

Corrigé de l'épreuve d'optique géométrique

SMP2 - SR - 1h30

06 juillet 2015

Exercice

On considère un miroir sphérique (M) de sommet S, de centre C et de rayon de courbure $\overline{SC} = R = +12 \ cm$. Dans tout l'exercice, le miroir (M) est utilisé dans les conditions de Gauss. 1°/ Ce miroir est-t-il convergent ou divergent ? Justifier.

Le miroir (M) est divergent car il est convexe (ou $\overline{SC} > 0$).

2°/ Écrire la relation de conjugaison de position pour un objet A et son image A' avec origine au sommet S.

$$\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{2}{\overline{SC}} = \frac{2}{R}$$

1,00

 3° / Déterminer les positions des foyers objet F et image F' de ce miroir par rapport à S en fonction de R puis en cm.

$$A \equiv F \xrightarrow{(M)} A' \equiv \infty \ et \ A \equiv \infty \xrightarrow{(M)} A' \equiv F' \ donc : \overline{SF} = \overline{SF'} = \frac{\overline{SC}}{2} = \frac{R}{2} = 6cm$$

4°/ Quelle doit-être la position, en cm par rapport à S, d'un objet (AB) sur l'axe optique pour que son image (A'B') soit 3 fois plus grande que l'objet et de même sens ?

Le grandissement linéaire de (M) est : $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}} = 3$ soit $\overline{SA'} = -3$ \overline{SA}

$$On a : \frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{2}{R} \implies \frac{-1}{3\overline{SA}} + \frac{1}{\overline{SA}} = \frac{2}{R} \implies \overline{SA} = \frac{R}{3} = 4 cm$$

5°/ Un objet (AB) vertical et virtuel $(\overline{AB}=1cm)$ est situé sur l'axe optique à la distance d=9cm de S. Trouver l'image (A'B') par construction géométrique. Echelle = (x:1/3,y:1/1)

Problème

Soit L_1 une lentille plan-convexe taillée dans du verre d'indice n=1,5 et placée dans l'air d'indice 1. Le rayon de courbure de la face sphérique est : $\overline{S_1C_1}=R$. (Figure 1) Dans tout le problème les conditions de Gauss sont satisfaites.

A-1°/ Quelle est la nature de cette lentille L_1 ? (Justifier sans calculs)

La lentille L_1 est convergente car ses bords sont plus minces que le centre.

A-2°/ L_1 est une lentille mince de centre O_1 $(S_1 \equiv S_2 \equiv O_1)$. Déterminer la relation de conjugaison de cette lentille mince, avec origine en O_1 , pour un objet A et son image A' en fonction de n et R. On notera A_1 l'image intermédiaire.

$$A \xrightarrow{(DS)} A_1 \ donc : \frac{n}{\overline{S_1 A_1}} - \frac{1}{\overline{S_1 A}} = \frac{n-1}{\overline{S_1 C_1}} = \frac{n-1}{R} ; \quad A_1 \xrightarrow{(DP)} A' \ donc : \frac{n}{\overline{S_2 A_1}} = \frac{1}{\overline{S_2 A'}}$$

$$Puisque \ L_1 \ est \ mince \ \left(S_1 \equiv S_2 \equiv O_1\right) \ alors : \frac{n}{\overline{O_1 A_1}} - \frac{1}{\overline{O_1 A}} = \frac{n-1}{R} \ et \ \frac{n}{\overline{O_1 A_1}} = \frac{1}{\overline{O_1 A'}}$$

Donc:
$$\frac{1}{\overline{O_1 A'}} - \frac{1}{\overline{O_1 A}} = \frac{n-1}{R}$$
 0,50

A-3°/ Calculer la distance focale image f_1' de L_1 en fonction n et R. Faire l'application numérique pour R=6 cm. En déduire sa vergence V_1 en dioptrie.

$$A \equiv \infty \xrightarrow{(L_1)} A' \equiv F'_1 \quad donc : \quad \overline{O_1 F'_1} = \frac{R}{n-1} = f'_1 ; \quad A. N. \quad f'_1 = 12 cm$$

La vergence
$$V_1$$
 est : $V_1 = \frac{1}{f_1'}$ Soit : $V_1 = 8,33 \delta$

0,50

B-1°/ On place à une distance de $+4\,cm$ derrière (après) la lentille L_1 , une lentille mince L_2 de centre O_2 de façon à constituer un doublet placé dans l'air. Quelle est la valeur en cm de l'épaisseur e de ce système optique ?

L'épaisseur e du système optique est $e = \overline{{m O}_1{m O}_2} = 4$ cm

0,50

B-2°/ Le symbole du doublet ainsi formé est : (3,1,-1). Déterminer la distance focale image $f_2'(cm)$ de L_2 ? Quelle est sa nature?

Le symbole du doublet montre que : $\frac{f_1'}{3} = \frac{e}{1} = \frac{f_2'}{-1}$ donc $f_2' = -e \implies f_2' = -4$ cm

La lentille (L_2) est divergente car f_2' est négative.

