Report on History and birth of numbers, probabilities, and statistics in different civilizations and your own culture.

Earlier number systems made use of positional systems which allowed to re-use the same symbols by assigning them different values based on their position in that sequence. In the 7th century, Indian mathematicians had developed a decimal system which was also known as a base 10 system that could represent any numbers using only 10 unique symbols. The discovery of numbers in India can be attributed to Srinivas Ramanujan and his discovery of the theory of numbers. Ramanujan discovered a property that the denominators of the fractions of Bernoulli numbers are always divisible by six. A huge advancement in the world of numbers was done in India around 500 AD; this was the invention of zero. Due to this, Indian scientists could make numbers infinitely small or infinitely big. This had a profound application in the field of astronomy, where the Indian astronomers laid out the theory that the Earth spins on its axis, and it moves around the sun.

Between the 5th and 15th century, the terms like "verisimils" – which meant truth like were introduced. But there wasn't any quantitative approach to the concept of probability. It was around the 15th and 16th centuries; the numerical dimensions of probability were developed in Europe. Initially, all the studies about probability revolved around gambling. It was later found out that the term of probability can also be used for scientific research. The theory of permutations and combinations is very essential to finding probabilities in games of chances. This aspect of permutation and combination was first developed in India. The reason is that this theory of permutation and combination was basic to Indian theatre and music. The composers at that time depended on the combination of two syllables deep (long) and short. To find all the possible combinations of these two syllables in a metre containing 'n' syllables, an Indian poet and mathematician Acharya Pingala presented a rule which basically involved a binomial expansion of those two syllables; the form of the binomial expansion was: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

Earlier civilizations like the Han Dynasty and the Roman Empire collected data on population size, wealth and geographical extension of their empires. These were some of the initial noted uses of statistics in history. During the 5th century BCE, historian Thucydides had described how the Athenians calculated the height of the wall of Platea by finding the most frequently appeared count of bricks (modern terminology being called "mode"). Then then multiplied the mode value to the height of the bricks to find the height of the ladders necessary to scale the wall. Later, mathematician Carl Friedrich Gauss made the discovery of statistical regression. "Statistics must have a clearly defined purpose, one aspect of which is scientific advancement and the other human welfare and national development" This was said by Prof. Prasanta Chandra Mahalanobis who is considered as the father of Indian Statistics. Statistics in India originated around the 300 BC. Prof. Prasanta Mahalanobis was appointed as the Statistical Advisor to the Government of India which was mainly geared towards statistical work done in various ministries, government agencies of India and to provide consultancy to various international statistical organizations. Here Prof. Prasanta Mahalanobis developed and introduced the concept of D², which was a statistic for classifying populations. It is a powerful technique in multivariate analysis for classification problems.

Installation screenshots:

Anaconda

RStudio

Packages: dplyr and ggplot2

Files	Plots	Packages	Help	Viewer	Presentation			_
0	nstall 🕡	Update				Q,		
	Name			Description	on	Version		
	deldir			Delaunay	/ Triangulation and Dirichlet (Voronoi) Tessellation	1.0-6	-	0
	desc			Manipula	ate DESCRIPTION Files	1.4.2	-	0
	diffobj			Diffs for	R Objects	0.3.5	•	0
	digest			Create Co	ompact Hash Digests of R Objects	0.6.29	-	0
✓	dplyr			A Gramm	nar of Data Manipulation	1.0.10	-	0
	dtplyr			Data Tab	le Back-End for 'dplyr'	1.2.2	-	0
	ellipsis			Tools for	Working with	0.3.2	-	0
	evaluate			Parsing a	and Evaluation Tools that Provide More Details than the Default	0.16	-	0
	fansi			ANSI Cor	ntrol Sequence Aware String Functions	1.0.3	-	0
	farver			High Per	formance Colour Space Manipulation	2.1.1	-	0
	fastmap			Fast Data	Structures	1.1.0	-	0
	forcats			Tools for	Working with Categorical Variables (Factors)	0.5.2	-	0
	foreign			Read Dat	ta Stored by 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', 	0.8-82	•	0
	Formula			Extended	Model Formulas	1.2-4	-	0
	fs			Cross-Pla	atform File System Operations Based on 'libuv'	1.5.2	-	3
	gargle			Utilities f	or Working with Google APIs	1.2.1	-	0
	generics			Common Fitting	n S3 Generics not Provided by Base R Methods Related to Model	0.1.3	•	0
/	ggplot2			Create El	egant Data Visualisations Using the Grammar of Graphics	3.3.6	-	3
	glue			Interpret	ed String Literals	1.6.2	-	3
	googledri	ve		An Interf	ace to Google Drive	2.0.0	-	0
	googleshe	ets4		Access G	oogle Sheets using the Sheets API V4	1.0.1	-	0