Lime Microsystems Limited

Surrey Tech Centre Occam Road The Surrey Research Park Guildford, Surrey GU2 7YG United Kingdom

LMS7002M – Multi-Band, Multi-Standard MIMO RF Transceiver IC

- Programming and Calibration Guide -

Chip version: LMS7002M

Mask revision: 01 Document version: 3.0 Document revision: 4

Contents

1.	Serial	Port Interface	3
	1.1	Description	3
2.	LMS7	002Mr3 Memory Map Description	5
	2.1	LMS7002Mr3 Memory Man	5
	2.2	General Control, LimeLight TM and IO Cell Configuration Memory	8
	2.3	NCO Configuration Memory	
	2.4	TxTSP(A/B) Configuration Memory	
	2.5	RxTSP(A/B) Configuration Memory	
	2.6	RX/TX GFIR1/GFIR2 Coefficient Memory	
	2.7	RX/TX GFIR3 Coefficient Memory	
	2.8	RFE(1, 2) Configuration Memory	
	2.9	RBB(1, 2) Configuration Memory	
	2.10	TRF(1, 2) Configuration Memory	
	2.11	TBB(1, 2) Configuration Memory	
	2.12	TRX Gain Configuration Memory	
	2.13	AFE Configuration Memory	41
	2.14	BIAS Configuration Memory	42
	2.15	SXR, SXT Configuration Memory	43
	2.16	CGEN Configuration Memory	47
	2.17	XBUF Configuration Memory	
	2.18	LDO Configuration Memory	51
	2.19	EN DIR Configuration Memory	
	2.20	SXR, SXT and CGEN BIST Configuration Memory	
	2.21	CDS Configuration Memory	
	2.22	mSPI Configuration Memory	
	2.23	DC Calibration Configuration Memory	
	2.24	RSSI, PDET and TEMP measurement Configuration Memory	
	2.25	Analog RSSI Calibration Configuration Memory	
2	CDI D	rocedures	
J .	A1.1	SPI READ/WRITE Pseudo Code	
		ol Block Diagrams	
		RFE Control Diagrams	
	A2.2	RBB Control Diagrams	
	A2.3	TRF Control Diagrams	
	A2.4	TBB Control Diagrams	
	A2.5	AFE Control Diagram	
	A2.6	BIAS Control Diagram	
	A2.7	SXR and SXT Control Diagrams	
	A2.8	CGEN Control Diagram	
	A2.9	XBUF Control Diagram	
	A2.10	LDOs Control Diagram	
	A2.11	CDS Control Diagram	
	A2.12	IO Cell Control Diagram	
	A2.13	TxTSP(A/B) Control Diagram	
	A2.14	RxTSP(A/B) Control Diagram	
	A2.15	SXR, SXT and CGEN BIST Control Diagram	95

	A2.16 T	"xTSP(A/B) BIST Control Diagram	96
		XxTSP(A/B) BIST Control Diagram	
		imeLight TM Control Diagram	
		OC offset correction Control Diagram	
		Measurement block Control Diagram	
5.	Calibratio	n algorithms	100
		O coarse tuning	
		in resistor (bias) calibration	
		B calibration	
	A3.3.1		
	A3.3.2	RBB High band Calibration	
		ted algorithms	
	A3.4.1		
	A3.4.2	Algorithm B	
	A3.4.3	Algorithm F	
	A3.5 TBI	B calibration	
	A3.6 TBI	B Low Band Calibration	112
	A3.7 TBI	B High Band Calibration	115
		ted algorithms	
	A3.8.1	Algorithm A	116
	A3.8.2	Algorithm B	116
	A3.8.3	Algorithm C	116
	A3.8.4	Algorithm D	118
	A3.8.5	Algorithm E	

Revision History

Version 31r00

Released: 23 Jan, 2017

Initial version. Build based on LMS7002M Programming and Calibration Guide v2.24.

New register HBD DLY[2:0] added (address 0x404[15:13]).

Table 1 updated.

Chapters 2.24 and 2.25 added.

New register CMIX_GAIN[2] added (address 0x40C[12]).

Description of register CMIX GAIN[1:0] changed (address 0x40C[15:14]).

New register CMIX GAIN[2] added (address 0x208[12]).

Description of register CMIX_GAIN[1:0] changed (address 0x208[15:14]).

RESRV CGN[3:1] changed to RESRV CGN[2:1] (address 0x008D[2:0]).

New register CMPLO CTRL CGEN added (address 0x008B[14]).

Default value of ICT VCO CGEN[4:0] register (address 0x008B[13:9]) changed to 15.

New register ISINK SPIBUFF[2:0] added (address 0x00A6[15:13]).

New register R5 LPF BYP TBB (1, 2) added (address 0x010B[0]).

New register RZ CTRL (SXR, SXT)[1:0] added (address 0x0122[15:14]).

New register CMPLO CTRL (SXR, SXT) added (address 0x0122[13]).

Chapter 1.1 updated.

New register LML2 TRXIQPULSE added (address 0x0022[15]).

New register LML2 SISODDR added (address 0x0022[14]).

New register LML1 TRXIQPULSE added (address 0x0022[13]).

New register LML1 SISODDR added (address 0x0022[12]).

Description of registers at addresses 0x0024, 0x0027 updated.

Register name LML1_TX_PST changed to LML1_BB2RF_PST, description updated (address 0x0025[12:8]).

Register name LML1_TX_PRE changed to LML1_BB2RF_PRE, description updated (address 0x0025[4:0]).

Register name LML1_RX_PST changed to LML1_RF2BB_PST, description updated (address 0x0026[12:8]).

Register name LML1_RX_PRE changed to LML1_RF2BB_PRE, description updated (address 0x0026[4:0]).

Register name LML2_TX_PST changed to LML2_BB2RF_PST, description updated (address 0x0028[12:8]).

Register name LML2_TX_PRE changed to LML2_BB2RF_PRE, description updated (address 0x0028[4:0]).

Register name LML2_RX_PST changed to LML2_RF2BB_PST, description updated (address 0x0029[12:8]).

Register name LML2_RX_PRE changed to LML2_RF2BB_PRE, description updated (address 0x0029[4:0]).

Register name LML_FIDM2 changed to LML2_FIDM (address 0x0023[5]).

Register name LML_TXNRXIQ2 changed to LML2_RXNTXIQ, description updated (address 0x0023[4]).

Register name LML MODE2 changed to LML2 MODE (address 0x0023[3]).

Register name LML FIDM1 changed to LML1 FIDM (address 0x0023[2]).

Register name LML_TXNRXIQ1 changed to LML2_RXNTXIQ, description updated (address 0x0023[1]).

Register name LML_MODE1 changed to LML1_MODE (address 0x0023[0]).

LimeLight Control Diagram updated.

New register MCLK2 INV added (address 0x002B[9]).

New register MCLK1 INV added (address 0x002B[8]).

Description of registers at addresses 0x002C updated.

New register FCLK2 DLY[1:0] added (address 0x002A[15:14]).

New register FCLK1 DLY[1:0] added (address 0x002A[13:12]).

Section 1.1 updated (few typo errors fixed).

Figure 4 updated – SXT and SXR added.

Description of registers GFIR3_L (addresses 0x0207[10:8] and 0x0407[10:8]) updated – error in the formula fixed.

New register RSSI MODE[1:0] added (address 0x040A[15:14]).

New register CAPSEL ADC[12] added (address 0x0400[12]).

Description of registers CAPD[31:0] (addresses 0x040E and 0x40F) and CAPSEL[1:0] (address 0x0400[14:13]) updated.

New register DCLOOP_BYP added (address 0x040C[8]).

Version 31r01

Released: 6 Mar, 2017

Register DCLOOP_BYP (address 0x040C[8]) renamed to DCLOOP_STOP, description changed.

Version 31r02

Released: 27 Mar, 2017

New register TRX GAIN SRC added (address 0x0081[15]).

New chapter 2.12 with new registers at addresses 0x0125 and 0x0126 added.

MASK register default value updated.

Version 31r03

Released: 03 Aprl, 2017

Figure 19 updated (pin naming corrected to match the datasheet pin naming)

Version 31r04

Released: 24 Apr. 2017

Updated 2.23, 2.24 and 2.25 section register description. Some of registers were separated into individual register descriptions;

Various minor register description updates and fixed;

Updated Figure 5, Figure 6, Figure 11, Figure 12, Figure 15, Figure 16, Figure 17 and Figure 19 according to MASK=1 features.

Added sections A2.19 and A2.20.

Serial Port Interface

1.1 Description

The functionality of LMS7002Mr3 transceiver is fully controlled by a set of internal registers which can be accessed through a serial SPI port interface. Both write and read operations are supported. The serial SPI port can be configured to run in 3 or 4 wire mode with the following pins used:

- SEN SPI serial port enable, active low, output from master;
- SCLK SPI serial clock, output from master;
- SDIO SPI serial data in/out (Master Output Slave Input (MOSI) / Master Input Slave Output (MISO)) in 3 wire mode, serial data input (MOSI) in 4 wire mode;
- SDO SPI serial data out (MISO) in 4 wire mode, don't care in 3 wire mode.

SPI serial port key features:

- Operating as slave;
- Operating in SPI Mode 0: data is captured on the clock's rising edge, while data is shifted on the clock's falling edge (i.e. clock polarity CPOL = 0 and clock phase CPHA = 0):
- 32 serial clock cycles are required to complete write operation;
- 32 serial clock cycles are required to complete read operation;
- Multiple write/read operations are possible without toggling serial enable signal.

All configuration registers are 16-bit wide. Write/read sequence consists of 16-bit instruction followed by 16-bit data to write or read. MSB of the instruction bit stream is used as SPI command where CMD = 1 for write and CMD = 0 for read. Next 4 bits are reserved (Reserved[3:0]) and must be zeroes. Next 5 bits represent block address (Maddress[4:0]) since LMS7002Mr3 configuration registers are divided into logical blocks as shown in

Table 1. Remaining 6 bits of the instruction are used to address particular registers (Reg[5:0]) within the block as described in Section 2. Maddress and Reg compiles global 11-

bit register address when concatenated ((Maddress << 6) | Reg). Use global address values for particular register from the tables provided in Section 2.

Write/read cycle waveforms are shown in Figure 1, Figure 2 and Figure 3. Note that write operation is the same for both 3-wire and 4-wire modes. Although not shown in the figures, multiple byte write/read is possible by repeating instruction/data sequence while keeping SEN low.

Figure 1 SPI write cycle, 3-wire and 4-wire modes

Figure 2 SPI read cycle, 4-wire mode (default)

Figure 3 SPI read cycle, 3-wire mode

LMS7002Mr3 Memory Map Description

2.1 LMS7002Mr3 Memory Map

All the LMS7002Mr3 configuration space is accessible via serial SPI interface. All the configuration space is divided to logical block types:

- Other
- Top
- TRX
- TX
- RX

LMS7002Mr3 chip is MIMO, hence it have two channels called A and B. So, some analogue/digital modules appears in MIMO channel A as well as B (from TRX, TX and RX blocks). The rest of moduleMr3s (from Other and Top logical block types) are controlled only from one memory block. All the logical blocks are summarized in Table 1.

To save the addressing space and speed-up write operation the following trick is used for the TRX, TX and RX logical block types. There is a register called MAC[1:0] (address of this register is 0x0020[1:0]) which selects MIMO channel A or/and B. MIMO channel select logic depends on MAC[1:0] register as described below (see Figure 1 for reference):

- 11 SPI write operation possible **only**. The same data are written to the A and B MIMO channels at the same time. Note, that read operation will corrupt read data when MAC[1:0] is set to "11".
- 01 SPI read/write operation possible. Data may be written to or read from the MIMO channel A only.
- 10 SPI read/write operation possible. Data may be written to or read from the MIMO channel B only.

Using the MAC register simplifies programming for MIMO. As an example, the addresses of registers controlling TBBA and TBBB are the same, but the individual A or B channels are identified using the MAC[1:0] register.

Let us consider the write operation to the G_TIA_RFE_A[1:0] register. This register controls the RFE module within MIMO channel A. To write to the G_TIA_RFE_A[1:0] register, we have to set MAC[1:0] to the "01". If we set MAC[1:0] to the "11" then the same value will be written to the registers G_TIA_RFE_A[1:0] and G_TIA_RFE_B[1:0] at the same time (i.e. only one write operation is required, hence time saved). Similarly, if we want to write to the G_TIA_RFE_B[1:0] register only, we have to set MAC[1:0] to "10".

The special case is frequency synthesizers SXR and SXT. Register addresses are the same for SXR and SXT. To control SXT we have to set MAC[1:0] to the "10" and MAC[1:0] to the "01" for SXR.

Modules from the Top and Other logical blocks (see Table 1) are not controlled by the MAC[1:0] register.

Figure 4 Access logic of configuration modules

The memory mapping is shown in Table 1. There are five basic logical blocks. These are:

- a) Other, controlling the microcontroller and LimeLight TM interface;
- b) Top, controlling the top level bias, clock synthesizers, buffers, LDOs and BIST;
- c) TRX, controlling the Transmit and Receive RF functions;
- d) TX, controlling the transmit digital functions;
- e) RX, controlling the receive digital functions.

Table 1: LMS7002Mr3 memory map

Logical	Logical Block	Size,	Cmd		Address		
Block Type	Name		(R/W)	Resserved [3:0]	Maddress [4:0]	Reg [5:0]	Comments
	uC	16	0/1	0000	00000	00xxxx	Address space starts at 0x0000. Addressing do not depend from MAC[1:0].
	Lime Light	32	0/1	0000	00000	1xxxxx	Address space starts at 0x0020. Addressing do not depend from MAC[1:0].
Other	DC Calibration	32	0/1	0000	10111	0xxxxx	Address space starts at 0x05C0. Addressing do not depend from MAC[1:0].
	RSSI, PDET, TEMP Measurements	32	0/1	0000	11000	0xxxxx	Address space starts at 0x0600. Addressing do not depend from MAC[1:0].
TOP	Top Control (AFE, BIAS, XBUF, CGEN, LDO, BIST)	128	0/1	0000	0001x	xxxxxx	Address space starts at 0x0080. Addressing do not depend from MAC[1:0].
TRX	TRX (TRF(A/B), TBB(A/B), RFE(A/B), RBB(A/B), SX(R/T)	128	0/1	0000	0010x	xxxxxx	Address space starts at 0x0100. Selected MIMO channel depends on MAC[1:0].
	RSSI DC Calibration	32	0/1	0000	11001	0xxxxx	Address space starts at 0x0640. Selected MIMO channel depends on MAC[1:0].
	TxTSP(A/B)	32	0/1	0000	01000	0xxxxx	Address space starts at 0x0200. Selected MIMO channel depends on MAC[1:0].
	TxNCO(A/B)	64	0/1	0000	01001	xxxxxx	Address space starts at 0x0240. Selected MIMO channel depends on MAC[1:0].
	TxGFIR1(A/B)	64	0/1	0000	01010	XXXXXX	Address space starts at 0x0280. Selected MIMO channel depends on MAC[1:0].
TX	TxGFIR2(A/B)	64	0/1	0000	01011	XXXXXX	Address space starts at 0x02C0. Selected MIMO channel depends on MAC[1:0].
	TxGFIR3a(A/B)	64	0/1	0000	01100	XXXXXX	Address space starts at 0x0300. Selected MIMO channel depends on MAC[1:0].
	TxGFIR3b(A/B)	64	0/1	0000	01101	XXXXXX	Address space starts at 0x0340. Selected MIMO channel depends on MAC[1:0].
	TxGFIR3c(A/B)	64	0/1	0000	01110	XXXXXX	Address space starts at 0x0380. Selected MIMO channel depends on MAC[1:0].
	RxTSP(A/B)	32	0/1	0000	10000	0xxxxx	Address space starts at 0x0400. Selected MIMO channel depends on MAC[1:0].
	RxNCO(A/B)	64	0/1	0000	10001	xxxxxx	Address space starts at 0x0440. Selected MIMO channel depends on MAC[1:0].
	RxGFIR1(A/B)	64	0/1	0000	10010	xxxxxx	Address space starts at 0x0480. Selected MIMO channel depends on MAC[1:0].
RX	RxGFIR2(A/B)	64	0/1	0000	10011	xxxxxx	Address space starts at 0x04C0. Selected MIMO channel depends on MAC[1:0].
	RxGFIR3a(A/B)	64	0/1	0000	10100	xxxxxx	Address space starts at 0x0500. Selected MIMO channel depends on MAC[1:0].
	RxGFIR3b(A/B)	64	0/1	0000	10101	xxxxxx	Address space starts at 0x0540. Selected MIMO channel depends on MAC[1:0].
	RxGFIR3c(A/B)	64	0/1	0000	10110	xxxxxx	Address space starts at 0x0580. Selected MIMO channel depends on MAC[1:0].

2.2 General Control, LimeLightTM and IO Cell Configuration Memory

The block diagram of each IO cell is shown in Figure 21. It is possible to control the drive strength and pull-up resistor value of each IO cell.

The tables in this chapter describe the control registers of the IO cells and LimeLightTM Ports 1 and 2. The control diagram of the LimeLightTM ports is shown in Figure 27.

The general purpose control registers are also described in this chapter.

Table 2 LimeLightTM and PAD configuration memory

Table 2 LimeLigh		AD configuration memory
Address (15 bits)	Bits	Description
0x0020	15	LRST_TX_B: Resets all the logic registers to the default state for Tx MIMO channel
		В.
		0 – Reset active
	144	1 – Reset inactive (default)
	14	MRST_TX_B: Resets all the configuration memory to the default state for Tx MIMO
		channel B.
		0 – Reset active 1 – Reset inactive (default)
	13	LRST TX A: Resets all the logic registers to the default state for Tx MIMO channel
	13	A.
		0 – Reset active
		1 – Reset inactive (default)
	12	MRST TX A: Resets all the configuration memory to the default state for Tx MIMO
		channel A.
		0 – Reset active
		1 – Reset inactive (default)
	11	LRST_RX_B: Resets all the logic registers to the default state for Rx MIMO channel
		В.
		0 – Reset active
	40	1 – Reset inactive (default)
	10	MRST_RX_B: Resets all the configuration memory to the default state for Rx MIMO
		channel B. 0 – Reset active
		1 – Reset active (default)
	9	LRST_RX_A: Resets all the logic registers to the default state for Rx MIMO channel
		A.
		0 – Reset active
		1 – Reset inactive (default)
	8	MRST_RX_A: Resets all the configuration memory to the default state for Rx MIMO
		channel A.
		0 – Reset active
		1 – Reset inactive (default)
	7	SRST_RXFIFO: RX FIFO soft reset (LimeLight [™] Interface).
		0 – Reset active
	6	1 – Reset inactive (default) SRST_TXFIFO: TX FIFO soft reset (LimeLight [™] Interface).
	6	0 – Reset active
		1 – Reset active (default)
	5	RXEN B: Power control for Rx MIMO channel B.
		0 – Rx MIMO channel B powered down
		1 – Rx MIMO channel B enabled (default)
	4	RXEN_A: Power control for Rx MIMO channel A.
		0 – Rx MIMO channel A powered down
		1 – Rx MIMO channel A enabled (default)
	3	TXEN_B: Power control for Tx MIMO channel B.
		0 – Tx MIMO channel B powered down
	1,	1 – Tx MIMO channel B enabled (default)
	2	TXEN_A: Power control for Tx MIMO channel A. 0 – Tx MIMO channel A powered down
		1 – TX MIMO channel A powered down 1 – TX MIMO channel A enabled (default)
	1 – 0	MAC[1:0]: MIMO access control.
	' "	11 – Channels A and B accessible. SPI write operation only (default)
		01 – Channel A accessible only. Valid for SPI read/write
		10 – Channel B accessible only. Valid for SPI read/write
		·
		Default: 11111111 11111111

Address (15 bits)	Bits	Description
0x0021	15 – 12	Reserved
	11	TX_CLK_PE: Pull up control of TX_CLK pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	10	RX CLK PE: Pull up control of RX CLK pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	9	SDA PE: Pull up control of SDA pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	8	SDA_DS: Driver strength of SDA pad.
		0 – Driver strength is 4mA (default)
		1 – Driver strength is 8mA
	7	SCL_PE: Pull up control of SCL pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	6	SCL_DS: Driver strength of SCL pad.
		0 – Driver strength is 4mA (default)
		1 – Driver strength is 8mA
	5	SDIO_DS: Driver strength of SDIO pad.
		0 – Driver strength is 4mA (default)
		1 – Driver strength is 8mA
	4	SDIO_PE: Pull up control of SDIO pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	3	SDO_PE: Pull up control of SDO pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	2	SCLK_PE: Pull up control of SCLK pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	1	SEN_PE: Pull up control of SEN pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	0	SPIMODE: SPI communication mode.
		0 – 3 wire mode
		1 – 4 wire mode (default)
		Default: 00001110 10011111
	1	Delaut. 00001110 10011111

Address (15 bits)	Bits	Description
0x0022	15	LML2_TRXIQPULSE: TRXIQPULSE mode selection for LML Port 2.
		0 – TRXIQPULSE mode off (default)
		1 – TRXIQPULSE mode on
	14	LML2_SISODDR: SISODDR mode selection for LML Port 2.
		0 – SISODDR mode off (default)
		1 – SISODDR mode on
	13	LML1_TRXIQPULSE: TRXIQPULSE mode selection for LML Port 1.
		0 – TRXIQPULSE mode off (default)
		1 – TRXIQPULSE mode on
	12	LML1_SISODDR: SISODDR mode selection for LML Port 1.
		0 – SISODDR mode off (default)
		1 – SISODDR mode on
	11	DIQ2_DS: Driver strength of DIQ2 pad.
		0 – Driver strength is 4mA (default)
		1 – Driver strength is 8mA
	10	DIQ2_PE: Pull up control of DIQ2 pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	9	IQ_SEL_EN_2_PE: Pull up control of IQ_SEL_EN_2 pad.
		0 – Pull up disengaged
	_	1 – Pull up engaged (default)
	8	TXNRX2_PE: Pull up control of TXNRX2 pad.
		0 – Pull up disengaged
	l <u> </u>	1 – Pull up engaged (default)
	7	FCLK2_PE: Pull up control of FCLK2 pad.
		0 – Pull up disengaged
	0	1 – Pull up engaged (default)
	6	MCLK2_PE: Pull up control of MCLK2 pad.
		0 – Pull up disengaged
	5	1 – Pull up engaged (default)
	5	DIQ1_DS: Driver strength of DIQ1 pad.
		0 – Driver strength is 4mA (default)
	4	1 – Driver strength is 8mA DIQ1 PE: Pull up control of DIQ1 pad.
	4	0 – Pull up disengaged
		1 – Pull up engaged (default)
	3	IQ SEL EN 1 PE: Pull up control of IQ SEL EN 1 pad.
	Ŭ	0 – Pull up disengaged
		1 – Pull up engaged (default)
	2	TXNRX1 PE: Pull up control of TXNRX1 pad.
	-	0 – Pull up disengaged
		1 – Pull up engaged (default)
	1	FCLK1 PE: Pull up control of FCLK1 pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
	0	MCLK1 PE: Pull up control of MCLK1 pad.
		0 – Pull up disengaged
		1 – Pull up engaged (default)
		Default : 00000111 11011111

Address (15 bits)	Bits	Description
0x0023	15	DIQDIRCTR2: DIQ2 direction control mode.
		0 – Automatic (default)
		1 – Manual, controllable from DIQDIR2
	14	DIQDIR2: DIQ2 direction.
		0 – Output
		1 – Input (default)
	13	DIQDIRCTR1: DIQ1 direction control mode.
		0 – Automatic (default)
		1 – Manual, controllable from DIQDIR1
	12	DIQDIR1: DIQ1 direction.
		0 – Output
		1 – Input (default)
	11	ENABLEDIRCTR2: ENABLE2 direction control mode.
		0 – Automatic (default)
		1 – Manual, controllable from ENABLEDIR2
	10	ENABLEDIR2: ENABLE2 direction.
		0 – Output
		1 – Input (default)
	9	ENABLEDIRCTR1: ENABLE1 direction control mode.
		0 – Automatic (default)
	l <u>.</u>	1 – Manual, controllable from ENABLEDIR1
	8	ENABLEDIR1: ENABLE1 direction.
		0 – Output
	l <u> </u>	1 – Input (default)
	7	Reserved
	6	MOD_EN: LimeLight [™] interface enable.
		0 – Interface disabled 1 – Interface enabled (default)
	5	
	5	LML2_FIDM: Frame start ID selection for Port 2, when LML2_MODE = 0. 0 – Frame start, when 0 (default)
		1 – Frame start, when 1
	4	LML2 RXNTXIQ: TXIQ/RXIQ mode selection for Port 2, when LML2 MODE = 0.
	T	0 – BB2RF (TXIQ) mode
		1 – RF2BB (RXIQ) mode (default)
	3	LML2 MODE: Mode of LimeLight [™] Port 2.
		0 – TRXIQ mode
		1 – JESD207 mode (default)
	2	LML1 FIDM: Frame start ID selection for Port 1, when LML1 MODE = 0.
		0 – Frame start, when 0 (default)
		1 – Frame start, when 1
	1	LML1 RXNTXIQ: TXIQ/RXIQ mode selection for Port 1, when LML1 MODE = 0.
	1	0 – BB2RF (TXIQ) mode (default)
		1 – RF2BB (RXIQ) mode
	0	LML1_MODE1: Mode of LimeLight™ Port 1.
	1	0 – TRXIQ mode
	1	1 – JESD207 mode (default)
		Default : 01010101 01011001

Address (15 bits)	Bits	Description
0x0024	15 – 14	LML1_S3S[1:0]: Sample source in position 3, when direction of Port 1 is RF2BB.
		11 – Sample in frame position 0 is BQ (default) 10 – Sample in frame position 0 is BI
		01 – Sample in frame position 0 is AQ
	40 40	00 – Sample in frame position 0 is AI
	13 – 12	LML1_S2S[1:0]: Sample source in position 2, when direction of Port 1 is RF2BB. 11 – Sample in frame position 0 is BQ
		10 – Sample in frame position 0 is BI (default)
		01 – Sample in frame position 0 is AQ
	11 – 10	00 – Sample in frame position 0 is Al LML1_S1S[1:0]: Sample source in position 1, when direction of Port 1 is RF2BB.
	' ' ' '	11 – Sample in frame position 0 is BQ
		10 – Sample in frame position 0 is BI
		01 – Sample in frame position 0 is AQ (default) 00 – Sample in frame position 0 is AI
	9 – 8	LML1_S0S[1:0]: Sample source in position 0, when direction of Port 1 is RF2BB.
		11 – Sample in frame position 0 is BQ
		10 – Sample in frame position 0 is BI 01 – Sample in frame position 0 is AQ
		00 – Sample in frame position 0 is AI (default)
	7 – 6	LML1_BQP[1:0]: BQ sample position in frame, when direction of Port 1 is BB2RF.
		11 – BQ sample position is 3 (default) 10 – BQ sample position is 2
		01 – BQ sample position is 1
	5 – 4	00 – BQ sample position is 0
	5-4	LML1_BIP[1:0]: BI sample position in frame, when direction of Port 1 is BB2RF. 11 – BI sample position is 3
		10 – BI sample position is 2 (default)
		01 – BI sample position is 1
	3 – 2	00 – BI sample position is 0 LML1 AQP[1:0]: AQ sample position in frame, when direction of Port 1 is BB2RF.
		11 – AQ sample position is 3
		10 – AQ sample position is 2
		01 – AQ sample position is 1 (default) 00 – AQ sample position is 0
	1 – 0	LML1_AIP[1:0]: Al sample position in frame, when direction of Port 1 is BB2RF.
		11 – AI sample position is 3 10 – AI sample position is 2
		01 – Al sample position is 2
		00 – Al sample position is 0 (default)
		Default: 11100100 11100100
0x0025	15 – 12	Reserved
	11 – 8	LML1_BB2RF_PST[4:0]: Number of clock cycles to wait after burst stop is detected
	"	in JESD207 mode on Port 1 and direction of Port 1 is BB2RF. Unsigned integer.
		Possible values are 0 – 31, default is 1.
	7 – 5	Reserved
	4 0	LMIA DDODE DDEIAOL Number of electronic terror to the forest state of the land
	4 – 0	LML1_BB2RF_PRE[4:0]: Number of clock cycles to wait after burst start is detected in JESD207 mode on Port 1 and direction of Port 1 is BB2RF. Unsigned integer.
		Possible values are 0 – 31, default is 1.
		Default: 00000004 00000004
0x0026	15 – 12	Default: 00000001 00000001 Reserved
	11 – 8	LML1_RF2BB_PST[4:0]: Number of clock cycles to wait after burst stop is detected in JESD207 mode on Port 1 and direction of Port 1 is RF2BB. Unsigned integer.
		Possible values are 0 – 31, default is 1.
	7 – 5	Reserved
	4 – 0	LML1_RF2BB_PRE[4:0]: Number of clock cycles to after burst start is detected in
		JESD207 mode on Port 1 and direction of Port 1 is RF2BB. Unsigned integer.
		Possible values are 0 – 31, default is 1.
		Default: 00000001 00000001

Address (15 bits)	Bits	Description
0x0027	15 – 14	LML2_S3S[1:0]: Sample source in position 3, when direction of Port 2 is RF2BB.
		11 – Sample in frame position 0 is BQ (default) 10 – Sample in frame position 0 is BI
		01 – Sample in frame position 0 is AQ
	40 40	00 – Sample in frame position 0 is AI
	13 – 12	LML2_S2S[1:0]: Sample source in position 2, when direction of Port 2 is RF2BB. 11 – Sample in frame position 0 is BQ
		10 – Sample in frame position 0 is BI (default)
		01 – Sample in frame position 0 is AQ
	11 – 10	00 – Sample in frame position 0 is Al LML2 S1S[1:0]: Sample source in position 1, when direction of Port 2 is RF2BB.
	11 10	11 – Sample in frame position 0 is BQ
		10 – Sample in frame position 0 is BI
		01 – Sample in frame position 0 is AQ (default) 00 – Sample in frame position 0 is AI
	9 – 8	LML2 S0S[1:0]: Sample source in position 0, when direction of Port 2 is RF2BB.
		11 – Sample in frame position 0 is BQ
		10 – Sample in frame position 0 is BI 01 – Sample in frame position 0 is AQ
		00 – Sample in rame position 0 is AQ 00 – Sample in frame position 0 is AI (default)
	7 – 6	LML2_BQP[1:0]: BQ sample position in frame, when direction of Port 2 is BB2RF.
		11 – BQ sample position is 3 (default) 10 – BQ sample position is 2
		01 – BQ sample position is 1
	l	00 – BQ sample position is 0
	5 – 4	LML2_BIP[1:0]: BI sample position in frame, when direction of Port 2 is BB2RF. 11 – BI sample position is 3
		10 – BI sample position is 3
		01 – BI sample position is 1
	3 – 2	00 – BI sample position is 0 LML2 AQP[1:0]: AQ sample position in frame, when direction of Port 2 is BB2RF.
	3-2	11 – AQ sample position is 3
		10 – AQ sample position is 2
		01 – AQ sample position is 1 (default) 00 – AQ sample position is 0
	1 – 0	LML2_AIP[1:0]: Al sample position in frame, when direction of Port 2 is BB2RF.
		11 – Al sample position is 3
		10 – AI sample position is 2 01 – AI sample position is 1
		00 – Al sample position is 0 (default)
		Default: 44400400 44400400
0x0028	15 – 12	Default: 11100100 11100100 Reserved
	11 0	LMI 2 PROPE POTIA (1). Number of clock evalue to well offer hurst step is detected
	11 – 8	LML2_BB2RF_PST[4:0]: Number of clock cycles to wait after burst stop is detected in JESD207 mode on Port 2 and direction of Port 2 is BB2RF. Unsigned integer.
		Possible values are 0 – 31, default is 1.
	7 – 5	Reserved
	' "	
	4 – 0	LML2_BB2RF_PRE[4:0]: Number of clock cycles to wait after burst start is detected
		in JESD207 mode on Port 2 and direction of Port 2 is BB2RF. Unsigned integer. Possible values are 0 – 31, default is 1.
		·
0,000	45 40	Default: 00000001 00000001
0x0029	15 – 12	Reserved
	11 – 8	LML2_RF2BB_PST[4:0]: Number of clock cycles to wait after burst stop is detected
		in JESD207 mode on Port 2 and direction of Port 2 is RF2BB. Unsigned integer.
		Possible values are 0 – 31, default is 1.
	7 – 5	Reserved
	4 – 0	LML2 RF2BB PRE[4:0]: Number of clock cycles to wait after burst start is detected
	4-0	in JESD207 mode on Port 2 and direction of Port 2 is RF2BB. Unsigned integer.
		Possible values are 0 – 31, default is 1.
		Default: 00000004 00000004
	l	Default : 00000001 00000001

Address (15 bits)	Bits	Description
0x002A	15 – 14	FCLK2_DLY[1:0]: FCLK2 clock internal delay.
		11 – 3x delay
		10 – 2x delay
		01 – 1x delay
	40 40	00 – No delay (default)
	13 – 12	FCLK1_DLY[1:0]: FCLK2 clock internal delay.
		11 – 3x delay
		10 – 2x delay
		01 – 1x delay 00 – No delay (default)
	11 – 10	RX_MUX[1:0]: RxFIFO data source selection.
	11 – 10	00 – RxTSPCLK (default)
		00 – IXTOPOLIX (deladit) 01 – TXFIFO
		10, 11 – LFSR
	9 – 8	TX_MUX[1:0]: Port selection for data transmit to TSP.
		10, 11 – Data source is RxTSP
		01 – Data source is Port 2
		00 – Data source is Port 1 (default)
	7 – 6	TXRDCLK MUX[1:0]: TX FIFO read clock selection.
		10, 11 – Clock source is TxTSPCLK (default)
		01 – Clock source is FCLK2
		00 – Clock source is FCLK1
	4 – 5	TXWRCLK_MUX[1:0]: TX FIFO write clock selection.
		10, 11 – Clock source is RxTSPCLK (use for TSP loop back)
		01 – Clock source is FCLK2
		00 – Clock source is FCLK1 (default)
	3 – 2	RXRDCLK_MUX[1:0]: RX FIFO read clock selection.
		11 – Clock source is FCLK2 10 – Clock source is FCLK1
		01 – Clock source is PCLK1 01 – Clock source is MCLK2 (default)
		01 – Clock source is MCLK2 (default) 00 – Clock source is MCLK1
	1 – 0	RXWRCLK MUX[1:0]: RX FIFO write clock selection.
	1 - 0	10, 11 – Clock source is RxTSPCLK (default)
		01 – Clock source is FCLK2
		00 – Clock source is FCLK1
		Default : 00000000 10000110

Address (15 bits)	Bits	Description
0x002B	15	FCLK2 INV: FCLK2 clock inversion.
		1 – Inverted
		0 – Not inverted (default)
	14	FCLK1_INV: FCLK1 clock inversion.
		1 – Inverted
	12 12	0 – Not inverted (default)
	13 – 12	MCLK2_DLY[1:0]: MCLK2 clock internal delay. 11 – 3x delay
		10 – 2x delay
		01 – 1x delay
		00 – No delay (default)
	11 – 10	MCLK1_DLY[1:0]: MCLK2 clock internal delay.
		11 – 3x delay
		10 – 2x delay
		01 – 1x delay 00 – No delay (default)
	9	MCLK2 INV: MCLK2 clock inversion.
	J	1 – Inverted
		0 – Not inverted (default)
	8	MCLK1_INV: MCLK1 clock inversion.
		1 – Inverted
		0 – Not inverted (default)
	7 – 6	Reserved
	5 – 4	MCLK2_SRC[1:0]: MCLK2 clock source.
		11 – RXTSPCLKA 10 – TXTSPCLKA
		01 – RXTSPCLKA 01 – RXTSPCLKA after divider (default)
		00 – TxTSPCLKA after divider
	3 – 2	MCLK1 SRC[1:0]: MCLK1 clock source.
		11 – RxTSPCLKA
		10 – TxTSPCLKA
		01 – RxTSPCLKA after divider
		00 – TxTSPCLKA after divider (default)
	1	TXDIVEN: TX clock divider enable.
		1 – Divider enabled 0 – Divider disabled (default)
	0	RXDIVEN: RX clock divider enable.
		1 – Divider enabled
		0 – Divider disabled (default)
		Default: 00000000 00010000
0x002C	15 – 8	TXTSPCLKA_DIV[7:0]: TxTSP clock divider, used to produce MCLK(1/2) clocks.
		Clock division ratio is 2(TXTSPCLKA_DIV + 1). Unsigned integer.
		Possible values are 0 – 255, default is 255.
	7 – 0	RXTSPCLKA_DIV[7:0]: RxTSP clock divider, used to produce MCLK(1/2) clocks.
		Clock division ratio is 2(TXTSPCLKA_DIV + 1). Unsigned integer.
		Possible values are 0 – 255, default is 255.
		Default: 11111111 11111111
0x002D	15 – 0	Reserved
		Default: 11111111 11111111
0x002E	15	MIMO/SISO: MIMO channel B enable control.
0A002L	15	1 – Disables MIMO channel B, when SISO_ID (from pad) is 1.
		0 – Enables MIMO channel B, when SISO ID (from pad) is 0.
	14 – 0	Reserved
	1	Default: 00000000 00000000
0x002F	15 – 7	VER[4:0]: Chip version. Read only.
	10 0	00111 – Chip version is 7
	10 – 6	REV[4:0]: Chip revision. Read only. 00001 – Chip revision is 1
	5 – 0	MASK[5:0]: Chip mask. Read only.
	3-0	000001 – Chip mask is 1
		Default : 00111000 01000001 (Read only)
	•	

2.3 NCO Configuration Memory

The NCO configuration memory control is listed in this chapter. There are 4 NCOs – two for each transmit and receive MIMO channel.

The carrier frequency f_c generated by NCO could be set using the following formula:

$$f_{\rm C} = \frac{f_{\rm CW}}{2^{32}} f_{\rm clk}$$

where fcw represents decimal value of the 32-bit frequency control word and f_{clk} is the NCO clock frequency.

The carrier phase offset can also be adjusted using the 16-bit configuration parameter *pho*. The carrier phase shift is calculated as follows:

$$\varphi=2\pi\,\frac{pho}{2^{16}}\,,$$

with *pho* being the decimal value stored in carrier phase offset register.

Table 3 NCO configuration memory

Address (15 bits)	Bits	Description
TX(A/B): 0x0240 RX(A/B): 0x0440	15 – 9 8 – 5	Reserved DTHBIT[3:0]: NCO bits to dither. 0000 – Dithering disabled
	4 – 1	0001 – 1 bit dithering (default) 1111 – 15 bit dithering SEL[3:0]: Selects PHO or FCW to feed to NCO, according to MODE. Shadow register.
		0000 – PHO0 or FCW0 selected (default) 0001 – PHO1 or FCW1 selected 1111 – PHO15 or FCW15 selected
	0	MODE: Memory table mode. Shadow register. 1 – PHO table (data at addresses 0x4 to 0x13 are PHO) 0 – FCW table (data at addresses 0x2 to 0x20 are FCW) (default)
		Default : 00000000 00100000
TX(A/B): 0x0241 RX(A/B): 0x0441	15 – 0	PHO[15:0]: NCO Phase offset register, when MODE = 0.
T)//A/D) 0 0040	45 0	Default: 00000000 00000000
TX(A/B): 0x0242 RX(A/B): 0x0442	15 – 0	FCW0[31:16]: NCO frequency control word register 0. MSB part.
T)//4/D) 0 0040	15.0	Default: 00000000 00000000
TX(A/B): 0x0243 RX(A/B): 0x0443	15 – 0	FCW0[15:0]: NCO frequency control word register 0. LSB part.
		Default: 00000000 00000000
TX(A/B): 0x0244 RX(A/B): 0x0444	15 – 0	FCW1[31:16]: NCO frequency control word register 1, when MODE = 0. MSB part. PHO0[15:0]: NCO Phase offset register 0, when MODE = 1.
		Default: 00000000 00000000
TX(A/B): 0x0245 RX(A/B): 0x0445	15 – 0	FCW1[15:0]: NCO frequency control word register 1, when MODE = 0. LSB part. PHO1[15:0]: NCO Phase offset register 1, when MODE = 1.
		Default: 00000000 00000000

Address (15 bits)	Bits	Description
TX(A/B): 0x0246 RX(A/B): 0x0446	15 – 0	FCW2[31:16]: NCO frequency control word register 2, when MODE = 0. MSB part. PHO2[15:0]: NCO Phase offset register 2, when MODE = 1.
		Default : 00000000 00000000
TX(A/B): 0x0247 RX(A/B): 0x0447	15 – 0	FCW2[15:0]: NCO frequency control word register 2, when MODE = 0. LSB part. PHO3[15:0]: NCO Phase offset register 3, when MODE = 1.
		Default : 00000000 00000000
TX(A/B): 0x0248 RX(A/B): 0x0448	15 – 0	FCW3[31:16]: NCO frequency control word register 3, when MODE = 0. MSB part. PHO4[15:0]: NCO Phase offset register 4, when MODE = 1.
		Default : 00000000 00000000
TX(A/B): 0x0249 RX(A/B): 0x0449	15 – 0	FCW3[15:0]: NCO frequency control word register 3, when MODE = 0. LSB part. PHO5[15:0]: NCO Phase offset register 5, when MODE = 1.
TV/A/D) 0::004A	45.0	Default: 00000000 00000000
TX(A/B): 0x024A RX(A/B): 0x044A	15 – 0	FCW4[31:16]: NCO frequency control word register 4, when MODE = 0. MSB part. PHO6[15:0]: NCO Phase offset register 6, when MODE = 1.
T) ((A (D)) 0 00 (D	1	Default: 00000000 00000000
TX(A/B): 0x024B RX(A/B): 0x044B	15 – 0	FCW4[15:0]: NCO frequency control word register 4, when MODE = 0. LSB part. PHO7[15:0]: NCO Phase offset register 7, when MODE = 1.
		Default: 00000000 00000000
TX(A/B): 0x024C RX(A/B): 0x044C	15 – 0	FCW5[31:16]: NCO frequency control word register 5, when MODE = 0. MSB part. PHO8[15:0]: NCO Phase offset register 8, when MODE = 1.
T) ((4 (D)) 0 004D	1	Default: 00000000 00000000
TX(A/B): 0x024D RX(A/B): 0x044D	15 – 0	FCW5[15:0]: NCO frequency control word register 5, when MODE = 0. LSB part. PHO9[15:0]: NCO Phase offset register 9, when MODE = 1.
		Default : 00000000 00000000
TX(A/B): 0x024E RX(A/B): 0x044E	15 – 0	FCW6[31:16]: NCO frequency control word register 6, when MODE = 0. MSB part. PHO10[15:0]: NCO Phase offset register 10, when MODE = 1.
		Default : 00000000 00000000
TX(A/B): 0x024F RX(A/B): 0x044F	15 – 0	FCW6[15:0]: NCO frequency control word register 6, when MODE = 0. LSB part. PHO11[15:0]: NCO Phase offset register 11, when MODE = 1.
T) ((A (D)) 0 0050	1	Default: 00000000 00000000
TX(A/B): 0x0250 RX(A/B): 0x0450	15 – 0	FCW7[31:16]: NCO frequency control word register 7, when MODE = 0. MSB part. PHO12[15:0]: NCO Phase offset register 12, when MODE = 1.
T) ((A (D)) 0 0054	1	Default: 00000000 00000000
TX(A/B): 0x0251 RX(A/B): 0x0451	15 – 0	FCW7[15:0]: NCO frequency control word register 7, when MODE = 0. LSB part. PHO13[15:0]: NCO Phase offset register 13, when MODE = 1.
T)//A/D) 0 0050	45.0	Default: 00000000 00000000
TX(A/B): 0x0252 RX(A/B): 0x0452	15 – 0	FCW8[31:16]: NCO frequency control word register 8, when MODE = 0. MSB part. PHO14[15:0]: NCO Phase offset register 14, when MODE = 1.
TV/A/D\- 0-0050	15 – 0	Default: 00000000 00000000 FCW8[15:0]: NCO frequency control word register 8, when MODE = 0. LSB part.
TX(A/B): 0x0253 RX(A/B): 0x0453	15 – 0	PHO15[15:0]: NCO Phase offset register 15, when MODE = 1.
T)//A/D) 0 00=1	45 0	Default: 00000000 00000000
TX(A/B): 0x0254 RX(A/B): 0x0454	15 – 0	FCW9[31:16]: NCO frequency control word register 9, when MODE = 0. MSB part. Reserved, when MODE = 1.
T)((A (D)) @	1	Default: 00000000 00000000
TX(A/B): 0x0255 RX(A/B): 0x0455	15 – 0	FCW9[15:0]: NCO frequency control word register 9, when MODE = 0. LSB part. Reserved, when MODE = 1.
T)((A (D)) @	1	Default: 00000000 00000000
TX(A/B): 0x0256 RX(A/B): 0x0456	15 – 0	FCW10[31:16]: NCO frequency control word register 10, when MODE = 0. MSB part. Reserved, when MODE = 1.
		Default : 00000000 00000000

Address (15 bits)	Bits	Description
TX(A/B): 0x0257	15 – 0	FCW10[15:0]: NCO frequency control word register 10, when MODE = 0. LSB part.
RX(A/B): 0x0457		Reserved, when MODE = 1.
		Default: 00000000 00000000
TX(A/B): 0x0258	15 – 0	FCW11[31:16]: NCO frequency control word register 11, when MODE = 0. MSB
RX(A/B): 0x0458	13 – 0	part.
10 ((10): 000 100		Reserved, when MODE = 1.
		· ·
		Default : 00000000 00000000
TX(A/B): 0x0259	15 – 0	FCW11[15:0]: NCO frequency control word register 11, when MODE = 0. LSB part.
RX(A/B): 0x0459		Reserved, when MODE = 1.
		Default: 0000000 0000000
TX(A/B): 0x025A	15 – 0	FCW12[31:16]: NCO frequency control word register 12, when MODE = 0. MSB
RX(A/B): 0x045A	100	part.
, ,		Reserved, when MODE = 1.
T)//A/D) 0 005D	<u> </u>	Default: 00000000 00000000
TX(A/B): 0x025B	15 – 0	FCW12[15:0]: NCO frequency control word register 12, when MODE = 0. LSB part. Reserved, when MODE = 1.
RX(A/B): 0x045B		Reserved, when wode – 1.
		Default: 00000000 00000000
TX(A/B): 0x025C	15 – 0	FCW13[31:16]: NCO frequency control word register 13, when MODE = 0. MSB
RX(A/B): 0x045C		part.
		Reserved, when MODE = 1.
		P-6
TX(A/B): 0x025D	15 – 0	Default: 00000000 00000000 FCW13[15:0]: NCO frequency control word register 13, when MODE = 0. LSB part.
RX(A/B): 0x045D	13 – 0	Reserved, when MODE = 1.
10 ((/ 4/2): 0/0 102		Treasured, mierrinose 1.
		Default : 00000000 00000000
TX(A/B): 0x025E	15 – 0	FCW14[31:16]: NCO frequency control word register 14, when MODE = 0. MSB
RX(A/B): 0x045E		part.
		Reserved, when MODE = 1.
		Default: 0000000 00000000
TX(A/B): 0x025F	15 – 0	FCW14[15:0]: NCO frequency control word register 14, when MODE = 0. LSB part.
RX(A/B): 0x045F		Reserved, when MODE = 1.
T)(/A/D) 0 0000	15.0	Default: 00000000 00000000
TX(A/B): 0x0260	15 – 0	FCW15[31:16]: NCO frequency control word register 15, when MODE = 0. MSB
RX(A/B): 0x0460		part. Reserved, when MODE = 1.
	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	1	Default: 00000000 00000000
TX(A/B): 0x0261	15 – 0	FCW15[15:0]: NCO frequency control word register 15, when MODE = 0. LSB part.
RX(A/B): 0x0461		Reserved, when MODE = 1.
	1	D-f
		Default : 00000000 00000000

2.4 TxTSP(A/B) Configuration Memory

The block diagrams of TxTSPA and TxTSPB modules are exactly the same. The control structure is shown in Figure 22. The tables in this chapter describe the control registers of TxTSPA and TxTSPB modules.

There is one BIST logic per TxTSPA and TxTSPB. The BIST control structure is shown in Figure 25.

Table 4 TxTSP configuration memory

Address (15 bits)	Bits	Description
0x0200	15 – 10	Reserved
0,0200	9	TSGFC: TSG full scale control.
		0 – -6dB (default)
		1 – Full scale
	8 – 7	TSGFCW: Set frequency of TSG's NCO.
	0-7	DC TSG NCO frequency
		=======================================
		00 do not use
		01 TSP clk/8 (default)
		10 TSP clk/4
		11 do not use
	6	TSGDCLDQ: Load TSG DC Q register with value from DC_REG[15:0].
	0	0 – No action (default)
		0-to-1 – positive edge loads TSG's DC register Q.
	5	TSGDCLDI: Load TSG DC I register with value from DC_REG[15:0].
	3	0 – No action (default)
		0-to-1 – positive edge loads TSG's DC register I.
	4	
	4	TSGSWAPIQ: Swap signals at test signal generator's output. 0 – Do not swap (default)
		1 – Swap I an Q signal sources comming from TSG
	3	TSGMODE: Test signal generator mode.
	3	
		0 – NCO (default)
	_	1 – DC source
	2	INSEL: Input source of TxTSP:
		0 – LML output (default)
	1	1 – Test signal generator
	1	BSTART: Starts TxTSP built in self test. Keep it at 1 one at least three clock cycles.
		0 – (default)
		0-to-1 – positive edge activates BIST
	0	EN: TxTSP modules enable.
		0 – Disabled
		1 – Enabled (default)
		D-f14: 0000000 40000004
0.0004	45 44	Default: 00000000 10000001
0x0201	15 – 11	Reserved
	10 – 0	GCORRQ[10:0]: Gain corrector value, channel Q. Unsigned integer.
		Possible values are 0 – 2047, default is 2047
		B 6 14 00000444 4444444
0.0000	45 11	Default: 00000111 11111111
0x0202	15 – 11	Reserved
	10 – 0	GCORRI[10:0]:Gain corrector value, channel I Unsigned integer.
		Possible values are 0 to 2047, default is 2047
	1	D-516 00000444 44444444
		Default: 00000111 11111111
0x0203	15	Reserved
	14 – 12	HBI_OVR[2:0]: HBI interpolation ratio. Interpolation ratio is 2 ^{HBI_OVR+1} .
		000 – Interpolation ratio is 2 (default)
	1	001 – Interpolation ratio is 4
	1	010 – Interpolation ratio is 8
		011 – Interpolation ratio is 16
		100 – Interpolation ratio is 32
	1	111 – Bypass
	11 – 0	IQCORR[11:0]: Phase corrector value (tan(Alpha/2)). Integer, 2's complement.
	1	Possible values are -2048 to 2047, default is 0
	1	
		Default: 00000000 00000000

Address (15 bits)	Bits	Description
0x0204	15 – 8	DCCORRI[7:0]: DC corrector value, channel I. Integer, 2's complement. Possible values are -128 to 127, default is 0
	7 – 0	DCCORRQ[7:0]: DC corrector value, channel Q. Integer, 2's complement. Possible values are -128 to 127, default is 0
		Default : 00000000 00000000
0x0205	15 – 11	Reserved
	10 – 8	GFIR1_L[2:0]: Parameter I of GFIR1 (I = roundUp(CoeffN/5)-1). Unsigned integer. Possible values are 0 to 7, default is 0
	7 – 0	GFIR1_N[7:0]: Clock division ratio of GFIR1 is GFIR1_N + 1. Unsigned integer. Possible values are 0 to 255, default is 0
		Default : 00000000 00000000
0x0206	15 – 11	Reserved
	10 – 8	GFIR2_L[2:0]: Parameter I of GFIR2 (I = roundUp(CoeffN/5)-1). Unsigned integer. Possible values are 0 to 7, default is 0
	7 – 0	GFIR2_N[7:0]: Clock division ratio of GFIR2 is GFIR2_N + 1. Unsigned integer. Possible values are 0 to 255, default is 0
		Default: 00000000 00000000
0x0207	15 – 11	Reserved
	10 – 8	GFIR3_L[2:0]: Parameter I of GFIR3 (I = roundUp(CoeffN/15)-1). Unsigned integer. Possible values are 0 to 7, default is 0
	7 – 0	GFIR3_N[7:0]: Clock division ratio of GFIR3 is GFIR3_N + 1. Unsigned integer. Possible values are 0 to 255, default is 0
		Default: 00000000 00000000
0x0208	15 – 14	CMIX_GAIN[1:0]: Gain of CMIX output, least significant part.
		CMIX_GAIN[2] CMIX_GAIN[1:0] CMIX output gain
		0 (default) 00 (default) 0dB
		0 01 +6dB
	13	0 10, 11 –6dB CMIX SC: Spectrum control of CMIX.
	10	1 – Downconvert
	40	0 – Upconvert (default)
	12	CMIX_GAIN[2]: Gain of CMIX output, most significant part. CMIX_GAIN[2] CMIX_GAIN[1:0] CMIX output gain
		======================================
		1 00 +3dB 1 01, 10, 11 -3dB
	11 – 9	Reserved
	8	CMIX_BYP: CMIX bypass.
		1 – Bypass 0 – Use (default)
	7	ISINC BYP: ISINC bypass.
		1 – Bypass
	6	0 – Use (default) GFIR3 BYP: GFIR3 bypass.
	ľ	1 – Bypass
	<u> </u> _	0 – Use (default)
	5	GFIR2_BYP: GFIR2 bypass. 1 – Bypass
		0 – Use (default)
	4	GFIR1_BYP: GFIR1 bypass.
		1 – Bypass 0 – Use (default)
	3	DC BYP: DC corrector bypass.
		1 – Bypass
	2	0 – Use (default) Reserved
	1	GC_BYP: Gain corrector bypass.
		1 – Bypass
		0 – Use (default)
	0	PH_BYP: Phase corrector bypass. 1 – Bypass
		0 – Use (default)
		Default: 00000000 00000000

Address (15 bits)	Bits	Description
0x0209	15 – 1 0	BSIGI[14:0]: TxTSP BIST signature, channel I, LSB. BSTATE: TxTSP BIST state indicator 0 – BIST is not running 1 – BIST in progress
		Read only
0x020A	15 – 8 7 – 0	BSIGQ[7:0]: TxTSP BIST signature, channel Q, LSB. BSIGI [22:15]: TxTSP BIST signature, channel I, MSB. Read only
0x020B	15 14 – 0	Reserved BSIGQ[22:8]: TxTSP BIST signature, channel Q, MSB. Read only
0x020C	15 – 0	DC_REG[15:0]: DC data source for test purposes. Possible values: 2^16-1 – 0 (default) Default: 00000000 00000000

2.5 RxTSP(A/B) Configuration Memory

The block diagrams of the RxTSPA and RxTSPB modules are exactly the same. The control structure is shown in Figure 23. The tables in this chapter describe the control registers of RxTSPA and RxTSPB modules.

