Probing Weak Lensing Cosmology with Scattering Transform

Sijin Chen

Universitäts-Sternwarte München With Stella Seitz, Zhengyangguang Gong

Scattering Transform

wavelet:

operation:

$$I' = |I \star \psi^{j,l}|$$

$$J = 8, j = 0,1...,7$$

$$L = 4, l = 0,1,2,3$$

Scattering transform= wavelet convolution

- + modulus
- + mean

- j : size (logarithmic spacing)
- *l* : orientation

Kymatio

Scattering Transform

Input field I_0 Coefficients: $S_0 \equiv \langle I_0 \rangle$

Fields: $I_1 \equiv |I_0 \star \psi_1|$

Coefficients: $S_1 \equiv \langle I_1 \rangle$

operation:

$$I' = |I \star \psi^{j,l}|$$

Scattering transform= wavelet convolution

- + modulus
- + mean

When doing second order convolution, choose filter $\lim_{j \in \mathbb{N}} \lim_{j \in \mathbb{N}} \lim_{j$

(All numbers shown are 10^6 times the real coefficients)

64.08

CosmoGrid Simulation Data

Fisher Forecast

$$s_1 \equiv \langle S_1^{j_1, l_1} \rangle_{l_1}$$

$$s_2 \equiv \langle S_2^{j_1, l_1, j_2, l_2} \rangle_{l_1, l_2}$$

De-correlated 2^{nd} –order coefficients: s_2/s_1

Future Work

Emulation

- Emulate the scattering coefficients using 2500 cosmology from CosmoGridV1 simulation set
- A fast emulator based on Neural Network (CosmoPower, Spurio-Mancini et al 2021)

• MCMC

- Covariance estimated from simulations at fiducial cosmology
- Sample the posterior with the fast emulator in multi-dimensional space
- Obtaining cosmological parameter constraints with scattering transform