Uniform and Accelerated Motion

<u>Data:</u>

Part 1: Uniform Motion

Time (s)	Distance (cm)		

Include a file called *uniform motion.cmbl* showing a graph of distance as a function of time.

Equation of motion, d(t), assuming $d = d_0 + vt$

Part 2: Accelerated Motion

Distance (cm)	Time (s)	Distance (cm)	Time (s)	Speed (m/s)
on ramp	on ramp	on level surface	on level surface	on level surface

Include a file called *acceleration.cmbl* showing graphs of velocity and distance as functions of time.

Equation of motion, v(t), assuming $v = v_0 + at$

Equation of motion, d(t), assuming $d = d_0 + v_0t + \frac{1}{2}at^2$

Value of the constant acceleration from the second plot: