

THE FIRST 9 MONTHS CAN SHAPE THE REST OF YOUR LIFE......

Critical periods before and during pregnancy when specific nutrients are needed for optimal development.

Risks of a number of chronic diseases in adulthood such as hypertension, diabetes, heart disease may have their origins before birth.

FETAL ORIGINS OF ADULT DISEASE

Term infants Who are small for their gestational age are Predisposed to Obesity and have an increased susceptibility to Cardiovascular disease and Type II diabetes (impaired glucose tolerance) in adulthood as a consequence of physiologic adaptations to Under-nutrition during fetal life.

Robinson R. The fetal origins of adult disease. Brit Med J 2001;322:375-376.

DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE Developmental origins of Health and Disease period and Early childhood as Important periods for development of Chronic disease throughout life

MENGAPA KEHAMILAN ADALAH WAKTU YANG PENTING DALAM KEHIDUPAN?

Status nutrisi ibu berperan penting Saat Hamil: Janin sedang dalam pertumbuhan pesat

NUTRISI SELAMA KEHAMILAN

- Energi
- Protein
- · Vitamin dan mineral
- Nutrien khusus
 - Besi
 - Folat
 - · Kalsium

BERAPA KALORI YANG DIBUTUHKAN ? ✓ Protein 5,186 ✓ Lemak 36,329 ✓ Metabolisme 35,717 77,234 ✓ Energi makanan 7,723 84,957 =303 kkal/hari * 280 hari

REKOMENDASI

Kelompok BMI	ВМІ	Peningkatan BB (kg)
Rendah	<u><</u> 19.8	12.5 - 18
Normal	19.8-26.0	11.5 -16
Tinggi	26.1 -29	7 - 11.5
Sangat tinggi	<u>></u> 29.1	minimal 6 kg
Remaja	(<17)	minimal 16 kg
Perokok		minimal 15 kg

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijgo

The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: "Think Nutrition First"#

Mark A. Hanson^a, Anne Bardsley^b, Luz Maria De-Regil^c, Sophie E. Moore^d, Emily Oken^c, Lucilla Poston^f, Ronald C. Ma^g, Fionnuala M. McAuliffe^b, Ken Maletaⁱ, Chittaranjan N. Purandare^j, Chittaranjan S. Yajnik^k, Hamid Rushwan¹, Jessica L. Morris^{1,*}

- *Institute of Developmental Sciences, University of Southampton; and NIHR Nutrition Biomedical Research Centre, University Hospital Southampton; Southampton, UK
 *Liggins Institute, University of Auckland, Auckland, New Zealand
 *Micronutrient Initiative, Ottawa, Canada
 *Micronutrient Nutrition Research, Cambridge, UK
 *Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute; and Department of Nutrition, Harvard TH Chan School of Public Health;
 Boston, MA, USA
 *Iking's College London, London, UK
 *Department of Medicine and Therapeutics, The Chinese University of Hong Kong; and the Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong,
 *Hong Kong, China.**

- *Depairment of metation and incorporation of the Mong Kong, China
 *UCD School of Medicine and Medical Science, University College Dublin, National Maternity Hospital, Dublin, Ireland
- University of Malawi College of Medicine, Blantyre, Malawi
 Grant Medical College, Mumbai, India

 Indian College of Obstetricians and Gynaecologists, Mumbai, India

 Indian College of Obstetricians and Gynaecologists, Mumbai, India

 International Federation of Cynecology and Obstetrics London UK

Figure 1 The central role of nutrition in determining health across the life course and across generations. All stages in a woman's life are connected by the effects of good or poor nutrition. Poor nutrition at any stage has negative consequences that disrupt the cycle and impact later life stages, including future generations.

Figure 2 Life course model of chronic disease risk. Developmental trajectories established in early life, influenced by factors such as maternal diet and body composition, affect the risk of disease across the life course. Timely intervention early in life (prepregnancy or during pregnancy) can reduce later disease risk. Adapted with permission from Godfrey KM, Gluckman PD, Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab. 2010;21(4):199-205; and Gluckman P, Hanson M, Seng CY, Bardsley A. Nutrition and Lifestyle for Pregnancy and Breastfeeding. Oxford: Oxford University Press; 2015.

