

Estadística I

Variables Aleatorias Continuas

Natalia SALABERRY

Variable aleatoria

Definición Variable Aleatoria (VA)

Dado un espacio muestral -conformado por los valores que toma la variable bajo análisis- una variable aleatoria X es una función que asigna a cada elemento del espacio muestral un número real: X: $\Omega \rightarrow R$

Es un conjunto finito o infinito numerable de valores. Ejemplos:

Cantidad de personas infectadas por COVID 19 Cantidad de fallos de un servidor o máquina Cantidad de casos exitosos de un evento determinado

Es un <u>intervalo</u> de números reales.

Ejemplos:

Estatura de una persona Tiempo de arribo a un lugar Peso de un objeto

м

VA Continua - Función de densidad de Probabilidad

Definición de Función de densidad de probabilidad

Se X una variable aleatoria continua, f(X) será su función de probabilidad si satisface las siguientes propiedades:

- $f(x) \ge 0$ para todo x
- $\int_{-\infty}^{+\infty} f(x) dx = 1$

Por lo tanto, la probabilidad de que una variable aleatoria continua X con función de densidad f(x) pertenezca al intervalo [a , b] está dada por

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

$$\Rightarrow \text{ are } a = \int_{a}^{b} f(x) dx$$

VA Continua - Función de Densidad de Probabilidad

Ejemplo

Sea
$$f(x)$$

$$\begin{cases} ax^2 & 1 \le x \le 3 \\ 0 & en otro \ caso \end{cases}$$

1. Calcular el valor de a para que f(x) resulte una función densidad de probabilidad

Entonces tendrá que ser a>0 y $\int_{-\infty}^{+\infty} f(x)dx=1 =>$ resolvemos la integral:

$$\int_{1}^{3} ax^{2} dx = a \frac{x^{3}}{3} \Big|_{1}^{3} = a \frac{27}{3} - a \frac{1}{3} = a \frac{26}{3} = 1 \Rightarrow a = \frac{3}{26}$$

2. Tomando el valor hallado de a, calcular P(1,7 < x < 2,3) y P(x \geq 2)

$$P(1,7 < x < 2,3) = \int_{1,7}^{2,3} \frac{3}{26} x^2 dx = \frac{3}{26} \frac{x^3}{3} \Big|_{1,7}^{2,3} = \frac{3}{26} \frac{12,167}{3} - \frac{3}{26} \frac{4,913}{3} = 0,279$$

$$P(x \ge 2) = \int_{2}^{3} \frac{3}{26} x^{2} dx = \frac{3}{26} \frac{x^{3}}{3} \Big|_{2}^{3} = \frac{3}{26} \frac{27}{3} - \frac{3}{26} \frac{8}{3} = \frac{19}{26} = 0,7308$$

VA Continua - Función de Distribución Acumulada

Definición de Función de Distribución Acumulada

Se X una variable aleatoria continua con función de densidad de probabilidad f(x), su función de distribución acumulada viene dada por:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Por lo tanto, si $a \le b$ entonces:

$$P(a \le X \le b) = F(b) - F(a)$$

Es decir, F(x) nos muestra la probabilidad acumulada en el intervalo [a, b]

VA Continua - Función de Distribución Acumulada

Ejemplo

Sea
$$f(x)$$
 $\begin{cases} \frac{3}{26}x^2 & 1 \le x \le 3 \\ 0 & en \ otro \ caso \end{cases}$ Calcular la función de distribución acumulada de $f(x)$

Si x < 1:
$$F(x) = \int_{-\infty}^{1} 0 \ dx = 0$$

Si
$$1 \le x \le X$$
: $F(x) = \int_{1}^{X} \frac{3}{26} x^2 dx = \frac{3}{26} \frac{x^3}{3} \Big|_{1}^{X} = \frac{3}{26} \frac{X^3}{3} - \frac{3}{26} \frac{1}{3} = \frac{X^3 - 1}{26}$

