Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: a=pd.read_csv("student.csv")
 a

Out[2]:		Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_1
	0	22000	78	87	91	91	88	98	94	100	100	100	10
	1	22001	79	71	81	72	73	68	59	69	59	60	6
	2	22002	66	65	70	74	78	86	87	96	88	82	91
	3	22003	60	58	54	61	54	57	64	62	72	63	7
	4	22004	99	95	96	93	97	89	92	98	91	98	9
	5	22005	41	36	35	28	35	36	27	26	19	22	2.
	6	22006	47	50	47	57	62	64	71	75	85	87	8
	7	22007	84	74	70	68	58	59	56	56	64	70	6
	8	22008	74	64	58	57	53	51	47	45	42	43	3,
	9	22009	87	81	73	74	71	63	53	45	39	43	40
	10	22010	40	34	37	33	31	35	39	38	40	48	4
	11	22011	91	84	78	74	76	80	80	73	75	71	7!
	12	22012	81	83	93	88	89	90	99	99	95	85	7
	13	22013	52	50	42	38	33	30	28	22	12	20	1!
	14	22014	63	67	65	74	80	86	95	96	92	83	7
	15	22015	76	82	88	94	85	76	70	60	50	58	4
	16	22016	83	78	71	71	77	72	66	75	66	61	6
	17	22017	55	45	43	38	43	35	44	37	45	37	4
	18	22018	71	67	76	74	64	61	57	64	61	51	5
	19	22019	62	61	53	49	54	59	68	74	65	55	61
	20	22020	44	38	36	34	26	34	39	44	36	45	3
	21	22021	50	56	53	46	41	38	47	39	44	36	4.
	22	22022	57	48	40	45	43	36	26	19	9	12	2.

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_1
23	22023	59	56	52	44	50	40	45	46	54	57	5.
24	22024	84	92	89	80	90	80	84	74	68	73	8
25	22025	74	80	86	87	90	100	95	87	85	79	8
26	22026	92	84	74	83	93	83	75	82	81	73	71
27	22027	63	70	74	65	64	55	61	58	48	46	4
28	22028	78	77	69	76	78	74	67	69	78	68	6
29	22029	55	58	59	67	71	62	53	61	67	76	7
30	22030	54	54	48	38	35	45	46	47	41	37	31
31	22031	84	93	97	89	86	95	100	100	100	99	10
32	22032	95	100	94	100	98	99	100	90	80	84	7
33	22033	64	61	63	73	63	68	64	58	50	51	5(
34	22034	76	79	73	77	83	86	95	89	90	95	10
35	22035	78	71	61	55	54	48	41	32	41	40	4
36	22036	95	89	91	84	89	94	85	91	100	100	10
37	22037	99	89	79	87	87	81	82	74	64	54	5
38	22038	82	83	85	86	89	80	88	95	87	93	91
39	22039	65	56	64	62	58	51	61	68	70	70	6.
40	22040	100	93	92	86	84	76	82	74	79	72	7!
41	22041	78	72	73	79	81	73	71	77	83	92	9.
42	22042	98	100	100	93	94	92	100	100	98	94	9.
43	22043	58	62	67	77	71	63	64	73	83	76	81
44	22044	96	92	94	100	99	95	98	92	84	84	8,
45	22045	86	87	85	84	85	91	86	82	85	87	8,
46	22046	48	55	46	40	34	29	37	34	39	41	3
47	22047	56	52	54	47	40	35	43	44	40	39	4
48	22048	42	44	46	53	62	59	57	53	43	35	3.
49	22049	64	54	49	59	54	55	57	59	63	73	7
50	22050	50	44	37	29	37	46	53	57	55	61	6.
51	22051	70	60	70	62	67	67	68	67	72	69	6.
52	22052	63	73	70	63	60	67	61	59	52	58	51
53	22053	92	100	100	100	100	100	92	87	94	100	9,
54	22054	64	55	54	61	63	57	47	37	44	48	5,
55	22055	60	66	68	58	49	47	39	29	39	44	3!

