Семинар 24 (14.03.2023)

Краткое содержание

Обсудили понятие расстояния в евклидовом пространстве и проговорили основную теорему о расстоянии от вектора до подпространства:

Пусть $S\subseteq \mathbb{E}$ — подпространство и $x\in \mathbb{E}$. Тогда $\rho(x,S)=|\mathrm{ort}_S x|$, причём $\mathrm{pr}_S x$ является ближайшим к x вектором из S.

Дальше обсудили метод наименьших квадратов для несовместных систем линейных уравнений, а также явную формулу для псевдорешения в случае, когда столбцы матрицы коэффициентов линейно независимы. Нашли псевдорешение для системы

$$\begin{cases}
2x_1 + 5x_2 &= 3, \\
x_1 + 7x_2 &= -1, \\
2x_1 - 4x_2 &= -1.
\end{cases}$$
(1)

Следующий сюжет — k-мерный параллелепипед и его k-мерный объём. Разобрали определение и формулу для объёма в терминах матрицы Грама системы векторов, задающих k-мерный параллелепипед, а также формулу для n-мерного объёма в n-мерном пространстве через определитель матрицы координат в ортонормированном базисе. Нашли площадь параллелограмма в \mathbb{R}^3 , натянутого на векторы (2,1,2) и (1,-2,1).

Дальше разобрали понятия ориентации и ориентированного объёма в евклидовом пространстве. Новая тема — векторные операции в пространстве \mathbb{R}^3 с фиксированной ориентацией.

Векторное произведение двух векторов $a,b \in \mathbb{R}^3$ можно определить как единственный вектор $[a,b] \in \mathbb{R}^3$, удовлетворяющий соотношению $([a,b],x) = \operatorname{Vol}(a,b,x)$ для всех $x \in \mathbb{R}^3$. Разобрали геометрические свойства векторного произведения, которыми оно обычно определяется:

- 1) [a,b] ортогонально каждому из векторов a,b;
- 2) длина вектора [a,b] равна площади параллелограмма, натянутого на a,b;
- 3) $Vol(a,b,[a,b]) \ge 0$.

Упомянули антикоммутативность, билинейность векторного произведения, а также критерий коллинеарности: два вектора $a,b \in \mathbb{R}^3$ коллинеарны (= пропорциональны = линейно зависимы) тогда и только тогда, когда $[a,b] = \vec{0}$. Также разобрали формулу для вычисления векторного произведения в координатах в положительно ориентированном ортонормированном базисе.

Смешанное произведение трёх векторов $a,b,c \in \mathbb{R}^3$ — это величина (a,b,c), равная попросту ориентированному объёму натянутого на них параллелепипеда. Проговорили основные свойства смешанного произведения и формулу для его вычисления в координатах в положительно ориентированном ортонормированном базисе. Упомянули критерий компланарности: три вектора $a,b,c \in \mathbb{R}^3$ компланарны (= линейной зависимы) тогда и только тогда, когда (a,b,c)=0.

Решили номера КК25.7, КК25.8. Нашли ядро и образ линейного отображения $\mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto [x,a]$, где a— заданный ненулевой вектор.

Домашнее задание к семинару 25. Дедлайн 21.03.2023

Номера с пометкой Π даны по задачнику Проскурякова, с пометкой K – Кострикина, с пометкой KK – Ким-Крицкова.

В обоих задачниках координаты векторов из \mathbb{R}^n всегда записываются в строчку через запятую, однако нужно помнить, что мы всегда записываем эти координаты в столбец.

- 1. K43.21(a)
- 2. Рассмотрим евклидово пространство $\mathbb{R}[x]_{\leq 3}$ со скалярным произведением $(f,g) = \int\limits_{-1}^{1} f(t)g(t)\,dt$. Найдите расстояние от вектора x^3 до подпространства $\langle 1,x,x^2\rangle$.
- 3. Найдите псевдорешение системы (1) по явной формуле.

- 4. Найдите псевдорешение для СЛУ из номера К43.30(а) двумя способами (через проекцию и по явной формуле).
- 5. Найдите объём параллелепипеда в \mathbb{R}^4 (со стандартным скалярным произведением), натянутого на:
 - (1) первые три вектора из номера К43.36(б);
 - (2) все векторы из номера 43.36(б).
- 6. Докажите, что vol $P(a_1, \ldots, a_k) \leq |a_1| \cdot \ldots \cdot |a_k|$, то есть объём параллелепипеда не превосходит произведения длин его рёбер, выходящих из одной вершины. В каком случае в этом неравенстве достигается равенство?
- 7. KK25.17
- 8. KK25.18, 25.24(a)
- 9. KK25.36

 \Diamond