Logica

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Ripasso di matematica	4						
	1.1 Relazioni	4						
	1.2 Sottoinsieme delle parti	4						
	1.3 Ordinamento parziale	4						
	1.4 Massimale di un insieme	4						
2	Introduzione							
3	Sintassi della logica proposizionale							
	3.1 Connettivi	6						
	3.2 Ausiliari	6						
	3.3 Simboli proposizionali	6						
	3.4 Altri simboli	6						
4	Principio di induzione	6						
	4.1 Definizione induttiva formale dell'insieme $PROP$	7						
5	Proprietà su un insieme	7						
	5.1 Principio di induzione sui numeri naturali \mathbb{N}	8						
6	Teorema del principio di induzione delle proprietà su $PROP$							
7	Definizione ricorsiva di funzioni su PROP	10						
	7.1 Definizione più precisa dell'esercizio 6.1	11						
8	Dimostrazione ricorsiva di rango e sottoformula	11						
	8.1 Applicazione della definizione di sottoformula	12						
9	Semantica delle formule proposizionali	13						
	9.1 Valutazione delle formule logiche	13						
	9.2 Valutazione atomica	14						
	9.3 Tavole di verità	14						
	9.3.1 Tavola di verità per \vee	14						
	9.3.2 Tavola di verità per \wedge	14						
	9.3.3 Tavola di verità per \rightarrow	14						
	9.4 Esempi di tabelle di verità	15						
	9.5 Formule privilegiate	15						
10	Struttura esercizi di semantica	16						
	10.1 Prova con il contromodello	17						
11	Soddisfacibilità della formula	17						

13	Convenzioni 13.1 Rimozione della parentesi nella sintassi	20 20 21								
14	Definizione di sostituzione	21								
15	5 Connettivi derivati 22									
16	Relazione di equivalenza	23								
17	7 Tautologie notevoli 2									
18	RAA (Reductio ad absurdum)	26								
19	Formalizzazione della deduzione	27								
20	Deduzione naturale 20.1 Regole dell'implicazione 20.1.1 Eliminazione 20.1.2 Introduzione 20.1.3 Indebolimento 20.1.4 Esercizi 20.2 Regole dell'AND 20.2.1 Introduzione 20.2.2 Eliminazione a destra 20.2.3 Eliminazione a sinistra 20.2.4 Esercizi 20.3 Regole del Bottom 20.3.1 Ex falso 20.3.2 Riduzione ad assurdo	28 28 28 29 29 30 30 30 31 32 32 32								
	20.3.3 Esercizi 20.4 Regole dell'OR 20.4.1 Introduzione a destra 20.4.2 Introduzione a sinistra 20.4.3 Esercizi 20.4.4 Eliminazione 20.5 Condizione di derivabilità 20.5.1 Esercizi	32 33 33 34 34 36 36								
21	Prove dirette e indirette 21.1 Prove indirette	37 37								
22	Definizione rigorosa di derivazione	38								
23	Definizione di altezza di una derivazione $h[D]$ 23.1 Principio di induzione sull'altezza di una derivazione	40 41								

24	Teo	rema di semantica	41							
25	Sou	ndness e Completeness	42							
	25.1	Teorema di correttezza (Soundness)	42							
		25.1.1 Lemma 1	42							
	25.2	Teorema di completezza (Completeness)	44							
		25.2.1 Teorema 0	45							
		25.2.2 Proposizione 1	45							
		25.2.3 Teorema 1	46							
		25.2.4 Teorema 2: Chiusura per derivabilità	48							
		25.2.5 Teorema 3	48							
		25.2.6 Teorema 4	48							
		25.2.7 Teorema 5	49							
		25.2.8 Corollario 1	50							
		25.2.9 Teorema 6 (Completezza)	50							
	25.3	Estensione	50							
26	Logi	ica del primo ordine (dei Predicati)	51							
	26.1 Linguaggio di primo ordine									
		Entità sintattiche	51							
		26.2.1 Termini	52							
		26.2.2 Formule	52							
	26.3	Convenzione	53							
		26.3.1 Concetto di variabile libera e legata	53							
	26.4	Sottotermini	54							
		Sottoformule	54							
		Vincoli	55							
			00							
27	Estensione della deduzione naturale 56									
	27.1	Regole del \forall	56							
		27.1.1 Introduzione	56							
		27.1.2 Eliminazione	57							
	27.2	Regole del \exists	57							
		27.2.1 Introduzione	57							
		27.2.2 Eliminazione	58							
28	Sem	antica della logica del primo ordine	60							
		Struttura matematica	60							

1 Ripasso di matematica

1.1 Relazioni

Prendendo in considerazione 2 insiemi A, B e una relazione $f \subseteq A \times B$ si definisce **dominio** l'insieme A e **codominio** l'insieme B. Il prodotto cartesiano è definito nel seguente modo:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Ciò significa che si prende in considerazione una coppia ordinata di elementi formata da un elemento di A e uno di B. La relazione f è una funzione sse (se e solo se) $\forall a \in A \exists$ unico $b \in B$ si dice che: $(a,b) \in f$, oppure f(a) = b.

1.2 Sottoinsieme delle parti

Dato un insieme A si definisce sottoinsieme delle parti (scritto $\mathcal{P}(A)$ o 2^A) l'insieme di tutti i sottoinsiemi di A, cioè $2^A = x | x \subseteq A$.

Un esempio è il seguente:

$$A = \{3, 5\}$$

$$2^A = \{\emptyset, \{3\}, \{5\}, \{3, 5\}\}$$

 \emptyset è l'insieme vuoto, cioè l'insieme che non contiene nessun elemento.

1.3 Ordinamento parziale

$$\langle A, R \rangle$$
 $R \subseteq A \times A$

R è ordinamento parziale se ha 3 proprietà:

- 1. Riflessività: $\forall a \in A \quad aRa$
- 2. Transitività: $\forall a, b, c \in A$

$$aRb \& bRc \Rightarrow aRc$$

3. Ansisimmetria: $\forall a, b \in A$

$$aRb \& bRa \Rightarrow a = b$$

1.4 Massimale di un insieme

 $< A, R > \mathrm{sia}$ o.p. (Ordine Parziale anche scritto po) possiamo avere 2 definizioni:

1. $m \in A$ è massimo se $\forall a \in A \ aRm$

2. $m \in A$ è massimale se

$$\forall a \in A \ mRa \Rightarrow m = a$$

che equivale a dire:

$$\not\exists a \in A \ tc \ (a \neq m \ e \ mRa)$$

Se metto qualcosa in relazione con il massimo non trovo mai qualcosa più grande di lui.

Esempio 1.1

Prendo come insieme supporto i numeri naturali $\mathbb N$ e come insieme generico l'insieme $A\subseteq P(\mathbb N)^a$

È massimo perchè:

$$a \subseteq M$$

$$b \subseteq M$$

Esempio 1.2

$$A = \{\{4\}, \{2\}\}\$$

Sono entrambi massimali perchè non posso trovare nulla di più grande della relazione.

Esempio 1.3

$$P = \{ \{n\} | n \in \mathbb{N} \} \quad P = \{ \{0\}, \{1\}, \{2\}, \ldots \}$$
$$< P, \subseteq > p.o$$

 $ha \propto massimali$

Quindi il massimale non è unico.

2 Introduzione

La logica ha lo scopo di formalizzare il ragionamento matematico che è caratterizzato dal concetto di dimostrazione senza ambiguità

 $[^]a {\bf Sottoinsieme}$ delle parti

3 Sintassi della logica proposizionale

La logica proposizionale è formata da simboli formali ben definiti e sono divisi in:

3.1 Connettivi

- ∨ Congiunzione, And logico
- A Disgiunzione, Or logico
- ¬ Negazione, Not logico (non connette niente, è solo una costante logica che equivale a 0 nella logica booleana)
- \(\perp \) Falso, Bottom, Assurdo
- \bullet \rightarrow Implicazione, If-then

3.2 Ausiliari

• () Le parentesi non fanno parte della proposizione, ma servono solo a costruire il linguaggio

3.3 Simboli proposizionali

• p_n, q_n, ψ_n, \dots Le lettere minuscole indicizzate vengono usate per indicare una proposizione (sono infiniti simboli numerabili)

3.4 Altri simboli

- | Tale che
- $\bullet \leftrightarrow Se e solo se$

Definizioni utili 3.1

- 1. Stringa: Una sequenza finita di simboli o caratteri
- 2. Infinito numerabile: Un insieme è infinito numerabile se è il più piccolo infinito possibile, cioè se è in corrispondenza biunivoca con l'insieme N

4 Principio di induzione

Il principio di induzione è un principio logico che permette di dimostrare che una proprietà è vera per tutti gli elementi di un insieme infinito numerabile.

Una prima definizione induttiva fatta in modo non formale, ma con frasi in italiano è la seguente:

L'insieme di proposizioni PROP è così definito induttivamente:

- 1. $\perp \rightarrow PROP$
- 2. se p è un simbolo proposizionale allora $p \in PROP$
- 3. (Caso induttivo) se $\alpha, \beta \in PROP$ allora $(\alpha \wedge \beta) \in PROP, (\alpha \vee \beta) \in PROP, (\alpha \rightarrow \beta) \in PROP, (\neg \alpha) \in PROP$
- 4. nient'altro appartiene a PROP

In questo modo è stato creato l'insieme PROP che contiene tutte le proposizioni che possono essere create usando gli unici simboli che abbiamo definito $(\land, \lor, \rightarrow, \neg)$.

Esempi di proposizioni corrette e scorrette:

- $(p_7 \rightarrow p_0) \in PROP$
- $p_7 \rightarrow p_0 \notin PROP$ (mancano le parentesi)
- $((\bot \lor p_{32}) \land (\neg p_2)) \in PROP$
- $((\rightarrow \land \notin PROP)$
- $\neg\neg\bot\notin PROP$

4.1 Definizione induttiva formale dell'insieme *PROP*

Adesso l'insieme PROP viene definito in modo formale usando i simboli proposizionali.

Definizione 4.1

L'insieme PROP è il più piccolo insieme X di stringhe tale che:

- 1. $\perp \in X$
- 2. $p \in X$ (Perchè è un simbolo proposizionale)
- 3. se $\alpha, \beta \in X$ allora $(\alpha \to \beta) \in X, (\alpha \lor \beta) \in X, (\alpha \land \beta) \in X, (\neg \alpha) \in X$

 p, α, β, \dots sono elementi proposizionali generici

 $\underline{AT=\text{simboli proposizionali}+\bot}$ è l'insieme di tutte le proposizioni atomiche, cioè quelle che non contengono connettivi, sono quindi la più piccola parte non ulteriormente scomponibile

5 Proprietà su un insieme

Definito P un insieme di proprietà assunte da un insieme A si ha che:

P ⊆ A

• $a \in A$ dove a è un elemento generico dell'insieme A

Si dice che a gode della proprietà P se $a \in P$.

Altri modi per dire che a gode della proprietà P sono:

- \bullet P(a)
- P[a] (per non creare confusione con le parentesi tonde che sono usate come simboli ausiliari per costruire il linguaggio)

$$P \subseteq PROP \quad \forall \alpha \in PROP . P(\alpha)$$

(il punto mette in evidenza ciè che viene dopo di esso e può anche essere omesso)

Esempio 5.1

Esempio di una proprietà sull'insieme \mathbb{N} :

 $P=\{n|n\in\mathbb{N}\ ed\ e\ pari\ \}\ essendo\ n\ un\ numero\ generico\ indica\ la\ proprietà\ di\ essere\ pari.$

P[5] ×

 $P[4] \sqrt{}$

5.1 Principio di induzione sui numeri naturali $\mathbb N$

 $P \subseteq \mathbb{N}$

- 1. Caso base: se P[0] e
- 2. Passo induttivo: se $\forall n \in \mathbb{N}(P[n] \Rightarrow P[n+1])$ allora $\forall n \in \mathbb{N}$. P[n]

Se si dimostra la proprietà per n e per il successivo (n+1), allora si dimostra che la proprietà è vera per tutti i numeri naturali. Si sfrutta il fatto che esiste un minimo a cui prima o poi si arriva.

Esercizio 5.1

Dimostra per induzione che:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

6 Teorema del principio di induzione delle proprietà su PROP

Definizione 6.1

 $P \subseteq PROP$

- 1. Se $P[\alpha], \alpha \in AT$ e
- 2. Se $P[\alpha] \Rightarrow P[(\neg \alpha)] e$

3. se
$$P[\alpha]$$
 e $P[\beta] \Rightarrow P[(\alpha \land \beta)], P[(\alpha \lor \beta)P[(\alpha \to \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

Con questo teorema si possono dimostrare intere proposizioni complesse dimostrando i pezzi più piccoli (sottoformule) come mostrato nella figura 1.

Figura 1: Dimostrazione di una formula complessa

Esercizio 6.1

Dimostra che ogni $\psi \in PROP$ ha un numero pari di parentesi usando il principio di induzione per dimostrare proprietà sintattiche sulla struttura delle formule.

