	Assignment 5 Assignment 5
*	Aim: Implement Neural Network for any application.
*	Objective: To study and implement neural Network for any
	application.
*	Theory:
	Neural network architecture
	Neural networks are complex structures made of artificial neuron
	that can take in multiple inputs to produce asingle output. This is
-	the primary job of a Neural Network - to transform input into a
	meaningful output. Usually, a neural network consists of an
	input and output layer with one or multiple hidden layers within.
	In Neural networks all the neurons in fluence each other, and hence
	they are all connected. The network can acknowledge and observe
	every aspect of the dataset at hand and how the different
	parts of dat a may or may not relate to each other. This is how
	neural networks are capable of finding extremely complex patterns
	invast volumes of data.
→	Deep learning frameworks.
	Deep learning frameworks offer building blocks for designing,
	traning and validating deep neural networks, through a high
	level programming interface. This eliminates the need to manage
	packages and dependencies or build deep learning frameworks
	from source.
	commonly used three activation functions

0	Sig moid function
2	Hyperbolic Tangent
3	Softmax function
4	Soft sign function
*	FAQ
· ·	which algorithm is used to train the neural network?
	One dimensional optimization
	(2) Multidimensional optimization
	3 & radient descent
	(4) Newton method
	(5) conjugate gradient.
9	How to decide number of hidden layers in neural network?
->	For most problems one could probably get decent performance
	(even without a second optimization step) by setting the hidden
	layer configuration using just two rules: (1) Number of hidden
	layers equals one and #2 the number of neurons is that
	layer is the mean of the neurons in the input and output
	layers.
	what is the drawback of deep learning?
	It requires very large amount of data in order to perform
• • • • • • • • • • • • • • • • • • •	better than other techniques. It is extremely expensive to
	train due to complex dat a models. Moreover deep learning
	requires expensive apos and hundreds of machines. It increas
	the lost to the users.
	www.mitwpu.edu.ir

```
import numpy as np
class NeuralNetwork():
    def __init__(self):
        # seeding for random number generation
        np.random.seed(1)
        #converting weights to a 3 by 1 matrix with values from -1
to 1 and mean of 0
        self.synaptic weights = 2 * np.random.random((3, 1)) - 1
    def sigmoid(self, x):
        #applying the sigmoid function
        return 1 / (1 + np.exp(-x))
    def sigmoid_derivative(self, x):
        #computing derivative to the Sigmoid function
        return x * (1 - x)
    def train(self, training_inputs, training_outputs,
training iterations):
        #training the model to make accurate predictions while
adjusting weights continually
        for iteration in range(training iterations):
            #siphon the training data via the neuron
            output = self.think(training inputs)
            #computing error rate for back-propagation
            error = training outputs - output
            #performing weight adjustments
            adjustments = np.dot(training inputs.T, error *
self.sigmoid derivative(output))
            self.synaptic_weights += adjustments
    def think(self, inputs):
        #passing the inputs via the neuron to get output
        #converting values to floats
        inputs = inputs.astype(float)
        output = self.sigmoid(np.dot(inputs, self.synaptic_weights))
        return output
if __name__ == "__main__":
   #initializing the neuron class
    neural_network = NeuralNetwork()
    print("Beginning Randomly Generated Weights: ")
    print(neural network.synaptic weights)
```

```
#training data consisting of 4 examples--3 input values and 1
output
    training_inputs = np.array([[0,0,1],
                                [1,1,1],
                                [1,0,1],
                                [0,1,1]
   training_outputs = np.array([[0,1,1,0]]).T
   #training taking place
    neural_network.train(training_inputs, training_outputs, 15000)
    print("Ending Weights After Training: ")
   print(neural_network.synaptic_weights)
   user_input_one = str(input("User Input One: "))
   user_input_two = str(input("User Input Two: "))
   user_input_three = str(input("User Input Three: "))
    print("Considering New Situation: ", user_input_one,
user_input_two, user_input_three)
   print("New Output data: ")
   print(neural_network.think(np.array([user_input_one,
user_input_two, user_input_three])))
   print("Wow, we did it!")
```

```
Desktop — -bash — 80×35
[(base) Madhuras-MacBook-Air:Desktop madhura$ python NeuralNetwork.py
Beginning Randomly Generated Weights:
[[-0.16595599]
[ 0.44064899]
[-0.99977125]]
Ending Weights After Training:
[[10.08740896]
[-0.20695366]
[-4.83757835]]
User Input One: 1
User Input Two: 0
User Input Three: 0
Considering New Situation: 1 0 0
New Output data:
[0.9999584]
Wow, we did it!
(base) Madhuras-MacBook-Air:Desktop madhura$
```