振动或扰动在空间以一定速度的传播称为波动,简称为波(wave)。机械振动或扰动在介质中的传播称为机械波,如声波、水波和地震波等。 变化电场和变化磁场在空间的传播称为电磁波, 例如无线电波、光波和X射线等。

机械波只能在介质中传播,例如声波的传播 要有空气作介质,水波的传播要有水作介质。 但是,电磁波(光)的传播不需要介质,它可 以在真空中传播。

机械波和电磁波统称为经典波,它们代表的是某种实在的物理量的波动。

虽然各类波的具体物理机制不同,但它们都具有叠加性,都能发生干涉和衍射现象,也就是说它们所具有的波动的普遍性质。

除了机械波和电磁波都能发生干涉和衍射现象外,实验中发现,电子、质子和中子这些微观粒子也能发生干涉和衍射。因此,微观粒子也具有波动性。

简谐振动在空间的传播,称为简谐波,它是最简单的波。我们以机械波中的简谐波为例来 介绍波动的普遍性质。

# 波动学基础

- § 1 波动的基本概念
- § 2 简谐波
- § 3 波动方程与波速
- § 4 波的能量

# § 1 波动的基本概念

# 一. 机械波的形成



当手猛然向上抖动一次时,

就会看到一个突起状的扰动沿绳向另一端传去。 这是因为各段绳之间都有相互作用的弹力联系着。 当用手向上抖动绳的这一端的第一个质点时, 带动第二个质点向上运动,第二个又带动第三个,依次下去。 当手向下拉动第一个质点回到原来位置时, 它也要带动第二个质点回来, 而后第三个质点、第四个质点等 也将被依次带动回到各自原来的位置。 结果,由手抖动引起的扰动就不限在绳的这一端 而是要向另一端传开了。

扰动中质元的运动方向和扰动的传播方向垂直,这种波叫横波。(脉冲横波)

# 脉冲纵波 的产生





用手在长弹簧一端沿水平方向猛然向前推一下,则靠近手的一小段弹簧就突然被压缩。

由于各段弹簧之间的弹力作用,

这一压缩的扰动也会沿弹簧向

另一端传播而形成一个脉冲波。

在这种情况下,

扰动中质元的运动方向和扰动的传播方向在一条直线上, 这种波叫纵波。(脉冲纵波)

#### 简谐横波在介质中的形成与传播

如果介质中某一质点在外界作用下离开了它的平衡位置, 它就受到邻近质点给它的指向平衡位置的弹性回复力作用, 迫使它回到平衡位置。



到达平衡位置时,弹性回复力消失, 但由于有惯性,不会停留在平衡位置上不动, 而是在其附近振动起来。



同时邻近质点也受到该质点的弹性力而产生位移,迫使它也在自己的平衡位置附近振动。



#### 简谐纵波在介质中的形成与传播





横波和纵波是弹性介质内波的两种基本形式。

#### 要特别注意的是,

不管是横波还是纵波,

都只是扰动(即一定的运动形态)的传播,

介质本身并没有发生沿波的传播方向的迁移, 媒质中各质元并未"随波逐流"。

另外,沿着波传播方向,各质元振动存在相位差。 波动伴随着能量的传播。 弹性媒质的质元受外界扰动而发生振动时, 因媒质各部分间的弹性联系,会使振动传播开去, 这就形成了波动 — 机械波。



"上游"的质元依次带动"下游"的质元振动。 某时刻某质元的振动状态将在较晚的时刻于 "下游"某处出现。



#### 波动是振动状态的传播,不是媒质的传播。

媒质中各质元并未 "随波逐流"。



沿着波的传播方向,各质元振动存在相位差。波动伴随着能量的传播。



#### 机械波的产生的条件





机械波的产生

首先要有作机械振动的物体作为波源, 其次要有能够传播机械振动的介质, 通过介质各部分之间的弹性相互作用才能 把振动传播出去,即要有弹性介质, 所以机械波也叫弹性波。 弹性介质可以是固体、液体或气体。

横波和纵波是弹性介质内机械波的两种基本形式。

## 二、波的几何描述



波线:表示波的传播方向的射线(波射线)

波面: 介质振动相位相同的点组成的面(同相面)

波阵面: 某一时刻处在最前面的波面 (波前)

