

Overview

Research Topic: Neural Network Modeling based on Optimal Transport.

- ► Revisiting Global Pooling via Regularized OT ⇒ OT for Pooling
- ► A Quasi-Wasserstein Loss for Learning Graph Neural Networks ⇒ OT for GNNs

► A Global Pooling outputs the expectation of samples conditioned on different feature dimensions.

$$f(\boldsymbol{X}) = (\boldsymbol{X} \odot \underbrace{\operatorname{diag}^{-1}(\boldsymbol{\widehat{P}1_N})\boldsymbol{P}}_{\boldsymbol{\widehat{P}} = [p_{n|d}]}) \boldsymbol{1}_N = \|_{d=1}^D \mathbb{E}_{n \sim p_{n|d}}[\boldsymbol{x}_{dn}],$$
(1)

▶ The pooling is determined by **the "sample-feature" distribution**

► Mean-pooling:
$$f(X) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$
 \Longrightarrow $\mathbf{P} = \begin{bmatrix} \frac{1}{DN} \end{bmatrix}$

► Max-pooling:
$$f(\mathbf{X}) = \|_{d=1}^D \max_n \{x_{dn}\}_{n=1}^N \implies \mathbf{P} \in \{0, \frac{1}{D}\}^{D \times N}$$

• Attention-pooling:
$$f(X) = Xa_X$$
 \Longrightarrow $P = \frac{1}{D}1_Da_X^T$

Design a global pooling layer = Determine the "sample-feature dimension" distribution P

- ► Output energy maximization ⇒ OT term
- ightharpoonup Consider correlation within data \Rightarrow GW structural regularizer
- ► Avoid sparse distribution ⇒ Bregman smoothness regularizer
- ► Prior of marginal distribution ⇒ unbalanced OT regularizer

$$P_{\text{rot}}^*(X;\theta) = \arg\min_{P \in \Omega} \underbrace{\overbrace{\langle -X,P \rangle}_{\text{OT term}} + \underbrace{\alpha_0 \langle C(X,P),P \rangle}_{\text{Structural Reg.}} + \underbrace{\alpha_1 R(P)}_{\text{Smoothness Reg.}} + \underbrace{\alpha_2 \text{KL}(P \mathbf{1}_N | \mathbf{p}_0) + \alpha_3 \text{KL}(\mathbf{P}^T \mathbf{1}_D | \mathbf{q}_0)}_{\text{Marginal Reg.}},$$
(2)

$$f_{\text{rot}}(X;\theta) = (X \odot \text{diag}^{-1}(P_{\text{rot}}^*(X;\theta)\mathbf{1}_N)P_{\text{rot}}^*(X;\theta))\mathbf{1}_N.$$
(3)

(a) Regularized optimal transport pooling (ROTP) layer

Theoretical analysis

- ► Permutation-invariance
- Generalized framework for existing poolings

$f_{rot}(oldsymbol{X};oldsymbol{ heta})$	Mean-pooling	Max-pooling	Attention-pooling
α_0	0	0	0
$lpha_1$	$\rightarrow \infty$	o	$ ightarrow \infty$
$lpha_2$	$\rightarrow \infty$	$ ightarrow \infty$	$ ightarrow \infty$
$lpha_3$	$\rightarrow \infty$	o	$ ightarrow \infty$
$oldsymbol{p}_0$	$rac{1}{D}1_D$	$rac{1}{D}1_D$	$rac{1}{D}1_D$
$oldsymbol{q}_0$	$rac{1}{N} 1_N$	_	a_X

► Discrete Optimal Transport

$$W_1(\boldsymbol{\mu}, \boldsymbol{\gamma}) := \min_{\boldsymbol{T} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\gamma})} \langle \boldsymbol{D}, \ \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\gamma})} \ \sum_{v, v' \in \mathcal{V} \times \mathcal{V}} t_{vv'} d_{vv'}, \qquad \text{(4)}$$
where $\Pi(\boldsymbol{\mu}, \boldsymbol{\gamma}) = \{ \boldsymbol{T} \ge \boldsymbol{0} | \boldsymbol{T} \boldsymbol{1}_{|\mathcal{V}|} = \boldsymbol{\mu}, \boldsymbol{T}^{\top} \boldsymbol{1}_{|\mathcal{V}|} = \boldsymbol{\gamma} \}$

- ▶ Optimal transportation distances are parameterized distance
- ▶ Iterative computation methods: Sinkhorn, Badmm

Algorithmic modeling: Implement neural network layers by unrolling iterative optimization algorithmic.

Experiments:

TABLE 1
Comparison on MIL accuracy±Std. (%) for different pooling layers.

Dataset	Messidor	Component	Function
D	687	200	200
#Positive bags	654	423	443
#Negative bags	546	2,707	4,799
#Instances	12,352	36,894	55,536
Min. bag size	8	1	1
Max. bag size	12	53	51
Add	$74.33_{\pm 2.56}$	$93.35_{\pm 0.98}$	$96.26_{\pm0.48}$
Mean	$74.42_{\pm 2.47}$	$93.32_{\pm 0.99}$	$96.28_{\pm 0.66}$
Max	$73.92_{\pm 3.00}$	$93.23_{\pm 0.76}$	$95.94_{\pm 0.48}$
DeepSet	$74.42_{\pm 2.87}$	$93.29_{\pm 0.95}$	96.45±0.51
Mixed	73.42±2.29	$93.45_{\pm 0.61}$	96.41±0.53
GatedMixed	73.25 ± 2.38	93.03 ± 1.02	96.22±0.65
Set2Set	73.58 ± 3.74	93.19 ± 0.95	96.43±0.56
Attention	74.25±3.67	93.22 ± 1.02	96.31±0.66
GatedAtt	73.67±2.23	93.42 ± 0.91	96.51±0.77
DynamicP	73.16 ± 2.12	93.26 ± 1.30	96.47±0.58
GNP	73.54 ± 3.68	92.86 ± 1.96	$96.10_{\pm 1.03}$
OTK	74.78 ± 2.89	93.19 ± 0.93	$96.31_{\pm 1.02}$
SWE	74.46±3.72	93.32 ± 1.26	96.42 ± 0.88
ROTPs	75.42+2.96	93.29±0.83	96.62+0.48
$ROTP_{B-E}$ ($\alpha_0 = 0$)	$74.83_{\pm 2.07}$	$93.16_{\pm 1.02}$	$96.17_{\pm 0.43}$
$ROTP_{B-O}$ ($\alpha_0 = 0$)	75.08 ± 2.06	$93.13_{\pm 0.94}$	$96.09_{\pm 0.46}$
ROTP _{B-E} (learn α_0)	75.33±1.96	$93.16_{\pm 1.08}$	96.22 _{±0.44}
ROTP _{B,O} (learn α_0)	75.17+24	93.45	96.22 +0.48

^{*} The top-3 results are bolded and the best result is in red.

TABLE 2
Comparison on graph classification accuracy+Std. (%) for different pooling lave

