Math 5102 – Linear Algebra– Fall 2024 w/Professor Penera

 $\begin{array}{c} {\rm Paul~Carmody} \\ {\rm Homework}~\#4-{\rm NONE} \end{array}$

Page 74: 3, 5, 13, 17, 20

- 3. $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(a_1, a_2, a_3) = (a_1 a_2, 2a_3)$.
- 5. $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ defined by T(f(x)) = xf(x) + f'(x).
- 13. Let V and W be vector spaces, let $T: V \to W$ be linear, and let $\{w_1, w_2, \ldots, w_k\}$ be a linearly independent subset of R(T). Prove that $S = \{v_1, v_2, \ldots, v_k\}$ is chosen so that $T(v_i) = w_i$ for $i = 1, 2, \ldots, k$, then S is linearly independent.
- 17. Let V and W be finite-dimensional vector spaces and $T: v \to W$ be linear.
 - (a) Prove that if $\dim(V) < \dim(W)$, then T cannot be onto.
 - (b) Prove that if $\dim(V) > \dim(W)$, then T cannot be one-to-one.
- 20. Let V and W be vector spaces with subspaces V_1 and W_1 , respectively. If $T:V\to W$ is linear, prove that $T(V_1)$ is subspace of W and that $\{x\in V:T(x)\in W_1\}$ is a subspace of V.