波线与波面始终垂直

#### 三、波函数与波形曲线

把介质中各质点位移随时间与空间坐标的变化规律 用数学形式表示出来,就是<u>波函数</u>。

只要知道其中一个质点是怎样振动的,就可以知道其它质点的振动情况。

设平衡位置在原点的质点的位移  $y_0$ 与时间 t 的关系为

$$y_0(t,0) = f(t)$$

其中,f(t)是时间的已知函数

这实际上就是处在坐标原点处的质点的振动函数

### 波速为u的沿x正向传播的波

$$y_0(t,0) = f(t)$$



平衡位置在x处的质点也将做同样的振动,但因原点的振动状态传到x处要经过x/u的时间,所以平衡位置在x处的质点在t时刻的位移等于平衡位置在原点的质点在(t-x/u)时刻的位移

$$y(t,x) = y_0(t - \frac{x}{u},0) = f(t - \frac{x}{u})$$

#### 波速为u的沿x负向传播的波

$$y_0(t,0) = f(t)$$



由于平衡位置在x处的质点其振动状态 传播到原点要历时 x/u ,

所以它在 t 时刻的位移就与平衡位置在原点的质点

在 
$$(t+x/u)$$
 时刻的位移相同

$$y(t,x) = y_0(t + \frac{x}{u},0) = f(t + \frac{x}{u})$$

# 波形曲线

y(t,x)

对于某一特定时刻  $t = t_0$ , y 只是 x 的函数,

它表示各质点的位移与其在空间的位置的关系

(在  $t = t_0$ 时刻,各质点相对于自己的平衡位置的位移),

表示这一关系的曲线叫做波形曲线。

随着时间的推移,

这一曲线将保持原状以速度 и 沿波的传播方向平移。

波函数和波形曲线,是波的数学描述。

#### 四. 描述波动的特征量

1. 波速: 单位时间里振动状态向前传播的距离



它由介质的性质决定,与波源情况无关。

注意不是质元的振动速度!

# 2. 波长: 波在传播的过程中,各个质元都在作周期性振动



在质元一个全振动周期内, 振动状态沿波线向前传播的距离, 称为波长。

$$\lambda = uT$$
  $T$  是质元振动周期

由于波速与介质的性质有关,所以波长与介质的性质有关。

#### 3. 波的周期与频率

振动状态沿波线向前传播一个波长所需的时间, 称为波的周期;

单位时间,波沿波线传播的距离相当于波长的个数,称为波的频率。

$$T = \frac{\lambda}{u}$$

$$\nu = \frac{u}{\lambda}$$

波的周期和频率即波源(或质元)振动的周期和频率

由于波源振动的周期和频率与介质无关, 所以波的周期和频率与介质无关。

波的周期反映了波动时间上的周期性,而波长则反映了波动空间上的周期性。

波的周期和频率与媒质无关,而波速和波长与媒质有关。

波速、波长和频率(周期)间的关系:

$$\lambda = uT = \frac{u}{v}$$

## 五. 波的分类

按波的性质 机械波/电磁波/...

按波线与振动方向关系 横波/纵波

按波面形状 平面波/球面波/柱面波

按复杂程度 简谐波/复波

按持续时间 连续波/脉冲波

按是否传播 行波/驻波

• • •

#### 1. 横波与纵波

横波: 质元的振动方向与波的传播方向垂直

纵波: 质元的振动方向与波的传播方向平行

横波只能在固体中传播, 而纵波可以在固体、液体和气体中传播

水表面的波既非横波又非纵波, 水波中水质元作纵向、横向二维运动, 即作圆运动。

#### 2. 平面波与球面波

波面为平面的波称为平面波; 波面为球面的波称为球平面波



#### 3. 简谐波和复波

简谐波: 媒质中各质元作简谐振动

复波: 媒质中各质元作非简谐振动

#### 4. 机械波、电磁波与物质波

机械波: 机械振动在弹性媒质中的传播;

电磁波: 电磁振荡在空间中的传播;

物质波: 实物粒子的一种波动形式。

光是电磁波

# § 2 简谐波

波源的振动在介质中由近及远地传播开去形成波。

实际的波动过程都是比较复杂的, 其中最简单、最基本的波动过程, 是波源和介质中的各个质点都作简谐振动的 简谐波(也叫正弦波或余弦波)。

而其它任何复杂的波动, 无论是连续波还是脉冲波, 都可以看成是若干个简谐波的叠加。

#### 一、平面简谐波的波函数

简谐波在介质中传播时, 各质元都在做简谐运动, 它们的位移随时间不断改变。 由于各质元开始振动的时刻不同, 各质元的简谐运动并不同步, 在同一时刻各质元的位移随它们位置的不同而不同

