ULB

Université Libre de Bruxelles - Département de Mathématique

Titulaire: Guillaume Dujardin

Assistants: Thibaut Grouy et Robson Nascimento

Exercices de Calcul Différentiel et Intégral 2 - 2016/2017

Séance 14 - Formule de Cauchy - Principe des zéros isolés

Exercice 1. Soient U un ouvert de \mathbb{C} contenant le disque unité fermé D(0,1] et f est une fonction holomorphe sur U.

a) Calculer l'intégrale

$$\int_{\gamma} \left(2 + z + \frac{1}{z}\right) \frac{f(z)}{z} dz,$$

où γ est le cercle unité, centré en 0, parcouru une fois dans le sens positif.

b) En déduire la valeur de

$$\int_0^{2\pi} f(e^{it}) \cos^2\left(\frac{t}{2}\right) dt.$$

Exercice 2. Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction entière telle que

$$\forall z \in \mathbb{C}, \quad |f(z)| \le |P(z)|,$$

où P est un polynôme. Montrer que f est également un polynôme dont le degré est inférieur ou égal à celui de P.

Indication: Montrer que $f^{(k)}$ est identiquement nulle pour un $k \in \mathbb{N}$.

Exercice 3. Soit U un ouvert connexe de \mathbb{C} .

a) Soient f et g deux fonctions holomorphes sur U telle que

$$\forall z \in U, \quad f(z)g(z) = 0.$$

Montrer que f ou g est identiquement nulle sur U. Indication : Utiliser le principe des zéros isolés.

b) Soit f une fonction holomorphe sur U. Supposons qu'il existe g_1 et g_2 holomorphes sur U telles que

$$\forall z \in U, \quad g_1(z)^2 = f(z) = g_2(z)^2.$$

Montrer que $g_1 = g_2$ ou $g_1 = -g_2$.

Exercice 4. Soit $f:\mathbb{C}\to\mathbb{C}$ une fonction entière telle que

$$|f(z)| \to +\infty$$
 lorsque $|z| \to +\infty$.

Montrer que f ne possède qu'un nombre fini de zéros.