MO 9: EXPONENCIÁLNA FUNKCIA, ROVNICE A NEROVNICE

MO 9

Exponenciálna funkcia, rovnice a nerovnice

Exponenciálna funkcia – každá funkcia s predpisom f: $y = a^x$, $a > 0 \land a \ne 1$ a = základ x = exponent

D(f) = R H(f) = R⁺ klesajúca – prostá nemá minimum ani maximum ani párna ani nepárna ohraničená zdola d=0 x = asymptota ku grafu fcie

$$\forall x_1, x_2 \in R; f(x_1+x_2) = f(x_1).f(x_2)$$

napr. $y = 2^x$
 $2^{x_1+x_2} = 2^{x_1}.2^{x_2}$

$$f(1) = a$$
$$f(0) = 1$$

 $H(f) = R^+$ rastúca - prostá
nemá minimum ani maximum
ani párna ani nepárna
ohraničená zdola d=0 x = asymptota ku grafu fcie

D(f) = R

Exponenciálna funkcia je prostá \Rightarrow má inverznú funkciu – logaritmickú funkciu.

MO 9: EXPONENCIÁLNA FUNKCIA, ROVNICE A NEROVNICE

Prostá: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

špeciálny prípad:

f:
$$y = e^x$$
 $e = eulerovo \, \check{c}$ íslo $e = 2.7182$

táto funkcia má s grafom y = x+1 práve jeden spoločný bod

Riešenie exponenciálnych rovníc:

1. exponenciálna funkcia je prostá, t.j.

V:
$$\forall x_1, x_2 \in D(f)$$
; $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
Vobm.: $\forall x_1, x_2 \in D(f)$; $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
tieto dva výroky sú ekvivalentné $a^{x_1} = a^{x_2} \Rightarrow x_1 = x_2$

Pri riešení rovníc sa obe strany musia upraviť na rovnaký základ, potom už porovnávame iba exponenty.

- 2. zlogaritmovanie
- 3. substitúcia

exponenciálne nerovnice – platí to, čo pre rovnice

- ak je základ menší ako 1, musíme otočiť znamienko nerovnosti
 - a to preto, že ak 0<a<1, funkcia je klesajúca t.j $x_1 < x_2 \Rightarrow f(x_1) > f(x_2) \Leftrightarrow a^{x_1} > a^{x_2}; x_1 < x_2$

$a^x = a^y \implies x = y$
$a^{x}.a^{y} = a^{x+y}$
$\frac{a^{x}}{a^{y}} = a^{x-y}$
$a^{x}.b^{x} = (ab)^{x}$
$(a^x)^y = a^{xy}$
$a^{-x} = \frac{1}{a^x}$
$a^{\frac{x}{y}} = \sqrt[y]{a^x}$