Physics Lecture

Philip Policki

15th October 2020

Contents

1	Passing	2
2	Curriculum	2
3	What is logic?	2
4	Sentences in logic	2
5	Logic Laws	3
6	The basics of Set Theory	3
	6.1 Notation	3
	6.2 Power Sets	3

1 Passing

There will be 2 exams / tests. There will be weekly lists of tasks to do for Exercises.

2 Curriculum

- $\bullet\,$ 1/3 of the course is basic logic formulas, useful for simplifying if-else comparisons
- 1/3 will cover information what will be helpful to courses on databases, machine learning & artificial intelligence
- 1/3 will cover details on semantics that will be useful on the masters level

3 What is logic?

- Logic is defined as formal apparatus for reasoning.
- There are two elements:
 - Formal language a set of sentences built with symbols
 - Semantics a method of adding meaning to them

4 Sentences in logic

- Basic symbols, variables: a,b,c
- Logical connectives, operators:
 - OR (alternative, disjunction) ∨
 - AND (conjunction) \wedge
 - NOT (negation) \neg
 - IF ... THEN (implication) \Longrightarrow
 - TRUE IF AND ONLY IF \iff
 - Tautology \top

5 Logic Laws

- $(a \land b) \lor c \equiv (a \lor c) \land (b \lor c)$
- $(a \lor b) \land c \equiv (a \land c) \lor (b \land c)$
- $\neg(a \lor b) \equiv \neg a \land \neg b$
- $\neg(a \land b) \equiv \neg a \lor \neg b$

6 The basics of Set Theory

- There is no formal definition. It's a collection of objects.
- The modern approach to sets was developed mainly in the 19th century by Cantor and others
- Since then it has been extended and other theories had been proposed

6.1 Notation

- $X = \{1, 2, 3\}; Y = \{Mon, Tue, Wed, Thu, Fri, Sat, Sun\}$
- \emptyset empty set
- $\bullet~\mathbb{N}$ set of Natural Numbers
- \mathbb{Z} set of all Integers
- \bullet $\mathbb R$ set of all Real Numbers
- $x \in X$ x is an element of set X
- $X \subseteq Y$ all elements of X ale elements of Y
- $X \subset Y$ X is a proper subset of Y, that is all elements in X are also elements of Y and $X \neq Y13$

6.2 Power Sets

- We use the notation 2^s to denote the power-set of S, that is the set of all subsets of S
- Any subset R of 2^s is a set family of s
- If S has n elements, then 2^s has 2^n elements.

- \bullet We use notation card (a) or |A| or $\# \mathbf{A}$
- \bullet For any finite A the following is true: $card(2^A)=2^{card(A)}$

7 Algebra and logic