{i=1}^m p(y^* x^*, \theta_i^{MAP})$
$f \sim GP(\mu, k)$ then: $f y_{1:n}, x_{1:n} \sim GP(\tilde{\mu}, \tilde{k})$	Then, the conditional distribution: $P(X_1 X_2 = X_2) = N(u_1, v_1, v_2, v_3)$ is Gaussian:	Metropolis Adj. Langevin Algo (MALA):	6.3 Model calibration
$\tilde{\mu}(x) = \mu(x) + K_{A,x}^T (K_{AA} + \epsilon I_n)^{-1} (y_A - \mu_A)$	$P(X_A X_B = x_B) = N(\mu_{A B}, \Sigma_{A B})$ is Gaussian:	Energy function: $P(x) = \frac{Q(x)}{Z} = \frac{1}{Z} \exp(-f(x))$	Train \hat{q} on \mathcal{D}_{train}
$\tilde{k}(x, x') = k(x, x') - K_{A,x}^T (K_{AA} + \epsilon I_n)^{-1} K_{A,x'}$	$\mu_{A B} = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B)$ $\Sigma_{A B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$	We chose: $R(x x') = \mathcal{N}(x' - \tau \nabla f(x), 2\tau I)$	Evaluate \hat{q} on $\mathcal{D}_{val} = \{(y', x')\}_{i=1:m}$
Where: $K_{A,x} = [k(x_1, x)k(x_n, x)]^T$	4.2 Convex / Jensen's inequality	Stoch. Grad. Langevin Dynamics (SGLD):	Held-Out-Likelihood $\doteq \log p(y'_{1:m} x'_{1:m}, \mathcal{D}_{train})$
$[K_{AA}]_{ij} = k(x_i, x_j) \text{ and } \mu_A = [\mu(x_1 \dots x_n)]^T$	$g(x)$ is convex $\Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0,1]: g''(x) > 0$	We use SGD to Approximate ∇f . Converges	$\geq \mathbb{E}_{\theta \sim \hat{q}} \left[\sum_{i=1}^{m} \log p(y_i' x_i', \theta) \right] $ (Jensen)
,	$g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$	also without acceptance step Hamilton MC : SGD performance improoved	$\simeq \frac{1}{k} \sum_{j=1}^{k} \sum_{i=1}^{m} \log p(y_i' x_i', \theta^{(j)}), \ \theta^{(j)} \sim \hat{q}$
3.2 Kernels $k(x,y)$ is a kernel if it's symmetric semidefinite	$\varphi(E[X]) \le E[\varphi(X)]$	by adding momentum (consider last step ∇f)	Evaluate predicted accuracy: We divide \mathcal{D}_{val}
positive:	4.3 Kullback-Leiber divergence	Gibbs sampling : Practical when $X \in \mathbb{R}^n$	into bins according to predicted confidence va-
$\forall \{x_1,\ldots,x_n\}$ then for the Gram Matrix	$KL(p q) = \mathbb{E}_p \left[\log \frac{p(x)}{q(x)} \right]$	Used when $P(X_{1:n})$ is hard but $P(X_i X_{-i})$ is easy.	lues. In each bin we compare accuracy with confidence
$[K]_{ij} = k(x_i, x_j) \text{ holds } c^T K c \ge 0 \forall c$	if $p_0 \sim \mathcal{N}(\mu_0, \Sigma_0)$, $p_1 \sim \mathcal{N}(\mu_1, \Sigma_1) \Rightarrow KL(p_0 p_1)$	init: $x_0 \in \mathbb{R}^n$; $(x_0^{(B)} = x^{(B)})$ B is our data	6.4 Review Probability
Some Kernels: (h is the bandwidth hyperp.)	$= \frac{1}{2} \left(tr \left(\Sigma_1^{-1} \Sigma_0 \right) + (\mu_1 - \mu_0)^T \Sigma_1^{-1} (\mu_1 - \mu_0) - k + \log \frac{ \Sigma_1 }{ \Sigma_0 } \right)$	for $t = 1, 2,, do$	Probability space (Ω, F, P) : Set of atomic
Gaussian (rbf): $k(x, y) = \exp(-\frac{\ x - y\ ^2}{h^2})$	$\hat{q} = \arg\min_{q} KL(p q) \Rightarrow \text{overconservative}$	$x_t = x_{t-1}$ with $i \sim \mathcal{U}(\{1:n\} \setminus B) * \mathbf{do}$	events Ω . Set of all non-atomic events
Exponential: $k(x,y) = \exp(-\frac{ x-y }{h})$	$\hat{q} = \arg\min_{q} KL(q p) \Rightarrow \text{overconfident}$	$x_{t-1}^{(i)} \sim P(x^{(i)} x^{(-i)})$	$(\sigma$ -Algebra): $F \in 2^{\Omega}$. Probability measure: $P: F \rightarrow [0,1]$
Linear kernel: $k(x,y) = x^T y$ (here $K_{AA} = XX^T$)	5 Approximate inference		Bayes' rule: $P(B A) = P(A,B)/P(A) =$
	5.1 Laplace Approximation	* if we do it $\forall i \notin B$ no DBE but more practical	$P(A B)P(B)/P(A)$, where $P(A) = \sum_b P(A B)P(A)$
3.3 Optimization of Kernel Parameters Given a dataset A , a kernel function $k(x, y; \theta)$.	$\hat{\theta} = \arg\max_{\theta} p(\theta y)$	5.4 Variable elimination for MPE (most pro-	Union: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
$y \sim N(0, K_v(\theta))$ where $K_v(\theta) = K_{AA}(\theta) + \sigma_v^2 I$	$\Lambda = -\nabla_{\theta} \nabla_{\theta} \log p(\theta y) _{\theta = \hat{\theta}}$	bable explanation): With loopy graphs, BP is often overconfi-	Rules for joint distributions: Sum rule (Marginalization):
$\hat{\theta} = \arg\max_{\theta} \log p(y X;\theta)$	$p(\theta y) \simeq q(\theta) = N(\hat{\theta}, \Lambda^{-1})$	dent/oscillates.	$P(X_{1:i-1}, X_{i+1:n}) = \sum_{x_i} P(X_{1:i-1}, X_i = x_i, X_{i+1:n})$
In GP: $\hat{\theta} = \arg\min_{\theta} y^T K_v^{-1}(\theta) y + \log K_v(\theta) $	5.2 Variationa Inverence	6 Bayesian Neural Nets	Product rule (Chain rule):
We can from here $\nabla \downarrow$:	$\hat{q} = \arg\min_{q \in Q} KL(q p(\cdot y))$ $\hat{q} = ELBO$ Evidence Lower Bound	Likelihood: $p(y x;\theta) = \mathcal{N}(f_1(x,\theta), \exp(f_2(x,\theta)))$	$P(X_{1:n}) = P(x_1)P(X_2 X_1)P(X_n X_{1:n-1})$
$\nabla_{\theta} \log p(y X;\theta) = \frac{1}{2} tr\left(\left(\alpha \alpha^{T} - K^{-1}\right) \frac{\partial K}{\partial \theta}\right), \alpha = K^{-1} y$	$q = ELBO$ Evidence Lower Bound $ELBO \doteq \mathbb{E}_{\theta \sim q} [\log p(y \theta)] - KL(q p(\cdot)) \leq \log p(y)$	Prior: $p(\theta) = \mathcal{N}(0, \sigma_p^2)$	Conditional Independence:
Or we could also be baysian about θ	5.3 Markov Chain Monte Carlo	$\theta_{MAP} = \arg \max \log (p(y, \theta))$ 6.1 Variation inference:	$X \perp Y Z \text{ iff } P(X,Y Z) = P(X Z)P(Y Z)$ If $P(Y Z) > 0 \Rightarrow P(X Z,Y) = P(X Z)$
3.4 Aproximation Techniques	Idea: All we need is sampling from postirior	Usually we use $Q = \text{Set of Gaussians}$	Properties of Conditional Independence:
Local method: $k(x_1, x_2) = 0$ if $ x_1 - x_2 \gg 1$	Ergodic Markov Chain:	$\hat{q} = \arg\max ELB\tilde{O}$ Reparameterization trick	Symmetry: $X \perp Y \mid Z \Rightarrow Y \perp X \mid Z$
Random Fourier Features: if $k(x,y) = \kappa(x-y)$	$\exists t \text{ s.t. } \mathbb{P}(i \to j \text{ in t steps}) > 0 \ \forall i, j \Rightarrow$	q approx. the posterior but how to predict?	Decomposition: $X \perp (Y, W) \mid Z \Rightarrow X \perp Y \mid Z$
$p(w) = \mathcal{F} \{\kappa(\cdot), w\}$. Then $p(w)$ can be normali-	$\exists ! \pi = \lim_{N \to \infty} \mathbb{P}(X_n = x) \text{ Limit distribution}$	$p(y^* x^*,\mathcal{D}) \simeq \frac{1}{m} \sum_{j=1}^m p(y^* x^*,\theta^{(j)}), \ \theta \sim \hat{q}(\theta)$	Contraction: $(X \perp Y \mid Z) \land (X \perp W \mid Y, Z) \Rightarrow X \perp Y, W \mid Z$
zed to be a density.	Ergodic Theorem : if $(X_i)_{i\in\mathbb{N}}$ is ergodic:	Gaussian Mixture distribution: $\mathbb{V}(y^* x^*, \mathcal{D}) \simeq$	Weak union: $X \perp Y, W \mid Z \Rightarrow X \perp Y \mid Z, W$
$\kappa(x-y) = \mathbb{E}_{p(w)} \left[\exp \left\{ i w^T (x-y) \right\} \right]$ antitransform	$\lim_{N \to \infty} \frac{1}{n} \sum_{i=1}^{N} f(X_i) = \mathbb{E}_{x \sim \pi} [f(x)]$	$\simeq \frac{1}{m} \sum_{j=1}^{m} \sigma^{2}(x^{*}, \theta^{(i)}) + \frac{1}{m} \sum_{j=1}^{m} \left(\mu(x^{*}, \theta^{(j)} - \overline{\mu}(x^{*})) \right)$	Intersection: $(X \perp Y \mid W, Z) \land (X \perp W \mid Y, Z) \Rightarrow$
$\kappa(x-y) = \mathbb{E}_{b \sim \mathcal{U}([0,2\pi]), w \sim p(w)} \left[z_{w,b}(x) z_{w,b}(y) \right]$		\blacksquare \rightarrow Aletoric, \blacksquare \rightarrow Epistemic	$X \perp Y, W \mid Z$

