Strategic Concealment in Innovation Races

Yonggyun (YG) Kim

Florida State University

Francisco Poggi

University of Mannheim

SED "Winter" Meeting. December, 2024

- Innovation paths are seldom unique.
 - COVID-19 Vaccine: mRNA or viral vector technologies.
 - Self-driving vehicles: LIDAR or radar technologies.

 Competitors must decide how to allocate resources (e.g. time, money) across different paths.

- Innovation paths are seldom unique.
 - COVID-19 Vaccine: mRNA or viral vector technologies.
 - Self-driving vehicles: LIDAR or radar technologies.

 Competitors must decide how to allocate resources (e.g. time, money) across different paths.

- Innovation paths are seldom unique.
 - COVID-19 Vaccine: mRNA or viral vector technologies.
 - Self-driving vehicles: LIDAR or radar technologies.

 Competitors must decide how to allocate resources (e.g. time, money) across different paths.

- Firms might not access opponent's breakthroughs (e.g. efficient delivery method) due to
 - Trade secrets.
 - Proprietary technology.
- This lack of access might introduce inefficiencies:
 - Duplication costs.
 - Suboptimal technology.
- What institutional arrangements drive firms to disclose and share their breakthroughs, and what is their effect on the overall pace of innovation

- Firms might not access opponent's breakthroughs (e.g. efficient delivery method) due to
 - Trade secrets.
 - Proprietary technology.
- This lack of access might introduce inefficiencies:
 - Duplication costs.
 - Suboptimal technology.
- What institutional arrangements drive firms to disclose and share their breakthroughs, and what is their effect on the overall pace of innovation?

- Firms might not access opponent's breakthroughs (e.g. efficient delivery method) due to
 - Trade secrets.
 - Proprietary technology.
- This lack of access might introduce inefficiencies:
 - Duplication costs.
 - Suboptimal technology.
- What institutional arrangements drive firms to disclose and share their breakthroughs, and what is their effect on the overall pace of innovation?

What we do

- We study a model of innovation race in which
 - Multiple technologies can be used to win the race.
 - Using some technologies requires obtaining them first. (firm-specific).
 - Firms flexibly choose between
 - racing with already available technology.
 - try to obtain a better technology.
- We analyze the strategic behavior of firms in different information environments.
 - technological access is public or private information.
- We apply this model to study incentives to disclose, patent, and license technological discoveries.

What we do

- We study a model of innovation race in which
 - Multiple technologies can be used to win the race.
 - Using some technologies requires obtaining them first. (firm-specific).
 - · Firms flexibly choose between
 - racing with already available technology.
 - try to obtain a better technology.
- We analyze the strategic behavior of firms in different information environments.
 - technological access is public or private information.
- We apply this model to study incentives to disclose, patent, and license technological discoveries.

What we do

- We study a model of innovation race in which
 - Multiple technologies can be used to win the race.
 - Using some technologies requires obtaining them first. (firm-specific).
 - · Firms flexibly choose between
 - racing with already available technology.
 - try to obtain a better technology.
- We analyze the strategic behavior of firms in different information environments.
 - technological access is public or private information.
- We apply this model to study incentives to disclose, patent, and license technological discoveries.

Related Literature

- Innovation Races: Loury ('79); Lee, Wilde ('80);
 - Patent vs. Secrecy: Horstmann et al. ('85); Denicolo, Franzoni ('04); Anton, Yao ('04); Kultti et al. ('07); Zhang ('12); Kwon ('12)
 - Multiple avenues to innovate: Akcigit, Liu ('16); Brian, Lemus ('17); Das, Klein ('20); Hopenhayn, Squintani ('21)
 - Multiple-stage innovation: Scotchmer, Green ('90); Denicolo ('00)
- Hail-Mary Attempts: Carnehl, Schneider ('22); Kim ('22)

Preview of results

- Without patents, firms do not disclose or share their technology. This entails inefficiencies that slow down innovation.
- When technology access is **public information**, patents are effective in inducing faster innovation.
 - Patents facilitate licensing, and firms are willing to share technologies with rivals for an adequate license fee.
- When technology access is private information, patents might be ineffective.
 - When stakes are sufficiently high, firms don't apply for patents to conceal their technology access.
 - True even when the patent holder has all the bargaining power in potential licensing negotiations.
 - Higher stakes might reduce the speed of innovation.

Preview of results

- Without patents, firms do not disclose or share their technology. This entails inefficiencies that slow down innovation.
- When technology access is **public information**, patents are effective in inducing faster innovation.
 - Patents facilitate licensing, and firms are willing to share technologies with rivals for an adequate license fee.
- When technology access is **private information**, patents might be ineffective.
 - When stakes are sufficiently high, firms don't apply for patents to conceal their technology access.
 - True even when the patent holder has all the bargaining power in potential licensing negotiations.
 - Higher stakes might reduce the speed of innovation.

Preview of results

- Without patents, firms do not disclose or share their technology. This entails inefficiencies that slow down innovation.
- When technology access is **public information**, patents are effective in inducing faster innovation.
 - Patents facilitate licensing, and firms are willing to share technologies with rivals for an adequate license fee.
- When technology access is **private information**, patents might be ineffective.
 - When stakes are sufficiently high, firms don't apply for patents to conceal their technology access.
 - True even when the patent holder has all the bargaining power in potential licensing negotiations.
 - Higher stakes might reduce the speed of innovation.

Preview of Framework

1. Model

2. Benchmark: Constant Development Rate

3. Public Information Setting

4. Private Information Setting

Patents and Licensing

Model: Preliminaries

- Two risk-neutral firms $i \in \{A, B\}$ race to develop an innovative product.
- Continuous and infinite time $t \in [0, \infty)$
- Two technologies to develop the product:
 - An **old** technology *L*
 - A new technology H (not accessible at the beginning)
- At t, each firm (w/o new technology) privately allocates a unit of resources to:
 - Research: trying to obtain the new technology.
 - Development: trying to win the race with the currently available technology
- Research progress of a firm indicates whether they obtained the new technology.

Model: Preliminaries

- Two risk-neutral firms $i \in \{A, B\}$ race to develop an innovative product.
- Continuous and infinite time $t \in [0, \infty)$
- Two technologies to develop the product:
 - An old technology L
 - A new technology H (not accessible at the beginning)
- At t, each firm (w/o new technology) privately allocates a unit of resources to:
 - Research: trying to obtain the new technology.
 - **Development:** trying to win the race with the currently available technology.
- Research progress of a firm indicates whether they obtained the new technology.

Model: Preliminaries

- Two risk-neutral firms $i \in \{A, B\}$ race to develop an innovative product.
- Continuous and infinite time $t \in [0, \infty)$
- Two technologies to develop the product:
 - An old technology L
 - A new technology H (not accessible at the beginning)
- At t, each firm (w/o new technology) privately allocates a unit of resources to:
 - Research: trying to obtain the new technology.
 - Development: trying to win the race with the currently available technology.
- Research progress of a firm indicates whether they obtained the new technology.

Model: Technology Illustrations

Old Technology

Model: Technology Illustrations

New Technology

Model: Technology Illustrations

Partial Allocation

Model: Payoffs

- The race ends when either firm develops the innovative product.
 - Winner obtains lump-sum prize Π.
 - Both firms pay a flow cost c throughout the race.

• Thus, the final payoff of Firm *i* is:

$$\mathbb{1}_{\{i ext{ is the winner}\}} \cdot \mathsf{\Pi} - c \cdot T$$

where T is the time at which the race ends.

Model: Payoffs

- The race ends when either firm develops the innovative product.
 - Winner obtains lump-sum prize Π.
 - Both firms pay a flow cost *c* throughout the race.

• Thus, the final payoff of Firm *i* is:

$$\mathbb{1}_{\{i ext{ is the winner}\}} \cdot \mathsf{\Pi} - c \cdot T$$

where T is the time at which the race ends.

Model: Payoffs

- The race ends when either firm develops the innovative product.
 - Winner obtains lump-sum prize Π.
 - Both firms pay a flow cost *c* throughout the race.

• Thus, the final payoff of Firm *i* is:

$$\mathbb{1}_{\{i \text{ is the winner}\}} \cdot \Pi - c \cdot T$$

where T is the time at which the race ends.

Model: Parametric Assumptions

1. **A1:** The new technology path (R + D) is (in expectation) faster than the old technology path:

$$\frac{1}{\lambda_L} > \frac{1}{\mu} + \frac{1}{\lambda_H}$$

2. A2: Developing with the old technology is profitable:

$$\Pi \geq \frac{\alpha}{\lambda}$$

This assumption ensures that firms never exit the race

Model: Parametric Assumptions

1. **A1:** The new technology path (R + D) is (in expectation) faster than the old technology path:

$$\frac{1}{\lambda_L} > \frac{1}{\mu} + \frac{1}{\lambda_H}$$

2. **A2:** Developing with the old technology is profitable:

$$\Pi \geq \frac{c}{\lambda_L}$$

This assumption ensures that firms never exit the race.

- Resource allocation is private information.
- Development of the innovative product is publicly observed.

- What about **research progress** of firms?
 - First part of the paper: we analyze public and private
 - Second part of the paper: we extend the model to allow for voluntary disclosure through patents.

- Resource allocation is private information.
- Development of the innovative product is publicly observed.

- What about **research progress** of firms?
 - First part of the paper: we analyze public and private
 - Second part of the paper: we extend the model to allow for voluntary disclosure through patents.

- Resource allocation is private information.
- Development of the innovative product is publicly observed.

- What about research progress of firms?
 - First part of the paper: we analyze public and private.
 - Second part of the paper: we extend the model to allow for voluntary disclosure through patents.

- Resource allocation is private information.
- Development of the innovative product is publicly observed.

- What about research progress of firms?
 - First part of the paper: we analyze **public** and **private**.
 - Second part of the paper: we extend the model to allow for voluntary disclosure through patents.

- Resource allocation is private information.
- Development of the innovative product is publicly observed.

- What about research progress of firms?
 - First part of the paper: we analyze public and private.
 - Second part of the paper: we extend the model to allow for voluntary disclosure through patents.

1. Model

2. Benchmark: Constant Development Rate

3. Public Information Setting

4. Private Information Setting

5. Patents and Licensing

Benchmark: Constant Development Rate

- Suppose that the rival develops the innovative product at a constant rate λ .
 - Which path is optimal?

Lemma

Suppose the rival's develops at a constant rate λ . There is a threshold λ_{\star} such that

- (a) if $\lambda < \lambda_{\star}$, it optimal to conduct research;
- (b) if $\lambda > \lambda_{\star}$, it is optimal to develop with the old technology.

Moreover,

$$\lambda_{\star} = \mu \cdot \lambda_H \left(\frac{1}{\lambda_L} - \frac{1}{\mu} - \frac{1}{\lambda_H} \right) > 0$$

Benchmark: Constant Development Rate

- Suppose that the rival develops the innovative product at a constant rate λ .
 - Which path is optimal?

Lemma

Suppose the rival's develops at a constant rate λ . There is a threshold λ_{\star} such that

- (a) if $\lambda < \lambda_{\star}$, it optimal to conduct research;
- (b) if $\lambda > \lambda_{\star}$, it is optimal to develop with the old technology.

Moreover,

$$\lambda_{\star} = \mu \cdot \lambda_{H} \left(\frac{1}{\lambda_{L}} - \frac{1}{\mu} - \frac{1}{\lambda_{H}} \right) > 0.$$

Development Times

PDF of the innovation time without race

Long Run:

By comparing the expected innovation time:

Research ≻ Development

Short Run:

 By comparing the prob. of innovation in the near future:
 Research ≺ Development 1. Model

2. Benchmark: Constant Development Rate

3. Public Information Setting

4. Private Information Setting

Patents and Licensing

Public Information Setting

• Public information setting: research progress of both firms is public information.

- Markov strategies
 - State variable: research progress of firms.

- **Observation:** A firm with the new technology conducts zero research.
 - It's only relevant to characterize what do firms do when they don't have the new technology.

Public Information Setting

• Public information setting: research progress of both firms is public information.

Markov strategies

• State variable: research progress of firms.

- **Observation:** A firm with the new technology conducts zero research.
 - It's only relevant to characterize what do firms do when they don't have the new technology.

Public Information Setting

• Public information setting: research progress of both firms is public information.

Markov strategies

• State variable: research progress of firms.

- **Observation:** A firm with the new technology conducts zero research.
 - It's only relevant to characterize what do firms do when they don't have the new technology.

Benchmark Strategy 1: Research Strategy

Research Strategy: Do research regardless of the rival's technology.

Benchmark Strategy 2: Direct-Development Strategy

Direct-Development Strategy: Develop with old technology regardless of the rival's progress.

Benchmark Strategy 3: Fall-Back Strategy

Fall-Back Strategy

- 1. Do research if the rival does not possess the new technology;
- 2. Switch to developing with the old technology once the rival obtains the new tech.

Theorem 1

Suppose that research progress is public information. The *unique* Markov perfect equilibrium is characterized as follows:

- 1. If $\lambda_{\star} > \lambda_{H}$, both firms play the research strategy;
- 2. If $\lambda_{\star} \in (\lambda_L, \lambda_H)$, both firms play the fall-back strategy;
- 3. If $\lambda_{\star} < \lambda_{L}$, both firms play the direct-development strategy.

Theorem 1

Suppose that research progress is public information. The *unique* Markov perfect equilibrium is characterized as follows:

- 1. If $\lambda_{\star} > \lambda_{H}$, both firms play the research strategy;
- 2. If $\lambda_{\star} \in (\lambda_L, \lambda_H)$, both firms play the fall-back strategy;
- 3. If $\lambda_{\star} < \lambda_{L}$, both firms play the direct-development strategy.

Theorem 1

Suppose that research progress is public information. The *unique* Markov perfect equilibrium is characterized as follows:

- 1. If $\lambda_{\star} > \lambda_{H}$, both firms play the research strategy;
- 2. If $\lambda_{\star} \in (\lambda_L, \lambda_H)$, both firms play the fall-back strategy;
- 3. If $\lambda_{\star} < \lambda_{L}$, both firms play the direct-development strategy.

1. Model

2. Benchmark: Constant Development Rate

3. Public Information Setting

4. Private Information Setting

5. Patents and Licensing

Private Information: Strategies

• Firms cannot observe the rivals' research progress.

Allocation policy: $\sigma: \mathbb{R}_+ o [0,1]$

Private Information: Strategies

• Firms cannot observe the rivals' research progress.

Allocation policy: $\sigma: \mathbb{R}_+ o [0,1]$

Private Information: Belief Updating

ullet Given the rival's policy σ , the firm forms a belief p

Private Information: Belief Updating

ullet Given the rival's policy σ , the firm forms a belief p

 p_t: probability that a firm has the new technology at time t given no success in product development.

Lemma: Evolution of Beliefs

Given allocation policy σ , p_t is characterized by the initial condition $p_0=0$ and

$$\dot{p}_t = \underbrace{\mu \cdot \sigma_t \cdot (1 - p_t)}_{\text{DE}} - \underbrace{\left[\lambda_H - (1 - \sigma_t)\lambda_L\right] \cdot p_t \cdot (1 - p_t)}_{\text{SRE}}.$$

- **Duration Effect (DE)**: As more resources are allocated to research, it is more likely that the firm has the new technology.
- Still-in-the-Race Effect (SRE): Lack of success in product development indicates that it is less likely that the firm has the new technology.

 p_t: probability that a firm has the new technology at time t given no success in product development.

Lemma: Evolution of Beliefs

Given allocation policy σ , p_t is characterized by the initial condition $p_0=0$ and

$$\dot{p}_t = \underbrace{\mu \cdot \sigma_t \cdot (1 - p_t)}_{\text{DE}} - \underbrace{[\lambda_H - (1 - \sigma_t)\lambda_L] \cdot p_t \cdot (1 - p_t)}_{\text{SRE}}.$$

- **Duration Effect (DE)**: As more resources are allocated to research, it is more likely that the firm has the new technology.
- Still-in-the-Race Effect (SRE): Lack of success in product development indicates that it is less likely that the firm has the new technology.

 p_t: probability that a firm has the new technology at time t given no success in product development.

Lemma: Evolution of Beliefs

Given allocation policy σ , p_t is characterized by the initial condition $p_0=0$ and

$$\dot{p}_t = \underbrace{\mu \cdot \sigma_t \cdot (1 - p_t)}_{\text{DE}} - \underbrace{\left[\lambda_H - (1 - \sigma_t)\lambda_L\right] \cdot p_t \cdot (1 - p_t)}_{\text{SRE}}.$$

- **Duration Effect (DE)**: As more resources are allocated to research, it is more likely that the firm has the new technology.
- Still-in-the-Race Effect (SRE): Lack of success in product development indicates that it is less likely that the firm has the new technology.

Private Information: Development Rate

• p_t^{σ} : prob. that a firm has the new tech. by time t when it employs σ .

• h_t^{σ} : the associated development rate

$$h_t^{\sigma} = p_t^{\sigma} \cdot \lambda_H + (1 - p_t^{\sigma}) \cdot (1 - \sigma_t) \cdot \lambda_H$$

Private Information: Development Rate

•
$$p_t^{\sigma}$$
: prob. that a firm has the new tech. by time t when it employs σ .

• h_t^{σ} : the associated development rate

$$h_t^{\sigma} = p_t^{\sigma} \cdot \lambda_H + (1 - p_t^{\sigma}) \cdot (1 - \sigma_t) \cdot \lambda_L$$

Private Information: Iso-development-rate Curve and Best Responses

Iso-development curve and the best response when $\lambda_{\star} \in (\lambda_L, \lambda_H)$

 $\hat{\sigma}$ is the best response for h constant.

Private Information: Steady State

$$\mu > \lambda_H$$
 and $\lambda_H > \lambda_\star > \lambda_L$

A pair $(p_{\star}, \sigma_{\star})$ a steady state if $\dot{p}=0$ and $h=\lambda_{\star}$

Lemma: the steady state exists iff $\lambda_{\star} \in (\lambda_L, \min\{\mu, \lambda_H\})$. Moreover, it is unique when it exists.

Private Information: Steady State

 $\lambda_H > \mu$ and $\mu > \lambda_\star > \lambda_L$

A pair $(p_{\star}, \sigma_{\star})$ a steady state if $\dot{p} = 0$ and $h = \lambda_{\star}$

Lemma: the steady state exists iff $\lambda_{\star} \in (\lambda_L, \min\{\mu, \lambda_H\})$. Moreover, it is unique when it exists.

Private Information: Steady State

$$\lambda_H > \mu$$
 and $\lambda_\star > \mu$

A pair $(p_{\star}, \sigma_{\star})$ a steady state if $\dot{p}=0$ and $h=\lambda_{\star}$

Lemma: the steady state exists iff $\lambda_{\star} \in (\lambda_L, \min\{\mu, \lambda_H\})$. Moreover, it is unique when it exists.

Theorem 2

When firms' research progress is private information, these are equilibria:

- (i) if $\lambda_{\star} > \min\{\lambda_{H}, \mu\}$, the research equilibrium $(\forall t, \ \sigma_{t} = 1)$;
- (ii) if $\lambda_{\star} < \lambda_{L}$ the direct-dev. equilibrium $(\forall t, \ \sigma_{t} = 0);$
- (iii) if $\lambda_{\star} \in (\lambda_{L}, \min\{\lambda_{H}, \mu\})$, the stationary fall-back equilibrium $(\exists T \text{ s.th. } \sigma_{t} = 1 \ \forall t < T \ \& \ \sigma_{t} = \sigma_{\star} \ \forall t > T \)$

Theorem 2

When firms' research progress is private information, these are equilibria:

- (i) if $\lambda_{\star} > \min\{\lambda_{H}, \mu\}$, the research equilibrium $(\forall t, \ \sigma_{t} = 1)$;
- (ii) if $\lambda_{\star} < \lambda_{L}$ the direct-dev. equilibrium ($\forall t, \ \sigma_{t} = 0$);
- (iii) if $\lambda_{\star} \in (\lambda_{L}, \min\{\lambda_{H}, \mu\})$, the stationary fall-back equilibrium $(\exists T \text{ s.th. } \sigma_{t} = 1 \ \forall t < T \ \& \ \sigma_{t} = \sigma_{\star} \ \forall t > T \)$

Theorem 2

When firms' research progress is private information, these are equilibria:

- (i) if $\lambda_{\star} > \min\{\lambda_{H}, \mu\}$, the research equilibrium $(\forall t, \sigma_{t} = 1)$;
- (ii) if $\lambda_{\star} < \lambda_{L}$ the direct-dev. equilibrium ($\forall t, \ \sigma_{t} = 0$);
- (iii) if $\lambda_{\star} \in (\lambda_{L}, \min\{\lambda_{H}, \mu\})$, the stationary fall-back equilibrium ($\exists T \text{ s.th. } \sigma_{t} = 1 \ \forall t < T \ \& \ \sigma_{t} = \sigma_{\star} \ \forall t > T \)$

Private Information: Uniqueness

- The equilibrium described in the previous theorem is the unique equilibrium:
 - with monotone development rates.
 - symmetric and Markovian.

1. Model

2. Benchmark: Constant Development Rate

3. Public Information Setting

4. Private Information Setting

5. Patents and Licensing

- We extend the model by allowing firms to patent & licensing of the new technology.
- Once a firm discovers the new technology, it can either
 - 1. apply for a patent (details will follow); or
 - 2. not apply for a patent.
- Patent applications are public information and granted:
 - With probability 1 if rival doesn't have the technology.
 - with probability $\alpha \in [0,1]$ if rival has new the technology.
- Patent gives the exclusive right to use the new technology and the right to license (TIOLI).

- We extend the model by allowing firms to patent & licensing of the new technology.
- Once a firm discovers the new technology, it can either
 - 1. apply for a patent (details will follow); or
 - 2. not apply for a patent.
- Patent applications are public information and granted:
 - With probability 1 if rival doesn't have the technology.
 - with probability $\alpha \in [0,1]$ if rival has new the technology.
- Patent gives the exclusive right to use the new technology and the right to license (TIOLI).

- We extend the model by allowing firms to patent & licensing of the new technology.
- Once a firm discovers the new technology, it can either
 - 1. apply for a patent (details will follow); or
 - 2. not apply for a patent.
- Patent applications are public information and granted:
 - With probability 1 if rival doesn't have the technology.
 - with probability $\alpha \in [0,1]$ if rival has new the technology.
- Patent gives the exclusive right to use the new technology and the right to license (TIOLI).

- We extend the model by allowing firms to patent & licensing of the new technology.
- Once a firm discovers the new technology, it can either
 - 1. apply for a patent (details will follow); or
 - 2. not apply for a patent.
- Patent applications are public information and granted:
 - With probability 1 if rival doesn't have the technology.
 - with probability $\alpha \in [0,1]$ if rival has new the technology.
- Patent gives the exclusive right to use the new technology and the right to license (TIOLI).

Patents and Licensing: Optimal License Fee

Proposition

Suppose that a firm has obtained the patent for the new technology. Then, the firm offers the following license fee to the rival:

$$x^* \equiv \frac{\lambda_H - \lambda_L}{\lambda_H + \lambda_L} \cdot \frac{\lambda_H \Pi + c}{2\lambda_H}$$

Patents and Licensing: Equilibrium

- Focus on $\lambda_H > \lambda_\star > \mu$
- Public info: fall-back strategy
- Private info: research strategy

Equilibria

• Efficient Patent Equilibrium: firms conduct research and apply for patents once they discover the new tech.

• Concealment Equilibrium: firms conduct research and do not apply for patents at all.

Equilibria

• Efficient Patent Equilibrium: firms conduct research and apply for patents once they discover the new tech.

• Concealment Equilibrium: firms conduct research and do not apply for patents at all.

Equilibria

• Efficient Patent Equilibrium: firms conduct research and apply for patents once they discover the new tech.

• Concealment Equilibrium: firms conduct research and do not apply for patents at all.

