Linear Algebra

[KOMS120301] - 2023/2024

14.2 Dekomposisi Matriks: SVD

sumber: Slide Perkuliahan Aljabar Linear dan Geometri - R. Munir ITB

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Tujuan pembelajaran

Setelah perkuliahan ini, Anda diharapkan mampu:

- menjelaskan pentingnya dekomposisi nilai singular;
- melakukan dekomposisi nilai singular pada matriks.

Dekomposisi matriks

Penguraian matriks berarti memfaktorkan suatu matriks menjadi hasil kali matriks

Contoh:
$$A = P_1 \times P_2 \times \cdots \times P_k$$

Metode dekomposisi matriks:

- **1** Dekomposisi-LU (LU = Lower-Upper)
- 2 Dekomposisi-QR (Q: othogonal, R: upper-triangular)
- Dekomposisi Nilai Singular atau Dekomposisi Nilai Singular (SVD)

Dekomposisi-*LU*

Contoh:

$$\begin{bmatrix} 2 & -3 & -1 \\ 3 & 2 & -5 \\ 2 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & 1 & 0 \\ \frac{1}{2} & \frac{11}{13} & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 & -1 \\ 0 & \frac{13}{2} & -\frac{7}{2} \\ 0 & 0 & \frac{32}{13} \end{bmatrix}$$

Dekomposisi-QR

Contoh:

$$\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{5} & 2\sqrt{5} \\ 0 & \sqrt{5} \end{bmatrix}$$

Dekomposisi Nilai Singular

Motivasi Dekomposisi Nilai Singular

Dalam diagonalisasi ortogonal, matriks $n \times n$ A dapat didekomposisi menjadi:

$$A = P^T DP$$

dimana:

• P adalah ortogonal Matriks yang kolomnya merupakan basis eigen dari A (jadi $P^T = P^{-1}$)

$$P = [p_1 \mid p_2 \parallel \ldots \mid p_n]$$

D adalah matriks diagonal, sehingga

$$D = P^{-1}AP$$

Bagaimana cara memfaktorkan matriks $m \times n$ non-kuadrat yang tidak memiliki nilai eigen?

Dekomposisi Nilai Singular (SVD)

SVD digunakan untuk memfaktorkan matriks non-persegi $m \times n$ menjadi hasil kali matriks U, Σ , dan V, sehingga:

$$A = U\Sigma V^T$$

- U adalah matriks $m \times m$ ortogonal
- V adalah matriks $n \times n$ yang ortogonal
- Σ adalah matriks $m \times n$, yang elemen-elemennya dalam diagonal utama adalah nilai tunggal A, dan elemen lainnya adalah 0

Diagonal utama matriks tak persegi

Diagonal utama dari matriks non-persegi A berukuran $m \times n$, didefinisikan sebagai entries a₁₁ secara diagonal hingga a_{mm} (dengan asumsi bahwa n > m).

Matriks ortogonal (revisited)

Matriks ortogonal adalah matriks yang kolom-kolomnya membentuk himpunan vektor ortogonal. (**u** dan **v** ortogonal jika $\mathbf{u} \cdot \mathbf{v} = 0$).

Jika P adalah sebuah matriks ortogonal, maka $P^{-1} = P^{T}$.

Proof.

Vektor v_1, v_2, \ldots, v_n dari Q adalah ortogonal:

$$v_i^T v_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Let $P = [v_1 | v_2 | ... | v_n]$, maka:

$$P^{T} \cdot P = \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{n}^{T} \end{bmatrix} [v_{1} \mid v_{2} \mid \cdots \mid v_{n}] = \begin{bmatrix} v_{1}^{T} v_{1} & \cdots & v_{1}^{T} v_{n} \\ v_{2}^{T} v_{1} & \cdots & v_{2}^{T} v_{n} \\ \vdots & \ddots & \ddots & \vdots \\ v_{n}^{T} v_{1} & \cdots & v_{n}^{T} v_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Apakah matriks-matriks berikut ini ortogonal?

