Figure H-11: Data Direction Registers (DDRB, DDRA)

READ HANDSHAKE

Positive control of data transfers from peripheral devices into the system processor can be accomplished very effectively using Read Handshaking. In this case, the peripheral device must generate the equivalent of a "Data Ready" signal to the processor signifying that valid data is present on the peripheral port. This signal normally interrupts the processor, which then reads the data, causing generation of a "Data Taken" signal. The peripheral device responds by making new data available. This process continues until the data transfer is complete.

In the SY6522, automatic "Read" Handshaking is possible on the Peripheral A port only. The CA1 interrupt input pin accepts the "Data Ready" signal and CA2 generates the "Data Taken" signal. The "Data Ready" signal will set an internal flag which may interrupt the processor or which may be polled under program control. The "Data Taken" signal can either be a pulse or a level which is set low by the system processor and is cleared by the "Data Ready" signal. These options are shown in Figure H-12, which illustrates the normal Read Handshaking sequence.

Figure H-12: Read Handshake Timing (Port A, Only)

WRITE HANDSHAKE

The sequence of operations which allows handshaking data from the system processor to a peripheral device is very similar to that described for Read Handshaking. However, for Write Handshaking, the SY6522 generates the "Data Ready" signal and the peripheral device must respond with the "Data Taken" signal. This can be accomplished on both the PA port and the PB port on the SY6522. CA2 or CB2 act as a "Data Ready" output in either the handshake mode or pulse mode and CA1 or CB1 accept the "Data Taken" signal from the peripheral device, setting the Interrupt Flag and cleaning the "Data Ready" output. This sequence is shown in Figure H-13.

Selection of operating modes for CA1, CA2, CB1, and CB2 is accomplished by the Peripheral Control Register (Figure H-14).

Figure H-13: Write Handshake Timing

TIMER OPERATION

Interval Timer T1 consists of two 8-bit latches and a 16-bit counter. The latches are used to store data which is to be loaded into the counter. After loading, the counter decrements at \$\psi 2\$ clock rate. Upon reaching zero, an Interrupt Flag will be set, and IRQ will go low if the interrupt is enabled. The timer will then disable any further interrupts, or will automatically transfer the contents of the latches into the counter and will continue to decrement. In addition, the timer may be programmed to invert the output signal on a peripheral pin each time it "times-out". Each of these modes is discussed separately below.

The T1 counter is depicted in Figure H-15 and the latches in Figure H-16.

Figure H-14: CA1, CA2, CB1, CB2 Control

REG 12 - PERIPHERAL CONTROL REGISTER

Two bits are provided in the Auxiliary Control Register (bits 6 and 7) to allow selection of the T1 operating modes. The four possible modes are depicted in Figure H-17.

Figure H-15: T1 Counter Registers

REG 4 - TIMER 1 LOW-ORDER COUNTER

WRITE – 8 BITS LOADED INTO TI LOW-ORDER LATCHES. LATCH CONTENTS ARE TRANSFERRED INTO LOW-ORDER COUNTER AT THE TIME THE HIGH-ORDER COUNTER IS LOADED (REG 5).

READ — 8 BITS FROM TI LOW-ORDER COUNTER TRANSFERRED TO MPU, IN ADDITION, TI INTERRUPT FLAG IS RESET (BIT 6 IN INTERRUPT FLAG REGISTER): **REG 5 - TIMER 1 HIGH-ORDER COUNTER**

WRITE – 8 BITS LOADED INTO T1 HIGH-ORDER LATCHES. ALSO, AT THIS TIME BOTH HIGH AND LOW-ORDER LATCHES TRANSFERRED INTO T1 COUNTER. T1 INTERRUPT FLAG ALSO IS RESET.

READ - 8 BITS FROM T1 HIGH-ORDER COUNTER TRANSFERRED TO MPU.

Figure H-16: T1 Latch Registers

REG 6 - TIMER 1 LOW-ORDER LATCHES

WRITE — 8 BITS LOADED INTO T1 LOW-ORDER LATCHES. THIS OPERATION IS NO DIFFERENT THAN A WRITE INTO REG 4.

READ — 8 BITS FROM T1 LOW-ORDER LATCHES TRANSFERRED TO MPU. UNLIKE REG 4 OPERATION, THIS DOES NOT CAUSE RESET OF T1 INTERRUPT FLAG. REG 7 - TIMER 1 HIGH-ORDER LATCHES

WRITE – 8 BITS LOADED INTO T1 HIGH-ORDER LATCHES. UNLIKE REG 4 OPERATION NO LATCH-TO-COUNTER TRANSFERS TAKE PLACE.

READ — 8 BITS FROM T1 HIGH-ORDER LATCHES TRANSFERRED TO MPU.

Figure H-17: Auxiliary Control Register

Figure H-18: Timer 1 and Timer 2 One-Shot Mode Timing

TIMER 1 ONE-SHOT MODE

The interval timer one-shot mode allows generation of a single interrupt for each timer load operation. As with any interval timer, the delay between the "write T1C-H" operation and generation of the processor interrupt is a direct function of the data loaded into the timing counter. In addition to generating a single interrupt, Timer 1 can be programmed to produce a single negative pulse on the PB7 peripheral pin. With the output enabled (ACR7 = 1) a "write T1C-H" operation will cause PB7 to go low. PB7 will return high when Timer 1 times out. The result is a single programmable width pulse.

In the one-shot mode, writing into the high order latch has no effect on the operation of Timer 1. However, it will be necessary to assure that the low order latch contains the proper data before initiating the count-down with a "write T1C-H" operation. When the processor writes into the high order counter, the T1 Interrupt Flag will be cleared, the contents of the low order latch will be transferred into the low order counter, and the timer will begin to decrement at system clock rate. If the PB7 output is enabled, this signal will go low on the phase two following the write operation. When the counter reaches zero, the T1 Interrupt Flag will be set, the IRQ pin will go low

(interrupt enabled), and the signal on PB7 will go high. At this time the counter will continue to decrement at system clock rate. This allows the system processor to read the contents of the counter to determine the time since interrupt. However, the T1 Interrupt Flag cannot be set again unless it has been cleared as described in this specification.

Timing for the SY6522 interval timer one-shot modes is shown in Figure H-18.

TIMER 1 FREE-RUN MODE

The most important advantage associated with the latches in T1 is the ability to produce a continuous series of evenly spaced interrupts and the ability to produce a square wave on PB7 whose frequency is not affected by variations in the processor interrupt response time. This is accomplished in the "free-running" mode.

In the free-running mode, the Interrupt Flag is set and the signal on PB7 is inverted each time the counter reaches zero. However, instead of continuing to decrement from zero after a time-out, the timer automatically transfers the contents of the latch into the counter (16 bits) and continues to decrement from there. The Interrupt Flag can be cleared by writing T1C-H, by reading T1C-L, or by writing directly into the flag as described later. However, it is not necessary to rewrite the timer to enable setting the Interrupt Flag on the next time-out.

All interval timers in the SY6522 are "re-triggerable". Rewriting the counter will always re-initialize the time-out period. In fact, the time-out can be prevented completely if the processor continues to rewrite the timer before it reaches zero. Timer 1 will operate in this manner if the processor writes into the high order counter (T1C-H). However, by loading the latches only, the processor can access the timer during each down-counting operation without affecting the time-out in process. Instead, the data loaded into the latches will determine the length of the next time-out period. This capability is particularly valuable in the free-running mode with the output enabled. In this mode, the signal on PB7 is inverted and the interrupt flag is set with each time-out. By responding to the interrupts with new data for the latches, the processor can determine the period of the next half cycle during each half cycle of the output signal on PB7. In this manner, very complex waveforms can be generated. Timing for the free-running mode is shown in Figure H-19.

Note: A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. <u>Both</u> DDRB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If one is 1 and the other is 0, then PB7 functions as a normal output pin, controlled by ORB bit 7.

TIMER 2 OPERATION

Timer 2 operates as an interval timer (in the "one-slot" mode only), or as a counter for counting negative pulses on the PB6 peripheral pin. A single control bit is provided in the Auxiliary Control Register to select between these two modes. This timer is comprised of a "write-only" low-order latch (T2L-L), a "read-only" low-order counter and a read/write high order counter. The counter registers act as a 16-bit counter which decrements at \$\psi 2\$ rate. Figure H-20 illustrates the T2 Counter Registers.

TIMER 2 ONE-SHOT MODE

As an interval timer, T2 operates in the "one-shot" mode similar to Timer 1. In this mode, T2 provides a single interrupt for each "write T2C-H" operation. After timing out, the counter will continue to decrement. However, setting of the Interrupt Flag will be disabled after initial time-out so that it will not be set by the counter continuing to decrement through zero. The processor must rewrite T2C-H to enable setting of the Interrupt Flag. The Interrupt Flag is cleared by reading T2C-L or by writing T2C-H. Timing for this operation is shown in Figure H-18.

TIMER 2 PULSE COUNTING MODE

In the pulse counting mode, T2 serves primarily to count a predetermined number of negative-going pulses on PB6. This is accomplished by first loading a number into T2. Writing into T2C-H clears the Interrupt Flag and allows the counter to decrement each time a pulse is applied to PB6. The Interrupr Flag will be set when T2 reaches zero. At this time the counter will continue to decrement with each pulse on PB6. However, it is necessary to rewrite T2C-H to allow the Interrupt Flag to set on subsequent down-counting operations. Timing for this mode is shown in Figure H-21. The pulse must be low on the leading edge of $\phi 2$.

SHIFT REGISTER OPERATION

The Shift Register (SR) performs serial data transfers into and out of the CB2 pin under control of an internal modulo-8 counter. Shift pulses can be applied to the CB1 pin from an external source or, with the proper mode selection, shift pulses generated internally will appear on the CB1 pin for controlling external devices.

INTERRUPT OPERATION

The control bits which select the various shift register operating modes are located in the Auxiliary Control Register. Figure H-22 illustrates the configuration of the SR data bits and the SR control bits of the ACR.

Figures H-23 and H-24 illustrate the operation of the various shift register modes.

Controlling interrupts within the SY6522 involves three principle operations. These are flagging the interrupts, enabling interrupts and signaling to the processor that an active interrupt exists within the chip. Interrupt flags are set by interrupting conditions which exist within the chip or on inputs to the chip. These flags normally remain set until the interrupt has been serviced. To determine the source of an interrupt, the microprocessor must examine these flags in order from highest to lowest priority. This is accomplished by reading the flag register into the processor accumulator, shifting this register either right or left and then using conditional branch instructions to detect an active interrupt.

Associated with each Interrupt Flag is an interrupt enable bit. This can be set or cleared by the processor to enable interrupting the processor from the corresponding Interrupt Flag. If an interrupt flag is set to a logic 1 by an interrupting condition, and the corresponding interrupt enable bit is set to a 1, the Interrupt Request Output (IRQ) will go low. IRQ is an "open-collector" output which can be "wire-or'ed" with other devices in the system to interrupt the processor.

In the SY6522, all the Interrupt Flags are contained in one register. In addition, bit 7 of this register will be read as a logic 1 when an interrupt exists within the chip. This allows very convenient polling of several devices within a system to locate the source of an interrupt.

SR Disabled (000)

The 000 mode is used to disable the Shift Register. In this mode the microprocessor can write or read the SR, but the shifting operation is disabled and operation of CB1 and CB2 is controlled by the appropriate bits in the Peripheral Control Register (PCR). In this mode the SR Interrupt Flag is disabled (held to a logic 0).

Shift in Under Control of T2 (001)

In the 001 mode the shifting rate is controlled by the low order 8 bits of T2. Shift pulses are generated on the CB1 pin to control shifting in external devices. The time between transitions of this output clock is a function of the system clock period and the contents of the low order T2 latch (N).

The shifting operation is triggered by writing or reading the shift register. Data is shifted first into the low order bit of SR and is then shifted into the next higher order bit of the shift register on the negative-going edge of each clock pulse. The input data should change before the positive-going edge of the CB1 clock pulse. This data is shifted into the shift register during the ϕ_2 clock cycle following the positive-going edge of the CB1 clock pulse. After 8 CB1 clock pulses, the shift register Interrupt Flag will be set and IRQ will go low.

Shift in Under Control of ϕ_2 (010)

In mode 010 the shift rate is a direct function of the system clock frequency. CB1 becomes an output which generates shift pulses for controlling external devices. Timer 2 operates as an independent interval timer and has no effect on SR. The shifting operation is triggered by reading or writing the Shift Register. Data is shifted first bit 0 and is then shifted into the next higher order bit of the shift register on the trailing edge of each ϕ_2 clock pulse. After 8 clock pulses, the shift register Interrupt Flag will be set, and the output clock pulses on CB1 will stop.

