STAT 24400 Statistics Theory and Methods I Homework 5: Due 3:00PM Thurs, February 18, 2016.

- 1. Suppose that X is the number of successes in a Binomial experiment with n trials and probability of success $\theta/(1+\theta)$, where $0 \le \theta < \infty$.
 - (a) Find the MLE of θ .
 - (b) Use Fisher's Theorem to find the approximate distribution of the MLE when n is large.
- 2. If X and Y are independent, each with a Poisson distribution, show that Z = X + Y is Poisson distributed.
- 3. In a famous example, Bortkiewicz tabulated the number of Cavalry men kicked to death by horses in the Prussian Cavalry, for 14 Corps over 20 years (1875-1894), giving n = 280 observations in all. The frequency tabulation was:

Number of	Frequency
deaths	count
0	144
1	91
2	32
3	11
4	2
More	0
Total	280

These represent data X_1, \ldots, X_n , and one model that has been considered for these data is the Poisson distribution

$$P(X_i = k \mid \theta) = \frac{e^{-\theta}\theta^k}{k!}, \quad k = 0, 1, 2....$$

Recall that the parameter θ equals both the expectation $E(X_i)$ and the variance $Var(X_i)$ for this distribution. Thus θ is the mean number of deaths a year for a single Corps. Solve (a)-(d) algebraically (symbolically), then use the data to answer (e).

- (a) For this model, find the MLE of θ , assuming the X_i 's are independent.
- (b) Find the MSE of the MLE.
- (c) From the Central Limit Theorem find the approximate distribution of the MLE when n is large.
- (d) From Fisher's Approximation, find the approximate distribution of the MLE when n is large.
- (e) Evaluate the MLE for the given data.

- (f) If θ , the mean number of deaths per Corps in a year, is really 1.0, what (approximately) is the probability that the MLE would turn out to be below 0.85?
- 4. Suppose the data consist of a single number X, and the model is that X has the following probability density:

$$f(x \mid \theta) = (1 + x\theta)/2$$
 for $-1 \le x \le 1$; = 0 otherwise.

Supposing the possible values of θ are $0 \le \theta \le 1$; find the maximum likelihood estimate (MLE) of θ , $\hat{\theta}$, and find its (exact) probability distribution. Is the MLE unbiased? Find its bias and MSE. [Hint: First find the MLE for a few sample values of X, such as X = -0.5 and X = .5; that should suggest to you the general solution. Drawing a graph helps! The distribution of the MLE will of course depend upon θ .]

- 5. Suppose we observe $X \sim \text{Unif}(0, \theta), \theta > 0$.
 - (a) Find the mle of θ (be careful, you can't find it by differentiating the log likelihood).
 - (b) Find the mean squared error of the mle $\hat{\theta}$; that is, $E_{\theta}\{(\hat{\theta}-\theta)^2\}$.
 - (c) Find the constant c that makes cX an unbiased estimate of θ . Find the mean squared error of this estimate.
 - (d) Among all estimates of θ of the form cX, is there a choice of c that minimizes the resulting mean squared error for all θ ? If yes, find this value of c. If not, explain why not.
- 6. Rice 8.51: The double exponential distribution is

$$f(x \mid \theta) = \frac{1}{2}e^{-|x-\theta|}, \quad -\infty < x < \infty$$

For an i.i.d. sample of size n = 2m + 1, show that the mle of θ is the median of the sample. (The observation that half of the rest of the observations are samller and half are larger.) [Hint: The function g(x) = |x| is not differentiable. Draw a picture for a small value of n to try and understand what is going on.