ESP8266 (ESP-07/ESP-12E) WiFi Shield

Technical Manual Rev 1r0

ESP-07 and ESP-12 WiFi shield is a Wi-Fi Network solution, it can be used to host the application or connected from another application processor. It served as a Wi-Fi Adapter, wireless internet access can be added to any microcontroller based designed with simple connectivity (SPI/SDIO or I2C/UART interface). Applications are Home Automation, Monitoring Room temperature, Sending/Receiving Data though IOT etc.

Features:

- 802.11 b/g/n
- Low power 32-bit MCU
- 10-bit ADC
- TCP/IP protocol stack
- Supports antenna diversity
- Wi-Fi 2.4GHz, support WPA/WPA2
- Supports STA/AP/STA+AP operation modes.
- Support Smart Link Function for both Android and iOS devices.
- SDIO 2.0, (H) SPI,UART, I2C,PWM,GPIO
- Arduino Compatible

For more info read the ESP-07/12 Datasheet

Note: The ESP-07 or 12 Wifi Shield has been bootloaded of firmware were you can see on this manual. It is ***Compatible in Gizduino PLUS (with 64KB Flash memory) recommended to use. Arduino IDE 1.8.3 with Gizduino Patch.

Use this At Your Own Risk!.

General Specifications:

Input Voltage: +5vDC [Internal Source]

+7V to 9VDC [External Source]

ESP8266 Module Supply: +3.3vDC

Type of ESP: ESP-07 or ESP-12E (Optional)

Model Vendors: AI-THINKER, DOIT, Espressif

Regulator Used: AMS2950 On-board IC: 74LVT125

Operating Temperature: -40C~125C

Output Power: +20dBm in 802.11b mode

PCB Dimensions: 52.5mm x 53.5mm

Arduino Compatible Shield

Figure 1: ESP-07 WiFi Shield

Arduino Compatible Shield

Figure 2: ESP-12 WiFi Shield

Figure 3: ESP-07 Module Pinouts

Figure 4: ESP-12 Module Pinouts For more information:

See the ESP12E Specs/ Datasheet

Table 1.

FOR ESP-07 ADDITIONAL PINOUTS

Pin Functions	Descriptions
RST	Reset the module
	[Note: If ESP-07 Module
	resets the firmware will erase]
ADC	Ao/Analog to Digital Converter or ADC
EN	Enable pin
GPIO16	General Purpose I/O pin 16
GPIO14	General Purpose I/O pin 14
GPIO12	General Purpose I/O pin 12
GPIO13	General Purpose I/O pin 13
VCC	Input Supply 3.3VDC Required, use AMS2950 Regulator
TXDo	Transmitter, it needs voltage level translator 5VTTL to 3.3V
RXDo	Receiver
GPIO5	General Purpose I/O pin 5
GPIO4	General Purpose I/O pin 4
GPIOo	Bootload mode, Connect it to the Ground to Bootloa
GPIO ₂	General Purpose I/O pin 2, BUILTIN_LED
GPIO15	General Purpose I/O pin 15, Connect it to the Ground to Bootload
GND	Ground oV

FOR ESP-12 ADDITIONAL PINOUTS

SCLK	Clock
MOSI	Main Output Slave input
GPIO10	General Purpose I/O pin 10
GPIO9	General Purpose I/O pin 9
MISO	Slave output Main input
CSo	Chip selection

You may skip this tutorial! (Default firmware when purchased

Download the Followinf Files and Extract them:

- 1.) esp_iot_sdk_v1.5.0_15_11_27.zip from Espressif site [http://bbs.espressif.com/download/file.php?id=989]
- 2.) FLASH_DOWNLOAD_TOOLS_v2.4_150924.rar from Espressif site

[http://bbs.espressif.com/download/file.php?id=856]

Materials:

1pc -USB to UART Converter Type A to B 1.8m

4pcs - 1pin Wire connector (Female-Male)

1pc -USB Cable or Printer Cable

Construct this Wiring Diagram:

- go to Connect the ESP wifi shield to gizDuino)

For Correct wiring and flashing mode.

When you connect the USB-UART converter to PC. "Look if the BLUE LED indicator of ESP-07 Module will blink once"

it indicates that your connection is correct and its ready for downloading the firmware from esp flash tool.

Follow these steps to flash the new firmware to the ESP-07 Module.

- 1.) Close the Arduino IDE if still Opened.
- 2.) Launch the ESP flash download tool "ESP_DOWNLOAD_TOOL_2.4.exe" you have previously extracted.
- 3.) Apply the following settings
- 4.) Bin files from the "esp iot sdk extracted zip file):
 - A.) bin\at\noboot\eagle.flash.bin oxooooo
 - B.) bin\at\noboot\eagle.irontext.bin 0x40000
 - C.) bin\blank.bin oxfeooo
 - D.) bin\blank.bin 0x7e000
- 5.) Flash size: 26MHz
- 6.) COM port: Choose your COM port number (note: change the COM from 2 to 4, nearest the better communication).
- 7.) Baudrate: 115200 or 345600 (this is not related to the ESP baud rate) or in my example i used 57600.

