

Chimie

Classe: 4ème sciences de l'informatique

Magazine 1: Electrolyse

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Taki Academy

Exercice 1:

On réalise l'électrolyse d'une solution de **sulfate de cuivre (II) (Cu**²⁺ + SO_2 ²⁻) entre deux électrodes inattaquables de carbone afin d'obtenir à l'une des électrodes un dépôt de cuivre.

- 1. Écrire l'équation de la réaction à l'électrode où se produit le dépôt de cuivre. S'agit-il d'une oxydation ou d'une réduction ?
- 2. Préciser le nom de l'électrode (anode ou cathode) où se produit ce dépôt ainsi, que le signe + ou du pôle du générateur auquel elle est reliée.
- 3. Donner une relation entre la quantité de matière de cuivre déposée \mathbf{n}_c , au bout d'une durée Δt d'électrolyse et la quantité d'électrons (exprimée en mol) \mathbf{n}_e , ayant circulé dans le circuit.
- 4. Exprimer la quantité d'électrons (exprimée en mol) \mathbf{n}_{e} , en fonction de l'intensité I du courant d'électrolyse, la durée Δt de l'électrolyse, le nombre d'Avogadro \mathbf{N}_{A} , et la charge électrique élémentaire \mathbf{e} . On rappelle que $\mathbf{1}$ $\mathbf{F} = \mathbf{N}_{A}$. \mathbf{e} .
- 5. Établir la relation entre la quantité de matière de cuivre déposée \mathbf{n}_{cu} au bout de $\Delta \mathbf{t}$ et l'intensité du courant I d'électrolyse.
- 6. À partir de la relation précédente, exprimer la masse de cuivre m_{cu} , déposée au bout de la durée Δt .

N N N

Exercice 2:

On réalise l'électrolyse d'une solution aqueuse de sulfate de zinc ($\mathbf{Zn^2++SO_4^2-}$) avec une anode en zinc et une cathode en fer. L'intensité du courant est $\mathbf{I=0,5~A}$, pendant la durée $\Delta t=\mathbf{10}$ min de l'électrolyse.

- **1.** Faire le schéma du montage de cette électrolyse. Préciser le sens de circulation des électrons dans le circuit extérieur de l'électrolyseur.
- **2.** On observe sur l'électrode de fer un dépôt de zinc.
 - a. Écrire les équations des transformations qui se produisent aux niveaux des électrodes. En déduire l'équation de cette électrolyse. (L'ion SO₄²⁻ ne participe pas à ces transformations).
 - **b.** Que se passe-t-il aux électrodes après une durée suffisamment longue de l'électrolyse ?
 - c. Donner deux applications industrielles de cette électrolyse.
- 3. Calculer la masse m du zinc qui se dépose sur la cathode.

On donne : la constante de Faraday $F = 96500 \text{ C.mol}^{-1}$; $M(Zn) = 65.4 \text{g.mol}^{-1}$.

Exercice 3:

On veut déposer par électrolyse à anode soluble une couche d'argent d'épaisseur $e=50~\mu m$ sur une cuillère dont l'aire de la surface est $S=120~cm^2$.

- 1. Définir l'électrolyse.
- 2. Donner le schéma de l'électrolyse annoté, en faisant apparaître le sens du courant électrique et le sens de déplacement et la nature des porteurs de charge.

3.

- a. Ecrire les demi-équations des transformations s'effectuant à la cathode et à l'anode, sachant le seul couple qui intervient est le couple Ag+/Ag.
- **b.** Déduire l'équation bilan de la réaction d'électrolyse.

- 4. Expliquer le terme «électrode à anode soluble » et préciser si la concentration en ions Ag+ de la solution varie ou non au cours du temps.
- **5.** Calculer la masse d'argent à déposer sur la cuillère.
- 6. Déterminer la durée de l'opération d'argenture sachant que l'intensité du courant est maintenue constante : I = 1 A durant l'électrolyse.
- 7. Calculer l'énergie électrique consommée pour chaque cuillère, sachant que la tension du générateur est U=6 V.

On donne:

- Masse volumique de l'argent est : $\rho = 10.5$ g.cm⁻³.
- $M (Ag) = 108 \text{ g.mol}^{-1}$
- $1 F = 96500 C.mol^{-1}$

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000