## Tasks and Work Force Polarization

Alex Cooper

7 June 2013

# U.S. wage inequality has risen since the 1960s



Change in Log Real Weekly Wage by Perecntile, Full-Time Workers, 1963-2005. (Autor, L. F. Katz, & Kearney, 2008)

# Skill-Based Technical Change (SBTC)

- Model features:
  - ▶ Two skills, high (H) and low (L).
  - ▶ H and L are different, and imperfect productive substitutes:  $\sigma > 0$ .
  - ► Technology *factor-augmenting*: always raises productivity/wages.
  - Wages set on the demand curve
- Empirically successful. e.g.
  - Katz and Murphy (1992)
  - ► Card and Lemieux (2001)

## The 'Canonical Model' of Skill-Based Technical Change

Production function representation:

$$F(L,H) = \left[ (A_L L)^{\frac{\sigma-1}{\sigma}} + (A_H H)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{(\sigma-1)}} \tag{1}$$

- ▶ Empirical implications depend on  $\sigma$ . SBTC implies
  - ▶ Rise in  $A_H/A_L$  if H and L are gross substitutes  $(\sigma > 1)$
  - ▶ Fall in  $A_H/A_L$  if H and L are gross complements  $(\sigma > 1)$
- Predicts
  - Increasing inequality, driven by skill demand.
  - ► Rising college/education premium.
  - Monotone wage growth in skills.

# Non-monotone increases in wage by skill percentile (USA)



Smoothed changes in employment by occupational skill percentile, 1979-2007 (Acemoglu & Autor, 2011)

#### Autor, Levy, and Murnane, 2003

"The skill content of recent technological change: An empirical exploration." *The Quarterly Journal of Economics*, 118(4), 1279–1333.

- ▶ Jobs have different *task content*, so technology can be factor-augmenting or a substitute.
- ▶ Two kinds of labor: routine  $(L_R)$ , and non-routine  $(L_N)$ . Capital is perfectly substitutable for non-routine tasks:

$$F(R, N) = (L_R + C)^{1-\beta} L_N^{\beta}, \quad \beta \in (0, 1)$$

- Workers are endowed with a fixed set of skills, inelastically supply 1 unit of labor.
- 'Ricardian' model: assignment of workers to tasks is endogenous (as in Roy, 1951).

#### Job Polarization: United States



Percentage change in employment level, by occupation group, USA, 1979-2009 (Acemoglu & Autor, 2011)

## Income growth, Australia, 1981-82 to 2007-08



Average annual percentage change in real equivalent income unit income, working age (Whiteford, 2012)

## This Project

- 1. Has employment in Australia polarized in terms of routine and non-routine tasks as it has overseas?
  - ▶ If not, why is Australia special?
- 2. Does ICT capital investment or off-shoring explain this trend?

#### Data

- O\*NET: Occupational task database
  - Developed by US Department of Labor
  - Detailed break-down of work activities by occupation
- 2. David Autor's work type data categories
  - Mapping to O\*NET tasks
  - "Routine" and "Non-routine"
  - "Off-shorable"
- Australian Bureau of Statistics
  - Labor Force Survey (LFS)
  - Survey of Income and Housing
  - Census of Population and Housing
  - National accounts: ICT and Machinery investment, capital stock

### Imputing Worker Activities from O\*NET

Assume we have N Australian occupations and M industries. In the O\*NET dataset, we have K occupations, and L activities.

- 1. Employment by occupations and industry, is  $\Omega_{M \times N}$ .
- 2. Define an occupation equivalence matrix,  $\underset{N\times\mathcal{K}}{\mathbf{Z}}$ , where

$$z_{n,k} = \left\{ \begin{array}{ll} 1 & \text{if US occupation } n \text{ is equivalent to } k \\ 0 & \text{otherwise.} \end{array} \right.$$

- 3. O\*NET activity weights by US occupation are  $\psi_{K \times L}$
- 4. Then employment of worker activities is:

$$\mathbf{Q}_{M imes L} = \mathbf{\Omega} \ \mathbf{Z} \ \mathbf{\Psi}$$

Q can be further weighted for routine, non-routine and off-shorable labor.

#### Identification Challenge

- Employment is an outcome of supply and demand.
- ▶ But supply and demand curves are unobservable.
- ► However, wage quantiles *are* observable.
- ► Firpo, Fortin, and Lemieux (2011) exploit quantile regression to analyze changes in labor demand.



#### References



Acemoglu, D., & Autor, D. H. (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. In D. Card & O. Ashenfelter (Eds.), Handbook of labor economics, volume 4, part b (Chap. 12, Vol. Volume 4, pp. 1043–1171). Elsevier



Autor, D. H., Katz, L. F., & Kearney, M. S. (2008). "Trends in US wage inequality: Revising the revisionists." The Review of Economics and Statistics, 90(2), 300–323.



Autor, D. H., Levy, F., & Murnane, R. J. (2003). "The skill content of recent technological change: An empirical exploration." *The Quarterly Journal of Economics*, 118(4), 1279–1333.



Card, D., & Lemieux, T. (2001, May). "Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis." The Quarterly Journal of Economics, 116(2), 705–746



Firpo, S., Fortin, N., & Lemieux, T. (2011). Occupational tasks and changes in the wage structure. Institute for the Study of Labor.



Katz, & Murphy, K. J. (1992). "Changes in Relative Wages, 1963-1987: Supply and Demand Factors." *Quarterly Journal of Economics*, 107, 35–78.



Roy, A. D. (1951, June). "Some Thoughts on the Distribution of Earnings." Oxford Economic Papers. New Series, 3(2),



# O\*NET Data Example

| Job Title     | Gather | Analyze | Think      | Handle  |
|---------------|--------|---------|------------|---------|
|               | Data   | Data    | Creatively | Moving  |
|               |        |         |            | Objects |
| CEOs          | 5.03   | 4.82    | 5.1        | 1.1     |
| Economists    | 5.88   | 6.58    | 5.38       | 0.54    |
| Dancers       | 3.88   | 1.96    | 4.37       | 2.63    |
| Programmers   | 4.91   | 5.05    | 5.96       | 0.44    |
| Tellers       | 2.91   | 2.65    | 2.21       | 2.74    |
| Surgeons      | 5.72   | 5.49    | 4.67       | 3.62    |
| Bakers        | 2.8    | 3.29    | 2.93       | 5.06    |
| Receptionists | 3.1    | 2.45    | 2.54       | 2.88    |
| Typists       | 4.35   | 1.52    | 3.9        | 1.43    |

Table: O\*NET Work Activity Example (Levels, Scale 0–7)

## O\*NET Data Example



Hierarchical cluster analysis by work activity Eucledian distance.