各质元的位移y 随其平衡位置x 和时间 t 变化的数学表达式叫做波的波函数。

$$y_0(t,0) = f(t)$$
  $\longrightarrow$   $y(t,x) = y_0(t - \frac{x}{u},0) = f(t - \frac{x}{u})$ 

设该简谐波以波速u沿x轴正方向传播。

各质点依次在作振幅为 A 、圆频率为 $\omega$  的谐振动

原点 x = 0的振动规律为  $y_0 = A\cos(\omega t + \varphi_0)$ 

相应的波函数为 
$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_0\right]$$

如果此平面简谐波沿 <sup>X</sup> 轴反向传播, 波函数为

$$y = A\cos\left[\omega\left(t + \frac{x}{u}\right) + \varphi_0\right] \qquad \qquad \varphi_0 \text{为 } x = 0 \text{ 点质元}$$
振动的初相位

#### 二、平面简谐波的特征量

#### 1.相速度

以波速 U 沿 X 轴正方向传播的平面简谐波波函数

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_0\right]$$

在x处的质点在t时刻的相位

$$\varphi(t,x) = \left[\omega\left(t - \frac{x}{u}\right) + \varphi_0\right]$$

它完全决定了质元的振动状态。

设 t 时刻 x 处质点的振动状态(相位),在  $t+\Delta t$  时刻传播到  $x+\Delta x$  处,则相位传播的速度为  $\frac{\Delta x}{\Delta t}$  。

根据波的含义,这两个状态的相位应该相等

$$\varphi(t,x) = \left[\omega\left(t - \frac{x}{u}\right) + \varphi_0\right] = \varphi(t + \Delta t, x + \Delta x) = \left[\omega\left(t + \Delta t\right) - \omega\left(\frac{x + \Delta x}{u}\right) + \varphi_0\right]$$

$$\frac{\Delta x}{\Delta t} = u$$

简谐波的传播速度 U 就是振动的相位的传播速度,

因此这一速度也称为相速度。

#### 2.周期和频率

简谐波中任一质元都在做简谐运动, 因而简谐波具有时间上的周期性。 简谐运动的周期为

$$T = \frac{2\pi}{\omega}$$

这也就是波的周期。

#### 波的频率为

$$\nu = \frac{1}{T} = \frac{\omega}{2\pi}$$

#### 3.波长

余弦函数表明,波还有空间上的周期性。 表示简谐波的空间周期性的特征量叫做波长  $\lambda$  , 在同一时刻,空间上相距一个波长的 两个质元的振动状态是相同的。

由于余弦函数的周期为  $2\pi$ , 所以在空间上相距一个波长的两个质元的振动相位差

$$\left[\omega(t+T)-\omega\left(\frac{x+\lambda}{u}\right)+\phi_0\right]-\left[\omega\left(t-\frac{x}{u}\right)+\phi_0\right]=2\pi$$

$$\lambda=\frac{2\pi}{\omega}u=uT$$

波长就等于一周期内简谐扰动传播的距离,更准确地说,波长等于一周期内任一给定的相所传播的距离。

#### 4.波数

对简谐波,还常用波数 k 来描述,其定义为

$$k = \frac{2\pi}{\lambda}$$

即在2π的长度内波形曲线含有的"完整波"的数目。

实际上,波数 k 是波的空间频率。

#### 三、平面简谐波的其他表示形式

利用平面简谐波特征量之间的关系,可以将平面简谐波用多种形式表示

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_0\right]$$

$$= A\cos\left[2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right) + \varphi_0\right]$$

$$= A\cos\left[2\pi\left(vt - \frac{x}{\lambda}\right) + \varphi_0\right]$$

$$= A\cos\left[\omega t - \frac{2\pi}{\lambda}x + \varphi_0\right]$$

$$= A\cos\left[\omega t - kx + \varphi_0\right]$$

#### 四、平面简谐波的复数表示

为了分析和运算的方便, 常常将简谐波的波函数表示成复数形式

$$y = A \exp[i(\omega t \mp kx + \varphi_0)]$$

#### 注意:

平面简谐波的复数表示 只是为了分析和运算的方便, 没有引入新的物理含义。

复数表示的实部才有实际意义, 即实部代表平面简谐波。

# 五. 波函数的物理意义

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_0\right]$$

在某一给定的质元处  $x = x_0$ 

$$y(x = x_0) = A\cos\left[\omega t - \frac{2\pi}{\lambda}x_0 + \varphi_0\right] = y(t)$$



