OLIMPÍADA BRASILEIRA DE FÍSICA 2017

LEIA COM ATENÇÃO AS INSTRUÇÕES DESTA FOLHA ANTES DE APLICAR A PROVA

(não imprima esta folha)

Prova da 1ª fase:

Regulamento da OBF 2017 para a prova da 1ª fase:

3.1.1 - A aplicação da prova da 1ª fase é de responsabilidade do professor credenciado e será aplicada nas dependências da escola num dos seguintes períodos: manhã (das 7 às 12h), tarde (13 às 18 h), noite (18h30 min às 23h).

3.1.2 - Após a aplicação da prova os professores deverão recolher todo o material (caderno de questões e folhas de respostas) e manter o material consigo até um dia após a divulgação do gabarito oficial (ver calendário).

Os alunos participantes devem ser instruídos pelos professores que não é permitida a transmissão/publicação de comentários sobre o conteúdo da prova (através de qualquer meio, redes sociais ou similares) durante o dia de aplicação da prova. A violação deste item implicará na desclassificação do aluno.

- O gabarito preliminar será divulgado somente na área de acesso restrito dos professores.
- Após dois dias da divulgação do gabarito preliminar será divulgado o gabarito oficial final
- A partir da divulgação do gabarito final as provas poderão retornar aos alunos.
- As folhas de resposta deverão ficar com o professor.
- O lançamento das notas finais dos alunos será liberado na área de acesso restrito após a divulgação do gabarito final.

(não imprima esta folha)

OLIMPÍADA BRASILEIRA DE FÍSICA 2017 1ª FASE – 11 de maio de 2017

NÍVEL II Ensino Médio - 1ª e 2ª séries

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

- 01) Esta prova destina-se exclusivamente a alunos dos 1ª e 2ª séries do ensino médio. Ela contém **vinte e cinco** questões.
- 02) Os alunos da 1ª série devem escolher livremente vinte questões para resolver.
- 03) Os alunos da **2ª série** devem responder **vinte** questões, **excetuando** as questões **01, 02, 03, 04 e 05.**
- 04) Cada questão contém cinco alternativas, das quais apenas uma é correta.
- 05) A alternativa julgada correta deve ser assinalada na Folha de Respostas.
- 06) A **Folha de Respostas** com a identificação do aluno encontra-se na última página deste caderno.
- 07) A duração desta prova é de **quatro** horas, devendo o aluno permanecer na sala por, **no mínimo, noventa minutos**.
- 08) É vedado o uso de quaisquer tipos de calculadoras e telefones celulares.

Dados: aceleração da gravidade na superfície da terra 10 m/s², densidade da água 10^3 kg/m³; $\pi = 3$; velocidade da luz no vácuo $3x10^8$ m/s; $sen60^0 = \sqrt{3}/2 = 0.8$; $sen60^0 = 0.5$

1. (exclusiva da 1ª serie) - A coordenada de um ponto material que se move em linha reta na direção do
eixo z	x, varia com o tempo segundo a expressão $x = 11 + 35t + 41t^2$ (x é dado em cm e t, em segundos). Para
essa s	situação, podemos concluir que sua velocidade ao fim de 10 s, vale:

- a) 85,5 m/s
- b) 8,55 m/s
- c) 4,45 m/s
- d) 44,5 m/s
- e) 0.445 m/s

2. **(exclusiva da 1ª série)** - Na bancada do laboratório de Física, o Professor Physicson desenvolveu juntos aos alunos uma experiência que consistia em medir a posição e o tempo de um móvel que se movia ao longo de uma régua com aceleração constante. No momento em que o cronômetro mostrava $t_1 = 7.0s$, o móvel encontrava-se na posição $x_1 = 70.0cm$; no momento $t_2 = 9.0s$ na posição $x_2 = 80.0cm$ e no momento $t_3 = 15.0s$ na posição $x_3 = 230.0cm$. Para esta situação os alunos concluíram que a intensidade da aceleração do móvel vale:

- a) 10.0 cm/s^2
- b) 2.5 cm/s^2
- c) 5.0 cm/s^2
- d) 7.5 cm/s^2
- e) 8.5 cm/s^2

3. **(exclusiva da 1ª série)** - Qual deve ser a aceleração adquirida por um corpo de massa (m), descendo um plano inclinado sem atrito, com uma velocidade inicial de 1,0 m/s, sabendo-se que ao fim do terceiro segundo de movimento, o corpo passou a ter o dobro da velocidade que possuía ao fim do primeiro segundo de movimento.

a) 2.0 m/s^2

b) 0.1 m/s^2

c) 1.5 m/s^2

d) 0.5 m/s^2

e) 1.0 m/s^2

4. (**exclusiva da 1**^a **série**) - Uma bola homogênea de peso $100 \sqrt{3}$ N encontra-se apoiada sobre uma superfície plana, sem atrito e presa por uma corda inextensível, conforme a figura abaixo. Considerando que a mesma se encontra em equilíbrio e submetida à ação de uma força **F** de intensidade igual a 50 N, determine a intensidade da reação normal entre a bola e o plano, considerando o centro da bola como sendo o ponto de intersecção das forças aplicadas sobre ela, além de desprezar qualquer tipo de rotação na mesma.

a) 300 N

b) 150 √3 N

c) $300 \sqrt{3} \text{ N}$

d) 100 N

e) $125 \sqrt{3} \text{ N}$

- 5. **(exclusiva da 1ª série)** No livro "princípios matemáticos da filosofía natural", escrito por Isaac Newton e publicado em 1726 (versão em Latim), relata entre suas três famosas leis do movimento, as várias medidas realizadas por astrônomos, utilizando-se de relógios de pêndulo na determinação da aceleração da gravidade, observando que os mesmos movem-se mais lentamente quando próximos à linha do equador, comparando com as medidas realizadas em Paris. Em uma dessas medidas realizadas pela expedição do astrônomo francês Pierre Couplet, que chegou à Paraíba em 1698, verificou-se que comparado a Paris (g = 9,81 m/s²), as oscilações realizadas foram reduzidas em 125 segundos ao dia, tornando g = 9,78 m/s². A partir dessas informações, podemos acertadamente afirmar que:
- a) O período dos pêndulos testados é inversamente proporcional à raiz quadrada da aceleração da gravidade local;
- b) O período dos pêndulos testados é proporcional à raiz quadrada da aceleração da gravidade local;
- c) A temperatura local não influencia na determinação do período de oscilação;
- d) Duplicando o comprimento de um pêndulo simples, seu período quadruplica;
- e) A frequência de oscilação é inversamente proporcional à aceleração da gravidade local.

6. A figura abaixo mostra o gráfico da força (**F**) que atua sobre um corpo de massa 1000,0 g em função do deslocamento produzido. Sabe-se que inicialmente o corpo estava em repouso. Para este caso, determine o trabalho realizado entre 0,0 m e 0,6 m.

a) 4,5 N.m

b) 6,3 N.m

c) 3,6 J

d) 4,8 J

e) 4,8 N.m

7. No laboratório de física da escola existe um dispositivo legal, com o qual os alunos costumam se divertir, enquanto aprendem sobre momento linear, energias e suas conservações. Esse dispositivo é constituído por várias bolas de metal idênticas, penduradas uma junto à outra em fios ideais e de iguais comprimentos, e de tal modo que a distância entre elas é muito pequena, conforme a figura.

Imaginemos que um aluno afaste a bola (01) e a solte. De que modo comportar-se-ão as outras bolas, após o choque? Para essa situação despreze todos os atritos e dissipações de energias.

- a) As bolas (06 e 05) se afastam, enquanto as outras ficam paradas.
- b) Nada acontece, ou seja, todas as bolas ficam paradas;
- c) Somente a bola (06) se afasta, enquanto as outras ficam paradas;
- d) Todas as bolas afastam-se, apenas a (01) fica parada;
- e) As bolas (06) e (01) afastam-se.

- 8. Um ponto material executa um movimento circular uniforme num dado referencial plano. Do ponto de vista de um observador que percebe este movimento, é correto afirmar que:
- a) A aceleração vetorial da partícula é nula;
- b) A componente normal da aceleração é nula;
- c) A aceleração vetorial da partícula possui módulo constante;
- d) A força que age sobre a partícula é nula;
- e) O módulo da velocidade da partícula é variável.
- 9. Você empurra com velocidade constante um bloco retangular de madeira sobre um determinado piso, aplicando-lhe uma força **F**₁. Você decide virar o bloco de tal forma que ele fique agora com a face de menor área (duas vezes menor) sobre o piso. Nessa nova posição, para manter a mesma velocidade anterior, você deve aplicar uma força **F**₂ que é aproximadamente:
- a) Quatro vezes maior que F1;
- b) Quatro vezes menor que F_1 ;
- c) Igual a F1;

d) A metade de **F**₁;

e) O dobro de F1.

- 10. Durante as décadas de oitenta e noventa, várias pesquisas a nível acadêmico, nos conduziram a levar em consideração os erros conceituais alternativos ou intuitivos que as pessoas cometiam a respeito de determinados conceitos científicos. Dentre estes, é comum termos ideias intuitivas ou aristotélicas de que o movimento está relacionado com os atos de empurrar, levantar ou puxar. Assim sendo, podemos entender que uma carroça puxada por quatro cavalos andará mais rápido do que a mesma carroça sendo puxada por apenas dois cavalos. Portanto, nossa intuição nos diz que a força aplicada é função da (do):
- a) massa;
- b) tempo;
- c) aceleração;
- d) velocidade;
- e) variação do tempo.
- 11. Considere dois blocos de metal de mesmo volume, sendo que o peso de um é o dobro do outro, deslizando sobre uma mesa lisa e horizontal com a mesma velocidade. Desprezando-se a resistência do ar, após abandonarem a mesa:
- a) O bloco mais pesado atinge o solo aproximadamente na metade da distância horizontal que vai da base da mesa até o ponto onde o bloco mais leve bateu no solo;
- b) O bloco mais leve atinge o solo aproximadamente na metade da distância horizontal que vai da base da mesa até o ponto onde o bloco mais pesado bateu no solo;
- c) O bloco mais pesado atinge o solo bem mais próximo da base da mesa do que o bloco mais leve, mas não necessariamente na metade da distância horizontal;
- d) Os blocos atingem o solo a aproximadamente uma mesma distância horizontal da base da mesa;
- e) O bloco mais leve atinge o solo bem mais próximo da base da mesa do que o bloco mais pesado, mas não necessariamente na metade da distância horizontal.
- 12. No laboratório de física, o Professor Physicson propôs uma experiência que consistia lançar com uma mesma velocidade e simultaneamente, duas esferas de metal com mesma massa e tamanhos, sobre os trilhos mostrados na figura abaixo. Para isso, considere os dois trilhos sem atrito e com o mesmo comprimento. A saliência no trilho A possui a mesma curvatura que a depressão no trilho B. A partir dessas informações podese garantir que a bola que percorre a trajetória primeiro é:
- a) A energia mecânica em ambas as situações não são conservadas.
- b) A bola A.
- c) Ambas levam o mesmo tempo.
- d) A bola B:
- e) Nos trechos curvos, A e B possuem a mesma quantidade de energia cinética;

- 13. O Professor Physicson durante suas aulas sobre colisões propôs aos seus alunos o seguinte problema. Considere um grande caminhão colidindo de frente com um pequeno fusquinha. Com relação às forças trocadas entre os dois, durante a colisão, podemos afirmar corretamente que:
- a) A força exercida pelo caminhão sobre o fusquinha tem a mesma intensidade da força que o fusquinha exerce sobre o caminhão.
- b) A força exercida pelo caminhão sobre o fusquinha é maior do que a força exercida pelo fusquinha sobre o caminhão;

- c) A força exercida pelo fusquinha sobre o caminhão é maior do que a força exercida pelo caminhão sobre o fusquinha;
- d) Nenhum dos dois exerce força sobre o outro. O fusquinha é esmagado simplesmente por que estava no caminhão;
- e) O caminhão é quem exerce força sobre o fusquinha, mas o fusquinha não exerce força sobre o caminhão, pois sua massa é muito pequena em relação ao caminhão;
- 14. Procurando atingir a outra margem de um rio, o garoto representado na figura chuta uma bola de massa (m), com uma velocidade de valor (**v**₀), atingindo o ponto A da figura, a 40 m de distância da base. Desprezandose as resistências viscosas e considerando-se que ele se encontra a uma altura de 20,0 m em relação ao nível do ponto desejado, módulo aproximado dessa velocidade:
- a) 19,5 m/s
- b) 15,5 m/s
- c) 22.5 m/s
- d) 30.0 m/s
- e) 45.0 m/s

