学校代码: 10564

分 类 号: F830

学 号: 201631240

密级:

碰着激素大學 研 士 学 位 论 文

基于随机森林回归的国债期货价格预测

王 锋

第一指导教师: 陈标金 副教授

第二指导教师: 杨 科 教授

学院 名称 经济管理学院

专业学位类别: 金融硕士

领 域: 金融产品设计与农

产品期货

答辩委员会主席: 蔡键 讲师

中国•广州

2018年6月

华南农业大学 毕业论文原创性声明

本人郑重声明: 所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。

作者签名:	日期:
毕业论	文版权使用授权书
本毕业论文作者完全	全了解学校有关保留、使用毕业论文的规定,
即:研究生在校期间论为	文工作的知识产权单位属华南农业大学。学校
有权保存并向国家有关部	部门或机构送交论文的复印件和电子版,允许
毕业论文被查阅或在校园	园网上发布并供校内师生和与学校有共享协议
的单位浏览(除在保密期	用内的涉密论文外); 学校可以公布毕业论文的
全部或部分内容,可以分	允许采用影印、缩印或其它复制手段保存、汇
编毕业论文。本人电子对	文档的内容和纸质论文的内容相一致。
作者签名:	旦期:
导师签名:	日期:

毕业论文提交同意书

本	x 毕业论文符合国家和	1华南农业大学 3	关于研究生毕业的	伦文的相关
规定,	达到毕业答辩要求,	同意提交。		
导师签名	:	日期:		

摘 要

随着人工智能进入人们的视野,越来越多的投资者将机器学习和证券市场投资结合在一起,以期获得良好的收益。随机森林是机器学习中用于分类和回归的重要工具。本文将 5 年期国债期货指数(代码 TF0000,以下简称 TF 指数)投资分析转化成一个学习问题,运用 2013 年 9 月 6 日(5 年期国债期货上市日)到 2015 年 12 月 31 日的 TF 指数日收盘价共 564 个数据对技术指标和宏观经济指标进行筛选,然后再利用筛选后的指标运用随机森林回归模型对 2016 年 1 月 1 日至 2017 年 10 月 31 日的 TF 指数日收盘价共 445 个数据进行预测。本文所作的主要工作有:

- 一、通过基于分形理论的 Hurst 指数对 TF 指数进行检验,发现 TF 指数并非有效,因而根据市场有效假说,技术分析和基本面分析在这个市场均有其用武之地。
- 二、选择几种常见的技术指标,用指标筛选集挑选出每种 TF 指数技术指标在历史上表现较好的参数;同时筛选出与 TF 指数指标筛选集数据相关性较高的宏观经济指标。
- 三、分别将技术指标和技术与宏观指标结合这两种形式直接作为输入变量,通过随机森林回归对 TF 指数的收益率进行预测;再通过主成分分析(PCA)压缩输入变量的维数,通过随机森林回归对 TF 指数的收益率进行预测,这样我们得到了4个模型。

四、对上述每个模型,我们分别将 GARCH 模型计算出来的波动率和通过普通方差计算的历史波动率(波动率都以 σ 表示)乘以常数 k 得到以 k σ 作为阈值,一旦预测结果大于阈值 k σ ,就买入指数,并一直持有头寸,直至预测的结果小于阈值 k σ 便 卖出平仓;一旦预测结果小于阈值-k σ ,就卖空指数,并一直持有头寸,直至预测的结果大于阈值-k σ 便买入平仓。

模型的结果显示,从预测值相对与真实值的误差(RMSE 和 MAE)来看,技术指标结合宏观经济指标作为随机森林回归输入变量总要优于仅仅使用技术指标,这也许可以归功于模型输入变量所包含的信息相对更多,同时也说明了基本面分析对于债券分析的重要性;再者,输入变量经过 PCA 的处理并不一能减少预测误差,这也印证了文献综述中提到的随机森林不用考虑多元回归中所涉及到的多重共线性问题,在随机森林模型中我们甚至可以加入几千个自变量。

模型的结果也显示,从利用相关交易信号进行实际投资的效果(以年化夏普比率 为衡量标准)来看,技术指标结合宏观经济指标作为随机森林回归输入变量的实际投

资效果总要优于仅仅使用技术指标。这与从预测值相对与真实值的误差(RMSE 和MAE)分析的结果类似。但是,与误差分析结果不同,输入变量经过 PCA 的处理能在一定程度上改善实际投资效果。

本文的创新之处是: 在检验 TF 指数有效性的时候通过滚动窗口验证,增强了检验结果的可靠性;将随机森林回归方法和 TF 指数预测相结合;把宏观经济指标和技术指标结合起来一起作为随机森林回归输入变量,输出变量不是简单的"涨""跌"分类,而是具体的收益率;不仅探索模型预测的精确度,而且通过特定的阈值过滤信号来进行投资,回测模型用于真实投资的有效性。

关键词: 宏观经济指标; 技术指标; 国债期货价格; 机器学习; 随机森林

Prediction of TF Index Based on Random Forest Regression

Wang Feng

(College of Economics and Management, South China Agricultural University, Guangzhou 510642, China)

Abstract: With the artificial intelligence coming into the people's vision, more and more investors will combine machine learning and securities market investment in order to obtain good returns. Random forest is an important tool for classification and regression in machine learning. This paper regards the 5-year Treasury bond futures index (code:TF0000) into a learning issue, using the TF index day closing price from September 6, 2013 (the offering day of 5-year Treasury futures market) to December 31, 2015,totally 564 samples, were used to select technical indicators and macroeconomic indicators, and then the selected indicators was used to forecast 445 test sets, the TF index daily closing price, from January 1, 2016 to October 31, 2017. The main work of this paper is:

- 1.We find that the TF index market is inefficient by the Hurst index based on the fractal theory. Therefore, according to the market effective hypothesis, technical analysis and fundamental analysis are useful in this market.
- 2.We select several common technical indicators, with the indication selection set to select their parameters which have the best performance in the history. We also select some macroeconomic indicators which have a high correlation with the TF index.
- 3. By using sole indicators and the combination of technical and macroeconomics indicators as input variables, we forecast the yield of TF index through random forest regression. Furthermore, the dimension of input variable is compressed by principal component analysis (PCA). Therefore, we get four models in total.
- 4.For each of the models above, we multiply the volatility calculated by the GARCH model and the historical volatility calculated by the ordinary variance (the volatility is expressed by $^{\sigma}$) by the constant k to be k^{σ} as the threshold. Once the prediction result is greater than the threshold k^{σ} , we buy the TF index and the position is held until the predicted result is less than the threshold k^{σ} . Once the forecast is less than the threshold -k $^{\sigma}$, we short the TF index and the position is held until the predicted result is greater than

the threshold - $k\sigma$.

The results show that from the view of the error between prediction and the real value(judging by RMSE and MAE), technical indicators combined with the macroeconomic indicators work better than sole technical indicators. This may be attributed to the relatively more information contained in the model, and the importance of fundamental analysis to bond investment. Moreover, the processing of input variables by PCA does not necessarily reduce the prediction error, and this also confirms a statement mentioned in the literature review that we need not consider multiple regression multicollinearity problems involved in the random forests model, and sometimes we can even input thousands of independent variables into the model.

The results also show that from the view of investment according to the prediction (annualized Sharp ratio), technical indicators combined with the macroeconomic indicators work better than sole technical indicators. This is similar to the results of the analysis of the error (judging by RMSE and MAE). However, different from the error analysis results, the input variables can improve the investment to a certain extent through PCA processing.

The innovation of this paper is using rolling windows to test whether the TF index market is efficient, which enhances the reliability of the test results. And we originally combine the random forest regression and the TF index forecasting, We combine the macroeconomic indicators and technical indicators as input variables, and the output variable is not a simple "up" or "down" classification, but a specific rate of return. Finally, we not only explore the accuracy of the model forecast, but also test whether it makes sense in real investment through a specific threshold filter signal.

Key words:5-year Treasury Bond Futures Index;Random Forest Regression; Technical Indicators;Macroeconomic Indicators

目 录

1 绪论1
1.1 选题背景及研究意义1
1.1.1 量化投资与技术指标、宏观经济指标的结合1
1.1.2 研究意义
1.2 文献综述 3
1.2.1 市场有效性的检验 3
1.2.2 技术指标与证券投资 4
1.2.3 宏观经济指标对国债市场的影响5
1.2.4 人工智能与金融经济学研究6
2 理论基础11
2.1 市场有效性假说
2.2 随机森林原理与随机森林预测模型11
2.2.1 随机森林的原理12
2.2.2 随机森林回归
2.2.3 随机森林的优点
3 国债期货市场有效性检验15
3.1 Hurst 指数原理
3.2 Hurst 指数对 TF 指数有效性检验 16
4模型的输入变量筛选以及处理输入变量的方法18
4.1 技术指标选取
4.1.1 技术指标介绍
4.1.2 技术指标及参数选取结果19
4.2 宏观经济指标选取
4.2.1 各种相关系数定义
4.2.2 宏观指标筛选结果
4.3 主成分分析
4.4 GARCH 模型 30
5 国债期货价格预测效果实证分析
5.1 预测的计算机程序设置
5.2 预测的模型设置
5.2.1 模型一: 使用技术指标的随机森林回归模型
5.2.2 模型二: 使用技术指标和宏观经济指标的随机森林回归模型 36
5.2.3 模型三: 使用技术指标并用主成分分析的随机森林回归模型 38
5.2.4 模型四: 使用技术指标和宏观经济指标并用主成分分析的随机森林回归模型40
5.3 预测结果分析42
5.3.1 预测结果误差分析43
5.3.2 利用预测值进行投资的获利结果回测43
6 各模型夏普比率比较结论与建议45
6.1 结论
6.2 建议
致谢47

参考	文献	f	49
附录	: A:	TF 指数数据	54
附录	В:	本文所用宏观经济数据(%)	77
附录	: C:	各技术指标指标筛选集参数回测结果	81
附录	D:	本文所用代码	88

1 绪论

1.1 选题背景及研究意义

近年来,中国对于持续深入金融开放的信号在不断加强。2017年底,中美两国元首在北京会晤期间,两国在经济领域达成一系列共识,其中金融业开放的一揽子计划更是令人瞩目。目前,中国是世界上为数不多的在证券、银行和保险行业对外资存在持股比例限制的国家之一,人民币国际化也才刚刚开始。随着金融业开放计划的落地,证券、银行和保险行业等领域对外资准入限制的放宽,中国需要不断推进跨境资本的流动、汇率市场化和利率市场化的进程,为不断开放的金融市场提供强有力的保障。

随着中国金融业开放的不断深入、利率市场化的不断推进,许多市场主体需要有效的风险利率管理。对于商业银行而言,在资产端、负债端、债券承销、债券交易等各个环节都需要管理利率风险;对于企业而言,利率波动的加大对其融资成本带来了一定程度的影响;对于投资者而言,各类金融资产的价格或收益会因为利率的变化而起伏波动。因此,随着利率市场化的推进,越来越多的市场主体开始关注国债期货市场,国债期货指数也越发成为市场的焦点。

在 20 世纪 70 年代,作为一种新型的金融衍生产品,国债期货正式诞生于美国。在当时两次"石油危机"的大背景下,美国金融市场波动严重,利率波动频繁,各市场主体有了越来越强烈的规避利率风险的需求。1976年1月,国际货币市场 IMM 推出3月期国库券期货合约,这是历史上第一个国债期货合约。中国曾在 20 世纪 90 年代推出过国债期货,可惜受制于当时的市场状况,如发生了"327"等违规事件,国债期货的发行未能持续。在利率市场化不断推进的大背景下,2013年,在中国金融期货交易所,投资者期盼已久的 5 年期国债期货正式挂牌上市,中断了 18 年的中国国债期货品种重回中国金融市场的舞台。

为了更好地规避利率波动风险以及获得更高的投资收益,各市场主体需要运用各种分析方法、工具对国债期货指数或其收益率进行预测。

1.1.1 量化投资与技术指标、宏观经济指标的结合

投资者在证券投资中使用了多种分析方法,其中影响最深远的主要有两类:基本面分析法和技术分析法。

技术分析的研究对象是市场价格等信息,投资者通过这些信息判断市场走势并企图跟踪这种走势的变化,进而产生证券投资的策略。技术分析法主要围绕证券价格和

成交量构造一系列的统计指标供投资者进行分析,其运用有三大假设前提:一是市场行为包容消化一切信息,二是价格以趋势方式波动,三是历史会重演。

基本面分析的研究对象是经济数据,包括上市公司会计数据以及宏观经济数据等, 投资者根据这些数据决定投资策略。这些经济数据包括宏观经济面、公司主营业务及 公司所处行业等相关数据。对于国债期货的投资而言,一般我们所讲的基本面分析是 指对宏观经济面的分析。

近些年来,随着互联网时代的到来以及计算机技术的蓬勃发展,"量化投资"这一概念越来越受到投资者的关注。量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在西方发达资本市场,量化投资已经发展了近半个世纪,市场投资者对量化投资的概念越来越认可,并大量投资于使用这种方法的基金,这使得量化投资市场的规模不断扩大。对于中国投资者而言,随着互联网技术和人工智能运用的普及,量化投资这一概念并不新鲜,但中国量化投资基金的发展尚处于初级阶段,很多投资策略也以模仿发达市场的已有策略为主。

量化投资可以和技术分析以及基本面分析所需的数据结合起来,使得投资者对于 股票的分析趋于量化,对于投资标的更加心中有"数"。

与量化投资紧密相连的另外两个概念是"人工智能"和"机器学习"。机器学习是用数据或以往的经验,以此优化计算机程序的性能标准(Alpaydin(2004)),机器学习是人工智能的核心,是使计算机具有智能的根本途径。最近几年,谷歌研发的人工智能机器人 AlphaGo 在与世界围棋大师柯洁等人的对决中有着不俗的变现,靠的就是"深度学习",即多层的人工神经网络的训练,而多层神经网络,就是机器学习的一种方法。越来越多的机构和个人投资者都收集技术分析和基本面分析所需的数据,并将这些数据进行量化分析,通过机器学习的方法,如决策树、朴素贝叶斯、逻辑斯谛回归和神经网络等来获取投资的买卖信号,以期在金融市场中取得更高的投资收益。

1.1.2 研究意义

本文运用机器学习中的随机森林回归模型,结合技术分析和基本面分析的数据指标作为该模型的输入变量,对中国 5 年期国债期货指数 (TF 指数)的收益率进行预测(由于 5 年期国债期货指数于 2013 年上市,其上市日期先于 10 年期国债期货指数,交易数据内容也更为丰富,因而本文的研究对象为 5 年期国债期货指数);并通过特定的阈值过滤买卖信号(利用历史数据获得)来进行投资,然后使用年化夏普比率等指标来检验该模型用于真实投资的有效性,以期对 TF 指数的量化投资者有参考

价值,同时在利率市场化的大背景下,方便各个市场主体对利率风险进行管控。

1.2 文献综述

1.2.1 市场有效性的检验

证券价格,如股价、期货价格是否可以为投资者所预测?从金融市场诞生以来,人们对于这个问题的争论就从未停止过。Bachelier(1900)率先提出证券价格服从随机游走模式,Osborne(1964)进一步验证并肯定了这一说法。Samuelson(1965)和Mandelbrot(1966)用随机游走的相关理论解释了预期收益理论中的公平游戏原则,从而实现了市场价格从服从随机游走模式向有效市场的转变。Fama(1965,1970)在随机游走模型的基础上提出了"有效市场假说"(EMH:efficient-market hypothesis),这一假说认为证券价格已经充分反映所有与之相关的信息。但是随后行为金融学不断发展,这一学派研究了很多现代金融学无法解释的异常现象。行为金融学代表人物、诺贝尔经济学奖得主 Shiller(1981)认为证券价格在短期内无法被预测,但人们可以判断证券价格的运行趋势。

大批学者对券市场有效与否进行了实证研究,研究的方法种类繁多,如自相关性研究法、游程检验、单位根检验以及事件研究法等。有学者用分形市场理论来研究证券市场价格的运动,他们把证券市场看作一个复杂并且具有交互作用和自适应性的系统。Edgar E Peter(1994)率先提出了分形市场假说,该假说认为市场是一个非线性的动力系统,这有别于有效市场认为价格服从随机性高斯运动的假设基础。Edgar E Peter 通过应用由英国科学家 H• E• Hurst 提出的 R/S 分析指标——一种非常稳健的无参数统计方法,发现了标普 500 指数和道琼斯指数的收益率曲线存在"自相似性"。

用 R/S 方法求 Husrt 指数的文献数不胜数,在对股票市场的研究方面,Cajueiro 和 Tabak(2004)用 R/S 分析方法,针对拉丁美洲和亚洲等新兴国家股票市场指数,计算时变 Hurst 指数,他们发现大部分新兴市场的股票指数随着时间的推移变得越来越有效。Cajueiro 和 Tabak(2008)用 R/S 和 V/S 方法检验全球股票市场指数的收益率和波动率的长程相关性,结果表明新兴市场比成熟市场在资产收益率方面具有更长的长程相关性,但波动率并不如此。

国内也有不少学者使用分形理论来验证股票市场的有效性,徐龙炳和陆蓉(1999) 对沪深两市进行 R/S 分析,得到的结论是沪深股市的 Hurst 值均为 0.6 左右,即 A 股 两市的指数都具有记忆性, 苑莹和庄新田(2008)用经典 R/S 分析, 修正 R/S 分析、 DFA 方法及 Hurst 指数等统计方法也得出了相似的结论。叶中行和曹奕剑(2001)计算了中国上海股市的 Hurst 值, 并认为沪市并非有效市场。

在对商品市场的研究方面,Alvarez-Ramirez(2002)用 R/S 分析研究证明了国际原油价格存在长期记忆性。Lixia Liu(2011)将 R/S 指标等方法用于研究和建立纽约石油期货价格预测模型。黄光晓和陈国进(2006)采用 R/S 法对伦敦金属交易所铜期货价格进行研究,结果表明伦敦铜期货价格具有长期记忆性。

国内对商品市场的研究方面,孙伟(2010)采用 R/S 法研究大连期货交易所的大豆期货价格的有效性,研究结果表明大豆期货价格波动并非随机游走,而是具有持久性走势。此外,针对中国农产品期货市场,唐衍伟等(2005)和李锬等(2006)均利用 R/S 法分别研究了价格波动的长程相关性,以及价格的非周期循环长度和价格持久性。

但是 R/S 方法很少用于检验国债期货市场的有效性,本文将通过 Hurst 指数来检验中国 5 年期国债期货指数是否有效。在 Hurst 指数检验市场是否有效的问题中,许多文章都只使用一个时间窗口来计算 Hurst,本文将综合比较不同长度滚动时间窗口的日数据 Hurst 指数,从而确保结果的准确性和鲁棒性。

1.2.2 技术指标与证券投资

自从 1886 年查尔斯道(Charles Henry Dow)创立道琼斯指数(Dow Jones Industrial Average, DJIA)以来,投资者便可以根据更多的历史数据对证券市场进行研究和判断。随后,威廉江恩(William D.Gann)从周期性的维度上分析了市场时间与价格的联系;艾略特创造性的提出了波浪和股价变动的关系;随着计算机技术的发展,更多的技术指标不断被提出,诸如 MA 技术指标(移动平均线)、MACD(指数平滑异同平均线)、RSI 技术指标(相对强弱指标)、KDJ(随机指标)和 WMS(威廉指标)等被广泛运用于证券市场投资的分析研究中。

针对技术分析如何用于股票市场的投资,外国学者首先做出很多重要的研究工作。Treynor J L 和 Ferguson R. (1985)验证了利用证券过去的市场价格及其他相关信息,可以通过技术分析方法来取得超额收益。Brock. W,Lakonishok. J 和 LeBaron (1992)检验了美国股票市场主要技术分析手段 FMA、TRB 和 VMA 的有效性,研究结果发现利用这些技术分析方法进行投资,其收益在统计上是显著的。Blume,Easley 和 O'hara (1994)研究了股票成交量对股票价格的影响,结果发现股票成交量的历史时

间序列对未来股票价格走势有预测作用。Park and Irwin(2007)的文献综述发现, 95 篇实证文献中有 56 篇的结论支持技术分析法可以获得超额收益,仅 20 篇文献持反 对意见。

国内学者对此也有许多研究,陈胜荣(2001)发现投资者通过运用形态分析、量价理论和移动平均线等技术分析方法,均可以在股市投资中获得超额收益。马向前、刘莉亚和任若恩(2002)通过构建股票收益率的双因素模型,发现政策面因素是影响中国股票市场的首要因素,技术面次之,影响最小的则是股票自身的基本面原因。陈卓思、宋逢明(2006)利用中国沪深两市 1233 只股票的历史数据,研究了技术分析中支撑线和压力线,实证结果显示压力线和支撑线在对中国股票市场的投资中有利用价值。何铮(2013)认为在中国股市,把基本面与技术面结合起来对股票进行分析具有十分重要的意义。周铭山等人(2013)发现均线策略在 A 股市场中能够获得超额收益率。

但是,目前国内缺乏对于期货或国债投资的技术分析研究,如邢天才等(2008) 以大豆期货合约作为研究对象,验证技术分析中区间突破策略的有效性,实证结果显示区间突破策略是有效的,且投资者选择中期区间突破策略的投资收益率最高。总之,许多研究表明技术分析有助于提高投资者在证券市场中的投资效益,本文将验证技术分析指标对提高中国 5 年期国债期货指数投资绩效的作用。

1.2.3 宏观经济指标对国债市场的影响

一般认为,宏观经济因素对国债价格或收益率有着重要影响,许多学者对此作出了研究。Piazzesi 和 Eric Swanson(2008)使用 1988 至 2003 的数据研究发现,宏观经济变量和金融市场变量(包括国债、公司债券的利差和就业增长率等)均会影响债券的收益率,如非农业工人工资增长率数据可用于预测联邦基金期货合约的超额收益率。Sydney C. Ludvigson 和 Serena Ng(2009)通过动态因子分析,在一百余个经济指标中挑选出对债券价格有显著影响的指标,研究结果认为股市指数、利率和物价水平等变量可以用于对债券风险溢价的预测。Duffee (20011)研究了对债券市场有显著影响的潜在变量,发现短期经济变量,如经济增长率和通货膨胀率会影响债券的收益率,因此可以用这些变量对债券收益率进行预测。Serena Ng 和 Sydney C. Ludvigson(2009)研究发现可以用估计出来的 CPI 因子对 2 年期债券的超额收益率进行解释,CPI 对其近年的超额收益率具有很强的解释力。Altavilla etc. (2017)发现宏观经济意外会对债券收益率产生持续影响,它虽然仅能解释债券收益率日变化的十分之一,但能解释债券收益率产生持续影响,它虽然仅能解释债券收益率日变化的十分之一,但能解释债

券收益率季度变化的三分之一。

国内的研究方面, 汪军红(2006) 采用单位根(ADF) 方法研究经济指标对国债 收益率的影响,研究结果发现中国债市与股市两者间具有较强的相互替代性,股市价 格的不断下跌能在很大程度上解释债市价格持续不断上涨。颜伟(2010)分析 2002 年 至 2010 年的月度数据,发现国债价格与各宏观经济变量之间存在长期稳定的协整关 系,其中,通货膨胀率对国债价格有良好的预测作用,股价在短期内能在很大程度上 解释国债价格的波动。董莉莎和朱映瑜(2011)运用面板数据模型,研究宏观经济变 量与国债的关系,实证结果发现官方利率和国债风险溢价水平之间的关系较弱;广义 货币供应量 M2 与国债超额收益之间呈显著正相关:上证综指月度收益率以及工业增 加值与国债超额收益间分别均呈显著负相关。王拓和杨宇俊(2011)研究了不同偿还 期限的国债指数收益率,通过 VAR 等模型考察经济变量对其影响程度的大小,结果 发现利率和货币供应量对国债价格波动的解释程度小于股价指数和物价水平;在各个 宏观经济因素中,利率变量则对短期国债价格波动解释程度最大,而股票市场变量对 长期国债价格的影响最大。胡晋铭和胡列曲(2013)发现交易所国债价格取决于流动 性效应、收入效应、替代效应和名义价格效应,其中流动性效应和替代效应对交易所 国债价格的波动影响更为显著。尚玉皇等人(2015)发现 GDP 和通货膨胀对我国中 长期国债收益率影响较大: 丁志国等人(2016)发现消费者信心指数变化率、M2 增 长率的自然对数、生产者价格指数变化率(PPI)以及城镇居民失业率等变量可以提 高国债收益率的拟合和预测效果。

从各类文献的研究来看,对国债价格有较大影响的宏观经济因素基本可以归结为两大类:通货膨胀类和经济增长类。因此本文将运用经济增长和通货膨胀两类指标作为预测国债指数的输入变量。其中,在通货膨胀类指标中,本文采用了为市场投资者所熟知的 CPI 和 PPI 指标。在经济增长类指标中,本文采用了克强指数。2007 年,时任辽宁省省委书记李克强在接受《经济学人》采访时表示,他倾向于用三个指标来度估计辽宁省的经济发展状况:工业用电量、铁路运货量和金融机构中长期贷款量。从此以后,媒体将这三个变量的组合称为"克强指数","克强指数"被认为是反映中国经济发展状况风向标。本文在经济增长方面的变量由克强指数的三个组成成分:铁路货运量、耗电量和银行贷款发放量组成。从数据的可得性方面考虑,本文用 M2 代替银行贷款发放量。

1.2.4 人工智能与金融经济学研究

随着全球证券市场的发展和成熟,许多学者利用各类模型试图对证券价格进行预测以便获利,这些预测模型大致可以分为两类,一类是传统的统计预测模型,如自回归滑动平均模型 (Auto Regressive Moving Average,ARMA 模型) 和自回归异方差模型 (Auto Regressive Conditional Heteroscedasicity,ARCH 模型) 及它们的衍生扩展模型。另一类可归纳为机器学习方法,包括 K 近邻分类模型、神经网络模型 (Artificial Neural Networks, ANNs)、支持向量机模型 (Support Vector Machine, SVM) 和随机森林(Random Forest, RF)等。

1.2.4.1 K 近邻方法与金融经济预测

KNN 方法又叫 K 近邻方法,这是一种是由 Cover 和 Hart(1967)提出的基本分类与回归方法。其基本工作原理是首先假设给定一个训练数据集,其类标签已知,然后计算每个给定标签的样本数据到待分类数据之间的距离,根据距离待分类实例的 K 个最近的已知标签的训练实例的类别,通过多数表决的方式进行预测,得到最终的预测结果。

不少学者对 KNN 方法在金融市场价格预测方面有所研究,如国内的刘晓莹(2015) 提取影响股票价格的指标,并将这些指标降维后采用 KNN 分类对新的属性特征进行学习,进而预测股票价格趋势。王波和程福云(2015)运用改进的 KNN 算法,通过回测股票历史数据并建模以及预测,实证结果表明这种方法对于股票价格走势的预测是有效的。王晴和朱家明(2017)对比了加权 KNN 算法和传统 KNN 算法的预测结果的误差,并认为改进的 KNN 算法在对汇率的预测中更加准确。

国外的研究方面,Qian B 和 Rasheed K (2007)认为通过 KNN 结合决策树和神经网络等方法,可以提高对道琼斯工业平均指数的预测精确度。Alkhatib K 等(2013)预测了约旦股票市场中 6 个主要上市公司的股价,实证发现 KNN 算法预测误差小且预测结果具有鲁棒性。

KNN 方法具有简单好用、对异常值不敏感等优点,但同时也有缺点,比如当样本的分组不均匀的时候,如某个类别的样本容量很大,远大于其他类别,那么在输入新样本的时候,该样本的 K 个邻居中大容量类的样本占多数,从而影响预测精确性。

1.2.4.2 支持向量机与金融经济预测

Vapnik (1996) 基于统计学习理论基础提出了支持向量机(Support Vector Machine, SVM)这种算法在回归模型中表现出杰出的性能。SVM 的原理是将输入空间映射到高维特征空间,在高维空间中,它通过解决限制条件的二次优化问题得到能够分开两类

数据的最优超平面。

国外很多学者运用 SVM 对金融价格进行预测,Trafalis 和 Ince(2000,2008)认为在对股价的预测方面,SVM 比 MLP 和 ARIMA 更加精确。Tay 和 Cao(2001)以标准均方误差等指标作为衡量标准,发现相比于神经网络模型,SVM 在预测金融时间序列数据时更准确。Huang等(2005)采用 SVM 和 BP 神经网络、线性判别分析(LDA)、二次判别分析(QDA)等方法预测日经 225 指数的周指数,发现 SVM 准确率更高。Tay 和 Cao(2001)等人首先利用显著性分析和遗传算法改进了 SVM 模型使得其训练速度和预测精确度都有所提高。

从 21 世纪初起,中国学者才逐步开始对于 SVM 的研究,杨一文和杨朝军(2005) 利用支持向量机模型对上证指数的走势进行预测,结果较为精确。汤凌冰和盛焕烨(2009)将小波分析与 SVM 结合起来,并构建了小波支持向量机模型,通过这个模型预测金融资产收益波动,展现出良好的性能。吴江和李太勇(2010)提出了使用加权支持向量机进行金融价格预测,并验证了这一加权方法可提高原有支持向量机模型预测的精度。赛英和张凤廷(2013)用粒子群优化的线性核函数支持向量机模型预测了 A 股股指期货价格。

SVM 能解决高维度数据的处理问题,同时也让使用者免受神经网络结构选择以及局部极小点问题的困扰,但是在使用这一模型时,需要对模型参数进行调节,而且使用者必须谨慎选择核函数来处理,使用不同的核函数结果可能会有很大区别。

1.2.4.3 神经网络与金融经济预测

人工神经网络用于模仿大脑的处理能力去实现特定的用途。它将人脑进行抽象, 并用于数据的处理,是一种高度智能化的数学模型。

在采用神经网络进行预测方面,Lapedes A和 Farber R(1987)为开拓者,他们用非线性神经网络对计算机生成的时间序列数据进行训练和预测。White(1988)最早使用神经网络进行金融预测,他的预测标的是 IBM 股票的日收益率,但由于神经网络易陷入极小值,因此该预测没有得到理想的效果。Mizuno,Kosaka和 Yajima(1998)使用人工神经网络对东京股票市场进行预测,平均预测准确率为 63%。Gencay(1996)比较了神经网络算法和线性回归模型对股市的预测,发现神经网络的预测更准确。

国内研究方面,中科院于上世纪 60 年代最早提出了神经网络模型,该模型采用矩阵法进行描述。吴成东和王长涛(2002)采用基于模糊理论的神经网络算法预测 A股股价,发现准确率很高。王上飞和周佩玲(1998)使用神经网络结合滚动窗口进行

训练,预测了 IBM 的股票价格,这一做法在降低神经网络模型的误差值方面起到良好的作用。杨奎河等(2003)将样本数据中与因变量有着一定函数映射关系的自变量,用来作为新预测模型的自变量,提高了神经网络的预测准确度。

尽管人工神经网络具备能充分逼近复杂非线性关系等优点,但其计算需要大量的参数,而且使用者不能知晓模型的学习过程,模型的输出结果难以通过逻辑进行解释,这些缺点对模型预测结果的可信度造成了负面影响;而且人工神经网络模型学习时间相对较长,可能影响使用者的工作效率。

1.2.4.4 随机森林模型与金融经济预测

随机森林(Random Forest)是 Breiman(2001)提出的一种统计学方法,这种方法在金融领域应用在不断发展,其在性能特征上有很多优点: Kampichler 等(2010)比较了多种机器学习模型,结果发现随机森林模型的预测效果通常都是最好的;Breiman(2010b)认为随机森林模型具有优异的特性,该模型不需要考虑多元回归模型中所涉及到的多重共线性问题,甚至还可以加入数千个输入变量;黄衍和查伟雄(2012)比较了支持向量机和随机森林的分类性能,在使用支持向量机模型时,有必要对数据进行预处理,而如果使用随机森林模型,则无需进行数据预处理。

随机森林在金融分析的应用方面, Kumar. M 等(2006)将数据挖掘中的分类技术用于预测新兴市场的股票指数和标普指数的变化方向。

国内的研究方面,刘微等(2008)利用随机森林模型,在对基金重仓股的市场指标和财务指标进行分析的基础上,构建了重仓股的预测模型。王志红等(2009)利用随机森林模型,在常用的评价指标基础上建立了基金评级模型。方匡南等(2010)选取随机森林、支持向量机、自回归移动平均和随机游走方法分别预测 2006 年 12 月至2008 年 10 月基金裕隆收益率的涨跌,结果发现相对于另外几种预测方法,随机森林的准确率显著较高。曹正凤等(2014)分别使用 A 股两个行业股票的涨跌进行分类,结果发现分类的正确率均在75%以上。王淑燕等(2016)挑选了200 只 A 股股票数据,并使用随机森林模型预测这些股票涨跌情况,取得较好效果。

