2023 Differential Geometry- TD1

- 1. Show that the implicit function theorem is equivalent to the inverse function theorem.
- 2. Prove the constant rank theorem.

3 11**. Morse lemma

Let $f: U \mapsto \mathbf{R}$ be a smooth function on an open subset U of \mathbf{R}^n . Suppose that $0 \in U$ is a non-degenerate critical point. This means that $df_0 = 0$ and that the quadratic form defined by the matrix

$$S = \left(\partial_{ij}^2 f(0)\right)_{1 \leqslant i, \ j \leqslant n}$$

is non-degenerate. Show that there exists a diffeomorphism ϕ from an open subset containing 0 to another such that

$$f(\phi^{-1}(x)) = f(0) + \sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{n} x_i^2,$$

where (p, n - p) is the signature of the quadratic form to associated to S.

(A) Soit f une fonction définie sur un sous-ensemble fermé A de \mathbb{R}^n . On dit que f est de classe C^p sur A si pour tout point x de A, il existe une fonction f_x de classe C^r définie au voisinage de x telle que $f_x = f$ sur A. Monter que toute fonction f de classe C^p sur A s'étend en une fonction de classe C^p sur \mathbb{R}^n (voir [Dieudonné], tome f 3, 16.4 exercice 6 pour une autre caractérisation).

(D) Théorème de d'Alembert-Gauss

Soit $P: \mathbb{C} \to \mathbb{C}$ une application polynomiale. Soit $K = \{P(x) \mid dP(x) = 0\}$.

- (a) Montrer en utilisant le théorème des fonctions implicites que l'application ν : $\mathbb{C} \setminus K \to \mathbb{N}$ donnée par $\nu(z) = \operatorname{card}(P^{-1}(z))$ est semicontinue inférieurement, i.e. si $\lim z_n = z$ on a $\lim_n \nu(z_n) \leq \nu(z)$. On montrera en utilisant la propreté de P que ν est localement constante.
- (b) Montrer que $\mathbb{C}-K$ est connexe par arcs. En utilisant que ν ne peut être partout égale à zéro, montrer que P est surjective.
- (c) En déduire que tout polynôme sur $\mathbb C$ possède au moins une racine complexe. (Théorème de d'Alembert-Gauss)
- (d) Quelle est la partie de la démonstration qui ne marche pas sur \mathbb{R} ?