STAT 710 Third Exam, April 15, 2016

Please show all your work for full credits.

- 1. Let X be one observation with double exponential distribution p.d.f. $\frac{1}{2}e^{-|x-\mu|}$, where $\mu \in \mathcal{R}$ is unknown.
 - (a) (3 points) We would like to test $H_0: \mu = 0$ versus $H_1: \mu = \mu_0$, where $\mu_0 > 0$ is a known constant. Show that the most powerful test has the rejection region X > c with a constant c.
 - (b) (2 points) Let $\alpha \in (0, \frac{1}{2})$ be a fixed level. Obtain the value of c in the previous part for the most powerful test with size α .
 - (c) (2 points) Show that the test in part (b) is a UMP test of size α for testing $H_0: \mu = 0$ versus $H_1: \mu > 0$.
 - (d) (2 points) Obtain the power function of the UMP test in part (b) for testing $H_0: \mu = 0$ versus $H_1: \mu > 0$.
 - (e) (2 points) Show that the test in (b) is a UMP test of size α for testing $H_0: \mu \leq 0$ versus $H_1: \mu > 0$.
- 2. Let $X_1, ..., X_n$ be i.i.d. observations from the discrete distribution with

$$P(X_i = x) = \frac{\theta^x}{x!(e^{\theta} - 1)}, \qquad x = 1, 2, ...,$$

where $\theta > 0$ is unknown. Consider testing $H_0: \theta = 1$ versus $H_1: \theta \neq 1$.

- (a) (2 points) Show that the MLE of θ is $\hat{\theta} = g(\bar{X})$, where \bar{X} is the sample mean and g is a strictly increasing function.
- (b) (3 points) Let $\ell(\theta)$ be the likelihood function. Show that $d \log \ell(\hat{\theta})/d\bar{X} = n \log \hat{\theta}$ so that $\log \ell(\hat{\theta})$ is strictly increasing in \bar{X} when $\hat{\theta} > 1$ and strictly decreasing in \bar{X} when $\hat{\theta} < 1$. Use this result to show that the likelihood ratio test is equivalent to the test rejecting H_0 when $\bar{X} < c_1$ or $\bar{X} > c_2$ for some constants c_1 and c_2 .
- (c) (2 points) Derive the form of Wald's test.
- (d) (2 points) Derive the form of Rao's score test.