Santec PDL 扫描测试系统 Sample 软件说明书

2023-05-05

1. 项目概况

这是一种用于 PDL 测量的扫描测试系统的示例软件。 开发环境 Labview2017 Instrument_DLL 版本 2.5.1 STSProcess.DLL 版本 2.2.2

NI DLL 15.5 及其后继版本

2. 配置

仪器

(1) 可调谐激光器 TSL 系列(TSL-550/TSL-710/TSL-570/ TSL-770)

(2) 功率计 MPM 系列(MPM-210/210H/211/212/213/215) 这个示例软件允许您控制最多两个 MPM 主机 (MPM-210 or MPM-210H).

(3) 偏振控制器 PCU 系列(PCU-100/PCU-110)

通讯设置

可调谐激光器(TSL)控制 TSL-550/710: GPIB

TSL-570/ TSL-770: GPIB, TCP/IP, USB

*可以在源代码上更改它,分隔符初始值是 CRLF。

功率计(MPM) 控制

MPM-210/210H: GPIB, TCP/IP 和 USB

偏振控制器(PCU)控制

PCU-100: GPIB

PCU-110: GPIB, TCP/IP 和 USB

连线参照

使用 BNC 线缆连接以下部分。在使用

PCU-110

TSL-*** Trigger Output -> MPM-210H Trigger Input
PUC-110 Power Monitor -> MPM-210H TSL Monitor

如果是 PCU-100

TSL-*** Trigger Output -> PCU-100 Trigger Input
PUC-100 Trigger Output -> MPM-210H Trigger Input

如果是 PCU-110

如果是 PCU-100

图 1. 连线配置

3. 操作步骤

1) 仪器设置窗口

图 2. 仪器设置窗口

2) 功能-仪器设置-

屏幕在启动时从主窗口使用。将每个仪器的设置扩展到主窗口。

1. Form Load

从主窗体接收到与 PC 相连的 SPU (DAQ)设备号和 USB 资源(当 TSL-570 接口和 PCU-110 接口为 USB 时),并在每个 Combobox 控件中显示

2. TSL

显示 TSL 通信设置信息

3. MPM

显示 MPM 的通信设置信息,最多可用于两个主机

4. PCU

显示 PCU 的通信设置信息

5. SPU

显示 DAQ 的设备号.

6. Connect

在图 2 中设置好每个测量仪器后,按下"Connect"按钮,STS PDL Demo 软件界面如图 3 所示.

3) STS PDL 示例软件窗口

图 3. PDL 示例软件窗口

1) 怎样使用

1. 可调谐激光器设置

在扫描设置(1)框中输入扫描条件

起始波长(nm) 起始波长 停止波长(nm) 停止波长

步进波长(nm) 测量数据步进波长

扫描速度(nm/s) 扫描速度 TSL 功率 (dBm) TSL 输出功率

2. 功率计设置

在测量通道和范围框架中设置 Measurement ch (2) 和 Measurement Range (3)。 在 Measurement ch (2) 处设置功率计模块的通道。 选择多个通道时,可以同时测量被测通道(DUT)的多个设备。 在 Measurement Range (3) 处设置每次扫描的范围。 选择多个量程时,可以进行高动态范围测量。 当 DUT 的动态范围为 40dB 或更高的高动态范围时,此功能有效。 每次扫描可以测量大约 40 dB 的动态范围。 在以下条件下,

DUT的动态范围设置为60dB,

光源的输出功率设置为 8 dBm,

DUT 直接连接,无需在可调器件之间插入分路器

激光(TSL)和功率计(MPM),

Range number: 2

1st Range: Range 1
2nd Range: Range 4

3. 将设定的参数设置到每台仪器上

点击"SET(4)" 按钮后设置的参数会设置到每台仪器上。 将设置的参数传递给每个仪器类和 STS Process 类。 还设置了在 STS 过程中保留数据所需的 STS 数据结构。

TSL 设置)

功率设置: TSL Set APC Power dBm.Vi

扫描参数设置: TSL_Set_Sweep_Parameter_for_STS.Vi 设置"Sweep start"、"Sweep stop"、"Sweep Speed"、"Trigger Step"、"Trigger output mode(Step)"、"Start Mode(Trigger Standby)"、"Sweep mode(one way continuous)" 和"Sweep times(one scan)"。 至于触发步长,最小触发步长由 Sweep Speed 参数设置,并作为实际步长返回。

使用 TSL-570 时,设置触发源(波长常数)、触发输入电压极性(上升沿)、触发输出电压极性(上升沿)和触发通过(禁用)。

MPM 设置)

记录参数设置: MPM_Set_Logging_Parameter_for_STS.Vi 从自变量参数中设置平均时间、采样点和记录模式((Freerun)。 设置后的平均时间可以从 MPM _ Get_Averagin_Time.vi 中获取。

SPU 设置)

记录参数设置: SPU_Set_Sampling_Parameter_Vi 从自变量参数设置采样时间。 第 4 个 参数指定设置 TSL 时 TSL_Set_Sweep_Parameter_for_STS.Vi 返回的实际步长。

PCU 设置)

功率范围调整: PCU_Range_Adjust.Vi 设置功率范围。 在设置 TSL 的电源后调用该函数来调整对 PCU 的输入范围。

STS 流程设置)

重新缩放参数设置: PDLSTS Set Rescaling Setting.Vi

创建扫描波长一览表: STS_Make_Sweep_Wavelength_Table.Vi *1

*1:根据此表进行重新缩放。第三个参数指定设置 TSL 时 TSL Set Sweep Parameter for STS.Vi 返回的实际步长。

创建重新缩放的波长表: STS.Make_Target_Wavelength_Table.Vi *2

*2: 这是扫描测试系统重新调整输出后的波长表。

由于测量数据与信息相关联,例如测量范围和 ch,准备数据信息结构 STS Data Struct,用于传递数据进行测量。(Prepare DataST.Vi)

4. Reference 数据的测试

点击 Reference (5) 后,对每个偏振态进行扫描处理,在设置条件 1 和 2 下获取 Reference 数据。偏振态的设置顺序为 Vertical → Horizontal → Linear 45° → Right-hand circular。选择多个通道且 each channel individually (11)选中时,在 Reference (5)时

每个通道都会单独采集数据进行使用。

*设置多个功率计量程时,第一个量程可以得到 reference 数据。

5. 计算处理方法的设置

PDL Calcurate (10) 可以设置 PDL 测量期间的处理方法和数据存储条件 (Measurement (6))。 测量多个量程时,如果选中"2SOP for low power range"并执行 PDL 测量,则仅对第 1 量程以外的较低量程执行垂直和水平扫描。 如果在没有选择的情况下进行 PDL 测量,则在所有范围内进行 4 偏振态测量。 如果选中"Save of Mueller parameter"并执行 PDL 测试,则在保存数据时,根据测试的 4 偏振态数据计算的穆勒参数 m11、m12、m13 和 m14 除了正常 PDL 外,还会输出到单独的文件中 计算结果。

m11 = (Horizontal + Vertical)/2

m12 = (Horizontal-Vertical)/2

m13 = Linear 45° - m11

m14 = Right-hand circular - m11

以上为输出信息。单位为mW,但由于进行减法运算,可能会输出负值。

6. PDL 测量

点击 Measurement(6)时,PDL 在 1 和 2 中设置的条件下进行测量。如果设置了多个功率计量程,则以设置的量程数执行 Sweep 处理,并在 STS Process 类中执行数据合并处理。之后,针对每个偏振计算 IL 数据 \rightarrow 执行 PDL 计算,并将计算结果输出到 文件。一次数据的测量完成后,调用 TSL_Sweep_Stop.Vi,取消 TSL Sweep 进程(触发待机状态)。当设置一个新的扫描参数而不执行此过程时,TSL 将没有任何参数。有关扫描处理的详细信息,请参阅 4)。

7. 保存 Reference 原始数据

点击 Save Reference Rawdata (7) 后,在从 STS Process 类中读取 Reference Rawdata 时指定 STS Data Struct。保存的数据以 csv 格式保存在指定路径中。Vertical polarized light, Horizontal polarized light, Linear +45° polarized light 和 Right-hand circular polarized light 的结果保存在单独的文件中。选择多个通道且 each channel individually (11) 选中时,每个通道的 monitordata 单独保存。

8. 保存原始数据

单击 Save Rawdata (9) 时,从 STS Process 类中读取 Measurement (6) 处的测量数据。 指定 STS Data Struct 和 Rawdata 保存在 csv 文件的指定路径中。 对于每个 range 和 SOP,数据将输出到不同的 csv 文件。 range 在"Save Rawdata"按钮 (9) 旁边的文本框中指定。如果输入的 range 无效,将显示错误消息。

9. 读取 Reference 数据

读取 7.中保存的 Reference 数据,传递给 STS Process 类。 按 Vertical polarized light, Horizontal polarized light, Linear +45° polarized light 和 Right-hand circular polarized light 的顺序指定 Reference 文件。 如果读取了 SET 按钮设置的条件以外的参考文件,将显示错误消息。选择多个通道且 each channel individually(11)选中时,读取时需要每个通道有自己的 monitordata 数据。

10.点击"Zeroing"(13)对连接的 MPM 进行电回零操作。

5)扫描步骤

- 1.将 TSL 设置为扫描起始波长,并设置 MPM 的功率计量程。
- 2.将 PCU 设置相对应的偏振态。
- 3.启动 TSL 扫描并将 TSL 设置为触发信号输入待机模式。*1
- 4.MPM 开始记录。
- 5.SPU 开始记录。
- 6.发出 TSL 的软件触发。
- 7. 查询 MPM 和 SPU 的操作完成情况。 *2
- 8. 等待 TSL 的扫描完成。
- 9.将 TSL 设置为扫描起始波长。
- 10.为下一次测量执行 TSL_Sweep_Start.Vi 并启动 TSL 扫描。
- 11.从 MPM 和 SPU 中读取测量数据以及这些数据和 STS Data Struct 到 STS Process 类。

*1

在 PDL 测量中进行多量程测量时,需要多次扫描才能获取一个数据。 在第一次扫描 1 个数据时,在进行扫描处理之前调用 TSL_ Sweep_Start.Vi,开始 TSL 扫描,触发待机状态设置为起始波长。 TSL 的触发待机设置(SweepStartMode 设置)在"SET"按钮中进行。

*2

MPM 在 FreerunMode 下运行。 如果没有来自 TSL 的触发信号输入,MPM 测量将不会开始。 在本示例软件中,如果 MPM 测量在采样时间 + 2000 毫秒后仍未完成,则执行 Sweep 处理的 Sweep_Process. Vi 被编码为返回 -9999 作为错误。

6)扫描步骤

PDL 计算使用 4 偏振 IL 数据。 在执行 PDL 处理之前执行 Rescaling 处理和 IL 计算处理。

1. 目标波长列表的获取

STS_Get_Target_Wavelength_Table.vi

2. PCU 波长灵敏度数据的获取

PCU_Cal_All_SOP_Parametar.vi

将1中获取的波长表作为变量输入,将第二变量中计算的校正数据作为3维数组返回。

3. 添加 PCU 波长灵敏数据

STS_Add_PCU_CalData.vi

将 2 中获取的校正数据传递给 PDLSTS 类。

4. IL 数据的获取

STS_Get_IL_Merge_Data.vi 获取数据。 合并多个范围数据时,调用 STS_Get_IL_Merge_Data.vi。

5. PDL 计算

STS_Cal_PDL.vi

将 4 中获取的 4 个偏振态的 IL 数据传递给 Cal_PDL 函数并执行 PDL 计算。

要传递的数据是一个二维数组(SOPindex,Wavelengthindex)。

请按以下顺序输入 SOPindex。

0: Vertical, 1: Horizontal, 2: Linear 45°, 3: Right-hand circular

请注意,如果此顺序不同,则可能无法正确执行计算。 计算结果与第 2 (PDL)、第 3 (IL)、第 4 (Ilmax) 和第 5 (ILmin) 参数一起返回。 该函数是每个通道的 PDL 计算。 在计算多个通道时,传递每个对应通道的 IL 数据并执行该过程。