- 15. Dois homens A e B carregam uma carga de 198,0 kg, por meio de uma barra de madeira cuja massa vale 2,0 kg. Sabe-se que a barra possui 4,0 m de comprimento e que a carga encontra-se entre os dois homens e a 1,5 m do ombro do homem A, posicionado na extremidade esquerda da barra. Sabendo-se que o homem B se encontra na extremidade direita da barra, podemos verificar que o homem A suporta uma carga maior do que B, cuja diferença em Newtons é equivalente a:
- a) 752,5
- b) 1247,5
- c) 495,0
- d) 552,5
- e) 1237,5
- 16. Considere um cavalo puxando um caixote que pesa 1300,0 kg, sobre um plano horizontal rugoso, à velocidade constante. A ação produzida pelo cavalo tem uma correspondente reação do caixote, evidenciada por um dinamômetro entre eles que indica 260,0 N de força. Nesse sentido, o coeficiente de atrito cinético entre a superfície e o caixote deve ser igual a:
- a) 0,01
- b) 0.20
- c) 0.10
- d) 0.30
- e) 0.02
- 17. Em épocas de inverno rigoroso é comum nos depararmos com fortes trovões e relâmpagos. O fato de enxergarmos o relâmpago antes de ouvirmos o trovão por ele produzido pode ser explicado:
- a) Pela diferença entre as velocidades de propagação da luz e do som no ar.
- b) Pela produção do trovão alguns segundos após a ocorrência do relâmpago;
- c) Pela difração das ondas sonoras nas nuvens;
- d) Pelo fenômeno da polarização, que ocorre com as ondas sonoras;
- e) Pelo fenômeno da dispersão da luz.

18. A um marceneiro foi solicitado que fizesse uma roda de madeira com 100,0 cm de diâmetro para que fosse adaptada em um anel de ferro com 5,0 mm menor que o diâmetro da roda. Para essa adaptação, foi-se necessário aquecer em um forno o anel de ferro, cujo coeficiente de dilatação linear vale 12 x 10⁻⁶ °C⁻¹. Assim, considerando que a temperatura no ambiente da marcenaria fosse de 30,0 °C, de quanto deveria ser, aproximadamente, a temperatura final do anel, para que a adaptação fosse bem sucedida? 430,0 °C b) 450.0 °C c) 530,0 °C d) 390.0 °C e) 405.0 °C a)

19. Em outra experiência, realizada em nível do mar, o Professor Physicson solicitou de um grupo de alunos que colocassem um litro de água num recipiente pequeno e outro litro de água numa bacia grande, ambos abertos conforme as figuras abaixo, deixando-os exposto ao sol entre os horários de 10 h às 14 h. Ao final da experiência, os alunos recolheram a água dos recipientes, mediram os seus volumes e constataram acertadamente que:

- I. Havia mais água no recipiente menor do que na bacia, pois quanto maior a área de exposição, maior será o processo de evaporação;
- II. Havia mais água no recipiente menor do que na bacia, pois quanto maior a área de exposição, menor será o processo de evaporação;
- III. Havia mais água no recipiente menor, pois quanto menor a área de exposição, maior será a intensidade da radiação solar;
 - a) I e II estão corretas;
 - b) II e III estão corretas;
 - c) Somente I está correta;
 - d) I e III estão corretas;
 - e) Todas corretas;

20. No laboratório de química, uma aluna fez uma experiência em que colocava um bloco de gelo (-5,0 °C) dentro de um Becker. Em seguida ela fornece calor ao sistema (Becker + gelo), utilizando-se da chama de um bico de Bunsen de potência constante. Ao longo da experiência, ela notou que o gelo começou a derreter. Tomando o termômetro ela aferiu novamente a temperatura do gelo, constatando que o gelo enquanto funde:

- a) Recebe calor, mas sua temperatura aumenta;
- b) Cede calor e sua temperatura aumenta;
- c) Cede calor e sua temperatura diminui
- d) Recebe calor, mas sua temperatura permanece constante;
- e) Cede calor e sua temperatura permanece constante.
- 21. Apesar das questões ambientais serem fortemente denunciadas na mídia, o homem continua utilizando a madeira para a produção de energia. Tomemos por exemplo a pequena padaria do pai do Professor Physicson. Desejando-se obter uma energia de 8,0 x 10⁹ J para a produção de pães, será necessária, no mínimo, a queima calor de combustão é da ordem de 1,6 x 10⁴ J/g.
- a) 1.0

- b) 0.02
- c) 0.1
- d) 0,2

e) 2.0

- 22. Durante uma experiência realizada em laboratório, o Professor Physicson mostrou aos seus alunos a sua arte em fotografias. Na ocasião, ele usou sua máquina com o flash no modo multi, para fazer múltiplas exposições de uma pequena bola impulsionada para cima por uma mola ideal. A mola, com a bola em cima, foi inicialmente comprimida até o ponto (P) e liberada. A bola deixou a mola no ponto (Q) e alcançou a altura máxima no ponto (R), conforme a figura. Desprezando-se as resistências existentes no processo, podemos afirmar corretamente que:
- a) A aceleração da bola é constante em todos os pontos da trajetória Q até R;
- b) A aceleração da bola foi máxima imediatamente antes de atingir o ponto Q, ainda em contato com a mola;
- c) A aceleração da bola diminuiu quando ela passou do ponto Q até R;
- d) A aceleração da bola no ponto R é nula;
- e) A aceleração da bola após a saída de P é mínima.

- 23. No parque de diversões da cidade, uma menina deseja escolher um dos escorregadores da figura abaixo, de modo que consiga atingir a maior velocidade possível ao chegar à base do escorregador. Desprezando-se o atrito ali existente, identifique a resposta correta:
- a) Escorregador 2;
- b) Escorregador 3;
- c) Escorregador 1;
- d) Escorregador 4;
- e) Independente do tipo do escorregador escolhido, a velocidade será a mesma na base:

- 24. Cuidado com o que você come Professor Physicson, evite gorduras saturadas, pois o seu exame mostrou que uma de suas artérias coronária encontra-se parcialmente bloqueada, disse o Cardiologista ao Professor. Preocupado, o Professor procurou entender fisicamente a situação, usando a figura abaixo. Notadamente ele entendeu o aviso do Médico, pois na parte parcialmente bloqueada por gorduras, tem-se:
- a) Mesma vazão de sangue acompanhada de uma maior velocidade de escoamento;
- b) Mesma vazão de sangue, porém a velocidade de escoamento é menor;
- c) Uma vazão de sangue maior, porém uma menor velocidade de escoamento;
- d) Uma vazão de sangue maior, acompanhada de uma maior velocidade de escoamento;
- e) Uma vazão de sangue menor, acompanhada de uma menor velocidade de escoamento.

25. Um peixe nada abaixo da superfície da água em P, conforme a figura. Estando um observador em Q, onde ficará a imagem vista por ele:

a) Em uma profundidade menor do que ele realmente está;

- c) Em uma profundidade maior do que ele realmente está;
- d) Na mesma profundidade, mas a direita de onde ele realmente está;
- e) Na mesma profundidade, mas a esquerda de onde ele realmente está;

OLIMPÍADA BRASILEIRA DE FÍSICA – 2017 1ª FASE – 11 DE MAIO DE 2017

NÍVEL II - Ensino Médio - 1ª e 2ª séries

NOME:	SÉRIE:
FONE P/CONTATO:()E-MAI	L:
ESCOLA:	
MUNICÍPIO:	ECTADO:
A CCINIA TI ID A .	

TARELA DE RESPOSTAS (coloque um X)

TABELA DE RE Questão	a	b	c	d	e
01(exclusiva da 1ª série)					
02(exclusiva da 1ª série)					
03(exclusiva da 1ª série)					
04(exclusiva da 1ª série)					
05(exclusiva da 1ª série)					
06					
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					