#LaUISqueQueremos

Henry Peña 2150606

EYES ON THE TRACK

Diego Medina 2150011

Motivación:

Prevenir accidentes automovilísticos causados por conductores distraídos, tales como los 85.426 accidentes con heridos y 3.406 con muertos ocurridos en Colombia en 2016. (ANSV 2019)

Enviar o leer un mensaje de texto quita sus ojos del camino por aproximadamente 5 segundos, lo suficiente como para recorrer la longitud de una cancha de fútbol al manejar a 55 millas por hora (88km/h).

"una persona al volante en Colombia tiene 4 veces más probabilidades de morir en un accidente de tránsito que un conductor en España o Gran Bretaña" (Revista Motor, 2019).

Según Fesvial, Federación Española de la Seguridad Vial, el 45% de los accidentes se podrían prevenir si los conductores estuvieran siempre atentos a la carretera.

Dataset:

State Farm Distracted Driver Detection

Can computer vision spot distracted drivers? \$65,000 · 1,440 teams · 3 years ago

El dataset que se usó para este descriptor fue obtenido de un challenge de *Kaggle* hecho por la compañía de seguros de automóviles más grande de los Estados Unidos **State Farm Insurance**.

Este dataset contiene 22400 imágenes para entrenamiento de varios conductores en un automóvil, cada cuál tiene asignada una etiqueta de la acción que están realizando (mensajes de texto, comer, hablar por teléfono, maquillaje, alcanzar detrás, etc). Hay 79.700 imágenes sin etiquetar para prueba, de distintos conductores al de entrenamiento.

Las 10 clases a predecir son:

- •c0: safe driving
- •c1: texting right
- •c2: talking on the phone right
- •c3: texting left
- •c4: talking on the phone left
- •c5: operating the radio
- •c6: drinking
- •c7: reaching behind
- •c8: hair and makeup
- •c9: talking to passenger

DNN:

moder.Summary()	mode1	l.summary	
-----------------	-------	-----------	--

Layer (type)	Output	Shape	Param #
flatten_1 (Flatten)	(None,	12288)	0
dense_1 (Dense)	(None,	512)	6291968
dense_2 (Dense)	(None,	256)	131328
dense_3 (Dense)	(None,	10)	2570

Total params: 6,425,866 Trainable params: 6,425,866 Non-trainable params: 0

model5.summary()

Layer (type)	Output Shape	Param #
flatten_5 (Flatten)	(None, 12288)	0
dense_8 (Dense)	(None, 10)	122890

Total params: 122,890 Trainable params: 122,890 Non-trainable params: 0

model3.summary()

Layer (type)		Output	Shape	Param #
flatten_8 (Fla	tten)	(None,	12288)	0
dense_28 (Dense	e)	(None,	128)	1572992
dense_29 (Dense	e)	(None,	256)	33024
dense_30 (Dense	e)	(None,	512)	131584
dense_31 (Dense	e)	(None,	1024)	525312

Total params: 2,262,912 Trainable params: 2,262,912 Non-trainable params: 0

BoW:

Data For Dictionary:

```
path_images='../../datasets/driver-detections/train/'
descriptor_extractor = ORB(n_keypoints=200)
array_ORB=[]
size=100 #<1911
for i in tqdm(np.unique(data1["classname"])):
    for j in np.random.choice(data1["img"][data1.classname==i],size):
    #for j in data1["img"][data1.classname==i]:
        temp_image=cv.cvtColor(cv.imread(path_images+i+"/"+j), cv.COLOR_BGR2GRAY)
        descriptor_extractor.detect_and_extract(temp_image)
        if(len(array_ORB)==0):
            array_ORB=descriptor_extractor.descriptors
        else:
            array_ORB=np.vstack((array_ORB,descriptor_extractor.descriptors))</pre>
```

Se utilizaron 100 imágenes de cada clase para hacer el diccionario

KNN:

Gaussian:

Dictionary Creation:

```
from sklearn.cluster import KMeans
v_words=70
estimator=KMeans(n_clusters=v_words).fit(array_ORB)
dictionary=estimator.cluster_centers_
print dictionary.shape
```

(70, 256)

Random Forest:

SVC (rbf kernel):

opt = keras.optimizers.SGD(lr=1e-3, momentum=0.9)
.compile(optimizer=opt, loss='sparse categorical crossentropy',metrics=['accuracy'])

CNN:

Model 1:

```
model CNN = keras.models.Sequential()
model CNN.add(keras.layers.Conv2D(20, (5, 5), activation='relu',
model CNN.add(keras.layers.MaxPooling2D((2, 2)))
model CNN.add(keras.layers.Conv2D(50, (5, 5), activation='relu',
model CNN.add(keras.layers.MaxPooling2D((2, 2)))
model CNN.add(keras.layers.Flatten())
model CNN.add(keras.layers.Dense(500, activation='relu', kernel i
model CNN.add(keras.layers.Dense(10, activation='softmax'))
model CNN.summary()
```

<matplotlib.legend.Legend at 0x29420190f08>

Model 2:

```
model CNN2 = keras.models.Sequential()
model CNN2.add(keras.layers.Conv2D(64, (3, 3), activation='relu'
model CNN2.add(keras.layers.Conv2D(32, (3, 3), activation='relu',
model CNN2.add(keras.layers.MaxPooling2D((2, 2)))
model CNN2.add(keras.layers.Flatten())
model CNN2.add(keras.layers.Dense(512, activation='relu', kernel
model CNN2.add(keras.layers.Dense(256, activation='relu', kernel
model CNN2.add(keras.layers.Dense(128, activation='relu', kernel
model CNN2.add(keras.layers.Dense(10, activation='softmax'))
model CNN2.summary()
```

