Module 1 - R

Rudy Fasano 3/8/2021

Chapter 3 - # 21-26

```
library(ggplot2)
library(knitr)
library(dplyr)

setwd("D:/School/502/Week1/datasets/Website Data Sets/")
df=read.csv("nutrition_subset.csv")
```

Q21 Sorting saturated fat and commenting on validity

```
### Q21 sort saturated_fat in descending order
sort_satfat<-df[order(-df$saturated_fat),]</pre>
```

Q22 Create new variable, saturated_fat_per_gram then merge with dataset

```
df1 <- df
df1$saturated_fat_per_gram<-df1$saturated_fat/df1$weight_in_grams</pre>
```

Q22 - Part a - sort dataset in descending order then visualize the five highest values sorted in descending order of variable, saturated_fat_per_gram.

```
df1<-sort_satfat_g<-df1[order(-df1$saturated_fat_per_gram),]
head(df1,n=5)</pre>
```

	food.item <fct></fct>
909	BUTTER; SALTED 1 TBSP
910	BUTTER; UNSALTED 1 TBSP
710	BUTTER; SALTED 1/2 CUP
711	BUTTER; UNSALTED 1/2 CUP
913	BUTTER; SALTED 1 PAT
5 rows	1-2 of 6 columns

Q22 - Part b - the foods with the most saturated fat per gram are both unsalted and salted butter (0.507).

Q23 Derive a new variable, cholesterol_per_gram

```
df1$cholesterol_fat_per_gram<-df1$cholesterol/df1$weight_in_grams
```

Q23 - part a - sort in descending order to find the 5 foods with highest values in cholesteral per gram.

```
df1<-chol_satfat_g<-df1[order(-df1$cholesterol_fat_per_gram),]
head(df1,n=5)</pre>
```

	food.item <fct></fct>
120	EGGS; RAW; YOLK 1 YOLK
59	CHICKEN LIVER; COOKED 1 LIVER
46	BEEF LIVER; FRIED 3 OZ
168	EGGS; COOKED; FRIED 1 EGG
185	EGGS; RAW; WHOLE 1 EGG
5 rows 1-2 of 7 columns	

Q23 - part b - 1 raw egg yolk has the highest cholesterol per gram (12.53).

Q24 Standardize and produce outliers above/below the thresholds for the variable saturated fat per gram

```
df1$saturated_fat_per_gramz<-scale(x=df1$saturated_fat_per_gram)
```

satfat_pergram_outliers<-df1[which(df1\$saturated_fat_per_gramz < -3 | df1\$saturated_fat_per_gra
mz > 3),]
satfat_pergram_outliers

	food.item <fct></fct>
909	BUTTER; SALTED 1 TBSP
910	BUTTER; UNSALTED 1 TBSP
913	BUTTER; SALTED 1 PAT
914	BUTTER; UNSALTED 1 PAT
710	BUTTER; SALTED 1/2 CUP
711	BUTTER; UNSALTED 1/2 CUP

	food.item <fct></fct>
891	LARD 1 CUP
900	LARD 1 TBSP
921	IMITATION CREAMERS; POWDERED 1 TSP
211	CHOCOLATE; BITTER OT BAKING 1 OZ
1-10 of 15 rows 1-2 of 8 columns Previous 1 2 Ne	

Q24 cont. There are zero outliers below the lower limit threshold, however, there are 15 outliers present above the upper limit threshold.

Q25 Standardize and produce outliers above the threshold for the variable cholesterol_per_gram

```
df1$cholesterol_fat_per_gramz<-scale(x=df1$cholesterol_fat_per_gram)
```

```
chol_pergram_outliers<-df1[ which(df1$cholesterol_fat_per_gramz < -3 | df1$cholesterol_fat_per_g
ramz > 3),]
chol_pergram_outliers
```

	food.item <fct></fct>
120	EGGS; RAW; YOLK 1 YOLK
59	CHICKEN LIVER; COOKED 1 LIVER
46	BEEF LIVER; FRIED 3 OZ
168	EGGS; COOKED; FRIED 1 EGG
185	EGGS; RAW; WHOLE 1 EGG
187	EGGS; COOKED; HARD-COOKED 1 EGG
186	EGGS; COOKED; POACHED 1 EGG
190	EGGS; COOKED; SCRAMBLED/OMELET1 EGG
8 rows 1-2 of 9 columns	

Q25 cont. There are a total of 8 outliers above the upper limit threshold for cholesterol per gram.

Q26 Record Indexing

```
n <- dim(df1)[1]
df1$Index <- c(1:n)
head(df1)</pre>
```

	food.item <fct></fct>
120	EGGS; RAW; YOLK 1 YOLK
59	CHICKEN LIVER; COOKED 1 LIVER
46	BEEF LIVER; FRIED 3 OZ
168	EGGS; COOKED; FRIED 1 EGG
185	EGGS; RAW; WHOLE 1 EGG
187	EGGS; COOKED; HARD-COOKED 1 EGG
6 rows	1-2 of 10 columns