

About Me? https://ica.cnrs.fr/en/author/jmorlier/

On the road to design optimization

https://medium.com/daptablog/on-the-road-to-design-optimisation-a3c9867f29b6

Optimization
 noun [U] (UK usually optimisation)
 the act of making something as good as possible
 (Cambridge Dictionary)

• Design optimization is an engineering design methodology using a mathematical formulation of a design problem to support selection of the optimal design among many alternatives. (Wikipedia)

Model 3 rear underbody 70 pieces of metal

Model Y rear underbody 2 pieces of metal (eventually a single piece)

The use of 3D printing → enable the reduction of subassemblies (form 70 to 1)
Tesla talk about digital casting technology but this is a Design / Topology Optimization problem !!!

Gradient Based Optimization

- Costly if Finite Differences is used for sensitivities
- Difficult to implement Adjoint in industrial code
- Sensitive to discontinuity
- Sensitive to X₀

*SOL200 in MSC Nastran for example

Quiz I draw material (black) or void (white)

Results discrete or continuous variables?

The legal (top) and some illegal (bottom) topologies with 4 by 3 elements

TopOpt

- 1. Objective?
- 2. Constraints?
- 3. Method?

Compliance $J = f^T u$

Compliance = 1/Stiffness

Minimize Compliance

Volume Constraint

Minimize J

Vol.Frac ≤ 0.5

Method: Gradient based: Need sensitivities...

SIMP

SIMP: Solid Isotropic Material with Penalization

Min Compliance

$$v = 0.5v_0$$

Where do we add holes?

 $0<\rho_{\epsilon}\leq 1$: 'Pseudo Density'

$$\begin{array}{c} \mathit{Min} \;\; \mathrm{Compliance} \\ \sum \rho_{e} v_{e} = 0.5 v_{0} \end{array}$$

Pixels?

When the size of the FE model is INCreasing, the SIMP optimization problem is ... INCreasing

Chris Columbus et al, Pixels, movie 2015

Intuitive Problem? Quadratic Form

 $x_1 = 1$ $x_2 = 0.5$ $x_3 = 0$

Objective function; Strain energy

$$\min c(\mathbf{x}) = \mathbf{U}^T \mathbf{F} = \mathbf{U}^T \mathbf{K} \mathbf{U} \qquad \text{with} \quad x_e = \frac{\rho_e}{\rho_0} \quad (4)$$

with
$$\mathbf{K} = \mathbf{K}_0 \sum_{e=1}^{N} x_e^p$$
 one can write:

with
$$x_e = \frac{\rho_e}{\rho_0}$$
 (4)

(5)

$$\min c(\mathbf{x}) = \sum_{e=1}^{N} (x_e)^{p} \mathbf{u}_e^{T} \mathbf{k}_0 \mathbf{u}_e$$

Contraints: mass target

$$\frac{V(\mathbf{x})}{V_0} = f = \underbrace{const} \iff \sum_{e=1}^{N} V_{e} \underbrace{x_e} V_0 f = 0 = h(\mathbf{x})^{\text{Scalar}}$$

$$0 < \rho_{\min} \le \rho_e \le 1$$

K is linked through E and xe

Rozvany, G.I.N., Zhou, M., and Gollub, M. (1989). Continuum Type Optimality Criteria Methods for Large Finite Element Systems with a Displacement Connstraint, Part 1. Structural Optimization 1:47-72.

$$\mathbf{K} = \mathbf{K}_0 \sum_{e=1}^{N} x_e^p \qquad x_e = \frac{\rho_e}{\rho_0}$$
(simP)???????

•But HOW ??

Avoid intermediate densities!

Solid Isotropic Material with Penalization (SIMP)

$$E(x) = E_{min} + (E_0 - E_{min})x^p$$

p is the penalty parameter to push densities to black (1) and white (0).

 E_{min} is a small value that avoid stiffness matrix singularity

Penalization for altering stiffness localy

Nice idea!