<matplotlib.legend.Legend at 0x29420644d88>

Model 3:

```
model CNN3 = keras.models.Sequential()
model CNN3.add(keras.layers.Conv2D(32, (3, 3), ke
model CNN3.add(keras.layers.MaxPooling2D((2, 2)))
model CNN3.add(keras.layers.Dropout(0.5))
model CNN3.add(keras.layers.Conv2D(64, (3, 3), ke
model CNN3.add(keras.layers.MaxPooling2D((2, 2)))
model CNN3.add(keras.layers.Dropout(0.5))
model CNN3.add(keras.layers.Conv2D(128, (3, 3), ke
model CNN3.add(keras.layers.MaxPooling2D((8, 8)))
model CNN3.add(keras.layers.Dropout(0.5))
model CNN3.add(keras.layers.Flatten())
model CNN3.add(keras.layers.Dense(10, activation=
model CNN3.summary()
```

<matplotlib.legend.Legend at 0x2943c088e48>

Modelo Escogido:

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	60, 60, 20)	1520
max_pooling2d (MaxPooling2D)	(None,	30, 30, 20)	0
conv2d_1 (Conv2D)	(None,	26, 26, 50)	25050
max_pooling2d_1 (MaxPooling2	(None,	13, 13, 50)	0
flatten (Flatten)	(None,	8450)	0
dense (Dense)	(None,	500)	4225500
dense_1 (Dense)	(None,	10)	5010

Total params: 4,257,080

Trainable params: 4,257,080

Non-trainable params: 0

Entrenamiento:

```
[ ] history = model_CNN.fit(X_train,y_train, epochs=10, batch_size=160, verbose=2,validation_data=(X_test, y_test))

Prain on 17939 samples, validate on 4485 samples
Epoch 1/10
```

```
17939/17939 - 6s - loss: 1.9033 - acc: 0.3476 - val loss: 1.5848 - val acc: 0.4531
Epoch 2/10
17939/17939 - 2s - loss: 1.1783 - acc: 0.6422 - val loss: 0.8958 - val acc: 0.7358
Epoch 3/10
17939/17939 - 2s - loss: 0.6903 - acc: 0.8123 - val loss: 0.6564 - val acc: 0.8004
Epoch 4/10
17939/17939 - 2s - loss: 0.4387 - acc: 0.8922 - val loss: 0.3983 - val acc: 0.8965
Epoch 5/10
17939/17939 - 2s - loss: 0.2887 - acc: 0.9334 - val loss: 0.2954 - val acc: 0.9240
Epoch 6/10
17939/17939 - 2s - loss: 0.2183 - acc: 0.9513 - val loss: 0.2125 - val acc: 0.9494
Epoch 7/10
17939/17939 - 2s - loss: 0.1627 - acc: 0.9648 - val loss: 0.1710 - val acc: 0.9610
Epoch 8/10
17939/17939 - 2s - loss: 0.1300 - acc: 0.9722 - val loss: 0.1440 - val acc: 0.9648
Epoch 9/10
17939/17939 - 2s - loss: 0.1035 - acc: 0.9784 - val loss: 0.1173 - val acc: 0.9715
Epoch 10/10
17939/17939 - 2s - loss: 0.0842 - acc: 0.9823 - val loss: 0.1127 - val acc: 0.9710
```


Accuracy/epoch:

Transfer Learning (Fully Connected train):

MobileNet:

Vgg19:

Algunos ejemplos:

Patrimonio educativo y cultural de los santandereanos

texting - left reaching behind

drinking

talking on the phone - right talking to passenger

Safe Driving

Kaggle Submission:

```
[ ] predicts=[]
[ ] for i in tqdm(range(0,19974)):
       temp img=cv.resize(cv.cvtColor(cv.imread(path test images+'/'+
       temp predict=model CNN.predict(np.array([temp img]))
       predicts.append(np.append(test images names[i],temp predict))
                       19974/19974 [1:19:43<00:00, 4.06it/s]
    for i in tqdm(range(19974, 39948)):
       temp img=cv.resize(cv.cvtColor(cv.imread(path test images+'/'+
       temp_predict=model_CNN.predict(np.array([temp_img]))
       predicts.append(np.append(test images names[i],temp predict))
                       19974/19974 [1:17:49<00:00, 4.03it/s]
[ ] for i in tqdm(range(39948, 59922)):
       temp img=cv.resize(cv.cvtColor(cv.imread(path test images+'/'+
       temp_predict=model_CNN.predict(np.array([temp_img]))
       predicts.append(np.append(test images names[i],temp predict))
                       19974/19974 [1:12:52<00:00, 4.10it/s]
[ ] for i in tqdm(range(59922, 79896)):
       temp img=cv.resize(cv.cvtColor(cv.imread(path test images+'/'+
       temp_predict=model_CNN.predict(np.array([temp_img]))
       predicts.append(np.append(test images names[i],temp predict))
```

19974/19974 [1:11:08<00:00, 4.78it/s]

Wait time Execution time Score 0 seconds 1 seconds 17.31954

Universidad Industrial de Santander

años

www.uis.edu.co

Repositorio del proyecto:

https://github.com/pecons/proyectoCV

Gracias por su atención