

NPTEL Online Certification Courses Indian Institute of Technology Kharagpur

Course: Signal Processing for mm Wave communication for 5G and beyond

Assignment:

Week -6

TYPE OF QUESTION: MCQ/MSQ

Number of questions: 10 Total mark: 10 X 1 = 10

Q.1 Which of the following technique may be used for creating pencil (sharp) beam at the antenna?

- a. Increasing the number of antennas.
- b. Decrease the number of antennas.
- c. Use non-uniform spacing of antenna.
- d. Increase signal power continuously.

Answer: a. Increasing the number of antennas.

Explanation: For pencil beam, high number of antennas are recommended with uniform antenna spacing. Signal power cannot be increased continuously for different restrictions. See, lecture 32 for details.

Q.2 A vector $r=[\ 1\ 2\ \sqrt{11}]$ makes azimuth angle of 30^{0} , and elevation angle of 45^{0} . The y component of the vector is given by

- a. 4
- b. 1.41
- c. 3.46
- d. 2.44

Answer: b. 1.41

Explanation: The y component is given by $|r|sin\theta sin\phi$. See, lecture 33.

Q.3 a ULA is set up on z-axis. The antenna spacing is $0.5 \ mm$. The position vector of 4th antenna element is given by (assume that the reference antenna is placed at the origin)

- a. (0, 0, 2)
- b. (2, 0, 0)
- c. (0, 0, 1.5)
- d. (0,0,0.5)

Answer: c. (0, 0, 1.5)

Explanation: The position vector for 4th antenna element on z-axis is (0,0, 3d). See, Lecture 35 for details.

Q.4 Consider a 2×2 multi-antenna system, where the transmitting-antenna are placed on x-axis, and received antenna are placed on z-axis. The AOD is (θ^1, ϕ^1) and AOA is (θ^2, ϕ^2) . Assuming channel attenuation factor (α) be unity, and antenna spacing is $\frac{\lambda}{2}$ for both transmitter and receiver. The receiver side steering vector is given by

a.
$$a^r = [1 e^{j \pi \cos(\theta^1)}]$$

b.
$$a^r = [1 e^{j \pi \cos(\theta^2)}]$$

c.
$$a^r = [1 e^{j\pi \cos(\theta^1)\sin(\phi^1)}]$$

c.
$$a^r = [1 e^{j\pi\cos(\theta^1)\sin(\phi^1)}]$$

d. $a^r = [1 e^{j\pi\cos(\theta^2)\sin(\phi^2)}]$

Answer: b. $a^r = [1 e^{j \pi \cos(\theta^2)}]$

Explanation: See, lecture 35 for beam forming with array processing.

Q.5 Given the following set up as

	Transmitting antenna size	Receiving antenna size
Set up 1	4 (placed on xy plane)	8 (x-plane)
Set up 2	8 (<i>z</i> -plane)	4 (xy-plane)
Set up 3	4(x-plane)	4 (<i>z</i> -plane)

The channel matrix for set up 2, is given by

- a. $H_{4\times4}$
- b. $H_{8\times4}$
- c. $H_{4\times8}$
- d. $H_{8\times8}$

Answer: c. $H_{4\times8}$

Explanation: See, lecture 35.

Q.6 The steering matrix formed at the receiver side of a 3x3 antenna system is given by

$$A = \begin{bmatrix} 1 & e^{j\theta_1} & e^{j\theta_2} \\ 1 & e^{2j\theta_1} & e^{2j\theta_2} \\ 1 & e^{3j\theta_1} & e^{3j\theta_2} \end{bmatrix}.$$

The above structure of the matrix is called

a. Toeplitz matrix

- b. Vandermonde matrix
- c. Unitary matrix
- d. Wishart matrix

Answer: b. Vandermonde matrix.

Explanation: The above structure is the structure of Vandermonde matrix, and it has interesting applications in array processing.

Q.7 The resolving power of an array depends on

- a. Number of antennas
- b. Spatial extent
- c. Aperture
- d. All of the above

Answer: d. All of the above.

Explanation: The resolving power depends on spatial extent, aperture and number of antennas.

Q.8 A communication signal model is given by y = Ax + w. The spatial correlation matrix is given by

- a. $R = E(yy^*)$
- b. $R = E(xx^*)$
- c. $R = A^+$ (pseudo-inverse)
- d. $R = E(ww^*)$

Answer: a. $R = E(yy^*)$

Explanation: spatial correlation matrix is formed by the received signal vector.

Q.9 Find the odd one

- a. Beam-forming helps in the improvement of SNR
- b. AoA and AoD is same for LOS communication
- c. Far-filed assumption ensures parallel rays for AoA/AoD
- d. AoA and AoD cannot be distinguished by placing reflectors.

Answer: d. AoA and AoD cannot be distinguished by placing reflectors.

Explanation: In presence of reflectors, the AoA and AoD can be different.

Q.10 A channel matrix is given by

$$H = \begin{bmatrix} 1 & 0.25 \\ 0.25 & 1 \end{bmatrix}.$$

Eigenvalue of the channel matrix can be represented in diagonal form (as if single tap), with the tap values

- a. 1 and 0.25
- b. 1.25 and 0.25
- c. 1.25 and 0.75
- d. 0.75 and 0.25

Answer: c. 1.25 and 0.75

Explanation: Compute the eigenvalues for H.