Elementi di Teoria della Computazione

Classe: Resto_2 - Prof.ssa Marcella Anselmo

Tutorato 25/05/2022 ore 14:00-16:00

Terza Esercitazione

a cura della dott.ssa Manuela Flores

Esercizio: Complemento di HALT_TM non è Turing-riconoscibile su elearning.informatica.unisa.it

Definire il linguaggio HALT e provare che il suo complemento 'HALT non è Turingriconoscibile, enunciando i risultati che vengono utilizzati, senza dimostrarli (si suggerisce l'utilizzo di riduzioni mediante funzioni studiate e di note proprietà delle riduzioni mediante funzione)

Indecidibilità del problema della fermata

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w \}$$

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ è una MdT e } M \text{ si arresta su } w\}$$

Teorema

 $A_{TM} \leq_m HALT_{TM}$.

Dimostrazione

Occorre definire una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $f(\langle M, w \rangle) = \langle M', w \rangle$ e

$$\langle M, w \rangle \in A_{TM}$$
 sse $\langle M', w \rangle \in HALT_{TM}$

Indecidibilità del problema della fermata

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w \}$$

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ è una MdT e } M \text{ si arresta su } w\}$$

Teorema

 $A_{TM} \leq_m HALT_{TM}$.

Dimostrazione

Occorre definire una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $f(\langle M, w \rangle) = \langle M', w \rangle$ e

$$\langle M, w \rangle \in A_{TM}$$
 sse $\langle M', w \rangle \in HALT_{TM}$

Teoremi

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Dimostrazione

Per ipotesi $A \leq_m B$, quindi esiste una riduzione di A a B.

Poiché f è una riduzione, f è calcolabile e inoltre

$$\forall w \in \Sigma^* \quad w \in A \Leftrightarrow f(w) \in B$$

Proviamo che f è anche una riduzione da \overline{A} a \overline{B} .

Un linguaggio che non è Turing riconoscibile

Teorema

 $\overline{A_{TM}}$ non è Turing riconoscibile.

Dimostrazione.

Supponiamo per assurdo che A_{TM} sia Turing riconoscibile.

Sappiamo che A_{TM} è Turing riconoscibile.

Quindi A_{TM} è Turing riconoscibile e co-Turing riconoscibile.

Per il precedente teorema, A_{TM} è decidibile.

Assurdo, poichè abbiamo dimostrato che A_{TM} è indecidibile.

Risultati

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Teorema

Se $A \leq_m B$ e B è decidibile, allora A è decidibile.

Teorema

Se $A \leq_m B$ e B è Turing riconoscibile, allora A è Turing riconoscibile.

Corollario

Se $A \leq_m B$ e A è indecidibile, allora B è indecidibile.

Corollario

Se $A \leq_m B$ e A non è Turing riconoscibile, allora B non è Turing riconoscibile.

Esercizio: Riduzione da ALL_DFA ad E_DFA

su elearning.informatica.unisa.it

- (a) Dare la definizione di riducibilità mediante funzione di un linguaggio A a un linguaggio B.
- (b) Siano

 $ALL_{DFA} = \{ \langle \mathcal{A} \rangle \mid \mathcal{A} \text{ è un DFA e } L(\mathcal{A}) = \Sigma^* \} \text{ e } E_{DFA} = \{ \langle \mathcal{A} \rangle \mid \mathcal{A} \text{ è un DFA e } L(\mathcal{A}) = \emptyset \}.$ Provare che $ALL_{DFA} \leq_m E_{DFA}$.

Riducibilità mediante funzione

Definizione

Un linguaggio $A \subseteq \Sigma^*$ è riducibile mediante funzione a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_m B$, se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $\forall w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

La funzione f è chiamata una riduzione da A a B.

Esercizio: Teorema di Rice su ALL_TM

Sipser 5.18(c) e su elearning.informatica.unisa.it

Usare il teorema di Rice per provare l'indecidibilità di: $ALL_{TM} = \{\langle M \rangle \mid M \text{ è una MdT ed L}(M) = \sum^* \}$

Teorema di Rice

Teorema di Rice. Sia

 $L = \{ \langle M \rangle \mid M \text{ è una MdT che verifica la proprietà } \mathcal{P} \}$

un linguaggio che soddisfa le seguenti due condizioni:

1. \mathcal{P} è una proprietà del linguaggio L(M), cioè: prese comunque due MdT M_1, M_2 tali che $L(M_1) = L(M_2)$ risulta

$$\langle M_1 \rangle \in L \Leftrightarrow \langle M_2 \rangle \in L$$

2. \mathcal{P} è una proprietà non banale, cioè: esistono due MdT M_1, M_2 tali che

$$\langle M_1 \rangle \in L, \langle M_2 \rangle \not\in L.$$

Allora L è indecidibile.

