텍스트마이닝 세미나 ToBig's 9기 신용재

Recurrent Neural Network

a.k.a RNN

ontents

Unit 01	RNN이란
Unit 02	RNN의 구조
Unit 03	Character Level Language Model
Unit 04	NN Forward and Backward Propagation
Unit 05	RNN Forward and Backward Propagation

Recurrent Neural Network

(Recurrent= 되풀이되는, 반복되는)

순차적 데이터의 패턴을 인식하는 인공신경망

쓰임: 텍스트, 유전자, 손글씨, 음성, 동영상, 주가 … 시계열

Unit 01 | RNN이란

Recurrent Neural Network

Recurrent= 되풀이되는, 반복되는

피드백 구조

-과거의 출력이 다시 모델에 입력되는 구조

→ 모든 sequence에서.. 같은 함수, 같은 파라미터가 계속해서 적용.

은닉층

-입력 데이터는 은닉층에 저장된다. 기억을 저장하고 있듯이 은닉층에 기억을 저장한다.

-> 입력과 보유하고 있던 기억으로 다음 행동을 결정.

Unit 01 | RNN이란

RNN의 쓰임.. Unfold 형태

(Vanilla) RNN

$$oldsymbol{h}_t = oldsymbol{f}_W(oldsymbol{h}_{t-1}, oldsymbol{x}_t)$$

new state

old state input vector at some time step

some function with parameters W

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$
 বুলুই সুপু

$$y_t = W_{hy} h_t$$

*Neural Net: σ (WX+b)

 $\max(0, x)$

Unit 03 | Character Level Language Model

Example: Character-level Language Model

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Unit 03 | Character Level Language Model

Unit 03 | Character Level Language Model

http://cs231n.stanford.edu/slides/2017/ http://web.stanford.edu/class/cs224n/archive/WWW_1617/

Recap!

노드(원): 함수 및 연산

엣지(선): 값

∂L/∂y: y에 대한 Loss의 변화량

 ∂ L/ ∂ x: 현재 입력값에 대한 현재 연산결과의

변화량(로컬 그래디언트)

덧셈 노드

$$z = f(x, y) = x + y$$

$$\frac{\partial z}{\partial x} = \frac{\partial (x+y)}{\partial x} = 1$$
 $\frac{\partial z}{\partial y} = \frac{\partial (x+y)}{\partial y} = 1$

덧셈 노드의 역전파는 흘러들어온 그래디언트를 그대로 흘려보낸다.

곱셈 노드

$$z = f(x, y) = xy$$

$$\frac{\partial z}{\partial x} = \frac{\partial (xy)}{\partial x} = y$$

$$\frac{\partial z}{\partial y} = \frac{\partial (xy)}{\partial y} = z$$

곱셈 노드의 역전파는 입력 신호들을 서로 바꾼 값을 곱해서 흘려보낸다.

$$y = tanh(x)$$
 $\frac{\partial y}{\partial x} = 1 - y^2$

-> Vanishing or Exploding Gradient

$$h_{t} = Wf(h_{t-1}) + W^{(hx)}x_{[t]}$$

$$\hat{y}_{t} = W^{(S)}f(h_{t})$$

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_{t}}{\partial W}$$

$$\frac{\partial E_{t}}{\partial W} = \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial y_{t}} \frac{\partial y_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial h_{k}} \frac{\partial h_{k}}{\partial W}$$

$$\frac{\partial h_{t}}{\partial h_{k}} = \prod_{j=k+1}^{t} \frac{\partial h_{j}}{\partial h_{j-1}}$$

Vanishing and Exploding Gradient Problem-> Long Short Term Memory

관련 정보와 그 정보를 사용하는 지점 사이가 멀 경우 역전파시 그래디언트가 점차 줄어 학습능력이 크게 저하된다.

Q&A

들어주셔서 감사합니다.