Sub:- Digital Logics Design Unit Test - 2 Syllabus (Chap-2, 3, 4 &5)

	Unit 2					
4	Combinational logic with MSI and LSI:					
	Read Only Memory (ROM), Programmable Logic Arrays (PLA).					
	Unit 3					
5	Sequential logic: Introduction, Flip-Flops, Triggering of Flip-Flops, Analysis of clocked					
	sequential circuits, Flip-flop excitation tables, Flip flop conversion, State reduction and					
	assignment, Design procedure.					
	Unit 4					
6	Registers, Counters and The Memory Unit: Introduction, Registers, Shift registers,					
	Ripple counters, Synchronous counters, Timing sequences, Memory Unit.					
	Unit 5					
7	Processor logic design: Introduction, Accumulator register, Arithmetic logic unit, Design of Arithmetic circuit, Design of logic circuit, Status Register, Design of Shifter, Processor Unit.					

Text book:

Mano Morris - "Digital Logic and Computer Design", Pearson education.

Reference books:

Anand Kumar - "Fundamentals of Digital electronics and circuits", Prentice Hall India Pvt.
 Ltd.

<u>Digital Logic Design</u> <u>Chap 4 (Q Bank)</u>

-	D.C.			Chap 4 (Q	Bank)				
Q.1	Denn	Define:							
	•	• Register							
	•	• Counter							
Q.2	List o	List out applications of shift register.							
Q.3	How	How many number of flip-flop needed to store number							
	(a	(a) $(104)_{10}$							
	(b) (ACF2) ₁₀	5						
) (457) ₈							
	(d) (1010111	$1011)_2$						
Q.4	Draw logical diagram of								
	(a) 4bit register in Serial in Serial out configuration (SISO).								
	1 '		ster in SIPO						
		_	ster in PISO						
	(d) 4bit regis	ter in PIPO	•		e v v	Life magistant		
Q.5	Explain bidirectional shift register with parallel load. [Universal shift register] Design sequential circuit whose state table is listed in below table using register.								
Q.6	Desig				is listed in	below table	Output		
			nt State	Input		State A2	Output		
		A1	A2 0	X 0	A1 0	0	0		
		0	0	1	0	1	0		
		0	1	0	0	1	0		
		0	1	1	0	0	1		
-		1	0	0	1	0	0		
		1	0	1	0	1	0		
		1	1	0	1	1	0		
		1	1	1 for trainted	0	1	having 9 dif	Forent	
Q. 7	ı		lops neede	d for twisted-	ring (Johns	son) counter	having 8 dif	ierem	
	states?		1.1	£	on having 0	different et	2422		
Q.8	How many flip-flops needed for ring counter having 8 different states?								
Q.9		Design 3bit synchronous Up counter using T flip-flop.							
Q.10	Design 3bit synchronous Down counter using T flip-flop.								
Q.11	Design 3bit synchronous UP/Down counter using T flip-flop.								
Q.12		Design 3bit asynchronous/ripple Up counter using T flip-flop.							
Q.13		Design 3bit asynchronous/ripple Down counter using T flip-flop.							
Q.14		Design 3bit asynchronous/ripple UP/Down counter using T flip-flop.							
Q.15		Design synchronous Mod-5 UP counter.						1,00	
Q.16				own counter.	· · · · · · · · · · · · · · · · · · ·				
Q.17				UP counter.			· · · · · · · · · · · · · · · · · · ·		
Q.18		Design asynchronous Mod-5 down counter.							
Q.19		Design counter which count n=binary sequence 1,4,2, 7 and repeat.							
Q.20		Explain ring counter.						Esc. 1	
Q.21	Explain twisted ring counter (Johnson counter).								
				4 2 L 1 7 L	V	1.111			

Sub: Digital Logic Design Chap 3 (Q. Bank)

- Q.1 What is sequential circuit?
- Q.2 Differentiate combination and sequential circuit.
- Q.3 Explain SR flip-flop with logic diagram.
- Q.4 Explain JK flip-flop with logic diagram.
- Q.5 Draw the circuit diagram of positive edge-triggered JK flip-flop and explain its operation with the help of a truth table.
- Q.6 Derive characteristic equation for SR flip-flop.
- Q.7 Obtain excitation table for SR flip-flop.
- **Q.8** Convert JK flip-flop to D flip-flop.
- **Q.9** Explain Master slave flip-flop.
- Q.10 What is race-around condition and how to avoid it?
- **Q.11** List out Steps for designing of sequential circuit.
- **Q.12** Discuss the application of flip-flops.
- Q.13 Definitions: state diagram, state table, flip-flop.
- **Q.14** Design sequential circuit from following state diagram.

Q.15 Obtain reduced state table and reduced state diagram for the sequential machine whose state diagram is shown in given figure.

