Speaker recognition using deep neural networks

Bajibabu Bollepalli

Department of Signal Processing and Acoustics Aalto University

June 14, 2016

Outline

- Renaissance of neural networks
- DNNs role in speaker recognition (SR)
- Extraction of i-vectors in standard SR framework
- i-vector extraction using DNNs
- Results
- Pros and cons using DNNs in SR
- Other strategies
- References

Renaissance of neural networks – Deep Neural Networks (DNNs)

- Deep learning's successes can be explained by three factors:
 - 1. Advances in computer hardware and software (e.g. GPUs)
 - 2. Abundance of data
 - 3. Complex models with massive number of parameters, even if they are unidentifiable and uninterpretable
- ▶ DNN's success in ASR [1] draws attention in speech research community
 - Outperformed the Gaussian Mixture Models in acoustic modelling
 - ► Appearance of "deep" keyword in the proceedings of ICASSP- 2011: 13, 2012: 18, 2013*: 61, 2014: 102, 2015: 111, 2016: 149

DNNs role in speaker recognition (SR)

DNNs are employed in two ways in SR

- 1. Direct way [2]
 - ► A DNN is trained as a classifier for the intended recognition task directly to discriminate between speakers for SR
- 2. Indirect way [3]
 - A DNN is possibly trained for a different purpose to extract data that is then used to train a secondary classifier for the intended recognition task
 - Extract frame-level features or accumulate multi-modal statistics

Most of the exist studies applied DNNs in indirect way. Thus the focus of this presentation is on the same.

DNNs in indirect way

Figure: Example of DNN architecture [4].

DNNs are used to extract frame-level bottleneck and/or posterior features which further processed in later steps.

A typical speaker recognition system

Figure: Block Diagram of a typical speaker recognition system.

- ► In frontend:
 - VAD; Mean-variance normalization
 - Append delta and delta-delta features
- In frame alignments:
 - Estimate posteriors for each frame based on an assumed model
 - Normally a multi-variate Gaussian Model is used
- In i-vector extraction:
 - Estimate total variability matrix with posteriors and SR features
- In backend:
 - Mean and length normalization on i-vectors
 - Compute similarity score between i-vectors by Probabilistic Linear Discriminant Analysis (PLDA)

i-vector extraction

Figure: Block Diagram of GMM-UBM speaker recognition system.

- Represent a full utterance with a low dimensional vector
 - ▶ E.g., $300x60 \rightarrow 200$ dimensional vector
- ► Retain both speaker- and channel-dependent information
- Suppose x is a given speech utterance and it contains T feature vectors $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T)$.
 - ightharpoonup $\mathbf{x}_t \sim p(\mathbf{x}, \, \theta)$
 - Following stats are needed to extract i-vector

$$\gamma_t^{(\theta)} = p(\theta|\mathbf{x}_t) \quad \text{(frame posterior)}$$

$$N_x^{(\theta)} = \sum_t \gamma_t^{(\theta)} \quad \text{(zero order statistics)}$$

$$F_x^{(\theta)} = \sum_t \gamma_t^{(\theta)} \mathbf{x}_t \quad \text{(first order statistics)}$$

$$(1)$$

Frame alignments with GMM-UBM

Figure: Block Diagram of GMM-UBM speaker recognition system.

GMM-UBM

- Gaussian Mixture Model Universal Background Model
- ► Typically contain 1024 or 2048 Gaussians
- Trained on tens or hundreds hours of speech from a large number of speakers
- Gender dependent or independent
- ▶ EM algorithm is used to estimate the GMM parameters
- Generally defines the speaker manifold

GMM-UBM based i-vector extraction

Figure: Block Diagram of GMM-UBM speaker recognition system.

