File 351:Derwent WPI 1963-2004/UD,UM &UP=200414 (c) 2004 Thomson Derwent

2/5/1
DIALOG(R)File 351:Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.

011936219 **Image available**
WPI Acc No: 1998-353129/199831
XRAM Acc No: C98-108686
XRPX Acc No: N98-276255
High pressure discharge lamp with ceramic fluorescent tube - has ceramic fluorescent tube with pair of electrodes and sealed with rare-earth metal halide and sodium halide, in which correlated colour temperature of white radiated light lies within set range
Patent Assignee: MATSUSHITA ELECTRONICS CORP (MATE)
Number of Countries: 001 Number of Patents: 001

Patent Family:
Patent No Kind Date Applicat No Kind Date Week

Priority Applications (No Type Date): JP 96292338 A 19961105 Patent Details:

Patent No. Kind Lan Pg. Main TPC Filing Notes

19980522 JP 96292338

Patent No Kind Lan Pg Main IPC Filing Notes JP 10134765 A 6 H01J-061/20

Abstract (Basic): JP 10134765 A

Α

The high pressure discharge lamp consists of a fluorescent tube made of translucent ceramics. The fluorescent tube has a pair of electrodes and it is sealed with anyone of the rare earth metal halides and sodium. The weight ratio of rare earth metal halide and sodium halide is 10% - 100%. A correlated colour temperature of white radiated light is 3500K - 5000K.

Α

19961105 199831 B

ADVANTAGE - Offers high efficiency, high colour rendition white light. Stabilises life characteristics.

Dwg.1/4

JP 10134765

Title Terms: HIGH; PRESSURE; DISCHARGE; LAMP; CERAMIC; FLUORESCENT; TUBE; CERAMIC; FLUORESCENT; TUBE; PAIR; ELECTRODE; SEAL; RARE; EARTH; METAL; HALIDE; SODIUM; HALIDE; CORRELATE; COLOUR; TEMPERATURE; WHITE; RADIATE; LIGHT; LIE; SET; RANGE

Derwent Class: L03; X26

International Patent Class (Main): H01J-061/20

File Segment: CPI; EPI

File 347: JAPIO Oct 1976-2003/Oct (Updated 040202)

(c) 2004 JPO & JAPIO

*File 347: JAPIO data problems with year 2000 records are now fixed. Alerts have been run. See HELP NEWS 347 for details.

1/5/1

DIALOG(R) File 347: JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

Image available 05851665 HIGH-PRESSURE DISCHARGE LAMP

PUB. NO.:

10-134765 [JP 10134765 A]

PUBLISHED:

May 22, 1998 (19980522)

INVENTOR(s): NAKAYAMA FUMINORI

NOHARA KOJI

YAMAMOTO TAKASHI

APPLICANT(s): MATSUSHITA ELECTRON CORP [000584] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.:

08-292338 [JP 96292338] November 05, 1996 (19961105)

FILED:

INTL CLASS: [6] H01J-061/20

JAPIO CLASS: 43.4 (ELECTRIC POWER -- Applications)

ABSTRACT

PROBLEM TO BE SOLVED: To provide a high-pressure discharge lamp which has high-performance white color radiation light with high efficiency, has stable life characteristics, has less characteristic change depending upon a lighting direction, and is hardly diminished.

SOLUTION: A luminescent tube 1 is incorporated in an outer tube 2. In the luminescent tube 1, a specified quantity of mercury and argon as a triggering rare gas are sealed, and as a halide metal dysprosium as a rare earth metal generating continuous spectra, thallium for adjusting a light color, and a fertilized material of sodium for enhancing efficiency, lowering a diminishing voltage, and improving lighting direction change characteristics are sealed. The inside of the outer tube 2 is evacuated in vacuum.

