

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of

Applicant(s) : Phelps, et al.
Serial No. : 10/625,915
Filed : July 23, 2003
Title : NON-TOXIC CORROSION-PROTECTION CONVERSION
COATS BASED ON RARE EARTH ELEMENTS
Docket No. : UVD 0280 IA / UD 268
Examiner : L. Zheng
Art Unit : 1742

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

DECLARATION OF JEFFREY A. STURGILL

Jeffrey A. Sturgill, one of the applicants in the above-identified patent application, declares as follows:

1. I received a B.S degree in Geology from the University of Toledo in 1986. I was employed by the University of Dayton from November 1993 until September 2006. I have been working the area of corrosion-inhibiting pigments since 1996, and in the area of corrosion/materials degradation since 1985.
2. I am familiar with this application as well as the Office Action mailed September 10, 2007, including the rejections made by the Examiner therein. I am also familiar with the references cited by the Examiner in that Office Action including U.S. Patent No. 6,200,672 to Tadokoro (treated as equivalent to WO 98/48075).
3. I previously prepared solutions using Tadokoro's process and the organic compounds 2-hydroxynicotinic acid, catechol, dextrose (as a surrogate for γ -cyclodextrin) and salicylic acid (slightly less soluble than 2-hydroxynicotinic acid) using

Serial No. 10/625,915
Docket UVD 0280 IA

the procedure set out in Tadokoro. See Declaration of Jeffrey A. Sturgill filed with the Amendment of June 26, 2007.

4. The solubility of the dextrose-containing solution was not determined because it was too high as discussed in the Declaration of Jeffrey A. Sturgill filed with the Amendment of June 26, 2007.

5. The catechol/ammonium cerium IV nitrate reaction was repeated because there was not enough product (which was almost entirely pure carbon) from the earlier reaction on which to perform the solubility test. The reaction was carried out in the same way as described in Declaration of Jeffrey A. Sturgill filed with the Amendment of June 26, 2007.

6. The solid reaction products prepared in accordance with Tadokoro were evaluated for their solubility characteristics. The three solid reaction products evaluated included: 1) salicylic acid/ammonium cerium IV nitrate; 2) catechol/ammonium cerium IV nitrate; and 3) 2-hydroxynicotinic acid/ammonium cerium IV nitrate.

The samples were prepared for solubility determination in a manner similar to that described in ASTM D-2448: Water-Soluble Salts in Pigments by Measuring the Specific Resistance of the Leachate of the Pigment. This specification describes weighing a mass of the pigment, and then contacting the mass of powdered pigment with nine times the mass of deionized water. In the specification, the specific resistance of the 'extracting' deionized water sample placed in contact with the pigment is then determined, in order to measure how many ions were placed into the water from the pigment. This allows for a determination of the Total Salts being solubilized by the water - in effect, measuring the total solubility of the pigment in water. For this effort, that information is only part of what is needed. A measure of the cerium being extracted from the pigment/resultant solid was needed. Therefore, the extracting water sample was analyzed by inductively coupled plasma (ICP) spectroscopy in order to derive the quantity of soluble cerium in each sample.

Serial No. 10/625,915
Docket UVD 0280 IA

The ICP results for each sample are attached. Specifically, Sample 1 (reaction product of ammonium cerium IV nitrate and salicylic acid (Exhibit 1)) indicates a quantity of extracted cerium corresponding to an average of 1071 ppm (0.1 wt. %). Sample 2 (reaction product of ammonium cerium IV nitrate and catechol (Exhibit 2)) indicates a quantity of extracted cerium corresponding to an average of 6.5 ppm (0.0001 wt.%). Lastly, Sample 3 (reaction product of ammonium cerium IV nitrate and 2-hydroxynicotinic acid (Exhibit 3)) indicates a quantity of extracted cerium corresponding to an average of 81610 ppm (8.16 wt. %). As can be seen from the ICP data, smaller concentrations of other elements were detected.