Dataset	NCII	PROTEINS	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B	IMDB-M
#Graphs	4,110	1,113	188	5,000	2,000	4,999	1,000	1,500
Average #Nodes	29.87	39.06	17.93	74.49	429.63	508.52	19.77	13.00
Average #Edges	32.30	72.82	19.79	2,457.78	497.75	594.87	96.53	65.94
#Classes	2	2	2	3	2	5	2	3
Add	67.96±0.43	$72.97_{\pm 0.54}$	$89.05_{\pm 0.86}$	71.06±0.43	$80.00_{\pm 1.49}$	$50.16_{\pm 0.97}$	$70.18_{\pm0.87}$	47.56±0.5
Mean	64.82 _{±0.52}	66.09 ± 0.64	$86.53_{\pm 1.62}$	72.35 ± 0.44	$83.62_{\pm 1.18}$	$52.44_{\pm 1.24}$	$70.34_{\pm 0.38}$	$48.65_{\pm 0.9}$
Max	65.95 ±0.76	$72.27_{\pm 0.33}$	$85.90_{\pm 1.68}$	$73.07_{\pm 0.57}$	$82.62_{\pm 1.25}$	$44.34_{\pm 1.93}$	$70.24_{\pm 0.54}$	$47.80_{\pm 0.5}$
DeepSet	66.28±0.72	$73.76_{\pm 0.47}$	87.84 ± 0.71	$69.74_{\pm 0.66}$	$82.91_{\pm 1.37}$	47.45 ± 0.54	$70.84_{\pm 0.71}$	$48.05_{\pm 0.7}$
Mixed	66.46±0.74	$72.25_{\pm 0.45}$	$87.30_{\pm 0.87}$	73.22 ± 0.35	$84.36_{\pm 2.62}$	$46.67_{\pm 1.63}$	$71.28_{\pm 0.26}$	$48.07_{\pm 0.2}$
GatedMixed	63.86±0.76	$69.40_{\pm 1.93}$	$87.94_{\pm 1.28}$	$71.94_{\pm 0.40}$	$80.60_{\pm 3.89}$	$44.78_{\pm 4.53}$	70.96 ± 0.60	$48.09_{\pm 0.4}$
Set2Set	$65.10_{\pm 1.12}$	$68.61_{\pm 1.44}$	87.77 ± 0.86	72.31 ± 0.73	80.08 ± 5.72	49.85 ± 2.77	70.36 ± 0.85	$48.30_{\pm 0.5}$
Attention	64.35±0.61	67.70 ± 0.95	88.08 ± 1.22	72.57 ± 0.41	81.55 ± 4.39	51.85 ± 0.66	$70.60_{\pm 0.38}$	47.83 ± 0.7
GatedAtt	64.66±0.52	68.16 ± 0.90	$86.91_{\pm 1.79}$	72.31 ± 0.37	82.55 ± 1.96	$51.47_{\pm 0.82}$	70.52 ± 0.31	$48.67_{\pm 0.3}$
DynamicP	62.11±0.27	65.86 ± 0.85	$85.40_{\pm 2.81}$	70.78 ± 0.88	$67.51_{\pm 1.82}$	32.11 ± 3.85	$69.84_{\pm 0.73}$	$47.59_{\pm 0.4}$
GNP	$68.20_{\pm 0.48}$	73.44 ± 0.61	$88.37_{\pm 1.25}$	$72.80_{\pm 0.58}$	81.93 ± 2.23	$51.80_{\pm 0.61}$	$70.34_{\pm 0.83}$	$48.85_{\pm0.8}$
ASAP	$68.09_{\pm 0.42}$	$70.42_{\pm 1.45}$	$87.68_{\pm 1.42}$	$68.20_{\pm 2.37}$	$73.91_{\pm 1.50}$	44.58 ± 0.44	$68.33_{\pm 2.50}$	43.92 ± 1.13
SAGP	67.48±0.65	72.63 ± 0.44	87.88 ± 2.22	70.19 ± 0.55	74.12 ± 2.86	46.00 ± 1.74	70.34 ± 0.74	47.04 ± 1.2
OTK	67.96±0.55	69.52 ± 0.76	86.90 ± 1.83	71.35 ± 0.91	74.28 ± 1.39	$50.57_{\pm 1.20}$	$70.94_{\pm 0.79}$	$48.41_{\pm 0.8}$
SWE	68.06±0.98	$70.09_{\pm 1.22}$	85.68 ± 2.07	$72.17_{\pm 1.29}$	$79.30_{\pm 3.94}$	$51.11_{\pm 1.55}$	70.34 ± 1.05	$48.93_{\pm 1.3}$
WEGL	68.16±0.62	71.58 ± 0.94	$88.68_{\pm 1.66}$	72.55 ± 0.69	$82.80_{\pm 1.73}$	$52.03_{\pm 0.60}$	71.94 ± 0.75	$49.20_{\pm 0.8}$
ROTPs	$68.27_{\pm 1.06}$	$73.10_{\pm 0.22}$	$88.84_{\pm 1.21}$	$71.20_{\pm 0.55}$	$81.54_{\pm 1.38}$	$51.00_{\pm 0.61}$	$70.74_{\pm 0.80}$	47.87 _{±0.4}
$ROTP_{B-E}$ ($\alpha_0 = 0$)	66.23 _{±0.50}	$67.71_{\pm 1.70}$	$86.82_{\pm 2.02}$	$73.86_{\pm0.44}$	$86.80_{\pm 1.19}$	$52.25_{\pm 0.75}$	$71.72_{\pm 0.88}$	$50.48_{\pm 0.1}$
$ROTP_{B-Q}$ ($\alpha_0 = 0$)	66.18 _{±0.76}	$69.88_{\pm 0.87}$	$85.42_{\pm 1.10}$	74.14 ± 0.24	$87.72_{\pm 1.03}$	$52.79_{\pm 0.60}$	72.34 ± 0.50	$49.36_{\pm 0.5}$
$ROTP_{B-E}$ (learn α_0)	65.90 _{±0.94}	$70.19_{\pm 0.66}$	$88.01_{\pm 1.51}$	74.05 ± 0.34	86.78 ± 1.14	$52.77_{\pm 0.69}$	$71.76_{\pm 0.62}$	$50.28_{\pm 0.8}$
$ROTP_{B:O}$ (learn α_0)	65.96+0.12	$70.12_{\pm 1.17}$	$86.79_{\pm 1.81}$	74.27 + 9.47	88.67+0.99	52.84 ± 0.60	$71.78_{\pm 1.00}$	49.44+04

^{*} For each dataset, the top-3 results are bolded and the best result is in red.