Shift in Under Control of External CB1 Clock (011) In mode 011 CB1 becomes an input. This allows an external device to load the shift register at its own pace. The shift register counter will interrupt the processor each time 8 bits have been shifted in. However, the shift register counter does not stop the shifting operation; it acts simply as a pulse counter. Reading or writing the Shift Register resets the Interrupt flag and initializes the SR counter to count another 8 pulses.

Note that the data is shifted during the first system clock cycle following the positive-going edge of the CB1 shift pulse. For this reason, data must be held stable during the first full cycle following CB1 going high.

Figure H-23: Shift Register Input Modes

Shift Out Free-Running at T2 Rate (100)

Mode 100 is very similar to mode 101 in which the shifting rate is set by T2. However, in mode 100 the SR counter does not stop the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated back into bit 0, the 8 bits loaded into the shift register will be clocked onto CB2 repetitively. In this mode the shift register counter is disabled.

Shift Out Under Control of T2 (101)

In mode 101 the shift rate is controlled by T2 (as in the previous mode). However, with each read or write of the shift register the SR Counter is reset and 8 bits are shifted onto CB2. At the same time, 8 shift pulses are generated on CB1 to control shifting in external devices. After the 8 shift pulses, the shifting is disabled, the SR Interrupt Flag is set and CB2 remains at the last data level.

Shift Out Under Control of ϕ_2 (110)

In mode 110, the shift rate is controlled by the ϕ_2 system clock.

Shift Out Under Control of External CB1 Clock (111)

In mode 111 shifting is controlled by pulses applied to the CB1 pin by an external device. The SR counter sets the SR Interrupt flag each time it counts 8 pulses but it does not disable the shifting function. Each time the microprocessor writes or reads the shift register, the SR Interrupt flag is reset and the SR counter is initialized to begin counting the next 8 shift pulses on pin CB1. After 8 shift pulses, the Interrupt flag is set. The microprocessor can then load the shift register with the next byte of data.

Figure H-24: Shift Register Output Modes

The Interrupt Flag Register (IFR) and Interrupt Enable Register (IER) are depicted in Figures H-25 and H-26, respectively.

The IFT may be read directly by the processor. In addition, individual flag bits may be cleared by writing a "1" into the appropriate bit of the IFR. When the proper chip select and register signals are applied to the chip, the contents of this register are placed on the data bus. Bit 7 indicates the status of the IRQ output. This bit corresponds to the logic function: IRQ = IFR6xIER6+IFR5x IER5+IFR4xIER4+IFR3xIER3+IFR2xIER2+IFR1xIER1+IFR0xIER0. Note: X = logic AND, + = Logic OR.

The IFR bit 7 is not a flag. Therefore, this bit is not directly cleared by writing a logic 1 into it. It can only be cleared by clearing all the flags in the register or by disabling all the active interrupts as discussed in the next section.

Figure H-25: Interrupt Flag Register (IFR)

REG 13 - INTERRUPT FLAG REGISTER 2 CLEARED BY SET BY **CA2 ACTIVE EDGE** READ OR WRITE REG 1 (ORA) READ OR WRITE REG 1 (ORA) CA1 ACTIVE EDGE READ OR WRITE SHIFT REG READ OR WRITE ORB* SHIFT REG **COMPLETE 8 SHIFTS** CB2 ACTIVE EDGE CR2 READ OR WRITE ORB CB1 CB1 ACTIVE EDGE TIME-OUT OF T2 **READ T2 LOW OR** TIMER 2 WRITE T2 HIGH READ T1 LOW OR WRITE T1 HIGH TIME-OUT OF T1 TIMER 1 ANY ENABLED

• IF THE CA2/CB2 CONTROL IN THE PCR IS SELECTED AS "INDEPENDENT" INTERRUPT INPUT, THEN READING OR WRITING THE OUTPUT REGISTER ORA/ORB WILL NOT CLEAR THE FLAG BIT. INSTEAD, THE BIT MUST BE CLEARED BY WRITING INTO THE IFR, AS DESCRIBED PREVIOUSLY.

For each Interrupt Flag in IFR, there is a corresponding bit in the Interrupt Enable Register. The system processor can be set or clear selected bits in this register to facilitate controlling individual interrupts without affecting others. This is accomplished by writing to address 1110 (IER address). If bit 7 of the data placed on the system data bus during this write operation is a 0, each 1 in bits 6 through 0 clears the corresponding bit in the Interrupt Enable Register. For each zero in bits 6 through 0, the corresponding bit is unaffected.

Setting selected bits in the Interrupt Enable Register is accomplished by writing to the same address with bit 7 in the data word set to a logic 1. In this case, each 1 in bits 6 through 0 will set the corresponding bit. For each zero, the corresponding bit will be unaffected. This individual control of the setting and clearing operations allows very convenient control of the interrupts during system operation.

In addition to setting and clearing IER bits, the processor can read the contents of this register by placing the proper address on the register select and chip select inputs with the R/W line high. Bit 7 will be read as a logic 0.

Figure H-26: Interrupt Enable Register (IER)

PACKA	GE OUTL	INE
as the second		10° max.
40 21	مل_	\ -
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	.600 max. (15.24 mm)	(15.87) .625 (15.11) .595
DOT OR NOTCH 20		_ +
TO LOCATE PIN NO. 1		.155 max (3.93 mm)
2.020 max. (51.30 mm)	ן ן	.190 max. (4.82 mm)
	, , , , ,	
ዀ፟፟ጜጜጜ፞ጜ	+	310 max. (7 87 mm)
(1.65) .065 (1.01) .040 TYP.		T O min
- (.55) .022 (.45) .018 TYP.		54 mm) 0 mm.
1.910 (48.51 mm) 1.890 (48.00 mm) C	·- (.2!	5 mm)
19 EQUAL SPACES .100 © TOL. NONCUM.		
(2.54 mm)		

ORDERING INFORMATION

1 MHz
1 194712
2 MHz
1 MHz
2 MHz

PIN CONFIGURATION

			• • •	•	
vss 🗖	1		40	Ь	CA1
PAO	2		39	Ь	CA2
PA1	3		38	Ь	RS0
PA2	4		37	Ь	RS1
PA3	5		36	Ь	RS2
PA4	6		35	Ь	RS3
PA5	,		34	Ь	ŔĔŜ
PA6	8		33	Ь	DO
PA7	9		32	Ь	D1
РВО □	10	SY6522	31	Ь	D2
PB1 [11		30	Ь	D 3
РВ2	12		29	þ	D4
PB3 🗀	13		28	Ь	D5
PB4 🗀	14		27	Ь	D6
P85 🗀	15		26	Ь	D7
P86 🗆	16		25	Ь	4-2
PB7	17		24	Ь	CS1
сві 🗆	18		23	Ь	Ĉ\$Ź
СВ2	19		22	Þ	R/W
vcc 🗆	20		21	Ь	IRO

Appendix I ASSEMBLY LANGUAGE REFERENCE DATA

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to represent the file:

I.2 OPERAND SUMMARY

"REG" FIELD BIT ASSIGNMENTS

16-BIT(W=1)	8-BIT(W=0)	SEGMENT
000 AX 001 CX 010 DX 011 BX 100 SP 101 BP 110 SI 111 DI	000 AL 001 CL 010 DL 011 BL 100 AH 101 CH 110 DH 111 BH	00 ES 01 CS 10 SS 11 DS

I.3 SECOND INSTRUCTION BYTE SUMMARY

mod xxx r/m

_	MOD	DISPLACEMENT
	00	DISP=0*; disp-low and disp-high are absent
	01	DISP=disp-low sign-extended to 16-bits, disp-high is absent
	10	DISP=disp-high:disp-low
	11	r/m is treated as a "reg" field

R/M	OPERAND ADDRESS	DEFAULT SEGMENT	
000	(BX) + (SI) + DISP	DS	
001	(BX) + (DI) + DISP	DS	
010	(BP) + (SI) + DISP	SS	
011	(BP) + (DI) + DISP	SS	
100	(SI) + DISP	DS	
101	(DI) + DISP	DS	
110	(BP) + DISP*	SS	
111	(BX) + DISP	DS	

DISP follows 2nd byte of instruction (before data if required). *except if mod=00 and r/m=110; then EA=disp-high: disp-low.

OPERAND ADDRESS (EA) TIMING (CLOCKS):

Add 4 clocks for word operands at ODD ADDRESSES.

Immed offset=6

Base (BX, BP, SI, DI)=5

Base + DISP=9

Base + index (BP + DI, BX + SI)=7

Base + index (BP + SI, BX + DI)=8

Base + index (BP + DI, BX + SI) + DISP=11

Base + index (BP + SI, BX + DI) + DISP=12

I.4 MEMORY SEGMENTATION MODEL

SEGMENT OVERRIDE PREFIX

1 ^	^	4	050	4	-	_
1 11	()		RF(-i	1	- 1	()
0	0	•	ILC			•

Timing: 2 clocks

USE OF SEGMENT OVERRIDE

OPERAND REGISTER	DEFAULT	WITH OVERRIDE PREFIX
IP (code address) SP (stack address) BP (stack address or	CS SS	Never Never
stack marker) SI or DI (not incl. strings) SI (implicit source addr.	SS DS	BP + DS, or ES, or CS ES, SS, or CS
for strings)	DS	ES, SS, or CS
DI (implicit dest. addr. for strings)	ES	Never

I.5 INSTRUCTION SET DATA

Section I.5.2 presents instuction set data, grouped by function. Section I.9 provides an alphabetic index to the data.

I.5.1 KEY TO FLAG EFFECTS

The following key refers to the flag sections in the instruction set data in Section 1.5.2.

FLAG EFFECT KEY

IDENTIFIER	EXPLANATION
(blank)	Not altered
0	Cleared to 0
1	Set to 1
X	Set or cleared according to result
U	Undefined—contains no reliable value
R	Restored from previously-saved value

I.5.2 DATA TRANSFER

MOV=Move

Flags: O D I T S Z A P C

Register/memory to/from register

100010dw mod reg r/m

Timing (clocks): register to register

8+EA

memory to register register to memory

9+EA

2

Immediate to register/memory

1 1 0 0 0 1 1 w	mod 000	r/m	data	data if w=1
ITTOODITW	טטט טטט	1710	uala	uala II W= I

Timing: 10+EA clocks

Immediate to register

1 0 1 1 w reg data data if w=1			
	1011w reg	data	data if w=1

Timing: 4 clocks

Memory to accumulator

1010000w	addr-low	addr-high

Timing: 10 clocks

Accumulator to memory

1010001w	addr-low	addr-high

Timing: 10 clocks

Register/memory to segment register

10001110 mod 0 reg r/m

Timing (clocks): register to register memory to register

8+EA

Segment register to register/memory

10001100 mod 0 reg r/m

All mnemonics @Intel Corporation 1981.

Timing (clocks): register to register register to memory 9+EA PUSH=Push Flags: O D I T S Z A P C Register/memory 1 1 1 1 1 1 1 1 mod 1 1 0 r/m Timing (clocks): register 10 memory 16+EA 0 1 0 1 0 reg Timing: 10 clocks Segment register 0 0 0 reg 1 1 0 Timing: 10 clocks POP=Pop Flags: O D I T S Z A P C Register/memory 10001111 mod 000 r/m Timing (clocks): register memory 17+EA Register 0 1 0 1 1 reg Timing: 8 clocks Segment register 0 0 0 reg 1 1 1 Timing: 8 clocks XCHG=Exchange Flags: O D I T S Z A P C Register/memory with register 1000011w mod reg r/m Timing (clocks): register with register memory with register 17+EA Register with accumulator 10010 reg Timing: 3 clocks IN=Input to AL/AX Flags: O D I T S Z A P C from Fixed Port 1110010w port Timing: 10 clocks

Variable port (DX)

1110110w

Timing: 8 clocks

OUT=Output from AL/AX to

Flags: O D I T S Z A P C

Fixed Port

1 1 1 0 0 1 1 w port

Timing: 10 clocks

Variable port (DX)

1110111w

Timing: 8 clocks

XLAT=Translate Byte to AL

Flags: O D I T S Z A P C

11010111

Timing: 11 clocks

LEA=Load EA to Register

Flags: O D I T S Z A P C

10001101 mod reg r/m

Timing: 2+EA clocks

LDS=Load Pointer to DS

Flags: O D I T S Z A P C

1 1 0 0 0 1 0 1 mod reg r/m

Timing: 16+EA clocks

LES=Load Pointer to ES

Flags: O D I T S Z A P C

1 1 0 0 0 1 0 0 mod reg r/m

Timing: 16+EA clocks

LAHF=Load AH with Flags

Flags: O D I T S Z A P C

10011111

Timing: 4 clocks

SAHF=Store AH into Flags

Flags: O D I T S Z A P C R R R R R

10011110

Timing: 4 clocks

10011100

Timing: 10 clocks

POPF=Pop Flags

PUSHF=Push Flags

Flags: O D I T S Z A P C RRRRRRRR

Flags: O D I T S Z A P C

10011101

Timing: 8 clocks

I.5.3 ARITHMETIC

ADD=Add

Flags: O D I T S Z A P C X X X X X

Reg./memory with register to either

000000dw mod reg r/m

Timing (clocks): register to register

memory to register 9+EA register to memory 16+EA

Immediate to register/memory

100000sw mod000 r/m data if s:w=01 data

Timing (clocks): immediate to register immediate to memory 17+EA

Immediate to accumulator

0000010w data if w=1

Timing: 4 clocks

ADC=Add with Carry

Reg./memory with register to either

0 0 0 1 0 0 d w mod reg r/m

Timing (clocks): register to register

memory to register 9+EA register to memory 16+EA

Immediate to register/memory

100000sw mod010 r/m data data if s:w=01

Timing (clocks): immediate to register

17+EA immediate to memory

	Immediate to accumulator
	0 0 0 1 0 1 0 w data data if w=1
	Timing: 4 clocks
INC=Increment	Flags: O D I T S Z A P C X X X X X
	Register/memory
	1 1 1 1 1 1 w mod 0 0 0 r/m
	Timing (clocks): register 2 memory 15+EA
	Register
	0 1 0 0 0 reg
	Timing: 2 clocks
AAA=ASCII Adjust for Add	Flags: O D I T S Z A P C U U X U X
	0 0 1 1 0 1 1 1
	Timing: 4 clocks
DAA=Decimal Adjust for Add	Flags: O D I T S Z A P C X X X X X
	0 0 1 0 0 1 1 1
	Timing: 4 clocks
SUB=Subtract	Flags: O D I T S Z A P C X X X X X
	0 0 1 0 1 0 d w mod reg r/m
	Timing (clocks): register from register 3 memory from register 9+EA register from memory 16+EZ
	Immediate from register/memory
	1 0 0 0 0 0 s w mod 1 0 1 r/m data data if s:w=01
	Timing (clocks): immediate from register 4 immediate from memory 17+EA
	Immediate from accumulator
	0 0 1 0 1 1 0 w data data if w=1
	Timing: 4 clocks
	All mnemonics ©Intel Corporation 1981.

SBB=Subtract with Flags: O DITSZA X X X XX Borrow 000110dw mod reg r/m Timing (clocks): register from register memory from register 9+EA register from memory 16+EA Immediate from register/memory 100000 sw mod011 r/m data data if s:w=01 Timing (clocks): immediate from register immediate from memory 17+EA Immediate from accumulator 0001110w data if w=1 data Timing: 4 clocks **DEC=Decrement** Flags: O D I T S Z A Register/memory 1 1 1 1 1 1 1 w mod 0 0 1 r/m Timing (clocks): register 15+EA memory Register 0 1 0 0 1 reg Timing: 2 clocks D I T S Z A P C X X X X 1* **NEG=Change Sign** Flags: O *0 if destination=0 1 1 1 1 0 1 1 w mod 0 1 1 r/m Timing (clocks): register 16+EA memory Flags: O D I T S Z A P C X X X X X CMP=Compare Register/memory and register 001110dw mod reg r/m Timing (clocks): register with register memory with register 9+EA register with memory 9+EA All mnemonics 9Intel Corporation 1981.

Immediate with register/memory 100000sw mod 111 r/m data data if s:w=01 Timing (clocks): immediate with register immediate with memory 17+EA Immediate with accumulator data if w=1 0011110w data Timing: 4 clocks Flags: O D I T S Z A P C U U X U X AAS=ASCII Adjust for Subtract 00111111 Timing: 4 clocks Flags: O D I T S Z A P C U X X X X X **DAS=Decimal Adjust** for Subtract 00101111 Timing: 4 clocks Flags: O D I T S Z A P C **MUL=Multiply** (Unsigned) 11111011 w mod 100 r/m 71+EA Timing (clocks): 8-bit 16-bit 124+EA Flags: O D I T S Z A P C **IMUL=Integer Multiply** UUUUX Х (Signed) 1 1 1 1 0 1 1 w mod 1 0 1 r/m 90+EA Timing (clocks): 8-bit 16-bit 144+EA AAM=ASCII Adjust for Flags: O D I T S Z A P C Multiply XXUXU 11010100 00001010 Timing: 83 clocks Flags: O D I T S Z A P C DIV=Divide U U U U U(Unsigned) 1 1 1 1 0 1 1 w mod 1 1 0 r/m 90+EA Timing (clocks): 8-bit 155+EA 16-bit

IDIV=Integer Divide Flags: O D I T S Z A P C (Signed) U U U U U U11111011 w mod 111 r/m Timing (clocks): 8-bit 112+EA 16-bit 177+EA AAD=ASCII Adjust for Flags: O D I T S Z A Divide XXUXU 11010101 00001010 Timing: 60 clocks **CBW=Convert Byte to** Flags: O D I T S Z A P C Word 10011000 Timing: 2 clocks Flags: O D I T S Z A P C **CWD=Convert Word** 10011001 to Double Word Timing: 5 clocks **1.5.4 LOGIC** NOT=Invert Flags: O D I T S Z A P C 1111011 w mod 0 1 0 r/m Timing (clocks): register memory 16+EA SHL/SAL=Shift Flags: O D I T S Z A P C Χ Logical/Arithmetic Left 110100 v w mod 100 r/m С Timing (clocks): single-bit register 2 single-bit memory 15+EA variable-bit register 8+4/bit variable-bit memory 20+EA+4/bit SHR=Shift Logical Flags: O D I T S Z A P C Right Х Х 1 1 0 1 0 0 v w mod 1 0 1 r/m Timing (clocks): single-bit register 2 single-bit memory 15+EA variable-bit register 8+4/bit variable-bit 20+EA+4/bit memory

AND=And	Flags: O D I T S Z A P C O X X U X O		
	Reg./memory and register to either		
	0 0 1 0 0 0 d w mod reg r/m		
	Timing (clocks): register to register 3 memory to register 9+EA register to memory 16+EA		
	Immediate to register/memory		
	1 0 0 0 0 0 0 w mod 1 0 0 r/m data data if w=1		
	Timing (clocks): immediate to register 4 immediate to memory 17+EA		
	Immediate to accumulator		
	0 0 1 0 0 1 0 w data data if w=1		
	Timing: 4 clocks		
	Flags: O D I T S Z A P C O X X U X O		
TEST=And Function	Register/memory and register		
to Flags, No Result	1 0 0 0 0 1 0 w mod reg r/m		
	Timing (clocks): register to register 3 register with memory 9+EA		
	Immediate data and register/memory		
	1 1 1 1 0 1 1 w mod 0 0 0 r/m data data if w=1		
	Timing (clocks): immediate with register 4 immediate with memory 10+EA		
	Immediate data and accumulator		
	1 0 1 0 1 0 0 w data data if w=1		
	Timing: 4 clocks		
OR=Or	Flags: O D I T S Z A P C O X X U X O		
	Reg./memory and register to either		
	0 0 0 0 1 0 d w mod reg r/m		
	Timing (clocks): register to register 3 memory to register 9+EA register to memory 16+EA		

Immediate to register/memory

1 0 0 0 0 0 0 w mod 0 0 1 r/m data data if w=1

Timing (clocks): immediate to register immediate to memory

4 17+EA

Immediate to accumulator

0 0 0 0 1 1 0 w data data if w=1

Timing: 4 clocks

XOR=Exclusive Or

Flags: O D I T S Z A P C O X X U X O

Reg./memory and register to either

0 0 1 1 0 0 d w mod reg r/m

Timing (clocks): register to register

memory to register register to memory

9+EA 16+EA

Immediate to register/memory

1 0 0 0 0 0 0 w mod 1 1 0 r/m data data if w=1

Timing (clocks): immediate to register

immediate to memory 17+EA

Immediate to accumulator

0 0 1 1 0 1 0 w data data if w=1

Timing: 4 clocks

I.5.5 STRING MANIPULATION

REP=Repeat

Flags: O D I T S Z A P C

1 1 1 1 0 0 1 z

Timing: 6 clocks/loop

MOVS=Move String

Flags: O D I T S Z A P C

1010010w

Timing: 17 clocks

CMPS=Compare String

Flags: O D I T S Z A P C X X X X X

1010011w

Timing: 22 clocks

SCAS=Scan String

Flags: O D I T S Z A P C \times X X X X X

1010111w

Timing: 15 clocks

LODS=Load String

Flags: O D I T S Z A P C

1010110w

Timing: 12 clocks

STOS=Store String

Flags: O D I T S Z A P C

1010101w

Timing: 10 clocks

I.5.6 CONTROL TRANSFER

NOTE: Queue reintialization is not included in the timing information for transfer operations. To account for instruction loading, add 8 clocks to timing numbers.

CALL=Call

Flags: O D I T S Z A P C

Direct within segment

11101000	disp-low	disp-high
----------	----------	-----------

Timing: 11 clocks

Indirect within segment

1 1 1 1 1 1 1 1 mod 0 1 0 r/m

Timing: 13+EA clocks

Direct intersegment

10011010	offset-low	offset-high
	seg-low	seg-high

Timing: 20 clocks

Indirect intersegment

1 1 1 1 1 1 1 1 mod 0 1 1 r/m

Timing: 29+EA clocks

JMP=Unconditional Jump

Flags: O D I T S Z A P C

Direct within segment

1 1 1 0 1 0 0 1 disp-low disp-high

Timing: 7 clocks

Direct within segment-short

11	101011	disp

Timing: 7 clocks

Indirect within segment

1 1 1 1 1 1 1 1 mod 1 0 0 r/m

Timing: 7+EA clocks

Direct intersegment

11101010	offset-low	offset-high
	seg-low	seg-high

Timing: 7 clocks

Indirect intersegment

1 1 1 1 1 1 1 1 mod 1 0 1 r/m

Timing: 16+EA clocks

RET=Return from CALL

Flags: O D I T S Z A P C

Within segment

11000011

Timing: 8 clocks

Within seg. adding immediate to SP

1 1 0 0 0 0 1 0 data-low data-high

Timing: 12 clocks

Intersegment

11001011

Timing: 18 clocks

Intersegment, adding immediate to SP

	11001010	data-low	data-high
--	----------	----------	-----------

Timing: 17 clocks

JE/JZ=Jump on Equal/Zero

Flags: O D I T S Z A P C

0 1 1 1 0 1 0 0 disp

Timing (clocks): jump is taken jump is not taken

8 4

JL/JNGE=Jump on Less/Not Greater or Equal JLE/JNG=Jump on Less or Equal/Not Greater	Flags: O D I T S Z A P C O 1 1 1 1 1 0 0 disp Timing (clocks): jump is taken jump is not taken Flags: O D I T S Z A P C O 1 1 1 1 1 1 0 disp	8 4
	Timing (clocks): jump is taken jump is not taken	8
JB/JNAE=Jump on Below/Not Above or Equal	Flags: O D I T S Z A P C 0 1 1 1 0 0 1 0	
	Timing (clocks): jump is taken jump is not taken	8 4
JBE/JNA=Jump on Below or Equal/Not Above	Flags: O D I T S Z A P C 0 1 1 1 0 1 1 0	
	Timing (clocks): jump is taken jump is not taken	8 4
JP/JPE=Jump on Parity/Parity Even	Flags: O D I T S Z A P C 0 1 1 1 1 0 1 0 disp	
	Timing (clocks): jump is taken jump is not taken	8 4
JO=Jump on Overflow	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	8 4
JS=Jump on Sign	Flags: O D I T S Z A P C 0 1 1 1 1 0 0 0 disp	
·	Timing (clocks): jump is taken jump is not taken	8 4
JNE/JNZ=Jump on Not Equal/Not Zero	Flags: O D I T S Z A P C	
·	Timing (clocks): jump is taken jump is not taken	8

JNL/JGE=Jump on Not Less/Greater or Equal	Flags: O D I T S Z A P C O 1 1 1 1 1 0 1 disp Timing (clocks): jump is taken	8
	jump is not taken	4
JNLE/JG=Jump on Not Less or Equal/Greater	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	8 4
JNB/JAE=Jump on Not Below/Above or Equal	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	8 4
JNBE/JA=Jump on Not Below or Equal/Above	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	8 4
JNP/JPO=Jump on Not Parity/Parity Odd	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	8 4
JNO=Jump on Not Overflow	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not take	8 4
JNS=Jump on Not Sign	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	8
LOOP=Loop CX Times	Flags: O D I T S Z A P C 11100010 disp	
	Timing (clocks): jump is taken jump is not taken	9 5

All mnemonics @Intel Corporation 1981.

