

American International University-Bangladesh (AIUB)

Faculty of Science & Technology (FST) Department of Computer Science

Introduction to Data Science Mid-Term Project Report Summer 2024-2025

Section:A

Group:4

SL	Student	Student	Contribution
#	Name	ID	(%)
1.	Md Saniul Islam Sony	22-46400-1	100%
2.	Tanvir Ahmed Tuhin	22-46475-1	100%
3.	MD.Ashraful Islam	22-46479-1	100%

Dataset Description

A credit-risk dataset where each row is one borrower and one loan application. It combines basic demographics, finances, and loan details, plus two binary outcome fields.

```
All columns:
person_age — borrower's age (years)
person_gender — gender
person education — highest education level
person income — annual income
person emp exp — years of employment experience
person home ownership — housing status (e.g., RENT, OWN, MORTGAGE)
loan amnt — requested loan amount
loan intent — purpose of the loan (e.g., PERSONAL, MEDICAL)
loan_int_rate — interest rate (%)
loan_percent_income — loan payment as a share of income (0–1)
cb_person_cred_hist_length — credit history length (years)
credit_score — credit score (approx. 300–850)
previous_loan_defaults_on_file — whether the borrower ever defaulted before
(0/1)
loan status — outcome of this loan application or performance (0/1)
```

1. Handle missing value:

Description:

• Drop missing rows (complete cases).

We first list rows that contain any NA to inspect what's missing, then create a complete-case view by removing those rows.

• Replace with mean (numeric).

For a numeric column that is roughly symmetric (here, person_income), we fill NA values with the column mean calculated from the available (non-missing) values.

• Replace with median (numeric).

For a numeric column that may be skewed or affected by outliers (here, person_age), we fill NA values with the median, which is more robust than the mean.

Replace with mode (categorical).

For a categorical/label column (here, loan_status), we fill NA values with the mode (the most frequent category). The mlv(..., method="mfv") function returns that most frequent value, which we use to impute the missing entries.

Code:

Drop missing value:

```
missing_rows <- data[!complete.cases(data), ]
head(missing_rows)</pre>
```

Output:

```
| person_age person_pender person_ender person_income person_income person_bene_ownership loa_ments loan_intent loan_intr_ste loan_person_income cb_person_cred_hist_length credit_score previous_loan_effaults_on_file loan_status loan_status loan_status loan_status loan_status loan_status loan_intr_ste loan_person_income cb_person_cred_hist_length credit_score previous_loan_effaults_on_file loan_status loan_status loan_intr_ste loan_person_income cb_person_cred_hist_length credit_score previous_loan_effaults_on_file loan_status loan_status loan_intr_ste loan_person_income cb_person_cred_hist_length credit_score previous_loan_effaults_on_file loan_status loan_s
```

Replace with mean

```
df_mean <-data
df_mean$person_income[is.na(df_mean$person_income)] <-
mean(df_mean$person_income,na.rm=TRUE)
head(df_mean)</pre>
```


• Replace with median

```
df_median <- df_mean#replace by median
df_median$person_age[is.na(df_median$person_age)] <-
median(df_median$person_age,na.rm = TRUE);
head(df_median)</pre>
```

Output:

• Replace with mode

```
mode_val <- mlv(df_mode$loan_status,method = "mfv",na.rm = TRUE);
df_mode$loan_status[is.na(df_mode$loan_status)] <- mode_val
head(as.data.frame(df_mode))</pre>
```

Output:

2. see missing values on a graph:

Description:

In this task we will use the vis_miss() function from the *naniar* package to visualize missing values in the dataset with a graph. The graph will display variables as columns and records as rows, where shaded blocks indicate missing entries. This

makes it easy to see which columns contain missing data and how much is missing, giving us a clear picture of the dataset's quality.

