ECON0057 Lecture 5

Accounting for the U.S. Earnings and Wealth Inequality

Alan Olivi

UCL

2023

Introduction

- Paper by Castaneda, Diaz-Gimenez and Rios-Rull
- Question: can standard HA models match the joint distribution of earnings and wealth (in the US)?
- Standard HA models would then provide a theory of earnings and wealth inequality
 - \rightarrow Based on optimal choices of ex ante identical households facing uninsured idiosyncratic productivity shocks
- Important to evaluate redistribution policies (here estate tax)

Failure of Standard HA Models

TABLE 1
DISTRIBUTIONS OF EARNINGS AND OF WEALTH IN THE UNITED STATES AND IN SELECTED MODEL ECONOMIES

	Gini	Bottom 40%	Top 5%	Top 1%
		A. U.S. F	Conomy	
Earnings	.63	3.2	31.2	14.8
Wealth	.78	1.7	54.0	29.6
		B. Aiyaga	ri (1994)	
Earnings	.10	32.5	7.5	6.8
Wealth	.38	14.9	13.1	3.2
		C. Castañeda	et al. (1998)	
Earnings	.30	20.6	10.1	2.0
Wealth	.13	32.0	7.9	1.7
		D. Quadri	ni (1998)	
Earnings				
Wealth	.74		45.8	24.9
		E. Krusell and	Smith (1998)	
Earnings				
Wealth	.82		55.0	24.0
		F. Hugge	tt (1996)	
Earnings	.42	9.8	22.6	13.6
Wealth	.74	.0	33.8	11.1
		G. De Nar	di (1999)	
Earnings				
Wealth	.61	1.0	38.0	15.0

Failure of Standard HA Models

- Dynastic Models (eg. Aiyagari): infinitely lived household
 - ightarrow Household care about their offspring's consumption as much as their own
 - Idiosyncratic Risk generates precautionary savings
 - No incentives to save once enough "buffer" is built
 - → not much dispersion in wealth
 - Ratio of wealth to income too large at bottom, too small at top
- Lifecycle models (eg. Huggett 1996): working life + retirement
 - · Large incentives to save during working life
 - No incentive to save at retirement (consume everything)
 - ightarrow Models also fail to generate enough dispersion for high wealth households

Alan Olivi (UCL) ECON0057 Lecture 5 2023 4/2

Key Features of Castaneda, Diaz-Gimenez and Rios-Rull

- CDR combine features of the *Dynastic* and *Lifecycle* models
 - Life Cycle: gives large incentive to save during working life
 - Dynastic: household care about their offspring so do not consume everything at retirement
 - → might even want to save to insure against risk that "children" start life with low income
 - · Combining the two potentially gives more incentives to accumulate wealth
- Issue: lots of hh with 0 wealth in the data despite those (hypothesized) incentives
 - CDR add Social Security
 - · Government provides minimum level of income at retirement
 - This relaxes the need to save for poor households (Government "saves" for households)

Alan Olivi (UCL) ECON0057 Lecture 5 2023 5/20

Skill/Life Cycle/Intergenerational Process

Mass 1 of households with identical preferences for consumption and labor

- State space: $s = (s_1, s_2)$ follows a Markov process
 - $s_1 = e$ during working life, $s_1 = r$ during retirement
 - $s_2 \in \mathcal{X} = \{x_1, x_2, ..., x_n\}$ skill of the agent
 - household's productivity e(s) = x if $s_1 = e$, e(s) = 0 if $s_1 = r$
- Transition kernel described by $\Gamma(s, s')$
 - Retirement and death:

$$P(r \mid e, x_i) = P(r \mid e) = p_{e,\ell}$$
 probability of retiring, indep. of skills $P(e \mid r, x_i) = P(e \mid r) = 1 - p_{\ell,\ell}$ probability of dying, indep. of skills

• Productivity during working life, x, follows a standard Markov process with kernel Q(x, x'):

$$\Gamma((e,x),(e',x')) = (1-\rho_{e,\ell})Q(x,x') \text{ stops evolving at retirement}$$

$$\Gamma((e,x),(r,x')) = \rho_{e,\ell}\delta(x=x'), \quad \Gamma((r,x),(r,x')) = \rho_{\ell,\ell}\delta(x=x')$$