To display top 10 rows

Out

```
In [3]: c=a.head(15) c
```

[3]:	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_1
0	22000	78	87	91	91	88	98	94	100	100	100	10
1	22001	79	71	81	72	73	68	59	69	59	60	6
2	22002	66	65	70	74	78	86	87	96	88	82	91
3	22003	60	58	54	61	54	57	64	62	72	63	7.
4	22004	99	95	96	93	97	89	92	98	91	98	9
5	22005	41	36	35	28	35	36	27	26	19	22	2.
6	22006	47	50	47	57	62	64	71	75	85	87	8
7	22007	84	74	70	68	58	59	56	56	64	70	6
8	22008	74	64	58	57	53	51	47	45	42	43	3,
9	22009	87	81	73	74	71	63	53	45	39	43	4
10	22010	40	34	37	33	31	35	39	38	40	48	4
11	22011	91	84	78	74	76	80	80	73	75	71	7!
12	22012	81	83	93	88	89	90	99	99	95	85	7
13	22013	52	50	42	38	33	30	28	22	12	20	1!
14	22014	63	67	65	74	80	86	95	96	92	83	7
4												>

To find Missing values

```
In [4]:
            c.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 15 entries, 0 to 14
           Data columns (total 13 columns):
                 Column Non-Null Count Dtype
            #
                                  -----
                 _____
                                                       ____
                 Student_ID 15 non-null
            0
                                                       int64
               Test_1 15 non-null
Test_2 15 non-null
Test_3 15 non-null
Test_4 15 non-null
Test_5 15 non-null
Test_6 15 non-null
Test_7 15 non-null
Test_7 15 non-null
Test_8 15 non-null
Test_9 15 non-null
Test_9 15 non-null
            1
                                                     int64
            2
                                                     int64
            3
                                                     int64
            4
                                                     int64
            5
                                                      int64
            6
                                                      int64
            7
                                                      int64
            8
                                                      int64
            9
                                                      int64
            10 Test_10 15 non-null
                                                      int64
                             15 non-null
15 non-null
            11 Test_11
                                                      int64
            12 Test_12
                                                       int64
           dtypes: int64(13)
           memory usage: 1.6 KB
```

To display summary of statistics

```
In [5]:
           a.describe()
Out[5]:
                    Student_ID
                                     Test_1
                                                  Test_2
                                                              Test_3
                                                                           Test_4
                                                                                       Test_5
                                                                                                    Test_6
                                                                                                                 Te
                                                                                                             56.000
                     56.000000
                                  56.000000
                                              56.000000
                                                           56.000000
                                                                        56.000000
                                                                                    56.000000
                                                                                                 56.000000
          count
                  22027.500000
                                  70.750000
                                              69.196429
                                                           68.089286
                                                                        67.446429
                                                                                    67.303571
                                                                                                 66.000000
                                                                                                             66.160
          mean
             std
                     16.309506
                                  17.009356
                                              17.712266
                                                           18.838333
                                                                        19.807179
                                                                                    20.746890
                                                                                                 21.054043
                                                                                                             21.427
                  22000.000000
                                  40.000000
                                              34.000000
                                                           35.000000
                                                                        28.000000
                                                                                    26.000000
                                                                                                 29.000000
                                                                                                             26.000
            min
                                                                                                 50.250000
            25%
                  22013.750000
                                  57.750000
                                              55.750000
                                                           53.000000
                                                                        54.500000
                                                                                    53.750000
                                                                                                             47.000
                  22027.500000
                                  70.500000
                                              68.500000
                                                           70.000000
                                                                        71.500000
                                                                                    69.000000
                                                                                                 65.500000
                                                                                                             64.000
                  22041.250000
                                  84.000000
                                              83.250000
                                                           85.000000
                                                                        84.000000
                                                                                    85.250000
                                                                                                 83.750000
                                                                                                             85.250
                  22055.000000
                                 100.000000
                                             100.000000
                                                          100.000000
                                                                       100.000000
                                                                                   100.000000
                                                                                                100.000000
                                                                                                            100.000
```

To display column heading

Pairplot

```
In [7]: s=a.dropna(axis=1)
s
```

Out[7]:		Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_1
	0	22000	78	87	91	91	88	98	94	100	100	100	10
	1	22001	79	71	81	72	73	68	59	69	59	60	6
	2	22002	66	65	70	74	78	86	87	96	88	82	91
	3	22003	60	58	54	61	54	57	64	62	72	63	77
	4	22004	99	95	96	93	97	89	92	98	91	98	9
	5	22005	41	36	35	28	35	36	27	26	19	22	2.
	6	22006	47	50	47	57	62	64	71	75	85	87	8
	7	22007	84	74	70	68	58	59	56	56	64	70	6 ⁻
	8	22008	74	64	58	57	53	51	47	45	42	43	3,
	9	22009	87	81	73	74	71	63	53	45	39	43	4
	10	22010	40	34	37	33	31	35	39	38	40	48	4
	11	22011	91	84	78	74	76	80	80	73	75	71	7!
	12	22012	81	83	93	88	89	90	99	99	95	85	7

