Practice 1 Semester Two Examination, 2016

Answers

SPECIAL1	IST	
UNITS 3 A	ND 4	Ļ

Section One: Calculator-free If required by your examination administrator, please place your student identification label in this box

Student Number:	In figures					
	In words	 	 	 	 	_
	Your name					

Time allowed for this section

Reading time before commencing work: five minutes
Working time for section: fifty minutes

Materials required/recommended for this section *To be provided by the supervisor*

This Question/Answer Booklet Formula Sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction

fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of exam
Section One: Calculator-free	7	7	50	52	35
Section Two: Calculator-assumed	12	12	100	101	65
			Total	153	100

1. [7 marks]

(a) As
$$|x-2| \ge 0$$
, $1 + |x-2| \ge 1 \implies \text{No solution}$. [1]

(b)

From sketch: y = 1 + |x - 2| and y = x + 1 intersect at x = 1 \checkmark Hence, $1 + |x - 2| \le y = x + 1$ for $x \ge 1$ \checkmark [3]

OR

Consider
$$1 + |x-2| = x + 1$$

$$\Rightarrow |x-2| = x$$

$$\Rightarrow x-2 = x \text{ or } x-2 = -x$$
But $x-2 \neq x$, $\Rightarrow x-2 = -x$

$$x = 1$$
Hence, $x \geq 1$ \checkmark [3]

(c)
$$1 + |x-2| = x-1$$

 $|x-2| = x-2$ \checkmark
As $|x-2| \ge 0, x-2 \ge 0$ \checkmark $\Rightarrow x \ge 2$ \checkmark [3]

2.

(a)
$$\frac{dy}{dx} = x + 1$$

(b)
$$\frac{dy}{dx} = 2y$$

(c)
$$\frac{dy}{dx} = x + y$$

(d)
$$\frac{dy}{dx} = 2x$$

(e)
$$\frac{dy}{dx} = y - 1$$

(f)
$$\frac{dy}{dx} = \frac{-x}{y}$$

3. [5 marks]

$$(a+bi) \times (b+ai) = 13i$$

$$ab+a^2i+b^2i-ab=13i$$
Hence,
$$(a^2+b^2)i=13i$$

$$(a^2+b^2)=13$$
Since a and b are real integers,
$$a=\pm 2 \text{ and } b=\pm 3$$
or $a=\pm 3 \text{ and } b=\pm 2$

$$(5]$$

4. [6 marks]

(a)
$$z = 1 + \cos \theta + i \sin \theta$$

Hence, $Re(z) = 1 + \cos \theta$ \checkmark and $Im(z) = \sin \theta$ \checkmark [2]

(b) If
$$\theta = \frac{\pi}{3}$$
, Re(z) = $\frac{3}{2}$ \checkmark and Im(z) = $\frac{\sqrt{3}}{2}$

Hence, $|z| = \sqrt{3}$ \checkmark and arg(z) = $\frac{\pi}{6}$ \checkmark [4]

5. [6 marks]

Differentiate implicitly,
$$y'-1-3e^{-y}y'=0$$
 $\checkmark\checkmark$ At $(2,0)$, $x=2$, $y=0$; \Rightarrow $y'-1-3y'=0$ \checkmark \Rightarrow $y'=-0.5$ \checkmark Hence, equation of tangent is $y=-0.5(x-2)$ $\checkmark\checkmark$

6. [8 marks]

(b)
$$x = 0$$
 and $x = \pm a$. $\checkmark \checkmark$ [2]

(d) When
$$a = 2$$
, $f(x) = \frac{x(x+2)}{x(x+2)(x-2)}$

[3]

7. [10 marks]

(a)
$$\int \frac{3x-2}{\sqrt{x}} dx = \int 3x^{\frac{1}{2}} - 2x^{-\frac{1}{2}} dx = \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{2x^{-\frac{1}{2}}}{\frac{1}{2}} + C$$
 [2]

(b)
$$\int \frac{3x}{5x^2 - 2} dx = \frac{3}{10} \int \frac{10x}{5x^2 - 2} dx = \frac{3}{10} \ln (5x^2 - 2) + C$$
 [2]

(c) Let
$$x = \tan \theta \implies dx = \frac{d\theta}{\cos^2 \theta}$$

When
$$x = 1$$
, $\theta = \frac{\pi}{4}$ and when $x = 0$, $\theta = 0$

$$I = \int_{0}^{\frac{\pi}{4}} \frac{\tan^2 \theta}{(1 + \tan^2 \theta)^2} \times \frac{d\theta}{\cos^2 \theta}$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{\left(\frac{\sin^{2}\theta}{\cos^{2}\theta}\right)}{\left(1 + \frac{\sin^{2}\theta}{\cos^{2}\theta}\right)^{2}} \times \frac{d\theta}{\cos^{2}\theta} = \int_{0}^{\frac{\pi}{4}} \sin^{2}\theta \ d\theta$$

$$=\int_{0}^{\frac{\pi}{4}} \frac{1-\cos 2\theta}{2} d\theta$$

$$= \left[\frac{\theta}{2} - \frac{\sin 2\theta}{4}\right]_0^{\frac{\pi}{4}} = \frac{\pi}{8} - \frac{1}{4}$$

