1.

Let 0 be the origin (0,0).

We split the area into 4 regions:

ABCD (Region 1), ECFG (Region 2), FGHI (Region 3) and HJKL (Region 4)

We know,

 X_{CM} (Total area) = $(\Sigma_{i=1}^{4} X_{CM}(Region i) x Area(Region i)) / <math>(\Sigma_{i=1}^{4} Area(Region i))$

 Y_{CM} (Total area) = $(\Sigma_{I=1}^{4} Y_{CM}(Region i) \times Area(Region i)) / (\Sigma_{I=1}^{4} Area(Region i))$

Region 1:

$$X_{CM} = -4 - (2/2) = -5$$
"

$$Y_{CM} = 0.5/2 = 0.25$$
"

Area = 2x0.5 = 1 sq. inch

Region 2:

$$X_{CM} = -4 - (0.5/2) = -4.25$$
"

$$Y_{CM} = 0.5 + 2.5 = 3$$
"

Area = 5x0.5 = 2.5 sq. inch

Region 3:

$$X_{CM} = 0$$

$$Y_{\text{CM}}$$
 -

We take semi-circular elements of infinitesimal area dA = $\pi \, rdr$ (r ranging from 4" to 4.5")

∴
$$Y_{CM} = (\int_4 ^{4.5} \text{ydA})/(\text{Area}) = (\int_4 ^{4.5} (2r/\pi) (\pi rdr))/13.352$$

= 18.0833/6.675 = 2.709"

From origin, $Y_{CM} = 5.5 + 2.709 = 8.209$ "

Area =
$$(\pi (4+0.5)^2 - \pi (4)^2)$$

= 6.675 sq.inch

Region 4:

$$X_{CM} = 4 + (2/2) = 5$$
"

$$Y_{CM} = 5.5 - (0.5/2) = 5.25$$
"

Area = 2x0.5 = 1 sq. inch

$$X_{CM}$$
 of the entire area = $((-5)(1) + (-4.25)(2.5) + 0 + (5)(1))/(1+2.5+6.675+1)$
= $-10.625/11.175$
= -0.9508 "

$$Y_{CM}$$
 of the entire area = $((0.25)(1)+(3)(2.5)+(8.209)(6.675)+(5.25)(1))/11.175$
= 6.066 "

2.

Figure 2

(a) $A_3 = A_1 + A_2 \text{ (Entire triangle)}$

We know I_{A1} (about 0) + I_{A2} (about 0) = I_{A3} (about 0)

 I_A (A being any isosceles triangle of base = b and height = h):

 I_x (taking centroid as origin) = $bh^3/36$

 I_y (taking centroid as origin) = $hb^3/48$

:.I (about origin) = I_x + I_y = $bh/12(h^2/3 + b^2/4)$ [Perpendicular Axis Theorem]

We know the center of mass of an isosceles triangle lies at h/3

:. I (about base center) = I (about origin) + $bh/2(h/3)^2$ [Parallel Axis Theorem] = $bh(b^2 + 4h^2)/48$

$$I_{A1}$$
 (b = 80, h = 60) = $80x60x((80)^2 + 4(60)^2)/48$
= **2080000**

$$I_{A3}$$
 (b = 160, h = 80) = $160 \times 80 \times ((160)^2 + 4(80)^2)/48$

= 13653333.3333

$$\therefore I_{A2} = 13653333.3333 - 2080000 = 11573333.3333 \text{ mm}^4 = 1157.333 \text{ cm}^4$$

(b) We know that $A_1X_{cm(1)}+A_2X_{cm(2)}=A_3X_{cm(3)}$. Similarly, $A_1Y_{cm(1)}+A_2Y_{cm(2)}=A_3Y_{cm(3)}$

$$X_{cm(1)} = X_{CM(3)} = 0$$
 (Symmetry)
$$\therefore X_{CM(2)} = 0$$

$$Y_{CM(1)} = h_1/3 = 60/3$$
 (from 0)
= 20
 $Y_{CM(3)} = h_3/3 = 80/3$ (from 0)
= 26.66

$$A_1 = (80) (60)/2 = 2400$$

 $A_3 = (160) (80)/2 = 6400$
 $A_2 = A_3 - A_1 = 4000$

$$:: Y_{CM(2)} = (A_3 Y_{cm(3)} - A_1 Y_{cm(1)}) / A_2$$

= **30.666 mm** (from O)

3.

Area of plate (Ap = 27.5 an²)

Area = A_c = 29cm

Area = A_c = 29cm $\frac{1}{2.7}$ $\frac{1}{2.5}$ $\frac{1}$

Figure 3

375 mm

First, we will calculate I_x :

$$I_x$$
 of one plate = $A_p b_p^2 / 12 + A_p (d + b_p / 2)^2$
= $(37.5) (1)^2 / 12 + (37.5) (13.2)^2$
= 6537.125 cm^4

 I_x of both plates = $2x6537.125 = 13074.25 \text{ cm}^4$

$$\begin{split} I_{\text{X}} & \text{ of one C-Section} = I_{\text{X}}(\text{of } A_{\text{IC}}) \ + \ 2I_{\text{X}}(\text{of } A_{\text{2C}}) \\ \therefore I_{\text{X}} & \text{ of both C-Sections} = \ 2I_{\text{X}}(\text{of } A_{\text{IC}}) \ + \ 4I_{\text{X}}(\text{of } A_{\text{2C}}) \ \text{[Due to symmetry]} \\ & = \ 2\left(A_{\text{IC}}l_{\text{c}}^2/12\right) \ + \ 4\left(A_{\text{2C}}w_{\text{c}}^2/12 \ + \ A_{\text{2C}}\left(\left(l_{\text{c}}-w_{\text{c}}\right)/2\right)^2\right) \\ & = \ 2\left(15.\ 494\text{x}25.\ 4^2/12\right) \ + \ 4\left(3.\ 5929\left(0.\ 61^2/12 \ + \ 12.\ 395^2\right)\right) \\ & = \ 1666.\ 018 \ + \ 2208.\ 441 \\ & = \ 3874.\ 4591\ \text{cm}^4 \end{split}$$

$$I_x$$
 of entire section = 13074.25 + 3874.4591
= 16948.7091 cm⁴

Total Area of section =
$$2x(A_P + A_C)$$
 = $2(37.5 + 22.6798)$ = Radius of gyration about X axis = $(I_X/Total Area)^{0.5}$ = $(16948.7092/120.3596)^{0.5}$ = 11.8666 cm

Now we will calculate I_Y :

$$I_{\text{Y}}$$
 of one plate = $A_{\text{P}} I_{\text{p}}^2 / 12$
= 37.5x(37.5) $^2 / 12$
= 4394.53125 cm 4

 $\therefore I_{\text{Y}}$ of both plates = 2x4394.53125

 $= 8789.0625 \text{ cm}^4$

$$I_Y$$
 of one C-Section = I_Y (of A_{1C}) + $2I_Y$ (of A_{2C})
 $\therefore I_Y$ of both C-Sections = $2I_Y$ (of A_{1C}) + $4I_Y$ (of A_{2C}) [Due to symmetry]
= A

$$I_{\text{Y}}$$
 of entire section = 8789.0625 + 11648.0488SS
= 20437.1113 cm⁴

The radius of Gyration about Y-axis =
$$(I_y/Total Area)^{0.5}$$

= $(20437.1113/133)^{0.5}$
= 12.396 cm

4.

Figure 4

Area of figure =
$$\int_1^2 dA = \int_1^2 y dx = (\int_1^2 x^3 dx)/4$$

= $(2^4 - 1^4)/16$
= $15/16 \text{ mm}^2$
= $\mathbf{0.9375 mm}^2$

$$I_{y} = \int_{1}^{2} x^{2} dA \quad (dA = ydx)$$

$$= \int_{1}^{2} x^{2}y dx$$

$$= \int_{1}^{2} x^{2}(x^{3}/4) dx$$

$$= (\int_{1}^{2} x^{5} dx)/4$$

$$= 1/24(2^{6} - 1^{6})$$

$$= 63/24 = 21/8$$

$$= 2.625 \text{ mm}^{4}$$

:.Rectangular radius of gyration (r_{Y}) about this axis = $(I_{\text{Y}}/A)^{0.5}$ = $((21/8)/(15/16))^{0.5}$ = $2.8^{0.5}$ = 1.6733 mm

$$\begin{split} I_x &= \ I_{A1(about \ X)} \ + \ I_{A2(about \ X)} \\ I_{A1(about \ X)} &= \ \int_0^{0.25} \ y^2 dA \ (dA = 1 dy) \\ &= \ \int_0^{0.25} \ y^2 dy \\ &= 1/(64x3) \\ I_{A2(about \ X)} &= \ \int_{0.25^2} \ y^2 dA \ (dA = (2-x) \, dy = (2-4^{1/3}y^{1/3}) \, dy) \\ &= \ 2 \int_{0.25^2} \ y^2 dy \ - \ 2^{2/3} \int_{0.25^2} y^{7/3} dy \\ &= \ 2/3 \, (8 \ - \ 1/64) \ - \ 3 \cdot 2^{2/3} \, (2^{10/3} \ - \ 2^{-20/3}) / 10 \\ &= \ 16/3 \ - \ 2/(64x3) \ - \ 3 \, (2^4 \ - \ 2^{-6}) / 10 \\ I_x &= \ 1/(64x3) \ + \ 16/3 \ - \ 2/(64x3) \ - \ 3 \, (16 \ - \ 1/64) / 10 \\ &= \ (16 \ - \ 1/64) / 3 \ - \ 3 \, (16 \ - \ 1/64) / 10 \\ &= \ (1/30) \ x \ (16 \ - \ 1/64) \\ &= \ 0. \ 5328125 \ mm^4 \end{split}$$

:.Rectangular radius of gyration (r_x) about this axis = $(I_x/A)^{0.5}$

 $= (0.5328125/0.9375)^{0.5}$ $= (0.568333)^{0.5}$

= 0.75387 mm

