Al and Machine Learning in the Discovery of New Materials

Lincoln To

https://www.technologyreview.com/s/612388/a-robot-scientist-will-dream-up-new-materials-to-advance-computing-and-fight-pollution/

Overview

- Introduction
 - Materials Science
 - Applications in Computer Science & Engineering
- Current Approach to Materials Research
- Machine Learning in Materials Discovery and Design
 - Kebotix's Approach Al & Automation
- Conclusion

Introduction

- Materials Science and Engineering
 - Interrelationships between the structures and properties of materials
 - Microstructures of materials
 - Mechanical, thermal, optical, electrical, etc
 - General paradigm
 - Inherently interdisciplinary
- Materials Genome Initiative (NIST)
- Applications in Computer Science & Engineering
 - Semiconductors
 - Integrated Circuits
 - Quantum computing

Figure 1.1 The four components of the discipline of materials science and engineering and their interrelationship.

Callister, William D., and David G. Rethwisch. Materials Science and Engineering: An Introduction. Wiley, 2018.

https://chem.libretexts.org/Textbook_Maps/General_Chemistry/Book%3A_Chem1_(Lower)/07%3A_Solids_and_Liquids/7.08 %3A_Cubic_Lattices_and_Close_Packing

Current Approach to Materials Research

- Traditional Process 7 discrete stages
 - Discovery
 - Development
 - Property Optimization
 - System Design and Integration
 - Certification
 - Manufacturing
 - Deployment

Discovery Development Optimization System Design Certification Manufacturing Deployment

The process of finding new materials using traditional methods

Current Approach to Materials Research

- Current approach is essentially a blind search
 - Limited by:
 - Time
 - Resources
 - Experimental Conditions
 - Theoretical Foundations
- Time Frame from Initial Research to First Use
 - o 10-20 years

Discovery Development Optimization System Design Certification Manufacturing Deployment

The process of finding new materials using traditional methods

Machine Learning in Materials Discovery & Design - Paradigm

- Classical Definition of Machine Learning:
 - Performance, Task, Experience (<P,T,E>)
 - Program learns from E with respect to class T and performance measure P if...
 - Performance on T, as measured by P, improves with E
- Paradigm: [Goal + Sample + Algorithm = Model]
 - Goal
 - The given problem
 - Sample
 - Population selected for study
 - Data preprocessing
 - Data cleaning
 - Feature engineering

- Algorithm
 - Machine learning algorithm
 - Support Vector Machine (SVM)
 - Artificial Neural Network (ANN)
 - Decision Tree (DT)
 - Model optimization algorithm
 - Genetic Algorithm (GA)
 - Simulated Annealing Algorithm (SAA)
 - Particle Swarm Optimization (PSO)

Machine Learning in Materials Discovery & Design - Methodology

- Step 1: Sample Construction
 - Original data collected from computational simulations & experimental measurements
 - Data Preprocessing, Feature Engineering
- Step 2: Model Building
 - Complex relationships between conditional factors and target attributes
 - Machine learning methods valuable here
 - "Core" algorithms in this step
- Step 3: Model Evaluation
 - Model must be effective on new datasets
 - Hold-out, cross validation, bootstrapping
 - Selection based on data volume

https://www.sciencedirect.com/science/article/pii/S2352847817300515?via%3Dihub

Machine Learning in Materials Discovery & Design - Algorithms

- Select appropriate machine-learning algorithm (4 categories)
 - New materials discovery:
 - Probability estimation
 - Material property prediction:
 - Regression
 - Clustering
 - Classification
- Optimization Algorithms
 - Optimize model parameters
 - o GA, SAA, PSO

https://www.sciencedirect.com/science/article/pii/S2352847817300515?via%3Dihub

Machine Learning in Materials Discovery & Design - Application

- Property Prediction
 - Regression analysis
 - Predicts macro and microscopic properties
- New Materials Discovery
 - Probabilistic models
 - Screen combinations of structures and components
 - Select material with good performance from candidate set
 - Density Functional Theory based validation
- Other Applications
 - Process Optimization
 - Design process parameters in materials synthesis

https://www.sciencedirect.com/science/article/pii/S2352847817300515?via%3Dihub

Kebotix's Approach - AI & Automation

- Kebotix Self-Driving Lab (Al and Robotics)
 - Robotics
 - Sample preparation
 - Materials property measurements
 - AI
 - Analyze experiment results
 - Formulate new hypothesis
- Methodology
 - Feed molecular models of compounds with desirable properties into neural network
 - Learns statistical representation of these properties
 - Comes up with new examples that fit this model

Conclusion

- Machine learning has extensive applications in Materials Science
 - New materials discovery
 - Material property prediction
- Machine Learning methodologies
 - Artificial Neural Networks
 - Support Vector Machine
 - Decision Tree
- Real world applications
 - Kebotix's Self-Driven Lab

Questions?