

Hybleland L9-Lesson 09 Coordinate Geometry III-Circle and Graph-Assignment

Practice 1.

Two circles of radius 2 are centered at (2,0) and at (0,2). A point (x,y) is randomly picked from the union of the two circles. What is the probability that the point is inside the are of the intersection of the two circles?

Practice 2.

The vertices of a triangle are the points of intersection of the lines y = -x - 1,

x = 2, and $y = \frac{1}{5}x + \frac{13}{5}$. Find an equation of the circle passing through all three vertices.

$$(A)x^2 + y^2 = 13$$

$$(B)x^2 + y^2 = 169$$

$$(C)x^2 + y^2 = 16$$

$$(D)x^2 + y^2 = 15$$

$$(E)x^2 + y^2 = 7$$

Practice 3.

(AMC) Let C_1 and C_2 be circles defined by $(x-10)^2 + y^2 = 36$ and $(x+15)^2 + y^2 = 81$,

respectively. What is the length of the shortest line segment PQ that is tangent to C_1 at P and to J C₁ i

 C_2 at Q?

(A)15

(B)18

(C)20

(D)21

Practice 4.

A point (x,y) is randomly picked from inside the circle with center (3,3) and radius 3. What is the probability that x < y - 3? You can use 3 for π .

- (A)1/12
- (B)1/8

IN IN IT IS

- (C)3/16
- (D)1/9
- (E)2/27

IN THE LELAND

Practice 5.

AMC10A 2006 / Problem 11

Which of the following describes the graph of the equation $(x+y)^2 = x^2 + y^2$?

A. the empty set B. one point C. two lines D. a circle E. the entire plane

Practice 6.

AMC10A 2011 / Problem 9

A rectangular region is bounded by the graphs of the equations y = a, y = -b, x = -c,and x=d, where a,b,c, and d are all positive numbers. Which of the following represents the area of this region?

A. ac + ad + bc + bd B. ac - ad + bc - bd C. ac + ad - bc - bd

- 35

 $\mathsf{D.} \quad -ac-ad+bc+bd \quad \mathsf{E.} \quad ac-ad-bc+bd$

Practice 7.

AMC10A 2017 / Problem 12

Let S be the set of points (x, y) in the coordinate plane such that two of the three quantities 3, x+2, and y-4 are equal and the third of the three quantities is no greater than this common value. Which of the following is a correct description of S?

A. a single point B. two intersecting lines

必必

- C. three lines whose pairwise intersections are three distinct points D. a triangle
- E. three rays with a common endpoint

Practice 8.

AMC10B 2016 / Problem 9

All three vertices of $\triangle ABC$ lie on the parabola defined by $y=x^2$, with A at the origin and \overline{BC} parallel to the x-axis. The area of the triangle is 64. What is the length of BC?

A. 4 B. 6 C. 8 D. 10 E. 16

HYBLEL AN

Practice 9.

海博作送 HYBLELAND AMC10B 2016 / Problem 14

How many squares whose sides are parallel to the axes and whose vertices have coordinates that are integers lie entirely within the region bounded by the line $y=\pi x$, the line y = -0.1 and the line x = 5.1?

A. 30 B. 41 C. 45 D. 50 E. 57

Practice 10.

In rectangle ABCD, we have AB=8, BC=9, H is on BC with BH=6, E is on AD with DE=4, line EC intersects line AH at G, and F is on line AD with GF? What is the length EF?

- (A)6
- (*B*)10

A HYBLELAND

- (C)14
- (D)15
- (E)12

Practice 11.

AMC10A 2014 / Problem 16

In rectangle ABCD, AB=1, BC=2, and points E, F, and G are midpoints of \overline{BC} , \overline{CD} , and \overline{AD} , respectively. Point H is the midpoint of \overline{GE} . What is the area of the shaded region?

A. $\frac{1}{12}$ B. $\frac{\sqrt{3}}{18}$ C. $\frac{\sqrt{2}}{12}$ D. $\frac{\sqrt{3}}{12}$ E. $\frac{1}{6}$

