Examen Phénomènes de su	<u>nétérogène</u> 2023	
Université Kasdi Merbah Ouargla	ع ما صدى مرباع	جامعة قاصدي مرباح ورقلة
Faculté des Sciences Appliquées	17. Mil.	كلية العلوم التطبيقية
Département : Génie des procédés	Te Kasdi Merbah Cus	قسم: هندسة الطرائق
Niveau – L3 GP /Pr. D Zerrouki		21/05/2023 Durée : 90 min

Exercice N° 01 (6points)

- Soit deux gouttes d'eau sphériques de rayon r elles peuvent fusionner et former une seule goutte (coalescence) de rayon r' Montrer que cette transformation est pour minimiser l'énergie totale
- Donner l'équation de Young donnant l'expression de l'angle de contact relative à une goutte d'un liquide déposée sur un solide :

Exercice N° 02 (8 points): La figure suivant montre la variation de tension de surface des solutions du tensioactif SDS (C₁₂H₂₅NaO₄S) en fonction de la concentration dans l'eau et à 0,01 M de différents acides aminés à 20 °C.

- Déterminer la valeur de CMC pour les différentes solutions
- Calculer L'énergie libre standard de micellisation (ΔG°mic) dans l'eau

L'aire de la tête polaire de SDS dans l'eau et A =0.8507 nm², le volume et la langueur de tensioactif V (nm³) et lc (nm) Sont donnés par l'Équation

- $V = 0.0274 + 0.0269 \times N$
- $lc = 0,1500 + 0,1265 \times N$ ou N est le nombre d'atomes de carbone de la chaîne hydrophobe du tensioactif.
- Déterminer la forme géométrique des micelles.

Exercice N° 03 (6 points) Le volume d'azote adsorbé par gramme de Charbon actif à 77°K évolue, en fonction du rapport de la pression partielle d'azote P et de la tension de vapeur P0 :

V (cm ³ /g)	25	29	35	39	42	45	49	56	69	100	108
P/P0	0.05	0.10	0.15	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90

- Quel est le type d'isotherme obtient-on?
- Déterminer les constantes de cette isotherme
- Quelle est la surface spécifique (en m²/g) de Charbon actif sachant que l'aire couverte par une molécule d'azote vaut de 16,2 Å²?