www.emergencetechnocm.com

Examen : Probatoire

Série: F2-3-4-5-CI-EF-MEB-IS-IB-CHE de l'innovation

MERGENCE TECHNO

Epreuve : Mathématiques

Durée : 2h Coefficient: 3

MERGENCE TECHNO

Le correcteur tiendra compte de la rigueur dans la rédaction et de la clarté de la copie.

Exercice 1:5 points

- Soit A et B deux point distincts du plan.
- 1-a) Déterminer le point G barycentre des points pondérés (A, 2) et (B, 3).
- 1-b) Construire un quadrilatère ACBD tel que :

G soit aussi le barycentre des points pondérés (C, 1) et (D, 4).

2) On pose $\vec{u} := 2M\vec{A} + 3M\vec{B} - M\vec{C} - 4M\vec{D}$. où M est un point quelconque du plan.

En utilisant le point G, vérifier que $\vec{u} = \vec{0}$ pour tout point M du plan.

- 3) En déduire que :
- **3-a)** D est le barycentre des points (A, 2), (B, 3) et (C, -1).
- 3-b) A est le barycentre des points B, C et D affectés des coefficients que l'on précisera.

Exercice 2:4 points

On considère les nombres complexes $z_1 := 1 + i \ z_2 := 1 - i\sqrt{3}$.

- Mettre z₁ et z₂ sous forme trigonométrique.
- **2)** On pose $Z := \frac{z_1}{z_1}$
- 2-a) Donner la forme algébrique de Z.
- 2-b) Écrire Z sous forme trigonométrique.
- 3) En déduire les valeurs exactes de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Soit la fonction f de \mathbb{R} vers \mathbb{R} définie par : $f(x) = \frac{1+x}{1+x^2}$ et (C_f) sa courbe représentative dans le plan muni d'un repère orthogonal tel que : $\|\vec{i}\| = 2$ cm et $\|\vec{j}\| = 10$ cm

- Étudier les variation de f et dresser son tableau de variations.
- 2-a) Déterminer les coordonnées du point A intersection de (Cf) avec l'axe des abscisses et le point B intersection avec l'axe des ordonnées.
- 2-b) Donner les équations des tangents T₁ et T₂ à la courbe (C_f) en A et en B respectivement.
- 3-a) Étudier suivant les valeurs de x, le signe de chacune des expressions suivantes :

$$f(x) - \frac{1}{2}(x+1)$$
 et $f(x) - (x+1)$.

- $f(x) \frac{1}{2}(x+1)$ et f(x) (x+1). 3-b) En déduire les positions relatives de (C_f) et T_1 d'une part et de (C_f) et T_2 d'autre part.
- 3-c) Déterminer les coordonnées du point de rencontre D de (C_f) et T_1 ; autre que A.
- **3-d)** Construire (Cf); T_1 et T_2 .
- 4) Discuter graphiquement le nombre de solutions dans R de l'équation : $mx^2 - x + m - 1 = 0$ où m est un paramètre réel.