Лабораторная работа 2: Продвинутые методы безусловной оптимизации

Выполнила Симакова Елизавета, студентка 1 курса магистратуры ВБИБ НИУ ВШЭ Санкт-Петербург $25~{\rm mas}~2025~{\rm r}.$

Содержание

1	эксперимент 2.1. Зависимость числа итерации метода сопряженных градиентов от числа обусловленно сти и размерности пространства	2
2	Эксперимент 2.2. Выбор размера истории в методе L BFGS	6
3	Эксперимент 2.3. Сравнение методов на реальной задаче логистической регрессии	9
4	Эксперимент 2.4. Сравнение метода сопряженных градиентов и L-BFGS на квадратичной функции	19
5	Экспоримонт 2.5. Какад тонность оптимизании нужна в розли и у заланах?	22

1 Эксперимент 2.1. Зависимость числа итераций метода сопряженных градиентов от числа обусловленно сти и размерности пространства

Описание эксперимента

Целью данного эксперимента является исследование влияния числа обусловленности κ и размерности пространства n на число итераций метода сопряженных градиентов, необходимое для достижения заданного уровня точности.

Основные параметры эксперимента:

- Глобальный seed генератора случайных чисел: np.random.seed(42);
- Количество независимых запусков для каждого (n, κ) : 20 (массив seeds = np.random.randint(1,10000,20));
- Массив значений размерностей: $n \in \{10, 100, 1000, 10000\}$;
- 20 значений числа обусловленности, равномерно распределённых по логарифмической сетке от 1 до 1000. Используется функция np.logspace(0, 3, num=20);
- Максимальное число итераций метода: $T_{\text{max}} = 2500;$
- Начальная точка: $x_0 = 0 \in \mathbb{R}^n$;
- Генерация вектора b: независимые компоненты $b_i \sim \mathcal{N}(0,1)$ (используется np.random.randn(n), где n размерность);
- Генерация диагонали матрицы A: сначала $r_j \sim \mathcal{U}(0,1)$, затем $a_j = r_j(\kappa 1) + 1$, причём при $n \geq 2$ дополнительно фиксируются $a_1 = 1$, $a_2 = \kappa$. Матрица хранится как разрежённая диагональная через scipy.sparse.diags.
- Функция, в которой реализован метод сопряженных градиентов, используется со следующими аргументами: conjugate_gradients(lambda x: A @ x, b, x0, max_iter=max_iter, trace=True).

Для каждой комбинации (n, κ) проводится 20 независимых запусков (разные seed), строятся кривые зависимости числа итераций от κ . Все отдельные кривые отображаются пунктиром полупрозрачным цветом, среднее по 20 запускам — сплошной линией. Цвета соответствуют:

- красный для n = 10;
- синий для n = 100;
- зелёный для n = 1000;
- коричневый для n = 10000.

На рисунке 1 представлены зависимости среднего числа итераций метода сопряженных градиентов $T(n,\kappa)$ от числа обусловленности κ при разных размерностях n. Каждое семейство кривых соответствует одному значению n (цвет обозначен в легенде).

Рис. 1: Зависимость числа итераций метода сопряженных градиентов от числа обусловленности при различных размерностях. Пунктирные кривые — отдельные запуски, сплошные — их среднее.

На рисунке 2 представлены результаты эксперимента 2.3 лабораторной работы №1 - зависимость среднего числа итераций градиентного спуска $T(n,\kappa)$ от числа обусловленности κ при разных размерностях n. Каждое семейство кривых соответствует одному значению n (цвет обозначен в легенде).

Рис. 2: Зависимость числа итераций градиентного спуска от числа обусловленности при различных размерностях. Пунктирные кривые — отдельные запуски, сплошные — их среднее.