There is one BIST logic per RxTSPA and RxTSPB. The BIST control structure is shown in Figure 26.

Table 5 RxTSP configuration memory

Address (15 bits)	Bits	n memory Description
0x0400	15	CAPTURE: Captures value, selected by CAPSEL[1:0].
		0 – (default)
		0-to-1 – positive edge captures value, selected by CAPSEL[1:0]
	14 – 13	CAPSEL[1:0]: Selects what parameters to capture to memory (addresses 0x0400E
		and 0x0400F)
		00 – RSSI (default) 01 – ADCI and ADCQ (see CAPSEL ADC register for more information)
		10 – BSIGI and BSTATE
		11 – BSIGQ and BSTATE
	12	CAPSEL_ADC: Selects ADC value source to be captured, when CAPSEL[1:0] = 01.
		0 – RxTSP input (default)
	11 – 10	1 – RxTSP output
	9	Reserved TSGFC: TSG full scale control.
	9	0 – -6dB (default)
		1 – Full scale
	8 – 7	TSGFCW[1:0]: Set frequency of TSG's NCO.
		DC TSG NCO frequency
		00 de mature
		00 do not use 01 TSP clk/8 (default)
		10 TSP clk/4
		11 do not use
	6	TSGDCLDQ: Load TSG DC Q register with value from DC_REG[15:0].
		0 – No action (default)
	_	0-to-1 – positive edge loads TSG's DC register Q.
	5	TSGDCLDI: Load TSG DC I register with value from DC_REG[15:0]. 0 – No action (default)
		0-to-1 – positive edge loads TSG's DC register I.
	4	TSGSWAPIQ: Swap signals at test signal generator's output.
		0 – Do not swap (default)
		1 – Swap I an Q signal sources comming from TSG
	3	TSGMODE: Test signal generator mode.
		0 – NCO (default) 1 – DC source
	2	INSEL: Input source of TxTSP:
	_	0 – LML output (default)
		1 – Test signal generator
	1	BSTART: Starts delta sigma built in self test. Keep it at 1 one at least three clock
		cycles.
		0 – (default) 0-to-1 – positive edge activates BIST
	0	EN: RxTSP modules enable.
	_	0 – Disabled
		1 – Enabled (default)
		B-5
0v0404	15 11	Default: 00000000 10000001
0x0401	15 – 11 10 – 0	Reserved GCORRQ[10:0]: Gain corrector value, channel Q. Unsigned integer.
		Possible values are 0 – 2047, default is 2047
		, '
		Default : 00000111 11111111
0x0402	15 – 11	Reserved
	10 – 0	GCORRI[10:0]:Gain corrector value, channel I Unsigned integer. Possible values are 0 to 2047, default is 2047
		1 USSIDIE VAIUES AIE U 10 ZU41, UBIAUIL IS ZU41
		Default: 00000111 11111111
-	•	

Address (15 bits)	Bits	Description
0x0403	15	Reserved
	14 – 12	HBD_OVR[2:0]: HBD decimation ratio. Decimation ratio is 2 ^{HBD_OVR+1} .
		000 – Decimation ratio is 2 (default)
		001 – Decimation ratio is 4
		010 – Decimation ratio is 8 011 – Decimation ratio is 16
		100 – Decimation ratio is 32
		111 – Bypass
	11 – 0	IQCORR[11:0]: Phase corrector value (tan(Alpha/2)). Integer, 2's complement.
		Possible values are -2048 to 2047, default is 0
		Default: 0000000 0000000
0x0404	15 – 13	HBD_DLY[2:0]: HBD delay line control.
		000 – No delay (default)
		001 – Delay is 1 clock cycle 010 – Delay is 2 clock cycles
		011 – Delay is 2 clock cycles
		100 to 111– Delay is 4 clock cycles
	13 – 3	Reserved
	2 – 0	DCCORR_AVG[2:0]: Number of samples to average for Automatic DC corrector. Number of samples to average is 2 ^{DCCORR_AVG+12} .
		Number of samples to average is 2
		Default: 00000000 00000000
0x0405	15 – 11	Reserved
	10 – 8	GFIR1_L[2:0]: Parameter I of GFIR1 (I = roundUp(CoeffN/5)-1). Unsigned integer.
	7 – 0	Possible values are 0 to 7, default is 0 GFIR1_N[7:0]: Clock division ratio of GFIR1 is GFIR1_N + 1. Unsigned integer.
	' - 0	Possible values are 0 to 255, default is 0
		·
0.0400	45 44	Default: 00000000 00000000
0x0406	15 – 11 10 – 8	Reserved GFIR2 L[2:0]: Parameter I of GFIR2 (I = roundUp(CoeffN/5)-1). Unsigned integer.
	10 - 0	Possible values are 0 to 7, default is 0
	7 – 0	GFIR2_N[7:0]: Clock division ratio of GFIR2 is GFIR2_N + 1. Unsigned integer.
		Possible values are 0 to 255, default is 0
		Default: 00000000 00000000
0x0407	15 – 11	Reserved
	10 – 8	GFIR3_L[2:0]: Parameter I of GFIR3 (I = roundUp(CoeffN/15)-1). Unsigned integer.
	7 0	Possible values are 0 to 7, default is 0
	7 – 0	GFIR3_N[7:0]: Clock division ratio of GFIR3 is GFIR3_N + 1. Unsigned integer. Possible values are 0 to 255, default is 0
		1 ossible values are 0 to 200, detault is 0
		Default: 00000000 00000000
0x0408	15 – 0	AGC_K[15:0]: AGC loop gain, LSB.
		Default: 00000000 00000000
0x0409	15 – 4	AGC_ADESIRED[11:0]: Desired output signal level.
	3 – 2	Reserved
	1 – 0	AGC_K[17:16]: AGC loop gain, MSB.
		Default: 00000000 00000000
0x040A	15 – 14	RSSI_MODE[1:0]: RSSI Mode.
		00 – Normal RSSI operation (default)
		01 – I amplitude 10 – Q amplitude
		11 – Do not use
	13 – 12	AGC_MODE[1:0]: AGC Mode.
		0 – AGC mode
		1 – RSSI mode 2, 3 – Bypass
	11 – 3	Reserved
	2-0	AGC_AVG[2:0]: AGC averaging window size is 2 ^(AGC_AVG+7) .
0×040B	15 0	DC REGI15:01: DC data source for test purposes
0x040B	15 – 0	DC_REG[15:0]: DC data source for test purposes. Possible values: 2^16-1 – 0 (default)
		,
		Default: 00000000 00000000

Address (15 bits)	Bits	Description
0x040C	15 – 14	CMIX_GAIN[1:0]: Gain of CMIX output, least significant part. CMIX_GAIN[2] CMIX_GAIN[1:0] CMIX output gain
		0 (default) 00 (default) 0dB 0 01 +6dB 0 10, 11 -6dB
	13	CMIX_SC: Spectrum control of CMIX. 1 – Downconvert 0 – Upconvert (default)
	12	CMIX_GAIN[2]: Gain of CMIX output, most significant part. CMIX_GAIN[2] CMIX_GAIN[1:0] CMIX output gain
	11 – 9	1 00 +3dB 1 01, 10, 11 -3dB Reserved
	8	DCLOOP_STOP: RxDC tracking loop stop. 1 – Loop is stopped 0 – Use (default)
	7	CMIX_BYP: CMIX bypass. 1 – Bypass 0 – Loop is active (default)
	6	AGC_BYP: AGC bypass. 1 – Bypass
	5	0 – Use (default) GFIR3_BYP: GFIR3 bypass. 1 – Bypass
	4	0 – Use (default) GFIR2_BYP: GFIR2 bypass. 1 – Bypass
	3	0 – Use (default) GFIR1_BYP: GFIR1 bypass. 1 – Bypass
	2	0 – Use (default) DC_BYP: DC corrector bypass. 1 – Bypass
	1	0 – Use (default) GC_BYP: Gain corrector bypass. 1 – Bypass
	0	0 – Use (default) PH_BYP: Phase corrector bypass. 1 – Bypass 0 – Use (default)
		Default: 0000000 00000000
0x040E and 0x040F	15 – 8 7 – 0	CAPD[31:0]: Data capture register. Stores data, selected by CAPSEL[1:0], on rising edge of CAPTURE. Register layout is as follows: CAPSEL_ADC CAPSEL[1:0] 0x040E, 0x040F
		0 00 0s, RSS[[1:0] RSS[[17:2] 0 01 0s, ADC[_i[9:0] 0s, ADCQi[9:0] 1 XX ADC[_i[15:0] ADCQ0[15:0]
		0 10 BISTI[14:0], BSTATE 0s, BISTI[22:15] 0 11 BISTQ[14:0], BSTATE 0s, BISTQ[22:15]
		Read only

2.6 RX/TX GFIR1/GFIR2 Coefficient Memory

The general purpose digital FIR filter (GFIR1 and GFIR2) coefficients are stored in the following tables.

Table 6 Memory space used to store TxGFIR1/RxGFIR1 coefficients

Address (15 bits)	Bits	Description
Tx: 0x0280 – 0x0287 Rx: 0x0480 – 0x0487	8 x 16	Tx(Rx)1CMB0[7:0][15:0]: Coefficients memory bank 0 for TxGFIR1/RxGFIR1.
Tx: 0x0288 – 0x028F Rx: 0x0488 – 0x048F	8 x 16	Tx(Rx)1CMB1[7:0][15:0]: Coefficients memory bank 1 for TxGFIR1/RxGFIR1.
Tx: 0x0290 – 0x0297 Rx: 0x0490 – 0x0497	8 x 16	Tx(Rx)1CMB2[7:0][15:0]: Coefficients memory bank 2 for TxGFIR1/RxGFIR1.
Tx: 0x0298 – 0x029F Rx: 0x0498 – 0x049F	8 x 16	Tx(Rx)1CMB3[7:0][15:0]: Coefficients memory bank 3 for TxGFIR1/RxGFIR1.
Tx: 0x02A0 - 0x02A7 Rx: 0x04A0 - 0x04A7	8 x 16	Tx(Rx)1CMB4[7:0][15:0]: Coefficients memory bank 4 for TxGFIR1/RxGFIR1.
Tx: 0x02A8 – 0x02BF Rx: 0x04A8 – 0x04BF	24 x 16	Reserved

Table 7 Memory space used to store TxGFIR2/RxGFIR2 coefficients

Address (15 bits)	Bits	Description
Tx: 0x02C0 - 0x02C7	8 x 16	Tx(Rx)2CMB0[7:0][15:0]: Coefficients memory bank 0 for TxGFIR2/RxGFIR2.
Rx: 0x04C0 - 0x04C7		
Tx: 0x02C8 – 0x02CF	8 x 16	Tx(Rx)2CMB1[7:0][15:0]: Coefficients memory bank 1 for TxGFIR2/RxGFIR2.
Rx: 0x04C8 – 0x04CF		
Tx: 0x02D0 – 0x02D7	8 x 16	Tx(Rx)2CMB2[7:0][15:0]: Coefficients memory bank 2 for TxGFIR2/RxGFIR2.
Rx: 0x04D0 – 0x04D7		
Tx: 0x02D8 – 0x02DF	8 x 16	Tx(Rx)2CMB3[7:0][15:0]: Coefficients memory bank 3 for TxGFIR2/RxGFIR2.
Rx: 0x04D8 – 0x04DF		
Tx: 0x02E0 - 0x02E7	8 x 16	Tx(Rx)2CMB4[7:0][15:0]: Coefficients memory bank 4 for TxGFIR2/RxGFIR2.
Rx: 0x04E0 – 0x04E7		
Tx: 0x02E8 – 0x02FF	24 x 16	Reserved
Rx: 0x04E8 – 0x04FF		

2.7 RX/TX GFIR3 Coefficient Memory

The general purpose digital FIR filter (GFIR3) coefficients are stored in the following table.

Table 8 Memory space used to store TxGFIR3 coefficients

Address (15 bits)	Bits	Description
Tx: 0x0300 – 0x0307 Rx: 0x0500 – 0x0507	8 x 16	Tx(Rx)3CMB0a[7:0][15:0]: Coefficients memory bank 0a for TxGFIR2/RxGFIR3.
Tx: 0x0308 – 0x030F Rx: 0x0508 – 0x050F	8 x 16	Tx(Rx)3CMB1a[7:0][15:0]: Coefficients memory bank 1a for TxGFIR2/RxGFIR3.
Tx: 0x0310 – 0x0317 Rx: 0x0510 – 0x0517	8 x 16	Tx(Rx)3CMB2a[7:0][15:0]: Coefficients memory bank 2a for TxGFIR2/RxGFIR3.
Tx: 0x0318 – 0x031F Rx: 0x0518 – 0x051F	8 x 16	Tx(Rx)3CMB3a[7:0][15:0]: Coefficients memory bank 3a for TxGFIR2/RxGFIR3.
Tx: 0x0320 – 0x0327 Rx: 0x0520 – 0x0527	8 x 16	Tx(Rx)3CMB4a[7:0][15:0]: Coefficients memory bank 4a for TxGFIR2/RxGFIR3.
Tx: 0x0328 – 0x033F Rx: 0x0528 – 0x053F	24 x 16	Reserved
Tx: 0x0340 – 0x0347 Rx: 0x0540 – 0x0547	8 x 16	Tx(Rx)3CMB0b[7:0][15:0]: Coefficients memory bank 0b for TxGFIR2/RxGFIR3.
Tx: 0x0348 – 0x034F Rx: 0x0548 – 0x054F	8 x 16	Tx(Rx)3CMB1b[7:0][15:0]: Coefficients memory bank 1b for TxGFIR2/RxGFIR3.
Tx: 0x0350 – 0x0357 Rx: 0x0550 – 0x0557	8 x 16	Tx(Rx)3CMB2b[7:0][15:0]: Coefficients memory bank 2b for TxGFIR2/RxGFIR3.
Tx: 0x0358 – 0x035F Rx: 0x0558 – 0x055F	8 x 16	Tx(Rx)3CMB3b[7:0][15:0]: Coefficients memory bank 3b for TxGFIR2/RxGFIR3.
Tx: 0x0360 – 0x0367 Rx: 0x0560 – 0x0567	8 x 16	Tx(Rx)3CMB4b[7:0][15:0]: Coefficients memory bank 4b for TxGFIR2/RxGFIR3.
Tx: 0x0368 – 0x037F Rx: 0x0568 – 0x057F	24 x 16	Reserved
Tx: 0x0380 – 0x0387 Rx: 0x0580 – 0x0587	8 x 16	Tx(Rx)3CMB0c[7:0][15:0]: Coefficients memory bank 0c for TxGFIR2/RxGFIR3.
Tx: 0x0388 – 0x038F Rx: 0x0588 – 0x058F	8 x 16	Tx(Rx)3CMB1c[7:0][15:0]: Coefficients memory bank 1c for TxGFIR2/RxGFIR3.
Tx: 0x0390 – 0x0397 Rx: 0x0590 – 0x0597	8 x 16	Tx(Rx)3CMB2c[7:0][15:0]: Coefficients memory bank 2c for TxGFIR2/RxGFIR3.
Tx: 0x0398 – 0x039F Rx: 0x0598 – 0x059F	8 x 16	Tx(Rx)3CMB3c[7:0][15:0]: Coefficients memory bank 3c for TxGFIR2/RxGFIR3.
Tx: 0x03A0 – 0x03A7 Rx: 0x05A0 – 0x05A7	8 x 16	Tx(Rx)3CMB4c[7:0][15:0]: Coefficients memory bank 4c for TxGFIR2/RxGFIR3.
Tx: 0x03A8 – 0x03BF Rx: 0x05A8 – 0x05BF	24 x 16	Reserved

2.8 RFE(1, 2) Configuration Memory

The block diagrams of the RFE1 and RFE2 modules are shown in Figure 5 and Figure 6 respectively. The tables in this chapter describes control registers of RFE1 and RFE2 modules.

Table 9: RFE(1, 2) configuration memory

Address (15 bits)	Bits	Description
0x010C	15 – 12 11 – 8 7	CDC_I_RFE_(1,2)[3:0]: Trims the duty cycle in I channel. Default = 8 ; CDC_Q_RFE_(1,2)[3:0]: Trims the duty cycle in Q channel. Default = 8 ; PD_LNA_RFE_(1, 2): Power control signal for LNA_RFE 0 - block active
	6	1 – block powered down (default) PD_RLOOPB_1_RFE_(1, 2): Power control signal for RXFE loopback 1 0 – block active
	5	1 – block powered down (default) PD_RLOOPB_2_RFE_(1, 2): Power control signal for RXFE loopback 2 0 – block active
	4	1 – block powered down (default) PD_MXLOBUF_RFE_(1, 2): Power control signal for RXFE mixer lo buffer 0 – block active
	3	1 – block powered down (default) PD_QGEN_RFE_(1, 2): Power control signal for RXFE quadrature LO generator 0 – block active
	2	1 – block powered down (default) PD_RSSI_RFE_(1, 2): Power control signal for RXFE RSSI 0 – block active
	1	1 – block powered down (default) PD_TIA_RFE_(1, 2): Power control signal for RXFE TIA 0 – block active (default)
	0	1 – block powered down EN_G_RFE_(1, 2): Enable control for all the RFE_1 power downs 0 – All RFE_1 modules powered down
		1 - All RFE_1 modules controlled by individual power down registers (default)
		Default : 10001000 11111101

Address (15 bits)	Bits	Description
0x010D	15 – 9	Reserved
	8 – 7	SEL_PATH_RFE_(1, 2): Selects the active path of the RXFE
		0 – No path active
		1 – LNAH path active (default)
		2 – LNAL path active
		3 – LNAW path active
	6	EN DCOFF RXFE RFE (1, 2): Enables the DCOFFSET block for the RXFE
		0 – disabled (default)
		1 – enabled
	5	Reserved
	4	EN INSHSW LB1 RFE (1, 2): Enables the input shorting switch at the input of the
	-	loopback 1 (in parallel with LNAL mixer). Switch ON resistance < 30hm
		0 – switch OFF
		1 – switch ON (default)
		Should be '1' when RXFE loopback1 is NOT active
	_	
	3	EN_INSHSW_LB2_RFE_(1, 2): Enables the input shorting switch at the input of the
		loopback 2 (in parallel with LNAW mixer)
		Switch ON resistance < 30hm
		0 – switch OFF
		1 – switch ON (default)
		Should be '1' when RXFE Loopback2 is NOT active
	2	EN_INSHSW_L_RFE_(1, 2): Enables the input shorting switch at the input of the
		LNAL
		Switch ON resistance < 3ohm
		0 – switch OFF
		1 – switch ON (default)
		Should be '1' when LNAL is NOT active
	1	EN_INSHSW_W_RFE_(1, 2): Enables the input shorting switch at the input of the
		LNAW. Switch ON resistance < 30hm
		0 – switch OFF
		1 – switch ON (default)
		Should be '1' when LNAW is NOT active
	0	EN NEXTRX RFE (1, 2): Enables the daisy chain LO buffer going from RXFE1 to
		RXFE2.
		0 – SISO (default)
		1 – MIMO
		I - IVIIIVIO
		Default: 00000000 10011110
0x010E	15 – 14	Reserved
UXUTUE	13 – 14	
	13 – 7	DCOFFI_RFE_(1, 2)[6:0]: Controls DC offset at the output of the TIA by injecting
		current to the input of the TIA (for I side). Default: 64
		DCOFFSETx_RFE[6] — sign.
		DCOFFSETx_RFE[5:0] – magnitude. When DCOFFSETx_RFE[5:0] 0,
		0 current is inejction – no added noise.
	6 – 0	DCOFFQ_RFE_(1, 2)[6:0]: Controls DC offset at the output of the TIA by injecting
		current to the input of the TIA (for Q side). Default: 64
		DCOFFSETx_RFE[6] – sign.
		DCOFFSETx_RFE[5:0] – magnitude. When DCOFFSETx_RFE[5:0] 0,
		0 current is inejction – no added noise.
		Default: 00100000 01000000
0x010F	15	Reserved
	14 – 10	ICT_LOOPB_RFE_(1, 2)[4:0]: Controls the reference current of the RXFE loopback
		amplifier. Default: 12
		I supply = I supply nominal *(ICT/12).
	9 – 5	ICT_TIAMAIN_RFE_(1, 2)[4:0]: Controls the reference current of the RXFE TIA first
		stage. Default: 12
		I supply = I supply nominal *(ICT/12).
	4 – 0	ICT TIAOUT RFE (1, 2)[4:0]: Controls the reference current of the RXFE TIA 2nd
	• •	stage. Default: 12
		I supply = I supply nominal *(ICT/12).
		. Supply Toupply Hollinian (10 1/12).
		Default: 00110001 10001100
]	Delault. 001100011000

Address (15 bits)	Bits	Description
0x0110	15 14 – 10 9 – 5 4 – 0	Reserved ICT_LNACMO_RFE_(1, 2)[4:0]: Controls the current generating LNA output common mode voltage. Default: 2 ICT_LNA_RFE_(1, 2)[4:0]: Controls the current of the LNA core. Default: 12 Block current = Nominal current * (ICT / 12) ICT_LODC_RFE_(1, 2)[4:0]: Controls the DC of the mixer LO signal at the gate of the mixer switches. Default: 20 Vgate=Vth+3.5Kohm*20uA*(ICT/12) If Vgate is too high, the voltage saturates and further increasing this ICT will not increase Vgate. Possible over voltage on mixer gates. Default: 00001001 10010100
0x0111	15 – 10 9 – 5 4 – 0	Reserved CAP_RXMXO_RFE_(1, 2)[4:0]: Control the decoupling cap at the output of the RX Mixer. Default: 4 SE cap = (CAP_RXMXO_RFE +1) * 80fF CGSIN_LNA_RFE_(1, 2)[4:0]: Controls the cap parallel with the LNA input NMOS CGS to control the Q of the matching circuit and provides trade off between gain/NF and IIP. The higher the frequency, the lower CGSIN_LNA_RFE should be. Also, the higher CGSIN, the lower the Q, The lower the gain, the higher the NF, and the higher the IIP3 0 - for 3500MHz 1 - for 2600MHz 3 - for 1900MHz (default) 6 - for 800MHz
0x0112	15 – 12 11 – 0	Default: 0000000 10000011 CCOMP_TIA_RFE_(1, 2)[3:0]: Compensation capacitor for TIA. This is a function of CFB_TIA_RFE 3 - for CFB 220 11 - for CFB 500 12 - for CFB>1000 (default) CFB_TIA_RFE_(1, 2)[11:0]: Feedback capacitor for TIA. Controls the 3dB BW of the TIA. Should be set with calibration through digital base band. Default: 230 Nominal values: 232 - for F3dB 9.15M 468 - for F3dB 4.59M Default: 11000000 11100110

Address (15 bits)	Bits	Description
0x0113	15 – 10	Reserved
	9 – 6	G_LNA_RFE_(1, 2)[3:0]: Controls the gain of the LNA
		15 – Gmax (default)
		14 – Gmax-1
		13 – Gmax-2
		12 – Gmax-3
		11 – Gmax-4
		10 – Gmax-5
		9 – Gmax-6
		8 – Gmax-9
		7 – Gmax-12
		6 – Gmax-15
		5 – Gmax-18
		4 – Gmax-21 3 – Gmax-24
		2 – Gmax-24 2 – Gmax-27
		1 – Gmax-27
	5 – 2	G RXLOOPB RFE (1, 2)[3:0]: Controls RXFE loopback gain
	3-2	15 – Gmax
		14 – Gmax-0.5
		13 – Gmax-1
		12 – Gmax-1.6
		11 – Gmax-2.4
		10 – Gmax-3
		9 – Gmax-4
		8 – Gmax-5
		7 – Gmax-6.2
		6 – Gmax-7.5
		5 – Gmax-9
		4 – Gmax-11
		3 – Gmax-14
		2 – Gmax-17
		1 – Gmax-24
		0 – Gmax-40 (default)
		Should be '0' when actual LNAs are working
	1 – 0	G_TIA_RFE_(1, 2)[1:0]: Controls the Gain of the TIA.
		3 – Gmax (default)
		2 – Gmax-3 1 – Gmax-12
		0 - Not allowed
		0 - Not allowed
		Default: 00000011 11000011
0x0114	15 – 9	Reserved
	8 – 5	RCOMP TIA RFE (1, 2)[3:0]: Controls the compensation resistors of the TIA
]	operational amplifier.
		11 – for CFB = 220
		4 – (default)
	4 – 0	5 – for CFB > 500
		RFB TIA RFE (1, 2)[4:0]: Sets the feedback resistor to the nominal value.
		This is set using the rppolywo calibration code from the bias block
		(BIAS_RPPOLY_calibration). Default: 13
		Default : 00000000 10001101

2.9 RBB(1, 2) Configuration Memory

The block diagrams of RBB1 and RBB2 modules are shown in Figure 7 Figure 8 respectively. The tables in this chapter describe the control registers of RBB1 and RBB2 modules.

Table 10: RBB(1, 2) configuration memory

Address (15 bits)	Bits	Description
0x0115	15	EN_LB_LPFH_RBB_(1, 2): This is the loopback enable signal that is enabled when high band LPFH_RBB is selected for the loopback path that connects the loopb_lpfi inputs to the virtual ground of the LPFH_RBB block. 1 - enabled 0 - disabled (default) Note: Only one of EN_LB_LPFH_RBB/EN_LB_LPFL_RBB can be
	14	enabled concurrently. EN_LB_LPFL_RBB_(1, 2): This is the loopback enable signal that is enabled when the high-band low pass filter LPFL_RBB is selected for the loopback path that connects the loopb_lpf inputs to the virtual ground of the LPFL_RBB block. 1 - enabled 0 - disabled (default) Note: Only one of EN_LB_LPFH_RBB/EN_LB_LPFL_RBB_can_be
		enabled concurrently.
	13 – 4	Reserved PD_LPFH_RBB_(1, 2): Power down of the LPFH block. 0 – active
	2	1 – powered down (default) PD_LPFL_RBB_(1, 2): Power down of the LPFL block. 0 – active (default) 1 – powered down
	1	PD_PGA_RBB_(1, 2): Power down of the PGA block. 0 – active (default) 1 – powered down
	0	EN_G_RBB_(1, 2): Enable control for all the RBB_1 power downs 0 – All RBB modules powered down 1 – All RBB modules controlled by individual power down registers
		(default)
		Default : 00000000 00001001
0x0116	15 – 11	R_CTL_LPF_RBB_(1, 2)[4:0]: Controls the absolute value of the resistance of the RC time constant of the RBB_LPF blocks (both Low and High). This value is corrected during the calibration process. Default: 16
	10 – 8	RCC_CTL_LPFH_RBB_(1, 2)[2:0]: Controls the stability passive compensation of the LPFH_RBB operational amplifier. Default: 1 1 – when rxMode is 37MHz, 4 – when rxMode 66MHz, 7 – when rxMode 108MHz
	7 – 0	C_CTL_LPFH_RBB_(1, 2)[7:0]: Controls the capacitance value of the RC time constant of RBB_LPFH and it varies with the respective rxMode from 37MHz to 108MHz.
		Its value is equal to (120*108M/rxMode)*ccor-cfrH; where: rxMode is the receiver mode of operation 37MHz up to 108MHz, ccor is determined by calibration and cfrL is valued at 56.
		This control signal can be determined by lookup tables generated during the calibration phase. Default: 128
		Default: 10000001 00000000

Address (15 bits)	Bits	Description
0x0117	15 – 14	Reserved
	13 – 11	RCC_CTL_LPFL_RBB_(1, 2)[2:0]: Controls the stability passive compensation of
		the LPFL_RBB operational amplifier.
		0 – when rxMode is 1.4MHz,
		1 – when 3MHz
		2 – when 5MHz
		3 – when 10MHz
		4 – when 15MHz 5 – when 20MHz (default)
	10 – 0	C CTL LPFL RBB (1, 2)[10:0]: Controls the capacitance value of the RC time
	10 – 0	constant of RBB LPFL and it varies with the respective rxMode from 1.4MHz to
		20MHz.
		Its value is equal to (120*20M/rxMode)*ccor-cfrL; where: rxMode is the receiver
		mode of operation from 1.4MHz up to 20MHz, ccor is determined by calibration and
		cfrL is valued at 100.
		This control signal can be determined by lookup tables generated during the
		calibration phase. Default: 12
		Default: 00101000 00001100
0x0118	15-13	INPUT CTL PGA RBB (1, 2)[2:0]: There are a total of four different differential
0.0110	10-13	inputs to the PGA. Only one of them is active at a time.
		0 – when LPFL input is selected (rxMode [=20MHz); The output of the
		LPFL RBB block is selected as input. (default)
		1 – when LPFH input is selected (rxMode] 20MHz); The output of the
		LPFH_RBB is selected as input.
		2 – when bypassing the LPF blocks; The input signal to either RBB_LPFH
		or RBB_LPFL is bypassed and connected directly to the PGA bypass
		input.
		3 – when connecting loopb_tx (the loop back from TBB) to the input of the PGA.
		4 – when loopb_pkd (Loop back path from the peak detector) is selected.
	12 – 10	Reserved
	9 – 5	ICT LPF IN RBB (1, 2)[4:0]: Controls the reference bias current of the input stage
		of the operational amplifier used in RBB LPF blocks (Low or High). Must increase
		up to 24 when a strong close blocker is detected to maintain the linearity
		performance. Default: 12
	4 0	10T LDE OUT DDD (4 0)(4.0)
	4 – 0	ICT_LPF_OUT_RBB_(1, 2)[4:0]: Controls the reference bias current of the output
		stage of the operational amplifier used in RBB_LPF blocks (low or High). Must increase up to 24 when a strong close blocker is detected to maintain the linearity
		performance. Default: 12
		portormando. Dotada. 12
		Default : 00000001 10001100
0x0119	15	OSW_PGA_RBB_(1, 2): There are two instances of the PGA circuit in the design.
		The output of the RBB_LPF blocks are connected the input of these PGA blocks
		(common). The output of one of them is connected to two pads pgaoutn and
		pgaoutp and the output of the other PGA is connected directly to the ADC input.
		0 – the PGA connected to the ADC is selected; (default)
	14 – 10	1 – the PGA connected to the output pads is selected instead.
	14 - 10	ICT_PGA_OUT_RBB_(1, 2)[4:0]: Controls the output stage reference bias current of the operational amplifier used in the PGA circuit.
		Must increase up to 12 when a strong close blocker is detected or when operating at
		the high band frequencies to maintain the linearity performance. Default: 6
		· · · · ·
	9 – 5	ICT_PGA_IN_RBB_(1, 2)[4:0]: Controls the input stage reference bias current of the
		operational amplifier used in the PGA circuit.
		Must increase up to 12 when a strong close blocker is detected or when operating at
		the high band frequencies to maintain the linearity performance. Default: 6
	4 – 0	G PGA RBB (1, 2)[4:0]: This is the gain of the PGA. The gain is adaptively set to
	' "	maintain signal swing of 0.6Vpkd at the output of the PGA. The value of the gain is:
		Gain(dB) = -12+G_PGA_RBB. Default: 11
		` '
		Default : 00011000 11001011

Address (15 bits)	Bits	Description
0x011A	15 – 14	Reserved
	13 – 9	RCC_CTL_PGA_RBB_(1, 2)[4:0]: Controls the stability passive compensation of the PGA_RBB operational amplifier. Its value is equal to: (430f*(0.65**(G_PGA_RBB/10))-110.35f)/20.4516f + 16 when ICT_PGA is 12. An offline/off chip lookup table can be generated and stored. Default: 23
	8	Reserved
	7 – 0	C_CTL_PGA_RBB_(1, 2)[7:0]: Control the value of the feedback capacitor of the PGA that is used to help against the parasitic cap at the virtual node for stability. 3 - when 0<=G_PGA_RBB<8 2 - when 8<=G_PGA_RBB<13 (default) 1 - when 13<=G_PGA_RBB<21 0 - when 21<=G_PGA_RBB
		Default : 00101110 00000010
0x011B	15 – 7	Reserved
	6 – 0	RESRV_RBB_(1, 2)[6:0]: Reserved for future use. Default: 0
		Default: 00000000 00000000

2.10 TRF(1, 2) Configuration Memory

The block diagrams of TRF1 and TRF2 modules are shown in Figure 9 and Figure 10 respectively. The tables in this chapter describe control registers of TRF1 and TRF2 modules.

Table 11: TRF(1, 2) configuration memory

		ration memory
Address (15 bits)	Bits	Description
0x0100	15	EN_LOWBWLOMX_TMX_TRF_(1, 2): Controls the high pass pole frequency of the
		RC biasing the gate of the mixer switches.
		0 – High band – bias resistor 3K (default)
	11	1 – Low band – bias resistor 30K
	14	EN_NEXTTX_TRF_(1, 2): Enables the daisy change LO buffer going from TRF_1 to TRF2
		0 – Buffer disabled (SISO) (default)
		1 – Buffer enabled (MIMO)
	13 – 12	EN_AMPHF_PDET_TRF_(1, 2)[1:0]: Enables the TXPAD power detector
		preamplifier
		3 – Preamp gain 25dB (default)
		2 – Do not use
		1 – Preamp gain 7dB
	44 40	0 – Preamp gain -10dB
	11 – 10	LOADR_PDET_TRF_(1, 2) [1:0]: Controls the resistive load of the Power detector
		0 – R_DIFF 5K 2.5K 1.25K 1 – R_DIFF 5K 1.25K (default)
		2 – R DIFF 5K 2.5K
		3 – R DIGG 5K
	9 – 4	Reserved
	3	PD_PDET_TRF_(1, 2): Power down signal for Power Detector
		0 – Enabled
		1 – Powered down (default)
	2	PD_TLOBUF_TRF_(1, 2): Power down signal for TX LO buffer
		0 – Enabled (default) 1 – Powered down
	1	PD_TXPAD_TRF_(1, 2): Power down signal for TXPAD
	'	0 – Enabled (default)
		1 – Powered down
	0	EN_G_TRF_(1, 2): Enable control for all the TRF_1 power downs
		0 – All TRF_1 modules powered down
		1 – All TRF_1 modules controlled by individual power down registers
		(default)
		Default: 00110100 00001001
0x0101	15 – 13	Default: 00110100 00001001 F_TXPAD_TRF_(1, 2)[2:0]: controls the switched capacitor at the TXPAD output. Is
0.00101	13 – 13	used for fine tuning of the TXPAD output. Default: 3
		about for fine turning of the 17th 7tb output. Details.
	12 – 11	L LOOPB TXPAD TRF (1, 2)[1:0]: Controls the loss of the of the loopback path at
		the TX side
		0 – Loss=0dB
		1 – Loss=20*log10(5)
		2 - Loss=20*log10(11)
	10 – 6	3 – Loss=20*log10(16) (default) LOSS_LIN_TXPAD_TRF_(1, 2)[4:0]: Controls the gain of the linearizing part of the
	10-0	TXPAD Default: 0
		0<=Loss<=10 - Pout=Pout_max-Loss
		11<=Loss<31 - Pout=Pout_max-10-2*(Loss-10)
		Ideally LOSS_LIN = LOSS_MAIN
	5 – 1	LOSS_MAIN_TXPAD_TRF_(1, 2)[4:0]: Controls the gain & output power of the
		TXPAD. Default: 0
		0<=Loss<=10 - Pout=Pout_max-Loss
	0	11<=Loss<31 - Pout=Pout_max-10-2*(Loss-10) EN LOOPB TXPAD TRF (1, 2): Enables the TXPAD loopback path
		0 – Loopback disabled (default)
		1 – Loopback enabled
		Default : 011111000 00000000

Address (15 bits)	Bits	Description
0x0102	15	GCAS_GNDREF_TXPAD_TRF_(1, 2): Controls if the TXPAD cascode transistor
		gate bias is referred to VDD or GND.
		0 – VDD referred (default)
	14 – 10	1 – GNDS referred ICT LIN TXPAD TRF (1, 2)[4:0]: Control the bias current of the linearization
	14 – 10	section of the TXPAD. Default: 12
		I bias=I bias nominal * ICT/12
	9 – 5	ICT MAIN TXPAD TRF (1, 2)[4:0]: Control the bias current of the main gm section
		of the TXPAD. Default: 12
		I_bias=I_bias_nominal * ICT/12
	4 – 0	VGCAS_TXPAD_TRF_(1, 2)[4:0]: Controls the bias voltage at the gate of TXPAD
		cascade. Default: 0
		vgcas=(VGCAS_TXOAD/12)*100u*10K, when GCAS_GNDREF=1
		vgcas=VDD18-(VGCAS_TXOAD/12)*100u*7.5K, when
		GCAS_GNDREF=0
		Default: 00110001 10000000
0x0103	15 –12	Reserved
	11	SEL_BAND1_TRF_(1, 2): Enable signal for TXFE, band 1
		0 – Disabled
	40	1 – Enabled (default)
	10	SEL_BAND2_TRF_(1, 2): Enable signal for TXFE, band 2
		0 – Disabled (default) 1 – Enabled
	9 – 5	LOBIASN TXM TRF (1, 2)[4:0]: Controls the bias at the gate of the mixer NMOS
		switch. Default: 16
		Vgate bias=Vth nmos+25K*LOBIASN/12*20u
	4 – 0	LOBIASP_TXX_TRF_(1, 2)[4:0]: Controls the bias at the gate of the mixer PMOS
		switch. Default: 18
		Vgate_bias=Vth_pmos-25K*LOBIASP/12*20u
		Default: 00001010 00010010
0x0104	15 – 8	Reserved
	7 – 4	CDC I TRF (1,2)[3:0]: Trims the duty cycle in I channel. Default = 8 ;
	3 – 0	CDC_Q_TRF_(1,2)[3:0]: Trims the duty cycle in Q channel. Default = 8 ;
		-
		Default : 00000000 10001000

2.11 TBB(1, 2) Configuration Memory

The block diagrams of TBB1 and TBB2 modules are shown in Figure 11 and Figure 12 respectively. The tables in this chapter describe the control registers of TBB1 and TBB2 modules.

Table 12: TBB(1, 2) configuration memory

Address (15 bits)	Bits	Description
0x0105	15	STATPULSE_TBB_(1, 2): This is a narrow start-up pulse of more than 1us width.
	14 – 12	Default: 0 LOOPB_TBB_(1, 2)[2:0]: This controls which signal is connected to the loopback output pins loopb as follows: Bits [1:0]:
		0 – output is disconnected (high impedance) loop back is disabled. (default) 1 – DAC current output is routed to the loopb pins. 2 – low band ladder output is routed to the output. 3 – main TBB output is routed to the loopb outputs.
		Bit [2] (swaps the I Q channels): 0 TBB output I goes to loopb_2 path and Q goes to loopb_1 path. (default)
		1 – TBB output I goes to loopb_1 path and Q goes to loopb_2 path. Note: when both the lowpass ladder and real pole are powered down, the output of the active highband biquad is routed to the loopb outputs on setting 3.
	11 – 5	Reserved
	4	PD_LPFH_TBB_(1, 2): This selectively powers down the LPFH_TBB biquad. Please note, the LPFH_TBB is powered down if any of the following is true: PD_LPFLAB_TBB=0 & PD_LPFS5_TBB=0, or, PD_TBB = 1, or PD_LPFH_TBB = 1. 0 - Active (default) 1 - powered down
	3	PD_LPFIAMP_TBB_(1, 2): This selectively powers down the LPFIAMP_TBB front- end current amp of the transmitter base band. Please note, the LPFIAMP_TBB is powered down if any of the following is true: PD_TBB = 1, or PD_LPFIAMP_TBB = 1 0 - Active (default) 1 - powered down
	2	PD_LPFLAD_TBB_(1, 2): This selectively powers down the LPFLAD_TBB low pass ladder filter of the transmitter base band. Please note, the ladder is powered down if any of the following is true: PD_TBB = 1, or PD_LPFLAD_TBB = 1 0 - Active
	1	1 – powered down (default) PD_LPFS5_TBB_(1, 2): This selectively powers down the LPFS5_TBB low pass real-pole filter of the transmitter base band.
	0	Please note, the real-pole stage is powered down if any of the following is true: PD_TBB = 1, or PD_LPFS5_TBB = 1 0 - Active 1 - powered down (default) EN G TBB (1, 2): Enable control for all the TBB TOP power downs
	0	0 – All TBB_TOP modules powered down 1 – All TBB_TOP modules may be selectively turned off (default)
		Default: 00000000 00000111

Address (15 bits)	Bits	Description
0x0106	15	Reserved
	14 – 10	ICT_LPFS5_F_TBB_(1, 2)[4:0]: This controls the operational amplifier's output stage bias current of the low band real pole filter of the transmitter's base band. Default: 12
	9 – 5	ICT_LPFS5_PT_TBB_(1, 2)[4:0]: This controls the operational amplifier's input stage bias current of the low band real pole filter of the transmitter's base band. Default: 12
	4 – 0	ICT_LPF_H_PT_TBB_(1, 2)[4:0]: This controls the operational amplifiers input stage bias reference current of the high band low pass filter of the transmitter's base band (LPFH_TBB). Default: 12
0.0407	45	Default: 00110001 10001100
0x0107	15	Reserved
	14 – 10	ICT_LPFH_F_TBB_(1, 2)[4:0]: This controls the operational amplifiers output stage bias reference current of the high band low pass filter of the transmitter's base band (LPFH_TBB). Default: 12
	9 – 5	ICT_LPFLAD_F_TBB_(1, 2)[4:0]: This controls the operational amplifiers' output stages bias reference current of the low band ladder filter of the transmitter's base band. Default: 12
	4-0	ICT_LPFLAD_PT_TBB_(1, 2)[4:0]: This controls the operational amplifiers' input stages bias reference current of the low band ladder filter of the transmitter's base band. Default: 12
	1.5	Default : 00110001 10001100
0x0108	15 –10	CG_IAMP_TBB_(1, 2)[5:0]: This controls the front-end gain of the TBB. For a given gain value, this control value varies with the set TX mode. After resistance calibration, the following table gives the nominal values for each frequency setting. However, this table is to be updated and corrected after calibration. Default: 37 Low Band:
		5 – when 2.4MHz 7 – when 2.74MHz 12 – when 5.5MHz 18 – when 8.2MHz 24 – when 11MHz
		High Band: 18 – when 18.5MHz 37 – when 38MHz 54 – when 54MHz
	9 – 5	ICT_IAMP_FRP_TBB_(1, 2)[4:0]: This controls the reference bias current of the IAMP main bias current sources. Default: 12
	4 – 0	ICT_IAMP_GG_FRP_TBB_(1, 2)[4:0]: This controls the reference bias current of the IAMP's cascode transistors gate voltages that set the IAMP's input voltage level. The IAMP's input is connected to the DAC output. Default: 12
		Default : 10010101 10001100
0x0109	15 – 8	RCAL_LPFH_TBB_(1, 2)[7:0]: This controls the value of the equivalent resistance of the resistor banks of the biquad filter stage (of the high band section) of the
		transmitter base band(TBB). Default: 97 Following is a nominal values table that are corrected for any process variation after
		calibration:
		18 – when 18.5MHz 97 – when 38MHz
	7 – 0	164 – when 54MHz RCAL_LPFLAD_TBB_(1, 2)[7:0]: This controls the value of the equivalent resistance
		of the resistor banks of the low pass filter ladder (of the low band section) of the transmitter base band (TBB). Default: 193 Following is a nominal values table that are corrected for any process variations
		after calibration. 6 – when 2.4MHz
		19 – when 2.74MHz
		75 – when 5.5MHz 133 – when 8.2MHz
		193 – when 11MHz
		Default : 01100001 11000001

Address (15 bits)	Bits	Description
0x010A	15 – 14	TSTIN_TBB_(1, 2)[1:0]: This control selects where the input test signal
		(vinp/n_aux_bbq/i) is routed to as well as disabling the route.
		0 – Disabled. Test signal is not routed any where. (default) 1 – Test signal is routed to the input of the Highband Filter.
		2 – Test signal is routed to the input of the LowBand Filter.
		3 - Test signal is routed to the input of the current amplifier.
	13	BYPLADDER_TBB_(1, 2): This signal by passes the LPF ladder of TBB and directly
		connects the output of current amplifier to the null port of the real pole stage of TBB low pass filter.
		1 – bypass is active
	40 0	0 – bypass is inactive (default)
	12 – 8	CCAL_LPFLAD_TBB_(1, 2)[4:0]: A common control signal for all the capacitor banks of TBB filters (including the ladder, real pole, and the high band biquad). It is
		the calibrated value of the banks control that sets the value of the banks' equivalent
		capacitor to their respective nominal values. Default: 16
	7 – 0	DCAL LDESS TDD (4. 2)(7:0). This controls the value of the equivalent resistance
	7 – 0	RCAL_LPFS5_TBB_(1, 2)[7:0]: This controls the value of the equivalent resistance of the resistor banks of the real pole filter stage (of the low band section) of the
		transmitter base band (TBB). Following is a nominal values table that are corrected
		for any process variation after calibration:
		If >5.5MHz 200 otherwise 76. Default: 76
		Default : 00010000 01001100
0x010B	15 – 3	Reserved
	2 – 1	RESRV TBB (1, 2)[2:1]: Reserved for future use. Default: 0
	2 - 1	Theorem _ 100_(1, 2/(2.1). Theorem for fatale use. Default. 0
	0	R5_LPF_BYP_TBB_(1, 2): Bypasses LPFS5_TBB low pass real-pole filter capacitor
		banks. Stage must remain active when bypass is enabled.
		0 – Normal LPFS5_TBB low pass real-pole filter operation. (default) 1 – LPFS5_TBB low pass real-pole filter acts as a buffer.
		ו – בררסט_ וסס וטש pass real-pole iller acts as a buller.
		Default: 00000000 00000000

2.12 TRX Gain Configuration Memory

The tables in this chapter describe additional gain control registers of TBB, TRF, RBB and RFE modules. These registers are only active if register TRX_GAIN_SRC (0x0081[15]) is set to 1. If TRX GAIN SRC is 0, then these registers are controlled from their usual addresses.

Table 13: TRX gain configuration memory

Table 13: TRX ga	ın configu	ration memory
Address (15 bits)	Bits	Description
0x0125	15 – 10	CG_IAMP_TBB_(1, 2)[5:0]: This controls the front-end gain of the TBB. For a given gain value, this control value varies with the set TX mode. After resistance calibration, the following table gives the nominal values for each frequency setting. However, this table is to be updated and corrected after calibration. Default: 37 Low Band:
	9 – 5	5 – when 2.4MHz 7 – when 2.74MHz 12 – when 5.5MHz 18 – when 8.2MHz 24 – when 11MHz High Band: 18 – when 18.5MHz
		37 – when 38MHz 54 – when 54MHz LOSS LIN TXPAD TRF (1, 2)[4:0]: Controls the gain of the linearizing part of the
	4 – 0	TXPAD. Default: 0 0<=Loss<=10 - Pout=Pout_max-Loss 11<=Loss<31 - Pout=Pout_max-10-2*(Loss-10) Ideally LOSS_LIN = LOSS_MAIN
		LOSS_MAIN_TXPAD_TRF_(1, 2)[4:0]: Controls the gain & output power of the TXPAD. Default: 0 0<=Loss<=10 - Pout=Pout_max-Loss 11<=Loss<31 - Pout=Pout_max-10-2*(Loss-10)
		Default : 10010100 00000000
0x0126	15 – 13	Reserved
	12 – 11	C_CTL_PGA_RBB_(1, 2)[7:0]: Control the value of the feedback capacitor of the PGA that is used to help against the parasitic cap at the virtual node for stability. 3 - when 0<=G_PGA_RBB<8 2 - when 8<=G_PGA_RBB<13 (default) 1 - when 13<=G_PGA_RBB<21 0 - when 21<=G_PGA_RBB
	10 – 6	G_PGA_RBB_(1, 2)[4:0]: This is the gain of the PGA. The gain is adaptively set to maintain signal swing of 0.6Vpkd at the output of the PGA. The value of the gain is: Gain(dB) = -12+G_PGA_RBB. Default: 11
	5-2	G_LNA_RFE_(1, 2)[3:0]: Controls the gain of the LNA 15 - Gmax (default) 14 - Gmax-1 13 - Gmax-2 12 - Gmax-3 11 - Gmax-4 10 - Gmax-5 9 - Gmax-6 8 - Gmax-9 7 - Gmax-12 6 - Gmax-15 5 - Gmax-18 4 - Gmax-21 3 - Gmax-24 2 - Gmax-27 1 - Gmax-30
	1-0	G_TIA_RFE_(1, 2)[1:0]: Controls the Gain of the TIA. 3 – Gmax (default) 2 – Gmax-3 1 – Gmax-12 0 - Not allowed
		Default : 00010010 11111111

2.13 AFE Configuration Memory

The block diagram of the AFE module is shown in Figure 13. The tables in this chapter describe the control registers of the AFE module.

Table 14: AFE configuration memory

Table 14: AFE CO		· · · · · · · · · · · · · · · · · · ·
Address (15 bits)	Bits	Description
0x0082	15 – 13	ISEL_DAC_AFE[2:0]: Controls the peak current of the DAC output current.
		Default: 4
		lout_peak = 325uA+ISEL_DAC_AFE*75uA
		Nominal = 625uA
	12	MODE_INTERLEAVE_AFE: time interleaves the two ADCs into one ADC
		0 – Two ADCs (default)
		1 – Interleaved
	11 – 10	MUX_AFE_1<1:0>: Controls the MUX at the input of the ADC channel 1
		0 – MUX off, only PGA output is connected to ADC input (default)
		1 – pdet_1 is connected to ADC channel 1. PGA should be powered down
		2 – BIAS_TOP test outputs will be connected to ADC channel 1 input
		(Please see MUX_BIAS_OUT<1:0>)
		3 – RSSI 1 output will be connected to ADC 1 input
	9 – 8	MUX_AFE_2<1:0>: Controls the MUX at the input of the ADC channel 2
		0 – MUX off, only PGA output is connected to ADC input (default)
		1 – pdet_2 is connected to ADC channel 2. PGA should be powered down
		2 – RSSI 1 output will be connected to ADC 2 input
	7 – 6	3 – RSSI 2 output will be connected to ADC 2 input Reserved
	5	PD AFE: Power down control for the AFE current mirror in BIAS TOP
	3	0 – Active (default)
		1 – powered down
	4	PD_RX_AFE1: Power down control for the ADC of channel 1
		0 – Active (default)
		1 – powered down
	3	PD RX AFE2: Power down control for the ADC of channel 2
		0 – Active
		1 – powered down (default)
	2	PD TX AFE1: Power down control for the DAC of channel 1
		0 – Active (default)
		1 – powered down
	1	PD_TX_AFE2: Power down control for the DAC of channel 2
		0 – Active
		1 – powered down (default)
	0	EN_G_AFE: Enable control for all the AFE power downs
		0 – All AFE modules powered down
		1 – All AFE modules controlled by individual power down registers
		(default)
		D-5
		Default : 10000000 00001011

2.14 BIAS Configuration Memory

The block diagram of the BIAS module is shown in Figure 14. The tables in this chapter describe the control registers of the BIAS module.

Table 15: BIAS configuration memory

Address (15 bits)	Bits	Description
0x0083	15 – 11	Reserved
	10 – 0	RESRV_BIAS[10:0]: Reserve. Default: 0
		Default: 00000000 00000000
0x0084	15 – 13	Reserved
	12 – 11	MUX_BIAS_OUT[1:0]: Test mode of the BIAS_TOP 0 - NO test mode (default) 1 - vr_ext_bak and vr_cal_ref=600mV is passed to the ADC input MUX. Vr_ext_bak is the voltage read on the off-chip 10Kohm reference resistor. Ip60f is connected to r_ext=10kOhm and RP_CALIB_BIAS is changed until vr_ext becomes 600mV. 2 - Vptat_600mV and vr_cal_ref=600mV is passed to the ADC input MUX. The ratio between the two will be proportional to absolute temp. 3 - No test mode RP_CALIB_BIAS[4:0]: Calibration code for rppolywo. This code is set by the calibration algorithm: BIAS_RPPOLY_calibration Default: 16
	5	Reserved
	4	PD_FRP_BIAS: Power down signal for Fix/RP block 0 – Enabled (default) 1 – Powered down
	3	PD_F_BIAS: Power down signal for Fix 0 - Enabled (default) 1 - Powered down
	2	PD_PTRP_BIAS: Power down signal for PTAT/RP block 0 – Enabled (default) 1– Powered down
	1	PD_PT_BIAS: Power down signal for PTAT block 0 – Enabled (default)
	0	1 – Powered down PD_BIAS_MASTER: Enable signal for central bias block 0 – Sub blocks may be selectively powered down (default) 1 – Poweres down all BIAS blocks
		Default: 00000100 00000000

2.15 SXR, SXT Configuration Memory

The block diagrams of the SXR and SXT modules are shown in Figure 15 and Figure 16 respectively. The tables in this chapter describe the control registers of SXR and SXT modules.

Table 16: SXT (SXR) configuration memory

	. / '	Suration memory
Address (15 bits)	Bits	Description
0x011C	15	RESET_N_(SXR, SXT): Resets SX. A pulse should be used in the start-up to reset
		0 – Reset
	14	1 – Normal operation (default)
	14	SPDUP_VCO_(SXR, SXT): Bypasses the noise filter resistor for fast settling time. It should be connected to a 1uS pulse
		0 – speed up disabled (noise filter resistor active) (default)
		1 – speed up enabled (noise filter resistor shorted)
	13	BYPLDO VCO (SXR, SXT): Controls the bypass signal for the SX LDO
		0 – LDO active
		1 – LDO bypassed (input/output of the SX LDO shorted) (default)
	12	EN_COARSEPLL_(SXR, SXT): Enable signal for coarse tuning block
		0 – Coarse tuning disabled (default)
	l	1 – Coarse tuning enabled
	11	CURLIM_VCO_(SXR, SXT): Enables the output current limitation in the VCO
		regulator
		0 – Current limit disabled
	10	1 – Current limit enabled (default) EN_DIV2_DIVPROG_(SXR, SXT): Enables additional DIV2 prescaler at the input of
	10	the Programmable divider. The core of programmable divider in the SX feedback
		divider works up to 5.5GHz. For FVCO>5.5GHz, the prescaler is needed to lower
		the input frequency to DIVPROG SX. Shadow register.
		0 – DIVPROG input =
		Fvco [Fvco=Fref*((INT_SDM_SX+4)+FRAC_SDM)
		1 – DIVPROG input =
		Fvco/2 [Fvco=2*Fref*((INT_SDM_SX+4)+FRAC_SDM) (default)
	9	EN_INTONLY_SDM_(SXR, SXT): Enables INTEGER-N mode of the SX
		0 – Frac-N mode (default)
		1 – INT-N mode
	8	EN_SDM_CLK_(SXR, SXT): Enables/Disables SDM clock. In INT-N mode or for noise testing, SDM clock can be disabled
		0 – SDM clock disabled
		1 – SDM clock disabled 1 – SDM clock enabled (default)
	7	PD FBDIV (SXR, SXT): Power down the feedback divider block.
		0 – block active (default)
		1 – block powered down
	6	PD_LOCH_T2RBUF: Power down for LO buffer from SXT to SXR. To be active only
		in the TDD mode. In TX part only!!!
		0 – block active
	_	1 – block powered down (default)
	5	PD_CP_(SXR, SXT): Power down for Charge Pump 0 – block active (default)
		1 – block powered down
	4	PD_FDIV_(SXR, SXT): Power down for forward frequency divider and divider chain
	[·	of the LO chain.
		0 – blocks active (default)
		1 – blocks powered down
	3	PD_SDM_(SXR, SXT): Power down for SDM
		0 – block active (default)
		1 – block powered down
	2	PD_VCO_COMP_(SXR, SXT): Power down for VCO comparator
		0 – block active (default)
	1	1 – block powered down PD VCO (SXR, SXT): Power down for VCO
	'	0 – block active
		1 – block active 1 – block powered down (default)
	0	EN G (SXR, SXT): Enable control for all the SX power downs
	-	0 – All SXT modules powered down
		1 – All SXT modules controlled by individual power down registers
		(default)
		Default : 10101101 01000011

Address (15 bits)	Bits	Description
0x011D	15 – 0	FRAC_SDM_(SXR, SXT)[15:0]: Fractional control of the division ratio LSB. Default :
		1024 =2^20*[Fvco/(Fref * 2^ EN_DIV2_DIVPROG_(SXR, SXT)) - int(Fvco/(Fref * 2^ EN_DIV2_DIVPROG_(SXR, SXT)))]
		Default: 00000100 00000000
0x011E	15 - 14	Reserved
	13 – 4	INT_SDM_(SXR, SXT)[9:0]: Controls Integer section of the division ratio INT_SDM_(SXR, SXT) = int(Fvco/2^(EN_DIV2_DIVPROG_(SXR, SXT))/Fref)-4 Default: 120
	3 – 0	FRAC_SDM_(SXR, SXT)[19:16]: Fractional control of the division ratio MSB.
		Default: 00000111 10000000
0x011F	15	Reserved
	14 – 12	PW_DIV2_LOCH_(SXR, SXT)[2:0]: trims the duty cycle of DIV2 LOCH. Only works when forward divider is dividing by at least 2 (excluding quadrature block division). If in bypass mode, this does not work. Default: 3
	11 – 9	PW_DIV4_LOCH_(SXR, SXT)[2:0]: trims the duty cycle of DIV4 LOCH. Only works when forward divider is dividing by at least 4 (excluding quadrature block division). If in bypass mode, this does not work. Default: 3
	8 – 6	DIV_LOCH_(SXR, SXT)[2:0]: Controls the division ratio in the LOCH_DIV. There is additional DIV/2 in the quadrature generator → Flo = Fvco / divRatio_LOCH / 2 divRatio_LOCH = 2^(DIV_LOCH_SX) Note: Value 111 not allowed. Shadow register. Default: 1
	5-3	TST_SX_(SXR, SXT)[2:0]: Controls the test mode of PLLs. TST signal lines are shared between all PLLs (CGEN, RX and TX). Only one TST signal of any PLL should be active at a given time. 0 - TST disabled; RSSI analog outputs enabled if RSSI blocks active and when all PLL test signals are off (default) 1 - tstdo[0]=VCO/20 clock*; tstdo[1]=VCO/40 clock*; tstao = High impedance; 2 - tstdo[0]=SDM clock; tstdo[1]= feedback divider output; tstao = VCO tune through a 60kOhm resistor; 3 - tstdo[0]=Reference clock; tstdo[1]= feedback divider output; tstao = VCO tune through a 10kOhm resistor; 4 - tstdo[0]= High impedance; tstdo[1]= High impedance; tstao = High impedance; 5 - tstdo[0]=Charge pump Down signal; tstdo[1]=Charge pump Up signal; tstao = High impedance; 6 - tstdo[0]= High impedance; tstdo[1]= High impedance; tstao = VCO tune through a 60kOhm resistor; 7 - tstdo[0]= High impedance; tstdo[1]= High impedance; tstao = VCO tune through a 10kOhm resistor; if TST_SX[2]=1> VCO_TSTBUF active generating VCO_TST_DIV20 and VCO_TST_DIV40 * When EN_DIV2_DIVPROG_(SXR, SXT) is active, the division ratio must be multiplied by 2 (40/80);
	2	SEL_SDMCLK_(SXR, SXT): Selects between the feedback divider output and Fref for SDM 0 - CLK_CLK_DIV_(default)
	1	1 – CLK CLK_REF SX_DITHER_EN_(SXR, SXT): Enabled dithering in SDM 0 – Disabled (default) 1 – Enabled
	0	REV_SDMCLK_(SXR, SXT): Reverses the SDM clock 0 - (default) 1 - reversed (after INV)
		Default : 00110110 01000000

Address (15 bits)	Bits	Description
0x0120	15 – 8	VDIV_VCO_(SXR, SXT)[7:0]: Controls VCO LDO output voltage. Default: 185 Vout(VCO_LDO)=VDD18_VCO* [(29.1/(29.1 + 233/(VDIV_VCO_SX+2)))] 185> Vout(VCO_LDO)=1.55V (VDD18_VCO=1.72)
	7 – 0	ICT_VCO_(SXR, SXT)[7:0]: Scales the VCO bias current from 0 to 2.5xlnom Default: 128
		Default: 10111001 10000000
0x0121	15 – 11	RSEL_LDO_VCO_(SXR, SXT)[4:0]: Set the reference voltage that supplies bias voltage of switch-cap array and varactor. Default: 16 Vref=60uA * 180kOhm / RSEL_LDO_VCO
	10 – 3	CSW_VCO_(SXR, SXT)[7:0]: coarse control of VCO frequency, 0 for lowest frequency and 255 for highest. This control is set by SX_SWC_calibration. Shadow
	2 – 1	register. Default: 128 SEL_VCO_(SXR, SXT)[1:0]: Selects the active VCO. It is set by SX_SWC_calibration. Shadow register. 0 - VCOL
		1 – VCOM 2 – VCOH (default) 3 – Not Valid
	0	COARSE_START_(SXR, SXT): Control signal for coarse tuning algorithm (SX_SWC_calibration). Default: 0
		Default: 10000100 00000100
0x0122	15 – 14	RZ_CTRL_(SXR, SXT)[1:0]: Controls the PLL LPF zero resistor values: $0 - \text{Rzero} = 20 k\Omega (\text{default}) \\ 1 - \text{Rzero} = 8 k\Omega \\ 2 - \text{Rzero} = 4 k\Omega$
	13	3 – LPF resistors are in bypass mode (<100Ω) CMPLO_CTRL_(SXR, SXT): Controls the SXR/SXT PLL VCO comparator low treshold value: 0 – Low treshold is set to 0.18V (default)
	12	n - Low treshold is set to 0.10V (default) 1 - Low treshold is set to 0.1V REVPH_PFD_(SXR, SXT): Reverse the pulses of PFD. It can be used to reverse the polarity of the PLL loop (positive feedback to negative feedback). Default: 0
	11 – 6	IOFFSET_CP_(SXR, SXT)[5:0]: Scales the offset current of the charge pump, 0->63. This current is used in Fran-N mode to create an offset in the CP response and avoid the non-linear section. Default: 20 ioffset=0.243uA * IOFFSET_CP_SX ioffset/ipulse=4/(INT_SDM_SX+4) [First estimation]
	5 – 0	IPULSE_CP_(SXR, SXT)[5:0]: Scales the pulse current of the charge pump, 0>63. Default: 20 ipulse=2.312uA * IPULSE_CP_SX
		Default: 00000101 00010100
0x0123	15	COARSE_STEPDONE_(SXR, SXT): Read only.
	14	COARSEPLL_COMPO_(SXR, SXT): Read only.
	13	VCO_CMPHO_(SXR, SXT): Compares Vtune value to a predefined value of 920mV. Read only register. 0 - Vtune voltage level is higher than CMPHO threshold voltage of 920mV
	12	1 – Vtune voltage level is lower than CMPHO threshold voltage of 920mV VCO_CMPLO_(SXR, SXT): Compares Vtune value to a predefined value of 180mV. Read only register.
		0 – Vtune voltage level is higher than CMPLO threshold voltage of 180mV 1 – Vtune voltage level is lower than CMPLO threshold voltage of 180mV
	11 – 8	CP2_PLL_(SXR, SXT)[3:0]: Controls the value of CP2 (cap from CP output to GND) in the PLL filter. Default: 6 cp2=CP2_PLL_SX*6*387fF
	7 – 4	CP3_PLL_(SXR, SXT)[3:0]: Controls the value of CP3 (cap from VCO Vtune input to GND) in the PLL filter. Default: 7 cp3=CP3_PLL_SX*6*980fF
	3 – 0	CZ_(SXR, SXT)[3:0]: Controls the value of CZ (Zero capacitor) in the PLL filter. Default: 11 cz=CZ_PLL_SX*8*5.88pF
		Default: 00000110 01111011

Address (15 bits)	Bits	Description
0x0124	15 – 11	RESRV_(SXR, SXT)[4:0]: Reserved. Default: 0
		(For SXT only RESRV_SXR[0] connected to the output!)
	10 – 5	Reserved
	4	EN_DIR_(SXR, SXT): Enables direct control of PDs and ENs for SXR/SXT module. 0 – direct control disabled (default)
		1 – direct control disabled (default)
	3	EN_DIR_RBB(1, 2): Enables direct control of PDs and ENs for RBB(1, 2) module. 0 – direct control disabled (default) 1 – direct control enabled
	2	EN_DIR_RFE(1, 2): Enables direct control of PDs and ENs for RFE(1, 2) module. 0 – direct control disabled (default) 1 – direct control enabled
	1	EN_DIR_TBB(1, 2): Enables direct control of PDs and ENs for TBB(1, 2) module. 0 – direct control disabled (default) 1 – direct control enabled
	0	EN_DIR_TRF(1, 2): Enables direct control of PDs and ENs for TRF(1, 2) module. 0 – direct control disabled (default) 1 – direct control enabled
		Default: 00000000 00000000

2.16 CGEN Configuration Memory

The block diagram of the CGEN module is shown in Figure 17. The tables in this chapter describes the control registers of the CGEN module.

Table 17: CGEN configuration memory

Address (15 bits)	Bits	
<u> </u>		Description SERVICE COENT Parageous the poice filter recietor for fact cottling time. It
0x0086	15	SPDUP_VCO_CGEN: Bypasses the noise filter resistor for fast settling time. It
		should be connected to a 1us pulse. 0 – speed up disabled (noise filter resistor active) (default)
		1 – speed up disabled (noise filter resistor shorted)
	14	RESET N CGEN: Resets SX. A pulse should be used in the start-up to reset.
	'¬	0 – Reset
		1 – Normal operation (default)
	13 – 12	Reserved
	11	EN ADCCLKH CLKGN: Selects if F CLKH or F CLKL is connected to FCLK ADC
		(F CLKH and F CLKL are the two internally generated clocks. A MUX will connect
		one of them to FCLK ADC and the other to FCLK DAC.).
		0 – FCLK_ADC from F_CLKH / FCLK_DAC from F_CLKL
		1 – FCLK_ADC from F_CLKL / FCLK_DAC from F_CLKH (default)
	10	EN_COARSE_CKLGEN: Enable signal for coarse tuning block.
		0 – Coarse tuning disabled (default)
		1 – Coarse tuning enabled
	9	EN_INTONLY_SDM_CGEN: Enables INTEGER-N mode of the SX.
		0 – Frac-N mode (default)
	1 _	1 – INT-N mode
	8	EN_SDM_CLK_CGEN: Enables/Disables SDM clock. In INT-N mode or for noise
		testing, SDM clock can be disabled.
		0 – SDM clock disabled
	_	1 – SDM clock enabled (default)
	7	Reserved
	6	PD_CP_CGEN: Power down for Charge Pump. 0 – block active (default)
		1 – block powered down
	5	PD FDIV FB CGEN: Power down for feedback frequency divider.
		0 – block active (default)
		1 – block powered down
	4	PD FDIV O CGEN: Power down for forward frequency divider of the CGEN block.
		0 – block active (default)
		1 – block powered down
	3	PD_SDM_CGEN: Power down for SDM.
		0 – block active (default)
		1 – block powered down
	2	PD_VCO_CGEN: Power down for VCO.
		0 – block active
	l .	1 – block powered down (default)
	1	PD_VCO_COMP_CGEN: Power down for VCO comparator.
		0 – block active (default)
		1 – block powered down
	0	EN_G_CGEN: Enable control for all the CGEN power downs.
		0 – All CGEN modules powered down 1 – All CGEN modules controlled by individual power down registers
		(default)
		(default)
		Default: 01001001 00000101
0x0087	15 – 0	FRAC SDM CGEN[15:0]: Fractional control of the division ratio LSB. Default: 1024
		=2^20*[Fvco/Fref - int(Fvco/Fref)]
		L C A
		Default: 00000100 00000000
0x0088	15 - 14	Reserved
	13 – 4	INT_SDM_CGEN [9:0]: Controls Integer section of the division ratio Default: 120
		INT_SDM_SX=int(Fvco/Fref)-1
		FRAC_SDM_CGEN [19:16]: Fractional control of the division ratio MSB.
	3 – 0	
		Default : 00000111 10000000

Address (15 bits)	Bits	Description
0x0089	15	REV_SDMCLK_CGEN: Reverses the SDM clock
		0 – default (default) 1 – reversed (after INV)
	14	SEL_SDMCLK_CGEN: Selects between the feedback divider output and Fref for SDM
		0 – CLK CLK_DIV (default)
	13	1 – CLK_CLK_REF SX_DITHER_EN_CGEN: Enabled dithering in SDM
	10	0 – Disabled (default)
		1 – Enabled
	12 – 11	CLKH_OV_CLKL_CGEN[1:0]: FCLKL here is ADC clock. FCLKH is the clock to the DAC and if no division is added to the ADC as well. Default: 0 FCLKL=FCLKH/2^(CLKH_OV_CLKL)
	10 – 3	DIV_OUTCH_CGEN[7:0]: Controls the output divider chain of the CGEN. F_CLKH=Fvco_CGEN/(2*(DIV_OUTCH_CGEN+1)) Shadow register.
	2-0	Default: 4 TST_CGEN[2:0]: Controls the test mode of the SX
	2-0	0 – TST disabled; RSSI analog outputs enabled if RSSI blocks active and
		when all PLL test signals are off (default)
		1 – tstdo[0]=ADC clock; tstdo[1]=DAC clock; tstao = High impedance; 2 – tstdo[0]=SDM clock; tstdo[1]= feedback divider output; tstao = VCO
		tune through a 60kOhm resistor; 3 – tstdo[0]=Reference clock; tstdo[1]= feedback divider output; tstao =
		VCO tune through a 10kOhm resistor; 4 – tstdo[0]= High impedance; tstdo[1]= High impedance; tstao = High
		impedance;
		5 – tstdo[0]=Charge pump Down signal; tstdo[1]=Charge pump Up signal; tstao = High impedance;
		6 - tstdo[0]= High impedance; tstdo[1]= High impedance; tstao = VCO
		tune through a 60kOhm resistor; 7 – tstdo[0]= High impedance; tstdo[1]= High impedance; tstao = VCO
		tune through a 10kOhm resistor;
		if TST_SX[2]=1> VCO_TSTBUF active generating VCO_TST_DIV20
		and VCO_TST_DIV40
		Default: 00000000 00100000
0x008A	15 14	Reserved REV_CLKDAC_CGEN: Inverts the clock F_CLKL. 0 – Normal (default)
	13	1 – Inverted REV CLKADC CGEN: Inverts the clock F CLKL.
		0 – Normal (default)
	12	1 – Inverted REVPH PFD CGEN: Reverse the pulses of PFD. It can be used to reverse the
		polarity of the PLL loop (positive feedback to negative feedback). Default: 0
	11 – 6	IOFFSET_CP_CGEN[5:0]: Scales the offset current of the charge pump, 0>63.
		This current is used in Fran-N mode to create an offset in the CP response and avoid the non-linear section. Default: 20
		ioffset=0.243uA * IOFFSET_CP_SX
	5 – 0	ioffset/ipulse=4/(INT_SDM_SX+4) [First estimation] IPULSE CP CGEN[5:0]: Scales the pulse current of the charge pump, 0>63.
	3-0	Default: 20
		ipulse=2.312uA * IPULSE_CP_SX
0,000	15	Default: 00000101 00010100
0x008B	15	Reserved
	14	CMPLO_CTRL_CGEN: Controls the CGEN PLL VCO comparator low treshold value:
		0 – Low treshold is set to 0.18V (Default)
		1 – Low treshold is set to 0.1V
	13 – 9	ICT_VCO_CGEN[4:0]: Scales the VCO bias current from 0 to 2.5xInom. Default: 15
	8 – 1	CSW_VCO_CGEN[7:0]: coarse control of VCO frequency, 0 for lowest frequency and 255 for highest. This control is set by SX_SWC_calibration. Shadow register.
		Default: 128
	0	COARSE_START_CGEN: Control signal for coarse tuning algorithm (SX_SWC_calibration). Default: 0
		Default: 00011111 00000000

Address (15 bits)	Bits	Description
0x008C	15	COARSE_STEPDONE_CGEN: Read only
	14	COARSEPLL_COMPO_CGEN: Read only
	13	VCO_CMPHO_CGEN: Read only
	12	VCO_CMPLO_CGEN: Read only
	11 – 8	CP2_CGEN[3:0]: Controls the value of CP2 (cap from CP output to GND) in the PLL filter. Default: 6 cp2=CP2 PLL SX*6*63.2fF
	7 – 4	CP3_CGEN[3:0]: Controls the value of CP3 (cap from VCO Vtune input to GND) in the PLL filter. Default: 7 cp3=CP3_PLL_SX*248fF
	3 – 0	CZ_CGEN[3:0]: Controls the value of CZ (Zero capacitor) in the PLL filter. Default: 11 cz=CZ_PLL_SX*8*365fF
		Default: 00000110 01111011
0x008D	15 – 2 1 – 0	Reserved RESRV_CGN[2:1]: Reserved Default: 0
		Default: 00000000 00000000

2.17 XBUF Configuration Memory

The block diagram of the XBUF module is shown in Figure 18. The tables in this chapter describe the control registers of the XBUF module.

Table 18: XBUF configuration memory

Address (15 bits)	Bits	Description
0x0085	15 – 9	Reserved
0.0000	8	SLFB XBUF RX: Self biasing digital control.
		1 – enable biasing the input's DC voltage level from the chip, the input
		signal, IN, needs to be AC coupled to the chip
		0 – disable the DC voltage level from the chip, the input signal, IN, needs
		to be DC coupled to t o the chip (default)
	7	SLFB XBUF TX: Self biasing digital control.
		1 – enable biasing the input's DC voltage level from the chip, the input
		signal, IN, needs to be AC coupled to the chip.
		0 – disable the DC voltage level from the chip, the input signal, IN, needs
		to be DC coupled to t o the chip. (default)
	6	BYP_XBUF_RX: Shorts the Input 3.3V buffer in XBUF
		The final 2 1.2V buffers are still active. The input in Bypass mode should be a 1.2V
		full scale CMOS signal.
		0 – Bypass not active (default)
		1 – Bypass active
	5	BYP_XBUF_TX: Shorts the Input 3.3V buffer in XBUF
		The final 2 1.2V buffers are still active. The input in Bypass mode should be a 1.2V
		full scale CMOS signal.
		0 – Bypass not active (default)
		1 – Bypass active
	4	EN_OUT2_XBUF_TX: Enables the 2nd output of TX XBUF. This 2nd buffer goes to
		XBUF_RX. This should be active when only 1 XBUF is to be used.
		0 – TX XBUF 2nd output is active (default)
		1 – TX XBUF 2nd output is disabled
	3	EN_TBUFIN_XBUF_RX: Disables the input from the external XOSC and buffers the 2nd input signal (from TX XBUF 2nd output) to the RX. This should be active when
		,
		only 1 XBUF is to be used. 0 – RX XBUF input is coming from external XOSC (default)
		1 – RX XBUF input is coming from TX
	2	PD XBUF RX: Power down signal
	~	0 – block active (default)
		1 – block powered down
	1	PD_XBUF_TX: Power down signal
] '	0 – block active (default)
		1 – block powered down
	0	EN G XBUF: Enable control for all the XBUF power downs
		0 – All XBUF modules powered down
		1 - All XBUF modules controlled by individual power down registers
		(default)
		Default : 00000000 00000001

2.18 LDO Configuration Memory

The block diagram of the LDO module is shown in 9. The tables in this chapter describe the control registers of the LDO modules.

