DATA COLLECTION

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red.csv")
a
```

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates a
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66

1599 rows × 12 columns

```
In [3]:
```

```
a.head(5)
```

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
4											•

DATA CLEANING AND PRE-PROCESSING

In [4]:

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

```
In [5]:
```

```
a.describe()
```

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total : di
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.4
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.8
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.0
4							•

In [6]:

```
a.columns
```

Out[6]:

EDA and VISUALIZATION

In [7]:

sns.pairplot(a)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x18d4f636d90>

In [8]:

```
sns.distplot(a['citric acid'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]:

<AxesSubplot:xlabel='citric acid', ylabel='Density'>

In [9]:

In [10]:

```
sns.heatmap(f.corr())
```

Out[10]:

<AxesSubplot:>

To train the model-model building

In [11]:

In [12]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [13]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[13]:

LinearRegression()

In [14]:

```
print(lr.intercept_)
```

2.5843290594097157

In [15]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[15]:

	Co-efficient
fixed acidity	0.061519
volatile acidity	-0.446338
residual sugar	0.005519
chlorides	0.825668
free sulfur dioxide	-0.002472
total sulfur dioxide	0.001272
density	-2.911242
рН	-0.013626
sulphates	0.027735
alcohol	0.022281
quality	-0.000503

In [16]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[16]:

<matplotlib.collections.PathCollection at 0x18d58ebb160>


```
In [17]:
print(lr.score(x_test,y_test))

0.6876992302836324

In [18]:
lr.score(x_train,y_train)

Out[18]:
0.6743276120005179
```

RIDGE REGRESSION

```
In [19]:
from sklearn.linear_model import Ridge,Lasso

In [20]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)

Out[20]:
Ridge(alpha=10)
In [21]:
rr.score(x_test,y_test)

Out[21]:
0.6775140538038511
```

LASSO REGRESSION

```
In [22]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[22]:
Lasso(alpha=10)
In [23]:
la.score(x_test,y_test)
Out[23]:
```

-0.007117544613139071

```
In [24]:
```

```
from sklearn.linear_model import ElasticNet
p=ElasticNet()
p.fit(x_train,y_train)
```

Out[24]:

ElasticNet()

In [25]:

```
print(p.coef_)
```

```
[ 0. -0. 0. 0. -0. 0. 0. -0. 0. 0. 0.]
```

In [26]:

```
print(p.intercept_)
```

0.2659338695263629

In [27]:

print(p.predict(x_test))

```
[0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
```

```
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
0.26593387 0.26593387 0.26593387 0.26593387 0.26593387 0.26593387
In [28]:
prediction=p.predict(x test)
print(p.score(x_test,y_test))
-0.007117544613139071
In [29]:
from sklearn import metrics
In [30]:
print("Mean Absolytre Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolytre Error: 0.1686069221030682
In [31]:
print("Mean Squared Error:",metrics.mean squared error(y test,prediction))
Mean Squared Error: 0.03991400865533665
In [32]:
print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error: 0.19978490597474236
```

In []: