Lenguajes Formales y Computabilidad Teoremas: Combo 2

Nicolás Cagliero

June 27, 2025

Lema (Lema de división por casos para funciones Σ -p.r.). Supongamos f_i : $D_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to \Sigma^*, i = 1, ..., k$, son funciones Σ -p.r. tales que $D_{f_i} \cap D_{f_j} = \emptyset$ para $i \neq j$. Entonces $f_1 \cup ... \cup f_k$ es Σ -p.r.

(Hacer el caso k = 2, n = 2 y m = 1)

Proof. Supongamos k = 2. Sean

$$\bar{f}_i:\omega^2\times\Sigma^*\to\Sigma^*,\quad i=1,2,$$

funciones Σ -p.r. tales que $\bar{f}_i|_{D_{f_i}}=f_i,\,i=1,2$ (Lema 19). Por la Proposición 20 los conjuntos D_{f_1} y D_{f_2} son Σ -p.r. y por lo tanto lo es $D_{f_1}\cup D_{f_2}$. Ya que

$$f_{1} \cup f_{2} = \left(\lambda \alpha \beta \left[\alpha \beta\right] \circ \left[\lambda x \alpha \left[\alpha^{x}\right] \circ \left[\chi_{D_{f_{1}}}^{\omega^{2} \times \Sigma^{*}}, \bar{f}_{1}\right], \lambda x \alpha \left[\alpha^{x}\right] \circ \left[\chi_{D_{f_{2}}}^{\omega^{2} \times \Sigma^{*}}, \bar{f}_{2}\right]\right]\right)\Big|_{D_{f_{1}} \cup D_{f_{2}}}$$

tenemos que $f_1 \cup f_2$ es Σ -p.r.

Proposición (Caracterización básica de conjuntos Σ -enumerables). Sea $S\subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes:

- 1. S es Σ -enumerable.
- 2. Hay un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ tal que:
 - (a) Para cada $x \in \omega$, tenemos que \mathcal{P} se detiene partiendo desde el estado $\llbracket x \rrbracket$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$, donde $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$.
 - (b) Para cada $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$ hay un $x \in \omega$ tal que \mathcal{P} se detiene partiendo desde el estado $\llbracket x \rrbracket$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$.

(Hacer el caso n = 2 y m = 1)

Proof. (1) \Rightarrow (2). Ya que S es no vacío, por definición existe una función

$$F:\omega\to\omega^2\times\Sigma^*$$

tal que $I_F = S$ y cada componente $F_{(i)}$ es Σ -computable, para i = 1, 2, 3. Por el Primer Manantial de Macros, existen los siguientes macros:

$$[V2 \leftarrow F_{(1)}(V1)]$$

 $[V2 \leftarrow F_{(2)}(V1)]$
 $[W1 \leftarrow F_{(3)}(V1)]$

Sea \mathcal{P} el siguiente programa:

[P1
$$\leftarrow F_{(3)}(N1)$$
]
[N2 $\leftarrow F_{(2)}(N1)$]
[N1 $\leftarrow F_{(1)}(N1)$]

donde se supone que las expansiones de los macros usan variables auxiliares que no aparecen en la lista N1, N2, P1 y tampoco se repiten labels auxiliares. Ver que se cumplan las condiciones de 2 es fácil: nuestro programa copia el comportamiento de cada componente de F que ya sabemos que enumera a S, por lo tanto, para cada $x \in \omega$ nuestro programa termina y llega a un estado con la forma esperada y además, sabemos que para cada elemento de S existe algún $x \in \omega$ que lo enumera, por lo tanto, nuestro programa se detendrá en ese x llegando a un estado de la forma esperada.

 $(2) \Rightarrow (1)$. Supongamos que $\mathcal{P} \in \text{Pro}^{\Sigma}$ cumple (a) y (b) de (2). Sea:

$$\mathcal{P}_1 = \mathcal{P} \text{N1} \leftarrow \text{N1}$$

 $\mathcal{P}_2 = \mathcal{P} \text{N1} \leftarrow \text{N2}$
 $\mathcal{P}_3 = \mathcal{P} \text{P1} \leftarrow \text{P2}$

Definimos entonces:

$$F_1 = \Psi_{\mathcal{P}_1}^{1,0,\#}$$

$$F_2 = \Psi_{\mathcal{P}_2}^{1,0,\#}$$

$$F_3 = \Psi_{\mathcal{P}_3}^{1,0,*}$$

Nótese que cada F_i es Σ -computable y tiene dominio ω . Sea $F = [F_1, F_2, F_3]$. Por definición, $D_F = \omega$ y como $F_{(i)} = F_i$ para i = 1, 2, 3, tenemos que cada componente de F es Σ -computable.

Necesito verificar que $I_F = S$.

Aclaración 1:

$$\mathcal{P}_1$$
 deja en N1 el valor que \mathcal{P} deja en N1 \mathcal{P}_2 deja en N1 el valor que \mathcal{P} deja en N2 \mathcal{P}_3 deja en P1 el valor que \mathcal{P} deja en P1

Aclaración 2:

 $\Psi_E^{1,0,\#}(x)=$ valor que representa N1 tras correr E partiendo desde el estado $\llbracket x \rrbracket$ $\Psi_E^{1,0,*}(x)=$ valor que representa P1 tras correr E partiendo desde el estado $\llbracket x \rrbracket$

- (\subseteq) Para todo $t\in\omega,$ por (2a) sabemos que P partiendo de $[\![t]\!]$ llega a un estado de la forma $((x,y,z,\dots),(\alpha,\beta,\dots))$ donde $(x,y,\alpha)\in S$ y como $F=[F_1,F_2,F_3]$ y teniendo en cuenta ambas aclaraciones, $F(x)=(x,y,\alpha)$
- (\supseteq) Sea $(x,y,\alpha)\in S$ sabemos que $\exists t\in\omega$ tal que correr $\mathcal P$ partiendo del estado $[\![t]\!]$ llega a un estado de la forma $((x,y,z,\dots),(\alpha,\beta,\dots)).$ Entonces, por ambas aclaraciones, $(x,y,\alpha)=(F_{(1)}(t),F_{(2)}(t),F_{(3)}(t))=F(t),$ luego, pertenece a I_F