

EE2211 Pre-Tutorial 6

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 6

Recap

- ➤ Linear Classification
 - Binary classification
 - Multi-category classification
- ➤ Ridge regression
 - Penalty term
 - Primal and dual forms
- ➤ Polynomial Regression
 - Nonlinear decision boundary

Linear Regression

Collect Data Model and Loss Function Learning/Training: Compute y_{new} Prediction /Testing: Compute y_{new} $\frac{1}{m}\sum_{i=1}^{m}(f_{\mathbf{w},b}(\mathbf{x}_i)-\mathbf{y}_i)^2$ $\widehat{\mathbf{w}}=(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ $\widehat{\mathbf{f}}_{\mathbf{w}}(\mathbf{X}_{new})=\mathbf{X}_{new}\widehat{\mathbf{w}}$

- X: Samples
- y: Target values

- Linear or Affine function
- Squared error loss function

- Check the invertibility
- Least square approximation (leftinverse)
- Prediction for new inputs
- Testing: Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Review: Linear Regression

Learning of Scalar Function (Single Output)

For one sample: a linear model $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ scalar function

For m samples: $f_w(X) = Xw = y$

$$\mathbf{y} = \begin{bmatrix} \mathbf{x}_{1}^{T} \mathbf{w} \\ \vdots \\ \mathbf{x}_{m}^{T} \mathbf{w} \end{bmatrix} \quad \text{where} \quad \mathbf{x}_{i}^{T} = [1, x_{i,1}, \dots, x_{i,d}]$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m,1} & \dots & x_{m,d} \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} b \\ w_{1} \\ \vdots \\ w_{d} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{m} \end{bmatrix}$$

Objective:
$$\sum_{i=1}^{m} (f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2 = \mathbf{e}^T \mathbf{e} = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$

Learning/training when X^TX is invertible

Least square solution: $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Prediction/testing: $y_{new} = \hat{f}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new}\hat{\mathbf{w}}$

Linear Regression

Learning of Scalar Function (Single Output)

Objective:
$$\sum_{i=1}^{m} (f_w(x_i) - y_i)^2 = \mathbf{e}^T \mathbf{e} = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$\sum_{i=1}^{m} (f_w(x_i) - y_i)^2 = \sum_{i=1}^{m} (x_i^T w - y_i)^2 = (x_1^T w - y_1)^2 + (x_2^T w - y_2)^2 + \dots + (x_m^T w - y_m)^2$$

$$= [x_1^T w - y_1 \quad x_2^T w - y_2 \quad \dots \quad x_m^T w - y_m] \begin{bmatrix} x_1^T w - y_1 \\ x_2^T w - y_2 \\ \vdots \\ x_m^T w - y_m \end{bmatrix}$$

$$= (Xw - y)^T (Xw - y) = \mathbf{e}^T \mathbf{e}$$

Review: Linear Regression

Learning of Vectored Function (Multiple Outputs)

$$F_w(X) = XW = Y$$

Sample 1 -----
$$\begin{bmatrix} \mathbf{X}_1^T \\ \vdots \\ \mathbf{X}_m^T \end{bmatrix} \mathbf{W} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m,1} & \dots & x_{m,d} \end{bmatrix} \begin{bmatrix} w_{0,1} & \dots & w_{0,h} \\ w_{1,1} & \dots & w_{1,h} \\ \vdots & \ddots & \vdots \\ w_{d,1} & \dots & w_{d,h} \end{bmatrix}$$

Sample 1's output
$$\rightarrow$$
 $\begin{bmatrix} y_{1,1} & \cdots & y_{1,h} \\ \vdots & & \vdots \\ y_{m,1} & \cdots & y_{m,h} \end{bmatrix}$

Least Squares Regression

If $\mathbf{X}^T\mathbf{X}$ is invertible, then

Learning/training:
$$\hat{\mathbf{W}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Prediction/testing:
$$\hat{\mathbf{F}}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new}\hat{\mathbf{W}}$$

$$\mathbf{X} \in \mathcal{R}^{m \times (d+1)}$$
, $\mathbf{W} \in \mathcal{R}^{(d+1) \times h}$, $\mathbf{Y} \in \mathcal{R}^{m \times h}$

Review: Linear Regression

Learning of Vectored Function (Multiple Outputs)

Each w is associated with one output

Linear Classification

Linear Methods for Classification

Binary Classification:

If $\mathbf{X}^T\mathbf{X}$ is invertible, then

Learning:
$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}, \quad y_i \in \{-1, +1\}, i = 1, ..., m$$

Prediction:
$$\hat{f}_{\mathbf{w}}^{c}(\mathbf{x}_{new}) = \operatorname{sign}(\mathbf{x}_{new}^{T}\widehat{\mathbf{w}})$$
 for each row \mathbf{x}_{new}^{T} of \mathbf{X}_{new}

$$sign(a) = +1$$
 for $a \ge 0$ and -1 for $a < 0$.

Ref: [Book4] Stephen Boyd and Lieven Vandenberghe, "Introduction to Applied Linear Algebra", Cambridge University Press, 2018 (chp.14)

Linear Classification

Linear Methods for Classification

Multi-Category Classification:

If $\mathbf{X}^T\mathbf{X}$ is invertible, then

```
 \begin{array}{ll} \textbf{Learning:} & \widehat{\mathbf{W}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}, \quad \mathbf{Y} \in \mathbf{R}^{m \times c} \\ \textbf{Prediction:} & \hat{f}^c_{\mathbf{w}}(\mathbf{x}_{new}) = \arg\max_{k=1,\dots,c} \left(\mathbf{x}^T_{new}\widehat{\mathbf{W}}(:,k)\right) \text{ for each } \mathbf{x}^T_{new} \text{ of } \mathbf{X}_{new} \\ \end{array}
```

Each row (of i = 1, ..., m) in **Y** has an **one-hot** encoding/assignment:

e.g., target for class-1 is labelled as
$$\mathbf{y}_i^T = [1,0,0,...,0]$$
 for the i th sample, target for class-2 is labelled as $\mathbf{y}_j^T = [0,1,0,...,0]$ for the j th sample, target for class-C is labelled as $\mathbf{y}_m^T = [0,0,...,0,1]$ for the m th sample.

Recall Linear regression

Objective:
$$\widehat{\mathbf{w}} = \operatorname{argmin} \sum_{i=1}^{m} (f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2 = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$

The learning computation: $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

We cannot guarantee that the matrix $\mathbf{X}^T\mathbf{X}$ is invertible

Ridge regression: shrinks the regression coefficients *w* by imposing a penalty on their size

Objective:
$$\widehat{\mathbf{w}} = \operatorname{argmin} \sum_{i=1}^{m} (f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2 + \lambda \sum_{j=1}^{d} w_j^2$$

= $\operatorname{argmin} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$

Here $\lambda \geq 0$ is a complexity parameter that controls the amount of shrinkage: the larger the value of λ , the greater the amount of shrinkage.

Note: *m* samples & *d* parameters

Using a linear model:

$$\min_{\mathbf{w}} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$$

Solution:

$$\frac{\partial}{\partial \mathbf{w}} ((\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}) = \mathbf{0}$$

$$\Rightarrow 2\mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{X}^T \mathbf{y} + 2\lambda \mathbf{w} = \mathbf{0}$$

$$\Rightarrow \mathbf{X}^T \mathbf{X} \mathbf{w} + \lambda \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

$$\Rightarrow (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}) \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

where I is the dxd identity matrix

Here on, we shall focus on single column of output **y** in derivations in the sequel

Learning:
$$\widehat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Page 10, Lecture 5

$$\frac{d\mathbf{A}\mathbf{x}}{d\mathbf{x}} = \mathbf{A}$$

$$\frac{d(\mathbf{b}^T \mathbf{x})}{d\mathbf{x}} = \mathbf{b} \qquad \frac{d(\mathbf{y}^T \mathbf{A}\mathbf{x})}{d\mathbf{x}} = \mathbf{A}^T \mathbf{y}$$

$$\frac{d(\mathbf{x}^T \mathbf{A}\mathbf{x})}{d\mathbf{x}} = (\mathbf{A} + \mathbf{A}^T)\mathbf{x}$$

Ref: Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning", (2nd ed., 12th printing) 2017 (chp.3)

The learning computation:

$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T y$$

$$\downarrow$$

$$(X^T X)^{-1} = \frac{1}{|X^T X|} (X^T X)^* \to \frac{1}{0} (X^T X)^* \Rightarrow \widehat{\boldsymbol{w}} \to \infty$$

If X^TX is not invertible, that means its determination is 0. This causes the denominator of $(X^TX)^{-1}$ to approach 0, which in turn causes w to approach infinity, making it impossible to fit the data well.

Ridge regression: shrinks the regression coefficients w by impose penalty on their size

Objective:
$$\widehat{\mathbf{w}} = \operatorname{argmin} \sum_{i=1}^{m} (f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2 + \lambda \sum_{j=1}^{d} w_j^2$$

= $\operatorname{argmin} (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$

Regularization or penalty term or ridge term

Ridge Regression in Primal Form (when m > d)

$$(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})$$
 is invertible for $\lambda > 0$,

Learning:
$$\widehat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Prediction: $\hat{f}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new}\hat{\mathbf{w}}$

Ridge Regression in Dual Form (when m < d)

$$(\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})$$
 is invertible for $\lambda > 0$,

Learning:
$$\hat{\mathbf{w}} = \mathbf{X}^T (\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})^{-1} \mathbf{y}$$

Prediction:
$$\hat{f}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new}\hat{\mathbf{w}}$$

Linear and Ridge Regression

	Linear Regression	Ridge Regression
Over-determined system $(m > d)$	Left inverse $\widehat{w} = (X^T X)^{-1} X^T y$	Primal Form $\widehat{w} = (X^T X + \lambda I)^{-1} X^T y$
Under-determined system $(m < d)$	Right inverse $\widehat{w} = X^T (XX^T)^{-1} y$	Dual Form $\widehat{w} = X^T (XX^T + \lambda I)^{-1} y$

Noted: 1) The primal form can be used to solve under-determined system, but it is better suited for over-determined system. 2) The dual form of ridge regression is often more computationally efficient in under-determined system than the primal form.

When to Use Primal vs. Dual Form?

Ridge Regression	Matrix Inversion Size	Best for	
Primal Form $\widehat{w} = (X^T X + \lambda I)^{-1} X^T y$	$d \times d$	Over-determined system $(m > d)$	
Dual Form $\widehat{w} = X^T (XX^T + \lambda I)^{-1} y$	$m \times m$	Under-determined system $(m < d)$	

Motivation: nonlinear decision surface

- Based on the sum of products of the variables
- E.g. when the input dimension is d=2,

a polynomial function of degree = 2 is:

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2$$
.

XOR problem

$$\mathbf{x}_{1} = \begin{bmatrix} +1 & +1 \end{bmatrix}^{\mathsf{T}} \qquad y_{1} = +1 \qquad {}^{0.6}$$

$$\mathbf{x}_{2} = \begin{bmatrix} -1 & +1 \end{bmatrix}^{\mathsf{T}} \qquad y_{2} = -1 \qquad {}^{0.2}$$

$$\mathbf{x}_{3} = \begin{bmatrix} +1 & -1 \end{bmatrix}^{\mathsf{T}} \qquad y_{3} = -1 \qquad {}^{0.2}$$

$$\mathbf{x}_{4} = \begin{bmatrix} -1 & -1 \end{bmatrix}^{\mathsf{T}} \qquad y_{4} = +1 \qquad {}^{0.4}$$

$$f_{\mathbf{W}}(\mathbf{X}) = \chi_{1} \chi_{2} \qquad {}^{0.8}$$

Motivation: Nonlinear Prediction

E.g. predicting the price of the house. Suppose you have two features:

- x_1 : the frontage of house (the width of the property)
- x₂: the depth of the house.

