

Test Report **Electromagnetic Compatibility**

Test Report - Nr.: 07KFE007857-P-FCC-02

Date: 2008-01-10

Type:

JA-80F

Description:

Wireless keypad

Serial number:

0708102-006

Manufacturer:

Jablotron s.r.o.

Customer:

Jablotron s.r.o.

Address (Customer):

Pod Skalkou 33

CZ 646601 Jablonec nad Nisou

Czech Republic

Test Laboratory:

Intertek Deutschland GmbH,

Innovapark 20, D- 87600 Kaufbeuren

FCC registration number:

90714

Compiled by:

Marek Svoboda

Technical Leader

Approved by:

R. Dressler

Project Engineer

This test report consists of 29 pages. All measurement results exclusively refer to the equipment, which was tested. Reproduction of this report except in its entirety is not permitted without written approval of Intertek Deutschland GmbH.

Table of Contents

1. G	eneral description	4
1.1.	Product description	4
1.2.	Related submittal(s) Grants	4
1.3.	Test Methodology	4
1.4.	Test Facility	5
1.5.	List of exhibits	5
2. M	easurements And Test Specifications	6
3. D	escription Of EUT	7
3.1.	Configuration / Operating Conditions	7
3.2.	Major Subassemblies Or Internal Peripherals	7
3.3.	Peripheral Devices Used For Testing	7
3.4.	Supply- And Interconnecting Cables	8
4. Te	est Results - Overview	9
5. M	easurement results detailed	10
5.1.	Duty cycle and Averaging factor (transmitter 868.5 MHz).	10
5.2.	Bandwidth (Transmitter 868.5 MHz)	13
5	Radiated Emission (Transmitter 868.5 MHz) 5.3.1. Field strength calculation 5.3.2. Normative references	15
5	Radiated Emission (Receiver) 30 MHz – 3 GHz 5.4.1. Radiated Emission (Receiver) 30 MHz – 3 GHz 5.4.2. Radiated Emission (Receiver) Table 30 MHz – 3 GHz	20
5.5.	Duty cycle and Averaging factor (Transmitter 125 kHz)	22
5.6.	Bandwidth (Transmitter 125 kHz)	22

5.7.	Radiated emissions Transmitter 125 kHz	23
Test	setup Photo documentation	25
6. E	UT Photo documentation	27
7. To	echnical specification	27
7.1.	Block Diagram Of The EUT	27
7.2.	Circuit Diagram Of The Layout	27
7.3.	Instruction manual	27
7.4.	Product Labelling	27

1. General description

1.1. Product description

The JA-80F is a component of Jablotron's Oasis 80 alarm system and is designed to control and program the system.

It has a built-in proximity access card reader and allows the wiring up of a separate door detector. The battery-powered keypad communicates wirelessly using Oasis protocol.

Power supply: 2x lithium batteries type CR14505 (AA 3.0V)

Wireless keypad:

Operating frequency: 868.5 MHz, Oasis protocol

Antenna type: Internal - wire type soldered to PCB (length 70 mm)

The device includes the receiver with local oscillator frequency f = 868.5 MHz. Measured radiated field data of receiver for verification purposes are included in this report.

Duty cycle: data pulse of length 30 ms, periodic transmission of 3 pulses every 9 minutes.

Integrated card reader

Operating frequency: 125 kHz.

Antenna type: internal – multiple loop antenna – located inside enclosure.

The card / tag is passive.

Duty cycle: no duty cycle, no periodic transmission.

1.2. Related submittal(s) Grants

This is application for certification of the transmitter. No related devices are present.

1.3. Test Methodology

The test setup and test was done according to: ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
The test setup and test was done according to: CISPR 22: 1998 + Corrigendum: 2003 + A1: 2000 + A2: 2003 and ANSI C63.4: 2003 Compliance with CISPR 22 is being used to demonstrate conformity with FCC DoC requirements. This conforms with FCC Part 15.109(g).

The test results detailed in this report apply only to the JA-82F with the test setup described. Any modification such as a change, addition to or inclusion of another device into this product will require an additional evaluation.

The support equipment listed as part of the emission tests is required to properly exercise and test the device under test.

1.4. Test Facility

The test site was semi-anechoic chamber Intertek Germany (PM KF 1150). Measurement distance EUT – Antenna was d = 3 m.

1.5. <u>List of exhibits</u>

Following exhibits are delivered as separate pdf files. The name of file corresponds with description of exhibit with extension **.pdf**

Test setup photo documentation
External Photos
Internal Photos
Operational description
Block diagram
Circuit diagram
Instruction manual
Product label
Confidentiality request

2. <u>Measurements And Test Specifications</u>

Emission - Requirements according to

$ \times $ F	FCC,	Part	15,	Class E	В,	verification
--------------	------	------	-----	---------	----	--------------

FCC, Part 15, Class B, DoC

FCC, Part 15, Class B, certification

FCC, Part 15, intentional radiator, certification

3. <u>Description Of EUT</u>

3.1. Configuration / Operating Conditions

The device is battery operated. The power source delivered by producer and used for testing was a new set of 2 lithium batteries type CR14505 (AA 3.0V)

There were two samples of the device delivered:

Sample 1: was modified by manufacturer to transmit continuously. This sample was used for measurement of bandwidth and field strength;

Sample 2: has normal operation as specified by manufacturer. It was used for measurement of the duty cycle.

The equipment under test (EUT) is placed on wooden table 0,8 m above ground plane.

At all interference frequencies the height of the antenna is scanned in the range 1 m to 4 m with horizontal and vertical polarization and the turntable is rotated in the range 0° to 360° to obtain the highest field strength.

For frequencies bellow 30 MHz the measurement was performed at distance d = 10 m (shielded loop antenna – EUT). Measured values were bellow the noise level. Therefore measurement was performed at closer distances and measured values of field strength were calculated to d = 300 m (40 dB/dec) and compared to the limit value.

Measurements in frequency range 30 MHz - 3 GHz were performed with bilog antenna HL 562, measurements in frequency range 3 GHz - 10 GHz were performed with horn antenna HF 906 with preamplifier.

3.2. Major Subassemblies Or Internal Peripherals

Device	Manufacturer	Туре	SN	FCC ID
none				

3.3. Peripheral Devices Used For Testing

Device	Manufacturer	Туре	SN	FCC ID
none				

3.4. Supply- And Int	.4. Supply- And Interconnecting Cables					
Line	Length	shielded	non shielded	Shield on GND / PE		
none						

4. Test Results - Overview

	required	passed	passed with modification	not passed
Transmitter 868.5 MHz				
Bandwidth	< 2.17 MHz, 0.25 % f _{op}	\boxtimes		
Duty cycle	<2s in 1 hour			
Emission radiated :				
30 MHz - 3000 MHz :	FCC 15.231			
3 GHz – 10 GHz :	FCC 15.231			
Emission radiated : receiver				
30 MHz – 3 GHz : receiver	FCC 15.109	\boxtimes		
Transmitter 125 kHz	required	passed	passed with modification	not passed
Bandwidth	Not required			
Emission				
9 kHz – 30 MHz	FCC 15.209	\boxtimes		
30 MHz - 1000 MHz	FCC 15.209			

5. Measurement results detailed

5.1. Duty cycle and Averaging factor (transmitter 868.5 MHz)

The averaging factor was measured by means of the measuring receiver/spectrum analyzer ESIB 26 in "Analyzer mode".

- Fig. 1 shows the length of single data pulse in 100 ms window.
- Fig. 2 demonstrates the pulse train under normal operation in 1 s window.
- Fig. 3 demonstrates the duty cycle under normal operation in 600 s window (periodic transmission).

Fig.1

Date: 25.SEP.2007 16:32:31

Fig .2

Fig. 3

Total transmission time in period T = 100 ms is t = 28.657 ms. The pulse is transmitted once in 539.9 s.

The Averaging factor is:

20* log (28.657/100) = -10.85 dB.

The measured peak values are to be reduced by averaging factor to obtain average values.

Transmission time in 1 hour period is: t = int(3600/539.9) * 28.657 = 171 ms

5.2. Bandwidth (Transmitter 868.5 MHz)

The measured 20 dB bandwidth is shown on Fig. 4

Fig .4

The BW is 323.54 kHz, operating frequency f = 868.5 MHz.

5.3. Radiated Emission (Transmitter 868.5 MHz) 30 MHz – 10 GHz

Data was measured for worst case configuration which resulted in highest emission levels. A sample calculation, configuration photographs and data tables of emissions are included.

The detector used was PEAK.

5.3.1. Field strength calculation

The field strength is calculated by adding the reading on the measuring receiver to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitation and average factors (when the specified limit is related to average detector and measurements are made with peak detector.

A sample of calculation is included below:

$$E = RR + AF + CF - AG + PD + AV$$

Where

E field strength in dBμV/m

RR receiver reading including preamplifier in dBµV

CF cable attenuation factor in dB

AF antenna factor in dB/m

AG amplifier gain in dB

PD pulse desensitization in dB

AV average factor in dB

Example:

Asssume that measured values and factors are as follows:

RR = $60 \text{ dB}\mu\text{V}$

CF = 1.2 dB

AF = 12.6 dB/m

AG = 20 dB

PD = 0 dB

AV = -10 dB

Then

$$E = 60 + 1.2 + 12.6 - 20 + 0.10 = 43.8 \, dB\mu V/m$$

The radiated emission tables which follow the graphical presentation of results were created by the EMC 32 software by Rohde-Schwarz. The data of field strength (peak detector) include the components given above with the exception of PD and AV.

5.3.2. Normative references

Limits equivalent:	FCC, Part 15.231, Part 15.209 where
	appropriate
Methods of Measurement equivalent:	ANSI C63.4, CISPR 22

Test requirement

Class	В
Distance Antenna – EUT	3 m
Frequency range	30 MHz - 10000 MHz

Place of measurement

\triangleright	Semi anechoic chambe	r Intertek Germany	PM KF 1150.
Г	Open Area Test Site		

Measurement devices

Measurement device	Manufacturer	Туре	SN	Asset No.	Last Calibr.at ion	Inter- val
☐ Test receiver, 20Hz- 26GHz	ESIB26	Rohde & Schwarz	100150	PM KF 0948	07-03	1
Antenna, 30-3000 MHz	HL562	Rohde & Schwarz	100354	PM KF 1123	07-03	2
	Rohde & Schwarz	HF906	100188	PM KF 0947	07-05	2
	Bonn	BLMA0118 -4A	35352	PM KF 0946	07-05	2
Antenna, 9 kHz -30 MHz	RA 30.1	MessTec	960101	PM KF 0875	07-10	2

5.3.3.1 Radiated Emission (Transmitter 868.5 MHz) 30 MHz – 3 GHz

5.3.3.2 Radiated Emission (Transmitter 868.5 MHz) 3 GHz – 10 GHz

5.3.3.3 Radiated Emission (Transmitter 868.5 MHz): table 30 MHz – 10 GHz

Measurements based on a measurement time of 10 ms unless otherwise noted. Measurement bandwidth is 120 kHz bellow 1 MHz, and 1 MHz above 1000 MHz.

Frequency	MaxPeak	Avera	Average	Limit	Margin	Limit peak	Marg	Freque	MaxPeak
		ging	value E	Average	average		in	ncy	
		factor					peak		
(MHz)	(dBµV/m)	(dB)	(dB)	(dBµV/m	(dB)	(dBµV/m)	(dB)	(MHz)	(dBµV/m)
868,48	90,9	-10,85	80,05	82	-1,95	102	-11,1	868,48	90,9
907,48	35,7	-10,85	24,85	62	-37,15	82	-46,3	907,48	35,7
936,04	30,1	-10,85	19,25	62	-42,75	82	-51,9	936,04	30,1
1737,2	42,4	-10,85	31,55	62	-30,45	82	-39,6	1737,2	42,4
1819	43,7	-10,85	32,85	62	-29,15	82	-38,3	1819	43,7
2603,3	48,2	-10,85	37,35	62	-24,65	82	-33,8	2603,3	48,2
2984,4	48,9	-10,85	38,05	62	-23,95	82	-33,1	2984,4	48,9
3473,8	39,7	-10,85	28,85	62	-33,15	82	-42,3	3473,8	39,7
*)4346,7	35	-10,85	24,15	53,9	-29,75	73,9	-38,9	4346,7	35
5214	35,8	-10,85	24,95	62	-37,05	82	-46,2	5214	35,8
6080,9	35,1	-10,85	24,25	62	-37,75	82	-46,9	6080,9	35,1
6947,8	37,1	-10,85	26,25	62	-35,75	82	-44,9	6947,8	37,1
7815,1	39,4	-10,85	28,55	62	-33,45	82	-42,6	7815,1	39,4
8683,6	38,1	-10,85	27,25	62	-34,75	82	-43,9	8683,6	38,1

^{*)} Frequencies governed by 15.209

5.4. Radiated Emission (Receiver) 30 MHz - 3 GHz

The emissions of receiver were measured during the periods when transmitter was off. The local oscillator frequency is f = 868.5 MHz. Measurement bandwidth is 120 kHz bellow 1 MHz, and 1 MHz above 1000 MHz.

5.4.1. Radiated Emission (Receiver) 30 MHz - 3 GHz

5.4.2. Radiated Emission (Receiver) Table 30 MHz – 3 GHz

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Average (dBµV/m)	limit QP / AV (dBµV/m)	Margin (dB)
37,52	23,6	19,3		40	-20,7
37,76	24,2	20,1		40	-19,9
88,68	15,7	9,5		43,5	-34
89,96	17,3	12,8		43,5	-30,7
100	16,9	12,7		43,5	-30,8
120,04	23,8	21,4		43,5	-22,1
200	22,2	19,8		43,5	-23,7
350	21,5	17,6		46	-28,4
360	22,5	18,7		46	-27,3
400	21,7	17,3		46	-28,7
430,04	21,9	16,8		46	-29,2
467,96	23	15,8		46	-30,2
490	29,2	26,1		46	-19,9
520	32,5	29,9		46	-16,1
1881,5	53		41,0	54	-13
2165,4	51		42,0	54	-12

5.5. Duty cycle and Averaging factor (Transmitter 125 kHz)

The device does not transmit in Duty cycle.

5.6. Bandwidth (Transmitter 125 kHz)

The measured 20 dB bandwidth is shown on Fig. 1

Fig.1

The BW is 533 Hz, operating frequency f = 125.59 kHz.

5.7. Radiated emissions Transmitter 125 kHz

The displayed graph was measured in the distance d = 1 m. Emissions bellow f = 125 kHz were proved to be ambient disturbances.

The detailed measurement at operation frequency was performed at measurement distances d = 1 m, 2 m, 3 m, 4 m with results as follows:

d	1 m	2 m	3 m	4 m
E dBμV/m	96,4	83,5	74,2	69,4

To compare measured values at operating frequency f = 125 kHz with the limits it was used the 40 dB/decade conversion as given in the table bellow:

measuring	E measured	Normalizing	Normalized E	Limit 300 m	Margin
			to		
distance	at d	factor to	d = 300 m		
d (m)	AV (dBµV/m)	d = 300 m	(dBµV/m)	(dBµV/m)	(dB)
		(dB)			
1	96,40	99,08	-2,68		-28,31
2	83,50	87,04	-3,54	25,62	-29,17
3	74,20	80,00	-5,80	25,02	-31,42
4	69,40	75,00	-5,60		-31,22

For comparison with limit the highest value was taken, $E = -2,68 \ dB\mu V/m$ with resulting margin -28.31 dB.

Test setup Photo documentation

EXHIBIT 1

Fig. 1 Front view

Fig. 2 Rear view

6. <u>EUT Photo documentation</u>

External Photos : EXHIBIT 2 Internal Photos : EXHIBIT 3

7. Technical specification

Operational description: EXHIBIT 4

7.1. Block Diagram Of The EUT

EXHIBIT 5

7.2. Circuit Diagram Of The Layout

EXHIBIT 6

7.3. Instruction manual

EXHIBIT 7

7.4. Product Labelling

EXHIBIT 8