Spectral Statistics of Random Matrices and Numerical PDEs

Jonathan Gonzalez Davila

Abstract

We study connections between the spectral distributions of random matrices and discretizations of elliptic partial differential operators. By examining eigenvalue statistics of finite-difference Laplacians perturbed by random noise, we demonstrate convergence toward universal ensembles predicted by random matrix theory. This provides a computational framework linking numerical PDE solvers to statistical predictions from quantum chaos.

1 Introduction

Random matrix theory (RMT) has long described universal spectral features across quantum systems, number theory, and high-dimensional statistics. In numerical PDEs, discretizations of operators such as the Laplacian produce large structured matrices whose spectra encode analytic properties of the underlying domain.

2 Main Observation

Let L_h denote the finite-difference Laplacian on a uniform grid of mesh size h, and let $A_h = L_h + \epsilon R_h$, where R_h is a random symmetric perturbation. As $h \to 0$ and $\epsilon \to 0$, the normalized eigenvalue gaps of A_h converge in distribution to those of the Gaussian Orthogonal Ensemble (GOE).

3 Numerical Illustration

Simulations of A_h on $[0, 1]^2$ using 100×100 grids reveal that even small random perturbations produce GOE-like level spacing statistics. This confirms the universality conjecture in a numerical PDE setting.

4 Conclusion

The spectral universality observed in numerical PDE matrices suggests a deep interplay between discretization theory and random matrix models, with implications for stability analysis and uncertainty quantification.

References

- [1] M. L. Mehta, Random Matrices, Academic Press, 2004.
- [2] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000.