En este capítulo se establecen las bases conceptuales y la notación que se utilizarán a lo largo de este trabajo. Se asume que el lector posee un conocimiento fundamental de la teoría de conjuntos axiomática y de la topología general, todo al nivel de cursos estándar de licenciatura. El propósito de este capítulo no es ser un tratado exhaustivo, sino fijar la terminología, los convenios y los resultados clásicos que se darán por sentados. Para una revisión más profunda, se remite al lector a textos de referencia como:

0.1. Teoría de Conjuntos

0.1.1. Notación y convenciones básicas

Sea adopatará como marco axiomático a la teoría usual de conjuntos; ZFC. Se comprenden, por tanto, los axiomas de: existencia, extensionalidad, buena fundación, esquema de separación, par, unión, infinito, esquema de reemplazo y el axioma de elección (*denotado a partir de ahora por AC*); mismos que pueden consultarse en [3, p. xv].

Se asume que el lector está familiarizado con los objetos clásicos de la teoría de conjuntos, conviniendo las notaciones pertinentes a: los símbolos lógicos \forall , \exists , \neg , \lor , \land , \rightarrow , \leftrightarrow y \exists ! para existencia y unicidad; el conjunto vacío \varnothing ; la pertenencia \in , la contención \subseteq y contención propia \subsetneq ; la diferencia de conjuntos $X \setminus Y$; el par ordenado (x,y), el conjunto potencia $\mathscr{P}(X)$; y claro, las operaciones conjuntistas: unión, intersección, producto cartesiano $(\cup, \cap y \times; junto con sus homólogos unarios: <math>\bigcup, \bigcap y \prod$, respectivamente). A lo largo del presente texto se jerarquizarán las operaciones anteriores de la siguiente manera: se aplicarán siempre de

izquierda a derecha, priorizando la diferencia de conjuntos, el producto cartesiano y la unión e intersección, en tal orden.

Dado un conjunto A, se denotará por $\{x \in A \mid \varphi(x)\}$ al conjunto de todos los elementos x de A que satisfacen la fórmula $\varphi(x)$ (siendo tal colección un conjunto, debido al esquema de separación [3, p. xv]). Una clase es una "coleccion" del estilo $\mathcal{C} = \{x \mid \varphi(x)\}$, se dice \mathcal{C} es conjunto si y sólo si se satisface:

$$\exists y \forall x \ (x \in y \leftrightarrow \varphi(x))$$

en caso contrario, ésta se denomina *clase propia*. Como abuso de notación, si un conjunto x hace verdadera la fórmula $\varphi(x)$, se escribirá $x \in \mathcal{C}$. Se denotará por \mathcal{V} a la clase $\{x \mid x = x\}$.

Se dará por sentado el conocimiento de la teoría elemental de relaciones y funciones, manteniéndose al margen de las notaciones típicas para: el dominio dom(f) e imagen ima(f); la imagen directa f[A] e inversa $f^{-1}[A]$ y las funciones identidad Id_X . La composición de funciones (o relaciones) será denotada por yuxtaposición fg y, la restricción de una función (o relación) f a un subconjunto $A \subseteq dom(f)$, por $f \upharpoonright A$. Se señala además el uso ocasional de la expresion " $A \to B$ dada por $x \mapsto f(x)$ " (o simplemente " $x \mapsto f(x)$ ") para hacer referencia a la relga de correspondencia de la función $f: A \to B$, en caso su nombre carezca de interés.

0.1.2. Órdenes parciales

Los órdenes parciales reflexivos y antirreflexivos serán denotados por los símbolos $\leq y <$, respectivamente y el término *orden parcial* hará referencia a cualquiera de ellos; la posible diferencia no es sustancial, pues ambas versiones son fácilmente intercambiables al añadir o eliminar la identidad del conjunto sobre el cual se definen. Un *conjunto parcialmente ordenado* se concive como un par (P,R), donde R es un orden parcial en P. En lo que sigue, fiése conjunto parcialmente ordenado (P, \leq) .

