Ilaria Zappatore

An Algorithm-based Fault Tolerant Technique for solving Polynomial Linear Systems

a joint work with

Eleonora GUERRINI, Romain LEBRETON LIRMM, Université de Montpellier CNRS

Seminario UMI - Crittografia e Codici

Starting Point

Overview & Motivations

Seminario UMI - Crittografia e Codici

Goal: provide high performances and complete heavy tasks

Fault tolerant algorithms

The more the number of system components grows

the more the failures of computing nodes

becomes relevant

(3,5 faults per day)

[DI, GUO, PERSHEY, SNIR, CAPPELLO, 2019], [LIU, CHEN, 2018]

construct fault tolerant algorithms

detect/correct faults

Algorithm-based fault tolerant techniques (ABFT)

Algorithm-based fault tolerant techniques (ABFT)

[HUANG, ABRAHAM, 1984]

Goal: detect/correct computational errors (faults)

Algorithm-based fault tolerant techniques (ABFT)

[HUANG, ABRAHAM, 1984]

Goal: detect/correct computational errors (faults)

• adding redundancy (encoding)

Algorithm-based fault tolerant techniques (ABFT)

[HUANG, ABRAHAM, 1984]

Goal: detect/correct computational errors (faults)

modify the algorithm, work on encoding data ← robust to errors (faults)

error correcting codes

Algorithm-based fault tolerant techniques (ABFT)

[HUANG, ABRAHAM, 1984]

exploits the algorithm's characteristics

to design a fault tolerant algorithm

Goal: detect/correct computational errors (faults)

ABFT for Polynomial Linear System Solving by Evaluation-Interpolation

[BOYER, KALTOFEN, 2014] [KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]

□ [GUERRINI, LEBRETON, Z., 2019] **□** [GUERRINI, LEBRETON, Z., 2021]

: publication

Take a look inside

Seminario UMI - Crittografia e Codici

Polynomial Linear System Solving

$$\underbrace{\begin{pmatrix} a_{1,1}(x) & a_{1,2}(x) & \dots & a_{1,n}(x) \\ a_{2,1}(x) & a_{2,2}(x) & \dots & a_{2,n}(x) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1}(x) & a_{n,2}(x) & \dots & a_{n,n}(x) \end{pmatrix}}_{A(x)} \underbrace{\begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{pmatrix}}_{\mathbf{y}(x)} = \underbrace{\begin{pmatrix} b_1(x) \\ b_2(x) \\ \vdots \\ b_n(x) \end{pmatrix}}_{\mathbf{b}(x)}$$

Polynomial Linear System Solving

$$\underbrace{\begin{pmatrix} a_{1,1}(x) & a_{1,2}(x) & \dots & a_{1,n}(x) \\ a_{2,1}(x) & a_{2,2}(x) & \dots & a_{2,n}(x) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1}(x) & a_{n,2}(x) & \dots & a_{n,n}(x) \end{pmatrix}}_{A(x)} \underbrace{\begin{pmatrix} v_1(x) \\ \hline d(x) \\ \vdots \\ v_n(x) \\ \hline d(x) \end{pmatrix}}_{p(x)} = \underbrace{\begin{pmatrix} b_1(x) \\ b_2(x) \\ \vdots \\ b_n(x) \end{pmatrix}}_{p(x)}$$

Polynomial Linear System Solving

$$\underbrace{\begin{pmatrix} a_{1,1}(x) & a_{1,2}(x) & \dots & a_{1,n}(x) \\ a_{2,1}(x) & a_{2,2}(x) & \dots & a_{2,n}(x) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1}(x) & a_{n,2}(x) & \dots & a_{n,n}(x) \end{pmatrix}}_{A(x)} \underbrace{\begin{pmatrix} v_1(x) \\ \hline d(x) \\ \vdots \\ v_n(x) \\ \hline d(x) \end{pmatrix}}_{p(x)} = \underbrace{\begin{pmatrix} b_1(x) \\ b_2(x) \\ \vdots \\ b_n(x) \end{pmatrix}}_{b(x)}$$

Evaluation-Interpolation Algorithm

1. Evaluate A(x), b(x) in $\{\alpha_1, ..., \alpha_L\}$, $(A(\alpha_j))$ full rank)

2. Compute
$$y_j = A(\alpha_j)^{-1} \boldsymbol{b}(\alpha_j) = \frac{\boldsymbol{v}(\alpha_j)}{d(\alpha_j)}$$
,

Polynomial Linear System Solving

$$\underbrace{\begin{pmatrix} a_{1,1}(x) & a_{1,2}(x) & \dots & a_{1,n}(x) \\ a_{2,1}(x) & a_{2,2}(x) & \dots & a_{2,n}(x) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1}(x) & a_{n,2}(x) & \dots & a_{n,n}(x) \end{pmatrix}}_{A(x)} \underbrace{\begin{pmatrix} v_1(x) \\ \hline d(x) \\ \vdots \\ v_n(x) \\ \hline d(x) \end{pmatrix}}_{b(x)} = \underbrace{\begin{pmatrix} b_1(x) \\ b_2(x) \\ \vdots \\ b_n(x) \end{pmatrix}}_{b(x)}$$

Evaluation-Interpolation Algorithm

- 1. Evaluate A(x), b(x) in $\{\alpha_1, ..., \alpha_L\}$, $(A(\alpha_i))$ full rank)
- 2. Compute $y_j = A(\alpha_j)^{-1} \boldsymbol{b}(\alpha_j) = \frac{\boldsymbol{v}(\alpha_j)}{d(\alpha_j)}$,
- 3. Interpolate y(x) from $y_1, ..., y_L$

Polynomial Linear System Solving

$$\underbrace{\begin{pmatrix} a_{1,1}(x) & a_{1,2}(x) & \dots & a_{1,n}(x) \\ a_{2,1}(x) & a_{2,2}(x) & \dots & a_{2,n}(x) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1}(x) & a_{n,2}(x) & \dots & a_{n,n}(x) \end{pmatrix}}_{A(x)} \underbrace{\begin{pmatrix} v_1(x) \\ \hline d(x) \\ \vdots \\ v_n(x) \\ \hline d(x) \end{pmatrix}}_{b(x)} = \underbrace{\begin{pmatrix} b_1(x) \\ b_2(x) \\ \vdots \\ b_n(x) \end{pmatrix}}_{b(x)}$$

Evaluation-Interpolation Algorithm

- 1. Evaluate A(x), b(x) in $\{\alpha_1, ..., \alpha_L\}$, $(A(\alpha_j))$ full rank)
- 2. Compute $y_j = A(\alpha_j)^{-1} \boldsymbol{b}(\alpha_j) = \frac{\boldsymbol{v}(\alpha_j)}{d(\alpha_j)}$,
- 3. Interpolate y(x) from $y_1, ..., y_L$

ABFT for PLS solving by Evaluation-Interpolation

• adding redundancy (encoding), consider many nodes

ABFT for Evaluation-Interpolation Algorithm

- 1. **Evaluate** A(x), b(x) in many evaluation points
- 2. Compute $y_j = A(\alpha_j)^{-1} b(\alpha_j)$

