On page 18, line 3, before "yielding" please insert - (not shown)--.

On page 18, line 3, please delete "130."

On page 18, line 4, please delete "light" and insert therefor --radiation 120--.

On page 19, line 5, please delete "aperatures" and insert therefor --apertures--.

On page 20, line 3, please delete "aperatures" and insert therefor --apertures--.

On page 20, line 5, please delete "aperatures" and insert therefor --apertures--.

On page 35, line 20, please delete "445" and insert therefor --449--

On page 40, line 1, please delete "ensures" and insert therefor -- ensure--.

On page 45, line 16, please delete "the transition is" and insert therefor --their difference is--.

On page 46, line 25, please delete " $[I_{XC}(480),I_{CO}(480)]$ " and insert therefor --

$[I_{xc}(480)^c, I_{co}(480)^c]$ ---.

On page 52, line 27, please delete "tissue have" and insert therefor --tissue has--.

On page 57, line 5, please delete "usefl" and insert therefor --useful--.

On page 57, line 5, please delete "classifiation" and insert therefor -- classification

On page 57, line 20, "please delete "can said in" and insert therefor --can aid in--. In the Abstract of the Disclosure, please delete the first paragraph and amend the second paragraph as follows:

At line 1, please delete "LIFAS" and insert therefor Laser Induced Fluorescence

Attenuation Spectroscopy (LIFAS) . And, please incorporate the third paragraph into the second paragraph.

IN THE CLAIMS:

M

Please cancel claims 43-47 of Group II from further consideration in the instant application. As for the remaining pending claims, please amend claims 8, 32, 33, 35, 40, 42, 49, 51-54 and 56 as follows:

1	(Amended) [The method of claim 1] A spectroscopic method of analyzing a
2	sample, comprising:
3	irradiating a sample with radiation to produce return radiation from the sample,
4	wherein the return radiation is modulated by the sample;
, to	monitoring a first portion of the modulated return radiation at a first distance from
₹ /2	the sample:
7	monitoring a second portion of the modulated return radiation at a second distance
8	from the sample;
9	processing the first and second portions of the modulated return radiation to
10	determine a modulation characteristic of the sample,
11	wherein the return radiation is modulated by attenuation.
1 ,	3. (Amended) The method claim of $[29]_{30}$, wherein the method further
2	includes determining a physiological property of the biological material using the modulation
X30	characteristic.
	3\(\beta\). (Amended) The method of claim [30] 3\(\frac{1}{21}\), wherein the method further
1	(Amended) The method of claim [30] $\frac{1}{2}$, wherein the method further
2	includes determining a physiological property of the <u>living</u> tissue using the modulation
3	characteristic.
1	(Amended) [The method of claim 33,] A spectroscopic method of analyzing a
2	sample, comprising:
1 ³	irradiating a sample with radiation to produce return radiation from the sample,
χ 4	wherein the return radiation is modulated by the sample;
1 , ,	monitoring a first portion of the modulated return radiation at a first distance from
6	the sample;
7	monitoring a second portion of the modulated return radiation at a second distance
8	from the sample:

9	processing the first and second portions of the modulated return radiation to
10	determine a modulation characteristic of the sample;
X112	wherein the sample is biological material;
Q ₁₂	wherein the method further includes determining a physiological property of the
13	tissue using the modulation characteristic; and
14	wherein the physiological property of the tissue is hypoxia.
1	39 46. (Amended) [The method of claim 39,] A spectroscopic method for
2	determining the oxygenation of a biological material, comprising:
3	irradiating a sample of a biological material with radiation to produce return
4	radiation from the sample, wherein the return radiation is modulated by attenuation of the
5	sample:
6	monitoring a first portion of the modulated return radiation at a first distance from
\ \$\foots\7	the sample;
K 08	monitoring a second portion of the modulated return radiation at a second distance
9	from the sample:
10	processing the first and second portions of the modulated return radiation to
11	determine the attenuation of the sample;
12	determining oxygenation of the sample using the attenuation of the sample;
13	wherein the oxygenation of the sample is determined by comparing the
14	attenuation of the sample to the attenuation of a sample having a known level of oxygenation.
1	4. (Amended) A spectroscopic method for determining the concentration of
$\Lambda (\lambda^2)$	hemoglobin in a biological material, comprising:
H.P	irradiating a sample of a biological material with radiation to produce return
4	radiation from the sample, wherein the return radiation is modulated by attenuation of the

monitoring a first portion of the modulated return radiation at a first distance from

sample;

the sample;

