STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 17: Difference Between Two Means

Outline

- Previous lectures:
 - Explored statistical models for normally distributed data
 - lacktriangle Data are modelled as normal with mean μ and variance σ^2
 - **ightharpoonup** Found confidence interval for μ
 - \blacktriangleright Hypothesis test for μ
- Today: begin to look at relationships between variables
 - Relationship between a continuous variable and a categorical variable
 - ► Continuous variable: can take any value
 - e.g. height, weight, time to run 100 m
 - It could be limited a range (e.g. height must be positive)
 - ► Categorical variable: represents categories or groups
 - e.g. sex, country of birth, blood type, etc.

Motivation

- What is the effect of sensory deprivation?¹
 - ▶ Study designed to explore this question, where all participants were prisoners
- Twenty participants were selected
 - 82 inmates initially volunteered
 - Removed: medically unfit, low IQ, history of behaviour or psychiatric problems in prison
- The 20 participants were randomly allocated into two groups
 - Solitary confinement
 - Control (ordinary prison life)
- EEG² frequencies were obtained on day 7
 - ► Is there a difference in arousal levels? (as measured by EEG frequency)

From Journal of Abnormal Psychology, 1972, 79, 54-59

²EEG (Electroencephalogram) measures the frequency of brain waves

Data: EEG frequencies

Import the data

```
EEG = read.csv('EEG.csv')
```

Have a look at the data:

```
head(EEG)
## Group Freq
## 1 Control 10.7
## 2 Control 10.7
## 3 Control 10.4
## 4 Control 10.9
## 5 Control 10.5
## 6 Control 10.3
```

Visualise the data

https://mathstatfiles.otago.ac.nz/STAT115/GEEplot.r

Problem

- We have looked at models:
 - ▶ Data are normally distributed with mean μ and variance σ^2
 - \blacktriangleright Focus has been on the estimation of a (single) mean μ
- We need to extend our model to allow for two groups of data
 - Group 1 (experimental): normally distributed with mean μ_1 and variance σ_1^2
 - Group 2 (control): normally distributed with mean μ_2 and variance σ_2^2
- Interest is in the difference in means between the two groups
 - $\mu_1 \mu_2$ (or $\mu_2 \mu_1$)
- Difference in the mean arousal level between the deprived and the controls

Model (graphical representation)

Other examples

- There are other applications we could have used to motivate:
 - Cuckoos are avian brood parasites: they lay their eggs in the nest of other birds
 - Compare the length of cuckoo eggs in wren and robin nests
 - Explore differences in chemical composition of wine or olives
 - Different cultivars (wine)
 - Different regions (olives)
 - Comparing athletic performance
 - Comparing resistance training and traditional training for athletes in some sport
 - ► Survival time for breast cancer patients
 - Comparing candidate drug and placebo
 - Gene expression in a section of the brain
 - Comparing diseased, with healthy controls
 - ► You will see a variety of examples in Assignments

How to find a confidence interval

- Much of what we have learned previously 'carries over'
- Use statistics (from sample) to estimate parameters (from population)
 - ▶ Parameter: $\mu_1 \mu_2$
 - Statistic: $\bar{y}_1 \bar{y}_2$
- Standard error for $\bar{y}_1 \bar{y}_2$
 - ▶ Tells us about the variation in $\bar{y}_1 \bar{y}_2$ in repeated samples
 - \blacktriangleright Estimated standard error: $s_{\bar{y}_1-\bar{y_2}} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- The confidence interval is given as

$$rac{ar{y}_1 - ar{y}_2}{ ext{statistic}} \pm \underbrace{t_{
u,1-lpha/2}}_{ ext{multiplier}} \underbrace{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}_{ ext{standard error}}$$

Standard error

- The standard error is different from before, but similar
 - ► Follows from variance rules (Lecture 9)
 - Observations in the two groups are independent

$$Var(\bar{y}_1 - \bar{y}_2) = Var(\bar{y}_1) + Var(\bar{y}_2)$$

= $\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}$

Multiplier

- The multiplier is again given by the t-distribution
 - ▶ The use of the t-distribution relies on an approximation
 - Approximation is accurate provided we have more than a handful of observations $(n_1 > 5, n_2 > 5)$
- The degrees of freedom, ν , we use is given by a complicated formula
 - ► You have no need to know or learn this

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}.$$

- If software isn't available, simpler approximations for ν are sometimes used
 - e.g. using smaller of $n_1 1$ and $n_2 1$
 - Conservative

Slide 11 Lecture 17

Calculating the confidence interval

- We could calculate the confidence interval by hand:
 - lacktriangle Find the sample mean in each group: $ar{y}_1, ar{y}_2$
 - Find the sample variance in each group: s_1^2, s_2^2
 - Find the standard error
 - Calculate the degrees of freedom
 - ► Find the *t*-multiplier
 - Construct the confidence interval
- Tedious task
 - ▶ Important to know how the interval is constructed
 - You may be asked to do various aspects of it for assignment/test/exam

► Easier to use R to calculate the interval

- We use the same function as before: t.test
 - ► This requires us to have the data for each group separately
 - ► Currently our data are in a single data frame

- The variable Group distinguishes which group the observation is from
 - ► Either Control or Solitary

