Вариант №9

Исходные данные:

- число скоростей привода: Z = 12;
- структурная формула привода: Z = 2.2(1 + 2);
- вид структуры: AII;
- знаменатель ряда геометрической прогрессии: $\phi = 1.58$;
- тип станка: вертикально-сверлильный. Принимаем станок модели 2A135.

Порядок выполнения работы

1. Полностью раскрыть структурную формулу с указанием характеристик передач, проверить условие о возможности применения данной формулы в приводе главного движения с определением диапазона регулирования последней переборной группы передач и рассчитать

возможное количество вариантов привода.

Структурная формула привода представляет собой сложенную структуру вида AII, которую в общем виде имеет вид:

$$Z = Z^{O}(1 + Z^{\prime}),$$

где: Z^O – основная структура привода;

Z' - дополнительная структура привода.

Основная структура состоит из двух групп передача $Z^{O} = P^{O}_{1} \cdot P^{O}_{2}$, а дополнительная- из одной группы передач $Z' = P'_1$ Тогда с учетом групп передач структурную формулу можно представить в виде:

$$Z = P_{1}^{O} \cdot P_{2}^{O} (1 + P_{1}) = 2.2 (1 + 2),$$

где: $P_{1}^{O} = P_{2}^{O} = 2$ — основная группа передач;

 $P_1 = 2$, — первая переборная группа передач.

Цифры 2 определяют соответственно количество передач в группе.

С учетом характеристик передач в группе структурная формула представляется как:

$$Z = P^{O}_{Xo1} \cdot P^{O}_{Xo2} (1 + P^{\prime}_{X1}) = 2_{Xo1} \cdot 2_{Xo2} (1 + 2_{X1}),$$

где: $x_{01} = 1 - x$ арактеристика первой основной группы передач;

 $x_{o2} = x_{o1} \cdot P_{1}^{O} = 1 \cdot 2 = 2 - x$ арактеристика второй основной группы передач.

 $x_1 = x_{02} \cdot P_2^0 = 2 \cdot 2 = 4$ характеристика первой переборной группы передач.

Таким образом с учетом групп и характеристик передач структурная формула имеет вид:

$$Z = P_{X_{01}}^{O} \cdot P_{X_{02}}^{O} (1 + P_{X_{1}}^{I}) = 2_{X_{01}} \cdot 2_{X_{02}} (1 + 2_{X_{1}}^{I}) = 2_{1} \cdot 2_{2} (1 + 2_{4}).$$

Проверяем условие применяемости структурной формулы в приводе главного движения, которое записывается как: $R_{\Pi i} = \phi^{Kmax} \le 8$,

где
$$K_{\text{max}} = x_1 = 4$$
.

Диапазон регулирования последней переборной группы передач ($P_1=2_4$) Равен $R_{\text{Пi}}=\phi^{\text{Kmax}}=1,58^4=6,2$ (Условие выполнено).

Определяем возможное количество вариантов привода:

$$B = B_{\text{кон.}} \cdot B_{\text{кин.}};$$

где: $B_{\text{кон}} = K! -$ количество конструктивных вариантов привода;

$$B_{\text{кин}} = \frac{K!}{m!}$$
 - количество кинематических вариантов привода.

Таким образом, общее количество вариантов привода рассчитывается по формуле:

$$B = \frac{(K!)^2}{m!}$$

Для структурной формулы $Z = 2_1 \cdot 2_2 (1 + 2_4)$ и структуры вида AII общее количество вариантов привода определяется по формуле:

$$B = 4 \frac{(K^0!)^2}{m^0!} \frac{(K'!)^2}{m'!};$$

где: к – число групп передач;

т – количество групп с одинаковым числом передач.

В нашем случае $K^0 = m^0 = 2$; K' = m' = 2

Таким образом:
$$B = 4 \frac{(2!)^2}{2!} \frac{(1!)^2}{1!} = 8$$

2. С учетом заданной формулы нарисовать вид структуры и построить структурную сетку.

Структура вида AII представляет собой сложенную структуру с одной дополнительной структурой Z^{\prime} и соединением основной структуры Z^{0} со шпинделем (выходным валов коробки скоростей) посредством муфты M (рис.1).

Рис. 1. Общий вид сложенной структуры вида AII.

Структура привода вида AII, разработанная с учетом структурной формулы $Z=2_1\cdot 2_2\ (1+2_4)$ и однонаправленности вращения шпинделя при передаче движения по различным кинематическим цепям, представлена на рис.2.

Структура привода (рис.2) состоит из 7-ми валов, 3-х двухвенцовых блоков зубчатых колес ($P_1^{\ 0}$, $P_2^{\ 0}$, $P_1^{\ 1}$), трех постоянных зубчатых передач ($i_{n1}^{\ 1}$, $i_{n2}^{\ 1}$, $i_{n3}^{\ 1}$) и соединительной муфты М. В структуре применен дополнительно вал IV и зубчатая передача $i_{n2}^{\ 1}$, обеспечивающие изменение направления вращения шпинделя VII+

Таким образом, для получения 12 различных частот вращения в структуре привода необходимо реализовать 2 кинематические цепи: $Z = Z_1 + Z_2$,

где:
$$Z_1 = P^O_1 \cdot P^O_2 \cdot (M) = 2_1 \cdot 2_2 \cdot (M) = 4$$
 $Z_2 = P^O_1 \cdot P^O_2 \cdot i_{\pi 1} \cdot i_{\pi 2} \cdot i_{\pi 3} \cdot P^I_1 = 2_1 \cdot 2_2 \cdot i_{\pi 1} \cdot i_{\pi 2} \cdot i_{\pi 3} \cdot 2_4 = 8$
Или $Z = Z_1 + Z_2 = 4 + 8 = 12$

Рис. 2. Структура привода вида АІІ с учетом формулы $Z = 2_1 \cdot 2_2 (1 + 2_4)$ и групп передач.

Структурная сетка для $Z = 2_1 \cdot 2_2 (1 + 2_4) = 12$ представлена на рис.3

Рис.3. Структурная сетка привода.

3. Самостоятельно задавшись по ГОСТ параметрами электродвигателя, а также Π_{min} частоты вращения выходного вала коробки скоростей, определить с учетом ϕ и Z промежуточные частоты вращения и Π_{max} . Построить график частот вращения с учетом кинематики заданного станка и определить передаточные отношения передач.

С учетом базового станка по ГОСТ 18399-81 задаемся параметрами электродвигателя привода главного движения:

- тип электродвигателя 4A100S4У3;
- мощность N = 4,0 кBт;
- частота вращения при номинальной мощности $n_{\scriptscriptstyle H} = 1560$ об/мин.

Принимая во внимание частоты вращения базового станка, а также ϕ =1,58 и Z=12 задаемся n_1 = n_{min} =16 об/мин. По Нормали станкостроения H11-1 получаем промежуточные и n_{max} частоты вращения шпинделя:

n ₁ =16 об/мин	n ₂ =25 об/мин	n ₃ =40 об/мин
n ₄ =63 об/мин	$n_5 = 100$ об/мин	n ₆ =160 об/мин
n ₇ =250 об/мин	n_8 =400 об/мин	n ₉ =630об/мин

Шпиндель V приводится в движение электродвигателем N=4.5 кВт через клиноременную передачу 140/178 и коробку скоростей.

На валу I коробки скоростей находится тройной подвижной блок шестерен $\mathbf{5}_1$, обеспечивающий валу II три скорости вращения. От вала II через шестерни 34/48 вращение передается валу III, на котором расположен тройной подвижный блок шестерен $\mathbf{5}_2$, приводящий в движение полый вал IV, связанный шлицевым соединением со шпинделем V. Таким образом. Шпиндель имеет 9 различных скоростей вращения.

Связь привода главного движения с приводом вертикальных подач осуществляется ль вала V посредством зубчатой передачи 27/50.

Рис. 4 – Кинематическая схема станка мод. 2A135

При построении графика частот вращения (рис.5) и разработке кинематической схемы (рис.6) учтены особенности кинематики базового станка и разрабатываемой структуры. Введены дополнительно:

- вал I' с клиноременной передачей, обеспечивающие передачу движения от вала электродвигателя на I входной вал коробки скоростей;
- вал IV с постоянной зубчатой передачей для изменения направления вращения шпинделя по кинематической цепи Z;
- вал VIII с постоянной зубчатой передачей. Данный вал в конечном итоге является шпинделем, т.к. вал VIII соединяется муфтой М с валом III и не может быть полым и выполнять роль шпинделя (см.рис.2).

При построении графика частот вращения шпинделя необходимо принять во внимание, что для $\phi = 1,58$ число допустимых интервалов может быть: понижающих – 1, повышающих – 3.

Рис. 5 – График частот вращения

По рис. 5 определяем передаточные отношения:

- для клиноременной передачи между $I^{|}$ -I валами: $i_p = D_1/D_2 = 1600/1560 = 1/03$. Учитывая, что $i_p = D_1/D_2$ и приняв по базовому станку $D_1 = 140$ мм, получим $D_2 = D_1/i_p = 140/1,03 = 136$ мм;
 - остальных зубчатых передач по формуле $\mathbf{i} = \boldsymbol{\varphi}^{^{\pm \mathrm{m}}}$,

где: m — число повышений (+) или понижений (-) луча на графика частот вращения.

$$\begin{aligned} &\mathbf{i}_{1} = \varphi^{1} = 1.58; & \mathbf{i}_{2} = \varphi^{0} = 1; & \mathbf{i}_{3} = \varphi^{1} = 1,58; & \mathbf{i}_{4} = \varphi^{-1} = \frac{1}{1,58}; & \mathbf{i}_{5}^{1} = \varphi^{0} = 1; & \mathbf{i}_{5} = \varphi^{-3} = 1/1,58^{3}; \\ &\mathbf{i}_{6} = \varphi^{-3} = \frac{1}{1,58^{3}}; & \mathbf{i}_{7} = \varphi^{1} = 1,58; & \mathbf{i}_{8} = \varphi^{-3} = 1/1,58^{3}; & \mathbf{i}_{9} = \varphi^{-1} = 1/1,58; \end{aligned}$$

4. Разработать кинематическую схему привода главного движения (рисунок кинематической схемы базового станка приложить в контрольной работе).

При разработке кинематической схемы привода главного движения (рис.6) учтены следующие особенности базового станка:

- применен электродвигатель с аналогичными базовому станку техническими характеристиками;
- вал электродвигателя \mathbf{I}^{I} соединен с \mathbf{I} валом коробки скоростей ременной передачей;
- применен дополнительно вал и постоянная зубчатая передача для изменения направления вращения шпинделя;
 - применен дополнительно вал VII в качестве шпинделя станка.

Рис. 6. Кинематическая схема привода главного движения

5. Расчет чисел зубьев зубчатых передач и определение кинематической точности (погрешности) частот вращения цепи, в которую входит наиболее нагруженная группа передач.

Наиболее нагруженной группой передач является группа $P_1 = 2_4$ тройного блока B_3 , которая имеет передаточные отношения:

$$i_7 = \frac{Z_{16}}{Z_{17}} = 1,58$$
 $i_8 = \frac{Z_{18}}{Z_{19}} = 1/1,58^3$

Для данной группы передач расчет чисел зубьев колес производим при условии зацепления прямозубых цилиндрических зубчатых колес с одинаковым модулем в группе передач.

Представим передаточные отношения в виде простой дроби $i_x = \frac{f_x}{q_x}$:

$$i_7 = \frac{f_7}{q_7} = 1,58 \approx \frac{11}{7}$$
 $i_8 = \frac{f_8}{q_8} = 1/1,58^3 \approx \frac{1}{4}$

Определяем наименьшее кратное К для сумм (f_x+q_x) :

$$f_7 + q_7 = 11 + 7 = 18$$

$$f_8 + q_8 = 1 + 4 = 5$$

Таким образом К = 90

Определим E_{min} для зубчатой передачи с i_8 :

$$E_{min} = \frac{17(f_8 + q_8)}{K \cdot f_9} = \frac{17(11+7)}{90 \cdot 1} = 0,9$$
 Принимаем $E_{min} = 1$

Сумма чисел зубьев сопряженных колес: $2Z_0 = K \cdot E_{min} = 90 \cdot 1 = 90$

По Нормали H21-5 задавшись модулем зубчатых колес m=3мм получаем $2Z_o$ =90, при этом межосевое расстояние между валами составляет A_{VI-VII} =135мм.

Определяем числа зубьев сопряженных колес:

$$Z_{16} = 2Z_{O} \frac{f_{7}}{f_{7} + q_{7}} = 90 \frac{11}{11 + 7} = 55$$

$$Z_{17} = 2Z_{O} \frac{q_{7}}{f_{7} + q_{7}} = 90 \frac{7}{11 + 7} = 35$$

$$Z_{18} = 2Z_{O} \frac{f_{8}}{f_{8} + q_{8}} = 90 \frac{1}{1 + 4} = 18$$

$$Z_{19} = 2Z_{O} \frac{q_{8}}{f_{8} + q_{8}} = 90 \frac{4}{1 + 4} = 72$$
Проверка: $Z_{16} + Z_{17} = Z_{18} + Z_{19} = 2Z_{O}$

Проверка:
$$Z_{16}+Z_{17}=Z_{18}+Z_{19}=2Z_{O}$$

55+35 = 18+72 = 90

Расчет чисел зубьев остальных зубчатых передач выполняется с учетом Нормали H21-5 решая систему уравнений:

$$\begin{cases} Z_x + Z_x' = 2Z_0 \\ \frac{Z_x}{Z_x'} = i_x \end{cases}$$

Расчет чисел зубьев между I и II валами:

В передаче движения между валами участвуют блок зубчатых колес $Б_1$, имеющие : $i_1=z_4/z_5=1,58$ и $i_2=z_6/z_7=1$. Для обеспечения минимальных радиальных размеров коробки скоростей для i_2 принимаем $z_6=20$. Тогда $z_7=z_7=20$. Таким образом $2Z_0=Z_6+Z_7=20+20=40$. По H21-5 при m=2,5мм принимаем $2Z_0=48$ ($A_{L-II}=60$ мм).

Определяем числа зубьев сопряженных колес:

$$\begin{cases} Z_4 + Z_5 = 48 \\ \frac{Z_4}{Z_5} = 1.58 \end{cases} \quad Z_4 = 1,58 \ Z_5; \quad Z_5 + 1,58 \ Z_5 = 48; \quad Z_5 = 18; \quad Z_4 = 48 - 18 = 30$$

$$\begin{cases} Z_6 + Z_7 = 48 \\ \frac{Z_6}{Z_7} = 1 \end{cases} \quad Z_6 = Z_7 = 48/2 = 24$$

Проверка:
$$Z_4+Z_5=Z_6+Z_7=2Z_0$$

 $30+18=24+24=48$

Расчет чисел зубьев между II и III валами:

В передаче движения между валами участвуют блок зубчатых колес Б2, имеющие : $i_3=z_8/z_9=1,58$ и $i_4=z_{10}/z_{11}=1/1,58$. С целью обеспечения соосности II и VI валов принимаем $A_{\text{II-III}} = A_{\text{VI-VII}} = 135$ мм. Тогда по H21-5 при m=2,5мм имеем $2Z_0 = 108$

$$\begin{cases} Z_8 + Z_9 = 108 \\ \frac{Z_8}{Z_9} = 1{,}58 \end{cases} \quad Z_8 = 1{,}58 \ Z_9; \quad Z_9 + 1{,}58 \ Z_9 = 108; \quad Z_9 = 42; \quad Z_8 = 108-42 = 66$$

$$\begin{cases} Z_{10} + Z_{11} = 108 \\ \frac{Z_{10}}{Z_{11}} = \frac{1}{1{,}58} \end{cases} \quad Z_{11} = 1{,}58 \ Z_{10}; \quad Z_{10} + 1{,}58 \ Z_{10} = 50; \quad Z_{10} = 42; \quad Z_{11} = 108-42 = 66$$
 Проверка: $Z_8 + Z_9 = Z_{10} + Z_{11} = 2Z_0$ $66 + 42 = 42 + 66 = 108$

Расчет чисел зубьев зубчатой передачи между V и VI валами:

Передача движения между валами осуществляется постоянной зубчатой передачей с $i_6 = \frac{Z_{14}}{Z_{15}} = 1/1,58^2$. Для обеспечения минимальных радиальных размеров коробки скоростей принимаем z_{14} =20. Тогда z_{15} = z_{14} ·1,58 2 =20·1,58 2 =50. Таким образом $2Z_0=Z_{14}+Z_{15}=20+50=70$. По H21-5 при m=3мм имеем $2Z_0=70$ (A_{V-} $_{VI}$ =105мм). Таким образом z_{14} =20, z_{15} =50

Расчет чисел зубьев зубчатой передачи между IV и V валами:

Передача движения между валами осуществляется постоянной зубчатой передачей с $i_5 = \frac{Z_{13}}{Z_{13}} = 1/1,58^3$. Для обеспечения минимальных радиальных коробки скоростей принимаем $z_{13} = 20$. Тогда $z_{13}^{\parallel} = z_{13}^{\parallel} \cdot 1,58^3 = 20 \cdot 1,58^3 = 79$. Таким образом $2Z_0 = 20 + 79 = 99$. По H21-5 при m=2,5 mm имеем $2Z_0=96$ ($A_{IV-V}=120$ mm).

Определяем числа зубьев сопряженных колес:

Расчет чисел зубьев между III и IV валами:

Учитывая, что в постоянной зубчатой передаче с $i_{5|} = \frac{Z_{12}}{Z_{...}} = 1$. колесо z_{12} является подвижной зубчатой полумуфтой, принимаем по конструктивным соображениям $z_{12}=35$. Тогда $z_{12}=z_{13}=35$. Сумма зубьев сопряженных колес $2Z_0=35+35=70$. По H21-5 при m=2,5мм имеем $2Z_0=72$ (A_{III-IV}=90мм).

Определяем числа зубьев сопряженных колес:

$$\begin{cases} Z_{12} + Z_{13} = 72 \\ \frac{Z_{12}}{Z_{13}} = 1 \end{cases} \quad Z_{12} = Z_{13} = 72/2 = 36$$

Расчет чисел зубьев между VII и VIII валами:

Для постоянной зубчатой передачи с $i_9 = \frac{Z_{20}}{Z_{21}} = 1/1.58$ принимаем $z_{20} = 30$.

