Математическая логика и теория алгоритмов

Сергей Григорян

18 сентября 2024 г.

Содержание

1	Инфа	3
2	\mathbf{C} интаксис \leftrightarrow \mathbf{C} емантика	3
3	Правильные скобочные п-ти (ПСП) 3.1 ОПР $1 \Rightarrow$ ОПР 3 3.2 ОПР $2 \Rightarrow$ ОПР 1 3.3 ОПР $3 \Rightarrow$ ОПР 2	4 5 5 5
4	\mathbf{C} интаксис \leftrightarrow \mathbf{C} емантика	5
5	Формулы с 1-ой бинарной связкой * (Правильные алгебраические выр-я)	6
6	Булевы функции	7
7	Пропозициональные ф-лы \leftrightarrow Булевы ф-ции	8

1 Инфа

Лектор: Мусатов

Книги: Верещагин Н. К., Шень А. "Лекции по мат. логике":

№ 1 Начало теории мн-в

№ 2 Языки и исчисления

№ 3 Вычислимые ф-ции

2 Синтаксис \leftrightarrow Семантика

Определение 2.1. Синтаксис - правила составления форм. выр-ий.

<u>Определение</u> **2.2.** Семантика - соспоставление форм выр-ия некоторого смысла.

<u>Определение</u> **2.3. Алфавит** - мн-во символов. (Непустое, обычно конечное)

Определение 2.4. Слово - конечная последовательность символов алфавита. (Может быть пустым)

 Π устое слово - ε

Определение 2.5. Язык - любое мн-во слов.

 $\overline{\Pi y}$ стой язык - \emptyset

Синглетон - $\{\varepsilon\}$

Операции над словами:

- Конкатенация: u * v
- Возведение в степень: $u^n = u * u * \cdots * u$ n раз $(u^0 = \varepsilon)$
- Обращение: $u^R = u_n u_{n-1} \cdots u_1$, если $u = u_1 u_2 \cdots u_n$

$$(ab)^R = b^R a^R.$$

Отношения над словами:

• Префикс $u \sqsubset v \iff \exists w \colon uw = v$

- Суффикс $u \supset v \iff \exists w \colon wu = v$
- Подслово $u(\text{subset})v \iff \exists t, w \colon tuw = v$
- Подп-ть $u \subset v \iff$ вычеркнута часть символов v и получили u

Операции над языками:

- 0) Теоретико-множ.
- 1) Конкатенация:

$$L*M = \{u*v | u \in L, v \in M\}.$$
$$L*\emptyset = \emptyset.$$

Пример.

$$L = \{a, ab\}, M = \{a, ba\}, LM = \{aa, aba, abba\}.$$

2) $L^n = L * L * \cdots * L - n$ pas

$$L^0 = \{\varepsilon\}.$$

3) Итерация/Звезда Клини:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{k=0}^{\infty} L^k.$$

$$L^{+} = \bigcup_{k=1}^{\infty} L^{k} = L^{*} * L.$$
$$L^{*} = L^{+} * \{\varepsilon\}.$$

3 Правильные скобочные п-ти (ПСП)

Определение 3.1. Π **СП** - это п-ть скобок, разбитых на пары, и в каждой паре "("раньше ")".

Определение 3.2. $\Pi C \Pi$ - это п-ть, получ. из правил:

- 1. ε это ПСП;
- 2. $s \Pi C\Pi \Rightarrow (s) \Pi C\Pi$;
- 3. $s, t \Pi C\Pi, \Rightarrow st \Pi C\Pi$.

Определение 3.3. Баланс СП - (кол-во "(") - (кол-во ")")

Определение 3.4. ПСП - СП, для кот. баланс всей п-ти = 0, а любого др. префикса ≥ 0

3.1 OPP $1 \Rightarrow OPP 3$

Все скобки разбиты на пары \Rightarrow баланс = 0.

"("левее ")" \Rightarrow в любом префиксе из каждой пары, ни одной, обе или только "(". В любом случае итоговый баланс префикса > 0.

3.2 OPP $2 \Rightarrow OPP 1$

Скобки, добавленные по правилу (s), будут в паре.

3.3 OPP $3 \Rightarrow OPP 2$

Д-во: индукция по длине СП

База: $s = \varepsilon \Rightarrow$ подх. по опр. 2

Осн. случ.: $|s| > 0 \Rightarrow$ первый символ "(".

