	Laplace Transform	$F(s) = \int_0^\infty e^{-st} f(t) dt$	\sqrt{at} $\sqrt{\frac{\pi}{s}} e^{-(a/s)}$	\sqrt{at}) $\sqrt{\frac{\pi}{s}} e^{-(a/s)} \text{erfi} \left(\sqrt{\frac{a}{s}}\right)$	$\frac{1}{\sqrt{a^2+s^2}}$	$ \frac{1}{s} e^{-(a/s)} $	$\frac{1}{\sqrt{s^2-a^2}}$	$ \frac{1}{s} e^{(a/s)} $	$-\frac{2}{\pi} \frac{\operatorname{arsinh}\left(\frac{s}{a}\right)}{\sqrt{a^2 + s^2}}$	$\frac{\arccos\left(\frac{s}{ a }\right)}{\sqrt{a^2-s^2}}$	$\frac{\left(\sqrt{a^2+s^2}-s\right)^n}{a^n\sqrt{a^2+s^2}}$	$\frac{\left(s-\sqrt{s^2-a^2}\right)^n}{a^n\sqrt{s^2-a^2}}$	$at\cos(\omega t)$ $\frac{\omega(s^2 + \omega^2) - a(s^2 - \omega^2)}{(s^2 + \omega^2)^2}$	$\frac{\omega(s^2+1)}{2}$	$\frac{1}{\kappa}$
	Function	f(t)	$\frac{1}{\sqrt{t}}\cos\left(2\sqrt{at}\right)$	$\frac{1}{\sqrt{t}}\sin\left(2\sqrt{at}\right)$	$\left\ J_0(at) ight.$	$J_0\left(2\sqrt{at}\right)$	$I_0(at)$	$I_0 \left(2\sqrt{at} \right)$	$Y_0(at)$	$K_0(at)$	$J_n(at)$	$I_n(at)$	$\sin(\omega t) - at\cos(\omega t)$	$\sin(\omega t) + at\cos(\omega t)$	$\frac{1}{\sqrt{t}}$
			27	28	29	30	31	32	33	34	35	36	37	38	39
Table of Laplace Transforms	Laplace Transform	$F(s) = \int_0^\infty e^{-st} f(t) dt$	$\log\left(\frac{s^2 + \omega^2}{s^2}\right)$	$\log\left(\frac{s+\omega}{s-\omega}\right)$	$\log\left(\frac{s^2 - \omega^2}{s^2}\right)$	$\frac{2as\omega}{(s^2 + \omega^2 - a^2)^2 + 4a^2\omega^2}$	$\frac{a\left(s^{2}-\omega^{2}-a^{2}\right)}{\left(s^{2}+\omega^{2}-a^{2}\right)^{2}+4a^{2}\omega^{2}}$	$\frac{\omega (s^2 + \omega^2 + a^2)}{(s^2 + \omega^2 - a^2)^2 + 4a^2\omega^2}$	$\frac{s (s^2 + \omega^2 - a^2)}{(s^2 + \omega^2 - a^2)^2 + 4a^2\omega^2}$	$e^{-as}, a \ge 0$	$\frac{1}{s}e^{-as}, a \ge 0$	$\sqrt{\frac{\pi}{s}} e^{-2\sqrt{a^2 s}}$	$\sqrt{\frac{\pi}{a^2}} \ e^{-2\sqrt{a^2 s}}$	$\frac{1}{-}e^{-\sqrt{a^2s}}$	\sqrt{a}
Table o	Function	f(t)	$\frac{2}{t}\left(1-\cos(\omega t)\right)$	$\left \frac{2}{t} \sinh(\omega t) \right $	$\left\ \frac{2}{t} \left(1 - \cosh(\omega t) \right) \right\ $	$\left \sin(\omega t) \sinh(at) \right $	$\cos(\omega t)\sinh(at)$	$\left \sin(\omega t) \cosh(at) \right $	$\cos(\omega t) \cosh(at)$	$\delta(t-a)$	H(t-a)	$\left\ \frac{1}{\sqrt{t}} e^{-(a^2/t)} \right\ $	$\frac{1}{t\sqrt{t}}e^{-(a^2/t)}$	$\left \operatorname{erfc} \left(\frac{a}{2\sqrt{t}} \right) \right $	$\left\ \operatorname{erf} \left(\cdot \right) \right\ $
			14	15	16	17	18	19	20	21	22	23	24	25	26
	Laplace Transform	$F(s) = \int_0^\infty e^{-st} f(t) dt$	- S	$\frac{n!}{s^{n+1}}, \ n = 0, 1, 2, 3, \dots$	$\frac{\sqrt{\pi}}{2}s^{-3/2}$	$\frac{1}{s-a}$	$\frac{s}{s^2 + \omega^2}$	$\frac{\varepsilon}{s^2+\omega^2}$	$\frac{s}{s^2-\omega^2}$	$\frac{\omega}{s^2-\omega^2}$	$\frac{\omega}{(s-a)^2+\omega^2}$	$\frac{s-a}{(s-a)^2+\omega^2}$	$\frac{2s\omega}{(s^2 + \omega^2)^2}$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	$\arctan\left(\frac{\omega}{s}\right)$
	Function	f(t)	1	t^n	\sqrt{t}	e^{at}	$\cos(\omega t)$	$\sin(\omega t)$	$\cosh(\omega t)$	$\sinh(\omega t)$	$e^{at}\sin(\omega t)$	$e^{at}\cos(\omega t)$	$t\sin(\omega t)$	$t\cos(\omega t)$	$\frac{1}{t}\sin(\omega t)$
f			\vdash	2	ಣ	4	ರ	9	7	∞	6	10	11	12	13