3. convert attributes from numeric to categorical or categorical to numeric:

Description:

In this task we will convert attributes from numeric to categorical or from categorical to numeric depending on how we need them for analysis. For example, the column loan_status is stored as numbers (0/1), but for easier interpretation we convert it into labels "Yes" and "No". On the other hand, the column previous_loan_defaults_on_file may be stored as text ("Yes"/"No"), so we convert it back into numeric values (1/0) for modeling.

We solve this by using simple ifelse() statements:

```
df_mode$loan_status <-ifelse(df_mode$loan_status == 1
,"Yes","No");
head(df_mode)</pre>
```



```
df_mode$previous_loan_defaults_on_file <-
ifelse(df_mode$previous_loan_defaults_on_file == "Yes",
1,0);
head(df_mode)</pre>
```


4. Detect outliers in the data set and use the appropriate approach to handle those values:

Description:

In this task we detect and handle extreme values in numeric columns using the Interquartile Range (IQR) method. First, we calculate Q1 (25th percentile), Q3 (75th percentile), and the IQR (Q3 – Q1). Any value smaller than Q1 – $1.5 \times IQR$ is treated as a lower outlier, and any value greater than Q3 + $1.5 \times IQR$ is treated as an upper outlier.

The get_outliers() function lists these values so we can see which records fall outside the normal range. Then the fix_outliers() function corrects them:

- If a value is less than the lower bound, it is replaced by the lower bound.
- If a value is greater than the upper bound, it is replaced by the upper bound.

This way, the dataset does not lose any rows, but all values are adjusted to stay within reasonable limits, reducing the influence of extreme numbers on further analysis.

```
get outliers <- function(data, colname) {</pre>
  if (!colname %in% names(data)) stop("Column not found.")
  if (!is.numeric(data[[colname]])) stop("Column must be
numeric.")
  Q1 <- quantile(data[[colname]], 0.25, na.rm = TRUE)
  Q3 <- quantile(data[[colname]], 0.75, na.rm = TRUE)
  IOR <- 03 - 01
  lower <- Q1 - 1.5 * IQR
  upper <- Q3 + 1.5 * IQR
  # return only the outlier values from dataset
  outliers <- data[[colname]][data[[colname]] < lower |
data[[colname]] > upper]
  return(outliers)
}
outlier detect<-get outliers(df, "person age")</pre>
head(outlier detect)
```

```
> outlier_detect<-get_outliers(df, "person_age")
> head(outlier_detect)
[1] 230 -22 -25 350 144 144
```

```
fix_outliers <- function(data, colname) {
   if (!colname %in% names(data)) stop("Column not found.")
   if (!is.numeric(data[[colname]])) stop("Column must be
   numeric.")

Q1 <- quantile(data[[colname]], 0.25, na.rm = TRUE)
   Q3 <- quantile(data[[colname]], 0.75, na.rm = TRUE)
   IQR <- Q3 - Q1

lower <- Q1 - 1.5 * IQR
   upper <- Q3 + 1.5 * IQR</pre>
```


Task 5: Normalization method for any continuous attribute:

Description: In this task we apply normalization to a continuous column so that all its values are scaled into the range 0 to 1. We use the min–max normalization formula:

$$X_{norm} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Here we normalize the column loan_amnt. The smallest loan amount becomes 0, the largest loan amount becomes 1, and all other values are scaled proportionally between 0 and 1.

This step ensures that attributes measured on different scales can be compared fairly

```
df_nor <- df
normalize <- function(x) {
   return( (x - min(x)) / (max(x) - min(x)) )
}
df_nor$loan_amnt <- normalize(df_nor$loan_amnt)
head(df_nor)</pre>
```

Output:

Task 6: Find and remove duplicate rows to reduce congestion:

Description:

In this task we look for duplicate rows in the dataset and remove them to make the data cleaner and less congested. We use the distinct() function from the dplyr package. This function checks for duplicates based on a chosen column (here person_education) and keeps only the first occurrence, while the option .keep_all = TRUE ensures that all other columns in that row are also preserved.

```
df_unique <- df
df_unique <- distinct(df, person_education ,.keep_all = TRUE)
head(as.data.frame(df_unique))</pre>
```