Daily intake requirement				Risk factors for deficiency/		
Nutrient	Pre-pregnant	Pregnant	Lactating	Function	Food sources	consideration for supplementation
Protein	60 g	71 g		Building blocks for structural and functional components of cells	Meat, poultry, fish, eggs, dairy products, legumes, grains, nuts, seeds	Protein energy malnutrition
Omega-6 PUFAs	11-12 g	13 g	13 g	Component of structural membrane lipids, involved in cell signaling, precursor of eicosanoids	Nuts, seeds, vegetable oils (corn, sunflower, soybean). For arachidonic acid: poultry, eggs, fish	Fat intake mainly from saturated fat sources
Omega-3 PUFAs	1.1 g	1.4 g	1.3 g	Neurological development, growth, precursor of eicosanoids	Fish oils, fatty fish, flaxseed oil, nuts (e.g. walnuts)	Low intake of fatty fish, fat intake from saturated fat sources
Carbohydrates	130 g	175 g	210 g	Fuel for growth	Starchy vegetables, grains, sugars	Protein energy malnutrition
Folate	400 µg	400-600 µg	600 µg	Neurological function, erythropoiesis, neural tube formation, brain development	Liver ^b , yeast extract, green leafy vegetables, legumes, citrus fruits, fortified breakfast cereals	Family history of neural tube defects, low folate diet ^c
Vitamin B12	2.4 μg	2.6 µg	2.8 µg	Neurological function, erythropoiesis, neural tube formation, brain development	Milk/dairy products, meat (especially liver ^b), poultry, fish, and eggs	Vegan/vegetarian diets, malabsorption disorders, communities where undernutrition is prevalent
Vitamin A (as retinol activity equivalents)	700 μg	750-770 µg	1300 µg	Vision, immunity, growth, organ and limb development, red blood cell production	Yellow and orange vegetables, cod liver oil, eggs, dairy (sources of vitamin A precursors: carotenoids)	Endemic in some areas. Zinc deficiency may interfere with vitamin A metabolism
Vitamin D	≥600 IU ^d	≥600 IU ^d	≥600 IU ^d	Immune function, bone growth, calcium and phosphorus balance, insulin secretion, blood pressure regulation	Fatty fish, eggs, dairy	Limited sun exposure, low dietary intake, obesity
Vitamin B6	1.3 mg	1.9 mg	2.0 mg	Multiple enzyme function – protein metabolism, neurological function	Poultry, fish (especially tuna), meats, legumes, potatoes and other starchy vegetables, noncitrus fruits, nuts, and seeds	Alcoholism, poor diet, systemic inflammation

Daily intake requirement			rement			Risk factors for deficiency
Nutrient	Pre-pregnant	Pregnant	Lactatin	g Function	Food sources	consideration for supplementation
lodine	150 µg	220 µg	290 µg	Thyroid adaptation to pregnancy, brain development	Seaweed, seafoods, iodized salt	Endemic iodine deficiency due to low soil content
Iron	15-18 mg	27 mg	9 mg	Hemoglobin synthesis, organ function	Meat, poultry, fish, seafood, molasses, prunes, lentils, kidney beans, yeast extract, tofu, cashew nuts	Malaria infection/endemic area ^c , vegetarian diet, malnutrition
Calcium ^f	1000- 1300 mg	1000- 1300 mg	1000- 1300 mg	Muscle function, skeletal development, nerve impulse transmission, hormone secretion	Dairy products, tofu, sardines, beans, Chinese cabbage, oranges, figs, kale, broccoli	Low intake of dairy products; vegan diet, adolescent growth spurt
Selenium	55 µg	60 µg	70 µg	Fertility, fetal growth, prevention of oxidative stress	Plant foods (e.g. wheat) grown in selenium-rich soil; animals fed on selenium-rich plant foods	Low regional soil selenium content
Zinc ^f	8-9 mg	11-12 mg	12 mg	Immune function/infection resistance, growth, neurodevelopment	Oysters, other shellfish, red meat, nuts legumes, poultry, eggs, seeds (sesame, pumpkin, sunflower)	Protein-energy malnutrition, diets low in animal protein and/or high in phystates (whole grains). Iron and calcium supplements decrease zinc absorption
Choline	400-425 mg	450 mg		Membrane function, nerve impulse transmission, brain development, neural tube formation	Liver ^b , eggs, beef, fish, seafood, milk, wheat germ	Vegan/vegetarian diets
Biotin	25-30 µg	30 µg		Immune function, neurological function	Egg yolk, legumes (particularly soybeans and lentils), sunflower seeds, milk, cheese, chicken, pork, beef, and some fruits and vegetables.	High consumption of egg whites
Copper	890-900 µg	1000 µg		Immune function, connective tissue formation, iron metabolism, central nervous system function	Organ meats, grains, shellfish (oysters), nuts, seeds, and cocoa products	Iron and zinc supplementation reduces copper absorption