We might build a linear regression model like this

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2$$

If we want to predict house prices, we might focus on the house or land area as key factors and create a new feature accordingly.

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2$$

depth depth

Aera

Polynomial Expansion

• The linear model $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ can be written as

$$f_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

$$= \sum_{i=0}^d x_i w_i, \quad x_0 = 1$$

$$= w_0 + \sum_{i=1}^d x_i w_i.$$

• By including additional terms involving the products of pairs of components of x, we obtain a quadratic model:

$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j.$$

2nd order:
$$f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2$$

3rd order: $f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2 + \sum_{i=1}^d \sum_{j=1}^d \sum_{k=1}^d w_{ijk} x_i x_j x_k$, $d=2$

Ref: Duda, Hart, and Stork, "Pattern Classification", 2001 (Chp.5)

Polynomial Regression Terms Table

$$C(n,r) = \frac{(n+r-1)!}{r!(n-1)!}$$
 n: input features +1
r: polynomial degree

For example, 2 input features and 4 degree, then n = 2 + 1 = 3, r = 4

$$C(3,4) = \frac{(3+4-1)!}{4!(3-1)!} = 15$$

	Degree 1	Degree 2	Degree 3	Degree 4	Degree 5
1 feature(s)	2	3	4	5	6
2 feature(s)	3	6	10	15	21
3 feature(s)	4	10	20	35	56
4 feature(s)	5	15	35	70	126
5 feature(s)	6	21	56	126	252
6 feature(s)	7	28	84	210	462
7 feature(s)	8	36	120	330	792

Generalized Linear Discriminant Function

$$\begin{split} f_{\mathbf{w}}(\mathbf{x}) &= \mathbf{w}_0 + \sum_{l=1}^d w_l \, x_l + \sum_{l=1}^d \sum_{j=1}^d w_{ij} \, x_l x_j + \sum_{l=1}^d \sum_{j=1}^d \sum_{k=1}^d w_{ijk} \, x_l x_j x_k + \cdots \\ f_{\mathbf{w}}(\mathbf{x}) &= \mathbf{P}\mathbf{w} \qquad \qquad \text{(Note: } \mathbf{P} \triangleq \mathbf{P}(\mathbf{X}) \text{ for symbol simplicity)} \\ &= \begin{bmatrix} \boldsymbol{p}_1^T \mathbf{w} \\ \vdots \\ \boldsymbol{p}_m^T \mathbf{w} \end{bmatrix} & \begin{bmatrix} \boldsymbol{w}_0 \\ \boldsymbol{w}_1 \\ \vdots \\ \boldsymbol{w}_d \\ \vdots \\ \boldsymbol{w}_{lj} \\ \vdots \\ \boldsymbol{w}_{ljk} \end{bmatrix} \\ \text{where } \boldsymbol{p}_l^T \mathbf{w} = [1, x_{l,1}, \dots, x_{l,d}, \dots, x_{l,i} x_{l,j}, \dots, x_{l,i} x_{l,j} x_{l,k}, \dots] \\ l &= 1, \dots, m; \, d \text{ denotes the dimension of input features; } \boldsymbol{m} \\ \text{denotes the number of samples} \end{split}$$

Ridge Regression in Primal Form (m > d)

For $\lambda > 0$,

Learning:
$$\hat{\mathbf{w}} = (\mathbf{P}^T \mathbf{P} + \lambda \mathbf{I})^{-1} \mathbf{P}^T \mathbf{y}$$

Prediction: $\hat{f}_{\mathbf{w}}(\mathbf{P}(\mathbf{X}_{new})) = \mathbf{P}_{new}\hat{\mathbf{w}}$

Ridge Regression in Dual Form (m < d)

For $\lambda > 0$,

Learning:
$$\hat{\mathbf{w}} = \mathbf{P}^T (\mathbf{P}\mathbf{P}^T + \lambda \mathbf{I})^{-1} \mathbf{y}$$

Prediction:
$$\hat{f}_{\mathbf{w}}(\mathbf{P}(\mathbf{X}_{new})) = \mathbf{P}_{new}\hat{\mathbf{w}}$$

THANK YOU