Table 19: LDO configuration memory

Table 19: LDO co		•
Address (15 bits)	Bits	Description
0x0092	15	EN_LDO_DIG: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	14	EN_LDO_DIGGN: Enables the LDO
		0 – Powered down (default)
	40	1 – Enabled
	13	EN_LDO_DIGSXR: Enables the LDO
		0 – Powered down (default)
	40	1 – Enabled
	12	EN_LDO_DIGSXT: Enables the LDO
		0 – Powered down (default) 1 – Enabled
	11	EN LDO DIVGN: Enables the LDO
	' '	0 – Powered down (default)
		1 – Enabled
	10	EN LDO DIVSXR: Enables the LDO
	10	0 – Powered down (default)
		1 – Enabled
	9	EN LDO DIVSXT: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	8	EN_LDO_LNA12: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	7	EN_LDO_LNA14: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	6	EN_LDO_MXRFE: Enables the LDO
		0 – Powered down (default)
	_	1 – Enabled
	5	EN_LDO_RBB: Enables the LDO
		0 – Powered down (default) 1 – Enabled
	4	EN LDO RXBUF: Enables the LDO
	-	0 – Powered down (default)
		1 – Enabled
	3	EN LDO TBB: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	2	EN LDO TIA12: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	1	EN_LDO_TIA14: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	0	EN_G_LDO: Enable control for all the LDO power downs
		0 – All LDO modules powered down
		1 – All LDO modules controlled by individual power down registers
		(default)
		Default: 0000000 00000001
	Ī	Default: 00000000 00000001

Address (15 bits)	Bits	Description
0x0093	15	EN_LOADIMP_LDO_TLOB: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default)
	14	1 – Load dependent bias
	14	EN_LOADIMP_LDO_TPAD: Enables the load dependent bias to optimize the load regulation
		0 – Constant bias (default)
		1 – Load dependent bias
	13	EN_LOADIMP_LDO_TXBUF: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default) 1 – Load dependent bias
	12	EN LOADIMP LDO VCOGN: Enables the load dependent bias to optimize the load
	'-	regulation
		0 – Constant bias (default)
		1 – Load dependent bias
	11	EN_LOADIMP_LDO_VCOSXR: Enables the load dependent bias to optimize the
		load regulation 0 – Constant bias (default)
		1 – Constant bias (defauit)
	10	EN LOADIMP LDO VCOSXT: Enables the load dependent bias to optimize the
		load regulation
		0 – Constant bias (default)
	9	1 – Load dependent bias
	9	EN_LDO_AFE: Enables the LDO 0 – Powered down (default)
		1 – Enabled
	8	EN_LDO_CPGN: Enables the LDO
		0 – Powered down (default)
	1	1 – Enabled
	7	EN_LDO_CPSXR: Enables the LDO 0 – Powered down (default)
		1 – Enabled
	6	EN LDO TLOB: Enables the LDO
		0 – Powered down (default)
	_	1 – Enabled
	5	EN_LDO_TPAD: Enables the LDO
		0 – Powered down (default) 1 – Enabled
	4	EN_LDO_TXBUF: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	3	EN_LDO_VCOGN: Enables the LDO
		0 – Powered down (default) 1 – Enabled
	2	EN LDO VCOSXR: Enables the LDO
		0 – Powered down (default)
		1 – Enabled
	1	EN_LDO_VCOSXT: Enables the LDO 0 – Powered down (default)
		1 – Powered down (detault)
	0	EN LDO CPSXT: Enables the LDO
	1	0 – Powered down (default)
		1 – Enabled
		B-514 00000000 00000000
		Default : 00000000 00000000

Address (15 bits)	Bits	Description
0x0094	15	EN_LOADIMP_LDO_CPSXT: Enables the load dependent bias to optimize the load regulation
		0 – Constant bias (default)
	14	1 – Load dependent bias EN_LOADIMP_LDO_DIG: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default) 1 – Load dependent bias
	13	EN_LOADIMP_LDO_DIGGN: Enables the load dependent bias to optimize the load
		regulation 0 – Constant bias (default)
	12	1 – Load dependent bias EN LOADIMP LDO DIGSXR: Enables the load dependent bias to optimize the
	12	load regulation
		0 – Constant bias (default) 1 – Load dependent bias
	11	EN_LOADIMP_LDO_DIGSXT: Enables the load dependent bias to optimize the
		load regulation 0 – Constant bias (default)
	40	1 – Load dependent bias
	10	EN_LOADIMP_LDO_DIVGN: Enables the load dependent bias to optimize the load regulation
		0 – Constant bias (default) 1 – Load dependent bias
	9	EN_LOADIMP_LDO_DIVSXR: Enables the load dependent bias to optimize the
		load regulation 0 – Constant bias (default)
		1 – Load dependent bias
	8	EN_LOADIMP_LDO_DIVSXT: Enables the load dependent bias to optimize the load regulation
		0 – Constant bias (default) 1 – Load dependent bias
	7	EN_LOADIMP_LDO_LNA12: Enables the load dependent bias to optimize the load
		regulation 0 – Constant bias (default)
		1 – Load dependent bias
	6	EN_LOADIMP_LDO_LNA14: Enables the load dependent bias to optimize the load regulation
		0 – Constant bias (default)
		1 – Load dependent bias
	5	EN_LOADIMP_LDO_MXRFE: Enables the load dependent bias to optimize the load regulation
		0 – Constant bias (default)
	4	1 – Load dependent bias EN LOADIMP LDO RBB: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default) 1 – Load dependent bias
	3	EN_LOADIMP_LDO_RXBUF: Enables the load dependent bias to optimize the load regulation
		0 – Constant bias (default)
	2	1 – Load dependent bias EN LOADIMP LDO TBB: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default) 1 – Load dependent bias
	1	EN_LOADIMP_LDO_TIA12: Enables the load dependent bias to optimize the load regulation
		0 – Constant bias (default)
	0	1 – Load dependent bias EN LOADIMP LDO TIA14: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default) 1 – Load dependent bias
		Default: 00000000 00000000
	l	20.dail. 0000000 0000000

Address (15 bits)	Bits	Description
0x0095	15	BYP LDO TBB: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	14	BYP_LDO_TIA12: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	13	BYP_LDO_TIA14: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	12	BYP_LDO_TLOB: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
	l	1 – Bypasses LDO. Connects Vinput to Voutput
	11	BYP_LDO_TPAD: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
	10	1 – Bypasses LDO. Connects Vinput to Voutput
	10	BYP_LDO_TXBUF: Bypass signal for the LDO 0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	9	BYP LDO VCOGN: Bypass signal for the LDO
	3	0 – Does not bypass signal for the LDO 0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	8	BYP LDO VCOSXR: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	7	BYP LDO VCOSXT: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	6 – 3	Reserved
	2	EN_LOADIMP_LDO_AFE: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default)
		1 – Load dependent bias
	1	EN_LOADIMP_LDO_CPGN: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default)
		1 – Load dependent bias
	0	EN_LOADIMP_LDO_CPSXR: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default) 1 – Load dependent bias
		ı – Luau dependent bias
		Default: 00000000 00000000
	I	

Address (15 bits)	Bits	Description
0x0096	15	BYP_LDO_AFE: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	14	BYP_LDO_CPGN: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	13	BYP_LDO_CPSXR: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	12	BYP_LDO_CPSXT: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	11	BYP_LDO_DIG: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	10	BYP_LDO_DIGGN: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	9	BYP_LDO_DIGSXR: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	8	BYP_LDO_DIGSXT: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	7	BYP_LDO_DIVGN: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	6	BYP_LDO_DIVSXR: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
	-	1 – Bypasses LDO. Connects Vinput to Voutput
	5	BYP_LDO_DIVSXT: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	4	BYP_LDO_LNA12: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
	2	, , ,
	٦	
		, , , ,
	2	
	-	
	1	, , ,
	'	
		, , , ,
	0	
		-)r
		Default: 00000000 00000000
	3 2 1 0	1 – Bypasses LDO. Connects Vinput to Voutput BYP_LDO_LNA14: Bypass signal for the LDO 0 – Does not bypass. Normal LDO operation (default) 1 – Bypasses LDO. Connects Vinput to Voutput BYP_LDO_MXRFE: Bypass signal for the LDO 0 – Does not bypass. Normal LDO operation (default) 1 – Bypasses LDO. Connects Vinput to Voutput BYP_LDO_RBB: Bypass signal for the LDO 0 – Does not bypass. Normal LDO operation (default) 1 – Bypasses LDO. Connects Vinput to Voutput BYP_LDO_RXBUF: Bypass signal for the LDO 0 – Does not bypass. Normal LDO operation (default) 1 – Bypasses LDO. Connects Vinput to Voutput Default: 00000000 000000000

Address (15 bits)	Bits	Description
0x0097	15	SPDUP_LDO_DIVSXR: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default) 1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	14	SPDUP_LDO_DIVSXT: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed should be connected to a 1~5uS at the power up
	13	SPDUP_LDO_LNA12: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
	12	should be connected to a 1~5uS at the power up SPDUP_LDO_LNA14: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
	11	should be connected to a 1~5uS at the power up SPDUP_LDO_MXRFE: Short the noise filter resistor to speed up the settling time
	''	0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	10	SPDUP_LDO_RBB: Short the noise filter resistor to speed up the settling time 0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	9	SPDUP_LDO_RXBUF: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default) 1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	8	SPDUP_LDO_TBB: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed should be connected to a 1~5uS at the power up
	7	SPDUP_LDO_TIA12: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed should be connected to a 1~5uS at the power up
	6	SPDUP_LDO_TIA14: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
	5	should be connected to a 1~5uS at the power up SPDUP LDO TLOB: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
	4	should be connected to a 1~5uS at the power up SPDUP_LDO_TPAD: Short the noise filter resistor to speed up the settling time
	4	0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	3	SPDUP_LDO_TXBUF: Short the noise filter resistor to speed up the settling time 0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	2	SPDUP_LDO_VCOGN: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default) 1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	1	SPDUP_LDO_VCOSXR: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default) 1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	0	SPDUP_LDO_VCOSXT: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed should be connected to a 1~5uS at the power up
		5 Gala So controcted to a 1 Gab at the portor ap
		Default : 00000000 00000000

Address (15 bits)	Bits	Description
0x0098	15 – 9	Reserved
	8	SPDUP_LDO_AFE: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed should be connected to a 1∼5uS at the power up
	7	SPDUP_LDO_CPGN: Short the noise filter resistor to speed up the settling time
	•	0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	6	SPDUP_LDO_CPSXR: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed should be connected to a 1∼5uS at the power up
	5	SPDUP LDO CPSXT: Short the noise filter resistor to speed up the settling time
	o .	0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	4	SPDUP_LDO_DIG: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed should be connected to a 1∼5uS at the power up
	3	SPDUP_LDO_DIGGN: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	2	SPDUP_LDO_DIGSXR: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default) 1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	1	SPDUP LDO DIGSXT: Short the noise filter resistor to speed up the settling time
		0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	0	SPDUP_LDO_DIVGN: Short the noise filter resistor to speed up the settling time 0 – noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
		· ·
0x0099	15 – 8	Default: 00000000 00000000
0x0099	15 – 6	RDIV_VCOSXR[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101
		Vout=860mV+3.92mV *RDIV
	7 – 0	RDIV VCOSXT[7:0]:Controls the output voltage of the LDO by setting the resistive
		voltage divider ratio. Default: 101
		Vout=860mV+3.92mV *RDIV
		Default: 01100101 01100101
0x009A	15 – 8	RDIV TXBUF[7:0]:Controls the output voltage of the LDO by setting the resistive
OYOUAH	10-0	voltage divider ratio. Default: 101
		Voitage divider ratio. Derivate 101 Vout=860mV+3.92mV *RDIV
	7 – 0	RDIV_VCOGN[7:0]:Controls the output voltage of the LDO by setting the resistive
		voltage divider ratio. Default: 140
		Vout=860mV+3.92mV *RDIV
		Default: 01100101 10001100
0x009B	15 – 8	RDIV TLOB[7:0]:Controls the output voltage of the LDO by setting the resistive
		voltage divider ratio. Default: 101
		Vout=860mV+3.92mV *RDIV
	7 – 0	RDIV_TPAD[7:0]:Controls the output voltage of the LDO by setting the resistive
		voltage divider ratio. Default: 101
		Vout=860mV+3.92mV *RDIV
		Default: 01100101 01100101
0x009C	15 – 8	RDIV_TIA12[7:0]:Controls the output voltage of the LDO by setting the resistive
		voltage divider ratio. Default: 101
		Vout=860mV+3.92mV *RDIV
	7 – 0	RDIV_TIA14[7:0]:Controls the output voltage of the LDO by setting the resistive
		voltage divider ratio. Default: 140 Vout=860mV+3.92mV *RDIV
		VOUL-OUGHIV V.OZIHV INDIV
		Default : 01100101 10001100

Address (15 bits)	Bits	Description
0x009D	15 – 8	RDIV_RXBUF[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101
	7 – 0	Vout=860mV+3.92mV *RDIV RDIV_TBB[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
		Default: 01100101 01100101
0x009E	15 – 8	RDIV_MXRFE[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
	7 – 0	RDIV_RBB[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 140 Vout=860mV+3.92mV *RDIV
		Default : 01100101 10001100
0x009F	15 – 8	RDIV_LNA12[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101
	7 – 0	Vout=860mV+3.92mV *RDIV RDIV_LNA14[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 140 Vout=860mV+3.92mV *RDIV
		Default: 01100101 10001100
0x00A0	15 – 8	RDIV_DIVSXR[7:0]:Controls the output voltage of the LDO by setting the resistive
	7 – 0	voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV RDIV_DIVSXT[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101
		Vout=860mV+3.92mV *RDIV
0x00A1	15 – 8	Default: 01100101 01100101 RDIV DIGSXT[7:0]:Controls the output voltage of the LDO by setting the resistive
UXUUAT	15 – 8	voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
	7 – 0	RDIV_DIVGN[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
		Default: 01100101 01100101
0x00A2	15 – 8	RDIV_DIGGN[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
	7 – 0	RDIV_DIGSXR[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
		Default: 01100101 01100101
0x00A3	15 – 8	RDIV_CPSXT[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
	7 – 0	RDIV_DIG[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
		Default: 01100101 01100101
0x00A4	15 – 8	RDIV_CPGN[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101
	7 – 0	Vout=860mV+3.92mV *RDIV RDIV_CPSXR[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
		Default: 01100101 01100101
0x00A5	15 – 8	RDIV_SPIBUF[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101
	7 – 0	Vout=860mV+3.92mV *RDIV RDIV_AFE[7:0]:Controls the output voltage of the LDO by setting the resistive voltage divider ratio. Default: 101 Vout=860mV+3.92mV *RDIV
		Default: 01100101 01100101
L		2014an. 01100101 01100101

Address (15 bits)	Bits	Description
0x00A6	15 – 13	ISINK_SPIBUFF[2:0]: Controls the SPIBUF LDO output resistive load.
		0 – Off (default);
		1 – 10kΩ; 2 – 2.5kΩ;
		$2 - 2.0822$, $3 - 2k\Omega$:
		$4-625\Omega$;
		5 – 588Ω
		6 – 500Ω
	12	$7-476\Omega$ SPDUP LDO SPIBUF: Short the noise filter resistor to speed up the settling time
	12	0 – Noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	11	SPDUP_LDO_DIGIp2: Short the noise filter resistor to speed up the settling time
		0 – Noise filter resistor in place (default) 1 – Noise filter resistor bypassed
		should be connected to a 1~5uS at the power up
	10	SPDUP_LDO_DIGIp1: Short the noise filter resistor to speed up the settling time
		0 – Noise filter resistor in place (default)
		1 – Noise filter resistor bypassed
	9	should be connected to a 1~5uS at the power up BYP LDO SPIBUF: Bypass signal for the LDO
	Ĭ	0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	8	BYP_LDO_DIGIp2: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
	7	1 – Bypasses LDO. Connects Vinput to Voutput BYP LDO DIGIp1: Bypass signal for the LDO
		0 – Does not bypass. Normal LDO operation (default)
		1 – Bypasses LDO. Connects Vinput to Voutput
	6	EN_LOADIMP_LDO_SPIBUF: Enables the load dependent bias to optimize the load
		regulation 0 – Constant bias (default)
		1 – Constant bias (default) 1 – Load depdent bias
	5	EN_LOADIMP_LDO_DIGIp2: Enables the load dependent bias to optimize the load
		regulation
		0 – Constant bias (default)
	4	1 – Load depdent bias EN LOADIMP LDO DIGIp1: Enables the load dependent bias to optimize the load
	-	regulation
		0 – Constant bias (default)
		1 – Load depdent bias
	3	PD_LDO_SPIBUF: Enables the LDO 0 – Block active (default)
		1 – Power down
	2	PD_LDO_DIGIp2: Enables the LDO
		0 – Block active (default)
	1	1 – Power down PD_LDO_DIGIp1: Enables the LDO
	1	0 – Block active (default)
		1 – Power down
	0	EN G LDOP: Enable control for all the LDO power downs
		0 – All LDO modules powered down
		1 – All LDO modules controlled by individual power down registers (default)
		(deladit)
		Default: 00000000 00000001
0x00A7	15 – 8	RDIV_DIGIp2[7:0]: Controls the output voltage of the LDO by setting the resistive
		voltage divider ratio. Default: 101
	7 – 0	Vout=860mV+3.92mV *RDIV RDIV DIGIp1[7:0]:Controls the output voltage of the LDO by setting the resistive
	l	voltage divider ratio. Default: 101
		Vout=860mV+3.92mV *RDIV
		Defectite 04400404 04400404
]	Default : 01100101 01100101

2.19 EN_DIR Configuration Memory

The tables in this chapters describe the control registers of the EN_DIR module. Each EN_DIR bit enables capability of direct control of PD (powerdown) and EN (enable) outputs.

Table 20: EN_DIR configuration memory

A dalua a a (4.5 la ita)	D:4-	I Described in
Address (15 bits)	Bits	Description
0x0081	15	TRX GAIN SRC: Alternative TRX gain source select. See section 2.12 for more
		information.
		0 – Gain control from separate registers (default)
		1 – Gain control from combined registers
	14 – 4	Reserved
	3	EN DIR LDO: Enables direct control of PDs and ENs for LDO module.
		0 – direct control disabled (default)
		1 – direct control enabled
	2	EN DIR CGEN: Enables direct control of PDs and ENs for CGEN module.
		0 – direct control disabled (default)
		1 – direct control enabled
	1 1	EN DIR XBUF: Enables direct control of PDs and ENs for XBUF module.
		0 – direct control disabled (default)
		1 – direct control enabled
	0	EN DIR AFE: Enables direct control of PDs and ENs for AFE module.
		0 – direct control disabled (default)
		1 – direct control enabled
		Default: 0000000 00000000
		Delatit. 00000000 0000000

For other modules (SX (R, T), RBB (1, 2), RFE (1, 2), TBB (1, 2), TRF (1, 2)) EN_DIR can be controlled from register 0x0124.

2.20 SXR, SXT and CGEN BIST Configuration Memory

The block diagram of the BIST module for SXR, SXT and CGEN is shown in Figure 24. The table in this chapter describes control registers of BIST module.

There is one test vector generator which supplies the test vectors for CGEN, SXT and SXR modules.

The register BSTART at 0x00A8[0] is used to initiate the BIST procedure for the selected modules. Registers BENC, BENR and BENT indicates which modules are to be tested. As an example, , if BENC=1, BENR=0 and BENT=0 when BIST start is initiated, then the test procedure will be performed on SXR only. If BENC=1, BENR=1 and BENT=1 when BIST start is initiated, then BIST will be performed for CGEN, SXR and SXT.

When BSTATE indicates the end of the BIST procedure, BSIGT, BSIGR and BSIGC registers will contain BIST signatures.

Table 21: BIST configuration memory

Address (15 bits)	Bits	Description
0x00A8	15 – 9	BSIGT[6:0]: BIST signature, Transmitter, LSB. Default: 0
	8	BSTATE: BIST state indicator (read only)
		0 – BIST is not running (default)
		1 – BIST in progress
	7	Reserved
	6	EN_SDM_TSTO_SXT: Enables the SDM_TSTO<12:0> outputs which will buffer the SDM outputs (inputs to the frequency divider) for testing purposes. 0 – all outputs are grounded (default) 1 – SDM_TSTO active
	5	EN_SDM_TSTO_SXR: Enables the SDM_TSTO<12:0> outputs which will buffer the SDM outputs (inputs to the frequency divider) for testing purposes. 0 – all outputs are grounded (default) 1 – SDM_TSTO active
	4	EN_SDM_TSTO_CGEN: Enables the SDM_TSTO<12:0> outputs which will buffer the SDM outputs (inputs to the frequency divider) for testing purposes. 0 – all outputs are grounded (default) 1 – SDM_TSTO active
	3	BENC: enables CGEN BIST 0 – disabled (default) 1 – enabled
	2	BENR: enables receiver BIST 0 – disabled (default) 1 – enabled
	1	BENT: enables transmitter BIST 0 – disabled (default) 1 – enabled
	0	BSTART: Starts delta sigma built in self test. Keep it at 1 one at least three clock cycles.
		0 – (default)
		0-to-1 – positive edge activates BIST
		Default: 00000000 00000000
0x00A9	15 – 0	BSIGT[22:7]: BIST signature, Transmitter, MSB (read only)
		Default: 00000000 00000000
0x00AA	15 – 0	BSIGR[15:0]: BIST signature, Receiver, LSB (read only)
		Default: 00000000 00000000
0x00AB	15 – 7	BSIGC[8:0]: BIST signature, CGEN , LSB (read only)
	6 – 0	BSIGR[22:16]: BIST signature, Receiver, MSB (read only)
		Default: 00000000 00000000
0x00AC	15 – 14	Reserved
	13 – 0	BSIGC[22:9]: BIST signature, CGEN , MSB (read only)
		Default: 00000000 00000000

2.21 CDS Configuration Memory

The block diagram of the Clock Distribution System (CDS) module is shown in Figure 20. The tables in this chapter describe the control registers of CDS module.

Table 22: CDS configuration memory

Address (15 bits)	Bits	Description
0x00AD	15 – 14	CDS_MCLK2[1:0]: MCLK2 clock delay.
		00 – delay by 400ps (default)
		01 – delay by 500ps
		10 – delay by 600ps
	40 40	11 – delay by 700ps
	13 – 12	CDS_MCLK1[1:0]: MCLK1 clock delay.
		00 – delay by 400ps (default)
		01 – delay by 500ps
		10 – delay by 600ps
	44 40	11 – delay by 700ps
	11 – 10	Reserved
	9	CDSN_TXBTSP: TX TSPB clock inversion control.
		0 – Clock is inverted
	0	1 – Clock is not inverted (default)
	8	CDSN_TXATSP: TX TSPA clock inversion control.
		0 – Clock is inverted
	7	1 – Clock is not inverted (default)
	1	CDSN_RXBTSP: RX TSPB clock inversion control.
		0 – Clock is inverted
	6	1 – Clock is not inverted (default)
	O	CDSN_RXATSP: RX TSPA clock inversion control. 0 – Clock is inverted
		1 – Clock is inverted (default)
	5	CDSN TXBLML: TX LMLB clock inversion control.
	3	0 – Clock is inverted
		1 – Clock is inverted (default)
	4	CDSN TXALML: TX LMLA clock inversion control.
	7	0 – Clock is inverted
		1 – Clock is inverted (default)
	3	CDSN RXBLML: RX LMLB clock inversion control.
	3	0 – Clock is inverted
		1 – Clock is not inverted (default)
	2	CDSN RXALML: RX LMLA clock inversion control.
	_	0 – Clock is inverted
		1 – Clock is not inverted (default)
	1	CDSN MCLK2: MCLK2 clock inversion control.
	=	0 – Clock is inverted
		1 – Clock is not inverted (default)
	0	CDSN MCLK1: MCLK1 clock inversion control.
	-	0 – Clock is inverted
		1 – Clock is not inverted (default)
		(******)
		Default: 00000011 11111111

Address (15 bits)	Bits	Description
0x00AE	15 – 14	CDS_TXBTSP[1:0]: TX TSP B clock delay.
		00 – delay by 400ps (default)
		01 – delay by 500ps
		10 – delay by 600ps
	13 – 12	11 – delay by 700ps CDS_TXATSP[1:0] : TX TSP A clock delay.
	13 – 12	00 – delay by 400ps (default)
		01 – delay by 500ps
		10 – delay by 600ps
		11 – delay by 700ps
	11 – 1 0	CDS_RXBTSP[1:0]: RX TSP B clock delay.
		00 – delay by 200ps (default)
		01 – delay by 500ps
		10 – delay by 800ps
		11 – delay by 1100ps
	9 – 8	CDS_RXATSP[1:0]: RX TSP A clock delay.
		00 – delay by 200ps (default)
		01 – delay by 500ps
		10 – delay by 800ps 11 – delay by 1100ps
	7 – 6	CDS_TXBLML[1:0]: TX LML B clock delay.
	, ,	00 – delay by 400ps (default)
		01 – delay by 500ps
		10 – delay by 600ps
		11 – delay by 700ps
	5 – 4	CDS_TXALML[1:0]: TX LML A clock delay.
		00 – delay by 400ps (default)
		01 – delay by 500ps
		10 – delay by 600ps
	3 – 2	11 – delay by 700ps
	3-2	CDS_RXBLML[1:0]: RX LML B clock delay. 00 – delay by 200ps (default)
		00 – delay by 200ps (derault) 01 – delay by 500ps
		10 – delay by 800ps
		11 – delay by 1100ps
	1 – 0	CDS_RXALML[1:0]: RX LML A clock delay.
		00 – delay by 200ps (default)
		01 – delay by 500ps
		10 – delay by 800ps
		11 – delay by 1100ps
		Default: 00000000 00000000
		Delault. 00000000 00000000

2.22 mSPI Configuration Memory

More information about embedded microcontroller may found in the microcontroller datasheet.

