CSN-106: Discrete Structures (Autumn semester 2022-23)

Name: Tutorial Date: Enrollment No.: Programme:

- 1. Question: If A, B, and C are sets, then prove the following statements:
 - if $A \subseteq B$, then $A C \subseteq B C$
 - if $B \subseteq C$, then $A \times B \subseteq A \times C$
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2. Question: Compute the following operations on defined function:
 - If $f(x) = x^2 + 2x$, g(x) = 2x 3 compute (f-g)(x), (f+g)(x), (fg)(x).
 - If $f(x) = 2x^3 + 4x^2 + 2x + 1$, g(x) = x + 1 compute (f-g)(x), (f+g)(x), (fg)(x).
- 3. Question: Prove the following:
 - $f(x) = \frac{1}{x}$ is one-to-one.
 - $f(x) = x^n x$ is one-to-one or not?.
 - f(x) = 3x + 11 is onto function.
 - $f(x) = 3x^2 4x + 5$ is onto or not?
- 4. Question: Compute the Big-Oh of the following functions:
 - $f(n) = 0.01n \log(n) + n(\log(n))^2$
 - $f(n) = 100n \log(n^3) + n^2 + n \log(n^2)$
 - $f(n) = 24n \log(n^2) + 78n \log(n^3)$
 - $f(n) = 0.3n + 1.2n^{1.3} + n\log(n^2)$
- 5. **Question:** Prove that for any natural number $n \geq 2$,

$$\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 1.$$

Prove the above using mathematical induction.