TABLE 3
Comparisons on graph set classification accuracy±Std. (%) for different pooling layers.

	differen	t pooling laye	rs.	
Dataset	DECAGON DiBr-APND	DECAGON Anae-Fati	DECAGON PleuP-Diar	FEARS
#Graph sets	6.309	2.922	2.842	6,338
#Positive sets	3.189	1,526	1,422	3.169
Positive label	Difficulty breathing	Anaemia	Pleural pain	Non- myopathy
#Negative sets	3,120	1,396	1,420	3,169
Negative label	Pressure decreased	Fatigue	Diarrhea	Myopath
Set size	2	2	2	$2\sim52$
Add	50.86±0.97	63.15±1.79	$62.32_{\pm 1.08}$	75.89 ± 1.3
Mean	51.10±1.09	61.95 +2.60	61.30 ± 2.68	72.42±1.5
Max	50.59 ± 0.77	61.88 ± 2.03	60.11 ± 2.03	82.02±0.7
DeepSet	$49.83_{\pm 1.07}$	56.24 ± 5.20	51.78 ± 3.10	82.40 ± 1.5
Mixed	51.13±0.99	63.83 ± 1.19	60.91 ± 2.12	81.54 ± 1.1
GatedMixed	51.39+0.63	61.50 ± 1.61	59.12±2.12	81.88 ± 1.1
Set2Set	50.72±1.71	59.35 ±2.04	55.01±3.59	79.29 ± 0.8
Attention	50.52±1.10	61.40 ± 2.03	61.33 ± 2.40	75.98 ± 0.7
GatedAtt	50.74±0.61	62.15 ± 0.77	58.80 ± 1.18	75.84 ± 1.2
DynamicP	51.01±1.88	55.93+1.56	52.58+2.91	74.00 ± 1.6
GNP	50.00+1.88	53.98 ±6.34	52.58+468	62.71±15.5
ASAP	50.89+0.82	63.66 ± 1.81	60.67+2.69	77.15±1.1
SAGP	49.87 ± 0.77	$63.62_{\pm 1.28}$	59.86+243	77.29 ± 1.0
OTK	50.96 ± 1.11	63.68 ± 1.59	61.66+2.39	79.40 ± 1.0
SWE	51.05±2.15	63.21 ± 2.02	61.37 ± 3.13	80.64+1.8
WEGL	51.67 ±0.85	63.79 ± 2.54	61.36 ± 2.30	81.98+07
ROTPs	51.96±0.71	$62.91_{\pm 1.13}$	59.40±0.90	79.75±0.7
ROTP _{B-E}	51.26+0.84	63.86 ± 2.41	62.57 + 1.34	82.55 + 0.4
ROTP _{B-O}	52.72+0.66	$63.15_{\pm 1.27}$	$60.88_{\pm 1.65}$	$81.43_{\pm 1.1}$

^{*} The top-3 results are bolded and the best result is in red.

Motivation: Eliminate Inconsistence of GNNs

Loss function:
$$\min_{\theta} \sum_{v \in \mathcal{V}_t} \psi(g_v(\mathbf{X}, \mathbf{A}; \theta), \mathbf{y}_v).$$
 (5)

- \blacktriangleright ψ is often implemented as cross-entropy loss, KL-divergence, Euclidean distance, and so on.
- ► The learning paradigm in (4) treats each node independently and evenly, inconsistent with the **non-i.i.d.** nature of graph-structured data.

► Wasserstein distance:

$$QW(\hat{Y}_{\mathcal{V}_L}, Y_{\mathcal{V}_L}) = \sum_{c=1}^{C} W_1^{(P)}(\hat{\boldsymbol{y}}_{\mathcal{V}_L}^{(c)}, \boldsymbol{y}_{\mathcal{V}_L}^{(c)})$$
(6)

► Wasserstein distance are parameterized distance

$$W_1(\boldsymbol{\mu}, \boldsymbol{\gamma}) := \min_{\boldsymbol{T} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\gamma})} \langle \boldsymbol{D}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\gamma})} \sum_{v, v' \in \mathcal{V} \times \mathcal{V}} t_{vv'} d_{vv'}, \tag{7}$$

where
$$\Pi(\boldsymbol{\mu}, \boldsymbol{\gamma}) = \{ \boldsymbol{T} \geq \boldsymbol{0} | \boldsymbol{T} \boldsymbol{1}_{|\mathcal{V}|} = \boldsymbol{\mu}, \boldsymbol{T}^{\top} \boldsymbol{1}_{|\mathcal{V}|} = \boldsymbol{\gamma} \}$$