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_1
13	22013	52	50	42	38	33	30	28	22	12	20	1!
14	22014	63	67	65	74	80	86	95	96	92	83	7
15	22015	76	82	88	94	85	76	70	60	50	58	4
16	22016	83	78	71	71	77	72	66	75	66	61	6
17	22017	55	45	43	38	43	35	44	37	45	37	4
18	22018	71	67	76	74	64	61	57	64	61	51	5
19	22019	62	61	53	49	54	59	68	74	65	55	61
20	22020	44	38	36	34	26	34	39	44	36	45	3
21	22021	50	56	53	46	41	38	47	39	44	36	4.
22	22022	57	48	40	45	43	36	26	19	9	12	2.
23	22023	59	56	52	44	50	40	45	46	54	57	5.
24	22024	84	92	89	80	90	80	84	74	68	73	8
25	22025	74	80	86	87	90	100	95	87	85	79	8
26	22026	92	84	74	83	93	83	75	82	81	73	70
27	22027	63	70	74	65	64	55	61	58	48	46	4
28	22028	78	77	69	76	78	74	67	69	78	68	6
29	22029	55	58	59	67	71	62	53	61	67	76	7
30	22030	54	54	48	38	35	45	46	47	41	37	31
31	22031	84	93	97	89	86	95	100	100	100	99	10
32	22032	95	100	94	100	98	99	100	90	80	84	7
33	22033	64	61	63	73	63	68	64	58	50	51	5
34	22034	76	79	73	77	83	86	95	89	90	95	10
35	22035	78	71	61	55	54	48	41	32	41	40	4
36	22036	95	89	91	84	89	94	85	91	100	100	10
37	22037	99	89	79	87	87	81	82	74	64	54	5
38	22038	82	83	85	86	89	80	88	95	87	93	91
39	22039	65	56	64	62	58	51	61	68	70	70	6.
40	22040	100	93	92	86	84	76	82	74	79	72	7!
41	22041	78	72	73	79	81	73	71	77	83	92	9.
42	22042	98	100	100	93	94	92	100	100	98	94	9.
43	22043	58	62	67	77	71	63	64	73	83	76	81
44	22044	96	92	94	100	99	95	98	92	84	84	8,
45	22045	86	87	85	84	85	91	86	82	85	87	8,
46	22046	48	55	46	40	34	29	37	34	39	41	3
47	22047	56	52	54	47	40	35	43	44	40	39	4
48	22048	42	44	46	53	62	59	57	53	43	35	3.

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_1
49	22049	64	54	49	59	54	55	57	59	63	73	7
50	22050	50	44	37	29	37	46	53	57	55	61	6,
51	22051	70	60	70	62	67	67	68	67	72	69	6,
52	22052	63	73	70	63	60	67	61	59	52	58	5(
53	22053	92	100	100	100	100	100	92	87	94	100	9,
54	22054	64	55	54	61	63	57	47	37	44	48	5,
55	22055	60	66	68	58	49	47	39	29	39	44	3!

Out[10]: <seaborn.axisgrid.PairGrid at 0x2b08c2dba90>

Distribution Plot

```
In [11]: sns.displot(c['Student_ID'])
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x2b08c3a2b50>

Correlation

Out[12]: <AxesSubplot:>

Train the model - Model Building

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [15]: from sklearn.linear_model import LinearRegression
In [16]: lr=LinearRegression()
lr.fit(g_train,h_train)
Out[16]: LinearRegression()
In [17]: print(lr.intercept_)
6794.729390518639
```

Coeffecient

```
In [18]: coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
```

```
Co-effecient
Out[18]:
                            -0.308044
            Student_ID
                Test 1
                            -0.059771
                            -0.220402
                Test_2
                Test 3
                            0.268847
                Test_4
                            -0.122618
                Test 5
                            -0.065898
                Test_6
                            -0.065108
                Test 7
                            -0.171812
                Test_8
                            0.300793
                Test_9
                            0.255367
                            0.290472
               Test_10
               Test_11
                            0.378750
```

Best Fit line

```
In [19]: prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```


To find score

Import Lasso and ridge

```
In [21]: from sklearn.linear_model import Ridge,Lasso
```

Ridge

Lasso

```
In [25]:
    l=Lasso(alpha=6)
    l.fit(g_train,h_train)
```

Out[25]: Lasso(alpha=6)