 $P[\psi] \equiv \psi$ ha un numero pari di parentesi

- 1. Caso base $\psi \in AT$ quindi ψ ha 0 parentesi e quindi è pari: $P[\psi] \sqrt{}$
- 2. Ipotesi induttiva $\alpha, \beta \in PROP$, $P[\alpha], P[\beta]$? $P[(\alpha \to \beta)]$ (per α vale e per β vale, si sono aggiunte due parentesi, quindi la formula è ancora pari)
- 3. Passo induttivo $P[\alpha], P[\beta] \Rightarrow P[(\alpha \rightarrow \beta)], P[(\alpha \lor \beta)], P[(\alpha \land \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

7 Definizione ricorsiva di funzioni su PROP

Definizione 7.1

Riprendendo l'esercizio 6.1 si definisce la funzione π che associa ad ogni formula proposizionale (equivalente di un input nell'informatica) un numero naturale (equivalente di un output nell'informatica). La funzione π quindi dopo aver dato in input un argomento (qualsiasi formula proposizionale atomica o complessa) restituisce in output il numero di parentesi che contiene la formula in input.

$$\pi: PROP \to \mathbb{N}$$

- 1. Caso base $\pi[\alpha] = 0$ se $\alpha \in AT$
- 2. Ipotesi induttiva π[(¬α)] = π[α]+2 In questo passaggio viene chiamata la funzione π dentro la funzione π stessa, quindi è una definizione ricorsiva. In questo caso si aggiungono 2 parentesi al numero di parentesi di α π[α]
- 3. Passo induttivo $\pi[(\alpha \to \beta)] = \pi[(\alpha \lor \beta)] = \pi[(\alpha \land \beta)] = \pi[\alpha] + \pi[\beta] + 2$ dove $\pi[\alpha]$ e $\pi[\beta]$ sono il numero di parentesi di α e β e si aggiungono 2 parentesi per il connettivo.

Di seguito ci sono 2 esempi in cui viene messa in pratica la funzione π definita sopra in modo da capire meglio come funziona.

Esempio 7.1

$$\pi[(p_2 \to p_1)] \stackrel{caso \ 3}{=} \pi[p_2] + \pi[p_1] + 2 \stackrel{caso \ 1}{=} 0 + 0 + 2 = 2$$

Esempio 7.2

$$\pi[(p_1 \lor (p_2 \lor p_1))] = (\pi[p_2] + \pi[p_1] + 2) + \pi[p_1] + 2 = (0 + 0 + 2) + 0 + 2 = 4$$

Tutte le funzioni definite ricorsivamente sono funzioni, ma non tutte le funzioni possono essere definite ricorsivamente.

7.1 Definizione più precisa dell'esercizio 6.1

Ogni $\alpha \in PROP$ ha un numero pari di parentesi: $\forall \alpha \in PROP \ P[\alpha] \stackrel{sse}{\Leftrightarrow} \pi[\alpha]$ è pari

- 1. $P[\alpha] \ \alpha \in AT$ se $\alpha \in AT \ \pi[\alpha] \stackrel{def}{=} 0$ quindi $\sqrt{}$
- 2. Suppongo che valga $P[\alpha], P[(\neg \alpha)]$?

 $P[\alpha] \Leftrightarrow \pi[\alpha]pari$ è pari perchè lo abbiamo supposto prima (consideriamo 0 come pari)

$$\pi[(\neg \alpha)] = \pi[\alpha] + 2$$
è pari quindi $P[(\neg \alpha)] \checkmark$

Si può definire un simbolo nuovo che non vuole dire niente nel linguaggio proposizionale e gli si assegnano i connettivi possibili per non doverli più scrivere ogni volta. Per questo esercizio prendiamo in considerazione

$$\circ \in \{\rightarrow, \lor, \land\}$$

3. $(\alpha \circ \beta)$

suppongo $P[\alpha], P[\beta]$ allora $\pi[\alpha]$ e $\pi[\beta]$ sono pari

quindi $\pi[(\alpha \circ \beta)] = \pi[\alpha] + \pi[\beta] + 2$ (è pari)

Ho dimostrato per induzione che $\forall \psi \in PROP \ P[\psi] \ \Box$ (\Box è un simbolo che indica la fine della dimostrazione.)

8 Dimostrazione ricorsiva di rango e sottoformula

Il rango di una formula è il numero di connettivi che contiene.

Definizione 8.1

Considerato r il rango di una proposizione

 $r: PROP \to \mathbb{N}$

1. $r[\psi] = 0$ se $\psi \in AT$

2.
$$r[(\neg \psi)] = 1 + r[\psi]$$

3.
$$r[(\psi \circ \gamma)] = 1 + \max(r[\psi], r[\gamma])$$
 $\circ \in \{\lor, \land, \rightarrow\}$

La sottoformula è una formula che è contenuta in un'altra formula più grande.

Definizione 8.2

Considerata sub la sottoformula di una proposizione sub : $PROP \rightarrow 2^{PROP}$

1.
$$sub[\alpha] \alpha = ((p_2 \vee p_1) \vee p_0)$$

2.
$$sub[\alpha] = \{\alpha, p_2, p_0, (p_2 \vee p_1)\}$$

8.1 Applicazione della definizione di sottoformula

- 1. $sub[\psi] = {\psi}$ se $\psi \in AT$
- 2. $sub[(\neg \psi)] = \{(\neg \psi)\} \cup sub[\psi]$
- 3. $sub[(\psi \to \gamma)] = \{(\psi \circ \gamma)\} \cup sub[\psi] \cup sub[\gamma]$

Teorema 1 Vogliamo dimostrare per induzione su β :

Se $\alpha \in sub[\beta]$ e $\alpha \neq \beta$ (dove α è una sottoformula propria, cioè vengono considerate tutte le sottoformule di β tranne β stessa) allora $r[\alpha] < r[\beta]$

1. Caso base $\beta \in AT$

 β non ha sottoformule proprie, quindi α non può essere una sottoformula propria di β . Essendo falsa la premessa la tesi è vera.

- 2. Se $\beta = (\neg \beta_1)$: se $\alpha \in sub[\beta]$ e $\alpha \neq \beta$ allora $\alpha \in sub[\beta_1]$ e si dimostra $r[\alpha] \leq r[\beta_1]$ (ipotesi induttiva)
 - (a) $\alpha \in sub[\beta_1]$ e $\alpha \neq \beta_1$ per ipotesi induttiva $r[\alpha] < r[\beta_1]$

(b)
$$\alpha = \beta_1 \ r[\alpha] = r[\beta_1]$$

 $r[\alpha] \le r[\beta_1]$

Quindi

$$r[(\neg \overset{\beta}{\beta_1})] \overset{def}{=} {}^r 1 + r[\beta_1] \ge 1 + r[\alpha] > r[\alpha]$$

Quindi

$$r[\alpha] < r[\beta]$$

3. Caso induttivo

 $\beta=(\beta_1\to\beta_2)$ se α è sottoformula di β e $\alpha\neq\beta$ allora $\alpha\in sub[\beta_1]$ o $\alpha\in sub[\beta_2]$

(a) se $\alpha \in sub[\beta_1]$ (ipotesi induttiva)

$$i. \ Se \ \alpha \neq \beta_1 \Rightarrow r[\alpha] \leq r[\beta_1]$$

$$ii. \ Se \ \alpha = \beta_1 \Rightarrow r[\alpha] = r[\beta_1]$$

$$Da \ 3(a)i \ e \ 3(a)ii \ si \ ricava \ r[\alpha] \leq r[\beta_1]$$

$$(b) \ se \ \alpha \in sub[\beta_2]$$

$$i. \ Se \ \alpha \neq \beta_2 \Rightarrow r[\alpha] \leq r[\beta_2]$$

$$ii. \ Se \ \alpha = \beta_2 \Rightarrow r[\alpha] = r[\beta_2]$$

$$Da \ 3(b)i \ e \ 3(b)ii \ si \ ricava \ r[\alpha] \leq r[\beta_2]$$

$$r[(\beta_1 \xrightarrow{\beta} \beta_2)] = 1 + max\{r[\beta_1], r[\beta_2]\} \geq 1 + max\{r[\alpha], r[\alpha]\} \geq 1 + r[\alpha] > r[\alpha]$$

9 Semantica delle formule proposizionali

Considerando una formula α si associano 2 possibli valori:

- Vero (1)
- Falso (0)

9.1 Valutazione delle formule logiche

$$V: PROP \rightarrow \{0,1\}$$
$$V(p_1) = ? 0 \text{ o } 1$$

Esempio 9.1

Le sequenti funzioni non sono valide:

- $V(\alpha) = V(\neg \alpha)$
- $V(\alpha) = 0 \ \forall \alpha$

 $V: PROP \rightarrow \{0,1\}$ è una valutazione se:

1.
$$V(\alpha \wedge \beta) = 1 \leftrightarrow V(\alpha) = 1 \& V(\beta) = 1$$

2.
$$V(\alpha \vee \beta) = 1 \leftrightarrow V(\alpha) = 1$$
 or $V(\beta) = 1$

3.
$$V(\neg \alpha) = 1 \leftrightarrow V(\alpha) = 0$$

4.
$$V(\bot) = 0$$

5.
$$V(\alpha \to \beta) = 1 \leftrightarrow [V(\alpha) = 1 \Rightarrow V(\beta) = 1]$$

5.2
$$V(\alpha \to \beta) = 1 \leftrightarrow V(\alpha) = 0 \text{ or } V(\beta) = 1$$

9.2 Valutazione atomica

v è detta valutazione (atomica) se:

$$v: AT \to \{0,1\} \ \mathrm{e} \ v(\bot) = 0$$

Definizione 9.1

Teorema:

Data una valutazione atomica v esiste ed è unica una valutazione

$$[|\cdot|]_v{}^a: PROP \rightarrow \{0,1\}$$

tale che:

$$[|\alpha|]_v = V(\alpha) \ per \ \alpha \in AT$$

 $^a[|\cdot|]$ sono parentesi denotazionali, cioè indicano che stiamo valutando il valore della valutazione, quindi della semantica

9.3 Tavole di verità

Il valore di verità di una formula è determinato (universalmente) dal valore dei suoi atomi.

9.3.1 Tavola di verità per \lor

$$[|(\alpha \vee \beta)]_v = 1 \leftrightarrow [|\alpha|]_v = 1 \text{ or } [|\beta|]_v = 1$$

$$\begin{array}{c|cccc} \alpha & \beta & \alpha \vee \beta \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

9.3.2 Tavola di verità per \wedge

$$\begin{array}{c|cccc} \alpha & \beta & \alpha \wedge \beta \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

9.3.3 Tavola di verità per \rightarrow

$$\begin{array}{c|cccc} \alpha & \beta & \alpha \to \beta \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

9.4 Esempi di tabelle di verità

Esempio 9.2

$$\alpha = ((p_2 \to p_1) \lor p_2)$$

$$\begin{array}{c|c|c|c} p_1 & p_2 & (p_1 \to p_2) & ((p_2 \to p_1) \lor p_2) \\ \hline 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ \end{array}$$

A ogni riga corrisponde una valutazione atomica: $v_1[p_1] = 0, v_1[p_2] = 0$ ecc...

Esercizio 9.1

Valutare: $[|\alpha|]_{v_1}$ dell'esercizio precedente:

$$\begin{split} [|(p_2 \to p_1)|]_{v_1} &= 1 \leftrightarrow [|p_2|]_{v_1} \stackrel{punto 5.2}{=} 0 \ or \ [|p_1|]_{v_1} = 1 \\ [|((p_2 \to p_1) \lor p_2)|]_{v_1} &= 1 \leftrightarrow [|(p_2 \to p_1)|]_{v_1} = 1; \ or \ [|p_2|]_{v_1} = 1 \end{split}$$

Esercizio 9.2 (A casa)

 $Valutare [|\alpha|]_{v_2}$

9.5 Formule privilegiate

Teorema 2 $\varphi \in PROP$ sia $\varphi^{AT} = \{p | p \in AT \& p \ e \ in \ \varphi\}$ Siano v_1 e v_2 valutazioni atomiche tali che: $\forall p \in \varphi^{AT}$ $v_1[p] = v_2[p]$ allora $[|\varphi|]_{v_1} = [|\varphi|]_{v_2}$

Definizione 9.2

 $\alpha \in PROP$ è detta **tautologia** se per ogni valutazione v: $[|\alpha|]_v = 1$ $\models \varphi$ indica una formula privilegiata (di cui fa parte la tautologia)

 $\forall v[|\alpha|]_v = 1$ è una formula privilegiata? $\models \alpha$

- Sì \Rightarrow dimostro **per ogni** v che $[|\alpha|]_v = 1 \ (\forall^1)$
- No \Rightarrow esibisco una specifica valutazione tale che $[|\alpha|]_v = 0 \ (\exists^2)$

¹Per far si che sia vero dobbiamo dimostrare che sia vero per ogni elemento

 $^{^2\}mathrm{Per}$ far si che sia falso dobbiamo dismostrare che almeno una valutazione sia falsa (controesempio)

10 Struttura esercizi di semantica

Esercizio 10.1

Vogliamo dimostrare una formula che implica se stessa:

$$\models (\alpha \to \alpha)$$

$$\forall v \cdot [|(\alpha \to \alpha)]_v = 1$$

$$[|(\alpha \to \alpha)]_v = 1 \stackrel{def}{\Leftrightarrow} [|\alpha|]_v = 0 \text{ or } [|\alpha|]_v = 1$$

Esercizio 10.2

Vogliamo dimostrare:

$$\models ((\alpha \land \beta) \to \alpha)$$

$$\forall v \cdot [|((\alpha \land \beta) \to \alpha|)]_v = 1 \Leftrightarrow$$

$$[|(\alpha \land \beta)]_v = 0 \text{ or } [|\alpha|]_v = 1 \Leftrightarrow$$

$$([|\alpha|]_v = 0 \text{ or } [|\beta|]_v = 0) \text{ or } [|\alpha|]_v = 1$$

Esercizio 10.3

Vogliamo dimostrare:

$$\begin{split} &\models (\alpha \to (\beta \to \alpha)) \\ \forall v \cdot [|(\alpha \to (\beta \to \alpha))]_v = 1 \Leftrightarrow \\ &[|\alpha|]_v = 0 \ or \ [|(\beta \to \alpha)|] = 1 \Leftrightarrow \\ &[|\alpha|]_v = 0 \ or \ ([|\beta|]_v = 0 \ or \ [|\alpha|]_v = 1) \end{split}$$

Ho tutte le possibilità per α ([$|\alpha|$] $_v=0$, [$|\alpha|$] $_v=1$), quindi la formula è vera.

10.1 Prova con il contromodello

Esercizio 10.4

È vero che la seguente formula è una tautologia? NO Ragiona sullo stesso esercizio, ma se ci fosse \vee

$$\models (\alpha \to (\alpha \land \beta))$$

Bisogna trovare un'istanza di α e β e una valutazione v. Assumo che α sia p_0 e β sia p_1

$$\exists v \ t.c. \ [|p_0 \to (p_0 \land p_1)]_v = 0$$

Per assegnare i valori a p_0 e p_1 si può anche usare la tabella di verità della formula intera.

$$v[p_0] = 1 \ v[p_1] = 0$$

(Contromodello) 1 non può implicare 0

Verifichiamo che sia vero che esca il contromodello

$$[|(p_0 \to (p_0 \land p_1))|]_v = 0 \Leftrightarrow$$

$$p_0 = \delta \quad (p_0 \land p_1) = \gamma$$

$$(|\delta \to \gamma) = 0$$

$$[|p_0|]_v = 1 \& [|(p_0 \land p_1)|]_v = 0 \Leftrightarrow$$

$$[|p_0|]_v = 1 \& ([|p_0|]_v = 0 \text{ or } [|p_1|]_v = 0)$$

 $[|p_0|]_v = 1$ è vero e anche il pezzo dopo \mathcal{E} , quindi è tutto vero.

11 Soddisfacibilità della formula

Si definisce:

• $\alpha \in PROP$ è soddisfacibile se esiste v:

$$[|\alpha|]_v = 1$$

• α non è soddisfacibile quando non esiste:

$$\not\exists v \ t.c. \ [|\alpha|]_v = 1$$

 Γ insieme formule proposizionali

 Γ è soddisfacibile quando:

$$\exists v \ t.c. \ \forall \varphi \in \Gamma \ [|\varphi|]_v = 1$$

12 Conseguenza logica

$$\mathrm{Ipotesi} \to \mathrm{tesi}$$

 Γ, E, Δ Insiemi arbitrari di formule α, β, γ

$${\stackrel{ipotesi}{\Gamma}}{\models}{\stackrel{tesi}{\alpha}}$$

Si può leggere in più modi:

- Da Γ segue semanticamente α
- α è conseguenza logica/semantica di Γ

Definizione 12.1

La verità dell'ipotesi fa conseguire la verità della tesi.

$$\Gamma \models \alpha \ sse \ \forall v \ se \ \forall \varphi \in \Gamma \ allora \ [|\varphi|]_v = 1 \ allora \ [|\alpha|]_v = 1$$

Le denotazione dell'insieme vuol dire che tutte le formule dell'insieme sono vere.

$$[|\Gamma|]_v = 1 \Leftrightarrow \forall \alpha \in \Gamma \ [|\alpha|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

$$\Gamma \models \alpha \Leftrightarrow \forall v \ [|\Gamma|]_v = 1 \ allora [|\alpha|]_v = 1$$

La seguente formula vuol dire che esiste almeno una formula falsa nell'insieme Γ

$$[|\Gamma|]_v \neq 1$$

Che è diverso dal dire:

$$[|\Gamma|]_v = 0$$

Che significa che tutte le formule di Γ valgono 0.

Esercizio 12.1 (easy)

Vogliamo provare:

$$(\alpha \wedge \beta) \models \alpha$$

Applico la definizione e prendo una valutazione generica

$$[|(\alpha \wedge \beta)|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

 $\label{thm:connectivi} Usiamo\ le\ definizioni\ semantiche\ dei\ connectivi\ per\ valutare\ la\ prima\ parte\ dell'espressione$

$$[|(\alpha \wedge \beta)|]_v = 1 \Leftrightarrow [|\alpha|]_v = 1 \& [|\beta|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

Esercizio 12.2

Definiamo un insieme separando con la virgola le formule che lo compongono a

$$(\alpha \to \beta), \ \alpha \models \beta$$

$$\forall v. \ [|(\alpha \to \beta), \ \alpha|]_v = 1 \Rightarrow [|\beta|]_v = 1$$

$$[|(\alpha \to \beta), \alpha|]_v = 1 \Leftrightarrow$$

$$[|\alpha \to \beta|]_v = 1 \& \ [|\alpha|]_v = 1 \Leftrightarrow$$

$$([|\alpha|]_v = 0 \ or \ [|\beta|]_v = 1) \& \ [|\alpha|]_v = 1 \Rightarrow$$

$$[|\beta|]_v = 1$$

Esercizio 12.3 (a casa)

$$\Gamma, \alpha \models \beta \Rightarrow \Gamma \models \alpha \rightarrow \beta$$

$$\Gamma, \alpha \models \beta \stackrel{def}{\Leftrightarrow} \forall v. [|(\Gamma, \alpha)|]_v = 1 \Rightarrow [|\beta|]_v = 1 \Leftrightarrow$$

Per la definizione di implicazione:

$$\forall v. [|\Gamma, \alpha|]_v \neq 1 \ opure [|\beta|]_v = 1 \Leftrightarrow$$

$$\forall v. [|\Gamma|]_v \neq 1 \ oppure [|\alpha|] = 0 \ oppure [|\beta|]_v = 1 \Leftrightarrow$$

Non a o b è la definizione dell'implica:

$$\forall v. [|\Gamma|]_v \neq 1 \text{ or } [|\alpha \rightarrow \beta|]_v = 1 \Leftrightarrow$$

Applicando di nuovo la definizione di implicazione:

$$\forall v. [|\Gamma|]_v = 1 \Rightarrow [|\alpha \rightarrow \beta|]_v = 1 \stackrel{def}{\Leftrightarrow}$$

Quest'ultima è la definizione di consequenza logica:

$$\Gamma \models \alpha \rightarrow \beta$$

Esercizio 12.4 (a casa)

$$\varphi \models \psi \vee \varphi$$

^aEquivale a dire: $\Gamma = \{\beta_1, \beta_2, \ldots\}$ la virgola vuol dire $\Gamma \cup \Delta \models \alpha$ o $\alpha \wedge \beta$

Esercizio 12.5 (a casa)

Risolvi con tavole di verità:

$$\models (p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

p q r	$q \rightarrow r$	$p \rightarrow q$	$p \rightarrow r$	$p \to (q \to r)$	$(p \to q) \to (p \to r)$				
0 0 0	1	1	1	0	1				
$0 \ 0 \ 1$	0	1	0	1	1				
$0 \ 1 \ 0$	1	0	1	0	0				
0 1 1	1	0	0	0	1				
1 0 0	1	1	1	1	1				
1 0 1	0	1	1	1	1				
1 1 0	1	1	1	1	1				
1 1 1	1	1	1	1	1				
$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$									
0									

La valutazione sulla formula finale non è sempre vera, quindi la formula non è una tautologia.

Esercizio 12.6

$$\Gamma, \alpha, \beta \models \alpha \land \beta$$

Prendiamo una v generica

$$\forall v.([|\Gamma, \alpha, \beta|]_v = 1 \Rightarrow [|\alpha \land \beta|]_v = 1)$$

$$([|\Gamma|]_v = 1 \& [|\alpha|]_v = 1 \& [|\beta|]_v = 1) \Rightarrow$$

$$([|\Gamma|]_v = 1 \& [|(\alpha \land \beta)|]_v = 1) \Rightarrow [|\alpha \land \beta|]_v = 1$$

13 Convenzioni

13.1 Rimozione della parentesi nella sintassi

Le parentesi possono essere omesse per rendere più leggibile la formula senza cambiare la sintassi.

- 1. Omettiamo, quando possibile (ovvero quando non c'è ambiguità sintattica), alcune parentesi: $(\alpha \to \beta) \Rightarrow \alpha \to \beta$
- 2. Per ripristinare le parentesi servono precedenze tra i connettivi.
 - $\bullet\,\,\neg\,\,$ ha la precedenza più alta
 - Dopo la negazione vengono: \land e \lor :

$$\alpha \vee \beta \wedge \gamma$$

$$(\alpha \vee \beta) \wedge \gamma \neq \alpha \vee (\beta \wedge \gamma)$$

Bisogna quindi specificare la struttura della formula quando si usano \vee e \wedge .

 \bullet Poi viene $\rightarrow,$ che associa a destra, cioè:

$$\alpha_1 \to \alpha_2 \to \alpha_3 == \alpha_1 \to (\alpha_2 \to \alpha_3)$$

13.1.1 Esempi

$$\gamma \to \neg \alpha \lor \beta$$

Diventa:

$$\gamma \to (\neg \alpha) \lor \beta$$

Diventa:

$$\gamma \to ((\neg \alpha) \lor \beta)$$

Diventa:

$$(\gamma \to ((\neg \alpha) \lor \beta))$$

14 Definizione di sostituzione

Definizione 14.1

$$\varphi \in PROP \ \varphi[\psi/p] \ \psi \in PROP$$

 $p \ \dot{e} \ un \ simbolo \ proposizionale \ che \ {\it occorre}^a \ in \ \varphi$

- $\varphi[\psi/p] = \bot$ se $\varphi = \bot$
- $\varphi[\psi/p] = \varphi$ se $\varphi \in AT$ e $\varphi \neq p$ (non c'è la p, quindi non sostituisco niente)
- $\bullet \ \varphi[\psi/p] = \psi \ \varphi = p$
- $(\neg \varphi)[\psi/p] = \neg(\varphi[\psi/p])$
- $(\varphi_1 \circ \varphi_2)[\psi/p] = (\varphi_1[\psi/p] \circ \varphi_2[\psi/p]) \circ \in \{\land, \lor, \to\}$

^aL' **occorrenza** è il numero di volte in cui appare una formula:

$$\varphi = ((p_1 \to (p_5 \lor p_1)) \land p_3)$$

Per osservare le occorrenze scrivo il simbolo + la posizione in cui appare (il numero del carattere ad esempio):

$$(p_1,2),(p_1,7)$$

Quindi se si vuole sostituire p_1 :

$$\varphi[\psi/p_1] = ((\psi \to (p_5 \lor \psi)) \land p_3))$$

15 Connettivi derivati

Deriviamo \leftrightarrow che finora abbiamo usato semanticamente come \Leftrightarrow

$$\alpha \leftrightarrow \beta = (\alpha \to \beta) \land (\beta \to \alpha)$$

Teorema 3 Due formule equivalenti si comportano nello stesso modo davanti alla sostituzione:

$$se \models \varphi_1 \leftrightarrow \varphi_2 = (\models (\varphi_1 \rightarrow \varphi_2) \land (\models (\varphi_2 \rightarrow \varphi_1)))$$

allora

$$\models \psi[\varphi_1/p] \leftrightarrow \psi[\varphi_2/p]$$

.

$$\models \alpha \leftrightarrow \beta$$

Vuol dire che

$$\alpha \approx \beta$$

Esercizio 15.1 (a casa)

(basta fare l'unfolding di \leftrightarrow) Lemma che va a sancire la semantica del se e solo se

$$[|\varphi \leftrightarrow \psi|]_v = 1 \Leftrightarrow [|\varphi|]_v = [|\psi|]_v$$

La semantica di \leftrightarrow è vera quando entrambi gli elementi sono uguali.

$$[|\varphi \to \psi|]_v = 1\&[|\psi \to \varphi|]_v \Leftrightarrow$$

$$([|\varphi|]_v = 0 \text{ or } [|\psi|]_v = 1) \& ([|\psi|]_v = 0 \text{ or } [|\varphi|]_v = 1)$$

Vero quando φ e ψ valutano allo stesso valore.

16 Relazione di equivalenza

Una relazione è di equivalenza quando si impongono delle proprietà.

- 1. $\forall x \in A \quad xRx \text{ (riflessività)}$
- 2. $\forall a, b, c \in A \quad (aRb \& bRc) \text{ (transitività)}$
- 3. $\forall a, b \in A \quad aRb \Rightarrow bRa \text{ (simmetria)}$

$$A \quad R \subseteq A \times A$$

R è detta relazione di equivalenza sse: $(x,y) \in R$, si può scrivere anche xRy

$$\approx \subseteq PROP \times PROP$$

$$\varphi \approx \psi \stackrel{def}{\Leftrightarrow} \models \varphi \leftrightarrow \psi$$

Teorema 4 Si può dimostrare che \approx è una relazione di equivalenza

1. Riflessività:

$$\begin{split} \forall \varphi \in PROP \quad \varphi \ \approx \ \varphi \\ \models \varphi \leftrightarrow \varphi \Leftrightarrow \forall v. \ [|(\varphi \rightarrow \varphi) \land (\varphi \rightarrow \varphi)|]_v = 1 \\ \Leftrightarrow \forall v. \ [|\varphi \rightarrow \varphi|]_v = 1 \Leftrightarrow \\ \forall v. \ ([|\varphi|]_v = 0 \ or \ [|\varphi|]_v = 1) \end{split}$$

2. Simmetria:

$$\forall \varphi, \psi \in PROP \quad \varphi \approx \psi \Rightarrow \psi \approx \varphi$$

Presa una v generica:

$$\begin{split} [|\varphi \leftrightarrow \psi|]_v &= 1 \Leftrightarrow [|(\varphi \to \psi) \land (\psi \to \varphi|)]_v = 1 \Leftrightarrow \\ [|(\varphi \to \psi)|]_v &= 1 \& [|\psi \to \varphi|]_v = 1 \Leftrightarrow \\ [|(\psi \to \varphi) \land (\varphi \to \psi)|]_v &= 1 \Leftrightarrow \psi \; \approx \; \varphi \end{split}$$

3. Transitività:

$$\forall \varphi, \psi, \gamma((\varphi \approx \psi \& \psi \approx \gamma) \rightarrow (\varphi \approx \gamma))$$

$$\forall v. [|\varphi \leftrightarrow \psi|]_v = 1 \& [|\psi \leftrightarrow \gamma|]_v = 1 \Rightarrow [|\varphi \to \gamma|]_v = 1$$

Il risultato segue dal lemma: $[|\alpha \leftrightarrow \beta|]_v = 1 \Leftrightarrow [|\alpha|]_v = [|\beta|]_v$ A casa applica il lemma.

17 Tautologie notevoli

- 1. $\models \neg(\varphi \land \psi) \leftrightarrow (\neg \varphi \lor \neg \psi)$ Prima legge di **De Morgan**
- 2. $\models \neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$ Seconda legge di **De Morgan**
- 3. $\models \varphi \leftrightarrow \neg \neg \varphi$ Negazione involutiva
- 4. $\models (\varphi \land \psi) \leftrightarrow (\psi \land \varphi)$ Commutatività
- 5. $\models (\varphi \lor \psi) \leftrightarrow (\psi \lor \varphi)$ Commutatività
- 6. $\models \varphi \land (\psi \lor \gamma) \leftrightarrow ((\varphi \land \psi) \lor (\varphi \land \gamma))$ Distributività
- 7. $\models \varphi \lor (\psi \land \gamma) \leftrightarrow ((\varphi \lor \psi) \land (\varphi \lor \gamma))$ Distributività
- 8. $\models \varphi \lor (\psi \lor \gamma) \leftrightarrow (\varphi \lor \psi) \lor \gamma$ Associatività per AND
- 9. |= $\varphi \wedge (\psi \wedge \gamma) \leftrightarrow (\varphi \wedge \psi) \wedge \gamma$ Associatività per OR

Esercizio 17.1

Dimostrazione della seconda legge di De Morgan:

$$\begin{split} & \models \neg(\varphi \lor \psi) \to (\neg \varphi \land \neg \psi) \\ & \forall v. \ [|\neg(\varphi \lor \psi) \to (\neg \varphi \land \neg \psi)|]_v = 1 \Leftrightarrow \\ & ([|\neg(\varphi \lor \psi)|]_v = 0 \ or \ [|\neg \varphi \land \neg \psi|]_v = 1) \Leftrightarrow \\ & ([|\varphi \lor \psi|]_v = 1 \ or \ ([|\neg \varphi]_v = 1 \ \& \ [|\neg \psi|]_v = 1)) \Leftrightarrow \\ & ([|\varphi|]_v = 1 \ or \ [|\psi|]_v = 1 \ or \ ([|\varphi|]_v = 0 \ \& \ [|\psi|]_v = 0)) \Leftrightarrow \end{split}$$

 $Tutti\ i\ casi \Rightarrow\ OK\ \Box$

Esercizio 17.2

$$\begin{split} &\models \neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi) \\ &\forall v. \ [|\neg(\varphi \lor \psi)|]_v = 1 \Leftrightarrow \\ &[|(\varphi \lor \psi)|]_v = 0 \Leftrightarrow \\ &[|\varphi|]_v = 0 \& \ [|\psi|]_v = 0 \Leftrightarrow \\ &[|\neg \varphi|]_v = 1 \& \ [|\neg \psi|]_v = 1 \Leftrightarrow \\ &[|(\neg \varphi \land \neg \psi)|]_v = 1 \end{split}$$

Esercizio 17.3

Modulus Ponens

$$(\underbrace{\Gamma \models \alpha \to \beta}_1 \ \& \ \underbrace{\Gamma \models \alpha}_2) \Rightarrow \Gamma \models \beta$$

Per la definizione di conseguenza logica:

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha \rightarrow \beta|]_v = 1) \&$$

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha|]_v = 1)$$

$$\Leftrightarrow \forall v. ([|\Gamma|]_v = 1 \Rightarrow ([|\alpha|]_v = 1 \Rightarrow [|\beta|]_v = 1)) \Leftrightarrow$$

Definizioni utili 17.1

$$a \Rightarrow b \Rightarrow c$$

È uquale a dire:

$$(a \land b) \Rightarrow c$$

$$\forall v. ([|\Gamma|]_v = 1 \& [|\alpha|]_v = 1) \Rightarrow [|\beta|]_v = 1 \Leftrightarrow$$

$$\forall v. ([|\Gamma|]_v \neq 1 \text{ or } [|\alpha|]_v = 0) \text{ or } [|\beta|]_v = 1 \Leftrightarrow$$

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha|]_v = 1) \Leftrightarrow$$

$$\forall v. ([|\Gamma|]_v \neq 1 \text{ or } [|\alpha|]_v = 1)$$

Si mettono insieme $\forall v. 1 \& 2$

$$\forall v. \ ([|\Gamma|]_v \neq 1 \ or \ [|\alpha|]_v = 1) \ \& \ ([|\Gamma|]_v \neq 1 \ or \ [|\alpha|]_v = 0 \ or \ [|\beta|]_v = 1)$$

$$\forall v.([|\Gamma|]_v \neq 1 \ or \ [|\beta|]_v = 1)])$$

È la definizione di conseguenza logica ($\neg \alpha \lor \beta$), quindi:

$$\forall v. \ [|\Gamma|]_v = 1 \Rightarrow [|\beta|]_v = 1$$

$$\Gamma \models \beta$$

$$\square$$

18 RAA (Reductio ad absurdum)

È un principio di tecnica di dimostrazione, cioè quella per assurdo.

$$\Gamma, \neg \alpha \models \bot \Rightarrow \Gamma \models \alpha$$

Prendiamo un insieme generico Δ

$$\begin{split} \Delta &\models \neg \qquad [|\neg|]_v = 0 \\ \forall v. \ [|\Delta|]_v = 1 \Rightarrow [|\bot|]_v = 1 \Leftrightarrow \\ \underbrace{[|\Delta|]_v \neq 1}_{\forall v. \ \exists \gamma \in \Delta \ t.c. \ [|\gamma|]_v = 0} or \ \underbrace{[|\bot|]_v = 1}_{\times} \end{split}$$

Se un insieme è falso, vuol dire che è insoddisfacibile:

$$\Delta \models \bot$$

 Δ è insoddisfacibile

Se $\Gamma \cup \{\neg \alpha\}$ insoddisfacibile allora $\Gamma \models \alpha$

Definizione 18.1

Si può interpretare la negazione di una formula nel seguente modo:

$$\neg \alpha \stackrel{def}{\Leftrightarrow} \alpha \to \bot$$

$$(*): \ \Gamma, \alpha \models \beta \Rightarrow \Gamma \models \alpha \rightarrow \beta$$
$$\Gamma, \neg \alpha \models \bot \stackrel{(*)}{\Rightarrow} \Gamma \models \neg \alpha \rightarrow \bot$$

Per definizione di negazione:

$$\underbrace{(\alpha \to \bot)}_{\neg \alpha} \to \bot$$

Quindi:

$$\Gamma \models \neg \neg \alpha$$

Per la definizione di conseguenza logica:

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\neg \neg \alpha|]_v = 1)$$

$$[|\neg \neg \alpha|]_v = [|\alpha|]_v$$

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha|]_v = 1)$$

$$\Gamma \models \alpha \pmod{ponens}$$

19 Formalizzazione della deduzione

Il simbolo che si utilizza è: $\Gamma \vdash \alpha$ e vuol dire che da Γ si deduce α .

Definizione 19.1

- **Dedurre**: vuol dire riuscire a dimostrare qualcosa partendo da un insieme di ipotesi.
- Ipotesi: ciò che assumo essere vero
- Tesi: ciò che voglio dimostrare a partire dalle ipotesi

Si ha quindi un **sistema deduttivo** formato da **regole logiche** che trasformano le formule in altre formule.

20 Deduzione naturale

È una deduzione che si basa su regole logiche che applichiamo naturalmente. La struttura della deduzione naturale è la seguente:

$$\underbrace{D}_{tesi}^{ipotesi}$$

$$dimostrazione/derivazione$$

È un concetto generico in matematica e nel linguaggio formale.

$$\Gamma, \neg, \alpha \models \bot \Rightarrow \Gamma \models \alpha$$

Introduciamo il sistema di deduzinoe naturale:

Prendiamo un sottosistema di connettivi:

$$\{\rightarrow, \land, \vec{\bot}\}$$

Si usano $D, \pi, D_1 \dots \overline{D}$ per indicare una dimostrazione generica.

$$D_{\alpha}$$
 D_{β}

Le lettere sotto la D sono fatti dimostrati.

Per indicare l'insieme delle ipotesi usate nella dimostrazione ${\cal D}$ si usa:

Definizione 20.1

Quando una formula sola viene usata come ipotesi è anche tesi (se la assumo, vuol dire che è vera). È anche la più piccola dimostrazione possibile.

Per ciascun connettivo si hanno 2 regole:

- 1. Regola di **eliminazione**
- 2. Regola di **introduzione**

20.1 Regole dell'implicazione

20.1.1 Eliminazione

Si utilizza il metoo Modus Ponens³

$$\begin{array}{ccc}
D_1 & D_2 \\
& \alpha & \alpha \to \beta
\end{array}$$

$$\xrightarrow{\beta} \to E$$

20.1.2 Introduzione

La seguente notazione \overline{D} vuol dire che tra le ipotesi potrebbe esserci α :

$$\begin{array}{c}
D \\
\beta \\
D \\
\beta \\
\hline
\alpha \to \beta
\end{array}
\to I^*$$

Le parentesi quadre indicano che abbiamo utilizzato α , ed è quindi "scaricata", cioè visto che è già stata utilizzata non fa più parte delle ipotesi. L'asterisco, invece è un indice che mostra su quale ipotesi è stata applicata la regola.

$$hp(\overline{D}) = hp(D)/\{\alpha\}$$

Esempio 20.1

Quando scarico α devo scaricare tutte le occorrenze

$$\mathop{D}_{\gamma}^{\underline{\alpha},\beta,\delta,\underline{\alpha}..}$$

 $^{3[|\}alpha|]_v = 1 \ (\alpha \to \beta) \models \beta$

20.1.3 Indebolimento

La seguente dimostrazione è accettata anche se α è stata scaricata.

$$\frac{D}{\alpha \to \beta} \to I$$

Questa dimostrazione prende il nome di **indebolimento**. "Lego" la verità di α a quella di β anche se non avevo α .

Ad esempio:

$$[|\beta|]_v = 1 \Rightarrow \underbrace{[|\alpha \to \beta|]_v}_{[|\alpha|]_v = 0 \text{ or } [|\beta|]_v = 1} = 1$$

La struttura di una derivazione è la seguente:

- α, β, \dots
- compongo D_1, \ldots, D_k attraverso le regole $(\to E, \to I)$
- nient'altro è derivazione

20.1.4 Esercizi

Esercizio 20.1

$$\vdash \alpha \to \alpha \quad \vdash = \operatorname{derivabilit\grave{a}}$$

$$\underbrace{- \begin{bmatrix} a \end{bmatrix}^1}_{\alpha \to \alpha} \quad \to I^1$$

 α è sia ipotesi che conclusione di D

Esercizio 20.2

$$\begin{split} \vdash \alpha \to (\beta \to \alpha) \\ \frac{[\alpha]^1}{\beta \to \alpha} &\to I \ (indebolimento) \\ \frac{}{\alpha \to (\beta \to \alpha)} &\to I^1 \end{split}$$

Alla fine della derivazione tutte le ipotesi devono essere scaricate

Esercizio 20.3 (hard)

Definizione 20.2

 $\vdash \alpha$

 α è un teorema se esiste una derivazione D tale che:

$$\underbrace{hp(D) = \emptyset}_{cancellate\ tutte\ le\ ipotesi\ nel\ proc.\ deduttivo}$$

20.2 Regole dell'AND

20.2.1 Introduzione

$$\begin{array}{cc} D_1 & D_2 \\ \hline & \alpha \wedge \beta \end{array} \wedge I$$

20.2.2 Eliminazione a destra

$$\begin{array}{c} D \\ ---- \\ \alpha & \wedge E_1 \end{array}$$

20.2.3 Eliminazione a sinistra

$$\begin{array}{c} D \\ -\alpha \wedge \beta \\ \hline \beta \end{array} \wedge E_2$$

20.2.4 Esercizi

Esercizio 20.4

Esercizio 20.5

$$\vdash \alpha \to \beta \to (\alpha \land \beta)$$

$$\frac{[\alpha]^2 \quad [\beta]^1}{\alpha \land \beta} \land I$$

$$\frac{\beta \to (\alpha \land \beta)}{\alpha \to \beta \to (\alpha \land \beta)} \to I^1$$

$$\frac{\beta \to (\alpha \land \beta)}{\alpha \to \beta \to (\alpha \land \beta)} \to I^2$$

Esercizio 20.6 (a casa)

