Problem K. Orthogonality

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

Given are two N-dimensional vectors $A=(A_1,A_2,A_3,\ldots,A_N)$ and $B=(B_1,B_2,B_3,\ldots,B_N)$.

Determine whether the inner product of A and B is 0.

In other words, determine whether $A_1B_1+A_2B_2+A_3B_3+\cdots+A_NB_N=0$.

Constraints

- $1 \le N \le 100000$
- $-100 \le A_i \le 100$
- $-100 \le B_i \le 100$
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

Output

If the inner product of A and B is 0, print $\ensuremath{\operatorname{Yes}}$; otherwise, print $\ensuremath{\operatorname{No}}$.

Sample 1

Input	Output
2 -3 6 4 2	Yes

The inner product of A and B is $(-3) \times 4 + 6 \times 2 = 0$.

Sample 2

Input	Output
2 4 5 -1 -3	No

The inner product of A and B is $4 \times (-1) + 5 \times (-3) = -19$.

Sample 3

Input	Output
3 1 3 5 3 -6 3	Yes

The inner product of A and B is $1 \times 3 + 3 \times (-6) + 5 \times 3 = 0$.