Patents and Licensing: Efficient Patent Equilibrium

Proposition

The efficient patent equilibrium exists if

$$\frac{x^*}{V_C} > \frac{\lambda_H}{\lambda_H + \mu(2 - \alpha)} \tag{1}$$

Necessary and sufficient conditions

- (i) if $\alpha \leq \frac{2\lambda_{\star}}{\lambda_{\mu} + \lambda_{+}}$, (1) holds
- (ii) if $\alpha > \frac{2\lambda_*}{\lambda_H + \lambda_*}$, there exists $\hat{\Pi}(\alpha)$ such that (1) holds iff $\Pi < \hat{\Pi}(\alpha)$

Patents and Licensing: Efficient Patent Equilibrium

Proposition

The efficient patent equilibrium exists if

$$\frac{x^*}{V_C} > \frac{\lambda_H}{\lambda_H + \mu(2 - \alpha)} \tag{1}$$

Necessary and sufficient conditions

(i) if
$$\alpha \leq \frac{2\lambda_{\star}}{\lambda_{\mu} + \lambda_{\star}}$$
, (1) holds

(ii) if
$$\alpha > \frac{2\lambda_{\star}}{\lambda_{H} + \lambda_{\star}}$$
, there exists $\hat{\Pi}(\alpha)$ such that (1) holds iff $\Pi < \hat{\Pi}(\alpha)$

Patent and Licensing: Concealment Equilibrium

Proposition

The concealment equilibrium exists if

$$\frac{x^*}{V_C} < \frac{\lambda_H(\lambda_H - \mu)}{(\lambda_H + \mu)(\lambda_H - \alpha\mu)} < \frac{\lambda_H}{\lambda_H + \mu(2 - \alpha)}.$$
 (2)

Necessary and Sufficient Conditions

There exists $\tilde{\Pi}(\alpha) > \hat{\Pi}(\alpha)$ such that (2) holds iff $\alpha > \frac{2\lambda_*}{\lambda_H + \lambda_*}$ and $\Pi > \tilde{\Pi}(\alpha)$.

Patent and Licensing: Concealment Equilibrium

Proposition

The concealment equilibrium exists if

$$\frac{x^*}{V_C} < \frac{\lambda_H(\lambda_H - \mu)}{(\lambda_H + \mu)(\lambda_H - \alpha\mu)} < \frac{\lambda_H}{\lambda_H + \mu(2 - \alpha)}.$$
 (2)

Necessary and Sufficient Conditions

There exists $\tilde{\Pi}(\alpha) > \hat{\Pi}(\alpha)$ such that (2) holds iff $\alpha > \frac{2\lambda_{\star}}{\lambda_{H} + \lambda_{\star}}$ and $\Pi > \tilde{\Pi}(\alpha)$.

Patents and Licensing: Takeaways

- Firms' patenting decisions crucially depend on the reward of winning the race (Π) and the trade secret protection level (α)
 - When α is low or Π is *small*, the new technology is patented and licensed (Outcome is equivalent to the **First-Best** case)
 - When α is high and Π is *high*, firms conceal their discoveries (Outcome is equivalent to the **Private Information** case)

Implications

- The first-best outcome can be achieved by lowering either Π or α (e.g., imposing tax in the innovative product market; shifting the patent right from 'first-to-invent' to 'first-to-file')
- Caveat: too low Π may induce the firms to exit the race.

Patents and Licensing: Takeaways

- Firms' patenting decisions crucially depend on the reward of winning the race (Π) and the trade secret protection level (α)
 - When α is low or Π is *small*, the new technology is patented and licensed (Outcome is equivalent to the **First-Best** case)
 - When α is high and Π is *high*, firms conceal their discoveries (Outcome is equivalent to the **Private Information** case)

Implications

- The first-best outcome can be achieved by lowering either Π or α (e.g., imposing tax in the innovative product market; shifting the patent right from 'first-to-invent' to 'first-to-file')
- ullet Caveat: too low Π may induce the firms to exit the race.

Conclusion

- We study firms' strategic incentives to conceal their interim breakthroughs.
 - We introduce an innovation race model with multiple paths.
 - We characterize the equilibrium behaviors of firms when their research progress is public and private information.
 - We study firms' patenting behavior: Under a strong trade secret protection,
 Prize of winning the race ↑ ⇒ Incentives to conceal ↑ ⇒ Slower innovation.

Conclusion

- We study firms' strategic incentives to conceal their interim breakthroughs.
 - We introduce an innovation race model with multiple paths.
 - We characterize the equilibrium behaviors of firms when their research progress is public and private information.
 - We study firms' patenting behavior: Under a strong trade secret protection,
 Prize of winning the race ↑ ⇒ Incentives to conceal ↑ ⇒ Slower innovation.

Thank you!