Radiative penguin decays

Borys Knysh

after

Al Eisner, Stephen Playfer (BABAR) Mikihiko Nakao (Belle) Tobias Hurth (theory)

Decay modes

Radiative penguins

- $b \rightarrow s \gamma$
- $b \rightarrow d\gamma$

Electroweak penguins

- $b \rightarrow sl^+l^-$
- $b \rightarrow dl^+l^-$
- $b \rightarrow s \nu \bar{\nu}$

These B decay modes are considered to be among the most sensitive probes for physics beyond the SM!

Effective electroweak Hamiltonian

- Rare B decays are governed by an interplay between the weak and strong interactions.
- short-distance QCD effects are very important
- Hard gluon exchange $\alpha^n(m_b)\log^m(m_b/M)$, $m \le n, n = 0,1,2,...$
- To obtain a reasonable result, one must re-sum at least all the leading-log (LL) terms...

Effective low-energy theory with five quarks

- obtained by integrating out the heavy particles (electroweak bosons, top-quark)
- theoretical framework for both inclusive and exclusive modes allows for a separation of the B meson decay:

$$H_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{i}^{N} \lambda_{CKM} C_i(\mu, M) O_i(\mu)$$

The effective electroweak Hamiltonian

•
$$H_{eff} = -\frac{4G_F}{\sqrt{2}} \lambda_q^t \sum_{i=1}^{10} C_i O_i + \lambda_q^u \sum_{i=1}^{2} C_i (O_i - O_i^u)$$
, $\lambda_q^t = V_{tb} V_{tq}^*$, $\lambda_q^u = V_{ub} V_{uq}^*$

Effective field theory approach

- At the scale $\mu=M_W$ the full SM theory is matched with the effective theory, Wilson coefficients are obtained by comparison and have very small QCD corrections;
- The evolution of these Wilson coefficients from $\mu=M_W$ down to $\mu=m_b$ must then be performed with the help of the renormalization group;
- Calculate corrections to the order of α_s^2
- For inclusive processes (use quark-hadron duality): $\Gamma(B \to X_S \gamma) = \Gamma(b \to s \gamma) + O(\Lambda_{QCD}/m_b)$
- For exclusive processes use QCD-improved factorization $(m_b \to \infty)$ allows for perturbative calculation of QCD corrections, however has the drawback important corrections of the type $1/m_b$ are missing

Power corrections to inclusive decays $B \rightarrow X_S \gamma$ + ugly formulas

The inclusive decay rate is defined as:

$$\Gamma = \frac{1}{2m_{H_b}} \sum_{X} (2\pi)^4 \delta^4 (p_i - p_f) |\langle X | H_{eff} | H_b \rangle|^2$$

Optical theorem:

$$\Gamma = \frac{1}{2m_{H_b}} Im\langle X|\boldsymbol{T}|H_b\rangle; \boldsymbol{T} = i \int d^4x \, T[H_{eff}(x)H_{eff}(0)]$$

• OPE:
$$T[H_{eff}H_{eff}] = \frac{1}{m_b}\sum_{i,j=0} \frac{c_i^j P_i^j}{m_b^j} \sim \Lambda_{QCD}$$

•
$$\Gamma_{B \to X_S \gamma}^{O_7, O_7} = \alpha_{EM} G_F^2 m_b^5 / 32 \pi^4 |V_{tb} V_{ts}|^2 C_7^2 (m_b) (1 - \frac{1}{m_b^2} [\frac{1}{2} \mu_\pi^2 + \frac{3}{2} \mu_G^2])$$

• However due to O_2 contribution, cut on photon energy is required (<1.6 GeV) and irreducible theoretical uncertainty becomes 4-5%

Power corrections to inclusive decays

$$B \to X_d \gamma$$

- The same as $B \to X_S \gamma$
- But the long-distance contributions from the intermediate u quark in the penguin loops are critical (O_1^u)
- However it vanishes at order $\frac{\Lambda_{QCD}}{m_b}$;
- But appears again at $(\frac{\Lambda_{QCD}}{m_b})^2$ due to interference with O_8

Power corrections to inclusive decays

$$B \to X_S l^+ l^-$$

- O_9 corrections appear at $\frac{1}{m_b^2}$, $\frac{1}{m_b^3}$, $\frac{1}{m_c^2}$,;
- However, a systematic analysis of hadronic power corrections including all relevant operators has yet to be performed. Thus, an additional uncertainty of 5% should be added to all theoretical predictions for this mode on the basis of a simple dimensional estimate.

