\$5 n-06ty piza Kai SIWVUMIKO aVANTUYHA

Θεώρημα: Έστω ρ ε ΙΚ με ρ 70 και $n \in IN$. Τότε υπάρχει μοναδικός x > 0 στο IR τ.ω. $x^n = \rho$. Είναι η n-οστή ρίζα του ρ . Συμβολίζεται με $n \lor \rho$.

ο Για κάθε $n \in \mathbb{N}$, ορίζουμε n! = 1.2.3...n (n παραγωντικό)

και επίδης ορίζουμε 0! = 1. Παρατηρείδιε ότι n! = (n-1)! n, the \mathbb{N} .

o Fix Káte K = 0, 1, ..., n opijoujus $\binom{n}{K} = \frac{n!}{K! (n-K)!} \in \mathbb{N}$

Total yiel n=0,1,2---, $\tilde{\xi}\chi\theta\nu\mu\epsilon$ $\binom{n}{0}=\binom{n}{n}=1$.

6 Annua: Ar $1 \le K \le n$, $\text{Tots}\left(\binom{n}{K}\right) = \binom{n-1}{K} + \binom{n-1}{K-1}$

	K = 0	K= 1	K = 2	K = 3		K
n= 0	1					
n = 1	1	1				1
n = 2	1	2	1			1
h = 3	1	3	3 +	1		1
n = 4	1	4	6	4	1	i i
					(n-1)	1), (K)
n				2 5 5 F F F		(n)

(Teiguro Tou Pascal)

$$\frac{\sum_{k=0}^{n} \sum_{k=0}^{\infty} \sum_$$

· DIWVUMIKO aVAINTURMO! EETW 2, BEIR KAI HEN.

Total
$$(a+\beta)^h = \sum_{K=0}^h \binom{h}{K} a^{h-K} \beta^K$$

(EXOUPE TY 66 pBd by oti $0^\circ = 1$)

\$6 Kanoies i Tiótytes two ouródow N, Q, IR

Apxing Sees 15iótytes

- · PEWEMMA: TO 65 vo AO IN SEV EÍVAI EVW CPEZZNÉVO UNO 66 vo AO TOU IR.
- Dεώρημα: 1E67W εγο και λΕΙR. Tote JnENN τ.W. Nε >α. (εκΙR)
- · θεωρημα: Έδιω ε>0. Τότε,] nEN τ.ω. ε> 1/n >0.

AKÉPAID MÉPOS MAYNATIKOÚ APIÐMOÚ

Φ θείν ρημα: Για κάθε <math>x ∈ IR, υπάρχει μοναδικός m ∈ Z τ - ω - M ≤ <math>x < m + 1. Συμβοδίζουμε τον μοναδικό αυτόν m με $L \times L$.

- υπάρχει $q \in Q$ τ, ω . x < q < y.
- · Θεώρημα (πυκνότητα αρρήτων): Για κάθε ΧιμΕ ΙΚ με ΧΖΥ

 υπάρχει r E IR \ Q τ.ω. χ ∠ r ∠ y.

57 H anódoty Tiping

• Of: Lid KydE η EIK 1 obilonhe | σ| = { σ αλ σ ≥ 0

To ld | Kateital o anothery Tiping Tou of Kal Exouple | = max fa, - 2.

· Balikes i Siótytes:

- · |a| 70
- · Idlé P => -P = d = P
- · | x+ B | = | x | + | B |
- · | | | | | | = | | | + | |

§ 8 To ENEKTETA MÉVO 6 ÚVO ÃO TWV NPARMATIKÚV APIÐMÚV:
$$\overline{IR} = IR U \int_{-\infty}^{\infty} + \infty \tilde{J}$$
OPIZOYME:

i)
$$\frac{\forall A \in \mathbb{R}}{d + (+\infty)} = (+\infty) + d = d - (-\infty) = +\infty$$