ABFT for PLS solving by Evaluation-Interpolation

• adding redundancy (encoding), consider many nodes

new

decoding, correcting errors

ABFT for Evaluation-Interpolation Algorithm

- 1. **Evaluate** A(x), b(x) in many evaluation points
- 2. Compute $y_i = A(\alpha_i)^{-1}b(\alpha_i)$
- Interpolate y(x) from $y_1, ..., y_L$ where some errors occur

Simultaneous Cauchy Interpolation with Errors

Simultaneous Cauchy Interpolation with Errors

Simultaneous Cauchy Interpolation with Errors

Given
$$y_1, ..., y_L$$

•
$$y_j = \frac{v(\alpha_j)}{d(\alpha_j)}$$
 correct evaluations

•
$$\mathbf{y}_j \neq \frac{\mathbf{v}(\alpha_j)}{d(\alpha_j)}$$
 erroneous evaluations

the degree bounds $N > \deg(v)$, $D > \deg(d)$ and an upper bound τ on the number of errors.

GOAL: reconstruct $(v(x), d(x)) \rightarrow y(x)$

Simultaneous Cauchy Interpolation

Simultaneous Rational Function Reconstruction

Two Main Questions

1. How many evaluations (nodes) do we need to uniquely recover (v(x), d(x))?

fewer evaluations —— fewer computations

2. Can we reduce this number?

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	$(\mathbf{v}(\mathbf{x}), d(\mathbf{x}))$		Cauchy Interpolation	[GUERRINI, LEBRETON, Z., 2020]
no-errors	$A(x)\frac{\boldsymbol{v}(x)}{d(x)} = \boldsymbol{b}(x)$		[CABAY, 1971]	?
with errors	(v(x), d(x))	d constant $(D=0)$	Unique Decoding Capability Theorem (IRS codes)	IRS codes [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
		D > 0	[BOYER, KALTOFEN, 2014]	[GUERRINI, LEBRETON, Z., 2019]
	$A(x)\frac{v(x)}{d(x)} = b(x)$		[KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	[GUERRINI, LEBRETON, Z., 2021]

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	$(\mathbf{v}(x), d(x))$		Cauchy Interpolation	[GUERRINI, LEBRETON, Z., 2020]
no-errors	$A(x)\frac{\boldsymbol{v}(x)}{d(x)} = \boldsymbol{b}(x)$		[CABAY, 1971]	?
	(v(x), d(x))	d constant $(D = 0)$	Unique Decoding Capability Theorem (IRS codes)	IRS codes [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
with errors		D > 0	[BOYER, KALTOFEN, 2014]	[GUERRINI, LEBRETON, Z., 2019]
	$A(x)\frac{v(x)}{d(x)} = b(x)$		[KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	[GUERRINI, LEBRETON, Z., 2021]

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

- $v_i(\alpha_j) = y_{i,j}d(\alpha_j)$ $\deg(v_i) < N$
- $\deg(d) < D$

Vector Generalization same denominator

Cauchy Interpolation

Given the evaluations $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find (v(x), d(x)) s.t.

$$\frac{v(\alpha_j)}{d(\alpha_j)} = y_j, d(\alpha_j) \neq 0$$

$$\frac{\deg(v)}{\log v} < N$$

- $\deg(d) < D$

Rational Function Reconstruction

If the number of evaluations $L \ge N + D - 1$

Unique solution

$$(v_1, d_1), (v_2, d_2)$$
 solutions $\longrightarrow \frac{v_1}{d_1} = \frac{v_2}{d_2}$

Simultaneous Rational Function Reconstruction

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

- $v_i(\alpha_j) = y_{i,j}d(\alpha_j)$ $\deg(v_i) < N$
- $\deg(d) < D$

Vector Generalization same denominator

Cauchy Interpolation

Given the evaluations $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find (v(x), d(x)) s.t.

- $v(\alpha_j) = y_j d(\alpha_j)$ $\deg(v) < N$
- $\deg(d) < D$

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_L$ and the degree bounds N, D

GOAL: **find**
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

- $v_i(\alpha_j) = y_{i,j}d(\alpha_j)$ $\deg(v_i) < N$
- $\deg(d) < D$

Vector Generalization

same denominator

Cauchy Interpolation

Given the evaluations $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find (v(x), d(x)) s.t.

- $v(\alpha_j) = y_j d(\alpha_j)$ $\deg(v) < N$
- $\deg(d) < D$

1. Apply the Cauchy Interpolation component-wise $(L \ge N + D - 1 \longrightarrow uniqueness)$

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_L$ and the degree bounds N, D

GOAL: **find**
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

v(x)

- $v_i(\alpha_j) = y_{i,j}d(\alpha_j)$ $\deg(v_i) < N$
- deg(d) < D

Vector Generalization

same denominator

Cauchy Interpolation

Given the evaluations $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find (v(x), d(x)) s.t.

- $v(\alpha_j) = y_j d(\alpha_j)$ $\deg(v) < N$
- $\deg(d) < D$
- 1. Apply the Cauchy Interpolation component-wise $(L \ge N + D 1 \longrightarrow uniqueness)$
- 2. Use the common denominator feature to reduce the number of equations of the related homogeneous linear system

#equations = #unknowns -1
$$\longrightarrow$$
 $L = N + (D - 1)/n$
 nL $nN + D$ uniqueness?

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find
$$(v_1(x), \ldots, v_n(x), d(x))$$
 s.t.

- $v_i(\alpha_j) = y_{i,j}d(\alpha_j)$ $\deg(v_i) < N$
- $\deg(d) < D$

Vector Generalization

same denominator

Cauchy Interpolation

Given the evaluations $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find (v(x), d(x)) s.t.

- $v(\alpha_j) = y_j d(\alpha_j)$ $\deg(v) < N$
- $\deg(d) < D$

If we want to recover a solution of a PLS:

- with $L \ge \max\{\deg(A) + N, \deg(b) + D\} \longrightarrow \text{uniqueness}$ [CABAY, 1971]
- for specific degree constraints N, D max $\{deg(A) + N, deg(b) + D\} = N + (D-1)/n \rightarrow uniqueness$ [OLESH, STORJOHANN, 2007]

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

- $v_i(\alpha_j) = y_{i,j}d(\alpha_j)$ $\deg(v_i) < N$
- $\deg(d) < D$

Vector Generalization same denominator

Cauchy Interpolation

Given the evaluations $y_1, ..., y_L$ and the degree bounds N, D

GOAL: find (v(x), d(x)) s.t.

- $v(\alpha_j) = y_j d(\alpha_j)$ $\deg(v) < N$
- deg(d) < D

Theorem [GUERRINI, LEBRETON, Z., 2020]

If L = N + (D-1)/n, for almost all instances \Longrightarrow uniqueness.

Just a hint of the technique...