Based upon a molecular weight for cerium of 140.1, these extracted concentrations correspond to cerium solubilities of:

Sample 1: 7.1×10^{-3} moles/liter

Sample 2: 4.3×10^{-5} moles/liter

Sample 3: 5.8×10^{-1} moles/liter

Tadokoro reported the solubility for the catechol and 2-hydroxynicotinic acid complexes as 0.01 mol/l or less.

7. The cerium content of the catechol/ammonium cerium IV nitrate reaction product is extremely low (0.0001 wt.%). The measured cerium content is probably some residual, reduced starting material. The reaction product was previously tested to be almost pure carbon. See Declaration of Jeffrey A. Sturgill filed with the Amendment of June 26, 2007.

8. The portion of the extract for all three solid materials that was not used for ICP analysis was then subjected to redox determination. This analysis was previously described in Paragraph 12 of the Declaration of Jeffrey A. Sturgill filed with the Amendment of June 26, 2007, but without the digestion procedure described because the extract was already in liquid form. Specifically, the titration was the procedure described on page 246 of Reagent Chemicals - Specifications and Procedures 10th by the ACS

Serial No. 10/625,915
Docket UVD 0280 LA

Committee on Analytical Reagents, 2006. The 9:1 water/solid extract described above was titrated with a 0.1 N ferrous sulfate solution in the presence of a redox probe in order to determine if the cerium present was trivalent or tetravalent. These titration curves for Samples 1 through 3 indicate no change in oxidation state of the cerium in the presence of the ferrous reducing agent. See Exhibits 4-6. Therefore, there is no cerium (IV) present.

9. Tadokoro does not describe having performed any procedure to determine the valence of the rare earth metal in the complex formed by the process described there.

10. The process described in Tadokoro is non-enabling for making a tetravalent cerium complex, and it would take undue experimentation to produce a tetravalent cerium complex using Tadokoro's process.

The declarant further states that the above statements were made with the knowledge that willful false statements and the like are punishable by fine and/or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of this application or any patent resulting therefrom.

