Bandits 2

Chen-Yu Wei

The Full-Information MAB

Given: set of actions $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Environment decides the reward of all actions $R_t(1)$, $R_t(2)$, ..., $R_t(A)$ without revealing

The learner chooses an action a_t

Environment reveals the noisy reward $r_t(a) = R_t(a) + w_t(a)$ of all actions

Regret =
$$\max_{a} \sum_{t=1}^{T} R_t(a) - \sum_{t=1}^{T} R_t(a_t)$$

 $\sum_{t=1}^{T} \max_{a} R_t(a) \left(\frac{1}{h} \right)$

KL-Regularized Policy Updates

$$\hat{A}_{t} \sim 7t \rightarrow r_{t} = \begin{pmatrix} r_{t(1)} \\ \vdots \\ r_{t(A)} \end{pmatrix}$$

$$\pi_{t+1} = \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

$$= \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \sum_{a} \left(\pi(a) - \pi_t(a) \right) r_t(a) - \frac{1}{\eta} \sum_{a} \pi(a) \log \frac{\pi(a)}{\pi_t(a)} \right\}$$

$$(7.1)$$

The Improvement of π over π_t

Distance between π and π_t

Why regularize the update?

KL-Regularized Policy Updates

Maintaining stability for stochastic or adversarial environments

Time	1	2	3	4	5	6	
$R_t(1)$	0.5	0	1	(0)	1	0	
$R_t(2)$	0	1	(0)	1	0	1	

Follow the leader:
$$a_t = \max_{a \in \mathcal{A}} \left\{ \sum_{i=1}^{t-1} r_i(a) \right\}$$

KL-Regularized Policy Updates

Exponential weight updates

$$\pi_{t+1} = \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\} \iff \pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta r_t(b)}}$$

The equivalence is shown in HW0

Regret Bound for Exponential Weight Updates

Theorem.

Assume that $\eta r_t(a) \leq 1$ for all t, a. Then EWU

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

ensures for any $a^* \in \mathcal{A}$,

$$\sum_{t=1}^{T} (r_t(a^*) - \langle \pi_t, r_t \rangle) \le \frac{\log A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{A} \pi_t(a) r_t(a)^2$$

$$||f||r_t(a)| \le 1 \text{ and } \eta \le 1 \Rightarrow \mathbb{E}\left[\sum_{t=1}^T (R_t(a^*) - R_t(a_t))\right] \le \frac{\log A}{\eta} + \eta T \approx \sqrt{(\log A)T}$$

Questions and Discussions

How is exponential weight update related to Boltzmann's exploration?

$$\mathcal{T}_{t+1}(\alpha) \propto \overline{\mathcal{T}_{t}(\alpha)} e^{2r_{t}(\alpha)} \propto \mathcal{T}_{t-1}(\alpha) e^{2r_{t-1}(\alpha)} e^{2r_{t}(\alpha)} \cdots \propto e^{2\frac{\tau}{5r_{t}}} r_{5}(\alpha) = e^{2\tau} \cdot \widehat{\mathcal{R}_{t}(\alpha)}$$

$$\mathcal{T}_{t+1}(\alpha) \propto e^{2\tau} e^{2r_{t}(\alpha)} \qquad \qquad \mathcal{T}_{t} = 2\tau$$

$$\mathcal{T}_{t+1}(\alpha) \propto e^{2\tau} e^{2r_{t}(\alpha)}$$

$$\mathcal{T}_{t+1}(\alpha) \propto e^{2\tau} e^{2r_{t}(\alpha)}$$

$$\mathcal{T}_{t+1}(\alpha) \propto e^{2\tau} e^{2r_{t}(\alpha)}$$

Questions and Discussions

- Why do we care about regret against a **fixed** action when the reward function is changing?
 - Environments where reward function is mostly stationary, but occasionally being changed adversarially
 - When we discuss about MDP, we will re-use this theorem but with R_t replaced by the "Q-function" of the policy used by the learner (and the policy of the learner changes over time)
 - This framework is suitable for a lot of other applications: game theory, constrained optimization, boosting, etc.

Exponential Weight Update ∈ Mirror Ascent

General form of Mirror Ascent:

Usually, $r_t = \nabla f_t(x_t)$ for some function f_t that we want to maximize

$$x_{t+1} = \underset{x \in \Omega}{\operatorname{argmax}} \left\{ \langle x - x_t, r_t \rangle - \frac{1}{\eta} D_{\psi}(x, x_t) \right\}$$

Bregman divergence with respect to a convex function ψ

$$D_{\psi}(x, y) = \psi(x) - \psi(y) - \langle \nabla \psi(y), x - y \rangle$$

Exponential Weight Update ∈ Mirror Ascent

Special cases of Mirror Ascent: $x_{t+1} = \operatorname*{argmax}_{x \in \Omega} \left\{ \langle x - x_t, r_t \rangle - \frac{1}{\eta} D_{\psi}(x, x_t) \right\}$

$\psi(x)$	$D_{\psi}(x,y)$	Update Rule	
$\frac{1}{2} \ x\ _2^2$	$\frac{1}{2} \ x - y\ _2^2$	$\begin{aligned} x_{t+1} &= \mathcal{P}_{\Omega}(x_t + \eta r_t) \\ & \text{Gradient ascent} \end{aligned}$	
$\sum_{a} x(a) \log x(a)$ Negative entropy	$\sum_{a} x(a) \log \frac{x(a)}{y(a)}$	$x_{t+1}(a) = \frac{x_t(a)e^{\eta r_t(a)}}{\sum_b x_t(b) e^{\eta r_t(b)}}$ —	(for distributions)
$\sum_{a} \log \frac{1}{x(a)}$	$\sum_{a} \left(\frac{x(a)}{y(a)} - \log \frac{x(a)}{y(a)} - 1 \right)$	$\frac{1}{x_{t+1}(a)} = \frac{1}{x_t(a)} - \eta r_t(a) + \gamma_t$	(for distributions)

Regret Analysis for Exponential Weights

Theorem.

Assume that $\eta r_t(a) \leq 1$ for all t, a. Then EWU

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

ensures for any $a^* \in \mathcal{A}$,

Regret Analysis for Exponential Weights

Useful Lemma

For fixed π_{ref} and v, define

We will apply this lemma with
$$\pi_{\rm ref} = \pi_t$$
, $v = \eta r_t$, $\hat{\pi} = \pi_{t+1}$

$$F(\pi) = \langle \pi - \pi_{\text{ref}}, v \rangle - \text{KL}(\pi, \pi_{\text{ref}})$$

and let $\hat{\pi} = \max_{\pi} F(\pi)$

(1)
$$F(\hat{\pi}) \ge F(\pi) + KL(\pi, \hat{\pi})$$
 for any π

(2) If
$$v(a) \le 1$$
 for all a , then $F(\hat{\pi}) \le \langle \pi_{\text{ref}}, v^2 \rangle = \sum_a \pi_{\text{ref}}(a) v(a)^2$

- (1) holds for all Bregman divergence
- (2) is specific to KL divergence (but has counterpart for other divergence)

Regret Analysis for Exponential Weights

$$F(\lambda) = \langle \overline{\lambda} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\lambda, \overline{\lambda}_{t})$$

$$\overline{\lambda}_{t+1} = \operatorname{argmax} F(\lambda)$$

$$T_{t+1} = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t+1}, \overline{\lambda}_{t})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t+1}, \overline{\lambda}_{t})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) =$$