Data Sheet – CHEM 209

1	Periodic Table												18				
1A														8A			
1 H 1.008	2 2A	1 ← Atomic number (Z) H ← Atomic symbol 1.008 ← Atomic mass (amu)											14 4A	15 5A	16 6A	17 7A	2 He 4.003
3	4	<u> </u>									5 B	6	7	8	9	10	
Li	Be												C	N	O	F	Ne
6.941	9.012											10.81	12.01 14	14.01 15	16.00 16	19.00 17	20.18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	3	•	3	U	,	o	,	10	11	14	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89**	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu							
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)							

Lanthanides *	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Strong Acids: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄

Strong Bases: Hydroxides of Group 1 (Li to Cs) and Group 2 (Ca, Sr, Ba)

Constants:	Conversion Fac
Gas Constant: $R = 0.08205 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$1 J = 1 kg \cdot m^2 \cdot s^{-2}$
= $8.314 \text{ L} \cdot \text{kPa} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ = $8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$T(K) = T(^{\circ}C) +$
$= 0.08314 \text{ L} \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$1 \text{ Pa} = 1 \text{ kg} \cdot \text{m}^{-1} \cdot$
Avogadro's number: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$	$1 \text{ L} \cdot \text{atm} = 101.3$
Faraday's Constant: $F = 96 485$ C/mol electrons	1 atm = 760.0 to
Planck's Constant: $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$	$1 L = 10^{-3} m^3$
Speed of Light: $c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$	1 C = 1 J/V
Rydberg Constant: $R = 1.096776 \times 10^7 \text{ m}^{-1}$	STP conditions:
Factoring Rydberg Constant: $R_H = R \cdot h \cdot c = 2.18 \times 10^{-18} J$	Electrochemical

$$\begin{split} [A]_t &= -kt + [A]_0 & \ln[A]_t = -kt + \ln[A]_0 & PV = nRT & E^\circ = E^\circ_{cathode} - E^\circ_{anode} & c = \lambda \nu \\ \ln\left(\frac{[A]_0}{[A]_t}\right) &= kt & \frac{1}{[A]_t} = kt + \frac{1}{[A]_0} & K = K_c(RT)^{\Delta n} \\ pH &= -\log[H^+] & E = E^\circ - \frac{0.0592}{n_e} \log Q \\ t_{1/2} &= \frac{[A]_0}{2k} & t_{1/2} &= \frac{0.693}{k} & K_w = K_a \cdot K_b \\ t_{1/2} &= \frac{1}{k[A]_0} & k = Ae^{(-E_a/RT)} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & E^\circ &= \frac{0.0592}{n_e} \log K \\ \ln\left(\frac{K_2}{k_1}\right) &= \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) & \ln\left(\frac{K_2}{K_1}\right) &= \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) & pH = pK_a + \log\left(\frac{[conj.base]}{[conj.acid]}\right) & nFE^\circ = RT \ln K \end{split}$$

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right) \qquad \ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right) \qquad pH = pK_a + \log\left(\frac{[conj.base]}{[conj.acid]}\right) \qquad nFE^\circ = RT \ln R$$