1. From the Lagrangian

$$\mathcal{L} = \frac{1}{m}(\mathbf{L} \times \mathbf{p}) + \frac{\kappa \mathbf{r}}{r} = \frac{1}{2m}(\mathbf{L} \times \mathbf{p} - \mathbf{p} \times \mathbf{L}) + \frac{\kappa \mathbf{r}}{r}$$

taking the derivative of a cross product is given by the product rule

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{L} \times \mathbf{p}) = \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} \times \mathbf{p} + \mathbf{L} \times \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}$$

SO

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}t} = \frac{1}{m} \left(\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} \times \mathbf{p} + \mathbf{L} \times \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \right) + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\kappa \mathbf{r}}{r} \right)$$

where

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\kappa \mathbf{r}}{r} \right) = \kappa \left(\frac{\dot{\mathbf{r}}}{r} - \frac{\dot{r}\mathbf{r}}{r^2} \right)$$

and since the angular momentum is $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ we have

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{L} \times \mathbf{p}) = \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{r} \times \mathbf{p}) \times \mathbf{p} + (\mathbf{r} \times \mathbf{p}) \times \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}$$

and since

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \mathbf{F} = -\nabla V = -\frac{\kappa}{r^2} = -\frac{\kappa \mathbf{r}}{r^3}$$
$$\frac{\mathrm{d}L}{\mathrm{d}t} = 0$$

we have

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{L} \times \mathbf{p}) = -m\frac{\kappa}{r^3}(r \times \dot{\mathbf{r}}) \times \mathbf{r}$$
$$= -m\frac{\kappa}{r^3}[\dot{\mathbf{r}}r^2 - \mathbf{r}(\mathbf{r} \cdot \dot{\mathbf{r}})]$$

where

$$\mathbf{r} \cdot \dot{\mathbf{r}} = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{r} \cdot \mathbf{r}) = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} (r^2) = r\dot{r}$$

so

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}t} = \frac{1}{m} \left[-m \frac{\kappa}{r^3} (\dot{\mathbf{r}} r^2 - \mathbf{r}(r\dot{r})) \right] + \kappa \left(\frac{\dot{\mathbf{r}}}{r} - \frac{\dot{r}\mathbf{r}}{r^2} \right)$$
$$= -\kappa \left(\frac{\dot{\mathbf{r}}}{r} - \frac{\dot{r}\mathbf{r}}{r^2} \right) + \kappa \left(\frac{\dot{\mathbf{r}}}{r} - \frac{\dot{r}\mathbf{r}}{r^2} \right)$$

2. (a) Given

$$M_{\text{meson}} = m_1 + m_2 + A \frac{\mathbf{S}_1 \cdot \mathbf{S}_2}{m_1 m_2}$$

and

$$A = \left(\frac{2m_u}{\hbar}\right)^2 159 \,\text{MeV/c}^2, \quad m_u = m_d = 308 \,\text{MeV/c}^2, \quad m_s = 483 \,\text{MeV/c}^2$$

Finding $S_1 \cdot S_2$:

$$\mathbf{S}_T = \mathbf{S}_1 + \mathbf{S}_2$$

 $\mathbf{S}^2 = (\mathbf{S}_1 + \mathbf{S}_2)^2$
 $= \mathbf{S}_1^2 + \mathbf{S}_2^2 + 2\mathbf{S}_1 \cdot \mathbf{S}_2$

Where from the operator

$$[J^2, J_z] = 0 \qquad |j, m\rangle$$
$$J_z |j, m\rangle + \hbar m |j, m\rangle$$
$$J^2 |j, m\rangle = \hbar^2 j(j+1) |j, m\rangle$$

so the eigenvalues of **S** are $\frac{1}{2}(\frac{1}{2}+1)\hbar^2$:

$$\mathbf{S}^2 = \frac{3}{2}\hbar^2 + \frac{3}{2}\hbar^2 + 2\mathbf{S}_1 \cdot \mathbf{S}_2$$
$$= \frac{3}{2}\hbar^2 + 2\mathbf{S}_1 \cdot \mathbf{S}_2$$

so for the scalar case s = 0, $\mathbf{S}^2 = 0$:

$$\mathbf{S}_1 \cdot \mathbf{S}_2 = -\frac{3}{4}\hbar^2$$

and for the vector case s = 1, $\mathbf{S}^2 = 2\hbar^2$:

$$\mathbf{S}_1 \cdot \mathbf{S}_2 = \frac{1}{2} \left(2 - \frac{3}{2} \hbar^2 \right) = \frac{1}{4} \hbar^2$$