Description:

Task 7: Filter Data to find specific numerical value, row, categorical value:

Description:

There are many ways to filter data in R, but here we are using the filter() function from the dplyr package. This allows us to select rows that match certain conditions. For example:

- Filtering numerical values such as loan_amnt > 10000 to get only loans greater than 10,000.
- Filtering based on both missingness and value, such as keeping rows where person income is not missing and greater than 20,000.
- Filtering categorical values, such as selecting rows where person_education is "Bachelor" or "Master".

```
filtered_data1 <- filter(df_clean, loan_amnt > 10000)
head(as.data.frame(filtered_data1))
filtered_data2 <- filter(df_clean, !is.na(person_income) &
person_income > 20000)
head(as.data.frame(filtered_data2))
filtered_data3 <- filter(df_clean, person_education %in%
c("Bachelor", "Master"))
head(as.data.frame(filtered_data3))</pre>
```

	person_age p		person_education		person_emp_exp person_ho					loan_percent_income cb_perso	on_cred_hist_length	credit_score previous	_loan_defaults_on_file	loan_status
1	21	female	Master	71948.0	0	RENT	35000	PERSONAL	16.02	0.49	3	561	0	Yes
2		female	Bachelor	79753.0		RENT	35000	MEDICAL	15.23	0.44	2	675	0	Yes
3		male	Master	66135.0		RENTT	35000	MEDICAL	14.27	0.53	4	586		Yes
4		female	Bachelor	149874.8		RENT	35000	EDUCATION	12.42	0.37	3	701		Yes
5		male	High School	95550.0		RENT	35000	MEDICAL	11.11	0.37	4	585		Yes
6		female	Bachelor	100684.0		RENT	35000	PERSONAL	8.90	0.35		544		Yes
		.frame(filter												
	person_age p		person_education		person_emp_exp person_ho	me_ownership 1				loan_percent_income cb_perso	on_cred_hist_length	credit_score previous	_loan_defaults_on_file	loan_status
1	21	female	Master	71948.0	0	RENT	35000	PERSONAL	16.02	0.49	3	561	0	Yes
2		female	Bachelor	79753.0		RENT	35000	MEDICAL	15.23	0.44		675		Yes
3		male	Master	66135.0		RENTT	35000	MEDICAL	14.27	0.53	4	586	0	Yes
4		female	Bachelor	149874.8		RENT	35000	EDUCATION	12.42	0.37		701		Yes
5		male	High School	95550.0		RENT	35000	MEDICAL	11.11	0.37	4	5 8 5		Yes
6		female	Bachelor	100684.0		RENT	35000	PERSONAL	8.90	0.35		544		Yes
		.frame(filter												
	person_age p				person_emp_exp person_ho					loan_percent_income cb_perso	on_cred_hist_length		_loan_defaults_on_file	loan_status
1		female	Master	71948.0		RENT	35000	PERSONAL	16.02	0.49	3	561		Yes
2		female	Bachelor	79753.0	0	RENT	35000	MEDICAL	15.23	0.44	2	675	0	Yes
3		male	Master	66135.0		RENTT	35000	MEDICAL	14.27	0.53	4	586		Yes
4		female	Bachelor	149874.8		RENT	35000	EDUCATION	12.42	0.37	3	701	0	Yes
5		female	Bachelor	100684.0		RENT	35000	PERSONAL	8.90	0.35	2	544		Yes
6		male	Bachelor	114860.0		RENT	35000	VENTURE	7.90	0.30				Yes
>														

Task8: Detect invalid value then remove this row or replace mean value:

Description:

There are many ways to handle invalid/missing values; here we use two simple approaches:

- * Remove rows with any missing values using na.omit() to get a clean subset and check how many rows remain.
- Impute (fill) missing values in the full dataset:
 - o For numeric columns, replace NA with the mean of that column.
 - For categorical columns, replace NA with the mode (most frequent category).

After imputation, we verify the result by printing the count of remaining NAs per column group and previewing the cleaned data.

```
loans5<-Loan_Datas
loans5 <- na.omit(loans5)
print(nrow(loans5))
print(loans5)

loan5 <- Loan_Datas
loan3_clean <- na.omit(loan5)
print(nrow(loan3_clean))
loan3_clean
num_cols <- sapply(loan5, is.numeric)</pre>
```

```
cat_cols <- sapply(loan5, is.character)
loan5[num_cols] <- lapply(loan5[num_cols], function(x) {
    x[is.na(x)] <- mean(x, na.rm = TRUE)
    return(x)
})
loan5[cat_cols] <- lapply(loan5[cat_cols], function(x) {
    mode_val <- names(sort(table(x), decreasing = TRUE))[1]
    x[is.na(x)] <- mode_val
    return(x)
})
print(colSums(is.na(loan5[num_cols])))
print(colSums(is.na(loan5[cat_cols])))
print(loan5)</pre>
```

> h	ead(as.data.	frame(loans5))											
	erson age pe	rson gender	person_education	person_income	person_emp_exp_pers	on home ownership	loan_amnt	loan_intent	loan_int_rate	loan_percent_income_cb_person_	cred hist length credit	score pre	vious_loan_defaults_on_file loa	an status
1 1	21	female				RENT	35000		16.02			561	No No	
2		female	High School	12282		OWN	1000	EDUCATION	11.14	0.49		504	Yes	
3	25	female	High School	12438		MORTGAGE	5500	MEDICAL	12.87	0.49		635	No	
4		female	Bachelor	79753		RENT	35000	MEDICAL	15.23	0.44		675	No	
5		male	Master	66135		RENTT	35000	MEDICAL	14.27	0.53		586	No	
6		female		12739		OWN	1600	VENTURE	14.74	0.13		640	No	
P	erson_age pe										cred_hist_length credit		vious_loan_defaults_on_file loa	n_status
1		female	Master			RENT	35000		16.02			561	No	
2	21	female	High School			OWN	1000	EDUCATION	11.14			504	Yes	
3		female	High School			MORTGAGE	5500	MEDICAL	12.87				No	
4		female	Bachelor		0	RENT	35000	MEDICAL	15.23				No	
5		male	Master			RENTT	35000	MEDICAL	14.27			586	No	
6		female	High School	12739	0	OWN	1600	VENTURE	14.74	0.13		640	No	
p											cred_hist_length credit		vious_loan_defaults_on_file loa	an_status
1	21.00000	female	Master		0	RENT	35000		16.02			561	No	
2	21.00000	female	High School		0	OWN	1000	EDUCATION	11.14			504	Yes	0
3	25.00000	female	High School			MORTGAGE	5500	MEDICAL	12.87				No	
4	23.00000	female	Bachelor		0	RENT	35000		15.23			675	No	
5	24.00000	male	Master		1	RENTT	35000		14.27		4	586	No	
- 6	26.91371	female	High School	12951		OWN	2500	VENTURE	7.14	0.19			No	
> -														

Task 9. We can convert the imbalanced data set into the balanced data set

Description:

In our dataset, the target variable was highly imbalanced, so we applied three resampling techniques to balance it: undersampling, oversampling, and SMOTE.

- Undersampling: Here, we reduced the majority class to match the minority class. In the code, N_under was calculated as twice the size of the minority class, and the ovun.sample() function with method = "under" was used. This produced a balanced dataset but at the cost of discarding many majority samples, which reduced the overall dataset size.
- Oversampling: In this method, we increased the minority class to match the majority class. We set N_over as twice the size of the majority class and used ovun.sample() with

method = "over". This balanced the dataset by duplicating minority class samples, keeping all majority data but introducing the risk of overfitting due to repeated rows.