0,50

B-3°/ Retrouver la distance focale image $f_1'(cm)$ de L1.

D'après le symbole du doublet :
$$\frac{f_1'}{3} = \frac{e}{1} = \frac{f_2'}{-1}$$
 alors $f_1' = 3e \Rightarrow f_1' = 12$ cm

B-4°/a) Calculer la valeur en dioptrie de la vergence V du système ? En déduire sa nature.

Relation de Gullstrand pour un doublet dans l'air :
$$V = V_1 + V_2 - eV_1V_2$$
 On $a: V_1 = \frac{1}{f_1'} = 8,33 \, \delta$ et $V_2 = \frac{1}{f_2'} = -25 \, \delta$; Soit $V = -8,33 \, \delta$ Le doublet est divergent puisque V est négative. 0,50

b) Quelles sont les valeurs des distances focales image f'(cm) et objet f(cm) du doublet ?

La distance focale image du système est :
$$f' = \frac{1}{V} = -12$$
 cm.

On $a : f = -f' = 12$ cm car les milieux extrêmes sont identiques.

0,50

B-5°/ Calculer la valeur en cm de l'intervalle optique Δ de ce doublet.

L'intervalle optique
$$\Delta$$
 est : $\Delta = \overline{F_1'F_2} = f_2 + e - f_1'$ Soit : $\Delta = -4$ cm 0,50

B-6°/ Déterminer les positions, par rapport à O_1 , des foyers principaux F et F' du doublet.

$$F \xrightarrow{(L_1)} F_2 \xrightarrow{(L_2)} \infty \implies \frac{1}{\overline{O_1 F_2}} - \frac{1}{\overline{O_1 F}} = \frac{1}{f_1'} ; \quad On \ a : \overline{O_1 F_2} = e + f_2 \implies \overline{O_1 F} = 24 \ cm$$

$$\infty \xrightarrow{(L_1)} F_1' \xrightarrow{(L_2)} F' \implies \frac{1}{\overline{O_2 F'}} - \frac{1}{\overline{O_2 F'_1}} = \frac{1}{f_2'} ; \quad On \ a : \overline{O_2 F'_1} = f_1' - e \qquad et$$

$$\overline{O_2 F'} = \overline{O_2 O_1} + \overline{O_1 F'} = \overline{O_1 F'} - e \qquad Soit : \overline{O_1 F'} = -4 \ cm$$

On peut également utiliser les formules de Newton :

$$\overline{F_1F} \times \overline{F_1'F_2} = f_1f_1' \implies \overline{F_1F} = -\frac{f_1^2}{\Delta} \implies \overline{O_1F} = f_1\left(1 - \frac{f_1}{\Delta}\right)$$

$$\overline{F_2F_1'} \times \overline{F_2'F'} = f_2f_2' \implies \overline{F_2'F'} = \frac{f_2'^2}{\Delta} \implies \overline{O_2F'} = f_2'\left(1 + \frac{f_2'}{\Delta}\right)$$

B-7°/ Calculer les positions, par rapport à O_1 , des points principaux H et H' du doublet.

Les distances focales objet
$$f$$
 et image f 'sont définies par :
$$f = \overline{HF} \Rightarrow f = \overline{HO_1} + \overline{O_1F} \Rightarrow \overline{O_1H} = \overline{O_1F} - f \quad ; \quad Soit : \quad \overline{O_1H} = 12 \ cm \quad 0,50$$
$$f' = \overline{H'F'} \Rightarrow f' = \overline{H'O_1} + \overline{O_1O_2} + \overline{O_2F'} \Rightarrow \overline{O_1H'} = e + \overline{O_2F'} - f' \quad ; \quad Soit : \quad \overline{O_1H'} = 8 \ cm$$

B-8°/ Retrouver, par construction géométrique, la position du foyer principal image F' et la position du point principal image H' du doublet. (Utiliser la figure 2 ci-après avec une échelle 1/2)

B-9°/ En utilisant les résultats des questions B-6 et B-7, placer uniquement les points cardinaux du système sur la figure 3 ci-dessous et trouver géométriquement la position de l'image A'B' d'un objet AB tel que $\overline{AB} = 1$ cm et $\overline{O_1A} = -6$ cm. (Echelle = x : 1/2, y : 3/1)

 $B-10^{\circ}$ / Quelle sera la position de L_2 par rapport à L_1 pour que ce doublet soit afocal ?

Doublet afocal \Leftrightarrow Intervalle optique Δ nul \Leftrightarrow $e = f_1' - f_2$; Soit : e = 8 cm

B-11°/ On dispose convenablement les deux lentilles pour avoir un système afocal. Un faisceau lumineux, de diamètre D, vient de l'infini parallèlement à l'axe optique et traverse le doublet. Calculer le diamètre d du faisceau émergent en fonction de D.

$$D'$$
 après la figure, on $a: \frac{D}{d} = \frac{\overline{O_1 F_1'}}{\overline{O_2 F_2}} = \frac{f_1'}{f_2}$

$$Donc: d = \frac{f_2}{f_1'}D \Rightarrow d = \frac{D}{3}$$