MA1242 Hilary 2019

Tutorial 7

Problem 1. (K. & K. 10.2.) A particle of mass 50 g moves under an attractive central force of magnitude $4r^3$ dynes. The angular momentum is equal to 1000 g cm²/s.

- 1. Find the effective potential energy.
- 2. Indicate on a sketch of the effective potential the total energy for circular motion.
- 3. The radius of the particles orbit varies between r_0 and $2r_0$. Determine r_0 .

Problem 2. (K. & K. 10.5.)

A 2 kg mass on a frictionless table is attached to one end of a massless spring. The other end of the spring is held fixed by a frictionless pivot. The spring constant is $3~\rm N/m$. The mass moves in a circle and has a total energy of $12~\rm J$.

- 1. Find the radius of the orbit and the velocity of the mass.
- 2. The mass is struck by a sudden sharp blow, given it an instantaneous velocity of $1~\rm m/s$ radially outward. Show the state of the system before and after the blow on a sketch of the energy diagram.
- 3. For the new orbit, find the maximum and minimum values of r.