Esercizio: Riduzione da HALT_TM ad HO_TM

su elearning.informatica.unisa.it

Poniamo

 $HO_{TM} = \{\langle M \rangle \mid M$ è una macchina di Turing che si arresta su ogni input di lunghezza dispari \}

Definire il linguaggio $HALT_{TM}$ e provare che $HALT_{TM} \leq_m HO_{TM}$.

Esercizio: Riduzione da 3SAT a SUBSET-SUM

- (a) Fornire la definizione di linguaggio NP-completo. Fornire la definizione di riduzione polinomiale.
- (b) Data la seguente espressione booleana in 3-CNF

$$\phi = (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor \overline{x}_4) \land (\overline{x}_2 \lor x_3 \lor x_4)$$

si descriva l'immagine di $\langle \phi \rangle$ nella riduzione polinomiale di 3-SAT a SUBSET-SUM.

NP - completezza

Vogliamo definire quando un linguaggio B è uno dei linguaggi «più difficili» della classe NP.

Abbiamo visto un modo per definire quando B è «più difficile» di A, ovvero quando A è di difficoltà «minore o uguale» a B:

$$A \leq_{p} B$$

Quindi B è uno dei linguaggi «più difficili» della classe NP.....

Definizione

Un linguaggio B è *NP-completo* se soddisfa le seguenti due condizioni:

- 1. B appartiene a NP
- Per ogni linguaggio A in NP, A ≤_p B (ovvero B è NP-hard)

Riduzioni in tempo polinomiale

Definizione

Siano A, B linguaggi sull'alfabeto Σ .

Una riduzione in tempo polinomiale f di A in B è

- una funzione $f: \Sigma^* \to \Sigma^*$
- calcolabile in tempo polinomiale
- tale che per ogni $w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

Definizione

Un linguaggio $A \subseteq \Sigma^*$ è riducibile in tempo polinomiale a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_p B$, se esiste una riduzione di tempo polinomiale di A in B.

Lezione 31 pag. 4

Funzioni calcolabili in tempo polinomiale

Definizione

Una funzione $f: \Sigma^* \to \Sigma^*$ è calcolabile in tempo polinomiale se esiste una macchina di Turing deterministica M di complessità di tempo polinomiale tale che su ogni input w, M si arresta con f(w), e solo con f(w), sul suo nastro.

- Esempio 1. Consideriamo la funzione f: {0,1}* → {0,1}* tale che f(⟨m⟩) = ⟨m+1⟩, dove m ∈ N e ⟨m⟩ è la rappresentazione binaria di m.
 La funzione f è calcolabile in tempo polinomiale nella lunghezza dell'input ⟨m⟩.
- Esempio 2. Consideriamo la funzione g: {0,1}* → {0,1}* tale che g(⟨m⟩) = ⟨m⟩#1^m, dove m ∈ N e ⟨m⟩ è la rappresentazione binaria di m.
 La funzione g è calcolabile, ma non in tempo polinomiale nella lunghezza dell'input ⟨m⟩.

 $(\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor \overline{x}_4) \land (\overline{x}_2 \lor x_3 \lor x_4)$

Lezione 33-34(a) pagg. 57-58

Esercizio 3

Data la seguente formula booleana

$$\phi = (\overline{x_1} \vee x_2 \vee \overline{x_3}) \wedge (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})$$

definire l'insieme S e l'intero t tali che $\langle S, t \rangle$ sia l'immagine di $\langle \phi \rangle$ nella riduzione polinomiale di 3-SAT a SUBSET-SUM.

Soluzione:

Numero	1	2	3	1	2	3	4
<i>y</i> ₁	1	0	0	0	1	1	0
z_1	1	0	0	1	0	0	1
У2	0	1	0	1	1	0	0
<i>z</i> ₂	0	1	0	0	0	1	1
У3	0	0	1	0	1	1	0
z ₃	0	0	1	1	0	0	1
g ₁	0	0	0	1	0	0	0
h_1	0	0	0	1	0	0	0
g ₂	0	0	0	0	1	0	0
h ₂	0	0	0	0	1	0	0
g ₃	0	0	0	0	0	1	0
h ₃	0	0	0	0	0	1	0
g ₄	0	0	0	0	0	0	1
h ₄	0	0	0	0	0	0	1
t	1	1	1	3	3	3	3

$$S = \{y_1, z_1, y_2, z_2, y_3, z_3, g_1, h_1, g_2, h_2, g_3, h_3, g_4, h_4\},\ t = 1113333$$

Prossimo tutorato

Ci vediamo mercoledì prossimo ore 14-16

sempre su questo canale del Team...

... buono studio ©

