Program synthesis for database-driven web applications

Rushi Shah
Turing Class of 2020
UT Program Analysis Research Group
(UToPiA)

Motivation

 Automating web application developer tasks created when the application's underlying database schema is refactored

Programmer Tasks

Code migration (PLDI'19)

Data migration (VLDB'20)

Code Migration

Migrator

- Programming Languages Design & Implementation '19
- Yuepeng Wang, James Dong, Rushi Shah, Isil Dillig

Instructor

- Instructor ID
- Instructor Name
- Instructor Picture
- TA
 - O TA Id
 - O TA Name
 - O TA Pic

update addInstructor(id, name, pic)
 INSERT INTO Instructor
 VALUES (id, name, pic)

- Instructor
 - Instructor ID
 - O Instructor Name
 - Instructor Picture
- TA
 - O TA Id
 - O TA Name
 - O TA Pic

- Instructor
 - Instructor ID
 - Instructor Name
 - O Picture ID
- TA
 - O TA Id
 - O TA Name
 - O Picture ID
- Picture
 - O Picture ID
 - O Picture

update addInstructor(id, name, pic)
 INSERT INTO Instructor
 VALUES (id, name, pic)

- Instructor
 - Instructor ID
 - O Instructor Name
 - Instructor Picture
- TA
 - O TA Id
 - O TA Name
 - O TA Pic

- Instructor
 - O Instructor ID
 - Instructor Name
 - O Picture ID
- TA
 - O TA Id
 - O TA Name
 - O Picture ID
- Picture
 - O Picture ID
 - O Picture

update addInstructor(id, name, pic)
 INSERT INTO Instructor
 VALUES (id, name, pic)

- Instructor ID
- O Instructor Name
- O Instructor Picture
- TA
 - O TA Id
 - O TA Name
 - O TA Pic

- O Instructor ID
- O Instructor Name
- O Picture ID
- TA
 - O TA Id
 - O TA Name
 - O Picture ID
- Picture
 - O Picture ID
 - O Picture

update addInstructor(id, name, pic)
 INSERT INTO Instructor
 VALUES (id, name, pic)

update addInstructor(id, name, pic)
INSERT INTO Instructor
VALUES (id, name, UID0)
INSERT INTO Picture
VALUES (UID0, pic)

Synthesis Methodology

Figure 1. Synthesis methodology.

Sketch Generation

- Instructor ID
- O Instructor Name
- O Instructor Picture
- TA
 - O TA Id
 - O TA Name
 - O TA Pic

- Instructor ID
- O Instructor Name
- O Picture ID
- TA
 - O TA Id
 - O TA Name
 - O Picture ID
- Picture
 - O Picture ID
 - Picture

update addInstructor(id, name, pic)
 INSERT INTO Instructor
 VALUES (id, name, pic)

Sketch Completion

- Naive solution :'(
- Minimum Failing Inputs (MFI)
 - Efficiently prune search space

Sketch Completion - Evaluation

Reimplemented our synthesis solution into state-of-the-art tool called "Sketch"

(My main contribution!)

Table 2. Comparison with Sketch.

	Benchmark	SKETCH	
	Dencimark	Synth Time(s)	Speedup
textbook bench	Oracle-1	88.2	294.0x
	Oracle-2	>86400.0	>172800.0x
	Ambler-1	3136.5	10455.0x
	Ambler-2	71.5	238.3x
	Ambler-3	74.7	186.8.5x
	Ambler-4	1.6	5.3x
	Ambler-5	494.4	1648.0x
	Ambler-6	226.2	754.0x
	Ambler-7	814.8	2716.0x
	Ambler-8	>86400.0	>172800.0x
real-world bench	cdx	>86400.0	>7260.5x
	coachup	>86400.0	>48000.0x
	2030Club	>86400.0	>16615.4x
	rails-ecomm	>86400.0	>34560.0x
	royk	>86400.0	>1874.2x
	MathHotSpot	>86400.0	>72000.0x
	gallery	>86400.0	>34560.0x
	DeeJBase	>86400.0	>24685.7x
	visible-closet	>86400.0	>66.2x
	probable-engine	>86400.0	>18782.6x
	Average	>52085.4	>750.5x

Data Migration

Dynamite

- Very Large Data Bases '20
- Yuepeng Wang, Rushi Shah, Abby Criswell, Isil Dillig


```
"businesses": [
   "name": "Quiznos",
    "checkins": [
      "Mon-0:1", "Fri-21:1",
      "Thu-22:1", "Mon-23:1"
   ],
    [...]
    "name": "My Thai",
    "checkins": [
      "Fri-17:1", "Wed-22:1"
    ],
    [...]
```

```
Business(name, checkin_id, [...])
"Quiznos", "fk quiznos", [...]
"My Thai", "fk thai", [...]
Checkins(business_id, checkin)
"fk_quiznos", "Mon-0:1"
"fk quiznos", "Fri-21:1"
"fk_quiznos", "Thu-22:1"
"fk quiznos", "Mon-23:1"
"fk_thai", "Fri-17:1"
"fk thai", "Wed-22:1"
```

Datalog Background

Facts

- o parent(rahil, arjun)
- o parent(arjun, divya)

Rules

o child(Y, X) :- parent(X, Y)

Datalog for Data Migration

- Example
 - o parent(bill, mary)
 - o parent(mary, john)
 - o child(Y, X) :- parent(X, Y)
- Rules represent the migration relationship
 - LHS from target schema, RHS from source schema
- Facts are rows in the database to be migrated

- Input
 - Source and target database schema

```
Source: parent(adult, kid)
```

- Target: child(kid, adult)
- Input/Output Example
 - parent(rahil, arjun) should give child(arjun, rahil)
- Source database instance
 - parent(rahil, arjun)
 - parent(arjun, divya)
- Output
 - Target database instance
 - child(arjun, rahil)
 - child(divya, arjun)

Dynamite Overview

Figure 1: Schematic workflow of Dynamite.

Datalog Program Synthesis

- Similar synthesis methodology
 - Generating Datalog program sketch
 - Sketch completion
 - Minimal Distinguishing Projection (MDP)
 - Efficiently prune search space
 - Basically "minimum failing inputs" from Migrator

Migration Framework

- (My main contribution!)
- Actually performing the migration using the Datalog program on real-world databases is non-trivial
 - o IMDB, Yelp, DBLP, etc. are "VERY LARGE"
 - Documents were recursively nested
 - Supporting relational, document, & graph database formats
 - Database instance to Datalog facts and vice versa

Conclusion

- Failed previous projects
 - SyPet -> Pythagoras
 - Database Model Checker
- Next steps
- Hook 'em