Matrix Algebra Marathon

J2200071 Ryuto Saito

May 12, 2024

1 Spectral Decomposition

1.1 Definition

Definition 1.1.1. Let $\mathbf{A} \in \mathbb{S}^n$. Denote the spectral decomposition of $\mathbf{A} \in \mathbb{S}^n$ by $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$. Let λ_i be the *i*-th diagonal entry of $\mathbf{\Lambda}$. The matrix power of \mathbf{A} by $p \in \mathbb{R}$ is defined as

$$A^p \coloneqq U \Lambda^p U^{\mathrm{T}}$$

where

$$\Lambda^p = diag([\lambda_1^p, \dots, \lambda_n^p]).$$

1.2 Theorem

Theorem 2.18.1.

For any $\mathbf{A} \in \mathbb{S}^n$, there exist $\mathbf{U} \in \mathbb{O}^{n \times n}$ and $\lambda \in \mathbb{R}^n$ such that

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\mathrm{T}} \tag{1}$$

where $\Lambda := diag(\lambda)$. This is said to be the spectral decomposition. In this note, we assume $\lambda_1 \geq \cdots \geq \lambda_n$ without loss of generality. Each entry of λ is called an eigenvalue, and each column of U is called an eigenvector.

1.3 Exercise

Exercise 2.18.4.

Denote the spectral decomposition of $A \in \mathbb{S}^n$ by $A = U\Lambda U^{\mathrm{T}}$. Let λ_i be the *i*-th diagonal entry of Λ and u_i be the *i*-th column in U. Then, show that $\forall i \in \mathbb{N}_n$,

$$\boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{u}_i = \lambda_i. \tag{2}$$

Proof. Since $U \in \mathbb{O}^{n \times n}$,

$$\boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{u}_j = \begin{cases} 1 & (j=i) \\ 0 & (j \neq i) \end{cases}.$$

Thus,

$$\begin{split} \boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{u}_i &= \boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{u}_i \\ &= (\boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{U}) \boldsymbol{\Lambda} (\boldsymbol{U}^{\mathrm{T}} \boldsymbol{u}_i) \\ &= (\boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{U}) \boldsymbol{\Lambda} (\boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{U})^{\mathrm{T}} \\ &= (\boldsymbol{u}_i^{\mathrm{T}} [\boldsymbol{u}_1, \dots, \boldsymbol{u}_n]) \boldsymbol{\Lambda} (\boldsymbol{u}_i^{\mathrm{T}} [\boldsymbol{u}_1, \dots, \boldsymbol{u}_n])^{\mathrm{T}} \\ &= ([\boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{u}_1, \dots, \boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{u}_n]) \boldsymbol{\Lambda} ([\boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{u}_1, \dots, \boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{u}_n])^{\mathrm{T}} \\ &= \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{\Lambda} (\boldsymbol{e}_i^{\mathrm{T}})^{\mathrm{T}} \\ &= \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{\Lambda} \boldsymbol{e}_i \\ &= \boldsymbol{e}_i^{\mathrm{T}} (\boldsymbol{\Lambda} \boldsymbol{e}_i) \\ &= \boldsymbol{e}_i^{\mathrm{T}} \begin{pmatrix} \boldsymbol{0} \\ \vdots \\ \boldsymbol{0} \\ \lambda_i \\ \boldsymbol{0} \\ \vdots \\ \boldsymbol{0} \end{pmatrix} \\ &= \boldsymbol{\lambda}_i. \end{split}$$

Exercise 2.18.6

Denote the spectral decomposition of $\boldsymbol{A} \in \mathbb{S}^n$ by $\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\mathrm{T}}$. Show that

$$tr(\mathbf{A}) = tr(\mathbf{\Lambda}).$$
 (3)

Proof. Recall that tr(BC) = tr(CB). Then,

$$tr(\boldsymbol{A}) = tr(\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\mathrm{T}}) = tr(\boldsymbol{U}(\boldsymbol{\Lambda}\boldsymbol{U}^{\mathrm{T}})) = tr((\boldsymbol{\Lambda}\boldsymbol{U}^{\mathrm{T}})\boldsymbol{U}) = tr(\boldsymbol{\Lambda}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}).$$
 (4)

Since U is orthonormal,

$$\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U} = \boldsymbol{I}_{n}.\tag{5}$$

Substitute (5) into (4), we get

$$tr(\mathbf{A}) = tr(\mathbf{\Lambda}\mathbf{U}^{\mathrm{T}}\mathbf{U}) = tr(\mathbf{\Lambda}\mathbf{I}_n) = tr(\mathbf{\Lambda}).$$

Hence, (3) holds.

Exercise 2.18.9.

Denote the spectral decomposition of $A \in \mathbb{S}^n$ by $A = U\Lambda U^T$. Let λ_i be the *i*-th diagonal entry of Λ . For $\forall p \in \mathbb{R}$, show that

$$tr(\mathbf{A}^p) = \sum_{i=1}^n \lambda_i^p. \tag{6}$$

Proof. By definition 1.1.1, we have

$$\mathbf{A}^p = \mathbf{U} \mathbf{\Lambda}^p \mathbf{U}^{\mathrm{T}} \tag{7}$$

where

$$\Lambda^p = diag([\lambda_1^p, \dots, \lambda_n^p]).$$

Since tr(BC) = tr(CB),

$$tr(\mathbf{A}^p) = tr(\mathbf{U}\mathbf{\Lambda}^p\mathbf{U}^{\mathrm{T}})$$
$$= tr(\mathbf{U}(\mathbf{\Lambda}^p\mathbf{U}^{\mathrm{T}}))$$
$$= tr((\mathbf{\Lambda}^p\mathbf{U}^{\mathrm{T}})\mathbf{U})$$
$$= tr(\mathbf{\Lambda}^p(\mathbf{U}^{\mathrm{T}}\mathbf{U}))$$

Thus,

$$tr(\mathbf{A}^p) = tr(\mathbf{\Lambda}^p(\mathbf{U}^{\mathrm{T}}\mathbf{U})). \tag{8}$$

Substitute (5) into (8), we get

$$tr(\boldsymbol{A}^p) = tr(\boldsymbol{\Lambda}^p(\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U})) = tr(\boldsymbol{\Lambda}^p) = \sum_{i=1}^n \lambda_i^p.$$

2 Positive Definite Matrices

2.1 Definition

Definition 2.1.1. An $n \times n$ symmetric matrix is said to be positive semi-definite if $\forall x \in \mathbb{R}^n$,

$$\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} \ge 0. \tag{9}$$

Definition 2.1.2. An $n \times n$ symmetric matrix is said to be strictly positive definite if $\forall x \in \mathbb{R}^n$,

$$\boldsymbol{x} \neq \boldsymbol{0}_n \implies \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} > 0.$$
 (10)

- Exercise 2.19.4. -

For any $\boldsymbol{A} \in \mathbb{S}^n_{++}$ and $\boldsymbol{x} \in \mathbb{R}^n$, show that,

$$x^{\mathrm{T}}Ax > 0 \implies x \neq \mathbf{0}_n.$$
 (11)

Proof. Let $A \in \mathbb{S}_{++}^n$ and $x \in \mathbb{R}^n$. Suppose that $x = \mathbf{0}_n$. Then,

$$\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{0} = 0 < 0.$$

Therefore, we get

$$x = \mathbf{0}_n \implies x^{\mathrm{T}} A x < 0.$$

That is

$$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} > 0 \implies \mathbf{x} \neq \mathbf{0}_{n}.$$

Exercise 2.19.6. -

For $\forall A \in \mathbb{S}^n_{++}$, every eigen-value is positive.

Proof. From Theorem 2.18.1., for any $\mathbf{A} \in \mathbb{S}^n$, there exist $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{O}^{n \times n}$ and $\mathbf{\lambda} \in \mathbb{R}^n$ such that

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathrm{T}}$$

where u_i is one of the eigenvectors of A and λ_i is the eigenvalue for u_i . Recall that

$$\forall i \in \mathbb{N}_n, \boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{u}_i = \lambda_i. \tag{12}$$

Since $\mathbf{A} \in \mathbb{S}^n_{++}$, we have

$$\forall \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{x} \neq \boldsymbol{0}_n \implies \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} > 0. \tag{13}$$

By definition, eigenvectors are non-zero. So, from (13), we get

$$\forall i \in \mathbb{N}_n, \boldsymbol{u}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{u}_i > 0. \tag{14}$$

Substitute (12) into (14), then

$$\forall i \in \mathbb{N}_n, \lambda_i > 0.$$

Therefore, for $\forall A \in \mathbb{S}_{++}^n$, every eigen-value is positive.

