Evaluating Predictors

B,--

Thanks to: T Dietterich

Evaluating Hypotheses

Given limited data . . .

- Estimating h's true error
 - □ Sample Error ≠ True Error
 - □ Confidence intervals
 - □ Cross-Validation
- Comparing h₁ to h₂
 - □ Paired-t tests
 - ☐ McNemar's Test
- Appendix
 - Binomial distribution

Problems Estimating Error

Bias: Difference between value of estimator and true value

```
bias \equiv E[\underline{err}_S(h)] - err_D(h)
```

- If S is training set (used to produce h),
 err_S(h) is optimistically biased
- To get unbiased estimate,
 - □ choose h and S independently
 - \square NOT h := L(S)
- Variance: Even with unbiased estimator, err_S(h) may still vary from err_D(h)
 - err_S(h) may be different from err_S(h)
 - □ especially if |S|, |S'| small

Example

Hypothesis h misclassifies
 12 of 40 examples in S

$$err_s(h) = 12/40 = 0.30$$

- What is err_D(h)?
 - □ true error, over entire population?

.

Estimators

- Experiment: Given h
 - 1. Draw sample S of size |S| = n according to distribution D
 - 2. Measure err_S(h)
- <u>err_S(h)</u> is a random variable
 - □ (ie, result of experiment)
- <u>err_S(h)</u> is unbiased estimator for err_D(h)
 - $\Box E[\underline{err}_{S}(h)] err_{D}(h) = 0$
- Given (one) observation <u>err_S(h)</u>, what can we conclude about err_D(h)?

Confidence Intervals (informal)

- If
 - S contains n examples, drawn independently of h and each other
 - □ n > 30
- Then, w/ ≈ 95% probability.

$$\underline{err_{\mathcal{S}}(h)}$$
 is in $err_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{err_{\mathcal{D}}(h)(1 - err_{\mathcal{D}}(h))}{n}}$

■ That is...

$$err_{\mathcal{D}}(h) \in \widehat{err_{S}}(h) \pm 1.96 \sqrt{\frac{err_{\mathcal{D}}(h)(1 - err_{\mathcal{D}}(h))}{n}}$$

$$\approx \widehat{err_{S}}(h) \pm 1.96 \sqrt{\frac{\widehat{err_{S}}(h)(1 - \widehat{err_{S}}(h))}{n}}$$

Elaboration

- If S contains n > 30 examples
 drawn independently of h, each other,
- Then can assume $\underline{err_S(h)} \sim N(err_D(h), \sigma^2)$ $\underline{err_S(h)}$ drawn from Gaussian w/

mean
$$\mu = err_D(h)$$
, var $\sigma^2 = err_D(h)(1 - err_D(h)) / n$

$$\Rightarrow$$
 w/prob $\approx \alpha\%$,

$$\widehat{err}_{S}(h) \in [err_{\mathcal{D}}(h) - z_{\alpha} \cdot \sigma, err_{\mathcal{D}}(h) + z_{\alpha} \cdot \sigma]$$

ie,
$$|\widehat{err}_S(h) - err_D(h)| \leq z_N \cdot \sigma$$

As
$$err_{\mathcal{D}}(h) \approx \widehat{err}_{S}(h)$$
, $\sigma \approx \widehat{s} = \sqrt{\frac{\widehat{err}_{S}(h)}{n} \frac{(1 - \widehat{err}_{S}(h))}{n}}$

$$\Rightarrow$$
 w/prob $\approx \alpha\%$,

$$err_{\mathcal{D}}(h) \in [\widehat{err}_{S}(h) - z_{\alpha} \cdot \widehat{s}, \widehat{err}_{S}(h) + z_{\alpha} \cdot \widehat{s}]$$

м

Example, con't

- For 12-of-40:
 - $\Box \, \underline{\mathsf{err}}_{\mathsf{S}}(\mathsf{h}) = 0.3$
 - \Box \hat{s} = $\sqrt{(0.3 \times 0.7/40)} \approx 0.072$
- 95% confident that true error err_D(h) ∈ err_S(h) ±1.96 ŝ
 ⇒ err_D(h) ∈ [0.3 – 0.14, 0.3+0.14]
- "Two-sided interval"
 - □ What about "one-sided interval"
 - ... likelihood that $err_D(h) < K$?

