Teoria de Controle: Projeto compensadores pelo método do Lugar Geométrico das Raízes (LGR)

Docentes: Luís & Valter

Engenharia Mecatrônica – CEFET-MG, Campus Divinópolis

Introdução: Projeto de sistemas de controle

- Sistema de controle adequado:
 - ser estável (BIBO estável);
 - menos sensível a variações de parâmetros do sistema;
 - erro em regime permanente mínimo; e
 - reduzir o efeito de perturbações indesejadas.
- Para atender as especificações de desempenho:
 - modificar componentes da planta (pode n\u00e3o ser vi\u00e1vel); e
 - projetar um compensador (controlador).

 Compensação → projeto de um filtro cujas características tendem a compensar as características indesejáveis e inalteráveis da planta.

Tipos de compensação

Compensação em cascata:

Compensação na realimentação:

Compensação na saída ou na carga:

Compensação na entrada:

Compensação em avanço de fase e atraso de fase

Estrutura do compensador em avanço de fase:

$$C(s) = K_c \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}}, (0 < \alpha < 1)$$

Considerando z = 1/T e $p = 1/(\alpha T)$, tem-se

Compensação em avanço de fase e atraso de fase

Estrutura do compensador em atraso de fase:

$$C(s) = \hat{K}_c \frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}}, (\beta > 1)$$

Considerando z = 1/T e $p = 1/(\beta T)$, tem-se

Projeto pelo método do lugar das raízes

• Baseia-se na modificação do lugar das raízes dos sistema \to acréscimo de polos e zeros.

ullet Esses polos e zeros fazem parte do compensador o força o lugar das raízes passar pelos polos de malha fechada desejados no plano s.

 Característica do projeto baseia-se no pressuposto de que o sistema em malha fechada tem um par dominante de polos → efeitos dos zeros e polos adicionais não afeta muito as características de resposta

Efeitos da adição de polos

A adição de um polo à função de transferência de malha aberta tem o efeito de deslocar o lugar das raízes para a direita, tendendo a diminuir a estabilidade relativa do sistema e fazendo com que a acomodação da resposta seja mais lenta.

Efeitos da adição de zeros

A adição de um zero à função de transferência de malha aberta tem o efeito de deslocar o lugar das raízes para a esquerda, tendendo a tornar o sistema mais estável e mais rápida a acomodação da resposta seja mais lenta.

- O método do lugar das raízes para projetos é eficiente quando as especificações são dadas em termos de grandezas no domínio do tempo:
 - coeficiente de amortecimento e a frequência natural não amortecida dos polos de malha fechada dominantes
 - máximo sobressinal (overshoot), tempo de subida e tempo de acomodação.
- Considerando que não seja possível alcançar as características desejadas para a resposta transitória apenas mexendo no ganho, então é necessário redesenhar o lugar das raízes de modo que os polos de malha fechada dominantes tenham localização desejada no plano complexo.

Procedimento:

- 1. Com base na especificação de desempenho, determine a localização desejada dos polos de malha fechada dominantes.
- 2. Verifique, a partir do lugar das raízes do sistema não compensado, se é possível obter os polos de malha fechada dominantes apenas ajustando o ganho. Caso não seja possível, calcule a deficiência de ângulo ϕ . Esse ângulo deve ser completado pelo compensador por avanço de fase, desde que o novo lugar das raízes passe pela localização desejada dos polos de malha fechada dominantes.
- 3. Suponha que

$$C(s) = K_c \frac{s + 1/T}{s + 1/(\alpha T)}, (0 < \alpha < 1)$$

sendo α e T determinados com base na deficiência angular e K_c é determinado a partir do requisito de ganho.

4□▶ 4₫▶ 4½▶ 4½▶ ½ 90

Procedimento:

- 4. Se não forem especificadas as constantes de erro estático, determine a posição do polo e do compensador por avanço de fase, de modo que esse compensador complete o ângulo ϕ necessário. Diante disso, é desejável que o valor de α seja elevado, isso resulta em um K_{ν} elevado.
- 5. Determine o valor de K_c do compensador de avanço de fase a partir da condição de módulo.
 - Após projetado o compensador, verifique se todas as especificações de desempenho foram atendidas.
 - Caso não, repita os procedimentos de projeto ajustando o zero e o polo do compensador.
 - É necessário modificar a posição do par de polos dominantes, caso esses não sejam dominantes.
 - Os zeros de malha fechada afetam a resposta, se estiverem situados próximo a origem → uso de pré-filtro.

- Considere que é necessário determinar uma rede de compensação apropriada para caso em que o sistema apresente resposta transitória com características satisfatórias, mas as características em regime permanente sejam insatisfatórias.
- Compensação consiste no aumento do ganho de malha aberta, sem alterar apreciavelmente as características da resposta transitória.
- Para evitar uma modificação apreciável no lugar das raízes, a contribuição angular da rede de atraso de fase deve ser limitada a um valor pequeno \rightarrow inferior a 5^o

$$-5^{\circ} < \angle \frac{s_d + 1/T}{s_d + 1/(\beta T)} < 0^{\circ}$$

 Para assegurar isso, coloca-se o polo e o zero da rede de atraso de fase relativamente próximos um do outro e próximos da origem do plano s. Com isso, tem-se

$$|C(s_d)| = \left| \hat{K}_c \frac{s_d + 1/T}{s_d + 1/(\beta T)} \right| \triangleq \hat{K}_c$$

- Com o polo e o zero muito próximos da origem, o valor de β pode ser aumentado. O valor de T não é crítico, porém não deve ser muito alto para evitar dificuldades na implementação do compensador por atraso de fase.
- Aumento no ganho do compensador \rightarrow aumento no ganho das constantes de erro estático.
- Efeito negativo da compensação por atraso de fase → zero do compensador próximo a origem gera polo próximo a em malha fechada. Aumenta o tempo de acomodação.

Procedimento:

- 1. Desenhe o gráfico do lugar das raízes para o sistema não compensado. Com base nas especificações da resposta transitória, localize os polos dominantes de malha fechada.
- 2. Considere a função de transferência do compensador como

$$C(s) = \hat{K}_c \frac{s + 1/T}{s + 1/(\beta T)}$$

- 3. Calcule a particular constante de erro estático especificada no problema.
- 4. Determine o acréscimo na constante de erro estático necessário para satisfazer às especificações.

Procedimento:

- 5. Determine o polo e o zero do compensador por atraso de fase que produzam o aumento necessário no valor em particular da constante de erro estático, sem modificar apreciavelmente o lugar das raízes \rightarrow A distância entre o polo e o zero do compensador tem relação com o valor de acréscimo da constante de erro.
- 6. Desenhe o novo gráfico do lugar das raízes para o sistema compensado. Posicione os polos dominantes de malha fechada desejados, com base nas especificações da resposta transitória \rightarrow a contribuição de fase deve ser pequena, o que não modificará apreciavelmente o lugar das raízes original.
- 7. Ajuste o ganho \bar{K}_c do compensador a partir da condição de módulo. \bar{K}_c será aproximadamente 1.