Melbourne Rain Prediction

MATH 2319 Machine Learning Applied Project Phase I Rahul K Gupta (s3635232) & Terrie Christensen (s3664899) 7 April 2018

Contents

1	Intr	oducti	ion	3							
2	Data Set										
	2.1	Target	t Feature	3							
	2.2	Descri	ptive Features	3							
3	Dat	a Pre-	processing	4							
	3.1	Prelim	ninaries (Optional)	4							
	3.2		Cleaning and Transformation								
	3.3		riate Visualisation								
			Correlation Matrix								
		3.3.2	continuous variables								
		3.3.3	Categorical variables	11							
		3.3.4	Monthly Average Rainfall from 2009-2016	15							
		3.3.5	Comparision								
4	Sun	nmary		17							

1 Introduction

The objective of this project was to build classifiers to predict whether an individual earns more than USD 50,000 or less in a year from the 1994 US Census Data. The data sets were sourced from the UCI Machine Learning Repository. This project has two phases. Phase I focuses on data preprocessing and exploration, as covered in this report. We shall present model building in Phase II. The rest of this report is organised as follow. Section 2 describes the data sets and their attributes. Section 3 covers data pre-processing. In Section 4, we explore each attribute and their inter-relationships. The last section ends with a summary.

2 Data Set

The UCI Machine Learning Repository provides five data sets, but only adult.data, adult.test, and adult.names were useful in this project. adult.data and adult.test are the training and test data sets respectively. adult.names contains the details of attributes or variables. The training data set has 32,561 training observations. Meanwhile, the test data set has 16,281 test observations. Both data sets consist of 14 descriptives features and one target feature. In this project, we combined both training and test data into one. In Phase II, we would build the classifiers from the combined the data set and evaluate their performance using cross-validation.

2.1 Target Feature

The response feature of rain is given as:

Tomorrow's Rain =
$$\begin{cases} Yes & \text{if Rain will occur tomorrow} \\ No & \text{otherwise} \end{cases}$$
 (1)

The target feature has two classes and hence it is a binary classification problem. To reiterate, The goal is to predict whether it will rain in Melbourne tomorrow.

2.2 Descriptive Features

The variable description is produced here from adult.names file:

- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouseabsent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-*inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex: Female, Male.
- capital-gain: continuous.

- capital-loss: continuous.
- hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Most of the descriptive features are self-explanatory, except fulwgt which stands for "Final Weight" defined by the US Census. The weight is an "estimate of the number of units in the target population that the responding unit represents". This feature aims to allocate similar weights to people with similar demographic characteristics. For more details, see US Census.

3 Data Pre-processing

3.1 Preliminaries (Optional)

In this project, we used the following R packages.

Text

```
weather <- read.csv('weatherAUS 2.csv')
weather$Date = as.Date(weather$Date,'%Y-%m-%d')

# Filter data for Melbourne
Melbourne = weather[weather$Location %in% c('Melbourne','MelbourneAirport'),]

# Add Month and Year-Month
Melbourne$Month = strftime(Melbourne$Date,"%b")
Melbourne$MonthYear = strftime(Melbourne$Date,"%b-%Y")</pre>
```

3.2 Data Cleaning and Transformation

Evaluating missing values via visualizations

```
# Missing Year Data
missing_year = subset(Melbourne ,is.na(Melbourne$RainToday) | is.na(Melbourne$RainTomorrow))
missing_year$Year = strftime(missing_year$Date,"%Y")
ggplot(missing_year,aes(Year)) +
   geom_bar(fill='#969696') +
   ggtitle('Melbourne Weather Missing Data by Year') +
```

Melbourne Weather Missing Data by Year

2015 has most number of Missing Data

Source - Commonwealth of Australia , Bureau of Meteorology

Melbourne Weather Missing Data by Month

Apr has highest missing values, Dec has least

Source - Commonwealth of Australia , Bureau of Meteorology

```
\# Since the month data is distributed well, we can remove them from data set
```

```
# Missing data percentage
missing_percentage = count(missing_month)/count(Melbourne) * 100
missing_percentage
```

```
## 1 14.43083
# Remove data where Today and Tomorrow rain information is missing
# 14.4% data is missing
```

```
# Remove Missing Data
Melbourne = Melbourne %>%
  drop_na(RainToday) %>%
  drop_na(RainTomorrow)
```

With str and summarizeColumns (see Table 1), we noticed the following anomalies:

- All character columns contained excessive white space.
- The target feature, income had a cardinality of 4, which was supposed to be 2 since income must be binary.
- The education_num ranged from 1 to 16 which coincided with the cardinality of education. They might represent the same information.
- The max value of capital_gain was 99999, potentially a value to represent missing value.
- The max value of hours_per_week was 99. It could be a valid or missing value
- On surface, each feature had no missing value, especially the character features.

str(Melbourne)

##

```
5307 obs. of 26 variables:
## 'data.frame':
## $ Date
                  : Date, format: "2009-01-01" "2009-01-02" ...
## $ Location
                  : Factor w/ 49 levels "Adelaide", "Albany", ...: 20 20 20 20 20 20 20 20 20 ...
                  : num 11.2 7.8 6.3 8.1 9.7 13.5 15.8 9.7 10.2 10.7 ...
## $ MinTemp
   $ MaxTemp
                  : num 19.9 17.8 21.1 29.2 29 31.7 21.4 18.4 19.7 23.6 ...
## $ Rainfall
                  : num 0 1.2 0 0 0 0 0.2 0.2 0 0 ...
## $ Evaporation : num 5.6 7.2 6.2 6.4 7.4 7.2 8.8 5.2 5.6 7.2 ...
                  : num 8.8 12.9 10.5 12.5 12.3 13.7 4.4 11.5 12.6 10.2 ...
## $ Sunshine
   $ WindGustDir : Factor w/ 16 levels "E","ENE","ESE",..: 13 11 11 10 11 9 10 9 9 ...
## $ WindGustSpeed: int 69 56 31 35 33 50 46 56 43 43 ...
## $ WindDir9am
                 : Factor w/ 16 levels "E", "ENE", "ESE", ...: 14 13 1 5 13 6 12 12 11 16 ...
                 : Factor w/ 16 levels "E", "ENE", "ESE", ...: 13 11 9 11 11 9 11 11 9 9 ...
   $ WindDir3pm
   $ WindSpeed9am : int 33 31 13 2 9 11 17 28 19 7 ...
## $ WindSpeed3pm : int 43 26 19 20 20 28 28 35 28 24 ...
## $ Humidity9am : int
                         55 50 51 67 51 50 98 51 51 76 ...
##
   $ Humidity3pm : int
                         37 43 35 23 31 34 67 42 42 46 ...
## $ Pressure9am : num 1005 1018 1021 1016 1012 ...
## $ Pressure3pm : num 1006 1019 1018 1013 1010 ...
## $ Cloud9am
                  : int 7615608227 ...
## $ Cloud3pm
                  : int 7774217571...
## $ Temp9am
                  : num 15.9 12.5 13.4 16 19.4 21.3 16 14.5 14.2 14.5 ...
## $ Temp3pm
                  : num 18.1 15.8 19.6 28.2 27.1 29.8 19.9 17.7 19.3 21.8 ...
                  : Factor w/ 2 levels "No", "Yes": 1 2 1 1 1 1 1 1 1 1 ...
## $ RainToday
   $ RISK MM
                  : num 1.2 0 0 0 0 0.2 0.2 0 0 0 ...
## $ RainTomorrow : Factor w/ 2 levels "No", "Yes": 2 1 1 1 1 1 1 1 1 1 ...
   $ Month
                  : chr "Jan" "Jan" "Jan" "Jan" ...
##
   $ MonthYear
                  : chr "Jan-2009" "Jan-2009" "Jan-2009" "Jan-2009" ...
summarizeColumns(Melbourne) %>% knitr::kable(caption = 'Feature Summary ')
```

