Dive into Principal Component Analysis

16 主成分分析进阶

区分联系六条基本 PCA 技术路线

我发现了!

Eureka!

— 阿基米德 (Archimedes) | 数学家、发明家、物理学家 | 287 ~ 212 BC

- numpy.cov() 计算协方差矩阵
- numpy.linalg.eig() 特征值分解
- numpy.linalg.svd() 奇异值分解
- seaborn.heatmap() 绘制热图
- seaborn.kdeplot() 绘制 KDE 核概率密度估计曲线
- seaborn.pairplot() 绘制成对分析图
- sklearn.decomposition.PCA() 主成分分析函数

16.1 从"六条技术路线"说起

来自《矩阵力量》的表格

表1来自《矩阵力量》第25章,本章将讲解表1中六条PCA技术路线的细节,并比较它们的差异。

表 1. 六条 PCA 技术路线,来自《矩阵分解》第 25 章

对象	方法	结果
原始数据矩阵 X	奇异值分解	$\boldsymbol{X} = \boldsymbol{U}_{\boldsymbol{X}} \boldsymbol{S}_{\boldsymbol{X}} \boldsymbol{V}_{\boldsymbol{X}}^{\mathrm{T}}$
格拉姆矩阵 $G = X^TX$	特征值分解	$G = V_X \Lambda_X V_X^{\mathrm{T}}$
本章中用"修正"的格拉姆矩阵 $G = \frac{X^TX}{n-1}$		
中心化数据矩阵 $X_c = X - E(X)$	奇异值分解	$oldsymbol{X}_c = oldsymbol{U}_c oldsymbol{S}_c oldsymbol{V}_c^{ ext{T}}$
协方差矩阵 $\Sigma = \frac{(X - E(X))^{T} (X - E(X))}{n-1}$	特征值分解	$\Sigma = \mathbf{V}_c A_c \mathbf{V}_c^{T}$
$egin{align*} oldsymbol{Z}_{X} = ig(X - \mathrm{E}(X) ig) oldsymbol{D}^{-1} \ oldsymbol{h}$ 标准化数据 $(\mathbf{z} 分数)$ $oldsymbol{D} = \mathrm{diag} ig(\mathrm{diag} ig(oldsymbol{\Sigma} ig) ig)^{rac{1}{2}} \ \end{pmatrix}$	奇异值分解	$Z_X = U_Z S_Z V_Z^{T}$
$m{P} = m{D}^{-1} m{\Sigma} m{D}^{-1}$ 相关性系数矩阵 $m{D} = \mathrm{diag} \left(\mathrm{diag} \left(m{\Sigma} \right) \right)^{rac{1}{2}}$	特征值分解	$\boldsymbol{P} = \boldsymbol{V}_{\boldsymbol{Z}} \boldsymbol{\Lambda}_{\boldsymbol{Z}} \boldsymbol{V}_{\boldsymbol{Z}}^{T}$

比较六个输入矩阵

表1中有六个输入矩阵,它们都衍生自原始数据矩阵 X。如图1所示,原始数据矩阵 X的形状为 $n \times$ D_{\circ}

图 1. X 衍生得到的几个矩阵,来自《矩阵力量》

X的格拉姆矩阵 G 为:

$$G = X^{\mathsf{T}} X \tag{1}$$

格拉姆矩阵 G 形状为 $D \times D$ 。 G 的主对角线元素是 X 的每一列向量 L^2 模的平方。

中心化 (去均值) 矩阵 X_c 为:

$$X_c = X - E(X) \tag{2}$$

即 X 的每一列分别减去各自的均值得到 X_c 。几何角度,X 的质心位于 E(X), X_c 的质心则位于原点 $oldsymbol{o}$ 。

样本数据矩阵 X 的协方差矩阵 Σ 为:

$$\Sigma = \frac{X_c^{\mathsf{T}} X_c}{n-1} = \frac{\left(X - \mathsf{E}(X)\right)^{\mathsf{T}} \left(X - \mathsf{E}(X)\right)}{n-1} \tag{3}$$

容易发现,协方差相当于特殊的格拉姆矩阵。

请大家特别注意,为了方便和协方差比较,本章中 6 特别定义为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$G = \frac{X^{\mathrm{T}}X}{n-1} \tag{4}$$