• **SMOTE (Synthetic Minority Oversampling Technique)**: Unlike oversampling, SMOTE generates synthetic minority samples instead of duplicating them. In the code, categorical variables were converted into factors, incomplete rows were removed, and the ROSE() function was applied. This enriched the dataset with synthetic examples, helping the model generalize better while maintaining class balance.

Overall, undersampling removes data, oversampling duplicates data, and SMOTE creates synthetic data. These methods make the dataset more balanced, ensuring fairer and more accurate model training.

Undersampling:

```
library(ROSE)
df$loan_status <- factor(df$loan_status, levels = c(0,1))
table(df$loan_status)
N_under <- 2 * min(table(df$loan_status))
set.seed(199)
under_df <- ovun.sample(loan_status ~ ., data = df,method = "under",
N = N_under, seed = 199)$data
table(under_df$loan_status)
head(under_df)</pre>
```

Output:

Oversampling:

```
library(ROSE)

df$loan_status <- factor(df$loan_status, levels = c(0,1))
table(df$loan_status)
N_over <- 2 * max(table(df$loan_status))
set.seed(199)</pre>
```

```
| Second Control of Co
```

Smote

```
library(ROSE)
set.seed(199)
df_smote$previous_loan_defaults_on_file <-
factor(df_smote$previous_loan_defaults_on_file, levels = c(0,1))
df_smote[sapply(df_smote, is.character)] <-
lapply(df_smote[sapply(df_smote, is.character)], factor)
df_smote <- df_smote[complete.cases(df_smote), ]
table(df_smote$previous_loan_defaults_on_file)
rose_df <- ROSE(previous_loan_defaults_on_file ~ ., data = df_smote,
N = 2000, p = 0.5)$data
table(rose_df$previous_loan_defaults_on_file)
head(rose_df)</pre>
```

Task 10: Split the dataset for Training and Testing , 70% row for Training data and 30% for Testing data:

Description:

In this task we divide the dataset into two parts: 70% for training and 30% for testing. The function initial_split() from the rsample package is used to create the split. From this split object, the training() function extracts the training set, and the testing() function extracts the testing set.

The training set is used to fit and build the model, while the testing set is kept aside to check how well the model performs on new, unseen data. Finally, the dim() function shows the number of rows and columns in each set to confirm that the split was done correctly (about 70% of rows in training and 30% in testing).

```
set.seed(123)
split <- initial_split(df, prop = 0.7)
train_data <- training(split)
test_data <- testing(split)
dim(train_data)
dim(test_data)</pre>
```

Output:

```
> dim(train_data)
[1] 140 14
> dim(test_data)
[1] 61 14
> |
```

Description:

11. statistics and interpret the results for the following numerical:

variables between two target classes (loan status = 1 and loan status = 0)

- ➤ person age
- ➤ Person Income:

Description:

In this task we calculate summary statistics of two numerical variables — person_age and person_income — separately for the two target classes of loan status (0 and 1).

We use the aggregate() function with a custom summary that computes the mean, median, standard deviation, minimum, and maximum for each variable within each class. This produces grouped summaries:

- For loan_status = 0 (non-default customers)
- For loan status = 1 (default customers)

The results help us interpret how age and income differ between the two classes. For example, we can see whether defaulters tend to be younger or older, and whether their average income is higher or lower compared to non-defaulters. This comparison gives useful insights into which demographic or financial factors may be linked to loan outcomes.

print(income_summary)

Output:

	loan_status	person_income.mean	person_income.median	person_income.sd	person_income.min	person_income.max
1	No	232460.21	249174	95317.19	12282	368115
2	Yes	99662.79	72608	279363.03	12438	3138998
>						

Task 12 .Compare average credit_score between customers with loan_status 1 and with loan_status 0:

Description:

To compare the average credit score between customers with different loan statuses, we applied the aggregate() function in R. The dataset was grouped by loan_status, where 0 represents customers without default (good status) and 1 represents customers with default (bad status). The mean credit score was then calculated for each group, rounded to two decimal places, and missing values were ignored (na.rm=TRUE).

