Tarea de diferenciación numérica. Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

1. Usando una aproximación por diferencias finitas de orden $O(h^2)$, calcula f'(2.36) y f''(2.36), a partir de los datos:

X	2.36	2.37	2.38	2.39
f(x)	0.85866	0.86289	0.86710	0.87129

2. Dados los siguientes datos

X	0.84	0.92	1.00	1.08	1.16
f(x)	0.431711	0.398519	0.367879	0.339596	0.312486

Calcula f''(1) con la mayor precisión posible.

3. La palanca AB de longitud R=90 mm está girando con velocidad angular constante $d\theta/dt=5000$ rev/min.

La posición del pistón C como se muestra, varía con el ángulo θ

$$x = R\left(\cos\theta + \sqrt{2.5^2 - \sin^2\theta}\right)$$

Escribe un programa en python que calcule mediante diferenciación numérica la aceleración del pistón en $\theta=0^\circ,5^\circ,10^\circ,\ldots,180^\circ$.

4. Las estaciones de radar A y B están separadas por una distancia a=500 m; rastrean el avión C registrando los ángulos α y β en intervalos de un segundo. Si hay tres lecturas sucesivas

Figura 1: Estaciones de radar y el avión.

Calcula la velocidad v del avión y el ángulo de subida γ en t=10 segundos. Las coordenadas del avión las tomamos de

$$x = a \frac{\tan \beta}{\tan \beta - \tan \alpha}$$
 $y = a \frac{\tan \alpha \tan \beta}{\tan \beta - \tan \alpha}$

- 5. Obtén la aproximación por diferencias centrales de f''(x) de orden $O(h^4)$ aplicando la extrapolación de Richardson a la aproximación por diferencias centrales de orden $O(h^2)$.
- 6. Obtén la primera aproximación por diferencias centrales para $f^4(x)$ a partir de la serie de Taylor.