LOOPZ/LOOPE=Loop While Zero/Equal	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	11 5
LOOPNZ/LOOPNE=Loop While Not Zero/Not Equal	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	11 5
JCXZ=Jump on CX Zero	Flags: O D I T S Z A P C	
	Timing (clocks): jump is taken jump is not taken	9 5

8086 Conditional Transfer Operations

INSTRUCTION	CONDITION	INTERPRETATION
<u></u>		
JE or JZ	ZF=1	"equal" or "zero"
JL or JNGE	(SR xor OF)=1	"less" or "not greater or equal"
JLE or JNG	((SP xor OF) or ZF)=1	"less or equal" or "not greater"
JB or JNAE	CF=1	"below" or "not above or equal"
JBE or JNA	(CF or ZF)=1	"below or equal" or "not above"
JP or JPE	PF=1	"parity" or "parity even"
JO	OF=1	"overflow"
JS	SF=1	"sign"
JNE or JNZ	ZF=0	"not equal" or "not zero"
JNL or JGE	(SF xor OF)=0	"not less" or "greater or equal"
JNLE or JG	((SF xor OF) or ZF)=0	"not less or equal" or "greater"
JNB or JAE	CF=0	"not below" or "above or equal"
JNBE or JA	(CF or ZF)=0	"not below or equal" or "above"
JNP or JPO	PF=0	"not parity" or "parity odd"
JNO	OF=0	"not overflow"
JNS	OF=0	"not sign"

NOTE: "Above and below" refer to the relation between two unsigned values, while "greater" and "less" refer to the relation between two signed values.

INT=Interrupt

Flags: O D I T S Z A P C O O

Type specified

1 1 0 0 1 1 0 1 type

Timing: 50 clocks

Type 3

11001100

Timing: 51 clocks

INTO=Interrupt on

Overflow

Flags: O D I T S Z A P C

11001110

Timing: 52 clocks if pass 4 clocks if fail

IRET=Interrupt Return

Flags: O D I T S Z A P C RRRRRRRR

11001111

Timing: 24 clocks

1.5.7 PROCESSOR CONTROL

CLC=Clear Carry

Flags: O D I T S Z A P C

11111000

Timing: 2 clocks

STC=Set Carry

Flags: O D I T S Z A P C

11111001

Timing: 2 clocks

CMC=Complement

Carry

Flags: O D I T S Z A P C

11110101

Timing: 2 clocks

NOP=No Operation

Flags: O D I T S Z A P C

10010000

Timing: 3 clocks

CLD=Clear Direction

Flags: O D I T S Z A P C

11111100

Timing: 2 clocks

All mnemonics @Intel Corporation 1981.

STD=Set Direction Flags: O D I T S Z A P C 11111101 Timing: 2 clocks CLI=Clear Interrupt Flags: O D I T S Z A P C 11111010 Timing: 2 clocks STI=Set Interrupt Flags: O D I T S Z A P C. 11111011 Timing: 2 clocks **HLT=Halt** Flags: O D I T S Z A P C 11110100 Timing: 2 clocks WAIT=Wait Flags: O D I T S Z A P C 10011011 LOCK=Bus Lock Timing: 3 clocks **Prefix** Flags: O D I T S Z A P C 11110000 Timing: 2 clocks ESC=Escape (To Flags: O D I T S Z A P C **External Device)** 1 1 0 1 1 x x x | mod x x x r/m

All mnemonics @Intel Corporation 1981.

Timing: 7+EA clocks

NOTES:

If d=1 then "to"; if d=0 then "from."

If w=1 then word instruction; if w=0 then byte instruction.

If s:w=01 then 16 bits of immediate data form the operand.

If s:w=11 then an immediate data byte is sign extended to form the 16-bit operand.

If v=0 then "count"=1; if v=1 then "count" in (CL).

X=don't care.

Z is used for some string primitives to compare with ZF FLAG.

AL=8-bit accumulator.

AX=16-bit accumulator.

CX=Count register.

DS=Data segment.

DX=Variable port register.

ES=Extra segment.

Above/below refers to unsigned value.

Greater=more positive signed values.

Less=less positive (more negative) signed values.

See section I.2 for Operand summary.

See section I.4 for Segment Override summary.

I.6 PROCESSOR RESET REGISTER INITIALIZATION

Flags=0000H (to disable interrupts and single-stepping)

CS=FFFFH IP=0000H (to begin execution at FFFF0H)

DS=0000H

SS=0000H

ES=0000H

No other registers are acted upon during reset.

I.7 8088 RESERVED LOCATIONS

INTERRUPT L	OCATION	FUNCTION
0 1 2 3	00H-03H 04H-07H 08H-0BH 0CH-0FH 10H-13H	Divide by zero Single step Non-maskable interrupt One-byte interrupt instruction Interrupt on overflow

Interrupt Pointer Table

I.8 8088 INSTRUCTION SET MATRIX

NOTES:
b=byte operation
d=direct
f=from CPU reg
i=immediate
ia=immed. to accum.
id=indirect
is=immed. byte, sign ext.
l=long ie. intersegment

m=memory
r/m=EA is second byte
si=short intrasegment
sr=segment register
t=to CPU reg
v=variable
w=word option
z=zero

I.9 MNEMONIC INDEX

AAA 230 JG 240 MOV 226 AAD 233 JGE 240 MOVS 236 AAM 232 JL 239 MUL 232 AAS 232 JLE 239 NEG 231 ADC 229 JMP 237 NOP 242 ADD 229 JNA 239 NOT 233 AND 235 JNAE 239 OR 235 CALL 237 JNB 240 OUT 228 CBW 233 JNBE 240 POP 227 CLC 242 JNE 239 POFF 229 CLD 242 JNG 239 PUSH 227 CLC 242 JNG 239 PUSH 229 CLD 242 JNG 239 PUSH 229 CLD 242 JNL 240 RCL 234	Mnemonic	Page	Mnemonic	Page	Mnemonic	Page
AAM 232 JL 239 MUL 232 AAS 232 JLE 239 NEG 231 ADC 229 JMP 237 NOP 242 ADD 229 JNA 239 NOT 233 AND 235 JNAE 239 OR 235 CALL 237 JNB 240 OUT 228 CBW 233 JNBE 240 POP 227 CLC 242 JNE 239 POFF 229 CLD 242 JNG 239 PUSHF 229 CLD 242 JNLE 239 PUSHF 229 CMD 243 JNGE 239 PUSHF 229 <td></td> <td></td> <td></td> <td></td> <td>MOV</td> <td>226</td>					MOV	226
AAS 232 JLE 239 NEG 231 ADC 229 JMP 237 NOP 242 ADD 229 JNA 239 NOT 233 AND 235 JNAE 239 OR 235 CALL 237 JNB 240 OUT 228 CBW 233 JNBE 240 POP 227 CLC 242 JNE 239 POFF 229 CLD 242 JNG 239 PUSH 227 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 RBB 231 IDIV 233 JS 239 SAR 234 HLT 243 JPO 240 RBB 231 IDIV 233 JS 239 SAR 234 HLT 243 JPO 240 RBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INC 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228					MOVS	236
ADC 229 JMP 237 NOP 242 ADD 229 JNA 239 NOT 233 AND 235 JNAE 239 OR 235 CALL 237 JNB 240 OUT 228 CBW 233 JNBE 240 POP 227 CLC 242 JNE 239 PUSH 229 CLD 242 JNG 239 PUSH 227 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 238 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 ST 243 IRET 244 LOOK 247 JAE 245 JB 239 LOOPE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	AAM	232	JL	239	MUL	232
ADD 229 JNA 239 NOT 233 AND 235 JNAE 239 OR 235 CALL 237 JNB 240 OUT 228 CBW 233 JNBE 240 POP 227 CLC 242 JNE 239 POPF 229 CLD 242 JNG 239 PUSH 227 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LODP 240 TEST 235 JB 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	AAS	232	JLE	239	NEG	231
AND 235 JNAE 239 OR 235 CALL 237 JNB 240 OUT 228 CBW 233 JNBE 240 POP 227 CLC 242 JNE 239 POPF 229 CLD 242 JNG 239 PUSH 227 CLI 243 JNGE 239 PUSH 227 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMP 231 JNLE 240 RCR 234 CMP 231 JNLE 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INT 241 LEA 228 STD 243 INTO 242 LES 245 INT 241 LEA 228 STD 243 INTO 242 LES 248 INTO 242 LES 243 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 WAIT 248	ADC	229			NOP	242
CALL 237 JNB 240 OUT 228 CBW 233 JNBE 240 POP 227 CLC 242 JNE 239 POPF 229 CLD 242 JNG 239 PUSHF 229 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 RAHF 228 DIV 232 JP 239 SAH 233 ESC 243 JPE 239 SAR 234	ADD	229	JNA	239	NOT	233
CALL 237 JNB 240 OUT 228 CBW 233 JNBE 240 POP 227 CLC 242 JNE 239 POFF 229 CLD 242 JNG 239 PUSHF 229 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNG 239 PUSHF 229 CMC 242 JNE 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 RAHF 228 DIV 232 JP 239 SAR 234	AND	235	JNAE	239	OR	235
CLC 242 JNE 239 POPF 229 CLD 242 JNG 239 PUSH 227 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 <tr< td=""><td>CALL</td><td> 237</td><td>JNB</td><td>240</td><td></td><td></td></tr<>	CALL	237	JNB	240		
CLC 242 JNE 239 POPF 229 CLD 242 JNG 239 PUSHF 227 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 <t< td=""><td>CBW</td><td> 233</td><td>JNBE</td><td>240</td><td>POP</td><td>227</td></t<>	CBW	233	JNBE	240	POP	227
CLD 242 JNG 239 PUSHF 227 CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAR 234 HLT 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 <tr< td=""><td>CLC</td><td> 242</td><td>JNE</td><td>239</td><td></td><td></td></tr<>	CLC	242	JNE	239		
CLI 243 JNGE 239 PUSHF 229 CMC 242 JNL 240 RCL 234 CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAR 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 STC 242	CLD	242				
CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STI 243	CLI	243			PUSHF	229
CMP 231 JNLE 240 RCR 234 CMPS 236 JNO 240 REP 236 CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243	CMC	242	JNL	240	RCL	234
CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237	CMP	231				
CWD 233 JNP 240 RET 238 DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 INTO 242 LES 237 SUB 230	CMPS	236	JNO	240	REP	236
DAA 230 JNS 240 ROL 234 DAS 232 JNZ 239 ROR 234 DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE	CWD	233	JNP	240		
DEC 231 JO 239 SAHF 228 DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 <t< td=""><td>DAA</td><td> 230</td><td>JNS</td><td>240</td><td></td><td></td></t<>	DAA	230	JNS	240		
DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	DAS	232	JNZ	239	ROR	234
DIV 232 JP 239 SAL 233 ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	DEC	231	JO	239	SAHF	228
ESC 243 JPE 239 SAR 234 HLT 243 JPO 240 SBB 231 IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	DIV	232	JP	239		
IDIV 233 JS 239 SCAS 237 IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	ESC	243	JPE	239		
IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	HLT	243	JPO	240	SBB	231
IMUL 232 JZ 238 SHL 233 IN 227 LAHF 228 SHR 233 INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	IDIV	233	JS	239	SCAS	237
INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	IMUL	232	JZ	238	_	
INC 230 LDS 228 STC 242 INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	IN	227	LAHF	228	SHR	233
INT 241 LEA 228 STD 243 INTO 242 LES 228 STI 243 IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	INC	230	LDS	228		
IRET 242 LOCK 243 STOS 237 JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	INT	241	LEA	228		
JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	INTO	242	LES	228	STI	243
JA 240 LODS 237 SUB 230 JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	IRET	242	LOCK	243	STOS	237
JAE 240 LOOP 240 TEST 235 JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	JA	240				
JB 239 LOOPE 241 WAIT 243 JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	JAE	240				
JBE 239 LOOPNE 241 XCHG 227 JCXZ 241 LOOPNZ 241 XLAT 228	JB	239	LOOPE	241		
JCXZ241 LOOPNZ241 XLAT228	JBE	239		241		
	JCXZ	241		241		· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·		

```
Appendix J SAMPLE SIRIUS 1 SOFTWARE DRIVERS
                        SIRIUS Systems Technology, Inq. (c) 1982 S-1 Hardware Example software drivers for S-1 Hardware
PL/M-86 COMPILER
                                                                                                  04/01/82
                                                                                                                         PAGE
                                                                                                                               1
SERIES-III PL/M-86 V1.0 COMPILATION OF MODULE HARDWARE
NO OBJECT MODULE REQUESTED

COMPILER INVOKED BY: P.86 TEMP.SRC OPTIMIZE(3) PAGELENGTH(42) PAGEWIDTH(109) PRINT(:F4:HW.LS) NOOBJECT
                 $TITLE ('Example software drivers for S-1 Hardware')
PL/M-86 COMPILER
                                                                                                  04/01/82
                                                                                                                        PAGE 2
                        Example software drivers for S-1 Hardware
                $eject
$SMALL ROM
   1
                Hardware: do;
                                       literally 'declare'; literally 'literally';
                  Declare dcl
                         lit
                                        lit
lit
lit
lit
                                                    'address',
'external',
'initial',
                   Dcl
                            addr
                            ext
init
                                                    'integer',
                            intq
                            proc
                                                    'procedure',
                            ptr
pub
                                        lit
lit
                                                    'pointer',
                                                    'reentrant',
                            rent
                                                    'return',
'structure',
                            ret
                                        lit
                            struc
                                        lit
                            boolean
                                        lit
                                                    'byte',
                            true
false
                                        lit
lit
                                                     '0000H';
PL/M-86 COMPILER
                                                                                                  04/01/82
                                                                                                                        PAGE 3
                        KB: Hardware bit defs
```

