

FLIGHT PRICE PREDICTION (STUDY CASE: INDIAN DOMESTIC FLIGHT) PRESENTATION

PRESENTED BY:

INDAH RESTUMI

ABOUT ME

Hi, I am Indah. An aspiring Data Scientist eager to apply the skills I have developed during my bootcamp journey. Passionate about exploring data, uncovering insights, and creating meaningful visualizations, I aim to support smarter business decisions. I am motivated to keep learning, grow professionally, and contribute to impactful, data-driven solutions as part of a professional team.

DIBIMBING ID - FULL STACK DATA SCIENCE BOOTCAMP

(MARCH 2025-PRESENT)

UNIVERSITAS GADJAH MADA - GEODETIC ENGINEERING

(AUG 2015-AUG 2019)

WORKING EXPERIENCE

GIS EHPERT ASSISTANT

(FEB 2023-NOV 2024)

- Ensuring roads data quality and integrity
- Maintained and updated LRS spatial data/

COMMERCIAL STAFF & WEBGIS COORDINATOR

(MAR 2021-NOV 2023)

 Supported infrastructure project planning and execution through budget management, compliance review, and stakeholder reporting.

GIS ANALYST

(JUNE 2020-JAN 2024)

 Executed spatial data integration and land parcel validation to support national land administration improvements.

PROJECT OVERVIEW

RETAIL

Customer Segmentation

PROPERTY

Boston Housing Price Predictions

TELCO

Telco Customer Churn

THE MAIN PROJECT

FLIGHT PRICE PREDICTION (INDIAN DOMESTIC FLIGHT)

PRESENTATION OUTLINE

- Business Understanding
- Data Understanding
- The Stage of Machine Learning
- Data Prepocessing-1
- Explanatory Data Analysis
- Data Preprocessing-2
- Model Building
- Model Evaluation
- Hyperparameter Tuning
- Conclusions & Recommendation

ISSUES

 Harga tiket pesawat sangat dinamis, dipengaruhi oleh jenis maskapai, kelas penerbangan, durasi, dan waktu pemesanan sehingga sulit untuk menetapkan harga yang tepat.

BUSINESS IMPACT

- Prediksi harga yang tidak tepat dan akurat dapat menyebabkan underpricing atau overpricing, sehingga memengaruhi tingkat keterisian kursi (load factor).
- Kondisi ini akan menurunkan pendapatan, mengurangi konversi transaksi, dan menurunkan kepuasan pelanggan.

OBJECTIVES

BUSINESS OBJECTIVES

- · Mendukung penetapan harga dinamis (dynamic pricing) agar lebih kompetitif.
- Meningkatkan customer engagement dengan transparansi harga.
- · Mengurangi risiko kehilangan pelanggan akibat harga yang terlalu tinggi.

PROJECT OBJECTIVES

- Mengembangkan model prediksi harga tiket dengan akurasi tinggi.
- Mengidentifikasi faktor utama yang memengaruhi harga tiket pesawat.
- Menyediakan insight berbasis data untuk mendukung strategi dynamic pricing dan optimasi load factor.

DATA UNDERSTANDING

- Data dapat di download di <u>Kaggle</u>
- Dataset ini berisi informasi mengenai opsi pemesanan penerbangan dari sebuah Online Travel Agency di India.
- Dataset ini terdiri dari 300.261 baris dan 11 kolom.
- Dataset merepresentasikan karakteristik penerbangan, seperti maskapai, jumlah transit, durasi, hingga harga tiket

THE STAGE OF MACHINE LEARNING

DATA PREPROCESSING - 1

CHECK MISSING **VALUES**

CHECK DUPLICATED **VALUES**

FEATURE ENGINEERING

EXPLORATORY DATA ANALYSIS

AIRLINES DISTRIBUTION

CLASS VS TICKET PRICE

- Terdapat 6 airlines dengan dua kategori yaitu Premium Airlines (Vistara & Air India) dan On-Budget Airlines (Indigo, Go First, AirAsia, Spicejet).
- Terdapat dua kelas penerbangan (Ekonomi & Business).
- Outlier disebabkan oleh kategori & kelas penerbangan, waktu penerbangan (duration > 10 jam), pemesanan mendekati hari penerbangan.

