

Universidade Federal do Paraná

Setor: Tecnologia

Departamento: Engenharia Química

Movimento dos fluidos

Prof^a. Dra. Alessandra Cristina Pedro

Dinâmica dos fluidos

Cinemática é a parte da mecânica que se ocupa do movimento dos corpos, portanto, neste capítulo serão estudados os fluidos em movimento.

I I

Leis fundamentais

Existem 3 leis físicas fundamentais que aplicam-se a cada escoamento, independentemente da natureza do fluido considerado:

Lei	Equação
A lei da conservação da massa	Equação da continuidade
Primeira Lei da Termodinâmica	Equação da energia
Segunda Lei de Newton do movimento	Teorema de momento

Definições

- Sistema: quantidade específica e bem definida da matéria;
- Volume de controle: região do espaço onde ocorre os eventos físicos de interesse.

Classificação dos escoamentos

Viscoso x não-viscoso;

Interno x externo;

Compressível x incompressível;

Permanente x transiente;

Uniforme x não-uniforme;

Uni, bi ou tridimensional;

Laminar x turbulento.

Viscoso x não-viscoso

• Fluido ideal: não leva em consideração a viscosidade. A ciência que o estuda é denominada de *hidrodinâmica teórica*;

• Fluido real: efeito da viscosidade obrigatoriamente deve ser levado em consideração.

Interno x externo

Escoamento em dutos fechados: transporte de líquido ou gás, normalmente utilizado em aplicações de aquecimento, resfriamento e nas redes de distribuição de fluidos;

Escoamento externo: movimento relativo entre um fluido e um corpo.

Compressível x incompressível

- Escoamento incompressível: onde as variações de densidade são desprezíveis o peso específico de líquidos apresenta pouca variação com a pressão em uma determinada condição;
- Escoamento compressível: as variações de densidade são consideráveis.

Regime permanente x regime transiente

Regime permanente: as propriedades do fluido não mudam com o passar do

tempo:

$$\frac{\partial N}{\partial t} = 0$$

Regime transiente: as propriedades do fluido mudam com o instante de tempo em cada posição:

$$\frac{\partial N}{\partial t} \neq 0$$

Uniforme x não-uniforme

Escoamento uniforme

Velocidades distintas

Fluxo de massa constante

Escoamento não-uniforme

Uni, bi ou tridimensional

Quando a velocidade do fluido tem o sentido normal (perpendicular) à superfície de controle e é a mesma em toda a superfície, o escoamento é unidimensional.

Escoamento de fluidos

Um método mais comum para descrever o escoamento de fluidos é a descrição Euleriana (matemático suíço Leonhard Euler).

Dentro de um V.C. definimos variáveis de campo, em função de espaço e tempo.

Pressão =
$$P(x,y,z,t)$$

$$Velocidade = v(x,y,z,t)$$

Aceleração =
$$a(x,y,z,t)$$

EXERCÍCIOS – Classificação de escoamentos

Laminar x turbulento

Padrões distintos podem ser observados em função dos efeitos viscosos e dinâmicos que estão presentes nos escoamentos. Está sujeito ao comportamento de moléculas de fluido que adotam um padrão de movimento (estrutura interna).

Experimento de Reynolds

Experimento de Reynolds

Experimento de Reynolds

Laminar: as partículas se deslocam em lâminas individualizadas, sem troca de massa entre elas; **Turbulento:** as partículas apresentam um movimento aleatório macroscópico.

Número de Reynolds

 $Re < 2100 \rightarrow \text{escoamento laminar}$ $2100 < Re < 4000 \rightarrow \text{escoamento de transição}$ $Re > 4000 \rightarrow \text{escoamento turbulento (90% dos casos)}$

Quanto maior as forças viscosas, menor o número de Reynolds.

Escoamento laminar e turbulento

Camada Limite: conceito introduzido por Prandtl em 1904 – escoamentos viscosos podem ser analisados dividindo-os em duas regiões:

 Perto das fronteiras sólidas o efeito da viscosidade é importante = Camada Limite Hidrodinâmica;

2) Afastada das fronteiras sólidas, o efeito da viscosidade é desprezível.

Exemplo - Reynolds

Um engenheiro bombeia água por um tubo, com 2,26 m de diâmetro e com velocidade média de 2,5 m/s. Determine se o escoamento é laminar ou turbulento.

– Dados: $\mu_{\acute{a}gua} = 1x10^{-3} \text{ kg/m.s e } \rho_{\acute{a}gua} = 1000 \text{ kg/m}^3$.

$$Re = \frac{\rho vD}{\mu}$$
 $Re = \frac{1000 * 2,5 * 2,26}{0,001}$

$$Re = 5.6x10^6$$

Escoamento turbulento!

Para o exemplo anterior, qual deveria ser a velocidade do fluido para que o escoamento fosse considerado laminar? (Re = 2300)

$$2300 = \frac{1000 * v * 2,26}{0,001}$$

$$v = 0.001 \, m/s$$