随机森林回归模型也应用于经济预测方面,徐戈和张科(2014)选择了邻里环境、建筑特征和区位特征三大类共计 21 项特征变量,并以此为基础构建了房价格评估的随机森林回归模型,对广州市天河区某区域二手房产进行了价格评估。陈世鹏和金升平(2016)根据 2012 年襄阳的房贷数据,尝试通过影响房价的各种特征变量建立随机森林回归模型,并比较了经典的多元线性回归模型及 ARMA 模型预测的房价和实

际房价,结果发现随机森林回归模型具有更好的预测性能。

相对其他人工智能的机器学习方法,随机森林具有不少优势,它能够处理很高维度的数据;在建立随机森林模型时,对一般误差采用无偏估计,模型泛化能力比较强; 而且随机森林模型对于分布不均衡的数据可以平衡误差。总体而言,随机森林在高维度金融数据的预测中具有相当的优越性,因此本文将使用随机森林方法来进行研究。

现有文章使用随机森林对证券资产价格的预测,主要集中在价格或收益率方向的 预测(涨或跌),鲜有学者将随机森林回归和国债期货指数方面的分析相结合,本文 将对此作出尝试。

2 理论基础

2.1 市场有效性假说

证券价格是否可以为投资者所预测?从金融市场诞生以来,人们对于这个问题的争论就从未停止过。Bachelier(1900)率先提出证券价格服从随机游走模式,Osborne(1964)进一步验证并肯定了这一说法。Samuelson(1965)和 Mandelbrot(1966)用随机游走的相关理论解释了预期收益理论中的公平游戏原则,从而实现了市场价格从服从随机游走模式向有效市场的转变。Fama(1965, 1970)在随机游走模型的基础上提出了"有效市场假说"(EMH: efficient-market hypothesis),这一假说认为证券价格已经充分反映所有与之相关的信息。这一假说包含了三种形式的资本市场:

- (一)弱式有效市场:证券价格已经充分反映所有过去的历史信息,包括成交量、成交价,融资金额、卖空金额等。因此如果市场是弱式有效的,那么证券价格的技术分析将失去作用,而基本分析则可以帮助投资者获得超额利润。
- (二)半强式有效市场假说:证券价格已经充分反映出所有已公开的信息,比如成成交量、成交价、公司盈利资料、公司盈利预测值、公司的管理状况以及其它公开披露的财务信息等。如果投资者能迅速获得以上这些信息,股价会马上作出反应。因此如果市场是半强式有效的,那么利用基本面分析预测证券价格将失去作用,而内幕消息可能帮助投资者获得超额利润。
- (三)强式有效市场假说:证券价格已经充分地反映了所有关于公司营运的信息,包括已公开的或内部未公开的信息(内幕信息)。因此如果市场是强式有效的,那么没有任何分析方法能帮助投资者获得超额利润,即使知道内幕消息的投资者也一样。

根据市场有效假说,如果我们通过数据检验得到国债期货市场并非有效,我们便可以将基本面分析法和技术分析法运用在这一期货品种上。

2.2 随机森林原理与随机森林预测模型

决策树模型是一个树状结构模型,这棵"树"中的每个内部节点都代表一个属性上的测试,每支"树枝"表示一个测试输出,每片"树叶"节点表示一个类别。根据输出内容的不同,决策树又分为分类树和回归树,其中分类树输出的内容是分类变量(序数),而回归树输出的是连续变量(基数)。基于决策树的思想, Breiman 和 Cutler提出了随机森林,利用大量分类树的综合提升了预测的准确程度。与决策树类似,随机森林模型也可用在分类和回归的建模。

2.2.1 随机森林的原理

随机森林分类模型有许多决策树分类模型 $\{h(X,\Theta_k),k=1...\}$,同时参数 $\{\Theta_k\}$ 是满足独立同分布的随机向量,在自变量 X 确定的条件下,每棵决策树都拥有一票来选择最优分类结果。随机森林分类模型的基本原理是:一开始在原始训练集里使用 bootstrap 法抽取 k 个样本;然后,分别对抽取的 k 个样本,构建 k 个决策树模型,每个模型对应一种分类结果,这样一来,就会产生 k 种分类结果;最后,按照这 k 种分类结果对每个记录进行投票并决定其最终的分类,其逻辑过程如下图所示。

图 2.1 随机森林的原理

随机森林模型通过抽取不同的样本,进而建构不同训练集来加大不同分类模型之间的差别,最终提高组合分类模型外推和预测的能力。经过 \mathbf{k} 轮训练,我们可以获得分类模型序列 $\{h_1(X),h_2(X),...,h_k(X),\}$,再用这个序列构成一个多分类模型系统,这个系统最终分类结果由简单多数投票决定 。最终的分类决策如下:

$$H(x) = \arg \max_{Y} \sum_{i=1}^{k} I(h_i(x) = Y)$$
 (1)

其中, H(x)是组合分类模型, h_i 是单个决策树分类模型, Y 为输出变量, $I(\circ)$ 为示性函数。式(1)表明使用多数投票法确定最终分类。

2.2.2 随机森林回归

随机森林回归通过自助法 bootstrap, 由随机向量(即回归树)构成组合模型

 $\{h(X,\theta_k)\}$,这个模型把数值型变量作为因变量(预测变量),生成多元非线性回归的随机森林模型。这些树 $\{h(X,\theta_k)\}$ 关于 k 取的均值形成对模型的预测。这个模型需满足一个条件:由相互独立的训练集形成随机森林。选自随机向量 Y,X 数值型预测向量 h(X) 的推广误差均方为 $E_{X,Y}(Y-h(X))$ 。

随机森林回归有如下这些特性:

(1) 当随机森林中树的数目趋向于无穷大时,几乎处处有

$$E_{X,Y}(Y-av_kh(X,\theta_k))^2 \to E_{X,Y}(Y-E_\theta h(X,\theta))^2 \quad \text{where} \quad A_{X,Y}(Y-E_\theta h(X,\theta))^2$$

因此,随机森林的回归函数为: $E_{\theta}h(X,\theta)$,在实际操作过程中,经常采用充分大的 k 情形下的近似公式: $Y = av_k h(X,\theta_k)$ 来代替。此时误差分析如下:

用 PE^* 表示随机森林的泛化误差,则一棵决策树的平均泛化误差为:

$$PE^*(tree) = E_{\theta}E_{XY}(Y - h(X, \theta))^2$$

若对于所有的 θ ,都有 $E(Y) = E_k h(X, \theta)$,则

$$PE^*(tree) \le \overline{\rho}PE^*(tree)$$

其中 $\bar{\rho}$ 是 $Y-h(X,\theta)$ 与 $Y-h(X,\theta')$ 余项间的加权相关系数, θ 和 θ' 相互独立。

这说明了随机森泛化误差要比树的泛化误差降低了 $\bar{
ho}$ 倍,而引入随机化变量 θ 的目的就是降低 $\bar{
ho}$ 。

随机森林回归原理流程图如下:

图 2.2 随机森林回归的原理图

2.2.3 随机森林的优点

(1) 在采用参数回归模型时,使用者需要提前设定回归模型的函数形式,而且

无论函数如何复杂,很多时候总是难以精准地拟合实际的非线性关系;相比而言,随机森林模型则能够克服其他参数回归模型的这一缺点。

- (2)随机森林模型在处理多个分类变量的问题时具有较为良好的性能。在神经网络模型或者上文提到的参数回归模型里,许多定性变量会增加估计参数的数量,过多的参数估计往往会导致模型的过度拟合;相比而言,在随机森林模型中,一类的名义变量可用一个叉树来记录,且只用其中的一部分来建立随机树,这能够大大减少模型的过度拟合问题。
- (3)因为我们使用 bootstrap 法来构建随机森林模型,所以异常值对结果不会产生太大的负面影响。随机森林模型比较了每个解释变量的残差平方和的平均边际减少,因此具有衡量各个变量重要性的功能。

3 国债期货市场有效性检验

3.1 Hurst 指数原理

分形在我们生活的世界里广泛存在。在自然界中,某种形状通过自身的不断反馈,在不同的尺度上会产生自相似的现象;在社会科学中,经常有学者感慨:历史在不断重复,这种历史的重复实际上就是社会活动在时间维度上的分形自相似。在证券市场中,也有分形自相似现象。证券价格的波动是一个非线性的演变过程,而分形理论又是非线性理论中较常用的理论;同时,分形理论中的计算过程和思维方式都给解决证券价格问题提供非常有效的参考,因而我们可以用分形理论来研究证券价格变化的问题,也即是说证券价格的年度、季度和月度等数据走势图在不同的时间尺度上可能存在非常类似的现象。学术界尚未明确这种分形自相似现象的根本机制,但许多学者认为这可能是市场在反馈机制下形成的,导致价格不断近似地重复已有的走势。

英国科学家 H. E. Hurst 发现用分形布朗运动能够更好地描述非洲尼罗河水库的 贮存能力,他按照这一研究的思路提出了用重标极差(R/S)法来建立赫斯特指数(H),并将这一指标用于判断时间序列数据更符合随机游走还是有偏的随机游走。其计算方式如下。

考察时间序列 X_t ,i=1,2..., n, $\forall j \in \{i | i=1,2,...$, $n\}$, 定义:

均值
$$< X >_{t_i} = \frac{1}{j} \sum_{i=1}^{j} X_{t_i}$$

积累离差
$$a(t_i, t_j) = \sum_{k=1}^{i} (X_{t_k} - \langle X \rangle_{t_j}) = i(\langle X \rangle_{t_i} - \langle X \rangle_{t_j}), i = 1, 2, ..., j$$

极差
$$R(t_j) = \max_{1 \le i \le j} a(t_i, t_j) - \min_{1 \le i \le j} a(t_i, t_j)$$

标准差
$$S(t_j) = \frac{\sum_{i=1}^{i} (X_{t_i} - \langle X \rangle_{t_j})}{t_j} = \frac{\sum_{i=1}^{i} X_{t_i}^2 - (2j-1) \langle X \rangle_{t_j}^2}{t_j}$$

Hurst 指数 H
$$\frac{R(t_j)}{S(t_j)} \propto t_j^H, j = 1,2,3...,$$
 n

$$\operatorname{ED} \log \frac{R(t_i)}{S(t_i)} = H \log t_j + C$$

对上式子可以用最小二乘法拟合求得 Hurst 指数 H.

根据一组时间序列数据求出 Hurst 指数,可用于预测该时间序列数据的走势,而且 Hurst 指数有一个很大的优点,即在计算 Hurst 指数时,不需要假设原始数据符合某种分布。对于 Hurst 指数:

- 1、H=0.5,则表明时间序列遵循随机游走模式,序列中各数据相互独立,相关系数等于0,现在的数据走势并不影响未来的数据走势,这通常表明证券市场是有效的;
- 2、0.5〈H〈=1,则表明时间序列中各数据间呈正相关关系,时间序列走势将表现出持久性,如果一个时间段的数据保持向上(下)趋势,那么紧接着的下一个时间段的数据将继续保持向上(下)趋势,H 越接近 1,这种持久性越强,也就是说,这一个时间点的数据将永久地影响未来出现的数据。这种持久性,使得时间序列在不同的时间尺度上有类似的统计特性,这通常表明证券市场并非有效。
- 3、0=〈H〈0.5,则表明时间序列数据之间呈现负相关关系,时间序列走势将表现出反向持久性,如果一个时间段的数据保持向上(下)趋势,那么紧接着的下一个时间段的数据将会表现出向下(上)的趋势,H 越接近 0,这种反向持久性越强,这通常表明证券市场并非有效。

3.2 Hurst 指数对 TF 指数有效性检验

从上述 Hurst 的计算公式中可以看出,时间序列数据将被切成j个相同时间窗口,选取不同的时间窗口长度会对 Hurst 指数的大小造成影响,下面我们运用 R 语言对 TF 指数从 2013 年 9 月 9 日到 2016 年 12 月 31 日的日收盘价数据以不同的时间窗口长度计算 Hurst 指数。

图 3.1 TF 指数各滚动窗口的 HURST 指数

从上图可知,HURST 指数在各个时间窗口下都明显大于 0.5,也就是说时间序列中各数据之间表现出正相关关系,这一时间点的数据将会影响未来出现的数据,这表明 TF 期货市场并非有效市场。因而根据市场有效假说,我们可以将基本面分析法和技术分析法运用在这一期货品种上。

4 模型的输入变量筛选以及处理输入变量的方法

本文运用机器学习中的随机森林回归模型,结合技术分析和宏观经济的数据指标作为该模型的输入变量,以下分别对技术指标和宏观经济指标进行筛选。

4.1 技术指标选取

4.1.1 技术指标介绍

股票中的技术指标,是为了评价股票的某一种特性而通过价格、成交量等数据构造出的数学公式,用来计算股票的相关数据。技术指标分析法,是指根据统计学原理考察指标之间的统计性质,从而构建预测模型判断股票未来走势的分析方法。

根据证券市场投资者常用的典型技术指标,我们选取 KDJ、OBV、PSY、BIAS、W&R 和 RSI 共 6 种技术指标进行研究,各类指标的定义及用法如表 3.1。

表 4.1 各类技术指标及其发出交易信号的情况

	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
技术 指标	计算公式	备选参数	跟踪交易规则			
KDJ	$RSV_{t} = \frac{P_{t} - L_{tt}}{H_{tt} - L_{tt}} \times 100$ $K_{t} = (j-1)/j \times K_{t-1} + 1/j \times RSV_{t}$ $D_{t} = (k-1)/k \times D_{t-1} + 1/k \times K_{t}$ $J_{t} = 3 \times D_{t} - 2 \times K_{t}$	i = 9,15,21,27. j = 3,6,9. k = 3,6,9.	K_{t} <20,且向上交叉 D_{t} ,平前空做多; K_{t} >80,且向下交叉 D_{t} ,平前多做空; J_{t} >100,平前多做空; J_{t} <0,平前空做多。			
OBV	$OBV_{\iota} = OBV_{\iota} + \operatorname{sgn}(P_{\iota} - P_{\iota}) \times VOL_{\iota}$ (OBV 的初始值取第 1 日成交量)	i = 2,4,6,8,10,12, $14,16,18,20,22.$ $i = 6,8,10,12,14,$	$P_t > P_{t-i+1}$ 且 $OBV_t < OBV_{t-i+1}$,平前 多做空; $P_t < P_{t-i+1}$ 且 $OBV_t > OBV_{t-i+1}$,平前 空做多。 $PSY_t > 75$,平前多做空;			
PSY	$PSY_{_{t}}=Z_{_{\mathrm{it}}}/i\! imes\!100$	16,18,20,22,24.	<i>PSY</i> , < 75, 平前空做多。			

W&R
$$WR_i = \frac{H_u - P_v}{H_u - L_u} \times 100$$
 $i = 6,8,10,12,14,$ $16,18,20,22,24.$ $WR_i > 80$,下前至做夕。 $RSI_i = \frac{A_u}{A_u + B_u} \times 100$ $RSI_i = \frac{A_u}{A_u + B_u} \times 100$ $i = 6,8,10,12,14,$ $RSI_i > 80$,为超买,平前多做空。 $RSI_i = \frac{A_u}{A_u} \times 100$ $RSI_i = \frac{A$

WR. > 80, 平前空做多;

注: P_t 和 VOL_t 分别为第 t 日国债期货指数收盘价和成交量, H_{ii} 和 L_{ii} 分别为第 t 日前 i 日内国债期货指数的最高价和最低价。

4.1.2 技术指标及参数选取结果

本文的指标筛选集是 2013 年 9 月 9 日到 2015 年 12 月 31 日的 TF 指数日收盘价 共 564 个数据,我们将回测这一段时间的多种参数组合的收益率,从而得到上述各种 技术指标的最优参数。买入卖出规则遵循表 3.1 中"交易信号"一栏。在指标发出买入交易信号的第二天、以前一天的收盘价(全价,不考虑杠杆)做多 1 个货币单位的 指数或继续持有 1 个货币单位的前一天的多仓,在指标发出卖出交易信号的第二天、以前一天的收盘价(全价,不考虑杠杆)做空 1 个货币单位的指数或继续持有 1 个货币单位前一天的空仓。由于 TF 期货合约面值为 100 万元人民币,而近些年来此合约 手续费仅为 3 元左右,因此在回测的过程中手续费可以忽略不计。每年按照 250 个交易日计,回测结果的指标主要有 5 个,分别是胜率(所有交易次数中获利次数所占的比例)(f)、年化收益率(r_y)、年化收益率标准差(σ_y)、年化夏普比率(S_p)和最大回撤(L_r),计算方法如下:

$$f = \frac{n_1}{n} \times 100\% \tag{4-1}$$

$$r_{y} = \frac{250}{N} \sum_{i=1}^{n} r_{i} \tag{4-2}$$

$$\sigma_{y} = \sqrt{\frac{250}{N} \sum_{i=1}^{n} (r_{i} - r)^{2}}$$
 (4-3)

$$S_{p} = \frac{r_{y} - r_{m}}{\sigma_{v}} \tag{4-4}$$

$$L_r = \min(\sum_{i=1}^{j} r_i, j = 1, 2, ..., n)$$
 (4-5)

夏普比率是经过波动率调整的超额收益率,它能综合反映收益和风险,符合日常投资中人们预期收益高时所能忍受风险越高、预期收益低时所能忍受风险越低的特点,我们将 r_m 取值为 TF 指数指标筛选集期间的年化收益率:3.18%。

最大回撤是指在指标筛选集中整个资产净值走到最低点时的收益率回撤幅度的最大值。用来描述买入资产之后可能出现的最大亏损的情况,是一个重要的风险指标,对于对冲基金和数量化策略交易,该指标比波动率还重要。

KDJ 指标的参数为 (i,j,k),总共回测了 36 组参数 $(i=9,15,21,27;\ j=3,6,9;\ k=3,6,9)$,其中参数 (9,6,3) 的年化收益率、年化夏普比率最大,最大回撤最小,因此 KDJ 指标的最优参数为 (9,6,3)。

MACD 指标的参数为 (i,j,k),总共回测了 180 组参数 $(i=8,10,12,14,16,18;\ j=17,21,25,29,33,37;\ k=9,12,15,18,21)$,其中参数(9,6,3)的 胜率、年化收益率和年化夏普比率最大,,因此 MACD 指标的最优参数为(8,17,9)。

OBV 指标的参数为 n,总共回测了 10 个参数 (i=2,4,6,8,10,12,14,16,18,20,22),其中参数 6 的胜率、年化收益率和年化夏普比率最大,年化标准差和最大回撤最小,因此 OBV 指标的最优参数为 6。

PSY 指标的参数为 n, 总共回测了 10 个参数 (i = 6,8,10,12,14,16,18,20,22,24), 其中 参数 6 的胜率、年化收益率和年化夏普比率最大,因此 PSY 指标的最优参数为 6。

RSI 指标的参数为 n,总共回测了 10 个参数 (i=6,8,10,12,14,16,18,20,22,24),所有 参数的年化收益率和年化夏普比率均为负数,因此本文的预测模型将不使用 RSI 指标。

W&M 指标的参数为 n,总共回测了 10 个参数 (i=6,8,10,12,14,16,18,20,22,24),其中参数 6 的胜率、年化收益率和年化夏普比率最大,最大回撤最小因此 W&M 指标的最优参数为 6。

表 4.2 技术指标最优参数选取过程——KDJ 指标筛选集参数回测结果(部分)

11.2 12.719	11/11/40/10/20 2000	3-1/2-11	1H (11) (14)		1015H > 1 HE >
(i,j,k)	 胜率	年化收益	年化标准	年化夏普	最大回撤
		率	差	比率	
(9,3,3)	0.812	0.177	0.025	5.586	-0.005
(9,3,6)	0.812	0.177	0.025	5.586	-0.005
(9,3,9)	0.812	0.177	0.025	5.586	-0.005
(9,6,3)	0.770	0.164	0.025	5.195	-0.005
(9,6,6)	0.770	0.164	0.025	5.195	-0.005
(9,6,9)	0.770	0.164	0.025	5.195	-0.005
(9,9,3)	0.896	0.100	0.019	3.483	-0.005
(9,9,6)	0.896	0.100	0.019	3.483	-0.005
(9,9,9)	0.896	0.100	0.019	3.483	-0.005
(15,3,3)	0.800	0.138	0.023	4.468	-0.007
(15,3,6)	0.800	0.138	0.023	4.468	-0.007
(15,3,9)	0.800	0.138	0.023	4.468	-0.007
(15,6,3)	0.758	0.136	0.024	4.295	-0.007
(15,6,6)	0.758	0.136	0.024	4.295	-0.007
(15,6,9)	0.758	0.136	0.024	4.295	-0.007
(15,9,3)	0.812	0.177	0.025	5.586	-0.005
(15,9,6)	0.812	0.177	0.025	5.586	-0.005
(15,9,9)	0.812	0.177	0.025	5.586	-0.005
		•••••			
(27,3,3)	0.817	0.078	0.018	2.479	-0.005
(27,3,6)	0.817	0.078	0.018	2.479	-0.005
(27,3,9)	0.817	0.078	0.018	2.479	-0.005
(27,6,3)	0.800	0.115	0.022	3.659	-0.005
(27,6,6)	0.800	0.115	0.022	3.659	-0.005
(27,6,9)	0.800	0.115	0.022	3.659	-0.005
(27,9,3)	0.764	0.120	0.022	3.821	-0.005
(27,9,6)	0.764	0.120	0.022	3.821	-0.005
(27,9,9)	0.764	0.120	0.022	3.821	-0.005

注: 具体参数选择过程见附录

表 4.3 技术指标最优参数选取过程——MACD 指标筛选集参数回测结果(部分)

(k,i,j)	胜率	年化收益率	年化标准 差	年化夏普比 率	最大回撤
(9,8,17)	0.604	0.083	0.027	1.811	-0.012
(9,8,21)	0.590	0.070	0.028	1.338	-0.015
(9,8,25)	0.590	0.070	0.027	1.334	-0.013
(9,8,29)	0.593	0.072	0.027	1.385	-0.014
(9,8,33)	0.588	0.066	0.027	1.226	-0.015
(9,8,37)	0.581	0.059	0.027	0.985	-0.015
(9,10,17)	0.589	0.070	0.028	1.331	-0.018
(9,10,21)	0.600	0.072	0.027	1.404	-0.015
(9,10,25)	0.585	0.067	0.027	1.239	-0.021
(9,10,29)	0.576	0.060	0.028	0.949	-0.018
(9,10,33)	0.580	0.055	0.028	0.779	-0.019
(9,10,37)	0.577	0.059	0.028	0.922	-0.019
(9,12,17)	0.594	0.070	0.027	1.321	-0.017
(9,12,21)	0.575	0.056	0.028	0.835	-0.021
(9,12,25)	0.574	0.058	0.028	0.893	-0.020
(9,12,29)	0.574	0.059	0.028	0.922	-0.019
(9,12,33)	0.576	0.057	0.028	0.869	-0.020
(9,12,37)	0.573	0.047	0.028	0.498	-0.020
		•••••			
(21,12,17)	0.566	0.048	0.029	0.531	-0.022
(21,12,21)	0.573	0.042	0.028	0.336	-0.022
(21,12,25)	0.577	0.039	0.028	0.236	-0.024
(21,12,29)	0.591	0.051	0.028	0.622	-0.021
(21,12,33)	0.582	0.051	0.028	0.647	-0.021
(21,12,37)	0.570	0.036	0.029	0.134	-0.030
(21,14,17)	0.579	0.049	0.029	0.540	-0.021
(21,14,21)	0.580	0.042	0.028	0.345	-0.023
(21,14,25)	0.583	0.047	0.029	0.498	-0.021
(21,14,29)	0.581	0.051	0.028	0.668	-0.014
(21,14,33)	0.574	0.041	0.028	0.286	-0.023
(21,14,37)	0.577	0.037	0.028	0.144	-0.025
(21,16,17)	0.577	0.048	0.029	0.506	-0.022
(21,16,21)	0.589	0.046	0.028	0.461	-0.021
(21,16,25)	0.588	0.053	0.028	0.700	-0.016

(21,16,29)	0.566	0.038	0.028	0.186	-0.027
(21,16,33)	0.577	0.038	0.028	0.180	-0.030
(21,16,37)	0.574	0.033	0.029	0.012	-0.040
(21,18,17)	0.418	-0.045	0.029	-2.576	-0.093
(21,18,21)	0.593	0.054	0.028	0.751	-0.016
(21,18,25)	0.568	0.037	0.029	0.169	-0.028
(21,18,29)	0.568	0.035	0.029	0.079	-0.012
(21,18,33)	0.567	0.033	0.029	0.018	-0.040
(21,18,37)	0.564	0.027	0.029	-0.171	-0.038

注: 具体参数选择过程见附录

表 4.4 技术指标最优参数选取过程——OBV 指标筛选集参数回测结果

OBV 参数	胜率	年化收益率	年化标准 差	年化夏普比 率	最大回撤
2	0.464	-0.034	0.015	-4.211	-0.078
4	0.570	-0.018	0.014	-3.361	-0.042
6	0.618	0.002	0.014	-2.052	-0.011
8	0.567	-0.006	0.018	-2.070	-0.036
10	0.556	-0.011	0.019	-2.199	-0.034
12	0.546	-0.012	0.020	-2.143	-0.044
14	0.520	-0.015	0.020	-2.274	-0.052
16	0.533	-0.010	0.019	-2.128	-0.047
18	0.513	-0.009	0.019	-2.123	-0.045
20	0.541	-0.010	0.017	-2.413	-0.047

表 4.5 技术指标最优参数选取过程——PSY 指标筛选集参数回测结果

PSY 参数	胜率	年化收益率	年化标准差	年化夏普比 率	最大回撤
6	0.854	0.073	0.017	2.316	-0.005
8	0.923	0.029	0.009	-0.376	-0.005
10	0.770	0.023	0.012	-0.735	-0.010
12	0.840	0.012	0.006	-3.241	-0.001
14	0.727	0.008	0.007	-3.266	-0.003
16	0.875	0.004	0.004	-6.704	-0.001
18	0.769	0.005	0.004	-6.739	-0.002
20	1.000	0.002	0.002	-13.848	0.000
22	0.750	0.001	0.001	-34.903	-0.001
24	0.000	0.000	0.000	0.000	0.000

表 4.6 技术指标最优参数选取过程——RSI 指标筛选集参数回测结果

RSI 参 数	胜率	年化收益率	年化标准 差	年化夏普比 率	最大回撤
6	0.088	-0.071	0.017	-6.012	-0.149
8	0.075	-0.049	0.014	-5.455	-0.105
10	0.067	-0.037	0.013	-5.360	-0.080
12	0.053	-0.021	0.009	-5.771	-0.046
14	0.100	-0.013	0.007	-5.945	-0.028
16	0.143	-0.010	0.007	-6.068	-0.022
18	0.000	-0.004	0.004	-9.597	-0.008
20	0.000	-0.004	0.004	-9.583	-0.008
22	0.000	-0.002	0.002	-14.060	-0.003
24	0.000	0.000	0.000	0.000	0.000

表 4.7 技术指标最优参数选取过程——W&M 指标筛选集参数回测结果

W&M 参数	胜率	年化收益 率	年化标准 差	年化夏普 比率	最大回撤
6	0.776	0.249	0.026	7.934	-0.002
8	0.747	0.233	0.026	7.427	-0.002
10	0.750	0.203	0.025	6.515	-0.003
12	0.745	0.190	0.025	6.046	-0.003
14	0.724	0.188	0.025	6.007	-0.003
16	0.717	0.180	0.025	5.701	-0.003
18	0.720	0.178	0.025	5.595	-0.003
20	0.708	0.173	0.026	5.344	-0.003
22	0.725	0.170	0.026	5.200	-0.004
24	0.733	0.173	0.026	5.290	-0.004

表 4.8 各技术指标最优参数选取结果

指标	KDJ	MACD	OBV	PSY	RSI	WM
最优参数	(9, 6, 3)	(8, 17, 9)	6	6	不选取	6

注: 具体参数选择过程见附录

4.2 宏观经济指标选取

4.2.1 各种相关系数定义

4.2.1.1 皮尔森相关系数

皮尔森相关系数(Pearson correlation coefficient)是用来反应两个变量相似程度的统计量,其计算公式如下:

$$\rho_{X,Y} = \frac{COV(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y} = \frac{E(XY) - E(X)E(Y)}{\sqrt{E(X^2) - E^2(X)}\sqrt{E(Y^2) - E^2(Y)}}$$
(4-6)

其中, X 和Y 为两个时间序列变量。

使用 Pearson 线性相关系数有 2 个局限,一是必须假设数据是成对地从正态分布中取得的;再者数据至少在逻辑范围内是等距的。

4.2.1.2 Spearman 秩相关系数

对于更一般的情况有其他的一些解决方案, Spearman 秩相关系数就是其中一种。 Spearman 秩相关系数是一种无参数(与分布无关)检验方法,用于度量变量之间联系的强弱。

对原始数据 X_i, Y_i 按从大到小排序,记 X_i', Y_i' 为 X_i, Y_i 在排序后列表中的秩次,秩次差 $d_i = X_i' - Y_i'$ 。 Spearman 秩相关系数为:

$$\rho_s = 1 - \frac{6\sum_i d_i^2}{n(n^2 - 1)} \tag{4-7}$$

4.2.1.3 Kendall 相关系数

Kendall 相关系数也可以解决皮尔森相关系数的两个局限性问题。

Kendall 相关系数是一个用来测量两个随机变量相关性的统计值。一个 Kendall 检验是一个无参数假设检验,它使用计算而得的相关系数去检验两个随机变量的统计依赖性。Kendall 相关系数的取值范围在-1 到 1 之间,当 Kendall 相关系数为 1 时,表示两个随机变量拥有一致的等级相关性;当 Kendall 相关系数为-1 时,表示两个随机变量拥有完全相反的等级相关性;当 Kendall 相关系数为 0 时,表示两个随机变量是相互独立的。

假设两个随机变量分别为 X 和 Y,它们的元素个数均为 N,两个随机变量取的第 $i(1 \le i \le N)$ 个值分别用 X_i, Y_i 表示。X 与 Y 中的对应元素组成一个元素对集合 XY,其包含的元素为 $(X_i, Y_i)(1 \le i \le N)$ 。 当集合 XY 中任意两个元素 (X_i, Y_i) 与 (X_j, Y_j) 的排行相同时(即 $X_i > X_j$ 且 $Y_i > Y_j$,或者 $X_i < X_j$ 且 $Y_i < Y_j$),这两个元素被认为是一致的;

当排行相异时(即 $X_i > X_j \coprod Y_i < Y_j$,或者 $X_i < X_j \coprod Y_i > Y_j$),这两个元素被认为是不一致的,当 $X_i = X_i$ 或者 $Y_i = Y_i$ 时,这两个元素既不是一致的也不是不一致的。

Kendall 相关系数为:

$$\rho_k = \frac{\overline{\Pi P \times M} - \overline{H \times M}}{n(n-1)/2}$$
(4-8)

其中,n为每个变量的数据个数。

4.2.2 宏观指标筛选结果

从各类文献的研究来看,对国债价格有较大影响的宏观经济因素基本可以归结为两大类:通货膨胀类和经济增长类。因此本文将运用经济增长和通货膨胀两类指标作为预测国债指数的输入变量。其中,在通货膨胀类指标中,本文采用了为市场投资者所熟知的 CPI 和 PPI 指标。在经济增长类指标中,本文采用了克强指数。2007 年,时任辽宁省省委书记李克强在接受《经济学人》采访时表示,他倾向于用三个指标来度估计辽宁省的经济发展状况:工业用电量、铁路运货量和金融机构中长期贷款量。从此以后,媒体将这三个变量的组合称为"克强指数","克强指数"被认为是反映中国经济发展状况风向标。本文经济增长方面的变量由克强指数的三个组成成分:铁路货运量、耗电量和银行贷款发放量组成。从数据的可得性方面考虑,本文用 M2 代替银行贷款发放量。由于同比增长率可以克服季节波动,因此,本文选用各个宏观经济指标的月度同比增长率,即: PMI 月度同比增长率、PPI 月度同比增长率、CPI 月度同比增长率、M1 月度同比增长率、M2 月度同比增长率、铁路货运量月度同比增长率以及耗电量月度同比增长率。

表 4.9 本文所用宏观经济指标数据(%)

月份	PMI同比	PPI 同比	CPI 同比	M1 同比	M2 同比	铁路运量 同比	发电量同 比
 2013/1	-4.75	3.05	1.90	10.63	19.21	-0.50	16.50
2013/2	-4.40	3.01	0.90	12.40	18.80	5.60	18.30
2013/3	-4.49	2.49	0.80	12.70	18.80	7.10	11.10
2013/4	2.47	1.87	1.20	12.50	18.90	8.00	11.20
2013/5	3.59	2.43	1.40	14.01	19.10	8.50	12.50
2013/6	4.64	3.52	1.50	13.90	18.43	8.80	14.00
2013/7	2.54	3.58	1.00	15.30	18.40	7.40	13.50

