About Me

- + College: United States Air Force Academy
- + Major: Mathematics
- + Hometown: Austin, TX
- + Hobbies: Skiing, gliding, soccer
- + Interesting Fact: I have been on HGTV

Architecting with Information Theory

Connor Kordes
July 10, 2019

Motivation/Scope

- + Traditionally, new architectures are developed considering a single intelligence type
 - + Performance modeling specific to an 'INT' (GEOINT, SIGINT, etc.)
 - + New architectures are not assessed within a multi-INT enterprise
- + Measuring the value of each 'INT' type within an enterprise is difficult
 - + No standardized metrics across 'INTs'
 - + Lack of common value metrics leads to stovepiped/traditional designs
- + Information Theory provides metrics agnostic to 'INT' type
 - + Information value of a sensing agent measured in Shannon Bits
 - + Shannon Bit can be compared across various sensing agents
 - More bits are better
 - + Implemented Harney information equations, a reformulation of Johnson's criteria which was built on Shannon's seminal work on information theory (see Works Cited chart for reference)

Problem Formulation

Problem Statement

+ Design a LEO architecture to maximize the amount of information, in terms of access and resolution, that can be collected against a Somali Pirate Scenario.

Objectives

- + Maximize Probability of Access to each event in the scenario
- + Maximize total amount of information bits collected on the scenario
- + Minimize number of satellites
- + Minimize altitude of satellites
- + Maximize number of sensors

Decision Variables

- + Number of satellites (1-10)
- + Circular LEO orbit parameters (SMA, INC, RAAN, MA)*
- + Sensor type for each satellite (informed by list of commercial sensors)

Parameters/Constraints

- + Somali Pirate Scenario
 - + Defines number of entities, locations, velocities, and activity state
 - + Currently generated as a deterministic scenario
 - + In the future (TBD)
 will randomly
 generate with
 repeatable random
 seed

^{*}SMA – Semi-Major Axis; INC – Inclination; RAAN – Right Ascension of Ascending Node; MA – Mean Anomaly

Preliminary Results: GRIPS

- Validation of expected trends
 - Access Metrics vs. Constellation Semi-major Axes
 - Access Metrics vs. Number of Satellites

- New Results
 - Information Metric vs. Probability of Access

Preliminary Results

DiscoveryDV

 Quick insights and understanding of the data through high-dimensional plotting tool

Information and Number of Satellites

 The third axis and color mapping clarify the tradeoff between these two objectives

Information and Access

The cascade of the data along information highlights this trend

Preliminary Results: GRIPS

Information Mapping

This mapping creates a better understanding of the solutions

Key Takeaways

- + The model is performing as expected
 - + Objectives (altitude, information, access, and unique sensors) are providing feasible solutions
 - + Improved Access Metric Formulation
- + There is a tradeoff between Information and Probability of Access
 - + Conventional approaches miss solutions
 - + Integrated constellations need more than an access metric
- + Future models need to better account for the different information types

Future Steps

+ Project

- + Address bias towards spatial data
 - + Resulting architecture designs should balance spatial, spectral, and temporal information gain
- + Expand ground truth scenario
 - + Different locations
 - + Different scenario types
- + Address real life complexities
 - + Staleness of information
 - + Not all information is equal
 - + A refined metric for cost of sensors

+ For me

- + Back to Academy
- + Gliding Instructor Pilot
- + Singapore
- + Hopefully Graduate School

Works Cited

- + Ahmed, Mohiuddin, and Gregory Pottie. "Fusion in the context of information theory." Distributed Sensor Networks (2005): 419-436.
- + August, Peter, and Y. Q. Wang. "Resolutions of Remote Sensing." University of Rhode Island, 2009.
- + Ferringer, Matthew P., Ronald S. Clifton, and Timothy G. Thompson. "Efficient and accurate evolutionary multi-objective optimization paradigms for satellite constellation design." Journal of Spacecraft and Rockets 44.3 (2007): 682-691.
- + Franklin, Steven E., and Clayton F. Blodgett. "An example of satellite multisensor data fusion." Computers & Geosciences19.4 (1993): 577-583.
- + Grönwall, Christina, et al. "Future electro-optical sensors and processing in urban operations." Electro-Optical Remote Sensing, Photonic Technologies, and Applications VII; and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing. Vol. 8897. International Society for Optics and Photonics, 2013.
- + Harney, Robert C. "Information-based approach to performance estimation and requirements allocation in multisensory fusion for target recognition." Optical Engineering36 (1997).
- + Howerton, Phil. Managing Uncertainty and the Practice of Intelligence, [PowerPoint slides], 2019.
- + Jakob, Michal, et al. Adversarial modeling and reasoning the maritime domain year 1 report. Technical report, ATG, CTU, Prague, 2009.
- + Jakob, Michal, et al. Adversarial modeling and reasoning the maritime domain year 2 report. Technical report, ATG, CTU, Prague, 2010.
- + Liang, Shunlin. Comprehensive Remote Sensing. Elsevier., 2018.
- + L. Roux and J. Desachy, "Information fusion for supervised classification in a satellite image," *Proceedings of 1995 IEEE International Conference on Fuzzy Systems.*, Yokohama, Japan, 1995, pp. 1119-1124 vol.3. doi: 10.1109/FUZZY.1995.409823
- + "THE CEOS DATABASE: MISSION, INSTRUMENTS AND MEASUREMENTS." THE CEOS DATABASE: MISSION, INSTRUMENTS AND MEASUREMENTS, 2019, database.eohandbook.com/.

BACKUP

Ground Truth Scenario

- + Purpose: Create a test ground problem for creating optimal satellite constellation designs
 - + Test problem simulates piracy of commercial merchant ships off the coast of Somalia, well studied in open literature*
- + Pirate model:
 - + Merchant ships with a set of observable characteristics (i.e., length, color, AIS) travel along a known path
 - + Pirate ships with a set of observable characteristics (i.e., length, color) may ambush merchant ships along path
 - + Scenarios generated with Finite State Machines
- + Given specific scenario(s), apply GRIPS to design an architecture to maximize information bits and maximize probability of access
 - + Decision Variables:
 - + Sensor on each vehicle
 - + LEO orbit parameters
 - + Objectives:
 - + Probability of Access of an Event (max)
 - + Information Collected (max)

Preliminary Results: Sensor Data

Sensor	▼ Information Content ▼	Column3	Column4	Column5 ▼	Column6 *	Column7	SNR	¥ [Model *
VNIR - ASTER - Terra	Intensity	angle						175 H	H_i
SWIR - ASTER - Terra	Intensity	angle-angl	e					200 H	H_i
TIR - ASTER - Terra	Intensity	angle-angl	e				(NE delta T) < .3K for bands with design goal	of <.2 K	H_i
CERES - Terra	Intensity	angle-angl	e				>500	H	H_i
MISR - Terra	Intensity	angle-angl	Color				>900	H	H_i+H_h
MODIS - Terra	Intensity	angle- angl	e				100-900	H	H_i+H_h
MOPITT							<1000		
AIRS - AQUA	Intensity	angle					(ratio at albedo of 0.4) > 100	H	H_i
AMSU - AQUA	Intensity	angle							
HSB-AQUA	Intensity	Angle							
AMSR-E - AQUA	Intensity	Angle-Angl	e						
CERES - AQUA	Intensity	Angle					>500		
HIRDLS - Aura	Intensity	Angle							
MLS - Aura	Intensity	Anglee							
OMI - Aura	Intensity	Angle							
TES - Aura	Intensity	Angle						600	
ETM+ Landsat 7	Intensity	Angle					16-39		
SeaWinds - QuikScat	Intensity	Angle							
ACRIM3 - ACRIMSAT	Intensity								
Poseidon-2 - Sage III M3M	Intensity	Angle	Altitude						
JMR - Sage III M3M									
DORIS - Sage III M3M									
TRSR - Sage III M3M									
LRA - Sage III M3M	Intensity	Altimeter	Gravity						

