eBridge_CPU_Log

May 22, 2021

1 eBridge - Data Preprocessing

1.1 Master of Science in Electronics - Emphasis on Embedded Systems

1.2 Costa Rica TEC

eBridge Github Page.

Our goal is to identify patterns on CPU load behaviors.

1.3 Data Preprocessing

First step is to load the libraries:

```
[1]: import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
```

1.3.1 Load the dataset

The code below is used to load the dataset.

The following commands allows to have a preview of the dataset.

[5]: CoreData.head()

```
[5]:
                       Time
                                             3
                                                    4
     0 2021-05-16 08:42:05
                             100.0
                                     0.0
                                           0.0
                                                100.0
     1 2021-05-16 08:42:10
                               1.4
                                     5.4
                                          26.9
                                                 13.7
                                     1.8
     2 2021-05-16 08:42:15
                               1.6
                                          90.5
                                                 21.0
     3 2021-05-16 08:42:20
                              73.9 15.4
                                           3.0
                                                 21.3
     4 2021-05-16 08:42:25
                              22.1 70.1
                                           1.2
                                                 20.5
```

Convert the time to timestamp

```
[6]: CoreData['Time'] = pd.to_datetime(CoreData['Time'])
[7]: CoreData.describe()
[7]:
                       1
                                      2
                                                    3
                                                                   4
     count
            27708.000000
                          27708.000000
                                         27708.000000
                                                       27708.000000
    mean
               25.601306
                              30.027988
                                            30.359474
                                                           30.934763
     std
               17.840367
                              18.281985
                                            18.222370
                                                           17.883178
                              0.000000
                                                            0.000000
    min
                0.000000
                                             0.000000
     25%
               12.700000
                              17.900000
                                            18.200000
                                                           19.300000
     50%
               24.400000
                              29.100000
                                            29.250000
                                                           29.800000
     75%
               36.500000
                              40.600000
                                            40.800000
                                                           41.000000
     max
              100.000000
                              93.400000
                                            94.900000
                                                          100.000000
[8]: CoreData['Time']
[8]: 0
             2021-05-16 08:42:05
     1
             2021-05-16 08:42:10
     2
             2021-05-16 08:42:15
     3
             2021-05-16 08:42:20
             2021-05-16 08:42:25
     27703
             2021-05-17 23:13:51
             2021-05-17 23:13:56
     27704
     27705
             2021-05-17 23:14:01
             2021-05-17 23:14:06
     27706
     27707
             2021-05-17 23:14:11
     Name: Time, Length: 27708, dtype: datetime64[ns]
[9]: # Create Box Plots for Dataset
     Core_Data = [CoreData['1'],CoreData['2'],
                   CoreData['3'],CoreData['4']]
     plt.figure(figsize=(20,12))
     g = sns.boxplot(data=Core_Data, linewidth=3.5).set(xlabel='Core Number',_
     →ylabel='CPU Load')
     plt.xticks(ticks = [0,1,2,3], labels = ['Core 1','Core 2','Core 3','Core 4'])
     plt.show()
```



```
[10]: # Scatter Plot
      import matplotlib.pyplot as plt
      import matplotlib.dates as md
      CoreData = CoreData[:999]
      plt.figure(figsize=(20,12))
      plt.plot(CoreData['Time'], CoreData['1'], label = "Core 1")
      plt.plot(CoreData['Time'], CoreData['2'], label = "Core 2")
      plt.plot(CoreData['Time'], CoreData['3'], label = "Core 3")
      plt.plot(CoreData['Time'], CoreData['4'], label = "Core 4")
      plt.xlabel('Time')
      ax=plt.gca()
      xfmt = md.DateFormatter('%H:%M:%S')
      ax.xaxis.set_major_formatter(xfmt)
      # Set the y axis label of the current axis.
      plt.ylabel('CPU Load')
      # Set a title of the current axes.
      plt.title('CPU Loads over time')
      # show a legend on the plot
      plt.legend()
      # Display a figure.
      plt.show()
```

```
#g=sns.lineplot(data=CoreData)
#(g.set_axis_labels("Time", "CPU Load"))
#plt.show()
```


[]: