Rolling Mill Industry Training:

Bearing Fundamentals

WORLDWIDE LEADER IN BEARINGS AND STEEL

Agenda

- Bearing Types and Features
- Tapered Roller Bearing Details
- > TRB Setting
- TRB Mounting
- Bearing Metallurgy & Fatigue Mechanism
- > TRB Fitting Practice
- > Lubrication

Bearing Types

- Friction bearings
 - ◆Plain
 - **♦**Bushing
 - **♦Oil sleeve**
- Anti-friction bearings
 - **♦**Ball bearings
 - **♦**Needle roller bearings
 - **♦**Spherical roller bearings
 - **◆Cylindrical roller bearings**
 - **◆Tapered roller bearings**

Bearing Types

Needle

Cylindrical

Ball

Spherical Roller Bearings

♦ Features

- Self aligning... suitable for misalignment
- Large diameter rollers provide high load rating
- Mounted internal clearance is determined by fit and factory setting... C2, C0(N), C3, C4
- Easy inspection
- Repairable

TIMKEN

SRB Nomenclature

Cylindrical Roller Bearings

Features

- High radial load capability
- Separable races this facilitates mounting & dismounting when interference fits are desired on inner and/or outer rings
- Mounted internal clearance is determined by fit and factory setting... C2, C0(N), C3, C4
- Thrust capability with 3 flanges
- Repairable

CRB Nomenclature

Flange Designations: N, NU, NJ, NF, NP, NUP, NJF, NU+HJ, NJ+HJ

Ball Bearings

◆ Features

- Most popular roller bearing
- Simple design
- Non-separable races
- High speed capability due to point surface contact
- Capacity based on point contact
- Controlled internal clearances, adjustment achieved through interference fits
- Grooves in the raceways allow ball bearings to handle axial loads

Ball Bearing Nomenclature

Needle Roller Bearings

♦ Features

- Thin cross sections suitable where radial space is limited
- Good radial load capability
- Marginal thrust load capability
- Nomenclature
 - Same as for cylindrical

Tapered Roller Bearings

♦ Features

- Line contact
- True rolling motion
- Combined load capability
- Adjustable internal clearance
- Positive roller alignment
- Increased system rigidity
- Easy inspection
- Repairable

TRB Components

WORLDWIDE LEADER IN BEARINGS AND STEEL

2-Row Bearing Types

TDO

- 2 single cones/ Double cup
- Set w/ cone spacer (cone adjusted)
- Lube hole/ groove in cup
- "Indirect" mounting
- Float through outer race

- Double cone/ 2 single cups
- Set with cup spacer (cup adjusted)
- "Direct" mounting
- •Float through inner race

Roller Bearing Comparison

	TRB	TRB	CRB	CRB	CRB	SRB
CHARACTERISTIC	RADIAL	THRUST	CAGED	FULL	THRUST	RADIAL
	DOUBLE ROW		SINGLEROW	COMPLEMENT		DOUBLE ROW
				SINGLE ROW		
Pure Radial Load	Excellent	Unsuitable	Excellent	Excellent	Unsuitable	Excellent
Pure Axial Load	Good	Excellent	Unsuitable	Unsuitable	Good	Fair
Combined Load	Excellent	Fair	*Fair	Poor	Unsuitable	Excellent
Moment Load	Fair	Poor	Unsuitable	Unsuitable	Unsuitable	Unsuitable
High Stiffness	Excellent	Excellent	Good	Excellent	Excellent	Good
Quiet Running	Fair	Fair	Good	Poor	Poor	Fair
Low Friction	Fair	Fair	Good	Poor	Poor	Fair
Misalignment	Poor	Poor	Poor	Poor	Unsuitable	Excellent
Locating Position (Fixed)	Excellent	Good	*Fair	Fair	Fair	Good
Non-Locating Position (Floating)	Good	Unsuitable	**Excellent	Fair	Unsuitable	Fair

^{*} Fair with Flanges on Inner and Outer Ring / Unsuitable Without

Point vs. Line Contact

- ◆ Less friction and heat ◆ Lower stress
- Higher Speeds

Higher load capacity

True Rolling Motion

On apex design provides true rolling motion along race

Combined Radial & Thrust

K = <u>dynamic radial load rating</u> dynamic thrust load rating

Positive Roller Alignment

The small seating force ensures positive roller alignment

Setting = Axial Clearance

Preload is a compression force measured as axial overlap

TRB Setting

TRB Mounting Arrangements

- Direct mount is less sensitive to misalignment
- Adjustment through cups
- Prevalent for centered loads

- Indirect mount provides more rigidity
- **♦** Adjustment through cones
- Prevalent for overhung loads

Single Row vs. Two Row

◆ Single row mounting requires adjustment

◆ Two row mounting is typically non-adjustable

Bearing Material & Metallurgy

- Steel quality is a major factor in bearing life
- Quality is determined by cleanness
- Alloy / Chemistry affects properties of steel

Cyclic Fatigue Mechanism

- Non-metallic inclusions can limit bearing life
- Spall will eventually occur over non-metallic inclusions
- Load ratings based on bearing life before spall occurs

Bearing Life Improvement

L_{15.91} Life Estimates (million revs)

- ▲ Vacuum-Arc Remelted (1980)
- Super Clean Airmelt (MAP)
- O Bottom Poured
- Precipitation Shrouded
- □ Precipitation Deoxidation
- Vacuum Carbon Deoxidation

Fitting Practice

- Tight fits for rotating race
- Exceptions: low speed applications,
 TQO work and back-up rolls, keyed bores
- Heavy duty tight fits for heavy loads and high speed (Limits for TH product)
- Loose or split fits suggested when adjustment is necessary and for stationary races

Purpose of Lubrication

- Reduction of friction,wear and fatigue
- Corrosion prevention
- Transfer of heat
- Remove debris

Oil Flow Through the Bearing

Rolling Mill Speed Guidelines

Max Rib Speed (FPM)	Min System Lube		
1,500	Grease *		
3,000	Oil Level		
5,000	Ciculating Oil		
5,500	Air/Oil or Oil Mist		
6,000	Oil Jets		
	Special High Speed		
10,000	Bearings with		
	Ciculating Oil		

Rib Speed = $\prod x$ Cone Rib Dia. X RPM

12 in/ft

* Note: Work Roll Bearings are an exception to the rule