Now press the "START" button and wait for the flashing process to complete.

```
C:\Users\
                         \Desktop\NEW ESP\FLASH_DOWNLOAD...
                                                                                      X
ze: 28
lename: C:\Users\ \Desktop\NEW ESP\FLASH_DOWNLOAD_TOOLS_v2.4_150924\FL
  set : 0
ename: C:\Users\
            :\Users\ \Desktop\NEW ESP\FLASH_DOWNLOAD_TOOLS_v2.4_150924\FLA
_TOOLS_v2.4_150924\bin_tmp\downloadPanel1\eagle.irom0text.bin
          262144
                                \Desktop\NEW ESP\FLASH_DOWNLOAD_TOOLS_v2.4_150924\FL
  DOWNLOAD_TOOLS_v2.4_150924\bin_tmp\downloadPanel1\blank.bin
       e: C:\Users\ \Desktop\NEW ESP\FLASH_DOWNLOAD_TOOLS_v2.4_150924\FL
|LOAD_TOOLS_v2.4_150924\bin_tmp\downloadPanel1\blank.bin
          1848384
     7 ;total: 7
size : 16384
       at exeeee6cee... (9 %)
       flash...
16 ;total: 61
     size : 184320
                                 %) 5 kill
```


In Download Panel 1, if "FINISH".

Press the STOP button and close the Flashing tool.

Verifying the firmware using Serial Monitor

Before proceeding it is better to verify that new firmware is working fine.

- 1.) Unplug the USB -UART converter from the PC.
- 2.) Switch SW3 to unflashing mode or remove GPIO o from the GND.
- 3.) Then Plug the UART converter to the PC...

For Correct wiring: "Look again if the BLUE LED indicator of ESP-07 module will blink twice"

it indicates that the connection is successful.

Open the Arduino IDE, select the correct COM port and open the Serial Monitor [Press Ctrl+ Shift +M].

(The correct settings for the ESP firmware v1.5) **SET Baudrate Speed:** 115200 **Line ending: Both NL & CR.**

Test connectivity with 'AT' and 'AT+GMR' commands. To set the correct baud rate use this command:

AT+UART_DEF=9600,8,1,0,0

Now set the Serial Monitor speed to 9600 and test again the communication.

Caution: Do not send AT+RESET or AT+RST. The firmware will be set to default bin.

Download the "WiFiEsp" library

Direct link here:

[https://github.com/bportaluri/WiFiEsp/archive/master.zip]

Compatible using Arduino IDE 1.8.x and up. I'm using the 1.8.3 for this example.

To add the library:

Go to My Document>Arduino>libraries> (Paste it)

[Make sure the Folder named "WiFiEsp" contains with the files inside, it must be extracted not compressed when adding a library and Restart IDE]

Connect the ESP-07 WiFi Shield to gizDuino.

***GizDuino PLUS with ATMEA644P
Recommended to use.

Download the Arduino IDE 1.8.3 with gizDuino Patch (Board lists).

Download link for Arduino IDE 1.8.3. [https://github.com/e-Gizmo/Arduino-1.8.3-IDE-Windows/archive/master.zip]

After downloading the IDE.

if you are using the gizduino boards

Install first the Prolific driver.

[https://github.com/e-Gizmo/Arduino-1.0.6-IDE-Windows/blob/master/drivers/Prolific%20USB%20Drivers/PL2303 Prolific DriverInstaller v1.10.0.exe?raw=true]

OPEN the Arduino IDE 1.8.3

Before opening the Arduino IDE, make sure you add the WiFiEsp library.

Now Open the WiFiEsp > WebServer. Go to File>Example> WiFiEsp> WebServer.ino

You need a WiFi Network connections (WLAN router, Hotspots for Wifi connectivity)

Set your network here: char ssid[] = " YOUR_SSID" char pass[] = "SSID_PASSWORD"

Check also the port forwarding: if it is 80,8080, if necessary. WiFiEspServer server(80);

Select the board:
Tools> Board:> GizDuino+ w/ ATmega644

Select the COM Port Number: Tools>Port> COM12

Change the Serial connection to Digital Pin 2 and Digital Pin 3

```
#include "WiFiEsp.h"

// Emulate Serial1 on pins 6/7 if not present
#ifndef HAVE_HWSERIAL1
#include "SoftwareSerial.h"

SoftwareSerial Serial1(2, 3); // RX, TX
#endif
```

Now Click Upload.

Sample Attempting to connnect to WPA SSID:

Note: This is an example Output from the Serial Monitor:

Get the IP address and Open browser type: 192.168.0.112 or the given IP address

It will display the message: Hello World! and Requests received and Analogouput

Page refresh every 20 secs.

Figure: Parts Placement

Figure: Bottom Layer Guide

Figure: Top Layer Guide