Preliminary Results: Sensor Profiles

Total Information

num_sensors Semimajor Prob Access Information Sensor Sat 1 Sensor Sat 2 Sensor Sat 3 Sensor Sat 4 Sensor Sat 5

Preliminary Results: Sensor Data

Mission	Agency	Status	Launch date	EOL date	Applications	Instruments	Orbit details & URL
3D Winds Three Dimensional Tropospheric Winds from Space Based Lidar	NASA	Considered	2030	2033	Phase-3 DS Mission, launch order unknown, 3-year nominal mission. Tropospheric winds for weather forecasting and pollution transport.	HDWL (3D Winds)	Type: Sun-synchronous Altitude: 400 km
							Period: Inclination: 97.03 deg Repeat cycle: 12 days LST: 6:00 Longitude (if geo): Asc/desc: Ascending Links: mission site
ACE Aerosol Clouds and Ecosystem Mission	NASA	Considered	2022		Phase-2 DS Mission, launch order unknown, 3-year nominal mission. Aerosol and cloud profiles for climate and water cycle; ocean colour for open ocean biogeochemistry.	Cloud Radar, Lidar, Multi- band UV/VIS Spectrometer (ACE), Next Gen APS (ACE), OCI	Type: Sun-synchronous Altitude: 650 km Period: Inclination: 98.2 deg Repeat cycle: LST: 13:00 Longitude (if geo): Asc/desc: Ascending Links: mission site
ACRIMSAT Active Cavity Radiometer Irradiance Monitor	NASA	Mission complete	20-Dec-99		5-year nominal mission life, currently being decommissioned due to age-related degradation of batteries. Operational mission will end in 2014.	ACRIM III	Type: Sun-synchronous Altitude: 600 km Period: 98.5 mins Inclination: 97.81 deg Repeat cycle: 1 day
							LST: 18:00 Longitude (if geo): Asc/desc: Descending Links: mission site data access

Binning Equations

spectral

 $\frac{\sum_{Constellation} \frac{BestResolution(Constellation)}{SpatialResolution(satellite_i)}}{(NumSats)}$

P(PartialAccess)

What is GRIPS?

The Tool: Searches for Optimal Solutions to a Problem

- Many-objective optimizer
- Parallelized computation
- Ingests a variety of models

The Process: Searches for Optimal Problem Expressions

- Structured, iterative process
- Acknowledges many stakeholders, many objectives
- Stakeholders learn about their decision space
- Help decision makers arrive at consensus

Performance Modeling

- + Two basic aspects of any intelligence question are:
 - + What is the probability of gaining access to a target? Right place, right time
 - + What is the probability of resolving characteristics about a target? Right sensor, right target
- Probability of Access can be defined by:
 - + An event duration
 - + Access/gaps to event location
- + Probability of Resolving can be defined by information theory:
 - + Robert Harney* defined the information collected by a sensor across information types:
 - + Intensity, color, range, velocity, RF, etc.
 - + For a given sensor, the function defining its information collection is a summation of these types.
- + GRIPS (Genetic Resources for Innovation and Problem Solving)
 - + An Aerospace Corporation tool
 - + Used to design satellite architectures with diverse sensing types to simultaneously optimize probability of access and probability of resolving in terms of information theoretic metrics
 - + Estimates the potential information that could be gathered by various numbers of satellites in different orbits, given ground scenarios

^{*}Howerton, Phil. Managing Uncertainty and the Practice of Intelligence, [PowerPoint slides], 2019. Harney, R.C. (1997). Information-based approach to performance estimation and requirements allocation in multisensory fusion for target recognition. *Optical Engineering 36*.