Проанализировав график 8 и результат предыдущего эксперимента график 9, сравнив результат метода сопряженных градиентов с результатом градиентного спуска можно сделать следующие выводы:

- 1. Зависимость от κ . Для квадратичной функции число итераций градиентного спуска растёт почти линейно с увеличением числа обусловленности κ . У метода сопряжённых градиентов рост существенно медленнее. При $\kappa \approx 1$ оба метода сходятся за один шаг. В диапазоне $\kappa \in [10, 10^2]$ градиентному спуску требуется от десятков до сотен итераций, тогда как методу сопряжённых градиентов лишь несколько десятков. При $\kappa \sim 10^3$ градиентный спуск требует $T \sim 1000$ —1500 шагов, а метод сопряжённых градиентов лишь $T \sim 100$ —150 и никогда не превышает n.
- 2. Зависимость от размерности n. При увеличении n число итераций градиентного спуска слегка уменьшается, однако зависимость от κ остаётся выраженной. У метода сопряжённых градиентов число итераций не превышает n, что наглядно подтверждается графиками: при n=10 число шагов

ограничено 10, при n=100 максимум T=47, при n=1000 и n=10000 влияние κ становится сильнее, но $T\leq n$. Наблюдается более чёткое разбиение по семействам кривых: при больших n различия между задачами с разной обусловленностью становятся заметнее.

3. Сходимость и стабильность. Метод сопряжённых градиентов демонстрирует значительно меньший разброс по числу итераций: семейства кривых для фиксированных параметров более плотные. При одинаковых задачах метод сопряжённых градиентов требует в разы меньше итераций, чем градиентный спуск, особенно при высокой обусловленности.

Общий вывод: метод сопряжённых градиентов при решении квадратичных задач демонстрирует существенно более быструю сходимость ($\mathcal{O}(\sqrt{\kappa})$ против $\mathcal{O}(\kappa)$) и ограниченность числом измерений ($T \leq n$), что делает его предпочтительным по сравнению с градиентным спуском при средних и высоких значениях κ и больших размерностях n.

2 Эксперимент 2.2. Выбор размера истории в методе L BFGS

Описание эксперимента

Целью данного эксперимента является исследование влияния размера истории в методе L-BFGS на поведение метода.

Теоретические оценки: Оценим размер требуемой памяти и сложность итерации метода L-BFGS в зависимости от размера истории l и размерности пространства n, не цчитывая сложность оракула:

- **Требуемая память:** храним историю H и в каждом элементе пара векторов размера n, следовательно $O(n \times l)$, где n размерность пространства, l размер истории.
- *Сложность одной итерации:* рекурсия по истории размера l, следовательно $O(n \times l)$.

Основные параметры эксперимента:

- Тестовая функция: логистическая регрессия с L_2 -регуляризацией на датасете gisette_scale.bz2 с сайте LIBSVM.
- $\lambda = \frac{1}{m}$, где m число примеров в датасете.
- Начальная точка: $x_0 = 0$.
- Значения параметра размера истории:

$$l \in \{0, 1, 5, 10, 50, 100, 500, 1000\}.$$

- \bullet Для каждого l метод L-BFGS запускается один раз, при этом на каждой итерации фиксируются:
 - квадрат нормы градиента $\|\nabla f(x_k)\|^2$,
 - время работы t_k .
- Цвета кривых на графиках назначаются по порядку. Точные обозначения указаны в легенде.

Ниже представлены результаты эксперимента в виде двух графиков.

Рис. 3: Зависимость относительного квадрата нормы градиента от номера итерации.

Рис. 4: Зависимость относительного квадрата нормы градиента от реального времени работы

Проанализировав полученные результаты можно сделать следующие наблюдения и выводы:

- 1. При l=0 траектория метода напоминает траектурию градиентного спуска и демонстрирует наихудшие темпы сходимости кривая отстаёт от всех остальных.
- 2. Разница между l=1 и l=5 заметна, но уже при $l\geq 10$ все траектории кривых накладываются друг на друга: дальнейшее увеличение l (до 1000) не даёт существенного ускорения.
- 3. По числу итераций с увеличением l сходимость становится более «резкой», однако каждая итерация требует больше вычислений, поэтому по времени выигрыш при $l \ge 10$ почти нивелируется.
- 4. При малых l кривая зашумлена норму градиента на отдельных итерациях не удаётся стабильно уменьшать из-за неточного приближения гессиана.
- 5. Наилучший значения работы, копромисс между скоростью и сходимостью достигается при $l \approx 10$.

3 Эксперимент 2.3. Сравнение методов на реальной задаче логистической регрессии

Описание эксперимента

Целью данного эксперимента является сравнение трёх методов оптимизации — усечённого метода Ньютона, метода L-BFGS и классического градиентного спуска — на задаче логистической регрессии с L_2 -регуляризацией. В качестве тестовых данных используются пять наборов LIBSVM: w8a, gisette_scale.bz2, real-sim.bz2, news20.binary.bz2 и rcv1_train.binary.bz2.

