

OV519 CAMERAMATE™ Processor

Enhanced Single Chip Processor for USB PC Camera Applications

General Description

The OV519 CAMERAMATE™ Processor is a low-cost enhanced single chip processor for USB PC camera applications. When combined with an OmniVision SVGA, VGA or CIF digital CAMERACHIP™, the OV519 comprises an integrated USB camera system, with no additional USB transceiver or DRAM required. As shown in the system block diagram below, the OV519 also supports an audio input with for full audio/video operation.

During operation, the OV519's camera interface synchronizes with the CAMERACHIP YC_bC_r 422 progressive video data to perform Down-sampling, Clamping and Windowing (DCW) functions with the desired resolution requested by users through the USB command set. The embedded Data Compression Engine then compresses the video data to standard JPEG format and the resultant video data is transferred to the host through USB.

This standard USB interface allows the end user to implement PC camera systems easily, rapidly reducing the time-to-market.

PC Camera System Block Diagram

Ordering Information								
Product Package Temperature Rang								
OV519	TQFP-64	0° to 70°C						

Features

- Full USB support (v1.1) including 2 selectable default hardwired video/audio descriptors as well as options for additional customer-specific USB PIDs.
- High-performance video transfer rate of up to 20FPS for SVGA and up to 30FPS for VGA, CIF/SIF & QCIF/QSIF formats with selectable YUV 4:2:2, 4:2:0, 4:1:1 or 4:0:0 formatting.
- Full USB audio interface (Class 1.0 compliance) incorporating a 16-Bit mono ADC for microphone usage with sampling rates of 8KHz, 16KHz and 24KHz.
- Low voltage 2.5V (Core) and 3.3V (I/O) operation.
- 8-Bit 8051-compatible microcontroller, with embedded 512-byte RAM
- External system clock or independent crystal operation.
- Down-sampling, Clamping and Windowing (DCW) functions
- YUV averaging and Y distribution with Y enhancement
- Defect compensation up to 8 pixels in YUV input

Functional Block Diagram

CAMERACHIP Families Supported

SVGA: OV86xx (color) and OV81xx (B&W)
 VGA: OV76xx (color) and OV71xx (B&W)
 CIF: OV66xx (color) and OV61xx (B&W)

Note: The OV519 supports digital image sensors up to SVGA resolution (above). However, it will not support analog image sensors (Product IDs = "x9xx" or "x4xx").

Optional Peripherals Supported

• External EEPROM (Maximum size: 4K Bits):

An external serial EEPROM can be used to store information such as pixel defect addresses (maximum of 8 addresses for Y & UV, separately) and additional USB descriptors specified by the OEM or user-specific applications.

<u>Note</u>: The OV519 will support up to 16 USB PIDs without the use of an external EEPROM.

• External Microphone and Preamp:

(Shown in functional block diagram)

Function Block Details

CAMERACHIP Interface:

The camera data interface supports both 8-bit and 16-bit data widths at clock speeds up to 48MHz, as a function of the camera chip used.

Audio Interface:

The audio input accepts the output of a microphone/pre-amp and converts it to a 16 Bit digital datastream with user-selected sampling rates of 8KHz, 16KHz or 24KHz. This digital audio data is then transferred to the PC system through the USB interface, providing full video & audio to the end user.

• Microcontroller:

The microcontroller operates as an embedded controller only and can be programmed by the user if custom applications are desired. *Please contact OmniVision for further information on microcontroller implementation.*

System Controller:

This function provides general system control to the internal logic. This includes all clock and reset signals and functions such as controlling the USB Power-Down SUSPEND mode and GPIO (General Purpose I/O) configuration, which can allow the user to control external peripherals.

Data Compression:

The OV519 uses a standard JPEG compression engine to transmit high-resolution images at video rates.

SCCB Serial Interface:

The SCCB interface controls the CAMERACHIP operation as well as interfacing to the optional EEPROM. In all cases, the OV519 is considered the SCCB 'Master' and all other SCCB devices, such as the CAMERACHIP or optional EEPROM, are designated as 'Slaves'.

<u>Note</u>: The description below is a functional overview on the interface. For a complete description, please refer to Application Note 'AN101 – SCCB Functional Specification'.

SCCB WRITE (To Slave) Transmission:

	BYTE (Register) WRITE																	
7	6	;	5	4	3	2	1	0	X	X 7 6 5 4 3 2 1 0 X 7 6 5 4 3 2 1 0 X								
Phase 1 Phase 2								nase										
Slave Device Identifier [Master-to-Slave]						Sia		Add aste				ter)		[M	Data r-to	a -Sla	ve]	

SCCB Serial Interface (Continued):

Phase 1: [Bits 7:1] Slave (CAMERACHIP or optional EEPROM) device identifier, which is factory-assigned to each device on

the SCCB bus so the Master (OV519) can identify and communicate with all Slave devices. Because of this, each

CAMERACHIP family member has its own identifier, such as the OV7620 which is defined as 0x42.

[Bit 0] Read/Write [R/W] Bit = 0 (WRITE)

Phase 2: Slave address (register)

Phase 3: WRITE data

Example: Slave ID-R/W: 0x42 (0100 0010) [OV7620, Bit 0 = WRITE]

Slave Address: 0x22 (0010 0010) [FRAR Register]

0x11 (0001 0001)

SCCB WRITE: 0100 0010 [X] 0010 0010 [X] 0001 0001 [X]

SCCB READ (From Slave) Transmission (Slave-to-Master):

	BYTE (Register) READ								
7 6 5 4 3 2 1 0 X	7 6 5 4 3 2 1 0 X	7 6 5 4 3 2 1 0 X	7 6 5 4 3 2 1 0 X						
Phase 1A	Phase 2	Phase 1B	Phase 3						
Slave Device Identifier [Master-to-Slave]	Slave Address (Register) [Master-to-Slave]	Slave Device Identifier [Master-to-Slave]	<i>Data</i> [Slave-to-Master]						
Set Internal S	Slave Address	Read Slave Data	at Set Address						

Phase 1A: [Bits 7:1] Slave (CAMERACHIP or optional EEPROM) Device Identifier

[Bit 0] Read/Write [R/W] Bit = 0 (WRITE)

Phase 2: Slave address (internal register)

Phase 1B: [Bits 7:1] Slave (CAMERACHIP or optional EEPROM) Device Identifier

Read/Write [R/W] Bit = 1 (READ) [Bit 0]

Phase 3: READ data

Example: Slave ID-R/W: 0x42 (0100 0010) [OV7620, Bit 0 = WRITE]

Slave Address: 0x22 (0010 0010) [FRAR Register] Slave ID-R/W: 0x43 (0100 0011) [OV7620, Bit 0 = READ]

[In register]

SCCB WRITE: 0100 0010 [X] 0010 0010 [X] 0100 0011 [X] [Slave Data] [X]

Phase-Locked Loop (PLL):

The internal PLL is used for CAMERAMATE synchronous clocking and may be enabled or disabled, as the user requires.

CAMERAMATE™ Clocking Options								
Option	GPIO[6]	Internal PLL						
12MHz xtal or clock-signal operation	0	Enabled						
48MHz xtal or clock-signal operation	1	Disabled						

USB Interface:

The OV519 uses two default hardwired descriptors for video or audio/video operation, and, additionally, has the option of another 16 user-selectable product IDs using the GPIO[3:0] pins. For OEM manufacturers, further USB flexibility can be obtained by incorporating a serial EEPROM to store additional descriptor information. *If an additional PID is required, OmniVision will issue product IDs (PIDs) on a first-come, first-served basis.*

	Hardwired USB Descriptors								
Descriptor	Function	GPIO[5:4]	Properties						
1	Video only	00	One configuration, One Interface: Video interface only						
0	Video and Audio	01 10 11	One configuration, Three Interface Options: Interface 0 – Video Interface 1 – Audio Control Interface 2 – Audio Stream						
Note	GPIO[5:4] default =	01 (See STROE	BES section for more details)						

Strobes:

The OV519 uses 8 Strobe pins (GPIO[7:0]) to control the system (An additional pin GPIO[8] is present, but not used for the strobes).

	Strobe Functionality									
Pin	Name	Pin Type	Fur	nction						
36	GPIO[7]	ı	Microcontroller Enable	0: Disable [DEFAULT] 1: Enable						
35	GPIO[6]	I	PLL Bypass	0: Internal PLL Enable [DEFAULT] 1: Internal PLL Disable						
34-33	GPIO[5:4]	I	Audio Control	0: (00) Disable audio 1: (01) 16Kbps sampling [DEFAULT] 2: (10) 8Kbps sampling 3: (11) 24Kbps sampling						
			Strobe[7] = 0 Microcontroller Disabled	Support for 16 additional USB PIDs						
28-25	GPIO[3:0]	I	Strobe[7] = 1 Microcontroller Enabled	Strobe[3]: Emulator Enable Strobe[2]: Select Boot ROM Strobe[1]: Reserved Strobe[0]: Reserved						

Note: All GPIO pins are read by the OV519 at Power-On. Therefore, after VDD supplies have settled, further strobe pin changes will not be seen by the OV519, so if configuration changes are required, the user must cycle the system power supplies to make the change.