Normal Probability Distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- $P(a \le X \le b)$ \equiv probability that X in interval (a,b) = $\int_a^b p(x) dx$
- $E[X] = \mu = \int_{-\infty}^{+\infty} x \ p(x) \ dx$
- $Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x \mu)^2 p(x) dx$

•
$$\sigma_X = \sqrt{Var(X)}$$

Normal Probability Distribution

■ 80% of area (probability) $\frac{0.35}{0.3}$ lies in $\mu \pm 1.28\sigma$

$$\in$$
 [μ -1.28 σ , μ +1.28 σ

N% of area (probability) lies in $\mu \pm z_N \sigma$

N%:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

If σ is small: Most of mass near mean μ
If σ is large: Most of mass far from mean μ

One- vs Two- Sided Bounds

So far: "Constrain" μ to interval $[\hat{X} - z_n \sigma, \hat{X} + z_n \sigma]$

interval
$$[\hat{X} - z_n \sigma, \hat{X} + z_n \sigma]$$

Eq. 80% confidence $err_{\mathcal{D}}(h) \in [\widehat{err}_{S}(h) - 1.28\widehat{s}, \widehat{err}_{S}(h) + 1.28\widehat{s}]$

• What is prob that $err_{\mathcal{D}}(h) \geq A$?

Distribution is symmetric:

- ... 10% chance that $err_{\mathcal{D}}(h) \in (-\infty, \widehat{err}_{S}(h) - 1.28\widehat{s}]$
- ... 10% chance that $err_{\mathcal{D}}(h) \in [\widehat{err}_{S}(h) - 1.28\widehat{s}, +\infty)$
- \Rightarrow 90% chance $err_{\mathcal{D}}(h) \in (-\infty, \widehat{err}_{S}(h) + 1.28\widehat{s}]$

м

One-Sided Bounds

If $100(1-\alpha)\%$ confident that $\mu \in [A, B]$,

```
Then 100(1-\frac{\alpha}{2})\% confident that \mu\in[A,+\infty) ie, \mu\geq A and 100(1-\frac{\alpha}{2})\% confident that \mu\in(-\infty,B] ie, \mu\leq B
```

- Confidence of one-sided error is TWICE the confidence of two-sided! Eg, For 12-of-40:
 - \square 95% confident err_D(h) \in [0.3 0.14, 0.3+0.14]
 - □ 97.5% confident err_D(h) ≤ 0.3+0.14

м

Central Limit Theorem

- Let Y₁, ... Y_n be set of iid r.v.s
 (independent, identically distributed random variables)
 all drawn from same arbitrary distribution
 with mean μ and finite variance σ².
 - \square sample mean $\hat{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$
- Central Limit Theorem As $n \to \infty$, $\hat{Y} \sim N(\mu, \sigma^2/n)$

$$\frac{\hat{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

- Distribution governing $\hat{\mathbf{Y}}$ approaches Normal distribution, w/ mean μ , variance σ^2/n
 - □ Y_i from ANY distribution, just same ∀ Y_i
 - ☐ Typically apply when n > 30

Calculating Condence Intervals General Procedure

- 1. Identify parameter p to estimate
 - \square err_D(h)
- 2. Choose an estimator
 - \Box err_S(h)
- 3. Determine prob distr of estimator
 - \square err_S(h) ~ Binomial distribution,
 - □ ... approximated by Normal when n > 30
- 4. Find interval (L, U) such that N% of probability mass falls in the interval
 - □ Use table of z_N values

Truth...

$$\widehat{err}_S(h) = \overline{Y} = \frac{1}{m} \sum_{i=1}^m Y_i$$
 where $Y_i = \left\{ \begin{array}{l} 1 & \text{if } i^{th} \text{ instance mislabeled} \\ 0 & \text{otherwise} \end{array} \right.$

• $\widehat{err}_S(h)$ is ASYMPTOTICALLY normal

As
$$|S| \to \infty$$
, $\widehat{err}_S(h) \sim \mathcal{N}(err_{\mathcal{D}}(h), \sigma^2)$
$$\sqrt{|S|} \frac{\widehat{err}_S(h) - err_{\mathcal{D}}(h)}{\sigma} \sim \mathcal{N}(0, 1)$$
 assuming σ^2 is known!

• If σ^2 not known, then

$$- \hat{\sigma} := \sqrt{\frac{\widehat{err}_S(h) (1 - \widehat{err}_S(h))}{|S| - 1}}$$
$$- \sqrt{|S|} \frac{\widehat{err}_S(h) - err_D(h)}{\hat{\sigma}} \sim t_{|S| - 1}$$

"students t" distribution

Students t Distribution

- t distribution like unit normal N(0, 1) but larger spread (longer tail)
- \Rightarrow interval (for given α) is larger
 - ... additional uncertainty due to unknown variance

$$\lim_{k\to\infty} t_{\alpha,k} = z_{\alpha}$$

	Confidence Level ${\cal N}$			
	90%	95%	98%	99%
$\nu = 2$	2.92	4.30	6.96	9.92
$\nu = 5$	2.02	2.57	3.36	4.03
$\nu = 10$	1.81	2.23	2.76	3.17
$\nu = 20$	1.72	2.09	2.53	2.84
$\nu = 30$	1.70	2.04	2.46	2.75
$\nu = 120$	1.66	1.98	2.36	2.62
$\nu = \infty$	1.64	1.96	2.33	2.58
z_N	1.64	1.96	2.33	2.58

Ila. Difference Between Hypotheses

Test h₁ on sample S₁, test h₂ on S₂

1. Pick parameter to estimate

$$\Box d = err_D(h_1) - err_D(h_2)$$

2. Choose an estimator

3. Determine prob distr of estimator

$$\sigma_{\hat{d}} \approx \sqrt{\frac{\widehat{err}_{S_1}(h_1)(1-\widehat{err}_{S_1}(h_1))}{|S_1|} + \frac{\widehat{err}_{S_2}(h_2)(1-\widehat{err}_{S_2}(h_2))}{|S_2|}}$$

(Diff of 2 Normals is Normal)

4. Find interval (L, U) s.t. N% of probability mass in interval

$$\widehat{d} \pm z_N \sqrt{\frac{\widehat{err}_{S_1}(h_1) (1 - \widehat{err}_{S_1}(h_1))}{|S_1|} + \frac{\widehat{err}_{S_2}(h_2) (1 - \widehat{err}_{S_2}(h_2))}{|S_2|}}$$
(Tighter bound [better] if use S₁ = S₂)

м

Example (con't)

- Spse $\underline{\text{err}}_A(\underline{h}_A) = 0.3$; $\underline{\text{err}}_B(\underline{h}_B) = 0.4$; given $|S_A| = 100 = |S_B|$
- As $\underline{d} = \underline{err_A(h_A)} \underline{err_B(h_B)} = 0.1 > 0$ h_B appears better that h_A
- Q: Is h_B truly better than h_A...
 ie, Is err_D(h_B) < err_D(h_A)?
 ... ie what is prob that d < 0 given observed d = 0.1?
- **A:** Assume null-hypothesis: $d = \mu_d < 0$.
 - □ What is chance that $P(d = 0.1 | \underline{d} < 0)$?
 - ... bounded by chance that estimate \underline{d} is OFF by > 0.1
 - \square . . . <u>d</u>in 1-sided interval $\underline{d} \in [\mu_d + 0.1, \infty)$

.

Examples . . . Hypothesis Testing

- What is chance that $\underline{d} \in [\mu_d + 0.1, \infty)$
- Here: $\underline{\sigma}_d \approx 0.061$.
 - □ With prob > 0.95, $\underline{d} < \underline{d} + 1.64 \underline{\sigma}_{d}$
- \blacksquare \Rightarrow Given $\underline{d} = 0.1$,
 - 95% confident that prob that d > 0
 - ... ie, $err_D(h_A) > err_D(h_B)$
- Hypothesis Test:
 - \square Accept hyp $err_D(h_A) \le err_D(h_B)$ with confidence 0.95
 - □ Reject null hyp (that $err_D(h_A) > err_D(h_B)$) at 1 - 0.95 = 0.05 level of significance