EXPLORATORY DATA ANALYSIS

DURATION VS PRICE

• Semakin lama durasinya maka harganya semakin tinggi baik di kelas bisnis ataupun ekonomi

EXPLORATORY DATA ANALYSIS

DAYS LEFT VS PRICE

- Harga tiket cenderung sangat tinggi saat mendekati tanggal keberangkatan.
- Harga semakin murah jika dipesan lebih awal.
- Pola ini wajar karena maskapai menggunakan dynamic pricing: mendekati hari keberangkatan, kursi tersisa lebih sedikit → harga melonjak.

DATA PREPROCESSING - 2

DATA SPLIT

• Train data:80%

Test Data: 20%

 Drop column yang tidak relevan

FEATURE ENCODING

- Manual mapping untuk class karena ini fitur ordinal.
 Economy: O, Business: 1
- One Hot Encoding untuk fitur kategorikal seperti airline, kota, atau durasi tidak memiliki urutan alami

OUTLIER HANDLING

Tidak dilakukan outlier
handling pada project ini
karena harga yang outlier
masih masuk akal yang
disebabkan oleh beberapa
faktor.

MODEL BUILDING

Baseline Model

Decision Tree

Random Forest

XGBoost

LightBM

MODEL EVALUATION

MAE COMPARATION

RMSE COMPARATION

- Decision Tree memberikan prediksi yang akurat di train namun error melonjak di test sehingga bisa mengindikasikan overfitting.
- Linear Regression, XGBoost, LightGBM, MAE dan RMSE lebih konsisten, namun error lebih tinggi dibanding Random Forest.
- Random Forest dipilih sebagai model paling optimal, karena memberikan prediksi dengan error ratarata terkecil (MAE rendah) sekaligus menjaga kestabilan terhadap error besar (RMSE rendah).

R2 COMPARATION

MAPE COMPARATION

- Decision Tree menunjukkan R² sangat tinggi di train namun sedikit menurun di test, sementara MAPE meningkat.
- Linear Regression, XGBoost, dan LightGBM konsisten, namun R² lebih rendah atau MAPE lebih tinggi dibanding Random Forest.
- Random Forest dipilih sebagai model paling optimal, karena mampu menjaga R² tetap tinggi sekaligus mempertahankan MAPE yang rendah dan stabil pada train maupun test.

HYPERPARAMETER TUNING

BEFORE TUNING

Metric	Train	Test
MAE	421.72	1084.96
RMSE	1133.67	2796.19
R²	0.9975	0.9848
MAPE	0.0272	0.0707

AFTER TUNING

Metric	Train	Test
MAE	1099.5	1377.91
RMSE	2269.97	2837.71
R²	0.9900	0.9844
MAPE	0.0791	0.0985

INDICATOR

- Ruang parameter yang diuji sempit.
- Scoring hanya fokus ke MAE.
- Iterasi search terlalu sedikit.

HYPERPARAMETER TUNING

BEFORE TUNING

AFTER TUNING

- Mayoritas titik biru rapat di sekitar garis merah artinya model cukup akurat dalam memprediksi harga tiket.
- Model **sedikit kesulitan memprediksi tiket yang sangat mahal**, sehingga error lebih besar (wajar, karena RMSE lebih sensitif ke outlier tiket mahal).

FEATURE IMPORTANCE

- Faktor paling dominan memengaruhi harga tiket adalah kelas penerbangan (class), diikuti oleh durasi perjalanan (duration) dan jarak waktu pembelian terhadap keberangkatan (days_left).
- Faktor lain seperti maskapai (airline) dan kota asal/tujuan juga berpengaruh, tapi relatif kecil.

CONCLUSIONS

- Hasil analisis menunjukkan bahwa **Random Forest merupakan model terbaik** karena mampu memberikan prediksi harga tiket yang paling akurat, stabil, dan dengan tingkat kesalahan yang rendah.
- Faktor utama yang memengaruhi harga adalah kelas penerbangan, durasi, dan waktu pembelian.

RECOMMENDATIONS

- Revenue Growth: Menerapkan dynamic pricing berbasis kelas, durasi, dan timing pembelian untuk memaksimalkan pendapatan.
- Operational Efficiency: Mengoptimalkan load factor agar kursi kosong berkurang dan profitabilitas meningkat.
- Customer Loyalty: Menggunakan prediksi harga untuk personalisasi promosi sehingga meningkatkan retensi dan value pelanggan.

THANK YOU!!