这表示的是  $x = x_0$  处质元的振动方程。

在某一给定的时刻

$$y = A \cos \left[ \omega \left( t - \frac{x}{u} \right) + \varphi_0 \right]$$

$$t = t_0$$

$$y(t = t_0) = A\cos\left[\omega t_0 - \frac{2\pi}{\lambda}x + \varphi_0\right]$$



各质元的位移随它们平衡位置的坐标做余弦式变化,

它给出  $t = t_0$  时刻波形的"照相",对应的 y - x 曲线就叫波形曲线。

由于波传播时任一给定的相都以速度 *u* 向前移动, 所以波的传播在空间内就表现为

整个波形曲线以速度 u 向前平移。



### § 3 波动方程与波速

$$y(t,x) = f\left(t - \frac{x}{u}\right)$$
  $y(t,x) = f\left(t + \frac{x}{u}\right)$ 

#### 一、波动方程

$$\frac{\partial^2 y}{\partial t^2} = f'' \left( t \pm \frac{x}{u} \right)$$

$$\frac{\partial^2 y}{\partial t^2} = f''\left(t \pm \frac{x}{u}\right) \qquad \frac{\partial^2 y}{\partial x^2} = \frac{1}{u^2}f''\left(t \pm \frac{x}{u}\right)$$



$$\frac{\partial^2 y}{\partial x^2} - \frac{1}{u^2} \frac{\partial^2 y}{\partial t^2} = 0$$
 亥姆霍兹方程

是物理学中最重要的方程之一,具有普遍意义。

在一维空间中,随时间变化的任何物理量v(t,x)

(可以是位移、温度、压强、电磁场等),

如果满足亥姆霍兹方程,

那么该物理量就按波的形式传播, u 就是这种波的传播速度。

#### 三维空间中的波动方程的形式为

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} - \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2} = 0$$

 $\xi(t,x,y,z)$  代表三维空间中随时间变化的物理量

(如空气中的声压分布或密度分布)

### §4 波的能量



波在弹性介质中传播时, 介质的质元由于振动而具有动能, 因发生形变还具有弹性势能。

随着扰动的传播,质元的能量也向前传播。 对于机械波来说,我们把波动引起的介质的能量, 称为波的能量。

介质质元能量是如何变化的? 能量传播的规律如何?

以弹性棒中的简谐横波为例来分析

#### 一、能量在介质中的传播







任取一质元 $\Delta m = \rho \Delta V$ ,其中心的平衡位置坐标为x,

$$t$$
时刻该质元的振动速度为  $v = \frac{\partial y}{\partial x} = -\omega A \sin \omega \left( t - \frac{x}{u} \right)$ 

质元具有振动动能

$$\Delta E_k = \frac{1}{2} v^2 \Delta m = \frac{1}{2} \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V$$

介质的密度为 🔈





根据切变模量的定义,质元所受弹性力为

$$F = fS = GS \frac{\Delta y}{\Delta x} = k\Delta y$$
  $k = \frac{GS}{\Delta x}$  就是劲度系数.

因质元的长度变化为 $\Delta y$ ,质元具有弹性势能

$$\Delta E_p = \frac{1}{2}k(\Delta y)^2 = \frac{1}{2}\frac{GS}{\Delta x}(\Delta y)^2 = \frac{1}{2}GS\Delta x(\frac{\Delta y}{\Delta x})^2 = \frac{1}{2}G(\frac{\partial y}{\partial x})^2\Delta V$$
$$= \frac{1}{2}\frac{G}{u^2}\omega^2A^2\sin^2\omega\left(t - \frac{x}{u}\right)\Delta V$$



