- 4 (a) Let $A, B \subset \mathbb{R}$. Show that $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$. Can the inclusion be strict? Justify! [3]
 - (b) Let A be a compact subset and B be a closed subset of a metric space (X, d). Show that $A \cap B$ is also compact.
 - (c) Let $U_n = (-1 + \frac{1}{n}, 1 \frac{1}{n})$. Is $\{U_n\}$ an open cover for (-1, 1)? Show that finitely many U_n 's cannot cover (-1, 1)? Does $[-\frac{1}{2}, \frac{5}{6}]$ can be covered by finitely many U_n 's. Justify! [4]
 - (d) By assuming $A = \{m + \pi n : m, n \in \mathbb{Z}\}$ is dense in \mathbb{R} (also, for $y \in [-1, 1]$ we know that there exists a $x \in \mathbb{R}$ such that $\sin x = y$). Show that for every $y \in [-1, 1]$ there exists a sequence $\{n_k\} \subset \mathbb{N}$ such that $\lim_{k \to \infty} \sin n_k = y$. [5]