

SSRNet: Scalable 3D Surface Reconstruction Network

密振兴,罗一鸣,陶文兵* 华中科技大学人工智能与自动化学院

01 Point cloud

A set of 3D points sampling from object surfaces

May be with normal or visibility information

- > Pros
 - > Flexible and sparse
 - Easy to be produced by scans and Multiview Stereo
- > Cons
 - Not easy for manipulation and rendering

02 Triangular Mesh

A set of connected triangles representing object surfaces

Consisting of vertices, edges and triangle facets

- > Pros
 - Supporting efficient traversal, manipulation and rendering
 - > Extensively used in computer graphics
- > Cons
 - Not easy to be directly produced by scans

Mesh

Rendering

O3 Surface Reconstruction

- > Definition
 - > From point cloud to triangular mesh
- > Problems
 - > Non-uniform sampling density of point cloud
 - Noise in point cloud
 - Outliers far from the true surface
 - Missing data due to limited sensor range, high light absorption and occlusions

3D Space Discretization

Simple, uniform but facing complexity issue

Delaunay Triangulation

- Adaptive to density but irregular
- > Yielding a graph

Octree Grid

Flexible and higher resolution

How to Get a Triangular Mesh

- Classify samples as inside or outside the surface by implicit function
- Interpolating intersections on cube edges and extracting triangles

Delaunay triangulation

- Classify tetrahedrons as inside or outside the surface.
- Gathering triangles from adjacent tetrahedrons of different labels

■ William E. Lorensen et al. Siggraph 1987

Local geometric methods

- - Computing for each vertex the signed projection distance onto the tangent plane of its closest point
- Signed distance Function > Truncated Signed distance **Function (TSDF)**
 - > Computing TSDF from range images for each vertex

Hugues Hoppe et al. 1992

Brian Curless et al. 1996

Local geometric methods

- Moving least squares (MLS)
 - > A class of methods approximating the input points by spatially varying low-degree polynomials.
 - > Levin method:

Defining a height field using weighted PCA and approximate it by a low-degree bivariate polynomial.

> Planar fitting:

Fitting the distance between the evaluation point and the best fitted plane.

Spherical fitting:
Fitting a gradient field of the algebraic spheres

to the input normals.

Guennebaud et al. 2007

Levin et al. 2003

Global geometric methods

Constructing a signed-distance function and fitting with RBFs

$$f(\mathbf{x}) = g(\mathbf{x}) + \sum_{i} \lambda_{i} \phi(\|\mathbf{x} - \mathbf{p}_{i}\|)$$

(Screened) Poisson Surface Reconstruction

Fitting normal field with gradient of an indicator function and solving a poisson problem

$$\Delta \chi = \nabla \cdot \vec{V}$$

■ Michael Kazhdan et al. ESGP2006, ToG2013

Learning-based methods on girds

- Deep Marching Cubes: Voxel
 - > Converting point features into voxel grids by Grid Pooling
 - > Encoding and decoding voxel features via 3D convolution
 - Directly predicting surface by Differentiable Marching Cubes Layer (DMCL)

Learning-based methods on girds

- OctNetFusion: Octree
 - > Converting point cloud into TSDF in an octree
 - Appling convolution, pooling and unpooling operations defined in Octnet to the octree
 - Predicting optimized TSDF

Learning-based methods for continuous function

- Occupancy networks (ONet)
 - > Encoding point cloud into a latent vector
 - Learning a occupancy probability function for 3D locations, trained by binary classification

$$f_{\theta} \colon \mathbb{R}^3 \times \mathcal{X} \to [0,1]$$

- Deepsdf
 - Learning signed distance function for 3D locations

$$SDF(\mathbf{x}) = s : \mathbf{x} \in \mathbb{R}^3, s \in \mathbb{R}$$

Lars Mescheder et al. CVPR2019

■ Jeong Joon Park et al. CVPR2019

Problems and challenges

- > Scalability
 - > Voxel network: complexity issue
 - Octree network: dependent on octree structures, complexity and efficiency issue
 - > ONet & Deepsdf: global latent vector
 - > Traditional methods, Poisson and Delaunay tetrahedrons+Graph cuts

Large-scale scene

Problems and challenges

- > Geometry details
 - > Voxel network: information loss in voxelization
 - ONet & Deepsdf: information loss in short latent vector, no local context

Latent vector

Problems and challenges

- > Training and generalization
 - Voxel & Octree network: input TSDF depends on traditional methods
 - > Need large portion of training data
 - ONet & Deepsdf: dependent on absolute coordinate, hard to generalize to unseen shape category

SSRNet: Scalable 3D Surface Reconstruction Network

- > Binary classification
 - Classifying octree vertices as in front or at back of the implicit surface and extracting surface by Marching Cubes
- > Important
 - How to design octree vertices features for accurate and scalable predication?