介质的密度为 🤈



$$\Delta E_p = \frac{1}{2} \frac{G}{u^2} \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V \qquad u^2 = G / \rho$$

$$u^2 = G/\rho$$

$$\Delta E_p = \frac{1}{2} \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V$$

$$\Delta E_k = \frac{1}{2} \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V$$

$$\Delta E_{k} = \Delta E_{n}$$

$$\Delta E_p = \frac{1}{2} \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V$$

传播介质中任一质元的振动动能和弹性势能 随时间作周期性变化的规律是相同的,

两者不但相位相同,而且大小总是相等。

质元通过平衡位置时,具有最大的振动速度,动能最大,

同时形变也最大,因而其弹性势能也最大;

而在最大位移时其动能为零,

其形变也为零,因而弹性势能也为零。

所以传播介质中质元的振动不同于谐振子的振动。



$$\Delta E_k = \frac{1}{2} \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V$$

$$\Delta E_k = \frac{1}{2} \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V$$

$$\Delta E_p = \frac{1}{2} \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V$$

$$\Delta E_k = \Delta E_p$$

#### 波传播时质元的机械能为

$$\Delta E = \Delta E_k + \Delta E_p = \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right) \Delta V$$



在波的传播过程中,任一质元总的机械能并不守恒, 而是在零与最大值之间变化,它的能量从零增加到最大, 也就是它从前面的质元接受来自波源的能量的过程; 然后它的能量又从最大减小到零, 这是通过弹性力作功把输入的能量传递给后面的质元的过程



随着波形以速度u作"整体"移动, 能量的分布曲线也与之一起以速度u作"整体"移动。

振动在介质中的传播过程也就是能量的传播过程, 波是能量传播的一种形式。

#### 二、能量密度



波传播时,单位体积介质中的波动能量叫做波的能量密度

$$w = \frac{\Delta E}{\Delta V} = \rho \omega^2 A^2 \sin^2 \omega \left( t - \frac{x}{u} \right)$$

能量密度随时间作周期性变化

一个周期内能量密度的平均值叫平均能量密度

$$\overline{w} = \frac{1}{T} \int_{0}^{T} w dt = \frac{1}{2} \rho \omega^{2} A^{2}$$

机械波的平均能量密度与频率的平方、振幅的平方以及介质的密度成正比。

这一公式虽然是从平面简谐波的特殊情况导出的,但它适用于任何弹性波。

#### 三、能流密度



单位时间内通过某一面积的能量称为能流,通过垂直于传播方向的单位面积的能流 称作该处的能流密度。

在介质中垂直于波的传播方向取一面积  $\Delta S$  。

以AS为底,

以udt 为长度的柱体内的能量 $wudt\Delta S$ 

在dt 时间内刚好全部通过 $\Delta S$ ,

则 ΔS 面上的能流密度为

$$S = \frac{wudt\Delta S}{\Delta Sdt} = uw = u\rho\omega^2 A^2 \sin^2\omega \left(t - \frac{x}{u}\right)$$



$$S = \frac{wudt\Delta S}{\Delta Sdt} = uw$$

$$= u\rho\omega^2 A^2 \sin^2\omega \left(t - \frac{x}{u}\right)$$

对时间取平均,则平均能流密度(又称波强)为

$$I = u\overline{w} = \frac{1}{T} \int_{0}^{T} uwdt = \frac{1}{2} \rho u\omega^{2} A^{2} \propto A^{2}$$

波强与振幅的平方成正比,与频率的平方成正比,对均匀介质中传播的确定的行波来说, $\rho u$  和  $\omega$ 均不变,于是波强 I 与振幅的平方成正比。

#### 对平面波,

若不计介质对能量的吸收, 则根据能量守恒,

由一束波线所限定的两个相同面积的波面上的 平均能流必然相等,说明波强各处相同, 波在传播过程中振幅不变。



# 对各向同性的不吸收能量的均匀介质中的球面波



考虑半径为r<sub>1</sub>和r<sub>2</sub>的两个波面,

通过这两个球面的平均能流一定相等

$$I_{1}S_{1} = I_{2}S_{2}$$

$$\frac{I_{1}}{I_{2}} = \frac{S_{2}}{S_{1}}$$

$$\frac{I_{1}}{I_{2}} = \frac{r_{2}^{2}}{r_{1}^{2}} \qquad \frac{A_{1}}{A_{2}} = \frac{r_{2}}{r_{1}}$$

$$0 \quad r_{1}$$

球面波的振幅 A 反比于到点波源的距离

# § 6 波的叠加



# 一、波的叠加原理

若几列波同时在介质中传播, 它们各以原有的振幅、波长和频率沿原方向 独立地传播,彼此互不影响 (独立传播原理);

