Singular Value Decomposition

- -matrix of <u>n data points X m features</u>
- -Goal: test this matrix and find its linear algebraic properties in order to
 - -Approximate A with a smaller matrix B that is easier to store but contains similar information as A
 - -Dimensionality Reduction / Feature Extraction
 - -Anomaly Detection & Denoising
- -Linear algebra review
- <u>no vector</u> in that set can be expressed as a <u>linear combination of other</u> vectors in the set
 - determinant A:
 - <u>scalar value</u>
 - det(A) = ad bc
 - -rank:
 - The dimension of the vector space spanned by its column space.

 This is equivalent to the maximal number of linearly independent columns / rows of A.
 - A matrix A is full-rank iff rank(A) = min(m, n)
 - We can get the rank of a matrix through the Gram-Schmidt process
- -Approximation:
 - -Goal:

Approximate A with A(k) (low-rank matrix) such that

- d(A, A^(k)) is small
- k is small compared to m $\&\ n$
- -Frobenius Distance: the pairwise differences in values of A and B

$$d_F(A, B) = ||A - B||_F = \sqrt{\sum_{i,j} (a_{ij} - b_{ij})^2}$$

-Approximation:

-When k < rank(A), the rank-k approximation of A (in the least squares sense) is

$$A^{(k)} = \underset{\{B|rank(B)=k\}}{\operatorname{arg\,min}} d_F(A, B)$$

- The Singular Value Decomposition of a rank-r matrix A has the form $A = U \boldsymbol{\Sigma} V^T$

-Property: the larger ${\bf k}$ is, the smaller the distance.

$$d_F(A, A^{(k)})^2 = \sum_{i=k+1}^r \sigma_i^2$$

-Latent Semantic Analysis

- Inputs are documents. Each word is a feature. We can represent each document by:
 - The presence of the word (0 / 1)
 - Count of the word (0, 1, ...)
 - Frequency of the word $(n_i / \Sigma n_i)$
 - TfiDF:

Term frequency in the document

log (number of documents /number of documents that contain the term)

-see slides for e.g.

-Anomaly detection

- -Define $O = A A^{(k)}$
- -The largest rows of O could be considered anomalies