Translating Embeddings for Knowledge Graph Completion with Relation Attention Mechanism

Wei Qian, Cong Fu, Yu Zhu, Deng Cai, Xiaofei He

Xiaofan Yan

Outline

- Abstract
- Introduction
- Related work
- Method
- Expriments
- Conclusion and future work

Abstract

- Translation based embedding method
 - Previous models
 - Failed creating attention mechanism
 - Because they ignore the hierarchical routine of human coghition
 - When people predict relations
 - first check the category of entities
 - then focus on fined-grained relation-related attributes to make the decision
 - Propose TransAt
 - Relation-related categories of entities
 - Relation-related attention

Introduction

 Embedding based methods encode each object in knowledge graphs into a continuous vector space

• For a triple (h, r, t), the basic idea of TransE model is that this triple induce a functional relation corresponds to a translation of the embeddings of entities in vector space R^k , that

is, $h + r \approx t$.

- Actually, all transformation matrices are similar and approximate to the unit matrix. This
 means TransR fails to learn transformations only focusing on part of dimensions.
- Propose a knowledge graph embedding method with attention mechanism named TransAt (Translation with Attention)

Related Work

- Translation-based models
 - TransE (Bordesetal.,2013)
 - Has problems when dealing with reflexive or many-to-one/one-to-many/many-to-many relations
 - TransH (Wanget al., 2014)
 - Distributed representations when the entity is involved in different relations
 - TransR/CTransR (Lin et al., 2015)
 - Models entities and relations in different embedding spaces
 - TransD (Ji et al., 2015)
 - considers the diversity of both relations and entities, can be applied to large scale graphs.
 - KG2E (He et al., 2015b)
 - Ignore that different entities and relations may contain different (un)certainties
 - TranSparse (Ji et al., 2016)
 - solving the heterogeneity and imbalance issues in knowledge graphs

Related Work

Other methods

- StructuredEmbedding(SE) (Bordesetal.,2011)
- Semantic Matching Energy (SME) (Bordes et al., 2012; 2014)
- Latent Factor Model (LFM) (Jenatton et al., 2012).
- SingleLayerModel(SLM) (Socheretal.,2013).
- NeuralTensorNetwork(NTN) (Socheretal.,2013).
- GAKE (Feng et al., 2016).

The ORC structure

 (Zhang, 2017) Some entity nodes form a circle by edges representing the same relation r in a knowledge graph. Then the corresponding relation vector r would approximate 0 (i.e. r ≈ 0) when using traditional translation-based methods to model related triplets.

Method

- Motivation
 - Human cognition for a relation follows a hierarchical routine
- TransAt
 - Learn the relation-related candidates and relation-related attention simultaneously

$$f_r(\mathbf{h}, \mathbf{t}) = \begin{cases} P_r(\mathbf{h}) + \mathbf{r} - P_r(\mathbf{t}) & h \in H_r, t \in T_r \\ \infty & otherwise \end{cases}$$

• If the h or the t is not suitable for relation r, their distance for r is infinite. If both the h and the t are suitable for r, their distance to r is similar to TransE but only focuses on interested dimensions.

Method

Method

Kmeans	Aggregate all entities to some clusters and merge clusters
PCA	Obtain variances on dimension to determine to retain the dimension or not
An asymmetric operation	make h and t are different to solve ORC problem

Hope

- If h and t in the suitable candidate set -- massive score
- Otherwise, entities not in the same are candidate set farfrom each other

- Datasets
 - WN11, WN18, FB15k, FB13
- Link prediction
 - Mean Rank: Take triples -> rank -> adjust entities in candidate set ahead of non-candidate
 - Hits@10: Hit count of $h \rightarrow hit$ count of $t \rightarrow average$
 - Results:
 - have the best Mean Rank performance on both two datasets
 - has bigger γ and k in the optimal configuration
 - Asymmetric version of method outperforms the symmetrical one

Link prediction

Datasets	#WN18				#FB15k			
Metric	Mean Rank		Hits@10		Mean Rank		Hits@10	
	Raw	Filt	Raw	Filt	Raw	Filt	Raw	Filt
SE	1,011	985	68.5	80.5	273	162	28.8	39.8
SME (linear/bilinear)	545/526	533/509	65.1/54.7	74.1/61.3	274/284	154/158	30.7/31.3	40.8/41.3
LFM	469	456	71.4	81.6	283	164	26.0	33.1
GAKE	-	-	-	-	228	119	44.5	64.8
TransE	263	251	75.4	89.2	243	125	34.9	47.1
TransH (unif/bern)	318/401	303/388	75.4/73.0	86.7/82.3	211/212	84/87	42.5/45.7	58.5/64.4
TransR (unif/bern)	232/238	219/225	78.3/79.8	91.7/92.0	226/198	78/77	43.8/48.2	65.5/68.7
CTransR (unif/bern)	243/231	230/218	78.9/79.4	92.3/92.3	233/199	82/75	44.0/48.4	66.3/70.2
TransD (unif/bern)	242/224	229/212	79.2/79.6	92.5/92.2	211/194	67/91	49.4/53.4	74.2/77.3
TranSparse (share, S, unif/bern)	248/237	236/224	79.7/80.4	93.5/93.6	226/194	95/88	48.8/53.4	73.4/77.7
TranSparse (share, US, unif/bern)	242/233	229/221	79.8/80.5	93.7/93.9	231/191	101/86	48.9/53.5	73.5/78.3
TranSparse (separate, S, unif/bern)	235/224	223/221	79.0/79.8	92.3/92.8	211/187	63/82	50.1/53.3	77.9/79.5
TranSparse (separate, US, unif/bern)	233/223	221/211	79.6/80.1	93.4/93.2	216/190	66/82	50.3/ 53.7	78.4 /79.9
TransAt (bern)	214	202	81.4	95.1	187	83	52.6	78.1
TransAt (asy,bern)	169	157	81.4	95.0	185	82	52.9	78.2

Table 2: Experimental results of link prediction.

- Triple classification
 - Make a judgement on the correctness of a triple (binary classification task)

Datasets	#WN11	#FB13	
SE	53.0	75.2	
SME(bilinear)	70.0	63.7	
SLM	69.9	85.3	
LFM	73.8	84.3	
NTN	70.4	87.1	
TransE(unif/bern)	75.9/75.9	70.9/81.5	
TransH(unif/bern)	77.7/78.8	76.5/83.3	
TransR(unif/bern)	85.5/85.9	74.7/82.5	
CTransR(bern)	85.7	-	
TransD(unif/bern)	85.6/86.4	85.9/89.1	
TranSparse(share, S, unif/bern)	86.2/86.3	85.5/87.8	
TranSparse(share, US, unif/bern)	86.3/86.3	85.3/87.7	
TranSparse(separate, S, unif/bern)	86.2/86.4	86.7/88.2	
TranSparse(separate, US, unif/bern)	86.8/86.8	86.5/87.5	
TranAt(bern)	88.2	89.1	

Following the previous works, we learn the θ_r by maximizing the classification accuracy on the valid set. For a given triple t (h, r, t), if its score is lower than θ_r and both the head entity and tail entity are in respective candidate sets, it will be classified as positive, otherwise, negative.

- Attention Mechanism
 - Pay attention to a part of the dimensions of relations
 - Some attention vectors a_r are sparse

This figure demonstrates that TransAt can truly **pay attention to a part of the dimensions** of some relations.

Conclusion and Future Work

- Propose a translation-based method
- Previous -- fail to learn attention
- Introduce a two stage discriminative method to achieve attention