

Topical Meeting

Machine Learning Simulating Stochastic Processes with Quantum Devices

May 17th, 2023

Daniel Fink

Stochastic Processes

Stock Price Trend

Stochastic Processes

- Simulating = sampling trajectories
- Trajectory is governed by $P(\vec{X}|\vec{X})$

Simulation Models

Quantum models use less memory

- → simulate complex processes more easily
- → approximate complex processes more accurately

ϵ -Machine

ϵ -Machine

ϵ -Machine

Classical Topological Complexity: $d_c = \log_2 N$

q–Simulator

Auxiliary Registers

memory states

Quantum Topological Complexity: $d_q = \#qubits$

Learning *q*–Simulators

Approximate
$$P \rightarrow |P - \hat{P}_{\theta}| < \delta$$

Obstacles

- "Brute-force learning" doesn't work for slightly more complex processes
- Tailor-made ansätze are required, but hard to engineer
- A fundamental theory behind the "approximation" is missing

- → Create a (mathematical) framework for approximate quantum models
- → "Low-rank approximations of unitary simulators"

Notation

- dynamics $\lambda(s_i, x) \in \{0, 1, ..., N\}$
- Joined state after one simulation step:

$$|1_i\rangle = U|\sigma_i\rangle|0\rangle = \Sigma_x \sqrt{P(x|i)} |\sigma_{\lambda(i,x)}\rangle|x\rangle$$

Notation

- dynamics $\lambda(s_i, x) \in \{0, 1, ..., N\}$
- Joined state after one simulation step:

$$|1_i\rangle = U|\sigma_i\rangle|0\rangle = \Sigma_x \sqrt{P(x|i)} |\sigma_{\lambda(i,x)}\rangle|x\rangle$$

assume to be given

Theorem

There exists a q-Simulator U with memory states $|\sigma_i\rangle$ iff

$$\langle \sigma_i | \sigma_j \rangle = \langle 1_i | 1_j \rangle$$
 for all i, j .

Note this is independent of the number of memory/auxiliary qubits.

Additionally, note that
$$\langle 1_i | 1_j \rangle = \sum_{x_{\infty}} \sqrt{P(x_{\infty}|i)P(x_{\infty}|j)}$$

Binder et al., 10.1103/PhysRevLett.120.240502

 \rightarrow Main idea: perform a low-rank approximation of $C_{ij} = \langle 1_i | 1_j \rangle$

1. Construct the overlap matrix $C_{ij} = \langle 1_i | 1_i \rangle$

- Express $|1_i\rangle$ in terms of $|\sigma_i\rangle$ [this requires P(x|i) and $\lambda(i,x)$]
- Express the coefficients C_{ij} in terms of $\langle \sigma_i | \sigma_j \rangle \rightarrow$ leading to c = Qc with system matrix Q
- Solve the constraint optimization problem

$$\operatorname{argmin}_{c} \|c - Qc\|_{2}^{2}$$
 such that

$$C_{ij} = C_{ji} \wedge C_{ii} = 1$$

A global minimum must exist (not necessarily unique).

Otherwise, not even a perfect simulation is possible.

The proof is yet missing.

2. Perform a low-rank approximation of C

- a) Fix the topological complexity d a priori
- b) Perform a singular value decomposition: $C = V \Sigma W^{\dagger} = V \Sigma V^{\dagger}$
- c) Shrink to rank $d: C^{(d)} = V \Sigma^{(d)} V^{\dagger}$

The topological complexity can be defined a priori.

The approximation is **optimal** due to the SVD.

3. Derive quantum memory states $|\sigma_i\rangle$

- a) Shrink to rank $d: C^{(d)} = V \Sigma^{(d)} V^{\dagger} = V \sqrt{\Sigma^{(d)}} \sqrt{\Sigma^{(d)}} V^{\dagger} = L^{\dagger} L$. [sort of Cholesky Decomp.]
- b) Identify the quantum memory states $\left|\sigma_i^{(d)}\right\rangle$ as columns of L^{\dagger}

Due to construction, the states satisfy
$$C_{ij}^{(d)} = \left\langle 1_i^{(d)} \middle| 1_j^{(d)} \right\rangle = \left\langle \sigma_i^{(d)} \middle| \sigma_j^{(d)} \right\rangle$$
.

Interpretation: the approximate states are the exact states to a slightly different process.

4. Construct the unitary simulator U

- a) Assemble the 1-step simulation matrix F with columns $F_i = |1_i\rangle$
- b) Solve the constraint optimization problem

$$\underset{U}{\operatorname{argmin}} \|UL^{\dagger} - F\|^{2} \qquad \text{such that} \qquad U^{\dagger}U = I$$

Due to construction, the Unitary satisfies $U\left|\sigma_i^{(d)}\right\rangle|0\rangle\approx\left|1_i^{(d)}\right\rangle$.

The approximation is **optimal** in the sense of a least-squares approximation.

Stochastic Processes

Asymmetric Process (p, q)

$$d_c = 2$$
 $d_q = 1$

Quasi Cycle Process (p, δ)

$$d_c = 2$$
 $d_q = 2$

Yang et al., arXiv:2105.14434

Asymmetric Process (p, q)

Quasi Cycle Process (p, δ)

Results

- The algorithm seems to work just fine.
- A "quantum advantage" exists for the approximate quantum models.
- By contrast, learned quantum models take complex phases into account.
- However, rigorous bounds seem possible, e.g.,

$$D(P, \hat{P}) \le k(d) \cdot \|C - \hat{C}\|$$

Quasi Cycle Process (p, δ)

$$D(P, \hat{P}) \le k(d) \cdot \|C - \hat{C}\|$$

Yang et al., arXiv:2105.14434

Benefits & Next Steps

- Derive lower bounds for the distortion
- Get insights on how to construct ansätze for the learning/data-driven case
- Description & interpretation for errors of approximate models
- The approach is not a black box

- Validate multiple time steps
- Rigorously proof some of the claimed statements
- Derive bounds

Yang et al., arXiv:2105.14434

