Natalic 201 adriumication of the stevens that I have abolded by the stevens than or system.

- 4a. The algorithm computes the sum of the squares of n numbers.
- 46. Multiplication
- 4c. The augorithm does 1 multiplication per loop. Therefore, if the function is of size n, the augorithm does multiplication n times.

4a. $\Theta(n)$

4e. One way to improve this algorithm 16 by starting with n and following an algorithm that does not care how many inputs a user provides. If we do $\frac{n(n+1)(2n+1)}{6}$, with

the value of the last n, we will get the same result and time complexity will be $\theta(1)$.

7a.
$$\kappa(n) = \kappa(n-1) + 5$$
 for $n > 1$, $\kappa(1) = 0$
= $[\kappa(n-2) + 5] + 5 = \kappa(n-2) + 5.2$
= $[\kappa(n-3) + 5] + 5.2 = \kappa(n-3) + 5.3$
= $[\kappa(n-i) + 5] + 5i$
= $\kappa(1) + 6.(n-1)$
= $0 + 5(n-1)$

7b.
$$x(n) = 3x(n-1)$$
, for $n>1$, $x(1)=4$
= $3[3x(n-2)] = 3^2x(n-2)$
= $3(3[3x(n-3)]) = 3^3x(n-3)$
= $3^{i}x(n-i)$
= $3^{n-1}x(n-i)$
= $3^{n-1}x(1)$

7c.
$$x(n) = x(n-1) + n$$
, for $n > 0$, $x(0) = 0$
= $[x(n-2) + (n-1)] + n = x(n-2) + (n-1) + n$
= $[x(n-3) + (n-2) + (n-1)] + n = x(n-3) + (n-2) + (n-1) + n$
= $[x(n-i) + (n-i+1) + (n-i+2) + ... + n$
= $x(0) + 1 + 2 + 3 + ... + n = \frac{n(n+1)}{3}$

7d.
$$x(n) = x(\frac{n}{2}) + n$$
, for $n > 1$, $x(1) = 1$
= $x(2^{k-1}) + 2^k$
= $[x(2^{k-2}) + 2^{k-1}] + 2^k = x(2^{k-2}) + 2^{k-1} + 2^k$
= $x(2^{k-1}) + 2^{k-1+1} + \dots + 2^k$
= $1 + 2^1 + 2^2 + \dots + 2^k$
= $2^{k+1} - 1$
= $2 \cdot 2^k - 1$
= $2n - 1$

7c.
$$x(n) = x(\frac{n}{3}) + 1$$
, for $n > 1$, $x(1) = 1$
 $= x(3^{k-1}) + 1$
 $= [x(3^{k-2}) + 1] + 2 = x(3^{k-3}) + 3$
 $= x(3^{k-1}) + i$
 $= x(3^{k-k}) + k = x(1)k$
 $= x(1) + k$
 $= 1 + \log_3 n$

3a. I am using X(n) to denote the number of multiplications made.

$$X(n) = X(n-1) + 2$$

Solve where
$$X(1) = 0$$
:
 $[X(n-2)+2]+2 = X(n-2)+2+2$
 $[X(n-3)+2]+2+2 = X(n-3)+2+2+2$
 $X(n-i)+2i$
 $X(1)+2(n-1)$
 $= 2(n-1)$

36. The nonvectorsive version would look something like this:

input: any integer n that is n > 0 output: sum of first n culour

The only difference is that the non-vecursive version abosn't have as much space usage as the recurrive