Si
$$\mathbf{x} \ge 3$$
: $F(\mathbf{x}) = \int_{1}^{3} \frac{3}{26} x^{2} dx = \frac{3}{26} \frac{x^{3}}{3} \Big|_{1}^{3} = \frac{3}{26} \frac{27}{3} - \frac{3}{26} \frac{1}{3} = 1$

Entonces

$$F(X) \begin{cases} 0 & si \ x < 1 \\ \frac{X^3 - 1}{26} & si \ 1 \le x < 3 \\ 1 & si \ x \ge 3 \end{cases}$$

VA Continua – Valor Esperado

Definición de Valor Esperado o Media

Se X una variable aleatoria continua, su Valor Esperado o Media se define como:

$$E(x) = \int_{-\infty}^{+\infty} x f(x) dx$$

Por lo tanto nos indica el valor medio de los posibles valores que pueda tomar la variable aleatoria

Propiedades: valen las mismas propiedades que vimos en la unidad de variables aleatorias discretas

- E(b)= b
- E(a*X) = a*E(X)
- E(a*X + b) = a*E(X) + b
- Si X e Y son independientes entonces E(X+Y)=E(X) + E(Y)

VA Continua – Valor esperado o Media

Ejemplo

Sea f(x) $\begin{cases} \frac{1}{6}x - \frac{1}{36}x^2 & 0 \le x \le 6 \\ 0 & en \ otro \ caso \end{cases}$ una función de densidad de probabilidad. Calcular el valor esperado

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{6} x \left(\frac{1}{6}x - \frac{1}{36}x^{2}\right) dx = \int_{0}^{6} \frac{1}{6}x^{2} - \frac{1}{36}x^{3} dx$$
$$= \frac{1}{6} \frac{x^{3}}{3} - \frac{1}{36} \frac{x^{4}}{4} \Big|_{0}^{6} =$$

$$\left(\frac{1}{6}\frac{6^3}{3} - \frac{1}{36}\frac{6^4}{4}\right) - \left(\frac{1}{6}\frac{0^3}{3} - \frac{1}{36}\frac{0^4}{4}\right) = \left(\frac{1}{6}\frac{216}{3} - \frac{1}{36}\frac{1296}{4}\right) - 0 = 12 - 9 = 3$$

VA Continua – Varianza

Definición de Varianza

Se X una variable aleatoria continua, su Varianza se define como:

$$V(x) = \int_{-\infty}^{+\infty} [x - E(x)]^2 f(x) dx = E[x - E(x)]^2$$

Por lo tanto, su valor nos indica cuanto se alejan los valores de X respecto su media en términos cuadráticos

Propiedades: valen las mismas propiedades que vimos en la unidad de variables aleatorias discretas

- V(X)= $E(X^2)$ $[E(X)]^2$ = $\int_{-\infty}^{+\infty} x^2 f(x) dx$ $[\int_{-\infty}^{+\infty} x f(x) dx]^2$ siendo la forma más utilizada
- V(b) = 0
- $V(a*X) = a^2 *V(X)$
- $V(a*X + b) = a^2 *V(X)$
- Si X e Y son independientes entonces V(X+Y)=V(X) + V(Y)

Desvío estándar: $\sqrt{V(x)}$

VA Continua –Varianza

Ejemplo

Sea f(x) $\begin{cases} \frac{1}{6}x - \frac{1}{36}x^2 & 0 \le x \le 6 \\ 0 & en \ otro \ caso \end{cases}$ una función de densidad de probabilidad. Calcular

la varianza

$$V(X) = E(X^{2}) - [E(X)]^{2} = \int_{-\infty}^{+\infty} x^{2} f(x) dx - [\int_{-\infty}^{+\infty} x f(x) dx]^{2}$$

E(X)=3 ya fue calculado previamente

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_0^6 x^2 (\frac{1}{6}x - \frac{1}{36}x^2) dx = \int_0^6 \frac{1}{6}x^3 - \frac{1}{36}x^4 dx$$

$$= \frac{1}{6} \frac{x^4}{4} - \frac{1}{36} \frac{x^5}{5} \Big|_0^6 = \left(\frac{1}{6} \frac{6^4}{4} - \frac{1}{36} \frac{6^5}{5}\right) - \left(\frac{1}{6} \frac{0^4}{4} - \frac{1}{36} \frac{0^5}{5}\right) = \left(54 - \frac{216}{5}\right) - 0 = \frac{54}{5}$$

$$V(X) = \frac{54}{5} - [3]^2 = \frac{9}{5}$$

Análisis Estadístico I

Distribuciones continuas de probabilidad

Natalia SALABERRY

Según el comportamiento de la variable aleatoria continua, su distribución de probabilidad adopta una forma determina que podemos conocer.

A partir de ello, tenemos las siguientes distribuciones de probabilidad:

- Uniforme: se caracteriza por determinar <u>la probabilidad de ocurrencia de la variable aleatoria entre dos extremos a y b</u>, es decir, dentro de un intervalo acotado.
- **Normal**: se caracteriza por determinar <u>la probabilidad de ocurrencia de la variable aleatoria dentro de</u> un rango de valores posible que puede ir desde <u>- ∞ hasta + ∞ </u>.
- **Exponencial**: se caracteriza por determinar la probabilidad de ocurrencia de la variable aleatoria a una determinada tasa constante de tiempo. Esta es un caso particular de la distribución Gamma.

Distribución Uniforme

Se dice que una variable aleatoria continua X tiene una distribución uniforme en el intervalo [a, b] que notamos por $X \sim U[a, b]$, si su función de densidad de probabilidad está dada por

Función de densidad:

$$f(x) = \begin{cases} \frac{1}{b-a} & si \ a \le X \le b \\ 0 & en \ otro \ caso \end{cases}$$

Por lo tanto, corresponde al caso de una variable aleatoria que es continua y <u>sólo</u> <u>puede tomar valores comprendidos entre dos extremos a y b, de manera que todos los intervalos de una misma longitud (dentro de (a, b)) tienen la misma probabilidad.</u>

Distribución Uniforme

Dado

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } a \le X \le b \\ 0 & \text{en otro caso} \end{cases}$$

Integrando en [a;X]:

$$\int_{a}^{X} \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{X} dx = \frac{1}{b-a} x |_{a}^{X} = \frac{1}{b-a} * [x-a] = \frac{x-a}{b-a}$$

Entonces, la Función de probabilidad acumulada es:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

Distribución Uniforme

Distribución Uniforme

$$\mathbf{E}(\mathbf{X}) = \int_{a}^{b} x \, f(x) dx = \int_{a}^{b} x \, \frac{1}{b-a} \, dx = \frac{1}{b-a} \frac{x^{2}}{2} \Big|_{a}^{b} = \frac{1}{b-a} \frac{b^{2}}{2} - \frac{1}{b-a} \frac{a^{2}}{2} = \frac{b^{2}-a^{2}}{2(b-a)} = \frac{(b-a)(b+a)}{2(b-a)} = \frac{a+b}{2}$$

Para el numerador, aplicamos la fórmula de la diferencia de cuadrados que decía:

$$(b^2 - a^2) = (b - a)(b + a)$$

 $(b - a)(b + a) = b * b + ba - ab - a * a = b^2 - a^2$

Que en realidad lo que se está haciendo es factorizar el polinomio.

$$E(X^{2}) = \int_{a}^{b} x^{2} f(x) dx = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{b-a} \frac{x^{3}}{3} \Big|_{a}^{b} = \frac{1}{b-a} \frac{b^{3}}{3} - \frac{1}{b-a} \frac{a^{3}}{3} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} = \frac{(b^{2}+ab+a^{2})}{3}$$

Para el numerador, aplicamos la fórmula de la diferencia de cubos que decía:

$$(b^3 - a^3) = (b - a)(b^2 + ab + a^2)$$

$$(b - a)(b^2 + ab + a^2) = b * b^2 + ab^2 + ba^2 - ab^2 - ba^2 - a * a^2 = b^3 - a^3$$

Que en realidad lo que se está haciendo es factorizar el polinomio.

Facultad de Ciencias Económicas UBA

Distribuciones continuas de probabilidad

$$V(X) = E(X^2) - [E(X)]^2 =$$

$$\frac{(b^2 + ab + a^2)}{3} - \left[\frac{a + b}{2}\right]^2 = \frac{(b^2 + ab + a^2)}{3} - \frac{(b + a)^2}{4} = \frac{(b + a)^2}{4}$$

Para $(b + a)^2$ aplicamos la fórmula del Cuadrado de la suma por la cual $b^2 + 2ab + a^2 = (b + a)^2$

$$\frac{(b^{2} + ab + a^{2})}{3} - \frac{b^{2} + 2ab + a^{2}}{4} = \frac{4b^{2} + 4ab + 4a^{2} - 3b^{2} - 6ab - 3a^{2}}{12} = \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$

Para $(b-a)^2$ aplicamos la fórmula del Cuadrado de la diferencia por la cual $b^2 - 2ab + a^2 = (b-a)^2$

$$D(X) = \sqrt{V(x)}$$

Distribución Uniforme - Ejemplo

Sea X ~ U[3, 5], cuya función de densidad de probabilidad es

$$f(x) = \begin{cases} \frac{1}{2} & \text{si } 3 \le X \le 5\\ 0 & \text{en otro caso} \end{cases}$$

1. Calcular F(X)

$$F(x) = \int_3^x f(x) dx = \int_3^x \frac{1}{2} dx = \frac{1}{2} x |_3^x = \frac{1}{2} * x - \frac{3}{2} \qquad F(x) = \begin{cases} 0 & x < 3 \\ \frac{1}{2} * x - \frac{3}{2} & 3 \le x < 5 \\ 1 & x > 5 \end{cases}$$

2. Calcular $P(X \leq 4)$

$$F(4) = P(x \le 4) = \int_3^4 f(x) dx = \int_3^4 \frac{1}{2} dx = \frac{1}{2} x |_3^4 = \frac{4}{2} - \frac{3}{2} = \frac{1}{2}$$
o directamente utilizamos la forma de F(X): F(4) – F(3) = $(\frac{1}{2} * 4 - \frac{3}{2}) - (\frac{1}{2} * 3 - \frac{3}{2}) = 2 - \frac{3}{2} = \frac{1}{2}$

$$E(X) = \int_3^5 x f(x) dx = \frac{a+b}{2} = \frac{3+5}{2} = 4$$

$$V(X) = E(X^2) - [E(X)]^2 = \frac{(b-a)^2}{12} = \frac{(5-3)^2}{12} = \frac{4}{12} = \frac{1}{3}$$

$$D(X) = \sqrt{V(x)} = \sqrt{\frac{1}{3}} = 0.5774$$

Distribución Normal

Se dice que una variable aleatoria continua X tiene una distribución normal X \sim N(μ , σ) con parámetros μ =E(X) y σ =D(X) si su función de densidad de probabilidad es

$$f_{x}(x) = \left\{ \frac{1}{\sigma\sqrt{2\pi}} e^{-\left[\frac{(x-\mu)^{2}}{2\sigma}\right]} \quad con \quad -\infty < x < +\infty; -\infty < \mu < +\infty; \sigma > 0 \right\}$$

$$donde \, \mu = media \, y \, \sigma = desvio \, est \, and \, ar$$

Por lo tanto, representa cómo se distribuyen los valores de una variable aleatoria continua dentro de un rango de valores posible que puede ir desde - ∞ hasta +∞.

El gráfico de la función de densidad de probabilidad normal tiene forma de campana con simetría respecto de su media y puntos de inflexión en $x = \mu + \sigma$ y $x = \mu - \sigma$

Distribución Normal

Función de probabilidad acumulada:

$$F(X) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\left[\frac{(x-\mu)^2}{2\sigma}\right]} dx$$

$$E(X) = \mu = \int_{-\infty}^{+\infty} x * f_x(x) dx$$

$$E(X) = \mu = \int_{-\infty}^{+\infty} x * f_x(x) dx$$
 $V(X) = \sigma^2 = \int_{-\infty}^{+\infty} [x_i - E(X)]^2 * f_x(x_i) dx$

$$D(X) = \sqrt{V(x)}$$

Si μ =0 y σ =1 entonces Z ~ N(0,1) siendo Z= $\frac{X-\mu}{\sigma}$ cuya distribución se denomina normal estándar

Demostramos μ =0 y σ =1 :

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma}E(X-\mu) = \frac{1}{\sigma}[E(X)-E(\mu)] = \frac{1}{\sigma}[E(X)-\mu] = \frac{1}{\sigma}(\mu-\mu) = 0$$

$$Var(Z) = Var\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma^2}Var(X-\mu) = \frac{1}{\sigma^2}[Var(X) - Var(\mu)] = \frac{1}{\sigma^2}[Var(X) - 0]$$
$$= \frac{1}{\sigma^2}\sigma^2 = 1 \Rightarrow D(Z) = \sigma = \sqrt{1} = 1$$

Distribución Normal

- Dominio de **f(x)**: {0;+∞}
- Dominio de X: {-∞; +∞} intervalo de valores

21

Distribución Normal

- Dominio de **F(x)**: {0;1}
- Dominio de **X**: {- ∞; + ∞} intervalo de valores

Distribución Normal- Uso de tabla Normal Estandarizada

Sea $X \sim N(1,48;2)$ calcular P(X<5) => estandarizamos la variable:

$$P(\frac{x-\mu}{\sigma} < \frac{5-1,48}{2}) = P(Z < 1,76) = 0.9608$$

Distribución Normal Estándarizada

	(Áreas acumuladas a izquierd a)									
Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

Distribución Normal-Uso de tabla Normal Fractiles

Sea $X \sim N(1,48;2)$ calcular A tal que P(X<A)=0.8

- \Rightarrow estandarizamos la variable: $P(\frac{X-\mu}{\sigma} < \frac{A-1,48}{2}) = 0.8$
- ⇒ buscamos el valor de Z que corresponde a F(Z)=0,8

Luego

$$0,842 = \frac{A - 1,48}{2} \Rightarrow$$

$$A = 0.842 * 2 + 1.48$$

$$= 3,164$$

Tablas. Cátedra: BIANCO, María José.						
Distribución Normal	Estándarizada - Fractiles					

F(z)	Z	F(z)	Z	F(z)	Z
0,6	0,253	0,7	0,524	0,8	→ 0,842
0,605	0,266	0,705	0,539	0,805	0,860
0,61	0,279	0,71	0,553	0,81	0,878
0,615	0,292	0,715	0,568	0,815	0,896
0,62	0,305	0,72	0,583	0,82	0,915
0,625	0,319	0,725	0,598	0,825	0,935
0,63	0,332	0,73	0,613	0,83	0,954
0,635	0,345	0,735	0,628	0,835	0,974
0,64	0,358	0,74	0,643	0,84	0,994
0,645	0,372	0,745	0,659	0,845	1,015

Situaciones que se pueden presentar con respecto al uso de la Tabla

- -Si a tiene más de 3 decimales, redondeo a 3 y me fijo en la tabla de fractiles
- -Si no lo encuentro, entonces redondeo a 2 decimales y me fijo en la otra tabla

$$P(Z > a) => 1 - P(Z < a)$$

$$P(Z > -a) => 1 - P(Z < -a) => por simetría de la distribución => 1 - [1 - P(Z < a)] = P(Z < a)$$

$$P(a < Z < b) = F(b) - F(a)$$

$$P(-a < Z < b) = F(b) - F(-a) = F(b) - [1 - F(a)]$$

$$P(-a < Z < -b) = F(-b) - F(-a) = [1-F(b)] - [1-F(a)] = F(a) - F(b)$$

Distribución Normal- Ejemplo

Se ha comprobado que la distribución del índice de colesterol para un gran número de personas es aproximadamente normal con media 163 centigramos. Si el 15.87% de las personas tiene un índice comprendido entre 161 y 165 centigramos, calcular el desvío estándar del índice de colesterol.

