1. Given

$$f(x) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

where $x,\mu\in\mathbb{R}^k$, Σ is a k-by-k positive definite matrix and $|\Sigma|$ is its determinant. Show that $\int_{\mathbb{R}^k}f(x)\,dx=1.$

Claim:
$$\int_{\mathbb{R}^{k}} \frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} e^{-\frac{1}{2}(\chi-\mu)^{T} \sum^{-1}(\chi-\mu)} d\chi = 1$$

$$\Rightarrow \frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} \int_{\mathbb{R}^{k}} e^{-\frac{1}{2}(\chi-\mu)^{T} \sum^{-1}(\chi-\mu)} d\chi = 1$$

$$\Rightarrow \int_{\mathbb{R}^{k}} e^{-\frac{1}{2}(\chi-\mu)^{T} \sum^{-1}(\chi-\mu)} d\chi = \sqrt{(2\pi)^{k}|\Sigma|}$$

Let $I = \int_{\mathbb{R}^k} e^{\frac{i}{2}(x_{yy})^T \frac{i}{2}(x_{yy})} dx$, we need to prove $I = J(x_y)^T |x|$

 $\colon \Sigma$ is symmetrical positive determined matrix $\colon \Sigma'$ is also symmetrical positive determined matrix,

then \exists a orthogonal matrix $P(P^TP=I)$ and a diag. matrix D s.t. $\mathcal{Z}^I=PDP^T$. $D=diag(\lambda_1,\lambda_2,\cdots\lambda_K)$

Let $z=P^Ty$, then y=Pz, $det(J_z)=det(P)=\pm 1$. Hence dy=dz

$$y^{T}\overline{\Sigma}^{1}y = (P_{z})^{T}(PD\overline{P})(P_{z}) = \overline{z}^{T}\overline{P}PD\overline{P}PZ = \overline{z}^{T}DDIz = \overline{z}^{T}Dz = \sum_{i=1}^{k} \lambda_{i}z_{i}^{2}$$

$$I = \int_{\mathbb{R}^{k}} e^{\frac{1}{2}\sum_{i=1}^{k} \lambda_{i}z_{i}^{2}} dz = \int_{\mathbb{R}^{k}} \frac{k}{1} e^{\frac{1}{2}\lambda_{i}z_{i}^{2}} dz_{1} \dots dz_{k} = \prod_{i=1}^{k} \int_{-\infty}^{\infty} e^{\frac{\lambda_{i}}{2}z_{i}^{2}} dz_{i}$$

We Gaussian Integral: Joo Ean du = Ja, a= 22,

$$= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{1}{2\pi} \int_{\mathbb{$$

:
$$\det(\Sigma') = \frac{1}{\det(\Sigma)} = \frac{1}{|\Sigma|}$$
, then $I = \int \frac{|\Sigma \pi|^k}{|\Sigma|} = \int |\Sigma \pi|^k |\Sigma|$

$$\int_{\mathbb{R}^k} f(x) dx = \frac{1}{\sqrt{|x_n|^k |\Sigma|}} \cdot I = \frac{1}{\sqrt{|x_n|^k |\Sigma|}} \cdot \sqrt{|x_n|^k |\Sigma|} = 1$$

(a) Show that $\frac{\partial}{\partial A} \mathrm{trace}(AB) = B^T$.
(a) Show that $x^T A x = \operatorname{trace}(x x^T A)$.
(c) Derive the maximum likelihood estimators for a multivariate Gaussian.
(a) Let elements in A,B are Aij and Bij
(AB) ik = P Azj Bjk, trace (AB) = P (AB) iz = P P Azj Bji
JAN trace(AB) = JAN (1 A JBji) = JAN (1 A JBji) = Blk
By defn. of the matrix derivative, SA is a matrix whose (K, l)-th element is same.
Therefore the (k, l)-th element of and trace (AB) is Box
A matrix C whose [k,l)-element is equal to the U,k)-th element of another matrix B is
precisely the defn of the transpose, i.e. $C = B^T$. $\left(\frac{\partial}{\partial A} \operatorname{trace}(AB)\right)_{kl} = B_{gk} = (B^T)_{kl}$
,
Thus, JA trace (AB) = BT
(b) $\chi : hx \mid A : hxh \mid \chi^T A x : (xh)(hxh)(hxh) \rightarrow x $
$\chi \chi^{T} A : (n \chi I) (I \chi N \chi N \chi N) \rightarrow N \chi N$
tr(cDE) = tr(DEC) = tr(ECD) (By Cyclic Property of Trace)
let C=X, D=XT, E=A
$tr(\alpha x^{T}A) = tr(A\alpha x^{T})$, $tr(A\alpha x^{T}) = tr(\alpha^{T}Ax)$
For Y scalar S, tr(s)=S
\therefore tr $(x^TAx) = x^TAx$
\Rightarrow tr(xx^TA)=tr(x^TAx)= x^TAx
(c) PDF: $P(x_{\overline{i}} \mu,\Sigma) = \frac{1}{(2\pi)^{\frac{1}{\mu}} \Sigma ^{\frac{1}{\mu}}} e^{-\frac{1}{2}(x_{\overline{i}},\mu)} e^{-\frac{1}{2}(x_{\overline{i}},\mu)}$
$L(\mu, \Sigma; D) = \prod_{i=1}^{n} P(x_i \mu, \Sigma) . \text{ In order to facilitate the derivation, we maximize its log. func,},$
Lyh, 230) = z=1 (mi), -1, the order to tacilitate the derivation, we maximize its log. think,
that is, the log. $similarity$ func. $l(\mu, \Sigma) = log L(\mu, \Sigma)D$. Then $l(\mu, \Sigma) = log \left(\frac{N}{1!} \frac{1}{(\Sigma \pi)^{\frac{\mu}{2}} \Sigma ^{\frac{1}{2}}} e^{\frac{1}{2}(X_1, \mu)^T \sum_{i=1}^{n} (X_i, \mu)}\right) = \sum_{i=1}^{N} log \left(\frac{1}{(\Sigma \pi)^{\frac{n}{2}} \Sigma ^{\frac{1}{2}}} e^{\frac{1}{2}(X_1, \mu)^T \sum_{i=1}^{n} (X_2, \mu)}\right)$
$=\sum_{\overline{l}=1}^{N}\left(-\frac{h}{2}\Big _{0}g(2\pi)-\frac{1}{2}\Big _{0}g \mathcal{D} -\frac{1}{2}(\chi_{\overline{l}}-\mu)^{T}\mathcal{D}^{-1}(\chi_{\overline{l}}-\mu)\right)$
Hence $l(\mu, \Sigma) = -\frac{N_n}{2} \log(2\pi) - \frac{N}{2} \log \Sigma - \frac{1}{2} \sum_{i=1}^{N} (x_i - \mu)^T \Sigma^i(x_i - \mu)$
We find the in that maximizes I by taking the gradient of in and setting it to zero. Unliques =0
We need to compute Juli [(xi-m) Z (xi-m) use V/UTCV)=2CV (when C is sysmetric) & V/(bTCV)=CTb.
Then we get $\nabla_{\mu}[(\chi_{i},\mu)^{T}\Sigma^{T}(\chi_{i},\mu)] = -2\Sigma^{T}(\chi_{i},\mu)$ subst. This gradient $\Rightarrow \nabla_{\mu}[(\mu,\Sigma) = -\frac{1}{2}\sum_{i=1}^{N}(-2\Sigma^{T}(\chi_{i},\mu)) = \sum_{i=1}^{N}\Sigma^{T}(\chi_{i},\mu) = \sum_{i=1}^{N}\sum_{j=1}^{N}(\chi_{i},\mu)$
Let the gradient $Z'(\tilde{\xi}_1 \chi_1 - N_{\mu}) = 0 \Rightarrow ZZ'(\tilde{\xi}_1 \chi_1 - N_{\mu}) = Z \circ \Rightarrow \tilde{\xi}_1 \chi_1 - N_{\mu} = 0 \Rightarrow N_{\mu} = \tilde{\xi}_1 \chi_2$
$\hat{\mathcal{M}}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} \chi_i$
We rewrite the log-likelihood func. in terms of S, and use log/E1=log/S1=-log/S1

2. Let A,B be n-by-n matrices and x be a n-by-1 vector.

$$\begin{split} & \{ \lfloor \mu_i S \rangle = C + \frac{N}{2} \log |S| - \frac{1}{2} \sum_{i=1}^{N} (\chi_{i-i} \mu_{i})^{T} S(\chi_{i-i} \mu_{i}) \quad \text{use (b)} \quad \sqrt{T} M_{V} = t_{V}(v v^{T} M) \quad \text{, then } \sum_{i=1}^{N} (\chi_{i-i} \mu_{i})^{T} S(\chi_{i-i} \mu_{i}) = \sum_{i=1}^{N} t_{V}(\chi_{i-i} \mu_{i})^{T} S(\chi_{i-i} \mu_{i})^{T} S \\ & \text{use } \sum_{i=1}^{N} (\chi_{i-i} \mu_{i}) (\chi_{i-i} \mu_{i})^{T} , \quad \text{lecomes to } \sum_{i=1}^{N} (\chi_{i-i} \mu_{i}) (\chi_{i-i} \mu_{i})^{T} S(\chi_{i-i} \mu_{i}) = \sum_{i=1}^{N} (\chi_{i-i} \mu_{i}) (\chi_{i-i} \mu_{i})^{T} , \quad \text{lecomes to } \sum_{i=1}^{N} (\chi_{i-i} \mu_{i}) (\chi_{i-i} \mu_{i})^{T} S(\chi_{i-i} \mu_{i}) = \sum_{i=1}^{N} (\chi_{i-i} \mu_{i}) (\chi_{i-i} \mu_{i})^{T} S(\chi_{i-i} \mu_{i}) (\chi_{i-i} \mu_{i}) (\chi_{i-i}$$

 $\int_{\mathcal{L}} \frac{\partial}{\partial x} \int_{\mathcal{L}} \int_{\mathcal{L}} \left(|S_{i,k}|^{2} \right) = \frac{1}{2} \left(|S_{i,k}|^{2} \right)^{T} - \frac{1}{2} \left(|S_{i,k}|^{2} \right)^{T}$

": S=E' & Su are sysemtric matrices : (S') = S = S (Su) = Su

 $\Rightarrow \frac{1}{2} \sum_{i=1}^{N} S_{i,i} = \frac{1}{N} \sum_{i=1}^{N} (\chi_{i} - \mu_{i}) (\chi_{i} - \mu_{i})$

=> \hat{\Sigma}_{MLE} = \frac{1}{\sqrt{2}} \biggred{\Sigma}_{\text{NLE}} \left(\chi_t - \hat{\hat{h}}_{MLE} \right) \left(\chi_t - \hat{\hat{h}}_{MLE} \right)^T

in h= 12 2/2 and \(\hat{\Sigma} = \frac{1}{2} \frac{1}{2} (\hat{\chi} - \hat{\chi}) (\hat{\chi} - \hat{\chi})^T +

3. Question: In notes mention that Gaussion Simple Bayesian assume a diagonal covariance matrix.

Does it mean that we can find all features (x, x, x, x, x, a) are independent of each other in special cases? I'd like to know what types of examples would perform better or worse under this assumption.