▶ Optimal Transport on Graphs− minimum-cost flow problem^[1]

$$W_1(\boldsymbol{\mu}, \boldsymbol{\gamma}) = \min_{\boldsymbol{f} \in \Omega^{|\mathcal{E}|}} \| \operatorname{diag}(\boldsymbol{w}) \boldsymbol{f} \|_1 \quad \text{s.t. } \boldsymbol{S}_{\mathcal{V}} \boldsymbol{f} = \boldsymbol{\gamma} - \boldsymbol{\mu}, \tag{8}$$

where

$$s_{ve} = \begin{cases} 1 & \text{if } v \text{ is "head" of edge } e \\ -1 & \text{if } v \text{ is "tail" of edge } e \end{cases}$$

$$0 & \text{otherwise.}$$

$$(9)$$

Montacer Essid and Justin Solomon. Quadratically regularized optimal transport on graphs.391 SIAM Journal on Scientific Computing, 40(4):A1961–A1986, 2018.

Enrico Facca and Michele Benzi. Fast iterative solution of the optimal transport problem on 393 graphs. SIAM Journal on Scientific Computing, 43(3):A2295–A2319, 2021

► Minimum-cost flow problem:

$$QW(\widehat{\boldsymbol{Y}}_{\mathcal{V}_{L}}, \boldsymbol{Y}_{\mathcal{V}_{L}}) = \sum_{c=1}^{C} W_{1}^{(P)}(\widehat{\boldsymbol{y}}_{\mathcal{V}_{L}}^{(c)}, \boldsymbol{y}_{\mathcal{V}_{L}}^{(c)})$$

$$= \sum_{c=1}^{C} \min_{\boldsymbol{f}^{(c)} \in \Omega} \|\operatorname{diag}(\boldsymbol{w})\boldsymbol{f}^{(c)}\|_{1} \quad s.t. \, \boldsymbol{S}_{\mathcal{V}_{L}}\boldsymbol{f}^{(c)} = \boldsymbol{y}_{\mathcal{V}_{L}}^{(c)} - \widehat{\boldsymbol{y}}_{\mathcal{V}_{L}}^{(c)}$$

$$= \min_{\boldsymbol{F} \in \Omega_{C}} \|\operatorname{diag}(\boldsymbol{w})\boldsymbol{F}\|_{1} \quad s.t. \, \boldsymbol{S}_{\mathcal{V}_{L}}\boldsymbol{F} = \boldsymbol{Y}_{\mathcal{V}_{L}} - g_{\mathcal{V}_{L}}(\boldsymbol{A}, \boldsymbol{X}; \theta),$$

$$(10)$$

Learning Paradigm:

$$\min_{\theta, F \in \Omega} \| \operatorname{diag}(\boldsymbol{w}) F \|_{1} + \lambda \underbrace{B_{\phi}(g_{\mathcal{V}_{L}}(\boldsymbol{X}, \boldsymbol{A}; \theta) + \boldsymbol{S}_{\mathcal{V}_{L}} F, \boldsymbol{Y}_{\mathcal{V}_{L}})}_{\sum_{v \in \mathcal{V}_{L}} \psi(g_{v}(\boldsymbol{X}, \boldsymbol{A}; \theta) + \boldsymbol{S}_{v} F, \boldsymbol{y}_{v})}.$$
(12)

► A New Transductive Prediction Paradigm:

$$\tilde{\boldsymbol{y}}_{v} := g_{v}(\boldsymbol{X}, \boldsymbol{A}(\boldsymbol{F}^{*}; \boldsymbol{\xi}^{*}); \boldsymbol{\theta}^{*}) + \boldsymbol{S}_{v}\boldsymbol{F}^{*}, \tag{13}$$

Experiments:

Table 2: Comparisons on node classification accuracy (%) on homophilic graphs.