Practice 2 Semester Two Examination, 2016

Question/Answer Booklet

SPECIAI	LIST	
UNITS 3	AND	4

Section Two:

Calculator-assumed

If required by your examination administrator,	please place
your student identification label in this	s box

Student Number:	In figures				
	In words	 	 	 	
	Your name				

Time allowed for this section

Reading time before commencing work: ten minutes

Working time for section: one hundred minutes

Materials required/recommended for this section

To be provided by the supervisor

This Question/Answer Booklet Formula Sheet (retained from Section One)

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction

fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, notes on two unfolded sheets of A4 paper, and

up to three calculators approved for use in the WACE examinations

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of exam
Section One: Calculator-free	7	7	50	52	35
Section Two: Calculator-assumed	12	12	100	101	65
			Total	153	100

Instructions to candidates

- 1. The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer Booklet.
- 3. You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- 4. Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.
 - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
 - Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question that you are continuing to answer at the top of the page.
- 5. **Show all your working clearly**. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 6. It is recommended that you **do not use pencil**, except in diagrams.
- 7. The Formula Sheet is **not** to be handed in with your Question/Booklet.

8. [9 marks]

(a)
$$(5 cis \left(-\frac{\pi}{4}\right)) \times (-1 - \sqrt{3} i) = (5 cis \left(-\frac{\pi}{4}\right)) \times (2 cis \left(-\frac{2\pi}{3}\right))$$

$$= 10 cis \left(-\frac{11\pi}{12}\right) \qquad \checkmark \qquad [3]$$

(b)
$$(-1 - \sqrt{3}i) = 2 cis \left(\frac{2\pi}{3}\right)$$

Hence,
$$\frac{\overline{(-1-\sqrt{3}i)}}{cis\left(\frac{\pi}{3}\right)} = \frac{2cis\left(\frac{2\pi}{3}\right)}{cis\left(\frac{\pi}{3}\right)} = 2cis\left(\frac{\pi}{3}\right)$$
 [3]

(c)
$$w^3 = (-4 - 4\sqrt{3} i)$$
 $\Rightarrow w^3 = 8 \operatorname{cis} \left(-\frac{2\pi}{3} \right)$

$$w = \left[8\operatorname{cis} \left(-\frac{2\pi}{3} \right) \right]^{\frac{1}{3}} = 2 \times \left[\operatorname{cis} \left(-\frac{2\pi}{3} + 2n\pi \right) \right]$$

Hence,
$$w = 2 cis \left(-\frac{2\pi}{9} \right)$$
, $2 cis \left(\frac{4\pi}{9} \right)$, $2 cis \left(-\frac{8\pi}{9} \right)$ [5]

9. [7 marks]

Let constant acceleration be represented by *a*.

Then, velocity
$$v = \int a \ dt$$

= $at + C$

Also, displacement
$$x = \int at + C dt$$

= $\frac{at^2}{2} + Ct + K$

When
$$t = 0$$
, $x = 0 \implies K = 0$
Also, when $t = 6$, $x = 90 \implies 18a + 6C = 90$
and, when $t = 10$, $x = 180 \implies 50a + 10C = 180$
Hence, $a = 1.5$ and $C = 10.5$
Therefore, constant acceleration is 1.5 ms^{-2} .

(b) When
$$t = 10$$
, $v = 1.5 \times 10 + 10.5 = 25.5 \text{ ms}^{-1}$ $\checkmark \checkmark$ [2] = 91.8 kph

10. [11 marks]

(a)
$$\frac{d^2x}{dt^2} = -16x = -(4)^2x$$
.

Hence, motion is simple harmonic with angular velocity ω = 4. \checkmark

Therefore, $x = A \sin(4t + \alpha)$.

When
$$t = 0$$
, $x = 0 \implies A \sin \alpha = 0 \implies \alpha = 0$

The equation is now $x = A \sin 4t$.

Velocity
$$v = \frac{dx}{dt} = 4A \cos 4t$$
.

