Universidade Federal de Pernambuco (UFPE) Centro de Informática (CIn) Graduação em Ciência da Computação

Informática Teórica
(IF689)

2º Semestre de 2018

1º Prova

27 de Setembro de 2018

Linguagens Regulares Escolha 3(três) questões

1. (1,7)

Seja $\Sigma=\{0,1\}$ e considere a linguagem L consistindo de cadeias $w\in\Sigma^*$ que satisfazem as seguintes propriedades:

1. w não tem 0's à esquerda.

2. Quando lida como um número na base 2, w é par.

3. Quando lida como um número na base 2, w não é divisível por 4.

Por exemplo, $10010 \in L$ pois não tem 0's à esquerda e é a representação binária do número 18, que é par e não é divisível por 4. Por outro lado, 00010,101, e 100000 não pertencem a L porque elas violam a primeira, a segunda e a terceira propriedade, respectivamente.

Construa um AFD que reconheça L, dando uma explicação abreviada da razão pela qual esse AFD aceita as palavras de L e somente aquelas palavras. Isso pode ser feito com um AFD com 5 estados, mas seu AFD não pode ter mais que 10 estados.

2. (1,7)

Construa um AFD que reconheça a linguagem $L=\{w\in\{0,1\}^*\mid w \text{ começa com }0\text{ e tem, no máximo, uma ocorrência do símbolo }1\}$. Prove, por indução, que seu AFD de fato reconhece a linguagem L.

3. (1,7)

Seja L uma linguagem sobre o alfabeto Σ . Defina APAGA(A) como sendo a linguagem contendo todas as cadeias que podem ser obtidas removendo um símbolo de uma cadeia em A. Portanto, APAGA $(A) = \{xz \mid xyz \in A \text{ onde } x,z \in \Sigma^*, y \in \Sigma\}$. Mostre que a classe das linguagens regulares é fechada sob a operação APAGA.

4. (1,7)

Sejam x e y cadeias e seja L uma linguagem qualquer. Dizemos que x e y são

distingüíveis por L se alguma cadeia z existe tal que exatamente uma das cadeias xz e yz é um membro de L; caso contrário, para toda cadeia z, temos $xz \in L$ sempre que $yz \in L$ e dizemos que x e y são indistingüíveis por L. Se x e y são indistingüíveis por L escrevemos $x \equiv_L y$. Mostre que $x \in L$ é uma relação de equivalência.

5. (1,7)

Seja $\Sigma = \{0, 1\}$. Considere a seguinte linguagem:

 $C=\{a_1b_1a_2b_2\dots a_kb_k|a_i,b_i\in\Sigma$ e, quando lido como números em binário, $|a_1a_2\dots a_k-b_1b_2\dots b_k|=1\}$

Por exemplo, $10010101 \in C$ pois |1000-0111|=1, mas $11000100 \notin C$ pois |1000-1010|=2. Mostre que C é regular.

6.(2,0)

Prove ou refute cada uma das afirmações abaixo:

- (a) Para quaisquer linguagens L e M, se $L\subseteq M$ e L não for regular então M não é regular.
- (b) Para quaisquer linguagens A e B, se $A\subseteq B$ e B não for regular então A não é regular.
- (c) Para qualquer linguagem C, se C não for regular então $C \cup \{\varepsilon\}$ não é regular.

Linguagens Livres-do-Contexto Escolha 3(três) questões

7. (1,7)

Seja $L=\{w\#x\mid \text{a reversa de }w\text{ \'e uma subcadeia de }x\text{, onde }w,x\in\{a,b\}^*\}.$ Mostre que L \'e livre-do-contexto.

8. (1,7)

Dê uma gramática livre-do-contexto que gere a linguagem:

$$L = \{0^m 1^n 2^k \mid m = n \text{ ou } n = k \text{ onde } m, n, k \ge 0\}.$$

Sua gramática é ambígua? Por que ou por que não? Justifique suas respostas.

9. (1,7)

Seja $G=(V,\Sigma,R,S)$ a seguinte gramática. $V=\{S,T,U\}; \Sigma=\{0,\#\};$ e R é o seguinte conjunto de regras:

$$\begin{array}{ccc} S & \rightarrow & TT \mid U \\ T & \rightarrow & 0T \mid T0 \mid \# \\ U & \rightarrow & 0U00 \mid \# \end{array}$$

- a. Descreva ${\cal L}(G)$ verbalmente (i.e., em português).
- b. A partir de G, construa um autômato com pilha que reconheça $\mathcal{L}(G)$.

c. Prove que ${\cal L}(G)$ não é regular.

10. (1,7)

Seja B a linguagem de todas as palíndromes sobre $\{0,1\}$ contendo o mesmo número de 0's e 1's. Mostre que B não é livre do contexto.

11.(1,7)

Mostre que a classe de linguagens livres-do-contexto é fechada sob as operações regulares, união, concatenação e estrela.

12. (1,7)

Seja o seguinte autômato com pilha

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}_{\varepsilon}, \{a, b, \$\}_{\varepsilon}, q_0, \delta, \{q_4\}),$$

com a função de transição δ definida abaixo:

$$\delta(q_0, \varepsilon, \varepsilon) = \{(q_1, \$)\}$$

$$\delta(q_1, a, \varepsilon) = \{(q_2, b)\}$$

$$\delta(q_2, a, \varepsilon) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, \varepsilon, \varepsilon) = \{(q_3, \varepsilon)\}$$

$$\delta(q_3, b, b) = \{(q_3, \varepsilon)\}$$

$$\delta(q_3, \varepsilon, \$) = \{(q_4, \varepsilon)\}.$$

- (i) Mostre o passo-a-passo da computação de ${\cal M}$ sobre aab, indicando, em cada passo: (1) o apontador na entrada; (2) o estado; (3) o conteúdo da pilha.
- (ii) Descreva ${\cal L}(M)$ em português ou notação matemática informal.
- (iii) Mostre como M pode ser modificado para um novo autômato com pilha M^\prime tal que $L(M') = (L(M))^{\mathcal{R}}$, i.e., M' aceita as reversas das cadeias aceitas por M. Sua modificação deve afetar apenas os rótulos das transições dos estados q_1 para q_2 , de q_2 para q_1 , e de q_3 para q_3 ; o restante da máquina deve permanecer o mesmo que em M.