Tomás Pérez Group Theory - Lecture Notes November 7, 2022

Theory & Notes

Definition 1. A vector space L over a field \mathbb{F} , with an operation

$$L \times L \to L$$

 $(x, y) \to [x, y],$

called the bracket or commutator of x and y, is called a Lie algebra over \mathbb{F} if the following axioms are satisfied

- The bracket operation is bilinear,
- $[x,x]=0, \forall x \in L$
- $[x, [y, z]] = [y, [z, x]] = [z, [x, y]] = 0, \forall x, y, z \in L$

where the first two axioms imply the bracket's anticommutativity.

Two Lie algebras $\mathfrak{g},\mathfrak{g}'$ are isomorphic if there exists a vector space isomorphism $\phi:\mathfrak{g}\to\mathfrak{g}'$, satisfying $\phi([x,y])=[\phi(x),\phi(y)],\ \forall x,y\in\mathfrak{g}.$ Similarly, a subspace $\mathfrak{k}\subset\mathfrak{g}$ is called a subalgebra if $[x,y]\in\mathfrak{k},\ \forall x,y\in\mathfrak{k}.$ Note that any Lie subalgebra is a Lie algebra in its own right, relative to the inherited operations. Note as well, that any non-zero element $x\in\mathfrak{g}$ defines a one-dimensional subalgebra $\mathbb{F} x$, with trivial multiplications.

If V is a finite n-dimensional vector space over \mathbb{F} , $\operatorname{End}(V)$ is the set of endomorphisms over V, being a n^2 -dimensional vector space. Note that $\operatorname{End}(V)$ is a ring relative to the usual product operation. Imbued with the Lie bracket operation, $\operatorname{End}(V)$ is a Lie algebra over \mathbb{F} , denoted by $\mathfrak{gl}(V) \simeq \operatorname{End}(V)$ and is the general linear algebra. If a basis for V is fixed, thereby identifying $\mathfrak{gl}(n,\mathbb{F}) \simeq (V)$, explicit calculations may be performed. In particular if the standard matrix basis e_{ij} is chosen, such that $e_{ij}e_{kl} = \delta_{jk}e_{il}$, it follows that

$$[e_{ij}, e_{kl}] = \delta_{jk}e_{il} - \delta_{li}e_{kj},,$$

noticing that all coefficients are either 0 or ± 1 .

All (simple) Lie algebras fall into four families, $\mathfrak{A}_{\ell}, \mathfrak{B}_{\ell}, \mathfrak{C}_{\ell}, \mathfrak{D}_{\ell}$ ($\ell > 1$) are the classical algebras, for they correspond to certain classical linear group. In particular, for the last three families, let char $\mathbb{F} \neq 2$.

• \mathfrak{A}_{ℓ} : let $\dim V = \ell + 1$. Denote by $\mathfrak{sl}(V)$, or $\mathfrak{sl}(\ell + 1, \mathbb{F})$, the set of endomorphisms on V with zero trace. Since $\operatorname{Tr}(xy) = \operatorname{Tr}(yx)$ and $\operatorname{Tr}(x+y) = \operatorname{Tr}(x) + \operatorname{Tr}(y)$, thus $\mathfrak{sl}(V) \subseteq \mathfrak{gl}(V)$. This algebra is the special linear algebra and is intimately connected to the special linear group SL(V) of endomorphisms of unit determinant.

What about its dimension? since $\mathfrak{sl}(V)$ is a proper subalgebra of $\mathfrak{gl}(V)$, its dimension is at most $(\ell+1)^2-1$. On the other hand, the number of linearly independent matrices of zero-trace can be readily found. For all e_{ij} , $i \neq j$ and all $h_i = e_{ii} - e_{i+1,i+1}$, with $1 \leq i \leq \ell$, yielding a total of $\ell + (\ell+1)^2 - (\ell+1)$ matrices, which is the standard basis for $\mathfrak{sl}(V)$.

• \mathfrak{C}_{ℓ} : let dim $V=2\ell$, with basis $(v_1,\cdots,v_{2\ell})$. Let the non-degenerate skew-symmetric form $f:V\to V$ defined by the matrix

$$s = \left(\begin{array}{cc} 0 & i\mathbf{d}_{\ell} \\ -i\mathbf{d}_{\ell} & 0 \end{array} \right).$$

Let $\mathfrak{sp}(V)$, or $\mathfrak{sp}(2\ell,\mathbb{F})$, the symplectic algebra, which by definition consists of all endomorphism $x:V\to V$ satisfying f(x(v),w)=-f(v,x(w)). This algebra is closed under the bracket operation. In matrix terms, the previous condition may be rewritten as

$$x \in \mathfrak{sl}(V) \mid x = \begin{pmatrix} m & n \\ p & q \end{pmatrix}, m, n, p, q \in \mathfrak{gl}(\ell, \mathbb{F}) \land sx = -x^{\mathsf{T}}s \leftrightarrow \begin{array}{c} n^{\mathsf{T}} = n \\ p^{\mathsf{T}} = p \\ m^{\mathsf{T}} = -q \end{array}.$$

This last condition fixes that $\operatorname{Tr} x = 0$. A basis for $\mathfrak{sl}(2\ell, \mathbb{F})$ can now be fixed.

Consider all diagonal matrices $e_{ii} - e_{\ell+1,\ell+1}$, and adding to these all $e_{ij} - e_{\ell+j,\ell+j}$, with $1 \le i \ne j \le \ell$, which are $\ell^2 - \ell$ in number. For n, consider the matrices $e_{i,\ell+1}$ and $e_{i,\ell+j} + e_{j,\ell+i}$, for $(1 \le i < j \le \ell)$, a total of $\ell + \frac{1}{2}\ell(\ell-1)$, and similarly for positions in p. Adding up yields $\dim \mathfrak{sl}(2\ell, \mathbb{F}) = 2\ell^2 + \ell$.

• \mathfrak{B}_{ℓ} : let $\dim V = 2\ell + 1$ be odd, and let f be the non-degenerate symmetric bilinear form on V whose matrix is

$$s = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \mathrm{id}_{\ell} \\ 0 & \mathrm{id}_{\ell} & 0 \end{pmatrix}.$$

The orthogonal algebra $\mathfrak{o}(V)$ or $\mathfrak{o}(2\ell+1,\mathbb{F})$, consists on all endomorphisms of V satisfying f(x(v),w)=-f(v,x(w)), the same requirement as for \mathfrak{C}_{ℓ} . If x is partitioned in the same way as s, say

$$x = \begin{pmatrix} a & b_1 & b_2 \\ c_1 & m & n \\ c_2 & p & q \end{pmatrix} \Rightarrow sx = -x^{\mathsf{T}}s \leftrightarrow$$