Linear Algebra Done Right

Jiuru Lyu

June 9, 2023

Contents

1	Vector Spaces			
	1.1	\mathbb{R}^n and \mathbb{C}^n	3	
	1.2	Definition of Vector Space	5	
	1.3	Subspace	7	
2	Finite-Dimensional Vector Spaces			
	2.1	Span and Linear Independence	12	
	2.2	Bases	16	
	2.3	Dimension	18	
3	Linear Maps			
	3.1	The Vector Space of Linear Maps	20	
	3.2	Null Spaces and Ranges	24	
	3.3	Matrices	28	
	3.4	Invertibility and Isomorphic Vector Spaces	31	
	3.5	Duality	35	
	3.6	Quotients of Vector Spaces	43	
4	Eigenvectors and Invariant Subspaces			
	4.1	Invariant Subspaces	44	
	4.2	Eigenvectors and Upper-Triangular Matrices	45	
	4.3	Eigenspaces and Diagonal Matrices	46	
5	Inn	er Product Spaces	47	
	5.1	Inner Products and Norms	47	
	5.2	Orthonormal Bases	48	
	5.3	Orthogonal Complements and Minimization Problems	49	
6	Operators on Inner Product Spaces			
	6.1	Self-Adjoint and Normal Operators	50	
	6.2	The Spectral Theorem	51	
	6.3	Positive Operators and Isometries	52	
	6.4	Polar Decomposition and SVD	53	

CONTENTS

7	Operators on Complex Vector Spaces	5 4		
	7.1 Generalized Eigenvectors, Nilpotent Operators	54		
	7.2 Decomposition of an Operator	55		
	7.3 Characteristic and Minimal Polynomials			
	7.4 Jordan Form			
8	Operators on Real Vectors Spaces			
	3.1 Complexification	58		
	3.2 Operators on Real Inner Product Spaces	59		
9	Trace and Determinant			
	0.1 Trace	60		
	Determinant	61		
10	Exercises	62		
	0.1 Span and Linear Independence	62		
	0.2 Bases	62		
	0.3 Dimension			
	0.4 The Vector Space of Linear Maps			
	0.5 Null Spaces and Range			
	0.6 Matrices			
	0.7 Invertibility and Isomorphism			
	0.8 Duality			

1 Vector Spaces

1.1 \mathbb{R}^n and \mathbb{C}^n

Definition 1.1.1 (Complex Number). A *complex number* is an ordered pair (a, b), where $a, b \in \mathbb{R}$, but we write it as a + bi.

Notation 1.1.2. $\mathbb{C} := \{a + bi \mid a, b \in \mathbb{R}\}$

Definition 1.1.3 (Addition & Multiplication).

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

Theorem 1.1.4 Properties of Complex Arithmetic

- 1. commutativity: $\alpha + \beta = \beta + \alpha$; $\alpha \beta = \beta \alpha$, $\forall \alpha, \beta \in \mathbb{C}$.
- 2. associativity: $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$; $(\alpha\beta)\lambda = \alpha(\beta\lambda)$, $\forall \alpha, \beta, \lambda \in \mathbb{C}$.
- 3. identities: $\lambda + 0 = \lambda$; $\lambda \cdot 1 = \lambda, \forall \lambda \in \mathbb{C}$.
- 4. additive inverse: $\forall \alpha \in \mathbb{C}, \exists \text{ unique } \beta \in \mathbb{C} \text{ s.t. } \alpha + \beta = 0.$
- 5. multiplicative inverse: $\forall \alpha \in \mathbb{C}, \alpha \neq 0, \exists \text{ unique } \beta \in \mathbb{C} \text{ s.t. } \alpha\beta = 1.$
- 6. distributivity: $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$, $\forall \lambda, \alpha, \beta \in \mathbb{C}$.

Definition 1.1.5 (Subtraction). If $-\alpha$ is the additive inverse of α , *subtraction* on $\mathbb C$ is defined by

$$\beta - \alpha = \beta + (-\alpha).$$

Definition 1.1.6 (Division). For $\alpha \neq 0$, let $\frac{1}{\alpha}$ denote the multiplicative inverse of α . Then, *division* on $\mathbb C$ is defined by

$$\frac{\beta}{\alpha} = \beta \cdot \left(\frac{1}{\alpha}\right)$$

Notation 1.1.7. \mathbb{F} is either \mathbb{R} or \mathbb{C} .

Definition 1.1.8 (List/Tuple). Suppose n is a non-negative integer. A list of length n is an ordered collection of n elements separated by commas and surrounded by parentheses: $(x_1, x_2, x_3, \dots, x_n)$. Two lists are equal if and only if they have the same length and the same elements in the same order.

Remark. Lists must have a FINITE length.

Definition 1.1.9 (\mathbb{F}^n and Coordinate). \mathbb{F}^n is the set of all lists of length n of elements of \mathbb{F} :

$$\mathbb{F}^n := \{(x_1, \cdots, x_n) \mid x_i \in \mathbb{R} \forall i = 1, \cdots, n\},\$$

where x_i is the *i*th coordinate of (x_1, \dots, x_n) .

1.1 VECTOR SPACES 1.1 \mathbb{R}^n and \mathbb{C}^n

Example 1.1.10 $\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\} \text{ and } \mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}.$

Definition 1.1.11 (Addition on \mathbb{F}^n **).** *Addition* on \mathbb{F}^n is defined by adding corresponding coordinates:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n).$$

Theorem 1.1.12 Commutativity of Addition on \mathbb{F}^n

If $x, y \in \mathbb{F}^n$, then x + y = y + x.

Proof 1. Suppose $x=(x_1,\cdots,x_n)$ and $y=(y_1,\cdots,y_n)$. Then

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$

= $(y_1 + x_1, \dots, y_n + x_n) = y + x$.

Definition 1.1.13 (Zero). Let 0 denote the list of length n whose coordinates are all 0: $0 := (0, \dots, 0)$. **Definition 1.1.14 (Additive Inverse on** \mathbb{F}^n). For $x \in \mathbb{F}^n$, the additive inverse of x, denoted -x, is the vector $-x \in \mathbb{F}^n$ s.t. x + (-x) = 0.

Definition 1.1.15 (Scalar Multiplication in \mathbb{F}^n). The product of a number $\lambda \in \mathbb{F}$ and a vector $x \in \mathbb{F}^n$ is computed by multiplying each coordinate of the vector by λ :

$$\lambda x = \lambda(x_1, \cdots, x_n) = (\lambda x_1, \cdots, \lambda x_n),$$

where $x = (x_1, \dots, x_n) \in \mathbb{F}^n$.

Theorem 1.1.16 Properties of Arithmetic Operations on \mathbb{F}^n

- 1. $(x+y)+z=x+(y+z) \quad \forall x,y,z\in\mathbb{F}^n$
- 2. $(ab)x = a(bx) \quad \forall x \in \mathbb{F}^n \text{ and } \forall a, b \in \mathbb{F}.$
- 3. $1 \cdot x = x \quad \forall x \in \mathbb{F}^n \text{ and } 1 \in \mathbb{F}.$
- 4. $\lambda(x+y) = \lambda x + \lambda y \quad \forall \lambda \in \mathbb{R} \text{ and } \forall x, y \in \mathbb{F}^n$.
- 5. $(a+b)x = ax + bx \quad \forall a, b \in \mathbb{F} \text{ and } \forall x \in \mathbb{F}^n$.

1.2 Definition of Vector Space

Definition 1.2.1 (Addition on V**).** An *addition* on V is a function $(u, v) \mapsto u + v$ for all $u, v \in V$.

Definition 1.2.2 (Scalar Multiplication on V**).** A *scalar multiplication* on V is a function $(\lambda, v) \mapsto \lambda v$ for all $\lambda \in \mathbb{F}$ and $v \in V$.

Definition 1.2.3 (Vector Space). A *vector space* is a set V along with an addition on V and a scalar multiplication s.t. the following properties hold:

- 1. commutativity: $u + v = v + u \quad \forall u, v \in V$
- 2. associativity: (u+v)+w=u+(v+w) and (ab)v=a(bv) $\forall u,v,w\in V$ and $\forall a,b\in\mathbb{F}$.
- 3. additive identity: $\exists 0 \in V \text{ s.t. } v + 0 = v \quad \forall v \in V.$
- 4. additive inverse: $\exists w \in V \text{ s.t. } v + w = 0 \quad \forall v \in V.$
- 5. multiplicative identity: $\exists 1 \in V \text{ s.t. } 1 \cdot v = v \quad \forall v \in V.$
- 6. distributive properties: a(u+v) = au + av and $(a+b)v = av + bv \quad \forall u, v \in V$ and $a, b \in \mathbb{F}$.

Definition 1.2.4 (Vector). Elements of a vector space are called *vectors* or points.

Notation 1.2.5. V is a vector space over \mathbb{F} .

Definition 1.2.6 (Real and Complex Vector Space). A vector space over \mathbb{R} is called a *real vector space*, and a vector space over \mathbb{C} is called a *complex vector space*.

Theorem 1.2.7 Unique Additive Identity of Vector Spaces

A vector space has a unique additive identity.

Proof 1. Suppose 0 and 0' are both additive identities for some vector space V. So,

$$0' = 0' + 0$$
 Since 0 is an additive identity
= $0 + 0'$ commutativity
= 0. Since 0' is an additive identity

Then, 0' = 0.

Theorem 1.2.8 Unique Additive Inverse of Vector Spaces

A vector in a vector space has a unique additive inverse.

Proof 2. Let V be a vector space. Suppose w and w' are additive inverses of v for some $v \in V$. Note that

$$w = w + 0$$

= $w + (v + w')$
= $(w + v) + w$
= $0 + w' = w'$.

Notation 1.2.9. Let $v, w \in V$. Then, -v denotes the additive inverse of v.

Definition 1.2.10 (Subtraction). w - v is defined to be w + (-v).

Theorem 1.2.11

$$0 \cdot v = 0 \quad \forall v \in V.$$

Proof 3. Since $v \in V$, we know

$$0 \cdot v = (0+0)v = 0 \cdot v + 0 \cdot v$$
$$0 \cdot v + (-0 \cdot v) = 0 \cdot +0 \cdot +(-0 \cdot v)$$
$$0 = 0 \cdot v$$

Theorem 1.2.12

$$a \cdot 0 = 0 \quad \forall a \in \mathbb{F}.$$

Proof 4. For $a \in \mathbb{F}$, we have

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

 $a \cdot 0 + (-a \cdot 0) = a \cdot 0 + a \cdot 0 + (-a \cdot 0)$
 $0 = a \cdot 0$.

Theorem 1.2.13

$$(-1)v = -v \quad \forall v \in V.$$

Proof 5. For $v \in V$, we have

$$v + (-1)v = 1 \cdot v + (-1) \cdot v = (1 + (-1)) \cdot v = 0 \cdot v = 0.$$

Therefore, by definition, (-1)v = -v.

Notation 1.2.14. \mathbb{F}^S

- 1. If S is a set, then \mathbb{F}^S denotes the set of functions from S to \mathbb{F} .
- $2. \ \text{ For } f,g\in \mathbb{F}^S \text{, the } \underline{\text{sum}} \ f+g\in \mathbb{F}^S \text{ is the function defined by } (f+g)(x)=f(x)+g(x) \quad \forall x\in S.$
- 3. For $\lambda \in \mathbb{F}$ and $f \in \mathbb{F}^S$, the product $\lambda f \in \mathbb{F}^S$ is the function defined by $(\lambda f)(x) = \lambda f(x) \quad \forall x \in S$.

Theorem 1.2.15

 \mathbb{F}^S is a vector space.

1.3 Subspace

1.3 Subspace

Definition 1.3.1 (Subspace). A subset U of V is called a *subspace* of V if U is also a vector space using the same addition and scalar multiplication as on V.

Theorem 1.3.2 Conditions for a Subspace

A subset U of V is a subspace of V if and only if U satisfies the following conditions:

- 1. additive identity: $0 \in U$;
- 2. closed under addition: $u, w \in U \implies u + w \in U$;
- 3. closed under scalar multiplication: $a \in \mathbb{F}$ and $u \in U \implies au \in U$.

Proof 1.

- (\Rightarrow) Suppose U is a subspace of V. By definition, U is then a vector space, and so those conditions are automatically satisfied. \Box
- (\Leftarrow) Suppose U satisfies the three conditions. Since U is a subset of V, U automatically has associativity, commutativity, multiplicative identity, and distributivity. So, we want to check U has additive inverse and additive identities.

For additive identity, we know $0 \in U$, by assumption.

For additive inverse, by condition #3, we know $-u = (-1)u \in U$.

Then, U is a vector space.

Example 1.3.3 If $b \in \mathbb{F}$, then $\{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 \mid x_3 = 5x_4 + b\}$ is a subspace of \mathbb{F}^4 if and only if b = 0.

Proof 2.

- (\Rightarrow) Suppose $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 \mid x_3 = 5x_4 + b\}$ is a subspace of \mathbb{F}^4 . Then, $0 = (0, 0, 0, 0) \in U$. So, $0 = 5 \cdot 0 + b$, or b = 0.
- (\Leftarrow) Suppose b=0. Then, $x_3=5x_4$. So, $U=\left\{(x_1,x_2,5x_4,x_4)\in\mathbb{F}^4\right\}$
 - 1. $0 = (0, 0, 0, 0) \in U$
 - 2. Note that

$$(x_1, x_2, 5x_4, x_4) + (y_1, y_2, 5y_4, y_4) = (x_1 + y_1, x_2 + y_2, 5(x_4 + y_4), x_4 + y_4) \in U$$

So, addition is closed under U.

3. $\forall a \in \mathbb{F}$, we have

$$a(x_1, x_2, 5x_4, x_4) = (ax_1, ax_2, 5(ax_4), ax_4) \in U$$

Then, U is a subspace of \mathbb{F}^4 .

Example 1.3.4 The set of continuous real-valued functions on interval [0,1] is a subspace of $\mathbb{R}^{[0,1]}$. *Proof 3.*

1.3 Subspace

- 1. 0 (zero mapping) $\in U$
- 2. Set f and $g \in \mathcal{C}[0,1]$, the set of continuous functions on interval [0,1]. Then, $f+g \in \mathcal{C}[0,1]$.
- 3. From Calculus, we know that $\forall a \in \mathbb{F}$, $af \in \mathcal{C}[0,1]$.

Definition 1.3.5 (Sum of Subspaces). Suppose U_1, \dots, U_m are subspaces of V. The *sum* of U_1, \dots, U_m , denoted as $U_1 + \dots + U_m$, is the set of all possible sums of elements of U_1, \dots, U_m :

$$U_1 + \cdots + U_m = \{u_1 + \cdots + u_m \mid u_i \in U_i \quad \forall i = 1, \cdots, m\}.$$

Example 1.3.6 Suppose
$$U = \{(x,0,0) \in \mathbb{F}^3 \mid x \in \mathbb{F}\}$$
 and $W = \{(0,y,0) \in \mathbb{F}^3 \mid y \in \mathbb{F}\}$, then $U + W = \{(x,y,0) \in \mathbb{F}^3 \mid x,y \in \mathbb{F}\}.$

Theorem 1.3.7

Suppose U_1, \dots, U_m are subspaces of V. Then, $U_1 + \dots + U_m$ is the *smallest subspace* of V containing U_1, \dots, U_m .

Proof 4. Suppose U_1, \cdots, U_m are subspaces of U. Let $U_1 + \cdots + U_m = \{u_1 + \cdots + u_m \mid u_j \in U_j, j = 1, \cdots m\}$. Suppose $w_i \in U_j$, then $w_1 + \cdots + w_m \in U_1 + \cdots + U_m$.

- 1. $U_1 + \cdots + U_m$ is a subspace of V.
 - (a) Note that

$$(u_1 + \dots + u_m) + (w_1 + \dots + w_m) = (u_1 + w_1) + \dots + (u_m + w_m) \in U_1 + \dots + U_m,$$

so $U_1 + \cdots + U_m$ is closed under addition.

- (b) Similarly, $U_1 + \cdots + U_m$ is closed under scalar multiplication.
- (c) Note that U_i is a subspace, so $0 \in U_i$. Hence, $(0, \dots, 0) = 0 \in U_1 + \dots + U_m$.
- 2. Now, we want to show this subspace is the smallest subspace containing U_1, \dots, U_m . That is, we want to show $\forall W \supseteq U_1 \cup \dots \cup U_m$, we have $W \supseteq U_1 + \dots + U_m$.

Note that $U_j \subseteq U_1 + \cdots + U_m$, so we have $(U_1 \cup U_2 \cup \cdots \cup U_m) \subseteq U_1 + \cdots + U_m$. This means $U_1 + \cdots + U_m$ must contain U_1, \cdots, U_m . Let W be some subspace containing U_1, \cdots, U_m . Then, for $j = 1, \cdots, m$, we have $u_j \in U_j$, which indicates $u_j \in W$. Therefore, $u_1 + \cdots + u_m \in V$ and thus $U_1 + \cdots + U_m \subseteq W$.

Since W was arbitrary, we've shown $\forall W$ that contains $U_1, \dots, U_m, U_1 + \dots + U_m \subseteq W$. Therefore, $U_1 + \dots + U_m$ is the smallest.

1.3 Subspace

Definition 1.3.8 (Direct Sum). Suppose U_1, \dots, U_m are subspaces of $V.U_1 + \dots + U_m$ is called a *direct sum* if each element of $U_1 + \dots + U_m$ can be written in only one way as a sum $u_1 + \dots + u_m$, where $u_i \in U_i$.

Notation 1.3.9. If $U_1 + \cdots + U_m$ is a direct sum, then we use $U_1 \oplus \cdots \oplus U_m$ to denote it.

Example 1.3.10 Let $U = \{(x, y, 0) \in \mathbb{F}^3 \mid x, y \in \mathbb{F}\}$ and $W = \{(0, 0, z) \in \mathbb{F}^3 \mid z \in \mathbb{F}\}$. Then, $\mathbb{F}^3 = U \oplus W$.

Proof 5. Note that $U+W=\{(x,y,z)\mid x,y,z\in\mathbb{F}\}=\mathbb{F}^3$. Suppose

$$(x, y, z) = (x, y, 0) + (0, 0, z), \tag{1}$$

for some $x, y, z \in \mathbb{F}$ and

$$(x, y, z) = (x', y', 0) + (0, 0, z')$$
(2)

for some $x', y', z' \in \mathbb{F}$. Then, (1)–(2):

$$(0,0,0) = (x - x', y - y', 0) + (0,0, z - z') = (x - x', y - y', z - z').$$

Then, x - x' = y - y' = z - z' = 0, which indicates x = x', y = y', z = z'. So, by definition U + W is a direct sum, or $\mathbb{F}^3 = U \oplus W$.

Example 1.3.11 Suppose U_j is the subspace of \mathbb{F}^n *s.t.*

$$U_{1} = \{x, 0, 0, \dots, 0 \mid x \in \mathbb{F}\}$$

$$U_{2} = \{0, x, 0, \dots, 0 \mid x \in \mathbb{F}\}$$

$$\vdots$$

$$U_{n} = \{0, 0, 0, \dots, x \mid x \in \mathbb{F}\}$$

Then, $\mathbb{F}^n = U_1 \oplus U_2 \oplus \cdots \oplus U_n$.

Proof 6. Note that $\mathbb{F}^n = U_1 + U_2 + \cdots + U_n$ is evident. Now, we'll prove that $U_1 + U_2 + \cdots + U_n$ is a direct sum. Consider $x = (x_1, x_2, \cdots, x_n) \in \mathbb{F}^n$. Assume that

$$x = (x_1, 0, \dots, 0) + \dots + (0, \dots, 0, x_n)$$
(3)

and

$$x = (x'_1, 0, \dots, 0) + \dots + (0, \dots, 0, x'_n)$$
(4)

Then, from (3)-(4), we know that

$$0 = (x_1 - x_1', \dots, x_n - x_n') = (0, 0, \dots, 0).$$

Then, $\forall i=1,\cdots,n$ we have $x_i-x_i'=0,$ or $x_i=x_i'.$ Therefore, by definition, we know $U_1+\cdots+U_n$ is a direct sum.

1 VECTOR SPACES 1.3 Subspace

Example 1.3.12 Let

$$U_1 = \{(x, y, 0) \mid x, y \in \mathbb{F}\}\$$

$$U_2 = \{(0, 0, z) \mid z \in \mathbb{F}\}\$$

$$U_3 = \{(0, y, y) \mid y \in \mathbb{F}\}\$$

Show that $U_1 + U_2 + U_3$ is not a direct sum.

Proof 7. Consider $(0,0,0) \in \mathbb{F}^3$. Note that

$$(0,0,0) = (0,0,0) + (0,0,0) + (0,0,0)$$

and

$$(0,0,0) = (0,1,0) + (0,0,1) + (0,-1,-1).$$

Then, $U_1 + U_2 + U_3$ is not a direct sum by definition.

Theorem 1.3.13

Suppose U_1, \dots, U_m are subspaces of V. Then, $U_1 + \dots + U_m$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \dots + u_m$ is by taking each $u_j = 0$.

Proof 8.

 (\Rightarrow) Since $U_1 + \cdots + U_m$ is a direct sum, by definition, the only way to write $0 \in \mathbb{F}^n$ is to write it as

$$0 = 0 + \cdots + 0$$
 where $0 \in U_i \forall i = 1, \cdots, m$.

(\Leftarrow) Suppose the only way to write 0 as a sum $u_1 + \cdots + u_m$ is by taking each $u_j = 0$. Assume that for some $v \in V$, we have

$$v = u_1 + \dots + u_m, \quad u_i \in U_i \tag{5}$$

and

$$v = u'_1 + \dots + u'_m, \quad u'_j \in U_j.$$
 (6)

Then, by (5)-(6), and according to the conclusion from Example 1.3.11, we have

$$0 = (u_1 - u_1') + \dots + (u_m - u_m') = 0 + \dots + 0.$$

So, $\forall i \in 1, \dots, m$, we have $u_i - u_i' = 0$. that is, $u_i = u_i'$. So, $\forall v \in V$, there is only one way to write v as a sum of $u_1 + \dots + u_n$. Therefore, by definition, $U_1 + \dots + U_m$ is a direct sum.

Theorem 1.3.14

Suppose U amd W are subspaces of V. Then, U+W is a direct sum if and only if $U\cap W=\{0\}$.

Proof 9.

 (\Rightarrow) Suppose U+W is a direct sum. Assume $v\in U\cap W$. Then, $v\in U$ and $v\in W$. By definition of subspace, we know $-v\in W$ as well. Note that

$$0 = v + (-v) \in U \cap W.$$

Then, by Theorem 1.3.13, we know that the only representation of $0 \in U \cap W$ is 0 = 0 + 0 since $U \cap W$

1 VECTOR SPACES 1.3 Subspace

is a direct sum. Hence, it must be that v = -v = 0, and thus $U \cap W = \{0\}$.

(\Leftarrow) Suppose $U \cap W = \{0\}$. Let $u \in U$ and $w \in W$ s.t. u + w = 0. Then, we have u = -w. Since $-w \in W$, we know $u = -w \in W$. By $u \in U$ and $u \in W$, we know that $u \in U \cap W = \{0\}$. Therefore, 0 = 0 + 0 is the only to represent $0 \in U + W$. By Theorem 1.3.13, we know U + W is a direct sum.

Remark. When extending Theorem 1.3.14 to 3 subspaces U_1, U_2, U_3 , we cannot conclude $U_1 \oplus U_2 \oplus U_3$ if we have $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_3 = \{0\}$. See Example 1.3.12 as a counterexample.

2 Finite-Dimensional Vector Spaces

2.1 Span and Linear Independence

Notation 2.1.1. We usually write list of vectors without using parentheses.

Example 2.1.2 (4, 1, 6), (9, 5, 7) is a list of vectors of length 2 in \mathbb{R}^3 .

Definition 2.1.3 (Linear Combination). A *linear combination* of a list v_1, \dots, v_m of vectors in V is a vector of the form

$$a_1v_1+\cdots+a_mv_m,$$

where $a_1, \cdots, a_m \in \mathbb{F}$.

Example 2.1.4 Since (17, -4, 2) = 6(2, 1, -3) + 5(1, -2, 4), we say (17, -4, 2) is a linear combination of (2, 1, -3), (1, -2, 4).

Definition 2.1.5 (Span).

$$\operatorname{span}(v_1, \dots, v_m) = \{a_1v_1 + \dots + a_mv_m \mid a_1 \dots a_m \in \mathbb{F}\}.$$

Example 2.1.6 Consider span (e_1, e_2, e_3) :

$$\operatorname{span}(e_1, e_2, e_3) = \{a_1e_1 + a_2e_2 + a_3e_3 \mid a_1, a_2, a_3 \in \mathbb{F}\}\$$
$$= \{(a_1, a_2, a_3) \mid a_1, a_2, a_3 \in \mathbb{F}\} = \mathbb{R}^3.$$

Theorem 2.1.7

The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list.

Proof 1. To prove this theorem, we will prove two parts: span is a subspace and span is the smallest subspace.

- 1. Span is a subspace of V.
 - (a) By definition of span, we know $\operatorname{span}(v_1, \dots, v_m) = \{a_1v_1 + \dots + a_mv_m \mid a_1, \dots, a_m \in \mathbb{F}\}$. If we set $a_1, \dots, a_m = 0$, then we have $0 = 0v_1 + \dots + 0v_m$. So, $0 \in \operatorname{span}(v_1, \dots, v_m)$.
 - (b) Let $a_1v_1 + \cdots + a_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$ and $b_1v_1 + \cdots + b_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$. Then,

$$(a_1v_1 + \dots + a_mv_m) + (b_1v_1 + \dots + b_mv_m) = (a_1 + b_1)v_1 + \dots + (a_m + b_m)v_m.$$

Since $(a_1+b_1), \dots, (a_m+b_m) \in \mathbb{F}$, we know $(a_1+b_1)v_1 + \dots + (a_m+b_m)v_m \in \operatorname{span}(v_1, \dots, v_m)$.

(c) Let $\lambda \in \mathbb{F}$ and $a_1v_1 + \cdots + a_mv_m \in \text{span}(v_1, \cdots, v_m)$. Then,

$$\lambda(a_1v_1 + \dots + a_mv_m) = \lambda a_1v_1 + \dots + \lambda a_mv_m.$$

Since
$$\lambda a_1, \dots, \lambda a_m \in \mathbb{F}$$
, we know that $\lambda(a_1v_1 + \dots + a_mv_m) \in \operatorname{span}(v_1, \dots, v_m)$.

Therefore, we have proven that span is a subspace of V. \Box

2. Now, we want to show that span is the smallest subspace.

Let U be a subspace of V containing v_1, \dots, v_m . If we can show that $\mathrm{span}(v_1, \dots, v_m) \subseteq U$, we then know span is the smallest subspace containing v_1, \dots, v_m . Since U is a subspace containing v_1, \dots, v_m , it is closed under addition and scalar multiplication. So, $a_1v_1 + \dots + a_mv_m \in \mathrm{span}(v_1, \dots, v_m)$. Therefore, $\mathrm{span}(v_1, \dots, v_m) \subseteq U$.

Definition 2.1.8 (Span as a Verb). If span $(v_1, \dots, v_m) = V$, we say v_1, \dots, v_m spans V.

Definition 2.1.9 (Finite-Dimensional Vector Space). A vector space V is called *finite-dimensional* if \exists a list of vectors, say v_1, \dots, v_m s.t. $\operatorname{span}(v_1, \dots, v_m) = V$. In the following of this notes, we will use f-d as a shortcut for saying "finite-dimensional."

Definition 2.1.10 (Infinte-Dimensional Vector Space). A vector space V is infinite-dimensional if it is not f-d. This is equivalent to say that \forall lists of vectors in V, they do not span V.

Definition 2.1.11 (Polynomial Functions). A function $p: \mathbb{F} \to \mathbb{F}$ is called a *polynomial* with coefficients in \mathbb{F} if $\exists a_0, \dots, a_m \in \mathbb{F}$ s.t. $p(z) = a_0 + a_1z + a_2z^2 + \dots + a_mz^m \quad \forall z \in \mathbb{F}$.

Notation 2.1.12. We use $\mathcal{P}(\mathbb{F})$ to denote the set of all polynomial with coefficients in \mathbb{F} .

Theorem 2.1.13

 $\mathcal{P}(\mathbb{F})$ is a vector space over \mathbb{F} .

Proof 2. Recall the definition of $\mathbb{F}^{\mathbb{F}}$. We will show $\mathcal{P}(\mathbb{F})$ is a subspace of $\mathbb{F}^{\mathbb{F}}$.

- 1. $0 = 0 + 0z + \cdots + 0z^m \in \mathcal{P}(\mathbb{F})$.
- 2. Suppose $p(z)=a_mz^m+\cdots+a_1z+a_0$ and $q(z)=b_nz^n+\cdots+b_1z+b_0\in\mathcal{P}(\mathbb{F})$. WLOG, suppose m>n, then we have $p(z)+q(z)=a_mz^m+\cdots+(a_n+b_n)z^n+\cdots+(a_0+b_0)\in\mathcal{P}(\mathbb{F})$.
- 3. Suppose $\lambda \in \mathbb{F}$. Then, $\lambda p(z) = \lambda (a_m z^m + \dots + a_1 z + a_0) = \lambda a_m z^m + \dots + \lambda a_0 \in \mathcal{P}(\mathbb{F})$.

Hence, we've shown $\mathcal{P}(\mathbb{F})$ is a subspace over \mathbb{F} .

Definition 2.1.14 (Degree of a Polynomial). A polynomial $p \in \mathcal{P}(\mathbb{F})$ is said to have *degree* m if \exists scalars $a_0, \dots, a_m \in \mathbb{F}$ with $a_m \neq 0$ *s.t.* $p(z) = a_m z^m + \dots + a_1 z + a_0 \quad \forall z \in \mathbb{F}$. We write $\deg p = m$. Specially, $\deg 0 := -\infty$ and $\deg a_0 := 0$ when $a_0 \neq 0$.

Definition 2.1.15 ($\mathcal{P}_m(\mathbb{F})$). For $m \in \mathbb{N}^+$, $\mathcal{P}_m(\mathbb{F})$ denotes the set of all polynomial with coefficients in \mathbb{F} and degree $\leq m$. i.e.,

$$\mathcal{P}_m(\mathbb{F}) := \{ p \in \mathcal{P}(\mathbb{F}) \mid \deg p \le m \}.$$

Example 2.1.16 For each $m \in \mathbb{N}$, $\mathcal{P}_m(\mathbb{F})$ is a f-d vector space.

