assignment-3-3

November 6, 2024

Assignment no - 3

Name: Aarya Trifale, Roll no: 26, Section: F

Problem statement:

A. Measure central tendency and variance. Data analysis in terms of Normal Distribution, Binomial Distribution.

- B. To measure statistical relationships in data using Correlation and Linear regression.
- C. To perform data visualization of various datasets in terms of charts and plots.

```
[1]: import pandas as pd
  import numpy as np

file = pd.read_excel("City_Environment_Data.xlsx")
  file
```

	file						
[1]:		Air_Quality_Inde	Green_Cover_Percentage	Population_Density	\		
	0	173	19.182039	8629			
	1	4	71.219337	5377			
	2	11	78.519330	8070			
	3	19:	39.968722	215			
	4	323	16.897670	5819			
		•••		•••			
	295	11:	64.257037	7862			
	296	488	81.250959	3408			
	297	258	15.290090	265			
	298	2.	7 25.531383	1515			
	299	46	24.402407	1921			
		Annual_Rainfall	Waste_Collection_Efficien	cy Public_Transport	_Usage \	\	
	0	897.559548	76.0040	71	52		
	1	599.224193	51.5330	52	56		
	2	598.407301	61.2206	81	79		
	3	1784.414269	97.6837	85	38		
	4	743.180391	79.1159	87	53		
		•••		•••			
	295	515.095543	64.7133	08	60		

4	296	1213.739294	71.767673	48			
4	297	1563.155586	89.772826	78			
	298	565.963148	83.875418	49			
	299	1819.282225	96.893219	23			
•			00.00022				
		Noise Pollution Level	Energy_Consumption_Per_Ca	nita Average Temperature			
(0	76.187341	1900.00				
	1	76.135166	4349.30				
	2	81.394048	2307.76				
	3	73.219156	1419.33				
	4	88.740655	1334.12				
			1004.12				
	 295	54.788086	1054.62	 1626 15.492291			
	296 296	61.369457	3448.72				
	290 297						
		32.666603	3894.49				
	298	38.750470	2155.62				
7	299	66.011065	4894.56	6073 23.058169			
	[300	rows x 9 columns]					
F	Part-A	L					
(Central Tendency						
) (1101 c	ir rendericy					
	<pre>l: mean = file.mean() print(f"mean is {mean}")</pre>						
m	nean	is Air_Quality_Index	241.353333				
		_Cover_Percentage	48.169519				
		ation_Density	5278.163333				
	-	l_Rainfall	1250.378033				
		_Collection_Efficiency	75.457111				
		c_Transport_Usage	44.966667				
		_Pollution_Level	60.626692				
		-					
	٠.	y_Consumption_Per_Capit					
		ge_Temperature	25.096592				
a	туре	: float64					
		= file.mode() c(f"mode is {mode}")					
	print	Z(I mode is imode)					
m	node :	is Air_Quality_Inc	dex Green_Cover_Percentage	e Population_Density \			
0)	488.0	5.004705	3063.0			
1	L	NaN	5.344089	3352.0			
2	2	NaN	5.785406	5377.0			
3	3	NaN	5.823495	9214.0			
4		NaN	5.830147	NaN			

29	5 NaN	88.518872		NaN		
29	6 NaN	88.668002		NaN		
29	7 NaN	88.727744		NaN		
29	8 NaN	89.353694		NaN		
29	9 NaN	89.356509		NaN		
	Annual_Rainfall Waste_C	Collection_Efficiency	Public_	Transport_Usage \		
0	500.818947	50.033211		27.0		
1	502.075025	50.103232		NaN		
2	505.790527	50.232742		NaN		
3	507.729446	50.265502		NaN		
4	515.095543	50.567756		NaN		
• •						
29		99.394458		NaN		
29		99.633350		NaN		
29		99.790765		NaN		
29		99.803564		NaN		
29	9 1999.712867	99.899700		NaN		
	Noise_Pollution_Level E	Energy_Consumption_Per	_Capita	Average_Temperature		
0	30.022041	1000	.294798	15.018066		
1	30.222586	1006	3.378282	15.109896		
2	30.543600	1019	9.149541	15.110209		
3	30.798967	1024	1.813659	15.211715		
4	30.944294	1029	9.124056	15.313522		
						
29	5 88.975589	4932	2.810953	34.619588		
29	6 89.345285	4934	1.221673	34.809066		
29	7 89.345306	4949	9.739959	34.810784		
29	89.439102	4958	3.100332	34.898038		
29	9 89.911595	4992	2.795811	34.922009		
[3	[300 rows x 9 columns]					
[4]: me	edian = file.median()					
pı	<pre>rint(f"median is {median}")</pre>					
me	dian is Air_Quality_Index	239.50	00000			
Gr	een_Cover_Percentage	47.072714				
Po	pulation_Density	5428.000000				
An	nual_Rainfall	1224.483333				
Wa	ste_Collection_Efficiency	75.439118				
Pu	blic_Transport_Usage	44.500000				
No	ise_Pollution_Level	60.568205				
En	ergy_Consumption_Per_Capita	2996.119174				
۸	orago Tomporaturo	25 051103				

