Lógica Matemática

Prof. Me. Lucas Ferreira de Castro

QUANTIFICADOR UNIVERSAL

Seja p(x) uma sentença aberta em um conjunto não vazio A e seja Vp seu conjunto-verdade:

$$Vp = \{x \mid x \in A \land p(x)\}$$

Quando p(x) é uma sentença **universal**, ou seja, Vp = A, podemos afirmar:

- "Para todo x de A, p(x) é verdadeira" ou
- "Qualquer que seja x de A, p(x) é verdadeira"

Matematicamente, simbolizamos este fato da seguinte forma:

$$(\forall x \in A)(p(x))$$
$$\forall x \in A, p(x)$$
$$\forall x \in A : p(x)$$

Também é comum omitir-se o domínio:

$$(\forall x)(p(x))$$
$$\forall x, p(x)$$
$$\forall x : p(x)$$

QUANTIFICADOR UNIVERSAL

Portanto a proposição $(\forall x \in A)(p(x))$ é **verdadeira** sempre que Vp = A, e **falsa** sempre que $Vp \neq A$.

O símbolo \forall transforma a sentença aberta p(x) numa proposição.

Essa operação de transformação recebe o nome quantificação universal.

Exemplo

(∀ Fulano)(Fulano é mortal)

Lê-se: "Qualquer que seja Fulano, Fulano é mortal"

QUANTIFICADOR EXISTENCIAL

Seja p(x) uma sentença aberta em um conjunto não vazio A e seja Vp seu conjunto-verdade:

$$Vp = \{x \mid x \in A \land p(x)\}$$

Quando p(x) é uma sentença **possível**, ou seja, $Vp \subset A$, podemos afirmar:

- "Para algum x de A, p(x) é verdadeira" ou
- "Existe pelo menos um x de A tal que p(x) é verdadeira"

Matematicamente, simbolizamos este fato da seguinte forma:

$$\exists x \in A)(p(x))$$
$$\exists x \in A, p(x)$$
$$\exists x \in A : p(x)$$

Também é comum omitir-se o domínio:

$$\exists x)(p(x))$$
$$\exists x, p(x)$$
$$\exists x : p(x)$$

QUANTIFICADOR EXISTENCIAL

Portanto a proposição $(\exists x \in A)(p(x))$ é **verdadeira** sempre que $Vp \neq \emptyset$, e **falsa** sempre que $Vp = \emptyset$.

O símbolo \exists transforma a sentença aberta p(x) numa proposição.

Essa operação de transformação recebe o nome quantificação existencial.

Exemplo

 $(\exists x)(x \ vive \ em \ Marte)$

Lê-se: "Existe pelo um x que vive em Marte"

VARIÁVEL APARENTE E VARIÁVEL LIVRE

Quando uma variável está quantificada, diz-se que é uma variável aparente.

Exemplo

$$(\exists x)(x+2=4)$$

Quando uma variável não está quantificada, diz-se que é uma variável livre.

Exemplo

$$x + 2 = 4$$

QUANTIFICADOR DE EXISTÊNCIA E UNICIDADE

Suponha uma sentença aberta em R, quando temos certeza que **existe apenas um** $x \in R$, usamos o quantificador existencial de unicidade \exists !.

Exemplo

$$(\exists ! \ x \in R)(x^3 = 9)$$

NEGAÇÃO DE PROPOSIÇÕES COM QUANTIFICADOR

Proposição	Negação	Equivalência
$(\forall x)(x \in mortal)$		

NEGAÇÃO DE PROPOSIÇÕES COM QUANTIFICADOR

Proposição	Negação	Equivalência
$(\forall x)(x \in mortal)$	$\sim (\forall x)(x \in mortal)$	

NEGAÇÃO DE PROPOSIÇÕES COM QUANTIFICADOR

Proposição	Negação	Equivalência
$(\forall x)(x \in mortal)$	$\sim (\forall x)(x \in mortal)$	$(\exists x) \sim (x \in mortal)$

NEGAÇÃO DE PROPOSIÇÕES COM QUANTIFICADOR

Proposição	Negação	Equivalência
$(\forall x)(x \in mortal)$	$\sim (\forall x)(x \in mortal)$	$(\exists x) \sim (x \in mortal)$
$(\exists x)(x \in mortal)$		

NEGAÇÃO DE PROPOSIÇÕES COM QUANTIFICADOR

Proposição	Negação	Equivalência
$(\forall x)(x \in mortal)$	$\sim (\forall x)(x \in mortal)$	$(\exists x) \sim (x \in mortal)$
$(\exists x)(x \in mortal)$	$\sim (\exists x)(x \in mortal)$	

NEGAÇÃO DE PROPOSIÇÕES COM QUANTIFICADOR

Proposição	Negação	Equivalência
$(\forall x)(x \in mortal)$	$\sim (\forall x)(x \in mortal)$	$(\exists x) \sim (x \in mortal)$
$(\exists x)(x \in mortal)$	$\sim (\exists x)(x \in mortal)$	$(\forall x) \sim (x \in mortal)$

EXERCÍCIOS

Livro Introdução à Lógica Matemática

Cap. 16

Questões 05 a 11.