VI Nierówność Gronwalla

Nierówność Gronwalla wykorzystywana jest w dowodzie twierdzenia o (istnieniu i) jednoznaczności rozwiązań stochastycznych równań różniczkowych.

Lemat Gronwalla: Niech $u,a,b\colon [0,\infty)\to [0,\infty)$ będą nieujemnymi mierzalnymi funkcjami spełniającymi nierówność

$$u(t) \le a(t) + \int_0^t b(s)u(s)ds$$
, dla wszystkich $t \ge 0$.

Wtedy

$$u(t) \le a(t) + \int_0^t a(s)b(s) \exp\left(\int_s^t b(r)dr\right) ds$$
, dla wszystkich $t \ge 0$.

Zadanie 6-1: Niech $A, B, T \ge 0$ oraz niech $u: [0, T] \to \mathbb{R}$ będzie funkcją ciągłą taką, że

$$\forall t \in [0, T] \ u(t) \le A + B \int_0^t u(s) ds.$$

Wykaż, że

$$u(T) \le A \exp(BT)$$
.

Zadanie 6-2: Niech $T \ge 0$ oraz niech $u \colon [0,T] \to \mathbb{R}_+$ i $a \colon [0,T] \to \mathbb{R}$ będą funkcjami klasy C^1 . Jeżeli istnieje stała B > 0 taka, że

$$\forall t \in [0, T] \ u(t) \le a(t) + B \int_0^t u(s) ds,$$

to

$$\forall t \in [0, T] \ u(t) \le a(t) + B \int_0^t a(s) \exp\left(B(t - s)\right) ds.$$

Zadanie 6-3: Udowodnij lemat Gronwalla. (Zauważmy, że w przypadku gdy a(t) = a, b(t) = b są stałe, to teza mówi, że dla wszystkich $t \ge 0, u(t) \le a \exp(bt)$.)

VII Charakteryzacja Levy'ego procesu ruchu Browna

Twierdzenie Levy'ego (1948). Niech $(X(t), \mathcal{F}(t))_{t\geq 0}$, X(0)=0, będzie rzeczywistym, adaptowanym procesem o ciągłych trajektoriach. Jeżeli $(X(t), \mathcal{F}(t))_{t\geq 0}$ i $(X^2(t)-t, \mathcal{F}(t))_{t\geq 0}$ są martyngałami, to $\{X(t), t\geq 0\}$ jest standardowym procesem ruchu Browna z filtracją $\{\mathcal{F}(t), t\geq 0\}$.

W szczególności, proces ruchu Browna jest jedynym ciągłym martyngałem o wahaniu kwadratowym [B](t) = t.

Zadanie 7-1: Dowód twierdzenia Levy'ego.

VIII Stochastyczne równanie różniczkowe

Niech $(B(t), t \ge 0)$ będzie procesem ruchu Browna oraz będą dane funkcje $\mu = \mu(x, t), \sigma = \sigma(x, t)$. Równanie postaci

$$dX(t) = \mu(X(t), t)dt + \sigma(X(t), t)dB(t),$$

nieznanego procesu X(t) nazywamy **stochastycznym równaniem różniczkowym** (SDE) względem procesu ruchu Browna (SDE typu dyfuzji), a funkcje μ i σ nazywamy jego współczynnikami.

Niech $(B(t), t \geq 0)$ będzie procesem ruchu Browna z filtracją $\mathbb F$ i niech $\mu \colon \mathbb R \times [0, \infty) \to \mathbb R$, $\sigma \colon \mathbb R \times [0, \infty) \to \mathbb R$ będą mierzalnymi funkcjami. Rozwiązaniem (**mocnym rozwiązaniem**) SDE z warunkiem początkowym $X(0) = \xi$ nazywamy progresywnie mierzalny proces stochastyczny $\{X(t), t \in [0, T]\}$, dla którego całki $\int_0^t \mu(X(s), s) ds$ oraz $\int_0^t \sigma(X(s), s) dB(s)$ istnieją oraz spełnione jest równanie

$$X(t) = \xi + \int_0^t \mu(X(s), s) ds + \int_0^t \sigma(X(s), s) dB(s), \quad t \in [0, T].$$

Uwaga 1. Mocne rozwiązanie jest pewną funkcją danego procesu ruchu Browna tj. $X(t) = F(t, (B(s), s \le t))$. Uwaga 2. $\sigma \equiv 0$ sprowadza SDE do zwyczajnego równania różniczkowego (ODE).

Uwaga 3. Rozwiązując przykłady będziemy zakładać, że odpowiednie całki istnieją, tzn.

$$\int_0^T |\sigma(X(s),s)|^2 ds \quad i \quad \int_0^T |\mu(X(s),s)| ds$$

mają skończone wartości oczekiwane albo są co najmniej skończone z prawdopodobieństwem 1.

Zadanie 8-1:

$$dX(t) = \mu X(t)dt + \sigma X(t)dB(t), \quad X(0) = 1.$$

Zadanie 8-2: *Równanie Langevin.* Niech $\mu, \sigma \geq 0$.

$$dX(t) = -\mu X(t)dt + \sigma dB(t), \quad X(0) = x_0.$$

Zadanie 8-3:

$$dX(t) = B(t)dB(t), \quad X(0) = x_0.$$

Zadanie 8-4: Proces Doléans-Dade, eksponenta stochastyczna Niech X(t) posiada różniczkę stochastyczną i niech proces U(t) spełnia równanie

$$dU(t) = U(t)dX(t), \quad U(0) = 1.\left(U(t) = 1 + \int_0^t U(s)dX(s)\right)$$

Wykaż, że jedyne rozwiązanie dane jest poprzez

$$U(t) = \mathcal{E}(X)(t) := \exp\left(X(t) - X(0) - \frac{1}{2}[X, X](t)\right).$$

Proces $\mathcal{E}(X)(t)$ nazywamy eksponentą stochastyczną procesu X(t). Zauważmy, że w odróżnieniu od deterministycznej eksponenty, eksponenta stochastyczna $\mathcal{E}(X)(t)$ zależy od wszystkich wartości procesu do chwili t.

Zadanie 8-5: Wyznacz $\mathcal{E}(B)(t)$.

Zadanie 8-6: Niech $f \in L^2([0,T] \times \Omega, \lambda_T \otimes P)$ dla każdego T > 0 i niech $|f(s,\omega)| \leq C$ dla pewnego C > 0 i wszystkich $s \geq 0, \omega \in \Omega$. Udowodnij, że

$$\exp\left(\int_0^t f(s)dB(s) - \frac{1}{2}\int_0^t f^2(s)ds\right), \quad t \ge 0$$

jest $\mathbb{F} = (\mathcal{F}_t, t \geq 0)$ martyngałem.

Zadanie 8-7: Logarytm stochastyczny Jeżeli $U = \mathcal{E}(X)$, wtedy proces X nazywamy stochastycznym logarytmem procesu U (i piszemy $X = \mathcal{L}(U)$).

Niech U ma różniczkę stochastyczną i wartości różne od 0. Wykaż, że stochastyczny logarytm procesu U spełnia stochastyczne równanie różniczkowe

$$dX(t) = \frac{dU(t)}{U(t)}, \quad X(0) = 0,$$

ponadto

$$X(t) = \mathcal{L}(U)(t) = \ln\left(\frac{U(t)}{U(0)}\right) + \int_0^t \frac{1}{2U^2(s)} d[U, U](s).$$

Zadanie 8-8: Niech $U(t) = \exp^{B(t)}$. Oblicz wprost $\mathcal{L}(U)$, a następnie zweryfikuj prawdziwość równania

$$\mathcal{L}(U)(t) = \ln\left(\frac{U(t)}{U(0)}\right) + \int_0^t \frac{1}{2U^2(s)} d[U, U](s).$$

Równania różniczkowe liniowe

Równanie postaci

$$dX(t) = (A(t)X(t) + a(t)) dt + (C(t)X(t) + c(t)) dB(t)$$

nazywamy liniowym (skalarnym) stochastycznym równaniem różniczkowym.

Funkcje $A(t), a(t), C(t), c(t) \in \mathbb{R}$ nazywamy skalarami.

Jeżeli $C(t) \equiv 0$ mówimy o równaniu stochastycznym liniowym w węższym sensie.

Jeżeli $c(t) \equiv 0$ mówimy o równaniu stochastycznym jednorodnym.

Zadanie 8-9: Jednorodne liniowe SDE. Niech $A,C\colon [0,\infty)\to \mathbb{R}$ będą deterministycznymi funkcjami. Wyznacz rozwiązanie SDE

$$dX(t) = A(t)X(t)dt + C(t)X(t)dB(t), \quad X(0) = x_0.$$

Istotną własnością liniowych SDE jest fakt, że funkcja wartości oczekiwanej rozwiązania jest równa rozwiązaniu odpowiedniego równania deterministycznego (wynika to z faktu, że całka Itô funkcji podcałkowej jest niezależna od dB(t)).

Zadanie 8-10: Wykaż, że wartość oczekiwana $m(t) = \mathbb{E} X(t)$ oraz drugi moment $m_2(t) = \mathbb{E} X^2(t)$ rozwiązania SDE

$$dX(t) = (A(t)X(t) + a(t)) dt + (C(t)X(t) + c(t)) dB(t), \quad X(0),$$

gdzie A(t), a(t), C(t), c(t) są deterministycznymi funkcjami rzeczywistymi można otrzymać jako rozwiązania równań różniczkowych zwyczajnych

$$\begin{cases} m'(t) &= A(t)m(t) + a(t) \\ m(0) &= \mathbb{E} X(0) \end{cases}, \begin{cases} m'_2(t) &= \left(2A(t) + C^2(t)\right)m_2(t) + 2m(t)\left(a(t) + C(t)c(t)\right) + c^2(t) \\ m_2(0) &= \mathbb{E} X^2(0) \end{cases}$$

Zadanie 8-11: Wyznacz kolejne momenty procesu $X(t) = t + \int_0^t X(s) dB(s), t \ge 0.$

Zadanie 8-12: Rozważmy liniowe w węższym sensie *SDE* postaci

$$dX(t) = (A(t)X(t) + a(t)) dt + c(t)dB(t), \quad X(0) = x_0,$$

gdzie A(t), a(t), C(t), c(t) są deterministycznymi funkcjami rzeczywistymi. Określ rozkład procesu $X(t) \mid x_0$.

Zadanie 8-13: Wyznacz rozkład $(X(t) \mid X(s))$ w przypadku procesu danego równaniem

(a)
$$dX(t) = \sigma dB(t)$$
, $X(0) = X_0$ — proces Wienera;

(b)
$$dX(t) = \mu dt + \sigma dB(t), X(0) = X_0$$
 - z dryfem;

(c)
$$dX(t) = \theta + \mu X(t)dt + \sigma dB(t), \ X(0) = X_0$$
 - z dryfem zależnym od stanu procesu;

(d)
$$dX(t) = \mu X(t) dt + \sigma X(t) dB(t), \ X(0) = X_0 > 0$$
 — współczynnik dyfuzji zależny

od stanu procesu (geometryczny ruch Browna).

Zadanie 8-14: Równanie Langevin raz jeszcze, ogólny proces Ornsteina-Uhlenbecka – model Vasicka. Niech $\theta > 0$, μ , $\sigma \ge 0$ będą ustalonymi parametrami. Wyznacz rozwiązanie i określ rozkład X(t), $t \ge 0$:

$$dX(t) = \theta(\mu - X(t))dt + \sigma dB(t), \quad X(0)$$

Zadanie 8-15: Niech a, f będą funkcjami nielosowymi. Rozważmy *SDE* postaci

$$\begin{cases} dX(t) &= a(t)X(t)dt + f(t)X(t)dB(t) \\ X(0) &= x_0 \text{ z pr. } 1 \end{cases}.$$

Wykaż, że rozwiązanie $X(t) = X_1(t)X_2(t)$ spełnia układ równań różniczkowych

$$\begin{cases} dX_1(t) &= f(t)X_1(t)dB(t) \\ X_1(0) &= x_0 \end{cases}, \begin{cases} dX_2(t) &= Adt + CdB(t) \\ X_2(0) &= 1 \end{cases}$$

dla odpowiednio dobranych A(t) = A(t, X), C(t) = C(t, X).

Zadanie 8-16: Niech a, c, e, f będą funkcjami nielosowymi. Rozważmy SDE postaci

$$\begin{cases} dX(t) &= (c(t) + a(t)X(t))dt + (e(t) + f(t)X(t))dB(t) \\ X(0) &= x_0 \text{ z pr. 1} \end{cases}$$

Wykaż, że rozwiązanie $X(t)=X_1(t)X_2(t)$ spełnia układ równań różniczkowych

$$\begin{cases} dX_1(t) &= a(t)X_1(t)dt + f(t)X_1(t)dB(t) \\ X_1(0) &= 1 \end{cases}, \begin{cases} dX_2(t) &= Adt + CdB(t) \\ X_2(0) &= x_0 \end{cases}$$

dla odpowiednio dobranych A(t) = A(t, X), C(t) = C(t, X).

Zadania

Most Browna

Zadanie 8-17:

$$dX(t) = -\frac{X(t)}{1-t}dt + dB(t), \quad 0 \le t < 1, \ X(0) = 0 \text{ z pr. } 1$$

Znajdź proces $\{X(t), t \in [0,1)\}$. Określ funkcję wartości oczekiwanej i kowariancji procesu X(t). Czy X(t) jest procesem gaussowskim?