标准化 (standardization 或 z-score normalization) 数据矩阵 Zx 为:

$$\mathbf{Z}_{X} = (X - \mathbf{E}(X))\mathbf{D}^{-1} \tag{5}$$

其中**D**为:

$$\boldsymbol{D} = \operatorname{diag}\left(\operatorname{diag}\left(\boldsymbol{\Sigma}\right)\right)^{\frac{1}{2}} = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_D \end{bmatrix}$$
(6)

(5) 中的每一列都是每个特征的 Z 分数。 Z_x 的质心也位于原点,不同的是 Z_x 每个特征的标准差都是 1 。

线性相关性系数矩阵 P 为:

$$\boldsymbol{P} = \boldsymbol{D}^{-1} \boldsymbol{\Sigma} \boldsymbol{D}^{-1} \tag{7}$$

P实际上是 Z_X 的协方差,即:

$$\boldsymbol{P} = \frac{\boldsymbol{Z}_{\boldsymbol{X}}^{\mathsf{T}} \boldsymbol{Z}_{\boldsymbol{X}}}{n-1} \tag{8}$$

比较 SVD 和 EVD

主成分分析的核心数学工具为**奇异值分解** (Singular Value Decomposition, SVD) 和**特征值分解** (Eigen Decomposition, EVD)。

《矩阵力量》强调过 SVD 和 EVD 在主成分分析中具有等价性,这也就是为什么表 1 看上去是 六种技术路线,实际上可以归纳为三大类技术路线。下面简单说明一下。

对原始矩阵 X 进行经济型 SVD 分解:

$$X = U_{x} S_{x} V_{x}^{\mathrm{T}} \tag{9}$$

其中, S_X 为对角方阵。

将 (9) 代入 (1):

$$G = V_X S_X^2 V_X^{\mathsf{T}} \tag{10}$$

上式便是格拉姆G的特征值分解。

对中心化数据矩阵 X_c 经济型 SVD 分解:

$$\boldsymbol{X}_{c} = \boldsymbol{U}_{c} \boldsymbol{S}_{c} \boldsymbol{V}_{c}^{\mathrm{T}} \tag{11}$$

而协方差矩阵 Σ 则可以写成:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\Sigma = V_c \frac{S_c^2}{n-1} V_c^{\mathrm{T}} \tag{12}$$

相信大家在上式中能够看到协方差矩阵 Σ 的特征值分解。请大家注意 (11) 中奇异值和 (12) 中特征值关系:

$$\lambda_{c_{-j}} = \frac{s_{c_{-j}}^2}{n-1} \tag{13}$$

同样,对标准化数据矩阵 Z_X 进行经济型 SVD 分解:

$$\mathbf{Z}_{\mathbf{Y}} = \mathbf{U}_{\mathbf{Z}} \mathbf{S}_{\mathbf{Z}} \mathbf{V}_{\mathbf{Z}}^{\mathsf{T}} \tag{14}$$

相关性系数矩阵 P 则可以写成:

$$P = V_Z \frac{S_Z^2}{n-1} V_Z^{\mathrm{T}} \tag{15}$$

上式相当于对P特征值分解。

本章下面将分别讲解特征值分解 1) 协方差矩阵、2) 格拉姆矩阵、3) 相关性系数矩阵,来完成主成分分析。并利用诸如热图、饼图、直方图、陡坡图、双标图、椭圆等可视化工具分析三种路线。本章以下三节将采用完全相似的结构,方便大家比较三大类不同 PCA 技术路线的异同。

16.2 协方差矩阵

本节讲解利用特征值分解协方差矩阵 Σ 完成主成分分析。

特征值分解

图 2 所示为特征值分解协方差矩阵 Σ 。 Σ 的对角线元素为方差,其他元素为协方差。 Σ 的迹代表方差之和:

trace
$$(\Sigma) = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_D^2 = \sum_{i=1}^D \sigma_i^2$$
 (16)

图 $2 + \Sigma$ 为对称矩阵,因此对 Σ 的特征值分解实际上是谱分解。

 A_c 为对角矩阵,对角线元素为特征值,特征值从大到小排列。 X_c 投影到规范正交基 V_c 中得到 Y_c ,即 $Y_c = X_c V_c$ 。 A_c 主对角线上的特征值实际上是 Y_c 的方差,也就是说 A_c 是 Y_c 的协方差矩阵。因此,在主成分分析中,特征值也叫主成分方差。

 Y_c 的方差 (即 Λ_c 中特征值) 之和为:

$$\operatorname{trace}(\Lambda_c) = \lambda_1 + \lambda_2 + \cdots + \lambda_D = \sum_{j=1}^D \lambda_j$$
 (17)

图 2. 特征值分解协方差矩阵 Σ

图 3 对比协方差矩阵 Σ 和 Λ_c 。

下面, 我们进一步分析这两个矩阵。

图 3. 对比协方差矩阵 Σ 和 Λ_c 热图

分解前后

大家在本书第12章已经见过图4和图5。

如图 4 所示,数据矩阵 X 中第三列 (即 X_3) 的方差最大, X_3 对方差和 trace(Σ) 贡献超过 68%。

图 4. 协方差矩阵 Σ 的主对角线成分,即方差

我们在《矩阵力量》第 13 章提过,特征值分解前后矩阵的迹不变,也就是说协方差矩阵 Σ 的迹 trace(Σ) 等于的特征值方阵 Λ_c 迹 trace(Λ_c):

$$\operatorname{trace}(\Sigma) = \operatorname{trace}(\Lambda_c) \tag{18}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

即:

$$\sum_{i=1}^{D} \sigma_j^2 = \sum_{i=1}^{D} \lambda_j \tag{19}$$

也就是说, PCA 不改变数据各个特征方差总和。

而第j个特征值 λ_i 对 trace(Λ_c)的贡献百分比为:

$$\frac{\lambda_{j}}{\sum_{i=1}^{D} \lambda_{i}} \times 100\% \tag{20}$$

如图 5 所示,第一主成分的贡献超过 92%,解释了数据中大部分"方差"。数据分析中,如果原始数据特征很多,彼此之间又具有复杂的相关性,那么我们就可以考虑利用主成分分析对数据进行"降维",减少特征的数量。而这个过程又保留了原始数据主要的信息。

图 5. Λ_c 的主对角线成分,协方差矩阵 Σ 的特征值

陡坡图

上一章介绍过我们经常用陡坡图可视化前p个主成分解释总方差的百分比,即累积贡献率:

$$\frac{\sum_{j=1}^{p} \lambda_{j}}{\sum_{i=1}^{D} \lambda_{i}} \times 100\% \tag{21}$$

图 6 所示为特征值分解协方差矩阵 Σ 获得的陡坡图。观察陡坡图,可以帮助我们确定选取多少个主成分。

图 6. 陡坡图,特征值分解协方差矩阵 Σ

特征向量矩阵

图 7 所示为特征向量矩阵 V_c 热图。 V_c 的每一列便代表一个主成分的方向,即 $V_c = [v_{c_1}, v_{c_2}, v_{c_3}, v_{c_4}]$ 从左到右分别是第一、二、三、四主成分。这些主成分方向两两正交。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

在主成分分析中, V_c 叫主成分系数,也称为载荷 (loading)。注意,有一些参考文献中,载荷还要乘 上特征值的平方根,即 $\nu_i\sqrt{\lambda_i}$ 。

 V_c 也可以通过经济型 SVD 分解中心化矩阵 X_c 得到。

图 7. 特征向量矩阵 V_c 热图

投影

由于 V_c 为正交矩阵,满足 $V_c^TV_c = V_c V_c^T = I$,因此 V_c 本身也是规范正交基。如图 8 所示,将中心化 矩阵 X_c 投影到 V_c 这个规范正交基中得到数据矩阵 Y_c ,即 $Y_c = X_c V_c$ 。通过图 8 中的 Y_c 每一列的色差,我 们就可以看出来不同的次序主成分对数据总体方差的解释力度。

◆ 《矩阵力量》第 18 章介绍过 SVD 分解的优化视角。

利用 L^2 范数、 V_c 的第一列列向量实际上是如下优化问题的解:

$$\mathbf{v}_{c_{-1}} = \underset{\mathbf{v}}{\arg \max} \|\mathbf{X}_{c}\mathbf{v}\|$$

$$\text{subject to: } \|\mathbf{v}\| = 1$$
(22)

前文提过, Λ_X 本身是 Y_c 的协方差矩阵。 Λ_X 为对角方阵,因此 Y_c 的任意两列之间线性相关系数为 0。也就是说, V_c 完成了 X_c 的正交化,注意不是原始数据矩阵 X的正交化。

请大家思考 Y_c 的每一列的均值是多少? Y_c 的质心位置是什么? 为什么?

