

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Cálculo Diferencial e Integral — Lista 14 Prof. Adriano Barbosa

(1) O gráfico de g consiste em duas retas e um semicírculo. Use-o para calcular cada integral

(a)
$$\int_{0}^{2} g(x) dx$$

(b)
$$\int_{2}^{6} g(x) dx$$

(a)
$$\int_0^2 g(x) dx$$
 (b) $\int_2^6 g(x) dx$ (c) $\int_0^6 g(x) dx$

(2) Calcule as integrais interpretando-as em termos de áreas.

(a)
$$\int_{-1}^{2} 1 - x \ dx$$
 (b) $\int_{-1}^{2} |x| \ dx$

(b)
$$\int_{-1}^{2} |x| \ dx$$

(3) Apenas analisando o gráfico das funções, calcule as seguintes integrais (a) $\int_{-1}^{1} x \ dx$ (b) $\int_{-1}^{1} |t| \ dt$ (c) $\int_{-1}^{1} y^{2} \ dy$ (d) $\int_{-\pi}^{\pi} \sin \theta \ d\theta$ (e) $\int_{-\pi}^{\pi} \cos \phi \ d\phi$

(a)
$$\int_{-1}^{1} x \ dx$$

(b)
$$\int_{-1}^{1} |t| \ dt$$

(c)
$$\int_{-1}^{1} y^2 dy$$

(d)
$$\int_{-\pi}^{\pi} \sin \theta \ d\theta$$

(e)
$$\int_{-\pi}^{\pi} \cos \phi \ d\phi$$

(4) Use o Teorema Fundamental do Cálculo para encontrar a derivada das funções abaixo

(a)
$$g(x) = \int_1^x \frac{1}{t^3 + 1} dt$$

(b)
$$G(x) = \int_{x}^{1} \cos(\sqrt{t}) dt$$

(b)
$$G(x) = \int_{x}^{1} \cos(\sqrt{t}) dt$$

(c) $h(x) = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$ (dica: use as propriedades de integrais e a regra da cadeia.)