*File 345: October 12, 2003 - changes to legal status now online. See HELP NEWS 345 for details. 1/39/1 DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat (c) 2004 EPO. All rts. reserv. 14375038 Basic Patent (No, Kind, Date): JP 10134765 A2 19980522 <No. of Patents: 002 Patent Family: Applic No Kind Date Patent No Kind Date JP 10134765 A2 19980522 JP 96292338 Α 19961105 (BASIC) B2 20020617 JP 96292338 JP 3293499 A 19961105 Priority Data (No, Kind, Date): JP 96292338 A 19961105 PATENT FAMILY: JAPAN (JP) Patent (No, Kind, Date): JP 10134765 A2 19980522 HIGH-PRESSURE DISCHARGE LAMP (English) Patent Assignee: MATSUSHITA ELECTRONICS CORP Author (Inventor): NAKAYAMA FUMINORI; NOHARA KOJI; YAMAMOTO TAKASHI Priority (No, Kind, Date): JP 96292338 A 19961105 Applic (No, Kind, Date): JP 96292338 A 19961105 IPC: * H01J-061/20 CA Abstract No: * 129(02)021321C; 129(02)021321C Derwent WPI Acc No: * C 98-353129; C 98-353129 Language of Document: Japanese Patent (No, Kind, Date): JP 3293499 B2 20020617 Priority (No, Kind, Date): JP 96292338 A 19961105 Applic (No, Kind, Date): JP 96292338 A 19961105 IPC: * H01J-061/20 CA Abstract No: * 129(02)021321C Derwent WPI Acc No: * C 98-353129 Language of Document: Japanese

File 345:Inpadoc/Fam.& Legal Stat 1968-2003/UD=200408

(c) 2004 EPO

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

特許第3293499号 (P3293499)

(45)発行日 平成14年6月17日(2002.6.17)

(24) 登録日 平成14年4月5日(2002.4.5)

(51) Int.Cl.7

說別記号

FI

HO1J 61/20

H01J 61/20

S

謝収項の数3(全 6 頁)

(21) 出願番号	特數平8-292338	(73) 特許権者	000005821			
(22)出願日	平成8年11月5日(1996.11.5)		松下電器產業株式会社 大阪府門真市大字門真1006番地			
(65)公園書号 (43)公開日 審査請求日 早期審査対象出額	特房平10-134765 平成10年5月22日(1998.5.22) 平成12年2月7日(2000.2.7)	(72)発明者 (72)発明者	中山 史紀 大阪府高棚市等町1番1号 松下電子工 架株式会社内 野原 浩可 大阪府高棚市等町1番1号 松下電子工 深株式会社内			
		(72) 発明者	山本 高詩 大阪府高橋市南町1番1号 松下電子工			
		(74)代理人	架株式会社内 100097445 弁巫士 岩橋 文雄 (外2名)			
		器支官	村田 购买			
			最終頁に続く。			

(54) 【発明の名称】 高圧放電ランプ

(57)【符許請求の範囲】

【請求項1】 内部に一対の電極が配置された本管部 と、この本質部の両端に設けられ、かつ内部に、前記章 極を先端部に有する導入線がシール材によって封着され <u>た細管部とを有する</u>透光性セラミックスからな<u>る</u>発光管 を備え、前記<u>細管部の内壁と前記導入線との間には隙間</u> が形成されており、前記発光管の内部には封入物として 少なくとも希土類金属ハロゲン化物と、ハロゲン化ナト リウムを含む金属ハロゲン化物とが封入されており、前 記ハロゲン化ナトリウムの前記希土類金属ハロゲン化物 10 なる発光管を備えた高圧放電ランプに関する。 に対する重量比が10%~100%であり、相関色温度 が3500K~5000K<u>の</u>放射光を<u>発</u>することを特徴 とする高圧放電ランプ。

【請求項2】 前記金属ハロゲン化物にハロゲン化セシ ウムを含むことを特徴とする請求項1に記載の高圧放電 2

ランプ。

【請求項3】 前記希土類金属ハロゲン化物に、ハロゲ ン化ディスプロシウム、ハロゲン化ツリウム、および、 ハログン化ホルミウムのうち少なくとも一種を含むこと を特徴とする請求項1または請求項2に記載の高圧放電 ランプ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、セラミックスから

[0002]

【従来の技術】セラミックスからなる発光管を備えた高 圧放電ランプは、これまで一般的に用いられてきた石英 からなる発光管を備えた高圧放電ランプと比較し、発光 管材料と封入金属との反応が少ないため、安定した寿命

(2)

特登3293499

特性が得られるものと期待されている。 また、前述の理 由より、石英からなる発光質よりも発光管の負荷を高く し、発光管の数冷点温度を上げることにより、封入金属 化合物の放電空間の蒸気圧を高め、高いランプ効率(1) m/W) が得られるとともに優れた色特性を実現するこ とができる。

【0003】従来のこの種の高圧放電ランプとしては、 **透光性アルミナ質の管端部を絶縁セラミックスキャップ** もしくは導電性キャップで閉塞したもの(特開昭62-283543号公報) や、発光管の本管部の両側にそれ 10 ぞれ設けられた円筒状の端部内に電極を有する導電性リ ード線を挿入し、円筒状の端部と導電性リード線との隙 間をセラミックス封止用フリットでシールする構造のも のが知られている (特別平6-196131号公報)。 [0004]

【発明が解決しようとする課題】セラミックスからなる 発光管を有するメタルハライドランプは、屋内の商業ス ベース等で実用化されており、このようなランプは、6 000時間のお命性能と901m/Wの高効率を実現し ている。また、色特性は、低色温度(3000K)の配 20 えを生じる。 球色において、平均貨色評価数 (Ra) 83、特殊領色 評価数(R9)ー2Bを実現したとしている。しかしな がら、この3000Kの相関色温度は電球代費としては 適しているが、日本で望まれている白色中心の商業スペ ースでの使用に適しているとはいえない。

【0005】一方、従来の石英からなる発光管を有する 高圧放電ランプの中には、相関色温度が3500K~5 000Kの白色放射を行い、しかもRa95以上という 高い演色性能を有したコンパクトなメタルハライドラン ブが寒用化されている。このようなランプの財入物とし ては、ディスプロシウム等の希土類系金属氏化物にタリ ウムおよびセシウムの氏化物を加えたものが一般的であ る。このようなランプは、先述のとおり高い仮色性を持 つ白色光を有するが、布土類金属の発する連続スペクト ルが主体となるためにランプ効率が75~m/Wと比較 的低い。また、希土類系金属は発光管の材料である石英 と反応しやすく、この反応によってシリコンが発生す。 る。このシリコンが原因で電極が損傷し、電極材料であ るタングステンが飛散し、このタングステンが発光管管 が生じる。さらに、発光管無化により発光管温度が上昇 し、その結果、希土類金属沃化物の蒸気圧が上昇するた め長夜長側連続みベクトルが増大し、寿命中に500K 以上も相関色温度が低下してしまうという問題点があっ た。

【0006】上記の問題点を解決するために、従来の石 **夾からなる発光管の代わりに封入金属との反応性が低い** セラミックスからなる発光管を用い、石英からなる発光 **曾と同様の封入物を封入すれば、寿命中色温度シフトも** を持つメタルハライドランプの失現が期待できる。 【0007】しかしながら、セラミックスからなる発光

管にディスプロシウムータリウムーセシウム(65:1 5:20wt%)の沃化物を封入すると、希土類金属沃 化物の蒸気圧が石英からなる発光管に較べ上昇するた め、視感効率の低い長波長側スペクトルを甲心とする運 緩スペクトルの増大をまねく結果となる。そのため、ラ ンプ効率の上昇はほとんどみられない。

【0008】さらに、沃化物蒸気圧の増大のために、正 弦磁点灯時のランプ電圧の再点弧部分が上昇し、ランブ の消弧性圧も上昇するという不具合が生じる。

【0009】また、発光管の温度が高く希土類金属妖化 物の蒸気圧が石英からなる発光管に比べ上昇しているた め、発光管の最冷点温度の変化による希土類金属沃化物 の然気圧の変化が、ランプ特性に大きな影響を与える。 そのため、ランブの点灯方向によって、大きな色温度の 変化やランプ電圧の変化が生じる結果となる。特に、垂 直点灯から水平点灯へと点灯方向を変更した場合、ラン ブ電圧が大きく上昇し、場合によってはランブの立ち消

【0010】本発明は、高効率で高減色な白色放射光を 有するとともに、安定した寿命特性を有し、点灯方向に よる特性変化が少なく、かつ立ち消えの生じにくい高圧 放電ランプを得ることを目的とするものである。