Zadanie 8-18: (kont. Zadania 8-17) Wykaż, że $\lim_{t\to 1} (1-t) \int_0^t \frac{1}{1-s} dB(s) = 0$ p.n.

Zadanie 8-19: Powtórz Zadania 8-17, 8-18 w ogólnym przypadku:

$$dX(t) = \frac{b - X(t)}{T - t}dt + dB(t), \quad 0 \le t < T, \ X(0) = a.$$

Istnienie i jednoznaczność rozwiązań SDE

Zadanie 8-20: Rozważmy

$$dX(t) = \mu(X(t), t)dt + \sigma(X(t), t)dB(t),$$

gdzie współczynniki $\mu\colon \mathbb{R}\times [0,\infty)\to \mathbb{R}$ i $\sigma\colon \mathbb{R}\times [0,\infty)\to \mathbb{R}$ spełniają warunek Lipschitza dla wszystkich $x,y\in \mathbb{R}$

$$|\mu(x,t) = \mu(y,t)|^2 + |\sigma(x,t) = \sigma(y,t)|^2 \le L^2 |x-y|^2$$

dla każdego $t \in [0,T]$ ze stałą (globalną) Lipschitza L = L(T).

Udowodnij, że jeżeli X(t) i Y(t) są dwoma dowolnymi rozwiązaniami równania, to

$$\mathbb{E}\left(\sup_{t\leq T}\left|X(t)-Y(t)\right|^2\right)\leq 3\,\mathbb{E}\left|X(0)-Y(0)\right|^2\exp\left(3L^2T(T+4)\right).$$

Wyciągnij stąd wniosek, że wówczas *SDE* ma dokładnie jedno rozwiązanie (z dokładnością do procesów nierozróżnialnych).

Zadanie 8-21: Rozważmy

$$dX(t) = \mu(X(t), t)dt + \sigma(X(t), t)dB(t),$$

gdzie współczynniki $\mu\colon \mathbb{R}\times [0,\infty)\to \mathbb{R}$ i $\sigma\colon \mathbb{R}\times [0,\infty)\to \mathbb{R}$ spełniają warunek Lipschitza dla wszystkich $x,y\in \mathbb{R}$

$$|\mu(x,t) - \mu(y,t)|^2 + |\sigma(x,t) - \sigma(y,t)|^2 \le L^2 |x-y|^2$$

dla każdego $t\in[0,T]$ ze stałą (globalną) Lipschitza L=L(T) oraz spełniają warunek liniowego wzrostu

$$|\mu(x,t)|^2 + |\sigma(x,t)|^2 \le M^2 (1+|x|)^2$$

z pewną stałą M=M(T)>0 dla T>0.

Udowodnij, że dla każdego mierzalnego warunku początkowego $X(0) \in L^2$ istnieje jedyne rozwiązanie $X(t), \ t \geq 0$. Ponadto rozwiązanie spełnia

$$\mathbb{E}\left(\sup_{s\leq T}|X(s)|^2\right)\leq C(T)\,\mathbb{E}\left(1+|X(0)|\right)^2.$$

Twierdzenia o istnieniu i jednoznaczności rozwiązań *SDE* są prawdziwe także w przypadku spełnienia lokalnego warunku Lipschitza i globalnego warunku liniowego wzrostu.

Zadanie 8-22: Rozważmy

$$dX(t) = \mu(X(t), t)dt + \sigma(X(t), t)dB(t),$$

gdzie współczynniki $\mu\colon \mathbb{R}\times [0,\infty)\to \mathbb{R}$ i $\sigma\colon \mathbb{R}\times [0,\infty)\to \mathbb{R}$ spełniają warunek Lipschitza dla wszystkich $x,y\in I=[a,b]\subset \mathbb{R}$

$$|\mu(x,t) - \mu(y,t)|^2 + |\sigma(x,t) - \sigma(y,t)|^2 \le L^2 |x-y|^2$$

dla każdego $t\in[0,T]$ ze stałą (lokalną) Lipschitza L=L(T,I) oraz spełniają warunek liniowego wzrostu

$$|\mu(x,t)|^2 + |\sigma(x,t)|^2 \le M^2 (1+|x|)^2$$

z pewną stałą M = M(T) > 0 dla T > 0.