Date: 1-9-07

Jeffrey A. Sturgill

Mo 204.598	-0.009045uv	ppm	0.000693	7.7	4.35845	-10.0501 ppm	Sc 361.383
Mo 284.824	-0.0066621uv	ppm	0.000159	2.4	13.4147	-7.35614 ppm	Sc 361.383
Na 588.995	0.065301	ppm	0.000883	1.4	32000.6	72.5569 ppm	Sc 361.383
Na 589.592	0.068574	ppm	0.001794	2.6	21387.2	76.1929 ppm	Sc 361.383
Ni 216.555	-0.000028uv	ppm	0.001088	3952.8	4.18897	-0.030591 ppm	Sc 361.383
Ni 221.648	-0.000454uv	ppm	0.000185	40.8	1.05926	-0.504612 ppm	Sc 361.383
Ni 230.299	-0.0000807uv	ppm	0.000677	83.8	2.98203	-0.896929 ppm	Sc 361.383
Ni 231.604	-0.0000821uv	ppm	0.0000828	100.8	2.71141	-0.912458 ppm	Sc 361.383
P 177.434	0.010203	ppm	0.004561	44.7	1.32313	11.3369 ppm	Sc 361.383
P 213.618	0.007218	ppm	0.003880	53.7	4.67412	8.02004 ppm	Sc 361.383
P 214.914	0.018367	ppm	0.015168	82.6	2.09358	20.4078 ppm	Sc 361.383
Pb 182.143	-0.0055339uv	ppm	0.001670	30.2	0.796063	-6.15406 ppm	Sc 361.383
Pb 220.353	0.002398	ppm	0.001836	76.6	4.70826	2.66451 ppm	Sc 361.383
Pb 283.305	-0.009214uv	ppm	0.006788	73.7	35.5778	-10.2383 ppm	Sc 361.383
Pd 229.651	-0.007789uv	ppm	0.001310	16.8	2.22612	-8.65464 ppm	Sc 361.383
Pd 340.458	0.001531	ppm	0.000571	37.3	28.8556	1.70126 ppm	Sc 361.383
Pd 360.955	0.034819	ppm	0.003645	10.5	81.8946	38.6880 ppm	Sc 361.383
Pt 177.648	-0.000866uv	ppm	0.003857	445.4	0.999247	-0.962212 ppm	Sc 361.383
Pt 203.646	-0.004993uv	ppm	0.001701	34.1	1.21320	-5.54749 ppm	Sc 361.383
Pt 214.424	0.003517	ppm	0.003177	90.3	3.14338	3.90755 ppm	Sc 361.383
S 180.669	0.064413	ppm	0.021959	34.1	13.2490	71.5701 ppm	Sc 361.383
S 181.972	0.062306	ppm	0.014581	23.4	16.5345	69.2291 ppm	Sc 361.383
Sb 206.834	0.011364	ppm	0.003626	31.9	4.06128	12.6263 ppm	Sc 361.383
Sb 217.582	0.009036uv	ppm	0.008235	91.1	2.82953	10.0399 ppm	Sc 361.383
Sb 231.146	-0.000866uv	ppm	0.004832	558.0	2.89582	-0.962148 ppm	Sc 361.383
Si 250.690	0.036433	ppm	0.003621	9.9	54.5725	40.4816 ppm	Sc 361.383
Si 251.611	0.034397	ppm	0.001823	5.3	59.8793	38.2186 ppm	Sc 361.383
Si 288.158	0.034174	ppm	0.003222	9.4	168.691	37.9706 ppm	Sc 361.383
Sn 189.927	0.005784	ppm	0.001762	30.5	1.21575	6.42681 ppm	Sc 361.383
Sn 235.485	0.045012	ppm	0.002181	4.8	8.94595	50.0137 ppm	Sc 361.383
Sn 283.998	-0.008765uv	ppm	0.003098	35.4	4.54500	-9.73896 ppm	Sc 361.383
Sr 216.596	-0.001224uv	ppm	0.000324	26.4	1.35800	-1.36049 ppm	Sc 361.383
Sr 407.771	-0.001985uv	ppm	0.000012	0.6	685.267	-2.20515 ppm	Sc 361.383
Sr 421.552	-0.001787uv	ppm	0.000021	1.2	272.883	-1.98540 ppm	Sc 361.383
Ti 334.941	-0.000149uv	ppm	0.000151	101.5	31.3931	-0.165063 ppm	Sc 361.383
Ti 336.122	0.001316uv	ppm	0.002502	190.1	4520.28	1.46217 ppm	Sc 361.383
Ti 337.280	0.001496	ppm	0.000735	49.1	17.3186	1.66205 ppm	Sc 361.383
W 207.912	0.054019	ppm	0.015929	29.5	23.5577	60.0210 ppm	Sc 361.383
W 209.475	0.052646	ppm	0.019152	36.4	13.0925	58.4957 ppm	Sc 361.383
W 220.449	0.048642	ppm	0.017152	35.3	20.2975	54.0467 ppm	Sc 361.383
Zn 202.548	0.007622	ppm	0.000170	2.2	37.8257	8.46934 ppm	Sc 361.383
Zn 206.200	0.007490	ppm	0.000269	3.6	8.48171	8.32232 ppm	Sc 361.383
Zn 213.857	0.008242	ppm	0.000666	0.8	68.0610	9.15741 ppm	Sc 361.383
Zr 339.198	0.005855	ppm	0.000266	4.5	25.7583	6.50603 ppm	Sc 361.383
Zr 343.823	0.003817	ppm	0.000301	7.9	103.963	4.24128 ppm	Sc 361.383
Zr 349.619	0.000055	ppm	0.000055	17.8	104.760	2.05259 ppm	Sc 361.383

74

70

39

q

12/10/2007, 11:42:46 AM

Volume: 100

2-JS (Sampl)