Para cada $A \subseteq P$: $\min(A)$, $\max(A)$, $\sup(A)$ e $\inf(A)$ denotarán el máximo, mínimo, supremo e infimo de A, respectivamente (en caso de existir). Además, cierto $p \in P$ es R-minimal de A si $p \in A$ y no existe $q \in A$ tal que q < p, definiendo el concepto R-maximal de forma dual.

Se conviene que dos elementos $p,q \in P$ son comparables si y sólo si $p \le q$ o $q \le p$; en caso contrario, son incomparables. Así mismo, p y q serán compatibles $(p \parallel q)$ cuando exista $r \in P$ de modo que $r \le p$ y $r \le q$; en caso contrario, serán incompatibles $(p \perp q)$. Una (P, \le) -cadena (anticadena, respectivamente) es un subconjunto de P de elementos comparables (incompatibles, respectivamente) dos a dos; y cuando el contexto lo permita, se omitirá el prefijo (P, \le) .

La caracterización típica para AC es clave:

Teorema 0.1.1 (Principio de Maximalidad de Hausdorff). *AC* se satsiface si y sólo si todo conjunto parcialmente ordenado (P, \leq) , no vacío, posee una (P, \leq) -cadena \subseteq -maximal (del conjunto de cadenas de P).

Se dice que $\leq ((P, \leq) \text{ o } (P, <), \text{ indistintamente})$ es: total si cualesquiera dos elementos de P son comparables, buen orden (bien fundado, o completo, respectivamente) si y sólo si cada $A \in \mathcal{P}(P) \setminus \{\emptyset\}$ tiene elemento mínimo (minimal, o supremo si A es acotado superiormente, respectivamente). Nótese que todo buen orden es total, bien fundado y completo.

Dados dos ordenes parciales (P,R) y (Q,S), se dice que una función $f: P \to Q$ es: S-creciente (decreciente, respectivamente) si y sólo si dados $p,q \in P$, se tiene que p R q implica f(p) S f(q) (o f(p) S f(q), respectivamente). En cualquier caso, se dice que f es un morfismo de orden; y, si además f es biyectiva, se dice que f es un isomorfismo y que los órdenes (P,R) y (Q,S) son isomorfos, denotado $(P,R) \cong (Q,S)$.

0.1.3. Ordinales y Cardinales

Siguiendo la hoy conocida como construccion de John von Neumann, se declara que un conjunto α es: *ordinal* si es transitivo (esto es, $\alpha \subseteq \mathscr{P}(\alpha)$) y (α, \in) es un buen orden; y, natural si es un ordinal tal que (α, \ni) es un buen orden. Se denota por ON a la clase (propia) de todos los ordinales.

Los ordinales se denotan, típicamente, por las primeras letras griegas minúsculas: α, β, γ , etcétera; y, los naturales por: m, n, k, etcétera. Se seguirá esta convención, salvo que se indique lo contrario.

Teorema 0.1.2 (Inducción transfinita). Si $\varphi(x)$ es una fórmula de la teoría de conjuntos y:

- *i)* $\varphi(0)$ *se satisface.*
- ii) Para cada ordinal α , la satisfacción de $\varphi(\alpha)$ implica la satisfacción de $\varphi(\alpha+1)$.
- iii) Para cada ordinal límite γ , la satisfacción de $\forall \alpha \in \gamma(\varphi(\alpha))$ implica la satisfacción de $\varphi(\gamma)$.

entonces, para cualquier ordinal α , se satisface $\varphi(\alpha)$.

Se obtiene la misma conclusión sustituyendo las condiciones (i)-(iii) por el enunciado: Para todo ordinal γ , la satisfacción de $\forall \alpha \in \gamma(\varphi(\alpha))$ implica la satisfacción de $\varphi(\gamma)$.

Dadas clases $\mathcal{C} = \{x \mid \varphi(x)\}\ y \ \mathcal{C}' = \{x \mid \varphi'(x)\}\$, se dice que un funcional de \mathcal{C} en V es una clase F de pares ordenados; a saber $F = \{(x,y) \mid \varphi(x) \land \psi(x,y)\}\$, de forma que $\forall x(\varphi(x) \to \exists ! y(\varphi'(y) \land \psi(x,y)))$. En cuyo caso, se denota $F: \mathcal{C} \to \mathcal{C}'$, y, para cada x en \mathcal{C} , se denota por F(x) al único y en \mathcal{C}' tal que $\psi(x,y)$. Siendo claro además que, si A es un conjunto cualquiera, $F[A] = \{F(a) \mid a \in A\}$.

Teorema 0.1.3 (Recursión transfinita). Para cualesquiera funcionales

 $F,G:\mathcal{V}\to\mathcal{V}$ y todo conjunto A, existe un único funcional $G:ON\to\mathcal{V}$ de manera que:

- *i*) G(0) = A.
- ii) Para cada ordinal α , $G(\alpha + 1) = F(G(\alpha))$.
- iii) Para cada ordinal límite γ , $G(\gamma) = H(G[\alpha])$.

Además, existe un único funcional $K: ON \rightarrow V$ de manera que para todo ordinal α se satisface:

$$K(\alpha) = F(K[\alpha])$$

Los teoremas anteriores se restringen a cualquier otro ordinal, consiguiéndose así las versiones clásicas para los teoremas de inducción y recursión (cada uno de ellos con dos versiones) para ω (o cualquier otro odrinal α). Siendo tales restricciones las justificaciones rigurosas para ciertas técnicas y construcciones de las que se echa mano en este trabajo (véase **tal tal tal**). Haciendo uso del Teorema de Recursión Transfinita, se pueden definir las operaciones binarias entre ordinales: $\alpha + \beta$, $\alpha \cdot \beta$ y α^{β} , respectivamente. En caso se lleguen a utilizar durante la presente tesis, se indicará que tales símbolos corresponden a artimética es ordinal (para evitar confusión con la aritmética cardinal) y seguirá la definición expuesta en [4, p.XXX].

Teorema 0.1.4 (de enumeración). Para cualquier buen orden (P, <) existe un único ordinal α para el cual $(P, <) \cong (\alpha, \in)$.

Tomando en cuenta que; bajo AC, cualquier conjunto admite un buen orden [2, Teo. 5.1, p. 48], se desprende de lo anterior que todo conjunto X es biyectable con algún ordinal, al mínimo de tales ordinales se le denomina cardinalidad de X y se denota por |X|. Se conviene además que X es: finito si existe $n \in \omega$ tal que |X| = n; infinito si $|X| \ge \omega$; numerable si $|X| = \omega$; a lo más numerable si $|X| \le \omega$; y, más que numerable (indistintamente, no numerable) si $|X| > \omega$.

Cualquier ordinal κ que sea la cardinalidad de un conjunto tiene la virtud de no ser biyectable con ningun ordinal anterior a él, a estos ordinales se les llama *cardinales*. Los cardinales se suelen denotar por letras griegas intermedias: κ , λ , μ , etcétera. Se seguirá tal convención y además se denotará por CAR a la clase de cardinales mayores o iguales a ω . Es un hecho que la intersección de una familia de cardinales, es un cardinal. En consecuencia, cualquier clase no vacía de cardinales tiene mínimo; y, cualquier conjunto de cardinales, supremo.

Dados dos cardinales κ y λ , se definen: $\kappa + \lambda := |\kappa \times \{0\} \cup \lambda \times \{1\}|$, $\kappa \cdot \lambda := |\kappa \times \lambda|$ y $\kappa^{\lambda} := |\{f \mid f : \lambda \to \kappa\}|$; siendo las versiones generales de las dos primeras operaciones:

$$\sum_{\alpha \in I} \kappa_{\alpha} := \left| \bigcup_{\alpha \in I} (\kappa_{\alpha} \times \{\alpha\}) \right| \quad \mathbf{y} \quad \prod_{\alpha \in I} \kappa_{\alpha} := \left| \prod_{\alpha \in I} \kappa_{\alpha} \right|$$

(cuando $\{\kappa_{\alpha} \mid \alpha \in I\}$ es un conjunto no vacío de cardinales).

Se dará por sentado que el lector está familiarizado con la aritmética cardinal básica (véase [2, Cap. 1, § 3]). Más allá de tal comportamiento elemental, se hace hincapié en los siguientes teoremas de suma relevancia para la aritmética cardinal:

Teorema 0.1.5 (suma y producto cardinal). $Si \{\kappa_{\alpha} \mid \alpha \in I\}$ es conjunto no vacío de cardinales:

$$i) \sum_{\alpha \in I} \kappa_{\alpha} = |I| \cdot \sup_{\alpha \in I} \kappa_{\alpha}.$$

ii) Si ningun κ_{α} es 0 y para cualesquiera $\alpha, \beta \in I$, $\alpha \leq \beta$ implica $\kappa_{\alpha} \leq \kappa_{\beta}$, entonces: $\prod_{\alpha \in I} \kappa_{\alpha} = \left(\sup_{\alpha \in I} \kappa_{\alpha}\right)^{|I|}.$

Teorema 0.1.6 (Lema de König). Sean $\{\kappa_{\alpha} \mid \alpha \in I\}$ y $\{\lambda_{\alpha} \mid \alpha \in I\}$ conjuntos no vacíos de cardinales de modo que para todo $\alpha \in I$ se

satisface $\kappa_{\alpha} < \lambda_{\alpha}$. Entonces:

$$\sum_{\alpha \in I} \kappa_{\alpha} < \prod_{\alpha \in I} \kappa_{\alpha}$$

Particularmente, $\kappa = \sum_{\alpha \in \kappa} 1 < \prod_{\alpha \in \kappa} 2 = 2^{\kappa}$ (Teorema de Cantor).

Del Lema anterior se desprende que si $\kappa \in CAR$, existe $\lambda \in CAR$ con $\kappa < \lambda$. Luego, se puede ordenar la clase CAR como:

Definición 0.1.7. Se define recursivamente; para cualquier ordinal α , el número \aleph_{α} , de la siguiente manera:

- *i*) $\aleph_0 := \omega$.
- *ii)* Para cada ordinal α , $\aleph_{\alpha+1} := \min\{\lambda \in CAR \mid \aleph_{\alpha} < \lambda\}$.
- iii) Para cada ordinal límite γ , $\aleph_{\gamma} := \sup_{\alpha < \gamma} \aleph_{\alpha}$.

Además, para cada ordinal α , se denota $\omega_{\alpha} := \aleph_{\alpha}$.

Siempre que X sea un conjunto $y \kappa$ un cardinal, se escribirá por $[X]^{\kappa}$ al conjunto de todos los subconjuntos de X de cardinalidad κ ; $[X]^{<\kappa}$ al conjunto de todos los subconjuntos de X de cardinalidad estrictamente menor que κ ; definéndose análogamente a los conjuntos $[X]^{\leq \kappa}$, $[X]^{>\kappa}$ y $[X]^{\geq \kappa}$. Además, en caso no se confunda con la notación de aritmética cardinal, X^{κ} será el conjunto de funciones de κ en X; y, $X^{<\kappa}$ el conjunto de funciones de funciones de funciones de funciones de funciones de funciones χ 0.

Es un hecho que si X es infinito, entonces $|[X]^{\kappa}| = |X|^{\kappa}$ y $|[X]^{<\omega}| = |X|$; además, $|X^{\mu}| = |X|^{\mu}$ y $|X^{<\omega}| = |X|$.

0.1.4. Árboles

Un *árbol* es un orden parcial (T, \leq) (denotado simplemente por T si no hay lugar a ambigüedades) tal que para cualquier $x \in T$, el conjunto $<_x := <^{-1}[\{x\}] = \{y \in T \mid y < x\}$ es un buen orden. Dado el Teorema 0.1.4,

para cada $x \in T$ existe un único ordinal, denotado o(x) para el cual $(<_x, <) \cong (o(x), \in)$. Tal ordinal o(x) es nombrado el *orden de x en el árbol T*. La *altura* de T es el ordinal $h(T, \leq) := \sup\{o(x) + 1 \mid x \in T\}$. Para cada ordinal α se define el α -ésimo nivel de (T, \leq) como el conjunto $T_{\alpha} := \{x \in T \mid o(x) = \alpha\}$. Y, finalmente, un subconjunto $R \subseteq T$ se dice que es rama si y sólo si es una (T, \leq) -cadena \subseteq -maximal (del conjunto de (T, \leq) -cadenas).

Dentro de la basta variedad de árboles, será de especial interés el árbol de ramas de $2^{\omega} = \{f \mid f : \omega \to 2\}$; esto es, el conjunto $2^{<\omega}$ ordenado por contención. Tal árbol es numerable, todos sus elementos tienen orden finito y su altura es exactamente ω .

En efecto, si $f \upharpoonright n \in 2^{<\omega}$, entonces $(n, \in) \cong (f, \subsetneq_f)$ debido al isomorfismo de orden $n \to \subsetneq_f$, dado por $n \mapsto f \upharpoonright n$. Por lo tanto T es un árbol, y el orden de cada $f \in T$ es su dominio; como $2^{<\omega}$ contiene a todas las funciones de naturales en 2, se sigue que la altura de T es $\omega = \sup\{n+1 \mid n \in \omega\}$.

Además T es numerable, ya que:

$$\omega \le |2^{<\omega}| = \Big|\bigcup_{n \in \omega} 2^n\Big| \le \sum_{n \in \omega} |2^n| = \omega$$

Lo cual demuestra lo que se requería respecto al árbol $(2^{<\omega},\subseteq)$.

0.2. Topología

0.2.1. Convenios generales y propiedades topológicas

Una topología para un conjunto X es un conjunto $\tau \subseteq \mathcal{P}(X)$ que tiene por elementos a \emptyset a X; es cerrado bajo uniones (arbitrarias); y, cerrado bajo intersecciones finitas. El par (X,τ) (con frecuencia confundido con su conjunto subyacente, X) se denomina espacio topológico (o simplemente espacio). Los elementos de τ se denominan abiertos (de X) y sus complementos respecto a X, cerrados (de X).

Dados dos espacios X y Y, se dice que una función $f: X \to Y$ es continua si para cada $U \subseteq Y$ abierto en Y, se tiene que $f^{-1}[U] \subseteq X$ es

abierto en X. Un homemorfismo entre X y Y es una función continua $f: X \to Y$, biyectiva, cuya inversa $f^{-1}: Y \to X$ es también continua. Cuando exista un homeomorfismo entre X y Y, esto se denotará $X \cong Y$.

Dados un espacio (X,τ) y $A\subseteq X$ se define la topología de subespacio (de A respecto X) como la colección $\tau_A:=\{U\cap A\mid U\in\tau\}$ (que, claramente, es topología para A). Cuando $(X,\eta),(Y,\tau)$ sean espacios topológicos, se dice que una función $f:X\to Y$ es un encaje si y sólo si f es un homeomorfismo entre (X,η) y $(f[X],\tau_{f[X]})$. En caso ocurra lo último, se convendrá que X es un subespacio de Y (o bien, que X se encaja en Y) y, ocasionalmente, esto se denotará $X\hookrightarrow Y$. En este contexto, la notación " $A\subseteq X$ " significará que A está contenido en X como conjunto y que $A\hookrightarrow X$ por medio del encaje $A\to X$ dado por $a\mapsto a$.

Una base para un espacio topológico (X, τ) es una coleccion $\mathcal{B} \subseteq \tau$ de forma que para cualquier abierto U de X y cada $x \in U$ existe cierto $B \in \mathcal{B}$ de forma que $x \in B \subseteq U$.

