ENTREGA 1. ESTRUCTURAS ALGEBRAICAS. GRUPO M3 (19-20). CARLOS ANDRADAS Y ANDONI DE ARRIBA. FECHA LÍMITE: 4-X-2019.

Entregar en la hora de problemas en mano o enviar por correo: andonide@ucm.es.

Problema 1. Sean A un anillo y $\operatorname{End}(A)$ el conjunto de homomorfismos de A en A^1 . Se trata de probar que $\operatorname{End}(A)$ con la suma definida por $+:\operatorname{End}(A)\times\operatorname{End}(A)$; $(f,g)\mapsto f+g$, donde (f+g)(a)=f(a)+g(a) para cada $a\in A$, y el producto definido por la composición usual, en general, satisface **todas** las propiedades de los anillos unitarios **salvo una**.

Problema 2. Sea A un anillo conmutativo y unitario.

- (1) Probar que los elementos nilpotentes de A forman un ideal (llamado nilradical de A).
- (2) Un ideal \mathfrak{a} de A se dice radical si, para todo $a \in A$, se cumple que, si existe $n \in \mathbb{Z}^+$ tal que $a^n \in \mathfrak{a}$, entonces $a \in \mathfrak{a}$. Probar que un ideal \mathfrak{a} de A es radical si, y sólo si, el nilradical de A/\mathfrak{a} es trivial. Deducir que todo ideal primo de A es radical. Encontrar un ejemplo de ideal NO primo que sea radical en \mathbb{Z} .
- (3) Dado \mathfrak{a} un ideal de A arbitrario, se define su radical como el conjunto

$$\sqrt{\mathfrak{a}} = \{ a \in \mathfrak{a} \mid \exists n \in \mathbb{N} \text{ tal que } a^n \in \mathfrak{a} \}.$$

Demostrar que el radical de un ideal es el menor ideal radical que contiene a \mathfrak{a} .

Problema 3. Consideremos $f: A \longrightarrow B$ un epimorfismo de anillos y $\mathfrak a$ un ideal de A.

(1) Probar que la imagen por f de \mathfrak{a} es ideal en B.

Supongamos ahora que f es biyectiva y sea $\mathfrak{b} = f(\mathfrak{a})$.

- (2) Probar que se tiene el isomorfismo $A/\mathfrak{a} \cong B/\mathfrak{b}$.
- (3) Deducir a partir de todo lo anterior que, cuando f es biyectiva, esta establece una biyección entre los ideales de A y los de B; y que, en esta biyección, los ideales primos, maximales y radicales de A se corresponden con los ideales primos, maximales y radicales, respectivamente, de B.

Problema 4.

- (1) Usando que todo subconjunto no vacío de los enteros positivos tiene un elemento mínimo (**Teorema del Buen Orden**) y el **Teorema de la División**², probar que todo ideal de \mathbb{Z} es principal; esto es, está generado por los múltiplos de un elemento.
- (2) Utilizando el **Ejercicio** 13 de la primera **Hoja de Problemas**, deducir que un ideal propio de \mathbb{Z} es primo si, y sólo si, es maximal. Concluir que los ideales primos de \mathbb{Z} (distintos del trivial) son aquellos generados por un número primo.

¹En caso de que A sea unitario, NO asumimos que los homomorfismos sean unitarios.

²Este, en números enteros, dice que, fijado un entero positivo $k \in \mathbb{Z}$, se tiene que, para todo $n \in \mathbb{Z}$, existen $q, r \in \mathbb{Z}$ únicos, con $r \in \{0, 1, ..., k-1\}$, de forma que n = qk + r.