In addition, when the GPIO pins are programmed as inputs, the user can select either an edge-triggered mode, with programmable positive/negative edge triggering, or a level-triggered mode using the System Controller registers.

Pin Description

	Pin Description							
Pin	Name	Pin Type	Function					
			SYSTEM CONTROL					
15	PWDN	0	Power-Down (Enable USB Power-Down SUSPEND mode)					
16	OSCEN	0	Oscillator Enable					
18	CLKIN	I	Crystal/Oscillator clock input					
19	CLKOUT	0	Crystal/Oscillator clock output					
21	RESET	1	Power-On Reset					
22	SNAP	I	Snapshot button input					
			SCCB INTERFACE					
39	SIO_E	0	Serial Camera Control Bus Chip Select					
40	SIO_D	I/O	Serial Camera Control Bus Data					
41	SIO_C	0	Serial Camera Control Bus Clock					
			SENSOR INTERFACE					
1	VREF	I/O	Vertical reference input from camera					
2	FODD	I/O	Even/Odd field indication input from camera					
59	VSYNC	I/O	Vertical sync input from camera					
60	HREF	I/O	Horizontal reference input from camera					
61	PCLK	I/O	Pixel clock input from camera					
64	CCLK	0	Camera clock output					
			CAMERACHIP Y DATA					
3	Y[7]	I/O	Y Bit [7]					
4	Y[6]	I/O	Y Bit [6]					
5	Y[5]	I/O	Y Bit [5]					
6	Y[4]	I/O	Y Bit [4]					
7	Y[3]	I/O	Y Bit [3]					
12	Y[2]	I/O	Y Bit [2]					
13	Y[1]	I/O	Y Bit [1]					
14	Y[0]	I/O	Y Bit [0]					
			CAMERACHIP UV DATA					
49	UV[7]	I/O	UV Bit [7]					
50	UV[6]	I/O	UV Bit [6]					
51	UV[5]	I/O	UV Bit [5]					
54	UV[4]	I/O	UV Bit [4]					
55	UV[3]	I/O	UV Bit [3]					
56	UV[2]	I/O	UV Bit [2]					
57	UV[1]	I/O	UV Bit [1]					
58	UV[0]	I/O	UV Bit [0]					
		1	USB INTERFACE					
30	DP	I/O	USB D+					
31	DM	I/O	USB D-					

Pin Description (Continued)

	Pin Description (Continued)							
Pin	Name	Pin Type	Function					
			AUDIO INTERFACE					
45	MICIN_P	I	Microphone Input (+)					
46	MICIN_M	Ι	Microphone Input (-)					
			GENERAL PURPOSE I/O					
25	GPIO[0]	I/O	General Purpose I/O Bit [0]					
26	GPIO[1]	I/O	General Purpose I/O Bit [1]					
27	GPIO[2]	I/O	General Purpose I/O Bit [2]					
28	GPIO[3]	I/O	General Purpose I/O Bit [3]					
33	GPIO[4]	I/O	General Purpose I/O Bit [4]					
34	GPIO[5]	I/O	General Purpose I/O Bit [5]					
35	GPIO[6]	I/O	General Purpose I/O Bit [6]					
36	GPIO[7]	I/O	General Purpose I/O Bit [7]					
48	GPIO[8]	I/O	General Purpose I/O Bit [8]					
			POWER AND GROUND					
8	VSS_C1	GND	Core GROUND					
9	VDD_C1	VDD	Core VDD					
42	VSS_C2	GND	Core GROUND					
43	VDD_C2	VDD	Core VDD					
10	VSS_IO1	GND	I/O GROUND					
11	VDD_IO1	VDD	I/O VDD					
17	VSS_IO2	GND	I/O GROUND					
20	VDD_IO2	VDD	I/O VDD					
23	VSS_IO3	GND	I/O GROUND					
24	VDD_IO3	VDD	I/O VDD					
29	VSS_IO4	GND	I/O GROUND					
32	VDD_IO4	VDD	I/O VDD					
37	VSS_IO5	GND	I/O GROUND					
38	VDD_IO5	VDD	I/O VDD					
44	VSS_IO6	GND	I/O GROUND					
47	VDD_IO6	VDD	I/O VDD					
52	VSS_IO7	GND	I/O GROUND					
53	VDD_IO7	VDD	I/O VDD					
62	VSS_IO8	GND	I/O GROUND					
63	VDD_IO8	VDD	I/O VDD					