Si $x \in X$, una vecindad de x (en X) es un subconjunto $V \subseteq X$ de modo que existe un abierto U de X tal que $x \in U \subseteq V$. Además, se convendrá que una coleccion $\mathcal{B}_x \subseteq \mathcal{P}(X)$ es una base local (de vecindades, respectivamente) de x en X si y sólo si para cada elemento de \mathcal{B}_x es una vecindad abierta (vecindad, respectivamente) de x; y, para todo abierto U de X con $x \in U$, existe $B \in \mathcal{B}_x$ de forma que $x \in B \subseteq U$.

Para cada $A \subseteq X$ se denotarán por $\operatorname{int}(A), \operatorname{cl}(A), \operatorname{ext}(A), \operatorname{fr}(A), \operatorname{der}(A)$ a los *operadores*: interior, clausura, exterior, frontera, y derivado de A, respectivamente. Sus definiciones se pueden consultar en $[1, \operatorname{Cap}. 2]$. Los elementos de $\operatorname{der}(A)$ se denominan *puntos de acumulación de A*; y, los elementos en $A \setminus \operatorname{der}(A)$ se llaman *puntos aislados de A*. Un subconjunto $D \subseteq X$ se dice *denso* (en X) si y sólo si $\operatorname{cl}(D) = X$.

Dado un conjunto no vacío de espacios topológicos $\{X_{\alpha} \mid \alpha \in \kappa\}$, se denotarán por $\prod_{\alpha \in \kappa} X_{\alpha}$ y $\coprod_{\alpha \in \kappa} X_{\alpha}$ a su producto topológico (o, de Tychonoff) y suma topológica, respectivamete; siguiéndo las definiciones de estos espacios acorde al estándar, expuesto en textos como [1, 5], entre otros. Al momento de trabajar con productos topológicos, será usual, para cada $\alpha \in \kappa$ denotar por π_{α} a la α -ésima proyección cartesiana $(\prod_{\beta \in \kappa} X_{\beta} \to X_{\alpha})$ dada por $f \mapsto f(\alpha)$.

Una propiedad $\varphi(X)$ (pensada como fórmula de la teoría de conjuntos) es: topológica si es invariante bajo homeomorfismos; esto es, si (X,τ) y (Y,η) son homeomorfos, entonces $\varphi(X)$ se satisface únicamente cuando $\varphi(Y)$ se satisface; hereditaria ($débilmente\ hereditaria$, respectivamente) cuando $\varphi(X)$ implica que para cualquier subespacio (subespacio cerrado, respectivamente) A de X, $\varphi(A)$ se satisface; factorizable si para cualquier conjunto no vacío de espacios topológicos $\{X_\alpha \mid \alpha \in \kappa\}$ se tiene que, si $\varphi(\prod_{\alpha \in \kappa} X_\alpha)$ se cumple, entonces $\forall \alpha \in \kappa(\varphi(X_\alpha))$ se satisface; productiva ($finitamente\ productiva$, respectivamente) si para cualquier cardinal κ (natural $\kappa \in \omega$, respectivamente) no cero y familia $\{X_\alpha \mid \alpha \in \kappa\}$ de espacios, la satisfacción de $\forall \alpha \in \kappa(\varphi(X_\alpha))$ implica la satisfacción de $\varphi(\prod_{\alpha \in \kappa} X_\alpha)$. Además, si un espacio X es tal que todos sus subespacios tienen una propiedad (a saber, P), X se denomina $hereditariamente\ P$.

