Algebraically Structured LWE, Revisited Chris Peikert, Zachary Pepin

Yuncong Zhang

May 22, 2020

Outline

- Introduction
- 2 Algebraic Number Theory
- General Framework
- 4 \mathcal{L} -LWE
- 6 Reductions

Background

Regev proposed the original LWE [Reg05]

- Average-case to worst-case security
- Impractical efficiency

Structured LWEs are LWEs with special structure

Advantage: improved efficiency

Disadvantages: complex security reduction

Contribution of this Paper

- A framework that encompasses ALL structured LWEs
- A new LWE that generalizes algebraic LWEs
- Use the framework to give much simpler, more general, and tighter reductions from Ring-LWE to other algebraic LWE variants

Let K be a field extension of \mathbb{Q}

- Let degree-d polynomial $f(x) \in \mathbb{Q}[X]$ irreducible over \mathbb{Q}
- Let $\alpha \notin \mathbb{Q}$ be a root of f(x)
- $K = \mathbb{Q}(\alpha)$ is the minimal field that contains α

Example:

- $f(x) = x^2 2$ is irreducible over \mathbb{Q}
- $\sqrt{2} \notin \mathbb{Q}$ is a root of f(x)
- $K = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}\}_{a,b \in \mathbb{Q}}$

Given a basis $\vec{b}=(b_1,b_2,\cdots,b_d)\in K$, K is isomorphic to a d-dimensional vector space over $\mathbb Q$

• $(1,\sqrt{2})$ is a basis of $\mathbb{Q}(\sqrt{2})$

For any $x \in K$, x is identified with a map $\phi_x : K \to K$ that is multiplication by x

- ullet ϕ_{x} is linear, given a basis $ec{b}$, ϕ_{x} is identified with a matrix M_{x}
- For different basis, M_x varies, but $Tr(M_x)$ and $det(M_x)$ are invariant
- Therefore, $\operatorname{Tr}_{K/\mathbb{Q}}(x) := \operatorname{Tr}(M_X)$ and $\operatorname{N}_{K/\mathbb{Q}}(x) := \det(M_X)$, called the trace and norm of x, are well defined

A lattice $\mathcal{L} \subseteq K$ is a discrete, additive subgroup of K

An order $\mathcal{O} \subseteq K$ is both a lattice and a subring with unity in K

- The ring of integers \mathcal{O}_K is the maximal order in K
- The coefficient ring of \mathcal{L} is $\mathcal{O}^{\mathcal{L}} := \{x \in \mathcal{K} : x\mathcal{L} \subseteq \mathcal{L}\}$ which is also an order of \mathcal{K}
- If \mathcal{L} is itself an order \mathcal{O} , then $\mathcal{O}^{\mathcal{L}} = \mathcal{O}$

An *n*-dimensional $\mathcal L$ lattice admits a $\mathbb Z$ -basis $\vec b=(b_1,\cdots,b_n)$ in K

- The dual lattice of \mathcal{L} is $\mathcal{L}^{\vee} := \{x \in K : \mathrm{Tr}_{K/\mathbb{Q}}(x\mathcal{L}) \subseteq \mathbb{Z}\}$
- The dual basis $\vec{b}^{\vee} := (b_1^{\vee}, \cdots, b_n^{\vee})$ where $\mathrm{Tr}_{\mathcal{K}/\mathbb{Q}}(b_i \cdot b_j^{\vee}) = \delta_{ij}$ is a basis of \mathcal{L}^{\vee}
- $\mathcal{O}^{\mathcal{L}} = \mathcal{O}^{\mathcal{L}^{\vee}}$
- $\mathcal{L}' \subseteq \mathcal{L} \Rightarrow \mathcal{L}^{\vee} \subseteq (\mathcal{L}')^{\vee}$

For $x \in \mathcal{L}$, \vec{b} a basis of \mathcal{L} , then the coordinate of x under \vec{b} is $\vec{x} = \text{Tr}(x \cdot \vec{b}^{\vee})$.

