Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A process for preparing <u>a</u> 3-phenyl(thio)uracile or 3-phenyldithiouracile of the formula I

where the variables are each defined as follows:

R¹ is hydrogen, cyano, amino, C₁-C₆-alkyl, C₁-C₃-cyanoalkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl or phenyl-C₁-C₄-alkyl;

 R^2 and R^3 are each independently hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl or C_3 - C_6 -haloalkynyl;

X¹, X² and X³ are each independently oxygen or sulfur;

Ar is phenyl, which may be mono- or polysubstituted by the following groups: hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl; and

A is a radical derived from a primary or secondary amine or NH₂;

comprising the reaction of reacting a phenyl iso(thio)cyanate of the formula II

$$X^1 = C = N Ar$$

$$X^3 \qquad N SO_2 A \qquad II,$$

where the variables X^1 , X^3 , Ar and A are each as defined above, with an enamine of the general formula III

$$R^2$$
 N
 H
 OR^4
 III

where

R^{1a} is as defined above for R¹ with the exception of amino;

R², R³ and X² are each as defined above; and

R⁴ is C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₇-cycloalkyl, C₁-C₆-cyanoalkyl or benzyl which is itself unsubstituted or substituted on the phenyl ring by methyl, methoxy, methylthio, halogen, nitro or cyano;

in the presence of from 1.8 to 2.6 base equivalents per mole of the phenyl iso(thio)cyanate of the formula II;

and, if appropriate, in a further step, the reaction of <u>reacting</u> the resulting 3-phenyl(thio)uracil or 3-phenyldithiouracil of the formula I where R¹=R^{1a}, where R¹ is hydrogen, with an aminating agent of the formula IV

$$H_2N-L^1$$
 IV,

where L1 is a nucleophilic leaving group

to give \underline{a} 3-phenyl(thio)uracils or 3-phenyldithiouracils of the formula I where R^1 = amino.

- (Original) The process according to claim 1, wherein the reaction is
 effected in the presence of a base which is selected from alkali metal and
 alkaline earth metal carbonates, alkali metal and alkaline earth metal
 alkoxides, alkali metal and alkaline earth metal hydrides and tertiary
 amines.
- 3. (Currently Amended) The process according to either of the preceding claims claim 1, wherein the reaction is effected in a solvent comprising at least one aprotic polar solvent, and the aprotic polar solvent has a water content of from 0 to 0.5% by weight, based on the total amount of compound II, compound III and solvent.
- 4. (Original) The process according to claim 3, wherein the solvent comprises at least 50% by volume of an aprotic polar solvent selected from carboxamides, carboxylic esters, carbonates, nitriles and sulfoxides.
- 5. (Original) The process according to claim 4, wherein the solvent comprises at least 80% by weight of an aprotic polar solvent.
- 6. (Currently Amended) The process according to any of the proceding claims claim 1, wherein from 0.9 to 1.3 mol of the enamine of the formula III are used per mole of the compound II.
- 7. (Currently Amended) The process according to any of the preceding claims claim 1, wherein a 3-phenyl(thio)uracil or a 3-phenyldithiouracil, where R¹ is hydrogen, is prepared and this compound I is subsequently
 - (A) reacted with an aminating agent of the formula IV

 H_2N-L^1 IV

where L¹ is a nucleophilically displaceable leaving group to obtain a compound of the formula! where

R¹ is amino; and the variables R², R³, X¹, X², X³, Ar and A are each as defined above; or

(B) reacted with an alkylating agent of the formula V

$$R^{1b}$$
- L^2 V

where

R^{1b} is C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl or C₃-C₆-haloalkynyl; and
 L² is a nucleophilically displaceable leaving group;
 to obtain a compound of the general formula I where
 R¹ is as defined for R^{1b}; and
 the variables R², R³, X¹, X², X³, Ar and A are each as defined above.

8. (Currently Amended) The process according to any of the preceding claims claim 1, wherein the phenyl iso(thio)cyanate of the formula II is described by the formula IIA

$$X^{1} = C = N \xrightarrow{R^{b}} R^{a}$$

$$X^{1} = C = N \xrightarrow{R^{d}} R^{a}$$

$$X^{2} = C = N \xrightarrow{R^{d}} R^{a}$$

$$X^{3} = C = N \xrightarrow{R^{d}} R^{d}$$

where

 $\boldsymbol{X}^{1}\text{, }\boldsymbol{X}^{3}$ and \boldsymbol{A} are each as defined above and

R^a, R^b, R^c and R^d are each independently hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl.

(Original) The process according to claim 8, wherein, in formula IIA,
 R^a is halogen, cyano or trifluoromethyl;
 R^c is hydrogen or halogen; and

R^b and R^d are each hydrogen.

10. (Currently Amended) The process according to any of the preceding elaims claim 1, wherein the A radical is -NR⁵R⁶ where the variables R⁵ and R⁶ are each defined as follows:

R⁵ and R⁶ are each independently

hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkynyl, each of which may be unsubstituted or substituted by one of the following radicals:

 C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, CN, NO₂, formyl, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_3 - C_{10} -cycloalkyl, 3- to 8-membered heterocyclyl having from one to three heteroatoms selected from O, S, N and an NR⁷ group where R⁷ is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl,

phenyl which may itself have 1, 2, 3 or 4 substituents selected from halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-fluoroalkyl,

 C_1 - C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, C_1 - C_3 -alkylamino, C_1 - C_3 -dialkylamino, formyl, nitro or cyano;

 C_1 - C_{10} -haloalkyl, C_2 - C_{10} -haloalkenyl, C_2 - C_{10} -haloalkynyl, C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl having from one to three heteroatoms selected from O, S, N and an NR⁷ group where R⁷ is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, phenyl or naphthyl,

where C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl, phenyl or naphthyl, each of which may themselves have 1, 2, 3 or 4 substituents selected from halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -fluoroalkyl,

 C_1 - C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, formyl, C_1 - C_3 -alkylamino, C_1 - C_3 -dialkylamino, phenoxy, nitro or cyano; or

R⁵ and R⁶ together form a saturated or partially unsaturated 5- to 8-membered nitrogen heterocycle which may have, as ring members, one or two carbonyl groups, thiocarbonyl groups and/or one or two further heteroatoms selected from O, S, N and an NR⁷ group

where R^7 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, and which may be substituted by C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and/or C_1 - C_4 -haloalkyl

11. (Original) The process according to claim 10, wherein R⁵ and R⁶ are each defined as follows:

R⁵ and R⁶ are each independently

hydrogen, C_1 - C_6 -alkyl which may if appropriate carry a substituent selected from the group consisting of halogen, cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylthio, C_3 - C_8 -cycloalkyl, furyl, thienyl, 1,3-dioxolanyl and phenyl

which may itself optionally be substituted by halogen or C_1 - C_4 -alkoxy; C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_8 -cycloalkyl or phenyl

which may if appropriate carry 1 or 2 substituents selected from the group consisting of halogen, C₁-C₄-alkyl, C₁-C₄-fluoroalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, nitro and C₁-C₃-dialkylamino; naphthyl or pyridyl; or

R⁵ and R⁶ together form a five-, six- or seven-membered saturated or unsaturated nitrogen heterocycle which may contain, as a ring member, one further heteroatom selected from N, O and an NR⁷ group

where R^7 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, and/or may be substituted by one, two or three substituents selected from C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl.

- 12. (Currently Amended) The process according to any of the preceding elaims claim 1, wherein X¹, X² and X³ are each oxygen.
- 13. (Currently Amended) The process according to any of the preceding elaims claim 1, wherein R¹ is hydrogen, amino or C₁-C₄-alkyl.
- 14. (Currently Amended) The process according to any of the preceding claims claim 1, wherein R² is hydrogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl.
- 15. (Currently Amended) The process according to any of the preceding claims claim 1, wherein R³ is hydrogen.

16. (Currently Amended) A process for preparing <u>a 3-phenyl(thio)uracils</u> or 3-phenyldithiouracils of the formula I

where

 R^1 is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl or C_3 - C_6 -haloalkynyl;

R² and R³ are each independently hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl or C₃-C₆-haloalkynyl;

X¹, X² and X³ are each independently oxygen or sulfur;

Ar is phenyl, which may be mono- or polysubstituted by the following groups: hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl; and

A is a radical derived from a primary or secondary amine or NH₂, wherein comprising reacting a 3-phenyl(thio)uracils or 3-phenyldithiouracils-of the formula I, where R¹ is hydrogen, are reacted with an alkylating agent of the formula V

$$R^{1b}$$
 L^2 V ,

where L² is a nucleophilically displaceable leaving group, and

 R^{1b} is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl or C_3 - C_6 -haloalkynyl.