$$P = \begin{bmatrix} 1/3 & 2/3 & -2/3 \\ -2/3 & 2/3 & 1/3 \\ 2/3 & 1/3 & 2/3 \end{bmatrix}$$

$$Q = \begin{bmatrix} 3/7 & 2/7 & 6/7 \\ -6/7 & 3/7 & 2/7 \\ 2/7 & 6/7 & -3/7 \end{bmatrix}$$

Nilai singular

Misalkan A adalah matriks $m \times n$. Jika $\lambda_1, \lambda_2, \dots, \lambda_n$ adalah nilai eigen dari $A^T A$, maka:

$$\tau_1 = \sqrt{\lambda_1}, \ \tau_2 = \sqrt{\lambda_2}, \ \dots, \tau_n = \sqrt{\lambda_n}$$

disebut nilai tunggal dari A.

Dalam hal ini, kita mengasumsikan bahwa $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, so that $\tau_1 \geq \tau_2 \geq \cdots \geq \tau_n \geq 0$.

Theorem

Matriks yang dapat didiagonalisasi secara ortogonal mempunyai nilai eigen positif Jika A adalah matriks $m \times n$, maka:

- A^T A dapat didiagonalisasi secara ortogonal
- Nilai eigen A^T A adalah non-negatif

Diberikan matriks
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Diberikan matriks
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Solusi:

$$B = A^{\mathsf{T}} A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Selesaikan persamaan karakteristik:

$$\det(\lambda I - B) = 0 \iff \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = 0 \iff (\lambda - 2)(\lambda - 2) - 1 = 0$$

Hal ini menghasilkan $\lambda^2 - 4\lambda + 3 = 0 \Leftrightarrow (\lambda - 3)(\lambda - 1) = 0$ Nilai eigen dari AA^T adalah $\lambda_1 = 3$ dan $\lambda_2 = 1$.

Dengan demikian:

$$au_1=\sqrt{3}$$
 and $au_2=\sqrt{1}=1$

Mendekomposisi matriks $A_{m \times n}$ menjadi produk U, Σ , dan V

- **1** Untuk vektor singular kiri, hitung nilai-nilai eigen dari AA^T .
- ② Tentukan vektor-vektor eigen $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ yang berkoresponden dengan nilai-nilai eigen dari AA^T . Normalisasi vektor eigen-nya sehingga diperoleh:

$$U = \left[\frac{\mathbf{u}_1}{|\mathbf{u}_1|} \mid \frac{\mathbf{u}_2}{|\mathbf{u}_2|} \mid \dots \mid \frac{\mathbf{u}_m}{|\mathbf{u}_m|} \right]$$

- **1** Untuk vektor singular kiri, hitung nilai-nilai eigen dari $A^T A$.
- **1** Tentukan vektor-vektor eigen $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ yang berkoresponden dengan nilai-nilai eigen dari A^TA . Normalisasi vektor eigen-nya sehingga diperoleh:

$$V = \left[\frac{\mathbf{v}_1}{|\mathbf{v}_1|} \mid \frac{\mathbf{v}_2}{|\mathbf{v}_2|} \mid \dots \mid \frac{\mathbf{v}_m}{|\mathbf{v}_m|} \right]$$

- § Bentuklah matriks Σ berukuran mxn dengan elemen-elemen diagonalnya adalah *nilai-nilai singular* dari matriks A (yaitu $\tau_1 = \sqrt{\lambda_1}, \ \tau_2 = \sqrt{\lambda_2}, \ \dots, \tau_n = \sqrt{\lambda_n}$) dari besar ke kecil.
- **1** Maka: $A = U\Sigma V^T$

Dberikan matriks

$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

Tentukan Dekomposisi Nilai Singular dari A.

Dberikan matriks

$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

Tentukan Dekomposisi Nilai Singular dari A.

Cek file pdf untuk mengetahui solusi latihan tersebut.

Penerapan dari Dekomposisi Nilai Singular

- Image and video compression
- Image processing
- Machine learning
- Computer vision
- Digital watermarking
- ...?
- ...?