Рассм. кратчайший непустой префикс с балансом = 0:

- Случай 1: Это вся п-ть: $s=(s')\Rightarrow$ для s' верно ОПР 3 (т. к. любой другой баланс по случаю ≥ 1) \Rightarrow и ОПР 2.
- Случай 2: Это собств. префикс (\neq всей строке): s=(s')t. И для s', и для t выполнено ОПР $3\Rightarrow$ ОПР 2.

4 Синтаксис \leftrightarrow Семантика

Синтакис	Семантика
Пропозициональные формулы	Булевы ф-ции
Пропозициональные переменные	
Знаки логических действий (\land,\lor,\to,\lnot)	
Скобки	

5 Формулы с 1-ой бинарной связкой * (Правильные алгебраические выр-я)

Рекурсивное правила:

- 1) p переменная $\Rightarrow p$ ПАВ (правильное алг. выр-е).
- 2) $\phi, \psi \Pi AB \Rightarrow (\phi * \psi) \Pi AB$.

Пример.
$$((a * b) * (c * (d * e)))$$

Теорема 5.1. Между ПАВ и деревьями синт. разбора \exists взаимно однозначное соотв. (биекция)

Мы докажем: для любого ПАВ η , не являющегося перменной, $\exists !$ пара (ϕ, ψ) , т. ч. $\eta = (\phi * \psi)$

<u>Лемма</u> **5.2** (О балансе скобок). *Баланс любого префикса* $\Pi AB \ge 0$, *при* этом = 0 только для ε и всего ΠAB .

Доказательство. Индукция по построению.

База: p - переменная $\Rightarrow 2$ префикса: ε и p, баланс = 0

Переход: Пусть для ϕ и ψ лемма верна. Докажем для $(\phi * \psi)$

Префиксы	Баланс
ε	0
$(\phi', \phi' \sqsubset \phi$	$1 + \operatorname{bal}(\phi') > 0$
$(\phi * \psi', \psi' \sqsubset \psi$	$1 + 0 + \operatorname{bal}(\psi') > 0$
$(\phi * \psi)$	0

Лемма 5.3. ϕ u ψ восстанавливаются однозначно.

Доказательство. От противного: пусть $(\phi * \psi) = (\zeta * \xi)$

Случай 1) ϕ - собств. префикс ζ , $\phi \neq \varepsilon$. Тогда в конце ϕ баланс = 0 (т. к. ϕ - ПАВ), и > 0 (т. к. ζ - ПАВ, которое на момент конца ϕ не кончилось) \Rightarrow !!! (противоречие)

Случай 2) $\phi = \zeta$. Однако тогда и $\psi = \xi$ (сократили одинаковые символы)

Для пропозициональных формул (П Φ):

Рекурс. опр.:

- 1) p переменная $\Rightarrow p$ $\Pi\Phi$
- 2) $\phi, \psi \Pi \Phi \Rightarrow (\phi \wedge \psi), (\phi \vee \psi), (\phi \rightarrow \psi) \Pi \Phi$.
- 3) $\phi \Pi \Phi \Rightarrow \neg \psi \Pi \Phi$

<u>Лемма</u> **5.4** (О балансе). *Баланс префикса* $\Pi \Phi \geq 0$, *при этом* = 0 *только* для ε , всей $\Pi \Phi$ или ¬¬...¬.

Замечание. Однозначность разбора: для любой $\Pi\Phi$ сущ. единств. правило из (1-3) и единств. сост., из кот. она получ.

6 Булевы функции

Булевы значения: {0,1}

Булева ф-ция от k переменных $f:\{0,1\}^k \to \{0,1\}$

 $\Rightarrow f$ принимает на вход 2^k различных кортежей. Каждому кортежу может быть сопоставлено 2 значения \Rightarrow .

