毕业实训进展汇报

1752919-祁好雨

目录

- 理论进展
- 实践进展

理论进展

- 论文阅读
- kubernetes in action

论文阅读: A review on dynamic consolidation of vm ...

- CONSOlidation(vm): Virtual machine (VM) consolidation utilizes live migration of virtual machines (VMs) to transfer a VM among physical servers in order to improve the utilization of resources and energy efficiency in cloud data centers.
- Background study: conventional methods; linear programming approaches; heauristic methods;
 ML based

论文阅读: A review on dynamic consolidation of vm ...

S. No	Scheme	Method name	Advantages	Disadvantages
1	FQL [44]	Fuzzy Q-learning (FQL)	Energy-performance trade-off in cloud data centers	It is not implementing more VM selection
2	MAGNETIC [45]	Multi-agent machine learning-based approach for energy-efficient dynamic consolidation (MAGNETIC)	Reduces data center energy consumption	Not support for parallel applications at a time
3	ML [46]	Heuristic and machine learning (ML)	Energy and network traffic for reduced scenarios	High error-susceptibility
4	PPR-RL [47]	Performance-to-power ratio-based reinforcement learning (PPR-RL)	Reduces the energy consumption	It does not support real cloud infrastructure
5	Regression [48]	Regression-based approach	Improves energy efficiency	It is assumed that the cause and effect relationship between variables remains unchanged
6	MLR [49]	Multiple linear regression (MLR)	Increased energy consumption of the servers	It assumes that is a dependent and independent variable which is incorrect many times
7	BFD [50]	k-Means clustering, stochastic Wiener filter and modified best fit decreasing (BFD)	Reduces energy consumption	Euclidean distance for all the data points in the cluster and it will become stable
8	Machine learning [51]	Machine learning theory	Save energy consumption, energy efficiency	This system not focused in the heterogeneous environment
9	MLWNN [52]	Multiple linear regression and wavelet neural network	Suitable for low workload cloud data center	It is required processors with parallel processing
10	RL and FL	(MLWNN) Reinforcement	Energy-efficient	It is not always
	[53]	learning (RL) and fuzzy logic (FL)	resource allocation	accurate
	LA and game	Learning automata	Energy consumption	Not focused on

Table 4 (continued)

S. No	Scheme	Method name	Advantages	Disadvantages
12	BGM-BLA [55]	Binary graph matching-based bucket-code learning algorithm (BGM-BLA)	Energy consumption, communication between VMs	Not suitable for a real-time environment
13	Megh [56]	Megh	Energy-efficient resource management	Not support for large-scale cloud data center
14	Speedy cloud [57]	Speedy cloud	Increased resource utilization	Not focused on scheduling jobs among CPUs and FPGAs

(continued)

论文阅读: Applying reinforcement learning towards automation resource allocation and application scalability

- Introduction
- · laas的优势:动态调度
- 动态调度是困难的: 1. resource performance始终在变, 2. 调度会影响同host的其他vm
- MDP(马尔可夫决策过程)和Q-learning等增强学习手段适应这种变化的情况下做决策
- 创造了parallel Q-learning减少做决策的时间,解决新增state variable对维度的影响

- VMM控制VM对host resources的access, 并不隔离performance(?)
- performance unpredictability是一个主要困难
- 传统方法是rule-based, 根据超参upper bound和lower bound来scale up/down
- 再进一步使用MDP
- 但是MDP需要时间来得出计算结果
- 对这个drawback的一个解决方法是使用一个在外部sample data上面已经train好的外部决策方法(有点像迁移学习)
- 该论文提出了一个和外部决策互为补充的内部决策算法(根据当前数据train)

• 提出的parallel q-learning有两个优势: 1. 利用并发,决策时间减少 2.适应resource number的变化

- 实验环境:
 - Xen Hypervisor: 无法选择实际的接口; 不能隔离同hostVM的 performance
 - Microbenchmark EC2
- TODO: Q-learning

