数据结构习题第4章

- 二维数组A中,每个元素的长度为3个字节, 行下标从0到9,列下标从0到11,则连续存 放该数组至少需要多少个字节?
- 答案: 10 * 12 * 3 = 360

- 二维数组A有4行8列,下标从0开始,存储A的起始地址为2000,每个元素用相邻的4个字节存储,试计算:
 - 存储整个数组一共需要多少个字节。
 - 数组A的最后一个元素的起始地址。
 - 按行存储时,A[2][4]的起始地址。
 - 按列存储时,A[3][2]的起始地址。

分析

2000

← 4 **→**

A(0, 0)	A(0, 1)	A(0, 2)	A(0, 3)	A(0, 4)	A(0, 5)	A(0, 6)	A(0, 7)
A(1, 0)	A(1, 1)	A(1, 2)	A(1, 3)	A(1, 4)	A(1, 5)	A(1, 6)	A(1, 7)
A(2, 0)	A(2, 1)	A(2, 2)	A(2, 3)	A(2, 4)	A(2, 5)	A(2, 6)	A(2, 7)
A(3, 0)	A(3, 1)	A(3, 2)	A(3, 3)	A(3, 4)	A(3, 5)	A(3, 6)	A(3, 7)

参考答案

补充

给出如下稀疏矩阵的三元组表表示:

$$A = \begin{pmatrix} 50 & 0 & 0 & 0 \\ 10 & 0 & 20 & 0 \\ 0 & 0 & 0 & 0 \\ -30 & 0 & -60 & 5 \end{pmatrix}$$

参考答案

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

0	0	50
1	0	10
1	2	20
3	0	-30
3	2	-60
3	3	5

作业4-3

设稀疏矩阵M_{m*n}中有t个非零元素,用三元组表的方式存储.请设计一个算法,计算矩阵M的转置矩阵N,且算法的时间复杂性为O(n+t).注意,书中给出的算法的复杂性为O(n*t)

$$A = \begin{bmatrix} 50 & 0 & 0 & 0 \\ 10 & 0 & 20 & 0 \\ 0 & 0 & 0 & 0 \\ -30 & 0 & -60 & 5 \end{bmatrix}$$

	50	10	0	-30	
A'=	0	0	0	0	
	0	20	0	-60	
	0	0	0	5	/

A[0]	0	0	50
A[1]	1	0	10
A [2]	1	2	20
A [3]	3	0	-30
A[4]	3	2	-60
A [5]	3	3	5

_			
B[0]	0	0	50
B[1]	0	1	10
B[2]	0	3	-30
B[3]	2	1	20
B[4]	2	3	-60
B[5]	3	3	5

算法的关键是求出A中元素在B中的位置

```
num = 0.
FOR i=0 TO Cols(A) DO
  FOR j=0 TO t DO (
  IF col(A[i])=i Then (
     row(B[num] \leftarrow i.
     col(B[num]) \leftarrow row(A[j]).
     value(B[num]) \leftarrow Value(A[j]).
     num \leftarrow num+1.
                        a[0]
                                        50
   i=0 j=0
                        a[1]
                                     0
                                        10
                        a[2]
                                                        3
   i=1 j=0
                        a[3]
                                     0
                                        -30
   i=2 j=0
                        a[4]
                                                        3
                                                        3
   i=3 i=0
```


算法TRANSPOSE(A. B)

TP1[初始化]

/*声明A的转置矩阵B,使得B的行数等于A的列数,B的列数等于A的行数,B中非0元素的个数等于A中非0元素的个数*/

 $n \leftarrow Rows(B) \leftarrow Cols(A)$.

Cols (B) \leftarrow Rows(A).

 $t\leftarrow Count(B)\leftarrow Count(A)$.

pos

TP3[处理三元组表] 3 **FOR** $i \leftarrow 0$ TO t-1 **DO** (3 5 $p \leftarrow col(A[i]).$ pos $k\leftarrow pos[p].$ $col(B[k]) \leftarrow row(A[i]).$ $row(B[k]) \leftarrow col(A[i]).$ $val(B[k]) \leftarrow val(A[i]).$ $pos[p] \leftarrow pos[p] + 1.$

TP3[处理三元组表] 3 **FOR** $i \leftarrow 0$ TO t-1 **DO** (3 5 $p \leftarrow col(A[i])$. pos $k\leftarrow pos[p].$ $col(B[k]) \leftarrow row(A[i]).$ $row(B[k]) \leftarrow col(A[i]).$ $val(B[k]) \leftarrow val(A[i]).$ $pos[p] \leftarrow pos[p] + 1.$

a[0]	0	0:	50
a[1]	1	0	10
a[2]	1	2	20
a[3]	3	0	-30
a[4]	3	2	-60
a[5]	3	3	5
·			
			- 0

