TRABAJO PRACTICO Nº 9

PROPIEDADES DE LENGUAJES REGULARES Y LIBRES DEL CONTEXTO

1) Dados los siguientes lenguajes regulares

$$L_1 = \{ 0^n 1^m / n, m \ge 0 \}$$

$$L_2 = \{ 0^k 1^{2j} / k \ge 0, j \ge 1 \}$$

A partir de los autómatas finitos o las gramáticas regulares de L1 y L2, construir un autómata finito ó una gramática regular respectivamente para:

a) $L_1 \cap L_2$

g) $L_1 \bullet L_2$

b) $L_1 \cup L_2$

c) L_1^R d) L_2^R

h) L₂ • L₁
i) L₁*

j) L_2

- $e)\overline{\underline{L_1}}$ f) L₂
- 2) Probar que los lenguajes regulares son cerrados bajo las siguientes operaciones:
 - a) Intersección
 - b) Unión
 - c) Reversa
 - d) Complemento
 - e) Concatenación
 - f) Clausura
- 3) Dados L₁ y L₂ generados por las siguientes gramáticas libres del contexto:

$$G_1 = (\{A\}, \{a, b\}, P_1, S_1),$$

$$G_1 = (\{A\}, \{a, b\}, P_1, S_1), \qquad P_1 = \{S_1 \to Ab, A \to aAb, A \to a\}$$

$$G_2 = (\{B\}, \{a, b\}, P_2, S_2)$$

$$G_2 = (\{B\}, \{a, b\}, P_2, S_2), \qquad P_2 = \{S_2 \to Ba, B \to bBa, B \to b\}$$

- a) Construya una gramática que genere:
 - 1) $L_1 \cup L_2$
 - 2) L₁ L₂
 - 3) L₁*
 - 4) L₂^R
- b) Determine en cada caso si el lenguaje resultante es o no libre del contexto.
- c) Generalice y demuestre los resultados obtenidos para la unión, concatenación, clausura y reversa de lenguajes libres del contexto arbitrarios.

4) Dados L₃ y L₄ generados por las siguientes gramáticas libres del contexto:

$$\begin{split} G_3 &= (\{A, B\}, \{a, b, c\}, P_3, S_3) \\ P_3 &= \{S_3 \to AB, A \to aAb, A \to ab, B \to cB, B \to c\} \\ G_4 &= (\{C, D\}, \{a, b, c\}, P_4, S_4) \\ P_4 &= \{S_4 \to CD, C \to aC, C \to a, D \to bDc, D \to bc\} \end{split}$$

- a) Obtenga $L_5 = L_3 \cap L_4$
- b) Determine si L₅ es o no libre del contexto
- c) Generalice el resultado obtenido para lenguajes libres del contexto arbitrarios.
- 5) Determine si el complemento de un lenguaje libre del contexto es o no libre del contexto. Justifique.
- 6) Determine el tipo del lenguaje resultante de la intersección entre un lenguaje regular y un lenguaje libre del contexto. Ejemplifique.
- 7) a) Determine y justifique si las siguientes afirmaciones son verdaderas o falsas, siendo L_1 y L_2 lenguajes regulares, y L_3 y L_4 lenguajes libres del contexto:
 - i) $L_1 \cup L_3$ es un lenguaje regular
 - ii) $L_3 \cap L_4^*$ es un lenguaje libre del contexto
 - iii) $L_4^R \cup L_1$ es un lenguaje libre del contexto
 - iv) L_1^* . L_4^R es un lenguaje libre del contexto
- b) Para las afirmaciones verdaderas del inciso anterior y demuestre el resultado de cada operación involucrada en la misma.
- c) Para cada afirmación falsa, dé un contraejemplo.
- 8) Sean L₁, L₂, L₃ lenguajes arbitrarios sobre un alfabeto A. ¿Cuáles de las siguientes afirmaciones son verdaderas ? Para las que sean falsas, dé un contraejemplo.

a)
$$(L_1 \cdot L_2) \cup L_3 = L_3 \cup (L_2 \cdot L_1)$$

b)
$$L_1 \cdot (L_2 \cdot L_1)^* = (L_1 \cdot L_2)^* \cdot L_1$$

c)
$$L_1 \cdot \{\epsilon\}^* \cdot L_1 = \emptyset^* \cdot L_1 \cdot L_1 = L_1^2$$

d)
$$(L_1 \cdot L_2)^* = L_1^* \cdot L_2^*$$

e)
$$(L_1 \cap L_2)^* = L_1^* \cap L_2^*$$

f)
$$L_1^* \bullet (L_2 \cup L_3) = L_1^* \bullet L_2 \cup L_1^* \bullet L_3$$

- 9) Para cada una de las siguientes gramáticas $G = \langle N, T, P, S \rangle$, determine si la afirmación correspondiente es verdadera o falsa, justificando en cada caso. En todos los casos T es el conjunto de símbolos terminales, N es el conjunto de símbolos no terminales, P es el conjunto de reglas de producción, y S es el símbolo distinguido.
- i) $G = \{A, B\}, \{a, b\}, \{S \rightarrow aA, A \rightarrow aB, B \rightarrow b, B \rightarrow abB\}, S >$ es una gramática de TIPO 3
- ii) G = $\{A, B\}$, $\{a, b\}$, $\{S \rightarrow aABb, aABb \rightarrow aaaBb, B \rightarrow \epsilon\}$, S > es una gramática de TIPO 0
- iii) G = $\{A, B\}$, $\{a, b\}$, $\{S \rightarrow B, B \rightarrow ABb, ABb \rightarrow aaBa, B \rightarrow a \}$, S > es una gramática de TIPO 1
- iv) $G = \{A, B\}, \{a, b\}, \{S \rightarrow aABb, aABb \rightarrow aaaB, B \rightarrow \epsilon\}, S >$ es una gramática de TIPO 0