Inclusive $b \rightarrow s\gamma$

- $b \to s \gamma$ was first observed by CLEO II in exclusive $\mathrm{B} \to K^* \gamma$
- using a combination of a fully inclusive photon spectrum, and a "pseudoreconstruction" of a sum of exclusive final states
- $Br(B \to X_s \gamma)_{NNLL} = (3.21 \pm 0.43 \pm 0.27^{+0.18}_{-0.10}) 10^{-4}$ (stat, syst, model-dependent)
- Cut on photon spectrum at 2 GEV rather than theoretical at 1.6 GeV
- At B-factories threshold was decreased to 1.7 GeV
- The hallmark of a fully inclusive measurement is that for a signal B it requires only the detection of a high-energy photon with E close to half the b-quark mass;
- The processes $B \to X_s \gamma$ and $B \to X_d \gamma$ are not separated
- However for $B \to X_d \gamma$ is easily subtracted $\frac{Br(B \to X_d \gamma)}{Br(B \to X_S \gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 = 0.044 \pm 0.003$;
- electromagnetic-calorimeter resolution

Belle fully inclusive

- $605 fb^{-1}$ of $\Upsilon(4S)$ data & $68 fb^{-1}$ on 60MeV below upsilon
- Event shape information is used to suppress a large fraction of the background
- off-resonance data, which is free from B-meson decays is subtracted from spectra
- Once the non-B backgrounds are subtracted, the dominant background sources are the B decay modes that produce photons through secondary meson decays
- Photons were checked to form π^0/η , if yes ->rejected -> 3% systematic errors which mainly came from the isolation requirement and the understanding vertices.
- Other sources of photons in B decays then dominate the uncertainty on the background, giving a systematic error of 2-7% (ω , η' , charmonium decays, fake from electrons, anti-neutrons, ...)

Belle: Photon energy spectrum (inclusive)

$$Br(B \to X_S \gamma) = (3.45 \pm 0.15 \pm 0.40)10^{-4} (Belle, E_{\gamma} > 1.7 \text{ GeV})$$

BABAR fully inclusive with lepton tagging

- Initially $347\ fb^{-1}$ of $\Upsilon(4S)$ data & $36\ fb^{-1}$ on 40MeV below upsilon;
- For the signal it relies on the detection of high energy photons
 with photon-quality requirements analogous to those used
 by Belle including isolation, and a veto
- The lepton momentum threshold is $p^* > 1.05~GeV$ for both electrons and muons \rightarrow 98% of continuum events are removed and 12% of signal events;
- Statistical uncertainties less than in untagged analysis
- However lepton tagging introduces an additional small systematic error of up to 2.4% due to lepton identication and uncertainties in $b \rightarrow clv$ branching fractions;

BABAr: Photon energy spectrum (inclusive)

 $Br(B \to X_S \gamma) = (3.21 \pm 0.15 \pm 0.29 \pm 0.08)10^{-4} (BABAr, E_{\gamma} > 1.8 \text{ GeV})$

BABAR fully inclusive with reconstructed-B tagging

- $210fb^{-1}$ of $\Upsilon(4S)$ data, more than 1000 different hadronic final states were reconstructed, representing 5% of the decay width of the B meson;
- recoil-B technique;
- signal B meson is tagged by fully reconstructing the non-signal B meson in a hadronic decay mode;
- π^0 veto, B candidates with $\Delta E = 60~MeV$;
- Measures the momentum of the tag B,
- identifies both the flavor and the charge of the B
- Type equation here.
- $Br(B \to X_S \gamma) = (3.66 \pm 0.85 \pm 0.60) 10^{-4} (BABAr, E_{\gamma} > 1.9 \text{ GeV})$

Sum of exclusive modes

- Belle: $6fb^{-1}$, $E_{\gamma} > 2.24 GeV$
- $Br(B \to X_S \gamma) = (3.66 \pm 0.53 \pm 0.42)10^{-4} (Belle, E_{\gamma} > 2.24 \text{ GeV};$
- BABAr: a set of 38 exclusive final states is explicitly reconstructed;
- The photon energy in the B rest frame is precisely deduced from the measured X_s mass;
- The main limitation of this analysis is the understanding of the hadronization of the s quark into different X_s final states, and the estimation of the fraction of missing final states that have not been included in the analysis.
- 50% $B \to Kn(\pi)\gamma$, $B \to Kn(\pi)\eta\gamma$, 25% due to K_L^0 modes, 25% high multiplicity final states

Sum of exclusive modes

$$Br(B \to X_s \gamma) = (3.29 \pm 0.19 \pm 0.48) 10^{-4} (BABAr, E_{\gamma} > 1.9 \text{ GeV})$$

Constraints on new physics from $B \to X_S \gamma$

- Charged Higgs mass $m_{H^+} > 380 GeV$ at C.L. = 95%
- inverse compactification radius $\frac{1}{R} > 600 GeV$ at C.L = 95% In both cases, the bounds are much stronger than those previously derived from other measurements

Exclusive $b \rightarrow s\gamma$

$B \to K^* \gamma$

• K^* reconstructed in the 4 final states:

 $K^{+}\pi^{-}$, $K_{S}^{0}\pi^{0}$, $K^{+}\pi^{0}$, $K_{S}^{0}\pi^{+}$

Combinatorial background;

• $B \to K\pi\pi\gamma$, $B \to K\pi^0$;

Mode	Belle	BaBar	Average
$K^*(892)^0 \gamma$	$40.1 \pm 2.1 \pm 1.7$	$43.3 \pm 1.0 \pm 1.6$	42.4 ± 1.5
$K^*(892)^+ \gamma$	$42.5 \pm 3.1 \pm 2.4$	$43.6 \pm 1.4 \pm 1.6$	43.1 ± 1.8
$K_2^*(1430)^0\gamma$	$13.0 \pm 5.0 \pm 1.0$	$12.2 \pm 2.5 \pm 1.0$	12.4 ± 2.4
$K_2^*(1430)^+\gamma$		$14.5 \pm 4.0 \pm 1.5$	14.5 ± 4.3
$K_1(1270)^+\gamma$	$43.0 \pm 9.0 \pm 9.0$		43.0 ± 13.0
$K^+\pi^-\pi^+\gamma$	$25.0 \pm 1.8 \pm 2.2$	$29.5 \pm 1.3 \pm 1.9$	27.6 ± 2.2
$K^0\pi^+\pi^-\gamma$	$24.0 \pm 4.0 \pm 3.0$	$18.5 \pm 2.1 \pm 1.2$	19.5 ± 2.2
$K^+\pi^-\pi^0\gamma$		$40.7 \pm 2.2 \pm 3.1$	40.7 ± 3.9
$K^0\pi^+\pi^0\gamma$		$45.6 \pm 4.2 \pm 3.0$	45.6 ± 5.1
$K^+\phi\gamma$	$2.5 \pm 0.3 \pm 0.2$	$3.5 \pm 0.6 \pm 0.4$	2.8 ± 0.3
$K^0 \phi \gamma$	$2.7 \pm 0.6 \pm 0.3$		2.7 ± 0.7
$K^+\eta\gamma$	$8.4 \pm 1.5 \pm 1.1$	$7.7\pm1.0\pm0.4$	7.9 ± 0.9
$K^0\eta\gamma$	$8.7 \pm 2.9 \pm 1.8$	$7.1 \pm 2.1 \pm 0.4$	7.6 ± 1.8
$K^+\eta'\gamma$	$3.6 \pm 1.2 \pm 0.4$	$1.9\pm1.4\pm0.1$	2.9 ± 1.0
$\overline{\Lambda}p\gamma$	$2.5 \pm 0.4 \pm 0.2$		2.5 ± 0.5
$B_s^0 \to \phi \gamma$	$57 \pm 17 \pm 12$		57 ± 21

Other exclusive $b \rightarrow s\gamma$ modes

- $B \to K\pi\pi\gamma$ measurements of the photon polarization (full Dalitz plot analysis is required)
- Upper limits on $K^*(1410)$, $K_1(1400)$, $K_3^*(1780)$
- X_s final states $K\eta, K\eta', K\phi$ for the first time have been measured primary interest (time-dependent CP assymetry can be measured)
- Baryonic radiative decay $B^+ \to \overline{\Lambda} p \gamma$ has been measured
- First $B_s^0 \to \phi \gamma$ radiative decay was observed;
- Large hadronic uncertainties are due to the nonperturbative input of the QCDF approach
- These uncertainties do not allow precise predictions of the branching fractions of exclusive modes
- $Br(B \to K^* \gamma) \sim F(q^2 = 0) \to QCD$ sum rules $\to 20\%$ theoretical uncertainties

Exclusive and inclusive $b \rightarrow d\gamma$

- Proceed through penguin diagram
- Suppressed due to $\left| \frac{V_{td}}{V_{ts}} \right|^2$
- U-quark contribution is not negligible anymore
- $b \rightarrow s \gamma$ events are large background for $b \rightarrow d \gamma$
- However they are also good control sample;

Exclusive $b \rightarrow d\gamma$

Rate asymmetries

The direct CP asymmetry

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{X}) - \Gamma(B \to X)}{\Gamma(\overline{B} \to \overline{X}) + \Gamma(B \to X)}$$

$$A_{CP}(B \to X_S \gamma) = -0.011 \pm 0.030 \pm 0.014$$
- BABAR results

$$A_{CP}(B \to X_s \gamma) = 0.002 \pm 0.050 \pm 0.030$$
- Belle results