Bachelor Thesis Seminar Econometrics

Barbara Pertold-Gebicka 19.3.2024

A little about myself

Barbara Pertold-Gebicka

- PhD from CERGE-EI
- Assistant Professor at IES, teaching Econometrics II (JEB 110) and Applied Microeconometrics (JEM 007)
- Research in the fields of <u>labor economics</u>, <u>economics of education</u>, <u>family economics</u>, <u>applied microeconometrics</u>
- Office hours: Tuesday 14-15:15 (room #408)
- E-mail: gebicka@fsv.cuni.cz

What is econometrics?

"Econometrics is the quantitative application of statistical and mathematical models using data to [...] test existing hypotheses in economics and to forecast future trends from historical data."

[Adam Hayes, derivatives trader]

"Econometrics uses economic theory, mathematics, and statistical inference to quantify economic phenomena. In other words, it turns theoretical economic models into useful tools for economic policy making. "

[Sam Ouliaris, Senior Economist in the IMF Institute]

Statistics, Economics, and Data

- Statistics is the baseline for econometrics.
- Econometrics combines economic theory with statistics to analyze and test economic relationships.
- Proper usage of econometric tools requires understanding of statistics, economics, and the nature of the data.

Examples of econometrics usage

- Macroeconomic forecasting, e.g.
 what will be the inflation rate in the following quarter?
- Credit scoring, e.g.
 which personal characteristics predict high probability of not repaying a loan?
- Evaluation of policies, e.g.
 what is the effect of smoking ban on restaurant sales?
 what is the effect of covid-19 policies on countries' economic outcomes?
- Testing economic theories, e.g. does Phillips curve exist?

Econometrics

- Econometrics is a powerful tool
- It is easy to use since the development of fast-processing computers
- But always remember about the underlying assumptions!!!
- After several lectures of Econometrics I you will be able to
 - Run a multiple regression
 - Interpret the results
 - Test simple hypotheses about regression coefficients
- Why not to use econometric analysis in your bachelor thesis?

Sample theses written under my supervision

- Demand for gas: Evidence from the 2022 energy crisis. (2023)
- Gender gap in math score: does teacher gender matter? (2022)
- The Impact of COVID-19 on Students' Academic Performance. (2022)
- Do fringe benefits affect job satisfaction? (2020)
- Do family policies really affect fertility levels? (2019)
- Occupational regulation and its influence on the labor market: evidence from reforms in the Czech Republic. (2017)
- The relationship between capital structure and performance: empirical study of Czech manufacturing companies. (2016)
- Impact of metro station proximity on apartment value in Prague. (2015)

Let the data speak

- All these theses have one thing in common...
- ...their authors learned how to "speak with the data"
- This involves:
 - Asking a question that can be tackled
 - Understanding which forces can affect the observed outcomes
 - Gathering the proper data
 - Performing econometric analysis
 - Interpreting the results

Econometric analysis: an example

Does lecture attendance affect exam performance?

Why might there be a relationship between lecture attendance and exam performance?

- Students learn during classes
- Students attending classes know what the teacher expects
- Highly motivated students attend more classes
- Smart students attend less classes (they don't need to)
- Students who have a job attend less classes (they also have less time to study at home)

•

How to test this hypothesis?

- Collect data about students
 - Official school records
 - Questionnaire
- What do we need to know?
 - Number of lectures attended
 - Points gathered during an exam
 - Additional information, e.g.
 - how well a student performed in a related subject / prerequisite?
 - how easy/difficult it is for the student to attend classes?

Real data from the Econometrics II course a few years ago.

How to test this hypothesis?

Build a regression model

$$midterm_i = \beta_0 + \beta_1 \cdot lectures_i + u_i$$

where:

- $midterm_i$ is the number of points obtained in the midterm exam
- *lectures*_i is the number of lectures attended
- u_i is the random error (disturbance)
- The coefficient β_1 can be interpreted as follows:
 - When student attends one more lecture, his/her midterm score is higher by β_1 .

Correlation coefficient: 0.428

Simple OLS regression: $midterm_i = 9.570 + 0.975 \cdot lectures_i$

After dropping the outlier

Correlation coefficient: 0.277

Simple OLS regression: $midterm_i = 11.580 + 0.574 \cdot lectures_i$

	(1)	(2)
Lectures	0.975	0.574
	(0.318)	(0.312)
Constant	9.570	11.580
	(1.489)	(1.476)
Observations	44	43
R-squared	0.183	0.076

	(1)	(2)
Lectures	0.975***	0.574**
	(0.318)	(0.312)
Constant	9.570***	11.580***
	(1.489)	(1.476)
Observations	44	43
R-squared	0.183	0.076

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 Full sample (column 1), outliers dropped (column 2).

Which of these is actually the **effect** of lecture attendance?

- Students learn during classes
- Students attending classes know what the teacher expects
- Highly motivated students attend more classes
- Smart students attend less classes (they don't need to)
- Students who have a job attend less classes (they also have less time to study at home)

Which of these is actually the **effect** of lecture attendance?

- Students learn during classes
- Students attending classes know what the teacher expects
- Highly motivated students attend more classes
- Smart students attend less classes (they don't need to)
- Students who have a job attend less classes (they also have less time to study at home)

What relationship we observe if the following is true?