In this model

$$\mathbf{x}_t \sim \sum_{k=1}^K \gamma_t^{(k)} N(\mu_k + \mathbf{T}_k \boldsymbol{\omega}, \boldsymbol{\Sigma}_k)$$
 (2)

- ▶ K is the number of Gaussians
- $\triangleright \mu_k$ and Σ_k are mean and covariance of k-th Gaussian in UBM
- T_k is a low-rank rectangular matrix also called as total variability matrix
- \blacktriangleright ω is a latent-variable drawn from a standard normal distribution N(0, I)
- The i-vector $\phi_{\mathbf{x}}$ of the utterance \mathbf{x} is the maximum a posterior (MAP) point estimate of the latent vector $\boldsymbol{\omega}$.

DNN based i-vector extraction

Figure: Block Diagram of DNN based speaker recognition system.

DNN

- Typically the DNN is trained for ASR task
- ► Inputs are ASR specific features and outputs are senones (tied triphone states)
- Need a transcribed data for training (supervision)
- ► No standard architecture settings

Bottleneck (BN) features based i-vector extraction

Figure: Block Diagram of BN-UBM based speaker recognition system.

- Typically BN layer has fewer nodes then input layer
- BN layer with linear activation is very much like a PCA or LDA
- Extract using the same DNN trained for ASR task
- ► A GMM-UBM is trained with BN features to get frame alignments
- Have the tendency to suppress the "unimportant" speaker related information
- ► The BN features trained with GMM can depict the phonetic space more accurately

Results

System	Database	EER (%)	Rel. Imp (%)
UBM-EM(4096)	NIST SRE'12 C2	1.81	- [3]
DNN(3450)	"	1.39	23
UBM-EM(4096)	NIST SRE'12 C5	2.55	- [3]
DNN(3450)	"	1.92	25
UBM-EM(2048)	NIST SRE'10 C5	2.91	- [5]
DNN(2227)	"	2.58	11
BN-UBM(2227)	"	2.28	22

Table: Equal error-rate (EER) comparison of gender dependent models on differnt datasets.

For my course project, I am replicating the demo shared in Kaldi "egs/sre10/v2/"

Pros and cons

Pros

- The UBM-defined classes and posteriors have no inherent meaning
- Each Gaussian in UBM may cover more than one phoneme or part of phoneme
- DNNs success in ASR i.e improvements in word error rate compared to GMMs
- DNNs trained with senones capture the speaker specific pronunciations

Cons

- Senones are dependent on language
- Need huge amount of computational resources
- ► The recognition performance greatly depends on the data used for training the DNN

Other strategies

- Convolutional neural networks (CNN) [6]
 - Showed better performance in noisy conditions in both ASR and SR
- Time delay neural networks (TDNN) [7]
 - ▶ It is an extended MLP architecture
 - Uses sequential information in speech
- May be recurrent neural newtorks (RNNs)?
 - No papers yet
- Can we use autoencoders to extract BN features?

References I

Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. *IEEE Signal Processing Magazine*, vol. 29.6, pp. 82-97, 2012.

Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez Moreno, and Javier Gonzalez-Dominguez.

Deep neural networks for small footprint text-dependent speaker verification.

ICASSP, pp. 4052-4056, 2014.

Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell McLaren.

A novel scheme for speaker recognition using a phonetically-aware deep neural network.

ICASSP, pp. 1695-1699, 2014.

References II

IEEE Signal Processing Letters, vol. 22.10, pp. 1671-1675, 2015.

Yao Tian, Meng Cai, Liang He, Jia Liu.
Investigation of bottleneck features and multilingual deep neural networks for speaker verification.

Interspeech, Dresden, Germany, pp. 1151-1155, 2015.

Mitchell McLaren, Yun Lei, Nicolas Scheffer, Luciana Ferrer Application of convolutional neural networks to speaker recognition in noisy conditions.

Interspeech, Singapore, pp. 686-690 2014.

References III

David Snyder, Daniel Garcia-Romero and Daniel Povey.

Time delay deep neural network-based universal background models for speaker recognition.

IEEE ASRU, pp. 92-97, 2015.