Llamamos X : "Índice de colesterol de una persona" X es de tipo continua

$$X \sim N(163; \sigma)$$

$$Z = \frac{x - \mu}{\sigma} = \frac{x - 163}{\sigma} \sim N(0; 1)$$

Tenemos que P(161
$$\leq$$
 X \leq 165)=0,1587 => P($\frac{161-163}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{165-163}{\sigma}$)=0,1587 =>

$$P(\frac{-2}{\sigma} \le Z \le \frac{2}{\sigma}) = 0,1587 = >1-2P(Z \ge |\frac{2}{\sigma}|) = 1-0,1587 = 0,8413$$

=> buscamos en la tabla esta probabilidad y extraemos el valor de Z

$$Z=1 => \frac{2}{\sigma} = 1 => \sigma = 2$$

Función matemática Gamma

Se define a la función Gamma como:

$$\Gamma(x) = \int_0^{+\infty} u^{x-1} e^{-u} du$$

Algunas propiedades son:

-
$$\Gamma(x) = (x-1)!$$
 six es un entero positivo

-
$$\Gamma(x) = (x-1)\Gamma(x-1)$$
 si $x > 0$

-
$$\Gamma(0,5) = \sqrt{\pi}$$

Distribución Exponencial

Un caso particular de la distribución Gamma es cuando $m{\beta}={f 1}$, que recibe el nombre de distribución exponencial.

Si $oldsymbol{eta}=\mathbf{1}$ entonces, en la función de densidad Gamma

$$f(x) = \frac{(x\alpha)^{\beta}}{x\Gamma(\beta)}e^{(-\alpha x)} = \frac{(x\alpha)^{1}}{x\Gamma(1)}e^{(-\alpha x)} = \alpha e^{(-\alpha x)}$$

Siendo $\Gamma(1) = (1-1)! = 0! = 1$

Se dice que una variable aleatoria continua X tiene una distribución exponencial X \sim Exp(α) con parámetro α (α >0) si su función de densidad de probabilidad está dada por

$$f(x) = \begin{cases} \alpha e^{-\alpha X} & \text{si } X > 0 \\ 0 & \text{si } X \le 0 \end{cases} \text{ con } \alpha = \frac{1}{\lambda}$$

Por lo tanto, representa el tiempo hasta que se produce un determinado suceso, a una determinada <u>tasa de tiempo</u> transcurrido. <u>28</u>

Relación de la Distribución Exponencial con la Distribución de Poisson

Sea una variable aleatoria X_t ="número de ocurrencia de un evento en un intervalo de longitud t" con distribución de Poisson

$$X \sim P(\lambda)$$

donde λ es la tasa media de ocurrencia de los eventos en la unidad de tiempo

Entonces la variable aleatoria T="tiempo hasta la ocurrencia del primer evento" (o equivalentemente, tiempo entre la ocurrencia de dos eventos sucesivos), tiene una distribución exponencial de parámetro $\alpha = \frac{1}{\lambda}$

$$T \sim Exp(\boldsymbol{\alpha})$$

Distribución Exponencial

Dado

$$f(x) = \begin{cases} \alpha e^{-\alpha X} & \text{si } X > 0 \\ 0 & \text{si } X \le 0 \end{cases} \text{ con } \alpha = \frac{1}{\lambda}$$

