EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (PHYSICS)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m⋅s ⁻²
Speed of light in a vacuum	С	$3.0 \times 10^8 \text{m} \cdot \text{s}^{-1}$
Universal gravitational constant	G	$6.7 \times 10^{-11} \text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb's constant	k	$9.0 \times 10^9 \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Magnitude of charge on electron	е	$1,6 \times 10^{-19} \mathrm{C}$
Mass of an electron	m _e	$9,1 \times 10^{-31} \text{kg}$
Planck's constant	h	$6.6 \times 10^{-34} \text{ J} \cdot \text{s}$
1 electron volt	eV	$1.6 \times 10^{-19} \mathrm{J}$

TABLE 2 PHYSICS FORMULAE

MOTION

The first of the f			
$v = u + at$ or $V_f = V_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t \text{ or } \Delta x = \left(\frac{v_f + v_i}{2}\right)\Delta t$		
$v^2 = u^2 + 2as$ or $v_f^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2}at^2 \text{ or } \Delta x = V_i \Delta t + \frac{1}{2}a(\Delta t)^2$		

FORCE AND MOMENTUM

F _{net} = ma	$F_{net} = \frac{\Delta p}{\Delta t}$ or $F_{net} \Delta t = m \Delta v$	$J = \Delta p = mv - mu$ or $J = \Delta p = mv_f - mv_i$
p = mv	$F_g = mg$	$egin{aligned} oldsymbol{\mathcal{F}_{fs}^{max}} &= \mu_{s} oldsymbol{\mathcal{F}_{N}} \ oldsymbol{\mathcal{F}_{fk}} &= \mu_{k} oldsymbol{\mathcal{F}_{N}} \end{aligned}$

WORK. ENERGY AND POWER

$W = Fs$ or $W =$ or $W = F\Delta x$ co		$P = \frac{W}{t}$	P = Fv
$E_p = mgh$	$E_k = \frac{1}{2}mv^2$	$W_{net} = \Delta E_{\kappa}$	efficiency = $\frac{power_{out}}{power_{in}} \times 100$

IEB Copyright © 2020 PLEASE TURN OVER

GRAVITATIONAL AND ELECTRIC FIELDS

$F = G \frac{m_1 m_2}{r^2}$	$g = \frac{F}{m}$	$g = G\frac{M}{r^2}$
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = \frac{kQ}{r^2}$

ELECTRIC CIRCUITS

$I = \frac{q}{t}$	$V = \frac{W}{q}$		
$R = \frac{V}{I}$	$emf = I(R_{ext} + r)$ or $emf = V_{load} + V_{internal\ resistance}$		
$R_{S} = R_1 + R_2 + \dots$	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$		
$P = \frac{W}{t}$ or $W = Pt$			
W = VIt or $W = VI$	$= I^2 R t \qquad \text{or} \qquad W = \frac{V^2}{R} t$		
P = VI or P	$= I^2 R \qquad \text{or} \qquad P = \frac{V^2}{R}$		

ELECTRODYNAMICS

$\Phi = BA\cos\theta$	$emf = -\frac{N\Delta\Phi}{\Deltat}$	$F = IB\ell \sin \theta$	
$V_{\rho}I_{\rho}=V_{s}I_{s}$		$\frac{N_s}{N_p} = \frac{V_s}{V_p}$	

PHOTONS AND ELECTRONS

$c = f \lambda$		E = hi	f or	$E = \frac{hc}{\lambda}$
$E = W_0 + E_{K(max)}$	W ₀ =	= <i>hf</i> ₀	$E_{\kappa_{(m)}}$	$_{max)} = \frac{1}{2} m v_{max}^2$