[0011]

【課題を解決するための手段】本発明の高圧放電ランプ は、内部に一対の電極が配置された本管部と、この本管 部の両端に設けられ、かつ内部に、前記電極を先端部に 有する事入験がシール材によって財育された細管部とを <u>有する</u>透光性セラミックスから<u>なる</u>発光管を偏え、<u>前記</u> 細管部の内壁と前記導入線との間には隙間が形成されて おり、前記発光管の内部には封入物として少なくとも希 土類金属ハロゲン化物と、ハロゲン化ナトリウムを含む 金属ハロゲン化物とが封入されており、前記ハロゲン化 ナトリウムの前記希土類金属ハロゲン化物に対する五量 比が10%~100%であり、相関色温度が3500K ~5000Kの放射光を発する。

【0012】これによって、高効率で、寿命中も安定し た高流色な白色光を持ち、点灯方向による特性変動の少 壁に被着して発光管が黒化し、寿命中に大きな光束低下 40 ない、立ち消えの生じにくい高圧放電ランプを得ること ができる。

[0013]

【発明の実施の形態】本発明の請求項1に記載の高圧放 電ランプは、内部に一対の電極が配置された本管部と、 この本質部の両端に設けられ、かつ内部に、前記電極を 先端部に有する導入線がシール材によって封着された細 <u>賃部とを有する</u>透光性セラミックスから<u>なる</u>発光管を偏 え、前記細管部の内壁と前記導入線との間には隙間が形 成されており、前記発光管の内部には對入物として少な 抑制され、また、効率も上がり、しかも高族色な白色光 50 くとも希土頬金属ハロゲン化物と、ハロゲン化ナトリウ

(3)

符经3293499

ムを含む金属ハロゲン化物とが封入されており、削記ハ ログン化ナトリウムの前配希土類金属ハロゲン化物に対 する重量比が10%~100%であり、相関色温度が3 500K~5000K<u>の放</u>射光を発する。

【0014】適量のハロゲン化ナトリウムを加えること により、セラミックスからなる発光管の高い動作温度に おいて、仮色性を高めるのに最低限必要な適正な強度の 希土類金属の運輸スペクトルと、色温度を調整し効率を 上昇させるナトリウムのスペクトルを得ることができ、 0~500Kの澄んだ白色放射光を有する高圧放電ラ ンプを実現することができる。

【0015】さらに注目すべきは、低い励起・電雕電圧 を持つナトリウムの働きにより、ハロゲン化物の蒸気圧 が非常に高い状態でも、ランプ電圧の再点弧部分の上昇 を抑制し、ランプの消弧電圧の上昇も防止する作用を有 する。同様に、点灯方向を変え最冷点温度がさらに上外 した場合にも、希土類金属氏化物の蒸気圧が上昇すると 同時に、電離・励起型圧の低い氏化ナトリウムの蒸気圧 も上昇するため、ランプ電圧の上昇を抑制し、ランプの 20 立ち消えを防止するという作用を有する。

【0016】本発明の請求項2に記載の高圧放電ランプ は、請求項1記載の高圧放電ランプにおいて、金属ハロ ゲン化物にハロゲン化セシウムを含んだ構成を有するも のである。

【0017】これによって、電雕蔵圧の低いセシウムを 旅加することにより、寿命特性を改善する作用を有す る。本来、セシウムはナトリウムよりも電離電圧が低 く、セシウムを添加することにより、ナトリウムを添加 したものと同様な効果を得ることができるものである が、従来のようにセシウムを多量に (20%) 添加する とランプ効率の低下を招く問題がある。さらに、実際に センウムを希土類金属とともに用いろと、発光管内でセ シウムと希土類金属の複合ハロゲン化物を生成し、希土 類金属を含むハロゲン化物の蒸気圧が増大するため、発 光管の動作温度が高い場合にランプ電圧の再点弧部を低 下させる作用には結びつかない。従って、この場合のセ シウムは比較的少量添加され、アーク温度の低下による お命符性の改善を行うためのものである。