The results show that customers with loan_status = 0 have an average credit score of 630.09, while customers with loan_status = 1 have an average credit score of 627.55. This indicates that, on average, customers without default (0) have slightly higher credit scores than those with default (1).

```
aggregate(credit_score ~ loan_status, data = df, FUN = function(x)
round(mean(x, na.rm=TRUE), 2))
```

Description:

Here group by function used for find out all value such as mean, median, mode, max, min for each group. Here has 0 and 1 group. Summarise function use computing statistics like mean, median, sum, count etc.

13. Compare spread in person_emp_exp for customers with different levels of person education:

Description:

In this task we are analyzing how the variable person_emp_exp (employment experience in years) is distributed across different categories of person_education (such as High School, Bachelor, Master, etc.).

We created a custom function compare_spread(), which groups the dataset by the specified categorical variable (person_education) and then calculates descriptive spread measures for the numerical variable (person_emp_exp). Specifically, it computes:

- Count: Number of records in each education level.
- Mean: The average employment experience.
- Standard Deviation (SD): How much the experience varies within that group.
- Minimum and Maximum: The range of values observed.
- Interquartile Range (IQR): The spread of the middle 50% of the data.

By comparing these statistics, we can see whether people with higher education levels tend to have more or less work experience, and whether the variation (spread) in experience differs

between groups. For example, graduates may have higher average experience but also larger variation compared to high school educated individuals.

CODE:

```
compare spread <- function(data, group col, value col) {</pre>
 library(dplyr)
 if (!group col %in% names(data)) stop("Group column not found.")
 if (!value col %in% names(data)) stop("Value column not found.")
 data %>%
    group_by(.data[[group_col]]) %>%
    summarise(
      count = n(),
      mean = mean(.data[[value col]], na.rm = TRUE),
      sd = sd(.data[[value col]], na.rm = TRUE),
      min = min(.data[[value col]], na.rm = TRUE),
      max = max(.data[[value col]], na.rm = TRUE),
      IQR = IQR(.data[[value col]], na.rm = TRUE),
      .groups = "drop"
    )
}
aggregate(credit score ~ loan status, data = data, mean, na.rm =
TRUE)
```

Output:

```
loan_status credit_score
1 0 630.0921
2 1 628.0574
>
```

```
compare <- compare_spread(df_clean, "person_education",
    "person_emp_exp")
head(as.data.frame(compare))</pre>
```

ľ	person_education	count	mean	sd	min	max	IQR
1	Associate	46	3.760870	17.724039	0	121	2.0
2	Bachelor	73	3.534247	14.533565	0	125	3.0
3	Doctorate	1	2.000000	NA	2	2	0.0
4	High School	58	1.413793	1.797020	0	7	3.0
5	Master	23	1.739130	1.888178	0	6	2.5
>							

