Chapter 1

Limits and Continuity

1.1. The Limit of a Function

We adopt the following definitions.

Definition 1. A real function f is said to be increasing (resp. strictly increasing, decreasing, strictly decreasing) on a nonempty set $A \subset \mathbb{R}$ if $x_1 < x_2, x_1, x_2 \in A$, implies $f(x_1) \le f(x_2)$ (resp. $f(x_1) < f(x_2), f(x_1) \ge f(x_2), f(x_1) > f(x_2)$). A function which is either increasing or decreasing (resp. strictly increasing or strictly decreasing) is called monotone (resp. strictly monotone).

Definition 2. By a deleted neighborhood of a point $a \in \mathbb{R}$ we mean the set $(a - \varepsilon, a + \varepsilon) \setminus \{a\}$, where $\varepsilon > 0$.

1.1.1. Find the limits or state that they do not exist.

(a)
$$\lim_{x\to 0} x \cos \frac{1}{x}$$
, (b) $\lim_{x\to 0} x \left[\frac{1}{x}\right]$,

(c)
$$\lim_{x\to 0} \frac{x}{a} \left[\frac{b}{x} \right]$$
, $a, b > 0$, (d) $\lim_{x\to 0} \frac{[x]}{x}$,

(e)
$$\lim_{x \to +\infty} x \left(\sqrt{x^2 + 1} - \sqrt[3]{x^3 + 1} \right)$$
, (f) $\lim_{x \to 0} \frac{\cos\left(\frac{\pi}{2}\cos x\right)}{\sin(\sin x)}$.

- **1.1.2.** Assume that $f:(-a,a)\setminus\{0\}\to\mathbb{R}$. Show that
- (a) $\lim_{x\to 0} f(x) = l$ if and only if $\lim_{x\to 0} f(\sin x) = l$,
- (b) if $\lim_{x\to 0} f(x) = l$, then $\lim_{x\to 0} f(|x|) = l$. Does the other implication hold?
- **1.1.3.** Suppose a function $f: (-a,a) \setminus \{0\} \to (0,+\infty)$ satisfies $\lim_{x\to 0} \left(f(x) + \frac{1}{f(x)}\right) = 2$. Show that $\lim_{x\to 0} f(x) = 1$.
- **1.1.4.** Assume f is defined on a deleted neighborhood of a and $\lim_{x\to a} \left(f(x) + \frac{1}{|f(x)|} \right) = 0$. Determine $\lim_{x\to a} f(x)$.
- 1.1.5. Prove that if f is a bounded function on [0,1] satisfying f(ax) = bf(x) for $0 \le x \le \frac{1}{a}$ and a, b > 1, then $\lim_{x \to 0^+} f(x) = f(0)$.
- 1.1.6. Calculate

(a)
$$\lim_{x \to 0} \left(x^2 \left(1 + 2 + 3 + \dots + \left[\frac{1}{|x|} \right] \right) \right),$$
(b)
$$\lim_{x \to 0^+} \left(x \left(\left[\frac{1}{x} \right] + \left[\frac{2}{x} \right] + \dots + \left[\frac{k}{x} \right] \right) \right), \ k \in \mathbb{N}.$$

- **1.1.7.** Compute $\lim_{x\to\infty} \frac{|P(x)|}{P(|x|)}$, where P(x) is a polynomial with positive coefficients.
- 1.1.8. Show by an example that the condition

$$\lim_{x \to 0} (f(x) + f(2x)) = 0$$

does not imply that f has a limit at 0. Prove that if there exists a function φ such that in a deleted neighborhood of zero the inequality $f(x) \geq \varphi(x)$ is satisfied and $\lim_{x\to 0} \varphi(x) = 0$, then (*) implies $\lim_{x\to 0} f(x) = 0$.

- 1.1.9.
- (a) Give an example of a function f satisfying the condition

$$\lim_{x\to 0} (f(x)f(2x)) = 0$$

and such that $\lim_{x\to 0} f(x)$ does not exist.

- (b) Show that if in a deleted neighborhood of zero the inequalities $f(x) \ge |x|^{\alpha}$, $\frac{1}{2} < \alpha < 1$, and $f(x)f(2x) \le |x|$ hold, then $\lim_{x\to 0} f(x) = 0$.
- 1.1.10. Given a real α , assume that $\lim_{x\to\infty}\frac{f(ax)}{x^{\alpha}}=g(a)$ for each positive a. Show that there is c such that $g(a)=ca^{\alpha}$.
- **1.1.11.** Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a monotonic function such that $\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$. Show that also $\lim_{x \to \infty} \frac{f(cx)}{f(x)} = 1$ for each c > 0.
- 1.1.12. Prove that if a > 1 and $\alpha \in \mathbb{R}$, then

(a)
$$\lim_{x \to \infty} \frac{a^x}{x} = +\infty$$
, (b) $\lim_{x \to \infty} \frac{a^x}{x^{\alpha}} = +\infty$.

- 1.1.13. Show that if $\alpha > 0$, then $\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} = 0$.
- 1.1.14. For a > 0, show that $\lim_{x \to 0} a^x = 1$. Use this equality to prove the continuity of the exponential function.
- 1.1.15. Show that

(a)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$
, (b) $\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$,

- (c) $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$.
- 1.1.16. Show that $\lim_{x\to 0} \ln(1+x) = 0$. Using this equality, deduce that the logarithmic function is continuous on $(0,\infty)$.
- 1.1.17. Determine the following limits:

(a)
$$\lim_{x\to 0} \frac{\ln(1+x)}{x}$$
, (b) $\lim_{x\to 0} \frac{a^x-1}{x}$, $a>0$,

(c)
$$\lim_{x\to 0}\frac{(1+x)^{\alpha}-1}{x}, \ \alpha\in\mathbb{R}.$$

1.1.18. Find

(a)
$$\lim_{x\to\infty} (\ln x)^{\frac{1}{x}}$$
,

(b)
$$\lim_{x\to 0^+} x^{\sin x},$$

(c)
$$\lim_{x\to 0}(\cos x)^{\frac{1}{\sin^2 x}},$$

(d)
$$\lim_{x\to\infty}(e^x-1)^{\frac{1}{x}},$$

(e)
$$\lim_{x\to 0^+} (\sin x)^{\frac{1}{\ln x}}$$
.

1.1.19. Find the following limits:

(a)
$$\lim_{x\to 0} \frac{\sin 2x + 2 \arctan 3x + 3x^2}{\ln(1+3x+\sin^2 x) + xe^x}$$
, (b) $\lim_{x\to 0} \frac{\ln \cos x}{\tan x^2}$,

(b)
$$\lim_{x \to 0} \frac{\ln \cos x}{\tan x^2}$$

(c)
$$\lim_{x\to 0^+} \frac{\sqrt{1-e^{-x}}-\sqrt{1-\cos x}}{\sqrt{\sin x}}$$
, (d) $\lim_{x\to 0} (1+x^2)^{\cot x}$.

$$(d) \quad \lim_{x \to 0} (1+x^2)^{\cot x}.$$

1.1.20. Calculate

(a)
$$\lim_{x\to\infty} \left(\tan\frac{\pi x}{2x+1}\right)^{\frac{1}{x}}$$
,

(b)
$$\lim_{x\to\infty} x\left(\ln\left(1+\frac{x}{2}\right)-\ln\frac{x}{2}\right)$$
.

1.1.21. Suppose that $\lim_{x\to 0^+} g(x) = 0$ and that there are $\alpha \in \mathbb{R}$ and positive m and M such that $m \leq \frac{f(x)}{x^{\alpha}} \leq M$ for positive x from a neighborhood of zero. Show that if $\alpha \lim_{x\to 0^+} g(x) \ln x = \gamma$, then $\lim_{x\to 0^+} f(x)^{g(x)} = e^{\gamma}$. In the case where $\gamma = \infty$ or $\gamma = -\infty$ we assume that $e^{\infty} = \infty$ and $e^{-\infty} = 0$.

1.1.22. Assume that $\lim_{x\to 0} f(x) = 1$ and $\lim_{x\to 0} g(x) = \infty$. Show that if $\lim_{x\to 0} g(x)(f(x)-1) = \gamma$, then $\lim_{x\to 0} f(x)g(x) = e^{\gamma}$.