Algorithm 1 Reinforcement Learning Algorithm (Q-learning)

Initialize Q(s, a) arbitrarily

Repeat (for each episode)

Initialize s

repeat

Choose a from s using policy derived from Q (ϵ -greedy)

Take action a and observe r, s'

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

 $s \leftarrow s';$

until s is terminal

Algorithm 2 Parallel Q-Learning

```
Initialise Q(s, a)_l = 0, Q(s, a)_q = 0, Q(s, a) = 0
comms_{out}, comms_{in} \leftarrow \emptyset
\pi \leftarrow an arbitrary \epsilon-greedy policy w.r.t to Q
   repeat
      for all s \in S do
         Choose a from s using policy \pi
         Take action a, observe r, s'
         Q(s,a)_l \leftarrow Q(s,a)_l + \alpha[r + \gamma \max_{a'} Q(s',a')_l - Q(s,a)_l]
         s \leftarrow s';
         if || (Q(s,a)_l - Q(s,a)_q) || > \theta then
            Add Q(s,a)_l to comms_{out}
         end if
         Transmit comms_{out} to all agents
         Receive comms_{in} from other agents
         if comms_{in} \neq \emptyset then
            for all Q(s, a)_g \in comms_{in} do
Q(s, a) = \frac{Q(s, a) \times Expc_l + Q(s, a)_g \times Expc_g}{Expc_l + Expc_g}
            end for
         end if
      end for
   until s is terminal
```

- 多个agents在同个task上learning
- 访问不同的states和action, 计算不同 rewards, 有不同的learning experience
- 每一个agent有一个local Q_l和一个global Q_g
- Q_g是所有agents q value的权重和
- agents之间的信息通过communication arrays in 和 out来传递

MDP: https://towardsdatascience.com/understanding-the-markov-decision-process-mdp-8f838510f150

- agent
- environment
- state
- action
- policy

什么是马尔可夫状态?

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

什么是马尔可夫状态?

- 这一刻的状态只取决于上一刻的状态 马尔可夫链或者说马尔可夫process:

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

- p是状态转移概率 (其中从s_t到s_t+1的每一个状态都是马尔可夫的)

• 马尔可夫 reward

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$
 $\mathcal{R}_s = \mathbb{E}\left[R_{t+1} \mid S_t = s\right]$

- R是一个期望reward,是根据所有从s状态能够转移到的地方及概率计算得出,一旦agent到达状态s,则获得R_s reward

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_{t} = s, A_{t} = a]$$
 $\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} \mid S_{t} = s, A_{t} = a]$

- A_t是agent在t时刻能做出的action

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- reward是暂时的,我们关注总共的return

• 上述公式中的discount代表future reward是不确定的,另一方面也避免future reward对return有太大影响(discount属于[0,1])

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

• policy给了一个在当前state做action的概率分布

$$v(s) = \mathbb{E}\left[G_t \mid S_t = s\right]$$

• state value function是我们比较关注的,代表了长期的reward(在某个状态)

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'} v(s')$$

论文阅读: Deep reinforcement learning

- efficient cloud datacenters实现策略:
 - consolidation: 在host间挪vm/trade off between energy and quality
 - 缺点:
 - 不可忽视的网络带宽要求和计算资源占用
 - 技术难度
 - placement: 类似bin packing problem, host是bin, vm是object
 - 所有的VM分成S个class,不同class的VM分配不同资源
 - 用户请求固定数量的一系列VM
 - ML可以用来作为replacement的算法;也可以用来选择不同的heuristics
 - 常用技术: Q-learning、DRL

论文阅读: Deep reinforcement learning

Fig. 1 Reference scenario for the VM placement problem

实践进展 (演示代码)

- 多选pods监控模块
- 可视化模块 (前端echarts绘图)
- 可视化模块 (前端websocket协议实现)
- 可视化模块 (后端websocket协议实现)
- 预测模块