Math 115AH

Geoffrey Iyer

Office: MS6160

Email: geoff.iyer@gmail.com

1 Materials

Sets: A set is a collection of elements (no formal definition)

Let's say S is a set, we write $x \in S$

 $N = \{1,2,3,4,\ldots\} \text{ called natural numbers, } Z = \{...,-2,-1,0,1,2,\ldots\} \text{ called integers}$

 $Q = \{ \frac{a}{b} \mid a, b \in Z \text{ and } b \neq 0 \}$

 $\phi = \text{Empty Set}$

 $\operatorname{Mat}_{m \times n}(\mathbf{R}) = m \times n$ matrices with entries in R

R[x] = Polynomials with coefficients in R

Subsets: say A, B are two sets, we say A is a subset of B and write A \subseteq B to mean:

If $x \in A$ then $x \in B$

Equality: say A, B are sets, we say A = B to mean:

 $x \in A$ if and only if $x \in B$

Another way to say this: $A \subseteq B$ and $B \subseteq A$

Union, Intersection and Complement:

Here A, B are both sets

 $A \cup B = "A union B" = set of elements that are in A or B$

 $A \cap B =$ "A intersect B" = set of elements in both A and B

 $A \setminus B = "A \text{ complement } B" = \text{set of elements in } A \text{ and not in } B$

Quantifiers:

 \forall means "for all"

eg. $\forall x \in N, x > 0$

 \exists means "there exists"

eg. $\exists I \in Mat_{2\times 2}(R)$ such that $I \cdot A = A$ for every $A \in Mat_{2\times 2}(R)$

2 Practice

(1) Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Sol:

First we'll show $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$

Say $x \in A \cup (B \cap C)$, this means $x \in A$ or $x \in B \cap C$

Case 1: If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$

then $x \in (A \cup B) \cap (A \cup C)$

Case 2: If $x \in B \cap C$, then $x \in B$ and $x \in C$

So $x \in A \cup B$ and $x \in A \cup C$ So $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$

Now we need to show $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

Pick $y \in (A \cup B) \cap (A \cup C)$, then $y \in A \cup B$ and $y \in A \cup C$

Since $y \in A \cup B$, $y \in A$ or $y \in B$, if $y \in A$ we win

So say $y \in B$, similarly $y \in A \cup C$, if $y \in A$ we win

So say $y \in C$, then $y \in B \cup C$

So we win

(2) Prove that there are sets A, B, C so that $(A \cup B) \cap C \neq A \cup (B \cap C)$

For example, A = {1}, B = ϕ and C = ϕ

Then $(A \cup B) \cap C = \phi$ and $A \cup (B \cap C) = \{1\}$