

Métodos y aplicaciones de técnicas de secuenciación de siguiente generación en genómica de poblaciones

Oscar Ortega-Recalde, MD, PhD
Profesor Asistente | Facultad de Medicina
Universidad Nacional de Colombia
Junio 2025

1

Conflicto de Interés

No existe conflicto de interés para participar en este evento.

"El progreso en la ciencia depende de nuevas técnicas, nuevos descubrimientos y nuevas ideas, probablemente en ese orden."

Sydney Brenner (1927-2019)

3

- 1. Introducción a la genómica de poblaciones.
- 2. Métodos de secuenciación de siguiente generación (NGS).
- 3. Ejemplos de aplicaciones actuales.
- 4. Perspectivas

1. Introducción a la genómica de poblaciones

5

Genómica de poblaciones

"Aplicación de tecnologías genómicas con el objetivo de comprender el papel de procesos evolutivos en la variación entre individuos y poblaciones."

Luikart et al, Population Genomics, 2018

Diferentes modelos matemáticos y herramientas estadísticas han permitido identificar y estudiar fenómenos claves en esta área.

7

Genómica de poblaciones

Las aplicaciones de esta área son extensas incluyen biología de la conservación, actividades agropecuarias, paleogenética, genética forense y salud humana.

Cenómica de poblaciones **Commission de Commission de Com

Genómica de poblaciones

Proyecto 1000 genomas

- Caracterización de nuevas variantes.
- Herramienta de imputación genética.
- Comprensión de la estructura poblacional y evolución molecular.
- Consolidación de plataformas tecnológicas.

The 1000 Genomes Project Consortium, Nature, 2015

10

Genómica de poblaciones

La introducción de nuevas técnicas de secuenciación, particularmente NGS, ha **revolucionado diferentes áreas de la genética.**

11

2. Métodos de secuenciación de siguiente generación (NGS)

https://blog.crownbio.com/selecting-a-next-generation-sequencing-technology

NGS es el termino utilizado para describir varias tecnologías de secuenciación modernas. Todas estas plataformas están caracterizadas por el alto rendimiento (high-throughput) y parelización.

Overview of Illumina Sequencing by Synthesis Workflow | Standard SBS chemistry

13

Métodos de NGS

- Sanger
- Maxam-Gilbert

- Roche 454

- ABI solid - Ion torrent

- Helicos
- Solexa 1G (Illumina) BGI

- ONT

- PacBio (SMRT)

Sanger Sequencing Steps & Method, Merck; Mardis, Annu Rev Genomics Hum Genet, 2008

ARTICLES

nature genetics

Exome sequencing identifies the cause of a mendelian disorder

Sarah B Ng^{1,10}, Kati J Buckingham^{2,10}, Choli Lee¹, Abigail W Bigham², Holly K Tabor^{2,3}, Karin M Dent⁴, Chad D Huff⁵, Paul T Shannon⁶, Eithylin Wang Jabs^{2,8}, Deborah A Nickerson¹, Jay Shendure¹ & Michael J Bamshad^{1,2,9}

VOLUME 42 | NUMBER 1 | JANUARY 2010 | NATURE GENETICS

Síndrome Miller

DHODH UTR

15

Métodos de NGS

PLOS | GENETICS

Reconstructing Native American Migrations from Whole-Genome and Whole-Exome Data

Simon Gravel^{1,2}, Fouad Zakharia³, Andres Moreno-Estrada³, Jake K. Byrnes^{3,4}, Marina Muzzio^{3,6}, Juan L. Rödriguez-Flores⁶, Elimes F. Kenny⁶, Christopher R. Gignoux⁶, Brian K. Maples⁵, Wilfried Guibles⁷, Julie Duil¹, ³Mar Via⁴, ³Karla Sandoval⁷, [Gabrille Bedoya⁷]
The 1000 Genomes Projec⁷, Taras K. Oleksyk⁸, Andres Ruiz-Linares^{1,9}, Estoban G. Burchard⁴, Juan Calrob Martines-Czuzadó, Garlos D. Bustamante¹

