

Escaping Saddles with Stochastic Gradients

Hadi Daneshmand*, Jonas Kohler* Aurelien Lucchi, Thomas Hofmann

March 20th, 2018

Setting

We consider minimizing empirical risk functions

$$\mathbf{w} \in \mathbb{R}^d \xrightarrow{\min} f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n f_{\mathbf{z}_i}(\mathbf{w}),$$

where f is sufficiently smooth (but possibly non-convex), namely

- gradient map and Hessian are Lipschitz continuous
- ightharpoonup stochastic gradients $abla f_{\mathbf{z}_i}$ have bounded norms

2nd-order stationary points

Goal:

convergence to 2nd-order stationary points

$$\{\mathbf{w} \in \mathbb{R}^d | \nabla f(\mathbf{w}) = 0, \ \nabla^2 f(\mathbf{w}) \succeq 0\}$$

- ▶ local minima
- avoid strict saddles $(\nabla^2 f(\mathbf{w}) \not\succeq 0)$

Gradient descent may converge to strict saddle $\bar{\mathbf{w}}$

Gradient descent may converge to strict saddle $\bar{\mathbf{w}}$

but

GD is unstable around $\bar{\mathbf{w}}$

Gradient descent may converge to strict saddle $\bar{\mathbf{w}}$

but

attractor set of $\bar{\mathbf{w}}$ is an unstable manifold

$$P(\lim_t \mathbf{w}_t = \bar{\mathbf{w}}) = 0$$

[Lee et al., 2016]

Gradient descent may not converge to strict saddle $\bar{\mathbf{w}}$

but

it may take exponential time to escape

[Du et al., 2017]

Escaping saddles with isotropic perturbation

Method	Perturbation	Noise	Opt. strategy
(1) Cubic Reg.	-	-	2nd-order
(2) PGD	$\triangle \mathbf{w} = \xi$	$\xi \sim B_r^d(0)$	1st-order
(3) NGD	$\triangle \mathbf{w} = -\eta_{\mathbf{w}} \nabla f(\mathbf{w}) + \xi$	$\xi \sim N(0, I)$	1st-order
(4) PSGD	$ riangle \mathbf{w} = - abla f_{\mathbf{z}_i}(\mathbf{w}) + \xi$	$\xi \sim N(0, I)$	stochastic 1st
(5) SGLD	$\triangle \mathbf{w} = -\eta_{\mathbf{w}} \nabla f_{\mathbf{z}_i}(\mathbf{w}) + \xi$	$\xi \sim N(0, I)$	stochastic 1st

- (1) [Nesterov and Polyak, 2006]
- (2) [Jin et al., 2017]
- (3) [Levy, 2016]
- (4) [Ge et al., 2015]
- (5) [Zhang et al., 2017]

The question that we consider here

Is the inherent noise of SGD sufficient to escape from saddles?

$$\triangle \mathbf{w} = -\nabla f_{\mathbf{z}_i}(\mathbf{w}) + \xi$$
 vs.

$$\triangle \mathbf{w} = -\nabla f_{\mathbf{z}_i}(\mathbf{w})$$

Training objective of neural networks

MLP with cross-entropy loss

MNIST dataset (downsized to 10×10 images)

Spectral decomposition of the Hessian

A | with random weights ${\cal W}$

$$\nabla^2 f(w) = \begin{pmatrix} v_{11} \\ \vdots \\ v_{n1} \end{pmatrix} \cdots v_{1n} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} v_{11} & \cdots & v_{n1} \\ \vdots & \ddots & \vdots \\ v_{1n} & \cdots & v_{nn} \end{pmatrix}$$

$$v_1(w)$$

Stochastic gradients are **not** spectrally isotropic

$$\sigma_k pprox \mathsf{E}_{\mathsf{z}} \left(
abla f_{\mathsf{z}}(\mathsf{w})^{ op} \mathsf{v}_k(\mathsf{w})
ight)^2$$

Also observed in [Chaudhari and Soatto, 2017]

Stochastic gradients are **not** spectrally isotropic

$$\sigma_k pprox \mathbf{E}_{\mathbf{z}} \left(
abla f_{\mathbf{z}}(\mathbf{w})^{ op} \mathbf{v}_k(\mathbf{w})
ight)^2$$

