Outline

1 Related works

- Existing works rely on visibility graph (VG)
 - any pair of visible points has an edge
- Run shortest path algorithm on *VG* (e.g. *Dijkstra*)
- Building global VG can be expensive $O(V^2)$

(V: the number of vertex)

- Existing works rely on visibility graph (VG)
 - any pair of visible points has an edge
- Run shortest path algorithm on VG (e.g. Dijkstra)
- Building global VG can be expensive $O(V^2)$

(V: the number of vertex)

- Existing works rely on visibility graph (VG)
 - any pair of visible points has an edge
- Run shortest path algorithm on VG (e.g. Dijkstra)
- Building global VG can be expensive - O(V²)
 - (V: the number of vertex)

- Existing works rely on visibility graph (VG)
 - any pair of visible points has an edge
- Run shortest path algorithm on VG (e.g. Dijkstra)
- Building global VG can be expensive $O(V^2)$

(V: the number of vertex)

- Global VG: expansive
- Only consider query related area?
- Zhang, EDBT 2004: Local Visibility Graph (LVG)

- Global VG: expansive
- Only consider query related area?
- Zhang, EDBT 2004: Local Visibility Graph (LVG)

- Global VG: expansive
- Only consider query related area?
- Zhang, EDBT 2004: Local Visibility Graph (LVG)

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - build VG
 - incrementally
 - update shortest
 - _
- Terminate when $r > d_0(a, t)$

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 build VG
 incrementally
 update shortest
- Terminate when $r > d_0(a, t)$

- Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 build VG
 incrementally
 update shortest
- Terminate when $r > d_0(a, t)$

- \blacksquare Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 build VG
 incrementally
 update shortest
- Terminate when $r > d_0(a, t)$

- \blacksquare Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - build VG incrementally
 - update shortest path
- Terminate when $r > d_a(a, t)$

- \blacksquare Given: q, t
- Start with a small VG in circle(q, r)
 - $r = d_e(q, t)$
- Compute shortest path on current VG
- Enlarge the circle
 - build VG incrementally
 - update shortest path
- Terminate when $r > d_r(a, t)$

- \blacksquare Given: q, t
- Start with a small VG in circle(q, r)
 - $r = d_e(q, t)$
- Compute shortest path on current VG
- Enlarge the circle
 - build VG incrementally
 - update shortest path
- Terminate when $r > d_1(a, t)$

- \blacksquare Given: q, t
- Start with a small VG in circle(q, r)

$$r = d_e(q, t)$$

- Compute shortest path on current VG
- Enlarge the circle
 - build VG incrementally
 - update shortest path
- Terminate when $r > d_o(q, t)$