2013/8	0.95	3.40	1.30	15.60	17.90	10.10	16.40
2013/9	3.45	3.50	1.50	15.70	16.83	10.20	14.00
2013/10	1.11	2.90	1.40	16.30	17.10	8.40	14.40
2013/11	2.22	2.78	1.90	16.80	16.80	7.00	14.70
2013/12	0.92	3.10	2.80	17.48	16.94	7.10	14.60
2014/1	5.76	3.30	2.20	20.21	15.93	17.10	9.90
2014/2	1.92	2.60	2.70	21.00	17.80	13.50	5.30
2014/3	1.45	2.70	3.30	19.80	17.30	6.40	13.70
2014/4	0.86	2.90	3.00	20.00	17.10	8.50	15.40
2014/5	1.64	2.80	3.40	19.28	16.74	7.70	16.00
2014/6	0.74	2.49	4.40	20.92	17.06	8.70	17.00
2014/7	1.72	2.40	5.60	20.90	18.50	9.80	15.50
2014/8	1.69	2.60	6.50	22.80	18.10	6.70	15.00
2014/9	-1.58	2.70	6.20	22.07	18.45	6.40	15.50
2014/10	-2.74	3.20	6.50	22.21	18.47	5.90	13.90
2014/11	0.18	4.55	6.90	21.67	18.45	4.10	13.80
2014/12	0.91	5.43	6.50	21.01	16.72	6.70	12.30
2015/1	-3.81	6.10	7.10	20.72	18.94	1.40	13.30
2015/2	0.56	6.62	8.70	19.20	17.48	7.50	14.30
2015/3	4.10	7.95	8.30	18.25	16.29	10.00	16.60
2015/4	1.02	8.12	8.50	19.05	16.94	7.40	12.80
2015/5	-4.31	8.22	7.70	17.93	18.07	5.70	11.80
2015/6	-4.59	8.84	7.10	14.19	17.37	4.70	8.30
2015/7	-9.19	10.03	6.30	13.96	16.35	4.10	8.10
2015/8	-10.37	10.06	4.90	11.48	16.00	8.90	5.10
2015/9	-8.73	9.13	4.60	9.43	15.29	7.20	3.40
2015/10	-16.17	6.59	4.00	8.85	15.02	1.30	-4.00
2015/11	-29.96	1.99	2.40	6.80	14.80	-6.10	-9.60
2015/12	-25.50	-1.14	1.20	9.06	17.82	-10.40	-7.90
2016/1	-14.53	-3.35	1.00	6.68	18.79	-7.00	-1.50
2016/2	-8.24	-4.47	-1.60	10.87	20.48	-9.50	5.90
2016/3	-10.27	-6.00	-1.20	17.04	25.51	-8.20	-1.30
2016/4	-9.63	-6.60	-1.50	17.48	25.89	-6.90	-3.50
2016/5	-0.38	-7.20	-1.40	18.69	25.74	-2.60	-2.70
2016/6	2.31	-7.80	-1.70	24.79	28.46	-1.50	5.20
2016/7	10.12	-8.20	-1.80	26.37	28.42	0.30	4.80
2016/8	11.57	-7.86	-1.20	27.72	28.53	-1.30	9.30
2016/9	6.05	-6.99	-0.80	29.51	29.31	-0.60	9.50
2016/10	23.77	-5.85	-0.50	32.03	29.42	3.70	17.10
2016/11	42.27	-2.08	0.60	34.63	29.74	12.10	26.90

2016/12	37.38	1.70	1.90	32.35	27.68	18.40	25.90
2017/1	23.18	4.32	1.50	38.96	25.98	18.00	16.90
2017/2	6.12	5.39	2.70	34.99	25.52	17.20	7.90
2017/3	5.15	5.91	2.40	29.94	22.50	17.40	17.60
2017/4	4.11	6.81	2.80	31.25	21.48	14.10	21.40
2017/5	1.51	7.13	3.10	29.90	21.00	12.80	18.90
2017/6	-2.07	6.41	2.90	24.56	18.46	10.30	11.40
2017/7	-3.94	4.84	3.30	22.90	17.60	8.90	11.50
2017/8	-4.26	4.32	3.50	21.90	19.20	7.00	12.60
2017/9	-0.92	4.33	3.60	20.87	18.96	7.20	8.10
2017/10	-0.91	5.04	4.40	22.10	19.30	7.40	5.90

在宏观指标的筛选中,为了保证结果相关系数的鲁棒性,本文计算出 2013 年 9 月 9 日到 2015 年 12 月 31 日各月份宏观经济指标数据与下个月份的 TF 指数月收盘价 共 28 组数据的 pearson、kendall、spearman3 种相关系数,结果见下表。

表 4.10 指标筛选集 TF 指数月收盘价与宏观经济指标相关系数

	TF指	TF 指	TF 指	TF 指	TF 指	TF指	TF指
	数与 PMI	数与 PPI	数与 CPI	数与 M1	数与 M2	数与TL相	数与FD相
	相关性	相关性	相关性	相关性	相关性	关性	关性
pearson	-0.747	-0.881	-0.790	0.241	-0.380	-0.844	-0.764
P值	0.000	0.000	0.000	0.217	0.046	0.000	0.000
kendall	-0.591	-0.623	-0.571	-0.037	0.262	-0.656	-0.594
P值	0.000	0.000	0.000	0.782	0.052	0.000	0.000
spearman	-0.801	-0.818	-0.767	0.075	-0.386	-0.844	-0.812
P值	0.000	0.000	0.000	0.704	0.042	0.000	0.000

备注: TL 为铁路运量, FD 为发电量。

从上表结果可知,在 5%的显著性水平下,TF 指数除了与 M1 不相关外,与其他各指标都基本相关。其中,TF 指数与 PMI、PPI、CPI、铁路运量和发电量都呈现负相关,与 M2 的 pearson 和 spearman 相关系数为负,kendall 相关系数为正。

因此,我们选择 PMI、PPI、CPI、M2、铁路运量和发电量作为本文预测模型的

输入变量。

4.3 主成分分析

主成分分析法(PCA)从多个相关的因素中提取少数几个独立的主成分,这种分析法的目的是对多维度数据进行降维处理。

主成分分析是在确保数据信息损失最小的前提下,从原始变量系统中筛选出最具价值的(解释能力最强的)、少数几个不相关的新变量,称为主成分,主成分可以用于回归模型等建模。换言之,这种方法不仅考虑了每个自变量单独对所研究问题的影响,而且还考虑了不同自变量之间所存在的共同特征部分,通过对原始数据进行降维操作,将高维度数据映射到低维度,将多个自变量转化为几个包含大部分高维度信息、但互不相关的自变量。当我们遇到多变量问题时,有时可以采用主成分分析法,在众多变量中提取出来的几个主成分,既保留了变量的主要信息,又将复杂的问题简单化,提高了解决问题的效率。

主成分分析法的过程如下:

第一步:设 m 个变量(指标) $X_1, X_2, X_3, ... X_m$ 的 n 次观测矩阵为

$$X = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1m} \\ X_{21} & X_{22} & \dots & X_{2m} \\ \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nm} \end{bmatrix}$$

$$(4-9)$$

第二步: 利用 $Y_{ti} = (X_{ti} - \overline{X_t})/S_t$ 对原始数据标准化,标准化可使单位不同的各项指标之间具有可比性,其中

$$\overline{X_{t}} = \sum_{i=1}^{n} X_{n} / n; S_{t} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_{ti} - \overline{X_{i}})^{2}} (i = 1, 2, ..., n; t = 1, 2, ..., m)$$

为了方便起见,标准化后的 Y_i 仍记为 X_{ii} 。

第三步: 计算 m 个变量的相关系数矩阵 R

$$R = (r_{ij})_{(m \bullet m)} \tag{4-10}$$

$$\underset{\text{$\downarrow \downarrow$ th}}{\text{$\downarrow \downarrow$ th}} r_{ij} = \frac{1}{n-1} n \sum_{i=1}^{n} X_{ii} \cdot X_{ii} (i = 1, 2, ..., m; j = 1, 2, ..., m)$$

第四步: 计算 R 的特征值和特征向量

设求出 $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_m \geq 0$ 是 R 的特征值 $\alpha_1, \alpha_2, ... \alpha_m$ 是相对应的特征向量,可得到一组主成分 Z_p 表示

$$z_p = \sum_{i=1}^{m} \alpha_i X_i (i-1,2,...,m)$$
(4-11)

第五步:确定主成分个数

 $\lambda_{k}/\sum_{i=1}^{m}\lambda_{i}$ 一般称 K 个主成分的贡献率,称 $\sum_{i=1}^{k}\lambda_{i}/\sum_{i=1}^{m}\lambda_{i}$ 为前 K 个主成分的累积贡献率,当累计贡献率 \geq 85%时,提取前 K 个主成分就足够了,对后面的 M-K 个主成分可忽略不计。

第六步: 计算主成分载荷及主成分得分。

假设主成分载荷为 ∂_i , 主成分得分为 τ_i , 则

$$\partial_i = \sum_{i=1}^m \sqrt{\lambda_i \alpha_i} \tag{4-12}$$

其中, α_i 为对应特征值的特征向量。

$$\tau_i = x_i^n \partial_i \tag{4-13}$$

其中, x_i^n 为各变量的标准化数值。

因为考虑到较多自变量的输入可能会产生多重共线性的问题,所以我们在本文最后的模型,将对技术指标作为输入变量的模型、以及使用技术指标和宏观经济指标作为输入变量的模型,分别用主成分分析法进行降维,并与没有使用主成分分析的模型进行比较。

4.4 GARCH 模型

恩格尔(Engle. R)在发现在对宏观时间序列数据的分析中,模型中的扰动方差并不比假设的稳定,这说明模型中存在异方差的问题,他也发现了预测误差的方差取决于后续扰动项的值。在这个研究基础上,恩格尔提出了自回归条件异方差模型(ARCH),这个模型主要说明 σ_t^2 依赖于 u_{t-1}^2 ,其中 u_{t-1}^2 是时刻 t-1 时刻的残差平方, σ_t^2 是 t 时刻的的方差。

以 k-变量自回归模型为例, ARCH 模型如下:

$$y_{t} = \gamma_{0} + \gamma_{1} x_{1} + \dots + \gamma_{k} x_{k} + u_{t}$$
(4-14)

$$u_t \sim N(0, (\alpha_0 + \alpha_1 u_{t-1}^2))$$
 (4-15)

上式可写成 $\operatorname{var}(u_t) = \sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2$

GARCH 模型则认为, σ_t^2 除了依赖于 u_{t-1}^2 之外,也依赖于它的滞后值 σ_{t-1}^2 ,特别是在证券投资领域,如果使采用日度数据或周度数据,更是如此。

GARCH (1,1) 模型如下:

$$y_t = x_t \gamma + u_t \tag{4-16}$$

$$\sigma_{t}^{2} = \omega + \alpha u_{t-1}^{2} + \beta \sigma_{t-1}^{2}$$
(4-17)

其中: x_t 是 1*(k+1)维外生变量向量, γ 是(k+1)*1 维系数向量。(1)给出的均值方程是一个带有误差项的外生变量函数。由于 σ_t^2 是以前面信息为基础的一期向前预测方差,所以它被称作条件方差。

本文将对 GARCH 模型计算出来的方差作为阈值,对主体模型得到的预测收益率进行调整,进而判断买卖信号。

5 国债期货价格预测效果实证分析

5.1 预测的计算机程序设置

大量预测证券价格的人工智能方法的输入变量都包括了开盘价、最高价、最低价和收盘价,基于这些文献的研究,本文在建立每个模型时都引入这四种变量作为输入变量。为了预测结果的稳定性,我们使用交叉验证法(Cross Validation)来确定随即森林模型的参数。交叉验证法是用来检验分类或回归性能的统计方法,其基本原理是将原始数据进行分组,具体操作是把原始数据平均分成 K 组,将把每个组的数据分别当成验证集,其余 K-1 个组的数据作为训练集,这样一来,会得到 K 个模型,每个模型的预测性能通常使用该模型验证集产生的均方误差(MSE)来衡量,最后,我们计算这 K 次产生的 K 个 MSE 的平均值,记为 MSEcv,它可以很好地衡量整个训练集的训练效果。最终取训练集验证分类准确率最高的那种参数,即达到了参数优化的目的。

R语言用于运算RF的randomForest包中有主要有三个参数ntree、mtry和nodesize。其中,ntree是用于调节树的数量,树的数量一般是越多越好,我们选取随机森林提出者建议的参数ntree=500; nodesize表示终端节点的最小值,这个参数设置得越大,会使更小的树生长用时更少,这个参数我们采用randomForest包的默认值;最后我们主要关注随机选择属性的个数mtry。

我们采用 100 日滚动窗口训练的方法,计算出 mtry 的最优值(使得训练集的预测值与真实值误差最小的值)并预测下一日的收益率。也就是说第 1 个交易日到第 100 个交易日作为训练集,采用十折交叉验证法,训练出最优参数 mty,再把这个参数加入 RF 模型,这个 RF 模型将第 1 至第 100 个交易日的输入变量和第 2 至第 101 个交易日输出变量作为训练集,根据训练结果,输入第 101 个交易日的输入变量,即可以预测第 102 个交易日的收益率;第 2 个交易日到第 101 个交易日作为训练集,采用十折交叉验证法,训练出最优参数 mty,再把这个参数加入 RF 模型,这个 RF 模型将第 2 至第 101 个交易日的输入变量和第 3 至第 102 个交易日输出变量作为训练集,根据训练结果,输入第 102 个交易日的输入变量,即可以预测第 103 个交易日的收益率,以此类推。

我们可以采用均方根误差 (Root Mean Square Error, RMSE) 和平均绝对误差 (Mean Absolute Error, MAE) 作为评价标准。RMSE、MAE 值越小表示预测精度越高。 如式 (5-1) - (5-2) 所示, n 代表样本数。T 和 P 分别表示实际值和预测值。

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (T_i - P_i)^2}{n}}$$
 (5-1)

$$MAE = \frac{\sum_{i=1}^{n} |T_i - P_i|}{n}$$

$$(5-2)$$

除了度量误差,本文根据标准差和 GARCHsigma 两种阈值来开平仓回测 RF 策略。由于证券价格的收益率序列波动较大,很少服从精确的正态分布。2013 年 9 月 6 日到 2015 年 12 月 31 日历史训练集的收益率分布直方图如图 5.1 所示,其平均值为 0.0001260976,标准差为 0.00243286。从图 5.1 中发现收益率密度呈现尖峰分布(正态 shapiro 检验 P 值为 0.0002508,可以拒绝原假设,即原始数据不符合正态分布)。我们引进时变方差的概念,认为收益率序列的方差是随着时间变化的,而非像正态模型中那样是服从正态分布的。我们引入 GARCH 模型来处理时变方差方面较好的模型,它不仅能够刻画收益率序列的异方差性,而且还能描述其自相关性。

图 5.1 历史指标筛选集收益率密度和拟合正态分布

设收益率序列的标准差为 σ ,预测的收益率序列为 y_t ,发出交易信号 $y_t \ge k\sigma$ 的第二天,以前一天的收盘价(全价,不考虑杠杆)做多 1 个货币单位的指数或继续持有 1 个货币单位的前一天的多仓,直至出现信号 $y_t < k\sigma$ 的次日便以前一天的收盘价平

仓。在指标发出卖出交易信号 $y_t \le -k\sigma$ 的第二天、以前一天的收盘价(全价,不考虑杠杆)做空 1 个货币单位的指数或继续持有 1 个货币单位前一天的空仓,直至出现信号 $y_t > k\sigma$ 的次日便以前一天的收盘价平仓。为了寻求较佳的阈值,我们自定义多个阈值系数 k (k 是标准差的系数)进行回测,分别取 k=0.05,0.1,0.25,0.5,0.75,0.1。若取的 k 值较大,则买卖信号越难产生(交易的次数可能会因此减少),但对于保守的投资者而言是一个不错的选择,若取的 k 值较小,则买卖信号可能频繁产生(交易的次数可能会因此增加),但对于激进的投资者而言是一个不错的选择。

在此, σ_t 是一个时变的序列,与正态模型中 σ 是固定的不同。上述 σ 的计算方式有两种,第一种是前 100 日滚动窗口所计算的普通标准差 $\sigma_t = \sqrt{\frac{1}{100}\sum_{t=1}^{100}(x_i-\mu)^2}$,第二种是前 100 日滚动窗口 GARCH(1,1)模型得到的收益率序列的标准差为 σ_t 。

由于 TF 期货合约面值为 100 万元人民币,而近些年来此合约手续费仅为 3 元左右,因此在回测的过程中手续费可以忽略不计。回测结果的指标主要有 5 个,分别是胜率(所有交易次数中获利次数所占的比例)、年化收益率、年化收益率标准差、年化夏普比率和最大回撤(计算公式在"技术指标及参数选取结果"一节中已经有所体现)。由于投资实务更加重视年化夏普比率,因此本文将以年化夏普比率作为各模型投资回测的比较标准,其计算公式如下:

$$S_p = \frac{r_y - r_m}{\sigma_v}$$

我们将r_m取值为TF指数测试集期间的年化收益率: -2.18%。

5.2 预测的模型设置

5.2.1 模型一: 使用技术指标的随机森林回归模型

我们使用 2016 年 1 月 1 日至 2017 年 10 月 31 日的 TF 指数日收盘价共 445 个交易日的数据的开盘价、最高价、最低价和收盘价结合技术指标作为输入变量进行建模,技术指标所使用的参数均为前文指标筛选集所得,其中 KDJ 参数为(9, 6, 3),MACD 参数为(8, 17, 9),OBV、PSY 和 W&M 的参数均为 6。这样一来,模型一总共有 9 个输入变量以及一个输出变量——下一交易日的指数收益率。

输入变量和输出变量每100个交易日使用随机森林进行一次训练——首先,对第

1 至第 100 个交易日的输入变量和第 2 至第 101 个交易日输出变量进行训练,根据训练结果,输入第 101 个交易日的输入变量,即可以预测第 102 个交易日的输出变量;然后,对第 2 至第 101 个交易日的输入变量和第 3 至第 102 个交易日输出变量进行训练,根据训练结果,输入第 102 个交易日的输入变量,即可以预测第 103 个交易日的输出变量·······以此类推。

表 5.1 模型一输入变量和输出变量的训练集和测试集对应关系

					į	輸入变量	<u>1.</u>				输出 变量
集合类别	第i交 易日 数据	第 i 交日开价 O	第 i 交 日 高 H	第 i 交日最价 L	第 i 交日收价 C	第 i 交易 H KDJ	第 i 交易 日 MAC D	第 i 交易 OBV	第 i 交易 日 PSY	第 i 交易 H WM	第 i+1 易 空 日 收 价 C
	1	O1	H1	L1	C1	KDJ1	MAC D1	OBV 1	PSY1	WM1	C2
	2	O2	H2	L2	C2	KDJ2	MAC D2	OBV 2	PSY2	WM2	C3
	3	O3	Н3	L3	C3	KDJ3	MAC D3	OBV 3	PSY3	WM3	C4
	4	O4	H4	L4	C4	KDJ4	MAC D4	OBV 4	PSY4	WM4	C5
训练						•••••					
集1	96	O96	H96	L96	C96	KDJ9 6	MAC D96	OBV 96	PSY9 6	WM9 6	C97
	97	O97	H97	L97	C97	KDJ9 7	MAC D97	OBV 97	PSY9 7	WM9 7	C98
	98	O98	H98	L98	C98	KDJ9 8	MAC D98	OBV 98	PSY9 8	WM9 8	C99
	99	O99	H99	L99	C99	KDJ9	MAC D99	OBV 99	PSY9 9	WM9 9	C100
	100	O100	H100	L100	C100	KDJ1 00	MAC D100	OBV 100	PSY1 00	WM1 00	C101
测 试 集 1	101	O101	H101	L101	C101	KDJ1 01	MAC D101	OBV 101	PSY1 01	WM1 01	C102
训练 集 2	2	O2	H2	L2	C2	KDJ2	MAC D2	OBV 2	PSY2	WM2	C3

	3	O3	НЗ	L3	C3	KDJ3	MAC	OBV	PSY3	WM3	C4
	=						D3	3			
	4	O4	H4	L4	C4	KDJ4	MAC	OBV	PSY4	WM4	C5
							D4	4			
	5	O5	H5	L5	C5	KDJ5	MAC	OBV	PSY5	WM5	C6
							D5	5			
						•••••					
	97	O97	H97	L97	C97	KDJ9	MAC	OBV	PSY9	WM9	C98
						7	D97	97	7	7	
	98	O98	H98	L98	C98	KDJ9	MAC	OBV	PSY9	WM9	C99
						8	D98	98	8	8	
	99	O99	H99	L99	C99	KDJ9	MAC	OBV	PSY9	WM9	C100
						9	D99	99	9	9	
	100	O100	H100	L100	C100	KDJ1	MAC	OBV	PSY1	WM1	C101
						00	D100	100	00	00	
	101	O101	H101	L101	C101	KDJ1	MAC	OBV	PSY1	WM1	C102
						01	D101	101	01	01	
测试	102	O102	H102	L102	C102	KDJ1	MAC	OBV	PSY1	WM1	C103
集 2						02	D102	102	02	02	
					••	••••					

5.2.2 模型二: 使用技术指标和宏观经济指标的随机森林回归模型

我们使用 2016 年 1 月 1 日至 2017 年 10 月 31 日的 TF 指数日收盘价共 445 个交易日的数据的开盘价、最高价、最低价和收盘价结合技术指标以及对应的宏观经济指标作为输入变量进行建模,技术指标所使用的参数均为前文指标筛选集所得,其中 KDJ 参数为(9,6,3),MACD 参数为(8,17,9),OBV、PSY 和 W&M 的参数均为 6,宏观经济指标选用前文所筛选的 PMI、PPI、CPI、M2、铁路运量和发电量。这样一来,模型一总共有个 15 输入变量以及一个输出变量——下一交易日的指数收益率。

输入变量和输出变量每 100 个交易日使用随机森林进行一次训练——首先,对第 1 至第 100 个交易日的输入变量和第 2 至第 101 个交易日输出变量进行训练,根据训练结果,输入第 101 个交易日的输入变量,即可以预测第 102 个交易日的输出变量;然后,对第 2 至第 101 个交易日的输入变量和第 3 至第 102 个交易日输出变量进行训练,根据训练结果,输入第 102 个交易日的输入变量,即可以预测第 103 个交易日的输出变量……以此类推。

表 5.2 模型二输入变量和输出变量的训练集和测试集对应关系

								车	介入变	量							输出 变量
集合类别	第i交易日数据	第i交易日开盘价O	第i交易日最高价H	第i交易日最低价L	第i交易日收盘价C	第 i 交易日 KD J	第 i 交 易 日 MA CD	第 i 交易日 OB V	第 i 交易日 PS Y	第 i 交 易 日 W M	第 i 交易日 PM I	第 i 交易日 PPI	第 i 交易日 CPI	第 i 交易日 M2 (M)	第i交易日铁路运量TL	第i交易日发电量FD	第 i+1 易 空 日 收 价 C
	1	O1	H1	L1	C1	KD J1	MA CD 1	OB V1	PS Y1	W M1	PM I1	PPI 1	CPI 1	M1	TL 1	FD 1	C2
	2	O2	H2	L2	C2	KD J2	MA CD 2	OB V2	PS Y2	W M2	PM I2	PPI 2	CPI 2	M2	TL 2	FD 2	C3
	3	O3	Н3	L3	C3	KD J3	MA CD 3	OB V3	PS Y3	W M3	PM I3	PPI 3	CPI 3	M3	TL 3	FD 3	C4
	4	O4	H4	L4	C4	KD J4	MA CD 4	OB V4	PS Y4	W M4	PM I4	PPI 4	CPI 4	M4	TL 4	FD 4	C5
训									••••	•							
练 集 1	96	O9 6	H9 6	L96	C96	KD J96	MA CD 96	OB V9 6	PS Y9 6	W M9 6	PM I96	PPI 96	CPI 96	M9 6	TL 96	FD 96	C97
	97	O9 7	H9 7	L97	C97	KD J97	MA CD 97	OB V9 7	PS Y9 7	W M9 7	PM 197	PPI 97	CPI 97	M9 7	TL 97	FD 97	C98
	98	O9 8	H9 8	L98	C98	KD J98	MA CD 98	OB V9 8	PS Y9 8	W M9 8	PM 198	PPI 98	CPI 98	M9 8	TL 98	FD 98	C99
	99	O9 9	H9 9	L99	C99	KD J99	MA CD 99	OB V9 9	PS Y9 9	W M9 9	PM 199	PPI 99	CPI 99	M9 9	TL 99	FD 99	C100
	100	O1 00	H1 00	L10 0	C10 0	KD J10 0	MA CD 100	OB V1 00	PS Y1 00	W M1 00	PM 110 0	PPI 100	CPI 100	M1 00	TL 100	FD 100	C101
测试集	101	O1 01	H1 01	L10 1	C10 1	KD J10 1	MA CD 101	OB V1 01	PS Y1 01	W M1 01	PM I10 1	PPI 101	CPI 101	M1 01	TL 101	FD 101	C102

1																	
	2	O2	H2	L2	C2	KD	MA	OB	PS	W	PM	PPI	CPI	M2	TL	FD	C3
						J2	CD	V2	Y2	M2	I2	2	2		2	2	
							2										
	3	O3	Н3	L3	C3	KD	MA	OB	PS	W	PM	PPI	CPI	M3	TL	FD	C4
						J3	CD 3	V3	Y3	M3	I3	3	3		3	3	
	4	O4	H4	L4	C4	KD	MA	ОВ	PS	W	PM	PPI	CPI	M4	TL	FD	C5
	7	04	117	LT	C-T	J4	CD	V4	Y4	M4	I4	4	4	171-	4	4	
							4	, -									
	5	O5	H5	L5	C5	KD	MA	OB	PS	W	PM	PPI	CPI	M5	TL	FD	C6
						J5	CD	V5	Y5	M5	I5	5	5		5	5	
illi							5										
练	0.7		110		G0.	115	3.54	0.0		1	D1.5	DDI	GDI	3.50	l mr		Goo
集	97	O9	H9	L97	C97	KD	MA	OB	PS	W	PM	PPI	CPI	M9	TL	FD	C98
2		7	7			J97	CD 97	V9 7	Y9 7	M9 7	I97	97	97	7	97	97	
	98	O9	H9	L98	C98	KD	MA	OB	PS	W	PM	PPI	CPI	M9	TL	FD	C99
	70	8	8	Loo	C)0	J98	CD	V9	Y9	M9	I98	98	98	8	98	98	
						370	98	8	8	8	170						
	99	09	Н9	L99	C99	KD	MA	OB	PS	W	PM	PPI	CPI	M9	TL	FD	C100
		9	9			J99	CD	V9	Y9	M9	I99	99	99	9	99	99	
							99	9	9	9							
	100	O1	H1	L10	C10	KD	MA	OB	PS	W	PM	PPI	CPI	M1	TL	FD	C101
		00	00	0	0	J10	CD	V1	Y1	M1	I10	100	100	00	100	100	
	101	01	TT1	T 10	C10	0	100	00	00	00	0	DDI	CDI	3.41	TI	ED	C102
	101	O1 01	H1 01	L10 1	C10 1	KD J10	MA CD	OB V1	PS Y1	W M1	PM I10	PPI 101	CPI 101	M1 01	TL 101	FD 101	C102
		01	01	1	1	1	101	01	01	01	110	101	101	01	101	101	
测	102	01	H1	L10	C10	KD	MA	OB	PS	W	PM	PPI	CPI	M1	TL	FD	C103
试		02	02	2	2	J10	CD	V1	Y1	M1	I10	102	102	02	102	102	
集						2	102	02	02	02	2						
2																	
								•	••••								

5.2.3 模型三: 使用技术指标并用主成分分析的随机森林回归模型

我们使用 2016年1月1日至 2017年10月31日的 TF 指数日收盘价共445个交易日的数据的开盘价、最高价、最低价和收盘价结合技术指标作为输入变量进行建模,技术指标所使用的参数均为前文指标筛选集所得,其中 KDJ 参数为(9,6,3),MACD 参数为(8,17,9),OBV、PSY 和 W&M 的参数均为6。这样一来,模型一总共有9个输入变量以及一个输出变量——下一交易日的指数收益率。

输入变量和输出变量每 100 个交易日使用随机森林进行一次训练——首先,对第 1 至第 100 个交易日的输入变量和第 2 至第 101 个交易日输出变量进行训练,根据训练结果,输入第 101 个交易日的输入变量,即可以预测第 102 个交易日的输出变量;然后,对第 2 至第 101 个交易日的输入变量和第 3 至第 102 个交易日输出变量进行训练,根据训练结果,输入第 102 个交易日的输入变量,即可以预测第 103 个交易日的输出变量……以此类推。

其中,每一交易日的输入变量都使用PCA技术处理,提取贡献率达90%的主成分,将这些提取的主成分作为RF模型的最终输入变量。

表 5.3 模型三输入变量和输出变量的训练集和测试集对应关系

		输	入变量((经主成:	分分析如	上理,提	取贡献率	率达 90%	的主成分	})	输出 变量
集合类别	第i交 易日 数据	第 i 交日开价 O	第 i 交日高 H	第 i 交日最价 L	第 i 交日收价 C	第 i 交易 H KDJ	第 i 交易 H MAC D	第 i 交易 GBV	第 i 交易 日 PSY	第 i 交易 H WM	第 i+1
	1	O1	H1	L1	C1	KDJ1	MAC D1	OBV 1	PSY1	WM1	C2
	2	O2	H2	L2	C2	KDJ2	MAC D2	OBV 2	PSY2	WM2	C3
	3	О3	Н3	L3	C3	KDJ3	MAC D3	OBV 3	PSY3	WM3	C4
	4	O4	H4	L4	C4	KDJ4	MAC D4	OBV 4	PSY4	WM4	C5
训练						•••••					
集1	96	O96	H96	L96	C96	KDJ9 6	MAC D96	OBV 96	PSY9 6	WM9 6	C97
	97	O97	H97	L97	C97	KDJ9 7	MAC D97	OBV 97	PSY9 7	WM9 7	C98
	98	O98	H98	L98	C98	KDJ9 8	MAC D98	OBV 98	PSY9 8	WM9 8	C99
	99	O99	H99	L99	C99	KDJ9	MAC D99	OBV 99	PSY9 9	WM9 9	C100
	100	O100	H100	L100	C100	KDJ1 00	MAC D100	OBV 100	PSY1 00	WM1 00	C101

测试	101	O101	H101	L101	C101	KDJ1	MAC	OBV	PSY1	WM1	C102
集1						01	D101	101	01	01	
	2	O2	H2	L2	C2	KDJ2	MAC	OBV	PSY2	WM2	C3
							D2	2			
	3	О3	Н3	L3	C3	KDJ3	MAC	OBV	PSY3	WM3	C4
							D3	3			
	4	O4	H4	L4	C4	KDJ4	MAC	OBV	PSY4	WM4	C5
							D4	4			
	5	O5	H5	L5	C5	KDJ5	MAC	OBV	PSY5	WM5	C6
							D5	5			
训练						•••••					
集 2	97	O97	H97	L97	C97	KDJ9	MAC	OBV	PSY9	WM9	C98
						7	D97	97	7	7	
	98	O98	H98	L98	C98	KDJ9	MAC	OBV	PSY9	WM9	C99
						8	D98	98	8	8	
	99	O99	H99	L99	C99	KDJ9	MAC	OBV	PSY9	WM9	C100
						9	D99	99	9	9	
	100	O100	H100	L100	C100	KDJ1	MAC	OBV	PSY1	WM1	C101
						00	D100	100	00	00	
	101	O101	H101	L101	C101	KDJ1	MAC	OBV	PSY1	WM1	C102
						01	D101	101	01	01	
测试	102	O102	H102	L102	C102	KDJ1	MAC	OBV	PSY1	WM1	C103
集 2						02	D102	102	02	02	
					••	••••					

5.2.4 模型四: 使用技术指标和宏观经济指标并用主成分分析的随机森林回归模型

我们使用 2016 年 1 月 1 日至 2017 年 10 月 31 日的 TF 指数日收盘价共 445 个交易日的数据的开盘价、最高价、最低价和收盘价结合技术指标以及对应的宏观经济指标作为输入变量进行建模,技术指标所使用的参数均为前文指标筛选集所得,其中 KDJ 参数为(9,6,3),MACD 参数为(8,17,9),OBV、PSY 和 W&M 的参数均为 6,宏观经济指标选用前文所筛选的 PMI、PPI、CPI、M2、铁路运量和发电量。这样一来,模型一总共有个 15 输入变量以及一个输出变量——下一交易日的指数收益率。

输入变量和输出变量每 100 个交易日使用随机森林进行一次训练——首先,对第 1 至第 100 个交易日的输入变量和第 2 至第 101 个交易日输入变量进行训练,根据训练结果,输入第 101 个交易日的输入变量,即可以预测第 102 个交易日的输出变量;然后,对第 2 至第 101 个交易日的输入变量和第 3 至第 102 个交易日输入变量进行训练,根据训练结果,输入第 102 个交易日的输入变量,即可以预测第 103 个交易日的