Esempio 20.2

$$\vdash \alpha \rightarrow \neg \neg \alpha$$

è equivalente a:

$$\vdash \alpha \to ((\alpha \to \neg) \to \neg)$$

$$\frac{[\alpha]^2 \qquad [\alpha \to \bot]^1}{\bot} \to E$$

$$\frac{\bot}{(\alpha \to \bot) \to \bot} \to I^1$$

$$\frac{(\alpha \to \bot) \to \bot}{\alpha \to ((\alpha \to \neg) \to \bot)} \to I^2$$

20.3 Regole del Bottom

20.3.1 Ex falso

$$\begin{array}{c} D \\ \bot \\ - \alpha \end{array} \perp I$$

Si può aggiungere qualsiasi formula dal bottom utilizzando questa regola. (Dimostrazione per assurdo)

Dimostrazione per assurdo:

Voglio dimostrare P:

- 1. assumo P sia falso
- 2. se da 1. arrivo a una contraddizione allora P è vero

20.3.2 Riduzione ad assurdo

$$\begin{array}{ccc}
[\neg \alpha]^* \\
\dots \\
\bot \\
\alpha
\end{array}
RAA^*$$

20.3.3 Esercizi

Esempio 20.3

La riduzione ad assurdo è equivalente a:

$$\frac{\dots}{\alpha \vee \neg \alpha} \quad \bot I$$

per la regola del **terzo escluso** (tertium non datur)

Esempio 20.4

Derivazione del terzo escluso

erzo escluso
$$\frac{\begin{bmatrix} \alpha \end{bmatrix}^{1}}{(\alpha \vee \neg \alpha)} & \vee I_{1} \\ \hline \begin{matrix} \begin{matrix} & & \\ & & \end{matrix} \end{bmatrix}^{[\neg(\alpha \vee \neg \alpha)]^{2}} & \rightarrow E \\ \hline \begin{matrix} & \bot \\ \hline \begin{matrix} & & \end{matrix} \end{matrix} & \rightarrow I^{1} \\ \hline \begin{matrix} & & \end{matrix} \end{matrix} & \rightarrow I^{1} \\ \hline \begin{matrix} & & \end{matrix} \end{matrix} & \rightarrow E \\ \hline \begin{matrix} & \bot \end{matrix} & & \bot \end{matrix} \\ \hline \begin{matrix} & \bot \end{matrix} & & RAA^{2} \\ \hline \begin{matrix} & & \end{matrix} \end{matrix} & \wedge \neg \alpha & \text{Index} \end{matrix}$$
dell'OR

20.4 Regole dell'OR

20.4.1 Introduzione a destra

$$\frac{D_{\alpha}}{\alpha \vee \beta} \quad \forall I_1$$

20.4.2 Introduzione a sinistra

 D_{α}

$$\frac{}{\beta \vee \alpha} \quad \forall I_2$$

20.4.3 Esercizi

Esercizio 20.7

$$\begin{array}{c}
\vdash \alpha \to \alpha \lor \beta \\
\frac{[\alpha]^1}{\alpha \lor \beta} \lor I_1 \\
\frac{}{\alpha \to \alpha \lor \beta} \to I^1
\end{array}$$

Esercizio 20.8 (a casa)

$$\begin{array}{c}
\vdash (\alpha \lor \beta) \to (\alpha \lor \beta) \lor \gamma \\
\frac{[(\alpha \lor \beta)]^{1}}{(\alpha \lor \beta) \lor \gamma} & \lor I_{2} \\
\frac{}{(\alpha \lor \beta) \to (\alpha \lor \beta) \lor \gamma} & \to I^{1}
\end{array}$$

20.4.4 Eliminazione

Si implementa alla regola il ragionamento per casi

- 1. $P \Rightarrow R$
- $2. \ Q \Rightarrow R$
- 3. 1. + 2. (se riesco a provare entrambi i casi) P or $Q \Rightarrow R$

Esempio 20.5

$$\Gamma, \alpha \models \gamma \quad \& \quad \Delta, \beta \models \gamma \quad \& \quad E \models \alpha \vee \beta$$
$$\Rightarrow \Gamma, \Delta, E \models \gamma$$

Esempio 20.6

$$\begin{split} E &= \{\alpha \vee \beta\} \\ \Gamma, \alpha &\models \gamma &\& \Delta, \beta \models \gamma &\& \alpha \vee \beta \models \alpha \vee \beta \\ &\Rightarrow \Gamma, \Delta, \alpha \vee \beta \models \gamma \end{split}$$

Semanticamente:

$$[|\alpha \vee \beta|]_v = 1$$

ci si può chiedere cosa succede a livello di tautologie, è vero che?:

$$\models \alpha \lor \beta \Rightarrow \models \alpha \ or \ \models \beta$$

non è vero. Perchè:

$$\begin{split} &\models \alpha \vee \beta \overset{def}{\Leftrightarrow} \forall v. \ [|\alpha \vee \beta|]_v = 1 \Leftrightarrow \\ &\forall v. \ ([|\alpha|]_v = 1 \ oppure \ [|\beta|]_v = 1) \\ &\quad \alpha = p \qquad \beta = \neg p \\ &\models p \vee \neg p \Leftrightarrow \forall v. \ (v(p) = 1 \ or \ v(p) = 0) \ \checkmark \\ &\models p \Leftrightarrow \forall v. \ v(p) = 1 \ \times \\ &\models \neg p \Leftrightarrow \forall v. \ v(p) = 0 \ \times \end{split}$$

Esempio 20.7

Per dimostrare $\alpha \lor \beta \to \gamma$ devo trovare D_1 e D_2 e poi scaricare le assunzioni $(\alpha \lor \beta)$.

$$\frac{D \quad D \quad D}{D \quad D} \quad \nabla E^* \\
\frac{[\alpha \vee \beta]^1 \quad D \quad D}{\gamma} \quad \nabla E^* \\
\frac{\gamma}{(\alpha \vee \beta) \rightarrow \gamma} \quad I^1$$

$$\begin{array}{c|c}
 & \vdash \alpha \lor \beta \to \beta \lor \alpha \\
\hline
 & [\alpha]^1 & \lor I_2 & [\beta]^1 \\
\hline
 & \beta \lor \alpha & \lor I_1
\end{array}$$

$$\begin{array}{c|c}
 & \downarrow I_1 \\
\hline
 & \beta \lor \alpha \\
\hline
 & (\alpha \lor \beta) \to (\beta \lor \alpha) & \to I^2
\end{array}$$

Esercizio 20.10

$$\begin{array}{c|c}
 & \vdash \alpha \lor \beta \to \alpha \lor (\beta \lor \gamma) \\
\hline
 & \frac{[\alpha]^1}{(\beta \lor \gamma)} & \lor I_1 \\
\hline
 & \frac{[\alpha]^2}{(\beta \lor \gamma)} & \lor I_2 \\
\hline
 & \frac{\alpha \lor (\beta \lor \gamma)}{(\alpha \lor \beta) \to (\alpha \lor (\beta \lor \gamma))} & \to I^2
\end{array}$$

20.5 Condizione di derivabilità

 Γ deriva α e α è derivabile da Γ .

$$\Gamma \vdash \alpha$$

 $\Gamma \vdash \alpha \stackrel{def}{sse}$ esiste una derivazione $D \atop \alpha$ che si conclude con α e tale che $hp(D) \subseteq \Gamma$

20.5.1 Esercizi

Esercizio 20.11

$$\Gamma \vdash \alpha \Rightarrow \Gamma, \beta \vdash \alpha$$

$$\exists D \in hp(D) \subseteq \Gamma \quad \exists D^1_{\alpha} \ e \ hp(D) \subseteq \Gamma \cup \{\beta\}$$

$$\Gamma \vdash \alpha \Rightarrow \Gamma, \Delta \vdash \alpha$$

La deduzione che esisteva prima continua ad esistere anche con il nuovo insieme delle ipotesi.

Esercizio 20.12 (a casa)

$$\Gamma, \alpha \vdash \alpha$$

Esercizio 20.13

$$\Gamma, \alpha \vdash \beta \Rightarrow \Gamma \vdash \alpha \to \beta$$

$$\exists D \ t.c. \ hp(D) \subseteq \Gamma \cup \{\alpha\} \qquad \bar{D}$$

$$\bar{D} \begin{cases} D \\ D \\ \alpha \to \beta \end{cases} \to I$$

$$hp(\bar{D} \subseteq \Gamma)$$

Esercizio 20.14 (a casa)

$$(\Gamma \vdash \alpha \& \Delta, \alpha \vdash \beta) \Rightarrow \Gamma, \Delta \vdash \beta$$

Suggerimenti:

- svolgi i pezzi prima e dopo l'&
- non abbiamo ipotesi sulla presenza di alpha nelle ipotesi
 - se $\alpha \not\exists hp(D_2)$
 - $se \alpha \exists hp(D_2)$

21 Prove dirette e indirette

21.1 Prove indirette

 \boldsymbol{p} è un simbolo proposizionale:

$$\vdash \alpha \leftrightarrow \beta \Rightarrow \varphi[\alpha/p] \leftrightarrow \varphi[\beta/p]$$

Dati i successivi 2 teoremi già dimostrati:

$$\left. \begin{array}{l} \vdash \neg \neg \neg \alpha \leftrightarrow \neg \alpha \\ \vdash \alpha \lor (\neg \neg \neg \alpha) \end{array} \right\} \vdash \alpha \lor \neg \alpha$$

Si ottiene il terzo escluso facilmente. Una formula si può ottenere componendo più formule già dimostrate.

Consideriamo le leggi di de Morgan:

1.
$$\vdash \neg(\alpha \land \beta) \leftrightarrow (\neg\alpha \lor \neg\beta)$$

2.
$$\vdash \neg(\alpha \lor \beta) \leftrightarrow (\neg \alpha \land \beta)$$

3.
$$\vdash \neg(\alpha \to \beta) \leftrightarrow (\alpha \land \neg \beta)$$

Proviamo a dimostrare indirettamente la seconda legge di de Morgan usando altri teoremi:

a.
$$\vdash \varphi \leftrightarrow \psi \Rightarrow \sigma[\varphi/p] \leftrightarrow \sigma[\psi/p]$$

b. (Ragionamento per contrapposizione)
$$\vdash \varphi \rightarrow \psi \Leftrightarrow \neg \psi \rightarrow \neg \varphi$$

c.
$$\varphi \to \psi \& \vdash \psi \to \gamma \Rightarrow \varphi \to \gamma$$

d.
$$\vdash \varphi \leftrightarrow \neg \neg \varphi$$

Esempio 21.1

$$\vdash \neg(\alpha \lor \beta) \leftrightarrow (\neg\alpha \land \beta)$$

Assumo 1. e a. b. c. d.:

$$\vdash (\neg \alpha \lor \neg \beta) \leftrightarrow \neg (\alpha \lor \beta) \stackrel{b}{\Leftrightarrow}$$

$$\vdash \neg \neg (\alpha \land \beta) \leftrightarrow \neg (\neg \alpha \lor \neg \beta) \stackrel{d,c}{\Leftrightarrow}$$

$$\vdash (\alpha \land \beta) \leftrightarrow \neg (\neg \alpha \lor \neg \beta)$$

Istanzio le formule per togliere le negazioni:

$$\alpha = \neg \varphi$$

$$\beta = \neg \psi$$

E la formula diventa:

$$\vdash (\neg \varphi \land \neg \psi) \leftrightarrow \neg (\neg \neg \varphi \lor \neg \neg \psi) \stackrel{a}{\Leftrightarrow}$$
$$\vdash (\neg \varphi \land \neg \psi) \leftrightarrow \neg (\varphi \lor \psi) \qquad \Box$$

22 Definizione rigorosa di derivazione

L'insieme delle **derivazioni** è il più piccolo insieme x tc:

1.
$$\varphi \in X \ (\varphi \text{ è una formula})$$

$$2. \text{ se } D_1 \ D_2 \in X \Rightarrow$$

$$\begin{array}{ccc} D_1 & D_2 \\ \hline \varphi_1 & \varphi_2 \\ \hline & \varphi_1 \wedge \varphi_2 \end{array} \quad \land I \quad \in X$$

3. se
$$D_{\varphi_1 \wedge \varphi_2} \in X \Rightarrow$$

$$\begin{array}{c} D \\ \varphi_1 \wedge \varphi_2 \\ \hline \varphi_i \end{array} \wedge E_i \quad \in X \quad (i = 1, 2)$$

$$4. \ \ D_1, D_2 _{\varphi_1 \to \varphi_2} \in X \Rightarrow$$

$$\frac{D_1}{\varphi_1} \quad \frac{D_2}{\varphi_1 \to \varphi_2} \\ \frac{D_2}{\varphi_2} \quad \to E \quad \in X$$

5.
$$D_{\psi}^{\varphi} \in X \Rightarrow$$

$$\begin{array}{c} D \\ D \\ \psi \\ \hline \varphi \to \psi \end{array} \ \to I^* \quad \in X$$

6.
$$D \in X \Rightarrow$$

$$\frac{D}{\bot} \quad \bot_i \quad \in X$$

7.
$$\overset{\neg \varphi}{\underset{\perp}{D}} \in X \Rightarrow$$

8.
$$D_{\varphi_i} \in X \Rightarrow$$

$$\frac{D}{\varphi_i} \qquad \forall I_i \quad \in X \quad (i = 1, 2)$$

9.
$$D_{\varphi \vee \varphi}, D_{\gamma}^{\varphi}, D_{\gamma}^{\psi} \in X \Rightarrow$$

$$\begin{array}{ccc} D & \stackrel{[\varphi]}{D_1} & \stackrel{[\psi]}{D_2} \\ & \stackrel{\gamma}{-} & \stackrel{\gamma}{\gamma} & \end{array} \vee E & \in X$$

