Drumuri minime DAG-uri

Problema

- Se dau n activitati numerotate de la 1 la n.
- Aceste activitati nu se pot desfasura in mod independent unele de altele.
- Se dau perechi de forma (x,y) cu semnificatia ca activitatea x trebuie sa se fi desfasurat pentru ca activitatea y sa poata sa inceapa.

Problema

- Se dau n activitati numerotate de la 1 la n.
- Aceste activitati nu se pot desfasura in mod independent unele de altele.
- Sa se determine (daca este posibil) o ordine de desfasurare a acestor activitati care sa respecte regulile de dependenta.

- Q: Cum modelam aceasta problema?
- A: Grafuri orientate

• Q: Mai exact?

- A: Grafuri orientate;
- A: Daca doua evenimente, x si y, sunt direct dependente: x trebuie sa se desfasoare inaintea lui y, atunci

- Q: In ce conditii exista solutii?
- A: Daca trei evenimente: x, y si z cu proprietatea

Acestea nu pot fi programate!

Mai exact, nu trebuie sa existe circuite!

DAG = Directed Acyclic Graph

Exemplu: Ordinea in care ne imbracam inainte de plecare

Modelare - Exemplu

Ordinea in care ne imbracam inainte de plecare - Solutii?

Sortare Topologica

Ordinea in care ne imbracam inainte de plecare

Rezultatul...

Sortare Topologica

Ordinea in care ne imbracam inainte de plecare

Algoritmul

TOPOLOGICAL-SORT (G=(V,E))

COMPLEXITATE?

- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0
 - a. Identificam P multimea nodurilor cu gradul incident = 0
 - b. Top-Sort.right_append(P)
 - c. V=V\P
 - d. Reactualizez gradele nodurilor ramase in V
- 3. Daca V nu este NULL
 - a. Afisez "Sortarea nu se poate face"
- 4. altfel
 - a. Afisez Top-Sort;

Algoritmul

TOPOLOGICAL-SORT (G=(V,E))

- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0

- O(|V|+|E|)
- a. Identificam P multimea nodurilor cu gradul incident = 0
- b. Top-Sort.right_append(P)
- c. V=V\P
- d. Reactualizez gradele nodurilor ramase in V
- 3. Daca V nu este NULL
 - a. Afisez "Sortarea nu se poate face"
- 4. altfel
 - a. Afisez Top-Sort;

Algoritmul - Corectidudine

TOPOLOGICAL-SORT (G=(V,E))

- 1. De ce atunci cand exista solutii, solutia furnizata de algoritm este corecta?
- 2. De ce atunci cand nu exista solutii (exista un circuit), algoritmul semnaleaza corect acest lucru?

Drumuri minime de sursa unica in DAG-uri

Dat la intrare un DAG - cu ponderi pe arce - si un nod de start s, sa se determine drumurile de cost minim de la s la toate celelalte noduri.

Drumuri minime de sursa unica in DAG-uri

Dat la intrare un DAG - cu ponderi pe arce - si un nod de start s, sa se determine drumurile de cost minim de la s la toate celelalte noduri.

Observatie 1: Arcele pot avea si cost negativ.

Observatie 2: Cand consideram un varf v, pentru a calcula d(s,v) ar

fi util sa stim d(s,u) pentru orice u,v - arc;

Idee: Sortarea Topologica

Pseudocod

- Considerăm vârfurile în ordinea dată de sortarea topologică, începând cu vârful s
- Pentru fiecare vârf u relaxăm arcele uv către vecinii săi (pentru a găsi drumuri noi către aceștia)

