MARKING SCHEME

CLASS XII

APPLIED MATHEMATICS (CODE-241)

SECTION: A (Solution of MCQs of 1 Mark each)

	1	LINTE/COLUTION
Q		HINTS/SOLUTION
no.	ANS	.0,
1.	(C)	The required area is given by $\left \int_{1}^{4} (\sqrt{x}) dx \right = \left \frac{3}{2} \frac{3}{2} \right _{1}^{4} = \left \frac{2}{3} (8-1) \right = \frac{14}{3} \text{ sq units.}$ Systematic Sampling as it is a type of probability sampling while others are types of
2.	(A)	Systematic Sampling as it is a type of probability sampling while others are types of non-probability sampling. (When selection of objects from the population is random, then objects of the population have an equal probability i.e., has a known non-zero equal chance of selection. In other words, in probability sampling, sample units are selected at random.)
3.	(A)	The cost function for a manufacturer is given by $C(x) = \frac{x^3}{3} - x^2 + 2x$ (in rupees). The marginal cost function is given by $MC(x) = \frac{dC}{dx} = x^2 - 2x + 2$ $MC'(x) = 2x - 2$ So, the marginal cost decreases from 0 to 1 and then increases onwards
4.	(C)	Being a polynomial function $f(x)$ is differentiable $\forall x \in \left(-2, \frac{9}{2}\right)$ $f'(x) = 4 - x.$ $f'(x) = 4 - x = 0 \Rightarrow x = 4.$ For the function $f(x) = 4x - \frac{1}{2}x^2$ in the interval $\left[-2, \frac{9}{2}\right]$, the end points are $x = -2 & x = \frac{9}{2}$ $\therefore \text{The absolute minimum value of the function } f(x) = 4x - \frac{1}{2}x^2 \text{ in the interval } \left[-2, \frac{9}{2}\right] \text{ is}$ $\text{Min}\left\{f\left(-2\right), f\left(4\right), f\left(\frac{9}{2}\right)\right\} = \text{Min}\left\{-10, 8, \frac{63}{8}\right\} = -10.$

ation of the parabolic path $y = 6x - x^2 - 8$; $2 \le x \le 4$	

		•
6.	(A)	Y
		25 –
		20 –
		15 –
		10-
		5-
		$X' \leftarrow \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		-5- -x ₂

 \therefore Degree of freedom = 2025-1=2024.

From the graph, it is clear that $x + 2y \ge 3$ may be removed so that the feasible region remains the same.

1.	
	(C)

(D)

Here n = 2025

Number on the	x_i	p_i	$p_i x_i$
die	9		
1	1,0	$\frac{1}{6}$	$\frac{1}{6}$
2	-1	$\frac{1}{6}$	$-\frac{1}{6}$
3	3	$\frac{1}{6}$	$\frac{3}{6}$
4	-2	$\frac{1}{6}$	$-\frac{2}{6}$
5	5	$\frac{1}{6}$	<u>5</u> 6
6	-3	$\frac{1}{6}$	$-\frac{3}{6}$

Expected gain = $E(X) = \sum p_i x_i = \frac{3}{6} = \frac{1}{2}$

8.	(C)	Annual depreciation $=\frac{1200000-300000}{3} = ₹ 300000$
		∴ Book value of the asset at the end of 2 years = ₹ (1200000 -2×300000) = ₹ 600000.
9.	(A)	The equation of the parabolic path $y = 6x - x^2 - 8$; $2 \le x \le 4$

		7
		$\frac{dy}{dx} = 6 - 2x$
		$\Rightarrow \frac{dy}{dx}_{x=3} = 6 - 2 \times 3 = 0.$
10.	(B)	This is a binomial distribution with $n = 80$, $p = 5\% = \frac{1}{20}$. If X is the binomial random
		variable for the number of defectives then X is $B\left(80,\frac{1}{20}\right)$.
		So, $\sigma^2 = npq = 80 \times \frac{1}{20} \times \frac{19}{20} = \frac{19}{5}$.
11.	(C)	$375 \text{ hours} = (24 \times 15 + 15) \text{ hours}$
		$\therefore 375 \pmod{24} = 15$
		Therefore, it will be 9 am after 375hours.
12.	(B)	$x \in (-1,3)-\{0\} \Rightarrow x \in (-1,0)\cup(0,3)$
		When $x \in (-1,0)$ then $\frac{1}{x} \in (-\infty,-1)$ (i)
		When $x \in (0,3)$ then $\frac{1}{x} \in (\frac{1}{3},\infty)$ (ii)
		From (i) & (ii) , we have $\frac{1}{x} \in (-\infty, -1) \cup (\frac{1}{3}, \infty)$.
13.	(C)	Secular trend variations are considered as long-term variation, attributable to factor
		such as population change, technological progress and large –scale shifts in consumer
		tastes.
14.	(B)	$R = 7800.$ $i = \frac{4}{300} = 0.02$
		200
		$P = \frac{R}{i} = \frac{800}{0.02} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
15.	(A)	The slope of L_1 at any arbitrary point (x,y) is $\frac{dy}{dx}$.
		dx
	1	The slope of L_2 that connects the point (x,y) to the origin is $\frac{y-0}{y-0} = \frac{y}{y}$
		Now,
		$\frac{dy}{dy} = \frac{1}{2} \times \frac{y}{y}$
		$\frac{dy}{dx} = \frac{1}{3} \times \frac{y}{x}$
		$\therefore \frac{dy}{dx} = \frac{y}{3x}.$

16. (A)
$$adj A = 2A^{-1} \Rightarrow A^{-1} = \frac{1}{2}(adj A)$$

$$\therefore |A| = 2$$

$$Now, |3AA^{T}| = 3^{3} \times |A|^{2} = 108$$
17. (B) We have, $P = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} & Q^{T} = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \Rightarrow Q = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$

$$So, P - Q = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}.$$
18. (B) order is 2 and degree is 1.

19. (A) Both (A) and (R) are true and (R) is the correct explanation of (A).

20. (C) (A) is true but (R) is false.

Section –B

[This section comprises of solution of very short answer type questions (VSA) of 2 marks each]

21(a).	C.P of a unit of cheaper (C) Water ($\neq 0$ per litre) Mean Price (M) Mixture ($\neq 50$ per litre) Cheaper Quantity $(D-M)=(60-50)=10$ C.P of a unit of dearer (D) Milk ($\neq 60$ per litre) Cheaper Quantity $(D-M)=(60-50)=10$ $(M-C)=(50-0)=50$	
	C.P of 1 litre of water = $₹$ 0 C.P of 1 litre of milk = $₹$ 60 Mean Price = $₹$ 50 Therefore, ratio of water and milk = $\frac{60-50}{50-0} = \frac{10}{50} = \frac{1}{5}$ or 1: 5	1
	OR	
21(b).	Time taken to drain full tank = x hours i.e., the time rate of drain the tank = $\frac{1}{x}$ units per hour	

	T	T
	Time taken to fill the full tank is 2 hours i.e., the time rate of filling the tank $=\frac{1}{2}$ units	
	per hour	
	Again, with the leakage, the pipe takes $2\frac{1}{3} = \frac{7}{3}$ hours to fill the full tank.	
	The rate of filling the tank along with the leakage will be $=\frac{3}{7}$ units per hour.	1/2
	Now, according to question,	
	$\left(\frac{1}{2}\right) - \left(\frac{1}{x}\right) = \left(\frac{3}{7}\right)$	1
	Solving, we get $x = 14$	1/2
	Hence, 14 hours are required to drain the full tank.	
22.	In a 200m race, when A covers 200m	
	then B covers $(200-18)=182m$	
	and C covers $(200-31)=169m$	
	and C covers (200-31)-109m	
	$\Rightarrow A : C = 200 : 169$	1/2
	$\frac{B}{C} = \frac{A}{C} \times \frac{B}{A} = \frac{200}{169} \times \frac{182}{200} = \frac{182}{169}$	1/2
	When B covers $182m$ then C covers $169m$	
	When B covers $350m$ then C covers $\frac{169}{182} \times 350 = 325m$	1/2
	Therefore, B can give a start of $(350-325)=25m$ to C.	1/2
23.	Let the total distance be d km and the speed of boat in still water be x km/h	
	Speed of stream = 5 km/h	
	Speed upstream = $(x - 5)$ km/h	1/2
	Speed downstream = $(x + 5)$ km/h	1/2
	According to question, $\frac{d}{x-5} = 3 \times \frac{d}{x+5}$	1/2
	Solving, we get $x = 10$	
		1/2
	Hence, the speed of boat in still water is 10 km/h	
24(a).	Let X be the random variable denoting the number of workers who catch the	
	disease.	

	Given, $p = \frac{20}{100} = \frac{1}{5} \Rightarrow q = \frac{4}{5}$ and $n = 6$	1/2
	Now, $P(X = x) = {}^{6}C_{x} \left(\frac{1}{5}\right)^{x} \left(\frac{4}{5}\right)^{6-x}, x = 0,1,,6$	
	So, the required probability that out of six workers 4 or more will catch the disease is	
	$P(X \ge 4) = P(X = 4) + P(X = 5) + P(X = 6)$	
	$= {}^{6}C_{4} \left(\frac{1}{5}\right)^{4} \left(\frac{4}{5}\right)^{2} + {}^{6}C_{5} \left(\frac{1}{5}\right)^{5} \left(\frac{4}{5}\right)^{1} + {}^{6}C_{6} \left(\frac{1}{5}\right)^{6} \left(\frac{4}{5}\right)^{0}$	1
	$=\frac{265}{5^6}$ or 0.017.	1/2
	OR	
24(b).	We have, mean $\mu = 12$ and standard deviation $\sigma = 2$, i.e., $X \sim N(\mu, \sigma^2)$	
	(i) Let X denote the count of the months for which this machine lasts.	
	The probability of an item produced by this machine will last less than 7 months is	
	P(X < 7)	
	For $X = 7$, $Z = \frac{7-12}{2} = -\frac{5}{2}$	1/2
	Now,	
	$P(X<7) = P\left(Z<-\frac{5}{2}\right) = P\left(Z>\frac{5}{2}\right)$	
	$=1-P\left(Z<\frac{5}{2}\right)=1-0.9938=0.0062$	1/2
	(ii) The probability of an item produced by this machine will last more than 7 months	
	and less than 14 months is $P(7 < X < 14)$	
	For $X = 7$, $Z = \frac{7 - 12}{2} = -\frac{5}{2}$	
	and for $X = 14$, $Z = \frac{14-12}{2} = 1$	1/2
	$P(7 < X < 14) = P(-\frac{5}{2} < Z < 1)$	
	$=P\left(Z<1\right)-P\left(Z<-\frac{5}{2}\right)$	
	= 0.8413 - 0.0062 = 0.8351	1/2
25.	Given, $A^2 = B$	

$\Rightarrow \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$	
$\Rightarrow \begin{bmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$	1
$\Rightarrow \alpha^2 = 1 \text{ and } \alpha + 1 = 5.$	1/2
Hence, no real value of α exists.	1/2

Section -C

[This section comprises of solution short answer type questions (SA) of 3 marks each]

[Т	his section comprises of solution short answer type questions (SA) of 3 marks eac	h]
26.	$5 \equiv 5 \pmod{7}$	
	$\Rightarrow 5^2 \equiv 25 \pmod{7}$	
	$\Rightarrow 5^2 \equiv 4 \pmod{7}$	1
	$\Rightarrow 5^4 \equiv 4^2 \pmod{7}$	
	$\Rightarrow 5^4 \equiv 2 \pmod{7}$	
	$\Rightarrow 5^{20} \equiv 32 \pmod{7}$	1
	$\Rightarrow 5^{20} \equiv 4 \pmod{7}$	•
	$\Rightarrow 5^{60} \equiv 1 \pmod{7}$	
	$\Rightarrow 5^{61} \equiv 5 \pmod{7}$	1
	Hence, the remainder when 5^{61} is divided by 7 is 5	
27(a).	Given,	
	$n_1 = 10, n_2 = 8, \overline{x_1} = 750, \overline{x_2} = 820, s_1 = 12 \& s_2 = 14$	
	Consider, Null hypothesis \mathbf{H}_0 : Mean life is same for both the batches i.e., $(\mu_1 = \mu_2)$.	
	Alternate hypothesis \mathbf{H}_{α} : Two batches have different mean lives i.e., $(\mu_1 \neq \mu_2)$.	
	Test Statistics,	
	$t = \frac{\overline{x_1} - \overline{x_2}}{S} \times \sqrt{\frac{n_1 n_2}{n_1 + n_2}},$	
	Where $S = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$	
	$\Rightarrow S = \sqrt{\frac{9 \times 144 + 7 \times 196}{10 + 8 - 2}}$	1
	,	

	$=\sqrt{\frac{2668}{16}}=12.91$	1/2
	$\therefore t = \frac{750 - 820}{12.91} \times \sqrt{\frac{10 \times 8}{10 + 8}}$	
	$=\frac{-70}{12.91}\times 2.1081$	
	$ \begin{array}{r} 12.91 \\ = -11.430 \end{array} $	1
	Since, calculated value $ t =11.430>$ tabulated value $t_{16}(0.05)=2.120$	
	So, rejected the null hypothesis at 5% level of significance.	1/2
	Hence, the mean life for both the batches is not the same.	
	OR	
27/h)		
27(b).	Here, population mean $(\mu) = 25$	
	Sample mean $(\bar{x}) = \frac{\sum x_i}{n} = \frac{138}{6} = 23$	1/2
	Sample size $(n) = 6$	
	Consider, Null hypothesis $\mathbf{H}_{\scriptscriptstyle{0}}$: There is no significant difference between the sample	
	mean and the population mean i.e., $(\mu_1 = \mu_2)$.	
	Alternate hypothesis \mathbf{H}_{α} : There is no significant difference between the sample mean	
	and the population mean i.e., $(\mu_1 \neq \mu_2)$.	
	Values of $(x_i - \bar{x})^2$ are 1, 9, 49, 9, 9 and 25	
	$\therefore s = \sqrt{\frac{102}{5}} = 4.52$ Now, $t = \frac{\bar{x} - \mu}{\frac{s}{5}} = \frac{23 - 25}{4.52}$	1
	Now, $t = \frac{\bar{x} - \mu}{s} = \frac{23 - 25}{4.52}$	
	\sqrt{n} $\sqrt{6}$	
	=-1.09	1
	$\Rightarrow t = 1.09$	
	Since, calculated value $ t =10.763<$ tabulated value $t_5(0.01)=4.132$	
	So, the null hypothesis is accepted.	1/2
	Hence, the manufacturer's claim is valid at 1% level of significance.	
28.	Given, mean = $\lambda = 3.2$	1/2
	Let <i>X</i> be the number of bicycle riders which use the cycle track.	

	Required probability = $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$	
	$= \frac{e^{-3.2}(3.2)^0}{0!} + \frac{e^{-3.2}(3.2)^1}{1!} + \frac{e^{-3.2}(3.2)^2}{2!}$	1½
	$= e^{-3.2}(1+3.2+5.12)$	
	$= 0.041 \times 9.32 = 0.618$	1/2
	Also, mean expectation = variance of $X = \lambda = 3.2$	1/2
29.	Here, Initial investment value $(IV) = ₹5000$	1/2
	Final investment value $(FV) = ₹10500$	1/2
	No of period $(n) = 3$ (starting from 2021 to 2023)	
	$\Rightarrow r = \left(\frac{FV}{IV}\right)^{\frac{1}{n}} - 1 = \left(\frac{10500}{5000}\right)^{\frac{1}{3}} - 1$	1
	=1.2805-1=0.2805	1/2
	CAGR = 28.05%	1/2
30.	Let the number of necklaces manufactured be x , and the number of bracelets	
	manufactured be y .	
	According to question,	
	x + y ≤ 25 and	
	$\frac{x}{2} + y \le 14$	
	The profit on one necklace is ₹ 100 and the profit on one bracelet is ₹ 300.	
	Let the profit (the objective function) be Z, which has to be maximized.	
	Therefore, required LPP is	1
	Maximize $Z = 100x + 300y$	•
	Subject to the constraints $x + y \le 25$	1/2
	$\frac{x}{2} + y \le 14$	1
	$x, y \ge 0$	1/2
31(a).	(i) We have, $\sum_{i=1}^{8} P(X=i) = 1$	

$$\Rightarrow p + 2p + 2p + p + 2p + p^{2} + 2p^{2} + 7p^{2} + p = 1$$

$$\Rightarrow 10p^{2} + 9p - 1 = 0$$

$$\Rightarrow (10p - 1)(p + 1) = 0$$

$$\Rightarrow p \neq -1$$

$$\therefore p = \frac{1}{10}$$
(ii)
$$\text{Mean, } E(X) = \sum_{i=1}^{8} i P(X = i)$$

$$= 1x + p + 2x + p + 3x + 2p + 4x + p + 5x + 2p + 6x + p^{2} + 7x + 2p^{2} + 6x + (7p^{2} + p)$$

$$= 33p + 76p^{2}$$

$$= \frac{33}{10} + \frac{76}{100} = \frac{203}{50}$$
OR
$$\text{OR}$$
31(b).

We have, $p = 0.01 = \frac{1}{100} \Rightarrow q = \frac{99}{100}$
Let number of Bernoulli trials be n .

Now, the binomial distribution formula is for any random variable (X) is given by
$$P(X = x) = C_{x} \left(\frac{1}{100}\right)^{x} \left(\frac{99}{100}\right)^{x-1}$$
So, the probability of at least one success is
$$P(X \geq 1) = 1 - P(X \equiv 0) = 1 - C_{0} \left(\frac{1}{100}\right)^{0} \left(\frac{99}{100}\right)^{x} = 1 - \left(\frac{99}{100}\right)^{x}$$
According to condition, $P(X \geq 1) \geq 0.5 \Rightarrow 1 - \left(\frac{99}{100}\right)^{x} \geq 0.5 \Rightarrow \left(\frac{99}{100}\right)^{x} \leq 0.5$

$$\Rightarrow n \log_{10} \frac{99}{100} \leq \log_{10} 0.5 \Rightarrow n \geq \frac{\log_{10} 0.5}{\log_{10} 0.99}; \quad (\text{as } \log_{10} 0.99 < 0)$$

$$[\text{Using } \log_{10} 2 = 0.3010 \text{ and } \log_{10} 99 = 1.9956] \Rightarrow n \geq 68.409 \Rightarrow n = 69 \text{ } [\because n \in \mathbb{N}].$$

[This section comprises of solution of long answer type questions (LA) of 5 marks each]

			n = 11(odd number	r)		
	Year (t)	Production	$x = t_i - 1967$	x ²	2/1	
	rear (t)	(y)	$x = t_i - 1507$	X	xy	
	1962	2	-5	25	-10	
	1963	4	-4	16	-16)
	1964	3	-3	9	-9	
	1965	4	-2	4	-8	
	1966	4	-2 -1	1	-0	
		2				
	1967		0	0	0	
	1968	4	1	1	4	2 marl
	1969	9	2	4	18	for
	1970	7	3	9	21	corre
	1971	10	4	16	40	table
	1972	8	5	25	40	
	Total	$\sum y = 57$	$\sum x = 0$	$\sum x^2 = 110$	$\sum xy = 76$	
	The normal Since, \sum	x = 0 i.e., deviat	$\sum y = na + b \sum x$ ion from actual m $18, b = \frac{\sum xy}{\sum x^2} = \frac{76}{110}$	nean is zero,	$\sum x + b \sum x^2$	
			on of the trend lin		x	1
	The trend value	ies are				
	1.73, 2.42,	3.11, 3.8, 4.49, 5.1	8, 5.87, 6.56, 7.25,	7.94, 8.63		2
1	5		OR			
			i	4-quarterly	4-year centered	- 11
	Yearly/ Quarterly	Small scale industry	4-quarterly moving total	moving average	moving average	

						-		
		II	47	162	40.5		11/2	
	2020	III	20	191	47.75	44.125	marks each fo	
		IV	56	203	50.75	4 9.25	3 rd and 4 th	
		I	68	249	62.25	56.5	columr	
		II	59	265	66.25	64.25	2 marks	
	2021	III	66	285	71.25	68.75	for las	
		IV	72	286	71.5	71.375		
		I	88	280	70.00	70 .75		
		II	60			6 9.375		
	2022	III	60	275	68.75			
		IV	67					
					.0			
3(a).	$y = ax^2 + bx + c$							
- (Owl passes through the points $(1,2),(2,1)$ and $(4,5)$. So, it must satisfy the given							
	equation							
	Therefore,							
	2 = a + b +	\boldsymbol{c}		Y				
	1 = 4a + 2b) + c	_()			<u></u>	1	
	5 = 16a + 4	b+c	5			J		
	1.11							
	Now, $D = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 16 & 4 & 1 \end{vmatrix} = 1(2-4)-1(4-16)+1(16-32) = -6 \neq 0$						1/2	
	$D_a = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 5 & 4 & 1 \end{vmatrix} = 2(2-4)-1(1-5)+1(4-10) = -6$						1/2	
	$D_b = \begin{vmatrix} 1 \\ 4 \\ 16 \end{vmatrix}$	2 1 1 1 5 1	(1-5)-2(4-	16)+1(20-16)=	24		1/2	

	and $D_c = \begin{vmatrix} 1 & 1 & 2 \\ 4 & 2 & 1 \\ 16 & 4 & 5 \end{vmatrix} = 1(10-4)-1(20-16)+2(16-32)=-30$	1/2
	$\therefore a = \frac{D_a}{D} = \frac{-6}{-6} = 1; \text{ , b} = \frac{D_b}{D} = \frac{24}{-6} = -4, \text{ , c} = \frac{D_c}{D} = \frac{-30}{-6} = 5$	1½
	Therefore, equation of the curve is $y = x^2 - 4x + 5$	
	When owl is sitting at $(0,k)$ then $x = 0 \Rightarrow k = 5$	1/2
	OR	
33(b).	(i) $s(t) = at^2 + bt + c ; t \ge 0$	
	Clearly, $(10,16)$, $(20,22)$, $(30,25)$ lie on the curve of $s(t)$.	
	Then, $100a + 10b + c = 16$	_
	400a + 20b + c = 22	1
	900a + 30b + c = 25	
	(ii) Let, $A = \begin{pmatrix} 100 & 10 & 1 \\ 400 & 20 & 1 \\ 900 & 30 & 1 \end{pmatrix}$; $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$; $B = \begin{pmatrix} 16 \\ 22 \\ 25 \end{pmatrix}$	1/2
	Then, the system becomes, $AX = B$	
	A = 100(-10) - 400(-20) + 900(-10)	
	$= -1000 + 8000 - 9000$ = -2000 \neq 0	1/2
	Now, $adjA = \begin{pmatrix} -10 & 500 & -6000 \\ 20 & -800 & 6000 \\ -10 & 300 & -2000 \end{pmatrix}^{T} = \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix}$	1
	Therefore, $A^{-1} = \frac{1}{ A } (adjA) = \frac{1}{-2000} \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix}$	1/2
	5	

Then, $X = A^{-1}B = \frac{1}{-2000} \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix} \begin{pmatrix} 16 \\ 22 \\ 25 \end{pmatrix}$ $= \frac{1}{-2000} \begin{pmatrix} 30 \\ -2100 \\ -14000 \end{pmatrix}$ $= \begin{pmatrix} -\frac{3}{200} \\ \frac{21}{20} \\ 7 \end{pmatrix}$ Therefore, $a = -\frac{3}{200}$, $b = \frac{21}{20}$, $c = 7$.	1½
Let us consider demand function be $p = D(x) = ax + b$ (i)	
When $x=25$ then $p=20000$ From equation (i) , we have $20000=25a+b(ii)$ And when $x=125$ then $p=15000$	1/2
From equation (i) , we have $15000 = 125a + b$ (ii)	1/2
On solving equations (i) and (ii), we get $a = -50$ and $b = 21250$	1
Therefore, demand function, $p = D(x) = -50x + 21250$	1/2
For equilibrium point $D(x_0) = S(x_0)$	
$\Rightarrow -50x_0 + 21250 = 100x_0 + 7000$	
$\Rightarrow -150x_0 = -14250$	
$\Rightarrow x_0 = 95$	1/2
On putting value of x_0 in demand function and supply function, we get	
$p_0 = 16500$	1/2
	Then, $X = A^{-1}B = \frac{1}{-2000}\begin{bmatrix} 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{bmatrix}\begin{bmatrix} 22 \\ 25 \end{bmatrix}$ $= \frac{1}{-2000}\begin{bmatrix} 30 \\ -2100 \\ -14000 \end{bmatrix}$ $= \begin{bmatrix} -\frac{3}{200} \\ \frac{21}{20} \\ 7 \end{bmatrix}$ Therefore, $a = -\frac{3}{200}$, $b = \frac{21}{20}$, $c = 7$. Let us consider demand function be $p = D(x) = ax + b$ (i) When $x = 25$ then $p = 20000$ From equation (i), we have $20000 = 25a + b$ (ii) And when $x = 125$ then $p = 15000$ From equation (i), we have $15000 = 125a + b$ (ii) On solving equations (i) and (ii), we get $a = -50$ and $b = 21250$ Therefore, demand function, $p = D(x) = -50x + 21250$ For equilibrium point $D(x_0) = S(x_0)$ $\Rightarrow -50x_0 + 21250 = 100x_0 + 7000$ $\Rightarrow -150x_0 = -14250$ $\Rightarrow x_0 = 95$ On putting value of x_0 in demand function and supply function, we get

∴ Consumer surplus (CS)
$$= \int_{0}^{\infty} D(x) dx - p_{e}x_{e}$$

$$= \int_{0}^{\infty} D(x) dx - p_{e}x_{e}$$

$$= \int_{0}^{\infty} (-50x + 21250) dx - 16500 \times 95$$

$$= (-50\frac{x^{2}}{2} + 2150x)_{e}^{35} - 1567500$$

$$= 1793125 - 1567500$$

$$= ₹ 225625$$

$$35. Amount needed after 4 years$$

$$= Replacement Cost - Salvage Cost = ₹ (55,200 - 7200) = ₹ 48,000$$
The payments into sinking fund consisting of 10 annual payments at the rate 7% per year is given by
$$A = RS_{ai} = R\left[\frac{(1+i)^{\gamma} - 1}{i}\right]$$

$$\Rightarrow 48000 = R\left[\frac{(1+0.07)^{4} - 1}{0.07}\right] = R\left[\frac{(1.07)^{4} - 1}{0.07}\right]$$

$$\Rightarrow R = \frac{48000}{4.4385} = ₹ 10814.5$$
Amount of Annual Depreciation = $\frac{36000 - 7200}{4} = \frac{28800}{4} = ₹ 7200$
and rate of Depreciation = $\frac{7200}{36000 - 7200} \times 100 = 25\%$

Section -E

[This section comprises solution of 3 case- study/passage-based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.]

36.	(i) For all values of $x, y = x^2 + 7$	
	∴ Shivam's position at any point of x will be $(x, x^2 + 7)$	
	The measure of the distance between Shivam and Manita, i.e., D	
	$D = \sqrt{(x-3)^2 + (x^2 + 7 - 7)^2} = \sqrt{(x-3)^2 + x^4}$	1/2 + 1/2
	(ii) We have,	
	$D = \sqrt{\left(x-3\right)^2 + x^4}$	
	Let $\Delta = D^2 = (x-3)^2 + x^4$	
	Now,	
	$\frac{d}{dx}(\Delta) = 2(x-3) + 4x^3 = 4x^3 + 2x - 6$	1/2
	$\frac{d}{dx}(\Delta) = 0 \Rightarrow x = 1$	1/2
	(iii) (a): $\Delta''(x) = 8x^2 + 2$	
	Clearly, $\Delta''(x) = 8x^2 + 2 > 0$ at $x = 1$	1
	\therefore Value of x for which D will be minimum is 1.	
	For $x = 1, y = 8$.	
	Therefore, required distance = $D = \sqrt{(1-3)^2 + (1)^4} = \sqrt{4+1} = \sqrt{5}$	1
	OR	
	(iii) (b): $\Delta''(x) = 8x^2 + 2$	
	Clearly, $\Delta''(x) = 8x^2 + 2 > 0$ at $x = 1$	1
	\therefore Value of x for which D will be minimum is 1.	
	For $x = 1, y = 8$.	1
	Thus, the required position for Shivam is $(1,8)$ when he is closest to Manita.	
37.	(i) Here, time = 25 years	
	∴ Total number of payments = 25×12 = 300 R = 9% per annum.	1/2
	Rate of interest per month = $\frac{9}{1200}$ = 0.0075	1/2
	(ii) (a) Cost of house = ₹2500000	
	Down Payment = ₹500000	

Thus, total transportation cost (in ₹)

$$= 160x + 100y + 150(8 - x - y) + 100(5 - x) + 120(5 - y) + 100(x + y - 4) = 10(x - 7y + 190).$$

Hence the given problem can be formulated as an L.P.P as:

$$Minimize Z = 10(x - 7y + 190)$$

subject to the constraints

$$x + y \ge 4$$
,

$$x + y \leq 8$$
,

$$y \le 5$$

$$x \ge 0, y \ge 0$$

(ii) The feasible region corresponding to these in equations is shown shaded in the figure given below.

1

1

1

Corner Points	Value of $Z = 10(x - 7y + 190)$
A (4,0)	1940
B (5,0)	1950
C (5,3)	1740
D (3,5)	1580
E (0,5)	1550 →Minimum
F (0,3)	1690

We observe that Z is minimum at point E(0, 5) and minimum value is ₹ 1550.

Hence x = 0, y = 5. Thus for minimum transportation cost, factory P should supply 0, 5, 3 units to depots A, B, C respectively and factory Q should supply 5, 0, 1 units respectively to depots A, B, C.

1