Adaptive FEC for Congestion Control

<u>Varun Singh</u>, Marcin Nagy, Jörg Ott, Lars Eggert

IETF 91, Honolulu, 09. November 2014

https://tools.ietf.org/html/draft-singh-rmcat-adaptive-fec-01

IPR

- 2 IPR disclosures
 - Nokia
 - Polycom

Error Resilience

SSA: Adaptive packet sizes RPS: reference picture selection

CONCEPT

CC Framework

RFC 6363: FEC Framework

State Machine

FEC Scheme

- Currently, using
 - parity, 1- or 2-d interleaved XOR (for burst loss)
 - There is discussion in RTCWEB on FEC schemes.

- But,
 - It could be applied to other schemes

RTCP Feedback

- RLE of Post-repair (RFC5725)
- RLE of loss packets (RFC3611)
- RLE of discarded packets (RFC7097)

- Packet count of lost and repaired packets
 - (draft-ietf-xrblock-post-loss-repair)

Calculating goodput

- Receiver reports goodput:
 - Goodbytes in reporting interval =bytes received bytes discarded

OR

- Sender calculates goodput:
 - Goodbytes in reporting interval =bytes sent bytes lost bytes discarded

Undershoot

- Congestion reported
 - Sender calculates duration of congestion = HSN when RTCP scheduled – HSN when congestion detected
 - undershoot bytes = sending rate * duration/8
 - New rate = Goodbytes undershoot bytes [1]

OR

- Delta = Sending rate goodput
- New rate = sending rate 2 x delta [2]

Typical results

- ~90% recovery in time for decoding when FEC interval was short
 - Fewer packets protected

- ~80% recovery in time for decoding when FEC interval was long
 - More packets protected

Applicability

- Implemented over a delay-based congestion control
 - See paper for details

- However would like to generalize it.
 - Apply to SCReAM, GCC, ...

Evaluation (1/3)

Ns-2 simulation, Variable link capacity, Single flow on the link

Evaluation (2/3)

Evaluation (3/3)

RTT fairness (50ms)

5.4: RTT fairness

RTT fairness (100ms)

RTT fairness (100ms)

Compete with short TCPs

TESTBED Evaluation (1/2)

Two RTP flows on the link

• 1Mbit/s link capacity, 50ms one-way-delay,

TESTBED Evaluation (2/2)

1Mbit/s link capacity, 100ms one-way-delay,

Next steps

- Code: (coming soon)
 - https://github.com/protocols-comnet/rmcat-adaptive-fec-code

- Evaluation Paper:
 - Nagy M., Singh V., Ott J., Eggert L., Congestion Control using FEC for Conversational Multimedia Communication, Proc. of ACM Multimedia Systems, Singapore, SG, Mar, 2014,
- More feedback is appreciated ©