【0018】本発明の請求項3に記載の高圧放電ランプ 40 は、請求項1または請求項2記載の高圧放電ランプにお いて、命土類金属ハロケン化物として、ハロゲン化ティ

スプロシウム、ハロゲン化ツリウム、および、ハロケン 化ホルミウムのうち少なくとも一種を含んだ構成を有す ろものである。

【0019】これによって、可視領域に運続したスペク トルを持つこれらの金属により、高い効率を保ちつつ、 **漢色性を向上するという作用を有する。**

【0020】以下、本発明の実施の形態について、図1 から図2を用いて説明する。図1に示す本発明の一実施 の形態である150W高圧放電ランプは、ステム3によ 高い演色性とランプ効率を維持したままに色温度350 10 って卸止された外管2内にセラミックスからなる発光管 1 が内蔵されており、発光管 1 はステム 3 から近在して いる金属線3a,3bに固定支持された構成を有してい る。発光管1内には、所定量の水銀、始動用希ガスとし てアルゴンが封入され、ハロゲン化金属として、連続ス ベクトルを発する希土類金属としてのディスプロシウ ム、光色を調整するためのタリウム、効率を高め立ち消 え電圧を低下し点灯方向変動特性を改善すろためのナト リウムの仸化物が耐入されている。また、外管2内は真 空に排気している。なお、4は口金を示す。

- 【0021】図2に示す、セラミックスからなる発光管 1は、外径10mmの本管部6の両端に外径2. 8m 四、内径1 0mmの細管部7a, 7bがそれぞれ設け られている。細管部73, 70内には電極を先端部に有 する外径0.9mmのニオビウムからなる導入線9a. 9 b がそれぞれ挿入されている。導入練9 a / 9 b は細 管部7g,7b内に、電極5g,5bが本管部6内に位 置するよう挿入されシール材10a.10bによって細 管部7a,7b内で封著され封著部8a.8bを形成し ている。
- 【0022】なお、11は水銀、12は灰化物ペレット を示す。表1に、封入物としてディスプロシウムーナト リウムータリウム (55:30.15wt%) の研化物 を封入した本実施形態の高圧放電ランプ(以下、本発明 品という)と、この本発明品と同様の構造を有し、ナト リウムを添加していない封入物(ディスプロシウムータ リウムーセシウムの仸化物) を用いた比較ランプ (以 下、比較品という)との連直点灯時の初期特性を示す。 【0023】この場合のセシウムは、アーク放電を安定 させるために瘀加されていろものである。

[0024] 【表1】

(4)

符登3293499

7

本発明品 比較品 ランプ電圧(V) 96. 9 84. 6 ランプ電力(W) 152. 2 187. 2 全角束 (1 m) 14635 11680 ランプ単平(1m/W) B 8. 2 86. 1 色像版(K) 4104 4782 平均供色評価數 94. 5 96. 1 立ち視え毎圧(V) 162 168

【0025】このように、ディスプロシウムーナトリウ ムータリウム (55.30:15wt%) の妖化物が封 入された本発明品は、ランプ効率が961m/Wと高 く、色温度4100Kの白色光を持ち、演色性も平均演 色評価数95と高く、非常に良好なランプ特性を示し

【0026】一方、ナトリウムを添加していない比較品 の場合、本発明品と同様な高い演色性の白色の放射光を 持つが、ランプ効率が851m/Wであり、これは石英 製発光管を用いたランブのランブ効率75~m/Wと比 20 べ僵位性が小さい。また、ランプ電圧が低いにも関わら ず、立ち消え電圧の値は本発明品と同等である。すなわ ち、実質的な立ち消え電圧は、本発明品の方が低いとい える。

【0027】次に、これらのランプの点灯方向による諸 特性の選を表2に示す。

[0028]

【表2】

	本売贸品		比製品	
· · ·	金庫	水平	金庫	水平
ランプ電圧(V)	96. 9	103.0	84.6	100.7
名政策(X)	4104	3857	4732	4636
立ち得え電圧(V)	162	173	168	198

【0029】表2から明らかなように、本発明品は垂直 点灯と水平点灯のランプ電圧の歪が 6. 1 Vであるのに 対し、比較品は垂直点灯と水平点灯のランプ電圧の差が 16 1 V と本発明品と比較して上昇している。 さらに 明晶は11Vしか上昇しないのに対し、比較品の場合は 35Vも上昇している。