输出变量……以此类推。

其中,每一交易日的输入变量都使用PCA技术处理,提取贡献率达90%的主成分,将这些提取的主成分作为RF模型的最终输入变量。

表 5.4 模型四输入变量和输出变量的训练集和测试集对应关系

				输入	变量	(经主	成分分	分析处	理,掠	是取贡	献率达	5 90%自	的主成公	分)			输出 变量
集合类别	第交易日数据	第i交易日开盘价O	第i交易日最高价H	第i交易日最低价L	第i交易日收盘价C	第 i 交易日 KD J	第 i 交 易 日 MA CD	第 i 交易日 OB V	第 i 交易日 PS Y	第 i 交易日 W M	第 i 交易日 PM I	第 i 交易日 PPI	第 i 交易日 CPI	第 i 交易日 M2 (M)	第i交易日铁路运量TL	第i交易日发电量FD	第 i+1
	1	O1	H1	L1	C1	KD J1	MA CD	OB V1	PS Y1	W M1	PM I1	PPI 1	CPI 1	M1	TL 1	FD 1	C2
	2	O2	H2	L2	C2	KD J2	MA CD 2	OB V2	PS Y2	W M2	PM I2	PPI 2	CPI 2	M2	TL 2	FD 2	C3
	3	O3	Н3	L3	C3	KD J3	MA CD 3	OB V3	PS Y3	W M3	PM I3	PPI 3	CPI 3	M3	TL 3	FD 3	C4
训练	4	O4	H4	L4	C4	KD J4	MA CD 4	OB V4	PS Y4	W M4	PM I4	PPI 4	CPI 4	M4	TL 4	FD 4	C5
集			T	T	1	I	1	1	••••			1		1			•
1	96	O9 6	H9 6	L96	C96	KD J96	MA CD 96	OB V9 6	PS Y9 6	W M9 6	PM 196	PPI 96	CPI 96	M9 6	TL 96	FD 96	C97
	97	O9 7	H9 7	L97	C97	KD J97	MA CD 97	OB V9 7	PS Y9 7	W M9 7	PM 197	PPI 97	CPI 97	M9 7	TL 97	FD 97	C98
	98	O9 8	H9 8	L98	C98	KD J98	MA CD 98	OB V9 8	PS Y9 8	W M9 8	PM I98	PPI 98	CPI 98	M9 8	TL 98	FD 98	C99
	99	O9 9	H9 9	L99	C99	KD J99	MA CD	OB V9	PS Y9	W M9	PM 199	PPI 99	CPI 99	M9 9	TL 99	FD 99	C100

							99	9	9	9							
	100	01	H1	L10	C10	KD	MA	OB	PS	W	PM	PPI	CPI	M1	TL	FD	C101
	100	00	00	0	0	J10	CD	V1	Y1	M1	I10	100	100	00	100	100	0101
						0	100	00	00	00	0	100	100		100	100	
测	101	01	H1	L10	C10	KD	MA	OB	PS	W	PM	PPI	CPI	M1	TL	FD	C102
试	101	01	01	1	1	J10	CD	V1	Y1	M1	I10	101	101	01	101	101	C102
集				1	1	1	101	01	01	01	1	101	101		101	101	
1						-	101				1						
	2	O2	H2	L2	C2	KD	MA	OB	PS	W	PM	PPI	CPI	M2	TL	FD	C3
						J2	CD	V2	Y2	M2	I2	2	2		2	2	
							2	. –									
	3	O3	НЗ	L3	C3	KD	MA	OB	PS	W	PM	PPI	CPI	M3	TL	FD	C4
						J3	CD	V3	Y3	M3	I3	3	3		3	3	
							3										
	4	O4	H4	L4	C4	KD	MA	OB	PS	W	PM	PPI	CPI	M4	TL	FD	C5
						J4	CD	V4	Y4	M4	I4	4	4		4	4	
							4										
	5	O5	H5	L5	C5	KD	MA	OB	PS	W	PM	PPI	CPI	M5	TL	FD	C6
						J5	CD	V5	Y5	M5	I5	5	5		5	5	
2101							5										
训练									••••	•							
练集	97	O9	Н9	L97	C97	KD	MA	OB	PS	W	PM	PPI	CPI	M9	TL	FD	C98
2		7	7			J97	CD	V9	Y9	M9	I97	97	97	7	97	97	
							97	7	7	7							
	98	O9	Н9	L98	C98	KD	MA	OB	PS	W	PM	PPI	CPI	M9	TL	FD	C99
		8	8			J98	CD	V9	Y9	M9	I98	98	98	8	98	98	
							98	8	8	8							
	99	O9	Н9	L99	C99	KD	MA	OB	PS	W	PM	PPI	CPI	M9	TL	FD	C100
		9	9			J99	CD	V9	Y9	M9	I99	99	99	9	99	99	
							99	9	9	9							
	100	O1	H1	L10	C10	KD	MA	OB	PS	W	PM	PPI	CPI	M1	TL	FD	C101
		00	00	0	0	J10	CD	V1	Y1	M1	I10	100	100	00	100	100	
						0	100	00	00	00	0						
	101	O1	H1	L10	C10	KD	MA	OB	PS	W	PM	PPI	CPI	M1	TL	FD	C102
		01	01	1	1	J10	CD	V1	Y1	M1	I10	101	101	01	101	101	
\ 						1	101	01	01	01	1						
测	102	01	H1	L10	C10	KD	MA	OB	PS	W	PM	PPI	CPI	M1	TL	FD	C103
试		02	02	2	2	J10	CD	V1	Y1	M1	I10	102	102	02	102	102	
集						2	102	02	02	02	2						
2																	
i	2																

5.3 预测结果分析

5.3.1 预测结果误差分析

表 5.5 各模型误差比较

	模型一	模型二	模型三	模型四
RMSE	3. 127‰	3. 035‰	3. 049‰	2. 974‰
MAE	1. 763‰	1. 727‰	1. 917‰	1. 903‰

注:模型一为使用技术指标的随机森林回归模型;模型二为使用技术指标和宏观 经济指标的随机森林回归模型;模型三为使用技术指标并用主成分分析的随机森林回 归模型;模型四为使用技术指标和宏观经济指标并用主成分分析的随机森林回归模型

如表 5.5 所示,从 RMSE 和 MAE 看,模型二误差都小于模型一,模型四误差都小于模型三,这说明技术指标结合宏观经济指标作为随机森林回归的输入变量的预测效果总要优于仅仅使用技术指标。这也许可以归功于模型输入变量所包含的信息相对更多,同时也说明了基本面分析对于债券分析的重要性。

模型三的 RMSE 小于模型一,其 MAE 则大于模型一;模型四的 RMSE 小于模型二,其 MAE 则大于模型二,说明从不同的检验标准看,输入变量经过 PCA 的处理并不一能改善预测效果,这也印证了文献综述中提到的随机森林不用考虑多元回归中所涉及到的多重共线性问题,甚至可以加入几千个自变量。

5.3.2 利用预测值进行投资的获利结果回测

表 5.6 各模型夏普比率比较

标准差形式	阈	模型一	模型二	模型三	 模型四
MIEZENDO	值k值	八工	人工一	N.L.	人工口
	0.05	-0.410	0.916	1.762	1.796
	0. 1	-0.565	0.811	1.713	1.575
$\sigma_t = \sqrt{\frac{1}{100} \sum_{t=1}^{100} (x_t - \mu)^2}$	0. 25	-0.793	0.968	1.008	1.271
$O_t = \sqrt{\frac{100}{100}} \sum_{t=1}^{\infty} (x_i - \mu)$	0.5	-0.729	0.724	0.010	0.443
	0.75	-0.392	1.267	0.311	0.179
	1	-0.365	2.785	0.012	0.047

	0.05	-0.442	1.011	1.274	1.819
	0. 1	-0.594	0.825	1.206	2.632
1 .	0. 25	-0.028	1.721	0.695	5.556
garchsigma	0. 5	-0.370	0.914	0.291	
	0.75	-5.942	2.951	0.597	
	1	-11.198	6.350	0.446	

注:模型一为使用技术指标的随机森林回归模型;模型二为使用技术指标和宏观经济指标的随机森林回归模型;模型三为使用技术指标并用主成分分析的随机森林回归模型;模型四为使用技术指标和宏观经济指标并用主成分分析的随机森林回归模型。模型四中"一"表示模型没有产生买卖信号,因此没有预测结果。

如表 5.6 所示,模型二各阈值的夏普比率普遍大于模型一,模型四各阈值的夏普 比率普遍大于模型三,这说明技术指标结合宏观经济指标作为随机森林回归的输入变 量的实际投资效果总要优于仅仅使用技术指标。

模型三各阈值的夏普比率普遍大于模型一,模型四各阈值的夏普比率普遍大于模型二,说明输入变量经过 PCA 的处理能在一定程度上改善实际投资效果。

6 结论与建议

6.1 结论

- (1)从预测值相对与真实值的误差(RMSE和MAE)来看,技术指标结合宏观经济指标作为随机森林回归输入变量的预测效果总要优于仅仅使用技术指标。这也许可以归功于模型输入变量所包含的信息相对更多,同时也说明了基本面分析对于债券分析的重要性;再者,输入变量经过PCA的处理并不一能减少预测误差,这也印证了文献综述中提到的随机森林不用考虑多元回归中所涉及到的多重共线性问题,在随机森林模型中我们甚至可以加入几千个自变量依然对预测结果没有太大的负面影响。
- (2)从利用相关交易信号进行实际投资的效果(以年化夏普比率为衡量标准)来看,技术指标结合宏观经济指标作为随机森林回归输入变量的实际投资效果总要优于仅仅使用技术指标。这与从预测值相对于真实值的误差(RMSE 和 MAE)分析的结果类似。

但是,与误差分析结果不同,输入变量经过 PCA 的处理能在一定程度上改善实际投资效果。

阈值系数 k 的选取在很大程度上影响着交易的效果,有时候非常小的系数差别就会对交易效果造成判若鸿沟的影响,如模型二中,使用 garchsigma 这一标准差形式, k 值取 0.75 和 0.1 的情况下,夏普比率分别为 2.951 和 6.350,相差接近 1 倍。

至于用何种形式的标准差来作为阈值更佳,则无明确的结果,因为两种形式的标准差在相同的阈值系数 k 的条件下,并无明显的优劣之分。

(3) 从模型一本身的实际投资效果(年化夏普比率)来看,说明随机森林对技术指标的识别力可能不如市场经验。

从前文用特定规则(如 RSI>80 时平前空做多,等等)筛选技术指标的过程中, 我们可知根据单独的技术指标投资,完全可以得到夏普比率为正的效果;而在模型一 中,我们将技术指标的值作为输入变量,其输出的买卖信号并不能带来正的夏普比率。 也就是说,在技术指标的识别方面,RF模型不一定能超过使用技术指标的市场人士。

6.2 建议

(1) 从预测 TF 指数点数的角度看,我们建议对于 TF 指数点数的预测,可以运用模型二——用技术指标结合宏观经济指标作为随机森林回归模型的输入变量,直接将输出变量作为预测点位。

- (2)从实际投资效益角度看,我们建议对于 TF 指数的相关投资,可以运用模型四——用技术指标结合宏观经济指标作为随机森林回归模型的输入变量,并使用 PCA 方法对输入变量进行降维处理,再根据由输出变量所构成的交易信号进行投资交易。
- (3)从实际投资效益角度看,在单独使用技术指标作为输入变量时,要使用 PCA 对输入变量进行处理,否则将不能获得超额收益;即单独使用技术指标作为输入变量时,不应该使用模型一,而应该使用模型三。
- (4)根据以上结论,预测准确度最高的模型(模型二)与实际投资效益最好的模型(模型四)并非同一个模型,这是因为我们每一个交易日都会对 TF 指数点数进行预测,但是由于我们是根据买卖信号进行投资,因而并非每一个交易日都会持有投资头寸,所以,头寸的空缺期就造成了这一结果的差异。读者在运用预测模型的时候,应注意区分究竟是用于预测指数的点数,还是用于实际投资,并据此选择合适的模型。

致 谢

本论文是在我的现任导师陈标金先生和前导师杨科先生的亲切关怀和悉心指导下完成的。

两年的硕士研究生生活已经接近尾声,回顾过去的两年,在导师陈标金先生和杨 科先生的帮助下,我参与了不少社会科学科研项目,在研究过程中不断阅读各类资料 并作思考,因而从中获益匪浅。

如协助杨科先生撰写广东科学技术厅的课题《广东省财政科技专项资金投入的管理模式与绩效评价研究》,本课题旨在系统分析广东省财政科技专项资金投入的投向和结构,构建广东省财政科技专项资金投入的新型管理模式,构建政府财政科技专项资金投入的评价体系并对广东省财政科技专项资金投入绩效进行评价。在这个课题中,我负责各章节对应的文献梳理、数据收集,以及采用层次分析法、DEA 方法以及Malmquist 生产力指数方法构建广东省财政科技专项资金投入绩效评价体系并进行评价,拓宽了以往的研究思路,为今后本领域的研究提供了一种全新的研究视角。实践上,本课题的实现,为广东省政府今后制定财政科技专项资金投入的投向,提高科技专项资金投入的管理水平和使用效率提供决策依据。

又如协助陈标金先生撰写广东省林业基金管理中心的课题《木材期货及木材衍生品开发路径与策略》,本课题旨在研究和开发木材期货及木材衍生品交易,以达到完善木材市场体系、降低木材产业的经营风险、提升我国争夺国际木材市场定价权的能力以及增强林木产业对金融的吸引力的目的。在这个课题中,我负责木材相关行业公司股价和利润与木材现货关系分析:选取每个季度企业主营业务利润率作为利润指标,企业股票价格选取对应时间的收盘价,同时选取鱼珠木材价格指数代表木材价格的变化,进行回归模型建模,最终得出的结论是,木材价格指数波动对一般以上样本企业的季度利润率变化具有显著影响,木材产业中下游的人造板、木地板、家具、造纸等加工企业利润变化受木材价格指数波动的影响更普遍;木材价格指数波动对所有样本企业股票价格波动均存在显著影响。因此,从木材产业的实际看,客观上存在转嫁木材价格波动风险的潜在需要,有必要推出木材类期货品种,发展木材期货交易。

在陈标金先生的辅导下,我开始接触金融学术论文的写作,并对社会科学研究有了新的认识。陈标金先生与我合作发表论文《交易费用与保证金比率能调控期货价格波动吗?》,此文以 2015-2016 年中国期货市场一些品种保证金和手续费的调整进行

研究,首先通过 EGARCH 模型考察持仓量和交易量对期货价格波动率的影响,发现期货交易所通过提高手续费和保证金从而降低成交量,进而抑制价格波动的措施是可行的,但若通过提高保证金来减少持仓量进而抑制价格波动,则调控会出现相反的效果;再通过事件研究法考察实际调控效果,发现单独提高保证金对抑制价格波动的作用并不明显,而单独提高手续费或同时提高手续费和保证金则能较好抑制价格波动。因此本文认为期货交易所在期货价格剧烈波动时频繁采取提高保证金的做法值得商榷,而可以多采用提高手续费或同时提高手续费和保证金的政策来调控市场。

在金融研究工具的学习方面,我要特别感谢已于伦敦大学信息系毕业的王术先生以及研究生阶段的同班同学邓宜桐先生。正是由于王术先生的推荐,我开始学习 R 语言编程,并将其用于学术研究,而 R 语言也正是此篇毕业论文的主要研究工具。在邓宜桐先生的帮助下,我开始学习并熟悉 PYTHON 语言编程,计算机专业出身的邓宜桐先生帮助我解决了许多计算机方面的问题,令我能更专心与金融学术的研究。

在学术机构方面,我要特别感谢广州图书馆和华南农业大学图书馆,根据信息记录,过去两年我在广州图书馆的借阅书籍将近 200 册,在华南农业大学曾借阅近 50 册书籍。在阅读了大量的金融类书籍后,我整理了大量的读书笔记,从而对金融市场有了新的认识;我将这些认识付诸实践,又详细记录实践数据,从实践中提取理论精华,在理论——实践——理论这一循环中享受着不断思考以及金融市场带来的乐趣。

说起股票投资,我要感谢余佑杰先生、邓宜桐先生与冯凯杰先生在投资实务上对 我的启发,尤其是在与冯凯杰先生的交流中,发现了格力电器、美的集团等处于价值 低洼的股票,从而帮助我在投资生涯中画上浓墨重彩的一笔。

我还要感谢室友彭运雷先生和李曜先生, 以及其他同学在生活上对我的帮助。

更重要的是,我要感谢我的家人,他们是最爱我的人,也是我亏欠最多的人,没 有他们对我的支持和鼓励以及在生活中对我的关心,我便无法专心完成学业。

最后,我要向百忙之中参与审阅、评议本论文各位老师、向参与本人论文答辩的 各位老师表示由衷的感谢!

参考文献

贝乐斯. 混沌、分形与反馈[J], 新世纪周刊 2013(33):55.

曹正凤、纪宏 ,谢邦昌.使用随机森林算法实现优质股票的选择[J],首都经济贸易大学学报, 2014(2):21-27

陈胜荣. 技术分析有效性的实证研究[D]. 厦门大学, 2001.

陈世鹏, 金升平. 基于随机森林模型的房价预测[J]. 科技创新与应用, 2016(04):52.

陈卓思,宋逢明. 技术分析中压力线与支撑线的存在性检验[J]. 统计与决策, 2006(22):4-6.

丁鹏,量化投资:策略与技术[M]. 北京:电子工业出版社,2012:468-469

丁志国, 耿迎涛, 覃朝晖. 中国市场国债利率期限结构的动态特征研究[J]. 统计研

究, 2016, 33(01):61-69.

董莉莎, 朱映瑜. 宏观经济变量对中国国债风险溢价影响的实证研究——基于上海证券交易所的交易数据[I]. 南方金融, 2011(02):9-12.

董雨, 马冰. "克强指数"2.0版本的构造及实证检验[J]. 经济与管理研究, 2015, 36(11):12-18. 方匡南, 朱建平, 谢邦昌. 基于随机森林方法的基金收益率方向预测与交易策略研究[J]. 经济经纬, 2010(02):61-65.

方智. 基于多技术指标模型的沪深 300 指数走势预测[D]. 江西财经大学, 2012.

冯清海, 袁万城. BP 神经网络和 RBF 神经网络在墩柱抗震性能评估中的比较研究[J]. 结构工程师, 2007(05):41-47+69.

何铮. 中国股票市场的基本面与技术面联合估价研究[D].湖南大学,2013.

何永沛. ARMA 模型参数估计算法改进及在股票预测中的应用[J]. 重庆工学院学报(自然科学版), 2009, 23(02):109-112.

胡晋铭, 胡列曲. 宏观经济变量对交易所国债价格影响传导机制研究[J]. 时代金融, 2013(27):216-217+264.

黄光晓, 陈国进. 基于分形市场理论的期铜价格 R/S 分析[J]. 当代财经, 2006 (03):60-64.

黄衍, 查伟雄. 随机森林与支持向量机分类性能比较[J]. 软件, 2012, 33(06):107-110.

李晋. 基于小波分析和 GA-SVR 模型的股指期货价格预测方法研究[D]. 华南理工大学, 2011.

李锬, 李鹏, 齐中英. 农产品期货价格时间序列 R/S 分析[J]. 商业研究, 2006 (05):102-104.

刘微, 罗林开, 王华珍. 基于随机森林的基金重仓股预测[J]. 福州大学学报(自然科学

版), 2008(S1):134-139.

刘晓莹. 基于 KNN 方法的股票价格趋势预测研究[D]. 东北农业大学, 2015.

马向前, 刘莉亚, 任若恩. 增长核算方法分析上海股市波动的敏感性——基本面、技术面和政策面因素的影响[J]. 财经研究, 2002(12):24-29.

- 莫海菁. GARCH、GJR-GARCH 和 EGARCH 模型预测能力实证研究[J]. 经济视角(下), 2011(03):60-63. 赛英, 张凤廷, 张涛. 基于支持向量机的中国股指期货回归预测研究[J]. 中国管理科学, 2013, 21(03):35-39.
- 尚玉皇, 郑挺国, 夏凯. 宏观因子与利率期限结构: 基于混频 Nelson-Siegel 模型[J]. 金融研究, 2015 (06):14-29.
- 孙伟. 分形市场理论在大豆期货市场中的实证研究[J]. 金融发展研究, 2010(12):66-69.
- 汤凌冰,盛焕烨,汤凌霄.基于小波支持向量机的金融预测[J].湘潭大学自然科学学报,2009,31(01):12-15.
- 唐衍伟, 陈刚, 张晨宏. 中国农产品期货市场价格波动的长程相关性研究[J]. 系统工程, 2005(12):79-84.
- 汪军红. 宏观经济变量对我国国债收益率曲线的影响分析[A]. 中国数量经济学会. 21 世纪数量经济学(第7卷)[C]. 中国数量经济学会:, 2006:10.
- 吴江, 李太勇. 基于加权支持向量机的金融时间序列预测[J]. 商业研究, 2010 (01):138-140.
- 王波, 程福云. KNN 算法在股票预测中的应用[J]. 科技创业月刊, 2015, 28(16):25-26.
- 王晴, 朱家明. KNN 算法在汇率预测中的应用及改进[J]. 兰州文理学院学报(自然科学版), 2017, 31 (03):27-31.
- 王上飞,周佩玲. 径向基函数神经网络在股市预测中的应用[J]. 理论与方法研究, 1998, (6):44-46.
- 王淑燕, 曹正凤, 陈铭芷. 随机森林在量化选股中的应用研究[J]. 运筹与管

理, 2016, 25(03):163-168+177.

王拓, 杨宇俊. 经济变量对不同待偿期国债波动影响的实证分析[J]. 统计与决策, 2011(19):143-145.

王志红, 王华珍. 基于随机森林的基金评级模型选择[J]. 财务与金融, 2009(01):65-70.

魏文轩, 改进型 RBF 神经网络在股票市场预测中的应用[I], 统计与决策, 2013 (15): 70-72.

吴成东, 王长涛. 人工神经元 BP 网络在股市预测方面的应用[J]. 控制工程, 2002(03):48-50+57.

徐戈, 张科. 基于随机森林模型的房产价格评估[J]. 统计与决策, 2014(17):22-25.

徐龙炳, 陆蓉. R/S 分析探索中国股票市场的非线性[J]. 预测, 1999(02):60-63.

叶中行, 曹奕剑. Hurst 指数在股票市场有效性分析中的应用[J]. 系统工程, 2001(03):21-24.

苑莹, 庄新田. 中国股票市场的长记忆性与市场发展状态[J]. 数理统计与管理, 2008(01):156-163.

邢天才, 蒋晓杰, 武军伟. TRB 技术分析规则在期货市场的有效性检验[J]. 财经问题研

究, 2008(06):54-59.

- 颜伟. 中国国债市场价格波动的影响因素研究[D]. 湖南大学, 2010.
- 杨奎河, 王宝树, 赵玲玲. 基于神经网络的预测模型中输入变量的选择[J]. 计算机科 学, 2003 (08):139-140+143.
- 杨一文, 杨朝军. 基于支持向量机的金融时间序列预测[J]. 系统工程理论方法应用, 2005 (02):176-181.
- 周春光, 梁艳春. 计算智能——人工神经网络模糊系统进化计算[M]. 吉林: 吉林大学出版社, 2001:1-32.
- 周铭山, 冯新力, 林靓, 方旭赟, 周开国. A 股市场均线策略有效性与收益率随机特征研究[J]. 证券市场导报, 2013(01):58-64.
- Alkhatib K, Najadat H, Hmeidi I. Stock price prediction using k-nearest neighbor (knn) algorithm[J]. International Journal of Business, Humanities and Technology, 2013, 3(3): 32-44.
- Alvarez-Ramirez Jose, Cisneros Myriam, Ibarra-Valdez Carlos, et al.Multifractal Hurst analysis of crude oil prices. [J].Physica A: Statistical Mechanics and its Applications, 2002, 313 (3): 651-670.
- Altavilla, C., Giannone, D., Modugno, M.. Low Frequency Effects of Macroeconomic News on Government Bond Yields[J]. Journal of Monetary Economics, 2017,92:31-46.
- Bachelier L. The Random Character of Stock Market Prices[M]. Cambridge, MA: MIT Press, 1900:17-78.
- Blume L,Easley D,O'hara M.Market statistics and technical analysis: The role of volume[J]. The Journal of Finance, 1994, 49(1):153-181.
- Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.
- Breiman L. Statistical modeling: the two cultures [J]. Statistical Science, 2001, 16(3):199-215.
- Brock.W, Lakonishok.J, LeBaron.B. Simple technical trading rules and the stochastic properties of stock returns.[J].The Journal of Finance 1992: 47(5):1731-1764.
- Cajueiro, Daniel O, Tabak, Benjamin M. The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient[J]. Physica, 2004,336(3):521-537.
- Cajueiro, Daniel O, Tabak, Benjamin M. Testing for long-range dependence in world stock markets [J]. Chaos, Solitons and Fractals, 2008, 37(3):918-927
- Cover T,Hart P.Nearest neighbor pattern classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27.
- Duffee, Gregory R. Information in (and not in) the term structure [J]. The Review of Financial

- Studies, 2011, 24(9): 2895-2934.
- E Fama. The behavior of stock-market prices[J]. The Journal of Business, 1965, 38(1):34-105.

 E Fama. Efficient capital markets: a review of theory and empirical work[J]. The Journal of Finance, 1970, 25 (2): 383-417.
- Fama E F. Efficient capital market[J]. The Journal of Finance, 1991, 46(2):1597-1617.
- Francis E.H Tay, Lijuan Cao. Application of support vector machines in financial time series forecasting [J]. Omega, 2001, 29(4): 309-317.
- G. Ramazan.Non-linear Prediction of Security Returns with Moving Average Rules[J]. Journal of Forecasting, 1996, 15(3):165-174.
- Huang W, Nakamori Y, Wang S. Forecasting stock market movement direction with support vector machine[J]. Computers and Operations Research, 2005, 32(10):2513-2522.
- Ince H,Trafalis T.Short term forecasting with support vector machines and application to stock price prediction[J]. International Journal of General Systems,2008,37(6):677—687.
- Kampichler C, Wieland R, Calme S, Weissenberger H, Arriaga-Weiss S. Classification in conservation biology: A comparison of five machine-learning methods[J]. Ecological Informatics, 2010,5(6):441-450.
- Kimoto T, Asakawa K, Yoda M. Stock market prediction system with modular neural networks[C]Neural Networks, 1990 IJCNN International Joint Conference on Neural Networks, 1990(1): 1-6.
- Kumar M ,Thenmozhi M. Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest[J]. Social Science Electronic Publishing ,2006.
- Lapedes A, Farber R. Nonlinear signal processing using neural networks: Prediction and system modelling[R] Los Alamos National Laboratory,1987.
- Lixia L. Nonlinear test and forecasting of petroleum futures prices time series [J]. Energy Procedia, 2011, 5:754-758.
- Ludvigson Sydney C, Serena Ng. Macro Factors in Bond Risk Premia[J]. The Review of Financial Studies, 2009,22(12): 5027-5067.
- Mandelbrot B. Forecast of Future Price, Unbiased Markets and Martingale Models[J]. The Journal of Business, 1966, 39(1):242-255.
- Mizuno H, Kosaka M, Yajima H, et al. Application of neural network to technical analysis of stock market prediction[J]. Studies in Informatic and control, 1998, 7(3): 111-120.

- Monika Piazzesi, Eric Swanson. Futures Prices as Risk-Adjusted Forecasts of Monetary Policy [J]. Journal of Monetary Economics, 2008,55(4):677-691.
- Park C, Irwin S.H. What do we know about the profitability of technical analysis? [J]. Journal of Economic Surveys, 2007, 21(4): 786-826.
- Peters Edgar. Chaos and Order in Capital Markets: A New View of Cycles, Prices and Market Volatility[J]. The Journal of Finance, 1993,48(5): 2041-2044.
- Peters Edgar. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics[J]. Chaos Theory,1994,34(2): 343-345.
- Qian B, Rasheed K. Stock market prediction with multiple classifiers[J]. Applied Intelligence, 2007, 26(1): 25-33.
- R J Shiller.Do stock prices move too much to be justified by subsequent changes in dividends?[J].The American Economic Review,1981,71(3): 421-436.
- Samuelson P.Proof that Properly Anticipated Prices Fluctuate Randomly[J].Industrial Management Review,1965,6(2):41-49.
- Tay F, Cao L. A comparative study of saliency analysis and genetic algorithm for feature selection in support vector machines[J]. Intelligent Data Analysis, 2001, 5(3): 191-209.
- Trafalis T,Ince H. Support vector machine for regression and applications to financial forecasting[C].IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000,6:6348.
- Treynor J L, Ferguson R. In defense of technical analysis [J]. The Journal of Fiance, 1985, 40(3):757-773.
- V Vapnik,SE Golowich,A Smola. Support vector method for function approximation, regression estimation, and signal processing[C]. Advances in Neural Information Processing Systems, 1996,9:281-287.
- White H. Economic prediction using neural networks: The case of IBM daily stock returns[C]. IEEE International Conference on Neural Networks, 1988, 2:451-458.

