Travaux dirigés CC2 Cinétique formelle

CC2.1. Substitution nucléophile (I)

On introduit des solutions de tBuCl et de KOH (K+,HO-) dans un réacteur isochore et isotherme. La réaction suivante peut se produire :

$$tBuCl + HO^{-} = tBuOH + Cl^{-}$$

On suit la concentration des réactifs par des dosages au cours du temps. Les concentrations initiales de tBuCl et KOH sont 1,02 mol.L⁻¹. On obtient les résultats suivants :

t (heure)	[tBuCl] (mol/L)
0	1,02
0,5	0,948
1	0,882
2	0,762
4	0,570
6	0,426
8	0,318

- 1. Proposer une méthode expérimentale pour montrer que la réaction est d'ordre zéro par rapport à la base KOH.
- 2. Donner l'ordre de la réaction par rapport à tBuCl et sa constante de vitesse.

CC2.2. Substitution nucléophile (II)

On étudie une substitution nucléophile dans un réacteur isochore et isotherme :

$$CH_3CH_2Cl + OH^- = CH_3CH_2OH + Cl^-$$

Expérience $n^{\circ}1$: $[CH_3CH_2Cl]_0 = 0.01 \text{ mol.L}^{-1}$; $[OH^{-}]_0 = 1.00 \text{ mol.L}^{-1}$

t (min)	10 ³ .[CH ₃ CH ₂ Cl] (mol.L ⁻¹)
0	10
10	5,0
20	2,5
30	1,2
40	0,6

Expérience $n^{\circ}2$: $[CH_3CH_2CI]_0 = 0.01 \text{ mol.L}^{-1}$; $[OH^{-}]_0 = 0.50 \text{ mol.L}^{-1}$

t (min)	10^3 .[CH ₃ CH ₂ Cl] (mol.L ⁻¹)
0	10
10	7,1
20	5,0 3,5
30	3,5
40	2,5

- 1. Donner l'ordre partiel par rapport à CH₃CH₂Cl.
- 2. Déterminer ensuite l'ordre partiel par rapport aux ions hydroxydes HO⁻ et la constante de vitesse.

CC2.3. Décomposition de l'éthanal

On observe à partir de la température de $750~{\rm K}$ la décomposition de l'éthanal selon la réaction suivante :

$$CH_3CHO_{(g)} = CH_{4(g)} + CO_{(g)}$$

L'évolution de cette réaction est suivie en mesurant la pression *p* en fonction du temps dans un réacteur isochore. Les valeurs suivantes sont obtenues :

t (min)	p (mmHg)
0	212,5
4,0	223,1
8,6	233,7
13,8	244,4
19,7	255,0
26,5	265,6
33,9	276,0

L'éthanal est pur à l'état initial et les gaz sont supposés parfaits.

- 1. En supposant une cinétique d'ordre 1, démontrer que $k.t = \ln(p_0/(2.p_0 p))$, avec p la pression totale à l'instant t et p_0 la pression totale à t = 0.
- 2. À partir des données du tableau, déterminer la constante de vitesse k.
- 3. Calculer le temps de demi-réaction.

CC2.4. Décomposition de l'ammoniac

On suit la décomposition de NH₃ (en présence d'un catalyseur à base de tungstène) en mesurant les variations de pression à température constante dans un réacteur isochore. On donne ci-dessous les temps de demi-réaction mesurés pour différentes pressions initiales de NH₃. Déterminer l'ordre de la réaction.

P _{init} (en mmHg)	<i>t</i> _{1/2} (en min)
265	7,6
130	3,7
58	1,7

CC2.5. Détermination d'ordres partiels

On étudie la réaction suivante :

$$BrO_3^- + 5 Br^- + 6 H^+ = 3 Br_2 + 3 H_2O$$

On suppose que la réaction est d'ordre α par rapport à BrO₃⁻, β par rapport à Br⁻ et γ par rapport à H⁺ et de constante de vitesse k. Une expérience menée à 0°C, à partir des conditions initiales ci-dessous a donné les résultats reportés dans le tableau.

$$[BrO_3^-]_0 = 10^{-3} \ mol. L^{-1} \ ; \ [Br^-]_0 = 0,143 \ mol. L^{-1} \ ; \ [H^+]_0 = 0,100 \ mol. L^{-1}.$$

t (s)	0	100	200	500	1000	2000	3000	5000
$[BrO_3^-].10^4 (mol.L^{-1})$	10	9,61	9,24	8,20	6,73	4,53	3,05	1,38

- 1. Déterminer l'ordre α.
- 2. Calculer le temps de demi-réaction.

Dans une autre série d'expériences, faites à la même température, pour différentes concentrations initiales, on mesure le temps t_1 au bout duquel la concentration de BrO₃⁻ diminue de 10^{-3} mol.L⁻¹.

expérience	I	II	III
$[BrO_3^-]_0 (mol.L^{-1})$	0,111	0,111	0,111
$[Br^{-}]_{0} (mol.L^{-1})$	0,100	0,100	0,200
$[H^{+}]_{0} (\text{mol.L}^{-1})$	0,200	0,100	0,100
<i>t</i> ₁ (s)	8,1	32,4	16,2

- 3. Déterminer β et γ
- 4. Calculer la constante de vitesse k.

CC2.6. Isomérisation du but-2-ène

On étudie l'isomérisation du (Z)-but-2-ène en (E)-but-2-ène à 238°C en phase gaz :

Le suivi de la réaction donne le pourcentage de (E)-but-2-ène en fonction du temps :

t (s)	%((E)-but-2-ène)
0	0
60	5,0
120	9,2
155	11
200	15

Cette réaction est renversable : on constate à partir d'un certain temps, suffisamment long, que la teneur en (E)-but-2-ène reste égale à 65,5% : c'est l'équilibre.

- 1. Donner l'expression de la vitesse de la réaction en fonction de la concentration de (E)-but-2-ène et des constantes de vitesse directe et inverse. On supposera un ordre 1 par rapport à chacun des réactifs dans chaque sens.
- 2. Exprimer la relation qui existe entre la concentration initiale de (Z)-but-2-ène et la concentration de (E)-but-2-ène à l'équilibre.
- 3. Intégrer la loi de vitesse.
- 4. À partir des données expérimentales, calculer les valeurs des constantes de vitesse directe et inverse.