				Bitte hier unbedir trikelnummer und se eintragen, sons Bearbeitung mögl
Postan	schrift: Ferr	nUniversität ⋅5	8084 Hagen	
(Name	, Vorname)			
(1.10.1.0	,			
(CtraR	e, Nr.)			
(Straise				
(Straise				

FernUniversität in Hagen FAKULTÄT für Mathematik und Informatik

KLAUSUR zum Kurs Mathematische Grundlagen (01141) SoSe 2010

DATUM: 28.08.2010 **UHRZEIT:** 10.00 - 12.00 Uhr **KLAUSURORT:**

Bearbeitungshinweise

erreichte Punktezahl

Prüfergebnis/Note

(Bitte vor Arbeitsbeginn durchlesen!)

- 1. Schreiben Sie Ihre Klausur bitte nicht mit Bleistift.
- 2. Füllen Sie bitte das Adressfeld leserlich und vollständig aus, und schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jedes Lösungsblatt, das Sie abgeben.
- 3. Die Reihenfolge, in der Sie die Aufgaben/Teilaufgaben lösen, ist Ihnen freigestellt. Kreuzen Sie in der Tabelle (s.u.) an, welche Aufgaben Sie bearbeitet haben.
- 4. Bei jeder Aufgabe ist die erreichbare Höchstpunktzahl vermerkt. Sie haben die Klausur bestanden, wenn Sie **40** Punkte erreichen.
- 5. Erlaubt ist ein handgeschriebenes DIN-A4-Blatt mit eigenen Notizen.
- 6. Weitere Hilfsmittel wie Studienbriefe, Glossare, Bücher, Aufzeichnungen, Taschenrechner, etc. dürfen während der Klausur nicht benutzt werden. Ihre Benutzung sowie andere Täuschungsversuche führen dazu, dass Ihre Klausur mit 5 bewertet wird.

					Beme	rkung	en:			
Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Bearbeitet										
max. Punktezahl	10	12	4	8	10	8	4	10	14	80

Korrektur						

Klausur am 28.08.2010:

Aufgabenstellungen

Die Lösungen aller Aufgaben müssen Sie begründen.

Aufgabe 1

Beweisen Sie, dass $\sum\limits_{k=1}^n\frac{k(k+1)}{2}=\frac{n(n+1)(n+2)}{6}$ für alle $n\in\mathbb{N}$ gilt.

[10 Punkte]

Aufgabe 2

Sei
$$A = \begin{pmatrix} 1 & -4 & 1 \\ 1 & 3 & -1 \\ -4 & -5 & 2 \\ 4 & -2 & 0 \end{pmatrix} \in \mathcal{M}_{43}(\mathbb{R})$$
. Sei $f : \mathbb{R}^3 \to \mathbb{R}^4$ definiert durch $f(x) = Ax$ für alle $x \in \mathbb{R}^3$

Bestimmen Sie eine Basis von Kern(f) und von Bild(f).

$$[6+6=12 \ Punkte]$$

Aufgabe 3

Sei V der Vektorraum der Polynome über \mathbb{R} vom Grad ≤ 2 . Sei $f: V \to M_{22}(\mathbb{R})$ definiert durch $f\left(\sum_{i=0}^2 a_i T^i\right) = \begin{pmatrix} a_0 & a_0 + a_1 \\ a_1 + a_2 & a_0 \end{pmatrix}$ für alle $\sum_{i=0}^2 a_i T^i \in V$.

Beweisen Sie, dass f linear ist.

[4 Punkte]

Aufgabe 4

Sei \mathbb{K} ein Körper und V ein \mathbb{K} -Vektorraum. Sie $n \in \mathbb{N}$, $n \geq 2$. Seien v_1, \ldots, v_n linear abhängige Vektoren in V, von denen jeweils n-1 linear unabhängig sind. Seien $a_1, \ldots, a_n \in \mathbb{K}$ Skalare, sodass $\sum_{i=1}^n a_i v_i = 0$ ist.

Beweisen Sie: Entweder sind alle Skalare $a_i = 0$ oder es sind alle $a_i \neq 0$.

