

Graph theory practical course: Exploration of metabolic networks

Paul Keller, Kolya Lettl, Franz Förster

Universität Leipzig Fakultät Mathematik und Informatik Institut für Bioinformatik

24. Feb. 2023

WP1: amino acid production per organism

Figure 1: Presence of amino acids dependent on organism and medium in the cleaned networks.

WP2: number of activated reactions

Figure 2: Proportion of active reactions (with flux) and inactive reactions. Flux calculated without compound constrains.

WP2: biomass dependence on essential compounds

Figure 3: Value of the biomass function at different limitations for import reactions of essential compounds (H2O, hydronium and phosphate are always unlimited).

WP2: activation level by compound threshold

Figure 4: Histogramm of reaction level (|flux|). All import reactions for essential compounds (except water, hydronium and phosphate) are limited to -1.

Figure 5: Histogramm of reaction level (|flux|). All import reactions for essential compounds are unlimited.

WP2: pathway enrichment test

Figure 6: Results of the hypergeometric enrichment test for 562 KEGG pathways. Background are all reactions in the glucose-amino acid graph and foreground are all reactions with flux.

WP3: component size

Figure 7: Number of connected components for each atom combined per species. Results are compared between original ATN and an ATN where all essential compounds are removed.

Figure 8: Histogram of the connected components sizes. Results are compared between original ATN and an ATN where all essential compounds are removed.

WP3: endpoint analysis

Figure 9: Number of endpoints (compounds not used in further reactions) compared between the species. Results are compared between original ATN and an ATN where all essential compounds are removed.