HW4 due 11:30a Mon Oct 31

1. Bases and matrix representations

Let $L:V\to W$ be a linear function where dim $V=n<\infty$ and dim $W=m<\infty$, and let $r=\mathrm{rank}\,L$

a. Prove that there are bases $\{v_j\}_{j=1}^n \subset V$ and $\{w_i\}_{i=1}^m \subset W$ for V and W, respectively, with respect to which the matrix representation of L is:

$$\begin{bmatrix} I_{r \times r} & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$$

b. Prove that (a.) is not true if V = W (i.e. you are forced to use the same basis for the domain and range of LI when constructing its matrix representation).

2. Eigenvalues, eigenvectors, eigenbases

Let $A \in \mathbb{R}^{n \times n}$ be a given matrix.

Suppose that, for each $\ell \in \{1, ..., k\}$, there exists $\lambda_{\ell} \in \mathbb{C}$ and $v_{\ell} \in \mathbb{R}^n$ such that $v_{\ell} \neq 0$ and $Av_{\ell} = \lambda_{\ell}$ (i.e. λ_{ℓ} is an eigenvalue for A with eigenvector v_{ℓ}).

a. If the eigenvalues $\{\lambda_\ell\}_{\ell=1}^k$ are distinct (i.e. $\lambda_i = \lambda_j \iff i = J$), show that the eigenvectors $\{v_\ell\}_{\ell=1}^k$ are linearly independent. (*Hint: use induction.*)

Now let $L: U \to U$ be linear and dim U = n.

Suppose that $\lambda \in \mathbb{C}$ and $W = \{w_\ell\}_{\ell=1}^n$ is a basis for U such that $Lw_1 = \lambda w_1$ and $Lw_k = \lambda w_k + w_{k-1}$ for all $k \in \{2, ..., n\}$.

b. Obtain the matrix representation of \mathcal{L} with respect to the basis W

3. Spectral mapping theorem

Let $\operatorname{spec} A = \{\lambda_1, \dots, \lambda_n\}$ denote the spectrum of $A \in \mathbb{C}^{n \times n}$ (i.e. the set of eigenvalues of A).

Theorem If $f: \mathbb{C} \to \mathbb{C}$ is analytic, then $\operatorname{spec} f(A) = \{f(\lambda_1), \dots, f(\lambda_n)\}$

- a. Prove or provide a counterexample: if $\lambda_1 \neq \lambda_2$, then $f(\lambda_1) \neq f(\lambda_2)$,
- b. Prove or provide a counterexample: if A is invertible, then f(A) is invertible.