Instructions for computation of in-well time of travel for lowflow sampling

P.T. Harte, U.S. Geological Survey

ptharte@usgs.gov

803-750-6113

March 17, 2017

Version: 6.0.1 beta (regular code)

Files = vbaprogram6.0.1_BETA.xlsm; vbaprogram6.0.1_BETA_forward1.xlsm and a sociated vba program for pump intake set at midpoint of screen, and vbaprogram5.1.1_BLTA –nawqa.xlsm and associated vba program (for pump intake set at top of screen.

Disclaimer: This software is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The software has not received final approval by the U.S. Geological Survey (USGS). No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute at y such warranty. The software is provided on the condition that neither the USGS nor the U.S. Government stall be held liable for any damages resulting from the authorized or unauthorized use of the software."

Requirements:

¹Excel 2013

Data solver option in Excel invoked (narco enabled-"*.xlsm").

Introduction

The vba programs to run 'ne analytical model are embedded into the *.xlsm files. There are two main *.xlsm files vbaprograme 0.1_BETA.xlsm, which contains the module "Module1-run8-regular.bas" with a subroutine name "se'ValueL8" and . File vbaprogram6.0.1_BETA.xlsm is used for scenario where the pump intake fo. beth purging and sampling is placed at the middle of the screen. File vbaprogram \$.1.1_BETA -nawqa.xlsm, which contains the module "Module1-run9-nawqa.bas" with a subroutine name "GetVal9nw". File vbaprogram5.1.1_BETA.xlsm is used for scenario where the pump intake or both purging and sampling is placed at the top of the screen (bottom of casing). The two types of files differ only by the specification of pump position (parameter called "IP") where one is zero (nawqa) and the other is 1/2 screen (regular) length. It's just one line in the code so it's easy to miss.

The file vbaprogram6.0.1_BETA_forward1.xlsm is used for manual specification of hydraulic conductivity for evaluation of whether vertical flow in the screen is likely to occur. This is determined by specifying a

¹ Use of trade names is for informational purposes only and does not constitute endorsement by the U.S. Government .

BL of 2 ft and a BH = 0, and manually entering a LHK value in ft/d. The result is outputted as either a "0" in row 17, meaning lateral flow by the pump intake can satisfy purge requirements, or a "1" meaning lateral flow by the pump intake cannot satisfy purge requirements.

The *.xlsm include multiple sheets that are described below. The operation of the analytical model is discussed in the operation section below.

Contents of *.xlsm files

Input/Output sheet

Data are entered into the input column only on the sheet labeled "INPUTSHEET(SOLVER)". An initial estimate of HK for high and low ranges can be specified, however, values will be recalculated when the excel solver option is invoked.

VORKSHEET FOR ESTIMATION OF LOW FLOW PURGE	TIMES FOR WELL	S SCREENED IN	HETEROGENEO	US AQUIFI	RS(vBA)	.0.1_BETA,						
Parameter	Input	Output	c	alcs				Assumptions				
Vell name	CPTMW03SW		9	jh=	0.00070 5	qtota	0.003536768					
Date	12/19/2014	1	o o	Iv=	0 000751.	or at	0.002829415	qv=qp-(qh+q	w)	or	qv=qh'*sI-2	
Depth to water (DTW) in ft below ref (No data put 0)	30.75	5	q	w=	7.81. 15	qtotal'=	0.003614912				check against	t h3
Depth to top of screen (DTS) in ft below ref (no data put 0)	57	7		\$6\$5-\$6\$6			10	Length of dry	section; adj	ength of scree	ın	
Averaged purge rate (liters/min)	0.1			0.027 .550	Gpm	0.003536768	cf/m					
Vell diameter (inches)	4			0.16, 667, 67		area	0.087222222					
ength (Ls) of screen (ft)	10					ft/m	ft/m					
Orawdown (s) (ft)	0.12	2	. 0	if b7 .eq. 0, the	ın G7, ELSE H7	0.040548935	0.040316343	Piston flow v	elocities, ACC	OU NTS FOR W	ELL BORE STOR	RAGEONLY
Anticipated or actual purging time (mins); observed from)								
previous stabilization data	45	5	A	4.094344562	=LN(10/rw)	0.039841582	0.039608989	Piston flow v	elocities. ACC	OU NTS FOR H	FLOW BY PUMP	INTAKE
11-1							7.01445.05					
Heterogeneity factor (HF) (x:1 where x = KH, 1 = KL)	1)				7.8144E-05	Storage	qw per min			
Highest (HHK) potential Hyd. cond (ft/d)-solver	2.767021877			0.001921543	0.00176838		0.000353677				reen length - 2	lft
hickness (bh)of high K zone (ft)			1	t/m	0.050075	1/m		Assume .01 I	head grad. if o	rawdown = 0		
owest (LHK) potential Hyd. cond (ft/d)-solver	2.7670218.	(0.001921543	0.00176838		0.000707354		flow for 2 ft a			
hickness (bl) of low K zone (ft): bh+bl = Ls		, /	fi	t/m	0.050075	I/m	0.020030025	Assume mini	imum b = scre	en length - hig	hkbft	
f drawdown> 0 and vertical flow =no, rec ilcu. Minimum potential equilibrium purge rate(cf/m, if								110,721014		.,	NOT APPLICAB	
drawdown observed, this number should be it is the		0.003536768	0.100150125 L									
purge rate		0.003536768	0.100150125 L	/min							v k zones = PUR e; if drawdown	
Difference between estimated radial f bw - p rge rate		4 544505 45	4 077545 40 .					recalculate;	for unsteady	flow and draw	down, this nun	mbershould
(cf/m); should be a positive rumb rifs 1		4.51158E-15	1.27754E-13 L	/min				be at least e	equal to the co	ssing volume /	time (rate of w	rell
Observed volume from we'' re s. rage(cf)		0.010466667						Drawdown *	area of well			
Potential volume from willbide forage based on												
estimated radial flov (cf)		0										
Maximum ertic, were ore velocity (feet/min) with well st		0.0403	-	(#REF!*\$O\$4)/	3.14*POWER	((\$C10/2),2))		This is maxin	num vertical	elocity - draw	down (well sto	orage)
								This is a divisi			lown - horizont	-10
Adjusted paximum vertical wellbore veloc	i	0.0396						pump intake		elocity - urawu	OWIT-HOTIZOTIC	arnow at
,												
								Assume pum	np intake at m	idpoint of scre	en; divide max	x. by 1/2 to
Potential maximum purge time(min)		252.4679		=IF(\$C\$:	L3=0,"N	IA",(B6/2)*(1/C20)	account for f	lows from top	to bottom		
Recommended maximum purge time												
/		252.4679		=IF((B8>	C19),B	8,C19)						
min); nigher of anticipated or potential				ETL+TH'				This is the tra		of the well scre	en (summatio	on of low t
		27.67021877										
		27.67021877						This is the av	verage K of the	well screen fo	cumulative To	f well screen
F of well screen		2.767021877		=well screen					verage K of the		cumulative T o	f well screen
(min); higher of anticipated or potential T of well screen Average k of well screen Lateral flow radius by pump intake (likely maxim um)			t	=well screen 682.9355077	5918.7744		42054.44968 2.37787E-05	divided by w Assumes n =	ell screen len .25		cumulative To	f well screen

The red HHK and LHK cells represent the solver determined best range of hydraulic conductivity for the respective thickness of each layer after running solver. The summation of thicknesses for the low and high HK must equal the length of screen for fully saturated conditions or the partial saturation when depths of water exceed the top of the screen interval (not for manual specification of HK). A parameter called heterogeneity factor serves to constrain ranges in HK.

Critical flags include whether vertical flow occurs (1=yes) based on whether the horizontal inflow for a 2 ft zone around the pump satisfies the purge rate **for manual specification of HK option only** ("-forward1 .xlsm"). The user can determine the HK needed to accommodate the purge rate under horizont. I in low only by specifying a 0 for the thickness for BH parameter and specifying a 2 for the BL parameter. If the resultant HK is too high based on site geology, vertical flow is likely to be the norm at no it wells. When solver is invoked to minimize differences between radial inflow and purge rate (cell center). Differences between..."), the vertical flow condition is the default.

Other important output fields include average K of well screen (in red), and potential maximum purge time. The latter is an approximate value; a more precise value is determined by running the excel macro module attached to the excel file (see below).

The last few rows is an approximate calculation of lateral capture of purge water at the pump intake interval as measured along radial distances from the well. This feature is only available from version 6.0.1 and above.

Operation

There is a two step process for running the program as outlined below.

Step 1

The solver program is run on the inputs ef (solver) sheet of the excel file. The solver add-in must be specified in the excel options menutar the program to work. The solver is invoked on the Data Analysis Tab. Use the overwrite function is solver during running.

Solver constraints include the summation of flow from the LHK and HHK must be equal to purge rate (or minimized; field \$C\$?..) Other constraints include model layer thicknesses and differences between LHK and HHK based on the heterogeneity factor. The GRG nonlinear solver option with forward derivatives are used.

Step 2

A vba macro program (m. du. 2 1) is invoked under the Developer Tab of excel in the *.xlsm file. The program is run on the applitsheet (solver) sheet of the excel file after solver is invoked. The program module calculates nor zontal and vertical flow per 1 ft increments across the screen using the solver HK values. Vertical Flow is calculated from summation of the horizontal flows away from the pump intake (outside of a ft zone around the pump). The program is applicable when the initial program indicates vertical flow is occurring. Results are printed to the output sheet. [You must clear contents field in gray area on output sheet]. For the regular code where the pump is set at the midpoint, the module subroutine is called GetValuer8 and for the nawqa code where the pump is set at the top of the screen it is called GetValuer9.

Output sheet and Graphics from Module

The output sheet lists the results of the macro program. Column A lists screen interval, column b = horizontal inflow rate, column c = vertical flow rate, column d = time of travel for that interval, column e = travel time per layer for a 1 ft thickness, column f = travel time to the pump, column g = time

increment from start of pumping, column h = total inflow from recharged water captured by pump, column I = total inflow from recharge (aquifer) that is captured by the pump.

Preliminary code and instructions

Col	а	b	С	d	е	f	g	h	i		
Col	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.0012 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	0.0012 0.0013 0.0015 0.0016 0.0017 0.0018 0.002 0.0011 0.0011 0.0009 0.0007 0.0006 0.0005 0.0004 0.0002 0.0001	17.875 16.25 14.895 13.75 12.768 11.916 11.172 10.514 17.875 19.861 22.343 25.535 29.791 35.749 44.686 59.582 89.373 178.75	17.875 34.124 49.02 62.769 75.537 87.453 98.625 109.14 505.67 485.81 463.46 437.93 408.14 372.39 327.7 268.12 178.75 0	119.07 119.07 101.2 84.945 70.05 56.3 43.533 31.616 20.445 0 19.861 42.204 67.739 97.53 133.28 177.97 237.55 326.92 505.67 505.67	9 0 10 20 30 40 50 60 70 80 90 100 120 130 140 150 150 200 210 220 230 240 250 260 270 250 330 330 330 350	0.0001 0.0001 0.0002 0.0004 0.0005 0.0007 0.0009 0.0011 0.0012 0.0013 0.0028 0.0028 0.0029 0.0029 0.0029 0.0029 0.003 0.	0.0345 0.0345 0.0345 0.069 0.1034 0.1379 0.2069 0.2414 0.2759 0.3103 0.3448 0.3793 0.4138 0.7931 0.8276 0.8276 0.8276 0.8276 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8621 0.8666 0.8966 0.8966 0.8966 0.8966 0.8966 0.8966 0.8966 0.8966 0.8966 0.8966 0.8966 0.8966		
	Q	(0)			0		360	0.0033	0.931		

Graphs plotted include the following:

Vertical flow rates increase moving toward pump (blue bar). Faster on top from high HK layer.

HFLOW

Hızh HK at top of screen from r,ermeable layer.

Time of travel per 1 ft distance by screen interval. Bottom layers slow because no high HK zones are present.

If specific conductance data is available, there is a another sheet where that can be entered. The graphic plot is included on the output sheet.

Preliminary code and instructions