```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
from sklearn.preprocessing import LabelEncoder
from mlxtend.frequent_patterns import apriori, association_rules

data = pd.read_csv('e-shop-clothing-2008.csv', delimiter=';')

data.head()
```

	year	month	day	order	country	session ID	page 1 (main category)	page 2 (clothing model)	colour	locatio
0	2008	4	1	1	29	1	1	A13	1	
1	2008	4	1	2	29	1	1	A16	1	
2	2008	4	1	3	29	1	2	B4	10	
3	2008	4	1	4	29	1	2	B17	6	
4	2008	4	1	5	29	1	2	B8	4	

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 165474 entries, 0 to 165473
Data columns (total 14 columns):

Daca	co camino (co ca e i i co camin	J / I			
#	Column	Non-Null Count	Dtype		
0	year	165474 non-null	int64		
1	month	165474 non-null	int64		
2	day	165474 non-null	int64		
3	order	165474 non-null	int64		
4	country	165474 non-null	int64		
5	session ID	165474 non-null	int64		
6	page 1 (main category)	165474 non-null	int64		
7	<pre>page 2 (clothing model)</pre>	165474 non-null	object		
8	colour	165474 non-null	int64		
9	location	165474 non-null	int64		
10	model photography	165474 non-null	int64		
11	price	165474 non-null	int64		
12	price 2	165474 non-null	int64		
13	page	165474 non-null	int64		
dtypes: int64(13), object(1)					

data.describe()

memory usage: 17.7+ MB

session ID	country	order	day	month	year	
165474.000000	165474.000000	165474.000000	165474.000000	165474.000000	165474.0	count
12058.417056	26.952621	9.817476	14.524554	5.585887	2008.0	mean
7008.418903	7.150691	13.478411	8.830374	1.328160	0.0	std
1.000000	1.000000	1.000000	1.000000	4.000000	2008.0	min
5931.000000	29.000000	2.000000	7.000000	4.000000	2008.0	25%
11967.500000	29.000000	6.000000	14.000000	5.000000	2008.0	50%
18219.000000	29.000000	12.000000	22.000000	7.000000	2008.0	75%
24026.000000	47.000000	195.000000	31.000000	8.000000	2008.0	max

blouses_data = data[data['page 1 (main category)'] == 3]

```
selected_features = ['year', 'month', 'day', 'country', 'session ID', 'colour', 'location', 'model photography', 'price'
X = blouses_data[selected_features].copy()
y = blouses_data['page']
label_encoders = {}
for feature in ['country', 'colour', 'location']:
    label_encoders[feature] = LabelEncoder()
    X[feature] = label_encoders[feature].fit_transform(X[feature])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 3: Model Training and Evaluation
model = LogisticRegression(max_iter=1000, solver='liblinear', penalty='l2', C=1.0)
# Adjust penalty and C parameters as needed
model.fit(X_train, y_train)
                       LogisticRegression
     LogisticRegression(max_iter=1000, solver='liblinear')
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print("Classification Report:")
print(classification_report(y_test, y_pred))
    Accuracy: 0.5533955417314671
    Classification Report:
                                recall f1-score
                   precision
                                                   support
                1
                        0.52
                                  0.85
                                                      3367
                                            0.65
                                                      1865
                2
                        0.46
                                  0.12
                                            0.19
                3
                        0.64
                                  0.35
                                            0.45
                                                      1779
                        0.73
                                            0.76
                4
                                  0.78
                                                       705
                                            0.55
                                                      7716
        accuracy
                        0.59
                                  0.53
       macro avg
                                            0.51
                                                      7716
                        0.55
                                            0.50
    weighted avg
                                  0.55
                                                      7716
threshold = 0.5
likelihood_to_buy = model.predict_proba(X_test)[:, 1]
```

Discussion

recommendations = likelihood_to_buy > threshold

Although logistic regression offers feature coefficients, it may not be able to describe complex relationships.

Predictive models rely on dataset attributes that may not fully capture all factors impacting a purchase decision.

There may not be enough previous data available for new users or categories to make reliable forecasts.

Over time, customer preferences may vary, and the model may not adjust to these changes as rapidly.

If overfitting takes place, the model may work well on training data but may not generalize to new data.

```
import warnings
warnings.filterwarnings("ignore", message="`should_run_async` will not call `transform_cell` automatically")
warnings.filterwarnings("ignore", message="np.find_common_type is deprecated")

data = pd.read_csv('e-shop-clothing-2008.csv', delimiter=';')
https://colab.research.google.com/drive/1mGDZqzhGWSK7qan1P6su_0KTt80wTEhF?authuser=2#scrollTo=F2-V16Qs9NAn&printMode=true
```

2/3

```
transactions = data.pivot_table(index='session ID', columns='page 1 (main category)',
                                values='page 2 (clothing model)', aggfunc=lambda x: list(x)).reset_index().fillna(0)
# Convert the list of clothing models into a binary format
basket_sets_binary = basket_sets.applymap(lambda x: True if x != 0 else False)
# Mine frequent itemsets using Apriori
frequent_itemsets = apriori(basket_sets_binary, min_support=0.01, use_colnames=True)
# Step 3: Association Rule Generation
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1)
blouse_rules = rules[rules['consequents'].astype(str).str.contains("'category=3'")]
print(transactions.columns)
# Step 4: Evaluation of Missed Transactions
missed_transactions = transactions[(transactions[1] != 3) & (transactions['session ID'].isin(rules['consequents'].as
additional_revenue = missed_transactions[missed_transactions[1] == 3][4].sum()
print(data.head())
    Index(['session ID', 1, 2, 3, 4], dtype='object', name='page 1 (main category)')
                                country session ID page 1 (main category)
       year
             month
                     day
                          order
       2008
                  4
                       1
                              1
                                      29
                                                    1
                                                                             1
       2008
                  4
                       1
                              2
                                       29
                                                    1
                                                                             1
       2008
                              3
                                                                            2
    2
                  4
                       1
                                      29
                                                    1
    3
       2008
                  4
                       1
                              4
                                       29
                                                    1
                                                                             2
    4
       2008
                  4
                       1
                              5
                                      29
                                                    1
                                                                             2
       page 2 (clothing model)
                                        location
                                                   model photography
                                colour
                                                                      price
                           A13
                                                                         28
                                     1
                                                5
                           A16
                                     1
                                                6
                                                                   1
                                                                         33
    1
    2
                            В4
                                    10
                                                2
                                                                   1
                                                                         52
    3
                           B17
                                                6
                                                                   2
                                                                          38
                                     6
    4
                            B8
                                     4
                                                3
                                                                         52
       price 2
                 page
              2
                    1
              2
    1
                    1
    2
              1
                    1
    3
              2
                    1
              1
                    1
```