

数据科学理论基础: Python基础

北京邮电大学 智能感知与计算教研中心 数据科学中心

NumPy Sklearn

OpenCV Matplotlib

PyTorch TensorFlow

.


```
class Employee:
    '所有员工的基类'
    empCount = 0

def __init__(self, name, salary):
    self.name = name
    self.salary = salary
    Employee.empCount += 1

def displayCount(self):
    print "Total Employee %d" % Employee.empCount

def displayEmployee(self):
    print "Name : ", self.name, ", Salary: ", self.salary
```


开源

Linux, Windows, Macintosh pip, Anaconda, Virtualenv 模块化管理库。

面向对象

数据和函数组成类 继承、重载、方法重写

解释性

解释器把源代码转换成为字节码 再翻译成机器语言运行

https://www.python.org/downloads/

安装可参考: https://blog.csdn.net/qq_39313596/article/details/80664945

■ 选择管理员: 命令提示符 - python

```
Microsoft Windows [版本 10.0.17<mark>1</mark>34.1006]
(c) 2018 Microsoft Corporation。保留所有权利。

C:\Users\**Depython
Python 3.6.5 |Anaconda, Inc. | (default, Mar 29 Type "help", "copyright", "credits" or "license
>>> print("Hello World!")
Hello World!
>>> 1+1
2
>>> a = "asd" + "dsa"
>>> a
'asddsa'
>>> b = [1,2,3,4,"优于","C++","python"]
>>> b[0]
1
>>> b[6]+b[4]+b[5]
'python优于C++'
>>>
```

```
Run (Shift+F10)
             % ?
          proposal_layer.py × | text_proposal_connector.py × | text_proposal_train.py
       # coding:utf-8
      import ...
 6
      if __name__ == '__main__':
 8
 9
          # im = Image.open("test/ttttt.png")
          # img = np.arrav(im.convert('RGB'))
10
          img = "test/ttttt.png"
11
12
          t = time.time()
13
          # result, img, angel分别对应-识别结果,图像的数组,文字旋转角度
14
          result = model.model(imgname=img, adjust=False)
15
16
          # use ctpn+tensorflow to detect the edges of text segments
17
          print("Totally it takes time:{}s".format(time.time() - t))
          print("----")
18
19
       for key in result:
              print(result[key][1])
20
21
```

Windows: 命令指示符 >> cmd

在cmd中运行.py文件

IDE: 配置环境后使用, 例如Pycharm

Anaconda 安装

Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等 180多个科学包及其依赖项,比如:numpy、pandas等

Pricing

Solutions 🔻

Resources ~

Blog

Company •

Get Started

Anaconda Installers

Windows #

Python 3.8

64-Bit Graphical Installer (466 MB)

32-Bit Graphical Installer (397 MB)

MacOS

Python 3.8

64-Bit Graphical Installer (462 MB)

64-Bit Command Line Installer (454

MB)

Linux 🔕

Python 3.8

64-Bit (x86) Installer (550 MB)

64-Bit (Power8 and Power9) Installer

(290 MB)

https://www.anaconda.com/products/individual

Anaconda 安装

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

Anaconda3-5.3.1-Linux-x86.sh	527.3 MiB	2018-11-20 04:00
Anaconda3-5.3.1-Linux-x86_64.sh	637.0 MiB	2018-11-20 04:00
Anaconda3-5.3.1-MacOSX-x86_64.pkg	634.0 MiB	2018-11-20 04:00
Anaconda3-5.3.1-MacOSX-x86_64.sh	543.7 MiB	2018-11-20 04:01
Anaconda3-5.3.1-Windows-x86.exe	509.5 MiB	2018-11-20 04:04
Anaconda3-5.3.1-Windows-x86_64.exe	632.5 MiB	2018-11-20 04:04

Anaconda 安装

Python — Numpy

● NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

创建数组

```
In [47]: import numpy as np
In [50]: x = np.arange(8)
In [51]: print(x)
      [0 1 2 3 4 5 6 7]
```

修改数组形状

```
In [54]: a = np. arange (12)
         print ('原始数组: ',a)
         print ('\n')
         原始数组: [0 1 2 3 4 5 6 7 8 9 10 11]
In [55]: b = a. reshape(3, 4)
         print ('修改后的数组:')
         print (b)
         修改后的数组:
          [8 9 10 11]]
```

线性回归LinearRegression分析波士顿房价数据

回归模型在 Sklearn.linear_model子类下,调用sklearn逻辑回归算法步骤主要有3步,即:

- (1) 导入模型。调用逻辑回归LogisticRegression()函数。
- (2) fit()训练。调用fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型
- (3) predict()预测。利用训练得到的模型对数据集进行预测,返回预测结果。

在Sklearn机器学习包中,集成了各种各样的数据集:

>> from sklearn.datasets import load_boston, xxx...

scikit-learn comes with a few small standard datasets that do not require to download any file from some external website.