Udowodnij, że dla każdego mierzalnego warunku początkowego $X(0) \in L^2$ istnieje jedyne rozwiązanie $X(t), t \in [0, T]$. Ponadto rozwiązanie spełnia (dla wszystkich T > 0)

$$\mathbb{E}\left(\sup_{s \le T} |X(s)|^2\right) \le C(T) \,\mathbb{E}\left(1 + |X(0)|\right)^2.$$

Zadanie 8-23: Rozważmy

$$dX(t) = \mu(X(t), t)dt + \sigma(X(t), t)dB(t),$$

gdzie współczynniki $\mu\colon \mathbb{R}\times [0,\infty)\to \mathbb{R}$ i $\sigma\colon \mathbb{R}\times [0,\infty)\to \mathbb{R}$ spełniają warunek Lipschitza dla wszystkich $x,y\in \mathbb{R}$

$$|\mu(x,t) - \mu(y,t)|^2 + |\sigma(x,t) - \sigma(y,t)|^2 \le L^2 |x-y|^2$$

dla każdego $t \in [0,T]$ ze stałą (globalną) Lipschitza L = L(T).

Oznaczmy przez $\{X^x(t), t \geq 0\}$ rozwiązanie *SDE* z warunkiem początkowym $X(0) \equiv x \in \mathbb{R}$. Udowodnij, że

$$x \mapsto \mathbb{E} f(X^x(t))$$
 jest ciągłe dla wszystkich $f \in C_b(\mathbb{R})$.

Równania różniczkowe nieliniowe

Zadania

Scalar square root process SDE postaci

$$dX(t) = f(t, X(t))dt + q(t, X(t))dB(t)$$

jednowymiarowego procesu, o współczynnikach

$$f(t, X(t)) = A(t)X(t) + a(t),$$

$$g(t, X(t)) = C(t)\sqrt{(X(t))},$$

gdzie A(t), a(t), C(t) są rzeczywistymi funkcjami nielosowymi (skalarami) nazywamy scalar square root process.

Zadanie 8-24: Wykaż, że SDE

$$dX(t) = dt + 2\sqrt{X(t)}dB(t), \quad X(0) = x_0 \ge 0,$$

ma rozwiązanie postaci $X(t) = (B(t) + \sqrt{x_0})^2$.

Zadanie 8-25: Wykaż, że proces X(t) będący rozwiązaniem *SDE*

$$dX(t) = \mu X(t)dt + \sigma \sqrt{X(t)}dB(t), \quad X(0) = x_0,$$

ma
$$\mathbb{E} X(t) = x_0 \exp^{\mu t}$$
, $\operatorname{Var} X(t) = \frac{\sigma^2}{\mu} x_0 \left(\exp^{2\mu t} - \exp^{\mu t} \right)$.

Zadanie 8-26: Cox-Ingresoll-Ross process Określ funkcje wartości oczekiwanej i wariancji procesu będącego rozwiązaniem SDE

$$X(t) = \int_0^t a(b - X(t)) dt + \int_0^t \sigma \sqrt{X(t)} dB(t).$$

 \star Czy potrafisz określić własności procesu X(t)? Czy jest to proces dodatni/ nieujemny? Czy potrafisz określić rozkład X(t)?

Zadanie 8-27: Rozwiąż SDE

$$dX(t) = X(t)dt + B(t)dB(t), \quad X(0) = 1.$$

Jakiego typu jest to równanie?

Zadanie 8-28: SDE

$$dX(t) = B(t)X(t)dt + B(t)X(t)dB(t), \quad X(0) = 1.$$

Zadanie 8-29: Wyznacz funkcję wartości oczekiwanej procesu X(t) będącego rozwiązaniem SDE

$$dX(t) = -\frac{1}{4}X^3(t)dt + \frac{1}{2}X^2(t)dB(t), \quad X(0) = \frac{1}{2}.$$

Zadanie 8-30: Wyznacz funkcję wartości oczekiwanej i drugiego momentu procesu X(t) będącego rozwiązaniem SDE

$$dX(t) = \left(\frac{1}{3}X^{1/3}(t) + 6X^{2/3}(t)\right)dt + X^{2/3}(t)dB(t), \quad X(0) = 1.$$

Zadanie 8-31: Niech X(t) spełnia SDE postaci

$$dX(t) = \left(\frac{2}{5}X^{3/5}(t) + 5X^{4/5}(t)\right)dt + X^{4/5}(t)dB(t), \quad X(0) = 1.$$

