Stacks

CSE, POSTECH

Stacks

- Linear list
- One end is called top.
- Other end is called bottom.
- Additions to and removals from the top end only.

Stack of Cups

- Add a cup on the stack.
- Remove a cup from the stack.
- A stack is a LIFO (Last-In, First-Out) list.
- Read Example 8.1

Observations on Stack & Linear List

- Stack is a restricted version of linear list
 - All the stack operations can be performed as linear list operations
- If we designate the left end of the list as the stack bottom and the right as the stack top
 - Stack add (push) operation is equivalent to inserting at the right end of a linear list
 - Stack delete (pop) operation is equivalent to <u>deleting</u>
 <u>from the right end</u> of a linear list

Stack ADT

```
AbstractDataType stack {
    instances
        linear list of elements; one end is the bottom; the other is the top.
    operations
        empty(): Return true if stack is empty, return false otherwise;
        size(): Return the number of elements in the stack;
        top(): Return top element of stack;
        pop(): Remove the top element from the stack;
        push(x): Add element x at the top of the stack;
}
```

See the C++ abstract class stack definition in Program 8.1

Derived Classes and Inheritance

- Stack can be defined as a special type of linear list
- Class B may inherit members of class A in one of three basic modes: public, protected and private

class B: public A

- protected members of A become protected members of B
- public members of A become public members of B
- cannot access private members of A

class B: public A, private C

 public and protected members of C become private members of B

Array-based Representation of Stack

- Since stack is a restricted version of linear list, we can use an array-based representation of linear list (given in Section 5.3.3) to represent stack
- Top of stack → element[length-1]
- Bottom of stack → element[0]
- The class derivedArrayStack defined in Program
 8.2 is a derived class of arrayList<T> (Program 5.3)

Derived Array-based class Stack

```
template<class T>
                       // program 8.2
class derivedArrayStack: private arrayList<T>, public stack<T>
  public:
    derivedArrayStack(int initialCapacity = 10)
     : arrayList<T> (initialCapacity) {}
    bool empty() const
       {return arrayList<T>::empty();}
    int size() const
      {return arrayList<T>::size();}
    T& top()
        if (arrayList<T>::empty())
         throw stackEmpty();
        return get(arrayList<T>::size() - 1);
    void pop()
         if (arrayList<T>::empty())
           throw stackEmpty();
         erase(arrayList<T>::size() - 1);
    void push(const T& theElement)
       {insert(arrayList<T>::size(), theElement);}
};
```

Base Class arrayStack

- We learned that a stack class can be defined by extending an arrayList class as in Program 8.2
- However, this is not a very efficient implementation
- A faster implementation is to develop a base class that uses an array stack to hold the stack elements
- Program 8.4 is a faster implementation of an array stack
- Read Section 8.3.2

Efficiency of Array-based Representation

- Array-based representation of a stack can waste space when multiple stacks are to coexist
- An exception is when only two stacks are to coexist
- How do we implement two stacks in an array?
 - Fix the bottom of one stack at position 0
 - Fix the bottom of the other at position MaxSize-1
 - The two stacks grow toward the middle of the array
- See Figure 8.4

Linked Representation of Stack

- Multiple stacks can be represented efficiently using a chain for each stack
- Which end of chain should be the stack top?
 - If we use the right end of the chain as the stack top, then stack operations push and pop are implemented using chain operations insert(n,x) and erase(n-1) where n is the number of nodes in the chain $\rightarrow \Theta(n)$ time
 - If we use the left end of the chain as the stack top, then insert(0,x) and $erase(0) \rightarrow \Theta(1)$ time
- What should the answer be?
 - Left end!
- See Program 8.5 for linked stack definition

Application: Parenthesis Matching

- Problem: match the left and right parentheses in a character string
- (a*(b+c)+d)
 - Left parentheses: position 0 and 3
 - Right parentheses: position 7 and 10
 - Left at position 0 matches with right at position 10
- (a+b))*((c+d)
 - -(0,4)
 - Right parenthesis at 5 has no matching left parenthesis
 - -(8,12)
 - Left parenthesis at 7 has no matching right parenthesis

Parenthesis Matching

- (((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)
 - Output pairs (u,v) such that the left parenthesis at position u is matched with the right parenthesis at v.
 (2,6) (1,13) (15,19) (21,25) (27,31) (0,32) (34,38)
- How do we implement this using a stack?
 - Scan expression from left to right
 - When a left parenthesis is encountered, add its position to the stack
 - 3. When a right parenthesis is encountered, remove matching position from the stack

Example of Parenthesis Matching

$$(((a+b)*c+d-e)/(f+g)-(h+j)*(k-1))/(m-n)$$

stack
$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 15 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 21 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

output

(2,6) (1,13) (15,19) $(21,25)\cdots$

- See Program 8.6
- Do the same for (a-b)*(c+d/(e-f))/(g+h)

Application: Towers of Hanoi

- Read the ancient Tower of Brahma ritual (p. 285)
- n disks to be moved from tower A to tower C with the following restrictions:
 - Move 1 disk at a time
 - Cannot place larger disk on top of a smaller one

Let's solve the problem for 3 disks

Towers of Hanoi (1, 2)

Towers of Hanoi (3, 4)

Towers of Hanoi (5, 6)

Towers of Hanoi (7)

 So, how many moves are needed for solving 3disk Towers of Hanoi problem?

Time complexity for Towers of Hanoi

- A very elegant solution is to use recursion. See
 Program 8.7 for Towers of Hanoi recursive function
- The minimum number of moves required is $2^{n}-1$
- Time complexity for Towers of Hanoi is $\Theta(2^n)$, which is exponential!
- Since disks are removed from each tower in a LIFO manner, each tower can be represented as a stack
- See Program 8.8 for Towers of Hanoi using stacks

- n > 0 gold disks to be moved from A to C using B
- move top n-1 disks from A to B using C

move top disk from A to C

move top n-1 disks from B to C using A

- moves(n) = 0 when n = 0
- $moves(n) = 2*moves(n-1) + 1 = 2^n-1 \text{ when } n > 0$

64-disk Towers of Hanoi Problem

- How many moves is required to move 64 disks?
 - \rightarrow moves(64) = 2^{64} -1 = 1.8 * 10^{19} (approximately)
- How long would it take to move 64 gold disks by the Brahma priests?
 - → At 1 disk move/min, the priests will take about 3.4 * 10¹³ years.
 - → "According to legend, the world will come to an end when the priests have competed their task"
- How long would it take to move 64 disks by Pentium 5?
 - → Performing 10⁹ moves/second, a Pentium 5 would take about **570 years** to complete.
 - try running hanoiRecursive.cpp on your computer using n=3, 4, 10, 20, 30 and find out how long it takes to run

Application: Rearranging Railroad Cars

- Read the problem on p. 289
- Rearrange the cars at a shunting yard that has an input track, and output track, and k holding tracks between the input and output tracks
- See Figure 8.6 for a three-track example
- See Figure 8.7 for track states
- See Program 8.9, 8.10 and 8.11

READING

- Read 8.5.4 Switch Box Routing Problem
- Read 8.5.5 Offline Equivalence Problem
- Read 8.5.6 Rat in a Maze
- Read all of Chapter 8