Project Code

```
library(readxl)
library(modeest)
library(naniar)
library(dplyr)
library(rsample)
data <- read excel("D:/data science project-</pre>
mid/data/Midterm Dataset Section(A).xlsx")
missing rows <- data[!complete.cases(data), ]</pre>
head(missing_rows)
drop data <- na.omit(data);</pre>
head(drop data);
df mean <- data
df mean$person income[is.na(df mean$person income)] <-</pre>
mean(df mean$person income, na.rm = TRUE);
head(df_mean)
df median <- df mean</pre>
df median$person age[is.na(df median$person age)] <-</pre>
median(df median$person age, na.rm = TRUE);
head(df median)
df mode <- df median</pre>
mode val <- mlv(df mode$loan status, method = "mfv", na.rm</pre>
= TRUE);
df mode$loan status[is.na(df mode$loan status)] <- mode val</pre>
head(as.data.frame(df mode))
mode val <- mlv(df mode$person gender, method = "mfv",</pre>
na.rm = TRUE):
df mode$person gender[is.na(df mode$person gender)] <-</pre>
mode val
```

```
mode_val <- mlv(df_mode$person education, method = "mfv",</pre>
na.rm = TRUE);
df_mode$person_education[is.na(df_mode$person_education)]
<- mode val
print(sum(is.na(df mode)))
vis miss(data)
df mode$loan status <- ifelse(df mode$loan status == 1,</pre>
"Yes", "No");
head(as.data.frame(df_mode))
df mode$previous loan defaults on file <-</pre>
ifelse(df mode$previous loan defaults on file == "Yes", 1,
0);
head(as.data.frame(df_mode))
df <- df mode
get outliers <- function(data, colname) {</pre>
  if (!colname %in% names(data)) stop("Column not found.")
  if (!is.numeric(data[[colname]])) stop("Column must be
numeric.")
  Q1 <- quantile(data[[colname]], 0.25, na.rm = TRUE)
  Q3 <- quantile(data[[colname]], 0.75, na.rm = TRUE)
  IOR <- 03 - 01
  lower <- 01 - 1.5 * IQR
  upper <- Q3 + 1.5 * IQR
```

```
outliers <- data[[colname]][data[[colname]] < lower |</pre>
data[[colname]] > upper]
 return(outliers)
}
fix outliers <- function(data, colname) {</pre>
  if (!colname %in% names(data)) stop("Column not found.")
  if (!is.numeric(data[[colname]])) stop("Column must be
numeric.")
  Q1 <- quantile(data[[colname]], 0.25, na.rm = TRUE)
  Q3 <- quantile(data[[colname]], 0.75, na.rm = TRUE)
  IOR <- 03 - 01
  lower <- Q1 - 1.5 * IQR
  upper \leftarrow Q3 + 1.5 * IQR
  is outlier <- data[[colname]] < lower | data[[colname]] >
upper
  n out <- sum(is outlier, na.rm = TRUE)</pre>
  if (n out > 0) {
    data[[colname]] <- pmin(pmax(data[[colname]], lower),</pre>
upper)
  }
  return(data)
df <- df mode
outlier detect <- get outliers(df, "person age")
head(outlier detect)
df clean <- fix outliers(df, "person age")</pre>
head(as.data.frame(df clean))
df_nor <- df
```

```
normalize <- function(x) {</pre>
  return((x - min(x)) / (max(x) - min(x)))
}
df nor$loan amnt <- normalize(df nor$loan amnt)</pre>
head(df nor)
df unique <- df</pre>
df unique <- distinct(df, person education, .keep all =</pre>
TRUE)
head(as.data.frame(df_unique))
filtered data1 <- filter(df clean, loan amnt > 10000)
head(as.data.frame(filtered data1))
filtered_data2 <- filter(df_clean, !is.na(person income) &</pre>
person income > 20000)
head(as.data.frame(filtered data2))
filtered data3 <- filter(df clean, person education %in%
c("Bachelor", "Master"))
head(as.data.frame(filtered data3))
loans5 <- data</pre>
loans5 <- na.omit(loans5)</pre>
print(nrow(loans5))
head(as.data.frame(loans5))
loan5 <- data
loan3 clean <- na.omit(loan5)</pre>
print(nrow(loan3 clean))
head(as.data.frame(loan3 clean))
num_cols <- sapply(loan5, is.numeric)</pre>
```

```
cat cols <- sapply(loan5, is.character)</pre>
loan5[num_cols] <- lapply(loan5[num_cols], function(x) {</pre>
  x[is.na(x)] \leftarrow mean(x, na.rm = TRUE)
  return(x)
})
loan5[cat cols] <- lapply(loan5[cat cols], function(x) {</pre>