<u>Digital Logics Design</u> <u>Question Bank (Chap-2)</u>

1 () 7 ' '	Evaluit 1 .					
Q.1	Explain design procedure of combinational circuit.					
Q.2	Define / Write truth table and logical expression for following Combinationa					
'	circuit.					
	• Halfadder					
	Full adder					
	Half Subtractor					
	Full Subtractor					
	Multiplexer (4x1)					
1 1	• De-multiplexer (1x4)					
	• Encoder (4 to 2) or (2 ⁿ to n)					
	• Decoder (3 to 8) or (n to 2 ⁿ)					
Q.3	Design a full subtractor with two half subtractor and an OR gate.					
Q.4	Explain Binary Parallel adder (BPA). Discuss carry propagation in BPA.					
Q.5	Explain Binary Parallel subtractor (BPS).					
Q.6	Explain Binary Parallel adder - subtractor.					
Q.7	What is disadvantage of Binary Parallel adder? How it can be overcome?					
Q.7						
Q.8	Design combinational circuit to convert BCD number to Excess-3.					
Q.9	Design combinational circuit to detect the Decimal numbers 0, 1, 4, 6, 7, 8 in a 4-bit XS-3 code input.					
Q.10	Design a combinational circuit that generates the 9' complement of a BCD digit.					
Q.11	Design a combinational circuit that accepts a three bit binary number and					
	generates an output binary number equal to the square of the input number.					
Q.12	Design a combinational circuit whose input is four bit binary number and output					
	is the 2's complement of the input binary number.					
Q.13	Write short note on 2 bit magnitude comparator.					
Q.14	Write short note on 4 bit magnitude comparator.					
Q.15	Explain working of Decoder with logical diagram,					
Q.16	Explain working of Encoder with logical diagram,					
	Construct 4x16 decoder with two 3x8 decoders.					
	Design a BCD to decimal decoder.					
_	Explain BCD to 7-segment display decoder in common cathode configuration.					
Q.20	Implement following Boolean function using Decoder.					
	a) $F_1(a, b, c, d) = \sum (1,3,5,2,11,15)$ and $F_2(a, b, c, d) = \sum (1,5,7,14,13)$					
	b) $F_1(a, b, c, d) = \sum (1,12,3,2,14,15)$ and $F_2(a, b, c, d) = \sum (0,5,7,8,9)$					
	c) $F = x'y'z' + x'y'z + xy'z' + xy'z$					
	d) $F(w,x,y,z) = \prod (1,2,3,5,8,11,15)$					
	e) Full adder.					
Q.21 \	What is difference between encoder and priority encoder?					

			Sem.: 3 rd Sem. B.Tech.CO/IT						
Q.2	_	Im	Implement 16:1 multiplexer using 4:1 multiplexers.						
Q.2	23	Implement a full adder circuit using two 4:1 MUX. Discuss a few applications of							
		Multiplexers.							
Q.:	24		Implement following Boolean function using Multiplexer.						
		a) $F_1(a, b, c, d) = \sum (1,3,5,2,11,15)$ and $F_2(a, b, c, d) = \sum (1,5,7,14,13)$							
1			b) $F = x'y'z' + x'y'z + xy'z' + xy'z$						
			c) $F(w, x, y, z) = \prod (1, 2, 3, 5, 8, 11, 15)$						
			d) Full adder.						
0	2.25	5 1	mplement following function using 4:1 multiplexer						
		1	$F(A,B,C)=\Sigma$ (1,3,4,6)						
1	2.2	6 1	implement the following function using 8:1 multiplexer						
	C		a) $F(A,B,C,D)=\Sigma(2,4,5,7,10,14)$						
		1							
t	Q.2	b) $F(A,B,C,D)=\Pi(0,2,4,6,8,10,12,14)$ Q.27 What is de-multiplexer? Design 1:4 de-multiplexer with truth table and s							
1		1	lin o						
	Q.	28	Implement the following Boolean functions using ROM						
			$F1(A,B,C) = \Sigma (1,3,4,6)$						
			$F2(A,B,C) = \Sigma (0,5,6,7)$						
	1		$F3(A,B,C) = \Sigma (2,3,5,6)$						
	Q	.29	F3(A,B,C)= Σ (2,3,5,6) What is the minimum size of ROM to implement Full adder?						
	(0.30	Classification of ROM.						
	(Q.31	Classification of ROM. Write a short note on Read Only Memory (ROM). Write a short note on Programmable Logic Array (PLA).						
	١ ١	Q.32	Write a short note on Programmatic 2-3 Implement following Boolean function using PLA. Solution 11 (a, b, c, d) = $\sum (1,5,7,14,13)$						
		Q.33	Implement following Boolean function using Fig. (a) Implement following Boolean function using Fig. (a) $F_1(a,b,c,d) = \sum (1,3,5,2,11,15)$ and $F_2(a,b,c,d) = \sum (1,5,7,14,13)$						
	_ \								
			b) $F_1(a, b, c, a) = \sum (1, 12, 0, 2, 13, 13, 23, 23, 23, 23, 23, 23, 23, 23, 23, 2$						
	1		c) $F_1(a,b,c) = Z(x,y,b)$ $f_2(x,y,b) = Z(x,y,b)$ d) $F = x'y'z' + x'y'z + xy'z' + xy'z'$						
			e) $F = x y z + x y z + x y z + x y z$ e) $F(w, x, y, z) = \prod (1,2,3,5,8,11,15)$						
	-		f) Full adder.						
			1) Pull dador.						