Exercise 2.19.8. -

Let A be an $n \times n$ symmetric matrix. Denote its spectral decomposition by $A = U diag(\lambda) U^{T}$, where $U \in \mathbb{O}^{n \times n}$ and $\lambda \in \mathbb{R}^{n}$. Show that the matrix A is strictly positive definite if $\lambda > 0$.

Proof. Let $\boldsymbol{x} \in \mathbb{R}^n$. Suppose that $\boldsymbol{x} \neq \boldsymbol{0}$. Denote by \boldsymbol{u}_i *i*-th column in \boldsymbol{U} , and let $\boldsymbol{z} \coloneqq \boldsymbol{U}^{\mathrm{T}} \boldsymbol{x}$. Since $\boldsymbol{U} \boldsymbol{U}^{\mathrm{T}} = \boldsymbol{I}_n$ for $\boldsymbol{U} \in \mathbb{O}^{n \times n}$ from Exercise 2.17.5.,

$$\begin{split} \|\boldsymbol{z}\| &= \sqrt{\langle \boldsymbol{z}, \boldsymbol{z} \rangle} \\ &= \sqrt{\boldsymbol{z}^{\mathrm{T}} \boldsymbol{z}} \\ &= \sqrt{(\boldsymbol{U}^{\mathrm{T}} \boldsymbol{x})^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{x}} \\ &= \sqrt{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{x}} \\ &= \sqrt{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}} \\ &= \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} \\ &= \|\boldsymbol{x}\| \geq 0. \end{split}$$

From Exercise 2.2.6., since $x \neq 0$, we get $||x|| \neq 0$. Hence,

$$||z|| = ||x|| > 0.$$

Since $\|\boldsymbol{z}\| \neq 0$, $\boldsymbol{z} \neq \boldsymbol{0}$. From Exercise 2.18.3.,

$$oldsymbol{A} = \sum_{i=1}^n \lambda_i oldsymbol{u}_i oldsymbol{u}_i^{\mathrm{T}}.$$

Then,

$$egin{aligned} oldsymbol{x}^{ ext{T}} oldsymbol{A} oldsymbol{x} &= oldsymbol{x}^{ ext{T}} oldsymbol{\lambda}_i oldsymbol{u}_i oldsymbol{u}_i^{ ext{T}} oldsymbol{u}_i oldsymbol{u}_i^{ ext{T}} oldsymbol{x}_i oldsymbol{u}_i oldsymbol{x}^{ ext{T}} oldsymbol{u}_i oldsymbol{u}_i^{ ext{T}} oldsymbol{x} &= \sum_{i=1}^n \lambda_i \langle oldsymbol{u}_i, oldsymbol{x}
angle \langle oldsymbol{u}_i, oldsymbol{x}
angle \\ &= \sum_{i=1}^n \lambda_i \langle oldsymbol{u}_i, oldsymbol{x}
angle^2 \\ &= \sum_{i=1}^n \lambda_i z_i^2. \end{aligned}$$

Since $\lambda > 0$ and $z \neq 0$,

$$\forall i \in \mathbb{N}_n, \lambda_i > 0$$

and

$$\exists k \in \mathbb{N}_n, z_k \neq 0.$$

Thus,

$$oldsymbol{x}^{\mathrm{T}}oldsymbol{A}oldsymbol{x} = \sum_{i=1}^n \lambda_i z_i^2 \geq \lambda_k z_k^2 > 0.$$

Therefore, the matrix \boldsymbol{A} is strictly positive definite if $\boldsymbol{\lambda} > 0$.

Exercise 2.19.10. -

Show that the determinant of every strictly positive definite matrix is strictry positive.

Proof. Let $A \in \mathbb{S}^n_{++}$. Denote the spectral decomposition of A by $A = U\Lambda U^{\mathbb{T}}$. Let λ_i be the *i*-th diagonal entry of Λ . Recall that for $\forall A \in \mathbb{S}^n_{++}$, every eigenvalue is positive. Then,

$$\forall i \in \mathbb{N}_n, \lambda_i > 0. \tag{15}$$

Moreover, from Exercise 2.18.7., we have

$$det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i. \tag{16}$$

Hence, from (15),

$$det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i > 0.$$

Therefore, the determinant of every strictly positive definite matrix is strictry positive. \Box

