Linear Programming and DFM

Course contents:

- Linear Programming
- Integer Linear Programming
- Design for Manufacturability (DFM)

Reference

- Cormen, Introductions to Algorithms, 3rd Ed.
- Bradley, Applied Mathematical Programming
- Research papers

Linear Programming and Integer Linear Programming

Linear Programming

- Linear programming describes a broad class of optimization tasks in which both the optimization objective and the constraints are linear functions
- Linear programming consists of three parts:
 - A set of decision variables
 - An objective function
 - Maximize or minimize a given linear objective function
 - A set of constraints
 - Satisfy a set of linear inequalities involving these variables

An Example

- A boutique chocolatier has two products:
 - A product: profit \$1 per box
 - B product: profit \$6 per box
- Constraints
 - The daily demand for these exclusive chocolates is limited to at most 200 boxes of A and 300 boxes of B
 - The current workforce can produce a total of at most 400 boxes of chocolate per day
- Decision variables
 - $-x_1$: #boxes of A
 - $-x_2$: #boxes of B
- Objective Function
 - Maximize profit

Maximize	$x_1 + 6x_2$
Subject to	$x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

An Example (cont'd)

- A linear equation in x1 and x2 defines a line in the 2D plane
- A linear inequality designates a half-space
- The set of all feasible solutions of this linear program is the intersection of five half-spaces, which is a convex polygon

Maximize $x_1 + 6x_2$ Subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

An Example (cont'd)

- The Simplex method to find the optimal solution
 - Starts at a vertex, say (0, 0)
 - Repeatedly looks for an adjacent vertex (connected by an edge of the feasible region) that has better objective value

Reaching a vertex with no better neighbor, it is the optimal solution and Simplex terminates

Profit \$1900

General Linear Programs

Standard form

Maximize
$$\sum_{j=1}^{n} c_j \cdot x_j$$
 Subject to
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i, \forall i = 1, 2, ..., m$$

$$x_i \ge 0, \forall j = 1, 2, ..., n$$

- It is easy to convert a linear program into standard form
 - A minimization objective
 - Variables without nonnegativity constraints
 - Program with equality constraints
 - Program with greater-than-or-equal-to inequality constraints

Integer Linear Programming (ILP)

- The linear-programming models are continuous
 - Decision variables are allowed to be fractional
- When fraction solutions are not allowed

Maximize
$$\sum_{j=1}^n c_j \cdot x_j$$
 Subject to
$$\sum_{j=1}^n a_{ij} \cdot x_j \leq b_i, \forall \ i=1,2,\dots,m$$

$$x_j \geq 0, \forall \ j=1,2,\dots,n$$

$$x_j \text{ is integer, for some or all } j=1,2,\dots,n$$

This is called (mixed) integer linear programming

Binary Variables

- □ To model yes-no decision in an ILP formulation, use binary (0-1) variables
- An ILP where all variables are binary is a 0-1 ILP formulation
 - Usually, can be solved more efficiently than general ILP

Maximize
$$\sum_{j=1}^{n} c_j \cdot x_j$$
 Subject to
$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i, \forall i=1,2,...,m$$

$$x_j = 0 \ or \ 1, \forall j=1,2,...,n$$

TSP with 0/1-ILP

- Starting from his/her home, a salesman visits each of (n −1) other cities exactly once and return home at minimal cost
 - x_{ij} : binary variable; $x_{ij} = 1$ if he goes from city i to city j; $x_{ij} = 0$ ootherwise
 - $-c_{ij}$: the cost goes from city i to city j

Maximize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$
 Subject to
$$\sum_{i=1}^{n} x_{ij} = 1, \forall j = 1, 2, ..., n$$

$$\sum_{j=1}^{n} x_{ij} = 1, \forall i = 1, 2, ..., n$$

$$x_{ij} = 0 \text{ or } 1, \forall j = 1, 2, ..., n$$

Logical Constraints

Constraint feasibility

- To see when is a general constraint satisfied
- To relax some constraints such that they may not be satisfied

$$f(x_1, x_2, ..., x_n) \le b \qquad \qquad f(x_1, x_2, ..., x_n) \le b + By$$

$$y = \begin{cases} 0, \text{ the constraint is satisifed} \\ 1, & \text{otherwise} \end{cases}$$

- B is chosen to be large enough so that the constraint always is satisfied if y=1

Alternative constraints

At least one of two constraints must be satisfied.

$$f_1(x_1,x_2,\ldots,x_n) \leq b_1$$
 $f_1(x_1,x_2,\ldots,x_n) \leq b_1 + By_1$ $f_2(x_1,x_2,\ldots,x_n) \leq b_2$ $f_2(x_1,x_2,\ldots,x_n) \leq b_2 + By_2$ At least one of f_1 and f_2 $y_1 + y_2 \leq 1$ must be satisfied $y_1,y_2 = 0 \ or \ 1$