5

6

7

8	monitoring a second portion of the modulated return radiation at a second distance
9	from the sample;
10	determining the concentration hemoglobin in the sample using the attenuation of
DAY 1	the sample;
eng.	wherein the concentration of hemoglobin is determined by comparing the
13	attenuation of the sample to the attenuation of a sample having a known concentration of
14	hemoglobin.
	1.0
1	49. (Amended) [The method of claim 48,] A method for determining a
2	physiological characteristic of a biological material, comprising:
3	irradiating a sample of a biological material with radiation to produce return
110	radiation from the sample, wherein the return radiation is modulated by the sample;
HIO	monitoring a first portion of the modulated return radiation at a first distance from
6	the sample;
7	monitoring a second portion of the modulated return radiation at a second distance
8	from the sample;
9	processing the first and second portions of the modulated return radiation, using a
10	predictive model, to determine a physiological characteristic of the sample;
11	wherein the predictive model is a multivariate linear regression.
1	(Amended) [The method of claim 48,] A method for determining a
2	physiological characteristic of a biological material, comprising:
3	irradiating a sample of a biological material with radiation to produce return
1/4/	radiation from the sample, wherein the return radiation is modulated by the sample;
5	monitoring a first portion of the modulated return radiation at a first distance from
6	the sample;
7	monitoring a second portion of the modulated return radiation at a second distance
8	from the sample;

9	processing the first and second portions of the modulated return radiation, using a
10	predictive model, to determine a physiological characteristic of the sample;
11	wherein the predictive model is a multicriteria associative memory classifier.
ĺ	
1	52. (Amended) Apparatus for analyzing a sample, comprising:
2	a source adapted to emit radiation that is directed at a sample to produce return
3	radiation from the sample, wherein the return radiation is modulated by the sample;
4	a first sensor[, displaced by a first distance from the sample,] adapted to monitor
1/5	the return radiation at a first distance from the sample and generate a first signal indicative of the
[d	intensity of the return radiation;
la th	a second sensor[, displaced by a second distance from the sample volume,]
18	adapted to monitor the return radiation at a second distance from the sample and generate a
9	second signal indicative of the intensity of the return radiation; and
10	a processor associated with the first sensor and the second sensor and adapted to
11	process the first and second signals to determine a modulation characteristic of the sample.
1	53. (Amended) Apparatus for analyzing a sample, comprising:
2	a source adapted to emit radiation that is directed at a sample volume in a sample
3	to produce return light from the sample <u>volume</u> ;
4	a first sensor[, displaced by a first distance from the sample volume] adapted to
5	monitor the return light at a first distance from the sample volume and generate a first signal
6	indicative of the intensity of the return light; [and]
7	a second sensor[, displaced by a second distance from the sample volume]
8	adapted to monitor the return light at a second distance from the sample volume and generate a
9	second signal indicative of the intensity of the return light; and
10	a processor associated with the first sensor and the second sensor and adapted to
11	process the first and second signals to determine a modulation characteristic of the sample.

1	54 (Amended) Apparatus for determining a modulation characteristic of a
2	biological material, comprising:
3	a source adapted to emit excitation light;
4	a first waveguide disposed a first distance from the sample adapted to transmit the
5	excitation light from the light source to the biological material to cause the biological material to
6	produce return light and adapted to collect a first portion of the return light, such return light
7	including fluorescence of the biological matter;
/\8	a first sensor, associated with the first waveguide, adapted to measure the intensity
/\s	of the first portion of the return light and generate a first signal indicative of the intensity of the
10	first portion of the return light;
11	a second waveguide disposed at a second distance from the sample adapted to
12	collect a second portion of the return light;\
13	a second sensor, associated with the first waveguide, adapted to measure the
14	intensity of the second portion of the return light and generate a second signal indicative of the
15	intensity of the second portion of the return light;
16	a processor adapted to process the first and second signals to determine a
17	modulation characteristic of the biological material.
<u></u>	
1 /	(Amended) Apparatus for determining a physiological property of biological
2	material, comprising:
3	a source adapted to emit excitation light;
7	a first waveguide disposed a first distance from the sample adapted to transmit the
\ 5	excitation light from the light source to the biological material to cause the biological material to
6	produce return light and adapted to collect a first portion of the return light, such return light
7	including fluorescence of the biological material.

the first portion of the return light and generating a first signal indicative of the intensity of the

8

9

10

first portion;

a first sensor, associated with the first waveguide, for measuring the intensity of

٠	
11	a second waveguide disposed at a second distance from the sample adapted to
12	collect a second portion of the return light;
13	a second sensor, associated with the first waveguide, for measuring the intensity
De D	of the second portion of the return light and generating a second signal indicative of the intensity
1 Q V	of the second portion;
16	a processor adapted to process the first and second signals to determine a
_ 17	physiological property of the biological material.
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Please add new claims 57-60:
3	The method of claim 1, wherein either but not both of the distances is
1 2	substantially zero
2	Substantiany Zero
1/	The apparatus of claim 52, wherein fiber optics transmit the return radiation
2/	to the sensors
(Kr)	
W ₁	59. A spectroscopic method of analyzing a sample, comprising:
2	irradiating a sample with radiation to produce return radiation from the sample,
3	wherein the return radiation is modulated by the sample;
4	monitoring a first portion of the modulated return radiation at a first distance from
5	the sample;
6	monitoring a second partion of the modulated return radiation at a second distance
7	from the sample;
8	processing the first and second portions of the modulated return radiation to
9	determine a modulation characteristic of the sample;
10	wherein the sample is biological material;
11	wherein the method further includes determining a physiological property of the
12	tissue using the modulation characteristic; and
13 /	wherein the physiological property of the tissue is ischemia
\	9