附录 A: TF 指数数据

-							
日期	开盘价	最高价	最低价	收盘价	成交量	成交额 (亿元)	收益率 (‰)
2013/9/9	94.164	94.170	93.872	93.919	12810	120.361	NA
2013/9/10	93.878	93.927	93.815	93.852	5764	54.111	-0.713
2013/9/11	93.726	93.790	93.504	93.607	9250	86.594	-2.610
2013/9/12	93.597	93.842	93.597	93.742	8764	82.151	1.442
2013/9/13	93.700	93.857	93.689	93.777	7091	66.487	0.373
2013/9/16	93.772	93.948	93.749	93.865	3979	37.345	0.938
2013/9/17	93.870	94.564	93.850	94.231	22940	216.173	3.899
2013/9/18	94.250	94.383	94.107	94.213	10980	103.468	-0.191
2013/9/23	94.549	94.595	94.277	94.356	7674	72.428	1.518
2013/9/24	94.312	94.405	94.248	94.347	5224	49.271	-0.095
2013/9/25	94.350	94.554	94.350	94.425	8468	79.981	0.827
2013/9/26	94.448	94.617	94.448	94.577	5513	52.129	1.610
2013/9/27	94.551	94.556	94.305	94.350	4607	43.477	-2.400
2013/9/30	94.346	94.504	94.211	94.464	3621	34.190	1.208
2013/10/8	94.521	94.548	94.407	94.416	2462	23.253	-0.508
2013/10/9	94.335	94.402	94.286	94.364	1947	18.366	-0.551
2013/10/10	94.362	94.448	94.286	94.352	1545	14.578	-0.127
2013/10/11	94.350	94.350	94.224	94.293	1764	16.632	-0.625
2013/10/14	94.278	94.282	93.987	94.122	2599	24.460	-1.813
2013/10/15	94.092	94.116	93.857	93.956	2363	22.200	-1.764
2013/10/16	93.856	94.109	93.849	94.022	3365	31.622	0.702
2013/10/17	94.000	94.045	93.909	93.937	1647	15.471	-0.904
2013/10/18	93.924	93.956	93.826	93.899	1056	9.914	-0.405
2013/10/21	93.886	93.957	93.820	93.872	1099	10.318	-0.288
2013/10/22	93.852	93.885	93.733	93.788	2073	19.442	-0.895
2013/10/23	93.760	93.865	93.698	93.826	1910	17.916	0.405
2013/10/24	93.800	93.830	93.577	93.619	2214	20.737	-2.206
2013/10/25	93.600	93.707	93.528	93.707	2265	21.201	0.940
2013/10/28	93.670	93.781	93.642	93.694	1701	15.939	-0.139
2013/10/29	93.658	93.789	93.534	93.535	2671	25.012	-1.697
2013/10/30	93.526	93.598	93.479	93.569	1924	17.992	0.364
2013/10/31	93.538	93.782	93.520	93.767	2201	20.616	2.116
2013/11/1	93.766	93.945	93.766	93.862	1807	16.959	1.013
2013/11/4	93.860	93.889	93.576	93.664	2075	19.444	-2.109
2013/11/5	93.642	93.680	93.442	93.528	2544	23.786	-1.452
2013/11/6	93.484	93.568	93.396	93.424	1992	18.610	-1.112
2013/11/7	93.310	93.488	92.898	92.910	4331	40.303	-5.502
2013/11/8	92.800	92.894	91.846	92.431	3482	32.228	-5.156
2013/11/11	92.466	92.518	91.782	91.879	4213	38.719	-5.972
2013/11/12	91.770	92.504	91.770	92.241	6063	55.915	3.940

2013/11/13	92.098	92.235	91.735	91.970	3911	35.905	-2.938
2013/11/14	91.800	92.047	91.581	91.799	3911	35.868	-1.859
2013/11/15	91.600	91.768	91.429	91.481	4177	38.198	-3.464
2013/11/18	91.462	91.620	91.145	91.465	3797	34.678	-0.175
2013/11/19	91.370	91.770	91.065	91.072	3981	36.338	-4.297
2013/11/20	90.995	91.378	90.959	91.293	4640	42.289	2.427
2013/11/21	91.116	91.623	91.116	91.615	4261	38.954	3.527
2013/11/22	91.585	92.039	91.561	91.825	3643	33.410	2.292
2013/11/25	91.805	92.113	91.447	91.538	2773	25.385	-3.126
2013/11/26	91.770	91.770	91.329	91.621	1886	17.237	0.907
2013/11/27	91.384	92.165	91.384	92.067	4124	37.891	4.868
2013/11/28	92.074	92.356	91.847	92.326	3618	33.325	2.813
2013/11/29	92.401	92.612	92.277	92.349	4355	40.285	0.249
2013/12/2	92.506	92.610	91.852	91.880	2519	23.204	-5.079
2013/12/3	91.924	92.514	91.761	92.186	3771	34.725	3.330
2013/12/4	92.302	92.511	91.657	92.033	3667	33.855	-1.660
2013/12/5	92.038	92.180	91.725	91.776	3823	35.172	-2.792
2013/12/6	91.687	92.049	91.509	91.866	2110	19.376	0.981
2013/12/9	91.856	92.033	91.625	91.675	2006	18.412	-2.079
2013/12/10	91.660	91.704	91.295	91.307	3153	28.834	-4.014
2013/12/11	91.300	91.483	91.146	91.418	4045	36.959	1.216
2013/12/12	91.580	91.808	91.411	91.708	4271	39.157	3.172
2013/12/13	91.878	92.073	91.632	91.750	3361	30.893	0.458
2013/12/16	91.911	91.911	91.492	91.494	1965	18.001	-2.790
2013/12/17	91.432	91.636	91.384	91.628	2350	21.498	1.465
2013/12/18	91.550	91.626	91.303	91.478	2680	24.507	-1.637
2013/12/19	91.400	91.465	91.233	91.421	3125	28.535	-0.623
2013/12/20	91.530	91.544	91.311	91.436	2002	18.297	0.164
2013/12/23	91.380	91.842	91.339	91.750	3755	34.388	3.434
2013/12/24	91.792	92.043	91.638	91.700	3638	33.395	-0.545
2013/12/25	91.646	91.863	91.646	91.831	2083	19.112	1.429
2013/12/26	91.830	91.887	91.671	91.723	1737	15.935	-1.176
2013/12/27	91.668	91.721	91.486	91.612	1935	17.715	-1.210
2013/12/30	91.560	91.942	91.560	91.848	2010	18.449	2.576
2013/12/31	91.750	91.896	91.556	91.848	3079	28.237	0.000
2014/1/2	91.796	91.838	91.390	91.401	2466	22.579	-4.867
2014/1/3	91.345	91.436	91.177	91.358	3276	29.907	-0.470
2014/1/6	91.346	91.453	91.201	91.277	2352	21.482	-0.887
2014/1/7	91.200	91.555	91.200	91.494	2831	25.882	2.377
2014/1/8	91.486	91.792	91.451	91.746	2790	25.564	2.754
2014/1/9	91.746	91.891	91.484	91.567	2977	27.301	-1.951
2014/1/10	91.456	91.813	91.456	91.605	2949	27.029	0.415
2014/1/13	91.542	91.655	91.466	91.525	1464	13.400	-0.873
2014/1/14	91.458	91.597	91.456	91.541	1458	13.343	0.175

2014/1/15	91.594	91.925	91.576	91.884	3791	34.782	3.747
2014/1/16	91.840	91.913	91.691	91.714	1820	16.702	-1.850
2014/1/17	91.606	91.745	91.606	91.700	1633	14.966	-0.153
2014/1/20	92.406	92.406	91.581	91.852	1567	14.373	1.658
2014/1/21	91.959	92.335	91.956	92.151	3461	31.890	3.255
2014/1/22	92.207	92.428	92.184	92.283	2434	22.455	1.432
2014/1/23	92.236	92.378	92.134	92.147	1961	18.082	-1.474
2014/1/24	92.113	92.259	92.057	92.259	1446	13.324	1.215
2014/1/27	92.398	92.574	92.309	92.562	3043	28.126	3.284
2014/1/28	92.530	92.575	92.304	92.382	2017	18.629	-1.945
2014/1/29	92.290	92.608	92.290	92.456	1356	12.530	0.801
2014/1/30	92.402	92.452	92.260	92.309	823	7.600	-1.590
2014/2/7	92.254	92.590	92.254	92.560	1253	11.588	2.719
2014/2/10	92.557	92.732	92.379	92.390	1779	16.456	-1.837
2014/2/11	92.370	92.649	92.325	92.622	2906	26.892	2.511
2014/2/12	92.659	92.727	92.527	92.555	2098	19.427	-0.723
2014/2/13	92.498	92.699	92.420	92.690	1472	13.628	1.459
2014/2/14	92.620	92.788	92.571	92.663	1672	15.481	-0.291
2014/2/17	92.616	92.643	92.389	92.430	2037	18.838	-2.514
2014/2/18	92.200	92.416	92.136	92.144	3056	28.179	-3.094
2014/2/19	92.169	92.294	92.038	92.107	2999	27.609	-0.402
2014/2/20	91.816	92.270	91.782	92.241	2454	22.595	1.455
2014/2/21	92.270	92.399	92.166	92.320	1715	15.816	0.856
2014/2/24	92.542	92.600	92.331	92.536	1824	16.875	2.340
2014/2/25	92.680	93.012	92.466	92.959	2678	24.842	4.571
2014/2/26	92.993	93.049	92.741	92.795	2108	19.568	-1.764
2014/2/27	93.098	93.534	93.028	93.120	3019	28.136	3.502
2014/2/28	93.182	93.246	92.935	93.174	2289	21.310	0.580
2014/3/3	93.196	93.312	92.859	92.922	1977	18.402	-2.705
2014/3/4	92.906	93.062	92.531	92.572	2283	21.179	-3.767
2014/3/5	92.898	93.046	92.459	92.484	3904	36.188	-0.951
2014/3/6	92.456	92.696	92.365	92.675	2732	25.296	2.065
2014/3/7	92.784	92.801	92.519	92.568	1379	12.777	-1.155
2014/3/10	92.672	92.841	92.593	92.715	2106	19.526	1.588
2014/3/11	92.732	92.819	92.631	92.682	1607	14.898	-0.356
2014/3/12	92.746	92.807	92.494	92.733	1742	16.147	0.550
2014/3/13	92.700	92.970	92.680	92.891	2201	20.430	1.704
2014/3/14	92.898	93.060	92.856	92.993	1428	13.276	1.098
2014/3/17	92.928	93.001	92.730	92.851	1184	11.000	-1.527
2014/3/18	92.798	92.887	92.572	92.622	1817	16.842	-2.466
2014/3/19	92.588	92.684	92.478	92.642	1791	16.581	0.216
2014/3/20	92.556	92.761	92.532	92.648	1647	15.260	0.065
2014/3/21	92.660	92.770	92.612	92.678	1121	10.393	0.324
2014/3/24	92.678	92.738	92.602	92.640	629	5.829	-0.410

2014/2/25	00 600	00.600	00.500	00 (71	1.400	10.111	0.005
2014/3/25	92.632	92.692	92.503	92.671	1420	13.144	0.335
2014/3/26	92.642	92.665	92.537	92.592	1091	10.100	-0.852
2014/3/27	92.566	92.596	92.472	92.560	984	9.106	-0.346
2014/3/28	92.512	92.605	92.512	92.557	539	4.988	-0.032
2014/3/31	92.506	92.591	92.492	92.572	584	5.404	0.162
2014/4/1	92.546	92.570	92.394	92.434	1575	14.562	-1.491
2014/4/2	92.360	92.452	92.190	92.193	2142	19.771	-2.607
2014/4/3	92.125	92.128	91.969	92.009	2439	22.446	-1.996
2014/4/4	92.030	92.184	92.030	92.047	1244	11.458	0.413
2014/4/8	92.084	92.116	91.946	92.053	1027	9.449	0.065
2014/4/9	92.096	92.132	92.012	92.123	1062	9.777	0.760
2014/4/10	92.098	92.294	92.080	92.284	1226	11.302	1.748
2014/4/11	92.230	92.444	92.220	92.412	1326	12.247	1.387
2014/4/14	92.384	92.636	92.356	92.594	1608	14.878	1.969
2014/4/15	92.562	92.604	92.484	92.548	930	8.610	-0.497
2014/4/16	92.520	92.604	92.473	92.503	1603	14.839	-0.486
2014/4/17	92.715	93.044	92.667	92.686	3218	29.880	1.978
2014/4/18	92.680	92.902	92.680	92.790	1383	12.833	1.122
2014/4/21	92.746	92.873	92.676	92.743	824	7.645	-0.507
2014/4/22	92.700	92.733	92.242	92.563	1248	11.552	-1.941
2014/4/23	92.683	92.707	92.536	92.609	934	8.645	0.497
2014/4/24	92.558	92.608	92.486	92.555	505	4.673	-0.583
2014/4/25	92.538	92.599	92.480	92.591	711	6.580	0.389
2014/4/28	92.578	92.644	92.547	92.605	627	5.805	0.151
2014/4/29	92.558	92.777	92.536	92.763	830	7.692	1.706
2014/4/30	92.716	92.884	92.716	92.871	995	9.237	1.164
2014/5/5	92.796	92.886	92.756	92.864	688	6.391	-0.075
2014/5/6	92.800	93.050	92.780	93.009	1683	15.648	1.561
2014/5/7	92.966	93.100	92.966	93.059	1037	9.651	0.538
2014/5/8	92.972	93.154	92.960	93.133	1042	9.700	0.795
2014/5/9	93.206	93.528	93.191	93.447	2583	24.131	3.372
2014/5/12	93.298	93.494	93.220	93.441	1580	14.757	-0.064
2014/5/13	93.648	93.648	93.259	93.302	1676	15.661	-1.488
2014/5/14	93.237	93.368	93.163	93.261	2104	19.620	-0.439
2014/5/15	93.000	93.426	92.970	93.211	2323	21.682	-0.536
2014/5/16	93.202	93.352	93.163	93.312	1009	9.414	1.084
2014/5/19	93.600	93.600	93.304	93.344	1972	18.421	0.343
2014/5/20	93.478	93.486	93.312	93.457	1813	16.939	1.211
2014/5/21	93.008	93.582	93.008	93.577	1415	13.235	1.284
2014/5/22	93.692	93.787	93.537	93.586	1965	18.399	0.096
2014/5/23	93.682	93.682	93.468	93.594	1260	11.787	0.086
2014/5/26	93.682	93.730	93.538	93.628	854	7.989	0.363
2014/5/27	93.627	93.866	93.617	93.858	2625	24.612	2.457
2014/5/28	93.873	94.283	93.872	94.253	3508	33.027	4.208

2014/5/29	94.206	94.408	94.079	94.226	3582	33.761	-0.286
2014/5/30	94.250	94.663	94.214	94.611	3207	30.274	4.086
2014/6/3	94.809	94.823	94.472	94.651	3569	33.768	0.423
2014/6/4	94.494	94.992	94.494	94.975	4984	47.269	3.423
2014/6/5	94.950	94.955	94.363	94.388	8626	81.599	-6.181
2014/6/6	94.510	94.545	94.279	94.410	3657	34.532	0.233
2014/6/9	94.330	94.555	94.326	94.522	2256	21.305	1.186
2014/6/10	94.612	94.755	94.419	94.427	4040	38.213	-1.005
2014/6/11	94.400	94.554	94.365	94.500	2253	21.285	0.773
2014/6/12	94.500	94.533	94.391	94.392	1381	13.040	-1.143
2014/6/13	94.391	94.489	94.215	94.447	2480	23.388	0.583
2014/6/16	94.400	94.747	94.398	94.701	2866	27.120	2.689
2014/6/17	94.750	94.830	94.420	94.532	3625	34.295	-1.785
2014/6/18	94.512	94.571	94.384	94.532	2161	20.411	0.000
2014/6/19	94.530	94.610	94.416	94.513	1240	11.717	-0.201
2014/6/20	94.500	95.777	94.458	94.559	1606	15.185	0.487
2014/6/23	94.582	94.599	94.437	94.539	978	9.243	-0.212
2014/6/24	94.534	94.609	94.496	94.533	684	6.467	-0.064
2014/6/25	94.502	94.560	94.442	94.483	844	7.977	-0.529
2014/6/26	94.478	94.595	94.440	94.506	973	9.198	0.243
2014/6/27	94.500	94.556	94.470	94.522	550	5.199	0.169
2014/6/30	94.506	94.528	94.375	94.444	932	8.801	-0.825
2014/7/1	94.466	94.498	93.952	93.997	2881	27.118	-4.733
2014/7/2	93.986	94.102	93.826	93.836	2430	22.822	-1.713
2014/7/3	93.802	93.861	93.566	93.587	2433	22.807	-2.654
2014/7/4	93.553	93.822	93.328	93.787	3659	34.246	2.137
2014/7/7	93.750	93.880	93.686	93.696	1353	12.688	-0.970
2014/7/8	93.686	93.784	93.608	93.722	1021	9.569	0.277
2014/7/9	93.694	93.781	93.626	93.682	739	6.927	-0.427
2014/7/10	93.670	93.758	93.463	93.735	810	7.589	0.566
2014/7/11	93.690	93.847	93.690	93.815	893	8.376	0.853
2014/7/14	93.786	93.810	93.599	93.628	924	8.654	-1.993
2014/7/15	93.570	93.682	93.403	93.440	1682	15.726	-2.008
2014/7/16	93.372	93.444	93.191	93.223	2224	20.748	-2.322
2014/7/17	93.180	93.216	92.927	92.952	2805	26.093	-2.907
2014/7/18	92.898	93.076	92.736	93.049	2838	26.365	1.044
2014/7/21	92.958	93.129	92.931	93.109	1128	10.492	0.645
2014/7/22	93.064	93.253	93.062	93.091	1653	15.397	-0.193
2014/7/23	93.036	93.089	92.963	92.993	1181	10.982	-1.053
2014/7/24	92.944	93.093	92.916	93.037	2079	19.326	0.473
2014/7/25	93.016	93.339	93.002	93.323	1859	17.311	3.074
2014/7/28	93.208	93.329	93.101	93.133	1675	15.603	-2.036
2014/7/29	93.086	93.142	92.902	93.100	1749	16.268	-0.354
2014/7/30	93.012	93.137	92.996	93.090	1270	11.821	-0.107

2014/7/31	92.974	93.284	92.952	93.221	2386	22.224	1.407
2014/8/1	93.120	93.397	93.118	93.377	2111	19.692	1.673
2014/8/4	93.268	93.432	93.252	93.333	1336	12.466	-0.471
2014/8/5	93.280	93.352	93.200	93.269	1624	15.140	-0.686
2014/8/6	93.345	93.476	93.052	93.167	4643	43.322	-1.094
2014/8/7	93.064	93.252	93.064	93.170	1779	16.579	0.032
2014/8/8	93.046	93.217	93.012	93.143	1450	13.513	-0.290
2014/8/11	93.139	93.239	93.126	93.173	2209	20.584	0.322
2014/8/12	92.960	93.203	92.905	92.944	2112	19.651	-2.458
2014/8/13	92.788	93.375	92.700	93.373	5261	48.991	4.616
2014/8/14	93.371	93.670	93.366	93.562	3979	37.235	2.024
2014/8/15	93.607	93.754	93.583	93.721	3135	29.360	1.699
2014/8/18	93.840	93.840	93.540	93.605	2055	19.239	-1.238
2014/8/19	93.603	93.628	93.321	93.393	2904	27.138	-2.265
2014/8/20	93.400	93.502	93.192	93.476	2739	25.579	0.889
2014/8/21	93.522	93.642	93.475	93.537	2296	21.468	0.653
2014/8/22	93.390	93.663	93.390	93.629	1364	12.760	0.984
2014/8/25	93.648	93.650	93.517	93.574	534	4.996	-0.587
2014/8/26	93.598	93.760	93.496	93.733	1598	14.970	1.699
2014/8/27	93.760	93.922	93.680	93.847	2138	20.062	1.216
2014/8/28	93.948	93.950	93.730	93.757	1898	17.805	-0.959
2014/8/29	93.750	93.820	93.655	93.685	1089	10.209	-0.768
2014/9/1	93.700	93.761	93.587	93.721	992	9.296	0.384
2014/9/2	93.800	93.800	93.489	93.594	1412	13.229	-1.355
2014/9/3	93.590	93.680	93.384	93.441	2546	23.801	-1.635
2014/9/4	93.404	93.430	93.333	93.346	1788	16.697	-1.017
2014/9/5	93.376	93.455	93.345	93.364	2004	18.716	0.193
2014/9/9	93.450	93.491	93.361	93.472	1405	13.129	1.157
2014/9/10	93.530	93.531	93.315	93.354	1372	12.814	-1.262
2014/9/11	93.351	93.462	93.277	93.400	1192	11.133	0.493
2014/9/12	93.404	93.462	93.360	93.450	696	6.501	0.535
2014/9/15	93.636	93.721	93.566	93.582	1856	17.378	1.413
2014/9/16	93.608	93.620	93.506	93.582	1239	11.593	0.000
2014/9/17	93.800	93.901	93.645	93.697	3835	35.948	1.229
2014/9/18	93.754	94.328	93.680	94.310	5791	54.460	6.542
2014/9/19	94.357	94.768	94.320	94.707	6057	57.278	4.210
2014/9/22	94.703	94.855	94.463	94.720	4538	42.962	0.137
2014/9/23	94.805	94.905	94.407	94.434	4830	45.706	-3.019
2014/9/24	94.420	94.520	94.282	94.412	2777	26.213	-0.233
2014/9/25	94.400	94.689	94.286	94.600	2652	25.050	1.991
2014/9/26	94.580	94.622	94.400	94.455	1523	14.394	-1.533
2014/9/29	94.626	94.795	94.600	94.704	1646	15.588	2.636
2014/9/30	94.724	94.807	94.676	94.760	1144	10.839	0.591
2014/10/8	94.648	94.655	94.522	94.552	1110	10.500	-2.195

2014/10/9	94.544	94.558	94.312	94.509	2029	19.163	-0.455
2014/10/10	94.492	94.599	94.410	94.497	756	7.144	-0.127
2014/10/13	94.496	94.716	94.440	94.660	2225	21.046	1.725
2014/10/14	94.696	95.326	94.606	95.239	6103	57.988	6.117
2014/10/15	95.291	95.619	95.275	95.311	4864	46.431	0.756
2014/10/16	95.559	95.639	95.283	95.461	4496	42.926	1.574
2014/10/17	95.342	95.702	95.326	95.678	3005	28.713	2.273
2014/10/20	95.822	96.083	95.741	96.033	5413	51.924	3.710
2014/10/21	96.162	96.190	95.684	95.749	5699	54.641	-2.957
2014/10/22	95.666	95.823	95.418	95.496	4953	47.363	-2.642
2014/10/23	95.445	95.633	95.348	95.553	3238	30.937	0.597
2014/10/24	95.452	95.805	95.362	95.699	4245	40.586	1.528
2014/10/27	95.632	95.728	95.572	95.609	2417	23.120	-0.940
2014/10/28	95.612	95.934	95.581	95.924	4687	44.907	3.295
2014/10/29	95.792	96.027	95.738	95.879	3613	34.659	-0.469
2014/10/30	95.809	95.966	95.542	95.596	6511	62.280	-2.952
2014/10/31	95.440	95.788	95.414	95.733	3839	36.737	1.433
2014/11/3	95.931	96.337	95.918	96.185	7241	69.599	4.721
2014/11/4	96.176	96.743	96.138	96.677	10417	100.483	5.115
2014/11/5	96.607	97.031	96.442	97.002	10682	103.336	3.362
2014/11/6	96.946	97.030	96.784	96.922	7114	68.960	-0.825
2014/11/7	97.176	97.462	97.095	97.417	8632	84.010	5.107
2014/11/10	97.524	97.734	97.152	97.569	9550	93.117	1.560
2014/11/11	97.758	98.025	97.202	97.280	15206	148.528	-2.962
2014/11/12	97.406	97.708	96.947	97.162	13657	132.887	-1.213
2014/11/13	97.150	97.347	96.795	96.983	13838	134.303	-1.842
2014/11/14	97.014	97.014	96.645	96.695	11539	111.698	-2.970
2014/11/17	96.720	96.971	96.389	96.389	9943	96.027	-3.165
2014/11/18	96.386	97.102	96.334	97.029	14602	141.186	6.640
2014/11/19	97.000	97.156	96.702	96.789	11417	110.640	-2.473
2014/11/20	96.868	96.904	96.525	96.554	7901	76.353	-2.428
2014/11/21	96.540	96.919	96.253	96.837	15045	145.346	2.931
2014/11/24	97.806	97.915	97.431	97.601	12591	122.910	7.890
2014/11/25	97.700	97.763	97.213	97.298	16044	156.373	-3.104
2014/11/26	97.398	97.761	97.153	97.761	12724	123.947	4.759
2014/11/27	97.724	97.768	97.495	97.616	9222	90.025	-1.483
2014/11/28	97.600	97.735	97.339	97.603	10096	98.489	-0.133
2014/12/1	97.500	97.932	97.292	97.580	12051	117.747	-0.236
2014/12/2	97.678	97.700	97.309	97.336	10385	101.193	-2.501
2014/12/3	97.250	97.304	96.450	96.656	15617	151.175	-6.986
2014/12/4	96.600	96.820	96.019	96.034	13283	128.045	-6.435
2014/12/5	95.900	95.944	95.247	95.648	18242	174.323	-4.019
2014/12/8	95.620	96.118	95.392	95.564	14470	138.593	-0.878
2014/12/9	94.900	95.778	94.520	95.719	25557	243.290	1.622

2014/12/10	95.700	96.011	95.277	95.931	13678	130.914	2.215
2014/12/11	96.000	96.174	95.519	95.537	11258	107.904	-4.107
2014/12/12	95.500	95.943	95.480	95.676	8343	79.915	1.455
2014/12/15	95.648	95.852	95.590	95.790	5200	49.781	1.192
2014/12/16	95.812	96.122	95.736	96.043	10049	96.431	2.641
2014/12/17	95.900	96.552	95.773	96.432	13641	131.211	4.050
2014/12/18	96.410	96.535	96.136	96.475	9472	91.204	0.446
2014/12/19	96.400	96.636	96.244	96.560	9733	93.878	0.881
2014/12/22	96.460	96.559	96.143	96.444	6822	65.721	-1.201
2014/12/23	96.450	96.828	96.450	96.767	6321	61.127	3.349
2014/12/24	96.766	97.189	96.732	96.924	10758	104.365	1.622
2014/12/25	96.882	97.073	96.693	96.734	8458	81.894	-1.960
2014/12/26	96.682	97.042	96.620	96.931	6977	67.558	2.037
2014/12/29	96.930	97.052	96.802	96.895	5134	49.739	-0.371
2014/12/30	96.838	96.932	96.507	96.542	9170	88.628	-3.643
2014/12/31	96.493	96.872	96.289	96.849	7839	75.665	3.180
2015/1/5	96.843	96.927	96.409	96.797	9628	93.033	-0.537
2015/1/6	96.650	96.809	96.530	96.627	5339	51.578	-1.756
2015/1/7	96.582	96.942	96.582	96.674	5847	56.563	0.486
2015/1/8	96.726	96.910	96.666	96.768	4780	46.242	0.972
2015/1/9	96.744	96.876	96.497	96.780	6788	65.614	0.124
2015/1/12	96.709	96.835	96.578	96.792	4215	40.746	0.124
2015/1/13	96.736	97.225	96.736	97.177	7648	74.198	3.978
2015/1/14	97.100	97.399	97.070	97.278	7964	77.415	1.039
2015/1/15	97.222	97.550	97.059	97.208	6657	64.696	-0.720
2015/1/16	97.260	97.619	97.204	97.561	8070	78.610	3.631
2015/1/19	97.594	97.810	97.394	97.447	8769	85.509	-1.169
2015/1/20	97.412	97.685	97.164	97.623	7930	77.304	1.806
2015/1/21	97.498	97.708	97.486	97.578	6069	59.207	-0.461
2015/1/22	97.634	97.871	97.597	97.822	8040	78.565	2.501
2015/1/23	97.942	98.004	97.699	97.751	5295	51.747	-0.726
2015/1/26	97.744	97.969	97.644	97.951	5575	54.554	2.046
2015/1/27	98.016	98.110	97.710	97.730	7809	76.424	-2.256
2015/1/28	97.601	97.769	97.491	97.769	9196	89.702	0.399
2015/1/29	97.598	97.789	97.455	97.460	6132	59.789	-3.161
2015/1/30	97.413	97.618	97.398	97.524	5842	56.935	0.657
2015/2/2	97.537	97.954	97.462	97.947	8931	87.248	4.337
2015/2/3	97.923	98.103	97.791	98.004	7627	74.669	0.582
2015/2/4	97.979	98.097	97.883	97.992	8603	84.311	-0.122
2015/2/5	98.251	98.357	97.946	97.967	11139	109.182	-0.255
2015/2/6	97.937	98.205	97.922	98.152	8799	86.276	1.888
2015/2/9	98.126	98.274	98.097	98.223	5353	52.549	0.723
2015/2/10	98.215	98.458	98.215	98.448	12022	118.159	2.291
2015/2/11	98.506	98.916	98.415	98.912	14873	146.789	4.713

2015/2/12	98.882	99.120	98.713	99.093	14489	143.302	1.830
2015/2/13	99.120	99.278	98.910	99.143	10183	100.856	0.505
2015/2/16	99.166	99.251	98.946	99.180	5415	53.643	0.373
2015/2/17	99.288	99.506	99.147	99.403	7266	72.170	2.248
2015/2/25	99.428	99.517	99.258	99.412	7405	73.581	0.091
2015/2/26	99.370	99.415	98.994	99.182	9518	94.323	-2.314
2015/2/27	99.141	99.246	98.992	99.145	6853	67.910	-0.373
2015/3/2	99.319	99.322	98.694	98.831	12006	118.697	-3.167
2015/3/3	98.750	98.802	98.527	98.707	9566	94.350	-1.255
2015/3/4	98.689	98.935	98.647	98.778	12110	119.624	0.719
2015/3/5	98.700	98.790	98.344	98.422	13109	129.156	-3.604
2015/3/6	98.346	98.833	98.198	98.511	22308	219.701	0.904
2015/3/9	98.470	98.592	97.994	98.554	30394	298.477	0.436
2015/3/10	98.402	98.542	98.058	98.365	32388	318.553	-1.918
2015/3/11	98.400	99.044	98.366	98.619	28546	281.684	2.582
2015/3/12	98.592	98.992	98.592	98.837	28115	277.713	2.211
2015/3/13	98.803	98.829	98.224	98.320	46076	454.448	-5.231
2015/3/16	98.322	98.405	98.068	98.154	20182	198.133	-1.688
2015/3/17	98.152	98.467	98.003	98.365	22624	222.305	2.150
2015/3/18	98.389	98.475	97.868	97.868	17170	168.596	-5.053
2015/3/19	97.995	98.141	97.888	98.077	10581	103.668	2.136
2015/3/20	98.160	98.341	98.100	98.213	7024	68.956	1.387
2015/3/23	98.170	98.218	97.968	98.036	7511	73.624	-1.802
2015/3/24	98.065	98.306	97.890	97.988	11060	108.463	-0.490
2015/3/25	97.940	98.126	97.849	97.981	9205	90.176	-0.071
2015/3/26	98.000	98.048	97.451	97.456	12915	126.162	-5.358
2015/3/27	97.300	97.736	97.112	97.700	17647	171.842	2.504
2015/3/30	97.550	97.571	96.885	97.201	27380	266.292	-5.107
2015/3/31	96.900	97.146	96.717	96.941	17027	164.947	-2.675
2015/4/1	96.950	97.400	96.881	97.351	11229	109.103	4.229
2015/4/2	97.500	97.607	97.340	97.445	12137	118.287	0.966
2015/4/3	97.450	97.535	97.009	97.048	11429	111.122	-4.074
2015/4/7	97.005	97.288	96.862	96.866	10186	98.815	-1.875
2015/4/8	96.855	97.040	96.340	96.378	21176	204.647	-5.038
2015/4/9	96.450	96.658	96.346	96.619	12185	117.584	2.501
2015/4/10	96.550	96.766	96.484	96.527	11534	111.372	-0.952
2015/4/13	96.390	97.044	96.380	96.989	13487	130.528	4.786
2015/4/14	96.950	97.364	96.839	96.839	15735	152.812	-1.547
2015/4/15	97.000	97.455	96.944	97.275	21679	210.544	4.502
2015/4/16	97.210	97.399	97.180	97.346	9625	93.601	0.730
2015/4/17	97.265	97.526	97.151	97.406	11423	111.118	0.616
2015/4/20	97.680	98.189	97.680	98.187	13531	132.460	8.018
2015/4/21	98.130	98.548	98.119	98.194	15404	151.417	0.071
2015/4/22	98.090	98.353	98.065	98.301	9382	92.118	1.090

2015/4/23	98.100	98.364	98.002	98.244	10161	99.696	-0.580
2015/4/24	98.100	98.188	97.838	97.943	10749	105.291	-3.064
2015/4/27	97.920	98.596	97.906	98.499	15436	151.744	5.677
2015/4/28	98.350	98.591	98.342	98.486	8506	83.744	-0.132
2015/4/29	98.345	98.520	98.321	98.496	7146	70.328	0.102
2015/4/30	98.430	98.731	98.400	98.585	10033	98.912	0.904
2015/5/4	98.425	98.557	98.247	98.282	7947	78.125	-3.073
2015/5/5	98.075	98.363	98.054	98.171	10398	102.114	-1.129
2015/5/6	97.950	98.163	97.466	97.482	18993	185.586	-7.018
2015/5/7	97.285	97.796	97.285	97.532	16664	162.555	0.513
2015/5/8	97.265	98.022	97.265	97.985	12702	124.358	4.645
2015/5/11	98.415	98.556	97.367	97.987	13467	131.607	0.020
2015/5/12	97.660	98.265	97.597	97.842	15615	152.718	-1.480
2015/5/13	97.400	98.083	97.400	97.911	12300	120.283	0.705
2015/5/14	97.570	98.301	97.570	97.996	14223	139.479	0.868
2015/5/15	97.530	98.319	97.530	98.301	9138	89.686	3.112
2015/5/18	97.800	98.469	97.800	98.224	13154	129.109	-0.783
2015/5/19	98.200	98.531	97.646	97.867	16061	157.307	-3.635
2015/5/20	97.330	98.299	97.330	98.197	14460	141.802	3.372
2015/5/21	98.160	98.508	97.745	98.056	9412	92.150	-1.436
2015/5/22	97.935	98.328	97.930	98.132	8583	84.158	0.775
2015/5/25	98.005	98.376	97.821	97.901	9685	94.708	-2.354
2015/5/26	97.765	98.058	96.793	97.078	18708	181.864	-8.406
2015/5/27	96.930	97.391	96.907	97.069	12236	118.684	-0.093
2015/5/28	96.700	97.136	96.225	96.498	15193	146.842	-5.882
2015/5/29	96.160	96.678	96.150	96.415	9780	94.215	-0.860
2015/6/1	96.120	96.560	95.494	95.871	18118	173.788	-5.642
2015/6/2	95.705	96.636	95.686	96.524	15066	144.797	6.811
2015/6/3	95.980	96.982	95.980	96.771	14426	139.025	2.559
2015/6/4	96.400	96.922	96.339	96.615	12797	123.396	-1.612
2015/6/5	96.370	97.046	96.355	97.037	9420	91.087	4.368
2015/6/8	96.595	97.305	96.465	97.258	8307	80.523	2.277
2015/6/9	96.850	97.345	96.829	97.205	9790	94.959	-0.545
2015/6/10	96.750	97.179	96.429	96.645	11196	108.083	-5.761
2015/6/11	96.150	96.719	96.130	96.539	7446	71.683	-1.097
2015/6/12	96.155	96.851	96.115	96.422	10640	102.337	-1.212
2015/6/15	95.950	96.443	95.950	96.023	8764	84.149	-4.138
2015/6/16	95.650	96.762	95.550	96.654	13327	128.381	6.571
2015/6/17	96.360	96.793	96.280	96.545	10047	96.659	-1.128
2015/6/18	96.210	96.954	96.115	96.877	8341	80.562	3.439
2015/6/19	96.480	97.000	96.460	96.618	8009	77.157	-2.673
2015/6/23	96.130	96.607	96.130	96.488	8642	83.053	-1.346
2015/6/24	96.135	96.564	96.080	96.485	5662	54.431	-0.031
2015/6/25	95.975	96.942	95.950	96.378	11172	107.634	-1.109