- $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$, the error function, $\operatorname{erfc}(z) = 1 \operatorname{erf}(z)$, the complementary error function and $\operatorname{erfl}(z) = \operatorname{erf}(iz)/i$, the imaginary error function.
- $\delta(x)$ is the Dirac delta function.

- H(x) is the Heaviside unit step function.
- $J_n(z)$, $I_n(z)$, $Y_n(z)$ and $K_n(z)$ are Bessel functions of the first kind, modified first kind, second kind and modified second kind respectively.

Linearity Scaling First Shift Second Shift Convolution Mult. by t Derivatives Integrals Integrals		ansforms $\mathcal{L}^{-1}\{F(s)\} = f(t)$ $\mathcal{L}^{-1}\{aF(s) + bG(s)\} = af(t) + bg(t)$ $\mathcal{L}^{-1}\{F(as)\} = \frac{1}{a}f(t/a)$ $\mathcal{L}^{-1}\{F(s-a)\} = e^{at}\mathcal{L}^{-1}\{F(s)\} = e^{at}f(t)$ $\mathcal{L}^{-1}\{F(s) - a(s)\} = f(t-a)H(t-a)$ $\mathcal{L}^{-1}\{F(s) - a(s)\} = \int_0^t f(u)g(t-a)du$ $Sf(0) - f'(0)$
Periodic	$ \left\ f(t+\tau) = f(t), \mathcal{L}\{f(t)\} = \frac{1}{1 - e^{-\tau s}} \int_0^\tau e^{-st} f(t) dt \right\ $	
Feriodic	$\left\ f(t+ au) = f(t), \mathcal{L}\{f(t)\} = \frac{1}{1-e^{- au s}} \int_0^{\infty} e^{- au f(t)dt}$	
	0,000	

Differentiation and integration rules

$$\frac{d}{dx}(u \cdot v) = u'v + uv'$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}$$

$$\frac{d}{dx}\left(f(g)\right) = f'(g)\,g'(x)$$

$$\int f(g) g'(x) dx = \int f(u) du$$

$$\int u \frac{dv}{dx} \, \mathrm{d}x = uv - \int v \frac{du}{dx} \, \mathrm{d}x$$