For $x, y \in \mathcal{L}$, \vec{x} is coordinate of x under \vec{b} , \vec{y} is coordinate of y under \vec{b}^{\vee} , then $\mathrm{Tr}_{K/\mathbb{D}}(x \cdot y) = \langle \vec{x}, \vec{y} \rangle$

$$\mathcal{L}_q$$
 is the quotient group $\mathcal{L}/q\mathcal{L}$, similarly $\mathcal{L}_q^ee := \mathcal{L}^ee/q\mathcal{L}^ee$

Field tensor product $K_{\mathbb{R}}:=K\otimes_{\mathbb{Q}}\mathbb{R}$ is the real analog of K/\mathbb{Q}

• If f(x) has s_1 real roots and s_2 conjugate pairs of complex roots, then $K_{\mathbb{P}} \simeq \mathbb{R}^{s_1} \times \mathbb{C}^{s_2}$

General Framework

A module of ring \mathcal{R} is a group M operated by \mathcal{R} such that

$$(a+b)x = ax + bx$$
 $a(x+y) = ax + ay$ $\forall a, b \in \mathcal{R}, x, y \in M$

- A free module is a module that admits a basis
- Free module over rings is analogous of vector space over fields

General Framework

Observation: the secret s, public multipliers a and product $s \cdot a$ can be viewed as belonging to free modules M_s , M_a and M_b over some commutative ring \mathcal{R} respectively.

Multiplication: The multiplication is generalized to a fixed \mathcal{R} -bilinear map $T: M_s \times M_a \to M_b$.

 T can be represented by a order-three tensor (like a three-dimensional matrix)

Variant	M_s	M_a	M_b	T	
LWE	\mathbb{Z}_q^n	\mathbb{Z}_q^n	\mathbb{Z}_q	Inner product	
Ring-LWE	$R_a^{\dot{\lor}}$	R_q	R_q^{\vee}	Field mult	$R = \mathcal{O}_K$
MP-LWE	\mathbb{Z}_q^{n+d-1}	\mathbb{Z}_q^n	\mathbb{Z}_q^d	Hankle matrix	

General Framework

For MP-LWE, the bilinear map $M: \mathbb{Z}_q^{n+d-1} \times \mathbb{Z}_q^n \to \mathbb{Z}_q^d$ corresponds to a $(n+d-1) \times n \times d$ tensor M, where the $M_{i..}$'s form a basis of Hankle matrix

\mathcal{L} -LWE

Given K/\mathbb{Q} of degree n

- \mathcal{L} a lattice in K
- ullet $\mathcal{O}^{\mathcal{L}}$ coefficient ring of \mathcal{L}
- ullet ψ distribution over $\mathcal{K}_{\mathbb{R}}$
- q, k positive integers
- ullet $ec{s} \in (\mathcal{L}_q^ee)^k$ is secret vector

An \mathcal{L} -LWE distribution $A_{q,\psi}^{\mathcal{L},k}(\vec{s})$ over $(\mathcal{O}_q^{\mathcal{L}})^k \times \mathcal{K}_{\mathbb{R}}/q\mathcal{L}^{\vee}$ is sampled by

- choosing uniformly $\vec{a} \leftarrow (\mathcal{O}_q^{\mathcal{L}})^k$
- choose $e \leftarrow \psi$
- ullet output $ig(a,b=\langle ec{s},ec{a}
 angle + e mod q \mathcal{L}^eeig)$

\mathcal{L} -LWE

The decision \mathcal{L} -LWE $_{q,\psi,\ell}^k$ problem is to distinguish between

- ℓ samples from $A_{q,\psi}^{\mathcal{L},k}(\vec{s})$ where $\vec{s} \leftarrow U((\mathcal{L}_q^{\vee})^k)$; and
- ullet samples from uniform distribution over $(\mathcal{O}_q^{\mathcal{L}})^k imes \mathcal{K}_{\mathbb{R}}/q\mathcal{L}^ee$

The search \mathcal{L} -LWE $_{q,\psi,\ell}^k$ problem is given ℓ samples from $A_{q,\psi}^{\mathcal{L},k}(\vec{s})$ for arbitrary $\vec{s} \in (\mathcal{L}_q^\vee)^k$, find \vec{s}

\mathcal{L} -LWE

 $\mathcal{L}\text{-LWE}$ generalizes the algebraic number field LWEs. Variants differ in specific choices of