1.1.23. Calculate

(a)
$$\lim_{x\to 0^+} \left(2\sin\sqrt{x} + \sqrt{x}\sin\frac{1}{x}\right)^x,$$

(b)
$$\lim_{x\to 0} \left(1 + xe^{-\frac{1}{a^2}} \sin \frac{1}{x^4}\right)^{e^{\frac{1}{a^2}}},$$

(c)
$$\lim_{x\to 0} \left(1 + e^{-\frac{1}{x^2}} \arctan \frac{1}{x^2} + xe^{-\frac{1}{x^2}} \sin \frac{1}{x^4}\right)^{e^{\frac{1}{x^2}}}.$$

- **1.1.24.** Let $f:[0,+\infty)\to\mathbb{R}$ be a function such that each sequence $\{f(a+n)\}, a\geq 0$, converges to zero. Does the limit $\lim_{x\to\infty} f(x)$ exist?
- **1.1.25.** Let $f:[0,+\infty)\to\mathbb{R}$ be a function such that, for any positive a, the sequence $\{f(an)\}$ converges to zero. Does the limit $\lim_{x\to\infty} f(x)$ exist?
- **1.1.26.** Let $f:[0,+\infty)\to\mathbb{R}$ be a function such that, for each $a\geq 0$ and each b>0, the sequence $\{f(a+bn)\}$ converges to zero. Does the limit $\lim_{x\to\infty} f(x)$ exist?
- **1.1.27.** Prove that if $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} \frac{f(2x) f(x)}{x} = 0$, then $\lim_{x\to 0} \frac{f(x)}{x} = 0$.
- **1.1.28.** Suppose that f defined on $(a, +\infty)$ is bounded on each finite interval (a, b), a < b. Prove that if $\lim_{x \to +\infty} (f(x+1) f(x)) = l$, then also $\lim_{x \to +\infty} \frac{f(x)}{x} = l$.
- **1.1.29.** Let f defined on $(a, +\infty)$ be bounded below on each finite interval (a, b), a < b. Show that if $\lim_{x \to +\infty} (f(x+1) f(x)) = +\infty$, then also $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$.
- 1.1.30. Let f defined on $(a, +\infty)$ be bounded on each finite interval (a, b), a < b. If for a nonnegative integer k, $\lim_{x \to +\infty} \frac{f(x+1) f(x)}{x^k}$ exists, then

$$\lim_{x\to+\infty}\frac{f(x)}{x^{k+1}}=\frac{1}{k+1}\lim_{x\to+\infty}\frac{f(x+1)-f(x)}{x^k}.$$

1.1.31. Let f defined on $(a, +\infty)$ be bounded on each finite interval (a,b), a < b, and assume that $f(x) \ge c > 0$ for $x \in (a, +\infty)$. Show that if $\lim_{x \to +\infty} \frac{f(x+1)}{f(x)}$ exists, then $\lim_{x \to +\infty} (f(x))^{\frac{1}{x}}$ also exists and

$$\lim_{x\to+\infty}(f(x))^{\frac{1}{x}}=\lim_{x\to+\infty}\frac{f(x+1)}{f(x)}.$$

- **1.1.32.** Assume that $\lim_{x\to 0} f\left(\left[\frac{1}{x}\right]^{-1}\right) = 0$. Does this imply that the limit $\lim_{x\to 0} f(x)$ exists?
- 1.1.33. Let $f: \mathbb{R} \to \mathbb{R}$ be such that, for any $a \in \mathbb{R}$, the sequence $\{f\left(\frac{a}{n}\right)\}$ converges to zero. Does f have a limit at zero?
- 1.1.34. Prove that if $\lim_{x\to 0} f\left(x\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)\right)=0$, then $\lim_{x\to 0} f(x)=0$.
- 1.1.35. Show that if f is monotonically increasing (decreasing) on (a,b), then for any $x_0 \in (a,b)$,

(a)
$$f(x_0^+) = \lim_{x \to x_0^+} f(x) = \inf_{x > x_0} f(x) \left(f(x_0^+) = \sup_{x > x_0} f(x) \right),$$

(b)
$$f(x_0^-) = \lim_{x \to x_0^-} f(x) = \sup_{x < x_0} f(x) \quad \left(f(x_0^-) = \inf_{x < x_0} f(x) \right),$$

(c)
$$f(x_0^-) \le f(x_0) \le f(x_0^+)$$
 $(f(x_0^-) \ge f(x_0) \ge f(x_0^+))$.

1.1.36. Show that if f is monotonically increasing on (a, b), then for any $x_0 \in (a, b)$,

(a)
$$\lim_{x \to x_0^+} f(x^-) = f(x_0^+),$$

(b)
$$\lim_{x \to x_0^-} f(x^+) = f(x_0^-).$$

- 1.1.37. Prove the following Cauchy theorem. In order that f have a finite limit when x tends to a, a necessary and sufficient condition is that for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x) f(x')| < \varepsilon$ whenever $0 < |x-a| < \delta$ and $0 < |x'-a| < \delta$. Formulate and prove an analogous necessary and sufficient condition in order that $\lim_{x \to \infty} f(x)$ exist.
- 1.1.38. Show that if $\lim_{x\to a} f(x) = A$ and $\lim_{y\to A} g(y) = B$, then $\lim_{x\to a} g(f(x)) = B$, provided $(g\circ f)(x) = g(f(x))$ is well defined and f does not attain A in a deleted neighborhood of a.

- 1.1.39. Find functions f and g such that $\lim_{x\to a} f(x) = A$ and $\lim_{y\to A} g(y) = B$, but $\lim_{x\to a} g(f(x)) \neq B$.
- **1.1.40.** Suppose $f: \mathbb{R} \to \mathbb{R}$ is an increasing function and $x \mapsto f(x) x$ has the period 1. Denote by f^n the nth iterate of f; that is, $f^1 = f$ and $f^n = f \circ f^{n-1}$ for $n \geq 2$. Prove that if $\lim_{n \to \infty} \frac{f^n(0)}{n}$ exists, then for every $x \in \mathbb{R}$, $\lim_{n \to \infty} \frac{f^n(x)}{n} = \lim_{n \to \infty} \frac{f^n(0)}{n}$.
- 1.1.41. Suppose $f: \mathbb{R} \to \mathbb{R}$ is an increasing function and $x \mapsto f(x) x$ has the period 1. Moreover, suppose that f(0) > 0 and p is a fixed positive integer. Let f^n denote the nth iterate of f. Prove that if m_p is the least positive integer such that $f^{m_p}(0) > p$, then

$$\frac{p}{m_p} \leq \varliminf_{n \to \infty} \frac{f^n(0)}{n} \leq \varlimsup_{n \to \infty} \frac{f^n(0)}{n} \leq \frac{p}{m_p} + \frac{1 + f(0)}{m_p}.$$

1.1.42. Suppose $f: \mathbb{R} \to \mathbb{R}$ is an increasing function and $x \mapsto f(x) - x$ has the period 1. Show that $\lim_{n \to \infty} \frac{f^n(x)}{n}$ exists and its value is the same for each $x \in \mathbb{R}$, where f^n denotes the nth iterate of f.

1.2. Properties of Continuous Functions

1.2.1. Find all points of continuity of f defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ irrational,} \\ \sin|x| & \text{if } x \text{ is rational.} \end{cases}$$

1.2.2. Determine the set of points of continuity of f given by

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \text{ is irrational,} \\ 0 & \text{if } x \text{ is rational.} \end{cases}$$

1.2.3. Study the continuity of the following functions:

(a)
$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational or } x = 0, \\ 1/q & \text{if } x = p/q, \ p \in \mathbb{Z}, \ q \in \mathbb{N}, \ \text{and} \\ p, q \text{ are co-prime,} \end{cases}$$

(b)
$$f(x) = \begin{cases} |x| & \text{if } x \text{ is irrational or } x = 0, \\ qx/(q+1) & \text{if } x = p/q, \ p \in \mathbb{Z}, \ q \in \mathbb{N}, \text{ and} \\ p, q \text{ are co-prime.} \end{cases}$$

(The function defined in (a) is called the Riemann function.)

- **1.2.4.** Prove that if $f \in C([a,b])$, then $|f| \in C([a,b])$. Show by an example that the converse is not true.
- 1.2.5. Determine all a_n and b_n for which the function defined by

$$f(x) = \begin{cases} a_n + \sin \pi x & \text{if } x \in [2n, 2n+1], \ n \in \mathbb{Z}, \\ b_n + \cos \pi x & \text{if } x \in (2n-1, 2n), \ n \in \mathbb{Z}, \end{cases}$$

is continuous on R.

1.2.6. Let $f(x) = [x^2] \sin \pi x$ for $x \in \mathbb{R}$. Study the continuity of f.

1.2.7. Let

$$f(x) = [x] + (x - [x])^{[x]}$$
 for $x \ge \frac{1}{2}$.

Show that f is continuous and that it is strictly increasing on $[1, \infty)$.

1.2.8. Study the continuity of the following functions and sketch their graphs:

(a)
$$f(x) = \lim_{n \to \infty} \frac{n^x - n^{-x}}{n^x + n^{-x}}, \quad x \in \mathbb{R},$$

(b)
$$f(x) = \lim_{n \to \infty} \frac{x^2 e^{nx} + x}{e^{nx} + 1}, \quad x \in \mathbb{R},$$

(c)
$$f(x) = \lim_{n \to \infty} \frac{\ln(e^n + x^n)}{n}, \quad x \ge 0,$$

(d)
$$f(x) = \lim_{n \to \infty} \sqrt[n]{4^n + x^{2n} + \frac{1}{x^{2n}}}, \quad x \neq 0,$$

(e)
$$f(x) = \lim_{n \to \infty} \sqrt[2n]{\cos^{2n} x + \sin^{2n} x}, \quad x \in \mathbb{R}.$$

1.2.9. Show that if $f: \mathbb{R} \to \mathbb{R}$ is continuous and periodic, then it attains its supremum and infimum.

1.2.10. For $P(x) = x^{2n} + a_{2n-1}x^{2n-1} + \cdots + a_1x + a_0$, show that there is $x_* \in \mathbb{R}$ such that $P(x_*) = \inf\{P(x) : x \in \mathbb{R}\}$. Show also that the absolute value of any polynomial P attains its infimum; that is, there is $x^* \in \mathbb{R}$ such that $|P(x^*)| = \inf\{|P(x)| : x \in \mathbb{R}\}$.

1.2.11.

- (a) Give an example of a bounded function on [0, 1] which achieves neither an infimum nor a supremum.
- (b) Give an example of a bounded function on [0,1] which does not achieve its infimum on any $[a,b] \subset [0,1]$, a < b.
- **1.2.12.** For $f: \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}$ and $\delta > 0$, set

$$\omega_f(x_0, \delta) = \sup\{|f(x) - f(x_0)| : x \in \mathbb{R}, |x - x_0| < \delta\}$$

and $\omega_f(x_0) = \lim_{\delta \to 0^+} \omega_f(x_0, \delta)$. Show that f is continuous at x_0 if and only if $\omega_f(x_0) = 0$.

1.2.13.

- (a) Let $f, g \in C([a, b])$ and for $x \in [a, b]$ let $h(x) = \min\{f(x), g(x)\}$ and $H(x) = \max\{f(x), g(x)\}$. Show that $h, H \in C([a, b])$.
- (b) Let $f_1, f_2, f_3 \in C([a, b])$ and for $x \in [a, b]$ let f(x) denote that one of the three values $f_1(x), f_2(x)$ and $f_3(x)$ that lies between the other two. Show that $f \in C([a, b])$.
- **1.2.14.** Prove that if $f \in C([a,b])$, then the functions defined by setting

$$m(x) = \inf\{f(\zeta): \zeta \in [a,x]\}$$
 and $M(x) = \sup\{f(\zeta): \zeta \in [a,x]\}$ are also continuous on $[a,b]$.

1.2.15. Let f be a bounded function on [a, b]. Show that the functions defined by

$$m(x) = \inf\{f(\zeta): \zeta \in [a,x)\}$$
 and $M(x) = \sup\{f(\zeta): \zeta \in [a,x)\}$ are continuous from the left on (a,b) .

1.2.16. Verify whether under the assumptions of the foregoing problem the functions

$$m^*(x) = \inf\{f(\zeta) : \zeta \in [a, x]\}$$
 and $M^*(x) = \sup\{f(\zeta) : \zeta \in [a, x]\}$ are continuous from the left on (a, b) .

- **1.2.17.** Suppose f is continuous on $[a, \infty)$ and $\lim_{x \to \infty} f(x)$ is finite. Show that f is bounded on $[a, \infty)$.
- **1.2.18.** Let f be continuous on \mathbb{R} and let $\{x_n\}$ be a bounded sequence. Do the equalities

$$\underline{\lim_{n\to\infty}} f(x_n) = f(\underline{\lim_{n\to\infty}} x_n) \quad \text{and} \quad \overline{\lim_{n\to\infty}} f(x_n) = f(\overline{\lim_{n\to\infty}} x_n)$$

hold?

1.2.19. Let $f: \mathbb{R} \to \mathbb{R}$ be increasing and continuous and let $\{x_n\}$ be a bounded sequence. Show that

(a)
$$\underline{\lim}_{n\to\infty} f(x_n) = f(\underline{\lim}_{n\to\infty} x_n),$$

(b)
$$\overline{\lim}_{n\to\infty} f(x_n) = f(\overline{\lim}_{n\to\infty} x_n).$$

1.2.20. Let $f: \mathbb{R} \to \mathbb{R}$ be decreasing and continuous and let $\{x_n\}$ be a bounded sequence. Show that

(a)
$$\underline{\lim}_{n\to\infty} f(x_n) = f(\overline{\lim}_{n\to\infty} x_n),$$

(b)
$$\overline{\lim}_{n\to\infty} f(x_n) = f(\underline{\lim}_{n\to\infty} x_n).$$

1.2.21. Suppose that f is continuous on \mathbb{R} , $\lim_{x\to-\infty} f(x) = -\infty$ and $\lim_{x\to\infty} f(x) = +\infty$. Define g by setting

$$g(x) = \sup\{t: f(t) < x\} \text{ for } x \in \mathbb{R}.$$

- (a) Prove that g is continuous from the left.
- (b) Is g continuous?

1.2.22. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous periodic function with two *incommensurate* periods T_1 and T_2 ; that is, $\frac{T_1}{T_2}$ is irrational. Prove that f is a constant function. Give an example of a nonconstant periodic function with two incommensurate periods.

1.2.23.

- (a) Show that if f: R→ R is nonconstant, periodic and continuous, then it has a smallest positive period, the so-called fundamental period.
- (b) Give an example of a nonconstant periodic function without a fundamental period.
- (c) Prove that if f: R→ R is a periodic function without a fundamental period, then the set of all periods of f is dense in R.

1.2.24.

- (a) Prove that the theorem in part (a) of the preceding problem remains true when the continuity of f on R is replaced by the continuity at one point.
- (b) Show that if f: R→ R is a periodic function without a fundamental period and if it is continuous at least at one point, then it is constant.
- **1.2.25.** Show that if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous and periodic and $\lim_{x \to \infty} (f(x) g(x)) = 0$, then f = g.
- **1.2.26.** Give an example of two periodic functions f and g such that any period of f is not commensurate with any period of g and such that f+g
- (a) is not periodic,
- (b) is periodic.
- **1.2.27.** Let $f,g:\mathbb{R}\to\mathbb{R}$ be continuous and periodic with positive fundamental periods T_1 and T_2 , respectively. Prove that if $\frac{T_1}{T_2} \notin \mathbb{Q}$, then h=f+g is not a periodic function.

- **1.2.28.** Let $f,g:\mathbb{R}\to\mathbb{R}$ be periodic and suppose that f is continuous and no period of g is commensurate with the fundamental period of f. Prove that f+g is not a periodic function.
- **1.2.29.** Prove that the set of points of discontinuity of a monotonic function $f: \mathbb{R} \to \mathbb{R}$ is at most countable.
- 1.2.30. Suppose f is continuous on [0,1]. Prove that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n(-1)^kf\left(\frac{k}{n}\right)=0.$$

1.2.31. Let f be continuous on [0,1]. Prove that

$$\lim_{n\to\infty}\frac{1}{2^n}\sum_{k=0}^n(-1)^k\binom{n}{k}f\left(\frac{k}{n}\right)=0.$$

- **1.2.32.** Suppose $f:(0,\infty)\to\mathbb{R}$ is a continuous function such that $f(x)\leq f(nx)$ for all positive x and natural n. Show that $\lim_{x\to\infty}f(x)$ exists (finite or infinite).
- **1.2.33.** A function f defined on an interval $I \subset \mathbb{R}$ is said to be *convex* on I if

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

whenever $x_1, x_2 \in I$ and $\lambda \in (0,1)$. Prove that if f is convex on an open interval, then it is continuous. Must a convex function on an arbitrary interval be continuous?

1.2.34. Prove that if a sequence $\{f_n\}$ of continuous functions on A converges uniformly to f on A, then f is continuous on A.

1.3. Intermediate Value Property

Recall the following:

Definition. A real function f has the *intermediate value property* on an interval I containing [a,b] if f(a) < v < f(b) or f(b) < v < f(a);

that is, if v is between f(a) and f(b), there is between a and b a c such that f(c) = v.

