Cheat Sheet – Regression Analysis

What is Regression Analysis?

Fitting a function f(.) to datapoints $y_i=f(x_i)$ under some error function. Based on the estimated function and error, we have the following types of regression

1. Linear Regression:

Fits a line minimizing the sum of mean-squared error for each datapoint.

$$\min_{\beta} \sum_{i} \|y_i - f_{\beta}^{linear}(x_i)\|^2$$
$$f_{\beta}^{linear}(x_i) = \beta_0 + \beta_1 x_i$$
$$\min_{\beta} \sum_{i=0}^{m} \|y_i - f_{\beta}^{poly}(x_i)\|^2$$

$$f_{\beta}^{linear}(x_i) = \beta_0 + \beta_1 x$$

Fits a polynomial of order k (k+1 unknowns) minimizing the sum of mean-squared error for each datapoint.

$$min_{\beta} \sum_{i=0}^{m} ||y_i - f_{\beta}^{poly}(x_i)||^2$$

3. Bayesian Regression:

For each datapoint, fits a gaussian distribution by minimizing the mean-squared error. As the number of data points x_i increases, it converges to point $\mathcal{N}(\mu, \sigma^2) \to \text{Gaussian with mean } \mu \text{ and variance } \sigma^2$ estimates i.e. $n \to \infty, \sigma^2 \to 0$

$$\min_{\beta} \sum_{i} \|y_{i} - \mathcal{N}\left(f_{\beta}(x_{i}), \sigma^{2}\right)\|^{2}$$
$$f_{\beta}(x_{i}) \stackrel{f}{=} f_{\beta}^{poly}(x_{i}) \text{ or } f_{\beta}^{linear}(x_{i})$$

 $f_{\beta}^{poly}(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_k x_i^k$

4. Ridge Regression:

Can fit either a line, or polynomial minimizing the sum of mean-squared error for each datapoint and the weighted L2 norm of the function parameters beta.

$$min_{\beta} \sum_{i=0}^{m} ||y_i - f_{\beta}(x_i)||^2 + \sum_{j=0}^{k} \beta_j^2$$
$$f_{\beta}(x_i) = f_{\beta}^{poly}(x_i) \text{ or } f_{\beta}^{linear}(x_i)$$

5. LASSO Regression:

Can fit either a line, or polynomial minimizing the the sum of mean-squared error for each datapoint and the weighted L1 norm of the function parameters beta.

$$min_{\beta} \sum_{i=0}^{m} ||y_i - f_{\beta}(x_i)||^2 + \sum_{j=0}^{k} |\beta_j|$$
$$f_{\beta}(x_i) = f_{\beta}^{poly}(x_i) \text{ or } f_{\beta}^{linear}(x_i)$$

6. Logistic Regression:

 $min_{\beta} \sum -y_i log \left(\sigma\left(f_{\beta}(x_i)\right)\right) - (1-y_i) log \left(1-\sigma\left(f_{\beta}(x_i)\right)\right)$ Can fit either a line, or polynomial with sigmoid activation minimizing the binary cross-entropy loss for each datapoint. The labels y are binary class labels.

$$f_{\beta}(x_i) = f_{\beta}^{poly}(x_i) \text{ or } f_{\beta}^{linear}(x_i)$$

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

Visual Representation:

Summary:

	What does it fit?	Estimated function	Error Function
Linear	A line in n dimensions	$f_{\beta}^{linear}(x_i) = \beta_0 + \beta_1 x_i$	$\sum_{i=0}^{m} \ y_i - f_{\beta}(x_i)\ ^2$
Polynomial	A polynomial of order k	$f_{\beta}^{poly}(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots$	$\sum_{i=0}^m \ y_i - f_\beta(x_i)\ ^2 \cdot$
Bayesian Linear	Gaussian distribution for each point	$\mathcal{N}\left(f_{\beta}(x_i), \sigma^2\right)$	$\sum_{i} \ y_i - \mathcal{N}\left(f_{\beta}(x_i), \sigma^2\right)\ ^2$
Ridge	${\bf Linear/polynomial}$	$f_{\beta}^{poly}(x_i)$ or $f_{\beta}^{linear}(x_i)$	$\sum_{\substack{i=0\\m}}^{m} y_i - f_{\beta}(x_i) ^2 + \sum_{\substack{j=0\\r}}^{n} \beta_j^2$
LASSO	${\bf Linear/polynomial}$	$f_{\beta}^{poly}(x_i)$ or $f_{\beta}^{linear}(x_i)$	$\sum_{i=0}^{m} y_i - f_{\beta}(x_i) ^2 + \sum_{i=0}^{n} \beta_i $
Logistic	${\it Linear/polynomial\ with\ sigmoid}$	$\sigma(f_eta(x_i)) = \min_eta \sum_i -y_i lo_i$	$g\left(\sigma\left(f_{\beta}(x_{i})\right)\right)-(1-y_{i})log\left(1-\sigma\left(f_{\beta}(x_{i})\right)\right)$

Source: https://www.cheatsheets.ageel-anwar.com Tutorial: Click here