25.051193

Average_Temperature dtype: float64

Standard deviation and variance

```
[5]: variance = file.var()
     print(f"variance is {variance}")
    variance is Air_Quality_Index
                                                  2.032185e+04
    Green_Cover_Percentage
                                      5.895826e+02
    Population_Density
                                      8.019069e+06
    Annual Rainfall
                                      1.886441e+05
    Waste_Collection_Efficiency
                                      2.318504e+02
    Public_Transport_Usage
                                      4.182464e+02
    Noise Pollution Level
                                      3.150559e+02
    Energy_Consumption_Per_Capita
                                      1.349351e+06
    Average_Temperature
                                      3.404017e+01
    dtype: float64
[6]: std_dev = file.std()
     print(f"standard dev is {std_dev}")
    standard dev is Air_Quality_Index
                                                       142.554719
    Green_Cover_Percentage
                                        24.281323
    Population_Density
                                      2831.796020
    Annual_Rainfall
                                       434.331747
    Waste_Collection_Efficiency
                                        15.226635
    Public_Transport_Usage
                                        20.451073
    Noise_Pollution_Level
                                        17.749814
    Energy_Consumption_Per_Capita
                                      1161.615572
    Average_Temperature
                                         5.834395
    dtype: float64
    Distribution Analysis
[7]: import matplotlib.pyplot as plt
      # Normal Distribution Plot
     plt.figure(figsize=(10, 5))
     plt.hist(file['Annual_Rainfall'], bins=30, color='skyblue', alpha=0.7,

density=True)

     plt.title('Normal Distribution - Annual_Rainfall')
     plt.xlabel('Value')
     plt.ylabel('Density')
     plt.show()
```



```
[8]: import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from scipy.stats import norm
     # Mean and Standard Deviation for Annual Rainfall
     mean = file['Annual Rainfall'].mean()
     std = file['Annual_Rainfall'].std()
     # Plotting the Histogram with KDE and Overlaying a Normal Curve
     plt.figure(figsize=(10, 5))
     sns.histplot(file['Annual_Rainfall'], bins=30, color='skyblue', kde=True, __
      ⇔stat='density')
     # Overlay theoretical normal distribution
     x = np.linspace(file['Annual_Rainfall'].min(), file['Annual_Rainfall'].max(),
     plt.plot(x, norm.pdf(x, mean, std), color='red', linestyle='--', label='Normal_
      ⇔Distribution')
     # Titles and Labels
     plt.title('Normal Distribution Analysis - Annual Rainfall')
     plt.xlabel('Annual Rainfall')
     plt.ylabel('Density')
     plt.legend()
     plt.show()
```



```
[9]: # Binomial Distribution Example
n, p = 10, 0.5 # Example parameters for binomial distribution
binom_data = np.random.binomial(n, p, 1000)
plt.figure(figsize=(10, 5))
plt.hist(binom_data, bins=10, color='lightgreen', alpha=0.7, density=True)
plt.title('Annual_Rainfall')
plt.xlabel('Number of Successes')
plt.ylabel('Density')
plt.show()
```


Part B:

Statistical Relationships

```
[10]: from sklearn.linear_model import LinearRegression
      import matplotlib.pyplot as plt
      # Select two columns for linear regression analysis
      X = file[['Population_Density']].values # Independent variable
      y = file['Air_Quality_Index'].values  # Dependent variable
      # Initialize and fit the linear regression model
      model = LinearRegression()
      model.fit(X, y)
      # Predictions
      y_pred = model.predict(X)
      # Plotting the linear regression
      plt.figure(figsize=(10, 6))
      plt.scatter(X, y, color='blue', alpha=0.5, label="Actual Data")
     plt.plot(X, y_pred, color='red', label="Regression Line")
      plt.title("Linear Regression - Population Density vs Air Quality Index")
      plt.xlabel("Population Density")
      plt.ylabel("Air Quality Index")
      plt.legend()
      plt.show()
```


Part - C $Scatter\ Plot\ (e.g.,\ Population\ Density\ vs\ Noise\ Pollution\ Level)$

Box Plot (e.g., Air Quality Index)

Bar Chart (e.g., Average Temperature by City or Categories)

```
[20]: # Box plot for each variable
file.boxplot(figsize=(12, 6), rot=45)
plt.title("Box Plot for Each Variable")
plt.show()
```


[]: