

Fundação Educacional de Ensino Superior de Frutal

Avenida Professor Mario Palmério nº 1000 – Bairro Universitário 38200-000 - FRUTAL - MG - Fone (34) 3423-9400 CNPJ. 06.172.537/0001-15 - Inscrição Municipal: 00113207-4

Campus Frutal

Curso de Sistemas de Informação

Semântica da Lógica Proposicional

Prof. Sérgio Carlos Portari Júnior

Índice

Índice	1
Introdução	2
Interpretação	2
Tabela da verdade	3
Significado do conectivo →	3
Casualidade e a semântica do conectivo →	4
Exemplos de interpretações de fórmulas	5
Ribliografia	5

Introdução

Um conceito fundamental na Lógica é aquele que diferencia os objetos de seu significado. Assim sendo, estudaremos a Semântica da Lógica Proposicional, onde associa-se a cada objeto sintático um significado.

Quando escrevermos uma fórmula do tipo $(P \land Q)$, dependendo do significado de P e de Q esta fórmula será verdadeira ou falsa, tendo diferentes significados semânticos.

Por exemplo: se o P significa "Está chovendo" e Q representa "A rua está molhada" teremos um resultado verdadeiro (pelo fato de estarmos utilizando o conectivo ∧) apenas quando P e Q forem verdadeiros.

Isto dependerá das condições climáticas atuais, que determinarão se as interpretações de P e Q serão verdadeiras ou falsas.

Esta interpretação será indicada por I[P] = T ou I[P] = F e por I[Q] = T ou I[Q] = F.

Interpretação

Antes de falarmos das interpretações é preciso termos sempre em mente os princípios da lógica proposicional: Toda fórmula da lógica proposicional é associada a um valor **V** ou **F** (para verdadeiro ou falso, diferentes dos símbolos proposicionais true e false, princípio do terceiro excluído); e Nenhuma fórmula é simultaneamente verdadeira e falsa (princípio da não contradição).

A interpretação de uma fórmula é feita pela função de interpretação

I: $F\acute{o}rmulas \rightarrow \{T,F\}$

Onde:

- O domínio de I é constituído pelo conjunto das fórmulas da Lógica Proposicional;
- O contradomínio (resultados) de I ∈ {T,F}
- O valor da interpretação dos símbolos de verdade da Lógica Proposicional é dado por I[true] = T e I[false] = F

Temos então a seguinte definição da interpretação de fórmulas:

Seja E uma fórmula da lógica proposicional, e I uma interpretação, então o significado I[E] é determinado pelas regras:

- E=P, onde P é um símbolo proposicional, então I[E] = I[P] e I[P] ∈ {T,F}
- Se E=true então I[E] = I [true] = T. Se E=false então I[E] = I [false] = F.
- Seja H uma fórmula, se E = ¬ H, então I[E] = F se I[H] = T e I[E] = T se I[H] = F
- Sejam H e G duas fórmulas. Se E = (H∨G) então
 - o I[E]=TseI[H]=Te/ouI[G]=T
 - o I[E]=FseI[H]=FeI[G]=F
- Sejam H e G duas fórmulas. Se E = (H∧G) então
 - I[E]=TseI[H]=TeI[G]=T
 - I[E] = F se I[H] = F e/ou I[G] = F
- Sejam H e G duas fórmulas. Se E = (H→G) então
 - o I[E] = T se I[H] = F e/ou I[G] = T
 - o I[E]=FseI[H]=TeI[G]=F
- Sejam H e G duas fórmulas. Se E = (H→G) então
 - o I[E] = T se I[H] = I[G]
 - o I[E] = F se I[H] ≠ I[G]

Fundação Educacional de Ensino Superior de Frutal - Introdução à Lógica - Sérgio Carlos Portari Júnior

Portanto, dado um símbolo proposicional P, a interpretação de P pertence ao conjunto $\{T,F\}$, em outras palavras: $I[P] \in \{T,F\}$

No entanto, qual o valor de I[P]?