Proof 3. Note that $\mathcal{P}_m(\mathbb{F})$ is a vector space because it is a subspace of $\mathcal{P}(\mathbb{F})$. Suppose $p(z) \in \mathcal{P}_m(\mathbb{F})$, then $p(z) = a_0 + a_1 z + \cdots + a_m z^m \in \mathrm{span}(1, z, \cdots, z^m)$. Then, by definition, $\mathcal{P}_m(\mathbb{F})$ is f-d.

Remark. In this proof, we are abusing notation by letting z^k to denote a function.

Example 2.1.17 $\mathcal{P}(\mathbb{F})$ is infinite-dimensional.

Proof 4. For any list of vectors in $\mathcal{P}(\mathbb{F})$, by definition of list, the length of it is finite. Suppose the highest degree in this list is m. Consider a polynomial with degree of $m+1:z^{m+1}$. Since z^{m+1} cannot be written as linear combinations of the list of polynomials, we know the list does not span $\mathcal{P}(\mathbb{F})$. So, $\mathcal{P}(\mathbb{F})$ is infinite-dimensional.

Definition 2.1.18 (Linear Independence). A list v_1, \dots, v_m of vectors in V is called *linearly independent* (L.I.) if the only choice of $a_1, \dots, a_m \in \mathbb{F}$ that makes $a_1v_1 + \dots + a_mv_m = 0$ is $a_1 = \dots = a_m = 0$. Specially, the empty list () is declared to be L.I..

Definition 2.1.19 (Linear Dependence). v_1, \dots, v_m is called *linearly dependent* if it is not L.I.. Or, equivalently, v_1, \dots, v_m is *linearly dependent* if $\exists a_1, \dots, a_m \in \mathbb{F}$ not all 0 *s.t.* $\sum_{i=0}^m a_i v_i = 0$.

Example 2.1.20 Let $v_1, \dots, v_m \in V$. If v_j is a linear combination of other v's, then v_1, \dots, v_m is linearly dependent.

Proof 5. By assumption, $v_j=a_1v_1+\cdots+a_{j-1}v_{j-1}+a_{j+1}v_{j+a}+\cdots+a_mv_m$ for some a_i not all 0. So, $0=a_1v_1+\cdots+a_{j-1}v_{j-1}+a_{j+1}v_{j+1}+\cdots+a_mv_m-v_j$, a linear combination of v_1,\cdots,v_m . Since $-v_i$ has a coefficient of $-1\neq 0$, by definition, v_1,\cdots,v_m is not L.I..

Lemma 2.1.21 Linear Dependence Lemma Suppose v_1, \dots, v_m is a linearly dependent list in V. Then, $\exists j \in \{1, \dots, m\}$ *s.t.* the following hold:

- 1. $v_j \in \text{span}(v_1, \dots, v_{j-1})$
- 2. if the j^{th} term is removed from v_1, \dots, v_m , the span of the remaining list equals $\text{span}(v_1, \dots, v_m)$.

Proof 6.

1. Since v_1, \dots, v_m is linearly dependent, $a_1v_1 + \dots + a_mv_m = 0$, for some $a_i \neq 0$. Let j be the maximized index *s.t.* $a_i \neq 0$. Then, $a_{i+1} = \dots = a_m = 0$, by this assumption. Hence,

$$a_{j}v_{j} = -a_{1}v_{1} - \dots - a_{j-1}v_{j-1} - a_{j+1}v_{j+1} - \dots - a_{m}v_{m}$$

$$= -a_{1}v_{1} - \dots - a_{j-1}v_{j-1}$$

$$v_{j} = -\frac{a_{1}}{a_{j}}v_{1} - \dots - \frac{a_{j-1}}{a_{j}}v_{j-1}.$$

Since $-\frac{a_1}{a_j}, \dots, -\frac{a_{j-1}}{a_j} \in \mathbb{F}$, we know $v_j \in \text{span}(v_1, \dots, v_{j-1})$.

2. Consider

$$span(v_1, \dots, v_j, \dots, v_m) = span(v_1, \dots, -\frac{a_1}{a_j} v_1 - \dots - \frac{a_{j-1}}{a_j} v_{j-1}, \dots, v_m)$$
$$= span(v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_m).$$

Remark. By using this Lemma 2.1.21, we can do lots of proofs using the "step" strategy. Namely, we start to remove vectors from a list that are linearly dependent to obtain a L.I. list. However, this "step" strategy can only be used when dealing with FINITE-dimensional vector spaces.

Theorem 2.1.22

Let V be a f-d vector space. Let $\operatorname{span}(w_1, \dots, w_n) = V$. Let u_1, \dots, u_m be L.I.. Then, $m \leq n$.

Proof 7.

Step 1 Note that u_1, w_1, \dots, w_n is linearly dependent because $u_1 \in V = \text{span}(w_1, \dots, w_n)$. Then, by Lemma 2.1.21, we can remove one of the w's, say w_{i1} . Then, the list becomes

$$\{u_1, w_1, \cdots, w_n\} \setminus \{w_{i1}\}.$$

Step 2 Adjoin u_2 . Apply the same reasoning, since $\operatorname{span}(\{u_1, w_1, \cdots, w_n\} \setminus \{w_{j1}\}) = V$, we know $\{u_1, u_2, w_1, \cdots, w_n\} \setminus \{w_{j1}\}$ is linearly dependent. Since $u_2 \notin \operatorname{span}(u_1)$, Lemma 2.1.21 is not applicable to u_2 . Now, we can remove another w from the list, say w_{j2} . The list becomes

$$\{u_1, u_2, w_1, \cdots, w_n\} \setminus \{w_{j1}, w_{j2}\}.$$

 $\overline{\text{Step }m}$ After m steps, we list will become

$$\{u_1,\cdots,u_m,w_1,\cdots,w_n\}\setminus\{w_{j1},\cdots,w_{jm}\}.$$

Since span($\{u_1, \dots, u_m, w_1, \dots, w_n\} \setminus \{w_{j1}, \dots, w_{jm}\}$) = V, this list is still linearly dependent, so by Lemma 2.1.21, we know $\exists w$ to be removed. Therefore, $n \ge m$.

Theorem 2.1.23

Every subspace of a *f-d* vector space is *f-d*.

Proof 8. Suppose V to be a f-d vector space and U to be a subspace of V.

Step 1 If
$$U = \{0\}$$
, then U is f - d . If $U \neq \{0\}$, then choose $v_i \in U$ s.t. $v_1 \neq 0$.

Step j If $U = \operatorname{span}(v_1, \dots, v_{j-1})$, then U is f-d. If $U \neq \operatorname{span}(v_1, \dots, v_{j-1})$, then choose $v_j \in U$ s.t. $v_j \notin \operatorname{span}(v_1, \dots, v_{j-1})$.

By Lemma 2.1.21 and Theorem 2.1.22, we know this process will eventually terminate because the vector list that spans U cannot be longer than any spanning list of V. Therefore, U is f-d.

2.2 Bases

Definition 2.2.1 (Basis). A *basis* of V is a list of vectors in V that is L.I. and spans V.

Example 2.2.2

1. The standard basis of \mathbb{F}^n :

$$(1,0,\cdots,0),(0,1,0,\cdots,0),\cdots,(0,\cdots,0,1).$$

2. (1,1,0),(0,0,1) is a basis of V, where $V = \{(x,x,y) \in \mathbb{F}^3 \mid x,y \in \mathbb{F}\}.$

Proof 1.

- (a) Suppose $a_1(1,1,0) + a_2(0,0,1) = 0$, we have $(a_1,a_1,a_2) = 0$. So, it must be $a_1 = a_2 = 0$. Therefore, (1,1,0), (0,0,1) is L.I..
- (b) Suppose $(x, x, y) \in V$. Note that (x, x, y) = x(1, 1, 0) + y(0, 0, 1), then, V = span((1, 1, 0), (0, 0, 1)).

Therefore, we've proven (1, 1, 0), (0, 0, 1) is a basis of V according to the definition of basis.

Theorem 2.2.3 Criterion for Basis

A list $v_1, \dots, v_n \in V$ is a basis list of V if and only if every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \dots + a_nv_n$, where $a_i \in \mathbb{F}$.

Proof 2.

 (\Rightarrow) Let v_1, \dots, v_n be a basis of V. Let $v \in V$. By definition of basis, $V = \operatorname{span}(v_1, \dots, v_n)$. So, $v \in \operatorname{span}(v_1, \dots, v_n)$, and thus $v = a_1v_1 + \dots + a_nv_n$ for some $a_i \in \mathbb{F}$. Assume for the sake of contradiction that $v = b_1v_1 + \dots + b_nv_n$ for some $b_i \neq a_i \in \mathbb{F}$. Then,

$$v - v = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n$$

$$0 = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n.$$

Since v_1, \dots, v_n is a basis, it is L.I.. So, $0 = 0v_1 + \dots + 0v_n$. Therefore, we know $a_1 - b_1 = \dots = a_n - b_n = 0$. That is, $a_1 = b_1, \dots, a_n = b_n$. * This is a contradiction with the assumption that $\exists \ a_i \neq b_i$. Hence, it must be that $v = a_1v_1 + \dots + a_nv_n$ is unique.

(\Leftarrow) Suppose $v=a_1v_1+\cdots+a_nv_n$ is the unique representation $\forall v\in V$. Then, $v\in \operatorname{span}(v_1,\cdots,v_n)$. Since $v\in V$, then $V\subseteq \operatorname{span}(v_1,\cdots,v_n)$. However, $v_1,\cdots,v_n\in V$, so $\operatorname{span}(v_1,\cdots,v_n)\subseteq V$. Therefore, $\operatorname{span}(v_1,\cdots,v_n)=V$. To show v_1,\cdots,v_n is L.I., further consider $0=a_1v_1+\cdots+a_nv_n$. Since $0\in V$, by assumption, \exists a unique way to write 0 as $a_1v_1+\cdots+a_nv_n$, and that unique way is to take every $a_i=0$. Hence, by definition, we know v_1,\cdots,v_n is L.I.. Since v_1,\cdots,v_n is L.I. and $\operatorname{span}(v_1,\cdots,v_n)=V$, we know v_1,\cdots,v_n is a basis list of V.

Theorem 2.2.4

Every spanning list can be reduced to a basis of the vector space.

Proof 3. Suppose $V = \text{span}(v_1, \dots, v_n)$. If $v_i = 0$, we just remove v_i . So, let's suppose $v_i \neq 0$.

Step 1 If $v_2 \in \text{span}(v_1)$, delete it. If $v_2 \notin \text{span}(v_2)$, keep it.

$$\vdots \\ \hline \boxed{\textbf{Step } j} \textbf{If } v_j \in \text{span}(v_1, \cdots, v_{j-1}), \textbf{ delete it. If } v_j \notin \text{span}(v_1, \cdots, v_{j-1}), \textbf{ keep it.} \\ \vdots$$

Step n After n steps, we will have a "sub-list" from the original list s.t. it spans V and is L.I.. Therefore, the basis list is contained in the spanning list.

Corollary 2.2.5 Every *f-d* vector space has a basis.

Proof 4. By definition, *f-d* vector space always has a spanning list. By Theorem 2.2.4, a spanning list contain a basis. ■

Theorem 2.2.6

Every linearly independent list of vectors in a *f-d* vector space can be extended to a basis of the vector space.

Proof 5. Suppose u_1, \dots, u_m is L.I. in a f-d vector space of V. Let w_1, \dots, w_n be a basis of V. Then, $u_1, \dots, u_m, w_1, \dots, w_n$ spans V. According to Lemma 2.1.21 and Theorem 2.1.22, we can reduce $u_1, \dots, u_m, w_1, \dots, w_m$ to some list of u_1, \dots, u_m and some w's.

Theorem 2.2.7

Suppose *V* is *f-d* and *U* is a subspace of *V*. Then, there is a subspace *W* of *V* s.t. $V = U \oplus W$.

Proof 6. Since V is f-d, U, as V's subspace, is also f-d. So, \exists a basis of U, say u_1, \dots, u_m . Then, u_1, \dots, u_m is L.I. and $\in V$. By Theorem 2.2.6, this list can be extended to a basis

$$u_1, \cdots, u_m, w_1, \cdots, w_n$$
 of V .

Let $W = \operatorname{span}(w_1, \dots, w_n)$. We'll show $V = U \oplus W$.

1. WTS: V = U + W. Suppose $v \in V$. Then,

$$v = \underbrace{a_1 u_1 + \dots + a_m u_m}_{\in U} + \underbrace{b_1 w_1 + \dots + b_n w_n}_{\in W}.$$

So, $v \in U + W$, or V = U + W.

2. WTS: $U \cap W = \{0\}$. Suppose $v \in U \cap W$. Then, $v \in U$ and $v \in W$. So,

$$v = a_1 u_1 + \dots + a_m v_m = b_1 w_1 + \dots + b_n w_n$$
.

Hence,

$$a_1u_1 + \dots + a_mu_m - b_1w_1 - \dots - b_nw_n = 0.$$
 (7)

Since by assumption, $u_1, \dots, u_m, w_1, \dots, w_n$ is a basis of V, so $u_1, \dots, u_m, w_1, \dots, w_n$ is L.I.. Therefore, the only way for Equation (7) to hold is when $a_1 = \dots = a_m = b_1 = \dots = b_n = 0$. Hence, $v = 0u_1 + \dots + u_m = 0$. That is, $U \cap W = \{0\}$.

Therefore, we've shown that $V = U \oplus W$.

2.3 Dimension

Theorem 2.3.1

Let B_1 and B_2 be two bases of V, then B_1 and B_2 have the same length.

Proof 1. Since B_1 is L.I. in V and B_2 spans V, by Theorem 2.1.22, we know $len(B_1) \le len(B_2)$. Interchanging the roles of B_1 and B_2 , we have $len(B_2) \le len(B_1)$. So, we have $len(B_1) = len(B_2)$. **Definition 2.3.2 (Dimension).** The *dimension* of a f-d vector space V is the length of any basis of V. **Notation 2.3.3.** We use $\dim V$ to denote the dimension of a f-d vector space V.

Example 2.3.4 dim
$$\mathbb{F}^n = n$$
 and dim $\mathcal{P}_m(\mathbb{F}) = m + 1$ $(1, z, z^2, \dots, z^m)$.

Theorem 2.3.5

If *V* is *f*-*d* and *U* is a subspace of *V*, then $\dim U \leq \dim V$.

Proof 2. Let B_1 be a basis of U and B_2 be a basis of V. Then, B_1 is a L.I. list of V and B_2 spans V. Then, By Theorem 2.1.22, we know that $len(B_1) \leq len(B_2)$. So, by definition of dimension, we know $\dim U \leq \dim V$.

Extension. If V is f-d and U is a subspace of V, given $U \subseteq V$, then dim $U < \dim V$.

Proof 3. Let u_1, \dots, u_m be a basis of U. Since $U \subsetneq V$, we know $V - U \neq \emptyset$. So, choose $v \in V - U$. Then, $v \notin \operatorname{span}(u_1, \dots, u_m)$. Therefore, u_1, \dots, u_m, v is L.I. in V. That is

$$\dim V \ge \dim(\operatorname{span}(u_1, \dots, u_m, v))$$

> $\dim(\operatorname{span}(u_1, \dots, u_m))$
= $\dim U$.

