```
Recap.
```

Definite Integral: Finding the area under a curve

Idea: Using "THIN" enough rectangles to approximate "TRAPEZOIDS" and sum them up Take limit of summetton

Definite Integral.

If Panit of Riemann sums exists

View as a vector in a simplex Take infinity norm. Norm Illing & fccx) DXx = J

P: partition of [a,b]; {xo,...,xn}

Then f is (Riemann) integrable "Lebesque Integrable"

hote I is independent of Cx & P.

Suff Condins:

Continuous > Integrable Bold, Flatte discontinuities

MUT for Def. Tutegrals : f Cts $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$

Generalised Version: : f cts, q integrable, nonneg. $\int_{a}^{b} f(x) q(x) dx = f(c) \int_{a}^{b} q(x) dx$

Reduces to the original by setting g = 1

FT of Calculus

I) f continuous on [arb]

Det F: [a, 6] - R by F(x) := | a f(t) dt , then F diff'ble on (a,b) w/ F'(x)= f(x)

I)
$$f$$
 cts on $[a,b]$, let f be antiderivative of f on $[a,b]$
Then $\int_a^b f(x) dx = F(b) - F(a)$

Integration:

- 0) Algebraic Properties
- i) Riemenn Sums: Definition
- ii) FT of calculus (I)

$$S = \sum_{k=1}^{n} \Delta x f(x_k)$$

Where
$$x_k = \frac{\pi}{2} \cdot \frac{k}{h}$$
 $\Delta x = \frac{\pi}{2h}$

$$= \frac{\pi}{2n} \sum_{k=0}^{N-1} SM\left(\frac{k\pi}{2n}\right)$$

1 Algebraic manipulation: $SM \cdot SMb = \cos \frac{a-b}{2} - \cos \frac{a+b}{2}$

$$=\frac{\pi}{2n}\sum_{k=0}^{n-1}\frac{1}{2\sin\frac{\pi}{4n}}\left(\cos\left(\frac{2k-1}{2}\cdot\frac{\pi}{2n}\right)-\cos\left(\frac{2k+1}{2}\cdot\frac{\pi}{2n}\right)\right)$$

$$\frac{\pi/2\eta}{2 \sin \frac{\pi}{4\eta}} \cdot (\cos \frac{\pi}{4\eta} - \cos \frac{(2\eta - 1)\pi}{4\eta})$$

$$I = \lim_{n \to \infty} S = 1 \cdot 1 = 1$$

Problem 2

Compare the values

•
$$I = \int_{0}^{\frac{\pi}{2}} sm^{10} \times dx \quad Q \quad J = \int_{0}^{\frac{\pi}{2}} sm^{2} x \, dx$$

$$J - I = \int_{0}^{\frac{\pi}{2}} \sin^{2}x \left(1 - 5m^{8}x\right) dx$$

$$\geqslant 0, \quad (>0 \text{ when } x \neq 0 \text{ and } \frac{\pi}{2})$$

$$J-I=\int_{0}^{\infty}\frac{e^{-x^{2}}}{2}\left(1-\frac{e^{x^{2}-x}}{2}\right)$$

$$e^{x^{2}-x}\leq 1$$

Integrand >0 when x \$ 0 and 1

> 0

$$-I = \int_0^{\pi} e^{-x^2} \cos^2 x \, dx \quad & J = \int_{\pi}^{2\pi} e^{-x^2} \cos^2 x \, dx$$

Observe the symmetry of cos2x:

- Periodic with period π $\cos^2(X+\pi) = \cos^2(X)$

$$\begin{array}{lll}
T & \int_{\pi}^{2\pi} e^{-x^{2}} \cos^{2}x \, dx \\
& = \int_{0}^{\pi} e^{-(x+\pi)^{2}} \cos^{2}(x+\pi) \, dx \\
& = \int_{0}^{\pi} e^{-x^{2}} \cos^{2}x \cdot e^{-2x\pi-\pi^{2}} \, dx \\
& = \int_{0}^{\pi} e^{-x^{2}} \cos^{2}x \cdot e^{-2x\pi-\pi^{2}} \, dx
\end{array}$$

$$\begin{array}{ll}
T - \int_{\pi}^{\pi} \int_{0}^{\pi} e^{-x^{2}} \cos^{2}x \cdot e^{-2x\pi-\pi^{2}} \, dx \\
& = \int_{0}^{\pi} e^{-x^{2}} \cos^{2}x \cdot e^{-2x\pi-\pi^{2}} \, dx
\end{array}$$

Pro6 3

$$f$$
 cts on $[a,b]$, $\int_a^b [f(x)]^2 dx = 0$
Prove $f = 0$ on $[a,b]$

Let
$$q(x)=[f(x)]^2$$
; $q(x)$ cts. usuneg.
By FT of calculus
 $G'(x)=q(x) > 0$

$$\begin{array}{lll} \overrightarrow{\int}_{a}^{b} & g(x) \ dx = G(b) - G(a) = 0 \implies G(a) = G(b) \\ -\overrightarrow{\int}_{a}^{b} & \text{is unondecreasing on } [a,b] & \text{(by } g(x) > 0) \\ & \overrightarrow{\int}_{a}^{b} & \text{(b)} & \text{(c)} & \text$$

What if he benove the cts condition?

Does it have to be zero from?

Actually no. One can add finitely many removable discontinuities.

Problem 4.

We want to use the FT of Calculus, but things look a little messy here. We rewrite F in following form:

he vant:

$$f = \frac{d}{dx} \int_{0}^{\cos x} \cos(\pi t^{2}) dt - \int_{0}^{\sin x} \cos(\pi t^{2}) dt$$