诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《2012 级大学物理(II) 期末试卷 A 卷》试卷

注意事项: 1. 考前请将密封线内各项信息填写清楚:

- 2. 所有答案请直接答在答题纸上;
- 3. 考试形式: 闭卷:
- 4. 本试卷共 25 题,满分 100 分,考试时间 120 分钟。

考试时间: 2014年1月13日9: 00-----11: 00

一、选择题(共30分)

1. (本题 3 分)

如图所示,两个同心均匀带电球面,内球面半径为 R_1 、带有电荷 Q_1 ,外球面半径为 R_2 、带有电荷 Q_2 ,则 在外球面外面、距离球心为r处的P点的场强大小E

(B)
$$\frac{Q_1}{4\pi\varepsilon_0(r-R_1)^2} + \frac{Q_2}{4\pi\varepsilon_0(r-R_2)^2}$$
.

(C)
$$\frac{Q_1 + Q_2}{4\pi\varepsilon_0(R_2 - R_1)^2}$$
.

(D)
$$\frac{Q_2}{4\pi\varepsilon_0 r^2}$$
.

]

如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属 球壳,则在球壳中一点P处的场强大小与电势(设无穷远处为电势零 点)分别为:

(B)
$$E = 0$$
, $U < 0$.

(C)
$$E = 0$$
, $U = 0$. (D) $E > 0$, $U < 0$.

(D)
$$E > 0$$
, $U < 0$.

3. (本题 3 分)

如图,一个电荷为+q、质量为m的质点,以速度 \bar{v} 沿x轴射 入磁感强度为 B 的均匀磁场中, 磁场方向垂直纸面向里, 其范围 从x=0 延伸到无限远,如果质点在x=0 和y=0 处进入磁场,则 它将以速度 $-\bar{v}$ 从磁场中某一点出来,这点坐标是x=0和

(A)
$$y = +\frac{mv}{qB}$$

(B)
$$y = +\frac{2mv}{aB}$$
.

(C)
$$y = -\frac{2mv}{aB}$$
.

(A)
$$y = +\frac{mv}{qB}$$
. (B) $y = +\frac{2mv}{qB}$.
(C) $y = -\frac{2mv}{qB}$. (D) $y = -\frac{mv}{qB}$.

Γ

]

4. (本题 3 分)

边长为l的正方形线圈,分别用图示两种方式通以电流I(其中ab、cd与正方形共面), 在这两种情况下,线圈在其中心产生的磁感强度的大小分别为

(A)
$$B_1 = 0$$
, $B_2 = 0$.

(B)
$$B_1 = 0$$
, $B_2 = \frac{2\sqrt{2}\mu_0 I}{\pi I}$.

(C)
$$B_1 = \frac{2\sqrt{2}\mu_0 I}{\pi l}$$
, $B_2 = 0$.

(D)
$$B_1 = \frac{2\sqrt{2}\mu_0 I}{\pi l}, B_2 = \frac{2\sqrt{2}\mu_0 I}{\pi l}.$$

5. (本题 3 分)

如图,流出纸面的电流为2I,流进纸面的电流为I,则 下述各式中哪一个是正确的?

(A)
$$\oint_{I} \vec{H} \cdot d\vec{l} = 2I.$$

(B)
$$\oint_{I_0} \vec{H} \cdot d\vec{l} = I$$

(C)
$$\oint_{L_3} \vec{H} \cdot d\vec{l} = -I$$

(A)
$$\oint_{L_1} \vec{H} \cdot d\vec{l} = 2I$$
. (B) $\oint_{L_2} \vec{H} \cdot d\vec{l} = I$
(C) $\oint_{L_3} \vec{H} \cdot d\vec{l} = -I$. (D) $\oint_{L_4} \vec{H} \cdot d\vec{l} = -I$.

٦

6. (本题 3 分)

有两个线圈,线圈 1 对线圈 2 的互感系数为 M_{21} , 而线圈 2 对线圈 1 的互感系数为 M_{12} . 若 它们分别流过 i_1 和 i_2 的变化电流且 $\left| \frac{\mathrm{d} i_1}{\mathrm{d} t} \right| > \left| \frac{\mathrm{d} i_2}{\mathrm{d} t} \right|$,并设由 i_2 变化在线圈 1 中产生的互感电动

势为 ε_{12} ,由 i_1 变化在线圈 i_2 中产生的互感电动势为 i_2 ,判断下述哪个论断正确.

(A)
$$M_{12}=M_{21}$$
, $\varepsilon_{21}=\varepsilon_{12}$. (B) $M_{12}\neq M_{21}$, $\varepsilon_{21}\neq \varepsilon_{12}$.

(B)
$$M_{12} \neq M_{21}, \quad \mathcal{E}_{21} \neq \mathcal{E}_{12}$$

(C)
$$M_{12} = M_{21}$$
, $\varepsilon_{21} > \varepsilon_{12}$.

(D)
$$M_{12} = M_{21}$$
, $\varepsilon_{21} < \varepsilon_{12}$.

7. (本题 3 分)

如图, 平板电容器(忽略边缘效应)充电时, 沿环路 L_1 的磁场强 度 \vec{H} 的环流与沿环路 L_2 的磁场强度 \vec{H} 的环流两者,必有:

(B)
$$\oint_{L_1} \vec{H} \cdot d\vec{l}' = \oint_{L_2} \vec{H} \cdot d\vec{l}'.$$

(C)
$$\oint_{L_1} \vec{H} \cdot d\vec{l}' < \oint_{L_2} \vec{H} \cdot d\vec{l}'$$

D)
$$\oint_{L} \vec{H} \cdot d\vec{l}' = 0.$$

8. (本题 3 分)

边长为a的正方形薄板静止于惯性系K的Oxy平面内,且两边分别与x,y轴平行. 今 有惯性系 K' 以 0.8c (c 为真空中光速)的速度相对于 K 系沿 x 轴作匀速直线运动,则从 K'系测得薄板的面积为

(A)
$$0.6a^2$$
.

