YOU ONLY TRAIN ONCE: LOSS-CONDITIONAL TRAINING OF DEEP NETWORKS

Alexey Dosovitskiy & Josip Djolonga

Google Research, Brain Team {adosovitskiy, josipd}@google.com

Introdução

Supervised learning

Encontrar Θ que minimiza $L(y, \hat{y})$

Supervised learning - Loss function

Qual é a cara da $L(y, \hat{y})$?

Supervised learning - Loss function

Qual é a cara da $L(y, \hat{y})$?

RMSE
$$\sqrt{\sum_{i=1}^n \frac{(\hat{y}_i - y_i)^2}{n}}$$

Cross-Entropy
$$-\frac{1}{m}\sum_{i=1}^m y_i \cdot \log(\hat{y}_i)$$

Supervised learning - Loss function

Qual é a cara da $L(y, \hat{y})$?

RMSE
$$\sqrt{\sum_{i=1}^n \frac{(\hat{y}_i - y_i)^2}{n}}$$

Cross-Entropy
$$-\frac{1}{m}\sum_{i=1}^{m}y_i\cdot\log(\hat{y}_i)$$

Custom Loss

$$L = \beta_a L_a + \beta_b L_b + \beta_c L_c$$

Supervised learning - Loss function

Qual é a cara da $L(y, \hat{y})$?

RMSE
$$\sqrt{\sum_{i=1}^n \frac{(\hat{y}_i - y_i)^2}{n}}$$

Cross-Entropy
$$-\frac{1}{m}\sum_{i=1}^m y_i \cdot \log(\hat{y}_i)$$

Custom Loss

$$L = \beta_a L_a + \beta_b L_b + \beta_c L_c$$

Parameterized loss function: Image Compression

$$L = \beta_d D + \beta_t T$$

Parameterized loss function: Image Compression

$$L = \beta_d D + \beta_t T$$

Parameterized loss function: Image Compression

$$L = \beta_d D + \beta_t T$$

Parameterized loss function: Image Compression

$$L = \mathbf{\beta_d}D + \mathbf{\beta_t}T$$

Parameterized loss function: Image Compression

Modelo_a: $L = \beta_d D + \beta_t T$

Modelo_b: $L = \beta_d D + \beta_t T$

Parameterized loss functions: multiple models limitations

Recursos computacionais

Se você tiver muitos termos na sua loss function, você terá muitos modelos independentes para treinar.

Dificuldade na seleção dos pesos

Muitas vezes não é trivial escolher quais as combinações de pesos nos termos das *loss* são as melhores para as diferentes aplicações. Pelo método tradicional, o ajuste desses parâmetros é um processo lento.

Proposta

You Only Train Once

Treinar um modelo para cada loss

 $\mathsf{Model}_{\mathsf{Loss}[a]}$

 $\mathsf{Model}_{\mathsf{Loss}[\mathsf{b}]}$

Model_{Loss[c]}

 $\mathsf{Model}_{\mathsf{Loss[d]}}$

Proposta

You Only Train Once

Proposta

You Only Train Once

Overview: You Only Train Once

Training vs. Testing

Conditioning on loss weights

Loss Conditioning

FiLM: Visual Reasoning with a General Conditioning Layer

Ethan Perez^{1,2}, Florian Strub⁴, Harm de Vries¹, Vincent Dumoulin¹, Aaron Courville^{1,3}

¹MILA, Université de Montréal, ²Rice University, ³CIFAR Fellow,

⁴Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 CRIStAL France
ethanperez@rice.edu, florian.strub@inria.fr, mail@harmdevries.com,{dumouliv,courvila}@iro.umontreal.ca

Experiment: β -Variational Autoencoders

(b) Samples from the trained β -VAE models.

YOTO possui uma capacidade de reconstrução e geração de novas imagens muito similar a modelos com pesos fixos em β-VAEs

Experiment: β -Variational Autoencoders

Experiment: Image Compression

Experiment: Fast Style Transfer

Conclusões

- Bons resultados em tarefas de geração/compressão de imagens e transferência de estilo
- Estudos mais profundos precisam ser realizados a respeito do impacto da escolha das distribuições dos pesos nos termos da loss.
- Abertura de possibilidades para aplicação do método em outros domínios além do processamento de imagens.

Dúvidas?