Cálculo de Programas

Licenciatura em Engenharia Informática

Ficha 11

1. Considere o seguinte tipo, que pode ser usado para retornar mensagens de erro em funções parciais.

 $\mathbf{data} \; \mathsf{Error} \; a = \mathsf{Error} \; \mathsf{String} \; | \; \mathsf{Result} \; a$

- (a) Implemente a respectiva instância da classe Monad.
- (b) Usando este monad implemente uma função eval::[(String, Int)] \rightarrow Exp \rightarrow Error Int, que devolva mensagens de erro apropriadas quando aplicada ao seguinte tipo:

data Exp = Const Int | Var String | Plus Exp Exp | Div Exp Exp

- 2. Defina a função sequence :: Monad $m \Rightarrow [m \ a] \rightarrow m \ [a]$, que dada uma lista de computações monádicas, executa todas essas computações e devolve uma computação com a lista dos resultados.
- 3. Demonstre as seguintes propriedades da composição monádica:
 - (a) $f \bullet \text{return} = f$
 - (b) $(f \bullet g) \bullet h = f \bullet (g \bullet h)$
- 4. Considere o monad das listas.
 - (a) Defina as funções return e join no estilo point-free.
 - (b) Demonstre que estas definições satisafazem as leis dos monads:

join
$$\circ$$
 join $=$ join \circ map join
join \circ return $=$ join \circ map return $=$ id

Assuma que cat \circ (wrap \times id) = cons.

5. O seguinte tipo também pode ser considerado um monad.

data Tree
$$a = \text{Leaf } a \mid \text{Node (Tree } a)$$
 (Tree a)

- (a) Comece por demonstrar que é um funtor, ou seja, defina no estilo *point-free* a função $\mathsf{map}_\mathsf{T} :: (a \to b) \to (\mathsf{Tree}\ a \to \mathsf{Tree}\ b)$ e demonstre que $\mathsf{map}_\mathsf{T}\ f \circ \mathsf{map}_\mathsf{T}\ g = \mathsf{map}_\mathsf{T}\ (f \circ g)$ e $\mathsf{map}_\mathsf{T}\ \mathsf{id} = \mathsf{id}$.
- (b) Defina as funções return e join no estilo point-free.