Variance as a function of network width

stochastic gradients

isotropic noise

Dependency of the variance along the extreme curvature on the width of NNs

Variance as a function of network depth

stochastic gradients

isotropic noise

Dependency of the variance along the extreme curvature on the depth of NNs

A theoretical lower-bound on the variance

Special case: learning halfspaces $f(\mathbf{w}) := \mathbf{E}_{\mathbf{z}}[f_{\mathbf{z}}(\mathbf{w})], f_{\mathbf{z}}(\mathbf{w}) := \varphi(\langle \mathbf{w}, \mathbf{z} \rangle).$

Key assumption on loss: $|\varphi''| \le c|\varphi'|$ for some c > 0

holds true for Sigmoid loss

Lemma

Suppose that $|\varphi''| \le c|\varphi'|$ and $\|\mathbf{z}\| \le 1$. Let \mathbf{v} be a unit eigenvector of $\nabla^2 f(\mathbf{w})$ associated with eigenvalue $\lambda < 0$. The second-moment of stochastic gradients along direction \mathbf{v} is lower-bounded as

$$\mathbf{E}\left[\langle \nabla f_{\mathbf{z}}(\mathbf{w}), \mathbf{v} \rangle^{2}\right] \geq \left(\frac{\lambda}{c}\right)^{2}, \quad \forall \mathbf{w}.$$

Extension to neural networks - coming up...

Lower-bound for simple feed-forward network: to be published soon.

$$\mathbf{E}\left[\langle \nabla f_{\mathbf{z}}(\mathbf{w}), \mathbf{v} \rangle^{2}\right] \geq C\lambda^{2}$$

A (relaxed) sufficient escape condition

Isotropy is a too strong requirement, only specific direction(s) of negative curvature matter!

Relaxed sufficient condition for escaping saddles (CNC-condition):

$$\exists \gamma > 0 \text{ s.t. } \forall \mathbf{w} : \mathbf{E}_{z} \left[\langle \nabla f_{z}(\mathbf{w}), \mathbf{v}(\mathbf{w}) \rangle^{2} \right] > \gamma,$$

where $\mathbf{v}(\mathbf{w})$ is a unit eigenvector corresponding to $\lambda_{min}(\nabla^2 f(\mathbf{w}))$.

How does PGD[Jin et al., 2017] escape saddles?

Identification

Perturbation

Certification

$$\|
abla f(\mathbf{w}_t) \| < g_{\mathsf{thres}}$$

Perturb parameter vector as $\mathbf{w}_t = \mathbf{w}_t + \xi$. Then run t_{thres} GD steps.

Certifying second-order stationarity as $f(\mathbf{w}_{t+t_{\text{thres}}}) - f(\mathbf{w}_{t}) > -f_{\text{thres}}$

Perturbation with stochastic gradients(SGD-GD)

Identification

Perturbation

Randomized output [Ghadimi and Lan, 2013]

$$\|\nabla f(\mathbf{w}_t)\| < g_{\mathsf{thres}}$$

Take one SGD-step $\mathbf{w}_t = \mathbf{w}_t - r \nabla f_{\mathbf{z}_i}(\mathbf{w}_t)$. Then run t_{thres} GD steps.

Return one of visited parameters uniformly at random.

Convergence guarantee

Theorem

There is a choice for parameters of SGD-GD such that after $T=\mathcal{O}((\gamma\epsilon)^{-2}\log(1/(\gamma\epsilon))$ steps, this method returns a **w** for which

$$\|\nabla f(\mathbf{w})\| \le \epsilon, \nabla^2 f(\mathbf{w}) \succeq -\sqrt{\rho} \epsilon^{2/5} \mathbf{I}$$

holds with high probability.

Comparison with the isotropic perturbation

$$\|\nabla f(\mathbf{w})\| \leq \epsilon_{\mathsf{g}}, \ \lambda_{\mathsf{min}}(\nabla^2 f(\mathbf{w})) \succeq -\epsilon_{\mathsf{h}} \mathbf{I}$$

Algorithm	First-order Complexity	Second order Complexity	d Dependency
(1) PGD	$\mathcal{O}(\log^4(d/\epsilon_g)\epsilon_g^{-2})$	$\mathcal{O}(\log^4(d/\epsilon_h)\epsilon_h^{-4})$	poly-log
SGD-GD	$\mathcal{O}(\log(1/\epsilon_{g})\epsilon_{g}^{-2})$	$\mathcal{O}(\log(1/\epsilon_h)\epsilon_h^{-5})$	free

(1) [Jin et al., 2017]