Theorem 2.3.6

Let V be f-d, then every L.I. list of vectors in V with length dim V is a basis of V.

Proof 4. Let $v_1, \dots, v_n \in V$ be L.I.. Let $n = \dim V$. When extending the list to basis, we get

$$\{v_1, m \cdots, v_n\} \cup \varnothing$$

as a basis of V. That is, v_1, \dots, v_n has already been a basis of V.

Remark. The proof given above is not that straight-forward, so we are giving an easier-understanding proof as follows.

Proof 5. Suppose for the sake of contradiction that $\exists v_1, \cdots, v_n \in V$ not a basis of V for $n = \dim V$. Then, $\operatorname{span}(v_1, \cdots, v_n) \neq V$. That is, $\exists v_{n+1} \text{ s.t. } v_{n+1} \notin \operatorname{span}(v_1, \cdots, v_n)$. Adding v_{n+1} to the vector list, we have $v_1, \cdots, v_n, v_{n+1}$ is L.I.. By Theorem 2.3.5, we know $\operatorname{len}(v_1, \cdots, v_{n+1}) = n+1 \leq \dim V$. * This contradicts with the fact that $\dim V = n < n+1$. So, our assumption is incorrect, and it must be that v_1, \cdots, v_n is a basis of V.

Theorem 2.3.7

Suppose V is f-d. Then, every spanning list of vectors in V with length $\dim V$ is a basis of V.

Example 2.3.8 Show that $1, (x-5)^2, (x-5)^3$ is a basis of the subspace U of $\mathcal{P}_3(\mathbb{R})$ defined by

$$U = \{ p \in \mathcal{P}_3(\mathbb{R}) \mid p'(5) = 0 \}.$$

Proof 6. Consider $a_1 + a_2(x-5)^2 + a_3(x-5)^3 = 0$, we will get $a_1 = a_2 = a_3 = 0$ easily from the equation. Then, $1, (x-5)^2, (x-5)^3$ is L.I.. So, by Theorem 2.3.5, we know $\dim U \geq 3$. Since $U \subsetneq \mathcal{P}_3(\mathbb{R})$, we have $\dim U < \dim \mathcal{P}_3(\mathbb{R}) = 4$. Therefore, $\dim U = 3 = \operatorname{len}(1, (x-5)^2, (x-5)^3)$. By Theorem 2.3.6, we know $1, (x-5)^2, (x-5)^3$ is a basis of U.

Theorem 2.3.9

If U_1 and U_2 are subspaces of a f-d vector space, then

$$\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2).$$

Proof 7. Let u_1, \dots, u_m be a basis of $U_1 \cap U_2$, then $\dim(U_1 \cap U_2) = m$. Also, u_1, \dots, u_m is L.I. in U_1 , so we can extend it to a basis of U_1 as $u_1, \dots, u_m, v_1, \dots, v_j$. Then, $\dim(U_1) = m + j$. Similarly, extending u_1, \dots, u_m to a basis of U_2 , we will get $u_1, \dots, u_m, w_1, \dots, w_k$. So, $\dim(U_2) = m + k$. Now, we want to show $u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k$ is a basis of $U_1 + U_2$.

1. Since $U_1, U_2 \subseteq \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_i, w_1, \dots, w_k)$, we know that

$$span(u_1, \dots, u_m, v_1, \dots, v_i, w_1, \dots, w_k) = U_1 + U_2.$$

2. Suppose $a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_iv_i + c_1w_1 + \cdots + c_kw_k = 0$. Then we know that

$$c_1w_1 + \dots + c_kw_k = -a_1u_1 - \dots - a_mu_m - b_1v_1 - \dots - b_iv_i$$
.

Since $c_1w_1+\cdots+c_kw_k\in U_2$, and $-a_1u_1-\cdots-a_mu_m-b_1v_1-\cdots-b_jv_j\in U_1$, we know that $c_1w_1+\cdots+c_kw_k\in U_1\cap U_2$. Therefore, $c_1w_1+\cdots+c_kw_k=d_1u_1+\cdots+d_mu_m$. Since $u_1,\cdots,u_m,w_1,\cdots,w_k$ is L.I., we know $c_1=\cdots=c_k=0$. So, $-a_1u_1-\cdots-a_mu_m-b_1v_1-\cdots-b_jv_j=0$. Since $u_1,\cdots,u_m,v_1,\cdots,v_j$ is L.I., we have $a_1=\cdots=a_m=b_1=\cdots=b_j=0$. Therefore, we've proven $u_1,\cdots,u_m,v_1,\cdots,v_j,w_1,\cdots,w_k$ is L.I. and thus is a basis of U_1+U_2 .

Since $u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k$ is a basis of $U_1 + U_2$, we know $\dim(U_1 + U_2) = m + j + k$. Further note that

$$\dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2) = (m+j) + (m+k) - m$$
$$= m+j+k$$
$$= \dim(U_1 + U_2).$$

19

3 Linear Maps

Notation 3.0.1. In this section, we use V and W to denote vector spaces over \mathbb{F} .

3.1 The Vector Space of Linear Maps

Definition 3.1.1 (Linear Map). A *linear map* from V to W is a function $T:V\to W$ with the following properties:

- additivity: T(u+v) = Tu + Tv $\forall u, v \in V$.
- homogeneity: $T(\lambda v) = \lambda(Tv)$ $\forall \lambda \in \mathbb{F} \text{ and } \forall v \in V.$

Notation 3.1.2. The set of all linear maps from V to W is denoted by $\mathcal{L}(V, W)$.

Example 3.1.3

- 1. Zero-mapping: $0 \in \mathcal{L}(V, W)$ is defined by 0v = 0.
- 2. Identity-mapping: $I \in \mathcal{L}(V, V)$ is defined by Iv = v.
- 3. Differentiation: $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is defined by Dp = p'.

Proof 1. Note that
$$(f+g)' = f' + g'$$
 and $(\lambda f)' = \lambda f'$.

4. Integration: $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ is defined by $Tp = \int_0^1 p(x) \, \mathrm{d}x$

Proof 2. Note that
$$\int_0^1 (f+g) = \int_0^1 f + \int_0^1 g$$
 and $\int_0^1 \lambda f = \lambda \int_0^1 f$.

5. Backward shift: $T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty})$ as $T(x_1, x_2, x_3, \cdots) = (x_2, x_3, \cdots)$.

Proof 3. Note that

$$T(x_1, x_2, x_3, \dots) + T(y_1, y_2, y_3, \dots) = (x_2, x_3, \dots) + (y_2, y_3, \dots)$$
$$= (x_2 + y_2, x_3 + y_3, \dots)$$
$$= T(x_1 + y_1, x_2 + y_2, x_3 + y_3, \dots).$$

Therefore, T is additive. Homogeneity of T is travial and thus omitted here.

6. From \mathbb{F}^n to \mathbb{F}^m , we define $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$ as

$$T(x_1, \dots, x_n) = (A_{1,1}x_1 + \dots + A_{1,n}x_n, \dots, A_{m,1}x_1 + \dots + A_{m,n}x_n),$$

where $A_{j,k} \in \mathbb{F} \quad \forall j = 1, \cdots, m \text{ and } k = 1, \cdots, n.$

Theorem 3.1.4

Suppose v_1, \dots, v_n is a basis of V and $w_1, \dots, w_n \in W$. Then, \exists a unique linear map $T: V \to W$ s.t. $Tv_j = w_j \quad \forall j = 1, \dots, n$.

Remark. If T in Theorem 3.1.1 is a linear mapping, we should have

1.
$$T(v_1 + \cdots + v_n) = Tv_1 + \cdots + Tv_n = w_1 + \cdots + w_n$$
, by additivity of T, and

2. $T(\lambda_i v_i) = \lambda_i T v_i$, by homogeneity of T.

Combine the two properties, we should have

$$T(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 T v_1 + \dots = \lambda_n T v_n = \lambda_1 w_1 + \dots + \lambda_n w_n.$$

This remark will be very helpful in our following proof of the theorem.

Proof 4. Let's define $T: V \to W$ by $T(c_1v_1 + \cdots + c_nv_n) = c_1w_1 + \cdots + c_nw_n$, where c_1, \cdots, c_n are arbitrary elements of \mathbb{F} . Now, we want to show that T is a linear mapping.

Suppose $u, v \in V$, $u = a_1v_1 + \cdots + a_nv_n$, and $v = c_1v_1 + \cdots + c_nv_n$. Then, we have

$$T(u+v) = T((a_1 + c_1)v_1 + \dots + (a_n + c_n)v_n)$$

$$= (a_1 + c_1)w_1 + \dots + (a_n + c_n)w_n$$

$$= (a_1w_1 + \dots + a_nw_n) + (c_1w_1 + \dots + c_nw_n)$$

$$= Tu + Tv. \quad \Box$$

Now, we want to show T has homogeneity. Suppose $\lambda \in \mathbb{F}$. Then, we know

$$T(\lambda v) = T(\lambda c_1 v_1 + \dots + \lambda c_n v_n)$$

$$= \lambda c_1 w_1 + \dots + \lambda c_n w_n$$

$$= \lambda (c_1 w_1 + \dots + c_n w_n)$$

$$= \lambda T v. \quad \Box$$

Also, we want to show that this T satisfy the condition the theorem is asking (i.e., $Tv_j = w_j$). Note that when $c_j = 0$ and other c's equal 0, we will get $Tv_j = w_j$.

Finally, we will prove the uniqueness of this T. Suppose that $T' \in \mathcal{L}(V,W)$ and $T'v_j = w_j$. Let $c_1, \cdots, c_n \in \mathbb{F}$. Then, $T'(c_jv_j) = c_jw_j$. So, we know that $T'(c_1v_1 + \cdots + c_nv_n) = c_1w_1 + \cdots + c_nw_n$. However, by definition, we know $c_1w_1 + \cdots + c_nw_n = T(c_1w_1 + \cdots + c_nv_n)$. So, we can conclude that $T'(c_1v_1 + \cdots + c_nv_n) = T(c_1w_1 + \cdots + c_nv_n)$. Thus, T' = T, and thus the T we defined above is unique in $\mathcal{L}(V,W)$.

Definition 3.1.5 (Addition and Scalar Multiplication on $\mathcal{L}(V,W)$ **).** Suppose $S,T\in\mathcal{L}(V,W)$ and $\lambda\in\mathbb{F}$. Then, the *addition* is defined as (S+T)(v):=Sv+Tv, and the *scalar multiplication* is defined as $(\lambda T)(v):=\lambda(Tv)\quad \forall v\in V$.

Theorem 3.1.6

 $\mathcal{L}(V,W)$ is a vector space.

Proof 5.

1. additive identity: Note that the zero-mapping $0 \in \mathcal{L}(V, W)$ satisfies the following equation:

$$(0+T)(v) = 0v + Tv = 0 + Tv = Tv.$$

2. commutativity: Note that

$$(S+T)(v) = Sv + Tv = Tv + Sv = (T+S)(v). \qquad \Box$$

3. associativity: Let $S, T, R \in \mathcal{L}(V, W)$. Then,

$$((S+T) + R)(v) = (S+T)(v) + Rv = Sv + Tv + Rv$$

$$= Sv + (Tv + Rv)$$

$$= Sv + (T+R)(v)$$

$$= (S + (T+R))(v).$$

Let $a, b \in \mathbb{F}$. Then,

$$((ab)T)(v) = T(abv) = T(a(bv)) = aT(bv) = (a(bT))(v). \qquad \Box$$

4. multiplicative identity: Note we have $1 \in \mathbb{F}$ *s.t.*

$$(1 \cdot T)(v) = T(1 \cdot v) = Tv. \qquad \Box$$

5. additive inverse: Note that

$$(T + (-T))(v) = Tv + (-T)(v) = Tv + T(-v) = T(v - v) = T0 = 0.$$

6. distributivity: Note that

$$a(T+S)(v) = a(Tv + Sv) = aTv + aSv,$$

and

$$(a + b)Tv = T((a + b)v) = T(av + bv) = T(av) + T(bv) = aTv + bTv.$$

Definition 3.1.7 (Product of Linear Maps). If $T \in \mathcal{L}(U,V)$ and $S \in \mathcal{L}(V,W)$, then the *product* $ST \in \mathcal{L}(U,W)$ is defined by $(ST)(u) = S(Tu) \quad \forall u \in U$.

Remark. Compare this definition with composite functions. ST is only defined when T maps into the domain of S.

Theorem 3.1.8 Algebraic Properties of Products of Linear Maps

- 1. associativity: $(T_1T_2)T_3 = T_1(T_2T_3)$.
- 2. identity: TI = IT = T, where I is the identity mapping
- 3. distributive properties: $(S_1 + S_2)T = S_1T + S_2T$ and $S(T_1 + T_2) = ST_1 + ST_2$.

Proof 6. First, we want to show the associativity. Note that

$$[(T_1T_2)T_3](v) = (T_1T_2)(T_3v) = (T_1)(T_2(T_3v)) = (T_1)[(T_2T_3)(v)]. \qquad \Box$$

Then, we want to show the identity. This proof can be done using the following diagram:

Finally, we will show the distributive properties. Note that

$$[(S_1 + S_2)T](v) = (S_1 + S_2)(Tv) = S_1(Tv) + S_2(Tv)$$
$$= (S_1T)(v) + (S_2T)(v)$$
$$= (S_1T + S_2T)(v).$$

Similarly, we can show

$$[S(T_1 + T_2)](v) = S[(T_1 + T_2)(v)] = S(T_1v + T_2v)$$

$$= S(T_1v) + S(T_2v)$$

$$= (ST_1)(v) + (ST_2)(v)$$

$$= (ST_1 + ST_2)(v).$$

Example 3.1.9 Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the differentiation map, and $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be defined by $(Tp)(x) = x^2p(x)$. Show that $DT \neq TD$.

Proof 7. Note that $(DT)p = D(Tp) = D(x^2p(x)) = 2xp(x) + x^2p'(x)$. Similarly, we can compute a general formula for TD: $(TD)p = T(Dp) = T(p') = x^2p'(x)$. Since $2xp(x) + x^2p'(x) \neq x^2p'(x)$, we know $DT \neq TD$.

Theorem 3.1.10

Let $T \in \mathcal{L}(V, W)$, then T(0) = 0.

Proof 8. Since T(0) = T(0+0) = T(0) + T(0), we know 0 = T(0), or T(0) = 0. Corollary 3.1.11 If $T(0) \neq 0$, then $T \notin \mathcal{L}(V, W)$.

3.2 Null Spaces and Ranges

Definition 3.2.1 (Null Space/Kernel). For $T \in \mathcal{L}(V, W)$, the *null space* of T, denoted null T, is the subset of V consisting of those vectors that T maps to 0: null $T = \{v \in V \mid Tv = 0\}$.

Remark. Sometimes, null space of T is also called the kernal of T, denoted as $\ker T$.

Example 3.2.2

- 1. Null space of zero-mapping: Let T be the zero mapping from V to W. Since $Tv=0 \quad \forall v \in V$, we know $\operatorname{null} T = V$.
- 2. $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ as Dp = p': null $D = \{a \mid a \in \mathbb{R}\}.$
- 3. $T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty})$ as $T(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots)$: null $T = \{(a, 0, 0, \dots) \mid a \in \mathbb{F}\}.$

Theorem 3.2.3

Suppose $T \in \mathcal{L}(V, W)$. Then, null T is a subspace of V.