They can be loaded using the following functions:

<pre>load_boston ([return_X_y])</pre>	Load and return the boston house-prices dataset (regression).
<pre>load_iris ([return_X_y])</pre>	Load and return the iris dataset (classification).
<pre>load_diabetes ([return_X_y])</pre>	Load and return the diabetes dataset (regression).
<pre>load_digits ([n_class, return_X_y])</pre>	Load and return the digits dataset (classification).
<pre>load_linnerud ([return_X_y])</pre>	Load and return the linnerud dataset (multivariate regression).
<pre>load_wine ([return_X_y])</pre>	Load and return the wine dataset (classification).
<pre>load_breast_cancer ([return_X_y])</pre>	Load and return the breast cancer wisconsin dataset (classification).

These datasets are useful to quickly illustrate the behavior of the various algorithms implemented in scikit-learn. They are however often too small to be representative of real world machine learning tasks.

回归分析的典型应用——波士顿房价数据集

特征名称	feature_names	特征名称	feature_names
CRIM(地区人均犯罪率)	per capita crime rate by town	DIS(与波士顿中心区距离)	weighted distances to five Boston employment centres
ZN(住宅用地>25000英尺 比例)	proportion of residential land zoned for lots over 25,000 sq.ft.	RAD(与主要公路的接近指数)	index of accessibility to radial highways
INDUS(非零售商业用地比 例)	proportion of non-retail business acres per town	TAX(财产税率)	full-value property-tax rate per \$10,000
CHAS(查尔斯河空变量(地 区边界是河,值取1,否则为 0))	Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)	PTRATIO(师生比)	pupil-teacher ratio by town
NOX(一氧化氮浓度)	nitric oxides concentration (parts per 10 million)	B(非洲裔美国人比例)	1000(Bk - 0.63)^2 where Bk is the proportion of black people by town
RM(每套住宅平均房间数)	average number of rooms per dwelling	LSTAT(低地位人口比例)	% lower status of the population
AGE(1940年后建成自用房 比例)	proportion of owner-occupied units built prior to 1940	MEDV(自住房平均房价)	Median value of owner- occupied homes in \$1000's

波士顿房价 (load_boston) 数据集

- 13个基本变量
- 1个类别变量
- 506个实例数据

10	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	label
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9

● 如何获取基础信息:

- ✓ boston['data'].shape \rightarrow (506, 13)
- √ datasets.load_boston(). keys()
 - → ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT'
- √ datasets.load_boston().DESCR

```
Boston house prices dataset
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) i
s usually the target.
    :Attribute Information (in order):
        - CRIM
                   per capita crime rate by town
                   proportion of residential land zoned for lots over 25,000 sq.ft.

    ZN

        - INDUS
                   proportion of non-retail business acres per town
        - CHAS
                   Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX
                   nitric oxides concentration (parts per 10 million)
        - RM
                   average number of rooms per dwelling
                   proportion of owner-occupied units built prior to 1940
        AGE
        - DIS
                   weighted distances to five Boston employment centres
        - RAD
                   index of accessibility to radial highways
        - TAX
                   full-value property-tax rate per $10,000
        PTRATIO
                  pupil-teacher ratio by town
                   1000(Bk - 0.63)^2 where Bk is the proportion of black people by town
        B
        LSTAT
                   % lower status of the population
        MEDV
                   Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
```

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear model
#导入数据集
diabetes = datasets.load_boston()
#载入数据集
boston_X = boston.data[:, 5]
#第六列(房屋数量)逗号前面是行,后面是列
plt.scatter(boston X, boston.target, color='blue',
marker='x')
#画散点图
plt.show()
```


这里以第六列每个住宅的平均房间数X)来 预测房中位数(Median Value)(Y)。从图 中可以看出,数据集可以直接进行线性回 归,下面采用线性回归对其进行回归预测。

导入线性回归模型,并进行回归预测与模型评估

```
# 将数据分成训练集和验证集
import random
train_ratio=0.9 #设定训练集和测试集比例
train_index=random.sample(range(boston_X.shape[0]),
int(train_ratio*boston_X.shape[0])) #获取训练集序号
test_index=list(set(range(boston_X.shape[0]))-
set(train_index)) #获取测试集序号
boston_X_train = boston_X[train_index]
boston_y_train = boston.target[train_index]
boston_X_test = boston_X[test_index]
boston_y_test = boston.target[test_index]
```

- 设定训练集和测试集比例
- 随机抽取测试集,反集为测试集
- 创建模型
- 训练(拟合过程)
- 进行预测

导入线性回归模型,并进行回归预测与模型评估

