APPLICATION OF SYNTHESIS APPROACHES

Robert Wille

Johannes Kepler University Linz, Austria robert.wille@jku.at

FURTHER READING

■ Adiabatic Circuits

Foundations of Generalized Reversible Computing, RC 2017 Exploiting Reversible Logic Design for Implementing Adiabatic Circuits, MIXDES 2017

■ Encoder Design

Taking One-to-one Mappings for Granted: Advanced Logic Design of Encoder Circuits, DATE 2017 Synthesis of Approximate Coders for On-chip Interconnects Using Reversible Logic, DATE 2016 Automatic Design of Low-Power Encoders Using Reversible Circuit Synthesis, DATE 2012

■ Simulation

Exploiting Reversibility in the Complete Simulation of Reversible Circuits, AFRICON 2013

■ ATPG

A Family of Logical Fault Models for Reversible Circuits, ATS 2015

Verification

Exploiting Inherent Characteristics of Reversible Circuits for Faster Combinational Equivalence Checking, DATE 2016

■ Quantum Computation

■ Quantum Computation → Later today

- Quantum Computation → Later today
- Low Power Design

LOW POWER DESIGN #1

■ Rolf Landauer (1961):

Deletion of a single bit leads to a power dissipation of $W = kT \ln 2$

T...Temperature

k...Boltzmann-Constant

 $(1,381\cdot10^{-23} \text{ J/K})$

■ Charles H. Bennett (1973):

Circuits without energy dissipation have to be reversible

LOW POWER DESIGN #2

Power

Important:

Does not mean that each implementation of a reversible circuit is "automatically" power-efficient! → How to exploit reversibility for reducing power dissipation still open research problem

Landauer's Barrier

Less power consumption is only possible if computation is reversible

- Quantum Computation → Later today
- Low Power Design
- Adiabatic Circuits

ADIABATIC CIRCUITS

- adiabatic (from Thermodynamics)
 - $\ \square$ no transfer of heat or matter into or out of the system
- adiabatic (in electronics)
 - □ no (or minimal) energy loss

ADIABATIC CHARGING

$$V_C(t) = \frac{1}{C} \int I(t)dt = \frac{1}{C}I_{avg}(t)t$$

$$I_{avg}(t) = \frac{CV_C(t)}{t}$$

$$E_{diss} = R \int_0^T I(t)^2 dt \ge R \int_0^T I_{avg}(t)^2 dt = RI_{avg}(T)^2 T = \frac{RC}{T} CV_C(T)^2$$

- Supply Voltage
 - ☐ ramping up the voltage results in a constant current
- additional Rules
 - □ Never turn on a transistor if there is a voltage difference between drain and source.
 - □ Never turn off a transistor if there is a current through it.

COMPLEX ADIABATIC CIRCUITS

pipeline structure

- To respect the rules mentioned
 - ☐ A must not change until B has been charged and discharged
 - ☐ B must not change until C has been charged and discharged

SEPARATE DISCHARGE PATH

- Input is allowed to change before discharge phase
- Signal has no longer to propagate through whole chain and back

DISCHARGE PATH

- Never turn on a transistor if there is a voltage difference between drain and source
- Discharge ONLY when charged!
 - ☐ State (charged/uncharged) of cell F can be determined by output of following cell G via function G⁻¹
 - □ Output of following cell G controlls discharge path of F
 - ☐ G must be reversible to realize G⁻¹

DISCHARGE PATH

- Never turn on a transistor if there is a voltage difference between drain and source
- Discharge ONLY when charged!
 - ☐ State (charged/uncharged) of cell F can be determined by output of following cell G via function G⁻¹
 - Output of following cell G controlls discharge path of F
 - ☐ G must be reversible to realize G⁻¹

- Quantum Computation → Later today
- Low Power Design
- Adiabatic Circuits
- Encoders

ENCODERS

■ Complete

■ Incomplete

■ Application-specific

■ Challenges

□ ExponentialComplexity

☐ Guaranteeing one-to-one mappings

☐ Exploiting the full degree of freedom

$x_3 x_2 x_1$	$x_3x_2x_1$	$x_3x_2x_1$	$x_3x_2x_1$	$x_3x_2x_1$	Hw	$x_3x_2x_1$
000	000	000	000	000	1	001
001	101	001	_	001	0	000
010	011	010	010	010	2	011
011	111	011	_	011	3	111
100	010	100	_	100	2	\Rightarrow 110
101	100	101	001	101	1	010
110	110	110	_	110	2	101
111	001	111	_	111	1	100

$$\sum_{i=0}^{m} \binom{m}{i}$$

USING REVERSIBLE LOGIC

■ Reversible circuits: Get a 1:1 mapping "for free"!

- Challenges
 - ExponentialComplexity
 - Guaranteeing one-to-one mappings
 - ☐ Exploiting the full degree of freedom

USING REVERSIBLE LOGIC

■ State-of-the-art:

Hw $x_3x_2x_1$ $x_3x_2x_1$ 000 001000 001010011011111 100 110 101 010 110 101

111

100

Application-specific

■ Challenges

- □ Exponential Complexity
 - Guaranteeing one-to-one mappings
 - Exploiting the full degree of freedom

■ Using Reversible Logic:

USING REVERSIBLE LOGIC

QMDDs

- Challenges
- Exponential Complexity
- Guaranteeing one-to-one mappings
- Exploiting the full degree of freedom

- Quantum Computation → Later today
- Low Power Design
- Adiabatic Circuits
- Encoders
- **■** Further
 - ☐ Complete Simulation

COMPLETE SIMULATION

→ Run-time complexity: 2ⁿd

(n: number of line; d: number of gates)

EXPLOITING REVERSIBILITY

- Functional effect of single gates
- For many input pattern, single gates have no effect (only patterns with control lines set to 1)

- Reversible gates realize permutations
- If an input pattern 0000 maps to the output 0001, then 0001 also maps to 0000
 - ☐ Each gate eventually leads to an exchange of patterns

EXPLOITING REVERSIBILITY

Input patterns with effect:

 g_1 : 2 g_4 : 8

 g_2 : 16 g_5 : 16

 g_3 : 8 g_6 : 4

- Reversible gates realize permutations
- g₁: Swaps 1110 and 1111
- ...
- g₆: Swaps all pattern of the form 11-1 with corresponding pattern of the form 10-1

EXPLOITING REVERSIBILITY

<u>Input patterns with effect:</u>

*g*₁: 2

- Reversible gates realize permutations
- g₁: Swaps 1110 and 1111
- → Simulation of g₁ requires a single swap operation (compared to 16 simulation steps)

- Quantum Computation → Later today
- Low Power Design
- Adiabatic Circuits
- Encoders
- **■** Further
 - ☐ Complete Simulation
 - ☐ ATPG

TEST OF REVERSIBLE CIRCUITS

- Generate an input assignment that
 - ☐ triggers the faulty behavior (controlability)
 - □ shows the faulty behavior (observability)

 ■ In general easy for reversible circuits (except additional restrictions like constant inputs need to be considered)

DESIGN FOR TESTABILITY

- Quantum Computation → Later today
- Low Power Design
- Adiabatic Circuits
- Encoders
- **■** Further
 - ☐ Complete Simulation
 - ☐ ATPG
 - □ Verification

VERIFICATION/ EQUIVALENCE CHECKING

■ Full connectivity (verification by simulation is more promising)

Circuit	No. lines	No. gates	Runtime (conv.)	Runtime (rand. sim.)	No. pattern
alu	101	4472	> 500.00	0.03	7
avg16	274	1601	> 500.00	0.01	4
avg16	546	3297	> 500.00	0.04	3
avg8	147	860	> 500.00	0.00	2
avg16	138	753	44.54	0.00	5
apex5	240	3307	42.10	0.06	7
cps	31	2668	26.40	0.03	9
ex1010	196	2981	23.93	0.03	2
table3	109	1987	16.66	0.08	572
pdc	178	2079	14.88	0.03	83
avg8	291	1772	12.97	0.01	2

VERIFICATION/ EQUIVALENCE CHECKING

- Full connectivity (verification by simulation is more promising)
- Search space is smaller
- Reversible Miter (ff⁻¹)

VERIFICATION/ EQUIVALENCE CHECKING

- Full connectivity (verification by simulation is more promising)
- Search space is smaller
- Reversible Miter (ff⁻¹)
- XOR-richness
- Undo computations when an error occurred
- **.**..

- Quantum Computation → Later today
- Low Power Design
- Adiabatic Circuits
- Encoders
- **■** Further
 - ☐ Complete Simulation
 - ☐ ATPG
 - □ Verification