Trigonometry

 π radians equals 180°, 1° equals $\frac{\pi}{180}$ radians

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
, $\cot \theta = \frac{\cos \theta}{\sin \theta}$

$$\sec \theta = \frac{1}{\cos \theta}, \csc \theta = \frac{1}{\sin \theta}$$

$$\sin^2\theta + \cos^2\theta = 1, 1 + \tan^2\theta = \sec^2\theta$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$
$$= 1 - 2\sin^2 x$$
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x) , \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

Hyperbolic

$$\sinh x = \frac{1}{2}(e^x - e^{-x}), \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$\operatorname{csch} x = \frac{1}{\sinh x}, \quad \operatorname{sech} x = \frac{1}{\cosh x}$$

$$\cosh^2 x - \sinh^2 x = 1, \tanh^2 x + \operatorname{sech}^2 x = 1$$

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$

 $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$$

 $\sinh 2x = 2\sinh x \cosh x$

$$\cosh 2x = \cosh^2 x + \sinh^2 x = 2 \cosh^2 x - 1$$

$$= 2 \sinh^2 x + 1$$

$$\cosh x \pm \sinh x = e^{\pm x}$$

Logarithms and exponents

$$a^{n+m} = a^n a^m$$
, $(a^m)^n = a^{mn}$

$$a^{m}/a^{n} = a^{m-n}, (ab)^{n} = a^{n}b^{n}$$

$$\log(xy) = \log x + \log y, \quad \log(x^n) = n \log x$$

$$\log\left(\frac{x}{y}\right) = \log x - \log y$$
, $\log_b a = \frac{\log a}{\log b}$

Vectors

Length:
$$|xi + yj + zk| = \sqrt{x^2 + y^2 + z^2}$$

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

Line through point
$$(x_0, y_0, z_0)$$
 parallel to (a, b, c) :
 $(x, y, z) = (x_0, y_0, z_0) + t(a, b, c)$

Plane with normal
$$(a, b, c)$$
 is: $ax + by + cz = d$

$$\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = \mathbf{b} \cdot \mathbf{c} \times \mathbf{a} = \mathbf{c} \cdot \mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{b} \cdot \mathbf{c}$$

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

Multivariable calculus

Gradient:
$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

Divergence:
$$\nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

Curl:
$$\nabla \times \mathbf{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}$$

Directional Derivative: $\frac{\mathrm{d}f}{\mathrm{d}s}\Big|_{\hat{\mathbf{a}}} = \nabla f \cdot \hat{\mathbf{a}}$

Area element: $dA = dx dy = r dr d\theta$

Cyl. polar coords. (s, θ, z) : $dV = s ds d\theta dz$

Sph. polar coords. (r, θ, ϕ) : $dV = r^2 \sin \phi \, dr \, d\theta \, d\phi$

Surface: F(x, y, z) = 0 Normal: ∇F

Surface: $\mathbf{r} = \mathbf{r}(s,t)$ Normal: $\frac{\partial \mathbf{r}}{\partial s} \times \frac{\partial \mathbf{r}}{\partial t}$

Curve:
$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

Tangent:
$$\frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$$

Arc-length: $\frac{\mathrm{d}s}{\mathrm{d}t} = \left|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right|$

Stokes' theorem: $\iint_{S} (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \, \mathrm{d}S = \oint_{C} \mathbf{F} \cdot \, \mathrm{d}\mathbf{r}$ where C bounds S.

Gauss' Div. Thm.: $\iiint_V \nabla \cdot \mathbf{F} \, dV = \iint_S \mathbf{F} \cdot \hat{\mathbf{n}} \, dS,$ surface S bounds V.

Green's Thm.:
$$\iint_{R} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy$$
$$= \oint_{C} (f dx + g dy), C \text{ bounds region } R.$$

