

Cvičenie č. 4

FLUORESCENČNÁ A KONFOKÁLNA MIKROSKOPIA

- fluorescenčná mikroskopia → aplikácia optickej (svetelnej) mikroskopie
 → na zobrazenie pozorovaného objektu využíva fluorescenciu alebo fosforescenciu
- fluorescenčný mikroskop → svetelný mikroskop prispôsobený na snímanie fluorescenčného signálu

Typy mikroskopov:

→ FLUORESCENČNÉ = EPIFLUORESCENČNÉ

- **→ KONFOKÁLNE**
- **→ SUPER-REZOLUČNÉ**

••••

základná zostava je rovnaká

FLUORESCENCIA A FOSFORENCIA

- formy fotoluminiscencie = samovoľné žiarenie látok po ich ožiarení (osvetlení)
 - → podmienka ⇒ pôsobenie elektromagnetického žiarenia
 - → priebeh: ABSORBCIA FOTÓNA (elektromagnetické žiarenie určitej λ a E)

EXCITÁCIA ELEKTRÓNOV ATÓMU (vyššia energetická úroveň)

NÁVRAT DO ZÁKLADNÉHO ENERGETICKÉHO STAVU →

- **→ UVOĽNENIE E → EMISIA FOTÓNA = ŽIARENIE**
- → emitované žiarenie → väčšinou vyššia λ a nižšia E ako absorbované žiarenie

FLUORESCENCIA A FOSFORENCIA

- FLUORESCENCIA

 k emisii žiarenia dochádza okamžite po excitácii (návrat e z excitovaného do základného stavu prebieha s minimálnym časovým posunom)
 - → zaniká okamžite s odstránením zdroja excitácie (pod 10-8 s)

- FOSFORESCENCIA → k emisii žiarenia nedochádza okamžite po excitácii (pri excitácii dochádza k zmene spinu e = nie je možný okamžitý návrat do základného stavu)
 - → nezaniká s odstránením zdroja excitácie → dlhší dosvit (nad 10⁻⁸ s až niekoľko minút, hodín, dní)

STOKESOV POSUN

 λ emitovaného žiarenia > λ excitačného žiarenia

Stokesov posun ⇒ rozdiel (posun) medzi λ excitačného maxima a λ emisného maxima fluorochrómu

 λ (em.) > λ (ex.)

FLUOROCHRÓMY

- fluorochrómy (fluorofóry) → látky excitovateľné svetlom určitej λ, ktoré sú schopné pri návrate do základného stavu emitovať žiarenie vyššej λ
- fluorescencia fluorochrómov:
 - **⇒ autofluorescencia** → emisia svetla molekulami, ktoré sú súčasťou vnútrobunkových štruktúr a organel
 - → NAD(P)H, chlorofyl, kolagén, tyrozín, tryptofán, melanín, . . .
 - **♦ fluorescencia syntetických farbív** → emisia svetla syntetickými látkami, ktoré sa viažu sa na bunkové štruktúry, organely a makromolekuly

FLUOROCHROME	EX.	EM.	APPLICATION
Indo-1 (unbound)	335	490	Calcium Flux
Indo-1 (Bound to Calcium)	335	405	Calcium Flux
Hoechst 33342	350	470	DNA Analysis
DAPI	359	468	DNA Analysis
Alexa350	350	442	Phenotyping
PerCP	470	670	Phenotyping
R-Phycoerythrin	480	578	Phenotyping
Green Fluorescent Protein (GFP)	488	510	Reporter molecule
YO-PRO-1	488	510	Apoptosis analysis
Fluoroscein diacetate	488	530	Cell viability
Alexa488	488	530	Phenotyping
Sytox Green	488	530	DNA Analysis
SNARF-1	488	530-640	pH measurement
Fluo-3	488	530	Calcium flux
dsRED	488	588	Reporter molecule

FLUOROCHROME	EX.	EM.	APPLICATION
PE-Cy5 (TriColor, Cychrome)	488	670	Phenotyping
PE-Cy7	488	670	Phenotyping
Propidium lodide	495	637	DNA Analysis
Rhodamine 123	515	525	Membrane potential
Yellow Fluorescent Protein (YFP)	519	534	Reporter molecule
LDS-751	543	712	Nucleated cell detection
7-Aminoactinomycin D	546	655	DNA analysis
Alexa 546	546	573	Phenotyping
Су3	550	565	Phenotyping
CMXRos (Mitotracker Red)	560	610	Mitochondrial membrane potential
Texas Red	596	615	Phenotyping
TO-PRO-3	643	661	DNA Analysis
Alexa 647	647	667	Phenotyping
APC-Cy7	647	774	Phenotyping
Allophycocyanin (APC)	650	660	Phenotyping