Geometry-aware Vertex Feature: Ideas

- - Idea: signed distances from normal directions are critical, local 3D-2D fitting
 - Drawback: global fitting nonscalable, local fitting functions too simple

- > From geometric method > From tangent convolution
 - Idea: local 3D-2D learning for point cloud segmentation
 - Drawback: ambiguous normal directions from PCA

Maxim Tatarchenko et al. CVPR2018

Geometry-aware Vertex Feature: Design

Normal

Wrong I

Signed

distance

Tangent

plane

Interpolation

Construction

- Constraining normal of tangent plane by average neighbor normal
- Constructing signed distance, normal and other feature images for each vertex through local projection
- > Applying 2D convolution on 2D images

Geometry-aware Vertex Feature: Design

- > Advantages
 - > Directly learning local surface feature, more accurate
 - Performed in a fixed-size local region by ball query for neighbor points, allowing subdividing input data, more scalable.
 - > Independent to octree structure
 - Indices for tangent images can be precomputed, making the network of more efficient
 - Parameters of 2D convolution are shared, making the network less complex

SSRNet Architecture

SSRNet Pipeline

Subdividing points and vertices, predicting labels using SSRNet and extracting surface by Marching Cubes

Training data generation

- > Projecting triangles and record intersections with grid lines
- > Labeling vertices on the octree edges containing intersections
- > Labeling other vertices through nearest neighbor search

07 Experiments

Datasets

DTU

Evaluation Metrics

- > ShapeNet
- IoU (higher is better),
- Chamfer-L₁ distance (lower is better)
- Normal Consistency (NC, higher is better)
- Classification accuracy
- > DTU
- DTU Accuracy
- DTU Completeness
- Chamfer distance (CD) (All lower is better)
- Classification accuracy
- > Stanford
- Chamfer distance
- Classification accuracy

O7 Experiments on ShapeNet

Comparison with learning-based 3D methods:

- > 3D-R2N2, PSGN, DMC and Onet
- Classification accuracy is 97.6
- > Training data: Onet 4/5, ours 4/50
- Parameters: Onet 13.4M, ours 0.49M

Ground Truth Model

■ 3D-R2N2, Christopher et al. ECCV2016 ■ DMC, Yiyi Liao, et al. CVPR2018

■ PSGN, Haoqiang Fan et al. CVPR2017 ■ ONet, Lars Mescheder et al. CVPR2019

ShapeNet Dataset

	IoU	Chamfer- L_1	NC
3D-R2N2	0.565	0.169	0.719
PSGN		0.202	
DMC	0.647	0.117	0.848
ONet	0.778	0.079	0.895
SSRNet	+17.9% 0.957	0.055 0.024	+0.072 0.967

- Results on DTU scans of large scales.
- > Each point cloud has millions of points.
- SSRNet achieves comparable quality with SOTA geometric method PSR.
- > 6/100 for training
- Classification accuracy is 95.7

Method	DA		DC		CD	
Wiemou	Mean	Var.	Mean	Var.	Mean	RMS
PSR(trim 8)	0.473	1.33	0.327	0.220	3.16	12.5
PSR(trim 9.5)	0.330	0.441	0.345	0.438	1.17	4.49
Ours	0.321	0.285	0.304	0.0888	1.46	4.42

■ PSR, Michael Kazhdan et al. ESGP2006, ToG2013

07 Experiments on Stanford for generalization

Applying two trained SSRNet models to Stanford dataset:

- SSRNet-D trained on DTU
- > SSRNet-S trained on ShapeNet
- Generalization Capability Test

Stanford 3D Dataset

	Accuracy			CD Mean		CD RMS	
Dataset	ShapeNet-Model	DTU-Model	Ours	PSR	Ours	PSR	
Stanford	98.1	98.2	4.21	3.74	9.75	13.3	

Experiments about efficiency

Time efficiency on point clouds with millions of points. SSRNet can make use of multiple GPUs for acceleration.

Number	Armadillo	Bunny	Dragon	stl_030	stl_034	stl_062
Point /M	2.16	0.361	1.71	2.43	2.01	2.19
Vertex /M	3.29	3.62	3.07	1.07	0.766	0.922
Triangle /M	1.18	1.52	1.16	0.42	0.31	0.36
Batch	109	73	77	59	88	86
Time /s	Armadillo	Bunny	Dragon	stl_030	stl_034	stl_062
Prep	19.4	8.86	16.6	10.9	9.34	9.99
Pred (1 GPU)	133	82.2	110.5	63.5	84.5	87.9
Pred (4 GPUs)	50.5	27.3	38.2	30.4	31.1	34.3
Total (1 GPU)	153	92.0	128	75.4	94.5	98.6
Total (4 GPUs)	70.6	37.1	55.7	42.3	41.1	45.0

SSRNet vs ONet (Lars Mescheder et al. CVPR2019)

- **Common:** Binary classification for octree vertices
- Differences

SSRNet

- > Learning local geometry feature
- Capturing local geometry details
- > Independent on global coordinates
- > Independent on shape categories
- > Allow dividing large input points
- Less training data (4K in ShapNet)
- > Generalizing well
- > 0.49M parameters
- Open&Close surface

ONet

- > Encoding global feature
- > Losing information due to global feature
- > Dependent on global coordinates
- Dependent on shape categories
- Actually downsampling points
- More training data (40K in ShapNet, 4/5)
- Hard to generalize to unseen categories
- > 13.4M parameters
- Close surface

08 Contributions

- > Scalability——allowing subdividing input data
- Local geometry-aware feature—high accuracy and quality
- > Training——Less training data Independent on shape
- > Generalization——Model on one data directly used to another
- > High efficiency—Easy to parallel

Thank you! Q&A