7 Bayesian Networks	8.2.1 Sum-product/Belief Propagation (BP)	Prediction $(O(n^2) vs O(n) \text{ in conditioning})$:	$\pi^*(s) = argmax[r(x,a) + \gamma \sum_{x'} P(x' x,a)V^*(x')]$
7.1 Basic concepts	Algorithm:	$P(X_{t+1} y_{1:t}) = \sum_{x} P(X_{t+1} X_t)P(X_t y_{1:t})$	$a \in A$
A Bayesian network (G, P) consists of:		Since HMM is a polytree, smoothing/MPE	10.2 Policy iteration (Cost $O(S^3 + SA\Delta)$)
- A BN structure <i>G</i> (directed, acyclic graph)	- Until converged to:	can be computed by VE/BP. Kalman filte-	Start with an arbitrary (e.g. random) policy π .
- A set of conditional probability distributions	- Pick a root in the factor graph and reorient the edges towards this root.	ring: Bayesian filtering for continuous pro-	Until converged, do:
-(G,P) defines the joint distribution:	- Update messages according to this orde-	blems. RV corrupted by Gaussian distributions	- Compute value function $V^{\pi}(x)$
$P(X_1,,X_n) = \prod_i P(X_i Pa_{X_i})$	ring. Do passes from leaves to root and from	with zero mean. Bayesian filtering is basi-	- Compute greedy policy π_G w.r.t. V^{π}
BNs with 3 nodes:	root to leaves.	cally the same, except that sums turn to	- Set $\pi \leftarrow \pi_G$
7.2 Active trails and d-separation	- If a leaf node is a variable node: $\mu_{x \to f}(x) = 1$ -	integrals. General Kalman update	Guaranteed to monotonically improve and to
An undirected path in a BN structure G is	If a leaf node is a factor node: $\mu_{f \to x}(x) = f(x)$ -	- Transition model: $P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$	converge to an optimal policy π^* in $O(n^2m/(1-$
called active trail for observed variables $O \in$	Messages from node v to factor u :	- Sensor model: $P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$	γ)) iterations (converges in polynomial num-
$X_1,,X_n$ of for every consecutive triple of va-	$\mu_{v \to u}(x_v) = \prod_{u' \in N(v) \setminus \{u\}} \mu_{u' \to v(x_v)}$	- Kalman update:	ber of iterations)!
riables X, Y, Z on the path:	- Messages from factor u to node v :	$\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t)$	10.3 Value iteration (Cost $O(SA\Delta)$)
- indirect causal effect:	$\mu_{u \to v}(x_v) = \sum_{x_u \sim x_v} f_u(x_u) \prod_{v' \in N(u) \setminus \{v\}} \mu_{v' \to u(x'_v)}$	$\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_t F^T + \Sigma_x)$	Initialize $V_0(x) = max_a r(x, a)$
$X \rightarrow Y \rightarrow Z$ and Y unobserved	- Break once all messages change by $\leq \epsilon$	- Kalman gain: $K_{t+1} = (F\Sigma_t F^T +$	For $t = 1$ to ∞ :
- indirect evidential effect:	Hope: after convergence, we have:	$(\Sigma_x)H^T(H(F\Sigma_tF^T+\Sigma_x)H^T+\Sigma_v)^{-1}$	- For each (x, a) , let:
$X \leftarrow Y \leftarrow Z$ and Y unobserved	$P(X_v = x_v) = \frac{1}{Z} \prod_{u \in N(v)} \mu_{u \to v}(x_v)$	9.3 Examples with > 1 variable per time step	$Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V_{t-1}(x')$
- common cause : $X \leftarrow Y \rightarrow Z$ and Y unobserved.	_	Dynamic Bayesian Networks: a BN at every	- For each x , let $V_t(x) = \max_{a} Q_t(x, a)$
- common effect:	$P(\overrightarrow{X_u} = \overrightarrow{x_u}) = \frac{1}{Z} f_u(\overrightarrow{x_u}) \prod_{v \in N(u)} \mu_{v \to u}(x_v)$	time step	- Break if $ V_t - V_{t-1} _{\infty} = \max_{t=0}^{n} V_t(x) - V_{t-1}(x) \le \epsilon$
$X \rightarrow Y \leftarrow Z$ and Y or any of Y's descendants is	If we have a polytree Bayesian network:	These models typically have many loops. Exact	\boldsymbol{x}
observed.	- Choose one node as root	inference is usually intractable.	Then choose greedy policy w.r.t V_t .
Any variables X_i and X_j for which there is	- Send messages from leaves to root and from	9.4 Approx. infer. for filtering (DBNs and non-	Guaranteed to converge to ϵ -optimal policy (finds approximate solution in polynomial
no active trail for observations O are called	root to leaves	linear Kalman filters): Particle filtering	number of iterations)!
d-separated by O.		Suppose: $P(X_t y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i,t}}$, where δ is	,
Theorem : $d - sep(X_i; X_j O)) \Rightarrow X \perp Y Z$	9 Dynamical models (include time)	the indicator function. Prediction : Propagate	10.4 POMDP = Belief-state MDP
Converse does not hold in general!	9.1 Examples with one variable per time step	each particle: $x_i' \sim P(X_{t+1} x_{i,t})$	States = beliefs over states for original POMDP
8 Exact inference (tree-structured BN)	$X_1,,X_T$ (unobserved) hidden states	Conditioning:	$B = \Delta(1,, n) = \{b : 1,, n \to [0, 1], \sum_{x} b(x) = 1\}$
8.1 Variable elimination	$Y_1,, Y_T$ (noisy) observations	- weight particles $w_i = \frac{1}{Z}P(y_{t+1} x_i')$	Actions: same as original MDP
- Given a BN and query $P(X E=e)$	HMMs (polytrees: can use belief propagati-		Transition model: - Stochastic observation:
- Choose an ordering of $X_1,, X_n$ Eliminate va-	on): X_i categorical, Y_i categorical (or arbitrary)	- resample N particles $x_{i,t+1} \sim \frac{1}{Z} \sum_{i=1}^{N} w_i \delta_{x_i'}$	$P(Y_t b_t) = \sum_{x=1}^{n} P(Y_t X_t = x)b_t(x)$
riables from the outside in!	Kalman filters: X_i , Y_i Gaussian distributions	Conclusion we came to: $Z = \sum_{i=1}^{N} w_i \delta_{x_i}$	- State update (Bayesian filtering!), given
- Set up initial factors: $f_i = P(X_i Pa_i)$	- $P(X_1)$: prior belief about location at time i	10 Probabilistic Planning	b_t, y_t, a_t : $b_{t+1}(x') = \frac{1}{Z} \sum_x b_t(x) P(y_t x) P(X_{t+1}) = \frac{1}{Z} \sum_x b_t(x) P(y_t x) P(X_{t+1})$
- For $i = 1: n, X_i \notin X, E$	- $P(X_{t+1} X_t)$: 'Motion model' (how do I expect my target to move in the environment?):	10.1 Markov Decision Processes	$x' X_t = x, a_t$
- Collect and multiply all factors <i>f</i> that in-	$X_{t+1} = FX + \epsilon_t$ where $\epsilon_t \sim N(0, \Sigma_x)$	An MDP is specified by a quintuple:	Reward function: $r(b_t, a_t) = \sum_x b_t(x) r(x, a_t)$
clude X_i - Generate new factor by marginalizing out	- $P(Y_t X_t)$: 'Sensor model' (what do I observe	$(X,A,r,P(x' x,a),\gamma)$, where X are states, A	
