PRINCIPIOS BASICOS EN TELECOMUNICACIONES

TECNOLOGÍAS DE TRANSMISIÓN CONVERGENTES

INTRODUCCION A LAS REDES VolP

- Las redes de VoIP son conocidas también como Redes de Telefonía de Paquetes.
- La telefonía normal a través de una PSTN es una Red de Telefonía de Conmutación de Circuitos.
- Muchos piensan que el gran beneficio de la Telefonía de Paquetes es la posibilidad de "bypass" y los ahorros en los costos de las llamadas de larga distancia.
- Actualmente los proveedores de telefonía PSTN han reducido los costos de su servicio

- Uso más eficiente del Ancho de Banda y el equipamiento
- Costos de transmisión menores
- Gastos de la red unificados
- Mejoramiento de la productividad de los empleados a través de las características provistas por la telefonía IP:
 - Los teléfonos IP son dispositivos de comunicación de negocios completos
 - Acceso a Directorios y aplicaciones de base de datos (XML)
 - Integración de la telefonía en cualquier aplicación del negocio
 - Los soft-phones y teléfonos inalámbricos ofrecen movilidad
- Acceso a dispositivos de comunicación nuevos (tales como PDAs, PALMs, etc.)

BENEFICIOS DE LAS REDES VoIP (cont.)

- A pesar de los beneficios evidentes de la telefonía VoIP, aún la migración es lenta debido a:
- El costo de la inversión no tiene un tiempo de recuperación inmediato
- La infraestructura y dispositivos de telefonía tradicional no son completamente obsoletos
- No es sencillo consolidar y entrenar a diferentes grupos de personal que usualmente realizaban tareas de mantenimiento de datos y voz en redes y dispositivos separados

COMPONENTES DE LA TELEFONIA IP

COMPONENTES DE LA TELEFONIA IP (cont 1)

- Teléfonos: pueden ser teléfonos analógicos, teléfonos PBX, teléfonos IP, etc.
- Gateways: interconectan y permiten la comunicación con dispositivos que no tienen acceso directo a la red IP.
- Multipoint Control Units (MCU): es un componente para manejar conferencias.
- Servidores de Aplicaciones y de Base de Datos: contienes las aplicaciones del sistemas de telefonía. Por ejemplo: server TFTP y server XML
- Gatekeepers: encargados de realizar las funciones de "call routing" y CAC

COMPONENTES DE LA TELEFONIA IP (cont 2)

- Call Agents: para ambientes centralizados (MGCP) estos agentes realizan funciones de: call routing, call setup, CAC, teardown, etc.
- Terminales de Vídeo: permiten realizar vídeo conferencias.
- DSP: Dispositivos que convierten la señal analógica a digital y viceversa. Realizan también: compresión (usando códecs), transcoding, manejan conferencias, etc.

SEÑALES DIGITALES Y VoIP

- Una señal digital de voz no es equivalente a VoIP
- En la actualidad casi todas las comunicaciones de voz requieren la conversión de la voz analógica a señales digitales (pe: PSTN, PBX digitales conexiones T1, etc.)
- La VoIP necesita adicionalmente encapsular las señales digitales en paquetes IP (RTP-UDP-IP) antes de entregarlas a la red IP.

DOS METODOS BASICOS PARA VoIP

Legacy Telephony Network: Analog to IP Conversion Required

All IP Network: No Conversion Required

INTERFACES ANALOGICAS

Analog Interface Type	Description
FXS	Usado en el lado de la PSTN o PBX en una conexión FXS-FXO
FXO	Usado en el lado del terminal (teléfono) en una conexión FXS-FXO
E&M	Troncal, Usado entre PBX

INTERFACES ANALÓGICAS (cont.)

- Un gateway puede manejar varios tipos de interfaces para conectarse con dispositivos analógicos (teléfonos analógicos, faxes, PSTN, PBX, etc.)
- FXS (Foreign Exchange Station): Interfaces que conectan a dispositivos analógicos: teléfonos analógicos, faxes, PBXs, etc.
- FXO (Foreign Exchange Office): Interfaces que permiten la comunicación con sistemas analógicos: PBX, PSTN, etc.
- **E&M (Earth & Magneto):** Provee señalización para las troncales analógicas que comunican 2 PBX (o 2 dispositivos con funcionalidades de PBX)

INTERFACES DIGITALESIGITALES

Interface	Voice Channels (64 kbps Each)	Signaling	Framing Overhead	Total Bandwidth
BRI	2	1 channel (16 kbps)	48 kbps	192 kbps
T1 CAS	24 (no clean 64 kbps because of robbed-bit signaling)	in-band (robbed-bits in voice channels)	8 kbps	1544 kbps
T1 CCS	23	1 channel (64 kbps)	8 kbps	1544 kbps
E1 CAS	30	64 kbps	64 kbps	2048 kbps
E1 CCS	30	1 channel (64 kbps)	64 kbps	2048 kbps

REQUERIMIENTOS DE COMPRESIÓN DE ANCHO DE BANDA

COMPRESIÓN DE LA VOZ

- Existen varios algoritmos de compresión de voz orientados a reducir los requerimientos de BW de una llamada de VoIP.
- Estos algoritmos varían según los siguientes parámetros:
 - Requerimiento de Ancho de Banda
 - Degradación de la calidad de la voz que provocan
- Retardo que introducen
- Consumo de CPU por su complejidad

CARACTERISTICAS DE LOS CODECS DE VOZ

Standard, Codec	Bit Rate (kbps)	Voice Quality (MOS)
G.711, PCM	64	4.1
G.726, ADPCM	16, 24, 32	3.85 (with 32 kbps)
G.728, LDCELP	16	3.61
G.729, CS-ACELP	8	3.92
G.729A, CS-ACELP	8	3.9

MEAN OPINION SCORE

ENCAPSULACIÓN DE PAQUETES DE VOZ PARA TRANSPORTE

TRANSPORTE DE VOZ EN REDES BASADAS EN CIRCUITOS

- Los teléfonos analógicos se conectan a los switches CO
- Los switches CO realizan la conversión analógica-digital
- Después que la llamada es establecida, la PSTN provee:
 - Un circuito dedicado end-to-end para esta llamada (DS0)
 - Transmisión sincrónica con un ancho de banda fijo y un retardo bajo y constante

TRANSPORTE DE VOZ EN REDES IP

- Los teléfonos analógicos se conectan a los gateways de voz
- Los gateways de voz realizan la conversión analógica-digital
- Después que la llamada es establecida, la red IP provee:
 - Una entrega paquete por paquete a través de la red
 - Un ancho de banda compartido y retardos grandes y variables

- La VoIP es encapsulada en paquetes IP pero necesita de otras cabeceras y mecanismos para ser transportado por la red IP.
- TCP y UDP por si solos no son aptos para transportar la voz.
- RTP (Real Time Protocol) es utilizado junto con UDP (puertos 10000 - 30000) para el transporte de voz.
- Esto añade un overhead por cabeceras considerable.

REQUERIMIENTOS DEL TRANSPORTE DE VOZ

- Confiabilidad: (No requerido). TCP ofrece un servicio orientado a conexión y confiable.
- Reordenamiento: (Requerido). Los paquetes VoIP pueden llegar en desorden y necesitan ser entregados en orden.
- Time-Stamping: (Requerido). Aplicaciones de tiempo real necesitan saber los tiempos en que los paquetes fueron transmitidos para efectos de reordenamiento y supresión del jitter.
- Multiplexación: (Requerido). Múltiples sesiones de tiempo real pueden darse lugar. UDP permite multiplexación a través del uso de puertos.
- Otros: El overhead de TCP es más grande (20 bytes) que el de UDP (8 bytes) y RTP (12 bytes)

EJEMPLOS DE ENCAPSULACIÓN DE VOZ

	20	8	12		160
	IP	UDP	RTP	G.711 (20 ms of Voice)	
	20	8	12	20	
_	20		12	20	

- La voz digitalizada es encapsulada dentro de RTP, UDP e IP.
- Por default, 20 ms de voz son paquetizados en un único paquete IP

CÁLCULO DE LOS REQUERIMIENTOS DE ANCHO DE BANDA

IMPLICACIONES DE ANCHO DE BANDA DE LOS CÓDECS

- El ancho de banda de un CODEC contempla solamente la información de voz (payload)
- No se incluye el overhead de paquetización

Codec	Bandwidth
G.711	64 kbps
G.726 r32	32 kbps
G.726 r24	24 kbps
G.726 r16	16 kbps
G.728	16 kbps
G.729	8 kbps

ILUSTRACION DEL CALCULO DEL ANCHO DE BANDA

FIN

