THE LINEAR REGRESSION PROCESS

FROM GENERATION TO INTERPRETATION

PRESENTED BY

Frank Briody frankbriody@gmail.com Prospect High School Mt. Prospect, IL

2022 MMC Conference of Workshops

Contents

1 Prologue: Standard Deviation						
2	Getting Least Squares Line of Best Fit 2.1 From Summary Statistics	3 4				
3	Interpretation 3.1 Slope	4 4				
4	Predicted Values and Residuals					
5	The Coefficient of Determination r^2 - Comparing Models	6				
6	The Correlation Coefficient r 6.1 Getting r	7 7				

The Story

A statistics teacher gives a quiz to a class. The scores were 2, 4, 6, 8, and 15 with one student being absent. Absent student returns the next day...

Student: How am I going to do on the quiz? **Teacher**: Well, the class average was...

1 Prologue: Standard Deviation

How much variability, on average, is there around the mean?

Score Deviation Squared Deviation

x

 $\frac{\omega}{2}$

 $\frac{2}{4}$

6 8 15

The Story Part 2

A statistics teacher gives a quiz to a class. The scores were 2, 4, 6, 8, and 15 with one student being absent. After surveying the class, the teacher knows the hours studied were 1, 2, 3, 4 and 5, respectively. Absent student returns the next day...

Student: How am I going to do on the quiz?

Teacher: That depends - how long did you study?

2 Getting Least Squares Line of Best Fit

Hours
$$(x)$$
 1 2 3 4 5
Score (y) 2 4 6 8 15

2.1 From Summary Statistics

Formulas (given): $\hat{y} = a + bx$ $b = r \frac{s_y}{s_x}$ $a = \bar{y} - b\bar{x}$

Descriptive Statistics: x, y

Variable N N* Mean SE Mean StDev Q1 Minimum Median QЗ Maximum 5 0 3.000 0.707 5.000 x 1.581 1.000 1.500 3.000 4.500 5 0 7.00 2.24 5.00 2.00 3.00 6.00 11.50 15.00 у

Correlations: x, y

Pearson correlation of x and y = 0.949

P-Value = 0.014

2.2 From Output

Regression Analysis: y versus x

The regression equation is

y = -2.00 + 3.00 x

s = 1.82574 R-sq = 90.0% R-Sq(adj) = 86.7%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	90.000	90.000	27.00	0.014
Residual Error	3	10.000	3.333		
Total	4	100.000			

3 Interpretation

3.1 Slope

Slope represents the **predicted** change in response associated with each unit increase in the explanatory variable, **on average**.

3.2 Y-Intercept

Y-intercept is the predicted value when the explanatory (x) is 0. [Often the y-intercept is useless due to extrapolation.]

4 Predicted Values and Residuals

 $\hat{y} = -2 + 3x$

Hours	Score	Predicted	Residual
\boldsymbol{x}	y	\hat{y}	$y - \hat{y}$
1	2		
2	4		
3	6		
4	8		
5	15		

- Predicted \hat{y} : substitute explanatory (x) values into regression equation.

The Story Part 3

A statistics teacher gives a quiz to a class. The scores were 2, 4, 6, 8, and 15 with one student being absent. After surveying the class, the teacher knows the hours studied were 1, 2, 3, 4 and 5, respectively. Absent student returns the next day...

Student: How am I going to do on the quiz? **Teacher**: That depends - how long did you study?

Student: Does how long I studied really make a difference?

5 The Coefficient of Determination r^2 - Comparing Models

Regression Analysis: y versus x

The regression equation is

y = -2.00 + 3.00 x

Predictor Coef SE Coef T P
Constant -2.000 1.915 -1.04 0.373
x 3.0000 0.5774 5.20 0.014

s = 1.82574 R-sq = 90.0% R-Sq(adj) = 86.7%

Analysis of Variance

Residual Error 3 10.000 3.333

Total 4 100.000

Hours	Score					$(Residual)^2$
\boldsymbol{x}	y	\hat{y}	$y - \bar{y}$	$(y-\bar{y})^2$	$y - \hat{y}$	$(y - \hat{y})^2$
1	2					
2	4					
3	6					
4	8					
5	15					

6.1 Getting r

•
$$r = \frac{\sum z_x \cdot z_y}{n-1}$$

- Never calculate by hand; use calculator or computer output.
- \bullet Know formula properties.

The r Formua

#mxss 9=ax+b a=3 b=-2 r²=.9 r=.9486832981

Correlations: x, y
Pearson correlation of x and y = 0.949
P-Value = 0.014

6.2 Five R Properties

• Examples