When hh with skill x dies, replaced by its child, with skill x' drawn from

$$(1 - \phi^1 - \phi^2)\gamma(x') + \phi^1\delta(x' = x) + \phi^2\delta(x' = x_1)$$

where γ is the stationary distribution of skills

- \bullet ϕ^1 helps control inter-generational mobility (child starts with same income than parent)
- \bullet ϕ^2 helps life-cycle (child starts with lowest skill x_1 and through Q skill can increase during working life)

イロト (個)ト (意)ト (意)ト

Government

Government imposes income tax and estate tax when household dies and provides retirement insurance $\omega(s)$ to retired households:

- Income tax $\tau(y_t)$. Reason to include income tax:
 - Tax schedule progressive, disincentives to work especially at high incomes
 - · Not including income tax would overstate model ability to generate dispersed earning distribution
 - \rightarrow Receipts of income tax are T_t^y
- Estate tax is $au_E(z_t)$ with z_t savings at t such that $s_{1,t}=r$, $s_{1,t+1}=e$ o
 - ightarrow Receipts of estate tax T_t^E
- Retirement insurance, same for all households: $\omega(s) = \omega$ is $s_1 = r$
 - \rightarrow Cost of retirement insurance \mathcal{T}^R_t
- ullet Government budget constraint: $G_t + T_t^R = T_t^y + T_t^E$

No debt, G_t exogenous government expenses

Alan Olivi (UCL) ECON0057 Lecture 5 2023 7 / 20

Household Problem

Bellman:

$$v(s, a) = \sup_{0 \le z, 0 < c, 0 \le l \le \ell} u(c, \ell - l) + \beta \sum_{s'} v(s', a(z)) \Gamma(s, s')$$

$$s.t. \quad c + z = y - \tau(y) + a$$

$$y = ra + e(s) lw + \omega(s)$$

$$a(z) = \begin{cases} z - \tau_E(z) & \text{if } s_1 = r \text{ and } s'_1 = e \\ z & \text{otherwise} \end{cases}$$

Household are altruistic: they care about the consumption of their children as much as their own

Retirement here can be interpreted as a large income shock

Note that labor supply is elastic

Production

Competitive supply side as in Aiyagari. Representative firm production function:

$$Y_t = F(K_t, L_t)$$

Prices given by:

$$r_t = F_K(K_t, L_t) - \delta$$

$$w_t = F_L(K_t, L_t)$$

Note: elastic labor supply so L_t is endogenous

Equilibrium

A **Stationary Equilibrium** is defined by **1**. Policy functions $\{c(a,s), z(a,s), l(a,s)\}$; **2**. A distribution $\lambda(a,s)$; **3**. Government policy $\{G,\tau_E(z),\tau(y),\omega(s)\}$; **4**. Factor prices $\{r,w\}$, **5**. Aggregate quantities $\{K,L,T^R,T^Y,T^E\}$ such that:

- $\{c(a,s), z(a,s), l(a,s)\}$ optimal given $r, w, \tau, \tau_E, \omega$
- tax receipts and gov spending are consistent with aggregation (e.g $T^y = \int \tau(y) \lambda(a,s)$)
- Factor prices given by Firm FOC given K, L
- Capital market and Labor market clear and Government budget satisfied
- \bullet λ stationary given transition kernel induced by Γ and hh choices

10 / 20

		(Quintili	E	Тор (TOP GROUPS (Percentile)						
Gini	First	Second	Third	Fourth	Fifth	90th-95th	95th-99th	99th-100th				
		A. Distribution of Earnings										
.63	40	3.19	12.49	23.33	61.39	12.38	16.37	14.76				
		B. Distribution of Wealth										
.78	39	1.74	5.72	13.43	79.49	12.62	23.95	29.55				

TABLE 4 Transition Probabilities of the Process on the Endowment of Efficiency Labor Units for Working-Age Households That Remain at Working Age One Period Later, $\Gamma_{\varepsilon\varepsilon}$ (%)

		To	o s'	
From s	s' = 1	s' = 2	s' = 3	s' = 4
s = 1	96.24	1.14	.39	.006
s = 2	3.07	94.33	.37	.000
s = 3	1.50	.43	95.82	.020
s = 4	10.66	.49	6.11	80.51