Table 23: mSPI configuration memory

Address (15 bits)	Bits	Description
0x0000	15 – 8	Reserved
5,0000	7 – 0	P0[7:0]: The data at MCU port P0 input can be changed by writing data into this
Controls port P0	-	register
inputs (mSPI_REG0)		
0x0001	15 – 8	Reserved
Reads port P1 outputs	7 – 0	P1[7:0]: The content of MCU P1 port output can be obtained by reading this register
(mSPI REG1)		
(read only)		
0x0002	15 – 8	Reserved
	7	RXD: The MCU USART receive input pin
Controls MCU input		DEBLIO analytica handana MOU dahannin maada
pins (mSPI_REG2)	6	DEBUG: enables hardware MCU debugging mode 0 – normal mode
		1 – debug mode
		
	5 – 2	EXT_INT[5:2]: external interrupts
	1 – 0	MODE[1:0]: controls MCU program memory initialization modes:
		0 – the MCU is in reset
		1 – Programming both EEPROM and SRAM through mSPI
		2 – Programming only SRAM only through mSPI
		3 – Programming SRAM by reading the EEPROM
0x0003	15 – 8	Reserved
	7	TXD: The USART transmit output pin
Reads MCU status		
signals (mSPI_REG3)	6	PROGRAMMED: Status output signal; when is set, it indicates that programming
(read only)		process is finished, and MCU executes instructions
	5-4	Reserved
	3	READ_REQ: status signal; new 8-bit data (the register mSPI_REG5 content) is ready to be read through mSPI
		Teauy to be read tillough mort
	2	WRITE_REQ: status signal; a new data byte is waiting in the mSPI_REG4 register
		to be transferred into MCU
	1	FULL WRITE BUFF: indicates that INPUT 32-byte FIFO buffer is full, the MCU is
	•	not ready to receive data, and base band processor has to wait
		EMPTY WRITE BUTE AND ALL INDUT CO. L. C. 5150
	0	EMPTY_WRITE_BUFF: tells that INPUT 32-byte FIFO is empty
0x0004	15 – 8	Reserved
Writes one byte of	7 – 0	DTM[7:0]: output (byte) is fed to Data to MCU(7:0) input bus
data to MCU	, ,	
(mSPI_REG4)		
0x0005	15 – 8	Reserved
Reads data byte from	7 – 0	DFM[7:0]: data (byte) received from bus Data from MCU(7:0)
MCU (mSPI REG5)	7 – 0	Di mili.vj. data (byte) received from bus Data_from_mico(1.0)
(read only)		
0x0006	15 – 1	Reserved
Controls SDI quitab		SDISW CTDI : controls the SDI switch
Controls SPI switch (mSPI_REG6)	0	SPISW_CTRL: controls the SPI switch 0 – Transceiver is controlled by Base Band (default)
(11101 1_1(200)		1 – Transceiver is controlled by MCU
		,

2.23 DC Calibration Configuration Memory

The block diagrams of the DC calibration modules are shown in Figure 28. The tables in this chapter describes control registers of DC calibration modules.

Table 24: DC calibration configuration memory

		nfiguration memory
Address (15 bits)	Bits	Description
0x05C0	15	DCMODE: Control for the DC offset calibration mode. 0 – Manual. In this mode, receiver DC offset can be changed manualy by using registers 0x010D[6] and 0x010E[13:0] (default) 1 – Automatic. In this mode, receiver and transmitter DC offset DACs and comparators are controlled from addresses 0x05C0–0x05CC. Individual automatic DC offste calibration routines can be started with 0x05C1[7:0] controls.
	14 – 8	Reserved
	7	PD_DCDAC_RXB. Power down control for receiver channel B DC offset cancelation DAC: 0 – block active
	6	1 – block powered down (default) PD_DCDAC_RXA. Power down control for receiver channel A DC offset cancelation DAC:
	5	0 – block active 1 – block powered down (default) PD_DCDAC_TXB. Power down control for transmiter channel B DC offset cancelation DAC: 0 – block active
	4	1 – block powered down (default) PD_DCDAC_TXA. Power down control for transmitter channel A DC offset cancelation DAC:
	3	0 – block active 1 – block powered down (default) PD_DCCMP_RXB. Power down control for receiver channel B comparator, used in automatic DC offset calibration routine:
	2	0 – block active 1 – block powered down (default) PD_DCCMP_RXA. Power down control for receiver channel A comparator, used in automatic DC offset calibration routine:
	1	0 – block active 1 – block powered down (default) PD_DCCMP_TXB. Power down control for transmitter channel B comparator, used in automatic DC offset calibration routine: 0 – block active
	0	1 – block powered down (default) PD_DCCMP_TXA. Power down control for transmitter channel A comparator, used in automatic DC offset calibration routine: 0 – block active
		1 – block powered down (default)
		Default : 00000000 111111111

Address (15 bits)	Bits	Description
0x05C1	15	DCCAL_CALSTATUS_RXBQ. RXBQ DC calibration status (Read only):
		0 – Calibration is not running
		1 – Calibration is running
	14	DCCAL CALSTATUS RXBI. RXBI DC calibration status (Read only):
	14	0 – Calibration is not running
		1 – Calibration is running
		J
	13	DCCAL_CALSTATUS_RXAQ. RXAQ DC calibration status (Read only):
		0 – Calibration is not running
		1 – Calibration is running
	12	DCCAL CALSTATUS RXAI. RXAI DC calibration status (Read only):
	'-	0 – Calibration is not running
		1 – Calibration is running
	11	DCCAL_CALSTATUS_TXBQ. TXBQ DC calibration status (Read only):
		0 – Calibration is not running 1 – Calibration is running
		i – Calibration is furthing
	10	DCCAL CALSTATUS TXBI. TXBI DC calibration status (Read only):
		0 – Calibration is not running
		1 – Calibration is running
		DOCAL CALCIATUS TVAO TVAO DO calibratica atatus (Bood anb.)
	9	DCCAL_CALSTATUS_TXAQ. TXAQ DC calibration status (Read only): 0 – Calibration is not running
		1 – Calibration is running
		- Canadanon io ianiming
	8	DCCAL_CALSTATUS_TXAI. TXAI DC calibration status (Read only):
		0 – Calibration is not running
		1 – Calibration is running
	7	DCCAL CMPSTATUS RXBQ. RXBQ comparator value. Used as status source for
	1'	manual calibration routines (Read only)
		, , , , ,
	6	DCCAL_CMPSTATUS_RXBI. RXBI comparator value. Used as status source for
		manual calibration routines (Read only)
	5	DCCAL CMPSTATUS RXAQ. RXAQ comparator value. Used as status source for
	ľ	manual calibration routines (Read only)
		,
	4	DCCAL_CMPSTATUS_RXAI. RXAI comparator value. Used as status source for
		manual calibration routines (Read only)
	3	DCCAL_CMPSTATUS_TXBQ. TXBQ comparator value. Used as status source for
		manual calibration routines (Read only)
		,
	2	DCCAL_CMPSTATUS_TXBI. TXBI comparator value. Used as status source for
		manual calibration routines (Read only)
	1,	DCCAL CMRSTATUS TYAO TYAO comparator value. Used so etatus source for
	1	DCCAL_CMPSTATUS_TXAQ. TXAQ comparator value. Used as status source for manual calibration routines (Read only)
		manaa sansiadon isada sing)
	0	DCCAL_CMPSTATUS_TXAI. TXAI comparator value. Used as status source for
		manual calibration routines (Read only)
		B. F. Mr. VOVONON VONONON
		Default: XXXXXXX XXXXXXXX

Address (15 bits)	Bits	Description
0x05C2	15	DCCAL_CMPCFG_RXBQ. RXBQ comparator configuration
		0 – Comparator output not inverted (default)
		1 – Comparator output inverted
	l	DOOM ONDOED DVDI DVDI
	14	DCCAL_CMPCFG_RXBI. RXBI comparator configuration
		0 – Comparator output not inverted (default) 1 – Comparator output inverted
		1 – Comparator output inverted
	13	DCCAL CMPCFG RXAQ. RXAQ comparator configuration
		0 – Comparator output not inverted (default)
		1 – Comparator output inverted
	40	DOOM ONDOED BYAL BYAL
	12	DCCAL_CMPCFG_RXAI. RXAI comparator configuration
		0 – Comparator output not inverted (default) 1 – Comparator output inverted
		1 Comparator output involted
	11	DCCAL CMPCFG TXBQ. TXBQ comparator configuration
		0 – Comparator output not inverted (default)
		1 – Comparator output inverted
	40	DOCAL CMDOEC TYPI TYPI TYPI TYPI TYPI TYPI TYPI TYPI
	10	DCCAL_CMPCFG_TXBI. TXBI comparator configuration 0 – Comparator output not inverted (default)
		1 – Comparator output inverted
		. Samparata Samparata Caraca
	9	DCCAL_CMPCFG_TXAQ. TXAQ comparator configuration
		0 – Comparator output not inverted (default)
		1 – Comparator output inverted
	8	DCCAL CMPCFG TXAI. TXAI comparator configuration
	0	0 – Comparator output not inverted (default)
		1 – Comparator output inverted
	7	DCCAL_START_RXBQ. Start automatic DC calibration for RXBQ:
		0 to 1 – Start automatic calibration
	6	DCCAL START RXBI. Start automatic DC calibration for RXBI:
	l °	0 to 1 – Start automatic calibration
	5	DCCAL_START_RXAQ. Start automatic DC calibration for RXAQ:
		0 to 1 – Start automatic calibration
	4	DCCAL START RXAI. Start automatic DC calibration for RXAI:
	-	0 to 1 – Start automatic calibration
	3	DCCAL_START_TXBQ. Start automatic DC calibration for TXBQ:
		0 to 1 – Start automatic calibration
	2	DCCAL_START_TXBI. Start automatic DC calibration for TXBI:
	_	0 to 1 – Start automatic calibration
		5 15 . Start Satisfication
	1	DCCAL_START_TXAQ. Start automatic DC calibration for TXAQ:
		0 to 1 – Start automatic calibration
	١,	DCCAL START TYAL Start automatic DC collibration for TYAL
	0	DCCAL_START_TXAI. Start automatic DC calibration for TXAI: 0 to 1 – Start automatic calibration
		2.3
		Default : 00000000 00000000
0x05C3	15	DCWR_TXAI. Used to enable manual write operation of TXAI DAC values. Value
		must be first stored in DC_TXAI register prior to toggling this flag:
		0 to 1 – writes the value to TXAI DAC from DC_TXAI register Default: 0
	14	DCRD TXAI. Used to enable manual read operation of TXAI DAC values:
		0 to 1 – read the value from TXAI DAC to DC_TXAI register Default: 0
	40 44	Bernand
	13 – 11	Reserved
	10 – 0	DC TXAI[10:0]: Stores the value to be written to the as well as read value from
		TXAI DAC. Default: 0
		DC_TXAl[10] – sign
		DC_TXAI[9:0] – magnitude
		B-514 00000000 0000000
		Default : 00000000 00000000

Address (15 bits)	Bits	Description
0x05C4	15	DCWR_TXAQ. Used to enable manual write operation of TXAQ DAC values. Value must be first stored in DC_TXAQ register prior to toggling this flag: 0 to 1 – writes the value to TXAQ DAC from DC_TXAQ register Default: 0
	14	DCRD_TXAQ. Used to enable manual read operation of TXAQ DAC values: 0 to 1 – read the value from TXAQ DAC to DC_TXAQ register Default: 0
	13 – 11	Reserved
	10 – 0	DC_TXAQ[10:0]: Stores the value to be written to the as well as read value from TXAQ DAC. Default: 0 DC_TXAQ[10] - sign DC_TXAQ[9:0] - magnitude
		Default : 00000000 00000000
0x05C5	15	DCWR_TXBI. Used to enable manual write operation of TXBI DAC values. Value must be first stored in DC_TXBI register prior to toggling this flag: 0 to 1 – writes the value to TXBI DAC from DC_TXBI register Default: 0
	14	DCRD_TXBI. Used to enable manual read operation of TXBI DAC values: 0 to 1 – read the value from TXBI DAC to DC_TXBI register Default: 0
	13 – 11	Reserved
	10 – 0	DC_TXBI[10:0]: Stores the value to be written to the as well as read value from TXBI DAC. Default: 0 DC_TXBI[10] - sign DC_TXBI[9:0] - magnitude
		Default: 00000000 00000000
0x05C6	15	DCWR_TXBQ. Used to enable manual write operation of TXBQ DAC values. Value must be first stored in DC_TXBQ register prior to toggling this flag: 0 to 1 – writes the value to TXBQ DAC from DC_TXBQ register Default: 0
	14	DCRD_TXBQ. Used to enable manual read operation of TXBQ DAC values: 0 to 1 – read the value from TXBQ DAC to DC_TXBQ register Default: 0
	13 – 11	Reserved
	10 – 0	DC_TXBQ[10:0]: Stores the value to be written to the as well as read value from TXBQ DAC. Default: 0 DC_TXBQ[10] - sign DC_TXBQ[9:0] - magnitude
		Default: 00000000 00000000
0x05C7	15	DCWR_RXAI. Used to enable manual write operation of RXAI DAC values. Value must be first stored in DC_RXAI register prior to toggling this flag: 0 to 1 – writes the value to RXAI DAC from DC_RXAI register Default: 0
	14	DCRD_RXAI. Used to enable manual read operation of RXAI DAC values: 0 to 1 – read the value from RXAI DAC to DC_RXAI register Default: 0
	13 – 7	Reserved
	6 – 0	DC_RXAl[6:0]: Stores the value to be written to the as well as read value from RXAl DAC. Default: 0 DC_RXAl[6] – sign DC_RXAl[5:0] – magnitude
		Default: 00000000 00000000

Address (15 bits)	Bits	Description
0x05C8	15	DCWR_RXAQ. Used to enable manual write operation of RXAQ DAC values. Value must be first stored in DC_RXAQ register prior to toggling this flag: 0 to 1 –writes the value to RXAQ DAC from DC_RXAQ register Default: 0
	14	DCRD_RXAQ. Used to enable manual read operation of RXAQ DAC values: 0 to 1 – read the value from RXAQ DAC to DC_RXAQ register Default: 0
	13 – 7	Reserved
	6 – 0	DC_RXAQ[6:0]: Stores the value to be written to the as well as read value from RXAQ DAC. Default: 0 DC_RXAQ[6] – sign DC_RXAQ[5:0] – magnitude
		Default : 00000000 00000000
0x05C9	15	DCWR_RXBI. Used to enable manual write operation of RXBI DAC values. Value must be first stored in DC_RXBI register prior to toggling this flag: 0 to 1 – writes the value to RXBI DAC from DC_RXBI register Default: 0
	14	DCRD_RXBI. Used to enable manual read operation of RXBI DAC values: 0 to 1 – read the value from RXBI DAC to DC_RXBI register Default: 0
	13 – 7	Reserved
	6 – 0	DC_RXBI[6:0]: Stores the value to be written to the as well as read value from RXBI DAC. Default: 0 DC_RXBI[6] – sign DC_RXBI[5:0] – magnitude
		Default: 00000000 00000000
0x05CA	15	DCWR_RXBQ. Used to enable manual write operation of RXBQ DAC values. Value must be first stored in DC_RXBQ register prior to toggling this flag: 0 to 1 –writes the value to RXBQ DAC from DC_RXBQ register Default: 0
	14	DCRD_RXBQ. Used to enable manual read operation of RXBQ DAC values: 0 to 1 – read the value from RXBQ DAC to DC_RXBQ register Default: 0
	13 – 7	Reserved
	6 – 0	DC_RXBQ[6:0]: Stores the value to be written to the as well as read value from RXBQ DAC. Default: 0 DC_RXBQ[6] – sign DC_RXBQ[5:0] – magnitude
		Default: 00000000 00000000
0x05CB	15 – 8 7 – 0	DC_RXCDIV[7:0]: Clock division ratio for Rx DC calibration loop 0 to 255 – Division ratio is n+1 Default: 31
	7-0	DC_TXCDIV[7:0]: Clock division ratio for Tx DC calibration loop 0 to 255 – Division ratio is n+1 Default: 15
		Default : 00011111 00001111
0x05CC	15 – 12	Reserved
	11 – 9	DC_HYSCMP_RXB[2:0]: Comparator hysteresis control, RXB channel 0 – min hysteresis (default)
		7 – max hysteresis
	8 – 6	DC_HYSCMP_RXA[2:0]: Comparator hysteresis control, RXA channel 0 – min hysteresis (default)
		7 – max hysteresis
	5 – 3	DC_HYSCMP_TXB[2:0]: Comparator hysteresis control, TXB channel 0 – min hysteresis (default)
		7 – max hysteresis
	2-0	DC_HYSCMP_TXA[2:0]: Comparator hysteresis control, TXA channel 0 – min hysteresis (default)
		7 – max hysteresis
		Default: 00000000 00000000

2.24 RSSI, PDET and TEMP measurement Configuration Memory

The block diagrams of the analogue RSSI, power detector and temperature measurement modules are shown in Figure 29. The tables in this chapter describes control registers of RSSI, power detector and temperature measurement modules.

Table 25 RSSI configuration memory

Table 25 RSSI configuration memory				
Address (15 bits)	Bits	Description		
0x0600	15 – 8	MEASR_CLKDIV[7:0]: Clock division ratio for measurement loop 0 to 255 – Division ratio is n+1 Default: 15		
	7 – 2	Reserved		
	1	MEASR_MODE: Operation mode. Automatic mode constantly refreshes the measured values. Manual mode is used for testing purposes. 0 – automatic (default) 1 – manual		
	0	MEASR_PD: Power down the measurement modules. 0 – blocks active, measurement enabled 1 – blocks powered down, measurement disabled (default)		
		Default: 00001111 00000001		
0x0601	15 – 6	Reserved		
	5	MEASR_CMPSTATUS_TREF. Temperature Reference comparator value. (Read only)		
	4	MEASR_CMPSTATUS_TPTAT. Temperature VPTAT comparator value. (Read only)		
	3	MEASR_CMPSTATUS_RSSI2. Channel B analog RSSI (in RX W path) comparator value. (Read only)		
	2	MEASR_CMPSTATUS_RSSI1. Channel A analog RSSI (in RX W path) comparator value. (Read only)		
	1	MEASR_CMPSTATUS_PDET2. Channel B analog peak detector (in active TX path) comparator value. (Read only)		
	0	MEASR_CMPSTATUS_PDET1. Channel A analog peak detector (in active TX path) comparator value. (Read only)		
		Default: 00000000 00XXXXXX		

Address (15 bits)	Bits	Description
0x0602	15 – 14	Reserved
	13 – 9	MEASR_BIAS[4:0]: Controls the reference bias current of the test ADC. Used for measurement ADC calibration routine: 0 – min bias value (lowest threshold)
		16 – middle bias value (default)
		31 – huighest bias balue (highest threshold)
	8 – 6	MEASR_HYSCMP[2:0]: Comparator hysteresis control. 0 – min hysteresis (default)
		7 – max hysteresis
	5	MEASR_CMPCFG_TREF. Temperature Reference comparator configuration 0 – Comparator output not inverted (default) 1 – Comparator output inverted
	4	MEASR_CMPCFG_TPTAT. Temperature VPTAT comparator configuration 0 – Comparator output not inverted (default) 1 – Comparator output inverted
	3	MEASR_CMPCFG_RSSI2. Channel B analog RSSI (in RX W path) comparator configuration 0 – Comparator output not inverted (default)
		1 – Comparator output inverted
	2	MEASR_CMPCFG_RSSI1. Channel A analog RSSI (in RX W path) comparator configuration 0 - Comparator output not inverted (default)
		1 – Comparator output inverted
	1	MEASR_CMPCFG_PDET2. Channel B analog peak detector (in active TX path) comparator configuration 0 – Comparator output not inverted (default) 1 – Comparator output inverted
	0	MEASR_CMPCFG_PDET1. Channel A analog peak detector (in active TX path) comparator configuration 0 - Comparator output not inverted (default) 1 - Comparator output inverted
		Default: 00100000 00000000
0x0603	15 – 8	Reserved
	7 – 0	MEASR_DAC_VAL[7:0]: Stores the value to be written to the DAC, when MEASR_MODE = 1 Default: 0 DAC_VAL[7:0] – stored magnitude value
		Default: 00000000 00000000
0x0604	15 – 8	MEASR_PDET2_VAL[7:0]: Stores the value of Channel B analog peak detector (in active TX path) (Read only) MEASR_PDET2_VAL[7:0] – magnitude
	7 – 0	MEASR_PDET1_VAL[7:0]: Stores the value of Channel A analog peak detector (in active TX path) (Read only) MEASR_PDET1_VAL[7:0] – magnitude
0x0605	15 – 8	Default: XXXXXXXX XXXXXXXX MEASR_RSSI2_VAL[7:0]: Stores the value of Channel B analog RSSI (in RX W
	7 – 0	path) (Read only) MEASR_RSSI2_VAL[7:0] – magnitude
	7-0	MEASR_RSSI1_VAL[7:0]: Stores the value of Channel A analog RSSI (in RX W path) (Read only) MEASR_RSSI1_VAL[7:0] - magnitude
		Default: XXXXXXXX XXXXXXX

Address (15 bits)	Bits	Description
0x0606	15 – 8	MEASR_TREF_VAL[7:0]: Stores the temperature reference value. (Read only) MEASR_TREF_VAL[7:0] – magnitude
	7 – 0	MEASR_TPTAT_VAL[7:0]: Stores the voltage proportional to absolute temperature value. (Read only) MEASR_TPTAT_VAL[7:0] – magnitude
		Default: XXXXXXXX XXXXXXXX

2.25 Analog RSSI Calibration Configuration Memory

The block diagram of the analog RSSI calibration module is as shown in Figure 5 and Figure 6. The tables in this chapter describes control registers of analog RSSI Calibration modules.

Table 26 RSSI configuration memory

Address (15 bits)	Bits	Description
0x0640	15	ARSSI_CMPSTATUS_(1, 2): Status of analog RSSI comparator (Read Only)
	14 – 7	Reserved
	8 – 4	ARSSI_RSEL_(1, 2)[4:0]: Reference voltage for the RSSI output comparator. Voltage range: $0-800\text{mV}$; $31-250\text{mV}$ (approx. values). Default: 10 . Step size: $0 \text{ to } 4-50\text{mV}$; $5 \text{ to } 12-21.5\text{mV}$; $13 \text{ to } 31-10\text{mV}$.
	3 – 1	ARSSI_HYSCMP_(1, 2)[2:0]: Comparator hysteresis control for analog RSSI comparator. 0 – min hysteresis (default)
		 7 – max hysteresis
	0	ARSSI_PD_(1, 2): Power down modules for analog RSSI calibration circuits. 0 – blocks active 1 – blocks powered down (default)
		Default: 00000000 10100001
0x0641	15 – 14	Reserved
	13 – 7	ARSSI_DCO2_(1, 2)[6:0]: Value of analog RSSI offset DAC2. Default: 32 . ARSSI_DCO2[6] – sign ARSSI_DCO2[5:0] – magnitude
	6 – 0	ARSSI_DCO1_(1, 2)[6:0]: Value of analog RSSI offset DAC1. Default: 32 . ARSSI_DCO1[6] – sign ARSSI_DCO1[5:0] – magnitude
		Default: 00100000 01000000

Appendix 1

SPI Procedures

A1.1 SPI READ/WRITE Pseudo Code

```
// Write command, SPI module address, register address
// Read data
//-----
void SPI_Read(unsigned int COMMAND)
      unsigned int DATA;
                         //We will read data there
      //Write Command and Address (MSB First)
//First 1 bit (MSB) = Command
//Next 15 (LSBs) bits = Register Address
      for(int i=15; i>=0; i--)
             if(i'th bit in COMMAND is \'1')
                    Set Data Output line to '1';
             else
             {
                    Set Data Output line to '0';
             };
             Apply Rising and Falling CLK signal edges to CLK line;
       //Read Data (MSB First)
       //Note: At this point we have data MSB valid from the chip.
       for(int i=15; i>=0; i--)
             if (there is '1' at the Data Input Line)
                    Set i'th bit in DATA '1';
             else
                    Set i'th bit in DATA '0';
             Apply Rising and Falling CLK signal edges to CLK line;
      };
};
```

```
_____
// Write data to the chip:
// First byte: Command, SPI module address, register address
// Second byte: Data
void SPI Write(unsigned int COMMAND, unsigned int DATA)
       //Write Command, Address
       for(int i=15; i>=0; i--)
              if(i'th bit in COMMAND is '1')
                    Set Data Output line to '1';
              else
             {
                    Set Data Output line to '0';
             Apply Rising and Falling CLK signal edges to CLK line;
       };
       //Write Data
       for(int i=15; i>=0; i--)
              if(i'th bit in DATA is '1')
                    Set Data Output line to '1';
              else
              {
                    Set Data Output line to '0';
             Apply Rising and Falling CLK signal edges to CLK line;
      };
};
```

Appendix 2

Control Block Diagrams

A2.1 RFE Control Diagrams

Figure 5 RFE1 control structure

Figure 6 RFE2 control structure

A2.2 RBB Control Diagrams

Figure 7 RBB1 control structure

Figure 8 RBB2 control structure

A2.3 TRF Control Diagrams

Figure 9 TRF1 control structure

Figure 10 TRF1 control structure

A2.4 TBB Control Diagrams

Figure 11 TBB1 control structure

Figure 12 TBB2 control structure

A2.5 AFE Control Diagram

Figure 13 AFE control structure

A2.6 BIAS Control Diagram

LMS7002M BIAS

Figure 14 BIAS control structure

A2.7 SXR and SXT Control Diagrams

Figure 15 SXT control structure

Figure 16 SXR control structure

A2.8 CGEN Control Diagram

Figure 17 CGEN control structure

A2.9 XBUF Control Diagram

Figure 18 XBUF control structure

A2.10 LDOs Control Diagram

Figure 19 Control structure of LDOs

A2.11 CDS Control Diagram

Figure 20 CDS control structure

A2.12 IO Cell Control Diagram

Figure 21 IO cell and controllable parameters

A2.13 TxTSP(A/B) Control Diagram

TSGFC (0x0200[9]) TSGFCW

Figure 22 TxTSP(A/B) control structure

A2.14 RxTSP(A/B) Control Diagram

Figure 23 RxTSP(A/B) control structure

A2.15 SXR, SXT and CGEN BIST Control Diagram

Figure 24 SXR, SXT and CGEN BIST control structure

A2.16 TxTSP(A/B) BIST Control Diagram

Figure 25 TxTSP(A/B) BIST control structure

A2.17 RxTSP(A/B) BIST Control Diagram

Figure 26 RxTSP(A/B) BIST control structure

A2.18 LimeLightTM Control Diagram

Figure 27 LimeLightTM control structure

A2.19 DC offset correction Control Diagram

Figure 28 DC offset correction control structure

A2.20 Measurement block Control Diagram

Figure 29 Measurements block control structure

Appendix 3

Calibration algorithms

A3.1 VCO coarse tuning

This chapter describes the algorithm for VCO coarse tuning, which finds the optimum SWC_VCO[7:0] value.

