Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Sid Maibach

Hausaufgabenblatt 10.

Abgabe bis Mi, 10.01.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Sei $\alpha > 0$,

(i) berechnen Sie die Fourier-Transformation von $f: \mathbb{R} \to \mathbb{R}$ definiert als

$$f(x) = \begin{cases} e^{-\alpha x} & \text{für } x > 0 \\ 0 & \text{für } x < 0. \end{cases}$$

- (ii) Ist die Funktion $g: \mathbb{R} \to \mathbb{R}$ definiert als $g(k) = \frac{1}{(\alpha + ik)} L^1$ -integrierbar?
- (iii) Berechnen Sie die inverse Fourier-Transformation von g für $x \neq 0$. Das heißt, berechnen Sie

$$\lim_{R\to\infty}\frac{1}{2\pi}\int_{-R}^R e^{ikx}g(k)\,dk.$$

Hinweis: Betrachten Sie einen der Halbkreise $\partial \{z \in \mathbb{C} : \operatorname{Im}(z) > 0, |z| < R\}$ oder $\partial \{z \in \mathbb{C} : \operatorname{Im}(z) < 0, |z| < R\}$, und benutzen Sie den Residuensatz..

Aufgabe 2. (10 Punkte)

Berechnen Sie die Fourier-Transformation von

- (i) f definiert als $f(x) = xe^{-\frac{x^2}{2}}$ für $x \in \mathbb{R}$,
- (ii) g definiert als $g(x) = x^2 e^{-\frac{x^2}{2}}$ für $x \in \mathbb{R}$.

Aufgabe 3. (10 Punkte)

Berechnen Sie die Faltung $f_1 * f_2$ und die Fourier-Transformation von $f_1 * f_2$ für f_1, f_2 definiert als

(i)
$$f_1(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 und $f_2(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-1)^2}{2}}$ (Hinweis: Quadratische Ergänzung)

(ii)

$$f_1(x) = f_2(x) = \begin{cases} e^{-x} & \text{für } x \ge 0 \\ 0 & \text{für } x < 0. \end{cases}$$

(iii) $f_1(x) = f_2(x) = 1_{[0,1]}(x)$.