EPITECH OUTILS MATHEMATIQUES

Année 2011-2012 Mini-projet 110integ

1 Objectif

On vous demande d'évaluer par ordinateur plusieurs intégrales de fonctions. Les méthodes d'intégration numérique sont les quatre suivantes :

- 1. Méthode des rectangles
- 2. Méthode des trapèzes
- 3. Méthode de Simpson
- 4. Méthode de Gauss d'ordre 3 (facultatif, bonus de 5 points)

L'intervalle d'intégration est l'intervalle [0,1]. Pour chaque méthode, l'intervalle d'intégration est subdivisé en n sous intervalles. Le nombre n sera un argument du logiciel. Les 10 fonctions à intégrer sont notées f_i avec $i=1,\ldots,10$. Toutes les intégrales sont égales à 1:

$$\int_0^1 f_i(x) dx = 1, \qquad i = 1, 2, ..., 10$$

Les dix fonctions sont les suivantes :

$$f_{1}(x) = 1$$

$$f_{2}(x) = 2x$$

$$f_{3}(x) = 3x^{2}$$

$$f_{4}(x) = 4x^{3}$$

$$f_{5}(x) = 5x^{4}$$

$$f_{6}(x) = 6x^{5}$$

$$f_{7}(x) = \frac{1}{2(\sqrt{2}-1)\sqrt{x+1}}$$

$$f_{8}(x) = \frac{2}{(x+1)^{2}}$$

$$f_{9}(x) = \frac{\pi}{2}sin(\frac{\pi}{2}x)$$

$$f_{10}(x) = \frac{e^{x}}{e-1}$$

On vous demande de présenter les résultats sous forme de tableau, comme dans l'exemple ci-dessous. En première ligne et première colonne, ce sont les légendes. Dans le tableau, on affiche les erreurs d'intégration, c'est à dire l'intégrale calculée moins le nombre 1 en valeur absolue :

$$e_{ij} = \left| \int_0^1 f_i(x) \, dx - 1 \right|$$
 $i = 1, ..., 10$ $j = 1, 2, 3, 4$

où j est le numéro de la méthode d'intégration employée. Les nombres doivent être affichés avec 2 chiffres significatifs et un exposant à 2 chiffres (voir exemple).

2 Le logiciel

Répertoire de rendu : $\tilde{/}../\text{rendu}/\text{math}/110\text{integ}/$

Nom de l'exécutable : 110integ

Exemple de lancement :

>110integ 10

En entrée : nombre n

Typiquement, l'argument n du programme variera entre 10 et 100.

3 Questions

- 1° Que signifie intuitivement qu'une fonction est continue?
- 2° Quelle est l'interprétation géométrique de l'intégrale d'une fonction continue sur un intervalle [a,b]?
- 3° A quoi sert l'intégration numérique?
- 4° Quel est le principe des méthodes d'intégration numérique?
- 5° Quelle sont les meilleures des méthodes d'intégration que vous utilisez dans ce sujet ?

4 Exemple

Pour n=10, on affiche les résultats suivants :

n = 10	Rectangles	Trapèzes	Simpson	Gauss
f_1	$0.0 \mathrm{E}{+00}$	0.0E + 00	0.0E + 00	1,1E-19
f_2	1,0E-01	0.0E + 00	0.0E + 00	0.0E + 00
f_3	1,5E-01	$5,\!0 ext{E-}03$	$0.0\mathrm{E}{+00}$	1,1E-19
f_4	1,9E-01	$1,\!0 ext{E-}02$	1,1E-19	1,1E-19
f_5	2,3E-01	1,7E-02	$4,\!2\text{E-}06$	1,1E-19
f_6	2,8E-01	$2,\!5 ext{E-}02$	1,3E-05	2,2E-19
f_7	1,8E-02	$3,\!2 ext{E-}04$	7,1E-08	1,7E-11
f_8	7,8E-02	2,9E-03	1,6E-06	7,0E-10
f_9	8,1E-02	2,1E-03	2,1E-07	7,5E-12
f_{10}	4,9E-02	8,3E-04	$3,\!5\text{E-}08$	5,0E-13

Naturellement, vous n'obtiendrez pas exactement les mêmes valeurs. Cela dépend du langage utilisé et de votre codage. L'objectif est d'obtenir avec une précision maximum des erreurs proches de 0.