Тогда z_{21} =1.58· z_{20} =1,58·30=48. Таким образом $2Z_{o}$ = Z_{20} + Z_{21} =30+48=78. По H21-5 при m=4мм принимаем $2Z_{o}$ =75 ($A_{VII-VIII}$ =150мм).

Определяем числа зубьев сопряженных колес:

$$\left\{ \begin{matrix} Z_{20} + Z_{21} = 75 \\ Z_{20} \\ Z_{21} \end{matrix} \right. = 1/1.58 \left. \begin{matrix} Z_{21} = 1,58 & Z_{20}; & Z_{20} + 1,58 & Z_{20} = 75; & Z_{20} = 29; & Z_{21} = 75 - 29 = 46 \end{matrix} \right.$$

Для определения кинематической точности привода главного движения кинематических цепей, в состав которых входит наиболее нагруженная группа передач (т.е. для кинематической цепи \mathbb{Z}_2) необходимо составить уравнения кинематического баланса, определить действительные значения частот вращения шпинделя ($n_{1_{\rm I}}$... $n_{8_{\rm I}}$), вычислить величину погрешности по формуле:

$$\Delta n_{_{\rm i}} = \frac{n_{_{\rm i,I}} - n_{_{\rm iH}}}{n_{_{\rm iH}}} \cdot 100\% \qquad \text{и} \qquad \text{сравнить} \qquad \text{ее} \qquad \text{с} \qquad \text{допустимой}$$

$$\left[\Delta n\right] = \pm 10(\varphi - 1) = \pm 10(1,58 - 1) = \pm 5,8\% \; .$$

В рассматриваемой кинематической цепи в передаче движения участвуют ременная и зубчатые передачи, имеющие следующие передаточные отношения:

$$\begin{split} &\mathbf{i}_{\mathrm{p}} = \frac{140}{136}; \qquad \mathbf{i}_{1} = \frac{30}{18}; \qquad \mathbf{i}_{2} = \frac{24}{24}; \qquad \mathbf{i}_{3} = \frac{66}{42}; \qquad \mathbf{i}_{4} = \frac{42}{66}; \qquad \mathbf{i}_{5} = \frac{36}{36}; \quad \mathbf{i}_{5} = \frac{19}{77}; \quad \mathbf{i}_{6} = \frac{20}{50}; \qquad \mathbf{i}_{7} = \frac{55}{35}; \\ &\mathbf{i}_{8} = \frac{18}{72}; \quad \mathbf{i}_{9} = \frac{29}{46} \\ &\mathbf{n}_{1} = 1560 \frac{140}{136} 0.98 \frac{24}{24} \frac{42}{66} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{18}{72} \frac{29}{46} = 15.706 / \text{мин} \qquad \Delta \mathbf{n}_{1} = \frac{15.7 - 16}{16} 100 = 3.9 \% \\ &\mathbf{n}_{2} = 1560 \frac{140}{136} 0.98 \frac{30}{18} \frac{42}{66} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{18}{72} \frac{29}{46} = 25.906 / \text{мин} \qquad \Delta \mathbf{n}_{2} = \frac{25.9 - 25}{25} 100 = 3.6 \% \\ &\mathbf{n}_{3} = 1560 \frac{140}{136} 0.98 \frac{30}{18} \frac{42}{42} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{18}{72} \frac{29}{46} = 38.506 / \text{мин} \qquad \Delta \mathbf{n}_{3} = \frac{38.5 - 40}{40} 100 = 1.7 \% \\ &\mathbf{n}_{4} = 1560 \frac{140}{136} 0.98 \frac{30}{18} \frac{66}{42} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{18}{72} \frac{29}{46} = 64.106 / \text{мин} \qquad \Delta \mathbf{n}_{4} = \frac{64.1 - 63}{63} 100 = 1.8 \% \\ &\mathbf{n}_{5} = 1560 \frac{140}{136} 0.98 \frac{24}{24} \frac{42}{66} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{55}{35} \frac{29}{46} = 163.206 / \text{мин} \qquad \Delta \mathbf{n}_{6} = \frac{97.9 - 100}{100} 100 = 2.1 \% \\ &\mathbf{n}_{6} = 1560 \frac{140}{136} 0.98 \frac{30}{18} \frac{42}{66} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{55}{35} \frac{29}{46} = 163.206 / \text{мин} \qquad \Delta \mathbf{n}_{6} = \frac{163.2 - 160}{160} 100 = 2.0 \% \\ &\mathbf{n}_{7} = 1560 \frac{140}{136} 0.98 \frac{30}{18} \frac{42}{66} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{55}{35} \frac{29}{46} = 24206 / \text{мин} \qquad \Delta \mathbf{n}_{6} = \frac{403 - 400}{400} 100 = 0.8 \% \\ &\mathbf{n}_{8} = 1560 \frac{140}{136} 0.98 \frac{30}{18} \frac{66}{42} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{55}{35} \frac{29}{46} = 24206 / \text{мин} \qquad \Delta \mathbf{n}_{6} = \frac{403 - 400}{400} 100 = 0.8 \% \\ &\mathbf{n}_{8} = 1560 \frac{140}{136} 0.98 \frac{30}{18} \frac{66}{42} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{55}{35} \frac{29}{46} = 40306 / \text{мин} \qquad \Delta \mathbf{n}_{6} = \frac{403 - 400}{400} 100 = 0.8 \% \\ &\mathbf{n}_{8} = 1560 \frac{140}{136} 0.98 \frac{30}{18} \frac{66}{42} \frac{36}{36} \frac{19}{77} \frac{20}{50} \frac{55}{35} \frac{29}{46} = 40306 / \text{мин} \qquad \Delta \mathbf{n}_{6} = \frac{403 - 400}{400} 100 = 0.8 \% \\ &\mathbf{n}_{8} = 1560 \frac{140}{136} 0.98 \frac{10}{18} \frac{10}{18} \frac{10}{18} \frac{10}{18} \frac{10}{18}$$

Величина погрешности находится в пределах допустимой, что указывает на то, что кинематическая точность цепей обеспечена.

6. Рассчитать мощность и крутящий момент на валах привода, предварительно рассчитать диаметры валов.

