GPU Accelerated Graph Based Anomaly Detection

Ian Thomas, Enyue Lu

Introduction

Anomaly detection

- Field of data mining research
- Identify data that deviates from datasets normal behavior
- Commonly used to identify malicious activity

Graph Theory

- Study of mathematical structures used to demonstrate objects and their relationships
- Graphs in this context: sets of vertices and edges connecting them
- Used to represent interconnected networks, or interdependent data

Data Anomaly Example

Graph Example

Technological Introduction

- Graphics Processing Units (GPUs)
 - Commonly referred to "hardware accelerators"
 - Peripheral computer component, typically used only for rendering graphics
 - Recently being explored for general purpose computing due to arithmetic capability

NVIDIA CUDA

- Programming platform developed by NVIDIA corp.
- Allows developers to write specific parts of program to run on CPU or GPU

Project aims

- Continue on-going research into graph-based anomaly detection systems
- Explore GPU accelerated implementations of common anomaly detection systems
- Compare two mainstream anomaly detection approaches

Approaches Explored

- Two common approaches are explored in this experiment
 - Graph based compression
 - Graph based clustering
- Using KDD-Cup 1999 dataset
 - Set of five million network records
 - Records labeled either normal or some attack type

Graph Compression Approach

- SUBDUE graph compression algorithm
 - Commonly used in data mining applications
 - Finds most common substructures in graph, compresses substructures with a single vertex
 - Used for reducing size of graphs for storage, identifying common attributes
- Can be used in finding anomalous network records
 - Represent individual records in star-graph configurations
 - Hub vertex represents record itself, all attributes are leaf vertices
 - Orientation of leaves are compressed based on frequency among other records
 - Records given score based on how compressed star graphs are

Graph Compression Approach

Graph Clustering Approach

- Barycentric Clustering algorithm
 - Based on physical model of interconnected springs
 - Springs connected by a stronger force will naturally form clusters
 - Randomly set vertices to random locations, iteratively alter their positions based on force exerted by neighbors
- Vertices are representative of network records
 - All vertices are connected by a unique edge
 - Edge weights decided by similarity measure
 - After algorithm terminates, edges of above average weight are cut

Graph Clustering Approach

Comparison of Approaches

- Performance
 - Compression must locate most common unique pairing on each iteration (CkN * R^2 time)
 - Clustering builds graph of dataset once, taking R^2 time
- Accuracy
 - Both approaches have very high accuracy (on all datasets tested, above 98%)
 - Measured differently on each approach
- Smaller datasets more suitable for compression, larger for clustering
 - Runtime for compression makes it much slower on larger datasets
 - ~5000 records will take .89 seconds for clustering, 11.2 seconds for compression

References

- [1] S. D. Bay, D. F. Kibler, M. J. Pazzani, and P.SmythThe UCI KDD Archive of Large Data Sets for Data Mining Research and Experimentation. 2000.
- [2] Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni, Amit Bawaskar GPGPU Processing In CUDA Architecture. Jan. 2012.
- [3] Joyce, B.Graph Based Anomaly Detection using MapReduce on Network Records. University of North Carolina, August 2016
- [4] Jonathan Cohen Barycentric Graph Clustering. 2008.
- [5] Corbin McNeill, Enyue Lu, Matthias Gobbert Distributed Graph-Based Clustering for Network Intrusion Detection. Wheaton College, IL, 2015