- 1.1 Concetti Base
- 1.2 Calcolo del costo Computazionale
- 1.3 Alberi

Algoritmi

A Definizione

Metodo risolutivo che collega ogni istanza alla soluzione.

Le **istanze** di un problema sono di solito **infinite**

- ullet Ogni istanza ha una **lunghezza** n e una **taglia** |n| (numero di cifre parte intera inferiore)
- · Le istanze di una certa lunghezza sono in genere infinite

Definizione: Costo Computazionale

Definiamo ${f costo}$ ${f costo}$ della lunghezza dell'istanza

🖹 Definizione: Algoritmo Ottimo e Complessità Computazionale

- Algoritmo Ottimo: Algoritmo con costo computazionale migliore tra i possibili per un problema
- Complessità Computazionale: Costo computazionale matematicamente migliore per la risoluzione di un problema, anche definita lower bound

Bisogna notare che la **complessità computazionale è riferita ad un problema** e non un algoritmo, difatti è possibile che nonostante si sappia quale sia matematicamente il costo computazionale migliore per la risoluzione di un problema, non è ancora stato scoperto un algoritmo che lo raggiunga

A Definizione: Problema Indecidibile

Definiamo problema indecidibile un algoritmo irrisolvibile

≡ Esempio: Terminatore di Touring

Creare un algoritmo che, preso un altro algoritmo, dica se quest'ultimo finisce

Strutture Dati

△ Definizione

Strutture identificate da un particolare metodo di **salvataggio delle informazioni** e dalle **operazioni su di esse**, che sono a loro volta algoritmi.

① Tipologie

- **Concrete**: strutture di base che è possibile dare per scontate (es. vettori)
- Astratte: strutture complesse create utilizzando diverse strutture concrete ed eventualmente altre astratte

(i) Tipi di Operazioni

- Statiche: leggono i dati senza modificarne la struttura o il contenuto
- Dinamiche: modificano i dati e necessitano di una computazione per il mantenimento della struttura

Dimensione dei Problemi

Consideriamo la seguente tabella sui **numeri di cifre** di alcune funzioni note

n	$ \log_2(n) $	n	$ n^2 $	$ n^5 $	$ 2^n $	$ n^n $
1	1	1	1	1	1	1
100.000	2	6	11	26	30.103	500.001
200.000	2	6	11	27	60.206	1.060.206
300.000	2	6	11	28	90.309	1.643.137
400.000	2	6	12	29	120.412	2.240.824
500.000	2	6	12	29	150.515	2.849.486
600.000	2	6	12	29	180.618	3.466.891
700.000	2	6	12	30	210.721	4.091.569
800.000	2	6	12	30	240.824	4.722.472
900.000	2	6	12	30	270.927	5.358.819
1.000.000	2	7	13	31	301.030	6.000.001

Possiamo notare come da $\log a$ n e da n a 2^n è presente lo stesso "salto" di grandezza dei valori, in quanto si passa di un livello esponenziale

Sia

- ullet A un algoritmo
- ullet n la lunghezza delle istanze da risolvere
- ullet f(n) il numero di operazioni da eseguire di A in funzione di n
- a il numero di operazioni al secondo eseguite

Possiamo ottenere l'istanza più lunga risolvibile in k secondi come

$$\frac{f(n)}{a} \le k$$

Da questa formula possiamo notare l'immensa differenza di costo computazionale tra le varie funzioni

$$a = 1$$

k	$\log_2(n)$	n	n^2	2^n
1 secondo	2	1	1	0
2 secondi	4	2	1	1
4 secondi	16	4	2	2
1 minuto	$1.15 \cdot 10^{18}$	60	7	6
1 ora	*	3.600	60	12
1 giorno		86.400	293	17
1 secolo		$3.1536 \cdot 10^9$	56.156	32

^{*} numero con circa 1084 cifre

O con un caso più realistico, una istruzione per microsecondo

$$a=10^{11}$$

\boldsymbol{k}	$\log_2(n)$	n	n^2	2^n
1 secondo	2	1	1	0
2 secondi	4	2	1	1
4 secondi	16	4	2	2
1 minuto	$1.15 \cdot 10^{18}$	60	7	6
1 ora	*	3.600	60	12
1 giorno		86.400	293	17
1 secolo		$3.1536 \cdot 10^9$	56.156	32

^{*} numero con circa 30'000'000'000 di cifre

Insertion Sort

♀ Idea

L'idea è quella di, per ogni elemento, controllare dal fondo ogni elemento fino a trovarne uno minore, per poi inserirlo dopo di esso

Parametri: A=vettore

Chiamiamo t_j il numero di volte che la **guardia del ciclo while** (condizione - riga 5) viene valutata.