PRINCÍP FLUORESCENČNEJ MIKROSKOPIE

- 1. vzorka → osvetlenie svetlom špecifickej λ
 - → excitačný filter = prepúšťa exitačné žiarenie určitej λ
 - → dichroické zrkadlo = odráža exitačné žiarenie ku vzorke
- 2. fluorochróm → absorbcia fotónov a následná excitácia
- 3. fluorochróm → návrat do základného stavu

EMISIA SVETLA (vyššia λ)

- → emitované žiarenie = fluorescencia ⇒ iná farba a nižšia intenzita ako excitačné žiarenie
- 4. detektor / ľudské oko → detekcia emitovaného žiarenia (fluorescencie)

(excitačné žiarenie nie je detekované)

→ dichroické zrkadlo, emisný filter = neprepúšťa exitačné žiarenie

- ⇒ zachytáva sa iba fluorescencia vzorky ⇒ vzniká veľmi KONTRASTNÝ OBRAZ =
 - = oblasti fluorescenčného signálu na tmavom pozadí

ZLOŽENIE:

- 1. Základné mechanické, optické aj osvetľovacie časti svetelného mikroskopu:
 - → M → statív, tubus, stolček, krížový vodič, makro– a mikroskrutka, revolverový menič
 - **→** O → epifluorescenčné objektívy, okuláre

S → kondenzor, zdroj svetla

ZLOŽENIE:

- 1. Základné mechanické, optické aj osvetľovacie časti svetelného mikroskopu:
 - → M → statív, tubus, stolček, krížový vodič, makro– a mikroskrutka, revolverový menič
 - → O → epifluorescenčné objektívy, okuláre
 - S → kondenzor, zdroj svetla

2. Zdroje svetla

- ⇒ silný, aby bolo možné odfiltrovať nežiaduce vlnové dĺžky a svetlo bolo stále dostatočne silné na excitáciu flourochrómu
- → výbojky (ortuťová, xenónová), lasere (argónový, hélium-neónový), LED diódy

ZLOŽENIE:

- 1. Základné mechanické, optické aj osvetľovacie časti svetelného mikroskopu:
 - → M → statív, tubus, stolček, krížový vodič, makro– a mikroskrutka, revolverový menič
 - → O → epifluorescenčné objektívy, okuláre
 - S → kondenzor, zdroj svetla

2. Zdroje svetla

- ⇒ silný, aby bolo možné odfiltrovať nežiaduce vlnové dĺžky a svetlo bolo stále dostatočne silné na excitáciu flourochrómu
- **→ výbojky** (ortuťová, xenónová), lasere (argónový, hélium-neónový), LED diódy

3. Filtre a zrkadlá

- prepúšťajú alebo odrážajú svetlo so špecifickými vlastnosťami (λ)
- ➡ dichroické zrkadlá → odrážajú žiarenie s nižšou λ a prepúšťajú žiarenie s vyššou λ = = oddeľujú excitačné žiarenie od emitovaného (fluorescencia)
- ⇒ excitačné filtre → prepúšťajú excitačné svetlo zo zdroja so špecifickou λ
- **⇒ emisné filtre** → neprepúšťajú nežiaduce svetlo prichádzajúce zo vzorky

ZLOŽENIE:

- 1. Základné mechanické, optické aj osvetľovacie časti svetelného mikroskopu:
 - → M → statív, tubus, stolček, krížový vodič, makro– a mikroskrutka, revolverový menič
 - → O → epifluorescenčné objektívy, okuláre
 - ⇒ S → kondenzor, zdroj svetla

2. Zdroje svetla

- ⇒ silný, aby bolo možné odfiltrovať nežiaduce vlnové dĺžky a svetlo bolo stále dostatočne silné na excitáciu flourochrómu
- ⇒ výbojky (ortuťová, xenónová), lasere (argónový, hélium-neónový), LED diódy

3. Filtre a zrkadlá

- ⇒ prepúšťajú alebo odrážajú svetlo so špecifickými vlastnosťami (λ)
- → dichroické zrkadlá → odrážajú žiarenie s nižšou λ a prepúšťajú žiarenie s vyššou λ =
 = oddeľujú excitačné žiarenie od emitovaného (fluorescencia)
- ⇒ excitačné filtre → prepúšťajú excitačné svetlo zo zdroja so špecifickou λ
- **⇒ emisné filtre** → neprepúšťajú nežiaduce svetlo prichádzajúce zo vzorky

4. Detektory

- **⇒** fotonásobiče → zosilňujú prichádzajúci signál
- **⇒ CCD kamery, fotoaparáty** → zachytávajú prichádzajúci signál

