1

EE5609 Matrix Theory

Kranthi Kumar P

Download the latex-file codes from

 $https://github.com/kranthiakssy/AI20RESCH14002_PhD_IITH/tree/master/EE5609_Matrix_Theory/Assignment-12$

1 Problem

(hoffman/page84/11):

Let \mathbb{V} be a finite-dimensional vector space and let \mathbf{T} be a linear operator on \mathbb{V} . Suppose that $rank(\mathbf{T}^2) = rank(\mathbf{T})$. Prove that the range and null space of \mathbf{T} are disjoint, i.e., have only the zero vector in common.

2 Solution

Given	\mathbb{V} is a finite-dimensional vector space, $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ and $rank(\mathbf{T}^2) = rank(\mathbf{T})$
To Prove	range and null space of T are disjoint
Defining rank(T)	Let $\{\beta_1, \dots, \beta_k, \beta_{k+1}, \dots, \beta_n\}$ is the span of \mathbb{V} . The linear transformation of \mathbb{V} is $\{\mathbf{T}\beta_1, \dots, \mathbf{T}\beta_k, \mathbf{T}\beta_{k+1}, \dots, \mathbf{T}\beta_n\}$. Suppose the $rank(\mathbf{T}) = k$, then the basis of \mathbf{T} is $\{\mathbf{T}\beta_1, \dots, \mathbf{T}\beta_k\}$ and are linearly independent.
Defining range(T ²)	Now $\mathbf{T}^2: \mathbb{V} \to \mathbb{V}$ be a linear transformation for any $\alpha \in \mathbb{V}$. $\therefore \mathbf{T}^2(\mathbb{V}) = \mathbf{T}(\mathbf{T}(\alpha))$ and $\{\mathbf{T}^2\beta_1, \dots, \mathbf{T}^2\beta_k\}$ span the range of \mathbf{T}^2 since $rank(\mathbf{T}^2) = rank(\mathbf{T})$ $\implies dim \ range(\mathbf{T}^2) = dim \ range(\mathbf{T})$ $\therefore \{\mathbf{T}^2\beta_1, \dots, \mathbf{T}^2\beta_k\}$ must be basis for $range(\mathbf{T}^2)$

Obtaining range and nullspace of T	Now let $\alpha \in range(\mathbf{T})$, then it can be written as linear combinations of vectors in $range(\mathbf{T})$ $\therefore \alpha = C_1 \mathbf{T} \beta_1 + C_2 \mathbf{T} \beta_2 + \ldots + C_k \mathbf{T} \beta_k$ If $\alpha \in nullspace(\mathbf{T})$ also, then $\mathbf{T}(\mathbb{V}) = 0$ $\Rightarrow \mathbf{T}(C_1 \mathbf{T} \beta_1 + C_2 \mathbf{T} \beta_2 + \ldots + C_k \mathbf{T} \beta_k) = 0$ $\Rightarrow C_1 \mathbf{T}^2 \beta_1 + C_2 \mathbf{T}^2 \beta_2 + \ldots + C_k \mathbf{T}^2 \beta_k = 0$ since $\{\mathbf{T}^2 \beta_1, \ldots, \mathbf{T}^2 \beta_k\}$ is basis of \mathbf{T}^2 $\Rightarrow C_1 = C_2 = \ldots = C_k = 0$ $\Rightarrow \mathbb{V} = 0$ $\therefore \text{ if } \alpha \text{ is in both } range(\mathbf{T}) \text{ and } nullspace(\mathbf{T}),$ then α must be a zero vector. Hence it is proved that range and null space of \mathbf{T} are disjoint.
Conclusion	The range and null space of T are disjoint.

TABLE 1: Proof

3 Example

Example

Let α be a basis of \mathbb{V} of \mathbb{R}^{nxn} space and

consider,
$$\alpha = \begin{pmatrix} 1 & 7 & -1 & -1 \\ -1 & 1 & 2 & 1 \\ 4 & -2 & 0 & -4 \\ 2 & 3 & 4 & -2 \end{pmatrix}$$

linear transformation of α into \mathbb{V} , $\mathbf{T}(\alpha) = c\alpha$, where c is a scalar, then row reduced echelon form of \mathbf{T} is

$$rref(\mathbf{T}) = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\implies rank(\mathbf{T}) = 3,$$

 $nullity(\mathbf{T}) = 1$

$$\implies range(\mathbf{T}) = \begin{pmatrix} 1 & 7 & -1 \\ -1 & 1 & 2 \\ 4 & -2 & 0 \\ 2 & 3 & 4 \end{pmatrix},$$

$$nullspace(\mathbf{T}) = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$$

Now linear transformation $T(T(\alpha)) = cd\alpha$, where c and d are scalars.

Let c = d = 1, then $range(\mathbf{T}^2) = range(\mathbf{T})$,

$$\implies rank(\mathbf{T}^2) = rank(\mathbf{T}) = 3,$$

$$\implies nullity(\mathbf{T}^2) = nullity(\mathbf{T}) = 1$$

and $range(\mathbf{T}) \cap nullspace(\mathbf{T}) = \{0\}$

Hence proved that, the range and null space of T are disjoint.

TABLE 2: Example