自律走行システム特論(第2回) Micro Mechatronics (2nd)

- □自己位置推定(ホイールオドメトリ)
 - Self-Localization (WheelOdometry)
- □ 解説とプログラムによる実習
 - Theoretical explanations, and the practical training with programming
- □ 自己位置推定(IMU)
 - Self-Localization (InertialMeasurementUnit: IMU)
- □ 解説とプログラムによる実習
 - Theoretical explanations, and the practical training with programming.
- □課題の確認と考察(ホイールオドメトリ,IMU)
- Confirmation and discussion for assignments (WheelOdometry, IMU).

教育用自律移動ロボット"Beego" Educational Mobile Robot "Beego"

映像あり Movie available

Independent Drive Wheels Mechanism

ホイールオドメトリの概要 #1 Overview of Wheel Odometry #1

問1:*p*₁を用いて*p*₂を求めよ。

Q1: Simplify p2 by using p1

位置推定 Estimated Position

$$\begin{cases} x_2 = \\ y_2 = \\ \theta_2 \end{cases}$$

Global Coordinate system

ホイールオドメトリの概要 #2 Overview of Wheel Odometry #2

移動量 Amount of Movement

$$\begin{cases} D = V \cdot dt \\ \Delta \theta = \omega \cdot dt \end{cases}$$

位置推定 Estimated Position

$$\begin{cases} x_2 = \cos\theta_1 \cdot D + x_1 \\ y_2 = \sin\theta_1 \cdot D + y_1 \\ \theta_2 = \Delta\theta + \theta_1 \end{cases}$$

ホイールオドメトリの概要#3 Overview of Wheel Odometry #3

Sensor Coordinate

Global Coordinate

移動量 Amount of Movement

$$\begin{cases} u = V \cdot dt \\ v = 0 \\ \varphi = \omega \cdot dt \end{cases}$$

位置推定 Estimated Position

$$\begin{cases} x_2 = \cos\theta_1 \cdot u + x_1 \\ y_2 = \sin\theta_1 \cdot u + y_1 \\ \theta_2 = \varphi + \theta_1 \end{cases}$$

ホイールオドメトリの概要 #4 Overview of Wheel Odometry #4

Sensor Coordinate

位置推定 Estimated Position

$$\begin{bmatrix} x_2 \\ y_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 \\ \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ \varphi \end{bmatrix} + \begin{bmatrix} x_1 \\ y_1 \\ \theta_1 \end{bmatrix}$$

移動量 Amount of Movement
$$\begin{bmatrix} u \\ v \\ \varphi \end{bmatrix} = \begin{bmatrix} u \\ v \\ \varphi \end{bmatrix}$$

ホイールオドメトリの概要 #5 Overview of Wheel Odometry #5

ロボットの速度と角速度を求める必要あり Need to estimate the velocity and angular velocity of a mobile robot.

位置推定 Estimated Position

$$\begin{cases} x_2 = \cos\theta_1 \cdot V \cdot dt + x_1 \\ y_2 = \sin\theta_1 \cdot V \cdot dt + y_1 \\ \theta_2 = \omega \cdot dt + \theta_1 \end{cases}$$

ロボットの速度 Velocity of Robot

$$V = \frac{v_r + v_l}{2}$$

ロボットの角速度 Angular Velocity of Robot

$$\omega = \frac{v_r - v_l}{T}$$

ホイールオドメトリの概要 #6 Overview of Wheel Odometry #6

エンコーダで車輪の速度を求める Calculate the velocity of the wheel by the encoder.