	if target is at location X_t ?) $Y_t = HX_t + \eta_t$ where	are actions, $r(x,a)$ is a reward function and	10.5 Example of approx. solution to POMDPs: Policy gradients
$X_i: g_{X_i} = \sum_{x_i} \prod_j f_j$	$\eta_t \sim N(0, \Sigma_v)$	transition probabilities:	- Assume parameterized policy: $\pi(b) = \pi(b; \theta)$
- Add g to set of factors - Renormalize $P(x,e)$ to get $P(x e)$	9.2 Inference tasks	P(x' x, a) = Prob(Next state = x' Action a)	- For each parameter θ the policy induces a
		Objective: find a stationary policy $\pi: S \to A$	Markov chain
Variable elimination for polytrees:	Filtering: $P(X_t y_{1,,t})$ Is it raining today?	that maximizes the sum of cumulative rewards.	- Can compute expected reward $J(\theta)$ by samp-
 Pick a root, (avoiding X and E) Orient edges towards root 	Prediction: $P(X_{t+\tau} Y_{1:t})$ Rain 5 days from now?	Value of a state given a policy: sum of cumulative rewards, given that the initial state is	ling.
- Eliminate variables according to topological	Example for one step: $P(X_{t+1} Y_{1:t}) = \sum_{i=1}^{t} P(X_{t+1} Y_{1:t}) = \sum_{i=1}^{t} P(X_{t+1}$	lative rewards, given that the initial state is	- Find optimal parameters through search (gra-
order	$\sum_{x} P(X_{t+1}, X_t = x_t Y_{1:t}) = \sum_{x} P(X_{t+1} X_t = x_t) P(X_t Y_t) $ (with KEs, you need integrals!)	this state → Bellman equation:	dient ascent): $\theta^* = argmax J(\theta)$
8.2 Avoiding recomputation: factor graphs	$x_t)P(X_t Y_{1:t})$ (with KFs, you need integrals !)	$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, \pi(s_{t}), s_{t+1}) s_{0} = s\right]$	θ
FG for a BN is a bipartite graph consisting of	Smoothing: $P(X_{\tau} y_{1:t})$ with $\tau < t$ Did it rain last week? [Can use sum-product (aka forward-		11 Learning models from training data
variables (circles) and factors (rectangles). It is	backward).]	$= \sum_{s' \in S} P(s' s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$	11.1 Learning from i.i.d data
not a unique representation.	MPE: $argmaxP(x_{1:T} y_{1:T})$ Can use max pro-	$= r(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' s, \pi(s)) V^{\pi}(s')$	Algorithm for Bayes Net MLE:
©	$x_{1:T}$ with $(x_{1:T}, y_{1:T})$ can use max pro-	Theorem (Bellman): a policy is optimal iff it	Given BN of structure G and dataset D of com-
f_1 f_2 f_3 f_4	duct (aka Viterbi algorithm).	is greedy w.r.t. its induced value function!	plete observations
D III III III III III III III III III I	Bayesian filtering: Start with $P(X_1)$:	$V^*(x) = max_a[r(x, a) + \gamma \sum_{x'} P(x' x, a)V^*(x')]$	For each X_i estimate: $\hat{\theta}_{X_i Pa_i} = \frac{Count(X_i,Pa_i)}{Count(Pa_i)}$
	At time t, assume we have $P(X_t y_{1:t-1})$	Bellman equation mais geral:	Pseudo-counts for lime and cherry flavor:
	Conditioning: $P(X_t y_{1:t}) = \frac{\sum_{t} P(X_t y_{1:t-1})P(y_t X_t)}{\sum_{x_t} P(X_t y_{1:t-1})P(y_t X_t)}$	$V^{*}(x) = \max_{a} \left[\sum_{x'} P(x' x, a) (r(a, x, x') + \gamma V^{*}(x')) \right]$	$Count(E=c) \mid \alpha$
	$\sum_{x_t} P(X_t y_{1:t-1}) P(y_t X_t)$	Optimal policy:	$\theta_{F=c} \frac{coun(r-c)+\alpha_c}{N+\alpha_c+\alpha_l}$

