Mainly consist of precalculus, and basic Calculus.

Algebra

Laws of Exponents.

$$x^{\frac{m}{n}} = \sqrt[n]{m}$$
$$(x^m)^n = x^{mn}$$
$$x^m x^n = x^{m+n}$$
$$x^a y^a = (xy)^a$$

Special Factorization.

$$x^{2} - y^{2} = (x + y)(x - y)$$

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

Quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \begin{cases} D > 0 & \text{re}(2) \\ D = 0 & \text{re}(1) \\ D < 0 & \text{im}(2) \end{cases}$$

Binomial theorem.

$$(a+b)^n = \sum_{k=0}^{\infty} \binom{n}{k} a^{n-k} b^k$$

with

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{\Gamma(n+1)}{\Gamma(k+1)\Gamma(n-k+1)}$$

Trigonometry

Trigonometry Definition.

$$\sin \theta = \frac{1}{\csc \theta}$$

$$\cos \theta = \frac{1}{\sec \theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

Pythagorean Identity.

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\sec^2 \theta - \tan^2 \theta = 1$$
$$\csc^2 \theta - \cot^2 \theta = 1$$

Law of Sines.

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines.

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Trigonometry Double Angle Identity.

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = 1 - 2\sin^2\theta$$

$$= 2\cos^2\theta - 1$$

$$= \cos^2\theta - \sin^2\theta$$

$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Trigonometry Addition and Difference Identity.

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y - \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Trigonometry Product Rule.

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x + y) + \sin(x - y)]$$

$$\cos x \sin y = \frac{1}{2} [\sin(x + y) - \sin(x - y)]$$

Neat Mnemonics.

$$\begin{vmatrix} S^+ \\ S^- \\ C^+ \\ C^- \end{vmatrix} = \begin{vmatrix} SC + CS \\ SC - CS \\ CC - SS \\ CC + SS \end{vmatrix} \qquad \text{and} \qquad \begin{vmatrix} CC \\ SS \\ SC \\ CS \end{vmatrix} = \begin{vmatrix} C^- + C^+ \\ C^- - C^+ \\ S^+ + S^- \\ S^+ - S^- \end{vmatrix}$$

Logarithm

Definition (informal). $\log_a b$ means a to the power of what equal b.

Few important log rule.

$$\log_c(ab) = \log_c(a) + \log_c(b)$$
$$\log_c(\frac{a}{b}) = \log_c(a) - \log_c(b)$$
$$\log_a b = \frac{\log_c(b)}{\log_c(a)}$$
$$a^{\log_a b} = b$$

Limit

Few Important Limits.

$$\begin{split} &\lim_{x\to a} c = c \\ &\lim_{x\to 0^+} \frac{1}{x} = \infty \to \frac{1}{0^+} = \infty \\ &\lim_{x\to 0^-} \frac{1}{x} = -\infty \to \frac{1}{0^-} = -\infty \end{split}$$

Limit as Definition of Derivative.

$$\frac{d}{dx}y = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivative

How to determine the order of derivation: last computation is the first thing to do.

General Formula.

$$D x^{n} = nx^{n-1}$$

$$D (uv) = D u \cdot v + u \cdot D v$$

$$D \left(\frac{u}{v}\right) = \frac{D u \cdot v - u \cdot D v}{v^{2}}$$

Trigonometry Formula.

D
$$\sin x = \cos x$$

D $\cos x = -\sin x$
D $\tan x = \sec^2 x$
D $\cot x = -\csc^2 x$
D $\sec x = \sec x \tan x$
D $\csc x = -\cot x \csc x$

Neat Mnemonics.

Exponential and Logarithmic Functions.

$$D \ln x = \frac{1}{x}$$

$$D a^n = a^n \ln x$$

$$D \log_a b = \frac{1}{b \ln a}$$

Minima and Maxima test. First derivative test:

- Determine critical points (Dy = 0), then divine into region;
- Pick value from each region and plug into derivative;
- Do the sign-graph.
- Determine local minima and maxima, the plug into original function

Second derivative test:

- determine critical points;
- plug critical into second derivative; and
- positive D^2y means concave up (\smile), negative means concave down (\frown), and 0 means inconclusive.

