Оглавление

1	. Kpi	ивые в	второго порядка.	2	
	1.1	Приве	едение уравнения II порядка к каноническому виду	. 2	
	1.2	Виды	кривых	. 3	
		1.2.1	Эллиптический тип	. 3	
		1.2.2	Гиперболический тип	. 4	
		1.2.3	Параболический тип	. 4	
J	Текц	ия 10	: Парабола. Кривые второго порядка		
	,				04.12.2023
ı	Teop	рема 1.	(x_0,y_0) – точка на параболе $y^2=2px,$ тогда		
ı			$yy_0 = p(x + x_0)$		
	- ypa	– уравнение касательной в (x_0, y_0)			
	Док	азателі	ьство.		
			$px = yy_0 - px_0$		
			$y^2 = 2px = 2yy_0 - 2px_0$		
			$y^2 - 2yy_0 + 2px_0 = 0$		
			$\frac{D}{4} = y_0^2 - 2px_0 = 0$		
	1 per	шение			
Ī					
	Teop	рема 2	(Оптическое свойство параболы)		
	Док	азателі	ьство		

Глава 1

Кривые второго порядка.

1.1 Приведение уравнения II порядка к каноническому виду

$$a_{11}x^{2} + 2a_{12}xy + a_{22}y^{2} + 2b_{1} + 2b_{2}y + b_{3} = 0$$
$$a_{11}^{2} + a_{12}^{2} + a_{22}^{2} \neq 0$$

I шаг. Поворот на угол α , чтобы избавиться от a_{12}

Теорема 3. (x',y') получено поворотом (x,y) на α :

$$\begin{cases} x' = x \cos \alpha + y \sin \alpha \\ y' = -x \sin \alpha + y \cos \alpha \end{cases} \begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$

Доказательство. Для доказательства используем полярную систему координат $(r,\varphi) o (r',\varphi')$

$$r' = r \qquad \varphi' = \varphi - \alpha$$

$$x = r \cos \varphi \qquad y = r \sin \varphi$$

$$\begin{cases} x' = r' \cos \varphi' = r \cos(\varphi - \alpha) = r \cos \varphi \cos \alpha + r \sin \varphi \sin \alpha \\ y' = r' \sin \varphi' = r \sin(\varphi - \alpha) = -r \cos \varphi \sin \alpha + r \sin \varphi \cos \alpha \end{cases}$$

$$\begin{cases} x' = x \cos \alpha + y \sin \alpha \\ y' = -x \sin \alpha + y \cos \alpha \end{cases}$$

$$x = x' \cos \alpha - y' \sin \alpha$$

$$y = x' \sin \alpha + y' \cos \alpha$$

Получили такое выражение, выясним при каком αa_{12} станет нулем

$$a_{11}(x'\cos\alpha - y'\sin\alpha)^2 + 2a_{12}(x'\cos\alpha - y'\sin\alpha)(x'\sin\alpha + y'\cos\alpha) + + a_{22}(x'\sin\alpha + y'\cos\alpha)^2 + \dots = 0$$

Коэффициент при x'y':

$$\begin{aligned} a_{11}(-2\cos\alpha\sin\alpha) + 2a_{12}(\cos^2\alpha - \sin^2\alpha) + a_{22}(2\sin\alpha\cos\alpha) &= 0 \\ -a_{11}\sin2\alpha + 2a_{12}\cos2\alpha + a_{22}\sin2\alpha &= 0 \\ &- a_{11}\tan2\alpha + a_{22}\tan2\alpha &= -2a_{12} \\ & \tan2\alpha + a_{22}\tan2\alpha &= \frac{2a_{12}}{a_{11} - a_{22}} \\ & \cot2\alpha &= \frac{a_{11} - a_{22}}{2a_{12}} \end{aligned}$$

Если $a_{12}\neq 0$, то ctg 2α найдется, то найдем $\alpha\in \left[0;\frac{\pi}{2}\right]$. Если $a_{12}=0$, то

II шаг. Теперь рассмотрим уравнение

$$a_{11}x^2 + a_{22}y^2 + 2b_1x + 2b_2y + b_3 = 0$$

(вообще-то везде штрихи)

Лемма 1. Если
$$a_{11}\neq 0$$
, то считаем $b_1=0$ (иначе сдвинем переменные: $x'=x-x_0$)
$$a_{11}x^2+2b_1x=a_{11}\left(x^2+2\frac{b_1}{a_{11}}x+\frac{b_1^2}{a_{11}^2}-\frac{b_1^2}{a_{11}^2}\right)=a_{11}x'^2-\frac{b_1^2}{a_{11}}$$

$$x'=x+\frac{b_1}{a_{11}}$$

Аналогично если $a_{22} \neq 0$, то считаем $b_2 = 0$

1.2 Виды кривых

1.2.1Эллиптический тип

 $a_{11} > 0, a_{22} > 0$ (иначе умножим на -1)

$$a_{11}x^2 + a_{22}y^2 + b^3 = 0$$

1.
$$b_3 < 0$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ — эллипс

$$a = \sqrt{\frac{-b_3}{a_{11}}}; b = \sqrt{\frac{-b_3}{a_{22}}}$$

2.
$$b_3 = 0$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ – точка

$$3.\ \ b_3>0\ \frac{x^2}{a^2}+\frac{y^2}{b^2}=-1$$
 – пустое множество или мнимый эллипс

1.2.2 Гиперболический тип

 $a_{11} > 0, a_{22} < 0$ (или наоборот)

4.
$$b_3 \neq 0$$
 $\frac{x^2}{a^2} - \frac{y^2}{b_2} = 1$ – гипербола

5.
$$b_3 = 0 \frac{x^2}{a^2} - \frac{y^2}{b_2} = 0$$
 — пара пересекающихся прямых

$$\left(\frac{x}{a} + \frac{y}{b}\right)\left(\frac{x}{a} - \frac{y}{b}\right) = 0$$
$$\frac{x}{a} = \pm \frac{y}{b}$$

1.2.3 Параболический тип

 $a_{11}=0, a_{22} \neq 0,$ считаем, что $b_2=0$

$$a_{22}y^2 + 2b_1x + b_3 = 0$$

6. Если $b_1 \neq 0$, то считаем $b_3 = 0$

$$2b_1x + b_3 = 2b_1\left(x + \frac{b_3}{2b_1}\right) = 2b_1x'$$

$$y^2 = 2px$$
 — парабола

7. Если $b_1=0, a_{22}>0$ $a_{22}y^2+b_3=0$ $b_3<0$ $\frac{y^2}{b^2}=1$ – пара параллельных прямых

$$\frac{y}{b} = \pm 1$$

8.
$$b_3 = 0$$
 $\frac{y^2}{b^2} = 0$ — одна прямая

9. $b_3 > 0 \, \frac{y^2}{b^2} = -1$ – пустое множество или пара мнимых прямых