```
# 使用训练集训练模型
boston_X_train=np.array(boston_X_train).reshape(-
1,1)
#这是由于在新版的sklearn中,所有的数据都应该是二维矩阵,
哪怕它只是单独一行或一列
#所以需要使用.reshape(1,-1)进行转换
print(boston_X_train.shape)
regr.fit(boston X train, boston y train)
# 使用测试集进行预测
boston_X_test=np.array(boston_X_test).reshape(-1,1)
boston_y_pred = regr.predict(boston_X_test)
# boston_y_pred_train = regr.predict(boston_X_train)
```

- 设定训练集和测试集比例
- 随机抽取测试集,反集为测试集
- 创建模型
- 训练(拟合过程)
- 进行预测

最后进行模型评估

绘图

```
from sklearn.metrics import
mean_squared_error
# 回归系数
print('Coefficients: ', regr.coef_)
# 均方误差
print("Mean squared error: %.2f"
        % mean_squared_error(boston_y_test, boston_y_pred))
```

Coefficients: [8.78376183] Mean squared error: 23645.27

逻辑回归与线性回归的区别

● 线性回归

- ◆ 线性回归直接将 $b_0 + b_1x_1 + \cdots + b_nx_n$ 作为因变量,即 $y = b_0 + b_1x_1 + \cdots + b_nx_n$
- ◆ 如前面提到的,使用 BMI (数值)预测糖尿病发展情况 (数值),目标是进行回归(预测),使用线性回归

● 逻辑回归

- ◆广义线性回归模型,与线性回归模型都具有 $y = b_0 + b_1x_1 + \cdots + b_nx_n$
- ◆逻辑回归使用将 $b_0 + b_1 x_1 + \dots + b_n x_n$ 作为间接量,即 $g(y) = \frac{1}{1 + e^{-y}}$
- ◆逻辑回归将 $b_0 + b_1x_1 + \cdots + b_nx_n$ 映射到[0,1]:属于某一类的可能性多大
- ◆如前面提到的,使用花萼长度与宽度(数值)预测花的种类(分类标签),目标是进行分类,使用逻辑回归

逻辑回归LogisticRegression分析鸢尾花数据

LogisticRegression回归模型在Sklearn.linear_model子类下,调用sklearn逻辑回归算法步骤主要有3步,即:

(1) 导入模型。调用逻辑回归LogisticRegression()函数。

- (2) fit()训练。调用fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型
- (3) predict()预测。利用训练得到的模型对数据集进行预测,返回预测结果。

在Sklearn机器学习包中,集成了各 种各样的数据集,这里引入的是鸢 尾花卉(Iris)数据集,它是很常用 的一个数据集。鸢尾花有三个亚属 ,分别是山鸢尾(Iris-setosa)、 变色鸢尾 (Iris-versicolor) 和维吉 尼亚鸢尾 (Iris-virginica)。该数 据集一共包含4个特征变量,1个类 别变量。共有150个样本。

列名	说明	类型
SepalLength	花萼长度	float
SepalWidth	花萼宽度	float
PetalLength	花瓣长度	float
PetalWidth	花瓣宽度	float
Class	类别变量。0表示山鸢尾,1表示变色鸢尾,2表示维吉尼亚鸢尾。	int

导入逻辑回归模型

```
from sklearn.linear_model import LogisticRegression #导入逻辑回归模型 clf = LogisticRegression() print(clf)
```

导入数据集

```
from sklearn.datasets import load_iris #导入数据集iris
iris = load_iris() #载入数据集
print(iris.data) #数据
print(iris.target) #对应的标签
```

```
import matplotlib.pyplot as plt
import numpy as np
                                     #导入数据
from sklearn.datasets import load_iris
集iris
iris = load iris() #载入数据集
print(iris.data)
                       #输出数据集
print(iris.target)
                       #输出真实标签
X = iris.data[:, -2:] #获取花卉后两列数据集
Y = iris.target
plt.scatter(X[:50], Y[:50], color='red',
marker='o', label='setosa') #前50个样本,代表第一类
plt.scatter(X[50:100], Y[50:100], color='blue',
marker='x', label='versicolor') #中间50个,代表第二类
plt.scatter(X[100:], Y[100:], color='green',
marker='+', label='Virginica') #后50个样本,代表第三
类
plt.legend(loc=2) #左上角
plt.show()
```


这里以前两列为主要特征进行分析。从图中可以看出,数据集线性可分的,可以划分为3类,分别对应三种类型的鸢尾花,下面采用逻辑回归对其进行分类预测。

分类结果

K-means聚类分析鸢尾花数据

K-means实现鸢尾花数据的聚类

导入数据集