\$subtitle('KB: Hardware bit defs')

```
dcl SR$intbit lit '4'; /* KB shift register interrupt mask in6522 IER/IFR */
dcl SR$enable lit '0ch'; /* KB shift register enable in 6522 ACR */
dcl CBl$intbit lit '10h'; /* KB RDY edge-sense interrupt mask 6522 PCR */
dcl CBl$pos_edge lit '10h'; /* KB RDY edge-sense control in 6522 PCR */

dcl kb$databit lit '40h'; /* KB DATA level */
l0 l dcl kb$ackctl lit '2'; /* KB ACK control for 6522 output */
l1 l dcl kb$TIMEOUT lit '300'; /* error timeout in milliseconds */
dcl timerl_ena lit '0c0h'; /* timer l interrupt mask in 6522 IER/IFR */
```

```
PL/M-86 COMPILER
                                                                                                 04/01/82
                                                                                                                       PAGE
                       KB: Hardware bit defs
                $eject
                /* KYBRD PORT (e8040..e804f) */
  13
      1
                  dcl via(16) struc(
                                                                           /* 6522 port organization
                                                                                                                           */
                                                      byte,
                                                      byte,
                                             RΔ
                                             DDRB
                                                      byte,
                                            DDRA
                                             TIMERI
                                             TIMERIL
                                            TIMER2
                                                      word.
                                                      byte,
                                             ACR
                                                      byte,
                                             PCR
                                                      byte,
byte,
                                             IFR
                                             TER
                                                      byte) at (0e8000h):
                                             RAX
                                                                           /* current state of keyboard stateware */
  14
        1
                dcl kb$state
                                                 byte;
  15
                dcl kb$data
                                                 byte;
                                                                           /* constructed data from keyboard
                /* nybble convert table for inverted shift reg */dcl Ctable(*) byte data (0,8,4,0ch, 2,0ah,6,0eh, 1,9,5,0dh, 3,0bh,7,0fh);
  16
      1
  17 . 1
                dcl tick
                                            lit '50':
                                                                           /* console clock rate in milliseconds */
PL/M-86 COMPILER
                                                                                                 04/01/82
                                                                                                                       PAGE 5
                        KB: external routines
                 $subtitle('KB: external routines')
                          signal user about keyboard error state -- ring bell
                   dcl signal$KB$error lit 'Ringbell';
    /* Ringbell found in SOUND module */
  18
                          Process key board event -- in external module
                Process$Event: proc(event) byte ext;
dcl event byte;
                end;
                         Software clock resource -- set timeout for interrupt to KB$reset
  22
23
                set$KB$clock: proc(Period) ext;
dcl Period intg;
                                                                           /* timeout delay in milliseconds
                end set$KB$clock;
                                                                                                04/01/82
                                                                                                                       PAGE
PL/M-86 COMPILER
                       SIRIUS Systems Technology, Inc. (c) 1982 S-1 Hardware
                       KB: Keyboard Stateware
                $subtitle('KB: Keyboard Stateware')
                          KB interrupt entry (level 6)
                kb$irq: proc pub rent;
do case kb$state;
  25
  26
                          state 0 to state 1: shift register (full) interrupt
                        via(4).ACR= via(4).ACR and not SR$enable; /* disable shift register /* prepare for interrupt on negative edge of KB RDY */
via(4).PCR= via(4).PCR and not CBl$pos_edge;
via(4).IER= 80h or CBl$intbit;
disable;
/* time critical
  27
28
                  kbst0: do;
  29
30
31
                                                                           kb$data = via(4).SR;
```

```
/* disable SR interrupt
/* assert KB ACK control on interrupt
/* (CBl IRQ is reset)
/* end of critical section
   33
                               via(4).IER= SR$intbit;
          4
   34
35
                               via(4).RB = via(4).RB or kb$ackctl;
                              enable:
                                                                                            /* set to state 1
                               kb$state = 1;
   36
                             end:
                               state 1 to state 2: interrupt from negative edge on KBSRDY
   38
39
          3
                       khstl: do:
                               disable;
   40
41
                                    42
43
   46
                                  end;
                              enable:
                                                                                            /* end of critical section
                                                                                                                                                     */
                             end:
PL/M-86 COMPILER
                                                                                                                      04/01/82
                                                                                                                                                 PAGE 7
                            KB: Keyboard Stateware
                    $eject
                       /*
* state 2 to state 0: interrupt from positive edge on KB$RDY
                       kbst2: do;
                               if (via(4).RA and kb$databit) = 0 then call kb$error; else do;
                                                                                            /* if data bit is low then
/* stop bit error has occurred
   50
   51
52
                                     call kb$reset;
                                                                                           /*reset hardware/software for next event */
          5
                                     /*reset hardware/software for next event */
/* call event processing routine with order of bits reversed to */
/* reflect physical key number and event type (open or close) */
if not Process$Event( shl(Ctable(kb$data and 0fh),4)
or Ctable(shr(kb$data,4)) ) then
   54
          5
                                                                                           /* signal error in event process
                                                 call signal$KB$error;
   56
                                  end:
                             end;
   57
          4
   58
          3
                       end:
   59
          2
                    end kb$irq;
PL/M-86 COMPILER
                                                                                                                     04/01/82
                                                                                                                                                 PAGE
                            KB: Keyboard support routines
                    $subtitle('KB: Keyboard support routines')
                    kb$reset: proc rent;
dcl dummy byte;
         1 2
                                                                                         /* puts KB hardware/software into state 0 */
   61
                         via(4).IER = CBl$intbit;
                                                                                           /* clear CBl interrupts
/* release kb$ack
                         via(4).RB = via(4).RB and not kb$ackctl;
via(4).ACR = via(4).ACR or SR$enable;
dummy = via(4).SR;
  63
64
                                                                                           /* release kback
/* enable shft reg
/* clr any pending irq
/* enable sr interrupts
/* init keybrd state
  65
         2
                         dummy = via(4).SR;
via(4).IER = 80h or SR$intbit;
  67
68
                         kb$state = 0;
call set$KB$clock(0);
          2
                                                                                            /* clear timeout counter
   69
         2
                    end kb$reset;
   70
                   kb$error: proc rent;
  via(4).RB = via(4).RB or kb$ackctl;
  via(4).IER = 7fh;
  call set$KB$clock(kb$TIMEOUT);
                                                                                          /* force kb$ack high
/* allow no interrupts
/* time out keyboard
  71
  72
73
         2
                    end kb$error;
                    kb$init: proc pub rent;
  75
         1
                         via(4).RB = via(4).RB and (OFFh-3);
via(4).DDRA = via(4).DDRA and not kb$databit;
via(4).DDRB = via(4).DDRB or kb$ackctl;
via(4).IER = 7fh;
via(4).PCR = 0;
  78
79
  80
                         via(4).ACR = 0;
```

```
via(2).ACR= (via(2).ACR and 0c0h) or 40h;
  82
                     via(2).iderlL= tick*1000;
via(2).IER = timerl_ena and 7fh;
call kb$reset;
  84
85
                   end kb$init;
                        SIRIUS Systems Technology, Inc. (c) 1982 S-1 Hardware CRTreg: controller chip registers
                                                                                                    04/01/82
                                                                                                                            PAGE
PL/M-86 COMPILER
                 $SUBTITLE ('CRTreg: controller chip registers')
                                                                               /* CRT-chip address register
/* CRT-chip internal register port
                                           AT (0E8000H);
AT (0E8001H);
                         CRT$0
                                     byte
  88
      1
                 DCL
                        CRT$1
                                     BYTE
                           Set CRT register
                 */
set$CRT$reg: proc (reg,value) rent;
dcl reg byte;
dcl value byte;
CRT$0= reg;
CRT$1= value;
end set$CRT$reg;
  90
91
92
        2 2 2
                                                                               /* select register
/* set data
PL/M-86 COMPTLER
                                                                                                     04/01/82
                                                                                                                             PAGE 10
                         CRTreg: cursor-display mode control
                 $SUBTITLE ('CRTreg: cursor-display mode control')
  95
                 dcl rast$start lit '10';
                                                                      /* CRT reg: cursor-start & cursor-display mode */
                         96
        1
                  DCL
  97
        1
                   dc1
                           Set cursor to current Cursor parameter byte.
                 set$cursor: proc rent;
                                                                             /* set raster start reg
 100
                      call set$CRT$reg(rast$start,Cursor$PAR);
                                                                                                                                 */
 101
                   end set$cursor;
                           Set block cursor.
                 BLOCK$CRS:PROC RENT;
Cursor$PAR = Cursor$PAR AND 0E0h;
 102
        1 2
 103
                                                                               /* set block cursor
/* set cursor mode reg
                   call set$cursor;
END BLOCK$CRS;
 104
                           Set underscore cursor.
 106
                 UNDERSCORE$CRS:PROC RENT;
 107
        2
                      Cursor$PAR = 00Fh OR (Cursor$PAR AND 0E0h);
                                                                               /* set underscore cursor
                                                                               /* set cursor mode reg
                      call set$cursor;
 108
109
                   END UNDERSCORESCRS;
                                                                                                     04/01/82
                                                                                                                             PAGE 11
PL/M-86 COMPILER
                        CRTreg: cursor-display mode control
                 $eject
                        Return cursor to previous modes: block or underline, steady or flashing
                 CURSORSON: PROC RENT;
                     curs$off= false; /* reset cursor off flag
if blink$on then Cursor$par= Cursor$par or 060h; /* set to flashing mode
else Cursor$par= Cursor$par and 01Fh; /* set to steady mode
call set$cursor; /* set cursor mode reg
 111
112
114
                   call set$cursor;
END CURSOR$ON;
```

```
Turn cursor off.
                    CURSOR$OFF: PROC RENT;
                          cursoff= true;
Cursor$PAR = 020h OR (Cursor$PAR AND 01Fh);
                                                                                            /* set cursor off flag
/* set to off mode
/* set cursor mode reg
  118
  119
                          call set$cursor;
                       END CURSORSOFF;
                               Set cursor blinking.
                    CRS$BLINK$ON:PROC RENT;
                          blink$on= true; /* set blinking on flag
if not curs$off then Cursor$PAR= 060h OR Cursor$PAR; /* set flashing,if not off
call set$cursor; /* set cursor mode reg
 123
124
          2
  126
                     END CRS$BLINK$ON:
                    /<u>*</u>
                               Set cursor steady.
                    CRS$BLINK$OFF:PROC RENT;
          1
2
2
                          blink$on= false; /* reset blinking on flag
if not curs$off then Cursor$PAR= 0lFh and Cursor$PAR; /* set steady,if not off
call set$cursor; /* set cursor mode reg
  129
  130
                                                                                           /* set cursor mode reg
  133
                       END CRSSBLINKSOFF:
PL/M-86 COMPILER
                                                                                                                                                 PAGE 12
                                                                                                                     04/01/82
                            CRTreg: Cursor positioning
                    $SUBTITLE ('CRTreg: Cursor positioning')
                            cursaddrH lit
cursaddrL lit
                                                        '14'; /* CRT reg: MSByte of cursor location word, bits: xx54$3210 */
'15'; /* CRT reg: LSByte of cursor location word */
 134 1
135 1
                    đc 1
                    dcl
                             Position Cursor to Absolute Font Cell number
                                and display bank
                    POS$Cursor: proc (Cell$number) pub rent;
  dcl Cell$Number word;
 136
 137
                                                                                       /* Absolute Font Cell Number & diplay bank */
                         cl CellsNumber word;
call set$CRT$reg (cursaddrL, low(Cell$number));
call set$CRT$reg (cursaddrH, high(Cell$number));
 138
139
                       end POS$Cursor;
 140
PL/M-86 COMPILER
                                                                                                                      04/01/82
                                                                                                                                                 PAGE 13
                            CRT: video contrast & brightness
                    $SUBTITLE ('CRT: video contrast & brightness')
                                                                                         /* Contrast & Brightness control register */
/* bits: CCCB$BB-- */
                    DCL CBctrl
                                         BYTE AT (0E8040H):
 141 1
                               Raise video contrast one level.
                     */
 142
                    contrast$up: proc rent;
                    dcl a byte;
if (a:= (CBctrl + 20h) and 0E0h) [| 0 then
CBctrl= (CBctrl and 01FH) or a;
end contrast$up;
 143
                                                                                           /* add & check upper limit
/* set contrast, bits: 765
 144
          2
                    /*
                               Lower video contrast one level.
                     */
 147
                    contrast$down: proc rent;
                    dcl a byte;
if (a:= (CBctrl - 20h) and 0E0h) [| 0E0h then /* sub & check lower limit
CBctrl= (CBctrl and 01FH) or a; /* set contrast, bits: 765
end contrast$down;
 148
149
 150
151
                               Raise video brightness one level.
 152
                    bright$up: proc rent;
 153
154
                      dcl a byte;
if (a:= (CBctrl + 4) and OlCH) [ 0 then
CBctrl= (CBctrl and OE3H) or a;
                                                                                           /* add & check upper limit
/* set brightness, bits: 432
                    end bright$up;
```

```
Lower video brightness one level.
 157
                  bright$down: proc rent;
                  dcl a byte;
if (a:= (CBctrl - 4) and OlCh) [| OlCh then
CBctrl= (CBctrl and OE3H) or a;
end bright$down;
158
159
160
         2 2 2
                                                                                      /* sub & check lower limit
/* set brightness, bits: 432
                                                                                                               04/01/82
                                                                                                                                         PAGE 14
PL/M-86 COMPILER
                           CRT: display RAM/Font Cells
                   $SUBTITLE ('CRT: display RAM/Font Cells')
                                                                                   /* memory address of display RAM */
/* display ram pointer, base of word ARRAY */
/* ARRAY of Font Cell Pointers */
                           screen$ram word at (0F0000h);
screen$addr ptr;
SCREEN based screen$addr (2000) word;
                   dcl
dcl
 162
163
                   DCL
                              Screen Buffer Word variables
                                                                                       /* CRT attribute bits: 7654$3---
                                                                                                                                             */
 165
                   dc1
                          char$mode
                                              word
                                                          pub;
                                                                                       /* CRT Font Cell Pointer base for /* ASCII symbol index
                          char$base
                                              word
                                                          pub;
                   dc1
 166
         1
                                                                                                ASCII symbol index
                    DCL
                            REVBIT
                                             LIT
                                                       '8000H';
                            BGBIT
UNDBIT
                                             LIT
                                                      '4000H';
 168
                    DCL
 169
170
                    DCL
                    dcl
                                                       '1000h';
                             INVBIT
                    dcl
                             extraBIT
                                             lit
                                                       '0800h':
                           Display symbol from character set (typically ASCII)
                               at absolute Font Cell number
(typically: [line| * [display width| + [column| )
with current Cursor & Display modes.
                   Display$symbol: proc (Symbol$code,Cell$number) pub rent;
dcl Symbol$code byte; /* Symbol print code
dcl Cell$Number word; /* Absolute Font Cell Number
 172
 173
174
                         screen(Cell$Number) = (Symbol$code + char$base) OR char$mode;
                      end Display$symbol;
                                                                                                               04/01/82
                                                                                                                                         PAGE 15
PL/M-86 COMPILER
                           CRT hardware initialization
                   $SUBTITLE ('CRT hardware initialization')
                                                                                       /* COMMENT THIS !!!!
                   DCL CRT$config (*) BYTE DATA (92,80, 81,0CFh, 25,6, 25,25, 3,14, 0,15, 0,0, 0,0);
 177 1
 178
                  CRT$Init: PROC;
DCL I BYTE;
         2
 180
         2
                      screen$addr= @screen$ram;
                     char$mode= BGBIT;
 181
 182
                     char$base= 20;
 183
                     curs$off= false;
blink$on= false;
         2
 184
 185
         2
                     Cursor$PAR= 0;
 186
         2
                      DO I=0 TO OFH;
                        CALL SET$CRT$REG (I,(CRTconfig(I)));
END;
 187
188
         3
                     END CRT$Init;
 189
         2
```

SOUND variables & hardware defs

```
$SUBTITLE ('SOUND variables & hardware defs')
 190
                 dcl bell$freq LIT
                                            1761;
                                                                             /* period of bell tone: frequency= 14.9KHz */
                                               word at (0E8084h);
byte at (0E808Bh);
word at (0E8060h);
byte at (0E802Ah);
 191
                  dcl
                            codec$clk
                                                                                 /* TIMER1: codec clock frequency
 192
193
                  dcl
                            codec$ctl
                                                                                 /* ACR: codec clock control register
                                                                                /*
/* SR: volume shift-register
/* ACR: SR control register
                  dcl
                            codecSsda
 194
                  dcl
                            volume
 195
196
                                                byte at (0E802Bh);
word at (0E8028h);
                  dcl
                            vol$ctl
                  dcl
                            vol$clk
                                                                                 /* TIMER2: volume SR clock
 197
                  dcl bell$on
                                  byte;
                                                                                 /* FLAG: bell sound presently active
                 dcl vol$level byte;
 198
                 dcl vol$level byte; /*current volume level (nine levels: 0 -- | 8)
/* volume shift pattern lookup table
dcl vol$table (*) byte data (0FFh,7FH,3FH,1FH,0FH,7,3,1,0);
 199
         1
PL/M-86 COMPILER
                                                                                                        04/01/82
                                                                                                                               PAGE 17
                         SOUND: Bell control
                  $SUBTITLE ('SOUND: Bell control')
                          Software clock resource -- set timeout for interrupt to Bell$clock
                  set$BELL$clock: proc (Period) ext;
  201
                                                                                 /* timeout delay in milliseconds
                    end set$BELL$clock:
  202
                            CODEC Hardware reset
                      */
  203
                  Bell$init: proc pub rent;
 204
         2
                     vol$level= length(vol$table)-2;
                                                                               /* set initial volume level near max */
/* set hardware to a known & quiet state */
                     call Bell$clock;
 205
         2
                    end Bell$init;
PL/M-86 COMPILER
                                                                                                       04/01/82
                                                                                                                               PAGE 18
                         SOUND: Bell control
                 $eject
 207
        1
                 Bell$clock:
                                  proc pub rent;
 208
        2
                     codec$ctl = codec$ctl and not 0C0h;
                                                                                /* disable codec clock
                                                                               /* initialize codec SDA to input mode... */
                     codec$sda = 5E00h;
                     codec$sda = 0D40h;
codec$sda = 0AA80h;
 210
                                                                                /* ... to reduce extraneous noise
 211
 212
         2

; /* set SR & T2 volume register modes */
/* volume clock frequency set beyond perception */
    /* set volume to current level */
    /* set bell state to off */

 213
        2
                     vol$ctl = (vol$ctl and not 3Ch) or 10h;
                     vol$clk = 1;
 214
215
                     volume = vol$table(vol$level);
 216
        2
                     bell$on = false;
 217
        2
                     end bell$clock;
                 Ring$bell: proc pub rent;
if not bell$on then do;
 218
219
                                                                                221
222
                      call bell$clock;
codec$sda = 0f80h;
                      codec$ctl = codec$ctl or 0c0h;
codec$clk = bell$freq;
 223
        3
 224
 225
                      bell$on = true;
 226
        3
                         end:
 227
                      call set$bell$clock(100);
                                                                                /* turn off bell in 100 milliseconds
 228
                   end:
```

```
04/01/82
                                                                                                                                        PAGE 19
PL/M-86 COMPILER
                           SOUND: volume control
                   $SUBTITLE ('SQUND: volume control')
                  /*
*
                             Raise CODEC volume one level.
                  volume$up: proc rent;
   if vol$level |= length(vol$table)-1 then
      vol$level= length(vol$table)-1;
   else vol$level= vol$level+1;
      volume= vol$table(vol$level);
 229
230
         1
                                                                                      /* check upper limit
/* set to max volume
/* bump level up by one
/* set volume register
 231
232
233
         2
         2
                    end volume$up;
                             Lower CODEC volume one level.
                   volume$down: proc rent;
  if vol$level |= length(vol$table)-1 then
    vol$level= length(vol$table)-2;
                                                                                      /* check upper limit
/* set to max volume-1
 236
         2
         2
 237
                        if vol$level[|0 then vol$level= vol$level-1; /* drop level by one volume= vol$table(vol$level); /* set volume register
 238
         2
                   end volume$down;
 241
         2
PL/M-86 COMPILER
                                                                                                               04/01/82
                                                                                                                                        PAGE 20
                           SIO: Serial I/O dvrs for TTY: and UL1:
                   $subtitle('SIO: Serial I/O dvrs for TTY: and UL1:')
                    /*ctr device dcls*/
                   dcl sioctr struc
(adata byte,
bdata byte,
 242
                   xxx byte,
ctrctl byte) at (0E0020h);
/*sio device dcls*/
 243
        1
                   dcl siodev struc
                         (adata byte,
                          bdata byte,
                   actl byte,
bctl byte) at(OE0040h);
dcl rx$avail literally 'l',
tx$empty literally '4';
 244
         1
                   dcl serial_params struc
    (actrlsb byte,
 245
       1
                                                                                       /*LSByte of chan a.'s baud rate
                                                                                       /*MSByte ...
                          actrmsb byte, bctrlsb byte,
                                                                                       /*LSByte of chan b.'s baud rate
                         (min.tol.dist.43.75%)
                                                                                                                            43.75%)
43.75%)
                                                                                                                 n
n
                                       134.5 ===|
                                                             44h
                                                                            02h
                                                                                     134.00
                                                                                               -0.37% (
                                                                                                                             40.23%)
                                       150 === 200 ===
                                                             08h
                                                                            02h
                                                                                     150.00
                                                                                               -0-
                                                                                                                             43.75%)
                                                                                               -0-
                                                                                     200.00
                                                                            01h
                                                             86h
                                       300 ===|
                                                             04h
                                                                            01h
                                                                                     300.00
                                                                                                          (
                                                                                                                             43.75%)
                                                                                               -0-
                                                                                    600.00 -0- (
1201.00 +0.08% (
                                                                                                                             43.75%)
                                       600 ===
                                      1.2k ===|
                                                             41h
                                                                            00h
                                                                                                                             42.99%)
                                                                                                               04/01/82
PL/M-86 COMPILER
                                                                                                                                       PAGE 21
                           SIO: Serial I/O dvrs for TTY: and ULl:
                   $eject
                                                                            00h
                                                                                    1775.00 -1.39% (
                                                                                                                             30.54%)
                                      1.8k ===|
                                                             2Bh
                                                                            00h
                                                                                   1816.00 +0.09% (
                                                                                                                             42.88%)
                                                                                               -2.36% (
                                                             28h
                                                                            00h
                                                                                    1953.00
                                                                                                                             21.33)
                                                                                  2003.00 +0.15% (
                                      2.0k ===|
                                                             27h
                                                                            00h
                                                                                                                             42.32)
                                      2.4k ===|
                                                             21h
                                                                            00h
                                                                                 2367.00 -1.38% (
2441.00 +1.71% (
                                                                                                                             30.64%)
                                                             20h
                                                                            00h
                                                                                                                             27.51%)
```

```
4882.00 +1.02% (
                                      4.8k ===|
                                                            10h
                                                                           00h
                                                                                                                           34.06%)
                                                            09h
                                                                           00h
                                                                                   8680.55 -9.58% (DISTORTED)
9765.56 +1.73% (min.tol.dist.27.32%)
                                     9.6k ===|
                                                            08h
                                                                           00h
                                                            06h
                                                                           00h
                                                                                13020.83 -9.58% (DISTORTED)
15625.00 +8.51% (DISTORTED)
                                                            05h
                                                                           00h
                                                            05h
                                                                           00h 15625.00 -18.62% of 19.2k (DISTORTED)
00h 19531.25 +1.02% (min.tol.dist.34.06%)
                                    19.2k ===|
                                                            04h
                   min.tol.dist. figure assumes no channel noise effects.

NOTE: possible noise DOES NOT includes bias distorition caused by various cable capacitance effects*/
PL/M-86 COMPILER
                                                                                                              04/01/82
                                                                                                                                       PAGE 22
                           SIO: Serial I/O dvrs for TTY: and UL1:
                   $eject
                                                  /*bus interface option: 10h if baud a {= baud b l4h if baud a | baud b*/
                         cr2a
                                    byte,
                         cr4a
                                    byte,
                           r4a byte,
r4b byte,
/*cr4x (16x)$54$(stops)$(even)$(parenb) = 4?h
01 00 ss e p
ss = 01 1 stop
= 10 1.5 stop
= 11 2 stop
e = 1 even
                         cr4b
                                                             e = 0 odd, byte transparent
    p = 1 even or odd
    p = 0 byte transparent*/
                         cr3a
                                    byte,
                         cr3b
                                    byte.
                            /*cr3x (rbits)$(autoenb)$4$3$2$1$(renb) = ?lh
bb 1 00001
                                       bb 1 0000 1
bb = 11 byte transparent cr3x = Elh
                                           = 01 even,odd
                                                                       cr3x = 61h*/
                         cr5a
                                    byte,
                                    byte) EXT;
                            bb = 01 even,odd,no cr5x = AAh*/
PL/M-86 COMPILER
                                                                                                             04/01/82
                                                                                                                                      PAGE 23
                          SIO: Serial I/O dvrs for port A -- TTY$INSTAT & TTY$STAT
                  $subtitle('SIO: Serial I/O dvrs for port A -- TTY$INSTAT & TTY$STAT')
                  TTY$in$stat:proc boolean PUB;
                  if ( (siodev.actl AND rx$avail) [ | 0)
                  then return(true); return(false);
                  end TTY$in$stat;
                  TTY$stat:proc boolean PUB:
                  if ( (siodev.actl AND tx$empty) = 0)
                  then return(true);
                  return(false);
```