Il valore di t_j dipende da j e corrisponde al numero di elementi del vettore ogni volta spostati, più uno (condizione risulta false e esce dal ciclo)

i = i - 1

A[i + 1] = key

Costo Computazionale

Calcoliamo il costo computazionale dell'algoritmo

Istruzione	Costo	Ripetizioni
for $j = 2$ to A.length	c_1	n
key = A[j]	c_2	n-1
i = j - 1	c_4	n-1
while i > 0 and A[i] > key	c_5	$\sum_{j=2}^{n} t_j$
A[i + 1] = A[i]	c_6	$\sum_{j=2}^n (t_j-1)$
i = i - 1	c ₇	$\sum_{j=2}^{n}(t_j-1)$
A[i + 1] = key	c_8	n-1

La formula sarà quindi

$$T(n) = c_1 \cdot n + \\ c_2 \cdot (n-1) + \\ c_4 \cdot (n-1) + \\ c_5 \cdot \sum_{j=2}^n t_j + \\ c_6 \cdot \sum_{j=2}^n (t_j - 1) + \\ c_7 \cdot \sum_{j=2}^n (t_j - 1) + \\ c_8 \cdot (n-1)$$

A seconda del valore di $t_{\it j}$, abbiamo risultati diversi

- Caso ottimo: non sposto mai nessuno $\implies t_i = 1$
- Caso pessimo: li sposto tutti ogni volta $\implies t_j = j$
- ullet Caso medio: ne sposto mediamente metà ogni volta $\implies t_j = rac{j}{2}$

Date le seguenti **sommatorie note** calcoliamo

$$\begin{split} \sum_{j=1}^n j &= \frac{n(n+1)}{2} \\ \sum_{j=2}^n j &= \frac{n(n+1)}{2} - 1 \\ \sum_{j=2}^n (j-1) &= \frac{n(n-1)}{2} \end{split}$$

≔ Esempio: Caso Ottimo

$$t_j = 1$$

$$c_1n + c_2(n-1) + c_4(n-1) + c_5\sum_{j=2}^n 1 + c_6\sum_{j=2}^n (1-1) + \sum_{j=2}^n (1-1) + c_8(n-1)$$

Semplificando e raccogliendo le costanti

$$T(n) = an + b$$

≡ Esempio: Caso Pessimo

$$t_j=j$$

$$c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^nj+c_6\sum_{j=2}^n(j-1)+\sum_{j=2}^n(j-1)+c_8(n-1)$$

Semplificando e raccogliendo le costanti

$$T(n)=an^2+bn+c$$

≡ Esempio: Caso Medio

$$t_j=rac{j}{2}$$

$$c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n\frac{j}{2}+c_6\sum_{j=2}^n\left(\frac{j}{2}-1\right)+\sum_{\frac{j}{2}=2}^n\left(\frac{j}{2}-1\right)+c_8(n-1)$$

Semplificando e raccogliendo le costanti

$$T(n) = an^2 + bn + c$$

Alberi

♥ Proprietà

- Ogni nodo ha un solo padre e diversi figli, ad eccezione del primo che non ne ha, chiamato radice (root)
- Due nodi possono essere collegati da un solo percorso, ovvero non sono presenti cicli
- I nodi senza figli vengono chiamati foglie

Alberi Binari

⊘ Proprietà

- Ogni nodo a massimo due figli
- Viene definito **completo** se il numero di nodi è una potenza di 2

Piano $\left(i\right)$	Numero di Nodi (LIV_i)	Totale Nodi (TOT_i)
1	1	1
2	2	3
3	4	7
4	8	15
h	2^{h-1}	$2^{h}-1$