TABLE 5
RELATIVE ENDOWMENTS OF EFFICIENCY LABOR UNITS, e(s), and the Stationary Distribution of Working-Age Households, γ_{ε}^*

	s = 1	s = 2	s = 3	s = 4
e(s)	1.00	3.15	9.78	1,061.00
$oldsymbol{\gamma}_{arepsilon}^*$ (%)	61.11	22.35	16.50	.0389

TABLE 6
Values of the Targeted Ratios and Aggregates in the United States and in the Benchmark Model Economies

	K/Y (1)	I/Y (2)	G/Y (3)	Tr/Y (4)	T_E/Y (5)	h (6)	CV/CV ₁ (7)	$e_{40/20} \ (8)$	$\rho(f, s) $ (9)
Target (United									
States)	3.13	18.6%	20.2%	4.9%	.20%	30.0%	3.00	1.30	.40
Benchmark	3.06	18.1%	20.8%	4.4%	.20%	31.2%	3.25	1.09	.25

Note.—Variable h (col. 6) denotes the average share of disposable time allocated to the market. The statistic CV_c/CV_t (col. 7) is the ratio of the coefficients of variation of consumption and of hours worked.

TABLE 7
DISTRIBUTIONS OF EARNINGS AND OF WEALTH IN THE UNITED STATES AND IN THE BENCHMARK MODEL ECONOMIES (%)

			QUINTILE					TOP GROUPS (Percentile)			
ECONOMY	Gini	First	Second	Third	Fourth	Fifth	90th- 95th	95th- 99th	99th– 100th		
			A. Distributions of Earnings								
United States Benchmark	.63 .63	40 .00	3.19 3.74	12.49 14.59	23.33 15.99	61.39 65.68	12.38 15.15	16.37 17.65	14.76 14.93		
				B. Distri	butions o	f Wealth	ı				
United States Benchmark	.78 .79	39 .21	1.74 1.21	5.72 1.93	13.43 14.68	79.49 81.97	12.62 16.97	23.95 18.21	29.55 29.85		

Alan Olivi (UCL) ECON0057 Lecture 5 2023 14/

Consumption

TABLE 8
DISTRIBUTIONS OF CONSUMPTION IN THE UNITED STATES AND IN THE BENCHMARK
MODEL ECONOMIES (%)

				Top Groups (Percentile)					
Есоному	Gini	First	Second	Third	Fourth	Fifth	90th- 95th	95th- 99th	99th- 100th
United States:									
Nondurables	.32	6.87	12.27	17.27	23.33	40.27	9.71	10.30	4.83
Nondurables+*	.30	7.19	12.96	17.80	23.77	38.28	9.43	9.69	3.77
Benchmark: Wealthiest 1%									
excluded	.40	5.23	12.96	13.55	20.41	47.85	12.77	14.89	3.83
Entire sample	.46	4.68	11.58	12.07	18.68	52.99	12.82	13.45	11.94

^{*} Includes imputed services of consumer durables.

15 / 20

TABLE 9
EARNINGS AND WEALTH PERSISTENCE IN THE UNITED STATES AND IN THE BENCHMARK
MODEL ECONOMIES: FRACTIONS OF HOUSEHOLDS THAT REMAIN IN THE SAME QUINTILE
AFTER FIVE YEARS

	Quintile								
Есопому	First	Second	Third	Fourth	Fifth				
		A. E	Carnings Persist	ence					
United States	.86	.41	.47	.46	.66				
Benchmark	.76	.55	.65	.80	.80				
		В.	Wealth Persiste	nce					
United States	.67	.47	.45	.50	.71				
Benchmark	.81	.80	.80	.75	.89				

 ${\bf TABLE~10}$ ${\bf TARGETED~MACROECONOMIC~RATIOS~AND~AGGREGATES~IN~THE~MODEL~ECONOMIES}$

	K/Y (1)	I/Y (2)	G/Y (3)	Tr/Y (4)	T _E /Y (5)	h (6)	CV_/CV ₁ (7)	e _{40/20} (8)	$\rho(f, s)$ (9)
Benchmark			20.8%				3.25	1.09	.25
Match autocorrelation	3.05	17.8%	20.4%	4.6%	.20%	31.9%	3.12	1.00	.40
Match life cycle	3.07	18.1%	20.5%	4.6%	.20%	31.8%	3.15	1.30	03

Note.-See note to table 6.

