1. NOTION DE VECTEUR

Sur la figure suivante, on a construit l'image \mathcal{F}' de la figure \mathcal{F} par la qui transforme A en B.

La flèche que l'on a tracée allant de A jusqu'à B indique la et la et la du déplacement que l'on doit effectuer pour construire l'image d'un point.

M

Définition. – La translation précédente s'appelle la translation de

..... L'image du point .. par cette translation est le point ...

Propriété. – Lorsque A et B sont distincts, le vecteur \overrightarrow{AB} est caractérisé par :

-; -;

_

Remarque. – Lorsque A et B sont confondus, le vecteur \overrightarrow{AB} est appelé le On le note Le vecteur nul n'a

2. ÉGALITÉ DE DEUX VECTEURS

Définition. – Des vecteurs (non nuls) égaux sont des vecteurs qui ont la même, le et la

Proposition. – Soient A, B, C et D quatre points. Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si, et seulement si,

Exemple. – Représenter, sur la figure ci-dessous, le vecteur $\overrightarrow{u} + \overrightarrow{v}$.

Remarque. – Pour représenter la somme de deux vecteurs, il est souvent « pratique » de représenter les deux vecteurs « bout à bout » (ou encore « l'un à la suite de l'autre »).

3. SOMME DE DEUX VECTEURS

Définition. – En enchaînant la translation de vecteur \overrightarrow{u} et celle de vecteur \overrightarrow{v} , on obtient une nouvelle Le vecteur de cette translation est appelé la des vecteurs \overrightarrow{u} et \overrightarrow{v} .

Remarque. – L'ordre n'a pas d'importance :

$$\overrightarrow{U} + \overrightarrow{V} = \overrightarrow{V} + \dots$$

Exemple. – Représenter, sur la figure ci-dessous, le vecteur $\overrightarrow{u} + \overrightarrow{V}$.

Remarque. – De la même façon, on peut définir (et représenter) la somme de trois vecteurs ou plus (exemples en exercices).

4. RELATION DE CHASLES

Proposition. – Quels que soient les points A, B et C :

$$\overrightarrow{AC} = \overrightarrow{AB} + \dots$$

Remarque. – De façon intuitive :

- si l'on se rend du point A au point . (vecteur \overrightarrow{AB});
- puis (addition +) du point . au point . (vecteur \overrightarrow{BC}), alors s'est rendu du point . au point . (vecteur \overrightarrow{AC}).

Exemples. – Compléter les égalités suivantes à l'aide de la relation de Chasles :

$$\blacksquare \overrightarrow{E..} + \overrightarrow{UH} = \overrightarrow{E..}$$

$$\blacksquare$$
 \overrightarrow{B} + = \overrightarrow{ML}

10 / 10