Electrical Characteristics

	DC Electrical Characteristics											
Symbol	Parameter	Condition	Min	Typical	Max	Unit						
VDD_IO	DC supply voltage – I/O	3.3V ±10%	3.0	3.3	3.6	V						
VDD_L	DC supply voltage – Core	2.5V ±10%	2.25	2.5	2.75	V						
V_{IH}	High level input voltage	CMOS	0.7 x VDD_IO			V						
V _{IL}	Low level input voltage	CMOS			0.3 x VDD_IO	V						
V _{OH}	High level output voltage	CMOS	0.9 x VDD_IO			V						
V _{OL}	Low level output voltage	CMOS			0.1 x VDD_IO	V						
I _{DDS}	SUSPEND Mode Current			50		uA						
I _{DDA}	Active (Operating) Current			40		mA						
lμ	Input/Output Leakage	$GND \to VDD_IO$			10	uA						

Absolute Maximum Ratings							
Ambient Storage Temperature	-40°C → +125°C						
All Input/Output Voltages with Respect to Ground	-0.3V → VDD_IO+1V						
Lead Temperature, Surface-mount process	+230°C						
ESD Rating, Human Body model	2000V						

Device Control Registers

Note ENABLE = 1, DISABLE = 0 for all register Enable/Disable bits

	Register Table							
Address (HEX)	Name	R/W	Function	Default (HEX)				
	Camera Interface							
10	H_SIZE	RW	Image Width = H_SIZE x 16	14				
11	V_SIZE	RW	Image Height = V_SIZE x 8	1E				
12	X_OFFSETL	RW	Windows top-left X coordinate (Low) Bit[7:0]	00				
13	X_OFFSETH[1:0]	RW	Windows top-left X coordinate (High) Bit[9:8]	00				
14	Y_OFFSETL	RW	Windows top-left Y coordinate (Low) Bit[7:0]	00				
15	Y_OFFSETH[1:0]	RW	Windows top-left Y coordinate (High) Bit[9:8]	00				
16	DIVIDER	RW	Bit [7]: Speed Adjust Enable Bit [6:4]: Vertical Divider 000: Divide by 1 001: Divide by 2 010: Divide by 4 011: Divide by 8 100: Divide by 16 Bit [3]: LP filter Enable Bit [2:0]: Horizontal Divider 000: Divide by 1 001: Divide by 2 010: Divide by 4 011: Divide by 8 100: Divide by 8	00				

	Register Table (Continued)							
Address (HEX)	Name	R/W	Function	Default (HEX)				
		(Camera Interface (Continued)					
20	DFR[6:0]	RW	Bit [6]: CCIR656/CCIR601 Select 0: CCIR601 1: CCIR656 Bit [5]: Reserved Bit [4]: 8-Bit/16-Bit Select: 0: 16-Bit 1: 8-Bit Bit [3:0]: Data Word Swap Formatter A Enable The data output of each pixel is organized as two Words, each containing 2 bytes. The position of these 4 bytes within the 2 data words can be changed by using the Data Word Swap Formatters A (DFR[3:0]) and B (SR[7:6]). Refer to the following SR register for a description of the SR[7:6] function). MSB LSB MSB LSB Y0 U0 Y1 V0 WORD 1 WORD 2 Bit[3]: Swap U0 ↔ V0 Bit[2]: Swap Y0 ↔ Y1 Bit[1]: Swap Y1 ↔ V0 Bit[0]: Swap Y0 ↔ U0	00				

	Register Table (Continued)					
Address (HEX)	Name	R/W	Function			
(HEX) Camera Interface (Continued)						
21	SR	RW	Synchronization Register Bit [7:6]: Data Word Swap Formatter B Enable Bit[7]: Swap Y0 ↔ V0 Bit[6]: Swap U0 ↔ Y1 Bit [5]: Buffer Synchronization 8-Bit/16-Bit Select: 0: 16-Bit 1: 8-Bit Bit [4]: Buffer Synchronization Enable Bit [3]: Pixel Clock Rising/Falling Edge Select 0: Falling Edge 1: Rising Edge Bit [2]: Pixel Clock Delay Enable Bit [1]: HREF Delay Enable Bit [0]: Data Delay Enable	08		
22	FRAR	RW	Frame Rate Adjustment Register Bit [7]: Defect Compensation Enable Bit [6:5]: Image Mode	98		

