Schedule

A week-by-week breakdown of the material.

Week 1 (01/05-01/09)

- Day 1
 - Numbers: Rationals, Reals, Complex¹
 - Basic proof techniques: Direct²
 - Assignment 1³
- Day 2
 - Basic proof techniques: Indirect⁴
 - Square root of 2 is irrational⁵
- Day 3
 - Quantifiers⁶
 - Principle of Mathematical Induction⁷
 - Assignment 28
- Day 4
 - Strong induction and Well-Ordering Principle⁹
 - Fibonnaci Numbers¹⁰

Week 2 (01/12-01/16)

- Day 1
 - Divisibility¹¹
- Day 2
 - Prime and Composite Numbers¹²

¹notes/numbers_intro.html

²notes/proofs_basic.html

³assignments/1.html

⁴notes/proofs_basic.html

⁵notes/irrationality_of_sqrt2.html

⁶notes/proofs_quantifiers.html

⁷notes/proofs_induction.html

⁸assignments/2.html

⁹notes/proofs induction other.html

¹⁰notes/numbers_fibonacci.html

¹¹notes/numbers_divisibility.html

¹²notes/primes_intro.html

- Assignment 3¹³
- Day 3
 - Patterns in the Primes¹⁴
 - Common Divisors¹⁵
- Day 4
 - The Division Theorem¹⁶

Week 3 (01/19-01/23)

- Day 1
 - A weird number system¹⁷
 - The Division Theorem (cont)¹⁸
 - Assignment 4¹⁹
- Day 2
 - The Euclidean Algorithm²⁰
- Day 3
 - Diophantine Equations²¹
 - Euclidean Division and Diophantine Equations²²
- Day 4
 - Finding all Solutions²³
 - Assignment 5²⁴

Week 4 (01/26-01/30)

- Day 1
 - Finding all Solutions (cont)²⁵

¹³assignments/3.html

¹⁴notes/primes_patterns.html

¹⁵notes/numbers gcd.html

¹⁶notes/numbers_division_theorem.html

¹⁷notes/weird_number_system.html

¹⁸notes/numbers_division_theorem.html

¹⁹assignments/4.html

²⁰notes/numbers euclidean algorithm.html

²¹notes/equations_diophantine_intro.html

²²notes/equations_diophantine_and_euclidean.html

²³notes/equations_diophantine_all_solutions.html

²⁴assignments/5.html

²⁵notes/equations_diophantine_all_solutions.html

- Fundamental Theorem of Arithmetic²⁶
- Day 2
 - Consequences of Fundamental Theorem²⁷
- Day 3
 - Modular Arithmetic and Congruences²⁸
- Day 4
 - Arithmetic with Congruences²⁹

Week 5 (02/02-02/06)

- Day 1
 - Review
- Day 2
 - MIDTERM (Study guide³⁰)
- Day 3
 - Chinese Remainder Theorem³¹
 - Assignment 6³²
- Day 4
 - Congruence Classes as a Number System³³

Week 6 (02/09-02/13)

- Day 1
 - Multiplicative Inverses³⁴
- Day 2
 - Multiplicative Inverses (cont)³⁵
- Day 3

²⁶notes/numbers fundamental theorem.html

²⁷notes/numbers_fta_consequences.html

²⁸notes/congruence_intro.html

²⁹notes/congruence_arithmetic.html

³⁰studyGuide1.html

³¹notes/congruence_chinese_remainder.html

³²assignments/6.html

³³notes/congruence_system.html

³⁴notes/congruence_multiplicative_inverses.html

³⁵notes/congruence_multiplicative_inverses.html

- Basics of Encryption³⁶
- Encryption via Multiplication³⁷
- Day 4
 - Fermat's Little Theorem³⁸
 - Assignment 7³⁹

Week 7 (02/16-02/20)

- Day 1
- Day 2
 - Reduced Residues and phi⁴⁰
- Day 3
 - Reduced Residues and phi (cont)⁴¹
- Day 4
 - Reduced Residues and phi (cont)⁴²

Week 8 (02/23-02/27)

BREAK

Week 9 (03/02-03/06)

- Day 1
 - Euler's Theorem⁴³
 - Assignment 8⁴⁴
- Day 2
 - Encryption via Exponentiation⁴⁵
- Day 3

³⁶notes/encryption_basic.html

³⁷notes/encryption_mult.html

³⁸notes/congruence_fermats.html

³⁹assignments/7.html

⁴⁰notes/residues_basic.html

⁴¹notes/residues_basic.html

⁴²notes/residues basic.html

⁴³notes/residues_eulers_theorem.html

⁴⁴assignments/8.html

⁴⁵notes/encryption_exponentiation.html

- Snow Day
- Day 4
 - Public Key Cryprography and RSA⁴⁶

Week 10 (03/09-03/13)

- Day 1
 - Public Key Cryprography and RSA (cont)⁴⁷
- Day 2
 - Public Key Cryprography and RSA (cont)⁴⁸
- Day 3
 - Order of Elements in Zn⁴⁹
- Day 4
 - Order of Elements in Zn (cont)⁵⁰

Week 11 (03/16-03/20)

- Day 1
 - Review
- Day 2
 - MIDTERM (Study guide⁵¹)
- Day 3
 - Polynomials over Zn⁵²
- Day 4
 - Primitive Roots⁵³

⁴⁶notes/encryption_rsa.html

⁴⁷notes/encryption_rsa.html

⁴⁸notes/encryption_rsa.html

⁴⁹notes/residues order.html

⁵⁰notes/residues_order.html

 $^{^{51}}$ studyGuide2.html

⁵²notes/residues_polynomials.html

⁵³notes/residues_primitive_roots.html

Week 12 (03/23-03/27)

- Day 1
 - Primitive Roots (cont)⁵⁴
- Day 2
 - Primitive Roots (cont)⁵⁵
- Day 3
 - Applications of Primitive Roots: Diffie-Hellman protocol⁵⁶
- Day 4
 - Applications of Primitive Roots: Diffie-Hellman protocol (cont)⁵⁷
 - Quadratic Residues⁵⁸
 - Assignment 9⁵⁹

Week 13 (03/30-04/03)

- Day 1
 - Quadratic Residues (cont)⁶⁰
- Day 2
 - Law of Quadratic Reciprocity⁶¹
- Day 3
 - Gauss's Lemma⁶²
- Day 4
 - Proof of Quadratic Reciprocity⁶³
 - Assignment 10⁶⁴

⁵⁴notes/residues primitive roots.html

⁵⁵notes/residues_primitive_roots.html

⁵⁶notes/encryption_diffie_hellman.html

⁵⁷notes/encryption_diffie_hellman.html

⁵⁸notes/residues_quadratic.html

⁵⁹assignments/9.html

⁶⁰notes/residues_quadratic.html

⁶¹notes/residues_reciprocity.html

⁶²notes/residues_reciprocity.html

⁶³notes/residues_reciprocity_proof.html

⁶⁴assignments/10.html

Week 14 (04/06-04/10)

- Day 1
- Day 2
- Day 3
- Day 4