- Students learn during classes
 - -> positive relationship
- Students attending classes know what the teacher expects
 - -> positive relationship
- Highly motivated students attend more classes
 - -> positive relationship
- Smart students attend less classes (they don't need to)
 - -> negative relationship
- Students who have a job attend less classes (they also have less time to study at home)
 - -> positive relationship

What relationship we observe if the following is true?

- Students learn during classes
 - -> positive relationship
- Students attending classes know what the teacher expects
 - -> positive relationship
- Highly motivated students attend more classes
 - -> positive relationship
- Smart students attend less classes (they don't need to)
 - -> negative relationship
- Students who have a job attend less classes (they also have less time to study at home)
 - -> positive relationship

	(1)	(2)
Lectures	0.975***	0.574**
	(0.318)	(0.312)
Constant	9.570***	11.580***
	(1.489)	(1.476)
Observations	44	43
R-squared	0.183	0.076

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 Full sample (column 1), outliers dropped (column 2).

Do these estimates mean that making lectures compulsory will improve students' grades?

Basic regression model

$$midterm_i = \beta_0 + \beta_1 \cdot lectures_i + u_i$$

OLS estimation results:

$$midterm_i = 11.580 + 0.574 \cdot lectures_i$$

i. e.
$$\hat{\beta}_1 = 0.574$$

- This positive estimate might be driven by
 - Students really benefitting from lecture attendance
 - The fact that more motivated students (who put more effort into studying anyway)
 attend more lectures
- How to disentangle these two?
 - How to clear the estimations from the latter effect?

- Simple regression model $midterm_i = \beta_0 + \beta_1 \cdot lectures_i + u_i$
- Augmented regression model $midterm_i = \beta_0 + \beta_1 \cdot lectures_i + \beta_2 \cdot Statistics_i + u_i$
- The coefficient β_1 can now be interpreted as follows:
 - Given the Statistics grade, when a student attends one more Econometrics lecture, his/her midterm score is higher by β_1 .
 - Conditional on the Statistics grade, when student attends one more Econometrics lecture, his/her midterm score is higher by β_1 .
 - When we compare two random students with the same Statistics grade, the one who attended one more Econometrics lecture has, on average, the midterm score higher by β_1 points.

	(1)	(2)	(3)	
Lectures	0.975***	0.574**	0.541***	
	(0.318)	(0.312)	(0.249)	
Statistics			-2.439***	
			(0.495)	
Constant	9.570***	11.580***	16.665***	
	(1.489)	(1.476)	(1.567)	
Observations	44	43	43	
R-squared	0.183	0.076	0.425	

Note: Dependent variable is the number of lectures attended; Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; Full sample (column 1), outliers dropped (columns 2 and 3).

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	2SLS
Lectures	0.975***	0.574**	0.541***	0.627
	(0.318)	(0.312)	(0.249)	(0.516)
Statistics			-2.439***	-2.434***
			(0.495)	(0.497)
Constant	9.570***	11.580***	16.665***	16.272***
	(1.489)	(1.476)	(1.567)	(2.596)
Observations	44	43	43	43
R-squared	0.183	0.076	0.425	0.423

Note: Dependent variable is the number of lectures attended; Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; Full sample (column 1), outliers dropped (columns 2 and 3).

Interpreting the results

- The estimated coefficient is about 0.54 to 0.63. Is this a large effect?
- Summary statistics of the underlying data needed!

Variable	Mean	St. deviation
Lectures	4.465	1.594
Midterm	14.145	3.310

- Attending one additional lecture translates to the midterm score higher by ~0.6 points
- Increasing lecture attendance from zero to six corresponds to the midterm score increase by more than one standard deviation $(0.6 \cdot 6 = 3.6)$.
- Attending one additional lecture translates to the midterm exam score increased by 4.2%, for an average student $(0.6 \div 14.145 = 0.042)$.

Robustness of the results

- Note that results in columns 2, 3, and 4 produce similar point estimate.
 This is a good sign!
- Inspection of the data suggests there might be heteroskedasticity (variation in midterm points is higher for many lectures attended than for few lectures attended).
 - Compute heteroskedasticity robust st. errors and see if estimates still significant!
- Functional form
 - Should we use midterm results in levels or maybe in logs?
- Need for more data?
 - Maybe collecting the data for the whole course (12 lectures) and performance in final exam will give more precise results?

Econometric analysis in your thesis

- 1. Choose a topic that you understand, carefully formulate the research question (testable hypothesis).
- 2. Think about a simple econometric model that could be used to tackle the research question (test the hypothesis).
- 3. Make sure that you have access to data that will be used to estimate the econometric model.
- 4. Now comes the fun part
 - Think deeper about the model formulated in point 2.
 - Is the model correctly specified?
 - Is the relationship between x and y driven only by your hypothesized channel? (will OLS provide unbiased estimates)
 - Can you disentangle between different channels?

$Nobel_i = \beta_0 + \beta_1 \cdot chocolate_i + u_i$

Source: <u>here</u>

Econometric analysis in your thesis

- Consult your ideas with the supervisor throughout the year.
- You can also consult with other IES lecturers.
 - We have different specializations.
 - Cross-sectional econometrics.
 - Time-series econometrics.
 - Check here: https://ies.fsv.cuni.cz/lide/interni-clenove
- What will you learn in Econometrics II
 - Basics of time-series econometrics.
 - Econometrics of panel data.
 - Dealing with violations of OLS assumptions.
 - Models for specific dependent variables (e.g. dummy dependent variable).

Thank you!

gebicka@fsv.cuni.cz