11.1.1 Score based structure learning

Define scoring function S(G;D) and search over BN structure G: $G^* = argmaxS(G; D)$

Examples of scores:

MLE Score:

 $log P(D|\theta_G, G) = N \sum_{i=1}^n \hat{I}(X_i; Pa_i) + const.$

Where mutual information $(I(X_i, X_j) \ge 0)$ is:

$$I(X_i, X_j) = \sum_{x_i, x_j} P(x_i, x_j) log \frac{P(x_i, x_j)}{P(x_i)P(x_j)}$$

Empirical mutual information:

$$\hat{P}(x_i, x_j) = \frac{Count(x_i, x_j)}{N}$$

$$\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i) \hat{P}(x_j)}$$

Regularizing a Bayes Net:

$$S_{BIC}(G) = \sum_{i=1}^{n} \hat{I}(X_i; Pa_i) - \frac{\log N}{2N} |G|$$

 $S_{BIC}(G) = \sum_{i=1}^{n} \hat{I}(X_i; Pa_i) - \frac{logN}{2N}|G|$ where *G* is the number of parameters, *n* the number of variables and N the number of training examples.

Chow-Liu algorithm:

- For each pair X_i, X_i of variables, compute:

$$\hat{P}(x_i, x_j) = \frac{\bar{Count}(x_i, x_j)}{N}$$

- Compute mutual information
- Define complete graph with weight of edge (X_i, X_i) given by the mutual information
- Find max spanning tree → undirected tree
- Pick any variable as root and orient the edges away using breadth-first search.

12 Reinforcement Learning

12.1 Model-based RL

12.1.1 ϵ greedy

With probability ϵ , pick random action. With prob $(1-\epsilon)$, pick best action. If sequence ϵ satisfies Robbins Monro criteria \rightarrow convergence to optimal policy with prob 1.