Основные параметры эксперимента:

- $\lambda = \frac{1}{m}$, где m число примеров в каждом датасете.
- Начальная точка: $x_0 = 0$.
- Все методы запускаются с параметрами по умолчанию.
- Основные характеристики датасетов:
 - w8a.t:
 - * Количество объектов: $n = 14\,951$
 - * Число признаков: d=300
 - * Количество ненулевых значений: nnz = 174 276
 - rcv1_train.binary.bz2:
 - * Количество объектов: $n=20\,242$
 - * Число признаков: $d=47\,236$
 - * Количество ненулевых значений: nnz = 1498952
 - real-sim.bz2:
 - * Количество объектов: $n=72\,309$
 - * Число признаков: $d=20\,958$
 - * Количество ненулевых значений: nnz = 3709083
 - news20.binary.bz2:
 - * Количество объектов: $n=19\,996$
 - * Число признаков: $d=1\,355\,191$
 - * Количество ненулевых значений: nnz = 9097916
 - gisette_scale.bz2:
 - * Количество объектов: $n = 6\,000$
 - * Число признаков: $d=5\,000$
 - * Количество ненулевых значений: nnz = 29 729 997

В ходе каждой итерации независимо для каждого метода фиксируется:

- значение функции $f(x_k)$;
- время работы t_k ;
- квадрат нормы градиента $\|\nabla f(x_k)\|^2$.

Цвета кривых соответствуют методам: градиентный спуск — синий, усечённый Ньютона — зелёный, L-BFGS — красный. Все три метода нанесены на одни и те же графики для сравнения.

Ниже представлены результаты эксперимента в виде пятнадцати графиков, разделённых на три секции. Каждая секция снабжена пояснением, графики в секции отранжированы в порядке увеличения nnz. В завершение приводится общий вывод по эксперименту.

Зависимость значения функции против номера итерации

Рис. 5: w8a

Рис. 6: rcv1_train.binary

Зависимость значения функции против номера итерации метода: real-sim.bz2

Рис. 7: real-sim.bz2

Рис. 8: news20.binary.bz2

Pис. 9: gisette_scale.bz2

Комментарий. На всех пяти графиках видно, что усечённый метод Ньютона (HFN) и L-BFGS сходятся значительно быстрее по числу итераций, чем градиентный спуск. HFN требует меньше всего итераций на всех датасетах. Замечается также, что с ростом числа ненулевых значений возрастает и число итераций, особенно у градиентного спуска. Например, на датасете gisette_scale градиентный спуск требует в сотни раз больше итераций, чем на w8a.

Рис. 10: w8a

0.3

Реальное время работы (сек)

0.4

0.5

0.6

0.2

0.0

0.1

Рис. 11: rcv1_train.binary

Рис. 12: real-sim.bz2

Реальное время работы (сек)

Рис. 13: news20.binary.bz2

Рис. 14: gisette_scale.bz2

Комментарий. По времени работы HFN оказывается самым быстрым на большинстве датасетов, кроме w8a, где быстрее L-BFGS. Градиентный спуск значительно уступает обоим методам, особенно на больших по размеру датасетах. Наиболее тяжёлым оказывается gisette_scale — на нём все методы работают на порядок дольше, чем на остальных, что подтверждает влияние количетсва ненулевых значений на вычислительные затраты.

Зависимость относительного квадрата нормы градиента от реального времени работы

Рис. 15: w8a

Рис. 16: rcv1_train.binary

Зависимость относительного квадрата нормы градиента (в лог. шкале) против реального времени работы: real-sim.bz2

Рис. 17: real-sim.bz2

Рис. 18: news20.binary.bz2

Pис. 19: gisette_scale.bz2

Комментарий. HFN демонстрирует самую быструю сходимость по норме градиента на датасетах news20.binary, gisette_scale, rcv1_train.binary. На realsim он сравним с L-BFGS, а на w8a немного уступает ему. Градиентный спуск показывает практически линейное (в логарифмическом масштабе) и устойчивое поведение на всех датасетах, кроме gisette_scale, где наблюдается значительный шум и нестабильность.

