

5 IPB 系统介绍

5.1 IPB 系统组成

如下图所示, IPB 由带电控单元的液压模块和各传感器组成。

- ① 带电控单元的 IPB 液压调节模块
- ② 轮速传感器
- ③ 方向盘转角传感器 (转向系统发出转角信号则无此模块)
- ④ 外置惯性传感器
- ⑤ CAN 网络各模块之间的通信

IPB 工作原理:

- 1、侦测驾驶员意图:通过方向盘的位置、车轮速度、油门位置、制动压力,ECU可识别驾驶员意图;
 - 2、识别车辆状态: 通过横摆角速度、侧向力(加速度), ECU计算并识别车辆状态;
- 3、通过制动介入帮助转向: ECU计算为了保持稳定所需的控制量,液压模块根据需要快速的分别对单个车轮进行制动。此外,IPB还能通过与发动机系统之间互相通信,减小发动机的扭矩输出。

方向盘转角传感器原理:

IPB功能选择性地在各个车轮上施加制动,以试图将车辆保持在驾驶员选择的期望方向上。 转向角用作确定驾驶员选择的期望方向的重要输入。

- 1、方向盘转角信号由转向系统控制器发出;
- 2、测量方向盘当前的转角值,以标准的CAN信号输出。

注意:方向盘转角传感器在车上安装以后需要标定(校准),以确保方向盘中间位置与方向盘转角传感器0°位置一致(即车辆直行时方向盘转角值为0°)。

轮速传感器工作原理:

车轮的旋转速度是控制系统的重要输入变量。 车轮速度传感器检测车轮的旋转速度,并将电信号传递到控制单元。 速度信号用于计算车轮与路面之间的打滑程度。

惯性传感器工作原理:

惯性传感器信号用于计算车辆的实际运动, 如果驾驶员目标方向和车辆的实际运动有很大的不同,惯性传感器会根据测量车辆回转的角速率和角速度或倾角,并进行分析,然后ECU对某个车轮发出控制指令,IPB功能会尝试通过应用有选择地刹车。

5.2 IPB 液压图

制动系统采用 X 型布置如下图所示, IPB 液压调节器包含一个无刷电机、主缸和电磁阀的液压单元以及踏板感模拟器组成。

图中英文简写含义如下:

MC1	制动主缸第一回路	OVFL	左前轮出液阀
MC2	制动主缸第二回路	IVFR	右前轮进液阀
M	马达	OVFR	右前轮出液阀
PSV1	压力控制阀 1	IVRL	左后轮进液阀
PSV2	压力控制阀 2	OVRL	左后轮出液阀
CSV1	行程模拟器阻断阀 1	IVRR	右后轮进液阀
CSV2	行程模拟器阻断阀 1	OVRR	右后轮出液阀
FL	左前轮	HSV1	高压阀
FR	右前轮	HSV2	高压阀
RL	左后轮	USV1	导向阀
RR	右后轮	USV2	导向阀
IVFL	左前轮进液阀	P/U	压力传感器

5.3 IPB ECU 接口电路

5.3.1 IPB ECU 电路图

5.3.2 IPB ECU 针脚定义

J.J.Z II D	100 万种之人				30			
引脚号	端口名称	端口定义	线束接法	信号类型	稳态工 作电流 /A	冲击电流、 冲击时间、 堵转电流。 堵转时形流 (电机类需 提供波形) /A	电源性 质(比 如:常 电)	备注(可否 共用保险 等)
1	GND	电源地	电源地	==	60A		常电	端子镀银, 线径 6mm
11	CAN1-H	高信 号线 1	CAN 高(私有网)	脉冲	150mA		ON	私有 CAN
7	左前轮速传感器	传感 器信 号线	传感器信号线	脉冲	14mA		ON	
8	门灯信号	IPB 唤醒 信号	门灯驱动点亮信 号	脉冲	200mA			左域前舱 B 的 26 号引脚
5	CAN2-H	高信 号线 2	CAN 高 (ESC 网)	脉冲	150mA		ON	公共 CAN
14	VCC	ECU 电源 正	ECU 电源	直流	60A		常电	端子镀银, 线径 6mm, 60A 保 险
25	CAN1-L	低信 号线 1	CAN 低(私有网)	脉冲	150mA		ON	私有 CAN

BYD AUTO

比亚迪 SA3H 车型 IPB 维修手册

20	右后轮速传感器线束	传感 器电 源线	传感器电源线	直流	14mA		ON	
21	左前轮速传感器	传感 器电 源线	传感器电源线	直流	14mA		ON	
23	左后轮速传感器 线束	传感 器信 号线	传感器信号线	脉冲	14mA		ON	
19	CAN2-L	低信 号线 2	CAN 低 (ESC 网)	脉冲	150mA		ON	公共 CAN
26	右前轮速传感器	传感 器信 号线	传感器信号线	脉冲	14mA		ON	
30	GND	电源 地	电源地		60A		常电	端子镀银, 线径 6mm
33	ESC OFF	开关	ESP OFF 开关信 号	脉冲	100mA	.V	ON	
35	HDC 开关	开关	HDC 开关信号	脉冲	200mA		ON	
36	Ignition	电源 线	点火开关	脉冲	14		ON	
37	右后轮速传感器 线束	传感 器信 号线	传感器信号线	脉冲	14mA		ON	
38	液位报警器线束	传感 器信 号线	传感器信号线	脉冲	>5mA			
39	左后轮速传感器 线束	传感 器电 源线	传感器电源线	直流	14mA		ON	
40	AVH 开关	开关	AVH 开关信号	脉冲	100mA		ON	
42	右前轮速传感器	传感 器电 源线	传感器电源线	直流	14mA		ON	
46	vcc	电机 电源 正	电机电源	直流	60A		常电	端子镀银, 线径 6mm, 60A 保险

ECU 接插件示意图:

线束端投影图:

5.3.3 ESP OFF 开关 针脚定义

插开关引脚图

针脚	功能	
1	背光正极	
2	信号输入	
3	接地	4
4	背光负极	1

用此开关可以控制车身稳定系统的开闭

按下 ESP OFF, 仪表显示 ESP 系统指示灯点亮, 表明 ESP 系统关闭; 再次按下 ESP OFF 开关, 仪表显示 ESP 系统指示灯熄灭, ESP 系统开启。