12.1.2 R_{max} algorithm

Input: starting x_0 , discount factor γ .

Initially: add fairy tale state x^* to MDP

- Set $r(x, a) = R_{max}$ for all states x and actions a
- Set $P(x^*|x, a) = 1$ for all states x and actions a
- Choose the optimal policy for r and P

Repeat: 1. Execute policy π and, for each visited state/action pair, update r(x, a)

- 2. Estimate transition probabilities P(x|x,a)
- 3. If observed 'enough' transitions/rewards, recompute policy π , according to current model P and r.

Enough"? See Hoeffding's inequality. To reduce error ϵ , need more samples N.

Theorem: With probability $1 - \delta$, R_{max} will reach an ϵ -optimal policy in a number of steps that is polynomial in |X|, |A|, T, $1/\epsilon$ and $log(1/\delta)$. Memory $O(|X^2||A|)$.

12.2 Model-free RL: estimate V*(x) directly

12.2.1 Q-learning

 $Q(x,a) \leftarrow (1-\alpha_t)Q(x,a) + \alpha_t(r+\gamma \max_{a'} Q(x',a'))$ **Theorem:** If learning rate α_t satisfies:

 $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$ (Robbins-Monro), and actions are chosen at random, then Q learning converges to optimal Q* with probability

Optimistic Q learning:

Initialize: $Q(x, a) = \frac{R_{max}}{1 - \nu} \prod_{t=1}^{T_{init}} (1 - \alpha_t)^{-1}$

Same convergence time as with R_{max} . Memory O(|X||A|). Comp: O(|A|).

Parametric Q-function approximation: $Q(x,a;\theta) = \theta^T \phi(x,a)$ to scale to large state spaces. (You can use Deep NN here!)

SGD for ANNs: initialize weights. For t =1,2..., pick a data point (x,y) uniformly at random. Take step in negative gradient direction. (In practise, mini-batches).

Deep Q Networks: use CNN to approx Q function. $L(\theta) = \sum_{(x,a,r,x') \in D} (r + \gamma \max_{x} Q(x',a';\theta^{old}) - q^{old})$

 $Q(x,a;\theta)^2$ **Double DQN:** current network for evaluating argmax (too optimistic, and you remove θ^{old} and put θ).

12.3 Gaussian processes

A GP is an (infinite) set of random variables (RV), indexed by some set X, i.e., for each x in \dot{X} , there is a RV Y_x where there exists functions $\mu: X \to \mathbb{R}$ and $K: X \times X \to \mathbb{R}$ such that for all: $A \in X$, $A = x_1,...x_k$, it holds that $Y_A = [Y_{x_1}, ..., Y_{x_k}] \sim N(\mu_a, \Sigma_{AA})$, where: $\Sigma_{AA} = [Y_{x_1}, ..., Y_{x_k}] \sim N(\mu_a, \Sigma_{AA})$ matrix with all combinations of $K(x_i, x_i)$.

K is called kernel (covariance) function (must be symmetric and pd) and μ is called mean function. Making prediction with **GPs:** Suppose $P(f) = GP(f; \mu, K)$ and we observe $y_i = f(\overrightarrow{x_i}) + \epsilon_i$, $A = \{\overrightarrow{x_1} : \overrightarrow{x_k}\}$ $P(f(x)|\overrightarrow{x_1}:\overrightarrow{x_k},y_{1:k})=GP(f;\mu',K')$. In particular, $P(f(x)|\overrightarrow{x_1}:\overrightarrow{x_k},y_{1:k})=N()f(x);\mu_{x|A},\sigma_{x|a}^2$ where $\mu_{x|a} = \mu(\overrightarrow{x}) + \Sigma_{x,A}(\Sigma_{AA} + \sigma^2 I)^{-1} \Sigma_{x,A}^T(\overrightarrow{y_A} \mu_A$) and $\sigma_{x|a}^2 = K(\overrightarrow{x}, \overrightarrow{x}) - \Sigma_{x,A}(\Sigma_{AA} + \sigma^2 I)^{-1} \Sigma_{x,A}^T$

Closed form formulas for prediction!