 $d + (-\infty) = (-\infty) + d = d - (+\infty) = -\infty$

ii)
$$\forall \lambda > 0$$
, $\alpha \in \mathbb{R}$:

$$\lambda \cdot (+\infty) = (+\infty) \cdot \alpha = +\infty$$

$$\lambda \cdot (-\infty) = (-\infty) \cdot \alpha = -\infty$$

$$\frac{111}{d\cdot(+\infty)} = (+\infty)\cdot \alpha = -\infty$$

$$\frac{111}{d\cdot(+\infty)} = (-\infty)\cdot \alpha = -\infty$$

iv)
$$(+\infty)+(+\infty)=+\infty$$
 $(+\infty)\cdot(+\infty)=+\infty$
 $(-\infty)+(-\infty)=-\infty$ $(-\infty)\cdot(-\infty)=+\infty$
 $(+\infty)\cdot(-\infty)=(-\infty)\cdot(+\infty)=-\infty$

 ΔEN OPIZOYME TA $(+\infty)+(-\infty), (-\infty)+(+\infty), 0.(+\infty), (+\infty).0, 0.(-\infty), (-\infty).0$ $\frac{\pm \infty}{\pm \infty}$

• Aν A μη κενό και ΟΧΙ Ξνω Υραγμένο, Δέμε $sop(A) = +\infty$ • Aν A OXI κάτω Υραγμένο, Δέμε $inf(A) = -\infty$

§ 9 Kanoies Egyavrikés avi66 Tytes

- · AVIGORITY Bernoulli: AV X>-1, TÖTE

 (1+X)ⁿ ≥ 1+nX, The IN
- Ανιδότητα Αριθμητικού Γεωμετρικού μέδου: Έδτω $n \in \mathbb{N}$ και $α_1, -.., ι$ αn θετικού πραγματικού αριθμού, τότε $\frac{α_1 + α_2 + -.. + α_n}{n} > \sqrt{α_1. α_2.... α_n}$
- Avi66 ryta Cauchy-Schwarz: 'E6TW n EN Kall $d_{1}, -- , d_{n}, \beta_{1}, -- , \beta_{n} \in \mathbb{R}, \text{ Tota}$ $\left|\sum_{j=1}^{n} d_{j}\beta_{j}\right| \leq \sum_{j=1}^{n} |d_{j}\beta_{j}| \leq \left(\sum_{j=1}^{n} d_{j}^{2}\right)^{1/2} \left(\sum_{j=1}^{n} \beta_{j}^{2}\right)^{1/2}.$

Γεωρετρική ερμηνεία: $AY \vec{A} = \begin{pmatrix} \alpha'1 \\ dn \end{pmatrix} \in IR^n$, $\vec{B} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \in IR^n$, τότε $\begin{pmatrix} \tilde{\Sigma} \\ \tilde{J} = 1 \end{pmatrix} \begin{pmatrix} \tilde{\Sigma} \\ \tilde{\Sigma} \end{pmatrix} \begin{pmatrix} \tilde{\Sigma} \\$

Γραψικές παραστάσεις της n-06της ρίζας και του ακέραιου μέρους.

LXJ < X < LXJ+1, YXEIR

AZK: IEGTW $A \subseteq IR$, $A \neq \emptyset$ KaI $-A = \int_{-\alpha}^{-\alpha} \cdot \alpha \in A$.

D. O. AV TO $A \in IVAI$ KÀTW UPZYMÉVO, TÒTE TO $-A \in IVAI$ ÂVW UPZYMÉVO KAI IGXÚEI inf $(A) = - \sup(-A)$.

 $A \subseteq K$: $E \in A \subseteq \mu \eta$ KEVÓ, $\Delta v \omega \mathcal{L} = \mathcal{L} =$

Nú6y: "=> AV d = max(A), Tote $d \in ivan$ avw upayma tou A EninAzov, av B = uvan avw <math>upayma tou A, Tote upayma tou A $A = max(A) \in A$ $Apa = up(A) = d = max(A) \in A$

7572, $2^{K+1} = 2^{K}.2 > 2K^{2} > (K+1)^{2}$

dv 16 χύει η ανιδότητα K2 7 2K+1

'Oμως, αγου κ > 5, ξχουμε κ2 7 3K = 2K + K > 2K+1.