- Transform discrete variables in continuous ones (→TO USE gradient-based algorithms)
- 2. Find an objective function with "cheap" derivatives (It is !!! Check TOPOPT textbooks)

BUT PROF... IN PRACTICE... HOW CAN I DO THAT ??

https://www.topopt.mek.dtu.dk/apps-and-software/topology-optimization-codes-written-in-python

Pylon Design

Coniglio, S., Gogu, C., Amargier, R., & Morlier, J. (2019). Engine pylon topology optimization framework based on performance and stress criteria. AIAA Journal, 57(12), 5514-5526.

Can we do {Stiffer, Lighter, Greener}??

Source: 3D Printing World Environment Day GIF By General Electric

GGP for AM

joseph morlier

Professor in Structural and Multidisciplinary Design Optimization, ... any i... 5 i

Very proud of this work thanks to Simone Coniglio !!!

Geometric Feature Based Topopt

#TOPOPT #ISAE #ICA #SUPAERO

Generalized Geometry Projection: A Unified Approach for Geometric Feature Based Topology Optimization

link.springer.com

https://github.com/topggp/blog

GGP 8*8*6=384 design variables minC st Volfrac=0,4

Optimizing printing path

$$N_x = N_y = 52$$

 $v_f = 0.4$
5 printing components
18 printing intervals
 $5 \times 18 \times 2$ design variables

Une approche par projection pour l'optimisation topologique tructures imprimées par fabrication additive

llasraj Bhat1, S. Coniglio2, J. Morlier3, M. Charlotte4

vational Masters, ISAE-SUPAERO, k-vilasraj.bhat@student.tsae-supaero.fr is Operations SAS, 316 Route de Bayonne - 31300 Toulouse France Toulouse, ISAE SUPAERO-INSA-Mines Albi-UPS, joseph.morlier@isae-supaero.fr Toulouse, ISAE SUPAERO-INSA-Mines Albi-UPS, miguel.charlotr@isae-supaero.fr

UMR5312, Institut Clément Ader

5 Toulouse Cedex 04, France,

mé — Ce papier présente une exploration et l'application de méthodes visant à intégrer la fabrin additive (FA) à l'optimisation topologique. Les contraintes classiques dites d'overhang sont apées sans traitement supplémentaire (post processing). Les techniques courantes de post-traitement ent souvent l'interprétation de la solution (lissage) et des éléments structuraux (pourre, plaque etc...) logiciel de post traitement. La méthodologie proposée fournit une expression explicite de la solution, contenant notamment pour les procédés de FA par déposition des informations sur les largeurs pression, les positions et le nombre de couches de matériaux déposés.

clés — Optimisation topologique, fabrication additive, méthode par dépôt en fusion

GGP For ALM (DfAM as constraints)?

3D Printed part

Krishnaraj Vilasraj Bhat, Gabriele Capasso, Simone Coniglio, Joseph Morlier, Christian Gogu, On some applications of Generalized Geometric Projection to optimal 3D printing, Computers & Graphics, 2021,

Au programme

- Part1:Unit Cell/Material/Process as design variables
- Part2: Ecodesign of 3D volumetric structures with fiber/resin topology optimization
- Conclusions

Au programme

• Part1: Unit Catherine Azzaro Pantel

Cell/Material/Process

as design variables

Thanks to Edouard Duriez

- Part2: Ecodesign of 3D volumetric structures with fiber/resin topology optimization
- Conclusions

How to find structural designs, materials and additive manufacturing processes with the lowest life-cycle CO₂ footprint?