Seminario UMI - Crittografia e Codici

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_L$ and the degree bounds N, D

GOAL: **find**
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

- $v_i(\alpha_j) = y_{i,j}d(\alpha_j)$ $\deg(v_i) < N$
- $\deg(d) < D$

Theorem [GUERRINI, LEBRETON, Z., 2020]

If $L = \deg(a) = N + (D-1)/n$, for almost all instances \Longrightarrow uniqueness.

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds N, D

GOAL: **find**
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

•
$$v_i(x) = u_i(x)d(x) \mod \prod (x - \alpha_j)$$

- $\deg(v_i) < N$
- $\deg(d) < D$

Specific case of

Simultaneous Rational Function Reconstruction

Given two vector of polynomials u(x), a(x) and the degree bounds N, D

GOAL: **find**
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

•
$$v_i(x) = u_i(x)d(x) \mod a_i(x)$$

- $\deg(v_i) < N$
- $\deg(d) < D$

Theorem [GUERRINI, LEBRETON, Z., 2020]

u(x) vector of Lagrange interpolators

If $L = \deg(a) = N + (D-1)/n$, for almost all instances \Longrightarrow uniqueness.

Simultaneous Rational Function Reconstruction

Given two vector of polynomials u(x), a(x)and the degree bounds N, D

GOAL: find
$$(v_1(x), \ldots, v_n(x), d(x))$$
 s.t.

- $v_i(x) = u_i(x)d(x) \mod a_i(x)$
- $\deg(v_i) < N$
- $\deg(d) < D$

$$(v,d) \underbrace{\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ -u_1 & -u_2 & \dots & -u_n \end{pmatrix}}_{R_u} = 0 \bmod \underbrace{\langle (0,\dots,a_i,\dots 0) \rangle}_{\mathcal{M}} \iff (v,d) \in \mathcal{A}_{R_u}$$

$$\mathcal{A}_{R_u} = \{ p = (p_1(x), ..., p_n(x)) \mid pR_u = 0 \text{ mod } \mathcal{M} \}$$

Relation module

Theorem [GUERRINI, LEBRETON, Z., 2020]

If $L = \deg(a) = N + (D-1)/n$, for almost all instances \Longrightarrow uniqueness.

Simultaneous Rational Function Reconstruction

Given two vector of polynomials u(x), a(x)and the degree bounds N, D

GOAL: find
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

•
$$v_i(x) = u_i(x)d(x) \mod a_i(x)$$

• $\deg(v_i) < N$
• $\deg(d) < D$

$$(\mathbf{v},d) \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ -u_1 & -u_2 & \dots & -u_n \end{pmatrix} = 0 \bmod \langle (0,\dots,a_i,\dots 0) \rangle \quad \longleftrightarrow (\mathbf{v},d) \in \mathcal{A}_{R_u}$$

take the max

$$\rightarrow$$
 (deg(v_1)- N , ..., deg(v_n)- N , deg(d)- D) \rightarrow $rdeg_{(-N,...,-N,-D)}(v,d) < 0$ < 0 < 0 < 0

Theorem [GUERRINI, LEBRETON, Z., 2020]

If $L = \deg(a) = N + (D-1)/n$, for almost all instances \Longrightarrow uniqueness.

Simultaneous Rational Function Reconstruction

Given two vector of polynomials u(x), a(x)and the degree bounds N, D

GOAL: find
$$(v_1(x), \dots, v_n(x), d(x))$$
 s.t.

- $(\mathbf{v}, d) \in \mathcal{A}_{R_u}$ $rdeg_{(-N, \dots, -N, -D)}(\mathbf{v}, d) < 0$

How to prove uniqueness?

- Minimal basis \mathscr{B} of \mathscr{A}_{R_u} , for which the s-row degrees are uniquely defined (Ordered Weak Popov)
- Solution space generated by elements of \mathscr{B} the with negative s-row degrees

$$(-N,...,-N,-D)$$
-row degrees of \mathscr{B} of the form $(0,0,...,-1)$

Solution space uniquely generated ⇒ uniqueness

Theorem [GUERRINI, LEBRETON, Z., 2020]

If $L = \deg(a) = N + (D-1)/n$, for almost all instances, $rdeg_{(-N,...,-N,-D)}(\mathcal{B}) = (0,...,0,-1)$

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
no-errors	$(\mathbf{v}(x), d(x))$		L = N + D - 1 Cauchy Interpolation	$L = N + \left\lceil \frac{(D-1)}{n} \right\rceil$
	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\}$ [CABAY, 1971]	
with errors	(v(x), d(x))	d constant $(D=0)$	Unique Decoding Capability Theorem (IRS codes)	IRS codes [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
		D > 0	[BOYER, KALTOFEN, 2014]	[GUERRINI, LEBRETON, Z., 2019]
	$A(x)\frac{v(x)}{d(x)} = b(x)$		[KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	[GUERRINI, LEBRETON, Z., 2021]

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	(v(x), d(x))		L = N + D - 1 Cauchy Interpolation	$L = N + \left\lceil \frac{(D-1)}{n} \right\rceil$
	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\}$ [CABAY, 1971]	
		d constant $(D=0)$	Unique Decoding Capability Theorem (IRS codes)	IRS codes [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
with errors	$(\mathbf{v}(\mathbf{x}), \mathbf{d}(\mathbf{x}))$	d(x) $D > 0$	[BOYER, KALTOFEN, 2014]	[GUERRINI, LEBRETON, Z., 2019]
	$A(x)\frac{v(x)}{d(x)} = b(x)$		[KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	[GUERRINI, LEBRETON, Z., 2021]

Simultaneous Cauchy Interpolation with Errors

Given
$$y_1, ..., y_L$$

•
$$y_j = \frac{v(\alpha_j)}{d(\alpha_j)}$$
 correct evaluations

•
$$\mathbf{y}_j \neq \frac{\mathbf{v}(\alpha_j)}{d(\alpha_i)}$$
 erroneous evaluations

the degree bounds $N > \deg(v)$, $D > \deg(d)$ and an upper bound τ on the number of errors.

GOAL: reconstruct $(v(x), d(x)) \rightarrow y(x)$

Simultaneous Interpolation with Errors (D=0)

Simultaneous Interpolation with Errors

Given $y_1, ..., y_L$

- $y_j = v(\alpha_j)$ correct evaluations
- $y_j \neq v(\alpha_j)$ erroneous evaluations

the degree bounds $N>\deg(v)$ and an upper bound τ on the number of errors.

GOAL: reconstruct v(x)

What happens if the denominator is constant?