Weight: 0.41

Dilution: 1

Label Sol'n Conc. Units

			SD	%RSD	Int. (e.s.)	Chg Conc.	IS
Ag 328.068	0.000921	ppm	0.000342	37.1	27.6180	0.224527 ppm	Sc 361.383
Ag 338.289	0.000770	ppm	0.000709	92.0	10.0808	0.187917 ppm	Sc 361.383
Al 237.312	-0.005150uv	ppm	0.000857	16.6	4.82992	-1.25602 ppm	Sc 361.383
Al 308.215	-0.003225uv	ppm	0.001049	32.5	150.888	-0.786600 ppm	Sc 361.383
Al 394.401	-0.000027uv	ppm	0.001810	6777.7	51.2799	-0.006514 ppm	Sc 361.383
Al 396.152	-0.003059uv	ppm	0.000522	17.1	99.9389	-0.746116 ppm	Sc 361.383
As 188.980	0.000905uv	ppm	0.002296	253.8	2.66204	0.220666 ppm	Sc 361.383
As 193.696	-0.004375uv	ppm	0.005054	115.5	1.02442	-1.06697 ppm	Sc 361.383
As 234.984	0.044855	ppm	0.016260	36.3	13.5156	10.9402 ppm	Sc 361.383
B 208.956	0.006648	ppm	0.003521	53.0	2.56871	1.62147 ppm	Sc 361.383
B 249.678	0.000995	ppm	0.001059	106.4	17.2001	0.242691 ppm	Sc 361.383
B 249.772	0.001897	ppm	0.000290	15.3	34.4731	0.462796 ppm	Sc 361.383
Ba 233.527	-0.000304uv	ppm	0.000066	21.7	22.6355	-0.074025 ppm	Sc 361.383
Ba 455.403	-0.001143uv	ppm	0.000119	10.4	432.988	-0.278874 ppm	Sc 361.383
Ba 493.408	-0.001412uv	ppm	0.000144	10.2	390.893	-0.344377 ppm	Sc 361.383
Bi 222.821	0.000457uv	ppm	0.009684	2119.5	7.35762	0.111436 ppm	Sc 361.383
Bi 223.061	0.000458uv	ppm	0.002614	570.2	3.23831	0.111820 ppm	Sc 361.383
Ca 393.366	0.000515	ppm	0.000174	33.8	4915.07	0.125684 ppm	Sc 361.383
Ca 396.847	0.001181	ppm	0.000179	15.2	8706.88	0.287959 ppm	Sc 361.383
Cd 214.439	-0.000854uv	ppm	0.000012	1.4	6.63822	-0.208309 ppm	Sc 361.383
Cd 226.502	-0.000843uv	ppm	0.000073	8.7	8.75923	-0.205536 ppm	Sc 361.383
Cd 228.802	-0.000450uv	ppm	0.000258	57.4	20.3767	-0.109680 ppm	Sc 361.383
Ce 407.570	0.028106	ppm	0.006013	21.4	167.409	6.85508 ppm	Sc 361.383
Ce 418.659	0.028558	ppm	0.002843	10.0	202.971	6.96529 ppm	Sc 361.383
Ce 446.021	0.024801	ppm	0.004865	19.6	201.498	6.04908 ppm	Sc 361.383
Co 228.615	-0.001122uv	ppm	0.000555	49.4	2.47593	-0.273780 ppm	Sc 361.383
Co 230.786	-0.000807uv	ppm	0.000320	39.7	3.72916	-0.196925 ppm	Sc 361.383
Co 238.892	-0.000673uv	ppm	0.000127	18.9	0.998891	-0.164157 ppm	Sc 361.383
Cr 205.560	0.000038uv	ppm	0.000605	1581.1	1.99087	0.009330 ppm	Sc 361.383
Cr 206.158	0.000162uv	ppm	0.000416	257.6	1.00420	0.039405 ppm	Sc 361.383
Cr 267.716	-0.000467uv	ppm	0.000402	86.1	4.18367	-0.113925 ppm	Sc 361.383
Cu 213.598	-0.000435uv	ppm	0.000307	70.7	1.49936	-0.106003 ppm	Sc 361.383
Cu 324.754	-0.000315uv	ppm	0.000474	150.6	63.9295	-0.076865 ppm	Sc 361.383
Cu 327.395	0.001475	ppm	0.000217	14.7	79.5229	0.359812 ppm	Sc 361.383
Fe 234.350	0.002467	ppm	0.002363	95.8	17.8176	0.601635 ppm	Sc 361.383
Fe 238.204	0.001682uv	ppm	0.002823	167.8	35.7796	0.410321 ppm	Sc 361.383
Fe 259.940	0.001609uv	ppm	0.002762	171.7	28.3308	0.392394 ppm	Sc 361.383
Hg 184.887	0.000438	ppm	0.000562	128.3	0.840625	0.105763 ppm	Sc 361.383
Hg 194.164	-0.000255uv	ppm	0.000661	258.9	0.870229	-0.062259 ppm	Sc 361.383
Hg 253.652	-0.001110uv	ppm	0.000678	61.1	4.22157	-0.270665 ppm	Sc 361.383

AJJ -
6.5 ppm

EXHIBIT

2

ENGD-Sayenne, N.Y.

	V.VVVVVV/1	1069.82	0.218063 ppm
Mg 280.270	0.001281 ppm	8.1	278.805 0.312406 ppm
Mg 285.213	0.004079 ppm	3.7	92.2989 0.994881 ppm
Mn 257.610	-0.000871uv ppm	8.3	31.1805 -0.212542 ppm
Mn 259.372	-0.000884uv ppm	5.3	14.8646 -0.215504 ppm
Mn 294.921	-0.000801uv ppm	42.9	11.0347 -0.195303 ppm
Mo 202.032	-0.011445uv ppm	4.3	1.28701 -2.79136 ppm
Mo 204.598	-0.011286uv ppm	12.5	2.51284 -2.75278 ppm
Mo 284.824	-0.008988uv ppm	15.9	8.15486 -2.19231 ppm
Na 588.995	0.010173 ppm	4.2	7307.46 2.48128 ppm
Na 589.592	0.006590 ppm	14.3	7455.45 1.60727 ppm
Ni 216.555	-0.001096uv ppm	52.7	2.34818 -0.267273 ppm
Ni 221.648	0.000124uv ppm	500.5	1.60774 0.030217 ppm
Ni 230.299	-0.001060uv ppm	51.9	2.37029 -0.258550 ppm
Ni 231.604	-0.000371uv ppm	130.6	3.55646 -0.090607 ppm
P 177.434	0.002624uv ppm	0.007300	278.2 0.673041 0.639921 ppm
P 213.618	-0.000950uv ppm	536.6	2.62700 -0.231628 ppm
P 214.914	-0.011222uv ppm	68.9	0.413285 -2.73711 ppm
Pb 182.143	0.000736uv ppm	0.004558	619.2 1.20841 0.179515 ppm
Pb 220.353	-0.001255uv ppm	0.001991	158.6 1.92572 -0.306152 ppm
Pb 283.305	-0.003654uv ppm	0.006540	179.0 38.8122 -0.891193 ppm
Pd 229.651	-0.000613uv ppm	0.002017	329.2 5.89608 -0.149437 ppm
Pd 340.458	-0.000555uv ppm	0.000785	141.6 21.8310 -0.135257 ppm
Pd 360.955	0.000455uv ppm	0.001288	283.2 17.9166 0.110911 ppm
Pt 177.648	-0.000570uv ppm	0.007222	1077.7 1.01198 -0.163448 ppm
Pt 203.646	-0.005522uv ppm	0.002151	38.9 1.14187 -1.34690 ppm
Pt 214.424	0.002582uv ppm	0.002954	114.4 2.72013 0.629638 ppm
S 180.669	-0.122382uv ppm	0.001529	1.2 6.75390 -29.8492 ppm
S 181.972	-0.129521uv ppm	0.007033	5.4 7.76977 -31.5904 ppm
Sb 205.834	0.001390uv ppm	0.002638	189.8 1.84643 0.339003 ppm
Sb 217.582	0.001989uv ppm	0.003184	160.1 1.22716 0.485030 ppm
Sb 231.146	-0.011998uv ppm	0.000987	8.2 0.060165 -2.92630 ppm
Si 250.690	-0.001436uv ppm	0.002095	145.9 16.5388 -0.350310 ppm
Si 251.611	-0.001086uv ppm	0.000419	38.6 16.5727 -0.264974 ppm
Si 288.158	-0.001797uv ppm	0.001751	97.4 84.1267 -0.438288 ppm
Sn 189.927	0.001344uv ppm	0.001821	135.5 0.514479 0.327768 ppm
Sn 235.485	0.020424 ppm	0.013564	66.4 5.20477 4.98155 ppm
Sn 283.998	-0.004419uv ppm	0.003626	82.1 7.58312 -1.07773 ppm
Sr 216.596	-0.001041uv ppm	0.000405	38.9 1.92253 -0.253987 ppm
Sr 407.771	-0.002284uv ppm	0.00009	0.4 284.608 -0.557090 ppm
Sr 421.552	-0.002033uv ppm	0.000026	1.3 69.7692 -0.495967 ppm
Ti 334.941	-0.000544uv ppm	0.000104	19.2 9.31733 -0.1323565 ppm
Ti 336.122	-0.001479uv ppm	0.004443	300.3 4429.77 -0.360792 ppm
Ti 337.280	0.001327 ppm	0.000559	42.1 15.0662 0.323556 ppm
W 207.912	0.002611 ppm	0.000814	31.2 2.99455 0.636805 ppm
W 209.475	-0.001569uv nm	0.001641	46.0 1.76850 -0.870495 nm

