

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Subsidiary Level in Chemistry (WCH11) Paper 01

Unit 1: Structure, Bonding and Introduction to Organic Chemistry

Section A (multiple choice)

Question Number	Answer	Mark
1	The only correct answer is D (13, 10, 14)	(1)
	A is incorrect because this is the number of particles present in a $^{27}_{13}$ Al atom	
	B is incorrect because the number of protons and electrons are reversed	
	C is incorrect because the number of protons and neutrons are reversed	

(Total for Question 1 = 1 mark)

Question Number	Answer	Mark
2	The only correct answer is C (, 2)	(1)
	A is incorrect because the shape is that of an s orbital B is incorrect because the shape represents an s orbital and the maximum number of electrons in any orbital is 2 D is incorrect because the maximum number of electrons in any orbital is 2	

(Total for Question 2 = 1 mark)

Question	Answer	Mark
Number		1714114
3(a)	The only correct answer is $C(C_2^{2-})$	(1)
	A is incorrect because C_2^- would result in an overall charge of +1 for CaC_2	
	B is incorrect because C_2^+ would result in an overall charge of $+3$ for CaC_2	
	D is incorrect because C_2^{2+} would result in an overall charge of $+4$ for CaC_2	

Question Number	Answer	Mark
3(b)	The only correct answer is A (7.22 g)	(1)
	B is incorrect because the molar ratio used is 1:1	
	C is incorrect because the expression for moles of water is inverted	
	D is incorrect because the molar ratio used is $2CaC_2$: $1H_2O$	

(Total for Question 3 = 2 marks)

Question Number	Answer	Mark
4	The only correct answer is A ((1)
	B is incorrect because both ions are the same size	
	C is incorrect because sodium chloride is not covalent	
	D is incorrect because sodium chloride is not covalent	

(Total for Question 4 = 1 mark)

Question Number	Answer	Mark
5	The only correct answer is D (ionic, covalent, dative covalent)	(1)
	A is incorrect because there are covalent bonds within the ammonium ion	
	B is incorrect because there are ionic bonds between the ions and a dative covalent bond within the ammonium ion	
	C is incorrect because there is a dative covalent bond within the ammonium ions	

(Total for Question 5 = 1 mark)

Question Number	Answer	Mark
6	The only correct answer is B (1s ² 2s ² 2p ⁶ 3s ² 3p ¹)	(1)
	A is incorrect because the outermost electron is in an orbital closer to the nucleus (than B)	
	C is incorrect as the nuclear charge is greater (than B), but the outermost electron is in the same sub-shell	
	D is incorrect because the nuclear charge is greater (than B), but the outermost electron is in the same sub-shell	

(Total for Question 6 = 1 mark)

Question Number	Answer	Mark
7	The only correct answer is C (blue, yellow)	(1)
	A is incorrect because the chromate(VI) ion is yellow	
	B is incorrect because the copper(II) ion is blue	
	D is incorrect because the colours are reversed	

(Total for Question 7 = 1 mark)

Question Number	Answer	Mark
8	The only correct answer is B (region Q)	(1)
	A is incorrect because this is the region where particles are vaporised	
	C is incorrect because this is the region where particles are accelerated	
	D is incorrect because this is the region where particles are detected	

(Total for Question 8 = 1 mark)

Question Number	Answer	Mark
9	The only correct answer is C (five)	(1)
	A is incorrect because the molecular ions have been omitted	
	B is incorrect because the possibility of molecular ions with m/z ratio of 72 is not considered	
	D is incorrect because molecular ions consisting of $^{35}Cl - ^{37}Cl$ and $^{37}Cl - ^{35}Cl$ are considered as distinct particles	

(Total for Question 9 = 1 mark)

Question Number	Answer	Mark
10(a)	The only correct answer is C (H H C C C H H H C C C H H	(1)

Question	Answer	Mark
Number		
10(b)	The only correct answer is D (electrophilic addition)	(1)
	A is incorrect because the attacking particle is not a free radical and the reaction is not substitution	
	B is incorrect because the attacking particle is not a free radical	
	C is incorrect because the reaction is not substitution	

(Total for Question 10 = 2 marks)

Question Number	Answer	Mark
11	The only correct answer is B (two)	(1)
	A is incorrect because only the second and fourth statements are correct C is incorrect because only the second and fourth statements are correct	
	D is incorrect because only the second and fourth statements are correct	

(Total for Question 11 = 1 mark)

Question Number	Answer	Mark
12(a)	The only correct answer is B (2.19×10^4)	(1)
	A is incorrect because the % has been multiplied by 10^6	
	C is incorrect because the % has been divided by 10^4	
	D is incorrect because the % has been divided by 10^6	

Question Number	Answer	Mark
12(b)	The only correct answer is A $(6.00 \times 10^{-3} \text{ g})$	(1)
	B is incorrect because this is the mass in 400 mg of the solution	
	C is incorrect because this is the mass in 400 kg of the solution	
	D is incorrect because this is the mass in 400 tonnes of the solution	

(Total for Question 12 = 2 marks)

Question Number	Answer	Mark
13	The only correct answer is B (calcium chloride, 1.39 g, 500 cm ³)	(1)
	A is incorrect because the concentration of chloride ions is $0.100 \text{ mol } dm^{-3}$ C is incorrect because the concentration of chloride ions is $0.100 \text{ mol } dm^{-3}$ D is incorrect because the concentration of chloride ions is $0.025 \text{ mol } dm^{-3}$	

(Total for Question 13 = 1 mark)

Question Number	Answer	Mark
14	The only correct answer is D (2.41×10^{23})	
	A is incorrect because the amount of phosgene molecules used in the calculation has been divided by 4	
	B is incorrect because the amount of phosgene molecules is used in the calculation	
	C is incorrect because the number of types of atoms is used in the calculation	

(Total for Question 14 = 1 mark)

Question Number	Answer	Mark		
15	The only correct answer is D (three)	(1)		
	A is incorrect because there are only three structural isomers			
	B is incorrect because there are only three structural isomers			
	C is incorrect because there are only three structural isomers			

(Total for Question 15 = 1 mark)

Question Number	Answer	Mark		
16	The only correct answer is A (2,11)			
	B is incorrect because it does not take into account C-H bonds			
	C is incorrect because it does not take into account C-H bonds and assumes both parts of the $C=C$ bond are pi bonds			
	D is incorrect because it assumes both parts of the $C=C$ bond are pi bonds and that each carbon has only 1 C-H bond			

(Total for Question 16 = 1 mark)

Question Number	Answer	Mark
17	The only correct answer is C (W and X) (1	
	A is incorrect because only W and X will always pose a risk when stored together	
	B is incorrect because only W and X will always pose a risk when stored together	
	D is incorrect because only W and X will always pose a risk when stored together	

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Answer	Additional Guidance	Mark
18(a)(i)	 an explanation that makes reference to the following points: (there is) an (overall) increase (in first ionisation energy) as the nuclear charge / number of protons 	Ignore just 'charge increases'	(2)
	 increases (across the period) (1) but the electron removed comes from the same (main quantum) shell / level of shielding is unchanged (1) 	Allow same (main) energy level / number of (quantum) shells stays the same / number of electron shells stays the same	
		Allow subshell for shell Ignore references to atomic radius and distance from the nucleus	

Question Number	Answer	Additional Guidance	Mark
18(a)(ii)	an answer that makes reference to the following points: • 1314 (kJ mol ⁻¹) (1)	Allow any value or range or values between 1200 and 1350 (kJ mol ⁻¹)	(3)
	 as electrons pair up (in p orbital) / has a full p orbital (1) 	Allow reverse argument for M2 and M3 e.g. nitrogen has unpaired electrons / half filled subshell so less repulsion	
	 which leads to repulsion (causes a lower ionisation energy for oxygen) 	Comment: pairing of electrons in M2 could be shown via 'electrons in boxes' diagram Ignore any references to shielding	
	Alternative for M2 and M3		
	• Allow (2p3) half-filled subshell is stable (1)		
	• So oxygen loses an electron more readily to reach this configuration (1)		

Question Number	Answer		Additional Guidance	Mark
18(b)(i)	correct species in equation	(1)	$Li^{+}(g) \rightarrow Li^{2+}(g) + e^{(-)}$	(2)
	• state symbols	(1)	Accept $Li^+(g) - e^{(-)} \rightarrow Li^{2+}(g)$	
			Allow $\text{Li}^{+}(g) + e^{(-)} \rightarrow \text{Li}^{2+}(g) + 2e^{(-)}$	
			Ignore any state symbols on $e^{(-)}$	
			Accept '=' instead of '→'	
			Allow state symbols mark on any correct ionisation energy equations removing 1 electron	

Question Number	Answer	Additional Guidance	Mark
18(b)(ii)	an explanation that makes reference to the following points: (2 nd ionisation is greater because) • (second) electron removed is in a lower (main) energy level / from the inner (main) energy level (1)	Allow shell for energy level Allow second electron removed is from the 1s (orbital / shell / subshell) Allow 'first electron is removed from 2 nd shell,	(2)
	 removal of an electron reduces electron-electron repulsion causing the ion to contract OR 	2 nd electron is removed from first' Ignore 'new shell' Allow needs more energy to remove an electron from a positive ion / stronger (forces of) attraction to a positive ion / needs more energy to remove an electron as there are now more protons than electrons	
	electron removed is closer to the nucleus (1)	Allow net charge is greater / effective nuclear charge is greater / nuclear charge is greater as there are more protons than electrons Allow lower / less / low shielding Ignore just 'nuclear charge is greater'	

Question Number	Answer	Additional Guidance	Mark
18(c)(i)	an answer that makes reference to the following point: • dot-and-cross diagram	*Cl*Be*Cl* Allow all dots or all crosses	(1)
		Allow bonding electrons / electron pairs shown horizontally Do not award ions / ionic bonds	

Question Number	Answer	Additional Guidance	Mark
18(c)(ii)	an answer that makes reference to the following points:		(4)
	• linear (1)	Allow TE from (c)(i)	
	• 180° (1)	Allow TE from (c)(i) e.g. 2bp, 1lp allow 118-120, e.g. 2bp, 2lp 103 - 106	
	• 2 bond pairs / pairs of electrons (around central atom) (1)	Allow two regions of electron density Allow TE from (c)(i)	
	• (linear shape adopted to) minimise repulsion (between electron pairs) (1)	Allow maximise separation (between electron pairs) Allow 'minimise repulsion / maximise separation between bonds'	
	mark independently		

Question Number	Answer	Additional Guidance	Mark
18(c)(iii)	an answer that makes reference to the following points:		(2)
	 diagram of dimer including two arrows (1) dative (covalent bond) (1) 	CI—Be Be—CI Arrow heads in correct direction needed for M1 Ignore bond angles / shapes in diagram Accept correct dot-and-cross diagram with correct arrows Ignore just covalent (bond) / sigma bond Do not award ionic (bond)	

(Total for Question 18 = 16 marks)

Question Number	Answer	Additional Guidance	Mark
19(a)(i)		example of calculation	(2)
	• Expression for weighted mean for energy density (1)	$\frac{(92.2 \times 46.5) + (29.7 \times 7.80)}{100}$ OR	
		$(92.2\% \times 46.5) + (7.8\% \times 29.7)$	
	• calculation of energy density of sample to 2 or 3 SF (1)	= 45.190 = 45 / 45.2 (MJ kg ⁻¹)	
		Allow 45000 kJ kg $^{-1}$ / 45200 kJ kg $^{-1}$	
		Correct answer with or without working scores 2 marks	

Question Number		Answer	Additional Guidance	Mark
19(a)(ii)			example of calculation	(1)
	•	calculation of mass of sample	$0.729 \times 1500 = 1093.5 / 1094 / 1090 / 1100 (g)$	
			Do not award 1093 (g)	