23 Definizione di altezza di una derivazione h[D]

• $h[\varphi] = 0$

$$\bullet \qquad h \begin{bmatrix} D_1 & D_2 \\ \frac{\alpha & \beta}{\alpha \wedge \beta} \wedge I \end{bmatrix} = \max \left(h \begin{bmatrix} D_1 \\ \alpha \end{bmatrix}, h \begin{bmatrix} D_2 \\ \beta \end{bmatrix} \right) + 1$$

•
$$h\left[\frac{D}{\alpha_1 \wedge \alpha_2} \wedge E_i\right]_{i=1,2} = h\left[D_{\alpha_1 \wedge \alpha_2}\right] + 1$$

$$\bullet \qquad h \begin{bmatrix} \frac{[\alpha]}{D} \\ \frac{\beta}{\alpha \to \beta} \end{bmatrix} = h \begin{bmatrix} \alpha \\ D \\ \beta \end{bmatrix} + 1$$

•
$$h\begin{bmatrix} D_1 & D_2 \\ \frac{\alpha & \alpha \to \beta}{\beta} \end{bmatrix} = max\left(h\begin{bmatrix} D_1 \\ \alpha \end{bmatrix}, h\begin{bmatrix} D_2 \\ \alpha \to \beta \end{bmatrix}\right) + 1$$

$$\bullet \qquad h \begin{bmatrix} D \\ \frac{\perp}{\beta} \end{bmatrix} = h \begin{bmatrix} D \\ \perp \end{bmatrix} + 1$$

$$\bullet \qquad h \begin{bmatrix} \begin{bmatrix} \neg \varphi \\ D \\ \bot \\ \varphi \end{bmatrix} = h \begin{bmatrix} \neg \varphi \\ D \\ \bot \end{bmatrix} + 1$$

•
$$h\left[\frac{D}{\varphi_i}\right]_{i=1,2} = h\left[D\right] + 1$$

$$\bullet \qquad h \begin{bmatrix} D & \begin{bmatrix} \alpha \end{bmatrix} & \begin{bmatrix} \beta \end{bmatrix} \\ D_1 & D_2 \\ \gamma & \gamma \end{bmatrix} = \max \left(h \begin{bmatrix} D \\ \alpha \vee \beta \end{bmatrix}, h \begin{bmatrix} \alpha \\ D_1 \\ \gamma \end{bmatrix}, h \begin{bmatrix} \beta \\ D_2 \end{bmatrix} \right) + 1$$

Esercizio 23.1

$$h \left\lceil \frac{[A \wedge B]^1}{\frac{A}{A \wedge B}} \wedge E_1 \right\rceil = 3$$

23.1 Principio di induzione sull'altezza di una derivazione

Sia P una proprietà sulle derivazioni, allora:

se
$$P$$
 vale per le derivazioni D to $h[D] = 0$ e se $\forall D, k(h[D] = k \Rightarrow (\forall \bar{D}[(h[\bar{D}] < k) \Rightarrow P(\bar{D})] \Rightarrow P(D)))$ allora $\forall D$. $P(D)$.

Se sono in grado di dimostrare la proprietà su tutte le derivazioni di altezza < k sono in grado di assumere (**per ipotesi induttiva**) la proprietà su \bar{D} (perchè ha altezza minore di D). Dall'ipotesi induttiva trovo che P vale per D che ha altezza k e quindi vale per tutte le derivazioni.

24 Teorema di semantica

- 1. $\Gamma, \psi \models \varphi \Rightarrow \Gamma \models \psi \rightarrow \varphi$ (Introduzione dell'implica)
- 2. $\Gamma \models \varphi \rightarrow \psi \& \Delta \models \varphi \Rightarrow \Gamma, \Delta \models \psi \text{ (Modus ponens)}$
- 3. $\Gamma \models \varphi \& \Delta \models \psi \Rightarrow \Gamma, \Delta \models \varphi \land \psi$ (Introduzione dell AND)
- 4. $\Gamma \models \varphi_1 \land \varphi_2 \Rightarrow \Gamma \models \varphi_i \quad i \in \{1, 2\}$ (Eliminazione dell'AND)
- 5. $\Gamma \models \bot \Rightarrow \Gamma \models \varphi \quad \forall \varphi \text{ (Ex falso)}$
- 6. $\Gamma, \neg \varphi \models \bot \Rightarrow \Gamma \models \varphi$ (Riduzione ad assurdo)

L'OR è superfluo perchè si può definire in termini dei seguenti connettivi:

$$\{\rightarrow, \land, \bot\}$$

ad esempio si può prendere l'OR non primitivo (per la regola di De Morgan):

$$\vdash \alpha \lor \beta \leftrightarrow \neg(\neg \alpha \land \neg \beta)$$

25 Soundness e Completeness

25.1 Teorema di correttezza (Soundness)

È il passaggio da deduzione naturale a conseguenza logica:

$$\Gamma \vdash \alpha \to \Gamma \models \alpha$$

25.1.1 Lemma 1

Questo lemma lega la nozione di derivazione a quella di conseguenza logica:

$$\underset{\varphi}{D} \Rightarrow hp(D) \models \varphi$$

Utilizziamo:

- Tutti i teoremi di semantica
- Induzione

Tecnica: induzione su h(D) e per casi sull'ultima regola

1. Base
$$h[D] = 0$$
 $D = \varphi$ $hp(D) = \varphi$ $hp(D) = \varphi \models \varphi$

2. Passo induttivo

Caso 1.

$$D = \frac{D_1^{[\varphi]}}{\varphi \to \psi} \to I \qquad h[D_1] < h[D]$$

per ipotesi induttiva $hp(D_1) \models \psi$, cioè:

$$D_1 \Rightarrow hp(D_1) \models \psi$$

i.

$$\varphi \in hp(D_1), hp(D_1) = \Delta \cup \{\varphi\}$$

$$(ipotesi\ induttiva)\ \Delta \cup \{\varphi\} \models \psi \stackrel{1}{\Rightarrow} \Delta \models \varphi \to \psi$$

$$\Delta = hp(D_1) - \{\varphi\} = hp(D)$$

$$hp(D) \models \varphi \to \psi \quad \Box$$

ii.

$$\varphi \notin hp(D_1)$$
 (ipotesi induttiva) $hp(D_1) \models \psi$

Aggiungo φ per weakening:

$$hp(D_1), \varphi \models \psi \stackrel{1}{\Rightarrow}$$

 $hp(D_1) \models \varphi \to \psi$
 $hp(D) \models \varphi \to \psi$

Caso 2.

$$D = \frac{D_1 \quad D_2}{\varphi \quad \varphi \to \psi} \to E$$

Per ipotesi induttiva:

$$hp(D_1) \models \varphi \quad hp(D_2) \models \varphi \rightarrow \psi \stackrel{2}{\Rightarrow}$$

 $hp(D_1) \cup hp(D_2) \models \psi$
 $hp(D) \models \psi$

Caso 3.

$$D = \frac{D_1}{\varphi} \frac{D_2}{\psi} \wedge I$$

Per ipotesi induttiva:

$$hp(D_1) \models \varphi \quad hp(D_2) \models \psi \stackrel{3}{\Rightarrow}$$

 $hp(D_1) \cup hp(D_2) \models \varphi \wedge \psi$
 $hp(D) \models \varphi \wedge \psi$

Caso 4.

$$D = \frac{D_1}{\varphi_1 \wedge \varphi_2} \underset{i=1,2}{\wedge} E_i$$

Per ipotesi induttiva:

$$hp(D_1) \models \varphi_1 \land \varphi_2 \stackrel{4}{\Rightarrow}$$
$$hp(D_1) \models \varphi_i$$
$$hp(D) \models \varphi_i$$

Caso 5.

$$D = \frac{D_1}{\beta} \bot_i$$

Per ipotesi induttiva:

$$hp(D_1) \models \bot \stackrel{5}{\Rightarrow}$$

$$hp(D_1) \models \beta$$

$$hp(D) \models \beta$$

Caso 6.

$$D = \frac{\overset{[\neg \varphi]}{D_1}}{\varphi} RAA$$

Per ipotesi induttiva:

$$hp(D_1) \models \bot$$

$$(hp(D_1) - \{\neg \varphi\}) \cup \{\neg \varphi\} \models \bot \stackrel{6}{\Rightarrow}$$

$$hp(D_1) - \{\neg \varphi\} \models \varphi$$

$$hp(D) \models \varphi$$

- Lemma1 $\underset{\varphi}{D} \Rightarrow hp(D) \models \varphi$
- Lemma2 $E \subseteq \Gamma$ $E \models \varphi \Rightarrow \Gamma \models \varphi$

Teorema 5 (Soundness)

$$\Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi$$

Dimostrazione: se
$$\Gamma \vdash \varphi \overset{def}{\Leftrightarrow} \exists D_{\varphi} \in hp(D) \subseteq \Gamma$$

$$\Rightarrow Lemma1 \ hp(D) \models \varphi$$

$$\Rightarrow Lemma2 \quad \Gamma \models \varphi$$

Per la dimostrazione:

$$\alpha \to \beta \leftrightarrow \neg \beta \to \alpha$$

Il teorema di soundness diventa:

$$\Gamma \not\models \alpha \Rightarrow \Gamma \not\vdash \alpha$$
$$\vdash \alpha \Rightarrow \models \alpha$$
$$\not\models \alpha \Rightarrow \not\vdash \alpha$$

Contromodello ⇒ prova di **non** derivabilità

25.2Teorema di completezza (Completeness)

È il passaggio da conseguenza logica a deduzione naturale:

$$\Gamma \models \alpha \to \Gamma \vdash \alpha$$

Definizione 25.1 (Insieme consistente)

Un insieme Γ, E, Δ si dice **consistente** (o coerente o non contraddittorio) se $\Gamma \not\vdash \bot$. Quindi ad esempio Γ è inconsistente se $\Gamma \vdash \bot$

Prendiamo in considerazione $< A, \subseteq > p.o \quad A \subseteq P(PROP)$

25.2.1 Teorema 0

Sono equivalenti:

- 1. $\Gamma \vdash \bot$
- 2. $\forall \varphi \ \Gamma \vdash \varphi$
- 3. $\exists \varphi \quad \Gamma \vdash \varphi \& \quad \Gamma \vdash \neg \varphi$
- $1. \Rightarrow 2. \Rightarrow 3. \Rightarrow 1.$

Prova (1)

1. allora $\exists D hp(D) \subseteq \Gamma$

$$\frac{D}{\frac{\bot}{\varphi}}\bot_{i}\Rightarrow\Gamma\vdash\varphi\quad\Box$$

- $2. \Rightarrow 3. \quad \sqrt{}$
- $3. \Rightarrow 1.$:

$$\Gamma \vdash \varphi \quad \exists \quad D_1 \quad hp(D_1) \subseteq \Gamma$$

$$\Gamma \vdash \neg \varphi \ \exists \ D_2 \ hp(D_2) \subseteq \Gamma$$

$$\begin{array}{cc} D_1 & D_2 \\ \frac{\varphi}{} & \neg \varphi \end{array} \rightarrow E \Rightarrow \Gamma \vdash \bot \quad (1) \ \Box$$

25.2.2 Proposizione 1

Se sono un insieme inconsistente, allora non rtovo mai una valutazione che renda vera tutte le formule (sono insoddisfacibile)

$$\Gamma \vdash \bot \Rightarrow \forall v.[|\Gamma|]_v \underbrace{\neq}_{non\ soddisfacibile} 1$$

Prova

Se

$$\Gamma \vdash \bot \overset{def}{\Leftrightarrow} \exists \ \underset{\bot}{D} \quad hp(D) \subseteq \Gamma$$

Per il teorema di soundness:

$$\Gamma \models \bot$$

che sarebbe la definizione di conseguenza logica:

$$\forall v.[|\Gamma|]_v = 1 \Rightarrow [|\bot|]_v = 1 \Leftrightarrow$$

$$\underbrace{[|\Gamma|]_v \neq 1}_{\checkmark} OR \underbrace{[|\bot|]_v = 1}_{\times}$$

25.2.3 Teorema 1

Definizione 25.2 (Insieme massimale consistente) Δ è massimale consistente sse:

- \bullet $\Delta \not\vdash \bot$
- $se \ \Delta \subseteq \Sigma, \ \Sigma \not\vdash \bot \Rightarrow \Delta = \Sigma$

Ci chiediamo se esistono insiemi massimali consistenti. Si, ma bisogna dimostrarli:

$$C = \{\Gamma | \Gamma \not\vdash \bot\} < C, \subseteq > p.o$$

 \Rightarrow proviamo che ha massimali

Se $\Gamma \not\vdash \bot$ allora $\exists \ \Delta$ massimale consistente t
c $\Gamma \subseteq \Delta$ Prova 2 parti

- 1. Parte 1: costruisco una successione di insiemi consistenti
- 2. **Parte 2**:
 - definiamo un insieme $\Gamma^* \not\vdash \bot$
 - Γ^* massimale

Parte 1:

Fissiamo un'enumerazione di tutte le formule:

$$\varphi_0, \varphi_1, \varphi_2, \dots, \varphi_k, \dots$$

Ora definiamo la successione $(\Gamma_i)_{i\in\mathbb{N}}$ di insiemi consistenti di formule:

 $\Gamma_0 = \Gamma$ (consistente per ipotesi)

$$\Gamma_{i+1} = \begin{cases} \Gamma_i + \{\varphi_i\} & \text{se } \Gamma_i, \varphi_i \not\vdash \bot \\ \Gamma_i & \text{altrimenti} \end{cases}$$

Vale che:

- 1. $\forall i \ \Gamma_i \subseteq \Gamma_{i+1}$ (non decrescente) per costruzione
- 2. $\forall i \ \Gamma_i \not\vdash \bot \text{ si prova per induzione:}$
 - (base) $\Gamma_0 = \Gamma \quad \Gamma_0 \not\vdash \bot$

- (passo) Γ_{i+1} ho due casi:
 - a) $\Gamma_{i+1} = \Gamma_i$ per ipotesi induttiva:

$$\Gamma_i \not\vdash \bot$$

$$\Gamma_{i+1} \not\vdash \bot$$

b) $\Gamma_{i+1} = \Gamma_i \cup \{\varphi_i\} \not\vdash \bot$ per costruzione

Parte 2:

Unione infinita di insiemi consistenti

$$\Gamma^* = \bigcup_{i \in \mathbb{N}} \Gamma_i$$

Si dimostra:

- 1. $\Gamma^* \not\vdash \bot$
- 2. Γ^* è MC (Massimale Consistente)

nel seguente modo:

1. $(RAA)\Gamma^* \vdash \bot \stackrel{def}{\Leftrightarrow} \exists \ D \in hp(D) \subseteq \Gamma^*$

$$\underbrace{hp(D)}_{finite} = \{\psi_1, \dots, \psi_n\} \subseteq \Gamma^*$$

 $\forall j \in [1 \dots n] \quad \varphi_j \in \Gamma_{ij} \text{ (un insieme nella successione)}$

$$\psi_1 \in \Gamma_{i1} \dots \psi_n \in \Gamma_{in}$$

Consideriamo $max\{i_1 \dots i_n\} = m$

$$\Gamma_{i1} \subseteq \Gamma_{in} \subseteq \Gamma_m$$

quindi

$$\mathop{\mathit{hp}}(D) \subseteq \Gamma_m$$

Ma per costruzione Γ consistente \Rightarrow assurdo/impossibile \Rightarrow $\Gamma^* \not\vdash \bot$

2. Γ^* è massimale

Supponiamo che esista $\Delta \neq \Gamma^*$ tc:

$$\Delta \not\vdash \bot \quad e \quad \Gamma^* \subseteq \Delta$$

quindi avremo almeno una $\psi \in \Delta \setminus \Gamma^*$.

<u>Per l'enumerazione</u> \exists , k tc $\psi = \varphi_k$ per costruzione della successione

$$\varphi_k \in \Gamma_{k+1} \quad (\Gamma_k, \varphi_k \vdash \bot \quad \text{altrimenti})$$

e dato che $\Gamma_k \cup \{\varphi_k\} \subseteq \Delta$ avremmo:

$$\Delta \vdash \bot$$
 impossibile

$$\varphi_k \in \Gamma^*$$

- se Γ soddisfacibile $\Rightarrow \not\vdash \bot$
- se $\Gamma \not\vdash \bot \Rightarrow \exists \Delta MC \quad \Gamma \subseteq \Delta$

25.2.4 Teorema 2: Chiusura per derivabilità

Se
$$\Gamma$$
 è MC^4 e $\Gamma \vdash \alpha \Leftrightarrow \alpha \in \Gamma$

Prova:

Supponiamo per assurdo che $\alpha \notin \Gamma$ allora:

$$\underbrace{\Gamma \cup \{\alpha\} \vdash \bot}_{\substack{D \\ \bot \text{ to } hp(D) \subseteq \Gamma \cup \{\alpha\}}} \Rightarrow \Gamma \vdash \neg \alpha \qquad per: \underbrace{\frac{\stackrel{\alpha}{D}}{\stackrel{\bot}{D}}}_{\neg \alpha}$$

$$\underbrace{\Gamma \vdash \neg \alpha \;\; \text{ma per hp} \; \Gamma \vdash \alpha}_{\text{Teorema } 0} \Rightarrow$$

$$\Gamma \vdash \bot \text{ assurdo} \Rightarrow \alpha \in \Gamma \square$$

25.2.5 Teorema 3

$$\Gamma$$
 MC allora $\forall \varphi$.
$$\underbrace{\varphi \in \Gamma = \neg \varphi \in \Gamma}_{A \to B \ OR \ \neg A \lor B}$$

dimostrazione equivalente:

$$\varphi \not\in \Gamma \Rightarrow \neg \varphi \in \Gamma$$

Prova:

se
$$\varphi \notin \Gamma \Rightarrow \Gamma, \varphi \vdash \bot \Rightarrow$$

$$\Gamma \vdash \neg \varphi \ \stackrel{TH2}{\Leftrightarrow} \ \neg \varphi \in \Gamma$$

25.2.6 Teorema 4

se
$$\Gamma$$
 MC

- $\varphi \land \psi \in \Gamma \Leftrightarrow (\varphi \in \Gamma \& \psi \in \Gamma)$
- $\varphi \to \psi \in \Gamma \Leftrightarrow (\varphi \in \Gamma \Rightarrow \psi \in \Gamma)$
- Prova a:

$$\varphi \wedge \psi \in \Gamma \ \stackrel{TH2}{\Leftrightarrow} \ \Gamma \vdash \varphi \wedge \psi \ sse$$

per regole di deduzione naturale: $\Gamma \vdash \varphi \ \& \ \Gamma \vdash \psi \quad per : \ \frac{\overline{\varphi} \quad \overline{\psi}}{\varphi \land \psi}$

$$\overset{TH2}{\Leftrightarrow}\varphi\in\Gamma\ \&\ \psi\in\Gamma$$

• Prova b:

$$\underbrace{\varphi \to \psi \in \Gamma}_{A} \Leftrightarrow \underbrace{(\varphi \in \Gamma}_{B} \Rightarrow \underbrace{\psi \in \Gamma}_{C})$$

⁴Massimale Consistente

$$\Rightarrow \qquad \qquad (\Rightarrow) \quad A \Rightarrow B \Rightarrow C$$

$$-\mathbf{A} \quad \varphi \to \psi \in \Gamma \stackrel{TH2}{\Rightarrow} \Gamma \vdash \varphi \to \psi \text{ per } \to E$$

$$-\mathbf{B} \quad \varphi \in \Gamma \stackrel{TH2}{\Rightarrow} \Gamma \vdash \varphi \text{ per } \to E$$

 $\Gamma \vdash \psi \stackrel{TH2}{\Leftrightarrow} \psi \in \Gamma(\mathbf{C})$

 \Leftarrow

$$(\Leftarrow) \quad (B \Rightarrow C) \Rightarrow A$$

Caso 1 $\varphi \in \Gamma$

$$\psi \in \Gamma \overset{TH2}{\Leftrightarrow} \Gamma \vdash \psi$$

Per costruzione di Γ

$$\Gamma, \varphi \vdash \psi \Rightarrow \Gamma \vdash \varphi \Rightarrow \psi \overset{TH2}{\Leftrightarrow} \varphi \rightarrow \psi \in \Gamma$$

Caso 2 $\varphi \notin \Gamma$

$$\varphi \notin \Gamma \overset{TH2,3}{\Rightarrow} \Gamma \vdash \neg \varphi \ (\varphi \notin \Gamma \overset{TH3}{\Leftrightarrow} \neg \varphi \in \Gamma \overset{TH2}{\Leftrightarrow} \Gamma \vdash \neg \varphi)$$

$$\Rightarrow \Gamma, \varphi \vdash \bot$$

$$\Rightarrow \Gamma, \varphi \vdash \psi \quad per : \frac{\overset{[\varphi]}{D}}{\overset{\bot}{\varphi \rightarrow \psi} \rightarrow I} \bot_{i}$$

$$\Gamma \vdash \varphi \rightarrow \psi \overset{TH2}{\Leftrightarrow} \varphi \rightarrow \psi \in \Gamma \ (\mathbf{A})$$

25.2.7 Teorema 5

$$\Gamma MC \Rightarrow \exists v. [|\Gamma|]_v = 1$$

Prova:

sia v. to
$$v(p) = 1 \Leftrightarrow p \in \Gamma$$

è accettabile
$$v(\neg p) = 0$$
 quando $\neg p \notin \Gamma(MC)$

Dimostrazione per induzione sul rango di φ :

$$[|\varphi|]_v = 1 \Leftrightarrow \varphi \in \Gamma$$

• Base: φ atomica

$$-\perp \qquad [|\bot|]_v = 1 \Leftrightarrow \bot \in \Gamma \Leftrightarrow [|\bot|]_v = 0 \Leftrightarrow \bot \not\in \Gamma$$

- simbolo proposizionale (valido per costruzione)

• Passo induttivo:

$$\begin{split} & - \varphi = \psi \wedge \gamma \\ & \varphi \in \Gamma \Leftrightarrow [|\varphi|]_v = 1 \\ & \psi \wedge \gamma \in \Gamma \overset{def}{\Leftrightarrow} [|\psi|]_v = 1 \ \& \ [|\gamma|]_v = 1 \\ & \overset{TH4}{\Leftrightarrow} \psi \in \Gamma \ \& \ \gamma \in \Gamma \quad \sqrt{} \\ & - \varphi = \psi \to \gamma \\ & \varphi \in \Gamma \Leftrightarrow [|\varphi|]_v = 1 \\ & \psi \to \gamma \in \Gamma \overset{def}{\Leftrightarrow} [|\psi|]_v = 0 \ OR \ [|\gamma|]_v = 1 \\ & \overset{TH4}{\Leftrightarrow} \psi \in \Gamma \Rightarrow \gamma \in \Gamma \\ & [|\psi|]_v = 1 \quad [|\gamma|]_v = 1 \end{split}$$

Quindi visto che la valutazione di γ è 1 basta per verificare l'OR visto che era a 1 anche prima.

25.2.8 Corollario 1

Se $\Gamma \not\vdash \bot$ allora $\exists v.[|\Gamma|]_v = 1$ **Prova**:

25.2.9 Teorema 6 (Completezza)

$$\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi$$

Riscriviamo il risultato usando il ragionamento per contrapposizione ($\alpha \to \beta = \neg \beta \to \neg \alpha$)

$$\begin{split} \Gamma \not \vdash \varphi \Rightarrow \Gamma \not \models \varphi \\ \Gamma \not \vdash \varphi \Rightarrow \Gamma, \neg \varphi \not \vdash \bot \stackrel{COR1}{\Rightarrow} \\ \exists v. \ \ [|\Gamma|]_v = 1 \ \& \ [|\neg \varphi|]_v = 1 \ \Leftrightarrow \\ \exists v. \ \ [|\Gamma|]_v = 1 \ \& \ [|\varphi|]_v = 0 \Rightarrow \Gamma \not \models \varphi \end{split}$$

25.3 Estensione

Si possono estendere i teoremi al sistema completo con \vee .

26 Logica del primo ordine (dei Predicati)

La logica del primo ordine è una logica che estende la logica proposizionale e permette di esprimere concetti più complessi attraverso strutture matematiche. Un esempio non formale è il seguente:

$$\forall n.$$
 (se n è pari allora $\exists m$ dispari t.c. $m > n$)

La grammatica locale a questa frase è:

$$\forall$$
, \exists , \Rightarrow + esprimere proprietà e relazioni

Avremo bisogno anche della nozione di variabili, costanti, funzioni e operatori.

26.1 Linguaggio di primo ordine

- Connettivi: \vee , \wedge , \rightarrow , \perp (\neg)
- Quantificatori: ∀, ∃ Al primo ordine si può quantificare solo su variabili
- Variabili: $x, y, z, \dots Var = insieme delle variabili$
- Relazioni: $R_0, R_1, \ldots P \ldots Q \ldots$

 $\forall n \exists \mathbb{N} \setminus \{0\}$ insieme \mathbb{R}^n di relazioni n arie

• Funzioni: $\forall n \in \mathbb{N} \ F^n = \text{insieme di funzioni}$

$$f_1 \dots f_n$$
 simboli per funzioni

- Simboli ausiliari: "(", ")", ",", "."
- Uguaglianza: = relazione binaria che non è già inclusa in R^2
- Costanti: C c_0, c_1, \ldots

L'unione di tutti gli insiemi è la seguente:

$$R = \cup_i R^i \qquad F = \cup_i F^i$$

26.2 Entità sintattiche

Vengono definite su:

- Termini
- Formule

26.2.1 Termini

L'insieme TERM dei termini è il più piccolo insieme X tale che:

- 1. $Var \in X$
- $2. C \in X$
- 3. se $t_1 \dots t_n \in X$ e f è un simbolo di funzione di arietà n

$$f(t_1 \dots t_n) \in X$$

ad esempio:

$$\overline{+} \in F^2$$

$$\overline{4}, \overline{5} \in C \in X \Rightarrow \overline{+}(\overline{4}, \overline{5}) \in X$$

Esempio 26.1

 $\overline{c} \in C$ x_0, x_1, \ldots f di arietà 2, g di arietà 1

- 1. $\overline{c} \in TERM$
- 2. $x_{1000} \in TERM$
- 3. $f(\overline{c}, x_4) \in TERM$
- 4. $g(x_1) \in TERM$
- 5. $g(x_1, x_2) \notin TERM$
- 6. $f(g(x_2), g(\overline{c})) \in TERM$

26.2.2 Formule

L'insieme delle formule FORM delle formule è il più piccolo insieme X tale che:

- 1. $\perp \in X$
- 2. se $t_1, t_2 \in TERM$ allora $t_1 = t_2 \in X$
- 3. se P è una relazione di arietà k e $t_1 \dots t_k \in TERM$ allora $P(t_1 \dots t_k) \in X$

Le precedenti 3 formule sono dette atomiche.

