Diamonds ML R Notebook

Diamonds ML R Notebook Robert M. Taylor, PhD

This notebook is to demonstrate Exploratory Data Analysis (EDA), visualizations, and machine learning in R on the diamonds dataset that is available in R. "Price" will be our target.s

I'll first import the libraries I'll use.

```
library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##
     method from
##
     +.gg
            ggplot2
library(rpart)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(tidyr)
library(modelr)
Load the dataset
data(diamonds)
```

I'll just look at/inspect the dataset first. This is a clean data set so data cleaning will not be needed or demonstrated in this notebook.

```
head(diamonds)
```

```
## # A tibble: 6 x 10
                     color clarity depth table price
##
     carat cut
                                                                У
     <dbl> <ord>
                     <ord> <ord>
##
                                    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.23 Ideal
                     Ε
                           SI2
                                     61.5
                                             55
                                                  326
                                                       3.95
                                                             3.98
                                                                   2.43
## 2 0.21 Premium
                     Ε
                           SI1
                                     59.8
                                             61
                                                  326
                                                       3.89
                                                             3.84 2.31
                     Ε
                           VS1
                                     56.9
                                             65
                                                       4.05
                                                             4.07 2.31
## 3 0.23 Good
                                                  327
## 4 0.290 Premium
                     Ι
                           VS2
                                     62.4
                                             58
                                                  334
                                                       4.2
                                                              4.23 2.63
## 5 0.31
           Good
                     J
                           SI2
                                     63.3
                                             58
                                                  335
                                                       4.34
                                                             4.35
                                                                   2.75
## 6 0.24 Very Good J
                           VVS2
                                     62.8
                                             57
                                                  336
                                                       3.94
                                                             3.96 2.48
```

What are the dimensions of the dataset?

```
dim(diamonds)
```

[1] 53940 10

So there are 53,940 rows and 10 feature columns.

I'll now get 1) a summary and 2) the structure of the data...

summary(diamonds)

```
##
        carat
                              cut
                                                                           depth
                                          color
                                                        clarity
##
    Min.
            :0.2000
                      Fair
                                 : 1610
                                          D: 6775
                                                     SI1
                                                             :13065
                                                                      Min.
                                                                              :43.00
                                                             :12258
    1st Qu.:0.4000
                                : 4906
                                          E: 9797
##
                      Good
                                                     VS2
                                                                       1st Qu.:61.00
##
    Median :0.7000
                      Very Good: 12082
                                          F: 9542
                                                     SI2
                                                             : 9194
                                                                      Median :61.80
##
    Mean
            :0.7979
                      Premium :13791
                                          G:11292
                                                     VS1
                                                             : 8171
                                                                      Mean
                                                                              :61.75
    3rd Qu.:1.0400
                                :21551
                                          H: 8304
                                                     VVS2
                                                             : 5066
                                                                       3rd Qu.:62.50
                       Ideal
                                          I: 5422
                                                     VVS1
                                                             : 3655
##
    Max.
            :5.0100
                                                                      Max.
                                                                              :79.00
                                                     (Other): 2531
##
                                          J: 2808
##
        table
                          price
                                             Х
##
    Min.
            :43.00
                     Min.
                             :
                                326
                                       Min.
                                               : 0.000
                                                         Min.
                                                                 : 0.000
##
    1st Qu.:56.00
                     1st Qu.:
                                950
                                       1st Qu.: 4.710
                                                         1st Qu.: 4.720
##
    Median :57.00
                     Median: 2401
                                       Median : 5.700
                                                         Median : 5.710
##
            :57.46
                             : 3933
                                               : 5.731
                                                                 : 5.735
    Mean
                     Mean
                                       Mean
                                                         Mean
##
    3rd Qu.:59.00
                     3rd Qu.: 5324
                                       3rd Qu.: 6.540
                                                         3rd Qu.: 6.540
##
    Max.
            :95.00
                     Max.
                             :18823
                                       Max.
                                               :10.740
                                                         Max.
                                                                 :58.900
##
##
          z
##
    Min.
            : 0.000
##
    1st Qu.: 2.910
##
   Median : 3.530
##
   Mean
            : 3.539
    3rd Qu.: 4.040
##
##
    Max.
            :31.800
##
```

I see that there is an (Other) variable for Clarity. I want to look at that closer.

unique(diamonds\$clarity)

```
## [1] SI2 SI1 VS1 VS2 VVS2 VVS1 I1 IF
## Levels: I1 < SI2 < SI1 < VS2 < VS1 < VVS2 < VVS1 < IF
```

So, everything appears good. The summary has just grouped the I1 and IF clarities in the count values in the summary table above.

