$egin{aligned} egin{aligned} e$

 Q_1 は一辺の長さが 1 の正三角形の周である . Q_2 は図のように , Q_1 を 3 つつなげてできる図形である .

 Q_n と同じ図形を 3 つ用意し , それらを $Q_n(1)$, $Q_n(2)$, $Q_n(3)$ とする . i=1,2,3 に対し , $Q_n(i)$ の左端の点を $A_n(i)$, 右端の点を $B_n(i)$, 上端の点を $C_n(i)$ としたとき , Q_{n+1} は , $B_n(1)$ と $A_n(2)$, $C_n(2)$ と $B_n(3)$, $A_n(3)$ と $C_n(1)$ がそれぞれ同一の点になるようにおいてできる図形である .

 Q_n において, A_n から線分の上を通り,一度通った点は二度通らずに B_n まで行く行き方を考える.この行き方のうち,途中 C_n を通らない場合の個数を x_n とし,途中 C_n を通る場合の個数を y_n とする.容易にわかるように, $x_n=y_n=1$ である.

- (1) x_2 , y_2 を求めよ.
- (2) x_{n+1} を x_n , y_n を用いて表せ.また, y_{n+1} を x_n , y_n を用いて表わせ.
- (3) x_3 , y_3 を求めよ.