Las siguientes propiedades topológicas serán utilizadas a lo largo del texto. Un espacio X se dice: $Primero\ Numerable\ (o\ 1AN)$ si cada uno de sus puntos admite una base local (equivalentemente, de vecindades) a lo más numerable; $Segundo\ Numerable\ (o\ 2AN)$ si admite una base a lo más numerable; $Separable\$ si tiene un subconjunto denso y a lo más numerable; T_0 si para cualesquiera $x,y\in X$ distintos existe un abierto U de forma que $U\cap\{x,y\}\in\{\{x\},\{y\}\};\ T_1\$ si para cada $x\in X$ el conjunto $\{x\}$ es cerrado, $T_2\$ (o $de\ Hausdorff$) si para cualesquiera $x,y\in X$ distintos existen abiertos ajenos U,V tales que $x\in U\ y\ y\in V$; regular si para cualquier cerrado $F\subseteq X$ y cualquier $x\in X\setminus F$ existen abiertos U,V ajenos de modo que $F\subseteq U$ y $x\in V$; T_3 si es regular y T_1 ; $completamente\ regular$ si para cualquier cerrado F y punto $x\in X\setminus F$ existe una función continua $f:X\to \mathbb{R}$ de modo que f(x)=0 y $f[F]\subseteq\{1\};\ T_{3\frac{1}{2}}$ (o $de\ Tychonoff$) si es completamente regular y T_1 ; normal si para cualesquiera cerrados F,G ajenos, existen abiertos ajenos U,V de modo que $F\subseteq U\ y\ G\subseteq U$; T_4 si es normal y T_1 .

0.3. Pruebas de Consistencia Relativa

0.3.1. Preludio de Lógica

0.3.2. Axioma de Martin

Un conjunto parcialmente ordenado (P, \leq) es c.c.c. (o bien, cuenta con la propiedad de anticadena contable) si y sólo si cualquier (P, \leq) -anticadena es a lo más numerable.

Un filtro de (P, \leq) es un subconjunto $F \subseteq P$ no vacío, cerrado por arriba (es decir, si $x \in F$ y $y \geq x$, entonces $y \in F$) y de elementos compatibles en F (es decir, para cualesquiera $x, y \in F$ existe $r \in F$ de modo que $r \leq x$ y $r \leq y$). La noción de *ideal* es dual a la de filtro; y, un filtro (o ideal) es propio si y sólo si es distinto de P.

Observación 0.3.1. Sea X es conjunto, entonces $F \subseteq \mathcal{P}(X)$ es filtro (ideal) de $(\mathcal{P}(X), \subseteq)$ si y sólo si F es no vacío, cerrado bajo superconjuntos (subconjuntos) y bajo intersecciones (uniones) dos a dos.

Se conviene que un subconjunto $D \subseteq P$ es: denso si y sólo si para cualquier $x \in P$ existe un elemento $d \in D$ de modo que $d \le x$; denso bajo $p \in P$ cuando para cada $x \le p$ existe $d \in D$ de modo que $d \le x$.

Dada una colección $\mathscr{D} \subseteq \mathscr{P}(P)$ de subconjuntos densos de (P, \leq) , se dice que un filtro G de (P, \leq) es \mathscr{D} -genérico si es propio y tiene intersección no vacía con cada elemento de \mathscr{D} . Un filtro G es genérico si es \mathscr{D} -genérico, donde \mathscr{D} es la colección de todos los subconjuntos densos de (P, \leq) .

El Axioma de Martin¹ se formula de la siguiente manera:

Definición 0.3.2. Para cada cardinal infinito κ , MA(κ) es el enunciado: "Para todo conjunto parcialmente ordenado (P, \leq) c.c.c. y cada colección \mathcal{D} de conjuntos densos de (P, \leq), con $|\mathcal{D}| \leq \kappa$, existe un filtro \mathcal{D} -genérico".

¹que surgió como fruto del estudio de la *Hipótesis de Souslin* (véase la discusión correspondiente en [3])

El enunciado MA se definee como: "Para cada cardinal infinito $\kappa < \mathfrak{c}$ se satisface MA(κ)".

Es un reesultado estándar y bien conocido que; en ZFC, $MA(\omega)$ es verdadero y $MA(\mathfrak{c})$ es falso; en consecuencia, MA se suele utilizar junto con la negación de la hipótesis del continuo (para no obtener resultados siempre vacuos). Además, a razón de ello, está bien definido:

$$\mathfrak{m} := \min\{\kappa \geq \omega \mid \neg \mathsf{MA}(\kappa)\}\$$

Claramente $\aleph_1 \leq \mathfrak{m} \leq \mathfrak{c}$.

