Part 1 of final exam review problems: problems from the first part of the course

- 1. These are essential. Expect to see one or more on the final.
 - (a) State and prove the First Isomorphism Theorem for rings.
 - (b) State and prove the Second Isomorphism Theorem for rings.
 - (c) State and prove the Third Isomorphism Theorem for rings.
- 2. Let R be a commutative ring with 1 in the following. Let J be an ideal of R.
 - (a) Complete the definition: J is a maximal ideal if
 - (b) Complete the definition: J is a prime ideal if
 - (c) Prove: J is a maximal if and only if R/J is a field. Provide a direct proof, i.e. show that J is maximal implies R/J has no proper, non-trivial ideal, and use this to prove that R/J is a field. Conversely, use that R/J is a field to show that the only proper ideal of R containing J is J itself.
 - (d) Prove: If R[x] is an integral domain, then R is an integral domain.
 - (e) Prove: If R is a commutative ring with 1 and I is an ideal of R, then R/I is an integral domain if and only if R is a prime ideal.
 - (f) Show that if A is an ideal and C is a subring, then A + C is a subring of R. Show that if B, C are both subrings of R, it is not necessarily true that B + C is a subring of R. Prove that if U and V are both ideals of R, then U + V is an ideal of R. Show that if U is an ideal of R, and Y is a subring of R, then U + Y is not necessarily an ideal of R.
 - (g) Prove that if R is a PID, then for any increasing (i.e. ascending) infinite sequence of ideals $I_1 \subseteq I_2 \subseteq \dots I_k \subseteq$, there exists $m \in \mathbb{N}$ such that $I_m = I_{m+n}$ for any $n \in \mathbb{N}$.
 - (h) It is obvious that a finite ring contains maximal ideals, but this is not always the case for infinite rings. Prove that a commutative ring R with 1 contains a maximal ideal. (The crux of the argument—use that R has a 1 to show that the union of an ascending chain of proper ideals of R is also a proper ideal of R. Then apply Zorn's Lemma.)

- 3. Recall that if R is a ring, a Euclidean norm of R is a map $N: R \to \{0\} \cup \mathbb{N}$ that satisfies the following: For all $b \in R \{0\}$, and all $a \in R$, there exist elements q and r in R satisfying a = bq + r, and either N(b) > N(r) or r = 0. Prove that if R is a ring with Euclidean norm N, and $c \in R$ satisfies N(c) = 0, then c = 0 or c is a unit.
- 4. Prove that a Euclidean domain is a Principal Ideal Domain (PID).
- 5. Prove Gauss's Lemma: If $t(x) \in \mathbb{Z}$ is a monic polynomial, and t(x) is irreducible in $\mathbb{Z}[x]$, then t(x) is irreducible in $\mathbb{Q}[x]$. (Factor t(x) in $\mathbb{Q}[x]$, clear out denominators, use a prime p involved in clearing out those denominators, and after reducing modp and working $\mathbb{Z}_p[x]$, do a cancellation—I strongly suggest reviewing this proof before the final.)
- 6. Provide the following two definitions, and do the proof of the last part.
 - (a) An element $b \in R$ is **prime** if
 - (b) An element $c \in R$ is **irreducible** if
 - (c) Prove that if b is a prime element of R, then b is an irreducible element of R.
- 7. The Gaussian integers $R = \mathbb{Z}[i]$ have a Euclidean norm N given by $N(a+bi) = a^2 + b^2$. The norm N is **multiplicative**; that is, for all $\alpha, \beta \in R$, $N(\alpha\beta) = N(\alpha)N(\beta)$.
 - (a) Use the fact that N above is multiplicative to show that α is a unit of R implies that $N(\alpha) = 1$. What are the units of R?
 - (b) Now show that if $\alpha \in R$ and $N(\alpha) = p$, where p is a prime number, then α is irreducible.
 - (c) **No proof necessary.** Provide an irreducible $\gamma \in R$ such that γ is not a prime integer; then provide an irreducible $\phi \in R$ such that ϕ is a prime integer. Characterize the irreducibles of R.
- 8. You'll show $\mathbb{Z}[\sqrt{-5}]$ is not a Unique Factorization Domain. Find two factorizations of $6 = \alpha\beta$, $6 = \gamma\phi$, and show that none of $\alpha, \beta, \gamma, \phi$ is a unit, that α is not an associate of either γ or ϕ , and that β is an associate of either γ or ϕ .

9. Short answer.

(a) Provide a polynomial $b(x) = a_m x^m + \ldots + a_0 \in \mathbb{Z}[x]$ of degree m > 1 that is irreducible in $\mathbb{Q}[x]$ but is reducible in $\mathbb{Z}[x]$.

- (b) Show that (x) is not a maximal ideal in $\mathbb{Z}[x]$ by providing an ideal I of $\mathbb{Z}[x]$ such that (x) is properly contained in I, and I is properly contained in $\mathbb{Z}[x]$.
- (c) Provide a ring R, and ideals I and J of R, such that $(I \cap J) \neq IJ$.
- 10. True or false? If false, provide a specific counterexample.
 - (a) In a Principal Ideal Domain (PID) R, every irreducible element of R is a prime element of R.
 - (b) Let R be a commutative ring with 1. If R is a PID, then R[x] is a PID.
 - (c) If R is a PID, then R is a Unique Factorization Domain.
- 11. State (rigorously) Eisenstein's Criterion for irreducibility in $\mathbb{Z}[x]$.
- 12. Use Eisenstein's Criterion to show that if p is a prime number, then $\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x^1 + 1 = \frac{x^p-1}{x-1}$ is irreducible in $\mathbb{Z}[x]$. [Note: Since $\Phi_p(x)$ is monic and irreducible over \mathbb{Z} , it is, by Gauss's Lemma, irreducible in $\mathbb{Q}[x]$.]
- 13. Let F be a field. Show that the non-commutative ring $M_2(F)$, the ring of two-by-two matrices over F, has no non-trivial proper ideal.
- 14. Use the Double-Extension Lemma for vector spaces to show that if K/F is a field extension and [K:F]=p where p is a prime number, then for any $b \in K-F$, F(b)=K.
- 15. Prove that if K/F is a finite dimensional field extension, then every element of K is algebraic over F.