	Register Table (Continued)						
Address (HEX)	Name	R/W	Function	Default (HEX)			
	Camera Interface (Continued)						
25	Format[2:0]	RW	Image Format Bit [2]: Bypass Bit [1:0]: Format 11: YUV422 10: YUV420	03			
			01: YUV411 00: YUV400				
			System Controller				
50	RESET0	RW	Reset Control Register 0 [Reset=1] Bit [7]: GPIO Reset Bit [6]: Snapshot Reset Bit [5]: Register Reset Bit [4]: SCCB Reset Bit [3]: Audio Reset Bit [2]: Microcontroller Reset Bit [1]: UDCIF Reset Bit [0]: UDC Reset	00			
51	RESET1[3:0]	RW	Reset Control Register 1 [Reset=1] Bit [3]: Video FIFO Reset Bit [2]: JPEG Reset Bit [1]: SFIFO Reset Bit [0]: CIF Reset	00			
53	EN_CLK0	RW	Clock Enable 0 Bit [7]: Transceiver Enable Bit [6]: ISP Clock Enable Bit [5]: Reserved Bit [4]: SCCB Bit [3]: Audio Enable Bit [2]: Microcontroller Enable Bit [1]: UDCIF Enable Bit [0]: UDC Enable	87			
54	En_CLK1[3:0]	RW	Clock Enable 1 Bit [3]: Video FIFO Enable Bit [2]: JPEG Enable Bit [1]: SFIFO Enable Bit [0]: CIF Enable	00			

	Register Table (Continued)						
Address (HEX)	Name	R/W	Function	Default (HEX)			
	System Controller (Continued)						
55	AUDIO_CLK[5:0]	RW	Audio Clock Control Bit [5]: 24MHz Clock Enable Bit [4]: Fixed phase Clock Enable Bit [3]: FIR_CLK Divide by 2 Enable Bit [2]: SD_CLK Divide by 2 Enable Bit [1:0]: Clock select 0: 2.048MHz 1: 2.048MHz 2: 4.096MHz	01			
57	SNAPSHOT[5:0]	RW	3: 6.144MHz Snapshot Control Bit [5]: Snapshot Status from Pin Bit [4]: Snapshot Status after De-Bounce Bit [3]: Snapshot Wakeup Enable Bit [2]: Host Snapshot Bit [1]: Snapshot Clear [CLEAR=1] Bit [0]: Snapshot Enable	01			
58	PONOFF[4:0]	RW	Power On/Off Control Bit [4]: Power-On/Off Status from Pin Bit [3]: Power-On/Off Status after De-Bounce Bit [2]: Power-On/Off Wakeup Enable Bit [1]: Power-Off Status Clear [CLEAR=1] Bit [0]: Power-On/Off Enable	00			
59	CAMERA_CLOCK[4:0]	RW	Camera Clock Divider CCLK = 48MHz / CAMERA_CLOCK [4:0] Note: 00000 = 48MHz	02			
5A	YS_CTRL[6:0]	RW	System Control Bit [6]: Power-Down SUSPEND Mode Enable Bit [5]: USB reset Enable Bit [4]: Wakeup Enable Bit [3]: Oscillator Power-Down SUSPEND Enable USB Bit [2]: Oscillator Power-Down SUSPEND Enable µcontroller Bit [1]: System Reset Mask Enable Bit [0]: System 1 1011 00 Enable	6C			

	Register Table (Continued)						
Address (HEX)	Name	R/W	Function	Default (HEX)			
	System Controller (Continued)						
5B	DEB_CLOCK[3:0]	RW	Debounce Clock Divider 00: 0.375K 01: 0.75K 10: 1.5K 11: 96K Bit [1:0]: Switching Power Clock Divider 00: 24K 01: 48K 10: 96K 11: 192K	0E			
5C	SYS_CLOCK[2:0]	RW	System Clock Control Bit [2:0]: Clock Frequency 000: 24MHz 001: 12MHz 010: 8MHz 011: 6MHz	00			
5D	PWDN[2:0]	RW	Power-Down Control Bit [2]: Power-Down Reset Mask [Mask=1, Unmask=0] Bit [1]: Power-Down SUSPEND Mode Enable Bit [0]: Operating Mode 1: Normal 0: SUSPEND	02			
5E	USR_DFN	RW	User defined Users can program this register to transfer a parameter between the OV519 and PC host. ROM Programming: Bit [7]: Program Polling Disable Bit [6:0]: Program Timeout Counter	00			