图 8. 将中心化数据 X_c 投影到 V_c

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

双标图

如图 9 所示,双标图是可视化特征向量矩阵 V_c 的重要方法。

以图 9 中蓝色背景的双标图为例,中心化数据 X_c 投影到第一、二主成分平面内的结果如四个箭头所示。比如, X_1 、 X_2 、 X_3 、 X_4 在 PC1 上贡献的分量分别为 0.36、-0.085、0.86、0.36,这正是如图 7 所示的 V_c 第一列 v_{c-1} 。

我们还可以把投影数据的散点图也画在双标图上,大家已经在上一章看到很多例子,本章不再重复。

图 9. V_c 双标图,特征值分解协方差矩阵 Σ

数据还原、误差

将(11)展开写成:

$$\mathbf{X}_{c} = \left[\mathbf{u}_{c_{-1}} \quad \mathbf{u}_{c_{-2}} \quad \cdots \quad \mathbf{u}_{c_{-D}} \right] \begin{bmatrix} \mathbf{s}_{c_{-1}} \\ \mathbf{s}_{c_{-2}} \\ \vdots \\ \mathbf{s}_{c_{-D}} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{c_{-1}}^{\mathsf{T}} \\ \mathbf{v}_{c_{-2}}^{\mathsf{T}} \\ \vdots \\ \mathbf{v}_{c_{-D}}^{\mathsf{T}} \end{bmatrix} \\
= \mathbf{s}_{c_{-1}} \mathbf{u}_{c_{-1}} \mathbf{v}_{c_{-1}}^{\mathsf{T}} + \mathbf{s}_{c_{-2}} \mathbf{u}_{c_{-2}} \mathbf{v}_{c_{-2}}^{\mathsf{T}} + \cdots + \mathbf{s}_{c_{-D}} \mathbf{u}_{c_{-D}} \mathbf{v}_{c_{-D}}^{\mathsf{T}} = \sum_{j=1}^{D} \mathbf{s}_{c_{-j}} \mathbf{u}_{c_{-j}} \mathbf{v}_{c_{-j}}^{\mathsf{T}}$$
(23)

图 10 所示为用第一主成分逼近估计 X_c , 即:

$$\hat{\boldsymbol{X}}_{c} = \underbrace{\boldsymbol{s}_{c_{-1}} \boldsymbol{v}_{c_{-1}}^{T} \boldsymbol{v}_{c_{-1}}^{T}}_{\text{First principal}} \tag{24}$$

图中可以看到, \hat{X}_c 和 X_c 非常相似;虽然 \hat{X}_c 是个 150×4 矩阵, \hat{X}_c 的秩还是 1。请大家回顾如何用 张量积计算 \hat{X}_c 。图 10 中的 E 为误差,即 $E=X_c-\hat{X}_c$ 。

图 10. 第一主成分估计 X。

要想还原原始数据 X, 我们还需要考虑 (2) 这个等式关系, 即:

$$X = X_{c} + E(X) = \sum_{i=1}^{D} s_{c_{-i}} u_{c_{-i}} v_{c_{-i}}^{T} + E(X)$$
(25)

如果利用第一主成分估计原始数据矩阵 X 的话,可以利用:

$$X \approx s_{c-1} \mathbf{u}_{c-1} \mathbf{v}_{c-1}^{\mathrm{T}} + \mathrm{E}(X) \tag{26}$$

上式中,E(X) 为行向量,计算用到了广播原则。

大家可能会问,图 2 中特征值分解仅仅获得了 V_c ,没有 U_c 。难道我们还需要再对 X_c 做 SVD 分解? 答案是不需要。

《矩阵力量》第 10 章介绍过"二次投影",也就是说 X_c 可以写成:

$$\boldsymbol{X}_{c} = \boldsymbol{X}_{c} \boldsymbol{I} = \boldsymbol{X}_{c} \boldsymbol{V}_{c} \boldsymbol{V}_{c}^{\mathrm{T}} \tag{27}$$

将 V_c 展开,上式可以写成:

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\boldsymbol{X}_{c} = \boldsymbol{X}_{c} \underbrace{\begin{bmatrix} \boldsymbol{v}_{c_{-1}} & \boldsymbol{v}_{c_{-2}} & \cdots & \boldsymbol{v}_{c_{-D}} \end{bmatrix}}_{\boldsymbol{v}_{c}} \underbrace{\begin{bmatrix} \boldsymbol{v}_{c_{-1}}^{\mathsf{T}} \\ \boldsymbol{v}_{c_{-2}}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{v}_{c_{-D}}^{\mathsf{T}} \end{bmatrix}}_{\boldsymbol{v}_{c}^{\mathsf{T}}}$$

$$= \boldsymbol{X}_{c} \boldsymbol{v}_{c_{-1}} \boldsymbol{v}_{c_{-1}}^{\mathsf{T}} + \boldsymbol{X}_{c} \boldsymbol{v}_{c_{-2}} \boldsymbol{v}_{c_{-2}}^{\mathsf{T}} + \cdots + \boldsymbol{X}_{c} \boldsymbol{v}_{c_{-D}} \boldsymbol{v}_{c_{-D}}^{\mathsf{T}} = \boldsymbol{X}_{c} \sum_{j=1}^{D} \boldsymbol{v}_{c_{-j}} \boldsymbol{v}_{c_{-j}}^{\mathsf{T}}$$

$$(28)$$

所以, (24) 可以写成:

$$\hat{\boldsymbol{X}}_{c} = \boldsymbol{X}_{c} \boldsymbol{v}_{c-1} \boldsymbol{v}_{c-1}^{\mathrm{T}} = \boldsymbol{X}_{c} \boldsymbol{v}_{c-1} \otimes \boldsymbol{v}_{c-1}$$
(29)

(26) 则可以写成:

$$X \approx X_c v_{c_{-1}} \otimes v_{c_{-1}} + E(X)$$
(30)

如果用第一、二主成分还原 X, 上式需要再加一项:

$$\boldsymbol{X} \approx \underbrace{\boldsymbol{X}_{c} \boldsymbol{v}_{c_{-1}} \otimes \boldsymbol{v}_{c_{-1}}}_{\text{First principal}} + \underbrace{\boldsymbol{X}_{c} \boldsymbol{v}_{c_{-2}} \otimes \boldsymbol{v}_{c_{-2}}}_{\text{Second principal}} + \operatorname{E}(\boldsymbol{X})$$
(31)

鸢尾花书在不同位置反复强调数据单位,也就是量纲。如果原始数据的每列数据的量纲不一致,比如高度、质量、时间、温度、密度、百分比、股价、收益率、GDP等等。利用特征值分解协方差矩阵完成 PCA 就会有麻烦,因为大家通过图9可以看到每一个主成分是若干特征的"线性融合"。哪怕每一列数据的量纲一致,比如鸢尾花前四列的单位都是厘米 cm,这种 PCA 技术路线还会受到不同特征方差大小影响。解决这些问题的方法是特征值分解线性相关系数矩阵,这是本章后文要讨论的话题。

椭圆: 投影之前

如图 11 所示,协方差矩阵 Σ 椭球 (马氏距离为 1) 在六个平面上的投影。

通过旋转椭圆的形状、位置、旋转角度,我们可以读出标准差、相关性系数等重要信息。

图 12 比较数据 X 的分类和合并协方差矩阵对应的椭圆。

对椭圆、合并方差这些概念感到陌生的话,请回顾《统计至简》第13章。

图 11. 马氏距离 1 椭圆,协方差矩阵 Σ

图 12. 马氏距离 1 椭圆,数据 X 的分类、合并协方差矩阵 Σ

椭圆:投影之后

将中心化数据 X_c 投影到 V_c 得到的结果为 Y_c :

