

Microcontroladores

ADC

ADC

Analog-to-Digital Converter

Qual o intuito de converter um valor Analógico para Digital?

Processo de Digitalização

- O processo de digitalização de um sinal é composto de duas etapas:
 - Amostragem;
 - Quantização;

ETAPA 1 - Amostragem

Teorema de Nyquist-Shannon:

"A frequência de amostragem deve ser maior ou igual a duas vezes a maior frequência do sinal."

ETAPA 2 - Quantização

$$Resolução = \frac{V_{REF}}{2^n - 1}$$

n -> Número de Bits do Conversor

ADC no ATmega328P

Configuração do ADC

ADC Multiplexer Selection Register (ADMUX)

Configura a tensão de referência e o canal de conversão;

Bit	7	6	5	4	3	2	1	0	
(0x7C)	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- Os bits 6 e 7 (REFSO e REFS1) determinam a tensão de referência;
- O bit 5 define a disposição dos bits no registrador;
- Os bits 3, 2, 1 e 0 configuram qual pino irá ser lido;

E209 – Sistemas Microcontrolados e Microprocessados

Tabelas para o ADMUX

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal V _{ref} turned off
0	1	AV _{CC} with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 1.1V Voltage Reference with external capacitor at AREF pin

E209 – Sistemas Microcontrolados e Microprocessados

MUX30	Single Ended Input
0000	ADC0
0001	ADC1
0010	ADC2
0011	ADC3
0100	ADC4
0101	ADC5
0110	ADC6
0111	ADC7
1000	ADC8 ⁽¹⁾
1001	(reserved)
1010	(reserved)
1011	(reserved)
1100	(reserved)
1101	(reserved)
1110	1.1V (V _{BG})
1111	0V (GND)

ADC Control and Status Register A (ADCSRA)

Responsável por configurar o prescaler e o controle de conversão;

Bit	7	6	5	4	3	2	1	0	
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- Bit 7 Habilita ou desabilita o ADC;
- Bit 6 Inicia a conversão e indica se a conversão foi finalizada;
- Bit 4 Flag de interrupção do ADC;
- Bit 3 Habilita a interrupção do ADC;
- Bits 2-0 Configuração do prescaler;

Inatel

Tabelas para o ADCSRA

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Obrigado!

