Line Assignment

Ravi Sumanth Muppana- FWC22003

September 2022

Figure 1: Rhombus

1 Problem:

Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus

2 Solution:

2.1 Theory:

Given the diagonals bisect at right angles, we need to prove that all sides are equal, using vector algebra. Let us assume two vectors \mathbf{A} and \mathbf{B} . The diagonals are the addition and subtraction of the two vectors:

$$(A+B), (B-A)$$

2.2 Mathematical Calculation:

Let the two diagonals be X, Y. Since the diagonals are at right angle to each other,

$$X = A + B$$

 $Y = B - A$
 $cos\theta = \frac{(A + B).(B - A)}{||A + B||.||B - A||}$
 $cos90^{\circ} = 0 = (A + B).(B - A)$
 $||B||^{2} - ||A||^{2} = 0$
 $||B|| = ||A||$

Hence, the two sides of the quadrilateral are equal. We need to prove the third side is also equal. In triangle BOA and BOC;

$$A = X - Y$$
$$D = -X - Y$$

Now,

$$||A||^2 = ||X - Y||^2$$

 $||D||^2 = ||-X - Y||^2$
 $||A||^2 = ||X||^2 - 2(X^T \cdot Y) + ||Y||^2$
 $||D||^2 = ||X||^2 + 2(X^T \cdot Y) + ||Y||^2$

As the diagonals are perpendicular to each other, the terms $+2(\boldsymbol{X}^T.\boldsymbol{Y})$ and $-2(\boldsymbol{X}^T.\boldsymbol{Y})$ will be equal to zero.

$$||A||^2 = ||X||^2 + ||Y||^2$$

 $||D||^2 = ||X||^2 + ||Y||^2$
 $||A|| = ||D = ||B||$

Hence, we have proved that the given quadrilateral is a parallelogram. A parallelogram with its diagonals as perpendicular bisectors is known as Rhombus.

3 Construction:

The construction of rhombus can be done using only two diagonals, taken as d1 and d2.

variable	length/point	Description
d1	8	length of diagonal 1
d2	6	length of diagonal 2
A	(d1/2,0)	point A
В	(0,d2/0)	point B
С	(-d1/2,0)	point C
D	(0,-d2/2)	point D