Общий вывод

HFN показывает наилучшие результаты по числу итераций и времени сходимости на большинстве датасетов. Он демонстрирует устойчивое и быстрое поведение как по значению функции, так и по норме градиента. L-BFGS также показывает высокую эффективность и в ряде случаев обгоняет HFN на малых задачах. Градиентный спуск, напротив, требует существенно больше итераций и времени, особенно при увеличении размерности и числа ненулевых элементов.

Однако, усечённый метод Ньютона требует вычисления действия гессиана на вектор, что может быть вычислительно дорого на очень больших задачах. Кроме того, HFN требует больше памяти, чем L-BFGS и особенно градиентный спуск. L-BFGS, напротив, использует ограниченное количество памяти и не требует вычислений, связанных с гессианом. Таким образом, при выборе метода необходимо учитывать компромисс между числом итераций, временем, используемой памятью и сложностью вычислений. HFN — лучший выбор при наличии достаточных вычислительных ресурсов; L-BFGS — более практичен; градиентный спуск — базовые, но медленный вариант.

4 Эксперимент 2.4. Сравнение метода сопряженных градиентов и L-BFGS на квадратичной функции

Описание эксперимента. Целью данного эксперимента является изучение зависимости скорости сходимости методов L-BFGS и сопряжённых градиентов в терминах евклидовой нормы невязки от номера итерации на примере двух случайных строго выпуклых квадратичных задач размерностей n=30 и n=300 при различных размерах памяти для L-BFGS. В каждой задаче оба метода стартуют из одной и той же точки $x_0=0$ и применяют точный линейный поиск. На одном и том же графике строится зависимость евклидовой нормы невязки

$$r_k = Ax_k - b, \quad ||r_k||_2$$

в логарифмическом масштабе от номера итерации: метод сопряжённых градиентов отображается сплошной чёрной линией, L-BFGS — пунктиром для трёх значений памяти $l \in \{0, 1, 5\}$.

Аналитическое выражение для оптимального шага α_k в квадратичной функции:

$$\alpha_k = \frac{-\nabla f(x_k)^\top d_k}{d_k^\top A d_k} = \frac{(b - Ax_k)^\top d_k}{d_k^\top A d_k}.$$

Основные параметры эксперимента:

- Генерация данных с фиксированным seed = 42 для воспроизводимости результатов;
- Параметры для функции с n=30:
- Метод сопряжённых градиентов:max iter = 300, tolerance = 10^{-6} ;
- \bullet Метод L-BFGS: память $l \in \{0, 1, 5\}$, max_iter = 300, tolerance = 10^{-6} , точный линейный поиск.
- Параметры для функции с n=300:
- Метод сопряжённых градиентов: $\max_{i} ter = 1000$, $tolerance = 10^{-6}$;
- Метод L-BFGS: память $l \in \{0, 1, 5\}$, max_iter = 1000, tolerance = 10^{-6} , точный линейный поиск.

На рисунках 20 и 21 представлены зависимости евклидовой нормы невязки $r_k = Ax_k - b$ от номера итерации для методов L-BFGS и сопряжённых градиентов при различных значениях параметра истории l и размерностях задачи n=30 и n=300.

Рис. 20: Сходимость методов при n=30 (логарифмическая шкала): L-BFGS с l=0,1,5 (сплошные линии) и метод сопряжённых градиентов СG (пунктир).

Рис. 21: Сходимость методов при n = 300 (логарифмическая шкала): L-BFGS с l = 0, 1, 5 (сплошные линии) и метод сопряжённых градиентов СG (пунктир).

Проанализировав полученные графики можно сделать следующие выводы:

- 1. При n=30 (рис.20) L-BFGS с l=0 демонстрирует поведение, близкое к градиентному спуску: значение невязки падает очень медленно, оставаясь порядка 10^0 даже после 300 итераций. Напротив, при l=1 и l=5 поведение L-BFGS практически совпадает с CG, а метод CG достигает нормы невязки порядка 10^{-7} менее чем за 40 итераций, что значительно превосходит остальные.
- 2. При n=300 (рис.21) L-BFGS с l=0 по-прежнему медленный, его невязка порядка 10^0 сохраняется до 1000 итераций. Для l=1 и l=5 L-BFGS и CG снова показывает близкие кривые: они менее плавные в отличие от l=0 L-BFGS, но достигают минимального возможного значения при заданных параметрах. СG при этом достигает евклидову норму невязки порядка 10^{-5} за примерно 520 итераций.