December 2013 | Volume 9 | Issue 12 | e1004023

Neurobiology of Aging

Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer's disease

Mardis, Nature Protocols, 2016

Marvarita Giraldo ^{2,5}, Francisco Lopera ² Ashley L. Siniard ^{4,5}, Jason J. Corneveaux ^{4,5}, Isabelle Schrauwen ^{3,6,1}, Julian Carvajai ^{2,6}, Claudia Muhoz ⁴, Manuel Ramirez-Restrepo ¹, Chris Gaiteri ^m, Aramada J., Myers-^{4,1}, Richard J. Caselli ^{2,5}, Kenneth S. Kosik ², Eric M. Reiman ^{3,6,5}, Matthew J. Huentelman ^{3,6,5}

Whole-Exome Sequencing Enables Rapid Determination of Xeroderma Pigmentosum Molecular Etiology

Oscar Ortega-Recalde¹, Jéssica Inés Vergara^{2,3}, Dora Janeth Fonseca^{1,4}, Xiomara Rios^{2,3}, Hernando Mosquera^{2,3}, Olga María Bermúdez¹, Claudia Liliana Medina^{2,3}, Clara Inés Vargas⁵, Argemiro Enrique Pallares^{2,3}, Carlos Martín Restrepo^{1,4}, Paul Laissue^{1,4}*

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dna-extraction; Dalen et al, Science, 2023

18

ACGH Asociación Colombiana

Preparación de librerías Fragmentation Fragmentation of DNA End repair and A-tailing (sonication or enzymatic) Ligation 0000000000 XXXXXX 2000 0000000000 XXXXXX PCR amplification Fragmentación Ligación de adaptadores e índices https://theory.labster.com/fragmentation/; Ligation-based library preparation IDT

Secuenciación

Secuenciación por terminación reversible (Illumina).

Secuenciación por nanobolas (BGI).

Illumina Dye Sequencing, Lab Methods in Microbiology and Molecular Biology, 2023; Li et al, Int J Legal Med, 2021

20

Análisis bioinformáticos

Cobertura: Porcentaje de bases de un genoma de referencia / región de interés que esta cubierta por cierta profundidad (e.g. 95%, 99%)

Profundidad:

Promedio de veces

(e.g. 2X, 10X, 100X).

que cada base es leída

http://www.metagenomics.wiki/pdf/definition/coverage-read-depth

23

Torres-Narvaez et al, Front Oncol, accepted

25

3. Ejemplos de aplicaciones actuales

Yuan et al, Quatitative Biology, 2017

Svante Pääbo Suecia (1955-)

"por sus descubrimientos sobre los genomas de los homínidos extintos y la evolución humana" ACGH

doi:10.1038/nature12886

The complete genome sequence of a Neanderthal from the Altai Mountains

Kay Prüfer, Fernando Racinor, Nick Patterson', Flora Jay', Střam Sankararaman'⁴, Susanna Sawyer', Anja Heinze', Gabriel Renaud, Feter H. Sudman', Casar de Flippo', Heng Li', Swapan Mallick'⁴, Michael Danmenann', Qianoni Fu'sh Martin Kircher'⁴, Martin Kuhlwilm', Michael Lachmann', Matthias Meyer', Matthias Gongverth', Michael Siebauer', Christoph Theumer', Ant'i Tandon'⁴, Priya Moorjan', Osoph Pickrell', James C. Mullikin', Saunell H. Volar', Richard E. Green'', Inea Hellmann'', Philip L. F. Johnson'', Hélène Blanche', Howard Cann'', Jacob O. Kitzman', Jay Shendure', Evan E. Eichler's.¹² Ed. S. Len't', Trype E. Bakken'', Liudov V. Golovarono', Viddim'n B. Dorentcher', Michael S. Namikov'',

https://www.nobelprize.org/prizes/medicine/2022/press-release/

27

Ejemplos de aplicaciones actuales

https://www.nobelprize.org/prizes/medicine/2022/press-release/

Ejemplos de aplicaciones actuales THE NEW ENGLAND JOURNAL of MEDICINE ORIGINAL ARTICLE Genomewide Association Study of Severe Covid-19 with Respiratory Failure The Severe Covid-19 CWAS Group* N ENGL J MED 383;16 NEJM.ORG OCTOBER 15, 2020 ABO OCTOBER 15, 2020 ABO Chromosome 29

