Differentiating Between Political Party Subreddits

Ben Moss

Data Science Immersive Program

General Assembly

January, 2024

Goals

- Create Natural Language Processing Models the predict subreddit content origin
- Choose the best ones suited for our goal which in this case will be *sensitivity*: The probability our model will correctly predict a title entry to be in the 'democrats' subreddit (positive class, denoted '1')
- The lines are more blurred than one may think!

Data Gathering

Worked with PRAW retrieving posts over several days

Loaded data and performed EDA

subreddit

Dem: 1 0.528996

Rep: 0 0.471004

Modeling Pipeline

- First and foremost, Regex and censor functions utilized to clean data, literally!
- Several models were compared for efficacy (optimality along with standard classification metrics). The two top performing models were selected

Deciding Upon NLP Models

■Best accuracy – optimal fit between test and train

Classification Metrics

Model	CVEC Logistic Regression	TVEC SVM
Train Accuracy	0.986	<u>0.995</u>
Test Accuracy	0.909	<u>0.921</u>

Classification Metrics

- ► LR (CVEC):
- Sensitivity | 0.944
- ► Specificity | 0.862
- ► Accuracy | 0.909
- Precision | 0.902
- Miscalculation Rate | 0.091

Classification Metrics (Continued)

- SVM (TVEC):
- Sensitivity | 0.928
- Specificity | 0.91
- ► Accuracy | 0.921
- Precision | 0.933
- Miscalculation Rate | 0.079

BONUS: Logistic Regression with SMOTE

- LR (CVEC) SMOTE:
- Sensitivity | 0.913
- Specificity | 0.91
- Accuracy | 0.912
- Precision | 0.932
- ► Miscalculation Rate | 0.088

Side-by-Side Classification Metric Comparison

Model	LR (CVEC)	SVM (TVEC)	LR (CVEC) SMOTE
Sensitivity	<u>0.944</u>	0.928	0.913
Specificity	0.862	<u>0.91</u>	<u>0.91</u>
Accuracy	0.909	<u>0.921</u>	0.912
Precision	0.902	<u>0.933</u>	0.932
Miscalculation Rate	0.091	<u>0.079</u>	0.088

Recommendations

- Exclude comments (formatting issue)
- ► Import more of one set to form an even split (when one is more active)
- Use not only optimal model but ones that return the desired classification metrics for intended purposes (sensitivity in this case)
- In this case, avoid random sampling, utilize selective sampling (best subset)

Conclusion

- Optimal Model: SVM (TVEC)
- Goal of our model: prioritize sensitivity, this result was achieved
- In this study, SVM outperformed logistic regression.
- Successfully able to differentiate between political supporters of two distinct parties.

Sources

Course work, lessons, Reddit, PRAW, .sklearn documentation centers