Isto dependerá ao que o símbolo P se refere. Se P significa: "Hoje é segunda-feira" e se hoje realmente for segunda-feira, então I[P]=T, caso contrário, I[P]=F.

Tabela da verdade

A partir da suposição de todas as possibilidades possíveis em uma interpretação de duas fórmulas teremos condições de montar uma tabela chamada **Tabela da Verdade**.

Exemplo: Sejam H e G duas fórmulas da Lógica Proposicional. Então teremos a seguinte tabela da verdade:

Н	G	¬ H	H∨G	H∧G	$H \rightarrow G$	$H \leftrightarrow G$
Т	Т	F	Т	Т	Т	Т
Т	F	F	Т	F	F	F
F	Т	Т	Т	F	Т	F
F	F	Т	F	F	Т	Т

Observação sobre o conectivo →

Sempre devemos lembrar que um valor verdadeiro **NUNCA** poderá implicar a um valor falso, porém o contrário é totalmente admissível, ou seja, um valor falso poderá levar a qualquer outro valor (Verdadeiro ou Falso).

Demonstraremos no item a seguir estas observações.

Vamos mostrar um exemplo para demonstrar como obter os valores da tabela da verdade em uma interpretação de fórmula da lógica proposicional.

Considerando $H = ((\neg P) \lor Q) \rightarrow (Q \land P)$ a tabela da verdade associada a $H \in (Q \land P)$

Р	Q	¬ P	$\neg P \lor Q$	Q∧P	Н
T	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	F	F
F	F	Т	Т	F	F

O resultado final de H é obtido a partir da comparação dos valores que temos em $\neg P \lor Q \in Q \land P$.

A definição dos significados dos conectivos \neg , \lor , \land , \leftrightarrow estão diretamente ligados aos significados de "não", "ou", "e" e "se e somente se". No entanto, para o símbolo \rightarrow o significado não é tão fácil de ser concluído como "se…então". Observaremos a análise do estudo do caso de \rightarrow

Significado do conectivo →

Sejam H e G duas fórmulas. A fórmula H \rightarrow G possui a seguinte tabela da verdade:

Н	G	H o G
Т	T	Т
Т	F	F
F	Т	Т
F	F	Т

Esta tabela foi obtida através de I[$H \rightarrow G$].

Conforme a tabela, temos I[$H \rightarrow G$] = T quando I[H] = T e I[G] = T, o que é razoável, pois, é verdadeiro que um enunciado verdadeiro implica em outro enunciado verdadeiro.

Segundo a tabela, na segunda linha, observamos que $I[H \to G] = F$ quando I[H] = T e I[G] = F, neste caso, é falso concluir um enunciado falso a partir de outro verdadeiro. Isso fica claro se atribuirmos, por exemplo, a H e G os significados de "hoje está chovendo" e "a rua está molhada". A implicação "Se hoje está chovendo então a rua está molhada" é verdadeira, pois se H é verdadeira - "hoje está chovendo" - então, intuitivamente e necessariamente, G é verdadeira - "a rua está molhada".

Caso ocorresse H verdadeira – "hoje está chovendo" – e G falsa – "a rua não está molhada" – então a implicação "se está chovendo então a rua está molhada" – seria uma implicação falsa. Neste caso, um enunciado falso é concluído a partir de outro verdadeiro, então a implicação utilizada deve ser falsa.

A análise da terceira e quarta linha da tabela que define I[$H \rightarrow G$] não é tão direta como as acima discutidas. Nela temos I[$H \rightarrow G$] = T, dado que I[H] = F, independente do valor de I[G]. Isto justifica porque a partir de um enunciado falso, podemos concluir qualquer outro resultado. Em outras palavras, a partir de um antecedente falso, concluímos fatos verdadeiros ou falsos. Portanto a interpretação torna-se verdadeira.

