Actividad Complementaria

Laboratorio Práctico:

Entendiendo los Modelos OSI y TCP/IP Objetivo:

El objetivo de este laboratorio es familiarizarse con los modelos de referencia OSI y TCP/IP, sus capas y cómo se aplican en las redes modernas. Los estudiantes identificarán funciones clave en cada capa y las correlacionarán con dispositivos de red y protocolos.

Materiales necesarios:

- · Un switcho enrutador básico.
- · Computadoras con acceso a la red local.
- · Acceso a Internet (opcional para simulaciones).
- · Software de captura de paquetes (Wireshark) instalado en las máquinas.
- · Herramientas de línea de comandos como ping, tracert o traceroute, ipconfig o ifconfig.

Parte 1: Configuración Básica de la Red en Packet Tracer

1.2. Configuración de las IPs:

1.3. Verificación de conectividad: Verifica que los PCs puedan hacer ping entre sí. En PC1, abre la terminal y usa el comando: ping 192.168.1.3. Asegúrate de que las respuestas sean exitosas.

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Facket Tracer PC Command Line 1.0
C:\ping 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
Minimum = Oms, Maximum = Oms, Average = Oms

C:\>
```

Parte 2: Análisis del Tráfico con Packet Tracer (Modelo OSI)

2.1. Simulación del tráfico:

Parte 3: Modelo TCP/IP en Packet Tracer

3.1. Comparación de capas entre los modelos OSI y TCP/IP:

La tabla completa de las 7 capas del Modelo OSI es la siguiente:

Cap a	Nombre de la Capa	Función Principal	Protocolos/Dispositivos
7	Capa de Aplicacion	Interfaz entre usuarios y aplicaciones de red; acceso a servicios de red	HTTP, HTTPS, FTP, SMTP, DNS, Telnet, NFS
6	Capa de Presentación	Traducción, cifrado, compresión y formato de datos	SSL/TLS, JPEG, MPEG, ASCII, Unicode, GIF
5	Capa de Sesión	Establecimiento, gestión y terminación de conexiones entre aplicaciones	NetBIOS, RPC, SIP, PPTP, SSH
4	Capa de Transporte	Transferencia confiable o no confiable de datos; control de flujo y errores	TCP (orientado a conexión), UDP (no orientado a conexión), firewalls de capa 4
3	Capa de Red	Enrutamiento de paquetes y direccionamiento lógico (IP)	IP, ICMP, ARP, Routers, direccionamiento IPv4/IPv6
2	Capa de Enlace de Datos	Transferencia confiable de tramas entre nodos adyacentes; direccionamiento físico	Ethernet, PPP, Switch, Bridge, MAC, VLANs
1	Capa Física	Transmisión y recepción de bits crudos a través del medio físico	Cable UTP, fibra óptica, hubs, repetidores, señales eléctricas/ópticas/inalámbricas

Dispositivo	Capa del Modelo OSI	Explicación
Router	Capa 3 (Red)	Enruta paquetes basándose en direcciones IP lógicas.

Switch	Capa 2 (Enlace)	Maneja el direccionamiento MAC y transfiere tramas entre dispositivos locales. <i>Algunos switches gestionados operan en Capa 3.</i>
Computadora	Capa 7 (Aplicación)	Ejecuta aplicaciones que interactúan con la red (ej. navegador, cliente FTP).

3.2. Verificación de la funcionalidad del modelo TCP/IP:

Capa OSI	Capa TCP/IP	Protocolos/Servicios Ejemplares
Capa de Aplicación	Capa de Aplicación	HTTP, FTP, SMTP, DNS, SSH, Telnet
Capa de Presentación	Capa de Aplicación	SSL/TLS, JPEG, MPEG, ASCII, Unicode (cifrado/formato de datos)
Capa de Sesión	Capa de Aplicación	SIP, RPC, NetBIOS, PPTP (gestión de sesiones)
Capa de Transporte	Capa de Transporte	TCP, UDP (transferencia confiable/no confiable)
Capa de Red	Capa de Internet	IP, ICMP, ARP, IPv4/IPv6 (enrutamiento lógico)
Capa de Enlace	Capa de Acceso a Red	Ethernet, Wi-Fi, PPP, MAC, VLANs (tramas y direccionamiento físico)
Capa Física	Capa de Acceso a Red	Cable UTP, fibra óptica, hubs, señales inalámbricas (medio físico)

4. Parte 4: Evaluación de Conocimientos Preguntas de repaso:

-¿Qué dispositivos operan en la capa de enlace de datos en la simulación?

Los dispositivos que operan en la capa de enlace de datos (capa 2 del OSI) son los **Switches.**

-¿Qué protocolos de la capa de transporte observaste en el tráfico?

En la capa de transporte (capa 4 del OSI), los protocolos principales son:

TCP

UDP

-¿Cómo se dividen las capas de los modelos OSI y TCP/IP al analizar un paquete ICMP?

En el modelo OSI, ICMP pertenece a la (capa de red), ya que depende de IP (capa 3). En TCP/IP, ICMP se ubica en la (capa de internet), junto a IP.