Model	Method	Cora	Citeseer	Pubmed	Computers	Photo	Improve
	(I)	87.14±1.01	79.86±0.67	86.74±0.27	83.32±0.33	$88.26_{\pm 0.73}$	
GCN ((I)+LPA	86.34±1.45	$78.51_{\pm 1.22}$	$84.72_{\pm 0.70}$	$82.48_{\pm 0.69}$	$88.10_{\pm 1.31}$	-1.07
	QW	86.95±1.12	81.30 ± 0.37	87.89 ± 0.44	88.39 ±0.55	$93.80_{\pm 0.37}$	+2.60
APPNP	(I)	88.14±0.73	80.47±0.74	88.12±0.31	85.32±0.37	88.51±0.31	
APPNP	QW	88.65±1.00	$80.94_{\pm 0.61}$	89.39 ± 0.31	84.69 ± 0.46	93.25 ± 0.38	+0.94
D N	(I)	88.28±1.00	79.81±0.79	88.87±0.38	87.61±0.46	93.68 ± 0.28	
BernNet	QW	89.03 + 0.76	81.35 ± 0.71	$89.03_{\pm 0.38}$	$89.14_{\pm 0.39}$	$94.28_{\pm 0.44}$	+0.92
CL-LN-III	(I)	88.26±0.89	80.00 _{±0.74}	88.57±0.36	86.58±0.71	$93.50_{\pm 0.34}$	
ChebNetII	OW	87.98+0.80	79.47 ± 0.70	89.15+0.44	89.52+0.54	94.84 ± 0.37	+0.81

Table 3: Comparisons on node classification accuracy (%) on heterophilic graphs.

Model	Method	Squirrel	Chameleon	Actor	Texas	Cornell	Improve
	(I)	46.55±1.15	63.57±1.16	$34.00_{\pm 1.28}$	77.21±3.28	61.91±5.11	
GCN	(I)+LPA	$44.81_{\pm 1.81}$	60.90 ± 1.63	32.43 ± 1.59	78.69 ± 6.47	68.72 ± 5.95	+0.46
QW	QW	51.04 ± 0.51	67.77 ± 0.92	38.09 ± 0.50	84.10±2.95	84.26 ± 2.98	+8.40
APPNP	(I)	36.15±0.75	52.93±1.71	40.46 ± 0.64	91.31±1.97	87.66±2.13	
APPNP	QW	$37.11_{\pm 0.60}$	53.76±1.25	40.78 ± 0.74	91.48 ± 2.30	87.87 ±2.34	+0.50
BernNet	(I)	51.15±1.09	67.96±1.05	40.72 ± 0.80	93.28±1.48	90.21±2.35	
Bernivet	QW	53.29 ± 0.65	70.96 ± 1.31	$40.91_{\pm 0.71}$	$93.44_{\pm 1.80}$	90.85 ± 2.34	+1.23
ChebNetII	(I)	57.78±0.84	$71.71_{\pm 1.40}$	$40.70_{\pm 0.77}$	$92.79_{\pm 1.48}$	88.94±2.78	
ChebNetii	QW	$59.55_{\pm 0.86}$	$74.05_{\pm 1.12}$	$41.37_{\pm 0.67}$	$93.93_{\pm 0.98}$	$87.23_{\pm 3.62}$	+0.84

Table 8: Comparisons on node classification accuracy (%) on homophilic graphs.

Model	Method	Cora	Citeseer	Pubmed	Computers	Photo	Improve
MLP	(I)	77.16±1.10	76.71±0.86	86.14±0.32	84.32±0.53	89.42±0.39	
MLP QW	76.77±0.99	77.74±0.60	86.56±0.41	82.39±0.40	89.51 ±0.34	-0.216	
GAT	(I)	89.20±0.79	80.75±0.78	87.42±0.33	90.08±0.36	94.38±0.25	
OAI	QW	88.56±0.92	80.19 ± 0.64	88.38 ± 0.23	90.41 ± 0.28	94.65±0.24	+0.05

Table 9: Comparisons on node classification accuracy (%) on heterophilic graphs.

Model	Method	Squirrel	Chameleon	Actor	Texas	Cornell	Improve
MLP	(I) QW	32.19±0.77 34.41±0.47	$48.21_{\pm 1.47}$ $49.61_{\pm 1.31}$	40.61±0.60 40.63±0.51	$91.80_{\pm 1.31}$ $91.15_{\pm 2.30}$	88.30±2.55 88.72±2.77	+0.68
GAT	(I) QW	48.20±1.67 55.03±1.35	$64.31_{\pm 2.01}$ $67.35_{\pm 1.42}$	35.68 ± 0.60 33.83 ± 1.07	$80.00_{\pm 3.11}$ $80.33_{\pm 1.97}$	$68.09_{\pm 2.13}$ $70.21_{\pm 2.13}$	+2.09

Figure 2: Illustrations of the learning methods' performance given different amounts of labeled nodes.