Расчет мощности на валах привода главного движения производится по формуле:

где $\eta_p = 0.85 - \kappa$ пд ременной передачи

 $N_1 = 4.0.85 = 3.4 \text{ kBt}.$

- на остальных валах: $N_i = N_{i,1} \cdot \eta_s \cdot \eta_n^2 / [\kappa B_T]$

где: η₃=0,97 – КПД зубчатой передачи;

 $\dot{\eta}_{\pi}$ =0,99 – КПД подшипников качения.

Учитывая, что $\eta_{_3} \cdot \eta_{_\Pi} = 0.97 \cdot 0.99^2 = 0.95$, получаем $N_{_i} = 0.95 \cdot N_{_{i-1}}$, [кВг]

$$N_{_{\mathrm{II}}} = 0.95 \cdot N_{_{\mathrm{I}}} = 0.95 \cdot 3.4 = 3.2 \,\mathrm{kBt}$$

$$N_{III} = 0.95 \cdot N_{II} = 0.95 \cdot 3.2 = 3.0 \text{ kBT}$$

$$N_{IV} = 0.95 \cdot N_{III} = 0.95 \cdot 3.0 = 2.85 \text{ kBT}$$

$$N_v = 0.95 \cdot N_{iv} = 0.95 \cdot 2.85 = 2.7 \text{ kBT}$$

$$N_{yI} = 0.95 \cdot N_y = 0.95 \cdot 2.7 = 2.56 \text{ kBT}$$

$$N_{VII} = 0.95 \cdot N_{VI} = 0.95 \cdot 2.56 = 2.4 \text{ kBT}$$

$$N_{viii} = 0.95 \cdot N_{vii} = 0.95 \cdot 2.4 = 2.3 \text{ kBT}$$

Максимальные крутящие моменты на валах привода определяются по формулам:

- на I валу: $M_{I} = M_{IB} \eta_{D}$, нм;

где:
$$M_{_{\mathrm{дB.}}} = \frac{N_{_{\mathrm{дB.}}} \cdot 10^3 \cdot 60}{2 \cdot \pi \cdot \mathrm{n}_{_{\mathrm{H}}}} = \frac{4.0 \cdot 10^3 \cdot 60}{2 \cdot 3.14 \cdot 1560} = 24,5 \,\mathrm{HM}$$
 — крутящий момент на валу

электродвигателя.

$$M_{_{\rm I}} = \frac{24,5}{1,03} \cdot 0,85 = 20,2$$
hm

- на последующих валах:
$$M_{_{\mathrm{i}}}=\frac{M_{_{\mathrm{i-1}}}}{\mathrm{i}_{_{\mathrm{min}}}}\eta_{_{\scriptscriptstyle 3}}\cdot\eta^{_{_{_{\mathrm{II}}}}}=\frac{M_{_{\mathrm{i-1}}}}{\mathrm{i}_{_{\mathrm{min}}}}0,95$$
нм

$$M_{II} = \frac{M_{I}}{i_{2}} 0.95 = 20.2 \cdot 1 \cdot 0.95 = 19.2 \text{HM}$$

$$M_{_{\rm II}} = \frac{M_{_{\rm I}}}{i_{_2}}0,95 = 20,2 \cdot 1 \cdot 0,95 = 19,2 \text{HM}$$

$$M_{_{\rm III}} = \frac{M_{_{\rm II}}}{i_{_4}}0,95 = 19,2 \cdot 1,58 \cdot 0,95 = 28,8 \text{HM}$$

$$M_{_{\mathrm{IV}}} = \frac{M_{_{\mathrm{III}}}}{i_{_{5}}^{!}} 0,95 = 28,8 \cdot 1 \cdot 0,95 = 27,4 \text{HM}$$

$$M_{\text{IV}} = \frac{M_{\text{III}}}{i_5^{||}} 0,95 = 28,8 \cdot 1 \cdot 0,95 = 27,4 \text{HM}$$

$$M_{\text{V}} = \frac{M_{\text{IV}}}{i_5} 0,95 = 27,4 \cdot 1,58^3 \cdot 0,95 = 102,5 \text{HM}$$

$$M_{_{VI}} = \frac{M_{_{VI}}}{i_{_{6}}}0,95 = 102,5 \cdot 1,58^{^{2}} \cdot 0,95 = 243 \text{Hm} \qquad \qquad M_{_{VII}} = \frac{M_{_{VI}}}{i_{_{8}}}0,95 = 243 \cdot 1,58^{^{3}} \cdot 0,95 = 911 \text{Hm}$$

$$M_{VII} = \frac{M_{VI}}{i_8} 0,95 = 243 \cdot 1,58^3 \cdot 0,95 = 911 \text{Hm}$$

$$M_{\text{VIII}} = \frac{M_{\text{VII}}}{i_{\text{o}}} 0,95 = 911 \cdot 1,58 \cdot 0,95 = 1367 \text{Hm}$$

Предварительное определение диаметров валов:

$$d_{i} = \sqrt[3]{\frac{M_{i} \cdot 10^{3}}{0, 2 \cdot [\tau]}}, MM$$

где: $[\tau]=18...23$ МПа – допускаемое напряжение материала вала на кручение.

Принимаем [т]=20 МПа. Учитывая постоянную данной формулы $(\frac{10^3}{0,2\cdot[\tau]} = \frac{10^3}{0,2\cdot20} = 250$), окончательно получаем: $d_i = \sqrt[3]{M_i\cdot250}$, Принимаем $d_{r} = 20$ мм $d_{x^{\perp}} = \sqrt[3]{24.5 \cdot 250} = 18 \text{MM}$ $d_{I} = \sqrt[3]{20, 2 \cdot 250} = 17 \text{ MM}$ Принимаем $d_{\tau} = 20$ мм $d_{\pi} = \sqrt[3]{19,2 \cdot 250} = 16 \text{MM}$ Принимаем $d_{\pi} = 20$ мм $d_{III} = \sqrt[3]{28.8 \cdot 250} = 19 \text{MM}$ Принимаем $d_{III} = 20$ мм $d_{rv} = \sqrt[3]{27,4 \cdot 250} = 18 \text{MM}$ Принимаем $d_{1V} = 20 MM$ $d_v = \sqrt[3]{102,5 \cdot 250} = 28 \text{MM}$ Принимаем $d_v = 30$ мм $d_{v_I} = \sqrt[3]{243 \cdot 250} = 39 \text{MM}$ Принимаем $d_{VI} = 40 \text{MM}$ $d_{VII} = \sqrt[3]{911 \cdot 250} = 62 \text{MM}$ Принимаем $d_{yII} = 65 \text{MM}$ $d_{viii} = \sqrt[3]{1367 \cdot 250} = 39 \text{mm}$ Принимаем $d_{VIII} = 70 \text{MM}$

