

This week in ML

Transformers (and a digression into NLP)

Transformers in HEP

Symmetries and self-supervision in particle physics

Barry M. Dillon

Institut für Theoretische Physik Universität Heidelberg dillon@thphys.uni-heidelberg.de

Hans Olischläger

Institut für Theoretische Physik Universität Heidelberg

Peter Sorrenson

Institut für Theoretische Physik
Heidelberg Collaboratory for Image Processing
Universität Heidelberg
peter.sorrenson@iwr.uni-heidelberg.de

Gregor Kasieczka

Institut für Experimentalphysik Universität Hamburg gregor.kasieczka@cern.ch

Tilman Plehn

Institut für Theoretische Physik Universität Heidelberg plehn@uni-heidelberg.de

Lorenz Vogel

Institut für Theoretische Physik Universität Heidelberg

Still early days, pretraining & transfer learning less common than other fields

Transformers in HEP

High Energy Physics - Phenomenology

[Submitted on 8 Feb 2022]

Particle Transformer for Jet Tagging

Huilin Qu, Congqiao Li, Sitian Qian

	Accuracy	AUC	$\mathrm{Rej}_{50\%}$	$\mathrm{Rej}_{30\%}$
P-CNN	0.930	0.9803	201 ± 4	759 ± 24
PFN		0.9819	247 ± 3	888 ± 17
ParticleNet	0.940	0.9858	397 ± 7	1615 ± 93
JEDI-net (w/ $\sum O$)	0.930	0.9807		774.6
PCT	0.940	0.9855	392 ± 7	1533 ± 101
LGN	0.929	0.964		435 ± 95
rPCN		0.9845	364 ± 9	1642 ± 93
ParT	0.940	0.9858	413 ± 16	1602 ± 81
ParT-f.t.	0.944	0.9877	$\textbf{691} \pm \textbf{15}$	2766 ± 130

But promising results in jet tagging from large-scale datasets (100M events)

What is a Transformer?

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Jakob Uszkoreit*
Google Research
nikip@google.com usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

What is a Transformer?

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Main ingredients

Attention mechanisms

Self-supervised learning (Pretraining)

Transfer learning (Fine-tuning)

Main ingredients

Attention mechanisms

Self-supervised learning (Pretraining)

we first saw this in lecture 4 in the context of jet images and CNNs

Originally developed for recurrent neural networks

Originally developed for *recurrent neural networks*

Use intermediate states but assign a weight or "pay attention"

Attention gives better modelling of word order

Transformers much easier to scale with compute & data

Three types of architectures

Each architecture excels at specific types of tasks

My name

... or to predict the masked token (BERT-like)

The first Transformer architecture (2017)

Encoder converts sequence of tokens to sequence of embedding vectors (context)

Decoder uses context to iteratively generate output sequence

Consists of an *encoder* and *decoder*

The encoder

Built from of a stack of *encoder layers* (similar to stacking convolutional layers)

Self-attention layers

Self-attention updates *input* embeddings x into *contextualised* ones x'

Computing attention weights

- 1. Project each token embedding into 3 vectors called *query, key, and value*
- 2. Compute pairwise attention scores of *queries* and *keys* via similarity function (e.g. dot-product)
- 3. Compute attention weights w_{ji} (normalize with softmax)
- 4. Update token embeddings $x'_i = \sum w_{ji} v_j$

Multi-headed attention

Beneficial to have multiple attention layers or "heads"

Multi-headed attention

Self-attention updates *input* embeddings into *contextualised* ones

The decoder

Similar to encoder but built from of a stack of decoder layers

What is a Transformer?

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Jak Google Research nikip@google.com usz@

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com