Pseudocod

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u ∈ V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
//este suficient sa pastrăm vârfurile din sortare începând
cu s
SortTop = Topological-Sort(G)
pentru fiecare u ∈ SortTop
   pentru fiecare uv ∈ E executa
       daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
              d[v] = d[u] + w(u,v)
       tata[v] = u
```

EXEMPLU

s=3 - vârf de start

Ordine de calcul distanțe:

$$u = 1$$
: $\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{6}{2}$ $\frac{6}{$

s=3 - vârf de start

Ordine de calcul distanțe:

s=3 - vârf de start

Ordine de calcul distanțe:

$\infty^2/0$,	0/0,	$^{4}_{\infty}/_{0}$,	$\infty/0$,	$\infty/0$]
$\infty/0$,	0/0,	$\infty/0$,	∞/o ,	∞/0]

s=3 - vârf de start

Ordine de calcul distanțe:

s=3 - vârf de start

Ordine de calcul distanțe:

s=3 - vârf de start

Ordine de calcul distanțe:

$\infty^2/0$,	0/0,	⁴ ∞/0,	$\infty/0$,	$\infty/0$]
$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/0]
8/s ,	0/0,	$\infty/0$,	4/3,	$\infty/0$]
	∞/0,		$\infty/0$, $0/0$, $\infty/0$,	$\infty/0$, $0/0$, $\infty/0$, $\infty/0$,

s=3 - vârf de start

Ordine de calcul distanțe:

$d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0 ³ 0,	$\infty^4/0$,	$\infty/0$,	$\infty/0$]
$u=1: [\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/0]
$u = 3$: $[\infty/0,$	8/3,	0/0,	$\infty/0$,	4/3,	∞/0]
$u = 6$: $[\infty/0,$	8 /3,	0/0,	∞/o ,	4/3,	∞/0]

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata [$\infty/0$,	$\infty^2/0$,	0/0,	$^{4}_{\infty}/0,$	$\infty^{5}/0$,	$\infty/\frac{6}{0}$]
u = 1:	∞/o ,	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/0]
u = 3:	∞/ o ,	8/3,	0/0,	$\infty/0$,	4/3,	$\infty/0$]
u = 6:	$\infty/0$,	8/3,	0/0,	$\infty/0$,	4/3,	∞/0]
u = 5:						

s=3 - vârf de start

Ordine de calcul distanțe:

$d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0/0,	$\infty^4/0$,	$\infty/0$,	$\infty/0$]
$u = 1$: $[\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/ o]
$u = 3$: $[\infty/0,$	8/3,	0/0,	$\infty/0$,	4/3,	∞/0]
$u = 6$: $[\infty/0,$	8/s,	0/0,	$\infty/0$,	4/3,	∞/0]
$u = 5$: $[\infty/0,$	8/3,	0/0,	6/5,	4/3,	∞/0]

s=3 - vârf de start

Ordine de calcul distanțe:

$d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0 ³ / ₀ ,	$^{4}_{\infty}/_{0}$,	$\infty/0$,	$\infty/0$]
$u = 1$: $[\infty/0,$	∞/0,	0/0,	$\infty/0$,	∞/o ,	∞/0]
$u = 3$: $[\infty/0,$	8/3,	0/0,	$\infty/0$,	4/3,	$\infty/0$]
$u = 6: [\infty/0,$	8/3,	0/0,	∞/o ,	4/3,	∞/0]
$u = 5$: $[\infty/0,$	8/s ,	0/0,	6/5,	4/3,	∞/0]
u = 4:					

s=3 - vârf de start

Ordine de calcul distanțe:

$d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0 ³ 0,	$\infty^4/0$,	$\infty/0$,	$\infty/0$]
$u=1: [\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	$\infty/0$]
$u=3: [\infty/0,$	8/3,	0/0,	$\infty/0$,	4/3,	∞/0]
$u = 6: [\infty/0,$	8/3,	0/0,	$\infty/0$,	4/3,	∞/0]
$u = 5: [\infty/0,$	8/3,	0/0,	6/5,	4/3,	∞/0]
$u = 4$: $[\infty/0,$	7/4,	0/0,	6/5,	4/3,	∞/0]

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata	$\begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0/0,	$_{\infty}^{4}/0,$	$\infty/0$,	$\infty/0$]
u = 1:	[∞/o,	∞/o ,	0/o,	$\infty/0$,	$\infty/0$,	∞/0]
u = 3:	[∞/o ,	8/s,	0/0,	$\infty/0$,	4/3,	∞/0]
u = 6:	[∞/o ,	8/s,	0/0,	$\infty/0$,	4/3,	∞/0]
u = 5:	[∞/o ,	8/s,	0/0,	6/5,	4 /3,	∞/0]
u = 4:	[∞/o,	7/4,	0/0,	6/5,	4/3,	$\infty/0$]
u = 2:						

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata	$[\infty/0,$	$\infty^2/0$,	0 ³ 0,	$^{4}_{\infty}/_{0}$,	$\infty/0$,	$\infty/\frac{6}{0}$]
u = 1:	$[\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	∞/o ,	∞/0]
u = 3:	$[\infty/0,$	8/3,	0/0,	$\infty/0$,	4/3,	$\infty/0$]
u = 6:	$[\infty/0,$	8/3,	0/0,	$\infty/0$,	4/3,	$\infty/0$]
u = 5:	$[\infty/0,$	8/3,	0/0,	6/5,	4/3,	$\infty/0$]
u = 4:	$[\infty/0,$	7/4,	0/0,	6/5,	4/3,	$\infty/0$]
u = 2:	$[\infty/0,$	7/4,	0/0,	6/5,	4/3,	$\infty/0$]

Sortare topologică

s=3 − vârf de start

Ordine de calcul distanțe:

d/tata 1 2 3 4 5 6
Soluție [
$$\infty/0$$
, 7/4, 0/0, 6/5, 4/3, $\infty/0$]

Un drum minim de la 3 la 2?

Corectitudine

Observatie 1:

Toate nodurile situate la "stanga" nodului de start in sortarea topologica vor avea distanta catre ele ∞

Observatie 2:

Pentru orice alt nod, corectitudinea rezultatului obtinut se bazeaza pe corectitudinea rezultatului obtinut pentru nodurile anterioare in sortarea topologica

Aplicatie: Drumuri Critice

Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:

- durata fiecărei activități
- perechi (i, j) = activitatea i trebuie să se încheie
 înainte să înceapă j
- activitățile se pot desfășura și în paralel

Se cere: timpul minim de finalizare a proiectului (dacă momentul de start este ora 0) + planificarea activităților

n = 6

- •Activitatea 1 durata 7
- •Activitatea 2 durata 4
- •Activitatea 3 durata 30
- •Activitatea 4 durata 12
- Activitatea 5 durata 2
- •Activitatea 6 durata 5
- °(1, 2)
- °(2, 3)
- °(3, 6)
- °(4, 3)
- °(2, 6)
- °(3, 5)

Modelare?

n = 6

- •Activitatea 1 durata 7
- •Activitatea 2 durata 4
- •Activitatea 3 durata 30
- •Activitatea 4 durata 12
- Activitatea 5 durata 2
- •Activitatea 6 durata 5
- °(1, 2)
- °(2, 3)
- °(3, 6)
- °(4, 3)
- °(2, 6)
- °(3, 5)

n = 6

- •Activitatea 1 durata 7
- •Activitatea 2 durata 4
- •Activitatea 3 durata 30
- •Activitatea 4 durata 12
- Activitatea 5 durata 2
- •Activitatea 6 durata 5
- °(1, 2)
- °(2, 3)
- °(3, 6)
- °(4, 3)
- °(2, 6)
- °(3, 5)

Ponderile?

W(i,j)=?

Timpul minim de finalizare a proiectului = costul maxim al

Analiza...

Putem modifica algoritmul de determinare de drumuri minime în grafuri aciclice a.î. să determine drumuri maxime (de cost maxim) de la S la celelalte vârfuri?

Analiza...

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime de la S la celelalte vârfuri?

Drumuri minime cu mai multe puncte de start

Problema

Dandu-se un graf (preferabil fara circuite de cost negativ), se pune problema gasirii in mod eficient a drumurilor de cost minimim de la oricare nod la oricare alt nod

Q: Cum retin costul drumurilor dintre i si j?

A: Matricea D[i][j]= costul drumului minim de la i la j

Problema

Dandu-se un graf (preferabil fara circuite de cost negativ), se pune problema gasirii in mod eficient a drumurilor de cost minimim de la oricare nod la oricare alt nod

Q: Cum retin efectiv drumul dintre i si j?

A: Matricea T[i][j]= Predecesorul nodului j in drumul

de cost minim de la i la j

Solutia: Algoritmul Floyd-Warshall

Solutia: Algoritmul Floyd-Warshall

```
//actualizare distante si predecesori
   pentru k de la 1 la n
      pentru i de la 1 la n
             pentru j de la 1 la n
      D'[i][j]=min(D[i][j],D[i][k]+D[k][j])
                     daca D'[i][j]=D[i][j]
                            T'[i][j]=T[i][j]
                     altfel
                            T'[i][j]=T[k][j]
      T=T'; D=D'
```


Complexitate?

Corectitudine

- Algoritmul incerca sa insereze in drumul minim contruit toate nodurile *k*; un nod *k* este folosit in constructia unui drum de cost minim doar daca ajuta la reducerea costului.
- Ordinea in care sunt construite drumurile?
- Ce se intampla in cazul circuitelor de cost negativ?

The end