3 Hadamard Product

3.1 Definition

Definition 3.1.1. Let $X, Y \in \mathbb{R}^{m \times n}$. The Hadamard product between X and Y, denote by Z, is defined as

$$Z = X \bigcirc Y \iff \forall i \in \mathbb{N}_m, \forall j \in \mathbb{N}_n, Z_{i,j} = X_{i,j} Y_{i,j}.$$
 (17)

3.2 Exercise

Exercise 2.20.3. -

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$. Show the equalities:

$$x \odot y = diag(x)y = diag(y)x = diag(x \odot y)\mathbf{1}_n.$$
 (18)

Proof. Let $x, y \in \mathbb{R}^n$. By the definition of Hadamard product,

$$x \bigodot y = \begin{bmatrix} x_1 y_1 \\ \vdots \\ x_n y_n \end{bmatrix}.$$

Moreover,

$$diag(\boldsymbol{x})\boldsymbol{y} = \begin{bmatrix} x_1 & \boldsymbol{O} \\ & \ddots & \\ \boldsymbol{O} & & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 \\ \vdots \\ x_ny_n \end{bmatrix},$$

$$diag(\boldsymbol{x})\boldsymbol{y} = \begin{bmatrix} y_1 & \boldsymbol{O} \\ & \ddots & \\ \boldsymbol{O} & & y_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1x_1 \\ \vdots \\ y_nx_n \end{bmatrix} = \begin{bmatrix} x_1y_1 \\ \vdots \\ x_ny_n \end{bmatrix},$$

and

$$diag(\boldsymbol{x} \bigodot \boldsymbol{y}) \mathbf{1}_n = diag(\begin{bmatrix} x_1 y_1 \\ \vdots \\ x_n y_n \end{bmatrix}) \mathbf{1}_n = \begin{bmatrix} x_1 y_1 & & \boldsymbol{O} \\ & \ddots & \\ \boldsymbol{O} & & x_n y_n \end{bmatrix} \mathbf{1}_n = \begin{bmatrix} x_1 y_1 \\ \vdots \\ x_n y_n \end{bmatrix}.$$

From these equalities, we get (18).

4 Vec Operator

4.1 Definition

Definition 4.1.1. Let $A = [a_1, ..., a_n] \in \mathbb{R}^{m \times n}$. The vec operator is defined as

$$vec(\mathbf{A}) \coloneqq \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_n \end{bmatrix}.$$
 (19)

4.2 Exercise

- Exercise 2.21.4.

Let $\boldsymbol{X} \in \mathbb{R}^{m \times n}$. Show that

$$\|\boldsymbol{X}\|_{\mathrm{F}} = \|vec(\boldsymbol{X})\|. \tag{20}$$

Proof. Let $\boldsymbol{X} = [\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n] \in \mathbb{R}^{m \times n}$. By the definition of Frobenius norm,

$$\|\boldsymbol{X}\|_{\mathrm{F}} = \sqrt{\langle \boldsymbol{X}, \boldsymbol{X} \rangle} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i,j}^2}.$$

Furthermore,

$$\begin{split} \|vec(\boldsymbol{X})\| &= \sqrt{\langle vec(\boldsymbol{X}), vec(\boldsymbol{X}) \rangle} \\ &= \sqrt{vec(\boldsymbol{X})^{\mathrm{T}} vec(\boldsymbol{X})} \\ &= \sqrt{\begin{bmatrix} \boldsymbol{x}_1^{\mathrm{T}}, \cdots, \boldsymbol{x}_n^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \vdots \\ \boldsymbol{x}_n \end{bmatrix}} \\ &= \sqrt{\sum_{j=1}^n \boldsymbol{x}_j^{\mathrm{T}} \boldsymbol{x}_j}. \end{split}$$

Thus, we get

$$\|vec(\boldsymbol{X})\| = \sqrt{\sum_{j=1}^{n} \boldsymbol{x}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}}$$
 (21)

Since x_j is j-th column in X,

$$\boldsymbol{x}_{j}^{\mathrm{T}}\boldsymbol{x}_{j} = \sum_{i=1}^{m} X_{i,j}^{2}.$$
 (22)

Substitute (22) into (21), we get

$$\|vec(\mathbf{X})\| = \sqrt{\sum_{j=1}^{n} \left(\sum_{i=1}^{m} X_{i,j}^{2}\right)}$$

= $\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i,j}^{2}}$.

Hence, (20) holds.