CS3102 Theory of Computation

Decidable

A language is decidable iff it is exactly the set of strings accepted by some always-halting TM.

$w \in \Sigma^*$	a	b	aa	ab	ba	bb	aaa	aab	aba	abb	baa	bab	bba	bbb	aaaa	• • •
$M(w) \Longrightarrow$		X		X	X	×		×	X	×	×	×	X	X	\checkmark	• • •
L(M) =	{ a,		aa,				aaa,								aaaa	}

M must always halt on every input.

Recognizable

A language is Turing-recognizable iff it is exactly the set of strings accepted by some Turing machine.

$w \in \Sigma^*$	а	b	aa	ab	ba	bb	aaa	aab	aba	abb	baa	bab	bba	bbb	aaaa	• • •
$M(w) \Longrightarrow$		X		∞	X	∞		∞	∞	X	×	X	∞	×		• • •
L(M) =	{ a,		aa,			:	aaa,			:	:	:			aaaa	}

M can run forever on an input, which is implicitly a reject (since it is not an accept).

$HALT_{TM}$ is Undecidable

- $HALT_{TM} = \{ < M, w > | M \text{ is a TM description and } M \text{ halts on input } w \}$
 - All machine description input pairs in which the machine halts on input
- To show $HALT_{TM}$ is undecidable show A_{TM} isn't harder than $HALT_{TM}$
- Want to use a solver for $\underline{HALT_{TM}}$ to build a solver for $\underline{A_{TM}}$
- A_{TM} reduces to $HALT_{TM}$

 $HALT_{TM}$

Deciding A_{TM} with HALT_{TM}

- Assume $HALT_{TM}$ is decidable.
- Then some TM R can decide $HALT_{TM}$.
- We can use R to build a machine D that decides A_{TM} :
 - Call R on < M , w >
 - If R rejects, it means M doesn't halt: reject
 - If R accepts, it means M halts:
 - Call *M* on *w*, respond equivalently

Any TM that decides $HALT_{TM}$ could be used to build a TM that decides A_{TM} (which is impossible) thus no TM exists that can decide $HALT_{TM}$

Another example: REG_{TM}

- $REG_{TM} = \{M \mid L(M) \text{ is regular}\}$
- How do we show that REG_{TM} is undecidable?
 - Reduce some language we already know is undecidable to REG_{TM}
 - Use REG_{TM} to solve $HALT_{TM}$

$REG_{TM} \geq HALT_{TM}$

- Given a potential instance of $HALT_{TM}$ (i.e. M, w), create a new turing machine M' whose language is regular if and only if M(w) halts
- If I knew whether or not L(M') was regular, I knew whether or not M(w) halted

Psuedocode for M'

```
public static boolean mPrime(String x){
if(x \in a^n b^n){
        return true;
y = M(w); If this line terminates
return true; We can only get to this line
  If M(w) halts then L(M') = \Sigma^*
  If M(w) runs forever then L(M') = a^n b^n
```

How to solve $HALT_{TM}$ with REG_{TM}

Turing Machine "Enhancements" Multiple heads:

Idea: Mark heads locations on tape and simulate

Modified δ ' processes each "virtual" head independently:

- Each move of δ is simulated by a long scan & update
- δ' updates & marks all "virtual" head positions

Turing Machine "Enhancements" Multiple tapes:

Idea: Interlace multiple tapes into a single tape

Modified δ' processes each "virtual" tape independently:

- ullet Each move of δ is simulated by a long scan & update
- δ' updates R/W head positions on all "virtual tapes"

Turing Machine "Enhancements" Two-dimensional tape:

Idea: Flatten 2-D tape into a 1-D tape

Modified 1-D δ' simulates the original 2-D δ :

- Left/right δ moves: δ' moves horizontally
- Up/down δ moves: δ' jumps between tape sections

Turing Machine "Enhancements" Non-determinism:

Idea: Parallel-simulate non-deterministic threads

Modified deterministic δ' simulates the original ND δ :

- ullet Each ND move by δ spawns another independent "thread"
- All current threads are simulated "in parallel"

Enumerators

- An enumerator for language L is a TM which prints all strings in L onto its tape
- Lexicographic enumerator
 - Prints them in lexicographic order
- A language is recognizable if and only if it has an enumerator
- A language is decidable if and only if it has a lexicographic enumerator

Enumerable = Recognizable

Lexicographically Enumerable = Decidable

Closure properties of Recognizable

- Closed under:
 - Union
 - Intersection
 - Concatenation
 - Kleene
- Not closed under:
 - Complement

Not closed under Complement

- If L and \overline{L} are both recognizable, then L is decidable.
- To determine if $w \in L$:
 - Run w on recognizer for L for 5 steps
 - Run w on recognizer for \overline{L} for 5 steps
 - Repeat until one of them accepts

Some Non-Recognizable Languages

- $COHALT = \{ \langle M, w \rangle | M \text{ does not halt on } w \}$
- $ALL_{TM} = \{ < M > | L(M) = \Sigma^* \}$
 - Reduce COHALT to ALL_{TM}

Some Non-Recognizable Languages

- $COHALT = \{ \langle M, w \rangle | M \text{ does not halt on } w \}$
- $ALL_{TM} = \{ < M > | L(M) = \Sigma^* \}$
 - Reduce COHALT to ALL_{TM}

Reduce COHALT to ALL_{TM}

- Use a recognizer for ALL_{TM} to recognize COHALT
- Given a COHALT instance (i.e. M, w), build a new machine M' such that $L(M') = \Sigma^*$ if and only if M(w) runs forever

Psuedocode for M'

```
public static boolean mPrime(string x){
  count = 0;
  while (M(w)) has n't halted)
                                        If M(w) halts, there is a longest
            if(count > x){
                                        string I can accept
                     return true;
                                        The only way to accept all strings
                                        is for M(w) to run forever
            run M(w) for 1 step;
  return false;
```

Reduction

- Given an instance M, w of COHALT
- Use M, w to build M'
- As the recognizer for ALL_{TM} if $L(M') = \Sigma^*$
- Its answer tells us if M(w) runs forever