Label		Ratio	Int. (c/s)	SD (Int.)	%RSD
Sc 335.372		1.00838	54551.8	692 988	1.3
Sc 361.383		1.01430	85910.1	1182.709	1.4
Sc 363.074		1.00295	20385.9	416.957	2.0
Sc 424.682		1.02635	65728.6	843.698	1.3

3-JS (Samp)

Weight: 0.1

Label

Solv Conc.

Units

SD

%RSD

Int (c/s)

Dilution: 1

Volume: 100

SD

%RSD

Int (c/s)

Calc Conc.

IS

Label	Ratio	Int. (c/s)	SD (Int.)	%RSD	
Sc 335.372	1.00838	54551.8	692.988	1.3	
Sc 361.383	1.01430	85910.1	1182.709	1.4	
Sc 363.074	1.00295	20385.9	416.957	2.0	
Sc 424.682	1.02635	65728.6	843.698	1.3	

12/10/2007, 11:50:38 AM

Tube 19

Label	Ratio	Int. (c/s)	SD (Int.)	%RSD		
Ag 328.068	0.026105	0.001287	4.9	358.221	26.1050 ppm Sc 361.383	
Ag 338.289	0.025171	0.000754	3.0	43.3597	25.1714 ppm Sc 361.383	
Al 237.312	0.028340	0.003601	12.7	26.4114	28.3397 ppm Sc 361.383	
Al 308.215	0.057203	0.000675	1.2	296.182	57.2029 ppm Sc 361.383	
Al 394.401	10.8704X	0.015898	0.1	53876.8	10870.4 ppm Sc 361.383	
Al 396.152	0.103606	0.014992	14.5	2096.74	103.606 ppm Sc 361.383	
As 188.980	-0.009494uv	0.005764	60.7	1.49754	-9.49421 ppm Sc 361.383	
As 193.696	-0.00741.6uv	0.004732	63.8	0.687385	-7.41614 ppm Sc 361.383	
As 234.984	0.210811	0.015360	7.3	35.5309	210.811 ppm Sc 361.383	
B 208.956	0.024253	0.003583	14.8	7.04414	24.2528 ppm Sc 361.383	
B 249.678	0.026916	0.000854	3.2	99.3344	26.9164 ppm Sc 361.383	
B 249.772	0.029638	0.000645	2.2	212.957	29.6380 ppm Sc 361.383	
Ba 233.527	-0.000854uv	0.000265	31.0	12.9036	-0.853843 ppm Sc 361.383	
Ba 455.403	-0.001370uv	0.000041	3.0	360.875	-1.37040 ppm Sc 361.383	
Ba 493.408	-0.000271uv	0.000091	33.5	756.516	-0.270828 ppm Sc 361.383	
Bi 222.821	-0.016004uv	0.005075	31.7	3.88297	-16.0039 ppm Sc 361.383	
Bi 223.061	0.003142	0.002084	66.3	4.92885	3.14230 ppm Sc 361.383	
Ca 393.366	0.143266	0.000575	0.4	83101.0	143.266 ppm Sc 361.383	
Ca 396.847	0.007374	0.000108	1.5	15119.3	7.37360 ppm Sc 361.383	
Cd 214.439	0.000144	0.000118	81.9	14.2006	0.144496 ppm Sc 361.383	
