Zagadnienia do opracowania w formie symulacji komputerowych 2018/2019

Zagadnienie 6: (Uderzenie kulki w punkt końcowy nieruchomego pręta na idealnie gładkim stole)

Na idealnie gładkim stole leży pręt o długości L i masie M_p . Kulka o masie m_k , poruszająca się z szybkością \mathbf{v} , uderza prostopadle w koniec pręta. Zakładamy, że zderzenie jest doskonale sprężyste. W postaci graficznej przedstawić symulację ruchu pręta i kulki po zderzeniu. Zagadnienie w przestrzeni 2D.

W rozwiązaniu problemu wykorzystano zasady zachowania energii kinetycznej, zasady zachowania pędu oraz momentu pędu w układzie środka masy pręta

Wielkości kinematyczne występujące w opisie badanego ruchu:

v – prędkość kulki przed uderzeniem w koniec pręta

 v_1 – prędkość kulki po uderzeniu w koniec pręta

 v_2 – prędkość postępowa pręta po uderzeniu kulki

 ω – prędkość kątowa ruchu obrotowego pręta wokół osi przechodzącej przez środek masy pręta czyli wokół symetralnej pręta $(\omega=\frac{2\pi}{T})$

T – okres ruchu obrotowego pręta po uderzeniu kulki

 $m_k v \cdot \frac{1}{2} L$ – moment pędu kulki przed zderzeniem względem osi (prostej) będącej symetralną pręta

 $m_k v_1 \cdot \frac{1}{2} L$ – moment pędu kulki przed zderzeniem względem osi (prostej) będącej symetralną pręta

 $I_{p}\omega$ – moment pędu pręta po uderzeniu kulki

 $rac{1}{2}I_{p}\omega^{2}$ – energia kinetyczna ruchu obrotowego pręta

 $I_p = \frac{M_p \cdot L^2}{12}$ – moment bezwładności pręta względem osi (prostej) będącej symetralną pręta

Nieznane: v_1, v_2, ω

Zasady zachowanie spełnione w momencie zderzenia

Zasada zachowania pędu:

$$m_{k}v = m_{k}v_{1} + M_{p}v_{2} \tag{1}$$

Zasada zachowania momentu pędu:

$$m_k v \cdot \frac{1}{2} L = m_k v_1 \cdot \frac{1}{2} L + I_p \omega \tag{2}$$

Zasada zachowania energii kinetycznej (ruch postępowy i obrotowy)

$$\frac{1}{2}m_k v^2 = \frac{1}{2}m_k v_1^2 + \frac{1}{2}M_k v_2^2 + \frac{1}{2}I_p \omega^2$$
 (3)

Równania (1), (2) i (3) stanowią układ równań, którego rozwiązanie daje poszukiwane niewiadome.

Zagadnienia do opracowania w formie symulacji komputerowych 2018/2019

Rozwiązanie:

$$v_1 = \frac{4m_k - M_p}{4m_k + M_p} v$$

$$v_2 = \frac{2m_k}{4m_k + M_p} v$$

$$\omega = \frac{6}{L} \frac{2m_k}{4m_k + M_p} v$$

W symulacji zmiennymi sterowanymi mają być $\, m_{\scriptscriptstyle k} \,$ oraz $\, M_{\scriptscriptstyle p} \,$.

Testy poprawności:

- 1. Dla $4m_{\scriptscriptstyle k}=M_{\scriptscriptstyle k}$ kulka po uderzeniu w koniec pręta ulega zatrzymaniu
- 2. Dla $\,M_{\it k} > 4 m_{\it k}\,$ kulka po uderzeniu zaczyna ruch powrotny
- 3. Dla $2m_k=M_p$ pręt i kulka poruszają się z tą samą prędkością ($v_1=v_2$). Wtedy pręt po wykonaniu obrotu o kąt 180° drugim końcem uderza w kulkę i sam zatrzymuje się

Zadanie:

Przedstawić animację ruchu z możliwością sterowania wartością masy kulki i masy pręta oraz prędkością kulki przed zderzeniem.