Nome: D.N.I.:	D.N.I.:	
---------------	---------	--

Marcar a opción seleccionada en cada pregunta do test na siguinte cuadrícula, agás no exercicio 8.:

1.	2.	3.	4.	5.	6.	7.	8.	Cualificación.
A	A	A	A	A	A	A	_	R. ben
В	В	В	В	В	В	В	_	R. mal
С	С	С	С	С	С	С	_	R. branco
D	D	D	D	D	D	D	Nota:	Nota test
								Total:

Cada pregunta ben respostada da parte do test suma 1 punto, se a resposta é incorrecta resta 0.2 e se se deixa en branco nin suma nin resta. O valor do exercicio 8 é de 3 puntos, un punto por aplicar correctamente cada un dos métodos indicados e outro pola comprobación de que a solución proposta é correcta. Recoméndase leer inicialmente xunto co enunciado da pregunta todas as opcións, pode evitar en algúns caso facer cálculos e axudar a obter máis axeitadamente a resposta. Para a cualificación somentes se terá en conta a cuadrícula e a resolución do exercicio 8 facilitada.

1. Sabendo que $\int_{-\pi}^0 g(t) dt = \sqrt{2}$ cal das seguintes identidades é correcta:

$$\int_{-\pi}^{0} (sen(r) + g(r)) dr = -2 + \sqrt{2}$$

$$\boxed{\mathbf{B}} \int_{-\pi}^{0} \operatorname{sen}(r) g(r) dr = -2\sqrt{2}$$

$$\boxed{\mathbf{C}} \int_{-\pi}^{0} \frac{1}{\sqrt{2}} g(r) dr = g'(t)$$

D ningunha das anteriores.

2. O coste marxinal de imprimir unha tarxeta cando xa se imprimiron x ven dado pola derivada da función coste c en euros,

$$c'(x) = \frac{1}{2\sqrt{x}}.$$

Empregando a regra de Barrow obtemos que c(100) - c(1), é decir o coste de imprimir dende a tarxeta 2 a 100, é:

B 4.5 euros

 $\boxed{\mathrm{C}}$ $-\frac{9}{20}$ euros

D ningunha das anteriores.

3. O valor da integral $\int_0^{\sqrt{\ln(2)}} x e^{x^2} dx$

A obtense aplicando as técnicas de integración de funcións racionais.

 $\oint e^{\frac{1}{2}}$ se simplificamos axeitadamente o resultado.

C é negativo por ser a integral dunha función negativa en $[0, \sqrt{ln(2)}]$.

D ningunha das anteriores.

4. A derivada da función $F(x) = \int_0^{x^2} t(t^2 + 1)dt$ é

$$\boxed{\mathbf{A}} F'(x) = x(x^2 + 1)2x$$

$$\boxed{\mathbf{C}} F'(x) = x(x^2 + 1)$$

$$F'(x) = x^2(x^4 + 1)2x$$

- D | ningunha das anteriores.
- 5. A integral $\int_{0}^{+\infty} ae^{-st}dt$ sendo a unha constante arbitraria e s un valor positivo (s>0),

 $\stackrel{\frown}{}$ é unha integral impropia e o seu valor é $\frac{a}{s}$.

- C resólvese aplicando a regra de Barrow no intervalo $[0, +\infty]$
- B é unha integral impropia e o seu valor é 0 para $\overline{\text{calqueira}}$ valor de $a \in s$.
- D ningunha das anteriores.
- 6. O valor da aproximación da integral de $f(x) = 3x^2 1$ no intervalo [1, 2] mediante a fórmula de Simpson composta
 - A e menos preciso que o obtido mediante a fórmula do trapecio composta
- é 6 por ser unha fórmula exacta para polinomios de grao 2

C depende do número de divisións

- ningunha das anteriores.
- 7. Seleccionar a única opción que resolve con MATLAB correctamente a cuestión descrita:
 - A Calcular a **área** encerrada pola gráfica da función $\overline{f(x)} = -e^x$ no intervalo [-1, 1].
 - \gg syms x
 - $\gg f = -e^{\wedge}(x)$
 - $\gg i = int(f,x,-1,1)$

B Se tratamos de calcular a integral

$$F(x) = \int_0^x \frac{1}{1+s^2} ds,$$

os comandos correctos que temos que introducir son:

- $\gg \text{syms s}$
- $\gg F = int(1/(1+s^2),0,s)$
- Aplicar a regra de Leibniz para calcular y' sendo

$$y = \int_{sen(x)}^{x^2 - 3x} (1 + t) dt.$$

- ≫ syms x t
- $\gg f1 = \sin(x)$
- \gg f2=x^2-3*x
- $\gg f = 1 + t$
- $\gg Gr = subs(f,f2)*diff(f2)-subs(f,f1)*diff(f1)$

- D A secuencia de comandos:
- $\gg C = [-5:1:5]$
- $\gg \text{xp=linspace}(-2,2,20)$
- $\gg y = subs(int(f),xp)$
- \gg [C,Y]=meshgrid(C,y)
- $\gg \operatorname{plot}(x,C+Y,**)$

Permite representar algunhas primitivas dunha cierta función f(x) definida previamente en simbólico, no intervalo $x \in [-5, 5]$, para 20 valores de constantes entre -2 y 2

8. Calcular empregando o método de substitución é posteriormente o de integración de funcións racionais, a integral indefinida

$$\int \frac{e^t}{e^{2t} + 3e^t + 2} dt.$$

Comprobar que a solución proposta é a correcta.