Calculus (Tutorial # 7)

Integral Calculus in $\mathbb R$

- 1. True or False. Justify your answer.
 - (a) Any continuous function on closed and bounded interval in \mathbb{R} is integrable.
 - (b) Any bounded function $f:[a,b]\to\mathbb{R}$ having only a finite number of point of discontinuity in [a,b] is integrable.
 - (c) Any monotone function on any interval $[a, b] \subseteq \mathbb{R}$ is integrable.
 - (d) Improper integral of a continuous function on $[0, \infty)$ is convergent.
 - (e) If |f| is integrable on [a, b] then f is also integrable.
 - (f) Let $f:[0,1] \to \mathbb{R}$ be a function such that f(1/2) = 1 and f(x) = 0 if $x \neq 1/2$. Then f is integrable on [0,1] and $\int_0^1 f(x) \ dx = 0$.
 - (g) Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Suppose $f(x) \ge 0$, for all $x \in [0,1]$ and $\int_0^1 f(x) \ dx = 0$, then $f \equiv 0$.
 - (h) Suppose $f:[0,1]\to\mathbb{R}$ be a continuous function such that $\int_a^b f(x)\ dx=0$, for any choices of $0\leq a\leq b\leq 1$ then $f\equiv 0$.
 - (i) If the improper integral $\int_{1}^{\infty} f(x) dx$ is convergent and $\lim_{x \to \infty} f(x) = L$, then L = 0.
 - (j) $\int_0^{\pi} \sec^2 x \ dx = 0.$
 - (k) The improper integral $\int_1^\infty \frac{\sin x}{x} dx$ is convergent but not absolutely convergent.
 - (1) If $f:[a,b]\to\mathbb{R}$ is continuous, then $\int_a^b x f(x) \ dx = x \int_a^b f(x) \ dx$.
 - (m) If $f:[a,b]\to\mathbb{R}$ is continuous with $f(x)\geq 0$ for all $x\in[a,b]$, then

$$\int_{a}^{b} \sqrt{f(x)} \ dx = \sqrt{\int_{a}^{b} f(x) \ dx}$$

(n) If $f, g: [a, b] \to \mathbb{R}$ are continuous, then

$$\int_{a}^{b} f(x)g(x) \ dx = \left(\int_{a}^{b} f(x) \ dx\right) \left(\int_{a}^{b} g(x) \ dx\right).$$

(o) If $f:[a,b]\to\mathbb{R}$ is continuous, then $\frac{d}{dx}\int_a^b f(x)\ dx=f(x)$.

- 2. Sketch the region enclosed by the given curves and find its area.
 - (a) $y = 12 x^2$ and $y = x^2 6$.
 - (b) $y = \sqrt{x-1} \text{ and } x y = 1.$
 - (c) $x = y^4$, $y = \sqrt{2-x}$ and y = 0
 - (d) y = 1/x, y = x, y = x/4 and x > 0.
 - (e) $y = \tan x$ and $y = 2\sin x$ for $-\pi/3 \le x \le \pi/3$.
 - (f) $4x + y^2 = 12$ and x = y.
 - (g) $y = e^x$, $y = xe^x$ and x = 0.
- 3. Prove that the improper integrals $I_1 := \int_0^\infty \frac{\cos x}{1+x} dx$ and $I_2 := \int_0^\infty \frac{\sin x}{(1+x)^2} dx$ are convergent and $I_1 = I_2$. Which of them is absolutely convergent?
- 4. Let $f(x): [1,\infty) \to [0,\infty)$ be a decreasing function. Then prove that the improper integral $\int_1^\infty f(x) \ dx$ is convergent if and only if the series $\sum_{n=1}^\infty f(n)$ is convergent. (This is the so-called "Cauchy integral test" for convergent of series of non-negative terms.)
- 5. Given examples of continuous functions $f:[1,\infty)\to[0,\infty)$ satisfying the following.
 - (a) $\sum_{n=1}^{\infty} f(n)$ converges, but $\int_{1}^{\infty} f(x)dx$ diverges.
 - (b) $\int_{1}^{\infty} f(x)dx$ converges, but $\sum_{n=1}^{\infty} f(n)$ diverges.
- 6. Let f be a continuous function and g, h are differentiable functions on \mathbb{R} . Then find a formula for $\frac{d}{dx} \int_{g(x)}^{h(x)} f(t)dt$.
- 7. Find a function f and a number a such that

$$6 + \int_a^x \frac{f(t)}{t^2} dt = 2\sqrt{x}$$
, for all $x > 0$.

8. Let

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 2 - x & \text{if } 1 < x \le 2 \\ 0 & \text{if } x > 2 \end{cases} \quad \text{and define} \quad g(x) := \int_0^x f(t) \ dx.$$

- (a) Find an expression for g similar to the one for f(x).
- (b) Sketch the graph of f and g.
- (c) Where is f differentiable? Where is g differentiable?

9. If
$$f(x) = \int_0^{\sin x} \sqrt{1+t^2} dt$$
 and $g(y) = \int_3^y f(x) dx$, then find $g''(\pi/6)$.

10. (Gronwall's inequality) Let $f,g,h:[a,b]\to\mathbb{R}$ be non-negative continuous functions and

$$f(x) \le g(x) + \int_a^x h(t)f(t) \ dt, \quad \text{for } x \in [a, b].$$
 (1)

Then the following inequality holds:

$$f(x) \le g(x) + \int_a^x g(t)h(t) \exp\left(\int_t^x h(s) \ ds\right) dt$$
, for $x \in [a, b]$.

In particular, if $g \equiv 0$, then the function f satisfying (1) is identically zero. (**Note:** This inequality is very important in differential equations.)