Complex numbers

$$z = x + iy, \quad \bar{z} = x - iy$$

$$i = \sqrt{-1}$$
, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$

$$Re(z) = x$$
, $Im(z) = y$, $|z| = \sqrt{x^2 + y^2}$

$$e^{\pm i\theta} = \cos\theta \pm i\sin\theta$$

If
$$z = re^{i\theta}$$
 then $r = |z|$ and $\theta = \arg z$

$$|z^n| = |z|^n$$
 $\arg(z^n) = n \arg(z) \pm 2k\pi$

$$\sinh(iz) = i\sin z$$
 $\sin(iz) = i\sinh z$

$$\cosh(iz) = \cos z \qquad \cos(iz) = \cosh z$$

						Ta	ble of	Table of Integrals				
	f(x)		$\int f(x) \mathrm{d}x$	dx		f(x)	$\int f(x) \mathrm{d}x$	x		f(x)	$\int f(x) \mathrm{d}x$	
П	x^n		$\frac{x^{n+1}}{n+1},$	$\frac{x^{n+1}}{n+1}, n \neq -1$	2	$(ax+b)^n -$	$\frac{(ax+b)^{n+1}}{a(n+1)}$	$\frac{(ax+b)^{n+1}}{a(n+1)}, n \neq -1$	က	$\frac{1}{x}$	$\log x $	
4	$\frac{1}{ax+b}$		$\frac{1}{a}\log ax+b $	x+b	ಬ	e^{kx}	$\frac{1}{k}e^{kx}$		9	$(ax+b)e^{kx}$	$\left(\frac{1}{k}(ax+b) - \frac{a}{k^2}\right)e^{kx}$	
	$\sin(\omega x)$		$-\frac{1}{\omega}\cos(\omega x)$	(ωx)	∞	$\cos(\omega x)$	$\frac{1}{\omega} \sin(\omega x)$	<i>v</i>)	6	$ an(\omega x)$	$-\frac{1}{\omega}\log \cos(\omega x) $	
10	$\cot(\omega x)$		$\frac{1}{\varepsilon}\log s $	$\frac{1}{\omega}\log \sin(\omega x) $	11	$\sec(\omega x)$	$\frac{1}{2}\log s\epsilon $	$\frac{1}{\omega}\log \sec(\omega x) + \tan(\omega x) $	12	$\csc(\omega x)$	$\frac{1}{\omega}\log \csc(\omega x) - \cot(\omega x) $	$ (\omega x) $
13	$\sec^2(\omega x)$	x	$\frac{1}{\omega} \tan(\omega x)$	(xx)	14	$\csc^2(\omega x)$	$-\frac{1}{\omega}\cot(\omega x)$	(ωx)	15	$\sec(\omega x)\tan(\omega x)$	$\frac{1}{\omega}\sec(\omega x)$	
16	$\csc(\omega x)$	$\csc(\omega x)\cot(\omega x)$	$-\frac{1}{\omega}\csc(\omega x)$	(ωx)	17	$\sinh(\omega x)$	$\frac{1}{\omega} \cosh(\omega x)$	(xx)	18	$\cosh(\omega x)$	$\frac{1}{\omega} \sinh(\omega x)$	
19	$ anh(\omega x)$	(x)	$\frac{1}{\omega}\log(c)$	$\frac{1}{\omega}\log(\cosh(\omega x))$	20	$\coth(\omega x)$	$\frac{1}{2}\log \sin$	$\frac{1}{\omega}\log \sinh(\omega x) $	21	$\operatorname{sech}(\omega x)$	$\frac{2}{\omega}$ arctan $\left(\tanh\left(\frac{\omega x}{2}\right)\right)$	
22	$\operatorname{csch}(\omega x)$	x	$\frac{1}{\omega}\log\left(t\right)$	$\frac{1}{\omega}\log\left(\tanh\left(\frac{\omega x}{2}\right)\right)$	23	7.	$\arctan\left(\frac{x}{a}\right)$	$(\frac{x}{a})$	24	$\frac{1}{\sqrt{a^2 - x^2}}$	$\arcsin\left(\frac{x}{a}\right)$	
25	$\frac{1}{\sqrt{x^2 - a^2}}$	$a_{\overline{2}}$	$\operatorname{arcosh}\left(\frac{x}{a}\right)$	$\left(\frac{x}{a}\right)$	26	$\frac{1}{\sqrt{a^2+x^2}}$	$\operatorname{arsinh}\left(\frac{x}{a}\right)$	$\left(\frac{x}{a}\right)$	27	$\sin(\omega x)\cos^n(\omega x)$	$\frac{-\cos^{n+1}(\omega x)}{\omega(n+1)}, \ n \neq -1$	
28	$\cos(\omega x)$	$\cos(\omega x)\sin^n(\omega x)$ $\sup_{\omega(n+1)} n \neq -1$	$\frac{\sin^{n+1}(\omega)}{\omega(n+1)}$	n , $n \neq -1$	29		$\frac{x}{2} - \frac{1}{4\omega} s$	$-\frac{1}{4\omega}\sin(2\omega x)$	30	$\cos^2(\omega x)$	$\frac{x}{2} + \frac{1}{4\omega} \sin(2\omega x)$	
		f(x)		$\int f(x) \mathrm{d}x$				f(x)	J	$\int f(x) dx$		
	31	$(ax+b)\sin(\omega x)$		$\frac{a}{\omega^2}\sin(\omega x)$ -	$-\frac{1}{\omega}(a)$	$\frac{a}{\omega^2}\sin(\omega x) - \frac{1}{\omega}(ax+b)\cos(\omega x)$	32	$\left (ax+b)\cos(\omega x) \right $	a 3	$\frac{a}{\omega^2}\cos(\omega x) + \frac{1}{\omega}(ax+b)\sin(\omega x)$	(x,y) (x,y)	
	33	$ \operatorname{arcsin}(kx) $		$x\arcsin(kx) + \frac{1}{k}\sqrt{1-k^2x^2}$	$+\frac{1}{k}$	$/1 - k^2 x^2$	34	$\left \operatorname{arccos}(kx) \right $	x	$x \arccos(kx) - \frac{1}{k}\sqrt{1 - k^2x^2}$	$-\frac{k^2x^2}{}$	
	35	$\arctan(kx)$		$x \arctan(kx)$	$-\frac{1}{2k}$	$x \arctan(kx) - \frac{1}{2k} \log(1 + k^2 x^2)$) 36	$\frac{a}{a^2 - x^2}$		$\operatorname{artanh}\left(\frac{x}{a}\right) = \frac{1}{2}\log\left(\frac{a+x}{a-x}\right),$ $\operatorname{arcoth}\left(\frac{x}{a}\right) = \frac{1}{2}\log\left(\frac{x+a}{x-a}\right),$	$\left(\frac{a+x}{a-x}\right)$, if $ x < a$ $\left(\frac{x+a}{x-a}\right)$, if $ x > a$	
	37	$\sqrt{a^2-x^2}$		$\frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2}a^2 \arcsin\left(\frac{x}{a}\right)$	$+\frac{1}{2}a$	$^2 \arcsin\left(\frac{x}{a}\right)$	38	$\sqrt{x^2-a^2}$	2 1 2	$\frac{1}{2}x\sqrt{x^2 - a^2} - \frac{1}{2}a^2\operatorname{arcosh}\left(\frac{x}{a}\right)$	$\operatorname{osh}\left(\frac{x}{a}\right)$	
	39	$\sqrt{x^2 + a^2}$		$\frac{1}{2}x\sqrt{x^2+a^2} + \frac{1}{2}a^2 \operatorname{arsinh}\left(\frac{x}{a}\right)$	$+\frac{1}{2}a$	2 arsinh $\left(\frac{x}{a}\right)$	40	$\left\ e^{kx} \sin(\omega x) \right\ $	k^2	$\frac{1}{k^2 + \omega^2} e^{kx} \left(k \sin(\omega x) - \omega \cos(\omega x) \right)$	$(\omega\cos(\omega x))$	
	41	$e^{kx}\cos(\omega x)$		$\frac{1}{k^2 + \omega^2} e^{kx} \left(k \right)$	$\cos(\omega)$	$\frac{1}{k^2 + \omega^2} e^{kx} \left(k \cos(\omega x) + \omega \sin(\omega x) \right)$)) 42			$\frac{x}{8} - \frac{1}{32\omega} \sin(4\omega x)$		
							=		$\frac{1}{1}$			