- There are several ways in R we could separate into two groups
 - ▶ We will use subset
 - Subsets the data based on a specified criteria
 - Only cover 'basic' data handling in STAT115
 - See STAT 260

```
control = subset(EEG, Group == "Control")
solitary = subset(EEG, Group == "Solitary")
```

- We use two equal signs (==) to *check* equality
 - ► Group == "Solitary" is checking which observations are Solitary

Check each of these objects

```
control
                                              solitary
##
        Group Freq
                                              ##
                                                       Group Freq
      Control 10.7
                                              ## 11 Solitary 9.6
      Control 10.7
                                              ## 12 Solitary 10.4
      Control 10.4
                                              ## 13 Solitary 9.7
      Control 10.9
                                              ## 14 Solitary 10.3
## 5
     Control 10.5
                                              ## 15 Solitary 9.2
     Control 10.3
                                              ## 16 Solitary 9.3
## 7
      Control 9.6
                                              ## 17 Solitary 9.9
      Control 11.1
                                              ## 18 Solitary 9.5
     Control 11.2
                                              ## 19 Solitary 9.0
## 10 Control 10.4
                                              ## 20 Solitary 10.9
```

• Each of the groups is a separate argument in t.test

```
out = t.test(control$Freq, solitary$Freq)
out
##
   Welch Two Sample t-test
##
## data: control$Freq and solitary$Freq
## t = 3.4, df = 17, p-value = 0.004
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   0.2969 1.3031
## sample estimates:
## mean of x mean of y
##
       10.58
                  9.78
```

R output

- R calculates the degrees of freedom for us: $\nu=16.875$
- R gives us the means

```
out$estimate # gives the samples means of the two groups
## mean of x mean of y
## 10.58 9.78
out$estimate[1] - out$estimate[2] # find the diff in sample means
## mean of x
## 0.8
```

- When interpreting, we must be careful to not confuse the order
 - ▶ Mean of *x* corresponds to the first argument: controls
 - ▶ Mean of y corresponds to the second argument: solitary
 - ► Confidence interval is for $\mu_x \mu_y$, or $\mu_{\text{control}} \mu_{\text{solitary}}$

Confidence interval

The confidence interval is

```
out$conf.int
## [1] 0.2969 1.3031
## attr(,"conf.level")
## [1] 0.95
```

- We are 95% confident that the mean EEG frequency for the control group is between (0.2969, 1.3031) higher than those in solitary confinement
- The confidence interval has the same properties as before
 - In the long run, we would expect 95% of the confidence intervals we calculate to include the true difference $\mu_1 \mu_2$

- If we were to repeatedly sample from the population and repeat this analysis

Checking assumptions

- We are assuming a normal model for each group
- Check fitted model

Checking assumptions

- Do the data show departures from normality?
- Enough to make us cautious
 - ▶ Small sample size: normality assumption very important
 - It is hardest to assess normality assumptions, when it matters the most

• Want to be cautious in our conclusions

Hypothesis test

- This study was set up to look into a specific hypothesis
 - Confirmatory
- Theory was that sensory deprivation changes EEG frequency
- Null hypothesis: status quo / assumption of no difference
 - ▶ The two groups have the same mean: $\mu_1 = \mu_2$
 - $H_0: \mu_1 \mu_2 = 0$
- The alternative hypothesis
 - ▶ The two groups differ: $\mu_1 \neq \mu_2$
 - $ightharpoonup H_A: \mu_1 \mu_2 \neq 0$

Hypothesis test

• The same function (t.test) is used to calculate a hypothesis test

```
out = t.test(control$Freq, solitary$Freq)
011†.
##
   Welch Two Sample t-test
##
## data: control$Freq and solitary$Freq
## t = 3.4, df = 17, p-value = 0.004
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   0.2969 1.3031
## sample estimates:
## mean of x mean of y
##
       10.58
                  9.78
```

Interpretation

- The *p*-value is 0.0038
 - ▶ Evidence of incompatibility between data and null hypothesis
 - Data provide support for the alternative hypothesis
 - Difference in EEG frequency between the control and solitary groups
- Given the small sample and cautiousness in checking assumptions
 - ▶ We have provided evidence in support of EEG differing
 - Larger studies desirable to provide further confirmation

Confidence intervals vs hypothesis testing

- In this example we look at both confidence intervals and hypothesis test
- The p-value does not tell us how strong an effect is
 - We could have p-value of 0.05 with $\bar{y}_1 \bar{y}_2 = 10$
 - Small sample size
 - We could have p-value of 0.001 with $\bar{y}_1 \bar{y}_2 = 0.002$
 - Large sample size
- · Confidence interval gives an interval estimate of effect

Independent groups

- We have assumed the two groups are independent
 - ► Important assumption
- What does that mean?
 - ▶ The outcome from one group does not affect the outcome from the other group
- This will not always be the case:
 - ▶ Students take a test before undertaking a course
 - ▶ Same students undertake the same test after the course
 - Same participants in each 'group'
 - It is likely that someone who scored well in first test will also score well in the second test

Look into this more next lecture

Summary

- First look at relationship between variables
 - ▶ How EEG frequency varies by sensory deprivation
- Relationship between a continuous variable and a categorical variable
 - ► EEG frequency (continuous); sensory deprivation yes/no (categorical)