2015/6/26	96.000	96.504	95.910	96.345	7141	68.601	-0.342
2015/6/29	96.120	96.665	95.999	96.139	10394	99.845	-2.138
2015/6/30	95.725	96.572	95.700	96.377	7786	74.806	2.476
2015/7/1	95.940	96.471	95.940	96.193	5586	53.711	-1.909
2015/7/2	95.600	96.229	95.600	96.176	6654	63.713	-0.177
2015/7/3	95.720	96.900	95.700	96.755	9764	94.046	6.020
2015/7/6	96.425	97.546	96.425	97.439	9410	91.099	7.069
2015/7/7	97.210	97.807	97.210	97.627	6815	66.344	1.929
2015/7/8	99.400	99.400	96.530	97.023	17987	174.378	-6.187
2015/7/9	96.475	98.009	96.420	97.589	8678	84.318	5.834
2015/7/10	96.900	97.548	96.500	97.434	7371	71.489	-1.588
2015/7/13	96.850	97.806	96.750	97.477	6268	60.957	0.441
2015/7/14	97.130	97.627	97.000	97.235	5641	54.681	-2.483
2015/7/15	96.560	97.455	96.530	97.245	5999	58.071	0.103
2015/7/16	96.800	97.569	96.800	97.531	4362	42.350	2.941
2015/7/17	96.990	97.722	96.950	97.580	4803	46.663	0.502
2015/7/20	97.060	97.731	97.030	97.538	3891	37.822	-0.430
2015/7/21	96.980	97.505	96.940	97.344	4922	47.717	-1.989
2015/7/22	96.815	97.542	96.730	97.428	5180	50.274	0.863
2015/7/23	97.045	97.821	97.040	97.785	5621	54.756	3.664
2015/7/24	97.380	98.014	97.350	97.722	5355	52.223	-0.644
2015/7/27	97.205	97.840	97.165	97.816	5424	52.838	0.962
2015/7/28	97.375	97.968	97.350	97.910	5018	48.931	0.961
2015/7/29	97.390	98.016	97.365	97.929	3691	36.008	0.194
2015/7/30	97.365	97.993	97.340	97.670	4997	48.686	-2.645
2015/7/31	97.135	97.733	97.113	97.208	10208	98.938	-4.730
2015/8/3	96.640	97.448	96.575	97.281	4185	40.534	0.751
2015/8/4	96.680	97.618	96.645	97.471	5632	54.652	1.953
2015/8/5	98.815	98.815	97.319	97.447	4613	44.738	-0.246
2015/8/6	96.810	97.832	96.810	97.776	5391	52.389	3.376
2015/8/7	97.150	97.936	97.145	97.838	6011	58.553	0.634
2015/8/10	97.125	97.942	97.085	97.648	4434	43.143	-1.942
2015/8/11	96.880	97.767	96.860	97.143	8426	81.740	-5.172
2015/8/12	96.400	97.438	96.400	97.417	11114	107.602	2.821
2015/8/13	96.535	97.577	96.535	97.425	6260	60.759	0.082
2015/8/14	96.605	97.647	96.605	97.602	5746	55.834	1.817
2015/8/17	96.530	97.621	96.530	97.425	6607	64.102	-1.813
2015/8/18	96.405	97.730	96.390	97.714	7548	73.395	2.966
2015/8/19	96.635	97.799	96.635	97.645	6639	64.645	-0.706
2015/8/20	96.660	97.831	96.660	97.800	4943	48.231	1.587
2015/8/21	98.300	98.300	97.789	97.947	4538	44.435	1.503
2015/8/24	98.325	98.345	97.869	98.227	5778	56.718	2.859
2015/8/25	97.045	98.370	97.045	98.287	4869	47.878	0.611
2015/8/26	97.100	98.508	97.100	98.470	5458	53.805	1.862

2015/8/27	98.765	99.091	98.408	98.892	5955	58.804	4.286
2015/8/28	98.900	98.960	98.617	98.736	4452	44.030	-1.577
2015/8/31	98.950	99.167	98.697	99.006	5774	57.213	2.735
2015/9/1	99.280	99.380	98.990	99.121	3823	37.935	1.162
2015/9/2	99.265	99.333	98.857	98.931	4036	39.992	-1.917
2015/9/7	99.030	99.031	98.718	98.732	6188	61.203	-2.012
2015/9/8	98.790	98.790	98.409	98.590	10715	105.677	-1.438
2015/9/9	98.650	98.781	98.454	98.491	9132	90.097	-1.004
2015/9/10	98.540	98.794	98.326	98.708	9884	97.495	2.203
2015/9/11	98.795	98.820	98.552	98.624	9005	88.869	-0.851
2015/9/14	98.650	98.800	98.611	98.750	7130	70.375	1.278
2015/9/15	98.760	98.968	98.698	98.943	7530	74.448	1.954
2015/9/16	98.970	98.995	98.752	98.838	8615	85.175	-1.061
2015/9/17	98.795	98.830	98.544	98.649	8499	83.851	-1.912
2015/9/18	98.670	98.886	98.600	98.704	12435	122.827	0.558
2015/9/21	98.690	98.787	98.620	98.738	7817	77.161	0.344
2015/9/22	98.745	98.780	98.512	98.592	9789	96.545	-1.479
2015/9/23	98.675	98.730	98.575	98.648	8444	83.302	0.568
2015/9/24	98.640	98.813	98.527	98.810	8821	87.022	1.642
2015/9/25	98.800	98.939	98.744	98.897	9592	94.828	0.880
2015/9/28	98.890	99.047	98.873	99.001	6682	66.127	1.052
2015/9/29	99.050	99.217	99.040	99.161	8846	87.709	1.616
2015/9/30	99.160	99.209	99.004	99.209	8118	80.453	0.484
2015/10/8	99.155	99.160	98.971	99.156	9554	94.636	-0.534
2015/10/9	99.150	99.896	99.120	99.896	21637	215.476	7.463
2015/10/12	99.990	100.084	99.712	99.956	20807	207.916	0.601
2015/10/13	100.000	100.395	99.859	100.278	23489	234.978	3.221
2015/10/14	100.290	100.566	99.969	100.185	41819	419.371	-0.927
2015/10/15	100.180	100.180	99.866	100.009	37082	371.017	-1.757
2015/10/16	100.000	100.000	99.576	99.637	34889	348.023	-3.720
2015/10/19	99.670	99.856	99.615	99.743	26805	267.284	1.064
2015/10/20	99.725	100.315	99.725	100.301	35222	352.316	5.594
2015/10/21	100.300	100.378	100.006	100.055	37427	374.880	-2.453
2015/10/22	100.120	100.252	100.012	100.247	33990	340.328	1.919
2015/10/23	100.245	100.461	100.045	100.050	50460	505.875	-1.965
2015/10/26	100.105	100.325	99.913	100.284	57810	579.202	2.339
2015/10/27	100.320	100.647	100.201	100.587	63548	638.213	3.021
2015/10/28	100.550	100.659	100.133	100.210	59230	595.071	-3.748
2015/10/29	100.190	100.200	99.853	99.868	54991	550.090	-3.413
2015/10/30	99.830	100.066	99.770	99.923	61385	613.460	0.551
2015/11/2	99.950	100.162	99.831	99.955	76979	769.465	0.320
2015/11/3	99.940	99.976	99.755	99.767	53250	531.716	-1.881
2015/11/4	99.965	100.012	99.450	99.645	71753	715.154	-1.223
2015/11/5	99.625	99.930	99.539	99.896	65174	649.931	2.519

2015/11/6	99.890	99.981	99.625	99.671	62371	622.397	-2.252
2015/11/9	99.525	99.525	99.083	99.101	58331	578.656	-5.719
2015/11/10	99.295	99.377	99.029	99.332	63718	632.364	2.331
2015/11/11	99.330	99.678	99.330	99.646	73882	735.304	3.161
2015/11/12	99.520	99.743	99.314	99.628	70156	698.671	-0.181
2015/11/13	99.780	99.861	99.476	99.501	64920	646.896	-1.275
2015/11/16	99.610	99.721	99.414	99.616	69387	690.919	1.156
2015/11/17	99.405	99.707	99.405	99.642	64833	646.441	0.261
2015/11/18	99.795	99.795	99.369	99.385	55442	552.216	-2.579
2015/11/19	99.490	99.619	99.336	99.482	59770	595.491	0.976
2015/11/20	99.410	99.782	99.410	99.760	56983	568.716	2.794
2015/11/23	99.640	99.833	99.165	99.703	57803	576.351	-0.571
2015/11/24	99.600	99.951	99.567	99.929	51390	513.401	2.267
2015/11/25	99.910	100.029	99.781	99.908	44424	444.162	-0.210
2015/11/26	99.860	100.153	99.759	100.071	48825	488.338	1.632
2015/11/27	100.080	100.186	99.864	99.970	44419	444.245	-1.009
2015/11/30	99.980	100.258	99.923	100.138	34325	343.768	1.681
2015/12/1	100.160	100.213	99.911	99.978	30640	306.477	-1.598
2015/12/2	99.980	100.175	99.942	100.008	37575	376.002	0.300
2015/12/3	100.000	100.124	99.892	100.089	33895	339.159	0.810
2015/12/4	100.100	100.205	99.956	100.037	33226	332.600	-0.520
2015/12/7	100.030	100.160	99.944	100.099	32159	321.745	0.620
2015/12/8	100.130	100.234	100.059	100.212	26387	264.305	1.129
2015/12/9	100.250	100.315	100.095	100.201	27556	276.093	-0.110
2015/12/10	100.200	100.281	100.104	100.162	27456	275.159	-0.389
2015/12/11	100.170	100.330	100.116	100.321	26095	261.539	1.587
2015/12/14	100.285	100.285	100.032	100.071	27453	274.922	-2.492
2015/12/15	100.075	100.211	100.033	100.181	22763	227.996	1.099
2015/12/16	100.190	100.255	100.073	100.227	23199	232.403	0.459
2015/12/17	100.235	100.281	100.165	100.225	21942	219.941	-0.020
2015/12/18	100.305	100.634	100.236	100.607	34899	350.680	3.811
2015/12/21	100.620	100.825	100.576	100.769	26350	265.442	1.610
2015/12/22	100.800	100.916	100.698	100.759	27061	272.763	-0.099
2015/12/23	100.760	100.859	100.707	100.795	20655	208.217	0.357
2015/12/24	100.800	100.976	100.747	100.945	21803	219.956	1.488
2015/12/25	100.975	100.975	100.740	100.843	28152	283.890	-1.010
2015/12/28	100.850	100.960	100.743	100.938	19305	194.735	0.942
2015/12/29	100.950	101.030	100.789	100.810	22821	230.253	-1.268
2015/12/30	100.830	100.844	100.678	100.768	20851	210.125	-0.417
2015/12/31	100.790	100.873	100.642	100.661	21488	216.571	-1.062
2016/1/4	100.670	100.680	100.459	100.575	21879	220.059	-0.854
2016/1/5	100.495	100.615	100.304	100.313	22967	230.685	-2.605
2016/1/6	100.340	100.628	100.241	100.601	23066	231.788	2.871
2016/1/7	100.680	100.839	100.470	100.564	35999	362.263	-0.368

2016/1/8	100.610	100.797	100.599	100.750	27554	277.490	1.850
2016/1/11	100.745	100.833	100.690	100.765	22096	222.670	0.149
2016/1/12	100.840	100.977	100.730	100.961	22938	231.462	1.945
2016/1/13	101.030	101.300	100.936	101.092	22366	225.988	1.298
2016/1/14	101.140	101.178	100.825	100.874	25290	255.402	-2.156
2016/1/15	100.890	101.018	100.776	100.997	19684	198.733	1.219
2016/1/18	101.015	101.030	100.676	100.789	20215	203.840	-2.059
2016/1/19	100.830	100.858	100.642	100.671	22318	224.940	-1.171
2016/1/20	100.710	100.765	100.524	100.747	26367	265.474	0.755
2016/1/21	100.810	100.810	100.621	100.765	21007	211.708	0.179
2016/1/22	100.870	100.880	100.683	100.753	16108	162.455	-0.119
2016/1/25	100.700	100.708	100.374	100.398	20439	205.541	-3.523
2016/1/26	100.520	100.570	100.367	100.425	21890	220.095	0.269
2016/1/27	100.440	100.461	100.216	100.338	23153	232.570	-0.866
2016/1/28	100.510	100.510	100.298	100.440	20973	210.764	1.017
2016/1/29	100.680	101.268	100.471	100.643	16637	167.507	2.021
2016/2/1	100.790	100.795	100.577	100.616	15573	156.890	-0.268
2016/2/2	100.760	100.760	100.367	100.390	17002	170.983	-2.246
2016/2/3	100.505	100.505	99.912	100.447	17029	171.083	0.568
2016/2/4	100.615	100.615	100.397	100.524	15358	154.551	0.767
2016/2/5	100.750	100.750	100.517	100.560	8809	88.721	0.358
2016/2/15	100.820	100.833	100.624	100.813	15929	160.650	2.516
2016/2/16	100.990	100.990	100.563	100.587	16065	161.888	-2.242
2016/2/17	100.775	100.775	100.498	100.566	18602	187.321	-0.209
2016/2/18	100.790	100.790	100.449	100.609	16304	164.118	0.428
2016/2/19	100.905	100.905	100.508	100.534	16390	165.018	-0.745
2016/2/22	100.465	100.560	100.366	100.451	12031	120.912	-0.826
2016/2/23	100.390	100.524	100.370	100.377	14547	146.246	-0.737
2016/2/24	100.350	100.452	100.330	100.348	10866	109.195	-0.289
2016/2/25	100.345	100.501	100.117	100.267	17892	179.654	-0.807
2016/2/26	100.290	100.390	100.194	100.381	15895	159.562	1.137
2016/2/29	100.385	100.450	100.293	100.444	11902	119.505	0.628
2016/3/1	100.485	100.546	100.383	100.538	15875	159.530	0.936
2016/3/2	100.560	100.560	100.297	100.353	15670	157.422	-1.840
2016/3/3	100.390	100.390	100.104	100.176	17607	176.536	-1.764
2016/3/4	100.230	100.402	100.107	100.326	16652	167.095	1.497
2016/3/7	100.345	100.345	100.043	100.072	15014	150.409	-2.532
2016/3/8	100.035	100.238	99.934	100.195	15035	150.614	1.229
2016/3/9	100.270	100.447	100.236	100.369	14975	150.331	1.737
2016/3/10	100.500	100.550	100.315	100.526	14829	148.963	1.564
2016/3/11	100.570	100.734	100.478	100.716	13562	136.450	1.890
2016/3/14	100.740	100.750	100.565	100.646	9644	97.042	-0.695
2016/3/15	100.690	100.690	100.482	100.644	12439	125.130	-0.020
2016/3/16	100.685	100.883	100.588	100.757	12726	128.162	1.123

2016/3/17	100.800	100.820	100.579	100.585	16528	166.392	-1.707
2016/3/18	100.610	100.651	100.536	100.606	9822	98.856	0.209
2016/3/21	100.640	100.640	100.382	100.490	13186	132.502	-1.153
2016/3/22	100.520	100.605	100.444	100.578	9095	91.457	0.876
2016/3/23	100.600	100.644	100.527	100.569	8887	89.423	-0.090
2016/3/24	100.600	100.717	100.547	100.666	10247	103.196	0.965
2016/3/25	100.690	100.733	100.583	100.712	11251	113.291	0.457
2016/3/28	100.700	100.730	100.622	100.645	9687	97.534	-0.665
2016/3/29	100.710	100.983	100.635	100.935	18569	187.369	2.881
2016/3/30	100.955	101.073	100.864	101.004	14994	151.451	0.684
2016/3/31	101.120	101.120	100.822	100.933	17428	175.960	-0.703
2016/4/1	100.955	101.057	100.860	100.986	9086	91.795	0.525
2016/4/5	101.060	101.090	100.767	100.793	12739	128.551	-1.911
2016/4/6	100.895	100.910	100.710	100.765	10934	110.222	-0.278
2016/4/7	100.870	100.880	100.698	100.729	9283	93.561	-0.357
2016/4/8	100.875	100.921	100.712	100.815	15314	154.507	0.854
2016/4/11	100.970	100.985	100.714	100.858	8784	88.655	0.427
2016/4/12	101.065	101.070	100.731	100.787	8960	90.326	-0.704
2016/4/13	100.970	100.970	100.303	100.512	18603	187.223	-2.729
2016/4/14	100.750	100.770	100.116	100.190	17354	174.420	-3.204
2016/4/15	100.485	100.485	100.192	100.383	16162	162.401	1.926
2016/4/18	100.605	100.605	100.329	100.420	9653	97.101	0.369
2016/4/19	100.665	100.665	100.330	100.398	10414	104.687	-0.219
2016/4/20	100.600	100.600	100.031	100.152	18554	186.150	-2.450
2016/4/21	100.515	100.515	99.935	100.042	17032	170.850	-1.098
2016/4/22	100.540	100.540	99.958	100.049	11943	119.841	0.070
2016/4/25	100.540	100.540	99.782	99.800	14505	145.176	-2.489
2016/4/26	100.365	100.395	99.741	100.019	14900	149.315	2.194
2016/4/27	99.605	100.147	99.605	100.016	11646	116.738	-0.030
2016/4/28	100.570	100.570	100.016	100.167	11288	113.241	1.510
2016/4/29	100.625	100.625	99.978	100.002	8462	84.861	-1.647
2016/5/3	100.660	100.660	100.042	100.222	9693	97.378	2.200
2016/5/4	100.830	100.830	100.169	100.255	8937	89.777	0.329
2016/5/5	100.880	100.880	100.178	100.242	6998	70.336	-0.130
2016/5/6	100.900	100.900	100.105	100.206	8898	89.419	-0.359
2016/5/9	100.970	100.970	100.240	100.472	9708	97.790	2.655
2016/5/10	100.500	100.713	100.300	100.508	12430	125.212	0.358
2016/5/11	101.140	101.140	100.348	100.395	12776	128.559	-1.124
2016/5/12	100.320	100.550	100.320	100.526	10222	102.801	1.305
2016/5/13	100.470	100.658	100.323	100.410	10757	108.075	-1.154
2016/5/16	100.355	100.531	100.234	100.256	9368	94.084	-1.534
2016/5/17	100.250	100.402	100.202	100.231	6690	67.130	-0.249
2016/5/18	100.200	100.200	100.011	100.063	7401	74.128	-1.676
2016/5/19	100.000	100.141	99.899	100.090	8257	82.691	0.270

2016/5/20	100.135	100.229	100.091	100.196	6568	65.837	1.059
2016/5/23	100.225	100.326	100.079	100.164	6383	63.955	-0.319
2016/5/24	100.240	100.327	100.151	100.299	6849	68.693	1.348
2016/5/25	100.375	100.385	100.231	100.300	4992	50.081	0.010
2016/5/26	100.360	100.360	100.139	100.211	6269	62.850	-0.887
2016/5/27	100.230	100.243	100.101	100.169	4965	49.765	-0.419
2016/5/30	100.890	100.890	100.102	100.113	4954	49.643	-0.559
2016/5/31	100.170	100.262	100.083	100.261	7216	72.316	1.478
2016/6/1	100.280	100.295	100.192	100.256	4957	49.709	-0.050
2016/6/2	100.290	100.320	100.132	100.161	4668	46.783	-0.948
2016/6/3	100.210	100.221	100.084	100.203	6011	60.226	0.419
2016/6/6	100.290	100.359	100.223	100.262	6397	64.200	0.589
2016/6/7	100.315	100.330	100.211	100.212	4010	40.217	-0.499
2016/6/8	100.270	100.280	100.118	100.127	6284	62.972	-0.848
2016/6/13	100.235	100.278	100.162	100.273	5532	55.473	1.458
2016/6/14	100.335	100.454	100.268	100.410	7992	80.263	1.366
2016/6/15	100.500	100.515	100.351	100.414	5727	57.514	0.040
2016/6/16	100.505	100.619	100.434	100.605	6601	66.380	1.902
2016/6/17	100.675	100.675	100.530	100.581	6303	63.410	-0.239
2016/6/20	100.595	100.627	100.475	100.577	4192	42.175	-0.040
2016/6/21	100.595	100.676	100.506	100.663	5969	60.042	0.855
2016/6/22	100.725	100.751	100.602	100.660	7470	75.252	-0.030
2016/6/23	100.720	100.720	100.622	100.666	5779	58.186	0.060
2016/6/24	100.755	100.892	100.659	100.834	9669	97.481	1.669
2016/6/27	100.910	101.057	100.825	100.997	8340	84.234	1.617
2016/6/28	101.100	101.140	100.792	100.799	9682	97.744	-1.960
2016/6/29	100.800	100.895	100.725	100.782	8154	82.221	-0.169
2016/7/1	101.045	101.095	100.928	101.055	9332	94.325	1.427
2016/7/4	101.175	101.225	100.874	100.921	10746	108.572	-1.326
2016/7/5	100.950	101.073	100.810	100.865	10278	103.777	-0.555
2016/7/6	101.050	101.060	100.895	100.945	7323	74.002	0.793
2016/7/7	101.115	101.150	101.005	101.094	7634	77.223	1.476
2016/7/8	101.245	101.285	100.957	101.141	9739	98.509	0.465
2016/7/11	101.195	101.195	100.959	100.999	9048	91.493	-1.404
2016/7/12	100.700	101.024	100.700	100.893	10438	105.445	-1.050
2016/7/13	100.950	101.010	100.803	100.835	8109	81.853	-0.575
2016/7/14	100.985	101.015	100.835	100.853	7200	72.711	0.179
2016/7/15	100.980	101.029	100.751	100.993	12893	130.237	1.388
2016/7/18	101.150	101.190	100.916	100.972	6244	63.102	-0.208
2016/7/19	101.100	101.125	100.948	101.015	4952	50.070	0.426
2016/7/20	101.210	101.275	101.051	101.209	9193	93.096	1.921
2016/7/21	101.410	101.510	101.236	101.263	9944	100.849	0.534
2016/7/22	101.360	101.360	101.119	101.275	7570	76.703	0.119
2016/7/25	101.385	101.385	101.156	101.188	6467	65.493	-0.859

2016/7/26	101.300	101.349	101.144	101.305	7703	78.074	1.156
2016/7/27	101.430	101.470	101.208	101.244	8591	87.073	-0.602
2016/7/28	101.425	101.425	101.243	101.389	9729	98.678	1.432
2016/7/29	101.090	101.438	101.090	101.337	7905	80.186	-0.513
2016/8/1	101.485	101.515	101.258	101.282	6618	67.105	-0.543
2016/8/2	101.415	101.415	101.221	101.380	8661	87.797	0.968
2016/8/3	101.475	101.530	101.318	101.413	9048	91.807	0.326
2016/8/4	101.545	101.555	101.350	101.428	6902	70.022	0.148
2016/8/5	101.610	101.615	101.437	101.572	10199	103.628	1.420
2016/8/8	101.695	101.695	101.470	101.576	9719	98.769	0.039
2016/8/9	101.755	101.755	101.566	101.637	10329	105.034	0.601
2016/8/10	101.585	101.823	101.558	101.590	19589	199.365	-0.462
2016/8/11	101.505	101.706	101.505	101.662	12071	122.814	0.709
2016/8/12	101.880	101.880	101.577	101.779	12848	130.792	1.151
2016/8/15	102.105	102.105	101.779	101.871	17629	179.794	0.904
2016/8/16	102.170	102.170	101.731	101.739	12898	131.401	-1.296
2016/8/17	102.000	102.000	101.646	101.697	10364	105.466	-0.413
2016/8/18	101.740	101.825	101.614	101.689	10305	104.852	-0.079
2016/8/19	101.960	101.960	101.451	101.528	13320	135.359	-1.583
2016/8/22	101.465	101.601	101.444	101.601	8225	83.552	0.719
2016/8/23	101.570	101.585	101.308	101.377	11604	117.772	-2.205
2016/8/24	101.270	101.451	101.248	101.346	11744	119.066	-0.306
2016/8/25	101.395	101.480	101.298	101.317	9202	93.330	-0.286
2016/8/26	101.380	101.505	101.319	101.496	8621	87.474	1.767
2016/8/29	101.475	101.475	101.341	101.397	7217	73.206	-0.975
2016/8/30	101.395	101.400	101.200	101.202	10638	107.800	-1.923
2016/8/31	101.275	101.301	101.125	101.251	7142	72.346	0.484
2016/9/1	101.280	101.301	101.138	101.274	8247	83.519	0.227
2016/9/2	101.355	101.405	101.228	101.255	6198	62.806	-0.188
2016/9/5	101.310	101.310	101.184	101.227	4796	48.570	-0.277
2016/9/6	101.280	101.283	101.178	101.199	5479	55.489	-0.277
2016/9/7	101.300	101.310	101.139	101.173	5096	51.591	-0.257
2016/9/8	101.205	101.320	101.155	101.302	6732	68.181	1.275
2016/9/9	101.325	101.415	101.246	101.351	6707	68.004	0.484
2016/9/12	101.365	101.365	101.189	101.231	7536	76.326	-1.184
2016/9/13	101.305	101.374	101.233	101.350	9521	96.508	1.176
2016/9/14	101.324	101.459	101.265	101.377	9009	91.361	0.266
2016/9/19	101.365	101.413	101.295	101.379	4416	44.770	0.020
2016/9/20	101.384	101.489	101.383	101.397	6276	63.674	0.178
2016/9/21	101.399	101.419	101.329	101.400	6680	67.737	0.030
2016/9/22	101.417	101.481	101.383	101.408	5601	56.840	0.079
2016/9/23	101.428	101.517	101.423	101.474	5695	57.817	0.651
2016/9/26	101.457	101.546	101.449	101.514	5023	51.007	0.394
2016/9/27	101.472	101.575	101.465	101.534	6162	62.579	0.197

2016/9/28	101.527	101.550	101.472	101.545	4794	48.672	0.108
2016/9/29	101.547	101.560	101.508	101.549	3380	34.330	0.039
2016/9/30	101.551	101.587	101.525	101.553	3351	34.047	0.039
2016/10/10	101.651	101.751	101.651	101.722	4963	50.507	1.664
2016/10/11	101.720	101.725	101.641	101.693	5353	54.433	-0.285
2016/10/12	101.703	101.715	101.575	101.630	4796	48.771	-0.620
2016/10/13	101.609	101.714	101.590	101.707	4638	47.182	0.758
2016/10/14	101.691	101.761	101.632	101.732	5890	59.940	0.246
2016/10/17	101.732	101.802	101.682	101.802	5529	56.265	0.688
2016/10/18	101.775	101.801	101.734	101.769	5690	57.923	-0.324
2016/10/19	101.774	101.914	101.739	101.895	7436	75.757	1.238
2016/10/20	101.929	102.045	101.908	102.038	7886	80.454	1.403
2016/10/21	102.067	102.078	101.981	102.044	5178	52.855	0.059
2016/10/24	102.023	102.074	101.799	101.821	10722	109.338	-2.185
2016/10/25	101.815	101.867	101.670	101.724	12670	128.956	-0.953
2016/10/26	101.651	101.700	101.316	101.562	11340	115.265	-1.593
2016/10/27	101.521	101.754	101.521	101.723	8708	88.562	1.585
2016/10/28	101.711	101.762	101.642	101.740	6286	63.953	0.167
2016/10/31	101.721	101.721	101.519	101.540	8351	84.870	-1.966
2016/11/1	101.516	101.604	101.463	101.580	7601	77.243	0.394
2016/11/2	101.577	101.654	101.535	101.631	7172	72.900	0.502
2016/11/3	101.612	101.755	101.612	101.713	8182	83.257	0.807
2016/11/4	101.700	101.736	101.646	101.701	6407	65.188	-0.118
2016/11/7	101.694	101.694	101.515	101.538	9273	94.237	-1.603
2016/11/8	101.498	101.540	101.309	101.494	8375	85.059	-0.433
2016/11/9	101.484	101.738	101.369	101.444	12329	125.300	-0.493
2016/11/10	101.393	101.393	101.161	101.211	11368	115.245	-2.297
2016/11/11	101.208	101.219	100.992	101.038	14325	145.115	-1.709
2016/11/14	101.045	101.163	100.843	100.875	10532	106.510	-1.613
2016/11/15	100.884	100.910	100.644	100.883	11984	120.824	0.079
2016/11/16	100.840	100.912	100.691	100.712	9012	90.859	-1.695
2016/11/17	100.735	100.756	100.499	100.521	9831	99.009	-1.896
2016/11/18	100.571	100.571	100.410	100.422	10657	107.118	-0.985
2016/11/21	100.464	100.578	100.433	100.454	7012	70.485	0.319
2016/11/22	100.467	100.599	100.378	100.446	8224	82.651	-0.080
2016/11/23	100.416	100.702	100.390	100.685	10427	104.854	2.379
2016/11/24	100.660	100.678	100.535	100.632	7100	71.440	-0.526
2016/11/25	100.646	100.663	100.512	100.555	5735	57.681	-0.765
2016/11/28	100.565	100.662	100.560	100.603	3430	34.525	0.477
2016/11/29	100.604	100.604	100.049	100.170	12136	121.731	-4.304
2016/11/30	100.196	100.283	99.827	100.117	13995	140.050	-0.529
2016/12/1	100.097	100.097	99.695	99.764	15116	151.007	-3.526
2016/12/2	99.756	99.893	99.687	99.753	10588	105.667	-0.110
2016/12/5	99.721	99.891	99.523	99.601	8438	84.147	-1.524

2016/12/6	99.623	100.114	99.107	99.376	14625	145.166	-2.259
2016/12/7	99.316	99.550	99.246	99.453	12590	125.205	0.775
2016/12/8	99.448	99.737	99.395	99.480	11065	110.165	0.271
2016/12/9	99.444	99.594	99.379	97.524	7951	79.110	-19.662
2016/12/12	99.228	99.306	98.935	98.949	12798	126.943	14.612
2016/12/13	98.978	99.021	98.759	98.836	11581	114.530	-1.142
2016/12/14	98.921	99.009	98.548	98.671	10477	103.546	-1.669
2016/12/15	98.158	98.332	97.493	97.523	19433	189.891	-11.635
2016/12/16	97.534	98.443	97.320	98.422	23316	228.499	9.218
2016/12/19	98.112	98.149	97.390	97.684	20333	198.720	-7.498
2016/12/20	97.228	97.802	96.733	97.665	26347	256.527	-0.195
2016/12/21	98.091	98.818	97.852	98.725	24793	243.891	10.853
2016/12/22	98.692	99.073	98.531	99.025	19551	193.263	3.039
2016/12/23	98.979	98.997	98.612	98.705	12878	127.309	-3.232
2016/12/26	98.597	98.895	98.408	98.778	14136	139.658	0.740
2016/12/27	98.776	98.796	98.477	98.558	9019	89.060	-2.227
2016/12/28	98.463	98.893	98.424	98.822	12912	127.673	2.679
2016/12/29	98.754	99.733	98.754	99.379	15438	153.376	5.636
2016/12/30	99.287	99.552	99.083	99.179	10977	109.209	-2.012
2017/1/3	99.143	99.296	98.988	99.150	10043	99.701	-0.292
2017/1/4	99.131	99.300	98.932	99.058	13038	129.505	-0.928
2017/1/5	99.013	99.277	98.869	99.265	12616	125.208	2.090
2017/1/6	99.123	99.444	99.064	99.123	11480	114.063	-1.431
2017/1/9	99.136	99.347	99.040	99.297	8921	88.650	1.755
2017/1/10	99.384	99.470	99.217	99.241	10042	99.881	-0.564
2017/1/11	99.202	99.257	99.030	99.088	9637	95.721	-1.542
2017/1/12	99.094	99.328	99.094	99.123	8467	84.214	0.353
2017/1/13	99.193	99.303	99.096	99.212	8541	84.944	0.898
2017/1/16	99.236	99.321	98.749	98.768	10663	105.851	-4.475
2017/1/17	98.783	98.783	98.565	98.685	8749	86.553	-0.840
2017/1/18	98.670	98.893	98.630	98.674	8067	79.868	-0.111
2017/1/19	98.693	98.948	98.501	98.878	9817	97.209	2.067
2017/1/20	98.890	99.156	98.772	98.992	9739	96.681	1.153
2017/1/23	99.051	99.063	98.891	98.945	4449	44.179	-0.475
2017/1/24	98.952	99.271	98.528	98.547	10400	103.239	-4.022
2017/1/25	98.703	98.703	98.204	98.404	13222	130.310	-1.451
2017/1/26	98.332	98.450	98.183	98.336	7816	77.089	-0.691
2017/2/3	98.373	98.463	97.631	97.883	13890	136.477	-4.607
2017/2/6	97.831	98.056	97.636	97.779	9894	97.171	-1.062
2017/2/7	97.811	98.004	97.496	97.906	12137	118.909	1.299
2017/2/8	97.898	98.128	97.811	98.126	10841	106.305	2.247
2017/2/9	97.952	98.309	97.952	98.236	10067	98.891	1.121
2017/2/10	98.240	98.240	98.063	98.139	7809	76.663	-0.987
2017/2/13	98.142	98.405	98.055	98.346	8273	81.335	2.109

