

CLAIMS

1. A pneumatic tire comprising
a tread portion,
a pair of sidewall portions,
a pair of bead portions,
a carcass extending between the bead portions,
a breaker disposed radially outside the carcass, and
a band disposed radially outside the breaker, said band
composed of a full width ply extending across the substantially
overall width of the breaker and a pair of axially spaced edge
plies, wherein

in a ground contacting face of the tire under a normally
inflate loaded condition which face has axially outermost edges
between which the ground contacting width TW is defined,
the circumferential length Ls of the ground contacting face at an
axial position 10 % of TW axially inwards of each of the axially
outermost edges is in a range of from 75 to 85 % of
the circumferential length Lc of the ground contacting face at
the center of the ground contacting width.

2. The pneumatic tire according to claim 1, wherein
the tread portion is provided on each side of the tire
equator with a circumferentially continuously extending inner
circumferential groove so that the tread portion is divided into
a crown part between the inner circumferential grooves and a pair
of outer parts axially outside the inner circumferential grooves,
and
the crown part is formed as a substantially continuously
extending circumferential rib.

3. The pneumatic tire according to claim 1, wherein
the tread portion is further provided on the axially
outside of each said inner circumferential groove with a
circumferentially continuously extending axially outer
circumferential groove so that each said outer part is divided
into an axially inner middle part and an axially outer shoulder
part, and

at least the shoulder parts are each circumferentially
divided by axial grooves into shoulder blocks, and

the number of said axial grooves in each said shoulder
part is such that 2 to 4 grooves are included in the ground
contacting face.

4. The pneumatic tire according to claim 3, wherein
the axial grooves each have an overall inclination angle
in a range of from 60 to 80 degrees, wherein the overall
inclination angle is an angle of a straight line drawn between
the ends of the axial groove with respect to the tire
circumferential direction, and

said shoulder blocks are each subdivided by a narrow
groove into two block segments,

the narrow groove is inclined such that, with respect to
the tire circumferential direction, a straight line drawn between
the ends of the groove is inclined reversely to said straight
lines of the circumferentially adjacent axial grooves.