Вывод: метод сопряжённых градиентов CG превосходит L-BFGS с малыми размерами истории $(l=1\ \mathrm{u}\ l=5)$ незначительно по скорости сходимости и значительно по точности на обеих тестовых задачах. При l=0 L-BFGS сводится к классическому градиентному спуску и демонстрирует значительно более медленную сходимость.

5 Эксперимент 2.5. Какая точность оптимизации нужна в реальных задачах?

Описание эксперимента

Целью данного эксперимента является исследование влияния параметра точности оптимизации ε метода L-BFGS на итоговое качество решения задачи бинарной классификации с моделью логистической регрессии и L_2 -регуляризацией. В качестве метрики качества используется процент ошибок классификации на тестовой выборке. В эксперименте применяются девять значений ε на логарифмической сетке от 10^0 (отсутствие оптимизации, возвращение начальной точки) до 10^{-8} (оптимизация до машинной точности). Коэффициент регуляризации фиксируется как $\lambda = 1/m$, начальная точка $x_0 = 0$. Для воспроизводимости и сравнения используются пять реальных наборов данных, представленных в формате SVM-light.

Основные параметры эксперимента:

- Метод оптимизации: L-BFGS.
- Модель: логистическая регрессия с L_2 -регуляризацией.
- Доля данных: 80% обучение, 20% тест.
- Значения точности ε :

$$\{1,\, 10^{-1},\, 10^{-2},\, 10^{-3},\, 10^{-4},\, 10^{-5},\, 10^{-6},\, 10^{-7},\, 10^{-8}\}$$

• Остальные параметры функции — по умолчанию.

Характеристики датасетов:

- w8a.t:
 - Количество объектов: n = 14951
 - Число признаков: d = 300
 - Количество ненулевых значений: nnz = 174 276
- rcv1_train.binary.bz2:
 - Количество объектов: n = 20242
 - Число признаков: d = 47236
 - Количество ненулевых значений: nnz = 1498952
- real-sim.bz2:
 - Количество объектов: n = 72309
 - Число признаков: d = 20958
 - Количество ненулевых значений: nnz = 3709083
- news20.binary.bz2:
 - Количество объектов: n = 19996

- Число признаков: d = 1355191
- Количество ненулевых значений: nnz = 9097916
- gisette_scale.bz2:
 - Количество объектов: $n=6\,000$
 - Число признаков: $d = 5\,000$
 - Количество ненулевых значений: nnz = 29729997

Рис. 22: Зависимость процента ошибок классификации от точности оптимизации ε для различных датасетов.

Анализ результатов

- Поведение при $\varepsilon = 10^0$: для всех пяти наборов данных процент ошибок довольно высокий, поскольку метод возвращает начальную нулевую точку и классификатор не обучается.
 - w8a.t: 97.26%
 - rcv1: 47.67%
 - real-sim: 68.38%
 - news20: 50.12%
- Резкое улучшение при $\varepsilon=10^{-1}$: уже при втором уровне точности наблюдается значительное падение ошибки:

- w8a.t: 10.46%

- rcv1: 5.41%

- real-sim: 10.32%

- news20: 15.47%

- Стабилизация качества после $\varepsilon = 10^{-4}$: дальнейшее уменьшение ε даёт лишь незначительный прирост:
 - w8a.t: около 9.8% (минимум 9.66% при 10^{-7})
 - rcv1: около 3.7% (фиксируется с 10^{-4})
 - real-sim: около 2.9% (минимум 2.87% при 10^{-6} – 10^{-7})
 - news20: около 5.9% (фиксируется с 10^{-3})
- Влияние на время работы: вычислительное время растёт почти экспоненциально при снижении ε , тогда как снижение ошибки после 10^{-4} становится незначительным.

Выводы

- 1. Для практических задач бинарной классификации оптимально выбирать точность оптимизации в диапазоне $\varepsilon \in [10^{-2}, 10^{-4}]$: это даёт почти максимальную точность при умеренных затратах времени.
- 2. Дальнейшее уменьшение ε до уровня машинной точности не оправдано: выигрыш в качестве незначителен, а время работы увеличивается в несколько раз.
- 3. Метод L-BFGS сохраняет устойчивость и эффективность при разумном выборе ε , показывая быстрое снижение ошибки на первых шагах и стабильную сходимость далее.