PANDAS DATAFRAME

GLY606 Water Data Analysis & Modeling Sep 20th 2024

Homework #2 Done!

In the last week, we introduced **Numpy** (a powerful tool to generate data arrays and calculations)

How can we more effectively manipulate data?

import pandas as pd

Data Structure

Powerful functions

Data Structure

Data Structure	Dimension
Series	1
Data Frames	2

What is the difference between series and Data Frames?

Data Series

tom	105
bob	306
nancy	3560
dan	1200
eric	50

Data Framework

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

column

Row

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

Column name

index

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

df.loc[index, column name]

Column name

index

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

df.loc['tom','Fav_number']

Column name

index

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

df.iloc[0,0]

0th row

1st row

2nd row

3rd row

4th row

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

0th column

1st column

Data manipulation for time series data

Streamflow for Niagara River @ Buffalo, NY

ut	[70]	:	streamflow

date		
2022-10-01	203000.0	Α
2022-10-02	194000.0	Α
2022-10-03	206000.0	Α
2022-10-04	213000.0	Α
2022-10-05	215000.0	Α
2022-12-28		 A
		_
2022-12-28	209000.0	А
2022-12-28	209000.0 206000.0	A

quality_flag

93 rows × 2 columns

Data manipulation for time series data

Streamflow for Niagara River @ Buffalo, NY

How can we change the frequency of data from daily to monthly?

Data manipulation for time series data

Streamflow for Niagara River @ Buffalo, NY

How can we identify the extreme high flow events?

When is that event?

These can all be achieved in Pandas DataFrame!

- https://github.com/act hydro/GLY606_2024/blob/main/in_class_practice/python_practic
 e/python_inclass_5_dataframe.ipynb
- Data
 - https://github.com/act hydro/GLY606_2024/blob/main/in_class_practice/python_pr
 actice/flow_cfs.USGS_04216000.Niagara_river.csv

Homework #3 is coming!

- It will focus on Python Numpy & Matplotlib.
- Due Date: 1pm, Sep 27th 2024 (Friday)
- Submission: Save the notebook as a PDF and turn in the PDF
- Platform: UBLearns (preferred) or email