Общее число ф-ций - 2^{2^k}

Пример. $k = 1 \Rightarrow 2^{2^k} = 4$

p	上	p	$\neg p$	T
0	0	0	1	1
1	0	1	0	1

Пример. $k = 0 \Rightarrow 2^{2^0} = 2 \ 2 \ \text{ф-чии:}$

$$\begin{cases}
f(\varepsilon) = 0(\bot) \\
f(\varepsilon) = 1(T)
\end{cases}$$

Пример. $k = 2 \Rightarrow 2^{2^2} = 16$

p	q	1	T	$p = pr_1$	$q = pr_2$	$\neg p$	$\neg q$	\wedge	V	\oplus	$p \rightarrow q$	$q \rightarrow p$	\leftrightarrow	\rightarrow	\leftarrow
0	0	0	1	0	0	1	1	0	0	0	1	1	1	0	0
0	1	0	1	0	1	1	0	0	1	1	1	0	0	0	1
1	0	0	1	1	0	0	1	0	1	1	0	1	0	1	0
1	1	0	1	1	1	0	0	1	0	0	1	1	1	0	0
								min	max	$xor (\neq)$	\leq	\geq	=		

<u></u>	↑
1	1
0	1
0	1
0	0
Стрелка Пирса (NOR)	Штрих Шеффера (NAND)

Обозначение. $k > 2, \land_k, \lor_k, \oplus_k, (\oplus_k - \phi$ -ция чётности (PARITY))

Обозначение.

$$maj(p, q, r) = \begin{cases} 1, p + q + r \ge 2\\ 0, p + q + r \le 1 \end{cases}$$

Функция большинства

 maj_{2k+1} - задаётся аналогичным образом

Пороговые функции:

$$thr_{k,n}(p_1,\ldots,p_n) = egin{cases} 1,\sum_{i=1}^n p_i \geq k \\ 0, ext{ иначе} \end{cases}$$

Тернарный оператор:

$$p?q: r = \begin{cases} q, p = 1 \\ r, p = 0 \end{cases}$$

7 Пропозициональные ф-лы \leftrightarrow Булевы ф-ции

• Переход == : Вычисление (По табл. истинности)

• Переход = : Представление

Правила вычисления знач. ф-лы:

Обозначение.

$$p_1, p_2, \dots, p_n$$
 - переменные. a_1, a_2, \dots, a_n - значения переменных $(0/1)$ $[\phi](a_1, a_2, \dots, a_n)$ - знач. ϕ -лы ϕ на арг-тах (a_1, a_2, \dots, a_n)

Определение 7.1. 1) $[p_i](a_1, a_2, \dots, a_n) = a_i$

2)
$$[\neg \psi](a_1, a_2, \dots, a_n) = neg([\psi](a_1, \dots, a_n))$$

- ¬ символ из ф-лы
- neg булева ф-ция

3)
$$[(\eta \wedge \xi)](a_1, a_2, \dots, a_n) = and([\eta](a_1, a_2, \dots, a_n), [\xi](a_1, a_2, \dots, a_n))$$

(\vee - or, \rightarrow - implies)

Булева ф-ция получается из пропоз. ф-лы, если провести вычисл. для всех (a_1, a_2, \ldots, a_n)

Определение 7.2. Литерал - перменная или отрицание переменной. $(p, \neg q)$

Определение 7.3. Конъюнкт - конъюнкция литералов $(p \land \neg q \land r)$

Определение 7.4. Дизъюнкт - дизъюнкция литералов ($p \lor \neg q \lor r$)

Определение 7.5. Конъюнктивная нормальная форма (КНФ) - конъюнкция дизъюнктов $((\neg p \lor \neg q \lor r) \land (q \lor \neg s))$

Определение 7.6. Дизъюнктивная нормальная форма (ДНФ) - дизъюнкция конъюнктов $((p \land \neg q \land r) \lor (\neg p \land s))$

Теорема 7.1. Любая булева ϕ -ция выразима как $KH\Phi$ и как $\mathcal{Z}H\Phi$

p	q	r	Значения ф-ции	ДНФ	КНФ
0	0	0	0		$(p \vee q \vee r) \wedge$
0	0	1	1	$(\neg p \land \neg q \land \neg r) \lor$	
0	1	0	1	$(\neg p \land q \land \neg r) \lor$	
0	1	1	0		$(p \vee \neg q \vee \neg r) \wedge$
1	0	0	0		$(\neg p \lor q \lor r) \land$
1	0	1	0		$(\neg p \lor q \lor \neg r) \land$
1	1	0	1	$(p \land q \land \neg r) \lor$	
1	1	1	0		$(\neg p \lor \lor \neg q \lor \neg r) \land$

Пример.

$$f \equiv 0 \Rightarrow f = p \land \neg p$$