110A HW3

Warren Kim

Winter 2024

Question 1

Let R be a ring. Show that 1 = 0 if and only if $R = \{0\}$.

Response

Proof: (\Longrightarrow) Let R be a ring and suppose 1=0. Then, for any $a\in R$, we can write $a=1\cdot a=a\cdot 1$. But since 1=0, we have $a=0\cdot a=a\cdot 0=0$, so a=0. Because a was arbitrary, a=0 is the only element in R.

(\Leftarrow) Let R be a ring and let it be defined by $R = \{0\}$. Then, because it's a ring, there exists an element $1_R \in R$ such that $1_R \cdot a = a \cdot 1_R = a$ for any $a \in R$. Because 0 is the only element in R, set $1_R = 0$. Then, since 0 is the only element in R, we have that a = 0, so $a \cdot 1_R = 1_R \cdot a = 0 = a = 0 \cdot a = a \cdot 0$.

Let R be a ring, and consider the associated polynomial ring R[x].

- 1. Show that R is commutative if and only if R[x] is commutative.
- 2. Suppose R is commutative. Show that R is an integral domain if and only if R[x] is an integral domain.

Response

Proof:

1. (\Longrightarrow) Suppose R is a commutative ring. Then, consider the associated polynomial ring R[x]. Note that x is commutative with all $a \in R$; i.e. ax = xa. Then, suppose we have two elements $\sum_{i=0}^{n} a_i x^i, \sum_{j=0}^{m} b_j x^j \in R$ for some $n, m \in \mathbb{Z}_{>0}$. Then

$$\left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{j=0}^{m} b_j x^j\right) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j x^{i+j}$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} b_j a_i x^{j+i} \qquad \text{addition in } \mathbb{Z} \text{ and } R \text{ are commutative}$$

$$= \left(\sum_{j=0}^{m} b_j x^j\right) \left(\sum_{i=0}^{n} a_i x^i\right)$$

so R[x] is commutative.

(\Leftarrow) Suppose R[x] is a commutative ring. Then given two elements $\sum_{i=0}^{n} a_i x^i$, $\sum_{j=0}^{m} b_j x^j \in R$ for some $n, m \in \mathbb{Z}_{>0}$, we have that for any i < n and j < m, $(a_i x^i)(b_j x^j) = (b_j x^j)(a_i x^i)$. Then $(a_i x^i)(b_j x^j) = a_i x^i b_j x^j = b_j a_i x^{i+j} = b_j x^j a_i x^i = (b_j x^j)(a_i x^i)$. So, $a_i b_j = b_j a_i$, and since $a_i, b_j \in R$, R must be commutative.

Prove the parts of Proposition 2.1 (in the notes) that were not proved in class.

Let R and S be rings, and let $f:R\to S$ be a ring homomorphism. Let $a,b\in R$. Prove the following:

- 1. f(a b) = f(a) f(b).
- 2. If $a \in R$ is a unit, then f(a) is a unit as well, with $f(a^{-1}) = f(a)^{-1}$.

Consider the Gaussian integers, given by $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$, where $i^2 = -1$. Consider the map $f : \mathbb{Z}[i] \to \mathbb{Z}[i]$ where $a + bi \mapsto a - bi$. Show f is an isomorphism.

Let R be a ring. We say that $a \in R$ is nilpotent if there is some integer n such that $a^n = 0$. Show that 1 + a is a unit.

We say that a ring R is a Boolean ring if, for every $a \in R$, we have $a^2 = a$.

- 1. Show that a Boolean ring R is commutative.
- 2. Suppose R is a Boolean ring and an integral domain. Show that |R| = 2. [Hint: show that any nonzero element must be 1.]

Let R and S be rings. Show that if R and S are isomorphic, then R[x] and S[x] are isomorphic.