À rendre pour le lundi 9 octobre 2023

Devoir maison nº 1

Mathématiques

Le but de ce DM est de montrer, avec trois méthodes différentes, l'inégalité suivante :

$$\forall x \in \mathbb{R}, \quad |\sin x + \cos x| \leqslant \sqrt{2}.$$

- 1) **Première méthode :** factoriser $\sin x + \cos x$ puis en déduire l'inégalité souhaitée.
- 2) Deuxième méthode : mettre l'inégalité au carré (en justifiant) et conclure.
- 3) Troisième méthode : on considère la fonction $f(x) = \sin x + \cos x$.
 - a) Justifier pourquoi il suffit de montrer que : $\forall x \in [0, 2\pi], |f(x)| \leq \sqrt{2}$.
 - b) Calculer $f(x+\pi)$ et en déduire qu'il suffit de montrer l'inégalité seulement pour $x \in [0,\pi]$.
 - c) Calculer $f(\frac{\pi}{2} x)$ et en déduire qu'il suffit de montrer l'inégalité seulement pour $x \in [0, \frac{\pi}{2}]$.
 - d) Étudier f sur $\left[0, \frac{\pi}{2}\right]$ et conclure.

Solution.

1) $\sin x + \cos x = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$ et on rappelle que $|\cos x| \leq 1$ pour tout $x \in \mathbb{R}$ donc

$$\left|\sin x + \cos x\right| = \sqrt{2} \left|\cos\left(x - \frac{\pi}{4}\right)\right| \leqslant \sqrt{2}.$$

2) L'inégalité concerne deux nombres positifs donc on peut la mettre au carré tout en conservant une équivalence (on rappelle aussi que $|x|^2 = x^2$):

$$\begin{split} |\sin x + \cos x| \leqslant \sqrt{2} &\iff (\sin x + \cos x)^2 \leqslant 2 \\ &\iff \sin^2 x + 2\cos x \sin x + \cos^2 x \leqslant 2 \\ &\iff 2\cos x \sin x \leqslant 1 \quad \operatorname{car} \cos^2 x + \sin^2 x = 1 \\ &\iff \sin(2x) \leqslant 1 \quad \operatorname{car} \sin(2x) = 2\sin x \cos x. \end{split}$$

Cette dernière inégalité est vraie puisque $\sin x \leq 1$ pour tout $x \in \mathbb{R}$. D'où le résultat.

3) a) On suppose que : $\forall x \in [0, 2\pi], \ |f(x)| \leq \sqrt{2}$. Montrons qu'alors l'inégalité s'étend à tout $x \in \mathbb{R}$. Soit $x \in \mathbb{R}$ quelconque. Puisque f est 2π -périodique, on souhaite trouver un entier $k \in \mathbb{Z}$ tel que $x_k = x + 2k\pi \in [0, 2\pi]$ de sorte que $|f(x)| = |f(x_k)| \leq \sqrt{2}$ d'après l'hypothèse. Un tel k doit vérifier

$$0 \leqslant x + 2k\pi \leqslant 2\pi \iff -k \leqslant \frac{x}{2\pi} \leqslant -k + 1$$

donc on peut prendre $k = -\lfloor \frac{x}{2\pi} \rfloor$.

b) $f(x+\pi) = -f(x)$ donc |f| est π -périodique. En utilisant le raisonnement précédent, on voit qu'il suffit de montrer l'inégalité pour $x \in [0, \pi]$.

- c) $f(\frac{\pi}{2} x) = f(x)$ mais $x \in [0, \frac{\pi}{2}] \iff \frac{\pi}{2} x \in [0, \frac{\pi}{2}]$ donc cette relation ne permet pas de réduire l'intervalle d'étude. Il y a donc un problème dans la question...
 - En revanche, la relation $f\left(\frac{\pi}{2}-x\right)=f(x)$ montre que la courbe de f présente une symétrie d'axe $x=\frac{\pi}{4}$, ce que l'on peut exploiter. En effet, puisque |f| est π -périodique on peut montrer l'inégalité seulement sur $\left[-\frac{\pi}{4},\frac{3\pi}{4}\right]$ car cet intervalle est de longueur π . Or, pour tout $x\in\left[\frac{\pi}{4},\frac{3\pi}{4}\right]$, on a $\frac{\pi}{2}-x\in\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ donc il suffit de montrer l'inégalité pour $x\in\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$.
- d) Finalement on étudie f sur $[-\frac{\pi}{4}, \frac{\pi}{4}]$. On rappelle que f est définie et dérivable sur $\mathbb R$ et que $f'(x) = \cos x \sin x$. Pour $x \in [-\frac{\pi}{4}, \frac{\pi}{4}]$, on a $\cos x \geqslant \frac{\sqrt{2}}{2}$ et $\sin x \leqslant \frac{\sqrt{2}}{2}$ donc $f'(x) \geqslant 0$ et finalement f est croissante sur cet intervalle. Puisque $f\left(\frac{\pi}{4}\right) = \sqrt{2}$, on obtient l'inégalité souhaitée.