Korzystając ze wzoru Itô dla $f(t,X(t))=X^{1/5}(t)$ wykaż, że rozwiązaniem jest proces

$$X(t) = \left(t + 1 + \frac{1}{5}B(t)\right)^5.$$

Zadanie 8-32: Rozwiąż SDE

$$dX(t) = \left(-\frac{1}{2}X(t) - \frac{1}{8}\frac{1}{X^3(t)}\right)dt + \frac{1}{2X(t)}dB(t), \quad X(0) = 1.$$

Zadanie 8-33: Określ rozkład, funkcje wartości średniej oraz wariancji procesu będącego rozwiązaniem SDE

$$dX(t) = X(t) (\mu - \ln X(t)) dt + \sigma X(t) dB(t), \quad X(0) = x_0.$$

Zadanie 8-34: Model wzrostu Gompertza

Rozwiąż SDE

$$dX(t) = X(t) (\mu - \ln X(t)) dt + \sigma X(t) dB(t), \quad X(0) = x_0 > 0.$$

Zadanie 8-35: Sprawdź, że rozwiązaniem *SDE*

$$dX(t) = (\alpha + \beta X(t)) dt + \gamma X(t) dB(t), \quad X(0) = X_0,$$

jest proces $X(t)=R(t)\left(X_0+\alpha\int_0^t(R(s))^{-1}ds\right)$, gdzie α,β,γ są stałymi rzeczywistymi oraz $R(t)=\exp\left((\beta-\frac{\gamma^2}{2})t+\gamma B(t)\right).$ Wykorzystaj ten fakt, by pokazać, że rozwiązaniem SDE

$$dX(t) = (aX(t) + bX^{2}(t)) dt + cX(t)dB(t), \quad X(0) = X_{0},$$

ze stałymi rzeczywistymi a, b, c jest proces

$$X(t) = U(t) / \left((X_0)^{-1} - b \int_0^t U(s) ds \right),$$

gdzie $U(t) = \exp\left((a - \frac{c^2}{2})t + cB(t)\right)$.

Zadanie 8-36: Niech $\mu, \sigma \colon \mathbb{R} \to \mathbb{R}$ będą ciągłe, lipschitzowskie i niech $\sigma \in C^2$. Udowodnij, że SDE

$$X(t) = X_0 + \int_0^t \left(\mu(X(s)) + \frac{1}{2}\sigma(X(s))\sigma'(X(s)) \right) ds + \int_0^t \sigma(X(s))dB(s)$$

ma dokładnie jedno rozwiązanie.

Zadanie 8-37: Niech $\sigma \colon \mathbb{R} \to \mathbb{R}$ będzie ustaloną różniczkowalną funkcją. Wykaż, że *SDE*

$$dX(t) = \frac{1}{2}\sigma(X(t))\sigma'(X(t))dt + \sigma(X(t))dB(t)$$

jest redukowalne do liniowego SDE i ma rozwiązanie w postaci ogólnej

$$X(t) = h^{-1} (B(t) + h(X_0)),$$

gdzie $h(x) = \int_{-\infty}^{x} \frac{ds}{\sigma(s)}$.

Zadanie 8-38: Rozwiąż *SDE*

$$dX(t) = \left(\sqrt{1 + X^2(t)} + \frac{1}{2}X(t)\right)dt + \sqrt{1 + X^2(t)}dB(t), \quad X(0) = 0.$$

VIII.1 Transformacja Lampertiego

Przedstawimy metode pozwalająca na zredukowanie współczynnika zależnego od wartości procesu X(t) przy dB(t) do jedności. Ogólna klasa przekształceń, które sprowadzają SDE do równania o współczynniku przy dB(t)niezależnym od szukanego procesu X(t) określa się jako przekszałcenia Lampertiego (Lamperti transforms).

Zadanie 8.1-1: FAKT (Lamperti '64) Niech $\mu: \mathbb{R} \to \mathbb{R}$ klasy C^1 oraz $\sigma: \mathbb{R} \to (0, \infty)$, klasy C^2 takie, że

$$\mu' - \frac{1}{2}\sigma\sigma'' - \mu\sigma'/\sigma$$

jest ograniczone oraz $1/\sigma$ jest niecałkowalne $w + \infty$ $i - \infty$. Wtedy

$$dX(t) = \mu(X(t))dt + \sigma(X(t))dB(t), \quad 0 < t < \infty$$

ma jedyne mocne rozwiązanie.

Ponadto rozwiązanie otrzymujemy poprzez zastosowanie wzoru Itô do f(X(t)), gdzie $f(x) := \int_0^x \frac{1}{\sigma(y)} dy$.

Zadanie 8.1-2: Transformacja Lampertiego Niech X(t) będzie procesem Itô

$$dX(t) = f(t, X(t))dt + \sigma(t, X(t))dB(t)$$

i niech

$$\psi(t, X(t)) = \int \frac{1}{\sigma(t, x)} dx \mid_{x = X(t)},$$

jeżeli ψ jest wzajemnie jednoznaczną funkcją ze zbioru wartości X(t) na \mathbb{R} dla każdego $t \in [0, \infty)$, to zdefiniujmy proces $Z(t) = \psi(t, X(t))$.

W przeciwnym razie, jeżeli dla każdego $(t, X(t)), \sigma(t, X(t)) > 0$, to weźmy

$$Z(t) = \psi(t, X(t)) = \int_{\xi}^{x} \frac{1}{\sigma(t, u)} du \mid_{x = X(t)},$$

gdzie ξ jest pewnym punktem ze zbioru wartości X(t).

Tak określony proces Z(t) ma jednostkową wartość współczynnika dyfuzji i jest rozwiązaniem SDE postaci

$$dZ(t) = \left(\psi_t(t, \psi^{-1}(t, Z(t))) + \frac{f(t, \psi^{-1}(t, Z(t)))}{\sigma(t, \psi^{-1}(t, Z(t)))} - \frac{1}{2}\sigma_x(t, \psi^{-1}(t, Z(t)))\right)dt + dB(t).$$

 $Uwaga\ 1$ Transformacja przestrzeni stanów (wartości) procesu musi być 1-1, by możliwe było jednoznaczne określenie procesu X(t) za pomocą transformacji odwrotnej Z(t).

Uwaga~2 Jeżeli transformacja nie jest 1-1, to nowa transformacja będzie juz dobrze określona, gdyż ψ będzie rosnącą funkcją X(t).

W zadaniach będziemy wykorzystywać transformację Lampertiego.

Zadania

Współczynnik dyfuzji niezależny od czasu

Zadanie 8.1-3:

$$dX(t) = aX(t)dt + \sigma X(t)dB(t), \quad X(0) = 1, \quad (a, \sigma \in \mathbb{R}).$$

W powyższym zadaniu transformacja Lampertiego pozwoliła na rozwiązanie SDE. W ogólności nie musi tak być – zauważmy, że w tym przypadku równanie dla dZ(t) nie zależało od $Z^{-1}(t)$. Poniższy przykład pokazuje, że nawet relatywnie proste równania nie muszą być rozwiązywalne przy pomocy tej transformacji.

Zadanie 8.1-4:

$$dX(t) = (b + aX(t))dt + \sigma X(t)dB(t), \quad X(0) = 1, \quad (a, b, \sigma \in \mathbb{R}).$$

Praktyczne zastosowania transformacji Lampertiego w rozwiązywaniu SDE są ograniczone przez możliwość wyznaczenia postaci analitycznej odwrotnej transformacji $X(t)=\psi^{-1}(t,Z(t))$. Rozwiązania te nie muszą być obliczalne:

Zadanie 8.1-5:

$$dX(t) = f(X(t))dt + (\sigma_0 + \sigma_1 \sqrt{X(t)})dB(t), \quad X(0) = x_0.$$

Wiele spośród użytecznych (wykorzystywanych w praktyce) modeli pozwalają na analityczne odwrócenie transformacji ψ . Na przykład analityczna postać ψ^{-1} jest zawsze określona, gdy $\sigma(X(t)) = \sigma_1 X^{\gamma}(t)$, dla dowolnej stałej γ . W finansach takie modele są szczególnie istotne, gdyż γ wyraża *volatility*. W biomatematyce często wykorzystuje się model, gdzie rozważa się tzw. dyfuzję typu Pearsona, co pokazuje poniższy przykład.

Zadanie 8.1-6:

$$dX(t) = f(X(t))dt + \sqrt{\sigma_0 + \sigma_1 X(t) + \sigma_2 X^2(t)}dB(t).$$

Uwaga W zadaniu pomijamy postać funkcji f. W klasycznych równaniach opisujących dyfuzję typu Pearsona (w szczególności w modelach biologicznych) mamy f(X(t)) = (b - aX(t)). Uwaga W rozwiązaniu można przyjąć, że przynajmniej $\sigma_0, \sigma_1, \sigma_2 > 0$.

Zadania

Współczynnik dyfuzji zależny od czasu

W ogólności możliwe jest wykorzystanie transformacji Lampertiego w przypadku, gdy $\sigma(t, X(t)) = \alpha(t)\beta(X(t))$.

$$Z(t) = \psi(X(t)) = \int \frac{1}{\beta(x)} dx \mid_{x=X(t)},$$

pozostawiając czynnik zależny od czasu $\alpha(t)$. Otrzymujemy

$$dZ(t) = \left(\frac{f\left(t, \psi^{-1}(Z(t))\right)}{\beta\left(\psi^{-1}(Z(t))\right)} - \frac{1}{2}\beta_x\left(\psi^{-1}(Z(t))\right)\alpha^2(t)\right)dt + \alpha(t)dB(t).$$

Oczywiście w zależności od postaci $\alpha(t)$ i f zależy w znacznym stopniu na ile rozwiązanie będzie miało skomplikowaną i użyteczną postać.

Zadanie 8.1-7: Niech a > 0, b(t) > 0 dla wszystkich t;

$$dX(t) = (b(t) + aX(t))dt + (\sigma_0 b(t) + \sigma_1 X(t))dB(t)$$

(możemy myśleć jak o procesie zależnym od stałej intensywności śmierci, procesu narodzin zależnemu od czasu b(t) — jednak nie zależnemu od procesu X(t) — i współczynnikowi dyfuzji zależnemu od ich kombinacji liniowej).

VIII.2 Rozwiązania słabe SDE

Rozważmy SDE postaci $dX(t) = \mu(t, X(t))dt + \sigma(t, X(t))dB(t)$.

Jeżeli istnieje przestrzeń stochastyczna (przestrzeń probabilistyczna (Ω, \mathcal{F}, P) z filtracją \mathbb{F} spełniającą zwykłe warunki), proces ruchu Browna $\widetilde{B}(t)$ i adaptowany do filtracji proces $\widetilde{X}(t)$ taki, że: $\widetilde{X}(0)$ ma zadany rozkład i dla wszystkich $t \geq 0$ odpowiednie całki są określone oraz $\widetilde{X}(t)$ spełnia

$$\widetilde{X}(t) = \widetilde{X}(0) + \int_0^t \mu(s, \widetilde{X}(s))ds + \int_0^t \sigma(s, \widetilde{X}(s))d\widetilde{B}(s),$$

wtedy $\widetilde{X}(t)$ nazywamy słabym rozwiązaniem SDE.

Słabe rozwiązanie nazywamy jedynym (w sensie rozkładu), jeżeli dowolne dwa rozwiązania $X_1(t), X_2(t)$ (być może określone na różnych przestrzeniach) takie, że $X_1(0), X_2(0)$ mają takie same rozkłady, mają wszystkie rozkłady skończenie wymiarowe takie same.

Zadanie 8.2-1: Równanie Tanaki

Niech dane jest SDE

$$dX(t) = sign(X(t))dB(t), \quad X(0) = 0.$$

Uzasadnij nieistnienie mocnego rozwiązania. Udowodnij, że proces ruchu Browna jest jedynym słabym rozwiązaniem równania Tanaki.

 $Uwaga \operatorname{sign}(x) = \begin{cases} 1, & x > 0 \\ -1, & x \le 0 \end{cases}$, by zapewnić lewostronną ciągłość.

Zauważmy, że w poprzednim zadaniu w pewnym sensie otrzymaliśmy formalnie wzór Itô dla funkcji f(x) = |x|, która jest nieróżniczkowalna w 0. Z "różniczkowania" (w pewnym ogólnym sensie) otrzymujemy f'(x) = sign(x), $f''(x) = \delta_0(x)$, gdzie ostatnia funkcja jest deltą Diraca (w sensie fizycznym) $\delta_0(0) = \infty$. Zatem formalny wzór Itô wygladałby następująco:

$$|B(t)| = \int_0^t \operatorname{sign}(B(s))dB(s) + \frac{1}{2} \int_0^t \delta_0(B(s))ds.$$

By uzasadnić powyższy wzór, potrzebujemy "wygładzenia" funkcji f(x) = |x| (przynajmniej do klasy C^2 .

Zadanie 8.2-2: Ćwiczenie pokazujące przykład gładkiej aproksymacji funkcji $x \mapsto |x|$.

Zauważmy, że w Zadaniu 8.2-1 otrzymaliśmy:

$$|B(t)| - \int_0^t \operatorname{sign}(B(s)dB(s)) = \lim_{n \to \infty} \frac{1}{2} \int_0^t f_n'(|B(s)|) ds.$$

Zatem prawa strona równości istnieje i jest procesem stochastycznym.

Zadanie 8.2-3: Brownian local time