м

Paired-t Test to compare h_A, h_B

Given: data T; alg's h_A ; h_B ; confidence α :

- 1. Partition data into k disjoint test sets { T₁, T₂, ..., T_k } of ≈equal size (size ≥ 30)
- 2. For i = 1 .. k, do $\delta_i := err_{Ti}(h_A) err_{Ti}(h_B)$
- 3. Let $\underline{\delta} := (\sum_i \delta_i) / k$

$$s_{ar{\delta}} \equiv \sqrt{rac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - ar{\delta})^2}$$

(empirical estimate of standard deviation)

- 4. Return $\alpha\%$ confidence estimate for d: $\underline{\delta} \pm t_{\alpha,k-1} s_{\delta}$
- Hypothesis test:

Is
$$\underline{\delta} + t_{\alpha,k-1} s_{\delta} > 0$$
?

■ Note: When each δ_i is \approx Normally distributed... $\underline{\delta}$ ~ "Students T"

Ilb. Comparing Two Classifiers

- Goal: decide which of two classifiers h₁ vs h₂ has lower error rate
- Method: Run both on same test data set, recording following numbers:

	classified by h_{A}		
		correct	incorrect
classified	correct	n_{00}	n ₁₀
by h_B	incorrect	n_{O1}	n_{11}

classified

correct
incorrect

Classiii	$cab y m_A$		
correct	incorrect		
n_{OO}	n_{10}		
n_{O1}	n_{11}		

McNemar's Test

$$M = \frac{(n_{01} - n_{10}|-1)^2}{n_{01} + n_{10}} > \chi_{1,\alpha}^2$$

- M is distributed approximately as χ^2 w/ 1 degree of freedom
- For 95% confidence: $\chi^2_{1.0:95} = 3.84$
- So if M > 3.84reject null hyp that "ha, have same error rate"

Confidence Interval... Difference Between Two Classifiers

• $p_{ij} = \frac{n_{ij}}{n}$ be 2x2 contingency table, as probabilities

$$SE = \sqrt{\frac{p_{01} + p_{10} + (p_{01} - p_{10})^2}{n}}$$

$$p_A = p_{10} + p_{11}$$

$$p_B = p_{01} + p_{11}$$

$$\Delta = 1.96(SE + \frac{1}{2n})$$

• 95% confidence interval on difference in true error $\epsilon_A - \epsilon_B$ between two classifiers:

$$(p_A - p_B) \in [\epsilon_A - \epsilon_B - \Delta, \epsilon_A - \epsilon_B + \Delta]$$

$$\begin{array}{c|c}
 & \leftarrow \Delta \rightarrow \leftarrow \Delta \rightarrow \\
 & \downarrow & \downarrow \\
 & \downarrow &$$

Estimate Diff Between Two Alg's: the 5x2CV F test

```
for i from 1 .. 5 do %perform 2-fold cross-validation split S evenly and randomly into S_1, S_2 for j \in \{1,2\} do Train algorithm A on S_j, measure error rate p_A^{(i,j)} Train algorithm B on S_j, measure error rate p_B^{(i,j)} p_i^{(j)} = p_A^{(i,j)} - p_B^{(i,j)} % diff in err rates on fold j \bar{p}_i := \frac{p_i^{(i)} + p_i^{(2)}}{2} % ave diff in err rates in iteration i s_i^2 = \left(p_i^{(1)} - \bar{p}_i\right)^2 + \left(p_i^{(2)} - \bar{p}_i\right)^2 % var in diff, for iter i F := \frac{\sum_i \bar{p}_i^2}{2\sum_i s_i^2}
```

■ If F > 4.47, then

- □ with 95% confidence,
- □ reject null hypothesis that alg's A and B have the same error rate when trained on data sets of size m/2

Other Topics

- Hypothesis testing, in general
- "False discovery rate" ...permutation tests, . . .
- Prior knowledge of Distributions
- ROC curves
- ANOVA
- Running "experiments" to obtain data . . .
- **.** . . .

err_s(h) is a Random Variable

- Rerun experiment w/ different randomly drawn S (of size |S| = n)
- Prob of observing r misclassified examples:

 Output

 Display

 Binomial distribution for n = 40, p = 0.3

$$P(r) = \binom{n}{r} err_{\mathcal{D}}(h)^r (1 - err_{\mathcal{D}}(h))^{n-r}$$

$$\binom{n}{r} \equiv \frac{n!}{r!(n-r)!}$$

Binomial Probability Distribution

• If p = P(heads), prob of r heads in n coin flips

Let:
$$Y_i = \begin{cases} 1 & i^{th} \text{ flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$X = \sum_{i=1}^{n} Y_i$$

$$P(X = r) = \binom{n}{r} p^r (1-p)^{n-r}$$

• $E[X] \equiv \text{Expected value of } X$:

$$\equiv \sum_{r=0}^{n} r \times P(X=r) = n \times p$$

• $Var(X) \equiv Variance of X$

$$\equiv E[(X - E[X])^2]$$

$$= \sum_{r=0}^{n} (r - E[X])^2 \times P(X = r)$$

$$= n p (1 - p)$$

•
$$\sigma_X \equiv \text{standard deviation of } X$$

$$\equiv \sqrt{E[(X - E[X])^2]} = \sqrt{n p (1 - p)}$$

Binomial Distribution, con't

• If p = P(head), prob of r heads in n coin flips

Let:
$$Y_i = \begin{cases} 1 & i^{th} \text{ flip is head} \\ 0 & \text{otherwise} \end{cases}$$

$$S = \sum_{i=1}^{n} Y_i \qquad \bar{Y} = \frac{S}{n}$$

• $E[\bar{Y}] \equiv \text{Expected value of } \bar{Y}$:

$$= \frac{1}{n}E[S] = \frac{n \times p}{n} = p$$

•
$$Var(\bar{Y}) \equiv Variance \text{ of } \bar{Y}$$

$$= E[(\frac{S}{n} - E[\frac{S}{n}])^2] = \frac{1}{n^2} E[(S - E[S])^2]$$

$$= \frac{1}{n^2} n p (1 - p) = \frac{p(1-p)}{n}$$

$$\bullet$$
 $\sigma_{ar{Y}} \equiv \text{ standard deviation of } ar{Y}$ $\equiv \sqrt{Var(ar{Y})} = \sqrt{rac{p\,(1-p)}{n}}$

Proofs

$$E[S] = \sum_{r=0}^{n} r \times P(r, n)$$

$$= \sum_{r=1}^{n} r \times \frac{n!}{r!(n-r)!} p^{r} (1-p)^{n-r}$$

$$= \sum_{r=1}^{n} \frac{n \times (n-1)!}{(r-1)!(n-r)!} p \times p^{r-1} (1-p)^{n-r}$$

$$= np \sum_{r=1}^{n} \frac{(n-1)!}{(r-1)!((n-1)-(r-1))!} p^{r-1} (1-p)^{(n-1)-(r-1)}$$

$$= np \sum_{s=0}^{n-1} \frac{(n-1)!}{s!((n-1)-s)!} p^{s} (1-p)^{(n-1)-s}$$

$$= np (p+(1-p))^{n-1} = np$$

$$Var(S) = E[(S-\mu)^{2}] = E[S^{2} - 2\mu S + \mu^{2}]$$

$$= E[S^{2}] - 2\mu E[S] + \mu^{2} = E[S^{2}] - E[S]^{2}$$

Binomial Approximates Normal Distribution

- $\widehat{err}_S(h)$ follows a *Binomial* distribution:
 - Mean $\mu_{\widehat{err}_S(h)} = err_{\mathcal{D}}(h)$
 - Standard deviation $\sigma_{\widehat{err}_S(h)}$

$$\sigma_{\widehat{err}_S(h)} = \sqrt{\frac{err_D(h) (1 - err_D(h))}{n}}$$

- Can approximate as Normal distribution:
 - Mean $\mu_{\widehat{err}_S(h)} = err_{\mathcal{D}}(h)$
 - Standard deviation

$$\sigma_{\widehat{err}_S(h)} \approx \sqrt{\frac{\widehat{err}_S(h) (1 - \widehat{err}_S(h))}{n}}$$