Problem Set 4 - Solutions

Problem 1

a) Spring:
$$\vec{F} = -h\vec{i}$$
 $N2: \vec{F} = m \frac{J^2 \vec{r}}{Jt^2}$
 $= m \vec{i} = -h\vec{i}$
 $= -h\vec{i}$

()
$$\frac{x^{2}(t)}{a^{2}} + \frac{y^{2}(t)}{b^{2}} = (cs^{2}(\Omega t) + sin^{2}(\Omega t) = 1$$

$$= 2 \quad \vec{\tau}(t) = x(t) \hat{x} + y(t) \hat{y}$$
is an elliptical orbit

$$d) \quad \frac{d}{dt} \vec{\tau} = -a\Omega \sin(\Omega t) \hat{x} + b\Omega \cos(\Omega t) \hat{y}$$

$$V = |\vec{v}| = |\vec{j}t \vec{\tau}|$$

$$Q \quad \begin{cases} c^{2} \sin^{2}(\Omega t) + |\vec{j}|^{2} & (0 + 1) \end{cases}$$

 $= \Omega \left\{ a^2 \sin^2(\Omega t) + b^2 \cos^2(\Omega t) \right\}^{1/2}$

if a > b :

V is maximum for $\Omega t = \frac{\pi}{2}$, $\frac{3\pi}{2}$; $V_{max} = \Omega \alpha$ V is minimum for $\Omega t = 0$, π ; $V_{min} = \Omega b$

e |
$$\vec{l} = m \vec{n} \times \vec{v} = m \vec{n} \times \frac{d\vec{n}}{dt}$$
 J
 $= m \{a \cos(\Omega t) \hat{x} + b \sin(\Omega t) \hat{g} \}$
 $\times \{-a \Omega \sin(\Omega t) \hat{x} + b \Omega \cos(\Omega t) \hat{g} \}$
 $using \hat{x} = 0, \hat{g} = 0$
 $= m \{ab \Omega \cos(\Omega t) \cdot \hat{x} \times \hat{g} - ab\Omega \sin^2(\Omega t) \hat{g} \times \hat{x} \}$
 $= m ab \Omega \{ \cos^2(\Omega t) + \sin^2(\Omega t) \} \hat{z}$
 $= m ab \Omega \{ \cos^2(\Omega t) + \sin^2(\Omega t) \} \hat{z}$
 $= m ab \Omega \hat{z} \quad conserved \quad \{\Omega = \sqrt{\frac{k}{m}} = const\}$
 \vec{f}
 $\vec{f} = -k \vec{r} \quad is \quad central \quad force$
 $= \vec{r} \quad conserved \quad \vec{r} \quad m$

note:

hne
$$\Omega \neq \dot{o} = \frac{1}{Jt} o$$
.

i.e.
$$O(t) \neq \Omega t$$

reason:

$$tan \phi = \frac{y}{x} = \frac{b \sin(\Omega t)}{a \cos(\Omega t)} = \frac{b}{a} tan(\Omega t)$$

==
$$0 \neq \Omega t$$
 unless $\frac{b}{a} = 1$ (circle)

$$l = |\vec{l}| = m \gamma^2 \hat{\phi} = const. still holds!$$

$$b/c$$
 $l = m ch \Omega$:

==
$$\frac{ab}{\gamma^2}\Omega$$
 not const. except for circle

for circle:
$$a = b = r = const = 0$$

 $3.25 \star$ The net force on the particle is just the tension of the string, which is necessarily directed toward the hole in the table at O. Therefore the angular momentum ℓ about O is constant. When the particle is travelling in a circle of radius r, the vertical component of $\ell = r \times p$ is $\ell_z = rp = rmv = rm(r\omega) = mr^2\omega$. Therefore, the quantity $r^2\omega$ is constant and $r^2\omega = r_0^2\omega_0$; whence $\omega = (r_0/r)^2\omega_0$.

3.30 ** (a) If a particle is a distance ρ from the axis of rotation and the body turns through an angle $d\phi$, then the particle moves a distance $\rho d\phi$ in the tangential (ϕ) direction. Dividing by dt we conclude that the particle's speed is $v = \rho d\phi/dt = \rho \omega$ in the ϕ direction. That is, $\mathbf{v} = \rho \omega \hat{\phi}$.

(b) The particle's position is $\mathbf{r} = \rho \hat{\boldsymbol{\rho}} + z \hat{\mathbf{z}}$, so its angular momentum is $\boldsymbol{\ell} = \mathbf{r} \times \mathbf{p} = (\rho \hat{\boldsymbol{\rho}} + z \hat{\mathbf{z}}) \times m\rho\omega\hat{\boldsymbol{\phi}} = m\rho^2\omega\hat{\mathbf{z}} - mz\rho\omega\hat{\boldsymbol{\rho}}$. Therefore its z component is $\ell_z = m\rho^2\omega$.

(c) The total angular momentum has

$$L_z = \sum_{\alpha=1}^N \ell_{\alpha z} = \sum_{\alpha=1}^N m_{\alpha} \rho_{\alpha}^{\ 2} \omega = I \omega \quad \text{where} \quad I = \sum_{\alpha=1}^N m_{\alpha} \rho_{\alpha}^{\ 2}.$$

$$I = S \int_{C} \int_{C}^{2}(\overline{z}) dV$$

$$= S \int_{C} \int_{$$

$$= \frac{1}{2} = \frac{M}{R^2 R} = \frac{1}{2} M R^2$$

Problem 5

a)
$$T_c = \beta 2 \int_0^2 x^2 dx = \beta 2 \frac{1}{3} (\frac{1}{2})^3 = \beta \frac{1}{12}$$

$$= \frac{M}{L} \frac{L^3}{12} = \frac{1}{12} M L^2 \xrightarrow{L_2}^{2} x^2$$

b)
$$I_{ind} = \beta \int_{0}^{L} x^{2} dx = \beta \int_{0}^{1} L^{3} = \int_{0}^{1} M L^{2}$$