GOAL: reconstruct a **vector** of **polynomials** given its **evaluations**, **some** of which are **erroneous**

decoding Interleaved Reed-Solomon codes

Algebraic coding theory

k-symbol message

Encoding

Decoding

k-symbol message

Interleaved Reed-Solomon Codes

Let $k \le n \le q$ and $\{\alpha_1, ..., \alpha_n\}$ distinct evaluation points,

$$\mathscr{C}_{IRS}(n,k) := \{ (f(\alpha_1), ..., f(\alpha_n)) \mid f \in \mathbb{F}_q[x]^{l \times 1}, \deg(f) < k \}$$

The IRS code is an **MDS code** the **minimum distance** is d = n - k + 1

Interleaved Reed-Solomon codeword

Interleaved Reed-Solomon Codes

Let $k \le n \le q$ and $\{\alpha_1, ..., \alpha_n\}$ distinct evaluation points,

$$\mathcal{C}_{IRS}(n,k) := \{ (f(\alpha_1), ..., f(\alpha_n)) \mid f \in \mathbb{F}_q[x]^{l \times 1}, \deg(f) < k \}$$

The IRS code is an **MDS code** the **minimum distance** is d = n - k + 1

$$C = \begin{pmatrix} f_1(\alpha_1) & f_1(\alpha_2) & f_1(\alpha_3) & \dots & f_1(\alpha_n) \\ f_2(\alpha_1) & f_2(\alpha_2) & f_2(\alpha_3) & \dots & f_2(\alpha_n) \\ f_3(\alpha_1) & f_3(\alpha_2) & f_3(\alpha_3) & \dots & f_3(\alpha_n) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ f_l(\alpha_1) & f_l(\alpha_2) & f_l(\alpha_3) & \dots & f_l(\alpha_n) \end{pmatrix}$$

$$egin{aligned} f_1(lpha_1) \ f_2(lpha_1) \ f_3(lpha_1) \ dots \ f_l(lpha_1) \ \end{pmatrix}$$

Interleaved Reed-Solomon Codes

Let $k \le n \le q$ and $\{\alpha_1, ..., \alpha_n\}$ distinct evaluation points,

$$\mathscr{C}_{IRS}(n,k) := \{ (f(\alpha_1), ..., f(\alpha_n)) \mid f \in \mathbb{F}_q[x]^{l \times 1}, \deg(f) < k \}$$

The IRS code is an **MDS code** the **minimum distance** is d = n - k + 1

$$C = \begin{pmatrix} f_1(\alpha_1) & f_1(\alpha_2) & f_1(\alpha_3) & \dots & f_1(\alpha_n) \\ f_2(\alpha_1) & f_2(\alpha_2) & f_2(\alpha_3) & \dots & f_2(\alpha_n) \\ f_3(\alpha_1) & f_3(\alpha_2) & f_3(\alpha_3) & \dots & f_3(\alpha_n) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ f_l(\alpha_1) & f_l(\alpha_2) & f_l(\alpha_3) & \dots & f_l(\alpha_n) \end{pmatrix} \begin{pmatrix} f_1(\alpha_1) & f_1(\alpha_2) \\ f_2(\alpha_1) & f_2(\alpha_2) \\ f_3(\alpha_1) & f_3(\alpha_2) \\ \vdots & \vdots & \vdots \\ f_l(\alpha_1) & f_l(\alpha_2) \end{pmatrix}$$

Interleaved Reed-Solomon Codes

Let $k \le n \le q$ and $\{\alpha_1, ..., \alpha_n\}$ distinct evaluation points,

$$\mathscr{C}_{IRS}(n,k) := \{ (f(\alpha_1), ..., f(\alpha_n)) \mid f \in \mathbb{F}_q[x]^{l \times 1}, \deg(f) < k \}$$

The IRS code is an **MDS code** the **minimum distance** is d = n - k + 1

$$C = \begin{pmatrix} f_{1}(\alpha_{1}) & f_{1}(\alpha_{2}) & f_{1}(\alpha_{3}) & \dots & f_{1}(\alpha_{n}) \\ f_{2}(\alpha_{1}) & f_{2}(\alpha_{2}) & f_{2}(\alpha_{3}) & \dots & f_{2}(\alpha_{n}) \\ f_{3}(\alpha_{1}) & f_{3}(\alpha_{2}) & f_{3}(\alpha_{3}) & \dots & f_{3}(\alpha_{n}) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ f_{l}(\alpha_{1}) & f_{l}(\alpha_{2}) & f_{l}(\alpha_{3}) & \dots & f_{l}(\alpha_{n}) \end{pmatrix} \begin{pmatrix} f_{1}(\alpha_{1}) & f_{1}(\alpha_{2}) & f_{1}(\alpha_{3}) \\ f_{2}(\alpha_{1}) & f_{2}(\alpha_{2}) & f_{2}(\alpha_{3}) \\ f_{3}(\alpha_{1}) & f_{3}(\alpha_{2}) & f_{3}(\alpha_{3}) \\ \vdots & \vdots & \vdots \\ f_{l}(\alpha_{1}) & f_{l}(\alpha_{2}) & f_{l}(\alpha_{3}) \end{pmatrix}$$

Interleaved Reed-Solomon Codes

Let $k \le n \le q$ and $\{\alpha_1, ..., \alpha_n\}$ distinct evaluation points,

$$\mathscr{C}_{IRS}(n,k) := \{ (f(\alpha_1), ..., f(\alpha_n)) \mid f \in \mathbb{F}_q[x]^{l \times 1}, \deg(f) < k \}$$

The IRS code is an MDS code the **minimum distance** is d = n - k + 1

$$C = \begin{pmatrix} f_{1}(\alpha_{1}) & f_{1}(\alpha_{2}) & f_{1}(\alpha_{3}) & \dots & f_{1}(\alpha_{n}) \\ f_{2}(\alpha_{1}) & f_{2}(\alpha_{2}) & f_{2}(\alpha_{3}) & \dots & f_{2}(\alpha_{n}) \\ f_{3}(\alpha_{1}) & f_{3}(\alpha_{2}) & f_{3}(\alpha_{3}) & \dots & f_{3}(\alpha_{n}) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ f_{l}(\alpha_{1}) & f_{l}(\alpha_{2}) & f_{l}(\alpha_{3}) & \dots & f_{l}(\alpha_{n}) \end{pmatrix}$$

$$\begin{pmatrix} f_{1}(\alpha_{1}) & f_{1}(\alpha_{2}) & f_{1}(\alpha_{3}) & \dots & f_{1}(\alpha_{n}) \\ f_{2}(\alpha_{1}) & f_{2}(\alpha_{2}) & f_{2}(\alpha_{3}) & \dots & f_{2}(\alpha_{n}) \\ f_{3}(\alpha_{1}) & f_{3}(\alpha_{2}) & f_{3}(\alpha_{3}) & \dots & f_{3}(\alpha_{n}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f_{l}(\alpha_{1}) & f_{l}(\alpha_{2}) & f_{l}(\alpha_{3}) & \dots & f_{l}(\alpha_{n}) \end{pmatrix}$$

$$\begin{pmatrix} f_1(\alpha_1) & f_1(\alpha_2) & f_1(\alpha_3) & \dots & f_1(\alpha_n) \\ f_2(\alpha_1) & f_2(\alpha_2) & f_2(\alpha_3) & \dots & f_2(\alpha_n) \\ f_3(\alpha_1) & f_3(\alpha_2) & f_3(\alpha_3) & \dots & f_3(\alpha_n) \\ \vdots & \vdots & & \vdots & & \vdots \\ f_l(\alpha_1) & f_l(\alpha_2) & f_l(\alpha_3) & \dots & f_l(\alpha_n) \end{pmatrix}$$
burst error

Interleaved Reed-Solomon Codes

Let $k \le n \le q$ and $\{\alpha_1, ..., \alpha_n\}$ distinct evaluation points,

$$\mathscr{C}_{IRS}(n,k) := \{ (f(\alpha_1), ..., f(\alpha_n)) \mid f \in \mathbb{F}_q[x]^{l \times 1}, \deg(f) < k \}$$

$$Y = \begin{pmatrix} f_1(\alpha_1) & f_1(\alpha_2) \\ f_2(\alpha_1) & f_2(\alpha_2) \\ f_3(\alpha_1) & f_3(\alpha_2) \\ \vdots & \vdots & \vdots \\ f_l(\alpha_1) & f_l(\alpha_2) \end{pmatrix} \begin{pmatrix} f_1(\alpha_3) & \dots & f_1(\alpha_n) \\ f_2(\alpha_3) & \dots & f_2(\alpha_n) \\ f_3(\alpha_3) & \dots & f_3(\alpha_n) \\ \vdots & \vdots & \dots & \vdots \\ f_l(\alpha_3) & \dots & f_l(\alpha_n) \end{pmatrix}$$
burst error

The IRS code is an **MDS code** the **minimum distance** is d = n - k + 1

Decoding IRS codes

Given the received matrix with columns $y_1, ..., y_n$

- $y_i = f(\alpha_i)$ correct evaluations
- $y_j \neq f(\alpha_j)$ erroneous evaluations

the degree bound $k > \deg(f)$

and an upper bound au on the number of errors.

GOAL: reconstruct f(x)

Simultaneous Cauchy Interpolation

Interleaved Reed-Solomon Codes

Let $k \le n \le q$ and $\{\alpha_1, ..., \alpha_n\}$ distinct evaluation points,

$$\mathscr{C}_{IRS}(n,k) := \{ (f(\alpha_1), ..., f(\alpha_n)) \mid f \in \mathbb{F}_q[x]^{l \times 1}, \deg(f) < k \}$$

this is exactly our starting point!

Simultaneous Interpolation with Errors

$$Y = \begin{pmatrix} f_1(\alpha_1) & f_1(\alpha_2) & f_1(\alpha_3) & \dots & f_1(\alpha_n) \\ f_2(\alpha_1) & f_2(\alpha_2) & f_2(\alpha_3) & \dots & f_2(\alpha_n) \\ f_3(\alpha_1) & f_3(\alpha_2) & \vdots & \vdots & \dots & \vdots \\ f_l(\alpha_1) & f_l(\alpha_2) & f_l(\alpha_3) & \dots & f_l(\alpha_n) \end{pmatrix}$$
burst error

The IRS code is an **MDS code** the **minimum distance** is d = n - k + 1

Simultaneous Interpolation with Errors

Given the received matrix with columns $y_1, ..., y_n$

•
$$y_j = f(\alpha_j)$$
 correct evaluations

•
$$y_j \neq f(\alpha_j)$$
 erroneous evaluations

the degree bound $k > \deg(f)$ and an upper bound τ on the number of errors.

GOAL: reconstruct f(x)

Simultaneous Cauchy Interpolation

Decoding Interleaved Reed-Solomon codes

Simultaneous Interpolation with Errors

Given the received matrix with columns $y_1, ..., y_n$

- $y_i = f(\alpha_i)$ correct evaluations
- $y_i \neq f(\alpha_i)$ erroneous evaluations

the degree bound $k > \deg(f)$

and an upper bound τ on the number of errors.

GOAL: reconstruct f(x)

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_n$ and the degree bounds $\tau + k$, $\tau + 1$

GOAL: find $(\varphi_1(x), ..., \varphi_l(x), \psi(x))$ s.t.

- $\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)^{\varphi(x)}$
- $\deg(\varphi_i) < \tau + k$
- $\deg(\psi) < \tau + 1$

Simultaneous Rational Function Reconstruction

Decoding Interleaved Reed-Solomon codes

Simultaneous Interpolation with Errors

Given the received matrix with columns $y_1, ..., y_n$

- $y_i = f(\alpha_i)$ correct evaluations
- $y_i \neq f(\alpha_i)$ erroneous evaluations

the degree bound $k > \deg(f)$

and an upper bound τ on the number of errors.

GOAL: reconstruct f(x)

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_n$ and the degree bounds $\tau + k$, $\tau + 1$

GOAL: find
$$(\varphi_1(x), ..., \varphi_l(x), \psi(x))$$
 s.t.

- $\Lambda(\alpha_i) f_i(\alpha_i) = y_{i,j} \Lambda(\alpha_i)$
- $\deg(\Lambda f) < \tau + k$
- $deg(\Lambda) < \tau + 1$

$$\Lambda(x) = \prod_{\alpha_j \text{ erroneous}} (x - \alpha_j)$$

Error Locator Polynomial roots = erroneous evaluation points $deg(\Lambda) = nb errors$

Decoding Interleaved Reed-Solomon codes

Simultaneous Interpolation with Errors

Given the received matrix with columns $y_1, ..., y_n$

- $y_i = f(\alpha_i)$ correct evaluations
- $y_i \neq f(\alpha_i)$ erroneous evaluations

the degree bound $k > \deg(f)$

and an upper bound τ on the number of errors.

GOAL: reconstruct f(x)

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_n$ and the degree bounds $\tau + k$, $\tau + 1$

GOAL: find $(\varphi_1(x), ..., \varphi_l(x), \psi(x))$ s.t.

- $\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)^{\varphi(x)}$
- $\deg(\varphi_i) < \tau + k$
- $deg(\psi) < \tau + 1$

1. Unique decoding Capability

$$\text{nb errors} \leq \frac{n-k}{2} = \frac{d-1}{2} := \tau_0 \longrightarrow \text{unique decoding}$$

Coding Theory

Computer Algebra

1. Unique decoding Capability

$$\text{nb errors} \leq \frac{n-k}{2} = \frac{d-1}{2} := \tau_0 \longrightarrow \text{unique decoding}$$

Coding Theory

Computer Algebra

1. Unique decoding Capability

$$\text{nb errors} \leq \frac{n-k}{2} = \frac{d-1}{2} := \tau_0 \longrightarrow \text{unique decoding}$$

2. [BLEICHENBACHER, KIAYIAS, YUNG, 2003]

The proportion of error patterns leading to non-uniqueness \leq nb errors/q

does not depend on errors, $\mathcal{O}(1/q)$

[BROWN, MINDER, SHOKROLLAHI, 2004] [SCHIMDT, SIDORENKO, BOSSERT, 2009] [PUCHINGER, ROSENKILDE, 2017]

Coding Theory

Computer Algebra

1. Unique decoding Capability

$$\text{nb errors} \leq \frac{n-k}{2} = \frac{d-1}{2} := \tau_0 \longrightarrow \text{unique decoding}$$

2. [BLEICHENBACHER, KIAYIAS, YUNG, 2003]

$$\text{nb errors} \leq \frac{l(n-k)}{l+1} =: \tau_{IRS} \qquad \qquad \begin{array}{c} \quad \text{uniqueness} \\ \quad \\ \quad \\ \quad \text{error patterns} \end{array}$$

The proportion of error patterns leading to non-uniqueness \leq nb errors/q

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_n$ and the degree bounds $\tau + k$, $\tau + 1$

GOAL: find $(\varphi_1(x), ..., \varphi_l(x), \psi(x))$ s.t.

- $\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)$
- $\deg(\varphi_i) < \tau + k$
- $\deg(\psi) < \tau + 1$
- 1. Cauchy Interpolation component-wise (RFR)

$$n = \tau + k + \tau \iff$$
 nb errors $\leq \frac{n-k}{2} =: \tau_0 \implies$ uniqueness

2. Common denominator feature

$$n = k + \left\lceil \frac{\tau}{l} \right\rceil + \tau \iff \text{nb errors} \leq \frac{l(n-k)}{l+1} =: \tau_{IRS} \longrightarrow \text{for almost all error patterns}$$

Simultaneous Interpolation with Errors

Reconstruct a **vector of polynomials** by its evaluations, some erroneous

decoding IRS codes

Simultaneous Cauchy Interpolation with Errors

Reconstruct a **vector of rational functions** by its evaluations, some erroneous

Simultaneous Cauchy Interpolation

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	$(\mathbf{v}(\mathbf{x}), d(\mathbf{x}))$		L = N + D - 1 Cauchy Interpolation	$L = N + \left\lceil \frac{(D-1)}{n} \right\rceil$
no-errors	$A(x)\frac{v(x)}{d(x)}$	$- \boldsymbol{b}(x)$	$L = \max\{\deg(A) + N, \deg(b) + D\}$ [CABAY, 1971]	
with errors		d constant $(D=0)$	$L = N - 1 + 2\tau$ Unique Decoding Capability Theorem (IRS codes)	$L = N - 1 + \left\lceil \frac{\tau}{n} \right\rceil + \tau$ [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
	$(\mathbf{v}(\mathbf{x}), \mathbf{d}(\mathbf{x}))$	D > 0	[BOYER, KALTOFEN, 2014]	[GUERRINI, LEBRETON, Z., 2019]
	$A(x)\frac{v(x)}{d(x)} = b(x)$		[KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	[GUERRINI, LEBRETON, Z., 2021]

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	(v(x), d(x))		L = N + D - 1 Cauchy Interpolation	$L = N + \left\lceil \frac{(D-1)}{n} \right\rceil$
	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\}$ [CABAY, 1971]	
with errors	(v(x), d(x))	d constant $(D=0)$	$L = N - 1 + 2\tau$ Unique Decoding Capability Theorem (IRS codes)	$L = N - 1 + \left\lceil \frac{\tau}{n} \right\rceil + \tau$ [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
		D > 0	[BOYER, KALTOFEN, 2014]	[GUERRINI, LEBRETON, Z., 2019]
	$A(x)\frac{v(x)}{d(x)} = b(x)$	D > 0	[KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	[GUERRINI, LEBRETON, Z., 2021]

Simultaneous Cauchy Interpolation with Errors

Given
$$y_1, ..., y_L$$

•
$$y_j = \frac{v(\alpha_j)}{d(\alpha_j)}$$
 correct evaluations

•
$$\mathbf{y}_j \neq \frac{\mathbf{v}(\alpha_j)}{d(\alpha_j)}$$
 erroneous evaluations

the degree bounds $N > \deg(v)$, $D > \deg(d)$ and an upper bound τ on the number of errors.

GOAL: reconstruct $(v(x), d(x)) \rightarrow y(x)$

Simultaneous Cauchy Interpolation

Simultaneous Rational Function Reconstruction

Simultaneous Cauchy Interpolation with Errors

Given $y_1, ..., y_L$

•
$$y_j = \frac{v(\alpha_j)}{d(\alpha_j)}$$
 correct evaluations

•
$$y_j \neq \frac{v(\alpha_j)}{d(\alpha_i)}$$
 erroneous evaluations

the degree bounds $N>\deg(v)$, $D>\deg(d)$ and an upper bound τ on the number of errors.

GOAL: reconstruct $(v(x), d(x)) \rightarrow y(x)$

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds $N+\tau$, $D+\tau$

GOAL: find
$$(\varphi_1(x), ..., \varphi_n(x), \psi(x))$$
 s.t.

•
$$\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)$$

•
$$\deg(\varphi_i) < N + \tau$$

•
$$\deg(\psi) < D + \tau$$

$$\Lambda(x) = \prod_{\alpha_j \text{ erroneous}} (x - \alpha_j)$$

Error Locator Polynomial

roots = erroneous evaluation points
$$deg(\Lambda) = nb errors$$

 $(\Lambda(x)v(x), \Lambda(x)d(x))$ solution

Simultaneous Cauchy Interpolation with Errors

Given $y_1, ..., y_L$

•
$$y_j = \frac{v(\alpha_j)}{d(\alpha_j)}$$
 correct evaluations

•
$$\mathbf{y}_j \neq \frac{\mathbf{v}(\alpha_j)}{d(\alpha_j)}$$
 erroneous evaluations

the degree bounds $N > \deg(v)$, $D > \deg(d)$ and an upper bound τ on the number of errors.

GOAL: reconstruct $(v(x), d(x)) \rightarrow y(x)$

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds $N+\tau$, $D+\tau$

GOAL: find $(\varphi_1(x), ..., \varphi_n(x), \psi(x))$ s.t.

- $\Lambda(\alpha_j)v_i(\alpha_j) = y_{i,j}\Lambda(\alpha_j)$
- $deg(\Lambda v_i) < N + \tau$
- $\deg(\Lambda d) < D + \tau$

$$\Lambda(x) = \prod_{\alpha_j \text{ erroneous}} (x - \alpha_j)$$

Error Locator Polynomial

roots = erroneous evaluation points $deg(\Lambda) = nb \ errors$

 $(\Lambda(x)v(x), \Lambda(x)d(x))$ solution

Simultaneous Cauchy Interpolation with Errors

Given
$$y_1, ..., y_L$$

•
$$y_j = \frac{v(\alpha_j)}{d(\alpha_j)}$$
 correct evaluations

•
$$\mathbf{y}_j \neq \frac{\mathbf{v}(\alpha_j)}{d(\alpha_j)}$$
 erroneous evaluations

the degree bounds $N > \deg(v)$, $D > \deg(d)$ and an upper bound τ on the number of errors.

GOAL: reconstruct $(v(x), d(x)) \rightarrow y(x)$

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds $N+\tau$, $D+\tau$

GOAL: find
$$(\varphi_1(x), ..., \varphi_n(x), \psi(x))$$
 s.t.

- $\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)$
- $\deg(\varphi_i) < N + \tau$
- $\deg(\psi) < D + \tau$

uniqueness

 $(\Lambda(x)v(x), \Lambda(x)d(x))$

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds $N+\tau$, $D+\tau$

GOAL: find
$$(\varphi_1(x), ..., \varphi_n(x), \psi(x))$$
 s.t.

- $\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)^{\varphi(x)}$
 - $\deg(\varphi_i) < N + \tau$
- $\deg(\psi) < D + \tau$

generalizing and re-elaborating the result of [BLEICHENBACHER, KIAYIAS, YUNG, 2003] for IRS codes

1. Cauchy Interpolation component-wise

$$L = N + D + 2\tau - 1 \longrightarrow$$
 uniqueness [BOYER, KALTOFEN, 2014]

2. If we want to recover a solution of a PLS

$$L = \max\{\deg(A) + N, \deg(b) + D\} + 2\tau \longrightarrow \text{uniqueness}$$
 [CABAY, 1971] \longrightarrow [KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]

If we want to recover a solution of a PLS

$$L = \max\{\deg(A) + N, \deg(b) + D\} + \left\lceil \frac{\tau}{n} \right\rceil + \tau \longrightarrow \text{uniqueness}$$
 for almost all error patterns

The proportion of error patterns leading to non-uniqueness $\leq (D+\tau)/q$

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	(v(x), d(x))		L = N + D - 1 Cauchy Interpolation	$L = N + \left\lceil \frac{(D-1)}{n} \right\rceil$
	$A(x)\frac{v(x)}{d(x)}$	-b(x)	$L = \max\{\deg(A) + N, \deg(b) + D\}$ [CABAY, 1971]	
with errors	(v(x), d(x))	d constant $(D=0)$	$L = N - 1 + 2\tau$ Unique Decoding Capability Theorem (IRS codes)	$L = N - 1 + \left\lceil \frac{\tau}{n} \right\rceil + \tau$ [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
		D > 0	$L = N + D - 1 + 2\tau$ [BOYER, KALTOFEN, 2014]	
	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\} + 2\tau$ [KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	

Early Termination

$$\overline{L} = \min\{L_{BK}, L_{KPS}\}\$$

•
$$L_{BK} = N + D + 2\tau - 1$$
,

• $L_{KPSW} = \max\{\deg(A) + N, \deg(b) + D\} + 2\tau$

$$L_{new} = \min\{L_{GLZ19}, L_{GLZ20}\}$$

$$L_{GLZ19} = N + D - 1 + \tau + \left\lceil \frac{\tau}{n} \right\rceil,$$

$$L_{GLZ20} = \max\{\deg(A) + N, \deg(b) + D\} + \tau + \left\lceil \frac{\tau}{n} \right\rceil$$

$$\begin{array}{c|c} \bullet & N > \deg(v) \\ \text{All these bounds depend on} & \bullet & D > \deg(d) \\ \bullet & \tau \geq \text{nb errors } |E| \\ \end{array}$$

we don't know these quantities

If N, D, τ are too big compared to $\deg(v)$, $\deg(d)$, $|E| \longrightarrow L$, L_{new} too big compared to the number we really need

EARLY TERMINATION TECHNIQUE [KALTOFEN, PERNET, STORJOHANN, WADDELL, 2017]

GOAL: decrease the number of evaluation points without knowing the real degrees

Early termination strategy

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds $N+\tau$, $D+\tau$

GOAL: find
$$(\varphi_1(x), ..., \varphi_n(x), \psi(x))$$
 s.t.

 $\varphi(x)$

- $\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)$
- $\deg(\varphi_i) < N + \tau$
- $\deg(\psi) < D + \tau$

 \rightarrow $(\Lambda v, \Lambda d)$ is a solution

Early termination strategy

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds $N+\tau$, $D+\tau$

GOAL: find
$$(\varphi_1(x), ..., \varphi_n(x), \psi(x))$$
 s.t.

 $\varphi(x)$

- $\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)$
- $\deg(\varphi_i) < \nu$
- $\deg(\psi) < \theta$

 \rightarrow $(\Lambda v, \Lambda d)$ is a solution

IDEA
$$\frac{1}{2}$$
Replace $\frac{N+\tau}{D+\tau}$ with some parameters $\frac{\nu}{\vartheta}$

Early termination strategy

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds $N+\tau$, $D+\tau$

GOAL: find
$$(\varphi_1(x), ..., \varphi_n(x), \psi(x))$$
 s.t.

- $\bullet \quad \varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)$
- $\deg(\varphi_i) < \nu$
- $\deg(\psi) < \theta$

 \rightarrow $(\Lambda v, \Lambda d)$ is a solution

IDEA
$$\frac{\lambda}{2}$$
Replace $\frac{N+\tau}{D+\tau}$ with some parameters $\frac{\nu}{\vartheta}$

Conclusions & Open Problems

Seminario UMI - Crittografia e Codici

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	$(\mathbf{v}(x), d(x))$		L = N + D - 1 Cauchy Interpolation	$L = N + \left\lceil \frac{(D-1)}{n} \right\rceil$
no-errors	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\}$ [CABAY, 1971]	
with errors		D > 0	$L = N - 1 + 2\tau$ Unique Decoding Capability Theorem (IRS codes)	$L = N - 1 + \left\lceil \frac{\tau}{n} \right\rceil + \tau$ [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
	(v(x), d(x))		$L = N + D - 1 + 2\tau$ [BOYER, KALTOFEN, 2014]	
	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\} + 2\tau$ [KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	

Early termination technique

Publications

- Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon codes. E.Guerrini, R.Lebreton, I.Zappatore. In Proceedings of ISIT'19, IEEE, 2019
- On the Uniqueness of Rational Function Reconstruction. E.Guerrini, R.Lebreton, I.Zappatore. In Proceedings of ISSAC'20. ACM, 2020
- Polynomial Linear Systems Solving with Random Errors: New Bound and Early Termination Technique. E.Guerrini, R.Lebreton, I.Zappatore. In Proceedings of ISSAC'21. ACM, 2021

Perspectives

Improving previous results

- On the uniqueness of the simultaneous rational function reconstruction
- Failure probability of Simultaneous Cauchy Interpolation with Errors

Extending previous results

- Rational Function Codes
- Algorithm-based fault tolerant technique based on Hermite interpolation

On the uniqueness of SRFR

Simultaneous Cauchy Interpolation

Given two vector of polynomials u(x), a(x)and the degree bounds N, D

GOAL: find
$$(v_1(x), ..., v_n(x), d(x))$$
 s.t.

- deg(d) < D

If L = N + (D - 1)/n, for almost all instances $y_i = v_i/d \Longrightarrow$ uniqueness?

Theorem [GUERRINI, LEBRETON, Z., 2020]

If L = N + (D-1)/n, for almost all instances \Longrightarrow uniqueness.

