# Krystalografia z rentgenografią

Program wykładów. Zaliczenie wykładów.

### Dzisiejszy wykład:

- Tradycyjna definicja kryształu i krystalografii
- Aktualna definicja kryształu i krystalografii
- Elementy symetrii i operacje symetrii w budowie zewnętrznej kryształów
- Projekcje kryształów: cyklograficzna (dla elementów symetrii) i stereograficzna (dla ścian kryształu)

#### ePortal PWr

### Program wykładów

- Budowa zewnętrzna kryształów. Grupy punktowe.
  - Budowa wewnętrzna kryształów. Grupy przestrzenne.
  - Zależność pomiędzy budową wewnętrzną a zewnętrzną kryształów.
- Dyfrakcja: kierunki i natężenia wiązek ugiętych.
- Wyznaczanie struktury kryształu na poziomie atomowym.
- Metody badań:
  - rentgenografia (w tym badania synchrotronowe), neutronografia, elektronografia.
- Obiekty badań:
  - nano-, mikro- i makro-kryształy
  - kwazikryształy.

### Definicja kryształu i krystalografii

Tradycyjna definicja krystalografii – nauka o kryształach.

#### Tradycyjna definicja kryształu - definicja mikroskopowa:

- dotyczy budowy wewnętrznej
- podstawowa cecha kryształu: trójwymiarowa budowa translacyjna (periodyczna), tzn. indywidua chemiczne powtarzają się co pewien wektor w trzech kierunkach nierównoległych i niekoplanarnych.



#### Makroskopowa definicja kryształu:

- dotyczy budowy zewnętrznej
- ciało jednorodne (tzn. o właściwościach jednakowych w każdym elemencie objętości) o nieciągłych właściwościach wektorowych (tzn. zmieniających się istotnie wraz ze zmianą kierunku).

Budowa zewnętrzna jest konsekwencją budowy wewnętrznej.

Definicja mikroskopowa jest nieaktualna. Dlaczego?

1982 r. - odkrycie kwazikryształów (tzn. kryształów o budowie aperiodycznej) przez Daniela Shechtmana.

1992 r. - zmiana definicji kryształu (IUCr, Acta Cryst. A48, 1992, 922).

2011 r. - Nagroda Nobla w dziedzinie chemii za odkrycie kwazikryształów.





**Daniel Shechtman** 

### Definicja kryształu i krystalografii – cd.

#### Aktualna definicja kryształu:

#### A material is a crystal if it has essentially a sharp diffraction pattern.

The word "essentially" means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering.

Kryształ – materiał dający istotnie dyskretny obraz dyfrakcyjny.

#### Aktualna definicja krystalografii:

- bada materię skondensowaną, głównie o budowie translacyjnej
- na poziomie atomowym (tzn. określa położenie atomów/jonów oraz ich drgania termiczne)
- za pomocą różnych metod: dyfrakcji promieni rentgenowskich, neutronów, elektronów, symulacji komputerowych.

#### Projekcja (rzut) cyklograficzna i projekcja (rzut) stereograficzna:

I etap – projekcja sferyczna, odmienny w obu projekcjach II etap – projekcja ze sfery na tzw. koło projekcji, jednakowy w obu projekcjach

I etap w projekcji <u>cyklograficznej</u> projekcja <u>sferyczna bezpośrednia</u>



Rzut płaszczyzny A to okrąg (tzw. koło wielkie). Rzut prostej OR to punkt na górnej połowie sfery R. I etap w projekcji <u>stereograficznej</u> projekcja <u>sferyczna pośrednia</u>



Rzut płaszczyzny A to punkt A' na górnej połowie sfery. Rzut prostej OR to tzw. koło wielkie R'.

### I etap – cd.

#### Rzutowanie kryształów:

ściany kryształu – rzut sferyczny pośredni.

Kryształ umieszczamy w środku sfery (środek kryształu i środek sfery pokrywają się, promień sfery dowolny). Projekcja sferyczna pośrednia: wystawiamy normalne do ścian (półproste na zewnątrz kryształu) i patrzymy gdzie przetną sferę. Punkt przecięcia sfery przez normalną nazywamy biegunem ściany.



### II etap: rzut centralny ze sfery na koło projekcji



P – płaszczyzna projekcji

S – sfera projekcji

K – koło projekcji

G – punkt oczny (wzrokowy) górny

D – punkt oczny (wzrokowy) dolny

GOD – oś projekcji

### II etap – cd.

Biegun ściany kryształu łączy się odcinkiem z przeciwległym punktem wzrokowym. Punkt przebicia koła projekcji przez ten odcinek to <u>rzut stereograficzny ściany kryształu</u>.



II etap - cd.



Rzut stereograficzny ścian kryształu

W celu rozróżnienia punktów leżących na górnej połowie sfery od leżących na dolnej połowie sfery stosujemy oznaczenia: o oraz x.

W International Tables of Crystallography: o oraz •

Gdzie będzie rzut stereograficzny następujących ścian kryształu:

- poziomej górnej



- poziomej dolnej



- pionowej przedniej



- pionowej tylnej





Im "bardziej pionowa" ściana, tym punkty bliżej obwodu koła projekcji.

Cecha rzutu centralnego ze sfery na koło projekcji: koła małe rzutują się na koła małe.





Siatka Wulfa

Operacja symetrii w krysztale – przekształcenie, które doprowadza do kryształu identycznego z wyjściowym.

Element symetrii – zbiór punktów (lub punkt), względem których dokonywana jest operacja symetrii.

#### Rodzaje elementów symetrii w budowie zewnętrznej kryształów:

- 1. Środek symetrii (inversion centre, symmetry centre)
- 2. Płaszczyzna zwierciadlana (mirror plane, reflection plane)
- 3. Osie symetrii
  - a) osie właściwe, zwykłe (rotation axes)
  - b) osie inwersyjne (rotoinversion axes)

Elementy symetrii posiadają symbole graficzne i symbole cyfrowe/literowe.

### Środek symetrii 1















Kryształ **niecentrosymetryczny** 

### Płaszczyzna zwierciadlana m



### Osie właściwe

Definicja krotności osi:

Oś nazywamy n-krotną, jeśli obrót wynosi 360°/n (należy pamiętać o definicji operacji symetrii w krysztale).

Krotność osi w kryształach o budowie translacyjnej:

| Oś właściwa   | Symbol cyfrowy | Symbol graficzny | Kąt obrotu |
|---------------|----------------|------------------|------------|
| jednokrotna   | 1              |                  | 360°       |
| dwukrotna     | 2              | •                | 180°       |
| trójkrotna    | 3              | <b>A</b>         | 120°       |
| czterokrotna  | 4              | •                | 90°        |
| sześciokrotna | 6              | •                | 60°        |



Symbole osi 2 i 4 leżących na kole projekcji.

### Osie właściwe – cd.



Punkty symetrycznie równoważne (równoznaczne) to punkty będące swoimi wzajemnymi obrazami w operacji symetrii.

Punkty w położeniu ogólnym – nie leżą na elemencie/elementach symetrii.

Punkty w położeniu szczególnym – leżą na elemencie/elementach symetrii.

### Osie inwersyjne

Obrót wokół osi inwersyjnej składa się z dwóch następujących operacji:

- obrót wokół osi właściwej
- odbicie w środku symetrii.

Kolejność obu operacji jest dowolna.

Obrazem motywu wyjściowego jest motyw dopiero po obu operacjach.

Krotność osi w kryształach o budowie translacyjnej:

| Oś inwersyjna | Symbol cyfrowy | Symbol graficzny | Kąt obrotu |
|---------------|----------------|------------------|------------|
| jednokrotna   | 1              | 0                | 360°       |
| dwukrotna     | m              | I                | 180°       |
| trójkrotna    | 3              | Δ                | 120°       |
| czterokrotna  | 4              | •                | 90°        |
| sześciokrotna | <u></u> 6      |                  | 60°        |



Rzut cyklograficzny elementów symetrii w kwazikrysztale odkrytym przez Shechtmana (Phys. Rev. Lett., 53 (1984) 1951-1953).

Osie inwersyjne – cd.



### Osie inwersyjne – cd.











Z powyższych rysunków widać, że kryształy posiadające oś trójkrotną inwersyjną lub jednokrotną inwersyjną są centrosymetryczne (naprzeciwko krzyżyków znajdują się kółeczka, tak jak wymaga tego środek symetrii na slajdzie 13).

### Układy krystalograficzne

#### <u>Układy krystalograficzne i elementy symetrii je charakteryzujące:</u>

- trójskośny (triclinic) oś jednokrotna; środek symetrii
- jednoskośny (monoclinic) jedna oś dwukrotna; jedna płaszczyzna symetrii
- rombowy (orthorhombic) trzy osie dwukrotne wzajemnie prostopadłe; jedna oś dwukrotna równoległa do linii przecięcia dwóch prostopadłych płaszczyzn symetrii
- tetragonalny (tetragonal) jedna oś czterokrotna
- trygonalny (trigonal) jedna oś trójkrotna
- heksagonalny (hexagonal) oś sześciokrotna
- regularny (cubic) cztery osie trójkrotne

Struktury krystaliczne związków organicznych:

| układ                                               |   | [%]                            |
|-----------------------------------------------------|---|--------------------------------|
| rójskośny<br>ednoskośny                             |   | 26<br>52                       |
| combowy<br>etragonalny<br>rygonalny<br>neksagonalny | } | <ul><li>17</li><li>5</li></ul> |
| regularny                                           |   |                                |

### Wielkość badanych kryształów

#### Wielkość obiektów badanych w krystalografii



Nowe, silne źródła promieniowania synchrotronowego umożliwiają badanie nanokryształów i mikrokryształów za pomocą metod stosowanych dla obiektów skali makro.

### Omówione zagadnienia:

- Tradycyjna definicja kryształu i krystalografii
- Aktualna definicja kryształu i krystalografii
- Projekcje kryształów: cyklograficzna (dla elementów symetrii) i stereograficzna (dla ścian kryształu)
- Elementy symetrii w budowie zewnętrznej kryształów:
  - środek symetrii, płaszczyzna zwierciadlana, osie właściwe, osie inwersyjne
  - punkty symetrycznie równoważne
- Układy krystalograficzne i ich charakterystyka
- Wielkość obiektów badanych za pomocą metod krystalograficznych