N°: Nome: Curso:

${ m ALGA~I} - 2011/2012$	Perg.	Cotação	
2º Teste - 19 de Dezembro de 2011	1-8	(12x0.4) 4.8	
Teste A	9	2.5	
AVISO:	10	2.5	
O Teste que vai realizar é constituído por duas partes.	11	1.2	
As respostas às perguntas/alíneas da 1ª Parte devem	12	1.0	
ser dadas unicamente nos respectivos espaços, não			
sendo necessário apresentar os cálculos intermédios.			
Na resolução da 2ª Parte deve apresentar todos os			
cálculos e todas as justificações necessárias.	Total	12.0	

1^a Parte

1.	Considere o espaço vectorial real \mathbb{R}^3 . Complete em função de k e t :
	O sistema ($(1,0,2),(0,1,-1),(t,0,k)$) é base de \mathbb{R}^3 se e só se
2.	Indique uma base do subespaço $Q = <(1,0,1), (0,1,2), (1,1,3), (2,1,4)>$ de \mathbb{R}^3 .
3.	Indique, caso exista, uma base do espaço vectorial real \mathbb{R}^4 da qual façam parte os vectores $(0,1,-1,2)$ e $(0,2,-2,1)$.
4.	Indique uma base do subespaço $W=<2x^2+x+3, x^2+2x, x-1>$ de $\mathbb{R}_2[x]$.
	Vire s. f. f.

5. Considere a matriz real $A = \begin{bmatrix} 2 & 8 & 7 & 3 \\ -1 & -4 & -2 & -3 \\ 1 & 4 & 3 & 3 \end{bmatrix}$. Indique:	
(a) uma base do espaço das linhas de A .	
(b) uma base do espaço das colunas de ${\cal A}.$	
(c) uma base do espaço nulo de A .	
6. Considere o espaço vectorial real \mathbb{R}^2 e a sua base $\alpha = ((0, -1), (-1, 1))$.	
(a) Indique o vector de \mathbb{R}^2 cuja matriz das componentes na base α é $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	
(b) Sabendo que β é base de \mathbb{R}^2 e a matriz de mudança da base α para a base β é $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ determine a matriz de mudança da base β para a base α .	L
7. Considere o espaço vectorial real \mathbb{R}^2 munido do produto interno que satisfaz	
$((x_1, x_2) (y_1, y_2)) = x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2.$	
(a) Indique um vector não nulo ortogonal a (2,1)	
(b) Complete: $\cos \angle ((2,1),(1,1)) = \dots$	
8. Indique o volume do paralelipípedo definido pelos vectores $(0,1,1),(1,-1,0)$ e $(2,-2,2)$	

2^a Parte

Na resolução da 2ª Parte deve apresentar todos os cálculos e todas as justificações necessárias.

- 9. No espaço vectorial real \mathbb{R}^3 , munido do produto interno canónico, considere o subespaço vectorial $F = \langle (1,2,1), (0,1,4) \rangle$.
 - (a) Indique uma base de F^{\perp} .
 - (b) Indique uma base ortogonal de F.
 - (c) Determine a projecção ortogonal de u = (4, -10, -2) em F.
 - (d) Para $k \in \mathbb{R}$, considere $G_k = <(-1,0,k)>$.
 - i. Indique os valores de k para os quais $\mathbb{R}^3 = F \oplus G_k$.
 - ii. Indique os valores de k para os quais $F \cup G_k$ é subespaço vectorial de \mathbb{R}^3 .
- 10. Considere o subespaço do espaço vectorial real \mathbb{R}^4 ,

$$H = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0 \land 2x_2 - x_3 = 0 \land 2x_1 + 3x_3 + 2x_4 = 0\}.$$

- (a) Indique valores de a e b tais que $(a, -1, b, 5) \in H$.
- (b) Indique uma base de H.
- (c) Seja T = <(0,0,1,1), (-1,1,2,4) >. Determine uma base de $H \cap T$.
- 11. Seja V um espaço vectorial real e sejam F e G subespaços vectoriais de V. Sejam $u_1, u_2, w_1, w_2, w_3 \in V$ tais que (u_1, u_2) é base de G e (w_1, w_2, w_3) é base de F. Sabendo que $u_1 \notin F$ mas $u_1 + u_2 \in F$, indique, justificando:
 - (a) uma base e a dimensão de $F \cap G$.
 - (b) uma base e a dimensão de F + G.
- 12. Seja V um espaço vectorial euclidiano ou unitário. Enuncie e demonstre a Desigualdade Triangular.