Integrando en [0;X]:
$$\int_0^X \alpha e^{-\alpha X} dx = \alpha \int_a^X e^{-\alpha X} dx$$

Por sustitución:
$$u = -\alpha X \Rightarrow X = \frac{u}{-\alpha}$$
 $du = -\alpha dx \Rightarrow dx = \frac{du}{-\alpha}$

$$=\alpha\int_a^X e^u \frac{du}{-\alpha} = \frac{\alpha}{-\alpha}\int_a^X e^u du = -\int_a^X e^u du = -e^u deshaciendo la sustitución y evaluando$$

$$-e^{-\alpha X}|_0^X = -e^{-\alpha X} - [-e^{-\alpha 0}] = -e^{-\alpha X} + 1 = 1 - e^{-\alpha X}$$

Entonces, la Función de probabilidad acumulada es:

$$F(x) = \begin{cases} 1 - e^{-\alpha x} & si \ X > 0 \\ 0 & si \ X \le 0 \end{cases} \qquad E(X) = \frac{1}{\alpha} \qquad V(X) = \frac{1}{\alpha^2} \qquad D(X) = \sqrt{V(x)}$$

7

Distribuciones continuas de probabilidad

Distribución Exponencial

- Dominio de f(x): {0;+∞}
- Dominio de **X**: {0 ; + ∞} intervalo de valores

- Dominio de **F(x)**: {0;1}
- Dominio de X: {0; + ∞} intervalo de valores

31

Distribución Exponencial - Ejemplo

El **tiempo** de respuesta de un servidor es una variable aleatoria X con distribución exponencial con **valor esperado igual a 5** segundos.

X="Tiempo de respuesta de un servidor" X es de tipo continua

Dado que E(X)=
$$5=\frac{1}{\alpha} => \alpha = \frac{1}{5} = 0,2 => X \sim Exp(0,2)$$

1. ¿Cuál es la probabilidad de que el tiempo de respuesta sea mayor a 10 segundos? $P(X>10)=1-P(X\le10)=1-F(10)=1-[1-e^{-0.2*10}]=e^{-0.2*10}=0.1353$

Rta: La probabilidad de que el tiempo de respuesta sea mayor a 10 segundos es 13,53%

2. ¿Cuál es la probabilidad de que el tiempo de respuesta esté entre 5 y 10 segundos?

$$P(5 \le X \le 10) = F(10) - F(5) = (1 - e^{-0.2 \times 10}) - (1 - e^{-0.2 \times 5}) = e^{-1} - e^{-2} = 0.233$$

Rta: La probabilidad de que el tiempo de respuesta esté entre 5 y 10 segundos es 23,3%

Distribución Exponencial - Ejemplo

3. Sabiendo que ya se esperaron 3 segundos, ¿cuál es la probabilidad de que haya que esperar más de 13 segundos? (es decir que haya que esperar más de 10 segundos a partir de los 3 segundos ya transcurridos)

$$P(X>13/x>3) = \frac{P(x>13 \cap X>3)}{P(X>3)} = \text{representemos en un eje cada parte:}$$

Distribución Exponencial - Ejemplo

$$P(X > 13/x > 3) = \frac{P(x > 13 \cap X > 3)}{P(X > 3)} = \frac{P(x > 13)}{P(X > 3)} = \frac{1 - P(x \le 13)}{1 - P(X \le 3)} = \frac{1 - F(13)}{1 - F(3)} = \frac{1 - F(13)}{1 - F(13)} = \frac{1 - F(13)$$

$$\frac{1 - [1 - e^{-0.2 \times 13}]}{1 - [1 - e^{-0.2 \times 3}]} = \frac{e^{-0.2 \times 13}}{e^{-0.2 \times 3}} = e^{(-0.2 \times 13) - (-0.2 \times 3)} =$$

$$e^{-0.2*10} = 0.135$$

$$P(X>13/x>3)=P(X>10)$$

Propiedad de Falta de memoria: P(X > s + t/X > s) = P(X > t)

