SUCESIÓN DE FIBONACCI

Esta sucesión fue descrita en Europa por Leonardo de Pisa, matemático italiano del siglo XIII también conocido como **Fibonacci**. Tiene numerosas aplicaciones en ciencias de la computación, matemática y teoría de juegos. También aparece en configuraciones biológicas

1. Sucesión de Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

La sucesión de Fibonacci es conocida desde hace miles de años, pero fue Fibonacci (Leonardo de Pisa) quien la dio a conocer al utilizarla para resolver un problema.

La sucesión de Fibonacci es una sucesión definida por **recurrencia**. Esto significa que para calcular un término de la sucesión se necesitan los términos que le preceden.

Realizar en Python un Generador de Números de Fibonacci.

Los números de Fibonacci quedan definidos por las ecuaciones

$$egin{aligned} f_0 &= 0 \ & f_1 &= 1 \ & f_n &= f_{n-1} + f_{n-2} \end{aligned}$$

Esto produce los siguientes números:

- $f_2 = 1$
- $f_3 = 2$
- $f_4 = 3$
- $f_5 = 5$
- $f_6 = 8$
- $f_7 = 13$
- $f_8 = 21$

y así sucesivamente:

Raíz Cuadrada

Al ejecutar el siguiente código de Python nos da el siguiente error. Implementar una excepción para que el programa no aborte.

```
import math
                                           2.0
                                           3.605551275463989
def RaizCuadrada(numero):
                                           10.0
     return math.sqrt(numero)
                                           Traceback (most recent call last):
                                             File "C:/Users/Master/AppData/Local/Programs/Python/Python38-32/m.py", line 9,
print(RaizCuadrada(4))
                                            in <module>
print (RaizCuadrada (13))
                                              print (RaizCuadrada (-1))
print (RaizCuadrada (100))
                                             File "C:/Users/Master/AppData/Local/Programs/Python/Python38-32/m.py", line 4,
print (RaizCuadrada (-1))
                                            in RaizCuadrada
print (RaizCuadrada (25))
                                               return math.sqrt(numero)
                                           ValueError: math domain error
                                           >>>
```