Para tornar mais claro, vamos aplicar outro exemplo bem mais prático

Vamos assumir para H o significado "x é um número real maior que 10" e para G "x² é um número real maior que 100"

Então continua valendo a tabela

Н	G	$H \rightarrow G$
Т	T	Т
Т	F	F
F	Т	Т
F	F	Т

Pois podemos verificar com mais facilidade agora com o resultado das expressões matemáticas.

Se assumirmos os valores para x = 20 nas linhas 1 e 2 verificaremos que essas linhas são verdadeiras.

Porém se x = 5 nas linhas 3 e 4 podemos concluir o mesmo? X=5 então x^2 =25 e a linha 3 mostra que I[G] teria que ser verdadeira. Porém, podemos utilizar o valor -20 para exemplificar essa linha, que também é um valor real menor que 10. Então -20² = 400, o que torna a sentença verdadeira.

Casualidade e a semântica do conectivo →

Pela definição das interpretações de fórmulas com o conectivo \rightarrow , se I[G] = T, então I[H \rightarrow G] = T independente do valor de I[H]. Da mesma forma, se I[H] = F, então I[H \rightarrow G] = T independente do valor de I[G], significa que o conectivo \rightarrow não expressa a semântica da casualidade. Não é necessária a relação causa e efeito entre H e G para que se tenha I[H \rightarrow G] = T.

Suponha por exemplo que G = "o sol é redondo" e que I seja uma interpretação razoável tal que I[G] = T. Neste caso, I[$H \rightarrow G$] = T para qualquer enunciado que H possa assumir, até mesmo enunciados mais estranhos como P = "Maluf é honesto".

Portanto, concluímos que nesse caso, $I[H \rightarrow G] = T$ e que não há relação de causa e efeito entre H e G.

Fundação Educacional de Ensino Superior de Frutal – Introdução à Lógica – Sérgio Carlos Portari Júnior

Suponha agora que H = "é possível dois corpos ocuparem o mesmo lugar no espaço". Se I[H] = F, então I[H \rightarrow G] = T para qualquer enunciado de G, como por exemplo G = "a lua é redonda".

Neste caso, também não temos nenhuma relação de causa e efeito entre H e G em I[$P \rightarrow G$].

Exemplos de interpretações de fórmulas

Considere a fórmula: $H=((\neg P) \lor (\neg Q)) \rightarrow R$ e uma interpretação dada por I[P] = T, I[Q]=F, I[R]=T, I[S]=F

Para determinar o significado semântico de H conforme I, isto é, I[H], considere a tabela:

Р	Q	R	S	¬P	¬Q	¬P∨¬Q	Н
Т	F	Т	F	F	Т	Т	Т

Notamos que o resultado de I[H]=T. Para chegarmos a essa conclusão, realizamos, passo a passo, as interpretações das fórmulas semânticas. Inicialmente, interpretados os símbolos proposicionais, em seguida subfórmulas que ocorrem em H, até que finalmente obtém-se a interpretação de H.

Considere agora as fórmulas $E=((\neg P) \land Q) \rightarrow (R \lor P)$ e $H=(false \rightarrow P)$ e as interpretações I e J I[P]=T, I[Q]=F, I[R]=T, I[P₁]=F, J[P]=F, J[Q]=T, J[R]=F. No caso, I interpreta E conforme a tabela:

Р	Q	R	¬P	¬P∧¬Q	R∨P	Е
Т	F	Т	F	F	T	T

e J interpreta E conforme a tabela

Р	Q	R	¬P	¬P∧Q	R∨P	Е
F	Т	F	Т	Т	F	F

Já em relação à interpretação da fórmula H, para qualquer que seja a interpretação (I ou J nesse caso) o resultado será I[H]=T, pois o antecedente nos dois casos é *false*.

Bibliografia

SOUZA, João Nunes. Lógica para Ciência da Computação. Campus, 2002. Capítulo 1.

HÜBNER, Jomi Fred – Lógica para Computação – FURB - http://www.inf.furb.br/~jomi, acessada em 12/02/2006 – Semântica da Lógica Proposicional