Learning Objective: PN Junction Diode Physics

Problem 1. A Silicon PN junction diode is designed to operate at T = 300 K such that the diode current is 10 mA at a forward bias diode voltage of 0.65 V. The current density is 20 A/cm² under this operating condition.

- (a) Suppose $N_D = 5 \times 10^{17} \text{ cm}^{-3}$, $N_A = 5 \times 10^{15} \text{ cm}^{-3}$, calculate the **build-in potential barrier** of the PN junction diode.
- (b) Calculate the **power consumption** of this PN junction diode.
- (c) Determine the **cross sectional area** of this diode.
- (d) Determine the reverse saturation current density of this diode.

Learning Objective: PN Junction Diode DC Analysis

Problem 2. Calculate the **diode current** and **diode reverse saturation current** at T = 300 K from the circuit shown below, under diode voltage of (a) $V_D = 0.6$ V, (b) $V_D = 0.7$ V.

Problem 3. Calculate the **diode current I**_D and **diode voltage V**_D at T = 300 K from the circuit shown below. Assume the diode D_1 is ideal. (Use $I_s = 10^{-12}$ A)