[8 Punkte]

Klausuraufgaben MG KL

Aufgabe 5

Sei $f:[0,\frac{1}{100}]\to\mathbb{R}$ definiert durch $x\mapsto\cos(200x)-\exp(x)+1$ für $x\in[0,\frac{1}{100}]$.

Beweisen Sie, dass f in $\left[0, \frac{1}{100}\right]$ genau eine Nullstelle besitzt.

[10 Punkte]

Aufgabe 6

Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = \cos(\frac{x}{2})\sin(x)$ für $x \in \mathbb{R}$.

Bestimmen Sie das zweite Taylorpolynom von f in $a = \frac{\pi}{2}$.

Hinweis: Sie dürfen ohne Beweis verwenden, dass $\sin(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$ ist.

[8 Punkte]

Aufgabe 7

Untersuchen Sie, ob die Reihe $\sum_{n=1}^{\infty} \sqrt[n]{3}$ konvergiert.

[4 Punkte]

Aufgabe 8

Seien A und B Atome. Es werden die Formeln $\alpha = A \to B, \ \beta = \neg A \to \neg B$ und $\gamma = \neg (A \land B)$ betrachtet.

- 1. Formulieren Sie die Konjunktion aus den Formeln; überführen Sie diese in eine konjunktive Normalform (bitte angeben), welche Sie anschließend mittels weiterer Äquivalenzumformungen zu einer Formel in Negationsnormalform mit möglichst wenigen Junktoren vereinfachen. Erläutern Sie die einzelnen Umformungen stichwortartig.
- 2. Was lässt sich über mögliche Werte für A und B in der vorangegangenen Teilaufgabe aussagen, wenn eine Bewertung \Im den Formeln α , β und γ jeweils den Wert 1 zuordnet? Begründen Sie Ihre Antwort.

$$[6 + 4 = 10 \ Punkte]$$

Klausuraufgaben MG KL

Aufgabe 9

Die reelle Folge (a_n) sei wie folgt definiert: Es sind $a_1 = 3$ und $a_{n+1} = \frac{a_n}{2} + \frac{2}{a_n}$ für alle $n \ge 1$.

- 1. Beweisen Sie mit dem Monotonieprinzip, dass (a_n) konvergent ist.
- 2. Berechnen Sie den Grenzwert der Folge.

Hinweis: Beweisen Sie zunächst, dass $a_n \geq 2$ für alle $n \in \mathbb{N}$ ist.

$$[8+6=14 Punkte]$$

Funktion	Definitionsbereich	Stammfunktion
$x \mapsto x^n, n \in \mathbb{N}_0$	\mathbb{R}	$x \mapsto \frac{1}{n+1}x^{n+1}$
$x \mapsto x^{-n}, n \in \mathbb{N}, n \ge 2$	$\mathbb{R}\setminus\{0\}$	$x \mapsto \frac{1}{-n+1} x^{-n+1}$
$x \mapsto x^{-1}$	$(0,\infty)$	$x \mapsto \ln(x)$
$x \mapsto x^{-1}$	$(-\infty,0)$	$x \mapsto \ln(-x)$
$x \mapsto x^{\alpha}, \alpha \in \mathbb{R}, \alpha \neq -1$	$(0,\infty)$	$x \mapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$
$x \mapsto \frac{1}{1+x^2}$	R	$x \mapsto \arctan(x)$
$x \mapsto \frac{1}{\sqrt{1-x^2}}$	(-1,1)	$x \mapsto \arcsin(x)$
$x \mapsto \exp(x)$	\mathbb{R}	$x \mapsto \exp(x)$
$x \mapsto a^x, a > 0, a \neq 1$	\mathbb{R}	$x \mapsto \frac{1}{\ln(a)}a^x$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
$x \mapsto \frac{1}{\cos^2(x)}$	$((k-\frac{1}{2})\pi,(k+\frac{1}{2})\pi),k\in\mathbb{Z}$	$x \mapsto \tan(x)$
$x \mapsto \frac{1}{\sin^2(x)}$	$(k\pi,(k+1)\pi),k\in\mathbb{Z}$	$x \mapsto -\cot(x)$