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$Y_c = X_c V_c \tag{32}$$

 Y_c 的协方差矩阵就是X的协方差矩阵的特征值矩阵。

图 13 所示为 Y_c 的协方差矩阵在六个平面上的投影,这些椭圆都是正椭圆。 Y_c 的协方差矩阵实际上 就是 Σ 的特征值矩阵。

图 14 比较数据 Y_c 的分类和合并协方差矩阵对应的椭圆。

图 13. 马氏距离 1 椭圆, Y_c 的协方差矩阵

图 14. 马氏距离 1 椭圆,数据 Y_c 的分类、合并协方差矩阵 Σ

16.3 格拉姆矩阵

特征值分解

图 15 所示为特征值分解格拉姆矩阵 G。

注意,前文提过为了便于和协方差矩阵比较,本章中用的格拉姆矩阵 G 实际上是 $X^TX/(n-1)$ 。

图 15 中的格拉姆矩阵 G 为对称矩阵,因此这个特征值分解同样是谱分解。

 V_X 为正交矩阵,满足 $V_X^TV_X = V_XV_X^T = I$ 。 Λ_X 为对角矩阵,对角线元素为特征值,特征值从大到小排列。图 16 对比格拉姆矩阵 G 和 Λ_X 。下面,我们进一步分析这两个矩阵。

图 15. 特征值分解格拉姆矩阵 G

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

图 16. 对比 G 和 Λx 热图

分解前后

G 和 Λ_X 的主对角线之和相同,即 trace(G) = trace(Λ_X)。如图 17 所示,矩阵 G 的主对角成分为矩阵 X 的每一列向量的模除以 n-1,代表某个特征相对于原点的分散情况,即"不去均值"的方差。

而 trace(G) 相当于数据整体相对于原点的分散度量。如图 17 所示,矩阵 X 的第一列和第三列贡献最大。经过特征值分解之后,如图 18 所示,第一主成分解释了大部分数据分散情况,占比高达 96.3%。

图 17.G的主对角线成分

图 18.4x的主对角线成分,格拉姆矩阵 G 的特征值

陡坡图

图 19 所示为在特征值分解格拉姆矩阵 G 主成分分析的陡坡图。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 19. 陡坡图,特征值分解格拉姆矩阵 G

特征向量矩阵

图 20 所示为特征向量矩阵 Vx 热图。显然,图 20 不同于图 7。

图 20. 特征向量矩阵 Vx 热图

投影

图 21 是将原始数据 X 投影到 V_X ,即 $Y_X = XV_X$ 。 Y_X 的特点是其格拉姆矩阵为对角方阵,也就是说 Y_X 的列向量两两正交。

注意,两两正交不代表线性无关。

图 21. 将原始数据 X 投影到 V_X

正交矩阵 V_X 也是一个规范正交基, V_X 是因原始数据 X 而生。前文提到, V_c 同样是一个规范正交基,但是 V_c 是因中心化数据矩阵 X_c 而生。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有, 请勿商用, 引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

我们当然可以将 X 投影到 V_c 这个规范正交基中,大家可以自行验证 XV_c 的协方差和 X_cV_c 相同,都是对角方阵。也就是说, XV_c 的列向量也是线性无关。但是, XV_c 的质心不再是原点。

双标图

图 22 所示为 V_x 的双标图。请大家自行比较图 9 和图 22。

图 22. V_X 双标图,特征值分解格拉姆矩阵 G

数据还原、误差

由于本节中 PCA 分析直接采用特征值分解格拉姆矩阵 G,根据 (1),利用第一主成分还原原始数据 X 时我们不需要加入质心成分:

$$X \approx X v_{X-1} \otimes v_{X-1} \tag{33}$$

如果用第一、二主成分还原X,上式也需要再加一项:

$$X \approx \underbrace{X v_{X_{-1}} \otimes v_{X_{-1}}}_{\text{First principal}} + \underbrace{X v_{X_{-2}} \otimes v_{X_{-2}}}_{\text{Second principal}}$$
(34)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

椭圆:投影之前

图 24 所示为格拉姆矩阵 G 对应的旋转椭圆。G 相当于"不去均值"的协方差矩阵。观察图 24,我们发现椭圆的朝向都是一三象限,而且椭圆都细长。比较图 11 和图 24,大家应该理解为什么需要去均值。

图 24. 马氏距离 1 椭圆,"不去均值"的协方差矩阵 Σ

椭圆: 投影之后

经过 $Y_X = XV_X$ 投影之后,图 25 所示 Y_X 协方差矩阵对应的椭圆。

图 25. 马氏距离 1 椭圆, Y_X 的协方差矩阵

16.4 相关性系数矩阵

标准化数据 Zx 相当于是 Z 分数,因此消除了特征量纲影响。因此,特征值分解相关系数矩阵不再受量纲影响。此外,标准化数据每一列特征数据均值均为 0,方差为 1。这也消除了较大方差特征的影响。

