Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Інститут атомної та теплової енергетики Кафедра цифрових технологій в енергетиці

# Розрахунково-графічна робота

3 дисципліни «Візуалізація графічної та геометричної інформації» Варіант 6

Виконав: Волотівський І.В. Студент групи ТР-23мп

## Завдання

Тема роботи: Операціїї над тектурними координатами Вимоги:

- Накласти текступу на поверхню отриману в результаті виконання лабораторної роботи №2.
- Імплементувати масштабування або обертання текстури(текстурних координат) згідно з варіантом: непарні масштабування, парні обертання.
- Запровадити можливість переміщення точки відносно якої відбувається трансформація текстури по поверхні за рахунок зміни параметрів в просторі текстури. Наприклад, клавіші А та D для переміщення по осі абсцис, змінюючи параметр и текстури, а клавіші W та S по осі ординат, змінюючи параметр v.

# Теоретичні відомості

Текстурування – невід'ємний етап 3D моделювання і візуалізації тривимірного об'єкту. Створення текструри і її накладення на 3д модель визначають її якість, реалістичність і точність. Щоб додати кольори, малюнки та текстури, 2D-фотографії потрібно розмістити на 3D-моделях. Додавання кольору або властивостей поверхні та матеріалу до 3D-моделі потребує подальшого розвитку процесу 3D-моделювання: 3D-текстурування. Цей підхід часто дає повний колір і властивості поверхні 3D-моделі.

#### Стандартна процедура текстурування така:

#### UV Mapping and Unwrapping

Для процесу 3D-текстурування, необхідно спочатку розгорнути модель, що, по суті, те саме, що розгортання 3D-сітки. Коли художники-фактуристи отримають готові моделі від відділу 3D-моделювання, вони створять UV-карту для кожного 3D-об'єкта. UV-карта — це плоске зображення поверхні 3D-моделі, яке використовується для швидкого накладання текстур. Прямо пов'язуючи 2D-зображення (текстуру) з вершинами багатокутника, UV-відображення може допомогти обернути 2D-зображення (текстуру) навколо 3D-об'єкта, а згенеровану карту можна використовувати безпосередньо в процесі текстурування та затінення.

Програмні системи 3D мають кілька інструментів або підходів для розгортання 3D-моделей. Що стосується створення УФ-карт, то це питання особистих уподобань. Якщо ви не плануєте використовувати процедурні текстури, у більшості випадків вам слід розгорнути вашу 3D-модель у компонент текстурування. Це текстури, створені за допомогою математичних методів (процесів), а не безпосередньо записаних даних у 2D або 3D.

### Виконання завдання

В ході другої лабораторної роботи було створено поверхню під назвою «Пляшка Клейна». Отриману поверхню з освітленням можна побачити на рисунку 3.1.



Рис. 3.1 «Пляшка Клейна» з освітленням

Текстура була завантажена як картинка з інтернету формату «jpg». Вона була завантажена на github, щоб в подальшому використовувати посилання на неї і не стикатися з проблемою Cross-Origin Resource Sharing policy.

В графічному редакторі було налаштувано розмір картинки так, щоб ширина і висота були рівні, а також, аби сторона мала розмір  $2^n$  в пікселях.

3 метою накладання текстури на поверхню, в першу чергу було створено декілька змінних в коді шейдера. Після чого були створення

посилання на них в коді програми. Були також створені функції для генерації даних текстури.

Обрану картинку можна побачити на рисунку 3.2.



Рис. 3.2 Обрана текстура

Поверхню з накладеною текстурою можна побачити на рисунку 3.3.



Рис. 3.3 «Пляшка Клейна» з накладеною текстурою Для відображення точок умови, які виконуються для перетворення текстур створено відповідну функцію в класі моделі.

Замість того, щоб показати точку, я вирішив відобразити сферу. Тому що ми працюємо в 3D просторі. Треба було відобразити кулю створивши функцію, яка створює геометрію.

Модель з умовною точною показані на рисунку 3.4.



Рис. 3.4 Поверхня з умовною точкою

Для роботи з текстурою було створено ще кілька змінних в коді шейдера:

обертання текстури, розташування умовної точки в (u,v) координатах, змінну для розташування сфери на відповідне місце поверхні в 3д-просторі.

Для реалізації переміщення точки по поверхні та обертання текстури було

додано відповідні функції на відповідні вхідні дані від користувача.

# Вказівки користувачу

Була додана можливість для користувача, керувати переміщенням умовних точок по поверхні, поворотом текстур щодо умовних точок і орієнтацією поверхні в просторі. Останні два пункти виконуються таким же чином..

Переміщення умовної точки реалізовано за допомогою введення з клавіатури(рисунок 4.1): клавіші W та S здійснюють переміщення точки за параметром v в додатньому та від'ємному напрамках відповідно, клавіші A та D здійснюють переміщення точки за параметром u у від'ємному та додатньому напрямках відповідно.





Рис. 4.1. Переміщення умовної точки

Орієнтація поверхні в просторі, а також трансформація текстури(рисунок 4.2) здійснюється за допомогою введення з миші: необхідно затиснути лівою клавішею миші у області відображення поверхні та потягнути в будь-яку сторону. Варто зауважити, що обертання текстури залежить від переміщення миші по горизонталі, тобто, при зміщенні затиснутої мишу тільки вгору або тільки вниз буде здійснюватись лише зміна орієнтації поверхні в просторі(рисунок 4.3)



Рис. 4.2. Трансформація текстури

На рисунку 4.3 можна помітити що точка та текстура залишились на одному і тому самому місці відносно поверхні. Змінилась лише орієнтація поверхні в просторі.



Рис. 4.3. Лише орієнтація поверхні в просторі

## Висновок

В даній розрахунковій роботі ми дослідили, що таке текстурування об'єкту, а також вивчили, що таке розгортка та UV-mapping. Було реалізовано обертання текстури навколо визначеної користувачем точки. Також  $\epsilon$  можливість переміщати точку вздовж поверхні. Матеріал засвоєний.