2

3

5

U

7

8

1. A method of restarting a permanent magnet turbogenerator/motor, comprising the steps of:

determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

determining that the permanent magnet turbogenerator/motor has more than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault; and

continue shutdown of the permanent magnet turbogenerator/motor.

2. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting an over-current condition;

determining that less than a fixed number of over-current events have occurred within a fixed period of time;

disabling the output power converter of the permanent magnet turbogenerator/motor;

determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

3. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

8

1

2

detecting	no	output	over-current;
-----------	----	--------	---------------

detecting a loss of output current control or a loss of DC bus voltage control;

determining that more than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid fatal fault and initiating shutdown of the permanent magnet turbogenerator/motor.

4. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting no output over-current;

detecting a loss of output current control or a loss of DC bus voltage control;

determining that less than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid unbalance warning fault;

disabling the output power converter of the permanent magnet turbogenerator/motor; analyzing the grid voltage magnitude and frequency for an acceptable connection; and enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

5. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting no output over-current;

detecting a loss of output current control or a loss of DC bus voltage control;

F

period of time;

determining that less than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid unbalance warning fault;

disabling the output power converter of the permanent magnet turbogenerator/motor, analyzing the grid voltage magnitude and frequency for an unacceptable connection; determining that the maximum allowable reconnection time has expired; and reporting a grid fatal fault and initiating shutdown of the permanent magnet turbogenerator/motor.

6. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of: detecting no output over-current: detecting a loss of output current control or a loss of DC bus voltage control; determining that less than a fixed number of warning faults has occurred within a fixed

reporting a grid unbalance warning fault;

disabling the output power converter of the permanent magnet turbogenerator/motor; analyzing the grid voltage magnitude and frequency for an unacceptable connection; determining that the maximum allowable reconnection time has not expired; determining that the DC bus level is below the turn on point of the brake resistor; applying the brake resistor to control DC bus voltage; determining that the grid is acceptable for connection; and

16

enabling the output power convert	er of the permanent	magnet turbogenerator/mo	otor to
continue normal operation of the permane	nt magnet turboger	erator/motor.	

- 7. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:
 - detecting no output over-current;
 - detecting a loss of output current control or a loss of DC bus voltage control;
- determining that less than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid unbalance warning fault;

disabling the output power converter of the permanent magnet turbogenerator/motor; analyzing the grid voltage magnitude and frequency for an unacceptable connection; determining that the maximum allowable reconnection time has not expired; determining that the DC bus level is below the turn on point of the brake resistor; determining that the grid is acceptable for connection; and enabling the output power converter of the permanent magnet turbogenerator/motor to

8. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting no output over-current;

continue normal operation of the permanent magnet turbogenerator/motor.

detecting a loss of output current control or a loss of DC bus voltage control;

AM-9931

6	determining that less than a fixed number of warning faults has occurred within a fixed
7	period of time;
8	reporting a grid unbalance warning fault;
9	disabling the output power converter of the permanent magnet turbogenerator/motor;
10	analyzing the grid voltage magnitude and frequency for an unacceptable connection;
11	determining that the maximum allowable reconnection time has not expired;
12	determining that the DC bus level is not below the turn on point of the brake resistor;
13	applying the brake resistor to control DC bus voltage;
1	determining that the grid is unacceptable for connection;
	determining that the maximum allowable reconnection time has expired; and
	reporting a grid fatal fault and initiating shutdown of the permanent magnet
	turbogenerator/motor.
	9. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a
55 S	grid connect mode and said step of determining that the permanent magnet turbogenerator/motor
Maria Ma	has a fatal fault present and is in the process of shutting down comprises the steps of:
자 경 경 경 경 경 경 경 경 경 경 경 경 경 경 경 경 경 ろ	detecting an over-current condition;
2000	determining that less than a fixed number of over-current events have occurred within a
6	fixed period of time;
7	disabling the output power converter of the permanent magnet turbogenerator/motor;
.8	determining that the output current of the permanent magnet turbogenerator/motor is not
9	at a normal level in all phases;
10	determining that the DC bus level is not below the turn on point of the brake resistor;
11	applying the brake resistor to control DC bus voltage;

AM-9931

14

1

2

3

4

12

14

15

1

2

3

4

5

ermining that the output current of the permanent magnet turbogenerator/motor is at	a

normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

10. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting an over-current condition;

determining that less than a fixed number of over-current events have occurred within a fixed period of time;

disabling the output power converter of the permanent magnet turbogenerator/motor;

determining that the output current of the permanent magnet turbogenerator/motor is not at a normal level in all phases;

determining that the DC bus level is below the turn on point of the brake resistor;

determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

11. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a grid connect mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting an over-current condition;

6

L.

The state of the s

AM-9931

₫024

determining that more than a fixed number of over-current events have occurred within a fixed period of time;

determining that more than a fixed number of warning faults has occurred within a fixed period of time:

reporting a grid fatal fault and initiating shutdown of the permanent magnet turbogenerator/motor.

12. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a standalone mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting an over-current condition;

determining that less than a fixed number of over-current events have occurred within a fixed period of time;

disabling the output power converter of the permanent magnet turbogenerator/motor; determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

13. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a standalone mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting an over-current condition;

determining that more than a fixed number of over current events have occurred within a fixed period of time:

determining that less than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid unbalance warning fault;

disabling the output power converter of the permanent magnet turbogenerator/motor;

resetting the output voltage control ready for a soft start; and enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

14. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a standalone mode and said step of determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down comprises the steps of:

detecting an over-current condition;

determining that less than a fixed number of over-current events have occurred within a life fixed period of time;

disabling the output power converter of the permanent magnet turbogenerator/motor;

determining that the output current of the permanent magnet turbogenerator/motor is not

at a normal level in all phases;

determining that the DC bus level is below the turn on point of the brake resistor;

determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

have a fatal fault;

1	15. The method of claim 1 wherein the permanent magnet turbogenerator/motor is in a
2	standalone mode and said step of determining that the permanent magnet turbogenerator/motor
3	has a fatal fault present and is in the process of shutting down comprises the steps of:
4	detecting an over-current condition;
5	determining that less than a fixed number of over-current events have occurred within a
6	fixed period of time;
7	disabling the output power converter of the permanent magnet turbogenerator/motor;
8	determining that the output current of the permanent magnet turbogenerator/motor is not
	at a normal level in all phases;
	determining that the DC bus level is not below the turn on point of the brake resistor;
	applying the brake resistor to control DC bus voltage;
	determining that the output current of the permanent magnet turbogenerator/motor is at a
	normal level in all phases; and
	enabling the output power converter of the permanent magnet turbogenerator/motor to
	continue normal operation of the permanent magnet turbogenerator/motor.
	16. A method of restarting a permanent magnet turbogenerator/motor, comprising them
	steps of:
3~~	determining that the permanent magnet turbogenerator/motor has a fatal fault present and
4	is in the process of shutting down;
5	determining that the permanent magnet turbogenerator/motor has less than a fixed
6	number of restart attempts since the permanent magnet turbogenerator/motor was determined to

11

12

13

14

0

1

2

3

4

AM-9931

determining that the permanent magnet turbogenerator/motor is in a recharge state where an internal energy storage device is being recharged as part of the shutdown process;

determining that a fixed period of time has elapsed since any previous attempt to restart the permanent magnet turbogenerator/motor;

attempt to clear the fault present in the permanent magnet turbogenerator/motor;

issue a restart command to the permanent magnet turbogenerator/motor if the fatal fault is successfully cleared; and

continue normal operation of the permanent magnet turbogenerator/motor.

17. A method of restarting a permanent magnet turbogenerator/motor, comprising them steps of:

determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

determining that the permanent magnet turbogenerator/motor is in a cooldown state where the turbogenerator/motor is being rotated when combustion has ceased to lower the internal temperature as part of the shutdown process and that the internal temperature is below a cooldown restart temperature;

determining that a fixed period of time has elapsed since any previous attempt to restart the permanent magnet turbogenerator/motor;

attempt to clear the fault present in the permanent magnet turbogenerator/motor;

T.

issue a restart command to the permanent magnet turbogenerator/motor if the fatal fault is successfully cleared; and

continue normal operation of the permanent magnet turbogenerator/motor.

18. A method of restarting a permanent magnet turbogenerator/motor, comprising them steps of:

determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

determining that the permanent magnet turbogenerator/motor is in a fault state; determining that a fixed period of time has elapsed since any previous attempt to restart If the permanent magnet turbogenerator/motor;

attempt to clear the fault present in the permanent magnet turbogenerator/motor; issue a restart command to the permanent magnet turbogenerator/motor if the fatal fault is successfully cleared; and

continue normal operation of the permanent magnet turbogenerator/motor.

19. A method of restarting a permanent magnet turbogenerator/motor, comprising them steps of:

determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

determining that the permanent magnet turbogenerator/motor is in a standby state; issue a restart command to the permanent magnet turbogenerator/motor; and continue normal operation of the permanent magnet turbogenerator/motor.

20. A method of restarting a permanent magnet turbogenerator/motor, comprising them steps of:

determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

determining that the permanent magnet turbogenerator/motor is in a recharge state where an internal energy storage device is being recharged as part of the shutdown process;

determining that a fixed period of time has not elapsed since any previous attempt to restart the permanent magnet turbogenerator/motor;

continue shutdown of the permanent magnet turbogenerator/motor.

21. A method of restarting a permanent magnet turbogenerator/motor, comprising them steps of:

determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

6

7

8

9

10

11

12

AM-9931

6

7

8

. 9

10

11

determining that the permanent magnet turbogenerator/motor has less than a fixed
umber of restart attempts since the permanent magnet turbogenerator/motor was determined to
ave a fatal fault:

determining that the permanent magnet turbogenerator/motor is in a cooldown state
where the turbogenerator/motor is being rotated when combustion has ceased to lower the
internal temperature as part of the shutdown process and that the internal temperature is below a
cooldown restart temperature;

determining that a fixed period of time has elapsed since any previous attempt to restart the permanent magnet turbogenerator/motor;

attempt to clear the fault present in the permanent magnet turbogenerator/motor; and continue shutdown of the permanent magnet turbogenerator/motor when the fault is not cleared.

22. A method of restarting a permanent magnet turbogenerator/motor, comprising them steps of:

determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

determining that the permanent magnet turbogenerator/motor is in a fault state;

determining that a fixed period of time has elapsed since any previous attempt to restart
the permanent magnet turbogenerator/motor;

attempt to clear the fault present in the permanent magnet turbogenerator/motor; and

	AM-	-9931
	continue shutdown of the permanent magnet turbogenerator/motor when the fault is n	ıot
cleare	d.	
	23. A method of determining the fault condition of a permanent magnet	
turbog	generator/motor in a grid connect mode, comprising the steps of:	
	detecting an over-current condition;	
	determining that less than a fixed number of over-current events have occurred within	n a
fixed 1	period of time;	
	disabling the output power converter of the permanent magnet turbogenerator/motor;	;
	determining that the output current of the permanent magnet turbogenerator/motor is	at a
	il level in all phases; and	
4	enabling the output power converter of the permanent magnet turbogenerator/motor t	to

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

24. A method of determining the fault condition of a permanent magnet Hard Hard turbogenerator/motor in a grid connect mode, comprising the steps of:

detecting no output over-current;

2

detecting a loss of output current control or a loss of DC bus voltage control;

determining that more than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid fatal fault and initiating shutdown of the permanent magnet turbogenerator/motor.

25. A method of determining the fault condition of a permanent magnet turbogenerator/motor in a grid connect mode, comprising the steps of: detecting no output over-current;

detecting a loss of output current control or a loss of DC bus voltage control; determining that less than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid unbalance warning fault;

disabling the output power converter of the permanent magnet turbogenerator/motor; analyzing the grid voltage magnitude and frequency for an acceptable connection; and enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

26. A method of determining the fault condition of a permanent magnet

turbogenerator/motor in a grid connect mode, comprising the steps of: The state of the s

detecting no output over-current;

detecting a loss of output current control or a loss of DC bus voltage control;

determining that less than a fixed number of warning faults has occurred within a fixed

reporting a grid unbalance warning fault;

period of time;
reporting
disabling disabling the output power converter of the permanent magnet turbogenerator/motor; analyzing the grid voltage magnitude and frequency for an unacceptable connection; determining that the maximum allowable reconnection time has expired; and reporting a grid fatal fault and initiating shutdown of the permanent magnet

turbogenerator/motor.

27. A method of determining the fault condition of a permanent magnet turbogenerator/motor in a grid connect mode, comprising the steps of: detecting no output over-current;

period of time;

6

1

2

6

7

8

9

0

1

AM-9931

detecting a loss of output current control or a loss of DC bus voltage control;

determining that less than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid unbalance warning fault;
disabling the output power converter of the permanent magnet turbogenerator/motor;
analyzing the grid voltage magnitude and frequency for an unacceptable connection;
determining that the maximum allowable reconnection time has not expired;
determining that the DC bus level is not below the turn on point of the brake resistor;
applying the brake resistor to control DC bus voltage;
determine that the grid is acceptable for connection; and
enabling the output power converter of the permanent magnet turbogenerator/motor to

continue normal operation of the permanent magnet turbogenerator/motor.

28. A method of determining the fault condition of a permanent magnet turbogenerator/motor in a grid connect mode, comprising the steps of:

detecting no output over-current;

detecting a loss of output current control or a loss of DC bus voltage control;
determining that less than a fixed number of warning faults has occurred within a fixed

reporting a grid unbalance warning fault;

disabling the output power converter of the permanent magnet turbogenerator/motor; analyzing the grid voltage magnitude and frequency for an unacceptable connection; determining that the maximum allowable reconnection time has not expired; determining that the DC bus level is below the turn on point of the brake resistor;

12	determine that the grid is acceptable for connection; and
13	enabling the output power converter of the permanent magnet turbogenerator/motor to
14	continue normal operation of the permanent magnet turbogenerator/motor.
1	29. A method of determining the fault condition of a permanent magnet
2	turbogenerator/motor in a grid connect mode, comprising the steps of:
3	detecting no output over-current;
4	detecting a loss of output current control or a loss of DC bus voltage control;
5	determining that less than a fixed number of warning faults has occurred within a fixed
6	period of time;
	reporting a grid unbalance warning fault;
12 13 14 15	disabling the output power converter of the permanent magnet turbogenerator/motor;
	analyzing the grid voltage magnitude and frequency for an unacceptable connection;
	determining that the maximum allowable reconnection time has not expired;
Traff South Board Bloom Street -	determining that the DC bus level is not below the turn on point of the brake resistor;
	applying the brake resistor to control DC bus voltage;
	determine that the grid is unacceptable for connection;
ī	determining that the maximum allowable reconnection time has expired; and
ro~	reporting a grid fatal fault and initiating shutdown of the permanent magnet
16	turbogenerator/motor.
1	30. A method of determining the fault condition of a permanent magnet
2	turbogenerator/motor in a grid connect mode, comprising the steps of:
3	detecting an over-current condition;

10

11

8

10

11

12

C	determining that less than a fixed number of over-current events have occurred withi	n a
fixed pe	eriod of time;	

disabling the output power converter of the permanent magnet turbogenerator/motor;

determining that the output current of the permanent magnet turbogenerator/motor is not at a normal level in all phases;

determining that the DC bus level is not below the turn on point of the brake resistor; applying the brake resistor to control DC bus voltage;

determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

31. A method of determining the fault condition of a permanent magnet turbogenerator/motor in a grid connect mode, comprising the steps of:

detecting an over-current condition;

determining that less than a fixed number of over-current events have occurred within a fixed period of time;

disabling the output power converter of the permanent magnet turbogenerator/motor;

determining that the output current of the permanent magnet turbogenerator/motor is not at a normal level in all phases;

determining that the DC bus level is below the turn on point of the brake resistor;

determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

2	
3	
1	
2	
3	
4	
5	
6	
7	
.0	
7	
8 .	
9	

1

2

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

32. A method of determining the fault condition of a permanent magnet turbogenerator/motor in a grid connect mode, comprising the steps of:

detecting an over-current condition;

determining that more than a fixed number of over-current events have occurred within a fixed period of time;

determining that more than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid fatal fault and initiating shutdown of the permanent magnet turbogenerator/motor.

33. A method of determining the fault condition of a permanent magnet turbogenerator/motor in a standalone mode, comprising the steps of:

detecting an over-current condition;

determining that less than a fixed number of over-current events have occurred within a fixed period of time;

disabling the output power converter of the permanent magnet turbogenerator/motor;

determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

34. A method of determining the fault condition of a permanent magnet turbogenerator/motor in a standalone mode, comprising the steps of:

5

6

7

8

9

10

AM-9931

8

9

10

11

12

13

detecting an over-current condition;

determining that more than a fixed number of over current events have occurred within a fixed period of time;

determining that less than a fixed number of warning faults has occurred within a fixed period of time;

reporting a grid unbalance warning fault;

disabling the output power converter of the permanent magnet turbogenerator/motor; resetting the output voltage control ready for a soft start; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

35. A method of determining the fault condition of a permanent magnet turbogenerator/motor in a standalone mode, comprising the steps of:

detecting an over-current condition;

determining that less than a fixed number of over-current events have occurred within a fixed period of time;

disabling the output power converter of the permanent magnet turbogenerator/motor;

determining that the output current of the permanent magnet turbogenerator/motor is not at a normal level in all phases;

determining that the DC bus level is below the turn on point of the brake resistor;

determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

2

3

5

6

7

8

9

AM-9931

5

7

1

36. A method of determining the fault condition of a permanent magnet
turbogenerator/motor in a standalone mode, comprising the steps of:

detecting an over-current condition;

determining that less than a fixed number of over-current events have occurred within a fixed period of time;

disabling the output power converter of the permanent magnet turbogenerator/motor;

deterr. ...ing that the output current of the permanent magnet turbogenerator/motor is not at a normal level in all phases;

determining that the DC bus level is not below the turn on point of the brake resistor; applying the brake resistor to control DC bus voltage;

determining that the output current of the permanent magnet turbogenerator/motor is at a normal level in all phases; and

enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.

37. A permanent magnet turbogenerator/motor restarting system, comprising:

means for determining that the permanent magnet turbogenerator/motor has a fatal fault
present and is in the process of shutting down;

means for determining that the permanent magnet turbogenerator/motor has more than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault; and

means to continue shutdown of the permanent magnet turbogenerator/motor.

38. A permanent magnet turbogenerator/motor restarting system, comprising:

3

6

10

AM-9931

means for determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

means for determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

determining that the permanent magnet turbogenerator/motor is in a recharge state where an internal energy storage device is being recharged as part of the shutdown process;

means for determining that a fixed period of time has elapsed since any previous attempt to restart the permanent magnet turbogenerator/motor;

means to attempt to clear the fault present in the permanent magnet turbogenerator/motor;
means to issue a restart command to the permanent magnet turbogenerator/motor if the
fatal fault is successfully cleared; and

means to continue normal operation of the permanent magnet turbogenerator/motor.

39. A permanent magnet turbogenerator/motor restarting system, comprising:
means for determining that the permanent magnet turbogenerator/motor has a fatal fault
present and is in the process of shutting down;

means for determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

means for determining that the permanent magnet turbogenerator/motor is in a cooldown state where the turbogenerator/motor is being rotated when combustion has ceased to lower the internal temperature as part of the shutdown process and that the internal temperature is below a cooldown restart temperature;

13

1

2

3

12

13

14

15

16

1

2

means for determining that a fixed period of time has elapsed since any previous attempt to restart the permanent magnet turbogenerator/motor;

means to attempt to clear the fault present in the permanent magnet turbogenerator/motor;

means to issue a restart command to the permanent magnet turbogenerator/motor if the

fatal fault is successfully cleared; and

means to continue normal operation of the permanent magnet turbogenerator/motor.

40. A permanent magnet turbogenerator/motor restarting system, comprising:

means for determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

means for determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

means for determining that the permanent magnet turbogenerator/motor is in a fault state;

means for determining that a fixed period of time has elapsed since any previous attempt
to restart the permanent magnet turbogenerator/motor;

means to attempt to clear the fault present in the permanent magnet turbogenerator/motor;

means to issue a restart command to the permanent magnet turbogenerator/motor if the

fatal fault is successfully cleared; and

means to continue normal operation of the permanent magnet turbogenerator/motor.

41. A permanent magnet turbogenerator/motor restarting system, comprising:

means for determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

1

2

3

5

6

7

8

9

10

1

2

AM-9931

means for determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

means for determining that the permanent magnet turbogenerator/motor is in a standby state;

means to issue a restart command to the permanent magnet turbogenerator/motor; and means to continue normal operation of the permanent magnet turbogenerator/motor.

42. A permanent magnet turbogenerator/motor restarting system, comprising:

means for determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

means for determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

determining that the permanent magnet turbogenerator/motor is in a recharge state where an internal energy storage device is being recharged as part of the shutdown process;

means for determining that a fixed period of time has not elapsed since any previous attempt to restart the permanent magnet turbogenerator/motor;

means to continue shutdown of the permanent magnet turbogenerator/motor.

43. A permanent magnet turbogenerator/motor restarting system, comprising:

means for determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down;

11

17

means for determining that	at the permanent magnet turbogenerator/motor has less than a
fixed number of restart attempts	since the permanent magnet turbogenerator/motor was
determined to have a fatal fault;	

means for determining that the permanent magnet turbogenerator/motor is in a cooldown state where the turbogenerator/motor is being rotated when combustion has ceased to lower the internal temperature as part of the shutdown process and that the internal temperature is below a cooldown restart temperature;

means for determining that a fixed period of time has elapsed since any previous attempt to restart the permanent magnet turbogenerator/motor;

means to attempt to clear the fault present in the permanent magnet turbogenerator/motor; and

means to continue shutdown of the permanent magnet turbogenerator/motor when the fault is not cleared.

44. A permanent magnet turbogenerator/motor restarting system, comprising:

means for determining that the permanent magnet turbogenerator/motor has a fatal fault
present and is in the process of shutting down;

means for determining that the permanent magnet turbogenerator/motor has less than a fixed number of restart attempts since the permanent magnet turbogenerator/motor was determined to have a fatal fault;

means for determining that the permanent magnet turbogenerator/motor is in a fault state;
means for determining that a fixed period of time has elapsed since any previous attempt
to restart the permanent magnet turbogenerator/motor;

11

12

13

1

2

3

5

14

15

16

17

A	M-	9	9	3	1	

	means to attempt to clear the fault present in the permanent magnet turbogenerator/motor;
and	

means to continue shutdown of the permanent magnet turbogenerator/motor when the fault is not cleared.

45. The permanent magnet turbogenerator/motor restarting system of claim 44 wherein said means for determining that the permanent magnet turbogenerator/motor has a fatal fault present and is in the process of shutting down, comprises:

means for detecting no output over-current;

means for detecting a loss of output current control or a loss of DC bus voltage control;

means for determining that less than a fixed number of warning faults has occurred

within a fixed period of time;

means for reporting a grid unbalance warning fault;

means for disabling the output power converter of the permanent magnet turbogenerator/motor;

means for analyzing the grid voltage magnitude and frequency for an unacceptable connection;

means for determining that the maximum allowable reconnection time has not expired;
means for determining that the DC bus level is not below the turn on point of the brake resistor;

means for applying the brake resistor to control DC bus voltage;

means for determining that the grid is acceptable for connection; and

19

20

AM-9931

means for enabling the output power converter of the permanent magnet turbogenerator/motor to continue normal operation of the permanent magnet turbogenerator/motor.