Vanilla SGD

$$\begin{split} \mathsf{SGD}\big(T, t_{\mathsf{thres}}, r, \eta\big) &: \\ \mathbf{w}_{t+1} &= \begin{cases} \mathbf{w}_t - r \nabla_{\mathbf{z}} f(\mathbf{w}_t) & t \bmod t_{\mathsf{thres}} = 0 \\ \mathbf{w}_t - \eta \nabla_{\mathbf{z}} f(\mathbf{w}_t) & \mathsf{otherwise} \end{cases} \\ & \mathsf{return} \ \mathbf{w}_t, \, t \sim \mathsf{Uniform}\{1, \dots, T\} \end{split}$$

Convergence guarantee

Theorem

There is a choice for parameters of $SGD(T, t_{thres}, r, \eta)$ such that $T = \mathcal{O}((\gamma \epsilon)^{-4} \log^2(1/(\gamma \epsilon)))$ steps of SGD returns a \mathbf{w} for which

$$\|\nabla f(\mathbf{w})\| \le \epsilon, \nabla^2 f(\mathbf{w}) \succeq -\sqrt{\rho} \epsilon^{2/5} \mathbf{I}$$

holds with high probability.

Comparison with isotropic noise perturbation

$$\|\nabla f(\mathbf{w})\| \leq \epsilon_{\mathbf{g}}, \ \lambda_{\min}(\nabla^2 f(\mathbf{w})) \succeq -\epsilon_h \mathbf{I}$$

Algorithm	First-order Comp.	Second order Comp.	d Depend.
(1) PSGD	$\mathcal{O}(d^p \epsilon_g^{-4})$	$\mathcal{O}(d^p\epsilon_h^{-16})$	poly
(2) SGD+NEON	$\mathcal{O}(\log(d)^p \epsilon_g^{-4})$	$\mathcal{O}(\log(d)^p \epsilon_g^{-8})$	poly-log
SGD	$\mathcal{O}(\log^2(1/\epsilon_g)\epsilon_g^{-4})$	$\mathcal{O}(\log^2(1/\epsilon_h)\epsilon_h^{-10})$	free

- (1) [Ge et al., 2015]
- (2) [Xu and Yang, 2017]

Take-home-message

Training objectives of neural networks (NNs) are special

Stochastic gradients signal the negative curvature on NNs

Additional perturbation of SGD is not necessary on NNs

Future work

Does such a property relate to generalization?

Thank you!

Poster #206.

I am looking for a post-doc position (Email:hadi.daneshmand@inf.ethz.ch).

Latex template credit: Lilyana Vankova.

Acknowledgements: We would like to thank Antonio Orvieto, Kfir Levy, Gary Becigneul, Yannic Kilcher and Kevin Roth for their helpful discussions.

References I

[Chaudhari and Soatto, 2017] Chaudhari, P. and Soatto, S. (2017). Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks. arXiv preprint arXiv:1710.11029.

[Du et al., 2017] Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Singh, A., and Poczos, B. (2017).
Gradient descent can take exponential time to escape saddle points.
In NIPS, pages 1067–1077.

[Ge et al., 2015] Ge, R., Huang, F., Jin, C., and Yuan, Y. (2015).
Escaping from saddle points—online stochastic gradient for tensor decomposition.
In COLT.

References II

[Ghadimi and Lan, 2013] Ghadimi, S. and Lan, G. (2013).

Stochastic first-and zeroth-order methods for nonconvex stochastic programming.

SIAM Journal on Optimization, 23(4):2341–2368.

[Jin et al., 2017] Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan, M. I. (2017).

How to escape saddle points efficiently. *NIPS*.

[Lee et al., 2016] Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B. (2016).

Gradient descent converges to minimizers. *COLT*.

[Levy, 2016] Levy, K. Y. (2016).

The power of normalization: Faster evasion of saddle points. arXiv preprint arXiv:1611.04831.

References III

[Nesterov and Polyak, 2006] Nesterov, Y. and Polyak, B. T. (2006).
Cubic regularization of newton method and its global performance.
Mathematical Programming, 108(1).

[Xu and Yang, 2017] Xu, Y. and Yang, T. (2017).
First-order stochastic algorithms for escaping from saddle points in almost linear time.
arXiv preprint arXiv:1711.01944.

[Zhang et al., 2017] Zhang, Y., Liang, P., and Charikar, M. (2017). A hitting time analysis of stochastic gradient langevin dynamics. *COLT*.