0	0	50
0	1	10

TP3[处理三元组表] 3 **FOR** $i \leftarrow 0$ TO t-1 **DO** (3 5 $p \leftarrow col(A[i]).$ pos $k \leftarrow pos[p].$ $col(B[k]) \leftarrow row(A[i]).$ $row(B[k]) \leftarrow col(A[i]).$ $val(B[k]) \leftarrow val(A[i]).$ $pos[p] \leftarrow pos[p] + 1.$

a[0]a[1] a[2] a[3] a[4] a[5] **50**

TP3[处理三元组表] 3 **FOR** $i \leftarrow 0$ TO t-1 **DO** (5 $p \leftarrow col(A[i])$. pos k←pos[p]. $col(B[k]) \leftarrow row(A[i]).$ $row(B[k]) \leftarrow col(A[i]).$ $val(B[k]) \leftarrow val(A[i]).$ $pos[p] \leftarrow pos[p] + 1.$

a[1] a[2] a[3] a[4] a[5] **50**

a[0]

TP3[处理三元组表] 3 **FOR** $i \leftarrow 0$ TO t-1 **DO** (5 $p \leftarrow col(A[i])$. pos k←pos[p]. $col(B[k]) \leftarrow row(A[i]).$ $row(B[k]) \leftarrow col(A[i]).$ $val(B[k]) \leftarrow val(A[i]).$ $pos[p] \leftarrow pos[p] + 1.$

a[1] a[2] a[3] a[4] a[5] **50 -30** 3

a[0]

a[0]a[1] TP3[处理三元组表] 3 a[2] **FOR** $i \leftarrow 0$ TO t-1 **DO** (5 a[3] 5 $p \leftarrow col(A[i])$. a[4] pos k←pos[p]. a[5] $col(B[k]) \leftarrow row(A[i]).$ $row(B[k]) \leftarrow col(A[i]).$ $val(B[k]) \leftarrow val(A[i]).$ $pos[p] \leftarrow pos[p] + 1.$ 0

50

-30

20

-60

3

3

50

-30

-60

 试编写一个模式匹配算法,匹配过程为:先 匹配模式的首尾字符,若匹配成功,调用成 员函数Substr(取子串)来检查模式的首尾 之间的字符是否与目标的相应字符相匹配, 若匹配不成功:则进行下一次匹配。

参考答案

```
int indexOf(string s, string p)
  if (p=="") return 0;
  if ( s=="" ) return -1;
  int slen=s.size(), plen=p.size();
  for ( int i = 0; slen-i >= plen; i++) {
     if (s[i]!=p[0] || s[i+plen-1]!=p[plen-1]) continue;
     string ss=s.substr(i+1,plen-1);
     string pp=p.substr(1,plen-1);
     if (ss==pp) return i;
  return -1;
```


设模式P="abcabcacabca",请给出该模式的失败函数。

• 已知主串s="abcaabbabcabaacbacba",模式串pat="abcabaa",写出模式串的f值,并由此画出KMP算法匹配的全过程。

参考答案

• f值的计算: pat="abcabaa"

j	0	1	2	3	4	5	6
f(j)	-1	-1	-1	0	1	0	0

- KMP算法的匹配过程
- s="abcaabbabcabaacbacba"
- pat="abcabaa"

a	b	С	a	a	b	b	a	b	С	a	b	a	a	С	b	a	С	b	a
a	b	С	a	b	a	a													

j	0	1	2	3	4	5	6
f(j)	-1	-1	-1	0	1	0	0

$$s=4; p=1$$

a	b	С	a	a	b	b	a	b	С	a	b	a	a	С	b	a	С	b	a
			a	b	С	a	b	a	a										

j	0	1	2	3	4	5	6
f(j)	-1	-1	-1	0	1	0	0

a	b	С	a	a	b	b	a	b	С	a	b	a	a	С	b	a	С	b	a
				а	b	С	a	b	а	a									

j	0	1	2	3	4	5	6
f(j)	-1	-1	-1	0	1	0	0

a	b	С	a	a	b	b	a	b	С	a	b	a	a	С	b	a	С	b	a
						a	b	С	a	b	a	a							

j	0	1	2	3	4	5	6
f(j)	-1	-1	-1	0	1	0	0

s=14; p=7

a b c a a b b a b c a b a c b a c b a c b a c b a c b a c b a

返回s-m=7

j	0	1	2	3	4	5	6
f(j)	-1	-1	-1	0	1	0	0

- abcaabbabcabaacbacba
- abcabaa
- s=4 p=4
- abcaabbabcabaacbacba
- abcabaa
- s=4 p=f(3)+1=1
- abcaabbabcabaacbacba
- abcabaa
- s=4 p=f(0)+1=0 s=6 p=2
- abcaabbabcabaacbacba
- abcabaa
- s=6 p=f(1)+1=0 s=7
- abcaabbabcabaacbacba
- abcabaa

THE END