Aufgabe 1:e

Seien X und Y Mengen und $f\colon X\to Y$ und $g\colon Y\to X$ Abbildungen. Zeigen Sie:

- (i) Ist g Linksinverse von f, d.h. $g \circ f = \mathrm{id}_X$, so ist f injektiv.
- (ii) Ist g Rechtsinverse von f, d.h. $f \circ g = id_Y$, so ist f surjektiv.

Beweis

(i) $g \circ f = \mathrm{id}_X \Rightarrow f$ injektiv.

Seien $x, x' \in X$ mit f(x) = f(x'). Wenden wir g auf beide Seiten an, so erhalten wir

$$g(f(x)) = g(f(x')).$$

Da $g \circ f = \mathrm{id}_X$ gilt, ist g(f(x)) = x und g(f(x')) = x'. Somit folgt x = x'. Daher ist f injektiv.

(ii) $f \circ g = id_Y \Rightarrow f$ surjektiv.

Sei $y \in Y$ beliebig. Setze $x := g(y) \in X$. Dann gilt

$$f(x) = f(g(y)) = (f \circ g)(y) = id_Y(y) = y.$$

Also existiert für jedes $y \in Y$ ein $x \in X$ mit f(x) = y. Daher ist f surjektiv.

Damit sind beide Aussagen gezeigt.