Proof 1.

- 1. Note that T(0) = 0, so $0 \in \text{null } T$.
- 2. Suppose $u, v \in \text{null } T$. Then, Tu = Tv = 0. So, T(u + v) = Tu + Tv = 0 + 0 = 0. Hence, $u + v \in \text{null } T$. \square
- 3. Suppose $u \in \text{null } T$ and $\lambda \in \mathbb{F}$. Then, Tu = 0. So, $T(\lambda u) = \lambda Tu = \lambda \cdot 0 = 0$. Therefore, $\lambda u \in \text{null } T$.

Definition 3.2.4 (Injective/Injection). A function $T:V\to W$ is called *injective* of Tu=Tv implies u=v.

Remark. Sometimes, the contrapositive will be much more helpful: T is injective if $u \neq v$, then $Tu \neq v$.

Theorem 3.2.5

Let $T \in \mathcal{L}(V, W)$. Then, T is injective if and only if null $T = \{0\}$.

Proof 2.

- (\Rightarrow) Suppose T is an injective. We've already known that $\{0\} \subseteq \operatorname{null} T$. Then, we need to show $\operatorname{null} T \subseteq \{0\}$. Suppose $v \in \operatorname{null} T$, then Tv = 0. However, since T is an injection, and Tv = T0 = 0, then we have v = 0. So, $\operatorname{null} T \subseteq \{0\}$. Therefore, it's sufficient to say $\operatorname{null} T = \{0\}$.
- (\Leftarrow) Suppose $\operatorname{null} T = \{0\}$. Suppose $u, v \in V$ and Tu = Tv. Then, Tu Tv = T(u v) = 0. Hence, $u v \in \operatorname{null} T$. By $\operatorname{null} T = \{0\}$, we know u v = 0, so u = v. Then, T is an injection.

Definition 3.2.6 (Range/Image). For $T \in \mathcal{L}(V, W)$, the range of T is the subset of W consisting of those vectors that are of the form Tv for some $v \in V$: range $T = \{Tv \mid v \in V\}$.

Theorem 3.2.7

If $T \in \mathcal{L}(V, W)$, then range T is a subspace of W.

Proof 3.

- 1. Since T(0) = 0, we know $0 \in \text{range } T$.
- 2. Suppose $w_1, w_2 \in \text{range } T$. Then, $\exists v_1, v_2 \in V \text{ s.t. } Tv_1 = w_1 \text{ and } Tv_2 = w_2$. Then, $w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2)$. Since $v_1 + v_2 \in V$, we have $w_1 + w_2 = T(v_1 + v_2) \in \text{range } T$.
- 3. Suppose $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$. Then, $\exists v \in V$ s.t. w = Tv. So, $\lambda w = \lambda(Tv) = T(\lambda v)$. Since $\lambda v \in V$, $\lambda w = T(\lambda v) \in \operatorname{range} T$.

Definition 3.2.8 (Surjective/Surjection). A function $T: V \to W$ is called *surjective* if range T = W.

Remark. A function $T: V \to W$ is called a bijection, or is bijective, if it is both injective and surjective.

Theorem 3.2.9 Fundamental Theorem of Linear Maps

Suppose *V* is *f*-*d* and $T \in \mathcal{L}(V, W)$. Then, range *T* is *f*-*d* and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T.$$

Proof 4. Let u_1, \dots, u_m be a basis of null T. Then, dim null T=m. By Theorem 3.2.3, we know null T is a basis of V, so we can extend the basis to a basis of V: $u_1, \dots, u_m, v_1, \dots, v_n$. Thus, dim V=m+n. WTS: dim range T=n. Further WTS: Tv_1, \dots, Tv_n is a basis of range T.

Suppose $v \in V$. Then

$$v = a_1 u_1 + \dots + a_m u_m + b_1 v_1 + \dots + b_n v_n.$$

Since $u_1, \dots, u_m \in \text{null } T$, we know $Tu_1, \dots, Tu_m = 0$. Therefore,

$$Tv = a_1Tu_1 + \dots + a_mTu_m + b_1Tv_1 + \dots + b_nTv_n = b_1Tv_1 + \dots + b_nTv_n.$$

Hence, span $(Tv_1, \dots, Tv_n) = \operatorname{range} T$, and thus range T is f-d. Now, WTS: Tv_1, \dots, Tv_n is L.I..

Consider $c_1Tv_1 + \cdots + c_nTv_n = 0$. Then, $T(c_1v_1 + \cdots + c_nv_n) = 0$. Hence, $c_1v_1 + \cdots + c_nv_n \in \text{null } T$. Since u_1, \dots, u_m is a basis of null T, we know

$$c_1v_1 + \cdots + c_nv_n = d_1u_1 + \cdots + d_mu_m$$
 f.s. $d_i \in \mathbb{F}$.

So,

$$c_1v_1 + \dots + c_nv_n - d_1u_1 - \dots - d_mu_m = 0.$$
(8)

However, by assumption, we know $v_1, \dots, v_n, u_1, \dots, u_m$ is a basis of V, and thus it is L.I.. So, the only way to make Equation (8) hold is by taking $c_1 = \dots = c_n = -d_1 = \dots = -d_m = 0$. Therefore, we've shown Tv_1, \dots, Tv_n is L.I., and thus is a basis of range T. Then, dim range T = n.

So, we've shown that dim null $T + \dim \operatorname{range} T = m + n = \dim V$.

Theorem 3.2.10

Suppose V and W are f-d vector spaces s.t. $\dim V > \dim W$. Then, no linear map from V to W is injective.

Proof 5. Let $T \in \mathcal{L}(V, W)$. By the Fundamental Theorem of Linear Maps, we have $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$. Then, we know

$$\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T$$

$$\geq \dim V - \dim W > 0 \quad [\dim \operatorname{range} T \leq \dim W]$$

This implies that null $T \neq \{0\}$. So, T is not injective by Theorem 3.2.5.

Theorem 3.2.11

Suppose V and W are f-d vector space $s.t. \dim V < \dim W$. Then, no linear map from V to W is surjective.

Proof 6. We know

$$\dim \operatorname{range} T = \dim V - \dim \operatorname{null} T$$

$$\leq \dim V < \dim W$$

Then, *T* cannot be surjective by definition.

Example 3.2.12 Solving Linear Systems Using Linear Maps I For a homogenous system of linear equations,

$$\begin{cases} A_{1,1}x_1 + \dots + A_{1,n}x_n = 0 \\ \vdots \\ A_{m,1}x_1 + \dots + A_{m,n}x_n = 0 \end{cases}$$

where $A_{j,k}\in\mathbb{F}$ and $(x_1,\cdots,x_n)\in\mathbb{F}^n$, we can defined a linear map $T:\mathbb{F}^n\to\mathbb{F}^m$ as

$$T(x_1, \dots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \dots, \sum_{k=1}^n A_{m,k} x_k\right).$$

Apparently, $(x_1, \dots, x_n) = 0$ is a solution to the system, but the question is "If there are any non-zero solutions for this linear system?"

Theorem 3.2.13

A homogeneous system of linear equations with more variables than equations has non-zero solutions.

Proof 7. Suppose $T \in \mathcal{L}(V, W)$. Then, $\dim V = n$ and $\dim W = m$. Suppose n > m. So, $\dim V > \dim W$. By the Theorem 3.2.5, we know T is not injective.

Example 3.2.14 Solving Linear Systems Using Linear Maps II For an inhomogeneous system of linear equations

$$\begin{cases} \sum_{k=1}^{n} A_{1,k} x_k = c_1 \\ \vdots \\ \sum_{k=1}^{n} A_{m,k} x_k = c_m \end{cases}$$

where $A_{j,k} \in \mathbb{F}$ and $(c_1, \dots, c_m) \in \mathbb{F}^m$ and $(x_1, \dots, x_n) \in \mathbb{F}^n$, we can define $T : \mathbb{F}^n \to \mathbb{F}^m$ by

$$T(x_1, \dots, x_m) = \left(\sum_{k=1}^n A_{1,k} x_k, \dots, \sum_{k=1}^n A_{m,k} x_k = c_1\right).$$

However, in this case, $(x_1, \dots, x_n) = 0$ may not be a solution to the system.

Theorem 3.2.15

An inhomogeneous system of linear equations with more equations than variables has no solution for some choice of the constant terms.

Proof 8. Suppose $T \in \mathcal{L}(V, W)$. So, $\dim V = n$ and $\dim W = m$. Suppose n < m. Then, $\dim V < \dim W$. By Theorem 3.2.11, we know T is not surjective.

3 LINEAR MAPS 3.3 Matrices

3.3 Matrices

Definition 3.3.1 (Matrix). Let $m, n \in \mathbb{Z}^+$. An m-by-n matrix A is a rectangular array of elements of \mathbb{F} with m rows and n columns:

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}.$$

The notation $A_{j,k}$ denotes the entry in row j, column k of A.

Definition 3.3.2 (Matrix of a Linear Map). Suppose $T \in \mathcal{L}(V, W)$ and v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. The *matrix of T* with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ whose $A_{j,k}$ are defined by

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m.$$

If the bases are not clear from the context, then the notation $\mathcal{M}(T,(v_1,\cdots,v_n),(w_1,\cdots,w_m))$ is used.

Example 3.3.3 Suppose $T \in \mathcal{L}(\mathbb{F}^2, \mathbb{F}^3)$ is defined by T(x,y) = (x+3y, 2x+5y, 7x+9y). Find the matrix of T with respect to the standard bases of \mathbb{F}^2 and \mathbb{F}^3 .

Answer 1.

Note that T(1,0) = (1,2,7) and T(0,1) = (3,5,9). Then,

$$\mathcal{M}(T) = \begin{pmatrix} 1 & 3 \\ 2 & 5 \\ 7 & 9 \end{pmatrix}.$$

Example 3.3.4 Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined by Dp = p'. Find the matrix of D with respect to the standard bases of $\mathcal{P}_3(\mathbb{R})$ and $\mathcal{P}_2(\mathbb{R})$.

Answer 2.

Standard bases of $\mathcal{P}_3(\mathbb{R}):1,x,x^2,x^3$. Standard bases of $\mathcal{P}_2(\mathbb{R}):1,x,x^2$. Since $(x^n)'=nx^{n-1}$, so we have

$$D(1) = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$$

$$D(x) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$$

$$D(x^{2}) = 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^{2}$$

$$D(x^{3}) = 3x^{2} = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^{2}$$

So, we have

$$\mathcal{M}(D) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Definition 3.3.5 (Matrix Addition). The sum of two matrices of the same size is the matrix obtained by

3 LINEAR MAPS 3.3 Matrices

adding corresponding entries in the matrices:

$$\begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} + \begin{pmatrix} C_{1,1} & \cdots & C_{1,n} \\ \vdots & & \vdots \\ C_{m,1} & \cdots & C_{m,n} \end{pmatrix} = \begin{pmatrix} A_{1,1} + C_{1,1} & \cdots & A_{1,n} + C_{1,n} \\ \vdots & & \vdots \\ A_{m,1} + C_{m,1} & \cdots & A_{m,n} + C_{m,n} \end{pmatrix}.$$

Theorem 3.3.6

Suppose $S, T \in \mathcal{L}(V, W)$. Then, $\mathcal{M}(S + T) = \mathcal{M}(S) + \mathcal{M}(T)$.

Proof 3. Let v_1, \dots, v_n be a basis of V and w_1, \dots, w_n be a basis of W. Suppose $\mathcal{M}(S) = A$ and $\mathcal{M}(T) = C$. Then, if $1 \le k \le n$, we have

$$(S+T)v_k = Sv_k + Tv_k$$

= $(A_{1,k}w_1 + \dots + A_{m,k}w_m) + (C_{1,k}w_1 + \dots + C_{m,k}w_m)$
= $(A_{1,k} + C_{1,k})w_1 + \dots + (A_{m,k} + C_{m,k})w_m$.

Hence, we have $\mathcal{M}(S+T) = \mathcal{M}(S) + \mathcal{M}(T)$.

Definition 3.3.7 (Scalar Multiplication of a Matrix). The *product of a scalar and a matrix* is the matrix obtained by multiplying each entry in the matrix by the scalar:

$$\lambda \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} = \begin{pmatrix} \lambda A_{1,1} & \cdots & \lambda A_{1,n} \\ \vdots & & \vdots \\ \lambda A_{m,1} & \cdots & \lambda A_{m,n} \end{pmatrix}.$$

In other words, $(\lambda A)_{j,k} = \lambda A_{j,k}$.

Theorem 3.3.8

Suppose $\lambda \in \mathbb{F}$ and $T \in \mathcal{L}(V, W)$. Then, $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

Proof 4. Let v_1, \dots, v_n be a basis of V and $\mathcal{M}(T) = A$. When $1 \le k \le v$, note that

$$(\lambda T)v_k = \lambda(Tv_k)$$

$$= \lambda(A_{1,k}w_1 + \dots + A_{m,k}w_m)$$

$$= (\lambda A_{1,k})w_1 + \dots + (\lambda A_{m,k})w_m.$$

So, $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

Notation 3.3.9. $\mathbb{F}^{m,n} := \text{the set of all } m \times n \text{ matrices with entries in } \mathbb{F}.$

Theorem 3.3.10

Suppose $m, n \in \mathbb{Z}^+$. With addition and scalar multiplication defined above, $\mathbb{F}^{m,n}$ is a vector space and $\dim \mathbb{F}^{m,n} = mn$.

Proof 5. It is trivial to prove $\mathbb{F}^{m,n}$ is a vector space.

Define $A_{j,k}$ as the matrix with 1 on its j^{th} row, k^{th} column and 0 elsewhere. Then, we can see that $A_{j,k}$ for $j=1,\cdots,m$ and $k=1,\cdots,n$ is a basis for $\mathbb{F}^{m,n}$. So, $\dim \mathbb{F}^{m,n}=m\cdot n$.

Definition 3.3.11 (Matrix Multiplication). Suppose A is an $m \times n$ matrix and C is an $n \times p$ matrix. Then,

3 LINEAR MAPS 3.3 Matrices

AC is defined to be the $m \times p$ matrix whose entry in row j. column k is given by

$$(AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k}.$$

Remark. Matrix multiplication is not commutative. i.e., $AC \neq CA$. However, it is distributive and associative.

Theorem 3.3.12

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Notation 3.3.13. Suppose A is an $m \times n$ matrix.

- 1. If $1 \le j \le m$, then $A_{j, \cdot}$ denotes the $1 \times n$ matrix consisting of row j of A.
- 2. If $1 \le k \le n$, then $A_{\cdot,k}$ denotes the $m \times 1$ matrix consisting of column k of A.

In other words,

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}; \qquad A_{j,\cdot} = \begin{pmatrix} A_{j,1} & \cdots & A_{j,n} \end{pmatrix} \in \mathbb{F}^{1,n}; \qquad A_{\cdot,k} = \begin{pmatrix} A_{1,k} \\ \vdots \\ A_{m,k} \end{pmatrix} \in \mathbb{F}^{m,1}.$$

Theorem 3.3.14 Practical Interpretations of Matrix Multiplication

- 1. Suppose A is an $m \times n$ matrix and C is an $n \times p$ matrix. Then, $(AC)_{j,k} = A_{j,\cdot}C_{\cdot,k}$ for $1 \le j \le m$ and $1 \le k \le p$.
- 2. Suppose A is an $m \times n$ matrix and C is an $n \times p$ matrix. Then, $(AC)_{\cdot,k} = AC_{\cdot,k}$ for $1 \le k \le p$.
- 3. Suppose A is an $m \times n$ matrix and $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ is an $n \times 1$ matrix. Then,

$$AC = c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n}.$$

In other words, AC is a linear combination of the columns of A, with the scalars that multiply the columns coming from C.

Example 3.3.15

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 7 \\ 19 \\ 31 \end{pmatrix}.$$

3.4 Invertibility and Isomorphic Vector Spaces

Definition 3.4.1 (Invertible). A linear map $T \in \mathcal{L}(V, W)$ is called *invertible* if \exists a linear map $S \in \mathcal{L}(W, V)$ *s.t.* ST equals the identity map on I and TS equals the identity map on W.

Definition 3.4.2 (Inverse). A linear map $S \in \mathcal{L}(W, V)$ satisfying ST = I and TS = I is called an *inverse* of T.

Theorem 3.4.3

An invertible linear map has a unique inverse.

Proof 1. Suppose $T \in \mathcal{L}(V, W)$ is invertible. Let S_1 and S_2 be inverses of T. Then,

$$S_1 = S_1 I = S_1(TS_2) = (S_1 T)S_2 = IS_2 = S_2.$$

Thus, $S_1 = S_2$, and so inverse is unique.

Notation 3.4.4. If T is invertible, then its inverse is denoted by T^{-1} .

Theorem 3.4.5

A linear map is invertible if and only if it is injective and surjective.

Proof 2.

(\Rightarrow) Let $T \in \mathcal{L}(V, W)$ be invertible. Then, $TT^{-1} = I_W$ and $T^{-1}T = T_V$. Let Tv = 0. Note that $(T^{-1}T)v = 0$, so Iv = 0 and thus v = 0. Therefore, null $T = \{0\}$, and so T is an injection.

To show T is surjective, suppose $w \in W$. Note that since $T^{-1} \in \mathcal{L}(W,V), T^{-1}w \in V$. So,

$$T(T^{-1}w) = (TT^{-1})w = T_W w = w \in W.$$

Therefore, $T^{-1}w$ is the $v \in V$ we intend to find. Hence, T is also a surjection. \Box

(\Leftarrow) Let T be surjective and injective. For $w \in W$, define $Sw \in V$ s.t. T(Sw) = w. So, we know Sw is unique. Since $(T \circ S)w = w$, we know $(T \circ S) = I_W$. Consider $(S \circ T)v = S(Tv)$, we have T(S(Tv)) = Tv, by definition of S. Since T is injective, we know S(Tv) = V. So, $(S \circ T)v = v$, and thus $ST = T_V$. Therefore T is invertible.

Now, we want to show S is a linear map. Let $w_1, w_2 \in W$, then

$$T(S(w_1 + w_2)) = (TS)(w_1 + w_2) = I_W(w_1 + w_2) = w_1 + w_2.$$

By definition, $w_1 + w_2 = T(Sw_1) + T(Sw_3) = T(Sw_1 + Sw_2)$. So, $T(S(w_1 + w_2)) = T(Sw_1 + Sw_2)$. By T is an injection, we have $S(w_1 + w_2) = Sw_1 + Sw_2$. So, S is additive. Further consider

$$T(S(\lambda w)) = \lambda w = \lambda(T(Sw)) = T(\lambda Sw)$$

for some $w \in W$. Again, since T is injective, $S(\lambda w) = \lambda Sw$. So, S has homogeneity. Then, S is a linear map.

Definition 3.4.6 (Isomorphism). An *isomorphism* is an invertible linear map.

Definition 3.4.7 (Isomorphic). Two vector spaces are called *isomorphic* if there is an isomorphism from one vector space onto the other one.

Notation 3.4.8. If two vector spaces V and W are isomorphic, we denote them as $V \cong W$.

Theorem 3.4.9

Suppose V and W are f-d vector spaces, then $V \cong W$ if and only if dim $V = \dim W$.

Proof 3.

 (\Rightarrow) Suppose $V \cong W$. By Fundamental Theorem of Linear Maps, we know

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T.$$

Since $V \cong W$, T is invertible and thus is injective and surjective. So, $\dim \operatorname{null} T = 0$ and $\dim \operatorname{range} T = \dim W$. Therefore, $\dim V = 0 + \dim W = \dim W$.

(\Leftarrow) Suppose $\dim V = \dim W$. Suppose v_1, \dots, v_n and w_1, \dots, w_n are bases of V and W, respectively. Then, $\dim V = \dim W = n$. Here, we want to define a bijection between V and W. Let T be defined as $Tv_i = wi \quad (i = 1, \dots, n)$.

Let Tv=0. Then, $T(a_1v_1+\cdots+a_nv_n)=0$. So, by definition, $a_1w_1+\cdots+a_nw_n=0$. Since w_1,\cdots,w_n is a basis, we have $a_1=\cdots=a_n=0$. So, null $T=\{0\}$, and thus T is an injection.

Let $w \in W$ be any vector. Then, we know $w = c_1w_1 + \cdots + c_nw_n$. Note that, by definition of T, we have $T(c_1v_1 + \cdots + c_nv_n) = c_1w_1 + \cdots + c_nw_n$. Hence, $\forall w \in W, \exists v = c_1v_1 + \cdots + c_nv_n \in V$ s.t. Tv = w. Therefore, T is a surjection.

Finally, it is trivial to show that *T* is indeed a linear map, and so the proof is complete.

Theorem 3.4.10

Suppose v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. then, \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}^{m,n}$.

Proof 4. We already know \mathcal{M} is linear, so we just need to show \mathcal{M} is a bijection.

To prove \mathcal{M} is injective, consider $\mathcal{M}(T)=0$ for some $T\in\mathcal{L}(V,W)$. So, we get $Tv_k=0$. Since v_1,\cdots,v_n is a basis of V, we know $Tv=0\quad \forall v\in V$. Then, T is the zero-mapping, or T=0. Therefore, null $\mathcal{M}=\{0\}$.

To show \mathcal{M} is surjective, suppose $A \in \mathbb{F}^{m,n}$. Let T be a linear map from V to W s.t.

$$Tv_k = \sum_{j=1}^m A_{j,k} w_j, \quad k = 1, \cdots, n.$$

Obviously, $\mathcal{M}(T) = A$, and thus range $\mathcal{M} = \mathbb{F}^{m,n}$. So, \mathcal{M} is also a surjection.

Theorem 3.4.11

Suppose *V* and *W* are *f-d*. Then, $\mathcal{L}(V, W)$ is *f-d* and dim $\mathcal{L}(V, W) = (\dim V)(\dim W)$.

Proof 5. By Theorem 3.4.10 and Theorem 3.4.9, we know dim $\mathcal{L}(V, W) = \dim \mathbb{F}^{m,n}$. Further by Theorem 3.3.10, we know dim $\mathbb{F}^{m,n} = (m)(n)$. As dim V = n and dim W = m, so we have

$$\dim \mathcal{L}(V, W) = (\dim V)(\dim W).$$

Definition 3.4.12 (Matrix of a Vector, $\mathcal{M}(v)$ **).** Suppose $v \in V$ and v_1, \dots, v_n is a basis of V. The *matrix*

of v with respect to this basis is the $n \times 1$ matrix

$$\mathcal{M}(v) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix},$$

where c_1, \dots, c_n are scalars s.t. $v = c_1v_1 + \dots + c_nv_n$.

Theorem 3.4.13 $\mathcal{M}(T)_{\cdot,k} = \mathcal{M}(v_k)$

Suppose $T \in \mathcal{L}(V, W)$ and v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. Let $1 \le k \le n$. Then, the k^{th} column of $\mathcal{M}(T)$, which is denoted by $\mathcal{M}(T)_{\cdot,k}$, equals $\mathcal{M}(v_k)$.

Proof 6. This theorem is an immediate result by definitions of matrix of a linear mapping and a vector.

Theorem 3.4.14

Suppose $T \in \mathcal{L}(V, W)$ and $v \in V$. Suppose v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. Then, $\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v)$.

Proof 7. Note that $v = c_1v_1 + \cdots + c_nv_n$, so we have $Tv = c_1Tv_1 + \cdots + c_nTv_n$. So, by Theorem 3.4.13, we know

$$\mathcal{M}(Tv) = c_1 \mathcal{M}(Tv_1) + \dots + c_n \mathcal{M}(Tv_n)$$
$$= c_1 \mathcal{M}(T)_{\cdot,1} + \dots + c_n \mathcal{M}(T)_{\cdot,n}$$
$$= \mathcal{M}(T) \mathcal{M}(v).$$

The final equality holds due to our interpretation of matrix multiplication as column linear combinations (Theorem 3.3.14(3))

Remark. $\mathcal{M}: \mathbb{F}^n \to \mathbb{F}^{n,1}$ is an isomorphism:

$$v = c_1 v_1 + \dots + c_n v_n \longmapsto \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}.$$

Proof 8. Suppose $\mathcal{M}(v)=0$: $\mathcal{M}(c_1v_1+\cdots+c_nv_n)=0$. So, we have $c_1w_1+\cdots+c_nw_n=0$. Since w_1,\cdots,w_n is a basis, $c_1=\cdots=c_n=0$. So, v=0. Therefore, null $\mathcal{M}=\{0\}$, and so \mathcal{M} is injective. \square

Now, prove \mathcal{M} is surjective. Note that $\forall \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$, we have $\mathcal{M}(c_1v_1 + \cdots + c_nv_n) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$. So, \mathcal{M} is a

surjection. \square

Finally, its' trivial to prove \mathcal{M} is a linear map.

Since $\mathcal M$ is both surjective and injective, $\mathcal M$ is an isomorphism.

Definition 3.4.15 (Operator). A linear map from a vector space to itself is called an *operator*. **Notation 3.4.16.** The notation $\mathcal{L}(V)$ denotes the set of all operators on V. So, $\mathcal{L}(v) = \mathcal{L}(V, V)$.

3 LINEAR MAPS

Theorem 3.4.17

Suppose V is f-d and $T \in \mathcal{L}(V)$. Then, the following are equivalent: (a) T is invertible; (b) T is injective; and (c) T is surjective.

Proof 9.

- 1. Clearly (a) implies (b). \Box
- 2. Suppose (b): T is injective. So, $\operatorname{null} T = \{0\}$. Then, by Fundamental Theorem of Linear Maps, we know

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T = 0 + \dim \operatorname{range} T.$$

Since $\dim \operatorname{range} T = \dim V$, we know T is surjective. \square

3. Suppose (c): T is surjective. So, range T = V. Then, by Fundamental Theorem of Linear maps, we have

$$\dim \operatorname{null} T = \dim V - \dim \operatorname{range} T = 0.$$

So, null $T = \{0\}$, and thus T is injective. Since T is surjective and injective, T is invertible.

Example 3.4.18 Show that for each polynomial $q \in \mathcal{P}(\mathbb{R})$, there exists a polynomial $p \in \mathcal{P}(\mathbb{F})$ such that $((x^2 + 5x + 7)p)'' = q$.

Proof 10. We know that every non-zero polynomial must have a degree of m. So, we can think of this problem under $\mathcal{P}_m(\mathbb{R})$. Note that

$$((x^2 + 5x + 7)p)'' = 2p + (4x + 10)p' + (x^2 + 5x + 7)p'' = q.$$

Therefore, the degree of p and q should be the same. Define $T: \mathcal{P}_m(\mathbb{R}) \to \mathcal{P}_m(\mathbb{R})$ as

$$Tp = ((x^2 + 5x + 7)p)''.$$

Then, T is an operator on $\mathcal{P}_m(\mathbb{R})$. Consider Tp=0. We have $ax+b=(x^2+5x+7)p$. Note that only when p=0, the equation above holds. So, it must be that p=0 when Tp=0. That is, $\operatorname{null} T=\{0\}$, and so T is injective. By Theorem 3.4.18, we know T is also surjective, and so our proof is complete.

3 LINEAR MAPS 3.5 Duality

3.5 Duality

Definition 3.5.1 (Linear Functional). A *linear functional* on V is a linear map from V to \mathbb{F} . That is, a linear functional is an element of $\mathcal{L}(V,\mathbb{F})$.

Example 3.5.2

- 1. Fix $(c_1, \dots, c_n) \in \mathbb{F}^n$. Define $\varphi : \mathbb{F}^n \to \mathbb{F}$ by $\varphi(x_1, \dots, x_n) = c_1 x_1 + \dots + c_n x_n$. Then, φ is a linear functional on \mathbb{F}^n .
- 2. Define $\varphi : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$ as $\varphi(p) = 3p''(5) + 7p(4)$.
- 3. Define $\varphi : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$ as $\varphi(p) = \int_0^1 p(x) dx$.

Definition 3.5.3 (Dual Space/ V'/V^*). The *dual space* of V, denoted as V', is the vector space of all linear functionals on V. In other words, $V' = \mathcal{L}(V, \mathbb{F})$.

Theorem 3.5.4

Suppose *V* is *f-d*. Then, *V'* is also *f-d* and dim $V' = \dim V$.

Proof 1. Note that for a general linear map, $\mathcal{L}(V,W)\cong\mathbb{F}^{m,n}$. So, $\mathcal{L}(V,\mathbb{F})=V'\cong\mathbb{F}^{1,n}$. Hence,

$$\dim V' = \dim \mathbb{F}^{1,n} = 1 \cdot n = n = \dim V.$$

Definition 3.5.5 (Dual Basis). If v_1, \dots, v_n is a basis of V, then the *dual basis* of v_1, \dots, v_n is the list $\varphi_1, \dots, \varphi_n$ of elements of V', where each φ_i is the linear functional on V *s.t.*

$$\varphi_j(v_k) = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}.$$

Example 3.5.6 Find the dual basis of $e_1, \dots, e_n \in \mathbb{F}^n$

Answer 2.

$$\varphi_1(e_1) = 1 \quad \varphi_2(e_1) = 0 \quad \cdots \quad \varphi_n(e_1) = 0$$

$$\varphi_1(e_2) = 0 \quad \varphi_2(e_2) = 1 \quad \cdots \quad \varphi_n(e_2) = 0$$

$$\vdots \qquad \vdots \qquad \ddots \qquad \vdots$$

$$\varphi_1(e_n) = 1 \quad \varphi_2(e_n) = 0 \quad \cdots \quad \varphi_n(e_n) = 1$$

Define φ_j as

$$\varphi_i(x) = \varphi_i(x_1, \dots, x_n) = x_1 \varphi_i(e_1) + \dots + x_i \varphi_i(e_i) + \dots + x_n \varphi_i(e_n) = x_i.$$

3 LINEAR MAPS 3.5 Duality

Theorem 3.5.7

Suppose V is f-d. Then, the dual basis of a basis of V is a basis of V'.

Proof 3. Suppose v_1, \dots, v_n is a basis of V and $\varphi_1, \dots, \varphi_n$ denotes the dual basis. Since we've shown $\dim V = \dim V'$ in Theorem 3.5.4, we only need to show $\varphi_1, \dots, \varphi_n$ is L.I.. Select $c_1\varphi_1 + \dots + c_n\varphi_n = 0$. Then,

$$(c_1\varphi_1 + \dots + c_n\varphi_n)(v) = 0 \quad \forall v \in V.$$

Suppose $v = v_1 + \cdots + v_n$, then

$$(c_1\varphi_1 + \dots + c_n\varphi_n)(v_j) = c_j$$
 for $j = 1, \dots, n$.