00h

00h 00h

16h

15h

3551.00 -1.36% (3720.00 +3.33% (

30.83%)

3.185%)

3.6k ===

246

249

250

251

252

255

2

2

1

2

end TTY\$stat;

PL/M-8	6 COMPI	LER SIO: Serial I/O dvrs for port A TTY\$GE	04/01/82 T & TTY\$PUT	PAGE 24
		\$subtitle('SIO: Serial I/O dvrs for port A T	TY\$GET & TTY\$PUT')	
256	1	TTY\$get:proc byte PUB;		
		/*user must not activate this procedure if sici	dev chan. a reg. ptr nucking with hardware*/ /*wait forever till empty	*/
257 258 259	2 3 2	<pre>do while((siodev.actl AND rx\$avail) = 0); end; return(siodev.adata);</pre>	/*wait lorever till empty /*input form 7201	*/
260	2	end TTY\$get;		
261 262	1 2	TTY\$put:proc(char) PUB; dcl char byte;		
263	2	<pre>/*user must not activate this procedure if sion is not set to 0 (only [0 if user has been a do while((siodev.actl AND tx\$empty) = 0);</pre>	dev chan. a reg. ptr mucking with hardware*/ /*wait forever till empty	*/
264 265 266	3 2 2	<pre>end; siodev.adata = char; return;</pre>	/*output a char	*/
267	2	end TTY\$put;		
PL/M-8	6 COMP	ILER SIO: Serial I/O dvrs for port B ULl\$S	04/01/82 FAT & UL1PUT	PAGE 25
		\$subtitle('SIO: Serial I/O dvrs for port B U	ULIȘSTAT & ULIPUT')	
268	1	ULl\$stat:proc boolean PUB;		
269	2	<pre>if ((siodev.bctl AND tx\$empty) = 0) then return(true);</pre>		
271 272	2	<pre>return(false); end ULl\$stat;</pre>		
212	2			
273 274	1 2	ULl\$put:proc(char) PUB; dcl char byte;		
275	2	<pre>/*user must not activate this procedure if sion is not set to 0 (only [0 if user has been a do while ((siodev.bctl AND tx\$empty) = 0);</pre>	dev chan. b reg. ptr mucking with hardware*/ /*wait forever till empty	*/
276 277 278	3 2 2	<pre>end; siodev.bdata = char; return;</pre>	/*output a char	*/
279	2	end UL1\$put;		
PL/M-8	86 COMP	ILER SIO: Serial I/O dvrs for ports A & B	04/01/82	PAGE 26
280 281 282	1 2 2	<pre>\$subtitle('SIO: Serial I/O dvrs for ports A & SIO\$init:proc PUB; siodev.actl = 00\$011\$000b; siodev.bctl = 00\$011\$000b;</pre>	/*chan. a reset /*chan. b reset	*/
283 284	2 2	<pre>/*load timer now; cant touch 7201 chip for 4 2 sioctr.ctrct1 = 36h; sioctr.adata = serial params.actrlsb;</pre>	.5Mhz clocks*/ /*7\$(ctra)\$(rl)\$(mode)\$(bin)	*/
285 286 287 288	2 2 2 2 2	<pre>sioctr.adata = serial_params.actrmsb; sioctr.ctrctl = 76h; sioctr.bdata = serial_params.bctrlsb; sioctr.bdata = serial_params.bctrmsb;</pre>	/*7\$(ctrb)\$(rl)\$(mode)\$(bin)	*/
289 290	2 2	<pre>/*cr2a bus interface option*/ siodev.actl = 2; siodev.actl = serial_params.cr2a;</pre>	/* cr4a	*/
		/*cr4x*/		

```
siodev.actl = 4;
siodev.actl = serial_params.cr4a;
  291
           2
                                                                                                       /*-- | cr 4a
                                                                                                                                                                        */
            2
  292
                       siodev.bctl = 4;
                                                                                                       /*-- | cr 4b
                       siodev.bctl = serial_params.cr4b;
                       /*cr3x*/
  295
           2
                       siodev.actl = 3;
                                                                                                       /*--|cr3a
                       siodev.act1 = serial_params.cr3a;
siodev.bct1 = 3;
  296
297
                                                                                                       /*-- | cr3b
                       siodev.bctl = serial_params.cr3b;
  298
PL/M-86 COMPILER
                                                                                                                                    04/01/82
                                                                                                                                                                   PAGE 27
                                SIO: Serial I/O dvrs for ports A & B -- SIO$INIT
                       $eject
                       /*cr5x*/
  299
           2
                       siodev.actl = 5;
                                                                                                       /*-- | cr 5a
                                                                                                                                                                       */
  300
301
                      siodev.actl = serial_params.cr5a;
siodev.bctl = 5;
           2
           2
                                                                                                       /*-- | cr 5b
                       siodev.bctl = serial params.cr5b;
  302
                      303
  304
  305
  306
                       siodev.bctl = 0;
                                                                                                       /*no intrs
  307
                       end sio$init;
PL/M-86 COMPILER
                                                                                                                                   04/01/82
                                                                                                                                                                  PAGE 28
                                PPORT -- centronics interface routines
                      $subtitle ('PPORT -- centronics interface routines ')
                      /*
 * This module implements the initialization, LISTST, and LIST functions
 * for a Centronics-compatible parallel printer interface, using the
 * 6522 VIA chip.
                        * Our entry points are named pp$init, LPT$stat, and LPT$put respectively, * it's up to our caller to decode the I/O byte and call the approp- * riate routines.
PL/M-86 COMPILER
                                                                                                                                   04/01/82
                                                                                                                                                                  PAGE 29
                               PPORT -- centronics interface routines
                                                                                                     /* baseaddr for a 6522
/* 6522 template
/* out-in reg 'b'
/* out-in reg 'a'
/* data-direction, reg 'b'
/* data-direction, reg 'a'
/* tl ctr(r)/lat(w) lo
/* tl cth hi
/* tl latch hi
/* t2 ctr(r)/lat(w) lo
/* t2 ctr hi
/* shift register
/* auxiliary ctrl reg
/* peripheral ctrl reg
/* interrupt flg register
/* out-in reg 'a' NO HANDSHAKE
                      declare pp$base pointer;
declare pp based pp$base structure (
rb byte,
 3 በ ይ
          1
 309
          1
                                   ra byte,
                                  ddrb byte,
ddra byte,
tlcl byte,
                                   tlch byte,
tlll byte,
                                   tllh byte,
                                   t2cl byte,
                                   t2ch byte,
                                  acr byte,
pcr byte,
                                   ifr byte,
                                   ier byte,
                                  rax byte
                     );
/*
* Bit definitions for Centronics-style parallel interface, 'vial'.

/* baseaddr for ti
                     declare vial$base literally '0e8020h';
declare ds$1 literally '01h';
declare pi$h literally '02h';
declare bz$h literally '20h';
                                                                                                     /* baseaddr for this chip
/* data strobe (pb0)
/* this datum for vfu (pb1)
/* printer busy (pb5)
 310
          1
 311
```

```
declare ak$1 literally '40h';
declare sl$h literally '80h';
                                                                                                                                  /* printer ack (pb6)
/* on-line and no error (pb7)
  314
  315
                               * Bit definitions for multi-use pio, 'via2'.
                             declare via2$base literally '0e8040h'; declare te$h literally '0lh';
                                                                                                                                   /* baseaddr for this chip
/* talk-enable line
  316
  317
                                                                                                                                                                        04/01/82
                                                                                                                                                                                                              PAGE 30
PL/M-86 COMPILER
                                        PPORT -- centronics interface routines
                            $eject
/*
 * initial setup for parallel printer port
 * Note we use via2 during this setup to get talk-enable turned on, and
 * thus someone MUST ALREADY HAVE VIA2 INITIALIZED.
                            pp$init: procedure public;
    pp$base = via2$base;
    pp.rb = pp.rb or te$h;
    pp$base = vial$base;
             2
                                                                                                                                   /* point to secondary chip for te
/* set 'talk enbl'
/* point struc at primary chip
/* ra is dataport, init with 0's
/* set all ra bits as outgoing
/* rb is ctrlport, init no ds/pi
/* these 2 only are outgoing
/* cal/ca2 cbl/cb2 not used
/* timers/shiftreg not used
 320
321
                                    pp,base = vlaispase;
pp.ra = 0;
pp.ddra = 0ffh;
pp.rb = ds$1;
pp.ddrb = ds$1 or pi$h;
  322
323
              2
  324
325
              2
                            end pp$init;
  326
                                         SIRIUS Systems Technology, Inc. (c) 1982 S-1 Hardware PPORT -- centronics interface routines
                                                                                                                                                             04/01/82
                                                                                                                                                                                                               PAGE 31
PL/M-86 COMPILER
                             $eject
                             /*
 * Test status of printer, return true if on-line and not busy, else
 * false. For some reason, the Altos code explicitly deasserted data
 * strobe before testing; we'll assume that this represents an Altos
 * fubar and is not required here.
                             LPT$stat: procedure byte public;
if (pp.rb and (sl$h or bz$h)) = sl$h then return Offh;
return O;
  327
              2 2 2
  328
330
                             end LPT$stat;
                             ^{\prime\star} * Put one character to the printer interface.
                             LPT$put: procedure(ch) public;
  332
              1
2
2
2
2
                                   declare ch byte;
do while LPT$stat = 0; end;
pp.ra = ch;
                                                                                                                                   /* wait for printer ready
/* put outgoing char on the port
  334
  336
   337
                               disable;
                               pp.rb = pp.rb and not ds$1;
pp.rb = pp.rb or ds$1;
enable;
                                                                                                                                   /* assert data strobe
/* deassert data strobe
  338
               2 2 2
  339
340
  341
342
               2
                             return;
end LPT$put;
```