車輪速度 Velocity of Wheel

$$\begin{cases} dC = \frac{dE}{Gear} \\ d\theta = 2\pi \frac{dC}{CRev} \end{cases} \qquad \begin{cases} v_r = r\omega_r \\ \omega_r = \frac{d\theta}{dt} \end{cases}$$

dE : サンプリング周期毎のエンコーダのカウント

Encoder counts per sampling period

Gear: ギア比 Ratio of Gear

dC: サンプリング周期毎の車輪軸上のカウント

Counter on the wheel axle per sampling period

CRev : 1回転分のカウント

Num. of counter for

one revolution

エンコーダ Encoder

<種類 Type >

- □機械式(接触式) Mechanical (Contact) type
- 口光学式 Optical type
- □磁気式 Magnetic type

□電磁誘導式 Electromagnetic Induction type

https://www.monotaro.com/g/00161733/

時計回り (CW: Clockwise) ・ 反時計回り (CCW: Counter Clockwise) に何度回ったか

https://www.akm.com/jp/ja/technology/technical-tutorial/basic-knowledge-encoder/optical-encoder/

solution.co.jp/html/qa/qad001c00820090629163814.html

プログラムによる実習(ホイールオドメトリ) Practical training with programming (Wheel Odometry)

- □ ホイールオドメトリによる自己位置推定プログラムを作成して提出する Create and submit a self-positioning program using wheel odometry.
- 推定した位置(x,y)、方位(t-yaw)、速度(t-v)をグラフにして提出する
 Submit a graph of your estimated position(x,y), orientation(tyaw), and velocity(tv).
- □ ファイルデータ形式 Data Format in Input file
 # Time [s], Encoder Counter1 (incremental difference), Encoder Counter2 (incremental difference), PWM1, PWM2
- ロパラメータ Parameters 車輪半径 Wheel radius: 0.14457758[m], トレッド Tread: -0.3045[m], ギア比 Ratio of gear: 150,
 - 1回転分のカウント Num. of counter for one revolution: 400

IMUの紹介 Introduction of Inertial Measurement Unit

IMUの概要 Overview of IMU (Inertial Measurement Unit)

ジャイロセンサと加速度センサの種類 Types of Gyroscope sensor and Acceleration sensor

IMUの紹介 Introduction of Inertial Measurement Unit

USB出力9軸IMUセンサモジュール RT ROBOT SHOP

https://www.rt-shop.jp/blog/archives/10921

	Acceleration	Angular Velocity	Geomagnetism
Range	±16[g]	±2000[deg/sec]	±4800[uT]
Resolution	16 bit	16 bit	16 bit

9DoF Razor IMU M0 SWITCH SCIENCE

https://www.switch-science.com/catalog/3075/

IMUによる自己位置推定 Self-Localization by using IMU

<手順 Procedure>

- ロジャイロのゼロ点補正 Zero-point correction for a gyroscope sensor
- □ グローバル座標における角度推定(ジャイロセンサと加速度センサ) Angle estimation on global coordinates. (Each gyroscope sensor and acceleration sensor)
- □補正フィルタ(相補フィルタ、カルマンフィルタ、LPフィルタなど) Correctional filter (Complementary filter, Kalman filter, LP filter, etc.)
- □ 重力加速度の補償
 Compensation for gravitational acceleration
- プローバル座標における加速度の2階積分Second Order Integration of Acceleration on Global Coordinates

加速度の座標変換 Acceleration Coordinate Transformation

<回転行列 rotation matrix>

$$R_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

$$R_{z}(\psi) = \begin{bmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

<加速度の座標変換(センサ→グローバル)> Coordinate Transformation forAcceleration (sensor coordinate to global coordinate)

$$a_{global} = R_z(\psi)R_y(\theta)R_x(\phi)a_{sensor}$$

<加速度の座標変換(グローバル→センサ)> Coordinate Transformation forAcceleration (global coordinate to sensor coordinate)

$$a_{sensor} = [R_z(\psi)R_y(\theta)R_x(\phi)]^{-1}a_{global}$$

$$a_{sensor} = [R_z(\psi)R_y(\theta)R_x(\phi)]^{T}a_{global}$$

加速度センサから角度推定 Angle estimation from acceleration sensor

$$a_{sensor} = \begin{bmatrix} R_{z}(\psi)R_{y}(\theta)R_{x}(\phi) \end{bmatrix}^{T} a_{global}$$

$$= \begin{bmatrix} R_{z}(\psi)R_{y}(\theta)R_{x}(\phi) \end{bmatrix}^{T} \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix}$$

$$= \begin{bmatrix} gsin\theta \\ -gcos\thetasin\phi \\ -gcos\thetacos\phi \end{bmatrix} = \begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix}$$

重力加速度の補償 Compensation for gravitational acceleration

グローバル座標における角度推定 Angle estimation in global coordinates

角速度の座標変換 Coordinate Transformation of Angular Velocity

$$\omega_{global} \neq \left[R_z(\psi) R_y(\theta) R_x(\phi) \right] \omega_{sensor}$$

$$\omega_{global} = \begin{bmatrix} \dot{\phi} & \dot{\theta} & \dot{\psi} \end{bmatrix}^T$$

$$\omega_{sensor} = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T$$

グローバル座標における角速度推定 Angular velocity estimation in global coordinates

角速度センサから角度推定 Angle estimation from angular velocity sensor

$$\begin{bmatrix} \phi(t+1) \\ \theta(t+1) \\ \psi(t+1) \end{bmatrix} = \begin{bmatrix} \phi(t) \\ \theta(t) \\ \psi(t) \end{bmatrix} + \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} dt$$

グローバル座標における角度推定 Angle estimation in global coordinates

相補フィルタ Complementary Filter

ジャイロセンサ Gyroscope Sensor <特徴 Features>

- □角速度を積分して角度を推定
 Integrate the angular velocity to estimate the angle
- □ 長所:並進運動の影響を受けない。 短期的には精度が良い。

Pros: Unaffected by translational motion. Good accuracy in the short

term

□ 短所:累積誤差(ジャイロドリフト)

Cons: Accumulating errors (Gyro

Drift)

加速度センサ Acceleration sensor <特徴 Features>

- □ 重力加速度の向きから角度を推定 Estimate the angle from the direction of the gravitational acceleration
- □長期的には精度が良い。
 Pros: Good accuracy in the long term.
- □ 短所: ヨー角を推定できない。短期 的には外乱の影響を受ける。

Cons: Cannot estimate yaw angle. Affected by disturbances in the short term

センサ融合(ジャイロにハイパスフィルタ、加速度にローパスフィルタをかけて加算) Sensor Fusion (Add the gyro with a high-pass filter and the acceleration with a low-pass filter)

相補フィルタの適用 Applying Complementary Filter

$$\begin{aligned} \Theta_{fusion} &= K \cdot \Theta_{gyro} + (1 - K) \cdot \Theta_{accel} \\ &= \Theta_{accel} + K \big(\Theta_{gyro} - \Theta_{accel} \big) \end{aligned}$$

$$K = 0.999$$

プログラムによる実習(IMU)#1 Practical training with programming (IMU)

- □ IMUを用いた姿勢推定(roll, pitch, yaw)プログラムを作成して提出する Create and submit estimated angles (roll, pitch, yaw) program using IMU.
- 推定した姿勢をグラフにして提出する Submit a graph of your estimated angles.
- ロファイルデータ形式 Data Format in Input file # Time [s], Angular velocity(x) [rad/s], Angular velocity(y), Angular velocity(z), Acceleration(x) [g], Acceleration(y), Acceleration(z), other(x), other(y), other(z), temperature [degree]
- ロパラメータ Parameters

• • • •

プログラムによる実習(IMU)#2 Practical training with programming (IMU)

- □ IMUを用いた自己位置推定プログラムを作成して提出する Create and submit a self-positioning program using IMU.
- 推定した位置(x,y)、方位(t-yaw)、速度(t-v)をグラフにして提出する
 Submit a graph of your estimated position(x,y), orientation(tyaw), and velocity(tv).
- ロファイルデータ形式 Data Format in Input file
 # Time [s], Angular velocity(x) [rad/s], Angular velocity(y), Angular velocity(z),
 Acceleration(x) [g], Acceleration(y), Acceleration(z), other(x), other(y), other(z),
 temperature [degree]
- ロパラメータ Parameters

• • • •