So, $(c_1\varphi_1 + \cdots + c_n\varphi_n)(v) = c_1 + \cdots + c_n = 0$. So, it must be that $c_1 = \cdots = c_n = 0$. Therefore, $\varphi_1, \cdots, \varphi_n$ is L.I. and our proof is complete.

Definition 3.5.8 (Dual Map). If $T \in \mathcal{L}(V, W)$, then the *dual map* of T is the linear map $T' \in \mathcal{L}(W', V')$ defined by $T'(\varphi) = \varphi \circ T$ for $\varphi \in W'$.

Remark. The following diagram represents dual map (but not an exact representation).

Also, dual map is a linear map, so it is additive and homogeneous.

1.
$$T'(\varphi + \psi) = (\varphi + \psi) \circ T = \varphi \circ T + \psi \circ T = T'(\varphi) + T'(\psi)$$
.

2.
$$T'(\lambda \varphi) = (\lambda \varphi) \circ T = \lambda(\varphi \circ T) = \lambda T'(\varphi)$$
.

Example 3.5.9 Suppose $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ as Dp = p'.

1. Define a linear functional $\varphi : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$ as $\varphi(p) = p(3)$. Find $D'(\varphi)$.

Answer 4.

$$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(p') = p'(3).$$

2. Define $\varphi:\mathcal{P}(\mathbb{R})\to\mathbb{R}$, a linear functional, as $\varphi(p)=\int_0^1 p(x)\ \mathrm{d}x.$ Find $D'(\varphi).$

Answer 5.

$$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(p') = \int_0^1 p'(x) dx = p(1) - p(0).$$

Theorem 3.5.10 Algebraic Properties of Dual Maps

1.
$$(S+T)' = S' + T' \quad \forall S, T \in \mathcal{L}(V, W)$$

2.
$$(\lambda T)' = \lambda T' \quad \forall T \in \mathcal{L}(V, W)$$

3.
$$(ST)' = T'S' \quad \forall T \in \mathcal{L}(U, V) \text{ and } S \in \mathcal{L}(V, W)$$

Proof 6.

1. $(S+T)' \in \mathcal{L}(W',V')$. Let $\varphi \in W'$. Then,

$$(S+T)'(\varphi) = \varphi \circ (S+T) = \varphi \circ S + \varphi \circ T = S'(\varphi) + T'(\varphi) = (S'+T')(\varphi). \qquad \Box$$

2. $(\lambda T)' \in \mathcal{L}(W', V')$. Let $\varphi \in W'$. Then,

$$(\lambda T)'(\varphi) = \varphi \circ (\lambda T) = \lambda(\varphi \circ T) = \lambda T'(\varphi) = (\lambda T')(\varphi).$$

3. $(ST)' \in \mathcal{L}(W', U')$. Let $\varphi \in W'$. Then,

$$(ST)'(\varphi) = \varphi \circ (ST) = \varphi \circ (S \circ T) = (\varphi \circ S) \circ T = (S'(\varphi)) \circ T = T'(S'(\varphi)) = (T'S')(\varphi).$$

Definition 3.5.11 (Transpose/ A^t). The transpose of a matrix A, denoted A^t , is the matrix obtained from A by interchanging the rows and columns. i.e., $(A^t)_{k,j} = A_{j,k}$.

Remark. Transpose is additive and homogeneous. That is, $(A+C)^t = A^t + C^t$ and $(\lambda A)^t = \lambda A^t$.

Theorem 3.5.12

If A is an $m \times n$ matrix and C is an $n \times p$ matrix, then $(AC)^t = C^t A^t$.

Proof 7. Note that

$$(AC)_{k,j}^{t} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (C^{t})_{k,r} (A^{t})_{r,j} = (C^{t}A^{t})_{k,j}$$

Theorem 3.5.13

Suppose $T \in \mathcal{L}(V, W)$. Then, $\mathcal{M}(T') = (\mathcal{M}(T))^t$.

Proof 8. Suppose v_1, \dots, v_n is a basis of V, w_1, \dots, w_m is a basis of W, $\varphi_1, \dots, \varphi_n$ is a basis of V', and ψ_1, \dots, ψ_m is a basis of W'. Let $A = \mathcal{M}(T)$ and $C = \mathcal{M}(T')$. Since $T'(\psi_j) = C_{1,j}\varphi_1 + \dots + C_{n,j}\varphi_n$ and $T'(\psi_j) = \psi_j \circ T$, we have $\psi_j \circ T = C_{1,j}\varphi_1 + \dots + C_{n,j}\varphi_n$. Consider

$$(\psi_j \circ T)(v_k) = (C_{1,j}\varphi_1 + \dots + C_{n,j}\varphi_n)(v_k) = C_{k,j}\varphi_k(v_k) = C_{k,j}.$$

Also, we have

$$(\psi_i \circ T)(v_k) = \psi_i(Tv_k) = \psi_i(A_{1,k}w_1 + \dots + A_{m,k}w_m) = \psi_i(A_{i,k}w_i) = A_{i,k}(\varphi_i(w_i)) = A_{i,k}$$

Therefore, we have $A_{j,k} = C_{k,j}$, and thus $A = C^t$. So, $\mathcal{M}(T) = (\mathcal{M}(T'))^t$.

Definition 3.5.14 (Annihilator/ U^0 **).** For $U \subseteq V$, the *annihilator* of U, denoted as U^0 , is defined by

$$U^0 = \{ \varphi \in V' \mid \varphi(u) = 0 \quad \forall u \in U \}.$$

Theorem 3.5.15

Suppose $U \subseteq V$. Then U^0 is a subspace of V'.

Proof 9.

- 1. $0 \in U^0$: Since $0(u) = 0 \quad \forall u \in U$, then $0 \in U^0$.
- 2. Let $\varphi, \psi \in U^0$. Then,

$$(\varphi + \psi)(u) = \varphi(u) + \psi(u) = 0.$$

So,
$$\varphi + \psi \in U^0$$
.

3. Let $\lambda \in \mathbb{F}$ and $\varphi \in U^0$. Then

$$(\lambda \varphi)(u) = \lambda \varphi(u) = \lambda \cdot 0 = 0.$$

So, $\lambda \varphi \in U^0$.

Lemma 3.5.16 Suppose V is f-d vector space. If U is a subspace of V and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ s.t. $Tu = Su \quad \forall u \in U$.

Proof 10. Suppose u_1, \dots, u_m is a basis of U. Then, we can extend it to a basis of V as $u_1, \dots, u_m, v_{m+1}, \dots, v_n$. Define $T \in \mathcal{L}(V, W)$ as $Tu_i = Su_i, Tv_j = 0$, where $i = 1, \dots, m$ and $j = m+1, \dots, n$. Note that

$$Tu = T(a_1u_1 + \dots + a_mu_m)$$

$$= a_1Tu_1 + \dots + a_mTu_m$$

$$= a_1Su_1 + \dots + a_mSu_m$$

$$= S(a_1u_1 + \dots + a_mu_m) = Su.$$

Therefore, we've found such a T.

Theorem 3.5.17

Let *V* be *f*-*d* and *U* be a subspace of *V*, then $\dim U + \dim U^0 = \dim V$.

Proof 11. Let $i \in \mathcal{L}(U, V)$ as $i(u) = u \quad \forall u \in U$. Then, $i' \in \mathcal{L}(V', U')$. So, by Fundamental Theorem of Linear Map, we know

$$\dim V' = \dim \operatorname{null} i' + \dim \operatorname{range} i'. \tag{9}$$

By Theorem 3.5.4, we know dim $V = \dim V'$ Note that $U^0 = \{ \varphi \in V' \mid \varphi(u) = 0 \quad \forall u \in U \}$ and

$$\begin{aligned} \operatorname{null} i' &= \left\{ \varphi \in V' \mid i'(\varphi) = 0 \right\} \\ &= \left\{ \varphi \in V' \mid \varphi \circ i = 0 \right\} \\ &= \left\{ \varphi \in V' \mid (\varphi \circ i)(u) = 0 \quad \forall u \in U \right\} \\ &= \left\{ \varphi \in V' \mid \varphi(u) = 0 \quad \forall u \in U \right\} \end{aligned}$$

So, $U^0 = \text{null } i'$, and thus $\dim \text{null } i' = \dim U^0$.

Further, if $\varphi \in U'$, then $\varphi : U \to \mathbb{F}$. By Lemma 3.5.16, φ can be extended to $\psi \in V'$ with $\psi(u) = \varphi(u) \quad \forall u \in U$. Note that $i'(\psi) = \psi \circ i$, so $(\psi \circ i)(u) = \psi(u) = \varphi(u) \quad \forall u \in U$. Then, $\exists \psi \in V'$ s.t. $i'(\psi) = \varphi$. So, $\varphi \in \text{range } U'$. So, $\dim \text{range } i' = \dim U' = \dim U$.

Substitute dim $V' = \dim V$, dim null $i' = \dim U^0$, and dim range $i' = \dim U$ to Equation (9), we get

$$\dim V = \dim U^0 + \dim U.$$

Theorem 3.5.18 The Null Space of T'

Suppose V and W are f-d and $T \in \mathcal{L}(V, W)$. Then,

- 1. null $T' = (\text{range } T)^0$
- 2. $\dim \operatorname{null} T' = \dim \operatorname{null} T + \dim W \dim V$

Proof 12.

1. (\subseteq) Suppose $\varphi \in \text{null } T' \subseteq W'$. Then, $T'(\varphi) = \varphi \circ T = 0 \in V'$. So, we know

$$(\varphi \circ T)(v) = 0 \quad \forall v \in V.$$
 i.e., $\varphi(Tv) = 0.$

Note that $Tv \in \text{range } T$. By definition, we have $\varphi \in (\text{range } T)^0$

(2) Suppose $\varphi \in (\operatorname{range} T)^0$. Then, $\varphi(w) = 0 \quad \forall w \in \operatorname{range} T$. That is, $\varphi(Tv) = 0 \quad \forall v \in V$. So, $(\varphi \circ T)(v) = 0 \quad \forall v \in V$. Hence, we know $\varphi \circ T = T'(\varphi) = 0 \in V'$. Thus, $\varphi \in \operatorname{null} T'$

2.

$$\dim \operatorname{null} T' = \dim(\operatorname{range} T)^{0}$$

$$= \dim W - \dim \operatorname{range} T$$

$$= \dim W - (\dim V - \dim \operatorname{null} T)$$

$$= \dim W - \dim V + \dim \operatorname{null} T.$$

Theorem 3.5.19

Suppose V and W are f-d and $T \in \mathcal{L}(V, W)$. Then, T is surjective if and only if T' is injective.

Proof 13.

 (\Rightarrow) Suppose T is surjective. Then, dim range T=W. So, (range T)⁰ = {0}. Hence,

$$\dim \operatorname{null} T' = \dim (\operatorname{range} T)^0 = 0.$$

Thus, T' is injective. \square

(\Leftarrow) Suppose T' is injective. Then,

$$\dim \operatorname{null} T' = 0.$$

So, $\dim(\operatorname{range} T)^0 = \dim\operatorname{null} T' = 0$. Then, $(\operatorname{range} T)^0 = \{0\}$. So, $\dim\operatorname{range} T = W$, and thus T is surjective.

Theorem 3.5.20 The Range of T'

Suppose V and W are f-d and $T \in \mathcal{L}(V, W)$. Then,

- 1. dim range $T' = \dim \operatorname{range} T$
- 2. range $T' = (\text{null } T)^0$

Proof 14.

1. By Fundamental Theorem of Linear Map, we have

$$\dim \operatorname{range} T' = \dim W' - \dim \operatorname{null} T'$$

$$= \dim W' - \dim (\operatorname{range} T)^{0}$$

$$= \dim W' - \dim W' + \dim \operatorname{range} T$$

$$= \dim \operatorname{range} T.$$

2. Suppose $\varphi \in \operatorname{range} T' \subseteq V'$. Then, $\exists \psi \in W'$ s.t. $T'(\psi) = \psi \circ T = \varphi$. Let $v \in \operatorname{null} T$. Then,

$$\varphi(v) = (\psi \circ T)(v) = \psi(Tv) = \psi(0) = 0.$$

Then, $\varphi \in (\text{null } T)^0$. So, range $T' \subseteq (\text{null } T)^0$.

Note that

 $\dim \operatorname{range} T' = \dim \operatorname{range} T = \dim V - \dim \operatorname{null} T = \dim (\operatorname{null} T)^0.$

Then, range $T' \subseteq (\text{null } T)^0$ and $\dim \text{range } T' = \dim(\text{null } T)^0$, so it must be that range $T' = (\text{null } T)^0$.

Theorem 3.5.21

Suppose V and W are f-d and $T \in \mathcal{L}(V, W)$. Then, T is injective if and only if T' is surjective.

Proof 15.

 (\Rightarrow) If T is injective, null $T = \{0\}$. So,

$$\dim \operatorname{null} T = \dim V - \dim(\operatorname{null} T)^{0} = \dim V - \dim \operatorname{range} T' = 0.$$

So, $\dim \operatorname{range} T' = \dim V = \dim V'$. Then, T' is surjective.

 (\Leftarrow) If T' is surjective, $\dim \operatorname{range} T' = \dim V' = \dim V$. So,

$$\dim \operatorname{null} T = \dim V - \dim(\operatorname{null} T)^{0} = \dim V - \dim \operatorname{range} T' = 0.$$

Then, $\operatorname{null} T = \{0\}$, and so T is injective.

Definition 3.5.22 (Row Rank & Column Rank). Suppose A is an $m \times n$ matrix with entries in \mathbb{F} .

- 1. The *row rank* of *A* is the dimension of the span of the rows of *A* in $\mathbb{F}^{1,n}$.
- 2. The *column rank* of A is the dimension of the span of the columns of A in $\mathbb{F}^{m,1}$.

Theorem 3.5.23

Suppose *V* and *W* are f-d and $T \in \mathcal{L}(V, W)$. Then, dim range *T* equals the column rank of $\mathcal{M}(T)$.

Proof 16. Suppose v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is a basis of W. Then,

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m$$

and thus

$$\mathcal{M}(Tv_k) = \begin{pmatrix} A_{1,k} \\ \vdots \\ A_{m,k} \end{pmatrix} \in \mathbb{F}^{m,1}$$

Therefore, $\mathcal{M}(T) = \begin{pmatrix} \mathcal{M}(Tv_1) & \cdots & \mathcal{M}(Tv_n) \end{pmatrix}$. Note that range $T = \operatorname{span}(Tv_1, \cdots, Tv_n)$. Define $\mathcal{M} : \operatorname{span}(Tv_1, \cdots, Tv_n) \to \operatorname{span}(\mathcal{M}(Tv_1), \cdots, \mathcal{M}(Tv_n))$ as $w \mapsto \mathcal{M}(w)$.