When
$$t = 0$$
, $v = -1 \implies 4A = -1 \implies A = -\frac{1}{4}$

Hence,
$$x = -\frac{1}{4}\sin 4t$$
. [6]

(b) Distance travelled =
$$\int_{0}^{10} \left| -\sin \frac{t}{2} \right| dt$$

$$= 6.567$$
Average speed = $\frac{6.567}{10} = 0.657 \text{ ms}^{-1}$

11. [8 marks]

8.a) For line L to be parallel to TT. the direction vector of must be perpendicular to the normal vector of T. $\left(-\frac{1}{5}\right), \left(\frac{1}{4}\right) = 1 - 5 + 4$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$ $\Sigma \cdot \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}$

$$\Gamma \cdot \left(\frac{1}{4}\right) = \frac{20}{11}$$

$$\Gamma \cdot \left(\frac{1}{4}\right) = \frac{3}{6} \cdot \left(\frac{1}{4}\right)$$

$$\Gamma \cdot \left(\frac{1}{4}\right) = \frac{3}{6} \cdot \left(\frac{1}{4}\right)$$

$$\Gamma \cdot \left(\frac{1}{4}\right) = \frac{20}{11}$$

c) Line from arigin 4

that gives shertest distance is to
$$T_1$$
 of T_2

il. $\Gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$
 $T_1: \begin{pmatrix} 1 \\ 4 \end{pmatrix} = 20$

distance $\frac{10}{9} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \frac{10}{3}$ which

$$TT_2: \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) = 12$$

$$181 = 12$$

$$1 = \frac{2}{3}$$

$$dotance = \frac{2}{3}\left(\frac{1}{4}\right) = 2 \times \text{m.b}$$

12. [6 marks]

(a)
$$T = Ae^{km} + 25$$
 $\Rightarrow \frac{dT}{dm} = Ae^{km} \cdot k$

But $Ae^{km} = T - 25$ $\Rightarrow \frac{dT}{dm} = k (T - 25)$

(b) When
$$m = 9$$
, $T = 86$ \Rightarrow $86 = A e^{9k} + 25$
 $A e^{9k} = 61$ \checkmark
When $m = 15$, $T = 76$ \Rightarrow $76 = A e^{15k} + 25$
 $A e^{15k} = 51$ \checkmark
Hence, $e^{6k} = \frac{51}{61}$
 $k = -0.0298414 = -0.03$ \checkmark
and $A = 80$ (nearest degree) \checkmark [4]

13. [10 marks]

(b) Area between
$$x = 2$$
 and $x = 50 = \int_{2}^{50} e^{-(x-2)^2} dx = 0.8862$
Area between $x = 2$ and $x = 100 = \int_{2}^{100} e^{-(x-2)^2} dx = 0.8862$
Area between $x = 2$ and $x = 200 = \int_{2}^{100} e^{-(x-2)^2} dx = 0.8862$ $\checkmark \checkmark \checkmark$
Hence, the area to the right of $x = 2$ approaches 0.8862 (limiting area) \checkmark [4]

(c) Volume =
$$\pi \int_{0}^{2} \left[e^{-(x-2)^{2}} \right]^{2} dx$$
 $\checkmark \checkmark$ [3]

14. [5 marks]

Rewrite
$$P = \frac{2\pi}{\sqrt{g}} x^{\frac{1}{2}}$$
. $\Rightarrow \frac{dP}{dx} = \frac{2\pi}{\sqrt{g}} \times \frac{1}{2} x^{-\frac{1}{2}}$

Hence, $\delta P \approx \frac{dP}{dx} \times \delta x$

$$= \frac{2\pi}{\sqrt{g}} \times \frac{1}{2} x^{-\frac{1}{2}} \times \delta x = \frac{\pi x^{-\frac{1}{2}}}{\sqrt{g}} \times \delta x$$

If x increases by 1%, then, $\delta x = 0.01 \times x$;

$$\delta P \approx \frac{\pi x^{-\frac{1}{2}}}{\sqrt{g}} \times 0.01x$$

$$= 0.01 \times \frac{\pi x^{\frac{1}{2}}}{\sqrt{g}}$$

$$= 0.01 \times \frac{P}{2} = 0.005P$$

$$\checkmark [5]$$

15. [9 marks]

(a)
$$\frac{dV}{ds} = \frac{25}{\sqrt{s}}$$
. \checkmark
Hence, when $s = 36$, $\frac{dV}{ds} = \frac{25}{6}$ \checkmark [2]

(b)
$$\frac{dV}{dt} = \frac{25}{\sqrt{s}} \times -\frac{3}{4}t^{\frac{1}{2}}$$

When $s = 36$, $100 - 0.5t^{\frac{3}{2}} = 36 \Rightarrow t = 25.3984$.
Hence, when $s = 36$, $\frac{dV}{dt} = -15.75$ km³ min⁻¹

(c) When it hits the earth, s = 0.

Speed =
$$\left| \frac{dS}{dt} \right| = \left| -\frac{3}{4}t^{\frac{1}{2}} \right| = \frac{3}{4}t^{\frac{1}{2}}$$

When $s = 0$, $100 - 0.5t^{\frac{3}{2}} = 0 \Rightarrow t = 34.1995 \checkmark$
Hence, when $s = 0$, speed = 4.39 km min⁻¹ \checkmark [3]

16. [12 marks]

	Domain	Range	
f(x)	x ≠ 1 ✓	<i>y</i> ≠ 1	✓
$f^{-1}(x)$	<i>x</i> ≠ 1 ✓	<i>y</i> ≠ 1	\checkmark
g(x)	x ≠ 1 ✓	$y \ge 0$	
		✓✓	
h (x)	<i>χ</i> ≠ ±1 ✓	$y \le -1 \text{ and } y > 1$	√√
f(f(x))	x ≠ 1 √	<i>y</i> ≠ 1	✓

17. [10 marks]

(a)
$$\mathbf{a} = -9.8 \,\mathbf{j}$$
 $\Rightarrow \mathbf{v} = \int -9.8 \,\mathbf{j} \,dt = -9.8 \,\mathbf{j} + \mathbf{c}$
Since $\mathbf{v}(0) = 100 \cos 30 \,\mathbf{i} + 100 \sin 30 \,\mathbf{j} = 50\sqrt{3} \,\mathbf{i} + 50 \,\mathbf{j}$, $\mathbf{c} = 50\sqrt{3} \,\mathbf{i} + 50 \,\mathbf{j}$
Hence, $\mathbf{v} = 50\sqrt{3} \,\mathbf{i} + (50 - 9.8 \,t) \,\mathbf{j}$

$$r = \int 50\sqrt{3} \,\mathbf{i} + (50 - 9.8t) \,\mathbf{j} \,dt = 50\sqrt{3}t \,\mathbf{i} + (50t - 4.9t^2) \,\mathbf{j} + \mathbf{k}$$
Since $r(0) = \mathbf{0}$, $\mathbf{k} = \mathbf{0} \Rightarrow r = 50\sqrt{3}t \,\mathbf{i} + (50t - 4.9t^2) \,\mathbf{j}$ [3]

(b) Rocket lands when $r_y = 5 \mathbf{j}$. Hence, $(50t - 4.9t^2) = 5$ $\Rightarrow t \approx 10.1031$

(c)
$$\mathbf{r} = 100 \cos \theta \, t \, \mathbf{i} + (100 \sin \theta \, t - 4.9t^2) \, \mathbf{j}$$
Rocket lands at the point $700 \, \mathbf{i} + 5 \, \mathbf{j}$.

Hence, $100 \cos \theta \, t = 700 \implies t = \frac{7}{\cos \theta}$

But
$$100 \sin \theta t - 4.9t^2 = 5$$
, $\Rightarrow 100 \sin \theta \times \frac{7}{\cos \theta} - 4.9 \left(\frac{7}{\cos \theta}\right)^2 = 5$

$$\theta = 22.10^{\circ} \text{ or } 68.27^{\circ}$$

18.

$$\frac{dp}{dq} = 2pq(p+3)$$

Separate variables, $\frac{dp}{p(p+3)} = 2qdq$

Thus
$$\int \frac{dp}{p(p+3)} = \int 2qdq$$

Expressing as partial fractions $\frac{1}{p(p+3)} = \frac{A}{p} + \frac{B}{p+3}$

Thus 1 = A(p + 3) + Bp

This means 1 = 3A and $A = \frac{1}{3}$.

0 = A + B. Hence $B = \frac{-1}{3}$.

Thus
$$\frac{1}{3} \int \left(\frac{1}{p} - \frac{1}{p+3} \right) dp = \int 2q dq$$

Hence
$$\frac{1}{3} \ln \frac{p}{p+3} = q^2 + c$$

Which rearranges to $\frac{p}{p+3} = Ae^{3q^2}$, where $A = e^{3c}$.

This also can be written as $p = Ape^{3q^2} + 3Ae^{q^2}$.

Making *p* the subject we have $p(1 - Ae^{3q^2}) = 3A^{3q^2}$

Hence
$$p = \frac{3Ae^{3q^2}}{1 - Ae^{3q^2}} = \frac{3}{Be^{-3q^2} - 1}$$
, where $B = \frac{1}{A}$

Since p = 10, when q = 3, by substitution we obtain $10 = \frac{3}{Be^{-27} - 1}$. Thus $B = 6.916 \times 10^{11}$

4a)
$$x = sin2t$$

 $x^2 = (sin2t)^2$
 $x^2 = (2sin2t)^2$
 $x^2 = 4(sin2t)coi^2t$
 $x^2 = 4(sin2t)coi^2t$
 $x^2 = 4(sin2t) - 4(sin2t)^4$
 $x^2 = (2cost)^2 - \frac{1}{4}(2cost)^4$
 $x^2 = y^2 - \frac{1}{4}y^4$
 $4\pi^2 + y^4 = 4y^2$

$$\frac{dx}{dy} = \frac{6}{8}$$

$$\frac{dx}{dy} = 0$$