Nutrisi	RDA/AI (per hari)	UL (per hari)	Nutrisi	RDA/AI (per hari)	UL (per hari)	
Vitamin A*	H: 0,75-0,77 mg L: 1,2-1,3 mg	3 mg	Riboflavin (Vitamin B ₂)	H: 1,4 mg L: 1,6 mg	TA	
Niasin	H: 18 mg	35 mg	Biotin (Vitamin H)	H: 30 μg L: 35 μg	TA	
(Nikotinamid) Tiamin	L: 17 mg H: 1,4 mg		Kromium	H: 29-30 μg L: 44-45 μg	TA	Keterangan: *sebagai Retinol
(Vitamin B ₁)	L: 1,4 mg	TA	Tembaga	H: 1,0 mg	10 mg	Activity Equivalent (RAEs); 1 RAE = 12 mg b
Vitamin B ₆	H: 1,9 mg L: 2,0 mg	100 mg	Terribaga	L: 1,3 mg	To mg	carotene **pada keadaan
Vitamin B ₁₂	H: 2,6 µg	TA	Yodium	H: 220 μg L: 290 μg	1100 µg	paparan sinar matahari yang tida
Vitariiii D ₁₂	L: 2,8 µg		Besi	H: 27 mg L: 9-10 mg	45 mg	mencukupi)
Vitamin C	H: 80-85 mg L: 115-120 mg	2000 mg	Molibdenum	H: 50 μg L: 50 μg	2000 μg	RDA: Recommended Dietary Allowance Al: Adequate
Kalsiferol** (Vitamin D)	H: 15 μg L: 15 μg	100 µg	Selenium	H: 60 µg L: 70 µg	400 µg	Intakes; UL: Tolerable Upper Intake Level;
Alfa-tokoferol (Vitamin E)	H: 15 mg L: 19 mg	1000 mg	Seng	H: 11-12 mg L: 12-13 mg	40 mg	H: Hamil; L: Laktasi TA: Tidak ada
Folat (asam folat, folasin)	H: 600 μg L: 500 μg	1000 µg	Magnesium	H: 350-400 mg L: 310-360 mg	350 mg	1

NUTRISI DALAM KEHAMILAN

- Status Nutrisi sebelum kehamilan sama penting dengan selama hamil.
- ➤ Nutrisi ibu selama hamil merupakan hal terpenting pada pertumbuhan & perkembangan janin.
- Nutrisi dan gizi buruk berakibat gangguan pada perkembangan janin seterusnya.

KEBUTUHAN NUTRISI TRIMESTER I

- Kebutuhan kalori tambahan: <u>300 kalori</u> per hari
- Asupan protein, besi, dan kalsium adalah terpenting .
- Kelebihan glukosa bisa didapat walaupun tidak mendapatkan gestational diabetes, akibat kehamilan .
- · Makanan tambahan / camilan .
- Hindari lemak dan makanan berminyak terkait insulin

Cairan ditambahkan 400 ml/ hari

KEBUTUHAN NUTRISI TRIMESTER II-III

- * Kalsium untuk perkembangan janin menjadi fokus.
- ★ Janin berkembang pesat pada trimester ini sehingga kebutuhan nutrisi lebih besar.

NUTRISI PENTING JANIN, SEMASA KEHAMILAN MAJOR MORPHOLOGICAL ABNORMALITIES Trimester 1 **Trimester 2 Trimester 3** Waktu 0 - 12 minggu 13 - 28 minggu 28 - 40 minggu Perkembangan organ Proses yg terjadi Pembentukan organ vital, Perkembangan organ otak, sistem saraf jantung, vital, peningkatan penambahan bobot kelamin volume darah, bayi, pembentukan pembentukan tulang. tulang Asam Folat, NTD, Vitamin Asam folat, DHA dan Nutrisi yg DHA >> , asam folat, dibutuhkan A, B1, B6, B12, Vit E ARA, Fe, Ca, Vit E kalsium, Vit B1, B2, B6, Iodium, Zinc

MAKRO DAN MIKRONUTRIEN

Makronutrien

- Protein (asam amino)
- Energi (karbohidrat)
- · Lemak (asam lemak)

Mikronutrien

- Vitamin larut air (membantu dalam pelepasan energi karbohidrat dan pembentukan sel darah merah)
- Vitamin larut lemak (perkembangan dan metabolisme)
- Mineral

MAKRONUTRIEN MERUPAKAN SUMBER ENERGI DAN PENYUSUN MATERI

Nutrien	Peranan bagi tubuh
Protein	Penyusun utama dari sel tubuh. Membantu memproduksi darah ibu dan sumber energi.
Karbohidrat	Menyediakan energi untuk ibu dan janin selama kehamilan.
Lemak	Menyediakan energi jangka panjang untuk pertumbuhan. Sebaiknya merupakan ≤ 30% kalori harian.
Asam lemak esensial	Bagian dari sistem saraf pusat, otak, dan jaringan janin. Penting untuk pertumbuhan dan perkembangan otak yang baik.
DHA (DocosaHexaenoic Acid)	Penting Untuk perkembangan otak dan jaringan syaraf dan serabut mata / Visual

Worthington-Roberts B, Williams SR. Maternal nutrition and the outcome of pregnancy. Nutrition in Pregnancy and Lactation, 4th ed. College Publishing: St. Louis, Missouri, 1989.

Kline DA. Macronutrient requirements during pregnancy. Today's Diettitan Jan 2004:20-24.

VITAMIN MEMBANTU METABOLISME DAN INTEGRASI JARINGAN

Nutrien	Peran bagi tubuh
Vitamin A	Membantu kesehatan kulit dan membran mukosa gastrointestinal, saluran kemih, dan saluran pernapasan. Membantu pertumbuhan gigi dan tulang.
Vitamin C	Membantu kesehatan gusi, gigi, dan tulang. Memperkuat absorbsi besi. Bertindak sebagai antioksidan.
Vitamin E	Mencegah oksidasi dari asam lemak yang belum tersaturasi, yang menyusun membran sel.
Vitamin B ₆	Membantu menyusun sel darah merah. Diperlukan untuk metabolisme asam amino, metabolisme asam lemak, dan sintesis protein.
Vitamin B ₁₂	Membantu menyusun sel darah merah. Memicu pertumbuhan normal dari sistem saraf.
Asam folat	Diperlukan untuk produksi, perbaikan, dan fungsi DNA. Diperlukan untuk memproduksi darah. Membantu fungsi enzim.

VITAMIN LARUT AIR

Thiamin B

Fungsi sistem saraf, pelepasan energi enzimatik dari karbohidrat (sapi,hati, kacang-kacangan, roti)

· Riboflavin B2

Berperan pada enzimatik pelepasan energi karbohidrat, lemak, dan protein (susu, produk susu, sayuran berwarna hijau gelap, yogurt)

Niacin

Berperan dalam enzimatik pelepasan energi nutrien (sapi, babi, hati, roti, kacang-kacangan)

Folat

Pembentukan sel darah merah, pembelahan sel baru (sayur-sayuran, biji-bijian)

· Vitamin B12 (Cobalamin)

Pembentukan sel darah merah, sistem saraf (produk hewani)

- Pantothenic Acid
- Biotin (Vitamin H, CoEnzyme R)
- Vitamin B6 (Pyridoxine)
- Vitamin C

VITAMIN LARUT LEMAK

Vitamin A

- ✓ Penting untuk penglihatan, perkembangan janin, respon imun
- ✓ Ditemukan pada produk susu, minyak ikan, sayur-sayuran (wortel, mangga)

Vitamin D

- ✓ Pembentukan tulang, metabolisme dan absorbsi kalsium
- ✓ Ditemukan pada cahaya matahari, kuning telur, produk susu, dan minyak ikan

Vitamin E

- ✓ Membentuk dan menjaga membran sel
- ✓ Ditemukan pada lemak, minyak, sayuran hijau, ayam, ikan

Vitamin K

- ✓ Pembekuan darah, sintesis protein
- √ Sayuran hijau, hati, kubis

STRUKTUR JARINGAN DAN PERKEMBANGAN SISTEM ORGAN

Nutrien	Peranan bagi Tubuh
Kalsium	Membantu menyusun tulang dan gigi dengan memicu mineralisasi adekuat. Meliputi kontraksi dan relaksasi otot, fungsi saraf, pembekuan darah, tekanan darah, dan sistem imun.
Besi	Membantu sintesa sel darah merah. Membantu mencegah kelelahan ibu. Diperlukan oleh enzim yang mebuat asam amino, kolagen, hormon.
Magnesium	Membantu menyusun tulang dan gigi. Membantu regulasi insulin dan kadar gula darah. Membantu keseimbangan asam basa.
Zinc	Membantu organ, sistem rangka, saraf, dan organ sirkulasi. Merupakan komponen insulin dan beberapa enzim. Membantu sintesis DNA, RNA, dan protein. Terlibat dalam penyembuhan luka.

MINERAL

Mineral utama "tulang"

Kalsium (tulang)
Fosfor (DNA)
Magnesium (tulang)
Natrium (saraf)
Klorida (keseimbangan cairan)
Kalium (sintesis protein)
Sulfur (beberapa asam amino)

Mineral lain

lodin (fungsi tiroid)
Besi (hemoglobin)
Zinc (enzim, hormon)
Tembaga (penyerapan besi)
Flouride (tulang dan gigi)
Chromium (energy)
Molybdenum (enzim)
Manganese (enzim)
Selenium (antioksidan)
Cobalt (B12)