1. \mathcal{M} is surjective: Note that

$$c_1\mathcal{M}(Tv_1) + \cdots + c_n\mathcal{M}(Tv_n) = \mathcal{M}(c_1Tv_1 + \cdots + c_nTv_n).$$

Since $c_1Tv_1 + \cdots + c_nTv_n \in \text{range } T$, we know \mathcal{M} is surjective. \square

2. \mathcal{M} is injective: Let

$$\mathcal{M}(c_1 T v_1 + \dots + c_n T v_n) = 0. \tag{10}$$

We can reduce $c_1Tv_1+\cdots+c_nTv_n$ to a basis Tv_{j_1},\cdots,Tv_{j_m} . Then, Equation (10) becomes $\mathcal{M}(a_1Tv_{j_1}+\cdots+a_mTv_{j_m})=0$. By definition of matrix, we know $\begin{pmatrix} a_1\\ \vdots\\ a_m \end{pmatrix}=0$. So, $a_1=\cdots=a_m=0$ and $a_1Tv_{j_1}+\cdots+a_mTv_{j_m}=0$. So, \mathcal{M} is injective. \square

Since \mathcal{M} is both surjective and injective, \mathcal{M} is a bijection. Thus, \mathcal{M} is an isomorphism between $\operatorname{span}(Tv_1, \dots, Tv_n)$ and $\operatorname{span}(\mathcal{M}(Tv_1), \dots, \mathcal{M}(Tv_n))$. In other words,

$$\operatorname{span}(Tv_1, \dots, Tv_n) \cong \operatorname{span}(\mathcal{M}(Tv_1), \dots, \mathcal{M}(Tv_n)).$$

Then, $\dim \operatorname{span}(Tv_1, \dots, Tv_n) = \dim \operatorname{span}(\mathcal{M}(Tv_1), \dots, \mathcal{M}(Tv_n))$. That is,

 $\dim \operatorname{range} T = \operatorname{column} \operatorname{rank} \operatorname{of} T.$

Theorem 3.5.24 Row Rank Equals Column Rank

Suppose $A \in \mathbb{F}^{m,n}$. Then, the row rank of A equals the column rank of A.

Proof 17. Define $T: \mathbb{F}^{n,1} \to \mathbb{F}^{m,1}$ by Tx = Ax. Then, $\mathcal{M}(T) = A$, where $\mathcal{M}(T)$ is computed with respect to the standard basis of $\mathbb{F}^{n,1}$ and $\mathbb{F}^{m,1}$. Note that

Definition 3.5.25 (Rank). The *rank* of a matrix $A \in \mathbb{F}^{m,n}$ is the column rank of A, denoted as rank A.

3.6 Quotients of Vector Spaces

Definition 3.6.1 (v+U/**Affine Subset).** Suppose $v \in V$ and U is a subspace of V. Then

$$v + U \coloneqq \{v + u \mid u \in U\}.$$

An *affine subset* of V is a subset of V of the form v + U for some $v \in V$ and some subspace U of V. The affine subset is said to be *parallel* to U.

Definition 3.6.2 (Quotient Space, V/U**).** Suppose U is a subspace of V. Then the quotient space V/U is the set of all affine subsets of V parallel to U. In other words,

$$V/U := \{v + U \mid v \in V\}.$$

Example 3.6.3 If $U = \{(x, 2x) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$, then \mathbb{R}^2/U is the set of all lines in \mathbb{R}^2 with slope of 2.

Theorem 3.6.4

Suppose U is a subspace of V and $v, w \in V$. Then, the following are equivalent:

- 1. $v w \in U$
- 2. v + U = w + U
- 3. $(v+U)\cap(w+U)\neq\emptyset$

4 Eigenvectors and Invariant Subspaces

4.1 Invariant Subspaces

4.2 Eigenvectors and Upper-Triangular Matrices

4.3 Eigenspaces and Diagonal Matrices

5 Inner Product Spaces

5.1 Inner Products and Norms

5.2 Orthonormal Bases

5.3 Orthogonal Complements and Minimization Problems

- **6 Operators on Inner Product Spaces**
- **6.1** Self-Adjoint and Normal Operators

6.2 The Spectral Theorem

6.3 Positive Operators and Isometries

6.4 Polar Decomposition and SVD

7 Operators on Complex Vector Spaces

7.1 Generalized Eigenvectors, Nilpotent Operators

7.2 Decomposition of an Operator

7.3 Characteristic and Minimal Polynomials

7.4 Jordan Form

8 Operators on Real Vectors Spaces

8.1 Complexification

8.2 Operators on Real Inner Product Spaces

9 Trace and Determinant

9.1 Trace

9.2 Determinant

10 Exercises

10.1 Span and Linear Independence

- 1. Suppose v_1, v_2, v_3, v_4 spans V. Prove that the list $v_1 v_2, v_2 v_3, v_3 v_4, v_4$ also spans V.
- 2. Prove that if \mathbb{C} is a vector space on \mathbb{R} , then the list 1 + i, 1 i is L.I..
- 3. Prove that if \mathbb{C} is a vector space on \mathbb{C} , then the list 1+i, 1-i is linearly dependent.
- 4. Prove or give a counterexample: Suppose v_1, v_2, \dots, v_m is L.I. in V and $\lambda \in \mathbb{F}$ with $\lambda \neq 0$. Then $\lambda v_1, \lambda v_2, \dots, \lambda v_m$ is L.I..
- 5. Suppose v_1, \dots, v_m is L.I. in V and $w \in V$. Prove that if $v_1 + w, \dots, v_m + w$ is linearly dependent, then $w \in \text{span}(v_1, \dots, v_m)$.

10.2 Bases

1. Find all the vectors spaces that consist of only one basis.

Hint. $\{0\}$.

- 2. Suppose U is a subspace of \mathbb{R}^5 *s.t.* $U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 = 3x_2, x_3 = 7x_4\}$. Find a basis of U. Extend this basis into a basis of \mathbb{R}^5 . Then, find a subspace W of \mathbb{R}^5 *s.t.* $\mathbb{R}^5 = U \oplus W$.
- 3. Suppose v_1, v_2, v_3, v_4 is a basis of V. Prove that $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ is also a basis of V.
- 4. **Prove** or disprove: $\mathcal{P}_3(\mathbb{F})$ has a basis p_0, p_1, p_2, p_3 s.t. no one from p_0, p_1, p_2, p_3 has a degree of 2.

Hint. *Use the conclusion from #3.*

5. Prove or **give a counterexample**: If v_1, v_2, v_3, v_4 is a basis of V and U is a subspace of V *s.t.* $v_1, v_2 \in U$, $v_3 \notin U$, $v_4 \notin U$, then v_1, v_2 is basis of U.

10.3 Dimension

- 1. Suppose *V* is *f*-*d* and *U* is a subspace of *V* s.t. dim $U = \dim V$. Prove that U = V.
- 2. Prove that the subspaces of \mathbb{R}^2 are exactly the following: $\{0\}, \mathbb{R}^2$, and all the lines passing through the origin in \mathbb{R}^2 .
- 3. Suppose v_1, \dots, v_m is L.I. in V and $w \in V$. Prove $\dim \operatorname{span}(v_1 + w, \dots, v_m + w) \geq m 1$.
- 4. Suppose $p_0, p_1, \dots, p_m \in \mathcal{P}(\mathbb{F})$ s.t. $\deg p_j = j$. Prove p_0, p_1, \dots, p_m is a basis of $\mathcal{P}_m(\mathbb{F})$.
- 5. Suppose U and W are subspaces of \mathbb{R}^8 s.t. $\dim U = 3, \dim W = 5$, and $U + W = \mathbb{R}^8$. Prove that $\mathbb{R}^8 = U \oplus W$.
- 6. Suppose U and W are 5-dimensional subspaces of \mathbb{R}^9 . Prove $U \cap W \neq \{0\}$.
- 7. Suppose U and W are 4-dimensional subspaces of \mathbb{C}^6 . Prove that \exists two vectors in $U \cap W$ *s.t.* any one of which is not a scalar multiple of another one.

8. Suppose U_1, \dots, U_m are f-d vector spaces of V. Prove that $U_1 + \dots + U_m$ is f-d and

$$\dim(U_1 + \dots + U_m) \le \dim U_1 + \dots + \dim U_m.$$

9. Suppose *V* is *f*-*d* and dim $V = n \ge 1$. Prove that \exists 1-dimensional subspaces of *V*, U_1, \dots, U_n *s.t.*

$$V = U_1 \oplus \cdots \oplus U_n$$
.

10. Suppose U_1, \dots, U_m are f-d vector subspaces of V s.t. $U_1 + \dots + U_m$ is a direct sum. Prove that $U_1 \oplus \dots \oplus U_m$ is f-d and

$$\dim U_1 \oplus \cdots \oplus U_m = \dim U_1 + \cdots + \dim U_m.$$

Hint. *Use mathematical induction.*

Remark. This problem deepens the analogy between direct sums of subspaces and disjoint unions of subsets. Specifically, compare this problem to the following obvious statement: if a set is written as a disjoint union of finite subsets, then the number of elements in the set equals the sum of the numbers of elements in the disjoint subsets.

11. Prove or give a counter example:

$$\dim(U_1 + U_2 + U_3) = \dim U_1 + \dim U_2 + \dim U_3$$
$$-\dim(U_1 \cap U_2) - \dim(U_1 \cap U_3) - \dim(U_2 \cap U_3)$$
$$+ \dim(U_1 \cap U_2 \cap U_3).$$

Hint. Consider $U_1 = \{(x,0) \mid x \in \mathbb{R}\}, \ U_2 = \{(0,y) \mid y \in \mathbb{R}\}, \ U_3 = \{(x,x) \mid x \in \mathbb{R}\}.$

10.4 The Vector Space of Linear Maps

- 1. Suppose $T \in \mathcal{L}(V, W)$ and v_1, \dots, v_m is a vector list in V s.t. Tv_1, \dots, Tv_m is L.I. in W. Prove that v_1, \dots, v_m is L.I..
- 2. Prove that $\mathcal{L}(V, W)$ is a vector space.
- 3. Prove the algebraic properties of products of linear maps.
- 4. Show that every linear map from a 1-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if dim V=1 and $T\in\mathcal{L}(V,V)$, then $\exists\lambda\in\mathbb{F}$ s.t. $Tv=\lambda v\quad\forall v\in V$.

10.5 Null Spaces and Range

- 1. Suppose *V* is a vector space and $S, T \in \mathcal{L}(V, V)$ *s.t.* range $S \subset \text{null } T$. Prove that $(ST)^2 = 0$.
- 2. Prove that \nexists a linear map $T: \mathbb{R}^5 \to \mathbb{R}^5$ s.t. range T = null T.
- 3. Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \dots, v_n is L.I. in V. Prove that Tv_1, \dots, Tv_n is L.I. in W.

10 EXERCISES 10.6 Matrices

- 4. Suppose v_1, \dots, v_n spans V and $T \in \mathcal{L}(V, W)$. Prove that Tv_1, \dots, Tv_n spans range T.
- 5. Suppose U is a 3-dimensional subspace of \mathbb{R}^8 and T is a linear map from \mathbb{R}^8 to \mathbb{R}^5 *s.t.* null T = U. Prove that T is surjective.
- 6. Suppose *V* and *W* are *f-d*. Prove that \exists an injective linear map from *V* to $W \iff \dim V \leq \dim W$.
- 7. Suppose U and V are f-d vector spaces, $S \in \mathcal{L}(V, W)$, and $T \in \mathcal{L}(U, V)$. Prove

$$\dim \operatorname{null} ST \leq \dim \operatorname{null} S + \dim \operatorname{null} T.$$

8. Suppose U and V are f-d vector spaces, $S \in \mathcal{L}(V, W)$, and $T \in \mathcal{L}(U, V)$. Prove

$$\dim \operatorname{range} ST \leq \min \{\dim \operatorname{range} S, \dim \operatorname{range} T\}.$$

9. Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ s.t. $\deg Dp = (\deg p) - 1 \ \forall \ \text{non-constant polynomial} \ p \in \mathcal{P}(\mathbb{R})$.

Remark. The notation D is used above to remind you of the differentiation map that sends a polynomial p to p'. Without knowing the formula for the derivative of a polynomial (except that it reduces the degree by 1), you can use the exercise above to show that for every polynomial $q \in \mathcal{P}(\mathbb{R})$, \exists a polynomial $p \in \mathcal{P}(\mathbb{R})$ s.t. p' = q.

10. Suppose $p \in \mathcal{P}(\mathbb{R})$. Prove that $\exists q \in \mathcal{P}(\mathbb{R})$ s.t. 5q'' + 3q' = p.

Remark. This problem can be solved without using knowledge in Linear Algebra, but it is more interesting to solve with Linear Algebra.

11. Suppose $T \in \mathcal{L}(V, W)$ and let w_1, \dots, w_m be a basis of range T. Prove that $\exists \varphi_1, \dots, \varphi_m \in \mathcal{L}(V, \mathbb{F})$ s.t. $Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m \quad \forall v \in V$.

10.6 Matrices

- 1. Suppose V and W are f-d and $T \in \mathcal{L}(V, W)$. Prove that for any basis in V and W, the matrix for T has at least dim range T non-zero entries.
- 2. If $S, T \in \mathcal{L}(V, W)$, then $\mathcal{M}(S + T) = \mathcal{M}(S) + \mathcal{M}(T)$.
- 3. Suppose $\lambda \in \mathbb{F}$ and $T \in \mathcal{L}(V, W)$. Then, $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

10.7 Invertibility and Isomorphism

- 1. Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are invertible linear maps. Prove that $ST \in \mathcal{L}(U, W)$ is invertible and $(ST)^{-1} = T^{-1}S^{-1}$.
- 2. Suppose V is f-d and $\dim V > 1$. Prove that the set of non-invertible operators on V is not a subspace of $\mathcal{L}(V)$.
- 3. Suppose V is f-d and U is a subspace of V. Let $S \in \mathcal{L}(U,V)$. Prove that \exists invertible operator $T \in \mathcal{L}(V)$ s.t. $Tu = Su \quad \forall u \in U \iff S$ is injective.

10 EXERCISES 10.8 Duality

4. Suppose W is f-d and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that $\operatorname{null} T_1 = \operatorname{null} T_2 \iff \exists$ invertible operator $S \in \mathcal{L}(W)$ s.t. $T_1 = ST_2$.

- 5. Suppose V is f-d and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that range $T_1 = \operatorname{range} T_2 \iff \exists$ invertible operator $S \in \mathcal{L}(V)$ s.t. $T_1 = T_2S$.
- 6. Suppose *V* is *f*-*d* and $S, T \in \mathcal{L}(V)$. Prove that *ST* is invertible \iff both *S* and *T* are invertible.
- 7. Suppose V is f-d and $S, T \in \mathcal{L}(V)$. Prove $ST = I \iff TS = I$.
- 8. Suppose V is f-d and S, T, $U \in \mathcal{L}(V)$ s.t. STU = I. Prove T is invertible and $T^{-1} = US$.
- 9. Suppose V is f-d and R, S, $T \in \mathcal{L}(V)$ s.t. RST is a surjection. Prove that S is an injection.
- 10. Suppose v_1, \dots, v_n is a basis of V. Define a linear map $T: V \to \mathbb{F}^{n,1}$ as $Tv = \mathcal{M}(v)$, where $\mathcal{M}(v)$ is the matrix of $v \in V$ with respect to the basis v_1, \dots, v_n . Prove that T is an isomorphism from V to $\mathbb{F}^{n,1}$.
- 11. Prove that $V \cong \mathcal{L}(\mathbb{F}, V)$.

10.8 Duality

1.