Cerve Sketching

Sketch the following Course $2x^5-5x^2+1$

- a) Domain = (-0,00)
- b) Derivative & CiHcal numbers

f'(n) = 10x4 - 10x

= 10x(x3-1)

(a3-63) = (a-6) (a2+ ab+62)

= 10x(x-1)(x2+x+1)

p(n) = 0

10 x = 0 x-1 = 0

N2 7 211 = 0

n = 0

2 = 1 Unso Ivable

Always positive

Critical numbers = 0,1

Table of variation

N	- 00) 1	-	+ 00
10 X	_	+	Ŧ	
N - 1	_	_	+	
72 71 + 71 + 1	+	4	4	
f'(n)	+	_	+	
p(n)		1	1	

Local max = f(0) = 1 Local min = f(1) = -2

$$\lim_{N\to -\infty} f(N) = \lim_{N\to -\infty} 2n^{5} - 5n^{2} + 1$$

$$= \lim_{N\to +\infty} 2n^{5} = -\infty$$

=
$$\lim_{x\to +\infty} 2x^5 = +\infty$$

$$f(n) = \chi$$

$$\chi^2 - 9$$

Domain =
$$R - \{-3, 3\}$$

= $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$

Derivative & Cifical Numbers

$$f'(n) = \frac{(n^2 - q) - n(2n)}{(n^2 - q)^2}$$

$$= \frac{\chi^2 - 9 - 2\chi^2}{(\chi^2 - 9)^2}$$

$$= \frac{-\chi^2 - 9}{(\chi^2 - 9)^2}$$

There are no critical numbers

Table of variation

N	-00 -	3 g	+ 00
p'(n)			
1			
f(n)	1	7	
	1	4/	\/

$$\lim_{n\to\pm\infty} f(n) = \lim_{n\to\pm\infty} \frac{n}{n^2 - q}$$

$$= \lim_{n\to\infty} \frac{n}{n}$$

$$\lim_{N \to +\infty} \frac{\mathcal{R}}{N^2}$$

: y=0 is a houzontal asymptotic

r	-00 -	3 () 3	3 + 00
96	_	_	+	f
				,
n²-9	+			+
- (N)	-	C	_	<u> </u>
		T		\

The graph has vertical asymptoti at n = -3 & x = 3

$$f(\mathcal{N}) = (\mathcal{N}^2 - 4)^{2/3}$$

Domain =
$$(-\infty, \infty)$$

Derivative & Clifical Numbers

$$P'(n) = \frac{2}{3} (2n) (n^2 - 4)^{-13}$$

$$\frac{2}{3} \frac{4}{3\sqrt{3(2-4)}}$$

$$\lim_{N \to -\infty} (x^2 - 4)^{245} \qquad \lim_{N \to +\infty} (y^2 - 4)^{244}$$

$$= \lim_{N \to -\infty} (x^2)^{4/5} \qquad \text{i. lim.} (x^2)^{4/5}$$

$$= +\infty$$

$$= +\infty$$

Applied Optimization

Example 1

A manufacturer wants to design an open box having a square base and having a sunface area of 108 in2. What dimension will produce a box with maximum b volume?

$$V = n^2 h$$

$$A = n^2 + 4nh$$

$$n^{2} + 4\pi h = 108$$

$$h = 108 - \pi^{2}$$

$$4\pi$$

$$V = \chi^2 \left(\frac{108 - \chi^2}{4\chi} \right)$$

$$\chi > 0 \qquad \forall > 0 \Rightarrow (108 - \lambda^2) > 0$$

$$n = \infty - \sqrt{100} \sqrt{108} \infty$$

$$V = \frac{\chi}{4} \left(108 - \chi^2 \right)$$
 where $0 \le \chi \le \sqrt{108}$

Feasible Domain

$$1/(n) = 27 - 3n^2$$

$$V(0) = 0$$

 $V(\sqrt{108}) = 0$
 $V(6) = 108$

n = 6 in

$$h = 108 - 36$$

Example 2

Which point on the graph of $y = 4 - n^2$ is closest to the point (0,2)?

$$d = \sqrt{n^2 + (4 - n^2 - 2)^2}$$

$$= \sqrt{\chi^2 + (2-\chi^2)^2}$$

$$f'(n) = 4n^3 - 6n$$

 $f'(n) = 0$

Cuitical points are
$$-\frac{3}{2}$$
 0, $\frac{3}{2}$

$$f''(n) = 12n^2 - 6$$
= 6 (2x² - 1)

$$\int_{1}^{1} \left(\frac{3}{2} \right) = 6 \left(2 \left(\frac{3}{2} \right)^{2} - 1 \right)$$

$$\frac{1}{2} \cdot \left(\frac{2 \times 3}{2} - 1 \right)$$

:
$$f(\sqrt{3})$$
 & a local minimum

$$f''\left(-\frac{3}{2}\right) = 6\left(2\left(-\frac{3}{2}\right)^2 - 1\right)$$

$$= 6\left(2 \times 3\right)$$

:
$$f\left(-\int_{2}^{3}\right)$$
 8 a local minimum

$$d = \sqrt{f(n)}$$
 will achieve its minimum (a) $n = -\sqrt{\frac{3}{2}}$ and at $n = \sqrt{\frac{3}{2}}$

$$y = 4 - \pi^2$$

$$= 4 - \left(\sqrt{\frac{5}{2}} \right)^2$$

$$y = 4 - \pi^2$$

$$= 4 - \left(-\frac{5}{2}\right)^2$$

$$\begin{pmatrix} -\sqrt{3} & 5 \\ 2 & 2 \end{pmatrix} \quad \xi \quad \left(\sqrt{\frac{3}{2}}, \frac{5}{2}\right)$$