Question Number	Answer	Additional Guidance	Mark
19(a)(iii)	calculation of energy released and correct units	example of calculation 1093.5 ÷ 1000 = 1.0935 45.190 × 1.0935 = 49.415 MJ Accept 49415 kJ Accept 4.9415 × 10 ⁷ J OR 1093.5 ÷ 1000 = 1.0935 38.1 × 1.0935 = 41.662 MJ Accept 41662 kJ Accept 4.1662 × 10 ⁷ J Allow TE from (i) and (ii) Allow use of rounded values from (i) and (ii) Ignore SF except 1 SF Ignore negative signs Correct answer with no working scores the mark Comment – if a value is given in (a)(i), candidat can still use 38.1 to access the mark here	

Question Number	Answer	Additional Guidance	Mark
19(b)	An answer that makes reference to three of the following points:		(3)
	(increased amount of) ethanol used could be bioethanol / ethanol sourced from plants (1)	Allow ethanol can be made from a renewable resource Ignore esterification of vegetable oils (biodiesel)	
	• from fermentation (of sugars / glucose using yeast) (1)	Allow fermentation is a low energy process	
	 reducing CO₂ emissions (overall) / (some) CO₂ released in combustion offset by CO₂ used in photosynthesis (1) 	Allow bioethanol is (nearly) carbon neutral / has a lower carbon footprint	
	• less impact on global warming / climate change (1)		
	• uses less of a finite resource (which can then be used in other processes e.g. manufacture of pharmaceuticals) (1)	Ignore 'crude oil is non-renewable'	
	• less pollution from sulfur impurities / less SO ₂ emissions (1)	Comment – allow reverse arguments in context of E5	

Question Number	Answer	Additional Guidance	Mark
19(c)(i)	An answer that makes reference to the following point: $C_6H_{14} \rightarrow C_6H_{12} + H_2$	Allow other types of correct formulae	(1)
		Allow $C_6H_{14} \rightarrow C_6H_{10} + 2H_2$	
		Allow multiples Ignore state symbols even if incorrect	

Question Number	Answer	Additional Guidance	Mark
19(c)(ii)	CH ₃	Allow skeletal, displayed or hybrid formulae mark for (c)(ii) could be evident in c(i) Allow methylcyclopentenes if C ₆ H ₁₀ is given in (c)(i) e.g.	(1)
		No TE from (c)(i)	

Question Number	Answer		Additional Guidance	Mark
19(d)(i)	An explanation that makes reference to the following points: • (to provide enough energy) to break Cl-Cl bond(s) / for			(2)
	fission of chlorine	(1)		
	• to form chlorine radicals / to form Cl•	(1)	Allow $Cl_2 \rightarrow 2Cl$ for M2	
			Accept (to form chlorine radicals) without breaking the C-H bonds (in hexane)	
			Do not award ions Do not award chloride radicals	
			Comment CI—CI — 2CI	
			Scores M1 for LHS and M2 for RHS	

Question Number	Answer		Additional Guidance	Mark
19(d)(ii)	An answer that makes reference to the following points:			(2)
	equation for propagation step	(1)	Cl + $C_6H_{14} \rightarrow C_6H_{13} + HCl$	
			$({}^{\bullet}C_{6}H_{13} + Cl_{2} \rightarrow Cl^{\bullet} + C_{6}H_{13}Cl)$	
	equation for termination step	(1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			Allow C ₆ H ₁₃ · for hexyl radical	
			Do not award if additional termination equations are shown	
			Penalise omission of unpaired electron once only	
			$\label{eq:comment} \begin{array}{l} \text{Comment} - \text{if } C_{12}H_{26} \text{ used as the reactant alkane} \\ \text{allow TE for M2} \end{array}$	
			$2C_{12}H_{25}$ \rightarrow $C_{24}H_{50}$	

(Total for Question 19 = 13 marks)

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	An answer that makes reference to the following points:	Allow displayed, structural or hybrid formulae	(4)
	• (1)	Ignore any working e.g. additional partially complete displayed formulae with a carbon chain only Ignore any names, even if incorrect	
	• (1)		
	• (1)		
	• (1)		