Differentiation under integral sign. Differentiation under integral sign stated by Leibniz' rule

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(x,t) dt = \int_{u}^{v} \frac{\partial f}{\partial x} dt + f(x,v) \frac{dv}{dx} - f(x,u) \frac{du}{dx}$$

Proof. Suppose we want dI/dx where

$$I = \int_{u}^{v} f(t) \ dt$$

By the fundamental theorem of calculus

$$I = F(v) - F(u) = \mathcal{F}(v, u)$$

or I is a function of v and u. Finding dI/dx is then a partial differentiation problem. We can write

$$\frac{dI}{dx} = \frac{\partial I}{\partial v}\frac{dv}{dx} + \frac{\partial I}{\partial u}\frac{du}{dx}$$

By the fundamental theorem of calculus, we have

$$\frac{d}{dv} \int_{a}^{v} f(x) dt = \frac{d}{dv} [F(v) - F(a)] = f(v)$$

$$\frac{d}{dv} \int_{u}^{b} f(x) dt = \frac{d}{dv} [F(b) - F(u)] = -f(u)$$

where u and v are a function of x, while a and b are a constant. This is the case when we consider $\partial I/\partial v$ or $\partial I/\partial v$; the other variable is constant. Then

$$\frac{d}{dx} \int_{u}^{v} f(t) dt = f(v) \frac{dv}{dx} - f(u) \frac{du}{dx}$$

Under not too restrictive conditions,

$$\frac{d}{dx} \int_{a}^{b} f(x,t) dt = \int_{a}^{b} \frac{\partial f(x,t)}{\partial x} dt$$

where, as before, a and b are constant. In other words, we can differentiate under the integral sign. It is convenient to collect these formulas into one formula known as Leibniz' rule:

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(x,t) dt = \int_{u}^{v} \frac{\partial f}{\partial x} dt + f(x,v) \frac{dv}{dx} - f(x,u) \frac{du}{dx} \quad \blacksquare$$

Leibniz' rule for differentiating a product.

$$\left(\frac{d}{dx}\right)^n fg = \sum_{k=0}^n \binom{n}{k} \left(\frac{d}{dx}\right)^{n-k} f\left(\frac{d}{dx}\right)^k g$$

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Integral

Basic Formula (integration constant omitted).

$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$

$$\int \frac{1}{x} dx = \ln|x|$$

$$\int u dv = uv - \int v du$$

$$\int a^x dx = \frac{a^x}{\ln a}$$

Trigonometry.

$$\int \sin x \, dx = -\cos x$$

$$\int \cos x \, dx = \sin x$$

$$\int \sec^2 x \, dx = \tan x$$

$$\int \csc^2 x \, dx = -\cot x$$

$$\int \sec x \tan x \, dx = \sec x$$

$$\int \csc x \tan x \, dx = -\csc x$$

Root.

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a}$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln x + \sqrt{x^2 \pm a^2}$$

$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \frac{1}{a} \arctan \frac{x}{a}$$

Integration by part.

- 1. Splits the integrand. Choose *u* using LIATEN and let the rest be dv. (LIATEN: Log, Inverse trigonometry, Algebra, Trigonometry, ExponeN)
- 2. Do the box: $\begin{array}{c|cccc} u & v & \downarrow \text{ diff.} \\ \hline du & dv & \uparrow \text{ int.} \end{array}$
- 3. $\int u \, dv = uv \int v \, du$

Tabular Method. Refer to the table

	D	I
+	$a \searrow$	b
-	$a' \searrow$	b
+	$a'' \searrow$	b
:	:	:

- 1. 0 in D collumn or use LIATEN
- 2. integrate a row
- 3. a row repeats

Trigonometry Integral. Phytagorian Identity.

$$\sin^2 x + \cos^2 x = 1$$
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

note that argument inside quadratic trigonometry is half of trigonometry, which means $\cos^2 2x = (1 + \cos 4x)/2$. There are few cases of tricky trigonometry integral. First, if power of sin is odd and positive.

- lop one power off
- convert remaining (even power) using Phytagorian Identity in term of cosine
- integrate using subs method

If the power of sine is odd and positive.

• same as before

If the power of sine and cosine is even and nonegative, then:

• convert using Phytagorian Identity and solve

Trigonometry substitution. Trigonometry function and its radical pair

$$\tan \theta = \sqrt{u^2 + a^2}$$
$$\sin \theta = \sqrt{a^2 - u^2}$$
$$\sec \theta = \sqrt{u^2 - a^2}$$

where u is the variable we are differentiating with respect to. Mnemonics: + looks like tangent; - for sin and sec; and it is a sin. Trigonometry substitution step is then.

- 1. Draw a right triangle where trigonometry pair equal $\frac{u}{a}$
- 2. using the trigonometry pair equation*, solve for x and dx
- 3. find trigonometry where $\frac{\sqrt{}}{a}$
- 4. subs again if equation* still contain θ and solve

Partial Fraction.

- 1. Factor out denominator
- Breakup the function and put unknown (Capital Letter) into numerator. Put numerator normally if factor is linear, put Px+Q Irreducible quadratic factor IQF. In general,

$$\frac{Ax^{n-1} + Bx^{n-2} + \cdots}{x^n + x^{n-1} + \cdots}$$

- 3. Multiply both side by left side's denominator
- 4. Take the roots of the linear factors and plug them into x, and solve for the unknowns
- 5. Put unknowns into step 2
- 6. Splits Integral, then solve
- 7. For equating coefficients like terms, after step 3, expand equation*. Then, collect like terms and equate coefficient of like terms from both side

Appendix

Integration Technique Example. 1. Trigonometry substitution. Find $\int \frac{dx}{\sqrt{9x^2+4}}$. Refer to the Mnemonics, the trigonometry pair is tangent.

$$I = \int \frac{dx}{\sqrt{(3x)^2 + 2^2}}$$

$$\tan \theta = \frac{3x}{2}$$

solving for x and dx

$$x = \frac{2}{3} \tan \theta$$
$$dx = \frac{2}{3} \sec^2 \theta \ d\theta$$

trigonometry where $\frac{\sqrt{}}{a}$ holds is secant, solving for radical

$$\sec \theta = \frac{\sqrt{9x^2 + 4}}{2}$$

$$\sqrt{9x^2 + 4} = 2\sec \theta$$

the integral is then

$$I = \frac{1}{3} \int \sec \theta \ d\theta$$
$$= \frac{1}{3} \ln|\sec \theta + \tan \theta| + C$$

substituting the θ function

$$I = \frac{1}{3} \ln \left| \frac{\sqrt{9x^2 + 4}}{2} + \frac{3x}{2} \right| + C$$
$$= \frac{1}{3} \ln \left| \sqrt{9x^2 + 4} + 3 \right| + C$$

Basic.

$$\int \frac{1}{x} dx = \ln|x|$$

$$\int u dv = uv - \int v du$$

$$\int u dv = uv - \int v du$$

$$\int \frac{1}{ax + b} dx = \frac{1}{a} \ln|ax + b|$$

Integrals of Rational Functions.

$$\int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$$

$$\int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n \neq -1$$

$$\int x(x+a)^n dx = \frac{(x+a)^{n+1}((n+1)x-a)}{(n+1)(n+2)}$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x$$

$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

$$\int \frac{x}{a^2+x^2} dx = \frac{1}{2} \ln|a^2+x^2|$$

$$\int \frac{x^2}{a^2+x^2} dx = x - a \tan^{-1} \frac{x}{a}$$

$$\int \frac{x^3}{a^2+x^2} dx = \frac{1}{2}x^2 - \frac{1}{2}a^2 \ln|a^2+x^2|$$

$$\int \frac{1}{ax^2+bx+c} dx = \frac{2}{\sqrt{4ac-b^2}} \tan^{-1} \frac{2ax+b}{\sqrt{4ac-b^2}}$$

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, \quad a \neq b$$

$$\int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln|a+x|$$

$$\int \frac{x}{ax^2+bx+c} dx = \frac{1}{2a} \ln|ax^2+bx+c| - \frac{b}{a\sqrt{4ac-b^2}} \tan^{-1} \frac{2ax+b}{\sqrt{4ac-b^2}}$$

Integrals with Roots.

$$\int \sqrt{x-a} \, dx = \frac{2}{3}(x-a)^{3/2}$$

$$\int \frac{1}{\sqrt{x\pm a}} \, dx = 2\sqrt{x\pm a}$$

$$\int \frac{1}{\sqrt{a-x}} \, dx = -2\sqrt{a-x}$$

$$\int x\sqrt{x-a} \, dx = \begin{cases} \frac{2a}{3}(x-a)^{3/2} + \frac{2}{5}(x-a)^{5/2}, \text{ or } \\ \frac{2}{3}x(x-a)^{3/2} - \frac{4}{15}(x-a)^{5/2}, \text{ or } \\ \frac{2}{3}x(x-a)^{3/2} - \frac{4}{15}(x-a)^{5/2}, \text{ or } \end{cases}$$

$$\int \sqrt{ax+b} \, dx = \begin{cases} \frac{2b}{3a} + \frac{2x}{3} \end{pmatrix} \sqrt{ax+b}$$

