Put your notes here

CS10 NEWS

UC Berkeley
Teaching Professor
Dan Garcia

The Beauty and Joy of Computing

Recursion III

elc.github.io/posts/plotting-fractals-step-by-step-with-python/

Runners Cyclists Use GPS Mapping to Make

Fitness apps and the power of live satellite tracking have allowed runners, cyclists and others to draw hearts, animals, birthday wishes — and even homages to Vermeer across their local landscapes.

ww.nytimes.com/2022/09/24 ty and Joy of Computing": Recursion

(Cal) Overview

- Recursion
 - □ Factorial Demo
 - ☐ Fibonacci Demo
 - □ Count Change

Recursion: Factorial

Recursion: Demonstrating n!

Factorial(n) = n! Inductive definition:

```
\square n! = 1
```



```
report 1
else
 report
```


(Cal) Order of growth of # of calls of n!

(source: FallingFifth.com)

- Constant
- b) Logarithmic
- Linear
- Quadratic
- Exponential

L12a Order of growth of # of calls of n!

Constant Logarithmic Linear Quadratic Cubic Exponential

Recursion: Fibonacci

Recursion: Demonstrating fib(n)

Inductive definition:

fib(n) = n , n < 2
fib(n) = fib(n-1)+fib(n-2) , n
$$\geq$$

$$F(n) := \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F(n-1) + F(n-2) & \text{if } n > 1. \end{cases}$$

Let's act it out...

"contractor" model

	<u> fib(5)</u>
n	fib(n)
0	0
1	1
2	1
3	2
4	3
5	5

Let's now: trace... (gif from Ybungalobill@wikimedia)

Order of growth of # of calls of fib(n)

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2m high neon lights. By Italian artist Mario Merz for an environmental art project. (Wikipedia)

- Constant
- Logarithmic
- Linear
- Quadratic
- Exponential

L12b Order of growth of # of calls of fib(n)

Constant Logarithmic Linear Quadratic Cubic Exponential

Recursion: Count Change

Counting Change (thanks to BH)

Given coins {50, 25, 10, 5,1} how many ways are there of making change?

```
□ 10
                                               ■ 4 (D, 2N, N5P, 10P)
                                              15
                                            ■ 6 (DN, D5P, 3N, 2N5P,
+Count+Change+(amount)+Using+(coins)
                                                 1N10P, 15P)
            < 0
    amount
                     empty? coins
                                            □ 100?
report 0
   amount = 0
report 1
      Count Change (amount) Using (all but first of coins
report
```

amount | — item (1 → of coins

□ 5

■ 2 (N, 5P)

Using coins

Count Change

Call Tree for "Count Change 10 (10 5

Use Coin □ Skip 10 (10 5 1) Coin 10 (5 1) +Count+Change+ amount)+Using+ coins : amount < 0 or empty? coins report 0 amount = 0 report 1 Count Change amount Using all but first of coins report Count Change amount - item 1 → of coins Using coins Garcia UC Berkeley "The Beauty and Joy of Computing": Recursion |||

"I understood Count Change"

www.nilkanth.com/my-uploads/200508/dactylfractal107.jpg

- a) Strongly agree
- b) Agree
- c) Neutral
- d) Disagree
- e) Strongly disagree

L12c "I understood Count Change"

Strongly agree

Agree|

Neutral

Disagree

Strongly disagree

- It's important to understand the machine model
- It's often the simplest way to solve many problems
 Esp if recursive in nature!
- Remember, trust it!
- Recursion is a very powerful idea, often separates good from great (you're great!)

Menger Cube by Dan Garcia