Process is AM, but WHY?

https://dfam.substack.com/p/dfam-education-in-2022

Ecodesign and Additive Manufacturing

AM environmental opportunities*	AM environmental risks**
Lower mass	Higher specific energy demand
Improved resource efficiency	Longer manufacturing times
Durability (repair/replacement)	Quality issues
Reduced transport	New process (tooling / choices)

^{*}S. Ford and M. Despeisse. « Additive manufacturing and sustainability : an exploratory study of the advantages and challenges ». en. In : J. of Cleaner Production 137 (nov. 2016),

^{*}R. Huang, M. Riddle, D. Graziano, Joshua Warren, Sujit Das, Sachin Nimbalkar, Joe Cresko and Eric Masanet. « Energy and emissions saving potential of additive manufacturing : the case of lightweight aircraft components ». en. In : J. of Cleaner Production 135 (nov. 2016)

^{**}C. Herrmann, W. Dewulf, M. Hauschild, A. Kaluza, S. Kara and S. Skerlos. « Life cycle engineering of lightweight structures ». en. In: CIRP Annals 67.2 (jan. 2018)

^{**}D. Chen, S. Heyer, S. Ibbotson, K. Salonitis, J. G. Steingrímsson and S. Thiede. « Direct digital manufacturing : definition, evolution, and sustainability implications ». en. In : J. of Cleaner Production 107 (nov. 2015)

'Buy to-Fly' Ratio

• Traditional subtractive manufacturing machining techniques often result in a costly imbalance between the weight of raw material required to make a specific component, and the weight of the component itself — a relationship more commonly referred to (from its aerospace heritage) as the 'Buy-to-Fly' ratio.

https://www.materialise.com/sites/default/files/resources/Whitepaper_Buy-to-Fly-Ratio_E.pdf

The answer

- CO₂ emissions minimization of parts
 - If material choice is fixed => mass minimization

Other answer;)

- CO₂ emissions minimization of parts
 - If material choice is free => more complicated
 - > scope of the part of these 2 papers

Procedia CIRP Volume 109, 2022, Pages 454-459

Cleaner Environmental Systems Volume 9, June 2023, 100114

Ecodesign with topology optimization

Edouard Duriez ^a , Joseph Morlier ^a, Catherine Azzaro-Pantel ^b, Miguel Charlotte ^a

Show more V

Share 55 Cite

https://doi.org/10.1016/j.procir.2022.05.278

Get rights and content

Under a Creative Commons license

Open access

A fast method of material, design and process eco-selection via topology optimization, for additive manufactured structures

Edouard Duriez ^a S M, Catherine Azzaro-Pantel ^b, Joseph Morlier ^a, Miguel Charlotte ^a

Show more V

+ Add to Mendeley & Share 55 Cite

https://doi.org/10.1016/j.cesys.2023.100114 a

Get rights and content >

Ecodesign/Manufacturing

- Mass minimization of parts
- Redesign through topology optimization
 => same performance but lower mass
 multiscale topology optimization

- Multimaterial
- GWP under stress

Ching, E., & Carstensen, J. V. (2022). Truss topology optimization of timber–steel structures for reduced embodied carbon design. *Engineering Structures*, 252, 113540.

- Reparability
- Fail-safe design
- Reusability and robot for assembly (see NASA MADCAT)

Liu, Y., Wang, Z., Lu, H., Ye, J., Zhao, Y., & Xie, Y. M. (2023, September). Layout optimization of truss structures with modular constraints. In *Structures* (Vol. 55, pp. 1460-1469). Elsevier.

(f) $GWP = 97.2 \text{ kg}_{CO_{2}e}$

Material/Process as new design variables in MDO

Eco Material selection
Eco Process selection

https://www.ansys.com/blog/the-impact-of-materials-on-sustainability-part-2

Unit cell design (anisotropy)

Digital materials

Multi-scale TO (well connected+ locally-oriented)

A two level optimization that combines Unit cell design & Topology Optimization

Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidisc Optim 52(6):1229-1241.

Wu, Jun, Ole Sigmund, and Jeroen P. Groen. "Topology optimization of multi-scale structures: a review." Structural and Multidisciplinary Optimization 63.3 (2021): 1455-1480.