(B)
$$0.8a^2$$

(C)
$$a^2$$
.

(A)
$$0.6a^2$$
. (B) $0.8a^2$. (C) a^2 . (D) $a^2 / 0.6$. [

《2012 级大学物理 (II) 期末试卷 A 卷》试卷第 2 页 共 4 页

9. (本题 3 分) 已知一单色光照射在钠表面上,测得光电子的最大动能 540nm,那么入射光的波长是 (A) 535nm. (B) 500nm. (C) 435nm. (D) 355nm. (普朗克常量 $h = 6.63 \times 10^{-34} \text{J} \cdot \text{s}$, $1 \text{eV} = 1.60 \times 10^{-19} \text{J}$)	是 1.2 eV,而钠的红限波长是
10. (本题 3 分) 在康普顿散射中,如果设反冲电子的速度为光速的 60% 是其静止能量的 (A) 2 倍. (B) 1.5 倍. (C) 0.5 倍. (D) 0.25 倍.	,则因散射使电子获得的能量 []
 二、填空题(共30分) 11. (本题3分) 两根相互平行的"无限长"均匀带正电直线1、2,相距为 d,其电荷线密度分别为+λ₁和+λ₂如图所示,则场强等于零的点与直线1的距离 a 为 12. (本题3分) 已知某静电场的电势分布为 U=8x+12x²y-20y² (SI),则该静电场在点 	
$(1, 1, 0)$ 处电场强度 $ar{E} = _{}$ $ar{i} + _{}$ $ar{j} + _{}$	
13. (本题 3 分) 图示 BCD 是以 O 点为圆心,以 R 为半径的半圆弧,在 A 点有一电荷为+ q 的点电荷, O 点有一电荷为一 q 的点电荷. 线段 $\overline{BA} = R$. 现将一单位正电荷从 B 点沿半圆弧轨道 BCD 移到 D 点,则电场力所作的 功为	$ \begin{array}{c cccc} C & & & C \\ \hline +q & & & -q & \\ \hline A & B & O & D \end{array} $
14. (本题 3 分) 一空气电容器充电后切断电源,电容器储能 W_0 ,若此时	在极板间灌入相对介电常量为
$arepsilon_r$ 的煤油,则电容器储能变为 W_0 的	倍. 如果灌煤油时电容器一
直与电源相连接,则电容器储能将是 W ₀ 的	
15. (本题 3 分) 两个在同一平面内的同心圆线圈,大圆半径为 R ,通有电流 I_1 ,小圆半径为 r ,通有电流 I_2 ,电流方向如图,且 $r << R$. 那么小线圈从图示位置转到两线圈平面相互垂直位置的过程中,磁力矩所作的功为 ————————————————————————————————————	

16. (本题 3 分)

将一个通过电流为I的闭合回路置于均匀磁场中,回路所围面积的法线方向与磁场方向的夹角为 α . 若均匀磁场通过此回路的磁通量为 ϕ ,则回路所受磁力矩的大小为______.

17. (本题 3 分)

真空中两只长直螺线管 1 和 2,长度相等,单层密绕匝数相同,直径之比 $d_1/d_2=1/4$. 当它们通以相同电流时,两螺线管贮存的磁能之比为 $W_1/W_2=$

18. (本题 3 分)

μ子是一种基本粒子,在相对于μ子静止的坐标系中测得其寿命为 $τ_0 = 3 \times 10^{-6}$ s. 如果μ子相对于地球的速度为υ = 0. 8c (c 为真空中光速),则在地球坐标系中测出的μ子的寿命τ =秒.

19. (本题 3 分)

静止质量为 m_e 的电子,经电势差为U的静电场加速后,若不考虑相对论效应,电子的德布罗意波长 λ =

20. (本题 3 分)

在主量子数 n=3,自旋磁量子数 $m_s=\frac{1}{2}$ 的量子态中,能够填充的最大电子数是

三、计算题(共40分)

21. (本题 10 分)

在真空中一长为l的细杆上均匀分布着电荷,其电荷线密度为 λ . 在杆的延长线上,距杆的一端距离d的一点上,有一点电荷 q_0 ,如图所示. 试求该点电荷所受的电场力.

22. (本题 10 分)

如图,一半径为R的带电塑料圆盘,其中半径为r的阴影部分均匀带正电荷,面电荷密度为+ σ ,其余部分均匀带负电荷,面电荷密度为- σ 。 当圆盘以角速度 ω 旋转时,测得圆盘中心O点的磁感强度为零,问R与r满足什么关系?

23. (本题 5 分)

要使电子的速度从 $v_1 = 1.2 \times 10^8$ m/s 增加到 $v_2 = 2.4 \times 10^8$ m/s 必须对它作多少功? (电子静止质量 $m_e = 9.11 \times 10^{-31}$ kg)

24. (本题 10 分)

如图所示,有一根长直导线,载有直流电流 I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度 $\bar{\upsilon}$ 沿垂直于导线的方向离开导线.设 t=0 时,线圈位于图示位置,求

- (1) 在任意时刻 t 通过矩形线圈的磁通量 ϕ .
- (2) 在图示位置时矩形线圈中的感应电动势。

25. (本题 5 分)

已知粒子在一维无限深势阱中运动,其波函数为

$$\psi(x) = \sqrt{2/a}\sin(\pi x/a) \quad (0 \le x \le a)$$

求发现粒子的概率为最大的位置.