$$\int (ax+b)^{3/2} \, dx = \frac{2}{5a}(ax+b)^{5/2}$$

$$\int \frac{x}{\sqrt{x\pm a}} \, dx = \frac{2}{3}(x\mp 2a)\sqrt{x\pm a}$$

$$\int \sqrt{\frac{x}{a-x}} \, dx = -\sqrt{x(a-x)} - a\tan^{-1}\frac{\sqrt{x(a-x)}}{x-a}$$

$$\int \sqrt{\frac{x}{a+x}} \, dx = \sqrt{x(a+x)} - a\ln[\sqrt{x} + \sqrt{x+a}]$$

$$\int x\sqrt{ax+b} \, dx = \frac{2}{15a^2}(-2b^2 + abx + 3a^2x^2)\sqrt{ax+b}$$

$$\int \sqrt{x^3(ax+b)} \, dx = \left[\frac{b}{12a} - \frac{b^2}{8a^2x} + \frac{x}{3}\right]\sqrt{x^3(ax+b)}$$

$$+ \frac{b^3}{8a^{5/2}} \ln\left|a\sqrt{x} + \sqrt{a(ax+b)}\right|$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2}a^2\tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \, dx = \ln\left|x + \sqrt{x^2 \pm a^2}\right|$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1}\frac{x}{a}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} \, dx = \sqrt{x^2 \pm a^2}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} \, dx = -\sqrt{a^2 - x^2}$$

$$\int \frac{x^2}{\sqrt{x^2 \pm a^2}} \, dx = -\sqrt{a^2 - x^2}$$

$$\int \frac{x^2}{\sqrt{x^2 \pm a^2}} \, dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} \mp \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right|$$

$$\int \frac{1}{\sqrt{ax^2 + bx + c}} \, dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} \mp \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right|$$

$$\int \frac{dx}{\sqrt{a^2 + bx + c}} \, dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right|$$

$$\int \frac{dx}{\sqrt{a^2 + bx + c}} \, dx = \frac{1}{2}x\sqrt{a^2 + x^2}$$

$$\int \frac{dx}{\sqrt{a^2 + bx + c}} \, dx = \frac{1}{2}x\sqrt{a^2 + x^2}$$

$$\int \frac{dx}{\sqrt{a^2 + bx + c}} \, dx = \frac{1}{2}x\sqrt{a^2 + x^2}$$

Integrals with Logarithms.

$$\int \ln ax \, dx = x \ln(ax) - x$$

$$\int \frac{\ln ax}{x} \, dx = \frac{1}{2} (\ln ax)^2$$

$$\int \ln(ax+b) dx = (x+\frac{b}{a}) \ln(ax+b) - x, \quad a \neq 0$$

$$\int \ln(x^2 + a^2) \, dx = x \ln(x^2 + a^2) + 2a \tan^{-1} \frac{x}{a} - 2x$$

$$\int \ln(x^2 - a^2) \, dx = x \ln(x^2 - a^2) + a \ln \frac{x+a}{x-a} - 2x$$

$$\int \ln(x^2 - a^2) \, dx = x \ln(x^2 - a^2) + a \ln \frac{x+a}{x-a} - 2x$$

$$\int \ln(ax^2 + bx + c) dx = \frac{1}{a} \sqrt{4ac - b^2} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}} - 2x$$

$$+ (\frac{b}{2a} + x) \ln (ax^2 + bx + c)$$

$$\int x \ln(ax+b) dx = \frac{bx}{2a} - \frac{1}{4}x^2 + \frac{1}{2}(x^2 - \frac{b^2}{a^2}) \ln(ax+b)$$

$$\frac{1}{2}(x^2 - \frac{a^2}{b^2}) \ln(a^2 - b^2x^2)$$

$$\int x \ln(a^2 - b^2x^2) dx = -\frac{1}{2}x^2 + \frac{1}{2}x^2 +$$

Integrals with Exponential.

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \sqrt{x} e^{ax} dx = \frac{1}{a} \sqrt{x} e^{ax} + \frac{i\sqrt{\pi}}{2a^{3/2}} \operatorname{erf} \left(i\sqrt{ax} \right)$$

$$\int x e^{x} dx = (x-1)e^{x}$$

$$\int x e^{ax} dx = \left(\frac{x}{a} - \frac{1}{a^{2}} \right) e^{ax}$$

$$\int x^{2} e^{x} dx = \left(x^{2} - 2x + 2 \right) e^{x}$$

$$\int x^{2} e^{ax} dx = \left(\frac{x^{2}}{a} - \frac{2x}{a^{2}} + \frac{2}{a^{3}} \right) e^{ax}$$

$$\int x^{3} e^{x} dx = \left(x^{3} - 3x^{2} + 6x - 6 \right) e^{x}$$

$$\int x^{n} e^{ax} dx = \frac{x^{n} e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

$$\int x^n e^{ax} \, dx = \frac{(-1)^n}{a^{n+1}} \Gamma[1+n, -ax],$$
where $\Gamma(a, x) = \int_x^\infty t^{a-1} e^{-t} \, dt$

$$\int e^{ax^2} \, dx = -\frac{i\sqrt{\pi}}{2\sqrt{a}} \operatorname{erf}\left(ix\sqrt{a}\right)$$

$$\int e^{-ax^2} \, dx = \frac{\sqrt{\pi}}{2\sqrt{a}} \operatorname{erf}\left(x\sqrt{a}\right)$$

$$\int x e^{-ax^2} \, dx = -\frac{1}{2a} e^{-ax^2}$$

$$\int x^2 e^{-ax^2} \, dx = \frac{1}{4} \sqrt{\frac{\pi}{a^3}} \operatorname{erf}(x\sqrt{a}) - \frac{x}{2a} e^{-ax^2}$$

Integrals with Trigonometry Functions.

$$\int \sin ax dx = -\frac{1}{a} \cos ax$$
$$\int \sin^2 ax dx = \frac{x}{2} - \frac{\sin 2ax}{4a}$$

$$\int \sin^n ax dx =$$

$$-\frac{1}{a}\cos ax \, _2F_1\left[\frac{1}{2}, \frac{1-n}{2}, \frac{3}{2}, \cos^2 ax\right]$$

$$\int \sin^3 ax dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a}$$

$$\int \cos ax dx = \frac{1}{a}\sin ax$$

$$\int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$$

$$\int \cos^p ax dx = -\frac{1}{a(1+p)} \cos^{1+p} ax \times$$

$${}_2F_1 \left[\frac{1+p}{2}, \frac{1}{2}, \frac{3+p}{2}, \cos^2 ax \right]$$

$$\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}$$

$$\int \cos ax \sin bx dx = \frac{\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}, a \neq b$$

$$\int \sin^2 ax \cos bx dx = -\frac{\sin[(2a-b)x]}{4(2a-b)}$$

$$+\frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}$$

$$\int \sin^2 x \cos x dx = \frac{1}{3}\sin^3 x$$

$$\int \cos^2 ax \sin bx dx = \frac{\cos[(2a-b)x]}{4(2a-b)} - \frac{\cos bx}{2b}$$

$$-\frac{\cos[(2a+b)x]}{4(2a+b)}$$

$$\int \cos^2 ax \sin ax dx = -\frac{1}{3a}\cos^3 ax$$

$$\int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin 2ax}{8a} - \frac{\sin[2(a-b)x]}{16(a-b)}$$

$$+\frac{\sin 2bx}{8b} - \frac{\sin[2(a+b)x]}{16(a+b)}$$

$$\int \sin^2 ax \cos^2 ax dx = \frac{x}{8} - \frac{\sin 4ax}{32a}$$

$$\int \tan ax dx = -\frac{1}{a}\ln \cos ax$$

$$\int \tan^2 ax dx = -x + \frac{1}{a}\tan ax$$

$$\int \tan^2 ax dx = -x + \frac{1}{a}\tan ax$$

$$\int \tan^3 ax dx = \frac{1}{a}\ln \cos ax + \frac{1}{2a}\sec^2 ax$$

$$\int \sec^2 ax dx = \frac{1}{a}\tan ax$$

$$\int \sec^2 ax dx = \frac{1}{a}\tan ax$$

$$\int \sec^3 x dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x|$$

$$\int \sec^3 x dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x|$$

$$\int \sec^3 x dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x|$$

$$\int \sec^3 x dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x|$$

$$\int \sec^3 x dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x|$$

$$\int \sec^3 x dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x|$$

$$\int \sec^3 x dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x|$$

$$\int \sec^2 x \tan x dx = \frac{1}{2} \sec^2 x$$

$$\int \sec^n x \tan x dx = \frac{1}{n} \sec^n x, n \neq 0$$

$$\int \csc x dx = \ln \left| \tan \frac{x}{2} \right| = \ln |\csc x - \cot x| + C$$

$$\int \csc^2 ax dx = -\frac{1}{a} \cot ax$$

$$\int \csc^3 x dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln |\csc x - \cot x|$$

$$\int \csc^n x \cot x dx = -\frac{1}{n} \csc^n x, n \neq 0$$

$$\int \sec x \csc x dx = \ln |\tan x|$$

Products of Trigonometry Functions and Monomials.

