## AE333 Mechanics of Materials

Lecture 21 - Combined loading
Dr. Nicholas Smith
Wichita State University, Department of Aerospace Engineering
8 April, 2020

1/20(#/)

#### schedule

- 8 Apr Combined Loading
- 10 Apr Stress Transformation
- 13 Apr Stress Transformation, HW7 Due
- 15 Apr Strain Transformation

### outline

- combined loading
- group problems plane stress transformation

### combined loading

### combined loading

• We can use the principle of superposition to treat various loading conditions separately and then add them together to find the total stress

### procedure

- Section the member at the point of interest, internal force components should be drawn acting through the centroid of the section
- Moment components should be calculated about the centroidal axis

### stress components

• Normal stress:  $\sigma = N/A$ 

Shear: τ = Q/It
Bending: σ = y/I
Torsion: τ = ρ/J

• Pressure Vessels:  $\sigma_1 = r/t$ , \* $\sigma_2 = r/2$ \*t

### example 8.2



Neglect the weight of the member and find the stress at B and C.

### example 8.4



Determine the stress at C and D.

### example 8.5



The rod shown has a radius of 0.75 in. Find the stress at A.

### group problems

### group one



Find the stress at the corners A and B for the column shown.

#### group two



Find the stress at point A for the cantilever beam shown.

### group three



Find the load P that will cause a maximum normal stress of  $\sigma$ =30 ksi along the section a-a.

# plane stress transformation

### plane stress

- In general, the state of stress at a point is characterized by six stress components
- In practice, this is rare, as most stresses and forces act in the same plane
- This case is referred to as plane stress

### transformation





### procedure

- If the state of stress  $(\sigma_x, \sigma_y, \tau_{xy})$  is known for a known axis system x and y, we can find the stress relative to some rotated coordinate system
- We do this by considering a section of the element perpendicular to the x' axis
- Sum of forces in x and y will give  $\sigma_{x'}$  and  $\tau_{x'y'}$
- ullet A second section is needed to find  $\sigma_{y'}$ , perpendicular to the y' axis

### procedure



### example 9.1



Represent the state of stress shown on the fuselage section on an element rotated  $30^\circ$  clockwise from the position shown.