Security Analysis of Key-Alternating Feistel Ciphers

Rodolphe Lampe and Yannick Seurin

University of Versailles and ANSSI

4th March 2014 - FSE 2014

Key-Alternating Ciphers (aka iterated Even-Mansour)

- P_1, \ldots, P_r are modeled as public random permutation oracles
- interpretation: gives a guarantee against any adversary which does not use particular properties of the P_i 's

Results on the pseudorandomness of KA ciphers

The following results have been successively obtained for the pseudorandomness of KA ciphers (notation: $N = 2^n$):

- for r=1 round, security up to $\mathcal{O}(N^{\frac{1}{2}})$ queries [EM97]
- for $r \ge 2$, security up to $\mathcal{O}(N^{\frac{2}{3}})$ queries [BKL⁺12]
- for $r \geq 3$, security up to $\mathcal{O}(N^{\frac{3}{4}})$ queries [Ste12]
- for any even r, security up to $\mathcal{O}(N^{\frac{r}{r+2}})$ queries [LPS12]
- tight result: for r rounds, security up to $\mathcal{O}(N^{\frac{r}{r+1}})$ queries [CS13]

NB: Results for independent round keys (k_0, k_1, \ldots, k_r)

Key-Alternating Feistel Ciphers

- functions F_i are public random oracles
- different from the Luby-Rackoff setting (where the F_i's are pseudorandom)

KAF ciphers as a special type of Key-Alternating ciphers

Two rounds of a KAF cipher is equivalent to a 1-round KA cipher where the permutation is a two-round (un-keyed) Feistel cipher with public random functions

Results

- previous results: Gentry and Ramzan [GR04]: secure up to $N^{1/2}$ queries for r=4 rounds
- our results: secure up to $N^{\frac{t}{t+1}}$ queries where

$$t = \left\lfloor \frac{r}{3} \right
floor$$
 for NCPA attacks $t = \left\lfloor \frac{r}{6} \right
floor$ for CCA attacks

• improved results in the Luby-Rackoff setting: security up to $N^{\frac{t}{t+1}}$ queries where

$$t = \left\lfloor \frac{r}{2} \right\rfloor$$
 for NCPA attacks $t = \left\lfloor \frac{r}{4} \right\rfloor$ for CCA attacks

Results

- previous results: Gentry and Ramzan [GR04]: secure up to $N^{1/2}$ queries for r=4 rounds
- our results: secure up to $N^{\frac{t}{t+1}}$ queries where

$$t = \left\lfloor rac{r}{3}
ight
floor$$
 for NCPA attacks $t = \left\lfloor rac{r}{6}
ight
floor$ for CCA attacks

• improved results in the Luby-Rackoff setting: security up to $N^{\frac{\iota}{t+1}}$ queries where

$$t = \left\lfloor \frac{r}{2} \right\rfloor$$
 for NCPA attacks $t = \left\lfloor \frac{r}{4} \right\rfloor$ for CCA attacks

Results

- previous results: Gentry and Ramzan [GR04]: secure up to $N^{1/2}$ queries for r=4 rounds
- ullet our results: secure up to $N^{rac{t}{t+1}}$ queries where

$$t = \left\lfloor rac{r}{3}
ight
floor$$
 for NCPA attacks $t = \left\lfloor rac{r}{6}
ight
floor$ for CCA attacks

• improved results in the Luby-Rackoff setting: security up to $N^{\frac{t}{t+1}}$ queries where

$$t = \left\lfloor \frac{r}{2} \right
floor$$
 for NCPA attacks $t = \left\lfloor \frac{r}{4}
ight
floor$ for CCA attacks

Proof using the coupling technique

- main problem: given ℓ queries, upper bound the probability that, for every two consecutive rounds, the $\ell+1$ -th query collision in (at least) one of the two rounds.
- $A_i =$ event that the ℓ -th query collisions with previous queries at round i; we want to upper bound

$$\Pr[(A_1 \cup A_2) \cap (A_2 \cup A_3) \cap \dots \cap (A_{r-2} \cup A_{r-1}) \cap (A_{r-1} \cup A_r)]$$

- Proof using the coupling technique
- main problem: given ℓ queries, upper bound the probability that, for every two consecutive rounds, the $\ell+1$ -th query collision in (at least) one of the two rounds.
- $A_i =$ event that the ℓ -th query collisions with previous queries at round i; we want to upper bound

$$\Pr[(A_1 \cup A_2) \cap (A_2 \cup A_3) \cap \dots \cap (A_{r-2} \cup A_{r-1}) \cap (A_{r-1} \cup A_r)]$$

- Proof using the coupling technique
- main problem: given ℓ queries, upper bound the probability that, for every two consecutive rounds, the $\ell+1$ -th query collision in (at least) one of the two rounds.
- A_i = event that the ℓ -th query collisions with previous queries at round i; we want to upper bound

$$\Pr[(A_1 \cup A_2) \cap (A_2 \cup A_3) \cap \cdots \cap (A_{r-2} \cup A_{r-1}) \cap (A_{r-1} \cup A_r)]$$

- Proof using the coupling technique
- main problem: given ℓ queries, upper bound the probability that, for every two consecutive rounds, the $\ell+1$ -th query collision in (at least) one of the two rounds.
- A_i = event that the ℓ -th query collisions with previous queries at round i; we want to upper bound

$$\Pr[(A_1 \cup A_2) \cap (A_2 \cup A_3) \cap \dots \cap (A_{r-2} \cup A_{r-1}) \cap (A_{r-1} \cup A_r)]$$

9 / 16

random variables
$$\qquad X \qquad \qquad Y$$
 probability distributions $\qquad \mu \qquad \qquad \nu$

The Coupling lemma

$$\|\mu - \nu\| \le \Pr\left[X \ne Y\right]$$

random variables
$$\qquad \qquad X \qquad \qquad Y$$
 probability distributions $\qquad \mu \qquad \qquad \nu$

The Coupling lemma

$$\|\mu - \nu\| \le \Pr[X \ne Y]$$

Advantage

 q_e :number of queries to the cipher q_f :number of queries to the round functions

$$\mathsf{Adv}^{\mathrm{ncpa}}_{\mathtt{KAF}[n,r]}(q_e,q_f) \leq \frac{4^t}{t+1} \frac{(q_e+2q_f)^{t+1}}{2^{tn}} \quad \mathsf{with} \quad t = \left\lfloor \frac{r}{3} \right\rfloor.$$

$$\mathsf{Adv}^{\operatorname{cca}}_{\mathtt{KAF}[n,2r']}(q_{\mathsf{e}},q_{\mathsf{f}}) \leq 4 \left(\frac{4^t}{t+1} \frac{(q_{\mathsf{e}}+2q_{\mathsf{f}})^{t+1}}{2^{tn}} \right)^{1/2} \quad \text{with} \quad t = \left\lfloor \frac{r'}{3} \right\rfloor.$$

The end...

Thanks for your attention! Comments or questions?

References I

Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert, John P. Steinberger, and Elmar Tischhauser.

Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations - (Extended Abstract).

In David Pointcheval and Thomas Johansson, editors, *Advances in Cryptology - EUROCRYPT 2012*, volume 7237 of *Lecture Notes in Computer Science*, pages 45–62. Springer, 2012.

Shan Chen and John P. Steinberger.

Tight security bounds for key-alternating ciphers.

IACR Cryptology ePrint Archive, 2013:222, 2013.

Shimon Even and Yishay Mansour.

A Construction of a Cipher from a Single Pseudorandom Permutation.

Journal of Cryptology, 10(3):151-162, 1997.

References II

Craig Gentry and Zulfikar Ramzan.

Eliminating Random Permutation Oracles in the Even-Mansour Cipher.

In Pil Joong Lee, editor, *Advances in Cryptology - ASIACRYPT 2004*, volume 3329 of *Lecture Notes in Computer Science*, pages 32–47. Springer, 2004.

Rodolphe Lampe, Jacques Patarin, and Yannick Seurin.

An Asymptotically Tight Security Analysis of the Iterated Even-Mansour Cipher.

In Xiaoyun Wang and Kazue Sako, editors, *Advances in Cryptology - ASIACRYPT 2012*, volume 7658 of *Lecture Notes in Computer Science*, pages 278–295. Springer, 2012.

John Steinberger.

Improved Security Bounds for Key-Alternating Ciphers via Hellinger Distance.

IACR Cryptology ePrint Archive, Report 2012/481, 2012.

Available at http://eprint.iacr.org/2012/481.