Podstawowe Bloki Synchroniczne

- Rejestry...
- Liczniki...

REJESTRY

- Rejestry stanowią proste bloki pamięciowe, służące do przechowywania danych zerojedynkowych.
- Zapis i odczyt danych może być szeregowy albo równoległy.
- · Zwykle stanowią grupę przerzutników D.
- Kasowanie poprzez wpis 00...0.

Rejestr – typowy blok pamięciowy (rejestr równoległy)

N-bitowy rejestr z wpisem równoległym pod wpływem zbocza narastającego sygnału CK.

Zamiast przerzutników można zastosować bramkowane zatrzaski D, wówczas wpis jest wykonywany w czasie trwania aktywnego poziomu sygnału CK.

Zwany również równoległo-równoległym.

7475

Cztery zatrzaski typu D

Pojedynczy zatrzask...

74373 Osiem zatrzasków typu D, z wyjściami trójstanowymi

LE – latch enable

OE – output enable

74374 Osiem przerzutników typu D, z wyjściami trójstanowymi

CP – clock pulse

OE – output enable

Rejestr przesuwny (w prawo)

```
CK
     D_{IN} \rightarrow Q_7...Q_0
                            stan początkowy
 0
           0000000
                             rejestru
0/1
            10000000
0/1
           11000000
0/1
       0
           01100000
0/1
       0
           00110000
0/1
           10011000
0/1
           11001100
0/1
       0
           01100110
0/1
       0
           00110011
0/1
       0
           00011001
0/1
       0
           00001100
```

Rejestr przesuwny (w prawo)

szeregowo-szeregowy – wejście D_{IN} , wyjście D_{OUT} szeregowo-równoległy – wejście D_{IN} , wyjścia $Q_{N-1}...Q_0$

Przesuw następuje w chwili pojawienia aktywnego zbocza zegara CK.

Rejestr przesuwny (w lewo)

CK	Q_7Q_0	DIN
0	0000000	_
0/1	0000001	1
0/1	00000011	1
0/1	00000110	0
0/1	00001100	0
0/1	00011001	1
0/1	00110011	1
0/1	01100110	0
0/1	11001100	0
0/1	10011000	0
0/1	00110000	0

LICZNIKI

LICZNIK – blok cyfrowy rejestrujący liczbę impulsów, które pojawiły się na dedykowanym wejściu

Każdy licznik zawierający *n* przerzutników ma pewną liczbę różnych stanów zwaną długością cyklu:

$$m \leq 2^n$$

określającą maksymalną liczbę impulsów, które mogą być zliczone.

Zazwyczaj licznik określa się jako licznik modulo m.

Wyjściem licznika Q są wyjścia przerzutników $Q_{n-1}...Q_0$.

Liczniki

Zależnie od kodu liczby Q wyróżnia się liczniki:

- dwójkowe (binarne),
- dziesiętnie (BCD),
- pierścieniowe (1 z m),
- liczniki Gray'a.

Zależnie od sposobu ustalania się wyjść:

- synchroniczne (równoległe) jednoczesna zmiana stanów, wejścia zegarowe przerzutników są połączone równolegle,
- asynchroniczne (szeregowe) zmiany stanów następują kolejno, wejście zegarowe każdego przerzutnika jest połączone z wyjściem poprzedniego przerzutnika.

Np. modulo 16 zliczający "w górę", czyli n = 4 bo $2^4 = 16$

$Q_3Q_2Q_1Q_0$	L(Q)						
0000	0					l.	
0001	1			mod 10		/	
0010	2						
0011	3						
0100	4	0.4	0				
0101	5	Q_1	ω _ο 00	0 1	11	10	
0110	6	Q_3Q_2					1
0111	7	00	0001	0010	0100	0011	
1000	8	01	0101	0110	1000	0111	
1001	9		4 4 0 4	4 4 4 0	0000	4 4 4 4	
1010	10	11	1101	1110	0000	1111	
1011	11	10	1001	1010	1100	1011	
1100	12	, ,]
1101	13					Q_3Q_2	Q_1Q_0
1110	14						
1111	15						

Funkcje wzbudzeń dla przerzutników T

Q_1Q_0 Q_2Q_2 00 01 11 10					
Q ₃ Q ₂	00	01	11	10	
00	1	1	1	1	
01	1	1	1	1	
11	1	1	1	1	
10	1	1	1	1	
•				7	Γ ₀

$$T_0 = 1$$
 $T_1 = Q_0$
 $T_2 = Q_1 Q_0$
 $T_3 = Q_2 Q_1 Q_0$

$$egin{aligned} oldsymbol{\mathcal{T}}_0 &= oldsymbol{1} \ oldsymbol{\mathcal{T}}_1 &= oldsymbol{Q}_0 \ oldsymbol{\mathcal{T}}_2 &= oldsymbol{Q}_1 \, oldsymbol{\mathcal{T}}_1 \end{aligned}$$

$$T_3 = Q_2 T_2$$

Przeniesienia równoległe

Przeniesienia szeregowe

Licznik z przeniesieniami równoległymi

Licznik z przeniesieniami szeregowymi

Licznik z zezwoleniem na liczenie – sygnał *CE* (*Count Enable*) Dodatkowy sygnał przeniesień *CO* (*Carry Out*)

Zwiększenie cyklu liczenia poprzez użycie przeniesień zewnętrznych

Np.: Licznik modulo 256

Przygotowanie licznika do pracy polega na ustawieniu wartości początkowej, np. 000...0 (czyli kasowanie, zerowanie).

Inny sposób ustawiania wartości początkowej to wpis równoległy synchroniczny lub asynchroniczny – sygnał *LD* (*Load Data*).

Wpis synchroniczny i-ta komórka licznika

Wpis asynchroniczny *i-ta komórka licznika*

Zliczanie "w tył"

W wyniku syntezy otrzymujemy:

$Q_3Q_2Q_1Q_0$	L(Q)
1111	15
1110	14
1101	13
1100	12
1011	11
1010	10
1001	9
1000	8
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0

Przeniesienia równoległe
$$egin{aligned} T_3 &= \overline{Q_2} \ \overline{Q_1} \ \overline{Q_0} \ T_2 &= \overline{Q_1} \ \overline{Q_0} \ T_1 &= \overline{Q_0} \ T_0 &= 1 \end{aligned}$$
Przeniesienia szeregowe $egin{aligned} T_3 &= \overline{Q_2} \ T_2 \ T_2 &= \overline{Q_1} \ T_1 \ T_1 &= \overline{Q_0} \ \end{bmatrix}$

Licznik z przeniesieniami szeregowymi zliczający "w tył"

Licznik rewersyjny z przeniesieniami szeregowymi

Licznik rewersyjny...

Liczenie wstecz można uzyskać z zanegowanych wyjść Q, ale dotyczy to tylko liczników dwójkowych.

74160 ...

Rodzina synchronicznych liczników 4-bitowych z wpisem i zezwoleniem...

```
160, 162 - BCD
```

161, 163 - Binary

```
160, 161 – Asynch reset
```

162, 163 - Synch reset

163 - Binary, Synch reset

160 - BCD, Asynch reset

74190, 74191

Rodzinka synchronicznych dwukierunkowych liczników 4-bitowych z wpisem asynchronicznym, zezwoleniem i sygnałem kierunku...

190 - BCD

191 – **Binary**

74192, 74193

Rodzina synchronicznych dwukierunkowych liczników 4-bitowych z wpisem asynchronicznym, zezwoleniem, osobnymi wejściami zegarowymi dla kierunku zliczania (CPU, CPD)...

192 - BCD

193 – Binary

193 – Binary... ζŌ DATA DOWN OUTPUT QA DATA INPUT B OUTPUT QB DATA INPUT C OUTPUT QC DATA INPUT D CLR OUTPUT QD LOAD ~ 31

Liczenie w przód, np. modulo 8

Liczenie wstecz, np. modulo 8

Zwiększenie cyklu liczenia otrzymujemy poprzez dołączenie kolejnych przerzutników oraz liczników.

Liczniki – skracanie cyklu liczenia

Asynchroniczne kasowanie – najpopularniejsze ale...

Asynchroniczny licznik 4-bitowy z kasowaniem

7490

Licznik BCD – modulo 10, dekada

$Q_3Q_2Q_1Q_0$	L(Q)
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9

Szczególny przypadek licznika 4-bitowego wynikający z dziesiętnego systemu liczbowego.

Stosowane są w przyrządach pomiarowych ze wskaźnikami wyniku pomiaru: U, I, f, RLC, itp...

Łączone szeregowo dają liczniki o cyklach: modulo 100, modulo 1000, modulo 1000, ...

Zatem cykl zliczania ma 10^K różnych stanów, gdzie K to liczba liczników BCD.

Miernik cyfrowy...

Np. do cyfrowego pomiaru wielkości fizycznych, po konwersji na częstotliwość lub odcinek czasu...

LICZNIKI PIERŚCIENIOWE – rejestr przesuwający

Najprościej to wpisać wartości początkową i przesuwać szeregowo...

Wartość początkowa 100..0 – krążąca jedynka

Liczniki pierścieniowe – 1 z N, krążąca jedynka, korekcja

Np.: N = 3

Bramka NOR zapewnia autokorekcję

Liczniki pierścieniowe – 0 z N, krążące zero, korekcja

Np.: N = 3

Bramka NAND zapewnia autokorekcję

Liczniki pierścieniowe – Licznik Johnsona

Długość cyklu liczenia m = 2n

Dzielniki częstotliwości

Dzielniki częstotliwości to liczniki, których najbardziej znaczący bit jest wyjściem układu.

Częstotliwość wejściowa jest podzielona przez wartość długości cyklu liczenia *m* licznika.

Okres sygnału wyjściowego dzielnika jest *m* razy większy od okresu sygnału wejściowego.

$$f_{WY} = \frac{f_{WE}}{m}$$
 $T_{WY} = mT_{WE}$