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)	 An explanation that makes reference to the following points: There are two different groups on each of the carbon atoms in the C=C bond / double bond (1) The C=C bond has restricted rotation / cannot rotate (so the groups are locked in position) (1) 	Allow there are two different groups on either side of the C=C bond / double bond Allow there are two different groups on opposite sides of the C=C bond / double bond Allow 'each carbon atom in the C=C bond / double bond has only 1 hydrogen' Ignore 'there are two different groups beside the C=C bond' Allow 'The C=C bond has restricted rotate'	(2)

Question Number	Answer	Additional Guidance	Mark
20(b)(i)	• E-2,3-dichlorobut-2-ene	Allow trans-2,3-dichlorobut-2-ene Ignore punctuation errors e.g. additional commas, spaces, missing hyphens etc	(1)

Question Number	Answer		Additional Guidance	Mark
20(b)(ii)	 an answer that makes reference to the following points: (the student is correct that the alkene has polar bonds, as) the C-Cl bonds are polar (1) 		Allow dipole shown on structure in stem	(3)
	 As Cl is more electronegative (than C) (1) but the molecule is not polar as it is symmetrical / has no net dipole (moment) / has an even distribution of charge 	(1)	Allow 'there is a difference in electronegativity (between C and Cl)' Allow 'the molecule is not polar as it is symmetric'	
			Allow molecule has no overall dipole Allow 'dipoles / charges cancel'	

Question Number	Answer	Additional Guidance	Mark
20(c)(i)	calculation of number of moles	Example of calculation 5.51 ÷ 204 = 0.027010 (mol) Correct answer with no working scores 1 Ignore SF except 1SF Ignore incorrect units	(1)

Question Number	Answer	Additional Guidance	Mark
20(c)(ii)		Example of calculation	(3)
	 rearrangement of ideal gas equation (1) conversion of temperature and volume to appropriate units (1) 	$n = pV \div RT$ M1 may be subsumed in M3 $423 \text{ (K)}, 1873 \times 10^{-6} \text{ (m}^3\text{)}$ Allow $423 \text{ (K)}, 1873 \times 10^{-3} \text{ (dm}^3\text{)}, 152 \text{ (kPa)}$ Allow 423.15K (which gives final answer of 0.080963)	
	• calculation of moles of hydrogen (1)	= (152 x 10 ³) x (1873 x 10 ⁻⁶) 8.31 x 423 = 0.080992 / 0.08099 / 0.0810 / 0.081 (mol) Correct answer with no working scores 1 Allow TE from M2 to M3 Ignore SF except 1SF Penalise use of 1 SF once only in (c)(i) and (c)(ii)	

Question Number	Answer	Additional Guidance	Mark
20(c)(iii)	determination of ratio between moles of α-bisabolene : moles of hydrogen and hence number of C=C bonds	Example of calculation 0.080992 ÷ 0.02701= 2.9986 , so 3 C=C bonds Allow TE from c(i) and c(ii) but must be nearest whole number Do not award non integer answers	(1)

Question Number	Answer	Additional Guidance	Mark
20(d)(i)		Allow displayed, structural or hybrid formulae	(1)

Question Number	Answer	Additional Guidance	Mark
20(d)(ii)		example of calculation	(2)
	• calculation of molar mass of repeat unit (1)	68	
		Comment – no TE from (i) as repeat unit given in stem in order to find molar mass	
	 calculation of number of repeat units as whole number (1) 	50250 ÷ 68 = 738.97 = 739 repeat units	
		Allow 738 units Allow TE from M1 to M2 for correct integer value either side of calculated value	

Question Number	Answer		Additional Guidance	Mark
20 (e)	An answer that makes reference to the following points: use of Ca(OH) ₂			(2)
	• (basic so) will neutralise HCl / SO_2 / NO_x / CO_2 (in waste gases) use of fine powder	(1)	(Allow basic) so will neutralise acids (in waste gases) Allow 'react with', 'absorb', 'capture' for neutralise in M1 Do not award CO / NO / any non-acidic gases Ignore 'prevent CO ₂ from going in to the atmosphere'	
	large surface area and to ensure fast reaction / increase rate of reaction	(1)	Ignore absorb	

