QUIZ3

1. Decision Tree

Impurity functions play an important role in decision tree branching. For binary classification problems, let μ_+ be the fraction of positive examples in a data subset, and $\mu_- = 1 - \mu_+$ be the fraction of negative examples in the data subset. The Gini index is $1 - \mu_+^2 - \mu_-^2$. What is the maximum value of the Gini index among all $\mu_+ \in [0, 1]$?

- A. 0.5
- B. 0.75
- C. 0.25
- D. 0
- E. 1
- 2. Following Question 1, there are four possible impurity functions below. We can normalize each impurity function by dividing it with its maximum value among all $\mu_+ \in [0,1]$ For instance, the classification error is simply $\min(\mu_+,\mu_-)$ and its maximum value is 0.5. So the normalized classification error is $2\min(\mu_+,\mu_-)$. After normalization, which of the following impurity function is equivalent to the normalized Gini index?
 - A. the squared regression error (used for branching in classification data sets), which is by definition $\mu_+(1-(\mu_+-\mu_-))^2+\mu_-(-1-(\mu_+-\mu_-))^2$.
 - B. the entropy, which is $-\mu_{+} \ln \mu_{+} \mu_{-} \ln \mu_{-}$, with $0 \log 0 \equiv 0$.
 - C. the closeness, which is $1 |\mu_+ \mu_-|$.
 - D. the classification error $min(\mu_+, \mu_-)$.
 - E. none of the other choices

3. Random Forest

If bootstrapping is used to sample N' = pN examples out of N examples and N is very large. Approximately how many of the N examples will not be sampled at all?

A.
$$(1 - e^{-1/p}) \cdot N$$

B.
$$(1 - e^{-p}) \cdot N$$

C.
$$e^{-1} \cdot N$$

D.
$$e^{-1/p} \cdot N$$

$$\mathbf{E.} \ e^{-p} \cdot N$$

4. Consider a Random Forest G that consists of three binary classification trees $\{g_k\}_{k=1}^3$, where each tree is of test 0/1 error $E_{\text{out}}(g_1) = 0.1$, $E_{\text{out}}(g_2) = 0.2$, $E_{\text{out}}(g_3) = 0.3$. Which of the following is the exact possible range of $E_{\text{out}}(G)$?

A.
$$0 \le E_{\text{out}}(G) \le 0.1$$

B.
$$0.1 \le E_{\text{out}}(G) \le 0.6$$

C.
$$0.2 \le E_{\text{out}}(G) \le 0.3$$

D.
$$0.1 \le E_{\text{out}}(G) \le 0.3$$

E.
$$0.1 \le E_{\text{out}}(G) \le 0.3$$

5. Consider a Random Forest G that consists of K binary classification trees $\{g_k\}_{k=1}^K$, where K is an odd integer. Each g_k is of test 0/1 error $E_{\text{out}}(g_k) = e_k$. Which of the following is an upper bound of $E_{\mathrm{out}}(G)$?

A.
$$\frac{2}{K+1} \sum_{k=1}^{K} e_k$$

B.
$$\frac{1}{K} \sum_{k=1}^{K} e_k$$

C.
$$\frac{1}{K+1} \sum_{k=1}^{K} e_k$$

D.
$$\min_{1 \le k \le K} e_k$$

E.
$$\max_{1 \le k \le K} e_k$$

6. Gradient Boosting

Let ϵ_t be the weighted 0/1 error of each g_t as described in the AdaBoost algorithm (Lecture 208), and $U_t = \sum_{n=1}^N u_n^{(t)}$ be the total example weight during AdaBoost. Which of the following equation expresses U_{T+1} by ϵ_t ?

A. none of the other choices

B.
$$\prod_{t=1}^{T} \epsilon_t$$

C.
$$\sum_{t=1}^{T} (2\sqrt{\epsilon_t(1-\epsilon_t)})$$
D.
$$\sum_{t=1}^{T} \epsilon_t$$

D.
$$\sum_{t=1}^{T} \epsilon_t$$

E.
$$\prod_{t=1}^{T} (2\sqrt{\epsilon_t(1-\epsilon_t)})$$

7. For the gradient boosted decision tree, if a tree with only one constant node is returned as g_1 , and if $g_1(\mathbf{x}) = 2$, then after the first iteration, all s_n is updated from 0 to a new constant $\alpha_1 g_1(\mathbf{x}_n)$. What is s_n ?

C.
$$\max_{1 \leq n \leq N} y_n$$

D.
$$\min_{1 \le n \le N} y_n$$

$$\mathbf{E.} \ \ \tfrac{1}{N} \sum_{n=1}^{N} y_n$$

- 8. For the gradient boosted decision tree, after updating all s_n in iteration t using the steepest η as α_t , what is the value of $\sum_{n=1}^{N} s_n g_t(\mathbf{x}_n)$?
 - A. none of the other choices

B.
$$\sum_{n=1}^{N} y_n g_t(\mathbf{x}_n)$$

C.
$$\sum_{n=1}^{N} y_n^2$$

D.
$$\sum_{n=1}^{N} y_n s_n$$