EMTO results

Duriez, E., Morlier, J., Charlotte, M., & Azzaro-Pantel, C. (2021). A well connected, locally-oriented and efficient multi-scale topology optimization (EMTO) strategy. Structural and Multidisciplinary Optimization, 64(6), 3705-3728.

ESAFORM PreConference Course 2024

EMTO on L-shape (cellular /digital materials)

https://github.com/mid2SUPAERO/EMTO

Softwares for hierarchical design

Conventional CAD programs do not work well **New players are emerging**

Examples:

ntopology (see case studies): https://ntopology.com/

additiveflow: https://www.additiveflow.com/

Hyperganic

ParaMatters: https://paramatters.com/

Fusion 360 (Autodesk)

French one: cognitive design

Do you see a difference (Left2Right)?

EMTO 3pts bending (disp vs stress)

Universiteitsfonds

Thanks to Enrico Suragiotti,
Alexandre Coehlo and Gustavo
Asai+ Frederic Lachaud+Kunal
Masania

Au programme

- Part1:Unit Cell/Material/Process as design variables
- Part2: Ecodesign of 3D volumetric structures with fiber/resin topology optimization
- Conclusions

X* is a UHAR Wing ;) Composites Fiber Placement as DVs https://www.compositesworld.com/articles/tow-steering-part-2-the-next-generation Upper skin 2.5 g Buckling 2.5 g Failure Tow path

Panel thickness Lower skin Tow path 2.5 g Failure -1 g Buckling Buckling/Failure Panel Thickness (mm) Main Tow Path 0 0.25 0.5 0.75 1 3 6 9 12 15 18

Brooks, T. R., Martins, J. R., & Kennedy, G. J. (2019). High-fidelity aerostructural optimization of tow-steered composite wings. Journal of Fluids and Structures, 88, 122-147.

Brooks, T. R., Martins, J. R., & Kennedy, G. J. (2020). Aerostructural tradeoffs for tow-steered composite wings. Journal of Aircraft, 57(5), 787-799.

Lower wing mass, Less fuel burn

GE Bracket by Schmidt et al., Struct. Multidiscip. Optim. (2020)

First in 2D:

In-plane fibre orientations

Optimisation problem formulation

$$\min_{\boldsymbol{\rho},\boldsymbol{\theta}} c(\boldsymbol{\rho},\boldsymbol{\theta}) = \sum_{\boldsymbol{e}} \rho_{\boldsymbol{e}}^{\boldsymbol{\rho}} \, \boldsymbol{u}_{\boldsymbol{e}}^{\boldsymbol{T}} \, \boldsymbol{k}_{\boldsymbol{0}}(\boldsymbol{\theta}_{\boldsymbol{e}}) \, \boldsymbol{u}_{\boldsymbol{e}}^{\boldsymbol{T}}$$

The finite element analysis step calls the Ansys solver via the PyMAPDL interface $\text{s.t.} \begin{cases} \frac{V(\rho)}{V_0} \leq f \\ \textbf{\textit{KU}} = \textbf{\textit{F}} \\ 0 < \rho_{min} \leq \rho \leq 1 \\ -\pi \leq \theta \leq \pi \end{cases}$

$$\left\{egin{aligned} rac{V(oldsymbol{
ho})}{V_0} &\leq f \ oldsymbol{\mathcal{K}}oldsymbol{\mathcal{U}} &= oldsymbol{\mathcal{F}} \ 0 &<
ho_{min} \leq oldsymbol{
ho} \leq 1 \ -\pi &\leq oldsymbol{ heta} \leq \pi \end{aligned}
ight.$$

solved with initial random point

Filters

$$\rho_{e} \frac{\widetilde{\partial c}}{\partial \rho_{e}} = \frac{1}{\sum_{i} H_{ei}^{\rho}} \sum_{i} H_{ei}^{\rho} \rho_{i} \frac{\partial c}{\partial \rho_{i}} \qquad \qquad \widetilde{\theta}_{e} = \frac{1}{\sum_{i} H_{ei}^{\theta} \rho_{i}} \sum_{i} H_{ei}^{\theta} \rho_{i} \theta_{i}$$

$$H_{ei}^{\rho} = \max(0, r_{\rho} - \Delta(e, i)) \qquad \qquad H_{ei}^{\theta} = \max(0, r_{\theta} - \Delta(e, i))$$

AFP?