(Total for Question 20 = 20 marks)

Question Number	Answer	Additional Guidance	Mark
21(a)(i)	• calculation of relative formula mass	Example of calculation $[(3 \times 58.7) + 12 + (3 \times 16) + (4 \times 17) + (4 \times 18)]$	(1)
		(=) 376.1 Ignore any units	

Question Number	Answer		Additional Guidance	Mark
21(a)(ii)	• calculation of relative formula masses of all products / reactants (1)	376.1 - Allow	ble of calculation + (3 x 142.1) = 802.4 802.1 (use of 32 for S) TE from (a)(i)	(2)
	Comment M1 can be awarded for expression $376.1 + (3 \times 142.1)$ or $(3 \times 154.8) + 106 + (4 \times 40) + (4 \times 18)$ if 802.4 not shown	(3×15) = 802.4	(4.8) + 106 + (4 x 40) + (4 x 18) 4 802.1 (use of 32 for S)	
	• calculation of atom economy (1)	Allow Allow	÷ 802.4) × 100 = 46.872 % TE from M1 (376.1 ÷ 802.1) × 100 = 46.889 % SF except 1 SF	
		Comm	t answer with some / no working scores (2) ent – M2 awarded for a percentage not for w value e.g. 0.46889 scores M1 but not M2	

Question Number	Answer	Additional Guidance	Mark
21(a)(iii)	An answer that makes reference to the following point:		(1)
	because basic nickel(II) carbonate has a giant structure / lattice structure	Allow has an ionic lattice / ionic (compound) /consists of ions	
		Allow does not consist of individual molecules	
		/ it is not molecular / it is not a (simple) molecule	

Question Number	Answer	Additional Guidance	Mark
21(b)(i)	An answer that makes reference to the following point: • electronic configuration of Ni ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ Allow [Ar] 3d ⁸	(1)
		Ignore 4s ⁰	

Question Number	Answer	Additional Guidance	Mark
21(b)(ii)	An answer that makes reference to the following point:	Ignore missing / incorrect state symbols	(1)
	• $3Ni^{2+} + CO_3^{2-} + 4OH^- + 4H_2O \rightarrow Ni_3CO_3(OH)_4 \cdot 4H_2O$		

Question Number	Answer	Additional Guidance	Mark
21(c)(i)		Example of calculation	(4)
	• conversion of volume of CO ₂ into dm ³ (1)	$150 \div 1000 = 0.15 (dm^3)$	
	• calculation of moles of CO ₂ (1)	$0.15 \div 24 = 6.25 \times 10^{-3} \text{ (mol)}$	
	• calculation of moles of XSO ₄ using ratio from equation (1)	$6.25 \times 10^{-3} \times 2 = 0.0125 \text{ (mol)}$	
	• calculation of the relative formula mass of XSO ₄ (1)	1.995 ÷ 0.0125 = 159.6 Ignore units for RFM	
	Comment Allow conversion of molar gas volume to 24000 cm ³ mol ⁻¹ and use of 150 cm ³ for M1 and M2	Allow TE throughout Ignore SF except 1 SF	
	300 01 100 0H1 101 1111 and 1112	Correct answer with some working scores (4)	
		Correct answer with no working scores M4 only	

Question Number	Answer	Additional Guidance	Mark
21(c)(ii)	• Deduction of identity of X	Example of calculation $159.6 - (32.1 + 64) = 63.5 \text{ so Cu / Cu}^{2+}$ If 159.6 given in (c)(i) then allow just Cu / Cu ²⁺	(1)
		Allow TE from (c)(i) for any element consistent with calculated RFM – 96.1 e.g. failure to multiply by 2 in (i) leads to a RFM of 319.2, which is consistent with Fr in (ii)	

(Total for Question 21 = 11 marks)

(Total for Section B = 60 marks)

Total for Paper = 80 marks