Для VI и VII валов наиболее нагруженной группы передач с учетом базового станка выбираем подшипники качения по ГОСТ 8338-75:

- для VI вала шарикоподшипник радиальный однорядный 308: внутренний диаметр d=40мм, наружный диаметр D=90мм, ширина B=27мм;
- для VII вала: шарикоподшипник радиальный однорядный 313: внутренний диаметр d=65мм, наружный диаметр D=140мм, ширина B=32мм;

7. Рассчитать геометрические параметры зубчатых колес и межосевое расстояние между валами.

Геометрические параметры зубчатых колес определяются по формулам(мм):

- делительный диаметр $d = m \cdot z$;
- диаметр вершин зубьев d_a =d+2m(1+x);
- диаметр впадин зубьев d_f =d-2m(1,25-x);
- ширина зубчатого колеса в₁= $\psi_{_a}\cdot A_{_{;}}$ ψ_a =0,12;
- ширина шестерни $\mathbf{B}_{2} = 1,12 \cdot \mathbf{B}_{1}$

Коэффициент смещения для прямозубых зубчатых колес x=0

Результаты расчета сведены в таблицы 1 и 2.

Таблица 1

Геометрические параметры зубчатых колес наиболее нагруженной группы передач

Колесо/	Расчетные параметры					
/Шестерня	m,	Z	d,	d _a ,	$d_{f,}$	В,
	MM		MM	MM	MM	MM
Z_{16}/Z_{17}	3	55/ /35	165/ 105	171/ 111	161/ 101	16/ /18
Z_{18}/Z_{19}	3	18/72	54/ 216	60/222	50/212	16/ /18

Делительные диаметры зубчатых колес привода

Парамет	z_4	z_6	Z _{8\} /	Z ₁₀ /	z ₁₂ /	Z ₁₃ /	Z ₁₄ /	z ₂₀ /	
ры	$/z_5$	$/\mathbf{z}_7$	$/z_9$	$/\mathbf{z}_{11}$	$/\mathbf{z}_{13}$	$/z_{13^{\parallel}}$	$/\mathbf{Z}_{15}$	$/\mathbf{z}_{21}$	
m, mm		2,5					3	4	
Z	30/18	24/24	66/42	42/66	36/ 36	19/ ₇₇	$\frac{20}{50}$	29/ ₄₆	
	75	60	165	105	90	47	60/	116/	
d, мм	$\frac{-}{45}$	60		165	90	$\frac{1}{192}$	/150	/184	
			105						

Расчет межосевых расстояний:

$$A = \frac{\sum Z \cdot m}{2}, MM$$

 $A_{I}^{|}$ - $_{I}$ – принимается конструктивно

$$A_{\text{II-II}} = \frac{48 \cdot 2,5}{2} = 60 \text{ MM}$$

$$A_{\text{II-II}} = \frac{108 \cdot 2,5}{2} = 135 \text{ MM}$$

$$A_{\text{III-IV}} = \frac{72 \cdot 2,5}{2} = 90 \text{ MM}$$

$$A_{\text{IV-V}} = \frac{96 \cdot 2,5}{2} = 120 \text{ MM}$$

$$A_{\text{V-VI}} = \frac{70 \cdot 3}{2} = 105 \text{ MM}$$

Расчет межосевого расстояния между VI-VII валами наиболее нагруженной группы передач производится из условия контактной прочности зубчатых колес:

$$A_{\text{VI-VII}} = \left(\frac{1}{i_8} + 1\right)_{3}^{3} \sqrt{\left(\frac{340000}{\left[\sigma_{\text{K}}\right] \cdot 1/i_8}\right)^2 \cdot \frac{1}{\psi_{\text{a}}} \cdot \frac{\kappa \cdot N}{n}}, [\text{cm}],$$

где: $[\sigma_{\kappa}] = 5880 \text{ кгс/см}^2 - допускаемое напряжение контактной прочности$ зубчатого колеса;

 $\psi_a = 0,12...0,15$ — коэффициент ширины венца колеса;

$$\kappa = 1,3...1,5$$
 – коэффициент нагрузки.
$$A_{\text{VI-VII}} = (14+1)\sqrt[3]{\left(\frac{340000}{5880\cdot 4}\right)^2 \cdot \frac{1}{0,12} \cdot \frac{1,3\cdot 2,4}{25}} = 30 \text{ cm} = 300 \text{ mm}.$$

Учитывая, что по условиям контактной прочности зубатого колеса межосевое расстояние между валами VI-VII наиболее нагруженной группы передач допускается до 300 мм, принимаем ранее рассчитанное $A_{VI-VII} = 135$ мм.

8. Разработать эскизную компоновку коробки скоростей.

При разработке эскизной компоновки свертки коробки скоростей привода главного движения применены формулы и выполнены следующие расчеты:

- толщина корпуса: $\delta = 0.025 \cdot A + 3 = 0.025 \cdot 135 + 3 = 6.4 \text{ мм}$;
- расстояние от торца зубчатого колеса до внутренней стенки корпуса: $a = (1,0...1,2)\delta = 1,2 \cdot 6,4 = 7,8 \text{ MM}$
- расстояние от наибольшего диаметра колеса до смежного вала:

$$c \ge 0.4\delta = 0.4 \cdot 6.4 = 2.6 \text{ mm}$$

- минимальное расстояние между торцами соседних зубчатых колес: $e = (0,4...0,6) \delta = 0,6 \cdot 6,4 = 3,8 \, \text{мм}$
- расстояние от венца зубчатого колеса до днища корпуса:

$$b \ge 3\delta = 3.6, 4 = 19,2 \text{ mm}$$

- толщина крышки: $\delta_1 = (0,7...0,8)\delta = 0,7 \cdot 6,4 = 5,1$ мм

Рис. 7. Эскизная компоновка свертки коробки скоростей.

9. Уточненный расчет наиболее нагруженного вала.

Наиболее нагруженным валов в последней переборной группе передач (наиболее нагруженной группе передач) коробки скоростей является VII вал, передающий крутящий момент $M_{\kappa p}=911$ нм зубчатой передачей $z_{18}/z_{19}=18/72$.

Далее крутящий момент зубчатой передачей z_{20}/z_{21} =29/46 передается на вал VIII привода главного движения.

Схема нагружения VII вала и эпюры моментов, действующие на него, представлены на рис.8. Компоновочные размеры, осевое и радиальное размещение зубчатых колес на валах наиболее нагруженной группы передач, а также расстояние между опорами определены из рис.9.

Условные обозначения, принятые в расчете и на рис.8:

- $R_{A}^{\ \Gamma}$, F_{r} , $F_{t}^{\ \prime}$ $R_{B}^{\ \Gamma}$ силы и реакции, действующие в горизонтальной плоскости;
- плоскости; $R_A^{\ B}$, $F_r^{\ I}$, F_t , $R_B^{\ B}$ силы и реакции, действующие в вертикальной плоскости.

Определяем силы, действующие в зубчатых зацеплениях:

- в передаче
$$\frac{z_{18}}{z_{19}}$$
: $F_{t} = \frac{2M_{\text{кр.vII}}}{D_{19}} = \frac{2 \cdot 911}{0,216} = 8435 \text{ H}$

$$F_r = F_t \cdot tg \alpha = 8435 \cdot 0.364 = 3070 \text{ H};$$

- в передаче
$$\frac{\mathbf{z}_{20}}{\mathbf{z}_{21}}$$
: $\mathbf{F}^{\text{I}}_{\text{t}} = \frac{2\mathbf{M}_{\text{кр.VIII}}}{\mathbf{D}_{21}} = \frac{2 \cdot 1367}{0,184} = 14859 \,\text{н}$

$$F_r^l = F_t^l \cdot tg \alpha = 14859 \cdot 0,364 = 5408 \,\mathrm{H}.$$

Определяем реакции в опорах:

- горизонтальная плоскость:

$$\begin{split} \sum \mathbf{M}_{\mathbf{A}} &= 0 & -\mathbf{F}_{\mathbf{r}} \cdot 0.15 - \mathbf{R}_{\mathbf{B}}^{\ \Gamma} \cdot 0.43 - \mathbf{F}_{\mathbf{t}}^{\mathbf{l}} \cdot 0.19 = 0 \\ \mathbf{R}_{\mathbf{B}}^{\ \Gamma} &= -\frac{\mathbf{F}_{\mathbf{r}} \cdot 0.15 + \mathbf{F}_{\mathbf{t}}^{\mathbf{l}} \cdot 0.19}{0.24} = -\frac{3070 \cdot 0.15 + 14859 \cdot 0.19}{0.24} = -13680 \, \mathrm{H} \\ \sum \mathbf{M}_{\mathbf{B}} &= 0 & \mathbf{R}_{\mathbf{A}}^{\ \Gamma} \cdot 0.24 + \mathbf{F}_{\mathbf{r}} \cdot 0.09 + \mathbf{F}_{\mathbf{t}}^{\mathbf{l}} \cdot 0.05 = 0 \\ \mathbf{R}_{\mathbf{A}}^{\ \Gamma} &= -\frac{\mathbf{F}_{\mathbf{t}}^{\mathbf{l}} \cdot 0.05 + \mathbf{F}_{\mathbf{r}} \cdot 0.09}{0.24} = -\frac{3070 \cdot 0.09 + 14859 \cdot 0.05}{0.24} = -4245 \, \mathrm{H} \end{split}$$

- вертикальная плоскость:

$$\begin{split} & \sum M_{_{\rm A}} = 0 & -F_{_{\rm t}} \cdot 0.15 - R_{_{\rm B}}{^{\rm B}} \cdot 0.24 - F_{_{\rm r}}^{||} \cdot 0.19 = 0 \\ & R_{_{\rm B}}{^{\rm B}} = -\frac{F_{_{\rm t}} \cdot 0.15 + F_{_{\rm r}}^{||} \cdot 0.19}{0.24} = -\frac{8435 \cdot 0.15 + 5408 \cdot 0.19}{0.24} = -9552 \, \mathrm{H} \\ & \sum M_{_{\rm B}} = 0 & R_{_{\rm A}}{^{\rm B}} \cdot 0.24 + F_{_{\rm t}} \cdot 0.09 + F_{_{\rm r}}^{||} \cdot 0.05 = 0 \\ & R_{_{\rm A}}{^{\rm B}} = -\frac{F_{_{\rm r}}^{||} \cdot 0.05 + F_{_{\rm t}} \cdot 0.09}{0.24} = -\frac{8435 \cdot 0.09 + 5408 \cdot 0.05}{0.24} = -4289 \, \mathrm{H} \end{split}$$

Полные реакции в опорах:

$$\begin{split} R_{_{\rm A}} &= \sqrt{\left(R_{_{\rm A}}^{^{\Gamma}}\right)^2 + \left(R_{_{\rm A}}^{^{B}}\right)^2} \\ R_{_{\rm B}} &= \sqrt{\left(R_{_{\rm B}}^{^{\Gamma}}\right)^2 + \left(R_{_{\rm B}}^{^{B}}\right)^2} \\ &= \sqrt{13680^2 + 9552^2} \\ &= 15684\,\mathrm{H} \end{split}$$

Изгибающие моменты:

- в горизонтальной плоскости:

$$\begin{aligned} \mathbf{M_{M}}^{C} &= \mathbf{R_{A}}^{\Gamma} \cdot 0.15 = -4245 \cdot 0.15 = -636 \, \text{HM} \\ \mathbf{M_{M}}^{D} &= \mathbf{R_{A}}^{\Gamma} \cdot 0.19 + \mathbf{F_{r}} \cdot 0.04 = -4245 \cdot 0.19 + 3070 \cdot 0.04 = -683 \, \text{HM} \\ \mathbf{M_{M}}^{B} &= \mathbf{R_{A}}^{\Gamma} \cdot 0.24 + \mathbf{F_{r}} \cdot 0.09 + \mathbf{F_{t}}^{\parallel} \cdot 0.05 = -4245 \cdot 0.24 + 3070 \cdot 0.09 + 14859 \cdot 0.05 = 0 \end{aligned} \qquad \textbf{B}$$