- B is chosen to be large enough so that the constraint always is satisfied if y_1 or $y_2 = 1$

Conditional constraint

- If Constraint 1 is satisfied, then Constraint 2 must be satisfied if $f_1(x_1, x_2, ..., x_n) > b_1$, then $f_2(x_1, x_2, ..., x_n) \leq b_2$
- The implication is not satisfied only when $f_1(x_1, x_2, ..., x_n) > b_1$, and $f_2(x_1, x_2, ..., x_n) > b_2$
- The conditional constraint can be modeled by the alternative constraint

$$f_1(x_1, x_2, ..., x_n) \le b_1$$
, and/or $f_2(x_1, x_2, ..., x_n) \le b_2$

k-fold alternatives

Must satisfy at least k of the constraints:

$$f_{j}(x_{1}, x_{2}, ..., x_{n}) \leq b_{j}, \qquad j = 1, 2, ..., p$$

$$f_{j}(x_{1}, x_{2}, ..., x_{n}) \leq b_{j} + B_{j}(1 - y_{j})$$

$$\sum_{j=1}^{p} y_{j} \geq k$$

$$y_{j} = 0 \text{ or } 1, j = 1, 2, ..., p$$

 $-y_j = 1$ if Constraint j is satisfied

Compound alternatives

 The feasible solution space consists of three disjoint regions, each specified by a system of inequalities

$$\begin{cases}
f_1(x_1, x_2) \le b_1 + B_1 y_1 \\
f_2(x_1, x_2) \le b_2 + B_2 y_1
\end{cases}$$
Region 1
$$f_3(x_1, x_2) \le b_3 + B_3 y_2 \\
f_4(x_1, x_2) \le b_4 + B_4 y_2
\end{cases}$$
Region 2
$$\begin{cases}
f_5(x_1, x_2) \le b_5 + B_5 y_3 \\
f_6(x_1, x_2) \le b_6 + B_6 y_3
\end{cases}$$
Region 3
$$\begin{cases}
f_7(x_1, x_2) \le b_7 + B_7 y_3
\end{cases}$$
Region 3
$$\begin{cases}
f_1(x_1, x_2) \le b_1 + B_2 y_2 \\
f_2 \le b_2
\end{cases}$$
Region 3
$$\begin{cases}
f_1 \le b_1 + B_2 + B_$$

 $\uparrow f_6 \leq b_6$

Representing Nonlinear Functions

Fixed costs

Frequently, the objective function for a minimization problem contains fixed costs

Minimize Ky + cx

Piecewise linear

The cost is computed by a piecewise-linear function

$$cost = 5\delta_1 + 1\delta_2 + 3\delta_3$$

$$0 \le \delta_1 \le 4$$

$$0 \le \delta_2 \le 6$$

$$0 \le \delta_3 \le 5$$

- Additional constraints
 - If $\delta_2 > 0$, $\Longrightarrow \delta_1 = 4$
 - If $\delta_3 > 0$, $\Longrightarrow \delta_2 = 6$

Piecewise linear

The cost is computed by a piecewise-linear function

$$cost = 5\delta_1 + 1\delta_2 + 3\delta_3$$

$$w_1 = \begin{cases} 1, & \text{if } \delta_1 \text{ is at its upper bound} \\ 0, & \text{otherwise} \end{cases}$$

$$w_2 = \begin{cases} 1, & \text{if } \delta_2 \text{ is at its upper bound} \\ 0, & \text{otherwise} \end{cases}$$

$$4w_1 \leq \delta_1 \leq 4$$
,

$$6w_2 \le \delta_2 \le 6w_1,$$

$$0 \le \delta_3 \le 5w_2$$
,

$$w_1, w_2 = 0 \text{ or } 1$$

- When marginal costs are increasing for a minimization problem or vice versa, no integer variable is required
 - The cost of the piecewise-linear function in the figure:

$$cost = \delta_1 + 3\delta_2 + 6\delta_3$$
$$0 \le \delta_1 \le 4$$
$$0 \le \delta_2 \le 6$$

It is always better to set $\delta_1=4$ before taking $\delta_2>0$, and to set $\delta_2=6$ before taking $\delta_3>0$

- Approximation of nonlinear functions
 - One of the most useful applications of the piecewise linear representation is for approximating nonlinear functions

Floorplanning by Mathematical Programming

- Sutanthavibul, Shragowitz, and Rosen, "An analytical approach to floorplan design and optimization," 27th DAC, 1990.
- Notation:
 - w_i , h_i : width and height of module M_i .
 - (x_i, y_i) : coordinate of the lower left corner of module M_i .
- Goal: Find a mixed integer linear programming (ILP) formulation for the floorplan design.
 - Linear constraints? Objective function?