	Register Table (Continued)						
Address (HEX)	Name	R/W	Function	Default (HEX)			
	System Controller (Continued)						
5F	SYS_CTRL2[4:0]	R	Analog Cell Control Bit [4]: CEN Global Control Bit [3]: Test SUSPEND Enable Bit [2:0]: Microcontroller Reset Time Select	11			
60	INTERRUPT_0[3:0]	RW	Interrupt 0 (Write '1' to Clear) Bit [3]: Pipe Interrupt USB Interrupt Bit [2]: Pipe Interrupt USB Bulk Out Bit [1]: Pipe Interrupt USB Bulk In Bit [0]: Pipe Interrupt USB Control	00			
61	INTERRUPT_1[6:0]	RW	Interrupt 1	00			
62	Mask_0[3:0]	RW	Mask Control 0 (Write '1' to Clear) Bit [3]: Pipe Interrupt USB Interrupt Bit [2]: Pipe Interrupt USB Bulk Out Bit [1]: Pipe Interrupt USB Bulk In Bit [0]: Pipe Interrupt USB Control	00			
63	MASK_1[6:0]	RW	Mask Control 1 (Write '1' to Clear) Bit [6]: GPIO Bit [5]: SUSPEND Mode Bit [4]: Snapshot Bit [3]: AVG Get Bit [2]: JPEG_EOF Bit [1]: SFIFO_EOF Bit [0]: VSYNC	00			
64	VCI_R0	RW	Video control interrupt Endpoint Buffer 0	00			
65	VCI_R1	RW	Video control interrupt Endpoint Buffer 1	00			

Register Table (Continued)								
Address (HEX)	Name	R/W	Function	Default (HEX)				
	System Controller (Continued)							
68	ADC_CTRL[3:0]	RW	ADC Mute & Volume Control Bit [3]: Mute Enable Bit [2:0]: AGC Gain	05				
6D	UC_CTRL[1:0]	W	Microcontroller Control Register Bit [1]: Microcontroller SUSPEND Enable Bit [0]: Microcontroller Timer SUSPEND Enable	00				
70	GPIO_LDATA_IN0	RW	GPIO Input Data0 (Level-triggered data entry)	00				
71	GPIO_DATA_OUT0	RW	GPIO Output Data0	00				
72	GPIO_IO_CTRL0	RW	GPIO Input/Output Control0 1: Input 0: Output	FF				
73	GPIO_PDATA_IN0	RW	GPIO Pulse Input0 (Edge-triggered data entry)	00				
74	GPIO_POLARITY0	RW	GPIO Pulse Edge Polarity Select0 1: Negative 0: Positive	FF				
75	GPIO_PULSE_EN0	RW	GPIO Pulse Enable0 1: Edge-triggered data entry 0: Level-triggered data entry	00				
76	GPIO_WAKEUP_EN0	RW	GPIO USB Wakeup Enable0	00				
77	GPIO_RESET_MASK0	RW	GPIO Reset Mask0	00				
78	GPIO_LDATA_IN1	RW	GPIO Input Data1 (Level-triggered data entry)	00				
79	GPIO_DATA_OUT1	RW	GPIO Output Data1	00				
7A	GPIO_IO_CTRL1	RW	GPIO Input/Output Control1 1: Input 0: Output	FF				
7B	GPIO_PDATA_IN1	RW	GPIO Pulse Input1 (Edge-triggered data entry)	00				
7C	GPIO_POLARITY1	RW	GPIO Pulse Edge Polarity Select1 1: Negative 0: Positive	FF				
7D	GPIO_PULSE_EN1	RW	GPIO Pulse Enable1 1: Edge-triggered data entry 0: Level-triggered data entry	00				
7E	GPIO_WAKEUP_EN1	RW	GPIO USB Wakeup Enable1 00					
7F	GPIO_RESET_MASK1	RW	GPIO Reset Mask1	00				

