Master of Computer Applications

CAPOL403R01: Computer Organization & Architecture

Unit III: Lecture 3 – Part 2
Associative & Set associative mappings

Dr. D. MURALIDHARAN
School of Computing
SASTRA Deemed to be University

Associative mapping

- In this mapping, any main memory block is mapped on any cache line
- In this way it eliminates the "thrashing" problem
- But, to recognize the cache miss, all tags have to be checked
- To improve the performance, all tags are checked in parallel
 - It makes the design complex compared to direct mapping
- The address format is consider as given below

Tag Word

- A cache line has "k" words and "w" bits are allocated for word field
- When the address has "n" bits, "n-w" bits are allocated for tag field
 - The cache has any number of cache lines (2^L for some 'L' is not mandatory)

Associative mapping

A numerical example

- An associative cache can hold 64 KB words. Data are transferred between main memory and cache in blocks of 4 bytes each. The main memory size is 16 MB. Explain the address formats and mapping diagram
- Main memory size is 16 MB
 - Number of bits allocated for address is: $log_2(16M) = log_2(2^{24}) = 24$
- Block size is 4 bytes
 - Number of blocks in main memory = 16MB/4B = 4M = 2²² Blocks = 4 M Blocks
 - 22 bits are needed to identify a block Tag size has to be 22 bits
 - Line size is 4 bytes 2 bits are allocated to select a word from a line
 - Number of bits allocated for Tag field = (24 2) = 22
- Cache size is $64 \text{ KB} = 2^{16} \text{ Bytes}$
 - Number of cache lines = $2^{16}/2^2 = 2^{14} = 16$ K Lines
 - Any main memory block (among 2²²) is mapped any cache line (among 2¹⁴)

Fully associative mapping example

Set Associative mapping

- It has the strengths of direct and fully associative mapping techniques
- The cache has a number of sets
 - The number 'v' can be represented as 2d for some positive integer 'd'
- Each set has 'k' lines
 - K may be any positive number
- Size of cache is : $v^*k^*2^w = k^*2^{d*}2^w = k^*2^{d+w}$
 - 2^w is the number of words per line
- A main memory block is mapped to any line of "a particular set" only
 - Set number = block number % k
 - For example when k=8, the block number 32 is mapped only on set 0
 Reason: 0= 32%8
 - Any line from the set will be chosen

Set Associative mapping...

- A k-way set associative mapping has 'k' lines in a single set
- A k-way set associative mapping has (m/k) sets when the cache has 'm' lines
 - K has to be the divisor of m
- When k=1, it is direct mapping
- When k=m, it is fully-associative mapping
- A 2-way set associative mapping has better performance than direct mapping and the complexity is minimized
- Commonly used k values are:2 and 4
- Address format

Set Associative mapping...

Tag Set Word

- The address is divided into the above fields
- The appropriate set which is indicated by the bits of set field is chosen
- All tag bits of the lines of that set will be compared in parallel
- If there is a match in tag, the word field is used to access the word
- If not, then the word with the block is moved from main memory to any one lines of that set using replacement algorithms

K-way set associative cache

A numerical example

- A 2-way set associative cache can hold 64 KB words. Data are transferred between main memory and cache in blocks of 4 bytes each. The main memory size is 16 MB. Explain the address formats and mapping diagram
- Main memory size is 16 MB
 - Number of bits allocated for address is: $log_2(16M) = log_2(2^{24}) = 24$
- Block size is 4 bytes
 - Line size is 4 bytes 2 bits are allocated to select a word from a line
- Cache size is 64 KB = 2¹⁶ Bytes
 - Number of cache lines = $2^{16}/2^2 = 2^{14}$
- Two-way set associative cache
 - Number of sets = $2^{14} / 2 = 2^{13}$
 - Number of bits allocated for a set = 13
 - Number of bits allocated for tag = 24 (13+2) = 24 15 = 9

Set Associative mapping...

```
Tag Set Word (9 bits) (13 bits) (2 bits)
```

- The word is available in any one of the two cache lines of set number 1_1110_0010_1011 or equivalently on (1E2B)_h
- When any one of the line has the tag 0_1011_0101 or $(0B5)_h$, then cache hit
 - The third word (with word number 10 or (2)_h) of that line is accessed.
- If no lines has the tag, then the block $01_0110_1011_1110_0010_1011$ or $(16BE2B)_h$ is copied from main memory and placed in anyone of the two cache lines of set $(1E2B)_h$

Thank you