 ${\bf TABLE~11} \\ {\bf Distributions~of~Earnings~and~Wealth~in~the~Model~Economies~(\%)}$

			Ç	Top Groups (Percentile)							
ECONOMY	Gini	First	Second	Third	Fourth	Fifth	90th- 95th	95th- 99th	99th- 100th		
		A. Distributions of Earnings									
Benchmark	.63	.00	3.74	14.59	15.99	65.68	15.15	17.65	14.93		
Match autocorrelation	.63	.00	4.02	14.45	15.68	65.85	15.29	17.74	14.86		
Match life cycle	.62	.00	3.71	14.65	16.66	64.98	13.79	18.21	14.45		
			В	. Distri	butions o	of Weal	th				
Benchmark	.79	.21	1.21	1.93	14.68	81.97	16.97	18.21	29.85		
Match autocorrelation	.80	.18	1.12	1.64	14.25	82.80	17.38	18.63	30.00		
Match life cycle	.80	.18	.98	2.00	15.22	81.61	16.21	19.93	29.58		

TABLE 12

EARNINGS AND WEALTH PERSISTENCE IN THE MODEL ECONOMIES: FRACTIONS OF HOUSEHOLDS THAT REMAIN IN THE SAME QUINTILE AFTER FIVE YEARS

			<u> </u>						
	QUINTILE								
ECONOMY	First	Second	Third	Fourth	Fifth				
	A. Earnings Persistence								
Benchmark	.76	.55	.65	.80	.80				
Match autocorrelation	.76	.57	.65	.79	.81				
Match life cycle	.76	.57	.67	.82	.78				
		B. V	Vealth Persist	ence					
Benchmark	.81	.80	.80	.75	.89				
Match autocorrelation	.82	.80	.81	.78	.89				
Match life cycle	.80	.79	.78	.73	.89				

 ${\it TABLE~13}$ Targeted Macroeconomic Ratios and Aggregates in the Model Economies

	K/Y (1)	I/Y (2)	G/Y (3)	Tr/Y (4)	T_{E}/Y (5)	h (6)	CV_/CV ₁ (7)	$\frac{e_{40/20}}{(8)}$	$\rho(f,s)$ (9)
Benchmark No estate tax	3.06 3.08	18.1% 18.2%	20.8% $20.8%$	4.4% 4.4%	.20% .00%	31.2% 31.2%	$\frac{3.25}{3.27}$	1.09 1.09	.25 .25

Note.-See note to table 6.

 $\begin{tabular}{l} TABLE~14\\ DISTRIBUTIONS~OF~EARNINGS~AND~WEALTH~IN~THE~MODEL~ECONOMIES~(\%) \end{tabular}$

	Gini	QUINTILE					Top Groups (Percentile)				
Есоному		First	Second	Third	Fourth	Fifth	90th-95th	95th-99th	99th- 100th		
		A. Distributions of Earnings									
Benchmark	.63	.00	3.74	14.59	15.99	65.68	15.15	17.65	14.93		
No estate tax	.60	.00	3.75	14.59	15.98	65.68	15.14	17.68	14.89		
	B. Distributions of Wealth										
Benchmark	.79	.21	1.21	1.93	14.68	81.97	16.97	18.21	29.85		
No estate tax	.80	.20	1.18	1.86	14.42	82.33	17.80	18.26	30.29		

Counterfactual: Estate Tax

TABLE 15
EARNINGS AND WEALTH PERSISTENCE IN THE MODEL ECONOMIES: FRACTIONS OF HOUSEHOLDS THAT REMAIN IN THE SAME QUINTILE AFTER FIVE YEARS

	Quintile								
Есопому	First	Second	Third	Fourth	Fifth				
	A. Earnings Persistence								
Benchmark	.76	.55	.65	.80	.80				
No estate tax	.76	.55	.65	.80	.80				
	B. Wealth Persistence								
Benchmark	.81	.80	.80	.75	.89				
No estate tax	.81	.80	.80	.75	.89				