Register Table (Continued)							
Address (HEX)	Name	R/W	Function	Default (HEX)			
	System Controller (Continued)						
80	GPIO_LDATA_IN2	RW	GPIO Input Data2 (Level-triggered data entry)	00			
81	GPIO_DATA_OUT2	RW	GPIO Output Data2	00			
82	GPIO_IO_CTRL2	RW	GPIO Input/Output Control2 1: Input 0: Output	FF			
83	GPIO_PDATA_IN2	RW	GPIO Pulse Input2 (Edge-triggered data entry)	00			
84	GPIO_POLARITY2	RW	GPIO Pulse Edge Polarity Select2 1: Negative 0: Positive	FF			
85	GPIO_PULSE_EN2	RW	GPIO Pulse Enable2 1: Edge-triggered data entry 0: Level-triggered data entry	00			
86	GPIO_WAKEUP_EN2	RW	GPIO USB Wakeup Enable2	00			
87	GPIO_RESET_MASK2	RW	GPIO Reset Mask2	00			
88	GPIO_IRQ_EN0	RW	GPIO Interrupt Enable0	00			
89	GPIO_IRQ_EN1	RW	GPIO Interrupt Enable1	00			
8A	GPIO_IRQ_EN2	RW	GPIO Interrupt Enable2	00			
8B	GPIO_IRQ_EN3	RW	GPIO Interrupt Enable3				
8C	IO_N[4:0]	RW	I/O Pad In/Out Control	1F			
8D	IO_Y[4:0]	RW	Bit [4]: UV/GPIO port Bit [3]: Sensor Bit [2]: Microcontroller data port Bit [1]: Microcontroller P2 Bit [0]: Microcontroller control port (/PSRD, /PSDWR, /PSCE, /CE, /OE, /WE)	00			
			Y Enhancement				
A8	OFFSET	RW	Offset	00			
A9	GAIN	RW	Gain	00			
AA	BRIGHTNESS	RW	Brightness	00			
			Average				
В0	AVG_CTRL[1:0]	R/W	Image Processing Control	00			

	Register Table (Continued)				
Address (HEX)	Name	R/W	Function	Default (HEX)	
			Bit [1]: Y Distribution Enable Bit [0]: Averaging Enable		
B1	AVG_HSA[5:0]	R/W	H Start Address for Window H Start Address = AVG_HSA[5:0] / 16	0A	
B2	AVG_VSA[6:0]	R/W	V Start Address for Window Real V Start Address = AVG_VSA[6:0] / 8	0F	
В3	AVG_HEA[5:0]	R/W	H End Address for Window Real V Start Address = AVG_HEA[5:0] / 18	1E	
B4	AVG_VEA[6:0]	R/W	V End Address for Window Real V Start Address = AVG_VEA[6:0] / 8	3D	

	Register Table (Continued)							
Address (HEX)	Name	R/W	Function	Default (HEX)				
	Average (Continued)							
B5	AVG_YREFH	R/W	Y Data High Reference	FF				
В6	AVG_YREFL	R/W	Y Data Low Reference	00				
B7	AVG_UREFH	R/W	U Data High Reference	FF				
В8	AVG_UREFL	R/W	U Data Low Reference	00				
В9	AVG_VREFH	R/W	V Data High Reference	FF				
BA	AVG_VREFL	R/W	V Data Low Reference	00				
BB	AVG_Y	R	Y Average					
BC	AVG_U	R	U Average					
BD	AVG_V	R	V Average					
			Defect Compensation					
C0	H0H[1:0]	RW	Defect 0 H address, H0[9:8]	03				
C1	H0L	RW	Defect 0 H address, H0[7:0]	FF				
C2	V0H[1:0]	RW	W Defect 0 V address, V0[9:8]					
C3	V0L	RW	Defect 0 V address, V0[7:0]	FF				
C4	H1H[1:0]	RW	Defect 1 H address, H1[9:8]	03				
C5	H1L	RW	Defect 1 H address, H1[7:0]	FF				
C6	V1H[1:0]	RW	Defect 1 V address, V1[9:8]	03				
C7	V1L	RW	Defect 1 V address, V1[7:0]	FF				
C8	H2H[1:0]	RW	Defect 2 H address, H2[9:8]	03				
C9	H2L	RW	Defect 2 H address, H2[7:0]	FF				
CA	V2H[1:0]	RW	Defect 2 V address, V2[9:8]	03				
СВ	V2L	RW	Defect 2 V address, V2[7:0]	FF				
CC	H3H[1:0]	RW	Defect 3 H address, H3[9:8]	03				
CD	H3L	RW	Defect 3 H address, H3[7:0]	FF				
CE	V3H[1:0]	RW	Defect 3 V address, V3[9:8]	03				
CF	V3L	RW	Defect 3 V address, V3[7:0]	FF				
D0	H4H[1:0]	RW	Defect 4 H address, H4[9:8]	03				
D1	H4L	RW	Defect 4 H address, H4[7:0]	FF				
D2	V4H[1:0]	RW	Defect 4 V address, V4[9:8]	03				
D3	V4L	RW	Defect 4 V address, V4[7:0]	FF				
D4	H5H[1:0]	RW	Defect 5 H address, H5[9:8]	03				
D5	H5L	RW	Defect 5 H address, H5[7:0]	FF				
D6	V5H[1:0]	RW	Defect 5 V address, V5[9:8]	03				
D7	V5L	RW	Defect 5 V address, V5[7:0]	FF				

