Information Storage and Retrieval

CSCE 670
Texas A&M University
Department of Computer Science & Engineering
Instructor: Prof. James Caverlee

Attacks on Recommenders 5 April 2018

Attacks on Recommenders

- Why?
 - Attract attention to particular items
 - Nuke attention on particular items
 - Joker strategy: "watch the world burn"
 - ... others?
- Super important these days ...
 - Manipulate opinion, news exposure, ...
 - ...

Strategy Version 0

- First, create many fake accounts
- Then, issue high or low ratings to the "target item"
- Done (?)
- Why not?

	Item1	Item2	Item3	Item4		Target	Pearson
Alice	5	3	4	1		?	
User1	3	1	2	5		5	-0.54
User2	4	3	3	3		2	0.68
User3	3	3	1	5		4	-0.72
User4	1	5	5	2	•••	1	-0.02

	Item1	Item2	Item3	Item4		Target	Pearson
Alice	5	3	4	1	•••	?	
User1	3	1	2	5		5	-0.54
User2	4	3	3	3		2	0.68
User3	3	3	1	5		4	-0.72
User4	1	5	5	2	•••	1	-0.02
Attack	5	3	4	3	•••	5	0.87

Push vs. Nuke Attack

Item1		ItemK		ItemL		ItemN	Target
r_1		r_k		r_l		r_n	X
selected items			fille	er items	unr	ated items	

Random Strategy

- Take random values for filler items
 - Typical distribution of ratings is known, e.g., for the movie domain (Average 3.6, standard deviation around 1.1)
- Idea:
 - Generate profiles with "typical" ratings so they are considered as neighbors to many other real profiles
 - High/low ratings for target items
- Limited effect compared with more advanced models

Average Strategy

- Use the individual item's rating average for the filler items
 - Intuitively, there should be more neighbors
- Additional cost involved: find out the average rating of an item
- More effective than Random Attack in user-based CF
 - But additional knowledge is required
- Quite easy to determine average rating values per item
 - Values explicitly provided when item is displayed

Algorithm	Intent	Attack	Bots	PredShift	ΔMAE
			25	0.499	0.002
		Random	50	0.671	0.004
	Push		100	0.830	0.009
	1 usii	Average	25	1.032	0.006
			50	1.189	0.011
User-user			100	1.300	0.019
User-user	Nuke		25	0.422	0.002
		Random	50	0.589	0.004
			100	0.759	0.010
		Average	25	0.656	0.007
			50	0.815	0.014
			100	0.956	0.023

Algorithm	Intent	Attack	Bots	PredShift	ΔΜΑΕ
<u>. </u>	Push		25	0.030	0.002
		Random	50	0.053	0.002
			100	0.069	0.004
		Average	25	0.363	0.002
			50	0.426	0.004
 Item-item			100	0.471	0.010
	Nuke	Random 50	25	-0.046	0.002
			50	-0.069	0.002
			100	-0.092	0.004
		Average	25	0.332	0.003
			50	0.354	0.006
			100	0.361	0.014

Algorithm	Intent	Attack	Bots	POA	ExpTop40
	Push	Random	25	0.900	711%
			50	0.865	1190%
			100	0.816	1649%
		Average	25	0.715	1286%
			50	0.609	1674%
User-user			100	0.519	1918%
USCI-uSCI	Nuke		25	0.943	-39%
		Random	50	0.928	-33%
			100	0.908	-32%
			25	0.963	-67%
		Average	50	0.952	-70%
			100	0.943	-75%

Algorithm	Intent	Attack	Bots	POA	ExpTop40
	Push	Random	25	1.000	150%
			50	1.000	171%
			100	1.000	229%
		Average	25	0.999	158%
			50	0.999	154%
Item-item			100	0.999	117%
Ttem-ttem		Random	25	0.954	146%
			50	0.954	204%
	Nuke		100	0.954	333%
	TNUKC		25	0.955	-33%
		Average	50	0.955	-54%
			100	0.954	-71%

Т

Т

Т

Bandwagon Strategy

- Exploits additional information about the community ratings
- Simple idea:
 - Add profiles that contain high ratings for "blockbusters" (in the selected items); use random values for the filler items
 - Will intuitively lead to more neighbors because
 - popular items will have many ratings and
 - rating values are similar to many other user-profiles
- Example: Injecting a profile with high rating values for the Harry Potter series
- Low-cost attack
 - Set of top-selling items/blockbusters can be easily determined
- Does not require additional knowledge about mean item ratings

Segment Strategy

- Find items that are similar to target item,
 - These items probably liked by the same group of people
 - Identify subset of user community that is interested in items similar to A
 - Inject profiles that have high ratings for fantasy novels and random or low ratings for other genres
- Thus, item will be pushed within the relevant community
- For example: Push the new Harry Potter book
 - Attacker will inject profile with positive ratings for other popular fantasy books
 - Harry Potter book will be recommended to typical fantasy book reader
- Additional knowledge (e.g. genre of a book) is required

Issues to Consider

- Cost
 - How costly is it to make an attack?
 - How many profiles have to be inserted?
 - Is knowledge about the ratings matrix required?
 - usually it is not public, but estimates can be made
- Algorithm dependability
 - Is the attack designed for a particular recommendation algorithm?
- Detectability
 - How easy is it to detect the attack

Countermeasures