Задача А. Откат

Имя входного файла: rollback.in Имя выходного файла: rollback.out Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайта

Сергей работает системным администратором в очень крупной компании. Естественно, в круг его обязанностей входит резервное копирование информации, хранящейся на различных серверах и «откат» к предыдущей версии в случае возникновения проблем.

В данный момент Сергей борется с проблемой недостатка места для хранения информации для восстановления. Он решил перенести часть информации на новые сервера. К сожалению, если чтото случится во время переноса, он не сможет произвести откат, поэтому процедура переноса должна быть тщательно спланирована.

На данный момент у Сергея хранятся n точек восстановления различных серверов, пронумерованных от 1 до n. Точка восстановления с номером i позволяет произвести откат для сервера a_i . Сергей решил разбить перенос на этапы, при этом на каждом этапе в случае возникновения проблем будут доступны точки восстановления с номерами $l, l+1, \ldots, r$ для некоторых l и r.

Для того, чтобы спланировать перенос данных оптимальным образом, Сергею необходимо научиться отвечать на запросы: для заданного l, при каком минимальном r в процессе переноса будут доступны точки восстановления не менее чем k различных серверов.

Помогите Сергею.

Формат входных данных

Первая строка входного файла содержит два целых числа n и m, разделенные пробелами — количество точек восстановления и количество серверов ($1 \le n, m \le 100\,000$). Вторая строка содержит n целых чисел a_1, a_2, \ldots, a_n — номера серверов, которым соответствуют точки восстановления ($1 \le a_i \le m$).

Третья строка входного файла содержит q — количество запросов, которые необходимо обработать ($1 \leqslant q \leqslant 100\,000$). В процессе обработки запросов необходимо поддерживать число p, исходно оно равно 0. Каждый запрос задается парой чисел x_i и y_i , используйте их для получения данных запроса следующим образом: $l_i = ((x_i + p) \bmod n) + 1, \ k_i = ((y_i + p) \bmod m) + 1 \ (1 \leqslant l_i, x_i \leqslant n, 1 \leqslant k_i, y_i \leqslant m)$. Пусть ответ на i-й запрос равен r. После выполнения этого запроса, следует присвоить p значение r.

Формат выходных данных

На каждый запрос выведите одно число — искомое минимальное r, либо 0, если такого r не существует.

rollback.in	rollback.out
7 3	1
1 2 1 3 1 2 1	4
4	0
7 3	6
7 1	
7 1	
2 2	

Задача В. Персистентная очередь

Имя входного файла: queue.in Имя выходного файла: queue.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Реализуйте персистентную очередь.

Формат входных данных

Первая строка содержит количество действий n ($1 \le n \le 200\,000$). В строке номер i+1 содержится описание действия i:

- 1 t m добавить в конец очереди номер $t \ (0 \le t < i)$ число m;
- -1 t удалить из очереди номер $t \ (0 \leqslant t < i)$ первый элемент.

В результате действия i, описанного в строке i+1 создается очередь номер i. Изначально имеется пустая очередь с номером ноль.

Все числа во входном файле целые, и помещаются в знаковый 32-битный тип.

Формат выходных данных

Для каждой операции удаления выведите удаленный элемент на отдельной строке.

queue.in	queue.out
10	1
1 0 1	2
1 1 2	3
1 2 3	1
1 2 4	2
-1 3	4
-1 5	
-1 6	
-1 4	
-1 8	
-1 9	

Задача С. Урны и шары

Имя входного файла: balls.in
Имя выходного файла: balls.out
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Пусть у вас есть n урн, в каждой из которых лежит по одному шарику. Урна с номером i содержит шарик под номером i. У вас есть специальное устройство, которое позволяет перемещать шарики. Им чрезвычайно просто пользоваться: сначала вы выбираете некоторый отрезок последовательных урн. После этого вы выбираете некоторый другой отрезок последовательных урн такой же длины, как и исходный, и затем шарики из урн первого отрезка перемещаются в соответствующие урны второго отрезка.

Дана последовательность перемещений. Установите, в какой урне окажется каждый шарик.

Формат входных данных

Первая строка входных данных содержит два числа n и m — число урн и число перемещений, соответственно ($1 \le n \le 100\,000$, $1 \le m \le 50\,000$). Каждая из следующих m строк содержит три числа $count_i$, $from_i$ и to_i , которые означают одновременное перемещение всех шариков из урны $from_i$ в урну to_i , всех шариков из урны $from_i+1$ в урну to_i+1 , ..., всех шариков из урны $from_i+count_i-1$ в урну $to_i+count_i-1$ ($1 \le count_i, from_i, to_i \le n$, $\max(from_i, to_i)+count_i \le n+1$).

Формат выходных данных

Выведите n чисел — итоговые позиции каждого шарика.

balls.in	balls.out
2 3	1 1
1 1 2	
1 2 1	
1 2 1	

Задача D. K-я порядковая статистика на отрезке

Имя входного файла: kth.in
Имя выходного файла: kth.out
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Дан массив из N неотрицательных чисел, строго меньших 10^9 . Вам необходимо ответить на несколько запросов о величине k-й порядковой статистики на отрезке [l,r].

Формат входных данных

Первая строка содержит число N ($1 \le N \le 450\,000$) — размер массива.

Вторая строка может быть использована для генерации a_i — начальных значений элементов массива. Она содержит три числа a_1 , l и m ($0 \le a_1$, l, $m < 10^9$); для i от 2 до N

$$a_i = (a_{i-1} \cdot l + m) \mod 10^9$$
.

В частности, $0 \le a_i < 10^9$.

Третья строка содержит одно целое число B ($1 \le B \le 1000$) — количество групп запросов.

Следующие B строк описывают одну группу запросов. Каждая группа запросов описывается 10 числами. Первое число G обозначает количество запросов в группе. Далее следуют числа x_1, l_x и m_x , затем y_1, l_y и m_y , затем, k_1, l_k и m_k ($1 \le x_1 \le y_1 \le N$, $1 \le k_1 \le y_1 - x_1 + 1$, $0 \le l_x, m_x, l_y, m_y, l_k, m_k < 10^9$). Эти числа используются для генерации вспомогательных последовательностей x_g и y_g , а также параметров запросов i_g, j_g и k_g ($1 \le g \le G$)

$$\begin{array}{rcl} x_g & = & ((i_{g-1}-1)\cdot l_x + m_x) \bmod N) + 1, & 2 \leqslant g \leqslant G \\ y_g & = & ((j_{g-1}-1)\cdot l_y + m_y) \bmod N) + 1, & 2 \leqslant g \leqslant G \\ i_g & = & \min(x_g,y_g), & 1 \leqslant g \leqslant G \\ j_g & = & \max(x_g,y_g), & 1 \leqslant g \leqslant G \\ k_g & = & (((k_{g-1}-1)\cdot l_k + m_k) \bmod (j_g - i_g + 1)) + 1, & 2 \leqslant g \leqslant G \end{array}$$

Сгенерированные последовательности описывают запросы, g-й запрос состоит в поиске k_g -го по величине числа среди элементов отрезка $[i_g, j_g]$.

Суммарное количество запросов не превосходит 600 000.

Формат выходных данных

Выведите единственное число — сумму ответов на запросы.

kth.in	kth.out
5	15
1 1 1	
5	
1	
1 0 0 3 0 0 2 0 0	
1	
2 0 0 5 0 0 3 0 0	
1	
1 0 0 5 0 0 5 0 0	
1	
3 0 0 3 0 0 1 0 0	
1	
1 0 0 4 0 0 1 0 0	