So

$$\mathbf{S}_1 \cdot \mathbf{S}_2 = \begin{cases} -\frac{3}{4}\hbar^2 & \text{spin-0} \\ \frac{1}{4}\hbar^2 & \text{spin-1} \end{cases}$$

So for pseudoscalar cases $\mathbf{S}_1 \cdot \mathbf{S}_2 = -\frac{3}{4}\hbar^2$:

• π (ud)

$$M_{\pi} = 2m_u + A \frac{-3}{4m_u m_d} = 2(308) + 4(308)^2 159 \frac{-3}{4(308)(308)}$$

= 139 MeV/c²

• K+ (us)

$$M_{K^+} = (308) + 483 - (308)^2 159 \frac{3}{308(483)}$$

= 487 MeV/c²

• K^0 (ds)

$$M_{K^0} = (308) + 483 - (308)^2 159 \frac{3}{308(483)}$$

= 487 MeV/c²

• η The masses of constituent parts:

 $-u\bar{u}$ and $d\bar{d}$:

$$M_{u\bar{u}} = M_{d\bar{d}} = 139 \,\text{MeV/c}^2$$

 $-s\bar{s}$

$$M_{s\bar{s}} = 2(483) - (308)^2 159 \frac{3}{483^2}$$

= 772 MeV/c²

so

$$M_{\eta} = \frac{1}{6}(139) + \frac{1}{6}(139) + \frac{4}{6}(772)$$

= 561 MeV/c²

η'

$$M_{\eta'} = \frac{1}{3}(139) + \frac{1}{3}(139) + \frac{1}{3}(772)$$

= 350 MeV/c²

And for vector cases $\mathbf{S}_1 \cdot \mathbf{S}_2 = \frac{1}{4}\hbar^2$:

• ρ (ud):

$$M_{\rho} = 2(308) + 4(308)^2 159 \frac{1}{4(308)(308)}$$

= 775 MeV/c²

• K^{*+} (us):

$$M_{K^{*+}} = (308) + 483 + (308)^2 159 \frac{1}{308(483)}$$

= 892 MeV/c²

• K^{*0} (ds):

$$M_{K^{*0}} = 892 \,\mathrm{MeV/c^2}$$

• $\omega = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})$:

$$M_{\omega} = \frac{1}{2}(775) + \frac{1}{2}(775)$$

= 775 MeV/c²

• $\phi = s\bar{s}$:

$$M_{\phi} = 2(483) + 308^2 159 \frac{1}{483^2}$$

= 1031 MeV/c²

(b) With $m_c = 1250 \,\mathrm{MeV/C^2}$ and the same stuff from part (a) the pseudoscalars are:

• $\eta_c(c\bar{c})$:

$$M_{\eta_c} = 2(1250) - (308)^2 159 \frac{3}{1250^2}$$

= 2471 MeV/c²

• $D^0(c\bar{u})$:

$$M_{D^0} = 1250 + 308 - (308)^2 159 \frac{3}{308(1250)}$$

= 1440 MeV/c²

• $D_s^+(c\bar{s})$:

$$\begin{split} M_{D_s^+} &= 1250 + 483 - (308)^2 159 \frac{3}{483(1250)} \\ &= 1658 \, \mathrm{MeV/c^2} \end{split}$$

and the vector mesons are:

• $J/\psi(c\bar{c})$:

$$M_{J/\psi} = 2(1250) + (308)^2 159 \frac{1}{1250^2}$$

= 2510 MeV/c²

• $D^{*0}(c\bar{u})$:

$$M_{D^{*0}} = 1250 + 308 + (308)^2 159 \frac{1}{308(1250)}$$

= 1597 MeV/c²

• $D_s^{*+}(c\bar{s})$:

$$\begin{split} M_{D_s^{*+}} &= 1250 + 483 + (308)^2 159 \frac{1}{483(1250)} \\ &= 1758 \, \mathrm{MeV/c^2} \end{split}$$

(c) Now the beauty mesons with $m_b = 4.5 \,\mathrm{GeV/c^2} = 4500 \,\mathrm{MeV/c^2}$: Pseudoscalars

• $\eta_b(b\bar{b})$:

$$M_{\eta_b} = 2(4500) - (308)^2 159 \frac{3}{4500^2}$$

= 8998 MeV/c²

• $B^+(u\bar{b})$:

$$M_{B^+} = 308 + 4500 - (308)^2 159 \frac{3}{308(4500)}$$

= 4775 MeV/c²

• $B^0(d\bar{d})$:

$$M_{B^0} = 4775 \,\mathrm{MeV/c^2}$$

• $B_c^+(c\bar{b})$:

$$\begin{split} M_{B_c^+} &= 1250 + 4500 - (308)^2 159 \frac{3}{1250(4500)} \\ &= 5742 \, \mathrm{MeV/c^2} \end{split}$$

and vector mesons are:

• $\Upsilon(b\bar{b})$:

$$M_{\Upsilon} = 2(4500) + (308)^2 159 \frac{1}{4500^2}$$

= 9001 MeV/c²

• $B^{*+}(u\bar{b})$:

$$M_{B^{*+}} = 308 + 4500 + (308)^2 159 \frac{1}{308(4500)}$$

= $4819 \,\text{MeV/c}^2$

• $B^{*0}(\overline{db})$:

$$M_{B^{*0}} = 4819 \,\mathrm{MeV/c^2}$$

• $B_c^{*+}(c\bar{b})$:

$$M_{B_c^{*+}} = 1250 + 4500 + (308)^2 159 \frac{1}{1250(4500)}$$

= 5752 MeV/c²

(d) Comparing all these masses compared to the PDB

M	C-11-+-1 M	DDD M
Meson	Calculated Mass	PDB Mass
π	$139\mathrm{MeV/c^2}$	$139.57061\mathrm{MeV/c^2}$
K^+	$487\mathrm{MeV/c^2}$	$493.677{ m MeV/c^2}$
K^0	$487\mathrm{MeV/c^2}$	$497.614{ m MeV/c^2}$
η	$561\mathrm{MeV/c^2}$	$547.862 { m MeV/c^2}$
η'	$350\mathrm{MeV/c^2}$	$957.78\mathrm{MeV/c^2}$
ho	$775\mathrm{MeV/c^2}$	$775.26\mathrm{MeV/c^2}$
K^{*+}	$892\mathrm{MeV/c^2}$	$891.66{ m MeV/c^2}$
K^{*0}	$892\mathrm{MeV/c^2}$	$895.55\mathrm{MeV/c^2}$
ω	$775\mathrm{MeV/c^2}$	$782.65\mathrm{MeV/c^2}$
ϕ	$1031\mathrm{MeV/c^2}$	$1019\mathrm{MeV/c^2}$
η_c	$2471\mathrm{MeV/c^2}$	$2980\mathrm{MeV/c^2}$
D^0	$1440\mathrm{MeV/c^2}$	$1864\mathrm{MeV/c^2}$
D_s^+	$1658\mathrm{MeV/c^2}$	$1968\mathrm{MeV/c^2}$
J/ψ	$2510\mathrm{MeV/c^2}$	$3096\mathrm{MeV/c^2}$
D^{*0}	$1597\mathrm{MeV/c^2}$	$2006\mathrm{MeV/c^2}$
D_s^{*+}	$1758\mathrm{MeV/c^2}$	$2112\mathrm{MeV/c^2}$
η_b	$8998\mathrm{MeV/c^2}$	$9398\mathrm{MeV/c^2}$
B^+	$4775\mathrm{MeV/c^2}$	$5279\mathrm{MeV/c^2}$
B^0	$4775\mathrm{MeV/c^2}$	$5279\mathrm{MeV/c^2}$
B_c^+	$5742\mathrm{MeV/c^2}$	$6274\mathrm{MeV/c^2}$
Ϋ́	$9001\mathrm{MeV/c^2}$	$9460\mathrm{MeV/c^2}$
B^{*+}	$4819 {\rm MeV/c^2}$	$5325\mathrm{MeV/c^2}$
B^{*0}	$4819 {\rm MeV/c^2}$	$5324\mathrm{MeV/c^2}$
B_c^{*+}	$5752\mathrm{MeV/c^2}$	

The light mesons are all pretty good estimates except for η' ... For heavier mesons the estimates are not as good, but they are within the ballpark of the actual masses. Why is the η' so far off?