Шафра́н — пряность и пищевой краситель оранжевого цвета, получаемый из высушенных рылец цветков шафрана посевного (лат. *Crócus satívus*).

Минерал с Урала, впервые описанный М. В. Ломоносовым, считается первым описанным минералом в России, содержит в своем составе элементы Х и У. Образец данного минерала был растворен в избытке раствора гидроксида натрия (*p-ция 1*). После чего к полученному раствору добавили сульфид натрия, при этом образовался черный осадок Ј (*p-ция 2*). При нагревании раствора образуется зелёный осадок С (*p-ция 3*). Далее Ј сожгли в токе кислорода до образования оранжевого бинарного соединения элемента У (*p-ция 4*), которое далее растворили в концентрированной хлорной кислоте и получили бесцветный раствор соли В и черный осадок бинарного соединения элемента У (*p-ция 5*). А вещество С растворили в азотной кислоте, при упаривании раствора выпали кристаллы соли А.

Аммиак выделяет из раствора соли **A** осадок **C**, растворимый как в избытке осадителя в присутствии аммонийных солей при длительном нагревании с образованием красно-фиолетового раствора, так и в избытке раствора щелочи. Осадок **C** растворяется в щелочном растворе перекиси водорода при нагревании с образованием желтого раствора **D** (*p-ция 6*). При смешении стехиометрических количеств мочевины и спиртового раствора **A** при охлаждении образуются ярко-зеленые игольчатые кристаллы **E**.

Аммиак из раствора соли **B** выделяет белый осадок **F**, легкорастворимый в избытке щелочи. При смешении растворов **D** и **B** образуется нерастворимый ядовитый осадок **G**, растворимый в кислотах (*p-ция 7*) и щелочах. При добавлении к **B** смеси иодида калия и хлорида цезия образуются жёлтозеленые кристаллы **H** с массовой долей **Y** 28.75%. А при медленном охлаждении насыщенного водного раствора тиомочевины, к которому добавили стехиометрическое количество **B**, осаждаются белые триклинные иглы **I**.

соединение	A	В	E	I
потеря массы при прокаливании на воздухе, %	81.01	47.52	85.22	72.01

При прокаливании ${\bf B}$ и ${\bf I}$ образуется один и тот же продукт, содержащий 3 элемента, включая ${\bf Y}$.

Вопросы:

- **1.** Определите соединения A J, ответ обоснуйте.
 - **2.** Напишите уравнения *реакций* 1-7 и реакции разложения **A** и **B** (*p-ции* 8-9 соответственно) на воздухе.
- 3. Найдите среди соединений **A J** «минерал с Урала».

Решение задачи 10-1 (автор: Феоктистова А.В.)

1. Из условия задачи понятно, что ${\bf B}$ – перхлорат ${\bf Y}$, кристаллизующийся в виде гидрата, ${\bf A}$ - нитрат ${\bf X}$ (гидрат). По таблице с потерями массы при нагревании можно составить уравнения и подобрать молярные массы ${\bf X}$ и ${\bf Y}$.

Разложение нитрата можно записать в общем виде (исключая варианты образования металла или реакций с изменением его степени окисления):

$$4\mathbf{X}(NO_3)_{n} \cdot m\mathbf{H}_2O = 2\mathbf{X}_2O_n + 4n\mathbf{N}O_2 + nO_2 + 4m\mathbf{H}_2O$$
$$100 - 81.01 = \frac{100.0 * 2 \cdot (2M(\mathbf{X}) + n \cdot M(\mathbf{O}))}{4(M(\mathbf{X}) + M(\mathbf{N}O_3^-) \cdot n + M(\mathbf{H}_2O) \cdot m)}$$

$$18.99 = \frac{50.0 \cdot (2x + 15.994n)}{x + 62.004n + 18.015m}$$
, где x — молярная масса \mathbf{X} (г/моль)

При
$$n = 3$$
 и $m = 9$, $x = 51.996$ (г/моль), тогда $X - Cr$, $A - Cr(NO3)3·9H2O$

Указание на амфотерность, образование жёлтого раствора при окислении и зелёный цвет **E** также намекают на хром.

На основании знаний химический свойств соединений хрома, легко угадываются ${\bf C}$ - ${\rm Cr}({\rm OH})_3$ и ${\bf D}$ - ${\rm Na}_2{\rm Cr}{\rm O}_4$.

Хром в различных реакциях часто выступает в роли комплексообразователя, а в молекуле мочевины есть донорные атомы кислорода и азота (т.е. молекула мочевины может быть лигандом), таким образом, можно предположить, что \mathbf{E} – это комплексное соединение хрома с мочевиной. Тогда состав \mathbf{E} находится из таблицы по потере массы при прокаливании данного соединения:

$$4\text{Cr}[(\text{CO(NH}_2)_2)_x(\text{H}_2\text{O})_{6-x}](\text{NO}_3)_3 + 1.5x\text{O}_2 \rightarrow \\ \rightarrow 2\text{Cr}_2\text{O}_3 + 12\text{NO}_2 + 3\text{O}_2 + x\text{CO}_2 + x\text{N}_2 + (6+x)\text{H}_2\text{O}$$

В зависимости от значения x кислород будет в продуктах или реагентах. Пусть $x \ge 2$, тогда уравнение реакции принимает вид:

$$4\text{Cr}[(\text{CO(NH}_2)_2)_x(\text{H}_2\text{O})_{6-x}](\text{NO}_3)_3 + (1.5x-3)\text{O}_2 \rightarrow \\ \rightarrow 2\text{Cr}_2\text{O}_3 + 12\text{NO}_2 + x\text{CO}_2 + x\text{N}_2 + (6+x)\text{H}_2\text{O}_3 + (6+x)\text{O}_3 + (6+x)\text$$

$$85.22 = 100.0 - \frac{100.0 \cdot 2 \cdot M(Cr_2O_3)}{4(M(Cr) + M(urea)x + M(H_2O)(6-x) + 3M(NO_3^-))}$$

$$85.22 = 100.0 - \frac{50.151.989}{51.996 + 60.056x + (6-x)18.015 + 186.012}$$

 $x = 3.99784 \approx 4$, тогда **E** - Cr[(CO(NH₂)₂)₄(H₂O)₂](NO₃)₃

Образование черного сульфида, белого гидроксида, его амфотерность, образование оранжевого оксида при прокаливании на воздухе и частичное его растворение с образованием черного осадка, намекают, что \mathbf{Y} - свинец.

Тогда **B** – это гидрат перхлората свинца(II) $Pb(ClO_4)_2 \cdot mH_2O$.

При разложении перхлората может образоваться хлорид, оксид или оксохлорид. Согласно условию задачи образуется оксохлорид (3 элемента), свинец(IV) проявляет окислительные свойства, поэтому логично предположить, что в оксохлориде свинец будет в с.о. +2.

Разложение перхлората можно записать в общем виде:

$$(1+\mathbf{n})$$
 Pb(ClO₄)₂· \mathbf{m} H₂O \rightarrow \mathbf{n} PbO·PbCl₂ + \mathbf{n} Cl₂ + $(4+3.5\mathbf{n})$ O₂ + $(1+\mathbf{n})\mathbf{m}$ H₂O
$$(1-0.4752) = \frac{\mathbf{n} \cdot M(\text{PbCl}_2) + M(\text{PbO})}{(1+\mathbf{n})M(\text{Pb}(\text{ClO}_4)_2 \cdot \mathbf{m}$$
H₂O)} = $\frac{223.199 + 278.106\mathbf{n}}{(1+\mathbf{n})(406.098 + 18.015\mathbf{m})},$ откуда $\mathbf{n} = \frac{64.986 - 9.454\mathbf{m}}{9.454\mathbf{m} - 10.079} = >$ при $\mathbf{m} = 3$, $\mathbf{n} = 2$.

тогда $\mathbf{Y} - \text{Pb}$, $\mathbf{B} - \text{Pb}(\text{ClO}_4)_2 \cdot 3\text{H}_2\text{O}$

На основании знаний химических свойств соединений свинца, легко угадываются $\mathbf{F} - \text{Pb}(\text{OH})_2$, $\mathbf{J} - \text{PbS}$ и $\mathbf{G} - \text{PbCrO}_4$.

Свинец может являться комплексообразователем (как в случае гидроксокомплекса), а тиомочевина — лигандом, так как в состав данной молекулы входят донорное атомы серы, можно предположить, что \mathbf{I} — это комплекс свинца с тиомочевиной.

Из таблицы с потерями масс, аналогично **E**, найдем формулу для **I**: $3Pb[(CS(NH_2)_2)_x](ClO_4)_2 + 9xO_2 \rightarrow$

$$\rightarrow$$
 Pb₃O₂Cl₂ +3xSO₂ + 6xN₂ + 2Cl₂ + 11O₂ + 3xCO₂ + 6xH₂O

В зависимости от значения x кислород будет в продуктах или реагентах. Пусть $x \ge 5$, тогда уравнение реакции принимает вид:

3 Pb[(CS(NH₂)₂)_x](ClO₄)₂ + (3x-11) O₂
$$\rightarrow$$

$$\rightarrow Pb_3O_2Cl_2 + 3x SO_2 + 3x N_2 + 2 Cl_2 + 3x CO_2 + 6x H_2O$$

$$100 - 72.01 = \frac{M(Pb_3O_2Cl_2) \cdot 100}{3 \cdot (M(Pb) + M(thiourea) \cdot x + M(ClO_4^-))}$$

$$27.99 = \frac{724.504 \cdot 100}{3 \cdot (207.200 + 76.123x + 198.898)}$$

$$x = 5.9997 \approx 6$$
, тогда E - Pb[(CS(NH₂)₂)₆](ClO₄)₂

Найдем молярную массу Н через массовую долю свинца в нем:

$$28.745 = \frac{207.200a}{M(H)} \cdot 100,$$

где **a** – количество атомов свинца, входящих в состав **H**. В состав соединения кроме свинца могут входить K, Cs, Cl и I. Больша́я молярная масса позволяет отдавать

предпочтение Cs и I. При
$$\boldsymbol{a} = 1$$
, $M(\boldsymbol{H}) = \frac{207.2}{0.28745} = 720.821$ г/моль

Вычтем атомную массу свинца и цезия из полученного значения.

Получаем 380.715 г/моль, что соответствует трём йодид-ионам: $\frac{380.715}{3}$ =

126.905 г/моль, тогда конечная формула **H** – CsPbI₃

Итого, неизвестные элементы и вещества:

X	A	C	D	G	E
Cr	$Cr(NO_3)_3 \cdot 9H_2O$	Cr(OH)3	Na ₂ CrO ₄	PbCrO ₄	Cr[(CO(NH ₂) ₂) ₄ (H ₂ O) ₂](NO ₃) ₃
Y	В	F	Н	J	I
Pb	Pb(ClO ₄) ₂ ·3H ₂ O	Pb(OH) ₂	CsPbI ₃	PbS	Pb[(CS(NH ₂) ₂) ₆](ClO ₄) ₂

2. Уравнения реакций:

- 1) $PbCrO_4 + 4NaOH = Na_2[Pb(OH)_4] + Na_2CrO_4$ (желтый)
- **2)** $Na_2[Pb(OH)_4] + Na_2S = 4NaOH + PbS \downarrow$ (черный)
- 3) $8Na_2CrO_4 + 3Na_2S + 20H_2O \xrightarrow{t^{\circ}C} 3Na_2SO_4 + 16NaOH + 8Cr(OH)_3 \downarrow$ (зелёный)
- **4)** $3PbS + 5O_2 = 3SO_2 + Pb_3O_4$ (оранжевый)
- **5)** $Pb_3O_4 + 4 HClO_4 = 2 Pb(ClO_4)_2 + 2 H_2O + PbO_2↓$ (чёрный)
- 6) 2 $Cr(OH)_3 + 3 H_2O_2 + 4NaOH = 8 H_2O + 2 Na_2CrO_4$ (жёлтый)
- 7) 2 PbCrO₄ + 4 HNO₃· = 2 Pb(NO₃)₂ + H₂CrO₄
- ·Хромат свинца растворяется далеко не во всех кислотах, поэтому реакцию растворения данного соединения **нельзя** написать, например, с серной или соляной кислотами.
- 8) 3 Pb(ClO₄)₂·3H₂O = Pb₃O₂Cl₂ + 2 Cl₂ + 11 O₂ + 9 H₂O
- 9) 4 $Cr(NO_3)_3 \cdot 9H_2O = 6 Cr_2O_3 + 12 NO_2 + O_2 + 36 H_2O$
- **3. Крокои́т** (др.-греч. κρόκος шафран), красная хромовая руда хромат свинца (**PbCrO**₄) островного строения. В 1763 году впервые описан М. В. Ломоносовым как красная руда на свинец.

Крокоисом (впоследствии крокоит) из-за сходства по цвету с шафраном (оранжевой пряностью, получаемой из рылец цветка крокуса) назван французским минералогом Ф. Боданом в 1832 году.

<u>Литература:</u>

- 1. Prior T.J., Kift R.L.: Pseudosymmetry in Cr(urea)₄(H₂O)₂·3NO₃. Journal of Chemical Crystallography 41 (2011) 1616-1623. doi:10.1007/s10870-011-0149-9
- Goldberg I., Herbstein F.H.: Thiourea Coordination Complexes of Pb(II) Salts. I. Octahedral Coordination in Triclinic Hexakis(thiourea)lead(II) Perchlorate. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry 28 (1972) 400-405. doi.org:10.1107/S056774087200247X

 Trots, D. M., & Myagkota, S. V. (2008). High-temperature structural evolution of caesium and rubidium triiodoplumbates. Journal of Physics and Chemistry of Solids, 69(10), 2520–2526. doi:10.1016/j.jpcs.2008.05.007

Система оценивания:

1.	Вещества А - Ј по 1 баллу	10 баллов		
2.	Уравнения реакций 1 - 9 по 1 баллу	9 балла		
3.	Указание формулы минерала - 1 балл	1 балл		
	ИТОГО: 20 баллов			