```
from sklearn.datasets import load_iris #导入数据集iris
iris = load_iris() #载入数据集
print(iris.data) #数据
print(iris.target) #对应的标签
```

导入数据集

```
import matplotlib.pyplot as plt #导入绘图包组建
import numpy as np #导入数组计算库
from sklearn.cluster import Kmeans #导入K-means聚类模型
```

K-means实现鸢尾花数据的聚类

构造聚类模型

```
estimator = KMeans(n_clusters=3)
#构造聚类器
estimator.fit(X)
#聚类
label_pred = estimator.labels_
#获取聚类标签
```


绘制k-means结果

```
x0 = X[label\_pred == 0]
x1 = X[label pred == 1]
x2 = X[label pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c = "red"
marker='o', label='flower1')
plt.scatter(x1[:, 0], x1[:, 1], c =
"green", marker='x', label='flower2')
plt.scatter(x2[:, 0], x2[:, 1], c =
"blue", marker='s', label='flower3')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show(
```

案例进阶

K-means案例:中国男足到底在亚洲处于几流水平?

K-means案例—— 中国男足到底在亚洲处于几流水平?

• 2019国际排名权重:2

• 2018世界杯权重:2

• 2015亚洲杯权重:1

	球队	2019年国际排名	2018世界杯	2015亚洲杯
0	中国	73	40	7
5	伊拉克	91	40	4
7	阿联酋	81	40	6
8	乌兹别克斯坦	88	40	8
17	约旦	118	50	9
16	叙利亚	76	40	17
14	印尼	164	50	17
13	朝鲜	110	50	14
12	巴林	116	50	11
11	阿曼	87	50	12
9	泰国	122	40	17
18	科威特	160	50	15
6	卡塔尔	101	40	13
10	越南	102	50	17
19	巴勒斯坦	96	50	16
4	沙特	67	26	10
3	伊朗	34	18	6
15	澳洲	40	30	1
2	韩国	61	19	2
1	日本	60	15	5

2015-2019 年亚洲球队的排名

K-means案例—— 中国男足近几年到底在亚洲处于几流水平?

	国家	2019国际排名	2018世界杯	2015亚洲杯
0	中国	0.3	0.7142857142857143	0.375
1	伊拉克	0.43846153846153846	0.7142857142857143	0.1875
2	阿联酋	0.36153846153846153	0.7142857142857143	0.3125
3	乌兹别克斯坦	0.4153846153846154	0.7142857142857143	0.4375
4	约旦	0.6461538461538462	1.0	0.5
5	叙利亚	0.3230769230769231	0.7142857142857143	1.0
6	印尼	1.0	1.0	1.0
7	朝鲜	0.5846153846153846	1.0	0.8125
8	巴林	0.6307692307692307	1.0	0.625
9	阿曼	0.4076923076923077	1.0	0.6875
10	泰国	0.676923076923077	0.7142857142857143	1.0
11	科威特	0.9692307692307692	1.0	0.875
12	卡塔尔	0.5153846153846153	0.7142857142857143	0.75
13	越南	0.5230769230769231	1.0	1.0
14	巴勒斯坦	0.47692307692307695	1.0	0.9375
15	沙特	0.25384615384615383	0.3142857142857143	0.5625
16	伊朗	0.0	0.08571428571428572	0.3125
17	澳洲	0.046153846153846156	0.42857142857142855	0.0
18	韩国	0.2076923076923077	0.11428571428571428	0.0625
19	日本	0.2	0.0	0.25

图: [o,1]规格化后的数据

作业要求——任务运行结果截图,导出为pdf后发送到助教邮箱

➤ 必做:

- > numpy创建数组,数组形状修改结果截图
- 输出波士顿房价数据集的所有属性类型及其样本数量
- 数据散点图,自变量DIS(与波士顿中心区距离),因变量房价(学号尾号为基数,散点图为红色方形;学号尾号为偶数,散点图为蓝色圆形)
- > 线性回归的回归结果折线图及散点图展示
- boston_X_train=np.array(boston_X_train).reshape(-1,1)句的意义?

基于 'sepal length (cm), sepal width (cm) '两个维度进行逻辑回归与聚类实验

- > 鸢尾花数据集逻辑回归散点图
- 输出逻辑回归系数
- ➢ 对鸢尾花数据进行K-means聚类,绘制聚类中心为3的聚类结果图(基于 'sepal length (cm)', 'sepal width (cm) '两个维度聚类)

▶ 选做

- ➤ 基于给出亚洲足球数据集进行聚类,分析中国男足水平(给出运行代码,3D可视化截图)
- 分析不同权重对于结果影响;分析有无数据正则化对结果影响;
- ➤ Matplotlib使用、聚类数改变......

