

(4) = 0, 1+7, 0 1+7, + 02/1+7, 0 1- 6 + 03/-2,0/+) + 04 1-2,001-2 (SZ @ 11)14> = x, Sz' 1+7 @ 1+> + x2 Sz' 1+> @ 1-> + x3 Sz' 1-> @ 1+> + x4 Sz' 1-> @ 1-> - t (0,1178/+>+ 02/+>8/-> - 03/->0/+> # - «4 1-7 @1->) 4 11 852 11 Sz 147= to (x11+> & 1+> - x4 1-> & 1-> $\frac{2}{3}$ $\frac{1}{1+30}$ $\frac{1+30}{1+30}$ $\frac{1}{1+30}$ $\frac{1}{1+30}$ $\frac{1}{1+30}$ $\frac{1}{1+30}$ ST 1+>01-> = 0 ST 1-> 0 1+> = 0 $S_7^7 |-> \otimes |-> = - + |-> \otimes |->$ < V&W, V&W> = < V, V> < W, W>

Entangled states: =
VOW has elements ZXij Vi & wj
if y in VOW can be witten as 1/2 & wx
if ψ in $V \otimes W$ can be written as $V * \otimes W *$ for $V \otimes E V$, $W * E W \Rightarrow \psi$ is not entangled
To the stronger
for other 4, they are entangled.
For example; in case of spin-1/2
For example; in case of spin-yz with basis se, e, 3 for V, {fi, fi} for W.
ΨA= a11 e1 &f1 + a12 e1 &f2 + a21 e2 & f1 + a21 e2 &f2
-> A = / a11 a12
$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$
ΨA is not entangled it, Ψn - (a, e, +a, e₂) ⊗ (b, f, +b, f₂)
=> a11= a,b1, a22= a2b2, a12= a1b2, a21=a2b1.
=> a11a22 - a12a21 = a1b1aeb2 - a1b2a2b1 = 0 . 7det M)-0
Similarly we can prove that det (A) = 0 -) non-entangled.
For example -
14A> = 1 (1+>, & 1+E), #-1->, & 1->z)
> A = / 1/2 0)
(0 - 1/2)
=> State is entangled.

I particles in (z+, x+), (-z,-4)	
$\frac{1}{4} \text{particle J in } \left(\frac{z_1 - x}{z_1 - x} \right), \left(\frac{-z_1 x}{z_1 - x} \right)$	
$(-2,-\times), (2,\times)$	
3-directions:- a,b,c	
N_1 (a, b, c) $(-a, -b, -c)$	
N_2 $(a, b, c-)$ $(-a, -b, c)$ N_3 $(a, b-, c)$ $(-a, b, -c)$	
N_{4} $(a, b-, c-)$ $(-a, b, c)$ N_{5} $(a-, b, c)$ $(a, -b, c)$	
$N_{\theta} = (a-,b,c-) = (a,-b,c)$ $N_{\theta} = (a-,b-,c) = (a,b,-c)$	Approximate the second
N\$ (a-, b-, c-) (a,b,c)	-6/
$P(a,b) = N_3 + N_4, P(a,c) - N_2 + N_4, P(c,b) = N_3$	
$\Rightarrow P(a,b) \leq P(a,c) + P(c,b)$ Bell's inequality	
Sin2 (Oat) Sin2 (Oac) + Sin2 (Och)	
RET Gab = 20, Pac = Oct = 0.	
Jun'0 (sin'(0)	
Centrodictory	