Web Retrieval & Web Mining Programming HW1

By: Wu-Jun Pei (B06902029)

§ Vector Space Model

The vector space model I use in this programming homework is **Okapi BM25**, the model the professor suggests.

• Term Frequency for term t, document d

$$TF(t,d) = rac{c(t,d)\cdot(k_1+1)}{c(t,d)+k_1\cdot(1-b+b\cdotrac{|d|}{ ext{avgDocLen}})}$$

, where c(t,d) is the frequency count for term t in document d.

ullet Inverse Document Frequency for term t

$$IDF(t) = \log rac{N - n(t) + 0.5}{n(t) + 0.5}$$

, where n(t) is the number of documents containing t.

Score for term t and document d

$$Score(t, d) = TF(t, d) \cdot IDF(t)$$

Following the suggestions on wikipedia, I set b=0.75 and tried $k_1\in\{1.2,1.6,2.0\}$. At last, I choose $k_1=2.0$ since it performs the best among the three.

About Implementation

- There's a big gap between the number of unigrams and the number of bigrams. I simply used bigrams as terms.
- Instead of calculate the document length using the document file, I collect the information from the pre-processed data inverted-file .

Reference

• Wikipedia - Okapi BM25

§ Relevance Feedback

After taking a look at ans_train.csv, I found that those answers is not really helpful to our testing set since the intersection between them is small. Thus, I simply implement Pseudo Relevance Feedback.

Implementation

Take the top K retrieved documents in the first round, calculate the centroid \vec{C}_K and add it back to our query vectors.

$$ec{q} = lpha ec{q}_0 + eta ec{C}_K$$

- Normalize both \vec{q}_0 and \vec{C}_K before adding them together.
- Choose $K \in \{10, 15\}$, $\beta \in \{0.1, 0.2, 0.3\}$
- Try to do relevance feedback for several iterations.

§ Results of Experiments

Result Table

ID	Name	k_1	Relevance Feedback	Training MAP	Public MAP	Private MAP
1	OkapiBM25-0xa0	1.2	False	0.67366	0.76497	0.72510
2	OkapiBM25-0xa1	1.6	False	0.67401	0.76815	0.73523
3	OkapiBM25-0xa2	2.0	<u>False</u>	0.67514	0.76994	0.74352
4	OkapiBM25-0xa3	2.4	False	0.67273	0.77191	0.73959
5	OkapiBM25-0xa2	2.0	K = 10, ß = 0.1	0.66396	0.77130	0.74431
6	OkapiBM25-0xa2	2.0	K = 15, ß = 0.1	0.66396	0.77130	0.74431
7	OkapiBM25-0xa2	2.0	<u>K = 10, ß = 0.2</u>	0.65258	0.77187	<u>0.74574</u>
8	OkapiBM25-0xa2	2.0	K = 15, ß = 0.2	0.65258	0.77187	0.74574
9	OkapiBM25-0xa2	2.0	K = 10, ß = 0.3	0.63628	0.76276	0.74736
10	OkapiBM25-0xa2	2.0	K = 10, ß = 0.05 5 iterations	0.64840	0.76833	0.74401
11	OkapiBM25-0xa2	2.0	K = 10, ß = 0.05 10 iterations	0.60820	0.74202	0.65424

Some notes:

- The **bold and underline** submissions are the two I selected for final score.
- The training MAP is calculated based on ans_train.csv.

About Vector Space Model

- 1. Okapi BM25 is strong enough to pass the strong baseline easily beat the public strong baseline. However, it's a little bit far from (-0.02) the private strong baseline.
- 2. Tuning the hyperparameter k_1 will not make a huge improve. Choose $k_1=2.0$ might be a relatively better choice, compared to others.

About Relevance Feedback

- 1. The relevance feedback performs much worse (-0.02) on training set but gains a little improve (+0.002) on public/private testing set.
- 2. There is no difference between choosing K=10 and K=15. The reason might be the centroid between them are so similar that the modified query vector are also

similar.

- 3. As for β , choosing either 0.1 or 0.2 will lead to similar result. However, when $\beta=0.3$, the result becomes terrible (-0.015) on training set.
- 4. I've also tried to increase the iterations to perform relevance feedback. However, the result turns out to be even worse (0.05 for 10 iterations, compared to the 7-th one).
- 5. To conclude, I think increasing K, β or number of iterations blindly will make the output less precise since the query vector has been modified too much.

§ Discussion

In this homework, I learned

- 1. Implement a VSM model, I found that a simple Okapi BM25 is a not bad model for document retrieval.
- 2. Although the model is not bad, I found it hard to improve from tuning parameters and applying relevance feedback. To improve the performance, I come up with the following ideas:
 - Use more features.
 - Besides "term frequency", what we already used. I think adding additional features will also help a lot. For example, the quality of the news resource.
 - <u>Try dimension reduction</u>.
 The large matrix TF is also a thorny problem. However, the computation complexity applying SVD might also be a big problem.
 - Change the retrieval model.
 I believe applying the state-of-the-art language model as the document encoder will also help. However, there will also be a computational overhead.