# Garbage Collection: Basics

Kenjiro Taura

2024/06/09

#### Contents

## **Contents**

| Introduction                                          | . 2 |
|-------------------------------------------------------|-----|
| How GC basically works                                | . 6 |
| The two major GC methods (traversing GC and reference |     |
| counting)                                             | . 9 |

# Introduction

## Two ways memory management goes wrong

- **premature free:** reclaim/reuse space for data when it may still be used in future
- memory leak: do not reclaim/reuse space for date when it is no longer used

# What is Garbage Collection (GC)?

- GC automates memory management, by identifying when data becomes "never used in future"
  - or, conversely, by identifying which data "may be" used in future

## Data that "may be" used in future?

```
int * s, * t;
void h() { ... }
void g() {
  h();
  \dots = p->x \dots 
void f() {
  . . .
  g()
  \dots = q->y \dots 
int main() {
  . . .
  f()
  ... = r->z ...
```

- global variables
- local variables of active function calls (calls that have started but have not finished)
- and ...



# Data that "may be" used in future?

```
int * s, * t;
void h() { ... }
void g() {
  h();
  ... = p->x ... 
void f() {
  . . .
  g()
  \dots = q->y \dots 
int main() {
  . . .
  f()
  ... = r->z ...
```

- global variables
- local variables of active function calls (calls that have started but have not finished)
- objects reachable from them by pointers



# **How GC basically** works

## Terminologies and the basic principle

- *an object*: the unit of data subject to memory allocation/ release (malloc in C; objects in Java; etc.)
- *the root:* objects accessible without traversing pointers, such as global variables and local variables of active function calls
- (un)reachable objects: objects (un)reachable from the root by traversing pointers
- *live objects*: objects that may be accessed in future
- *dead objects* or *garbage*: objects that are never accessed in future

## Terminologies and the basic principle

- *collector*: the program (or the thread/process) doing GC
- *mutator:* the user program
  - very GC-centric terminology, viewing the user program as someone simply "mutating" the graph of objects

the basic principle of GC:

objects unreachable from the root are dead

The two major GC methods (traversing GC and reference counting)

# The two major GC methods (1) — traversing GC

- simply traverses pointers from the root, to find (or *visit*) objects *reachable from the root*
- reclaim objects not visited
- two basic traversing methods
  - mark&sweep GC
  - copying GC

#### The two major GC methods (2) — reference counting (or RC)

- during execution, *maintain the number of pointers* pointing to each object (*reference count*)
- reclaim an object when its reference count drops to zero
  - $\because$  an object's reference count is zero  $\rightarrow$  it's unreachable from the root
- note: "GC" sometimes narrowly refers to the traversing GC only

traverse pointers from the root



- traverse pointers from the root
- when no more poiters from visited → unvisited objects are found, objects that have not been visited are garbage



- each object has a reference count (RC)
- update RCs during execution; e.g., upon p = q
  - ▶ the RC of the object p points to -= 1
  - the RC of the object q points to += 1

 reclaim an object when its RC drops to zero



- reclaim an object when its
   RC drops to zero
- RCs of objects pointed to by the reclaimed object decrease, which may result in reclaiming them too



- reclaim an object when its
   RC drops to zero
- RCs of objects pointed to by the reclaimed object decrease, which may result in reclaiming them too



- reclaim an object when its RC drops to zero
- RCs of objects pointed to by the reclaimed object decrease, which may result in reclaiming them too



- reclaim an object when its RC drops to zero
- RCs of objects pointed to by the reclaimed object decrease, which may result in reclaiming them too



• *note*: unreachable cycles cannot be reclaimed (RC =  $0 \Rightarrow$  unreachable, but *not vice versa*)

# When an RC changes

- a pointer variable is updated
- a reference is passed to a function
- a variable goes out of scope or a function returns
- ≈ any point when pointers get copied / dropped
- summary: *expensive*

```
p = q; p \rightarrow f = q; etc.
int main() {
  object * q = \dots;
 f(q); /* rc of q += 1 */
void f(object * p) {
    object * r = ...;
  } /* RC of r -= 1 */
  return ...; /* RC of p -= 1 */
```