- 4. se $\varphi, \psi \in X$ allora $(\varphi \circ \psi) \in X \quad \circ \in \{\land, \lor, \rightarrow\}$
- 5. se $x \in Var$ e $\varphi \in X$ allora $(\forall x. (\varphi)) \in X$
- 6. se $x \in Var$ e $\varphi \in X$ allora $(\exists x. (\varphi)) \in X$

26.3 Convenzione

I quantificatori \forall , \exists legano piu di ogni altro connettivo.

$$\forall y. \ \varphi \wedge \psi \equiv (\forall y. \ \varphi) \wedge \psi$$

$$\neq \ \forall y. \ (\varphi \wedge \psi)$$

26.3.1 Concetto di variabile libera e legata

$$(\forall x.\ (P(\underbrace{x}_{\text{non libera}},\underbrace{y}_{\text{libera}}))) \rightarrow \forall z.\ (Q(\underbrace{z}_{\text{non libera libera}},\underbrace{x}_{\text{other libera}}))$$

Sia $\varphi \in FORM$; si dice che un'occorrenza di $x \in Var$ è libera se non occorre in una sottoformula del tipo:

$$\forall x.\; \psi$$

О

$$\exists x. \ \psi$$

Nozione duale \rightarrow variabile legata

Esempio 26.2

$$\psi = (\forall x. \ R(x, y)) \lor (\forall y. \ R(x, y))$$

Le variabili libere (FV: Free Variables) sono:

$$FV(\psi) = \{y, x\}$$

 $FV(\varphi) = \{x | esiste un'occorrenza libera di x in \varphi \}$

Definizione 26.1 (Variabile libera)

• TERM FV(t)

$$FV(c) = \emptyset$$

$$FV(x) = \{x\}$$

$$FV(f(t_1 \dots t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$$

• FORM

$$FV(\bot) = \emptyset$$

$$FV(t_1 = t_2) = FV(t_1) \cup FV(t_2)$$

$$FV(P(t_1 \dots t_n)) = FV(t_1) \cup \dots \cup FV(t_n)$$

$$FV(\varphi \circ \psi) = FV(\varphi) \cup FV(\psi) \quad \circ \in \{\land, \lor, \to\}$$

$$FV(\forall x. \ \varphi) = FV(\varphi) \setminus \{x\}$$

$$FV(\exists x. \ \varphi) = FV(\varphi) \setminus \{x\}$$

Definizione 26.2 (Variabile legata)

• **FORM** $BV(\varphi)$ $\varphi \in FORM$

$$BV(\bot) = \emptyset$$

$$BV(t_1 = t_2) = BV(t_1) \cup BV(t_2)$$

$$BV(P(t_1 \dots t_n)) = BV(t_1) \cup \dots \cup BV(t_n)$$

$$BV(\varphi \circ \psi) = BV(\varphi) \cup BV(\psi) \quad \circ \in \{\land, \lor, \to\}$$

$$BV(\forall x. \ \varphi) = BV(\varphi) \cup \{x\}$$

$$BV(\exists x. \ \varphi) = BV(\varphi) \cup \{x\}$$

26.4 Sottotermini

$$ST(\overline{c}) = {\overline{c}}$$

$$ST(x) = {x}$$

$$ST(f(t_1 \dots t_n)) = ST(t_1) \cup \dots \cup ST(t_n) \cup {f(t_1 \dots t_n)}$$

26.5 Sottoformule

$$SF(\bot) = \{\bot\}$$

 $SF(t_1 = t_2) = \{t_1 = t_2\}$

$$SF(P(t_1 \dots t_n)) = \{P(t_1 \dots t_n)\}$$

$$SF(\varphi \circ \psi) = SF(\varphi) \cup SF(\psi) \cup \{\varphi \circ \psi\} \quad \circ \in \{\land, \lor, \to\}$$

$$SF(\forall x. \ \varphi) = SF(\varphi) \cup \{\forall x. \ \varphi\}$$

26.6 Vincoli

$$t \in TERM \text{ si dice chiuso se } FV(t) = \emptyset \text{ o}$$

$$\varphi \in \underbrace{FORM\text{si dice chiusa}}_{\text{Enunciato (Sentence SENT)}} \text{ se } FV(\varphi) = \emptyset$$

Prendendo in considerazione la sostituzione $\varphi[t/x]$ esistono 2 tipi di vincoli:

- 1. non posso sostituire variabili legate
- 2. non tutti i termini vanno bene

Questi vincoli servono ad evitare errori, ad esempio:

$$\varphi = \forall x. \ R(x,y) \in FORM \quad tc = f(x) \in TERM$$

$$\varphi[f(x)/y] = \forall x. \ R(x,\underbrace{f(x)}_{legato}) \quad \text{Questo risultato non è accettabile}$$

$$\varphi[f(x),x] = \varphi$$

Dopo la sostituzione sono state create delle nuove variabili legate.

Definizione 26.3

Termini liberi per una variabile in una formula.

t libero per x in φ se dopo la sostituzione $\varphi[t/x]$ tutte le occorrenze delle variabili in t sono libere.

 $\varphi[t/x]$ è corretta se dopo la sostituzione tutte le occorrenze delle variabili in t sono libere.

Definizione 26.4 (Sostituzione)

 $\varphi[t/x]$ t libero per x in φ

• Termini:

$$-x[t/x] = t$$

$$-y[t/x] = y y \equiv x$$

$$-c[t/x] = c$$

$$-f(t_1 \dots t_n)[t/x] = f(t_1[t/x] \dots t_n[t/x])$$

• Formule:

1. φ atomica

$$\begin{array}{l} 1.1 \ \bot[t/x] = \bot \\ 1.2 \ R(t_1 \ldots t_n)[t/n] = R(t_1[t/x] \ldots t_n[t/x]) \\ 1.3 \ (t_1 = t_2)[t/x] = t_1[t/x] = t_2[t/x] \\ 2. \ (\varphi \circ \psi)[t/x] \equiv \varphi[t/x] \circ \psi[t/x] \quad \circ \in \{\land, \lor, \to\} \\ 3. \ \varphi \equiv Qy \ . \ \psi \qquad \qquad Q \in \{\forall, \exists\} \\ \varphi[t/x] = \begin{cases} \varphi \ x \equiv y \\ Qy \ . \ (\psi[t/x]) \end{cases} \end{array}$$

Esempio 26.3

$$\begin{split} R(\mbox{-}\,,\mbox{-}) \\ \sigma &= \forall x. \; (R(z,x) \; [f(z)] \equiv \forall x. \; (R(f(z),x)) \; \; \checkmark \\ \forall x. \; (R(z,x)) \; [f(x)/z] \equiv \forall x. \; (R(f(x),x)) \; \; \times \\ \forall x. \; (R(z,x)) \; [f(z)/x] \equiv \sigma \end{split}$$

f(x) non è libero per x in σ

27 Estensione della deduzione naturale

27.1 Regole del \forall

27.1.1 Introduzione

$$\frac{D}{\forall x.\ \varphi(x)} \forall I \quad x \not\in FV(hp(D)) \ (\text{x è generica})$$

27.1.2 Eliminazione

$$\frac{D}{\varphi(t)} \forall E \quad \text{t sia libero per x in } \varphi$$

Esercizio 27.1

$$\frac{\dfrac{\forall x.\; P(x)}{P(c)} \forall E}{\forall x.\; P(x) \rightarrow P(c)} \rightarrow I^1 \quad \ P \; unario \; e \; c \in TERM \; non \; catturo \; variabili$$

Esercizio 27.2

$$\begin{array}{c} \vdash \forall x. \; (\varphi \rightarrow \psi) \rightarrow ((\forall x. \; \varphi) \rightarrow (\forall x. \; \psi)) \\ \\ \frac{[\forall x. \; (\varphi \rightarrow \psi)]^3}{\varphi \rightarrow \psi} \forall E \quad \frac{[\forall x. \; \varphi]^1}{\varphi} \forall E \\ \hline \frac{\psi}{\forall x. \; \psi} \rightarrow E \\ \hline \forall x. \; \psi \\ \hline \forall x. \; \varphi \rightarrow \forall x. \; \psi \\ \hline \forall x. \; (\varphi \rightarrow \psi) \rightarrow (\forall x. \; \varphi \rightarrow \forall x. \; \psi) \end{array} \rightarrow I^1$$

27.2 Regole del \exists

27.2.1 Introduzione

$$\frac{\varphi(t)}{\exists x. \ \varphi(x)} \exists I \quad \text{t sia libero per x in } \varphi$$

cioè:

$$\underbrace{\frac{\varphi[t/x]}{\exists x.\ \varphi}}$$

se una "proprietà" vale per t allora esiste un valore per cui vale

Esempio 27.1

R binaria, $\overline{c} \in C$

$$\vdash R(c,c) \rightarrow \exists x. \ R(x,x)$$

$$\frac{\frac{R(c,c)}{\exists x.\; R(x,x)}\exists I}{R(c,c)\to\exists x.\; R(x,x)}\to I$$

27.2.2 Eliminazione

$$x \to \mathbb{R} \quad \text{x } \varphi \text{ proprietà su } \mathbb{N}$$

$$\exists x. \ \varphi(x) \equiv \varphi(0) \lor \varphi(1) \lor \ldots \lor \varphi(n) \lor \ldots$$

$$\exists x. \ \varphi(x) \quad D_1$$

$$\frac{\neg}{\gamma} \exists E^n$$

Con i seguenti vincoli:

$$x \notin FV(\gamma)$$

$$x \notin FV(hp(D_1)) \text{ a parte } \varphi(x) \text{ stessa}$$

Esercizio 27.3

$$\begin{array}{c} \vdash \exists x. \; (\varphi(x) \land \psi(x)) \rightarrow \exists x. \; \varphi(x) \\ \\ \frac{[\varphi(x) \land \psi(x)]^2}{\varphi(x)} \land E_1 \\ \hline \exists x. \; (\varphi(x) \lor \psi(x))]^1 & \frac{\exists x. \; \varphi(x)}{\exists x. \; \varphi(x)} \exists I \\ \hline \\ \frac{\exists x. \; \varphi(x)}{\exists x. \; (\varphi(x) \land \psi(x)) \rightarrow \exists x. \; \varphi(x)} \rightarrow I^1 \end{array}$$

Esercizio 27.4

$$\begin{split} & \vdash \forall x. \; \varphi \to \exists x. \; \varphi \\ & \frac{[\forall x. \; \varphi]^1}{\varphi} \forall E \\ & \frac{\varphi}{\exists x. \; \varphi} \exists I \\ & \forall x. \; \varphi \to \exists x. \; \varphi \end{split} \to I^1$$

Esercizio 27.5

$$\begin{array}{c} \vdash \forall x. \; \varphi \rightarrow \neg \forall x. \neg \varphi \\ \\ \frac{[\forall x. \; \varphi]^2}{\varphi} \forall E \quad \frac{[\forall x. \; \neg \varphi]^1}{\neg \varphi} \forall E \\ \\ \frac{\bot}{\neg \forall x. \; \neg \varphi} \rightarrow I^1 \\ \\ \forall x. \; \varphi \rightarrow \neg \forall x. \; \neg \varphi \end{array} \rightarrow I^2$$

 $\neg \forall x. \ \neg \varphi$ "non è vero che per ogni valore di $x \varphi$ non vale" equivale a dire $\exists x \ per \ cui \ \varphi \ vale. \ \exists x. \ \varphi$

Esercizio 27.6

$$\vdash (\neg \exists x. \ \neg \varphi) \rightarrow \forall x. \ \varphi$$

$$\frac{[\neg \exists x. \ \neg \varphi]^2 \quad \frac{[\neg \varphi]^1}{\exists x. \ \neg \varphi} \exists I}{} \\ \frac{\bot}{\varphi} \\ \frac{}{\forall x. \ \varphi} \\ \neg \exists x. \ \neg \varphi \rightarrow \forall x. \ \varphi$$

Esercizio 27.7

28 Semantica della logica del primo ordine

28.1 Struttura matematica

È formata da una quadrupla:

$$V = \langle A, \mathbb{R}, \mathbb{F}, \mathbb{C} \rangle$$

- 1. $A \neq 0$ dominio
- 2. \mathbb{R} insieme di relazioni su A
- 3. \mathbb{F} insieme di funzioni su A
- 4. $\mathbb{C} \subseteq A$ insieme di costanti

Esempio 28.1

$$< \mathbb{N}, \leq, +, \cdot, succ, 0, 1 >$$

Definizione 28.1 (L_Struttura)

 \leftrightarrow associa struttura m a un linguaggio di primo ordine

$$U = < A, (\)^U >:$$

$$A \neq \emptyset \quad , \quad (\)^U \ \textit{funzione}$$

- $a. \ \forall c \in C \ C^U \in A$
- $b. \ \forall f \in F, \ k > 0 \rightarrow f^U : A^k \rightarrow A \ in \ F$
- $c. \ \forall \mathbb{R} \in \mathbb{R}^n \to \mathbb{R}^U \subseteq \underbrace{A}_{\underbrace{A \times \ldots \times A}_n} \quad in \ \mathbb{R}$

$$\underbrace{f(c_1, c_2)}_{\text{sintassi}} = \underbrace{c_3}_{\text{struttura}}$$

 $(c_1)^U = 5$ (il 5 è semantica)

 $(c_2)^U = 2$ (il 2 è semantica)