Problem 1 - MBB beam

2D and in-plane 3D solutions were compared to verify the sensitivity calculations for 3D elements

The composite material: longitudinal Young modulus E_x , transversal Young modulus E_y , inplane Poisson's ratio v_{xy} , out-of-plane Poisson's ratio v_{yz} , and in-plane shear modulus G_{xy} . These elastic constants are obtained from the application of the rule of mixtures in a 2-phase (fiber+resin) micromechanical model.

- ▶ Half MBB beam, 186 mm \times 80 mm \times 8 mm
- ► Element size: 4 mm
- Volume fraction constraint: 0.3
- ▶ Density filter radius: 8 mm \Rightarrow 3D layers behave similar to 2D
- Orientation filter radius: 20 mm
- Same initial orientation: 50°

AFP?

Problem 1 - MBB beam

► 2D - Comp. = 2691 N.mm

▶ 3D - Comp. = 2733 N.mm

8/12

CO2?

In this work, the environmental impact of the structure is measured in terms of the mass of CO_2 emitted during material production $CO_{2,mat}$ and during its use in a long distance aircraft $CO_{2,use}$, following the methodology from [1], adapted to composite materials. The value used to compare different designs is the total footprint $CO_{2,tot} = CO_{2,mat} + CO_{2,use}$.

The impact of the material production depends on the total mass M and the CO_2 intensity of the material $CO_{2,mat}^i$ (mass of CO_2 emitted per mass of material). Its expression is given by (8), where ρ_f is the fiber density, $CO_{2,f}^i$ is the fiber CO_2 intensity, ρ_m is the matrix density, $CO_{2,m}^i$ is the matrix CO_2 intensity, and V_f is the fiber volume fraction in the composite material.

$$CO_{2,mat} = M \cdot CO_{2,mat}^{i} = M \cdot \frac{\rho_{f}V_{f}CO_{2,f}^{i} + \rho_{m}(1 - V_{f})CO_{2,m}^{i}}{\rho_{f}V_{f} + \rho_{m}(1 - V_{f})}$$

The impact of the use phase is calculated as the emissions that would be saved if the component was lighter. Reducing the mass by 1 kg in a long distance aircraft leads to a reduction of 98.8 t CO_2 during its lifetime [1], i.e., $CO_{2.use} = M \cdot 98.8$ t CO_2/kg .

CO2?

	Material	$ ho \ ({ m kg/m^3})$	E (GPa)	ν	$CO_2^i \ (\mathrm{kg}\ CO_2/\mathrm{kg})$
Fibers	Bamboo	700	17.5	0.39	1.0565
	Flax	1470	53.5	0.355	0.44
	Hemp	1490	62.5	0.275	1.6
	HM Carbon	2105	760	0.105	68.1
	S-Glass	2495	89.5	0.22	2.905
Resins	PLA	1255	3.45	0.39	2.28
	PETG	1270	2.06	0.403	4.375
	Epoxy	1255	2.41	0.399	5.94

$\bigcirc \bigcirc 2?$

Figure 7: Compliance versus material production footprint of the optimal designs, grouped by fiber.

Figure 8: Compliance versus total footprint of the optimal designs, grouped by fiber.

