Shape Optimization of Toroidal Sweeps

Avik Das

Advisor: Carlo H. Séquin

EECS

Smooth Transformations

- Homotopy:smooth transformation from one surface to another, without introducing creases, corners or punctures
- Everting a torus is a homotopy
- Want to find a stable halfway point in eversion process and an energy functional such that nudging the surface away from equilibrium causes the surface to spontaneously transform into a torus.

Torus Eversion

- Turn an torus inside-out by deforming it into two Klein-bottle mouths attached to each other
- Proceed from halfway point by minimizing energy

Torus eversion, rendered by Chéritat

Visualizing the Klein-bottle mouths. A possible halfway point in the eversion process.

Gradient Descent

- · Surfaces represented as polylines with circular cross-sections
 - Optimization via Gradient Descent
 - Vary the coordinates of each control point (parameters), revert change if energy does not decrease
 - Iterate, then stop when no decrease possible
 - Susceptible to local minima in energy functional

A highly twisted and bent curve unfolds into a circle with no twist, using gradient descent.

Energy Functionals

- Bending: Compute angle between two struts and take deviation from collinearity
- Twisting: Using rotation minimizing frames,
 - Closed Curves: compare beginning and end orientations
 - Non-closed curves: forward project normal vectors and compare to a priori expected ending orientation
- Can weigh these parts to trade-off between them

Trading Off Bending and Twisting

Sweeping out a curve in space causes start and end orientations to be mismatched. The amount of mismatch is the twist. Rotating curve by this amount gradually across the sweep matches up the endpoints

A planar figure-8 with no twist, but more bending than a circle Unfolding the figure-8

Fully unfolded into a circle with 360° of accumulated twist from the unfolding

Optimizing the Eversion Process

A halfway point: First approach. Model two arms as separate, non-closed space curves, connected by end caps (not shown). Minimize bending and twist of each arm separately. Both arms incur 180° twist for a total of 360° twist across both arms.

on the right arm is shown here If an ant were to walk on the stripe it would end up rotating

Straightening out one arm: By allowing the green arm to straighten and the end caps to come closer together, the red arm is forced to incur all 360° of twist. The twist is then removed by folding the red arm until it is untwisted.

Collapsing the straight arm: Finally, the green arm is shortened until it completely collapses and only the inverted torus remains

Future Work

- Fully gridded parameterization of surface
 - · Requires many control points, so many parameters over which to optimize

Bending calculated as deviation of adjacent patches from co-planarity

based on deviation of edges from right angles.

Integrate these over entire surface area