2017/2/14	98.341	98.453	98.096	98.223	9928	97.655	-1.251
2017/2/15	98.159	98.222	98.004	98.152	8866	87.052	-0.723
2017/2/16	98.155	98.611	98.115	98.610	9738	95.824	4.666
2017/2/17	98.446	98.699	98.387	98.571	11373	112.087	-0.395
2017/2/20	98.505	98.872	98.505	98.787	10364	102.324	2.191
2017/2/21	98.804	98.804	98.461	98.489	10877	107.251	-3.017
2017/2/22	98.526	98.840	98.300	98.810	9858	97.246	3.259
2017/2/23	98.771	98.980	98.679	98.819	7882	77.916	0.091
2017/2/24	98.800	98.971	98.628	98.771	10278	101.594	-0.486
2017/2/27	98.826	99.045	98.678	98.694	9521	94.163	-0.780
2017/2/28	98.742	98.920	98.638	98.876	6762	66.815	1.844
2017/3/1	98.851	98.869	98.472	98.505	9430	93.031	-3.752
2017/3/2	98.528	98.587	98.391	98.452	8456	83.308	-0.538
2017/3/3	98.455	98.612	98.365	98.389	8256	81.300	-0.640
2017/3/6	98.405	98.440	98.294	98.313	6590	64.837	-0.772
2017/3/7	98.357	98.479	98.258	98.449	6704	65.991	1.383
2017/3/8	98.449	98.502	98.101	98.101	9434	92.738	-3.535
2017/3/9	98.169	98.406	97.988	98.007	9728	95.512	-0.958
2017/3/10	98.055	98.142	97.953	97.919	6997	68.646	-0.898
2017/3/13	98.046	98.609	97.954	98.453	11197	109.945	5.453
2017/3/14	98.449	98.577	98.375	98.552	9321	91.807	1.006
2017/3/15	98.549	98.632	98.396	98.546	7723	76.112	-0.061
2017/3/16	98.628	99.096	98.614	98.819	19463	192.504	2.770
2017/3/17	98.806	98.890	98.691	98.744	8447	83.492	-0.759
2017/3/20	98.808	98.930	98.623	98.745	9372	92.629	0.010
2017/3/21	98.711	98.888	98.529	98.883	10549	104.162	1.398
2017/3/22	98.848	98.992	98.738	98.807	9903	97.928	-0.769
2017/3/23	98.788	98.980	98.673	98.885	9835	97.200	0.789
2017/3/24	98.929	99.314	98.791	99.212	12287	121.830	3.307
2017/3/27	99.215	99.349	99.148	99.325	8989	89.255	1.139
2017/3/28	99.333	99.399	99.122	99.168	10249	101.766	-1.581
2017/3/29	99.139	99.312	99.007	99.148	8690	86.184	-0.202
2017/3/30	99.156	99.191	98.957	99.147	8700	86.232	-0.010
2017/3/31	99.073	99.312	98.976	99.170	8459	83.915	0.232
2017/4/5	99.222	99.350	98.896	98.993	9623	95.470	-1.785
2017/4/6	98.997	99.115	98.931	99.082	7082	70.164	0.899
2017/4/7	99.070	99.260	99.070	99.198	7861	77.999	1.171
2017/4/10	99.180	99.182	98.984	99.048	7573	75.052	-1.512
2017/4/11	99.011	99.147	98.941	99.084	5921	58.661	0.363
2017/4/12	99.186	99.216	98.908	98.942	10400	103.026	-1.433
2017/4/13	98.951	99.108	98.787	98.992	10319	102.176	0.505
2017/4/14	98.981	99.038	98.741	98.764	8111	80.225	-2.303
2017/4/17	98.712	98.812	98.468	98.505	10045	99.095	-2.622
2017/4/18	98.445	98.572	98.343	98.503	8669	85.395	-0.020

2017/4/19	98.524	98.698	98.500	98.603	8513	83.970	1.015
2017/4/20	98.557	98.654	98.461	98.590	8847	87.208	-0.132
2017/4/21	98.551	98.603	98.301	98.346	9392	92.496	-2.475
2017/4/24	98.332	98.332	97.972	98.075	11531	113.204	-2.756
2017/4/25	98.044	98.384	98.044	98.323	10883	106.952	2.529
2017/4/26	98.256	98.417	98.226	98.348	10600	104.217	0.254
2017/4/27	98.306	98.458	98.251	98.342	9478	93.270	-0.061
2017/4/28	98.323	98.344	98.176	98.233	7427	73.002	-1.108
2017/5/2	98.229	98.363	98.101	98.186	9909	97.376	-0.478
2017/5/3	98.145	98.192	97.941	98.091	9308	91.328	-0.968
2017/5/4	98.105	98.196	97.716	97.724	13378	130.987	-3.741
2017/5/5	97.769	97.783	97.579	97.653	9544	93.243	-0.727
2017/5/8	97.621	97.707	97.339	97.385	14076	137.195	-2.744
2017/5/9	97.390	97.476	97.264	97.293	16453	160.229	-0.945
2017/5/10	97.275	97.419	96.833	96.974	27805	269.931	-3.279
2017/5/11	96.946	97.385	96.937	97.325	26303	255.498	3.620
2017/5/12	97.305	97.473	97.017	97.049	25191	245.019	-2.836
2017/5/15	97.155	98.019	97.155	97.330	21089	205.329	2.895
2017/5/16	97.329	97.374	97.129	97.267	17151	166.701	-0.647
2017/5/17	97.232	97.341	97.068	97.239	19778	192.237	-0.288
2017/5/18	97.221	97.428	97.221	97.308	13590	132.301	0.710
2017/5/19	97.358	97.358	97.066	97.229	16650	161.837	-0.812
2017/5/22	97.167	97.181	96.857	96.880	13330	129.301	-3.589
2017/5/23	96.917	97.137	96.828	97.039	13830	134.172	1.641
2017/5/24	97.033	97.333	96.971	97.235	16086	156.338	2.020
2017/5/25	97.269	97.333	97.167	97.276	10117	98.394	0.422
2017/5/26	97.230	97.263	97.108	97.210	7322	71.145	-0.678
2017/5/31	97.207	97.568	97.145	97.514	10308	100.422	3.127
2017/6/1	97.502	97.705	97.400	97.686	9978	97.371	1.764
2017/6/2	97.608	97.850	97.492	97.648	6600	64.409	-0.389
2017/6/5	97.634	97.853	97.634	97.775	9642	94.281	1.301
2017/6/6	97.799	97.825	97.637	97.682	7349	71.817	-0.951
2017/6/7	97.686	97.686	97.405	97.622	13931	135.905	-0.614
2017/6/8	97.573	97.683	97.451	97.505	10940	106.694	-1.199
2017/6/9	97.496	97.643	96.289	96.407	8279	80.752	-11.261
2017/6/12	97.624	97.884	97.624	97.810	10075	98.507	14.553
2017/6/13	97.946	98.022	97.789	97.829	9075	88.822	0.194
2017/6/14	97.751	98.059	97.719	97.940	20497	200.569	1.135
2017/6/15	97.900	98.139	97.825	97.919	14522	142.311	-0.214
2017/6/16	97.855	97.934	97.790	97.878	8324	81.464	-0.419
2017/6/19	97.937	98.289	97.937	98.234	13535	132.794	3.637
2017/6/20	98.278	98.338	98.154	98.219	11380	111.782	-0.153
2017/6/21	98.219	98.292	97.966	98.037	14697	144.232	-1.853
2017/6/22	98.020	98.042	97.781	97.847	14213	139.177	-1.938

2017/6/23	97.867	98.025	97.866	97.990	9437	92.436	1.461
2017/6/26	97.945	98.231	97.945	98.190	11696	114.763	2.041
2017/6/27	98.224	98.275	98.071	98.174	10081	98.967	-0.163
2017/6/28	98.206	98.230	98.066	98.136	10704	105.072	-0.387
2017/6/29	98.165	98.170	98.016	98.090	12116	118.856	-0.469
2017/6/30	98.006	98.028	97.922	97.990	10496	102.822	-1.019
2017/7/3	98.009	98.050	97.783	97.783	9591	93.912	-2.112
2017/7/4	97.831	97.867	97.728	97.842	7466	73.032	0.603
2017/7/5	97.825	97.970	97.786	97.949	9546	93.428	1.094
2017/7/6	97.914	98.119	97.914	98.070	9604	94.163	1.235
2017/7/7	98.023	98.171	97.965	97.970	12990	127.370	-1.020
2017/7/10	98.052	98.061	97.897	97.901	11507	112.725	-0.704
2017/7/11	97.922	98.002	97.875	97.903	10224	100.133	0.020
2017/7/12	97.956	98.068	97.845	97.892	15525	152.074	-0.112
2017/7/13	97.933	98.073	97.885	97.947	13092	128.269	0.562
2017/7/14	97.921	97.948	97.800	97.897	15224	149.017	-0.510
2017/7/17	97.911	98.012	97.815	97.837	16596	162.554	-0.613
2017/7/18	97.807	97.807	97.619	97.715	18287	178.665	-1.247
2017/7/19	97.713	97.806	97.697	97.700	12582	122.987	-0.154
2017/7/20	97.713	97.865	97.709	97.842	8901	87.060	1.453
2017/7/21	97.855	97.890	97.738	97.776	7075	69.178	-0.675
2017/7/24	97.776	97.857	97.764	97.835	7181	70.238	0.603
2017/7/25	97.829	97.848	97.599	97.695	9566	93.486	-1.431
2017/7/26	97.690	97.722	97.552	97.577	9092	88.758	-1.208
2017/7/27	97.588	97.658	97.455	97.591	13393	130.658	0.143
2017/7/28	97.573	97.617	97.503	97.521	9873	96.306	-0.717
2017/7/31	97.532	97.558	97.377	97.411	11975	116.673	-1.128
2017/8/1	97.405	97.431	97.248	97.296	16963	165.075	-1.181
2017/8/2	97.315	97.445	97.315	97.348	13832	134.661	0.534
2017/8/3	97.364	97.438	97.317	97.380	14345	139.644	0.329
2017/8/4	97.377	97.503	97.366	97.424	12011	116.992	0.452
2017/8/7	97.397	97.397	97.186	97.211	15609	151.805	-2.186
2017/8/8	97.199	97.288	97.154	97.220	14176	137.812	0.093
2017/8/9	97.266	97.302	97.121	97.160	19038	184.999	-0.617
2017/8/10	97.169	97.283	97.169	97.250	14894	144.781	0.926
2017/8/11	97.264	97.479	97.264	97.427	15359	149.541	1.820
2017/8/14	97.419	97.596	97.347	97.574	18397	179.363	1.509
2017/8/15	97.558	97.679	97.510	97.570	14867	145.051	-0.041
2017/8/16	97.565	97.574	97.474	97.501	10238	99.801	-0.707
2017/8/17	97.499	97.539	97.436	97.503	7685	74.910	0.021
2017/8/18	97.507	97.615	97.502	97.510	8781	85.663	0.072
2017/8/21	97.527	97.527	97.409	97.468	8438	82.219	-0.431
2017/8/22	97.438	97.498	97.384	97.481	9631	93.838	0.133
2017/8/23	97.439	97.621	97.439	97.511	12477	121.708	0.308

2017/8/24	97.524	97.561	97.420	97.476	10274	100.158	-0.359
2017/8/25	97.461	97.502	97.412	97.419	5994	58.410	-0.585
2017/8/28	97.428	97.463	97.344	97.351	8866	86.341	-0.698
2017/8/29	97.384	97.475	97.313	97.447	8792	85.633	0.986
2017/8/30	97.451	97.508	97.376	97.498	7800	75.984	0.523
2017/8/31	97.483	97.547	97.449	97.547	6236	60.802	0.503
2017/9/1	97.533	97.547	97.488	97.493	5598	54.595	-0.554
2017/9/4	97.487	97.527	97.456	97.477	4938	48.146	-0.164
2017/9/5	97.501	97.937	97.336	97.337	7337	71.464	-1.436
2017/9/6	97.348	97.830	97.347	97.474	7140	69.568	1.407
2017/9/7	97.464	98.314	97.449	97.640	9090	88.664	1.703
2017/9/8	97.670	97.850	97.636	97.539	12315	120.332	-1.034
2017/9/11	97.702	97.766	97.621	97.627	8059	78.723	0.902
2017/9/12	97.617	97.731	97.572	97.666	10638	103.879	0.399
2017/9/13	97.622	97.681	97.507	97.542	15317	149.472	-1.270
2017/9/14	97.562	97.776	97.532	97.732	13389	130.740	1.948
2017/9/15	97.731	97.757	97.652	97.692	8582	83.846	-0.409
2017/9/18	97.672	97.717	97.482	97.497	18758	183.004	-1.996
2017/9/19	97.497	97.617	97.497	97.602	10201	99.532	1.077
2017/9/20	97.582	97.602	97.492	97.522	9836	95.940	-0.820
2017/9/21	97.522	97.562	97.342	97.452	9283	90.472	-0.718
2017/9/22	97.472	97.582	97.462	97.557	7707	75.166	1.077
2017/9/25	97.611	97.692	97.577	97.642	7861	76.762	0.871
2017/9/26	97.633	97.672	97.593	97.648	4789	46.758	0.061
2017/9/27	97.633	97.648	97.558	97.628	6626	64.670	-0.205
2017/9/28	97.667	97.728	97.638	97.723	9838	96.104	0.973
2017/9/29	97.708	97.753	97.624	97.698	6947	67.859	-0.256
2017/10/9	97.698	97.698	97.463	97.475	8075	78.761	-2.283
2017/10/10	97.494	97.523	97.438	97.444	6164	60.080	-0.318
2017/10/11	97.444	97.480	97.384	97.415	6570	64.018	-0.298
2017/10/12	97.425	97.450	97.236	97.260	10499	102.180	-1.591
2017/10/13	97.276	97.345	97.240	97.255	7482	72.793	-0.051
2017/10/16	97.118	97.118	96.976	97.025	13504	131.061	-2.365
2017/10/17	97.006	97.051	96.715	96.795	14180	137.411	-2.371
2017/10/18	96.835	96.891	96.736	96.846	19761	191.278	0.527
2017/10/19	96.913	97.205	96.886	96.992	14235	138.045	1.508
2017/10/20	96.986	97.097	96.957	96.997	10877	105.533	0.052
2017/10/23	96.949	97.043	96.858	97.029	10715	103.902	0.330
2017/10/24	97.009	97.039	96.953	96.988	5353	51.919	-0.423
2017/10/25	96.959	96.959	96.639	96.660	13304	128.773	-3.382
2017/10/26	96.617	96.737	96.466	96.722	17585	169.847	0.641
2017/10/27	96.718	96.740	96.368	96.373	12829	123.875	-3.608
2017/10/30	96.222	96.275	95.777	95.992	39431	378.576	-3.953
2017/10/31	96.042	96.214	95.972	96.108	20354	195.611	1.208

附录 B: 本文所用宏观经济数据(%)

	113	7, D. 1	~~~////////////////////////////////////	Z • 70 - I 71	>> 3/A (/4/		
日期	PMI同比	PPI 同比	CPI 同比	M1 同比	M2 同比	铁路运量 同比	发电量同 比
2006/1	-4.75	3.05	1.90	10.63	19.21	-0.50	16.50
2006/2	-4.40	3.01	0.90	12.40	18.80	5.60	18.30
2006/3	-4.49	2.49	0.80	12.70	18.80	7.10	11.10
2006/4	2.47	1.87	1.20	12.50	18.90	8.00	11.20
2006/5	3.59	2.43	1.40	14.01	19.10	8.50	12.50
2006/6	4.64	3.52	1.50	13.90	18.43	8.80	14.00
2006/7	2.54	3.58	1.00	15.30	18.40	7.40	13.50
2006/8	0.95	3.40	1.30	15.60	17.90	10.10	16.40
2006/9	3.45	3.50	1.50	15.70	16.83	10.20	14.00
2006/10	1.11	2.90	1.40	16.30	17.10	8.40	14.40
2006/11	2.22	2.78	1.90	16.80	16.80	7.00	14.70
2006/12	0.92	3.10	2.80	17.48	16.94	7.10	14.60
2007/1	5.76	3.30	2.20	20.21	15.93	17.10	9.90
2007/2	1.92	2.60	2.70	21.00	17.80	13.50	5.30
2007/3	1.45	2.70	3.30	19.80	17.30	6.40	13.70
2007/4	0.86	2.90	3.00	20.00	17.10	8.50	15.40
2007/5	1.64	2.80	3.40	19.28	16.74	7.70	16.00
2007/6	0.74	2.49	4.40	20.92	17.06	8.70	17.00
2007/7	1.72	2.40	5.60	20.90	18.50	9.80	15.50
2007/8	1.69	2.60	6.50	22.80	18.10	6.70	15.00
2007/9	-1.58	2.70	6.20	22.07	18.45	6.40	15.50
2007/10	-2.74	3.20	6.50	22.21	18.47	5.90	13.90
2007/11	0.18	4.55	6.90	21.67	18.45	4.10	13.80
2007/12	0.91	5.43	6.50	21.01	16.72	6.70	12.30
2008/1	-3.81	6.10	7.10	20.72	18.94	1.40	13.30
2008/2	0.56	6.62	8.70	19.20	17.48	7.50	14.30
2008/3	4.10	7.95	8.30	18.25	16.29	10.00	16.60
2008/4	1.02	8.12	8.50	19.05	16.94	7.40	12.80
2008/5	-4.31	8.22	7.70	17.93	18.07	5.70	11.80
2008/6	-4.59	8.84	7.10	14.19	17.37	4.70	8.30
2008/7	-9.19	10.03	6.30	13.96	16.35	4.10	8.10
2008/8	-10.37	10.06	4.90	11.48	16.00	8.90	5.10
2008/9	-8.73	9.13	4.60	9.43	15.29	7.20	3.40
2008/10	-16.17	6.59	4.00	8.85	15.02	1.30	-4.00
2008/11	-29.96	1.99	2.40	6.80	14.80	-6.10	-9.60
2008/12	-25.50	-1.14	1.20	9.06	17.82	-10.40	-7.90
2009/1	-14.53	-3.35	1.00	6.68	18.79	-7.00	-1.50

2009/2	-8.24	-4.47	-1.60	10.87	20.48	-9.50	5.90
2009/3	-10.27	-6.00	-1.20	17.04	25.51	-8.20	-1.30
2009/4	-9.63	-6.60	-1.50	17.48	25.89	-6.90	-3.50
2009/5	-0.38	-7.20	-1.40	18.69	25.74	-2.60	-2.70
2009/6	2.31	-7.80	-1.70	24.79	28.46	-1.50	5.20
2009/7	10.12	-8.20	-1.80	26.37	28.42	0.30	4.80
2009/8	11.57	-7.86	-1.20	27.72	28.53	-1.30	9.30
2009/9	6.05	-6.99	-0.80	29.51	29.31	-0.60	9.50
2009/10	23.77	-5.85	-0.50	32.03	29.42	3.70	17.10
2009/11	42.27	-2.08	0.60	34.63	29.74	12.10	26.90
2009/12	37.38	1.70	1.90	32.35	27.68	18.40	25.90
2010/1	23.18	4.32	1.50	38.96	25.98	18.00	16.90
2010/2	6.12	5.39	2.70	34.99	25.52	17.20	7.90
2010/3	5.15	5.91	2.40	29.94	22.50	17.40	17.60
2010/4	4.11	6.81	2.80	31.25	21.48	14.10	21.40
2010/5	1.51	7.13	3.10	29.90	21.00	12.80	18.90
2010/6	-2.07	6.41	2.90	24.56	18.46	10.30	11.40
2010/7	-3.94	4.84	3.30	22.90	17.60	8.90	11.50
2010/8	-4.26	4.32	3.50	21.90	19.20	7.00	12.60
2010/9	-0.92	4.33	3.60	20.87	18.96	7.20	8.10
2010/10	-0.91	5.04	4.40	22.10	19.30	7.40	5.90
2010/11	0.00	6.06	5.10	22.10	19.50	8.30	5.60
2010/12	-4.77	5.93	4.60	21.19	19.72	4.80	5.10
2011/1	-5.20	6.60	4.90	13.60	17.20	7.90	10.30
2011/2	0.38	7.23	4.94	14.50	15.70	6.60	15.40
2011/3	-3.09	7.31	5.38	15.00	16.60	6.00	14.80
2011/4	-5.03	6.82	5.34	12.90	15.30	4.90	11.70
2011/5	-3.53	6.79	5.52	12.70	15.10	6.60	12.10
2011/6	-2.30	7.12	6.36	13.10	15.90	6.60	16.20
2011/7	-0.98	7.54	6.45	11.60	14.70	6.00	13.20
2011/8	-1.55	7.25	6.15	11.20	13.50	5.70	10.00
2011/9	-4.83	6.52	6.07	8.90	13.00	8.60	11.50
2011/10	-7.86	5.00	5.50	8.40	12.90	6.90	9.30
2011/11	-11.23	2.72	4.23	7.80	12.70	6.50	8.50
2011/12	-6.68	1.69	4.07	7.90	13.60	6.20	9.70
2012/1	-4.54	0.73	4.50	3.10	12.40	1.90	15.20
2012/2	-2.30	0.03	3.20	4.30	13.00	3.90	20.60
2012/3	-0.56	-0.32	3.60	4.40	13.40	3.30	7.20
2012/4	0.76	-0.70	3.40	3.10	12.80	5.30	0.70
2012/5	-3.08	-1.40	3.00	3.50	13.20	3.00	2.70

2012/6	-1.38	-2.08	2.20	4.70	13.60	-3.10	2.40
2012/7	-1.18	-2.87	1.80	4.60	13.90	-8.20	2.10
2012/8	-3.34	-3.48	2.00	4.50	13.50	-9.20	2.70
2012/9	-2.73	-3.55	1.90	7.30	14.80	-5.40	1.50
2012/10	-0.40	-2.76	1.70	6.10	14.10	-3.20	6.40
2012/11	3.27	-2.20	2.00	5.50	13.90	0.50	7.90
2012/12	0.60	-1.94	2.50	6.50	13.80	1.30	7.60
2013/1	-0.20	-1.64	2.03	15.30	15.90	1.60	4.90
2013/2	-1.76	-1.63	3.22	9.50	15.20	-1.80	4.90
2013/3	-4.14	-1.92	2.07	11.90	15.70	-2.40	2.10
2013/4	-5.07	-2.62	2.39	11.90	16.10	-6.50	6.20
2013/5	0.79	-2.87	2.10	11.30	15.80	-6.50	4.10
2013/6	-0.20	-2.70	2.67	9.10	14.00	-0.70	6.00
2013/7	0.40	-2.27	2.67	9.70	14.50	4.70	8.10
2013/8	3.66	-1.62	2.57	9.90	14.70	8.10	13.40
2013/9	2.61	-1.34	3.05	8.90	14.20	9.00	8.20
2013/10	2.39	-1.51	3.21	8.90	14.30	8.10	8.40
2013/11	1.58	-1.42	3.02	9.40	14.20	3.30	6.80
2013/12	0.79	-1.36	2.50	9.30	13.60	4.20	8.30
2014/1	0.20	-1.64	2.49	1.20	13.20	-0.20	12.20
2014/2	0.20	-2.00	1.95	6.90	13.30	-6.30	16.00
2014/3	-1.18	-2.30	2.38	5.40	12.10	-4.10	6.20
2014/4	-0.40	-2.00	1.80	5.50	13.20	-2.70	4.40
2014/5	0.00	-1.45	2.48	5.70	13.40	-1.00	5.90
2014/6	1.80	-1.11	2.34	8.90	14.70	-0.70	5.70
2014/7	2.78	-0.87	2.29	6.70	13.50	-1.60	3.30
2014/8	0.20	-1.20	1.99	5.70	12.80	-0.40	-2.20
2014/9	0.00	-1.80	1.63	4.80	12.90	-5.50	4.10
2014/10	-1.17	-2.24	1.60	3.20	12.60	-6.20	1.90
2014/11	-2.14	-2.69	1.44	3.20	12.30	-6.50	0.60
2014/12	-1.76	-3.32	1.51	3.20	12.20	-10.70	1.30
2015/1	-1.39	-4.32	0.76	10.60	10.80	-9.10	-3.20
2015/2	-0.60	-4.80	1.43	5.60	12.50	-9.10	-7.60
2015/3	-0.40	-4.56	1.38	2.90	11.60	-10.10	-3.70
2015/4	-0.60	-4.57	1.51	3.70	10.10	-9.90	1.00
2015/5	-1.18	-4.61	1.23	4.70	10.80	-11.00	0.00
2015/6	-1.57	-4.81	1.39	4.30	11.80	-11.70	0.50
2015/7	-3.29	-5.37	1.65	6.60	13.30	-10.90	-2.00
2015/8	-2.74	-5.92	1.96	9.30	13.30	-15.30	1.00
2015/9	-2.54	-5.95	1.60	11.40	13.10	-15.60	-3.10

2015/10	-1.97	-5.90	1.27	14.00	13.50	-16.30	-3.20
2015/11	-1.39	-5.90	1.49	15.70	13.70	-15.60	0.10
2015/12	-0.80	-5.90	1.60	15.20	13.30	-8.30	-3.70
2016/1	-0.80	-5.30	1.80	18.60	14.00	-10.00	0.15
2016/2	-1.80	-4.90	2.30	17.40	13.30	-10.70	0.15
2016/3	0.20	-4.30	2.30	22.10	13.40	-6.40	4.00
2016/4	0.00	-3.40	2.30	22.90	12.80	-4.50	-1.70
2016/5	-0.20	-2.80	2.00	23.70	11.80	-7.00	0.00
2016/6	-0.40	-2.60	1.90	24.60	11.80	-6.30	2.10
2016/7	-0.20	-1.70	1.80	25.40	10.20	-5.80	7.20
2016/8	1.41	-0.80	1.30	25.30	11.40	1.00	7.80
2016/9	1.20	0.10	1.90	24.70	11.50	7.00	6.80
2016/10	2.81	1.20	2.10	23.90	11.60	11.20	8.00
2016/11	4.23	3.30	2.30	22.70	11.40	13.90	7.00
2016/12	3.42	5.50	2.10	21.40	11.30	9.80	6.90
2017/1	3.85	6.90	2.50	14.50	11.30	10.40	0.15
2017/2	5.31	7.80	0.80	21.40	11.10	19.40	0.15
2017/3	3.19	7.60	0.90	18.80	10.60	17.30	7.20
2017/4	2.20	6.40	1.20	18.50	10.50	15.30	5.40
2017/5	2.20	5.50	1.50	17.00	9.60	14.00	5.00
2017/6	3.40	5.50	1.50	15.00	9.40	16.30	5.20
2017/7	3.01	5.50	1.40	15.30	9.20	17.70	8.60
2017/8	2.58	6.30	1.80	14.00	8.90	13.10	4.80
2017/9	3.97	6.90	1.60	14.00	9.20	9.20	5.30
2017/10	0.78	6.90	1.90	13.00	8.80	9.20	2.50

附录 C: 各技术指标指标筛选集参数回测结果

表 C.1 KDJ 指标筛选集参数回测结果

衣 C.1 KDJ 指标师选集参数凹测结果						
(i,j,k)	胜率	年化收益	年化标准	年化夏普	最大回撤	
		率	差	比率		
(9,3,3)	0.8605	0.1175	0.0207	3.9827	-0.0052	
(9,3,6)	0.8605	0.1175	0.0207	3.9827	-0.0052	
(9,3,9)	0.8605	0.1175	0.0207	3.9827	-0.0052	
(9,6,3)	0.8116	0.1773	0.0251	5.5864	-0.0051	
(9,6,6)	0.8116	0.1773	0.0251	5.5864	-0.0051	
(9,6,9)	0.8116	0.1773	0.0251	5.5864	-0.0051	
(9,9,3)	0.7700	0.1641	0.0246	5.1947	-0.0051	
(9,9,6)	0.7700	0.1641	0.0246	5.1947	-0.0051	
(9,9,9)	0.7700	0.1641	0.0246	5.1947	-0.0051	
(15,3,3)	0.8962	0.1004	0.0189	3.4828	-0.0052	
(15,3,6)	0.8962	0.1004	0.0189	3.4828	-0.0052	
(15,3,9)	0.8962	0.1004	0.0189	3.4828	-0.0052	
(15,6,3)	0.8000	0.1384	0.0230	4.4677	-0.0073	
(15,6,6)	0.8000	0.1384	0.0230	4.4677	-0.0073	
(15,6,9)	0.8000	0.1384	0.0230	4.4677	-0.0073	
(15,9,3)	0.7581	0.1363	0.0235	4.2950	-0.0073	
(15,9,6)	0.7581	0.1363	0.0235	4.2950	-0.0073	
(15,9,9)	0.7581	0.1363	0.0235	4.2950	-0.0073	
(21,3,3)	0.8333	0.0759	0.0166	2.5421	-0.0052	
(21,3,6)	0.8333	0.0759	0.0166	2.5421	-0.0052	
(21,3,9)	0.8333	0.0759	0.0166	2.5421	-0.0052	
(21,6,3)	0.7879	0.1139	0.0223	3.5495	-0.0073	
(21,6,6)	0.7879	0.1139	0.0223	3.5495	-0.0073	
(21,6,9)	0.7879	0.1139	0.0223	3.5495	-0.0073	
(21,9,3)	0.7500	0.1223	0.0224	3.8881	-0.0073	
(21,9,6)	0.7500	0.1223	0.0224	3.8881	-0.0073	
(21,9,9)	0.7500	0.1223	0.0224	3.8881	-0.0073	
(27,3,3)	0.8172	0.0779	0.0178	2.4785	-0.0052	
(27,3,6)	0.8172	0.0779	0.0178	2.4785	-0.0052	
(27,3,9)	0.8172	0.0779	0.0178	2.4785	-0.0052	
(27,6,3)	0.8000	0.1147	0.0218	3.6591	-0.0052	
(27,6,6)	0.8000	0.1147	0.0218	3.6591	-0.0052	
(27,6,9)	0.8000	0.1147	0.0218	3.6591	-0.0052	
(27,9,3)	0.7635	0.1196	0.0221	3.8214	-0.0052	
(27,9,6)	0.7635	0.1196	0.0221	3.8214	-0.0052	

(27,9,9) 0.7635 0.1196 0.0221 3.8214 -0.0052

表 C.2 MACD 指标筛选集参数回测结果

	衣 C.2	2 MACD 指标项	币选集	凹测结果	
(k,i,j)	胜率	年化收益率	年化标准 差	年化夏普比 率	最大回撤
(9,8,17)	0.6043	0.0832	0.0272	1.8111	-0.0121
(9,8,21)	0.5899	0.0702	0.0275	1.3375	-0.0148
(9,8,25)	0.5896	0.0701	0.0274	1.3343	-0.0133
(9,8,29)	0.5926	0.0715	0.0274	1.3845	-0.0144
(9,8,33)	0.5880	0.0662	0.0268	1.2262	-0.0153
(9,8,37)	0.5811	0.0593	0.0265	0.9848	-0.0145
(9,10,17)	0.5893	0.0700	0.0275	1.3311	-0.0181
(9,10,21)	0.6000	0.0721	0.0274	1.4038	-0.0153
(9,10,25)	0.5852	0.0669	0.0271	1.2391	-0.0212
(9,10,29)	0.5762	0.0597	0.0279	0.9493	-0.0178
(9,10,33)	0.5799	0.0545	0.0275	0.7794	-0.0194
(9,10,37)	0.5768	0.0587	0.0277	0.9221	-0.0194
(9,12,17)	0.5941	0.0696	0.0273	1.3214	-0.0169
(9,12,21)	0.5750	0.0563	0.0278	0.8353	-0.0209
(9,12,25)	0.5735	0.0581	0.0280	0.8925	-0.0198
(9,12,29)	0.5741	0.0593	0.0284	0.9217	-0.0194
(9,12,33)	0.5762	0.0571	0.0276	0.8686	-0.0195
(9,12,37)	0.5730	0.0466	0.0278	0.4975	-0.0195
(9,14,17)	0.5735	0.0571	0.0277	0.8674	-0.0211
(9,14,21)	0.5766	0.0575	0.0279	0.8739	-0.0193
(9,14,25)	0.5809	0.0604	0.0283	0.9633	-0.0194
(9,14,29)	0.5815	0.0582	0.0288	0.8697	-0.0195
(9,14,33)	0.5688	0.0441	0.0276	0.4157	-0.0231
(9,14,37)	0.5580	0.0348	0.0281	0.0849	-0.0217
(9,16,17)	0.5782	0.0561	0.0276	0.8332	-0.0193
(9,16,21)	0.5797	0.0598	0.0284	0.9374	-0.0194
(9,16,25)	0.5830	0.0575	0.0285	0.8570	-0.0223
(9,16,29)	0.5803	0.0527	0.0286	0.6901	-0.0216
(9,16,33)	0.5643	0.0386	0.0282	0.2171	-0.0224
(9,16,37)	0.5638	0.0348	0.0282	0.0862	-0.0238
(9,18,17)	0.4317	-0.0528	0.0283	-2.9106	-0.1133
(9,18,21)	0.5735	0.0541	0.0281	0.7511	-0.0217
(9,18,25)	0.5776	0.0538	0.0286	0.7262	-0.0216
(9,18,29)	0.5714	0.0462	0.0289	0.4664	-0.0224
(9,18,33)	0.5684	0.0384	0.0283	0.2088	-0.0252
(9,18,37)	0.5694	0.0432	0.0282	0.3745	-0.0236

