import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

df=pd.read_csv('/content/Churn Modelling.csv')

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619	France	Female	42	2
1	2	15647311	Hill	608	Spain	Female	41	1
2	3	15619304	Onio	502	France	Female	42	8
3	4	15701354	Boni	699	France	Female	39	1
4	5	15737888	Mitchell	850	Spain	Female	43	2

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balar
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8892
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4052
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5400
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2400
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0900

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object

3	CreditScore	10000	non-null	int64				
4	Geography	10000	non-null	object				
5	Gender	10000	non-null	object				
6	Age	10000	non-null	int64				
7	Tenure	10000	non-null	int64				
8	Balance	10000	non-null	float64				
9	NumOfProducts	10000	non-null	int64				
10	HasCrCard	10000	non-null	int64				
11	IsActiveMember	10000	non-null	int64				
12	EstimatedSalary	10000	non-null	float64				
13	Exited	10000	non-null	int64				
dtypes: float64(2), int64(9), object(3)								
memory usage: 1.1+ MB								

df.head(2)

RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenu
0 1	15634602	Hargrave	619	France	Female	42	
1 2	15647311	Hill	608	Spain	Female	41	

sns.distplot(df.CreditScore)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaafd4dd0>

sns.distplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaaed6b50>

df.Gender.value counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa87e550>

df.Geography.value counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa7e3410>

df.Tenure.value_counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa7508d0>

sns.distplot(df.EstimatedSalary)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa75f150>

sns.barplot(df.Geography, df.Exited)

<matplotlib.axes. subplots.AxesSubplot at 0x7f4aaa626550>

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenu
C	1	15634602	Hargrave	619	France	Female	42	
_1	2	15647311	Hill	608	Spain	Female	41	

sns.barplot(x='Geography',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa599c50>

sns.barplot(x='Gender',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa50fdd0>

sns.barplot(x='NumOfProducts',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa4ef6d0>

sns.barplot(x='HasCrCard',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa46b990>

sns.barplot(x='HasCrCard',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa448690>

sns.pairplot(df)

plt.figure(figsize=(8,5))
sns.heatmap(df.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa4ca1d50>

RowNumber - 1 0.00420.00580.000780.00650.00910.00720.00060.012 -0.006-0.017

df.Exited.value counts()

0 7963 1 2037

Name: Exited, dtype: int64

df.isnull().sum()

RowNumber 0 0 CustomerId Surname 0 CreditScore 0 Geography 0 Gender 0 Age 0 Tenure Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember EstimatedSalary 0 Exited dtype: int64

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenu
0	1	15634602	Hargrave	619	France	Female	42	
1	2	15647311	Hill	608	Spain	Female	41	

sns.boxplot(df.CreditScore)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa513eb50>

sns.boxplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa2f7eed0>

sns.boxplot(df.NumOfProducts)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa2ee56d0>

sns.boxplot(df.HasCrCard)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa2e5a790>

sns.boxplot(df.IsActiveMember)

<matplotlib.axes. subplots.AxesSubplot at 0x7f4aa2e73d50>

sns.boxplot(df.EstimatedSalary)

<matplotlib.axes. subplots.AxesSubplot at 0x7f4aa2daa650>

sns.boxplot(df.Tenure)

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa2f45390>
sns.boxplot(df.Balance)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f4aa2d08550>


```
def outlier_credit_score(df):
    IQR = df['CreditScore'].quantile(0.75) - df['CreditScore'].quantile(0.25)

lower_range = df['CreditScore'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['CreditScore'].quantile(0.75) + (1.5 * IQR)

df.loc[df['CreditScore'] <= lower_range, 'CreditScore'] = lower_range
    df.loc[df['CreditScore'] >= upper_range, 'CreditScore'] = upper_range

outlier_credit_score(df)

sns.boxplot(df.CreditScore)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f4aaafc9390>


```
def outlier_NOP(df):
    IQR = df['NumOfProducts'].quantile(0.75) - df['NumOfProducts'].quantile(0.25)
```

lower range = df['NumOfProducts'].quantile(0.25) - (1.5 * IQR)

```
upper_range = df['NumOfProducts'].quantile(0.75) + (1.5 * IQR)

df.loc[df['NumOfProducts'] <= lower_range, 'NumOfProducts'] = lower_range
    df.loc[df['NumOfProducts'] >= upper_range, 'NumOfProducts'] = upper_range

outlier_NOP(df)

sns.boxplot(df.NumOfProducts)
```



```
def outlier_age(df):
    IQR = df['Age'].quantile(0.75) - df['Age'].quantile(0.25)

lower_range = df['Age'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['Age'].quantile(0.75) + (1.5 * IQR)

df.loc[df['Age'] <= lower_range, 'Age'] = lower_range
    df.loc[df['Age'] >= upper_range, 'Age'] = upper_range

outlier_age(df)
```

sns.boxplot(df.Age)

```
<matplotlib.axes. subplots.AxesSubplot at 0x7f4aa2beaf50>
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype				
0	RowNumber	10000 non-null	int64				
1	CustomerId	10000 non-null	int64				
2	Surname	10000 non-null	object				
3	CreditScore	10000 non-null	int64				
4	Geography	10000 non-null	object				
5	Gender	10000 non-null	object				
6	Age	10000 non-null	int64				
7	Tenure	10000 non-null	int64				
8	Balance	10000 non-null	float64				
9	NumOfProducts	10000 non-null	float64				
10	HasCrCard	10000 non-null	int64				
11	IsActiveMember	10000 non-null	int64				
12	EstimatedSalary	10000 non-null	float64				
13	Exited	10000 non-null	int64				
dtypes: float64(3), int64(8), object(3)							

memory usage: 1.1+ MB

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenu
0	1	15634602	Hargrave	619	France	Female	42	
1	2	15647311	Hill	608	Spain	Female	41	

df.drop(['CustomerId','RowNumber','Surname'],axis=1,inplace=True)

df.head(2)

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasC
0	619	France	Female	42	2	0.00	1.0	
1	608	Spain	Female	41	1	83807.86	1.0	

from sklearn.preprocessing import LabelEncoder le_geo = LabelEncoder()

```
le_gen = LabelEncoder()
df['Sex']=le_gen.fit_transform(df.Gender)
df['Country']=le_geo.fit_transform(df.Geography)
df.drop(['Geography','Gender'],axis=1,inplace=True)
```

df.head(2)

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMemb
0	619	42	2	0.00	1.0	1	
1	608	41	1	83807.86	1.0	0	

Colab paid products - Cancel contracts here