Association Between the *LZTFL1* rs11385942 Polymorphism and COVID-19 Severity in Colombian Population

OPEN ACCESS

frontiers Frontiers in Medicine

Penan Pedra de Sous, Universidade Federal de Minas Gerais, Brazil Reviewed by: Atla Duque Rossi, Mariana Angulo-Aguado", David Corredor-Orlandelli", Juan Camilo Carrillo-Martinez', Mónica Gonzalez-Cornejo', Eliana Pineda-Mateus', Carolina Rojas', Paula Trians-Fonseca', Mora Constanza Contreas Bravo', Adrien Morel', Katherine Parra Abaurza', Carlos M. Restrepo', Dora Janeth Fonseca-Mendoza' and Oscar Ortega-Recalde'

Center for Research in Genetics and Genomics — CIGGUR, GENULFICOS Research Group, School of Medicine and Heath Celanose, Universidad Del Rosario, Bogotá, Colombia, "Department of Molecular Diagnosis, Genética Molecular de Johnbia SAS, Bogotá, Colombia, "Hospital Universitario Mayor — Midderi — Universidad del Rosario, Bogotá, Colombia

Enrollment

ASOCIACIÓN COLOMBIANA de Genética Humana

31

Ejemplos de aplicaciones actuales

Variable Asintomáticos/Leves n=61 (%)		Severos/Críticos n=63 (%)	OR	IC95%	<i>p</i> -value	
Masculino	26 (42.6)	41 (65.1)	2.51	1.21- 5.18	0.012	
Edad x rango	36.6 (19-60)	47.3 (21-60)	-	-	< 0.001	
Obesidad	9 (14.8)	18 (28.6)	2.31	0.95-5.65	0.06	
HTA	3(4.9)	17 (27)	7.14	1.9-25.8	< 0.001	
Diabetes	1 (1.6)	13 (20.6)	15.6	1.9-123.4	< 0.001	
Enfermedad renal	1 (1.6)	5 (7.9)	5.17	0.59-45.6	0.1	
EPOC	0 (0)	2 (3.2)	-	-	0.16	
Ninguna comorbilidad	47 (74.6)	23 (37.7)	0.17	0.08-0.38	<0.001	

Variable	Asintomáticos/Leves n=61 (%)	Severos/críticos n=63 (%)	OR	IC95%	p-value	
3p21.31				1.32 -		
WT/WT	59 (96.7)	52 (82.5)	6.24	29.46	0.007	
WT/Ins	2 (3,3)	11 (17.5)		29.46		
ACE1						
Ins/Ins	25 (41)	19 (30.2)	1.61	0.77-3.38	0.21	
Ins/Del	24 (39.3)	31 (49.2)	1.61	0.77-3.38	0.21	
Del/Del	12 (19.7)	13 (20.6)				
Grupo	20 (22 0)	12 (19)	0.48		0.08	
sanguíneo A	20 (32.8)	12 (19)	0.48		0.08	

Aplicación Predictor de riesgo de severidad.