Cd 226.502	0.001022	0.000111	10.8	31.6891	1.02227 ppm Sc 361.383	
Cd 228.802	0.001714	0.000218	12.7	31.1482	1.71449 ppm Sc 361.383	
Ce 407.570	81.0450X	0.091846	0.1	285150	81045.0 ppm Sc 361.383	
Ce 418.659	80.8462X	0.458674	0.6	541450	80846.2 ppm Sc 361.383	
Ce 446.021	82.9391X	0.001210	0.627097	0.8	581908	82939.1 ppm Sc 361.383
Co 228.615	0.004663	0.0000693	57.3	9.54536	1.20973 ppm Sc 361.383	
Co 230.786	-0.000740uv	0.000056	4.1	23.5228	4.66253 ppm Sc 361.383	
Co 238.892	0.008068	0.000508	7.6	0.705078	-0.739554 ppm Sc 361.383	
Cr 205.560	0.007592	0.0000722	9.5	5.06906	8.06833 ppm Sc 361.383	
Cr 206.158	0.005238	0.000170	3.3	66.5452	5.23759 ppm Sc 361.383	
Cr 267.716	0.014996	0.0000718	4.8	29.4406	14.9956 ppm Sc 361.383	
Cu 213.598	-0.001975uv	0.000110	5.6	46.6102	-1.97452 ppm Sc 361.383	
Cu 324.754	-0.003474uv	0.0000945	27.2	24.5884	-3.47401 ppm Sc 361.383	

AJA 2
81610
PPP.
E X H I B I T3
PERGAM-Bayonne, N.J.

Zn 202.548	0.005466	ppm	0.000212	3.9	29.0883	5.46624 ppm	Sc 361.383
Zn 206.200	0.007312	ppm	0.000216	3.0	8.32183	7.31213 ppm	Sc 361.383
Zn 213.857	0.001973	ppm	0.000132	6.7	24.7303	1.97315 ppm	Sc 361.383
Zr 339.198	0.006596	ppm	0.000211	3.2	34.3309	6.59574 ppm	Sc 361.383
Zr 343.823	0.023079	ppm	0.000393	1.7	543.630	23.0793 ppm	Sc 361.383
Zr 349.619	0.043256	ppm	0.001119	2.6	1031.43	43.2557 ppm	Sc 361.383

Label	Ratio	Int. (c/s)	SD(Int.)	%RSD
Sc 335.372	0.970661	52511.3	133.442	0.3
Sc 361.383	1.09021	92339.8	316.612	0.3
Sc 363.074	0.921376	18727.9	92.365	0.5
Sc 424.682	1.51722	97163.9	234.586	0.2

REDOX TITRATION
OF 1:1 EXTRACT
OF $(\text{NH}_4)_2\text{C}_6(\text{WO}_3)_6$
SALICYLIC ACID
REDUCTION PRODUCT

Reactor Titration
or 9:1 LiXReact
of $(\text{NH}_4)_2\text{Ce}(\text{NO}_3)_6$ /
CATECHOL Reactant
Product

EXHIBIT

6

PENGAD-Bayonne, N.J.

REDOX TITRATION
OF 9:1 EXTRACT
OR $(\text{NH}_4)_2\text{Ce}(\text{NO}_3)_6$ /
NICOTINIC
ACID
2-HYDROXY-Nicotinic Acid
REACTION PRODUCT