(12,8,17)	0.5912	0.0696	0.0274	1.3162	-0.0169
(12,8,21)	0.5788	0.0648	0.0274	1.1492	-0.0153
(12,8,25)	0.5735	0.0587	0.0278	0.9195	-0.0212
(12,8,29)	0.5725	0.0501	0.0275	0.6279	-0.0194
(12,8,33)	0.5821	0.0592	0.0278	0.9359	-0.0194
(12,8,37)	0.5730	0.0548	0.0277	0.7866	-0.0194
(12,10,17)	0.5803	0.0625	0.0272	1.0762	-0.0176
(12,10,21)	0.5741	0.0563	0.0278	0.8350	-0.0193
(12,10,25)	0.5746	0.0576	0.0284	0.8632	-0.0222
(12,10,29)	0.5774	0.0545	0.0279	0.7684	-0.0195
(12,10,33)	0.5672	0.0452	0.0281	0.4434	-0.0213
(12,10,37)	0.5651	0.0384	0.0276	0.2139	-0.0231
(12,,12,17)	0.5803	0.0550	0.0275	0.8013	-0.0188
(12,,12,17)	0.5756	0.0576	0.0284	0.8645	-0.0222
(12,,12,17)	0.5768	0.0551	0.0285	0.7744	-0.0212
(12,,12,17)	0.5714	0.0449	0.0282	0.4346	-0.0208
(12,,12,17)	0.5662	0.0380	0.0281	0.1980	-0.0224
(12,,12,17)	0.5636	0.0363	0.0279	0.1388	-0.0238
(12,14,17)	0.5725	0.0562	0.0281	0.8221	-0.0222
(12,14,21)	0.5793	0.0551	0.0285	0.7768	-0.0195
(12,14,25)	0.5730	0.0542	0.0288	0.7351	-0.0111
(12,14,29)	0.5668	0.0381	0.0283	0.1978	-0.0239
(12,14,33)	0.5612	0.0345	0.0281	0.0770	-0.0252
(12,14,37)	0.5739	0.0412	0.0279	0.3101	-0.0230
(12,16,17)	0.5735	0.0539	0.0278	0.7514	-0.0275
(12,16,21)	0.5761	0.0532	0.0290	0.6988	-0.0204
(12,16,25)	0.5714	0.0448	0.0290	0.4182	-0.0239
(12,16,29)	0.5760	0.0400	0.0283	0.2634	-0.0213
(12,16,33)	0.5836	0.0450	0.0279	0.4398	-0.0199
(12,16,37)	0.5779	0.0424	0.0281	0.3475	-0.0223
(12,18,17)	0.4260	-0.0516	0.0285	-2.8571	-0.1095
(12,18,21)	0.5647	0.0463	0.0291	0.4663	-0.0239
(12,18,25)	0.5825	0.0498	0.0289	0.5842	-0.0197
(12,18,29)	0.5789	0.0407	0.0284	0.2849	-0.0236
(12,18,33)	0.5739	0.0415	0.0283	0.3152	-0.0223
(12,18,37)	0.5769	0.0476	0.0284	0.5203	-0.0223
(15,8,17)	0.5745	0.0621	0.0273	1.0563	-0.0176
(15,8,21)	0.5725	0.0558	0.0278	0.8199	-0.0209
(15,8,25)	0.5693	0.0528	0.0280	0.7101	-0.0195
(15,8,29)	0.5693	0.0528	0.0278	0.7149	-0.0195

(15,8,33)	0.5655	0.0416	0.0279	0.3244	-0.0195
(15,8,37)	0.5688	0.0410	0.0277	0.3043	-0.0267
(15,10,17)	0.5735	0.0537	0.0276	0.7520	-0.0062
(15,10,21)	0.5768	0.0584	0.0284	0.8922	-0.0193
(15,10,25)	0.5730	0.0504	0.0284	0.6196	-0.0223
(15,10,29)	0.5709	0.0406	0.0281	0.2853	-0.0195
(15,10,33)	0.5625	0.0347	0.0280	0.0832	-0.0224
(15,10,37)	0.5673	0.0358	0.0279	0.1225	-0.0224
(15,12,17)	0.5704	0.0558	0.0281	0.8102	-0.0238
(15,12,21)	0.5751	0.0531	0.0288	0.6999	-0.0222
(15,12,25)	0.5683	0.0418	0.0287	0.3200	-0.0195
(15,12,29)	0.5668	0.0385	0.0282	0.2115	-0.0224
(15,12,33)	0.5699	0.0366	0.0281	0.1490	-0.0239
(15,12,37)	0.5845	0.0455	0.0279	0.4581	-0.0213
(15,14,17)	0.5778	0.0545	0.0282	0.7617	-0.0199
(15,14,21)	0.5668	0.0486	0.0291	0.5429	-0.0199
(15,14,25)	0.5745	0.0441	0.0286	0.3984	-0.0239
(15,14,29)	0.5801	0.0417	0.0282	0.3214	-0.0216
(15,14,33)	0.5784	0.0419	0.0282	0.3293	-0.0213
(15,14,37)	0.5789	0.0450	0.0283	0.4337	-0.0223
(15,16,17)	0.5766	0.0542	0.0289	0.7363	-0.0223
(15,16,21)	0.5801	0.0493	0.0289	0.5692	-0.0204
(15,16,25)	0.5825	0.0454	0.0286	0.4418	-0.0207
(15,16,29)	0.5866	0.0433	0.0283	0.3773	-0.0213
(15,16,33)	0.5739	0.0422	0.0284	0.3364	-0.0211
(15,16,37)	0.5776	0.0480	0.0281	0.5422	-0.0211
(15,18,17)	0.4321	-0.0467	0.0291	-2.6278	-0.0211
(15,18,21)	0.5819	0.0500	0.0289	0.5916	-0.1005
(15,18,25)	0.5819	0.0443	0.0287	0.4059	-0.0211
(15,18,29)	0.5887	0.0518	0.0281	0.6697	-0.0158
(15,18,33)	0.5751	0.0457	0.0275	0.4723	-0.0145
(15,18,37)	0.5756	0.0363	0.0281	0.1384	-0.0243
(18,8,17)	0.5756	0.0577	0.0278	0.8839	-0.0209
(18,8,21)	0.5752	0.0561	0.0281	0.8202	-0.0194
(18,8,25)	0.5795	0.0518	0.0280	0.6756	-0.0195
(18,8,29)	0.5609	0.0348	0.0280	0.0874	-0.0216
(18,8,33)	0.5641	0.0361	0.0278	0.1320	-0.0225
(18,8,37)	0.5699	0.0451	0.0279	0.4452	-0.0224
(18,10,17)	0.5799	0.0594	0.0284	0.9262	-0.0222
(18,10,21)	0.5699	0.0513	0.0287	0.6405	-0.0195

(18,10,25)	0.5683	0.0393	0.0282	0.2401	-0.0224
(18,10,29)	0.5636	0.0338	0.0280	0.0500	-0.0244
(18,10,33)	0.5694	0.0394	0.0278	0.2462	-0.0199
(18,10,37)	0.5860	0.0483	0.0277	0.5574	-0.0199
(18,12,17)	0.5751	0.0525	0.0287	0.6803	-0.0195
(18,12,21)	0.5625	0.0433	0.0289	0.3693	-0.0239
(18,12,25)	0.5771	0.0419	0.0282	0.3307	-0.0197
(18,12,29)	0.5714	0.0353	0.0282	0.1025	-0.0236
(18,12,33)	0.5754	0.0424	0.0280	0.3474	-0.0223
(18,12,37)	0.5836	0.0522	0.0281	0.6840	-0.0223
(18,14,17)	0.5704	0.0496	0.0292	0.5735	-0.0211
(18,14,21)	0.5765	0.0477	0.0287	0.5200	-0.0216
(18,14,25)	0.5795	0.0411	0.0283	0.3013	-0.0236
(18,14,29)	0.5795	0.0414	0.0281	0.3140	-0.0211
(18,14,33)	0.5750	0.0454	0.0281	0.4495	-0.0211
(18,14,37)	0.5756	0.0461	0.0283	0.4733	-0.0290
(18,16,17)	0.5730	0.0457	0.0289	0.4492	-0.0224
(18,16,21)	0.5825	0.0478	0.0288	0.5203	-0.0213
(18,16,25)	0.5874	0.0448	0.0283	0.4258	-0.0211
(18,16,29)	0.5821	0.0482	0.0278	0.5546	-0.0187
(18,16,33)	0.5730	0.0452	0.0286	0.4361	-0.0226
(18,16,37)	0.5805	0.0372	0.0283	0.1684	-0.0257
(18,18,17)	0.4231	-0.0484	0.0289	-2.7018	-0.1005
(18,18,21)	0.5788	0.0441	0.0291	0.3912	-0.0218
(18,18,25)	0.5950	0.0548	0.0280	0.7786	-0.0158
(18,18,29)	0.5646	0.0356	0.0283	0.1116	-0.0226
(18,18,33)	0.5662	0.0317	0.0285	-0.0204	-0.0302
(18,18,37)	0.5687	0.0309	0.0282	-0.0483	-0.0350
(21,8,17)	0.5778	0.0615	0.0286	0.9896	-0.0194
(21,8,21)	0.5795	0.0531	0.0280	0.7195	-0.0195
(21,8,25)	0.5688	0.0382	0.0281	0.2037	-0.0224
(21,8,29)	0.5662	0.0381	0.0279	0.2029	-0.0225
(21,8,33)	0.5730	0.0457	0.0279	0.4666	-0.0236
(21,8,37)	0.5745	0.0492	0.0280	0.5854	-0.0236
(21,10,17)	0.5789	0.0572	0.0287	0.8395	-0.0195
(21,10,21)	0.5704	0.0422	0.0283	0.3369	-0.0224
(21,10,25)	0.5704	0.0378	0.0281	0.1911	-0.0207
(21,10,29)	0.5771	0.0426	0.0278	0.3574	-0.0223
(21,10,33)	0.5830	0.0462	0.0278	0.4839	-0.0223
(21,10,37)	0.5816	0.0531	0.0283	0.7116	-0.0223

(21,12,17)	0.5657	0.0483	0.0291	0.5310	-0.0224
(21,12,21)	0.5735	0.0421	0.0282	0.3355	-0.0216
(21,12,25)	0.5771	0.0392	0.0282	0.2364	-0.0236
(21,12,29)	0.5907	0.0505	0.0283	0.6223	-0.0211
(21,12,33)	0.5824	0.0508	0.0278	0.6467	-0.0211
(21,12,37)	0.5699	0.0363	0.0285	0.1343	-0.0303
(21,14,17)	0.5786	0.0485	0.0290	0.5403	-0.0207
(21,14,21)	0.5795	0.0424	0.0284	0.3454	-0.0225
(21,14,25)	0.5830	0.0470	0.0286	0.4981	-0.0211
(21,14,29)	0.5812	0.0514	0.0277	0.6684	-0.0143
(21,14,33)	0.5741	0.0406	0.0279	0.2863	-0.0226
(21,14,37)	0.5768	0.0365	0.0284	0.1442	-0.0252
(21,16,17)	0.5769	0.0475	0.0290	0.5058	-0.0221
(21,16,21)	0.5889	0.0458	0.0284	0.4614	-0.0211
(21,16,25)	0.5884	0.0525	0.0279	0.7001	-0.0161
(21,16,29)	0.5662	0.0377	0.0283	0.1855	-0.0272
(21,16,33)	0.5768	0.0376	0.0283	0.1800	-0.0302
(21,16,37)	0.5736	0.0327	0.0287	0.0124	-0.0395
(21,18,17)	0.4181	-0.0448	0.0290	-2.5755	-0.0931
(21,18,21)	0.5929	0.0541	0.0282	0.7510	-0.0158
(21,18,25)	0.5683	0.0373	0.0285	0.1692	-0.0280
(21,18,29)	0.5678	0.0346	0.0286	0.0789	-0.0121
(21,18,33)	0.5672	0.0328	0.0289	0.0177	-0.0395
(21,18,37)	0.5639	0.0273	0.0286	-0.1705	-0.0381

表 C.3 OBV 指标筛选集参数回测结果

	•		がペラスタス	• • • • • • • • • • • • • • • • • • • •	
OBV 参数	胜率	年化收益率	年化标准 差	年化夏普比率	最大回撤
2	0.4643	-0.0340	0.0153	-4.2109	-0.0780
4	0.5702	-0.0176	0.0144	-3.3612	-0.0420
6	0.6176	0.0020	0.0143	-2.0522	-0.0113
8	0.5667	-0.0057	0.0178	-2.0703	-0.0364
10	0.5556	-0.0109	0.0190	-2.1988	-0.0343
12	0.5462	-0.0115	0.0198	-2.1433	-0.0439
14	0.5197	-0.0150	0.0202	-2.2737	-0.0523
16	0.5328	-0.0097	0.0191	-2.1275	-0.0469
18	0.5133	-0.0092	0.0189	-2.1228	-0.0448
20	0.5413	-0.0101	0.0170	-2.4126	-0.0471

表 C.4 PSY 指标筛选集参数回测结果

PSY 参数	胜率	年化收益率	年化标准差	年化夏普比 率	最大回撤
6	0.8538	0.0730	0.0170	2.3162	-0.0048
8	0.9231	0.0287	0.0094	-0.3757	-0.0048
10	0.7703	0.0230	0.0123	-0.7351	-0.0095
12	0.8400	0.0116	0.0062	-3.2411	-0.0012
14	0.7273	0.0079	0.0072	-3.2657	-0.0032
16	0.8750	0.0042	0.0041	-6.7041	-0.0005
18	0.7692	0.0052	0.0039	-6.7385	-0.0023
20	1.0000	0.0020	0.0021	-13.8481	0.0000
22	0.7500	0.0006	0.0009	-34.9027	-0.0005
24	0.0000	0.0000	0.0000	0.0000	0.0000

表 C.5 RSI 指标筛选集参数回测结果

RSI 参 数	胜率	年化收益率	年化标准 差	年化夏普比 率	最大回撤
6	0.0882	-0.0706	0.0166	-6.0115	-0.1494
8	0.0750	-0.0489	0.0144	-5.4546	-0.1045
10	0.0667	-0.0373	0.0126	-5.3599	-0.0801
12	0.0526	-0.0213	0.0090	-5.7712	-0.0459
14	0.1000	-0.0129	0.0074	-5.9453	-0.0278
16	0.1429	-0.0102	0.0068	-6.0684	-0.0219
18	0.0000	-0.0037	0.0036	-9.5967	-0.0079
20	0.0000	-0.0037	0.0036	-9.5827	-0.0079
22	0.0000	-0.0016	0.0023	-14.0600	-0.0034
24	0.0000	0.0000	0.0000	0.0000	0.0000

表 C.6 W&M 指标筛选集参数回测结果

W&M 参数	胜率	年化收益 率	年化标准 差	年化夏普 比率	最大回撤
6	0.7759	0.2485	0.0264	7.9343	-0.0021
8	0.7467	0.2332	0.0262	7.4274	-0.0021
10	0.7500	0.2032	0.0254	6.5150	-0.0025
12	0.7455	0.1895	0.0252	6.0464	-0.0025
14	0.7244	0.1883	0.0252	6.0070	-0.0025
16	0.7169	0.1799	0.0251	5.7010	-0.0031
18	0.7196	0.1783	0.0253	5.5946	-0.0031
20	0.7083	0.1730	0.0255	5.3440	-0.0031
22	0.7248	0.1704	0.0257	5.1998	-0.0039
24	0.7327	0.1730	0.0258	5.2902	-0.0039

附录 D: 本文所用代码

D.1 HURST 指数代码(以 40 天滚动窗口为例)

```
t40<-array()
for (i in 1:(length(sp)-40)){ #sp 为收盘价时间序列
t40[i]<-RoverS(sp[i:(i+40)])
}
y40<-matrix(t40)
```

D.2 技术指标筛选——KDJ 指标

```
stochOsc<-stoch(gzr[,c("high","low","close")],nFastK = 9, nFastD=3,nslowD = 3)
kr<-stochOsc[,1]#fastK
dr<-stochOsc[,2]# fastD
jr<-3*stochOsc[,2]-2*stochOsc[,1]#J 指标
kdjr<-data.frame(kr,dr,jr)
a<-(0.16<=kdjr$kr&kdjr$dr<=0.24)&(kdjr$kr>kdjr$dr)|kdjr$jr<0#买入信号
a[a=="TRUE"]<-1;a #买入信号由"TRUE"转换为"1"
b<-(0.76<=kdjr$kr&kdjr$dr<=0.84)&(kdjr$kr<kdjr$dr)|kdjr$jr>1#卖出信号
b[b=="TRUE"]<-(-1);b #买入信号由"TRUE"转换为"1"
c<-a+b#把两类信号集中起来
sig<-data.frame(gzr$DATE[1:564], c[1:564]);sig<-as.xts(read.zoo(sig))
sig<-Lag(na.omit(sig))
roc<-data.frame(gzr$DATE[1:564], gzr$SYL[1:564]);roc<-as.xts(read.zoo(roc))
roc<-Lag(na.omit(roc))</pre>
ret=sig*roc;ret<-na.omit(ret)#每天收益率
dr<-table.Drawdowns(ret)#最大回撤
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall);reratio #所有交易中成功的比例
```

D.3 技术指标筛选——OBV 指标

```
obv<- OBV(gzr[,"close"], gzr[,"cjl"]);obv
dd<-data.frame(gzr$close,obv)
ddd<-array()
for (i in 3:length(obv)) {
    ddd[i]<-ifelse(((dd$gzr.close[i]>dd$gzr.close[i-2]))&(dd$obv[i]<dd$obv[i-2]),-1,0)
}
dddd<-array()
for (i in 3:length(obv)) {
    dddd[i]<-ifelse(((dd$gzr.close[i]<dd$gzr.close[i-2])&((dd$obv[i]>dd$obv[i-2]),1,0)
}
cc<-ddd+dddd</pre>
```

```
sig<-data.frame(gzr$DATE[1:564], cc[1:564]);sig<-as.xts(read.zoo(sig))
sig<-Lag(na.omit(sig));head(sig)
roc<-data.frame(gzr$DATE[1:564], gzr$SYL[1:564]);roc<-as.xts(read.zoo(roc))
roc<-Lag(na.omit(roc));head(roc)
ret=sig*roc;ret<-na.omit(ret);head(ret)#每天收益率
dr<-table.Drawdowns(ret);dr#最大回撤
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall);reratio #所有交易中成功的比例
```

D.4 技术指标筛选——PSY 指标

```
psy<-array()
for (i in 13:nrow(gzr))
psy[i]<-length(which(c(gzr$close[i]-gzr$close[i-1],gzr$close[i-1]-gzr$close[i-2],gzr$close[i
-2]-gzr$close[i-3],
gzr$close[i-3]-gzr$close[i-4],gzr$close[i-4]-gzr$close[i-5],gzr$close[i-5]-gzr$close[i-6],
gzr$close[i-6]-gzr$close[i-7],gzr$close[i-7]-gzr$close[i-8],gzr$close[i-8]-gzr$close[i-9],
gzr$close[i-9]-gzr$close[i-10],gzr$close[i-10]-gzr$close[i-11],gzr$close[i-11]-gzr$close[i-1
2])>0))/12}
h<-array()
for (i in 1:length(psy)) {
h[i] < -ifelse(psy[i] < 0.25, 1, 0)
hh<-array()
for (i in 1:length(psy)) {
hh[i] < -ifelse(psy[i] > 0.75, -1,0)
cc1<-h+hh
sig<-data.frame(gzr$DATE[1:564], cc1[1:564]);sig<-as.xts(read.zoo(sig))
sig<-Lag(na.omit(sig))
roc<-data.frame(gzr$DATE[1:564], gzr$SYL[1:564]);roc<-as.xts(read.zoo(roc))
roc<-Lag(na.omit(roc))</pre>
ret=sig*roc;ret<-na.omit(ret);head(ret)#每天收益率
dr<-table.Drawdowns(ret);dr#最大回撤
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall);reratio #所有交易中成功的比例
```

D.5 技术指标筛选——W&R 威廉指标

```
wr14<- WPR(gzr[,c("high","low","close")],n=14)
wr28<- WPR(gzr[,c("high","low","close")],n=28)
ll<-array()
for (i in 1:length(wr14)) {
ll[i]<-ifelse(wr14[i]<0.2&wr28[i]<0.2,1,0)</pre>
```

```
} lll<-array()
for (i in 1:length(wr28)) {
lll[i]<-ifelse(wr14[i]>0.8&wr28[i]>0.8,-1,0)
} cc3<-ll+lll
sig<-data.frame(gzr$DATE[1:564], cc3[1:564]);sig<-as.xts(read.zoo(sig))
sig<-Lag(na.omit(sig))
roc<-data.frame(gzr$DATE[1:564], gzr$SYL[1:564]);roc<-as.xts(read.zoo(roc))
roc<-Lag(na.omit(roc))
ret=sig*roc;ret<-na.omit(ret);head(ret)#每天收益率
dr<-table.Drawdowns(ret);dr#最大回撤
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall);reratio #所有交易中成功的比例
```

D.6 技术指标筛选——MACD 指标

```
macdr < -MACD(gzr[,"close"], nFast = 12, nSlow = 26, nSig = 9)
kk<-array()
for (i in 1:nrow(macdr)) {
kk[i]<-ifelse(macdr[i,1]>0&macdr[i,2]>0&macdr[i,1]>macdr[i,2],1,0)
}
kkk<-array()
for (i in 1:nrow(macdr)) {
kkk[i]<-ifelse(macdr[i,1]<0&macdr[i,2]<0&macdr[i,1]<macdr[i,2],-1,0)
}
cc4<-kk+kkk
sig<-data.frame(gzr$DATE[1:564], cc4[1:564]);sig<-as.xts(read.zoo(sig))
sig<-Lag(na.omit(sig))
roc<-data.frame(gzr$DATE[1:564], gzr$SYL[1:564]);roc<-as.xts(read.zoo(roc))
roc<-Lag(na.omit(roc));head(roc)</pre>
ret=sig*roc;ret<-na.omit(ret);head(ret)#每天收益率
dr<-table.Drawdowns(ret);dr#最大回撤
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall);reratio #所有交易中成功的比例
```

D.7 技术指标筛选——RSI 指标

```
rsi6<-RSI(gzr[,"close"],n=6)
rsi12<-RSI(gzr[,"close"],n=12)
uu<-array()
for (i in 1:length(rsi6)) {
    uu[i]<-ifelse(rsi6[i]<20&rsi12[i]<20,1,0)
}</pre>
```

```
uuu<-array()
for (i in 1:length(rsi12)) {
  uuu[i]<-ifelse(rsi6[i]>80&rsi12[i]>80,-1,0)
cc5<-uu+uuu
sig<-data.frame(gzr$DATE[1:564], cc5[1:564]);sig<-as.xts(read.zoo(sig))
sig<-Lag(na.omit(sig));head(sig)
roc<-data.frame(gzr$DATE[1:564], gzr$SYL[1:564]);roc<-as.xts(read.zoo(roc))
roc<-Lag(na.omit(roc));head(roc)
ret=sig*roc;ret<-na.omit(ret);head(ret)#每天收益率
dr<-table.Drawdowns(ret);dr#最大回撤
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall);reratio #所有交易中成功的比例
charts.PerformanceSummary(ret,main = "RSI 指标回撤")
D.8 模型一和模型二(以模型一为例)
spec<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1),
                                          submodel = NULL, external.regressors =
NULL, variance.targeting = FALSE),
                  mean.model = list(armaOrder = c(0, 0), include.mean = TRUE, archm
= FALSE,
             archpow = 1, arfima = FALSE, external.regressors = NULL, archex =
FALSE),
                  distribution.model = "norm", start.pars = list(), fixed.pars =
list(omega=0))
hhi<-hii[466:nrow(hii),]#测试集
#本来是[565:nrow(hii),]但是因为前 100 个数据是作为随机森林的滚动训练集
names(hhi)
hi<-hhi[,c(2:5,16:25)]#把测试所需的变量集中在一起
ncol(hi)#测试集列数
head(hi)
result<-list()
rf<-list()
garch<-list()
pred<-array()</pre>
error<-array()
garchsigma<-array()
s<-array()
for (i in 1:(nrow(hi)-100)) {
  set.seed(i)
  result[[i]] < rfcv(hi[i:(i+99),1:13], t(hi[i:(i+99),14]), cv.fold=6)
#用 1: 100 行把 mtry 训练出来 result[[i]]$n.var[which.min(result[[i]]$error.cv)]#这就是
所需 mtry
```

```
rf[[i]]<- randomForest(data.syl..1.~ ., data=hi[i:(i+99),], importance=TRUE,
                           proximity=TRUE,ntree=500,
                           mtry=result[[i]]$n.var[which.min(result[[i]]$error.cv)])
  #用 1:100 行对随机森林进行训练。
  pred[i] < -predict(rf[[i]], hi[i+100,])
  error[i]<-pred[i]-hi$data.syl..1.[i+100]
  garch[[i]] <- sigma(ugarchfit(spec = spec, data =hi[i:(i+99),14],solver.control =
list(trace=0)))
  #这列的 data =hi[i:(i+99),14]里面的"14"指的是收益率那一列
  garchsigma[i]<-garch[[i]][nrow(garch[[i]])]#garch 方差
  s[i]<-sd(hi[i:(i+99),14])#普通方差
}
shijisyl<-pred-error#实际收益率
#预测收益率(变成时间序列)
hao<-data.frame(hhi[101:nrow(hhi),1],pred,101:nrow(hhi))
haoa<-hao[order(hao[,3]),];haoa<-as.xts(read.zoo(haoa[,1:2]));haoa
#测试集实际收益率(变成时间序列)
ren<-data.frame(hhi[101:nrow(hhi),1],shijisyl,101:nrow(hhi))
rena<-ren[order(ren[,3]),];rena<-as.xts(read.zoo(rena[,1:2]));rena
sig1<-ifelse(haoa>0.05*s, 1, 0) #上面可知 haoa 是包含有 pred 的时间序列。
sig2<-ifelse(haoa<(-0.05*s), -1, 0)
sig<-sig1+sig2
sig <- Lag(sig);sig #将该序列向"过去"延迟一天
roc <- rena ;roc
ret<-roc*sig;ret
re<-table.AnnualizedReturns(ret,Rf=0.0001261905);re
dr<-table.Drawdowns(ret);dr
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall)
reratio #所有交易中成功的比例
hao<-data.frame(hhi[101:nrow(hhi),1],pred,garchsigma,101:nrow(hhi))
haoa<-hao[order(hao[,4]),];haoa<-as.xts(read.zoo(haoa[,1:3]));haoa
#测试集实际收益率(变成时间序列)
ren<-data.frame(hhi[101:nrow(hhi),1],shijisyl,101:nrow(hhi))
rena<-ren[order(ren[,3]),];rena<-as.xts(read.zoo(rena[,1:2]));rena
sig1<-ifelse(haoa$pred>0.05*(hao$garchsigma), 1, 0) #上面可知 haoa 是包含有 pred 的
时间序列。
sig2<-ifelse(haoa$pred<(-0.05*(hao$garchsigma)), -1, 0)
sig<-sig1+sig2
sig <- Lag(sig);sig #将该序列向"过去"延迟一天
roc <- rena :roc
```

```
ret<-roc*sig;ret
re<-table.AnnualizedReturns(ret,Rf=0.0001261905);re
dr<-table.Drawdowns(ret);dr
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall)
reratio #所有交易中成功的比例
D.8 模型三和模型四(以模型三为例)
spec < -ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1),
                                            submodel = NULL, external.regressors =
NULL, variance.targeting = FALSE),
                   mean.model = list(armaOrder = c(0, 0), include.mean = TRUE, archm
= FALSE,
                                        archpow
                                                                             FALSE,
                                                         1.
                                                              arfima
external.regressors = NULL, archex = FALSE),
                   distribution.model = "norm", start.pars = list(), fixed.pars =
list(omega=0))
#时变性的预测。。。。。。。。。。。。。。。。。
hhi<-hii[466:nrow(hii),]#测试集
result<-list()
rf<-list()
garch<-list()
pred<-array()</pre>
error<-array()
garchsigma<-array()</pre>
s<-array()
A<-list()
B<-list()
C<-list()
D<-list()
for (i in 1:(nrow(hi)-100)) {
  set.seed(i)
  A[[i]] = prcomp(hi[i:(i+99),1:13],
                                                       scale
TRUE)[[2]][,1:which(summary(prcomp(hi[i:(i+99),1:13], scale = TRUE))[[6]][3,]>0.9)]
  B[[i]]=as.matrix(hi[i:(i+99),1:13])
  C[[i]]=t(t(as.matrix(A[[i]]))\%*\%t(as.matrix(B[[i]])))
  result[[i]] <- rfcv(as.data.frame(C[[i]]), t(hi[i:(i+99),14]), cv.fold=6)
  #用 1: 100 行把 mtry 训练出来 result[[i]]$n.var[which.min(result[[i]]$error.cv)]#这就
是所需的 mtry
```

data=data.frame(C[[i]],hi[i:(i+99),14]),

randomForest(hi.i..i...99...14.~.,

rf[[i]]<-

```
importance=TRUE,
                           proximity=TRUE,ntree=500,
                           mtry=result[[i]]$n.var[which.min(result[[i]]$error.cv)])
  #用 1:100 行对随机森林进行训练。
  D[[i]]=t(t(as.matrix(A[[i]]))%*%t(as.matrix(hi[i+100,1:13])))
  pred[i]<-predict(rf[[i]],as.data.frame(D[[i]]))</pre>
  error[i]<-pred[i]-hi$data.syl..1.[i+100]
  garch[[i]] <- sigma(ugarchfit(spec = spec, data =hi[i:(i+99),14],solver.control =
list(trace=0)))
  #这列的 data =hi[i:(i+99),14]里面的"14"指的是收益率那一列
  garchsigma[i]<-garch[[i]][nrow(garch[[i]])]#garch 方差
  s[i]<-sd(hi[i:(i+99),14])#普通方差
}
hijisyl<-pred-error#实际收益率
write.csv(shijisyl, "shijisyl.csv")
#预测收益率(变成时间序列)
hao<-data.frame(hhi[101:nrow(hhi),1],pred,101:nrow(hhi))
haoa<-hao[order(hao[,3]),];haoa<-as.xts(read.zoo(haoa[,1:2]));haoa
#测试集实际收益率(变成时间序列)
ren<-data.frame(hhi[101:nrow(hhi),1],shijisyl,101:nrow(hhi))
rena<-ren[order(ren[,3]),];rena<-as.xts(read.zoo(rena[,1:2]));rena
sig1<-ifelse(haoa>0.05*s, 1, 0) #上面可知 haoa 是包含有 pred 的时间序列。
sig2<-ifelse(haoa<(-0.05*s), -1, 0)
sig<-sig1+sig2
sig <- Lag(sig);sig #将该序列向"过去"延迟一天
roc <- rena ;roc
ret<-roc*sig;ret
re<-table.AnnualizedReturns(ret,Rf=0.0001261905);re
dr<-table.Drawdowns(ret);dr
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall)
reratio #所有交易中成功的比例
hao<-data.frame(hhi[101:nrow(hhi),1],pred,garchsigma,101:nrow(hhi))
haoa<-hao[order(hao[,4]),];haoa<-as.xts(read.zoo(haoa[,1:3]));haoa
#测试集实际收益率(变成时间序列)
ren<-data.frame(hhi[101:nrow(hhi),1],shijisyl,101:nrow(hhi))
rena<-ren[order(ren[,3]),];rena<-as.xts(read.zoo(rena[,1:2]));rena
sig1<-ifelse(haoa$pred>0.05*(hao$garchsigma), 1, 0) #上面可知 haoa 是包含有 pred 的
时间序列。
sig2<-ifelse(haoa$pred<(-0.05*(hao$garchsigma)), -1, 0)
```

sig<-sig1+sig2
sig <- Lag(sig);sig #将该序列向"过去"延迟一天
roc <- rena ;roc
ret<-roc*sig;ret
re<-table.AnnualizedReturns(ret,Rf=0.0001261905);re
dr<-table.Drawdowns(ret);dr
retall<-ret[which(ret!=0)] #找出 ret 数列中所有不为 0 的
reratio<-nrow(retall[which(retall>0)])/nrow(retall)
reratio #所有交易中成功的比例