Bitácora 4b: Radioactividad

Juana Valeria Pinzón* and Sergio Laverde**

Universidad de los Andes, Bogotá, Colombia.

(Dated: 5 de marzo de 2024)

I. MONTAJE Y METODOLOGÍA EXPERIMENTAL(COMPLETO)

En esta práctica experimental se utilizó un detector Geiger-Müller junto con su equipo electrónico y soportes. Además, se dispuso de dos fuentes radiactivas distintas, una de ellas es Cesio-137.

Figura 1. Montaje

Montaje del experimento Radioactividad. En la figura se puede apreciar la electrónica de procesamiento(1), soporte experimental calibrado(2), tubo Geiger-Müller(3),fuente radioactiva de Torio(4) y barreras físicas de diferentes características(5).

El procedimiento experimental se desarrolló en varias etapas. Inicialmente, se verificó que el contador Geiger-Müler funcionara correctamente. Posteriormente, se realizaron varias mediciones de 5 minutos estando alejados de las fuentes radioactivas para de este modo medir la radiación ambiente. Habiendo realizado lo anterior, se procedió con mediciones a una distancia cercana y fija de la fuente radioactiva de 1, 3 y 10 minutos de duración. Seguido de esto, se realizaron mediciones de un periodo de tiempo largo y fijo a distancias de 2, 4 y 8 cm de distancia de la fuente radioactiva. Por último, se realizó la comparación entre ambas fuentes radioactivas usando periodos de tiempo y distancias iguales.

II. ANÁLISIS PRELIMINAR

Para la primera parte del experimento, se realizó un conteo de 10 minutos para reportar la Radiación am-

biental, como se observa a continuación:

Tiempo	Conteo
10 minutos	226

Radiación ambiental = 22,6, CPM \pm 0,61

Esta radiación ambiental se origina por la presencia de materiales radiactivos en el entorno. Estos materiales son naturales. Por ejemplo en los suelos, en los cuales es común encontrar varios radioisótopos naturales, entre ellos el potasio-40 (40K), que emite principalmente radiación beta; el radio-226 (226Ra), descendiente del uranio-238, que emite radiación alfa, beta y gamma; y el uranio-238 (238U) y torio-232 (232Th). Estos isótopos contribuyen a la radiación ambiental y su presencia varía según la ubicación.

Para la segunda parte, se procesaron los conteos de 10 minutos para obtener sus respectivas frecuencias, tomando

$$t_1 = \text{conteo}_1$$

Para los otros 9 intervalos, se calculó como:

$$t_i = t_{i+1} - t_i = \text{conteo}_{i+1} - \text{conteo}_i$$

donde (i) varía desde 1 hasta 9. Luego, para hallar la frecuencia, se dividió sobre 60seg:

Frecuencia =
$$\frac{conteo}{60}$$

Obteniendo los siguientes resultados:

III. APÉNDICE DE CÁLCULO

Incertidumbre =
$$\sqrt{\frac{\text{Conteo total}}{\text{Tiempo total}}}$$

= $\sqrt{\frac{226}{600s}} \approx \sqrt{0.37} \approx 0.61 \text{CPM}$

^{*} Correo institucional: j.pinzonr@uniandes.edu.co

^{**} s.laverdeg@uniandes.edu.co

Distancia 2cm				
Tiempo (min)	Datos	Conteo	Frecuencia (Hz)	
1	330	330	5.5	
2	670	340	5.67	
3	996	326	5.43	
4	1294	298	4.97	
5	1624	330	5.5	
6	1951	327	5.45	
7	2271	320	5.33	
8	2569	298	4.97	
9	2852	283	4.72	
10	3173	321	5.35	

Cuadro I. Resultados toma 2cm

Distancia 4cm				
Tiempo (min)	Datos	Conteo	Frecuencia (Hz)	
1	120	120	2	
2	248	128	2.13	
3	388	140	2.33	
4	511	123	2.05	
5	619	108	1.8	
6	733	114	1.9	
7	851	118	1.97	
8	977	126	2.1	
9	1086	109	1.82	
10	1183	97	1.62	

Cuadro II. Resultados toma $4\mathrm{cm}$

Distancia 8cm					
Tiempo (min)	Datos	Conteo	Frecuencia (Hz)		
1	36	36	0.6		
2	68	32	0.53		
3	126	58	0.97		
4	174	48	0.8		
5	196	22	0.37		
6	225	29	0.48		
7	279	54	0.9		
8	331	52	0.87		
9	380	49	0.82		
10	419	39	0.65		

Cuadro III. Resultados toma $8\mathrm{cm}$