KONFOKÁLNY MIKROSKOP

- konfokálna mikroskopia → aplikácia svetelnej a fluorescenčnej mikroskopie
 - ⇒ vyššia rozlišovacia schopnosť
 - **→** lepšie kontrastné zobrazenie

ZLOŽENIE KONFOKÁLNEHO MIKROSKOPU:

- základné zloženie → ako epifluorescenčný mikroskop
- zdroj svetla → väčšinou lasere

KONFOKÁLNY MIKROSKOP

- konfokálna mikroskopia → aplikácia svetelnej a fluorescenčnej mikroskopie
 - ⇒ vyššia rozlišovacia schopnosť
 - **→** lepšie kontrastné zobrazenie

ZLOŽENIE KONFOKÁLNEHO MIKROSKOPU:

- základné zloženie → ako epifluorescenčný mikroskop
- zdroj svetla → väčšinou lasere
- apertúry:
 - → apertúra svetelného zdroja →
 - → eliminuje posuny a zmeny svetelného lúča a koncentruje zväzok lúčov na vzorku
 - → apertúra detektora ("pinhole") →
 - → prepúšťa iba fluorescenciu emitovanú z fokálnej roviny
 - → lúče emitované z iných rovín sú platničkou zachytávané = neprechádzajú do detektora

KONFOKÁLNY MIKROSKOP

LASERE

zahŕňa celé spektrum farieb bieleho svetla >

svetlo o špecifickej λ sa získava vhodnou kombináciou filtrov a dichroických zrkadiel

FLUORESCENČNÝ vs. KONFOKÁLNY MIKROSKOP

FLUORESCENČNÝ MIKROSKOP

zachytávanie aj fluorescencie pozadia a úrovní nad a pod fokálnou rovinou

nižšie rozlíšenie a kontrast obrazu

eliminácia fluorescencie pozadia a úrovní nad a pod fokálnou rovinou

vyššie rozlíšenie a kontrast obrazu

mikrotubuly

rez obličkou myši

FLUORESCENČNÝ vs. KONFOKÁLNY MIKROSKOP

FLUORESCENČNÝ MIKROSKOP

zachytávanie aj fluorescencie pozadia a úrovní nad a pod fokálnou rovinou

nižšie rozlíšenie a kontrast obrazu

KONFOKÁLNY MIKROSKOP

eliminácia fluorescencie pozadia a úrovní nad a pod fokálnou rovinou

vyššie rozlíšenie a kontrast obrazu

APLIKÁCIE FLUORESCENČNEJ MIKROSKOPIE

→ zobrazovanie detailov, organel a štruktúr buniek

jadro mitochondrie mikrotubuly

detekcia lokalizácie a kolokalizácie molekúl v bunkách (DNA, RNA, enzýmy, signálne proteíny, ...)

Embryo drozofily proteiny: hairy **Kruppel** giant

kolokalizácia hairy a Kruppel

DNA **RNA**

APLIKÁCIE FLUORESCENČNEJ MIKROSKOPIE

⇒ štúdium viability (životaschopnosti) a proliferácie buniek v rámci populácie

mapovanie chromozómov a špecifických fragmentov / úsekov DNA (FISH)

APLIKÁCIE FLUORESCENČNEJ MIKROSKOPIE

priestorové (3D) zobrazovanie pomocou konfokálneho mikroskopu ("skenovanie" pozorovaného objektu po vrstvách a skladanie 3D obrazu pomocou softwaru)

VYSVECOVANIE FLUOROCHRÓMU

• vysvecovanie (vyblednutie) fluorochrómu = "photobleaching" → postupná strata schopnosti fluorochrómu emitovať žiarenie

pokles intenzity fluorescencie fluorochrómu

- spôsobené fotochemickou zmenou fluorochrómu ⇒ "zničenie" fluorochrómu pôsobením excitačného svetla:
 - → nešpecifické reakcie
 - **⇒** štiepenie kovalentných väzieb
- SHUTTER → manuálna kontrola prístupu excitačného svetla ku vzorke

PRAKTICKÁ UKÁŽKA

Forma bunkovej smrti určená na základe morfológie jadra

fluorochróm → DAPI (4´,6-diamidino-2-phenylindole)

- \rightarrow max_{ex} 350 nm; max_{em} 470 nm
- → vysokoafinitná väzba na DNA nízkoafinitná väzba na RNA

- apoptotická bunka (umierajúca bunka)
- 2 živá bunka

Nádorová bunková línia → **HT-29** (adenokarcinóm hrubého čreva) (foto: Jendželovský, 2008, ©)