We also see that the price ranges from a minimium price of \$326 to a max of \$18,823

I'll go ahead and look at the structure of the dataset...

str(diamonds)

```
## tibble [53,940 x 10] (S3: tbl_df/tbl/data.frame)
##
   $ carat : num [1:53940] 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
##
             : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
   $ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<...: 2 2 2 6 7 7 6 5 2 5 ...
   $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...</pre>
##
##
   $ depth : num [1:53940] 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
   $ table : num [1:53940] 55 61 65 58 58 57 57 55 61 61 ...
   $ price : int [1:53940] 326 326 327 334 335 336 336 337 337 338 ...
##
##
             : num [1:53940] 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
             : num [1:53940] 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
   $у
```

\$ z : num [1:53940] 2.43 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...

I'll now look at caret vs price using ggplot2

```
g <- ggplot(diamonds, aes(x=carat, y=price))
g +
  geom_point(aes(color=clarity)) +
  facet_grid(cut ~ clarity)+
  theme_bw()</pre>
```


I'll use a boxplot to look at cut vs. price.

We can also look at the carat vs. color vs. price

```
g <- ggplot(diamonds, aes(x=carat, y=price))
g +
geom_point(aes(color = color))</pre>
```


now look at the distribution of carat and price.

```
g <- ggplot(diamonds)
g +
geom_density(aes(x=carat), fill="gray50")</pre>
```



```
g <- ggplot(diamonds)
g +
geom_density(aes(x=price), fill="gray")</pre>
```


So, thus far, we can now see that most diamonds are < 2 carats and $< \sim 2500 (although a second peak can be seen around \$4000).

M.L.

text(fit, cex=1)

DECISION TREE BUILD MODEL I'll first use a decision tree model to predict the diamond prices.

```
colnames(diamonds)

## [1] "carat" "cut" "color" "clarity" "depth" "table" "price"

## [8] "x" "y" "z"

SPLIT THE DATA (70/30 split)

splitData <- resample_partition(diamonds, c(test=0.3, train=0.7))</pre>
```

How many cases are in the test and training sets?

```
lapply(splitData, dim)

## $test

## [1] 16181    10

##

## $train

## [1] 37759    10

# train the tree

fit <- rpart(price ~ carat + cut + color + clarity + depth + table + x + y + z, data = splitData$train)

#plot the regression tree

plot(fit, uniform=TRUE)</pre>
```


 \dots What if we reomive the x, y, z, data, and table features? These above group are features that are not easily available to the common consumer, like me shopping for a new ring. Therefore, I'll see how the fit is with only the readily available features, carat, cut, color, and clarity.

```
# train the tree
fit2 <- rpart(price ~ carat + cut + color + clarity, data = splitData$train)
#plot the regression tree
plot(fit2, uniform=TRUE)
text(fit2, cex=1)</pre>
```


I'LL USE THE 'fit2' MODEL SINCE IT MAKES MORE SENSE FOR MY ENGAGEMENT RING SHOPPING SINCE CARAET, CLARITY, ETC ARE THINGS I CAN EASILY FIND OUT FROM A SELLAR, WHEREAS 'x, y, and z'ARE NOT.

DECISION TREE MODEL PREDICT DIAMOND PRICES Now, that I've generated a decision tree model, I'll now use it to predict prices.

DECISION TREE MODEL EVALUATION

MAE (Mean absolute Error)

```
maeTree <-mae(model = fit2, data=splitData$test)
maeTree</pre>
```

[1] 835.146

I'll build a function to help compare MAE scores from different values for the tree depth (maxdepth)...

```
# A function to get the maximum average error for a given max depth. You should pass in
# the target as the name of the target colum and the predictors as vector where each
# item in the vector is the name of the column.

get_mae <- function(maxdepth, target, predictors, training_data, testing_data){
    #turn the predictors & target into a formula to pass to rpart
    predictors <- paste(predictors, collapse='+')
    formula <- as.formula(paste(target, "~", predictors, sep = ""))
    #build our model
    model <- rpart(formula, data=training_data, control = rpart.control(maxdepth = maxdepth))
    #get the mae
    mae <- mae(model, testing_data)
    return(mae)
}</pre>
```

```
#Feed in the target and predictors
target <- "price"
predictors <- c("carat", "cut", "color", "clarity")</pre>
# get the MaE for the maxdepths between 1 and 10
for(i in 1:10){
 mae <- get_mae(maxdepth = i, target = target, predictors = predictors,</pre>
                 training_data = splitData$train, testing_data = splitData$test)
 print(glue::glue("Maxdepth: ",i, "\t MAE: ", mae))
## Maxdepth: 1
                 MAE: 1717.50055497977
## Maxdepth: 2 MAE: 1042.80304167472
## Maxdepth: 3 MAE: 891.329899980287
## Maxdepth: 4 MAE: 865.382423661785
                 MAE: 835.146013826217
## Maxdepth: 5
## Maxdepth: 6 MAE: 835.146013826217
## Maxdepth: 7
                 MAE: 835.146013826217
## Maxdepth: 8
                 MAE: 835.146013826217
## Maxdepth: 9 MAE: 835.146013826217
## Maxdepth: 10 MAE: 835.146013826217
RANDOM FOREST
fitRandomForest <- randomForest(price ~ carat + cut + color + clarity, data=splitData$train)</pre>
maeForest <- mae(model = fitRandomForest, data=splitData$test)</pre>
maeForest
## [1] 899.502
fitRandomForest
## Call:
## randomForest(formula = price ~ carat + cut + color + clarity,
                                                                        data = splitData$train)
                  Type of random forest: regression
##
##
                        Number of trees: 500
## No. of variables tried at each split: 1
##
##
             Mean of squared residuals: 1794744
##
                       % Var explained: 88.66
LINEAR MODEL
fitLinear <- lm(price ~ carat + cut + color + clarity, data=splitData$train)
maeLinear <- mae(model = fitLinear, data=splitData$test)</pre>
maeLinear
## [1] 808.8377
summary(fitLinear)
##
## Call:
## lm(formula = price ~ carat + cut + color + clarity, data = splitData$train)
##
## Residuals:
##
       Min
                  1Q Median
                                    3Q
                                            Max
```

```
## -12621.1 -676.8
                        -195.9
                                  461.5 10403.2
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3707.097
                              16.598 -223.346 < 2e-16 ***
                              14.342 619.006 < 2e-16 ***
## carat
                8877.777
## cut.L
                                       29.327 < 2e-16 ***
                704.988
                              24.039
                              21.178 -15.455 < 2e-16 ***
## cut.Q
                -327.297
## cut.C
                 173.304
                              18.462
                                        9.387
                                               < 2e-16 ***
## cut^4
                   9.332
                              14.813
                                        0.630
                                                  0.529
## color.L
               -1895.714
                              21.060 -90.016 < 2e-16 ***
                              19.177 -32.061 < 2e-16 ***
## color.Q
                -614.831
                                      -9.271 < 2e-16 ***
## color.C
                -166.173
                              17.923
## color^4
                  17.897
                              16.476
                                      1.086
                                                  0.277
## color^5
                 -92.515
                              15.561
                                       -5.945 2.78e-09 ***
## color^6
                 -58.799
                              14.159
                                       -4.153 3.29e-05 ***
## clarity.L
                4218.951
                              36.418 115.848 < 2e-16 ***
## clarity.Q
               -1840.129
                              33.996 -54.128
                                               < 2e-16 ***
                                       31.854 < 2e-16 ***
## clarity.C
                 928.774
                              29.157
## clarity^4
                -366.856
                              23.360 -15.704
                                               < 2e-16 ***
## clarity<sup>5</sup>
                 193.423
                              19.140
                                      10.106 < 2e-16 ***
## clarity^6
                 -11.405
                              16.720
                                       -0.682
                                                  0.495
                 119.332
                              14.726
                                        8.104 5.49e-16 ***
## clarity^7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1152 on 37740 degrees of freedom
## Multiple R-squared: 0.9162, Adjusted R-squared: 0.9161
## F-statistic: 2.291e+04 on 18 and 37740 DF, p-value: < 2.2e-16
coef(fitLinear)