  mode val <- names(sort(table(x), decreasing = TRUE))[1]</pre>
 x[is.na(x)] \leftarrow mode val
  return(x)
})
print(colSums(is.na(loan5[num cols])))
print(colSums(is.na(loan5[cat_cols])))
head(as.data.frame(loan5))
df$loan status <- ifelse(df$loan status == "Yes", 1, 0);</pre>
under df <- df
library(ROSE)
df1oan status <- factor(df1oan status, levels = c(0,1))
table(df$loan status)
N under <- 2 * min(table(df$loan status))</pre>
set.seed(199)
under df <- ovun.sample(loan status ~ ., data = df, method
= "under", N = N under, seed = 199)$data
table(under_df$loan_status)
head(under df)
df1oan status <- factor(df1oan status, levels = c(0,1))
table(df$loan status)
N over <- 2 * max(table(df$loan status))</pre>
set.seed(199)
over df <- ovun.sample(loan status ~ ., data = df, method =
"over", N = N over, seed = 199)$data
table(over df$loan status)
head(over df)
df smote <- df clean</pre>
```

```
set.seed(199)
df_smote$previous_loan_defaults_on_file <-</pre>
factor(df_smote$previous_loan_defaults_on_file, levels =
c(0,1)
df smote[sapply(df smote, is.character)] <-</pre>
lapply(df_smote[sapply(df_smote, is.character)], factor)
df smote <- df smote[complete.cases(df smote), ]</pre>
table(df smote$previous loan defaults on file)
rose df <- ROSE(previous loan defaults on file ~ ., data =
df smote, N = 2000, p = 0.5)$data
table(rose df$previous loan defaults on file)
head(rose df)
orig <- names(df clean)</pre>
cat vars <- setdiff(orig[sapply(df smote, function(x)</pre>
is.factor(x) || is.character(x))],
                     "previous loan defaults on file")
pretty df <- df clean
for (v in cat vars) {
  d <- grep(paste0("^", v, "_"), names(pretty_df), value =</pre>
TRUE)
  if (length(d)) {
    M <- as.matrix(pretty_df[, d, drop = FALSE])</pre>
    lv <- sub(paste0("^", v, "_"), "", d)</pre>
    pretty df[[v]] <- factor(lv[max.col(M, ties.method =</pre>
"first")],
                               levels =
levels(df smote[[v]]))
    pretty_df[d] <- NULL</pre>
  }
}
pretty df <- pretty df[, orig, drop = FALSE]</pre>
head(as.data.frame(pretty df))
```

```
set.seed(123)
split <- initial_split(df, prop = 0.7)</pre>
train_data <- training(split)</pre>
test_data <- testing(split)</pre>
dim(train_data)
dim(test data)
age_summary <- aggregate(person_age ~ loan_status, data =</pre>
df,
                           FUN = function(x) c(mean =
mean(x), median = median(x),
                                                sd = sd(x),
min = min(x), max = max(x))
age summary <- do.call(data.frame, age summary)</pre>
income_summary <- aggregate(person_income ~ loan_status,</pre>
data = df,
                              FUN = function(x) c(mean =
mean(x), median = median(x),
                                                    sd = sd(x),
min = min(x), max = max(x)))
income summary <- do.call(data.frame, income summary)</pre>
print(age summary)
print(income summary)
aggregate(credit_score ~ loan_status, data = df, FUN =
function(x) round(mean(x, na.rm=TRUE), 2))
compare spread <- function(data, group col, value col) {</pre>
  library(dplyr)
```

```
if (!group col %in% names(data)) stop("Group column not
found.")
  if (!value col %in% names(data)) stop("Value column not
found.")
  data %>%
    group_by(.data[[group_col]]) %>%
    summarise(
      count = n(),
      mean = mean(.data[[value_col]], na.rm = TRUE),
      sd = sd(.data[[value_col]], na.rm = TRUE),
      min = min(.data[[value_col]], na.rm = TRUE),
      max = max(.data[[value col]], na.rm = TRUE),
      IQR = IQR(.data[[value col]], na.rm = TRUE),
      .groups = "drop"
    )
}
aggregate(credit_score ~ loan_status, data = data , mean,
na.rm = TRUE)
compare <- compare_spread(df_clean, "person education",</pre>
"person emp exp")
head(as.data.frame(compare))
```