- 1.3.1. Give examples of functions which have the intermediate value property on an interval I but are not continuous on this interval.
- **1.3.2.** Prove that a strictly increasing function $f:[a,b] \to \mathbb{R}$ which has the intermediate value property is continuous on [a,b].
- **1.3.3.** Let $f:[0,1] \to [0,1]$ be continuous. Show that f has a fixed point in [0,1]; that is, there exists $x_0 \in [0,1]$ such that $f(x_0) = x_0$.
- **1.3.4.** Assume that $f,g:[a,b]\to\mathbb{R}$ are continuous and such that f(a)< g(a) and f(b)>g(b). Prove that there exists $x_0\in(a,b)$ for which $f(x_0)=g(x_0)$.
- **1.3.5.** Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and periodic with period T > 0. Prove that there is x_0 such that

$$f\left(x_0+\frac{T}{2}\right)=f(x_0).$$

1.3.6. A function $f:(a,b)\to\mathbb{R}$ is continuous. Prove that, given x_1,x_2,\ldots,x_n in (a,b), there exists $x_0\in(a,b)$ such that

$$f(x_0) = \frac{1}{n} (f(x_1) + f(x_2) + \cdots + f(x_n)).$$

- 1.3.7.
- (a) Prove that the equation $(1-x)\cos x = \sin x$ has at least one solution in (0,1).
- (b) For a nonzero polynomial P, show that the equation $|P(x)| = e^x$ has at least one solution.
- 1.3.8. For $a_0 < b_0 < a_1 < b_1 < \cdots < a_n < b_n$, show that all roots of the polynomial

$$P(x) = \prod_{k=0}^{n} (x + a_k) + 2 \prod_{k=0}^{n} (x + b_k), \quad x \in \mathbb{R},$$

are real.

- **1.3.9.** Suppose that f and g have the intermediate value property on [a,b]. Must f+g possess the intermediate value property on that interval?
- **1.3.10.** Assume that $f \in C([0,2])$ and f(0) = f(2). Prove that there exist x_1 and x_2 in [0,2] such that

$$x_2 - x_1 = 1$$
 and $f(x_2) = f(x_1)$.

Give a geometric interpretation of this fact.

1.3.11. Let $f \in C([0,2])$. Show that there are x_1 and x_2 in [0,2] such that

$$x_2-x_1=1$$
 and $f(x_2)-f(x_1)=\frac{1}{2}(f(2)-f(0)).$

1.3.12. For $n \in \mathbb{N}$, let $f \in C([0,n])$ be such that f(0) = f(n). Prove that there are x_1 and x_2 in [0,n] satisfying

$$x_2 - x_1 = 1$$
 and $f(x_2) = f(x_1)$.

- **1.3.13.** A continuous function f on [0,n], $n \in \mathbb{N}$, satisfies f(0) = f(n). Show that for every $k \in \{1,2,\ldots,n-1\}$ there are x_k and x_k' such that $f(x_k) = f(x_k')$, where $x_k x_k' = k$ or $x_k x_k' = n k$. Is it true that for every $k \in \{1,2,\ldots,n-1\}$ there are x_k and x_k' such that $f(x_k) = f(x_k')$, where $x_k x_k' = k$?
- **1.3.14.** For $n \in \mathbb{N}$, let $f \in C([0, n])$ be such that f(0) = f(n). Prove that the equation f(x) = f(y) has at least n solutions with $x y \in \mathbb{N}$.
- **1.3.15.** Suppose that real continuous functions f and g defined on \mathbb{R} commute; that is, f(g(x)) = g(f(x)) for $x \in \mathbb{R}$. Prove that if the equation $f^2(x) = g^2(x)$ has a solution, then the equation f(x) = g(x) also has (here $f^2(x) = f(f(x))$ and $g^2(x) = g(g(x))$).

Show by example that the assumption of continuity of f and g in the foregoing problem cannot be omitted.

1.3.16. Prove that a continuous injection $f: \mathbb{R} \to \mathbb{R}$ is either strictly decreasing or strictly increasing.

- **1.3.17.** Assume that $f: \mathbb{R} \to \mathbb{R}$ is a continuous injection. Prove that if there exists n such that the nth iteration of f is an identity, that is, $f^n(x) = x$ for all $x \in \mathbb{R}$, then
- (a) f(x) = x, $x \in \mathbb{R}$, if f is strictly increasing,
- (b) $f^2(x) = x$, $x \in \mathbb{R}$, if f is strictly decreasing.
- **1.3.18.** Assume $f: \mathbb{R} \to \mathbb{R}$ satisfies the condition $f(f(x)) = f^2(x) = -x$, $x \in \mathbb{R}$. Show that f cannot be continuous.
- **1.3.19.** Find all functions $f: \mathbb{R} \to \mathbb{R}$ which have the intermediate value property and such that there is $n \in \mathbb{N}$ for which $f^n(x) = -x$, $x \in \mathbb{R}$, where f^n denotes the *n*th iteration of f.
- **1.3.20.** Prove that if $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property and $f^{-1}(\{q\})$ is closed for every rational q, then f is continuous.
- **1.3.21.** Assume that $f:(a,\infty)\to\mathbb{R}$ is continuous and bounded. Prove that, given T, there exists a sequence $\{x_n\}$ such that

$$\lim_{n\to\infty} x_n = +\infty \quad \text{and} \quad \lim_{n\to\infty} \left(f(x_n + T) - f(x_n) \right) = 0.$$

- **1.3.22.** Give an example of a continuous function $f: \mathbb{R} \to \mathbb{R}$ which attains each of its values exactly three times. Does there exist a continuous function $f: \mathbb{R} \to \mathbb{R}$ which attains each of its values exactly two times?
- **1.3.23.** Let $f:[0,1] \to \mathbb{R}$ be continuous and piecewise strictly monotone. (A function f is said to be piecewise strictly monotone on [0,1], if there exists a partition of [0,1] into finitely many subintervals $[t_{i-1},t_i]$, where $i=1,2,\ldots,n$ and $0=t_0< t_1<\cdots< t_n=1$, such that f is strictly monotone on each of these subintervals.) Prove that f attains at least one of its values an odd number of times.
- **1.3.24.** A continuous function $f:[0,1] \to \mathbb{R}$ attains each of its values finitely many times and $f(0) \neq f(1)$. Show that f attains at least one of its values an odd number of times.

- **1.3.25.** Assume that $f: \mathbb{K} \to \mathbb{K}$ is continuous on a compact set $\mathbb{K} \subset \mathbb{R}$. Moreover, assume that an $x_0 \in \mathbb{K}$ is such that each limit point of the sequence of iterates $\{f^n(x_0)\}$ is a fixed point of f. Prove that $\{f^n(x_0)\}$ is convergent.
- **1.3.26.** A function $f: \mathbb{R} \to \mathbb{R}$ is increasing, continuous, and such that F defined by F(x) = f(x) x is periodic with period 1. Prove that if $\alpha(f) = \lim_{n \to \infty} \frac{f^n(0)}{n}$, then there is $x_0 \in [0, 1]$ such that $F(x_0) = \alpha(f)$. Prove also that f has a fixed point in [0, 1] if and only if $\alpha(f) = 0$. (See Problems 1.1.40 1.1.42.)
- **1.3.27.** A function $f:[0,1]\to\mathbb{R}$ satisfies f(0)<0 and f(1)>0, and there exists a function g continuous on [0,1] and such that f+g is decreasing. Prove that the equation f(x)=0 has a solution in the open interval (0,1).
- **1.3.28.** Show that every bijection $f: \mathbb{R} \to [0, \infty)$ has infinitely many points of discontinuity.
- **1.3.29.** Recall that each $x \in (0,1)$ can be represented by a binary fraction $a_1 a_2 a_3 \ldots$, where $a_i \in \{0,1\}$, $i=1,2,\ldots$ In the case where x has two distinct binary expansions we choose the one with infinitely many digits equal to 1. Next let a function $f:(0,1) \to [0,1]$ be defined by

$$f(x) = \overline{\lim_{n \to \infty}} \, \frac{1}{n} \sum_{i=1}^{n} a_i.$$

Prove that f is discontinuous at each $x \in (0,1)$ but nevertheless it has the intermediate value property.

1.4. Semicontinuous Functions

Definition 1. The extended real number system $\overline{\mathbb{R}}$ consists of the real number system to which two symbols, $+\infty$ and $-\infty$, have been adjoined, with the following properties:

- (i) If x is real, then $-\infty < x < +\infty$, and $x + \infty = +\infty$, $x \infty = -\infty$ and $\frac{x}{x+\infty} = \frac{x}{x-\infty} = 0$.
- (ii) If x > 0, then $x \cdot (+\infty) = +\infty$, $x \cdot (-\infty) = -\infty$.

(iii) If
$$x < 0$$
, then $x \cdot (+\infty) = -\infty$, $x \cdot (-\infty) = +\infty$.

Definition 2. If $A \subset \overline{\mathbb{R}}$ is a nonempty set, then $\sup A$ (resp. inf A) is the smallest (resp. greatest) extended real number which is greater (resp. smaller) than or equal to each element of A.

Let f be a real-valued function defined on a nonempty set $A \subset L$

Definition 3. If x_0 is a limit point of A, then the limit inferior (resp. the limit superior) of f(x) as $x \to x_0$ is defined as the infimum (resp. the supremum) of the set of all $y \in \overline{\mathbb{R}}$ such that there is a sequence $\{x_n\}$ of points in A which is convergent to x_0 , whose terms are all different from x_0 and $y = \lim_{n \to \infty} f(x_n)$. The limit inferior and the limit superior of f(x) as $x \to x_0$ are denoted by $\lim_{x \to x_0} f(x)$ and $\overline{\lim_{x \to x_0}} f(x)$, respectively.

Definition 4. A real-valued function is said to be *lower* (resp. *upper*) semicontinuous at an $x_0 \in A$ which is a limit point of A if $\lim_{x \to x_0} f(x) \ge f(x_0)$ (resp. $\lim_{x \to x_0} f(x) \le f(x_0)$). If x_0 is an isolated point of A, then we assume that f is lower and upper semicontinuous at that point.

1.4.1. Show that if x_0 is a limit point of A and $f: A \to \mathbb{R}$, then

(a)
$$\lim_{x \to x_0} f(x) = \sup_{\delta > 0} \inf \{ f(x) : x \in A, \ 0 < |x - x_0| < \delta \},$$

(b)
$$\overline{\lim}_{x\to x_0} f(x) = \inf_{\delta>0} \sup\{f(x): x\in A, 0<|x-x_0|<\delta\}.$$

1.4.2. Show that if x_0 is a limit point of A and $f: A \to \mathbb{R}$, then

(a)
$$\lim_{x \to x_0} f(x) = \lim_{\delta \to 0^+} \inf \{ f(x) : x \in A, \ 0 < |x - x_0| < \delta \},$$

(b)
$$\overline{\lim}_{x\to x_0} f(x) = \lim_{\delta\to 0^+} \sup\{f(x): x\in A, \ 0<|x-x_0|<\delta\}.$$

- **1.4.3.** Prove that $y_0 \in \mathbb{R}$ is the limit inferior of $f : A \to \mathbb{R}$ at a limit point x_0 of A if and only if for every $\varepsilon > 0$ the following two conditions are satisfied:
 - (i) there is $\delta > 0$ such that $f(x) > y_0 \varepsilon$ for all $x \in A$ with $0 < |x x_0| < \delta$,
 - (ii) for every $\delta > 0$ there is $x' \in A$ such that $0 < |x' x_0| < \delta$ and $f(x') < y_0 + \epsilon$.

Establish an analogous statement for the limit superior of f at x_0 .

- **1.4.4.** Let $f: A \to \mathbb{R}$ and let x_0 be a limit point of A. Prove that
 - (a) $\lim_{x \to x_0} f(x) = -\infty$ if and only if for any real y and for any $\delta > 0$ there exists $x' \in A$ such that $0 < |x' x_0| < \delta$ and f(x') < y.
 - (b) $\overline{\lim}_{x \to x_0} f(x) = +\infty$ if and only if for any real y and for any $\delta > 0$ there exists $x' \in A$ such that $0 < |x' x_0| < \delta$ and f(x') > y.
- 1.4.5. Suppose $f: A \to \mathbb{R}$ and x_0 is a limit point of A. Show that if $l = \varinjlim_{x \to x_0} f(x)$ (resp. $L = \varlimsup_{x \to x_0} f(x)$), then there is a sequence $\{x_n\}, x_n \in A, x_n \neq x_0$, converging to x_0 such that $l = \lim_{n \to \infty} f(x_n)$ (resp. $L = \lim_{n \to \infty} f(x_n)$).
- **1.4.6.** Let $f: A \to \mathbb{R}$ and let x_0 be a limit point of A. Prove that

$$\underline{\lim_{x\to x_0}}(-f(x)) = -\overline{\lim_{x\to x_0}}f(x) \quad \text{and} \quad \overline{\lim_{x\to x_0}}(-f(x)) = -\underline{\lim_{x\to x_0}}f(x).$$

1.4.7. Let $f: A \to (0, \infty)$ and let x_0 be a limit point of A. Show that

$$\underline{\lim_{x\to x_0} \frac{1}{f(x)}} = \frac{1}{\overline{\lim_{x\to x_0} f(x)}} \quad \text{and} \quad \overline{\lim_{x\to x_0} \frac{1}{f(x)}} = \frac{1}{\overline{\lim_{x\to x_0} f(x)}}.$$

(We assume that $\frac{1}{+\infty} = 0$ and $\frac{1}{0+} = +\infty$.)

1.4.8. Assume that $f, g: A \to \mathbb{R}$ and that x_0 is a limit point of A. Prove that (excluding the indeterminate forms of the type $+\infty - \infty$

and $-\infty + \infty$) the following inequalities hold:

$$\underbrace{\lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) \le \lim_{x \to x_0} (f(x) + g(x))}_{\leq \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) \le \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x).$$

Give examples of functions for which " \leq " in the above inequalities is replaced by "<".

1.4.9. Assume that $f, g: A \to [0, \infty)$ and that x_0 is a limit point of A. Prove that (excluding the indeterminate forms of the type $0 \cdot (+\infty)$ and $(+\infty) \cdot 0$) the following inequalities hold:

$$\underline{\lim}_{x \to x_0} f(x) \cdot \underline{\lim}_{x \to x_0} g(x) \le \underline{\lim}_{x \to x_0} (f(x) \cdot g(x)) \le \underline{\lim}_{x \to x_0} f(x) \cdot \overline{\lim}_{x \to x_0} g(x) \\
\le \underline{\lim}_{x \to x_0} (f(x) \cdot g(x)) \le \underline{\lim}_{x \to x_0} f(x) \cdot \overline{\lim}_{x \to x_0} g(x).$$

Give examples of functions for which " \leq " in the above inequalities is replaced by "<".

1.4.10. Prove that if $\lim_{x\to x_0} f(x)$ exists, then (excluding the indeterminate forms of the type $+\infty - \infty$ and $-\infty + \infty$)

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x),$$

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x).$$

Moreover, if f and g are nonnegative, then (excluding the indeterminate forms of the type $0 \cdot (+\infty)$ and $(+\infty) \cdot 0$)

$$\frac{\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x),}{\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \overline{\lim_{x \to x_0}} g(x).}$$

1.4.11. Prove that if f is continuous on (a,b), $l=\varliminf_{x\to a}f(x)$ and $L=\varlimsup_{x\to a}f(x)$, then for every $\lambda\in [l,L]$ there is a sequence $\{x_n\}$ of points in (a,b) converging to a and such that $\lim_{n\to\infty}f(x_n)=\lambda$.

1.4.12. Find the points at which $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational,} \\ \sin x & \text{if } x \text{ is rational} \end{cases}$$

is semicontinuous.

1.4.13. Determine points at which the function f defined by

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \text{ is irrational,} \\ 0 & \text{if } x \text{ is rational} \end{cases}$$

is semicontinuous.

1.4.14. Show that the function given by setting

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational or } x = 0, \\ \frac{1}{q} & \text{if } x = \frac{p}{q}, \ p \in \mathbb{Z}, q \in \mathbb{N}, \\ & \text{and } p, q \text{ are co-prime} \end{cases}$$

is upper semicontinuous.

1.4.15. Find the points at which the function defined by

(a)
$$f(x) = \begin{cases} |x| & \text{if } x \text{ is irrational or } x = 0, \\ \frac{qx}{q+1} & \text{if } x = \frac{p}{q}, \ p \in \mathbb{Z}, \ q \in \mathbb{N}, \\ & \text{and } p, q \text{ are co-prime,} \end{cases}$$

(b)
$$f(x) = \begin{cases} \frac{(-1)^q p}{q+1} & \text{if } x \in \mathbb{Q} \cap (0,1] \text{ and } x = \frac{p}{q}, \ p, q \in \mathbb{N}, \\ & \text{and } p, q \text{ are co-prime,} \\ 0 & \text{if } x \in (0,1) \text{ is irrational} \end{cases}$$

is neither upper nor lower semicontinuous.

1.4.16. Let $f,g:\mathbf{A}\to\mathbb{R}$ be lower (resp. upper) semicontinuous at $x_0\in\mathbf{A}$. Show that

- (a) if a > 0, then af is lower (resp. upper) semicontinuous at x_0 . If a < 0, then af is upper (resp. lower) semicontinuous at x_0 .
- (b) f + g is lower (resp. upper) semicontinuous at x_0 .

- **1.4.17.** Assume that $f_n: A \to \mathbb{R}$, $n \in \mathbb{N}$, are lower (resp. upper) semicontinuous at $x_0 \in A$. Show that $\sup_{n \in \mathbb{N}} f_n$ (resp. $\inf_{n \in \mathbb{N}} f_n$) is lower (resp. upper) semicontinuous at x_0 .
- 1.4.18. Prove that a pointwise limit of an increasing (resp. decreasing) sequence of lower (resp. upper) semicontinuous functions is lower (resp. upper) semicontinuous.
- **1.4.19.** For $f: A \to \mathbb{R}$ and x a limit point of A define the oscillation of f at x by

$$o_f(x) = \lim_{\delta \to 0^+} \sup\{|f(z) - f(u)|: \ z, u \in A, \ |z - x| < \delta, \ |u - x| < \delta\}$$

Show that $o_f(x) = f_1(x) - f_2(x)$, where

$$f_1(x) = \max\{f(x), \overline{\lim_{z\to x}} f(z)\}$$
 and $f_2(x) = \min\{f(x), \underline{\lim_{z\to x}} f(z)\}.$

- **1.4.20.** Let f_1 , f_2 , and o_f be as in the foregoing problem. Show that f_1 and o_f are upper semicontinuous, and f_2 is lower semicontinuous.
- **1.4.21.** Prove that in order that $f: A \to \mathbb{R}$ be lower (resp. upper) semicontinuous at $x_0 \in A$, a necessary and sufficient condition is that for every $a < f(x_0)$ (resp. $a > f(x_0)$) there is $\delta > 0$ such that f(x) > a (resp. f(x) < a) whenever $|x x_0| < \delta$, $x \in A$.
- **1.4.22.** Prove that in order that $f: A \to \mathbb{R}$ be lower (resp. upper) semicontinuous on A, a necessary and sufficient condition is that for every $a \in \mathbb{R}$ the set $\{x \in A: f(x) > a\}$ (resp. $\{x \in A: f(x) < a\}$) be open in A.
- **1.4.23.** Prove that $f: \mathbb{R} \to \mathbb{R}$ is lower semicontinuous if and only if the set $\{(x,y) \in \mathbb{R}^2 : y \ge f(x)\}$ is closed in \mathbb{R}^2 .

Formulate and prove an analogous necessary and sufficient condition for upper semicontinuity of f on \mathbb{R} .

1.4.24. Prove the following theorem of Baire. Every lower (resp. upper) semicontinuous $f: A \to \mathbb{R}$ is the pointwise limit of an increasing (resp. decreasing) sequence of continuous functions on A.

1.4.25. Prove that if $f: A \to \mathbb{R}$ is upper semicontinuous, $g: A \to \mathbb{R}$ is lower semicontinuous and $f(x) \le g(x)$ everywhere on A, then there is a continuous function h on A such that

$$f(x) \le h(x) \le g(x), \quad x \in A.$$

1.5. Uniform Continuity

Definition. A real function f defined on $A \subset \mathbb{R}$ is said to be *uniformly continuous* on A if, given $\varepsilon > 0$, there exists $\delta > 0$ such that for all x and y in A with $|x-y| < \delta$ we have $|f(x) - f(y)| < \varepsilon$.

1.5.1. Verify whether the following functions are uniformly continuous on (0,1):

(a)
$$f(x) = e^x$$
, (b) $f(x) = \sin \frac{1}{x}$,

(c)
$$f(x) = x \sin \frac{1}{x}$$
, (d) $f(x) = e^{\frac{1}{x}}$,

(e)
$$f(x) = e^{-\frac{1}{x}}$$
, (f) $f(x) = e^x \cos \frac{1}{x}$,

(g)
$$f(x) = \ln x$$
, (h) $f(x) = \cos x \cdot \cos \frac{\pi}{x}$,

(i) $f(x) = \cot x.$

1.5.2. Which of the following functions are uniformly continuous on $[0,\infty)$?

(a)
$$f(x) = \sqrt{x}$$
, (b) $f(x) = x \sin x$,

(c)
$$f(x) = \sin^2 x$$
, (d) $f(x) = \sin(x^2)$,

(e)
$$f(x) = e^x$$
, (f) $f(x) = e^{\sin(x^2)}$,

(g)
$$f(x) = \sin(\sin x)$$
, (h) $f(x) = \sin(x \sin x)$,

(i) $f(x) = \sin \sqrt{x}$.

1.5.3. Show that if f is uniformly continuous on (a, b), $a, b \in \mathbb{R}$, then $\lim_{x \to a^+} f(x)$ and $\lim_{x \to b^-} f(x)$ exist as finite limits.

25

1.5.4. Suppose f and g are uniformly continuous on (a,b) ($[a,\infty)$). Does this imply the uniform continuity on (a,b) ($[a,\infty)$) of the functions

- (a) f+g,
- (b) fg,
- (c) $x \mapsto f(x) \sin x$?

1.5.5.

- (a) Show that if f is uniformly continuous on (a, b] and on [b, c), then it is also uniformly continuous on (a, c).
- (b) Suppose A and B are closed sets in R and let f: A∪B → R be uniformly continuous on A and on B. Must f be uniformly continuous on A∪B?
- 1.5.6. Prove that any function continuous and periodic on $\mathbb R$ must be uniformly continuous on $\mathbb R$.

1.5.7.

- (a) Show that if $f: \mathbb{R} \to \mathbb{R}$ is continuous and such that $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$ are finite, then f is uniformly continuous on \mathbb{R} .
- (b) Show that if $f:[a,\infty)\to\mathbb{R}$ is continuous and $\lim_{x\to\infty}f(x)$ is finite, then f is uniformly continuous on $[a,\infty)$.
- 1.5.8. Examine the uniform continuity of
- (a) $f(x) = \arctan x$ on $(-\infty, \infty)$,
- (b) $f(x) = x \sin \frac{1}{x}$ on $(0, \infty)$,
- (c) $f(x) = e^{-\frac{1}{x}}$ on $(0, \infty)$.
- 1.5.9. Assume that f is uniformly continuous on $(0, \infty)$. Must the limits $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to \infty} f(x)$ exist?
- **1.5.10.** Prove that any function which is bounded, monotonic and continuous on an interval $I \subset \mathbb{R}$ is uniformly continuous on I.
- 1.5.11. Assume f is uniformly continuous and unbounded on $[0, \infty)$. Is it true that either $\lim_{x\to\infty} f(x) = +\infty$ or $\lim_{x\to\infty} f(x) = -\infty$?

- **1.5.12.** A function $f:[0,\infty)\to\mathbb{R}$ is uniformly continuous and for any $x\geq 0$ the sequence $\{f(x+n)\}$ converges to zero. Prove that $\lim_{x\to\infty} f(x)=0$.
- **1.5.13.** Suppose that $f:[1,\infty)\to\mathbb{R}$ is uniformly continuous. Prove that there is a positive M such that $\frac{|f(x)|}{x}\leq M$ for $x\geq 1$.
- **1.5.14.** Let $f:[0,\infty)\to\mathbb{R}$ be uniformly continuous. Prove that there is a positive M with the following property:

$$\sup_{u>0} \{ |f(x+u) - f(u)| \} \le M(x+1) \quad \text{for every} \quad x \ge 0.$$

- **1.5.15.** Let $f: A \to \mathbb{R}$, $A \subset \mathbb{R}$, be uniformly continuous. Prove that if $\{x_n\}$ is any Cauchy sequence of elements in A, then $\{f(x_n)\}$ is also a Cauchy sequence.
- **1.5.16.** Suppose $A \subset \mathbb{R}$ is bounded. Prove that if $f: A \to \mathbb{R}$ transforms Cauchy sequences of elements of A into Cauchy sequences, then f is uniformly continuous on A. Is the boundedness of A an essential assumption?
- **1.5.17.** Prove that f is uniformly continuous on $A \subset \mathbb{R}$ if and only if for any sequences $\{x_n\}$ and $\{y_n\}$ of elements of A,

$$\lim_{n\to\infty}(x_n-y_n)=0\quad\text{implies}\quad\lim_{n\to\infty}(f(x_n)-f(y_n))=0.$$

1.5.18. Suppose that $f:(0,\infty)\to(0,\infty)$ is uniformly continuous. Does this imply that

$$\lim_{x\to\infty}\frac{f\left(x+\frac{1}{x}\right)}{f(x)}=1?$$

1.5.19. A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at zero and satisfies the following conditions

$$f(0) = 0$$
 and $f(x_1 + x_2) \le f(x_1) + f(x_2)$ for any $x_1, x_2 \in \mathbb{R}$

Prove that f is uniformly continuous on \mathbb{R} .

1.5.20. For $f: A \to \mathbb{R}$, $A \subset \mathbb{R}$, we define

$$\omega_f(\delta) = \sup\{|f(x_1) - f(x_2)|: x_1, x_2 \in A, |x_1 - x_2| < \delta\}$$

and call ω_f the modulus of continuity of f. Show that f is uniformly continuous on A if and only if $\lim_{\delta \to 0+} \omega_f(\delta) = 0$.

- **1.5.21.** Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous. Prove that the following statements are equivalent.
- (a) For any uniformly continuous function $g:\mathbb{R}\to\mathbb{R},\ f\cdot g$ is uniformly continuous on \mathbb{R} .
- (b) The function $x \mapsto |x| f(x)$ is uniformly continuous on \mathbb{R} .
- **1.5.22.** Prove that the following condition is necessary and sufficient for f to be uniformly continuous on an interval I. Given $\varepsilon > 0$, there is N > 0 such that for every $x_1, x_2 \in I$, $x_1 \neq x_2$,

$$\left|\frac{f(x_1) - f(x_2)}{x_1 - x_2}\right| > N \quad \text{implies} \quad |f(x_1) - f(x_2)| < \varepsilon.$$

1.6. Functional Equations

1.6.1. Prove that the only functions continuous on $\mathbb R$ and satisfying the Cauchy functional equation

$$f(x+y) = f(x) + f(y)$$

are the linear functions of the form f(x) = ax.

1.6.2. Prove that if $f: \mathbb{R} \to \mathbb{R}$ satisfies the Cauchy functional equation

$$f(x+y) = f(x) + f(y)$$

and one of the conditions

- (a) f is continuous at an $x_0 \in \mathbb{R}$,
- (b) f is bounded above on some interval (a, b),
- (c) f is monotonic on \mathbb{R} ,

then f(x) = ax.

1.6.3. Determine all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that f(1) > 0 and

$$f(x+y)=f(x)f(y).$$

1.6.4. Show that the only solutions of the functional equation

$$f(xy) = f(x) + f(y)$$

which are not identically zero and are continuous on $(0, \infty)$ are the logarithmic functions.

1.6.5. Show that the only solutions of the functional equation

$$f(xy) = f(x)f(y)$$

which are not identically zero and are continuous on $(0, \infty)$ are the power functions of the form $f(x) = x^a$.

- **1.6.6.** Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that f(x) f(y) is rational for rational x y.
- **1.6.7.** For |q| < 1, find all functions $f : \mathbb{R} \to \mathbb{R}$ continuous at zero and satisfying the functional equation

$$f(x) + f(qx) = 0.$$

1.6.8. Find all functions $f: \mathbb{R} \to \mathbb{R}$ continuous at zero and satisfying the equation

$$f(x)+f\left(\frac{2}{3}x\right)=x.$$

1.6.9. Determine all solutions $f: \mathbb{R} \to \mathbb{R}$ of the functional equation

$$2f(2x) = f(x) + x$$

which are continuous at zero.

1.6.10. Find all continuous functions $f:\mathbb{R}\to\mathbb{R}$ satisfying the Jensen equation

$$f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}.$$

1.6.11. Find all functions continuous on (a,b), $a,b\in\mathbb{R}$, satisfying the Jensen equation

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}.$$

1.6.12. Determine all solutions $f: \mathbb{R} \to \mathbb{R}$ of the functional equation

$$f(2x+1) = f(x)$$

which are continuous at -1.

1.6.13. For a real a, show that if $f:\mathbb{R}\to\mathbb{R}$ is a continuous solution of the equation

$$f(x+y) = f(x) + f(y) + axy,$$

then
$$f(x) = \frac{a}{2}x^2 + bx$$
, where $b = f(1) - \frac{a}{2}$.

1.6.14. Determine all continuous at zero solutions of the functional equation

$$f(x) = f\left(\frac{x}{1-x}\right), \quad x \neq 1.$$

- **1.6.15.** Let $f:[0,1] \to [0,1]$ be continuous, monotonically decreasing and such that f(f(x)) = x for $x \in [0,1]$. Is f(x) = 1 x the only such function?
- 1.6.16. Suppose that f and g satisfy the equation

$$f(x+y)+f(x-y)=2f(x)g(y),\quad x,y\in\mathbb{R}.$$

Show that if f is not identically zero and $|f(x)| \le 1$ for $x \in \mathbb{R}$, then also $|g(x)| \le 1$ for $x \in \mathbb{R}$.

1.6.17. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ satisfying the functional equation

$$f(x+y) = f(x)e^y + f(y)e^x.$$

1.6.18. Determine all continuous at zero solutions $f: \mathbb{R} \to \mathbb{R}$ of

$$f(x+y) - f(x-y) = f(x)f(y).$$

1.6.19. Solve the functional equation

$$f(x) + f\left(\frac{x-1}{x}\right) = 1 + x \quad \text{for} \quad x \neq 0, 1.$$

1.6.20. A sequence $\{x_n\}$ converges in the Cesàro sense if

$$C-\lim_{n\to\infty}x_n=\lim_{n\to\infty}\frac{x_1+x_2+x_3+\cdots+x_n}{n}$$

exists and is finite. Find all functions which are Cesàro continuous, that is,

$$f(C-\lim_{n\to\infty}x_n)=C-\lim_{n\to\infty}f(x_n)$$

for every Cesàro convergent sequence $\{x_n\}$.

1.6.21. Let $f: [0,1] \to [0,1]$ be an injection such that f(2x - f(x)) = x for $x \in [0,1]$. Prove that f(x) = x, $x \in [0,1]$.

1.6.22. For m different from zero, prove that if a continuous function $f: \mathbb{R} \to \mathbb{R}$ satisfies the equation

$$f\left(2x-\frac{f(x)}{m}\right)=mx,$$

then f(x) = m(x-c).

1.6.23. Show that the only solutions of the functional equation

$$f(x+y) + f(y-x) = 2f(x)f(y)$$

continuous on \mathbb{R} and not identically zero are $f(x) = \cos(ax)$ and $f(x) = \cosh(ax)$ with a real.

1.6.24. Determine all continuous on (-1,1) solutions of

$$f\left(\frac{x+y}{1+xy}\right)=f(x)+f(y).$$

1.6.25. Find all polynomials P such that

$$P(2x - x^2) = (P(x))^2.$$

1.6.26. Let $m, n \geq 2$ be integers. Find all functions $f: [0, \infty) \to \mathbb{R}$ continuous at at least one point in $[0, \infty)$ and such that

$$f\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{m}\right) = \frac{1}{n}\sum_{i=1}^{n}(f(x_{i}))^{m} \quad \text{for} \quad x_{i} \geq 0, \ i = 1, 2, \dots, n.$$

1.6.27. Find all not identically zero functions $f:\mathbb{R}\to\mathbb{R}$ satisfying the equations

$$f(xy) = f(x)f(y)$$
 and $f(x+z) = f(x) + f(z)$

with some $z \neq 0$.

1.6.28. Find all functions $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ such that

$$f(x) = -f\left(\frac{1}{x}\right), \quad x \neq 0.$$

1.6.29. Find all solutions $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ of the functional equation

$$f(x) + f(x^2) = f\left(\frac{1}{x}\right) + f\left(\frac{1}{x^2}\right), \quad x \neq 0.$$

1.6.30. Prove that the functions $f, g, \phi : \mathbb{R} \to \mathbb{R}$ satisfy the equation

$$\frac{f(x)-g(y)}{x-y}=\phi\left(\frac{x+y}{2}\right),\quad y\neq x,$$

if and only if there exist a, b and c such that

$$f(x) = g(x) = ax^2 + bx + c, \quad \phi(x) = 2ax + b.$$

- **1.6.31.** Prove that there is a function $f:\mathbb{R}\to\mathbb{Q}$ satisfying the following three conditions:
- (a) f(x+y) = f(x) + f(y) for $x, y \in \mathbb{R}$,
- (b) f(x) = x for $x \in \mathbb{Q}$,
- (c) f is not continuous on \mathbb{R} .

1.7. Continuous Functions in Metric Spaces

In this section X and Y will stand for metric spaces (X, d_1) and (Y, d_2) , respectively. To shorten notation we say that X is a metric space instead of saying that (X, d_1) is a metric space. If not stated otherwise, \mathbb{R} and \mathbb{R}^n are always assumed to be equipped with the Euclidean metric.

- 1.7.1. Let (X, d_1) and (Y, d_2) be metric spaces and let $f: X \to Y$. Prove that the following conditions are equivalent.
- (a) The function f is continuous.
- (b) For each closed set $F \subset Y$ the set $f^{-1}(F)$ is closed in X.
- (c) For each open set $G \subset Y$ the set $f^{-1}(G)$ is open in X.
- (d) For each subset A of X, $f(\overline{A}) \subset \overline{f(A)}$.
- (e) For each subset B of Y, $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$.
- 1.7.2. Let (X, d_1) and (Y, d_2) be metric spaces and let $f: X \to Y$ be continuous. Prove that the inverse image $f^{-1}(B)$ of a Borel set B in (Y, d_2) is a Borel set in (X, d_1) .
- 1.7.3. Give an example of a continuous function $f: X \to Y$ such that the image f(F) (resp. f(G)) is not closed (resp. open) in Y for a closed F (resp. open G) in X.
- 1.7.4. Let (X, d_1) and (Y, d_2) be metric spaces and let $f: X \to Y$ be continuous. Prove that the image of each compact set F in X is compact in Y.
- 1.7.5. Let f be defined on the union of closed sets $\mathbf{F}_1, \mathbf{F}_2, \ldots, \mathbf{F}_m$. Prove that if the restriction of f to each \mathbf{F}_i , $i = 1, 2, \ldots, m$, is continuous, then f is continuous on $\mathbf{F}_1 \cup \mathbf{F}_2 \cup \cdots \cup \mathbf{F}_m$.

Show by example that the statement does not hold in the case of infinitely many sets \mathbf{F}_i .

1.7.6. Let f be defined on the union of open sets G_t , $t \in T$. Prove that if for each $t \in T$ the restriction $f_{|G_t|}$ is continuous, then f is continuous on $\bigcup G_t$.

- 1.7.7. Let (X, d_1) and (Y, d_2) be metric spaces. Prove that $f: X \to Y$ is continuous if and only if for each compact A in X the function $f_{|A|}$ is continuous.
- 1.7.8. Assume that f is a continuous bijection of a compact metric space X onto a metric space Y. Prove that the inverse function f^{-1} is continuous on Y. Prove also that compactness cannot be omitted from the hypotheses.
- 1.7.9. Let f be a continuous mapping of a compact metric space X into a metric space Y. Show that f is uniformly continuous on X.
- 1.7.10. Let (X, d) be a metric space and let A be a nonempty subset of X. Prove that the function $f: X \to [0, \infty)$ defined by

$$f(x) = \operatorname{dist}(x, \mathbf{A}) = \inf\{d(x, y): y \in \mathbf{A}\}\$$

is uniformly continuous on X.

- 1.7.11. Assume that f is a continuous mapping of a connected metric space X into a metric space Y. Show that f(X) is connected in Y.
- **1.7.12.** Let $f: A \to Y$, $\emptyset \neq A \subset X$. For $x \in \overline{A}$ define

$$o_f(x,\delta) = \operatorname{diam}(f(\mathbf{A} \cap \mathbf{B}(x,\delta))).$$

The oscillation of f at x is defined as

$$o_f(x) = \lim_{\delta \to 0^+} o_f(x, \delta).$$

Prove that f is continuous at $x_0 \in A$ if and only if $o_f(x_0) = 0$ (compare with 1.4.19 and 1.4.20).

- 1.7.13. Let $f: A \to Y$, $\emptyset \neq A \subset X$ and for $x \in \overline{A}$ let $o_f(x)$ be the oscillation of f at x defined in the foregoing problem. Prove that for each $\varepsilon > 0$ the set $\{x \in \overline{A} : o_f(x) \ge \varepsilon\}$ is closed in X.
- 1.7.14. Show that the set of points of continuity of $f: X \to Y$ is a countable intersection of open sets, that is, a \mathcal{G}_{δ} in (X, d_1) . Show also that the set of points of discontinuity of f is a countable union of closed sets, that is, an \mathcal{F}_{σ} in (X, d_1) .

- **1.7.15.** Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ whose set of points of discontinuity is \mathbb{O} .
- **1.7.16.** Prove that every \mathcal{F}_{σ} subset of \mathbb{R} is the set of points of discontinuity for some $f: \mathbb{R} \to \mathbb{R}$.
- **1.7.17.** Let A be an \mathcal{F}_{σ} subset of a metric space X. Must there exist a function $f: X \to \mathbb{R}$ whose set of points of discontinuity is A?
- 1.7.18. Let χ_A be the characteristic function of $A \subset X$. Show that $\{x \in X : o_{XA}(x) > 0\} = \partial A$, where $o_f(x)$ is the oscillation of f at x defined in 1.7.12. Conclude that χ_A is continuous on X if and only if A is both open and closed in X.
- 1.7.19. Assume that g_1 and g_2 are continuous mappings of a metric space (X, d_1) into a metric space (Y, d_2) , and that a set A with a void interior is dense in X. Prove that if

$$f(x) = \begin{cases} g_1(x) & \text{for } x \in A, \\ g_2(x) & \text{for } x \in X \setminus A, \end{cases}$$

then

$$o_f(x) = d_2(g_1(x), g_2(x)), \quad x \in X,$$

where $o_f(x)$ is the oscillation of f at x defined in 1.7.12.

- 1.7.20. We say that a real function f defined on a metric space X is in the *first Baire class* if f is a pointwise limit of a sequence of continuous functions on X. Prove that if f is in the first Baire class, then the set of points of discontinuity of f is a set of the first category; that is, it is the union of countably many nowhere dense sets.
- 1.7.21. Prove that if X is a complete metric space and f is in the first Baire class on X, then the set of points of continuity of f is dense in X.
- 1.7.22. Let $f:(0,\infty)\to\mathbb{R}$ be continuous and such that, for each positive x, the sequence $\left\{f\left(\frac{x}{n}\right)\right\}$ converges to zero. Does this imply that $\lim_{x\to 0^+} f(x) = 0$? (Compare with 1.1.33.)

1.7.23. Let \mathcal{F} denote a family of real functions continuous on a complete metric space X such that for every $x \in X$ there is M_x such that

$$|f(x)| \le M_x$$
 for all $f \in \mathcal{F}$.

Prove that there exist a positive constant M and a nonempty open set $G \subset X$ such that

$$|f(x)| \le M$$
 for every $f \in \mathcal{F}$ and every $x \in G$.

1.7.24. Let $F_1 \supset F_2 \supset F_3 \supset ...$ be a nested collection of nonempty closed subsets of a complete metric space X such that $\lim_{n\to\infty}$ diam $F_n = 0$. Prove that if f is continuous on X, then

$$f\left(\bigcap_{n=1}^{\infty}\mathbf{F}_{n}\right)=\bigcap_{n=1}^{\infty}f(\mathbf{F}_{n}).$$

- 1.7.25. Let (X, d_1) be a metric space and p a fixed point in X. For $u \in X$ define the function f_u by $f_u(x) = d_1(u, x) d_1(p, x)$, $x \in X$. Prove that $u \mapsto f_u$ is a distance preserving mapping, that is, an isometry of (X, d_1) into the space $C(X, \mathbb{R})$ of real functions continuous on X endowed with the metric $d(f, g) = \sup\{|f(x) g(x)| : x \in X\}$.
- **1.7.26.** Prove that a metric space X is compact if and only if every continuous function $f: X \to \mathbb{R}$ is bounded.
- 1.7.27. Let (X, d_1) be a metric space and for $x \in X$ define $\rho(x) = \text{dist}(x, X \setminus \{x\})$. Prove that the following two conditions are equivalent.
- (a) Each continuous function $f: X \to \mathbb{R}$ is uniformly continuous.
- (b) Every sequence $\{x_n\}$ of elements in X such that

$$\lim_{n\to\infty}\rho(x_n)=0$$

contains a convergent subsequence.

1.7.28. Show that a metric space X is compact if and only if every real function continuous on X is uniformly continuous and for every $\varepsilon > 0$ the set $\{x \in X : \rho(x) > \varepsilon\}$, where ρ is defined in 1.7.27, is finite.

1.7.29. Give an example of a noncompact metric space X such that every continuous $f: X \to \mathbb{R}$ is uniformly continuous on X.