    (Intercept)
                                                                              cut<sup>4</sup>
                        carat
                                      cut.L
                                                   cut.Q
                                                                 cut.C
## -3707.096881 8877.777180
                                704.988263 -327.296838
                                                           173.303738
                                                                           9.332101
##
        color.L
                      color.Q
                                   color.C
                                                 color<sup>4</sup>
                                                               color<sup>5</sup>
                                                                            color<sup>6</sup>
## -1895.713745 -614.831194
                               -166.173302
                                               17.896622
                                                           -92.515227
                                                                         -58.799452
                    clarity.Q
                                 clarity.C
                                               clarity<sup>4</sup>
                                                            clarity<sup>5</sup>
                                                                          clarity<sup>6</sup>
      clarity.L
##
    4218.950602 -1840.128996
                                928.774461 -366.856191
                                                                         -11.404789
                                                            193.423086
##
      clarity<sup>7</sup>
##
     119.332028
LOGISTIC REGRESSION
fitLogistic <- glm(price ~ carat + cut + color + clarity, data=splitData$train)
maeLogistic <- mae(model = fitLogistic, data=splitData$test)</pre>
maeLogistic
## [1] 808.8377
summary(fitLogistic)
##
## Call:
## glm(formula = price ~ carat + cut + color + clarity, data = splitData$train)
##
## Deviance Residuals:
##
        Min
                   1Q
                          Median
                                         3Q
                                                  Max
```

```
## -12621.1
              -676.8
                        -195.9
                                   461.5
                                           10403.2
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3707.097
                            16.598 -223.346 < 2e-16 ***
                            14.342 619.006 < 2e-16 ***
## carat
              8877.777
## cut.L
                                    29.327 < 2e-16 ***
               704.988
                            24.039
                            21.178 -15.455 < 2e-16 ***
## cut.Q
              -327.297
              173.304
## cut.C
                            18.462
                                      9.387
                                            < 2e-16 ***
## cut^4
                  9.332
                            14.813
                                      0.630
                                               0.529
## color.L
             -1895.714
                            21.060 -90.016 < 2e-16 ***
                            19.177 -32.061 < 2e-16 ***
## color.Q
               -614.831
## color.C
               -166.173
                            17.923
                                    -9.271 < 2e-16 ***
## color^4
                 17.897
                            16.476
                                    1.086
                                               0.277
## color<sup>5</sup>
                -92.515
                            15.561
                                     -5.945 2.78e-09 ***
## color^6
                -58.799
                            14.159
                                    -4.153 3.29e-05 ***
## clarity.L
               4218.951
                            36.418 115.848 < 2e-16 ***
## clarity.Q
              -1840.129
                            33.996 -54.128 < 2e-16 ***
                928.774
                                     31.854 < 2e-16 ***
## clarity.C
                            29.157
## clarity^4
               -366.856
                            23.360 -15.704
                                            < 2e-16 ***
## clarity^5
                193.423
                            19.140
                                    10.106 < 2e-16 ***
## clarity^6
                -11.405
                            16.720
                                     -0.682
                                               0.495
                119.332
                            14.726
                                      8.104 5.49e-16 ***
## clarity^7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 1327262)
##
##
      Null deviance: 5.9747e+11 on 37758 degrees of freedom
## Residual deviance: 5.0091e+10 on 37740 degrees of freedom
## AIC: 639527
##
## Number of Fisher Scoring iterations: 2
REPORT GENERATION
print('REPORT')
## [1] "REPORT"
print("Decision Tree")
## [1] "Decision Tree"
print(maeTree)
## [1] 835.146
print("Random Forest")
## [1] "Random Forest"
print(maeForest)
## [1] 899.502
print("Linear Regression")
## [1] "Linear Regression"
```

```
print(maeLinear)

## [1] 808.8377

print("Logistic Regression")

## [1] "Logistic Regression"

print(maeLogistic)

## [1] 808.8377
```