· Apd 16 Xúi òti 2K+1 > (K+1)² kai dno féi zape ōti 2K > K², +K≥5.

AEK = 1 E67W 011 -- , dn , B1, -- , Bn E 1R.

$$\Delta \cdot 0 \cdot \left(\frac{h}{\sum_{K=1}^{n} (a_{K} + \beta_{K})^{2}} \right)^{1/2} \leq \left(\frac{h}{\sum_{K=1}^{n} a_{K}^{2}} \right)^{1/2} + \left(\frac{h}{\sum_{K=1}^{n} \beta_{K}^{2}} \right)^{1/2} \left(\frac{a_{V1667y74}}{a_{V1667y74}} \right)^{1/2}$$

Núen: FRÁYOUME

$$\frac{1}{\sum_{k=1}^{n} (a_k + B_k)^2} = \sum_{k=1}^{n} a_k (a_k + B_k) + \sum_{k=1}^{n} B_k (a_k + B_k)$$

\[
 \left\{ \frac{\mathbb{n}}{\mathbb{Z}} \right\{ \frac{\mathbb{n}}{\mathbb{K} = 1} \right\}^{1/2} \left\{ \frac{\mathbb{n}}{\mathbb{N} = 1} \right\}^{1/2} \

\$1 Basikés Erroies

- De: Mid anodoutid nearmatikáv apitháv Ervai prid erväptnen d: IN→ IR. Eurntisoupe vd euppodíjoupe tis tipiés ths pre d1, d2, d3 ---
- o Fix Káte né M dvalfepópadóté ótov dpithó an ws tov n- Dótó bpo tos dkoloutíds. Eníons oup Bolisoupe pía akoloutíd ws dan $\frac{1}{2}$ and , (dn) $\frac{1}{2}$ (

· Napa SEI gud Ta;

- d) EGIW CE IR. Η GTUÐEPÝ ακολουθία (απ)η με τιμή C τ.w. αη = C, Yn EIN
- B) $(dn)_n = (\frac{1}{n})_n$. Tote, $d_1 = \frac{1}{1} = 1$, $d_2 = \frac{1}{2}$, $d_3 = \frac{1}{3}$, ...
- γ) AV $d \in \mathbb{R}$, $(dn)_n = (d^n)_n$, $tote d_1 = d$, $d_2 = d^2$, $d_3 = d^3 \cdots$
- $\int \int (dn)_n = (2n-1)n$, $d_1 = 1$, $d_2 = 3$, ---
- ξ) (Ανωδρομικός οριόμός) $α_1 = 1$ και ∀n ∈ IN ορίζουμε $α_{n+1} = \sqrt{1 + α_n}$ (160δύναμα $∀n ≥ 2 : α_n = \sqrt{1 + α_{n-1}}$)

$$\Rightarrow$$
 $d_1 = 1$, $d_2 = \sqrt{2}$, $d_3 = \sqrt{1 + \sqrt{2}}$, ---

5)
$$d_1 = 1$$
, $d_2 = 1$ Kai $\forall n \in \mathbb{N}$: $d_{n+2} = d_n + d_{n+1}$. Tore
$$d_1 = 1$$
, $d_2 = 1$, $d_3 = 2$, $d_4 = 3$, $d_5 = 5$, $d_6 = 8$, $d_7 = 13$...

* Op: 1E6TW (dn)n Kal (Bn) ako Aouties.

(i) Népre oti (dn)
$$n = (Bn)n dV 16 XÚEI dn = Bn, the IN$$

(ii) Opi Joure
$$(dn)_n + (\beta n)_n = (dn + \beta n)_n$$

 $(dn)_n - (\beta n)_n = (dn - \beta n)_n$
 $(dn)_n \cdot (\beta n)_n = (dn \beta n)_n$

ο Παραδείχματα: i) $H(dn)_n = \left(\frac{1}{n}\right)_n$ εχεν δύνολο τιμών, το δύνολο $\frac{1}{n}$: $n \in \mathbb{N}$ γ.

ii) H (dn)n = ((-1)n)n Exzi ws 6000 Ao TIpún To f-1,13.