Maschinelles Lernen Symbolische Ansätze: Projekt Aufgaben 1-3

Aufgabe 1 - Regellernen: Anwendung und Interpretation

Verwendete Datensätze & Regellerner Vergleich der Ergebnisse: Datensätze Vergleich der Ergebnisse: Regellerner

Zusammenfassung

Aufgabe 2 - Evaluation von Regellernern Verwendete Datensätze & Vorgehen Vergleich der Validierungsmethoden Unterschiedliche Random Seeds für 10x10 Cross-Validation Genauigkeitsmessung auf Testdatensatz

Aufgabe 3 - ROC-Kurven

Verwendeter Klassifikationsdatensatz Vergleich der erzeugten Kurven Interpretation der Ergebnisse

Aufgabe 1 - Regellernen: Anwendung und Interpretation Verwendete Datensätze & Regellerner

- ▶ Car Evaluation Database
- ► Database for Fitting Contact Lenses
- ▶ Zoo Database
 - Attribut 14 ist numerisch (Anzahl der Beine)
 - Preprocessing mit Unsupervized Discretiser nötig
 - ► Liefert fünf Bins (Intervalle) für 0, 2, 4, 6 oder 8 Beine

- → Klassifizieren mit ConjunctiveRule, JRip und Prism
- → Test mit training set als Testoption //TODO!!!

Aufgabe 1 - Regellernen: Anwendung und Interpretation Vergleich der Ergebnisse: Datensätze

Car Datensatz (4 Klassen):

- ► ConjunctiveRule: produziert (true ⇒ class=unacc) als einzige, bedingungslose Regel
 - ► Es wird immer nur eine Klasse vorhergesagt.
- ▶ JRip: 49 Regeln mit durchschnittlich 4 Bedingungen
 - ► Im Mittel: Vorhersage aller Klassen mit 88% Precision und 87% Recall
- Prism: deutlich mehr Regeln und eine etwas bessere Accuracy als JRip
 - Aber evtl. Overfitting da sehr viele Bedingungen pro Regel

Aufgabe 1 - Regellernen: Anwendung und Interpretation Vergleich der Ergebnisse: Datensätze

Contact Lenses Datensatz (3 Klassen):

- \blacktriangleright ConjunctiveRule: produziert mit (true \Rightarrow contact-lenses=none) eine bedingungslose Regel
 - ► Es wird nur die häufigste Klasse vorhergesagt (höchster Prior).
- ▶ JRip: 3 Regeln mit 0, 1 oder 2 Bedingungen um alle 3 Klassen vorherzusagen
- ► Prism: Mehr und spezifischere Regeln
 - ► Teilweise alle 4 Attribute als Bedingung
 - Schlechtere Accuracy als JRip

Aufgabe 1 - Regellernen: Anwendung und Interpretation Vergleich der Ergebnisse: Datensätze

Zoo Datensatz (7 Klassen):

- ► ConjunctiveRule: produziert (milk=true ⇒ type=mammal) als einzige Regel mit einer Bedingung
 - ► Deshalb werden nicht alle Klassen vorhergesagt.
- ▶ JRip: 7 Regeln mit maximal 3 Bedingungen
 - Accuracy von 89% für alle Klassen zusammen
- ▶ Prism: Deutlich speziellere Regeln
 - lacktriangledown Für die meisten Tiernamen direkt den Typ gelernt ightarrow fast keine Generalisierung!
 - ► Im Vergleich zu JRip: weniger Beispiele korrekt klassifiziert

Aufgabe 1 - Regellernen: Anwendung und Interpretation Vergleich der Ergebnisse: Regellerner

ConjunctiveRule:

- ► Es wird immer genau eine Regel gelernt.
 - Die Regel, die häufigste Klasse vorhersagt!
- In 2 Fällen entspricht die Regel dem höchsten Prior, da sie keine Bedingung hat.
- ▶ Beim Zoo Datensatz wird für Beispiele, bei denen die Bedingung milk=true ⇒ type=mammal nicht erfüllt ist, als Default-Value die nächst häufigste Klasse bird zugewiesen

Aufgabe 1 - Regellernen: Anwendung und Interpretation Vergleich der Ergebnisse: Regellerner

JRip:

- ▶ Vergleichsweise werden wenige generelle Regeln gelernt.
- Passt zur Information Gain Heuristik, da diese allgemeinere Regeln bevorzugt
- Die Default-Rule wählt die häufigste Klasse aus, wenn keine andere Regel davor zutrifft
 - Prinzip: "Wenn kein weiteres Wissen vorhanden ist, dann wähle die Klasse, die am meisten vorkommt."

Aufgabe 1 - Regellernen: Anwendung und Interpretation Vergleich der Ergebnisse: Regellerner

Prism:

- ► Vergleichsweise werden viele spezielle Regeln gelernt.
- ► Passt zur Precision Heuristik, die zu Overfitting neigt.
- ► Es gibt keine Default-Rule.

Aufgabe 1 - Regellernen: Anwendung und Interpretation Zusammenfassung

- ▶ Insgesamt lernt JRip die Datenmengen am Besten.
- ► Das Ergebnis passt zur benutzten Heuristik, die allgemeinere Regeln bevorzugt und Overfitting vermeidet.
- ► Außerdem lässt sich der Car-Datensatz am genauesten Lernen
 - (Vermutlich, weil er am Größten ist und dadurch viele Beispiele zum Lernen existieren
- ► Für fundiertere Aussagen sind weitere Untersuchungen mit größeren Datensätzen notwendig, da insgesamt eine große Abhängigkeit von den jeweiligen Daten zu beobachten ist.

Aufgabe 2 - Evaluation von Regellernern Verwendete Datensätze & Vorgehen

- ▶ Balance Scale Weight & Distance Database
- ▶ Car Evaluation Database
- ▶ Thyroid Disease Records ("Sick" Datensatz)
- ► Sonar: Mines vs. Rocks
- ▶ 1984 United States Congressional Voting Records Database

- → Datensätze jeweils zufällig mischen.
- → Datensätze in 2 gleich große, stratifizierte Teile aufteilen.
- → Datensätze mit JRip auf Trainingsdatensatz lernen und evaluieren.

Aufgabe 2 - Evaluation von Regellernern Vergleich der Validierungsmethoden

Genauigkeitsabschätzungen:

Datensatz	1x5 CV	1x10 CV	1x20 CV	Leave-One-Out	Trainingsmenge
Balance	78.2051	80.1282	75.641	78.2051	83.0128
Car	77.4306	79.8611	80.2083	79.2824	87.5
Sick	98.0382	97.9852	98.1972	98.3563	99.0456
Sonar	75.9615	75	75	73.0769	94.2308
Vote	94.0367	95.4128	93.578	95.4128	95.4128

- \blacktriangleright Testen auf der Trainingsmenge ist nicht empfehlenswert \rightarrow Problem: Overfitting
 - Accuracy des gelernten Modells wird überschätzt.
- Die unterschiedlichen Cross-Validation Ergebnisse liefern kein aussagekräftiges Muster bzgl. ihrer Qualität
 - ► Es werden weitere Untersuchungen benötigt.

Aufgabe 2 - Evaluation von Regellernern Unterschiedliche Random Seeds für 10x10 Cross-Validation

Vergleich 1x10 und 10x10 Cross-Validation

Datensatz	1x10 CV	10x10 CV
Balance	80.1282	77.82052
Car	79.8611	79.71065
Sick	97.9852	98.27148
Sonar	75	73.36538
Vote	95.4128	94.9541

- Gemittelte Genauigkeiten der 10 verschiedenen Durchläufe weichen sehr wenig vom Ursprungsergebnis ab.
- ► Auffällig: je nach Random Seed treten während der Berechnung Schwankungen von ±4% zwischen den einzelnen 1x10 CVs auf.
 - Verlässliche Aussagen erhält man nach mehreren Durchläufen mit jeweils neuer Random Initialisierung.

Aufgabe 2 - Evaluation von Regellernern Genauigkeitsmessung auf Testdatensatz

Vergleich 10x10 Cross-Validation vs. Validierungsmenge

Datensatz	10x10 CV	Testmenge	
Balance	77.82052	78.2748	
Car	79.71065	81.9444	
Sick	98.27148	98.0382	
Sonar	73.36538	67.3077	
Vote	94.9541	95.8525	

- ► Evaluation des gelernten Modells auf Testdaten liefert in den meisten Fällen eine Accuracy der selben Größenordnung.
 - ▶ Nur im Fall Sonar ist die Abschätzung deutlich niedriger.
- ► Für realistischere Validierungen evaluiert man sinnvollerweise mit ungesehenen Testdaten
 - ▶ Damit kann die Generalisierbarkeit besser geprüft werden.

Aufgabe 3 - ROC-Kurven Verwendeter Klassifikationsdatensatz

- ► Verwendung des Datensatz Vote
 - ► Klassifizierung jeweils mit J48 und NaiveBayes
- ► Danach Generierung beider ROC-Kurven für die Klassen republicans und democrats

Aufgabe 3 - ROC-Kurven Vergleich der erzeugten Kurven

Abbildung: J48 - ROC-Kurve für die Klasse democrats

Aufgabe 3 - ROC-Kurven Vergleich der erzeugten Kurven

Abbildung: J48 - ROC-Kurve für die Klasse republicans

Aufgabe 3 - ROC-Kurven Vergleich der erzeugten Kurven

Abbildung: NaiveBayes - ROC-Kurve für die Klasse democrats

Aufgabe 3 - ROC-Kurven Vergleich der erzeugten Kurven

Abbildung: NaiveBayes - ROC-Kurve für die Klasse republicans

Aufgabe 3 - ROC-Kurven Interpretation der Ergebnisse

- ► Auffällig ist, dass die Kurven konvex verlaufen.
 - ► Es ist eine gute Trennung der Klassen vorhanden.
- ► Die ROC-Kurven für J48 nähern sich am meisten dem Punkt der optimalen Theorie an (true-positive-rate 100% und false-positive-rate 0%)
- Die "Area Under ROC" von J48 hüllt diejenige von NaiveBayes fast in ihrer Gesamtheit ein.
- Für den verwendeten Datensatz ist J48 fast immer ein besserer Klassifizierer als NaiveBayes.
- NaiveBayes kann allerdings für sehr steile bzw. flache Kostenverhältnisse sinnvoll sein
 - Zum Beispiel für minimales fpr und sehr hohe Precision bzw. maximales tpr und sehr hoher Recall

Abschlussüberblick

Aufgabe 1 - Regellernen: Anwendung und Interpretation

Verwendete Datensätze & Regellerner

Vergleich der Ergebnisse: Datensätze

Vergleich der Ergebnisse: Regellerner

Zusammenfassung

Aufgabe 2 - Evaluation von Regellernern

Verwendete Datensätze & Vorgehen

Vergleich der Validierungsmethoden

Unterschiedliche Random Seeds für 10x10 Cross-Validation

Genauigkeitsmessung auf Testdatensatz

Aufgabe 3 - ROC-Kurven

Verwendeter Klassifikationsdatensatz

Vergleich der erzeugten Kurven

Interpretation der Ergebnisse