特征值分解

图 26 所示为特征值分解相关性系数矩阵 P, P 的主对角线都是 1, P 对角线之外的元素都是线性相关系数。图 27 对比相关性系数矩阵 P 和 Az 热图。同样地,P 和 Az 主对角线之和相同,即 trace(P) = trace(Az)。

图 26. 特征值分解相关性系数矩阵 P

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 27. 对比相关性系数矩阵 P和 Az热图

分解前后

图 4 中, X_3 对方差和 trace(Σ) 贡献超过 68%,而 X_2 的贡献小于 5%。而图 28 中每个特征经过标准化之后,贡献率完全相同。方差小特征也可能含有重要的信息,利用特征值分解相关性系数完成 PCA,可以消除这种顾虑。

图 28. 相关性系数矩阵 P 主对角线成分

图 29. Λ_z 的主对角线成分,相关性系数矩阵 P 特征值

陡坡图

图 30 所示为特征值分解相关性系数矩阵 P 主成分分析结果陡坡图。第一主成分贡献小于 80%。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 30. 陡坡图,特征值分解相关性系数矩阵 P

特征向量矩阵

图 31 所示为特征向量矩阵 Vz热图。这幅图和图 7、图 20 均不同。

图 31. 特征向量矩阵 Vz热图

投影

图 32 所示为标准化数据 Z 投影到 V_Z 得到数据矩阵 Y_Z 。同样地,正交矩阵 V_Z 也是一个规范正交基,而 V_Z 是因中心化数据 Z_X 而生。

请大家将原数据 X、中心化 Xc 也投影到 Vz中,并检验结果的协方差矩阵和质心。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 32. 中心化数据 Z 投影到 Vz

双标图

图 33 所示为 Vz双标图, 请大家比较本章三幅双标图。

图 33. V_z 双标图,特征值分解相关性系数矩阵 P

数据还原、误差

图 34 所示为第一主成分估计 Zx:

$$\mathbf{Z}_{X} \approx \mathbf{Z}_{X} \mathbf{v}_{X_{-1}} \otimes \mathbf{v}_{X_{-1}} \tag{35}$$

图 34. 第一主成分还原 Z_X

 Z_X 可以写成:

$$\mathbf{Z}_{X} = (\mathbf{X} - \mathbf{E}(\mathbf{X}))\mathbf{D}^{-1} = \sum_{j=1}^{D} \mathbf{Z}_{X} \mathbf{v}_{X_{-j}} \otimes \mathbf{v}_{X_{-j}}$$
(36)

用 V_Z 还原 X:

$$\boldsymbol{X} = \left(\sum_{j=1}^{D} \boldsymbol{Z}_{X} \boldsymbol{v}_{X_{-j}} \otimes \boldsymbol{v}_{X_{-j}}\right) \boldsymbol{D} + \mathrm{E}(\boldsymbol{X})$$
(37)

用 V_Z 第一主成分估计 X:

$$X \approx \underbrace{\left(Z_{X} v_{X_{-1}} \otimes v_{X_{-1}}\right)}_{\text{First principal}} D + E(X)$$
(38)

其中, D 起到缩放的作用, E(X) 是平移的作用。

椭圆: 投影之前

图 35 所示为投影之前相关性系数矩阵 P 对应的椭圆。请大家特别和前文协方差矩阵对应椭圆进行 比较。

图 35. 马氏距离 1 椭圆,相关性系数矩阵 P

椭圆:投影之后

图 36 所示为投影之后正椭圆的位置和形状。

图 36. 马氏距离 1 椭圆, Y_Z 的协方差矩阵

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

Bk7_Ch16_01.ipynb 绘制本章大部分图片。

主成分分析是鸢尾花书的"常客", 我们用椭圆、数据、格拉姆矩阵、协方差矩阵、特征值分解、奇 异值分解、线性组合、优化、随机变量的线性函数等等视角探讨过主成分分析。换句话来说,机器学习 常用的数学工具在主成分分析处达到了一种融合,大家也看到了数学板块实际上不是一个个孤立的个 体,它们有其内在联系和网络。

下两章我们将主要介绍和主成分分析相关的回归算法。此外,本书后续还要介绍核主成分分析。

在用椭圆理解数据、解释主成分分析方面,以下论文给本章很多启发,欢迎大家阅读:

https://arxiv.org/pdf/1302.4881.pdf