【0030】これらの結果から明らかなように、本発明 品は、良好な色特性を示すと同時に、同等の特性を持つ 比較品に較べ立ち消えしにくい。さらに、点灯方向によ るランプ電圧や立ち消え電圧の変化が小さく、任意の点 灯方向を目由に選択しても立ち消えが生じにくいランプ であることがわかる。

【0031】図3に、本発明品について、灰化ディスプ ロシウムに対する灰化ナトリウムの重量比 (a=Na[50

/DyⅠ:)を変化させた場合の、色温度の変化、平均 夜色評価敏の変化および点灯姿勢を垂直から水平にした 場合の立ち消え電圧の変化を表す。この図3において、 実級は重量比なと色温度の関係、点線は重量比なと立ち 消え電圧の点灯方向変動の関係、一点鎮線は重量比aと 平均領色評価数の関係を表す。ここに示すとおり、恵量 比8が1.0(100%)を越えると色温度が電球色に 近くなるとともに、平均須色評価数が90未満に低下し てしまう。さらに、重量比 a が O . 3 (30%) 以下で あると点灯姿勢を垂直から水平にした場合の立ち消え電 圧の変化が上昇し、0.1(10%)以下では20Vを 越えてしまう。この立ち消え電圧の変化が20Vを越え てしまうと、水平点灯で寿命時のランプ電圧上昇が生じ た場合に立ち消えを起こす原因となる。

8

【0032】図4には、石英製発光管にディスプロシウ ムータリウムーセシウムの仸化物を封入した比較品と、 ゼラミックスからなる始光管にディスプロシウムータリ ウムーナトリウムの跃化物を封入した本発明品の寿命中 の色温度変化を示す。この図より明らかなように、本発 30 明品では寿命中の色温度変化が大幅に改善されているこ とが確認された。

【0033】また、本実施の形態ではディスプロシウム ーナトリウムータリウムの跃化物を対入したがディスプ ロシウムータリウムーナトリウムーセシウム(53.1 5 29:3wt%) の沃化物のように、電雕電圧の低 いセシウムによって生じるアーク温度の低下による寿命 特性の向上のためにセシウムを少量添加してもよい。

【0034】なお、本実施形態では、封止部の導入線と してニオビウム線を用いたが、ニオビウムの代わりに熟 立ち消え電圧については、垂直点灯から水平点灯で本発 40 膨張率が発光管材料に近いその他の導入線材料を用いて もよく。また、導電性や非導電性のセラミックスキャッ ブを封止部に用いてもよい。また、発光管の形状につい ても、細管部を設けたものでなくてもよい。

塩化物等のハログン化物を用いてもよく、それらを混合 して用いてもよい。希土類金属についても、より効果を 尚められるツリウムやホルミウム等のディスプロシウム 以外の希土類金属氏化物やこれらの混合物を用いてもよ

[0036]

(5)

符登3293499

【発明の効果】以上説明したように、本発明によれば、 高効率で高病色な白色光を持ち、寿命特性が安定し、点 灯方向による特性変化の少ない、立ち消えしにくい高圧 放電ラングを提供することができるものである。

9

【図面の簡単な説明】

【図1】本発明の実施の形態である高圧放電ランプの正 面図

【図2】同じく発光管の断面正面図

【図3】 帝土類金属氏化物に対する氏化ナトリウムの比 と色温度、平均族色評価数、点灯方向による立ち得え難 10 圧の変化の関係を示す図

【図4】本発明品と比較品との寿命中の色温度変化を示す図

10

*【符号の説明】

1 発光管

2 外管

3 ステム

3 a, 3 b 金属線

4 口金

5 a , 5 b 電極

6 本質部

7 a. 7 b 細管部

8 a. 8 b 對潛部

9 a, y b 導入線

10a, 10b シール材

【図2】

【図3】

(6)

符登3293499

フロントページの続き

(56)参考文献 特限 平4−230946 (JP, A)

符牌 昭64-19671 (JP, A)

特開 平10-50264 (JP, A)

符昭 平9-270246 (JP, A)

(58)調査した分野(Int.Cl.', DB名) H01J 61/20