Непараметрическая регрессия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

непараметрической Реализуйте алгоритм регрессии, который бы поддерживал функции расстояний, ядер И окон. Описание ядер МОЖНО найти здесь: https://en.wikipedia.org/w/index.php?oldid=911077090

Формат входных данных

Первая строка содержит два целых числа N и M — число объектов и признаков ($1 \le N \le 100$, $1 \le M \le 10$).

Далее идёт N строк — описание набора данных. Каждая строка i содержит M+1 целое число $d_{i,j}$ ($-100 \leqslant d_{i,j} \leqslant 100$) — описание i-го объекта. Первые M из этих чисел признаки i-го объекта, а последнее — его целевое значение.

Следующая строка описывает объект запроса q. Она состоит из M целых чисел $d_{q,j}$ $(-100 \leqslant d_{q,j} \leqslant 100)$ — признаки объекта q.

Далее идут три строки состоящих из строчных латинских букв.

Первая из них — название используемой функции расстояния: manhattan, euclidean, chebyshev.

Вторая — название функции ядра: uniform, triangular, epanechnikov, quartic, triweight, tricube, qaussian, cosine, logistic, siqmoid.

Tретья — название типа используемого окна: fixed — окно фиксированной ширины, variable — окно переменной ширины.

Последняя строка содержит параметр окна: целое число h $(0 \leqslant h \leqslant 100)$ — радиус окна фиксированной ширины, либо целое число K $(1 \leqslant K < N)$ — число соседей учитываемое для окна переменной ширины.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — результат запроса.

Примеры

стандартный вывод
0.000000000
0.6090086848

Замечание

В случае неопределённости, когда в окно не попало ни одного объекта, требуется вывести значе-

ние по умолчанию для задачи регрес из обучающей выборке.	ссии — среднее	значение целево	й переменной по	всем объектам