Five New Cadinane-Type Sesquiterpenes from the Heartwood of Chamaecyparis obtusa var. formosana

Yueh-Hsiung Kuo,*,† Chia-Hsien Chen,† Shih-Chang Chien,† and Yun-Lian Lin‡

Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China, and National Research Institute of Chinese Medicine, Taipei, Taiwan, Republic of China

Received March 16, 2001

Muurola-4,10(14)-dien-3-one (1), 10-O-acetyl-15-oxo- α -cadinol (2), 15-hydroxy- α -cadinol (3), 4α -hydroxy- 5β -ethoxy-epi-cubenol (4), and 4α -hydroxy- 5β -acetoxy-epi-cubenol (5), five new bicyclic sesquiterpenes, have been isolated from the heartwood of Chamaecyparis obtusa var. formosana along with the known compounds epi-cubenol, T-cadinol, T-muurolol, δ -cadinol, and α -cadinol. The structures of the new constituents were elucidated through chemical and spectral studies.

There are seven species of the genus Chamaecyparis (Cupressaceae), but only two endemic species, C. formosensis and *C. obtusa* var. *formosana*, are found in the central mountains of Taiwan. Both of these species are important building materials, and the latter species is believed to be more resistant to wood-decaying fungi. Although there are several earlier studies on the chemical constituents of *C.* obtusa var. formosana,1-4 only essential oils and simple acidic components were isolated. We also recently reported the isolation and identification of the novel diterpene obtunone⁵ and three new abietane diterpenes⁶ from the heartwood of the plant. In this paper, we report five new bicyclic cadinane sesquiterpenes, muurola-4,10(14)-dien-3-one (1), 10-O-acetyl-15-oxo- α -cadinol (2), 15-hydroxy- α cadinol (3), 4α -hydroxy- 5β -ethoxy-epi-cubenol (4), and 4α hydroxy- 5β -acetoxy-epi-cubenol (5), together with five known sesquiterpenes, epi-cubenol (6), 7 T-cadinol (7), 8 T-muurolol (8), 8 δ -cadinol (9), 9 and α -cadinol (10). 10 Compound 3 was purified as its monoacetate 11.

Results and Discussion

HREIMS revealed compound 1 to be a sesquiterpene of formula $C_{15}H_{22}O$ [[M⁺] = 218.1675]. The $\hat{I}R$ spectrum suggested the presence of an α,β -unsaturated carbonyl system with absorptions at v_{max} 1672, 1663 cm⁻¹ and an exocyclic double bond with absorption at 889 cm⁻¹. The ¹³C NMR spectrum of **1** (Table 1) shows 15 carbon signals for a carbonyl, two double bonds, three methylenes, four methines, and three methyl groups. Five indices of hydrogen deficiency (IHD) were determined from the ¹³C NMR spectrum and DEPT experiments. Four olefinic signals ($\delta_{\rm C}$ 109.0, 134.9, 149.2, and 149.7) and the conjugated carbonyl at $\delta_{\rm C}$ 199.5 implicated a bicyclic molecule. The one-proton doublet at δ 6.78 (J = 5.0 Hz, H-5) could be assigned to a vinylic hydrogen β to the carbonyl. A broad signal at δ 1.77 (3H) proved to be due to a methyl group on a double bond. The signal at $\delta_{\rm C}$ 109.0 is typical of the terminal methylene carbon of an exocyclic double bond, while the singlet at δ 4.67 (2H) could be assigned to the terminal olefinic protons. The signals at δ 0.86 and 0.93 (each 3H, d, J = 6.9 Hz, H-12, -13) and 1.89 (1H, m, H-11; COSY correlation with δ 0.86 and 0.93), together with the MS spectral fragment at m/z at 175 $[M^+ - C_3H_7]^+$, established the presence of

 $1 R_1 = CH_2, R_2 = O$ **8** R_1 = β -OH, α -Me, R_2 = H_2 **9** R_1 = β -Me, α -OH, R_2 = H_2 R_1 = β -Me, α -OAc, R_2 =CHO R_1 = β -Me, α -OH, R_2 =CH₂OH R_1 = β -OH, α -Me, R_2 =Me R_1 = β -Me, α -OH, R_2 =Me R_1 = β -Me, α -OH, R_2 =CH₂OAc R_1 = β -Me, α -OAc, R_2 =Me R_1 = β -Me, α -OH, R_2 =CHO

4 R=Et 5 R=Ac

16 Key NOESY ◀

an isopropyl group. On the basis of the above evidence, 1 had the skeleton of the cadinane type of sesquiterpene. 11 The ¹H-¹H COSY spectrum of **1** showed connectivities for the H₂-protons [δ 2.25 (1H, dd, J = 16.9, 4.3 Hz) and 2.74

^{*} To whom correspondence should be addressed. Tel: +886-223638146. Fax: +886-223636359. E-mail: yhkuo@ccms.ntu.edu.tw. † National Taiwan University.

[‡] National Research Institute of Chinese Medicine

Table 1. ¹H and ¹³C NMR Spectral Data of 1–5 and 11 (400 and 100 MHz in CDCl₃)

no.	1	2	3	11	4		5	
	$\delta_{\rm C}$	δ_{C}	$\delta_{ m C}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}
1	43.0	47.3	50.0	49.7		74.7		72.2
2	40.1	21.5	22.2	22.1	1.41m 1.64m ^a	32.1	1.51m 1.86m ^b	31.8
3	199.5	22.0	26.4	26.7	1.57m 1.72m	25.0	1.24m 1.85m	29.6
4	134.9	141.7	138.2	133.7	1.72111	75.6	1.00111	70.6
5	149.7	151.2	123.5	127.4	3.55br s	72.3	5.05br s	75.5
6	40.7	40.6	39.6	39.8	1.65^{a}	42.5	1.83^{b}	42.9
7	43.8	45.3	46.4	46.2	1.72m	37.4	1.46m	37.2
8	25.4	21.6	21.9	22.0	1.06m 1.67m ^a	23.7	1.05qd (12.8, 6.8)	23.7
							1.65qd (12.8, 4.2)	
9	30.5	36.2	42.0	42.1	1.32m 1.49m	30.4	1.42m 1.47m	29.8
10	149.2	84.2	72.3	72.3	1.32m	41.1	1.26m	41.5
11	27.5	26.2	25.9	26.0	2.05sep d (6.9, 3.0)	25.6	1.82 m b	25.5
12	16.3	15.2	15.1	15.1	0.71d(6.9)	14.9	0.72d(6.9)	14.8
13	21.4	21.3	21.4	21.4	0.91d(6.9)	21.5	0.84d(6.9)	21.4
14	109.0	17.4	20.6	20.7	0.83d(6.3)	14.1	0.87d(6.7)	14.6
15	16.0	194.4	67.2	68.8	1.20s	21.7	1.16s	27.8
OCO <i>CH</i> $_3$		22.6		21.0			2.08s	21.1
$OCOCH_3$		170.5		171.0				169.2
OCH_2 <i>CH</i> $_3$					1.11t(6.9)	16.2		
O <i>CH</i> ₂CH₃					3.32dq	55.9		
					(14.0, 6.9)			
					3.37dq			
					(14.0, 6.9)			

a,b Overlapping each other.

(1H, dd, J = 16.9, 12.8 Hz)] with the bridgehead proton H-1 (δ 2.92, dt, J = 12.8, 4.3 Hz), which in turn was connected to the other bridgehead proton H-6 (δ 2.34, m). H-6 was coupled to the methine proton at δ 1.59 (m, H-7), and the coupling chain continued from H-7 to H-8 (δ 1.68– 1.73, m) and then to H-9 (δ 2.15–2.23, m). H-11 (δ 1.89, m) showed a COSY correlation with H-7, H-12, and H-13 and also a NOESY correlation with H-5. This evidence confirmed the location of the isopropyl group at C-7. The relative stereochemistry of 1 was deduced from analyses of coupling constants and the NOESY correlation between H-1 and H-6. In the ¹H NMR spectrum of **1**, H-1 appears as a doublet of triplets, with the larger doublet coupling (J=12.8 Hz) to H_{ax} -2 (δ 2.74) and smaller triplet couplings (J=4.3 Hz) to H_{eq}-2 (δ 2.25) and H-6 (δ 2.34). This evidence established compound 1 as a cis-fused ring system. Additionally, H-5 appears as a doublet coupled with H-6 (J=5.0 Hz), providing further evidence for the cis-fusion: in trans-fused isomers, such as T-cadinol (7), α-cadinol (10), and 4-cadinene- 9α -ol-3-one, ¹² the olefinic proton appears as a broad singlet, while in cis-fused muurolene derivatives^{8,13} the olefinic proton resonates as a doublet. Thus, based on the above evidence, the structure of 1 was established as muurola-4,10(14)-dien-3-one.

Compound **2** was isolated as an oil and showed a pseudomolecular ion at m/z 218 [M⁺ – AcOH], analyzing for $C_{17}H_{26}O_3$. The IR spectrum of **2** showed bonds attributable to an acetoxyl group (1734, 1245, and 1160 cm⁻¹), geminal dimethyl group (1380 and 1369 cm⁻¹), and a conjugated aldehyde (2723, 1690, and 1642 cm⁻¹). The latter group was further confirmed from the UV absorption at $\lambda_{\rm max}$ 232 nm. The ¹H NMR spectrum shows signals for an isopropyl group at δ 0.82, 0.96 (each 3H, d, J = 6.9 Hz), and 2.20 (1H, m, H-11), a three-proton singlet at δ 1.41 for a methyl attached to a quaternary carbon bearing an acetoxyl group (δ 1.97, s), a conjugated aldehyde signal at δ 9.43 (s), and a singlet at δ 6.84 for the olefinic proton β

to the carbonyl group (H-5). The COSY spectrum of 2 displayed the connectivity of H-5 to H-6 (δ 2.07, m), which was also coupled to H-1 (δ 1.72, m) and H-7 (δ 1.23, m). The location of the isopropyl at C-7 was confirmed by the NOESY correlations observed between H-5 and the two methyls of the isopropyl group. The protons at δ 2.05 (m) and 2.44 (m) were assigned to the allylic H-3 protons, which were correlated in the COSY spectrum with H-2 [δ 1.64 and 2.06 (each 1H, m)]. H-1 showed a NOESY correlation to H-2 α , but no correlation to H-6. The signal for the olefinic proton (H-5) appeared as a broad singlet and showed a NOESY correlation to the methyls of the isopropyl group, thus indicating a trans-fused ring and an equatorial isopropyl.8,13,14 The ¹H and ¹³C NMR data of **2** are very similar to those of α -cadinyl acetate (12), 15 except for differences attributable to the aldehyde group in 2. On the basis of the above evidence, as well as HMBC and NOESY techniques, compound **2** was determined to be 10-*O*-acetyl-15-oxo-α-cadinol. Saponification of **2** yielded alcohol **13** (see below), which is an oxidative product from α -cadinol (10). The chemical correlation further confirmed the structure of 2.

Compound **3** was purified as its monoacetate **11**, obtained by treating **3** with acetic anhydride in pyridine. The molecular formula of **11** was assigned as $C_{17}H_{28}O_3$ based on HREIMS. The IR spectrum of **11** shows absorption bands for a hydroxyl ($\nu_{\rm max}$ 3424 cm⁻¹), a trisubstituted double bond ($\nu_{\rm max}$ 3041, 1670, 825 cm⁻¹), and an acetoxyl group ($\nu_{\rm max}$ 1743 and 1245 cm⁻¹). The ¹H NMR spectrum of **11** shows signals for an isopropyl group at δ 0.75, 0.90 (each 3H, d, J= 6.9 Hz) and 2.09 (1H, m, COSY correlation to two doublet methyl groups), a three-proton singlet (δ 1.09) for a methyl group attached to a quaternary carbon bearing a hydroxyl group, an oxymethylene group (δ 4.44, 2H, s) linked between acetoxyl and olefinic groups, an acetoxyl group (δ 2.05, s), and a trisubstituted olefinic proton (δ 5.81, br s). By using COSY, HMQC, and HMBC

spectral methods, all protons, carbons, and carbon-proton connectivities were confirmed. The data were consistent with a 15-acetoxycadinol general structure. The trans-fused 11 was revealed from the presence of a broad singlet for the olefinic proton, H-5, and the C-7 equatorial isopropyl was confirmed by observing a NOE correlation between H-5 and an isopropyl methyl group. The strong NOE correlation between H₃-14 and H-6 indicated an axial orientation (β) of the methyl at C-10. By comparison of ¹³C NMR data of 11 with that of α -cadinol (Table 1), the structure of 11 was determined as 15-acetoxy- α -cadinol. Saponification of compound 11 yielded the purified natural product 3 (see Experimental Section for physical data), which was also chemically correlated to α -cadinol (10) and 13. Oxidation of α -cadinol (10) with SeO₂ under reflux in ethanol solution gave four products, 13, 14,17 15,15 and 3.

Compound 4 was isolated as an oil and shown by HREIMS to have molecular formula C₁₇H₃₂O₃. Only sp³ carbon signals, including three oxygenated carbon signals, were observed in the ¹³C NMR spectrum of 4. The hydroxyl group in 4 was evident from its IR spectrum (ν_{max} 3418 cm⁻¹). An ethoxyl group attached to a chiral carbon was revealed from ethoxyl signals at δ 3.32, 3.37 (each 1H, dq, J = 14.0, 6.9 Hz), and 1.11 (3H, t, J = 6.9 Hz). A broad signal at δ 3.55 (1H, H-5, resonate at $\delta_{\rm C}$ 72.3), which showed HMBC correlation with δ_C 55.9 ($-OCH_2CH_3$) and NOESY correlations with signals at δ 3.32 and 3.37 $(-OCH_2CH_3)$, was assigned as geminal to an ethoxy group. A doublet methyl signal (δ 0.83, d, J = 6.3 Hz), a singlet methyl signal (δ 1.20) on a carbon bearing a hydroxyl, and an isopropyl group [δ 0.71, 0.91 (each 3H, d, J = 6.9 Hz), 2.05 (1H, sep. d, J = 6.9, 3.0 Hz)] were also observed. Analysis of the ¹H and ¹³C NMR (Table 1) of 4 clearly showed it to be structurally similar to *epi*-cubenol (6), the obvious differences being the absence of any double bonds and the presence of an additional hydroxyl and one ethoxyl group in 4. The placement of a hydroxyl and the ethoxyl group at C-4 and C-5, respectively, was based on the following data. The signal at δ 3.55 was assigned as C-5_{α} (equatorial) due to having NOESY (see structure 16) correlation with H₃-12 and H-11 of the isopropyl group. By using HMQC and HMBC techniques, the ¹H and ¹³C signals were assigned. H-10 (δ 1.32, m) exhibited NOESY correlations with H-6 (δ 1.65, overlapped with other signals), H_{β} -8 (δ 1.06, m), and H_{3} -14, thus confirming the equatorial orientation of the C-10 methyl group. The absence of a NOE between H-10 and H_{ax} -2 (δ 1.41) suggested a cis-fused decaline structure, as in 16. The presence of NOE cross-peaks between H-15 and H-4, and H-15 and $-OCH_2CH_3$, clearly established the β -equatorial orientation of the C-4 methyl. The ethoxy group on C-5 was assigned the β -axial orientation, since $-OCH_2CH_3$ showed NOE correlation with the H_{β}-3 (δ 1.57) axial proton. Thus, compound 4 was identified as 4α -hydroxy- 5β -ethoxy-epicubenol.

The IR spectrum of 5 suggested the presence of hydroxyl $(\nu_{\rm max}~3430~{\rm cm}^{-1})$ and acetoxyl groups $(\nu_{\rm max}~1735~{\rm and}~1224$ cm⁻¹), which was further supported by ¹H and ¹³C NMR signals at δ 2.08 (s), $\delta_{\rm C}$ 21.1, and 169.2. The molecular formula of C₁₇H₃₀O₄ was established by HREIMS. Besides the acetyl group, signals for 15 carbons were evident in the ¹³C NMR spectrum. Thus, 5 was proposed to be a sesquiterpene. The signals at δ 0.87 (3H, d, J=6.7 Hz, H-14), 1.16 (3H, s, H-15), 5.05 (1H, br s, H-5), 1.82 (1H, m, H-11), 0.72 and 0.84 (each 3H, d, J = 6.9 Hz, H-12, -13), suggested 5 is an epi-cubenol derivative. The signal for H-5 (δ 5.05) showed an NOE correlation with the signals at δ

1.82, 0.72, and 0.84 (isopropyl group), indicating an α -equatorial orientation of H-5. Therefore, hydroxyl and acetoxyl groups were located at C-4 and C-5, respectively. Similarity of the ¹H and ¹³C NMR data of 5 and 4 and the absence of a NOE correlation of H-10 to H_{ax} -2 (δ 1.51) provided evidence that 5 is a cis-fused decalin. The NOE observed between H_3 -15 and both H-5 and H_2 -3 (δ 1.24 and 1.85) suggested the β -equatorial orientation of H₃-15. Thus, compound **5** was identified as 4α -hydroxy- 5β -acetoxy-epicubenol.

Experimental Section

General Experimental Procedures. Melting points were determined with a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 983G spectrophotometer. ¹H and ¹³C spectra were run on a Bruker DMX-400 spectrometer. EIMS and specific rotations were taken on a JEOL JMS-HX 300 mass spectrometer and a JASCO DIP-1000 digital polarimeter, respectively. Extracts were chromatographed on silica gel (Merk 70-230 mesh, 230-400 mesh, ASTM) and purified with a semipreparative normal-phase HPLC column (250 \times 10 mm, 7 μ m, LiChrosorb Si 60) taken on LDC Analytical-III.

Plant Material. The heartwood of *C. obtusa* var. *formosana* was collected from Taichung, Taiwan, in 1996. The plant was identified by Mr. Muh-Tsuen Gun, formerly of the Department of Botany, National Taiwan University. A voucher specimen has been deposited at the Herbarium of the Department of Botany, National Taiwan University, Taipei, Taiwan.

Extraction and Isolation. The dried heartwood of C. obtusa var. formosana (11 kg) was extracted with Me₂CO (120 L) at room temperature (3 days \times 2). To the evaporated Me₂-CO extract was added H2O to bring the total volume to 1 L, and this phase was then partitioned with ethyl acetate (1 L \times 3). The combined ethyl acetate layer afforded a black syrup (680 g) that was chromatographed on Si gel and by HPLC (normal phase on Lichrosorb Si 60), repeatedly using a hexane-EtOAc gradient solvent system. Muurola-4,10(14)diene-3-one (1) (5.5 mg), epi-cubenol (6) (11.8 mg), T-cadinol (7) (11.2 mg), T-muurolol (8) (9.3 mg), δ -cadinol (9) (5.8 mg), α -cadinol (10) (16.7 mg), 10-O-acetyl-15-oxo-α-cadinol (2) (5.1 mg), 15-hydroxy- α -cadinol (3) (crude weight 15 mg), 4α hydroxy- 5β -ethoxy-epi-cubenol (4) (6.5 mg), and 4α -hydroxy- 5β -acetoxy-*epi*-cubenol (5) (5.6 mg) were eluted with 5%, 5%, 10%, 10%, 10%, 10%, 20%, 30%, 50%, and 50% EtOAc in hexane solvent systems, respectively. Acetylation of crude 3 (15 mg) with Ac₂O and pyridine yielded 11 (14 mg).

Muurola-4,10(14)-dien-3-one (1): colorless oil; $[\alpha]^{25}$ _D -12.8° $(c 0.31, CHCl_3)$; IR (KBr) ν_{max} 1672, 1663, 1655, 889, 830 cm⁻¹; UV (MeOH) λ_{max} (log $\epsilon) 238$ (3.91) nm; 1H NMR (CDCl $_3,\ 400$ MHz) δ 0.86, 0.93 (each 3H, d, J = 6.9 Hz, H-12, -13), 1.59 (1H, m, H-7), 1.67–1.73 (2H, m, H-8), 1.77 (3H, br s, H-15), 1.89 (1H, m, H-11), 2.15-2.23 (2H, m, H-9), 2.25 (1H, dd, J =16.9, 4.2 Hz, H_a -2), 2.34 (1H, m, H-6), 2.74 (1H, dd, J = 16.9, 12.8 Hz, H_b -2), 2.92 (1H, dt, J = 12.8, 4.3 Hz, H-1), 4.67 (2H, br s, H-14), 6.78 (1H, d, J = 5.0 Hz, H-5); ¹³C NMR data, see Table 1; EIMS m/z 218 [M]+ (6), 203 (3), 190 (70), 175 (45), 147 (100), 133 (40), 119 (41), 105 (68), 91 (80), 69 (48); HREIMS m/z 218.1675 (calcd for C₁₅H₂₂O, 218.1671).

10-*O*-**Acetyl-15-oxo**- α -**cadinol (2):** colorless oil; $[\alpha]^{25}$ _D -18.3° (c 0.75, CHCl₃); IR (KBr) $\nu_{\rm max}$ 2723, 1734, 1690, 1642, 1380, 1369, 1245, 1114, 1025 cm $^{-1}$; UV (MeOH) $\lambda_{\rm max}$ (log $\epsilon)$ 232 (4.04) nm; 1 H NMR (CDCl₃, 400 MHz) δ 0.82, 0.96 (each 3H,d J = 6.9 Hz, H-12, -13), 1.14-1.18 (2H, m, H-8), 1.23 (1H, m, H-8), 1.23 (1H, H-12), $m,\,H\text{--}7),\,1.41(3H,\,s,\,H\text{--}14),\,1.64\,(2H,\,m,\,H_{a}\text{--}2,\,H_{a}\text{--}9),\,1.72\,(1H,\,H_{a}\text{--}2),\,1.41(3H,\,s)$ m, H-1), 1.97 (3H, s, OC=OCH₃), 2.05 (1H, m, H_a-3), 2.06 (1H, H_b -3), 2.64 (1H, d, J = 12.4 Hz, H_b -9), 6.84 (1H, br s, H-5), and 9.43 (1H, s, H-15); 13 C NMR data, see Table 1; EIMS m/z218 [M⁺ - HOAc] (82), 189 (74), 175 (100), 157 (23), 148 (31), 105 (34); HREIMS m/z 218.1682 (calcd for C₁₅H₂₂O, 218.1671).

15-Hydroxy-\alpha-cadinol (3): amorphous solid; $[\alpha]^{25}_D$ -30.6° (c 0.85, CHCl₃); IR (KBr) $\nu_{\rm max}$ 3363, 3020, 1687, 1214, 1066,

1027, 757 cm $^{-1}$; ¹H NMR (CDCl₃, 400 MHz) δ 0.73, 0.88 (each 3H, d, J = 6.9 Hz, H-12, -13), 1.03 (2H, m, H-7), 1.06 (3H, s, H-14), 1.21 (1H, m, H-1), 1.17, 1.58 (each 1H, m, H-8), 1.39 (1H, td, J = 12.5, 3.7 Hz, H-9), 1.72 (1H, m, H-6), 1.76 (1H, m, H-6dt, J = 12.5, 2.9 Hz, H-9), 2.08 (2H, m, H-2), 2.12 (1H, m, H-11), 2.18 (2H, m, H-3), 3.94, 3.97 (each 1H, d, J = 13.0 Hz, H-15); ¹³C NMR data, see Table 1; EIMS m/z 238 [M⁺] (2), $220 (M^+ - H_2O)(26), 193 (54), 190 (93), 159 (100), 147 (78),$ 119 (68), 91 (100); HREIMS m/z 238.1935 (calcd for C₁₅H₂₆O₂, 238.1926)

 4α -Hydroxy- 5β -ethoxy-epi-cubenol (4): amorphous solid; $[\alpha]^{25}_{D}$ -9.9° (c 0.12, CHCl₃); IR (KBr) ν_{max} 3418, 1113, 1069, 1013, 875, 775 cm $^{-1}$; 1 H and 13 C NMR data, see Table 1; EIMS m/z 284 [M⁺] (3), 185 (65), 149 (13), 100 (100), 86 (14); HREIMS m/z 284.2354 (calcd for C₁₇H₃₂O₃, 284.2351).

4α-**Hydroxy**-**5**β-**acetoxy**-**epi**-**cubenol** (5): amorphous solid; $[\alpha]^{25}_D + 10.2^{\circ}$ (c 0.12, CHCl₃); IR (KBr) ν_{max} 3430, 1735, 1224, 1016, 996 cm $^{-1}$; 1 H and 13 C NMR data, see Table 1; EIMS m/z298 [M⁺] (1), 280 (28), 227 (36), 220 (25), 195 (30), 177 (60), 167 (100), 159 (22); HREIMS m/z 298.2148 (calcd for C₁₇H₃₀O₄, 298.2144).

15-Acetoxy-\alpha-cadinol (11): amorphous solid; $[\alpha]^{25}D - 34.7^{\circ}$ (c 0.36, CHCl₃); IR (KBr) ν_{max} 3424, 3041, 1743, 1670, 1245, 1123, 1026 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.10 (1H, m, H-7), 1.12, 1.62 (each 1H, m, H-8), 1.24 (1H, m, H-1), 1.24, 2.07 (each 1H, m, H-2), 1.41, 1.79 (each 1H, m, H-9), 1.76 (1H, m, H-6), 2.00-2.10 (2H, m, H-3); ¹³C NMR data, see Table 1; EIMS m/z 262 [M⁺ - H₂O] (4), 187 (12), 177 (19), 159 (100), 147 (18), 119 (26), 105 (23); HREIMS m/z 262.1941 (calcd for $C_{17}H_{26}O_2$, 262.1933).

Saponification of 2 and 11 in Methanolic NaOH. Compound 2 (5 mg) or 11 (5 mg) was dissolved in 1 N NaOH methanolic solution (1 mL) for 5 h under stirring, and the solution was quenched with 15 mL of H₂O. After removal of MeOH by evaporating in vacuo, the product was extracted with CH₂Cl₂ and dried (MgSO₄) to afford **13** (3 mg) or **3** (3 mg).

Oxidation of α -Cadinol (10) with Selenium Dioxide. α-Cadinol (10) (from Taiwania cryptomerioides with same specific rotation from C. obtusa var. formosana) (1.543 g) and SeO₂ (1.06 g) in 30 mL of 95% ethanol were refluxed 6 h. The

reaction mixture was filtrated through Celite, and the filtrate was purified by SiO₂ chromatography and then HPLC to yield four products: **13** (100 mg), **14** (264 mg), ¹⁵ **3** (81 mg), and **15** (123 mg). 15 The physical data of **13** are as follows: amorphous solid; $[\alpha]^{30}_D$ -6.3° (c 3.52, CHCl₃); IR (KBr) ν_{max} 3432, 3031, 2735, 1683, 1639, 1129, 1070 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 0.81, 0.95 (each 3H, d, J = 7.0 Hz), 1.10 (3H, s), 6.82 (1H, br s), and 9.40 (1H, s); EIMS m/z 236 [M⁺] (6), 218 (42), 193 (100), 178 (44), 175 (75), 135 (44), 91 (80).

Acknowledgment. This research was supported by the National Science Council of Republic of China.

References and Notes

- (1) Kafuku, K.; Nozoe, T. Bull. Chem. Soc. Jpn. 1931, 6, 65-74.
- Nozoe, T. Bull. Chem. Soc. Jpn. 1936, 11, 295-298.
- (3) Lin, Y. T.; Wang, K. T.; Chang, L. H. J. Chin. Chem. Soc. 1955, 2, 126 - 128
- (4) Lin, Y. T.; Wang, K. T.; Chang, L. H. J. Chin. Chem. Soc. 1963, 10,
- (5) Kuo, Y. H.; Chen, C. H.; Huang, S. L. Chem. Pharm. Bull. 1998, 46, 181-183
- (6) Kuo, Y. H.; Chen, C. H.; Huang, S. L. J. Nat. Prod. 1998, 46, 829-
- Ohta, Y.; Hirose, Y. *Tetrahedron Lett.* **1967**, 2073–2075. Cheng, Y. S.; Kuo, Y. H.; Lin, Y. T. *J. Chem. Soc., Chem. Commun.* **1967**, 565–567.
- (9) Kuo, Y. H.; Wu, T. R.; Cheng, M. C.; Wang, Y. Chem. Pharm. Bull
- 1990, 38, 3195–3201. (10) Cheng, Y. S.; Kuo, Y. H.; Lin, Y. T. Chemistry 1968, 47–51. (11) Bordoloi, M.; Shukla, V. S.; Nath, S. C.; Sharma, R. Phytochemistry 1989, 28, 2007-2037.
- Lin, Y. T.; Cheng, Y. S.; Kuo, Y. H. Tetrahedron Lett. 1968, 3881-3882
- (13) Kuo, Y. H.; Cheng, Y. S.; Lin, Y. T. Tetrahedron Lett. 1969, 2375-
- (14) He, K.; Shi, G.; Zhao, G. X.; Kozlowski, J. K.; McLaughlin, J. L. J. Nat. Prod. 1997, 60, 38-40.
- Nishimura, H.; Hasegawa, H.; Seo, A.; Nakano, H.; Mizutani, J. Agric. Biol. Chem. 1979, 43, 2397-2398.
- Connolly, J. D.; Philips, W. R.; Huneck, S. Phytochemistry 1982, 21, 233 - 234
- Lin, Y. T.; Cheng, Y. S.; Kuo, Y. H.; Lin, K. C. J. Chin. Chem. Soc. **1974**, *21*, 31–35.

NP0101402