$$\int x \cos x dx = \cos x + x \sin x$$

$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\int x^2 \cos x dx = 2x \cos x + (x^2 - 2) \sin x$$

$$\int x^2 \cos ax dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$$

$$\int x^n \cos x dx = -\frac{1}{2} (i)^{n+1} \left[\Gamma(n+1, -ix) + (-1)^n \Gamma(n+1, ix) \right]$$

$$\int x^n \cos x dx = \frac{1}{2} (ia)^{1-n} \left[(-1)^n \Gamma(n+1, -iax) - \Gamma(n+1, ixa) \right]$$

$$\int x \sin x dx = -x \cos x + \sin x$$

$$\int x \sin x dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$$

$$\int x^2 \sin x dx = (2 - x^2) \cos x + 2x \sin x$$

$$\int x^2 \sin ax dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}$$

$$\int x^n \sin x dx = -\frac{1}{2} (i)^n \left[\Gamma(n+1, -ix) - (-1)^n \Gamma(n+1, -ix) \right]$$

Products of Trigonometry Functions and Exponential.

$$\int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x)$$

$$\int e^{bx} \sin ax dx = \frac{1}{a^2 + b^2} e^{bx} (b \sin ax - a \cos ax)$$

$$\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x)$$

$$\int e^{bx} \cos ax dx = \frac{1}{a^2 + b^2} e^{bx} (a \sin ax + b \cos ax)$$

$$\int x e^x \sin x dx = \frac{1}{2} e^x (\cos x - x \cos x + x \sin x)$$

$$\int x e^x \cos x dx = \frac{1}{2} e^x (x \cos x - x \sin x + x \sin x)$$

Integrals of Hyperbolic Functions.

$$\int \cosh ax dx = \frac{1}{a} \sinh ax$$

$$\int e^{ax} \cosh bx dx =$$

$$\begin{cases} \frac{e^{ax}}{a^2 - b^2} [a \cosh bx - b \sinh bx] & a \neq b \\ \frac{e^{2ax}}{4a} + \frac{x}{2} & a = b \end{cases}$$

$$\int \sinh ax dx = \frac{1}{a} \cosh ax$$

$$\int e^{ax} \sinh bx dx =$$

$$\begin{cases} \frac{e^{ax}}{a^2 - b^2} [-b \cosh bx + a \sinh bx] & a \neq b \\ \frac{e^{2ax}}{4a} - \frac{x}{2} & a = b \end{cases}$$

$$\int e^{ax} \tanh bx dx = \begin{cases} \frac{e^{(a+2b)x}}{(a+2b)^2} {}_2F_1 \left[1 + \frac{a}{2b}, 1, 2 + \frac{a}{2b}, -e^{2bx} \right] \\ -\frac{1}{a} e^{ax} {}_2F_1 \left[\frac{a}{2b}, 1, 1E, -e^{2bx} \right] & a \neq b \\ \frac{e^{ax} - 2\tan^{-1}[e^{ax}]}{a} & a = b \end{cases}$$

$$\int \tanh ax \, dx = \frac{1}{a} \ln \cosh ax$$

$$\int \cos ax \cosh bx dx = \frac{1}{a^2 + b^2} \left[a \sin ax \cosh bx + b \cos ax \sinh bx \right]$$

$$\int \cos ax \sinh bx dx = \frac{1}{a^2 + b^2} \left[b \cos ax \cosh bx + a \sin ax \sinh bx \right]$$

$$\int \sin ax \cosh bx dx = \frac{1}{a^2 + b^2} \left[-a \cos ax \cosh bx + b \sin ax \sinh bx \right]$$

$$\int \sin ax \sinh bx dx = \frac{1}{a^2 + b^2} \left[b \cosh bx \sin ax - a \cos ax \sinh bx \right]$$

$$\int \sinh ax \cosh ax dx = \frac{1}{4a} \left[-2ax + \sinh 2ax \right]$$

$$\int \sinh ax \cosh bx dx = \frac{1}{b^2 - a^2} \left[b \cosh bx \sinh ax - a \cosh ax \sinh bx \right]$$