在几列波相遇处, 质元的位移等于各列波单独传播时 在该处引起的位移的矢量和 (波的叠加原理)。

波的叠加原理是干涉、衍射的基本依据。





#### 二、波的干涉

 $\Rightarrow$ 

当两列波(或几列波)满足频率相同、振动方向相同以及相位差恒定的条件,在波相遇的区域内任何一点,分振动都有恒定的相位差,但是对于不同的点,相位差不同,因此有些地方振动始终加强,有些地方振动始终减弱或完全抵消,这种现象称为波的干涉,

能产生干涉现象的波称为相干波,相应的波源称为相干波源。

### 设两相干波源 $S_1$ 、 $S_2$ 的振动表达式分别为

$$\begin{cases} y_{10} = A_{10} \cos(\omega t + \varphi_1) \\ y_{20} = A_{20} \cos(\omega t + \varphi_2) \end{cases}$$

由它们发出的相干波经过

距离  $r_1$ 、 $r_2$ 于P点相遇,

两波在 P点引起的分振动为

$$\begin{cases} y_1 = A_1 \cos(\omega t + \varphi_1 - \frac{2\pi r_1}{\lambda}) \\ y_2 = A_2 \cos(\omega t + \varphi_2 - \frac{2\pi r_2}{\lambda}) \end{cases}$$





$$\begin{cases} y_1 = A_1 \cos(\omega t + \varphi_1 - \frac{2\pi r_1}{\lambda}) \\ y_2 = A_2 \cos(\omega t + \varphi_2 - \frac{2\pi r_2}{\lambda}) \end{cases}$$

P 点的合振动为

$$y = y_2 + y_1 = A\cos(\omega t + \varphi)$$

P点两振动的相位差

$$\Delta \varphi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1)$$

合振动的振幅  $A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi$ 



合振动的相位 
$$\tan \varphi = \frac{A_1 \sin \left( \varphi_1 - \frac{2\pi r_1}{\lambda} \right) + A_2 \sin \left( \varphi_2 - \frac{2\pi r_2}{\lambda} \right)}{A_1 \cos \left( \varphi_1 - \frac{2\pi r_1}{\lambda} \right) + A_2 \cos \left( \varphi_2 - \frac{2\pi r_2}{\lambda} \right)}$$

$$A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi$$

由于波强正比于振幅的平方

合振动在P点的强度I与两相干波的强度 $I_1$ 和 $I_2$ 有如下关系

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \varphi$$



一般说来,I不等于  $I_1 + I_2$ ;

还有一干涉项  $2\sqrt{I_1I_2}\cos\Delta arphi$  ,

它可正可负,取决于  $\Delta \varphi$ 。



$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \varphi$$

$$\Delta \varphi = \pm 2k\pi \quad (k = 0, 1, 2, \cdots)$$

P点的合振幅为  $A = A_1 + A_2$ 波强为  $I = I_1 + I_2 + 2\sqrt{I_1I_2}$ 

> 该处合振幅最大, 有最大的强度 称为干涉相长





$$\Delta \varphi = \pm (2k+1)\pi$$
  $(k = 0, 1, 2, \cdots)$ 

$$P$$
点的合振幅为  $A = |A_1 - A_2|$ 

波强为 
$$I = I_1 + I_2 - 2\sqrt{I_1I_2}$$

该处合振幅最小 并有最小的强度, 称为干涉相消

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \varphi$$

$$\Delta \varphi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1)$$

如果波源的振动是同相的,

$$\varphi_2 = \varphi_1$$

则  $\Delta \varphi$  取决于波程差  $\delta = r_2 - r_1$ 

$$\Delta \varphi = \pm 2k\pi \quad (k = 0, 1, 2, \cdots)$$







$$\delta = \pm k\lambda \quad (k = 0, 1, 2, \cdots)$$

干涉相长

$$\Delta \varphi = \pm (2k+1)\pi$$
  $(k = 0, 1, 2, \cdots)$ 



$$\delta = \pm (2k+1)\lambda/2$$
  $(k = 0, 1, 2, \cdots)$  干涉相消