On going works 3D part

$$\min_{\boldsymbol{\rho},\boldsymbol{\theta},\boldsymbol{\alpha}} C(\boldsymbol{\rho},\boldsymbol{\theta},\boldsymbol{\alpha}) = \left(\sum_{i \in LC} c_i(\boldsymbol{\rho},\boldsymbol{\theta},\boldsymbol{\alpha})^n\right)^{\frac{1}{n}}$$

$$= \left(\sum_{i \in LC} \left(\sum_{e} \rho_e^p \boldsymbol{u}_{e,i}^T \boldsymbol{k}_0(\theta_e, \alpha_e) \boldsymbol{u}_{e,i}\right)^n\right)^{\frac{1}{n}}$$
s.t.
$$\begin{cases}
\frac{V(\boldsymbol{\rho})}{V_0} \le f \\ \boldsymbol{K}\boldsymbol{U} = \boldsymbol{F} \\
0 < \rho_{min} \le \boldsymbol{\rho} \le 1 \\
-\frac{\pi}{2} \le \boldsymbol{\theta} \le \frac{\pi}{2} \\
-\frac{\pi}{2} \le \boldsymbol{\alpha} \le \frac{\pi}{2}
\end{cases}$$

$$\frac{\partial C}{\mathbf{n}} \sum_{\boldsymbol{\rho}=1}^{n-1} C^{1-n} \frac{\partial c_i}{\partial c_i}$$

$$\frac{\partial C}{\partial \cdot} = \sum_{i \in LC} c_i^{n-1} C^{1-n} \frac{\partial c_i}{\partial \cdot}$$

[UNPUBLISHED] From Manufacturable to EcoOptimized part https://github.com/mid2SUPAERO/SOMP_Ansys

It Can be printed!

https://www.youtube.com/watch?v=7Jxyu9uRMLo

Fang, G., Zhang, T., Huang, Y., Zhang, Z., Masania, K., & Wang, C. C. (2024). Exceptional mechanical performance by spatial printing with continuous fiber: Curved slicing, toolpath generation and physical verification. *Additive Manufacturing*, 104048.

GE bracket Test case

Figure 5: Bracket finite element model.

RESULTS

RESULTS

Iteration 0/42

ESAFORM PreConference Course 2024

Au programme

- Part1:Unit Cell/Material/Process as design variables
- Part2: Ecodesign of 3D volumetric structures with fiber/resin topology optimization
- Conclusions

Conclusions

- Proof of concept of greener aerostructures
- Our « open source » solutions can design Metallic and composites 3D printing parts

Conclusions

- Proof of concept of greener aerostructures
- Our « open source » solutions can design Metallic and composites 3D printing parts
- Material as Design variable open new solutions

Material

E

 σ_c, σ_t

Wingspan, m: 58.76 MTOW, t: 297,55

3 load cases:

- +2.5 g manouver
- -1 g manouver
- Cruise with gust (+1.3 g)

69 GPa

±270 MPa

 $2.7 \,\mathrm{g}\,\mathrm{cm}^{-3}$

		141 —
$\min_{m{q}^0,,m{q}^{N_p}}$		
s.t	$oldsymbol{B}oldsymbol{q}^p=oldsymbol{f}^p$	$\forall p \in [0,\dots,N_p]$
	$q^p = \frac{aE}{\ell} b^T U^p$	$\forall p \in [0,\dots,N_p]$
	$oldsymbol{q}^p \geq -rac{soldsymbol{a}^2}{oldsymbol{\ell}^{*2}}$	$\forall p \in [0,\dots,N_p]$
	$-\sigma_c \mathbf{a} \le \mathbf{q}^p \le \sigma_t \mathbf{a}$ $0 \le \mathbf{a} \le \frac{4\pi \ell^2}{\lambda}$.	$\forall p \in [0, \dots, N_p]$
eel	Pultruted CFRP	
GPa	150 GPa	
MPa	±1200 =880 MPa	

THANKYOU

thes://www.linkedin.com/pulse/possible-build-airs.s

https://www.tripadvisor.fr/LocationPhotoDirectLink-g187529-d574612-i349532022-Museum_of_Natural_Science_Museo_de_Ciencias_Naturales-Valencia_Province_o.html

Is it possible to build an aircraft wing in LEGO®?

