Machine Learning

Assignment 10.4

Submitted By: Ranji Raj

January 20, 2021

Fuzzy-c-Means

points	A	В	С	D	Е
X	1	3	5	1	5
v	2	2	2	1	1

Table 1: Data

centroids	x	y	
C_1	2.75	3	
C_2	3.25	0	

Table 2: Initialization

For
$$m = 2$$
, $u_{\alpha i} = \frac{1}{\sum_{\beta=1}^{c} (\frac{d_{i\alpha}^2}{d_{i\beta}^2})} = \frac{d_{i\alpha}^{\frac{2}{1-m}}}{\sum_{\beta=1}^{c} d_{i\beta}^{\frac{2}{1-m}}}$ and $d_{i\alpha}^2 = \sum_{j=1}^{k} (x_{ij} - v_{\alpha j})^2$ by L2 norm.

Iteration-1

points	A	В	С	D	Е
$d_{i\alpha}^{-2}$	$\frac{16}{65}$	$\frac{16}{17}$	$\frac{16}{97}$	$\frac{16}{113}$	$\frac{16}{145}$
$d_{i\beta}^{-2}$	$\frac{16}{145}$	$\frac{16}{65}$	$\frac{16}{113}$	$\frac{16}{97}$	$\frac{16}{65}$

Table 3: Distance values

points	A	В	С	D	E
$u_{i\alpha}^1$	$\frac{29}{42}$	$\frac{65}{82}$	$\frac{113}{210}$	$\frac{97}{210}$	$\frac{13}{42}$
$u_{i\alpha}^2$	$\frac{13}{42}$	$\frac{17}{82}$	$\frac{97}{210}$	$\frac{113}{210}$	$\frac{29}{42}$
Cluster	C_1	C_1	C_1	C_2	C_2

Table 4: Membership values

Calculating,

$$J_2^1(U,V) = \sum_{i=1}^N \sum_{\alpha=1}^c u_{i\alpha}^2 d_{i\alpha}^2$$

$$\therefore J_2^1(U,V) = [(\frac{65}{16})*(\frac{13}{42})^2 + (\frac{17}{16})*(\frac{17}{82})^2 + (\frac{97}{16})*(\frac{97}{210})^2 + (\frac{113}{16})*(\frac{113}{210})^2 + (\frac{145}{16})*(\frac{29}{42})^2]$$

$$+ [(\frac{145}{16})*(\frac{29}{42})^2 + (\frac{65}{16})*(\frac{65}{82})^2 + (\frac{113}{16})*(\frac{113}{210})^2 + (\frac{97}{16})*(\frac{97}{210})^2 + (\frac{65}{16})*(\frac{13}{42})^2] = 8.09 + 10.60 = \mathbf{18.69}$$

Fuzzy-c-Means Assignment 10.4

Figure 1: Visualization-1

Now for,

$$v_{\alpha} = \frac{\sum_{i=1}^{N} u_{\alpha i}^{2} \cdot x_{i}}{\sum_{i=1}^{N} u_{\alpha i}^{2}}$$

$$C_{2}^{x} = \left(\frac{1 * \left(\frac{13}{42}\right)^{2} + 3 * \left(\frac{17}{82}\right)^{2} + 5 * \left(\frac{97}{210}\right)^{2} + 1 * \left(\frac{113}{210}\right)^{2} + 5 * \left(\frac{29}{42}\right)^{2}}{\left(\frac{13}{42}\right)^{2} + \left(\frac{17}{82}\right)^{2} + \left(\frac{97}{210}\right)^{2} + \left(\frac{113}{210}\right)^{2} + \left(\frac{29}{42}\right)^{2}}\right)$$

$$C_{2}^{y} = \left(\frac{2 * \left(\frac{13}{42}\right)^{2} + 2 * \left(\frac{17}{82}\right)^{2} + 2 * \left(\frac{97}{210}\right)^{2} + 1 * \left(\frac{113}{210}\right)^{2} + 1 * \left(\frac{29}{42}\right)^{2}}{\left(\frac{13}{42}\right)^{2} + \left(\frac{17}{82}\right)^{2} + \left(\frac{97}{210}\right)^{2} + \left(\frac{113}{210}\right)^{2} + \left(\frac{29}{42}\right)^{2}}\right)$$

$$\therefore C_{2} = \left(\frac{3.96}{1.11}, \frac{1.47}{1.11}\right) = (\mathbf{3.56}, \mathbf{1.32})$$

Similarly,

$$C_{1}^{x} = \left(\frac{1 * \left(\frac{29}{42}\right)^{2} + 3 * \left(\frac{65}{82}\right)^{2} + 5 * \left(\frac{113}{210}\right)^{2} + 1 * \left(\frac{97}{210}\right)^{2} + 5 * \left(\frac{13}{42}\right)^{2}}{\left(\frac{29}{42}\right)^{2} + \left(\frac{65}{82}\right)^{2} + \left(\frac{113}{210}\right)^{2} + \left(\frac{97}{210}\right)^{2} + \left(\frac{13}{42}\right)^{2}}\right)$$

$$C_{1}^{y} = \left(\frac{2 * \left(\frac{29}{42}\right)^{2} + 2 * \left(\frac{65}{82}\right)^{2} + 2 * \left(\frac{113}{210}\right)^{2} + 1 * \left(\frac{97}{210}\right)^{2} + 1 * \left(\frac{13}{42}\right)^{2}}{\left(\frac{29}{42}\right)^{2} + \left(\frac{65}{82}\right)^{2} + \left(\frac{113}{210}\right)^{2} + \left(\frac{97}{210}\right)^{2} + \left(\frac{13}{42}\right)^{2}}\right)$$

$$\therefore C_{1} = \left(\frac{4.5}{1.7}, \frac{3.09}{1.7}\right) = \mathbf{(2.64, 1.82)}$$

Fuzzy-c-Means Assignment 10.4

Iteration-2

¹ Calculating,

points	A	В	С	D	Е
$d_{i\alpha}^2$	7.01	0.77	2.53	6.65	2.17
$d_{i\beta}^2$	2.72	0.16	5.6	3.36	6.24

points	A	В	С	D	E
$u_{i\alpha}^1$	$\frac{877}{1217}$	$\frac{388}{469}$	$\frac{317}{1017}$	$\frac{208}{313}$	$\frac{68}{263}$
$u_{i\alpha}^2$	$\frac{340}{1217}$	$\frac{81}{469}$	$\frac{700}{1017}$	$\frac{105}{313}$	$\frac{195}{263}$
Cluster	C_1	C_1	C_2	C_1	C_2

Table 5: Distance values

Table 6: Membership values

Figure 2: Visualization-2

$$J_2^2(U,V) = 7.49 + 6.67 =$$
14.17 $C_1 =$ (2.12, 1.72), $C_2 =$ (4.33, 1.46)

¹Converges at 10 iterations with a SSE of 2.9912