Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Физтех-школа аэрокосмических технологий Кафедра Аэрофизики летательных аппаратов

Направление подготовки: 09.03.01 Информатика и вычислительная техника (бакалавриат)

Направленность (профиль) подготовки: Компьютерное моделирование

Форма обучения: очная

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

«Алгоритм предиктивного анализа отказов системы видеоаналитики в режиме времени по данным от систем мониторинга»

(бакалаврская работа)

Студент:
Боровец Николай Васильевич
(noduvo omudavma)
(подпись студента)
Научный руководитель:
Гришин Никита Александрович,
программист ПИШ РПИ
(подпись научного руководителя)

Жуковский

2025

РИЗИВИТОННА

Выпускная квалификационная работа посвящена разработке метода предиктивного анализа задержек в конвейере видеоаналитики для мониторинга объектов критической инфраструктуры.

Цель работы: создать алгоритм прогнозирования метрики $common_event_delay$ с автоматическим обнаружением аномалий для предупреждения операторов о потенциальных сбоях.

Методы исследования: анализ временных рядов Prometheusметрик, сравнение архитектур ML-моделей (трансформеры, градиентный бустинг), временная кросс-валидация, Docker-развертывание, A/B-тестирование.

Основные результаты: Разработан MLOps-конвейер с точностью прогнозирования, превышающей базовые методы, и временем отклика <1 сек. Создана система оповещений с адаптивными порогами. Проведена валидация на данных 90,644 точки за 16 дней.

Практическая значимость: Готовое решение для предиктивного мониторинга видеосистем критической инфраструктуры с возможностью адаптации для телекоммуникаций и промышленной автоматизации.

Ключевые слова: предиктивный анализ, задержки, видеоаналитика, Prometheus, временные ряды, аномалии.

СОДЕРЖАНИЕ

АННОТАЦИЯ	2
СОДЕРЖАНИЕ	3
введение	4
1 Общие положения	9
1.1 Архитектура системы видеоаналитики	9
1.2 Постановка задачи	0
2 Глава n	5
2.1 Секция п	5
3 Глава n	6
3.1 Секция п	6
4 Глава n	7
4.1 Секция п	7
ЗАКЛЮЧЕНИЕ 1	8
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	g

ВВЕДЕНИЕ

Обоснование выбора темы и актуальность

Современные системы видеоаналитики играют критически важную роль в обеспечении безопасности и мониторинга объектов критической инфраструктуры, включая аэродромы, железнодорожные станции, морские порты, промышленные предприятия и нефтеперерабатывающие комплексы. Эти системы обрабатывают огромные объемы видеоданных в режиме реального времени, что предъявляет высокие требования к производительности и надежности всего технологического конвейера.

С ростом масштабов развертывания и усложнением архитектуры видеоаналитических систем возрастает и сложность их мониторинга. Современные решения часто включают в себя многоуровневые конвейеры обработки, начиная от захвата видеопотоков с камер, их предварительной обработки, применения алгоритмов машинного обучения для детекции объектов и событий, передачи результатов через брокеры сообщений в бэкенд-системы и далее к конечным пользователям через веб-интерфейсы.

Повышение объемов данных и жестких требований к end-to-endзадержкам (от момента возникновения события на видео до его отображения оператору) делает необходимым переход от реактивного к предиктивному подходу в управлении производительностью. Традиционные методы мониторинга, основанные на статических пороговых значениях и алертах по факту превышения SLA, не способны предотвратить деградацию качества обслуживания до ее критических проявлений.

В данном контексте особую важность приобретает разработка интеллектуальных систем предиктивного анализа, способных на основе пото-

ковых метрик мониторинга (например, собираемых системой Prometheus) заблаговременно предсказывать потенциальные проблемы производительности и инициировать превентивные меры по их устранению.

Цель и задачи исследования

Цель работы: разработать и внедрить комплексный метод предиктивного анализа задержек в конвейере видеоаналитики, способный прогнозировать критическую метрику *common_event_delay* с заданной точностью и автоматически детектировать аномальные паттерны в работе системы для предупреждения операторов о потенциальных сбоях до их фактического проявления.

Достижение поставленной цели требует решения комплекса взаимосвязанных задач:

- 1. Проведение глубокого анализа структуры и взаимных корреляций временных рядов метрик, собираемых на всех критических этапах видеоконвейера, включая выявление скрытых зависимостей между компонентами системы и идентификацию наиболее информативных признаков для прогнозирования.
- 2. Систематический обзор и сравнительный анализ современных методов прогнозирования временных рядов и обнаружения аномалий, включая классические статистические подходы, методы машинного обучения и глубокие нейронные сети, с оценкой их применимости к специфике видеоаналитических конвейеров.
- 3. Обоснованный выбор оптимальной архитектуры модели (трансформер, градиентный бустинг или их гибридная комбинация) с учетом требований к точности и скорости inference, а также определение необходимого

объёма обучающих данных и оптимальной периодичности переобучения модели.

- 4. Проектирование и реализация полноценного MLOps-конвейера, включающего автоматизированный feature-engineering, механизмы периодического дообучения модели на новых данных, высокопроизводительный inference-сервис и системы мониторинга качества предсказаний.
- 5. Всестороннее экспериментальное исследование точности и производительности разработанной модели на обширных исторических данных с использованием методов временной кросс-валидации и оценкой устойчивости к различным типам аномалий в данных.
- 6. Разработка и внедрение интеллектуальной системы оповещений с адаптивными порогами, а также формулирование практических рекомендаций по эксплуатации, настройке и масштабированию решения в производственной среде.

Методология и методы исследования

Для достижения поставленной цели и решения сформулированных задач применяется комплексная методология, сочетающая теоретические исследования с практическими экспериментами:

- 1. Организация непрерывного сбора и интеллектуальной предобработки потоковых метрик из системы мониторинга Prometheus, включая очистку от выбросов, нормализацию, обработку пропущенных значений и синхронизацию временных рядов различных компонентов системы.
- 2. Разработка специализированного модуля построения многомерных временных рядов с интеллектуальной генерацией признаков, включая временные лаги различной глубины, скользящие статистические агрегаты,

спектральные характеристики и высокоразмерные эмбеддинги для захвата сложных временных зависимостей.

- 3. Реализация и экспериментальное сравнение различных архитектур моделей (трансформеры с механизмом внимания, ансамбли градиентного бустинга LightGBM/CatBoost, гибридные нейро-символьные подходы) с применением строгих методов перекрёстной валидации по времени для обеспечения корректной оценки обобщающей способности.
- 4. Контейнеризация решения с использованием технологии Docker и проведение детальных измерений latency inference в условиях, максимально приближенных к производственным, включая тестирование под нагрузкой и оценку масштабируемости.
- 5. Организация и проведение А/В-тестирования в реальной производственной среде с использованием методов статистической оценки значимости результатов и анализа влияния на ключевые показатели эффективности системы.

Теоретическая и практическая значимость

Теоретическая значимость работы заключается в расширении фундаментальных знаний о применимости и эффективности гибридных подходов к онлайн-прогнозированию сложных многомерных временных рядов в условиях высоких требований к задержкам и точности предсказаний. Исследование вносит вклад в теорию адаптивного машинного обучения для динамических систем реального времени и методологию проектирования отказоустойчивых MLOps-конвейеров.

Практическая значимость определяется разработкой готового к промышленному использованию решения для мониторинга и предупрежде-

ния отказов видеоконвейера с гарантированным соблюдением SLA по конечной метрике $common_event_delay$. Созданная система может быть адаптирована и масштабирована для применения в различных отраслях, где критична надежность систем обработки потоковых данных в реальном времени, включая телекоммуникации, финансовые технологии и промышленную автоматизацию.

1 Общие положения

Данная глава посвящена формальной постановке задачи предиктивного анализа задержек в конвейере видеоаналитики и представлению архитектуры исследуемой системы. В рамках главы вводятся ключевые математические обозначения, определяются целевые метрики и ограничения, формулируются требования к разрабатываемому алгоритму. Особое внимание уделяется описанию структуры видеоконвейера и точек сбора телеметрических данных, которые лягут в основу построения прогностической модели.

1.1 Архитектура системы видеоаналитики

Исследуемая система видеоаналитики представляет собой сложный многокомпонентный конвейер, предназначенный для обработки видеопотоков в режиме реального времени с применением алгоритмов машинного обучения для детекции событий и объектов. Архитектура системы строится по принципу микросервисной организации, что обеспечивает масштабируемость и отказоустойчивость, но одновременно усложняет задачи мониторинга и диагностики производительности.

Видеоконвейер включает следующие основные компоненты: модуль захвата видеопотока с IP-камер, ML-pipeline для применения алгоритмов компьютерного зрения, брокер сообщений Арасhe Kafka для асинхронной передачи результатов обработки, бэкенд-сервисы для бизнес-логики и сохранения данных, а также WebSocket-клиенты для доставки уведомлений конечным пользователям. Каждый компонент генерирует множество метрик производительности, которые собираются централизованной системой мониторинга Prometheus.

Критической характеристикой системы является end-to-end-задержка, измеряемая как время от момента возникновения события в видеопотоке до его отображения на интерфейсе оператора. Данная метрика, обозначаемая как $common_event_delay$, напрямую влияет на эффективность работы операторов и качество принимаемых ими решений в критических ситуациях.

1.2 Постановка задачи

Для формальной постановки задачи прогнозирования введем необходимые математические обозначения и определения. Пусть $T=\{t_1,t_2,\ldots,t_n\}$ — упорядоченное множество временных меток наблюдений, соответствующих моментам сбора метрик из системы мониторинга с фиксированным интервалом дискретизации. Обозначим через d общее число различных метрик, одновременно собираемых системой мониторинга со всех компонентов видеоконвейера.

Для каждой временной метки t_i формируется d-мерный вектор наблюдений:

$$\mathbf{x}_i = [m_i^{(1)}, m_i^{(2)}, \dots, m_i^{(d)}] \in \mathbb{R}^d, \tag{1.1}$$

где каждая компонента $m_i^{(j)}$ представляет значение j-й метрики в момент времени t_i .

Компоненты вектора наблюдений соответствуют различным категориям метрик, характеризующих работу отдельных подсистем видеоконвейера:

• **Метрики ML-конвейера:** $timestamp_sei$ (временные метки кадров), $time_delta_*$ (интервалы между обработкой кадров), FPS_* (частота обработки кадров различными алгоритмами), характеризующие произ-

водительность модулей компьютерного зрения;

- **Метрики бэкенда:** $ml_to_backend_kafka_delay$ (задержка передачи результатов ML через Kafka), db_insert_delay (время записи в базу данных), отражающие эффективность серверной части системы;
- Метрики WebSocket-клиента: common_event_delay (целевая end-to-end-задержка), heartbeat_* (метрики жизнеспособности соединений), event_counter (счетчики событий), seq_events_health (показатели кор-ректности последовательности событий), характеризующие качество доставки результатов до конечных пользователей.

Для учета временных зависимостей в данных введем понятие скользящего окна наблюдений. Определим окно длины L и шаг сдвига s, где L представляет глубину истории, необходимую для прогнозирования, а s — частоту обновления прогнозов. Каждое k-е скользящее окно определяется как матрица:

$$X_k = [\mathbf{x}_{t_k - L + 1}, \dots, \mathbf{x}_{t_k}] \in \mathbb{R}^{L \times d}, \tag{1.2}$$

содержащая L последовательных векторов наблюдений, предшествующих моменту прогнозирования.

Целевая переменная для задачи прогнозирования определяется как значение критической метрики end-to-end-задержки в будущий момент времени:

$$y_k = common_event_delay(t_k + \Delta),$$
 (1.3)

где $\Delta=15$ с представляет горизонт прогнозирования, выбранный исходя из требований к заблаговременности предупреждений о потенциальных проблемах в системе.

Обучающая выборка для построения прогностической модели формируется как множество пар «окно-целевое значение»:

$$\mathcal{N} = \{ (X_k, y_k) \}_{k=1}^N, \tag{1.4}$$

где N — общее количество доступных обучающих примеров, определяемое длиной исторических данных и параметрами скользящего окна.

В рамках данной постановки предполагается существование неизвестной целевой функции:

$$f^*: \mathbb{R}^{L \times d} \to \mathbb{R},\tag{1.5}$$

которая отображает текущее состояние системы (представленное матрицей метрик скользящего окна) в прогнозируемое значение end-to-end-задержки.

Основная задача исследования состоит в построении алгоритма $A: \mathbb{R}^{L \times d} \to \mathbb{R}$, аппроксимирующего неизвестную функцию f^* с заданной точностью:

$$|A(X_k) - f^*(X_k)| \le \varepsilon \quad \forall k, \tag{1.6}$$

где ε — допустимая погрешность прогнозирования, определяемая практическими требованиями к системе предупреждения.

К разрабатываемому алгоритму A предъявляется ряд критических требований, обусловленных спецификой применения в производственной среде:

1. **Точность прогнозирования:** минимизация среднеквадратической ошибки MSE на независимой валидационной выборке при обеспечении статистически значимого превосходства над базовыми методами прогнозирования;

- 2. **Производительность inference:** обеспечение времени отклика $latency_inference(A) < 1$ с при развертывании в стандартном Docker-контейнере с ограниченными вычислительными ресурсами;
- 3. **Адаптивность:** поддержка механизмов периодического дообучения на новых данных (warm-start инициализация, заморозка слоев, применение адаптеров/LoRA) для поддержания актуальности модели при изменении характеристик системы;
- 4. **Операционная гибкость:** возможность настройки частоты генерации прогнозов в диапазоне от онлайн-режима до фиксированных интервалов (например, каждые 30 минут) в зависимости от текущих требований к системе мониторинга.

Исходные данные для обучения и валидации алгоритма представляют собой многомерный временной ряд $X \in \mathbb{R}^{n \times d}$ с элементами типа FLOAT64, формируемый из системы мониторинга Prometheus с периодичностью сбора 30 секунд. Объем доступных исторических данных составляет приблизительно 90,644 точки, накопленные за период 16 дней непрерывной работы системы.

Итоговая формализация задачи: построить алгоритм A, наилучшим образом аппроксимирующий неизвестную функцию f^* и одновременно удовлетворяющий всем указанным ограничениям по точности, производительности и адаптивности для обеспечения надежного предиктивного мониторинга критических систем видеоаналитики.

Рисунок 1.1 — Схема видеоконвейера и точки сбора метрик

- 2 Глава n
- 2.1 Секция п

- 3 Глава п
- 3.1 Секция п

- 4 Глава n
- 4.1 Секция п

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1) First
- 2) Second
- 3) Third