

Large Area Hull Shape Modification

Funded by the European Union

Fairway is special

Network of curves instead of patchwork of surfaces

- 1. No topological restrictions
 - Curves can intersect any number of other curves, leaving cells with any number of corners
- 2. No regularity requirements
 - Curves can run over arbitrary stretches of the hull in arbitrary directions
- 3. No indirection in surface manipulation
 - Points and curves are on the surface
- 4. Tools for evaluating and improving smoothness (Fairing)

Progressive commitment

The further a design progresses, the more local changes get.

Spatial Deformation

- Deforming the fabric of space in which the model is defined
- Popular technique in entertainment industry
- Generally only applicable to discrete representations
 - Indirect modelling paradigms cannot maintain continuity across seams
 - CFD, optimizations need to be converted back into continuous representation by reverse engineering
- Thanks to direct surface manipulation: Applicable in Fairway!
- Developed and demonstrated in 2004
 - Point-based (a.k.a. radial basis functions)
 - Curve-based (in theory)
- New variant basis for SARC concept early design
 - Break free from progressive commitment

Reduce Cb (displacement)

Reduce Cb (displacement)

model			org	LCG & Cb 2
Draft	T =	m	20	20
Moulded volume	V _m =	m^3	262866.4	260903.458
Longitudinal center of buoyancy	LCB =	m	168.639	168.43
LCB relative to ½L _{pp}	LCB =	$\%$ L_{pp}	-2.808	-2.866
Block coefficient	C _b =		0.721	0.716
Prismatic coefficient	C _p =		0.728	0.722
Midship coefficient	C _m =		0.991	0.991
change displacement			-	-1962.981
Change in displ relative			-	<mark>-0.75%</mark>
change LCB (m)				-0.209
change LCB relative to ½L _{pp}			-	<mark>-0.06%</mark>

model			org	LCG & Cb 2
Draft	T =	m	20	20
Moulded volume	V _m =	m^3	262866.4	262597.85
Longitudinal center of buoyancy	LCB =	m	168.639	166.237
LCB relative to ½L _{pp}	LCB =	$\%$ L_{pp}	-2.808	-3.48
Block coefficient	C _b =		0.721	0.72
Prismatic coefficient	C _p =		0.728	0.727
Midship coefficient	C _m =		0.991	0.991
change displacement			-	-268.589
Change in displ relative			-	<mark>-0.10%</mark>
change LCB (m)				-0.209
change LCB relative to ½L _{pp}			-	<mark>-0.67%</mark>

Key Points

- Break free from progressive commitment
- Simple concept
- Composable
- Replayable
- Variable and expandable

Can express legacy transformations (Linear scaling, Lackenby)

31-5-2025 21

Vision

- Ensure sufficient surface points
- Reinterpolate planar curves, build frames
- Dimensionless
- Higher level interfaces, sliders
 - Change bilge radius to r
 - Increase the beam to b but preserve the bilge radius
 - Raise the propeller shaft by n
 - Lift the bulb by %
 - Change LCB to I
 - Make more room for the gearbox
 - etc., etc.
- Lower level scriptable (also by capable customers)
- Automated feedback loop with CFD optimization
- Mother shapes (do we even need more than one?)