Université Pierre et Marie Curie - LM223 - Année 2012-2013

Examen de 2° session, période 1

Question de cours :

- 1. Donner la définition d'une forme bilinéaire symétrique ainsi que celle d'un produit scalaire.
- 2. Sur \mathbb{R}^3 donner quatre formes quadratiques q_1, q_2, q_3 et q_4 différentes telles que q_1 et q_2 soient des produits scalaires, q_3 soit de signature (2,1) et q_4 soit dégénérée.
- 3. Donner la définition d'une matrice orthogonale.

Exercice 1:

- 1. Montrer que si $P \in O(n)$, alors $\det(P) = \pm 1$.
- 2. Donner quatre matrices de SO(2).
- 3. Compléter la matrice suivante P pour que $P \in SO(3)$ où $P = \begin{pmatrix} \frac{2}{3} & \cdot & \cdot \\ \frac{-1}{3} & \cdot & \cdot \\ \frac{2}{3} & \cdot & \cdot \end{pmatrix}$.

Exercice 2:

Sur \mathbb{R}^3 soit q la forme quadratique définie par $q(x) = x_1^2 + 7x_2^2 + 12x_3^2 + 4x_1x_2 - 2x_1x_3 - 16x_2x_3$.

- 1. Donner la matrice M de q dans la base canonique de \mathbb{R}^3 .
- 2. Donner une base orthogonale pour q.
- 3. Quelle est la signature de q?
- 4. Trouver un élément $x \in \mathbb{Z}^3$ tel que q(x) = -1.

Exercice 3

Soit
$$M = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 1 \\ -1 & 1 & 3 \end{pmatrix}$$
.

- 1. Trouver une matrice $P \in O(3)$ telle que $P^{-1}MP$ soit diagonale.
- 2. Soit q la forme quadratique associée à M. Donner l'expression de q.
- 3. Est-ce que q est définie positive?