If $\mathbb{K} = \mathbb{F}_q$, the proportion of instances leading to non-uniqueness is $\leq (D-1)/q$

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	$\frac{v(x)}{d(x)}$		L = N + D - 1 Cauchy Interpolation	$? L = N + \left\lceil \frac{(D-1)}{n} \right\rceil$
no-errors	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\}$ [CABAY, 1971]	$? L = N + \left\lceil \frac{(D-1)}{n} \right\rceil$
	(v(x), d(x))	d constant $(D=0)$	$L = N - 1 + 2\tau$ Unique Decoding Capability Theorem (IRS codes)	$L = N - 1 + \left\lceil \frac{\tau}{n} \right\rceil + \tau$ [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
with errors		D > 0	$L = N + D - 1 + 2\tau$ [BOYER, KALTOFEN, 2014]	
	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\} + 2\tau$ [KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	$L = \max\{\deg(A) + N, \deg(b) + D\} + \left\lceil \frac{\tau}{n} \right\rceil + \tau$

Simultaneous Cauchy Interpolation

Given the vectors $y_1, ..., y_L$ and the degree bounds $N + \tau$, $D + \tau$

GOAL: find
$$(\varphi_1(x), ..., \varphi_n(x), \psi(x))$$
 s.t.

- $\varphi_i(\alpha_j) = y_{i,j}\psi(\alpha_j)$ $\deg(\varphi_i) < N + \tau$
- $\deg(\psi) < D + \tau$

 $(\Lambda(x)v(x), \Lambda(x)d(x))$

Cauchy Interpolation component-wise (RFR)

$$L = N + D + 2\tau - 1 \longrightarrow$$
 uniqueness [BOYER, KALTOFEN, 2014]

2. If we want to recover a solution of a PLS

$$L = \max\{\deg(A) + N, \deg(b) + D\} + 2\tau \longrightarrow \text{uniqueness}$$
 [CABAY, 1971] \longrightarrow [KALTOFEN, PERNET, STORJOHANN, WADDEL, 2014]

Common denominator constraint

$$L = N + \left\lceil \frac{D - 1 + \tau}{n} \right\rceil + \tau \qquad \longrightarrow \qquad \text{for almost all error patterns}$$
 for almost all v/d ?

Perspectives

Improving previous results

- On the uniqueness of the simultaneous rational function reconstruction
- Failure probability of Simultaneous Cauchy Interpolation with Errors

Extending previous results

- Rational Function Codes
- Algorithm-based fault tolerant technique for Hermite interpolation

Number of Evaluations - Outline of this work

			uniqueness	uniqueness almost always
	(v(x), d(x))		L = N + D - 1 Cauchy Interpolation	
	$A(x)\frac{v(x)}{d(x)} = b(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\}$ [CABAY, 1971]	?
with errors	(v(x), d(x))	d constant $(D=0)$	$L = N - 1 + 2\tau$ Unique Decoding Capability Theorem (IRS codes)	$L = N - 1 + \left\lceil \frac{\tau}{n} \right\rceil + \tau$ [BLEICHENBACHER, KIAYIAS, YUNG, 2003]
		D > 0	$L = N + D - 1 + 2\tau$ [BOYER, KALTOFEN, 2014]	
	$A(x)\frac{\mathbf{v}(x)}{d(x)} = \mathbf{b}(x)$		$L = \max\{\deg(A) + N, \deg(b) + D\} + 2\tau$ [KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]	$ L = \max\{\deg(A) + N, \deg(b) + D\} + \left\lceil \frac{\tau}{n} \right\rceil + \tau $

Simultaneous Cauchy Interpolation

Given the vectors $\mathbf{y}_1, ..., \mathbf{y}_L$ and the degree bounds $N+\tau$, $D+\tau$

GOAL: find
$$(\varphi_1(x), ..., \varphi_n(x), \psi(x))$$
 s.t.

- $\varphi_i(\alpha_j) = y_{i,j} \psi(\alpha_j)^{\varphi(x)}$
- $\deg(\varphi_i) < N + \tau$
- $\deg(\psi) < D + \tau$

generalizing and re-elaborating the result of [BLEICHENBACHER, KIAYIAS, YUNG, 2003] for IRS codes

1. Cauchy Interpolation component-wise

$$L = N + D + 2\tau - 1 \longrightarrow$$
 uniqueness [BOYER, KALTOFEN, 2014]

2. If we want to recover a solution of a PLS

$$L = \max\{\deg(A) + N, \deg(b) + D\} + 2\tau \longrightarrow \text{uniqueness}$$
 [CABAY, 1971] \longrightarrow [KALTOFEN, PERNET, STORJOHANN, WADDEL, 2017]

The proportion of error patterns leading to non-uniqueness $\leq (D + \tau)/q$

Conclusions & Open Problems

Improving previous results

- On the uniqueness of the simultaneous rational function reconstruction
- Failure probability of Simultaneous Cauchy Interpolation with Errors

Extending previous results

- Rational Function Codes
- Algorithm-based fault tolerant technique for Hermite interpolation

Simultaneous Interpolation with Errors

Reconstruct a **vector of polynomials** by its evaluations, some erroneous

decoding IRS codes

Reconstruct a **vector of rational functions** by its evaluations, some erroneous

decoding specific
Interleaved Rational Function codes
[PERNET, 2017]

Simultaneous Cauchy Interpolation

Conclusions & Open Problems

Rational Function Code [PERNET, 2017]

generalization of Reed-Solomon codes, **non linear**

Let $N, D \le L \le q$ and $\{\alpha_1, ..., \alpha_L\}$ distinct evaluation points,

$$\mathscr{C}_{RF}(n,k) := \left\{ \left(\frac{v(\alpha_1)}{d(\alpha_1)}, \dots, \frac{v(\alpha_L)}{d(\alpha_L)} \right) \middle| \frac{v}{d} \in \mathbb{F}_q(x), \deg(v) < N, \deg(d) < D, d(\alpha_j) \neq 0 \right\}$$

Interleaved Rational Function Code [PERNET, 2017]

the minimum distance $\geq L - (N + D + 2)$

Let $N, D \leq L \leq q$ and $\{\alpha_1, ..., \alpha_L\}$ distinct evaluation points,

$$\mathscr{C}_{RF}(n,k) := \left\{ \left(\frac{\boldsymbol{v}(\alpha_1)}{\boldsymbol{d}(\alpha_1)}, \dots, \frac{\boldsymbol{v}(\alpha_L)}{\boldsymbol{d}(\alpha_L)} \right) | \frac{\boldsymbol{v}}{\boldsymbol{d}} \in \mathbb{F}_q(\boldsymbol{x})^{n \times 1}, \deg(\boldsymbol{v}) < N, \deg(\boldsymbol{d}) < D, \frac{\boldsymbol{d}_i(\alpha_j) \neq 0}{\boldsymbol{d}} \right\}$$

Perspectives

Improving previous results

- On the uniqueness of the simultaneous rational function reconstruction
- Failure probability of Simultaneous Cauchy Interpolation with Errors

Extending previous results

- Algorithm-based fault tolerant technique with Hermite interpolation (in progress)

Thank you

Seminario UMI - Crittografia e Codici