VCO coarse tuning algorithm goes through 3 following phases:

- 1. Initialization: sets the static control words for the synthesizer
- 2. Decision: monitors the two digital outputs from the synthesizer (COARSE_STEPDONE and COARSE_COMPO) and makes a decision on the correct value of every bit of SWC_VCO[7:0]. Input control bit of COARSE_START will be used to start each cycle.
- 3. Normal mode setting: controls are set back to the values needed for normal synthesizer operation.

Below are two similar algorithms, one for the SXT/SXR and other CGEN. Algorithms differ mainly in the configuration register addresses.

Figure 30 SXT SXR VCO Coarse tuning algorithm

Figure 31 CGEN VCO Coarse tuning algorithm

C code for SXT/SXR VCO coarse tuning:

```
unsigned char VCO_CoarseTuning_SXT_SXR (float Fref_MHz, float Fvco_des_MHz, unsigned char ch)

{
    unsigned short Nround;
    unsigned char i, try_cnt;

    MIMO_Ctrl(ch);//SXT SXR selection

// Initialization
    Modify_SPI_Reg_bits (0x011C, 12, 12, 1); // 1) EN_COARSEPLL=1, a. VCO control voltage is switched to a DC =VDD/2
    Modify_SPI_Reg_bits (0x0121, 0, 0, 0); // 2) COARSE_START=0
    Modify_SPI_Reg_bits (0x011C, 14, 14, 1); // 4) SHORT_NOISEFIL=1 SPDUP_VCO_Short the noise filter resistor to speed up the settling time
    Nround = (unsigned short)(4*Fvco_des_MHz/Fref_MHz+0.5); // 5) Nround=round(4*Fvco_des/Fref)
    Modify_SPI_Reg_bits (0x011D, 15, 0, 0); // 6) FRAC_SDM=0
    Modify_SPI_Reg_bits (0x011E, 13, 4, (Nround-4)); // 7) INT_SDM=Nround-4
    Modify_SPI_Reg_bits (0x0121, 10, 3, 0); // 9) Set SWC_VCO<7:0>=<000000000>
    i=7;//10) i=7

//Decision - Loop Section
    while(1)
    {
        Modify_SPI_Reg_bits (0x0121, 3 + i, 3 + i, 1); // SWC_VCO<i>>=1
        Modify_SPI_Reg_bits (0x0121, 0, 0, 1); // COARSE_START=1
```

C code for CGEN VCO coarse tuning:

```
unsigned char VCO_CoarseTuning_CGEN (float Fref_MHz, float Fvco_des_MHz)
                unsigned short Nround;
               unsigned char i, try_cnt;
               // Initialization Modify_SPI_Reg_bits (0x0086, 10, 10, 1); // 1) EN_COARSE_CKLGEN=1, a. VCO control voltage is switched to a DC = VDD/2 ^{\circ}
               Modify_SPI_Reg_bits (0x0086, 9, 9, 1); // 3) EN_INTONLY_SDM_CGEN=1
Modify_SPI_Reg_bits (0x0086, 15, 15, 1); // 4) SHORT_NOISEFIL=1 SPDUP_VCO_CGEN Short the noise filter resistor to speed up the settling time
               Nround = (unsigned \ short)(4*Fvco\_des\_MHz/Fref\_MHz+0.5); \ // \ 5) \ Nround = round(4*Fvco\_des/Fref) \ Modify\_SPI\_Reg\_bits (0x0087, 15, 0, 0); \ // \ 6) \ FRAC\_SDM\_CGEN=0
               Modify_SPI_Reg_bits (0x0088, 3, 4, (Nround-4)); // 7) INT_SDM_CGEN =Nround-4
Modify_SPI_Reg_bits (0x0088, 8, 1, 0); // 9) Set CSW_VCO_CGEN<7:0>=<00000000>
               i=7;// 10)
               // Loop Section while(1)
                              while ( Get SPI Reg bits(0x008C, 15, 15) != 1 ) //wait till COARSE STEPDONE CGEN=1
                                              trv cnt++:
                                              if(try_cnt > MAX_TRY_CNT) return 0;
                              if ( Get\_SPI\_Reg\_bits(0x008C, 14, 14) == 1) //check COARSEPLL_COMPO_CGEN
                                              Modify\_SPI\_Reg\_bits~(0x008B,~1+i,~1+i,~0);~//~SWC\_VCO< i>=0
                              }
                               Modify\_SPI\_Reg\_bits~(0x008B,~0,~0,~0);~//~2)~COARSE\_START\_CGEN=0
                               if(i==0) break;
               Modify_SPI_Reg_bits (0x0086, 10, 10, 0); // 1) EN_COARSE_CKLGEN=0
               Modify_SPI_Reg_bits (0x0086, 9, 9, 0); // 3) EN_INTONLY_SDM_CGEN=0
Modify_SPI_Reg_bits (0x0086, 15, 15, 0); // 4) SHORT_NOISEFIL=0 SPDUP_VCO_CGEN Short the noise filter resistor to speed up the settling time
               return 1:
```

A3.2 Main resistor (bias) calibration

Calibration steps:

- 1. Set the control signal MUX BIAS OUT=1
- 2. Sweep from zero to maximum RP_CALIB_BIAS; in each step:

- Use the Q input of the ADC of Channel 1 to read the difference between on chip fixed voltage and off-chip voltage.
- Compare the ADC value with best value (which is initially set to very high). If ADC value is lower, then save it as "Best Value".
- 3. Return the "Best Value" found during the sweep.
- 4. Calculate and return ratio of "Best Value" to the "Nominal Value". This ratio is the calibration value of the resistor for other calibration algorithms to use.

Figure 32 Resistor calibration algorithm

The following is the C code that implements described algorithm:

```
void Resistor_calibration (float *ratio)
{
    unsigned char RP_CALIB_BIAS, RP_CALIB_BIAS_cal;
    unsigned short BestValue, ADCOUT;

    RP_CALIB_BIAS_cal = 16;
    RP_CALIB_BIAS = 0;
    Modify_SPI_Reg_bits (0x0084, 10, 6, RP_CALIB_BIAS); // write RP_CALIB_BIAS value
    Modify_SPI_Reg_bits (0x0084, 12, 11, 1); // MUX_BIAS_OUT = 1

    while (RP_CALIB_BIAS <= 31)
    {
        Modify_SPI_Reg_bits (0x0084, 10, 6, RP_CALIB_BIAS); // write RP_CALIB_BIAS value
        ADCOUT = Get_SPI_Reg_bits(0x040B, 15, 0); //RSSI value

        if(RP_CALIB_BIAS == 0)
        {
            BestValue = ADCOUT;
        }
        if ( ADCOUT < BestValue)
        {
            BestValue = ADCOUT;
            RP_CALIB_BIAS_cal = RP_CALIB_BIAS; //store calibrated value
        }
}</pre>
```

```
RP_CALIB_BIAS++;
}

Modify_SPI_Reg_bits (0x0084, 10, 6, RP_CALIB_BIAS_cal); // set the control RP_CAL_BIAS to stored calibrated value
*ratio = (float) 16/RP_CALIB_BIAS_cal; //calculate ratio
}
```

A3.3 RBB calibration

RBB calibration is divided into two calibrations for low and high bands. Each calibration consist of several smaller algorithms.

A3.3.1 RBB Low Band Calibration

Calibration steps:

- 1. Save current configuration
- 2. Start with calibrated value of the R.
- 3. Approximate (by calculation) the control value of the RBANK.=>Register the value of the RBB RBANKs control.
- 4. Calibrate (by measurement using loopback path 7) the control value of the CBANK(Low Band Section) at the 1.4MHz/2 bandwidth. => Register the CBANK control value for the low-band section for 1.4MHz rxMode.
- 5. Calibrate (by measurement using loopback path 7) the control value of the CBANK(Low Band Section) at the 3MHz/2 bandwidth. => Register the CBANK control value for the low-band section for 3MHz rxMode.
- 6. Calibrate (by measurement using loopback path 7) the control value of the CBANK(Low Band Section) at the 5MHz/2 bandwidth. => Register the CBANK control value for the low-band section for 5MHz rxMode.
- 7. Calibrate (by measurement using loopback path 7) the control value of the CBANK(Low Band Section) at the 10MHz/2 bandwidth. => Register the CBANK control value for the low-band section for 10MHz rxMode.
- 8. Calibrate (by measurement using loopback path 7) the control value of the CBANK(Low Band Section) at the 15MHz/2 bandwidth. => Register the CBANK control value for the low-band section for 15MHz rxMode.
- 9. Calibrate (by measurement using loopback path 7) the control value of the CBANK(Low Band Section) at the 20MHz/2 bandwidth. => Register the CBANK control value for the low-band section for 20MHz rxMode.
- 10. Restore configuration

Figure 33 RBB Low Band calibration algorithm

The following is the C code implements described algorithm:

```
unsigned char Calibration_LowBand_RBB (unsigned char ch)
{
    unsigned char result = 0;
    Save_config_RBB (); //save current configuration

MIMO_Ctrl (ch);
    Modify_SPI_Reg_bits (0x040A, 13, 12, 1); // AGC Mode = 1 (RSSI mode);

Algorithm_A_RBB (); // Aproximate resistor value for RBB RBANKS (Algorithm A)

Set_cal_path_RBB (7); // Set control signals to path 7 (RX LowBand)

if (Algorithm_B_RBB (&LowFreqAmp) != 1) goto RESTORE; // Calibrate and Record the low frequency output amplitude (Algorithm B)

Algorithm_F_RBB (RBB_1_4MHZ);// CalibrateByCap the output cuttoff frequency at 0,7 MHz and store
    Algorithm_F_RBB (RBB_3_0MHZ);// CalibrateByCap the output cuttoff frequency at 1,5 MHz MHz and store
    Algorithm_F_RBB (RBB_5_0MHZ);// CalibrateByCap the output cuttoff frequency at 2,5 MHz MHz and store
    Algorithm_F_RBB (RBB_10_0MHZ);// CalibrateByCap the output cuttoff frequency at 7,5 MHz MHz and store
    Algorithm_F_RBB (RBB_10_0MHZ);// CalibrateByCap the output cuttoff frequency at 7,5 MHz MHz and store
    Algorithm_F_RBB (RBB_10_0MHZ);// CalibrateByCap the output cuttoff frequency at 10 MHz MHz and store
    Algorithm_F_RBB (RBB_20_0MHZ);// CalibrateByCap the output cuttoff frequency at 10 MHz MHz and store
```

```
result = 1;

RESTORE:
Restore_config_RBB (); //restore configuration

return result;
}
```

A3.3.2 RBB High band Calibration

Calibration steps:

- 1. Save current configuration
- 2. Select channel
- 3. Calibrate (by measurement using loopback path 8) the control value of the CBANK(High Band Section) at the 37MHz/2 bandwidth. => Register the CBANK control value for the high-band section for 37MHz rxMode.
- 4. Calibrate (by measurement using loopback path 8) the control value of the CBANK(High Band Section) at the 66MHz/2 bandwidth. => Register the CBANK control value for the high-band section for 66MHz rxMode.
- 5. Calibrate (by measurement using loopback path 8) the control value of the CBANK(High Band Section) at the 108MHz/2 bandwidth. => Register the CBANK control value for the high-band section for 108MHz rxMode.
- 6. Restore configuration

Figure 34 RBB High Band calibration algorithm

The following is the C code implements described algorithm:

```
unsigned char Calibration_HighBand_RBB (unsigned char ch)
{
    unsigned char result = 0;
    Save_config_RBB (); //save current configuration

    MIMO_Ctrl (ch);
    Modify_SPI_Reg_bits (0x040A, 13, 12, 1); // AGC Mode = 1 (RSSI mode)

    Set_cal_path_RBB (8); //set control signals to path 8 (RX HighBand)

    if (Algorithm_B_RBB (&LowFreqAmp) != 1) goto RESTORE; // Calibrate and Record the low frequency output amplitude (Algorithm B)

    Algorithm_F_RBB (RBB_37_0MHZ);// CalibrateByCap the output cuttoff frequency at 18,5 MHz MHz and store
    Algorithm_F_RBB (RBB_66_0MHZ);// CalibrateByCap the output cuttoff frequency at 33 MHz MHz and store
    Algorithm_F_RBB (RBB_108_0MHZ);// CalibrateByCap the output cuttoff frequency at 54 MHz MHz and store

RESTORE:
    Restore_config_RBB (); //restore configuration
    return result;
}
```

A3.4 Nested algorithms

A3.4.1 Algorithm A

Multiply the ratio of the on-chip resistor to the off-chip resistor by the default control value (R CTL LPF RBB) of the respective resistor.

Figure 35 RBB algorithm A

C code for algorithm A:

```
void Algorithm_A_RBB ()
{
    unsigned char R_CTL_LPF_RBB;
    float ratio;

    Resistor_calibration (&ratio);
    R_CTL_LPF_RBB = (unsigned char)(16 * ratio); // Default control value multiply by ratio

    Modify_SPI_Reg_bits (0x0116, 15, 11, R_CTL_LPF_RBB);
    RBB_RBANK[MIMO_ch] = R_CTL_LPF_RBB; // Store RBANK Values (R_CTL_LPF_RBB)
}
```

A3.4.2 Algorithm B

Algorithm steps:

- 1. Set DAC output to 100kHz single tone.
- 2. Start with the nominal setting value for "CG IAMP TBB".
- 3. Linearly and proportionally adjust "CG_IAMP_TBB<5:0>" control lines to have about 80% of full scale swing. For this: measure the output, if the output was lower or higher than 80%, then adjust "CG_IAMP_TBB" proportionally and retest and measure for verification.
- 4. Record the exact value of the amplitude in "LowFreqAmp" for later on comparison.

Figure 36 RBB algorithm B

C code for algorithm B:

```
unsigned char Algorithm_B_RBB (unsigned short *LowFreqAmp)
            unsigned short ADCOUT;
unsigned char CG_IAMP_TBB, gain_inc;
            Set_NCO_Freq (0.1); // Set DAC output to 100kHz (0.1MHz) single tone.
            CG_IAMP_TBB = 24; //set nominal CG_IAMP_TBB value Modify_SPI_Reg_bits (0x0108, 15, 10, CG_IAMP_TBB); //write val to reg
            if(ADCOUT < 52428) gain_inc = 1; //is it less then 80% of full scale swing (52428 (80% of 16 bits))
             while (1)
                        if(gain_inc) CG_IAMP_TBB++
                                     else CG_IAMP_TBB--;
                         Modify_SPI_Reg_bits (0x0108, 15, 10, CG_IAMP_TBB); //write val to reg
                        ADCOUT = Get_SPI_Reg_bits(0x040B, 15, 0); //RSSI value // Measure the output level at the ADC input
                         if (gain_inc)
                                     if(ADCOUT >= 52428) break:
                         else
                        {
                                     if(ADCOUT <= 52428) break;
                        }
                         if( (CG_IAMP_TBB == 0) || (CG_IAMP_TBB == 63)) //gain limit reached
                                     return 0;
                                     break;
            *LowFreqAmp = ADCOUT;
            return 1;
```

A3.4.3 Algorithm F

Algorithm steps:

- 1. If ("CalFreq") <=10MHz, then CONTROL=C_CTL_LPFL_RBB, else, CONTROL=C_CTL_LPFH_RBB
- 2. Set the CONTROL to maximum value. This should bring the output cut-off frequency to minimum.
- 3. Apply a single tone frequency at "CalFreq".
- 4. Measure the value of the amplitude at the ADC input.
- 5. If ADC value >= LowFreqAmp, then jump back to line #8.
- 6. Decrease the CONTROL value by one.
- 7. Jump back to line #4
- 8. Save the value of CONTROL.

Figure 37 RBB algorithm F

C code for algorithm F:

```
if(Band_id <= RBB_20_0MHZ) //low band
                             low_band = 1; // CONTROL=C_CTL_LPFL_RBB
                             CONTROL = 0xFF; // Set the CONTROL to maximum value. This should bring the output cutt-off frequency to minimum. Modify_SPI_Reg_bits (0x0117, 10, 0, CONTROL); // write to C_CTL_LPFL_RBB
               else //high band
                             low band = 0: // CONTROL=C CTL LPFH RBB
                             CONTROL = 0x7FF; // Set the CONTROL to maximum value. This should bring the output cutt-off frequency to minimum.
                             Modify_SPI_Reg_bits (0x0116, 7, 0, CONTROL); // write to C_CTL_LPFH_RBB
              }
              Set_NCO_Freq (RBB_CalFreq[Band_id]); // Apply a single tone frequency at "CalFreq".
              while (1)
                             ADCOUT = Get_SPI_Reg_bits(0x040B, 15, 0); //RSSI value // Measure the value of the amplitude at the ADC input. This value should be lower
than "LowFreqAmp".
                              if (ADCOUT >= LowFreqAmp) \ break; //If \ it \ is \ lower \ than ``LowFreqAmp'' \ repeat \ cycle \\
                             if (CONTROL == 0) return 0;
                             CONTROL--; // Decrease the CONTROL value by one.
                             if (low_band) Modify_SPI_Reg_bits (0x0117, 10, 0, CONTROL); // write to C_CTL_LPFL_RBB else Modify_SPI_Reg_bits (0x0116, 7, 0, CONTROL); // write to C_CTL_LPFH_RBB
               RBB_CBANK[MIMO_ch][Band_id] = CONTROL; // Store CBANK Values
              RBB_STATUS[MIMO_ch][Band_id] = 1;
              return 1:
```

A3.5 TBB calibration

TBB calibration is divided into two calibrations for low and high bands. Each calibration consist of several smaller algorithms.

A3.6 TBB Low Band Calibration

Calibration steps:

- 1. Save current configuration
- 2. Start with calibrated value of the R.
- 3. Approximate (by calculation) the control value of the RBANK for the 11MHz bandwidth setting.=>Register the value of the RBANK controls (ladder and real pole).
- 4. Calibrate (by measurement using loopback path 3) the control value of the CBANK(same controls for both the ladder and the real pole) at the 11MHz bandwidth. => Register the CBANK control value for the low-band section.
- 5. Calibrate (by measurement using loopback path 4) the mismatch between the preemphasis and the real pole stage. => Register the 'high' pre-emphasis parameters. (11 MHz).
- 6. Calibrate (by measurement using loopback path 5) the control value of the RBANK (ladder only) for the 8.2MHz bandwidth setting => Register the value of the RBANK controls.

- 7. Calibrate (by measurement using loopback path 3) the control value of the RBANK (ladder only) for the 5.5MHz bandwidth setting => Register the value of the RBANK controls.
- 8. Adjust the value of the real pole controls by -50% (pre-emphasis/real pole RBANK).
- 9. Calibrate (by measurement using loopback path 4) the mismatch between the preemphasis and the real pole stage. => Register the 'low' pre-emphasis parameters. (5.5MHz).
- 10. Calibrate (by measurement using loopback path 5) the control value of the RBANK (ladder only) for the 2.74MHz bandwidth setting => Register the value of the RBANK controls.
- 11. Calibrate (by measurement using loopback path 5) the control value of the RBANK (ladder only) for the 2.4MHz bandwidth setting => Register the value of the RBANK controls.
- 12. Restore configuration

Figure 38 TBB High Band calibration algorithm

A3.7 TBB High Band Calibration

Calibration steps:

- 1. Save current configuration
- 2. Calibrate (by measurement using loopback path 6) the control value of the RBANK at the 18.5MHz bandwidth. => Register the RBANK control value for the 18.5MHz.
- 3. Calibrate (by measurement using loopback path 6) the control value of the RBANK for the 38MHz bandwidth setting => Register the value of the RBANK controls for 38MHz
- 4. Calibrate (by measurement using loopback path 6) the control value of the RBANK for the 54MHz bandwidth setting => Register the value of the RBANK controls for 54MHz.
- 5. Restore configuration

Figure 39 TBB High Band calibration algorithm

The following C code implements described algorithm:

```
unsigned char Calibration_HighBand_TBB (unsigned char ch)

{
    unsigned char result;
    Save_config_TBB (); //save current configuration

    MIMO_Ctrl (ch);
    Modify_SPI_Reg_bits (0x040A, 13, 12, 1); // AGC Mode = 1 (RSSI mode)

    Set_cal_path_TBB (6); // Set control signals to path 6

    Algorithm_E_TBB (TBB_18_5MHZ); // CalibrateByRes the output cutoff frequency (Algorithm E)
    Algorithm_E_TBB (TBB_38_0MHZ); // CalibrateByRes the output cutoff frequency (Algorithm E)
    Algorithm_E_TBB (TBB_54_MHZ); // CalibrateByRes the output cutoff frequency (Algorithm E)

Restore_config_TBB (); //restore configuration

return 1;
}
```

A3.8 Nested algorithms

A3.8.1 Algorithm A

Multiply the ratio of the on-chip resistor to the off-chip resistor by the default control value of the RCAL LPFLAD TBB for 11MHz and return the result of the multiplication.

C code for algorithm A:

Figure 40 TBB algorithm A

A3.8.2 Algorithm B

Same as algorithm B in RBB.

A3.8.3 Algorithm C

Algorithm steps:

- 1. Apply a single tone frequency at "CalFreq".
- 2. Set the "CCAL LPFLAD TBB" to maximum value.
- 3. Measure the value of the amplitude at the ADC input. If it is lower than "LowFreqAmp", then jump to line #6. Otherwise continue.

- 4. Decrease the control value "CCAL_LPFLAD_TBB" by one step.
- 5. Jump back to line #3.
- 6. Store the value of "CCAL LPFLAD TBB" as the calibrated CBANK value of TBB.

C code for algorithm C:

Figure 41 TBB algorithm C

A3.8.4 Algorithm D

Algorithm steps:

- 1. Apply a single tone at frequency equal to "CalFreq"
- 2. Compare the amplitude at the input ADC to "LowFreqAmp". If greater, then the preemphasis zero is faster than the real pole. And Vise-Versa. Decrease or increase respectively the zero frequency by one step.
- 3. If the last step was in the opposite direction of the current step, then you have reached the optimal value of the pre-emphasis parameters. (the last step you increased by one step and this step you decreased, or, the last step you decreased and this step you increased). If not, then go back to step 2.
- 4. Store pre-emphasis zero setting.

C code for algorithm D:

```
unsigned char Algorithm_D_TBB (unsigned char Band_id)
             unsigned short ADCOUT:
             unsigned char inc, Zero_Freq = 127;
             {\sf Set\_NCO\_Freq~(TBB\_CalFreq[Band\_id]);~//~1~Apply~a~single~tone~at~frequency~equal~to~``CalFreq''}
             ADCOUT = Get_SPI_Reg_bits(0x040B, 15, 0); //RSSI value
             if(ADCOUT > LowFreqAmp) inc = 0; //If greater, then the pre-emphasis zero is faster than the real pole
                          else inc = 1;
             while (1)
                          ADCOUT = Get_SPI_Reg_bits(0x040B, 15, 0); //RSSI value // Measure the output level at the ADC input
                          if (inc)
                                        if(ADCOUT >= 52428) break;
                          else
                                        if(ADCOUT <= 52428) break:
                          }
                          if( (Zero_Freq == 0) || (Zero_Freq == 255)) //gain limit reached
                                        return 0;
                          if(inc) Zero_Freq++;
                                       else Zero_Freq--;
             }
```

A3.8.5 Algorithm E

- 1. If("CalFreq") <=11MHz, then CONTROL=RCAL_LPFLAD_TBB, else, CONTROL=RCAL_LPFH_TBB
- 2. Set the CONTROL to zero. This should bring the output cutt-off frequency to minimum.
- 3. Apply Algorithm B.
- 4. Apply a single tone frequency at "CalFreq".
- 5. Measure the value of the amplitude at the ADC input. This value should be lower than "LowFreqAmp".
- 6. Increase the CONTROL value by one.
- 7. Measure the value of the amplitude at the ADC input. If it is lower than "LowFreqAmp", then jump back to line#3. Otherwise continue to step 8.

8. Return the value of CONTROL.

Figure 42 TBB algorithm E

C code for algorithm E:

unsigned char Algorithm_E_TBB (unsigned char Band_id) { unsigned short ADCOUT; unsigned char low_band, CONTROL; CONTROL = 0; // Set the CONTROL to zero. This should bring the output cutt-off frequency to minimum.

```
if (Band\_id <= TBB\_11\_0MHZ) \ // If (``CalFreq'') <= 11MHz, then \ CONTROL = RCAL\_LPFLAD\_TBB, else, CONTROL = RCAL\_LPFH\_TBB) \\
                             low\_band = 1; // CONTROL=RCAL\_LPFLAD\_TBB\\ Modify\_SPI\_Reg\_bits (0x0109, 7, 0, CONTROL); // write to RCAL\_LPFLAD\_TBB
              }
else
               {
                             low_band = 0; // CONTROL=RCAL_LPFH_TBB Modify_SPI_Reg_bits (0x0109, 15, 8, CONTROL); // write to RCAL_LPFH_TBB
              }
               if (Algorithm_B_TBB (&LowFreqAmp) != 1) return 0; // Calibrate and Record the low frequency output amplitude (Algorithm B)
               Set\_NCO\_Freq~(TBB\_CalFreq[Band\_id]);~//~Apply~a~single~tone~frequency~at~``CalFreq''.
               while (1)
                             ADCOUT = Get_SPI_Reg_bits(0x040B, 15, 0); //RSSI value // Measure the value of the amplitude at the ADC input. This value should be lower
than "LowFreqAmp".
                              if (ADCOUT >= LowFreqAmp) break; //If it is lower than "LowFreqAmp" repeat cycle
                             if (CONTROL == 0xFF) break;
                             CONTROL++; // Increase the CONTROL value by one.
                             if (low_band) Modify_SPI_Reg_bits (0x0109, 7, 0, CONTROL); // write to RCAL_LPFLAD_TBB else Modify_SPI_Reg_bits (0x0109, 15, 8, CONTROL); // write to RCAL_LPFH_TBB
              }
              // 8 Return the value of CONTROL.
               TBB_RBANK[MIMO_ch][Band_id] = CONTROL; // Store RBANK Values
               return 1;
```