Predictor de riesgo de severidad de COVID-19 Centro de Investigacion en Genetica y Genomica (CIGGUR), Universidad del Rosario

Predictor de riesgo de severidad de COVID-19 Centro de Investigacion en Genetica y Genomica (CIGGUR), Universidad del Rosario

33

Ejemplos de aplicaciones actuales

scientific reports

OPEN Next-generation sequencing of host genetics risk factors associated with COVID-19 severity and long-COVID in Colombian population

Mariana Angulo-Aguado^{1,5}, Juan Camilo Carrillo-Martinez^{1,5}, Nora Constanza Contreras-Bravo¹, Adrien Morel¹, Katherine Parra-Abaunza², William Usaquén³, Dora Janeth Fonseca-Mendoza¹ & Oscar Ortega-Recalde^{1,465}

Scientific Reports | (2024) 14:8497

Enrollment

74 genes

Gene	Transcript RefSeq
ACE2	NM_001371415.1
APOE	NM_000041.4
APOL1	NM_003661.4
ARHGAP27	NM_001282290.2
ARL17B	NM_001039083.5
ATP11A	NM_032189.4
BCL11A	NM_001363864.1
CCL2	NM_002982.4
CCR3	NM_178329.3
CCR5	NM_001394783.1
CCR9	NM_001394783.1
CD14	NM_000591.4
CENPS	NM_199294.3
CFAP73	NM_001144872.3
CXCR6	NM_001386435.1
DPP4	NM_001935.4
DPP9	NM_139159.5
FBXL12	NM_001316936.2
FCGR2A	NM_001136219.3
FDX1L	NW_021639282.1
FOXP4	NM_001012426.2
FURIN	NM_002569.4

81 SNVs e indels

Variant	Genomic coordinate
rs114301457	1:155066988
rs7528026	1:155175305
rs41264915	1:155197995
rs1123573	2:60480453
rs2232354	2:113129758
rs147509469	2:191909428
rs73062389	3:45793925
rs2271616	3:45796521
rs2531743	3:45796808
rs72893671	3:45809291
rs17713054	3:45818159
rs71325088	3:45821460
rs10490770	3:45823240
rs11385942	3:45834968
rs35081325	3:45848429
rs73064425	3:45859597
rs71325091	3:45890915
rs13433997	3:46008273
rs34438204	3:46039814
rs7642320	3:46049130

https://www.agilent.com/Library/posters/Public/Agilent%20Technologies%20SureSelectT%20Platform_082010.pdi

35

Ejemplos de aplicaciones actuales

Análisis de variantes candidatas para severidad de COVID

	Genomic coordinates	Closer gene	Minor	Allele frequency controls		Allele frequency cases		Genotype frequency controls		Genotype frequency cases							
				WT	Alt	WT	Alt	WT/ WT	WT/ Alt	Alt/Alt	WT/ WT	WT/ Alt	Alt/Alt	HWE	p-value	OR	
rs114301457	C/T	1:155,066,988	EFNA4	С	1.00	0.00	0.99	0.01	0.99	0.01	0.00	0.98	0.02	0.00	1.00	0.32	NA
rs7528026	G/A	1:155,175,305	TRIM46	G	1.00	0.00	0.98	0.02	1.00	0.00	0.00	0.91	0.09	0.00	1.00	0.02*	NA
rs41264915	A/G	1:155,197,995	THBS3	A	0.97	0.03	0.98	0.02	0.96	0.02	0.02	0.98	0.0	0.02	< 0.01*	0.76	0.82
rs1123573	A/G	2:60,480,453	BCLIIA	A	0.79	0.21	0.76	0.24	0.62	0.34	0.04	0.54	0.45	0.02	0.27	0.52	1.22
rs2232354	T/G	2:113,129,758	ILIRN	T	0.86	0.14	0.72	0.28	0.04	0.21	0.75	0.14	0.27	0.59	0.01*	0.01*	2.29
rs147509469	G/A	2:191,909,428	CAVIN2, TMEFF2	A	0.97	0.03	1.00	0.00	0.02	0.02	0.96	0.00	0.00	1.00	0.01*	0.08	0.00
rs73062389	A/G	3:45,793,925	SLC6A20	G	0.95	0.05	0.95	0.05	0.02	0.07	0.91	0.00	0.11	0.89	0.27	1.00	1.00
rs2271616	G/T	3:45,796,521	SLC6A20	T	0.87	0.13	0.89	0.11	0.75	0.23	0.02	0.82	0.14	0.04	0.19	0.54	0.77
rs2531743	G/A	3:45,796,808	SLC6A20, LZTFL1	A	0.71	0.29	0.77	0.23	0.46	0.48	0.05	0.55	0.43	0.02	0.89	0.29	0.72
rs72893671	T/A	3:45,809,291	SLC6A20, LZTFL1	Т	0.96	0.04	0.91	0.09	0.91	0.09	0.00	0.82	0.18	0.00	1.00	0.18	2.09
rs17713054	G/A	3:45,818,159	SLC6A20, LZTFL1	G	0.99	0.01	0.92	0.08	0.98	0.02	0.00	0.84	0.16	0.00	1.00	<0.01*	9.69
rs71325088	T/C	3:45,821,460	SLC6A20, LZTFL1	Т	0.99	0.01	0.92	0.08	0.98	0.02	0.00	0.84	0.16	0.00	1.00	< 0.01*	9.69
rs10490770	T/C	3:45,823,240	SLC6A20, LZTFL1	T	0.99	0.01	0.92	0.08	0.98	0.02	0.00	0.84	0.16	0.00	1.00	< 0.01*	9.69
rs11385942	Del/A	3:45,834,968	LZTFL1	Del	0.99	0.01	0.91	0.09	0.98	0.02	0.00	0.82	0.18	0.00	1.00	< 0.01*	10.88
rs35081325	A/T	3:45,848,429	LZTFL1	A	0.99	0.01	0.92	0.08	0.98	0.02	0.00	0.84	0.16	0.00	1.00	< 0.01*	9.69
rs73064425	C/T	3:45,859,597	LZTFL1	С	0.99	0.01	0.92	0.08	0.98	0.02	0.00	0.84	0.16	0.00	1.00	< 0.01*	9.69
rs71325091	G/A	3:45,890,915	LZTFL1	G	0.96	0.04	0.92	0.08	0.93	0.07	0.00	0.84	0.16	0.00	1.00	0.15	2.35
rs13433997	T/C	3:46,008,273	FYCO1, XCR1	T	0.92	0.08	0.88	0.12	0.84	0.16	0.00	0.77	0.23	0.00	0.60	0.27	1.67
24420204	2010	246020014	V/CD.	90	0.00	0.04	0.00	0.00	0.01	0.00	0.00	0.04	0.14	0.00	1.00	0.07	1.07

- 13 variantes candidatas.
- Las de mayor asociación cercanas a *LZTFL1* y *CCR3*.

Ejemplos de aplicaciones actuales No predator reredication Predator reredication

Incremento del tamaño muestral y profundidad de secuenciación (...)

41

4. Perspectivas

- Nuevos métodos de secuenciación y análisis bioinformáticos y estadísticos.
- Iniciativas nacionales e internacionales para secuenciar poblaciones.
- Mayor integración a diversas áreas biomédicas.

43

Perspectivas

Métodos y aproximaciones robustas

Fortalecimiento de infraestructura tecnológica

Lou et al, Mol Ecol, 2021

Iniciativas Nacionales e Internacionales de secuenciación

Inversión en proyectos a gran escala

45

Perspectivas

"Nada en biología tiene sentido excepto a la luz de la evolución"

Importancia de procesos evolutivos

Klunk et al, Nature et al, 2022

Individualmente, somos una gota. Juntos, somos un océano Ryunosuke Satoro

Colaboración y cooperación

47

Agradecimientos

UNIVERSIDAD

Universidad del Rosario

Dora Janeth Fonseca-Mendoza Nora Constanza Contreras Bravo Adrien Morel Carlos M. Restrepo

Vertebrate Genome Project

New Zealand eScience Infrastucture

Universidad Pedagógica y Tecnológica de Colombia Milena Rondón-Lagos

¡GRACIAS!

oortegar@unal.edu.co

Asociación Colombiana de Genética Humana - ACGH