Register Table (Continued)								
Address (HEX)	Name	R/W	R/W Function					
	Defect Compensation (Continued)							
D8	H6H[1:0]	RW	Defect 6 H address, H6[9:8]	03				
D9	H6L	RW	Defect 6 H address, H6[7:0]	FF				
DA	V6H[1:0]	RW	Defect 6 V address, V6[9:8]	03				
DB	V6L	RW	Defect 6 V address, V6[7:0]	FF				
DC	H7H[1:0]	RW	Defect 7 H address, H7[9:8]	03				
DD	H7L	RW	Defect 7 H address, H7[7:0]	FF				
DE	V7H[1:0]	RW	Defect 7 V address, V7[9:8]	03				
DF	V7L	RW	Defect 7 V address, V7[7:0]	FF				
	Y Distribution (User Histogram Data)							
F0	REF0	RW	Y Distribution: Reference 0	20				
F1	REF1	RW	Y Distribution: Reference 1	40				
F2	REF2	RW	Y Distribution: Reference 2					
F3	REF3	RW	Y Distribution: Reference 3					
F4	REF4	RW	Y Distribution: Reference 4	A0				
F5	REF5	RW	Y Distribution: Reference 5	C0				
F6	REF6	RW	Y Distribution: Reference 6	E0				
F7	YD0	R	Number of Y Data: Region = 0 ↔ REF0	00				
F8	YD1	R	Number of Y Data: Region = REF0 ↔ REF1	00				
F9	YD2	R	Number of Y Data: Region = REF1 ↔ REF2	00				
FA	YD3	R	Number of Y Data: Region = REF2 ↔ REF3	00				
FB	YD4	R	Number of Y Data: Region = REF3 ↔ REF4	00				
FC	YD5	R	Number of Y Data: Region = REF4 ↔ REF5 00					
FD	YD6	R	Number of Y Data: Region = REF5 ↔ REF6 00					
FE	YD7	R	Number of Y Data: Region = REF6 ↔ 0xFF	00				

Factory-Reserved Registers (Do Not Access)					
00 → 0F	69 → 6C				
17 → 1F	6E → 6F				
23 → 24	8E → A7				
$26 \rightarrow 4F$	$AB \to AF$				
52	$BE \rightarrow BF$				
56	$E0 \rightarrow EF$				
66 → 67	FF				

OV519 TQFP-64 Package:

D im ension: m m

Note:

- All information shown herein is current as of the revision and publication date. Please refer
 to the OmniVision web site (http://www.ovt.com) to obtain the current versions of all
 documentation.
- OmniVision Technologies, Inc. reserves the right to make changes to their products or to discontinue any product or service without further notice (It is advisable to obtain current product documentation prior to placing orders).
- Reproduction of information in OmniVision product documentation and specifications is
 permissible only if reproduction is without alteration and is accompanied by all associated
 warranties, conditions, limitations and notices. In such cases, OmniVision is not responsible
 or liable for any information reproduced.
- This document is provided with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. Furthermore, OmniVision Technologies Inc. disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document. No license, expressed or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.
- 'OmniVision', 'CameraChip' are trademarks of OmniVision Technologies, Inc. All other trade, product or service names referenced in this release may be trademarks or registered trademarks of their respective holders. Third-party brands, names, and trademarks are the property of their respective owners.

For further information, please feel free to contact OmniVision at info@ovt.com.

OmniVision Technologies, Inc Sunnyvale, CA USA (408) 733-3030