11. The **error function** defined below is used in probability, statistics and engineering.

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

- (a) Show that $\int_a^b e^{-t^2} dt = \frac{1}{2} \sqrt{\pi} \left[\operatorname{erf}(b) \operatorname{erf}(a) \right]$
- (b) Show that the function $y = e^{x^2} \operatorname{erf}(x)$ satisfies the differential equation

$$\frac{dy}{dx} = 2xy + \frac{2}{\sqrt{\pi}}.$$

12. Let p and q be positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. Suppose f and g be two integrable functions on [a,b] such that both $\int_a^b |f(x)|^p dx$ and $\int_a^b |g(x)|^q dx$, are finite. Then prove the "Hölder's inequality"

$$\int_{a}^{b} \left| f(x)g(x) \right| \, dx \le \left(\int_{a}^{b} |f(x)|^{p} \, dx \right)^{1/p} \left(\int_{a}^{b} |g(x)|^{q} \, dx \right)^{1/q}$$

by completing the following steps.

- (a) Show that $|uv| \leq \frac{|u|^p}{p} + \frac{|v|^q}{q}$ for all $u, v \in \mathbb{R}$ and equality hold if and only if $|u|^p = |v|^q$.
- (b) If $\int_a^b |f(x)|^p dx = 1 = \int_a^b |g(x)|^q dx$, then $\int_a^b |f(x)g(x)| dx \le 1$.
- (c) Define $\alpha := \left(\int_a^b |f(x)|^p dx\right)^{1/p}$ and $\beta := \left(\int_a^b |g(x)|^q dx\right)^{1/q}$ then $\int_a^b \left|\frac{f(x)}{\alpha}\right|^p dx = 1 = \int_a^b \left|\frac{g(x)}{\beta}\right|^q dx$.
- (d) To complete the proof of the "Hölder's inequality" apply part (c) to the functions $\frac{f}{\alpha}$ and $\frac{g}{\beta}$.

13. A function f is defined by

$$f(x) = \int_0^{\pi} \cos t \cos(x - t) dt, \quad 0 \le x \le 2\pi.$$

Then find the minimum value of f.

14. Determine whether each of the following improper integral is convergent or divergent.

(i)
$$\int_{0}^{\pi} \frac{\sin^{2} x}{x} dx$$
 (ii) $\int_{0}^{1} \frac{\sec^{2} x}{x\sqrt{x}} dx$ (iii) $\int_{0}^{1} \frac{e^{1/x}}{x^{3}} dx$ (iv) $\int_{0}^{\infty} e^{-x^{2}} dx$ (v) $\int_{0}^{1} \frac{\log x}{\sqrt{x}} dx$ (vi) $\int_{0}^{2} x^{2} \log x dx$ (vii) $\int_{1}^{\infty} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ (viii) $\int_{1}^{\infty} \frac{\log x}{x} dx$ (ix) $\int_{-\infty}^{\infty} x^{3} e^{-x^{4}} dx$ (x) $\int_{0}^{\infty} \frac{1}{x^{2} + 3x + 2} dx$ (xi) $\int_{0}^{\pi/2} \sec x dx$ (xii) $\int_{1}^{\infty} \frac{1 + e^{-x}}{x} dx$

15. Find the values of p for which the improper integral converges and evaluate the integral for those values of p.

(i)
$$\int_{0}^{1} \frac{1}{x^{p}} dx$$
 (ii) $\int_{e^{-x}}^{\infty} \frac{1}{x(\log x)^{p}} dx$ (iii) $\int_{0}^{1} x^{p} \log x dx$ (iv) $\int_{0}^{\infty} x^{p} e^{-x} dx$ (v) $\int_{0}^{\infty} e^{px} \cos x dx$ (vi) $\int_{0}^{1} (\log x)^{p} dx$ (vii) $\int_{0}^{1} (1 - x^{2})^{p} dx$.

16. (a) If $f:[0,\infty)\to\mathbb{R}$ be a continuous function and if there are constants M and a such that $0\leq |f(t)|\leq Me^{at}$ for $t\geq 0$, then show that the improper integral

$$F(s) := \int_0^\infty f(t)e^{-st}dt \tag{2}$$

is convergent for each s > a.

(b) Suppose the improper integral $\int_0^\infty f(x) \ dx$, is absolutely convergent. Then the function F define by Equation (2) in part (a) is well-defined for each $s \ge 0$.

Remark: F(s) defined by (2) is called the **Laplace transform** of f at s.

- (c) Assume the improper integrals $\int_0^\infty f(x) \, dx$ and $\int_0^\infty f'(x) \, dx$, are absolutely convergent and suppose F(s) and G(s) denote the Laplace transform of f and f' respectively. Then show that G(s) = sF(s) F(0), for $s \ge 0$.
- 17. If $f:[0,1]\to\mathbb{R}$ is continuous, then show that

$$\lim_{n \to \infty} \frac{1}{n} \left\{ f\left(\frac{0}{n}\right) + f\left(\frac{1}{n}\right) + \dots + f\left(\frac{n}{n}\right) \right\} = \int_0^1 f(x) dx.$$

Use this to evaluate the following limits.

(a)
$$\lim_{n\to\infty} \frac{1}{n} \left[\left(\frac{1}{n}\right)^2 + \left(\frac{2}{n}\right)^2 + \dots + \left(\frac{n}{n}\right)^2 \right].$$

(b)
$$\lim_{n\to\infty} \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{n\pi}{n} \right)$$

(c)
$$\lim_{n \to \infty} \frac{1}{n} (e^{3/n} + e^{6/n} + \dots + e^{3n/n})$$