Table 1: Feature Summary

name	type	na	mean	disp	median	mad	min	max	nlevs
Date	Date	0	NA	NA	NA	NA	1.0	2.0	3193
Location	factor	0	NA	0.4330130	NA	NA	0.0	3009.0	2
MinTemp	numeric	0	10.770379	4.4781066	10.4	4.59606	-1.0	30.5	0
MaxTemp	numeric	0	20.687130	6.4290651	19.4	6.22692	8.4	46.8	0
Rainfall	numeric	0	1.619031	4.8630541	0.0	0.00000	0.0	82.2	0
Evaporation	numeric	3	4.647134	3.3369524	4.0	2.96520	0.0	23.8	0
Sunshine	numeric	2	6.435721	3.9244251	6.6	4.89258	0.0	13.9	0
WindGustDir	factor	29	NA	NA	NA	NA	6.0	1639.0	16
WindGustSpeed	integer	29	46.214475	16.1970129	44.0	16.30860	11.0	122.0	0
WindDir9am	factor	76	NA	NA	NA	NA	25.0	1772.0	16
WindDir3pm	factor	23	NA	NA	NA	NA	37.0	1080.0	16
WindSpeed9am	integer	3	19.694570	11.7510252	17.0	11.86080	0.0	67.0	0
WindSpeed3pm	integer	0	22.509704	10.0576575	22.0	10.37820	0.0	76.0	0
Humidity9am	integer	10	68.850859	15.3960442	70.0	14.82600	11.0	100.0	0
Humidity3pm	integer	15	51.027778	17.0937630	50.0	14.82600	6.0	100.0	0
Pressure9am	numeric	0	1017.931581	7.7613507	1018.1	7.56126	988.9	1039.3	0
Pressure3pm	$_{ m numeric}$	2	1016.080207	7.5895129	1016.4	7.56126	988.2	1036.0	0
Cloud9am	integer	273	5.255860	2.5129291	7.0	1.48260	0.0	8.0	0
Cloud3pm	integer	334	5.278906	2.3386018	6.0	1.48260	0.0	8.0	0
Temp9am	numeric	1	14.370222	4.8861684	13.8	4.59606	3.1	35.5	0
Temp3pm	numeric	3	19.152658	6.1762272	18.1	6.07866	6.2	46.1	0

name	type	na	mean	disp	median	mad	min	max	nlevs
RainToday	factor	0	NA	0.2323347	NA	NA	1233.0	4074.0	2
RISK_MM	numeric	0	1.479932	4.4412158	0.0	0.00000	0.0	75.8	0
RainTomorrow	factor	0	NA	0.2234784	NA	NA	1186.0	4121.0	2
Month	character	0	NA	0.9072923	NA	NA	365.0	492.0	12
MonthYear	character	0	NA	0.9883173	NA	NA	28.0	62.0	105

3.3 Univariate Visualisation

```
# Visualizations
# Monthly Average Rainfall from 2009-2016
total_yearmonth_rainfall = Melbourne %>%
  select(MonthYear, Rainfall) %>%
  group_by(MonthYear) %>%
  summarise(monthTotal = sum(Rainfall, na.rm = TRUE))
total_yearmonth_rainfall$month = substr(total_yearmonth_rainfall$MonthYear, 1, 3)
monthly_rainfall = total_yearmonth_rainfall %>%
  group_by(month) %>%
  summarise(avgRainfall = mean(monthTotal))
monthly_rainfall$month = factor(monthly_rainfall$month,
                                levels = c('Jan','Feb','Mar','Apr',
                                            'May', 'Jun', 'Jul', 'Aug',
                                            'Sep','Oct','Nov','Dec'),
                                ordered = TRUE)
ggplot(monthly_rainfall,aes(month,avgRainfall)) +
  geom_bar(stat = 'identity',fill="#006699") +
  ggtitle('Monthly Average Rainfall, 2009-2016') +
  xlab('Months') +
  ylab('Rainfall(MM)') +
```

```
labs(subtitle = 'Rainfall is increasing from Jan to Dec with little variation') +
theme(plot.subtitle = element_text(color = '#333333',face = "italic"))
```