PL/M-86 COMPILER

04/01/82

PAGE 32

Example software drivers for S-1 Hardware

\$SUBTITLE ('Example software drivers for S-1 Hardware')

343 1 end Hardware;

MODULE INFORMATION:

END OF PL/M-86 COMPILATION

INDEX

A	Addition Address generation Addressing modes Addressing structures Arbitrator circuit Arithmetic instructions Assembly language Attribute bits Audio amplifier Audio clock		. 28	13 3, 29 31 39 63 223 3, 41 37
	Audio hardware			109
	Audio section	• • • • •	• • • • •	36
	Adamaty carry mag	• • • • •	• • • • •	. 8
В	Base address Based addressing Based indexed addressing			31 33
	Bit manipulation instructions	• • • • •	• • • • •	36
	Bit-mapped display			44
	Bit shift			48
	Boolean operators			69
	Boot ROM			
	Breakpoint interrupt	• • • • •	• • • • • • •	27
	Brightness and contrast control	• • • • •		43 97
	Bus control logic			147
	Bus interface unit			4, 5
	Byte ready			
	Byte-ready strobe	• • • • •	• • • • •	45
С	Carry flag			۰
	Centronics interface		1	. 36
	Checksum	4	15, 46	, 50 , 50
	CLI (clear interrupt-enable)			
	Clock and reset control logic			154
	Clock recovery	36	45 100	, 49 122
	Companding	50,	38.	123
	Conditional Transfers			77
	Continually-Variable-Slope Delta (CVSD) modulation			109
	Contrast			43
	Control port			, 36 155
	Control register 1			
	Control register 2		115,	
	Control register 2 (channel A)			159
	Control register 2 (channel B)		404	161
	Control register 3			161 163
	Control register 5			164
	Control register 6			

	Control register 7	3
D	Data block 45 Data block ID 45 Data bytes 50 Data field 50 Data ID 50 Data register 6 Data sync 50 Data transfer 45 Data modulation 39, 122 Digital recording 36 Direct addressing 30 Direct memory access 19 Direction flag 8 Disk drive assembly 3 Disk interface 45 Disk interface 45 Display circuit 97 Display contrast 43 Display system 95 Division 66 DMA control logic 152 Double words 11 DS register 7 Dual port memory 36 Dynamic relocation 16	500053250934539735322179
E	Effective address 25 8048 48 8088 instruction set 245 8088 register 223 8080/8085 36 8253 timer chip 36 ES register 7 Execution unit 4, 8 External synchronization 8 External interrupts 2 Expansion bus 39, 83	953967511
F	Fan	147051

	Font cell address 41 Font cells 40, 42 Font pointer 40 Formatting 46 Fuse 51
G	Gap 1 50 Gap 2 50 GCR (group code recording) 49 GCR read circuit 45 General register 6
Н	Header ID 50 Header search 45 Header sync 50 Head positioning 47 High/Low intensity 41 High resolution mode 43, 97 HLT (halt) 28 Hold (HOLD) 19 Hold acknowledge (HLDA) 19
1	IDIV (integer divide) 22 IEEE 488 1, 36 Indexed addressing 32 Index registers 6 Input/Output (I/O) functions 35 Instruction pointer 8 Instruction set 57 INT 3 (breakpoint interrupt) 27 Interface signals to CPU 99 Interface signals to display circuits 100 Interlace 53, 106 Interlace sync mode display 106 Interlace sync and video mode display 106 Internal interrupts 22 Internal registers 101 Internal registers 101 Interrupt control logic 148 Interrupt-enable flag 9 Interrupt instructions 78 Interrupt pointer table 23 Interrupt procedures 23, 25 Interrupt request 21 Interrupts 19, 21, 25 INTO (interrupt on overflow) 22 INTR 21 I/O address assignments 89 I/O port addressing 35
	IRET (interrupt return)

	K Keyboard
	Keyboard mechanical specifications 12! Keyboard unit 5!
	L Light pen
	LOCK (lock) 2
	Logical address
	Low pass filter
VI	Main logic board
	Memory
	Memory access
	Modem 36
	Motor speed control
	Motor speed variation
	MPSC ² asynchronous mode
	MPSC ² application hints
	MPSC ² COP synchronous mode
	MPSC ² receiver
	MPSC ² registers
	MPSC ² SDLC (/HDLC BOP synchronous) mode
	MPX ² synchronous bit-oriented protocols
	Multiplication
N	NMI (nonmaskable interrupt)
•	Nondisplay 4
	Noninterface mode display 100
	Nonmaskable interrupt
0	Offset value
P	Packed decimal number 64
	Parallel port
	Parity flag
	Phase-locked loop (PLL)
	Physical address
	Pointers
	Power switch
	Priority order

	Processor control instructions		_
	Processor halt		
	Processor-initiated interrupts		
	Processor unit		
	Program transfer instructions		
	Programmable interrupt controller	2	21
_	Deadley data		
1	Reading data		
	Read channel		
	Read signal amplitude		
	Read/Write head		
	Receive data first-in first-out register		
	Recording density	4	47
	Register indirect addressing		31
	Register operands	2	26
	Repeat		
	Reserved memory locations		
	Reverse video		
	Rotates		
	Rotational period		
	RS-232 (V-24)	1, 3	36
5	Screen buffer		
•	Screen buffer words	9	}6
	Sector components		50
	Sector format	5	50
	Sector header	45 , 5	50
	Sector ID	5	50
	Sector number	4	1 5
	Segmentation	1	12
	Segment override	15, 2	21
	Segment registers		7
	Serial ports	3	36
	7201 communications controller	. 12	29
	Shifts		
	Signed binary numbers		
	Sign flag		
	Single-step mode		
	6522 versatile interface		
	6522 versatile interface electrical characteristics	. 20	00
	6522 versatile interface functional description		
	6522 versatile interface peripheral interface characteristics		
	6522 versatile interface pins		
	6522 versatile interface read timing characteristics	. 20	
	6522 versatile interface write timing characteristics	. 20	
	Software attribute		
	Software-initiated interrupt		
	Sound output		36
	Sound quality		
	Speaker		
	Speed control		
	Speed control processor (SCP)		
	SSDA (synchronous serial data adapter)		
	SSDA interface signals for CPU	. 11	2

	SSDA operation 110 SSDA registers 114 SS register 7 Stack pointer 17 Stacks 17 Stack segment 17 Status register 119, 120 Status register 0 168 Status register 1 170 Status register 2 172 STI 21, 25 Storage organization 10 Strikeover 41
	Strings 15 String addressing 34 Strings 15 Subtraction 66 Supervisor call 26 Swivel ramp 53 SYN 45 Sync-code register 117 Sync detection 45 System reset 27
Т	Test (TEST) 19 Text mode 39 Tones 36
	Track format 51 Track ID 50 Track numbers 45 Trap flag 9, 22, 26 Trim erase 46 Type 0 interrupt 22 Type 1 interrupt 22, 26 Type 3 interrupt 27
U	Unconditional transfers
V	Verification 46 Voice 36 Volume control 36 Volume level 36
W	Wait (WAIT) 19, 45 Word data 11 Wrap around 14 Write channel 50 Writing data 46
z	Zero flag

SUPPLEMENTAL TECHNICAL REFERENCE MATERIAL

APPLICATION NOTE: 002

Revision Ø

COPYRIGHT

© 1983 by VICTOR. (R)

All rights reserved. This publication contains proprietary information which is protected by this copyright. No part of this publication may be reproduced, transcribed, stored in a retrieval system, translated into any language or computer language, or transmitted in any form whatsoever without the prior written consent of the publisher.

For information contact:

VICTOR Publications 380 El Pueblo Road Scotts Valley, CA 95066 (408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. VICTOR shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication or its contents.

VICTOR reserves the right to revise this publication from time to time and to make changes in the content hereof without obligation to notify any person of such revision or changes.

First VICTOR printing March 1983.

Supplemental Technical Reference Material

CONTENTS

1.	Vict 1.1 1.2 1.3 1.4 1.5	Computer Memory Disk System Display System Keyboard Memory Map 1.6.1 MS-DOS 1.6.2 CP/M-86	Page 1-1 1-1 1-2 1-3 1-4 1-5 1-6	Rev 0 0 0 0 0 0 0 0
2.	Disp	olay Driver Specifications		
	2.1	Overview	2-1	Ø
	2.2	Screen Control Sequences	2-2	Ø
	2.3	←	2-3	Ø
		2.3.1 Cursor Functions	2-3	Ø
		2.3.2 Editing Functions	2-4	Ø
		2.3.3 Configuration Functions	2-6	Ø
		2.3.4 Operation Mode Functions	2-7	Ø
		2.3.5 Special Functions	2-8	Ø
	2.4		2-10	Ø
		2.4.1 Microsoft MS-BASIC	2-10	Ø
		2.4.2 Microsoft MACRO-86	2-11	Ø
	2 -	2.4.3 Microsoft MS-Pascal	2-12 2-13	Ø Ø
	2.5	Transmit Page - Examples	2-13	Ø
		2.5.2 Microsoft MACRO-86	2-13	Ø
		2.5.3 Microsoft MS-Pascal	2-15	Ø
3.	Toon	nt/Output Port Specifications		
J.	3.1	Device Connection	3-1	Ø
	3.2	Parallel Printer Connection	3-2	Ø
	3.3	Parallel Cable Requirements	3-2	Ø
	3.4	Serial Printer Connection	3-3	Ø
	3.5	Serial Cable Requirements	3-4	Ø
	3.6	Operating System Port Utilities	3-5	Ø
		3.6.1 SETIO - List Device Selection	3-5	Ø
		3.6.2 STAT - List Device Selection	3-5	Ø
		3.6.3 PORTSET - Baud Rate Selection	3-6	Ø
		3.6.4 PORTCONF - Baud Rate Selection	3-6	Ø
	3.7	Serial Input/Output Ports	3-7	Ø
	3.8	Baud Rate / Transmission - Examples	3-8	Ø
		3.8.1 Microsoft MS-BASIC	3-9	Ø
		3.8.2 Microsoft MACRO-86	3-11	Ø

CONTENTS continued

Appendices		Page	Rev
Appendix	A: ASCII Codes		
A.1	ASCII Codes used in the Victor 9000	A-1	Ø
	ASCII/Hex/Decimal Chart		ø
	moorly many bearmar analy	11 Z	b
Appendix	B: Keyboard		
B.1	Victor 9000 Keyboard Layout	B-1	Ø
Appendix	C: Input/Output Ports		
C.1	Parallel (Centronics) Port	C-1	Ø
C.2	Serial (RS232C) Port	C-2	ø
C.3	IEEE-488 Port	C-3	Ø
C - 4	Control Port	C-4	Ø
0.1		C-4	W
	D: Assembler Examples		
	MACRO-86 Assembler Shell	D-1	Ø
D.2	ASM-86 Assembler Shell	D-2	Ø
Appendix	E: File Header Structure		
E.1	EXE File Header Structure	E-1	Ø
Annendiv	F: Victor 9000 Specifications		
			_
F.1		F-1	Ø
F.2	Physical Specifications	F-2	Ø
	G: Glossary		
G.1	Glossary of Terms	G-1	Ø
Appendix	H: MS-DOS Base Page Structure		
H.1	Base Page Structure	H-1	Ø
	base rage beraceure	11-1	W
Appendix	I: Interrupt Driven Serial I/O		
	Interrupt Driven Serial I/O	I-1	Ø
I.2		I-2	Ø
	I.2.1 Vectors Available on Victor .	I-2	Ø
	I.2.2 Location of Vectors	I-2	Ø
	I.2.3 Set Vector - Example	I-3	Ø
I.3	Enabling Internal/External Clocks .	I -4	Ø
	I.3.1 Providing Clocks	I-4	Ø
I.4	Initializing the SIO	I-5	Ø
	I.4.1 Baud Rate for SIO	I-6	Ø
	I.4.2 Enabling SIO Interrupts	I -6	ø
I.5	Interrupt Service Routine (ISR)	I-7	ø
	I.5.1 Interrupt Service - Example .	I -8	Ø
I.6	Setting Direction Bits	T_1α	a