- The lattice \mathcal{L}
- The dimension k

LWE Variants	\mathcal{L}	\mathcal{L}_q^{ee}	$\mathcal{O}_q^{\mathcal{L}}$	k
Ring-LWE	$\mathcal{R} = \mathcal{O}_{\mathcal{K}}$	\mathcal{R}_q^{\vee}	\mathcal{R}_q	1
Module-LWE	$\mathcal{R} = \mathcal{O}_{\mathcal{K}}$	$\mathcal{R}_{q}^{\dot{\lor}}$	\mathcal{R}_q	k
Poly-LWE	$\mathbb{Z}[\alpha]^{\vee}$	$\mathbb{Z}_{q}[\alpha]$	$\mathbb{Z}_{q}[\alpha]$	1
Order-LWE	O	\mathcal{O}_q^{ee}	\mathcal{O}_q	1

Lemma 4.1

Let $\mathcal{L}'\subseteq\mathcal{L}$ be lattices in number field K, q positive integer. The natural inclusion map $h:\mathcal{L}'_q\to\mathcal{L}_q$ is a bijection iff q is coprime with $|\mathcal{L}/\mathcal{L}'|$. In this case, h is efficiently computable and invertible given arbitrary basis of \mathcal{L}' relatively a basis of \mathcal{L} .

The natrual inclusion map $\mathcal{L}_q' \to \mathcal{L}_q$ sends $x + q\mathcal{L}'$ to $x + q\mathcal{L}$.

Proof:

- Let \vec{b}, \vec{b}' be \mathbb{Z} -basis of $\mathcal{L}, \mathcal{L}', \vec{b}' = T\vec{b}, T$ is square integral matrix
- ② x' has coordinate \vec{x}' in $\vec{b}' \Rightarrow x = h(x')$ has coordinate $\vec{x} = T^t \vec{x}'$ in \vec{b}
- **③** *h* is bijection \Leftrightarrow *T* is invertible over $\mathbb{Z}_q \Leftrightarrow |\det(T)| = |\mathcal{L}/\mathcal{L}'|$ coprime with *q*

Lemma 4.2

Let $\mathcal{L}' \subseteq \mathcal{L}$ be lattices in number field K, q positive integer coprime with $|\mathcal{L}/\mathcal{L}'|$. If $\mathcal{O}^{\mathcal{L}'} \subseteq \mathcal{O}^{\mathcal{L}}$ then the natural inclusion map $g: \mathcal{O}_q^{\mathcal{L}'} \to \mathcal{O}_q^{\mathcal{L}}$ is a bijection

Proof:

- For any $a \in \mathcal{O}_q^{\mathcal{L}'}$, $x \in \mathcal{L}_q'$, $h(a \cdot x) = g(a) \cdot h(x)$
- ② For any $a, b \in \mathcal{O}_q^{\mathcal{L}'}$ satisfying g(a) = g(b), $h(a \cdot x) = h(b \cdot x)$
- **3** By Lemma 4.1, h is bijection, so $a \cdot x = b \cdot x \mod q\mathcal{L}'$

Theorem 4.3

Let $\mathcal{L}' \subseteq \mathcal{L}$ be lattices in number field K, q positive integer, ψ distribution over $K_{\mathbb{R}}$. If $\mathcal{O}^{\mathcal{L}'} \subseteq \mathcal{O}^{\mathcal{L}}$ and the natrual inclusion map $g: \mathcal{O}_q^{\mathcal{L}'} \to \mathcal{O}_q^{\mathcal{L}}$ is efficiently invertible bijection, there is an efficient deterministic transform:

- maps uniform distribution over $(\mathcal{O}_q^{\mathcal{L}})^k \times K_{\mathbb{R}}/q\mathcal{L}^{\vee}$ to uniform distribution over $(\mathcal{O}_q^{\mathcal{L}'})^k \times K_{\mathbb{R}}/q(\mathcal{L}')^{\vee}$

Proof:

ullet The transformation is: given $(a,b)\in (\mathcal{O}_q^{\mathcal{L}})^k imes \mathcal{K}_{\mathbb{R}}/q\mathcal{L}^ee$, output

$$(a'=g^{-1}(a),b'=b \bmod q(\mathcal{L}')^{\vee})$$

- g is bijection, so g sends uniform a to uniform a'; $\mathcal{L}' \subseteq \mathcal{L} \Rightarrow q\mathcal{L}^{\vee} \subseteq q(\mathcal{L}')^{\vee}$, so b' is uniform
- ullet To show that if $b=s\cdot a+e mod q\mathcal{L}^ee$ then $b'=s'\cdot a'+e mod q(\mathcal{L}')^ee$

$$a \cdot s = a' \cdot s + q(\mathcal{O}^{\mathcal{L}} \cdot s)$$

$$\subseteq a' \cdot s + q\mathcal{L}^{\vee}$$

$$\subseteq a' \cdot (s' + q(\mathcal{L}')^{\vee}) + q\mathcal{L}^{\vee}$$

$$\subseteq a' \cdot s' + q(\mathcal{L}')^{\vee}$$

Corollary 4.4

Let $\mathcal{L}'\subseteq\mathcal{L}$ be lattices in number field K, q positive integer coprime with $|\mathcal{L}/\mathcal{L}'|$, ψ distribution over $K_{\mathbb{R}}$. If $\mathcal{O}^{\mathcal{L}'}\subseteq\mathcal{O}^{\mathcal{L}}$ and the bases of $\mathcal{L}',\mathcal{O}^{\mathcal{L}'}$ relative to bases of $\mathcal{L},\mathcal{O}^{\mathcal{L}}$ are known. Then there is an efficient deterministic reduction from \mathcal{L} -LWE $_{q,\psi,\ell}$ to \mathcal{L}' -LWE $_{q,\psi,\ell}$ for both the search and decision versions.

Proof:

- By Lemma 4.1, 4.2, the natural inclusion maps h, g are efficiently computable and invertible bijections
- For decision problems, use the transform from Theorem 4.3 to map the input samples
- For computation problems, apply the transform and recover s from s' by $s=h^{-1}(s')$

Definition 5.1

A tweaked power basis of order $\mathcal O$ of a number field is a $\mathbb Z$ -basis $\vec p$ of the form $t\cdot (1,x,\cdots,x^{d-1})$ for some $t,x\in \mathcal O$

Theorem 5.2

Let $d \leq n$ be positive integers, $\mathcal O$ be an order of a degree-d number field K with a tweaked power basis $\vec p$, ψ be a distribution over $K_{\mathbb R}$, and q a positive integer. There is an efficient randomized transform which:

- maps uniform distribution over $\mathcal{O}_q \times \mathcal{K}_{\mathbb{R}}/q\mathcal{O}^{\vee}$ to uniform distribution over $\mathbb{Z}_q^n \times (\mathbb{R}/q\mathbb{Z})^d$
- ② maps \mathcal{O} -LWE distribution $A_{q,\psi}^{\mathcal{O}}(s)$ to MP-LWE distribution $C_{n,d,q,\psi'}(\vec{s}')$ where \vec{s}' is some fixed linear function (depending only on \vec{p}) of s, and $\psi' = \mathrm{Tr}_{K_{\mathbb{R}}/\mathbb{R}}(\psi \cdot \vec{p})$

In particular, there is an efficient randomized reduction from (search or decision) $\mathcal{O}\text{-LWE}_{q,\psi,\ell}$ to (search or decision, respectively) MP-LWE_{n,d,a,a,b',\ell}.

Proof:

- Extend \vec{p} to generating set \vec{p}' of size n by including more powers of x
- The transform maps (a, b) to (\vec{a}, \vec{b}) where
 - \vec{a} is uniform random solution to $\langle \vec{p}', \vec{a} \rangle = a$
 - $ightharpoonup \vec{b}$ is $\operatorname{Tr}_{K_{\mathbb{R}}/\mathbb{R}}(b \cdot \vec{p})$

• Uniform case:

- ▶ The solutions to $\langle \vec{p}', \vec{a} \rangle = 0 \in \mathcal{O}_q$ form a subgroup $G \subseteq \mathbb{Z}_q^n$, a uniformly random $a \in \mathcal{O}_q$ corresponds to a uniformly random coset of G
- ▶ $\operatorname{Tr}_{K_{\mathbb{R}}/\mathbb{R}}(b \cdot \vec{p})$ is the coordinate of b under basis \vec{p}^{\vee} , which is an \mathbb{R} -basis of $K_{\mathbb{R}}$

• LWE case:

- ▶ The \mathcal{O} -LWE bilinear map $T: \mathcal{O}_q^{\vee} \times \mathcal{O}_q \to \mathcal{O}_q^{\vee}$ corresponds to $d \times n \times d$ tensor $T_{ijk} = \operatorname{Tr}_{K/\mathbb{Q}}(p_i^{\vee} \cdot p_j' \cdot p_k) \mod q$, $T_{i.}$ is a $n \times d$ Hankle matrix
- ▶ The MP-LWE bilinear map $M: \mathbb{Z}^{n+d-1} \times \mathbb{Z}^n \to \mathbb{Z}^d$ corresponds to a tensor M_{ijk} where $M_{i..}$'s form a basis of all Hankle matrices, so there is $(n+d-1) \times d$ matrix P such that $T_{i..} = \sum_i M_{j..} P_{ji}$

Proof (Continued):

- For $b = s \cdot a + e \mod q \mathcal{O}^{\vee}$, let $\vec{s} = \operatorname{Tr}(s \cdot \vec{p}) \in \mathbb{Z}_q^d$, $\vec{e} = \operatorname{Tr}(e, \vec{p})$, then $\vec{b} = M(P\vec{s}, \vec{a}) + \vec{e} \mod q \mathbb{Z}^d$
- To apply the transform to get a reduction from \mathcal{O} -LWE to MP-LWE, \vec{s}' needs to be rerandomized. Choose uniformly random $\vec{r} \in \mathbb{Z}_q^{n+d-1}$, and replace sample (\vec{a}, \vec{b}) with $(\vec{a}, \vec{b} + M(\vec{r}, \vec{a}))$
- For decision problem, apply the transform directly
- For search problem, recover the secret of \mathcal{O} -LWE by $s=\langle \vec{p}^{\vee}, P_L^{-1} \vec{s}' \rangle$ where P_L^{-1} is the left inverse of P

Theorem 5.2 transforms $\mathcal{O}\text{-LWE}$ with error distribution ψ to MP-LWE with error distribution ψ' which is related to ψ . However, we want a reduction from many $\mathcal{O}\text{-LWE}$ problems to a single MP-LWE problem.

- ullet For ψ being Gaussian distribution over $\mathcal{K}_{\mathbb{R}}$, ψ' is Gaussian over \mathbb{R}^n
- ullet Fix some orthogonal \mathbb{R} -basis $ec{b}$ of $\mathcal{K}_{\mathbb{R}}$, let $P_b=\mathrm{Tr}(ec{b}\cdotec{p}^t)$
- If covariance of ψ is Σ , then covariance of ψ' is $\Sigma' = P_b^t \cdot \Sigma \cdot P_b$

Corollary 5.4

Let $d \leq n$ be positive integers, \mathcal{O} be an order of a degree-d number field K with a tweaked power basis \vec{p} , $\Sigma \in \mathbb{R}^{d \times d}$ a positive definite matrix, q a positive integer. For any $\Sigma' \succ P_b^t \cdot \Sigma \cdot P_b$, there is an efficient randomized reduction from (search or decision) \mathcal{O} -LWE $_{q,D_{\sqrt{\Sigma}},\ell}$ to (search or decision) MP-LWE $_{n,d,q,D_{\sqrt{\Xi}},\ell}$.

In particular, for any $r' > r \cdot ||P_b||$, there is an efficient randomized reduction from (search or decision) $\mathcal{O}\text{-LWE}_{q,D_r,\ell}$ to (search or decision, respectively) MP-LWE_{n,d,q,D,r,\ell}.

Reduction from \mathcal{O}' -LWE to \mathcal{O} -LWE^k

Theorem 6.1

Let K'/K be a number field extension; \mathcal{O} be an order of K; \mathcal{O}' be an order of K' that is a rank-k free \mathcal{O} -module with known basis \vec{b} ; ψ' be a distribution over $K'_{\mathbb{R}}$; and q be a positive integer. There is an efficient deterministic transform which:

- maps uniform distribution over $\mathcal{O}_q' \times \mathcal{K}_{\mathbb{R}}'/q(\mathcal{O}')^{\vee}$ to uniform distribution over $\mathcal{O}_q^k \times \mathcal{K}_{\mathbb{R}}/q\mathcal{O}^{\vee}$
- e maps \mathcal{O}' -LWE distribution $A_{q,\psi'}^{\mathcal{O}'}(s')$ to \mathcal{O} -LWE k distribution $A_{q,\psi}^{\mathcal{O},k}(\vec{s})$ for $\vec{s} = \operatorname{Tr}_{K'/K}(s' \cdot \vec{b})$ mod $q\mathcal{O}^{\vee}$ and $\psi = \operatorname{Tr}_{K'_{\mathbb{R}}/K_{\mathbb{R}}}(\psi')$

It immediately follows that there is an efficient randomized reduction from (search or decision) \mathcal{O}' -LWE $_{q,\psi',\ell}^1$ to (search or decision, respectively) \mathcal{O} -LWE $_{q,\psi,\ell}^k$.

Reduction from \mathcal{O}' -LWE to \mathcal{O} -LWE^k

Proof:

ullet The transformation maps $(a',b')\in \mathcal{O}_q' imes \mathcal{K}_\mathbb{R}'/q(\mathcal{O}')^ee$ to

$$(\vec{a} = \operatorname{Tr}(a', \vec{b}^{\vee}), b = \operatorname{Tr}(b') mod q \mathcal{O}^{\vee}) \in \mathcal{O}_q^k imes \mathcal{K}_{\mathbb{R}}/q \mathcal{O}^{\vee}$$

• Uniform case:

- ▶ A uniform a' is mapped to uniform \vec{a} because \vec{b} is an \mathcal{O}_q -basis of \mathcal{O}_q'
- ▶ A uniform b' is mapped to uniform b becase $\operatorname{Tr}: \mathcal{K}'_{\mathbb{R}} \to \mathcal{K}_{\mathbb{R}}$ is surjective $\mathcal{K}_{\mathbb{R}}$ -linear map, and $\operatorname{Tr}((\mathcal{O}')^{\vee}) \subseteq \mathcal{O}^{\vee}$

• LWE case:

- Show that if $b' = s' \cdot a' + e'$ then $b = \langle \vec{s}, \vec{a} \rangle + e$, for $\vec{s} = \text{Tr}(s', \vec{b})$, e = Tr(e')
- $s' = \langle \vec{s}, \vec{b}^{\vee} \rangle, a' = \langle \vec{a}, \vec{b} \rangle \Rightarrow \operatorname{Tr}(s' \cdot a') = \langle \vec{s}, \vec{a} \rangle$

Reductions:

- Decision problem: directly apply the above transform
- Search problem: recover s from \vec{s} by $s = \langle \vec{s}, \vec{b}^{\vee} \rangle$

Reduction from \mathcal{O}' -LWE to \mathcal{O} -LWE^k

Similar to Theorem 5.1, ψ' is related to ψ , so our reduction is one-to-one. To obtain many-to-one reduction, consider the case where ψ' is Gaussian

- Fix orthonormal \mathbb{R} -bases \vec{c} , \vec{c}' of $K_{\mathbb{R}}$, $K'_{\mathbb{R}}$ respectively, let matrix $A = \mathrm{Tr}_{K'_{\mathbb{R}}/\mathbb{R}} (\vec{c}' \cdot (\vec{c}^{\vee})^t)$,
- If ψ' is Gaussian with covariance Σ' under \vec{c}' , then ψ is Gaussian with covariance $\Sigma_1 = A^t \cdot \Sigma' \cdot A$ under \vec{c}

Corollary 6.2

Adopt the notation and hypothesis of Theorem 6.1, with $\psi' = D_{\Sigma'}$ over $K'_{\mathbb{R}}$ for some positive definite matrix Σ' . For any $\Sigma \succ A^t \cdot \Sigma' \cdot A$, there is an efficient, randomized reduction from (search or decision) \mathcal{O}' -LWE $^1_{q,D_{\Sigma'},\ell}$ to (search or decision) \mathcal{O} -LWE $^k_{q,D_{\Sigma},\ell}$.

Moreover, for $r=r'\sqrt{k}$, there is an efficient deterministic reduction from (search or decision) \mathcal{O}' -LWE $_{q,D_{r'},\ell}^1$ to (search or decision, respectively) \mathcal{O} -LWE $_{q,D_r,\ell}^k$.

Thank you