Monthly Average Rainfall, 2009-2016

Rainfall is increasing from Jan to Dec with little variation

Except Nov, the variation isn't too much between Consecutive years. The possibility of getting rain
in Feb is almost same as Mar or Apr, hence we connot conclude the rain by month.
Melbourne doesn't have a fix rainy season hence average rainfall is distributed

3.3.1 Correlation Matrix

```
# ------
# Correlation Matrix
correlation_matrix = cor(Melbourne[,c(3:7,9,12:21)],use='na.or.complete')
corrplot(correlation_matrix, order = 'AOE', type = "upper")
```


Very few factors has high correlation

3.3.2 continuous variables

Melbourne Weather - Feature Distribution

Temperature and Pressure is normally distributed

Source - Commonwealth of Australia , Bureau of Meteorology

3.3.3 Categorical variables

visualize categorical variables head(Melbourne)

##		Date	Locatio	on MinTemp	${\tt MaxTemp}$	Rainfall	Evaporation
##	64192	2009-01-01	MelbourneAirpor	t 11.2	19.9	0.0	5.6
##	64193	2009-01-02	MelbourneAirpor	rt 7.8	17.8	1.2	7.2
##	64194	2009-01-03	MelbourneAirpor	t 6.3	21.1	0.0	6.2
##	64195	2009-01-04	MelbourneAirpor	t 8.1	29.2	0.0	6.4
##	64196	2009-01-05	MelbourneAirpor	et 9.7	29.0	0.0	7.4
##	64197	2009-01-06	MelbourneAirpor	t 13.5	31.7	0.0	7.2
##		Sunshine Wi	indGustDir WindG	ustSpeed V	√indDir9a	m WindDi	r3pm
##	64192	8.8	SW	69		W	SW
##	64193	12.9	SSE	56	S	W	SSE
##	64194	10.5	SSE	31		E	S
##	64195	12.5	SSE	35	N	Έ	SSE
##	64196	12.3	SE	33	S	W	SSE
##	64197	13.7	SSE	50	NN	Έ	S
##		WindSpeed9a	am WindSpeed3pm	Humidity9a	am Humidi	ty3pm Pre	essure9am
##	64192	3	33 43	Ę	55	37	1005.1
##	64193	3	31 26	Ę	50	43	1018.0
##	64194	1	19	Ę	51	35	1020.8
##	64195		2 20	6	67	23	1016.2
##	64196		9 20	Ę	51	31	1011.9
##	64197	1	11 28	Ę	50	34	1010.7

```
Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm RainToday RISK_MM
## 64192
              1006.4
                            7
                                      7
                                           15.9
                                                   18.1
                                                               No
                                                                       1.2
## 64193
              1019.3
                            6
                                           12.5
                                                   15.8
                                                                       0.0
                                      7
                                                              Yes
## 64194
              1017.6
                            1
                                     7
                                           13.4
                                                   19.6
                                                               No
                                                                       0.0
## 64195
              1012.8
                            5
                                      4
                                           16.0
                                                   28.2
                                                               No
                                                                       0.0
## 64196
              1010.3
                            6
                                      2
                                           19.4
                                                   27.1
                                                               No
                                                                       0.0
## 64197
              1007.7
                            0
                                      1
                                           21.3
                                                   29.8
                                                               No
         RainTomorrow Month MonthYear WindGustDirDegree WindDir9amDegree
## 64192
                  Yes
                        Jan Jan-2009
                                                     225
                                                                       270
## 64193
                   No
                        Jan Jan-2009
                                                                       225
                                                   157.5
## 64194
                   No
                        Jan Jan-2009
                                                   157.5
                                                                       90
## 64195
                        Jan Jan-2009
                                                   157.5
                                                                       45
                   No
## 64196
                        Jan Jan-2009
                                                                       225
                   No
                                                     135
## 64197
                   No
                        Jan Jan-2009
                                                   157.5
                                                                      22.5
         WindDir3pmDegree
## 64192
## 64193
                    157.5
## 64194
                      180
## 64195
                    157.5
## 64196
                    157.5
## 64197
                      180
wind direction = Melbourne
wind_direction$WindGustDir = factor(wind_direction$WindGustDir,
                       levels = rev(direction$CardinalDirection),
                       ordered = TRUE)
wind_direction %>%
  filter(!is.na(WindGustDir)) %>%
  ggplot(aes(WindGustDir)) +
  geom_bar(fill="#006699") +
  coord_flip() +
  ggtitle('Melbourne Direction of the Strongest Wind Gust in 24 Hours') +
  ylab('Count') +
  xlab('16 compass points') +
  labs(subtitle = 'Direction is ordered from 0 degrees North in clockwise order',
       caption="Source - Commonwealth of Australia , Bureau of Meteorology") +
  theme_weather
```

