Moving loop in a magnetic field. A rectangular loop moves with a constant velocity v ($\mathbf{v}=v\mathbf{a}_x$) in a magnetic field of flux density vector \mathbf{B} . The ambient medium is air. Referring to Fig. Q6.7, and with B_0 , ω , and a being positive constants, there is a nonzero emf induced in the loop ($e_{\mathrm{ind}} \neq 0$) if

- (A) $\mathbf{B} = B_0 \cos \omega t \, \mathbf{a}_x$.
- (B) $\mathbf{B} = B_0 \cos \omega t \, \mathbf{a}_z$.
- (C) $\mathbf{B} = B_0 \, \mathbf{a}_z$.
- (D) $\mathbf{B} = B_0 x \, \mathbf{a}_z / a$.
- (E) $\mathbf{B} = B_0 y \, \mathbf{a}_z / a$.
- (F) More than one of the above cases.

Figure Q6.7 Loop moving with a velocity v in a magnetic field; for Question 6.19.

Solution: (F)
Answer: (F)