0.3.3. Forcing

Índice Simbólico

$(P, <) \cong (Q, \sqsubset), 3$	$MA(\kappa)$, 11	$\kappa \cdot \lambda$, 6
0 (cero), 3	ON, 3	κ^{λ} , 6
$<_x$, 7	\aleph_{α} , 7	\mapsto , 2
$F:\mathcal{C}\to\mathcal{C}',4$	$\alpha + \beta$, 5	m, 12
X^{κ} , 7	$\alpha < \beta$, 3	ω , 3
$X^{<\kappa}$, 7	$\alpha \cdot \beta$, 5	ω_{α} , 7
$[X]^{\kappa}$, 7	$\alpha^{eta}, 5$	<u></u>
$[X]^{<\kappa}$, 7	$\alpha + 1$, 3	$\prod_{\alpha \in I} \kappa_{\alpha}, 6$
$[X]^{>\kappa}$, 7	cl(A), 9	$\sum_{\alpha \in I} \kappa_{\alpha}, 6$
$[X]^{\geq \kappa}$, 7	der(A), 9	ZFC, 1
$[X]^{\leq \kappa}$, 7	ext(A), 9	$h(T, \leq), 7$
AC, 1	fr(A), 9	o(x), 7
CAR, 5	int(A), 9	$p \parallel q, 2$
MA, 11	$\kappa + \lambda$, 6	$p \perp q, 2$

Índice Alfabético

anticadena, 2	infinito, 5
Axioma	más que numerable, 5
de Martin, 11	no numerable, 5 numerable, 5
base, 9	·
de vecindades, 9	elementos
local, 9	comparables, 2
	compatibles, 2
cadena, 2	incomparables, 2
Cantor	incompatibles, 2
Teorema de, 6	encaje, 9
cardinal, 5	enumeración
exponenciación, 6	Teorema de, 5
producto, 6	espacio, 8
producto general, 6	topológico, 8
suma, 6	C14 11
suma general, 6	filtro, 11
cardinalidad, 5	D-genérico, 11
clase, 2	genérico, 11
conjunto, 2	propio, 11
propia, 2	funcional, 4
conjunto	función
a lo más numerable, 5	continua, 8
abierto, 8	creciente, 3
cerrado, 8	decreciente, 3
denso, 9	homeomorfismo, 8
finito, 5	Hausdorff
inition, o	Hausuuiii

ÍNDICE ALFABÉTICO

producto, 5
sucesor, 3
suma, 5
Principio
de Maximalidad de
Hausdorff, 3
producto
de Tychonoff, 9
topológico, 9
propiedad
débilmente hereditaria, 9
factorizable, 9
finitamente productiva, 9
hereditaria, 9
productiva, 9
topológica, 9
punto
aislado, 9
de acumulación, 9
subbase, 9
subconjunto
denso (de un orden parcial),
11
denso bajo <i>p</i> (de un orden
parcial), 11
subespacio, 9
suma topológica, 9
Teorema
de Cantor, 6
de enumeración, 5
de Inducción transfinita, 4
de la suma cardinal, 6

ÍNDICE ALFABÉTICO

de Recursión transfinita, 4 del producto cardinal, 6 topología, 8 de subespacio, 9 transfinita Inducción, 4 Recursión, 4

árbol, 7 orden de un elemento de un, 7 rama de un, 7

vecindad, 9

Referencias

- [1] Fidel Casarrubias y Angel Tamariz. *Elementos de Topología General*. 1.ª ed. Aportaciones Matemáticas, 2019.
- [2] Thomas Jech y Thomas Jech. Set theory: The third millennium edition, revised and expanded. Vol. 3. Springer, 2006.
- [3] Kenneth Kunen. Set theory an introduction to independence proofs. Vol. 102. Elsevier, 1980.
- [4] José Alfredo Amor Montaño, Gabriela Campero Arena y Favio Ezequiel Miranda Perea. *Teoría de los conjuntos, Curso intermedio*. Las prensas de Ciencias, 2011.
- [5] James R. Munkres. Topology. 2.a ed. Noida: Pearson, 2000.