Melbourne Direction of the Strongest Wind Gust in 24 Hours

Direction is ordered from 0 degrees North in clockwise order

Source - Commonwealth of Australia , Bureau of Meteorology

```
melt(Melbourne[,c('Cloud9am','Cloud3pm')]) %>%
ggplot(aes(value)) +
geom_bar() +
facet_wrap(~variable,scales="free") +
coord_flip()
```


Relationship Between Rain and Minimum Maximum Temperature

Difference between High and low temperature is less on Rainy day

3.3.4 Monthly Average Rainfall from 2009-2016

```
# Monthly Average Rainfall from 2009-2016
# Not working
# Except Nov, the variation isn't too much between Consecutive years. The possibility of getting rain
# in Feb is almost same as Mar or Apr, hence we connot conclude the rain by month.
# Melbourne doesn't have a fix rainy season hence average rainfall is distributed
#################
# Delta change
#################
delta_cloud = Melbourne
delta_cloud$deltaCloud = delta_cloud$Cloud9am - delta_cloud$Cloud3pm
ggplot(delta_cloud, aes(deltaCloud, fill=RainToday)) +
  geom_bar(position = 'dodge') +
  ggtitle('Melbourne Weather - Cloud Delta Change in Oktas') +
 xlab('Oktas') +
  ylab('') +
  labs(subtitle = '0 is completely clear sky and 8 is completely overcast',
       caption="Source - Commonwealth of Australia , Bureau of Meteorology") +
  theme_weather
```

Melbourne Weather - Cloud Delta Change in Oktas

0 is completely clear sky and 8 is completely overcast

Source - Commonwealth of Australia , Bureau of Meteorology

3.3.5 Comparision

```
# Temperature from 9AM to 3 PM for the same day
temperature_drop= Melbourne[Melbourne$Temp9am < Melbourne$Temp3pm, ]</pre>
prop.table(table(temperature_drop$RainToday)) * 100
##
##
         No
                 Yes
## 77.14115 22.85885
# Even if temperature drops by 3 PM, chances of having rain is just 22%
temperature_drop= Melbourne[Melbourne$Temp9am > Melbourne$Temp3pm, ]
prop.table(table(temperature_drop$RainToday)) * 100
##
##
        No
                 Yes
## 71.37681 28.62319
# Relationship between today and tomorrow's rain
prop.table(table(Melbourne$RainToday, Melbourne$RainTomorrow,dnn=c('Rain Today','Rain Tomorrow'))) * 10
##
             Rain Tomorrow
```

4 Summary