Solution 1 (April Herwig) 4.4

a) Let $Y = \prod_{n \in \mathbb{N}} X_i$. For each $n \in \mathbb{N}$ define $\delta_n(x,y) = \rho \circ d_{X_n}(x,y)$ where d_{X_n} is the metric on X_n and ρ is a monotone increasing homeomorphism $\rho : [0,\infty) \to [0,1)$, eg. $x \mapsto \frac{x}{1+x}$. Define the metric on Y as

$$d: Y \times Y \to [0, \infty), \ (x, y) \mapsto \sum_{n \in \mathbb{N}} \frac{1}{2^n} \, \delta_n(x, y).$$

This clearly satisfies the conditions for a metric since each d_{X_n} is a metric and ρ is monotone increasing. We will show that this metric induces the same topology as the product topology.

Let $U \subseteq Y$ be open in the product topology, ie.

$$U = \prod_{n \in \mathbb{N}} U_n, \quad U_n \text{ open}, \quad \exists N \in \mathbb{N} : U_m = X_m \ \forall m > N.$$

For $x \in U$, each space X_n , $n \in \mathbb{N}$ has an $\epsilon_n > 0$ with $B_{\epsilon_n}(x_n) \subseteq U_n$. Define

$$\epsilon = min \left\{ \frac{1}{2^n} \rho(\epsilon_n) | n \le N \right\}.$$

Then ϵ satisfies $x \in B_{\epsilon}(x) \subseteq U$ since for $y \neq x$ we have

$$d_{X_n}(y_n, x_n) > \epsilon_n \iff \frac{1}{2^n} \delta_n(y_n, x_n) > \frac{1}{2^n} \rho(\epsilon_n).$$

Hence U is open in the metric topology.

Now let $x \in Y$, $U = B_{\epsilon}(x) \subseteq Y$, $y \in U$. Set $N = \lceil \log(\frac{4}{2+\epsilon}) \rceil$ and consider

$$V = \prod_{n \le N} B_{\epsilon/2}(y_n) \times \prod_{m > N} X_m.$$

V is open in the product topology and $y \in V$. Finally, we will show $V \subseteq U$ and hence U is a neighborhood of all its points, so open.

$$\underbrace{\sum_{n=1}^{N} \frac{1}{2^{n}} \frac{\epsilon}{2}}_{\leq \frac{\epsilon}{2}} + \underbrace{\sum_{m=N+1}^{\infty} \frac{1}{2^{n}}}_{=1-2(1-2^{-N})} \stackrel{!}{<} \epsilon$$

$$1 - 2(1 - 2^{-N}) < \frac{\epsilon}{2} \quad \Leftrightarrow \quad N > \frac{\log(\frac{4}{2+\epsilon})}{\log(2)}.$$

b) Let $X = \{0,1\}$ equipped with the discrete topology. X is trivially metrizable. Consider

$$Y = X^{\mathbb{R}} = \prod_{x \in \mathbb{R}} \{0, 1\} = \{f : \mathbb{R} \to X|\}$$
.

Let $f_0 \equiv 0$ the zero function. A neighborhood basis of f_0 is given by

$$\mathcal{B}_{f_0} = \bigcup_{\substack{K \subseteq \mathbb{R} \\ finite}} \underbrace{\{f \in Y \mid f(x) = 0 \ \forall x \in \mathbb{R} \setminus K\}}_{=: U_K}.$$

Assume Y is metrizable. Then it is homeomorphic to a metric space, and since metric spaces are first countable, Y is first countable. It follows that there exists a countable subset $\{U_{K_i}\}_{i\in\mathbb{N}}\subseteq\mathcal{B}_{f_0}$ which is still a neighborhood basis of f_0 . In particular, $\bigcup_{i\in\mathbb{N}}K_i$ is countable.

$$\Rightarrow \exists \bar{x} \in \mathbb{R} \setminus \bigcup_{i \in \mathbb{N}} K_i \neq \emptyset.$$

Finally, consider

$$U_{\{\bar{x}\}} = \{ f \in Y \mid f(\bar{x}) = 0 \} \in \mathcal{N}_{f_0},$$
$$\bigcap_{i \in \mathbb{N}} U_{K_i} = \left\{ f \in Y \mid f(x) = 0 \ \forall x \in \bigcup_{i \in \mathbb{N}} K_i \right\}.$$

Then $U_{\{\bar{x}\}}$ is an open neighborhood of of f_0 , but

$$\bigcap_{i\in\mathbb{N}} U_{K_i} \not\subseteq U_{\{\bar{x}\}}$$

which implies no U_{K_i} is a subset of $U_{\{\bar{x}\}}$, a contradiction to $\{U_{K_i}\}_{i\in\mathbb{N}}$ being a neighborhood basis.