

National University of Sciences & Technology

School of Electrical Engineering and Computer Science Department of Software Engineering

CS471: Machine Learning

Class: BESE-6AB

Assignment 01: Logistic Regression

Announcement Date: 28-02-2018

Due Date: 9th March 2018

Instructor: Dr. Muhammad Moazam Fraz

Course Learning Outcomes (CLOs)

Upon	completion of the course, students should demonstrate the ability to:	PLO** Mapping	BT Level*
CLO 1	Develop an appreciation for what is involved in learning from data.	PLO 1	C1
CLO 2	Understand a wide variety of learning algorithms.	PLO 2	C2
CLO 3	Apply a variety of learning algorithms to data for solution development.	PLO 3	C3
CLO 4	Evaluate various learning algorithms for optimal model selection.	PLO 4	C6
CLO 5	Develop solutions by using modern machine learning tools / models to solve practical problems.	PLO 5	C5

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

- o Knowledge(C-1), Comprehension(C-2), Application(C-3), Analysis(C-4), Synthesis(C-5), Evaluation(C-6)
- Perception(P-1), Set(P-2), Guided Response(P-3), Mecha
- Receiving(A-1), Responding(A-2), Valuing(A nism(P-4), Complete Overt Response(P-5), Adaption(P-6), Organization(P-7) -3),
 Organization(A-4), Internalizing(A-5)

^{**} PLOs are published on departmental website

Learning Outcome

CLO 2: Understand a wide variety of learning algorithms

Introduction:

Logistic Regression is a Machine Learning classification algorithm that is used to predict the probability of a categorical dependent variable. In logistic regression, the dependent variable is a binary variable that contains data coded as 1 (yes, success, etc.) or 0 (no, failure, etc.). In other words, the logistic regression model predicts P(Y=1) as a function of X.

Assumptions:

- Binary logistic regression requires the dependent variable to be binary.
- For a binary regression, the factor level 1 of the dependent variable should represent the desired outcome.
- Only the meaningful variables should be included.
- The independent variables should be independent of each other. That is, the model should have little or no multicollinearity.
- The independent variables are linearly related to the log odds.
- Logistic regression requires quite large sample sizes.

Data:

The dataset comes from the UCI Machine Learning repository, and it is related to direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict whether the client will subscribe (1/0) to a term deposit (variable y). The dataset can be downloaded from here.

Tasks

1. Read the dataset and print the following information for analysis.

Hint: Use Pandas to read the data and use pandas functions mentioned in slides for cleaning the missing values and attributes

2. Plot the 'y' for counts to check the values of 0 and 1 in the prediction also plot the job, martial, load and pooutcome.

Hint: Use the seaborn library function countplot.

3. Analyze the data using the y,job,martial and education for the insights.

a	age	duration	campaig	ın pdays		previous	em	p_var_rate	cons_price_idx	cons_conf_idx	euribor3	m nr_emplo	oyed	
у														
0 3	39.911185	220.8448	7 2.63308	35 984.11	3878	0.132374		0.248875	93.603757	-40.593097	3.8114	91 5176.16	6600	
1 4	40.913147	553.1911	191164 2.051724 792.035560		35560	0.492672 -1.2334		-1.233448	93.354386	-39.789784	2.1231	35 5095.11	95.115991	
		age	duration	campaign	pdays	pre	/ious	emp_var_rate	e cons_price_idx	cons_conf_idx	euribor3m	nr_employed	у	
job														
	admin.	38.187296	254.312128	2.623489	954.319	229 0.18	9023	0.015563	3 93.534054	-40.245433	3.550274	5164.125350	0.1297	
ı	blue-collar	39.555760	264.542360	2.558461	985.160	363 0.12	2542	0.248995	93.656656	-41.375816	3.771996	5175.615150	0.0689	
ent	trepreneur	41.723214	263.267857	2.535714	981.267	170 0.13	8736	0.158723	93.605372	-41.283654	3.791120	5176.313530	0.0851	
h	nousemaid	45.500000	250.454717	2.639623	960.579	245 0.13	7736	0.433396	93.676576	-39.495283	4.009645	5179.529623	0.1000	
ma	nagement	42.362859	257.058140	2.476060	962.647	059 0.18	5021	-0.012688	93.522755	-40.489466	3.611316	5166.650513	0.1121	
	retired	62.027326	273.712209	2.476744	897.936	0.32	7326	-0.698314	4 93.430786	-38.573081	2.770066	5122.262151	0.2523	
self	-employed	39.949331	264.142153	2.660802	976.621	393 0.14	3561	0.094159	93.559982	-40.488107	3.689376	5170.674384	0.1048	
	services	37.926430	258.398085	2.587805	979.974	049 0.15	4951	0.175359	93.634659	-41.290048	3.699187	5171.600126	0.0813	
	student	25.894857	283.683429	2.104000	840.217	143 0.52	4571	-1.408000	93.331613	-40.187543	1.884224	5085.939086	0.3142	
1	technician	38.507638	250.232241	2.577339	964.408	127 0.15	3789	0.274566	93.561471	-39.927569	3.820401	5175.648391	0.1082	
un	nemployed	39.733728	249.451677	2.564103	935.316	568 0.19	9211	-0.111736	93.563781	-40.007594	3.466583	5157.156509	0.1420	
	unknown	45.563636	239.675758	2.648485	938.727	273 0.15	4545	0.357879	93.718942	-38.797879	3.949033	5172.931818	0.1121	

Hint: Use Pandas groupby function for this.

4. Visualize the joint data e.g. job and y, martial and y, education and y for the insights.

Hint: Use pandas crosstab function to get the desired data and plot using matplotlib bar charts

5. Create dummy variables, that is variables with only two values, zero and one. Use the following columns 'job', 'marital', 'default', 'housing', 'loan', 'poutcome'.

Hint: Use the pandas function get_dummies()

6. Drop the unknown columns [12, 16, 18, 21, 24]. Hint: Use the pandas drop function for this and drop the above mentioned columns

7. Check the independence between the independent variables by drawing the heat map of the data

Hint: Use the seaborn heatmap function for this

8. Split the data into training and test sets.

Hint: X = data.iloc[:,1:] and y = data.iloc[:,0] then use the sklearn function train_test_split()

Fit logistic regression to the training set.
 Hint: Use sklearn LogisticRegression() class for this and then use fit() method to train the classifier.

- Predicting the test set results and creating confusion matrix.
 Hint: Use sklearn confusion_matrix() function for confusion matrix and classifier predict() method for the predictions.
- 11. Print the Accuracy of the classifier using the score() method of the classifier.
- 12. Compute precision, recall, F-measure and support.

Hint: Use sklearn classification_report() function for this.

Submission Instructions

- 1. Please create a Jyputer Notebook for the tasks, include proper comments and submit it.
- 2. The Name of Notebook should be YOUR NAME_YOURCMSID.ipynb and upload it on LMS.
- 3. Your code in Notebook shoud run seamlessly. Failure in running code will earn a zero credit.
- 4. The code should be fully documented explaining each step you had implemented to earn the full credit.

Please note that Failing to follow naming and coding conventions and failing to run the code seamlessly will result in ZERO credit.