Nonoverlap Constraints

- Two modules M_i and M_j are nonoverlap, if at least one of the following linear constraints is satisfied
 - Encode each case by p_{ij} and q_{ij}

		p_{ij}	q_{ij}
M_i to the left of M_i :	$x_i + w_i \le x_j$	Õ	Ő
M_i below M_i :	$y_i + h_i \leq y_j$	0	1
M_i to the right of M_i :	$x_i - w_j \geq x_j$	1	0
M_i above M_i :	$y_i - h_j \stackrel{\smile}{\geq} y_j$	1	1
- 3	~ ,		

Nonoverlap Constraints (cont'd)

- □ Let W, H be upper bounds on the floorplan width and height
- Introduce two 0, 1 variables p_{ij} and q_{ij} to denote that one of the following inequalities is enforced
 - = E.g., p_{ij} = 0, q_{ij} = 1 ⇒ y_i + h_i ≤ y_j is satisfied

$$x_i + w_i \le x_j + W(p_{ij} + q_{ij})$$

 $y_i + h_i \le y_j + H(1 + p_{ij} - q_{ij})$
 $x_i - w_j \ge x_j - W(1 - p_{ij} + q_{ij})$
 $y_i - h_j \ge y_j - H(2 - p_{ij} - q_{ij})$

Cost Function & Constraints

- Minimize Area = xy, nonlinear! (x, y: width and height of the resulting floorplan)
- How to fix?
 - Fix the width W and minimize the height y!
- Four types of constraints:
 - 1. no two modules overlap $(\forall i, j: 1 \le i \le j \le n)$;
 - 2. each module is enclosed within a rectangle of width W and height $H(x_i + w_i \le W, y_i + h_i \le H, 1 \le i \le n)$;
 - 3. $x_i \ge 0$, $y_i \ge 0$, $1 \le i \le n$;
 - 4. p_{ii} , $q_{ij} \in \{0, 1\}$.
- \square w_i , h_i are known.

Mixed ILP for Floorplanning

Mixed ILP for the floorplanning problem with rigid, fixed modules.

$$\begin{aligned} & \min \quad y \\ & subject \ to \end{aligned} \\ & x_i + w_i \leq W, \qquad 1 \leq i \leq n \\ & y_i + h_i \leq y, \qquad 1 \leq i \leq n \end{aligned} \\ & x_i + w_i \leq x_j + W(p_{ij} + q_{ij}), \qquad 1 \leq i < j \leq n \end{aligned} \\ & y_i + h_i \leq y_j + H(1 + p_{ij} - q_{ij}), \qquad 1 \leq i < j \leq n \end{aligned} \\ & x_i - w_j \geq x_j - W(1 - p_{ij} + q_{ij}), \qquad 1 \leq i < j \leq n \end{aligned} \\ & x_i - w_j \geq y_j - H(2 - p_{ij} - q_{ij}), \qquad 1 \leq i < j \leq n \end{aligned} \\ & y_i - h_j \geq y_j - H(2 - p_{ij} - q_{ij}), \qquad 1 \leq i < j \leq n \end{aligned}$$

Popular LP software: LINDO, lp_solve, CPLEX, etc.

Design for Manufacturability (DFM)

Basic Lithography System

Subwavelength Lithography Gap

Printed feature size is smaller than the wavelength of the light shining through the mask

157nm will not be feasible!! (go for EUV!!)

Optical Effect

- Ideal lithography: light passes through features by a straight path
- Real lithography: light behaves like waves when feature size is close to wavelength

Optical Effect (cont'd)

Real lithography:

Simulation Results

Diffraction pattern of a single aperture

Bridged diffraction pattern

Double-Patterning Lithography (DPL)

- Decomposes the critical pattern into two sub-patterns and then uses two masks to form two sub-patterns
 - Principle: pitch relaxation

critical pattern (advanced technology) sub-pattern #1

sub-pattern #2 (mature technology) (mature technology)

Process of DPL

 Use two times of litho-etching process (thus is called as LELE double patterning)

Layout Decomposition (LD)

- Layout decomposition: assign each pattern to one of the multiple masks while conflicts are minimized
 - Transform an input layout into a conflict graph
 - Two-coloring the conflict graph corresponding to DPL LD
 - Odd cycles are uncolorable with two colors
 - Stitch insertion can be used to resolve conflicts

< min_{CS} (minimum coloring spacing)

- Conflict edge
- --- Stitch edge

Triple Patterning Lithography (TPL)

 With the advance of process nodes, three masks are required and thus TPL

 Layout decomposition for TPL is basically the same as DPL with higher problem complexity

Complexity of Layout Decomposition

- The complexity of graph coloring problem with k masks
 - 2 coloring can be done in polynomial (e.g., with BFS)
 - -k coloring when k > 2 is NP-complete
 - -k coloring when $k \geq 2$ is NP-complete if stitch insertion is used
- The objectives of DPL/TPL LD
 - Minimize #coloring conflicts between each pair of patterns within the minimum coloring spacing
 - Minimize #stitches inserted on patterns
 - Conflicts should have higher priority to be minimized

ILP Notations for DPL

Notations for DPL

- CE: a set of conflict edges
- SE: a set of stitch edges
- V: a set of vertices representing layout patterns
- $-v_i$: the *i*-th vertex
- e_{ij} : an edge connecting v_i and v_j

- c_{ij} : binary variable; $c_{ij}=1$ if a coloring conflict exists between v_i and v_j ; $c_{ij}=0$ otherwise
- s_{ij} : binary variable; $s_{ij} = 1$ if a stitch is inserted between v_i and v_j ; $s_{ij} = 0$ otherwise

ILP Formulation for DPL LD

Objective

$$\sum_{e_{ij} \in CE} c_{ij} + \alpha \times \sum_{e_{ij} \in SE} s_{ij}$$

$$\begin{aligned} x_i + x_j &\leq 1 + c_{ij}, \forall e_{ij} \in CE \\ (1 - x_i) + (1 - x_j) &\leq 1 + c_{ij}, \forall e_{ij} \in CE \\ x_i - x_j &\leq s_{ij}, \forall e_{ij} \in SE \\ x_j - x_i &\leq s_{ij}, \forall e_{ij} \in SE \\ x_i &= 0 \text{ or } 1, \forall v_i \in V \end{aligned}$$

ILP Notations for TPL

Notations for TPL

- CE: a set of conflict edges
- SE: a set of stitch edges
- V: a set of vertices representing layout patterns
- $-v_i$: the *i*-th vertex
- e_{ij} : an edge connecting v_i and v_j

- s_{ij} : binary variable; $s_{ij} = 1$ if a stitch is inserted between v_i and v_j
- x_{i1}, x_{i2} : binary variable indicating the color of v_i ; $(x_{i1}, x_{i2}) = (0.0)/(0.1)/(0.1)$ /(1,0) means v_i is assigned to the first/second/third color (mask)
- c_{ij1} , c_{ij2} : binary variable; $c_{ijk} = 1$ if $x_{ik} = x_{jk}$; $c_{ijk} = 0$ otherwise
- s_{ij1} , s_{ij2} : binary variable; $s_{ijk} = 1$ if $x_{ik} \neq x_{jk}$; $s_{ijk} = 0$ otherwise

ILP Formulation for TPL LD

Objective

$$\sum_{e_{ij} \in CE} c_{ij} + \alpha \times \sum_{e_{ij} \in SE} s_{ij}$$

Constraint for the three available colors

$$x_{i1} + x_{i2} \le 1, \forall v_i \in V$$

 $x_{i1}, x_{i2} = 0 \text{ or } 1, \forall v_i \in V$

Constraints for conflict detection

$$x_{i1} + x_{j1} \le 1 + c_{ij1}, \forall e_{ij} \in CE$$
 $(1 - x_{i1}) + (1 - x_{j1}) \le 1 + c_{ij1}, \forall e_{ij} \in CE$
 $x_{i2} + x_{j2} \le 1 + c_{ij2}, \forall e_{ij} \in CE$
 $(1 - x_{i2}) + (1 - x_{j2}) \le 1 + c_{ij2}, \forall e_{ij} \in CE$
 $c_{ij1} + c_{ij2} \le 1 + c_{ij}, \forall e_{ij} \in CE$

ILP Formulation for TPL LD (cont'd)

Objective

$$\sum_{e_{ij} \in CE} c_{ij} + \alpha \times \sum_{e_{ij} \in SE} s_{ij}$$

Constraints for stitch detection

$$x_{i1} - x_{j1} \le s_{ij1}, \forall e_{ij} \in SE$$

$$x_{j1} - x_{i1} \le s_{ij1}, \forall e_{ij} \in SE$$

$$x_{i2} - x_{j2} \le s_{ij2}, \forall e_{ij} \in SE$$

$$x_{j2} - x_{i2} \le s_{ij2}, \forall e_{ij} \in SE$$

$$s_{ij} \ge s_{ij1}, \forall e_{ij} \in SE$$

$$s_{ij} \ge s_{ij2}, \forall e_{ij} \in SE$$

