Flow-Sensitive Points-to Analysis

Flow-Sensitive Points-to Analysis

Modeling

Lattice

Constraint

This note summarizes the content of chapter 10.6 of Static Pointer Analysis.

Modeling

Lattice

We use a lattice of points-to graphs, which are directed graphs in which the nodes are the abstract cells for the given program and the edges correspond to possible pointers.

Points-to graphs are ordered by inclusion of their sets of edges. Thus, \bot is the graph without edges and \top is the completely connected graph.

We use Cells to denote the set of abstract cells for the given program.

The abstract state is

$$States = P(Cells \times Cells)$$

So for each state $s \in States$, s represents the nodes and edges in a points-to graph.

For example, $Cells=\{a,b,c,m1,m2,m3\}$. So state $s=\{(a,m1),(b,m2),(c,m3)\}$ corresponds to

```
a -> m1
b -> m2
c -> m3
```

Constraint

For every CFG node v, we introduce a constraint variable [v] denoting a points-to graph that describes all possible stores at that program point.

So based on the requirement of points-to analysis, we have these constraints for some special nodes:

$$\begin{array}{lll} X = {\tt alloc}\,P \colon & & \llbracket v \rrbracket &= JOIN(v) \!\downarrow\! X \, \cup \, \{(X, {\tt alloc-}i)\} \\ X_1 = \&X_2 \colon & & \llbracket v \rrbracket &= JOIN(v) \!\downarrow\! X_1 \, \cup \, \{(X_1, X_2)\} \\ X_1 = X_2 \colon & & \llbracket v \rrbracket &= assign(JOIN(v), X_1, X_2) \\ X = {\tt null} \colon & & \llbracket v \rrbracket &= JOIN(v) \!\downarrow\! X \\ \end{array}$$

And for all other nodes, we have

$$[v] = JOIN(v)$$

where JOIN(v) unions the point-to locations of v's precedent nodes:

$$JOIN(v) = \cup_{w \in pred(v)}[w]$$

 $\sigma \downarrow x$ means killing the original points-to set of x:

$$\sigma \downarrow x = \{(s,t) \in \sigma \mid s
eq x\}$$

 $assign(\sigma,x,y)$ means replacing the points-to set of x with the points-to set of y.

$$assign(\sigma, x, y) = \sigma \downarrow x \ \cup \{(x, t) \mid (y, t) \in \sigma\}$$

As you can see, this analysis is flow sensitive and the update is strong update!!!

Therefore, we can have function pts to calculate the points-to set of cell p at node v.

$$pts(p) = \{t \mid (p,t) \in [v]\}$$