вертикальной плоскости:

$$\begin{split} \mathbf{M_{M}}^{C} &= \mathbf{R_{A}}^{B} \cdot 0.15 = -4289 \cdot 0.15 = -642 \text{ HM} \\ \mathbf{M_{M}}^{D} &= \mathbf{R_{A}}^{B} \cdot 0.19 + \mathbf{F_{t}} \cdot 0.04 = -4289 \cdot 0.19 + 8435 \cdot 0.04 = -477 \text{ HM} \\ \mathbf{M_{M}}^{B} &= \mathbf{R_{A}}^{B} \cdot 0.24 + \mathbf{F_{t}} \cdot 0.09 + \mathbf{F_{r}}^{\dagger} \cdot 0.05 = -4289 \cdot 0.24 + 8435 \cdot 0.09 + 5408 \cdot 0.05 = 0 \end{split}$$

Результирующие изгибающие моменты:

$$M_{_{
m H}}{^{^{\rm C}}} = \sqrt{636^2 + 642^2} = 803 \, {
m HM}$$
 $M_{_{
m H}}{^{^{\rm D}}} = \sqrt{683^2 + 477^2} = 733 \, {
m Hm}$

Эквивалентные моменты:

$$M_{\rm 3KB}^{\quad C} = \sqrt{\left(M_{_{\rm M}}^{\quad C}\right)^2 + M_{_{\rm KP}}^{\quad 2}} = \sqrt{803^2 + 911^2} = 1274 \text{ HM}$$

$$M_{\rm 3KB}^{\quad D} = \sqrt{\left(M_{_{\rm M}}^{\quad B}\right)^2 + M_{_{\rm KP}}^{\quad 2}} = \sqrt{733^2 + 911^2} = 1113 \text{ HM}$$

Определяем диаметр VII вала:

$$d_{\text{VII}} = \sqrt[3]{\frac{M_{\text{ЭКВ}}}{0,1\cdot\left[\sigma_{-1}\right]_{\text{H}}}},$$
 где: $\left[\sigma_{-1}\right]_{\text{H}} = 5\cdot10^7\,\frac{\text{H}}{\text{M}^2}$ - допускаемое напряжение материала вала

на изгиб.

$$d_{VII} = \sqrt[3]{\frac{1274}{0,1 \cdot 5 \cdot 10^7}} = 0.062 \text{M} = 62 \text{MM}$$

Принимаем диаметр VII вала $d_{VII} = 65$ мм

Рис. 8. Схема нагружения VII вала и эпюры моментов

10. Разработать компоновочную схему наиболее нагруженной группы передач.

Рис. 9. Компоновочная схема развертки наиболее нагруженной группы передач

11. Разработать механизм управления перемещением блока зубчатых колес наиболее нагруженной группы передач и рассчитать угол поворота рукоятки управления

Двойной блок $Б_3$, находящийся на VI валу перемещается от поворота рукоятки P (рис.10). Этот поворот передается через зубчатый сектор 1, колеса 2 и 3 и далее на вилку 5, на которой жестко закреплена рейка 4, перемещающаяся вдоль оси A.

Длина перемещения блока F_4 составляет L=l+2·20, где l=60мм — длина блока (см.рис.9)

Тогда L=90+2·20=100мм.

Определяем число оборотов промежуточного валика (оси A): $n_A = \frac{L}{\pi mz}$, где m, z — модуль и число зубьев колес 2 и 3 . Принимаем m=2мм, z=18. Тогда $n_A = \frac{100}{3.14 \cdot 2 \cdot 18} = 0,88 o \delta$

Число оборотов рукоятки P составляет $n_{p} = \frac{n_{A}}{i_{3,C}}$,

где $i_{3.C.}$ – передаточное отношение зубчато-секторной передачи.

 $i_{3.C.} = \frac{R_2}{R_1}$, где R_1 и R_2 — соответственно радиусы зубчатого колеса 2 и сектора 1.

 $R_1 = mz/2 = 2 \cdot 18/2 = 18$ мм. Принимаем $R_2 = 150$ мм.

Тогда $n_{\rm p}=\frac{n_{\rm b}}{R_{\rm 2}/R_{\rm 1}}=\frac{n_{\rm b}\cdot R_{\rm 1}}{R_{\rm 2}}=\frac{0.88\cdot 18}{150}0.106o \delta$, что соответствует углу поворота рукоятки α =0,106·360 0 =38,2 0 .

Рисунок 10 – Механизм управления блоком Б₃ зубчатых колес

12. Начертить сборочный чертеж развертки наиболее нагруженной группы передач.

Рисунок 11- Сборочный чертеж наиболее нагруженной группы передач

ЛИТЕРАТУРА

- 1. Тарзиманов Г.А. Проектирование металлорежущих станков. 3-е изд. М.: Машиностроение, 1980. 288с.
- 2. Пуш В.Э. Конструирование металлорежущих станков. М.: Машиностроение, 1977.- 385c.
- 3. Проников А.С. Расчет и конструирование металлорежущих станков. М.: Высшая школа, 1967.- 450с.
- 4. Тепинкичиев В.К. Металлорежущие станки. М.: Машиностроение, 1972.- 464c.
- 5. Кочергин А.И. Конструирование и расчет металлорежущих станков и станочных комплексов, Курсовое проектирование: Учеб. Пособие для вузов. Мн.: Высш. Шк, 1991.-282с.
- 6. Свирщевский Ю.И. Расчет и конструирование коробок скоростей и подач. Мн. Высш. Шк., 1976.-590с.
- 7. Лепший А.П.. Михайлов М.И. Практическое пособие к лабораторным и практическим занятиям по теме: «Расчет кинематики и изучение конструкции привода главного движения универсальных станков» по курсу «Конструирование станков» для студентов спец. Т.03.01.00.-Гомель: ГГТУ, 1998.-37с. (№2322).